Informaty	rka.	studia	dzienne.	inż	I	st.
TITIOT III at y	mu,	buata	aziciiic,	11177	_	$\mathcal{D}_{\mathbf{U}}$.

semestr V

Obliczenia naukowe	2017/2018
Prowadzący: dr hab. Paweł Zieliński	czwartek TN, 11:15

Agata Jasionowska 229726

Laboratorium – Lista 2

1. Zadanie 1

1.1. Opis problemu

Zadanie polegało na ponownym rozwiązaniu zadania 5 z listy 1, jednak na nieznacznie zmienionych danych (usunięto ostatnie cyfry w x_4 oraz x_5 .

1.2. Opis rozwiązania

W celu obliczenia iloczynów skalarnych użyto kodu zadania 5 listy 1 oraz zmodyfikowanych zgodnie z treścią zadania danych.

1.3. Wyniki

Poniższa tabela prezentuje uzyskane wyniki dla czterech algorytmów obliczających iloczyn skalarny:

podpunkt	Lista1	Lista1 Lista2	
Float32			
1	-0.4999443	-0.499944	
2	-0.4543457	-0.4543457	
3	-0.5	-0.5	
4	-0.5	-0.5	
Float64			
1	-0.4999443	-0.004296342739891585	
2	-0.4543457	-0.004296342998713953	
3	-0.5	-0.004296342842280865	
4	-0.5	-0.004296342842280865	

Tabela 1. Obliczanie iloczynu skalarnego wektorów.

1.4. Wnioski

2. Zadanie 2

2.1. Opis problemu

W co najmniej dwóch wybranych programach do wizualizacji narysować wykres funkcji $f(x) = e^x ln(1 + e^{-x})$ oraz policzyć granicę $\lim_{x\to\infty} f(x)$.

2.2. Opis rozwiązania

2.3. Wyniki

2.3.1. Wnioski

3. Zadanie 3

3.1. Opis problemu

Rozwiązanie układu równań liniowych Ax=b dla danej macierzy współczynników $A\in \mathbb{R}^{n\times n}$ i wektora prawych stron $b\in \mathbb{R}^n$ za pomocą algorytmów: eliminacji Gaussa (x=A/b)

- 3.2. Opis rozwiązania
- 3.3. Wyniki
- 3.4. Wnioski
- 4. Zadanie 4
- 4.1. Opis problemu
- 4.2. Opis rozwiązania
- 4.3. Wyniki
- 4.4. Wnioski
- 5. Zadanie 5
- 5.1. Opis problemu
- 5.2. Opis rozwiązania
- 5.3. Wyniki
- 5.4. Wnioski
- 6. Zadanie 6
- 6.1. Opis problemu
- 6.2. Opis rozwiązania
- 6.3. Wyniki
- 6.4. Wnioski