

Lecture 2. pdf Def. 1.4 I terative method $x_{i+1} = g(x_i)$, exact solution $x = g(x_i)$ Id. 1.4 old e; = | x; -re |. If lim eit = 5 them method had lineat convergence with take S. Thm 1.2 assume glis contions, g(z)=z, S=[g'(z)]<1. Then for all x_0 so reision thy close to x_1 , iterations $x_{n+1}=g(x_i)$ converge himseth with rate S.

, much rathe theorem subtract $X_{i+1}-z=g(x_i)-g(e)=g'(c_i)(x_i-z)$ c; between x_i and x_i $|x_{i+1}-x|=|g'(c_i)|(g(x_i)-g(x))$ assumed |g'(z)| < 1 |g'(z)| < 2 |g'(z)| < 3 |g'(z)| < 3 |g'(z)| < 4 |g'(z)| < 4 |g'(z)| < 6 |g'(z)

[\(\frac{1}{6}(\varphi) \) < | 19(x) < 1 on som (R-E, R+E) Then let xo ∈ (R-E, R+E) OF "close to r 17 $|X_1 - Z_1| = |g(x_0) - Z_1| = |g'(x_0)| |x_0 - Z_1|$ Co between x and z $|x_2 - x| = |g'(x_1) - x| = |g'(x_1)| |x_1 - x| < c|x_1 - x| < c^2|x_0 - x|$ $|Y_n - \eta| \leq c^m |Y_n - \eta| \rightarrow 0$ os $m \rightarrow \infty$ become $0 \leq c \leq 1$

Recall: Xi+1=g(xi), solution n=g(n) [g(n)=1 convergence rato S= lim (xi+18) = |g'(e)| make g'(x) small by reformulation to solve f(x)=0 were $g(x)=x-\frac{f(x)}{f'(x)}$, meet g'(x)=0, f''(x)=0 with f''(x)=0 we $g(x)=x-\frac{f(x)}{f'(x)}$, f''(x)=0 where f''(x)=0 and f''(x)=0 where f''(x)=0 and f(compate $g'(n) = (x - \frac{f'(x)}{f'(x)})' = 1 - \frac{f'(x)f'(x) - f(x)f'(x)}{f'(x)f'(x)} = 0$ at x, f(x) = 0Thun If f(x) to f" continous in a maigher than of x, f(2)=0, then Menton's method Xi+1 = xi - f(xi) converges for on xo in some neighborhood of i, himsets with tale S=0 lim (i+1 = 0