Problem Sheet 3

Henri Sota h.sota@jacobs-university.de Computer Science 2022

October 4, 2019

Problem 3.1

If we have a set $X = \{x_1, x_2, x_3, \dots, x_n\}$ with cardinality n, then $\mathcal{P}(X)$ has 2^n elements. (1)

Proof. We use induction. The induction hypothesis will be theorem 1.

Base Case: Our base case is $\mathcal{P}(A)$ when A has 0 elements (n=0).

In this case, $A = \{\}$ is an empty set and its power set, $\mathcal{P}(A) = \{\{\}\}$, is a set with one element.

We want to claim that $|\mathcal{P}(B)| = 2 * |\mathcal{P}(A)|$, where set B has one more element than set A.

Induction Step: Assume that theorem 1 holds.

$$B = A \cup \{a_{n+1}\} \mid A = \{a_1, a_2, a_3, \dots, a_n\}, B = \{a_1, a_2, a_3, \dots, a_n, a_{n+1}\}$$

According to the inductive hypothesis and the union of set A with element a_{n+1} , $\mathcal{P}(B)$ has all the subsets of A, which are 2^n , and all subsets of the form $A_{subset} \cup \{a_{n+1}\}$ since every new combination of the power set is formed by appending the new element at each existing subset. Therefore there are 2^n subsets, which do not include a_{n+1} and who are also subsets of A, and there are 2^n subsets who have a_{n+1} . Total number of subsets of B:

$$|\mathcal{P}(B)| = 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$$

So it follows by induction that $\mathcal{P}(B)$ contains twice the amount of elements that $\mathcal{P}(A)$ contains, when $B = A \cup \{a_{n+1}\}.$

Problem 3.2

- a) $R = \{(a, b)a, b \in \mathbb{Z} \land a \neq b\}$
 - Not Reflexive: $\forall a \in \mathbb{Z} \quad (a, a) \notin \mathbb{Z}$ because a = a i.e. a = 3
 - Symmetric: $\forall a, b \in \mathbb{Z}$ $(a, b) \in \mathbb{Z}$ because if $a \neq b$ then $b \neq a$ i.e. a = 3, b = 4
 - Not Transitive:

$$\forall a, b \in \mathbb{Z} \quad (a, b) \in \mathbb{R}, \ a \neq b$$

 $\forall b, c \in \mathbb{R} \quad (a, b) \in \mathbb{R}, b \neq c$

This doesn't mean that $a \neq c$ because a = c i.e. a = 3, b = 4, c = 3

- b) $R = \{(a, b)a, b \in \mathbb{Z} \land |a b| \le 3\}$
 - Reflexive: $\forall a \in \mathbb{Z} \quad (a, a) \in \mathbb{Z}$ because $|a a| = 0 \leftrightarrow 0 \le 3$

• Symmetric: $\forall a, b \in \mathbb{Z}$ $(a, b) \in \mathbb{Z}$

$$|a - b| \le 3$$

 $-3 < a - b < 3$
 $b - 3 < a < b + 3$
 $a - 3 < b < a + 3$

From definition of absolute value: |a - b| = |b - a|

• Not Transitive:

$$\begin{array}{ll} \forall a,b\in\mathbb{Z} & (a,b)\in\mathbb{Z},\ a\neq b\\ \forall b,c\in\mathbb{Z} & (b,c)\in\mathbb{Z},\ b\neq c\\ \text{This doesn't mean that} & a=c \ \text{ in case that } \ |a-b|=|b-c| \ \text{ i.e. } \ a=3,b=4,c=5 \end{array}$$

- c) $R = \{(a, b)a, b \in \mathbb{Z} \land (a \mod 10) = (b \mod 10)\}$
 - Reflexive: $\forall a \in \mathbb{Z} \quad (a, a) \in \mathbb{Z}$ because $a \mod 10 = a \mod 10$
 - Symmetric: $\forall a \in \mathbb{Z} \quad (a, b) \in \mathbb{Z}$

$$a \bmod 10 = b \bmod 10 \leftrightarrow b \bmod 10 = a \bmod 10$$

i.e.
$$a = 7, b = 17$$

• Transitive:

$$\begin{array}{lll} \forall a,b\in\mathbb{Z} & (a,b)\in\mathbb{Z}, & a\mod 10=b\mod 10\\ \forall b,c\in\mathbb{Z} & (b,c)\in\mathbb{Z}, & b\mod 10=c\mod 10\\ \text{As a result, } a\mod 10=c\mod 10 \text{ i.e. } a=7,\,b=17,\,c=27 \end{array}$$

Problem 3.3

```
a) -- a) Code isPrime
   -- Pattern matching combined with guards in order to test primality of input
   -- Return True if it is prime or return False otherwise
   -- We rule out case 1 and 2; Entering a negative input also returns False
   -- Next we check if any division of our input with each number from
   -- 2 to sqrt(input) produces a remainder of 0
   -- If yes, our input is not prime and we return False
   -- Otherwise, our input is a prime number and return True
  isPrime :: Integer -> Bool
  isPrime 1 = False
  isPrime 2 = True
  isPrime n
       | (n < 1) = False
      | (length [x | x <- [2 .. ((truncate(sqrt(fromIntegral n))))], mod n x ==</pre>
      0]) > 0 = False
     | otherwise = True
```

In order to test these two functions, I've used multiple calls to these functions with different input, namely -1, list of all numbers between 2 and 100 for both of them, which respectively produced:

- isPrime: -1 -> False; [2..100] -> [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]
- isCircPrime -1 -> False; [2..100] -> [2,3,5,7,11,13,17,31,37,71,73,79,97]