Working with Data in Python

Chicago Federal Reserve Bank Workshop 2016

Agenda

- 1. Where does Pandas fit?
- 2. Demo
- 3. Introduction to Pandas
 - pd.Series
 - pd.DataFrame
- 4. Time Series Data
- 5. Exercises (pd.Series and pd.DataFrame)

Break

- 1. Chicago Federal Reserve Bank Data (Excel)
- 2. Working with **medium** sized data
- 3. Web Data
- 4. Exercises (Working with Data)

Where does Pandas Fit?

https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-keynote?slide=8

Some great packages for working with data

- 1. pandas
- 2. dask
 - flexible parallel computing library for analytics
 - dask.DataFrame
- 3. odo Data Conversions
- 4. statsmodels Regression and Statistics
- 5. scikit-learn Machine Learning
- 6. NetworkX

Additional packages for working with data

New and interesting

1. xarray - N-dimensional Pandas

Plotting

- 1. matplotlib
- 2. Plotly
- 3. Bokeh
- 4. Myavi, Chaco, ... many others

Rpy2, BeautifulSoup, Requests, ...

+++ many more

Quick Pandas Demo

- Random Time Series
- 2. Chicago Federal Reserve CFNAI Data
- 3. FRED Data

See: intro-python-data-analysis.ipynb

Pandas

Pandas is the key library for data work in Python and it is built on top of **NumPy**

Some things that Pandas is very good at:

- 1. Easy handling of missing data (represented as NaN)
- 2. Automatic and explicit data alignment
- 3. Hierarchical labeling of axes

Reference: http://pandas.pydata.org/ [Docs are 2,017 pages long]

Pandas

Pandas is focused on two primary abstractions:

- 1. pd.Series() Array Like Data
- 2. pd.DataFrame() Tabular Data

Pandas - Continued

Operations:

- Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
- Intelligent label-based slicing, fancy indexing, and sub-setting of large data sets
- 3. Intuitive merging and joining of data sets
- 4. Flexible reshaping and pivoting of data sets

Reference:

http:

//pandas.pydata.org/pandas-docs/version/0.18.1/index.html

Pandas - Continued

10:

- 1. Robust IO tools for loading data from
 - flat files (CSV and delimited),
 - Excel files,
 - · databases,
 - · and saving / loading data from the fast HDF5 format

Reference:

http://pandas.pydata.org/pandas-docs/version/0.18.1/io.html

Pandas - Continued

Specialized Data Types: TimeSeries

- 1. Time series specific functionality:
 - date range generation and frequency conversion,
 - moving window statistics,
 - moving window linear regressions,
 - date shifting and lagging, etc.
 - time zone handling

Reference:

http://pandas.pydata.org/pandas-docs/version/0.18.1/timeseries.html

pd.Series Object

A **Pandas** Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.).

```
import pandas as pd
s = pd.Series([5,4,3,2,1], index=['a', 'b', 'c', 'd', 'e'])
```

Produces the following object:

```
a 5
b 4
c 3
d 2
e 1
dtype: int64
```

pd.Series Object

pd.Series Object

```
s[s > 2]
```

a 5

b 4

c 3

dtype: int64

pd.DataFrame Object

Produces the DataFrame:

	one	two
а	1.0	1.0
b	2.0	2.0
С	3.0	3.0
d	NaN	4.0

Exercises - pd.Series and pd.DataFrame

Refer to notebook: exercises-pandas-series-dataframes.ipynb

Applications

- 1. Working with Time Series Data
 - Closer look at the Chicago Fed Data
 - Financial Data
- 2. Working with **medium** sized data
 - International Export Data
- 3. Web Data

Exercises - Applications

Refer to notebook: exercises-pandas-applications.ipynb