Master Data Science Summer 2018

Prof. Dr. Marlene Müller marlene.mueller@beuth-hochschule.de

Exercises 3

Exercise 1

Use the Munich appartments dataset (Miete2003.csv) to estimate two different linear models with the net rent (nettomiete) as dependent variable.

- (a) Determine (with R) the predicted values \hat{y}_i and the residuals $\hat{\varepsilon}_i$. Display them in a graph by plotting \widehat{y}_i against $\widehat{\varepsilon}_i$.
- (b) Check with R that the following properties hold:

$$\overline{y} = \overline{\widehat{y}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{y}_{i}$$
 and $\overline{\widehat{\varepsilon}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\varepsilon}_{i} = 0$.

i.e., the mean of the \hat{y}_i 's equals \bar{y} and the residuals have mean 0.

(c) Prove the equations in (b) for the simple linear regression case.

Exercise 2

Generate artificial regression data using the true model:

$$Y = 1 + 2X + X^2 + \varepsilon$$

where $X \sim N(0,1)$ and $\varepsilon \sim N(0,0.25)$. Choose a sufficiently large sample size, e.g. n=500and estimate the following regression models:

- simple linear regressin, i.e. regress Y on X,
- quadratic regression, i.e. regress Y on X and X²
- cubic regression, i.e. regress Y on X, X^2 , and X^3 .
- (a) Determine the coefficients of determination (R^2) of your three regressions. Do the same for the RSS values. (See tables on the last page of this exercise sheet.)
- (b) Analyse and compare the residuals for all 3 model fits (e.g. by residual plots or by boxplots). What do you conclude with respect to which of the 3 models seems to be appropriate?

Exercise 3

Use the data generating process and the models of Exercise 3 again, but now with a small sample size (e.g. n=10).

- (a) Construct (in R) the matrix \mathcal{X} for all 3 models (the matrix \mathcal{X} is called "design matrix").
- (b) Check, if \mathcal{X} and $\mathcal{X}^{\top}\mathcal{X}$ are of full rank. (Recall: What is the rank of a matrix? How could you determine this value using R?)
- (c) Do also calculate the following matrix (the "hat matrix") for each of the 3 models:

$$\mathbf{P} = \mathcal{X}(\mathcal{X}^{\top}\mathcal{X})^{-1}\mathcal{X}^{\top}.$$

Determine (for each model) the trace and the eigenvalues of P. (Do you remember the relation between them?)

(d) By I we denote the identity matrix (a matrix with diagonal elements 1 and 0 otherwise). Show with the help of R and without R that it holds:

$$\mathbf{P}^2 = \mathbf{P}$$
 and $(\mathbf{I} - \mathbf{P})^2 = \mathbf{I} - \mathbf{P}$

Exercise 4

We use the CPS1985 dataset which is included in an R package:

```
require(AER)
data(CPS1985)
```

Check the contents of the dataset (?CPS1985) and consider the variables Y = wage, $X_1 = education$ and $X_2 = experience$. Estimate the following models:

- regression of log(Y) on X_1 ,
- regression of log(Y) on X_1 and X_2 ,
- regression of $\log(Y)$ on X_1 , X_2 and X_2^2 .

By \log we denote the natural logarithm (denoted by \ln in mathematics, the function is \log in R as in statistics we merely use this logarithm).

- (a) Interprete the estimated coefficients. Do they make sense? (Plot a graph for the quadratic part of the 3rd model.)
- (b) Analyse and compare the residuals for all 3 model fits (e.g. by comparing \mathbb{R}^2 and by residual plots or by boxplots). What do you conclude with respect to which of the 3 models seems to be appropriate?

Components of a Linear Model Estimated in R

The following R functions can be used to extract components from a linear model.

Example: model <- $lm(y \sim x)$; summary(model)

Function	Description
summary	<pre>summary output (see also ?summary.lm)</pre>
coef	estimated coefficients
residuals	residuals $\widehat{arepsilon}_i$
fitted	predicted values \widehat{y}_i
predict	<pre>predicted values, useful for new data (see also ?predict.lm)</pre>
anova	test for comparing two nested models
plot	some diagnostic plots
confint	confidence intervals for the coefficients
deviance	residual sum of squares ${ m RSS}$
VCOV	estimated covariance matrix (of the coefficients)
logLik	log-likelihood (under normality assumption)
AIC	Akaike's information criterion (for model choice)

Further terms can be extracted from summary. Example: summary (model) \$call

Function	Description
call	call of lm
terms	information on the explanatory variables
residuals	residuals $\widehat{arepsilon}_i$
coefficients	table of coefficients, standard errors, t values and p values
sigma	estimated standard deviation $\widehat{\sigma}$
df	degrees of freedom
r.squared	coefficient of determination \mathbb{R}^2
adj.r.squared	adjusted coefficient of determination
fstatistic	F statistic with acc. degress of freedom
cov.unscaled	unscaled covariance matrix (results in $vcov$ when multiplied with $\widehat{\sigma}^2$)