

Introductory OpenFOAM Workshop Day 2

Timofey Mukha

KTH Engineering Mechanics

Further customize your case

- fvOptions Modify governing equations without changing the code of the solver.
 - Lives in system (for latest versions also in constant).
 - Examples:
 - Introduce a source term.
 - Bound the values of a field.
- "Function objects" A common name for a diverse set of utilities.
 - Executed at run time or as a post-processing step.
 - Added to the functions sub-dictionary in the controlDict.
 - Examples:
 - Time averaging, point probes, compute forces, compute y+, compute new field...

Finding what is out there

- Method 1: RTFM ©
 - https://www.openfoam.com/documentation/guides/latest/doc/

Finding what is out there

Method 2: the universal banana trick

```
Web: www.OpenFOAM.org
9 FoamFile$
10 {$
      version
                 2.0;$
      format
                 ascii;$
13
                 dictionary;$
      class
      location
                 "system";$
      object
                 fvOptions; $
16 }$
19 test$
                banana; $
23 }$
```


A simple fvOption


```
www.OpenFOAM.org
9 FoamFile
10
      version
                   2.0;
12
      format
                   ascii;
      class
                   dictionary;
      location
14
                   "system";
15
      object
                   fvOptions;
16
19 buoyancy1
20
                       buoyancyForce;
21
22
      selectionMode
                       all;
23
      fields
                       (U);
24 }
```

Will add ρg as a source term

Where to apply the extra term. Can be limited to a previously defined cell set.

What equation the source term is applied to.

Function object example: Courant number


```
1 Co
                                                                             File Co put into system.
                                                                              NB: Make the file name and
                        CourantNo;
      type
                        (fieldFunctionObjects);
      libs
                                                                             the object name consistent!
      executeControl
                        writeTime;
      executeInterval
                        1;
                        true;
      log
      writeControl
                        writeTime;
 9 }
                                                        In the controlDict, we include Co
                                                        Or we can put the whole function object into
53 {
54
      #include Co;
                                                       the controlDict directly
55 };
~/OpenFOAM/timofey-v1912/run/of_training/pitzDaily_transient » ls 0.01
                                                                                    Co field appears in the output
uniform Co epsilon k nut p phi U
```

Execution and write control keywords

- executionControl when is the function object run?
- writeControl when are the results saved to disk?
- excution/writeInterval defines the frequency as per the corresponding Control keyword.

Option	Description
none	Trigger is disabled
timeStep	Trigger every 'Interval' time-steps, e.g. every x time steps
writeTime	Trigger every 'Interval' output times, i.e. alongside standard field output
runTime	Trigger every 'Interval' run time period, e.g. every x seconds of calculation time
adjustableRunTi	me Currently identical to "runTime"
clockTime	Trigger every 'Interval' clock time period
cpuTime	Trigger every 'Interval' CPU time period
onEnd	Trigger on end of simulation run

Another example: field min and max


```
1 fieldMinMax1
                                                                                         The log file
       // Mandatory entries (unmodifiable)
       type
                   fieldMinMax;
                                                              fieldMinMax fieldMinMax1 write:
       libs
                   (fieldFunctionObjects);
                                                                  min(mag(U)) = 0 in cell 522 at location (-0.0198086 0.0254 0)
                                                                  \max(\max(U)) = 11.9221 in cell 5968 at location (0.0167861 0.00144538 2.27514e-20)
       // Mandatory entries (runtime modifiable)
                                                                  min(p) = -54.0397 in cell 3268 at location (0.0167857 -0.00810691 -4.49852e-20)
 8
       mode
                   magnitude;
                                                                  \max(p) = 20.5416 in cell 610 at location (0.0493639 -0.0248581 0)
       fields
                   (U p);
10
11
       location
                   true;
12
                                                                             Time-series saved to postProcessing
13
      writePrecision 8;
                                                                   penFOAM/timofey-v1912/run/of training/pitzDaily transient » tree postProcessing
14
      writeToFile
                       true;
15
       enabled
                       true;
16
       log
                       true;
17
      executeControl timeStep;
                                                                            fieldMinMax.dat
18
       executeInterval 1;
19
      writeControl
                       timeStep;
20
      writeInterval
21 }
```

```
# Field minima and maxima

2 # Time field min location(min) max location(max)

3 0.000120482 mag(U) 0.00000000e+00 (-1.98085815e-02 2.54000000e-02 0.000000000e+00) 2.05470462e+01 (2.64479650e-04 1.59940304e-04 2.63956988e-20)

4 0.000120482 p 0.00000000e+00 (2.90000000e-01 -1.62925926e-02 0.000000000e+00) 1.52362573e+04 (-1.98085815e-02 2.47383520e-02 0.000000000e+00)

5 0.000185479 mag(U) 0.00000000e+00 (-1.98085815e-02 2.54000000e-02 0.000000000e+00) 2.23431008e+01 (2.64479650e-04 1.59940304e-04 2.63956988e-20)

6 0.000185470 mag(U) 0.00000000e+00 (-1.98085815e-02 2.54000000e-02 0.00000000e+00) 2.23431008e+01 (2.64479650e-04 1.59940304e-04 2.63956988e-20)
```

Executing after the run

- So far our function objects were executed at runtime.
- But for some it makes sense to run them after the simulation is done.
- For simple function objects we can use the postProcess command.
 - postProcess -list: Look at available function objects by name. Don't have to be defined by us, they already simply exist.
 - Example: postProcess -func Lambda2
 - Can also run the objects we defined: postProcess -func fieldMinMax1

Executing after the run

- However, some stuff won't run with just postProcess
 - Example: postProcess -func CourantNo will fail.
- For such cases we actually have to run the solver. But with a special flag!
- pimpleFoam -postProcess -func CourantNo

Summary

 fvOptions and functionObject practically remove the need for modifying the solver, as long as it captures your physics.

• Lot's of fvOptions and functionObjects out there. Try and play with them during the hands on!

Special mentions

• There is a coded type of fvOption and functionObject, which allows you to simply write you own C++ to be executed! Will be compiled when the case runs, with no involvment from your side.

 An addon library called swak4foam adds a huge number of function objects allowing to do some really cool stuff! Search for slides by Bernhard F.W. Gschaider – excellent for self-study.