Ejercicios sobre Notación Asintótica

- 1. Supongamos que tenemos dos algoritmos para resolver un problema particular. El algoritmo A toma un tiempo T(n)=n segundos, mientras que el algoritmo B toma un tiempo $T(n)=3\,\log n+5$ segundos. ¿ Cuándo se debería elegir A y cuándo B?
- 2. Sea $f(n) = \lg(n)$ y consideremos un algoritmo que tiene un tiempo de ejecución de f(n) microsegundos. Determine el problema más grande que puede resolver el algoritmo en: (a) 1 segundo, (b) 1 hora, (c) 1 mes, (d) 1 siglo.
- 3. Se toma el tiempo de ejecución de dos algoritmos A y B. Los resultados se muestran en la siguiente tabla:

Algoritmos	n = 100	n = 200	n = 300	n = 400	n = 500
A	0.003s	0.024s	0.081s	0.192s	0.375s
B	0.040s	0.160s	0.360s	0.640s	1.000s

Cual de los dos algoritmos es más eficiente.

- 4. Verificar que
 - $a) 4n^2 + n = \Theta(n^2)$
 - b) $\ln(n^2 + 1) = \Theta(\ln n)$
 - c) $10n^2 = O(n^2)$
 - d) $10n^2 = O(n^3)$
 - e) $2^n = O(n^n)$
 - $f) \ 2^n = O(n!)$
 - g) $3^n = O(n!)$
 - h) $2^{2n} = O(n!)$
 - i) $n! = O(n^n)$
 - $j) \sum_{k=0}^{n} k = O(n^2)$
 - $k) \sum_{k=0}^{n} k^2 = O(n^3)$
- 5. Analizar si cada una de las siguientes afirmaciones es verdadera o falsa, argumentando apropiadamente las respuestas dadas.

a)
$$2^{n+1} = O(2^n)$$

b)
$$2^{2n} = O(2^n)$$

6. Probar que

$$\sum_{k=0}^{n} a^k = O(1)$$

siendo $0 \le a < 1$ y $n \ge 0$.

7. Para cada uno de los siguientes pares de funciones f(n) y g(n), encuentre una constante $c \in R^+$ tal que $f(n) \le c \cdot g(n)$, para todo $n \ge 1$.

a)
$$f(n) = n^2 + n$$
 $g(n) = n^2$

b)
$$f(n) = 2\sqrt{n} + 1$$
 $g(n) = n + n^2$

c)
$$f(n) = n^2 + n + 1$$
 $g(n) = 2n^3$

d)
$$f(n) = n\sqrt{n} + n^2$$
 $g(n) = n^2$