Statistical Analysis of Atom Topological Neighborhoods and Multivariate Representations of a Large Chemical File

Roger Attias*,† and Michel Petitjean

Institut de Topologie et de Dynamique des Systèmes, Université Paris 7—CNRS URA 34, 1 Rue Guy de la Brosse, 75005 Paris, France

Received February 25, 1993®

Statistical results on a large file are presented for a set of topological parameters. The distribution of skeleton atom neighborhoods is analyzed; it suggests a partition on atoms and contributes to the study of generic aspects of concentric substructures. The bivariate distribution (layer depth/number of atoms) extends the study to any depth. The multivariate distributions, (number of R-extremal atoms)/(number of D-extremal atoms)/(number of centers), and (number of atoms)/(number of bonds)/(number of cycles), are then presented; they show clusters of values and also empty ranges of values.

INTRODUCTION

The diversity of applications in chemistry has resulted in numerous topological indices and substructure systems.¹

Conversely, statistical studies contribute to the analysis of chemical files and to the design of specific tools in the field.

A statistical study of topological parameters is therefore proposed on a large Chemical Abstracts Service (CAS) subfile comprising the structures registered from 1965 to July 1978 and from which coordination compounds, polymers, incompletely defined structures, and alloys had been removed (in order to be homogeneously processed by an initial application); the file comprises 3 424 428 compounds, resulting in 4 019 514 components (a component is a connected set of atoms, as conventionally defined by CAS; a compound may comprise more than one component, e.g. salts).

The algorithmic generation of structural moieties has led to the definition of various parameters, rooted on an atom, which describe some aspects of its neighborhood, at varying distance from the root.

The skeletons of the two-level topological neighborhoods are being considered; they have been exhaustively generated for this large file, and the results are analyzed.

The study is then extended to concentric layers of any depth. Several univariate distributions have been computed on large files (e.g. atoms, bonds, paths, concentric layers,² or extensive ring studies^{3,4}). Multivariate distributions are more complex to represent, but they allow detailed subclassifications, e.g. the radius—diameter distribution.⁵ The following bivariate distributions are consequently presented: the distribution of the number of concentric layers in the number of atoms/layer depth plane; the distribution of the number of components in the space multiplicity of the R-extremal atom/multiplicity of the C-extremal atom/multiplicity of the center; and the distribution of the number of components in the atoms/bonds/rings space.

ATOM TOPOLOGICAL NEIGHBORHOOD

A property which reflects the exact topological neighborhood is assigned to each atom of the file. It consists of the atom connectivity C and the connectivity of each of its neighbors, $X_1, X_2, ..., X_c$. We represent the atom topological neighborhood

Figure 1. Highest occurring atom types. The first 15 atom types contribute for 88.9% of the total number of occurrences.

by $C(X_1X_2...X_c)$, the X_i 's being in decreasing order. This notation is exemplified for the atom neighborhoods in Figure 1.

The notation is unique and unambiguous; it defines a lexicographic order among the atom types:

if
$$C_1(X_1X_2...X_{C_1}) < C_2(Y_1Y_2...Y_{C_2})$$

then $C_1 < C_2$
or $C_1 = C_2$ and $X_1X_2...X_{C_1} < Y_1Y_2...Y_{C_2}$

The neighborhoods of the atoms with a nonzero connectivity degree less or equal to 4 (i.e., 0 < C < 5) have been generated

[†] New address: Laboratoire de Chimie et de Biochimie, Pharmacologiques et Toxicologiques, Université René Descartes—CNRS URA 400, 45 Rue des Saints Pères, 75006 Paris, France

Abstract published in Advance ACS Abstracts, August 15, 1993.

Table I. Distribution of the Atom Neighborhood Types^a

atom type	atoms spanned	no. of atoms	no. of compounds	atom type	atoms spanned	no. of atoms	no. of compounds
474	•	10.000		egree = 1			
1(1)	2	18 398	9 080	1(4)	5	3 801 435	1 152 735
1(2) 1(3)	3 4	3 040 377 9 917 776	1 783 006 2 883 189	1(5)	6	36 243	9 800
1(5)	7	7717770		2			
2(11)	3	13 538	13 320	egree = 2 2(43)	8	821 944	563 189
2(21)	4	1 205 453	853 524	2(44)	9	126 858	79 453
2(22)	5	10 402 639	2 355 668	2(51)	7	5 637	2 296
2(31)	5	1 539 998	1 012 459	2(52)	8	7 524	3 450
2(32)	6	16 158 943	3 023 905	2(53)	9	14 121	5 095
2(33)	7	5 179 014	1 538 515	2(54)	10	2 917	1 420
2(41)	6	262 213	172 549	2(55)	11	2 292	1 099
*****		25.015		egree = 3		****	
3(111)	4	26 845	26 209	3(443)	12	25 838	22 699
3(211) 3(221)	5 6	813 320 1 671 199	580 871 1 219 299	3(444) 3(511)	13 8	3 121 1 173	2 374 761
3(221)	7	2 040 539	1 296 491	3(521)	9	685	537
3(311)	6	951 457	685 934	3(522)	10	8 280	3 721
3(321)	7	2 653 637	1 548 366	3(531)	10	806	503
3(322)	8	4 908 506	2 149 318	3(532)	11	2 920	1 293
3(331)	8	1 393 539	783 951	3(533)	12	22 451	4 188
3(332)	9	3 671 175	1 489 483	3(541)	11	105	74
3(333)	10	832 132	539 863	3(542)	12	103	71
3(411)	7 8	93 130 236 838	74 962 190 760	3(543)	13 14	8 851	3 396
3(421) 3(422)	9	706 435	487 146	3(544) 3(551)	12	324 285	277 171
3(431)	ģ	144 657	113 816	3(552)	13	185	112
3(432)	10	729 965	437 645	3(553)	14	317	156
3(433)	11	161 853	133 280	3(554)	15	68	36
3(441)	10	17 330	15 101	3(555)	16	381	240
3(442)	11	73 749	53 707				
			Atom D	egree = 4			
4(1111)	5	46 595	34 401	4(5111)	9	656	426
4(2111)	6	209 737	163 480	4(5211)	10	293	189
4(2211)	7	165 217	126 315	4(5221)	11	75	58
4(2221)	8 9	103 613 77 661	91 459 65 523	4(5222)	12 11	590 298	342
4(2222) 4(3111)	7	283 278	205 944	4(5311) 4(5321)	12	35	171 28
4(3211)	8	216 406	188 097	4(5322)	13	105	71
4(3221)	9	98 661	90 632	4(5331)	13	492	338
4(3222)	10	70 026	64 621	4(5332)	14	1 406	1 058
4(3311)	9	105 891	96 600	4(5333)	15	2 137	1 648
4(3321)	10	248 714	187 017	4(5411)	12	172	115
4(3322)	11	91 275	84 410	4(5421)	13	13	8
4(3331)	11 12	42 538	40 049	4(5422)	14	23	12
4(3332) 4(3333)	13	67 716 18 955	62 597 17 695	4(5431) 4(5432)	14 15	204 443	155 307
4(4111)	8	58 426	36 573	4(5433)	16	870	615
4(4211)	9	37 350	27 289	4(5441)	15	329	100
4(4221)	10	23 606	20 924	4(5442)	16	163	118
4(4222)	11	17 548	14 918	4(5443)	17	184	124
4(4311)	10	43 720	33 007	4(5444)	18	105	31
4(4321)	11	117 926	81 011	4(5511)	13	78	65
4(4322)	12	35 734	30 208	4(5521)	14	0	0
4(4331) 4(4332)	12 13	30 891 25 409	24 126 22 134	4(5522) 4(5531)	15 15	37 2	26 2
4(4333)	14	6 063	4 627	4(5532)	16	56	37
4(4411)	11	65 397	20 738	4(5533)	17	32	23
4(4421)	12	9 467	7 524	4(5541)	16	24	21
4(4422)	13	6 388	5 412	4(5542)	17	165	104
4(4431)	13	7 268	5 423	4(5543)	18	22	12
4(4432)	14	5 231	4 557	4(5544)	19	435	180
4(4433)	15	2 133	1 456	4(5551)	17	17	10
4(4441) 4(4442)	14 15	5 245 1 324	2 215 956	4(5552) 4(5553)	18 19	29 44	19 30
4(4443)	16	737	546	4(5554)	20	374	167
4(4444)	17	549	299	4(5555)	21	627	395
	- ·			,	_ -		

^a The 125 atom types are lexicographically ordered. The occurrence, the incidence (number of compounds), and the number of atoms of the neighborhood $\sum (x_i + 1)$ are reported.

The neighborhood of each atom defines a fragment which is a two-level tree. The root and its first level successors exhibit their exact connectivity degree; the peripheral atoms (second

level) have, by construction, an undetermined connectivity.

The topological parameters are totally defined by the generation rules, e.g., the explicit and implicit parameters associated with fragments I and II describe clearly two very different contexts.

⁽i.e., 77 446 029 atoms among the 77 915 142 total atoms of the file).

The distribution of the atom degrees being uneven, the connectivity degrees of the neighbors (X_i) which are higher than 5 have been set to 5; this value represents the range of unfrequent high connectivities (i.e., the 49 783 atoms of connectivity 5 have been aggregated with the 16 303 atoms with connectivity greater than 5). This improves the readability of the results.

Let C be the maximum connectivity degree of the focus, and let p be the maximum connectivity degree of its neighbors: the number n of possible distinct types of atom neighborhoods is n = (C + p)!/C!p! (see Appendix).

In our study, C = 4 and p = 5; it yields n = 126 (125 when excluding the atom with connectivity zero). This choice of C and p is a compromise between exhaustivity of existing topological motifs, and simplicity of use and interpretation. Thus, for C = 5 and p = 5, n = 252; i.e., n should be multiplied by 2 in order to slightly increase the specificity.

Atom Classification. In this study the basic entity is the atom, considered as an element belonging to one class (its connectivity) and to one of its disjoint subclasses (the set of connectivity degrees of all its connected atoms), as defined by its topological context.

A simple procedure assigns each atom to one of the 125 neighborhood values. The occurrence of each atom type (i.e., the number of atoms sharing a given neighborhood) has been computed, yielding a partition of the atoms. The results (Table I) are in the lexicographical order of the notation of the atom type. The number of compounds which comprise at least one instance of the atom type (i.e., its incidence) is also reported.

Like most parameters which have been studied in the field, the distribution is strongly uneven.

The first ranking atom type is found in 20.8% (2(32)) of the total number of atoms in the file. Fourty seven percent of the atoms belong to one of the three most occurring atom types (2(32), 2(22), 1(3)) and the cumulative frequencies of the 10 and 15 first atom types is respectively 79.7 and 88.9%.

These highest occurring atom neighborhoods (Figure 1) are the few primitives which contribute to the most frequent chemical moieties. They may be part of cyclic moieties as well as part of acyclic moieties; pending chains (e.g., 1(2) and 2(21)) are identified.

The distribution of atoms of connectivity 1 suggests a classification of terminal atoms according to the connectivity of their neighbors: among the 16 814 229 atoms of connectivity 1 (21.6% of the total number of atoms), 59% are linked to an atom of connectivity degree 3, and 22.6, 18.1, 0.21, and 0.11% are linked respectively to an atom of connectivity 4, 2, 5, and

Multiple Occurrence. The most occurring atom types have also the highest incidence; thus 2(32), 1(3), 2(22), and 3(322) occur respectively in 88.3, 84.19, 68.79, and 62.76% of the compounds of the file. A slight difference in ranking is however observed; it results from a difference in the densities of the atom types (average multiplicity of the atom type within the compounds). The atom types with the highest and lowest densities are listed in Table II.

Some frequent chemical moieties comprise multiple occurrences of the same atom type (which generates high related density values), e.g.:

(a) 2(32) occurs 4 times in a para substitued six membered ring and 2 times in a mono, ortho, or meta substituted six membered ring.

Table II. Atom Types with Highest and Lowest Densities (Average Multiplicity per Compound)

highest de	ensities	lowest de	densities	
atom type	density	atom type	density	
1(3)	3.44	2(11)	1.02	
1(4)	3.30	3(111)	1.02	
1(5)	3.70	4(3221)	1.09	
2(22)	4.42	4(3222)	1.08	
2(32)	5.34	4(3322)	1.08	
2(33)	3.37	4(3331)	1.06	
3(533)	5.36	4(3332)	1.08	
4(4411)	3.15	4(3333)	1.07	
4(5441)	3.29	4(4332)	1.15	
4(5444)	3.39	4(4432)	1.15	

Figure 2. Topological overlapping. The atom neighborhoods 2(32) and 2(33) share each a five-atom motif (shown in bold lines) with 3(332) or with 3(322) or with 3(222); this overlap defines potential larger moieties.

Figure 3. Distribution of the number of layers having a given number of atoms (abscissa) at a given depth (ordinate). The size of a (printed) point (x,y) is logarithmically related to the corresponding number of layers. The data are listed in Table III for depths 1-6 (e.g., there are 10 layers having 33 atoms at depth 4).

- (b) 2(22) is a linear sequence which can be found in both cyclic and acyclic moieties. It occurs 3 times in a mono substituted six membered ring and 2 times in an ortho substituted ring. Every additional atom to a cyclic or acyclic sequence of this type generates a new occurrence of this Atom Neighborhood.
- (c) Terminal atoms which are linked to the same atom generate each a new occurrence of the same atom neighborhood (1(3), 1(4), or 1(5)); e.g., 1(4) occurs at least twice for each occurrence of 4(XY11), X and Y being any value.

The unexpected high density of some low-ranking atom types with fairly highly substituted neighbors may denote the

Table III. Distribution of the Number of Layers Having a Given Number of Atoms at a Given Depth, from Depth = 1 to Depth = 6

atoms in a layer	depth = 1 layers	depth = 2 layers	depth = 3 layers	depth = 4 layers	depth = 5 layers	depth = 6 layers
1	16 814 229	5 355 681	8 854 408	13 697 655	14 869 406	15 688 537
2	37 072 401	25 038 530	22 743 926	21 023 480	21 991 122	21 447 113
3	21 202 208	25 468 813	18 455 869	18 263 341	16 457 896	14 215 889
4	2 357 223	13 398 296	74 799 520	11 616 805	10 410 608	8 592 347
5	49 830	5 692 057	7 531 344	6 152 170	4 946 745	3 992 399
6	11 803	1 955 274	3 362 318	3 033 523	2 459 964	2 045 480
7	156	379 656	1 232 687	1 256 613	983 250	812 042
8	633	84 927	377 542	468 260	407 865	371 018
9	219	18 993	115 357	172 140	163 930	167 748
10	3 279	6 579	37 108	61 740	71 091	75 870
11	43	2 081	10 662	22 655	29 338	31 578
12	87	1 127	7 319	15 347	20 726	27 253
13	3	327	2 485	6 145	8 089	10 527
14	1	192	1566	4 380	6 013	8 530
15	Ō	100	849	2 853	3 621	5 009
16	0	53	682	1 586	2 345	2 896
17	Ö	9	255	800	1 328	1 837
18	Ŏ	21	309	703	1 544	1 994
19	ŏ	3	22	192	527	746
20	ŏ	18	49	225	527	830
21	ŏ	0	17	152	305	334
22	Ŏ	9	1	57	112	133
23	0	0	10	19	55	40
23 24	0	0	13	98		
2 4 25		0		32	149 26	196
	0		6			111
26	0	0	0	1	64	72
27	0	0	1	11	25	54
28	0	0	0	0	35	23
29	0	0	0	0	3	4
30	0	0	4	9 2	5	73
31	0	0	0	2	32	32
32	0	0	0	2	2	23
33	0	0	0	10	0	3
34	0	0	0	0	2	1
35	0	0	0	0	0	2
36	0	0	0	1	6	4
37	0	0	0	0	2	5
38	0	0	0	1	0	0
39	0	0	0	0	0	1
40	0	0	0	0	4	4
41	Ō	0	0	0	0	30
42	0	0	0	0	10	0
45	Õ	Ö	Ŏ	2	0	6
54	Ö	Ö	Ö	0	ŏ	10
60	ŏ	ŏ	ŏ	ŏ	2	0

presence of symmetrical complex moieties in the molecule.

The topological moieties 2(11) and 3(111), which span completely a component or a compound, have a low density.

Sampling. For some practical reasons, the files have been subdivided into five subfiles (in the Registry Number sequences), which have been processed separately before being merged. The five partial results thus available from this partition present slight variations; they are reported only in order to describe the effects of the sample size even within a homogeneous large file.

The distribution of most of the atom neighborhoods is similar in the five subfiles. However a few exceptions have been observed, mainly among the low-ranking skeletons: 2(51) and 2(53) have an occurrence in the third subfile which is 3 times the value of the expected occurrence. The successive values of the occurrence of 3(543), i.e., 3912, 2671, 2179, and 52, present a significant decrease. These variations may express the presence/absence of certain types of compounds, which correspond also, in a CAS file, to indexing periods.

The high-ranking atom neighborhoods are frequent in a wide diversity of compounds, but their frequency may slightly vary with the sample.

Embedment. Overlapping. The occurrences of the 125 rooted skeletons are highly interdependent; each atom is present in several moieties. An atom A, considered as the root of the neighborhood $C(X_1X_2...X_c)$ is present: in 1

fragment, at the root position; in the C fragments which are rooted on its C neighbors and within which A is at the first level position; and in the $\sum (X_i-1)$ fragments which are rooted on the atoms lying at a distance 2 from A (A is at the second level of these fragments); i.e. in $1 + C + \sum (X_i - 1) = \sum X_i + 1$ fragments, which is also the number of atoms spanned by the atom neighborhood. This equality is an obvious consequence of the property of symmetry of the topological distance between the root and the leaves; it holds for atom neighborhoods of any size.

The following quantitative analysis provides a schematic illustration of the multiple contribution of an atom: if the $16\ 158\ 943$ occurrences of 2(32) were independent (i.e., if the six atoms of this neighborhood contributed each to only one of these occurrences), and without taking into account any contribution of other atom neighborhoods, the number of distinct atoms spanned by the individual occurrences of this skeleton would be $16\ 158\ 943\times 6=96\ 953\ 658$ atoms, which is 25% higher than the total number of distinct atoms in the file. It can be therefore globally deduced that the overlapping between two different occurrences of 2(32) (which may topologically comprise up to four atoms), is statistically frequent.

Overlapping between atom neighborhoods is examplified with some frequent fragments on Figure 2; potentially larger moieties can be deduced.

Figure 4. Distribution of the number of components according to the number of centers (abscissa) and to the number of R-extremal atoms (ordinate). The size of a printed point (x,y) is logarithmically related to the corresponding number of components. The data are partially listed in Table V (e.g. there are 10 374 components having six centers and six R-extremal atoms).

Figure 5. Distribution of the number of components according to the number of D-extremal atoms (abscissa) and to the number of centers (ordinate). The data are partially listed in Table VI.

Embedment can be exactly analyzed only for atom neighborhoods of connectivity 1: 1(X) is totally embedded n + 1times within each of the neighborhoods of type $X(Y_1Y_2...Y_{x-1}1)$, *n* being the number of Y_i 's equal to 1. Thus, for X = 2, the occurrence of 1(2) is the sum of the occurrences of 2(11)(twice), 2(21), 2(31), 2(41), and 2(51).

Further overlapping analysis requires additional statistical investigation.

Measure of the Redundancy. The number of atoms which is spanned by an atom neighborhood $C(X_1X_2...X_c)$ is $\sum X_i +$

The representation of the file by means of the atom neighborhoods describes a total number of redundant atoms

Figure 6. Distribution of the number of components according to the number of D-extremal atoms (abscissa) and to the number of R-extremal atoms (ordinate). The data are partially listed in Table

Figure 7. Distribution of the number of components according to the number of atoms (abscissa) and to the number of bonds (ordinate). The components lying on a parallel line to the x = y diagonal have the same number of cycles.

 $T = \sum N_i A_i$ (i, varying from 1 to 125, is the atom neighborhood type, N_i is the occurrence of i, and A_i is the number of atoms spanned by i).

The computed value of T is 471 446 043. We call the redundancy factor of the atom neighborhood the ratio r = $T/\sum N_i (\sum N_i)$ being also the total number of distinct atoms in the file). For this file, r = T/77446029 = 6.09. It represents also the average number of atom neighborhoods to which an atom participates, or the average number of atoms within an atom neighborhood. A redundancy factor of this type is used in EURECAS.⁶ The overlapping power varies with the atom connectivity and with the number of atoms which are spanned by the neighborhood. For each subclass of atoms of connectivity c = 1, 2, 3, or 4, we have computed the ratios (number of redundant atoms spanned by atom neighborhoods with

Table IV. Distribution of the Summation of the Products, Number of Layers at Depth = d Times Number of Atoms per Layer at Depth = d, and Distribution of the Mean Number of Atoms per Layer at Depth = d

Depth										
	atoms			ator	ato	oms				
depth	sum	mean	depth	atoms	mean	depth	sum	mean		
0	77 915 142	1.000	50	904 376	2.566	100	4 428	1.665		
1	164 357 002	2.120	51	822 726	2.490	101	3 692	1.555		
2	229 244 876	2.962	52	764 290	2.460	102	3 426	1.560		
3	238 692 512	3.090	53	726 886	2.502	103	2 866	1.433		
4	221 359 272	2.920	54	666 188	2.467	104	2 758	1.501		
5	202 636 784	2.782	55	611 690	2.420	105	2 358	1.404		
6	179 934 712	2.666	56	583 028	2.474	106	2 184	1.421		
7	152 706 078	2.542	57	525 988	2.401	107	1 840	1.296		
8 9	127 099 050 102 337 698	2.461 2.379	58 59	482 148 452 832	2.364 2.402	108 109	1 866 1 548	1.413		
10	82 488 910	2.356	60	406 912	2.334	110	1 560	1.414		
11	66 382 512	2.355	61	371 236	2.298	111	1 332	1.307		
12	53 557 820	2.361	62	353 212	2.355	112	1 304	1.344		
13	43 501 662	2.373	63	317 674	2.284	113	1 146	1.257		
14	36 087 700	2.416	64	292 086	2.260	114	1 138	1.317		
15	29 671 486	2.420	65	276 096	2.307	115	1 008	1.252		
16	25 029 242	2.453	66	247 612	2.243	116	972	1.291		
17	21 479 812	2.505	67	221 624	2.168	117	872	1.247		
18	18 251 854	2.513	68	208 694	2.218	118	840	1.292		
19	15 719 910	2.528	69	187 798	2.174	119	726	1.222		
20	13 859 090	2.581	70	176 378	2.196	120	694	1.264		
21	12 031 596	2.574	71	161 236	2.184	121	614	1.226		
22	10 584 384	2.583	72	144 684	2.133	122	578	1.265		
23	9 451 346	2.621	73	128 382	2.076	123	516	1.268		
24	8 251 666	2.586	74	119 352	2.134	124	456	1.243		
25	7 330 208	2.585	75	104 168	2.056	125	392	1.202		
26	6 692 854	2.648	76	95 674	2.052	126	348	1.200		
27	5 926 080	2.618	77	87 854	2.057	127	306	1.195		
28	5 320 062	2.615	78 70	78 998	2.029	128	258	1.152		
29 30	4 847 706 4 314 768	2.645 2.609	79 80	71 760 68 252	2.010 2.079	129 130	230 204	1.139		
31	3 890 326	2.591	81	60 444	2.008	131	180	1.125		
32	3 634 336	2.662	82	55 406	2.008	131	166	1.123		
33	3 274 204	2.627	83	50 674	2.059	132	152	1.152		
34	3 002 064	2.627	84	45 004	2.021	134	134	1.155		
35	2 787 416	2.662	85	39 322	1.985	135	120	1.176		
36	2 498 736	2.604	86	35 996	2.044	136	110	1.222		
37	2 278 066	2.583	87	29 642	1.911	137	94	1.205		
38	2 168 938	2.668	88	25 780	1.920	138	84	1.273		
39	1 956 388	2.609	89	20 948	1.822	139	74	1.321		
40	1 786 716	2.571	90	17 510	1.790	140	80	1.667		
41	1 675 338	2.604	91	14 002	1.685	141	60	1.429		
42	1 521 776	2.551	92	12 386	1.771	142	64	1.882		
43	1 405 354	2.524	93	10 258	1.669	143	56	2.000		
44	1 362 388	2.617	94	9 138	1.687	144	64	2.909		
45	1 243 010	2.552	95	7 750	1.645	145	24	1.500		
46	1 160 560	2.536	96	7 022	1.678	146	4	1.000		
47	1 099 932	2.567	97	5 848	1.581	147				
48	1 003 772	2.506	98	5 532	1.675	148				
49	932 612	2.478	99	4 542	1.563	149				

connectivity c)/(number of atoms with connectivity c), which are respectively:

$$r_1 = 68053664/16814229 = 4.047$$
 $r_2 = 216659211/37072401 = 5.844$
 $r_3 = 165716356/21202169 = 7.816$
 $r_4 = 21016812/2357230 = 8.916$

These values are also the average number of atoms within an atom neighborhood with a given connectivity.

The use of controlled redundancy has proven to be efficient in application fields, e.g., substructure search systems. In the initial fragment search systems, a compound is selected according to the presence/absence of nonoverlapping query fragments, with no syntactical check. False drops are mainly due to compounds within which the fragments are interrelated differently than in the query. In subsequent systems the

Table V. Distribution of the 993 992 Components Having the Same Number of Centers and R-Extremal Atoms

14!		14!		142	
multi-	com-	multi-	com-	multi-	com-
plicity	ponents	plicity	ponents	plicity	ponents
1	403 027	31	13	66	1
2 3	416 239	32	102	68	3 2
3	97 309	33	19	70	2
4	50 107	34	34	72	9
5	9 740	35	13	77	1
6	10 374	36	72	78	1
7	1 038	37	5	80	3 7
8	1 516	38	20	81	7
9	637	39	7	83	1
10	581	40	29	84	2
11	263	41	2	85	1
12	364	42	19	86	1
13	189	44	27	88	4
14	245	45	6	89	1
15	151	46	11	90	1
16	226	47	1	94	1
17	133	48	25	96	2
18	256	49	8	102	1
19	71	50	6	104	1
20	210	51	1	108	1
21	72	52	5	110	1
22	129	53	2	112	1
23	46	54	6	118	1
24	171	55	1	120	1
25	32	56	7	126	1
26	101	58	3	134	1
27	34	60	7	136	1
28	81	63	2		
29	39	64	5		
30	100	65	2		

Table VI. Distribution of the 1 053 418 Components Having the Same Number of Centers and D-Extremal Atoms

multi- plicity	com- ponents	multi- plicity	com- ponents	multi- plicity	com- ponents
1	403 027	31	12	66	1
2	451 777	32	101	68	3 2
2 3 4	119 770	33	19	70	2
4	54 650	34	33	72	9
5	7 204	35	13	77	1
6	10 194	36	72	78	1
7	936	37	5	80	3
8	1 468	38	20	81	7
9	617	39	7	83	1
10	425	40	28	84	2
11	228	41	2	85	1
12	404	42	19	86	1
13	163	44	27	88	4
14	232	45	6	89	1
15	133	46	11	90	1
16	226	47	1	94	1
17	131	48	25	96	2
18	259	49	8	102	1
19	69	50	6	104	1
20	209	51	1	108	1
21	69	52	5	110	1
22	124	53	2	112	1
23	42	54	6	118	1
24	180	55	1	120	1
25	30	56	6	126	1
26	97	58	3	134	1
27	33	60	7 2 5 2	136	1
28	79	63	2		
29	35	64	5		
30	101	65	2		

overlap which is allowed between fragments defines an implicit additional constraint and acts statistically as a syntactical process. The approach can be enhanced by defining multiple local generic points of view.⁶

MULTIVARIATE DISTRIBUTIONS

Distribution of the Number of Concentric Layers in the Number of the Atoms/Layer Depth Plane. Each of the

Table VII. Distribution of the 3 519 453 Components Having the Same Number of R-Extremal Atoms and D-Extremal Atoms

multi- plicity	com- ponents	multi- plicity	com- ponents	multi- plicity	com- ponents
1	403 027	31	12	66	1
2	1 020 765	32	104	68	3 3
3	899 782	33	24	70	3
2 3 4 5	706 199	34	34	72	9 1 3 3
5	229 986	35	16	77	1
6	145 205	36	93	78	3
7	57 658	37	5	80	3
8	27 515	38	20	81	8
9	11 510	39	11	83	1 2
10	4 808	40	28	84	2
11	1 094	41	2	85	1
12	5 128	42	40	86	1
13	509	44	28	88	4
14	1 525	45	11	89	1
15	630	46	11	90	1
16	515	47	1	94	1
17	161	48	27	96	2
18	889	49	8	102	1
19	103	50	6	104	1
20	301	51	1	108	1
21	256	52	8	110	1
22	139	53	2	112	1
23	43	54	6	118	1
24	283	55	1	120	1
25	35	56	10	126	1
26	97	58	3	134	1
27	68	60	7	136	1
28	485	63	3		
29	35	64	5		
30	118	65	2		

77 915 142 atoms of the file is in turn considered as a focus. Its neighbors are in the one-depth concentric layer, and its next neighbors are in the two-depth concentric layer, etc. The distribution of the number of concentric layers is displayed on Figure 3 (e.g., depths range from 5 to 40 for 28 atoms in a layer (abscissa)); the values are listed in Table III for the six first layers. A total of 898 037 816 concentric layers were found in the file, resulting in only 1941 different couples: depth layer/number of atoms in a layer, e.g., the cumulative relative frequency of only the 40 most occurring couples is 95.4%. This is small as compared to the potential combinatoric situations. The layers with A atoms have a distribution of their depths d varying irregularly with A (i.e. the standard deviation of d does not vary monotonically with A).

The mean number of atoms per layer is given in Table IV. This mean number of atoms is about three atoms for layers 2 to 4, and decreases slowly to about one atom for the deepest

Distribution of the Number of Components in the R-Extremal Atom Multiplicity/D-Extremal Atom Multiplicity/Center Multiplicity Space. The center of a component is an atom from which the deepest concentric layer has a minimal depth. The atoms lying on this minimal depth layer are called R-extremal (this depth is the radius of the component). The atoms from which the deepest concentric layer has a maximal depth are called D-extremal (this depth is the diameter of the component). Examples are shown as follows:

R: R-extremal atom, D: D-extremal atom, C: center

The three structures comprise respectively 3,5,3 centers, 4,6,6 R-extremal atoms, and 2,2,7 D-extremal atoms.

Table VIII. Distribution of the Number of Components Having a Given Number of R-Extremal Atoms

atoms	components	atoms	components	atoms	components
1	403 027	51	7	101	0
2	1 028 158	52	18	102	3
3	985 676	53	4	103	0
4	823 075	54	22	104	2
5	333 347	55	3	105	0
6	241 812	56	19	106	0
7	95 636	57	1	107	1
8	48 963	58	5	108	2
9	20 459	59	0	109	0
10	11 445	60	14	110	2
11	3 598	61	0	111	0
12	8 553	62	2	112	4
13	1 853	63	6	113	0
14	3 220	64	7	114	0
15	1 467	65	2	115	0
16	1 523	66	3	116	3
17	563	67	0	117	0
18	1 663	68	8	118	2
19	327	69	2	119	0
20	672	70	4	120	2
21	438	71	0	121	0
22	357	72	15	122	0
23	131	73	0	123	0
24	879	74	0	124	0
25	107	75	0	125	0
26	261	76	1	126	1
27	140	77	1	127	0
28	644	78	4	128	0
29	83	79	0	129	0
30	249	80	4	130	1
31	40	81	13	131	0
32	194	82	0	132	Ö
33	44	83	1	133	Ö
34	85	84	3	134	2
35	35	85	ĺ	135	2 0
36	172	86	3	136	2
37	12	87	ī	137	ō
38	33	88	6	138	Ö
39	20	89	ī	139	Ŏ
40	69	90	4	140	Ŏ
41	4	91	ò	141	ŏ
42	77	92	ŏ	142	ŏ
43	2	93	Ö	143	ŏ
44	56	94	2	144	ŏ
45	16	95	õ	145	ŏ
46	22	96	ő	146	ŏ
47	5	97	ĭ	147	ŏ
48	50	98	î	148	ŏ
49	13	99	Ó	149	1
50	12	100	4	150	Ô
	1.2		·		

The 4 019 514 components have generated the following: 790 different couples, number of centers/number of R-extremal atoms (Figure 4); 710 different couples, number of centers/number of D-extremal atoms (Figure 5); and 721 different couples, number of R-extremal atoms/number of D-extremal atoms (Figure 6).

The strong correlation between the three univariate distributions, according to each of these three parameters, is pointed out by the diagonals shown in the figures; i.e., 993 992 components have their number of centers equal to their number of R-extremal atoms (Table V), 1 053 418 components have their number of centers equal to their number of D-extremal atoms (Table VI), and 3 519 453 components have their number of R-extremal atoms equal to their number of D-extremal atoms (Table VII).

The univariate distribution of the components having a given number of R-extremal atoms shows that even values are slightly preferred (Table VIII). This is also true for D-extremal atoms (see ref 2).

Distribution of the Number of Components in the Atoms/ Bonds/Cycles Space. The distribution of the components in

Table IX. Distribution of the Number of Components According to the Number of Independent Cycles for Various Number of Atoms

	components									
cycles	A = 160	A = 170	A = 180	A = 190	A = 200	A = 210	A = 220	A = 230	A = 240	A = 250
0	2	0	0	1	0	1	0	1	0	0
1	0	2	1	0	1	0	0	0	0	0
2	5	1	2	2	0	0	0	0	0	2 1
3	4	1	3	1	1	3	3	1	0	1
4	1	3 2 5 0	1	8	1	2	2	0	0	2 2
5	1	2	0	2	0	1	0	2	0	2
6	2	5	4	2	6	0	1	1	0	0
7	7		4	1	0	3	2	1	1	1
8	0	4	2	2 2	4	3	1	1	8	1
9	5	0	3	2	2 0	6	3	1	1	3 4
10	0	0	1	0		1	1	0	0	
11	1	6	1	0	0	1	2	1 0	0 0	0
12	3	1	1	0	0	1 0	0	0		0
13	0	2 0	2	1 1	0 0	0	0	0	0 1	0 2
14	0	0	0	0	0	1	0	0	0	0
15 16	0	1	0	0	0	0	0	1	0	1
17	3	0	0	0	0	0	0	0	0	0
18	1	1	0	0	0	0	0	0	0	Õ
19	3	0	2	Ö	0	0	ő	Ö	0	ő
20	1		1	ő	Ö	Ö	ŏ	Ö	Õ	ŏ
21	Ó	3 2 1	2	2	1	ő	ŏ	ő	ő	ŏ
22	ŏ	1	2	õ	Ô	i	ŏ	ő	ő	ŏ
23	1	Ô	ī	ŏ	1	Ô	ŏ	Ö	Ö	ŏ
24	Ô	5	Ô	i	2	1	1	ŏ	ŏ	ŏ
25	i	Õ	i	Ô	ī	i	i	1	Ŏ	Ö
26	Ô	Ö	ō	ŏ	ō	Ō	Õ	2	Ō	Ō
27	Ö	Ŏ	Õ	2	Ŏ	Ō	3	ō	0	1
28	ŏ	Ŏ	Ŏ	ō	Ŏ	Ö	Ō	i	2	1 2 3 1
29	ŏ	Ō	Ŏ	Ŏ	Ō	Ö	Ö	Ō	3	3
30	Ō	Ö	0	0	0	0	0	0	3	1

the atoms/bonds/cycles space is equivalent to a bivariate distribution, since the three parameters are related by A-B+C=1, where A is the number of atoms of the component, B the number of bonds, and C the number of independant cycles. The atoms/bonds distribution is shown on Figure 7; the others can be obtained by an appropriate projection. The 4 019 514 components generate only 4052 different couples: number of atoms/number of bonds. Only 239 of these couples represent more than 1000 components, and 2064 of them represent 1-4 components.

For a number A of atoms less than about 60, the distribution of the number of components within each value of A exhibits local modes corresponding to various cyclization ranges (Figure 7). These local modes are related to the local maxima shown by the univariate distribution of the components according to the number of cycles² and which occur for groups of values which are located around the multiples of 19 cycles. The highest cyclized components are typically boranes.

For A greater than about 60, the distribution becomes unimodal, and it becomes bimodal approximately when A is greater than 150 atoms: the components with a number of cycles belonging to the ranges around 15–20 cycles are lacking. Some examples of these bimodal distributions are given in Table IX.

The bidimensional clusters suggest therefore subclassifications which provide a new perspective on the 4 019 514 components.

CONCLUSION

The statistical study of the file has yielded topological classifications on atoms on the one hand and on compounds on the other hand.

The two-level atom neighborhoods are the generic description of concentric substructures; their limited number allows a global analysis of their features.

Chemical graphs show specific distributions of graph theoretical parameters. In bivariate studies classes are subdivided, and clusters of values and empty classes are thus identified. For instance, the number of rings, in compounds comprising more than about 150 atoms, belongs to two distinct ranges of values, some values being skipped; this cannot be observed with the aggregated values of the monovariate studies.

ACKNOWLEDGMENT

We are very grateful to the reviewers for their most helpful comments.

APPENDIX

The number n_c of distinct atom neighborhoods having a focus with a given connectivity degree c and a maximum connectivity degree p for the first neighbors can be derived from their notation: it is equal to the number of sequences of p nonincreasing integers belonging to the range (1,p) or, by setting p' = p - 1, to the range (0,p'). It can be shown recursively and by using the property

$$B(m,m+0) + B(m,m+1) + \dots + B(m,m+p) = B(m+1,m+p+1)$$
(1)

This number is

$$n_c = B(c, c+p') \tag{2}$$

B being the binomial coefficient: B(n,m) = m!/n!(m-n)!. The total number T of distinct atom neighborhoods, having a maximum value C for the connectivity of the focus and a maximum value p for the connectivity of the first neighbors, is then a sum over c: $T = \sum n_c$. By using (1) and (2), we obtain T = B(p,p+c) = B(c,p+c).

REFERENCES AND NOTES

- Attias, R.; Substructure Systems and Structural Retrieval Systems. In Encyclopedia of Library and Information Science; Kent, A., Ed.; Marcel Dekker Inc.: New-York, 1992; Vol. 50, No. 13, pp 308-363. Also published in: Encyclopedia of Microcomputers; Kent, A., Williams, J. G., Eds.; MDI: New-York 1993; Vol. 11, pp 219-270.
- (2) Petitjean, M.; Dubois, J. E. Topological Statistics on a Large Structural File. J. Chem. Inf. Comput. Sci. 1990, 30, 332-343.
- (3) Stobaugh, R. E. The Chemical Abstracts Service Chemical Registry System. 11. Substance-Related Statistics: Update and Additions. J. Chem. Inf. Comput. Sci. 1988, 28, 180-187.
- (4) Stobaugh, R. E. The Chemical Abstracts Service Chemical Registry System. VI. Substance-Related Statistics. J. Chem. Inf. Comput. Sci. 1980, 20, 76-82.
- (5) Petitjean, M. Applications of the Radius-Diameter Diagram to the Classification of Topological and Geometrical Shapes of Chemical Compounds. J. Chem. Inf. Comput. Sci. 1992, 32, 331-337.
- (6) Attias, R. EURECAS/DARC. The Substructure in Chemistry. Contribution to the Representation of Structural Information and Application to Very Large Data Base Retrieval, Ph.D. Thesis, Université Paris 7, France. 1992.