2024 学年杭州学军中学高三(上)数学期末测试参考答案

一、单选题:本大题共8小题,每小题5分,共40分。

BDBC CDAB

二、多选题: 本大題共3小題,每小題6分,共计18分。

9. AC 10. ABD 11. ACD

三、填空题: 本大题共3小题,每小题5分,共计15分。

$$12. -160 \quad 13. \ 2\sqrt{2} \quad 14. \ [1, +\infty)$$

四、解答题:本题共5小题,共77分

15.(1)如图,过点 E 作圆柱的母线 EG 连 DG CG 则 EG//AD//BC 且EG = AD = BC 所 以四边形 AEGD 和 BEGC 均是平行四边形,所以 AE//DG,BE//CG,又 CF//AE 所以 CF//DG ,所以 $\angle DCF = \angle CDG$ (不妨记作 θ),而 CD 为底面圆的直径,所以 $\angle DFC = \angle CGD = 90^{\circ}$ 所以 CF = DG (均等于 $CD \cdot \cos\theta$),所以四边形 CFDG 为平行四边 形,所以 CG//FD 可得 DF//BE

(2) 由(1)可知 GC = EB = DF, GD = CF = EA 不妨设 GC = EB = DF = a, GD = CF = EA = b ,则 $a^2 + b^2 = 16$,因为 BC 是圆柱的母线,所以 $BC \perp$ 平面 CDF ,所以 $BC \perp CF$ $BF = \sqrt{BC^2 + CF^2} = \sqrt{8 + b^2}$,依题意得 BF = DF ,即 $\sqrt{8+b^2} = a$, ### $a = 2\sqrt{3}, b = 2$

(法 1)过点 D 作 AE , CD 的平行线,两直线交于点 K ,连 AK ,则 AK 是平面 ABF 与平面 ADE的交线,因为 AD 是圆柱的母线,所以 $AD \perp$ 平面 ABE ,所以 $AD \perp DF$,又因为 $CF \perp DF$, CF //DK, 所以 $DK \perp DF$, 又 $AD \cap DK = D$, 所以 $DF \perp$ 平面 AEDK. 过点 D 作

 $DH \perp AK + H$ 连 FH 又因为 $DF \perp AK, DF \cap DH = D$ 所以 $AK \perp$ 平面 DFH 所以 $AK \perp FH$,所以 $\angle DHF$ 是平面 ABF 与平面 ADE 所成二面角的平面角. 在 Rt $\triangle ADK$ 中,

$$AD = 2\sqrt{2}, DK = CF = 2, DH = \frac{AD \cdot KD}{AK} = \frac{4\sqrt{2}}{2\sqrt{3}} = \frac{2\sqrt{6}}{3}$$

在 Rt
$$\triangle$$
 FDH 中, $DF = 2\sqrt{3}$, $\tan \angle FHD = \frac{FD}{HD} = \frac{2\sqrt{3}}{\frac{2\sqrt{6}}{3}} = \frac{3}{\sqrt{2}}$,所以 $\sin \angle FHD = \frac{3}{\sqrt{2+9}} = \frac{3\sqrt{11}}{11}$.所以

(法 2) 因为 EG 是圆柱的母线, CD 为底面圆的直径,所以 $EG \perp$ 平面 CDF, $GC \perp GD$,故以 点 G 为坐标原点, GC,GD,GE 所在直线分别为 x 轴, y 轴, z 轴,建立如图所示的空间直角坐标

系. 所以 $G(0,0,0),D(0,2,0),C(2\sqrt{3},0,0),F(2\sqrt{3},2,0),B(2\sqrt{3},0,2\sqrt{2}),E(0,0,2\sqrt{2}),A(0,2,2\sqrt{2})$

所以 $\overrightarrow{AB}=(2\sqrt{3},-2,0),\overrightarrow{AF}=(2\sqrt{3},0,-2\sqrt{2})$,设平面 \overrightarrow{ABF} 的法向量为 $\mathbf{n}=(x,y,z)$,由

$$\begin{cases} \mathbf{n} \cdot \overrightarrow{AB} = 0, \\ \mathbf{n} \cdot \overrightarrow{AF} = 0, \\ \mathbf{n} \cdot \overrightarrow{AF} = 0, \end{cases}$$

$$\begin{cases} 2\sqrt{3}x - 2y = 0, \\ 2\sqrt{3}x - 2\sqrt{2}z = 0. \end{cases}$$
取 $x = 1$,得 $\mathbf{n} = (1, \sqrt{3}, \frac{\sqrt{6}}{2})$,同理可求平面 ADE 的法 向量 $\mathbf{m} = (1,0,0)$,所以

$$\cos <\mathbf{n},\mathbf{m}> = \frac{\mathbf{n}\cdot\mathbf{m}}{|\mathbf{n}|\cdot|\mathbf{m}|} = \frac{1}{1\cdot\sqrt{1+3+\frac{3}{2}}} = \frac{\sqrt{2}}{\sqrt{11}}, \sqrt{1-\cos^2 <\mathbf{n},\mathbf{m}>} = \frac{3}{\sqrt{11}} = \frac{3\sqrt{11}}{11}$$

所以平面 ABF 与平面 ADE 夹角的正弦值为 16(1) 若k=0, 设抽取n次中抽中黑球的次数为X,

$$X \sim B(n, \frac{1}{3})$$
 , 故 $P_n = P(X = 1) = C_n^n \frac{1}{3} (\frac{2}{3})^{n-1} = \frac{n}{3} (\frac{2}{3})^{n-1}$.

$$P(B_1\overline{B_2}B_3) = P(B_1)P(\overline{B_2}|B_1)P(\overline{B_3}|\overline{B_2}B_1) = \frac{1}{3} \cdot \frac{2}{4} \cdot \frac{3}{5} = \frac{1}{10},$$

$$P(\overline{B_1}B_2\overline{B_3}) = P(\overline{B_1})P(B_2|\overline{B_1})P(\overline{B_3}|B_2\overline{B_1}) = \frac{2}{3} \cdot \frac{1}{4} \cdot \frac{3}{5} = \frac{1}{10}$$

(ii) 由(i) 可进行猜测,抽取剂次中恰有2次抽中的黑球的概率与抽球次序无关,

$$P = C_n^2 P(B_1 B_2 \overline{B_3 B_4} \cdots \overline{B_n}) = \frac{n(n-1)}{2} \frac{1}{3} \cdot \frac{2}{4} \cdot \frac{2}{5} \cdot \frac{3}{6} \cdots \frac{n-1}{n+2} = \frac{2(n-1)}{(n+1)(n+2)}.$$
......15 /2

$$f(x) = (\frac{1}{x} - 1)\ln(1+x), \quad f(1) = 0, \quad f'(x) = -\frac{1}{x^2}\ln(1+x) + (\frac{1}{x} - 1) \cdot \frac{1}{1+x}, \quad f'(1) = -\ln 2,$$

$$f(\frac{1}{x}) = (x+a)\ln(1+\frac{1}{x})$$

(2) $x = f(\frac{1}{x})$
(2) $x = f(\frac{1}{x})$
(3) $x = f(\frac{1}{x})$
(4) $x = b$ 对称,
 $y = f(\frac{1}{x})$
(5) 关于直线 $x = b$ 对称,

由对
$$\forall x \in (-\infty, -1) \cup (0, +\infty), f(\frac{1}{x}) = f(\frac{1}{-1-x})$$
 恒成立,

$$\sup_{\{x\}} (x+a) \ln(1+\frac{1}{x}) = (-1-x+a) \ln(1-\frac{1}{x+1}),$$

$$\Re \int (x+a) \ln \frac{x+1}{x} = (-1-x+a) \ln \frac{x}{x+1},$$

$$\Re \int (x+a) \ln \frac{x+1}{x} = (x+1-a) \ln \frac{x+1}{x},$$

$$\therefore x + a = x - a + 1, \quad a = \frac{1}{2}.$$

(3)
$$f'(x) = -\frac{1}{x^2}\ln(1+x) + \left(\frac{1}{x} + a\right) \cdot \frac{1}{1+x} = -\frac{1}{x^2}\left[\ln(1+x) - \frac{ax^2 + x}{1+x}\right]$$

$$h(x) = \ln(1+x) - \frac{ax^2+x}{1+x}$$
 , for $h(0) = 0$, $\underline{\mathbb{H}}$

$$h'(x) = \frac{1}{1+x} - \frac{(2ax+1)(1+x)-(ax^2+x)}{(1+x)^2} = \frac{x(1-2a-ax)}{(1+x)^2}$$

(i) 若 $a \le 0$,当 $x \in (0, +\infty)$ 时, h'(x) > 0, h(x) 在 $(0, +\infty)$ 单调递增,从而 h(x) > h(0) = 0 ,故当 $x \in (0, +\infty)$ 时, f'(x) < 0, f(x) 在 $(0, +\infty)$ 单调递减, f(x) 在 $(0, +\infty)$ 不存在极值点.

(ii) 若 $a \ge \frac{1}{2}$,当 $x \in (0, +\infty)$ 时, h'(x) < 0, h(x) 在 $(0, +\infty)$ 单调递减,从而 h(x) < h(0) = 0 . 故当 $x \in (0, +\infty)$ 时, f'(x) > 0, f(x) 在 $(0, +\infty)$ 单调递增, f(x) 在 $(0, +\infty)$ 不存在极值点.

$$0 < a < \frac{1}{2}$$
 ,当 $x \in \left(0, \frac{1}{a} - 2\right)$ _{时, $h'(x) > 0, h(x)$ 在 $\left(0, \frac{1}{a} - 2\right)$ 单调递增;当}

$$x \in \left(\frac{1}{a} - 2, +\infty\right)$$
 时, $h'(x) < 0, h(x)$ 在 $\left(\frac{1}{a} - 2, +\infty\right)$ 单调递减.所以当 $x \in \left(0, \frac{1}{a} - 2\right]$ 时,

$$h(x)>h(0)=0$$
 . 取 $x_1=\mathrm{e}^t-1$,其中常数 $t>\frac{4}{a}$,则 $x_1\in\left(\frac{1}{a}-2,+\infty\right)$,且

$$h(x_1) = t - \frac{a(\mathrm{e}^{t} - 1)^2 + \mathrm{e}^{t} - 1}{\mathrm{e}^t} < t + 1 - a\mathrm{e}^t < t + 1 - a\left(1 + \frac{t}{2}\right)^2 = (t + 2)\left[\frac{t + 1}{t + 2} - \frac{a}{4}(t + 2)\right] < 0$$

所以
$$h(x)$$
 在 $\left(\frac{1}{a}-2,+\infty\right)$ 有唯一零点 $x \in (0,x_0)$ 时, $h(x) > 0,f'(x) < 0,f(x)$ 在

$$(0,x_0)$$
 单调递减; 当 $x \in (x_0,+\infty)$ 时, $h(x) < 0$, $f'(x) > 0$, $f(x)$ 在 $(x_0,+\infty)$ 单调递增,因此 $f(x)$

在 (0,+∞) 存在极值点 ×₀.

18(1)如图, $AB \perp x$ 轴时 $AB = 4\sqrt{5}$,由F 为 $\triangle OAB$ 垂心,故 $k_{AF} = -\frac{1}{k_2} = \frac{1}{k_1}$,由 $A(\frac{2}{k_1}\sqrt{5}, 2\sqrt{5})$, $F(\frac{p}{2}, 0)$,

$$\frac{2\sqrt{5}}{\frac{2}{k_i}\sqrt{5} - \frac{p}{2}} = \frac{1}{k_i} \Rightarrow 2\sqrt{5}k_i = \frac{2}{k_i}\sqrt{5} - \frac{p}{2}$$

$$\Rightarrow p = \sqrt{5}k_1 - 2,$$

$$\Rightarrow p = \sqrt{5}k_1 - 2,$$

(2) 如图,
$$A(\frac{4}{k_1^2}, \frac{4}{k_1})$$
, $B(\frac{4}{k_2^2}, \frac{4}{k_2})$, 故 $\frac{k_{AB}}{k_1^2} = \frac{\frac{4}{k_1} - \frac{4}{k_2}}{\frac{4}{k_1^2} - \frac{4}{k_2^2}} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2}}$

$$= \frac{-4}{k_1 + k_2}$$
,

AB 的直线方程为:

再设 AB: x = my + 1, 则 $m = \frac{1}{4}(k_1 + k_2)$, 联立 C: $y^2 = 4x$, 得 $y^2 - 4my - 4 = 0$, 故 $P(2m^2 + 1, 2m)$,

由M,N 关于AB对称,得 $x_N+2=-m$, $x_N-2=m\cdot \frac{y_N}{2}+1\Rightarrow x_N=\frac{4-2m^2}{m^2+1}$, $y_N=\frac{-6m}{m^2+1}$,

由N在C上得 $y_N^2 = 4x_N$, 故 $\frac{36m^2}{(m^2+1)} = \frac{16-8m^2}{m^2+1} \Rightarrow 2m^4+7m^2-4=0 \Rightarrow m^2 = \frac{1}{2}$,

 $m=\frac{\sqrt{2}}{2}$ 时,得 $P(2,\sqrt{2})$, AB : $x=\frac{\sqrt{2}}{2}y+1$, M 到 AB 的距离 $d=\sqrt{6}$,

 $PM = 3\sqrt{2}$, 故 P 到 MN 的距离为 $\sqrt{PM^2 - d^2} = 2\sqrt{3}$, 古 $S_{APMN} = \sqrt{6} \cdot 2\sqrt{3} = 6\sqrt{2}$,

综上所述, △PMN 的面积为 6√217 分

19. (1) 若 $\{a_n\}$ 的单极数列为 1,2,2,3,3,3,则有 $a_1=1,a_2=2,a_3=1$ 或 $a_3=2$, $a_4=3,a_5=1$ 或 $a_5=2$ 或 $a_5=3,a_6=1$ 或 $a_6=2$ 或 $a_6=3$,则满足条件的 $\{a_n\}$ 的个数为 $2\times3\times3=18$ 4 分

(2)(i)由 b_k 为 a_1,a_2,\cdots,a_k 的最大值,可知 $b_{k+1} \geq b_k$,由 $a_{k+1}+2b_{p-k}=k$,得

$$a_k + 2b_{p-k+1} = k-1$$
 ,两式相减,得 $a_{k+1} - a_k + 2 \left(b_{p-k} - b_{p-k+1} \right) = 1$,整理,得

 $a_{k+1}-a_k-1=2(b_{p-k+1}-b_{p-k})$,又 $b_{p-k+1}-b_{p-k}\geq 0$,则 $a_{k+1}-a_k\geq 1$,即 $a_{k+1}>a_k$, 所以 $a_k=b_k$,即 $a_k-b_k=0....$ 9 分

(ii) 设
$$k = 1,2,\cdots,25$$
 ,因为
$$a_n = \begin{cases} \lambda n^2 - (-1)^{\frac{n+1}{2}}n, n \text{ 为奇数} \\ \lambda n^2 - (-1)^{\frac{n}{2}}n, n \text{ 为偶数} \end{cases}$$
 ,则
$$a_{4k-3} = \lambda(4k-3)^2 + (4k-3)$$

$$a_{4k-2} = \lambda(4k-2)^2 + (4k-2), \ a_{4k-1} = \lambda(4k-1)^2 - (4k-1), \ a_{4k} = \lambda(4k)^2 - 4k.$$

易知
$$a_{4k-2} > a_{4k-3}$$
 $a_{4k-1} - a_{4k-2} = (\lambda - 1)(8k - 3) < 0$,即

$$a_{4k-1} < a_{4k-2}$$
 , $a_{4k} - a_{4k-2} = 2(2\lambda - 1)(4k - 1) > 0$, 即 $a_{4k} > a_{4k-2}$.又 $a_{4k+1} > a_{4k}$,则有

$$b_{4k-3}=a_{4k-3}, b_{4k-2}=a_{4k-2}, b_{4k-1}=a_{4k-2}, b_{4k}=a_{4k}$$
所以

$$\begin{array}{l} \sum_{i=1}^{100} (b_i - a_i) = (b_1 - a_1) + (b_2 - a_2) + \\ \cdots + (b_{100} - a_{100}) \end{array}$$

$$= (b_3 - a_3) + (b_7 - a_7) + (b_{11} - a_{11}) + \cdots + (b_{4k-1} - a_{4k-1}) + \cdots + (b_{99} - a_{99})$$

$$= (a_2 - a_3) + (a_6 - a_7) + (a_{10} - a_{11}) + \dots + (a_{4k-2} - a_{4k-1}) + \dots + (a_{98} - a_{99})$$

$$= \sum_{k=1}^{25} (a_{4k-2} - a_{4k-1})$$

$$= (1 - \lambda) \sum_{k=1}^{25} (8k - 3)$$
$$= 2525(1 - \lambda).$$

由
$$\frac{1}{2} < \lambda < 1$$
 ,得 $0 < 2525(1-\lambda) < \frac{2525}{2} < 1263$,即 $0 < \sum_{i=1}^{100} (b_i - a_i) < 1263$.

.....17 分