Uso de registros para desplazar, almacenar y visualizar dos dígitos decimales Grupo 1

UNIVERSIDAD SURCOLOMBIANA INGENIERÍA ELECTRÓNICA LABORATORIO ELECTRÓNICA DIGITAL I

PREINFORME PRÁCTICA No. 6 GRUPOS IMPARES SUBGRUPO 02 – GRUPO 1

USO DE REGISTROS PARA DESPLAZAR, ALMACENAR Y VISUALIZAR DOS DÍGITOS DECIMALES

08/11/2023

a) PROBLEMA

En una calculadora básica simple el código BCD de cada dígito decimal se introduce en un registro de almacenamiento de 4 bits cada vez que se presiona una tecla y además dichos dígitos se van desplazando hacia la izquierda en el display, eso significa que la información se desplaza o transfiere de registro a registro. El circuito para implementar debe contar con un teclado o interruptores y la lógica combinacional y secuencial necesaria para realizar dicha operación y debe funcionar de la siguiente manera:

- 1. Al energizar el sistema se debe presentar un cero en el display en la posición del LSD, o sea que el sistema debe borrar el cero a la izquierda.
- 2. Al pulsar la primera tecla dicho dígito debe reemplazar el cero presente en la posición LSD, pero el display del MSD debe permanecer apagado.
- 3. Al pulsar la siguiente tecla dicho dígito se ubica en el display del LSD y lo que había allí se desplaza al display del MSD.
- 4. Al pulsar otras teclas se debe realizar el mismo proceso anterior.
- 5. Los dos registros se deben hacer funcionar con sólo 1 señal de reloj.
- 6. El sistema debe proveer la función de borrado total (reset).
- 7. La visualización es dinámica, o sea que se debe usar multiplexación y un solo decodificador.
- b) Escribir la tabla de verdad lógica designándola Tabla 1 para las salidas del codificador y de los registros que entregan el BCD en forma normal para los siguientes casos:
- a. sin ninguna entrada activada.
- b. con una entrada activada sostenida (indicar cuál).

- c. con la entrada anterior desactivada.
- d. repetir b. y c. con otra entrada activada sostenida (indicar cuál).
- e) Explicar en forma breve las diferencias y semejanzas en los datos para los literales a, b. y c.

Cas o	Caso de	Salidas Codificador			Salidas Registro 1				Salidas Registro 2				
#	Entra da	D	C	В	A	Q 3	Q 2	Q 1	Q 0	$\overline{Q3}$	$\overline{Q2}$	Q1	$\overline{Q0}$
1	Ningu na Activa	1	1	1	1	0	0	0	0	1	1	1	1
2	Activa sosten ida (1)	1	1	1	0	0	0	0	1	0	0	0	0
3	Inacti va (1)	1	1	1	1	0	0	0	1	0	0	0	0
4	Activa sosten ida (9)	0	1	1	0 Tab	1	0	0	1	0	0	0	1
5	Inacti va (9)	1	1	1	1	1	0	0	1	0	0	0	1

Cuando ninguna entrada esta activada las salidas del codificador que son negadas luego de pasar por los negadores estarán en 0000 cada una al energizar el circuito. Salen en el registro 1 inmediatamente ya que es su estado sin la entrada de reloj activada, y en el 2 registro se muestran 1111 lo cual no es reconocible en las salidas del manejador del dysplay por lo tanto no se enciende ningún led, debido a que no ha habido ninguna entrada del codificador y los registros no han recibido el flanco de subida.

Cuando se introduce un 1 decimal en el codificador se refleja en las salidas del registro 1 y en el registro 2 se Uso de registros para desplazar, almacenar y visualizar dos dígitos decimales Grupo 1

reflejan 0000, debido a que en el registro 2 se guardo en sus entradas 1111 y cuando se presiono el 1 decimal se envió en las entradas de reloj un flanco de subida y ese 1111 que estaba guardado salió en forma 0000 por sus salidas complementadas.

Cuando se deja de introducir una entrada en el codificador salen de el 0000 y el registro 1 tiene a las salidas el 0001 anterior debido a que no ha habido otra pulsación generando otro flanco de subida para que reciba y entregue a sus salidas el siguiente código y el registro 2 tiene a sus salidas el 0000 debido a que no ha habido otro flanco de subida para que entregue el 1110 complementado.

c) Diseñar la lógica adicional si es necesaria.

S	Salidas (Codifica	TRIG	SALI		
Q3	Q2	Q1	Q0	GER	DA MON OEST ABL E	
0	0	0	0	1	0	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	1	
0	1	0	0	0	1	
0	1	0	1	0	1	
0	0	1	1	0	1	
0	1	1	1	0	1	
1	0	0	0	0	1	
1	0	0	1	0	1	

Tabla 1.1 de verdad de la lógica adicional

D) Calcular el valor y la potencia de las resistencias protectoras de los LEDS y de las resistencias conectadas a las entradas del sistema codificador (si las usan) y aproximarlo al valor comercial más cercano.

Se calcula el valor de la resistencia pull up.

$$R\ pull-up=\frac{V_{CC}-V_{IH}}{I_{IH}}=\frac{(5v-2.0v)}{20\mu A}=\mathbf{150k}\Omega$$

Para este valor obtenido se implementa una resistencia de $10k\Omega$, para cada entrada.

Luego se calcula el valor de la resistencia protectoras de los leds Rled.

$$I1 * Rled + Vled - VoH = 0$$

$$Rled = \frac{4.2v - 1.2v}{20mA} = 150\Omega$$

Se toma el valor comercial mas cerca que se encuentre por debajo, en este caso tomamos el valor de 150 que es un valor que es comercial y nos garantiza (teóricamente el valor de la corriente necesaria).

Para r-pull up

$$P = I^2 * Rpull - up = (40\mu A)^2 * 10k\Omega = 16\mu wtts$$

Para Rled up

$$P = I^2 * Rled = (100 \mu A)^2 * 150 \Omega = 1.5 \mu wtts$$

	Rled (Ω)	pull-up(kΩ)
	150	10
Potencia(µwtts)	1.5	16

Tabla 2

e) Para el caso del monoestable escribir los rangos de valores dados por el fabricante para REXT y CEXT y calcular sus valores para obtener un pulso de aproximadamente 20ms con la polaridad adecuada para disparar los registros.

Los valores para el CEXT y REXT dados por el fabricante son, $0.01\mu F$ Y $9.1~k\Omega$

Para obtener el pulso de 20ms se calcula de la siguiente

Ilustración 1

manera según el datasheet del fabricante.

Tw = 1.11CextRext

$$Rext = \frac{20ms}{10\mu F * 1.11} = 1801\Omega$$

Uso de registros para desplazar, almacenar y visualizar dos dígitos decimales

UNIVERSIDAD
SURCOLOMBIANA
FACULTAD DE INGENIERÍA

Los valores para el RA, RE y C dados por el fabricante son, $5k \Omega, 3k \Omega$ y $0.15\mu F$.

Ilustración 2

$$f = 1/T = 1.44 / C (RA + 2RB)$$

$$T = 1/f = 1/200Hz = 5ms$$

$$T = tH + tL = 2.5ms + 2.5ms = 5ms$$

$$tL = 0.693(RB * C)$$

$$RB = \frac{2.5ms}{10nf * 0.693} = 360.750\Omega$$

Se toma el valor de 330 k Ω

$$th = 0.693(RA + RB) * C$$

$$RA = \frac{Th}{0.693 * C} - Rb = \frac{2.5031ms}{0.693 * 10nF} - 360K =$$

1197≈1.2KΩ

$$f = \frac{1,44}{(RA + 2RB)C} = \frac{1,44}{(1.2K + 2*360K)*10nF} = 199,7Hz \approx 200Hz$$

199,7Hz

Ilustración 3

- g) Dibujar el diagrama en bloques del circuito.
- g) Explicar brevemente el funcionamiento de cada etapa
- Etapa 1

Uso de registros para desplazar, almacenar y visualizar dos dígitos decimales Grupo 1

En esta etapa se debe presionar una tecla o pulsador que representara un valor decimal del (1-9)

Etapa 2

Se codifica el valor ingresado en la etapa anterior y se representa en un valor binario a sus salidas

Etapa 3

Esta etapa toma las salidas del codificador y mediante una lógica adicional representa un 1 o un 0 a su salida que va conectada al trigger.

Etapa 4

Esta etapa representara un flanco de subida o bajada que conecta con la entrada de reloj y dará un flanco de subida cuando la lógica adicional vea a su salida un 0 ya que esta se conecta al trigger. El objetivo de esta es dar flancos de subida en la entrada de reloj para que los registros reciban el valor ingresado y asi guardar el valor y desplazarlo al multiplexor.

Etapa 5

En esta etapa, los datos de entrada se cargan en el primer registro digital. Este registro se utiliza para almacenar temporalmente los datos antes de que sean procesados o transmitidos luego, Una vez que los datos se han cargado en el primer registro luego, se transfieren al segundo registro, que actúa como un registro de salida. Los datos se sincronizan nuevamente con una señal de reloj en esta etapa. Al final se transfieren estos datos al multiplexor.

Etapa 6

Conectando un oscilador astable, que genera una señal cuadrada continua de 200hZ, a un multiplexor digital, que selecciona una entrada en función de una señal de control, variando su salida entre el código introducido y el anterior a este que se proyecta en un decodificador de 7 segmentos.

Etapa 7

El multiplexor selecciona los datos Dependiendo de los cambios ocurridos en su entrada de control y variando sus salidas continuamente entre un código y otro el cual los entregan la etapa de los registros.

Etapa 8

En esta etapa el decodificador de 7 segmentos envía los códigos que varían de acuerdo con el multiplexor quien

es el que selecciona entre 1 u otro en un determinado tiempo.

Etapa 9

En esta etapa se visualiza un código ingresado por el manejador de 7 segmentos y esta alterna puesto que se conecta su entrada a una compuerta negadora la cual alternara entre 1 dysplay y otro enviando un cero o un 1 en sus ground lo cual genera el desplazamiento entre un dysplay u otro.

Led 7 segmentos

Figure 11. Output Pulse Duration vs Capacitance

DATASHEET INTEGRADO 555

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits							
Symbol	Parameter			Тур	Max	Unit	Test Co	onditions		
V _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs			
Vii	Input LOW Voltage	54			0.7	v	Guaranteed Input	LOW Voltage for		
VIL	Input LOW Voltage 74				8.0	v	All Inputs			
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA			
VOH	Output HIGH Voltage 54		2.5	3.5		V	VCC = MIN, IOH = MAX, VIN = VI			
VOH	Output HIGH Voltage	74	2.7	3.5		٧	or V _{IL} per Truth Ta	able		
VOL	Output LOW Voltage			0.25	0.4	٧	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}		
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table		
l	Input HIGH Current				20	μA	V _{CC} = MAX, V _{IN} = 2.7 V			
ΉΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V			
I _{IL}	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V			
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX			
Icc	Power Supply Current Total, Output HIGH				2.4	mA	V _{CC} = MAX			
	Total, Output LOW			6.6]					

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (TA = 25°C)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tPLH .	Turn-Off Delay, Input to Output		9.0	15	ns	V _{CC} = 5.0 V
tPHL	Turn-On Delay, Input to Output		10	15	ns	C _L = 15 pF

Datasheet compuerta 74LS04

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]	1 '	N54S1		\$N549158 \$N749158			UNIT	
			MIN	TYP†	MAX	MIN	TYPİ	MAX	l	
VIH	High-level input voltage		. 2			2			V	
VIL	Low-level input voltage				8.0		_	0.8	ν	
Vικ	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA			-1.2			-1.2	V	
v	High-level output voltage	VCC - MIN. VIH - 2 V. Series 54S	2.5	3.4		2.5	3.4		v	
AOH	High-lever output voltage	VH - 0.6 V. 104 - 1 mA Series 745	2.7	3.4		2.7	3.4		ľ	
Var	Low-level output voltage	VCC - MIN. VIH = 2 V.	Γ.		υ.5	·-		0.5	v	
V U.L.	Cow-level butout visitage	VII 0.8 V, IOL = 20 mA			0.5			U .5	ľ	
Τį	Input current at moximum input valtage	VCC = MAX, V1 = 5.5 V	T -		1	T		1	пзД	
1	High-level input current A/B or G	V			100			100	LΑ	
ΊΗ	A or B	VCC = MAX, V1 = 2.7 V	_		50			50		
1	A/B or G	Wasan May No a CEN						_4	mA	
!!L	Low-level input current A or 8	Vac - MAX, V ₁ - 2.5 V			2	Ī		2	""	
103	Short-circuit ouput aurrent §	VCC - MAX	40		100	40		-100	'nΑ	
		VCC - MAX, All inputs at 4.5 V,			78		90	61	1	
lcc	Supply current	See Nate 2	1	50	19	(Ja	61	mA	
	outpry current	V _{CC} - MAX, A inputs at 4.5 V,								
		9,G,S, inputs at 0 V. See Note 2	ł			i		81		

174LS157 MULTIPLEXOR

Datasneet /4LS15/

Uso de registros para desplazar, almacenar y visualizar dos dígitos decimales Grupo ${\bf 1}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions			
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs			
VIL	Input LOW Voltage	54			0.7	v	Guaranteed Input LOW Voltage for			
VIL	input LOW voltage	74			0.8	Ů	All Inputs			
VIK	Input Clamp Diode Voltage				- 1.5	V	VCC = MIN, IIN = - 18 mA			
V O H	Output HIGH Voltage		2.4	4.2		μА	$VCC = MIN$, $IOH = -50 \mu A$, $VIN = VIH$ or U.L. per Truth Table			
Ю	Output Current a to g		- 1.3	- 2.0		mA	VCC = MIN, VO = 0.85 V Input Conditioner as for VOH			
VOL		54, 74			0.4	V	IOL = 2.0 mA	VCC = MIN, VIH = 2.0 V		
VOL	Output LOW Voltage a to g	74			0.5	V	IOL = 6.0 mA	VIL = VIL MAX		
VOL	Output LOW Voltage	54, 74			0.4	V	IOL = 1.6 mA	VCC = MAX, VIH = 2.0 V		
VOL	BI / RBO	74			0.5	v	IOL = 3.2 mA	VIL = VIL MAX		
IIH	Input HIGH Current				20	μА	VCC = MAX, VIN = 2.7 V			
1111	(Except BI / RBO)				0.1	mA	VCC = MAX, VIN = 7.0 V			
IIL	Input LOW Current (Except BI / RBO)				- 0.4	mA	VCC = MAX, VIN = 0.4 V			
IIL	Input LOW Current BI / RBO				- 1.2	mA	VCC = MAX, VIN = 0.4 V			
ICC	Power Supply Current			25	38	mA	VCC = MAX			
IOS	Short Circuit Current BI / RBO (Note 1)	- 0.3		-2.0	mA	VCC = MAX			

Datasheet 74ls48

DARAMETER						'14 7			'148		
PARAMETER		TEST CON	MIN	TYP:	MAX	MIN	TYP:	MAX	UNIT		
VIH	High-level input voltage				2			2			V
VIL	Low-level input vol	tage					0.8			0.8	V
VIK	Input clamp voltage	2	VCC = MIN,	II = -12 mA			-1.5			-1.5	V
VOH	High-level output voltage		VCC = MIN, VIL = 0.8 V,	VIH = 2 V, IOH = -800 μA	2.4	3.3		2.4	3.3		V
VOL	Low-level output voltage		VCC = MIN, VIL = 0.8 V,	VIH = 2 V, IOL = 16 mA		0.2	0.4		0.2	0.4	V
п	Input current at maximum input voltage		VCC = MIN,	VI = 5.5 V			1			1	mA
Ī	High-level input	0 input								40	A
IIH	current	Any input except 0	VCC = MAX,	VI = 2.4 V			40			80	μ Α
	Low-level input	0 input								-1.6	
IIL	current	Any input except 0	VCC = MAX,	VI = 0.4 V		-1.6		1.6		-3.2	mA
IOS	Short-circuit output	current§	VCC = MAX		-35		-85	-35		-85	mA
100	G 1		VCC = MAX	Condition 1		50	70		40	60	
ICC	Supply current		(See Note 5)	Condition 2		42	62		35	55	mA

74LS147 DATASHEET DE DECIMAL A BCD

