Термодвойка

Васил Николов (Dated: 08.03.2022)

I. Цел на упражнението

Да се определи експериментално коефициентът на вътрешно триене на въздух η , и да се пресметне дължината на средния свободен пробег на молекули във въздуха.

II. Експериментална установка

В основата на експеримента е тънка капилярка, през която преминава въздух. Тя е с дължина $l=(13.35\pm0.05)~\mathrm{mm}$ и диаметър d=0.5 mm. От едната си страна капилярката е свързана чрез маркуч към изсушител на въздух, а от другата - към запечатана колба с вода. Колбата има кранче на дъното си, и когато то се отвори и нивото на водата започне да спада, през капилярката се засмуква въздух. Изсушителят на въздух е голяма епруветка, пълна със соли, които поглъщат водните пари, които преминават около тях. В голямата епруветка се поставя стъклена тръбичка, единият край на която е свързан с маркуча към капилярката, а другият е заровен под повърхността на солта. Така когато въздух влиза в капилярката той задължително е преминал покрай солите, и голяма част от водната пара в него е премахната. От двете страни на капилярката е свързан воден манометър, който ще мери разликата в наляганията от двете й страни. Тази разлика ще се използва във формулата за пресмятане на коефициентът на вътрешно триене. На фигура 1 е представена схема на установката.

Фигура 1. Схема на установката

III. Теоретична обосновка

За ламинарен поток на флуид през тръба е валиден законът на Нютон:

$$Q = \frac{\Delta P}{8\eta l} \pi r^4$$

Ако приемем разликата в наляганията в началото и края на тръбата за постоянни с времето то можем да пресметнем обемът въздух, преминал за някакъв интервал от време Δt по формулата

$$V = Q\Delta t = \frac{\Delta P}{8nl}\pi r^4 \Delta t$$

Но тъй като разликата в наляганията в началото и краят на капилярката е много по-малък от атмосферното налягане, то той е равен на обемът изтекла течност. Тогава ако премерим за колко време изтича даден обем вода, в нашия случай $V=500~\mathrm{ml}$, то можем да пресметнем коефициентът на вътрешно триене на въздуха η по формулата

$$\eta = \frac{\pi r^4 \Delta P}{8Vl} t \tag{1}$$

Знаейки стойността на коефициентът на вътрешно съпротивление на възудха можем да сметнем стойността му по следната формулата

$$\bar{\lambda} = \frac{3\eta}{\rho \bar{u}} = \frac{3\eta}{p} \sqrt{\frac{\pi RT}{8\mu}}$$

$$\bar{u} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi \mu}}$$
(2)

Тук \bar{u} е средната скорост на молекулите p е въздушното налягане и T е стайната температура.

IV. Експериментални данни и резултати

Експериментът се състои в това да се пусне да изтича вода от колбата, и едновременно с това се пуска таймер, мери се разликата в наляганията от двете страни на манометъра по време на изтичането, и се спира таймерът точно когато е изтекъл $V=500~\mathrm{ml}$ обем вода. За по-голяма точност експериментът се повтаря $10~\mathrm{n}$ ъти при различна скорост на изтичане на водата. В таблицата са дадени измерените стойности на разликата в наляганията за $10\mathrm{т}$ е измервания

t, s	P, cm	P, cm
110.3	4.1	4.2
105.9	3.5	3.7
37.6	13.8	14.2
57.4	7.6	7.4
127.4	2.7	2.5
114.7	3.2	3.2
34.9	13.8	13.6
63.7	6.4	6.2
108.5	3.4	3.4

За всяка една от стойностите е пресметнато числото на Рейнолдс

$$Re = \frac{\rho Q}{\eta \pi r}$$

При всяко едно измерване числото на Рейнолдс е помалко от критичната стойност $Re_{crit}=1200$, така че няма нужда да премахваме експериментални данни. Тогава

пресмятаме средната стойност на коефициентът на вътрешно триене на въздуха $\overline{\eta}=1.50*10^{-5}~{\rm Pa\,s}\pm5\%$

С така намереният коефициент на вътрешно триене можем по формула (2) да пресметнем стойност за средният свободен пробег $\bar{\lambda}=86~{\rm nm}\pm5\%.$