Lecture 6 - Conditional Probability

Tuesday, September 21, 2021 9:30 AM

EV SIVINGUI	W&M studen	t abat	palitical
Ex, Survey	D.[].	S. O. A.P.I	70(111000)
affiliation.	Polit		
	A A	1/13	
nen	50/	238	739
ander -		200	T 5 (
gender women	782	123	905
	12 &3	361	1644
Q1 what is	the proba a un	rondomly si	dected
3 tude	et is a wo	man;	
P(woman	$= \frac{905}{6}$	44 ~ 55	- %
Oz. Biven	a student is	a meml	perof
			•
) a w	B, what is	'	V
conditioning	on information	1	
U		_	
P(woma	m GIVEN	party B)	$=\frac{123}{361}$
		(~ 34%

Lectures 1 Page 1

Pefin: Conditional Probability

If
$$A,BCS$$
 and $P(B)>0$. Thus

$$P(A|B) = \frac{P(AB)}{P(B)}$$

read. A given B $\Gamma(r)$,

Facts'.

Pf.
$$P(B|B) = \frac{P(BB)}{P(B)} = \frac{P(B)}{P(B)} = 1$$
.

Ex. Poll two dice.

Q'. Whof is the prob. the first roll is a 2 given the Sum of the two is \le 5.

 $S = \{(i,j) | fn | 1 \le i,j \le 6 \}$ $1 \le 1 - 26 = 6^{2}$

So
$$|S| = 36 = 6^2$$
.

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{|AB|}{|B|} = \frac{3}{|B|} = \frac$$

8g.
$$P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) - P(A_1 \mid A_2 \mid B)$$
.

Theorem: Compound Probability

then
$$P(A|B) = \frac{P(AB)}{P(B)}$$

then $P(A|B) = \frac{P(AB)}{P(B)}$

re-arrange...

Pecall: (Ai) partition S then

P(B) = $\frac{P(BAi)}{P(BAi)}$.

Theorem: Law of Total Probability

If (Ai) partitions S then for any BCS

P(B) = $\frac{P(B|Ai)}{P(Ai)}$

area of BAi area of Yel. to area Ai rel. of Ai area of S

area of BAi rel to S

P. Compand prob. theorem says

P(BAi) = $\frac{P(B|Ai)}{P(Ai)}$

Partition, theorem from Lec 3 says

Lectures 1 Page 5

Partitioning theorem from Lec 3 says P(B) = ZP(BAi) = ZP(BIAi)P(Ai). Ex. Baslet 2 Baslet 2 (B) (B) BBB (W)(W)(1) Random ly select a ball from baslet I ad place in basket 2 2) Randomly select a ball from Abaslet 2 Q: what is the prob. of choosing a (3) on step (2)? let W = choose white on step () We = // black // B = choose black on step 2

B^C white "

Want is P(B). Notice that W and W c partition S. the Law of Tot. Prob says P(B) = P(B)w)P(w) + P(B)wc)P(wc) $(\frac{1}{2})(\frac{3}{5}) + (\frac{2}{3})(\frac{2}{5}) = \frac{17}{30}$ P(B|W) = 1/2 $P(B1W^c) = \frac{4}{6} = \frac{2}{3}$ Busket 2 Given WC Giren W BBB Theoren: Bayes Theorem Know P(BIA) can I use to cale, P(AB).

Theorem: Bayes' Theorem

Know P(BIA) can I use to Calc. P(AB).

If A,BCS and P(A)>0, P(B)>0 then

P(AIB) = P(BIA) \frac{P(A)}{P(B)}.

$$P(B) = \frac{P(B)}{P(B)} = \frac{P(B$$

Given I choose a black hall an second step

wheet is the prob. I chose a white on B

first step? Know all these

Want: P(W/B) = P(B/W) P(W)

= (1/2)(3/5)

(17/30)

Theorem: Law of Total Prob. + Bayes.

If (Ai) partition S and BCS, then

 $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(A_i)}$

	Z P(BlAj) P(Aj)
	P(Ai/B) = P(BlAi)P(Ai) Com Bayes' P(BlAi)P(Ai) expand of Land P(BlAi)P(Ai) Total Prob.
-	Ex. COVID has a prevalence vate of 1%. We test for covid and set to or (sensitivity) The fest accordely report a to 95% of time (specificity) (specificity)
	Q: I get a COVID test, and get a +. What is the prob this is correct? D = have COVID, D = I dail
	$P(D) = .01 ; P(D^c) = .99$

Lectures 1 Page 9

P(+1D) = .95 and P(-1D°) = .99

Nont:
$$P(D|+) = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|D^c)P(D^c)}$$

$$= \frac{(.95)(.01)}{(.95)(.01) + (1-.99)(1-.01)}$$

$$\approx 50.9$$