О множествах точек на плоскости с целочисленными расстояниями

Н.Н. Авдеев, Е.М. Семёнов.

§1 Известна следующая

Теорема 1. Пусть $\{M_1, M_2\}$ — счётное множество точек на плоскости и расстояние $|M_i, M_j| \in \mathbb{N}$ для всех $1 \leq i < j < \infty$, где \mathbb{N} — множество натуральных чисел. Тогда найдется такая прямая на плоскости l, что $M_i \in l$ для всех $i \in \mathbb{N}$.

Формулировка теоремы и идея её доказательства приведены в [1], problem 29. Полное доказательство можно найти в [2]. Там же показано, что для любого $n \in \mathbb{N}$ существует такое множество $\{M_1, M_2, ..., M_n\} \subset \mathbb{R}^2$, что $|M_i, M_j| \in \mathbb{N}$ для всех $1 \leq i < j \leq n$ и $M_1, M_2, ..., M_n$ не лежат на прямой. Изучению таких подмножеств посвящена настоящая работа.

Для заданного $n \in \mathbb{N}, n \geq 3$ обозначим через C_n множество таких последовательностей $M_1, M_2, ..., M_n \in \mathbb{R}^2$, что $|M_i, M_j| \in \mathbb{N}$ для всех $1 \leq i < j \leq n$ и $M_1, M_2, ..., M_n$ не принадлежат никакой прямой. Положим

$$F(n) = \min_{A \in C_n} d(A),$$

где d(A) — диаметр A, т. е.

$$d(A) = \max_{x,y \in A} |x,y|$$

Точную асимптотику последовательности F(n) найти не удалось, получены лишь верхняя и нижняя оценки и найдены F(n) для $3 \le n \le 43$.

§2 Число элементов множества A обозначим через |A|. В [2] была доказана

Лемма 2. Пусть $A = (M_1, M_2, ..., M_n) \in C_n$ для некоторого $n \in N$ и M_1, M_2, M_3 не принадлежат прямой. Тогда $n \leq (a+1)(b+1)+3$, где $a = |M_1, M_2|, |M_2, M_3|$.

Аналогичное утверждение справедливо, когда M_1, M_2, M_3 принадлежат некоторой прямой и M_2 лежит между M_1 и M_3 . В этом случае

$$n \le (a+1)(b+1) + 3 + d(A). \tag{1}$$

Лемма 3. Пусть $m \in \mathbb{N}, m \geq 4$, последовательность $(M_1, M_2, ..., M_{2m^2+1})$ принадлежит C_{2m^2+1} и содержится в квадрате со стороной d. Тогда $d > \frac{1}{2}m^2$.

Доказательство. Разобьём квадрат со стороной d на m^2 квадратов со стороной $\frac{d}{m}$. Тогда по крайней мере один из маленьких квадратов содержит некоторые три точки исходной последовательности. Без ограничения общности M_1, M_2, M_3 содержатся в квадрате со стороной $\frac{d}{m}$. Поэтому $|M_1, M_2|, |M_2, M_3| \leq \frac{d}{m}\sqrt{2}$. В силу (1)

$$2m^2 + 1 \le \left(\frac{d}{m}\sqrt{2} + 1\right)^2 + 3 + d\sqrt{2}$$

Положим $d = \lambda m^2$. Тогда

$$2m^2 + 1 \le \left(\lambda m\sqrt{2} + 1\right)^2 + 3 + \lambda m^2\sqrt{2}$$

И

$$0 \le \left(2\lambda^2 + \sqrt{2}\lambda - 2\right)m^2 + 2\sqrt{2}\lambda m + 3$$

Для $m \geq 4$ это неравенство не выполнено, если $\lambda \leq \frac{1}{2}$. Поэтому $\lambda > \frac{1}{2}$ и $d > \frac{m^2}{2}$. \square

Обозначим через $p_i, i \in \mathbb{N}$ простые числа, начиная с 3. По теореме Чебышева ([3], теорема 325) $p_i \le bi \ln(i+1)$ для некоторого b>0 и всех $i \in \mathbb{N}$. Обозначим

$$A_n = \prod_{i=1}^n p_i, n \in \mathbb{N}$$

Тогда

$$A_n \le b^n n! \prod_{i=1}^n \ln(i+1)$$

и по формуле Стирлинга

$$A_n < b^n \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{n}\right) \prod_{i=1}^n \ln(i+1) \le \left(\frac{bn \ln(n+1)}{e}\right)^n \tag{2}$$

Теорема 4. Неравенства

$$\max\left(\frac{n-5}{8},1\right) \le F(n) \le \left(\frac{b(1+\log_2 n)\ln(1+\log_2 n)}{e}\right)^{1+\log_2 n},$$

где b — константа из неравенств Чебышева, справедливы для всех $n \in \mathbb{N}, n \ge 3$.

Доказательство. Докажем сначала, что $F(2^n) < A_n$ для всех $n \in \mathbb{N}, n \geq 3$. Через S обозначим множество подмножеств $\{1,2,..,n\}$ и каждому $I \in S$ поставим в соответствие числа $c_I = \prod_{c \in I} p_i, b_I = \frac{1}{2} \left(c_I - \frac{A_n}{c_I} \right)$, полагая $c_\varnothing = 1$. Так как c_I и $\frac{A_n}{c_I}$ нечётны, то b_I — целые числа.

Рассмотрим подмножество точек на плоскости

$$M_I = \{(b_I, 0), I \in S\}, N = (0, \sqrt{A_n})$$
 (3)

Если $I, J \in S, I \neq J$, то $M_I \neq M_J$. Поэтому множество (3) содержит $2^n + 1$ элементов. Так как

$$|M_I, N| = \left(\frac{1}{4}\left(c_I^2 - 2A_n + \frac{A_n^2}{c_I^2}\right) + A_n\right)^{\frac{1}{2}} = \left(\frac{1}{4}\left(c_I^2 - 2A_n + \frac{A_n^2}{c_I^2}\right) + A_n\right)^{\frac{1}{2}} = \frac{c_I + \frac{A_n}{C_I}}{2} \in \mathbb{N},$$

то все расстояния между точками множества (3) есть целые числа. Диаметр множества (3) достигается на паре точек $M_{(1,2,\dots,n)}$ и M_{\varnothing} , для которых

$$|M_{(1,2,\dots,n)}, M_{\varnothing}| = \frac{1}{2}(A_n - 1) - \frac{1}{2}(1 - A_n) = A_n - 1 < A_n$$

Поэтому

$$F(2^n + 1) < A_n$$

Отсюда, из (2) и монотонности F(n) вытекает, что

$$F(n) \le \left(\frac{b(1 + \log_2 n) \ln(1 + \log_2 n)}{e}\right)^{1 + \log_2 n} \tag{4}$$

для всех $n \in \mathbb{N}$.

Докажем теперь нижнюю оценку. Пусть $(M_1, M_2, ..., M_n) \in C_n$. Найдём такое $m \in \mathbb{N}$, что

$$2m^2 + 1 \le n < 2(m+1)^2 + 1$$

Пусть d — сторона минимального квадрата, содержащего все точки $M_i, 1 \le i \le m^2 + 1$. Используя монотонность последовательности F(n) и лемму 3, получаем

$$F(n) \ge F(2m^2 + 1) \ge d \ge \frac{1}{2}m^2 > \frac{1}{2}\left(\left(\frac{n-1}{2}\right)^{\frac{1}{2}} - 1\right)$$

Простые оценки показывают, что

$$\frac{1}{2} \left(\left(\frac{n-1}{2} \right)^{\frac{1}{2}} - 1 \right) > \frac{n-5}{8}$$

Для $n \ge 17$ отсюда вытекает, что

$$\frac{n-5}{8} < F(n)$$

Для $4 \le n < 17$ значения F(n) были вычислены на ЭВМ (см. далее). \square

Заметим, что подобная конструкция не позволяет получить верхнюю оценку F(n) в виде полинома. Это вызвано тем, что количество точек в множестве подобного типа (подмножество прямой и точка, на ней не лежащая) ограничено числом $p(2\mu^2)+2$, где μ — расстояние от точки до прямой,

$$p(n) = \max_{1 \le k \le n} D(k),$$

D(k) — количество делителей числа k (дивизор-функция Рамануджана), С другой стороны, в [4] (формулы 198-200) показано, что p(n) растёт медленнее степенной функции.

§3 Множество точек $B = \{M_1, M_2, ..., M_n\}$ называется оптимальным, если $B \in C_n$ и d(B) = F(n). Ясно, что любое оптимальное множество определяется с точностью до движения. Пусть $B_n \in C_n$ и оптимально. Пример правильного треугольника со стороной 1 показывает, что F(3) = 1. Для нахождения оптимальных множеств и вычисления F(n) была создана программа, которую удалось реализовать на ЭВМ.

Результаты численного эксперимента.

1 . Были вычислены значения F(n) для $4 \le n \le 42$.

Таблица 1: Значения F(n)

n	3	4	5	6	7	8	9	10	11	12	13
F(n)) 1	4	7	8	17	21	29	40	51	63	74
n	14	15	16	17	18	19	20	21	22	23	24
$\mathbf{F}(\mathbf{n})$	91	104	121	134	153	164	196	212	234	256	286
n	25	26	27	28	29	30	31	32	33	34	35
$\mathbf{F}(\mathbf{n})$	304	338	370	384	414	448	464	494	524	553	578
	n	36	37	38	39	40	41	42	43	44	
	F(n)	608	642	667	692	754	816	897	959	>963	1

Например,

$$B_4 = \left\{ (0;0); (0;1); \left(\frac{\sqrt{15}}{2}; \frac{1}{2} \right); (0;4); \right\}$$

2 . Оптимальные множества не принадлежат целочисленной решётке. Однако координаты любого множества из C_n с точностью до движения имеют вид

$$\left(\left\{\pm\frac{\sqrt{p}}{q}\right\};\left\{\pm\frac{\sqrt{r}}{s}\right\}\right),$$

где $p, q, r, s \in \mathbb{N}$.

3 . В большинстве случаев оптимальное множество с точностью до движения определяется однозначно. Тем не менее, например, для n=18 имеем два оптимальных набора:

$$\{(0;0); (153;0); (144;0); (130;0); (115;0); (111;0); (104;0); (98;0); (88;0); (76;0); \\ (66;0); (60;0); (53;0); (49;0); (34;0); (20;0); (11;0); (82; \sqrt{2880})\}$$

И

$$\{(0;0); (153;0); (134;0); (121;0); (104;0); (98;0); (93;0); (85;0); (76;0); (69;0); (65;0); (58;0); (49;0); (41;0); (36;0); (30;0); (13;0); (67; $\sqrt{1440}$) $\}$$$

- 4 . Для $N \geq 9$ оптимальное множество имеет вид, описанный в теореме 4: n-1 точек лежат на оси иксов с целыми координатами и одна точка не принадлежит оси иксов, её вторая координата иррациональна. Для меньших n эта закономерность не выполняется.
- 5 . Если $25 \le n \le 42$, то $B_n \subset B_43$.
- 6 . Время, требуемое для вычисления F(n) разработанными алгоритмами, растёт, как установлено эмпирически, не медленнее, чем n^4 . Так, нахождение для $n \le 5$ занимает меньше секунды, а для вычисления F(41) при известном (вычисленном ранее) F(40) ушло больше суток.

Авторы благодарят проф. Ю. А. Брудного за информацию о работе [1] и ценные замечания.

Работа выполнена при поддержке РНФ, грант 16-11-101-25.

Список литературы

- 1. D.J. Newman. A Problem Seminar. Springer Verlag.1982.
- 2. Е.М. Семенов, С.Н. Уксусов / Аналитическая геометрия на плоскости. Воронеж : Воронежский государственный университет, 2016. 130с.
- 3. A.A. Бухштаб / Теория чисел. M., 1966.
- 4. Ramanujan S. / Highly composite numbers. Proceedings of the London Mathematical Society, 2, XIV, 1915.