$$\varphi_{i}^{\pm} \circ (\varphi_{j}^{\pm})^{-1} \text{ glatt}$$

$$\psi \circ (\varphi_{j}^{\pm})^{-1} \text{ glatt}$$

$$\varphi \circ (\varphi_{j}^{\pm})^{-1} \text{ glatt}$$

$$\varphi_{i}^{\pm} \circ \varphi \text{ glatt}$$

$$\varphi_{i}^{\pm} \circ \psi \text{ glatt}$$

b) asdf

Lösung 2

$$\varphi:\mathbb{R}\to\mathbb{R}, x\mapsto x^3$$

Behauptung: φ induziert eine C^{∞} -Struktur auf \mathbb{R} , die von der Standardstruktur abweicht.

Dazu müssen wir zeigen:

- (i) $\{(\varphi, \mathbb{R})\}$ ist ein C^{∞} -Atlas
- (ii) φ ist nicht verträglich mit (id, \mathbb{R})

Beweis:

- (i) φ ist Homöomorphismus, da φ und $\varphi^{-1}: x \mapsto \sqrt[3]{x}$ stetig sind. Offensichtlich überdeckt φ ganz \mathbb{R} . Der einzige Kartenwechsel $\varphi \circ \varphi^{-1} = \mathrm{id}_{\mathbb{R}}$ ist glatt.
- (ii) Betrachte

$$\mathrm{id}_{\mathbb{R}} \circ \varphi^{-1} = \varphi^{-1} : x \mapsto \sqrt[3]{x}$$

 $id_{\mathbb{R}} \circ \varphi^{-1}$ ist in 0 nicht differenzierbar \Rightarrow (ii) \checkmark

Behauptung: Die beiden C^{∞} Strukturen sind diffeomorph

Beweis: Sei

$$f: \begin{array}{ccc} \text{von id induziert} & & \text{von } \varphi \text{ induziert} \\ (\mathbb{R}, \tau_{\text{std}}) & \to & (\mathbb{R}, \tau) \\ x & \mapsto & \sqrt[3]{x} \end{array}$$

Dann ist f bijektiv. Es gilt für $x \in \mathbb{R}$:

$$\varphi \circ f \circ (\mathrm{id}_{\mathbb{R}})^{-1}(x) = (\sqrt[3]{x})^3 = x$$

ist glatt. Betrachte nun f^{-1} : $\mathrm{id}_{\mathbb{R}} \circ f^{-1} \circ \varphi^{-1}(x) = (\sqrt[3]{x})^3 = x$ ist glatt. Damit ist f ein Diffeomorphismus.

Lösung 3

 $k \in \mathbb{N} \cup \{\infty\}$, M_1, M_2 C^k -Mannigfaltigkeiten, $N_i \subseteq M_i$ Untermannigfaltigkeit, $f \in C^j(M_1, M_2)$ wobei $j \leq k$, $f(N_1) \subseteq N_2$.

Behauptung: $f|_{N_1} \in C^j(N_1, N_2)$

Beweis: Sei $p \in N_1$, sei (φ_1, U_1) eine an N_1 adaptierte Karte von M_1 um p, das heißt $p \in U_1$.

$$\varphi_1(U_1 \cap N_1) = \varphi_1(U_1) \cap \left(\mathbb{R}^{\dim N_1} \times \{0\}^{n - \dim N} \right)$$

Sei (φ_2, U_2) eine an N_2 adoptiere Karte von M_2 um f(p). Dann erhalten wir Karten von N_i , indem wir die Projektion $\pi_i : \mathbb{R}^{\dim M_i} \to \mathbb{R}^{\dim N_i}, x \mapsto (x^1, \dots, x^{\dim N_i})$ hinter die Karten φ_i schalten (das heißt betrachte $\pi_i \circ \varphi_i$).

Es ist

$$(\pi_2 \circ \varphi_2) \circ f|_{N_1} \circ (\pi_1 \circ \varphi_1)^{-1} = \underbrace{\pi_2}_{C^{\infty}} \circ \underbrace{(\varphi_2 \circ f \circ \varphi_1^{-1})}_{C^j} \circ C_1$$

mit $C_1: \mathbb{R}^{\dim N_1} \ni x \mapsto (x, 0, \dots, 0) \in \mathbb{R}^{\dim M_1}$. Also $(\pi_2 \circ \varphi_2) \circ f \circ (\pi_1 \circ \varphi_1)^{-1} \in C^j$ und damit $f|_{N_1} \in C^j(N_1, N_2)$

Lösung 4

a) $M = S^n$, $N = \{(x^0, x^1, \dots, x^n) \in S^n \mid x^2 = \dots = x^n = 0\}$; Skizze für n = 2:

Behauptung: N ist eine Untermannigfaltigkeit von M.

Beweis: Sei
$$\varphi: \overbrace{S^n \setminus \{(1,0,\ldots,0)\}}^{=:U} \to \mathbb{R}^n, \ \varphi(x) = \frac{1}{1-x^0}(x^1,\ldots,x^n)$$

Zu zeigen: $\varphi(U \cap N) = \varphi(U) \cap (\mathbb{R} \times \{0\}^{n-1})$

$$\varphi(U \cap N) = \varphi(N \setminus \{(1, \dots, 0)\}) = \mathbb{R} \times \{0\}^{n-1}$$

Für $p \in N \setminus \{(1,0,\ldots,0)\}$ ist φ also eine adoptierte Karte um p. Für $p=(1,0,\ldots,0)$ ist analog ψ (aus 1 a)) eine adoptierte Karte.

b) $M = \mathbb{R}^2$, $N = \{(x,0) \mid x \ge 0\} \cup \{(0,y) \mid y \ge 0\}$; Skizze:

Behauptung: N ist keine glatte Untermannigfaltigkeit von \mathbb{R} .

Beweis: Angenommen N wäre Untermannigfaltigkeit von \mathbb{R}^2 . Da N homöomorph zu \mathbb{R} ist, wäre es eine eindimensionale Untermannigfaltigkeit. Damit existiert eine Karte (φ, U) von \mathbb{R}^2 um (0,0) mit $\varphi(U \cap N) = \varphi(U) \cap (\mathbb{R} \times \{0\})$. Betrachte φ^{-1} , beziehungsweise $f(t) = \varphi^{-1}(t,0)$. Es sei $t_0 \in \mathbb{R}$ mit $f(t_0) = (0,0)$. Da $f(t) = N \cap U$ ist entweder $f(t) \in \{(0,y) \mid y \geq 0\}$ für $t > t_0$ und $f(t) \in \{(x,0) \mid x \geq 0\}$ für $t < t_0$ oder umgekehrt. Dann ist $f'(t) \in \mathbb{R} e_2$ für $t > t_0$ und $f'(t) \in \mathbb{R} e_1$ für $t < t_0$ oder umgekehrt.

$$\Rightarrow f'(0) \in \mathbb{R} \, e_1 \cap \mathbb{R} \, e_2 = \{(0,0)\}$$

$$Andererseits: f'(0) = \underbrace{\left(D\varphi^{-1}|_{\varphi(0,0)}\right)}_{\text{Isom., da }\varphi^{-1} \text{ Diffeom.}} (\begin{pmatrix} 1 \\ 0 \end{pmatrix}) \neq \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Übung 2 vom 5. November 2012

Aufgabe 1

Es sei $\psi: (0, \infty) \times (0, 2\pi) \to \operatorname{Bild}(\psi) \subset \mathbb{R}^2$, $(r, \vartheta) \mapsto r(\cos(\vartheta), \sin(\vartheta))$. Dann ist die Inverse $\varphi = \psi^{-1}$ eine Karte von \mathbb{R}^2 mit Kartengebiet $\operatorname{Bild}(\psi)$ und Komponenten $r = \varphi^1$, $\vartheta = \varphi^2$.

Berechnen Sie $\frac{\partial}{\partial r}$ und $\frac{\partial}{\partial \theta}$ in kartesischen Koordinaten, d.h. bzgl der kanonischen Karte id_{\mathbb{R}^2}, und skizzieren Sie diese.

Aufgabe 2

a) Es seien M_1 und M_2 glatte Mannigfaltigkeiten. Zeigen sie, dass die Projektionen

$$\pi_i: M_1 \times M_2 \to M_i \qquad (p_1, p_2) \mapsto p_i$$

Submersionen sind.

b) Es sei

$$f:(0,2\pi)\to\mathbb{R}^2$$
 $t\mapsto (\sin(t),\sin(2t)).$

Zeigen Sie, dass f eine injektive Immersion, aber keine Einbettung ist und skizzieren Sie Bild(f).

Aufgabe 3

Es sei $f: \mathbb{R}^3 \to \mathbb{R}$ mit $f(x, y, z) = x^2 + y^2 + az^2$. Skizzieren Sie für a = 0, a = 1 und a = -1 die Niveaumengen

$$f^{-1}(c) = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = c\}$$

mit $c \in \mathbb{R}$. Welche Niveaumengen sind C^{∞} -Untermannigfaltigkeiten von \mathbb{R}^3 ?

Aufgabe 4

Zeigen Sie, dass die Gruppen $\mathrm{SL}(n,\mathbb{R})$ und $\mathrm{O}(n,\mathbb{R})$ glatte Untermannigfaltigkeiten des $\mathbb{R}^{n\times n}$ sind, indem Sie sie als reguläre Urbilder darstellen und bestimmen Sie ihre Dimensionen.

Lösung 1

Es sei $\psi: (0,\infty) \times (0,2\pi) \to \mathbb{R}^2 \setminus (\mathbb{R}_{\geq 0} \times \{0\}), (r,\vartheta) \mapsto r(\cos\vartheta,\sin\vartheta)$, die Inverse $\varphi = \psi^{-1}$ ist eine Karte von \mathbb{R}^2 .

$$\begin{split} \frac{\partial}{\partial r} \bigg|_{p} &= \frac{\partial \left(\operatorname{id}^{1} \circ \varphi^{-1} \right)}{\partial r} \left(\varphi(p) \right) \frac{\partial}{\partial x} \bigg|_{p} + \frac{\partial \left(\operatorname{id}^{2} \circ \varphi^{-1} \right)}{\partial r} \left(\varphi(p) \right) \frac{\partial}{\partial y} \bigg|_{p} \\ &= \frac{\partial \left(\operatorname{id}^{1} \circ \psi \right)}{\partial r} \left(\varphi(p) \right) \frac{\partial}{\partial x} \bigg|_{p} + \frac{\partial}{\partial x} \bigg|_{p} + \frac{\partial \left(\operatorname{id}^{2} \circ \psi \right)}{\partial r} \left(\varphi(r) \right)^{2} \frac{\partial}{\partial y} \bigg|_{p} \\ &= \cos \left(\vartheta(p) \right) \frac{\partial}{\partial x} \bigg|_{p} + \sin \left(\vartheta(p) \right) \frac{\partial}{\partial y} \bigg|_{p} \\ &= \frac{1}{r(p)} \left(r(p) \cos \left(\vartheta(p) \right) \frac{\partial}{\partial x} \bigg|_{p} + r(p) \sin \left(\vartheta(p) \right) \frac{\partial}{\partial y} \bigg|_{p} \right) \\ &= \frac{1}{r(p)} \left(\psi^{1} \left(\varphi(p) \right) \frac{\partial}{\partial r} \bigg|_{p} + \psi^{2} \left(\varphi(p) \right) \frac{\partial}{\partial y} \bigg|_{p} \right) \\ &= \frac{1}{\|p\|} \left(p^{1} \frac{\partial}{\partial x} \bigg|_{p} + p^{2} \frac{\partial}{\partial y} \bigg|_{p} \right) \end{split}$$

Als Vektorfeld:

$$\frac{\partial}{\partial r} = \frac{1}{\|(x,y)\|} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)$$

Desweiteren gilt:

$$\frac{\partial}{\partial \vartheta}\Big|_{p} = \frac{\partial \left(\operatorname{id}^{1} \circ \varphi^{-1}\right)}{\partial \vartheta} \left(\varphi(p)\right) \frac{\partial}{\partial x}\Big|_{p} + \frac{\partial \left(\operatorname{id}^{2} \circ \varphi^{-1}\right)}{\partial \vartheta} \left(\varphi(p)\right) \frac{\partial}{\partial x}\Big|_{p}$$

$$= \dots = -p_{2} \frac{\partial}{\partial x}\Big|_{p} + p_{1} \frac{\partial}{\partial y}\Big|_{p}$$

Also:

$$\frac{\partial}{\partial \vartheta} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$$

Lösung 2

a) Zeige dass $\pi_i: M_1 \times M_2 \to M_i$, $(p_1, p_2) \mapsto p_i$ eine Submersion ist. Sei $(p_1, p_2) \in M_1 \times M_2$. Seien φ_i Karten von M_i um p_i mit Kartengebieten U_i . Dann ist $\varphi_1 \times \varphi_2: U_1 \times U_2 \to \varphi_1(U_1) \times \varphi_2(U_2)$ eine Karte von $M_1 \times M_2$ um (p_1, p_2) . Es ist

$$\varphi_i \circ \pi_i \circ (\varphi_1 \times \varphi_2)^{-1} = \varphi_i \circ \pi_i \circ (\varphi_1^{-1} \times \varphi_2^{-1}).$$

Für $(x_1, x_2) \in \varphi_1(U_1) \times \varphi_2(U_2)$ ist

$$\varphi_i \circ \pi_i \circ (\varphi_1 \times \varphi_2)^{-1}(x_1, x_2) = \varphi_i(\pi_i(\varphi_1^{-1}(x_1), \varphi_2^{-1}(x_2))) = \varphi_i(\varphi_i^{-1}(x_i)) = x_i.$$

Daraus folgt dass $\varphi_i \circ \pi_i \circ (\varphi_1 \times \varphi_2)^{-1}$ glatt ist. Der Rest des Beweises kann auf zwei Arten erfolgen.

Variante 1: Es folgt dass $D(\varphi_i \circ \pi_i \circ (\varphi_1 \times \varphi_2)^{-1}) = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$

Dies ist die Darstellungsmatrix von π_{1*} bezüglich den Basen $\frac{\partial}{\partial \varphi_1^1}, \ldots, \frac{\partial}{\partial \varphi_1^d}$ und $\frac{\partial}{\partial (\varphi_1 \times \varphi_2)^1}, \ldots, \frac{\partial}{\partial (\varphi_1 \times \varphi_2)^{\dim M_1 + \dim M_2}}$. Also ist π_{1*} surjektiv. Auch π_1 ist surjektiv, also ist π_1 eine Submersion. Der Beweis für π_2 folgt analog.

Variante 2: Sei $X = \sum_{j=0}^{\dim M_1} \xi^j \left. \frac{\partial}{\partial \varphi_1^j} \right|_{p_1} \in \mathcal{T}_{p_1} M_1$. Setze

$$\tilde{X} = \sum_{j=1}^{\dim M_1} \xi^j \left. \frac{\partial}{\partial (\varphi_1 \times \varphi_2)^j} \right|_p \in \mathcal{T}_p(M_1 \times M_2).$$

Dann ist

$$\pi_{1*_{p}}\tilde{X} = \sum_{k=1}^{\dim M_{1}} \left(\sum_{j} \underbrace{\partial_{j} \left(\varphi^{k} \circ \pi_{1} \circ (\varphi_{1} \times \varphi_{2})^{-1} \right)}_{=\delta(k,j)} (\varphi_{1}(p_{1}), \varphi_{2}(p_{2})) \xi^{j} \right) \frac{\partial}{\partial \varphi_{1}^{k}} \Big|_{p_{1}}$$

$$= \sum_{k=1}^{\dim M_{1}} \xi^{k} \frac{\partial}{\partial \varphi_{1}^{k}} \Big|_{p_{1}} = X$$

Daraus folgt dass π_{1*} surjektiv ist.

b) Zeige dass $f:(0,2\pi)\to\mathbb{R}^2$, $t\mapsto(\sin(t),\sin(2t))$ eine injektive Immersion aber keine Einbettung ist.

f ist injektiv: Seien $t_1, t_2 \in (0, 2\pi)$ mit $f(t_1) = f(t_2)$. Damit muss auch gelten dass $\sin(t_1) = \sin(t_2)$ und $\sin(2t_1) = \sin(2t_2)$. Aus diesen beiden Bedingungen folgt dass für t_1, t_2 gelten muss:

- $t_1 = t_2$ oder $\frac{\pi}{2} t_1 = t_2 \frac{\pi}{2}$ oder $\frac{3\pi}{2} t_1 = t_2 \frac{3\pi}{2}$
- $2t_1 = 2t_2$ oder $\frac{\pi}{2} 2t_1 = 2t_2 \frac{\pi}{2}$ oder $\frac{3\pi}{2} 2t_1 = 2t_2 \frac{3\pi}{2}$

Aus den beiden Bedingungen folgt somit dass $t_1 = t_2$ gilt.

f ist eine Immersion: Es reicht zu zeigen, dass $f_{*t}=0$ für alle t gilt. Es gilt D $f(t)=(\cos(t),2\cos(2t))$, also

$$D f(t) = 0 \Leftrightarrow \cos(t) = 0 \text{ und } \cos(2t) = 0$$

$$\Leftrightarrow \left(t = \frac{\pi}{2} \lor t = \frac{3\pi}{2}\right) \bigwedge \left(2t = \frac{\pi}{2} \lor 2t = \frac{3\pi}{2} \lor 2t = \frac{5\pi}{2} \lor 2t = \frac{7\pi}{2}\right)$$

Das ist aber nicht möglich, also ist D $f(t) \neq 0$. D f(t) ist die Darstellungsmatrix, also ist auch $f_{*t} \neq 0$.

Skizze:

f ist keine Einbettung: Es gilt dass $\left(\frac{1}{k}\right)_{k\in\mathbb{N}}$ nicht in $(0,2\pi)$ konvergiert, aber es ist $f\left(\frac{1}{k}\right)\to(0,0)=f(\pi)\in \operatorname{Bild} f$. Damit ist f kein Homöomorphismus auf das Bild.

Lösung 3

Es gilt D f(x, y, z) = 2(x, y, az), daraus folgt für $a = \pm 1$ dass $D f(x, y, z) \neq 0$ für alle $(x, y, z) \in \mathbb{R}^3 \setminus \{0\}$ ist, und für a = 0 ist $D f(x, y, z) \neq 0$ für alle $(x, y, z) \in \mathbb{R}^3 \setminus z$ -Achse. Damit ist für c > 0 dann $f^{-1}(c)$ in der Menge der regulären Punkte von f enthalten.

Für c = 0: Wir betrachten nun drei Fälle

- a=1: Für $\mathrm{id}_{\mathbb{R}^3}$ gilt $f^{-1}(c)=\{0\}=\mathbb{R}^3\cap\{0\}^{3-0}$, also ist $f^{-1}(0)$ eine 0-dimensionale Untermannigfaltigkeit von \mathbb{R}^3 .
- a=0: Definiere $\varphi:\mathbb{R}^3\to\mathbb{R}^3,\,(x,y,z)\mapsto(z,x,y)$. Damit ist φ ein Diffeomorphismus, also eine globale Karte von \mathbb{R}^3 und es gilt:

$$\varphi(f^{-1}(0)) = \varphi(z\text{-Achse}) = \mathbb{R} \times \{0\}^2,$$

also ist $f^{-1}(0)$ eine Untermannigfaltigkeit von \mathbb{R}^3 .

a=-1: $f^{-1}(0)$ ist keine Untermannigfaltigkeit. Angenommen es wäre eine, dann wäre $f^{-1}(0)$ zweidimensional:

$$\varphi: f^{-1}(0) \cap \{(x, y, z) \mid z > 1\} \to \mathbb{R}^2 \setminus \overline{B_1(0)}$$
 $(x, y, z) \mapsto (x, y)$

ist ein Homömorphismus. Da für $(x,y,0)\in f^{-1}(0)$ gilt $x^2+y^2=0$, also x=y=0, zerfällt $f^{-1}(0)\setminus\{(0,0,0)\}$ in zwei Zusammenhangskomponenten, was einen Widerspruch zur Zweidimensionalität von $f^{-1}(0)$ bildet. ξ

Für c < 0: Wir betrachten nur noch zwei Fälle

- a=1,0: Definitionssache, aber ja: Die Aussage über \emptyset liefert dass es für alle p in der Untermannnigfaltigkeit eine globale Karte gibt.
- a = -1: Es gilt

$$f^{-1}(c) = \{(x, y, z) \mid x^2 + y^2 - z^2 = c\} = \{(x, y, z) \mid z^2 = x^2 + y^2 + |c|\},\$$

das heišt für $(x, y, z) \in f^{-1}(c)$ gilt $z \neq 0$, also $\{0\} \notin f^{-1}(c)$. Daraus folgt dass alle Punkte aus $f^{-1}(c)$ regulär sind.

Lösung 4

Zeige dass die Gruppen $SL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \det A = 1\}$ und $O(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid AA^T = I_n\}$ glatte Untermannigfaltigkeiten des $R^{n \times n}$ sind.

Definiere $f = \det$, dann ist $SL(n, \mathbb{R}) = f^{-1}(1)$. Dann gilt

$$A[k,j]$$
 bezeichnet die
Matrix A bei der die
 k -te Zeile und die i -te
Spalte weggelassen
wurden

$$\frac{\partial(f)}{\partial a_{ij}} = \frac{\partial}{\partial a_{ij}} \left(\sum_{k=1}^{n} (-1)^{k+j} \det A[k,j] a_{jk} \right) = (-1)^{i+j} \det A[i,j]$$

Es ist $D f(A) = 0 \Leftrightarrow \forall i, j \det A[i, j] = 0 \Rightarrow \det A = 0$, damit ist 1 regulärer Wert. Also ist $\dim SL(n, \mathbb{R}) = \dim \mathbb{R}^{n \times n} - \dim \mathbb{R} = n^2 - 1$.

Definiere nun $g: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $A \mapsto AA^T$. Dann ist $O(n) = g^{-1}(I_n)$ und es gilt

$$D g(A)(B) = \frac{d}{dt}\Big|_{t=0} g(A+tB)$$

$$= \frac{d}{dt}\Big|_{t=0} (AA^T + tAB^T + tBA + t^2BB^T) = AB^T + BA^T$$

Seien nun $A \in O(n, \mathbb{R})$ und $C \in \mathbb{R}^{n \times n}_{sym}$. Es bleibt zu zeigen dass ein $B \in \mathbb{R}^{n \times n}$ existiert sodass D g(A)(B) = C. Es gilt:

$$D g(A) \left(\frac{1}{2}CA\right) = \frac{1}{2} \left(\underbrace{AA^{T}}_{=I}C^{T} + C\underbrace{AA^{T}}_{=I}\right) = C$$

Daraus folgt dass I ein regulärer Wert von g ist und $O(n, \mathbb{R})$ eine Untermannigfaltigkeit von $\mathbb{R}^{n \times n}$ der Dimension $n^2 - \dim \mathbb{R}^{n \times n}_{\text{sym}} = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

Übung 3 vom 12. November 2012

Aufgabe 1

Es sei M eine glatte Mannigfaltigkeit. Zeigen Sie:

- a) Die kanonische Projektion $\pi: TM \to M$ ist ein Submersion.
- b) Der Nullschnitt $\sigma: M \to \mathrm{T}M, \, p \mapsto 0 \in \mathrm{T}_p M$ ist eine Einbettung.
- c) Ist N eine weitere glatte Mannigfaltigkeit und $\Phi:M\to N$ glatt, so ist $\Phi_*:TM\to TN$ glatt.

Aufgabe 2

Es sei M eine glatte n-dimensionale Mannigfaltigkeit und $X, Y \in \mathcal{V}(M)$.

- a) Zeigen Sie, dass die Lieklammer im Allgemeinen nicht $C^{\infty}(M)$ -bilinear ist.
- b) Zeigen Sie, dass XY mit $XY(p)(f) := X_p(Y(f))$ für $p \in M$ und $f \in C^{\infty}(M)$ im Allgemeinen kein Vektorfeld ist.

Es sei ferner (φ, U) eine Karte von M und $X|_U = \sum_{i=1}^n \xi^i \frac{\partial}{\partial x^i}$, $Y|_U = \sum_{i=1}^n \eta^i \frac{\partial}{\partial x^i}$, sowie

 $[X,Y]|_U = \sum_{i=1}^n \zeta^i \frac{\partial}{\partial x^i}$ die lokalen Darstellungen von X,Y und [X,Y] bezüglich φ .

c) Zeigen Sie, dass gilt:

$$\zeta^{j} = \sum_{i=1}^{n} \left(\xi^{i} \frac{\partial \eta^{j}}{\partial x^{i}} - \eta^{i} \frac{\partial \xi^{j}}{\partial x^{i}} \right).$$

Aufgabe 3

a) Es seien auf \mathbb{R}^2 die beiden Vektorfelder $X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$ und $Y = -2y\frac{\partial}{\partial x} + \frac{1}{2}x\frac{\partial}{\partial y}$ gegeben. Skizzieren Sie die Vektorfelder und bestimmen Sie die Flüsse von X und Y.

b) Auf dem Torus $\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1 = \{(e^{i\vartheta^1}, e^{i\vartheta^2}) \in \mathbb{C}^2 \mid \vartheta^1, \vartheta^2 \in \mathbb{R}\}$ betrachten wir für $k \in \mathbb{N}$ das Vektorfeld $X_k = \frac{\partial}{\partial \vartheta^1} + \frac{1}{k} \frac{\partial}{\partial \vartheta^2}$. Bestimmen Sie die Integralkurve von X_k durch den Punkt $(1,1) \in \mathbf{T}^2$.

Lösung 1

Sei M eine glatte Mannigfaltigkeit. Sei desweiteren für alle drei Teilaufgaben $p \in M$, φ eine Karte um p mit Kartengebiet U und

$$\overline{\varphi}: \left\{ \begin{array}{ccc} \operatorname{T} M|_{U} & \to & \mathbb{R}^{2n} \\ \sum_{i} \xi^{i} \left. \frac{\partial}{\partial x^{i}} \right|_{q} & \mapsto & (\varphi(q), \xi) \end{array} \right.$$

eine Karte von TM. Alle diese Karten bilden dann einen Atlas von TM.

a) Zeige: $\pi: TM \to M, T_pM \ni x \mapsto p$ ist eine Submersion. Es ist

$$\varphi \circ \pi \circ \overline{\varphi}^{-1} \underbrace{(y,\xi)}_{\in \varphi(U) \times \mathbb{R}^n} = \varphi \left(\pi \left(\sum_i \xi^i \left. \frac{\partial}{\partial x^i} \right|_{\varphi^{-1}(y)} \right) \right)$$
$$= \varphi(\varphi^{-1}(y)) = y$$

also ist π glatt. Desweiteren ist

$$D(\varphi \circ \pi \circ \overline{\varphi}^{-1})|_{(y,\xi)} = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$$

surjektiv und damit auch $\pi_{*\overline{\varphi}^{-1}(y,\xi)}$. Offensichtlich ist π surjektiv und damit eine Submersion.

b) Zeige: $\sigma: M \to TM, p \mapsto 0_{T_pM}$ ist eine Einbettung. Es gilt

$$\overline{\varphi} \circ \sigma \circ \varphi^{-1}(y) = \overline{\varphi}(0_{T_{\varphi^{-1}(y)}M}) = (\varphi(\varphi^{-1}(y)), 0) = (y, 0)$$

Daraus folgt folgt dass $D(\overline{\varphi} \circ \sigma \circ \varphi^{-1})|_y = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$ injektiv ist und damit auch $\sigma_{*\varphi^{-1}(y)}$. σ ist injektiv und stetig, $\pi \circ \sigma = \mathrm{id}_m$, also ist $\sigma^{-1} = \pi|_{\mathrm{Bild}(\sigma)}$ stetig.

c) Zeige: Ist $\Phi: M \to N$ eine glatte Abbildung, so auch $\Phi_*: TM \to TN$.

Sei ψ eine Karte um $\Phi(p)$ und $\overline{\psi}$ die zugehörige Karte von TN.

$$(\overline{\psi} \circ \Phi_* \circ \overline{\varphi}^{-1}) \underbrace{(y, \xi)}_{\in \varphi(U) \times \mathbb{R}^n} = (\overline{\psi} \circ \Phi_*) \left(\sum_j \xi^i \frac{\partial}{\partial x^i} \Big|_{\varphi^{-1}(y)} \right)$$

$$= \overline{\psi} \left(\sum_j \left(\sum_j \frac{\partial \Phi^i}{\partial x^j} \Big|_{\varphi^{-1}(y)} \xi^j \right) \frac{\partial}{\partial \psi^i} \Big|_{\Phi(\varphi^{-1}(y))} \right)$$

$$= \underbrace{\left(\underbrace{\psi \circ \Phi \circ \varphi^{-1}}_{\text{glatt}} \right)(y), \left(\sum_j \underbrace{\frac{\partial \Phi^i}{\partial x^j} \Big|_{\varphi^{-1}(y)}}_{\text{glatt in } y} \underbrace{\xi^j}_{i=1,\dots,n} \right)}_{\text{glatt}}$$

Daraus folgt dass Φ_* glatt ist.

Lösung 2

a) Zu zeigen: $[\cdot,\cdot]$ ist im Allgemeinen nicht $C^{\infty}(M)$ -bilinear.

$$M = \mathbb{R}, \ \frac{\partial}{\partial x} = X = Y, \ f = \mathrm{id} \ \text{,} = x$$
"

$$[X, \underbrace{fY}_{=x}] \stackrel{c)}{=} \left(1\underbrace{\frac{\partial x}{\partial x}} - x\underbrace{\frac{\partial 1}{\partial x}}\right) \underbrace{\frac{\partial}{\partial x}} = \underbrace{\frac{\partial}{\partial x}}$$
$$f[X, Y] \stackrel{c)}{=} f\left(1\underbrace{\frac{\partial 1}{\partial x}} - 1\underbrace{\frac{\partial 1}{\partial x}}\right) \underbrace{\frac{\partial}{\partial x}} = 0$$

b) Zu zeigen: für $X, Y \in \mathcal{V}(M)$ ist XY mit $(XY)|_p(f) = X_p(Y(f))$ im Allgemeinen keine Derivation.

$$(XY)_{p}(fg) = X_{p}(Y(fg))$$

$$= X_{p}(q \mapsto Y_{q}(fg))$$

$$= X_{p}(q \mapsto f(q)Y_{q}(g) + g(q)Y_{q}(f))$$

$$= X_{p}(fY(g) + gY(f))$$

$$= X_{p}(fY(g)) + X_{p}(gY(f))$$

$$= f(p) \cdot X_{p}(Y(g)) + Y_{p}(g) \cdot X_{p}(f) + g(p) \cdot X_{p}(Y(f)) + Y_{p}(f)X_{p}(g)$$

$$= f(p) \cdot (XY)|_{p}(g) + g(p)(XY)|_{p}(f) + \underbrace{Y_{p}(g)X_{p}(f) + Y_{p}(f)X_{p}(g)}_{\neq 0}$$

 $M = \mathbb{R}, X = Y = \frac{\partial}{\partial x}, f = g = \text{id} \Rightarrow \text{Leibnitz-Regel gilt nicht.}$

c) Bemerkung: Ist $X|_U = \sum_{i=1}^n \xi^i \frac{\partial}{\partial x^i}$ lokale Darstellung bezüglich φ von $X \in \mathcal{V}(M)$, so ist

$$\xi^i = X(\varphi^i)$$

Seien $X|_U=\sum_i \xi^i \frac{\partial}{\partial x^i}, \ Y|_U=\sum_i \eta^i \frac{\partial}{\partial x^i}.$ Damit gilt dann

$$\begin{split} [X,Y](x^j) &= (XY - YX)(x^j) \\ &= X(Y(x^j)) - Y(X(x^j)) \\ &= X\left(\sum_i \eta^i \underbrace{\frac{\partial}{\partial x^i}(x^j)}_{\delta_{ij}}\right) - Y\left(\sum_i \xi^i \underbrace{\frac{\partial}{\partial x^i}(x^j)}_{\delta_{ij}}\right) \\ &= X(\eta^j) - Y(\xi^j) \\ &= \sum_i \left(\xi^i \frac{\partial}{\partial x^i}(\eta^j) - \eta^i \frac{\partial}{\partial x^i}(\xi^j)\right) \end{split}$$

Lösung 3

a) Es seien $X = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}, Y = -2y \frac{\partial}{\partial x} + \frac{1}{2}x \frac{\partial}{\partial y} \in \mathcal{V}(\mathbb{R})$, bestimme γ_x^t und γ_y^t . $F\ddot{u}r \ X \colon t \mapsto \gamma_*^t(p)$ ist Integralkurve von X mit $\gamma_x^0(p) = p$. Gesucht: Kurve mit $\gamma(0) = p$, $\gamma_{*t} \frac{\partial}{\partial t} = X(\gamma(t)) \Leftrightarrow \gamma_{*t} \frac{\partial}{\partial t}(x) = X(\gamma(t))(x)$ und $\gamma_{*t} \frac{\partial}{\partial t}(y) = X(\gamma(t))(y) \Leftrightarrow \gamma_1'(t) = -\gamma_2(t)$ und $\gamma_2'(t) = \gamma_1(t)$. Das Anfangswertproblem

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}'(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_1(t) \\ \gamma_2(t) \end{pmatrix} \text{ und } \gamma(0) = p$$

hat als Lösung $t\mapsto \exp(t\left(\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}\right))\cdot p.$ Es gilt:

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{2n} = \begin{pmatrix} (-1)^n & 0 \\ 0 & (-1)^n \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{2n+1} = (-1)^n \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Damit gilt:

$$\exp\left(t \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} t^k (\dots)^k$$

$$= \begin{pmatrix} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} t^{2k} & -\sum_{k=0}^{\infty} \frac{t^{2k+1}}{(2k+1)!} (-1)^k \\ -\sum_{k=0}^{\infty} \frac{t^{2k+1}}{(2k+1)!} (-1)^k & \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} t^{2k} \end{pmatrix}$$

$$= \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

Daraus folgt
$$\gamma(t) = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \cdot p = \gamma_x^t(p)$$

 $F\ddot{u}r\ Y \colon \gamma_{*t} \frac{\partial}{\partial t} = Y(\gamma(t)), \ \gamma(0) = p \stackrel{\text{analog}}{\Longleftrightarrow} \gamma'(t) = \begin{pmatrix} 0 & -2 \\ \frac{1}{2} & 0 \end{pmatrix} \gamma(t)$

$$\begin{pmatrix} 0 & -2 \\ \frac{1}{2} & 0 \end{pmatrix}^{2n} = \begin{pmatrix} (-1)^n & 0 \\ 0 & (-1)^n \end{pmatrix}$$

Daraus folgt
$$\underbrace{\gamma(t)}_{=\gamma_x^t(p)} = \exp(t \begin{pmatrix} 0 & -2 \\ \frac{1}{2} & 0 \end{pmatrix}) \cdot p = \begin{pmatrix} \cos(t) & -2\sin(t) \\ \frac{1}{2}\sin(t) & \cos(t) \end{pmatrix} \cdot p$$

b) asdf

Übung 4 vom 19. November 2012

Aufgabe 1

Es seien $X, Y \in \mathcal{V}(M)$. Der Einfachheit halber nehmen wir an, dass X und Y vollständig sind. Zeigen Sie dass die folgenden Aussagen äquivalent sind:

- (i) [X, Y] = 0.
- (ii) Die Flüsse von X und Y kommutieren, d.h. $\gamma_X^t \circ \gamma_Y^s = \gamma_Y^s \circ \gamma_X^t$ für alle $s, t \in \mathbb{R}$. **Anmerkung:** Die Aussage gilt auch für nicht vollständige Vektorfelder für geeignete Zeiten s und t.

Aufgabe 2

Es sei $(U_{\alpha})_{\alpha \in I}$ eine offene Überdeckung von M und für alle $\alpha, \beta \in I$ mit $U_{\alpha} \cap U_{\beta} \neq \emptyset$ seien eine glatte Funktion $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}_k(\mathbb{R})$ gegeben. Es gelte $g_{\alpha\beta}(p) = g_{\alpha\gamma}(p) \cdot g_{\gamma\beta}(p)$ für alle $\alpha, \beta, \gamma \in I$ und $p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

Weiter sei

$$E := \dot{\bigcup}_{\alpha \in I} (U_{\alpha} \times \mathbb{R}^k) / \sim,$$

wobei für $p \in U_{\alpha}$, $q \in U_{\beta}$ und $v, w \in \mathbb{R}^k$ gelte:

$$(p, v) \sim (q, w) \Leftrightarrow p = q \text{ und } v = q_{\alpha\beta}(q)w$$

Zeigen Sie, dass $\pi: E \to M, [p,v] \mapsto p$ ein Vektorbündel über M vom Rang k ist.

Aufgabe 3

Es seien E, E' Vektorbündel über M und $F: E \to E'$ ein Bündelmorphismus, der faserweise ein Isomorphismus ist, d.h für alle $p \in M$ ist $F_p: E_p \to E'_p$ ein Isomorphismus.

Zeigen Sie, dass F ein Bündelisomorphismus ist, es also einen zu F inversen Bündelmorphismus gibt.

Aufgabe 4

- a) In einem Vektorbündel E vom Rang k über M gebe es k punktweise linear unabhängige Schnitte. Zeigen Sie, dass E trivial ist.
- b) Zeigen Sie, dass TS³ trivial ist.

Hinweis: Unter dem kanonischen Isomorphismus $T_p \mathbb{R}^4 \cong \mathbb{R}^4$ entspricht $T_p S^3 \subset T_p \mathbb{R}^4$ dem orthogonalen Komplement p^{\perp} .

Lösung 1

(ii) \Rightarrow (i): Es ist $\gamma_X^{-t} \circ \gamma_Y^s \circ \gamma_X^t(p) = \gamma_X^{-t} \circ \gamma_X^t \circ \gamma_Y^s(p) = \gamma_Y^s(p)$, und daraus folgt

$$\begin{aligned} Y|_p &= \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} (\gamma_Y^s(p)) = \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} \left((\gamma_x^{-t} \circ \gamma_Y^s)(\gamma_X^t(p)) \right) \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} \left(\gamma_x^{-t} \circ \left(s \mapsto \gamma_Y^s(\gamma_x^t(p)) \right) \right) \\ &= \gamma_{X*}^{-t} Y|_{\gamma_X^t}(p) \end{aligned}$$

Es gilt $[X, Y]|_p = (\mathcal{L}_X Y)_p = \frac{d}{dt}\Big|_{t=0} (\gamma_{X*}^{-t} Y)_p = \frac{d}{dt}\Big|_{t=0} Y_p = 0.$

(i) \Rightarrow (ii): betrachte $\gamma_{X*}^{-t} Y_{\gamma_X^t(p)} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{s=0} (\gamma_X^{-t} \circ \gamma_Y^s \circ \gamma_X^t(p))$. Es gilt:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=t_0} \left(\gamma_{X*}^{-t} Y_{\gamma_X^t(p)}\right) &= \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \left(\gamma_{X*}^{-(t_0+t)} Y_{\gamma_X^{t_0+t}(p)}\right) \\ &= \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \left((\gamma_X^{-t_0} \circ \gamma_X^{-t})_* Y_{\gamma_X^t(\gamma_X^{t_0}(p))}\right) \\ &= \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \left(\gamma_{X*}^{-t_0} \gamma_{X*}^{-t} Y_{\gamma_X^t(\gamma_X^{t_0}(p))}\right) \\ &= \gamma_{X*}^{-t_0} \left(\left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \left(\gamma_{X*}^{-t} Y_{\gamma_X^t(\gamma_X^{t_0}(p))}\right)\right) \\ &= \gamma_{X*}^{-t_0} \left((\mathcal{L}_X Y)_{\gamma_X^{t_0}(p)}\right) = \gamma_{X*}^{-t_0} \left(\underbrace{[X,Y]_{\gamma_X^{t_0}(p)}}_{-0}\right) = 0 \end{split}$$

Daraus folgt dass $t\mapsto \gamma_{X*}^{-t}Y_{\gamma_X^t(p)}$ konstant ist, also ist

$$\gamma_{X*}^{-t}Y_{\gamma_X^t(p)} = \underbrace{\gamma_X^{-0}}_{=\mathrm{id}_M}Y_{\gamma_X^0(p)} = Y_p$$

Sei $c(s) := \gamma_X^{-t}(\gamma_Y^s(q))$, dann folgt

$$\dot{c}(s) = \gamma_{X*}^{-t} \left(\frac{\mathrm{d}}{\mathrm{d}s} (\gamma_Y^s(q)) \right) = \gamma_{X*}^{-t} Y_{\gamma_Y^s(q)} = Y_{\gamma_X^{-t}(\gamma_Y^s(q))} = Y_{c(s)}$$

Daraus folgt dass c eine eindeutige Integralkurve zu Y durch $c(0) = \gamma_X^{-t}(q)$ ist. Damit folgt dann

$$\gamma_X^{-t}(\gamma_Y^s(q)) = \gamma_Y^s(\gamma_X^{-t}(q))$$

und damit

$$\gamma_X^{-t} \circ \gamma_Y^s = \gamma_Y^s \circ \gamma_X^{-t}$$

Lösung 2

Sei $\{U_{\alpha} \mid \alpha \in I\}$ eine offene Überdeckung vom M, $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$, $g_{\alpha\gamma}(p) = g_{\alpha\beta}(p) \cdot g_{\beta\gamma}(p)$ für alle $\in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Sei $E := \dot{\bigcup}_{\alpha \in I} (U_{\alpha} \times \mathbb{R}^{k})_{/\sim}$, wobei für $(p, v)_{\alpha} \in U_{\alpha} \times \mathbb{R}^{k}$, $(q, w)_{\beta} \in U_{\beta} \times \mathbb{R}^{k}$ gilt $(p, v)_{\alpha} \sim (q, w)_{\beta} \Leftrightarrow p = q$ und $v = g_{\alpha\beta}(p) \cdot w$.

Behauptung: $\pi: E \to M$, $[p, v] \mapsto p$ ist ein Vektorbündel.

"~" ist Äquivalenzrelation: • $(p,v)_{\alpha} \sim (p,v)_{\alpha}$ gilt: $g_{\alpha\alpha}(p) = \operatorname{id} v \ (g_{\alpha\alpha}(p) = \underbrace{g_{\alpha\alpha}(p) \cdot g_{\alpha\alpha}(p)}_{\in \operatorname{GL}(k,\mathbb{R})}$

- $(p,v)_{\alpha} \sim (q,w)_{\beta} \Rightarrow (q,w)_{\beta} \sim (p,v)_{\alpha} \text{ gilt: } p = q, v = g_{\alpha\beta}(p)w \Rightarrow w = (g_{\alpha\beta}(p))^{-1}v = g_{\beta\alpha}v \ (g_{\alpha\alpha}(p) = g_{\alpha\beta}(p)g_{\beta\alpha}(p))$
- Transitivität folgt aus $g_{\alpha\gamma} = g_{\alpha\beta}g_{\beta\gamma}$

 E_p ist k-dimensionaler Vektorraum:

$$[(p, v)_{\alpha}] + \lambda[(p, w)_{\alpha}] := [(p, v + \lambda w)_{\alpha}]$$

unabhängig von α :

$$\begin{split} [(p,v)_{\beta}] + \lambda [(p,w)_{\beta}] &= [(p,g_{\alpha\beta}(p)v)_{\alpha}] + \lambda [(p,g_{\alpha\beta}(p)w)_{\alpha}] \\ &= [(p,g_{\alpha\beta}(p)v + \lambda g_{\alpha\beta}(p)w)_{\alpha}] \\ &= [(p,g_{\alpha\beta}(p)\cdot(v + \lambda w))_{\alpha}] = [(p,v + \lambda w)_{\beta}] \end{split}$$

k-dimensional: $q|_{\{p\}\times\mathbb{R}^k}:\{p\}\times\mathbb{R}^k\to E_p \text{ ist Vektorraum-Isomorphismus (wobeing }:\dot{\bigcup}_{\alpha\in I}(U_\alpha\times\mathbb{R}^k)\to E)$

Bündelkarten (glatt): $\Phi_{\alpha}: U_{\alpha} \times \mathbb{R}^{k} \to E|_{U_{\alpha}}, (p, v) \mapsto [(p, v)_{\alpha}]$ ist Homöomorphismus, da $\sim |_{(U_{\alpha} \times \mathbb{R}^{k}) \times (U_{\alpha} \times \mathbb{R}^{k})}$ die triviale Äquivalenzrelation ist.

$$\begin{split} \Phi_{\alpha} \circ \Phi_{\beta}^{-1}(p,v) &= \Phi_{\alpha}([(p,v)_{\beta}]) \\ &= \Phi_{\alpha}([(p,g_{\alpha\beta}(p)v)_{\alpha}]) \\ &= (p,g_{\alpha\beta}(p)v) \end{split}$$

 $\Rightarrow \Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ ist glatt. $\Phi_{\alpha}|_{E_p}$ ist Vektorraum-Isomorphismus.

"normale" Karten: Sei φ Karte von M mit Kartengebiet $U \subset U_{\alpha} \leadsto \overline{\varphi}_{\alpha} : E|_{U} \to \varphi(U) \times \mathbb{R}^{k}, e \mapsto (\varphi(\pi(e)), (\Phi_{\alpha})^{2}(e)).$

Glatte Kartenwechsel \checkmark

E Hausdorffsch: $[(p, v)_{\alpha}] \neq [(q, w)_{\beta}] \in E$

 $p \neq q$: Die Urbilder in M trennender Umgebungen von p und q unter π trennen die Punkte in E.

 $p=q:\ v\neq g_{\alpha\beta}(p)w \leadsto {\rm trennen\ im}\ \mathbb{R}^k$ und über Φ_α zurückziehen.

abzählbare basis der Topologie (für $U_{\alpha} \times \mathbb{R}^k \checkmark$): Es gibt ein $I' \subseteq I$ mit I abzählbar und $M = \bigcup_{\alpha \in I'} U_{\alpha}$. Sei $\{V_j \mid j \in J'\}$ abzählbare Basis der Topologie von M. Dann ist mit $J = \{j \in J' \mid V_j \subset U_{\alpha} \text{ für ein } \alpha \in I\}, \{V_j \mid j \in J\}$ auch

abzählbare Basis der Topologie von M, denn $U \subset M \Rightarrow_{\mathrm{offen}}$

$$U = \bigcup_{\alpha \in I} (U_{\alpha} \cap U)$$

$$= \bigcup_{\alpha \in I} \bigcup_{\substack{j \in J' \\ U_{j} \subset U_{\alpha} \cap U}} V_{j} \qquad (U_{j} \subset U_{\alpha} \cap U \Rightarrow j \in J)$$

$$= \bigcup_{\alpha \in I} \bigcup_{\substack{j \in J \\ V_{j} \subset U_{\alpha} \cap M}} V_{j}$$

Für $j \in J$ sei $\alpha(j) \in I$, sodass $V_j \subset U_{\alpha(j)}$. Setze $I' := {\alpha(j) \mid j \in J}$.

$$\bigcup_{\alpha \in I'} U_{\alpha} = \bigcup_{j \in J} U_{\alpha(j)} \supseteq \bigcup_{j \in J} V_j = M$$

Lösung 3

Es seien E, E' Vektorbündel über M und $F: E \to E'$ sei ein Bündelmorphismus mit dem Isomorphismus $F_p: E_p \to E'_p$ für alle $p \in M$.

Behauptung: F ist ein Bündelisomorphismus

F ist surjektiv, denn für $e \in E'$ ist $F_{\pi'(e)} : E_{\pi'(e)} \to E'_{\pi'(e)}$ bereits ein Isomorphismus, also existiert ein Urbild $\tilde{e} \in E_{\pi'(e)} \subset E$ mit $F(\tilde{e}) = F_{\pi'(e)}(\tilde{e}) = e$. Dass F injektiv ist folgt analog, da $\pi' \circ F = \pi$.

Damit existiert ein $G: E' \to E$ mit $G \circ F = \mathrm{id}$, $F \circ G = \mathrm{id}$ und $\pi \circ G = \pi'$. Damit gilt auch

$$G(e') = (F_{\pi'(e)})^{-1}(e')$$

Es sei nun ein offenes $U \subseteq M$ mit den Trivialisierungen $E|_U$ und $E'|_U$ gegeben.

Da $\pi' \circ F = F$ ist, existiert eine Abbildung $f: U \to \operatorname{GL}(k, \mathbb{R})$ sodass $\tilde{F}(p, v) = (p, f(p) \cdot v)$ ist. Daraus folgt dass $\tilde{G}(p, w) = (p, (f(p))^{-1}w)$ glatt ist, da $\cdot^{-1}: \operatorname{GL}(k, \mathbb{R}) \to \operatorname{GL}(k, \mathbb{R})$ glatt ist (denn $A^{-1} = \frac{1}{\det A}((-1)^{i+j}\det A[i,j])_{i,j}^T$). Damit ist G glatt und somit auch ein Bündelmorphismus.

Lösung 4

(a) Behauptung: Es sei E ein Vektorbündel vom Rang k über M auf dem k punktweise linear unabhängige Schnitte existieren. Dann ist E trivial.

Es seien $\sigma_1, \ldots, \sigma_k : M \to E$ Schnitte, die punktweise linear unabhängig sind. Dann hat E_p als Basis $\sigma_1(p), \ldots, \sigma_k(p)$. Definiere nun $F : E \to M \times \mathbb{R}^k$, $\sum_{i=k}^k a_i \sigma_i(p) \mapsto (p, a_1, \ldots, a_k)$. Es gilt $\pi_1 \circ F = \pi$ und F_p ist ein Isomorphismus. F ist glatt, denn für eine Bündelkarte Φ ist $\tilde{\sigma}_i = \Phi^2 \circ \sigma_i$, das heist $\Phi(\sigma(p)) = (p, \tilde{\sigma}(p))$. Mit $A(p) = (\tilde{\sigma}_1(p), \ldots, \tilde{\sigma}_k(p))^{-1}$ gilt:

 Φ^2 ist die zweite Komponente

$$F \circ \Phi^{-1}(p, v) = (p, A(p) \cdot V)$$

Daher ist F glatt und mit Aufgabe 3 folgt, dass F ein Bündelmorphismus ist.

(b) Zu zeigen: $T S^3 \cong S^3 \times \mathbb{R}^3$ Es gilt:

$$\mathbf{T}_{p} S^{3} \cong p^{\perp} \ni \underbrace{\begin{pmatrix} -p_{2} \\ p_{1} \\ -p_{4} \\ p_{3} \end{pmatrix}}_{=:\sigma_{1}(p)} \cdot \underbrace{\begin{pmatrix} p_{3} \\ -p_{4} \\ -p_{1} \\ p_{2} \end{pmatrix}}_{\sigma_{2}(p)} \cdot \underbrace{\begin{pmatrix} -p_{4} \\ -p_{3} \\ p_{2} \\ p_{1} \end{pmatrix}}_{\sigma_{3}(p)}$$

Dadurch sehen wir dass $\sigma_i(p) \perp \sigma_j(p)$ für $i \neq j$, woraus folgt dass $\sigma_1, \ldots, \sigma_3$ punktweise linear unabhägige Schnitte sind. Mit (a) folgt dann die Behauptung.

Anmerkung Der Raum der Schnitte $\Gamma(M, E)$ ist ein \mathbb{R} -Vektorraum, also ist lineare Unabhängigkeit für Schnitte definiert. Linear unabhängige Schnitte sind im Allgemeinen *nicht* punktweise linear unabhängig. Betrachte beispielsweise

$$\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

Dann sind $\sigma_1(t) = (t, 1)$ und $\sigma_2(t) = (t, t)$ lineare unabhängig, aber in jedem Punkt linear abhängig.

Übung 5 vom 26. November 2012

Aufgabe 1

Beweisen Sie Proposition 5.4 der Vorlesung: Die (r, s)-Tensorfelder auf M entsprechen genau den $C^{\infty}(M)$ -multilinearen Abbildungen

$$\underbrace{\mathcal{V}^*(M) \times \dots \times \mathcal{V}^*(M)}_{r\text{-mal}} \times \underbrace{\mathcal{V}(M) \times \dots \times \mathcal{V}(M)}_{s\text{-mal}} \to C^{\infty}(M)$$

Aufgabe 2

Bestimmen Sie, welche der folgenden auf \mathbb{R}^3 definierten Differentialformen geschlossen und welche exakt sind:

- a) $\omega_1 = yzdx + xzdy + xydz$
- b) $\omega_2 = y^2 dx + x^3 yz dy + x^2 y dz$
- c) $\omega_3 = xdx + x^2y^2dy + yzdz$
- d) $\omega_4 = 2xy^2 dx \wedge dy + z dy \wedge dz$

Aufgabe 3

Es sei $\vartheta: S^1 \setminus \{1\} \to (0, 2\pi), e^{i\vartheta} \mapsto \vartheta$. Zeigen Sie, dass sich $d\vartheta$ auf ganz S^1 fortsetzen lässt.

Einschub Für ein Tensorprodukt $V \otimes W$ und ein Element $v_1 \otimes w_1 + v_2 \otimes w_2 \in V \otimes W$ gilt im Allgemeinen

$$v_1 \otimes w_1 + v_2 \otimes w_2 \neq v_3 \otimes w_3$$

Beispiel:
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Lösung 1

Wir zeigen dass die (r, s)-Tensorfelder den $C^{\infty}(M)$ -multilinearen Abbildungen entsprechen.

$$\underbrace{\mathcal{V}^*(M) \times \ldots \times \mathcal{V}^*(M)}_{r\text{-mal}} \times \underbrace{\mathcal{V}(M) \times \ldots \times \mathcal{V}(M)}_{s\text{-mal}}$$

Zunächste zeigen wir die Behauptung punktweise. Sei dazu $p \in M$ und die Abbildung

$$F_p: T_p M \otimes \ldots \otimes T_p M \otimes T_p^* M \otimes \ldots \otimes T_p^* M \to \operatorname{Multilin}_{\mathbb{R}}(T_p^* M \otimes \ldots \otimes T_p M)$$

definiert durch

$$F_{p}(\sum_{i} a_{i} X_{1}^{i} \otimes \ldots \otimes X_{r}^{i} \otimes \widetilde{\omega_{1}^{i}} \otimes \ldots \otimes \omega_{s}^{i})(\eta_{1}, \ldots, \eta_{r}, Y_{1}, \ldots, Y_{s})$$

$$:= \sum_{i} a_{i} \eta_{1}(X_{1}^{i}) \cdot \ldots \cdot \eta_{n}(X_{r}^{i}) \cdot \omega_{1}^{i}(Y_{1}) \cdot \ldots \cdot \omega_{s}^{i}(Y_{s})$$

 F_p ist wohldefiniert: • $F_p(...)$ ist \mathbb{R} -multilinear \checkmark

• Sei Z_1, \ldots, Z_r Basis von $T_p M, \mu_1, \ldots, \mu_s$ die dazu duale Basis von $T_p^* M$. Damit ist $\{Z_{i_1} \otimes \ldots \otimes Z_{i_r} \otimes \mu_{j_1} \otimes \ldots \otimes \mu_{j_s} \mid i_1, \ldots, i_r, j_1, \ldots, j_s \in \{1, \ldots, n\}\}$ eine Basis von $T_p M \otimes \ldots \otimes T_p^* M$. Sei $X_k^i = \sum_{\alpha} \chi_{k,\alpha}^i Z_{\alpha}, \ \omega_l^i = \sum_{\beta} w_{l,\beta}^i \mu_{\beta}$, dann folgt

$$\sum_{i} a_{i} X_{1}^{i} \otimes \ldots \otimes \omega_{s}^{i}$$

$$= \sum_{i} a_{i} \left(\sum_{\alpha_{1}} \chi_{k,\alpha_{1}}^{i} Z_{\alpha_{1}}\right) \otimes \ldots \otimes \left(\sum_{\beta_{s}} w_{s,\beta_{s}}^{i} \mu_{\beta_{s}}\right)$$

$$= \sum_{i} \left(\sum_{\alpha_{1},\ldots,\alpha_{r}} \sum_{i} a_{i} \chi_{1,\alpha_{1}}^{i} \cdot \ldots \cdot \chi_{r,\alpha_{r}}^{i} \cdot w_{1,\beta_{1}}^{i} \cdot \ldots w_{s,\beta_{s}}^{i}\right) Z_{\alpha_{1}} \otimes \ldots \otimes Z_{\alpha_{r}} \otimes \mu_{\beta_{1}} \otimes \ldots \otimes \mu_{\beta_{s}}$$

$$= A_{\alpha_{1},\ldots,\alpha_{r},\beta_{1},\ldots,\beta_{s}}$$

Damit folgt insgesamt

$$F_p\left(\sum a_i X_1^i \otimes \ldots\right) = \sum a_i \eta_1(X_1^i) \cdot \ldots \cdot \omega_s^i(Y_s)$$

$$= \ldots$$

$$= \sum_{\alpha_1, \ldots, \beta_s} A_{\alpha_1, \ldots, \beta_s} \eta_1(Z_{\alpha_1}) \ldots \mu_{\beta_s}(Y_s)$$

$$= F_p\left(\sum A_{\alpha_1, \ldots, \beta_s} Z_{\alpha_1} \otimes \ldots \otimes \mu_{\beta_s}\right)$$

 F_p ist \mathbb{R} -linear

 F_p ist surjektiv: Sei $g: \mathrm{T}_p^* M \times \ldots \mathrm{T}_p M \to \mathbb{R}$ eine \mathbb{R} -multilineare Abbildung, dann ist g eindeutig bestimmt durch

$$A_{\alpha_1,\ldots,\alpha_r,\beta_1,\ldots,\beta_s} = g(\mu_{\alpha_1},\ldots,\mu_{\alpha_r},\beta_1,\ldots,\beta_s), \text{ mit } \alpha_1,\ldots,\beta_s \in \{1,\ldots,n\}$$

Damit ist dann

$$F_p\left(\sum A_{\alpha_1,\dots,\beta_s}Z_{\alpha_1}\otimes\dots\otimes\mu_{\beta_s}\right)(\mu_{\tilde{\alpha}_1},\dots,Z_{\tilde{\beta}_s}) = \sum A_{\alpha_1,\dots,\beta_s}\underbrace{\mu_{\tilde{\alpha}_1}(Z_{\alpha_1})}_{\delta_{\tilde{\alpha}_1\alpha_1}}\dots\underbrace{\mu_{\beta_s}(Z_{\tilde{\beta}_s})}_{\delta_{\beta_s\tilde{\beta}_s}}$$

$$= A_{\tilde{\alpha}_1,\dots,\tilde{\beta}_s}$$

$$= g(\mu_{\tilde{\alpha}_1},\dots,Z_{\tilde{\beta}_s})$$

Insgesamt folgt

$$g = F_p \left(\sum A_{\alpha_1, \dots, \beta_s} Z_{\alpha_1} \otimes \dots \otimes Z_{\beta_s} \right)$$

 F_p ist injektiv: Ist $0 = F_p(\sum A_{\alpha_1,\dots,\beta_s} Z_{\alpha_1} \otimes \dots \otimes \mu_{\beta_s})$, so folgt

$$\begin{aligned} 0 &= F_p()(\mu_{\tilde{\alpha}_1}, \dots, \mu_{\tilde{\alpha}_r}, Z_{\tilde{\beta}_1}, \dots, Z_{\tilde{\beta}_s}) \\ &= A_{\tilde{\alpha}_1, \dots, \tilde{\beta}_s} \text{ für alle } \tilde{\alpha}_1, \dots, \tilde{\beta}_s \in \{1, \dots, n\} \end{aligned}$$

Daraus folgt $\sum A_{\alpha_1,\dots,\beta_s} Z_{\alpha_1} \otimes \dots \otimes \mu_{\beta_s} = 0$

Insgesamt folgt damit dass F_p ein Isomorphismus von \mathbb{R} -Vektorräumen ist. Wir definieren nun

$$F: \mathcal{T}^r_s(M) \to \operatorname{Multilin}_{C^{\infty}(M)}(\underbrace{\mathcal{V}^*(M) \times \ldots \times \mathcal{V}^*(M)}_{r\text{-mal}} \times \underbrace{\mathcal{V}(M) \times \ldots \mathcal{V}(M)}_{s\text{-mal}}, C^{\infty}(M))$$

durch

$$F(S)(\omega_1, \dots, \omega_r, X_1, \dots, X_s)(p) := F_p(S_p)(\omega_1|_p, \dots, \omega_r|_p, X_1|_p, \dots, X_s|_p)$$

 $F(S)(\omega_1,\ldots,X_s) \in C^{\infty}(M)$: lokale Koordinaten $\leadsto \frac{\partial}{\partial x^i}x^i$, Koeffizienten von ω_1,\ldots,X_s glatt $\Rightarrow F(S)(\omega_1,\ldots,X_s)$ glatt

F(S) ist $C^{\infty}(M)$ -multilinear: Seien $f \in C^{\infty}(M)$ und $\tilde{\omega}_i \in \mathcal{V}^*(M)$, damit ist dann:

$$F(S)(\omega_1, \dots, \omega_i + f\tilde{\omega}_i, \dots, X_s)(p) = F_p(S_p)(\omega_1|_p, \dots, \omega_i|_p + f(p)\tilde{\omega}_i|_p, \dots, X_s|_p)$$

$$= F_p(S_p)(\omega_1|_p, \dots, \omega_i|_p, \dots, X_s|_p)$$

$$+ f(p)F_p(S_p)(\omega_1|_p, \dots, \tilde{\omega}_i|_p, \dots, X_s|_p)$$

$$= F(S)(\omega_1, \dots, \omega_i, \dots, X_s)(p)$$

$$+ f(p)F(S)(\omega_1, \dots, \tilde{\omega}_i, \dots, X_s)(p)$$

F ist $C^{\infty}(M)$ -linear \checkmark

F ist injektiv: F(S) = 0, also ist $F_p(S_p) = 0$ für alle $p \in M$. Da F_p injektiv ist, ist $S_p = 0$ für alle $p \in M$ und damit S = 0.

F ist surjektiv: Sei $g: \mathcal{V}^*(M) \times \dots \mathcal{V}^*(M) \times \mathcal{V}(M) \times \dots \times \mathcal{V}(M) \to C^{\infty}(M)$ eine $C^{\infty}(M)$ -multilineare Abbildung. Seien weiter $p \in M$, φ eine Karte um p und χ eine glatte cut-off Funktion mit supp $\chi \subset$ Kartengebiet von φ und $\chi \equiv 1$ auf einer Umgebung V von p. Für $q \in V$ ist

supp "Träger"

$$g(\omega_{1},...,X_{s})(q) = g(\chi\omega_{1} + (1-\chi)\omega_{1},...,\chi X_{s} + (1-\chi)X_{s})(q)$$

$$= g(\chi\omega_{1},\chi\omega_{2} + (1-\chi)\omega_{2},...,\chi X_{s} + (1-\chi)X_{s})(q)$$

$$+ \underbrace{(1-\chi)(q)}_{=0}g(\omega_{1},\chi\omega_{2} + (1-\chi)\omega_{2},...)$$

$$= g(\chi\omega_{1},\chi\omega_{2} + (1-\chi)\omega_{2},...,\chi X_{s} + (1-\chi)X_{s})(q)$$

$$= ... = g(\chi\omega_{1},...,\chi X_{s})(q) \qquad (*)$$

Sei $S_p := \sum A_{\alpha_1, \dots, \beta_s}(p) \left. \frac{\partial}{\partial x^{\alpha_1}} \right|_p \otimes \dots \otimes \mathrm{d} x^{\beta_s}|_p \text{ mit}$

$$A_{\alpha_1,\dots,\beta_s}(p) = g(\chi dx^{\alpha_1},\dots,\chi \frac{\partial}{\partial x^{\beta_s}})$$

Bachrechnen ergibt dass andere Karten das gleiche S_p liefern. Daher ist S auf ganz M definiert. Wegen (*) und der lokalen Darstellung gilt F(S) = g.

Lösung 2

a) $\omega_1 = yz dx + xz dy + xy dz$ ist geschlossen und exakt

$$\left(df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz\right)$$

 $d(xyz) = (yz)dx + (xz)dy + (xy)dz \Rightarrow 0 = d \circ d(xyz) = d\omega_1$

- b) $\omega_2 = y^2 dx + x^3 yz dy + x^2 y dz$ ist weder geschlossen noch exakt. $d\omega_2 \neq 0$ (nachrechnen); angenommen $\exists \eta : d\eta = \omega_2 \Rightarrow 0 = d^2 \eta = d\omega_2 \neq 0 \not\downarrow \Rightarrow \omega_2$ nicht exakt
- c) $d\omega_3 \neq 0$
- d) ω_4 ist exakt

Lösung 3

Skizze:

Übung 6 vom 3. Dezember 2012

Aufgabe 1

Es sei (M,g) eine zusammenhängende Riemannsche Mannigfaltigkeit. Zeigen Sie:

- a) Für je zwei Punkte in M existiert eine stückweise glatte Kurve, die diese verbindet.
- b) Die Abstandsfunktion

$$d(p,q) = \inf\{\mathcal{L}(c) \mid c : [0,1] \to M \text{ ist stückweise glatt, } c(0) = p, c(1) = q\}$$

ist eine Metrik, welche die ursprüngliche Topologie erzeugt.

Aufgabe 2

Es sei für $x, y \in \mathbb{R}^{n+1}$

$$\langle x, y \rangle := -x^0 y^0 + x^1 y^1 + \dots + x^n y^n,$$

sowie

$$\mathbb{H}^n := \{ x \in \mathbb{R}^{n+1} \mid \langle x, x \rangle = -1, x^0 > 0 \}.$$

Zeigen Sie, dass \mathbb{H}^n eine glatte Mannigfaltigkeit ist, und $\langle .,. \rangle$ für alle $p \in \mathbb{H}^n$ ein Skalarprodukt auf $T_p \mathbb{H}^n \subset T_p \mathbb{R}^{n+1}$ definiert und die Gesamtheit dieser Skalarprodukte eine Riemannsche Metrik g auf \mathbb{H}^n ist.

Die Riemannsche Mannigfaltigkeit (\mathbb{H}^n, g) heißt n-dimensionaler hyperbolischer Raum.

Aufgabe 3

Es sei $s = (-1, 0, \dots, 0) \in \mathbb{R}^{n+1}$. Zeigen Sie:

a) Die Abbildung φ mit

$$\varphi(x) := s - \frac{2(x-s)}{\langle x-s, x-s \rangle}, \quad x \in \mathbb{H}^n,$$

ist ein Diffeomorphismus von \mathbb{H}^n auf $\{\xi \in \mathbb{R}^n \cong \{0\} \times \mathbb{R}^n \subset \mathbb{R}^{n+1} \mid ||\xi|| < 1\}$.

b) In der Karte φ hat die Riemannsche Metrik auf \mathbb{H}^n die Form

$$\frac{4}{(1-\|\xi\|^2)^2} \sum_{i=1}^n d\xi^i \otimes d\xi^i.$$

Lösung 1

- a) asdf
- b) asdf

Lösung 2

asdf

Lösung 3

- a) asdf
- b) asdf

Übung 7 vom 10. Dezember 2012

Aufgabe 1

Es sei S^2 versehen mit der von der euklidischen Metrik auf \mathbb{R}^3 induzierten Metrik. Weiter sei $c:[0,1]\to S^2$ eine kürzeste C^1 -Kurve zwischen c(0)=N=(0,0,1) und c(1). Zeigen Sie, dass das Bild von c in einem Großkreis enthalten ist.

Hinweis: Betrachten Sie die Parametrisierung $(\varphi, \vartheta) \mapsto (\cos(\vartheta)\cos(\varphi), \cos(\vartheta)\sin(\varphi), \sin(\vartheta))$.

Aufgabe 2

Es sei M eine Untermannigfaltigkeit des \mathbb{R}^k und ∇ der kanonische Zusammenhang auf dem Tangentialbündel des \mathbb{R}^k . Für ein Vektorfeld X auf M bezeichne \tilde{X} eine beliebige Fortsetzung von X zu einem Vektorfeld auf \mathbb{R}^k und für $v \in \mathbb{R}^k \cong \mathrm{T}_p \mathbb{R}^k$ bezeichne $v^{\mathrm{T}_p M}$ die orthogonale Projektion von v auf den Tangentialraum von M an p.

Zeigen Sie, dass

$$\nabla^M : \mathcal{V}(M) \times \mathcal{V}(M) \to \mathcal{V}(M) \qquad (\nabla_X^M Y)_p := ((\nabla_{\tilde{X}} \tilde{Y})_p)^{\mathrm{T}_p M},$$

einen Zusammenhang auf dem Tangentialbündel von M definiert.

Aufgabe 3

a) Es sei E ein Vektorbündel über M und ∇ ein Zusammenhang auf E. Weiter sei

$$\nabla^* : \mathcal{V}(M) \times \Gamma(E^*) \to \Gamma(E^*), \quad (\nabla_X^*(s^*))_p(v) := X_p(s^*(\tilde{v})) - s_p^*((\nabla_X(\tilde{v}))_p)$$

für $X \in \mathcal{V}(M)$, $s^* \in \Gamma(E^*)$, $v \in E_p$ und $\tilde{v} \in \Gamma(E)$ eine Fortsetzung von v. Zeigen Sie, dass ∇^* ein Zusammenhang auf E^* ist. b) Es seien E_1 und E_2 Vektorbündel über M mit Zusammenhängen ∇^1 und ∇^2 . Zeigen Sie, dass es auf $E_1 \otimes E_2$ genau einen Zusammenhang ∇ gibt, der

$$\nabla_X(s_1 \otimes s_2) = \nabla_X^1(s_1) \otimes s_2 + s_1 \otimes \nabla_X^2(s_2)$$

für $X \in \mathcal{V}(M)$ und $s_i \in \Gamma(E_i)$ erfüllt.

Lösung 1

 $c:[0,1]\to (S^2,g_{\mathrm{std}})$ kürzeste C^1 -Kurve zwischen c(0)=N=(0,0,1) und c(1). Behauptung: Bild c ist im Groškreis enthalten.

Wähle ein geeignetes Intervall der Länge 2π , sodass

$$f: I \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to f\left(I \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)$$
$$(\varphi, \vartheta) \mapsto (\cos \vartheta \cos \varphi, \cos \vartheta \sin \varphi, \sin \vartheta)$$

bijektiv ist und $c(1) \in U$ (falls $c(1) \neq N, S$). Daraus folgt dass f^{-1} eine Karte von S^2 ist. Sei nun ohne Einschränkung c in keiner Umgebung von 0 konstant. Weiter sei $\gamma := f^{-1} \circ c$ (eventuell nur in einer Umgebung von 0 ohne $\{0\}$ definiert). Es bleibt nun zu zeigen, dass γ_1 konstant ist.

Bestimme g_{ij} bezüglich f^{-1} . Es ist

$$\partial_1 f = \frac{\partial f}{\partial \varphi} = (-\cos \vartheta \sin \varphi, \cos \vartheta \cos \varphi, 0)$$
$$\partial_2 f = \frac{\partial f}{\partial \vartheta} = (-\sin \vartheta \cos \varphi, -\sin \vartheta \sin \varphi, \cos \vartheta)$$

Daraus folgt

$$g_{11} = \langle \partial_1 f, \partial_1 f \rangle = \cos^2 \theta$$

$$g_{22} = \langle \partial_2 f, \partial_2 f \rangle = 1$$

$$g_{12} = \langle \partial_1 f, \partial_2 f \rangle = 0 = g_{21}$$

Damit ist dann

$$L(c|_{(0,\varepsilon)}) = \int_0^{\varepsilon} \sqrt{g(\dot{c},\dot{c})} = \int_0^{\varepsilon} \sqrt{g_{11}(c(t))\dot{\gamma}_1(t)^2 + g_{22}(c(t))\dot{\gamma}_2(t)^2} dt$$

$$= (\dot{\gamma}_1,\dot{\gamma}_2) \left(\frac{g_{11}}{g_{21}}\frac{g_{12}}{g_{22}}\right) \left(\frac{\dot{\gamma}_1}{\dot{\gamma}_2}\right)$$

$$= \int_0^{\varepsilon} \sqrt{\cos^2(\gamma_2(t))}\dot{\gamma}_1(t)^2 + \dot{\gamma}_2(t)^2} dt$$

$$\geq \int_0^{\varepsilon} |\dot{\gamma}_2(t)| dt = L(\tilde{c})$$

für $\tilde{c}(t)=f(\gamma_1(\varepsilon)\gamma_2(t))$. Dann ist c die Kürzeste. Daraus folgt $L(c|_{(0,\varepsilon]})=L(\tilde{c}|_{(0,\varepsilon]})$ und somit ist für alle $t\in(0,\varepsilon]$ stets $\cos^2(\gamma_2(t))\dot{\gamma}_1(t)=0$. Da $\cos^2(\gamma_2(t))>0$ muss $\dot{\gamma}_1(t)=0$ gelten. Da sich c nicht aus Bild f heraus bewegt, auser eventuell für c(1), ist $\dot{\gamma}_1(t)=0$ für alle $t\in(0,1)$.

Lösung 2

Sei M eine Untermannigfaltigkeit von \mathbb{R}^k und die Abbildung $\nabla^M : \mathcal{V}(M) \times \mathcal{V}(M) \to \mathcal{V}(M)$ mit $(\nabla^M_X Y)_p := ((\nabla_{\tilde{X}} \tilde{Y})_p)^{\mathrm{T}_p M}$, wobei \tilde{X}, \tilde{Y} Fortsetzungen von X, Y sind. Wir haben zu zeigen:

- (0) Unabhängigkeit von der Wahl der Fortsetzungen
- $\begin{array}{ll} (1.1) & \nabla^M_{X_1+X_2}Y = \nabla^M_{X_1}Y + \nabla^M_{X_2}Y \\ (1.2) & \nabla^M_{fX}Y = f\nabla^M_XY \end{array}$
- $(2.1) \nabla_X^M (Y_1 + \lambda Y_2) = \nabla_X^M Y_1 + \lambda \nabla_X^M Y_2$
- $(2.2) \nabla_X^M(fY) = X(f) \cdot Y + f \nabla_X^M Y$
 - (3) $\nabla_X^M Y \in \mathcal{V}(M)$ (klar ist, dass auf $T_p M$ projiziert wird)

Wir werden nun diese einzelnen Behauptungen beweisen, wobei der Beweis von (2.1) in (1.1) enthalten ist.

(0) Es sei $c:(-\varepsilon,\varepsilon)\to M$ glatt mit c(0)=p und $\dot{c}(0)=X_p$. Damit erhält man

$$\begin{split} ((\nabla_{\tilde{X}}\tilde{Y}))^{\mathrm{T}_{p}\,M} &= ((\mathrm{D}\,\tilde{Y})_{p}\tilde{X}_{p})^{\mathrm{T}_{p}\,M} \\ &= ((\mathrm{D}\,\tilde{Y})_{p}X_{p})^{\mathrm{T}_{p}\,M} \qquad \Rightarrow \text{unabh. von der Wahl von } \tilde{X} \\ &= \left(\left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \left(\tilde{Y}\circ c(t)\right)\right)^{\mathrm{T}_{p}\,M} \\ &= \left(\left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \left(Y\circ c(t)\right)\right)^{\mathrm{T}_{p}\,M} \qquad \Rightarrow \text{unabh. von der Wahl von } \tilde{Y} \end{split}$$

- (1.1) Wähle $\tilde{X}_1 + \tilde{X}_2$, beziehungsweise $\tilde{Y}_1 + \lambda \tilde{Y}_2$, als Fortsetzung entsprechend der Regeln für ∇ . Daraus folgen dann die Behauptungen.
- (1.2) Es gilt:

$$\begin{split} (\nabla_{fX}^{M}Y)_{p} &= \left((\nabla_{f\tilde{X}}\tilde{Y})_{p} \right)^{\mathcal{T}_{p}\,M} = \left((D\tilde{Y})_{p}\underbrace{(f\tilde{X})_{p}}_{=f(p)X_{p}} \right)^{\mathcal{T}_{p}\,M} \\ &= \left((\mathbf{D}\,\tilde{Y})_{p}(f(p)X_{p}) \right)^{\mathcal{T}_{p}\,M} \\ &= f(p)\left((\mathbf{D}\,\tilde{Y})_{p}X_{p} \right)^{\mathcal{T}_{p}\,M} \\ &= f(p)\left((\nabla_{X}^{M}Y)_{p} \right) \end{split}$$

(2.2) Es gilt:

$$\begin{split} \left(\nabla_{X}^{M}(fX)\right)_{p} &= \left(\left(\widetilde{D(fY)}\right)_{p} \cdot X_{p}\right)^{T_{p}M} \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(\widetilde{(fY)} \circ c\right)(t)\right)^{T_{p}M} \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left((fY) \circ c\right)(t)\right)^{T_{p}M} \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(f(c(t)) \cdot Y(c(t))\right)(t)\right)^{T_{p}M} \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(f(c(t))\right)Y(c(0)) + f(c(0)) \cdot \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(Y(c(t))\right)\right)^{T_{p}M} \\ &= \left(X_{P}(f) \cdot Y_{p} + f(p)(\nabla_{\tilde{X}}\tilde{Y})_{p}\right)^{T_{p}M} \\ &= X_{p}(f) \cdot Y_{p}^{T_{p}M} + f(p)\left((\nabla_{\tilde{X}}\tilde{Y})_{p}\right)^{T_{p}M} \\ &= X_{p}(f)Y_{p} + f(p)(\nabla_{\tilde{X}}^{M}Y)_{p} \end{split}$$

(3) Es gilt $(\nabla_X^M Y)_p \in T_p M$ (klar wegen Projektion) und hängt glatt von p ab. Sind e_1, \ldots, e_n um p, definiere glatte Vektorfelder, so dass für $q \in \text{Umg}(p)$ $e_1|_q, \ldots, e_n|_q$ (erhalte mit Gram-Schmitt (glatt!)) eine Orthonormalbasis ist, so ist (lokal):

$$\nabla_X^M Y = \sum_{i=1}^n \langle \operatorname{D} \tilde{Y} \cdot \tilde{X}, e_i \rangle \cdot e_i \Rightarrow \operatorname{glatt}$$

(Erhalte e_1, \ldots, e_n aus beliebigen lokalen Basisvektoren durch Gram-Schmitt.)

Bemerkung • ∇^M ist der **Levi-Civita Zusammenhang** von (M, g) mit $g(X, Y) = \langle X, Y \rangle$.

• Die Projektion auf $T_p M$ ist nötig, zum Beispiel $M = S^1$, $\tilde{X} = \tilde{Y} = \begin{pmatrix} -Y \\ X \end{pmatrix} \in \mathcal{V}(\mathbb{R}^2) \Rightarrow X = Y = \tilde{X}|_{S^1} \in \mathcal{V}(S^1)$

$$D\,\tilde{Y}\cdot\tilde{X} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -Y \\ X \end{pmatrix} = \begin{pmatrix} -X \\ -Y \end{pmatrix} = -\begin{pmatrix} X \\ Y \end{pmatrix} \in \left(\mathbf{T}_{(X,Y)}\,S^1 \right)^{\perp}$$

Lösung 3

a) Es sei E ein Vektorbündel über M und ∇ ein Zusammenhang auf E. Betrachte $(\nabla_X^* s^*)_p(v) := X_p(s^* \tilde{v}) - s_p^*((\nabla_X \tilde{v})_p)$ mit $X \in \mathcal{V}(M), \ s^* \in \Gamma(E^*), \ v \in E_p, \ \tilde{v} \in \Gamma(E)$ und $\tilde{v}_p = v$. Warum dieses ∇^* betrachten? Für $s^* \in \Gamma(E^*), \ s \in \Gamma(E)$ sei

$$\langle s^*, s \rangle := s^*(s) \in C^{\infty}(M)$$

Damit ist

$$X(\langle s^*, s \rangle) = \langle \nabla_X^* s^*, s \rangle + \langle s^*, \nabla_X s \rangle$$
$$= (\nabla_X^* s^*)(s) + s^* (\nabla_X s)$$

Das führt zu

$$(\nabla_X^* s^*)(s) = X(s^*(s)) - s^*(\nabla_X s)$$

b) Seien E_1 und E_2 Vektorbündel mit Zusammenhängen ∇^1 und ∇^2 . Wir haben zu zeigen, dass es genau einen Zusammenhang ∇ auf $E_1 \otimes E_2$ gibt mit $\nabla_X (S_1 \otimes S_2) = (\nabla^1_X s_1) \otimes s_2 + s_1 \otimes (\nabla^2_X s_2)$.

Eindeutigkeit: Seien $s \in \Gamma(E_1 \otimes E_2)$ und seien $e_1^1, \dots, e_m^1, e_1^2, \dots, e_n^2 : U \to E_1$ beziehungsweise E_2 lokale Basisschnitte von E_1 und E_2 . Daraus folgt $s|_U = \sum \sigma_{ij} e_i^1 \otimes e_j^2$.

$$\nabla_{x}(s)|_{U} = \nabla_{X} \left(\sum_{ij} \sigma_{ij} e_{i}^{1} \otimes e_{j}^{2} \right)$$

$$= \sum_{ij} \left(X(\sigma_{ij}) \cdot e_{i}^{1} \otimes e_{j}^{2} + \sigma_{ij} \nabla_{X} (e_{i}^{1} \otimes e_{j}^{2}) \right)$$

$$= \sum_{ij} \left(X(\sigma_{ij}) e_{i}^{1} \otimes e_{j}^{2} + \sigma_{ij} ((\nabla_{X}^{1} e_{i}^{1}) \otimes e_{j}^{2} + e_{i}^{1} \otimes (\nabla_{X}^{2} e_{j}^{2})) \right)$$

Existenz: Zeige die Unabhängigkeit von der Wahl der e_i^k .

Übung 8 vom 17. Dezember 2012

Aufgabe 1

Es sei E ein Vektorbündel über M mit kovarianter Ableitung ∇ . Zeigen Sie, dass

$$R: \mathcal{V}(M) \times \mathcal{V}(M) \times \Gamma(E) \longrightarrow \Gamma(E)$$

$$R(X,Y)S = \nabla_X \nabla_Y S - \nabla_Y \nabla_X S - \nabla_{[X,Y]} S$$

eine $C^{\infty}(M)$ -multilineare Abbildung ist.

Aufgabe 2

Es sei (M,g) eine Riemannsche Mannigfaltigkeit und R der Krümmungstensor des Levi-Civita-Zusammenhanges auf M. Zeigen Sie, daß für alle $X,Y,Z,W\in\mathcal{V}(M)$ gilt:

- a) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0
- b) $\langle R(X,Y)Z,W\rangle = -\langle R(X,Y)W,Z\rangle$
- c) $\langle R(X,Y)Z,W\rangle = \langle R(Z,W)X,Y\rangle$

Aufgabe 3

Es sei (M,g) eine Riemannsche Mannigfaltigkeit. Für eine glatte Kurve $c:[a,b]\to M$ bezeichne $P^c_{a,b}:T_{c(a)}M\to T_{c(b)}M$ den Paralleltransport entlang c bezüglich des Levi-Civita-Zusammenhanges. Zeigen Sie, daß $P^c_{a,b}$ eine lineare Isometrie ist.

Bevor wir mit den Lösungen beginnen zeigen wir zunächst den folgenden Sachverhalt Behauptung: Für eine glatte Kurve c und Vektorfelder X, Y längs c gilt:

$$\frac{\mathrm{d}}{\mathrm{d}t}g_{c(t)}\left(X(t),Y(t)\right) = g_{c(t)}\left((\nabla_t X)(t),Y(t)\right) + g_{c(t)}\left(X(t),(\nabla_t Y)(t)\right)$$

Beweis: Mit dem Levi-Civita Zusammenhang gilt

$$\nabla_t(g \circ c) = \nabla_{c_* \frac{\partial}{\partial t}} g = 0.$$

Daraus folgt dann mit $g = \sum g_{ij} dx^i \otimes dx^j$:

$$\begin{aligned} 0 &= \left(\nabla_t (g \circ c)\right) (X(t), Y(t)) \\ &= \left(\nabla_t \left(\left(\sum g_{ij} \mathrm{d} x^i \otimes \mathrm{d} x^j\right) \circ c\right)\right) (X(t), Y(t)) \\ &= \left(\sum \frac{\mathrm{d}}{\mathrm{d} t} (g_{ij} \circ c) \cdot \mathrm{d} x^i|_{c(t)} \otimes \mathrm{d} x^j|_{c(t)} + \sum g_{ij} \circ c \cdot \underbrace{\nabla_t (\mathrm{d} x^i|_{c(t)} \otimes \mathrm{d} x^j|_{c(t)})}_{=\nabla_t (\mathrm{d} x^i|_{c(t)} \otimes \mathrm{d} x^j|_{c(t)})} (X(t), Y(t)) \\ &= \sum \frac{\mathrm{d}}{\mathrm{d} t} (g_{ij} \circ c) \, \mathrm{d} x^i|_{c(t)} \otimes \mathrm{d} x^j|_{c(t)} (X(t), Y(t)) \\ &+ \sum (g_{ij} \circ c) \left(\left(\nabla_t \mathrm{d} x^i|_{c(t)}\right) (X(t)\right) \cdot \mathrm{d} x^j|_{c(t)} (Y(t)) + \mathrm{d} x^i|_{c(t)} (X(t)) \cdot (\nabla_t (\mathrm{d} x^j|_{c(t)})) (Y(t))\right) \\ &= \sum \frac{\mathrm{d}}{\mathrm{d} t} (g_{ij} \circ c) \cdot \mathrm{d} x^i|_{c(t)} (X(t)) \cdot \mathrm{d} x^j|_{c(t)} (Y(t)) \\ &+ \sum (g_{ij} \circ c) \left(\left(\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{d} x^i|_{c(t)} (X(t)) \cdot \mathrm{d} x^j|_{c(t)} (Y(t)) \right) \\ &+ \sum (g_{ij} \circ c) \left(\left(\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{d} x^i|_{c(t)} (X(t)) \cdot \mathrm{d} x^j|_{c(t)} (Y(t))\right) \\ &+ \mathrm{d} x^i|_{c(t)} (X(t)) \cdot \left(\frac{\mathrm{d}}{\mathrm{d} t} (\mathrm{d} x^j|_{c(t)} (Y(t)) - \mathrm{d} x^j|_{c(t)} (Y(t))\right)\right) \\ &= \sum \frac{\mathrm{d}}{\mathrm{d} t} \left((g_{ij} \circ c) \cdot \mathrm{d} x^i|_{c(t)} (X(t)) \cdot \mathrm{d} x^j|_{c(t)} (Y(t))\right) \\ &- \sum (g_{ij} \circ c) \mathrm{d} x^i|_{c(t)} (X(t)) \cdot \mathrm{d} x^j|_{c(t)} (\nabla_t Y(t)) \\ &- \sum (g_{ij} \circ c) \mathrm{d} x^i|_{c(t)} (X(t)) \cdot \mathrm{d} x^j|_{c(t)} (\nabla_t Y(t)) \\ &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\sum g_{ij} (c(t)) \cdot (\mathrm{d} x^i|_{c(t)} \otimes \mathrm{d} x^j|_{c(t)} (\nabla_t X(t), Y(t)) \\ &- \sum g_{ij} (c(t)) \cdot \mathrm{d} x^i|_{c(t)} \otimes \mathrm{d} x^j|_{c(t)} (X(t), \nabla_t Y(t)) \\ &= \frac{\mathrm{d}}{\mathrm{d} t} \left(g_{c(t)} (X(t), Y(t)) - g_{c(t)} (X(t), Y(t)) - g_{c(t)} (X(t), \nabla_t Y(t)) \right) \end{aligned}$$

Wir verwenden dabei für ∇ das ∇^* aus Aufgabe 3 a) von Blatt 7.

Lösung 1

Es sei E ein Vektorbündel über M mit kovarianter Ableitung ∇ und sei die Abbildung $R: \mathcal{V}(M) \times \mathcal{V}(M) \times \Gamma(E) \to \Gamma(E)$ definiert durch $R(X,Y)S = \nabla_X \nabla_Y S - \nabla_Y \nabla_X S - \nabla_{[X,y]} S$. Wir wollen zeigen dass R eine $C^{\infty}(M)$ -multilineare Abbildung ist

• Sei $g \in C^{\infty}(M)$:

$$[fX,Y](g) = f \cdot X(Y(g)) - Y(f \cdot X(g))$$

$$= f \cdot X(Y(g)) - f \cdot Y(X(g)) - Y(f) \cdot X(g)$$

$$= f \cdot [X,Y](g) - Y(f) \cdot X(g)$$

$$= (f \cdot [X,Y] - Y(f) \cdot X)(g)$$

Additivität:
✓

•

$$R(fX,Y)S = \nabla_{fX}\nabla_{Y}S - \nabla_{Y}\nabla_{fX}S - \nabla_{[fX,Y]}S$$

$$= f\nabla_{X}\nabla_{Y}S - Y(f) \cdot \nabla_{X}S - f \cdot \nabla_{Y}\nabla_{X}S - f\nabla_{[X,Y]}S + Y(f)\nabla_{X}S$$

$$= f(\nabla_{X}\nabla_{Y}S - \nabla_{Y}\nabla_{X}S - \nabla_{[X,Y]}S) = f \cdot R(X,Y)S$$

• In zweiter Komponente: \checkmark (R(X,Y)S = -R(Y,X)S)

•

$$\begin{split} D(X,Y)(f\cdot S) &= \nabla_X \underbrace{\nabla_Y(f\cdot S)}_{=Y(f)\cdot S+f\cdot \nabla_Y S} - \underbrace{\nabla_{[X,Y]}(f\cdot S)}_{=[X,Y](f)\cdot S} \\ &= X(Y(f))\cdot S + Y(f)\nabla_X S + X(f)\cdot \nabla_Y S + f\cdot \nabla_X \nabla_Y \cdot S \\ &= X(Y(f))\cdot S + X(f)\nabla_Y S + Y(f)\cdot \nabla_X S + f\cdot \nabla_Y \nabla_X \cdot S) \\ &- (Y(X(f))\cdot S + X(f)\nabla_Y S + Y(f)\cdot \nabla_X S + f\cdot \nabla_Y \nabla_X \cdot S) \\ &- X(Y(f)) + Y(X(f)) - f\nabla_{[X,Y]} S \\ &= f\cdot R(X,Y)S \end{split}$$

Lösung 2

Aufgrund des Levi-Civita Zusammenhangs gilt $\nabla = \nabla^{2c}$.

a) Behauptung: R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0Aufgrund der $C^{\infty}(M)$ -multilinearität genügt es die Behauptung für $X = \frac{\partial}{\partial x^i}$, $Y = \frac{\partial}{\partial x^j}$ und $Z = \frac{\partial}{\partial x^k}$ zu zeigen. Daraus folgt [X,Y] = [X,Z] = [Y,Z] = 0.

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y$$

$$= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z + \nabla_Y \nabla_Z X - \nabla_Z \nabla_Y X + \nabla_Z \nabla_X Y - \nabla_X \nabla_Z Y$$

$$= \nabla_X \underbrace{(\nabla_Y Z - \nabla_Z Y)}_{=[Y,Z](\text{da } \nabla \text{ torsionslos})} + \nabla_Y \underbrace{(\nabla_Z X - \nabla_X Z)}_{=[Z,X]=0} + \nabla_Z \underbrace{(\nabla_X Y - \nabla_Y X)}_{=[X,Y]=0} = 0$$

b) Im Folgenden setzen wir R(X,Y,Z,W)=g(R(X,Y)Z,W), zu beweisen ist dann dass R(X,Y,Z,W)=-R(X,Y,W,Z). Es genügt zu zeigen dass R(X,Y,U,U)=0 für alle X,Y ist, da R(X,Y,Z+W,Z+W)=R(X,Y,Z,Z)+R(X,Y,Z,W)+R(X,Y,W,Z)+R(X,Y,W,W) ist. Wir können annehmen, dass [X,Y]=0 gilt.

$$\begin{split} R(X,Y,U,U) &= g(\nabla_X \nabla_Y U - \nabla_Y \nabla_X U, U) \\ &= g(\nabla_X \nabla_Y U, U) - g(\nabla_Y \nabla_X U, U) \\ &= X(\underline{g(\nabla_Y U, U)}) - g(\nabla_Y U, \nabla_X U) - Y(\underline{g(\nabla_X U, U)}) + g(\nabla_X U, \nabla_Y U) \\ &= \frac{1}{2}(g(\nabla_Y U, U) + g(U, \nabla_Y U)) \\ &= \frac{1}{2}Y(g(U, U)) \\ &= \frac{1}{2}\left(X\big(Y(g(U, U))\big) - Y\big(X(g(U, U))\big)\right) = \frac{1}{2}[X, Y](g(U, U)) = 0 \end{split}$$

c) behauptung: R(X, Y, Z, W) = R(Z, W, X, Y)Nach a) gilt:

$$R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0$$
 (I)

$$R(Y, Z, W, X) + R(Z, W, Y, X) + R(W, Y, Z, X) = 0$$
 (II)

$$R(Z, W, X, Y) + R(W, X, Z, Y) + R(X, Z, W, Y) = 0$$
 (III)

$$R(W, X, Y, Z) + R(X, Y, W, Z) + R(Y, W, X, Z) = 0$$
 (IV)

Addiert man die Gleichungen zu (I) - (III) + (II) - (IV) bleibt übrig:

$$2R(X, Y, Z, W) - 2R(Z, W, X, Y) = 0$$

Lösung 3

Behauptung: Für den Levi-Civita Zusammenhang ist die Parallelverschiebung eine Isometrie.

Es sei $c: I \to M$ und $X_{c(0)}, Y_{c(0)} \in T_{c(0)} M$ mit $X(t) = P_{0,t}^c X_{c(0)}$ und $Y(t) = P_{0,t}^c Y_{c(0)}$. Daraus folgt

$$\frac{\mathrm{d}}{\mathrm{d}t}g\left(X(t),Y(t)\right) = g\left(\underbrace{\nabla_t X(t)}_{=0},Y(t)\right) + g\left(X(t),\underbrace{\nabla_t Y(t)}_{=0}\right) = 0$$

und damit gilt dann

$$g\left(P_{0,t}^{c}X_{c(0)}, P_{0,t}^{c}Y_{c(0)}\right) = g\left(X_{c(0)}, Y_{c(0)}\right)$$

$\ddot{\mathrm{U}}\mathrm{bung}~9~\mathrm{vom}~7.~\mathrm{Januar}~2012$

Aufgabe 1

Es sei (M,g) eine Riemannsche Mannigfaltigkeit und $p \in M$. Berechnen Sie $g_{ij}(p)$, $\frac{\partial g_{ij}}{\partial x^k}(p)$ und $\Gamma_{ij}^k(p)$ in Riemannschen Normalkoordinaten um p.

Hinweis: Welche Form haben die Geodätischen durch p in dieser Karte?

Aufgabe 2

Bestimmen Sie die Schnittkrümmungen der Riemannschen Mannigfaltigkeiten (\mathbb{R}^n , g_{eukl}) und \mathbb{H}^n (siehe Blatt 6 Aufgaben 2 und 3).

Aufgabe 3

Bestimmen Sie die Schnittkrümmungen der n-Sphäre vom Radius r > 0, also von S^n mit der von $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = r\}$ induzierten Riemannschen Metrik.

Hinweis: Benutzen Sie, dass der Levi-Civita Zusammenhang auf S^n durch $(\nabla_X Y)_p = ((DY)_p \cdot X_p)^{\mathrm{T}_p S^n}$ gegeben ist.

Lösung 1

Nach der Vorlesung gibt es einen Diffeomorphismus

$$\exp_p: U(0) \to U(p)$$

$$\subset T_p M \to CM$$

Seien $e_1, \ldots, e_n \in T_p M$ eine Orthonormalbasis von $T_p M$ und sei $\varphi^{-1}(x_1, \ldots, x_n) := \exp_p(x_1 e_1, \ldots, x_n e_n)$ definiert.

Behauptung:

- (i) $g_{ij}(p) = \delta_{ij}$
- (ii) $\frac{\mathrm{d}}{\mathrm{d}x^2}(g_{ij})(p) = 0$
- (iii) $\Gamma_{ij}^k(p) = 0$

Beweis:

(i)

$$g_p \left(\left. \frac{\partial}{\partial x^i} \right|_p, \left. \frac{\partial}{\partial x^j} \right|_p \right) = g_p(e_i, e_j) = \delta_{ij}$$

$$= \exp_{p_*}(e_i) = \exp_{p_*}(e_j)$$

 $\gamma_v(t) := \exp_p(tv)$ ist die Geodätische die in p in Richtung v startet.

Beweis: Es sei c_v die Geodätische mit $c_v(0) = p$, $\dot{c}_v(0) = v$, sowie $c_{\lambda v}$ die Gedätische mit $c_{\lambda v}(0) = p$, $\dot{c}_{\lambda v}(0) = \lambda v$, wobei $\lambda \in \mathbb{R}$. Definiere nun $\gamma(t) := c_v(\lambda t)$. Dann ist $\gamma(t) = c_{\lambda v}(t)$, denn:

- $\gamma(0) = c_v(0) = p$
- $\dot{\gamma}(0) = \lambda \cdot \dot{c}_v(0) = \lambda v$
- $\ddot{\gamma}^k(t) + \sum_{i,j=1}^n \Gamma_{ij}^k(\gamma(t))\dot{\gamma}^i(t)\dot{\gamma}^j(t)$ = $\lambda^2 \left(\ddot{c}_v^k(\lambda t) + \sum_{ij} \Gamma_{ij}^k(c_v(\lambda t))\dot{c}_v^i(\lambda t)\dot{c}_v^j(\lambda t) \right)$ = 0

Betrachte also

$$c_v(t) = c_v(t \cdot 1) = c_{tv}(1) = \exp_p(t \cdot v)$$

Die Geodätischen durch p werden also von den Normalkoordinaten auf die Ursprungsgeraden abgebildet. Setze $\gamma(t) = t \cdot e_{i_0}$, dann ist $\exp_p \circ \gamma$ eine Geodätische und damit gilt für alle k:

$$0 = \ddot{\gamma}^k + \sum_{ij} \Gamma^k_{ij} \dot{\gamma}^i \dot{\gamma}^j = 0 + \sum_{ij} \Gamma^k_{ij} \circ \gamma \delta_{ii_0} \delta_{ji_0} = \Gamma^k_{i_0 i_0} \circ \gamma$$

Beweis:

(iii) Nun sei $i_0 \neq j_0$ und $\tilde{\gamma}(t) = t(e_{i_0} + e_{j_0})$, damit ist $\exp_p \circ \tilde{\gamma}$ eine Geodätische und für alle k gilt:

$$0 = \ddot{\tilde{\gamma}}^k + \sum_{ij} \Gamma^k_{ij} \dot{\tilde{\gamma}}^i \dot{\tilde{\gamma}}^j = 0 + \sum_{ij} \Gamma^k_{ij} (\delta_{ii_0} + \delta_{ij_0}) (\delta_{ji_0} + \delta_{jj_0})$$
$$= \left(\Gamma^k_{i_0i_0} + \Gamma^k_{j_0j_0} + \Gamma^k_{i_0j_0} + \Gamma^k_{j_0i_0} \right) \circ \gamma$$

In 0 gilt $\gamma(0) = \tilde{\gamma}(0) = p$, also $\Gamma_{ij}^k(\gamma(0)) = 0$. Daraus folgt dann:

$$0 = \Gamma_{i_0 i_0}^k(\tilde{\gamma}(0)) + \Gamma_{i_0 i_0}^k(\tilde{\gamma}(0)) = 2\Gamma_{i_0 i_0}^2(p)$$

Damit folgt schließlich $\Gamma_{ij}^k(p) = 0$ für alle i, j, k.

(ii)

$$\begin{split} \frac{\partial g_{ij}}{\partial x^k} \bigg|_p &= \left. \frac{\partial}{\partial x^k} \right|_p \left(g \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) \right) \\ &= g \left(\nabla_{\frac{\partial}{\partial x^k}} \bigg|_p \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \bigg|_p \right) + g \left(\left. \frac{\partial}{\partial x^i} \right|_p, \nabla_{\frac{\partial}{\partial x^j}} \bigg|_p \frac{\partial}{\partial x^j} \bigg|_p \right) \\ &= g \left(\sum_l \Gamma_{ki}^l(p) \cdot \left. \frac{\partial}{\partial x^l} \right|_p, \frac{\partial}{\partial x^j} \bigg|_p \right) + g \left(\left. \frac{\partial}{\partial x^i} \right|_p, \sum_l \underbrace{\Gamma_{kj}^l(p)}_{=0} \frac{\partial}{\partial x^l} \bigg|_p \right) \\ &= 0 \end{split}$$

Lösung 2

a) Behauptung: $\sec(\mathbb{R}^n, g_{\text{eukl}}) \equiv 0$ Es gilt $\nabla_X Y = D Y \cdot X$ und, wegen Torsionsfreiheit, $[X, Y] = \nabla_X Y - \nabla_Y X = D Y \cdot X - D X \cdot Y$. Nun gilt

$$R(X,Y)Z = \nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X Z) - \nabla_{[X,Y]} Z$$

Bevor wir fortfahren benötigen wir noch eine Nebenrechnung:

$$\begin{split} &(\mathrm{D}(\mathrm{D}\,Z\cdot Y)\cdot X - \mathrm{D}(\mathrm{D}\,Z\cdot X)\cdot Y)_{i} \\ &= \sum_{l} \left(\mathrm{D}(\mathrm{D}\,Z\cdot Y)\right)_{il}\cdot X_{l} - \sum_{l} \left(\mathrm{D}(\mathrm{D}\,Z\cdot X)\right)_{il}\cdot Y_{l} \\ &= \sum_{l} \partial_{l} \left((\mathrm{D}\,Z\cdot Y)_{i}\right)\cdot X_{l} - \sum_{l} \partial_{l} (\mathrm{D}\,Z\cdot X)_{i}\cdot Y_{l} \\ &= \sum_{l} \partial_{l} \left(\sum_{m} \underbrace{(\mathrm{D}\,Z)_{im}\cdot Y_{m}}\right)\cdot X_{l} - \sum_{l} \partial_{l} \left(\sum_{m} (\mathrm{D}\,Z)_{im}\cdot X_{m}\right)\cdot Y_{l} \\ &= \sum_{lm} \left(\partial_{l} (\partial_{m}Z_{i}\cdot Y_{m})\cdot X_{l} - \partial_{l} (\partial_{m}Z_{i}\cdot X_{m})\cdot Y_{l}\right) \\ &= \sum_{lm} \left(\partial_{l} \partial_{m}Z_{i}Y_{m}X_{l} + \partial_{m}Z_{i}\partial_{l}Y_{m}X_{l} - \underbrace{\partial_{l} \partial_{m}Z_{i}}_{=\partial_{m}\partial_{l}Z_{i}} X_{m}Y_{l} + \partial_{m}Z_{i}\partial_{l}X_{m}Y_{l}\right) \\ &= \sum_{lm} \partial_{m}Z_{i}\cdot (\mathrm{D}\,Y\cdot X)_{m} - \sum_{lm} \partial_{l}Z_{i}(\mathrm{D}\,X\cdot Y)_{m} \\ &= (\mathrm{D}\,Z\cdot (\mathrm{D}\,Y\cdot X) - \mathrm{D}\,Z\cdot \mathrm{D}\,X\cdot Y)_{i} \\ &= (\mathrm{D}\,Z\cdot (\mathrm{D}\,Y\cdot X - \mathrm{D}\,X\cdot Y)_{i} \end{split}$$

Mit dieser Nebenrechnung folgern wir schließlich R(X,Y)Z=0 und daraus folgt letztendlich

$$\sec(\text{span}\{X,Y\}) = \frac{g(R(X,Y)Y,X)}{\|X\|^2 \|Y\|^2 - \langle X,Y \rangle^2} = 0$$

b) Wir berechnen die Komponenten $R_{ijkl} = R(\frac{\partial}{\partial \xi^i}, \frac{\partial}{\partial \xi^j}, \frac{\partial}{\partial \xi^k}, \frac{\partial}{\partial \xi^l}) = g(R(\frac{\partial}{\partial \xi^i}, \frac{\partial}{\partial \xi^j}) \frac{\partial}{\partial \xi^k}, \frac{\partial}{\partial \xi^l})$ in der Karte φ aus Aufgabe 6.3. In dieser Karte gilt $g = \frac{4}{(1-\|\xi\|^2)^2} \sum_i d\xi^i \otimes d\xi^i$, also $g_{ij} = \delta_{ij} \frac{4}{(1-\|\xi\|^2)^2}$. Für die Ableitungen der Metrik gilt dann:

$$g_{ij,k} = \frac{\partial g_{ij}}{\partial \xi^k} = 16\delta_{ij} \frac{\xi^k}{(1 - \|\xi\|^2)^3}.$$

Die Koeffizienten der zu (g_{ij}) inversen Matrix sind $g^{kl}=\delta_{kl}\frac{(1-\|\xi\|^2)^2}{4}$. Damit gilt für die Christoffelsymbole

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l} g^{kl} (g_{jl,i} - g_{ij,l} + g_{li,j}) = \frac{2}{1 - \|\xi\|^2} (\delta_{jk} \xi^i - \delta_{ij} \xi^k + \delta_{ki} \xi^j).$$

Für die Ableitungen gilt also:

$$\begin{split} \frac{\partial}{\partial \xi^l} (\Gamma^k_{ij}) &= \frac{\partial}{\partial \xi^l} \left(\frac{2}{1 - \|\xi\|^2} \right) (\delta_{jk} \xi^i - \delta_{ij} \xi^k + \delta_{ki} \xi^j) + \frac{2}{1 - \|\xi\|^2} \frac{\partial}{\partial \xi^l} (\delta_{jk} \xi^i - \delta_{ij} \xi^k + \delta_{ki} \xi^j) \\ &= \frac{4 \xi^l}{(1 - \|\xi\|^2)^2} (\delta_{jk} \xi^i - \delta_{ij} \xi^k + \delta_{ki} \xi^j) + \frac{2}{1 - \|\xi\|^2} (\delta_{jk} \delta_{li} - \delta_{ij} \delta_{lk} + \delta_{ki} \delta_{lj}). \end{split}$$

Nun können wir die Koeffizienten des Krümmungstensors berechnen. Es gilt :

$$\begin{split} R(\frac{\partial}{\partial \xi^{i}}, \frac{\partial}{\partial \xi^{j}}) \frac{\partial}{\partial \xi^{k}} &= \nabla_{\frac{\partial}{\partial \xi^{i}}} \nabla_{\frac{\partial}{\partial \xi^{j}}} \frac{\partial}{\partial \xi^{k}} - \nabla_{\frac{\partial}{\partial \xi^{j}}} \nabla_{\frac{\partial}{\partial \xi^{i}}} \frac{\partial}{\partial \xi^{k}} - \nabla_{[\frac{\partial}{\partial \xi^{i}}, \frac{\partial}{\partial \xi^{j}}] = 0} \frac{\partial}{\partial \xi^{k}} \\ &= \nabla_{\frac{\partial}{\partial \xi^{i}}} \left(\sum_{l} \Gamma_{jk}^{l} \frac{\partial}{\partial \xi^{l}} \right) - \nabla_{\frac{\partial}{\partial \xi^{j}}} \left(\sum_{l} \Gamma_{ik}^{l} \frac{\partial}{\partial \xi^{l}} \right) \\ &= \sum_{l} \left(\frac{\partial}{\partial \xi^{i}} (\Gamma_{jk}^{l}) \frac{\partial}{\partial \xi^{l}} + \Gamma_{jk}^{l} \nabla_{\frac{\partial}{\partial \xi^{i}}} \frac{\partial}{\partial \xi^{l}} - \frac{\partial}{\partial \xi^{j}} (\Gamma_{ik}^{l}) \frac{\partial}{\partial \xi^{l}} - \Gamma_{ik}^{l} \nabla_{\frac{\partial}{\partial \xi^{j}}} \frac{\partial}{\partial \xi^{l}} \right) \\ &= \sum_{l} \left(\frac{\partial}{\partial \xi^{i}} (\Gamma_{jk}^{l}) \frac{\partial}{\partial \xi^{l}} - \frac{\partial}{\partial \xi^{j}} (\Gamma_{ik}^{l}) \frac{\partial}{\partial \xi^{l}} \right) + \sum_{l,m} \left(\Gamma_{jk}^{l} \Gamma_{il}^{m} \frac{\partial}{\partial \xi^{m}} - \Gamma_{ik}^{l} \Gamma_{jl}^{m} \frac{\partial}{\partial \xi^{m}} \right) \\ &= \sum_{l} \left(\frac{\partial}{\partial \xi^{i}} (\Gamma_{jk}^{l}) - \frac{\partial}{\partial \xi^{j}} (\Gamma_{ik}^{l}) + \sum_{\alpha} \left(\Gamma_{jk}^{\alpha} \Gamma_{i\alpha}^{l} - \Gamma_{ik}^{\alpha} \Gamma_{j\alpha}^{l} \right) \right) \frac{\partial}{\partial \xi^{l}} =: \sum_{l} R_{ijk}^{l} \frac{\partial}{\partial \xi^{l}} \right) \end{split}$$

und

$$\begin{split} R_{ijk}^{\ \ l} &= \frac{4}{(1-||\xi||^2)^2} \Big(\xi^i (\delta_{kl} \xi^j - \delta_{jk} \xi^l + \delta_{lj} \xi^k) - \xi^j (\delta_{kl} \xi^i - \delta_{ik} \xi^l + \delta_{li} \xi^k) \\ &\quad + \frac{1-||\xi||^2}{2} \big((\delta_{kl} \delta_{ij} - \delta_{jk} \delta_{il} + \delta_{lj} \delta_{ik}) - (\delta_{kl} \delta_{ij} - \delta_{ik} \delta_{jl} + \delta_{li} \delta_{jk}) \big) \\ &\quad + \sum_{\alpha} \big((\delta_{k\alpha} \xi^j - \delta_{jk} \xi^\alpha + \delta_{\alpha j} \xi^k) (\delta_{\alpha l} \xi^i - \delta_{i\alpha} \xi^l + \delta_{li} \xi^\alpha) \\ &\quad - (\delta_{k\alpha} \xi^i - \delta_{ik} \xi^\alpha + \delta_{\alpha i} \xi^k) (\delta_{\alpha l} \xi^j - \delta_{j\alpha} \xi^l + \delta_{lj} \xi^\alpha) \big) \Big) \\ &= \frac{4}{(1-||\xi||^2)^2} \Big(-\delta_{jk} \xi^i \xi^l + \delta_{lj} \xi^i \xi^k + \delta_{ik} \xi^j \xi^l - \delta_{li} \xi^j \xi^k \\ &\quad + \frac{1-||\xi||^2}{2} \Big(-\delta_{jk} \delta_{il} + \delta_{lj} \delta_{ik} + \delta_{ik} \delta_{jl} - \delta_{li} \delta_{jk} \Big) \\ &\quad + \sum_{\alpha} \Big((\delta_{k\alpha} \delta_{\alpha l} \xi^i \xi^j - \delta_{k\alpha} \delta_{i\alpha} \xi^j \xi^l + \delta_{k\alpha} \delta_{li} \xi^j \xi^\alpha \\ &\quad - \delta_{jk} \delta_{\alpha l} \xi^i \xi^\alpha + \delta_{jk} \delta_{i\alpha} \xi^l \xi^\alpha - \delta_{jk} \delta_{li} (\xi^\alpha)^2 \\ &\quad + \delta_{\alpha j} \delta_{\alpha l} \xi^i \xi^j - \delta_{k\alpha} \delta_{j\alpha} \xi^i \xi^l + \delta_{k\alpha} \delta_{lj} \xi^i \xi^\alpha \\ &\quad - (\delta_{k\alpha} \delta_{\alpha l} \xi^j \xi^\alpha + \delta_{ik} \delta_{j\alpha} \xi^l \xi^\alpha - \delta_{ik} \delta_{lj} (\xi^\alpha)^2 \\ &\quad + \delta_{\alpha i} \delta_{\alpha l} \xi^j \xi^\alpha + \delta_{ik} \delta_{j\alpha} \xi^l \xi^\alpha - \delta_{ik} \delta_{lj} \xi^k \xi^\alpha \Big) \Big) \Big) \end{split}$$

$$= \frac{4}{(1-\|\xi\|^{2})^{2}} \Big(-\delta_{jk}\xi^{i}\xi^{l} + \delta_{lj}\xi^{i}\xi^{k} + \delta_{ik}\xi^{j}\xi^{l} - \delta_{li}\xi^{j}\xi^{k} + (1-\|\xi\|^{2})(\delta_{ik}\delta_{jl} - \delta_{li}\delta_{jk})$$

$$+ \sum_{\alpha} \Big((\delta_{kl}\xi^{i}\xi^{j} - \delta_{ik}\xi^{j}\xi^{l} + \delta_{li}\xi^{j}\xi^{k} - \delta_{jk}\xi^{i}\xi^{l} + \delta_{jk}\xi^{l}\xi^{i} - \delta_{jk}\delta_{li}\|\xi\|^{2} + \delta_{jl}\xi^{i}\xi^{k} - \delta_{ij}\xi^{k}\xi^{l} + \delta_{ik}\xi^{j}\xi^{l} + \delta_{ik}\xi^{l}\xi^{j} - \delta_{ik}\delta_{lj}\|\xi\|^{2} + \delta_{il}\xi^{j}\xi^{k} - \delta_{ij}\xi^{k}\xi^{l} + \delta_{ik}\xi^{j}\xi^{l} + \delta_{ik}\xi^{l}\xi^{j} - \delta_{ik}\delta_{lj}\|\xi\|^{2} + \delta_{il}\xi^{j}\xi^{k} - \delta_{ij}\xi^{k}\xi^{l} + \delta_{il}\xi^{j}\xi^{k} - \delta_{ij}\xi^{k}\xi^{l} + \delta_{il}\xi^{j}\xi^{k} - \delta_{ij}\xi^{k}\xi^{l} + \delta_{il}\xi^{j}\xi^{k} - \delta_{il}\xi^{j}\xi^$$

Und somit

$$R_{ijkl} = g\left(\sum_{m} R_{ijk}^{\ m} \frac{\partial}{\partial \xi^{m}}, \frac{\partial}{\partial \xi^{l}}\right) = \sum_{m} R_{ijk}^{\ m} g\left(\frac{\partial}{\partial \xi^{m}}, \frac{\partial}{\partial \xi^{l}}\right)$$
$$= \frac{4}{(1 - \|\xi\|^{2})^{2}} R_{ijk}^{\ l} = \frac{16}{(1 - \|\xi\|^{2})^{4}} \left(\delta_{ik}\delta_{jl} - \delta_{li}\delta_{jk}\right).$$

Für linear unabhängige $X = \sum X_i \frac{\partial}{\partial \xi^i}$, $Y = \sum Y_j \frac{\partial}{\partial \xi^j} \in \mathcal{T}_p \mathbb{H}^n$ gilt dann

$$\begin{split} R(X,Y,Y,X) &= \sum_{i,j,k,l} X_i X_l Y_j Y_k \ R(\frac{\partial}{\partial \xi^i}, \frac{\partial}{\partial \xi^j}, \frac{\partial}{\partial \xi^k}, \frac{\partial}{\partial \xi^l}) \\ &= \sum_{i,j,k,l} X_i X_l Y_j Y_k \ \frac{16}{(1-||\xi||^2)^4} \left(\delta_{ik} \delta_{jl} - \delta_{li} \delta_{jk}\right) \\ &= \sum_{i,j} X_i X_j Y_j Y_i \ \left(\frac{4}{(1-||\xi||^2)^2}\right)^2 - \sum_{i,j} X_i^2 Y_j^2 \ \left(\frac{4}{(1-||\xi||^2)^2}\right)^2 \\ &= \sum_{i,j} X_i X_j Y_j Y_i g(\frac{\partial}{\partial \xi^i}, \frac{\partial}{\partial \xi^i}) g(\frac{\partial}{\partial \xi^j}, \frac{\partial}{\partial \xi^j}) - \sum_{i,j} X_i^2 Y_j^2 \ g(\frac{\partial}{\partial \xi^i}, \frac{\partial}{\partial \xi^i}) g(\frac{\partial}{\partial \xi^j}, \frac{\partial}{\partial \xi^j}) \\ &= \left(\sum_i g(X_i \frac{\partial}{\partial \xi^i}, Y_i \frac{\partial}{\partial \xi^i})\right) \left(\sum_j g(X_j \frac{\partial}{\partial \xi^j}, Y_j \frac{\partial}{\partial \xi^j})\right) \\ &- \left(\sum_i g(X_i \frac{\partial}{\partial \xi^i}, X_i \frac{\partial}{\partial \xi^i})\right) \left(\sum_j g(Y_j \frac{\partial}{\partial \xi^j}, Y_j \frac{\partial}{\partial \xi^j})\right) \\ &= g(X, Y)^2 - \|X\|^2 \|Y\|^2 = -(\|X\|^2 \|Y\|^2 - g(X, Y)^2). \end{split}$$

Hieraus folgt

$$\sec(\operatorname{span}\{X,Y\}) = \frac{R(X,Y,Y,X)}{\|X\|^2 \|Y\|^2 - g(X,Y)^2} = -1.$$

Lösung 3

Sei $S^n(r) := \{x \in \mathbb{R}^{n+1} \mid ||x|| = r\}$, Behauptung: $\sec_{S^n(r)} \equiv \frac{1}{r^2}$ Sei $\nabla = \nabla S^n(r)$ der Levi-Civita Zusammenhang von $(S^n(r), g_{\text{ind}})$. Daraus folgt:

$$(\nabla_X Y)_p = \left((\nabla_X^{\mathbb{R}^{n+1}} Y)_p \right) T_p S^n(r)$$

= $(\nabla_X^{\mathbb{R}^{n+1}} Y)_p - \langle (\nabla_X^{\mathbb{R}^{n+1}} Y)_p, N(p) \rangle \cdot N(p)$

wobei $N(p) = \frac{1}{r} \cdot p$ das Normaleneinheitsvektorfeld an $S^n(r)$ ist. Betrachte nun

$$\langle (\nabla_X^{\mathbb{R}^{n+1}} Y)_p, N(p) \rangle = \underbrace{X_p(\langle Y, N \rangle)}_{=0} - \langle Y_p, (\nabla_X^{\mathbb{R}^{n+1}} N)_p \rangle$$
$$= - \langle Y_p, \underbrace{(D N)_p}_{\frac{1}{r} \cdot \mathrm{id}} \cdot X_p \rangle$$
$$= - \frac{1}{r} \langle Y_p, X_p \rangle$$

Daraus folgt dann $\nabla_X Y = \nabla_X^{R^{n+1}} Y + \frac{1}{r} \langle X, Y \rangle N$. Als nächstes betrachten wir nun:

$$\begin{split} R^{S^{n}(r)}(X,Y)Z &= \nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X} - \nabla_{[X,Y]}Z \\ &= \nabla_{X}^{\mathbb{R}^{n+1}}(\nabla_{Y}Z) + \frac{1}{r}\langle X, \nabla_{Y}Z\rangle \cdot N \\ &- \nabla_{Y}^{\mathbb{R}^{n+1}}(\nabla_{X}Z) - \frac{1}{r}\langle Y, \nabla_{X}Z\rangle \cdot N \\ &- \nabla_{[X,Y]}^{\mathbb{R}^{n+1}}Z - \frac{1}{r}\langle [X,Y],Z\rangle \cdot N \\ &= R^{\mathbb{R}^{n+1}}(X,Y)Z + \nabla_{X}^{\mathbb{R}^{n+1}}(\frac{1}{r}\langle Y,Z\rangle \cdot N) + \frac{1}{r}\langle X, \nabla_{Y}^{\mathbb{R}^{n+1}}Z + \frac{1}{r}\langle Y,Z\rangle \cdot \overset{\perp X}{N}\rangle N \\ &- \nabla_{Y}^{\mathbb{R}^{n+1}}(\frac{1}{r}\langle X,Y\rangle N) - \frac{1}{r}\langle Y, \nabla_{X}^{\mathbb{R}^{n+1}}Z + \frac{1}{r}\langle Y,Z\rangle \cdot \overset{\perp Y}{N}\rangle \cdot N \\ &- \frac{1}{r}\langle [X,Y]Z\rangle \cdot N \\ &= DY \cdot X - DX \cdot Y \\ &= X(\frac{1}{r}\langle Y,Z\rangle)N + \frac{1}{r}\langle Y,Z\rangle \nabla_{X}^{\mathbb{R}^{n+1}}N + \frac{1}{r}\langle X,DZ \cdot Y\rangle \cdot N \\ &- Y(\frac{1}{r}\langle X,Z\rangle) \cdot N - \frac{1}{r}\langle X,Z\rangle \nabla_{Y}^{\mathbb{R}^{n+1}}N - \frac{1}{r}\langle Y,DZ \cdot X\rangle \cdot N - \frac{1}{r}\langle DY \cdot X - DX \cdot Y,Z\rangle \cdot N \\ &= \frac{1}{r}(\langle DY \cdot X,Z\rangle + \langle Y,DZ \cdot X\rangle) \cdot N + \frac{1}{r}\langle Y,Z\rangle \overset{=}{D}N \cdot X + \langle X,DZ \cdot Y\rangle \cdot N \\ &- \frac{1}{r}\langle DY \cdot X - DX \cdot Y,Z\rangle \cdot N \\ &= \frac{1}{r^{2}}(\langle Y,Z\rangle \cdot X - \langle X,Z\rangle \cdot Y) \end{split}$$

Daraus folgt dann

$$\langle D(X,Y)Y,X\rangle = \frac{1}{r^2}(\langle Y,Y,\rangle\langle X,X\rangle - \langle X,Y\rangle^2)$$

und damit folgt dann schließlich

$$\sec_{S^n(r)}(\{X,Y\}) = \frac{1}{r^2}$$

Übung 10 vom 14. Januar 2012

Übungsblatt 10 enthielt keine Aufgaben, deshalb befassen wir uns hier mit den Geodätischen von \mathbb{H}^2 . Wir betrachten zunächst die folgenden drei bisherigen Modelle

Hyperboloid:
$$\{x \in \mathbb{R}^{2+1} \mid \overbrace{-x_0^2 + x_1^2 + x_2^2} = -1, x_0 > 0\}$$
 und $\langle \cdot, \cdot \rangle|_{T_p \mathbb{H}^2 \times T_p \mathbb{H}^2}$ ist das Skalarprodukt.

Poincare Kreisscheibenmodell: $D:=\{\xi\in\mathbb{R}^2\mid \|\xi\|<1\},\,g_D=\frac{4}{(1-\|\xi\|)^2}\sum\mathrm{d}\xi^i\otimes\mathrm{d}\xi^i$

Poincare obere Halbebene Modell: $H := \{x + iy \in \mathbb{C} \mid y > 0\}, g_H = \frac{1}{y^2} (\mathrm{d}x \otimes \mathrm{d}x + \mathrm{d}y \otimes \mathrm{d}y)$

Isometrie zwischen D und H: Betrachte D als Teilmenge von $\mathbb C$ mittels $\psi: H \to D, z \mapsto \frac{z-i}{z+i}$

$$|\psi(z)|^2 = \frac{z-i}{z+i} \cdot \frac{\overline{z}+i}{\overline{z}-i} = \frac{z\overline{z}+i}{z\overline{z}-i(z-\overline{z})+1} = \frac{|z|^2 - 2\operatorname{Im}(z) + 1}{|z|^2 + 2\operatorname{Im}(z) + 1} \stackrel{\operatorname{Im}(z)>0}{<} 1$$

Definiere weiter $\varphi:D\to H$ mit $\xi=\xi_1+i\xi_2\mapsto -irac{\xi+1}{\xi-1}.$ Dann folgt

$$\operatorname{Im}(\varphi(\xi)) = \underbrace{\frac{\sum_{j=0}^{>0} (1-|\xi|^2)}{|\xi|^2 - 2\operatorname{Re}(\xi) + 1}}_{\geq (\operatorname{Re}(\xi) - 1)^2 > 0} > 0$$

Durch Nachrechnen ergibt sich $\varphi \circ \psi = \mathrm{id}$ und $\psi \circ \varphi = \mathrm{id}$. Da φ und ψ holomorph sind, folgt dass sie auf C^{∞} glatt sind. Wir zeigen schließlich dass ψ eine Isometrie ist. Dazu fassen wir ψ als reelle Funktion auf:

$$\psi(x,y) = \begin{pmatrix} \psi_1(x,y) \\ \psi_2(x,y) \end{pmatrix}$$

Da ψ holomorph ist erfüllt ψ auch die Cauchy-Riemannschen Differentialgleichungen:

$$\frac{\partial \psi_1}{\partial x} = \frac{\partial \psi_2}{\partial y} \qquad \qquad \frac{\partial \psi_1}{\partial y} = \frac{\partial \psi_2}{\partial x}$$

Es sei $p = (x, y) \in H$ und sei ye_1, ye_2 eine Orthonormalbasis von $T_p H$. Dann gilt:

$$g_{D}(\psi_{*p}(ye_{1}), \psi_{*p}(ye_{2})) = y^{2}g_{D}\left(\frac{\partial\psi}{\partial x}, \frac{\partial\psi}{\partial y}\right)$$

$$= \frac{4y^{2}}{(1 - \|\psi\|^{2})^{2}} \cdot \left(\frac{\partial\psi_{1}}{\partial x} \cdot \frac{\partial\psi_{1}}{\partial y} + \frac{\partial\psi_{2}}{\partial x} \cdot \frac{\partial\psi_{2}}{\partial y}\right)$$

$$= 0$$

$$g_{D}(\psi_{*p}(ye_{1}), \psi_{*p}(ye_{1})) = \frac{4y^{2}}{(1 - \|\psi\|^{2})^{2}} \cdot \left(\left(\frac{\partial\psi_{1}}{\partial x}\right)^{2} + \left(\frac{\partial\psi_{2}}{\partial x}\right)^{2}\right)$$

$$= \dots = 1$$

$$g_{D}(\psi_{*p}(ye_{2}), \psi_{*p}(ye_{2})) = \dots = 1$$

Daraus folgt dass ψ_* eine Orthonormalbasis auf eine Orthonormalbasis abbildet und daher ist ψ eine Isometrie.

Isometrien von H Zu $a, b, c, d \in \mathbb{R}$ mit ad - bc > 0 betrachte

$$h(z) = \frac{az+b}{bz+d}$$
 ((spezielle) Möbiustransformation)

Es gilt:

$$\operatorname{Im}(h(z)) = \operatorname{Im}\left(\frac{(az+b)(c\overline{z}+d)}{|cz+d|^2}\right)$$

$$= \operatorname{Im}\left(\frac{acz\overline{z}+bd+adz+bc\overline{z}}{|cz+d|^2}\right)$$

$$= \frac{(ad-bc)\operatorname{Im}(z)}{|cz+d|^2} > 0 \qquad (f\"{\operatorname{ur}}\ z \in H)$$

Es gilt somit $h: H \to H$, sowie

$$h^{-1}(z) = \frac{1}{ad - bc} \cdot \frac{dz - b}{-cz + a}$$
 (nachrechnen)

Daraus folgt dass h ein Diffeomorphismus ist. Für $v \in T_z H$ und $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ gilt:

$$h_{*z}V = Dh|_{z}V = \begin{pmatrix} v_{i}\frac{\partial \operatorname{Re}(h)}{\partial x} + v_{2}\frac{\partial \operatorname{Re}(h)}{\partial y} \\ v_{2}\frac{\partial \operatorname{Im}(h)}{\partial x} + v_{2}\frac{\partial \operatorname{Im}(h)}{\partial y} \end{pmatrix} \overset{\operatorname{C-R}}{\underset{\operatorname{DGL}}{=}} \begin{pmatrix} v_{1}\lambda - v_{2}\mu \\ v_{2}\mu + v_{2}\lambda \end{pmatrix} \qquad \frac{\partial \operatorname{Re}(h)}{\partial x} =: \lambda$$

$$= \begin{pmatrix} \operatorname{Re}((\lambda + i\mu)(v_{1} + iv_{2})) \\ \operatorname{Im}((\lambda + i\mu)(v_{1} + iv_{2})) \end{pmatrix}$$

$$= \begin{pmatrix} \operatorname{Re}(h'(z) \cdot (v_{1} + iv_{2})) \\ \operatorname{Im}(h'(z) \cdot (v_{1} + iv_{2})) \end{pmatrix}$$

Für $v, w \in T_z H$ gilt:

$$g_H(v,w) = \frac{1}{\operatorname{Im}(z)^2} (v_1 w_1 + v_2 w_2)$$

$$= \frac{1}{\operatorname{Im}(z)^2} \operatorname{Re}(\underbrace{(v_1 + i v_2)}_{=:\tilde{v}} \underbrace{(w_1 + i w_2)}_{=:\tilde{w}}))$$

Es ist

$$h'(x) = \frac{a(cz+d) - c(az+b)}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2}$$

Daraus folgt dann

$$g_{H|h(z)}(h_{*z}v, h_{*z}w) = \frac{1}{(\operatorname{Im}(h(z)))^{2}} \cdot \operatorname{Re}(h'(z)\tilde{v}\overline{h'(z)}\tilde{w})$$

$$= \frac{|h'(z)|^{2}}{\operatorname{Im}(h(z))^{2}} \cdot \operatorname{Re}(\tilde{v}\overline{\tilde{w}}) = \frac{|h'(z)|^{2}}{\operatorname{Im}(h(z))^{2}} \cdot g_{h|z}(v, w)$$

Wobei $\text{Im}(h(z)) = \frac{ad-bc}{|cz+d|^2} \cdot \text{Im}(z) = |h'(z)| \cdot \text{Im}(z)$ gilt, daraus folgt dass h eine Isometrie ist.

Beispiel (1) Für $w \in H$ ist

$$h_w(z) = \frac{\operatorname{Im}(w) \cdot z + \operatorname{Re}(w)}{0 \cdot z + 1} = \operatorname{Im}(w) \cdot z + \operatorname{Re}(w)$$

eine Isometrie von H, da Im(w) > 0 und $h_w(i) = \text{Im}(w)i + \text{Re}(w) = w$. Daraus folgt dass es genügt die Geodätischen durch i zu betrachten.

(2) Für $\theta \in \mathbb{R}$ ist

$$h_{\theta} = \frac{\cos(\theta)z - \sin(\theta)}{\sin(\theta)z + \cos(\theta)}$$

Eine Isometrie von H mit

$$h_{\theta}(i) = i \frac{\cos(\theta) - \frac{1}{i}\sin(\theta)}{\sin(\theta)i + \cos(\theta)} = i$$

und

$$h'_{\theta}(i) = \frac{1}{(\sin(\theta)i + \cos(\theta))^2} = e^{-2i\theta}$$

Für $v \in T_i H$ mit ||v|| = 1 können wir also $\theta \in \mathbb{R}$ wählen mit $h_{\theta*}e_2 = v$. Daraus folgt dass es genügt die Geodätischen γ mit $\gamma(0) = i$ und $\dot{\gamma}(0) = e_2$ zu bestimmen.

$$g_{ij,1} = \frac{\partial g_{ij}}{\partial x} = \delta_{ij} \cdot \frac{\partial}{\partial x} \left(\frac{1}{y^2}\right) = 0$$

$$g_{ij,2} = \frac{\partial g_{ij}}{\partial y} = \delta_{ij} \cdot \frac{-2}{y^3}$$

$$g_{kl} = y^2 \cdot \delta_{kl}$$

$$\Gamma_{ij}^k = \frac{1}{2} \sum_{l=1}^2 g^{kl} (g_{jl,i} - g_{ij,l} + g_{il,j})$$

Daraus folgt

$$\Gamma^1_{12} = \Gamma^1_{21} = -\frac{1}{y}$$
 $\Gamma^2_{11} = \frac{1}{y}$ $\Gamma^2_{22} = -\frac{1}{y}$

alle Anderen sind "= 0". Die geodätische Differentialgleichung lautet $\ddot{\gamma}^k + \sum_{ij} (\Gamma^k_{ij} \circ \gamma) \cdot \dot{\gamma}^i \cdot \dot{\gamma}^j = 0$. Daraus folgt

$$\ddot{\gamma}^1 - \frac{2}{\gamma^2} \dot{\gamma}^1 \cdot \dot{\gamma}^2 = 0 \qquad \qquad \ddot{\gamma}^2 - \frac{1}{\gamma^2} ((\dot{\gamma}^2)^2 - (\dot{\gamma}^1)^2) = 0$$

 $Ansatz: \ \gamma^1 \equiv 0 \ (\text{erfüllt die erste Gleichung}) \leadsto \ddot{\gamma}^2 = \frac{1}{\gamma^2} (\dot{\gamma}^2)^2$

Lösung: $\gamma^2(t) = e^t$

Damit ist $\gamma(t) = ie^t$ die Geodätische durch i mit der Startrichtung e_2 . Die anderen Geodätischen, die in i starten sind von der Form

$$h_{\theta}(\gamma(t)) = \frac{\cos(\theta)ie^t - \sin(\theta)}{\sin(\theta)ie^t + \cos(\theta)}$$

Möbiustransformationen bilden Geraden und Kreise auf Geraden und Kreise ab. Damit ist $\gamma_{\theta} = h_{\theta} \circ \gamma$ eine Gerade oder ein Kreis.

$$\gamma_{\theta}(t) \to \begin{cases} -\frac{\sin \theta}{\cos \theta} & \text{für } t \to -\infty\\ \frac{\cos \theta}{\sin \theta} & \text{für } t \to \infty \end{cases}$$

Für $\sin \theta$, $\cos \theta \neq 0$ ergibt sich:

Es ist

$$\frac{\dot{\gamma}_{\theta}(t)}{|\dot{\gamma}_{\theta}(t)|} = \dots = \frac{i\cos\theta + e^t\sin\theta}{\cos\theta + ie^t\sin\theta} \to \begin{cases} i & \text{für } t \to -\infty \\ -i & \text{für } t \to \infty \end{cases}$$

Also schneidet der Kreis die \mathbb{R} -Achse im rechten Winkel und damit liegt der Mittelpunkt in \mathbb{R} : $\frac{1}{2} \left(\frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta} \right)$. Wegen $h_w(\mathbb{R}) \subset \mathbb{R}$ gilt das Gleiche für alle Geodätischen.

Übung 11 vom 21. Januar 2012

Aufgabe 1

Es sei $\kappa \in \mathbb{R}$ und

$$C_{\kappa}(t) = \begin{cases} \cos(\sqrt{\kappa}t) & \kappa > 0 \\ 1 & \kappa = 0 \\ \cosh(\sqrt{|\kappa|}t) & \kappa < 0 \end{cases} \qquad S_{\kappa}(t) = \begin{cases} \frac{1}{\sqrt{\kappa}}\sin(\sqrt{\kappa}t) & \kappa > 0 \\ t & \kappa = 0 \\ \frac{1}{\sqrt{|\kappa|}}\sinh(\sqrt{|\kappa|}t) & \kappa < 0 \end{cases}$$

Es sei (M,g) eine Riemannsche Mannigfaltigkeit und γ eine nach Bogenlänge parametrisierte Geodätische. Für alle t und jede Ebene $P \leq \mathrm{T}_{\gamma(t)}\,M$ mit $\dot{\gamma}(t) \in P$ gelte $\mathrm{sec}(P) = \kappa$.

Zeigen Sie, dass jedes orthogonale Jacobivektorveld J längs γ die Form

$$J(t) = C_{\kappa}(t)A(t) + S_{\kappa}(t)B(t)$$

mit parallelen Vektorfeldern A, B längs γ hat.

Aufgabe 2

Es sei (M, g) eine vollständige Riemannsche Mannigfaltigkeit von konstanter Schnitt-krümmung $\kappa \in \mathbb{R}$ und $p \in M$. Zeigen Sie, dass es genau dann zu p konjugierte Punkte gibt, wenn $\kappa > 0$ gilt.

Lösung 1

Erinnerung: Definition von Jacobifeldern

$$\ddot{\mathcal{J}}(t) + (R(\mathcal{J}, \dot{\gamma})\dot{\gamma})(t) = 0$$
 (Jacobi-Gleichung)

(Vektorfelder von Variationen durch Geodätische)

$$\begin{split} \langle \ddot{\mathcal{J}}, \mathcal{J} \rangle &= -R(\mathcal{J}, \dot{\gamma}, \ddot{\gamma}, \mathcal{J}) \\ &= -\sec(\{\mathcal{J}, \dot{\gamma}\}) \cdot (\|\mathcal{J}\|^2 \underbrace{\|\dot{\dot{\gamma}}\|}_{=0}^2 - \langle \mathcal{J}, j \rangle^2) \\ &= -\kappa \langle \mathcal{J}, \mathcal{J} \rangle \end{split}$$

Wir möchten nun zeigen dass $\ddot{\mathcal{J}} = -\kappa \mathcal{J}$ gilt. Es sei $e_1, \ldots, e_{n-1}, e_n = \dot{\gamma}(t)$ eine Orthonormalbasis von $T_{\gamma(t)} M$. Daraus folgt $0 = R(\mathcal{J}, \dot{\gamma}, \dot{\gamma}, e_n)$ und $0 = \langle \mathcal{J}, e_n \rangle$. Für i < n gilt:

$$R(\mathcal{J} + e_i, \dot{\gamma}, \dot{\gamma}, \mathcal{J} + e_i) = \kappa \cdot (\|\mathcal{J} + e_i\|^2 \cdot \underbrace{\|\gamma\|^2}_{=1} - \underbrace{\langle \mathcal{J} + e_i, \dot{\gamma} \rangle^2}_{=0}) = \kappa \cdot \|\mathcal{J} + e_i\|^2$$

und

$$R(\mathcal{J} + e_i, \dot{\gamma}, \dot{\gamma}, \mathcal{J} + e_i) = R(\mathcal{J}, \dot{\gamma}, \dot{\gamma}, \mathcal{J}) + R(e_i, \dot{\gamma}, \dot{\gamma}, e_i) + 2R(\mathcal{J}, \dot{\gamma}, \dot{\gamma}, e_i)$$
$$= \kappa \cdot (\|\mathcal{J}\|^2 + \|e_i\|^2) + 2R(\mathcal{J}, \dot{\gamma}, \dot{\gamma}, e_i)$$

Daraus folgt

$$R(\mathcal{J}, \dot{\gamma}, \dot{\gamma}, e_i) = \frac{1}{2}\kappa(\|\mathcal{J} + e_i\|^2 - \|\mathcal{J}\|^2 - \|e_i\|^2) = \kappa\langle \mathcal{J}, e_i \rangle$$

und damit gilt $R(\mathcal{J}, \dot{\gamma}, \dot{\gamma}) = \kappa \cdot \mathcal{J}$ und damit wird die Jacobi-Gleichung zu $\ddot{\mathcal{J}} = -\kappa \mathcal{J}$. Setze $A(0) = \mathcal{J}(0)$ und $B(0) = \dot{\mathcal{J}}(0)$ parallel fort zu A(t) und B(t) und definiere $\tilde{\mathcal{J}}(t) = C_{\kappa}(t) \cdot A(t) + S_{\kappa}(t) \cdot B(t)$. Betrachte nun:

 $\frac{\mathrm{D}}{\mathrm{d}t} = \nabla_t$

$$\frac{\mathbf{D}}{\mathbf{d}t}\tilde{\mathcal{J}} = C'_{\kappa}A + C_{\kappa}\underbrace{\frac{\mathbf{D}}{\mathbf{d}t}A + S'_{\kappa}B + S_{\kappa}\underbrace{\frac{\mathbf{D}}{\mathbf{d}t}B}_{=0} = C'_{\kappa}A + S'_{\kappa}B$$
$$\ddot{\mathcal{J}} = C''_{\kappa}A + S''_{\kappa}B$$

Es gilt:

$$C_{\kappa}^{"} = -\kappa C_{\kappa} \qquad S_{\kappa}^{"} = -\kappa S_{\kappa}$$

Daraus folgt $\ddot{\mathcal{J}} = -\kappa \tilde{\mathcal{J}}$ und damit $\tilde{\mathcal{J}} = \mathcal{J}$ (eindeutige Lösung zu gegebenen $\mathcal{J}(0)$, $\dot{\mathcal{J}}(0)$). Der Beweis zeigt, dass parallele $A, B \perp \dot{\gamma}$ ein Jacobifeld definieren.

Lösung 2

k > 0: Sei $v \in T_p M$ mit ||v|| = 1 und $\gamma(t) = \exp_p(tv)$. Da M vollständig ist, ist γ auf ganz \mathbb{R} definiert. Es sei $B(0) \in v^{\perp}$ und B die parallele Fortsetzung längs γ . Setze $\mathcal{J}(t) = S_{\kappa}(t) \cdot B(t)$. Daraus folg dass \mathcal{J} ein Jacobifeld ist mit $\mathcal{J}(0) = \underbrace{S_{\kappa}(0)}_{=0} B(0) = 0$

und

$$\mathcal{J}\left(\frac{\pi}{\sqrt{\kappa}}\right) = \frac{1}{\kappa}\sin(\pi) \cdot B\left(\frac{\pi}{\sqrt{\kappa}}\right) = 0$$

Daraus folgt dass p und $\gamma(\frac{\pi}{\sqrt{\kappa}})$ konjugiert sind.

 $\mathbf{k} \leq \mathbf{0}$: Angenommen p und q sind konjugiert längs γ (mit $||\dot{\gamma}|| = 1$). Es sei $\gamma(0) = p$ und $\gamma(t_0) = q$ mit $t_0 \geq 0$. Dann gibt es ein Jacobifeld $\mathcal{J} \neq 0$ längs γ mit $\mathcal{J}(0) = 0 = \mathcal{J}(t_0)$ und damit ist \mathcal{J} orthogonal. Nach Aufgabe 1 gilt $\mathcal{J} = C_{\kappa} \cdot A + S_{\kappa} \cdot B$. Es gilt:

$$0 = \mathcal{J}(0) = C_{\kappa}(0) \cdot A(0) + S_{\kappa}(0) \cdot B(0) = A(0)$$

Da A parallel ist gilt $A \equiv 0$ und daraus folgt

$$0 = \mathcal{J}(t_0) = \underbrace{S_{\kappa}(t_0)} \cdot B(t_0) > 0$$

$$= \begin{cases} t_0 & \text{falls } k = 0 \\ \frac{1}{\sqrt{|\kappa|}} \sinh(\sqrt{|\kappa|}t_0) & \text{falls } k < 0 \end{cases}$$

Daraus folt $B(t_0) = 0$ und, da B parallel ist, $B \equiv 0$. Also ist $\mathcal{J} \equiv 0$, was einen Widerspruch darstellt. ξ

Bemerkung Der Beweis von Aufgabe 2 zeigt: Eine vollständige Riemannsche Mannigfaltigkeit mit sec $\equiv \kappa > 0$ hat Durchmesser $\leq \frac{\pi}{\sqrt{\kappa}} = \text{diam}(S^n(\sqrt{\kappa}) = \{x \in \mathbb{R}^{n+1} \mid ||x|| = \sqrt{\kappa}\})$

Beispiel (1) S^n , $\sec \equiv 1$; p und -p sind konjugiert:

und p ist zudem zu sich selbst konjugiert ($\mathcal{J}(2\pi)=0$), und dies sind alle zu p konjugierten Punkte.

(2) $\mathbb{RP}^n = S^n/q \sim (-q)$ mit der von S^n induzierten Metrik $\rightsquigarrow [p] = [-p]$. Daraus folgt dass [p] der einzige zu p konjugierte Punkt ist.

- (3) $(\mathbb{R}^n, g_{\text{eukl}})$ parallele Vektorfelder = konstante Vektorfelder. Damit haben die Jacobifelder die Form $\mathcal{J}(t) = A + tB$. (mit $A, B \in \mathbb{R}^n$)
- (4) \mathbb{H}^2

$$\gamma(t) = ie^t$$
 Geodätische (letzte Übung)

$$\dot{\gamma}(t) = e^t \frac{\partial}{\partial y} = e^t \begin{pmatrix} 0\\1 \end{pmatrix}$$

Es sei A eine paralleles Vektorfeld längs γ . Dann gilt:

$$0 \stackrel{!}{=} \nabla_t A = \nabla_t \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \nabla_t \begin{pmatrix} A_1 \\ 0 \end{pmatrix} + \nabla_t \begin{pmatrix} 0 \\ A_2 \end{pmatrix}$$

$$= A_1' \begin{pmatrix} 1 \\ 0 \end{pmatrix} + A_1 \cdot \nabla_t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + A_2' \begin{pmatrix} 0 \\ 1 \end{pmatrix} + A_2 \cdot \nabla_t \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} A_1' \\ A_2' \end{pmatrix} + A_1 \cdot \nabla_{\dot{\gamma}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + A_2 \cdot \nabla_{\dot{\gamma}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \text{wobei } \nabla_{\dot{\gamma}} = e^t \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} A_1' \\ A_2' \end{pmatrix} + e^t A_1 \begin{pmatrix} \underbrace{-\frac{1}{\gamma^2(t)} = \frac{-1}{e^t}}_{\gamma^2(t)} \\ \underbrace{\Gamma^1_{21}(\gamma(t))}_{=0} \end{pmatrix} + e^t A_2 \begin{pmatrix} \underbrace{-\frac{1}{\gamma^2(t)} = \frac{-1}{e^t}}_{\gamma^2(\gamma(t))} \\ \underbrace{\Gamma^2_{22}(\gamma(t))}_{=\frac{1}{e^t}} \end{pmatrix}$$

$$= \begin{pmatrix} A_1' - A_1 \\ A_2' + A_2 \end{pmatrix}$$

Daraus folgt $A_1(t) = A_1(0) \cdot e^t$ und $A_2(t) = A_2(0) \cdot e^{-t}$.

Übung 12 vom 28. Januar 2012

Aufgabe 1

Es sei $\gamma:[0,a]\to M$ eine Geodätische mit $\gamma(0)=p,\ \gamma'(0)=v,\ \|v\|=1$ und $w\in T_pM$ mit $\|w\|=1$ und $\langle v,w\rangle=0$. Es sei J das durch

$$J(t) = (\exp_p)_{*_{tv}} tw \in T_{\gamma(t)} M$$

gegebene Jacobivektorfeld längs γ und $\sigma=\mathrm{span}\{v,w\}$. Zeigen Sie, dass die Taylorentwicklung von |J(t)| gegeben ist durch

$$|J(t)| = t - \frac{1}{6}\sec(\sigma)t^3 + o(t^3)$$
 für $t \to 0$.

Hinweis: Berechnen Sie zunächst die Entwicklung von $|J(t)|^2$ und zeigen Sie hierfür die Identität $\nabla_{\gamma'}(R(\gamma',J)\gamma')(0) = R(\gamma',J')\gamma'(0)$.

Aufgabe 2

Es seien $\gamma_1, \gamma_2 : [0, a] \to M$ zwei Geodätische mit $\gamma_1(0) = \gamma_2 = (0) =: p$, deren Ableitungen $v := \dot{\gamma}_1(0)$ und $w := \dot{\gamma}_2(0)$ normiert und linear unabhängig seien. Weiter sei $L(t) = d(\gamma_1(t), \gamma_2(t))$.

Zeigen Sie, dass

$$L(t) = t||v - w|| - \frac{1}{12}\sec(\text{span}\{v, w\})||v - w||(1 + \langle v, w \rangle)t^3 + o(t^3) \quad \text{für } t \to 0$$

gilt.

Hinweis: Betrachten Sie die Variation $(t,s)\mapsto \exp(s\exp_{\gamma_1(t)}^{-1}(\gamma_2(t)))$. Skizze:

Lösung 1

Offensichtlich gilt $\mathcal{J}(0) = 0$. Auserdem gilt nach der Kettenregel für die Ableitung

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \left(\exp_p(t(v+sw)) \right) = (\exp_p)_{*tv}(tw) = \mathcal{J}(t)$$

Wir erhalten dann

$$\mathcal{J}'(0) = \nabla_t(\exp_{p*tv}(tw))|_0 = \nabla_t(t \cdot \exp_{p*tv}(w))|_0$$
$$= \exp_{p*tv}(w) + t \cdot \nabla_t(\exp_{p*tv}(w))|_0$$
$$= w$$

Ferner gilt $|\mathcal{J}(t)|^2 = \langle \mathcal{J}(t), \mathcal{J}(t) \rangle$. Wir betrachten nun die Ableitungen davon:

$$\langle \mathcal{J}, \mathcal{J} \rangle'(0) = 2\langle \mathcal{J}', \mathcal{J} \rangle(0) = 0$$

$$\langle \mathcal{J}, \mathcal{J} \rangle''(0) = 2 \left(\langle \mathcal{J}'', \mathcal{J} \rangle + \langle \mathcal{J}', \mathcal{J}' \rangle \right) (0)$$

$$= 2 ||w||^2 = 2$$

$$\langle \mathcal{J}, \mathcal{J} \rangle'''(0) = 2 \left(\langle \mathcal{J}''', \mathcal{J} \rangle + \langle \mathcal{J}'', \mathcal{J}' \rangle + 2 \langle \mathcal{J}'', \mathcal{J}' \rangle \right) (0)$$

$$= 6\langle \mathcal{J}''(0), \mathcal{J}'(0) \rangle = -6\langle R(\dot{\gamma}(0), \underbrace{\mathcal{J}(0)})\dot{\gamma}(0), \mathcal{J}'(0) \rangle = 0$$

$$\mathcal{J}'''(0) = \nabla_t (\mathcal{J}''(t))|_0 = \nabla_t (-R(\mathcal{J}, \dot{\gamma})\dot{\gamma})|_0$$

$$= \nabla_{\dot{\gamma}} (-R(\mathcal{J}, \dot{\gamma})\dot{\gamma}) \stackrel{\text{Hinweis}}{=} -R(\mathcal{J}', \dot{\gamma})\dot{\gamma}|_0$$

$$= -R(w, v)v$$

$$\langle \mathcal{J}, \mathcal{J} \rangle^{(4)}(0) = 2 \left(\langle \mathcal{J}^{(4)}, \mathcal{J} \rangle + \langle \mathcal{J}''', \mathcal{J}' \rangle + 3 \left(\langle \mathcal{J}''', \mathcal{J}' \rangle + \langle \mathcal{J}'', \mathcal{J}'' \rangle \right) \right) (0)$$

$$= 8\langle \mathcal{J}'''(0), \mathcal{J}'(0) \rangle = -8\langle R(w, v)v, w \rangle$$

$$= -8 \sec(\sigma)$$

Beweis des Hinweises Für alle Vektorfelder W längs γ gilt:

$$\langle \nabla_{t}(R(\dot{\gamma}, \mathcal{J})\dot{\gamma}), w \rangle(0) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (\langle R(\dot{\gamma}, \mathcal{J})\dot{\gamma}, w \rangle) - \langle \underbrace{R(\dot{\gamma}, \mathcal{J})\dot{\gamma}}_{=0 \text{ in } 0}, \nabla_{t}w \rangle(0)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (\langle R(\dot{\gamma}, w)\dot{\gamma}, \widehat{\mathcal{J}})$$

$$= \langle \nabla_{t}(R(\dot{\gamma}, w)\dot{\gamma}), \mathcal{J} \rangle(0) + \langle R(\dot{\gamma}, w)\dot{\gamma}, \mathcal{J}' \rangle(0)$$

$$= \langle R(\dot{\gamma}, \mathcal{J}')\dot{\gamma}, w \rangle(0)$$

Aus den Ableitungen folgt nun

$$|\mathcal{J}(t)|^2 = 0 + 0 \cdot t + \frac{1}{2} \cdot 2 \cdot t^2 + 0 \cdot t^3 + \frac{1}{4} \cdot (-8) \cdot \sec(\sigma) \cdot t^4 + o(t^4)$$
$$= t^2 - \frac{1}{3} \sec(\sigma) t^4 + o(t^4)$$

Es sei nun

$$|\mathcal{J}(t)| = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + o(t^3)$$

$$|\mathcal{J}(t)|^2 = a_0^2 + 2a_0 a_1 t + (2a_0 a_2 + a_1^2)t^2 + 2(a_0 a_3 + a_1 a_2)t^3 + (2a_3 a_1 + a_2^2)t^4 + o(t^4)$$

Der Koeffizientenvergleich liefert:

$$a_0 = 0,$$
 $a_1^2 = 1,$ $a_2 = 0,$ $a_3 = -\frac{1}{6}\sec(\sigma)$

und es gilt $a_1 = 1$ denn $|\mathcal{J}(t)| \geq 0$.

Lösung 2

Sei $\sigma = \operatorname{span}\{v, w\}$ und $V(t, s) := \exp_{\gamma_1(t)}(s \cdot \exp_{\gamma_1(t)}^{-1}(\gamma_2(t)))$. Wir definieren desweiteren

$$T(t,s) := \frac{\mathrm{d}}{\mathrm{d}t}(V(t,s)) \qquad \qquad S(t,s) := \frac{\mathrm{d}}{\mathrm{d}s}(V(t,s))$$

Die Abbildung $c_t := s \mapsto V(t,s)$ ist eine Geodätische von $\gamma_1(t)$ nach $\gamma_2(t)$ und daraus folg dann $S(t,s) = \dot{c}_t$. Desweiteren ist $t \mapsto c_t$ eine Variation durch Geodätische und damit $s \mapsto T(t,s)$ ein Jacobifeld längs c_t . Es gilt

$$c_t(0) = \gamma_1(t) \qquad c_t(1) = \gamma_2(t)$$

und daraus folgt $L(c_t) = ||S(t,0)||$. Für genügend kleines t gilt dann:

$$L(t) = L(c_t) = ||S(t,0)||$$

Es gilt:

- $\nabla_s \nabla_s T = -R(T, S)S$ (T Jacobifeld längs c_t)
- $\nabla_s S = 0$ (c_t Geodätische, $\dot{c}_t = S(t, \cdot)$)
- $\bullet \ \nabla_t S = \nabla_s T$

Ferner gilt $L^2(t) = \langle S(t,0), S(t,0) \rangle$ für kleines t und daraus folgt dann

$$(L^2)'(0) = 2\langle \nabla_t S, S \rangle((0,0))$$

mit $S(0,0) = \dot{c}_0(0) = 0$ und $c_0 \equiv p$. Damit folgt also:

$$(L^2)'' = 2(\langle \nabla_t \nabla_t S, S \rangle + \langle \nabla_t S, \nabla_t S \rangle)(0, 0) = 2\langle \nabla_s T, \nabla_s T \rangle(0, 0)$$

Wir wissen bereits dass $T(0,0) = \dot{\gamma}_1(0) = v$, T(0,1) = w und $c_0 \equiv p$, also $\nabla_s = \frac{\mathrm{d}}{\mathrm{d}s}$. Es gilt

$$\nabla_s \nabla_s T(0,s) = -R(T(0,s), \underbrace{S(0,s)}_{=0}) \underbrace{S(0,s)}_{=0} = 0$$

Damit ist $T(0,\cdot)$ linear, also T(0,s) = v + S(w-v) und damit $\nabla_s T(0,s) = w-v$. Daraus folgt dann $(L^2)'' = 2 \cdot ||w-v||^2$. Wir möchten nun dass folgendes gilt:

$$(L^2)'''(0) = 6(\langle \nabla_t \nabla_t S, \nabla_t S \rangle(0,0)) \stackrel{!}{=} 0$$

Dazu zeigen wir zunächst die folgenden drei Gleichungen:

- (1) $\nabla_t T(0,s) = 0$
- (2) $\nabla_s \nabla_t T(0,s) = 0$
- (3) $\nabla_t \nabla_t S(0,s) = 0$

Dass (2) aus (1) folgt ist klar. Dass (3) aus (2) folgt zeigt Folgendes (in (0, s)):

$$\nabla_t \nabla_t S = \nabla_t \nabla_s T = \underbrace{\nabla_s \nabla_t T}_{=0} + \underbrace{R(T, S)T}_{=0}$$

Um (1) zu zeigen gilt $(\nabla_t T)(0,0) = (\nabla_t T)(0,1)$ und dann bleibt noch zu zeigen, dass $(\nabla_t T)(0,s)$ linear ist. Mit (3) folgt dann schließlich $(L^2)'''(0) = 0$. Für die vierte Ableitung gilt dann

$$(L^2)^{(4)}(0) = \dots = \underset{S(0,s)=0}{\dots = 8\langle \nabla_t \nabla_t \nabla_t S, \nabla_t S \rangle(0,0)}{(\nabla_t \nabla_t S(0,0)=0)}$$

Es gilt:

$$\nabla_t \nabla_t \nabla_t S = \nabla_t (\nabla_t \nabla_s T) = \nabla_t (R(T, S)T + \nabla_s \nabla_t T) \overset{\text{Hinweis}}{\underset{\text{A }1}{=}} R(T, \nabla_t S)T + \nabla_t \nabla_s \nabla_t T$$

In (0,0) gilt:

$$R(T, \underbrace{\nabla_t S}_{=\nabla_s T})T(0,0) = R(\underbrace{\dot{\gamma}_1(0)}_{=v}, w - v) \underbrace{\dot{\gamma}_1(0)}_{=v}$$

Damit folgt dann insgesamt:

$$(L^{2})^{(4)}(0) = 8\langle R(v, w - v)v, \nabla_{t}S(0, 0)\rangle + 8\underbrace{\langle \nabla_{t}\nabla_{s}\nabla_{t}T, \nabla_{t}S\rangle}_{=...=0}(0, 0)$$

$$= 8\langle R(v, w - v)v, w - v\rangle$$

$$= 8\langle R(v, w)v, w\rangle$$

$$= -8\langle R(v, w)w, v\rangle$$

$$= -8\sec(\sigma)(\underbrace{\|v\|^{2}\|w\|^{2}}_{=1} - \langle v, w\rangle^{2})$$

Übung 13 vom 4. Februar 2012

Aufgabe 1

Es seien $2 \leq p \in \mathbb{N}$ und $1 \leq q_1, \ldots, q_k < p$ zu p teilerfremde natürliche Zahlen. Zeigen Sie, dass die Gruppe der p-ten Einheitswurzeln $E_p = \{z \in \mathbb{C} \mid z^p = 1\}$ durch

$$z.(z_1,\ldots,z_k) := (z^{q_1}z_1,\ldots z^{q_k}z_k)$$

frei und eigentlich diskontinuierlich auf $S^{2k-1} = \{(z_1, \dots, z_k) \in \mathbb{C}^k \mid \sum_{i=1}^k |z_i|^2 = 1\}$ operiert.

Die Quotientenmannigfaltigkeit $L(p, q_1, \ldots, q_k) = S^{2k-1}/E_p$ nach dieser Wirkung wird *Linsenraum* vom Typ (p, q_1, \ldots, q_k) genannt.

Aufgabe 2

Zeigen Sie, dass es auf \mathbf{T}^n keine Riemannsche Metrik mit positiver Schnittkrümmung gibt.

Aufgabe 3

Es seien M, M_1, M_2 zusammenhängende Riemannsche Mannigfaltigkeiten und π_i : $M \to M_i$ Riemannsche universelle Überlagerungen mit Decktransformationsgruppen Γ_i (i=1,2). Zeigen Sie, dass M_1 und M_2 genau dann isometrisch sind, wenn es eine Isometrie $\hat{\varphi}: M \to M$ gibt, so dass $\Gamma_1 = \hat{\varphi} \Gamma_2 \hat{\varphi}^{-1}$.

Lösung 1

Operation: Für alle $z \in E_p$ ist $S^{2k-1} \to S^{2k-1}$, $x \mapsto z.x$ stetig und für alle $z, \tilde{z} \in E_p$ und alle $x \in S^{2k-1}$ gilt $z.(\tilde{z}.x) = (z \cdot \tilde{z}).x$.

Die Operation ist frei: Es ist zu zeigen dass für alle $x \in S^{2k-1}$ gilt $(E_p)_x = \{1\}$, beziehungsweise für alle $z \in E_p \setminus \{1\}$ und alle $x \in S^{2k-1}$ gilt $z \in x \neq x$, beziehungsweise dass für alle $z \in E_p$ gilt dass wenn es ein $x \in S^{2k-1}$ mit $z \cdot x$ gibt z = 1 gelten muss. Es seien E_p und $(z_1, \ldots, z_k) \in S^{2k-1}$ mit

$$(z_1,\ldots,z_k)=z.(z_1,\ldots,z_k)=(z^{q_1}z_1,\ldots,z^{q_k}z_k)$$

Da $(z_1, \ldots, z_k) \in S^{2k-1}$ ist, existiert ein $j \in \{1, \ldots, k\}$ mit $z_j \neq 0$, und daraus folgt $z^{q_j} = 1$. Es seien $a, b \in \mathbb{Z}$ mit $1 = aq_j + bp$. Es gilt dann

$$1 = 1^a \cdot 1^b = (z^{q_j})^a (z^p)^b = z^{aq_j + bp} = z^1 = z$$

Die Operation ist eigentlich kontinuierlich Die Gruppe ist endlich und alle endlichen Gruppen operieren eigentlich diskontinuierlich, dann bleibt zu zeigen dass für alle $K \in S^{2k-1}$ die Menge $\{z \in E_p \mid z.K \cap K \neq \emptyset\}$ endlich ist.

Der Quotient $L(p,q_1,\ldots,q_k)$ nach dieser Operation ist also eine Mannigfaltigkeit. Für $z=e^{2\pi i\frac{l}{p}}$ ist die induzierte Abbildung eine Drehung um den Winkel $\frac{2\pi l}{p}q_j$ in der x_{2j-1} - x_{2j} -Ebene. Damit ist die Operation bezüglich der Standardmetrik isometrisch und daraus folgt dass $L(p,q_1,\ldots,q_k)$ eine sec > 0-Metrik besitzt. Im Fall p=2 gilt $q_1=\ldots=q_k=1$ und es ist $L(2,1,\ldots,1)=\mathbb{R}\mathbb{P}^{2k-1}$. Laut Vorlesung gilt: Für $k\geq 2$ ist $S^{2k-1}\to L(p,q_1,\ldots q_k)$ die universelle Überlagerung. Dann sind die Einheitswurzeln gerade die Decktransformationsgruppe, also folgt

$$\pi_1(L(p,q_1,\ldots,q_k)) \cong E_p \cong \mathbb{Z}_p \cong \mathbb{Z}/\mathbb{Z}_p$$

Korollar Jede endlich erzeugte abelsche Gruppe ist isomorph zur Fundamentalgruppe einer kompakten Riemannschen Mannigfaltigkeit mit nichtnegativer Schnittkrümmung.

Beweis Sei G eine endlich erzeugte abelsche Gruppe. Nach dem Hauptsatz über endlich erzeugte abelsche Gruppen gilt:

- (1) $G \cong \mathbb{Z}^l \oplus \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_n}$
- (2) (M, g_M) und (N, g_N) haben die Schnittkrümmung sec ≥ 0 und damit hat $(M \times N, g_M \oplus g_N)$ auch sec ≥ 0 (wobei $(g_M \oplus g_N)(X_M + X_N, Y_M + Y_N) = g_M(X_M + Y_M) + g_N(X_N, Y_N)$)

Daraus folgt:

$$\pi_1(T^n \times L(p_1, 1, \dots, 1) \times \dots \times L(p_n, 1, \dots, 1))$$

$$\cong \pi_1(T^n) \oplus \pi_1(L(p_1, 1, \dots, 1)) \oplus \dots \oplus \pi_1(L(p_1, 1, \dots, 1))$$

$$\cong \mathbb{Z}^n \oplus \mathbb{Z}_{p_1} \oplus \dots \oplus \mathbb{Z}_{p_n} \cong G$$

Die Mannigfaltigkeiten $L(p, q_1, \dots, q_k)$ und $L(p, q'_1, \dots, q'_k)$ sind:

- homotopieäquivalent genau dann wenn $q_1 \cdot \ldots \cdot q_k \equiv \pm l^k q'_1 \ldots q'_k \pmod{p}$ für ein $l \in \mathbb{Z}_p$ [7]
- homöomorph genau dann wenn es ein $l \in \mathbb{Z}_p$ und ein $\sigma \in S_k$ gibt sodass für alle i gilt $q_i \equiv \pm lq'\sigma(i) \pmod{p}$ [2]

Also handelt es sich um homotopieäquivalente, aber nicht homöomorphe Mannigfaltigkeiten.

Lösung 2

Nach dem Korollar von Bonnet-Myers ist die Fundamentalgruppe eine vollständige Mannigfaltigkeit mit ric $\geq (n-1)\kappa > 0$ endlich. $\pi_1(T^n) = \mathbb{Z}^n$ nicht.

Lösung 3

Wir kürzen mit (*) die rechte Seite der Behauptung ab, also

Es gibt eine Isometrie
$$\hat{\varphi}: M \to M$$
, sodass $\Gamma_1 = \hat{\varphi} \Gamma_2 \hat{\varphi}^{-1}$ (*)

" \Leftarrow ": Es sei $\hat{\varphi}: M \to M$ eine Isometrie mit (*). Definiere die Abbildung

$$\varphi: M_2 \to M_1$$

$$\qquad \qquad \qquad \stackrel{\mathrm{Bahn}}{\varphi(\Gamma_2 x)} = \Gamma_1 \hat{\varphi}(x)$$

Behauptung: φ ist wohldefiniert

Beweis: Es ist zu zeigen dass für alle $\gamma_2 \in \Gamma_2$ es ein $\gamma_1 \in \Gamma_1$ gibt mit $\hat{\varphi}(\gamma_2 x) = \gamma_1 \hat{\varphi}(x)$. Für $\gamma_2 \in \Gamma_2$ ist $\hat{\varphi} \circ \gamma_2 \circ \hat{\varphi}^{-1} =: \gamma_1 \in \Gamma_1$. Dann folgt $\gamma_1(\hat{\varphi}(x)) = \hat{\varphi}(\gamma_2(x))$. Die gleiche Konstruktion für $\hat{\varphi}^{-1}$ liefert φ^{-1} . Da π_i ein lokaler Diffeomorphismus ist folgt dass φ und φ^{-1} glatt sind. Da φ und π_i lokale Isometrien sind und π_2 surjektiv ist, ist φ eine lokale Isometrie, und weil φ ein Diffeomorphismus ist folgt dass φ eine Isometrie ist.

Beweis: " \subset ":

$$\pi_1 \circ \hat{\varphi} \circ \gamma_2 \circ \hat{\varphi}^{-1} = \varphi \circ \pi_2 \circ \gamma_2 \circ \hat{\varphi}^{-1} \stackrel{\gamma_1 \in \Gamma_2}{=} \varphi \circ \pi_2 \circ \hat{\varphi}^{-1} = \pi_1 \circ \hat{\varphi} \circ \hat{\varphi}^{-1} = \pi_1$$

"⊇":

$$\pi_2 \circ \hat{\varphi}^{-1} \circ \gamma_1 \circ \hat{\varphi} = \varphi^{-1} \circ \pi_1 \circ \gamma_1 \circ \hat{\varphi} = \varphi^{-1} \circ \pi_1 \circ \hat{\varphi} = \pi_2 \circ \hat{\varphi}^{-1} \circ \hat{\varphi} = \pi_2$$

Daraus folgt

$$\gamma_2 = \hat{\varphi}^{-1} \circ \gamma_1 \circ \hat{\varphi} \in \Gamma_2$$
 $\gamma_1 = \hat{\varphi} \circ \gamma_2 \circ \hat{\varphi}^{-1} \in \hat{\varphi} \Gamma_2 \hat{\varphi}^{-1}$

Stichwortverzeichnis

Abstand, 51	stückweise, 51		
Abstandsfunktion	Gradient, 95		
lokale, 95	Gromov, 102		
Alexandrov-Toponogov, 99			
äquivalent, 13	homotop, 90		
Atlas, 7	Igel, Satz vom, 26		
maximaler, 8	Immersion, 21		
	Index, 79		
Bahn, 92	Indexform, 81		
Bahnenraum, 92	Integralkurve, 27		
Bogenlänge, 51	Isometrie, 49		
Bogenlängenparametrisierung, 51	Isotropieuntergruppe, 92		
Cheng, 90, 102	isotropicumorgruppe, v2		
<i>-</i> ,	Jacobifeld, 82		
Christoffelsymbole, 57 C^k -differenzierbare Struktur, 8	Jacobiidentität, 26		
C -differenzierbare Struktur, 8	T. 1		
Diffeomorphismus, 9	Karchers Trick, 100		
Differential, 19, 44	Karte, 7		
-form, 41	adaptierte, 10		
äußeres, 44	Bündel-, 33		
Dreieck	verträgliche, 8		
geodätisches, 99	Kartengebiet, 7		
duale Bündel, 38	Kartenwechsel, 7		
duale Buildon, 90	Kodimension, 10		
Einbettung, 21	Kohomologiegruppe		
einfach zusammenhängend, 90	deRahm-, 45		
Energie, 52	konjugiert, 84		
exakt, 44	entlang einer Geodätischen, 84		
Exponential abbildung, 69	Koszul-Formel, 64		
	Kotangential		
Fluss, 28	-bündel, 39		
geodätischer, 68	-vektor, 39		
k-Form, 41	-vektorraum, 39		
Fundamentalgruppe, 90	kovariante Ableitung, 55		
Geodätische, 52, 68	Länge		
minimale, 52	Kurven-, 50		
radiale, 70	Levi-Civita Zusammenhang, 64		
geschlossen, 44	Lieableitung, 31, 41, 42		
glatt, 9	Lieklammer, 26		
O / •			

Mannigfaltigkeit	-produkt, $36, 37$		
differenzierbare, 8	Krümmungs-, 59		
Riemannsche, 47	Torsion, 62		
topologische, 7	torsionslos, 62		
Unter-, 10	Torsionstensor, 62		
Metrik	Totalraum, 33		
Riemann-, 47	Trajektorie, 27		
Morse-Funktion, 80	Trivialisierung		
	lokale, 34		
Normalkoordinaten			
Riemannsche, 69	Übergangsfunktionen, 34		
Nullschnitt, 26	Überlagerung, 91		
Oubit 02	Riemannsche, 91		
Orbit, 92	Variation 77		
Paralleltransport, 61	Variation, 77 eigentliche, 77		
Parametrisierung	,		
proportional zur Bogenlänge, 51	glatte, 67		
Produkt	mit festen Endpunkten, 77		
äußeres, 36	Vektorbündel		
Projektion	glattes reelles, 33		
kanonische, 92	isomorphes, 34		
pullback, 35, 40	morphismus, 33		
pullback, 66, 40	triviales, 34		
regulär	Vektorfeld, 25		
Kurve, 51	glattes, 25		
Punkt, 21	vollständiges, 29		
Wert, 21	vollständig		
Riccatigleichung, 96	geodätisch, 73		
Riccatiungleichung, 97	Whitneysumme, 35		
Ricci-Krümmung, 66	Wirkung, 92		
Ricci-Tensor, 66	eigentlich diskontinuierliche, 92		
Richtungsableitung, 14	freie, 92		
C 1 20 FO			
Schnitt, 38, 59	Zerlegung der Eins, 50		
konstanter, 60	Zusammenhang, 55		
paralleler, 60	Levi-Civita-, 129		
Schnittkrümmung, 65			
Skalarkrümmung, 66			
Submersion, 21			
Tangential			
-bündel, 25			
-raum, 13			
-vektor, 13, 15			
Tensor			
-bündel, 38			
-feld, 39			