This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AB JP 08092216 A UPAB: 19960618

N-contg. bicyclic heterocyclic derivs. of formula (I) and their salts are new. A = CH2CH2, CH=CH, Ctriple bondC, SCH2, CH2S, OCH2 or CH2O; X, X', X'' = C or N provided that they are not both C. Y = NHR, OH or COOR; R = H or 1-4C alkyl; n = 1-8.

USE - (I) are useful for treating allergosis and immunological allergic rhinitis, allergic conjunctivitis, allergic dermatitis and bronchial asthma.

 $\label{eq:advantage} \textbf{ADVANTAGE} \ \textbf{-} \ \textbf{(I)} \ \textbf{inhibit IgE} \ \textbf{antibody production}.$ Dwg. (19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平8-92216

(43)公開日 平成8年(1996)4月9日

(51) Int. Cl. 6	싎	制記号	庁内整理番号	FΙ	技術表示箇所	
C 0 7 D	215/12					
A 6 1 K	31/47 A	ABC				
	A	ABF				
	A	ACD				
	A	ADA				
	審査請求	未請求	請求項の数10	OL	(全9頁) 最終頁に続く	
(21)出願番号	特願平(i-22489 6		(71)出願人	000003001	
(817) [237] [237]					帝人株式会社	
(22)出願日	平成6年	(1994)9月	120日		大阪府大阪市中央区南本町1丁目6番7号	
(44)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(72)発明者	長谷川 雅一	
					東京都日野市旭が丘4丁目3番2号 帝人株	
					式会社東京研究センター内	
				(72)発明者	竹之内 一弥	
					東京都日野市旭が丘4丁目3番2号 帝人株	
					式会社東京研究センター内	
				(72)発明者	髙橋 克史	
					東京都日野市旭が丘4丁目3番2号 帝人株	
					式会社東京研究センター内	
				(74)代理人	弁理士 前田 純博	
					最終頁に続く	

(54) 【発明の名称】含窒素二環性複素環誘導体およびこれを含有する医薬製剤

(57)【要約】

【目的】新規なIgE産生抑制作用を特徴とするアレル ギーおよび抗体産生抑制作用を特徴とする免疫疾患用剤 を提供する。

【構成】

式[I] (式中、AはCH2-CH2, CH=CH, C *C(ただし、*は三重結合を示す。以下同じ。)、S $-CH_2$, CH_2 -S, $O-CH_2$, $\sharp \hbar dCH_2$ -Oを表し; X, X'およびX"は炭素原子または窒素原子 を表し(ただし、これらすべては同時に炭素原子ではな い):YはNHR, OH, またはCO2R(Rは水素原 子またはC、-、の低級アルキル基を表わす)を表し; nは1-8の整数を表す。) で示される含窒素二環性複 素環誘導体またはその医薬上許容される塩。

【特許請求の範囲】

【請求項1】 式[1]

【化1】

(式中、AはCH2-CH2, CH=CH, C*C(た だし、*は三重結合を示す。以下同じ。)、S-C H, CH2-S, O-CH2, またはCH2-Oを表 し; X, X'およびX"は炭素原子または窒素原子を表 10 し (ただし、これらすべては同時に炭素原子ではな い);YはNHR, OH, またはCO2R(Rは水素原 子またはC₁-₄の低級アルキル基を表わす)を表し; nは1-8の整数を表す。) で示される含窒素二環性複 素環誘導体またはその医薬上許容される塩。

【請求項2】 AがCH=CH, S-CH2, CH2-S. O-CH₂, またはCH₂-Oを表す請求項1記載 の含窒素二環性複素環誘導体またはその医薬上許容され る塩。

が窒素原子を、残りの二つが炭素原子を表す請求項1ま たは2記載の含窒素二環性複素環誘導体またはその医薬 上許容される塩。

【請求項4】 Xが窒素原子、X'とX"が炭素原子、 AがS-CH2、CH2-SまたはCH=CHを表す; またはX'が窒素原子、XとX"が炭素原子、AがCH =CHを表す;またはX"が窒素原子、XとX'が炭素 原子、AがO-CH2を表す請求項1記載の含窒素二環 性複素環誘導体またはその医薬上許容される塩。

nが2~6の整数を表し、YがNH₂, 【請求項5】 またはCO₂ R (Rは水素原子またはメチル基を表す) で表される請求項1~4いずれか一項記載の含窒素二環 性複素環誘導体またはその医薬上許容される塩。

請求項1~5記載の含窒素二環性複素環 【請求項6】 誘導体またはその医薬上許容される塩を有効成分とする アレルギー疾患用剤またはおよび免疫疾患用剤。

【請求項7】 アレルギー疾患用剤が、 I g E 抗体産生 抑制作用を特徴とするものである請求項6又は7に記載 のアレルギー疾患用剤。

【請求項8】 アレルギー疾患が気管支喘息、アレルギ 40 の含窒素複素環とは完全にその母核が異なる。 一性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎であ る請求項6記載のアレルギー疾患用剤。

【請求項9】 免疫疾患用剤が、過剰な抗体産生抑制作 用を特徴とする免疫抑制剤である請求項6記載の免疫疾 患用剤。

【請求項10】 請求項1~5記載の含窒素二環性複素 環誘導体またはその医薬上許容される塩と製薬学的に許 容される担体とからなる医薬組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は含窒素二環性複素環誘導 体またはその医薬上許容される塩、およびそれを有効成 分とする医薬組成物、アレルギー疾患用剤および免疫疾 患用剤に関する。

[0002]

【従来技術および発明が解決しようとする課題】気管支 喘息、アトピー性皮膚炎、アレルギー性結膜炎に代表さ れるアレルギー疾患ではマスト細胞からの種々のケミカ ルメディエーターの放出が大きな役割を果たすことが知 られている。そしてその反応は免疫グロブリンE(Ig E) と呼ばれる分子のFc部分が細胞膜上の受容体に結 合することによって引き起こされることが知られてい る。事実アレルギー疾患の患者の血清中または組織中の IgEの濃度は健常人に比較しても高値を示すことが知 られており、さらにアレルギー患者では「gE産生に重 要な役割を果たすことが知られているインターロイキン 4の持続的な産生も認められている。したがって、 I g E抗体の産生を抑えることができればアレルギー疾患の 治療および予防に効果を発揮するものと考えられるが、 【請求項3】 X, X'およびX"のうちいずれか一つ 20 現在のアレルギーの治療薬ではIgE抗体の産生抑制に よりアレルギー疾患の是正を計った薬剤は治療に供され ていない。そこで新規なIgE抗体産生抑制剤を得るこ とができれば、新しい概念のアレルギー疾患治療剤とし て有用である。

> [0003] また、移植拒絶、移植片対宿主疾患、喘 息、腎炎、肝炎、全身性エリテマトーデス(SLE)等 の自己免疫疾患、慢性関節リウマチなどでは抗体やそれ を含有する免疫複合体の過剰な産生や細胞性免疫反応の 亢進が発症および病態の持続に関与することが知られて 30 いる。これらの疾患にはステロイド剤や既存の免疫抑制 剤が一般的に用いられてきたが、その強力な副作用のた め治療に限界があり、新規な作用機作を有する抗体産生 抑制剤または免疫抑制剤が望まれていた。

【0004】一方、従来からIgE抗体産生抑制作用を 有する化合物について、例えば特開平1-106818 号および国際特許公開W〇90/12001号明細書に は【gE抗体産生抑制作用を有するアントラニル酸系化 合物が報告されている。しかしこれらの特許に記載され ている物質はナフタレン骨格に限定されており、本発明

[0005] また特開昭55-079372号公報には カルポスチリル骨格とアントラニル酸骨格を同時に有す る化合物を合成したことが報告されているが、本発明の 含窒素芳香環骨格とは異なりカルポスチリル骨格を有し ており、抗体産生抑制作用や免疫是正機能に関する記載 も示唆もなされていない。

【0006】このような従来技術に鑑みて、本発明者ら は従来のアレルギー疾患用剤とは異なる新しい作用機作 に基づくアレルギー疾患用剤及び免疫疾患用剤を提供す

50 べく研究の結果、本発明に到達した。

3

[0007]

【課題を解決するための手段】すなわち本発明は、式

[0008]

(化2)

[0009] (式中、AはCH₂-CH₂, CH=C H. C*C(ただし、*は三重結合を示す。以下同 じ。)、 $S-CH_2$, CH_2-S , $O-CH_2$, または CH₂-Oを表し; X, X'およびX'' は炭素原子ま たは窒素原子を表し(ただし、これらすべては同時に炭 素原子ではない); YはNHR, OH, またはCO2 R (Rは水素原子またはC, - の低級アルキル基を表 す) を表し;nは0-8の整数を表す。) で示される含 窒素二環性複素環誘導体またはその医薬上許容される 塩、およびそれらを有効成分とするアレルギー疾患用 剤、免疫疾患用剤、及びそれらと製薬学的に許容される 担体とからなる医薬組成物である。

[0010] 上記式 [I] においてAはCH₂ - C H₂, CH=CH, C*C (ただし、*は三重結合を示 す。以下同じ。)、S-CH₂, CH₂-S, O-CH 2, またはO-CH2を表わすが、これらの中でもAが CH=CH, $S-CH_2$, CH_2-S , $O-CH_2$, \sharp たは〇一〇H₂を表すものが好ましい。

【0011】式[I]においてX, X'およびX"は炭 素原子または窒素原子を表わす(ただし、これらすべて は同時に炭素原子ではない)が、特にX、X および X"のうちいずれか一つが窒素原子を、残りの二つが炭 30 素原子を表す、すなわちキノリン骨格が望ましい。

【0012】式[I]においてXが窒素原子を表しX' およびX"が炭素原子を表す時、特にAとしてはCH= $CH. S-CH_2$, $O-CH_2$, CH_2 -O, CH_2 -Sが望ましい。中でもCH=CH, $S-CH_2$, CH_2 - Sが望ましい。

【0013】式[I]においてX'が窒素原子を表し X, X"が炭素原子を表すとき、特にAとしてはCH2 -CH₂, CH=CHが望ましい。中でもCH=CHが 望ましい。

【0014】式[I]においてX"が窒素原子を表し X, X'が炭素原子を表すとき、特にAとしてはO-C H2, S-CH2 が望ましい。中でもO-CH2 が望ま しい。

[0015] 式[I] においてYはNHR, OH, また はCO₂ R (Rは水素原子またはC₁ - の低級アルキ ル基を表わす)を表わすが、中でもNHRまたはCO2 Rが望ましい。

【0016】式[I] におけるYがNHRで示される時 に好適なRとしては水素原子、メチル基、エチル基、

(n-, i-) プロピル基、 (n-, i-, t-) プチ ル基が挙げられ、これらの中でも水素原子が望ましい。 [0017] 式 [I] におけるYがCO2 Rで示される 時に好適なRとしては水素原子、メチル基、エチル基、 (n-, i-) プロピル基、 (n-, i-, t-) ブチ ル基が挙げられ、これらの中でも水素原子またはメチル 基が望ましい。

【0018】nは1~8の整数を表すがなかでも2~6 の整数が好ましい。

[0019] 式[I] において、X, X, '及びX"及 びAとY及びnとの好ましい組み合せとしては、X. X. '及びX'及びAが前述のようにそれぞれ好適例、 組み合せ例として定義される場合に、YがNH₂または CO2R(Rは水素原子またはメチル基を表す)でnが 2~6の整数の場合を挙げることができる。

【0020】本発明の新規な二環性複素環誘導体の好適 な具体例として以下のような化合物を挙げることができ る。なお慣用に従い2ーキノリニル基はキノリル基と呼 称する。

[0021]

化合物番号 化合物名

101 2-(3-キノリルオキシブロピオナミド)安 息香酸

102 2-(3-キノリルオキシブロピオナミド)安 息香酸メチル

103 2-(3-キノリルオキシブロピオナミド)安 息香酸エチル

104 2- (4-キノリルオキシブタナミド) 安息香

105 2- (4-キノリルオキシブタナミド) 安息香 酸メチル

106 2- (4-キノリルチオブタナミド) 安息香酸 107 2- (4-キノリルチオプタナミド) 安息香酸 メチル

108 2- (5-キノリルチオペンタナミド) 安息香

109 2- (5-キノリルチオペンタナミド) 安息香 40 酸メチル

110 2-(6-キノリルチオヘキサナミド) 安息香

111 2- (6-キノリルチオヘキサナミド) 安息香 酸メチル

112 2- (4-キノリルメチルチオプタナミド)安 息香酸

113 2- (4-キノリルメチルチオブタナミド)安 息香酸メチル

114 2- (5-キノリルメチルチオペンタナミド) 50 安息香酸

115 2ー(5ーキノリルメチルチオペンタナミド)安息香酸メチル

116 2- (6-キノリルメチルチオへキサナミド) 安息香酸

117 2ー (6ーキノリルメチルチオヘキサナミド) 安息香酸メチル

118 (E) -2-(5-キノリル-4-ペンテナミ ド) 安息香酸

119 (E) -2- (5-キノリル-4-ペンテナミド) 安息香酸メチル

120 (E) -2-(6-キノリル-5-ヘキセナミド) 安息香酸

121 (E) -2-(6-キノリル-5-ヘキセナミ ド) 安息香酸メチル

122 (E) -2- (7-キノリル-6-ヘプテナミド) 安息香酸

123 (E) -2-(7-キノリル-6-ヘプテナミド) 安息香酸メチル

124 (E) -2-(5-(3-キノリニル) -4-ペンテナミド) 安息香酸

125 (E) -2-(5-(3-キノリニル) -4-ペンテナミド) 安息香酸メチル

126 (E) -2-(6-(3-キノリニル) -5-ヘキセナミド) 安息香酸

127 (E) -2-(6-(3-キノリニル) -5-ヘキセナミド) 安息香酸メチル

128 (E) -2-(7-(3-キノリニル) -6-ヘブテナミド) 安息香酸

129 (E) -2-(7-(3-キノリニル) -6-ヘブテナミド) 安息香酸メチル

130 2- (3-(6-キノリニルオキシ) プロピオナミド) 安息香酸

131 2ー(3ー(6ーキノリニルオキシ) プロピオナミド) 安息香酸メチル

132 2- (4-(6-キノリニルオキシ) ブタナミ ド) 安息香酸

133 2-(4-(6-キノリニルオキシ) ブタナミド) 安息香酸メチル

134 2ー (5-(6-キノリニルオキシ) ペンタナ ミド) 安息香酸

135 2- (5-(6-キノリニルオキシ) ペンタナ ミド) 安息香酸メチル

136 2-(6-(6-キノリニルオキシ) ヘキサナ ミド) 安息香酸

137 2-(6-(6-キノリニルオキシ) ヘキサナ ミド) 安息香酸メチル

138 2-(5-(6-キノリニルチオ) ペンタナミド) 安息香酸

139 2- (6-キノリルメチルオキシヘキサナミ

ド) 安息香酸

6 140 N-(2-アミノフェニル)-3-(6-キノ リニルオキシ) プロピオナミド

141 N-(2-アミノフェニル)-3-キノリルチオブロピオナミド

142 N- (2-アミノフェニル) -4- (6-キノリニルオキシ) ブタナミド

143 N- (2-アミノフェニル) -4-キノリルチ オブタナミド

144 N-(2-アミノフェニル)-5-(6-キノ 10 リニルオキシ)ペンタナミド

145 N- (2-アミノフェニル) -5-キノリルチ オペンタナミド

146 Nー(2ーメチルアミノフェニル)ー3ーキノリルチオプロピオナミド

本発明はまた、かかる含窒素二環性複素環誘導体または その医薬上許容される塩を有効成分とするアレルギー疾 患用剤又は免疫疾患用剤に関するが、かかるアレルギー 20 疾患用剤又は免疫疾患用剤のうちでも、IgE抗体産生 抑制作用を特徴とするアレルギー疾患用剤又は過剰な抗 体産生抑制作用を特徴とする免疫抑制剤を好ましいもの として挙げることができる。

【0022】本発明のIgE抗体産生抑制作用を特徴とするアレルギー疾患用剤とは、アレルギー疾患の予防剤および治療剤を含むものであって、かかるアレルギー疾患としては例えば気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、アレルギー性結膜炎、蕁麻疹、アナフィラキシーショック、接触性過敏症などを挙げることがで30 きる。これらの中でも、例えば気管支喘息、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎を好ましいものとして挙げることができる。

【0023】また本発明の過剰な抗体産生抑制を特徴とする免疫抑制剤とは、IgE及びIgG抗体産生抑制またはIgG抗体産生抑制、またはDTH反応惹起性T細胞や細胞障害性T細胞の増殖や活性化を阻止する薬剤である。そのような効果が期待できる疾患として例えば、慢性関節リウマチ、全身性エリテマトーデス(SLE)、強皮症、皮膚筋炎、多発性筋炎、結節性多発性動脈炎、リウマチ熱、自己免疫性溶血性貧血、橋本甲状腺炎、リウマチ熱、自己免疫性溶血性貧血、橋本甲状腺炎、費肉性大腸炎、悪性貧血、ブドウ膜炎、天疱瘡、シェーグレン症候群、突発性白血球減少症等の自己免疫疾患、移植拒絶、移植片対宿主疾患、肝炎、腎炎、糖尿病、サルコイドーシス、ライ病、精巣炎、卵巣炎等が挙げられる。

【0024】なお、本発明による前記式 [I] で示される合窒素二環性複素環誘導体またはその医薬上許容される塩は、例えば下記の公知のスキームに従って製造することができる。すなわち複素環骨格を有するカルボン酸をアニリン誘導体と縮合させることで、目的とする

*【化3】

[I] の化合物を得ることができる。

[0025]

[0026] なお上記各式中のA, X, X', X", お よびnは前記定義に同じである。出発物質である[II] は、従来公知の方法によって得ることができる。

[0027]縮合法としては、酸ハライドを経由する方 法と酸ハライドを経由しない活性化法とに大別され、い ずれの手法も基本的には公知である。

[0028]酸ハライドを経由する場合、[II]を DMF 等の添加剤の存在下または非存在下で塩化オキザリル、 塩化チオニルなどのハロゲン化剤を作用させて[II]の 酸ハライドを生成させ、これを塩基の存在下あるいは非 存在下に[!!!] と反応させることで [!]を得ることがで

【0029】一方、酸ハライドを経由しない活性化法で は、混合酸無水物類、カルボジイミド類、イミダゾール 化剤、ハロリン酸エステル類、シアノリン酸エステル類 などさまざまな活性化剤を用いて[II]を活性化し、こ れと[III] を反応させることで [I]を得ることができ

【0030】このようにして得られた[1]においてYが CO2RでRが低級アルキル基を表わす場合、必要に応 じて酸性もしくは塩基性条件下で加水分解を行い、Rが 水素原子を表わす化合物に変換することができる。

【0031】このようにして得られた上記式 [I] で示 30 される化合物は必要に応じて製薬上許容される塩に変換 することができる。その化合物がカルボン酸残基を有す る場合は非毒性カチオンとの塩に変換することができ る。この種のカチオンとしては、Na、Kのようなアルカ リ金属カチオン; Mg、Caのようなアルカリ土類金属カチ オン; Al, Znのような金属カチオン; あるいは、アンモ・ ニア、トリエチルアミン、エチレンジアミン、ピリジ ン、リシン、コリン、アルギニン、グアニジン、トリエ タノールアミン、N, N-ジメチルエタノールアミン、 4-ヒドロキシエチルモルホリン、4-ヒドロキシピペ 40 注射剤がある。水性溶液剤は、例えば生理食塩水などが リジン、N-メチルグルカミン、グルコサミン等の有機 塩基が挙げられる。なかでもNa、Kのようなアルカリ金 属カチオン、リシン、コリン、N, N-ジメチルエタノ ールアミン、Nーメチルグルカミン、グルコサミンを好 ましいものとして挙げることができる。

【0032】また、上記式[I]で示される化合物はそ の骨格分子に窒素原子が存在しており通常これらの化合 物は塩基性を示す。したがってこれらの化合物は該当す る酸付加塩にも変換することができる。そのような酸と しては塩酸、硫酸、硝酸などの鉱酸、あるいは、酢酸、

安息香酸、フマル酸、マレイン酸、メタンスルホン酸、 トルエンスルホン酸などの製薬上許容される有機酸が挙 10 げられる。なかでも、塩酸、硫酸、酢酸、フマル酸、マ レイン酸、メタンスルホン酸、トルエンスルホン酸を好

ましいものとして挙げることができる。

【0033】本発明の含窒素二環性複素環誘導体または その医薬上許容される塩は、以下に記載するような製薬 学的に許容される担体とからなる医薬組成物とすること によって、経口的にあるいは静脈内、皮下、筋肉内、経 皮、直腸内、点眼、吸入などの非経口的に投与すること ができる。経口投与の剤型としては、例えば錠剤、丸 剤、顆粒剤、散剤、液剤、懸濁剤、シロップ剤、カブセ ル剤などが挙げられる。

【0034】錠剤の形態にするには、例えば乳糖、デン ブン、結晶セルロースなどの賦形剤;カルボキシメチル セルロース、メチルセルロース、ポリビニルピロリドン などの結合剤;アルギン酸ナトリウム、炭酸水素ナトリ ウム、ラウリル硫酸ナトリウムなどの崩壊剤等を用いて 通常の方法により成型することができる。

【0035】丸剤、顆粒剤、散剤も同様に上記の賦形剤 等を用いて通常の方法により成型することができる。

【0036】液剤、懸濁剤、シロップ剤は例えば、トリ カプリリン、トリアセチン等のグリセリンエステル類: エタノール等のアルコール類;水;トウモロコシ油、綿 実油、ココナッツ油、アーモンド油、落花生油、オリー ブ油等の植物油等を用いて通常の方法により成型するこ とができる。

【0037】カブセル剤は顆粒剤、散剤、あるいは液剤 などをゼラチンなどのカブセルに充填することによって 成型される。

【0038】静脈内、皮下、筋肉内投与の剤型として は、無菌の水性あるいは非水性溶液剤などの形態にある 用いられる。非水性溶液剤は、例えばプロピレングリコ ール、ポリエチレングリコール、オリーブ油等の植物 油、オレイン酸エチル等の注射しうる有機エステルなど が用いられる。これらの製剤には必要に応じて等張化 剤、防腐剤、湿潤剤、乳化剤、分散剤、安定剤などが添 加され、またバクテリア保留フィルターを通す濾過、殺 菌剤の配合、加熱、照射等の処置を適宜行うことによっ て無菌化できる。また、無菌の固形製剤を製造し、使用 直前に無菌水または無菌の注射用溶媒に溶解して使用す 50 ることもできる。

8

【0039】経皮投与の剤型としては、例えば軟膏剤、 クリーム剤などが挙げられ、軟膏剤はヒマシ油、オリー ブ油などの油脂類:ワセリン等を用いて、クリーム剤は 脂肪油;ジエチレングリコール;ソルピタンモノ脂肪酸 エステルなどの乳化剤等を用いて通常の方法によって成 型される。

【0040】直腸投与のためには、ゼラチンソフトカブ セルなどの通常の座剤が用いられる。

[0041] 点眼剤の剤型としては、水性あるいは非水 性点眼剤がある。水性点眼剤は溶剤に滅菌精製水、生理 10 食塩水、あるいは適当な水性溶剤を用いるもので、溶剤 に滅菌精製水のみを用いた水性点眼液;カルボキシメチ ルセルロース、メチルセルロース、ヒドロキシブロピル セルロース、ポリビニルピロリドン等の粘漿剤を加えた 粘性点眼液;界面活性剤や高分子増粘剤等の懸濁剤を加 えた水性懸濁点眼液:非イオン性界面活性剤などの可溶 化剤を加えた可溶化点眼液等がある。非水性点眼剤は溶 剤に注射用非水性溶剤を用いるもので、植物油、流動パ ラフィン、鉱物油、プロピレングリコール等を用いた非 水性点眼液;モノステアリン酸アルミニウムなどの揺変 20 膠質を用いて懸濁した非水性懸濁点眼液等がある。これ らの製剤には必要に応じて等張化剤、保存剤、緩衝剤、 乳化剤、安定剤などが添加することができる。またバク テリア保留フィルターを通す濾過、殺菌剤の配合、加 熱、照射等の処置を適宜行うことによって無菌化でき る。また、無菌の固形製剤を製造し、使用直前に適当な 無菌溶液に溶解あるいは懸濁して使用することもでき る。

【0042】また、点眼剤以外で眼に投与する剤型として、ワセリン等を用いて成型した眼軟膏剤:希ヨードチ 30ンキ、硫酸亜鉛溶液、塩化メチルロザニリン液等を用いた塗布液剤;有効成分の微粉末を直接投与する散布剤;有効成分を、適当な基剤または素材に配合あるいは含浸させ、これを眼瞼内などに挿入して用いるインサート剤などがある。

【0043】また吸入のためには、有効成分と慣用の製薬賦形剤との溶液または懸濁液が用いられ、例えば吸入用エアゾルスブレーとして使用される。また乾燥粉末状の有効成分を肺と直接接触できるようにする吸入器または他の装置によっても投与することができる。

【0044】有効成分の投与量は投与法により異なってくるが、経口投与では通常1~500g/日/人程度で、好ましくは10~300g/日/人であり、静脈内、皮下、筋肉内、経皮、直腸内、点眼、吸入などの非経口的投与では0.1~100mg/日/人程度で、好ましくは0.3~30mg/日/人でありこのような条件を満足するように製剤するのが好ましい。

[0045]

【実施例】なお、以下に実施例を記載するが本発明はこ z). の実施例のみに限定されるものではない。またNMRに 50 br)

おいてカルボン酸の水素原子は観測されないことがある。

10

[0046] [実施例1]

2- (4- (6-キノリニルオキシ) ブタナミド) 安息 香酸メチル (化合物番号133)

[0047]

[化4]

【0048】窒素雰囲気下、4-(6ーキノリニルオキシ) 酪酸 278 mg (1.2 mmol)を塩化チオニル 5 ml に溶解し、35℃で2時間攪拌した。反応液をエパポレーターで濃縮し、残渣を乾燥塩化メチレン 15 mlに溶解した。窒素雰囲気下この溶液を、アントラニル酸メチル 180 mg (1.3 mmol)とトリエチルアミン 300 mg (3.0 mmol)の乾燥塩化メチレン溶液 (5 mL) に-78℃で滴下して、そのまま 4時間さらに室温で終夜攪拌した。反応液に水を加え、塩化メチレンで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーで精製すると、題記化合物 130 mg (0.36 mmol)が得られた。

【0049】収率30%

H-NMR (DMSO-d6) d:

2.32 (2 H, quint, J = 7 Hz), 2.72 (2 H, t, J = 7 Hz), 3.87 (3 H, s), 4.21 (2 H, t, J = 7 Hz), 7.05 -7.11 (2 H, m), 7.31 -7.38 (2 H, m), 7.55 (1 H, t d, J = 7 and 1 Hz), 7.96-8.03 (3 H, m), 8.71-8.77 (2 H, m) 11.17 (1 H, sbr)

[0050] [実施例2]

<u>2-(4-(6-キノリニルオキシ) ブタナミド) 安息</u> 香酸 (化学物番号132)

[0051]

【化5】

【0052】実施例1で得られた化合物を水酸化ナトリ 40 ウムや水酸化リチウムなどで加水分解することで題記化 合物が定量的収率で得られる。

[0 0 5 3] $^{1}H-NMR$ (DMS0-d6) δ :

2.16 (2 H, quint, J = 7 Hz), 2.62 (2 H, t, J = 7 Hz), 4.19 (2 H, t, J = 6 Hz), 7.12 (1 H, t-like, J = 8 Hz), 7.36-7.41 (2 H, m), 7.45 (1 H, dd, J = 8 and 4 Hz), 7.55 (1 H, t-like, J = 8 Hz), 7.89 (1 H, d, J = 10 Hz), 7.97 (1 H, dd, J = 8 and 2 Hz), 8.22 (1 H, d, J = 8 Hz), 8.50 (1 H, d, J = 8 Hz), 8.72 (1 H, dd, J = 4 and 2 Hz), 11.5 (1 H, s,

10

20

11

以下、実施例1および2と同様にして以下の化合物が合 成された。

【0054】 [実施例3]

2- (4-キノリルチオプタナミド) 安息香酸メチル (化合物番号<u>107)</u>

[0055]

[化6]

[0056] 収率61%

 $^{1}H-NMR$ (CDCI₃) δ :

2.27 (2 H, quint, J = 7 Hz), 2.67 (2 H, t, J = 7Hz), 3.48 (2 H, t, J = 6 Hz), 3.85 (3 H, s), 7.06 (1 H. td. J = 7 and 1 Hz) 7.21 (1 H, d, J = 8 Hz),7.39 (1 H. t-like, J = 8 Hz), 7.51-7.59 (2 H, m). 7.68 (1 H, d-like, J = 8 Hz), 7.83-7.88 (2 H. m). 7.98 (1 H, dd, J = 8 and 2 Hz), 8.74 (1 H, d, J = 8 Hz), 11.06 (1 H, s br)

【0057】 [実施例4]

2- (4-キノリルチオプタナミド) 安息香酸(化合物 番号106)

[0058]

【化7】

【0059】収率55%

'H-NMR (DMSO-d6) δ:

2.08 (2 H, quint, J = 7 Hz), 2.55 (2 H, t, J = 7Hz), 3. 37 (2 H, t, J = 7 Hz), 7. 02 (1 H, t, J = 7Hz), 7.38 (1 H, d, J = 9 Hz), 7.40-7.45 (1 H, m), 7.49 (1 H, d, J = 8 Hz), 7.65 (1 H, td, J = 7 and 1 Hz), 7.81 (1 H, d, J = 8 Hz), 7.88 (1 H, d, J= 7 Hz), 7.98 (1 H, dd, J = 8 and 2 Hz), 8.15 (1 H, d, J = 9 Hz), 8.50 (1 H, d, J = 8 Hz), 12.9 (1 H, s br)

【0060】 [実施例5]

キシ) ブタナミド (化合物番号142)

[0061]

[化8]

【0062】収率31%

 $^{1}H-NMR$ (DMSO-d6) δ :

2.13 (2 H, quint, J = 7 Hz), 2.57 (2 H, t, J = 7 H_2), 4.18 (2 H, t, J = 7 H_2), 6.54 (1 H, td, J = 8and 1 Hz), 6.71 (1 H, dd, J = 1 and 8 Hz), 6.89 50 'H-NMR (CDCI₃) δ :

(1 H, t-1 ike, J=8 Hz), 7.17 (1 H, dd, J=8 and 17.39-7.50 (3 H, m), 7.92 (1 H, d, J = 9 H z). 8.24 (1 H, d, J = 8 Hz), 8.73 (1 H, dd, J = 4and 2 Hz), 9.17 (1 H, s br)

12

【0063】 [実施例6]

N- (2-アミノフェニル) -4-キノリルチオブタナ ミド (化合物番号143)

[0064]

[化9]

[0065] 収率43%

 $^{1}H-NMR$ (DMSO-d6) δ :

2.05 (2 H, quint, J = 7 Hz), 2.53 (2 H, t, J = 7Hz), 3. 37 (2 H, t, J = 7 Hz), 4. 85 (2 H, br s), 6. 5 3 (1 H, td, J = 7 and 1 Hz), 6.71 (1 H, dd, J =8 and 1 Hz), 6.89 (1 H, t-like, J = 8 Hz), 7.16(1 H, dd, J = 8 and 1 Hz), 7.38 (1 H, d, J = 9 Hz),7.49 (1 H, t-like, J = 8 Hz), 7.70 (1 H, td, J =8 and 1 Hz), 7.88 (2 H, t, J = 8 Hz), 8.16 (1 H, d, J = 9 Hz), 9.15 (1 H, s br)

[0066] [実施例7]

2- (6-キノリルチオヘキサナミド) 安息香酸メチル (化合物番号|||)

[0067]

【化10】

【0068】収率60%

 $^{1}H-NMR$ (CDCI₃) δ :

1.53-1.66 (2 H, m), 1.80-1.91 (4 H, m), (2 H, t, J = 7 Hz), 3.36 (2 H, t, J = 7 Hz), 3.90(3 H, s), 7.07 (1 H, t, J = 8 Hz), 7.19 (1 H, d, J)= 8 Hz), 7.40 (1 H, t, J = 8 Hz), 7.54 (1 H, t-li ke, J = 8 Hz), 7.61 (1 H, t-like, J = 8 Hz), 7.70 (1 H, d, J = 8 Hz), 7.86 (1 H, d, J = 9 Hz), 7.91(1 H, d, J = 9 Hz), 8.02 (1 H, dd, J = 8 and 2 H)40 z), 8.74 (1 H, d, J = 8 Hz), 11.07 (1 H, br s)

2- (6-キノリルチオヘキサナミド)安息香酸(化合 物番号110)

[0070]

【化11】

【0071】収率55%

[0069] [実施例8]

1.61 (2 H, quint, J = 7 Hz), 1.80-1.91 (4 H, m),
2.49 (2 H, t, J = 7 Hz), 3.35 (2 H, t, J = 7 Hz),
7.10 (1 H, t, J = 8 Hz), 7.21 (1 H, d, J = 9 Hz),
7.41 (1 H, t-like, J = 8 Hz), 7.57 (1 H, d, J =
9 Hz), 7.63 (1 H, d, J = 9 Hz), 7.70 (1 H, d, J =
8 Hz), 7.87 (1 H, d, J = 9 Hz), 7.94 (1 H, d, J =
9 Hz), 8.09 (1 H, d, J = 8 Hz), 8.72 (1 H, d, J =
9 Hz), 10.94 (1 H, s)

[0072] [実施例9]

(E) -2-(7-(3-+))-6-へプテナ 10

ミド) 安息香酸メチル (化合物番号129)

[0073]

【化12】

【0074】収率72%

'H-NMR (CDCI₃) δ:

1.65 (2 H, quint, J = 7 Hz), 1.87 (2 H, quint, J = 7 Hz), 2.36 (2 H, q, J = 7 Hz), 2.51 (2 H, t, J = 7 Hz), 3.90 (3 H, s), 6.41-6.59 (2 H, m), 7.07 (1 H, t-like, J = 7 Hz), 7.48-7.67 (3 H, m), 7.76 (1 H, d, J = 7 Hz), 7.98-8.07 (3 H, m), 8.75 (1 H, d, J = 9 Hz), 8.96 (1 H, d, J = 2 Hz), 11.1 (1 H, s, br)

[0075] [実施例10]

(E) −2− (7− (3−キノリニル) −6−ヘプテナ

ミド) 安息香酸(化合物番号128)

[0076]

化131

【0077】収率53%

'H-NMR (DMSO-d6) δ :

1.58 (2 H, quint, J = 7 Hz), 1.72 (2 H, quint, J = 7 Hz), 2.28-2.32 (2 H, m br), 2.45 (2 H, t, J = 7 Hz), 6.62 (2 H, m), 7.12 (1 H, t, J = 7 Hz), 7.52-7.59 (2 H, m), 7.68 (1 H, dt, J = 2 and 7 Hz),

7.91 (1 H, d, J = 7 Hz), 7.95-8.00 (2 H, m), 8. 40 25 (1 H, d, J = 8 Hz), 8.52 (1 H, d, J = 8 Hz), 9. 01 (1 H, d, J = 2 Hz), 11.36 (1 H, s br)

【0078】 [実施例11]

(E) -2- (7-キノリル-6-ヘプテナミド) 安息

香酸メチル(化合物番号123)

[0079]

【化14】

【0080】収率69%

 $^{1}H-NMR$ (CDCI₃) δ :

1.67 (2 H, quint, J = 7 Hz), 1.87 (2 H, quint, J = 7 Hz), 2.40 (2 H, q, J = 7 Hz), 2.50 (2 H, t, J = 7 Hz), 3.90 (3 H, s), 6.70-6.89 (2 H, m). 7.06 (1 H, t-like, J = 7Hz), 7.43-7.69 (4 H, m), 7.75 (1 H, d, J = 8 Hz), 8.00-8.07 (3 H, m), 8.74 (1 H, d, J = 9 Hz), 11.1 (1 H, s br)

14

[0081] [実施例12]

2-(6-キノリルメチルチオへキサナミド) 安息香酸 メチル (化合物番号117)

[0082]

【化15】

[0083] 収率72%

 $^{1}H-NMR$ (CDCI₃) δ :

1. 40-1.48 (2 H, m), 1. 57-1.76 (4 H, m), 2. 39 (2 H, t, J=8 Hz), 2. 50 (2 H, t, J=7 Hz), 3. 92 (3 H, s), 4. 00 (2 H, s), 7. 06 (1 H, t-like, J=8 Hz), 7. 06-7.57 (4 H, m), 7. 06 (1 H, m), 7. 06 (1 H, m), 7. 06 (1 H, d, 06 J = 9 Hz), 8. 00-8.05 (2 H, m), 8. 06 (1 H, d, 06 J = 8 Hz), 11. 2 (1 H, s br)

[0084] [実施例13]

<u>2-(6-キノリルメチルチオへキサナミド) 安息香酸</u> (化合物番号116)

[0085]

【化16】

30

【0086】収率61%

'H-NMR (CDCI₃) δ:

1.40-1.52 (2 H, m), 1.62-1.79 (4 H, m), 2.43 (2 H, t, J = 7 Hz), 2.57 (2 H, t, J = 7 Hz), 4.26 (2 H, s), 7.5-7.9 (6 H, m).8.18 (1 H, dd, J = 8 a nd 2 Hz), 8.29 (1 H, d, J = 9 Hz), 8.30 (1 H, d, J = 9 Hz), 8.57 (1 H, d, J = 9 Hz), 11.1 (1 H, s br)

【0087】[実施例14]健常人のヒト末梢血から、密度勾配遠心によりリンパ球を分離し、刺激剤であるIL-4($2000 \mu g/ml$)、抗CD40抗体(2mg/ml)、およびIL-10($100 \mu g/ml$)、の存在下で、二週間培養後その上清のIgEおよびIgG量をサンドイッチELISA法で測定した。結果を表1に示した。化合物番号110共存下でIgEの選択的な産生抑制が認められた。

[0088]

【表1】

15

条件	IgE (ng/ml)	IgG(µg/ml)
化合物非共存	108.8	24.4
化合物110 (3 µM)共存	14.8	20.4

[0089] [実施例15] 実施例14と同様に実験を 実施し、その結果を表2に示した。化合物番号142の 化合物にIgE選択的抗体産生抑制作用を、また化合物番* *号106の化合物に抗体産生抑制作用を認めた。

16

[0090]

【表2】

条件	IgE(ng/ml)	IgG(µg/ml)	
化合物非共存	10.5		5.30
化合物 1 4 2 (3 µM)共存	6.00		5.51
化合物 1 0 6 (3 µM)共存	3.00		1.42

20

[0091] [実施例16] 1錠が次の組成からなる錠 剤を製造した。

[0092]

化合物番号10650m乳糖230mじゃがじゃがいもデンプン80mポリピポリピニルピロリドン11mステアステアリン酸マグネシウム5mm

※ンプンを混合し、これをポリビニルピロリドンの20% エタノール溶液で均等に湿潤させ、20mメッシュのふるいを通し、45度で乾燥させ、かつ再び15mメッシュを通した。こうして得られた顆粒をステアリン酸マグネシウムと混和して錠剤に圧縮した。

計376頭

上記化合物番号106化合物、乳糖およびジャガイモデ※

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

C 0 7 D 215/20

215/36

(72)発明者 原田 俊明

東京都日野市旭が丘4丁目3番2号 帝人株式会社東京研究センター内

(72) 発明者 大森 斉

岡山県岡山市津島中3丁目1番1号 岡山 大学工学部内