EE 330

Homework 10

Fall 2020

Due Friday October 23

Problem 1

Choose appropriate values for R_2 and R_1 to ensure that the circuit below is biased such that M_1 is in saturation and $V_{OUTQ}=2V$. You may assume that M_1 is fabricated in the AMI 05 process and is minimally sized. Assume that $V_{DD}=5V$ and $V_{SS}=0V$.

Problem 2

In the circuit below, assume that $V_{DD}=5V$, V_{IN} is a small-signal AC input, C_1 is large, L_1 and L_2 are large, and M_1 is a minimally-sized device fabricated in the AMI 05 process. Suppose that $R_1=10k\Omega$, $R_2=17.5k\Omega$, $R_3=10k\Omega$, and $R_4=1.57k\Omega$. Find V_{OUTQ} .

Determine Voutq and Vout(t) if Vin = 0.75sin(500t). Assume β =100 and Vdd = 10V with Rb = 150k Ω Rc = 1k Ω .

Problem 4

Determine Voutq and Vout(t) if Vin = 2 sin(500t). Assume the AMI06 process and Vdd = 10V, Vss= 5V with Rb = $150k\Omega$ Rc = $2k\Omega$.

Given the following two circuits, with β =100, the MOSFET has a uCOX of $56.4*10^{-6}$ and $\frac{W}{L}=1$ with $V_T=0.71V$. Rb = $100 \mathrm{k}\Omega$ and Rc = 150Ω for the BJT and $5\mathrm{k}\Omega$ for the MOSFET, find Vdd for each circuit such that their gain is the same (for the MOS you have control of VSS as well). Comment on how much the circuits differ and what changes to get the gain the same.

Problem 6

Draw out the two-port Thevenin equivalent amplifier for the following circuit. Equate the different parameters between the small signal circuit and the amplifier you drew out. After that, find Rin, Rout and Av for the amplifier. Explain how you found each value (<u>do not</u> just restate the final relationships).

For the following array of amplifiers, note the output at each step as well as at Vout for the following values given Vin = 5V and Rs= $100k\Omega$ and RL= $5k\Omega$. At each step comment on the impact of Rin and Rout of each amplifier. What would be the ideal output of the array? Is it different from your calculations? Why? (try not to round too much so you get a better idea of possible differences).

Amp 1:
$$A_v = 100$$
; $R_{in} = \infty$; $Rout = 1Ω$;

Amp 2:
$$A_v = \frac{1}{200}$$
; $R_{in} = 100kΩ$; $Rout = 500Ω$;

Amp 3:
$$A_v = 2$$
; $R_{in} = 50k\Omega$; $Rout = 1k\Omega$;

Problem 8

The below circuit is shown in the small-signal domain. Assume that the circuit is biased such that the MOSFET is operating in the saturation region. Derive the small-signal gain of the circuit. Assume $\lambda=0$.

Derive (do not simply restate) the small-signal input impedance of the common-gate amplifier shown below. If necessary, you may assume that $\lambda=0$.

Problem 10

Derive (do not simply restate) the small-signal output impedance of the common-gate amplifier shown below. If necessary, you may assume that $\lambda=0$.

Problem 11 & 12

BJT review

For this problem, assume that β is 100. Remember that $I_E=I_B+I_C$ is true in all operating regions.

a) Find V_{OUT} for V_{IN} = 1V, 1.5V, and 2V. For each V_{IN} , state and prove what region the BJT is in.

b) For this second circuit, the emitter is no longer grounded. So, in forward active, V_B is no longer 0.6, instead it is $V_E + 0.6V$. Find V_{out} again for $V_{out} = 1V$, 1.5V, and 2V.

c) For this third circuit, an additional device has been added. Note that I1 is **NOT** I_{C1} since current can also go through the base of device 2, if it is active. Find V_{out} when $V_{in} = 1V$, 1.5V, and 2V.

MOSIS WAFER ACCEPTANCE TESTS

RUN: T6AU VENDOR: AMIS
TECHNOLOGY: SCN05 FEATURE SIZE: 0.5

microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

Gate Oxide Thickness 142

TRANSISTOR PAR	AMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth		3.0/0.6	0.79	-0.92	volts
SHORT Idss Vth Vpt		20.0/0.6	446 0.68 10.0	-239 -0.90 -10.0	
WIDE Ids0		20.0/0.6	< 2.5	< 2.5	pA/um
LARGE Vth Vjbkd Ijlk Gamma		50/50	0.68 10.9 <50.0 0.48	-11.6	volts
K' (Uo*Cox/2) Low-field Mob	ility		56.4 463.87		uA/V^2 cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

bias use th SPICE model	card.	-		for the p	aramete	r XL 1	<u>-</u>	(um)
	SCMOS_SUBM (lambda=0.30) SCMOS (lambda=0.35)					0.10		
FOX TRANSISTORS Vth	_	TE ly	N+ACTI >15.	_	_	ITS lts		
PROCESS PARAMETERS Sheet Resistance ohms/sq		P+ 105.3		PLY2_HR 999	44.2	M1 0.09	M2 0.10	UNITS
Contact Resistance	64.9	149.7	17.3		29.2		0.97	ohms

angstrom

PROCESS PARAMETERS	мЗ	N/PLY	N_W	UNITS
Sheet Resistance	0.05	824	816	ohms/sq
Contact Resistance	0.79			ohms

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS Area (substrate)	N+ 425	P+ 731	POLY 84	POLY2	M1 27	M2 12	M3 7	N_W 37	UNITS
aF/um^2 Area (N+active)			2434		35	16	11		
aF/um^2 Area (P+active)			2335						
aF/um^2									
Area (poly)				938	56	15	9		
aF/um^2									
Area (poly2)					49				
aF/um^2						2.1	1.0		
Area (metal1) aF/um^2						31	13		
Area (metal2)							35		
aF/um^2							30		
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um
CIRCUIT PARAMETERS				Ul	NITS				

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts
Voh (100 uA)	2.0	4.85	volts
Vinv	2.0	2.46	volts
Gain	2.0	-19.72	
Ring Oscillator Freq.			
DIV256 (31-stg,5.0V)		95.31	MHz
D256 WIDE (31-stg,5.0V)		147.94	MHz
Ring Oscillator Power			
DIV256 (31-stg,5.0V)		0.49	uW/MHz/gate
D256_WIDE (31-stg,5.0V)		1.01	uW/MHz/gate

COMMENTS: SUBMICRON