1. Bir A cümlesinde tanımlı simetrik ve geçişken bir bağıntı β olsun. $\forall x \in A$ için $x \in A \Rightarrow \exists y \in A \ni (x, y) \in \beta$

önermesi doğru ise, β bağıntısının yansıyan bir bağıntı olduğunu gösteriniz.

- 2. $f: \Re^2 \to \Re$, $f(x_1, x_2) = x_1 x_2$ fonksiyonu veriliyor. f fonksiyonunun birebir ve örten fonksiyon olup olmadığını araştırınız.
- 3. $f: X \to Y$ bir fonksiyon olsun. X cümlesinde bir β bağıntısı,

$$\forall x_1, x_2 \in X \ i cin \ x_1 \beta x_2 \Rightarrow f(x_1) = f(x_2)$$

biçiminde tanımlanıyor. β bağıntısının X de bir denklik bağıntısı olduğunu gösteriniz.

- 4. $f: X \to Y$ ve $g: Y \to Z$ iki fonksiyon olsun. Bu durumda, $g \circ f$ birebir ise f nin de birebir olduğunu gösteriniz.
- 5. $f: \Re \to \Re^2$, f(x) = (x,0) şeklinde tanımlanan fonksiyonun birebir ve örten fonksiyon olup olmadığını araştırınız. Buradan yararlanarak, f nin ters bağıntısının fonksiyon olup olmadığı hakkında ne söyleyebilirsiniz?
- 6. A cümlesi üzerinde tanımlanan iki denklik bağıntısı α ve β olsun. $\alpha \cap \beta$ bağıntısının da A da tanımlı bir denklik bağıntısı olduğunu gösteriniz.
- 7. $f: R \longrightarrow R$, $y = Arc \sin(\log_{10} \frac{x}{10})$ fonksiyonunun tanım cümlesini bulunuz.
- 8. Bir A cümlesi üzerinde tanımlı simetrik ve geçişken bir bağıntı β olsun.

$$\forall x [x \in A \Rightarrow \exists y \in A, (x, y) \in \beta]$$

önermesi doğru ise, β bağıntısının yansıyan bir bağıntı olduğunu gösteriniz.

9. $f: A \to B$ fonksiyon $A_1 \subseteq A$ ise,

$$f(A_1) = \phi \Rightarrow A_1 = \phi$$

olduğunu gösteriniz.

10. $f: A \rightarrow B$ bir fonksiyon ise

$$[\forall X, Y \subset A, f(X \cap Y) = f(X) \cap f(Y)] \Rightarrow f \text{ birebirdir}$$

gösteriniz.

11. $N \times N$ cümlesinde β bağıntısı $(a,b),(c,d) \in N \times N$ için $(a,b)\beta(c,d) \Leftrightarrow a+d=b+c$

biçiminde tanımlanan β bağıntısının denklik bağıntısı olduğu bilindiğine göre $N \times N$ nin (a,b) elemanının denklik sınıfını yazınız. Parçalanma tanımını veriniz.

- 12. $f: R \to R$, $y = \frac{1}{\sqrt{|x| x}}$ fonksiyonunun tanım ve görüntü cümlesini bulunuz.
- 13. $f: X \to Y$ bir fonksiyon olsun. X cümlesi üzerinde bir β bağıntısı , $\forall x_1, x_2 \in X$ için

$$x_1 \beta x_2 \Leftrightarrow f(x_1) = f(x_2)$$

biçiminde tanımlanıyor. β bağıntısının X de bir denklik bağıntısı olduğunu gösteriniz.

14.
$$f: R \to R_{x \to f(x)=y}$$
, $y = \sqrt{x-2} - 3$

şeklinde tanımlanan f fonksiyonunun

- a) Tanım cümlesini bulunuz.
- b) Görüntü cümlesini bulunuz.
- 15. $f: R \to R$, $f(x) = x^2 + x 1$ şeklinde tanımlanan f fonksiyonunun birebir ve örten olup olmadığını arastırınız.
- 16. $x, y \in Z$ olmak üzere, Z üzerinde bir ~ bağıntısı

$$x \sim y \Leftrightarrow x^2 + y = x + y^2$$

şeklinde tanımlanıyor. ~ bağıntısının bir denklik bağıntısı olup olmadığını araştırınız.

17. $\beta = \{(x, y): x, y \in N \ ve \ x < y\}$ olduğuna göre, β bağıntısının bir denklik bağıntısı olup olmadığını inceleyiniz.

18.

$$f: R - \{3\} \to R - \{1\}$$
$$x \to f(x) = \frac{x-1}{x-3}$$

fonksiyonunun bire-bir ve örten olup olmadığını araştırınız.

19. N Doğal sayılar cümlesini göstermek üzere, $N \times N$ cümlesinde,

$$(a,b)$$
 β $(c,d) \Leftrightarrow ad = bc$

biçiminde tanımlanan β cümlesi bir denklik bağıntısı mıdır?

- 20. $f: A \to B$ bir fonksiyon olsun. $A_1 \subset A$ ise, $f(A_1) = \emptyset \Leftrightarrow A_1 = \emptyset$ olduğunu gösteriniz.
- 21. $f: \Re \to \Re^2$, f(x) = (x,0) şeklinde tanımlanan fonksiyonun birebir ve örten fonksiyon olup olmadığını araştırınız. Buradan yararlanarak, f nin ters bağıntısının fonksiyon olup olmadığı hakkında ne söyleyebilirsiniz?
- 22. Denklik bağıntısı kavramını tanımlayınız ve

$$\beta = \{(x, y) : x, y \in R \text{ ve } 1 - y^2 = 1 - x^2\}$$

olduğuna göre, β bağıntısının bir denklik bağıntısı olduğunu gösteriniz. 1 sayısının denklik sınıflarını bulunuz.

23. $f: A \subset R \to R$ fonksiyonu için

$$\operatorname{sgn} f(x) = \begin{cases} 1, & f(x) > 0 \text{ ise} \\ 0, & f(x) = 0 \text{ ise} \\ -1, & f(x) < 0 \text{ ise} \end{cases}$$

ve $\forall x \in A \ i \ cin \ [x], x$ sayısından büyük olmayan tamsayıların en büyüğünü göstermek üzere,

$$g(x) = \operatorname{sgn}\left[\frac{x-2}{\sqrt{|x|^2-9}}\right]$$

şeklinde tanımlanan $g: A \subset R \to R$ fonksiyonunun tanımlı olduğu en geniş A kümesini bulunuz.