Towards SVD: Properties of A^TA and AA^T

Let $A \in \mathbb{R}^{m \times n}$ be any matrix. Please show:

- 1. $A^T A \in \mathbb{R}^{n \times n}$ and $A A^T \in \mathbb{R}^{m \times m}$ are symmetric.
- 2. A^TA and AA^T are positive semi-definite. (Hint: $||x||_2^2 = x^Tx \ge 0 \ \forall x \in \mathbb{R}^n$.) Remark: Thus, eigenvalues are nonnegative.
- 3. A^TA and AA^T have the same positive eigenvalues.
- 4. $\ker(A) = \ker(A^TA)$ and $\ker(A^T) = \ker(AA^T)$. Remark: Thus, $v \in \ker(A)$ is eigenvector of A^TA ($u \in \ker(A^T)$ is eigenvector of AA^T) to the eigenvalue $\lambda = 0$.
- 5. Name two sufficient conditions for the invertibility of A^TA and AA^T .

Solution:

1. Recall: A matrix B is called symmetric, if $B^T = B$ holds. Here, we find

$$(A^T A)^T = A^T (A^T)^T = A^T A.$$

and

$$(AA^T)^T = (A^T)^T A^T = AA^T.$$

2. Recall: A matrix B is called positive semi-definite, if $x^TBx \geq 0$ holds $\forall x \in \mathbb{R}^n$. Here we find

$$x^{T}(A^{T}A)x = (Ax)^{T}Ax = ||Ax||_{2}^{2} \ge 0 \ \forall x \in \mathbb{R}^{n}.$$

Next define $C := A^T$ and apply the latter result to C; note that $C^TC = AA^T$.

3. We show mutual subset relation:

<u>"C":</u> We first show that all positive eigenvalues of A^TA are positive eigenvalues of AA^T : Let $\lambda > 0$ be an eigenvalue of A^TA with eigenvector $v \neq 0$, then we find

$$A^TAv = \lambda v \ \stackrel{A \cdot |}{\Rightarrow} \ AA^T(Av) = \lambda(Av).$$

In addition we find that $Av \neq 0$, since

$$||Av||_2^2 = v^T A^T A v = \lambda v^T v = \underbrace{\lambda}_{>0} \underbrace{||v||_2^2}_{>0} > 0.$$

Thus we can conclude that λ is an eigenvalue of AA^T with eigenvector $Av =: u \neq 0$.

" \supseteq ": Next, we show that all positive eigenvalues of AA^T are also positive eigenvalues of A^TA : Let $\lambda > 0$ be an eigenvalue of AA^T with eigenvector $u \neq 0$, then we find

$$AA^Tu = \lambda u \stackrel{A^T \cdot |}{\Rightarrow} A^T A(A^T u) = \lambda (A^T u).$$

In addition we find that $A^T u \neq 0$, since

$$||A^T u||_2^2 = u^T \underbrace{AA^T u}_{\lambda u} = \underbrace{\lambda}_{>0} \underbrace{||u||_2^2}_{>0} > 0.$$

Thus we can conclude that λ is an eigenvalue of A^TA with eigenvector $A^Tu=:v\neq 0$.

4. We show mutual subset relation:

(a)
$$\ker(A) = \ker(A^T A)$$
:

$$\text{``} \ker(A) \subseteq \ker(A^TA)\text{''}\text{:}$$

$$\text{``} \ker(A^TA) \subseteq \ker(A)\text{''}\text{:}$$

Let
$$x \in \ker(A^T A) \stackrel{\text{Def.}}{\Rightarrow} A^T A x = 0 \Rightarrow \underbrace{x^T A^T A x}_{=\|Ax\|_2^2} = 0 \stackrel{\text{norm}\|\cdot\|_2^2 \text{ is definite}}{\Rightarrow} A x = 0 \stackrel{\text{Def.}}{\Rightarrow} x \in \ker(A).$$

(b)
$$\ker(A^T) = \ker(AA^T)$$
:

Define
$$C := A^T$$
 and apply result (a) to C ; note that $C^TC = AA^T$.

5. For example:

i) Let A have independent columns ("full column rank"). This is equivalent to $\ker(A) = \{0\}$, thus also the columns of A^TA are independent, which implies that A^TA

is invertible.

ii) Let A^TA be positive definite. Then its eigenvalues are strictly positive. Since A^TA is symmetric we can use its eigendecomposition to conclude that A^TA is invertible.