

#### UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE TECNOLOGIA ÁREA DE ELETRÔNICA

### Problema #1 – 2025.1

# **Sistemas Digitais**

### 1. Tema

Desenvolver um coprocessador aritmético especializado em multiplicação matricial.

### 2. Objetivos de Aprendizagem

Ao final da realização deste problema, o/a discente deverá ser capaz de:

- Aplicar conhecimentos de circuitos digitais e arquiteturas de computadores para desenvolver um coprocessador aritmético;
- Implementar a solução em Verilog numa FPGA;
- Entender dificuldades tecnológicos no desenvolvimento de processadores;
- Compreender os princípios básicos da arquitetura da plataforma DE1-SoC;
- Utilizar as interfaces disponíveis na placa DE1-SoC.

#### 3. Problema

Este projeto atende a diversas aplicações que exigem cálculos intensivos utilizando matrizes, como processamento de imagens e visão computacional, aprendizado de máquina, computação gráfica, simulações científicas, criptografia e telecomunicações. Implementar um coprocessador dedicado permite acelerar essas operações, reduzindo o tempo de execução e otimizando o uso de recursos computacionais, tornando-se uma solução eficiente para sistemas embarcados de alto desempenho.

## 4. Requisitos

O problema a ser desenvolvido no Kit de desenvolvimento DE1-SoC deve atender às seguintes restrições:

- 4.1. O código deve ser escrito em linguagem Verilog;
- 4.2. O sistema só poderá utilizar os componentes disponíveis na placa;
- 4.3. Deverá fazer operações de matrizes quadradas de N x N elementos (N<=5).
- 4.4. Deverá fazer as seguintes operações:
  - 4.4.1. Adição de matrizes;
  - 4.4.2. Subtração de matrizes;
  - 4.4.3. Multiplicação de matrizes;
  - 4.4.4. Multiplicação de matriz por número real;

- 4.4.5. Determinante:
- 4.4.6. Transposição de matriz;
- 4.4.7. Matriz oposta.
- 4.5. Cada elemento da matriz é representado por um número inteiro de 8 bits.
- 4.6. O coprocessador deve implementar paralelismo para otimizar a execução.
- 4.7. Arquitetura baseada em pipeline para processamento eficiente.
- 4.8. Entrada e saída de dados via barramento simples de controle.
- 4.9. O coprocessador deve ser compatível com o processador ARM (*Hard Processor System* HPS), ele deve receber instruções para multiplicar matrizes.

#### 5. Produto

Todo o projeto deverá ser disponibilizado na plataforma GitHub. No prazo indicado no cronograma a seguir, cada equipe deverá apresentar:

- 5.1. Levantamento de requisitos;
- 5.2. Código
  - 5.2.1. Código em linguagem Verilog e C;
  - 5.2.2. Todos os códigos deverão estar detalhadamente comentados;
- 5.3. Script de compilação tipo Makefile para geração do código executável;
- 5.4. Documentação técnica escrita no arquivo READ.ME do projeto no GitHub, contendo, no mínimo:
  - 5.4.1. Detalhamento dos software usados no trabalho, incluindo softwares básicos:
  - 5.4.2. Arquitetura do computador usado nos testes;
  - 5.4.3. Descrição de instalação, configuração de ambiente e execução;
- 5.5. Descrição dos testes de funcionamento do sistema, bem como, análise dos resultados alcançados.

## 6. Avaliação

Para avaliar o envolvimento do grupo nas discussões e na apresentação, o tutor poderá fazer perguntas variadas a qualquer membro, tanto nas sessões tutoriais quanto na apresentação. O estudante que não comparecer, ou se atrasar, no dia da sessão de apresentação, terá automaticamente nota 0,0 (zero) no problema, excetuando-se as condições que permitem 2ª chamada de avaliações, conforme regulamento do curso.

A nota final será a composição de 3 (três) notas parciais:

| Critério                 | Critérios para a nota                                                                                                                                                                                                                                                           |   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Desempenho<br>Individual | Participação individual nas sessões tutoriais, de acordo com o interesse e entendimento demonstrados pelo aluno, assim como sua assiduidade, pontualidade e contribuição nas discussões. Essa nota inclui o desempenho do estudante na apresentação do problema no laboratório. | 4 |

| Documentação | Documentação técnica de cada grupo, considerando qualidade da redação (ortografia e gramática), organização dos tópicos, definição do problema, descrição da solução, explicação dos experimentos, análise dos resultados, detalhando os itens não atendidos, se for o caso. |   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Códigos      | Qualidade do código fonte (organização e comentários), e execução correta dos códigos binários de acordo com testes de validação que explorem as situações de uso.                                                                                                           | 3 |

# 7. Cronograma

| Semana | Data        | Descrição                             |
|--------|-------------|---------------------------------------|
| 2      | qua 26/fev. | Problema 1 – Apresentação             |
|        | sex 28/fev. | Ponto faltativo – Pré-Carnaval        |
| 3      | qua 05/mar. | Feriado – Quarta-Feira de Cinzas      |
|        | sex 07/mar. | Problema 1 – Lab 0                    |
| 4      | qua 12/mar. | Problema 1 – Seção Tutorial #2        |
|        | sex 14/mar. | Problema 1 – Seção Desenvolvimento #1 |
| 5      | qua 19/mar. | Problema 1 – Seção Tutorial #3        |
|        | sex 21/mar. | Problema 1 – Lab 1                    |
| 6      | qua 26/mar. | Problema 1 – Seção Tutorial #4        |
|        | sex 28/mar. | Problema 1 – Seção Desenvolvimento #2 |
| 7      | qua 02/abr. | Problema 1 – Seção Desenvolvimento #3 |
|        | sex 04/abr. | Problema 1 – Entrega/Avaliação        |

### 8. Links úteis

- Site do Laboratório de Eletrônica Digital e Sistemas (LEDS): https://sites.google.com/uefs.br/ltec3-leds
- FPGA Academy: <a href="https://fpgacademy.org/boards.html">https://fpgacademy.org/boards.html</a>