A Computation Procedure for Reconsideration-Proof Equilibrium

Wataru Nozawa

January 13, 2015

Abstract

Reconsideration-proof equilibrium is a refinement proposed by? of subgame perfect equilibrium that applies to infinite horizon settings in which time inconsistency is important. A procedure for computing such equilibria is provided. The procedure is applicable under an assumption about time-separability of the utility function. The class of problems that satisfy the assumption includes four of the five examples in?.

1 Introduction

Reconsideration-proof equilibrium is a refinement proposed by ? of subgame perfect equilibrium that applies to infinite horizon settings in which time inconsistency is important. To be reconsideration-proof, a strategy must satisfy three properties. First, it must be subgame-perfect. Second, it must have the same continuation value at any histories. Let us call such strategies weakly reconsideration-proof. Accordingly, a continuation value is attached to each weakly reconsideration-proof strategy. Lastly, the strategy must have the highest continuation value among all the weakly reconsideratin-proof strategies.

It is not easy to find reconsideration-proof strategies. Though? provides a fixed-point characterization of weakly reconsideratin-proof strategies, it does not tell us much about how to find them.

This paper provides a computation procedure which is applicable under an assumption about time-separability of the utility function. The class of problems that satisfy the assumption includes four of the five examples in ?.

2 Environment

Time is discrete, and indexed by t. There is an infinitely lived player.

In each period t, there are two subperiods. In the first subperiod, a state variable $z_t \in Z$ is determined, where Z is a set of states. In the second subperiod, knowing the determined value of the state variable z_t , the player chooses an action x_t from a set of actions X.

It is natural to think that the state variable z_t is determined by a passive player. The passive player formulates an expectation $\{\hat{x}_s\}_{s\geq t}$ on the future actions taken by the infinitely lived player, $\{x_s\}_{s\geq t}$. The state variable z_t is determined by

$$z_t = \xi\left(\{\hat{x}_s\}_{s \ge t}\right),\,$$

where ξ is a mapping from X^{∞} to Z.

The utility of the infinitely lived player in period t is given by

$$U(z_t, \{x_s\}_{s \ge t}),$$

where U is a mapping from $X^{\infty} \times Z$ to \mathbb{R} .

A history is an element of $\bigcup_{t\geq 0} X^t$, where $X^0=\{\emptyset\}$. An element $h^t\in X^t$ is called a history up to t.

A strategy σ is a mapping from $\bigcup_{t\geq 0} X^t$ to X. A path of a strategy σ is an element $\{x_t^{\sigma}\}_{t\geq 0}$ of X^{∞} defined by

$$x_0^\sigma=\sigma(\emptyset), \text{ and}$$
 for each $t\geq 1, \ x_t^\sigma=\sigma\left(\{x_s^\sigma\}_{0\leq s\leq t-1}\right)$.

Similarly, a path of a strategy σ after a history h^{t-1} is an element $\{x_s^{\sigma|h^{t-1}}\}_{s\geq t}$ of X^{∞} defined by

$$x_t^{\sigma|h^{t-1}}=\sigma(h^{t-1}), \text{ and}$$
 for each $s\geq t+1, \ x_s^{\sigma|h^{t-1}}=\sigma\left(\left\{h^{t-1},\left\{x_{\tau}^{\sigma|h^{t-1}}\right\}_{t\leq \tau\leq s-1}\right\}\right).$

3 Solution Concepts and Characterization

3.1 Solution Concepts

Definition 1. A strategy σ is *subgame perfect* if for any t, for any history h^{t-1} up to t-1, for any $x \in X$,

$$U(z_t, \{x_s^{\sigma|h^{t-1}}\}_{s \ge t}) \ge U\left(z_t, \{x, \{x_s^{\sigma|\{h^{t-1}, x\}}\}_{s \ge t+1}\}\right),$$

where
$$z_t = \xi\left(\{x_s^{\sigma|h^{t-1}}\}_{s\geq t}\right)$$
.

Definition 2. A subgame perfect strategy σ is weakly reconsideratin-proof if it has the same continuation value at any histories.

Definition 3. A weakly reconsideratin-proof subgame perfect strategy σ is *reconsideration-proof* if it has the highest value among all the weakly reconsideratin-proof subgame perfect strategies.

3.2 Characterization

To state the characterization of weakly reconsideratin-proof subgame perfect strategies in ?, define

$$\begin{array}{lcl} D(V) & = & \{\{x_t\}_{t\geq 0}| \text{for each } t\geq 0, U(\xi(\{x_s\}_{s\geq t}), \{x_s\}_{s\geq t}) = V\}, \text{ and} \\ \\ Z(V) & = & \{\xi(\{x_t\}_{t\geq 0})| \{x_t\}_{t\geq 0} \in D(V)\}. \end{array}$$

? gave the following characterization of weakly reconsideratin-proof subgame perfect strategies.

Proposition 1. [?] There exists a weakly reconsideratin-proof subgame perfect strategy with value V if and only if there exists a subset $D^* \subseteq D(V)$ and a subset $Z^* \subseteq Z(V)$ such that

1.
$$Z^* = \xi(D^*)$$
.

2. For all $x \in X$ and all $z \in Z^*$, there exists d in D^* such that $U(z, x, d) \leq V$.

The characterization does not tell much about how to find such fixed points. In the next section, I specify a subclass of problems and suggest a computation procedure.

4 Class of Problems and Computation Procedure

4.1 Class of Problems

I suggest a procedure for problems that satisfy the following assumption.

Assumption 1. There exist a constant β and a function $u: X^2 \to \mathbb{R}$ such that $U(z_t, \{x_s\}_{s \ge t}) = (1-\beta) \sum_{s=t}^{\infty} \beta^{s-t} u(x_s, x_{s+1}).$

Using the assumption, I can simplify the characterization of weakly reconsideratin-proof subgame perfect strategies. The simplified characterization will lead to a procedure. To state it, define

$$X_1(V) = \{x \in X | \text{there exists } x' \in X \text{ such that } u(x, x') = V \},$$

for each k, $X_{k+1}(V) = \{x \in X | \text{there exists } x' \in X_k(V) \text{ such that } u(x, x') = V \}$, and

$$X(V) = \bigcap_{k=1}^{\infty} X_k(V).$$

The next lemma is useful.

Lemma 1. For any $x \in X(V)$, there exists $x' \in X(V)$ such that u(x, x') = V.

Lemma 2. $x \in X(V)$ if and only if there exists $\{x_t\}_{t\geq 0} \in D(V)$ and $t \geq 0$ such that $x_0 = x$.

Proof. Suppose there exists $\{x_t\}_{t\geq 0}\in D(V)$ and $t\geq 0$ such that $x_0=x$. Then, by definition of D(V), for any $t\geq 0$, $u(x_t,x_{t+1})=V$. This implies that for any $k\geq 1$, $x\in X_k(V)$. Therefore, $x\in X(V)$.

Suppose $x \in X(V)$. Set $x_0 = x$. By Lemma 1, I can inductively construct a sequence $\{x_t\}_{t \geq 0}$ such that for any $t \geq 0$, $u(x_t, x_{t+1}) = V$. Clearly, $\{x_t\}_{t \geq 0} \in D(V)$.

Now, the simplified characterization is stated as a proposition.

Proposition 2. There exists a weakly reconsideratin-proof subgame perfect strategy with value V if and only if for all $x \in X$, there exists x' in X(V) such that $u(x, x') \leq V$.

Proof. By Proposition 1, it is sufficient to show the equivalence between the following two statements.

- 1. there exists a subset $D^* \subseteq D(V)$ and a subset $Z^* \subseteq Z(V)$ such that
 - (a) $Z^* = \xi(D^*)$.
 - (b) For all $x \in X$ and all $z \in Z^*$, there exists d in D^* such that $U(z, x, d) \leq V$.

2. for all $x \in X$, there exists x' in X(V) such that $u(x, x') \leq V$.

First, since U doesn't depend on z by Assumption 1, the first statement is equivalent to

for all
$$x \in X$$
, there exists $d \in D(V)$ such that $U(x,d) \leq V$.

Next, using the time separability of U, it is equivalent to

for all
$$x \in X$$
, there exists $\{x_t\}_{t \geq 0} \in D(V)$
such that $(1 - \beta)u(x, x_0) + \beta U(\{x_t\}_{t \geq 1}) \leq V$.

Since for any $\{x_t\}_{t\geq 0}\in D(V),$ $U(\{x_t\}_{t\geq 1})=V,$ it is equivalent to

for all
$$x \in X$$
, there exists $\{x_t\}_{t \geq 0} \in D(V)$ such that $u(x, x_0) \leq V$.

By Lemma 2, it is equivalent to the second statement.

4.2 Computation Procedure

The computation procedure for reconsideration-proof equilibrium is the following.

- 1. Compute X(V) for each V, by calculating $\{X_k(V)\}_{k\geq 1}$.
- 2. Find the largest V such that for all $x \in X$, there exists x' in X(V) such that $u(x, x') \leq V$.

Proposition 2 assures that weakly reconsideratin-proof subgame perfect strategies achieve the largest V are reconsideration-proof. In the next section, I apply the procedure for the examples in ?.

5 Examples

Example 1. (Example 1 in ?) Let u(x, x') = x - x' and X = [0, 1]. Then,

$$\begin{split} X_1(V) &= \{x \in [0,1] | \text{there exists } x' \in [0,1] \text{ such that } x-x'=V \} \\ &= \{x \in [0,1] | x-V \in [0,1] \} \\ &= [0,1] \cap [V,1+V], \end{split}$$

$$\begin{split} X_k(V) &= \{x \in [0,1] | \text{there exists } x' \in X_{k-1}(V) \text{ such that } x - x' = V \} \\ &= \{x \in [0,1] | x - V \in X_{k-1}(V) \} \\ &= [0,1] \cap \bigcap_{k=1} [kV, 1 + kV], \end{split}$$

and

$$X(V) = \begin{cases} \emptyset & \text{for } V \neq 0, \\ [0,1] & \text{for } V = 0. \end{cases}$$

Since if V=0, for any $x\in X$, u(x,x)=0=V, the value of reconsideration-proof equilibrium is V=0. Any strategies that satisfy for each $t\geq 1$, $\sigma(h^{t-1})=h^{t-1}_{t-1}$ is reconsideration-proof.

Example 2. (Example 2 and 3 in ?) Let $u(x, x') = \sqrt{xx'}$ and X = [0, 1]. Note that $V \in [0, 1]$. Then,

$$X_1(V)=\{x\in[0,1]|\text{there exists }x'\in[0,1]\text{ such that }\sqrt{xx'}=V\}$$

$$=\{x\in[0,1]|\sqrt{x}\in[V,\infty)\}$$

$$=[V^2,1],$$

$$X_k(V) = \{x \in [0,1] | \text{there exists } x' \in X_{k-1}(V) \text{ such that } \sqrt{xx'} = V\}$$
$$= \{x \in [0,1] | x - V \in X_{k-1}(V)\}$$
$$= [V^2,1],$$

and

$$X(V) = [V^2, 1].$$

Since if V=1, for any $x\in X$, $u(x,1)=\sqrt{x}\leq 1=V$, the value of reconsideration-proof equilibrium is V=1. The strategy that satisfy for each $t\geq 0$, $\sigma(h^{t-1})=1$ is reconsideration-proof.

(Example 4 in ?) Let u(x, x') = x - 2x' and X = [0, 1]. Then,

$$X_1(V) = \{x \in [0,1] | \text{there exists } x' \in [0,1] \text{ such that } x - 2x' = V \}$$

$$= \{x \in [0,1] | (x-V)/2 \in [0,1] \}$$

$$= [0,1] \cap [V,2+V],$$

$$\begin{split} X_k(V) &= \{x \in [0,1] | \text{there exists } x' \in X_{k-1}(V) \text{ such that } x - 2x' = V \} \\ &= \{x \in [0,1] | (x-V)/2 \in X_{k-1}(V) \} \\ &= [0,1] \cap \bigcap_{k=1} [(2^k-1)V, 2^k + (2^k-1)V], \end{split}$$

and

$$X(V) = \begin{cases} \emptyset & \text{for } V > 0 \text{ or } V < -1, \\ [0,1] & \text{for } -1 \le V \le 0. \end{cases}$$

Since for any $V \in [-1,0]$, for any $x \in X$, $u(x,1) \le V$, the value of reconsideration-proof equilibrium is V=0. Any strategies that satisfy for each $t \ge 1$, $\sigma(h^{t-1}) = h_{t-1}^{t-1}/2$ is reconsideration-

proof.

Example 3. (The example in Section 5 in ?) Let u(x, x') = y(x/2 + (1 - x')/(1 + r)), and X = [0, 1]. For a simple exposition, set y = 1. Then,

$$X_1(V)$$

$$= \{x \in [0,1] | \text{there exists } x' \in [0,1] \text{ such that } x/2 + (1-x')/(1+r) = V \}$$

$$= \{x \in [0,1] | (x/2-V)(1+r) + 1 \in [0,1] \}$$

$$= [0,1] \cap [2(V-1/(1+r)), 2V],$$

$$\begin{split} &X_k(V)\\ &= & \{x \in [0,1] | \text{there exists } x' \in X_{k-1}(V) \text{ such that } x/2 + (1-x')/(1+r) = V \}\\ &= & \{x \in [0,1] | (x/2-V)/(1+r) + 1 \in X_{k-1}(V) \}\\ &= & [0,1] \cap \bigcap_{k=1} \left[\left(\left(\frac{2}{1+r} \right)^k - 1 \right) 2 \frac{V(1+r)-1}{1-r}, \left(\frac{2}{1+r} \right)^k \left(1 + 2 \frac{V(1+r)-1}{1-r} \right) - 2 \frac{V(1+r)-1}{1-r} \right], \end{split}$$

and

$$X(V) = \begin{cases} \emptyset & \text{for } V > \frac{1}{1+r} \text{ or } V < \frac{1}{2}, \\ [0,1] & \text{for } \frac{1}{2} \le V \le \frac{1}{1+r}. \end{cases}$$

For any $V \in [\frac{1}{2}, \frac{1}{1+r}]$, for any $x \in X$, $u(x, 1) = x/2 \le V$. Therefore, $V = \frac{1}{1+r}$ is the value of reconsideration-proof equilibrium.

References