Fast and Correct Gradient-Based Optimisation for Probabilistic Programming via Smoothing

Basim Khajwal Luke Ong Dominik Wagner

32th European Symposium on Programming 26 April 2023

Probabilistic Programming

Probabilistic Programming

= programming paradigm to pose *Bayesian Inference* problems

Probabilistic Programming

= programming paradigm to pose *Bayesian Inference* problems

separate modelling from inference

frame posterior inference as (deterministic) optimisation problem

frame posterior inference as (deterministic) optimisation problem

Posit: variational family of "simpler" guide distributions

frame posterior inference as (deterministic) optimisation problem

Posit: variational family of "simpler" guide distributions

Aim: find guide that is "closest" to (true) posterior

frame posterior inference as (deterministic) optimisation problem

Posit: variational family of "simpler" guide distributions

Aim: find guide that is "closest" to (true) posterior

KL divergence

use Stochastic Gradient Descent

use Stochastic Gradient Descent

Key ingredient: estimation of gradient of expectation

use Stochastic Gradient Descent

Key ingredient: estimation of gradient of expectation

■ Score Estimator

use Stochastic Gradient Descent

Key ingredient: estimation of gradient of expectation

Score Estimator: widely applicable but high variance

use Stochastic Gradient Descent

Key ingredient: estimation of gradient of expectation

- Score Estimator: widely applicable but high variance
- Reparameterisation Estimator

 $\operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}_{\boldsymbol{\theta}}} \left[f(\boldsymbol{\theta}, \mathbf{s}) \right]$

$$\operatorname{argmin}_{m{ heta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}_{m{arphi}}}[f(m{ heta}, \mathbf{s})]$$
 eliminate dependence on $m{ heta}$

estimate: $\nabla_{\boldsymbol{\theta}} \, \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[f(\boldsymbol{\theta}, \mathbf{s}) \right] \approx \nabla_{\boldsymbol{\theta}} \, f(\boldsymbol{\theta}, \widehat{\mathbf{s}})$, where $\widehat{\mathbf{s}} \sim \mathcal{D}$

$$\operatorname{argmin}_{m{ heta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}_{m{arphi}}}[f(m{ heta}, \mathbf{s})]$$
 eliminate dependence on $m{ heta}$

estimate:
$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[f(\boldsymbol{\theta}, \mathbf{s}) \right] \approx \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}, \widehat{\mathbf{s}})$$
, where $\widehat{\mathbf{s}} \sim \mathcal{D}$

(Unbiasedness)
$$\mathbb{E}_{s \sim \mathcal{D}}[\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}, s)] \stackrel{?}{=} \nabla_{\boldsymbol{\theta}} \mathbb{E}_{s \sim \mathcal{D}}[f(\boldsymbol{\theta}, s)]$$

estimate:
$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} [f(\boldsymbol{\theta}, \mathbf{s})] \approx \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}, \widehat{\mathbf{s}})$$
, where $\widehat{\mathbf{s}} \sim \mathcal{D}$

(Unbiasedness)
$$\mathbb{E}_{s \sim \mathcal{D}}[\nabla_{\theta} f(\theta, s)] \stackrel{?}{=} \nabla_{\theta} \mathbb{E}_{s \sim \mathcal{D}}[f(\theta, s)]$$

estimate:
$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[f(\boldsymbol{\theta}, \mathbf{s}) \right] \approx \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}, \widehat{\mathbf{s}})$$
, where $\widehat{\mathbf{s}} \sim \mathcal{D}$

(Unbiasedness)
$$\mathbb{E}_{\mathsf{s}\sim\mathcal{D}}[\nabla_{\boldsymbol{\theta}}\,f(\boldsymbol{\theta},\mathsf{s})] \overset{?}{=} \nabla_{\boldsymbol{\theta}}\,\mathbb{E}_{\mathsf{s}\sim\mathcal{D}}[f(\boldsymbol{\theta},\mathsf{s})]$$
 may be compromised! [Lee et al., NeurIPS 2018]

$$f(heta,s) = -0.5 \cdot heta^2 + egin{cases} 0 & ext{if } s+ heta < 0 \ 1 & ext{otherwise} \end{cases}$$

$$f(heta,s) = -0.5 \cdot heta^2 + egin{cases} 0 & ext{if } s+ heta < 0 \ 1 & ext{otherwise} \end{cases}$$

$$\mathbb{E}_{\mathsf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[\nabla_{\theta} \, \mathsf{f}(\theta, \mathsf{s}) \right] = -\theta$$

$$f(\theta, s) = -0.5 \cdot \theta^2 + \begin{cases} 0 & \text{if } s + \theta < 0 \\ 1 & \text{otherwise} \end{cases}$$

$$\mathbb{E}_{\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[\nabla_{\theta} \, \mathsf{f}(\theta, \mathbf{s}) \right] = -\theta \neq -\theta + \mathcal{N}(-\theta \mid \mathbf{0}, \mathbf{1}) = \nabla_{\theta} \, \mathbb{E}_{\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[f(\theta, \mathbf{s}) \right]$$

$$f(\theta, s) = -0.5 \cdot \theta^2 + egin{cases} 0 & ext{if } s + \theta < 0 \ 1 & ext{otherwise} \end{cases}$$

$$\mathbb{E}_{\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[\nabla_{\theta} \, \mathsf{f}(\theta, \mathbf{s}) \right] = -\theta \neq -\theta + \mathcal{N}(-\theta \mid \mathbf{0}, \mathbf{1}) = \nabla_{\theta} \, \mathbb{E}_{\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[f(\theta, \mathbf{s}) \right]$$

Stochastic Gradient Descent is incorrect!

Fast yet correct Stochastic Gradient Descent with Reparameterisation Gradient via Smoothing

► Smoothed Denotational (Value) Semantics

- ► Smoothed Denotational (Value) Semantics
- ► Correctness of Stochastic Gradient Descent via Type System

- ► Smoothed Denotational (Value) Semantics
- ► Correctness of Stochastic Gradient Descent via Type System
- ► Convergence of Smooth Approximations

- ► Smoothed Denotational (Value) Semantics
- ► Correctness of Stochastic Gradient Descent via Type System
- Convergence of Smooth Approximations
- Empirical Evaluation

Part I:

Problem Setup

simply typed λ -calculus with \mathbb{R} , primitive operations, parameters θ_i

$$M ::= x \mid \lambda x. M \mid M M \mid f(M, ..., M) \mid \theta_i$$

simply typed λ -calculus with \mathbb{R} , primitive operations, parameters θ_i + sample

$$M ::= x \mid \lambda x. M \mid M M \mid f(M, ..., M) \mid \theta_i$$

| sample_D

simply typed λ -calculus with \mathbb{R} , primitive operations, parameters θ_i

- + sample
- + branching

$$M ::= x \mid \lambda x. M \mid M M \mid f(M, ..., M) \mid \theta_i$$

$$\mid \mathbf{sample}_{\mathcal{D}}$$

$$\mid \mathbf{if} \ M < 0 \ \mathbf{then} \ M \ \mathbf{else} \ M$$

Denotational Value Semantics:

Denotational Value Semantics: deterministic function from samples to value

$$f(heta,s) = -0.5 \cdot heta^2 + egin{cases} 0 & ext{if } s+ heta < 0 \ 1 & ext{otherwise} \end{cases}$$

$$f(\theta, s) = -0.5 \cdot \theta^2 + \begin{cases} 0 & \text{if } s + \theta < 0 \\ 1 & \text{otherwise} \end{cases}$$

$$M \equiv (\lambda s. -0.5 \cdot \theta^2 + (\text{if } s + \theta < 0 \text{ then } 0 \text{ else } 1)) \text{ sample}_{\mathcal{N}}$$

$$\llbracket M \rrbracket (\theta, s) = f(\theta, s) = -0.5 \cdot \theta^2 + \begin{cases} 0 & \text{if } s + \theta < 0 \\ 1 & \text{otherwise} \end{cases}$$

$$M \equiv (\lambda s. -0.5 \cdot \theta^2 + (\text{if } s + \theta < 0 \text{ then } 0 \text{ else } 1)) \text{ sample}_{\mathcal{N}}$$

$$\llbracket M \rrbracket (\theta, s) = f(\theta, s) = -0.5 \cdot \theta^2 + \begin{cases} 0 & \text{if } s + \theta < 0 \\ 1 & \text{otherwise} \end{cases}$$

$$M \equiv (\lambda s. -0.5 \cdot \theta^2 + (\text{if } s + \theta < 0 \text{ then } 0 \text{ else } 1)) \text{ sample}_{\mathcal{N}}$$

Track samples (and distributions) in type system

$$\llbracket M \rrbracket (\theta, s) = f(\theta, s) = -0.5 \cdot \theta^2 + \begin{cases} 0 & \text{if } s + \theta < 0 \\ 1 & \text{otherwise} \end{cases}$$

$$M \equiv (\lambda s. -0.5 \cdot \theta^2 + (\text{if } s + \theta < 0 \text{ then } 0 \text{ else } 1)) \text{ sample}_{\mathcal{N}}$$

Track samples (and distributions) in type system

$$\theta: R \mid [\mathcal{N}] \vdash M: R$$

Problem Statement

Given: term-in-context, $\theta_1 : R, \dots, \theta_m : R \mid [\mathcal{D}_1, \dots, \mathcal{D}_n] \vdash M : R$

Problem Statement

Given: term-in-context, $\theta_1 : R, \dots, \theta_m : R \mid [\mathcal{D}_1, \dots, \mathcal{D}_n] \vdash M : R$

 $\mathsf{Find} \colon \mathsf{argmin}_{\boldsymbol{\theta}} \,\, \mathbb{E}_{s_1 \sim \mathcal{D}_1, \dots, s_n \sim \mathcal{D}_n} \left[\left[\!\left[M \right]\!\right] \left(\boldsymbol{\theta}, \mathsf{s} \right) \right]$

 $\mathbb{E}_{s \sim \mathcal{N}}\left[\exp(s^2)
ight] = \infty$

$$\mathbb{E}_{s \sim \mathcal{N}}\left[\exp(s^2)
ight] = \infty$$

$$(\lambda x. \exp(x \cdot x)) \operatorname{sample}_{\mathcal{N}}$$

$$\mathbb{E}_{s \sim \mathcal{N}}\left[\exp(s^2)
ight] = \infty$$

$$(\lambda x. \exp(x \cdot x)) \operatorname{sample}_{\mathcal{N}}$$

1. distributions have finite moments

$$\mathbb{E}_{s \sim \mathcal{N}}\left[\exp(s^2)
ight] = \infty$$

$$(\lambda x. \exp(x \cdot x))$$
sample $_{\mathcal{N}}$

1. distributions have finite moments

$$\mathbb{E}_{s\sim\mathcal{D}}[|s^p|]<\infty$$

$$\mathbb{E}_{s\sim\mathcal{N}}\left[\exp(s^2)
ight]=\infty$$

$$(\lambda x. \exp(x \cdot x)) \operatorname{sample}_{\mathcal{N}}$$

- 1. distributions have finite moments
- 2. primitives are bounded by polynomials

$$\mathbb{E}_{s \sim \mathcal{D}}[|s^p|] < \infty$$

$$\mathbb{E}_{s \sim \mathcal{N}}\left[\exp(s^2)
ight] = \infty$$

$$(\lambda x. \exp(x \cdot x)) \operatorname{sample}_{\mathcal{N}}$$

1. distributions have finite moments

$$\mathbb{E}_{s \sim \mathcal{D}}[|s^p|] < \infty$$

2. primitives are bounded by polynomials

In paper: relax assumption, control use of log, exp, ⁻¹ via type system

Part II:

Smoothed Value Semantics

$$\llbracket \mathbf{if} \ z < 0 \ \mathbf{then} \ 0 \ \mathbf{else} \ M \rrbracket \left(z \right) = \begin{cases} 0 & \text{if} \ z < 0 \\ \llbracket M \rrbracket \left(z \right) & \text{otherwise} \end{cases}$$

$$\llbracket \text{if } z < 0 \text{ then } 0 \text{ else } M \rrbracket (z) = [z \ge 0] \cdot \llbracket M \rrbracket (z)$$

[if
$$z < 0$$
 then 0 else M] $(z) = [z \ge 0] \cdot [M] (z)$

[if
$$z < 0$$
 then 0 else M] $_{\eta}(z) = \sigma_{\eta}(z) \cdot [M]_{\eta}(z)$ sigmoid function

[if
$$z < 0$$
 then 0 else M] $(z) = [z \ge 0] \cdot [M] (z)$

$$\llbracket \text{if } z < 0 \text{ then } 0 \text{ else } M
rbracket_{\eta}(z) = \sigma_{\eta}(z) \cdot \llbracket M
rbracket_{\eta}(z)$$

sigmoid function (parameterised by ${\it accuracy}$ coefficient $\eta>0$)

Smoothness: CCC of Frölicher spaces

Smoothness: CCC of Frölicher spaces

$$\llbracket \mathsf{if}\ L < 0\ \mathsf{then}\ M\ \mathsf{else}\ N \rrbracket_\eta \coloneqq (\sigma_\eta \circ (-\,\llbracket L \rrbracket_\eta)) \cdot \llbracket M \rrbracket_\eta + (\sigma_\eta \circ \llbracket L \rrbracket_\eta) \cdot \llbracket N \rrbracket_\eta$$

Smoothness: CCC of Frölicher spaces

Smoothness: CCC of Frölicher spaces

$$\llbracket \text{if } L < 0 \text{ then } M \text{ else } N \rrbracket_{\eta} \coloneqq (\sigma_{\eta} \circ (-\llbracket L \rrbracket_{\eta})) \cdot \llbracket M \rrbracket_{\eta} + (\sigma_{\eta} \circ \llbracket L \rrbracket_{\eta}) \cdot \llbracket N \rrbracket_{\eta}$$

$$morphism?$$

Adapt construction of Frölicher spaces

Smoothness: CCC of Frölicher spaces

Adapt construction of Frölicher spaces

- + vector space structure for underlying set
- + condition for "curves"

Smoothness: CCC of Frölicher spaces

$$\llbracket \text{if } L < 0 \text{ then } M \text{ else } N \rrbracket_{\eta} \coloneqq (\sigma_{\eta} \circ (-\llbracket L \rrbracket_{\eta})) \cdot \llbracket M \rrbracket_{\eta} + (\sigma_{\eta} \circ \llbracket L \rrbracket_{\eta}) \cdot \llbracket N \rrbracket_{\eta}$$

$$morphism?$$

Adapt construction of Frölicher spaces

- + vector space structure for underlying set
- + condition for "curves"

CCC VectFr of Vector Frölicher Spaces

Smoothness: CCC of Frölicher spaces

Adapt construction of Frölicher spaces

- + vector space structure for underlying set
- + condition for "curves"

CCC VectFr of Vector Frölicher Spaces

If
$$\phi_1, \phi_2 \in \mathbf{VectFr}(X, Y)$$
 and $\alpha \in \mathbf{Vect}(X, \mathbb{R})$ then $\alpha \cdot \phi_1 + \phi_2 \in \mathbf{VectFr}(X, Y)$.

Part III:

Descent

Applying Stochastic Gradient

$$oldsymbol{ heta}_{k+1} \coloneqq oldsymbol{ heta}_k - \gamma_k \cdot
abla_{oldsymbol{ heta}} \left[\!\!\left[M
ight]\!\!\right]_{\eta} \left(oldsymbol{ heta}_k, \mathsf{s}_k
ight)$$

 $\mathbf{s}_k \sim \mathcal{D}$

$$oldsymbol{ heta}_{k+1} \coloneqq oldsymbol{ heta}_k - \gamma_k \cdot \underbrace{
abla_{oldsymbol{ heta}} \left[\!\!\left[oldsymbol{M}
ight]\!\!\right]_{\eta} \left(oldsymbol{ heta}_k, \mathbf{s}_k
ight)}_{ ext{gradient estimation}}$$

 $\mathbf{s}_k \sim \mathcal{D}$

$$m{ heta}_{k+1}\coloneqq m{ heta}_k - \gamma_k \cdot \underbrace{
abla_{m{ heta}} m{ bigceleft} m{ bigceleft} m{ bigceleft}_{m{\eta}} m{ heta}_k, m{ s}_k)}_{ ext{gradient estimation}}$$
 step size

$$oldsymbol{ heta}_{k+1}\coloneqq oldsymbol{ heta}_k - \gamma_k \cdot \underbrace{
abla_{oldsymbol{ heta}} \left[\!\!\left[M
ight]\!\!\right]_{\eta} \left(oldsymbol{ heta}_k, \mathbf{s}_k
ight)}_{ ext{gradient estimation}} \mathbf{s}_k \sim \mathcal{D}$$

$$(\text{Unbiasedness}) \qquad \quad \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} [\nabla_{\boldsymbol{\theta}} \ [\![M]\!]_{\eta} \left(\boldsymbol{\theta}, \mathbf{s} \right)] = \nabla_{\boldsymbol{\theta}} \, \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} [[\![M]\!]_{\eta} \left(\boldsymbol{\theta}, \mathbf{s} \right)]$$

$$oldsymbol{ heta}_{k+1}\coloneqq oldsymbol{ heta}_k - \gamma_k \cdot \underbrace{
abla_{oldsymbol{ heta}} \left[\!\!\left[M
ight]\!\!\right]_{\eta} \left(oldsymbol{ heta}_k, \mathbf{s}_k
ight)}_{ ext{gradient estimation}} \mathbf{s}_k \sim \mathcal{D}$$

(Unbiasedness)
$$\mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\nabla_{\boldsymbol{\theta}} \ [\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})] = \nabla_{\boldsymbol{\theta}} \, \mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})]$$
 partial derivatives of $[\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})$ are bounded by polynomial

$$oldsymbol{ heta}_{k+1}\coloneqq oldsymbol{ heta}_k - \gamma_k \cdot \underbrace{
abla_{oldsymbol{ heta}} \left[\!\!\left[M
ight]\!\!\right]_{\eta} \left(oldsymbol{ heta}_k, \mathbf{s}_k
ight)}_{ ext{gradient estimation}} \mathbf{s}_k \sim \mathcal{D}$$

(Unbiasedness)
$$\mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\nabla_{\boldsymbol{\theta}} \ [\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})] = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\![\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})]$$
 partial derivatives of $[\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})$ are bounded by polynomial

Correctness of SGD for Smoothing

If M is typable, Θ is compact and the step size scheme is "suitable"

$$oldsymbol{ heta}_{k+1}\coloneqq oldsymbol{ heta}_k - \gamma_k \cdot \underbrace{
abla_{oldsymbol{ heta}} \left[\!\!\left[M
ight]\!\!\right]_{\eta} \left(oldsymbol{ heta}_k, \mathbf{s}_k
ight)}_{ ext{gradient estimation}} \mathbf{s}_k \sim \mathcal{D}$$

(Unbiasedness)
$$\mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\nabla_{\boldsymbol{\theta}} \ [\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})] = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})]$$
 partial derivatives of $[\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})$ are bounded by polynomial

Correctness of SGD for Smoothing

If M is typable, Θ is compact and the step size scheme is "suitable" then

$$\inf_{i\in\mathbb{N}}\mathbb{E}[\nabla g(\boldsymbol{\theta}_i)]=0$$

where $g(\boldsymbol{\theta}) \coloneqq \mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\llbracket M \rrbracket_n(\boldsymbol{\theta}, \mathbf{s})].$

$$oldsymbol{ heta}_{k+1}\coloneqq oldsymbol{ heta}_k - \gamma_k \cdot \underbrace{
abla_{oldsymbol{ heta}} \left[\!\!\left[oldsymbol{M}
ight]\!\!\right]_{oldsymbol{\eta}} \left(oldsymbol{ heta}_k, \mathbf{s}_k
ight)}_{ ext{gradient estimation}} \mathbf{s}_k \sim \mathcal{D}$$

(Unbiasedness)
$$\mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\nabla_{\boldsymbol{\theta}} \ [\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})] = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})]$$
 partial derivatives of $[\![M]\!]_{\eta} (\boldsymbol{\theta}, \mathbf{s})$ are bounded by polynomial

Correctness of SGD for Smoothing

If M is typable, Θ is compact and the step size scheme is "suitable" then

$$\inf_{i\in\mathbb{N}}\mathbb{E}[\nabla g(\boldsymbol{\theta}_i)]=0$$

where $g(\boldsymbol{\theta}) \coloneqq \mathbb{E}_{\mathbf{s} \sim \mathcal{D}}[\llbracket M \rrbracket_n(\boldsymbol{\theta}, \mathbf{s})].$

exploit Lipschitz smoothness and bounded variance

How does solving the smoothed problem help solve the original problem?

Part IV:

Convergence of Smoothings

 $M \equiv \mathsf{if} \ 0 < 0 \ \mathsf{then} \ heta^2 + 1 \ \mathsf{else} \ (heta - 1)^2$

 $M \equiv \mathsf{if} \ 0 < 0 \ \mathsf{then} \ \theta^2 + 1 \ \mathsf{else} \ (\theta - 1)^2$

$$M \equiv \text{if } 0 < 0 \text{ then } \theta^2 + 1 \text{ else } (\theta - 1)^2$$

$$[\![M]\!]_{\eta}(\theta) = \frac{1}{2}(\theta^2 + 1) + \frac{1}{2}(\theta - 1)^2$$

$$M \equiv \text{if } 0 < 0 \text{ then } \theta^2 + 1 \text{ else } (\theta - 1)^2$$

$$\llbracket M \rrbracket_{\eta}(\theta) = \frac{1}{2}(\theta^2 + 1) + \frac{1}{2}(\theta - 1)^2$$

Ensure that guards are not 0 almost everywhere

if x - x < 0 then M else N

if x - x < 0 then M else N

if x - x < 0 then M else N

$$(\lambda y, z. \text{ if } y - z < 0 \text{ then } M \text{ else } N) x x$$

if
$$x - x < 0$$
 then M else N

$$(\lambda y, z. \text{ if } y - z < 0 \text{ then } M \text{ else } N) x x$$

if
$$\theta < 0$$
 then M else N

if
$$(sample_{\mathcal{N}} + \theta) < 0$$
 then M else N

if
$$x - x < 0$$
 then M else N

$$(\lambda y, z. \text{ if } y - z < 0 \text{ then } M \text{ else } N) x x$$

if
$$\theta < 0$$
 then M else N

if
$$(\underbrace{\mathsf{sample}_{\mathcal{N}} + \theta}) < 0$$
 then M else N transform $\mathsf{sample}_{\mathcal{N}}$ by $(\lambda x. x + \theta)$

$$\begin{aligned} &\text{if } x - x < 0 \text{ then } M \text{ else } N & \bigstar \\ &(\lambda y, z. \text{ if } y - z < 0 \text{ then } M \text{ else } N) \times x & \bigstar \\ &\text{if } \theta < 0 \text{ then } M \text{ else } N & \bigstar \\ &\text{if } \big(\underbrace{\mathsf{sample}_{\mathcal{N}} + \theta} \big) < 0 \text{ then } M \text{ else } N & \bigstar \\ &\text{transform } \mathsf{sample}_{\mathcal{N}} \text{ by } (\lambda x. x + \theta) & \end{aligned}$$

 $(\lambda y, z. \text{ if } y - z < 0 \text{ then } M \text{ else } N) \text{ sample}_{\mathcal{N}} (\text{transform sample}_{\mathcal{N}} \text{ by } T)$

$$\tau ::= R^{(g,\Delta)}$$

$$au ::= R^{(g,\Delta)}$$
 guard-safe?

$$\tau ::= R^{(\mathbf{g}, \Delta)}$$
 guard-safe? dependency on (transformed) samples

$$\tau ::= R^{(\mathbf{g}, \Delta)} \mid \tau \to \tau$$
 guard-safe? dependency on (transformed) samples

$$\tau ::= R^{(g,\Delta)} \mid \tau \to \tau$$
 guard-safe? dependency on (transformed) samples

$$\frac{\Gamma \vdash L : R^{(\mathbf{t}, \Delta)} \quad \Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \text{if } L < 0 \text{ then } M \text{ else } N : \sigma}$$

$$\tau ::= R^{(\mathbf{g}, \Delta)} \mid \tau \to \tau$$
 guard-safe? dependency on (transformed) samples

$$\frac{\Gamma \vdash L : R^{(\mathbf{t}, \Delta)} \quad \Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \text{if } L < 0 \text{ then } M \text{ else } N : \sigma}$$
$$\overline{\Gamma \vdash 0 : R^{(\mathbf{f}, \Delta)}}$$

$$\tau ::= R^{(g,\Delta)} \mid \tau \to \tau$$
 guard-safe? dependency on (transformed) samples

$$\frac{\Gamma \vdash L : R^{(\mathbf{t}, \Delta)} \quad \Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \text{if } L < 0 \text{ then } M \text{ else } N : \sigma}$$

$$\frac{\Gamma \vdash 0 : R^{(\mathbf{f}, \Delta)}}{\Gamma \vdash 0 : R^{(\mathbf{f}, \Delta)}}$$

 $\frac{}{\Gamma \vdash \mathsf{transform}\,\mathsf{sample}_{\mathcal{N}}\,\mathsf{by}\,\, T : R^{(\mathsf{t},\{s_j\})}} \ \, \mathcal{T}\,\,\mathsf{diffeomorphic}$

$$\tau ::= R^{(\mathbf{g}, \Delta)} \mid \tau \to \tau$$
 guard-safe? dependency on (transformed) samples

$$\frac{\Gamma \vdash L : R^{(\mathbf{t}, \Delta)} \quad \Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \text{if } L < 0 \text{ then } M \text{ else } N : \sigma}$$

$$\overline{\Gamma \vdash 0 : R^{(\mathbf{f}, \Delta)}}$$

 $\frac{}{\Gamma \vdash \mathsf{transform} \, \mathsf{sample}_{\mathcal{N}} \, \mathsf{by} \, T : R^{(\mathsf{t}, \{s_j\})}} \, T \, \mathsf{diffeomorphic}}$ fresh

$$\tau ::= R^{(\mathbf{g}, \Delta)} \mid \tau \to \tau$$
 guard-safe? dependency on (transformed) samples

$$\frac{\Gamma \vdash L : R^{(\mathbf{t}, \Delta)} \quad \Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \text{if } L < 0 \text{ then } M \text{ else } N : \sigma}$$

$$\frac{\Gamma \vdash 0 : R^{(\mathbf{f}, \Delta)}}{\Gamma \vdash 0 : R^{(\mathbf{f}, \Delta)}}$$

 $\frac{}{\Gamma \vdash \mathsf{transform} \, \mathsf{sample}_{\mathcal{N}} \, \mathsf{by} \, T : R^{(\mathsf{t}, \{s_j\})}} \, T \, \mathsf{diffeomorphic}}$ fresh

$$\frac{\Gamma \vdash M : R^{(\mathbf{t}, \Delta_1)} \quad N : R^{(\mathbf{t}, \Delta_2)}}{\Gamma \vdash M - N : R^{(\mathbf{t}, \Delta_1 \cup \Delta_2)}} \ \Delta_1 \cap \Delta_2 = \emptyset$$

$$\tau ::= R^{(\mathbf{g}, \Delta)} \mid \tau \to \tau$$
 guard-safe? dependency on (transformed) samples

$$\frac{\Gamma \vdash L : R^{(\mathbf{t}, \Delta)} \quad \Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \text{if } L < 0 \text{ then } M \text{ else } N : \sigma}$$

$$\overline{\Gamma \vdash 0 : R^{(\mathbf{f}, \Delta)}}$$

$$\overline{\Gamma \vdash \text{transform sample}_{\mathcal{N}} \text{ by } T : R^{(\mathbf{t}, \{s_j\})}} \quad T \text{ diffeomorphic}$$

$$\underline{\Gamma \vdash M : R^{(\mathbf{t}, \Delta_1)} \quad N : R^{(\mathbf{t}, \Delta_2)}}_{\Gamma \vdash M = N : R^{(\mathbf{t}, \Delta_1 \cup \Delta_2)}} \quad \Delta_1 \cap \Delta_2 = \emptyset$$

Establish correctness via logical relations

Uniform Convergence

If M is typable then

$$\mathbb{E}_{\mathsf{s} \sim \mathcal{D}}[\llbracket M \rrbracket_{\eta} \left(\boldsymbol{\theta}, \mathsf{s} \right)] \xrightarrow{\mathsf{unif.}} \mathbb{E}_{\mathsf{s} \sim \mathcal{D}}[\llbracket M \rrbracket \left(\boldsymbol{\theta}, \mathsf{s} \right)] \qquad \qquad \mathsf{as} \ \eta \searrow \mathsf{0} \ \mathsf{for} \ \boldsymbol{\theta} \in \boldsymbol{\Theta}$$

Uniform Convergence

If *M* is typable then

$$\mathbb{E}_{\mathsf{s} \sim \mathcal{D}}[\llbracket M
rbracket_{\eta}(heta, \mathsf{s})] \xrightarrow{\mathsf{unif.}} \mathbb{E}_{\mathsf{s} \sim \mathcal{D}}[\llbracket M
rbracket(heta, \mathsf{s})]$$

as $\eta \searrow 0$ for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

For any error tolerance $\epsilon > 0$,

exists accuracy coefficient $\eta > 0$ s.t. for all $\theta \in \Theta$

$$\mathbb{E}_{\mathsf{s}}[\llbracket M \rrbracket \left(\boldsymbol{\theta}, \mathsf{s} \right)] < \mathbb{E}_{\mathsf{s}}[\llbracket M \rrbracket_{\eta} \left(\boldsymbol{\theta}, \mathsf{s} \right)] + \epsilon$$

Uniform Convergence

If *M* is typable then

$$\mathbb{E}_{\mathsf{s} \sim \mathcal{D}}[\llbracket M \rrbracket_{\eta} \left(\boldsymbol{\theta}, \mathsf{s} \right)] \xrightarrow{\mathsf{unif.}} \mathbb{E}_{\mathsf{s} \sim \mathcal{D}}[\llbracket M \rrbracket \left(\boldsymbol{\theta}, \mathsf{s} \right)] \qquad \text{as } \eta \searrow \mathsf{0} \text{ for } \boldsymbol{\theta} \in \boldsymbol{\Theta}$$

For any error tolerance $\epsilon > 0$,

exists accuracy coefficient $\eta > 0$ s.t. for all $\theta \in \Theta$

$$\mathbb{E}_{\mathsf{s}}[\llbracket M \rrbracket \left(\boldsymbol{\theta}, \mathsf{s} \right)] < \mathbb{E}_{\mathsf{s}}[\llbracket M \rrbracket_{\eta} \left(\boldsymbol{\theta}, \mathsf{s} \right)] + \epsilon$$

In particular for θ^* obtained by SGD with Reparameterisation Gradient (fast!) for η -smoothing

Part V: Empirical Evaluation

high variance

Standard Reparameterisation Estimator

biased

X high variance

Standard Reparameterisation Estimator

biased

[Lee et al., NeurIPS 2018]:

high variance

Standard Reparameterisation Estimator

biased

[Lee et al., NeurIPS 2018]:

- Fix bias with additional non-trivial *boundary* terms
- X Only discuss efficient method for affine guards

high variance

Standard Reparameterisation Estimator

X biased

[Lee et al., NeurIPS 2018]:

- Fix bias with additional non-trivial *boundary* terms
- Only discuss efficient method for affine guards
- No discussion of PL aspects
- Only concerned with unbiasedness, not with overall correctness of SGD

temperature

temperature: Variance and Cost

Estimator	Cost	Variance
Score Reparam Smooth (ours) Lyy18	1	1

temperature: Variance and Cost

Estimator	Cost	Variance
Score	1	1
Reparam	1.28	
Smooth (ours)	1.62	
Lyy18	9.12	

temperature: Variance and Cost

Estimator	Cost	Variance
Score	1	1
Reparam	1.28	1.48e-08
Smooth (ours)	1.62	3.17e-10
Lyy18	9.12	1.22e-06

cheating

xornet

- Smoothed semantics avoids bias (caused by branching)
 - ▶ categorical model based on Frölicher spaces

- Smoothed semantics avoids bias (caused by branching)
 - categorical model based on Frölicher spaces
- Type systems enforce restrictions

- Smoothed semantics avoids bias (caused by branching)
 - categorical model based on Frölicher spaces
- Type systems enforce restrictions
- Stochastic Gradient Descent is provably correct
- Approximations converge uniformly

- Smoothed semantics avoids bias (caused by branching)
 - categorical model based on Frölicher spaces
- Type systems enforce restrictions
- Stochastic Gradient Descent is provably *correct*
- Approximations converge uniformly
- *Competitive* on benchmarks

- Smoothed semantics avoids bias (caused by branching)
 - ► categorical model based on Frölicher spaces
- Type systems enforce restrictions
- Stochastic Gradient Descent is provably correct
- Approximations converge uniformly
- *Competitive* on benchmarks

Ongoing Work

■ Choice of accuracy coefficient

