class tost 15/3/22

MAIII4 14/3/22

A and 9 Multiplicities; Diagonalisation; Distinct e.values -> LI e.vectors

Lemma V2 = { v e V / TCV) = W}, some ?

If $T: V \rightarrow V$ is linear and $\Lambda \in \mathbb{C}$ is an eigenvalue of T then $v_1 = \ker(\Lambda i d_V - T) = \{v \in V \mid T(v) = \Lambda v\}$ (where $(\Lambda i d_V - T): V \rightarrow V$ $v \mapsto \Lambda v - T(v)$)

Eseample $A = \begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$ Find all enables and evectors $T = T_A : \mathbb{R}^2 \to \mathbb{R}^2$ $V \mapsto AV$

 $\begin{array}{l} \text{Rer} \left(\gamma \text{ id}_{V} - T \right) = \text{null} \left(\gamma \text{ id}_{z} - A \right) \\ \text{first need } \gamma! \text{ odet } \left(\gamma I_{z} - A \right) = \text{odet} \left[\gamma - 3 \right] = 0 \\ \text{\leftarrow} > \epsilon.\text{nolm}. \\ \gamma = \pm 2\sqrt{3}!? \\ \gamma = \chi_{A}(\epsilon) = \epsilon^{2} - 12 \\ \gamma = \chi_{A}(\epsilon)$

$$V_{2\sqrt{3}'} = \left\langle \begin{bmatrix} \sqrt{3}' \\ 2 \end{bmatrix} \right\rangle , \quad V_{-2\sqrt{3}'} = \left\langle \begin{bmatrix} \sqrt{3}' \\ -2 \end{bmatrix} \right\rangle$$

$$\begin{bmatrix} 0 & 3 \\ + & 0 \end{bmatrix} \begin{bmatrix} \sqrt{3}' \\ -2 \end{bmatrix} = \begin{bmatrix} -6 \\ 4\sqrt{3}' \end{bmatrix} = -2\sqrt{3}' \begin{bmatrix} \sqrt{3}' \\ -2 \end{bmatrix}$$

Diagonalisation

Suppose $T: V \rightarrow V$ linear and suppose : $B = \{V_1, ..., V_n\}$ which is a basis of eigenvectors.

where λ : is an eigenvalue for V;

Where
$$\lambda$$
; is an eigenvalue for V ;

But $[\lambda, v_i]_{\mathcal{B}} = \begin{bmatrix} \lambda \\ 0 \end{bmatrix}$ similarly $[\lambda, v_i]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Definition

 $T:V \rightarrow V$ is diagonalisable if it is a basis of V consisting of eigenvectors of T.

Example the map
$$T_A: \mathbb{R}^2 \to \mathbb{R}^2$$
 with $A = \begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$ is a basis for \mathbb{R}^2

$$V_0 = \langle (\frac{1}{4}) \rangle$$
 $V_{-4} = \langle (\frac{2}{4}) \rangle$

check
$$\begin{bmatrix} 1 & -3 & 2 \\ -1 & -5 & 6 \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & 2 \\
-1 & -5 & 6 \\
2 & -2 & 0
\end{bmatrix}
\begin{bmatrix}
2 \\
4 \\
1
\end{bmatrix} = \begin{bmatrix}
-8 \\
-16 \\
-4
\end{bmatrix} = -4\begin{bmatrix}
2 \\
4 \\
1
\end{bmatrix}$$
So not enough eigenvectors for a basis of V .

Let T: V > V be linears Let λ be eigenvalues.

· dun V_{λ} is the goo. multiplicity of λ · the alg. multiplicity is the largest k with $\chi_{\tau}(t)$ divisible by $(\lambda - \xi)$

Remark: Meither of these numbers are O. If I is an eigenvolve

- · There exists a non-zero eigenvectors => Vn +0
- $(n-\epsilon)$ is always a factor of $\chi_A(\epsilon)$ since $\chi_A(\epsilon) = 0$