А. Асимптотики-1

1 секунда, 256 мегабайт

Символ ∃ обозначает *существует*, а символ ∀ обозначает *для любого*.

Пусть есть некоторые функции f(x) и g(x).

Напомним используемые определения:

• Мы записываем $f(n) = \mathcal{O}(g(n))$ и говорим, что f(x) это Обольшое от g(x):

 $\exists\, n_0,c>0$ такие что $orall\, n_0$ верно: $f(n)\leqslant c\cdot g(n)$

• Мы записываем $f(n) = \Omega(g(n))$ и говорим, что f(x) это Омегабольшое от g(x):

 $\exists \, n_0, c > 0$ такие что $\forall \, n \geqslant n_0$ верно: $f(n) \geqslant c \cdot g(n)$

• Мы записываем $f(n) = \Theta(g(n))$ и говорим, что f(x) это Tэта-большое от g(x):

$$\exists n_0, c_1, c_2 > 0$$
 такие что $\forall n \geqslant n_0$ верно: $c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)$

Входные данные

В первой строке содержится описание f(x). Во второй строке содержится описание g(x).

Гарантируется, что каждая функция представляет собой **сумму** некоторых *термов*. Каждый *терм* строится по одному из следующих правил:

- kx^p
- kx

· k

где $1\leqslant k\leqslant 10^3$ — некоторый коэффициент, а $2\leqslant p\leqslant 20$ — степень аргумента \boldsymbol{x} . В случае, если перед аргументом \boldsymbol{x} коэффициент k равен единице, то он может быть опущен.

Выходные данные

Выведите три строки, каждая из которых содержит по одному слову YES или NO.

- 1. Верно ли соотношение $f(x) = \mathcal{O}(g(x))$.
- 2. Верно ли соотношение $f(x) = \Omega(g(x))$.
- 3. Верно ли соотношение $f(x) = \Theta(g(x))$.

входные данные x^2 + x + 1 1 + x + x^2 выходные данные YES YES YES YES

