# CSC 4356 / ME 4573 Interactive Computer Graphics

Dr. Robert Kooima Louisiana State University Fall 2011

### **Interactive Computer Graphics**

An introduction to 3D computer graphics, emphasizing real-time graphics programming using OpenGL and the C or C++ programming language. Topics include the fixed function and programmable 3D pipelines, transformation, interaction, texturing, lighting, performance analysis, optimization, and a variety of intermediate and advanced topics.

#### **Prerequisites**

- C / C++ (csc 1253-1254 or eq.)
- Data structures (csc 3102 *or eq.*)
- No prior experience with 3D graphics or OpenGL

#### Website

http://csc.lsu.edu/~kooima/csc4356/index.html

- Administrivia
- Course schedule
- Assignment details
- Grade sheets

#### **OPENGL**

OpenGL is the industry-standard cross-platform real-time 3D API. First released in 1992, OpenGL is a constantly-evolving interface that adapts to the changing capability of modern 3D graphics hardware.

OPENGL is in its fourth major revision, and we will emphasize the usage of the modern, high-performance API, ignoring a great deal of obsolete functionality that remains for backward-compatibility.

|     |       | _    |     | •     |      |        |       |      |  |
|-----|-------|------|-----|-------|------|--------|-------|------|--|
|     |       |      |     |       |      |        |       |      |  |
| 1.0 |       | 1992 | 2.1 |       | 2006 | 4.2    |       | 2011 |  |
| 1.1 |       | 1997 | 3.0 | • • • | 2008 | 4.2    | • • • | 2012 |  |
| 1.2 |       | 1998 | 3.1 | • • • | 2009 | ES 1.0 | • • • | 2004 |  |
| 1.3 | • • • | 2001 | 3.2 | • • • | 2009 | ES 1.1 | • • • | 2005 |  |
| 1.4 | • • • | 2002 | 3.3 | • • • | 2010 | ES 2.0 | • • • | 2007 |  |
| 1.5 | • • • | 2003 | 4.0 | • • • | 2010 | ES 2.1 | • • • | 2011 |  |
| 2.0 | • • • | 2004 | 4.1 | • • • | 2010 | ES 3.0 | • • • | 2012 |  |

# OPENGL supported platforms

MS Windows 7/Vista/XP

| 1VIO VVIIIMOWS // VISIM/MI | Muc Oo A       | LIIIIA     |
|----------------------------|----------------|------------|
| iOS                        | Android        | Symbian    |
| Nintendo Wii & DS          | Sony PS3 & PSP | Blackberry |

Mac OS X

I inux

#### **DirectX**

DirectX is the Microsoft real-time 3D API, first released in 1995 as Direct3D. Through 11 major revisions, DirectX has evolved into an excellent API, equivalent in capability to (and perhaps better-designed than) OpenGL.

But... supported platforms:

Windows Xbox

*DirectX* 10+ supports Windows 7/Vista and Xbox 360 only.

# Course software requirements

Most any OS: • Windows 7/Vista/XP

Mac OS X

Linux

• C

• C++

• no Java

"Native" languages:

# Course hardware requirements

Any machine with hardware accelerated 3D graphics...

- Your laptop
- Your desktop
- A lab workstation
- Your instructor's lab workstations

You will make in-class demonstrations. Be ready. Be certain to **test** before class.



# **Real-Time Rendering**

Tomas Akenine-Möller Eric Haines Naty Hoffman

ISBN 978-1568814247 \$57.70 at Amazon http://realtimerendering.com/



#### **OpenGL Programming Guide**

Dave Shreiner Khronos OpenGL ARB Working Group

ISBN 978-0321552624 \$40.43 at Amazon

Version 1.1 (old) at http://www.glprogramming.com/red/ Standard spec at http://www.opengl.org/documentation/specs/



#### **OpenGL Shading Language**

Randi J. Rost Bill Licea-Kane et al

ISBN 978-0321637635 \$38.67 at Amazon

Standard spec at http://www.opengl.org/documentation/glsl/



#### OpenGL SuperBible

Richard S. Wright Nicholas Haemel Graham Sellers Benjamin Lipchak

ISBN 978-0321712615 **\$37.96** at Amazon (You really won't need this.)

# **Course Assignments**

Three individual programming projects

- Instructor assigns topic
- Brief informal in-class demonstration

One individual final programming project

- Student chooses topic
- Ten-minute formal in-class presentation
- Grad students will write an additional paper

The schedule is on the web site.

### **Project Grading**

Each project is worth a total of 80 points.

|     | Implementation | A                                                                                                  |                                 | > 70                            |
|-----|----------------|----------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
|     | Documentation  | В                                                                                                  |                                 | > 60                            |
|     | Demonstration  | C                                                                                                  |                                 | > 50                            |
| ••• | Lagniappe      | D                                                                                                  | •••                             | > 40                            |
|     | •••            | <ul><li> Implementation</li><li> Documentation</li><li> Demonstration</li><li> Lagniappe</li></ul> | Documentation B Demonstration C | Documentation B Demonstration C |

### **Final Project Grading**

The final project is worth a total of 160 points.

| +60 | <br>Implementation | A | <br>> 140 |  |
|-----|--------------------|---|-----------|--|
| +40 | <br>Documentation  | В | <br>> 120 |  |
| +60 | <br>Presentation   | С | <br>> 100 |  |
|     |                    | D | > 80      |  |

# Piled higher & Deeper

The University demands that added requirements be placed upon *graduate students*. Thus, an additional 4-page paper will be required as a part of the presentation of the final project.

On the bright side, the schedule permits

- two extra weeks to finish it,
- and more time to present it.

# **Semester Grading**

The semester total is 400 points.

```
A ... > 350
B ... > 300
C ... > 250
D ... > 200
```

Grades will be posted to a spreadsheet on the course web site, anonymized using the last three digits of your LSUID.