5' +1 M C D 1 ATGTGCGACC TACACGCTGG	I P Q T	H S L	G N R GGTAACCGTC	R A L I GTGCTCTGAT	CCTGCTGGCT
5' +1 Q M R 61 CAGATGCGTC GTCTACGCAG	RISP	F S C	CTGAAAGACC	R H D F GTCACGACTT	CGGTTTCCCG
5' +1 Q E E 121 CAGGAAGAAT GTCCTTCTTA	131 F D G N TCGACGGTAA AGCTGCCATT	CCAGTTCCAG	AAAGCTCAGG	CTATCTCCGI	TCTGCACGAA
5' +1 M I Q 181 ATGATCCAGO TACTAGGTCG	191 Q T F N C AGACCTTCAA C TCTGGAAGTT	CCTGTTCTCC	ACCAAAGACT	CCTCCGCTGC	TTGGGACGAA
5' +1 S L L 241 TCCCTGCTGC AGGGACGACC	FKFY	T E L CACCGAACTG	Y Q Q TACCAGCAGC	TGAACGACCT	E A C GGAAGCTTGC
5' +1 V I Q 301 GTTATCCAG CAATAGGTO	311 E V G V G AAGTTGGTGT C TTCAACCACA	TGAAGAAAC	C CCGCTGATGA	A ACGIIGACIO	CATCCTGGCT
5' +1 V K K 361 GTTAAAAAA CAATTTTT	371 Y F Q R T ACTTCCAGCG A TGAAGGTCGC	TATCACCCT	G TACCTGACC	ATAAAAAAA E	CTCCCCGTGC
5' +1 A W E 421 GCTTGGGAA CGAACCCTT	431 V V R A G TTGTTCGTGC C AACAAGCACG	TGAAATCAT	G CGTTCCTTC1	CCCTGTCCAC	CAACCTGCAG
5' +1 E R L 481 GAACGTCTGC CTTGCAGACG	RRKE	ATAA			

Figure 2

5'		11	21	31	41	51
+1	M C D	L P Q T	H S L	GNR	RALI	LLA
1	ATGTGTGATT	TACCTCAAAC	TCATTCTCTT	GGTAACCGTC	GCGCTCTGAT	TCTGCTGGCA
	TACACACTAA	ATGGAGTTTG	AGTAAGAGAA	CCATTGGCAG	CGCGAGACTA	AGACGACCGT
5'		71	81	91	1	11
+1	Q M R	RISP	F S C	L K D	RHDF	GFP
61	CAGATGCGTC	GTATTTCCCC	GTTTAGCTGC	CTGAAAGACC	GTCACGACTT	CGGCTTTCCG
	GTCTACGCAG	CATAAAGGGG	CAAATCGACG	GACTTTCTGG	CAGTGCTGAA	GCCGAAAGGC
5'		31	41	51	61	71
			Q F Q			
121	CAAGAAGAGT	TCGATGGCAA	CCAATTCCAG	AAAGCTCAGG	CAATCTCTGT	ACTGCACGAA
	GTTCTTCTCA	AGCTACCGTT	GGTTAAGGTC	TTTCGAGTCC	GTTAGAGACA	TGACGTGCTT
5'		91	1 N L F S	11	21	31
+1	MIQ	QTFI	l LFS	TKD	SSAA	WDE
181						TTGGGACGAA
	TACTAGGTT	TCTGGAAGT	T GGACAAAAGG	TGATTTCTGT	CGAGACGACG	AACCCTGCTT
					_	
5'		51	61	71	81	91
			TEL			
241						GGAAGCATGC
	TCGAACGACG	CTCTTCAAGA	T GTGACTTGAC	ATAGTCGTCG	ACTTGCTGGA	CCTTCGTACG
		11	0.1	0.1	4 1	E 1
5'	o	11	21	31	41	51
+1	VIQ	EVG	/ EET	PLM	N V D S	SILA
+1	V I Q I GTAATCCAG	E V G \ G AAGTTGGTG	/ E E T T AGAAGAGAC	P L M CCGCTGATG	N V D S A ACGTCGACT	51 S I L A C TATTCTGGCA G ATAAGACCGT

Figure 3

Figure 4

Figure 5

Figure 6-A

Circular Dichroism spectra

Tested by Analysis and Measurment Center of Sichuan University.

Fig 6-A Circular Dichroism spectrum of Infergen

Spectrum range: 250nm - 190nm

Sensitivity: 2 m°/cm Light path: 0.20 cm

Equipment: Circular Dichroism J-500C

 $\textbf{Samples}: \texttt{contain 30}\mu \texttt{g/ml IFN-con1, 5.9} \ \texttt{mg/ml of NaCl and 3.8} \ \texttt{mg/ml}$

of Na₂PO₄, pH7.0.

FIG. 3. Circular dichroism spectra of consensus interferon subforms. Consensus interferon was fractionated using an anion exchange column, as shown in Figure 2. Samples were dialyzed into 10 mM sodium phosphate, pH 7.4. Measurements were made on a Jasco J-170 spectopolarimeter, in a cell thermostat at 15°C. (——), acylated form; (——), cys terminal form; (----), met terminal form. A. Far UV spectrum. B. Near UV spectrum.

Fig 6-B Circular Dichroism spectrum of Infergen From Reference[Journal of Interferon and cytokine Research. 16:489-499(1996)]

Figure 6-C

Fig 6-C Circular Dichroism spectrum of rSIFN-co

Spectrum range: 320nm-250nm

Sensitivity: 2 m°/cm Light path: 2cm

Equipment: Circular Dichroism J-500C

Samples: contain 0.5mg/ml rSIFN-co, 5.9 mg/ml of NaCl and 3.8 mg/ml of Na₂PO₄,

pH7.0.

Fig 6-D Circular Dichroism spectrum of rSIFN-co

Spectrum range: 250nm - 190nm

Sensitivity: 2 m°/cm Light path: 0.20 cm

Equipment: Circular Dichroism J-500C

Samples :contain 30 μ g/ml rSIFN-co, 5.9 mg/ml of NaCl and 3.8 mg/ml of Na₂PO₄, pH7.0.