Homework 6 due Wed, Oct 27th by 11am in Gradescope

Name: Sean Eva GTID: 903466156 Collaborators:

Outside resources:

INSERT a "pagebreak" command between each problem (integer numbers). Problem subparts (letter numbered) can be on the same page.

REMOVE all comments (within "textit{}" commands) before submitting solutions.

DO NOT include any identifying information (name, GTID) except on the first/cover page.

1. Problem 4.3 # 9

- (a) Let assumptions be as in the problem statement. We know that $A = \{a \in R | \phi(a) \in A'\}$. Consider $a_1, a_2 \in A$, then we know that $\phi(a_1), \phi(a_2) \in A'$. Since A' is a subring of R' we know that $\phi(a_1) + phi(a_2) \in A'$. Similarly, since phi is a ring homomorphism, we know that $\phi(a_1) + \phi(a_2) = \phi(a_1 + a_2)$. Likewise, since A' is a ring, we know that $\phi(a_2) + \phi(a_1) \in A'$ and it is simple to show that $a_2 + a_1 \in A$ and it would follow that $\phi(a_1 + a_2) = \phi(a_1) + \phi(a_2) = \phi(a_2) + \phi(a_1) = \phi(a_2 + a_1)$ and we then know that $a_1 + a_2 = a_2 + a_1$. Since we know that $\phi(a_1) + \phi(a_2) = \phi(a_1 + a_2)$, we know $\phi(a_1 + a_2) \in A'$; therefore, by the definition of the set A we have that $a_1 + a_2 \in A$. Similarly, since ϕ is a ring homomorphism, we know that $\phi(a_1 a_2) = \phi(a_1 a_2)$. Since $\phi(a_1), \phi(a_2) \in A'$, we also know that $\phi(a_1 a_2) \in A'$ and by the definition of A we know that $a_1 a_2 \in A$. Therefore, since for elements $a_1, a_2 \in A$ we know that $a_1 + a_2 = a_2 + a_1 \in A$ and $a_1 a_2 \in A$, then A is a subring of A. Now if we take $A \in A$, since $A \in A$ is the kernel of ring homomorphism $A \in A$ then it implies that $A \in A$ and from the definition of $A \in A$, we know that $A \in A$, we know that $A \in A$ and from the definition of $A \in A$, we know that $A \in A$ and from the definition of $A \in A$.
- (b) Let assumptions be as in the problem statement. We can define a new function $\phi_A: A \to R'$ which is a ring homomorphism since it is just a restriction of a ring homomorphism to a subring of R. We define that for any $a \in A$ we have that $\phi_A(a) = \phi(a)$. The kernel of ϕ_A is K since $K \subset A$. We know that $\phi_A(a) = \phi(a) \in A'$ which implies that the image of $\phi_A \subset A'$. We also know that for any $a' \in A'$ that there exists an $a \in A$, such that $\phi(a) = \phi_A(a) = a' \in \text{Im}\phi_A$. This then implies that $A' \subset \text{Im}\phi_A$. Therefore, $\text{Im}\phi_A = A'$. Then by the First Homomorphism Theorem, we know that $A/K \simeq A'$.
- (c) Let assumptions be as in the problem statement. We are given that A' is a left ideal of R', which tells us that for $r' \in R'$, $a' \in A'$. We want to show that for $r \in R$, $a \in A$ that $ra \in A$. Since $a \in A$, then we know that $\phi(a) \in A'$. If we take $\phi(ra) = \phi(r)\phi(a)$ since ϕ is a homomorphism. Since A' is a left ideal we know that $\phi(r)\phi(a) \in A'$. Therefore, by the definition of A we know that $ra \in A$. Therefore, A' is a left ideal of A'.

2. Problem 4.3 # 18

Let assumptions be as in the problem statement. In order to show that $R \oplus S$ is a ring we need to show that for elements $a, b \in R \oplus S$ that $ab, a + b, a + (-b) \in R \oplus S$. Since R, S are rings by definition, we know that elements $r+t, r+(-t), rt \in R$ and that $s+u, s+(-u), su \in S$. Then if we define $a = (r, s), b = (t, u) \in R \oplus S$ we know that $a + b, a + (-b), ab \in R \oplus S$. Therefore, we know that $R \oplus S$ is a ring. Next we will show that the subring $\{(r,0)|r \in R\}$ is an ideal of $R \oplus S$. Since we are given that this is a subring of $R \oplus S$ we know that it is an additive subgroup. We then need to show that this subring absorbs multiplication on the left and right. Let us define $(a,0),(b,0) \in R \oplus S$ and $a,b \in R$. We know that $ab, ba \in R$ since R is a ring. This means that $(a,0)(b,0) = (ab,0) \in \{(r,0)|r \in R\}$ and $(b,0)(a,0)=(ba,0)\in\{(r,0)|r\in R\}$. We then want to show that this ideal is isomorphic to R. We can show this if we can develop an isomorphism $\phi: \{(r,0)|r\in R\}\to R$. We will define $\phi: \{(r,0) | r \in R\} \to R \text{ as for } a \in \{(r,0) | r \in R\} \text{ where } a = (r,0) \text{ that } \phi(a) = \phi((r,0)) = r \in R.$ Let $a = (r,0), b = (t,0) \in \{(r,0)|r \in R\}$, we know that $rt \in R$ by definition, then we can show $\phi(a) + \phi(b) = r + t = \phi(a+b)$ and $\phi(a)\phi(b) = rt = \phi(ab)$. This showed that ϕ is a homomorphism. Then we have that if $\phi(a) = \phi(b)$ we know that r = t which implies that a=(r,0)=(t,0)=b which shows that ϕ is one to one and an monomorphism. Lastly we want to check to see if ϕ is onto. Then for $r \in R$ we know that $(r,0) \in \{(r,0) | r \in R\}$ would map as $\phi(r,0) = r \in R$. This applies the exact same to $\{(0,s)|s \in S\}$ without loss of generality.

3. Problem 4.3 # 19

- (a) Let assumptions be as in the problem statement. In order prove that R is a ring we want to show that for $a_1, a_2 \in R$ that $ab, a+b, a+(-b) \in R$. Let $a_1 = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}, a_2 = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} \in R$. Then it is simple to see that $a_1a_2 = \begin{pmatrix} a_1a_2 & a_1b_2 + b_1c_2 \\ 0 & c_1c_2 \end{pmatrix}$ then $a_1a_2 \in R$. Similarly, $a_1 + a_2 = \begin{pmatrix} a_1 + a_2 & b_1b_2 \\ 0 & c_1 + c_2 \end{pmatrix} \in R$, and $a_1 + (-a_2) = \begin{pmatrix} a_1 a_2 & b_1 b_2 \\ 0 & c_1 c_2 \end{pmatrix} \in R$. Since $a_1a_2, a_1 + a_2, a_1 + (-a_2) \in R$ we know that R is a ring.
- (b) Let assumptions be as in the problem statement. In order to show that I is an ideal of R we need to show that I is an additive subgroup of R and absorbs multiplication from the right and left. Since R and subsequently I follows normal matrix addition properties we know that for any if for any $i_1 = \begin{pmatrix} 0 & a_1 \\ 0 & 0 \end{pmatrix}$, $i_2 = \begin{pmatrix} 0 & a_2 \\ 0 & 0 \end{pmatrix} \in I$ we know that $i_1+i_2 = \begin{pmatrix} 0 & a_1+a_2 \\ 0 & 0 \end{pmatrix} \in I$. Therefore, we know that I is an additive subgroup of R. Then we want to show that I absorbs multiplication on the left and right. Consider the same $i_1, i_2 \in I$ as before. Then it is simple to see that $i_1i_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $i_2i_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. And since $0 \in \mathbb{R}$, then $i_1i_2, i_2i_1 \in I$. This implies that I absorbs multiplication on the left and the right and is therefore an ideal of R.
- (c) Let assumptions be as in the problem statement. In order to show these are isomorphic we will define a mapping $\phi: R/I \to F \oplus F$ as $\phi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = (a,c)$. Let us define $A = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$, $B = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} \in R$. We are able to define A and B simply like this because the definition of $R/I = \{a+I | a \in R\}$ does not affect elements a_1, c_1 . Then we have that $A+B = \begin{pmatrix} a_1+a_2 & b_1+b_2 \\ 0 & c_1+c_2 \end{pmatrix}$ and $\phi(A+B) = (a_1+a_2,c_1+c_2) = (a_1,c_1)+(a_2,c_2) = \phi(A)+\phi(B)$ therefore, we know that ϕ is a homomorphism. We then want to show that ϕ is one to one, Let us say that $\phi(A) = \phi(B)$, that is to say that $(a_1,c_1) = (a_2,c_2)$. This implies then that $a_1 = a_2, c_1 = c_2$. Then it would follow that A = B. This means that ϕ is one to one and is therefore a monomorphism. Lastly, we want to show that ϕ is onto. Let us define an element of $F \oplus F$ as (a,c), then the element of R/I the corresponds to (a,c) is $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. This implies that ϕ is onto and is therefore an isomorphism. Therefore, since we have an isomorphism $\phi: R/I \to F \oplus F$ we know that $R/I \simeq F \oplus F$.

4. Problem 4.3 # 20

Let assumptions be as in the problem statement. Then for all $r_1, r_2 \in R$, we know that $\phi(r_1 + r_2) = (r_1 + r_2 + I, r_1 + r_2 + J) = ((r_1 + I) + (r_2 + I), (r_1 + J) + (r_2 + J)) = (r_1 + I, r_1 + J) + (r_2 + I, r_2 + J) = \phi(r_1) + \phi(r_2)$. This is true since I, J are ideals. Then we also know that $\phi(r_1r_2) = (r_1r_2 + I, r_1r_2 + J) = ((r_1 + I)(r_2 + I), (r_1 + J)(r_2 + J)) = (r_1 + I, r_1 + J)(r_2 + I, r_2 + J) = \phi(r_1)\phi(r_2)$. Therefore, we know that ϕ is a homomorphism. Then $\ker \phi = \{r \in R | \phi(r) = (I, J)\} = \{r \in R | (r + I, r + J) = (I, J)\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in J\} = \{r \in R | r \in I, r \in I, r \in J\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in R | r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r \in I, r \in I\} = \{r \in I, r$

5. Problem 4.3 # 21.

Let assumptions be as in the problem statement. We have to show that $\mathbb{Z}_{15} \simeq \mathbb{Z}_3 \oplus \mathbb{Z}_5$. We know that \mathbb{Z}_15 and $\mathbb{Z}_3 \oplus \mathbb{Z}_5$ are cyclic groups and since $\gcd(3,5)=1$ we know that they are isomorphic since there is a unique cyclic group of given order up to isomorphism.