

32^a Olimpiada Mexicana de Matemáticas Concurso Nacional

Campeche, Campeche, 5 de noviembre de 2018 Primer día

Problema 1.

Sean A y B dos puntos en una recta ℓ , M el punto medio del segmento AB y X un punto del segmento AB, diferente de M. Sea Ω una semicircunferencia de diámetro AB. Considera un punto P sobre Ω y considera Γ la circunferencia tangente a AB que pasa por P y por X. Sea Q la otra intersección de Γ con Ω . La bisectriz del ángulo $\angle PXQ$ intersecta a Γ en un punto R. Sea Y un punto en ℓ , tal que RY es perpendicular a ℓ . Muestra que MX > XY.

Problema 2.

Para cada entero positivo m, la figura L_m se forma traslapando dos rectángulos, uno de $m \times 1$ y uno de $1 \times m$ de manera que coincida un cuadrito extremo del primero con un cuadrito extremo del segundo, como se muestra en la siguiente imagen.

Usando algunas figuras $L_{m_1}, L_{m_2}, \dots, L_{m_k}$, se cubre completamente una cuadrícula de $n \times n$, colocándolas de manera que sus bordes estén sobre las líneas de la cuadrícula. De entre todas las posibles formas de cubrir la cuadrícula, con distintos valores para los m_i y para k, determina el mínimo valor posible de $m_1 + m_2 + \cdots + m_k$.

Nota: Para cubrir la cuadrícula las figuras pueden reflejarse, rotarse, traslaparse o salirse de la cuadrícula.

Problema 3.

Una sucesión a_2, a_3, \ldots, a_n de enteros positivos se dice campechana, si para cada i tal que $2 \le i \le n$, se tiene que exactamente a_i elementos de la sucesión son primos relativos con i. Decimos que el tamaño de la sucesión es n-1. Sea $m=p_1p_2\cdots p_k$ donde p_1,p_2,\ldots,p_k son números primos distintos y $k \ge 2$. Demuestra que existen al menos dos sucesiones campechanas de tamaño m.

Cada problema vale 7 puntos. Tiempo máximo del examen 4 horas y media.

32^a Olimpiada Mexicana de Matemáticas Concurso Nacional

Campeche, Campeche, 6 de noviembre de 2018 Segundo día

Problema 4.

Sea $n \geq 2$ un número entero. Para cualquier sucesión a_1, a_2, \ldots, a_k de enteros positivos tales que $a_1 + a_2 + \cdots + a_k = n$, considera las sumas $S_i = 1 + 2 + \cdots + a_i$, para $1 \leq i \leq k$. Determina, en términos de n, el máximo valor posible del producto $S_1 S_2 \cdots S_k$.

Problema 5.

Sea $n \geq 5$ un número entero y considera un n-ágono regular. Originalmente, Nacho se encuentra en un vértice del n-ágono, en el cual pondrá una bandera. Él comenzará a moverse entre los vértices del n-ágono, siempre en el sentido de las manecillas del reloj. Primero se moverá una posición y colocará otra bandera, luego, se moverá dos posiciones y colocará otra bandera, etcétera, hasta que en el último movimiento se moverá n-1 posiciones y colocará una bandera, de manera que colocará n banderas en total. Para qué valores de n, Nacho colocará una bandera en cada uno de los n vértices?

Problema 6.

Sean ABC un triángulo acutángulo y Ω la circunferencia que pasa por los puntos A, B y C. La bisectriz del ángulo en B corta a Ω en M y la bisectriz del ángulo en C corta a Ω en N. Sea I el punto de intersección de las bisectrices anteriores. Considera M' y N' las reflexiones de M y N con respecto a CA y AB, respectivamente. Muestra que el centro de la circunferencia que pasa por los puntos I, M' y N' está en la altura del triángulo ABC que pasa por A.

Cada problema vale 7 puntos. Tiempo máximo del examen 4 horas y media.