الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

اختبار في مادة: الرياضيات المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

x=t-2 الفضاء منسوب إلى المعلم المتعامد والمتجانس $O; \vec{i}, \vec{j}, \vec{k}$. $O; \vec{i}, \vec{j}, \vec{k}$ الفضاء منسوب إلى المعلم المتعامد والمتجانس B(1; -3; -4) و A(-1; 1; -2) خعتبر النقطتين A(-1; 1; -2) و والمستقيم النقطة B و U(-1; 2; 1) شعاع توجيه له .

- بيّن أنّ المستقيمين (Δ') و (Δ') يتقاطعان في نقطة يطلب تعيين إحداثياتها.
 - . ليكن (P) المستوي المعيّن بالمستقيمين (Δ) و (Δ') . الكن (P) الكتب تمثيلا وسيطيا للمستوي (P) ، ثم استنتج معادلة ديكارتية له .
- . $AM^2 + BM^2 = 20$: تسمّي (S) مجموعة النقط (M(x;y;z) من الفضاء التي تحقق (S) مجموعة النقط (S) بيّن أنّ (S) سطح كرة مركزها منتصف القطعة (S) ونصف قطرها (S)
 - . (S) وسطح الكرة (P) وسطح الكرة (4

التمرين الثاني: (04 نقاط)

- . نعتبر المعادلة : x عددان صحيحان . (x;y) نعتبر المعادلة : (x;y) عددان صحيحان . (x;y) نعتبر المعادلة : (x;y) تقبل حلولا.

 - عدد طبیعي یکتب $1\overline{\alpha}\alpha\beta01$ في نظام التعداد الذي أساسه 4 ، ویکتب $1\overline{\alpha}\beta01$ في نظام التعداد الذي أساسه α عددان طبیعیان.
 - . عيّن $\, \alpha \,$ و $\, \beta \,$ ، ثم اكتب $\, \lambda \,$ في النظام العشري $\, \alpha \,$
 - تحقق: (3 من الأعداد الطبيعية التي تحقق: (a;b) عدد أوّلي، ثم عيّن الثنائيات (a;b) من الأعداد الطبيعية التي تحقق: m=PPCM(a;b) , d=PGCD(a;b) حيث 2m-d=2017

التمرين الثالث: (05 نقاط)

- . $(z-2+2i)(z^2-2\sqrt{2}z+8)=0: z$ له خاص المعادلة ذات الم
 - C و B ، A نعتبر النقط $(O;\vec{u},\vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس $z_B=\overline{z}_A$ ، $z_A=\sqrt{2}+i\sqrt{6}$ التي لاحقاتها $z_B=\overline{z}_A$ ، $z_A=\sqrt{2}+i\sqrt{6}$
- أ) اكتب Z_A و Z_B و تتمي إلى دائرة Ω يطلب أ) اكتب Z_B و Z_B ، Z_A و أ) يطلب أ) اكتب Z_B ، Z_A و أ) يطلب تعيين مركزها ونصف قطرها.
 - . التي من أجلها يكون العدد المركب $\left(\frac{z_A}{z_C}\right)^n$ تخيليا صرفا n عيّن قيم العدد الطبيعي n التي من أجلها يكون العدد المركب
- \mathbb{R}_+ سمّي k مع ، $z=z_C-k\left(rac{z_A}{z_B}
 ight)$: عين وأنشئ (Γ) مجموعة النقط M من المستوي ذات اللاحقة Z حيث : Z مع Z يمسح Z يمسح Z يمسح Z تحقّق أنّ النقطة Z تنتمي إلى Z ، ثم عيّن وأنشئ Z
 - . -2 ونسبته O وزاويته h ، $\frac{2\pi}{3}$ وزاويته O وزاويته O التحاكي الذي مركزه النقطة O ونسبته O الدوران الذي مركزه النقطة O
 - . $h \circ r$ وعناصره المميّزة ، ثم استنتج صورة الدائرة (Ω) بالتحويل $h \circ r$

التمرين الرابع: (07 نقاط)

. $f(x) = (-x^3 + 2x^2)e^{-x+1}$: بعتبر الدالة العددية f المعرّفة على \mathbb{R}

 $(O; \vec{i}, \vec{j})$ المنحني الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

- احسب المنحني (C_f) استنتج وجود مستقيم مقارب للمنحني ال $\int \lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ استنتج وجود مستقيم مقارب المنحني المنحني ($\int 1$
 - $f'(x) = x(x^2 5x + 4)e^{-x+1}$ ، x عدد حقیقی عدد عدد من أجل کل عدد من أجل کل عدد مقیقی ثم استنتج اتجاه تغیّر الداله f وشکّل جدول تغیّراتها.
 - . 2 مماس المنحني (C_f)مماس المنحني (كانت معادلة (T) مماس المنحني (2
 - . $h(x)=x^2e^{-x+2}-4$ يلي: h(x)=0 كما يلي: h(x)=0 كما يلي: h(x)=0 الدالة المعرفة على المجال h(x)=0 بالنسبة إلى h(x)=0 حدّد عندئذ وضعية المنحنى h(x)=0 بالنسبة إلى h(x)=0 على المجال h(x)=0 بالنسبة المداد المداد
 - . $\left[0\,;+\infty\right[$ الرسم المماس $\left(T\,
 ight)$ والمنحني المخال والمنحني (4
 - (E) ... f(x) = m(x-2) نعتبر m وسيط حقيقي والمعادلة ذات المجهول الحقيقي x الموجب: m عدد حلول المعادلة m عدد حلول المعادلة m
 - . $g(x)=f\left(\frac{1}{x}\right):+\infty$ [ب $g(x)=f\left(\frac{1}{x}\right):g(x)$ و الدالة المعرفة على المجال

. g اعتمادا على السؤال رقم (1)، شكل جدول تغيّرات الدالة

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأول: (04 نقاط)

 $u_0 = 1$ نعتبر المتتالية العددية (u_n) المعرّفة على $\mathbb N$ بحدها الأوّل

 $u_{n+1} = 7u_n + 8$ ، n ومن أجل كل عدد طبيعي

- . $3u_n = 7^{n+1} 4$ ، n برهن بالتراجع أن: من أجل كل عدد طبيعي (1
- $S_n' = u_0 + u_1 + \dots + u_n$ و $S_n = 1 + 7 + 7^2 + \dots + 7^n$: n يضع من أجل كل عدد طبيعي (2
 - S_n و S_n و المجموع S_n أ احسب بدلالة S_n المجموع S_n
 - $\cdot .18 \times S_n' = 7^{n+2} 24n 31$ ، n عدد طبیعي عدد طبیعي استنتج أنّ: من أجل كل عدد طبیعي
 - درس حسب قيم العدد الطبيعي n بواقي قسمة العدد 7^n على 5.
 - ب) عيّن قيم n الطبيعية حتى يكون S_n' قابلا للقسمة على 5.

$$\begin{cases} x = -t - 2 \ \lambda + 2 \end{cases}$$
 التمرين الثاني: (04 نقاط) $y = 3t + 4 \ \lambda - 3 \end{cases}$ مستو تمثيله الوسيطي: $z = 3t + 4 \ \lambda - 1 \end{cases}$ مستو تمثيله الوسيطي: $z = 3t + 4 \ \lambda - 1$

- (P) عين معادلة ديكارتية للمستوي (1
- يكن α عددا حقيقيا من المجال $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ ، ولتكن $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ من الفضاء حيث (2 $x^2+y^2+z^2-2x\cos\alpha-2y\sin\alpha-z-\frac{3}{4}=0$
 - ω_{α} مركزها مركزها مركزها تعيين إحداثيات مركزها (E_{α}) من المجال السابق ، ونصف قطرها α من المجال السابق ، α من المجال السابق . α ونصف قطرها α
 - . (E_{lpha}) الدرس حسب قيم العدد الحقيقي lpha الوضع النسبي للمستوي (P) و سطح الكرة (P
 - (E_{α}) في الحالة التي يكون فيها المستوي (P) مماسا لسطح الكرة (P) في الحالة التي يكون فيها المستوي (P)الذي يشمل النقطة ω_{α} والعمودي على المستوي واستنتج إحداثيات I نقطة تماس (E_{α}) مع المستوي (P).

التمرين الثالث: (05 نقاط)

$$\frac{21}{4}+5i$$
: على الشكل الجبري ثم استنتج الجذرين التربيعيين للعدد المركب ($\left(\frac{5}{2}+i\right)^2$) اكتب العدد

المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$ ، نعتبر النقط C , B , A استوي المركب منسوب إلى المعلم المتعامد و المتجانس ($O; \vec{u}, \vec{v}$)

.
$$z_I=i$$
 و $z_C=-\overline{z}_A$ ، $z_B=-rac{3}{2}i$ ، $z_A=rac{3}{2}+\sqrt{2}e^{irac{\pi}{4}}$: اللواحق

اختبار في مادة: الرياضيات / الشعبة: رياضيات / بكالوريا 2017

- . اكتب z_A و على الشكل الجبري z_A
- ABC على الشكل الأسي مستنتجا طبيعة المثلث على الشكل (2 على الشكل الأسي مستنتجا طبيعة المثلث (2 $z_A z_B$
 - I ليكن S التشابه المباشر الذي مركزه B ويحول S الحي (3
 - أ) اكتب العبارة المركبة للتشابه المباشر S ثم عيّن نسبته وزاوبته.
- $T_n = \underbrace{S \circ S \circ \cdots \circ S}_{n}$ يلي: $T_n = \underbrace{S \circ S \circ \cdots \circ S}_{n}$ كما يلي: $T_n = \underbrace{S \circ S \circ \cdots \circ S}_{n}$ عيّن قيم $T_n = \underbrace{S \circ S \circ \cdots \circ S}_{n}$ تحاكيا ، عين عندئذ عناصره المميزة.

التمرين الرابع: (07 نقاط)

- . $g(x) = \frac{1}{x} \ln x$ ينتبر الدالة العددية g المعرّفة على المجال $g(x) = \frac{1}{x} \ln x$ نعتبر الدالة العددية والمعرّفة على المجال المعرّفة على المحرّفة على المجال المحرّفة على المحرّفة
 - ادرس اتجاه تغیّر الدالهٔ g.
- . $]0;+\infty[$ على g(x) على g(x)=0 بين أن المعادلة g(x)=0 تقبل حلا وحيدا α من المجال g(x)=0 ثم استنتج إشارة

$$\begin{cases} f(x) = \frac{x+1}{x-\ln x} \; ; \; x>0 \\ f(0) = 0 \end{cases}$$
: يعتبر الدالة العددية f المعرّفة على المجال $[0;+\infty[$ كما يلي $f(0)=0$

- $(O; ec{i}, ec{j})$ سنتيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)
 - ، أثبت أن الدالة f مستمرة عند العدد 0 على اليمين (1

ثم احسب
$$\lim_{x \to 0} \frac{f(x)}{x}$$
 وفسّر النتيجة بيانيا.

- $f'(x) = \frac{g(x)}{(x \ln x)^2}$ ، $]0; +\infty[$ من المجال x من عدد حقیقی x من المجال 2
 - . f وفسّر ذلك بيانيا ثم شكل جدول تغيرات الدالة الدالة $\int_{x \to +\infty} f(x)$ احسب (3
 - $h(x) = x \ln x$: ب $]0; +\infty[$ بالمعرفة على $]0; +\infty[$ بالمعرفة على (4
 - h(x)>0 ، أن: من أجل كل عدد حقيقي x موجب تماما ، واستنتج وضعية (C_f) بالنسبة إلى المستقيم (Δ) بالنسبة إلى المستقيم ،
 - $(f(\alpha) \approx 2.31)$. (C_f) ارسم (
 - . $F(x)=\int\limits_{1}^{x}f(t)dt$ يلي يا $0;+\infty$ المعرّفة على المجال f المعرّفة على المجال f
- $\frac{1}{x}+1 \le f(x) \le f(\alpha)$ ، $x \ge 1$ حيث $x \ge 1$ عدد حقيقي $x \ge 1$ عدد حقيقي $x \ge 1$
 - . اعط تفسيرا هندسيا للعدد F(e) ثم استنتج حصرا له.

انتهى الموضوع الثاني