Replication of Berry et al. (1995)

Matthew Gentzkow*

Stanford and NBER

Jesse M. Shapiro

Brown and NBER

September 2015

This document describes our MATLAB implementation of Berry et al.'s (1995) model of automobile demand (henceforth BLP).

We obtained BLP (1995)'s data from the GAUSS code for BLP (1999), which we downloaded from the Internet Archive's April 2005 web capture of James Levinsohn's (now defunct) website at the University of Michigan. Table 1 of BLP (1995) and table 2 of BLP (1999) imply that the two papers use the same dataset.

We re-implemented BLP's (1995) estimator using BLP's (1999) code as a guide. We used code from Petrin (2002), Dubé et al. (2012), and Knittel and Metaxoglou (2014) as additional references.

The tables below reproduce the corresponding tables from BLP (1995) alongside analogous results from our implementation.

We reproduce the descriptive statistics in tables 1, 2, and 3 very closely, matching exactly or almost exactly in most cases. Model parameter estimates in table 4 are similar in general, but our estimated parameters produce somewhat lower price elasticities (table 5), leading to somewhat higher estimated markups (table 8).

^{*}E-mail: gentzkow@stanford.edu, jesse_shapiro_1@brown.edu.

References

- Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. Automobile prices in market equilibrium. *Econometrica* 63(4): 841-890.
- —. 1999. Voluntary export restraints on automobiles: Evaluating a trade policy. *American Economic Review* 89(3): 400-430.
- Dubé, Jean-Pierre, Jeremy T. Fox, and Che-Lin Su. 2012. Improving the numerical performance of static and dynamic aggregate discrete choice random coefficients demand estimation. *Econometrica* 80(5): 2231-2267.
- Knittel, Christopher R. and Konstantinos Metaxoglou. 2014. Estimation of random-coefficient demand models: Two empiricists' perspective. *Review of Economics and Statistics* 96(1): 34-59.
- Petrin, Amil. 2002. Quantifying the benefits of new products: The case of the minivan. *Journal of Political Economy* 110(4): 705-729.

Table 1: Descriptive statistics

(a) Berry et al. (1995)

·	No. of	·	·								· · · · · · · · · · · · · · · · · · ·
Year	models	Quantity	Price	Domestic	Japan	European	HP / weight	Size	Air	MPG	MP\$
1971	92	86.892	7.868	0.866	0.057	0.077	0.490	1.496	0.000	1.662	1.850
1972	89	91.763	7.979	0.892	0.042	0.066	0.391	1.510	0.014	1.619	1.875
1973	86	92.785	7.535	0.932	0.040	0.028	0.364	1.529	0.022	1.589	1.819
1974	72	105.119	7.506	0.887	0.050	0.064	0.347	1.510	0.026	1.568	1.453
1975	93	84.775	7.821	0.853	0.083	0.064	0.337	1.479	0.054	1.584	1.503
1976	99	93.382	7.787	0.876	0.081	0.043	0.338	1.508	0.059	1.759	1.696
1977	95	97.727	7.651	0.837	0.112	0.051	0.340	1.467	0.032	1.947	1.835
1978	95	99.444	7.645	0.855	0.107	0.039	0.346	1.405	0.034	1.982	1.929
1979	102	82.742	7.599	0.803	0.158	0.038	0.348	1.343	0.047	2.061	1.657
1980	103	71.567	7.718	0.773	0.191	0.036	0.350	1.296	0.078	2.215	1.466
1981	116	62.030	8.349	0.741	0.213	0.046	0.349	1.286	0.094	2.363	1.559
1982	110	61.893	8.831	0.714	0.235	0.051	0.347	1.277	0.134	2.440	1.817
1983	115	67.878	8.821	0.734	0.215	0.051	0.351	1.276	0.126	2.601	2.087
1984	113	85.933	8.870	0.783	0.179	0.038	0.361	1.293	0.129	2.469	2.117
1985	136	78.143	8.938	0.761	0.191	0.048	0.372	1.265	0.140	2.261	2.024
1986	130	83.756	9.382	0.733	0.216	0.050	0.379	1.249	0.176	2.416	2.856
1987	143	67.667	9.965	0.702	0.245	0.052	0.395	1.246	0.229	2.327	2.789
1988	150	67.078	10.069	0.717	0.237	0.045	0.396	1.251	0.237	2.334	2.919
1989	147	62.914	10.321	0.690	0.261	0.049	0.406	1.259	0.289	2.310	2.806
1990	131	66.377	10.337	0.682	0.276	0.043	0.419	1.270	0.308	2.270	2.852
All	2217	78.804	8.604	0.790	0.161	0.049	0.372	1.357	0.116	2.099	2.086

(b) Replication

	No. of										
Year	models	Quantity	Price	Domestic	Japan	European	HP / weight	Size	Air	MPG	MP\$
1971	92	86.892	7.868	0.866	0.057	0.077	0.490	1.496	0.000	1.662	1.849
1972	89	98.623	7.979	0.892	0.042	0.066	0.391	1.510	0.014	1.619	1.875
1973	86	92.785	7.535	0.932	0.040	0.028	0.364	1.529	0.022	1.589	1.818
1974	72	105.119	7.506	0.887	0.050	0.064	0.347	1.510	0.026	1.567	1.452
1975	93	84.775	7.821	0.853	0.083	0.064	0.337	1.479	0.054	1.584	1.503
1976	99	93.382	7.787	0.876	0.081	0.043	0.338	1.508	0.059	1.759	1.696
1977	95	97.727	7.651	0.837	0.112	0.051	0.340	1.467	0.032	1.947	1.835
1978	95	99.444	7.645	0.855	0.107	0.039	0.346	1.405	0.034	1.982	1.929
1979	102	82.742	7.599	0.803	0.158	0.038	0.348	1.343	0.047	2.061	1.657
1980	103	71.567	7.718	0.773	0.191	0.036	0.350	1.296	0.078	2.215	1.466
1981	116	62.030	8.349	0.741	0.213	0.046	0.349	1.286	0.094	2.363	1.559
1982	110	61.893	8.831	0.714	0.235	0.051	0.347	1.277	0.134	2.440	1.817
1983	115	67.878	8.821	0.734	0.215	0.051	0.351	1.276	0.126	2.601	2.087
1984	113	85.933	8.870	0.783	0.179	0.038	0.361	1.293	0.129	2.469	2.117
1985	136	78.143	8.938	0.761	0.191	0.048	0.372	1.265	0.140	2.261	2.024
1986	130	83.756	9.382	0.733	0.216	0.050	0.379	1.249	0.176	2.416	2.856
1987	143	67.667	9.965	0.702	0.245	0.052	0.395	1.246	0.229	2.327	2.789
1988	150	67.078	10.069	0.717	0.237	0.045	0.396	1.251	0.237	2.334	2.919
1989	147	62.914	10.321	0.690	0.261	0.049	0.406	1.259	0.289	2.310	2.806
1990	131	66.377	10.337	0.682	0.276	0.043	0.419	1.270	0.308	2.270	2.852
All	2217	78.804	8.604	0.790	0.161	0.049	0.372	1.357	0.116	2.099	2.086

Table 2: The range of continuous demand characteristics (and associated models)

		ı						
		100	68.597	646.526	0.948	1.888	64.37	53
	e	75	3.393 6.714 8.729 13.074	109.002	0.428	1.453	24.83	25
cation	Percenti	50	8.729	47.350	0.375	1.270	20.10	20
(b) Replication		25	6.714	15.603	0.337	1.131	15.57	17
		0	3.393	0.049	0.170	0.756	8.46	6
		Variable	Price	Sales	HP / weight	Size	MP\$	MPG
		100	8.728 13.074 68.597	577.313	0.948	1.888	64.37	53
	le	75	13.074	109.002	0.428	1.453	24.86	25
al. (1995)	Percentil	50	8.728	47.345	0.375	1.270	20.10	20
(a) Berry et a		25	6.711	15.479	0.337	1.131	15.57	17
(a)		0	3.393 6.711	0.049	0.170	0.756	8.46	6
		Variable	rice	ales	IP / weight	ize	MP\$	/IPG

Table 3: Results with logit demand and marginal cost pricing (2217 observations)

	(a) Berry et al. (1995)	1995)			(b) Replication	on	
	OLS	IV	OLS		OLS	IV	OLS
	logit	logit	$\ln{(price)}$		logit	logit	$\ln{(price)}$
Variable	demand	demand	on w	Variable	demand	demand	on w
Constant	-10.068	-9.273	1.882	Constant	-10.069	-9.274	1.882
	(0.253)	(0.493)	(0.119)		(0.253)	(0.493)	(0.119)
HP/weight	-0.121	1.965	0.520	HP / weight	-0.121	1.965	0.520
	(0.277)	(0.909)	(0.035)		(0.277)	(0.909)	(0.035)
Air	-0.035	1.289	0.680	Air	-0.035	1.289	0.680
	(0.073)	(0.248)	(0.019)		(0.073)	(0.248)	(0.019)
MP\$	0.263	0.052	1	MP\$	0.263	0.052	
	(0.043)	(0.086)			(0.043)	(0.086)	
MPG		I	-0.471	MPG		I	-0.471
			(0.049)				(0.049)
Size	2.341	2.355	0.125	Size	2.341	2.355	0.125
	(0.125)	(0.247)	(0.063)		(0.125)	(0.247)	(0.063)
Trend			0.013	Trend			0.013
			(0.002)				(0.002)
Price	-0.089	-0.216	1	Price	-0.089	-0.216	
	(0.004)	(0.123)			(0.004)	(0.023)	
No. inelastic demands	1494	22	n.a.	No. inelastic demands	1494	22	n.a.
(+/-2 s.e.'s)	(1429-1617)	(7-101)		(+/-2 s.e.'s)	(14	(6-294)	
R^2	0.387	n.a.	0.656	R^2	0.387	n.a.	0.656

Table 4: Estimated parameters of the demand and pricing equations: BLP specification (2217 observations)

Parameter Standard e estimate error tt -7.061 0.941 ght 2.883 2.019 1.521 0.891 -0.122 0.320 3.460 0.610 tt 3.612 1.485 ght 4.628 1.885 1.050 0.272 2.056 0.285 tt 0.952 0.194 ght) 0.477 0.056 0.619 0.038 -0.046 0.081	(q)	(b) Replication		
Constant -7.061 0.941 HP / weight 2.883 2.019 Air 1.521 0.891 MP\$ -0.122 0.320 Size 3.460 0.610 ns $(\sigma_{\beta}$'s) Constant 3.612 1.485 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 e (α) ln $(y-p)$ 43.501 6.427 ameters Constant 0.952 0.194 Air 0.619 0.038 ln (MPG) -0.415 0.055 ln (size) -0.046 0.081	Standard	X7:-1.1.	Parameter	Standard
Constant -7.061 0.941 HP / weight 2.883 2.019 Air 1.521 0.891 MP\$ -0.122 0.320 Size 3.460 0.610 Size 3.460 0.610 Air 4.628 1.885 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 e (α) ln $(y-p)$ 43.501 6.427 ameters Constant 0.952 0.194 Air 0.047 0.056 Air 0.0415 0.055 ln (MPG) -0.415 0.055		Variable	estimate	error
HP / weight 2.883 2.019 Air 1.521 0.891 MP\$ -0.122 0.320 Size 3.460 0.610 Constant 3.612 1.485 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 In (y - p) 43.501 6.427 Constant 0.952 0.194 In (HP / weight) 0.477 0.056 Air 0.619 0.038 In (MPG) -0.415 0.055 In (size) -0.046 0.081		Constant	-7.728	1.722
Air 1.521 0.891 MP\$ -0.122 0.320 Size 3.460 0.610 Constant 3.612 1.485 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 In (y - p) 43.501 6.427 Constant 0.952 0.194 In (HP / weight) 0.477 0.056 Air 0.619 0.038 In (MPG) -0.415 0.055 In (size) -0.046 0.081		HP / weight	4.620	1.682
MP\$ -0.122 0.320 Size 3.460 0.610 Size 3.460 0.610 Constant 3.612 1.485 HP / weight 4.628 1.885 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 In (y - p) 43.501 6.427 Constant 0.952 0.194 In (HP / weight) 0.477 0.056 Air 0.619 0.038 In (MPG) -0.415 0.055 In (size) -0.046 0.081		Air	-1.226	2.059
Size 3.460 0.610 Constant 3.612 1.485 HP / weight 4.628 1.885 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 In (y - p) 43.501 6.427 Constant 0.952 0.194 In(HP / weight) 0.477 0.056 Air 0.619 0.038 In (MPG) -0.415 0.055 In (size) -0.046 0.081		MP\$	0.293	0.233
constant 3.612 1.485 HP / weight 4.628 1.885 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 In (y - p) 43.501 6.427 Constant 0.952 0.194 In(HP / weight) 0.477 0.056 Air 0.619 0.038 In(MPG) -0.415 0.055 In (size) -0.046 0.081	0.610	Size	3.992	0.527
HP / weight 4.628 1.885 Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 $ln(y-p)$ 43.501 6.427 Constant 0.952 0.194 $ln(HP / weight)$ 0.477 0.056 Air 0.619 0.038 $ln(MPG)$ -0.415 0.055	1.485 Std. Deviations (σ_{β} 's)	Constant	2.522	3.779
Air 1.818 1.695 MP\$ 1.050 0.272 Size 2.056 0.585 $\ln(y-p)$ 43.501 6.427 Constant 0.952 0.194 $\ln(\text{HP / weight})$ 0.477 0.056 Air 0.619 0.038 $\ln(\text{MPG})$ -0.415 0.055 $\ln(\text{size})$ -0.046 0.081	1.885	HP / weight	3.525	4.236
MP\$ 1.050 0.272 Size 2.056 0.585 $\ln(y-p) + 43.501 6.427$ Constant 0.952 0.194 $\ln(\text{HP / weight}) + 0.477 0.056$ Air 0.619 0.038 $\ln(\text{MPG}) + 0.0415 0.055$ $\ln(\text{size}) + 0.046 0.081$	1.695	Air	4.166	2.106
Size 2.056 0.585 $\ln(y-p)$ 43.501 6.427 Constant 0.952 0.194 $\ln(\text{HP / weight})$ 0.477 0.056 Air 0.619 0.038 $\ln(\text{MPG})$ -0.415 0.055 $\ln(\text{size})$ -0.046 0.081		MP\$	0.393	0.419
$\ln(y-p) \qquad 43.501 \qquad 6.427$ $Constant \qquad 0.952 \qquad 0.194$ $\ln(HP / \text{weight}) \qquad 0.477 \qquad 0.056$ $Air \qquad 0.619 \qquad 0.038$ $\ln(MPG) \qquad -0.415 \qquad 0.055$ $\ln(\text{size}) \qquad -0.046 \qquad 0.081$		Size	1.937	0.889
Constant 0.952 0.194 In(HP / weight) 0.477 0.056 Air 0.619 0.038 In(MPG) -0.415 0.055 In(size) -0.046 0.081		$\ln(y-p)$	42.870	8.280
0.477 0.619 -0.415 -0.046	0.194 Cost side parameters	Constant	2.751	0.125
0.619 -0.415 -0.046	0.056	In(HP / weight)	0.812	0.089
-0.415	0.038	Air	0.430	0.079
-0.046		ln(MPG)	-0.610	0.073
		ln(size)	-0.352	0.164
_	0.019 0.002	Trend	0.027	0.002

Notes: Table focuses on the main BLP specification and omits two columns from an auxiliary specification.

Table 5: A sample from 1990 of estimated demand elasticities with respect to attributes and price (based on table 4 estimates)

	(m)	(a) = cur (a) (a)	(6)				(6)	I.	•		
	Λ.	alue of a	Value of attribute / price	price			>	Value of attribute / price	tribute / 1	price	
	Elasticity	ty of den	of demand with respect to	respect 1	to:		Elastici	Elasticity of demand with respect to:	and with	respect 1	0:
Model	HP / weight	Air	MP\$	Size	Price	Model	HP / weight	Air	MP\$	Size	Price
Mazda 323	0.366	0.000	3.645	1.075	5.049	Mazda 323	0.366	0.000	3.645	1.075	5.049
	0.458	0.000	1.010	1.338	6.358		0.682	-0.000	0.516	1.717	4.033
Sentra	0.391	0.000	3.645	1.092	5.661	Sentra	0.391	0.000	3.645	1.092	5.661
	0.440	0.000	0.905	1.194	6.528		0.623	-0.000	0.447	1.476	4.00
Escort	0.401	0.000	4.022	1.116	5.663	Escort	0.401	0.000	4.022	1.116	5.66
	0.449	0.000	1.132	1.176	6.031		0.624	-0.000	0.528	1.453	3.87
Cavalier	0.385	0.000	3.142	1.179	5.797	Cavalier	0.385	0.000	3.142	1.179	5.79
	0.423	0.000	0.524	1.360	6.433		0.609	-0.000	0.315	1.681	3.93.
Accord	0.457	0.000	3.016	1.255	9.292	Accord	0.457	0.000	3.016	1.255	9.29
	0.282	0.000	0.126	0.873	4.798		0.325	-0.000	0.152	0.715	3.31(
Taurus	0.304	0.000	2.262	1.334	9.671	Taurus	0.304	0.000	2.262	1.334	9.67
	0.180	0.000	-0.139	1.304	4.220		0.159	-0.000	0.075	0.787	3.150
Century	0.387	1.000	2.890	1.312	10.138	Century	0.387	1.000	2.890	1.312	10.13
	0.326	0.701	0.077	1.123	6.755		0.368	0.624	0.155	0.842	6.128
Maxima	0.518	1.000	2.513	1.300	13.695	Maxima	0.518	1.000	2.513	1.300	13.69
	0.322	0.396	-0.136	0.932	4.845		0.232	0.238	0.075	0.283	4.97
Legend	0.510	1.000	2.388	1.292	18.944	Legend	0.510	1.000	2.388	1.292	18.94
	0.167	0.237	-0.070	0.596	4.134		0.117	0.103	0.032	0.139	3.668
TownCar	0.373	1.000	2.136	1.720	21.412	TownCar	0.373	1.000	2.136	1.720	21.41
	0.089	0.211	-0.122	0.883	4.320		0.022	0.020	0.016	0.151	3.18
Seville	0.517	1.000	2.011	1.374	24.353	Seville	0.517	1.000	2.011	1.374	24.35
	0.092	0.116	-0.053	0.416	3.973		0.061	0.034	0.013	0.116	2.98
LS400	0.665	1.000	2.262	1.410	27.544	LS400	0.665	1.000	2.262	1.410	27.544
	0.073	0.037	-0.007	0.149	3.085		0.063	0.020	0.012	0.094	3.039
BMW 735i	0.542	1.000	1.885	1.403	37.490	BMW 735i	0.542	1.000	1.885	1.403	37.490
	0.061	0.011	-0.016	0.174	3.515		0.056	-0.006	0.021	0.153	2.872

Notes (BLP 1995): The value of the attribute or, in the case of the last column, price, is the top number and the number below it is the elasticity of demand with respect to the attribute (or, in the last column, price.)

Table 8: A sample from 1990 of estimated price-marginal cost markups and variable profits (based on table 4 estimates)

	(a) Berry	(a) Berry et al. (1995)			(b) Re	(b) Replication	
		Markup over MC	Variable profits (in \$'000's)			Markup over MC	Variable profits (in \$'000's)
Model	Price	(p-MC)	$q\left(p-MC ight)$	Model	Price	(p-MC)	$q\left(p-MC ight)$
Mazda 323	\$5,049	\$801	\$18,407	Mazda 323	\$5,049	\$1,269	\$29,158
	\$5,661	\$880	\$43,554	Sentra	\$5,661	\$1,442	\$71,371
	\$5,663	\$1,077	\$311,068	Escort	\$5,663	\$1,717	\$495,787
er	\$5,797	\$1,302	\$384,263	Cavalier	\$5,797	\$2,082	\$614,302
~	\$9,292	\$1,992	\$830,842	Accord	\$9,292	\$2,889	\$1,205,400
	\$9,671	\$2,577	\$807,212	Taurus	\$9,671	\$3,427	\$1,073,448
>	\$10,138	\$2,420	\$271,446	Century	\$10,138	\$2,966	\$332,782
ıa	\$13,695	\$2,881	\$288,291	Maxima	\$13,695	\$2,812	\$281,343
73	\$18,944	\$4,671	\$250,695	Legend	\$18,944	\$5,239	\$281,156
TownCar	\$21,412	\$5,596	\$832,082	TownCar	\$21,412	\$7,582	\$1,127,369
•	\$24,353	\$7,500	\$249,195	Seville	\$24,353	\$10,294	\$342,044
_	\$27,544	\$9,030	\$371,123	LS400	\$27,544	\$9,184	\$377,478
MW 735i	\$37,490	\$10,975	\$114,802	BMW 735i	\$37,490	\$13,368	\$139,829