Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №6 з дисципліни: «Твердотільна електроніки-1»

«ІНТЕГРАЛЬНІ СХЕМИ СТАТИЧНОЇ ЛОГІКИ НА МДН – ТРАНЗИСТОРАХ»

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Превірив:	(підпис)	Л.М. Королевич

1. МЕТА РОБОТИ

Дослідження характеристик керуючого транзистора та властивостей базових інверторів інтегральних схем виготовлених за МДН-технологією.

2. ЗАВДАННЯ

- 2.1 Виконати вимірювання сімейства вихідних вольт-амперних характеристик керуючого інтегрального МДН-транзистора T_y залежності струму стоку від напруги сток-виток. Побудувати сімейство характеристик $I_c = I_c (U_{cc})$ [при $U_3 = \text{const}$] на одному малюнку.
- 2.2 Визначити крутизну, динамічний опір стоку, коефіцієнт підсилення напруги для крутої і для пологої областей вихідних характеристик транзистора $(S_1; S_2; r_{c_1}; r_{c_2}; \mu_1; \mu_2)$
- 2.3 Виміряти передавальні характеристики інтегрального МДН-інвертора при різних видах навантаження:
 - а) лінійний резистор R_n
 - б) МДН-транзистор T_y ідентичний керуючому,
 - в) МДН-транзистор з довгим та вузьким каналом T_n .
- 2.4 Побудувати на одному малюнку графіки передавальних характеристик Знятих для трьох типів інверторів. Визначити коефіцієнти передачі для різних видів навантажень.
- 2.5 За результатами вимірювань побудувати на сімействі вихідних ВАХ керуючого транзистора навантажувальні характеристики для трьох типів навантаження: R_n, T_u, T_n
- 2.6 Виконати порівняльний аналіз досліджуваних схем інверторів і зробити висновки про доцільність використання розглянутих типів навантаження в схемах статичної логіки.
- 2.7 Намалюйте можливу структуру одного із досліджених інтегральних МДНінверторів (найоптимальнішого). Запропонуйте заходи щодо зниження порогової напруги та зменшення паразитних ємностей інтегрального МДН інвертора.

2.1. СХЕМА ДЛЯ ДОСЛІДЖЕННЯ ВОЛЬТ-АМПЕРНОЇ ХАРАКТКРИСТИКИ

Рис. 1: Еквівалентна схема $_{y}$ з каналом $W_{\scriptscriptstyle {
m 9KB.}}=3W.$

Рис. 2: Схема дослідження.

2.2.Таблиці

Табл. 1: Сімейство вихідних характеристик керуючого МДН-транзистора

$U_3 = 4, 5$	U_c, B	0	0,1	0,2	0,3	0,4	0,5	0,7	0,9	1,2	1,5
	I_{cl} , MA	120	170	185	195	205	220	240	265	285	30

$U_3 = 5$	- ,			· /	,	· ′	,	· /	, ,	,	l ′		,	, ,
	I_{cl} ,	60	85	110	140	162	180	198	215	239	245	255	275	295

$U_3 = 5, 5B$, ,		,	,	/	,	l ′	/	,	,	,
	I_{cl} , MA	15	65	105	140	170	200	225	265	290	300

$U_3 = 6B$	U_c, B	0	0,1	0,2	0,3	0,4	0,5	0,6	0,66
	I_{cl} , MA	30	70	115	160	200	240	280	300

$U_3 = 6, 5B$	- /		1 ′	· · ·	· ′	· ·	l ′	,
	I_{cl} , mA	35	85	140	180	235	285	300

$U_3 = 7B$	U_c, B	0	0,1	0,2	0,3	0,4	0,5
	I_{cl} , MA	40	90	145	200	255	300

$U_3 = 7, 5$	U_c, B	0	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,44
	I_{cl} , MA	30	105	130	165	190	220	250	275	300

Табл. 2: Передавальні характеристики МДН інтегрального інвертора для різних видів навантажень. Умови вимірювань: $E_{\tt ж}=-15B.$

Навантаж	ення - Кн	Навантаж	ення - Ту	Навантаж	ення - Тн
U3, B	Uc, B	Uз, В	Uc, B	Uз, В	Uc, B
0	17,5	0	13	0	10
1	17,5	1	13	1	10
2	17,5	2	13	2	10
3	17,5	3	13	3	10
4	16,5	4	11	3,2	7,8
5	14	4,5	10	3,4	7
5,5	12,5	5	9,5	3,5	5,8
6	10,5	5,5	8,2	3,6	4,8
7	8,2	6	7	3,7	3,4
7,5	6,3	6,5	5,9	3,8	2,3
8	4,6	7	4,9	3,9	0,3
9	3,4	7,5	3,8	4	0
10	2,8	8	3,4		
11	2,7	8,5	3		
		9	2,7		
		9,5	2,5		
		10	2,4		

3. Формули та Розрахунки

Для початку знайду крутизну характеристики, диференційний опір та граничний кофіцієнт підсилення за напругою відповідно:

$$S = \frac{\Delta I_C}{\Delta U_3} \tag{1}$$

$$r_i = \frac{\triangle U_{BC}}{\triangle I_{C_2}} \tag{2}$$

$$K_U = S \cdot r_i \tag{3}$$

Беру значення з точок 3 та 4 і підставляю у формулу 1, отримую (при урахуванні що $\Delta U_{\rm CB} = const, \Delta U_3 = const, \Delta U_3 = 5, 5B$ відповідно у фомулах 1, 2 та 3)

Тоді

$$S = \frac{(230 - 200) \cdot 10^{-6}}{0.5} = 0.00007000 = 70 \frac{\text{mkA}}{B}$$

$$r_i = \frac{0.1}{30 \cdot 10^{-6}} = 3333.33 = 3,3 \text{ кОм}$$

$$K_U = S \cdot r_i = 0.23$$

Тепер користуючись рис.4 знайду коефіцієнти передачі для кожної перехідної характеристики і потім методом трикутника знайду динамічний коефіцієнт підсилення для кожного із трьох типів навантаження $\left(K = \frac{\triangle U_C}{\triangle U_3}\right)$

Як я зрозумів, то у мене недостатнью виміряних значень, тому я не можу побудувати

пологу частину ВАХ і визначити навантажувальні характеристики...

$$K_{Tn} = \frac{8 - 6}{3, 5 - 3, 1} = 5.00$$

$$K_{Ty} = \frac{8 - 6}{6, 5 - 5, 5} = 2.00$$

$$K_{Rn} = \frac{8-6}{7,8-7} = 2.50$$

4.Графіки

Будую сімейство використовуючи дані з Таб.1.

Рис. 3: Вихідні характеристики транзистора.

Виміри для Uз = 4,5 В щось не дуже сходяться з теоретично можливими, тому я виключив їх з розрахунків.

ж перехідних характеристик спадають, починаючи зі значення

Рис. 4: Передавальна характеристика для трьох навантажень.

Рис. 5: Структура КМОП інвертора.

5. Висновок

Виходячи з теореричних знань, можна сказати, що отримані на практиці ВАХ відповідають теоретичним припущенням, оскильки на всіх сімействах добре видна дилянка змини, а що стосується перехідних характеристик, то вони спадають, починаючи зі значення очевидного занченя, тобто з U_{nop} . Що стосується найкращого логічного елементу, то на мою думку це буде зв'язка за транзистором T_y оскільки він дає найбільший коефіцієнт передачі.