Logistic Regression

Submit a PDF of your answers to Canvas

1. Consider the four data points shown in the below. The data points at (1,1) and (1,3) belong to the class labeled y = 1, while the data points at (3,1) and (3,3) belong to the class labeled y = -1.

a) A decision boundary at $x_1 = 2$ can be expressed as the set of points that satisfy $\mathbf{x}^T \mathbf{w} = 0$, where

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \mathbf{W_0} \\ -\mathbf{W_0} \mathbf{12} \end{bmatrix}$

Find w_0, w_1, w_2 so that the set of points that satisfy $\mathbf{x}^T \mathbf{w} = 0$ correspond to the vertical line at $x_1 = 2$. Note that your answer will not be unique. Express your answer for w_1 in terms of w_0 .

b) The starting point for motivating logistic regression is to assume that $y \in \{-1, 1\}$ is a Bernoulli random variable with bias that depends on \mathbf{x} :

and

$$p(y = -1|\mathbf{x}) = \frac{1}{1 + e^{\mathbf{x}^T \mathbf{w}}}$$

Find an expression for the likelihood $L(\mathbf{w}) = p(y_1, y_2, y_3, y_4)$ given the data in the figure, and assuming (i) independence and (ii) that \mathbf{w} is restricted to correspond to the result from (a).

$$1 \text{ of } 2$$
 $L(W) = \left(\frac{1}{1 + e^{-W_0/2}}\right)^4$

- d) Recall that we are usually interested in maximizing the likelihood L(w), or equivalently minimizing the negative log-likelihood. Does the likelihood have a maximum value in this case? No (larger two \rightarrow smaller denominator \rightarrow larger L(w))
- e) Sketch or describe the estimate of $p(y=1|\mathbf{x})$ for a large w_0 over the x_1, x_2 plane.
- **2.** You collect two more labeled data points, which are show on the plot below. The points are at (1,2) and (3,2).

- a) As before, find an expression for the likelihood L(w), under the restriction that the decision boundary is a vertical line at $x_1 = 2$.
- **b)** Maximize the likelihood function to specify **w** (note: you may need to use a computer to find an explicit answer, alternatively, you may leave your answer in a simple, but not explicit, analytic form).
- c) Sketch or describe the estimate of p(y=1|x) over the x_1, x_2 plane, and describe the effect of changing w_0 on the surface. How does this compare to your result from problem 1? There's a fixed value of Wo that minimizes L(W

$$\frac{d}{dx} L(x) = -\frac{(e^{x/2}-2)e^{2x}}{(e^{x/2}-1)e^{x}} \rightarrow \text{ root at } x=2 \ln(2)$$

$$\therefore Wo = 1/2 \text{ maximizes likelihood}$$