Wintersemester 2020/2021

11. Übung zur Vorlesung

Logik für Informatiker

GRUPPENÜBUNGEN:

(G 1)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0\}$ und $\Pi = \{p/2\}$. Sei X eine Menge von Variablen und $x, y, z \in X$. Markieren Sie durch Ankreuzen, welche der folgenden Formeln über Σ und X in NNF, bereinigt, in Pränexnormalform, in Skolemnormalform sind.

Hinweis: Es können mehre Spalten zutreffen, d.h. es ist erlaubt mehr als nur 1 Kreuz pro Zeile zu setzen.

	NNF	bereinigt	Pränexnormalform	Skolemnormalform
$(\exists p(x,y)) \to (\forall y p(y,a))$				
$(\forall x p(a, x)) \land (\exists y p(y, a))$				
$(\forall x p(x,y)) \lor (\exists y p(y,y))$				
$\forall x \exists y (p(a,x) \land p(x,y))$				
$\forall x \exists z \forall y \neg (p(x,y) \lor p(x,z))$				
$\forall x \forall y (p(x, a) \lor \neg p(x, y))$				
$\neg (p(x,x) \land p(x,y))$				
$\neg p(y,x) \lor p(x,y)$				

(G 2)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0\}$ und $\Pi = \{p/3\}$. Ferner sei Xeine Menge von Variablen und $x, y, z \in X$. Gegeben sei die folgende Formel über Σ und X:

$$F = \forall x \exists y (p(y, a, x) \leftrightarrow \neg \exists z p(z, y, x)).$$

Transformieren Sie F in der Pränexnormalform und geben Sie dabei alle Zwischenschritte explizit an (Negationsnormalform, bereinigte Form, Pränexnormalform).

(G 3)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur mit $\Omega = \{a/0, f/1\}$ und $\Pi = \{p/1, q/2, r/3\}$. Sei X eine Menge von Variablen und $u, u', w, x, y, z \in X$.

a) Man gebe für die folgende Formel über X und Σ eine äquivalente Formel in Negationsnormalform an.

$$\neg \forall x \exists y (p(y) \to (\neg q(a, x) \land \neg q(x, y))).$$

b) Man gebe für die folgende Formel über X und Σ eine äquivalente Formel in bereinigter Form an.

$$\forall x \exists y ((\exists z \exists x (q(a,x) \to r(z,w,y))) \leftrightarrow (q(a,z) \land \neg (\exists w \exists z r(x,w,z)))).$$

c) Man gebe für die folgende Formel über X und Σ eine äquivalente Formel in Pränexnormalform an.

$$(\forall wq(a,w)) \lor (\exists x \forall y (\neg r(a,x,y) \land \exists z \neg r(x,y,z))).$$

d) Man bringe die folgende Formel über Σ und X in Skolemnormalform:

$$\exists u \forall u' \exists w \exists x \forall y \exists z (\neg r(f(u'), x, y) \land r(w, a, z) \land r(y, x, u)).$$