AMENDMENTS TO THE CLAIMS

1. (Currently amended) A flame retardant composition which comprises (A) at least one compound selected from the group consisting of (A-1) a metal oxide represented by the formula M_xO_y (in the formula, M is at least one element selected from the elements of Groups 5, 8, 10 and 11 of the Periodic Table, and x and y are numerals satisfying 0<x≤5 and 0<y≤5, respectively) and (A-2) a trivalent phosphorus compound and (B) at least one phosphazene compound having a difference of 40-100°C between the temperature at which weight reduction is 50% by weight and the temperature at which the weight reduction is 5% by weight when it is heated from room temperature to 600°C at a heating rate of 10°C/min in an inert gas atmosphere according to TGA, wherein the flame retardant composition contains 0.1-60 parts by weight of the component (A) and 99.9-40 parts by weight of the component (B) in 100 parts by weight of the component (A) and the component (B) in total.

2. (Canceled)

- 3. (Previously presented) The flame retardant composition according to claim 1, wherein the component (B) has an acid value of not more than 1.0 and the component (B) has a water content of not more than 1000 ppm measured at 150°C according to Karl Fischer's method.
- 4. (Previously presented) The flame retardant composition according to claim 1, wherein the temperature at which the weight reduction of the component (B) is 50% by weight is JWB/mua

Application No. 10/575,262 Amendment dated January 15, 2009 Reply to Office Action of October 17, 2008

320-460°C when it is heated from room temperature to 600°C at a heating rate of 10°C/min in an inert gas atmosphere according to TGA.

- 5. (Previously presented) The flame retardant composition according to claim 1, wherein the metal M in the component (A-1) is at least one metal selected from the group consisting of V, Nb, Fe, Ni, Pd, Pt, Cu, Ag and Au.
- 6. (Previously presented) The flame retardant composition according to claim 1, wherein the component (A-1) is at least one compound selected from the group consisting of iron oxide, nickel oxide, palladium oxide and copper oxide.
- 7. (Previously presented) The flame retardant composition according to claim 1, wherein the temperature at which the weight reduction of the component (A-2) is 10% is 120-320°C when it is heated from room temperature to 600°C at a heating rate of 10°C/min in an inert gas atmosphere according to TGA.
- 8. (Previously presented) The flame retardant composition according to claim 1, wherein the component (A-2) is at least one of tertiary phosphines.
- 9. (Previously presented) The flame retardant composition according to claim 1, wherein the component (A-2) is at least one of triarylphosphines.

Application No. 10/575,262 Amendment dated January 15, 2009 Reply to Office Action of October 17, 2008

- 10. (Previously presented) The flame retardant composition according to claim 1 which further comprises (C) an aromatic resin.
- 11. (Original) The flame retardant composition according to claim 10, wherein the component (C) is at least one resin selected from the group consisting of polyphenylene ether resins, polycarbonate resins, polyphenylene sulfide resins, phenolic resins, aromatic polyamide resins, polyester resins and thermotropic liquid crystals.
- 12. (Original) The flame retardant composition according to claim 10, wherein the component (C) is a polyphenylene ether resin.
- 13. (Previously presented) The flame retardant composition according to claim 10, wherein the weight ratio of the component (C) and the component (B) is (C)/(B) = 95/5 5/95.
- 14. (Previously presented) A flame retardant resin composition which comprises the flame retardant composition described in claim 10.
- 15. (Previously presented) A flame retardant resin composition which contains (a) a resin and (b) the flame retardant composition described in claim 1.
- 16. (Original) The flame retardant resin composition according to claim 15 which contains 1-1000 parts by weight of the component (b) based on 100 parts by weight of the

Docket No.: 0152-0730PUS1

Application No. 10/575,262 Amendment dated January 15, 2009

Reply to Office Action of October 17, 2008

component (a).

17. (Previously presented) The flame retardant resin composition according to claim

15, wherein the component (a) comprises at least one thermoplastic resin selected from the group

consisting of polycarbonate resins, polyphenylene ether resins, polyphenylene sulfide resins,

polypropylene resins, polyethylene resins, polystyrene resins, ABS resins, polyalkylene

terephthalate resins, polyamide resins, thermotropic liquid crystals and elastomer-containing

polystyrenes.

18. (Previously presented) The flame retardant resin composition according to claim 15,

wherein the component (a) is at least one resin selected from the group consisting of

polyphenylene ether resins, polycarbonate resins, polystyrene resins, ABS resins and elastomer-

containing polystyrenes, and the component (A-1) in the flame retardant composition which is

the component (b) is iron oxide and/or copper oxide.

19. (Previously presented) The flame retardant resin composition according to claim

15, wherein the component (a) is at least one resin selected from the group consisting of

polyphenylene ether resins, polycarbonate resins, polystyrene resins, ABS resins and elastomer-

containing polystyrenes, and the component (A-2) in the flame retardant composition which is

5

the component (b) is at least one phosphine selected from triarylphosphines.

JWB/mua

Application No. 10/575,262 Amendment dated January 15, 2009

Reply to Office Action of October 17, 2008

20. (Previously presented) The flame retardant resin composition according to claim 15,

wherein the component (a) comprises at least one hardening resin selected from the group

consisting of unsaturated polyester resins, vinyl ester resins, diallyl phthalate resins, epoxy

resins, cyanate resins, xylene resins, triazine resins, phenolic resins, urea resins, melamine resins,

benzoguanamine resins, urethane resins, ketone resins, alkyd resins, furan resins, oxetane resins,

styrylpyridine resins and synthetic rubbers.

21. (Previously presented) The flame retardant resin composition according to claim 15,

wherein the component (a) is an epoxy resin, and the component (A-1) in the flame retardant

composition which is the component (b) is at least one oxide selected from nickel oxide,

palladium oxide, iron oxide and copper oxide.

The flame retardant resin composition according to claim 22. (Previously presented)

15, wherein the component (a) is an epoxy resin, and the component (A-2) in the flame retardant

composition which is the component (b) is at least one phosphine selected from

triarylphosphines.

The flame retardant resin composition which comprises 23. (Currently amended)

(a) a resin and (b) the flame retardant composition described in claim 12 according to claim 15 or

16, wherein the component (a) is an epoxy resin, and the component (C) in the flame retardant

composition which is the component (b) further comprises (C) an aromatic resin which is a

6

polyphenylene ether resin having a number average molecular weight of 500-5000.

JWB/mua

Application No. 10/575,262 Amendment dated January 15, 2009 Reply to Office Action of October 17, 2008 Docket No.: 0152-0730PUS1

24. (Previously presented) A molded article comprising the flame retardant resin composition according to claim 14.