MATEMÁTICAS BÁSICAS Temas 1, 2 y 3, Grupos de mañana

¡Justifica adecuadamente tu respuesta en cada apartado del examen!

1. Escribe las siguientes proposiciones y sus negaciones con cuantificadores.

P: /Para cada par de enteros a, b no nulos existen enteros q, r tales que a = bq + r y $0 \le r < |b|/$.

Q: / Existe un número $p \in (0,8)$ tal que $\cos(x) = \cos(x+kp)$ para cualquier número real x y cualquier número entero k/.

¿Es cierta Q o su negación?

 $\mathbf{2}$. Demuestra por inducción que para todo número natural n se tiene que

$$\sum_{k=1}^{n} (2k-1)3^{k} = (n-1)3^{n+1} + 3$$

3. Sea $x \in \mathbb{R}$. Prueba que si x > 0, entonces

$$\frac{x}{x+1} < \frac{x+1}{x+2} \,.$$

¿Es cierto que si $\frac{x}{x+1} \ge \frac{x+1}{x+2}$, entonces $x \le 0$?

- **4.** Sean $A, B \neq C$ conjuntos. Demuestra que si $A \cap B \subset C \neq x \in B$, entonces $x \notin A \setminus C$. [Recuerda que $X \setminus Y = \{x \in X : x \notin Y\}$].
- **5**. Se define en \mathbb{R} la relación $x\mathcal{R}y$ si y solo si $x-y\in\mathbb{Z}$.
 - (1) Demuestra que \mathcal{R} es una relación de equivalencia. Para cada $x \in \mathbb{R}$, denotamos [x] la clase de x para esta relación.
 - (2) Calcula la intersección entre la clase del 1 y la clase de π . ¿Es cierto que si $x \notin \mathbb{Q}$ entonces $[x] \cap \mathbb{Z} = \emptyset$?
 - (3) Prueba que para cada número real x existe un único $y \in [0,1)$ tal que $x\mathcal{R}y$.
 - (4) Encuentra una biyección f entre el conjunto cociente \mathbb{R}/\mathcal{R} y el intervalo [0,1) y calcula la imagen por f del subconjunto $A \subset \mathbb{R}/\mathcal{R}$ definido como

$$A=\{[q]:\ q\in\mathbb{Q}\}\,.$$

MATEMÁTICAS BÁSICAS Temas 1, 2 y 3, Grupos de tarde

¡Justifica adecuadamente tu respuesta en cada apartado del examen!

- ${f 1}.$ a) Escribe la proposición ${f P}$ y su negación con cuantificadores. Justifica cuál de las dos es verdadera.
- **P:** /Para cada número real b existe un número real r > 0 tal que $r^2 + 2|b|r < 1$ /.
- b) Escribe la proposición Q y su negación con cuantificadores.
- **Q:** /Algún número irracional x cumple que todas sus potencias $x^n, n \in \mathbb{Z}$ son números irracionales /.
- 2. Demuestra por el método de inducción o sus generalizaciones que si x es un número real positivo, $x+\frac{1}{x}$ es un número entero y $n\in\mathbb{N}$, entonces $x^n+\frac{1}{x^n}$ es un número entero.
- **3**. Sea $x \in \mathbb{R}$. Prueba que al menos uno de los dos números $\sqrt{3} + x$ o $\sqrt{3} x$ es irracional.
- 4. Sean $A, B \neq C$ conjuntos. Demuestra que $A \cap B = A \cap C \neq A \cup B = A \cup C$ si y solo si B = C.
- **5**. Se considera en el conjunto de los números reales la relación dada por $x\mathcal{R}y$ si y sólo si $\frac{x-y}{2\pi} \in \mathbb{Z}$.
 - (1) ¿Es \mathcal{R} una relación de equivalencia? ¿Cuáles son los elementos que pertenecen a la clase del 0? ¿Y a la clase de π ? ¿Y a la del 15π ?
 - (2) Encuentra un subconjunto $X \subset \mathbb{R}$ y una biyección $h: X \to \mathbb{R}/\mathcal{R}$.
 - (3) Asignar a cada clase $[x] \in \mathbb{R}/\mathcal{R}$ el número x, ¿define una aplicación $g : \mathbb{R}/\mathcal{R} \to \mathbb{R}$?
 - (4) Sea $C = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$. Determina si $f : \mathbb{R}/\mathcal{R} \to C$, con $f([x]) = (\cos(x), \sin(x))$ es una aplicación. En caso afirmativo, ¿es biyectiva? [Recuerda que para todo $x \in \mathbb{R}$ se cumple que $\cos(x + 2\pi) = \cos(x)$ y $\sin(x + 2\pi) = \sin(x)$].