1 Билет:

Аксиомы сложения и следствия из них (с доказательствами).

Определено отображение $+: R \times R \to R$, называемое операцией сложения, сопоставляющее каждой упорядоченной паре (x, y) из $R \times R$ элемент $x + y \in R$, называемый суммой x и y, обладающее свойствами:

(a) Операция + коммутативна, то есть для любых x, y ∈ R

$$x + y = y + x.$$

(б) Операцию + ассоциативна, то есть для любых x, y, z ∈ R

$$(x + y) + z = x + (y + z).$$

(в) Существует нейтральный элемент $0 \in R$ (называемый нулем), такой, что для любого $x \in R$

$$x + 0 = x$$
.

(г) Для каждого элемента $x \in R$ существует противоположный элемент –х такой, что

$$x + (-x) = 0.$$

Следствия из аксиом сложения:

Единственность нулевого элемента.

Лемма 1.3. В множестве R ноль единственен.

Док-во. Пусть 0_1 и 0_2 – нули в R. Тогда, используя свойство (а) в блоке аксиом 1 и определение нуля, имеем

$$0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2$$
 чтд

Единственность противоположного элемента.

Лемма 1.4. В множестве R каждый элемент имеет единственный противоположный.

Док-во. Пусть x_1 и x_2 – противоположные к $x \in R$ элементы. Тогда,

$$X_1 = x_1 + 0 = x_1 + (x + x_2) = (x_1 + x) + x_2 = 0 + x_2 = x_2 + 0 = x_2.$$

Решение уравнения x + a = b относительно x.

Лемма 1.5. В множестве R уравнение x+a=b имеет единственное решение

$$x = b + (-a).$$

Доказательство. Добавляя к обеим частям равенства -а, получаем

$$(x + a + (-a) = b + (-a)) \Leftrightarrow (x + 0 = b + (-a)) \Leftrightarrow (x = b + (-a)).$$

Единственность решения следует из (уже доказанной в предыдущей лемме) единственности противоположного элемента.

2 Билет:

Аксиомы умножения и следствия из них (с доказательствами).

Определено отображение $: R \times R \to R$, называемое операцией умножения, сопоставляющее каждой упорядоченной паре (x, y) из $R \times R$ элемент $x \cdot y \in R$, называемый произведением элементов x и y, обладающее свойствами:

(a) Операция · коммутативна, то есть для любых $x, y \in R$

 $x \cdot y = y \cdot x$.

(б) Операция · ассоциативна, то есть для любых $x, y, z \in R$

 $(x \cdot y) \cdot z = x \cdot (y \cdot z).$

(в) Существует нейтральный элемент $1 \in R \setminus \{0\}$ (называемый единицей), такой, что для любого $x \in R$

 $x \cdot 1 = x$.

(г) Для каждого элемента $\mathbf{x} \in \mathbf{R} \setminus \{0\}$ существует обратный элемент $\mathbf{x}^{\text{-}1}$ такой, что

 $x \cdot x^{-1} = 1.$

Следствия аксиом умножения:

Лемма 1.6. В множестве R единица единственна.

Док-во:

$$\mathbf{1}_1 = \mathbf{1}_1 \cdot \mathbf{1}_2 = \mathbf{1}_2 \cdot \mathbf{1}_1 = \mathbf{1}_2$$

Лемма 1.7. В множестве $R \setminus \{0\}$ каждый элемент имеет единственный обратный.

Док-во

от противного. если для числа x есть обратные числа y и z, то y*x=1 и z*x=1, тогда z=y

Лемма 1.8. В множестве R уравнение $a \cdot x = b$ при a != 0 имеет единственное решение $x = b \cdot a^{-1}$

Док-во:

$$ax = a(a^{-1}b) = (a \cdot a^{-1}) \cdot b = 1 \cdot b = b \cdot 1 = b$$

3 Билет:

Аксиомы связи сложения и умножения, следствия из них (с доказательствами).

Умножение дистрибутивно по отношению к сложению, то есть $\forall x,\,y,\,z,\in R$ $(x+y)\cdot z=x\cdot z+y\cdot z.$

Лемма 1.9. Для любого $x \in R$ выполняется $x \cdot 0 = 0$.

Доказательство.

$$(x \cdot 0 = x \cdot (0 + 0)) \Leftrightarrow (x \cdot 0 = x \cdot 0 + x \cdot 0) \Leftrightarrow (x \cdot 0 + (-x \cdot 0) = x \cdot 0 + x \cdot 0 + (-x \cdot 0)) \Leftrightarrow 0 = x \cdot 0$$

Следствие 1.0.1.

$$(x \cdot y = 0) \Leftrightarrow (x = 0) \lor (y = 0).$$

Доказательство. Если и х, и у равны нулю, то утверждение следует из предыдущей леммы.

Если хотя бы одно из чисел x, y не равно нулю, то утверждение следует из предыдущей леммы и третьей леммы из следствий аксиом умножения.

Лемма 1.10. Для любого x ∈ R выполняется

$$-x = (-1) \cdot x$$
.

Док-во.

Так как: $x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = 0$,

то, в силу единственности противоположного элемента,

$$-x = (-1) \cdot x$$
.

Из предыдущего следствия выводится и правило "двойного отрицания".

Следствие 1.0.2. Для любого x ∈ R выполняется:

$$(-1) \cdot (-x) = x$$
.

Следствие 1.0.3. Для любого x ∈ R выполняется:

$$(-x) \cdot (-x) = x \cdot x$$
.

Док-во следует из следующей цепочки равенств:

$$(-x) \cdot (-x) = (-1) \cdot x \cdot (-x) = x \cdot (-1) \cdot (-x) = x \cdot x.$$

4 Билет:

Аксиомы порядка и следствия из них (с доказательствами).

Между элементами R введено отношение порядка \leq , то есть для элементов $x, y \in R$ установлено: справедливо $x \leq y$, или нет. При этом выполняются следующие условия:

(а) Отношение ≤ рефлексивно, то есть

 $\forall x \in R \ x \leq x.$

(б) Отношение ≤ антисимметрично, то есть

$$(x \le y) \land (y \le x) \Rightarrow (x = y).$$

(в) Отношение ≤ транзитивно, то есть

$$(x \le y) \land (y \le z) \Rightarrow (x \le z).$$

(г) Для любых двух элементов $x, y \in R$ выполнено либо $x \le y$, либо $y \le x$.

Следствие 1.0.4. Для любых $x, y \in R$ всегда имеет место ровно одно из соотношений:

$$x < y$$
, $x = y$, $x > y$.

Лемма 1.11. Для любых чисел x, y, z ∈ R выполняется:

$$(x < y) \land (y \le z) \Rightarrow (x < z),$$

$$(x \le y) \land (y < z) \Rightarrow (x < z).$$

Док-во. Докажем первое утверждение. Из свойства транзитивности Для отношения порядка получаем, что

$$(x < y) \land (y \le z) \Rightarrow (x \le z).$$

Покажем, что x = z. От противного, если x = z, то

$$(x < y) \land (y \le z) \Leftrightarrow (z < y) \land (y \le z) \Leftrightarrow$$

$$\Leftrightarrow$$
 $(z \le y) \land (y \le z) \land (z != y) \Leftrightarrow (z = y) \land (z != y).$

Второе утверждение доказывается аналогичным образом.

5 Билет.

Аксиома непрерывности. Леммы о существовании и иррациональности числа, квадрат которого равен 2.

Пусть $X, Y \subset R$, причем $X != \emptyset$ и $Y /= \emptyset$. Тогда

$$(\forall x{\in}X \ \forall y{\in}Y \ x{\leq}y) \Rightarrow (\exists c{\in}R \colon x{\leq}c \leq y \ \forall x{\in}X \ \forall y{\in}Y).$$

Лемма 1.2.

 $\exists c \in R: c^2 = 2.$

Доказательство. Рассмотрим множества:

$$X = \{x > 0 : x2 < 2\}, Y = \{y > 0 : y2 > 2\}.$$

Рассматриваемые множества не пусты. И правда, $1 \in X$, ведь $1^2 < 2$ и 1 > 0, а $2 \in Y$, так как $2^2 > 2$ и 2 > 0. Кроме того, так как при x, y > 0

$$(x < y) \Leftrightarrow (x^2 < y^2),$$

то

 $\forall x \in X \ \forall y \in Y \ x < y$.

Согласно аксиоме непрерывности:

 $\exists c \in R: x ? c ? y \forall x \in X \forall y \in Y.$

Покажем, что с ! \in X. От противного, если c^2 < 2, то число

$$c + ((2 - c^2)/3c)$$

большее c, тоже лежит в X. Действительно, так как c > 1, то и c² > 1, а значит $2-c^2 \le 1$ и

$$\left(c + \frac{2 - c^2}{3c}\right)^2 = c^2 + 2 \cdot \frac{2 - c^2}{3} + \left(\frac{2 - c^2}{3c}\right)^2 < c^2 + 2 \cdot \frac{2 - c^2}{3} + \frac{2 - c^2}{3} = 2.$$

Но это приводит к противоречию, так как полученное неравенство несовместимо с тем, что

 $\forall x \in X \ x \le c$.

Аналогичным образом показывается, что с $! \in Y$, откуда $c^2 = 2$.

6 Билет

Индуктивные множества. Лемма о пересечении индуктивных множеств. Множество натуральных чисел.

Множество X ⊂ R называется индуктивным, если

$$\forall x \in X \quad (x+1) \in X.$$

///(индуктивное множество – это то, которое вместе с каждым элементом

///содержит следующий)

Лемма 1.14. Пересечение

$$\bigcap_{\alpha \in A} X_{\alpha}$$

любого семейства X_{α} , $\alpha \in A$, индуктивных множеств, если оно не пусто, является индуктивным множеством.

11

Доказательство. Действительно,

$$\left(x \in \bigcap_{\alpha \in A} X_{\alpha}\right) \Rightarrow (x \in X_{\alpha} \ \forall \alpha \in A) \Rightarrow$$

$$\Rightarrow$$
 $((x+1) \in X_{\alpha} \ \forall \alpha \in A) \ \Rightarrow \ \left((x+1) \in \bigcap_{\alpha \in A} X_{\alpha}\right),$

где переход с первой на вторую строчку справедлив в силу индуктивности всех множеств семейства X_{α} .

Определение 1.4 (Понятие множества натуральных чисел). Множеством натуральных чисел называется пересечение всех индуктивных множеств, содержащих число 1. Обозначается множество натуральных чисел, как N.

7 Билет

Принцип математической индукции. Неравенство Бернулли.

///Из определения множества натуральных чисел сразу следует важный принцип, ///называемый принципом математической индукции. Именно он часто обосновывает ///слова "и так далее"

Теорема 1.1 (Принцип математической индукции). Если множество

 $X \subset N$ таково, что $1 \in X$ и $\forall x \in X$ $(x + 1) \in X$, то X = N.

Док-во. Действительно, X – индуктивное множество. Так как $X \subset N$, а N – наименьшее индуктивное множество, то X = N. Теорема 1.2. Сумма натуральных чисел – натуральное число.

Док-во. Пусть $m, n \in \mathbb{N}$. Покажем, что $m+n \in \mathbb{N}$. Пусть X – множество таких натуральных чисел k, что $m+k \in \mathbb{N}$ при любом $m \in \mathbb{N}$. Ясно, что

 $1 \in X$, так как если $m \in N$, то $(m+1) \in N$ в силу индуктивности множества натуральных чисел. Если теперь $k \in X$, то ест $\mathbb D$ $m+k \in N$, то и $(k+1) \in X$, так как $m+(k+1)=(m+k)+1 \in N$. Согласно принципу индукции заключаем, что X=N.

Лемма 1.15 (Неравенство Бернулли).

$$(1 + x)^n \ge 1 + nx$$
, $x > -1$, $n \in \mathbb{N}$.

Док-во. База индукции. Пусть n = 1, тогда

$$1 + x \ge 1 + x$$

что верно при всех x ∈ R. Допустим, что при n = k выполнено

$$(1+x)^k \ge 1 + kx$$

Покажем, что при n = k + 1 выполняется

$$(1+x)^{k+1} \ge 1 + (k+1)x$$
.

Действительно,

$$(1+x)^{k+1} = (1+x)(1+x)^k \ge (1+x)(1+kx) = 1+kx+x+kx^2 = 1+(k+1)x+kx^2$$

Так как $k \in N$, то $kx^2 \ge 0$, а значит

$$1 + (k + 1)x + kx^2 \ge 1 + (k + 1)x$$

откуда и следует требуемое.

8 Билет

Модуль вещественного числа и его свойства.

Модулем вещественного числа x называется число, равное x, если оно положительно или равно нулю, и равное-x, если оно отрицательно. Иными словами,

$$|x| = \begin{cases} x, & x \geqslant 0 \\ -x, & x < 0 \end{cases}$$

- (a) $|x| \ge 0$, причем $|x| = 0 \Leftrightarrow x = 0$.
- (б) |x| = |-x|.
- $(B) |x| \le x \le |x|.$
- (r) $|x| = |y| \Leftrightarrow x = y$ x = -y
- (д) |xy| = |x||y|.
- (e) |x|/|y| = |x/y|
- $(x) |x + y| \le |x| + |y|$.
- (3) $|x y| \ge ||x| |y||$.

Док-во. Свойства а - е сразу следуют из определения.

Ж. Для доказательства этого свойства достаточно сложить неравенства

$$\pm x \le |x|$$
 $u \pm y \le |y|$,

верные для любых х, у. Тем самым, придем к неравенствам

$$\pm (x+y) \le |x| + |y|,$$

которые совместно эквивалентны доказываемому. 3. Для док-ва данного пункта удобно воспользоваться свойством ж $|x| = |x - y + y| \le |x - y| + |y| \Rightarrow |x - y| \ge |x| - |y|$.

Поменяв числа x и y местами, получим $|x - y| \ge |y| - |x|$.

Совместно полученные неравенства эквивалентны доказываемому.

9 Билет

Промежутки числовой прямой и окрестности.

Определение 1.10 (Понятие промежутков). Пусть $a, b \in R$. Множество

$$[a, b] = \{x \in R: a \le x \le b\}$$

при а ≤ b называется отрезком. Множество

$$(a, b) = \{x \in R: a < x < b\}$$

при a < b называется интервалом.

Множества

$$[a, b) = \{x \in R : a \le x < b\},\ (a, b] = \{x \in R : a < x \le b\}$$

при a < b называются полуинтервалами.

Множества

$$[a, +\infty) = \{x \in R : x \ge a\}, (a, +\infty) = \{x \in R : x > a\}, (a, +\infty) = \{x \in R : x > a\}$$

И

$$(-\infty, b] = \{x \in R : x \le b\}, (-\infty, b) = \{x \in R : x < b\}, [-\infty, b] = \{x \in R : x \le b\}, [-\infty, b] = \{x \in R : x < b\}, [-\infty, b] = \{x \in R : x \le b\}, [-\infty, b] = \{x \in R : x < b\}, [-\infty, b] = \{x \in R : x \le b\}, [-\infty, b] = \{x \in R :$$

называются лучами.

///Часто множество R еще обозначают как $(-\infty, +\infty)$.

Определение 1.11. Окрестностью точки $x_0 \in R$ называется произвольный интервал, содержащий x_0 .

Эпсилон-окрестностью (или ϵ -окрестностью) точки $x_0 \in R$ называется интервал

$$(x0 - \varepsilon, x0 + \varepsilon), \varepsilon > 0.$$

Для элементов $\pm \infty$, ∞ понятия окрестности и ϵ -окрестности вводится отдельно. Определение 1.13. Окрестностью элемента $+\infty$ в R называется множество вида

$$(a, +\infty], a \in R$$

ε-окрестностью элемента +∞ в R(расширенное) называется множество

$$(1/\epsilon, +\infty], \ \epsilon > 0$$

Окрестностью элемента -∞ в R(расширенное) называется множество вида

$$[-\infty, a)$$
, $a \in \mathbb{R}$.

ε-окрестностью элемента -∞ в R(расширенное) называется множество вида

$$[-\infty, -1/\epsilon)$$
, $\epsilon > 0$.

Определение 1.14. Проколотой окрестностью точки $x_0 \in R$ называется множество $U(x_0) \setminus \{x_0\}$, то есть произвольная окрестность точки x_0 без самой этой точки.

10 Билет

Ограниченность множества. Максимум, минимум, супремум и инфимум множества. Принцип точной грани и следствие из него. Эквивалентные определения супремума и инфимума.

Определение 1.15 (Понятие границы множества). Множество X ⊂ R(расш) называется ограниченным сверху, если

$$\exists M \in R: \forall x \in X \quad x \leq M.$$

Найденное число M называется верхней границей для X.

Множество X ⊂ R(расш) называется ограниченным снизу, если $\exists m \in R: \forall x \in X. x \ge m.$

Найденное число m называется нижней границей для X.

Определение 1.16 (Понятие ограниченности множества). Множество $X \subset R$ называется ограниченным, если оно ограничено как сверху, так и снизу, то есть

$$\exists M, m \in R: \ \forall x \in X \ m \le x \le M$$

Лемма 1.17. Множество X ⊂ R ограничено тогда и только тогда, когда

$$\exists C \in R, C \geq 0 \colon \forall x \in X \quad -C \leq x \leq C.$$

Док-во. Необходимость. Пусть множество Х ограничено, то есть

$$\exists M, m \in R: \forall x \in X \quad m \le x \le M.$$

Положив $C = \max\{|m|, |M|\}$, согласно свойствам модуля приходим к тому, что

$$\forall x \in X - C \le x \le C$$
.

Достаточность очевидна, так как можно положить m = -C, M = C.

Определение 1.17 (Понятие максимального элемента). Элемент $M \in X \subset R$ (расш) называется максимальным (наибольшим) элементом множества X, если

$$\forall x \in X \quad x \leq M$$

Обозначает это так: М = max X.

Элемент $m \in X \subset R$ называется минимальным (наименьшим) элементом множества X, если

$$\forall x \in X \quad x \ge m$$

Обозначают это так: $m = \min X$.

Теорема 1.4 (Принцип точной грани). Пусть $X \subset R$, не пусто и ограничено сверху (снизу). Тогда существует единственный sup X (inf X).

Док-во. Пусть множество X ограничено сверху. Тогда множество его верхних границ В не пусто. В силу определения верхней границы,

$$\forall b \in B \ \forall x \in X \quad x \leq b.$$

Согласно аксиоме непрерывности,

$$\exists c: x \le c \le b, \forall x \in X \ \forall b \in B.$$

Ясно, что $c \in B$. С другой стороны, в силу неравенства $c \le b$ для всех $b \in B$, получается, что $c = \min B$. Тем самым, $c = \sup X$.

Случай, когда множество Х ограничено снизу, рассматривается аналогично.

Следствие 1.4.1. У любого непустого множества $X \subset R$ существует супремум и инфимум (может быть, равные $\pm \infty$).

Лемма 1.19. Для супремума и инфимума можно дать следующие эквивалентные определения:

$$s = \sup X \Leftrightarrow (\forall x \in X \ s \ge x) \land (\forall s' < s \ \exists x \in X : x > s'),$$

$$i = \inf X \Leftrightarrow (\forall x \in X \ i \leq x) \land (\forall i' > i \ \exists x \in X : x < i')$$

///дописать Эквивалентные определения супремума и инфимума.

Теорема о существовании максимума у любого непустого подмножества натуральных чисел. Следствия.

Теорема 1.5. Пусть X ⊂ N – непустое ограниченное множество. Тогда ∃тах X.

Док-во. Согласно принципу точной грани, существует $s = \sup X < +\infty$. Согласно эквивалентному определению супремума,

$$\exists k \in X: s - 1 < k \le s$$

что означает, что $k = \max X$. Действительно, во-первых $k \in X$. Во-вторых, так как любые натуральные числа, большие k, не меньше (k+1), а по установленному неравенству (левая частя)

$$s < k + 1$$
,

получаем, что k – верхняя грань для X. Эти два наблюдения устанавливает требуемое.

Следствие 1.5.1. Множество натуральных чисел N не ограничено сверху.

Следствие 1.5.2.

- (а) Пусть X ⊂ Z непустое ограниченное сверху множество. Тогда существует тах X.
- (б) Пусть X ⊂ Z непустое ограниченное снизу множество. Тогда существует min X.
- (в) Z неограниченное ни сверху, ни снизу множество.

12 билет

Принцип Архимеда и следствия из него.

Теорема 1.6 (Принцип Архимеда). Пусть $x \in R$, x > 0. Для любого $y \in R$ существует единственное целое $k \in Z$ такое, что $(k-1)x \le y < kx$.

Док-во. Пусть
$$T = \{l \in Z: y/x < l\}$$

Это множество не пусто, так как множество Z не ограничено сверху. Кроме того, T ограничено снизу. Тогда, по доказанному, существует k = min T. Значит,

$$k-1 \le y/x < k$$

и, в силу положительности х, мы получаем требуемое.

Следствие 1.6.2. Пусть $x \in R$. Если $\forall \varepsilon > 0$ выполняется $0 \le x < \varepsilon$, то x = 0.

Док-во. От противного, пусть x > 0. Тогда, по предыдущему следствию найдётся $n \in \mathbb{N}$ такое, что

1/n< х. Но тогда, положив ϵ = 1/n, получим,

что x > ε, что противоречит условию.

Следствие 1.6.3. Для любого числа x ∈ R существует единственное k ∈ Z

такое, что $k \le x < k+1$. Док-во. Это сразу следует их принципа Архимеда, если положить в нем x=1.

13 билет

Предел последовательности: через неравенства, через эпсилон-окрестности, через окрестности. Утверждение о том, что число не является пределом. Бесконечные пределы. Сходящиеся последовательности.

///Для начала дадим определение тому, что такое последовательности. Определение 2.1. Функция $f: N \to R$ называется последовательностью.

Определение 2.2 (Предел последовательности через ϵ -n). Число $A \in R$ называется пределом последовательности x_n , если

$$\forall \varepsilon > 0$$
 $\exists n_0 = n_0(\varepsilon) \in \mathbb{N}$: $\forall n > n_0$. $|x_n - A| < \varepsilon$.

Обозначают это так:

$$\lim_{n \to \infty} x_n = A, \quad x_n \xrightarrow[n \to \infty]{} A, \quad x_n \longrightarrow A.$$

```
///Замечание 2.2. Число A называется пределом последовательности x_n, если ///для любого положительного числа \epsilon существует натуральное число n_0, зависящее ///от \epsilon такое, что какое бы ни взять натуральное число n, большее n_0, ///будет выполняться неравенство |//| |x_n - A| < \epsilon.
```

Определение 2.3 (Предел последовательности через окрестности). Число A называется пределом последовательности x_n , если

$$\forall U(A) \exists n_0 = n_0(\varepsilon) \in \mathbb{N}: \forall n > n_0 x_n \in U(A).$$

Лемма 2.1. Определения 2.2 и 2.3 эквиваленты.

Док-во. Сначала докажем, что если $\lim(\text{при } n\to\infty)$ $x_n = A$ в смысле определения 2.2, то $\lim(\text{при } n\to\infty)$ $x_n = A$ и в смысле определения 2.3.

Пусть U(A) = (α, β) – произвольная окрестность точки А. Поло $\mathbb Z$ им ϵ = $\min(A-\alpha, \beta-A)$, тогда U ϵ (A) \subset U(A). Согласно определению 2.2, по выбранному ϵ

$$\exists n_0 = n_0(\varepsilon) \in \mathbb{N}: \forall n > n_0 x_n \in U\varepsilon(A) \subset U(A),$$

то есть $\lim(\text{при n}\to\infty)$ x_n = A в смысле определения 2.3. ///Тот факт, что из определения 2.3 следует определение 2.2, моментально следует ///из того, что ϵ -окрестность является частным случаем окрестности.

Свойства последовательностей, имеющих предел

Лемма 2.2 (Свойства последовательностей, имеющих предел).

Пусть $\lim_{n\to\infty} x_n = A$, тогда:

- (a) при $A \in \overline{\mathbb{R}}$ предел единственнен
- (б) при $A \in \mathbb{R}$ последовательность x_n ограничена
- (в) В любой окрестности $A \in \mathbb{R}$ содержатся все элементы последовательности x_n , за исключением не более чем конечного числа.

Доказательство пункта (а).

Будем доказывать от противного. Пусть A_1 и A_2 – пределы последовательности x_n , причем $A_1 \neq A_2$. Пусть $U(A_1)$, $U(A_2)$ – окрестности точек A_1 и A_2 , такие, что $U(A_1) \cap U(A_2) \neq 0$, см. лемму 1.16.

По определению предела, для окрестности $U(A_1)$

$$\exists n_0 : \forall n > n_0 x_n \in U(A_1),$$

A для окрестности $U(A_2)$

$$\exists n_1 : \forall n > n_1 \quad x_n \in U(A_2).$$

Пусть $n_2 = \max(n_0, n_1)$, тогда

$$\forall n > n_2 \big(x_n \in U(A_1) \big) \land \big(x_n \in U(A_2) \big) \Leftrightarrow x_n \in U(A_1) \cap U(A_2),$$

Что невозможно, так как последнее пересечение пусто.

Доказательство пункта (б)

Пусть $\varepsilon = 1$, тогда

$$\exists n_0 \colon \forall n > n_0 | x_n - A | < 1 \Leftrightarrow (A - 1) < x_n < (A + 1)$$

И все элементы последовательности, начиная с номера $n_0 + 1$, ограничены по модулю числом $\max(|A+1|, |A-1|)$.

До члена последовательности с номером n_0+1 имеется ровно n_0 членов последовательности, а значит, положив

$$C = \max(|x_0|, |x_1|, \dots, |x_{n_0}|, |A+1|, |A-1|),$$

Приходим к тому, что $|x_n| \le C$ $\forall n \in \mathbb{N}$, то есть к тому, что x_n ограничена.

Доказательство пункта (в)

Пусть U(A) – произвольная окрестность точки A. согласно определению предела,

$$\exists n_0 : \forall n > n_0 \quad x_n \in U(A),$$

А значит, вне окрестности U(A) содержится не более n_0 членов.

15 Билет

Теорема 2.1 (Арифметические свойства пределов)

Пусть
$$\lim_{n \to \infty} x_n = A, \lim_{n \to \infty} y_n = B \ A, B \in \mathbb{R},$$
 тогда:

(а) Предел суммы равен сумме пределов, то есть

$$x_n + y_n \xrightarrow[n \to \infty]{} A + B.$$

(б) Предел произведения равен произведению пределов, то есть

$$x_n y_n \xrightarrow[n \to \infty]{} AB.$$

(в) Предел частного равен (при естественных ограничениях) частному пределов, то есть

$$\frac{x_n}{y_n} \xrightarrow[n \to \infty]{} \frac{A}{B}, \quad y_n \neq 0, \quad B \neq 0.$$

Доказательство

1.

Пусть $\varepsilon > 0$. Так как $\lim_{n \to \infty} x_n = A$, то

$$\exists n_0 : \forall n > n_0 | x_n - A | < \frac{\varepsilon}{2}.$$

Так как $\lim_{n\to\infty} y_n = B$, то

$$\exists n_1 : \forall n > n_1 | y_n - B | < \frac{\varepsilon}{2}.$$

Тогда, используя неравенство треугольника и свойства модуля (теорема 1.3), при $n > n_2 = \max(n_0, n_1)$, имеем

$$|x_n + y_n - (A + B)| = |(x_n - A) + (y_n - B)| \le |x_n - A| + |y_n - B| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2.

Так как $\lim_{n\to\infty} y_n=B\in\mathbb{R}$, то y_n ограничена (лемма 2.2), а значит $\exists C>0\colon |y_n|\leq C$

Пусть $\varepsilon>0$. Так как $\lim_{n\to\infty}x_n=A$, то $\exists n_0\colon \forall n>n_0|x_0-A|<rac{\varepsilon}{2C}$

Так как $\lim_{n \to \infty} y_n = B$, то $\exists n_1 : \forall n > n_1 | y_n - B | < \frac{\varepsilon}{2(|A|+1)}$

Тогда, используя неравенство треугольника (теорема 1.3), при $n > n_2 = \max(n_0, n_1)$ имеем

$$|x_n y_n - AB| = |x_n y_n + Ay_n - Ay_n - AB| \le |x_n y_n - Ay_n| + |Ay_n - AB| =$$

$$= |y_n| \cdot |x_n - A| + |A| \cdot |y_n - B| \le C \cdot \frac{\varepsilon}{2C} + \frac{|A|\varepsilon}{2(|A|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

3.

Достаточно показать, что $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{B}$

Так как тогда, по доказанному в пункте 2, $\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}x_n\lim_{n\to\infty}\frac{1}{y_n}$

Так как $\lim_{n\to\infty}y_n=B\in\mathbb{R},\ B\neq 0,$ то

$$\exists n_0: \forall n > n_0 | y_n - B | < \frac{|B|}{2}$$

Откуда $B - \frac{|B|}{2} < y_n < B + \frac{|B|}{2}$.

Если положить

$$C = \min\left(\left|B - \frac{|B|}{2}\right|, \left|B + \frac{|B|}{2}\right|\right),$$

$$\text{To } |y_n| \ge C \Rightarrow 0 < \frac{1}{|y_n|} \le \frac{1}{c}.$$

Пусть $\varepsilon > 0$, тогда, пользуясь определением предела, $\exists n_1 : \forall n > n_1 | y_n - B | < \varepsilon CB$. Значит, при $n > \max(n_0, n_1)$

$$\left|\frac{1}{y_n} - \frac{1}{B}\right| = \left|\frac{B - y_n}{B y_n}\right| \le \frac{|B - y_n|}{C|B|} < \varepsilon.$$

Справедлива более общая теорема, чем теорема 2.1

Теорема 2.2 (Арифметические свойства пределов в $\overline{\mathbb{R}}$)

Пусть $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$ $A,B\in\overline{\mathbb{R}}$, тогда, если определена соответствующая операция (сложения, умножения или деления) в $\overline{\mathbb{R}}$, то:

(а) Предел суммы равен сумме пределов, то есть

$$x_n + y_n \xrightarrow[n \to \infty]{} A + B.$$

(б) Предел произведения равен произведению пределов, то есть

$$x_n y_n \xrightarrow[n \to \infty]{} AB.$$

(в) Предел частного равен частному пределов, то есть

$$\frac{x_n}{y_n} \xrightarrow[n \to \infty]{} \frac{A}{B}, \quad y_n \neq 0.$$

Доказательство.

Докажем, например, что если $\lim_{n\to\infty} x_n = +\infty$, $\lim_{n\to\infty} y_n = B \neq 0$, то

$$x_n y_n \xrightarrow[n \to \infty]{} \begin{cases} +\infty, & B > 0 \\ -\infty, & B < 0 \end{cases}.$$

Пусть $\varepsilon > 0$, тогда

$$\exists n_0 : \forall n > n_0 \quad x_n > \frac{1}{\varepsilon}$$

И

$$\exists n_1 : \forall n > n_1 \ B - \frac{|B|}{2} < y_n < B + \frac{|B|}{2}$$

Значит, при $n > \max(n_0, n_1)$

$$\begin{cases} x_n y_n > \frac{1}{\varepsilon} \left(B - \frac{|B|}{2} \right), & B > 0 \\ x_n y_n < \frac{1}{\varepsilon} \left(B + \frac{|B|}{2} \right), & B < 0 \end{cases}$$

Что и доказывает утверждение.

16 Билет

Предельный переход в неравенствах

Докажем, что если есть неравенство для пределов, то это же неравенство с какого-то момента справедливо и для членов последовательностей.

Теорема 2.3

Пусть
$$\lim_{n \to \infty} x_n = A$$
 $\lim_{n \to \infty} y_n = B$ $A < B$ $A, B \in \overline{\mathbb{R}}$. Тогда $\exists n_0 \colon \forall n > n_0 \quad x_n < y_n$.

Доказательство.

Пусть $A, B \in \mathbb{R}$ и пусть $\varepsilon = \frac{B-A}{2}$. Тогда, так как $\lim_{n \to \infty} x_n = A$, то

$$\exists n_0 : \forall n > n_0 \ |x_n - A| < \frac{B - A}{2} \ \Rightarrow \ x_n < A + \frac{B - A}{2} = \frac{A + B}{2}.$$

Так как $\lim_{n\to\infty} y_n = B$, то

$$\exists n_1 : \forall n > n_1 \ |y_n - B| < \frac{B - A}{2} \Rightarrow y_n > B - \frac{B - A}{2} = \frac{A + B}{2}.$$

Значит, при $n>n_2=\max(n_0,n_1)$, выполняется $x_n<\frac{A+B}{2}< y_n$, откуда и следует требуемое.

Следствие 2.3.1 (Предельный переход в неравенствах).

- Пусть $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, $\widehat{A}, B \in \overline{\mathbb{R}}$. (a) Если $x_n > y_n$ начиная с какого-либо номера n_0 , то $A \ge B$.
- (б) Если $x_n \ge y_n$ начиная с какого-либо номера n_0 , то $A \ge B$.

От противного, пусть A < B. Согласно теореме 2.3 $\exists n_0 : \forall n > n_0 \quad x_n < y_n$. Это противоречит условию.

Второй пункт доказывается аналогично.

17 Билет

Теорема о сжатой переменной

2.5. Теорема о сжатой переменной

- теорема, устанавливающая существование предела последовательности, зажатой между двумя другими.

Теорема 2.4 (О сжатой переменной). Пусть начиная с какого-то номера n_0 выполняется $x_n \leq z_n \leq y_n$. Пусть, кроме того, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = A, A \in \overline{\mathbb{R}}$, тогда $\lim_{n \to \infty} z_n = A$. Доказательство.

Пусть $A \in \mathbb{R} \ \varepsilon > 0$. Тогда

$$\exists n_1 : \forall n > n_1 \ |x_n - A| < \varepsilon \Leftrightarrow A - \varepsilon < x_n < A + \varepsilon,$$

$$\exists n_2 : \forall n > n_2 \ |y_n - A| < \varepsilon \Leftrightarrow A - \varepsilon < y_n < A + \varepsilon.$$

Тогда при $n > n_2 = \max(n_0, n_1, n_2)$ выполняется

$$A - \varepsilon < x_n \le z_n \le y_n < A + \varepsilon \Leftrightarrow |z_n - A| < \varepsilon$$

// Доказать эту теорему, опираясь на предельный переход в неравенствах (2.3.1), нельзя, так как по условию про наличие предела последовательности z_n ничего неизвестно.

18 Билет

Теорема Вейерштрасса (2.6)

Введем понятие монотонности.

Определение 2.7.

Про возрастающую (не убывающую, убывающую, не возрастающую) последовательность также говорят, что она монотонна.

Строгое возрастание последовательности означает, что $x_n < x_{n+1} \quad \forall n \in \mathbb{N}$

Строгое убывание последовательности, что $x_{n+1} \le x_n \quad \forall n \in \mathbb{N}$

У монотонной последовательности всегда есть предел. Теорема Вейерштрасса говорит о том, что для сходимости монотонной последовательности не только необходима (лемма 2.2), но и достаточна ограниченность этой последовательности.

Теорема 2.5 (Вейерштрасса).

Возрастающая последовательность x_n сходится тогда и только тогда, когда она ограничена сверху, причем $\lim_{n\to\infty} x_n = \sup_n x_n$

Убывающая последовательность x_n сходится тогда и только тогда, когда она ограничена снизу, причем $\lim_{n\to\infty} x_n = \inf_n x_n$

Доказательство.

Пусть последовательность возрастает. Необходимость следует из того факта, что последовательность ограничена (лемма 2.2).

Докажем достаточность. Так как x_n ограничена сверху, то существует $A = \sup x_n < +\infty$. Пусть $\varepsilon > 0$. По свойству супремума (лемма 1.19), $\exists n_0 : A - \varepsilon < x_{n_0} \le A$.

Так как последовательность x_n возрастает, то

$$\forall n > n_0 A - \varepsilon < x_{n_0} \leq x_n \leq A < A + \varepsilon < x_n < A + \varepsilon$$

Что и означает, что $\lim_{n\to\infty} x_n = A$ Случай убывающей последовательности рассматривается аналогично.

Лемма 2.3 (Дополнение к теореме Вейерштрасса).

Если последовательность x_n возрастает и не ограничена сверху, то ее предел равен $+\infty$, то есть $\lim_{n\to\infty} x_n = \sup_n x_n$.

Если последовательность x_n убывает и не ограничена снизу, то ее предел равен $-\infty$, то есть

$$\lim_{n\to\infty}x_n=\inf_nx_n$$

Доказательство.

Докажем первый пункт. Так как последовательность не ограничена сверху, то по $\varepsilon >$ 0 найдется n_0 такой, что

$$x_{n_0} > \frac{1}{\varepsilon}$$

Так как последовательность возрастает, то при $n>n_o$ выполнено $x_n\geq x_{n_0}>\frac{1}{\varepsilon}$

Тем самым установлено, что $\lim_{n \to \infty} x_n = +\infty$. Второй пункт доказывается аналогично.

Теорема 2.6 (Обобщенная теорема Вейерштрасса). Возрастающая последовательность x_n имеет предел в $\overline{\mathbb{R}}$, причем

$$\lim_{n\to\infty} x_n = \sup_n x_n$$

Убывающая последовательность x_n имеет предел в \mathbb{R} , причем

$$\lim_{n\to\infty} x_n = \inf_n x_n$$

19 Билет

Второй замечательный предел

Теорема 2.7 (основное утверждение)

Существует предел
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$
 Доказательство.

Рассмотрим вспомогательную последовательность $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$ и докажем, что она строго убывает. Используя неравенство Бернулли (1.15) в последнем переходе, при $n \ge 2$ имеем:

$$\begin{split} \frac{y_{n-1}}{y_n} &= \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \frac{n}{n+1} \cdot \left(\frac{n^2}{n^2-1}\right)^n = \\ &= \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2-1}\right)^n > \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2}\right)^n \geqslant \frac{n}{n+1} \cdot \left(1 + \frac{1}{n}\right) = 1, \end{split}$$

Откуда, в силу положительности y_n при всех $n, y_{n-1} > y_n \quad \forall n \geq 2$, что и означает строгое убывание y_n

Поскольку члены последовательности y_n положительны и последовательность строго убывает, то, согласно теореме Вейерштрасса (2.5), существует предел $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$ Тогда

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \left(1 + \frac{1}{n} \right)^{-1} =$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \cdot \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n} \right)} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1},$$

Где предел в правой части цепочки равенств существует по только что доказанному. Это доказывает и существование предела в левой части, чтд.

Определение 2.8 (Понятие второго замечательного предела) Рассмотренный выше предел называют вторым замечательным пределом, а его значение — числом е, то есть $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ хуй))