Loss functions

Stage 1 and 2

Pre-Train, Encoder

(Based on cosine Similarity)

- 1. Local Cohesion | Ltrk | "Connect the dots" of a single particle track. | Prototype Contrastive |
- 2. Global Grouping |Lpri| Group all fragments of a single shower by origin. | Prototype Contrastive |
- 3. Semantic Clustering | Lpid | Identify the physical type of hit. | Prototype Contrastive |
- Pre-Train, Decoder
 - 4. Occupancy | Locc| Predict if a masked voxel was empty or contained a hit. | Focal Cross-Entropy |
 - 5. Regression | Lreg | Predict the energy of a masked hit. | Huber Loss (Charge-Weighted)|

The Fine-tuning

- Classification: Flavour Cross-Entropy, Charm BCEWithLogits
- Regression: Smooth L1 (Huber)

The total loss is a weighted sum with learnable uncertainty parameter, σ_i

$$\mathcal{L}_{ ext{total}} = \sum_{i=1}^{5} \left(rac{1}{2\sigma_i^2} \mathcal{L}_i + \log \sigma_i
ight)$$

Neutrino Production

From ATLAS IP to FASER

- At s = 13 TeV, the inelastic cross section is approximately, σ_{inel} 13 $TeV \sim 75$ mb
- For LHC Run 3 (250 fb-1), this corresponds to ~10^16 light particles produced
 - Angular spread of meson decays $\theta \sim m\pi/E(TeV)$ ~ mrad

Particle	Decay mode	Branching fraction (approx.)
π^+	$\pi^+ \to \mu^+ \nu_\mu$	99.9877%
	$\pi^+ \to e^+ \nu_e$	1.23×10^{-4} (helicity suppressed)
K^+	$K^+ o \mu^+ \nu_\mu$	63.56%
	$K^+ \to \pi^0 e^+ \nu_e \; (\mathrm{Ke}3)$	5.07%
D^0	Inclusive semileptonic	$\mathcal{B}(D^0 \to Xe^+\nu_e) \approx 6.46\%$
D^+	Inclusive semileptonic	$\mathcal{B}(D^+ \to X e^+ \nu_e) \approx 16.13\%$
D_s^+	$D_s^+ \to au^+ u_ au$	5.36%