Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC546 – Avaliação de Sistemas Computacionais Parte 1 - Aula 3

Sarita Mazzini Bruschi

Material baseado nos slides de: Marcos José Santana Regina Helena Carlucci Santana

Conteúdo

- 1. Planejamento de Experimentos
- 2. Técnicas para Avaliação de Desempenho
 - Apresentação das técnicas
 - Técnicas de Aferição:
 - Protótipos, Benchmarks e Monitores
 - Técnicas de Modelagem:
 - Solução Analítica e por Simulação
 - Exemplos
- 3. Análise de resultado

Técnicas de Avaliação de Desempenho

Técnicas de Avaliação de Desempenho

- Aferição
 - Medidas no próprio sistema
 - Sistema deve existir e estar disponível
 - Experimentação restrita
 - Muito cuidado com aquisição dos dados

Técnicas de Aferição

Construção de Protótipos

- uma implementação simplificada do sistema real;
- abstração das características essenciais;
- sistemas em fase de projeto;
- produz resultados com boa precisão;
- recomendado para verificação do projeto final;
- problema: custo e alterações.

Construção de Protótipos

- Considerações envolvidas:
 - identificar os objetivos do projeto;
 - abstrair as características essenciais;
 - definir a estratégia de coleta de dados no protótipo;
 - desenvolver o protótipo;
 - avaliar o seu desempenho;
- Além disso, devem ser considerados:
 - viabilidade da prototipação do sistema;
 - melhorias no protótipo, em função da avaliação e análise.

Técnicas de Aferição

- Coleta de Dados
 - Oferece os melhores resultados;
 - Problema central: interfere com o sistema e o sistema TEM de existir!
 - Dois tipos básicos de abordagens:
 - Monitores de Software e de Hardware.

Coleta de Dados

- Monitores de Software:
 - Gerais e Flexíveis
 - Produzem interferência no sistema
 - Informações possíveis de serem obtidas:
 - Nível de aplicação
 - Sistema operacional
 - Exemplo: rotina inserida nos protocolos de comunicação para medir o tempo gasto em uma transação em arquivos

Coleta de Dados

- Monitores de Hardware:
 - Eficientes
 - Menos invasivos
 - Problemas: custo e complexidade
 - Exemplo: pequeno hardware adicionado ao sistema para espionar e contabilizar o tempo gasto em uma transação em arquivos

Técnicas de Aferição

Benchmarks

 Programa escrito em linguagem de alto nível, representativo de uma classe de aplicações, utilizado para medir o desempenho de um dado sistema ou para comparar diferentes sistemas

- Como escolher um Benchmark?
 - Ideal: aplicação do usuário
 - O ideal pode ser inviável quando os sistemas são de propósito geral
 - Utilização de benchmarks
 - Representativos de alguma categoria
 - Programa que possa ser avaliado facilmente
 - Programa que possua larga distribuição

- Onde usar Benchmark?
 - avaliar sistemas computacionais diferentes;
 - avaliar o desempenho mínimo;
 - tarefas genéricas ou específicas.

- Medidas mais comuns:
 - MIPS e MFLOPS
 - Problemas: arquiteturas CISC X RISC (????)
- Alguns Exemplos:
 - SPEC
 - Drystone
 - Whetstone
 - PING e PING-PONG avaliação de comunicação;
 - TTCP avaliação de comunicação com TCP ou UDP.

- http://www.cpubenchmark.net/
- PassMark Performance Test

Processador	Benchmark	Preço (\$)		
Intel Core i7 980X @ 3.33GHz	10336	1000,00		
<u>Intel Core i7 975 @ 3.33GHz</u>	7007	994,49		
Intel Core i5 760 @ 2.80GHz	4510	205,00		
Intel Core i5 680 @ 3.60GHz	3,431	296,66		
Intel Core i7 740QM @ 1.73GHz	3521	546,00		

Técnicas de Aferição

Técnicas de Avaliação de Desempenho

Modelagem

- Estudo do sistema e definição dos objetivos;
- Construção do modelo;
- Modelos Analíticos x Modelos de Simulação:
 - Modelo ⇒ solução analítica ⇒ modelo analítico;
 - Modelo ⇒ solução por simulação ⇒ modelo de simulação;
 - Modelo ⇒ solução híbrida ⇒ modelo híbrido!

Solução Analítica

Solução Analítica

- Descrição matemática do comportamento do sistema e da carga de trabalho
- Geram equações
- Solução das equações de forma analítica ou numérica

Solução Analítica

- Restrições:
 - Distribuição do tempo entre chegadas deve ser do tipo exponencial.
 - A posse simultânea de recursos não é permitida.
 - Disciplinas de filas com prioridades não são permitidas.
 - Todas as filas são consideradas de capacidade infinita.

Simulação

- Criação de ambientes virtuais
- Avaliação de desempenho de sistemas complexos

Simulação – Ambientes

Virtuais

Análise Comportamental

Simulação – Avaliação de Desempenho

• Exemplo: Simulação de um ambiente que faz escalonamento de processos considerando a potência computacional e ociosidade das máquinas

Pode-se avaliar:

- Adequabilidade de um índice de carga
- Utilização de diferentes arquiteturas
- Utilização de diferentes políticas de escalonamento

Solução por Simulação

- Construção de um programa computacional para implementar modelos de fenômenos ou sistemas dinâmicos (estados que se alteram com o tempo);
- O modelo é suposto ser uma representação válida do sistema em estudo

Soluções para o Modelo

- Solução por Simulação
 - Versatilidade (aplicada em diferentes situações)
 - Flexibilidade (adaptável a novas situações)
 - Baixo custo (com um mesmo programa podese simular diferentes situações do mesmo problema)
 - Útil quando o sistema não está disponível
 - Facilidade de uso
 - Problemas: precisão e validação

Ferramentas para Simulação

- Linguagens de programação de uso geral
- Linguagens de simulação GPSS
- Extensões funcionais SMPL
- Pacotes de uso específico Opnet, Arena
- Ambientes para Simulação Automáticos TUTSIM, RISK, ASiA e ASDA

Modelo da arquitetura de von Neumann alterado (2 processadores)

Modelo da arquitetura de von Neumann alterado (2 processadores)

Comparação das Técnicas de Avaliação de Desempenho

- Modelos de Simulação X Analíticos
- Analíticos:
 - Requer validação do modelo
 - Dificuldade em resolver a equação
 - Requer simplificações
 - Resultados precisos
 - Pouco tempo de processamento

Comparação das Técnicas de Avaliação de Desempenho

- Modelos de Simulação X Analíticos
- Simulação:
 - Requer validação do modelo
 - Elaboração e Teste de programa
 - Poucas restrições aos modelos
 - Resultados probabilísticos
 - Requer estudo estatístico
 - Alto tempo de processamento

Comparação das Técnicas de Avaliação de Desempenho

______ Uso Apropriado

Uso Secundário

Comparação das Técnicas de Avaliação de Desempenho

	Adequabilidade			Facili-	Preci-	Tempo	Custo	Altera-
	А	S	Р	dade	são			ções
Benchmark	3	3	1	3	2	3	3	1
Protótipo	1	1	3	1	2	1	1	1
Monitor SW	3	2	1	2	3	1	3	2
Monitor HW	3	2	1	1	3	1	1	1
Analítico	3	2	2	2	2	2	3	2
Simulação	3	2	2	2	2	2	3	3

 $1 \rightarrow Fraco$

2 → Médio

 $3 \rightarrow Adequado$

A – Avaliação

S – Seleção

P - Projeto

35