Cheat Sheet

Questions

LOGARITHMS

Given a logarithm in base a give an expression to convert it to base b?

$$y = log_a x : x = a^y$$

$$log_b x = log_b a^y = ylog_b a = log_a x log_b a$$

$$log_b x = log_a x log_b a$$

Powers

$$1. a^m \times a^n = a^{m+n}$$

$$2. a^m \div a^n = a^{m-n}$$

3.
$$a^0 = 1$$

$$a^{-m} = \frac{1}{a^m}$$

5.
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$6. a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Logarithms

$$1. \qquad log_a x y = log_a x + log_a y$$

$$2. log_a \frac{x}{y} = log_a x - log_a y$$

$$3. x^n = (a^b)^n = a^{bn}$$

$$4. \qquad log_a x^n = n \times log_a x$$

$$5. \qquad log_a a^x = x \times log_a a = x.1 = x$$

6.
$$a^{\log_a x} = x$$

7.
$$\log_a b = \frac{1}{\log_b a}$$

8.
$$\log_b x = \log_b a \times \log_a x$$

Terminology

Term	Example	Description
Expression	4x + 3	

Term	4 x + 3	A part of an expression. Note we highlighted the term 4x in the example
Coefficient	4 x + 3	The numberical multiplier in a term
Equation	4x + 3 = 2	An equation requires an equals sign
Inequality	<i>x</i> ≤ 5	
Formula	$e = mc^2$	
Function	f	
Function Value	f(x), f(1)	

Symbols

Symbol	Meaning	Example	Description
{ }	Set	{1, 2}	The set consisting of the objects 1 and 2
	Such that	$\{x x^2<2\}$	The set of all x such that $x^2 < 2$
∃	Existential qualifier (there exists)	$\exists x \in \mathbb{Z} \mid x^2 = 4$	There exists an integer x such that $x^2 = 4$
A	Univeral qualifier (for all)	$\forall x \in \mathbb{Z} \mid x^2 > 0$	For all positive integers $x, x^2 \ge 0$

Factorizing Polynomials

1. Extraction of common factors

$$35x^2y^2 - 10xy^3 = 5xy^2(7x - 2y)$$

2. Grouping

Four termed expressions can sometimes be factorized into two binomial expressions

$$2ac + 6bc + ad + 3bd = 2c(a + 3b) + d(a + 3b) = (2c + d)(a + 3b)$$

3. Standard Factors of Quadratic Polynomials

•
$$a^2 + 2ab + b^2 = (a+b)^2$$

•
$$a^2 - 2ab + b^2 = (a - b)^2$$

•
$$a^2 - b^2 = (a - b)(a + b)$$

4. Test for simple factors

A quadratic polynomial $ax^2 + bx + c$ can be written as the product of two simple factor if $b^2 - 4ac$ is a perfect square

5. Solving quadratic equations with no simple factors

$$\chi = \frac{=b \pm \sqrt{b^2 - 4ac}}{2a}$$