Tsinghua-Berkeley Shenzhen Institute LARGE DEVIATION AND HIGH DIMENSIONAL STATISTICS Spring 2021

Problem Set 2

Issued: Monday 22nd March, 2021

2.1. Show that

(a)

$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Rightarrow X_n Y_n \xrightarrow{p} XY;$$

Due: Monday 5th April, 2021

(b) however,

$$X_n \xrightarrow{\mathrm{d}} X, \ Y_n \xrightarrow{\mathrm{d}} Y \quad \Rightarrow \quad X_n Y_n \xrightarrow{\mathrm{d}} XY;$$

(c) when $X_n \perp \!\!\!\perp Y_n$ and $X \perp \!\!\!\perp Y$,

$$X_n \stackrel{\mathrm{d}}{\to} X, \ Y_n \stackrel{\mathrm{d}}{\to} Y \quad \Rightarrow \quad X_n Y_n \stackrel{\mathrm{d}}{\to} XY.$$

- 2.2. Show that for every X on $(\mathbb{R}, \mathcal{B})$, there exist a sequence $X_n \stackrel{d}{\to} X$ such that every X_n has a continuous, bounded, infinitely-differentiable PDF. Steps:
 - (a) Show that $X_{\epsilon} = X + \epsilon Z \xrightarrow{d} X$ as $\epsilon \to 0$.
 - (b) Let $X \perp \!\!\! \perp Z$ and $Z \sim \mathcal{N}(0,1)$. Show that CDF of X_{ϵ} is continuous (Hint: BCT) and differentiable with derivative

$$f_{X_{\epsilon}}(a) = \mathbb{E}\left[f_{Z}\left(\frac{a-X}{\epsilon}\right)\frac{1}{\epsilon}\right].$$

- (c) Show that $a \mapsto f_{X_{\epsilon}}(a)$ is continuous.
- (d) Conclude the proof (Hint: derivatives of f_Z are uniformly bounded on \mathbb{R}).
- 2.3. Let $S_n = \sum_{j=1}^n X_j$ be a sum of independent random variables X_j with $|X_j| \leq 1$ almost surely. Show that S_n converges in probability if and only if it converges almost surely (to a finite value).