

Linear Regression-Gradient Descent

BY

VINOD P

Acknowledgement: Various resources collected from Internet

Model Representation

Training set

Training set

Learning algorithm

How do we represent h?

How do we represent h?

 $h_{\theta}(x) = \theta_0 + \theta_1 x$ χ

h maps x's to y's

How do we represent h?

Linear regression with one variable. Univariate linear regression.

Cost Function

Training Set

2104

Size in feet² (x)

1416

1534

852

460

Price (\$) in 1000's (y)

232

315

178

• • •

•••

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θi 's: Parameters

How to choose θi 's?

$$\underset{\theta_0,\theta_1}{\text{minimize}}$$

$$(h_{\theta}(x^{-}) - y^{-})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}}$$

$$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2\pi} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Idea: Choose θ_0 , θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

minimize
$$J(\theta_0, \theta_1)$$

$$\bullet$$
Cost function

Cost function (Squared error function)

Cost Function Intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

h(x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\underset{\theta_1}{\text{minimize }} J(\theta_I)$

$h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameters θ_1)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

 $J(\theta_1)$

(function of the parameters θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = J(1) = ?$$

 $J(\theta_1)$

(function of the parameters θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = J(1) = 0$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

 $J(heta_1)$ (function of the parameters $heta_1$)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

 $J(heta_1)$ (function of the parameters $heta_1$)

$h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

Cost Function Intuition II

 $h_{\theta}(x)$

(function of the parameters $heta_0$, $heta_1$)

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

Gradient Descent

Have some function $J(\theta_0, \theta_1)$

Want minimize
$$J(\theta_0, \theta_1)$$

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (simultaneously update

$$j=0$$
 and $j=1$)

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1\text{)}$$
 Learning rate
$$Derivative \text{ term}$$

$$j = 0 \text{ and } j = 1)$$

Derivative term

repeat until convergence {
$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\!\theta_1)\quad (\text{for }j=0 \text{ and }j=1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\theta_0 := \text{temp0}$$

repeat until convergence {
$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\!\theta_1)\quad (\text{for }j=0 \text{ and }j=1)$$
 }

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

Incorrect
$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := \text{temp0}$$

$$\theta_0 := \text{temp0}$$

$$\text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := \text{temp1}$$

temp1 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

 θ_0 := temp0

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$heta_1 \in \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(negative number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 \text{--} \ \alpha \cdot \text{(positive number)}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(negative number)}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Gradient Descent algorithm

repeat until convergence {
$$\partial \mathcal{L} \partial \mathcal{L} \partial$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 0$ and $j = 1$)

(for
$$j = 0$$
 and $j = 1$)

Linear Regression Model

$$h_{\theta}(x) = \theta_{0} \quad \theta_{1}x$$

$$I(0,0)$$
 $1 \sum_{i=1}^{m} (1_i)^{i}$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 0$$
 and $j = 1$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 \quad \theta_1.$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

 $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

Gradient Descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 update θ_0 and θ_1 simultaneously