Definition 37.25. Given a topological space, (E, \mathcal{O}) , an $arc\ (or\ path)$ is a continuous map, $\gamma \colon [a,b] \to E$, where [a,b] is a closed interval of the real line, \mathbb{R} . The point $\gamma(a)$ is the *initial* point of the arc and the point $\gamma(b)$ is the terminal point of the arc. We say that γ is an arc joining $\gamma(a)$ and $\gamma(b)$. See Figure 37.26. An arc is a closed curve if $\gamma(a) = \gamma(b)$. The set $\gamma([a,b])$ is the trace of the arc γ .

Figure 37.26: Let E be the torus with subspace topology induced from \mathbb{R}^3 with red arc $\gamma([a,b])$. The torus is both arcwise connected and locally arcwise connected.

Typically, a = 0 and b = 1.

One should not confuse an arc, $\gamma: [a,b] \to E$, with its trace. For example, γ could be constant, and thus, its trace reduced to a single point.

An arc is a Jordan arc if γ is a homeomorphism onto its trace. An arc, $\gamma \colon [a,b] \to E$, is a Jordan curve if $\gamma(a) = \gamma(b)$ and γ is injective on [a,b). Since [a,b] is connected, by Proposition 37.18, the trace $\gamma([a,b])$ of an arc is a connected subset of E.

Given two arcs $\gamma \colon [0,1] \to E$ and $\delta \colon [0,1] \to E$ such that $\gamma(1) = \delta(0)$, we can form a new arc defined as follows:

Definition 37.26. Given two arcs, $\gamma: [0,1] \to E$ and $\delta: [0,1] \to E$, such that $\gamma(1) = \delta(0)$, we can form their *composition (or product)*, $\gamma \delta$,, defined such that

$$\gamma \delta(t) = \begin{cases} \gamma(2t) & \text{if } 0 \le t \le 1/2; \\ \delta(2t-1) & \text{if } 1/2 \le t \le 1. \end{cases}$$

The inverse, γ^{-1} , of the arc, γ , is the arc defined such that $\gamma^{-1}(t) = \gamma(1-t)$, for all $t \in [0,1]$.

It is trivially verified that Definition 37.26 yields continuous arcs.