Fachbereich Mathematik

Prof. U. Kohlenbach Dr. B. van den Berg

SS 2009

04.09.2009

Formale Grundlagen der Informatik II

Bsc Inf, JBA Inf

Versehen Sie bitte jedes Blatt mit Namen und Matrikelnummer und fangen Sie für jede Aufgabe eine neue Seite an.

Nachname:	
Vorname:	
Matrikelnummer:	

Aufgabe	1	2	3	4	5	Gesamt	Note
mögl. Punktzahl	12	12	12	12	12	48+12	
err. Punktzahl							

vor der Abgabe bitte hier falten und die Lösungsblätter hineinlegen

Die Klausur besteht aus 5 Aufgaben, die alle mit 12 Punkten bewertet sind. Um die maximale Punktzahl zu erreichen, brauchen Sie insgesamt 48 Punkte. Bei der Bewertung wird auf klare Darstellung und Begründungen Wert gelegt.

Aufgabe 1 (12 Punkte)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := p_1 \to ((p_2 \vee p_3) \wedge p_4)$$

(b) Geben Sie eine aussagenlogische Formel φ in p_1, p_2, p_3 an, die die folgende Wahrheitstafel hat:

p_1	p_2	p_3	φ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	. 0
1	1	1	1

(c) Bringen Sie

$$\varphi := (p_1 \vee (p_2 \to p_3)) \to (p_1 \wedge (p_3 \vee \neg p_2))$$

auf disjunktiver Normalform.

Aufgabe 2 (12 Punkte)

(a) Bestimmen Sie mit Hilfe des Hornformel-Algorithmus die minimale Belegung für die folgende Menge von Hornklauseln:

$$\begin{array}{cccc} p \wedge t & \rightarrow & u \\ q \wedge r & \rightarrow & t \\ & s & \rightarrow & q \\ & & s \\ p \wedge s & \rightarrow & q \\ q & \rightarrow & r \end{array}$$

Wieviele erfüllende Belegungen gibt es insgesamt?

(b) Beweisen Sie mit Hilfe von aussagenlogischer Resolution, dass die folgende Formelmenge unerfüllbar ist:

$$\{s \to (p \land q), \quad s \lor t, \quad t \to (\neg p \land q), \quad q \to (s \land t)\}.$$

Hinweis: Leiten Sie erst $\{q\}$ ab.

(c) Beweisen Sie mit Hilfe von Grundinstanzenresolution, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3\}$ unerfüllbar ist, wobei:

$$\varphi_1 := \forall x \forall y (R(x,y) \to (P(x) \leftrightarrow Q(y))),
\varphi_2 := \forall x \exists y (R(x,y) \land P(y)),
\varphi_3 := \exists x (\neg P(x) \land \forall y (Q(y) \land P(y) \to R(x,y))).$$

Aufgabe 3 (12 Punkte)

(a) Geben Sie einen semantischen Beweis der folgenden prädikatlogisch wahren Formel:

$$\varphi := \exists x \forall y \forall z (P(x) \to P(y) \land P(z)).$$

- (b) Bestimmen Sie die Herbrand-Normalform φ^H von φ und geben Sie eine tautologische Herbranddisjunktion von φ an.
- (c) Wie (b), aber mit

$$\varphi := \forall y \forall z \exists x (P(x) \to P(y) \land P(z)).$$

Aufgabe 4 (12 Punkte)

Seien

$$\varphi_1 := \forall x \forall y (R(x,y) \land P(x) \rightarrow \neg Q(y))
\varphi_2 := \forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z))
\varphi_3 := \forall x (P(x) \rightarrow \exists y (R(x,y) \land \neg P(y)))
\varphi_4 := \forall x (\neg P(x) \rightarrow \exists y (R(x,y) \land P(y) \land Q(y)))$$

- (a) Wandeln Sie die Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ in Skolem-Normalform um.
- (b) Zeigen Sie semantisch, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ nicht erfüllbar ist.
- (c) Je drei der vier Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ sind gemeinsam erfüllbar. Weisen Sie dies für mindestens drei der vier Kombinationen durch Angabe von Herbrand-Modellen nach.

Aufgabe 5 (12 Punkte)

(a) Formalisieren Sie das n-fache Schubfachprinzip S_n :

Falls n+1 Bücher auf n Schubladen verteilt werden, so gibt es eine Schublade, in der mindestens zwei Bücher liegen.

Hinweis: Verwenden Sie aussagenlogische Variablen $p_{i,j}$ $(1 \le i \le n+1, 1 \le j \le n)$ für die Aussage "Buch i liegt in Schublade j."

- (b) Wir nennen $\mathcal{A}=(A,<)$ einen Baum, falls die folgende vier Eigenschaften gelten:
 - (i) $\forall x \ \neg (x < x)$
 - (ii) $\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z)$
 - (iii) $\exists x \forall y (x < y \lor x = y)$ (es gibt ein kleinstes Element)
 - (iv) für jedes $a \in \mathcal{A}$ ist die Menge $\{x \in \mathcal{A} : x < a\}$ linear geordnet

$$\forall x \forall y (x < a \land y < a \rightarrow x < y \lor x = y \lor y < x)$$

und endlich

Zeigen Sie, dass es keine Formelmenge Γ in der Sprache $\{<\}$ gibt, so dass $\mathcal{A} \models \Gamma$ genau dann gilt, wenn \mathcal{A} ein Baum ist.