VE320 Intro to Semiconductor Devices Summer 2022 — Problem Set 9

JOINT INSTITUTE 交大窓面根学院

July 28, 2022

Exercise 9.1

Assume that the subthreshold current of a MOSFET is given by

$$I_D = 10^{-15} \exp\left(\frac{V_{GS}}{(2.1)V_t}\right)$$

over the range $0 \le V_{GS} \le 1$ volt and where the factor 2.1 takes into account the effect of interface states. Assume that 10^6 identical transistors on a chip are all biased at the same V_{GS} and at $V_{DD} = 5$ V.

- (a) Calculate the total current that must be supplied to the chip at $V_{GS} = 0.5, 0.7$, and 0.9 V
 - (b) Calculate the total power dissipated in the chip for the same V_{GS} values.

Exercise 9.2

A silicon MOSFET has parameters $N_a=4\times 10^{16}~{\rm cm^{-3}}, t_{ox}=12~{\rm nm}=120 \mathring{A},~Q'_{ss}=4\times 10^{10}~{\rm cm^{-2}},$ and $\phi_{ms}=-0.5~{\rm V}.$ The transistor is biased at $V_{GS}=1.25~{\rm V}$ and $V_{SB}=0.$

- (a) Calculate ΔL for (i) $\Delta V_{DS} = 1$ V, (ii) $\Delta V_{DS} = 2$ V, and (iii) $\Delta V_{DS} = 4$ V.
- (b) Determine the minimum channel length L such that $\Delta L/L=0.12$ for $V_{GS}=1.25$ V and $\Delta V_{DS}=4$ V.

Exercise 9.3

Consider an n-channel silicon MOSFET. The parameters are $k'_n = 75\mu A/V^2$, W/L = 10, and $V_T = 0.35$ V. The applied drain-to-source voltage is $V_{DS} = 1.5$ V.

- (a) For $V_{GS}=0.8$ V, find (i) the ideal drain current, (ii) the drain current if $\lambda=0.02$ V⁻¹, and (iii) the output resistance for $\lambda=0.02$ V⁻¹.
 - (b) Repeat part (a) for $V_{GS} = 1.25 \text{ V}$.

Exercise 9.4

- (a) What is subthreshold conduction? Sketch a drain current versus gate voltage plot that shows the subthreshold current for the transistor biased in the saturation region.
- (b) What is channel length modulation? Sketch an I–V curve that shows the channel length modulation effect.
 - (c) What is velocity saturation and what is its effect on the I–V relation of a MOSFET?
- (d) Sketch the space charge region in the channel of a short-channel MOSFET and show the charge-sharing effect. Why does the threshold voltage decrease in a short-channel NMOS device?

Exercise 9.5

For a uniformly doped $\mathbf{n}^{++}\mathbf{p}^{+}\mathbf{n}$ bipolar transistor in thermal equilibrium,

- (a) sketch the energy-band diagram
- (b) sketch the electric field through the device
- (c) repeat parts (a) and (b) for the transistor biased in the forward-active region.

Exercise 9.6

What is Early effect? How to minimize it?

Exercise 9.7

- (a) From fabrication point of view, why is Si the most commonly used material in semiconductor industry nowadays?
 - (b) After this course, what did you learn about semiconductors?

Reference

1. Neamen, Donald A. Semiconductor physics and devices: basic principles. McGrawhill, 2003.