Assignment 6

The purpose of this assignment is to use a *multilayer perceptron (MLP)* machine learning model. This dataset should have at least 3 continuous, real-valued input features and 1 continuous, real-valued output label or 1 categorical output label. There should be three instances of the MLP machine learning model with different combinations of hyperparameters. 80% of the data will be used for training and 20% of the data will be used for testing.

Dataset: https://www.kaggle.com/datasets/ananthr1/weather-prediction/data

Columns:

date : The date the sample was taken.
 precipitation : The amount of precipitation in cm.

3. temp_max
4. temp_min
5. wind
6. weather
1. The maximum temperature recorded for the day in °C.
1. The minimum temperature recorded for the day in °C.
2. The average wind speed recorded for the day in mph.
3. temp_max
4. temp_min
5. wind
6. weather
7. The observed weather {rain, sun, fog, drizzle, snow}.

Data analysis

Structure:

	date	precipitation	temp_max	temp_min	wind	weather
0	2012-01-01	0.0	12.8	5.0	4.7	drizzle
1	2012-01-02	10.9	10.6	2.8	4.5	rain
2	2012-01-03	0.8	11.7	7.2	2.3	rain
3	2012-01-04	20.3	12.2	5.6	4.7	rain
4	2012-01-05	1.3	8.9	2.8	6.1	rain

	date	precipitation	temp_max	temp_min	wind	weather
516	2013-05-31	0.0	19.4	11.1	2.5	sun
1265	2015-06-19	0.5	23.9	13.3	3.2	rain
1234	2015-05-19	0.0	21.7	11.7	2.6	sun
720	2013-12-21	5.6	8.9	5.6	2.3	rain
1121	2015-01-26	0.0	16.1	6.1	2.2	fog
						- 3
	date	precipitation	temp_max	_	wind	weather
1456	date 2015-12-27	precipitation 8.6	_	_	_	
1456 1457		• •	temp_max	temp_min	wind	weather
	2015-12-27	8.6	temp_max 4.4	temp_min 1.7	wind 2.9	weather rain
1457	2015-12-27 2015-12-28	8.6 1.5	temp_max 4.4 5.0	temp_min 1.7 1.7	wind 2.9 1.3	weather rain rain

Description:

	precipitation	temp_max	temp_min	wind
count	1461.000000	1461.000000	1461.000000	1461.000000
mean	3.029432	16.439083	8.234771	3.241136
std	6.680194	7.349758	5.023004	1.437825
min	0.000000	-1.600000	-7.100000	0.400000
25%	0.000000	10.600000	4.400000	2.200000
50%	0.000000	15.600000	8.300000	3.000000
75%	2.800000	22.200000	12.200000	4.000000
max	55.900000	35.600000	18.300000	9.500000

The dataframe itself has 1461 instances. Of which, if we discriminate by column 6, then 641 are *rain*, 640 are *sun*, 101 are *fog*, 53 are *drizzle*, and 26 are *snow*. If we choose to use column 6 as our label, then the data is going to be highly imbalanced. From the description, we can see the continuous, real-valued columns have varying centers and spreads. Let us examine how stringent each of these real-valued columns are to determining the class of column 6. We will reduce the dimensionality to 2 components to make it easier to visualize on a 2-dimensional graph. But before that, we need to scale the data to make the relationships between individual instances easier to recognize.

Principal Component Analysis:

-2

-3

-2

-1

We can see that there are barely any instances of *drizzle*, *snow*, and *fog*. This is going to make it more difficult to train the neural network. Based off the principal component analysis, it seems that there are some clear distinctions between what makes a data instance *sun* and *rain*. The majority influence of *sun* comes from principal component 1 while the majority influence of *rain* comes from principal component 2.

0

Principal Component 1

1

2

3

Intuition

We obviously want columns 2-5 to act as our features (input) while column 6 will act as our label (output). The features are all continuous and real-valued while the label is categorical and has 5 classes. Column 1 is going to be useless for our purposes. We need to create more data instances for the minority class labels to fix the imbalanced issue. Finally, the data should be scaled before training the model. We will use 3 instances of the MLPClassifer machine learning model with different activations. One will use identity, another will use tanh, and the last will use relu.

Data preprocessing

- 1) Remove column 1
- 2) Apply Synthetic Minority Oversampling Technique (SMOTE) to fix imbalanced data
- 3) Standardize the data using the standard scaler

Data preprocessing analysis

Structure:

		precipitation	temp_max	temp_min	wina	weatner
	0	-0.487872	-0.191751	-0.252996	1.082515	drizzle
	1	1.312598	-0.468099	-0.642196	0.940622	rain
	2	-0.355727	-0.329925	0.136204	-0.620200	rain
	3	2.865296	-0.267119	-0.146850	1.082515	rain
	4	-0.273137	-0.681640	-0.642196	2.075766	rain
		precipitation	temp_max	temp_min	wind	weather
-	2971	2.835692	-0.535607	-0.402483	1.862926	snow
4	29/1	2.033032	-0.555001	-0.402403	1.002320	311044
4	192	-0.487872	1.692436	1.215349	-0.194521	fog
	192	-0.487872	1.692436	1.215349	-0.194521	fog
1	192 1666	-0.487872 -0.487872	1.692436 1.396821	1.215349 1.109336	-0.194521 -0.710351	fog drizzle
1	192 1666 558	-0.487872 -0.487872 -0.487872	1.692436 1.396821 0.637291	1.215349 1.109336 1.215349	-0.194521 -0.710351 -0.691147	fog drizzle sun
2	192 1666 558	-0.487872 -0.487872 -0.487872 -0.314018	1.692436 1.396821 0.637291 -1.185484	1.215349 1.109336 1.215349 -0.951875	-0.194521 -0.710351 -0.691147 2.592468	fog drizzle sun snow

Description:

3202

3203

3204

	precipitation	temp_max	temp_min	wind
count	3.205000e+03	3.205000e+03	3.205000e+03	3.205000e+03
mean	1.773586e-17	1.773586e-17	1.773586e-17	-2.660378e-17
std	1.000156e+00	1.000156e+00	1.000156e+00	1.000156e+00
min	-4.878716e-01	-2.000571e+00	-2.393595e+00	-1.968183e+00
25%	-4.878716e-01	-8.350532e-01	-9.429409e-01	-7.620932e-01
50%	-4.878716e-01	-1.289450e-01	-5.839593e-02	-2.654679e-01
75%	5.722461e-02	8.170183e-01	8.775211e-01	6.568363e-01
max	8.745727e+00	2.672213e+00	2.099894e+00	4.487946e+00

-1.183382

-1.121506

1.387292

-1.031395

-1.123533

1.475538

1.426090

1.089175

-0.910343

snow

snow

sun

0.672951

0.265712

-0.487872

Now that the data preprocessed, there are more data instances to accommodate the minority columns. In fact, there are 641 instances across all 5 class labels. That makes 3205 data instances

total. Scaling the data made all the means close to 0 and all the standard deviations close to 1 for each feature.

Principal Component Analysis:

Now that we created more data instances, it makes it easier to visualize how the 2 principal components affect which class label a data instance belongs to. There is a weird artifact happening with the *snow* class to the right and we believe that is a side effect from using SMOTE on a very tiny (used to be 26 instances!) class count.

Violin plot:

This is how the distributions look after scaling the data. We didn't bother printing a histogram or box plot because the violin plot does both, and it does it rather well. The *precipitation* feature has a lot of outliers while everything else is more uniformly distributed.

Correlation heatmap:

There are a lot of promising correlations here, particularly with *wind* and *precipitation*. When we first used this dataset on Assignment 4, the correlations were not as strong.

Pair plot:

This shows us how the features are correlated with each other based off the class labels.

Machine learning analysis

Identity Activ	vation - Training Scores:	Identity Activ	Identity Activation - Testing Scores:		
Accuracy:	0.6193447737909517	Accuracy:	0.625585023400936		
Sensitivities:		Sensitivities:			
drizzle:	0.4187380497131931	drizzle:	0.4576271186440678		
rain:	0.3110236220472441	rain:	0.2556390977443609		
sun:	0.826	sun:	0.851063829787234		
snow:	0.962890625	snow:	0.9302325581395349		
fog:	0.5854126679462572	fog:	0.6083333333333333		
Specificities:		Specificities:			
drizzle:	0.8153662894580107	drizzle:	0.7940503432494279		
rain:	0.8552631578947368	rain:	0.8843373493975903		
sun:	0.9824414715719063	sun:	0.9689655172413794		
snow:	0.9563318777292577	snow:	0.9493243243243243		
fog:	0.7842298288508558	fog:	0.8078817733990148		
Precision:	0.6237652075361504	Precision:	0.6290780715458164		
Recall:	0.6193447737909517	Recall:	0.625585023400936		
F1-score:	0.618097015844325	F1-score:	0.6208453116281453		
Log Loss:	0.7914983329523178	Log Loss:	0.7647719552057832		

Confusion Matrix - Identity Activation Training

Confusion Matrix - Identity Activation Testing

Tanh Activation - Training Scores: Tanh Activation - Testing Scores: 0.6942277691107644 0.7098283931357254 Accuracy: Accuracy: Sensitivities: Sensitivities: drizzle: 0.4588910133843212 drizzle: 0.4661016949152542 rain: 0.5984251968503937 rain: 0.5338345864661654 sun: 0.86 sun: 0.8865248226950354 snow: 0.974609375 snow: 0.9767441860465116 fog: 0.5892514395393474 fog: 0.65 Specificities: Specificities: drizzle: 0.8974358974358975 drizzle: 0.9029345372460497 rain: rain: 0.8353140916808149 0.8458149779735683 sun: 0.9904622157006603 sun: 0.9880239520958084 snow: 0.9756283320639756 snow: 0.979166666666666 fog: 0.8441260744985674 fog: 0.8587699316628702 Precision: Precision: 0.7035880069407743 0.7158996835433208 Recall: Recall: 0.6942277691107644 0.7098283931357254 F1-score: F1-score: 0.6958206399064745 0.7108447602578483 Log Loss: 0.6748225502956261 Log Loss: 0.6492236702597707

Confusion Matrix - Tanh Activation Training

Confusion Matrix - Tanh Activation Testing

Relu Activation - Training Scores: Relu Activation - Testing Scores: 0.7445397815912637 0.7581903276131046 Accuracy: Accuracy: Sensitivities: Sensitivities: drizzle: 0.4588910133843212 drizzle: 0.4661016949152542 rain: 0.5984251968503937 rain: 0.5338345864661654 sun: 0.86 sun: 0.8865248226950354 snow: 0.974609375 snow: 0.9767441860465116 fog: 0.5892514395393474 fog: 0.65 Specificities: Specificities: drizzle: 0.8974358974358975 drizzle: 0.9029345372460497 rain: rain: 0.8353140916808149 0.8458149779735683 sun: 0.9904622157006603 sun: 0.9880239520958084 snow: 0.9756283320639756 snow: 0.9791666666666666 fog: 0.8441260744985674 fog: 0.8587699316628702 Precision: Precision: 0.7511126311688794 0.764454930067779 Recall: Recall: 0.7445397815912637 0.7581903276131046 F1-score: F1-score: 0.7466867823470288 0.7606982949315416 Log Loss: 0.599368815484719 Log Loss: 0.5872464254959496

Confusion Matrix - Relu Activation Training

Confusion Matrix - Relu Activation Testing

