ICLab Lab04 Exercise

Yu-Fan, Huang 2022/10/26

Outline

• Pipeline Design

- 1. Data Flow
- 2. Critical Issues: Timing and Area
- 3. Stages

• Reduce Register and Cycle Count

- 1. Reordering pipeline schedule
- 2. Changing pipeline stages

Pipeline Design: Data Flow

• Data flow:

1.
$$(U * X_1 + W * H_0) \rightarrow sigmoid \Rightarrow H_1 \rightarrow (V * H_1) \rightarrow relu \Rightarrow Y_1$$

2.
$$(U * X_2 + W * H_1) \rightarrow sigmoid \Rightarrow H_2 \rightarrow (V * H_2) \rightarrow relu \Rightarrow Y_2$$

3.
$$(U * X_3 + W * H_2) \rightarrow sigmoid \Rightarrow H_3 \rightarrow (V * H_3) \rightarrow relu \Rightarrow Y_3$$

g(x)=max(0,x)

Fig 1. simple RNN

$$h_1 = f(U \cdot x_1 + W \cdot h_0)$$
 $y_1 = g(V \cdot h_1)$
 $h_t = f(U \cdot x_t + W \cdot h_{t-1})$
 $y_t = g(V \cdot h_t)$
Fig 2. Formula

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Fig 3.1. The sigmoid activation function

Fig 3.2. The ReLU activation function

Pipeline Design: Critical Issues

• Critical Issues: Timing and Area

(IP)	DP3	MULT + MAC * 2				
Cycle time	22ns	5ns~6ns				
Cycle Count	1	3				

• Sigmoid: $Exp \rightarrow Add \ 1 \rightarrow Recip \ (1 \text{ Cycle vs } 3 \text{ Cycles})$

(IP)	EXP	ADDER	RECIP			
Cycle time	16ns	5ns~6ns	15ns			
Cycle Count	1	1	1			

Pipeline Design: Stages

Cycle Count Reducing: Changing pipeline stages

Cycle Count Reducing: Changing pipeline stages

Reduce Register: Reordering pipeline schedule

- Register Reducing
 - Ex. The result of $(U * X_2)$ and H_2 can store in X_2 _reg. X_3 _reg can store the result of $(U * X_3)$ and H_3 as well.

	4	5	6	7	8 9
u10 * x10	u00 * x20	u10 * x20	u20 * x20	u20 * x10	u00 * x30
u01 * x11	u11 * x11	u01 * x21	u11 * x21	u21 * x21	u21 * x11
	u02 * x12	u12 * x12	u02 * x22	u12 * x22	u22 * x22
	ux10	ux11	ux20	ux21	ux22
		ux10	ux11		
		ex10	ex11		
			ex10 + 1	ex11 + 1	
			ax10	ax11	
				ax10	ax11
				rx10 -> h10	rx11 -> h11

Pipeline

PIPLINE	1	2	3	3	4 5	5	6	7 8	9	10	1	1	12	,	13	14	15
Mult adder 1		u0	00 * x10	u10 * x10	u00 * x20	u10 * x20	u20 * x20	u20 * x10	u00 * x30	u10 * x30	u20 * x30	w00 *	h10 + ux20	w10 * h10 +	ux21 w20 *	h10 + ux22	v00 * h10
Mult adder 2				u01 * x11	u11 * x11	u01 * x21	u11 * x21	u21 * x21	u21 * x11	u01 * x31	u11 * x31	u21 *	x31	w01 * h11	w11 * 1	h11	w21 * h11
Multa adder 3 + Relu					u02 * x12	u12 * x12	u02 * x22	u12 * x22	u22 * x22	u22 * x12	u02 * x32	u12 *	x32	u22 * x32	w02 * 1	h12	w12 * h12
					ux10	ux11	ux20	ux21	ux22	ux12	ux30	ux31		ux32	wh10 +	- ux20	wh11 + ux21
Exp						ux10	ux11				ux12						wh10 + ux20
						ex10	ex11				ex12						ex20
Add2							ex10 + 1	ex11 + 1				ex12 -	+ 1				
							ax10	ax11				ax12					
Recip								ax10	ax11					ax12			
								rx10 -> h10	$rx11 \rightarrow h11$					rx12 -> h12			
PIPLINE	16	5 1	17	18		19	20	2	21	22	23	24	25	5 26	27	,	28 2
Mult adder 1	v10 * h10	v20 * h10	w00 *	h20 + ux30	w10 * h20 +	ux31 w20	* h20 + ux32	v00 * h20	v10 * h20	v20 * h2	0 v00 *	* h30	v10 * h30	v20 * h30			
Mult adder 2	v01 * h11	v11 * h11	v21 *	h11	w01 * h21	w11	* h21	w21 * h21	v01 * h21	v11 * h2	1 v21 *	* h21	v01 * h31	v11 * h31	v21 * h31		
Multa adder 3 + Relu	w22 * h12	v02 * h12	v12 * 1	h12	v22 * h12	w02	* h22	w12 * h22	w22 * h22	v02 * h2	2 v12 *	* h22	v22 * h22	v02 * h32	v12 * h32	v22 * h32	
Maria adder 5 Refu	wh12 + ux22				vh12- y12) + ux30	wh21 + ux31						$\frac{1}{2}$ vh30 -> y30			
Exp	wh11 + ux21			<u> </u>				wh20 + ux30							, , , ,		
2p	ex21	ex22						ex30	ex31	ex32							
Add2	ex20 + 1	ex21 + 1	ex22 +	- 1					ex30 + 1	ex31 + 1	ex32	+ 1					
	ax20	ax21	ax22						ax30	ax31	ax32						
Recip		a20	a21		a22					a30	a31		a32				
•		rx20 -> h20	rx21 -:	> h21	rx22 -> h22					rx30 -> l	130 rx31	-> h31	rx32 -> h32	2			
						OUT	ידי זכי	y10	y11	y12	y20		y21	y23	y30	y31	y32
						001	101	I y I U	yıı	y 1 Z	y Z U		y 4 1	y 43	y 20	y J 1	y J Z

Thanks for your attention!