Categorical covariates: 'random' and 'fixed' effects

Outline

1. Basic introduction

- Key concepts
 - Defining 'random' and 'fixed' effects
 - Normal distributions
 - Hierachical models and hyper-parameters (hey-O!)
 - Shrinkage
- 2. Case study: adult size variation among populations
- 3. Perils and pitfalls, review take home ideas

The terms 'fixed' and 'random' effect are used fairly widely (also, wildly) across a number of 'fields'...

1. Fixed effects are constant across individuals, random effects vary (Kreft and de Leeuw 1998)

- 1. Fixed effects are constant across individuals, random effects vary (Kreft and de Leeuw 1998)
- 2. Effects are fixed if they are interesting in themselves and random if there is interest in the underlying population (Searle, Casella, and McCulloch 1992)

- 1. Fixed effects are constant across individuals, random effects vary (Kreft and de Leeuw 1998)
- 2. Effects are fixed if they are interesting in themselves and random if there is interest in the underlying population (Searle, Casella, and McCulloch 1992)
- 3. When a sample exhausts the population, use fixed effects. When the sample is small (i.e., negligible), the variable is random (Green and Tukey 1960)

- 1. Fixed effects are constant across individuals, random effects vary (Kreft and de Leeuw 1998)
- 2. Effects are fixed if they are interesting in themselves and random if there is interest in the underlying population (Searle, Casella, and McCulloch 1992)
- 3. When a sample exhausts the population, fixed. When the sample is small (i.e., negligible), the variable is random (Green and Tukey 1960)
- 4. If an effect is assumed to be a realized value of a random variable, it is called a random effect (LaMotte 1983)

- 1. Fixed effects are constant across individuals, random effects vary (Kreft and de Leeuw 1998)
- 2. Effects are fixed if they are interesting in themselves and random if there is interest in the underlying population (Searle, Casella, and McCulloch 1992)
- 3. When a sample exhausts the population, fixed. When the sample is small (i.e., negligible), the variable is random (Green and Tukey 1960)
- 4. If an effect is assumed to be a realized value of a random variable, it is called a random effect (LaMotte 1983)
- 5. Fixed effects are estimated using least squares, and random effects are estimated with shrinkage (Snijders and Bosker 1999)

What is a random effect?!

First, let's describe our data

We'll sample 30 populations of foxes, and weigh a certain number of adult females from each population

The data (y) will be female mass. We'll have two associated covariates; latitude of the population (continuous, x) and a population identifier (categorical, p).

So what is a random effect?

Let's remember a beautiful and simple idea...

 $y_i \sim \text{normal}(\mu, \sigma^2)$

Now let's imagine we have 30 populations, each with a mean...

 $y_i \sim \text{normal}(\mu, \sigma^2)$

Each of those populations is a sample from the total population!

 μ_i ~normal(μ^* , σ^2)

 μ_i : each populations mean

 μ^* : an average female fox

 σ^2 : variance among pops

Now let's imagine we have 30 populations, each with a mean...

 μ_i ~normal(μ^*, σ^2)

 y_i : the weight of each fox

 ς^2 : variance within pops

 $y_i \sim \text{normal}(\mu_i, \varsigma^2)$

Now let's imagine we have 30 populations, each with a mean...

 μ_i ~normal(μ^* , σ^2)

 $y_i \sim \text{normal}(\mu_i, \varsigma^2)$

The foxes in each population are normally distributed

$$\mu_i$$
~normal(μ^*, σ^2)

$$y_i \sim \text{normal}(\mu_j, \varsigma^2)$$

The populations are normally distributed (random effects)

Why do we need a certain number (7?, 10?, more?) of groups...

 μ_i ~normal(μ^*, σ^2)

 $y_i \sim \text{normal}(\mu_j, \varsigma^2)$

to estimate random effects?

So, what is a fixed effect?!

$$\mu_j$$
~normal(12,10)

$$y_i \sim \text{normal}(\mu_j, \varsigma^2)$$

Fixed effects assume that each group is independent.

Random effects are nearly ~equivalent to fixed effects if...

 μ_{j} ~normal(μ^{*} , ∞)

 $y_i \sim \text{normal}(\mu_j, \varsigma^2)$

Or as the number of samples increases...

Case study I: adult size variation among populations

To JAGS!

Take-home idea: there's a reason you need n groups!

Imagine trying to estimate the mean (3?) and variance (?) of two groups?

Take-home idea: REs are just another normal distribution ©!

Take-home idea: as n increases, random fx \sim = fixed fx

Take-home idea: there are LOTS of bad explanations of random fx

- 1. Fixed effects are constant across individuals, random effects vary (Kreft and de Leeuw 1998)
- 2. Effects are fixed if they are interesting in themselves and random if there is interest in the underlying population (Searle, Casella, and McCulloch 1992)
- 3. When a sample exhausts the population, fixed. When the sample is small (i.e., negligible), the variable is random (Green and Tukey 1960)
- 4. If an effect is assumed to be a realized value of a random variable, it is called a random effect (LaMotte 1983)
- 5. Fixed effects are estimated using least squares, and random effects are estimated with shrinkage (Snijders and Bosker 1999)

Seeing the actual model helps us understand what they are.