Al Boot Camp Project 2

Earthquake Impact

Team Members:

(Pedro Zurita)
Christoph Guenther
Ashwini Kumar

Background

• Impact of Earthquakes: can lead to significant destruction, economic loss, and fatalities due to their sudden and unpredictable nature.

 Challenges in Prediction: accurately forecasting location, and magnitude of earthquakes remains a major challenge in the field of seismology.

Project Objectives

- 1. Predict Impact of Earthquakes in the US
- 2. Evaluate Various ML Classifiers
- 3. Build Model Using Best Classifier

Metric to Evaluate Classifiers: balanced accuracy score on test dataset

Process

Overview of data collection, cleanup and exploration process

1. Data Retrieval:

- a. USGS Earthquake data
- b. ISRIC Soil Density data

2. Data Pre-processing:

- a. Remove NaN's
- b. Define Target (Modified Mercalli Intensity (MMI) scale)
- c. Address data leakage
- d. Scale data

Model Optimization

- 1. Split Data into Train & Test Data
- 2. Evaluate Classifiers:
 - a. Random Forest Classifier (RFC)
 - b. Multinomial Logistic Regression
 - c. Support Vector Machine (SVM)
 - d. K Nearest Neighbors (KNN)
 - e. Decision Tree (DT)
- 3. Address Over-Fitting
 - a. P-Values
 - b. PCA
 - c. Hyperparameter Tuning
- 4. Address Random State Variable Dependency
- 5. Build Model with Best Performing Classifier

Challenges Encountered

- Unable to Reach Accuracy Score Target
- Lack of Geological and Soil Science Domain Knowledge
- Combining Soil and Earthquake Data
- Over-Fitting of Best Classifier
- Dependency of Classifier Performance on Random State Variable

Earthquake Occurrences

Effect of Removing NaN Values

Evaluating Classifiers

Addressing RFC Over-Fitting: P-Values

Addressing RFC Over-Fitting: PCA

Addressing RFC Over-Fitting: RFC Hyperparameter Tuning

Final Model Performance

Preprocessing data ...

Dropping rows with 'NaN' values:

Dropped 32.98% of rows.

There are 957 rows remaining.

There are 37 columns remaining.

Dropping columns:

Number of rows remaining: 957. Number of columns remaining: 31.

Creating X and y:

Number of rows in X: 957. Number of columns in X: 30. Number of elements in y: 957.

Best Classifier: RandomForestClassifier(max_depth=6):

Balanced Train Accuracy Score: 0.842. Balanced Test Accuracy Score: 0.610.

Classification Report:

weighted avg

	precision	on re	ecall	f1-sco	re supp	oort
0	0.6	6 0	.69	0.67	91	
1	0.5	3 0	.62	0.57	87	
2	0.7	6 0	.52	0.62	62	
accura	асу			0.62	240	
macro	ava	0.65	0	.61	0.62	240

0.62

0.62

240

0.64

Future Considerations

- PSHA (Probabilistic Seismic Hazard Assessment)
 - Risk analysis over a given period and return periods (e.g "once in 100 years", etc)
- DSHA (Deterministic Seismic Hazard Analysis)
 - Scenario analysis & Confidence estimates
- Correlate Soil Density with MMI Measurement
 - Where was the MMI recorded, and what soil data was collected at that location
- Better Understanding the Geology of Earthquakes

Questions?