```
In [119]:
            import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            import seaborn as sns
In [120]:
            stroke_data = pd.read_csv('C:/Users/nebar/Downloads/stroke data.csv')
In [121]: stroke_data.head()
Out[121]:
                id gender
                           age married hypertension heart_disease occupation residence metric_1 metric_2 metric_3 metri
                                                   0
                                                                 0
                                                                                             95.12
                                                                                                                   1
                                                                                                                         9
             0
                1
                     Male
                            3.0
                                     No
                                                                             Α
                                                                                    Rural
                                                                                                        18.0
                2
                           58.0
                                                                             В
                                                                                             87.96
             1
                     Male
                                    Yes
                                                   1
                                                                 0
                                                                                   Urban
                                                                                                        39.2
                                                                                                                   1
                                                                                                                         9
                  Female
                            8.0
                                     No
                                                   0
                                                                 0
                                                                             В
                                                                                   Urban
                                                                                            110.89
                                                                                                        17.6
                   Female 70.0
                                                   0
                                                                 0
                                                                             В
                                                                                    Rural
                                                                                             69.04
                                                                                                                   0
                                                                                                                         9
                                    Yes
                                                                                                        35.9
                5
                     Male 14.0
                                     No
                                                   0
                                                                 0
                                                                             С
                                                                                    Rural
                                                                                            161.28
                                                                                                        19.1
                                                                                                                         9
In [122]:
            #Since id has no statistical value other than identifying each patient we have to drop it
            stroke data.drop("id",axis = 1, inplace = True)
            stroke_data.describe()
Out[122]:
                                                                              metric_2
                                                                                                         metric_4
                            age
                                 hypertension heart_disease
                                                                 metric_1
                                                                                            metric_3
                                                                                                                       meti
             count 43400.000000
                                 43400.000000
                                               43400.000000 43400.000000
                                                                          41938.000000
                                                                                       43400.000000
                                                                                                     43400.000000
                                                                                                                  43400.00
             mean
                      42.261212
                                     0.093571
                                                   0.047512
                                                               104.482750
                                                                             28.605038
                                                                                            0.289931
                                                                                                        97.526855
                                                                                                                     104.48
               std
                      23.438911
                                     0.291235
                                                   0.212733
                                                                43.111751
                                                                              7.770020
                                                                                            0.453735
                                                                                                         1.466703
                                                                                                                      43.11
                      -10.000000
                                     0.000000
                                                   0.000000
                                                                55.000000
                                                                             10.100000
                                                                                            0.000000
                                                                                                        87.420000
                                                                                                                      55.00
              min
                      24.000000
                                     0.000000
                                                   0.000000
                                                                                            0.000000
                                                                                                        96.590000
              25%
                                                                77.540000
                                                                             23,200000
                                                                                                                      77.54
                      44.000000
                                                                             27.700000
              50%
                                     0.000000
                                                   0.000000
                                                                91.580000
                                                                                            0.000000
                                                                                                        97.610000
                                                                                                                      91.58
              75%
                      60.000000
                                     0.000000
                                                   0.000000
                                                               112.070000
                                                                             32.900000
                                                                                            1.000000
                                                                                                        98.700000
                                                                                                                     112.07
                    1000.000000
                                                              291.050000
                                                                             97.600000
                                                                                            1.000000
                                                                                                       100.000000
              max
                                     1.000000
                                                   1.000000
                                                                                                                     291.05
            stroke_data.isnull().sum()
In [123]:
Out[123]:
            gender
                                     0
                                     0
            age
                                     0
            married
            hypertension
                                     0
            heart_disease
                                     0
            occupation
                                     0
            residence
                                     0
            metric_1
                                     0
            metric_2
                                  1462
                                     0
            metric 3
            metric 4
                                     0
                                     0
            metric_5
                                 13292
            smoking_status
            stroke
                                     0
            dtype: int64
```

```
In [124]:
          #To get missing numerical values and count
           num_vars= stroke_data.columns[stroke_data.dtypes != 'object']
           stroke_data[num_vars].isnull().sum()
Out[124]: age
                               0
           hypertension
                               0
           heart_disease
                               0
           metric_1
                               0
           metric_2
                            1462
           metric_3
                               0
                               0
           metric 4
           metric 5
                               0
           stroke
           dtype: int64
In [125]: #To get missing categorical values and count
           cat_vars= stroke_data.columns[stroke_data.dtypes == 'object']
           stroke_data[cat_vars].isnull().sum()
Out[125]: gender
                                 0
          married
                                 0
           occupation
                                 0
           residence
                                 0
           smoking_status
                             13292
           dtype: int64
In [126]: | gender_count = stroke_data["gender"].value_counts()
           gender_count
Out[126]: Female
                     25665
                     17724
           Male
           Other
                        11
           Name: gender, dtype: int64
In [127]: | sns.countplot(data = stroke_data, x='gender')
Out[127]: <AxesSubplot:xlabel='gender', ylabel='count'>
              25000
             20000
           # 15000
             10000
              5000
                         Male
                                       Female
                                                       Other
                                       gender
```

```
In [128]: sns.countplot(x='gender',hue = 'stroke',data = stroke_data)
```

Out[128]: <AxesSubplot:xlabel='gender', ylabel='count'>


```
In [129]: sns.countplot(x='married',hue = 'stroke',data = stroke_data)
```

Out[129]: <AxesSubplot:xlabel='married', ylabel='count'>


```
In [130]: sns.countplot(x='hypertension',hue = 'stroke',data= stroke_data)
```

Out[130]: <AxesSubplot:xlabel='hypertension', ylabel='count'>


```
In [131]: sns.countplot(x='heart_disease',hue ='stroke',data= stroke_data)
```

Out[131]: <AxesSubplot:xlabel='heart_disease', ylabel='count'>


```
In [38]: sns.countplot(x='occupation',hue ='stroke',data= stroke_data)
```

Out[38]: <AxesSubplot:xlabel='occupation', ylabel='count'>


```
In [132]: sns.countplot(x='residence',hue ='stroke',data= stroke_data)
```

Out[132]: <AxesSubplot:xlabel='residence', ylabel='count'>


```
In [133]:
           smoke_count = stroke_data["smoking_status"].value_counts()
           smoke_count
Out[133]: never smoked
                               16053
                                7493
           formerly smoked
           smokes
                                6562
           Name: smoking_status, dtype: int64
In [134]: | sns.countplot(data= stroke_data,x='smoking_status',hue ='stroke')
Out[134]: <AxesSubplot:xlabel='smoking_status', ylabel='count'>
              16000
                                                            stroke
                                                              0
              14000
                                                               1
              12000
              10000
               8000
               6000
               4000
               2000
                 0
                      never smoked
                                     formerly smoked
                                                       smokes
                                     smoking_status
In [135]:
          #number of patients who had stroke
           stroke_count = stroke_data["stroke"].value_counts()
           stroke_count
Out[135]: 0
                42617
                  783
           1
           Name: stroke, dtype: int64
In [136]: sns.countplot(x= 'stroke',data=stroke_data)
Out[136]: <AxesSubplot:xlabel='stroke', ylabel='count'>
              40000
              35000
              30000
              25000
              20000
              15000
              10000
               5000
                 0
                                                      1
                                         stroke
```

```
In [137]: sns.displot(stroke_data['age'])
plt.xlim(0,100)
```

Out[137]: (0.0, 100.0)

In [138]: #There are some outliers which shows cases of stroke in patients younger than 30 #which might be other underlying diseases or error during data entry sns.boxplot(x='stroke',y='age',data=stroke_data) #Age range starts at -15 because during summarizing the data, the minimum age is -10 which might plt.ylim(-15,100)

Out[138]: (-15.0, 100.0)


```
In [139]: sns.displot(stroke_data['metric_1'])
```

Out[139]: <seaborn.axisgrid.FacetGrid at 0x1b0e9d95f70>


```
In [140]: sns.boxplot(data= stroke_data,x ='stroke',y='metric_1')
plt.ylim(0,300)
```

Out[140]: (0.0, 300.0)


```
In [146]: stroke_data['metric_2'].fillna(stroke_data['metric_2'].mean(),inplace= True)
sns.displot(stroke_data['metric_2'])
```

Out[146]: <seaborn.axisgrid.FacetGrid at 0x1b0e6136520>


```
In [143]: sns.boxplot(x ='stroke',y='metric_2',data= stroke_data)
plt.ylim(0,100)
```

Out[143]: (0.0, 100.0)


```
In [145]: sns.countplot(x ='metric_3',hue= 'stroke',data= stroke_data)
```

Out[145]: <AxesSubplot:xlabel='metric_3', ylabel='count'>


```
In [87]: sns.displot(stroke_data['metric_4'])
```

Out[87]: <seaborn.axisgrid.FacetGrid at 0x1b0e751ad90>


```
In [91]: sns.boxplot(x='stroke',y='metric_4',data= stroke_data)
```

Out[91]: <AxesSubplot:xlabel='stroke', ylabel='metric_4'>

In [92]: sns.displot(stroke_data['metric_5'])

Out[92]: <seaborn.axisgrid.FacetGrid at 0x1b0e75640a0>

In [93]: sns.boxplot(x='stroke',y='metric_5',data= stroke_data)

Out[93]: <AxesSubplot:xlabel='stroke', ylabel='metric_5'>


```
In [148]: stroke_data.corr()
```

Out[148]:

	age	hypertension	heart_disease	metric_1	metric_2	metric_3	metric_4	metric_5	stroke
age	1.000000	0.264053	0.244279	0.226538	0.337114	0.000002	-0.005108	0.226538	0.149678
hypertension	0.264053	1.000000	0.119777	0.160211	0.153779	-0.002164	0.012179	0.160211	0.075332
heart_disease	0.244279	0.119777	1.000000	0.146938	0.054133	-0.006168	0.001507	0.146938	0.113763
metric_1	0.226538	0.160211	0.146938	1.000000	0.184199	-0.008735	-0.005511	1.000000	0.078917
metric_2	0.337114	0.153779	0.054133	0.184199	1.000000	-0.003122	0.000975	0.184199	0.018407
metric_3	0.000002	-0.002164	-0.006168	-0.008735	-0.003122	1.000000	-0.007261	-0.008735	-0.003440
metric_4	-0.005108	0.012179	0.001507	-0.005511	0.000975	-0.007261	1.000000	-0.005511	380800.0-
metric_5	0.226538	0.160211	0.146938	1.000000	0.184199	-0.008735	-0.005511	1.000000	0.078917
stroke	0.149678	0.075332	0.113763	0.078917	0.018407	-0.003440	-0.008088	0.078917	1.000000

In [149]:

```
from sklearn.preprocessing import LabelEncoder
cols = stroke_data.select_dtypes(include=['object']).columns
x= LabelEncoder()
stroke_data[cols]= stroke_data[cols].apply(x.fit_transform)
stroke_data.head()
```

Out[149]:

	gender	age	married	hypertension	heart_disease	occupation	residence	metric_1	metric_2	metric_3	metric_4
0	1	3.0	0	0	0	0	0	95.12	18.0	1	99.35
1	1	58.0	1	1	0	1	1	87.96	39.2	1	99.70
2	0	8.0	0	0	0	1	1	110.89	17.6	0	96.35
3	0	70.0	1	0	0	1	0	69.04	35.9	0	95.52
4	1	14.0	0	0	0	2	0	161.28	19.1	1	95.10
4											•

In [150]: #After changing the categorical data to numeric in order to see the whole variables correlation stroke_data.corr()

Out[150]:

	gender	age	married	hypertension	heart_disease	occupation	residence	metric_1	metr
gender	1.000000	-0.028438	-0.031351	0.023709	0.082061	-0.036784	0.001508	0.035465	-0.02
age	-0.028438	1.000000	0.665224	0.264053	0.244279	0.433214	-0.000605	0.226538	0.33
married	-0.031351	0.665224	1.000000	0.176575	0.128833	0.367858	0.004422	0.153607	0.33
hypertension	0.023709	0.264053	0.176575	1.000000	0.119777	0.108407	-0.003124	0.160211	0.15
heart_disease	0.082061	0.244279	0.128833	0.119777	1.000000	0.079233	-0.002743	0.146938	0.05
occupation	-0.036784	0.433214	0.367858	0.108407	0.079233	1.000000	-0.003625	0.095049	0.24
residence	0.001508	-0.000605	0.004422	-0.003124	-0.002743	-0.003625	1.000000	0.000014	-0.00
metric_1	0.035465	0.226538	0.153607	0.160211	0.146938	0.095049	0.000014	1.000000	0.18
metric_2	-0.021570	0.337114	0.337517	0.153779	0.054133	0.245115	-0.003685	0.184199	1.00
metric_3	-0.008886	0.000002	0.005611	-0.002164	-0.006168	-0.001977	-0.007895	-0.008735	-0.00
metric_4	0.002863	-0.005108	-0.001890	0.012179	0.001507	0.002514	-0.005431	-0.005511	0.00
metric_5	0.035465	0.226538	0.153607	0.160211	0.146938	0.095049	0.000014	1.000000	0.18
smoking_status	0.042775	-0.365058	-0.303543	-0.118643	-0.066340	-0.242066	0.001532	-0.096956	-0.24
stroke	0.011198	0.149678	0.071920	0.075332	0.113763	0.045946	0.002247	0.078917	0.01

```
In [155]: lm.intercept_
```

Out[155]: 0.05422372147345281

```
In [157]: lm.score(z,stroke_data['stroke'])
```

Out[157]: 0.0335719248062033