Workshop on

Image Processing using

MATLAB

So, Let's have some FUN with Matrices!!

MATLAB

A Fourth Generation Programming Language

Know your MATLAB window

Basics of MATLAB

Variables

Creating Arrays Indexing Of Arrays Operations
On
Arrays

Functions

Control Flow

Variables

C INC I		
Command Window		→ı □ ₹ X
New to MATLAB? Watch this <u>Video</u> , see <u>D</u>	Demos, or read <u>Getting Started</u> .	×
>> a = 2		
a =		
2		
>> A = 3		
A =		
3		
>> a	Observe that MATLAB is case-sensitive too!	
a =		
a -		
2		
_	ans is a default MATLAB variable	
>> 2	alls is a default MATEAD valiable	
ans =		
2		

Creating Arrays

Indexing of Arrays

Indexing of Arrays

Command Window → □ ₹

New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>.

```
>> D
D =
>> D(:, 2)
ans =
      2
      5
      8
>> D(2, :)
ans =
      4
            5
>> D(:, :)
ans =
                   9
```

How to check size of an array?? What if we use different brackets for indexing ????

Operations on Arrays

	Command Wind	low			→1 □ ₹ ×
	New to MAT	LAB? V	Vatch this <u>Vid</u>	o, see <u>Demos</u> , or read <u>Getting Started</u> .	×
ľ	>> D + 2				_
ı					
ı	ans =				
ı	3	4	5	Matrix + Scalar	
	6	7	8		
ı	9	10	11		
	>> D - 2				
ı					
ı	ans =			Matrice Carley	
ı				Matrix - Scalar	
ı	-1 2	0 3	1 4		
	5	6	7		
I			•		
ı	>> D * 2				
	ans =			Matrix * Scalar	
			_	Iviati ix " Scalai	
	2	4	6		
	8 14	10 16	12 18		
	14	10	10		
	>> D / 2				■
				Matrix / Scalar	
	ans =			Matrix / Scalar	
	0.500		1.0000	1.5000	
	2.000		2.5000	3.0000	
	f _x 3.500	00	4.0000	4.5000	▼

Operations on Arrays

```
Command Window
 >> D = [ 5, 10; 15, 20]
 D =
            10
            20
 >> E = [10, 15; 30, 45]
 E =
           15
      30
            45
 >> D + E
  ans =
                                 Matrix + Matrix
           25
      45
 >> D - E
                                 Matrix - Matrix
  ans =
           -5
     -15
          -25
```

```
Command Window
  ans =
     -5
    -15 -25
 >> D * E
  ans =
          350
                     525
                               Product of a Matrix
          750
                     1125
 >> D .* E
  ans =
                                 Dot Product of a Matrix
          150
     450
          900
 >> D ./ E
  ans =
                                Dot Division of a Matrix
     0.5000
               0.6667
     0.5000
               0.4444
```


Functions

- Why functions?
 - Repeatability
 - Ease of use
- **□** Function header syntax:

```
Editor - D:\academics\technex 13\optica\matlab\operations.m

File Edit Text Go Cell Tools Debug Desktop Window Help

| Columbia C
```

function [output variables] = function_name (input variables)

e.g.

function[sum, product] = operations(A, B)

Remember that the function name and the '.m file' name MUST be the same.

Functions

Cor	nmano	d Win	idow			+ı □ ₹ X
(1)	New to	MA	TLAB? W	atch this	<u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	×
	>> C	= [) + 2			A
	c =					
		3	4	5		
		6	7	8		
		9	10	11		
			_			
	>> [s	3, p	o] = op	eratio	ons(C, D)	
	s =					
	5 -					
		4	6	8		
	1	10	12	14		
	1	16	18	20		
	p =					
		- 4		7.0		
		54	66	78		
		90	111	132		
	12	26	156	186		
	>> [s	3, n	o1 = on	eratio	ons(C, D);	
	>>	, ,				

Control Flow Statements

```
Editor - D:\academics\technex 13\optica\matlab\control_flow.m
         Text Go Cell Tools Debug Desktop Window
                                                       Help
                      ÷ 1.1
       function [] = control flow()
        i = 0; i = 0;
        disp('while loop');
       - while i < 5
             disp (i)
             i = i+1;
         end
10 -
        disp('for loop');
      \bigcirc for j = 0:3:9
11 -
12 -
             disp (j)
13 -
        end
14
        disp('if else if statement');
15 -
        if j == 9
16 -
17 -
             disp ('Completely Closed Interval')
        elseif i == 8
18 -
19 -
             disp ('Semi Closed Interval')
        else
20 -
21 -
             disp ('j is neither 8 nor 9')
22 -
         end
23
24 -
         end
```

```
Command Window
                                              → □ ₹ X
New to MATLAB? Watch this Video, see Demos, or read Getting Sta
  while loop
         3
   for loop
         9
   if else if statement
  Completely Closed Interval
f_{\underline{x}} >>
```


A Few Commands

Со	mm	and Wind	low													→ 1 🔲	7 ×
	New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> . ×																
New to MATLAD: Watch this video, see <u>Demos</u> , or read <u>Getting started</u> .															^		
	>> who																
	Your variables are:																
	_		c	_			_			_	_						
	A	В	C D	a	ans	b	С	im	im1	Þ	s						
	>>	whos															
		Name	Size		Bytes			Class		Attributes							
							-										
	2	A.	1x3				24	dou	ble								
	В		1x3		24				double								
	С		3 x 3	72			dou	double									
	1	D	3 x 3					double									
	ē	a	1x1			8		ble									
	ans		3 x 3		72				ble								
	b		13x13				1352		ble								
	С		1x5			40			ble								
	im		287x250x3			215250			uint8 uint8								
	im1		75 x 100 x 3			22500											
	p		3x3 3x3			72 72			ble ble								
		5	383				12	dou	DIE								
	>>	clear															
		who															
		whos															
fx	>>	1															
		_															

The command 'clc' clears the screen of the command window The command 'help' helps. A LOT.

A Few Functions

- Trigonometric: sin(), sind(), cos(), cosd(), etc
- Inverse trigonometric: asin(), asind(), acos(), acosd(), etc
- min(), max()
- size()
- sort()
- zeros()
- ones()
- eye()

Enough Finally Basics some have Imagesia

Images

Black and White (Binary)

Gray scale

Colour

Images in MATLAB

- Each image is seen as a matrix of size equal to the *number of pixel rows* x *number of pixel columns*
- Each pixel has a value of intensity
- Each element of the matrix contains the value of this intensity at the corresponding to the pixel it represents

Images in MATLAB (Contd.)

Binary

- All the elements of the matrix are either zero or one
- Zero represents black and 1 represents white

Gray scale

- All the elements of the matrix lie between o and 255
- Zero represents Black, 255 represents White and the intermediate values represent shades of Gray.

RGB

- Each color has a specific RGB value!
- RGB Images are seen as 3D matrices with the 1st plane corresponding to R, 2nd to G and 3rd to B

Working with Images

Basics

- imread()
- imshow()

• imtool()

Pre-Processing

- imcrop()
- imresize()

Analysis

- Basic Analysis using Data Cursor
- Conversion to Binary i.e. im2bw()
- L-Matrix i.e bwlabel()
- B-Matrix i,e, bwboundaries()
- regionprops()

Morphological Operations

- Contrast Enhancement
- Histogram Equalization
- Image Smoothing
- Blurring

Processing

Working with Images

Basics

- imread()
- imshow()
- imtool()

Pre-Processing

- imcrop()
- imresize()

Analysis

- Basic Analysis using Data Cursor
- Conversion to Binary i.e. im2bw()
- L-Matrix i.e bwlabel()
- B-Matrix i,e, bwboundaries()
- regionprops()
- Noise Removal / Noise Reduction
- Contrast Enhancement
- Histogram Equalization
- Image Smoothing
- Blurring

Processing

imread(): Reads the image as a matrix

imshow(): Shows the image as an 'image'

imtool(): Same as imshow but with different tools

The inputation with extension

```
181 184 194
                                Figure 1
                      231
                 211
            199
            216
                 221
                      230
                            238
      218
                                  File Edit View Insert Tools Desktop Window Help
            229
                      229
                 228
                            232
                                                  🔍 🔍 🖑 🔊 🐙 🔏 •
                      226
                            229
            227
                 227
      219
            220
                 222
                      224
                      223
      220
            219
                 220
                            223
      223
            220
                 218
      223
            220
                 216
                      213
                 216
      230
            223
            222
                 217
            219
            217
      218
            218
            221
                 223
      221
            224
                            223
      224
                 226
                      226
      227
            226
                 228
                            223
            230
                 232
            230
                 232
                      229
  im = imread('pingu.jpg');
>> imshow(im)
Varning: Image is too big to fit on screen; displaying at 33%
 In imuitools\private\initSize at 73
 In imshow at 262
```

Working with Images

Basics

• imread()

• imshow()

• imtool()

Pre-Processing

- imcrop()
- imresize()

- Basic Analysis using Data Cursor
- Conversion to Binary i.e. im2bw()
- L-Matrix i.e bwlabel()
- B-Matrix i,e, bwboundaries()
- regionprops()

Analysis

- Morphological Operations
- Contrast Enhancement
- Histogram Equalization
- Image Smoothing
- Blurring

Processing

Pre-Processing

imcrop():

- imcrop(im): Interactive crop tool
- imcrop(im, [x1,y1,x2,y2])

imresize():

- imresize(im, 0.5)
- imresize(im, [200, 200])
- imresize(im, [200, NaN])or imresize(im, [NaN, 200])
- imresize(im, o.5, 'nearest') or imresize(im, o.5, 'bilinear') or imresize(im, o5, 'bicubic')

Working with Images

Basics

• imread()

• imshow()

• imtool()

Pre-Processing

Analysis

Processing

• imcrop()

• imresize()

•

• Basic Analysis using Data Cursor

Conversion to Binary i.e. im2bw()

• L-Matrix i.e bwlabel()

B-Matrix i,e, bwboundaries()

regionprops()

• Noise Removal/ Noise Reduction

Contrast Enhancement

• Histogram Equalization

• Image Smoothing

Blurring

Conversion to Binary (stay tuned for more)

Why converting?

- Less information in binary => Computational Ease
- Can focus on only the area of interest
- Most of the analysis can be done on Binary only

im2bw(): This
function converts a
RGB image
to a binary image

How to set the threshold ourselves??

Command Window

New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>.

```
>> pingu = imread('Pingu.jpg');
>> skates = convert(pingu);
>> imtool(skates)

$\frac{x}{x} >> |
```

bwlabel() and L-matrix

- bwlabel(binary_image) will return a L-matrix which basically the Label matrix
- L-Matrix is a 2 D matrix of the same size as that of the image.
- The various objects present in an image are given filled with the pixels of the same value, the object number.
- Object number is decided by traversing from left to right and then top to bottom as tie-breaker.
- Each object in the binary image is numbered 1,2,3,.... and all the pixels of L corresponding to the objects in binary image have value respectively 1, 2, 3,....
- The background pixels are o by default.

```
L = bwlabel(bw);
imtool(bw);
```

L-matrix labels

Algorithm: BwLabel

- Bwlabel works on the concept of connected regions.
- It starts from the left top most pixel and travels column wise(left to right and top to bottom).
- It keeps a record of all the pixels it has visited and never visits the ones which it has already visited.
- Black(pixel value o) is considered background and white (pixel value 1) is considered as an object.
- If at all it finds a white pixel, it continues it search in the eight directions from the pixel marking every pixel visited as read.
- Bwlabel(BW,4) searches only in four directions.

Difference and no of objects, area

Do They have the same no of objects?

Background is always black (pixel value max(L(:));

Sum(sum(L==1));

regionprops()

- It is used to measure properties of image regions like centroid, perimeter, area, etc.
- Syntax:

```
STATS=regionprops(L, properties);
```

- STATS is a structure array of length equal to the number of labelled objects in L.
- properties are a comma-separated list of various properties to be measured.

syntax

- Stats=regionprops(L, 'area', 'perimeter');
- 1st object properties
- Stats(1)
- Area
- Stats(1).Area

Working with Images

Basics

imread()

• imshow()

• imtool()

Pre-Processing • imcrop()

• imresize()

Analysis

• Basic Analysis using Data Cursor

Conversion to Binary i.e. im2bw()

• L-Matrix i.e bwlabel()

B-Matrix i,e, bwboundaries()

• regionprops()

Morphological Operations

Contrast Enhancement

• Image Smoothing

Image Blurring

Morphological Operations

- imerode()
- imdilate()
- imopen()
- imclose()
- imfill()
- bwmorph()
- bwperim()

Perform a morphological close operation on the image.

```
Remove the smaller of
                     closeBW = imclose(originalBW,se);
  1. Read the image
                     figure, imshow(closeBW)
        I = imr
        imshow(
  2. Create a disk-s
        se = st
  3. Remove snowfla
        I opene
        figure,
```

nent created in step 2.

Contacts

- Om Sahoo
 - 7607986662
- Mayank Garg
 - 9355514525
- Ankit Mishra
 - 7068563377