# **Unsupervised Learning**

### **Introduction to Unsupervised Learning**

□ **Motivation** – The goal of unsupervised learning is to find hidden patterns in unlabeled data  $\{x^{(1)},...,x^{(m)}\}$ .

 $\hfill \Box$  Jensen's inequality – Let f be a convex function and X a random variable. We have the following inequality:

$$E[f(X)]"f(E[X])$$

# **Expectation-Maximization**

☐ Latent variables — Latent variables are hidden/unobserved variables that make estimation problems difficult, and are often denoted z. Here are the most common settings where there are latent variables:

| Setting                | Latent variable z       | x z                         | Comments                                            |
|------------------------|-------------------------|-----------------------------|-----------------------------------------------------|
| Mixture of k Gaussians | Multinomial $(\varphi)$ | $N(\mu_j,\Sigma_j)$         | $\mu_j \in \mathbb{R}^n,  \varphi \in \mathbb{R}^k$ |
| Factor analysis        | N (0,I)                 | $N (\mu + \Lambda z, \psi)$ | $\mu_j \in \mathbb{R}^n$                            |

 $\square$  Algorithm – The Expectation-Maximization (EM) algorithm gives an efficient method at estimating the parameter  $\theta$  through maximum likelihood estimation by repeatedly constructing a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

• <u>E-step</u>: Evaluate the posterior probability  $Q_i(z^{(i)})$  that each data point  $x^{(i)}$  came from a particular cluster  $z^{(i)}$  as follows:

$$Q_i(z^{(i)}) = P(z^{(i)} | x^{(i)}; \theta)$$

• M-step: Use the posterior probabilities  $Q_i(z^{(l)})$  as cluster specific weights on data points  $x^{(l)}$  to separately re-estimate each cluster model as follows:

$$\theta_{i} = \operatorname{argmax}_{\theta} \underbrace{\sum_{z^{(i)}} Q_{i}(z^{(i)}) \log}_{z^{(i)}} \underbrace{\frac{\sum_{P(x^{(i)}, (ij))} Q_{i}(z^{(i)})}{Q_{i}(z^{(i)})}}_{Q_{i}(z^{(i)})} \underbrace{\sum_{P(x^{(i)}, (ij))} Q_{i}(z^{(i)})}_{Q_{i}(z^{(i)})}$$





□ **Distortion function** – In order to see if the algorithm converges, we look at the distortion function defined as follows:  $|J(c,\mu)| = |J(c,\mu)|^2$ 

# Hierarchical clustering

- ☐ **Algorithm** It is a clustering algorithm with an agglomerative hierarchical approach that build nested clusters in a successive manner.
- □ **Types**—There are different sorts of hierarchical clustering algorithms that aims at optimizing different objective functions, which is summed up in the table below:

| Ward linkage                     | Average linkage                                 | Complete linkage                                      |
|----------------------------------|-------------------------------------------------|-------------------------------------------------------|
| Minimize within cluster distance | Minimize average distance between cluster pairs | Minimize maximum distance of<br>between cluster pairs |

## **Clustering assessment metrics**

In an unsupervised learning setting, it is often hard to assess the performance of a model since we don't have the ground truth labels as was the case in the supervised learning setting.

 $\square$  Silhouette coefficient – By noting a and b the mean distance between a sample and all other points in the same class, and between a sample and all other points in the next nearest cluster, the silhouette coefficient s for a single sample is defined as follows:

$$s = \frac{b - a}{\max(a, b)}$$

 $\square$  Calinski-Harabaz index — By noting k the number of clusters,  $B_k$  and  $W_k$  the between  $\square$  and within-clustering dispersion matrices respectively defined as

$$B_{k} = \int_{c}^{\infty} n_{c} (n(\mu_{c}) - \mu)(\mu_{c}) (n - \mu)^{T}, \qquad W_{k} = \int_{c}^{\infty} (x^{(i)} - \mu_{c})(x^{(i)} - \mu_{c})^{T}$$

the Calinski-Harabaz index s(k) indicates how well a clustering model defines its clusters, such that the higher the score, the more dense and well separated the clusters are. It is defined as follows:

$$s(k) = \frac{\operatorname{Tr}(B)_{\underline{k}}}{\operatorname{Tr}(W_k)} \times \frac{N-\underline{k}}{k-1}$$

### Principal component analysis

It is a dimension reduction technique that finds the variance maximizing directions onto which to project the data.

□ **Eigenvalue**, **eigenvector** – Given a matrix  $A \in \mathbb{R}^{n \times n}$ ,  $\lambda$  is said to be an eigenvalue of A if there exists a vector  $z \in \mathbb{R}^n \setminus \{0\}$ , called eigenvector, such that we have:

$$Az = \lambda z$$

□ Spectral theorem – Let  $A \in \mathbb{R}^{n \times n}$ . If A is symmetric, then A is diagonalizable by a real orthogonal matrix  $U \in \mathbb{R}^{n \times n}$ . By noting  $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ , we have:

$$\exists \Lambda$$
 diagonal,  $A = U \Lambda U$ 

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of matrix  ${\cal A}$ .

 $\square$  Algorithm – The Principal Component Analysis (PCA) procedure is a dimension reduction technique that projects the data on k dimensions by maximizing the variance of the data as follows:

Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

$$x_{j}^{(i)} \qquad x_{j}^{(i)} - \mu_{j}$$
 where 
$$\mu_{\vec{F}} = \frac{1}{m} x_{j}^{(i)}$$
 and 
$$\sigma_{\vec{F}}^{2} = \frac{1}{m} (x_{j}^{(i)} - \mu_{j})^{2}$$

- Step 2: Compute  $\Sigma = \frac{1}{m} \frac{x^{(\hat{h}_{i}x^{(\hat{h}_{i})})^{T}} \in \mathbb{R}^{n \times n}$ , which is symmetric with real eigenvalues.
- <u>Step 3</u>: Compute  $u_1, ..., u_k \in \mathbb{R}^n$  the k orthogonal principal eigenvectors of  $\Sigma$ , i.e. the orthogonal eigenvectors of the k largest eigenvalues.
- Step 4: Project the data on span (u, ..., u). This procedure maximizes the variance among all k-dimensional spaces.



## Independent component analysis

It is a technique meant to find the underlying generating sources.

□ **Assumptions** – We assume that our data x has been generated by the n-dimensional source vector  $s = (s_1, ..., s_n)$ , where  $s_i$  are independent random variables, via a mixing and non-singular matrix A as follows:

$$x = As$$

The goal is to find the unmixing matrix  $W = A^{-1}$  by an update rule.

 $\hfill \Box$  Bell and Sejnowski ICA algorithm – This algorithm finds the unmixing matrix W by following the steps below:

• Write the probability of  $x = As = W^{-1}s$  as:

$$p(x) = \int_{i=1}^{\infty} p_{s}(w_{i}^{T}x) \cdot |W|$$

• Write the log likelihood given our training data  $x^{(i)}, i \in [1,m]$  and by noting g the sigmoid function as:

$$l(W) = \begin{cases} m & - n \\ \log & \sum \\ \log & g^{J}(w_{f}^{T} x^{(f)}) \end{cases} + \log |W|$$

Therefore, the stochastic gradient ascent learning rule is such that for each training example  $x^{(i)}$ , we update W as follows:

$$W \longleftarrow W + \alpha \qquad \begin{array}{c} 1 - 2g(w_1^T x)^{f/t} \\ 1 - 2g(w_1^T x)^{f/t} \\ \vdots \\ 1 - 2g(w_D^T x)^{f/t} \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \qquad \begin{array}$$