Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 2

Abgabe auf Moodle bis zum 8. Mai

Jede Aufgabe ist vier Punkte wert. Wir schreiben $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ mit einem Symbol ∞ .

6. Aufgabe: Den projektiven Raum $\mathbb{P}^1(\mathbb{C})$ kann man definieren als Menge der eindimensionalen Unterräume von \mathbb{C}^2 , also

$$\mathbb{P}^1(\mathbb{C}) = \{ \mathbb{C} \cdot v \mid 0 \neq v \in \mathbb{C}^2 \} .$$

Die Gruppe $G=\mathrm{GL}(2,\mathbb{C})$ operiert auf $\mathbb{P}^1(\mathbb{C})$ durch $M(\mathbb{C}\cdot v):=\mathbb{C}\cdot Mv$ für $M\in G$. Zeigen Sie:

- (a) Es gibt eine eindeutige Bijektion $\varphi: \widehat{\mathbb{C}} \to \mathbb{P}^1(\mathbb{C})$ sodass $\varphi(z) = \mathbb{C} \cdot (\frac{z}{1})$ für $z \in \mathbb{C}$.
- (b) Es gilt $M\varphi(z) = \varphi(M\langle z\rangle)$ für alle $z \in \widehat{\mathbb{C}}$ und alle $M \in G$.

Lösungskizze: a) Setze $\varphi(\infty) := \mathbb{C}(\frac{1}{0})$. Die Umkehrabbildung ist $\varphi^{-1}(\mathbb{C} \cdot v) = v_1/v_2$, falls $v_2 \neq 0$ und $\varphi^{-1}(\mathbb{C} \cdot v) = \infty$ falls $v_2 = 0$. Eindeutigkeit folgt, weil φ auf allen bis auf einem Element festgelegt ist. b) Hier unterscheidet man die Fälle $z \in \mathbb{C}$ und $z = \infty$. In beiden Fällen kann man die Aussage einfach nachrechnen.

- 7. Aufgabe: Eine Matrix $H \in GL(2,\mathbb{C})$ heißt hermitesch falls $\overline{H} = H'$.
 - (a) Zeigen Sie, dass jede hermitesche Matrix H eine reelle Determinante hat.
 - (b) Jede hermitesche Matrix H mit $\det(H) < 0$ definiert einen verallgemeinerten Kreis

$$\{\mathbb{C}\cdot v\in\mathbb{P}^1(\mathbb{C})\mid \overline{v}'Hv=0\}\ .$$

Zeigen Sie, dass zwei hermitesche Matrizen H_1 und H_2 mit negativer Determinante genau dann denselben Kreis definieren, wenn $H_1 = \mu H_2$ mit $\mu \in \mathbb{R}^{\times}$.

Bemerkung: Wenn $\det(H) > 0$ positiv wäre, dann wäre der "Kreis" die leere Menge. **Lösung:** a) Es gilt $\det(H) = \det(H') = \det(\overline{H}) = \overline{\det(H)}$, also $\det(H) \in \mathbb{R}$. b) Sei $H_i = (\frac{\alpha_j}{z_j} \frac{z_j}{\beta_j})$ für j = 1, 2 mit reellen α_j, β_j und komplexen z_j . Die Kreisgleichung $\overline{v}'Hv = 0$ für $v \in \mathbb{C}^2$ lautet ausgeschrieben

$$\alpha_j ||v_1||^2 + \beta_j ||v_2||^2 + \text{Re}(v_1 \overline{v_2} z_j) = 0.$$

Möbius-Transformationen operieren transitiv auf den Kreisen. Wir können also annehmen, dass H_1 und H_2 beide den Kreis $\mathbb{R} \cup \{\infty\}$ beschreiben. [Wenn das nicht so ist, ersetzen wir H_1 und H_2 durch $M \langle H_1 \rangle = \overline{M}' H_1 M$ und $\overline{M}' H_2 M$ für geeignetes $M \in \mathrm{GL}(2,\mathbb{C})$. Beachte dass die Konstante μ mit M vertauscht.] Der Kreis $\mathbb{R} \cup \{\infty\}$ ist im projektiven Raum gegeben durch $\{\mathbb{C} \cdot v \in \mathbb{P}^1(\mathbb{C}) \mid 0 \neq v \in \mathbb{R}^2\}$ nach Aufgabe 6. Im Kreis sind $\mathbb{C} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $\mathbb{C} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ enthalten, also sind $\alpha_j = 0$ und $\beta_j = 0$ für j = 0, 1. Weiterhin gilt $\mathrm{Re}(v_1\overline{v_2}z_j) = 0$ für alle $0 \neq v \in \mathbb{R}^2$. Also ist $z_j \in i\mathbb{R}$ rein imaginär für j = 1, 2. Damit ist H_1 ein reelles Vielfaches von H_2 .

8. Aufgabe: Sei $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ der Einheitskreis und seien $z_0, w_0 \in \widehat{\mathbb{C}}$ feste Punkte mit $z_0, w_0 \notin S^1$. Zeigen Sie: Es gibt $M \in GL(2, \mathbb{C})$ mit $M\langle S^1 \rangle = S^1$ und $M\langle w_0 \rangle = z_0$.

Hinweis: Lösen Sie die entsprechende Aufgabe für den Kreis $\mathbb{R} \cup \{\infty\}$ anstelle von S^1 . Benutzen Sie dann die Cayley-Transformation.

Lösung: Wir konstruieren $N \in GL(2,\mathbb{C})$ mit $N \langle \mathbb{R} \cup \{\infty\} \rangle = \mathbb{R} \cup \{\infty\}$ und $N \langle w_0' \rangle = \langle z_0' \rangle$ für $w_0' = C \langle w_0 \rangle$ und $z_0' = C \langle z_0 \rangle$ mit der Cayley-Transformation $C = \begin{pmatrix} -i & 1 \\ 1 & -i \end{pmatrix}$. Die erste Bedingung $N \langle \mathbb{R} \cup \{\infty\} \rangle = \mathbb{R} \cup \{\infty\}$ wird erfüllt von allen $N \in GL(2,\mathbb{R})$. Setze jetzt

$$N = \begin{pmatrix} \operatorname{Im}(z_0') \operatorname{Re}(z_0') \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \operatorname{Im}(w_0') \operatorname{Re}(w_0') \\ 0 & 1 \end{pmatrix}^{-1} \quad \text{und} \quad M = C^{-1}NC \ .$$

9. Aufgabe: Seien $z_n \to z$ und $w_n \to w$ konvergente Folgen komplexer Zahlen. Zeigen Sie: Die Folge $z_n w_n$ konvergiert für $n \to \infty$ gegen zw.

Hinweis: Zerlegen Sie in Real- und Imaginärteil und verwenden Sie die entsprechende Aussage aus der reellen Analysis.

Lösung: Eine komplexe Folge konvergiert genau dann, wenn Real- und Imaginärteil konvergieren. Wir setzen z = x + iy und w = u + iv und entsprechend für die Folgen. Nach Annahme konvergieren die reellen Folgen $u_n \to u$, $v_n \to v$, $x_n \to x$ und $y_n \to y$. Nach den bekannten Sätzen der reellen Analysis ist die reelle Addition und Multiplikation stetig, also konvergieren $\operatorname{Re}(z_n w_n) = (x_n u_n - y_n v_n)$ gegen $xu - yv = \operatorname{Re}(zw)$ und $\operatorname{Im}(z_n w_n) = (x_n v_n + y_n u_n)$ gegen $xv + yu = \operatorname{Im}(zw)$. Insbesondere konvergiert $z_n w_n$ gegen zw.