Progetto di Simulazione di Sistemi

Samuele Evangelisti a.a. 2019/2020

Contenuti

- 1. Introduzione
- 2. Modello
- 3. pssqueueinglib
- 4. Misure di Prestazione
- 5. Risultati Sperimentali
- 6. Conclusioni
- 7. Riferimenti

Introduzione

- Variante del modello riportato in [1] nella sezione 2
- Piattaforma: OMNeT++ 5.6.1
- queueinglib estesa e modificata in pssqueueinglib

Modello (Rete)

Modello (Rete)

- so: esponenziale di media 1/λ
- **ro**: inoltra alle prime K *PassiveQueue*
- pQ1, ..., pQ4: capacità illimitata
- se: exhaustive service, polling circolare da pQ1 a pQ4, esponenziale negativa di media 1/μ
- Job: deadline di inizio servizio, distribuzione uniforme su [a, b]

Modello (Configurazioni)

- λ: 2.0, 1.4, 1.2, 1.0
- K: 1, 2, 4
- µ: 3.0, 4.0
- [a, b]: [4.0, 6.0], [3.0, 7.0]

In totale sono presenti 48 configurazioni possibili

Modello (OMNeT++)

pssqueueinglib (Job)

Attributi:

simtime_t absoluteDeadline

Metodi:

- void setAbsoluteDeadline(simtime_t absoluteDeadline) → Source
- simtime_t getAbsoluteDeadline() → Server

pssqueueinglib (Source)

Parametri:

 double jobRelativeDeadline @unit(s) = default(0s) → Job

pssqueueinglib (Router)

Parametri:

• int queueNumber = default(sizeof(out)-1)

Algoritmi di inoltro:

ALG PSSRANDOM

Attributi

• int queueNumber

pssqueueinglib (SelectionStrategies)

Sottoclassi:

Class QUEUEING_API
ExhaustiveServiceSelectionStrategy : public
SelectionStrategy → Server

pssqueueinglib (Server)

Statistiche:

- @signal[droppedForDeadline](type="long")
- @statistic[droppedForDeadline](title="drop event for deadline reached";record=vector?,count;interpolation mode=none)

Parametri:

bool checkJobDeadline = default(false)

Attributi:

- simsignal t droppedForDeadlineSignal
- bool checkJobDeadline

Misure di Prestazione

- 1. Mediana della distribuzione del tempo di risposta del sistema
- 2. Tempo minimo di permanenza dei Job nel sistema
- 3. Tempo massimo di permanenza dei *Job* nel sistema
- 4. Tempo medio di permanenza dei Job nel sistema
- 5. Numero medio di *Job* non serviti

Stima puntuale e intervallo di confidenza al 90% e al 95%.

Valori analizzati:

- Network.sink.lifeTime:vector (1, 2, 3, 4)
- Network.server.droppedForDeadline:count (5)

Risultati Sperimentali

	$R_g(J)$	$R_t(J)$	
$J \ge 1000$	828	828	86.25%
$900 \le J < 1000$	132	132	13.75%
J < 900	0	0	0.00%
	960		

Table 1: Analisi del numero di rilevazioni

Risultati Sperimentali (Analisi del Transiente)

Risultati Sperimentali (Analisi del Transiente)

Risultati Sperimentali (Analisi del Transiente)

	$R_{t,s\geq 200}(J)$		$R_{t,s\geq300}(J)$		$R_{t,s \ge 400}(J)$	
$J \ge 1000$	492	51.250%	262	27.291%	240	25.000%
$900 \le J < 1000$	216	22.500%	218	22.708%	0	0.000%
$800 \le J < 900$	114	11.875%	216	22.500%	216	22.500%
$700 \le J < 800$	138	14.375%	150	15.625%	187	19.479%
$600 \le J < 700$	0	0.000%	114	11.875%	197	20.520%
$500 \le J < 600$	0	0.000%	0	0.000%	120	12.500%
J < 500	0	0.000%	0	0.000%	0	0.000%
	960					

Table 2: Analisi del numero di rilevazioni escludendo il transiente iniziale

Analizzando le distribuzioni di probabilità dei tempi di interarrivo e dei tempi di servizio ci si aspetta:

- Configurazione migliore: $\lambda = 1.0$, $\mu = 4.0$
- Configurazione peggiore: $\lambda = 2.0$, $\mu = 3.0$

$$\lambda = 1.0, \mu = 4.0$$

Le configurazioni che usano questi due parametri sono in in media ottime e presentano un numero medio di *Job* non serviti circa nullo

$$\lambda = 2.0, \mu = 3.0$$

Sperimentalmente si nota un discreto numero di *Job* non serviti che cresce seguendo:

- [a, b]: $[4.0, 6.0] \rightarrow [3.0, 7.0]$
- K: $1 \rightarrow 2 \rightarrow 4$

Conclusioni (Tempo di Permanenza)

Media:

- Configurazioni minime: $\lambda = 1.0$, $\mu = 4.0$, $drop \approx 0$
- Configurazioni massime: λ = 2.0, μ = 3.0, 0 ≤ drop ≤ 3

Conclusioni (Tempo di Permanenza)

Minimo

- Configurazioni minime: $\lambda = 1.2$, $\mu = 4.0$, $drop \approx 0$
- Configurazioni massime: λ = 1.4, μ = 3.0, 0 ≤ drop ≤ 3

Massimo

- Configurazioni minime: K = 1, μ = 4.0, drop ≈ 0
- Configurazioni massime: λ = 2.0, μ = 3.0, 0 ≤ drop ≤ 3

Riferimenti

 Sudipta Das, Debasis Sengupta and Lawrence Jenkins, Analysis of an M/M/1+G System Operated under the FCFS Policy with Exact Admission Control, 2012.