

Outline (Meeting 9 Feb, 2021)

- Paper (A) Stealthy attacks
- Paper (B) Mitigation Strategy

Reconfigurable Pneumatic System

System's work cycle:

$$\mathbf{B} + \mathbf{B} - \mathbf{A} + \mathbf{B} + \mathbf{B} - \mathbf{A} -$$

where X+ denotes advancement and Xretracting of cylinder

$$X (X \in \{A, B\})$$

Reconfigurable Pneumatic System

Input and output signals

Controller's input and output signals:

Controller A Controller B

Sensing signals: ao, a1

ap, am Commands:

bo, **b1**

bp, bm, st

Reconfigurable **Pneumatic System**

Cylinders A and B (FSMi) Controllable and Uncontrollable events

Possible behaviours of Cylinder ${\bf A}$ and ${\bf B}$ (Q^i,E^i,f^i,q^i_0) represented as FSA.

Local Controller A and B:

Actuator signals

(Controllable events)

Sensor signals (Uncontrollable events)

- Each Cylinder **A** and **B** modeled as FSA that is locally controlled by a Local Controller specified by **CIPN**.
- Sensor signals assigned to CIPNi transitions belong to uncontrollable events,
 while actuator signals assigned to the places are controllable.

Controlled loop behavior of system

 Each Local controller A and B provides controlled behaviour of the Cylinder A and B through a feedback control loop by imposing a Supervisor.

The system as a whole can be represented as an FSA:

$$(Q^i, E^i, f^i, q_0^i) \times (Q^i, E^i, f^i, q_0^i)$$

 $S \times G$

Model of system as FSAs

Local Controller A (Supervisor_A)

Controllable events: $\{ap, am\}$

Local Controller A (Supervisor_B) $\{bp, b1, bm, b0, st\}$

Observable events: $\{ap, a1, am, a0\}$

Modeling impacts of attacks

Two possible types of attacks:

- Event insertion: A controller Si receives an event before Sj sends it.
- Event removal: An event sent to a controller Si from a controller Sj is not received.

Assumption (Stealthy attacks):

- We assume that the attacker's goal is to affect the performance of the system without being immediately revealed;
- Attacker knows the current states of the cylinders and supervisors.

Simple event insertion can be easily detected. Such as inserting events like **bo** when automaton **Supervisor_A** is in, e.g., state3.

Modeling event insertion attack

Local Controller A (Supervisor_A)
Under attack

Cylinder A (Global_A)
Under attack

Model of system under event insertion attack

The model of the system under such attack

state(x, y, z, u)

X: Supervisor_A state,

Y: Supervisor_B state,

Z: Global_A state,

U: Global_B state.

Modeling a supervisor integrated with a detected state

Local Controller A (Supervisor_A)
Integrated with a detect state

Modeling a supervisor integrated with a detected state

Local Controller A (Supervisor_A)
Integrated with a detect state

Local Controller B (Supervisor_B)
Integrated with a detect state

Identification of undesired system behavior

The question is whether the system under attack will lead to a catastrophic damage before the attack is revealed.

Two **situations** that endanger the quality of the process in Reconfigurable Pneumatic System:

- (CD1)- Cylinder B enters position II from horizontal direction,
- (CD2)- Cylinder B **leaves** position II in **horizontal direction**.

CD1 and CD are presented as **events strings** set.

CD_1	$w_{c,1}^1 = w_{r1}(ama0ap)^*bp, w_{c,2}^1 = w_{r1}(amap)^*bp$ where $w_{r1} = w_rbpb1bmb0ap(a1ama0ap)^*$
CD_2	$w_{c,1}^2 = w_{r2}am, \ w_{c,2}^2 = w_{r2}b1am, \ w_{c,3}^2 = w_{r2}b1bmam$ where $w_{r2} = w_rbpb1bmb0apa1bp(b1bmb0bp)^*$

Late Detection (Stealthy attacks)

Unobservable events

CD₂ $w_{c,1}^2 = w_{r2}am$, $w_{c,2}^2 = w_{r2}b1am$, $w_{c,3}^2 = w_{r2}b1bmam$ Catastrophicwhere $w_{r2} = w_rbpb1bmb0apa1bp(b1bmb0bp)^*$ damage

Attack Mitigation

Target problem:

Taking actions too late when the attack is detected,

Solution:

- Formulates the attack mitigation problem as a tolerant control problem under partial observation.
 - Controllable events
 - Defendable events

The goal is to prevent the new system from reaching **unsafe states** while **maximizing the desirable behavior**, which is the closed-loop language without attack.

Example

Outline (Meeting 16 Feb, 2021)

- Reconfigurable Pneumatic System Rebeca Model (Rebeca codes)
 - Plant without controller components (Physical Layer)
 - Plant with controller components (Cyber and Physical Layers)
 - Integrate controller components with detectors
 - Attacks (Event Insertion)
- Mitigation Module (LF code, implementation will be next week)

Rebeca model without controller components

Generated state-space by Afra (Rebeca model without controllers)

Generated state-space by Afra (Rebeca model with controller components)

Mitigation Module (Model@runtime)

LF Modules

