VE475 Introduction to Cryptography Homework 4

Jiang, Sifan jasperrice@sjtu.edu.cn 515370910040

June 14, 2019

Ex. 1 - Euler's totient

- 1. Notice that for a given prime p, we have $\varphi(p)=p-1$. So, positive integers n that is smaller than p^k , so that $\gcd(n,p^k)\neq 1$, can be $1\times p, 2\times p, 3\times p, \cdots, (p^{k-1}-1)\times p$. So the amount of possible n is $p^{k-1}-1$. Also, there are p_k-1 positive integers are smaller than p^k , so for any prime p, $\varphi(p^k)=(p^k-1)-(p^{k-1}-1)=p^{k-1}(p-1)$.
- 2. Since m and n are coprime integers, according to Chinese Remainder theorem, there exists a ring isomorphism between $\mathbb{Z}/mn\mathbb{Z}$ and $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. We have $\varphi(mn)$ is the order of $\mathbb{Z}/mn\mathbb{Z}$, $\varphi(m)$ is the order of $\mathbb{Z}/mn\mathbb{Z}$, and $\varphi(n)$ is the order of $\mathbb{Z}/nn\mathbb{Z}$. Since an isomorphism is a bijection that preserves algebraic structures, we would have $\varphi(mn) = \varphi(m) \times \varphi(n)$.
- 3. Assume $n = \prod_i p_i^{k_i}$, then applying the previous results to integer n > 1, we have

$$\begin{split} \varphi(n) &= \prod_i \varphi(p_i^{k_i}) \\ &= \prod_i p_i^{k_i-1}(p_i-1) \\ &= \prod_i p_i^{k_i}(1-\frac{1}{p_i}) \\ &= n \prod_{p|n} (1-\frac{1}{p}) \end{split}$$

4. The three last digits of 7^{803} can be obtained by calculating $7^{803} \mod 1000$. We note that $1000=2^3\times 5^3$, thus $\varphi(1000)=1000\times (1-\frac{1}{2})\times (1-\frac{1}{5})=400$ according to the previous result. So we would have

$$7^{803} \equiv (7^{400})^2 \times 7^3 \mod 1000$$

 $\equiv 7^3 \mod 1000$
 $\equiv 7^3 \mod 1000$
 $\equiv 343 \mod 1000$

So, the three last digits of 7^{803} are 343.

Ex. 2 - AES

1. The key used for round 1 is given by the columns $K(4), \dots, K(7)$. Also, recall that for $i \not\equiv 0 \mod 4$, $K(i) = K(i-4) \oplus K(i-1)$, and for $i \equiv 0 \mod 4$, $K(i) = K(i-4) \oplus T(K(i-1))$.

Ex. 3 - Simple questions

Ex. 4 - Prime vs. irreducible

Ex. 5 - Primitive root mod 65537

1. Using proposition of Jacobi symbol, since $65537 \equiv 1 \mod 4$ and $\gcd(3,65537) = 1$, we have

$$\left(\frac{3}{65537}\right) = +\left(\frac{65537}{3}\right)$$
$$= +\left(\frac{2}{3}\right)$$
$$= -1$$

Meaning 3 is not a square mod 65537.

- 2. Since 65537 is a prime integer, $\frac{65537-1}{2}=32768$, and 3 is not a square mod 65537, we can conclude that $3^{32768}\not\equiv 1\mod 65537$.
- 3. First note that $p-1=65537-1=2^{16}$, thus q=2 is the only prime such that q|(p-1). Also, since $3^{32768}\equiv\alpha^{(p-1)/q}\not\equiv 1\mod p$, and according to the theorem, we can conclude that $\alpha=3$ is a primitive root mod 65537.