

Design and Analysis of Algorithms

Lecture - 6

Success is always inevitable with Hard Work and Perseverance

N. Ravitha Rajalakshmi

Learning Objective

Methods to solve recurrence relation

Revisit Recurrence Relation

For finding Factorial of a number, What was recurrence relation?

$$T(\mathbf{n}) = \begin{cases} T(\mathbf{n} - \mathbf{1}) + 1, & n > 0 \\ 0, & n = 0 \end{cases}$$

What is n?

What does T(0) = 0 indicate?

Input Size

No computations when input size is zero

What is T(n)?

Time taken by algorithm for input size n

Solving Recurrences

- Iteration Method
 - Method of forward / backward substitution

Recursion tree Method

Master's theorem

Iteration Method

Solve by backward substitution

$$T(n) = T(n-1) + 1$$

$$= (T(n-2) + 1) + 1$$

$$= (T(n-2) + 2)$$

$$= (T(n-3) + 1) + 2$$

$$= (T(n-3) + 3)$$

$$= (T(n-4) + 1) + 3$$

$$= (T(n-4) + 4)$$

Generic Equation = (T(n-i)+i)

Use base case to resolve the characteristic equation

$$T(0)=0$$

Generic Equation =
$$(T(n-i)+i)$$

 $n-i=0$
 $i=n$

Substitute
$$i = n$$
 in generic equation

$$= T(0) + n$$

$$= 0 + n$$

$$T(n) = O(n)$$

Iteration Method

2

1

Solve by forward substitution

$$T(n) = T(n-1) + 1$$

$$T(1) = T(0) + 1$$

$$T(2) = T(1) + 1$$

$$T(3) = T(2) + 1$$

Recognize the sequence

$$T(n) = ?$$

$$T(n) = n$$

3

Check whether solution satisfy recurrence

$$T(n) = n - 1 + 1 = n$$

$$T(0) = 0 - 1 + 1 = 0$$

n	T(n)
1	1
2	2
3	3
4	4
5	5

Solve the following recurrence relation using the method of forward substitution

$$T(n) = T(n/2) + n, n > 0$$

 $T(0) = 0$

Iteration Method

Solve by forward substitution Recognize the sequence

$$T(n) = T(n/2) + n$$

$$T(1) = T(0) + 1$$

$$= 1$$

$$T(2) = T(1) + 2$$

$$T(3) = T(1) + 3$$

$$T(n) = ?$$

$$T(n) = 2n$$

Check whether solution satisfy recurrence

$$T(n) = n + n = 2n$$

$$T(0) = 0 + 0 = 0$$

$$T(n) = 0(n)$$

n	T(n)
1	1
2	3
3	4
4	7
5	8
6	10
7	11
8	15

n	T(n)
16	31
32	63
64	127

Recursion Tree Method

- Visualization tool
- Depicts the number of recursive calls and the amount of work done at each recursive call
- Provides a good guess on time complexity

Recursion Tree Method

Recursion Tree Method

 $f(n) = n^2$ #recursive calls = 2 Size of sub problem = n/2

Pause & Think

How the recurrence relation components are illustrated in recursion tree

Problem and subproblem nodes

Recursive calls

Branches

Computation Value in the node

Pause & Think

How the recurrence relation components are illustrated in recursion tree

Total input size

Value in the root node

Base case

Leaf nodes

How Problem size related to level?

 $n/2^{i}$

How number of nodes related to level?

2ⁱ

Leaf nodes

Problem size is reduced by half after every iteration, at ith level problem size is

 $\frac{n}{2^{i}}$

At leaf node, what is the problem size ?

$$n/2^{i} = 1$$
$$2^{i} = n$$
$$i = \log n$$

How many nodes at leaf level ?

At every layer its doubled $\,$, 2^i So at base level , there will be n nodes

Cost

=
$$[n^2 + n^2/_2 + n^2/_4 \cdots 1] + n * 1$$

$$= n^2 + n^2 \left[\frac{1}{2} + \frac{1}{4} \dots \right] + n$$

$$n^2 + n^2 + n = O(n^2)$$

Cost of leaf nodes

Pause & Think

Write a recursive function for finding the power of a number and access its time complexity.

Given x and n, find x^n

$$x^n = \begin{cases} x * x^{n-1}, & n > 1 \\ x, & n = 1 \end{cases}$$

Function FindPower (x, n)

```
#x is base #n - exponent
    if (n==1){}
               return x;
    else {
               res = FindPower(x, n-1);
               res = x * res;
               return res;
```

Input Size

Exponent n

Basic Operation

Multiplication

$$T(\mathbf{n}) = \begin{cases} T(\mathbf{n} - \mathbf{1}) + 1, & n > 1 \\ 0, & n = 1 \end{cases}$$

$$T(n) = O(n-1)$$

Can I get a better algorithm than this??

Summary

 Discussed the method of iteration and recursion tree for solving recurrences

Thank You Happ Learning

Success is always inevitable with Hard Work and Perseverance