SEPARATION OF REAL AND IMAGINARY PARTS:

in sin and cos, direct expansion of sin(x+iy) using sin(A+B) formula works

Many a time we are required to separate real and imaginary parts of a given complex function.

For this, we have to use identities of circular and hyperbolic functions.

In problem where we are given $\tan(\alpha + i\beta) = x + i y$, we proceed as shown below

Since
$$tan(\alpha + i\beta) = x + i y$$
, we get $tan(\alpha - i\beta) = x - i y$.

$$\therefore x^2 + y^2 + 2x \cot 2\alpha - 1 = 0$$

Further, $tan(2i\beta) = tan[(\alpha + i\beta) - (\alpha - i\beta)]$

$$= \frac{\tan(\alpha + i\beta) - \tan(\alpha - i\beta)}{1 + \tan(\alpha + i\beta) \tan(\alpha - i\beta)}$$

$$i \tanh 2\beta = \frac{(x+iy)-(x-iy)}{1+(x+iy)(x-iy)} = \frac{2i y}{1+x^2+y^2}$$

$$\therefore \tanh 2\beta = \frac{2y}{1+x^2+y^2}$$

$$1 + x^2 + y^2 = 2y \coth 2\beta$$

$$1 + x^2 + y^2 = 2y \coth 2\beta$$
 i. e., $x^2 + y^2 - 2y \coth 2\beta + 1 = 0$

SOME SOLVED EXAMPLES:

Separate into real and imaginary parts $tan^{-1}(e^{i\theta})$

Solution: Let
$$tan^{-1}e^{i\theta} = x + iy$$
 $\therefore e^{i\theta} = \tan(x + iy)$
 $\therefore cos\theta + i \sin\theta = \tan(x + iy)$
Similarly, $cos\theta - i \sin\theta = \tan(x - iy)$
Now, $tan\ 2x = tan\ [\ (x + iy) + (x - iy)\]$
 $= \frac{\tan(x+iy)+\tan(x-iy)}{1-\tan(x+iy)\tan(x-iy)}$
 $= \frac{(cos\theta+i\sin\theta)+(cos\theta-i\sin\theta)}{1-(cos\theta+i\sin\theta)(cos\theta-i\sin\theta)} = \frac{2\cos\theta}{1-(cos^2\theta+sin^2\theta)}$

teen (x+iB) = x+ig.

teen (x+iB) = x+ig.

ten x + itonhB

1 - ten x teniB | -iten x tenhB

Now * & innum & Deno the conjugate of denominated is a very difficult approach.

Thus we use diff approach.

$$= \frac{2 \cos \theta}{1 - 1} = \frac{2 \cos \theta}{0} = \infty$$

$$\therefore 2x = \frac{\pi}{2} \quad \therefore x = \frac{\pi}{4}$$
Also $\tan 2 iy = \tan[(x + iy) - (x - iy)]$

$$= \frac{\tan(x + iy) - \tan(x - iy)}{1 + \tan(x + iy) \tan(x - iy)}$$

$$= \frac{(\cos \theta + i \sin \theta) - (\cos \theta - i \sin \theta)}{1 + (\cos \theta + i \sin \theta)(\cos \theta - i \sin \theta)} = \frac{2 i \sin \theta}{1 + (\cos^2 \theta + \sin^2 \theta)} = \frac{2 i \sin \theta}{2}$$

$$\therefore i \tan h \ 2y = i \sin \theta \qquad \therefore \tan h \ 2y = \sin \theta$$

$$\therefore 2y = \tanh^{-1} \sin \theta \qquad \therefore y = \frac{1}{2} \tan h^{-1} \sin \theta$$

2. If $\sin(\alpha - i \beta) = x + i y$ then prove that $\frac{x^2}{\cosh^2 \beta} + \frac{y^2}{\sinh^2 \beta} = 1$ and $\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1$ Solution: $\sin(\alpha - i \beta) = x + i y$

Equating real and imaginary parts, we get,

$$\sin \alpha \cos h \beta = x \ and \cos \alpha \sin h \beta = y$$

$$\frac{x^2}{\cos h^2 \beta} + \frac{y^2}{\sin h^2 \beta} = \sin^2 \alpha + \cos^2 \alpha = 1 \quad \text{and}$$

$$\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = \cos h^2 \beta - \sin h^2 \beta = 1$$

3. If $cos(x + iy) = cos \alpha + i sin \alpha$, prove that

(i)
$$\sin \alpha = \pm \sin^2 x = \pm \sin h^2 y$$
 (ii) $\cos 2x + \cosh 2y = 2$

Solution: $\cos(x + iy) = \cos \alpha + i \sin \alpha$

 $\cos x \cos(iy) - \sin x \sin(iy) = \cos \alpha + i \sin \alpha$

 $\cos x \cosh y - i \sin x \sinh y = \cos \alpha + i \sin \alpha$

Equating real and imaginary parts, we get,

 $\cos x \cosh y = \cos \alpha$ and $-\sin x \sinh y = \sin \alpha$

(i) Since
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\therefore \sin^2 x \sinh^2 y + \cos^2 x \cosh^2 y = 1$$

$$\sin^2 x \sinh^2 y + (1 - \sin^2 x)(1 + \sinh^2 y) = 1$$

$$\sin^2 x \sinh^2 y + 1 + \sinh^2 y - \sin^2 x - \sin^2 x \sinh^2 y = 1$$

$$1 + \sinh^2 y - \sin^2 x = 1$$

$$\sinh^2 y - \sin^2 x = 0$$

$$\therefore \sinh^2 y = \sin^2 x \qquad \dots (i)$$

$$\therefore \sinh y = \pm \sin x$$

(ii)
$$\cos 2x + \cosh 2y = 1 - 2\sin^2 x + 1 + 2\sinh^2 y$$

= $2 - 2\sin^2 x + 2\sin^2 x$ from (i)
= 2

4. If
$$x + iy = \tan(\pi/6 + i\alpha)$$
, prove that $x^2 + y^2 + 2x/\sqrt{3} = 1$

Solution: We have to separate real part $\pi/6$ and imaginary part α

$$\because \tan\left(\frac{\pi}{6} + i\alpha\right) = x + iy \qquad \therefore \tan\left(\frac{\pi}{6} - i\alpha\right) = x - iy$$

$$\therefore \tan\left[\left(\frac{\pi}{6}+i\alpha\right)+\left(\frac{\pi}{6}-i\alpha\right)\right]=\frac{\tan\left(\frac{\pi}{6}+i\alpha\right)+\tan\left(\frac{\pi}{6}-i\alpha\right)}{1-\tan\left(\frac{\pi}{6}+i\alpha\right)\cdot\tan\left(\frac{\pi}{6}-i\alpha\right)}$$

$$\therefore \tan \frac{\pi}{3} = \frac{(x+iy)+(x-iy)}{1-(x+iy).(x-iy)}$$

$$\therefore \sqrt{3} = \frac{2x}{1 - x^2 - y^2}$$

$$\therefore 1 - x^2 - y^2 = \frac{2x}{\sqrt{3}}$$

$$\therefore x^2 + y^2 + \frac{2x}{\sqrt{3}} = 1.$$

5. If
$$x + i y = c \cot(u + i v)$$
, show that $\frac{x}{\sin 2u} = -\frac{y}{\sinh 2v} = \frac{c}{\cosh 2v - \cos 2u}$.

Solution: We have
$$x + iy = c \cot(u + iv)$$

$$\therefore x - iy = c \cot(u - iv)$$

$$\therefore 2x = c[\cot(u+iv) + \cot(u-iv)]$$
$$= c\left[\frac{\cos(u+iv)}{\sin(u+iv)} + \frac{\cos(u-iv)}{\sin(u-iv)}\right]$$

$$= c \frac{[\cos(u+iv)\sin(u-iv)+\sin(u+iv)\cos(u-iv)]}{\sin(u+iv)\sin(u-iv)}$$

$$\therefore 2x = \frac{c\sin[(u-iv)+(u+iv)]}{-[\cos(u+iv+u-iv)-\cos(u-iv-u+iv)]/2}$$

$$\therefore x = \frac{c\sin 2u}{-[\cos 2u - \cos 2iv]} = \frac{c\sin 2u}{\cos h 2v - \cos 2u} \qquad (1)$$
Now, $2iy = c[\cot(u+iv) - \cot(u-iv)]$

$$= c \left[\frac{\cos(u+iv)}{\sin(u+iv)} - \frac{\cos(u-iv)}{\sin(u-iv)}\right]$$

$$= c \left[\frac{\cos(u+iv)\sin(u-iv)-\cos(u-iv)\sin(u+iv)}{\sin(u+iv)\sin(u-iv)}\right]$$

$$\therefore 2iy = \frac{c\sin[(u-iv)-(u+iv)]}{-[\cos(u+iv+u-iv)-\cos(u+iv-u+iv)]/2}$$

$$\therefore iy = \frac{c\sin(-2iv)}{-[\cos 2u - \cos 2iv]} = -\frac{i c \sin h 2v}{\cos h 2v - \cos 2u}$$

$$\therefore y = \frac{-c \sin h 2v}{\cos h 2v - \cos 2u} \qquad (2)$$
From (1) & (2) $\frac{x}{\sin 2u} = -\frac{y}{\sinh 2v} = \frac{c}{\cosh 2v - \cos 2u}$

6. If
$$u + i v = cosec(\frac{\pi}{4} + i x)$$
, prove that $(u^2 + v^2)^2 = 2(u^2 - v^2)$

Solution: We have $\frac{1}{\sin[(\pi/4)+ix]} = u + iv$

$$\therefore \sin\left(\frac{\pi}{4} + ix\right) = \frac{1}{u+iv} = \frac{1}{u+iv} \cdot \frac{u-iv}{u-iv} = \frac{u-iv}{u^2+v^2}$$

$$\therefore \sin\frac{\pi}{4}\cos i \ x + \cos\frac{\pi}{4}\sin i x = \frac{u - iv}{u^2 + v^2}$$

$$\frac{1}{\sqrt{2}}\cos h \, x + i \, \frac{1}{\sqrt{2}}\sin h x = \frac{u - iv}{u^2 + v^2}$$

Equating real and imaginary parts $\cos hx = \sqrt{2}.\left(\frac{u}{u^2+v^2}\right)$; $\sin hx = -\sqrt{2}.\left(\frac{v}{u^2+v^2}\right)$

But $cosh^2x - sinh^2x = 1$

$$\therefore 2\left(\frac{u^2}{(u^2+v^2)^2}\right) - 2\left(\frac{v^2}{(u^2+v^2)^2}\right) = 1$$

$$\therefore 2(u^2 - v^2) = (u^2 + v^2)^2$$

7. If $x + iy = \cos(\alpha + i\beta)$ or if $\cos^{-1}(x + iy) = \alpha + i\beta$ express x and y in terms of α and β .

Hence show that $cos^2\alpha$ and $cosh^2\beta$ are the roots of the equation

$$\lambda^2 - (x^2 + y^2 + 1)\lambda + x^2 = 0$$

Solution: We have $\cos \alpha \cos i\beta - \sin \alpha \sin i\beta = x + iy$

 $\therefore \cos \alpha \cos h \beta - i \sin \alpha \sin h \beta = x + iy$

Equating real and imaginary parts $\cos \alpha \cos h \beta = x$ and $\sin \alpha \sin h \beta = -y$

We know that, in terms of the roots, the quadratic equation is given by

$$\lambda^2 - (sum \ of \ the \ roots)\lambda + (product \ of \ the \ roots) = 0$$

Hence the equation whose roots are $cos^2\alpha$ and $cosh^2\beta$ is

$$\lambda^2 - (\cos^2\alpha + \cos^2\beta)\lambda + (\cos^2\alpha \cdot \cos^2\beta) = 0$$

This means we have to prove that $x^2 + y^2 + 1 = \cos^2 \alpha + \cos h^2 \beta$ and

$$x^2 = \cos^2 \alpha \cos h^2 \beta$$

Now,
$$x^2 + y^2 + 1 = \cos^2 \alpha \cos h^2 \beta + \sin^2 \alpha \sin h^2 \beta + 1$$

= $\cos^2 \alpha \cos h^2 \beta + (1 - \cos^2 \alpha)(\cos h^2 \beta - 1) + 1$
= $\cos^2 \alpha \cos h^2 \beta + \cos h^2 \beta - 1 - \cos^2 \alpha \cos h^2 \beta + \cos^2 \alpha + 1$

1

$$= cos^2 \alpha + cos h^2 \beta = sum of the roots$$

And $x^2 = \cos^2 \alpha \cos h^2 \beta$ = Product of the roots

Hence the equation whose roots are $cos^2 \alpha$, $cos \, h^2 \beta$ is

$$\lambda^2 - (x^2 + y^2 + 1)\lambda + x^2 = 0$$

SOME PRACTICE PROBLEMS:

- **1.** Separate into real and imaginary parts.
 - (i) $\cosh(x+iy)$
- (ii) cos(x + iy)
- (iii) coth(x + iy)

- (iv) $\operatorname{sech}(x+iy)$
- (v) $\coth i(x+iy)$
- (vi) tan(x + iy)

- (vii) $\cot(x+iy)$
- **2.** Separate into real and imaginary parts $tan^{-1}(\alpha + i\beta)$
- **3.** Separate into real and imaginary parts $sin^{-1}(e^{i\theta})$

4. If A + i B = C tan(x + iy), prove that
$$tan2x = \frac{2CA}{C^2 - A^2 - B^2}$$

5. If
$$\cos (\theta + i \Phi) = r(\cos \alpha + i \sin \alpha)$$
, prove that
$$r^2 = \frac{1}{2} [\cosh 2 \Phi + \cos 2 \theta] \& \tan \alpha = -\tan \theta \tanh \Phi$$

6. If
$$\cos(\alpha + i\beta) = x + iy$$
, Prove that $\frac{x^2}{\cosh^2\beta} + \frac{y^2}{\sinh^2\beta} = 1$, $\frac{x^2}{\cos^2\alpha} - \frac{y^2}{\sin^2\alpha} = 1$

7. If
$$sinh(a+ib) = x+iy$$
, prove that
$$x^2 cosech^2 a + y^2 sech^2 a = 1 \quad and \quad y^2 cosec^2 b - x^2 sec^2 b = 1$$

8. If $\sin(x + iy) = \cos \alpha + i \sin \alpha$, Prove that

(i)
$$\cosh 2y - \cos 2x = 2$$
 (ii) $y = \frac{1}{2} \log \frac{\cos(x-\alpha)}{\cos(x+\alpha)}$

(iii)
$$\sin \alpha = \pm \cos^2 x = \pm \sinh^2 y$$

9. If
$$\cosh(\theta + i \Phi) = e^{i \alpha}$$
, prove that $\sin^2 \alpha = \sin^4 \Phi = \sinh^4 \theta$

10. If
$$\cos(u+iv) = x+iy$$
 Prove that, $(1+x)^2 + y^2 = (\cosh v + \cos u)^2$ and $(1-x)^2 + y^2 = (\cosh v - \cos u)^2$

11. If
$$tan(\alpha + i \beta) = x + i y$$
, prove that $x^2 + y^2 + 2x \cot 2\alpha = 1$, $x^2 + y^2 - 2y \coth 2\beta + 1 = 0$

12. If
$$\tan\left(\frac{\pi}{3} + i \alpha\right) = x + i y$$
, prove that, $x^2 + y^2 - \frac{2x}{\sqrt{3}} - 1 = 0$

13. If
$$cot(\alpha + i \beta) = x + i y$$
, prove that $x^2 + y^2 - 2x \cot 2\alpha = 1$, $x^2 + y^2 + 2y \coth 2\beta + 1 = 0$

14. If
$$tanh\left(\alpha + \frac{i\pi}{6}\right) = x + iy$$
, prove that, $x^2 + y^2 + \frac{2y}{\sqrt{3}} = 1$

15. If
$$coth(\alpha + i\pi/8) = x + iy$$
, prove that $x^2 + y^2 + 2y = 1$

16. If
$$\sinh(x + i y) = e^{i \pi/3}$$
, prove that

(i)
$$3\cos^2 y - \sin^2 y = 4\sin^2 y \cos^2 y$$

(ii)
$$3sinh^2x + cosh^2x = 4sinh^2xcosh^2x$$

17. If
$$x + i y = 2 \cosh\left(\alpha + \frac{i \pi}{3}\right)$$
, prove that $3x^2 - y^2 = 3$

18. If
$$cot(u + i v) = cosec(x + i y)$$
, prove that $cothy sinh 2v = cot x sin 2u$

19. Show that
$$tan\left(\frac{u+iv}{2}\right) = \frac{\sin u + i \sinh v}{\cos u + \cosh v}$$

20. If $\sin^{-1}(\alpha + i \beta) = x + i y$,

show that sin²x and cos h²y are the roots of the equation

$$\lambda^2 - (\alpha^2 + \beta^2 + 1)\lambda + \alpha^2 = 0$$

21. If (u + iv) = x + iy, prove that the curves u = constant, v = constant are a family of circles which are mutually orthogonal

ANSWERS

- 1. (i) $\cosh x \cos y + i \sinh x \sin y$
 - (ii) $\cos x \cosh y i \sin x \sinh y$
 - (iii) $(\sinh 2x i \sin 2y)/(\cosh 2x \cos 2y)$
 - (iv) $\frac{(2\cosh x\cos y 2i\sinh x\sin y)}{(\cosh 2x + \cos 2y)}$
 - (v) $(-\sin 2y i \sin 2x)/(\cosh 2y \cos 2x)$
 - (vi) $(\sin 2x + i \sinh 2y)/(\cos 2x + \cosh 2y)$
 - (vii) $(\sin 2x i \sinh 2y)/(\cosh 2y \cos 2x)$
- **2.** $tan^{-1}[2\alpha/(1-\alpha^2-\beta^2)], \frac{1}{2}tanh^{-1}[2\beta/(1+\alpha^2+\beta^2)].$
- 3. $cos^{-1}\sqrt{\sin\theta} + i sinh^{-1}\sqrt{\sin\theta}$