Àlgebra (Grau en Enginyeria Informàtica) Solucions dels exercicis de la llicó 12 **Robert Fuster**

Exercici 12.1. Estudieu si els conjunts de vectors següents són subespais de l'espai \mathbb{R}^2 o \mathbb{R}^3 o si no ho són. Descriviu geomètricament aquests conjunts.

(a) $F_1 = \{(a, 0) : a \in \mathbb{R}\}$

(b) $F_2 = \{(a - b, 2a + b) : a, b \in \mathbb{R}\}\$

(c) $F_3 = \{(a-b, b-c, c-a) : a, b, c \in \mathbb{R}\}$

(d) $F_4 = \{(a+1, a, 0) : a \in \mathbb{R}\}\$

(e) $F_5 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 = 0, x_1 - x_3 = 1\}$ (f) $F_6 = \{(a, b) : a, b \in \mathbb{R}, a \le b\}$ (g) $F_7 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 = 0, x_1 - x_3 = 0\}$ (h) $F_8 = \{(1, 2, 0), (0, -1, 1)\}$

(a) F_1 és un subespai de \mathbb{R}^2 , perquè és una recta que passa per l'origen. Es tracta de l'eix d'abscises y = 0.

Es pot provar que és un subespai observant que el vector $\vec{0} = (0,0)$ és un element de F_1 i que, si $(a_1, 0)$ i $(a_2, 0)$ són dos vectors qualssevol de F_1 , llavors la combinació lineal

$$\alpha_1(a_1, 0) + \alpha_2(a_2, 0) = (\alpha_1 a_1 + \alpha_2 a_2, 0)$$

també és a F_1 .

(b) F_2 també és subespai de \mathbb{R}^2 : com que $(0,0) = (0-0,2\cdot0+0)$, el vector nul hi és; d'altra banda, fent una combinació lineal amb dos vectors arbitraris de F₂ tindrem

$$\alpha_1(a_1 - b_1, 2a_1 + b_1) + \alpha_2(a_2 - b_2, 2a_2 + b_2) = ((\alpha_1 a_1 + \alpha_2 a_2) - (\alpha_1 b_1 + \alpha_2 b_2), 2(\alpha_1 a_1 + \alpha_2 a_2) + (\alpha_1 b_1 + \alpha_2 b_2)) \in F_2$$

En realitat, $F_2 = \mathbb{R}^2$, perquè (a - b, 2a + b) = a(1, 2) + b(-1, 1), així que es tracta del conjunt de totes les combinacions lineals dels vectors (1,2) i b(-1,1).

(c) F_3 és un subespai de \mathbb{R}^3 . Com que

$$(a-b,b-c,c-a) = a(1,0,-1) + b(-1,1,0) + c(0,-1,1)$$

resulta que F_3 és el conjunt de totes les combinacions lineals dels vectors (1,0,-1), (-1,1,0)i (0,-1,1); però, com que (0,-1,1) = -(1,0,-1) - (-1,1,0), podem expressar els vectors de F_3 com a combinacions lineals de, només, els dos primers vectors. Així, F_3 és un pla.

- (d) F_4 no és un subespai, perquè $(0,0,0) \notin F_4$.
 - F_4 és la recta que passa pels punts (1,0,0) i (0,-1,0).
- (e) F_5 no és un subespai de \mathbb{R}^3 , perquè $(0,0,0) \notin F_5$. Resolent el sistema lineal

$$x_1 - x_2 = 0$$

$$x_1 - x_3 = 1$$

obtenim $x_1 = 1 + \alpha$, $x_2 = 1 + \alpha$, $x_3 = \alpha$, així que es tracta de la recta que passa pel punt (1, 1, 0)i té per vector director (1, 1, 1).

- (f) F_6 no és un subespai de \mathbb{R}^3 , perquè el vector $\vec{u}=(1,2)$ hi és però $-\vec{u}=(-1,-2)$, no. És un semiplà.
- (g) F_7 és un subespai de \mathbb{R}^3 . Es tracta de la recta que passa per l'origen amb vector director (1,1,1).
- (h) F_8 no és un subespai de \mathbb{R}^3 , per exemple, perquè el vector zero no hi pertany. Tret del subespai zero, tots els subespais de \mathbb{R}^n tenen un nombre infinit d'elements (i aquest conjunt només en té dos).

Exercici 12.2. Proveu que el conjunt $F = \{(2a, 3a) : a \in \mathbb{R}\}$ és un subespai de \mathbb{R}^2 , representeu-lo gràficament i descriviu-lo (1) com el conjunt de totes les combinacions lineals d'un vector, (2) com la solució general d'una equació lineal, i (3) com el conjunt de tots els vectors ortogonals a un vector.

Es tracta d'un subespai perquè és la recta que passa per l'origen amb vector director (2,3).

- (1) *F* és el conjunt de totes les combinacions lineals del vector (2, 3).
- (2) F és el conjunt de totes les solucions de l'equació $-3x_1 + 2x_2 = 0$.
- (3) F és el conjunt de tots els vectors ortogonals al vector (-3,2).

Exercici 12.3. Proveu que els conjunts següents són subespais de \mathbb{R}^3 i descriviu-los (1) com el conjunt de totes les combinacions lineals d'un conjunt de vectors, (2) com la solució general d'un sistema d'equacions lineals, i (3) com el conjunt de tots els vectors ortogonals a un conjunt de vectors.

(a)
$$F_1 = \{(a, 2a, 3a) : a \in \mathbb{R}\}$$

(b)
$$F_2 = \{(a, a + b, b) : a, b \in \mathbb{R}\}\$$

 F_1 i F_2 són una recta i un pla que contenen l'origen; per tant, són subespais de \mathbb{R}^3 .

- (1) F_1 és el conjunt de totes les combinacions lineals de $S_1 = \{(1,2,3)\}$ F_2 és el conjunt de totes les combinacions lineals de $S_1 = \{(1,1,0),(0,1,1)\}$
- (2) $F_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : 2x_1 x_2 = 0; 3x_1 x_3 = 0\}$ $F_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0\}$
- (3) $F_1 = \{(2, -1, 0), (3, 0, -1)\}^{\perp}$ $F_2 = \{(1, -1, 1)\}^{\perp}$

Exercici 12.4. Trobeu una base de cadascun dels subespais de \mathbb{R}^4 següents

(a)
$$F = \{(a - b, b - c, c - d, d - a) : a, b, c, d \in \mathbb{R}\}$$

(b)
$$G = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - x_2 = 0; x_3 + x_4 = 0\}$$

(a) Com que

$$(a-b,b-c,c-d,d-a) = a(1,0,0,-1) + b(-1,1,0,0) + c(0,-1,1,0) + d(0,0,-1,1)$$

el conjunt $S = \{(1,0,0,-1), (-1,1,0,0), (0,-1,1,0), (0,0,-1,1)\}$ genera el subespai F. D'altra banda, una forma esglaonada reduïda de la matriu

$$\mathsf{M}_S = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

és

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

de manera que els tres vectors són independent, però el quart n'és combinació lineal. En conseqüència,

$$B = \{(1,0,0,-1), (-1,1,0,0), (0,-1,1,0)\}$$

és una base de F.

(b) És fàcil veure que

$$B = \{(1, 1, 0, 0), (0, 0, 1, -1)\}\$$

és una base de G.

Exercici 12.5. *Trobeu bases dels subespais següents:*

(a)
$$\langle (1,1,0), (2,-1,1), (3,0,1) \rangle$$

(b)
$$\langle (1,1,0), (2,-1,1), (3,0,0) \rangle$$

(a) Esglaonem la matriu formada pels tres vectors:

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -3 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Així que el tercer vector és combinació lineal dels dos primers. Per tant, la base que cerquem és

$$B = \{(1, 1, 0), (2, -1, 1)\}$$

(b) El rang de la matriu

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

és tres, així que podem triar el conjunt

$$B = \{(1, 1, 0), (2, -1, 1), (3, 0, 0)\}$$

com a base de G.

Exercici 12.6. Siga S un subconjunt no buit de \mathbb{R}^n . Proveu que

- (a) $\langle S \rangle$ és un subespai de \mathbb{R}^n
- (b) $si\ F$ és un subespai de \mathbb{R}^n i $S \subset F$, llavors $\langle S \rangle \subset F$.
- (a) Si \vec{u} és un vector de S, llavors $\vec{0} = 0\vec{u}$, així que el vector zero és combinació lineal dels vectors de S. D'altra banda, si \vec{u}_1 i \vec{u}_2 són elements de $\langle S \rangle$, com que tots dos són combinacions lineals dels elements de S és clar que una combinació lineal de \vec{u}_1 i \vec{u}_2 també ho serà. Això prova que $\langle S \rangle$ és un subespai.
- (b) Si F conté S, com que F és subespai, també contindrà totes les combinacions lineals que es puguen fer amb els elements de S; és a dir, $\langle S \rangle \subset F$.

Exercici 12.7. És evident que, si el vector \vec{u} no és un element de S, llavors $\langle S \rangle \subset \langle S \cup \{\vec{u}\} \rangle$. Poden ser iguals, $\langle S \rangle$ i $\langle S \cup \{\vec{u}\} \rangle$? En cas afirmatiu, quina condició s'ha de complir perquè no ho siguen?

La condició necessària i suficient perquè $\langle S \rangle = \langle S \cup \{\vec{u}\} \rangle$ és que \vec{u} siga una combinació lineal dels vectors de S.

Exercici 12.8. (Canvi de base en un subespai)

(a) Proveu que els dos conjunts $B_1 = \{(1,1,1),(1,-1,0)\}$ i $B_2 = \{(2,0,1),(0,2,1)\}$ són bases del subespai de \mathbb{R}^3 $F = \{(x+y,x-y,x): x,y\in\mathbb{R}\}$. (b) Comproveu que el vector $\vec{u}=(3,1,2)$ és un element de F i calculeu les coordenades de \vec{u} respecte a cadascuna d'aquestes bases. (c) Trobeu una matriu $\mathbf{M}_{B_1B_2}$ de manera que, per a qualsevol vector $\vec{v}\in F$, $\vec{v}_{B_2}=\mathbf{M}_{B_1B_2}\vec{v}_{B_1}$. d) Comproveu amb el vector \vec{u} el resultat que heu obtingut.

(a) Els dos conjunts B_1 i B_2 són, clarament, linealment independents. D'altra banda, un vector qualsevol de F es pot escriure com

$$(x + y, x - y, x) = x(1, 1, 1) + y(1, -1, 0)$$

de manera que B_1 genera F (i n'és base). Per a provar que B_2 també genera F bastarà que provem que els dos vectors de B_1 són combinacions lineals dels de B_2 , és a dir que el sistemes lineals

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

són compatibles. Parò això és cert perquè

rang
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
 = rang $\begin{bmatrix} 2 & 0 & 1 & 1 \\ 0 & 2 & 1 & -1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ = 2

4

Això prova que B_2 també és base de F.

(b) Aquest vector és un element de F perquè

$$(3,1,2) = 2(1,1,1) + (1,-1,0)$$

la qual cosa també prova que $\vec{u}_{B_1} = (2, 1)$.

Per a calcular les coordenades de \vec{u} respecte la base B_2 resolem el sistema lineal

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \vec{u}_{B_2} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

La solució que s'hi obté és

$$\vec{u}_{B_2} = \left(\frac{3}{2}, \frac{1}{2}\right)$$

(c) Per a qualsevol vector $\vec{v} \in F$ tenim les igualtats

$$\vec{v} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \vec{v}_{B_1} \qquad \vec{v} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \vec{v}_{B_2}$$

Per tant,

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \vec{v}_{B_2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \vec{v}_{B_1}$$

Per a aïllar \vec{v}_{B_2} en aquesta igualtat hi podem fer servir l'algorisme de Gauss-Jordan!:

$$\mathsf{E}_{3,1}(-1/2) \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \vec{v}_{B_2} = \mathsf{E}_{3,1}(-1/2) \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \vec{v}_{B_1} \Longleftrightarrow \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} \vec{v}_{B_2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1/2 & -1/2 \end{bmatrix} \vec{v}_{B_1}
\mathsf{E}_{3,2}(-1/2) \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} \vec{v}_{B_2} = \mathsf{E}_{3,2}(-1/2) \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1/2 & -1/2 \end{bmatrix} \vec{v}_{B_1} \Longleftrightarrow \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} \vec{v}_{B_2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix} \vec{v}_{B_1}$$

Aquesta darrera expressió és equivalent a

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \vec{v}_{B_2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \vec{v}_{B_1}$$

així que

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \vec{v}_{B_2} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \vec{v}_{B_1}$$

És a dir,

$$\vec{v}_{B_2} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \vec{v}_{B_1}$$

i la matriu que cercàvem és

$$M_{B_1 B_2} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$

(d)

$$\mathsf{M}_{B_1B_2}\vec{u}_{B_1} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix} = \vec{u}_{B_2}$$