

Università degli studi di Milano-Bicocca

F1801Q145

Modelli probabilistici per le decisioni

HAR Bayesian Network

Studenti:	Matricole:
Artifoni Mattia	807466
Brena Luca	808216
Bottoni Federico	806944

Giugno 2019

Indice

1		roduzione
	1.1	Dominio di riferimento
		Ipotesi e assunzioni
2	Sce	lte di design
	2.1	Analisi statistica e qualitativa
	2.2	Normalizzazione
	2.3	Discretizzazione
3	I m	odelli di rete
	3.1	ro ry
		3.1.1 Modello correlato
		3.1.2 Generazione del modello
	3.2	pomegranate
		3.2.1 Modello generato
1	Di ca	ultati o conclusioni

1 Introduzione

Il progetto ha l'obiettivo di creare un modello di Rete Bayesiana capace di predirre il tipo di azione che sta effettuando un ipotetico individuo che indossa il "HAR wearable devices setup", una particolare sistema indossabile composto da 4 accelerometri che permette di analizzare i vettori accelerazione dei sensori in questione. Viene fornito dal progetto di riferimento[1] un dataset contenente dati sufficienti per effettuare training e testing del modello

1.1 Dominio di riferimento

La semantica dei dati utilizzati è definita nel paper[5] del progetto di provenienza. La singola entry del dataset rappresenta uno snapshot acquisito dai sensori e consiste in:

- user: username dell'individuo in oggetto (string).
- gender: genere del soggetto (string).
- age: età dell'individuo (int).
- how_tall_in_meters: altezza del soggetto espressa in metri (int).
- weight: peso espresso in kilogrammi (int).
- body_mass_index: indice di massa corporea. Si ottiene dividendo il peso per il quadrato dell'altezza (float).
- xi: intero che esprime la componente x del vettore accelerazione nel sensore i-esimo (int).
- yi: intero che esprime la componente y del vettore accelerazione nel sensore i-esimo (int).
- zi: intero che esprime la componente z del vettore accelerazione nel sensore i-esimo (int).
- class: è la variabile target della previsione e indica l'azione eseguita dal soggetto al momento della rilevazione dei dati. Può assumere il valore di "walking", "standing", "standingup", "sitting" e "sittingdown" (string).

1.2 Ipotesi e assunzioni

Durante lo studio del caso sono state discrimate le features utili al training della rete (i vettori dei sensori) da quelle assunte come superflue (user, gender, age, weight, body_mass_index) le quali potrebbero essere utilizzate per specializzarla ulteriormente.

La scelta riguardo all'attributo how_tall_in_meters non è stata particolarmente immediata dato che il training set considera un range di 13cm (1.58m - 1.71m) che distribuiti in un corpo umano non crea l'informazione necessaria per poter affermare che tutti i sensori si trovano 13cm più o meno vicini al terreno. La rete dovrebbe essere comunque in grado di predirre le azioni di un bambino, il quale ha altezza decisamente inferiore rispetto a quella precedentemente descritta, ciò nonostante assumiamo che l'utente abbia un'altezza nel range descritto dato che in alcuni test affrontati, la complessità della rete era tale da scatenare MemoryError nella rappresentazione dei dati.

2 Scelte di design

2.1 Analisi statistica e qualitativa

user 💌	gender 💌 age	▼ how_tall_in_meters ▼	weight ▼ body_mass_index ▼ x1	▼ y1	▼ 71	▼ x2	▼ y2	₹ 22	▼ x3	▼ y3	▼ z3	▼ x4	▼ y4	▼ z4	▼ class
wallace	Man	31 1,71	83 28,4	-7	92	-114	19	89	-121	26	124	-83	-163	-76	-156 standing
katia	Woman	28 1,58	55 22,0	-13	43	-14	-12	-21	-21	15	104	-70	-141	-95	-174 sitting
debora	Woman	46 1,62	75 28,6	-11	90	-96	-5	70	-124	10	103	-86	-159	-104	-162 standing
wallace	Man	31 1,71	83 28,4	6	97	-119	-480	-502	-603	14	126	-98	-235	-89	-194 walking
katia	Woman	28 1,58	55 22,0	-8	92	-116	-493	-516	-616	34	11	-124	-187	-78	-157 walking
katia	Woman	28 1,58	55 22,0	-2	131	-131	-492	-515	-614	13	97	-46	-221	-101	-142 standingup
debora	Woman	46 1,62	75 28,6	-12	94	-99	0	72	-124	14	103	-92	-170	-104	-162 standing
debora	Woman	46 1,62	75 28,6	1	90	-48	-21	23	-17	8	108	-88	-164	-94	-155 sitting
debora	Woman	46 1,62	75 28,6	-1	89	-48	-18	23	-16	15	108	-90	-163	-93	-157 sitting
katia	Woman	28 1,58	55 22,0	17	138	-148	-492	-515	-615	23	149	-122	-165	-56	-176 walking
debora	Woman	46 1,62	75 28,6	-2	90	-50	-20	21	-19	14	107	-92	-158	-95	-160 sitting
katia	Woman	28 1,58	55 22,0	-1	102	-96	16	88	-121	44	103	-91	-203	-87	-163 standing
jose_carlo	Man	75 1,67	67 24,0	-12	96	-101	-11	-19	-21	-65	88	-104	-100	-143	-136 sitting
debora	Woman	46 1,62	75 28,6	0	106	-84	-5	86	-123	32	106	-84	-177	-89	-156 standing
wallace	Man	31 1,71	83 28,4	-11	95	-165	35	74	-131	31	180	-57	-238	-63	-161 walking
wallace	Man	31 1,71	83 28,4	4	71	-61	-22	-25	-21	66	58	-101	-93	-126	-164 sitting
katia	Woman	28 1,58	55 22,0	-1	101	-88	-5	87	-124	25	92	-49	-199	-90	-159 standing
katia	Woman	28 1,58	55 22,0	-29	26	-21	-261	-372	-452	27	109	-86	-150	-92	-169 sitting
wallace	Man	31 1,71	83 28,4	26	60	-158	-489	-512	-612	-55	167	-81	-220	-41	-169 walking
katia	Woman	28 1,58	55 22,0	1	103	-95	-5	83	-127	42	101	-61	-185	-81	-155 standing
debora	Woman	46 1,62	75 28,6	-7	85	-86	-74	21	-163	45	54	-143	-186	-95	-159 walking
wallace	Man	31 1,71	83 28,4	-20	155	-131	-5	154	-41	-429	176	-112	-192	-81	-162 walking
wallace	Man	31 1,71	83 28,4	3	64	-59	-37	-24	-27	74	68	-106	-81	-141	-157 sitting
jose_carlo	Man	75 1,67	67 24,0	-14	95	-97	-8	-10	-20	-63	86	-128	-101	-148	-131 sitting
debora	Woman	46 1,62	75 28,6	-5	74	-36	-4	20	-33	4	96	-69	-151	-107	-164 sitting
wallace	Man	31 1,71	83 28,4	6	72	-58	-33	-4	-23	66	59	-103	-98	-122	-183 sitting
wallace	Man	31 1,71	83 28,4	14	97	-120	-490	-513	-613	22	123	-94	-209	-93	-176 walking
wallace	Man	31 1,71	83 28,4	4	66	-59	-37	-24	-27	69	62	-110	-87	-145	-166 sitting
katia	Woman	28 1,58	55 22,0	-10	91	-159	2	31	-40	18	104	-56	-269	-43	-121 standingup
katia	Woman	28 1,58	55 22,0	-13	39	-15	-8	-23	-23	29	107	-80	-149	-95	-165 sitting
wallace	Man	31 1,71	83 28,4	26	98	-84	-20	9	-27	75	68	-61	-106	-83	-148 standingup

Figura 1: Dataset dopo lo shuffle

Il dataset si presenta come in figura 1 dopo una prima fase di pulizia, in cui sono stati individuati alcuni caratteri non necessari tra i campi e timestamp inaspettati tra le entry della tabella, ed una seconda di shuffle, nella quale i record sono stati randomizzati.

E' stata effettuata inoltre una fase di analisi statistico-descrittiva considerando le features che assumono valori in range indefiniti per cercare di individuare qualche distribuzione particolare o comportamento anomalo.

Dalla tabella 1 si può notare che i range di variabilità degli attributi non seguono comportamenti particolari, tanto meno le distribuzioni che in alcuni casi sono carat-

DevStd Campo Min Max Media Moda x1-306 509 -6.649327127 -1 11.61623803 y1 -271533 88.29366732 95 23.89582898 z1-603 411 -93.16461092 -98 39.40942342 x2-494 473 -87.82750418 -492169.4351938 y2-517 295 -52.06504742 -516 205.1597632z2-617 122 -175.0552004 -616 192.8166147 x3-499 507 17.42351464 38 52.63538753 -506 517 у3 104.5171675 108 54.15584251 z3-613 410 -93.88172647 -10245.38964613 -702 -13 -167.6414483 -16438.31134199 x4-526 -94 y486 -92.62517131 19.96861022 -537 -43 88.29366732 -16213.22102006z4

Tabella 1: Analisi descrittiva del dataset

terizzati da deviazione standard particolarmente bassa (come il caso di x1) mentre in altri casi molto alta (come y2).

2.2 Normalizzazione

Nella fase embrionale della progettazione la normalizzazione era stata ignorata. Infatti la predizione lavorava su features che avevano range piuttosto incosistenti al variare del sensore e della componente del vettore accelerazione considerata. Questo si può notare dalle colonne Min e Max in tabella 1, che si riferisce ai dati grezzi parzialmente ripuliti. Quindi si è pensato di effettuare una normalizzazione per ogni feature, in modo da compattare i valori tra -1 e 1 andando anche a eliminare gli outliers.

Di seguito, nelle figure 2 e 4, sono presentati alcuni grafici che illustrano la distribuzione dei valori di alcune features prima e dopo la normalizzazione. A seguito dell'operazione di normalizzazione il dataset appare come riportato in figura 3.

(a) Distribuzione dei valori di x1 non (b) Distribuzione dei valori di x1 normalizzatione di x1 normalizzation

(c) Distribuzione dei valori di x1 normalizzati e discretizzati.

Figura 2: Normalizzazione e discretizzazione della feature x1.

Figura 3: Il dataset normalizzato.

(a) Distribuzione dei valori di z4 non (b) Distribuzione dei valori di z4 normalizzanormalizzati.

(c) Distribuzione dei valori di z4 normalizzati e discretizzati.

Figura 4: Normalizzazione e discretizzazione della feature x1.

2.3 Discretizzazione

I valori delle features nel dataset originale sono continui. Per lavorare con le reti Bayesiane è stato necessario ricorrere alla discretizzazione dei dati.

Inizialmente i dati sono stati suddivisi in partizioni a range identici senza tenere conto di come questi fossero distribuiti. Successivamente abbiamo realizzato come questa procedura fosse imprecisa dopo aver osservato il modo in cui le distribuzioni di probabilità si sbilanciavano prevalentemente verso una sola classe della variabile. La discretizzazione definitiva è stata applicata sul dataset normalizzato. Per discretizzare i dati sono stati scelti 5 intervalli o bins. La funzione scelta (KBinsDiscretizer della libreria sklearn [4]) adatta automaticamente il numero dei bins in modo che la distribuzione dei dati in essi sia omogenea. Uno sapshot dei dati discretizzati è raffigurato nell'immagine 5

Figura 5: Il dataset discretizzato.

3 I modelli di rete

3.1 pgmpy

Il software inizialmente scelto è pgmpy[2] di Python, una libreria che permette di modellare le dipendenze in modo agile e stimare le CPT delle variabili sfruttando dei metodi che accettano il dataset ed infine effettuare inferenze dichiarando la variabile di query e le evidenze. Utilizzando la libreria ci siamo resi conto di come sia performante utilizzando modelli semplici e correlati da pochi record, tuttavia appena è avvenuta l'esecuzione della stima delle CPT nel primo modello completo ideato abbiamo riscontrato le prime difficoltà.

3.1.1 Modello correlato

L'idea che sta alla base di questo primo modello consiste nello stimare le dipendenze tramite lo strumento statistico *indice di correlazione di Paerson*, assumendo che se due feautres hanno distribuzioni simili (e quindi alta correlazione diretta o inversa) allora vi è una dipendenza tra le due. Sono state così selezionate le relazioni scartan-

do le simmetrie e stimate le CPT tramite il metodo MaximumLikelihoodEstimator della libreria basandosi sui sample passati come parametro.

x1	y1	0.345808064	x2	x1	0.198233156	x3	x1	0.07121	x4	x1	0.099018401
x1	z1	0.030417499	x2	y1	0.043861069	x3	y1	-0.1816	x4	у1	-0.29045831
x1	x2	0.198233156	x2	z1	0.109970588	х3	z1	0.13028	x4	z1	0.50628732
x1	y2	0.202451431	x2	y2	0.977115735	x3	x2	0.00802	x4	x2	0.157007278
x1	z2	0.251138704	x2	z2	0.953083727	х3	y2	0.00636	x4	y2	0.081715165
x1	x3	0.071207709	x2	x3	0.008022688	x 3	z2	0.00665	x4	z2	0.287828127
x1	у3	-0.136539934	x2	у3	-0.140455652	x3	у3	0.32843	x4	х3	0.166694382
x1	z3	0.00417011	x2	z3	0.107520027	x3	z3	0.27106	x4	у3	-0.111224183
x1	x4	0.099018401	x2	x4	0.157007278	x3	x4	0.16669	x4	z3	0.035357614
x1	y4	-0.142551934	x2	y4	-0.23983578	x3	y4	0.04272	x4	y4	-0.600982199
x1	z4	-0.025592835	x2	z4	0.164505939	х3	z4	-0.2023	x4	z4	-0.068008246
y1	x1	0.345808064	y2	x1	0.202451431	у3	x1	-0.1365	y4	x1	-0.142551934
y1	z1	-0.5159614	y2	y1	0.138219068	у3	y1	0.19162	y4	у1	0.228997237
y1	x2	0.043861069	y2	z1	0.017749163	у3	z1	-0.119	y4	z1	-0.405502292
y1	y2	0.138219068	y2	x2	0.977115735	у3	x2	-0.1405	y4	x2	-0.23983578
y1	z2	-0.0301789	y2	z2	0.918648041	у3	y2	-0.096	у4	y2	-0.15437806
y1	x3	-0.181573944	y2	x3	0.006358901	у3	z2	-0.2002	у4	z2	-0.389086436
y1	у3	0.191617913	y2	у3	-0.095987852	у3	х3	0.32843	y4	х3	0.042718189
y1	z3	0.109626835	y2	z3	0.120384491	у3	z3	0.67093	y4	у3	0.3239336
y1	x4	-0.29045831	y2	x4	0.081715165	у3	x4	-0.1112	y4	z3	0.076057385
y1	y4	0.228997237	y2	y4	-0.15437806	у3	y4	0.32393	y4	x4	-0.600982199
y1	z4	0.186791537	y2	z4	0.165709979	у3	z4	-0.0364	y4	z4	-0.117144404
z1	x1	0.030417499	z2	x1	0.251138704	z3	x1	0.00417	z4	x1	-0.025592835
z1	у1	-0.5159614	z2	y1	-0.0301789	z3	y1	0.10963	z4	y1	0.186791537
z1	x2	0.109970588	z2	z1	0.2172898	z3	z1	0.12427	z4	z1	-0.197813141
z1	y2	0.017749163	z2	x2	0.953083727	z3	x2	0.10752	z4	x2	0.164505939
z1	z2	0.2172898	z2	y2	0.918648041	z3	y2	0.12038	z4	y2	0.165709979
z1	x3	0.130282473	z2	x3	0.006650803	z3	z2	0.07906	z4	z2	0.160719903
z1	у3	-0.118961498	z2	у3	-0.200237814	z3	x3	0.27106	z4	х3	-0.202266103
z1	z3	0.124272757	z2	z3	0.07905866	z3	у3	0.67093	z4	у3	-0.036427754
z1	x4	0.50628732	z2	x4	0.287828127	z3	x4	0.03536	z4	z3	0.031079739
z1	y4	-0.405502292	z2	y4	-0.389086436	z3	y4	0.07606	z4	x4	-0.068008246
z1	z4	-0.197813141	z2	z4	0.160719903	z3	z4	0.03108	z4	y4	-0.117144404

Figura 6: Indice di correlazione di Paerson calcolato su tutte le le combinazioni di componenti

Successivamente abbiamo stimato la precisione del modello calcolando il rapporto tra le inferenze corrette su quelle totali. Il metodo utilizzato, query, si occupa di effettuare la singola previsione. Abbiamo notato che a parità di modello, raddoppiando il numero delle classi per ogni variabile, il tempo impiegato dalla funzione aumenta vertiginosamente, perciò abbiamo stimato la precisione del modello più complesso possibile ma con tempi di esecuzione nella norma.

Il modello consiste in cinque classi per ogni variabile e le seguenti dipendenze tra le variabili:

```
[('x1', 'class'), ('x3', 'class'), ('y4', 'class'), ('z1', 'class'), ('z2', 'class'), ('z3', 'class'), ('z4', 'class'), ('y1', 'z1'), ('x2', 'y2'), ('x2', 'z2'), ('y2', 'z2'), ('y3', 'z3'), ('x4', 'z1'), ('x4', 'y4')].
```

La precisione stimata è del 54%, un valore troppo basso per giustificare la computazione così lunga e dispendiosa di risorse. Abbiamo deciso così di tentare con un modello differente.

3.1.2 Generazione del modello

Dato l'insuccesso del modello correlato abbiamo cercato di generare la miglior configurazione di dipendenze secondo la libreria. Dopo il lancio della funzione che si occupa di chiamare l'API per la generazione abbiamo atteso circa 8 ore e successivamente interrotto l'esecuzione. Forse per la mole di dati, forse per la discretizzazione del dataset o forse per la natura stessa dell'algoritmo, non vi è stato alcun risultato.

3.2 pomegranate

Alla luce dei test effettuati abbiamo deciso di utilizzare un'altra libreria: Pomegranate [3], secondo gli utenti di alcuni forum, dovrebbe essere performante anche nei casi in cui pgmpy non lo è. La libreria è nota inoltre per avere API molto simili a quelle di scikit-learn [4] (uno tra i software leader nel campo del Machine Learning)

3.2.1 Modello generato

4 Risultati e conclusioni

Riferimenti bibliografici

- [1] http://groupware.les.inf.puc-rio.br/har.
- [2] http://pgmpy.org/.
- [3] https://pomegranate.readthedocs.io/.
- [4] https://scikit-learn.org.
- [5] Katia Vega Eduardo Velloso Ruy Milidiú Wallace Ugulino, Débora Cardador and Hugo Fuks. Wearable computing: Accelerometers' data classification of body postures and movements, 2012.