

E1 F an addressable thin-film heater element in communication with the shape memory alloy portion for activation of selected micro-actuators;
a micro-fabricated sensor; and
F connecting rings for separating the micro-actuators into segmented joints.

E2 12. 81. (Amended) The shape memory alloy catheter as recited in claim 86 wherein the addressable thin-film heater element is operable to heat at least one micro-actuator for varying the relative stiffness of the shape memory alloy portion.

E3 14. 83. (Amended) The shape memory alloy catheter as recited in claim 86 wherein the shape memory alloy portion surrounds at least a portion of the catheter body.

E3 15. 84. (Amended) The shape memory alloy catheter as recited in claim 86 wherein the shape memory alloy is NiTi.

E3 16. 85. (Amended) The shape memory alloy catheter of claim 86 further including a micro-fabricated transducer.

11. 86. (Amended) A shape memory alloy catheter comprising:
a catheter body formed with a sidewall portion;
F a shape memory alloy portion positioned adjacent the catheter sidewall portion having a lattice network of individually configured shape memory alloy
F micro-actuators;
F an addressable thin-film heater element in communication with the shape memory alloy portion for activation of selected micro-actuators; and
a micro-fabricated sensor,
wherein at least two of the individually configured shape memory alloy micro-actuators are formed from a single piece of shape memory alloy material.

E4 17. 88. (Amended) A shape memory alloy catheter comprising:
a catheter body formed with a sidewall portion;

F
Ed
Ed
a shape memory alloy portion positioned adjacent the catheter sidewall portion
having a lattice network of individually configured shape memory alloy ~~actuators~~
micro-actuators, wherein the micro-actuators are arranged in segmented
joints;
an addressable thin-film heater element ~~in communication with~~ the shape memory
alloy portion for activation of selected micro-actuators;
a micro-fabricated transducer; and
F connecting rings for separating the micro-actuators into segmented joints.

E5
20. ^{90.} (Amended) The shape memory alloy catheter as recited in claim ⁹⁵ wherein
the addressable thin-film heater element is operable to heat at least one micro-actuator for
varying the relative stiffness of the shape memory alloy portion.

E6
22. ^{92.} (Amended) The shape memory alloy catheter as recited in claim ⁹⁵ wherein
the shape memory alloy portion surrounds at least a portion of the catheter body.

E6
23. ^{93.} (Amended) The shape memory alloy catheter as recited in claim ⁹⁵ further
including a micro-fabricated sensor.

E6
24. ^{94.} (Amended) The shape memory alloy catheter as recited in claim ⁹⁵ wherein
the shape memory alloy is NiTi.

19. ^{95.} (Amended) A shape memory alloy catheter comprising:
a catheter body formed with a sidewall portion;
F a shape memory alloy portion positioned adjacent the catheter sidewall portion
having a lattice network of individually configured shape memory alloy ~~actuators~~
micro-actuators; ~~in~~
F an addressable thin-film heater element ~~in communication with~~ the shape memory
alloy portion for activation of selected micro-actuators; and
a micro-fabricated transducer,

wherein at least two of the individually configured shape memory alloy
micro-actuators are formed from a single piece of shape memory alloy
material.

*B6
canc.*

