Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) In a communication system having a signaling path in a wireless link between a first station and a second station, a \underline{A} method for adapting to rapid changes affecting the \underline{a} signaling path in a wireless link, comprising:

in at least one station, calculating a metric of a modulated signal indicative of motion of at least one of the station[[s]] in the link or motion of objects in the signaling path as a function of a change in at least one modulation attribute of the modulated signal transmitted across the wireless link, the modulation attribute being at least one of amplitude, frequency, and phase between the first and second stations; and

adjusting at least one parameter of the wireless link based at least on the metric to compensate for the rapid changes affecting the signaling path.

- 2. (Currently amended) The method as claimed in Claim 1, wherein the first station is a base station and the second station is a mobile station, the metric being is calculated by the <u>a</u> mobile station.
 - 3. (Canceled)
 - 4. (Canceled)

5. (Currently amended) The method as claimed in Claim 1, wherein the metric is computed from a signal in an automatic gain control (AGC) loop in a receiver unit in one of the stations.

- 6. (Original) The method as claimed in Claim 5, wherein the metric is a function of a statistic of the signal in the AGC loop.
- 7. (Original) The method as claimed in Claim 6, wherein the statistic is variance.
- 8. (Currently amended) The method as claimed in Claim 1, wherein the metric is computed from a phase error signal produced by a delay lock loop, matched filter, or correlator in a receiver unit in one of the stations.
- 9. (Original) The method as claimed in Claim 8, wherein the metric is a function of a statistic of the phase error signal.
- 10. (Original) The method as claimed in Claim 9, wherein the statistic is variance.
- 11. (Currently amended) The method as claimed in Claim 1, wherein the metric is computed from a frequency error signal in a frequency control loop in a receiver unit in one of the stations.
- 12. (Original) The method as claimed in Claim 11, wherein the metric is a function of a statistic of the frequency error signal.

- 13. (Original) The method as claimed in Claim 12, wherein the statistic is variance.
- 14. (Original) The method as claimed in Claim 1, further including comparing the metric to a threshold level.
- 15. (Currently amended) The method as claimed in Claim 1, wherein the at least one station has an antenna with an antenna mode, the antenna mode being changeable between modes, and wherein the step of adjusting the at least one parameter of the wireless link comprises changing the an antenna mode.
- 16. (Currently amended) The method as claimed in Claim 15, wherein changing an antenna mode comprises changing the antenna mode changes from directive to omni-directional.
- 17. (Currently amended) The method as claimed in Claim 15, wherein changing an antenna mode comprises changing the antenna mode changes from omni-directional to directive.
- 18. (Previously Presented) The method as claimed in Claim 1, wherein the at least one parameter includes at least one of the following: a data transfer rate, a power level, an FEC coding rate, a modulation attribute, or an antenna characteristic.
- 19. (Previously Presented) The method as claimed in Claim 18, wherein adjusting the at least one parameter includes reducing at least one of the following

to a minimum level: the data transfer rate, the FEC coding rate, or the modulation attribute.

20. (Canceled)

21. (Currently amended) In a communication system having a signaling path in a wireless link between a first station and a second station, an An apparatus for adapting to rapid changes affecting the <u>a</u> signaling path <u>in a wireless link</u>, comprising:

in at least one station, a processing unit to calculate a metric of a modulated signal indicative of motion of at least one of the <u>a</u> station[[s]] or motion of objects in the signaling path as a function of a change in at least one modulation attribute of the modulated signal transmitted across the wireless link, the modulation attribute being at least one of amplitude, frequency, and phase between the first and second stations; and

a compensator to adjust at least one parameter of the wireless link based on at least the metric to compensate for the rapid changes affecting the signaling path.

- 22. (Currently amended) The apparatus as claimed in Claim 21, wherein the first station is a base station and the second station is a mobile station, the processing unit being is located in the a mobile station.
 - 23. (Canceled)
 - 24. (Canceled)

- 25. (Currently amended) The apparatus as claimed in Claim 21, wherein the processing unit computes the metric from a signal in an automatic gain control (AGC) loop in a receiver unit in one of the stations.
- 26. (Original) The apparatus as claimed in Claim 25, wherein the metric is a function of a statistic of the signal in the AGC loop.
- 27. (Original) The apparatus as claimed in Claim 26, wherein the statistic is variance.
- 28. (Currently amended) The apparatus as claimed in Claim 21, wherein the processing unit is configured to compute[[s]] the metric from a phase error signal produced by a delay lock loop, matched filter, or correlator in a receiver unit in one of the stations.
- 29. (Original) The apparatus as claimed in Claim 28, wherein the metric is a function of a statistic of the phase error signal.
- 30. (Original) The apparatus as claimed in Claim 29, wherein the statistic is variance.
- 31. (Currently amended) The apparatus as claimed in Claim 21, wherein the processing unit is configured to compute[[s]] the metric from a frequency error signal in a frequency control loop in a receiver unit in one of the stations.
- 32. (Original) The apparatus as claimed in Claim 31, wherein the metric is a function of a statistic of the frequency error signal.

33. (Original) The apparatus as claimed in Claim 32, wherein the statistic

is variance.

34. (Currently amended) The apparatus as claimed in Claim 21, wherein

the processing unit is configured to further compare[[s]] the metric to a threshold

level.

35. (Currently amended) The apparatus as claimed in Claim 21,

additionally comprising an antenna having an a changeable antenna mode, that is

capable to be changed and wherein the compensator is configured to change the

changes an antenna mode.

36. (Currently amended 1) The apparatus as claimed in Claim 35, wherein

the antenna is configured to change the mode changes from directive to omni-

directional.

37. (Currently amended) The apparatus as claimed in Claim 35, wherein

the antenna is configured to change the mode changes from omni-directional to

directive.

38. (Previously Presented) The apparatus as claimed in Claim 21, wherein

the at least one parameter includes at least one of the following: a data transfer

rate, a power level, an FEC coding rate, a modulation attribute, or an antenna

characteristic.

-7-

- 39. (Currently amended) The apparatus as claimed in Claim 38, wherein the compensator is configured to reduce[[s]] at least one of the following to a minimum level: the data transfer rate, the FEC coding rate, or the modulation attribute.
 - 40. (Canceled)
 - 41. (Canceled)
- 42. (Currently amended) A computer-readable medium having stored thereon sequences of computer readable instructions, the sequences of instructions including instructions that, when executed by a computer processor, cause the processor to control a signaling path in a wireless link between a first station and a second station, to adapt to rapid changes affecting the signaling path, the instructions further causing the processor to perform:

in at least one station, calculating calculate a metric of a modulated signal indicative of motion of at least one of the station[[s]] in the link or motion of objects in the signaling path as a function of a change in at least one modulation attribute of the modulated signal transmitted across the wireless link, the modulation attribute being at least one of amplitude, frequency, and phase between the first and second stations; and

adjusting a least one parameter of the wireless link based on at least the metric to compensate for the rapid changes affecting the signaling path.