Global Gene Expression in Autism Spectrum Disorder

Background

- Collection of rare variants distributed across many genes that confer the manifestation of ASD
- No secure molecular diagnostic tool for ASD and therapy targets

Question: What is the predictive power of a gene expression model combining two, independent datasets and can it successfully act as a molecular diagnostic tool for ASD in other gene expression datasets?

- Evaluate differential gene expression with variables: diagnosis, age, and batch.
- 2. Combine datasets to validate and improve predictive model with gene expression signatures.

Datasets:

- Expression profiling by microarray (Affymetrix Human Genome U133 Plus 2.0 Array Platform)
- 54,613 genes, 245 samples
 1. Kong et al.(2012): entire peripheral blood
 Samples= 99
 (66 autism, 33 control)
 - 2. Alter et al. (2011):

 peripheral blood
 lymphocytes,

 Samples = 146
 (82 autism, 64 control)
- Ages 1-17.5 years (mean = 6.4 years)

diagnosis

AUTISM

CONTROL

Description of data

log2 transformation

GSE70213 log transformed - Histogram

GSE25507 log transformed - Histogram

Quantile normalization

Variables in Metadata

1. Diagnosis is a categorical variable with two levels(autism and control).

2. Batch is a categorical variable with three levels(batch 1, batch 2 and none)

- 3. Age is a continuous variable.
 - 15 missing values
 - Multiple imputations for missing values

Principal Component Analysis

Goal: We want to use PCA to identify whether there is a batch effect of our combined data.

Limma analysis

Search for statistically relevant differentially expressed genes via a linear model fit

(probe 234789_at maps to an unknown gene)

Clustering heatmap of top genes

Cluster of patient samples with autism having relative increased expression of MALAT1 PCM1 234789 at

MALAT1

https://www.ncbi.nlm.nih.gov/pubmed/22960213

PCM1

https://www.ncbi.nlm.nih.gov/pubmed/26883496

Top 13 "statistically relevant" genes

PNN pinin, desmosome associated protein

LUC7L LUC7 like

LUC7L3 LUC7 like 3 pre-mRNA splicing factor

TIGD1 tigger transposable element derived 1

MALAT1 metastasis associated lung adenocarcinoma transcript 1

MLLT6 MLLT6, PHD finger containing

TLL2 tolloid like 2

HIST1H2BG histone cluster 1 H2B family member g

PCM1 pericentriolar material 1

HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2/B1

ORMDL1 ORMDL sphingolipid biosynthesis regulator 1

GSAP gamma-secretase activating protein

AC092718.4 (unknown gene transcript)

DAVID: (KEGG-pathway) gene function classification

01

onally

50:0070062

catalyti

9971

989939

histone cluster 1 H2B family member g(HIST1H2BG) LUC7 like 3 pre-mRNA splicing factor (LUC7L3) heterogeneous nuclear ribonucleoprotein A2/B1(HNRNPA2B1) pinin, desmosome associated protein (PNN)

icing, via spliceosome
GO:0016020~membrane
GO:0005634~nucleus
DNA-binding
DNA-binding
Methylation
mRNA processing
mRNA processing
mRNA splicing
ubl conjugation
Obl conjugation
Acetylation
Acetylation
Acetylation

50:0044822

HIST1H2BG gene related to histone function/formation

LUC7L3, HNRNPA2B1,PNN genes associated with mRNA splicing functions in the nucleus

Machine Learning

Goal: build a binary classifier that predicts diagnosis based on the gene expression profile of a patient.

Motivation: LASSO or Elastic Net regularizer produce sparse solutions

Analysis: compare the genes selected by different models with the statistically relevant genes.

Results - accuracy

Linear SVM trained with Stochastic Gradient Descent: 75% classification accuracy using 39 genes

Logistic Regression: 84% classification accuracy using 50 genes

(Ran the training overnight, maximum 100 iterations for every model, store the model with the highest accuracy every 100 epochs. Run 4-fold cross-validation first to determine the regularization strength.)

Results - matching genes

Logistic reg. vs SGD	Logistic reg. vs Stat	SGD vs Stat	All
GATA2	AC092718.4	HISTH2BG	
CXCR3	PCM1		
STATH	ORMDL1		
MMP27			

Results

Matching genes seem uncorrelated to each other

Matching genes seem too unspecific:

- HISTH2BG: histone-coding proteins
- GATA2: transcription factor whose mutation is associated with a wide range of diseases)

Models offer promising results and high classification accuracy - overfitting?

Multifunctional Bias

Spearman's correlation

- r = -0.00496...
- No/weak
 monotonic
 relationship
 between variables
 (MF scores &
 genes)
- Weak multifunctional bias

Geneset Enrichment Analysis

Precision-Recall Method

```
## # A tibble: 3,494 x 12
                                                       NumProbes NumGenes RawScore Pval CorrectedPvalue MFPvalue
##
                  Name TD
                                                                                               <dbl> <dbl > <dbl > <dbl > <db > <bb > <db > </d> </db >  
##
             (chr) (chr) (dbl)
                                                                                                                                                                                                     <dbl>
                                                                                                                                                                                                                              <db1>
           1 erro~ GO:0~
                                                                            20
                                                                                                         20
                                                                                                                       0.0517 0.0004
                                                                                                                                                                                                                       0.000300
            2 nucl~ GO:0~ 36
                                                                                                        36
                                                                                                                       0.0308 0.0007
                                                                                                                                                                                                                       0.000600
##
          3 DNA ~ GO:0~ 191
                                                                                                     191
                                                                                                                       0.0194 0.0007
                                                                                                                                                                                                    0.781 0.000600
            4 regu~ GO:2~ 102
                                                                                                     102
                                                                                                                       0.0178 0.0009
                                                                                                                                                                                                    0.502 0.0007
            5 posi~ GO:2~ 62
                                                                                                        62 0.0225 0.0009
                                                                                                                                                                                                    0.431 0.0008
            6 thyr~ GO:0~ 21
                                                                                                        21 0.0458 0.0009
                                                                                                                                                                                                    0.754 0.0009
           7 telo~ GO:0~ 22
                                                                                                        22
                                                                                                                       0.0473 0.0009
                                                                                                                                                                                                    0.603 0.0009
           8 nucl~ GO:0~ 106
                                                                                                     106 0.0173 0.0014
                                                                                                                                                                                                    0.521 0.0009
           9 nucl~ GO:0~ 24
                                                                                       24 0.0439 0.00120
                                                                                                                                                                                                    0.502 0.00120
## 10 DNA-~ GO:0~
                                                                                                     110 0.0172 0.0022
                                                                         110
                                                                                                                                                                                                    0.567 0.00120
## # ... with 3,484 more rows, and 4 more variables: CorrectedMFPvalue <dbl>,
                 Multifunctionality <dbl>, `Same as` <chr>, GeneMembers <chr>
```

MF scores: 0.528-0.929

GO Terms Multifunctionality Adjustment

Largest adjustment = 0.471

 No large losses to statistical significance of GO terms with multifunctionality adjustment

GO Terms

ID	Term		
GO:2000573	positive regulation of DNA biosynthetic process		
GO:0006296	nucleotide-excision repair, DNA incision, 5'-to lesion		
GO:0006260	DNA replication		
GO:0042276	error-prone translesion synthesis		
GO:2000278	regulation of DNA biosynthetic process		
GO:0030878	thyroid gland development		
GO:0006297	nucleotide-excision repair, DNA gap filling		
GO:0006261	DNA-dependent DNA replication		
GO:0006289	nucleotide-excision repair		
GO:0000723	telomere maintenance		

- DNA regulation
- No ML genes in enriched GO terms

GATA2 : chromosome 3 → loss GATAD2B (gene family)*

CXCR3: chromosome x (chemokine)--> upregulated signaling in ASD

https://patentimages.storage.googleapis.com/88/a1/6a/8397de58196fa9/US20070048801A1.pdf

STATH (statherin): chromosome 4 → peptide with reduced phosphate group (than control) (https://www.spectrumnews.org/news/search-for-autism-biomarkers-turns-to-saliva/)

MMP27: chromosome 11 → gain *

^{*} https://www.malacards.org/card/autism?limit[RelatedGenes]=158&limit[CnvdVariations]=2458

Question: What is the predictive power of a gene expression model combining two, independent datasets and can it successfully act as a molecular diagnostic tool for ASD in other gene expression datasets?

There is promise in applying machine learning to develop a molecular diagnostic tool to test for ASD via a gene expression profile.

Limitations:

- Incomplete data sets (unmatched gene IDS)
- Cell heterogeneity → couldn't control proportional difference in peripheral blood lymphocytes vs. all peripheral blood cells
 - Method used only in single-cell studies and epigenome-wide association studies.
- Relative low fold change of differentially expressed genes, questionable statistical significance