

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2009; month=5; day=7; hr=15; min=55; sec=56; ms=275;]

=====

Application No: 10573936 Version No: 2.0

Input Set:

Output Set:

Started: 2009-04-23 14:31:01.719
Finished: 2009-04-23 14:31:03.391
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 672 ms
Total Warnings: 12
Total Errors: 0
No. of SeqIDs Defined: 49
Actual SeqID Count: 49

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (37)
W 213	Artificial or Unknown found in <213> in SEQ ID (38)
W 213	Artificial or Unknown found in <213> in SEQ ID (39)
W 213	Artificial or Unknown found in <213> in SEQ ID (40)
W 213	Artificial or Unknown found in <213> in SEQ ID (41)
W 213	Artificial or Unknown found in <213> in SEQ ID (42)
W 213	Artificial or Unknown found in <213> in SEQ ID (43)
W 213	Artificial or Unknown found in <213> in SEQ ID (44)
W 213	Artificial or Unknown found in <213> in SEQ ID (45)
W 213	Artificial or Unknown found in <213> in SEQ ID (46)
W 213	Artificial or Unknown found in <213> in SEQ ID (47)
W 213	Artificial or Unknown found in <213> in SEQ ID (48)

SEQUENCE LISTING

<110> FITZGERALD, STEPHEN NOEL

FAGAN, RICHARD JOSEPH

POWER, CHRISTINE

YORKE, MELANIE

BIENKOWSKA, JADWIGA

<120> ISOLATED INSP163 PROTEIN

<130> C.R.115

<140> 10573936

<141> 2006-11-13

<150> GB 0325038.8

<151> 2003-10-27

<160> 49

<170> SeqWin99, version 1.02

<210> 1

<211> 846

<212> DNA

<213> Homo sapiens

<400> 1

gggggcgtcg gggcccgccg ggagggcacag aggacgcagc agcctggcca gcgcgcagat 60
ccccccaacg ccaccgcccag cgcgctcccg cgcgaggggc tgcccgaggc ccccaaggca 120
tccccaggcct caggacctga gttctccgac gcccacatga catggctgaa ctttgtccgg 180
cgggccggacg acggccgcctt aaggaagcgg tgccgaaagca gggacaagaa gccgcgggat 240
ctcttcgggtc ccccaaggacc tcagggtgca gaagtgaccg cgagactct gcttcacgag 300
tttcaggagc tgctgaaaga ggccacggag cgccggttct cagggcttct ggaccggctg 360
ctgccccagg gggcgggcct cgccgtggtg ggcgaggcct ttcaactgccc gctgcagggt 420
ccccggccggg tggacaagcgg gacgctggtg gagctgcatg gttccaggc tcctgctgcc 480
caagggtgcct tcctgcgagg ctccggctcg agcctggcct cgggtcggtt cacggcccc 540
gtgtccggca tcttcagtt ctctgcccagt ctgcacgtgg accacagtga gctgcagggc 600
aaggccccggc tgccggcccg ggacgtggtg tgtgttctca tctgtattga gtccctgtgc 660
cagcgccaca cgtgctctggaa ggccgtctca ggcctggaga gcaacagcag ggtcttcacg 720
ctacaggtgc agggctgtct gcagctgca gctggacagt acgttctgt gtttgtggac 780
aatggctccg gggccgtctt caccatccag gccggctcca gtttctccgg gctgctcctg 840
ggcacg 846

<210> 2

<211> 282

<212> PRT

<213> Homo sapiens

<400> 2

Gly Gly Val Gly Ala Arg Arg Glu Ala Gln Arg Thr Gln Gln Pro Gly

1 5 10 15

Gln Arg Ala Asp Pro Pro Asn Ala Thr Ala Ser Ala Ser Ser Arg Glu

20 25 30

Gly Leu Pro Glu Ala Pro Lys Pro Ser Gln Ala Ser Gly Pro Glu Phe
 35 40 45

Ser Asp Ala His Met Thr Trp Leu Asn Phe Val Arg Arg Pro Asp Asp
 50 55 60

Gly Ala Leu Arg Lys Arg Cys Gly Ser Arg Asp Lys Lys Pro Arg Asp
 65 70 75 80

Leu Phe Gly Pro Pro Gly Pro Pro Gly Ala Glu Val Thr Ala Glu Thr
 85 90 95

Leu Leu His Glu Phe Gln Glu Leu Leu Lys Glu Ala Thr Glu Arg Arg
 100 105 110

Phe Ser Gly Leu Leu Asp Pro Leu Leu Pro Gln Gly Ala Gly Leu Arg
 115 120 125

Leu Val Gly Glu Ala Phe His Cys Arg Leu Gln Gly Pro Arg Arg Val
 130 135 140

Asp Lys Arg Thr Leu Val Glu Leu His Gly Phe Gln Ala Pro Ala Ala
 145 150 155 160

Gln Gly Ala Phe Leu Arg Gly Ser Gly Leu Ser Leu Ala Ser Gly Arg
 165 170 175

Phe Thr Ala Pro Val Ser Gly Ile Phe Gln Phe Ser Ala Ser Leu His
 180 185 190

Val Asp His Ser Glu Leu Gln Gly Lys Ala Arg Leu Arg Ala Arg Asp
 195 200 205

Val Val Cys Val Leu Ile Cys Ile Glu Ser Leu Cys Gln Arg His Thr
 210 215 220

Cys Leu Glu Ala Val Ser Gly Leu Glu Ser Asn Ser Arg Val Phe Thr
 225 230 235 240

Leu Gln Val Gln Gly Leu Leu Gln Leu Gln Ala Gly Gln Tyr Ala Ser
 245 250 255

Val Phe Val Asp Asn Gly Ser Gly Ala Val Leu Thr Ile Gln Ala Gly
 260 265 270

Ser Ser Phe Ser Gly Leu Leu Leu Gly Thr
 275 280

<210> 3
 <211> 663
 <212> DNA
 <213> Homo sapiens

<400> 3
 ccggacgacg ggcgccttaag gaagcggtgc ggaagcaggaa acaagaagcc gcggatctc
 ttcggtcccc caggacctcc aggtgcagaa gtgaccgcgg agactctgct tcacgagttt
 caggagctgc tgaaagaggg cacggagcgc cggttctcag ggcttctgga cccgctgctg
 60
 120
 180

ccccaggggg cgggcctgca gctgggtggc gagggccccc actgcccgt gcagggtccc 240
cgccgggtgg acaagcggac gctgggtggag ctgcattgtt tccaggctcc tgctgccccaa 300
ggtgccatcc tgcgaggctc cggctctgac ctggccctcggt gtcgggtcac ggccccctgt 360
tccggcatct tccagtctc tgccagttctg cacgtggacc acagttagtgc gcagggcaag 420
gcccggctgc gggccggga cgtgggtgtt gttctcatct gtatttagtgc cctgtgccag 480
cgccacacgt gcctggaggc cgtctcaggc ctggagagca acagcagggt cttcacgcta 540
caggtgcagg ggctgtgc a gctgcaggct ggacagta cg cttctgtgtt tgtggacaat 600
ggctccgggg ccgtcctcac catccaggcg ggctccagct tctccgggt gctccctggc 660
acg 663

<210> 4
<211> 221
<212> PRT
<213> Homo sapiens

<400> 4
Pro Asp Asp Gly Ala Leu Arg Lys Arg Cys Gly Ser Arg Asp Lys Lys
1 5 10 15

Pro Arg Asp Leu Phe Gly Pro Pro Gly Pro Pro Gly Ala Glu Val Thr
20 25 30

Ala Glu Thr Leu Leu His Glu Phe Gln Glu Leu Leu Lys Glu Ala Thr
35 40 45

Glu Arg Arg Phe Ser Gly Leu Leu Asp Pro Leu Leu Pro Gln Gly Ala
50 55 60

Gly Leu Arg Leu Val Gly Glu Ala Phe His Cys Arg Leu Gln Gly Pro
65 70 75 80

Arg Arg Val Asp Lys Arg Thr Leu Val Glu Leu His Gly Phe Gln Ala
85 90 95

Pro Ala Ala Gln Gly Ala Phe Leu Arg Gly Ser Gly Leu Ser Leu Ala
100 105 110

Ser Gly Arg Phe Thr Ala Pro Val Ser Gly Ile Phe Gln Phe Ser Ala
115 120 125

Ser Leu His Val Asp His Ser Glu Leu Gln Gly Lys Ala Arg Leu Arg
130 135 140

Ala Arg Asp Val Val Cys Val Leu Ile Cys Ile Glu Ser Leu Cys Gln
145 150 155 160

Arg His Thr Cys Leu Glu Ala Val Ser Gly Leu Glu Ser Asn Ser Arg
165 170 175

Val Phe Thr Leu Gln Val Gln Gly Leu Leu Gln Leu Gln Ala Gly Gln
180 185 190

Tyr Ala Ser Val Phe Val Asp Asn Gly Ser Gly Ala Val Leu Thr Ile
195 200 205

Gln Ala Gly Ser Ser Phe Ser Gly Leu Leu Leu Gly Thr
210 215 220

<210> 5
<211> 642
<212> DNA
<213> Homo sapiens

<400> 5
aagcggtgcg gaagcaggga caagaagccg cgggatctct tcggtcccc aggacccca 60
ggtgcagaag tgaccgcgga gactctgct cacgagttc aggagctgct gaaagaggcc 120
acggagcgcc gggttcagg ggttctggac ccgctgctgc cccagggggc gggcctgcgg 180
ctgggtggcgc aggccttca ctgccggctg cagggtcccc gccgggtgga caagcggacg 240
ctgggtggagc tgcattttt ccaggctcct gctcccaag gtgccttcct gcgaggctcc 300
ggtctgagcc tggctcggg tcggttcacg gccccgtgt ccggcatctt ccagttctct 360
gccagtctgc acgtggacca cagtggactg cagggcaagg cccggctgcg ggcccgggac 420
gtgggtgtgt ttctcatctg tattgagtcc ctgtgccagc gccacacgtg cctggaggcc 480
gtctcaggcc tggagagcaa cagcagggtc ttcacgtac aggtgcaggg gctgctgcag 540
ctgcaggctg gagactacgc ttctgtgtt gtggacaatg gctccggggc cgtcctcacc 600
atccaggcgg gctccagctt ctccggctg ctccctggca cg 642

<210> 6
<211> 214
<212> PRT
<213> Homo sapiens

<400> 6
Lys Arg Cys Gly Ser Arg Asp Lys Lys Pro Arg Asp Leu Phe Gly Pro
1 5 10 15

Pro Gly Pro Pro Gly Ala Glu Val Thr Ala Glu Thr Leu Leu His Glu
20 25 30

Phe Gln Glu Leu Leu Lys Glu Ala Thr Glu Arg Arg Phe Ser Gly Leu
35 40 45

Leu Asp Pro Leu Leu Pro Gln Gly Ala Gly Leu Arg Leu Val Gly Glu
50 55 60

Ala Phe His Cys Arg Leu Gln Gly Pro Arg Arg Val Asp Lys Arg Thr
65 70 75 80

Leu Val Glu Leu His Gly Phe Gln Ala Pro Ala Ala Gln Gly Ala Phe
85 90 95

Leu Arg Gly Ser Gly Leu Ser Leu Ala Ser Gly Arg Phe Thr Ala Pro
100 105 110

Val Ser Gly Ile Phe Gln Phe Ser Ala Ser Leu His Val Asp His Ser
115 120 125

Glu Leu Gln Gly Lys Ala Arg Leu Arg Ala Arg Asp Val Val Cys Val
130 135 140

Leu Ile Cys Ile Glu Ser Leu Cys Gln Arg His Thr Cys Leu Glu Ala
145 150 155 160

Val Ser Gly Leu Glu Ser Asn Ser Arg Val Phe Thr Leu Gln Val Gln
165 170 175

Gly Leu Leu Gln Leu Gln Ala Gly Gln Tyr Ala Ser Val Phe Val Asp
180 185 190

Asn Gly Ser Gly Ala Val Leu Thr Ile Gln Ala Gly Ser Ser Phe Ser
195 200 205

Gly Leu Leu Leu Gly Thr
210

<210> 7
<211> 636
<212> DNA
<213> Homo sapiens

<400> 7
tgcggaagca gggacaagaa gccgcggat ctttcggtc ccccaggacc tccaggtgca 60
gaagtgaccg cggagactct gcttcacgag tttcaggagc tgctgaaaaga ggccacggag 120
cgccggttct cagggttct ggacccgctg ctgccccagg gggcgccct gcggctggtg 180
ggcgaggcct ttcaactgccc gctgcagggt ccccgccggg tggacaagcg gacgctggtg 240
gagctgcattt gtttccaggc tcctgctgcc caaggtgcct tcctgcgagg ctccggctcg 300
acgcctggcct cgggtcggtt cacggccccc gtgtccggca tcttccagtt ctctgcacagt 360
ctgcacgtgg accacagtga gctgcaggc aaggccccc tgccggcccg ggacgtggtg 420
tgtgttctca tctgtattga gtccctgtgc cagcgcacaca cgtgcctgga ggccgtctca 480
ggcctggaga gcaacacgca ggtcttcacg ctacaggtgc aggggctgct gcagctgcag 540
gctggacagt acgcttctgt gtttgtggac aatggctccg gggccgtctt caccatccag 600
ggggctcca gtttcccg gctgctccgt ggcacg 636

<210> 8
<211> 212
<212> PRT
<213> Homo sapiens

<400> 8
Cys Gly Ser Arg Asp Lys Lys Pro Arg Asp Leu Phe Gly Pro Pro Gly
1 5 10 15

Pro Pro Gly Ala Glu Val Thr Ala Glu Thr Leu Leu His Glu Phe Gln
20 25 30

Glu Leu Leu Lys Glu Ala Thr Glu Arg Arg Phe Ser Gly Leu Leu Asp
35 40 45

Pro Leu Leu Pro Gln Gly Ala Gly Leu Arg Leu Val Gly Glu Ala Phe
50 55 60

His Cys Arg Leu Gln Gly Pro Arg Arg Val Asp Lys Arg Thr Leu Val
65 70 75 80

Glu Leu His Gly Phe Gln Ala Pro Ala Ala Gln Gly Ala Phe Leu Arg
85 90 95

Gly Ser Gly Leu Ser Leu Ala Ser Gly Arg Phe Thr Ala Pro Val Ser
100 105 110

Gly Ile Phe Gln Phe Ser Ala Ser Leu His Val Asp His Ser Glu Leu
115 120 125

Gln Gly Lys Ala Arg Leu Arg Ala Arg Asp Val Val Cys Val Leu Ile
130 135 140

Cys Ile Glu Ser Leu Cys Gln Arg His Thr Cys Leu Glu Ala Val Ser
145 150 155 160

Gly Leu Glu Ser Asn Ser Arg Val Phe Thr Leu Gln Val Gln Gly Leu
165 170 175

Leu Gln Leu Gln Ala Gly Gln Tyr Ala Ser Val Phe Val Asp Asn Gly
180 185 190

Ser Gly Ala Val Leu Thr Ile Gln Ala Gly Ser Ser Phe Ser Gly Leu
195 200 205

Leu Leu Gly Thr
210

<210> 9

<211> 510

<212> DNA

<213> Homo sapiens

<400> 9

ttctcagggc ttctggaccc gctgctgcc cagggggcgg gcctgcggct ggtggggcgag 60
gcctttcaact gccggctgca gggtccccgc cgggtggaca agcggacgct ggtggagctg 120
catggtttcc aggctctgc tgcccaaggt gccttcctgc gaggtctccgg tctgagcctg 180
gcctcgggtc ggtacacggc ccccgtgtcc ggcataatcc agttctctgc cagtctgcac 240
gtggaccaca gtgagctgca gggcaaggcc cggctgcggg cccgggacgt ggtgtgtgtt 300
ctcatctgta ttgagtcct gtgccagcgc cacacgtgcc tggaggccgt ctcaaggctg 360
gagagcaaca gcagggctt cacgctacag gtgcagggcc tgcgtcagct gcagggctgga 420
cagtacgctt ctgtgtttgt ggacaatggc tccggggccg tcctcaccat ccaggcgggc 480
tccagctt ccgggctgct cctgggcac 510

<210> 10

<211> 170

<212> PRT

<213> Homo sapiens

<400> 10

Phe Ser Gly Leu Leu Asp Pro Leu Leu Pro Gln Gly Ala Gly Leu Arg
1 5 10 15

Leu Val Gly Glu Ala Phe His Cys Arg Leu Gln Gly Pro Arg Arg Val
20 25 30

Asp Lys Arg Thr Leu Val Glu Leu His Gly Phe Gln Ala Pro Ala Ala
35 40 45

Gln Gly Ala Phe Leu Arg Gly Ser Gly Leu Ser Leu Ala Ser Gly Arg
50 55 60

Phe Thr Ala Pro Val Ser Gly Ile Phe Gln Phe Ser Ala Ser Leu His
65 70 75 80

Val Asp His Ser Glu Leu Gln Gly Lys Ala Arg Leu Arg Ala Arg Asp

85

90

95

Val Val Cys Val Leu Ile Cys Ile Glu Ser Leu Cys Gln Arg His Thr
100 105 110

Cys Leu Glu Ala Val Ser Gly Leu Glu Ser Asn Ser Arg Val Phe Thr
115 120 125

Leu Gln Val Gln Gly Leu Leu Gln Leu Gln Ala Gly Gln Tyr Ala Ser
130 135 140

Val Phe Val Asp Asn Gly Ser Gly Ala Val Leu Thr Ile Gln Ala Gly
145 150 155 160

Ser Ser Phe Ser Gly Leu Leu Leu Gly Thr
165 170

<210> 11

<211> 417

<212> DNA

<213> Homo sapiens

<400> 11

gtggacaagc ggacgctgg gtagactgcat ggttccagg ctccctgctgc ccaagggtgcc 60
ttccctgcgag gctccggctct gagcctggcc tcgggtcggt tcacggcccc cgtgtccggc 120
atcttccagt tctctgcccag tctgcacgtg gaccacagtg agctgcaggg caaggccccgg 180
ctgcggggcccc gggacgtgg gttgttttc atctgtattt agtccctgtg ccagcgccac 240
acgtgcctgg aggccgtctc aggccctggag agcaacagca gggctttcac gctacaggtg 300
caggggctgc tgcagctgca ggctggacag tacgcttctg tggttggtga caatggctcc 360
ggggccgtcc tcaccatcca ggccggctcc agcttctccg ggctgctctt gggcacg 417

<210> 12

<211> 139

<212> PRT

<213> Homo sapiens

<400> 12

Val Asp Lys Arg Thr Leu Val Glu Leu His Gly Phe Gln Ala Pro Ala
1 5 10 15

Ala Gln Gly Ala Phe Leu Arg Gly Ser Gly Leu Ser Leu Ala Ser Gly
20 25 30

Arg Phe Thr Ala Pro Val Ser Gly Ile Phe Gln Phe Ser Ala Ser Leu
35 40 45

His Val Asp His Ser Glu Leu Gln Gly Lys Ala Arg Leu Arg Ala Arg
50 55 60

Asp Val Val Cys Val Leu Ile Cys Ile Glu Ser Leu Cys Gln Arg His
65 70 75 80

Thr Cys Leu Glu Ala Val Ser Gly Leu Glu Ser Asn Ser Arg Val Phe
85 90 95

Thr Leu Gln Val Gln Gly Leu Leu Gln Leu Gln Ala Gly Gln Tyr Ala
100 105 110

Ser Val Phe Val Asp Asn Gly Ser Gly Ala Val Leu Thr Ile Gln Ala
115 120 125

Gly Ser Ser Phe Ser Gly Leu Leu Leu Gly Thr
130 135

<210> 13
<211> 405
<212> DNA
<213> Homo sapiens

<400> 13
acgctggtgg agctgcattgg tttccaggct cctgctgccc aaggtgcctt cctgcgaggc 60
tccggctctga gcctggcctc gggtcggttc acggcccccg tgtccggcat cttccagtcc 120
tctgccatgc tgacacgtggaa ccacagttag ctgcaggggca aggccggct gcgggccccgg 180
gacgtggtgt gtgttctcat ctgtatttagtgc tccctgtgcc agcgcacac gtgcctggag 240
gccgtctcaag gcctggagag caacagcagg gtcttcacgc tacaggtgca ggggctgtcg 300
cagctgcagg ctggacagta cgctctgtgt tttgtggaca atggctccgg ggccgtcctc 360
accatccagg cgggctccag ctctccggg ctgctcctgg gcacg 405

<210> 14
<211> 135
<212> PRT
<213> Homo sapiens

<400> 14
Thr Leu Val Glu Leu His Gly Phe Gln Ala Pro Ala Ala Gln Gly Ala
1 5 10 15

Phe Leu Arg Gly Ser Gly Leu Ser Leu Ala Ser Gly Arg Phe Thr Ala
20 25 30

Pro Val Ser Gly Ile Phe Gln Phe Ser Ala Ser Leu His Val Asp His
35 40 45

Ser Glu Leu Gln Gly Lys Ala Arg Leu Arg Ala Arg Asp Val Val Cys
50 55 60

Val Leu Ile Cys Ile Glu Ser Leu Cys Gln Arg His Thr Cys Leu Glu
65 70 75 80

Ala Val Ser Gly Leu Glu Ser Asn Ser Arg Val Phe Thr Leu Gln Val