Package 'VsusP'

June 22, 2024

Title Variable Selection using Shrinkage Priors
Version 1.0.0
Description Implements Bayesian variable selection using shrinkage priors to identify significant variables in high-dimensional datasets.
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.2
Imports bayesreg, stats
Suggests covr, testthat (>= 3.0.0)
Config/testthat/edition 3
Maintainer Nilson Chapagain <nilson.chapagain@gmail.com></nilson.chapagain@gmail.com>
<pre>URL https://github.com/nilson01/VsusP-variable-selection-using-shrinkage-priors</pre>
<pre>BugReports https: //github.com/nilson01/VsusP-variable-selection-using-shrinkage-priors/issues</pre>
Contents
numNoiseCoeff
OptimalHbi
S2MVarSelection
S2MVarSelectionV1
Sequential2Means
Sequential2MeansBeta
Index

2 OptimalHbi

numNoiseCoeff

Variable selection using shrinkage priors :: numNoiseCoeff

Description

Variable selection using shrinkage priors :: numNoiseCoeff

Usage

```
numNoiseCoeff(Beta.i, b.i_r)
```

Arguments

Beta. i N by p matrix consisting of N posterior samples of p variables

 ${\tt b.i_r} \qquad \qquad {\tt tuning\ parameter\ value\ from\ Sequential\ 2-means\ (S2M)\ variable\ selection\ algo-linear and the selection\ algo-linear and\ algo$

rithm.

Value

number of noise coefficients of numeric data type

OptimalHbi

Variable selection using shrinkage priors :: OptimalHbi

Description

OptimalHbi function will take b.i and H.b.i as input which comes from the result of TwoMeans function. It will return H: the optimal value of the tuning parameter.

Usage

```
OptimalHbi(bi, Hbi)
```

Arguments

bi a vector holding the values of the tuning parameter specified by the user

Hbi The estimated number of signals corresponding to each b.i of numeric data type

Value

the optimal value (numeric) of tuning parameter and the associated H value

References

Makalic, E. & Schmidt, D. F. High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649, 2016

Li, H., & Pati, D. Variable selection using shrinkage priors Computational Statistics & Data Analysis, 107, 107-119.

S2MVarSelection 3

Examples

```
n <- 100
p <- 20
X <- matrix(rnorm(n * p), n, p)
beta <- exp(rnorm(p))
Y <- as.vector(X %*% beta + rnorm(n, 0, 1))
df <- data.frame(X, Y)
rv.hs <- bayesreg::bayesreg(Y ~ ., df, "gaussian", "horseshoe+", 200, 100)

Beta <- t(rv.hs$beta)
lower <- 0
upper <- 1
l <- 5
S2Mbeta <- Sequential2MeansBeta(Beta, lower, upper, l)

bi <- S2Mbeta$b.i
Hbi <- S2Mbeta$H.b.i
OptimalHbi(bi, Hbi)</pre>
```

S2MVarSelection

Variable selection using shrinkage priors :: S2MVarSelection

Description

S2MVarSelection function will take S2M: a list obtained from the 2Means.variables function and H: the estimated number of signals obtained from the optimal.b.i function. This will give out the important subset of variables for the Gaussian Linear model.

Usage

```
S2MVarSelection(Beta, H = 10)
```

Arguments

Beta matrix consisting of N posterior samples of p variables that is known either to user or from Sequential2Means function

H Estimated number of signals obtained from the optimal.b.i function of numeric data type

Value

a vector containing indices of important subset of variables of dimension H X 1.

References

Makalic, E. & Schmidt, D. F. High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649, 2016

Li, H., & Pati, D. Variable selection using shrinkage priors Computational Statistics & Data Analysis, 107, 107-119.

4 Sequential2Means

Examples

```
n <- 100
p <- 20
X <- matrix(rnorm(n * p), n, p)
beta <- exp(rnorm(p))
Y <- as.vector(X %*% beta + rnorm(n, 0, 1))
df <- data.frame(X, Y)
# Fit a model using gaussian horseshoe+ for 200 samples
# # recommended n.samples is 5000 and burning is 2000
rv.hs <- bayesreg::bayesreg(Y ~ ., df, "gaussian", "horseshoe+", 200, 100)

Beta <- rv.hs$beta
H <- 12
impVariablesGLM <- S2MVarSelection(Beta, H)
impVariablesGLM</pre>
```

S2MVarSelectionV1

Variable selection using shrinkage priors :: S2MVarSelectionV1

Description

S2MVarSelectionV1 function will take S2M: a list obtained from the 2Means.variables function and H: the estimated number of signals obtained from the optimal.b.i function. This will give out the important subset of variables for the Gaussian Linear model.

Usage

```
S2MVarSelectionV1(S2M, H = 10)
```

Arguments

S2M List obtained from the 2Means.variables function

H Estimated number (numeric) of signals obtained from the optimal.b.i function

Value

a vector of indices of important subset of variables for the Gaussian Linear modelof shape H X 1

Sequential2Means

Variable selection using shrinkage priors :: Sequential2Means

Description

Sequential2Means function will take as input X: design matrix, Y: response vector, t: vector of tuning parameter values from Sequential 2-means (S2M) variable selection algorithm. The function will return a list S2M which will hold p: the total number of variables, b.i: the values of the tuning parameter, H.b.i: the estimated number of signals corresponding to each b.i, abs.post.median: medians of the absolute values of the posterior samples.

Sequential2Means 5

Usage

```
Sequential2Means(
   X,
   Y,
   b.i,
   prior = "horseshoe+",
   n.samples = 5000,
   burnin = 2000
)
```

Arguments

X	Design matrix of dimension n X p, where $n = total$ data points and $p = total$ number of features
Υ	Response vector of dimension n X 1
b.i	Vector of tuning parameter values from Sequential 2-means (S2M) variable selection algorithm of dimension specified by user.
prior	Shrinkage prior distribution over the Beta. Available options are ridge regression: prior="rr" or prior="ridge", lasso regression: prior="lasso", horseshoe regression: prior="hs" or prior="horseshoe", and horseshoe+ regression: prior="hs+" or prior="horseshoe+" (String data type)
n.samples	Number of posterior samples to generate of numeric data type
burnin	Number of burn-in samples of numeric data type

Value

A list S2M which will hold Beta, b.i, and H.b.i.

Beta	N by p matrix consisting of N posterior samples of p variables
b.i	the user specified vector holding the tuning parameter values
H.b.i	the estimated number of signals of unmeric data type corresponding to each b.i

References

 $Makalic, E. \& Schmidt, D. F. High-Dimensional \ Bayesian \ Regularised \ Regression \ with the \ BayesReg \ Package \ arXiv:1611.06649, 2016$

Li, H., & Pati, D. Variable selection using shrinkage priors Computational Statistics & Data Analysis, 107, 107-119.

Examples

```
# -----
# Example 1: Gaussian Model and Horseshoe prior
n <- 100
p <- 20
X <- matrix(rnorm(n * p), n, p)
beta <- exp(rnorm(p))
Y <- as.vector(X %*% beta + rnorm(n, 0, 1))
b.i <- seq(0, 1, 0.05)</pre>
```

Sequential2Means with horseshoe+ using gibbs sampling

```
# recommended n.samples is 5000 and burning is 2000
S2M <- Sequential2Means(X, Y, b.i, "horseshoe+", 200, 100)
Beta <- S2M$Beta
H.b.i <- S2M$H.b.i
# -----
# Example 2: Gaussian Model and ridge prior
n <- 100
p <- 20
X <- matrix(rnorm(n * p), n, p)</pre>
beta <- exp(rnorm(p))</pre>
Y \leftarrow as.vector(X %*% beta + rnorm(n, 0, 1))
b.i \le seq(0, 1, 0.05)
# Sequential2Means with ridge regression using gibbs sampling
# recommended n.samples is 5000 and burning is 2000
S2M <- Sequential2Means(X, Y, b.i, "ridge", 200, 100)
Beta <- S2M$Beta
H.b.i <- S2M$H.b.i
```

Sequential2MeansBeta Variable selection using shrinkage prior:: Sequential2MeansBeta

Description

Sequential2MeansBeta function will take as input Beta: N by p matrix consisting of N posterior samples of p variables, lower: the lower bound of the chosen values of the tuning parameter, upper: the upper bound of the chosen values of the tuning parameter, and l:the number of chosen values of the tuning parameter. The function will return a list S2M which will hold p: the total number of variables, b.i: the values of the tuning parameter, H.b.i: the estimated number of signals corresponding to each b.i, abs.post.median: medians of the absolute values of the posterior samples.

Usage

```
Sequential2MeansBeta(Beta, lower, upper, 1)
```

Arguments

Beta	N by p matrix consisting of N posterior samples of p variables
lower	the lower bound of the chosen values of the tuning parameter of numeric data type.
upper	the upper bound of the chosen values of the tuning parameter of numeric data type.
1	the number of chosen values of the tuning parameter of numeric data type.

Value

A list S2M which will hold p, b.i, and H.b.i:

p	total number of variables in the model
b.i	the vector values of the tuning parameter specified by the user
H.b.i	the estimated number of signals corresponding to each b.i of numeric data type

References

Makalic, E. & Schmidt, D. F. High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649, 2016

Li, H., & Pati, D. Variable selection using shrinkage priors Computational Statistics & Data Analysis, 107, 107-119.

Examples

```
# -----
# Example 1: Gaussian Model and Horseshoe prior
n <- 100
p <- 20
X <- matrix(rnorm(n * p), n, p)</pre>
beta <- exp(rnorm(p))</pre>
Y \leftarrow as.vector(X %*% beta + rnorm(n, 0, 1))
df <- data.frame(X, Y)</pre>
# beta samples for gaussian model using horseshow prior and gibbs sampling
rv.hs <- bayesreg::bayesreg(Y ~ ., df, "gaussian", "horseshoe+", 200, 100)</pre>
Beta <- t(rv.hs$beta)</pre>
lower <- 0
upper <- 1
1 <- 20
S2Mbeta <- Sequential2MeansBeta(Beta, lower, upper, 1)</pre>
H.b.i <- S2Mbeta$H.b.i
# -----
# Example 2: normal model and lasso prior
#' n <- 100
p <- 20
X \leftarrow matrix(rnorm(n * p), n, p)
beta <- exp(rnorm(p))</pre>
Y \leftarrow as.vector(X %*% beta + rnorm(n, 0, 1))
df <- data.frame(X, Y)</pre>
rv.hs <- bayesreg::bayesreg(Y ~ ., df, "normal", "lasso", 200, 100)</pre>
Beta <- t(rv.hs$beta)
lower <- 0
upper <- 1
1 <- 15
S2Mbeta <- Sequential2MeansBeta(Beta, lower, upper, 1)</pre>
H.b.i <- S2Mbeta$H.b.i
```

Index

```
numNoiseCoeff, 2
OptimalHbi, 2
S2MVarSelection, 3
S2MVarSelectionV1, 4
Sequential2Means, 4
Sequential2MeansBeta, 6
```