部分习题参考答案

第1章

- 1.1 70 W
- 1.2 P1=300 W(发出), P2=100 W(吸收), P3=280W(吸收), P4=32W(发出), P5=48W(发出)。
- 1.4 $\stackrel{\text{def}}{=} 0 \le t \le 2 \text{ms}$, u(t) = 1.5 V, p(t) = 2.25 t (mW); $\stackrel{\text{def}}{=} 2 \le t \le 3 \text{ms}$, u(t) = -3 V, p(t) = 9 t 27 (mW).
- 1.5 $\stackrel{\text{def}}{=} 0 \le t \le 2 \text{ms}$, i(t) = 2 mA, p(t) = 2 t (mW); $\stackrel{\text{def}}{=} 2 \le t \le 4 \text{ ms}$, i(t) = -2 mA, p(t) = 2t 8 (mW).
- 1.6 -3 V, 19/5 A
- 1.8 0
- 1.9 100 V
- 1.12 2 A
- 1.13 I_1 =-4 mA, I_2 =1 mA, I_3 =-3 mA
- 1.14 -2 A
- 1.15 $U_1=35 \text{ V}, U_2=5 \text{ V}, U_3=30 \text{ V}$
- 1.16 U=48 V, I=-8 A

第2章

- 2.1 1.2 A
- 2.2 3.2 V
- 2.3 7.5 V
- 2.4 1.176 A
- 2.5 I_1 =0.24 A, I_2 =0.28 A, I_3 =0.04 A,
- 2.6 4.03 V
- 2.7 $I_1=1 \text{ A}$, $I_2=0$, $I_3=-1 \text{ A}$,
- 2.8 1.167 A
- 2.9 -1 A
- 2.10 -1.73 A
- 2.11 2 V
- 2.12 I_1 =1.072 A, I_2 =2.04 A
- 2.13 5.86 V
- 2.14 $U_a = 4.97 \text{ V}$, $U_b = 4.85 \text{ V}$, $U_c = -0.12 \text{ V}$
- 2.15 -2.52 A, 63.5 W
- 2.16 -2 V
- 2.17 12 A
- 2.18 -0.118 A
- 2.19 -4 A
- 2.20 1.11 A
- 2.21 90 V, 27.5Ω
- 2.22 2 A, 3Ω
- 2.23 2.67A
- 2.24 16Ω , 6.25 W
- 2.25 $Re_q = R$, 0.5
- 2.26 4.22Ω , 2.9 W
- $2.27 \quad 6\Omega, \quad 6 \text{ W}$

第3章

- 3.1 311 V, 220 V, 50Hz, 20ms, 45⁰
- 3.6 $i = 20\sqrt{2} \sin 314t \text{ A}$, 4000 W
- 3.7 $u = 6.28\sin(314t + 90^{\circ}) \text{ V}$
- 3.8 $i = 0.74 \sin(314t + 90^{\circ}) A$
- 3.9 69.8 V
- 3.10 $i_L = 6.25\sqrt{2}\sin(314t 21.3^\circ)$ A
- 3.11 $-j2.5 \Omega$, 0, -250var, 250 VA
- 3.12 -j80 V, 60 V
- 3.13 $58.5\angle -39.8^{\circ} \text{ V}$, $2.5\sqrt{5}\angle 40.4^{\circ} \text{ A}$, $0.5\sqrt{5}\angle -86.5^{\circ} \text{ A}$
- 3.14 100 V, 141.4 V
- 3.15 6.63∠25.98° V
- 3.16 6.8∠132° A
- 3.17 55.93 \angle 71.5° V, 11.19 \angle 26.53° Ω
- 3.18 (1)0.707, (2)82.3 μ F
- 3.19 (1) 263.16 A, 100 kVA, 91.65 kvar; (2)0.877, 1537 μ F
- $3.20 \quad 0.09 \,\mu\,F$, $24 \,mV$
- 3.21 770.9 Hz
- 3.22 0.125 Hz
- 3.23 220 V, 44 A
- 3.24 (1) I_A =22 A, I_B =11 A, I_C =11 A, I_N =11 A; (2) I_A =0, BC 相电流不变; (3) I_A =0, I_B =- I_C =9.5 A
- 3.25 (1) $I_{AB} = I_{BC} = I_{CA} = 76 \text{ A}$, $I_A = I_B = I_C = 131.63 \text{ A}$, (2) $I_{BC} = I_{CA} = I_B = 76 \text{ A}$, $I_C = 131.63 \text{ A}$
- 3.26 90 W, 85 kvar, 123.8 kVA
- $3.27 \quad (1)46.22\angle -1.74^{\circ} \text{ A}$, (2) 23.15 kW
- 3.28 3.61 V
- 3.29 5.83 V
- 3.30 545 W

第4章

- 4.1 4 V, 8V
- 4.2 4 A, 0
- 4.3 10 V, -1.5A
- 4.4 1 A, -5 V
- 4.5 $24e^{-0.5t}$ V
- 4.6 10-6.67 e $^{-25 t}$ V, 1.67e $^{-25 t}$ A

- 4.7 $50(1-e^{-66.6t})$ V, 0.5-0.17e^{-66.6t} A
- 4.8 $0.6 e^{-5t} A_{1} 6 e^{-5t} V$
- 4.9 (1) $12 e^{-t} V$ (2) $4 e^{-t} V$
- 4.10 $4 e^{-2t} A$
- 4.11 6 $e^{-0.67 t}$ A
- 4.12 $1.57e^{\frac{(0.1-t)}{0.3}}$ A
- 4.13 $0.88e^{\frac{(2-t)}{4}}$ A
- 4.14 $-5 + 15e^{-10 t} V$
- 4.15 1.8- 1.6e 0.56 t A
- 4.16 $10 5e^{-t} + 10e^{-9t} V$

第5章

- 5.8 (a) $U_0=0$; (b) $U_0=-6V$
- 5.9 (1) 由于 $U_{A} = U_{B} = 0$, D_{A} 和 D_{B} 均处于截止状态,所以 $U_{Y} = 0$
 - (2) 由 $U_A=E$, $U_B=0$ 可知, D_A 导通, D_B 截止, 所以 $U_Y=\frac{6}{7}E$
 - (3) 由于 $U_A = U_B = E$, D_A 和 D_B 同时导通, 因此 $U_Y = \frac{12}{13}E$
- 5.15 串联: 15V, 6.7V, 9.7V, 1.4V; 并联: 0.7 V, 6V
- 5.22 ①基极,②发射极,③集电极。PNP型
- 5.23 (1) $U_1 \rightarrow b$, $U_2 \rightarrow e$, $U_3 \rightarrow c$, 硅管, NPN
 - (2) $U_1 \rightarrow e$, $U_2 \rightarrow b$, $U_3 \rightarrow c$, 锗管, NPN
 - (3) $U_1\rightarrow c$, $U_2\rightarrow b$, $U_3\rightarrow e$, 硅管, PNP
 - (4) $U_1\rightarrow c$, $U_2\rightarrow b$, $U_3\rightarrow e$, 锗管, PNP
- 5.25 (1)能正常工作。(2)不能正常工作。集电极电流太大。(3)不能正常工作。 U_{CE} 与 I_{C} 的积大于集电结耗散功率
- 5.26 (1) 0.04mA, 49; (2) 0.0495mA, 0.99
- 5.27 (1) 4.1mA, 6mA; (2) NPN 管, PNP 管; (3) α 为 0.9756, 0.9836; β 为 40, 60
- 5.28 (1) NPN, 硅管, 饱和; (2) NPN, 硅管, 放大; (3) NPN, 无法判断, 截止; (4) NPN, 锗管, 饱和; (5) PNP, 无法判断, 截止
- 5.29 (a) $2.65k\Omega$; (b) $132.5k\Omega$
- 5.33 (1) N 沟道; (2) -4 V, 3 mA
- 5.34 (1) 增强型; (2) P沟道; (3) $U_{GS(th)} = -4 \text{ V}$
- 5.35 (a) N沟道, 耗尽型, 结型; (b) N沟道, 耗尽型, 绝缘栅; (c) N沟道, 增强型, 绝缘栅; (d) P沟道, 增强型, 绝缘栅

第6章

- 6.1 (a)能; (b)不能; (c)不能; (d)能
- 6.2 (a) 不能; (b)能; (c)不能; (d) 不能; (e) 不能; (f) 不能
- 6.4 (a) $75 \mu A$, 3.75 mA, 0.75 V; (b) $16 \mu A$, 0.8 mA, 3.84 V
- 6.6 (a)饱和失真:固定偏置电路,应增大 R_B ,对分压式偏置电路,可增大上偏电阻 R_{B1} 也可减小下偏电阻 R_{B2} ; (b)截止饱和失真:可以减少输入信号或提高电源电压; (c)截止失真:固定偏置电路,应减小 R_B ,对分压式偏置电路,可减少上偏电阻 R_{B1} 也可增大下偏电阻 R_{B2} 。
- 6.7 (a) 0.194mA, 9.7mA, 14.3V; (b) 0, 0, 12V;
 - (c) 0.026mA, 2.65mA, 13.4V; (d) 1.85mA, 0.8mA, -0.3V;
 - (e) 0.04mA, 3.2mA, 17.6V
- 6.8 (1) 0.13mA, 5.2mA, -8.1V; (2) 0.13mA, 10.4mA, -0.4V

- 6.9 (1) 0.022mA, 2.2mA, 3.4V; (2) $502\text{ k}\Omega$
- (1) $I_{CQ}=2.6$ mA, $U_{CEQ}=2.9$ V;(2) I_{BQ} 改变, I_{CQ} 与 U_{CEQ} 不变;(3) 由于反馈, V_{CQ} 6.10 基本不变; (4) 改变电源和电容的极性
- (b) 截止失真; (c) 饱和失真; 和(d) 截止失真和饱和失真 6.13
- (1) $30 \mu A$, 1.5 mA, 7.5 V; (2) (略); (3) -107, $1.167 k\Omega$, $5 k\Omega$; (4) $300 k\Omega$, 4 6.14 kΩ
- 6.15 (1) U_{BO} =5.58V, I_{BO} =48.5μA, U_{CEO} =8.4V; (2) 略; (3)-158, 755Ω, 3.3 kΩ; (4)-260; (5)-66; (6) 静态工作点无变化,(微变等效电路略),-1.3,7.13 k Ω ,3.3 k Ω ,电压放 大倍数降低
- (1) 40μ A, 1.6mA, 5.53 V; (2) (略); (3) -13.1, 8.8 kΩ, 3 kΩ 6.16
- 6.17 (1) \mathbb{E}_{Γ} ; (2) $R_{01} = R_{C}$, $R_{02} = R_{02} // r_{be} / (1+\beta)$
- 6.18 (1)-125; (2)饱和失真; (3)1.88V
- (1) 8.57 kΩ, 6.8 kΩ, -38.5; (2) -34.5; (3) 饱和失真 6.19
- 6.21 (1) 0.011mA , 1.1mA, 5.84V; (2) (略); (3) 0.995, 0.97; (4) 282.1 kΩ, 86.8 kΩ; $(5) 0.037 k\Omega$
- 6.22 (1) I_{EO} =2.3mA , U_{CEO} =3.5V; (2) 48.4; (3) 14 Ω ; (5) 10.6
- 6.23 (1) 略; (2) -21, -68, 1428
- (1) I_{E1} =0.5mA, U_{CE1} =-3.2V, I_{E2} =1mA, U_{CE2} =-2.6V; (2) 21.7×50=1083; (3) 6.24 2.68 kΩ; (4) 5.6 kΩ
- 6.25 (1) 248.7 k Ω ; (2) 12 k Ω ; (3) -200, -46.7
- 6.27
- 6.28 40dB; 10^4
- 6.29 (1) (略); (2) -3.3; (3) $3.075 \,\mathrm{M}\Omega$
- (1) 0.56mA, -1.3V, 6.8V; (2) 2247 k Ω , 10 k Ω , -106.30
- (1) 0.32mA, -0.87V, 11.2V, 0.57mA/V; (2) $400\text{ k}\Omega$, $1.53\text{k}\Omega$, 0.776.31
- 6.32 (1) $U_{GS}=0$, $I_{D}=2\text{mA}$, $U_{DS}=24\text{V}$, $I_{E}=20\text{mA}$, $U_{CE}=16\text{V}$; (2) 3.3M Ω , 510 Ω , $-0.16\times$ (-214) = 34.24
- 6.33 0.89, $5.1M\Omega$
- 6.34 T₁为源极输出器, T₂为共射极电路;

$$\begin{aligned} A_{\text{u1}} &\approx \frac{g_m r_{be}}{1 + g_m r_{be}} \\ A_{\text{u2}} &\approx \frac{-\beta(R_c \parallel R_L)}{r_{be}} \\ A_{\text{u}} &= A_{\text{u1}} \cdot A_{\text{u2}} \approx \frac{-g_m \beta(R_c \parallel R_L)}{1 + g_m r_{be}} \end{aligned}$$

$$A_{\rm u} = A_{\rm u1} \cdot A_{\rm u2} \approx \frac{-g_m \beta(R_c \parallel R_L)}{1 + g_m r_{he}}$$

$$R_i \approx R_g$$

 $Ro \approx Rc$

- 6.35 (1) 0, 4mV; (2) 8mV, 0; (3) 10mV, -1mV; (4) -2mV, 5mV
- 6.37 (1) $I_{C1} = I_{C2} \approx I_{E1} = 0.52 \text{mA}$, $U_{CE1} = U_{CE2} = 6.6 \text{V}$; (2) -38.8, $30.9 \text{k}\Omega$; (3) -0.59, 512.73 k Ω ; (4) 32.9
- 6.38 (1) -55.6; (2) -41.7, -0.37, 112.7; (3) 166.8mV

第7章

- (1) ±10V; (2) ±10V; (3) 传输特性如图, /U_S/<1mV; (4) ±10V, 不能正常放大。 7.12 反馈元件是 $R_{\rm F}$, 电压并联负反馈
- (1) c_3 通过电阻 R_f 接 b_1 或 e_1 通过电阻 R_f 接 e_3 ; (2) e_1 通过电阻 R_f 接 e_3 ; (3) 引入 并联电压负反馈; (4) 引入串联电流负反馈
- (1) j、m 相连; (2) n、k 相连 7.15
- 7.16 2000, 0.0095

- 7.17 -9.1, 2.73Hz, 33Hz
- 7.18 (1)(a) 串联电压负反馈,(b) 并联电压负反馈;
 - (2) (a) 21, (b) -4
- 7.19 (1)(a) 串联电流负反馈,(b) 并联电流负反馈;
 - (2)(a)输入电阻增大,输出电阻增大,(b)输入电阻降低,输出电阻增大;
 - (3) (a) -42, (b) 1.1
- 7.20 300kΩ
- 7.21 (1) 14.25, 0.7; (2) -69.5mV, 69.5mV; (3) B_3 应与 C_1 相连; (4) $9k\Omega$
- 7.22 (1) $10k\Omega$;(2)串联电压负反馈,反馈电阻 R_F 应连接在 V_2 管的基极与 V_3 管的集电极之间; $9k\Omega$
- 7.23 (1) $u_0 = -u_i$; (2) $u_0 = u_i$
- 7.24 4V
- 7.25 $u_{o} = (k+1)(u_{i2} u_{i1})$
- 7.26 $1+R_f/R_1$, $18k\Omega$, 2.57 $k\Omega$ _o (1) 8V; (2) 0.2V; (3) 12V
- 7.27 (1) 反相比例放大电路。取 $R_1=100$ k Ω , $R_f=500$ k Ω ;
- (2) 反相比例放大电路。取 R_1 =2k Ω , R_f =40 k Ω ;
- (3) 同相比例放大电路。取 R_1 =1k Ω , R_f =99 k Ω
- 7.28 (a) -5V; (b) -4.8V
- 7.29 (a) $U_0 = -U_{i1} 2U_{i2} 5U_{i3}$, 符合"虚地"概念, 对共模抑制比要求不高;
- (b) $U_0 = 5.5(U_{i1} + U_{i2})$, 不符合"虚地"概念, 对共模抑制比要求高;
- (c) $U_0 = -12U_i$, A_1 运放符合"虚地"概念, 对共模抑制比要求不高;
- (d) $U_{\rm o} = -25 U_{\rm il} 5 U_{\rm i2} + 6 U_{\rm i3}$,不符合"虚地"概念,对共模抑制比要求高

7.30 (a)
$$U_{\rm O} = -\frac{R_2}{R_1}U_{i1} + (1 + \frac{R_2}{R_1})(1 + \frac{R_3}{R_4})U_{i2}$$
;

(b)
$$U_{O1} = -(\frac{R_2}{R_1} + \frac{R_3}{R_1} + \frac{R_2R_3}{R_1R_4})U_i$$
, $U_{O2} = \frac{R_2R_5}{R_1R_4}U_i$

7.31
$$U_{\rm O} = \frac{1}{3}(U_{\rm il} + U_{\rm i2} + U_{\rm i3})$$

7.34 (1)
$$U_{\rm O} = \frac{R_{\rm x}}{R_{\rm s}} U_{\rm R}$$
; (2) 0.5k Ω , 5k Ω , 50k Ω , 500k Ω

7.35 (1)
$$U_{\rm O} = R_{\rm f} I_{\rm X}$$
; (2) $\pm 1 \, \text{mA}$

7.36
$$U_0 = 2U_i$$

$$7.37 \quad I_{\rm O} = \frac{U_{\rm i}}{R}$$

7.38 (1) 15V; (2)
$$U_{\rm R} = \frac{R_2 + \alpha R_{\rm W}}{R_1 + R_2 + R_{\rm W}} (U_{\rm Z} + U_{\rm D})$$
, $1.14 \text{V} \le U_{\rm R} \le 5.86 \text{V}$

7.40 4V,
$$-\frac{54}{7}$$
 V, -13.58 V

7.42 (1)
$$u_0 = -\frac{1}{R.C} \int_0^t u_{i1} dt - -\frac{1}{R.C} \int_0^t u_{i2} dt$$
;

7.45 (1)
$$u_0 = -\frac{1}{R_5 C} \int_0^t \left(\frac{R_4}{R_2 + R_4} \cdot \frac{R_1 + R_3}{R_1} u_{i1} - \frac{R_3}{R_1} u_{i2} \right) dt$$
;

(2)
$$u_0 = -\frac{R_3}{R_1 R_2 C} \int_0^t (u_{i1} - u_{i2}) dt$$

7.53 (1) A_1 构成反相求和积分器, A_2 构成反相滞回比较器; (2) t_1 =20ms;

第8章

- 8.5 20V
- 8.9 (1) 15V; (2) 30V
- 8.10 (1) 12.25W; (2) 引入串联电压负反馈,从 V_3 发射极经过电阻 R_F 到 V_2 基极; (3) 99k Ω
- 8.11 (1) V_1 为 NPN, V_2 为 PNP;(2) 4W;(3) 100;(4) 引入串联电压负反馈,从电路输出端经过电阻 R_F 到运放的反相输入端;(5) 49k Ω
- 8.12 22V, 2A, 1A, 173V; 244V, 2A, 2A, 346V
- 8.13 100V, 0.25A, 0.125A, 141.2V
- 8.14 (1) 输出电压等于 $\sqrt{2}U_2$ 且保持不变; (2) 电容短路将使负载短路, 也将电源短路;
- (3) 负载得到脉动全波电压;(4) 电路相当于单相半波整流电路;(5) 电源被短路
- 8.16 77.7°, 3840A
- 8.17 120°, 25V; 89°, 50V
- 8.18 1.5V 至 48V
- 8.19 66.7V
- 8.24 (1) 输出直流负压; (2) 20.1V; (3) *C* ≥240 μF; (4) 100mA, 28V
- 8.25 (1) 24V; (2) 不是一半,因为有电容滤波; (3) (a) 电容开路; (b) 负载开路; (c) 一个二极管开路及电容开路
- 8.26 (1) $U_i=11V\sim15V$; (2) $I_L=15\text{mA}\sim25\text{mA}$; (3) $U_i=12V\sim14V$
- 8.29 (1) $R_1=1k\Omega$; (2) $U_{\text{omax}}=15V$, $U_{\text{omin}}=7.5V$; (3)17V
- 8.32 8.16V

第9章

- 9.2 (1) \times ; (2) \times ; (3) \times ; (4) $\sqrt{}$
- 9.10 将 A、B、m 相连
- 9.12 $15k \Omega$, $7.5k \Omega$
- 9.13 10V, 12V, 396Hz

第10章

- 10.2 -6.25V
- 10.3 -0.72V
- 10.13 1101
- 10.15 R_7 =20kΩ, R_6 =40 kΩ, R_5 =80 kΩ, R_4 =160 kΩ, ... R_1 =1280 kΩ, R_0 =2560 kΩ
- 10.16 取整数 $R=5 k\Omega$: 最大输出电压绝对值 4.6875V,最小输出电压绝对值 0.3125V。取标称值 $R=4.7 k\Omega$: 最大输出电压绝对值 4.9867V,最小输出电压绝对值 0.3324V
- 10.17 D_i=0, S_i接 V_{REF}; D_i=1, S_i接地
- 10.18 (1) 1.54V; (2) 0.392%; (3) 不可用
- 10.19 输出最大幅度为 U_{REF} ,反馈电阻 R_f 的数值等于 3R
- 10.20 (1) $A=u_0/u_1=2^8/[B]_D$,其中 $[B]_D$ 为输入数字量的十进制数值。(2) 最大增益为 256,最小增益为 256/255≈1
- 10.21 (1) 逐次逼近 ADC 结构中主要有 n 位 D/A 转换器、比较器、控制逻辑电路和寄存器等组成; (2) $100\mu s$; (3) 10100101; (4) 01001101