The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1. (Currently amended) A bisacyloxypropylcysteine conjugate according to formula (1),

$$\begin{array}{c} R_{1}-COO-CH_{2} \\ I \\ R_{2}-COO-CH-CH_{2}-S-CH_{2}-CH-CO-Y-R_{3} \\ I \\ NH_{2} \end{array} \tag{1}$$

where

 R_1 and R_2 can be identical or different and are $\underline{C_8-C_{22}}$ alkyl, alkenyl or alkynyl fatty acid radicals which are bonded by way of the carboxyl group;

$$Y = -NH-, -O-, -S-, or -OCO-;$$

 ${
m R}_3$ is a covalently, ionically or associatively bonded conjugate radical, in particular a water-soluble and physiologically tolerated, covalently or ionically bonded polymer, in particular covalently bonded polyethylene glycol

(polyoxyethylene) -(
$$CH_2$$
- CH_2 - $O)_m$ - CH_2 - CH_2 - X ,

where X = OR, $N[R]_2$, SR or COOR, and

R = H, benzyl-, or C_{1^-6} alkyl, where several radicals R when $X = N[R]_3$, the [R] groups can be identical or different, a polyoxyethylene-polyoxypropylene copolymer, a dextran, a sugar, a polyvinylpyrrolidone, an alginate, a pectin or a collagen, and where the polymeric radical R_3 is substituted once, twice, or several times by

- 2. (Currently amended) $\stackrel{\wedge}{\rightarrow} \frac{\text{The}}{\text{bisacyloxypropylcysteine conjugate as claimed in of claim 1, characterized in that the radicals <math>R_{1,2}$, which can be identical or different, are $C_{9,25}$, preferably $C_{9,22}$ -alkyl, -alkenyl or -alkynyl groups, and wherein the unsaturated positions are preferably in the cis configuration, with the C_5 - $C_{2,2}$ alkyl, alkenyl and alkynyl fatty acid radicals being are branched or unbranched, cyclic or cycloalkyl-substituted radicals.
- 3. (Currently Amended) ★ The bisacyloxypropylcysteine conjugate as claimed in of claim 1, characterized in that the wherein a molecular weight of a water-soluble polymer radical is selected such that it amounts to the covalently bonded polyethylene glycol (polyoxyethylene) (CH₂-CH₂-O)_m-CH₂-CH₂-X is from 100 to 30 000 daltons per-conjugate molecule.
- 4. (Currently Amended) A The bisacyloxypropylcysteine conjugate as claimed in of claim 1, characterized in that the polyethylene glycol of the radical R₂ has a chain length wherein m of is from 5 to 700, preferably of from 100 to 500.
- 5. (Currently Amended) ★ The bisacyloxypropyleysteine conjugate as claimed in of claim 1, characterized in that wherein the compound bisacyloxypropyleysteine conjugate is a S-[2,3-bis(acyloxy)-(2S)-propyl]-L-cysteinylcarboxypolyethylene glycol, preferably S-[2,3-bis(palmitoyloxy)-(2s)-propyl]-L-cysteinylcarboxypolyethylene glycol.
- 6. (Currently Amended) ★ The bisacyloxypropylcysteine conjugate as claimed in of claim 1, characterized in that the compound is a S-[2,3-bis(acyloxy)-(2R)-propyl]-L-cysteinylcarboxypolyethylene glycol, preferably S-[2,3-bis(palmitoyloxy)-(2R)-propyl]-L-cysteinylcarboxypolyethylene glycol.
- (Currently Amended) A pharmaceutical composition, comprising a bisacyloxypropylcysteine conjugate as claimed in claim according to formula (1).

$$R_1$$
—COO—CH₂
 R_2 —COO—CH—CH₂—S—CH₂—CH—CO—Y—R₃
 N_{H_2}
(1)

where

 R_1 and R_2 can be identical or different and are C_8 - C_{22} alkyl, alkenyl or alkynyl fatty acid radicals which are bonded by way of the carboxyl group;

$$Y = -NH$$
-, -O-, -S-, or -OCO-;

R₃ is a covalently bonded polyethylene glycol (polyoxyethylene) -(CH₂-CH₂-O)_m-CH₂-CH₂-X₄.

where X = OR, $N[R]_2$, SR or COOR, and

- [R] = H, benzyl-, or C_{1^26} alkyl, where , when $X = N[R]_2$, the [R] groups can be identical or different.
- (Currently Amended) The pharmaceutical composition as claimed in of claim 7, characterized in that it comprises pharmaceutical additives or auxiliary substances and; preferably, further comprising a pharmaceutically tolerated excipient.
- 9. (Currently Amended) The pharmaceutical composition as claimed in of claim 7, wherein the pharmaceutical composition is in the form of a formulation which is suitable for injection, for inhalation or for intranasal or topical administration.
- 10. (Cancel)
- 11. (New) The bisacyloxypropylcysteine conjugate of claim 4, wherein m is from 100 to 500.
- (New) The bisacyloxypropylcysteine conjugate of claim 5, wherein the bisacyloxypropylcysteine conjugate is S-[2,3-bis(palmitoyloxy)-(2S)-propyl]-Lcysteinylcarboxypolyethylene glycol.

- (New) The bisacyloxypropylcysteine conjugate of claim 6, wherein the bisacyloxypropylcysteine conjugate is S-[2,3-bis(palmitoyloxy)-(2R)-propyl]-Lcysteinylcarboxypolyethylene glycol.
- 14. (New) A method of stimulating an immune response to an antigen in an animal or human, comprising the step of

simultaneously administering to the animal or human

the antigen; and

a bisacyloxypropylcysteine conjugate according to formula (1),

$$\begin{array}{c} R_{1}-COO-CH_{2} \\ \\ R_{2}-COO-CH-CH_{2}-S-CH_{2}-CH-CO-Y-R_{3} \\ \\ \\ NH_{2} \end{array} \tag{1}$$

where

 R_1 and R_2 can be identical or different and are C_8 - C_{22} alkyl, alkenyl or alkynyl fatty acid radicals which are bonded by way of the carboxyl group;

$$Y = -NH-, -O-, -S-, or -OCO-;$$

 $R_{\rm 3}$ is a covalently bonded polyethylene glycol (polyoxyethylene) -(CH2-CH2-O),,,-CH2-CH2-CH2-X,

where X = OR, N[R], SR or COOR, and

R = H, benzyl-, or C_{1^-6} alkyl, where, when $X = N[R]_2$, the [R] groups can be identical or different.

15. (New) A bisacyloxypropylcysteine conjugate according to formula (1),

where

R₁ and R₂ can be identical or different and are C₈·C₂₂ alkyl, alkenyl or alkynyl fatty acid radicals which are bonded by way of the carboxyl group;

$$Y = -NH$$
-, -O-, -S-, or -OCO-;

 R_3 is a covalently bonded polyethylene glycol (polyoxyethylene) -(CH_2-CH_2-O)_m-CH_2-CH_2-X,

where X = OR, $N[R]_2$, SR or COOR, and

R=H, benzyl-, or $C_{1^{-6}}$ alkyl, where, when $X=N[R]_2$, the [R] groups can be identical or different.

and wherein said bisacyloxypropylcysteine conjugate is a S-[2,3-bis(acyloxy)-(2S)-propyl]-L-cysteinylcarboxypolyethylene glycol.

16. (New) A bisacyloxypropylcysteine conjugate according to formula (1),

$$\begin{array}{c} R_{1}-COO-CH_{2} \\ R_{2}-COO-CH-CH_{2}-S-CH_{2}-CH-CO-Y-R_{3} \\ & & \\ &$$

where

 R_1 and R_2 can be identical or different and are C_8 - C_{22} alkyl, alkenyl or alkynyl fatty acid radicals which are bonded by way of the carboxyl group;

$$Y = -NH-, -O-, -S-, or -OCO-;$$

 R_3 is a covalently bonded polyethylene glycol (polyoxyethylene) -(CH $_2$ -CH $_2$ -CO) $_m$ -CH $_2$ -C

where X = OR, $N[R]_2$, SR or COOR, and

R = H, benzyl-, or C_{1^-6} alkyl, where, when X = $N[R]_2$, the [R] groups can be identical or different,

and wherein said bisacyloxypropylcysteine conjugate is a S-[2,3-bis(acyloxy)-(2R)-propyl]-L-cysteinylcarboxypolyethylene glycol.