Purely Syntactic Translations

Prof. A. Morzenti

Translation from a source string to a target (image) string

The difference between the two strings may be significant, ex.:

if
$$x > 0$$
 goto L $\xrightarrow{\tau}$ load r1 x comp r1 = 0 jmpgrt r1 label

? how to specify the translation in order to design the translator in a systematic way?

Central idea: structure-based translation guided by the source language syntax

- Purely syntactic translation:

exploits the notions of automata, regular expressions, and grammars

- syntax directed translation (SDT)

adds to the grammar certain functions "encoded" in a SW specification language

SDT computes the value of certain variables necessary for the translation (semantic attributes)

translator model known as attribute grammars

Outline for purely syntactic translations

- 1. Abstract definition of translation (as a mathematical relation or function), ambiguity
- 2. Syntactic translation schemes (translation grammars, i.e., pairs (source-grammar, target-grammar))
- 3. Pushdown translator automaton:
 - 1. LL(1)
 - 2. *LR*(1)
- 4. Special cases: finite tranducers, regular translation expressions

Translation in an abstract setting: a map Source Language ⇔ Target Language

Ex.: transl. from C to Assembler

it is a **relation**

$$\tau = \{(x1, y1), (x1, y2), (x2, y1), (x2, y2)\}$$

The image of x1 is $\tau(x1) = \{y1, y2\}$

The translation is many-valued, or not single valued, or ambiguous

The inverse translation, τ^{-1} , is not single valued, that is, τ is not injective

Example:
$$x1 \in \tau^{-1}(y1) = \{x1, x2\}$$

Abstract Translation: other properties

- *surjective* translation: every sentence of the target language is the image of some sentence of the source language;
 - but a specific program in a machine language might not have any corresponding program in the source language:
 - ex.: certain unstructured loops cannot be written in Pascal
- *functional*, or *single-valued* for a specific compiler (e.g. GCC for IntelX86), every source string has 1 and only 1 image, and the translation computed by the compiler is therefore unique
- *bijective* (one-to-one) translation: if both τ and τ^{-1} are single valued: ex., in cryptography, encryption and decryption of a text

Syntax translation schemes: introductory example

Image string obtained through

simple modifications of the syntax tree of the source string that do not change its structure

(i.e., the nonleaf/nonterminal nodes and the arcs among them)

$$L_1 = \{ a^n b^m \mid n \ge m > 0 \}$$
 $\tau(a^n b^m) = c^{n-m} d$

Source grammar G_1

$$S \rightarrow a S$$

$$S \to A$$

$$A \rightarrow a A b$$

$$A \rightarrow ab$$

Target grammar G_2

$$S \rightarrow c S$$

$$S \to A$$

$$A \rightarrow A$$

$$A \rightarrow d$$

Translation: source tree \Rightarrow target tree

$$\tau(a^3b^2) = cd$$

Translation grammar and scheme

Syntactic translation scheme:

- 1. 1-1 map between rules of G_1 and G_2 (hence same number of rules)
- 2. matching rules differ only in the terminal symbols
- 3. in matching rules the **nonterminals** are the **same** number and in the **same order**

Consequences of 1. 2. 3. : one can

- combine the scheme into a unique translation grammar G_t
- compute the translation by means of a push down automaton (explained later on),
 - possibly (NB!) the same automaton used for syntax analysis

source gramm. G_1	target gramm. G_2	OK?
$A \rightarrow aBcBD$	$A \rightarrow xBByDy$	YES
$A \rightarrow aBcBD$	$A \rightarrow xBBy$	No: D is missing
$A \rightarrow aBcBD$	$A \rightarrow xBDBy$	No: order of NT changed

Translation grammar and scheme: example

The source and target grammars combined into the **translation grammar** the terminal part uses "fractions": num.=source, denom.=target

transl.gramm. G_t	source gramm. G_1	target gramm. G_2
$S \to \frac{a}{c} S$	$S \rightarrow aS$	$S \rightarrow cS$
$S \to A$	$S \to A$	$S \to A$
$A \to \frac{a}{\varepsilon} A \frac{b}{\varepsilon}$	$A \rightarrow aAb$	$A \rightarrow A$
$A \to \frac{ab}{d}$	$A \rightarrow ab$	$A \rightarrow d$

Also the source and target syntax trees combined into a unique one it uses the same «fractions» for the source and target terminal parts

Application: traslation of expressions

Expressions (arithm., logical, ...) with operators (add, sub, ...)

There exist many representations of expressions

parethesized functional: add (i1, mult (i2, i3))

infix: $i1 + (i2 \times i3)$

polish: **prefix**: add i1, mult i2, i3

postfix: i1, i2, i3 mult add

Polish expressions are concise

value of postfix polish expr. can be computed immediately using a stack

for these reasons they are widely used, e.g. in the Java bytecode

Application: infix \rightarrow postfix conversion

transl. gramm. G_t

another (equivalent alternative) rappresentation

$$E \to E + \frac{\varepsilon}{\varepsilon} E \frac{\varepsilon}{add}$$

$$E \rightarrow E + E \{ add \}$$

$$E \to E - \frac{\varepsilon}{\varepsilon} E \frac{\varepsilon}{sub}$$

$$E \rightarrow E - E \{ sub \}$$

$$E \to \frac{(}{\varepsilon} E \frac{)}{\varepsilon}$$

$$E \rightarrow (E)$$

$$E \to \frac{i}{i}$$

$$E \rightarrow i \{i\}$$

Adjusting the grammar to support the translation

Sometimes it is necessary to modify the source grammar to obtain a scheme that describes the intended translation

Example: $L = \{ a^n \mid n \ge 1 \}$

$$\tau(a^n) = \begin{cases} (dp)^{n/2} & \text{if } n \text{ is even} \\ (dp)^{(n-1)/2} d & \text{if } n \text{ is odd} \end{cases}$$

The natural grammar for $L: S \to aS \mid a$ is unfit; no distinction of even and odd a Modify $G: S \to aX \mid a, X \to aS \mid a$

From this G the scheme G_t that defines τ :

$$S \to \frac{a}{d} X \mid \frac{a}{d}, \qquad X \to \frac{a}{p} S \mid \frac{a}{p}$$

Ambiguous (i.e., many-valued) Translation

A translation defined by a scheme $\langle G_1, G_2 \rangle$ is ambiguous *only if* G_1 is so Example: infix to postfix translation with G_1 having bilateral recursion

$$egin{array}{c|cccc} G_1 & G_2 \\ \hline E
ightarrow E + E & E
ightarrow EE \ add \\ E
ightarrow E - E & E
ightarrow EE \ sub \\ E
ightarrow i & E
ightarrow i \end{array}$$

$$i+i-i \xrightarrow{\tau} \begin{cases} i \text{ i i sub add} & \overbrace{i+i-i}^{E} \\ \\ i \text{ i add } i \text{ sub} & \overbrace{i+i-i}^{E} \end{cases}$$

Ambiguous Translation: another example

When G_1 has duplicated rules

$$egin{array}{c|c} G_1 & G_2 \\ S
ightarrow aS & S
ightarrow bS \\ S
ightarrow aS & S
ightarrow cS \\ S
ightarrow a & S
ightarrow d \end{array}$$

$$aa \stackrel{\tau}{\longrightarrow} \{bd, \quad cd\}$$

NB: the translation grammar G_t is **not** ambiguous:

$$G_t: S \to \frac{a}{b}S \mid \frac{a}{c}S \mid \frac{a}{d}$$

Computing the translation

Analogy with syntax analysis

grammar ⇔ push down automaton / parser

translation scheme/grammar ⇔ push down automaton / parser

with writing actions

We consider the following cases:

- 1. top-down (LL(1)) parser with writing actions
- 2. bottom-up (LR(1)) parser with writing actions
- 3. finite state transducer

From translation grammar to ELL(1) parser with write actions

It extends the top-down recursive descent parsing technique

```
Necessary condition: G_1 be ELL(1) (or ELL(k))
Trivial example: L = (a \mid b)^* \tau(u) = u^R
                                                G_2: S \rightarrow S a
G_1: S \rightarrow a S
                                                       S \rightarrow S b
            S \rightarrow b S
                                                                  S \rightarrow \varepsilon
            S \rightarrow \varepsilon
                         G_t: S \to \frac{a}{\varsigma} S \frac{\varepsilon}{a} \mid \frac{b}{\varsigma} S \frac{\varepsilon}{b} \mid \varepsilon
procedure S
                                                            procedure S withTranlsation
       if cc = a then cc := next; call S;
                                                                  if cc = a then cc := next; call S; write(a)
       elseif cc = b then cc := next; call S;
                                                                   elseif cc = b then cc := next; call S; write(b)
       elseif cc = \exists then return
                                                                   elseif cc = \exists then return
       else error
                                                                   else error
```

Side remark: Similarly, in the Syntax Directed Translation (SDT) method (with attribute grammars) the parser is enriched with actions that compute semantic attributes

15

From translation grammars to ELR(1) parser with write actions

Difference w.r.t. the ELL(1) case:

the same idea (adding write actions to the parser) may not work

The writing actions after terminal shifts but before reduction might be *premature*because before the reduction nondeterminism has not been resolved yet

Therefore it is appropriate and safe to execute write actions only at reduction time

To ensure that, the transl. grammar G_t must be normalized, in the *postfix normal form*

Negative example and conversion to the postfix normal form

Translation of a language similar to Dyck a and c become b and e, but not the pairs of a, c that do not enclose other ones:

$$G_t: S \to \frac{a}{b} S = \frac{c}{e} S \mid \frac{a}{\epsilon} = \frac{c}{\epsilon} \quad \tau(ac) = \epsilon \quad \tau(a \ ac \ c \ ac) = b \ e$$

Machine for the source grammar, which is ELR(1)

Pilot with writing actions: a first try that does not work

$$\tau(ac) = \varepsilon$$
 while $\tau(\mathbf{a} \ ac \ c \ ac) = \mathbf{b} \ \mathbf{e}$

if in I_1 it does not write b then $\tau(ac) = \varepsilon$ (correct), but $\tau(a \ ac \ c \ ac) = e$ (incorrect) if in I_1 it does write b then $\tau(a \ ac \ c \ ac) = b$ (correct), but $\tau(ac) = b$ (incorrect)

Postfix form of the translation grammar $G_t = (G_1, G_2)$

Every rule of the target grammar G_2 has the form (Δ is the target terminal alphabet):

$$A \to \underbrace{\gamma}_{\in V^*} \quad \underbrace{w}_{\in \Delta^*}$$

that is: first the nonterminals, then the terminals

The gramm. of previous example G_t : $S \to \frac{a}{b} S = \frac{c}{e} S \mid \frac{a}{\epsilon} = \frac{c}{\epsilon}$ is not in the postfix form

grammar normalization (very easy, but ... there still may be problems ...): introduce additional nonterminals in place of terminal parts that are not suffix

$$G_{\tau}$$
: $S \to ASCS \mid ac$ $A \to \frac{a}{b}$ $C \to \frac{c}{e}$ $G_{2postfix}$: $S \to ASCS \mid \varepsilon$ $A \to b$ $C \to e$

The new pilot emits the tranlation only at reduction times

Drawbacks of the transformation into the postfix form

- it makes the grammar more complex and less readable
- in some cases, it can cause the loss of the ELR(1) property in G_1 (see example on the textbook): it's a «short blanket» ...

Special cases of syntactic translations: finite state and regular

- Just as free grammars include as special cases ...
 - right-linear grammars (or left-linear grammars), equivalent to
 - regular expressions
 - finite state automata
- ... similarly translation grammars include as special cases the *regular translations*, defined by:
 - regular translation expressions
 - finite transducers or 2I-automata

Right-linear translation grammar

translation grammar G_t (NB: right linear)

translation

$$\begin{cases} a^{2n} \xrightarrow{\tau} b^{2n} : n \ge 0 \\ a^{2n+1} \xrightarrow{\tau} c^{2n+1} : n \ge 0 \end{cases}$$

$$\begin{cases} A_0 & \rightarrow & \frac{a}{c}A_1 \mid \frac{a}{c} \mid \frac{a}{b}A_3 \mid \varepsilon \\ A_1 & \rightarrow & \frac{a}{c}A_2 \mid \varepsilon \\ A_2 & \rightarrow & \frac{a}{c}A_1 \\ A_3 & \rightarrow & \frac{a}{b}A_4 \\ A_4 & \rightarrow & \frac{a}{b}A_3 \mid \varepsilon \end{cases}$$

derivations of type $A_0 \Rightarrow ... A_1 \Rightarrow ... A_2 \Rightarrow ... A_1$... generate **odd** length strings derivations of type $A_0 \Rightarrow ...A_3 \Rightarrow ...A_4$...

generate even length strings

the finite state automaton A_t that accepts $L(G_t)$ can be viewed in two ways

- machine with two input tapes: 2I-automaton (AKA Rabin & Scott machine)
 - it "recognizes" or "accepts" or "defines" the translation
- machine with one input tape and one output tape: finite transducer or IO-automaton
 - it "computes" the translation

Two-input Machine

It *accepts* the translation relation τ , i.e., a set of pairs of strings $\in \Sigma^* \times \Delta^*$ (Δ is the target alph.)

Transition labels are pairs s written as

$$\frac{a}{b}$$
, where $a \in \Sigma \cup \varepsilon$, $b \in \Delta \cup \varepsilon$

Reading $\frac{a}{b}$ advances both heads on their tape to accept, both tapes must be completely scanned: $\frac{aaa}{cc} \notin \tau$

2I-automaton or Rabin & Scott machine

$$\begin{cases}
a^{2n} \xrightarrow{\tau} b^{2n} : n \ge 0 \\
a^{2n+1} \xrightarrow{\tau} c^{2n+1} : n \ge 0
\end{cases}
\xrightarrow{q_2}
\xrightarrow{\frac{a}{b}}
\xrightarrow{q_1}
\xrightarrow{\frac{a}{b}}
\xrightarrow{q_1}
\xrightarrow{\frac{a}{b}}
\xrightarrow{q_2}
\xrightarrow{\frac{a}{b}}$$

NB: the automaton is deterministic: two transitions exit from q_0 , but their labels are distinct

Regular Translation Expression

A regular expression containing "fractions": the previous translation is defined by

$$E_t = \left(\frac{a^2}{b^2}\right)^* \cup \frac{a}{c} \left(\frac{a^2}{c^2}\right)^*$$

Here is the string of fractions $\frac{a}{c} \cdot \frac{a^2}{c^2} \cdot \frac{a^2}{c^2} = \frac{a^5}{c^5} \in E_t$

it corresponds to the source-target pair $(a^5, c^5) \in \tau$

Non regular translation of regular languages!

Even if **both** languages L_1 and L_2 are regular, the *translation* is not necessarily regular

Ex.:
$$L_1 = (a \mid b)^*$$
 $\tau(x) = x^R$ $L_2 = (a \mid b)^*$

A 2I finite state automaton cannot check if the 2nd tape contains the reflection of the first one An unbounded stack memory is necessary

Another model for finite-state translation Finite transducer or IO-automaton

- the second tape is viewed as an output
- the machine *computes* the translation as a function of the source string: $y = \tau(x)$
- Several applications:
 - lexeme (token) recognition in the lexical analysis (see lessons on Flex)
 - transformation of simple texts, or signal sequences (ex. genome computing)
 - natural language processing: conjugation of verbs, declination of names
- Determinism: an IO-automaton is deterministic if so is the **subjacent** automaton (obtained by canceling the output)

nondeterministic IO-automaton

A deterministic 2I-automaton, viewed as an IO-automaton, can be nondeterministic!

The subjacent automaton is nondeterministic in q_0

- There does not exist any deterministic IO-automaton for this translation
- Unlike finite state automata, IO-automata cannot always be made deterministic

Last translation model, a finite state translator used in applications: sequential transducer

It is a variation of the deterministic IO-automaton model:

- the *transition function* computes the next state
- while executing the transition, the *output function* emits a string
- when the computation terminates in a certain final state, the *final* function appends a string s to the output
 - This is represented by a label $\langle \neg /s \rangle$ on the dart exiting the final states

Example of sequential transducer

Given a series of binary numbers separated by spaces (blanks), eliminate the unsignificant leading zeroes

When terminating in q_2 (a number composed only of 0's) it emits a 0, but when it terminates in q_1 it does not emit anything (the last number included some 1's, therefore a non empty string was just written)