Quiz 4

Problem 1. Let G be a finite group with Sylow p-subgroup P. Prove that any subgroup of G that contains $N_G(P)$ (the normalizer in G of P) is equal to its own normalizer.

Proof. Let $H \leq G$ be a subgroup such that $N_G(P) \leq H$. It's clear that $H \leq N_G(H)$ so we must show the other inclusion. Let $x \in G$ such that $xHx^{-1} = H$. Then since $P \leq N_G(P) \leq H$, we have $xPx^{-1} \in Syl_p(H)$. But since any two Sylow p-subgroups of H are conjugates of each other in H, $xPx^{-1} = yPy^{-1}$ for some $y \in H$. Then $y^{-1}xPx^{-1}y = y^{-1}xP(y^{-1}x)^{-1} = P$ and $y^{-1}x \in N_G(P)$. Thus $y^{-1}x \in H$ and since $y^{-1} \in H$, we must also have $x \in H$. Therefore $N_G(H) \leq H$ and we're done.

Problem 2. Prove that the only group of order 255 is cyclic.

Proof. Let |G|=255. Note that $255=3\cdot 5\cdot 17$ and by the Sylow divisibility rules, $n_{17}=1$. Thus G has some normal Sylow 17-subgroup P. Now, recall that $N_G(P)/C_G(P)\cong \operatorname{Aut}(P)$. Since P is normal $N_G(P)=G$ and since |P|=17 $|\operatorname{Aut}(P)|=\varphi(17)=16$. Thus $|G/C_G(P)|$ |16. But also, $C_G(P)\leq G$ and so $|G/C_G(P)|$ |255. This forces $|G/C_G(P)|=1$ and hence $|G/C_G(P)|=1$. Therefore $|G/C_G(P)|=1$ and thus |G/Z(G)|=1 is either 1, 3, 5 or 15. We've shown that all groups of these orders are cyclic, and |G/Z(G)|=1 being cyclic implies |G|=1 is abelian. Since |G|=1 is abelian, every subgroup of |G|=1 is normal, so |G|=1 and |G|=1. Let |G|=1 and |G|=1 and |G|=1 being cyclic implies |G|=1 and |G|=1 and |G|=1 and |G|=1 and |G|=1 and |G|=1 and |G|=1 being cyclic implies |G|=1 being c