Modern Algebra I: Problem Set 1

Nilay Kumar

Last updated: September 5, 2013

Problem 1

We wish to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Pick an element $x \in A \cap (B \cup C)$. By definition, $x \in A$ and either $x \in B$ or $x \in C$. It is clear, that one of $(A \cap B)$ or $(A \cap C)$ must contain x. Thus, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Conversely, pick an element $x \in (A \cap B) \cup (A \cap C)$. By definition, x is either in $(A \cap B)$ or $(A \cap C)$, i.e. x is either in A and B or in A and C. Hence $x \in A \cap (B \cup C)$, implying that $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$, and we are done.

Problem 2

- (a) $P({0,1}) = {\emptyset, {0}, {1}, {0,1}};$
- (b) $P(\emptyset) = {\emptyset};$
- (c) One can compute the cardinality of the power set of S by counting the number of ways one can choose subsets of S (of all possible sizes):

$$|P(S)| = \sum_{i=0}^{n} \binom{i}{n} = 2^{n}$$

by the binomial theorem (for x = y = 1).

Problem 3

Let $S = \{1, 2, 3\}$. Define $f: S \to S$ as the transposition (12), and $g: S \to S$ as the transposition (23). It's clear that g(f(1)) = 3 and f(g(1)) = 2, and hence $f \circ g \neq g \circ f$. For the case of \mathbb{R} , consider $f: \mathbb{R} \to \mathbb{R}$ by $x \mapsto x^2$ and $g: \mathbb{R} \to \mathbb{R}$ given by $x \mapsto x + 1$. Note that f(g(1)) = 4 while g(f(1)) = 2.

Problem 4

- (a) Suppose $g \circ f$ is injective; assume for the sake of contradiction that f is not injective. Then there exist a, b distinct such that f(a) = f(b). Then g(f(a)) = g(f(b)), contradicting that $g \circ f$ is injective.
- (b) Consider