SECTION C — CHEMISTRY; METALLURGY

C07 ORGANIC CHEMISTRY

C07C ACYCLIC OR CARBOCYCLIC COMPOUNDS (macromolecular compounds C08; production of organic compounds by electrolysis or electrophoresis C25B 3/00, C25B 7/00)

Note(s) [3, 5, 7, 2006.01]

- 1. In this subclass, the following terms or expressions are used with the meanings indicated:
 - "bridged" means the presence of at least one fusion other than ortho, peri or spiro;
 - · two rings are "condensed" if they share at least one ring member, i.e. "spiro" and "bridged" are considered as condensed;
 - "condensed ring system" is a ring system in which all rings are condensed among themselves;
 - "number of rings" in a condensed ring system equals the number of scissions necessary to convert the ring system into one acyclic chain;
 - "quinones" are compounds derived from compounds containing a six-membered aromatic ring or a system comprising six-membered aromatic rings (which system may be condensed or not condensed) by replacing two or four *CH groups of the six-membered aromatic rings by *C=O groups, and by removing one or two carbon-to-carbon double bonds, respectively, and rearranging the remaining carbon-to-carbon double bonds to give a ring or ring system with alternating double bonds, including the carbon-to-oxygen bonds; this means that acenaphthenequinone or camphorquinone are not considered as quinones.
- 2. Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.
- 3. Therapeutic activity of compounds is further classified in subclass A61P.
- 4. When classifying in this subclass, classification is also made in group B01D 15/08 insofar as subject matter of general interest relating to chromatography is concerned.
- 5. In this subclass, the last place priority rule is applied, i.e. at each hierarchical level, in the absence of an indication to the contrary, a process is classified in the last appropriate place.
- 6. In this subclass, in the absence of an indication to the contrary, "quaternary ammonium compounds" are classified with the corresponding "non-quaternised nitrogen compounds".
- 7. For the classification of compounds in groups C07C 1/00-C07C 71/00 and C07C 401/00-C07C 409/00:
 - a compound is classified considering the molecule as a whole (rule of the "whole molecule approach");
 - a compound is considered to be saturated if it does not contain carbon atoms bound to each other by multiple bonds;
 - a compound is considered to be unsaturated if it contains carbon atoms bound to each other by multiple bonds, which includes a six-membered aromatic ring,

unless otherwise specified or implicitly derivable from the subdivision, as in group C07C 69/00, e.g. C07C 69/712.

- 8. For the classification of compounds in groups C07C 201/00-C07C 395/00, i.e. after the functional group has been determined according to the "last place rule", a compound is classified according to the following principles:
 - · compounds are classified in accordance with the nature of the carbon atom to which the functional group is attached;
 - a carbon skeleton is a carbon atom, other than a carbon atom of a carboxyl group, or a chain of carbon atoms bound to each other; a carbon skeleton is considered to be terminated by every bond to an element other than carbon or to a carbon atom of a carboxyl group;
 - when the molecule contains several functional groups, only functional groups linked to the same carbon skeleton as the one first determined are considered:
 - a carbon skeleton is considered to be saturated if it does not contain carbon atoms bound to each other by multiple bonds;
 - a carbon skeleton is considered to be unsaturated if it contains carbon atoms bound to each other by multiple bonds, which includes a six-membered aromatic ring.

Subclass index

COMPOUNDS CONTAINING CARBON AND OXYGEN, WITH OR WITHOUT HYDROGEN OR HALOGENS

Preparation	
simultaneous production of more than one class of oxygen- containing compounds	27/00
of alcohols; of phenols	
of ethers or acetals; of oxo compounds	
of quinones	
of carboxylic acids, their salts or anhydrides	
of esters of carboxylic acids	
of esters of carbonic or haloformic acids	68/00
Compounds	21/00 22/00
with OH group(s): aliphatically bound	
cycloaliphatically bound	
with OH group(s) aromatically bound	
Ethers, acetals, orthoesters; aldehydes; ketones	
Quinones	50/00
carboxylic acids	
acyclic	
cyclic	61/00, 62/00, 63/00, 65/00, 66/00
EstersCOMPOUNDS CONTAINING CARBON AND NITROGEN, WITH OR WITHOUT HYDROC IALOGENS, OR OXYGEN	, , , , , , , , , , , , , , , , , , ,
Preparation	200/00
of amines	
of hydroxy amines, aminoethers, or aminoesters	
of aminoaldehydes, aminoketones, aminoquinones	
of aminocarboxylic acids	
of amides of carboxylic acids	
of nitriles of carboxylic acids	
of derivatives of hydrazine	
of compounds containing carbon- to-nitrogen double bonds, e.g. imines, hydrazones, isoc	
of derivatives of carbamic acids	269/00
of urea or derivatives	273/00
of guanidines or derivatives	277/00
of nitro or nitroso compounds, or esters of nitric or nitrous acids	201/00
Compounds	
having nitrogen bound to carbon or to carbon and hydrogen Amines	211/00
Hydroxy amines; Aminoethers; Aminoesters	
Aminoaldehydes, aminoketones, aminoquinones	
Amino carboxylic acids	
Amides of carboxylic acids	
•	
Compounds containing one or more carbon-to-nitrogen double bonds, e.g. imines	
Nitriles of carboxylic acids	
Amidines, imino-ethers	
Hydroxamic acids	
Derivatives of cyanic or isocyanic acid	
Carbodiimides	
Carbamic acids	271/00
Ureas	275/00
Guanidines	270/00
	2/9/00
having nitrogen bound to halogens	
having nitrogen bound to halogens	239/00
having nitrogen bound to halogenshaving nitrogen bound to oxygen	239/00
having nitrogen bound to halogens	239/00205/00, 207/00203/00
having nitrogen bound to halogens	
having nitrogen bound to halogens	
having nitrogen bound to halogens	

Azo compounds, diazo compounds	245/00
Hydrazones, hydrazidines	251/00, 257/00
Semicarbazones	281/00
N-nitro or N-nitroso compounds	243/00
containing chains of three nitrogen atoms bound together	
Triazenes	245/00
Azides	247/00
Other compounds containing nitrogen	291/00
COMPOUNDS CONTAINING CARBON, TOGETHER WITH SULFUR, SELENIUM, OR	
TELLURIUM, WITH OR WITHOUT HYDROGEN, HALOGENS, OXYGEN, OR NITROGEN	
Preparation	202/00
of derivatives of sulfuric or sulfonic acids	
of mercaptans, thiophenols, sulfides, or polysulfides	
of sulfones or sulfoxides	315/00
having sulfur bound to oxygen	
Esters of sulfurous or sulfuric acids	301/00 305/00
Sulfonic acids or derivatives.	
Sulfenic or sulfinic acids or derivatives	
Sulfones, sulfoxides	
having sulfur bound to carbon	517/00
Mercaptans, thiophenols, sulfides or polysulfides	321/00 323/00
Thioaldehydes, thioketones	
Thiocarboxylic acids or derivatives.	
Thiocarboxylic acids or derivatives	
Thiocyanates, isothiocyanates	
Thiocyanates, isothocyanates	
Thioureas	
Thiosemicarbazides or thiosemicarbazones	
having sulfur bound to nitrogen	337700
Sulfonamides	311/00
Sulfenamides, sulfinamides, sulfenylcarbamates or sulfenylureas	
Amides of sulfuric acids	
Other compounds containing sulfur.	
Compounds containing selenium	
Compounds containing selement	
IRRADIATION PRODUCTS OF CHOLESTEROL	
DERIVATIVES OF CYCLOHEXANE OR OF A CYCLOHEXENE HAVING AN UNSATURATED SIDI	
CHAIN WITH AT LEAST FOUR CARBON ATOMS	
PROSTAGLANDINS OR DERIVATIVES	405/00
PEROXIDES; PEROXYACIDS Preparation	407/00
Compounds	
•	

Hydrocarbons [3]

1/00	Preparation of hydrocarbons from one or more
	compounds, none of them being a
	hydrocarbon [1, 2006.01]

- from oxides of carbon (preparation of liquid hydrocarbon mixtures of undefined composition C10G 2/00; of synthetic natural gas C10L 3/06) [1, 5, 2006.01]
- 1/04 from carbon monoxide with hydrogen [1, 2006.01]
- 1/06 • in the presence of organic compounds, e.g. hydrocarbons [1, 2006.01]
- 1/08 • Isosyntheses [1, 2006.01]
- 1/10 • from carbon monoxide with water vapour [1, 2006.01]
- 1/12 from carbon dioxide with hydrogen [1, 2006.01]

- 1/20 starting from organic compounds containing only oxygen atoms as hetero atoms [1, 2006.01]
- 1/207 • from carbonyl compounds **[5, 2006.01]**
- 1/213 • by splitting of esters **[5, 2006.01]**
- 1/22 • by reduction **[1, 2006.01]**
- 1/24 • by elimination of water **[1, 2006.01]**
- 1/247 • by splitting of cyclic ethers **[3, 2006.01]**
- 1/26 starting from organic compounds containing only halogen atoms as hetero atoms [1, 2006.01]
- 1/28 • by ring closure **[1, 2006.01]**
- 1/30 • by splitting-off the elements of hydrogen halide from a single molecule **[1, 2006.01]**
- 1/32 starting from compounds containing hetero atoms other than, or in addition to, oxygen or halogen [3, 2006.01]

3

1/34	 reacting phosphines with aldehydes or ketones, e.g. Wittig reaction [3, 2006.01] 	2/72	 Addition to a non-aromatic carbon atom of hydrocarbons containing a six-membered aromatic
1/36	• by splitting of esters (C07C 1/213, C07C 1/30 take		ring [3, 2006.01]
1/50	precedence) [3, 5, 2006.01]	2/74	by addition with simultaneous
	precedence) [0, 0, 200002]	-,,,	hydrogenation [3, 2006.01]
2/00	Preparation of hydrocarbons from hydrocarbons	2/76	 by condensation of hydrocarbons with partial
	containing a smaller number of carbon		elimination of hydrogen [3, 2006.01]
	atoms [3, 2006.01]	2/78	• • Processes with partial combustion [3, 2006.01]
2/02	by addition between unsaturated	2/80	 Processes with the aid of electrical
2/04	hydrocarbons [3, 2006.01]		means [3, 2006.01]
2/04	 by oligomerisation of well-defined unsaturated hydrocarbons without ring formation [3, 2006.01] 	2/82	 oxidative coupling [3, 2006.01]
2/06		2/84	• • • catalytic [3, 2006.01]
2/00	of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double	2/86	 by condensation between a hydrocarbon and a non-
	bond [3, 2006.01]		hydrocarbon [3, 2006.01]
2/08	• • • • Catalytic processes [3, 2006.01]	2/88	• • Growth and elimination reactions [3, 2006.01]
2/10	• • • • with metal oxides [3, 2006.01]	4/00	Drangwation of hydrocarbane from hydrocarbane
2/12	• • • • with crystalline alumino-silicates, e.g.	4/00	Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon
_,	molecular sieves [3, 2006.01]		atoms [3, 2006.01]
2/14	• • • • with inorganic acids; with salts or	4/02	 by cracking a single hydrocarbon or a mixture of
	anhydrides of acids [3, 2006.01]	., 02	individually defined hydrocarbons or a normally
2/16	• • • • • Acids of sulfur; Salts thereof; Sulfur		gaseous hydrocarbon fraction [3, 2006.01]
	oxides [3, 2006.01]	4/04	 Thermal processes [3, 2006.01]
2/18	 • • • • Acids of phosphorus; Salts thereof; 	4/06	 Catalytic processes [3, 2006.01]
	Phosphorus oxides [3, 2006.01]	4/08	 by splitting-off an aliphatic or cycloaliphatic part
2/20	 • • • • Acids of halogen; Salts 		from the molecule [3, 2006.01]
	thereof [3, 2006.01]	4/10	 from acyclic hydrocarbons [3, 2006.01]
2/22	• • • • • Metal halides; Complexes thereof	4/12	 from hydrocarbons containing a six-membered
	with organic		aromatic ring, e.g. propyltoluene to
	compounds [3, 2006.01]		vinyltoluene [3, 2006.01]
2/24	• • • • with metals [3, 2006.01]	4/14	 splitting taking place at an aromatic-aliphatic
2/26	• • • • with hydrides or organic compounds		bond [3, 2006.01]
	(C07C 2/22 takes precedence) [3, 2006.01]	4/16	• • • Thermal processes [3, 2006.01]
2/28	• • • • • • with ion-exchange resins [3, 2006.01]	4/18	• • • • Catalytic processes [3, 2006.01]
2/30	• • • • • containing a metal-to-carbon bond;	4/20	• • • Hydrogen being formed <u>in situ</u> , e.g. from
2/30	Metal hydrides [3, 2006.01]		steam [3, 2006.01]
2/32	• • • • • as complexes, e.g. acetyl-	4/22	• by depolymerisation to the original monomer, e.g.
2/32	acetonates [3, 2006.01]	4 / 0 4	dicyclopentadiene to cyclopentadiene [3, 2006.01]
2/34	• • • • • • Metal-hydrocarbon	4/24	• by splitting polyarylsubstituted aliphatic compounds
- 70.	complexes [3, 2006.01]		at an aliphatic-aliphatic bond, e.g. 1,4-diphenylbutane to styrene [3, 2006.01]
2/36	• • • • as phosphines, arsines, stilbines or	4/26	 by splitting polyaryl compounds at a bond between
	bismuthines [3, 2006.01]	4/20	uncondensed six-membered aromatic rings, e.g.
2/38	• • • of dienes or alkynes [3, 2006.01]		biphenyl to benzene [3, 2006.01]
2/40	• • • of conjugated dienes [3, 2006.01]		r P - 1 J - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
2/42	 homo- or co-oligomerisation with ring formation, 	5/00	Preparation of hydrocarbons from hydrocarbons
	not being a Diels-Alder conversion [3, 2006.01]		containing the same number of carbon
2/44	• • • of conjugated dienes only [3, 2006.01]		atoms [1, 2006.01]
2/46	• • • Catalytic processes [3, 2006.01]	5/02	• by hydrogenation [1, 2006.01]
2/48	 of only hydrocarbons containing a carbon-to- 	5/03	of non-aromatic carbon-to-carbon double
	carbon triple bond [3, 2006.01]	5 40 5	bonds [3, 2006.01]
2/50	• • Diels-Alder conversion [3, 2006.01]	5/05	• • • Partial hydrogenation [3, 2006.01]
2/52	• • • Catalytic processes [3, 2006.01]	5/08	• • of carbon-to-carbon triple bonds [1, 2006.01]
2/54	 by addition of unsaturated hydrocarbons to saturated 	5/09	• • to carbon-to-carbon double bonds [3, 2006.01]
	hydrocarbons, or to hydrocarbons containing a six-	5/10	• • of aromatic six-membered rings [1, 2006.01]
	membered aromatic ring with no unsaturation outside	5/11	• • Partial hydrogenation [3, 2006.01]
	the aromatic ring [3, 2006.01]	5/13	• • with simultaneous isomerisation [3, 2006.01]
2/56	• • Addition to acyclic hydrocarbons [3, 2006.01]	5/22	• by isomerisation (with simultaneous hydrogenation
2/58	• • Catalytic processes [3, 2006.01]	E / 6.5	C07C 5/13) [1, 2006.01]
2/60	• • • with halides [3, 2006.01]	5/23	Rearrangement of carbon-to-carbon unsaturated Rearrangement of carbon-to-carbon unsaturated
2/62	• • • • with acids [3, 2006.01]	E / DE	bonds [3, 2006.01]
2/64	Addition to a carbon atom of a six-membered	5/25	• • • Migration of carbon-to-carbon double
D / C =	aromatic ring [3, 2006.01]	E / 27	bonds [3, 2006.01]
2/66	• • Catalytic processes [3, 2006.01]	5/27	 Rearrangement of carbon atoms in the hydrocarbon skeleton [3, 2006.01]
2/68	• • • with halides [3, 2006.01]		nyanocaroon skereton [5, 2000.01]
2/70	• • • with acids [3, 2006.01]		

			C07C
5/29	• • changing the number of carbon atoms in a ring while maintaining the number of	7/00	Purification, separation or stabilisation of hydrocarbons; Use of additives [1, 5, 2006.01]
= 10.1	rings [3, 2006.01]	7/04	• by distillation [1, 3, 2006.01]
5/31	• • changing the number of rings [3, 2006.01]	7/05	• • with the aid of auxiliary compounds [3, 2006.01]
5/32	• by dehydrogenation with formation of free	7/06	• • by azeotropic distillation [1, 2006.01]
	hydrogen [2, 2006.01]	7/08	• • by extractive distillation [1, 2006.01]
5/327	Formation of non-aromatic carbon-to-carbon	7/09	• by fractional condensation [3, 2006.01]
5/333	double bonds only [3, 2006.01] • • • Catalytic processes [3, 2006.01]	7/10	• by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids [1, 3, 2006.01]
5/35 5/367	 Formation of carbon-to-carbon triple bonds only [3, 2006.01] Formation of an aromatic six-membered ring from 	7/11	 by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of
37307	an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene [3, 2006.01]	7/12	 liquids [3, 2006.01] by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion- exchangers [1, 3, 2006.01]
5/373	• • with simultaneous isomerisation [3, 2006.01]	7/13	• • by molecular-sieve technique [2, 3, 2006.01]
5/387	 • of cyclic compounds containing no six- 	7/135	• by gas-chromatography [3, 2006.01]
	membered ring to compounds containing a six-membered aromatic ring [3, 2006.01]	7/14	 by crystallisation; Purification or separation of the crystals [1, 3, 2006.01]
5/393	• • with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to	7/144	• using membranes, e.g. selective permeation [3, 2006.01]
5/41	benzene [3, 2006.01] • • • Catalytic processes [3, 2006.01]	7/148	• by treatment giving rise to a chemical modification of at least one compound [3, 2006.01]
5/42	 by dehydrogenation with a hydrogen 	7/152	• • by forming adducts or complexes [3, 2006.01]
	acceptor [2, 2006.01]	7/156	• • with solutions of copper salts [3, 2006.01]
	Note(s) [3]	7/163	• • by hydrogenation [3, 2006.01]
		7/167	 for removal of compounds containing a triple
	In this group:the catalyst is considered as forming part of	,,10,	carbon-to-carbon bond [3, 2006.01]
	the acceptor system in case of simultaneous	7/17	• • with acids or sulfur oxides [3, 2006.01]
	catalyst reduction;	7/171	• • • Sulfuric acid or oleum [7, 2006.01]
	compounds added for binding the reduced acceptor system are not considered as	7/173	• • with the aid of organo-metallic compounds [3, 2006.01]
	belonging to the acceptor system. 2. The acceptor system is classified according to the supplying substances in case of <u>in situ</u> formation	7/177	• • by selective oligomerisation or selective polymerisation of at least one compound of the mixture [3, 2006.01]
	of the acceptor system or of <u>in situ</u> regeneration of the reduced acceptor system.	7/20	• Use of additives, e.g. for stabilisation [3, 2006.01]
5/44	 with a halogen or a halogen-containing compound 	9/00	Acyclic saturated hydrocarbons [1, 2006.01]
	as an acceptor [2, 2006.01]	9/02	 with one to four carbon atoms [1, 5, 2006.01]
5/46	 with sulfur or a sulfur-containing compound as an acceptor [2, 2006.01] 	9/04	 Methane (production by treatment of sewage C02F 11/04) [1, 5, 2006.01]
5/48	 with oxygen as an acceptor [2, 2006.01] 	9/06	• • Ethane [1, 2006.01]
5/50	 with an organic compound as an 	9/08	• • Propane [1, 2006.01]
	acceptor [2, 2006.01]	9/10	• • with four carbon atoms [1, 5, 2006.01]
5/52	 • with a hydrocarbon as an acceptor, e.g. 	9/12	• • • Iso-butane [1, 2006.01]
	hydrocarbon disproportionation, i.e. $2 C_n H_p \rightarrow$	9/14	• with five to fifteen carbon atoms [1, 2006.01]
F /F 4	$C_nH_{p+q} + C_nH_{p-q}$ [2, 2006.01]	9/15	• Straight-chain hydrocarbons [3, 2006.01]
5/54	with an acceptor system containing at least two symposition are significant for in more than one of	9/16	• Branched-chain hydrocarbons [1, 2006.01]
	compounds provided for in more than one of groups C07C 5/44-C07C 5/50 [3, 2006.01]	9/18	• • • with five carbon atoms [1, 5, 2006.01]
5/5 6		9/21	• • • 2,2,4-Trimethylpentane [3, 2006.01]
5/56	 containing only oxygen and either halogens or halogen-containing compounds [3, 2006.01] 	9/22	• with more than fifteen carbon atoms [1, 2006.01]

6/00 Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions [3, 2006.01]

- Metathesis reactions at an unsaturated carbon-tocarbon bond [3, 2006.01]
- 6/04 • at a carbon-to-carbon double bond **[3, 2006.01]**
- 6/06 • at a cyclic carbon-to-carbon double bond [3, 2006.01]
- 6/08 by conversion at a saturated carbon-to-carbon bond [3, 2006.01]
- 6/10 • in hydrocarbons containing no six-membered aromatic rings [3, 2006.01]
- 6/12 of exclusively hydrocarbons containing a sixmembered aromatic ring [3, 2006.01]

- 11/00 Acyclic unsaturated hydrocarbons [1, 2006.01]
- 11/02 Alkenes [1, 2006.01]
- 11/04 • Ethene [1, 2006.01]
- 11/06 • Propene [1, 2006.01]
- 11/08 • with four carbon atoms [1, 5, 2006.01]
- 11/09 • Isobutene [3, 2006.01]
- 11/10 with five carbon atoms [1, 5, 2006.01]
- 11/107 • with six carbon atoms **[5, 2006.01]**
- 11/113 • Methylpentenes [3, 2006.01]
- 11/12 Alkadienes **[1, 2006.01]**
- 11/14 • Allene [1, 2006.01]
- 11/16 • with four carbon atoms **[1, 2006.01]**
- 11/167 • 1,3-Butadiene **[3, 2006.01]**

11/173	 with five carbon atoms [3, 2006.01] 	13/44	• • with a bicyclo ring system containing eight
11/18	• • • Isoprene [1, 3, 2006.01]	40/45	carbon atoms [1, 2006.01]
11/20	• • 1,3-Pentadiene [1, 3, 2006.01]	13/45	• • • with a bicyclo ring system containing nine
11/21	• Alkatrienes; Alkatetraenes; Other	13/465	carbon atoms [3, 2006.01] • • • Indenes; Completely or partially
11/22	alkapolyenes [2, 3, 2006.01]	13/403	hydrogenated indenes [3, 2006.01]
11/24	 containing carbon-to-carbon triple bonds [1, 2006.01] Acetylene (production of acetylene gas by wet 	13/47	• • with a bicyclo ring system containing ten
11/24	methods C10H) [1, 5, 2006.01]		carbon atoms [3, 2006.01]
11/28	containing carbon-to-carbon double bonds and	13/48	• • • Completely or partially hydrogenated
	carbon-to-carbon triple bonds [1, 2006.01]		naphthalenes [1, 3, 2006.01]
11/30	• • Butenyne [1, 2006.01]	13/50	• • • • Decahydronaphthalenes [1, 3, 2006.01]
40.400		13/52	• • • Azulenes; Completely or partially
13/00	Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic	10/54	hydrogenated azulenes [1, 3, 2006.01]
	rings [1, 2006.01]	13/54 13/547	• with three condensed rings [1, 2006.01]• at least one ring not being six-membered, the
13/02	Monocyclic hydrocarbons or acyclic hydrocarbon	13/34/	other rings being at the most six-
	derivatives thereof [1, 2006.01]		membered [3, 2006.01]
13/04	• • with a three-membered ring [1, 2006.01]	13/553	
13/06	• • with a four-membered ring [1, 2006.01]		hydrogenated indacenes [3, 2006.01]
13/08	• • with a five-membered ring [1, 2006.01]	13/567	• • • • Fluorenes; Completely or partially
13/10	• • • with a cyclopentane ring [1, 2006.01]	40.4==0	hydrogenated fluorenes [3, 2006.01]
13/11	• • • substituted by unsaturated hydrocarbon	13/573	9 . ,
40.40	groups [2, 2006.01]	13/58	• • • • Completely or partially hydrogenated anthracenes [1, 3, 2006.01]
13/12	• • • with a cyclopentene ring [1, 2006.01]	13/60	• • • • Completely or partially hydrogenated
13/15	• • • with a cyclopentadiene ring [3, 2006.01]	13/00	phenanthrenes [1, 3, 2006.01]
13/16 13/18	with a six-membered ring [1, 2006.01]with a cyclohexane ring [1, 2006.01]	13/605	• • • • with a bridged ring system [3, 2006.01]
13/19	• • • substituted by unsaturated hydrocarbon	13/61	• • • • Bridged indenes, e.g.
13/13	groups [2, 2006.01]		dicyclopentadiene [3, 2006.01]
13/20	• • • with a cyclohexene ring [1, 2006.01]	13/615	• • • • Adamantanes [3, 2006.01]
13/21	• • • • Menthadienes [2, 2006.01]	13/62	• • • with more than three condensed
13/23	• • • with a cyclohexadiene ring [3, 2006.01]	40./64	rings [1, 2006.01]
13/24	• • with a seven-membered ring [1, 2006.01]	13/64	• • • • with a bridged ring system [3, 2006.01]
13/26	 with an eight-membered ring [1, 2006.01] 	13/66	• • • the condensed ring system contains only four rings [3, 2006.01]
13/263	• • with a cyclo-octene or cyclo-octadiene	13/68	• • • • • with a bridged ring system [3, 2006.01]
13/267	ring [3, 2006.01] • • with a cyclo-octatriene or cyclo-octatetraene	13/70	• • • with a condensed ring system consisting of at
13/20/	ring [3, 2006.01]		least two mutually uncondensed aromatic ring
13/271	• • with a nine- to eleven-membered ring [3, 2006.01]		systems, linked by an annular structure formed
	• • with a twelve-membered ring [3, 2006.01]		by carbon chains on non-adjacent positions of the aromatic ring, e.g. cyclophanes [3, 2006.01]
13/275	• • • the twelve-membered ring being	13/72	• • • Spiro hydrocarbons [3, 2006.01]
	unsaturated [3, 2006.01]	10,,1	
13/277	• • • with a cyclododecatriene ring [3, 2006.01]	15/00	Cyclic hydrocarbons containing only six-membered
13/28	Polycyclic hydrocarbons or acyclic hydrocarbon Assignations the proof 11, 2006, 011.	15/00	aromatic rings as cyclic part [1, 2, 2006.01]
	derivatives thereof [1, 2006.01]	15/02	• Monocyclic hydrocarbons [1, 2006.01]
	Note(s) [3]	15/04 15/06	Benzene [1, 2006.01]Toluene [1, 2006.01]
	Ring systems consisting only of condensed six-	15/067	• • C ₈ H ₁₀ hydrocarbons [3, 2006.01]
	membered rings with maximum number of non-	15/073	-
	cumulative double bonds are classified in group	15/08	• • • Xylenes [1, 3, 2006.01]
10/00	C07C 15/00.	15/085	
13/32 13/34	with condensed rings [1, 2006.01]with a bicyclo ring system containing four	15/107	
13/34	carbon atoms [1, 2006.01]		six carbon atoms, e.g. detergent
13/36	• with a bicyclo ring system containing five		alkylates [3, 2006.01]
	carbon atoms [1, 2006.01]	15/113	9
13/38	• • with a bicyclo ring system containing six		containing at least six carbon atoms [3, 2006.01]
	carbon atoms [1, 2006.01]	15/12	• Polycyclic non-condensed hydrocarbons [1, 2006.01]
13/39	 • with a bicyclo ring system containing seven carbon atoms [3, 2006.01] 	15/14	 all phenyl groups being directly
13/40	• • • with a bicycloheptane ring		linked [1, 3, 2006.01]
157 10	structure [1, 3, 2006.01]	15/16	containing at least two phenyl groups linked by
13/42	• • • with a bicycloheptene ring	15/10	one single acyclic carbon atom [1, 2006.01]
	structure [1, 3, 2006.01]	15/18	• • containing at least one group with formula \(\subseteq \subs
13/43	• • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01]	4=	
	nyarocaroon groups [0, 2000.01]	15/20	• Polycyclic condensed hydrocarbons [1, 2006.01]

15/24	• • containing two rings [1, 2006.01]	17/26	• by reactions involving an increase in the number of
15/27	• • containing three rings [3, 2006.01]		carbon atoms in the skeleton [1, 2006.01]
15/28	• • • Anthracenes [1, 3, 2006.01]	17/263	• • by condensation reactions [6, 2006.01]
15/30	• • • Phenanthrenes [1, 3, 2006.01]	17/266	of hydrocarbons and halogenated
15/38	 containing four rings [3, 2006.01] 	45,000	hydrocarbons [6, 2006.01]
15/40	substituted by unsaturated hydrocarbon	17/269	• • of only halogenated hydrocarbons [6, 2006.01]
45/40	radicals [3, 2006.01]	17/272	• by addition reactions [6, 2006.01]
15/42	• • monocyclic [3, 2006.01]	17/275	 • of hydrocarbons and halogenated hydrocarbons [6, 2006.01]
15/44	• • • the hydrocarbon substituent containing a carbon-to-carbon double bond [3, 2006.01]	17/278	• • of only halogenated hydrocarbons [6, 2006.01]
15/46	Styrene; Ring-alkylated	17/281	• • • of only one compound [6, 2006.01]
15/40	styrenes [3, 2006.01]	17/30	• by a Diels-Alder synthesis [1, 2006.01]
15/48	• • • the hydrocarbon substituent containing a	17/32	by introduction of halogenated alkyl groups into
	carbon-to-carbon triple bond [3, 2006.01]		ring compounds [1, 2006.01]
15/50	 polycyclic non-condensed [3, 2006.01] 	17/35	• by reactions not affecting the number of carbon or
15/52	• • • containing a group with formula \(\sqrt{\text{\$\sigma}} - \$\Cappa = \text{\$\Cappa		halogen atoms in the molecules [6, 2006.01]
13/32	[3, 2006.01]	17/354	• • by hydrogenation [6, 2006.01]
45/54		17/357	• by dehydrogenation [6, 2006.01]
15/54	containing a group with formula	17/358	• • by isomerisation [6, 2006.01]
15/56	• • polycyclic condensed [3, 2006.01]	17/361	 by reactions involving a decrease in the number of carbon atoms [6, 2006.01]
15/58	• • containing two rings [3, 2006.01]	17/363	 by elimination of carboxyl groups [6, 2006.01]
15/60	• • containing three rings [3, 2006.01]	17/367	 by depolymerisation [6, 2006.01]
15/62	• • • containing four rings [3, 2006.01]	17/37	 by disproportionation of halogenated
	3. L. J. C. L. J. J. C. L. J. J. C. L. J. C. L. J. J. C. L. J. J. J. C. L. J.		hydrocarbons [6, 2006.01]
_		17/38	• Separation; Purification; Stabilisation; Use of
_	ds containing carbon and halogens with or without		additives [1, 2006.01]
<u>hydrogen</u>		17/383	• • by distillation [6, 2006.01]
17/00	Preparation of halogenated	17/386	• • • with auxiliary compounds [6, 2006.01]
	hydrocarbons [1, 2006.01]	17/389	• • by adsorption on solids [6, 2006.01]
17/007	• from carbon or carbides and halogens [6, 2006.01]	17/392	• by crystallisation; Purification or separation of the
17/013	 by addition of halogens [6, 2006.01] 	17/395	crystals [6, 2006.01] • by treatment giving rise to a chemical
17/02	• to unsaturated hydrocarbons [1, 6, 2006.01]	177333	modification of at least one
17/04	• to unsaturated halogenated		compound [6, 2006.01]
17/06	hydrocarbons [1, 6, 2006.01]	17/42	• • Use of additives, e.g. for
17/06	 combined with replacement of hydrogen atoms by halogens [1, 2006.01] 		stabilisation [1, 3, 6, 2006.01]
17/07	• by addition of hydrogen halides [6, 2006.01]	19/00	Acyclic saturated compounds containing halogen
17/08	• to unsaturated hydrocarbons [1, 6, 2006.01]	15/00	atoms [1, 5, 2006.01]
17/087	• • to unsaturated halogenated	19/01	• containing chlorine [6, 2006.01]
	hydrocarbons [6, 2006.01]	19/03	• • Chloromethanes [6, 2006.01]
17/093	• by replacement by halogens [6, 2006.01]	19/04	• • • Chloroform [1, 6, 2006.01]
17/10	of hydrogen atoms (combined with addition of	19/041	• • Carbon tetrachloride [6, 2006.01]
	halogens to unsaturated hydrocarbons	19/043	• • Chloroethanes [6, 2006.01]
17/12	C07C 17/06) [1, 6, 2006.01] • • • in the ring of aromatic	19/045	• • Dichloroethanes [3, 6, 2006.01]
1//12	compounds [1, 6, 2006.01]	19/05	• • • Trichloroethanes [3, 6, 2006.01]
17/14	• • in the side-chain of aromatic	19/055	• • • Tetrachloroethanes [3, 6, 2006.01]
	compounds [1, 6, 2006.01]	19/07	• containing iodine [2, 2006.01]
17/15	 with oxygen as auxiliary reagent, e.g. 	19/075	• containing bromine [6, 2006.01]
	oxychlorination [2, 6, 2006.01]	19/08	• containing fluorine [1, 2006.01]
17/152	• • • of hydrocarbons [3, 6, 2006.01]	19/10	• • and chlorine [6, 2006.01]
17/154	• • • of saturated hydrocarbons [3, 6, 2006.01]	19/12 19/14	• having two carbon atoms [6, 2006.01]• and bromine [6, 2006.01]
17/156	• • • of unsaturated hydrocarbons [3, 6, 2006.01]	19/14	• • and iodine [6, 2006.01]
17/158	• • • of halogenated hydrocarbons [3, 6, 2006.01]	13/10	and rounte [0, 2000.01]
17/16	• • of hydroxyl groups [1, 3, 6, 2006.01]	21/00	Acyclic unsaturated compounds containing halogen
17/18	 of oxygen atoms of carbonyl groups [1, 6, 2006.01] 		atoms [1, 5, 2006.01]
17/20	 of halogen atoms by other halogen 	21/02	containing carbon-to-carbon double
1//20	atoms [1, 6, 2006.01]	24 /04	bonds [1, 2006.01]
17/21	• • with simultaneous increase of the number of	21/04	• • Chloro-alkenes [1, 2006.01]
	halogen atoms [6, 2006.01]	21/06 21/067	• Vinyl chloride [1, 2006.01]• Allyl chloride; Methallyl chloride [3, 2006.01]
17/23	• by dehalogenation [6, 2006.01]	21/06/	 Allyl chloride; Methanyl chloride [3, 2006.01] Dichloro-alkenes [3, 2006.01]
17/25	• by splitting-off hydrogen halides from halogenated	21/0/3	• • • Vinylidene chloride [1, 3, 2006.01]
	hydrocarbons [6, 2006.01]		

8

21/09	• • • Dichloro-butenes [3, 2006.01]	25/02	Monocyclic aromatic halogenated
21/10	• • • Trichloro-ethylene [1, 2006.01]		hydrocarbons [1, 2006.01]
21/12	• • • Tetrachloro-ethylene [1, 2006.01]	25/06	 Monochloro-benzene [1, 3, 2006.01]
21/14	 containing bromine [1, 2006.01] 	25/08	 Dichloro-benzenes [1, 3, 2006.01]
21/16	• • • Crotyl bromide [1, 2006.01]	25/10	• • Trichloro-benzenes [1, 3, 2006.01]
21/17	• • containing iodine [5, 2006.01]	25/12	 Hexachloro-benzene [1, 3, 2006.01]
21/18	• • containing fluorine [1, 2006.01]	25/125	 Halogenated xylenes [2, 3, 2006.01]
21/185	• • Tetrafluoroethene [5, 2006.01]	25/13	• • containing fluorine [2, 3, 2006.01]
21/103	Halogenated dienes [3, 2006.01]	25/18	Polycyclic aromatic halogenated
	_	25/10	hydrocarbons [1, 2006.01]
21/20	• • • Halogenated butadienes [1, 3, 2006.01]	25/20	• Dichloro-diphenyl-trichloro-ethane [1, 2006.01]
21/21	• • • Chloroprene [3, 2006.01]	25/22	 with condensed rings [1, 2006.01]
21/215	Halogenated polyenes with more than two carbon-	25/24	 Halogenated aromatic hydrocarbons with unsaturated
04 (00	to-carbon double bonds [3, 2006.01]	23/24	side chains [1, 2006.01]
21/22	 containing carbon-to-carbon triple bonds [1, 2006.01] 	25/28	 Halogenated styrenes [1, 3, 2006.01]
22/00	Cyclic compounds containing halogen atoms bound	23/20	11alogenated styrenes [1, 3, 2000.01]
22/00	to an acyclic carbon atom [5, 2006.01]		
22/02		Compour	nds containing carbon and oxygen, with or without
22/02	• having unsaturation in the rings [5, 2006.01]	_	or halogens [2]
22/04	• containing six-membered aromatic	nyurugun	or nanogens [2]
22 / 25	rings [5, 2006.01]	27/00	Processes involving the simultaneous production of
22/06	• • • Trichloromethylbenzene [5, 2006.01]		more than one class of oxygen-containing
22/08	• • • containing fluorine [5, 2006.01]		compounds [1, 2006.01]
22/00		27/02	• Saponification of organic acid esters [1, 2006.01]
23/00	Compounds containing at least one halogen atom	27/04	by reduction of oxygen-containing compounds
	bound to a ring other than a six-membered aromatic	2,,0.	(C07C 29/14 takes precedence) [1, 2006.01]
22 / 22	ring [1, 2006.01]	27/06	 by hydrogenation of oxides of carbon [1, 2006.01]
23/02	Monocyclic halogenated hydrocarbons [1, 2006.01]	27/08	• • with moving catalysts [1, 2006.01]
23/04	 with a three-membered ring [1, 2006.01] 		
23/06	• • with a four-membered ring [1, 2006.01]	27/10	• by oxidation of hydrocarbons [1, 2006.01]
23/08	 with a five-membered ring [1, 2006.01] 	27/12	• • with oxygen [1, 2006.01]
23/10	• • with a six-membered ring [1, 2006.01]	27/14	• • • wholly gaseous reactions [1, 2006.01]
23/12	 Hexachlorocyclohexanes [1, 2006.01] 	27/16	 with other oxidising agents [1, 2006.01]
23/14	• • with a seven-membered ring [1, 2006.01]	27/18	by addition of alkynes to aldehydes, ketones, or
23/16	• • with an eight-membered ring [1, 2006.01]		alkylene oxides [1, 2006.01]
23/18	Polycyclic halogenated hydrocarbons [1, 2006.01]	27/20	• by oxo-reaction [1, 2006.01]
23/20	 with condensed rings none of which is 	27/22	 with the use of catalysts which are specific for this
20720	aromatic [1, 2006.01]		process [1, 2006.01]
23/22	• • with a bicyclo ring system containing four	27/24	 with moving catalysts [1, 2006.01]
	carbon atoms [1, 2006.01]	27/26	• Purification; Separation; Stabilisation [1, 2006.01]
23/24	• • with a bicyclo ring system containing five	27/28	• • by distillation [1, 2006.01]
	carbon atoms [1, 2006.01]	27/30	• • • by azeotropic distillation [1, 2006.01]
23/26	• • with a bicyclo ring system containing six	27/32	• • • by extractive distillation [1, 2006.01]
20720	carbon atoms [1, 2006.01]	27/34	• • by extraction [1, 2006.01]
23/27	• • with a bicyclo ring system containing seven		,
25/2/	carbon atoms [5, 2006.01]	29/00	Preparation of compounds having hydroxy or O-
23/28	• • • Saturated bicyclo ring system [1, 5, 2006.01]		metal groups bound to a carbon atom not belonging
23/30	• • • Mono-unsaturated bicyclo ring		to a six-membered aromatic ring [1, 2006.01]
23/30	system [1, 5, 2006.01]	29/03	· by addition of hydroxy groups to unsaturated carbon-
າວ /ວາ	• • with a bicyclo ring system containing eight		to-carbon bonds, e.g. with the aid of
23/32	carbon atoms [1, 2006.01]		H ₂ O ₂ [3, 2006.01]
22/24	Halogenated completely or partially	29/04	 by hydration of carbon-to-carbon double
23/34	hydrogenated indenes [1, 2006.01]		bonds [1, 2006.01]
22/26		29/05	 • with formation of absorption products in
23/36	 Halogenated completely or partially hydrogenated naphthalenes [1, 2006.01] 		mineral acids and their hydrolysis [3, 2006.01]
22/20		29/06	• • • the acid being sulfuric acid [1, 3, 2006.01]
23/38	• • • with three condensed rings [1, 2006.01]	29/08	• • • the acid being phosphoric
23/40	• • • • Halogenated completely or partially		acid [1, 3, 2006.01]
22.4	hydrogenated fluorenes [1, 2006.01]	29/09	 by hydrolysis (of esters of organic acids
23/42	• • • Halogenated completely or partially	- · • •	C07C 27/02) [3, 2006.01]
	hydrogenated anthracenes [1, 2006.01]	29/10	of ethers, including cyclic ethers, e.g.
23/44	• • • • Halogenated completely or partially	- · - •	oxiranes [1, 2006.01]
	hydrogenated phenanthrenes [1, 2006.01]	29/12	• • of esters of mineral acids [1, 3, 2006.01]
23/46	• • • with more than 3 condensed rings [1, 2006.01]	29/124	• • • of halides [3, 2006.01]
25 /00	Compounds containing at least one belower	29/128	 by alcoholysis (of esters of organic acids
25/00	Compounds containing at least one halogen atom bound to a six-membered aromatic ring [1, 2006.01]	23/120	C07C 27/02) [3, 2006.01]
	ovana to a six-inclinered aromade filig [1, 2000.01]		, [-, - • • • • • -]

29/132	•	by reduction of an oxygen-containing functional	29/56	• by isomerisation [3, 2006.01]
20/126		group [3, 2006.01]	29/58	• by elimination of halogen, e.g. by hydrogenolysis,
29/136	•	• of C=O containing groups, e.g. — COOH [3, 2006.01]		splitting-off (C07C 29/124 takes precedence) [3, 2006.01]
29/14		• • of a —CHO group [1, 3, 2006.01]	29/60	• by elimination of hydroxy groups, e.g. by
		• • with hydrogen or hydrogen-containing		dehydration (C07C 29/34 takes
		gases [5, 2006.01]		precedence) [3, 2006.01]
		• • of ketones [5, 2006.01]	29/62	• by introduction of halogen; by substitution of halogen
29/145	•	• • with hydrogen or hydrogen-containing	20/64	atoms by other halogen atoms [3, 2006.01]
20 /1 47		gases [5, 2006.01]	29/64	 by simultaneous introduction of hydroxy groups and halogens [3, 2006.01]
29/14/	•	 of carboxylic acids or derivatives thereof [5, 2006.01] 	29/66	 by addition of hypohalogenous acids, which may
29/149		• • with hydrogen or hydrogen-containing		be formed <u>in situ</u> , to carbon-to-carbon unsaturated
		gases [5, 2006.01]		bonds [3, 2006.01]
29/15	•	by reduction of oxides of carbon	29/68	• Preparation of metal-alcoholates (C07C 29/42,
		exclusively [3, 2006.01]	29/70	C07C 29/54 take precedence) [3, 2006.01] • by converting hydroxy groups to O-metal
29/151	•	• with hydrogen or hydrogen-containing	29/70	groups [3, 2006.01]
29/152		gases [5, 2006.01] • characterised by the reactor used [5, 2006.01]	29/72	by oxidation of carbon-to-metal
		• characterised by the reactor used [5, 2006.01]		bonds [3, 2006.01]
		containing copper, silver, gold, or	29/74	Separation; Purification; Stabilisation; Use of
		compounds thereof [5, 2006.01]	00/50	additives [3, 2006.01]
29/156	•	 containing iron group metals, platinum 	29/76	by physical treatment [3, 2006.01]by condensation or crystallisation [3, 2006.01]
		group metals, or compounds	29/78 29/80	• • by condensation or crystallisation [3, 2006.01]
29/157		thereof [5, 2006.01] • • • containing platinum group metals or	29/82	• • • by azeotropic distillation [3, 2006.01]
23/13/	·	compounds thereof [5, 2006.01]	29/84	• • • by extractive distillation [3, 2006.01]
29/158	•	• • • containing rhodium or compounds	29/86	• • • by liquid-liquid treatment [3, 2006.01]
		thereof [5, 2006.01]	29/88	by treatment giving rise to a chemical
29/159	•	with reducing agents other than hydrogen or		modification of at least one compound
20 /4 6		hydrogen-containing gases [5, 2006.01]	20.700	(chemisorption C07C 29/76) [3, 2006.01]
29/16	•	by oxo-reaction combined with reduction [1, 2006.01]	29/90 29/92	using hydrogen only [3, 2006.01]by a consecutive conversion and
		reduction [1, 2000.01]	23/32	• • Dy a Consecutive Conversion and
29/17	•	by hydrogenation of carbon-to-carbon double or		
29/17	•	by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01]	29/94	reconstruction [3, 2006.01]
29/19	•	triple bonds [3, 2006.01] • in six-membered aromatic rings [3, 2006.01]		reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01]
	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with 	29/94 31/00	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal
29/19 29/20	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] 	31/00	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01]
29/19	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions 	31/00 31/02	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01]
29/19 29/20 29/32	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] 	31/00 31/02 31/04	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01]
29/19 29/20	•	 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions 	31/00 31/02	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] 	31/00 31/02 31/04 31/08	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01]
29/19 29/20 29/32		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions 	31/00 31/02 31/04 31/08 31/10	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon
29/19 29/20 29/32 29/34		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur 	31/00 31/02 31/04 31/08 31/10 31/12 31/125	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01]
29/19 29/20 29/32 29/34		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy 	31/00 31/02 31/04 31/08 31/10 31/12	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated
29/19 29/20 29/32 29/34		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01]
29/19 29/20 29/32 29/34 29/36		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal	31/00 31/02 31/04 31/08 31/10 31/12 31/125	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated
29/19 29/20 29/32 29/34 29/36 29/38 29/40		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01]
29/19 29/20 29/32 29/34 29/36		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in on-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01]	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring
29/19 29/20 29/32 29/34 29/36 29/38 29/40		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal- 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/133 31/135	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in on-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01]	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Polyhydroxylic acyclic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/36 29/40 29/42		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon- 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Polyhydroxylic acyclic alcohols [1, 2006.01] • Dihydroxylic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/36 29/40 29/42		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes) 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Polyhydroxylic acyclic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • polycyclic acyclic alcohols [1, 2006.01] • Dihydroxylic acyclic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (CO7C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Dihydroxylic acyclic alcohols [1, 2006.01] • Dihydroxylic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Polyhydroxylic acyclic alcohols [1, 2006.01] • Dihydroxylic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] • Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/44 29/48 29/50		triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g., Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by diene-synthesis [3, 2006.01] with molecular oxygen only [3, 2006.01]	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Dihydroxylic acyclic alcohols [1, 2006.01] • Dihydroxylic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] • Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] • Hexahydroxylic alcohols [1, 2006.01] • Polyhydroxylic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by diene-synthesis [3, 2006.01] with molecular oxygen only [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Polyhydroxylic acyclic alcohols [1, 2006.01] • Dihydroxylic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] • Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] • Hexahydroxylic alcohols [1, 2006.01] • Polyhydroxylic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/44 29/48 29/50		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by diene-synthesis [3, 2006.01] with molecular oxygen only [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds with, when necessary, hydrolysis of the 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Dihydroxylic acyclic alcohols [1, 2006.01] • Dihydroxylic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] • Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] • Hexahydroxylic alcohols [1, 2006.01] • Polyhydroxylic alcohols [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/48 29/50 29/52		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metalalkynes [3, 2006.01] reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by diene-synthesis [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds with, when necessary, hydrolysis of the intermediate formed [3, 2006.01] 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27 31/28	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Polyhydroxylic acyclic alcohols [1, 2006.01] • Dihydroxylic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] • Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] • Hexahydroxylic alcohols [1, 2006.01] • Polyhydroxylic alcohols containing saturated rings [3, 2006.01] • Metal alcoholates [1, 2006.01] • Alkali-metal or alkaline-earth-metal alcoholates [1, 2006.01]
29/19 29/20 29/32 29/34 29/36 29/38 29/40 29/42 29/44 29/44 29/48 29/50		 triple bonds [3, 2006.01] in six-membered aromatic rings [3, 2006.01] in non-condensed rings substituted with hydroxy groups [1, 3, 2006.01] increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction [3, 2006.01] increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy groups, e.g. O-metal [3, 2006.01] by reaction with aldehydes or ketones [3, 2006.01] with compounds containing carbon-to-metal bonds [3, 2006.01] with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes [3, 2006.01] increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond (C07C 29/16 takes precedence) [3, 2006.01] by diene-synthesis [3, 2006.01] by diene-synthesis [3, 2006.01] with molecular oxygen only [3, 2006.01] with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds with, when necessary, hydrolysis of the 	31/00 31/02 31/04 31/08 31/10 31/12 31/125 31/13 31/135 31/137 31/18 31/20 31/22 31/24 31/26 31/27 31/28	reconstruction [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01] Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms [1, 2006.01] • Monohydroxylic acyclic alcohols [1, 2006.01] • Methanol [1, 2006.01] • Ethanol [1, 2006.01] • containing three carbon atoms [1, 2006.01] • containing four carbon atoms [1, 2006.01] • containing five to twenty-two carbon atoms [3, 2006.01] • Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01] • monocyclic [3, 2006.01] • with five- or six-membered rings; Naphthenic alcohols [3, 2006.01] • polycyclic with condensed ring systems [3, 2006.01] • Polyhydroxylic acyclic alcohols [1, 2006.01] • Trihydroxylic alcohols, e.g. glycerol [1, 3, 2006.01] • Tetrahydroxylic alcohols, e.g. pentaerythritol [1, 3, 2006.01] • Hexahydroxylic alcohols [1, 2006.01] • Polyhydroxylic alcohols containing saturated rings [3, 2006.01] • Metal alcoholates [1, 2006.01] • Alkali-metal or alkaline-earth-metal

31/36 31/38	the halogen not being fluorine [3, 2006.01]containing only fluorine as halogen [3, 2006.01]	33/50	 containing six-membered aromatic rings and other rings [3, 2006.01]
31/40	 perhalogenated [3, 2006.01] 		
31/42	 Halogenated polyhydroxylic acyclic alcohols [3, 2006.01] 	35/00	Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a
31/44	Halogenated alcohols containing saturated		six-membered aromatic ring [1, 2, 2006.01]
31/	rings [3, 2006.01]	35/02	 monocyclic [1, 2006.01]
	0- 1 -7 1	35/04	containing three- or four-membered
33/00	Unsaturated compounds having hydroxy or O-metal		rings [1, 2006.01]
	groups bound to acyclic carbon atoms [1, 2006.01]	35/06	• • containing five-membered rings [1, 2006.01]
	Note(s) [3]	35/08	• • containing six-membered rings [1, 2006.01]
		35/12	• • • Menthol [1, 2006.01]
	In this group, in condensed ring systems of six- membered aromatic rings and other rings, the double bond belonging to a benzene ring is not considered as	35/14	• • • with more than one hydroxy group bound to the ring [1, 2006.01]
	unsaturated for the non-aromatic ring condensed	35/16	• • • Inositol [1, 2006.01]
	thereon, e.g. the 1,2,3,4-tetrahydro- naphthalene ring is	35/17	• • • with unsaturation only outside the
	considered to be saturated outside the aromatic ring.	25 /40	ring [3, 2006.01]
33/02	Acyclic alcohols with carbon-to-carbon double	35/18	• • • with unsaturation at least in the
	bonds [1, 2006.01]	25/20	ring [1, 3, 2006.01] • containing seven- or eight-membered
33/025	• • with only one double bond [3, 2006.01]	35/20	rings [1, 2006.01]
33/03	• • • in beta-position, e.g. allyl alcohol, methallyl alcohol [3, 2006.01]	35/205	• • containing nine- to twelve-membered rings, e.g.
33/035	• • • Alkenediols [3, 2006.01]		cyclododecanols [3, 2006.01]
33/033	Acyclic alcohols with carbon-to-carbon triple	35/21	• polycyclic, at least one hydroxy group bound to a
557 04	bonds [1, 2006.01]	25 (22	non-condensed ring [2, 2006.01]
33/042	 with only one triple bond [3, 2006.01] 	35/22	 polycyclic, at least one hydroxy group bound to a condensed ring system [1, 2, 2006.01]
33/044	• • • Alkynediols [3, 2006.01]	25/22	
33/046	• • • • Butynediols [3, 2006.01]	35/23	 with a hydroxy group on a condensed ring system having two rings [3, 2006.01]
33/048	• • with double and triple bonds [3, 2006.01]	35/24	• the condensed ring system containing five
33/05	Alcohols containing rings other than six-membered	55/24	carbon atoms [1, 3, 2006.01]
	aromatic rings [2, 2006.01]	35/26	• • • • Bicyclopentadienols [1, 3, 2006.01]
33/12	• containing five-membered rings [3, 2006.01]	35/27	• • • the condensed ring system containing six
33/14	• containing six-membered rings [3, 2006.01]		carbon atoms [3, 2006.01]
33/16	 containing rings with more than six ring 	35/28	• • • the condensed ring system containing seven
	members [3, 2006.01]		carbon atoms [1, 3, 2006.01]
33/18	Monohydroxylic alcohols containing only six-	35/29	• • • being a [2.2.1] system [3, 2006.01]
22 (20	membered aromatic rings as cyclic part [3, 2006.01]	35/30	• • • • Borneol; Isoborneol [1, 3, 2006.01]
33/20	• • monocyclic [3, 2006.01]	35/31	• • • the condensed ring system containing eight
33/22	• • Benzylalcohol; Phenylethyl alcohol [3, 2006.01]	25 (22	carbon atoms [3, 2006.01]
33/24	polycyclic without condensed ring	35/32	• • • the condensed ring system being a [4.3.0]
33/24	systems [3, 2006.01]	35/34	system, e.g. indenols [1, 3, 2006.01] • • the condensed ring system being a [5.3.0]
33/26	Polyhydroxylic alcohols containing only six-	33/34	system, e.g. azulenols [1, 3, 2006.01]
337 = 0	membered aromatic rings as cyclic part [3, 2006.01]	35/36	• • • the condensed ring system being a [4.4.0]
33/28	Alcohols containing only six-membered aromatic	55750	system, e.g. hydrogenated
	rings as cyclic part with unsaturation outside the		naphthols [1, 3, 2006.01]
	aromatic rings [3, 2006.01]	35/37	 with a hydroxy group on a condensed ring system
33/30	 monocyclic [3, 2006.01] 		having three rings [3, 2006.01]
33/32	• • • Cinnamyl alcohol [3, 2006.01]	35/38	• • derived from the fluorene
33/34	Monohydroxylic alcohols containing six-membered		skeleton [1, 3, 2006.01]
	aromatic rings and other rings [3, 2006.01]	35/40	• • derived from the anthracene
33/36	Polyhydroxylic alcohols containing six-membered aromatic rings and other rings [2, 2006 01]	25 / 42	skeleton [1, 3, 2006.01]
22/20	aromatic rings and other rings [3, 2006.01]	35/42	• • • derived from the phenanthrene
33/38	 Alcohols containing six-membered aromatic rings and other rings and having unsaturation outside the 	35/44	skeleton [1, 3, 2006.01] • with a hydroxy group on a condensed ring system
	aromatic rings [3, 2006.01]	33/ 44	having more than three rings [1, 2006.01]
33/40	Halogenated unsaturated alcohols [3, 2006.01]	35/46	O-metal derivatives of the cyclically bound hydroxy
33/42	• • acyclic [3, 2006.01]	33, 10	groups [3, 2006.01]
33/44	containing rings other than six-membered	35/48	Halogenated derivatives [3, 2006.01]
	aromatic rings [3, 2006.01]	35/50	• • Alcohols with at least two rings [3, 2006.01]
33/46	containing only six-membered aromatic rings as	35/52	Alcohols with a condensed ring
	cyclic part [3, 2006.01]	-	system [3, 2006.01]
33/48	• • • with unsaturation outside the aromatic	D= / 2 2	D
	rings [3, 2006.01]	37/00	Preparation of compounds having hydroxy or O-
			metal groups bound to a carbon atom of a six- membered aromatic ring [1, 2006.01]

37/01	•	by replacing functional groups bound to a six- membered aromatic ring by hydroxy groups, e.g. by	37/82	•	• • by solid-liquid treatment; by chemisorption [3, 2006.01]
		hydrolysis [3, 2006.01]	37/84		• • by crystallisation [3, 2006.01]
37/02		• by substitution of halogen [1, 3, 2006.01]	37/86	•	 by treatment giving rise to a chemical
37/04	•	 by substitution of SO₃H groups or a derivative thereof [1, 3, 2006.01] 			modification (by chemisorption C07C 37/82) [3, 2006.01]
37/045	•	 by substitution of a group bound to the ring by nitrogen [3, 2006.01] 	37/88	•	• Use of additives, e.g. for stabilisation [3, 2006.01]
37/05	•	• • by substitution of a NH ₂ group [3, 2006.01]	39/00		ompounds having at least one hydroxy or O-metal
37/055		 by substitution of a group bound to the ring by oxygen, e.g. ether group [3, 2006.01] 			roup bound to a carbon atom of a six-membered romatic ring [1, 2006.01]
37/06	•	by conversion of non-aromatic six-membered rings or of such rings formed <u>in situ</u> into aromatic six-			Note(s) [3]
		membered rings, e.g. by dehydrogenation [1, 2006.01]		n	n this group, in condensed ring systems of six- nembered aromatic rings and other rings, the double
37/07	•	 with simultaneous reduction of C=O group in that ring [3, 2006.01] 		u	ond belonging to the benzene ring is not considered as nsaturated for the non-aromatic ring condensed nereon.
37/08	•	by decomposition of hydroperoxides, e.g. cumene hydroperoxide [1, 2006.01]	39/02		monocyclic with no unsaturation outside the aromatic ring [1, 2006.01]
37/11	•	by reactions increasing the number of carbon	39/04		• Phenol [1, 2006.01]
		atoms [3, 2006.01]	39/04		• Alkylated phenols [1, 2006.01]
37/14	•	by addition reactions, i.e. reactions involving at	39/07		 containing only methyl groups as alkyl groups,
		least one carbon-to-carbon unsaturated bond [1, 3, 2006.01]			e.g. cresols, xylenols [3, 2006.01]
37/16	•	 by condensation involving hydroxy groups of 	39/08	•	 Dihydroxy benzenes; Alkylated derivatives thereof [1, 2006.01]
		phenols or alcohols or the ether or mineral ester group derived therefrom [1, 3, 2006.01]	39/10	•	Polyhydroxy benzenes; Alkylated derivatives
37/18	•	 by condensation involving halogen atoms of halogenated compounds [1, 2006.01] 	20/44		thereof (C07C 39/08 takes precedence) [1, 2006.01]
37/20	•	 using aldehydes or ketones [1, 2006.01] 	39/11	•	Alkylated hydroxy benzenes containing also
37/48	•	by exchange of hydrocarbon groups which may be substituted, from other compounds, e.g.	20/42		acyclically bound hydroxy groups, e.g. saligenol [3, 2006.01]
		transalkylation [3, 2006.01]	39/12	•	polycyclic with no unsaturation outside the aromatic rings [1, 2006.01]
37/50	•	(C07C 37/01, C07C 37/08, C07C 37/48 take	39/14	•	 with at least one hydroxy group on a condensed ring system containing two rings [1, 3, 2006.01]
05/50		precedence) [3, 2006.01]	39/15		 with all hydroxy groups on non-condensed
37/52	•	 by splitting polyaromatic compounds, e.g. polyphenolalkanes [3, 2006.01] 			rings [3, 2006.01]
37/54	•	 by hydrolysis of lignin or sulfite waste liquor [3, 2006.01] 	39/16		Bis(hydroxy phenyl)alkanes; Tris(hydroxy phenyl)alkanes [1, 3, 2006.01]
37/56	•	 by replacing a carboxyl or aldehyde group by a hydroxy group [3, 2006.01] 	39/17		containing other rings in addition to the six- membered aromatic rings [2, 2006.01]
37/58	•	by oxidation reactions introducing directly a hydroxy group on a CH-group belonging to a six-membered	39/18		monocyclic with unsaturation outside the aromatic ring [1, 2006.01]
		aromatic ring with the aid of molecular oxygen [3, 2006.01]	39/19		 containing carbon-to-carbon double bonds but no carbon-to-carbon triple bonds [3, 2006.01]
37/60	•	by oxidation reactions introducing directly a hydroxy	39/20	•	 Hydroxy styrenes [1, 3, 2006.01]
		group on a CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular	39/205	•	polycyclic, containing only six-membered aromatic rings as cyclic part, with unsaturation outside the rings [3, 2006.01]
		oxygen [3, 2006.01]	39/21		with at least one hydroxy group on a non-
37/62	•		55/21		condensed ring [3, 2006.01]
37/64	•	Preparation of O-metal compounds with the O-metal	39/215		HO-⟨
		group linked to a carbon atom belonging to a six-membered aromatic ring [3, 2006.01]			structure, e.g. diethylstilbestrol [3, 2006.01]
37/66	•	 by conversion of hydroxy groups to O-metal groups [3, 2006.01] 	39/225		 with at least one hydroxy group on a condensed ring system [3, 2006.01]
37/68	•	Separation; Purification; Stabilisation; Use of additives [3, 2006.01]	39/23	•	polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings [3, 2006.01]
37/70	•	• by physical treatment [3, 2006.01]	39/235		Metal derivatives of a hydroxy group bound to a six-
37/72		• • by liquid-liquid treatment [3, 2006.01]	33/233	-	membered aromatic ring [3, 2006.01]
37/74		• • by distillation [3, 2006.01]	39/24	•	Halogenated derivatives [1, 2006.01]
37/76	•	• • • by steam distillation [3, 2006.01]	39/26		monocyclic monohydroxylic containing halogen
37/78	•	• • by azeotropic distillation [3, 2006.01]			bound to ring carbon atoms [1, 2006.01]
37/80	•	• • by extractive distillation [3, 2006.01]	39/27	•	all halogen atoms being attached to the
					ring [1, 2006.01]

12

39/28	• • • the halogen being one chlorine	41/36 • • • by solid-liquid treatment; by
39/30	atom [1, 2006.01] • • • the halogen being two chlorine	chemisorption [3, 2006.01] 41/38 • • • by liquid-liquid treatment [3, 2006.01]
33730	atoms [1, 2006.01]	41/40 • • • by change of physical state, e.g. by
39/32	• • • the halogen being three chlorine	crystallisation [3, 2006.01]
39/34	atoms [1, 2006.01] • • • the halogen being four chlorine	41/42 • • • by distillation [3, 2006.01]
33734	atoms [1, 2006.01]	41/44 • • • by treatment giving rise to a chemical modification (by chemisorption
39/36	• • • Pentachlorophenol [1, 2006.01]	C07C 41/36) [3, 2006.01]
39/367	polycyclic non-condensed, containing only six-	41/46 • • • Use of additives, e.g. for
	membered aromatic rings, e.g. halogenated poly- (hydroxy-phenyl)alkanes [3, 2006.01]	stabilisation [3, 2006.01]
39/373	with all hydroxy groups on non-condensed rings	41/48 • Preparation of compounds having $^{\lambda L\zeta}_{0}^{-C}$
	and with unsaturation outside the aromatic	groups [3, 2006.01]
39/38	rings [3, 2006.01] • with at least one hydroxy group on a condensed	41/50 • • by reactions producing CCC 0-C groups [3, 2006.01]
55750	ring system containing two rings [1, 2006.01]	groups [3, 2006.01]
39/40	with at least one hydroxy group on a condensed	41/52 • • • by substitution of halogen only [3, 2006.01]
	ring system containing more than two rings [3, 2006.01]	41/54 • • by addition of compounds to unsaturated
39/42	containing six-membered aromatic rings and other	carbon-to-carbon bonds [3, 2006.01] 41/56 • • • by condensation of aldehydes,
	rings [3, 2006.01]	paraformaldehyde, or ketones [3, 2006.01]
39/44	 Metal derivatives of a hydroxy group bound to a carbon atom of a six-membered aromatic 	41/58 • • Separation; Purification; Stabilisation; Use of
	ring [3, 2006.01]	additives [3, 2006.01]
41 /00		-C - O-C
41/00	Preparation of ethers; Preparation of compounds	41/60 • Preparation of compounds having O-C groups or
		0-
	having $C \subset C \subset C$ groups, $C \subset C \subset C \subset C \subset C$	C\0-C
	having U-U groups, U-U groups or U-U groups [1, 3, 2006.01]	O-C groups [3, 2006.01]
41/01	 Preparation of ethers [3, 2006.01] 	
41/02	• • from oxiranes [1, 3, 2006.01]	کرڈ _{ا –}
		· · · · · · · · · · · · · · · · · ·
41/03	• • • by reaction of an oxirane ring with a hydroxy	43/00 Ethers; Compounds having CCCD-C groups,
	• • by reaction of an oxirane ring with a hydroxy group [3, 2006.01]	0-
41/03 41/05	 • by reaction of an oxirane ring with a hydroxy group [3, 2006.01] • by addition of compounds to unsaturated 	0-
	 • by reaction of an oxirane ring with a hydroxy group [3, 2006.01] • by addition of compounds to unsaturated compounds [3, 2006.01] • by addition of organic compounds 	0- 0- -C-0-C 0-C groups or 0-C groups [1, 2006.01]
41/05 41/06	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] 	0- 0- -C-0-C
41/05	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple 	0- 0- 0-C 0-C 0-C 0-C groups or 0-C groups [1, 2006.01] 43/02 • Ethers [1, 2006.01] • having all ether-oxygen atoms bound to acyclic carbon atoms [3, 2006.01]
41/05 41/06	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy 	0- 0- 0-C 0-C 0-C 0-C groups or 0-C groups [1, 2006.01] 43/02 • Ethers [1, 2006.01] 43/03 • having all ether-oxygen atoms bound to acyclic carbon atoms [3, 2006.01] 43/04 • • Saturated ethers [1, 3, 2006.01]
41/05 41/06 41/08 41/09	 • • by reaction of an oxirane ring with a hydroxy group [3, 2006.01] • by addition of compounds to unsaturated compounds [3, 2006.01] • • by addition of organic compounds only [1, 3, 2006.01] • • to carbon-to-carbon triple bonds [1, 3, 2006.01] • by dehydration of compounds containing hydroxy groups [3, 2006.01] 	0 -
41/05 41/06 41/08	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen 	0 -
41/05 41/06 41/08 41/09	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] 	0- -C-0-C groups or 0-C groups [1, 2006.01] 43/02 • Ethers [1, 2006.01] 43/03 • having all ether-oxygen atoms bound to acyclic carbon atoms [3, 2006.01] 43/04 • • Saturated ethers [1, 3, 2006.01] 43/10 • • • Diethyl ether [1, 3, 2006.01] 43/11 • • • Polyethers containing —O—(C—C—O—) _n units with 2 ≤ n ≤ 10 [2, 3, 2006.01]
41/05 41/06 41/08 41/09	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids 	0C ₇ O-C 0-C 0-C 0-C 0-C 0-C 0-C 0-C 0-C 0-C 0
41/05 41/06 41/08 41/09 41/14 41/16	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] 	0C, 0-C
41/05 41/06 41/08 41/09 41/14	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids 	0C ₇ O-C 0-C 0-C 0-C 0-C 0-C 0-C 0-C 0-C 0-C 0
41/05 41/06 41/08 41/09 41/14 41/16	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] 	0 -
41/05 41/06 41/08 41/09 41/14 41/16 41/18	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double 	0 -
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] 	0 -
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of 	O- C-C-O-C O-C O-C O-C O-C O-C O-C O-C O
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of HCl [3, 2006.01] 	O- C-C-O-C O-C O-C O-C O-C O-C O-C O-C O
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of HCl [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] 	1
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22 41/24 41/26 41/28	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of HCl [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] from acetals, e.g. by dealcoholysis [3, 2006.01] 	1
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22 41/24 41/26	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of HCl [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] from acetals, e.g. by dealcoholysis [3, 2006.01] from acetals, e.g. by dealcoholysis [3, 2006.01] by increasing the number of carbon atoms, e.g. 	1
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22 41/24 41/26 41/28 41/30	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of HCl [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] from acetals, e.g. by dealcoholysis [3, 2006.01] from acetals, e.g. by dealcoholysis [3, 2006.01] by increasing the number of carbon atoms, e.g. by oligomerisation [3, 2006.01] 	O
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22 41/24 41/26 41/28	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of HCl [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] by increasing the number of carbon atoms, e.g. by oligomerisation [3, 2006.01] by isomerisation [3, 2006.01] by isomerisation [3, 2006.01] Separation; Purification; Stabilisation; Use of 	1
41/05 41/06 41/08 41/09 41/14 41/16 41/18 41/20 41/22 41/24 41/26 41/28 41/30 41/32	 by reaction of an oxirane ring with a hydroxy group [3, 2006.01] by addition of compounds to unsaturated compounds [3, 2006.01] by addition of organic compounds only [1, 3, 2006.01] to carbon-to-carbon triple bonds [1, 3, 2006.01] by dehydration of compounds containing hydroxy groups [3, 2006.01] by exchange of organic parts on the ether-oxygen for other organic parts, e.g. by transetherification [3, 2006.01] by reaction of esters of mineral or organic acids with hydroxy or O-metal groups [3, 2006.01] by reactions not forming ether-oxygen bonds [3, 2006.01] by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by elimination of halogen, e.g. elimination of HCl [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] by introduction of hydroxy or O-metal groups [3, 2006.01] by increasing the number of carbon atoms, e.g. by oligomerisation [3, 2006.01] by isomerisation [3, 2006.01] 	O- C O-C

43/174	• • • • containing six-membered aromatic rings [3, 2006.01]	43/317	• • having O-X • • having To-C groups, X being hydrogen or metal 13, 2006,011
43/176	• • • • • having unsaturation outside the aromatic rings [3, 2006.01]		metal [3, 2006.01]
43/178	• • • containing hydroxy or O-metal groups [3, 2006.01]		• Compounds having 0-C groups or 0-C
43/18	 having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring [1, 2006.01] 	43/32	• Compounds having groups [1, 2006.01]
43/184	• • to a carbon atom of a non-condensed ring [3, 2006.01]	45/00	Preparation of compounds having C=O groups bound only to carbon or hydrogen atoms;
43/188	• • • Unsaturated ethers [3, 2006.01]		Preparation of chelates of such
43/192	• • • containing halogen [3, 2006.01]		compounds [1, 2, 2006.01]
43/196	• • containing hydroxy or O-metal groups [3, 2006.01]	45/26	 by hydration of carbon-to-carbon triple bonds [3, 2006.01]
43/20	having an ether-oxygen atom bound to a carbon	45/27	• by oxidation [3, 2006.01]
.5, 20	atom of a six-membered aromatic	45/28	• • of —CH _x -moieties [3, 2006.01]
	ring [1, 2006.01]	45/29	 • of hydroxy groups [3, 2006.01]
43/205	• • the aromatic ring being a non-condensed ring [3, 2006.01]	45/30	 with halogen containing compounds, e.g. hypohalogenation [3, 2006.01]
43/21	containing rings other than six-membered	45/31	 with compounds containing mercury atoms, which
43/215	aromatic rings [3, 2006.01]having unsaturation outside the six-membered		may be regenerated <u>in situ</u> , e.g. by oxygen [3, 2006.01]
	aromatic rings [3, 2006.01]	45/32	• • with molecular oxygen [3, 2006.01]
43/225	• • • containing halogen [3, 2006.01]	45/33	• • • of CH _x -moieties [3, 2006.01]
43/23	containing hydroxy or O-metal	45/34	• • • in unsaturated compounds [3, 2006.01]
	groups [3, 2006.01]	45/35	• • • • in propene or isobutene [3, 2006.01]
43/235	 having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a 	45/36	• • • • in compounds containing six-membered aromatic rings [3, 2006.01]
	carbon atom of a ring, other than a six-membered aromatic ring [3, 2006.01]	45/37	• • • of C—O— functional groups to C=O
43/243	• • having unsaturation outside the six-membered	45/38	groups [3, 2006.01]
43/247	aromatic rings [3, 2006.01] • • • containing halogen [3, 2006.01]	45/39	• • • being a primary hydroxy group [3, 2006.01]• • • being a secondary hydroxy
43/253	• • containing hydroxy or O-metal	45 / 40	group [3, 2006.01]
43/233	groups [3, 2006.01]	45/40	• by oxidation with ozone; by ozonolysis [3, 2006.01]
43/257	having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic	45/41	 by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof [3, 2006.01]
	rings [3, 2006.01]	45/42	• by hydrolysis [3, 2006.01]
43/263	• the aromatic rings being non-	45/43	• of XX ₂ groups, X being halogen [3, 2006.01]
	condensed [3, 2006.01]	45/44	 by reduction and hydrolysis of nitriles [3, 2006.01]
43/267	• • • containing other rings [3, 2006.01]	45/45	• by condensation [3, 2006.01]
43/275	• • having all ether-oxygen atoms bound to carbon	45/46	• • Friedel-Crafts reactions [3, 2006.01]
	atoms of six-membered aromatic	45/47	• • using phosgene [3, 2006.01]
	rings [3, 2006.01]	45/48	 involving decarboxylation [3, 2006.01]
43/285	 having unsaturation outside the six-membered 	45/49	• by reaction with carbon monoxide [3, 2006.01]
	aromatic rings [3, 2006.01]	45/50	• • by oxo-reactions [3, 2006.01]
43/29	• • containing halogen [3, 2006.01]	45/51	 by pyrolysis, rearrangement or
43/295	 containing hydroxy or O-metal 		decomposition [3, 2006.01]
	groups [3, 2006.01] \C:^O-	45/52	• • by dehydration and rearrangement involving two hydroxy groups in the same molecule [3, 2006.01]
43/30	• Compounds having CO-C groups [1, 2006.01]	45/53	 of hydroperoxides [3, 2006.01]
	Note(s) [3]	45/54	 of compounds containing doubly bound oxygen atoms, e.g. esters [3, 2006.01]
	In this group, the acetal carbon atom is the carbon of the	45/55	of oligo- or polymeric oxo-
	>C<0- 0-C group.	45/56	compounds [3, 2006.01] • from heterocyclic compounds (C07C 45/55 takes
43/303	 having acetal carbon atoms bound to acyclic 	70/00	precedence) [3, 2006.01]
	carbon atoms [3, 2006.01]	45/57	• • with oxygen as the only hetero atom [3, 2006.01]
43/305	 having acetal carbon atoms as ring members or 	45/58	• • • in three-membered rings [3, 2006.01]
	bound to carbon atoms of rings other than six-membered aromatic rings [3, 2006.01]	45/59	• • • in five-membered rings (from ozonides C07C 45/40) [3, 2006.01]
43/307	 having acetal carbon atoms bound to carbon atoms 	45/60	• • • in six-membered rings [3, 2006.01]
	of six-membered aromatic rings [3, 2006.01]	45/61	• by reactions not involving the formation of C=O
43/313	 containing halogen [3, 2006.01] 	-	groups [3, 2006.01]
43/315	 containing oxygen atoms singly bound to carbon 		

43/315 • containing oxygen atoms singly bound to carbon atoms not being acetal carbon atoms [3, 2006.01]

45/62	 by hydrogenation of carbon-to-carbon double or 	47/04 • • Formaldehyde [1, 2006.01]
	triple bonds [3, 2006.01]	47/042 • • • Preparation from carbon monoxide [3, 2006.01]
45/63	 by introduction of halogen; by substitution of halogen atoms by other halogen 	47/045 • • • Preparation by depolymerisation [3, 2006.01]
	atoms [3, 2006.01]	47/048 • • • Preparation by oxidation of hydrocarbons [3, 2006.01]
45/64	 by introduction of functional groups containing 	47/052 • • • Preparation by oxidation of
	oxygen only in singly bound form [3, 2006.01]	methanol [3, 2006.01]
45/65	 by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional 	47/055 • • • using noble metals or compounds thereof as catalysts [3, 2006.01]
	groups [3, 2006.01]	47/058 • • • Separation; Purification; Stabilisation; Use of
45/66	• • • by dehydration [3, 2006.01]	additives [3, 2006.01]
45/67	• • by isomerisation; by change of size of the carbon	47/06 • • Acetaldehyde [1, 2006.01]
4F /CO	skeleton [3, 2006.01]	47/07 • • • Preparation by oxidation [3, 2006.01]
45/68	• • • by increase in the number of carbon atoms [3, 2006.01]	47/09 • • • Separation; Purification; Stabilisation; Use of additives [3, 2006.01]
45/69	• • • by addition to carbon-to-carbon double or	47/105 • • containing rings [3, 2006.01]
45 /50	triple bonds [3, 2006.01]	47/11 • • • monocyclic [3, 2006.01]
45/70	• • • by reaction with functional groups containing oxygen only in singly bound	47/115 • • containing condensed ring systems [3, 2006.01]
	form [3, 2006.01]	47/12 • containing more than one —CHO
45/71	• • • • being hydroxy groups [3, 2006.01]	group [1, 2006.01]
45/72	• • • by reaction of compounds containing >C=O	47/127 • • • Glyoxal [3, 2006.01]
	groups with the same or other compounds	47/133 • • • containing rings [3, 2006.01]
.= .=0	containing C=O groups [3, 2006.01]	47/14 • • containing halogen [1, 2006.01] 47/16 • • Trichloroacetaldehyde [1, 2006.01]
45/73	• • • • combined with	47/16 • • • Trichloroacetaldehyde [1, 2006.01] 47/17 • • • containing rings [3, 2006.01]
45/74	hydrogenation [3, 2006.01] • • • • combined with dehydration [3, 2006.01]	47/19 • • containing hydroxy groups [2, 3, 2006.01]
45/75	• • • • • Reactions with	47/192 • • • containing rings [3, 2006.01]
10770	formaldehyde [3, 2006.01]	47/195 • • • containing halogen [3, 2006.01]
45/76	• • • with the aid of ketenes [3, 2006.01]	\c\0-
45/77	 Preparation of chelates of aldehydes or ketones [3, 2006.01] 	47/198 • • containing ether groups, O-C groups,
	netones [5, 2000101]	,Ο
45/78	 Separation; Purification; Stabilisation; Use of 	O- C/O-C
45/78	 Separation; Purification; Stabilisation; Use of additives [3, 2006.01] 	
45/78 45/79	additives [3, 2006.01]by solid-liquid treatment; by	0- -C-0-C 0-C groups, or 0-C groups [3, 2006.01]
45/79	additives [3, 2006.01]by solid-liquid treatment; by chemisorption [3, 2006.01]	• Unsaturated compounds having —CHO groups
45/79 45/80	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] 	• Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01]
45/79	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as
45/79 45/80	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01]
45/79 45/80 45/81	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01]
45/79 45/80 45/81 45/82	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83 45/84 45/85	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered
45/79 45/80 45/81 45/82 45/83 45/84 45/85	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/88	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • containing six-membered aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/88	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] Preparation of quinones [3, 2006.01]	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde;
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by extractive distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/23 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01] 47/238 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • containing halogen [1, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90 46/00	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/24 • containing halogen [1, 2006.01] 47/26 • containing hydroxy groups [1, 3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in six- 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01] 47/24 • containing halogen [1, 2006.01] 47/26 • containing hydroxy groups [1, 3, 2006.01] 47/26 • acyclic [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90 46/00 46/02	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in sixmembered aromatic rings [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01] 47/24 • containing halogen [1, 2006.01] 47/26 • containing hydroxy groups [1, 3, 2006.01] 47/263 • acyclic [3, 2006.01] 47/267 • containing rings other than six-membered
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90 46/00	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in six- 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01] 47/26 • containing halogen [1, 2006.01] 47/26 • containing hydroxy groups [1, 3, 2006.01] 47/267 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/267 • containing rings other than six-membered aromatic rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/88 45/89 45/90 46/00 46/02	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in sixmembered aromatic rings [3, 2006.01] of at least one hydroxy group on a six-membered 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01] 47/24 • containing halogen [1, 2006.01] 47/263 • acyclic [3, 2006.01] 47/263 • acyclic [3, 2006.01] 47/267 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/267 • containing rings other than six-membered aromatic rings [3, 2006.01]
45/79 45/80 45/81 45/82 45/83 45/84 45/85 45/86 45/87 45/89 45/90 46/00 46/02 46/04 46/06	 additives [3, 2006.01] by solid-liquid treatment; by chemisorption [3, 2006.01] by liquid-liquid treatment [3, 2006.01] by change in the physical state, e.g. crystallisation [3, 2006.01] by distillation [3, 2006.01] by extractive distillation [3, 2006.01] by azeotropic distillation [3, 2006.01] by treatment giving rise to a chemical modification [3, 2006.01] Use of additives, e.g. for stabilisation [3, 2006.01] Preparation of ketenes or dimeric ketenes [3, 2006.01] from ketones [3, 2006.01] from carboxylic acids, their anhydrides, esters or halides [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01] by oxidation giving rise to quinoid structures [3, 2006.01] of unsubstituted ring carbon atoms in sixmembered aromatic rings [3, 2006.01] of at least one hydroxy group on a six-membered aromatic ring [3, 2006.01] 	 47/20 • Unsaturated compounds having —CHO groups bound to acyclic carbon atoms [1, 2006.01] 47/21 • with only carbon-to-carbon double bonds as unsaturation [3, 2006.01] 47/22 • • Acrylaldehyde; Methacrylaldehyde [1, 3, 2006.01] 47/222 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 47/225 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/228 • containing six-membered aromatic rings, e.g. phenylacetaldehyde [3, 2006.01] 47/23 • polycyclic [3, 2006.01] 47/232 • having unsaturation outside the aromatic rings [3, 2006.01] 47/235 • containing six-membered aromatic rings and other rings [3, 2006.01] 47/238 • having unsaturation outside the aromatic rings [3, 2006.01] 47/26 • containing halogen [1, 2006.01] 47/26 • containing hydroxy groups [1, 3, 2006.01] 47/26 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/267 • containing rings other than six-membered aromatic rings [3, 2006.01] 47/27 • containing six-membered aromatic

Compounds having —CHO groups [1, 2006.01]

• Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen [1, 2006.01]

47/00

47/02

/L/ = =	,C,U-
47/277 • • containing ether groups, CCO-C groups,	47/575 • • containing ether groups, $C<0-$ groups,
	,0- /
O- O-C O-C O-C O-C O-C O-C O-C O-C O-C Groups, or O-C Groups [3, 2006.01] 47/28 • Saturated compounds having —CHO groups bound to carbon atoms of rings other than six-membered	0- 0,0-0
0-C groups, or 0-C groups [3, 2006.01]	0-C groups, or 0-C groups [3, 2006.01]
47/28 • Saturated compounds having —CHO groups bound	47/58 • • • Vanillin [1, 2006.01]
to carbon atoms of rings other than six-membered	47/30 V Valimin [1, 2000.01]
aromatic rings [1, 2006.01]	49/00 Ketones; Ketenes; Dimeric ketenes; Ketonic
47/293 • • with a three- or four-membered ring [3, 2006.01]	chelates [1, 2006.01]
47/30 • • with a five-membered ring [1, 2006.01]	• Saturated compounds containing keto groups bound
47/32 • • with a six-membered ring [1, 2006.01]	to acyclic carbon atoms [1, 2006.01]
47/33 • with a seven- to twelve-membered	49/08 • • Acetone [1, 3, 2006.01] 49/10 • • Methyl-ethyl ketone [1, 3, 2006.01]
ring [3, 2006.01]	49/105 • • containing rings [3, 2006.01]
47/34 • • polycyclic [1, 2006.01]	49/11 • • • monocyclic [3, 2006.01]
47/347 • • having a —CHO group on a condensed ring system [3, 2006.01]	49/115 • • • containing condensed ring systems [3, 2006.01]
47/353 • • containing halogen [3, 2006.01]	49/12 • • Ketones containing more than one keto
47/36 • • containing hydroxy groups [1, 2006.01]	group [1, 2006.01]
,c,0-	49/14 • • • Acetylacetone, i.e. 2,4-
47/37 • • containing ether groups, CCC groups,	pentanedione [1, 2006.01]
lacksquare	49/15 • • • containing rings [3, 2006.01]
0- -C \ 0-C -C\0-C	49/16 • • containing halogen [1, 2006.01]
0-C groups, or 0-C groups [3, 2006.01]	49/163 • • • containing rings [3, 2006.01] 49/167 • • containing only fluorine as
	halogen [3, 2006.01]
• Unsaturated compounds having —CHO groups bound to carbon atoms of rings other than six-	49/17 • • containing hydroxy groups [2, 2006.01]
membered aromatic rings [1, 2006.01]	49/172 • • • containing rings [3, 2006.01]
47/395 • • with a three- or four-membered ring [3, 2006.01]	49/173 • • • containing halogen [3, 2006.01]
47/40 • • with a five-membered ring [1, 3, 2006.01])(\(\frac{1}{0}\)-
47/42 • • with a six-membered ring [1, 3, 2006.01]	49/175 • • containing ether groups, $C \subset C = C$ groups,
• • with a seven- to twelve-membered	0- -C-0-C 0-C 0-C 0-C 0-C groups [2, 3, 2006.01]
ring [3, 2006.01]	
47/44 • • polycyclic [1, 3, 2006.01] 47/445 • • containing a condensed ring	0-C groups, or 0-C groups [2, 3, 2006.01]
system [3, 2006.01]	49/185 • • containing —CHO groups [3, 2006.01]
47/45 • having unsaturation outside the rings [2, 2006.01]	49/20 • Unsaturated compounds containing keto groups
47/453 • • containing six-membered aromatic	bound to acyclic carbon atoms [1, 2006.01]
rings [3, 2006.01]	
	49/203 • • with only carbon-to-carbon double bonds as
47/457 • • containing halogen [3, 2006.01]	unsaturation [3, 2006.01]
	unsaturation [3, 2006.01] 49/205 • • • Methyl-vinyl ketone [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01]	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • with only carbon-to-carbon triple bonds as
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups,	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups,	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • with only carbon-to-carbon triple bonds as
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- O- C- O-C O-C O-C	unsaturation [3, 2006.01] 49/205 • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- O- C- O-C O-C O-C	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • • containing six-membered aromatic rings [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • • polycyclic [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- CO-C O-C O-C O-C O-C groups, or O- CO-C O-C Groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01]	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic
 47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups,	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/217 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	unsaturation [3, 2006.01] 49/205 • • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • • • polycyclic [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- O-C O-C O-C O-C O-C Groups, or O- CHO groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01] 47/54 • Benzaldehyde [1, 2006.01] 47/542 • Alkylated benzaldehydes [3, 2006.01] 47/544 • Diformyl-benzenes; Alkylated derivatives	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01]
47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, O- C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings [3, 2006.01] 49/227 • containing six-membered aromatic rings and other rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings [3, 2006.01] 49/227 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/23 • • containing rings other than six-membered
 47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, 47/47 • containing ether groups, 0-C groups, 0-C Groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01] 47/54 • Benzaldehyde [1, 2006.01] 47/542 • Alkylated benzaldehydes [3, 2006.01] 47/544 • Diformyl-benzenes; Alkylated derivatives thereof [3, 2006.01] 47/546 • polycyclic [3, 2006.01] 47/547 • having unsaturation outside the six-membered aromatic rings [3, 2006.01] 	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/23 • containing rings other than six-membered aromatic rings [3, 2006.01]
 47/457 • containing halogen [3, 2006.01] 47/46 • containing hydroxy groups [1, 2006.01] 47/47 • containing ether groups, 47/47 • containing ether groups, 0-C Groups, 0-C Groups [3, 2006.01] 47/52 • Compounds having —CHO groups bound to carbon atoms of six-membered aromatic rings [1, 2006.01] 47/54 • Benzaldehyde [1, 2006.01] 47/542 • Alkylated benzaldehydes [3, 2006.01] 47/544 • Diformyl-benzenes; Alkylated derivatives thereof [3, 2006.01] 47/546 • polycyclic [3, 2006.01] 47/547 • having unsaturation outside the six-membered aromatic rings [3, 2006.01] 47/55 • containing halogen [2, 2006.01] 	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/233 • containing rings other than six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/21 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • ontaining six-membered aromatic rings [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/23 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/23 • containing six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/233 • containing rings other than six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/207 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/21 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • containing six-membered aromatic rings [3, 2006.01] 49/215 • polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/231 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • having unsaturation outside the aromatic rings [3, 2006.01] 49/235 • having unsaturation outside the aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/211 • With only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/212 • Containing rings other than six-membered aromatic rings [3, 2006.01] 49/213 • Containing six-membered aromatic rings [3, 2006.01] 49/215 • Polycyclic [3, 2006.01] 49/217 • having unsaturation outside the aromatic rings [3, 2006.01] 49/223 • Polycyclic [3, 2006.01] 49/225 • Containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • Containing halogen [3, 2006.01] 49/231 • Containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • Containing six-membered aromatic rings [3, 2006.01] 49/233 • Containing six-membered aromatic rings [3, 2006.01] 49/235 • Aving unsaturation outside the aromatic rings [3, 2006.01] 49/237 • Containing six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/217 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/218 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/219 • polycyclic [3, 2006.01] 49/210 • polycyclic [3, 2006.01] 49/211 • polycyclic [3, 2006.01] 49/212 • polycyclic [3, 2006.01] 49/223 • polycyclic [3, 2006.01] 49/225 • containing six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/230 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • containing six-membered aromatic rings [3, 2006.01] 49/233 • containing six-membered aromatic rings [3, 2006.01] 49/235 • containing six-membered aromatic rings [3, 2006.01] 49/237 • containing six-membered aromatic rings [3, 2006.01] 49/237 • containing six-membered aromatic rings [3, 2006.01]
47/457 • • containing halogen [3, 2006.01] 47/46 • • containing hydroxy groups [1, 2006.01] 47/47 • • containing ether groups, □- □- □- □- □- □- □- □- □- □- □- □- □-	unsaturation [3, 2006.01] 49/207 • Methyl-vinyl ketone [3, 2006.01] 49/217 • with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01] 49/218 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/219 • containing six-membered aromatic rings [3, 2006.01] 49/210 • polycyclic [3, 2006.01] 49/211 • having unsaturation outside the aromatic rings [3, 2006.01] 49/222 • polycyclic [3, 2006.01] 49/223 • ocontaining six-membered aromatic rings and other rings [3, 2006.01] 49/227 • containing halogen [3, 2006.01] 49/230 • containing rings other than six-membered aromatic rings [3, 2006.01] 49/233 • containing six-membered aromatic rings [3, 2006.01] 49/235 • having unsaturation outside the aromatic rings [3, 2006.01] 49/237 • containing six-membered aromatic rings [3, 2006.01]

49/245 • • containing six-membered aromatic rings [3, 2006.01]	49/497 • • • a keto group being part of a six-membered ring [3, 2006.01]
49/248 • • • having unsaturation outside the aromatic rings [3, 2006.01]	49/503 • • • a keto group being part of a seven- to twelve- membered ring [3, 2006.01]
49/252 • • containing six-membered aromatic rings and	49/507 • • • polycyclic [3, 2006.01]
other rings [3, 2006.01]	49/513 • • • • a keto group being part of a condensed ring
49/255 • • containing ether groups,	system [3, 2006.01]
49/255 • • containing ether groups, groups,	49/517 • • containing ether groups,
0- 0- 0- 0-C 0-C 0-C 0-C groups, or 0-C groups [3, 2006.01]	49/51/ • • containing etner groups, 0-0 groups,
-C \ 0-C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,o/o-c
	0- 0- -C-0-C 0-C groups, or 0-C groups [3, 2006.01]
49/258 • • containing —CHO groups [3, 2006.01]	U-U groups, or U-U groups [3, 2006.01]
 49/29 • Saturated compounds containing keto groups bound to rings [3, 2006.01] 	49/523 • • containing — CHO groups [3, 2006.01]
49/293 • • to a three- or four-membered ring [3, 2006.01]	 49/527 • Unsaturated compounds containing keto groups bound to rings other than six-membered aromatic
49/297 • to a five-membered ring [3, 2006.01]	rings [3, 2006.01]
49/303 • • to a six-membered ring [3, 2006.01]	49/533 • • to a three- or four-membered ring [3, 2006.01]
49/307 • • to a seven- to twelve-membered ring [3, 2006.01]	49/537 • • to a five-membered ring [3, 2006.01]
49/313 • • polycyclic [3, 2006.01]	49/543 • • to a six-membered ring [3, 2006.01]
49/317 • • • both carbon atoms bound to the keto group	49/547 • • to a seven- to twelve-membered ring [3, 2006.01]
belonging to rings [3, 2006.01]	49/553 • • polycyclic [3, 2006.01]
49/323 • • having keto groups bound to condensed ring systems [3, 2006.01]	49/557 • having unsaturation outside the rings [3, 2006.01]
49/327 • containing halogen [3, 2006.01]	49/563 • containing six-membered aromatic rings [3, 2006.01]
49/333 • • • polycyclic [3, 2006.01]	49/567 • • containing halogen [3, 2006.01]
49/337 • • containing hydroxy groups [3, 2006.01]	49/573 • • containing hydroxy groups [3, 2006.01]
49/345 • • polycyclic [3, 2006.01]	49/577 • • containing ether groups,
49/35 • • containing ether groups,	
49/35 • • containing ether groups,	0- -C-0-C 0-C 0-C groups, or 0-C groups [3, 2006.01]
0- -C-0-C	-c , 0-c
-C-O-C	O-C groups, or O-C groups [3, 2006.01]
`O-C groups, or `O-C groups [3, 2006.01]	49/583 • • containing —CHO groups [3, 2006.01]
49/355 • • containing —CHO groups [3, 2006.01]	49/587 • Unsaturated compounds containing a keto group
49/385 • Saturated compounds containing a keto group being	being part of a ring [3, 2006.01]
part of a ring [3, 2006.01] 49/39 • • of a three- or four-membered ring [3, 2006.01]	49/593 • • of a three- or four-membered ring [3, 2006.01]
49/39 • of a three- or four-membered ring [3, 2006.01] 49/395 • of a five-membered ring [3, 2006.01]	49/597 • of a five-membered ring [3, 2006.01] 49/603 • of a six-membered ring [3, 2006.01]
49/403 • of a six-membered ring [3, 2006.01]	49/607 • of a seven- to twelve-membered ring [3, 2006.01]
49/407 • • • Menthones [3, 2006.01]	49/613 • • polycyclic [3, 2006.01]
49/413 • • of a seven- to twelve-membered ring [3, 2006.01]	49/617 • • • a keto group being part of a condensed ring
49/417 • • polycyclic [3, 2006.01]	system [3, 2006.01]
49/423 • • • a keto group being part of a condensed ring	
	49/623 • • • having two rings [3, 2006.01]
system [3, 2006.01]	49/627 • • • • the condensed ring system containing
49/427 • • • having two rings [3, 2006.01]	49/627 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01]
49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing	49/627 • • • • the condensed ring system containing
49/427 • • • having two rings [3, 2006.01]	49/627 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten
49/427 • • • having two rings [3, 2006.01] 49/433 • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing	49/627 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01]
 49/427 • • • having two rings [3, 2006.01] 49/433 • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 	49/627 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01]
49/427 • • • having two rings [3, 2006.01] 49/433 • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • the condensed ring system containing ten	49/627 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/647 • having unsaturation outside the ring [3, 2006.01]
49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01]	49/627 · · · · · the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 · · · · the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 · · · · the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 · · · having three rings [3, 2006.01] 49/653 · · polycyclic [3, 2006.01]
49/427 • • • having two rings [3, 2006.01] 49/433 • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • the condensed ring system containing ten carbon atoms [3, 2006.01]	49/627 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/647 • having unsaturation outside the ring [3, 2006.01]
49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01]	49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/654 • • having unsaturation outside the ring [3, 2006.01] 49/655 • • polycyclic [3, 2006.01] 49/665 • • a keto group being part of a condensed ring
 49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • containing halogen [3, 2006.01] 49/463 • • • a keto group being part of a six-membered ring [3, 2006.01] 	49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/647 • having unsaturation outside the ring [3, 2006.01] 49/653 • • polycyclic [3, 2006.01] 49/657 • containing six-membered aromatic rings [3, 2006.01] 49/665 • • a keto group being part of a condensed ring system [3, 2006.01]
 49/427 • • • having two rings [3, 2006.01] 49/433 • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • • containing halogen [3, 2006.01] 49/463 • • • a keto group being part of a six-membered ring [3, 2006.01] 49/467 • • • polycyclic [3, 2006.01] 	49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/647 • • having unsaturation outside the ring [3, 2006.01] 49/653 • • polycyclic [3, 2006.01] 49/655 • • containing six-membered aromatic rings [3, 2006.01] 49/665 • • a keto group being part of a condensed ring system [3, 2006.01] 49/67 • • • having two rings, e.g. tetralones [3, 2006.01]
 49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • • containing halogen [3, 2006.01] 49/463 • • • a keto group being part of a six-membered ring [3, 2006.01] 49/467 • • • polycyclic [3, 2006.01] 49/473 • • • a keto group being part of a condensed ring 	 49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/654 • • having unsaturation outside the ring [3, 2006.01] 49/653 • • polycyclic [3, 2006.01] 49/657 • • containing six-membered aromatic rings [3, 2006.01] 49/665 • • a keto group being part of a condensed ring system [3, 2006.01] 49/67 • • • having two rings, e.g. tetralones [3, 2006.01] 49/67 • • • having three rings [3, 2006.01]
 49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • • containing halogen [3, 2006.01] 49/463 • • • a keto group being part of a six-membered ring [3, 2006.01] 49/467 • • polycyclic [3, 2006.01] 49/473 • • • a keto group being part of a condensed ring system [3, 2006.01] 	49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/654 • • having unsaturation outside the ring [3, 2006.01] 49/655 • • polycyclic [3, 2006.01] 49/665 • • containing six-membered aromatic rings [3, 2006.01] 49/665 • • a keto group being part of a condensed ring system [3, 2006.01] 49/67 • • • having two rings, e.g. tetralones [3, 2006.01] 49/675 • • • having three rings [3, 2006.01] 49/683 • • having unsaturation outside the aromatic
49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • • containing halogen [3, 2006.01] 49/463 • • a keto group being part of a six-membered ring [3, 2006.01] 49/467 • • polycyclic [3, 2006.01] 49/473 • • • a keto group being part of a condensed ring system [3, 2006.01]	49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/647 • having unsaturation outside the ring [3, 2006.01] 49/653 • • polycyclic [3, 2006.01] 49/657 • • containing six-membered aromatic rings [3, 2006.01] 49/665 • • a keto group being part of a condensed ring system [3, 2006.01] 49/67 • • having two rings, e.g. tetralones [3, 2006.01] 49/675 • • having unsaturation outside the aromatic rings [3, 2006.01]
 49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • • containing halogen [3, 2006.01] 49/463 • • • a keto group being part of a six-membered ring [3, 2006.01] 49/467 • • polycyclic [3, 2006.01] 49/473 • • • a keto group being part of a condensed ring system [3, 2006.01] 	49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/654 • • having unsaturation outside the ring [3, 2006.01] 49/655 • • polycyclic [3, 2006.01] 49/665 • • containing six-membered aromatic rings [3, 2006.01] 49/665 • • a keto group being part of a condensed ring system [3, 2006.01] 49/67 • • • having two rings, e.g. tetralones [3, 2006.01] 49/675 • • • having three rings [3, 2006.01] 49/683 • • having unsaturation outside the aromatic
49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • • containing halogen [3, 2006.01] 49/463 • • • a keto group being part of a six-membered ring [3, 2006.01] 49/467 • • • polycyclic [3, 2006.01] 49/473 • • • a keto group being part of a condensed ring system [3, 2006.01] 49/477 • • • having two rings [3, 2006.01] 49/483 • • • having three rings [3, 2006.01]	 49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/647 • having unsaturation outside the ring [3, 2006.01] 49/653 • • polycyclic [3, 2006.01] 49/657 • • containing six-membered aromatic rings [3, 2006.01] 49/665 • • a keto group being part of a condensed ring system [3, 2006.01] 49/67 • • having two rings, e.g. tetralones [3, 2006.01] 49/683 • • having three rings [3, 2006.01] 49/687 • • containing halogen [3, 2006.01] 49/697 • • containing six-membered aromatic 49/697 • • containing six-membered aromatic
49/427 • • • having two rings [3, 2006.01] 49/433 • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/437 • • • • Camphor; Fenchone [3, 2006.01] 49/443 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/447 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/453 • • • having three rings [3, 2006.01] 49/457 • • containing halogen [3, 2006.01] 49/463 • • • a keto group being part of a six-membered ring [3, 2006.01] 49/467 • • polycyclic [3, 2006.01] 49/473 • • • a keto group being part of a condensed ring system [3, 2006.01] 49/473 • • • having two rings [3, 2006.01] 49/483 • • • having three rings [3, 2006.01] 49/487 • • containing hydroxy groups [3, 2006.01]	 49/627 • • • • • the condensed ring system containing seven carbon atoms [3, 2006.01] 49/633 • • • • the condensed ring system containing eight or nine carbon atoms [3, 2006.01] 49/637 • • • • the condensed ring system containing ten carbon atoms [3, 2006.01] 49/643 • • • having three rings [3, 2006.01] 49/654 • • having unsaturation outside the ring [3, 2006.01] 49/657 • • containing six-membered aromatic rings [3, 2006.01] 49/665 • • • a keto group being part of a condensed ring system [3, 2006.01] 49/67 • • • having two rings, e.g. tetralones [3, 2006.01] 49/675 • • • having three rings [3, 2006.01] 49/683 • • • having unsaturation outside the aromatic rings [3, 2006.01] 49/687 • • containing halogen [3, 2006.01] 49/687 • • polycyclic [3, 2006.01]

49/703	•	 containing hydroxy groups [3, 2006.01] 	50/00	Q	uinones (for quinone methides, <u>see</u> unsaturated
49/707	•	 a keto group being part of a three- to five- membered ring [3, 2006.01] 			etones with a keto group being part of a
49/713	•	a keto group being part of a six-membered			ote(s) [3]
		ring [3, 2006.01]		In	this group, quinhydrones are classified according to
49/717	•	 a keto group being part of a seven- to twelve- membered ring [3, 2006.01] 		th	eir quinoid part.
49/723	•	• • polycyclic [3, 2006.01]	50/02	•	with monocyclic quinoid structure [3, 2006.01]
		a keto group being part of a condensed ring	50/04	•	• Benzoquinones, i.e. C ₆ H ₄ O ₂ [3, 2006.01]
157727		system [3, 2006.01]	50/06	•	with unsaturation outside the quinoid
49/733		• • • having two rings [3, 2006.01]			structure [3, 2006.01]
		• • • having three rings [3, 2006.01]	50/08	•	with polycyclic non-condensed quinoid
					structure [3, 2006.01]
		 having unsaturation outside the rings, e.g. humulones, lupulones [3, 2006.01] 	50/10	•	the quinoid structure being part of a condensed ring system containing two rings [3, 2006.01]
49/747	•	 containing six-membered aromatic 	50/12	_	-
		rings [3, 2006.01]			• Naphthoquinones, i.e. C ₁₀ H ₆ O ₂ [3, 2006.01]
		• containing ether groups, >C<0-C groups,	50/14	•	• with unsaturation outside the ring system, e.g.
49/753	•	• containing ether groups, CO-C groups,	E0 /46		vitamin K ₁ [3, 2006.01]
		0- 0- -C-0-C 0-C 0-C 0-C groups, or 0-C groups [3, 2006.01]	50/16	•	the quinoid structure being part of a condensed ring
		,0/,0-C			system containing three rings [3, 2006.01]
		-C ´ O-C	50/18		• Anthraquinones, i.e. C ₁₄ H ₈ O ₂ [3, 2006.01]
		`O-C groups, or `O-C groups [3, 2006.01]	50/20	•	with unsaturation outside the ring
49/755	•	a keto group being part of a condensed ring			system [3, 2006.01]
		system with two or three rings, at least one ring	50/22	•	the quinoid structure being part of a condensed ring
		being a six-membered aromatic			system containing four or more rings [3, 2006.01]
		ring [3, 2006.01]	50/24	•	containing halogen [3, 2006.01]
49/757	•	 containing —CHO groups [3, 2006.01] 	50/26	•	containing groups having oxygen atoms singly bound
49/76	•	Ketones containing a keto group bound to a six-			to carbon atoms [3, 2006.01]
		membered aromatic ring (compounds having a keto	50/28		• with monocyclic quinoid structure [3, 2006.01]
		group being part of a condensed ring system and	50/30	•	 with polycyclic non-condensed quinoid
		being bound to a six-membered aromatic ring			structure [3, 2006.01]
		C07C 49/657-C07C 49/757) [1, 2006.01]	50/32	•	 the quinoid structure being part of a condensed
49/78	•	• Acetophenone [1, 2006.01]			ring system having two rings [3, 2006.01]
49/782		• polycyclic [3, 2006.01]	50/34	•	• the quinoid structure being part of a condensed
49/782 49/784		 with all keto groups bound to a non-condensed 			ring system having three rings [3, 2006.01]
49/784	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] 	50/34 50/36		ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed
49/784 49/786	•	 • with all keto groups bound to a non-condensed ring [3, 2006.01] • • Benzophenone [3, 2006.01] 	50/36	•	 ring system having three rings [3, 2006.01] the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01]
49/784 49/786	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] 		•	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed
49/784 49/786 49/788	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring 	50/36 50/38		 ring system having three rings [3, 2006.01] the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01]
49/784 49/786 49/788	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] 	50/36		 ring system having three rings [3, 2006.01] the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides,
49/784 49/786 49/788 49/792	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic 	50/36 50/38 51/00	· · · Pri	 ring system having three rings [3, 2006.01] the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01]
49/784 49/786 49/788 49/792 49/794	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] 	50/36 50/38 51/00 51/02	· Pi	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01]
49/784 49/786 49/788 49/792 49/794	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04	Pror	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01]
49/784 49/786 49/788 49/792 49/794	•	 • with all keto groups bound to a non-condensed ring [3, 2006.01] • Benzophenone [3, 2006.01] • with keto groups bound to a condensed ring system [3, 2006.01] • containing rings other than six-membered aromatic rings [3, 2006.01] • having unsaturation outside an aromatic ring [3, 2006.01] • polycyclic [3, 2006.01] • containing rings other than six-membered 	50/36 50/38 51/00 51/02 51/04 51/06	Proor	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/796 49/798	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08	Proor	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/796 49/798	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/083	Pror	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/796 49/798	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/083 51/087	Pior	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] • by hydrolysis [3, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/796 49/798	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/083	Pior	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones
49/784 49/786 49/788 49/792 49/794 49/796 49/798	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/083 51/087	Pior	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters
49/784 49/786 49/788 49/792 49/794 49/796 49/798 49/80 49/807	•	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/083 51/087 51/09	Pror	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/798 49/80 49/807 49/813		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/083 51/087 51/09	Pior	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX ₃ groups, X being
49/784 49/786 49/798 49/792 49/794 49/798 49/80 49/807 49/813 49/82 49/825	• • • • • • • • • • • • • • • • • • • •	 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/093	Pror	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters CO7C 27/02) [1, 2006.01] by hydrolysis of —CX ₃ groups, X being halogen [3, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/796 49/798 49/807 49/813 49/82 49/825 49/83		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] polycyclic [3, 2006.01] polycyclic [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/093	Pror	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX ₃ groups, X being halogen [3, 2006.01] from or via nitro-substituted organic
49/784 49/786 49/798 49/792 49/794 49/798 49/80 49/807 49/813 49/82 49/825		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] polycyclic [3, 2006.01] having unsaturation outside an aromatic 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/099 51/093	Pror	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/796 49/798 49/807 49/813 49/82 49/825 49/83		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] polycyclic [3, 2006.01] polycyclic [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/09 51/093 51/097 51/10	. Proor	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters CO7C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] by reaction with carbon monoxide [1, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/798 49/80 49/807 49/813 49/82 49/825 49/83 49/835		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/099 51/093	Pr or	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters CO7C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] • on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/796 49/798 49/807 49/813 49/82 49/825 49/83		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/09 51/093 51/097 51/10	Pr or	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters CO7C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] • on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] • on a carbon-to-carbon unsaturated bond in organic
49/784 49/786 49/788 49/792 49/794 49/798 49/80 49/807 49/813 49/82 49/825 49/83 49/835		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, 	50/36 50/38 51/00 51/02 51/04 51/08 51/083 51/087 51/09 51/093 51/097 51/10 51/12 51/14	. Pron	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX ₃ groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] • on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] • on a carbon-to-carbon unsaturated bond in organic compounds [1, 3, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/798 49/80 49/807 49/813 49/82 49/825 49/83 49/835		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, 	50/36 50/38 51/00 51/02 51/04 51/08 51/083 51/087 51/09 51/093 51/097 51/10 51/12 51/14 51/145	. Pror	 ring system having three rings [3, 2006.01] the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX₃ groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] on a carbon-to-carbon unsaturated bond in organic compounds [1, 3, 2006.01] with simultaneous oxidation [3, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/798 49/80 49/807 49/813 49/82 49/825 49/83 49/835		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, 	50/36 50/38 51/00 51/02 51/04 51/08 51/083 51/087 51/09 51/093 51/097 51/10 51/12 51/14	. Pror	ring system having three rings [3, 2006.01] the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] by reaction with carbon monoxide [1, 2006.01] on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] on a carbon-to-carbon unsaturated bond in organic compounds [1, 3, 2006.01] with simultaneous oxidation [3, 2006.01] by reaction of organic compounds with carbon
49/784 49/786 49/788 49/792 49/794 49/798 49/80 49/807 49/813 49/82 49/825 49/83 49/835		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] polycyclic [3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/09 51/097 51/10 51/12 51/14 51/145 51/15	. Proprose	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] • on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] • on a carbon-to-carbon unsaturated bond in organic compounds [1, 3, 2006.01] • with simultaneous oxidation [3, 2006.01] by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis [2, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/798 49/807 49/807 49/813 49/825 49/825 49/83 49/835		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] containing hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, 	50/36 50/38 51/00 51/02 51/04 51/08 51/083 51/087 51/09 51/093 51/097 51/10 51/12 51/14 51/145	. Proprose	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] by reaction with carbon monoxide [1, 2006.01] • on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] • with simultaneous oxidation [3, 2006.01] by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis [2, 2006.01] by oxidation (C07C 51/145 takes
49/784 49/786 49/788 49/792 49/794 49/798 49/807 49/807 49/813 49/82 49/825 49/83 49/835 49/84		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] polycyclic [3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, containing ether groups [2, 3, 2006.01] containing —CHO groups [3, 2006.01] containing —CHO groups [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/08 51/087 51/087 51/099 51/097 51/10 51/12 51/14 51/145 51/15 51/16	. Proor	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from nitriles [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] by reaction with carbon monoxide [1, 2006.01] • on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] • with simultaneous oxidation [3, 2006.01] by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis [2, 2006.01] by oxidation (C07C 51/145 takes precedence) [1, 3, 2006.01]
49/784 49/786 49/788 49/792 49/794 49/798 49/807 49/807 49/813 49/82 49/825 49/83 49/835 49/84		 with all keto groups bound to a non-condensed ring [3, 2006.01] Benzophenone [3, 2006.01] with keto groups bound to a condensed ring system [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] polycyclic [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing halogen [1, 2006.01] all halogen atoms bound to the ring [3, 2006.01] polycyclic [3, 2006.01] ontaining hydroxy groups [1, 3, 2006.01] all hydroxy groups bound to the ring [3, 2006.01] polycyclic [3, 2006.01] having unsaturation outside an aromatic ring [3, 2006.01] containing ether groups, containing ether groups, containing ether groups [2, 3, 2006.01] containing —CHO groups [3, 2006.01] 	50/36 50/38 51/00 51/02 51/04 51/06 51/08 51/087 51/09 51/097 51/10 51/12 51/14 51/145 51/15	. Proor	ring system having three rings [3, 2006.01] • the quinoid structure being part of a condensed ring system having four or more rings [3, 2006.01] containing —CHO or non-quinoid keto groups [3, 2006.01] reparation of carboxylic acids or their salts, halides, anhydrides [1, 2, 2006.01] from salts of carboxylic acids [1, 2006.01] from carboxylic acid halides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from carboxylic acid amides [1, 2006.01] from carboxylic acid anhydrides [3, 2006.01] • by hydrolysis [3, 2006.01] from carboxylic acid esters or lactones (saponification of carboxylic acid esters C07C 27/02) [1, 2006.01] by hydrolysis of —CX3 groups, X being halogen [3, 2006.01] from or via nitro-substituted organic compounds [3, 2006.01] by reaction with carbon monoxide [1, 2006.01] • on an oxygen-containing group in organic compounds, e.g. alcohols [1, 2006.01] • with simultaneous oxidation [3, 2006.01] by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis [2, 2006.01] by oxidation (C07C 51/145 takes

18

	• • • of saturated hydrocarbyl groups [3, 2006.01]	51/56	 from organic acids, their salts, or their
51/225	·		esters [1, 2006.01]
51/23	• • • of oxygen-containing groups to carboxyl groups [3, 2006.01]	51/567	 by reactions not involving the carboxylic acid anhydride group [3, 2006.01]
51/235		51/573	 Separation; Purification; Stabilisation; Use of additives [3, 2006.01]
51/245	-	51/58	• Preparation of carboxylic acid halides [1, 2006.01]
017 2 10	groups [3, 2006.01]	51/60	by conversion of carboxylic acids or their
51/25	• • • of unsaturated compounds containing no six-membered aromatic ring [3, 2006.01]		anhydrides into halides with the same carboxylic acid part [3, 2006.01]
51/255	_	51/62	by reactions not involving the carboxylic acid
0 - , - 0 0	aromatic rings without ring-		halide group [3, 2006.01]
	splitting [3, 2006.01]	51/64	• • Separation; Purification; Stabilisation; Use of
51/265	0 0		additives [3, 2006.01]
	to carboxyl groups [3, 2006.01]	53/00	Saturated compounds having only one carboxyl
51/27	• with oxides of nitrogen or nitrogen-containing	33/00	group bound to an acyclic carbon atom or
E4 /DEE	mineral acids [3, 2006.01]		hydrogen [1, 2006.01]
51/275	j j j l i , , ,	53/02	• Formic acid [1, 2006.01]
51/285		53/04	• • Preparation from carbon monoxide [1, 2006.01]
51/29	 with halogen-containing compounds which may be formed in situ [3, 2006.01] 	53/06	• • Salts thereof [1, 2006.01]
51/295	- · ·	53/08	• Acetic acid [1, 2006.01]
31/293	fusion [3, 2006.01]	53/10	• • Salts thereof [1, 2006.01]
51/305		53/12	• Acetic anhydride (ketene C07C 49/90) [1, 2006.01]
517505	compounds [3, 2006.01]	53/122	 Propionic acid [3, 2006.01]
51/31	of cyclic compounds with ring-	53/124	• Acids containing four carbon atoms [3, 2006.01]
	splitting [3, 2006.01]	53/126	Acids containing more than four carbon
51/34	 by oxidation with ozone; by hydrolysis of 		atoms [3, 2006.01]
	ozonides [1, 3, 2006.01]	53/128	• • the carboxyl group being bound to a carbon atom
51/347	 by reactions not involving formation of carboxyl groups [3, 2006.01] 		bound to at least two other carbon atoms, e.g. necacids [3, 2006.01]
51/353		53/132	 containing rings [3, 2006.01]
	skeleton [3, 2006.01]	53/134	• • monocyclic [3, 2006.01]
51/36	 by hydrogenation of carbon-to-carbon unsaturated 	53/136	• • containing condensed ring systems [3, 2006.01]
	bonds [1, 3, 2006.01]	53/138	 containing an adamantane ring
51/363	5 5		system [3, 2006.01]
	halogen atoms by other halogen	53/15	 containing halogen [3, 2006.01]
51/367	atoms [3, 2006.01]	53/16	 Halogenated acetic acids [1, 3, 2006.01]
31/30/	 by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] 	53/18	• • • containing fluorine [1, 3, 2006.01]
51/373		53/19	Acids containing three or more carbon
517575	oxygen only in doubly bound form [3, 2006.01]	F2 /21	atoms [3, 2006.01]
51/377		53/21	• • • containing fluorine [3, 2006.01]
	hydrogenolysis of functional groups [3, 2006.01]	53/23	• containing rings [3, 2006.01]
51/38	• • • by decarboxylation [1, 3, 2006.01]	53/38	• Acyl halides [3, 2006.01]
51/41	 Preparation of salts of carboxylic acids by conversion 	53/40	• • Acetyl halides [3, 2006.01]
	of the acids or their salts into salts with the same	53/42	 of acids containing three or more carbon atoms [3, 2006.01]
	carboxylic acid part (preparation of soap	53/44	• containing rings [3, 2006.01]
	C11D) [3, 2006.01]	53/44	 containing rings [5, 2000.01] containing halogen outside the carbonyl halide
51/42	• Separation; Purification; Stabilisation; Use of	33/40	group [3, 2006.01]
E4 / 4D	additives [1, 3, 2006.01]	53/48	 Halogenated acetyl halides [3, 2006.01]
51/43	• • by change of the physical state, e.g.	53/50	• • of acids containing three or more carbon
51/44	crystallisation [3, 2006.01] • • • by distillation [1, 3, 2006.01]	557 50	atoms [3, 2006.01]
51/44	• • • by azeotropic distillation [1, 3, 2006.01]		,
51/40	 by azeotropic distination [1, 3, 2000.01] by solid-liquid treatment; by 	55/00	Saturated compounds having more than one
31/4/	chemisorption [3, 2006.01]		carboxyl group bound to acyclic carbon
51/48	 by liquid-liquid treatment [1, 2006.01] 	FF (02)	atoms [1, 2, 2006.01]
51/487		55/02 55/06	• Dicarboxylic acids [1, 2006.01]
,	(by chemisorption C07C 51/47) [3, 2006.01]	55/06 55/07	• • Oxalic acid [1, 2006.01]
51/493		55/07 EE/09	• • • Salts thereof [3, 2006.01]
	formed [3, 2006.01]	55/08 EE/10	• • Malonic acid [1, 2006.01]
51/50	 Use of additives, e.g. for 	55/10 55/12	Succinic acid [1, 2006.01]Glutaric acid [1, 2006.01]
	stabilisation [1, 3, 2006.01]	55/12 55/14	• Guttaric acid [1, 2006.01]• Adipic acid [1, 2006.01]
51/54	Preparation of carboxylic acid anhydrides (by COTO 51/16) 14 2000 041	55/14 55/16	 Adapte acid [1, 2006.01] Pimelic acid [1, 2006.01]
	oxidation C07C 51/16) [1, 2006.01]	55/16	Primeric acid [1, 2006.01]Azelaic acid [1, 2006.01]
		22/10	Azciaic aciu [1, 2000.01]

55/20	• • Sebacic acid [1, 2006.01]	• • having unsaturation outside the aromatic
55/21	Dicarboxylic acids having twelve carbon	rings [3, 2006.01]
EE (DD	atoms [3, 2006.01]	57/50 • • containing condensed ring systems [3, 2006.01]
55/22	 Tricarboxylic acids [1, 2006.01] 	57/52 • containing halogen [3, 2006.01]
55/24	 containing more than three carboxyl groups [1, 2006.01] 	57/54 • • Halogenated acrylic or methacrylic acids [3, 2006.01]
55/26	• containing rings [3, 2006.01]	57/56 • • containing rings other than six-membered
55/28	• • monocyclic [3, 2006.01]	aromatic rings [3, 2006.01]
55/30	• • containing condensed ring systems [3, 2006.01]	57/58 • • containing six-membered aromatic
55/32	• containing halogen [3, 2006.01]	rings [3, 2006.01]
55/34	• • containing rings [3, 2006.01]	57/60 • • • having unsaturation outside the
55/36	• Acyl halides [3, 2006.01]	rings [3, 2006.01]
55/38	• • containing rings [3, 2006.01]	57/62 • containing six-membered aromatic rings and other
55/40	containing halogen outside the carbonyl halide	rings [3, 2006.01]
	group [3, 2006.01]	57/64 • Acyl halides [3, 2006.01]
		• • with only carbon-to-carbon double bonds as
57/00	Unsaturated compounds having carboxyl groups	unsaturation [3, 2006.01]
	bound to acyclic carbon atoms [1, 2, 2006.01]	• • with only carbon-to-carbon triple bonds as
57/02	with only carbon-to-carbon double bonds as	unsaturation [3, 2006.01]
/ 0.5	unsaturation [1, 2006.01]	• • containing rings other than six-membered
57/03	Monocarboxylic acids [3, 2006.01] And line aid Market Provide [4, 2, 2006.01]	aromatic rings [3, 2006.01] 57/72 • • containing six-membered aromatic
57/04	• • • Acrylic acid; Methacrylic acid [1, 3, 2006.01]	rings [3, 2006.01]
57/045	• • • • Preparation by oxidation in the liquid	57/74 • • containing six-membered aromatic rings and other
57/05	phase [3, 2006.01] • • • • Preparation by oxidation in the gaseous	rings [3, 2006.01]
5//05	phase [3, 2006.01]	57/76 • containing halogen outside the carbonyl halide
57/055	• • • starting from unsaturated	groups [3, 2006.01]
377033	aldehydes [3, 2006.01]	
57/065	• • • • Preparation by splitting-off H—X, X being	59/00 Compounds having carboxyl groups bound to acyclic
577005	halogen, OR, or NR ₂ , R being hydrogen or a	carbon atoms and containing any of the groups OH, \bigcap_{-}
	hydrocarbon group [3, 2006.01]	O-metal, —CHO, keto, ether, CC_{0-C} groups,
57/07	• • • • Separation; Purification; Stabilisation; Use	O-metal, —CHO, keto, ether, O □-C groups,
	of additives [3, 2006.01]	n- /n-c
E7/07E		
57/075	• • • • Use of additives, e.g. for	-C-O-C
	stabilisation [3, 2006.01]	-C-O-C
57/08	stabilisation [3, 2006.01] • • • Crotonic acid [1, 3, 2006.01]	-C-O-C
57/08 57/10	stabilisation [3, 2006.01] • • • Crotonic acid [1, 3, 2006.01] • • • Sorbic acid [1, 3, 2006.01]	• Saturated compounds having only one carboxyl
57/08	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing	
57/08 57/10 57/12	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01]	• Saturated compounds having only one carboxyl group and containing hydroxy or O-metal
57/08 57/10 57/12 57/13	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01]	• Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01]
57/08 57/10 57/12 57/13 57/145	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/155	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Fumaric acid [3, 2006.01]	 59/01 • Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 • Glycolic acid [1, 3, 2006.01] 59/08 • Lactic acid [1, 3, 2006.01] 59/10 • Polyhydroxy carboxylic acids [1, 2006.01] 59/105 • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/155 57/16	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Citraconic acid [3, 2006.01] • Muconic acid [1, 3, 2006.01]	 59/01 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic
57/08 57/10 57/12 57/13 57/145 57/15 57/155	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Citraconic acid [3, 2006.01] • Muconic acid [1, 3, 2006.01] • with only carbon-to-carbon triple bonds as	 59/01 • Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 • Glycolic acid [1, 3, 2006.01] 59/10 • Polyhydroxy carboxylic acids [1, 2006.01] 59/105 • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] 59/11 • containing rings [3, 2006.01] 59/115 • containing halogen [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Citraconic acid [3, 2006.01] • Muconic acid [1, 3, 2006.01] • with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01]	 59/01 • Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 • Glycolic acid [1, 3, 2006.01] 59/08 • Lactic acid [1, 3, 2006.01] 59/10 • Polyhydroxy carboxylic acids [1, 2006.01] 59/105 • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] 59/11 • containing rings [3, 2006.01] 59/125 • Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/156 57/16 57/18	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Fumaric acid [3, 2006.01] • Citraconic acid [3, 2006.01] • with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01]	 59/01 • Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 • Glycolic acid [1, 3, 2006.01] 59/08 • Lactic acid [1, 3, 2006.01] 59/10 • Polyhydroxy carboxylic acids [1, 2006.01] 59/105 • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] 59/11 • containing rings [3, 2006.01] 59/125 • Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • • Maleic acid [3, 2006.01] • • Fumaric acid [3, 2006.01] • • Citraconic acid [3, 2006.01] • • Muconic acid [1, 3, 2006.01] • with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • • Maleic acid [3, 2006.01] • • Fumaric acid [3, 2006.01] • • Citraconic acid [3, 2006.01] • • Muconic acid [1, 3, 2006.01] • with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01] • Diacetylene or polyacetylene dicarboxylic	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • • Maleic acid [3, 2006.01] • • Fumaric acid [3, 2006.01] • • Citraconic acid [3, 2006.01] • • Muconic acid [1, 3, 2006.01] • with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01] • Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22	stabilisation [3, 2006.01] • • Crotonic acid [1, 3, 2006.01] • • Sorbic acid [1, 3, 2006.01] • • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • • Maleic acid [3, 2006.01] • • Fumaric acid [3, 2006.01] • • Citraconic acid [3, 2006.01] • • Muconic acid [1, 3, 2006.01] • with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01] • Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01] • containing rings other than six-membered aromatic	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Fumaric acid [3, 2006.01] Citraconic acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Mith only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Propiolic acid [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Fumaric acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Muconic acid [1, 3, 2006.01] Mith only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring	 59/01 • Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 • Glycolic acid [1, 3, 2006.01] 59/10 • Polyhydroxy carboxylic acids [1, 2006.01] 59/105 • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] 59/11 • containing rings [3, 2006.01] 59/115 • containing halogen [3, 2006.01] 59/125 • Saturated compounds having only one carboxyl group and containing ether groups, O-CO-C groups, or O-C groups [3, 2006.01] 59/13 • containing rings [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24 57/26 57/28	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Fumaric acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Muconic acid [1, 3, 2006.01] Muth only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Propiolic acid [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring system [3, 2006.01]	 59/01 • Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 • Glycolic acid [1, 3, 2006.01] 59/08 • Lactic acid [1, 3, 2006.01] 59/10 • Polyhydroxy carboxylic acids [1, 2006.01] 59/10 • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] 59/11 • containing rings [3, 2006.01] 59/125 • Saturated compounds having only one carboxyl group and containing ether groups, O-
57/08 57/10 57/12 57/13 57/145 57/15 57/155 57/16 57/18 57/20 57/22 57/24 57/26 57/28 57/30	stabilisation [3, 2006.01] • Crotonic acid [1, 3, 2006.01] • Sorbic acid [1, 3, 2006.01] • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Fumaric acid [3, 2006.01] • Citraconic acid [3, 2006.01] • Muconic acid [1, 3, 2006.01] • Muconic acid [1, 3, 2006.01] • With only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01] • Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01] • containing rings other than six-membered aromatic rings [3, 2006.01] • containing an adamantane ring system [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Polymydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] Saturated compounds having only one carboxyl group and containing ether groups, group and containing ether groups [3, 2006.01] containing rings [3, 2006.01] containing rings [3, 2006.01] containing rings [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl
57/08 57/10 57/12 57/13 57/145 57/15 57/155 57/16 57/18 57/20 57/22 57/24 57/26 57/28	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Fumaric acid [3, 2006.01] Citraconic acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Mutonic acid [1, 3, 2006.01] Muth only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Propiolic acid [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene or polyacetylene dicarboxylic acids [1, 2006.01] Containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring system [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] Phenylacetic acid [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Polyshydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Containing rings [3, 2006.01] Saturated compounds having only one carboxyl group and containing ether groups, around [3, 2006.01] Containing rings [3, 2006.01] Containing rings [3, 2006.01] Containing rings [3, 2006.01] Containing rings [3, 2006.01] Saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/155 57/16 57/18 57/20 57/22 57/24 57/26 57/28	stabilisation [3, 2006.01] • Crotonic acid [1, 3, 2006.01] • Sorbic acid [1, 3, 2006.01] • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Fumaric acid [3, 2006.01] • Citraconic acid [3, 2006.01] • Muconic acid [1, 3, 2006.01] • Muconic acid [1, 3, 2006.01] • With only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01] • Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01] • containing rings other than six-membered aromatic rings [3, 2006.01] • containing an adamantane ring system [3, 2006.01]	 59/01 • Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 • • Glycolic acid [1, 3, 2006.01] 59/08 • Lactic acid [1, 3, 2006.01] 59/10 • Polyhydroxy carboxylic acids [1, 2006.01] 59/10 • • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] 59/11 • • containing rings [3, 2006.01] 59/125 • Saturated compounds having only one carboxyl group and containing ether groups, ○
57/08 57/10 57/12 57/13 57/145 57/15 57/155 57/16 57/18 57/20 57/22 57/24 57/26 57/28	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Fumaric acid [3, 2006.01] Citraconic acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Mutonic acid [1, 3, 2006.01] Muth only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Propiolic acid [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene or polyacetylene dicarboxylic acids [1, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring system [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] Phenylacetic acid [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] saturated compounds having only one carboxyl group and containing ether groups, containing rings [3, 2006.01] Saturated compounds having only one carboxyl groups, or D-C groups [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] containing halogen [3, 2006.01] containing halogen [3, 2006.01] Glyoxylic acid [3, 2006.01] Glyoxylic acid [3, 2006.01] Saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01] Glyoxylic acid [3, 2006.01] Saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/16 57/18 57/20 57/22 57/24 57/26 57/28 57/30 57/32 57/34	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Citraconic acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Muconic acid [1, 3, 2006.01] Muth only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Propiolic acid [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene or polyacetylene dicarboxylic acids [1, 2006.01] Containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring system [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] Phenylacetic acid [3, 2006.01] containing more than one carboxyl group [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] saturated compounds having only one carboxyl group and containing ether groups, containing rings [3, 2006.01] Saturated compounds having only one carboxyl group and containing ether groups [3, 2006.01] containing rings [3, 2006.01] containing rings [3, 2006.01] saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01] Glyoxylic acid [3, 2006.01] Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01] Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24 57/26 57/28 57/30 57/32 57/34 57/36	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Citraconic acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Muconic acid [1, 3, 2006.01] Muth only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene or polyacetylene dicarboxylic acids [1, 2006.01] Containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring system [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] Phenylacetic acid [3, 2006.01] Phenylacetic acid [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Lactic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] saturated compounds having only one carboxyl group and containing ether groups, containing rings [3, 2006.01] saturated compounds having only one carboxyl concorrection of the containing rings [3, 2006.01] containing rings [3, 2006.01] containing rings [3, 2006.01] saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01] Glyoxylic acid [3, 2006.01] Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01] Py185 Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01] Py199 Pyruvic acid [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24 57/26 57/28 57/30 57/32 57/34 57/36 57/38	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Fumaric acid [3, 2006.01] Citraconic acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Muconic acid [1, 3, 2006.01] Muth only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene or polyacetylene dicarboxylic acids [1, 2006.01] Containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring system [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] Phenylacetic acid [3, 2006.01] Phenylacetic acid [3, 2006.01] Phenylmalonic acid [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] Glycolic acid [1, 3, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] containing rings [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl group and containing ether groups, O-CO-C groups, or O-C groups [3, 2006.01] containing halogen [3, 2006.01] Saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01] Saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01] Glyoxylic acid [3, 2006.01] Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01] Pyruvic acid [3, 2006.01] Pyruvic acid [3, 2006.01] Acetoacetic acid [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24 57/26 57/28 57/30 57/32 57/34 57/36 57/38 57/40	stabilisation [3, 2006.01] Crotonic acid [1, 3, 2006.01] Sorbic acid [1, 3, 2006.01] Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] Dicarboxylic acids [3, 2006.01] Maleic acid [3, 2006.01] Fumaric acid [3, 2006.01] Citraconic acid [3, 2006.01] Muconic acid [1, 3, 2006.01] Muconic acid [1, 3, 2006.01] Mith only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] Acetylene dicarboxylic acid [1, 2006.01] Acetylene or polyacetylene dicarboxylic acids [1, 2006.01] Containing rings other than six-membered aromatic rings [3, 2006.01] containing an adamantane ring system [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] Phenylacetic acid [3, 2006.01] Phenylacetic acid [3, 2006.01] Phenylmalonic acid [3, 2006.01] Phenylmalonic acid [3, 2006.01] polycyclic [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] S9/06 • Glycolic acid [1, 3, 2006.01] S9/10 • Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] • containing rings [3, 2006.01] • containing halogen [3, 2006.01] Saturated compounds having only one carboxyl group and containing ether groups, O-C O-C groups [3, 2006.01] • containing rings [3, 2006.01] • containing rings [3, 2006.01] • Containing halogen [3, 2006.01] • Saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01] • Glyoxylic acid [3, 2006.01] • Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01] • Pyruvic acid [3, 2006.01] • Pyruvic acid [3, 2006.01] • Acetoacetic acid [3, 2006.01] • Acetoacetic acid [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24 57/26 57/28 57/30 57/32 57/34 57/36 57/38 57/30 57/38 57/40 57/42	stabilisation [3, 2006.01] • Crotonic acid [1, 3, 2006.01] • Sorbic acid [1, 3, 2006.01] • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Fumaric acid [3, 2006.01] • Citraconic acid [1, 3, 2006.01] • Muconic acid [1, 3, 2006.01] • With only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01] • Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01] • containing rings other than six-membered aromatic rings [3, 2006.01] • containing an adamantane ring system [3, 2006.01] • Phenylacetic acid [3, 2006.01] • containing more than one carboxyl group [3, 2006.01] • Phenylmalonic acid [3, 2006.01] • Phenylmalonic acid [3, 2006.01] • having unsaturation outside the rings [3, 2006.01]	59/01 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] 59/06 Glycolic acid [1, 3, 2006.01] 59/10 Polyhydroxy carboxylic acids [1, 2006.01] 59/11 Polyhydroxy carboxylic acids [1, 2006.01] 59/11 Polyhydroxy carboxylic acids [1, 2006.01] 59/11 Polyhydroxy carboxylic acids [1, 2006.01] 59/12 Polyhydroxy carboxylic acids [1, 2006.01] 59/13 Polyhydroxy carboxylic acids [1, 2006.01] 59/13 Polyhydroxy carboxylic acids [1, 2006.01] 59/13 Polyhydroxy carboxylic acid [3, 2006.01] 59/14 Polyhydroxy carboxylic acid [3, 2006.01] 59/15 Polyhydroxy carboxylic acid [3, 2006.01] 59/19 Polyhydroxy carboxylic acid [3, 2006.01] 59/19 Polyhydroxy carboxylic acid [3, 2006.01] 59/19 Polyhydroxy carboxylic acid [3, 2006.01] Polyhydroxy carboxylic acid [3, 2006.01]
57/08 57/10 57/12 57/13 57/145 57/15 57/15 57/16 57/18 57/20 57/22 57/24 57/26 57/28 57/30 57/32 57/34 57/36 57/38 57/40 57/42 57/44	stabilisation [3, 2006.01] • Crotonic acid [1, 3, 2006.01] • Sorbic acid [1, 3, 2006.01] • Straight chain carboxylic acids containing eighteen carbon atoms [1, 3, 2006.01] • Dicarboxylic acids [3, 2006.01] • Maleic acid [3, 2006.01] • Fumaric acid [3, 2006.01] • Citraconic acid [1, 3, 2006.01] • Muconic acid [1, 3, 2006.01] • With only carbon-to-carbon triple bonds as unsaturation [1, 2006.01] • Propiolic acid [1, 2006.01] • Acetylene dicarboxylic acid [1, 2006.01] • Diacetylene or polyacetylene dicarboxylic acids [1, 2006.01] • containing rings other than six-membered aromatic rings [3, 2006.01] • containing an adamantane ring system [3, 2006.01] • containing six-membered aromatic rings [3, 2006.01] • Phenylacetic acid [3, 2006.01] • Phenylmalonic acid [3, 2006.01] • Phenylmalonic acid [3, 2006.01] • having unsaturation outside the rings [3, 2006.01] • having unsaturation outside the rings [3, 2006.01]	 Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups [3, 2006.01] S9/06 • Glycolic acid [1, 3, 2006.01] S9/10 • Polyhydroxy carboxylic acids [1, 2006.01] Polyhydroxy carboxylic acids [1, 2006.01] • having five or more carbon atoms, e.g. aldonic acids [3, 2006.01] • containing rings [3, 2006.01] • containing halogen [3, 2006.01] Saturated compounds having only one carboxyl group and containing ether groups, O-C O-C groups [3, 2006.01] • containing rings [3, 2006.01] • containing rings [3, 2006.01] • Containing halogen [3, 2006.01] • Saturated compounds having only one carboxyl group and containing —CHO groups [3, 2006.01] • Glyoxylic acid [3, 2006.01] • Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01] • Pyruvic acid [3, 2006.01] • Pyruvic acid [3, 2006.01] • Acetoacetic acid [3, 2006.01] • Acetoacetic acid [3, 2006.01]

59/225 • containing —CHO groups [3, 2006.01]	59/84 • • • containing six-membered aromatic rings [3, 2006.01]
• Saturated compounds having more than one carboxyl group [3, 2006.01]	59/86 • • • containing six-membered aromatic rings and
59/245 • containing hydroxy or O-metal groups [3, 2006.01]	other rings [3, 2006.01] 59/88 • • • containing halogen [3, 2006.01]
59/255 • • Tartaric acid [3, 2006.01]	59/90 • • • containing singly bound oxygen-containing
59/265 • • • Citric acid [3, 2006.01]	groups [3, 2006.01]
59/285 • • • Polyhydroxy dicarboxylic acids having five or	59/92 • • • containing —CHO groups [3, 2006.01]
more carbon atoms, e.g. saccharic acids [3, 2006.01]	61/00 Compounds having carboxyl groups bound to
59/29 • • • containing rings [3, 2006.01]	carbon atoms of rings other than six-membered
59/295 • • • containing halogen [3, 2006.01]	 aromatic rings [1, 2006.01] 61/04 • Saturated compounds having a carboxyl group bound
59/305 • • containing ether groups, $C<0-C$ groups,	to a three- or four-membered ring [1, 3, 2006.01]
N-	• Saturated compounds having a carboxyl group bound to a five-membered ring [1, 3, 2006.01]
0- -C-0-C 0-C groups, or 0-C groups [3, 2006.01]	• Saturated compounds having a carboxyl group bound to a six-membered ring [1, 3, 2006.01]
O-C groups, or O-C groups [3, 2006.01]	61/09 • Completely hydrogenated benzenedicarboxylic
59/31 • • • containing rings [3, 2006.01] 59/315 • • • containing halogen [3, 2006.01]	acids [2, 3, 2006.01]
59/325 • containing —CHO groups [3, 2006.01]	• Saturated compounds having a carboxyl group bound to a seven- to twelve-membered ring [1, 3, 2006.01]
59/347 • • containing keto groups [3, 2006.01]	61/12 • Saturated polycyclic compounds [1, 3, 2006.01]
59/353 • • • containing rings [3, 2006.01]	61/125 • having a carboxyl group bound to a condensed
59/40 • Unsaturated compounds [3, 2006.01]	ring system [3, 2006.01]
59/42 • • containing hydroxy or O-metal groups [3, 2006.01]	61/13 • • • having two rings [3, 2006.01] 61/135 • • having three rings [3, 2006.01]
59/44 • • • Ricinoleic acid [3, 2006.01]	61/15 • Saturated compounds containing
59/46 • • containing rings other than six-membered	halogen [3, 2006.01]
aromatic rings [3, 2006.01] 59/48 • • • containing six-membered aromatic	61/16 • Unsaturated compounds [1, 3, 2006.01]
rings [3, 2006.01]	61/20 • having a carboxyl group bound to a five- membered ring [1, 3, 2006.01]
59/50 • • • • Mandelic acid [3, 2006.01]	61/22 • having a carboxyl group bound to a six-membered
59/52 • • • a hydroxy or O-metal group being bound to a carbon atom of a six-membered aromatic	ring [1, 3, 2006.01]
ring [3, 2006.01]	61/24 • • • Partially hydrogenated benzenedicarboxylic acids [1, 3, 2006.01]
59/54 • • • containing six-membered aromatic rings and	61/26 • having a carboxyl group bound to a seven- to
other rings [3, 2006.01] 59/56 • • containing halogen [3, 2006.01]	twelve-membered ring [1, 3, 2006.01]
55/36 containing naiogen [3, 2006.01]	61/28 • polycyclic [1, 3, 2006.01] 61/29 • having a carboxyl group bound to a condensed
59/58 • • containing ether groups,	ring system [3, 2006.01]
0- /n.c	61/35 • having unsaturation outside the rings [3, 2006.01]
-C-CO-C C\O-C	61/37 • • • Chrysanthemumic acid [3, 2006.01]
`O-C groups, or `O-C groups [3, 2006.01]	61/39 • • containing six-membered aromatic rings [3, 2006.01]
0- 0- -C-0-C	61/40 • • containing halogen [3, 2006.01]
59/62 • • • containing rings other than six-membered	62/00 Compounds having carboxyl groups bound to
aromatic rings [3, 2006.01] 59/64 • • containing six-membered aromatic	carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH,
rings [3, 2006.01]	O-metal, —CHO, keto, ether, \circ groups,
59/66 • • • the non-carboxylic part of the ether containing six-membered aromatic	Ω
rings [3, 2006.01]	0- 0- 0-C 0-C 0-C 0-C 0-C groups, or 0-C groups [3, 2006.01] 62/02 • Saturated compounds containing hydroxy or O-metal
59/68 • • • • the oxygen atom of the ether group being bound to a non-condensed six-membered	0-C groups, or 0-C groups [3, 2006.01]
aromatic ring [3, 2006.01]	62/02 • Saturated compounds containing hydroxy or O-metal
59/70 • • • • • Ethers of hydroxy-acetic acid [3, 2006.01]	groups [3, 2006.01]
59/72 • • • containing six-membered aromatic rings and	62/04 • • with a six-membered ring [3, 2006.01] 62/06 • • polycyclic [3, 2006.01]
other rings [3, 2006.01]	62/08 • Saturated compounds containing ether groups,
59/74 • • containing —CHO groups [3, 2006.01]	
59/76 • containing keto groups [3, 2006.01] 59/80 • containing rings other than six-membered	,u- c\0-C ,0-C
aromatic rings [3, 2006.01]	0- 0- 0- 0- 0- 0- 0- 0- 0- 0-
59/82 • • • the keto group being part of a	groups [3, 2006.01]
ring [3, 2006.01]	

62/10	• • with a six-membered ring [3, 2006.01]	63/46	• • • containing two carboxyl groups both bound
62/12	• • polycyclic [3, 2006.01]		to carbon atoms of the condensed ring
62/14	 having a carboxyl group on a condensed ring 		system [1, 3, 2006.01]
	system [3, 2006.01]	63/48	• • • containing three or more carboxyl groups all
62/16	Saturated compounds containing —CHO		bound to carbon atoms of the condensed ring system [1, 3, 2006.01]
62/18	groups [3, 2006.01] • Saturated compounds containing keto	63/49	containing rings other than six-membered
02/10	groups [3, 2006.01]		aromatic rings [3, 2006.01]
62/20	 with a six-membered ring [3, 2006.01] 	63/64	 Monocyclic acids with unsaturation outside the
62/22	• • polycyclic [3, 2006.01]		aromatic ring [3, 2006.01]
62/24	• • the keto group being part of a ring [3, 2006.01]	63/66	Polycyclic acids with unsaturation outside the arometic rings [2, 2006 01]
62/26	 containing singly bound oxygen-containing 	63/68	aromatic rings [3, 2006.01] • containing halogen [3, 2006.01]
	groups [3, 2006.01]	63/70	 Monocarboxylic acids [3, 2006.01]
62/28	• • containing —CHO groups [3, 2006.01]	63/72	 Polycyclic acids [3, 2006.01]
62/30	• Unsaturated compounds [3, 2006.01]	63/74	 having unsaturation outside the aromatic
62/32	 containing hydroxy or O-metal groups [3, 2006.01] 		rings [3, 2006.01]
		CE (00	Company of the Company has the more than the
62/34	• • containing ether groups, CCC groups,	65/00	Compounds having carboxyl groups bound to carbon atoms of six-membered aromatic rings and
	0		containing any of the groups OH, O-metal, —CHO,
	0- 0- 0-C 0-C 0-C 0-C groups, or 0-C groups [3, 2006.01] • containing —CHO groups [3, 2006.01]		Ω-
	-C-O-C		keto, ether, CCO-C groups, O-C groups, or
00 (00	U-L groups, or U-L groups [3, 2006.01]		
62/36	• • containing —CHO groups [3, 2006.01]		0-
62/38	• • containing keto groups [3, 2006.01]		c/o-c c _{√o-c}
63/00	Compounds having carboxyl groups bound to		0-C groups [1, 2006.01]
	carbon atoms of six-membered aromatic	65/01	 containing hydroxy or O-metal groups [3, 2006.01]
00.40.4	rings [1, 2, 2006.01]	65/03	 monocyclic and having all hydroxy or O-metal
63/04	Monocyclic monocarboxylic acids [1, 2006.01]		groups bound to the ring [3, 2006.01]
63/06	• • Benzoic acid [1, 2006.01]	65/05	• • • o-Hydroxy carboxylic acids [3, 2006.01]
63/08	• • • Salts thereof [1, 2006.01]	65/10	• • • • Salicylic acid [1, 3, 2006.01]
63/10 63/14	• Halides thereof [1, 2006.01]• Monocyclic dicarboxylic acids [1, 2006.01]	65/105	• • polycyclic [3, 2006.01]
63/15	all carboxyl groups bound to carbon atoms of the	65/11	• • with carboxyl groups on a condensed ring
05/15	six-membered aromatic ring [3, 2006.01]	CE (4E	system containing two rings [3, 2006.01]
63/16	• • • 1,2-Benzenedicarboxylic acid [1, 3, 2006.01]	65/15	 with carboxyl groups on a condensed ring system containing more than two
63/20	• • • • Salts thereof [1, 3, 2006.01]		rings [3, 2006.01]
63/22	• • • • Halides thereof [1, 3, 2006.01]	65/17	 containing rings other than six-membered
63/24	• • • 1,3-Benzenedicarboxylic acid [1, 3, 2006.01]		aromatic rings [3, 2006.01]
63/26	• • 1,4-Benzenedicarboxylic acid [1, 3, 2006.01]	65/19	 having unsaturation outside the aromatic
63/28	• • • • Salts thereof [1, 3, 2006.01]		ring [3, 2006.01]
63/30	• • • Halides thereof [1, 3, 2006.01]		0-
63/307	Monocyclic tricarboxylic acids [3, 2006.01]	CE /21	• containing ether groups, CCC groups, O-C
63/313	 Monocyclic acids containing more than three carboxyl groups [3, 2006.01] 	65/21	• containing ether groups, C-C groups, O-C
63/33	• Polycyclic acids [2, 3, 2006.01]		,0- c√0-c C√0-c
63/331	 with all carboxyl groups bound to non-condensed 		
	rings [3, 2006.01]		groups, or 'O-C groups [3, 2006.01]
63/333	• • • 4,4'-Diphenyldicarboxylic acids [2, 3, 2006.01]	65/24	• • polycyclic [3, 2006.01]
63/337	 with carboxyl groups bound to condensed ring 	65/26	 containing rings other than six-membered
	systems [2, 3, 2006.01]		aromatic rings [3, 2006.01]
63/34	• • • containing two rings [1, 3, 2006.01]	65/28	having unsaturation outside the aromatic having 12, 2006, 011
63/36	• • • • containing one carboxyl	GE /20	rings [3, 2006.01]
63/38	group [1, 3, 2006.01] • • • containing two carboxyl groups both bound	65/30 65/32	containing —CHO groups [3, 2006.01]containing keto groups [3, 2006.01]
05/30	to carbon atoms of the condensed ring	65/34	• • polycyclic [3, 2006.01]
	system [1, 3, 2006.01]	65/36	• • • containing rings other than six-membered
63/40	• • • containing three or more carboxyl groups all	25, 55	aromatic rings [3, 2006.01]
	bound to carbon atoms of the condensed ring	65/38	 having unsaturation outside the aromatic
60 / 40	system [1, 3, 2006.01]		rings [3, 2006.01]
63/42	• • • containing three or more rings [1, 3, 2006.01]	65/40	containing singly bound oxygen-containing
63/44	• • • containing one carboxyl group [1, 3, 2006.01]	CE / 40	groups [3, 2006.01]
	Prouh [1, 0, 2000,01]	65/42	• • containing —CHO groups [3, 2006.01]

66/00 Quinone carboxylic acids [2, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl 66/02 Anthraguinone carboxylic acids [2, 2006.01] groups [3, 2006.01] 67/00 by splitting-off hydrogen or functional groups; by Preparation of carboxylic acid esters [1, 2006.01] 67/317 hydrogenolysis of functional groups [3, 2006.01] Note(s) [3] Decarboxylation [2, 3, 2006.01] 67/32 In this group, lactones used as reactants are considered 67/327 by elimination of functional groups containing as being esters. oxygen only in singly bound form [3, 2006.01] 67/02 • by interreacting ester groups, i.e. by isomerisation; by change of size of the carbon 67/333 transesterification [1, 2006.01] skeleton (introduction or elimination of carboxyl 67/03 by reacting an ester group with a hydroxy groups C07C 67/313, C07C 67/32) [3, 2006.01] group [2, 2006.01] by reacting carboxylic acids or symmetrical 67/035 67/34 Migration of O groups in the anhydrides with saturated hydrocarbons [3, 2006.01] molecule [2, 3, 2006.01] 67/04 by reacting carboxylic acids or symmetrical 67/343 by increase in the number of carbon anhydrides onto unsaturated carbon-to-carbon atoms [3, 2006.01] bonds [1, 2, 2006.01] 67/347 by addition to unsaturated carbon-to-carbon 67/05 with oxidation [2, 3, 2006.01] bonds [3, 2006.01] in the presence of platinum group metals or 67/055 by reaction with carbon monoxide or formates their compounds [3, 2006.01] 67/36 (C07C 67/02, C07C 67/03, C07C 67/10 take 67/08 by reacting carboxylic acids or symmetrical precedence) [2, 2006.01] anhydrides with the hydroxy or O-metal group of by reaction of ethers with carbon 67/37 organic compounds [2, 2006.01] monoxide [2, 2006.01] 67/10 by reacting carboxylic acids or symmetrical by addition to an unsaturated carbon-to-carbon 67/38 anhydrides with ester groups or with a carbonbond [2, 2006.01] halogen bond [2, 2006.01] by oxidation of groups which are precursors for the 67/39 • being mineral ester groups [3, 2006.01] 67/11 acid moiety of the ester [3, 2006.01] 67/12 • from asymmetrical anhydrides [2, 2006.01] 67/40 by oxidation of primary alcohols [2, 3, 2006.01] 67/14 • from carboxylic acid halides [2, 2006.01] by oxidation of secondary alcohols or 67/42 from carboxylic acids, esters or anhydrides wherein 67/16 ketones [2, 3, 2006.01] one oxygen atom has been replaced by a sulfur, 67/44 by oxidation-reduction of aldehydes, e.g. Tishchenko selenium or tellurium atom [2, 2006.01] reaction [2, 2006.01] by conversion of a group containing nitrogen into an 67/18 67/46 from ketenes or polyketenes [2, 2006.01] ester group [2, 2006.01] 67/465 by oligomerisation [3, 2006.01] 67/20 • from amides or lactams [2, 2006.01] by telomerisation (macromolecular compounds 67/47 67/22 • • from nitriles [2, 2006.01] C08) [3, 2006.01] by reacting carboxylic acids or derivatives thereof 67/24 by splitting of carbon-to-carbon bonds and 67/475 with a carbon-to-oxygen ether bond, e.g. acetal, redistribution, e.g. disproportionation or migration of tetrahydrofuran [2, 2006.01] 67/26 • with an oxirane ring [2, 2006.01] groups between different • from ortho-esters [3, 2006.01] 67/27 molecules [3, 2006.01] 67/28 by modifying the hydroxylic moiety of the ester, such Separation; Purification; Stabilisation; Use of 67/48 modification not being an introduction of an ester additives [2, 3, 2006.01] group [2, 2006.01] by change in the physical state, e.g. 67/52 67/283 by hydrogenation of unsaturated carbon-to-carbon crystallisation [3, 2006.01] bonds [3, 2006.01] 67/54 • by distillation [3, 2006.01] by introduction of halogen; by substitution of 67/287 by solid-liquid treatment; by halogen atoms by other halogen 67/56 chemisorption [3, 2006.01] atoms [3, 2006.01] 67/58 by liquid-liquid treatment [3, 2006.01] 67/29 by introduction of oxygen-containing functional groups [3, 2006.01] 67/60 by treatment giving rise to chemical modification (by chemisorption C07C 67/56) [3, 2006.01] by isomerisation; by change of size of the carbon 67/293 67/62 Use of additives, e.g. for stabilisation [3, 2006.01] skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by 67/297 68/00 Preparation of esters of carbonic or haloformic hydrogenolysis of functional groups [3, 2006.01] acids [2, 2006.01, 2020.01] 67/30 · by modifying the acid moiety of the ester, such 68/01 from carbon monoxide and oxygen [2020.01] modification not being an introduction of an ester 68/02 from phosgene or haloformates [2, 2006.01] group [2, 2006.01] 68/04 from carbon dioxide or inorganic 67/303 • by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] carbonates [2, 2006.01] • • by introduction of halogen; by substitution of 68/06 from organic carbonates [2, 2006.01, 2020.01] 67/307 halogen atoms by other halogen 68/065 • • from alkylene carbonates [2020.01] atoms [3, 2006.01] 68/08 • Purification; Separation; Stabilisation [2, 2006.01] 67/31 by introduction of functional groups containing 69/00 Esters of carboxylic acids; Esters of carbonic or oxygen only in singly bound form [3, 2006.01] haloformic acids [1, 2006.01]

Note(s) [5]

Attention is drawn to Note (6) following the title of this subclass.

- 69/003 Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
- 69/007 Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
- 69/01 • Vinyl esters [3, 2006.01]
- 69/013 Esters of alcohols having the esterified hydroxy group bound to a carbon atom of a ring other than a six-membered aromatic ring [3, 2006.01]
- Esters of hydroxy compounds having the esterified hydroxy group bound to a carbon atom of a sixmembered aromatic ring [3, 2006.01]

Note(s) [3]

Esters having a variably-specified acid moiety, i.e. covered by more than one of groups C07C 69/02, C07C 69/34, C07C 69/52, C07C 69/608, C07C 69/612, C07C 69/62, C07C 69/66, C07C 69/74, C07C 69/76, C07C 69/95, C07C 69/96, are covered by groups C07C 69/003-C07C 69/017 according to their hydroxylic moiety.

- Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen [1, 2006.01]
- 69/025 esterified with unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
- esterified with alcohols having the esterified hydroxy group bound to a carbon atom of a ring other than a six-membered aromatic ring [3, 2006.01]
- 69/035 • esterified with a hydroxy compound having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring [3, 2006.01]
- 69/04 • Formic acid esters **[1, 2006.01]**
- 69/06 • of monohydroxylic compounds **[1, 2006.01]**
- 69/07 • of unsaturated alcohols **[2, 2006.01]**
- 69/08 • of dihydroxylic compounds [1, 2006.01]
- 69/10 • of trihydroxylic compounds [1, 2006.01]
- 69/12 • Acetic acid esters [1, 2006.01]
- 69/14 • of monohydroxylic compounds **[1, 2006.01]**
- 69/145 • of unsaturated alcohols **[2, 2006.01]**
- 69/15 • • Vinyl acetate **[2, 2006.01]**
- 69/155 • • Allyl acetate [2, 2006.01]
- 69/157 • • containing six-membered aromatic rings [3, 2006.01]
- 69/16 • of dihydroxylic compounds [1, 2006.01]
- 69/18 • of trihydroxylic compounds [1, 2006.01]
- 69/21 • of hydroxy compounds with more than three hydroxy groups [2, 2006.01]
- 69/22 having three or more carbon atoms in the acid moiety [1, 2006.01]
- 69/24 • esterified with monohydroxylic compounds [1, 2006.01]
- 69/26 • • Synthetic waxes [1, 2006.01]
- 69/28 • esterified with dihydroxylic compounds [1, 2006.01]
- 69/30 • esterified with trihydroxylic compounds [1, 2006.01]
- 69/33 • esterified with hydroxy compounds having more than three hydroxy groups [2, 2006.01]

- Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom [1, 3, 2006.01]
- 69/347 • esterified with unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
- 69/353 • esterified with a hydroxy compound having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring [3, 2006.01]
- 69/36 • Oxalic acid esters [1, 3, 2006.01]
- 69/38 • Malonic acid esters [1, 3, 2006.01]
- 69/40 Succinic acid esters [1, 3, 2006.01]
- 69/42 • Glutaric acid esters [1, 3, 2006.01]
- 69/44 Adipic acid esters **[1, 3, 2006.01]**
- 69/46 • Pimelic acid esters **[1, 3, 2006.01]**
- 69/48 • Azelaic acid esters **[1, 3, 2006.01]**
- 69/50 • Sebacic acid esters **[1, 3, 2006.01]**
- 69/52 Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom [1, 3, 2006.01]
- 69/527 • of unsaturated hydroxy compounds **[3, 2006.01]**
- 69/533 • Monocarboxylic acid esters having only one carbon-to-carbon double bond [3, 2006.01]
- 69/54 • Acrylic acid esters; Methacrylic acid esters [1, 3, 2006.01]
- 69/56 • Crotonic acid esters; Vinyl acetic acid esters [1, 3, 2006.01]
- 69/58 • Esters of straight chain acids with eighteen carbon atoms in the acid moiety [1, 3, 2006.01]
- 69/587 • Monocarboxylic acid esters having at least two carbon-to-carbon double bonds [3, 2006.01]
- 69/593 • Dicarboxylic acid esters having only one carbon-to-carbon double bond [3, 2006.01]
- 69/60 • Maleic acid esters; Fumaric acid esters [1, 3, 2006.01]
- 69/602 • Dicarboxylic acid esters having at least two carbon-to-carbon double bonds [3, 2006.01]
- 69/604 • Polycarboxylic acid esters, the acid moiety containing more than two carboxyl groups [3, 2006.01]
- 69/606 • having only carbon-to-carbon triple bonds as unsaturation in the carboxylic acid moiety [3, 2006.01]
- 69/608 Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a ring other than a six-membered aromatic ring in the acid moiety [3, 2006.01]
- 69/612 Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a sixmembered aromatic ring in the acid moiety [3, 2006.01]
- 69/614 • of phenylacetic acid [3, 2006.01]
- 69/616 • polycyclic [3, 2006.01]
- 69/618 • having unsaturation outside the six-membered aromatic ring [3, 2006.01]
- 69/62 Halogen-containing esters [1, 2, 2006.01]
- 69/63 • of saturated acids **[2, 2006.01]**
- 69/635 • containing rings in the acid moiety **[3, 2006.01]**
- 69/65 • of unsaturated acids **[2, 2006.01]**
- 69/653 • Acrylic acid esters; Methacrylic acid esters; Haloacrylic acid esters; Halomethacrylic acid esters [3, 2006.01]
- 69/657 • Maleic acid esters; Fumaric acid esters; Halomaleic acid esters; Halofumaric acid esters [3, 2006.01]

69/66	•	Esters of carboxylic acids having esterified carboxyl groups bound to acyclic carbon atoms and having any of the groups OH, O-metal, —CHO, keto, ether, O- acyloxy, O- groups, O- C-O-C O-C O-C O-C	69/84	 of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring [1, 2006.01]
		^{>C,} O− -C,O−C	69/86	• • • with esterified hydroxyl groups [1, 2006.01]
		acyloxy, CCO-C groups, CCCO-C groups, or	69/88	• • • with esterified carboxyl groups [1, 2006.01]
		0- C/0-C	69/90	 • with esterified hydroxyl and carboxyl
		C\0-C		groups [1, 2006.01]
		0-0	69/92	• • with etherified hydroxyl groups [1, 2, 2006.01]
		'O-C in the acid moiety [1, 2006.01]	69/94	 of polycyclic hydroxy carboxylic acids, the
69/67		• of saturated acids [2, 2006.01]		hydroxy groups and the carboxyl groups of which
69/675	•	of saturated hydroxy-carboxylic		are bound to carbon atoms of six-membered
60.460		acids [3, 2006.01]	60/05	aromatic rings [1, 2, 2006.01]
69/68	•	• • Lactic acid esters [1, 3, 2006.01]	69/95 69/96	 Esters of quinone carboxylic acids [2, 2006.01] Esters of carbonic or haloformic acids [2, 2006.01]
69/70	•	• • Tartaric acid esters [1, 3, 2006.01]	03/30	Esters of Carbonic of Halofornic acids [2, 2000.01]
69/704		• • Citric acid esters [3, 2006.01]	71/00	Esters of oxyacids of halogens [1, 2006.01]
69/708		• Ethers [3, 2006.01]		
69/712	•	 the hydroxy group of the ester being etherified with a hydroxy compound having 		
		the hydroxy group bound to a carbon atom of a six-membered aromatic		nds containing carbon and nitrogen with or without n, halogens or oxygen [5]
		ring [3, 2006.01]	201/00	Preparation of esters of nitric or nitrous acid or of
69/716	•	• Esters of keto-carboxylic acids [3, 2006.01]		compounds containing nitro or nitroso groups bound
69/72	•	• • • Acetoacetic acid esters [1, 3, 2006.01]		to a carbon skeleton [5, 2006.01]
69/73	•	• of unsaturated acids [2, 2006.01]	201/02	 Preparation of esters of nitric acid [5, 2006.01]
69/732	•	 of unsaturated hydroxy carboxylic 	201/04	 Preparation of esters of nitrous acid [5, 2006.01]
		acids [3, 2006.01]	201/06	• Preparation of nitro compounds [5, 2006.01]
69/734		• • Ethers [3, 2006.01]	201/08	 by substitution of hydrogen atoms by nitro
69/736	•	• • the hydroxy group of the ester being		groups [5, 2006.01]
		etherified with a hydroxy compound having the hydroxy group bound to a carbon atom	201/10	• • by substitution of functional groups by nitro
		of a six-membered aromatic	201/12	groups [5, 2006.01]
		ring [3, 2006.01]	201/12	 by reactions not involving the formation of nitro groups [5, 2006.01]
69/738	•	Esters of keto-carboxylic acids [3, 2006.01]	201/14	 by formation of nitro groups together with
69/74	•	Esters of carboxylic acids having an esterified	201/11	reactions not involving the formation of nitro
		carboxyl group bound to a carbon atom of a ring		groups [5, 2006.01]
		other than a six-membered aromatic ring [1, 2006.01]	201/16	 Separation; Purification; Stabilisation; Use of
69/743	•	of acids with a three-membered ring and with		additives [5, 2006.01]
60 / 5 45		unsaturation outside the ring [3, 2006.01]	202/00	E
69/747	•	• Chrysanthemumic acid esters [3, 2006.01]	203/00 203/02	Esters of nitric or nitrous acid [5, 2006.01]Esters of nitric acid [5, 2006.01]
69/75	•	• of acids with a six-membered ring [3, 2006.01]	203/02	having nitrate groups bound to acyclic carbon
69/753	•	• of polycyclic acids [3, 2006.01]	203/04	atoms [5, 2006.01]
69/757	•	• having any of the groups OH, O-metal, —CHO,	203/06	• • • Glycerol trinitrate [5, 2006.01]
			203/08	having nitrate groups bound to carbon atoms of
		keto, ether, acyloxy, $C \subset C - C \subset C$	2007 00	rings other than six-membered aromatic
				rings [5, 2006.01]
		0- c/0-C c/0-C	203/10	 having nitrate groups bound to carbon atoms of
		C 		six-membered aromatic rings [5, 2006.01]
		groups, or $^{\circ}$ in the acid moiety [3, 2006.01]	205/00	Compounds containing nitro groups bound to a
69/76	•	Esters of carboxylic acids having an esterified	203/00	carbon skeleton [5, 2006.01]
		carboxyl group bound to a carbon atom of a six-	205/01	having nitro groups bound to acyclic carbon
		membered aromatic ring [1, 2006.01]	2007 01	atoms [5, 2006.01]
69/767	•	esterified with unsaturated alcohols having the esterified bydrawy group bound to an agyelia	205/02	• • of a saturated carbon skeleton [5, 2006.01]
		esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]	205/03	• • of an unsaturated carbon skeleton [5, 2006.01]
69/773		 esterified with a hydroxy compound having the 	205/04	 containing six-membered aromatic
001110		esterified hydroxy group bound to a carbon atom		rings [5, 2006.01]
		of a six-membered aromatic ring [3, 2006.01]	205/05	having nitro groups bound to carbon atoms of rings
69/78	•	• Benzoic acid esters [1, 2006.01]	nc= · · ·	other than six-membered aromatic rings [5, 2006.01]
69/80	•	• Phthalic acid esters [1, 2, 2006.01]	205/06	• having nitro groups bound to carbon atoms of six-
69/82	•	• • Terephthalic acid esters [1, 2006.01]	205/07	membered aromatic rings [5, 2006.01]
69/83	•	• • of unsaturated alcohols [2, 2006.01]	205/07	 the carbon skeleton being further substituted by halogen atoms [5, 2006.01]
			205/08	 having nitro groups bound to acyclic carbon
			200/00	atoms [5, 2006.01]
				• • •

205/09	• • of an unsaturated carbon skeleton [5, 2006.01]	205/35 • having nitro groups and etherified hydroxy groups
205/10	having nitro groups bound to carbon atoms of	bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01]
	rings other than six-membered aromatic rings [5, 2006.01]	205/36 • • to carbon atoms of the same non-condensed
205/11	 having nitro groups bound to carbon atoms of six- 	six-membered aromatic ring or to carbon atoms
205/11	membered aromatic rings [5, 2006.01]	of six-membered aromatic rings being part of
205/12	• • the six-membered aromatic ring or a condensed	the same condensed ring system [5, 2006.01]
2007 12	ring system containing that ring being	205/37 • • • the oxygen atom of at least one of the
	substituted by halogen atoms [5, 2006.01]	etherified hydroxy groups being further
205/13	 the carbon skeleton being further substituted by 	bound to an acyclic carbon
	hydroxy groups [5, 2006.01]	atom [5, 2006.01]
205/14	having nitro groups and hydroxy groups bound to	205/38 • • • • the oxygen atom of at least one of the etherified hydroxy groups being further
205 /15	acyclic carbon atoms [5, 2006.01]	bound to a carbon atom of a six-membered
205/15 205/16	• of a saturated carbon skeleton [5, 2006.01]• of a carbon skeleton containing six-membered	aromatic ring, e.g. nitrodiphenyl
203/10	aromatic rings [5, 2006.01]	ethers [5, 2006.01]
205/17	 having nitro groups bound to acyclic carbon atoms 	• the carbon skeleton being further substituted by
	and hydroxy groups bound to carbon atoms of six-	esterified hydroxy groups [5, 2006.01]
	membered aromatic rings [5, 2006.01]	205/40 • having nitro groups and esterified hydroxy groups bound to acyclic carbon atoms of the carbon
205/18	 having nitro groups or hydroxy groups bound to 	skeleton [5, 2006.01]
	carbon atoms of rings other than six-membered	205/41 • having nitro groups or esterified hydroxy groups
205/10	aromatic rings [5, 2006.01]having nitro groups bound to carbon atoms of six-	bound to carbon atoms of rings other than six-
205/19	membered aromatic rings and hydroxy groups	membered aromatic rings of the carbon
	bound to acyclic carbon atoms [5, 2006.01]	skeleton [5, 2006.01]
205/20	 having nitro groups and hydroxy groups bound to 	205/42 • having nitro groups or esterified hydroxy groups
	carbon atoms of six-membered aromatic	bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01]
	rings [5, 2006.01]	205/43 • • • to carbon atoms of the same non-condensed
205/21	 having nitro groups and hydroxy groups bound to carbon atoms of the same non-condensed 	six-membered aromatic ring or to carbon atoms
	six-membered aromatic ring [5, 2006.01]	of six-membered aromatic rings being part of
205/22	• • • having one nitro group bound to the	the same condensed ring system [5, 2006.01]
	ring [5, 2006.01]	• the carbon skeleton being further substituted by — CHO groups [5, 2006.01]
205/23	• • • having two nitro groups bound to the	205/45 • the carbon skeleton being further substituted by at
205/24	ring [5, 2006.01]	least one doubly-bound oxygen atom, not being part
205/24	 • • having three, and only three, nitro groups bound to the ring [5, 2006.01] 	of a —CHO group [5, 2006.01]
205/25	 having nitro groups bound to carbon atoms of 	205/46 • • the carbon skeleton containing carbon atoms of quinone rings [5, 2006.01]
	six-membered aromatic rings being part of a	205/47 • • • Anthraquinones containing nitro
205 (26	condensed ring system [5, 2006.01]	groups [5, 2006.01]
205/26	 and being further substituted by halogen atoms [5, 2006.01] 	205/48 • • • the carbon skeleton being further substituted
205/27	 the carbon skeleton being further substituted by 	by singly-bound oxygen atoms [5, 2006.01]
	etherified hydroxy groups [5, 2006.01]	• the carbon skeleton being further substituted by carboxyl groups [5, 2006.01]
205/28	 having nitro groups and etherified hydroxy groups 	205/50 • having nitro groups and carboxyl groups bound to
	bound to acyclic carbon atoms of the carbon	acyclic carbon atoms of the carbon
	skeleton [5, 2006.01]	skeleton [5, 2006.01]
205/29	• • • the carbon skeleton being	205/51 • • • the carbon skeleton being
205/30	saturated [5, 2006.01] • • • • the oxygen atom of at least one of the	saturated [5, 2006.01]
205/50	etherified hydroxy groups being further	205/52 • • • Nitro-acetic acids [5, 2006.01]
	bound to a carbon atom of a six-membered	205/53 • • • the carbon skeleton containing six-membered
	aromatic ring [5, 2006.01]	aromatic rings [5, 2006.01] 205/54 • having nitro groups bound to acyclic carbon atoms
205/31	• • • the carbon skeleton containing six-membered	and carboxyl groups bound to carbon atoms of six-
205/32	aromatic rings [5, 2006.01]having nitro groups bound to acyclic carbon atoms	membered aromatic rings of the carbon
203/32	and etherified hydroxy groups bound to carbon	skeleton [5, 2006.01]
	atoms of six-membered aromatic rings of the	205/55 • having nitro groups or carboxyl groups bound to
	carbon skeleton [5, 2006.01]	carbon atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]
205/33	having nitro groups or etherified hydroxy groups	205/56 • having nitro groups bound to carbon atoms of six-
	bound to carbon atoms of rings other than six- membered aromatic rings of the carbon	membered aromatic rings and carboxyl groups
	skeleton [5, 2006.01]	bound to acyclic carbon atoms of the carbon
205/34	 having nitro groups bound to carbon atoms of six- 	skeleton [5, 2006.01]
	membered aromatic rings and etherified hydroxy	205/57 • having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of
	groups bound to acyclic carbon atoms of the	the carbon skeleton [5, 2006.01]
	carbon skeleton [5, 2006.01]	-

205/58	• • • the carbon skeleton being further substituted by halogen atoms [5, 2006.01]	209/42	 by reduction of nitrogen-to-nitrogen bonds [5, 2006.01]
205/59	• • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	209/44	by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of
205/60	• • • in ortho-position to the carboxyl group, e.g. nitro-salicylic acids [5, 2006.01]		nitriles, carboxylic acid amides, imines or imino- ethers [5, 2006.01]
205/61	 the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01] 	209/46	• • by reduction of carboxylic acids or esters thereof in presence of ammonia or amines [5, 2006.01]
		209/48	 by reduction of nitriles [5, 2006.01]
207/00	Compounds containing nitroso groups bound to a carbon skeleton [5, 2006.01]	209/50	 by reduction of carboxylic acid amides [5, 2006.01]
207/02	 the carbon skeleton not being further substituted [5, 2006.01] 	209/52	• • by reduction of imines or imino-ethers (C07C 209/24 takes precedence) [5, 2006.01]
207/04	 the carbon skeleton being further substituted by 	209/54	 by rearrangement reactions [5, 2006.01]
	singly-bound oxygen atoms [5, 2006.01]	209/56	 from carboxylic acids involving a Hofmann,
209/00	Preparation of compounds containing amino groups bound to a carbon skeleton [5, 2006.01]		Curtius, Schmidt, or Lossen-type rearrangement [5, 2006.01]
209/02	by substitution of hydrogen atoms by amino	209/58	 from or <u>via</u> amides [5, 2006.01]
209/02	groups [5, 2006.01]	209/60	 by condensation or addition reactions, e.g. Mannich
209/04	 by substitution of functional groups by amino groups [5, 2006.01] 		reaction, addition of ammonia or amines to alkenes or to alkynes or addition of compounds containing an
209/06	• by substitution of halogen atoms [5, 2006.01]		active hydrogen atom to Schiff's bases, quinone
209/08	• • with formation of amino groups bound to		imines, or aziranes [5, 2006.01]
203700	acyclic carbon atoms or to carbon atoms of	209/62	by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or
	rings other than six-membered aromatic		phosphorus-to-nitrogen bonds, e.g. hydrolysis of
	rings [5, 2006.01]		amides, N-dealkylation of amines or quaternary
209/10	• • with formation of amino groups bound to		ammonium compounds (C07C 209/24 takes
203/10	carbon atoms of six-membered aromatic rings	200/64	precedence) [5, 2006.01]
	or from amines having nitrogen atoms bound to	209/64	• by disproportionation [5, 2006.01]
	carbon atoms of six-membered aromatic	209/66	• from or <u>via</u> metallo-organic compounds [5, 2006.01]
	rings [5, 2006.01]	209/68	 from amines, by reactions not involving amino
209/12	• • • with formation of quaternary ammonium		groups, e.g. reduction of unsaturated amines,
	compounds [5, 2006.01]		aromatisation, or substitution of the carbon
209/14	 by substitution of hydroxy groups or of etherified 	200 /70	skeleton [5, 2006.01]
	or esterified hydroxy groups [5, 2006.01]	209/70	• • by reduction of unsaturated amines [5, 2006.01]
209/16	 • with formation of amino groups bound to 	209/72	• • • by reduction of six-membered aromatic
	acyclic carbon atoms or to carbon atoms of	200 /74	rings [5, 2006.01]
	rings other than six-membered aromatic	209/74	 by halogenation, hydrohalogenation, dehalogenation, or
	rings [5, 2006.01]		dehydrohalogenation [5, 2006.01]
209/18	 • with formation of amino groups bound to 	209/76	• • by nitration [5, 2006.01]
	carbon atoms of six-membered aromatic rings	209/78	from carbonyl compounds, e.g. from
	or from amines having nitrogen atoms bound to	203770	formaldehyde, and amines having amino groups
	carbon atoms of six-membered aromatic rings [5, 2006.01]		bound to carbon atoms of six-membered aromatic
200/20			rings, with formation of methylene-
209/20	• • with formation of quaternary ammonium compounds [5, 2006.01]		diarylamines [5, 2006.01]
209/22	by substitution of other functional	209/80	 by photochemical reactions; by using free
203/22	groups [5, 2006.01]		radicals [5, 2006.01]
209/24	by reductive alkylation of ammonia, amines or	209/82	 Purification; Separation; Stabilisation; Use of
203/24	compounds having groups reducible to amino groups,		additives [5, 2006.01]
	with carbonyl compounds [5, 2006.01]	209/84	 Purification [5, 2006.01]
209/26	• • by reduction with hydrogen [5, 2006.01]	209/86	• • Separation [5, 2006.01]
209/28	by reduction with other reducing	209/88	• • • Separation of optical isomers [5, 2006.01]
	agents [5, 2006.01]	209/90	 Stabilisation; Use of additives [5, 2006.01]
209/30	by reduction of nitrogen-to-oxygen or nitrogen-to-		
	nitrogen bonds [5, 2006.01]	211/00	Compounds containing amino groups bound to a
209/32	• • by reduction of nitro groups [5, 2006.01]	044/01	carbon skeleton [5, 2006.01]
209/34	by reduction of nitro groups bound to acyclic	211/01	having amino groups bound to acyclic carbon
	carbon atoms or to carbon atoms of rings other	044/00	atoms [5, 2006.01]
	than six-membered aromatic rings [5, 2006.01]	211/02	• • of an acyclic saturated carbon
209/36	 • by reduction of nitro groups bound to carbon 	211/02	skeleton [5, 2006.01]
	atoms of six-membered aromatic	211/03	• • • Monoamines [5, 2006.01]
	rings [5, 2006.01]	211/04	• • • Mono-, di- or tri-methylamine [5, 2006.01]
209/38	• • by reduction of nitroso groups [5, 2006.01]	211/05	• • • • Mono-, di- or tri-ethylamine [5, 2006.01]
209/40	by reduction of hydroxylamino or oxyimino	211/06	• • • containing only n- or iso-propyl
	groups [5, 2006.01]		groups [5, 2006.01]

211/07	• • • containing one, two or three alkyl groups,	211/38	• • • containing condensed ring systems [5, 2006.01]
	each having the same number of carbon atoms in excess of three [5, 2006.01]	211/39	• • of an unsaturated carbon skeleton [5, 2006.01]
211/08	• • • containing alkyl groups having a different	211/40	 containing only non-condensed rings [5, 2006.01]
	number of carbon atoms [5, 2006.01]	211/41	• • • containing condensed ring systems [5, 2006.01]
211/09	• • • Diamines [5, 2006.01]	211/42	• • • with six-membered aromatic rings being part
211/10	• • • • Diaminoethanes [5, 2006.01]		of the condensed ring systems [5, 2006.01]
211/11	• • • • Diaminopropanes [5, 2006.01]	211/43	 having amino groups bound to carbon atoms of six-
211/12	• • • 1,6-Diaminohexanes [5, 2006.01]		membered aromatic rings of the carbon
211/13	 Amines containing three or more amino groups bound to the carbon skeleton [5, 2006.01] 	211/44	skeleton [5, 2006.01]having amino groups bound to only one six-
211/14	Amines containing amino groups bound to at	211/44	membered aromatic ring [5, 2006.01]
211/11	least two aminoalkyl groups, e.g.	211/45	• • • Monoamines [5, 2006.01]
	diethylenetriamines [5, 2006.01]	211/46	• • • • Aniline [5, 2006.01]
211/15	• • • the carbon skeleton being further substituted by	211/47	• • • Toluidines; Homologues
	halogen atoms or by nitro or nitroso groups [5, 2006.01]	244/42	thereof [5, 2006.01]
211/16	 of a saturated carbon skeleton containing rings 	211/48	• • • N-alkylated amines [5, 2006.01]
211/10	other than six-membered aromatic	211/49	 having at least two amino groups bound to the carbon skeleton [5, 2006.01]
	rings [5, 2006.01]	211/50	• • • with at least two amino groups bound to
211/17	• • containing only non-condensed		carbon atoms of six-membered aromatic
211/18	rings [5, 2006.01] • • • containing at least two amino groups bound to		rings of the carbon skeleton [5, 2006.01]
211/10	the carbon skeleton [5, 2006.01]	211/51	• • • • Phenylenediamines [5, 2006.01]
211/19	• • containing condensed ring systems [5, 2006.01]	211/52	the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso
211/20	of an acyclic unsaturated carbon		groups [5, 2006.01]
	skeleton [5, 2006.01]	211/53	 having the nitrogen atom of at least one of the
211/21	• • • Monoamines [5, 2006.01]		amino groups further bound to a hydrocarbon
211/22	 containing at least two amino groups bound to the carbon skeleton [5, 2006.01] 		radical substituted by amino groups [5, 2006.01]
211/23	• • • the carbon skeleton containing carbon-to- carbon triple bonds [5, 2006.01]	211/54	 having amino groups bound to two or three six- membered aromatic rings [5, 2006.01]
211/24	• • the carbon skeleton being further substituted by	211/55	• • • Diphenylamines [5, 2006.01]
	halogen atoms or by nitro or nitroso	211/56	• • • the carbon skeleton being further substituted by
211/25	groups [5, 2006.01] • • of an unsaturated carbon skeleton containing rings		halogen atoms or by nitro or nitroso
211/25	other than six-membered aromatic	211/57	groups [5, 2006.01] • • having amino groups bound to carbon atoms of
	rings [5, 2006.01]	211/0/	six-membered aromatic rings being part of
211/26	of an unsaturated carbon skeleton containing at		condensed ring systems of the carbon
011/05	least one six-membered aromatic ring [5, 2006.01]	244 /50	skeleton [5, 2006.01]
211/27	 having amino groups linked to the six- membered aromatic ring by saturated carbon 	211/58	 Naphthylamines; N-substituted derivatives thereof [5, 2006.01]
	chains [5, 2006.01]	211/59	• • • the carbon skeleton being further substituted by
211/28	 having amino groups linked to the six- 		halogen atoms or by nitro or nitroso
	membered aromatic ring by unsaturated carbon	244/22	groups [5, 2006.01]
211/29	chains [5, 2006.01] • • • the carbon skeleton being further substituted by	211/60	 containing a ring other than a six-membered aromatic ring forming part of at least one of the
211/25	halogen atoms or by nitro or nitroso		condensed ring systems [5, 2006.01]
	groups [5 , 2006.01]	211/61	• • • with at least one of the condensed ring systems
211/30	• • • the six-membered aromatic ring being part of a		formed by three or more rings [5, 2006.01]
	condensed ring system formed by two rings [5, 2006.01]	211/62	• Quaternary ammonium compounds [5, 2006.01]
211/31	• • • the six-membered aromatic ring being part of a	211/63	 having quaternised nitrogen atoms bound to acyclic carbon atoms [5, 2006.01]
_11,01	condensed ring system formed by at least three	211/64	 having quaternised nitrogen atoms bound to
	rings [5, 2006.01]	211/01	carbon atoms of six-membered aromatic
211/32	• • • containing dibenzocycloheptane or		rings [5, 2006.01]
	dibenzocycloheptene ring systems or condensed derivatives thereof [5, 2006.01]	211/65	 Metal complexes of amines [5, 2006.01]
211/33	 having amino groups bound to carbon atoms of rings 	213/00	Preparation of compounds containing amino and
	other than six-membered aromatic rings [5, 2006.01]		hydroxy, amino and etherified hydroxy or amino and
211/34	• • of a saturated carbon skeleton [5, 2006.01]		esterified hydroxy groups bound to the same carbon skeleton [5, 2006.01]
211/35	 containing only non-condensed rings [5, 2006.01] 	213/02	 by reactions involving the formation of amino groups
211/36	containing at least two amino groups bound to	- , * -	from compounds containing hydroxy groups or
	the carbon skeleton [5, 2006.01]	648.5	etherified or esterified hydroxy groups [5, 2006.01]
211/37	 • being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] 	213/04	 by reaction of ammonia or amines with olefin oxides or halohydrins [5, 2006.01]
	oy mao or maoso groups [0, 2000,01]		•

213/06	• from hydroxy amines by reactions involving the	215/44	• • bound to carbon atoms of the same ring or
	etherification or esterification of hydroxy groups [5, 2006.01]	215 / 46	condensed ring system [5, 2006.01]
213/08	 by reactions not involving the formation of amino 	215/46	 having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino
213/00	groups, hydroxy groups or etherified or esterified		groups bound to acyclic carbon atoms or to carbon
	hydroxy groups [5, 2006.01]		atoms of rings other than six-membered aromatic
213/10	Separation; Purification; Stabilisation; Use of		rings of the same carbon skeleton [5, 2006.01]
	additives [5, 2006.01]	215/48	 with amino groups linked to the six-membered
			aromatic ring, or to the condensed ring system
215/00	Compounds containing amino and hydroxy groups		containing that ring, by carbon chains not further
245 (02	bound to the same carbon skeleton [5, 2006.01]		substituted by hydroxy groups [5, 2006.01]
215/02	 having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon 	215/50	• • with amino groups and the six-membered
	skeleton [5, 2006.01]		aromatic ring, or the condensed ring system containing that ring, bound to the same carbon
215/04	 the carbon skeleton being saturated [5, 2006.01] 		atom of the carbon chain [5, 2006.01]
215/06	• • • and acyclic [5, 2006.01]	215/52	• • linked by carbon chains having two carbon
215/08	• • • with only one hydroxy group and one amino		atoms between the amino groups and the six-
	group bound to the carbon		membered aromatic ring or the condensed ring
	skeleton [5, 2006.01]		system containing that ring [5, 2006.01]
215/10	 • • with one amino group and at least two 	215/54	• • • linked by carbon chains having at least three
	hydroxy groups bound to the carbon		carbon atoms between the amino groups and the six-membered aromatic ring or the
015/10	skeleton [5, 2006.01]		condensed ring system containing that
215/12	• • • the nitrogen atom of the amino group being further bound to hydrocarbon groups		ring [5, 2006.01]
	substituted by hydroxy groups [5, 2006.01]	215/56	 with amino groups linked to the six-membered
215/14	• • • the nitrogen atom of the amino group being		aromatic ring, or to the condensed ring system
	further bound to hydrocarbon groups		containing that ring, by carbon chains further
	substituted by amino groups [5, 2006.01]		substituted by hydroxy groups [5, 2006.01]
215/16	 • • the nitrogen atom of the amino group being 	215/58	• • with hydroxy groups and the six-membered
	further bound to carbon atoms of six-		aromatic ring, or the condensed ring system containing that ring, bound to the same carbon
045/40	membered aromatic rings [5, 2006.01]		atom of the carbon chain [5, 2006.01]
215/18	• • • with hydroxy groups and at least two amino groups bound to the carbon	215/60	• • • the chain having two carbon atoms between
	skeleton [5, 2006.01]		the amino groups and the six-membered
215/20	the carbon skeleton being saturated and		aromatic ring or the condensed ring system
	containing rings [5, 2006.01]	0.4 = 7.00	containing that ring [5, 2006.01]
215/22	• • the carbon skeleton being unsaturated [5, 2006.01]	215/62	 • • the chain having at least three carbon atoms between the amino groups and the six-
215/24	• • • and acyclic [5, 2006.01]		membered aromatic ring or the condensed
215/26	and containing rings other than six-membered		ring system containing that ring [5, 2006.01]
245/20	aromatic rings [5, 2006.01]	215/64	 with rings other than six-membered aromatic rings
215/28	 and containing six-membered aromatic rings [5, 2006.01] 		being part of the carbon skeleton [5, 2006.01]
215/30	• • • containing hydroxy groups and carbon atoms	215/66	• • with quaternised amino groups bound to the
	of six-membered aromatic rings bound to the	215/68	carbon skeleton [5, 2006.01] • having amino groups bound to carbon atoms of six-
	same carbon atom of the carbon	213/00	membered aromatic rings and hydroxy groups bound
	skeleton [5, 2006.01]		to acyclic carbon atoms or to carbon atoms of rings
215/32	• • • • containing hydroxy groups and carbon		other than six-membered aromatic rings of the same
	atoms of two six-membered aromatic rings bound to the same carbon atom of		carbon skeleton [5, 2006.01]
	the carbon skeleton [5, 2006.01]	215/70	• with rings other than six-membered aromatic rings
215/34	• • • containing hydroxy groups and carbon atoms	245 /72	being part of the carbon skeleton [5, 2006.01]
	of six-membered aromatic rings bound to the	215/72	 with quaternised amino groups bound to the carbon skeleton [5, 2006.01]
	same carbon atom of the carbon skeleton and	215/74	having hydroxy groups and amino groups bound to
	at least one hydroxy group bound to another	213//4	carbon atoms of six-membered aromatic rings of the
	carbon atom of the carbon		same carbon skeleton [5, 2006.01]
215/36	skeleton [5, 2006.01] • • • • 1-Aryl-2-amino-1,3-propane	215/76	 of the same non-condensed six-membered
213/30	diols [5, 2006.01]		aromatic ring [5, 2006.01]
215/38	• • • with rings other than six-membered aromatic	215/78	• • containing at least two hydroxy groups bound
	rings being part of the carbon	215/00	to the carbon skeleton [5, 2006.01]
a	skeleton [5, 2006.01]	215/80	 containing at least two amino groups bound to the carbon skeleton [5, 2006.01]
215/40	• • with quaternised nitrogen atoms bound to carbon	215/82	• • having the nitrogen atom of at least one of the
215/42	 atoms of the carbon skeleton [5, 2006.01] having amino groups or hydroxy groups bound to 		amino groups further bound to a carbon atom of
41J/4Z	carbon atoms of rings other than six-membered		another six-membered aromatic
	aromatic rings of the same carbon		ring [5, 2006.01]
	skeleton [5, 2006.01]		

215/84	 having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems [5, 2006.01] 	217/34 • • • • • by halogen atoms, by trihalomethyl, nitro or nitroso groups, or by singly-bound oxygen atoms [5, 2006.01]
215/86	• • • being formed by two rings [5, 2006.01]	217/36 • • • • • by carbon atoms having at least two
215/88	• • being formed by at least three	bonds to oxygen atoms [5, 2006.01]
215700	rings [5, 2006.01]	217/38 • • • • the six-membered aromatic ring being
215/90	 with quaternised amino groups bound to the carbon skeleton [5, 2006.01] 	part of a condensed ring system containing rings other than six-membered aromatic rings [5, 2006.01]
217/00	Compounds containing amino and etherified	217/40 • • • having at least two singly-bound oxygen
	hydroxy groups bound to the same carbon	atoms, with at least one being part of an
	skeleton [5, 2006.01]	etherified hydroxy group, bound to the same
217/02	 having etherified hydroxy groups and amino groups 	carbon atom of the carbon skeleton, e.g.
217702	bound to acyclic carbon atoms of the same carbon	amino-ketals, ortho esters [5, 2006.01]
	skeleton [5, 2006.01]	
217/04		217/42 • • having etherified hydroxy groups and at least
217/04	the carbon skeleton being acyclic and	two amino groups bound to the carbon
	saturated [5, 2006.01]	skeleton [5, 2006.01]
217/06	 having only one etherified hydroxy group and 	• • the carbon skeleton being saturated and containing
	one amino group bound to the carbon skeleton,	rings [5, 2006.01]
	which is not further substituted [5, 2006.01]	217/46 • • the carbon skeleton being acyclic and
217/08	 • • • the oxygen atom of the etherified hydroxy 	unsaturated [5, 2006.01]
	group being further bound to an acyclic	217/48 • • the carbon skeleton being unsaturated and
	carbon atom [5, 2006.01]	containing rings [5, 2006.01]
217/10	• • • • to an acyclic carbon atom of a	217/50 • • Ethers of hydroxy amines of undetermined
	hydrocarbon radical containing six-	structure, e.g. obtained by reactions of epoxides
	membered aromatic rings [5, 2006.01]	with hydroxy amines [5, 2006.01]
217/12	• • • the oxygen atom of the etherified hydroxy	
21//12	group being further bound to a carbon atom	
	of a ring other than a six-membered aromatic	bound to carbon atoms of rings other than six-
	ring [5, 2006.01]	membered aromatic rings of the same carbon
217/14		skeleton [5, 2006.01]
217/14	• • • the oxygen atom of the etherified hydroxy	• having etherified hydroxy groups bound to carbon
	group being further bound to a carbon atom	atoms of at least one six-membered aromatic ring and
	of a six-membered aromatic	amino groups bound to acyclic carbon atoms or to
S. = /. S	ring [5, 2006.01]	carbon atoms of rings other than six-membered
217/16	• • • • the six-membered aromatic ring or	aromatic rings of the same carbon
	condensed ring system containing that	skeleton [5, 2006.01]
	ring not being further	217/56 • with amino groups linked to the six-membered
	substituted [5, 2006.01]	aromatic ring, or to the condensed ring system
217/18	 • • • • the six-membered aromatic ring or 	containing that ring, by carbon chains not further
	condensed ring system containing that	substituted by singly-bound oxygen
	ring being further substituted [5, 2006.01]	atoms [5, 2006.01]
217/20	 • • • • by halogen atoms, by trihalomethyl, 	217/58 • • • with amino groups and the six-membered
	nitro or nitroso groups, or by singly-	aromatic ring, or the condensed ring system
	bound oxygen atoms [5, 2006.01]	containing that ring, bound to the same carbon
217/22	 • • • • by carbon atoms having at least two 	atom of the carbon chain [5, 2006.01]
	bonds to oxygen atoms [5, 2006.01]	217/60 • • • linked by carbon chains having two carbon
217/24	• • • • the six-membered aromatic ring being	atoms between the amino groups and the six-
	part of a condensed ring system	membered aromatic ring or the condensed ring
	containing rings other than six-membered	system containing that ring [5, 2006.01]
	aromatic rings [5, 2006.01]	217/62 • • • linked by carbon chains having at least three
217/26	 having only one etherified hydroxy group and 	carbon atoms between the amino groups and
217720	one amino group bound to the carbon skeleton,	the six-membered aromatic ring or the
	which is further substituted by halogen atoms	condensed ring system containing that
	or by nitro or nitroso groups [5, 2006.01]	ring [5, 2006.01]
217/28	 having one amino group and at least two 	217/64 • • with amino groups linked to the six-membered
21//20	singly-bound oxygen atoms, with at least one	aromatic ring, or to the condensed ring system
	being part of an etherified hydroxy group,	containing that ring, by carbon chains further
	bound to the carbon skeleton, e.g. ethers of	substituted by singly-bound oxygen
		atoms [5, 2006.01]
217/20	polyhydroxy amines [5, 2006.01]	217/66 • • • with singly-bound oxygen atoms and six-
217/30	• • • having the oxygen atom of at least one of the	membered aromatic rings bound to the same
	etherified hydroxy groups further bound to a	carbon atom of the carbon chain [5, 2006.01]
	carbon atom of a six-membered aromatic	
045/00	ring [5, 2006.01]	
217/32	• • • • the six-membered aromatic ring or	membered aromatic rings and amino groups bound to the same carbon atom of the carbon
	condensed ring system containing that	chain [5, 2006.01]
	ring being further substituted [5, 2006.01]	Ciidiii [3, 2000.01]

217/70	 • • • linked by carbon chains having two carbon atoms between the amino groups and the six- membered aromatic ring or the condensed ring system containing that ring [5, 2006.01] 	219/10	 having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing
217/72	• • • linked by carbon chains having at least three		rings [5, 2006.01]
	carbon atoms between the amino groups and the six-membered aromatic ring or the	219/12	 having at least one of the hydroxy groups esterified by a carboxylic acid having the
	condensed ring system containing that		esterifying carboxyl group bound to a carbon
	ring [5, 2006.01]		atom of a ring other than a six-membered
217/74	 with rings other than six-membered aromatic rings 		aromatic ring [5, 2006.01]
	being part of the carbon skeleton [5, 2006.01]	219/14	• • having at least one of the hydroxy groups
217/76	 having amino groups bound to carbon atoms of six- membered aromatic rings and etherified hydroxy 		esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon
	groups bound to acyclic carbon atoms or to carbon		atom of a six-membered aromatic
	atoms of rings other than six-membered aromatic		ring [5, 2006.01]
	rings of the same carbon skeleton [5, 2006.01]	219/16	• • having at least one of the hydroxy groups
217/78	 having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic 		esterified by an inorganic acid or a derivative thereof [5, 2006.01]
	rings of the same carbon skeleton [5, 2006.01]	219/18	 the carbon skeleton being saturated and containing
217/80	 having amino groups and etherified hydroxy 		rings [5, 2006.01]
	groups bound to carbon atoms of non-condensed	219/20	• the carbon skeleton being unsaturated [5, 2006.01]
247/02	six-membered aromatic rings [5, 2006.01]	219/22	• • and containing six-membered aromatic
217/82	• • of the same non-condensed six-membered aromatic ring [5, 2006.01]	219/24	rings [5, 2006.01] • having esterified hydroxy groups or amino groups
217/84	• • • • the oxygen atom of at least one of the	213/24	bound to carbon atoms of rings other than six-
	etherified hydroxy groups being further		membered aromatic rings of the same carbon
	bound to an acyclic carbon	240/26	skeleton [5, 2006.01]
217/86	atom [5, 2006.01] • • • to an acyclic carbon atom of a	219/26	 having esterified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and
217700	hydrocarbon radical containing six-		amino groups bound to acyclic carbon atoms or to
	membered aromatic rings [5, 2006.01]		carbon atoms of rings other than six-membered
217/88	• • • • the oxygen atom of at least one of the		aromatic rings of the same carbon skeleton [5, 2006.01]
	etherified hydroxy groups being further bound to a carbon atom of a ring other than a	219/28	 having amino groups bound to acyclic carbon
	six-membered aromatic ring [5, 2006.01]		atoms of the carbon skeleton [5, 2006.01]
217/90	• • • the oxygen atom of at least one of the	219/30	• • with amino groups linked to the six-membered
	etherified hydroxy groups being further bound to a carbon atom of a six-membered		aromatic ring, or to the condensed ring system containing that ring, by carbon chains further
	aromatic ring, e.g. amino-		substituted by singly-bound oxygen
	diphenylethers [5, 2006.01]		atoms [5, 2006.01]
217/92	• • • • the nitrogen atom of at least one of the	219/32	having amino groups bound to carbon atoms of six- membered aromatic rings and esterified hydroxy.
	amino groups being further bound to a carbon atom of a six-membered aromatic		membered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon
	ring [5, 2006.01]		atoms of rings other than six-membered aromatic
217/94	 having amino groups bound to carbon atoms of 	0.40.40.4	rings of the same carbon skeleton [5, 2006.01]
	six-membered aromatic rings being part of condensed ring systems and etherified hydroxy	219/34	 having amino groups and esterified hydroxy groups bound to carbon atoms of six-membered aromatic
	groups bound to carbon atoms of six-membered		rings of the same carbon skeleton [5, 2006.01]
	aromatic rings of the same carbon	004 (00	
	skeleton [5, 2006.01]	221/00	Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same
219/00	Compounds containing amino and esterified hydroxy		carbon skeleton [5, 2006.01]
	groups bound to the same carbon	222/00	Compounds containing amine and CHO groups
219/02	skeleton [5, 2006.01]having esterified hydroxy groups and amino groups	223/00	Compounds containing amino and —CHO groups bound to the same carbon skeleton [5, 2006.01]
213/02	bound to acyclic carbon atoms of the same carbon	223/02	 having amino groups bound to acyclic carbon atoms
	skeleton [5, 2006.01]		of the carbon skeleton [5, 2006.01]
219/04	the carbon skeleton being acyclic and	223/04	having amino groups bound to carbon atoms of rings other than six membered aromatic rings of the scale of
219/06	saturated [5, 2006.01]having the hydroxy groups esterified by		other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]
213/00	carboxylic acids having the esterifying carboxyl	223/06	 having amino groups bound to carbon atoms of six-
	groups bound to hydrogen atoms or to acyclic		membered aromatic rings of the carbon
	carbon atoms of an acyclic saturated carbon skeleton [5, 2006.01]		skeleton [5, 2006.01]
219/08	• • having at least one of the hydroxy groups	225/00	Compounds containing amino groups and doubly-
• •	esterified by a carboxylic acid having the		bound oxygen atoms bound to the same carbon
	esterifying carboxyl group bound to an acyclic		skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino
	carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]		ketones [5, 2006.01]
	- · · · · · · · · · · · · · · · · · · ·		

225/02			
	having amino groups bound to acyclic carbon atoms	227/24	• from hydantoins [5, 2006.01]
225 /04	of the carbon skeleton [5, 2006.01]	227/26	from compounds containing carboxyl groups by
225/04	• • the carbon skeleton being saturated [5, 2006.01]		reaction with HCN, or a salt thereof, and amines, or
225/06	• • • and acyclic [5, 2006.01]	227/20	from aminonitriles [5, 2006.01]
225/08	• • • and containing rings [5, 2006.01]	227/28	• from natural products [5, 2006.01]
225/10	 • • with doubly-bound oxygen atoms bound to 	227/30	• Preparation of optical isomers [5, 2006.01]
	carbon atoms not being part of	227/32	• • by stereospecific synthesis [5, 2006.01]
	rings [5, 2006.01]	227/34	 by separation of optical isomers [5, 2006.01]
225/12	• • • with doubly-bound oxygen atoms bound to	227/36	 Racemisation of optical isomers [5, 2006.01]
	carbon atoms being part of	227/38	 Separation; Purification; Stabilisation; Use of
	rings [5, 2006.01]		additives (separation of optical isomers
225/14	• • the carbon skeleton being unsaturated [5, 2006.01]		C07C 227/34) [5, 2006.01]
225/16	 and containing six-membered aromatic 	227/40	 Separation; Purification [5, 2006.01]
	rings [5, 2006.01]	227/42	• • • Crystallisation [5, 2006.01]
225/18	• • • the carbon skeleton containing also rings	227/44	 Stabilisation; Use of additives [5, 2006.01]
	other than six-membered aromatic		
	rings [5, 2006.01]	229/00	Compounds containing amino and carboxyl groups
225/20	having amino groups bound to carbon atoms of rings		bound to the same carbon skeleton [5, 2006.01]
	other than six-membered aromatic rings of the carbon	229/02	 having amino and carboxyl groups bound to acyclic
005/00	skeleton [5, 2006.01]		carbon atoms of the same carbon
225/22	having amino groups bound to carbon atoms of six-		skeleton [5, 2006.01]
	membered aromatic rings of the carbon	229/04	 the carbon skeleton being acyclic and
005/04	skeleton [5, 2006.01]		saturated [5, 2006.01]
225/24	• the carbon skeleton containing carbon atoms of	229/06	• • having only one amino and one carboxyl group
225/26	quinone rings [5, 2006.01]		bound to the carbon skeleton [5, 2006.01]
225/26	 having amino groups bound to carbon atoms of quinone rings or of condensed ring systems 	229/08	• • • the nitrogen atom of the amino group being
	containing quinone rings [5, 2006.01]		further bound to hydrogen
225/28	• • of non-condensed quinone rings [5, 2006.01]	222/10	atoms [5, 2006.01]
		229/10	• • • the nitrogen atom of the amino group being
225/30	• • • of condensed quinone ring systems formed by two rings [5, 2006.01]		further bound to acyclic carbon atoms or to
225/22			carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
225/32	• • • of condensed quinone ring systems formed by at least three rings [5, 2006.01]	229/12	• • • • to carbon atoms of acyclic carbon
225/24		229/12	skeletons [5, 2006.01]
225/34	• • • • Amino anthraquinones [5, 2006.01]	229/14	• • • • to carbon atoms of carbon skeletons
225/36	• • • • the carbon skeleton being further	229/14	containing rings [5, 2006.01]
	substituted by singly-bound oxygen atoms [5, 2006.01]	229/16	• • • • to carbon atoms of hydrocarbon radicals
	atoms [3, 2000.01]	223/10	substituted by amino or carboxyl groups,
227/00	Preparation of compounds containing amino and		
227/00	Preparation of compounds containing amino and carboxyl groups bound to the same carbon		e.g. ethylenediamine-tetra-acetic acid,
227/00		229/18	e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01]
227/00 227/02	carboxyl groups bound to the same carbon skeleton [5, 2006.01]Formation of carboxyl groups in compounds	229/18	e.g. ethylenediamine-tetra-acetic acid,
	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino 	229/18	e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • • • the nitrogen atom of the amino group being
	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] 	229/18 229/20	e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • • • • the nitrogen atom of the amino group being further bound to carbon atoms of six-
	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing 		 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • • • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01]
227/02 227/04	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] 		 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
227/02	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without 		 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • • the carbon skeleton being further substituted by
227/02 227/04	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the 	229/20 229/22	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01]
227/02 227/04 227/06	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] 	229/20	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to
227/02 227/04	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids 	229/20 229/22	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic
227/02 227/04 227/06 227/08	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] 	229/20 229/22 229/24	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01]
227/02 227/04 227/06	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of 	229/20 229/22	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to
227/02 227/04 227/06 227/08 227/10	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] 	229/20 229/22 229/24 229/26	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01]
227/02 227/04 227/06 227/08 227/10 227/12	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] 	229/20 229/22 229/24	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing
227/02 227/04 227/06 227/08 227/10	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and 	229/20 229/22 229/24 229/26 229/28	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01]
227/02 227/04 227/06 227/08 227/10 227/12 227/14	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] 	229/20 229/22 229/24 229/26	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and
227/02 227/04 227/06 227/08 227/10 227/12	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl 	229/20 229/22 229/24 229/26 229/28 229/30	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01]
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] 	229/20 229/22 229/24 229/26 229/28	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and
227/02 227/04 227/06 227/08 227/10 227/12 227/14	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, 	229/20 229/22 229/24 229/26 229/28 229/30	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of 	229/20 229/22 229/24 229/26 229/28 229/30 229/32	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01]
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16 227/18	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters [5, 2006.01] 	229/20 229/22 229/24 229/26 229/28 229/30	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters [5, 2006.01] by hydrolysis of N-acylated amino acids or 	229/20 229/22 229/24 229/26 229/28 229/30 229/32	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01]
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16 227/18	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters [5, 2006.01] by hydrolysis of N-acylated amino acids or derivatives thereof, e.g. hydrolysis of 	229/20 229/22 229/24 229/26 229/28 229/30 229/32	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • with at least one amino group and one carboxyl
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16 227/18 227/20	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters [5, 2006.01] by hydrolysis of N-acylated amino acids or derivatives thereof, e.g. hydrolysis of carbamates [5, 2006.01] 	229/20 229/22 229/24 229/26 229/28 229/30 229/32	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • with at least one amino group and one carboxyl group bound to the same carbon atom of the
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16 227/18	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters [5, 2006.01] by hydrolysis of N-acylated amino acids or derivatives thereof, e.g. hydrolysis of carbamates [5, 2006.01] from lactams, cyclic ketones or cyclic oximes, e.g. by 	229/20 229/22 229/24 229/26 229/28 229/30 229/32	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • with at least one amino group and one carboxyl
227/02 227/04 227/06 227/08 227/10 227/12 227/14 227/16 227/18 227/20	 carboxyl groups bound to the same carbon skeleton [5, 2006.01] Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols [5, 2006.01] Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid [5, 2006.01] by reaction of ammonia or amines with acids containing functional groups [5, 2006.01] with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] Formation of amino and carboxyl groups [5, 2006.01] from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] by reactions not involving the amino or carboxyl groups [5, 2006.01] by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters [5, 2006.01] by hydrolysis of N-acylated amino acids or derivatives thereof, e.g. hydrolysis of carbamates [5, 2006.01] 	229/20 229/22 229/24 229/26 229/28 229/30 229/32	 e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids [5, 2006.01] • the nitrogen atom of the amino group being further bound to carbon atoms of sixmembered aromatic rings [5, 2006.01] • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] • the carbon skeleton being further substituted by oxygen atoms [5, 2006.01] • having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid [5, 2006.01] • having more than one amino group bound to the carbon skeleton, e.g. lysine [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • with at least one amino group and one carboxyl group bound to the same carbon atom of the

229/38	 having amino groups bound to acyclic carbon atoms and carboxyl groups bound to carbon atoms of six- 	231/08	 from amides by reaction at nitrogen atoms of carboxamide groups [5, 2006.01]
	membered aromatic rings of the same carbon skeleton [5, 2006.01]	231/10	 from compounds not provided for in groups C07C 231/02-C07C 231/08 [5, 2006.01]
229/40	 having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl 	231/12	 by reactions not involving the formation of carboxamide groups [5, 2006.01]
	groups bound to acyclic carbon atoms of the same carbon skeleton [5, 2006.01]	231/14	 by formation of carboxamide groups together with reactions not involving the carboxamide
229/42	 with carboxyl groups linked to the six-membered aromatic ring, or to the condensed ring system 		groups [5, 2006.01]
	containing that ring, by saturated carbon	231/16 231/18	Preparation of optical isomers [5, 2006.01]by stereospecific synthesis [5, 2006.01]
	chains [5, 2006.01]	231/10	 by secretospecific synthesis [5, 2006.01] by separation of optical isomers [5, 2006.01]
229/44	with carboxyl groups linked to the six-membered wrong six or to the condensed ring system.	231/22	Separation; Purification; Stabilisation; Use of
	aromatic ring, or to the condensed ring system containing that ring, by unsaturated carbon		additives (separation of optical isomers
	chains [5, 2006.01]	231/24	C07C 231/20) [5, 2006.01] • • Separation; Purification [5, 2006.01]
229/46	having amino or carboxyl groups bound to carbon	231/24	Separation, Purmication [5, 2000.01]
	atoms of rings other than six-membered aromatic rings of the same carbon skeleton [5, 2006.01]	233/00	Carboxylic acid amides [5, 2006.01]
229/48	with amino groups and carboxyl groups bound to	233/01	 having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon
	carbon atoms of the same non-condensed		atoms [5, 2006.01]
229/50	ring [5, 2006.01]	233/02	 having nitrogen atoms of carboxamide groups
229/50	 with amino groups and carboxyl groups bound to carbon atoms being part of the same condensed ring system [5, 2006.01] 		bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01]
229/52	having amino and carboxyl groups bound to carbon	233/03	• • with carbon atoms of carboxamide groups
	atoms of six-membered aromatic rings of the same	233/04	bound to hydrogen atoms [5, 2006.01]with carbon atoms of carboxamide groups
229/54	carbon skeleton [5, 2006.01]	2557 04	bound to carbon atoms of an acyclic saturated
229/34	 with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered 		carbon skeleton [5, 2006.01]
	aromatic ring [5, 2006.01]	233/05	• • • having the nitrogen atoms of the carboxamide groups bound to hydrogen
229/56	• • with amino and carboxyl groups bound in ortho- position [5, 2006.01]		atoms or to acyclic carbon atoms [5, 2006.01]
229/58	• • • having the nitrogen atom of at least one of	233/06	• • • having the nitrogen atom of at least one of
	the amino groups further bound to a carbon atom of a six-membered aromatic ring, e.g.		the carboxamide groups bound to a carbon
	N-phenyl-anthranilic acids [5, 2006.01]		atom of a ring other than a six-membered aromatic ring [5, 2006.01]
229/60	• • • with amino and carboxyl groups bound in meta-	233/07	• • • having the nitrogen atom of at least one of
229/62	or para- positions [5, 2006.01] • • • with amino groups and at least two carboxyl		the carboxamide groups bound to a carbon
	groups bound to carbon atoms of the same six-		atom of a six-membered aromatic ring [5, 2006.01]
	membered aromatic ring [5, 2006.01]	233/08	• • • with carbon atoms of carboxamide groups
229/64	 the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01] 		bound to acyclic carbon atoms of a saturated
229/66	the carbon skeleton being further substituted by	233/09	carbon skeleton containing rings [5, 2006.01] • • • with carbon atoms of carboxamide groups
	doubly-bound oxygen atoms [5, 2006.01]	233703	bound to carbon atoms of an acyclic
229/68	 with amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings being part 		unsaturated carbon skeleton [5, 2006.01]
	of the same condensed ring system [5, 2006.01]	233/10	• • • with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon
229/70	• • • the carbon skeleton being further substituted by		skeleton containing rings other than six-
222 / 72	singly-bound oxygen atoms [5, 2006.01]		membered aromatic rings [5, 2006.01]
229/72	 the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01] 	233/11	• • • with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon
229/74	• • • the condensed ring system being formed by		skeleton containing six-membered aromatic
	at least three rings, e.g. amino anthraquinone		rings [5, 2006.01]
220/76	carboxylic acids [5, 2006.01]	233/12	having the nitrogen atom of at least one of the
229/76	 Metal complexes of amino carboxylic acids [5, 2006.01] 		carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms
004 /00			or by nitro or nitroso groups [5, 2006.01]
231/00 231/02	Preparation of carboxylic acid amides [5, 2006.01] from carboxylic acids or from esters, anhydrides, or	233/13	• • with the substituted hydrocarbon radical bound
201/02	halides thereof by reaction with ammonia or		to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
	amines [5, 2006.01]	233/14	• • • with the substituted hydrocarbon radical bound
231/04	 from ketenes by reaction with ammonia or amines [5, 2006.01] 		to the nitrogen atom of the carboxamide group
231/06	• from nitriles by transformation of cyano groups into		by a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01]
	carboxamide groups [5, 2006.01]		· ·

233/15	• •	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]	233/32	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six- membered aromatic ring [5, 2006.01]
233/16		having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01]	233/33	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/17	• •	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]	233/34	•	•	ca hy	riving the nitrogen atom of at least one of the rboxamide groups bound to a carbon atom of a rdrocarbon radical substituted by amino
233/18	• •	 having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01] 	233/35	•	•	gr •	oups [5, 2006.01] with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
233/19	• •	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01] 	233/36	•	•	•	 having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01]
233/20	• •	 having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] having the carbon atom of the carboxamide 	233/37	•	•	•	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01]
233/21		group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic	233/38	•	•	•	 having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/22	• •	rings [5, 2006.01] • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]	233/39	•	•	•	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
233/23	• •	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]	233/40	•	•	•	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]
233/24	• •	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]	233/41	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/25	• •	 having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01] 	233/42	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/26	• •	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01] 	233/43	•	•	•	 having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton [5, 2006.01]
233/27	• •	 having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] 	233/44	•	•	•	 having the carbon atom of the carboxamide group bound to a carbon atom of an unsaturated carbon skeleton [5, 2006.01]
233/28	• •	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic 	233/45	•	•	ca hy	aving the nitrogen atom of at least one of the rboxamide groups bound to a carbon atom of a rdrocarbon radical substituted by carboxyl oups [5, 2006.01]
233/29	• •	rings [5, 2006.01] • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered	233/46	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01] • having the carbon atom of the carboxamide
233/30		aromatic rings [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound	233/48	•		•	 group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01] having the carbon atom of the carboxamide
233/31		oxygen atoms [5, 2006.01] • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group					group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01]
		by an acyclic carbon atom [5, 2006.01]	233/49	•	•	•	 having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]

233/50	• • • having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings	233/68 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
	other than six-membered aromatic rings [5, 2006.01]	233/69 • • • • of an acyclic saturated carbon skeleton [5, 2006.01]
233/51	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a 	233/70 • • • • of a saturated carbon skeleton containing rings [5, 2006.01]
	carbon skeleton containing six-membered aromatic rings [5, 2006.01]	233/71 • • • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/52	 • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six- 	233/72 • • • • of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
233/53	membered aromatic ring [5, 2006.01]with the substituted hydrocarbon radical bound	233/73 • • • of a carbon skeleton containing six-
	to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]	membered aromatic rings [5, 2006.01] 233/74 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
233/54	• • • having the carbon atom of the carboxamide group bound to a hydrogen atom or to a	by a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01]
	carbon atom of a saturated carbon	233/75 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
233/55	skeleton [5, 2006.01] • • • having the carbon atom of the carboxamide	by a carbon atom of a six-membered aromatic ring [5, 2006.01]
	group bound to a carbon atom of an unsaturated carbon skeleton [5, 2006.01]	233/76 • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a
233/56	 having carbon atoms of carboxamide groups bound to carbon atoms of carboxyl groups, e.g. 	hydrocarbon radical substituted by doubly-bound oxygen atoms [5, 2006.01]
233/57	oxamides [5, 2006.01] • having carbon atoms of carboxamide groups bound to	• • having the nitrogen atom of at least one of the
	carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups [5, 2006.01]
233/58	 having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon 	• • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
233/59	 radicals [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms 	233/79 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/60	 or by nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound 	233/80 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/61	 oxygen atoms [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound 	• • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01]
233/62	oxygen atoms [5, 2006.01]having the nitrogen atom of at least one of the	233/82 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino	by an acyclic carbon atom [5, 2006.01]
	groups [5, 2006.01]	233/83 • • • • of an acyclic saturated carbon skeleton [5, 2006.01]
233/63	having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a	233/84 • • • • of a saturated carbon skeleton containing rings [5, 2006.01]
	hydrocarbon radical substituted by carboxyl groups [5, 2006.01]	233/85 • • • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/64	 having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] 	233/86 • • • • of an unsaturated carbon skeleton containing rings other than six-membered aromatic
233/65	having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon	rings [5, 2006.01] 233/87 • • • • of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]
	atoms of unsubstituted hydrocarbon radicals [5, 2006.01]	• having nitrogen atoms of carboxamide groups bound to an acyclic carbon atom and to a carbon atom of a
233/66	having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrogen atoms and a least one of the carboxamide groups bound to a carbon atoms.	six-membered aromatic ring wherein at least one ortho-hydrogen atom has been replaced [5, 2006.01]
	hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]	233/89 • having nitrogen atoms of carboxamide groups quaternised [5, 2006.01]
233/67	 having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01] 	 233/90 • having nitrogen atoms of carboxamide groups further acylated [5, 2006.01]

oxygen atoms **[5, 2006.01]**

233/91	 with carbon atoms of the carboxamide groups bound to acyclic carbon atoms [5, 2006.01] 	235/38 • • • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of
233/92	 with at least one carbon atom of the carboxamide 	a six-membered aromatic ring [5, 2006.01]
	groups bound to a carbon atom of a six-membered	• having carbon atoms of carboxamide groups bound to
	aromatic ring [5, 2006.01]	carbon atoms of rings other than six-membered
22= /22		aromatic rings and singly-bound oxygen atoms bound
235/00	Carboxylic acid amides, the carbon skeleton of the	to the same carbon skeleton [5, 2006.01]
	acid part being further substituted by oxygen	• having carbon atoms of carboxamide groups bound to
225 (02	atoms [5, 2006.01]	carbon atoms of six-membered aromatic rings and
235/02	 having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms 	singly-bound oxygen atoms bound to the same
	bound to the same carbon skeleton [5, 2006.01]	carbon skeleton [5, 2006.01]
235/04	the carbon skeleton being acyclic and	235/44 • • with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon
255704	saturated [5, 2006.01]	atoms of the same non-condensed six-membered
235/06	 having the nitrogen atoms of the carboxamide 	aromatic ring [5, 2006.01]
	groups bound to hydrogen atoms or to acyclic	235/46 • • having the nitrogen atoms of the carboxamide
	carbon atoms [5, 2006.01]	groups bound to hydrogen atoms or to acyclic
235/08	 having the nitrogen atom of at least one of the 	carbon atoms [5, 2006.01]
	carboxamide groups bound to an acyclic carbon	235/48 • • having the nitrogen atom of at least one of the
	atom of a hydrocarbon radical substituted by	carboxamide groups bound to an acyclic carbon
	singly-bound oxygen atoms [5, 2006.01]	atom of a hydrocarbon radical substituted by
235/10	• • having the nitrogen atom of at least one of the	singly-bound oxygen atoms [5, 2006.01]
	carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by	235/50 • • • having the nitrogen atom of at least one of the
	nitrogen atoms not being part of nitro or nitroso	carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by
	groups [5, 2006.01]	nitrogen atoms not being part of nitro or nitroso
235/12	• • having the nitrogen atom of at least one of the	groups [5, 2006.01]
200, 12	carboxamide groups bound to an acyclic carbon	235/52 • • • having the nitrogen atom of at least one of the
	atom of a hydrocarbon radical substituted by	carboxamide groups bound to an acyclic carbon
	carboxyl groups [5, 2006.01]	atom of a hydrocarbon radical substituted by
235/14	 having the nitrogen atom of at least one of the 	carboxyl groups [5, 2006.01]
	carboxamide groups bound to a carbon atom of	235/54 • • having the nitrogen atom of at least one of the
	a ring other than a six-membered aromatic	carboxamide groups bound to a carbon atom of
225 /46	ring [5, 2006.01]	a ring other than a six-membered aromatic
235/16	• • • having the nitrogen atom of at least one of the	ring [5, 2006.01]
	carboxamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]	235/56 • • • having the nitrogen atom of at least one of the
235/18	• • having at least one of the singly-bound oxygen	carboxamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
233/10	atoms further bound to a carbon atom of a six-	235/58 • • • with carbon atoms of carboxamide groups and
	membered aromatic ring, e.g.	singly-bound oxygen atoms, bound in ortho-
	phenoxyacetamides [5, 2006.01]	position to carbon atoms of the same non-
235/20	 • • having the nitrogen atoms of the 	condensed six-membered aromatic
	carboxamide groups bound to hydrogen	ring [5, 2006.01]
	atoms or to acyclic carbon	235/60 • • • having the nitrogen atoms of the
225 (22	atoms [5, 2006.01]	carboxamide groups bound to hydrogen
235/22	• • • having the nitrogen atom of at least one of	atoms or to acyclic carbon
	the carboxamide groups bound to a carbon atom of a ring other than a six-membered	atoms [5, 2006.01] 235/62 • • • • having the nitrogen atom of at least one of
	aromatic ring [5, 2006.01]	235/62 • • • • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon
235/24	• • • having the nitrogen atom of at least one of	atom of a ring other than a six-membered
	the carboxamide groups bound to a carbon	aromatic ring [5, 2006.01]
	atom of a six-membered aromatic	235/64 • • • having the nitrogen atom of at least one of
	ring [5, 2006.01]	the carboxamide groups bound to a carbon
235/26	 the carbon skeleton being saturated and containing 	atom of a six-membered aromatic
	rings [5, 2006.01]	ring [5, 2006.01]
235/28	the carbon skeleton being acyclic and	• • with carbon atoms of carboxamide groups bound
	unsaturated [5, 2006.01]	to carbon atoms of six-membered aromatic rings
235/30	the carbon skeleton being unsaturated and	being part of condensed ring systems and singly- bound oxygen atoms, bound to the same carbon
	containing rings other than six-membered	skeleton [5, 2006.01]
235/32	aromatic rings [5, 2006.01]the carbon skeleton containing six-membered	235/68 • having the nitrogen atom of at least one of the
233/3 <u>2</u>	aromatic rings [5, 2006.01]	carboxamide groups bound to an acyclic carbon atom
235/34	• • having the nitrogen atoms of the carboxamide	and to a carbon atom of a six-membered aromatic
_55,54	groups bound to hydrogen atoms or to acyclic	ring wherein at least one ortho-hydrogen atom has
	carbon atoms [5, 2006.01]	been replaced [5, 2006.01]
235/36	 having the nitrogen atom of at least one of the 	• having carbon atoms of carboxamide groups and
	carboxamide groups bound to a carbon atom of	doubly-bound oxygen atoms bound to the same
	a ring other than a six-membered aromatic	carbon skeleton [5, 2006.01]
	ring [5, 2006.01]	

235/72			
	• • with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms [5, 2006.01]	237/30	 having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic
235/74	 • of a saturated carbon skeleton [5, 2006.01] 		carbon atoms [5, 2006.01]
235/76	• • • of an unsaturated carbon skeleton [5, 2006.01]	237/32	 having the nitrogen atom of the carboxamide
235/78	• • • the carbon skeleton containing		group bound to an acyclic carbon atom of a
200770	rings [5, 2006.01]		hydrocarbon radical substituted by oxygen
225 /00	_		atoms [5, 2006.01]
235/80	having carbon atoms of carboxamide groups	237/34	 having the nitrogen atom of the carboxamide
	and keto groups bound to the same carbon	237731	group bound to an acyclic carbon atom of a
	atom, e.g. acetoacetamides [5, 2006.01]		hydrocarbon radical substituted by nitrogen atoms
235/82	 with the carbon atom of at least one of the 		not being part of nitro or nitroso
	carboxamide groups bound to a carbon atom of a		groups [5, 2006.01]
	ring other than a six-membered aromatic	237/36	
	ring [5, 2006.01]	237/30	 having the nitrogen atom of the carboxamide group bound to an acyclic carbon atom of a
235/84	 with the carbon atom of at least one of the 		hydrocarbon radical substituted by carboxyl
	carboxamide groups bound to a carbon atom of a		groups [5, 2006.01]
	six-membered aromatic ring [5, 2006.01]	227/20	
235/86	 having the nitrogen atom of at least one of the 	237/38	having the nitrogen atom of the carboxamide
	carboxamide groups quaternised [5, 2006.01]		group bound to a carbon atom of a ring other than
235/88	 having the nitrogen atom of at least one of the 		a six-membered aromatic ring [5, 2006.01]
	carboxamide groups further acylated [5, 2006.01]	237/40	 having the nitrogen atom of the carboxamide
			group bound to a carbon atom of a six-membered
237/00	Carboxylic acid amides, the carbon skeleton of the		aromatic ring [5, 2006.01]
	acid part being further substituted by amino	237/42	 having nitrogen atoms of amino groups bound to
	groups [5, 2006.01]		the carbon skeleton of the acid part, further
237/02	 having the carbon atoms of the carboxamide groups 		acylated [5, 2006.01]
	bound to acyclic carbon atoms of the carbon	237/44	 having carbon atoms of carboxamide groups,
	skeleton [5, 2006.01]		amino groups and singly-bound oxygen atoms
237/04	 the carbon skeleton being acyclic and 		bound to carbon atoms of the same non-condensed
	saturated [5, 2006.01]		six-membered aromatic ring [5, 2006.01]
237/06	• • having the nitrogen atoms of the carboxamide	237/46	 having carbon atoms of carboxamide groups,
207700	groups bound to hydrogen atoms or to acyclic		amino groups and at least three atoms of bromine
	carbon atoms [5, 2006.01]		or iodine, bound to carbon atoms of the same non-
237/08	 having the nitrogen atom of at least one of the 		condensed six-membered aromatic
207700	carboxamide groups bound to an acyclic carbon		ring [5, 2006.01]
	atom of a hydrocarbon radical substituted by	237/48	 having the carbon atom of at least one of the
	singly-bound oxygen atoms [5, 2006.01]		carboxamide groups bound to a carbon atom of a six-
237/10	 having the nitrogen atom of at least one of the 		membered aromatic ring being part of a condensed
207710	carboxamide groups bound to an acyclic carbon		ring system of the same carbon skeleton [5, 2006.01]
		225/50	 having the nitrogen atom of at least one of the
	atom of a hydrocarbon radical substituted by	237/50	
	atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso	23//50	carboxamide groups quaternised [5, 2006.01]
	nitrogen atoms not being part of nitro or nitroso	237/50	
237/12	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01]		carboxamide groups quaternised [5, 2006.01]
237/12	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the	237/52	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01]
237/12	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon		 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds;
237/12	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by 	237/52	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters
	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] 	237/52	carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01]
237/12	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing	237/52	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen
237/14	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] 	237/52 239/00 239/02	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01]
	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and 	237/52	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01]
237/14 237/16	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] 	237/52 239/00 239/02	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01]
237/14	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and 	237/52 239/00 239/02 239/04	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01]
237/14 237/16	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered 	237/52 239/00 239/02 239/04 239/06	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01]
237/14 237/16 237/18	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] 	239/00 239/02 239/04 239/06 239/08	carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01]
237/14 237/16	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered	237/52 239/00 239/02 239/04 239/06	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or
237/14 237/16 237/18 237/20	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01]	239/00 239/02 239/04 239/06 239/08	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted
237/14 237/16 237/18	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • having nitrogen atoms of amino groups bound to	239/00 239/02 239/04 239/06 239/08	carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01] • having nitrogen atoms of hydroxylamino groups
237/14 237/16 237/18 237/20	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further	239/00 239/02 239/04 239/06 239/08	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals
237/14 237/16 237/18 237/20 237/22	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • the carbon skeleton being saturated and containing rings [5, 2006.01] • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01]	239/00 239/02 239/04 239/06 239/08	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
237/14 237/16 237/18 237/20	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the	239/00 239/02 239/04 239/06 239/08 239/10	carboxamide groups quaternised [5, 2006.01] • having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] • Compounds containing nitrogen-to-halogen bonds [5, 2006.01] • N-halogenated amines [5, 2006.01] • N-halogenated carboxamides [5, 2006.01] • Hydroxylamino compounds or their ethers or esters [5, 2006.01] • having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
237/14 237/16 237/18 237/20 237/22	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring	239/00 239/02 239/04 239/06 239/08 239/10	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon
237/14 237/16 237/18 237/20 237/22	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the	239/00 239/02 239/04 239/06 239/08 239/10	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups having nitrogen atoms of hydroxylamino groups
237/14 237/16 237/18 237/20 237/22 237/24	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01]	239/00 239/02 239/04 239/06 239/08 239/10	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]
237/14 237/16 237/18 237/20 237/22	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] • • of a ring being part of a condensed ring system	239/00 239/02 239/04 239/06 239/08 239/10	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]
237/14 237/16 237/18 237/20 237/22 237/24	 nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] the carbon skeleton being saturated and containing rings [5, 2006.01] the carbon skeleton being acyclic and unsaturated [5, 2006.01] the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] the carbon skeleton containing six-membered aromatic rings [5, 2006.01] having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. 	239/00 239/02 239/04 239/06 239/08 239/10	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon
237/14 237/16 237/18 237/20 237/22 237/24	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] • • of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01]	239/00 239/02 239/04 239/06 239/08 239/10	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups atoms [5, 2006.01]
237/14 237/16 237/18 237/20 237/22 237/24	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] • of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01]	239/00 239/02 239/04 239/06 239/08 239/10	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups further bo
237/14 237/16 237/18 237/20 237/22 237/24	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] • • of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a	237/52 239/00 239/02 239/04 239/06 239/08 239/10 239/12	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01]
237/14 237/16 237/18 237/20 237/22 237/24	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] • • of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the	237/52 239/00 239/02 239/04 239/06 239/08 239/10 239/12	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups further bo
237/14 237/16 237/18 237/20 237/22 237/24	nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] • • having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01] • • the carbon skeleton being saturated and containing rings [5, 2006.01] • • the carbon skeleton being acyclic and unsaturated [5, 2006.01] • • the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings [5, 2006.01] • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] • • having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] • • of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] • having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a	237/52 239/00 239/02 239/04 239/06 239/08 239/10 239/12	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups further acylated [5, 2006.01] Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof [5, 2006.01] Compounds containing nitrogen-to-halogen bonds [5, 2006.01] N-halogenated amines [5, 2006.01] N-halogenated carboxamides [5, 2006.01] Hydroxylamino compounds or their ethers or esters [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon

239/18	having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by carboxyl groups [5, 2006 01]	245/04	 with nitrogen atoms of azo groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
239/20	 groups [5, 2006.01] having oxygen atoms of hydroxylamino groups etherified [5, 2006.01] 	245/06	with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic
239/22	 having oxygen atoms of hydroxylamino groups esterified [5, 2006.01] 	245/08	rings [5, 2006.01] • • with the two nitrogen atoms of azo groups
241/00	Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes [5, 2006.01]	245/10	bound to carbon atoms of six-membered aromatic rings, e.g. azobenzene [5, 2006.01] • • • with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings
241/02	• Preparation of hydrazines [5, 2006.01]		
241/04	• Preparation of hydrazides [5, 2006.01]		being part of condensed ring systems [5, 2006.01]
243/00	Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes [5, 2006.01]	245/12	• Diazo compounds, i.e. compounds having the free valencies of N_2 groups attached to the same carbon atom [5, 2006.01]
243/02		245/14	having diazo groups bound to acyclic carbon
	• N-nitro compounds [5, 2006.01]		atoms of a carbon skeleton [5, 2006.01]
243/04	• N-nitroso compounds [5, 2006.01]	245/16	• • • Diazomethane [5, 2006.01]
243/06	 N-nitroso-amines [5, 2006.01] 	245/18	 the carbon skeleton being further substituted by
243/08	 N-nitroso-carboxamides [5, 2006.01] 		carboxyl groups [5, 2006.01]
243/10	 Hydrazines [5, 2006.01] 	245/20	 Diazonium compounds [5, 2006.01]
243/12	 having nitrogen atoms of hydrazine groups bound 	245/22	 containing chains of three or more nitrogen atoms
	to acyclic carbon atoms [5, 2006.01]	213,22	with one or more nitrogen-to-nitrogen double bonds [5, 2006.01]
243/14	• • • of a saturated carbon skeleton [5, 2006.01]	245/24	
243/16	• • • of an unsaturated carbon skeleton [5, 2006.01]	245/24	• • Chains of only three nitrogen atoms, e.g.
243/18	• • • containing rings [5, 2006.01]		diazoamines [5, 2006.01]
243/20	 having nitrogen atoms of hydrazine groups bound to carbon atoms of rings other than six-membered 	247/00	Compounds containing azido groups [5, 2006.01]
	aromatic rings [5, 2006.01]	247/02	• with azido groups bound to acyclic carbon atoms of a
243/22	 having nitrogen atoms of hydrazine groups bound 		carbon skeleton [5, 2006.01]
	to carbon atoms of six-membered aromatic	247/04	 being saturated [5, 2006.01]
	rings [5, 2006.01]	247/06	 and containing rings [5, 2006.01]
243/24	 Hydrazines having nitrogen atoms of hydrazine 	247/08	 being unsaturated [5, 2006.01]
	groups acylated by carboxylic acids [5, 2006.01]	247/10	• • • and containing rings [5, 2006.01]
243/26	• • with acylating carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]	247/12	 being further substituted by carboxyl groups [5, 2006.01]
243/28	to hydrogen atoms or to carbon atoms of a saturated carbon skeleton [5, 2006.01]	247/14	 with azido groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
243/30	• • • to carbon atoms of an unsaturated carbon	247/16	 with azido groups bound to carbon atoms of six-
0.40.700	skeleton [5, 2006.01]		membered aromatic rings of a carbon skeleton [5, 2006.01]
243/32	• • • the carbon skeleton containing rings [5, 2006.01]	247/18	 being further substituted by carboxyl
243/34	 to carbon atoms of a carbon skeleton further 		groups [5, 2006.01]
243/36	substituted by nitrogen atoms [5, 2006.01] • with acylating carboxyl groups bound to carbon	247/20	 with azido groups acylated by carboxylic acids [5, 2006.01]
	atoms of rings other than six-membered aromatic rings [5, 2006.01]	247/22	 with the acylating carboxyl groups bound to hydrogen atoms, to acyclic carbon atoms or to
243/38	with acylating carboxyl groups bound to carbon atoms of six-membered aromatic		carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
	rings [5, 2006.01]	247/24	 with at least one of the acylating carboxyl groups
243/40	Hydrazines having nitrogen atoms of hydrazine	24//24	bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
243/42	 groups being quaternised [5, 2006.01] Hydrazines having nitrogen atoms of hydrazine groups further singly-bound to hetero 	249/00	Preparation of compounds containing nitrogen
	atoms [5, 2006.01]		atoms doubly-bound to a carbon skeleton (of diazo compounds C07C 245/12) [5, 2006.01]
245/00	Compounds containing chains of at least two	249/02	• of compounds containing imino groups [5, 2006.01]
	nitrogen atoms with at least one nitrogen-to-nitrogen	249/04	• of oximes [5, 2006.01]
	multiple bond (azoxy compound	249/06	 by nitrosation of hydrocarbons or substituted
	C07C 291/08) [5, 2006.01]	2.5700	hydrocarbons [5, 2006.01]
245/02	Azo compounds, i.e. compounds having the free	249/08	 by reaction of hydroxylamines with carbonyl
273/02	valencies of —N=N— groups attached to different	4 4 3/00	compounds [5, 2006.01]
	atoms, e.g. diazohydroxides [5, 2006.01]	249/10	 from nitro compounds or salts thereof [5, 2006.01]
	-, O y (-)		-
		249/12	• • by reactions not involving the formation of
			oxyimino groups [5, 2006.01]

249/14	• • Separation; Purification; Stabilisation; Use of additives [5, 2006.01]	251/56	 • of hydrocarbon radicals substituted by doubly- bound oxygen atoms [5, 2006.01]
249/16	• of hydrazones [5, 2006.01]	251/58	• • • of hydrocarbon radicals substituted by nitrogen
251/00	Compounds containing nitrogen atoms doubly-		atoms not being part of nitro or nitroso groups [5, 2006.01]
	bound to a carbon skeleton (diazo compounds C07C 245/12) [5, 2006.01]	251/60	• • • of hydrocarbon radicals substituted by carboxyl groups [5, 2006.01]
251/02	• containing imino groups [5, 2006.01]	251/62	 having oxygen atoms of oxyimino groups
251/04	 having carbon atoms of imino groups bound to 	2017 02	esterified [5, 2006.01]
	hydrogen atoms or to acyclic carbon	251/64	• • • by carboxylic acids [5, 2006.01]
	atoms [5, 2006.01]	251/66	 • • • with the esterifying carboxyl groups bound
251/06	• • to carbon atoms of a saturated carbon skeleton [5, 2006.01]		to hydrogen atoms, to acyclic carbon atoms or to carbon atoms of rings other than six-
251/08	• • • • being acyclic [5, 2006.01]		membered aromatic rings [5, 2006.01]
251/10	• • to carbon atoms of an unsaturated carbon skeleton [5, 2006.01]	251/68	• • • • with at least one of the esterifying carboxyl groups bound to a carbon atom of a six-
251/12	• • • being acyclic [5, 2006.01]		membered aromatic ring [5, 2006.01]
251/14	• • • containing rings other than six-membered	251/70	• • Metal complexes of oximes [5, 2006.01]
DE4 /46	aromatic rings [5, 2006.01]	251/72	• Hydrazones [5, 2006.01]
251/16	• • • containing six-membered aromatic rings [5, 2006.01]	251/74	 having doubly-bound carbon atoms of hydrazone groups bound to hydrogen atoms or to acyclic
251/18	 having carbon atoms of imino groups bound to 		carbon atoms [5, 2006.01]
	carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	251/76	• • • to carbon atoms of a saturated carbon skeleton [5, 2006.01]
251/20	 having carbon atoms of imino groups being part of rings other than six-membered aromatic 	251/78	 to carbon atoms of an unsaturated carbon skeleton [5, 2006.01]
251/22	rings [5, 2006.01] • • • Quinone imines [5, 2006.01]	251/80	• • • • the carbon skeleton containing rings [5, 2006.01]
251/24	having carbon atoms of imino groups bound to	251/82	 having doubly-bound carbon atoms of hydrazone
231, 21	carbon atoms of six-membered aromatic rings [5, 2006.01]	231/02	groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
251/26	 having nitrogen atoms of imino groups further bound to halogen atoms [5, 2006.01] 	251/84	having doubly-bound carbon atoms of hydrazone groups being part of rings other than six-
251/28	having nitrogen atoms of imino groups		membered aromatic rings [5, 2006.01]
	acylated [5, 2006.01]	251/86	 having doubly-bound carbon atoms of hydrazone
251/30	 having nitrogen atoms of imino groups quaternised [5, 2006.01] 		groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
251/32	• Oximes [5, 2006.01]	251/88	 having also the other nitrogen atom doubly-bound
251/34	 with oxygen atoms of oxyimino groups bound to 		to a carbon atom, e.g. azines [5, 2006.01]
	hydrogen atoms or to carbon atoms of	253/00	Preparation of carboxylic acid nitriles (of cyanogen
DE4 /DC	unsubstituted hydrocarbon radicals [5, 2006.01]	233700	or compounds thereof C01C 3/00) [5, 2006.01]
251/36	• • • with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms IS 2006 011	253/02	 by reaction of nitrogen oxide with organic compounds [5, 2006.01]
251/38	atoms [5, 2006.01] • • • to carbon atoms of a saturated carbon	253/04	 by reaction of cyanogen halides, e.g. ClCN, with
231/30	skeleton [5, 2006.01]		organic compounds [5, 2006.01]
251/40	• • • • to carbon atoms of an unsaturated carbon	253/06	• from N-formylated amino compounds [5, 2006.01]
2017 10	skeleton [5, 2006.01]	253/08	 by addition of hydrogen cyanide or salts thereof to
251/42	• • with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a	253/10	unsaturated compounds [5, 2006.01]to compounds containing carbon-to-carbon double
	ring other than a six-membered aromatic		bonds [5, 2006.01]
251/44	ring [5, 2006.01] • • with the carbon atom of at least one of the	253/12	 to compounds containing carbon-to-carbon triple bonds [5, 2006.01]
231/44	oxyimino groups being part of a ring other than	253/14	 by reaction of cyanides with halogen-containing
	a six-membered aromatic ring [5, 2006.01]	2007 1 .	compounds with replacement of halogen atoms by
251/46	• • • • Quinone oximes [5, 2006.01]		cyano groups [5, 2006.01]
251/48	• • with the carbon atom of at least one of the	253/16	 by reaction of cyanides with lactones or compounds
	oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]		containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01]
251/50	 having oxygen atoms of oxyimino groups bound 	253/18	 by reaction of ammonia or amines with compounds
	to carbon atoms of substituted hydrocarbon radicals [5, 2006.01]		containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01]
251/52	 • of hydrocarbon radicals substituted by halogen 	253/20	by dehydratation of carboxylic acid
	atoms or by nitro or nitroso groups [5, 2006.01]	0=0:	amides [5, 2006.01]
251/54	 • of hydrocarbon radicals substituted by singly- bound oxygen atoms [5, 2006.01] 	253/22	 by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano
			groups [5, 2006.01]

253/24	 by ammoxidation of hydrocarbons or substituted hydrocarbons [5, 2006.01] 	255/24 • • containing cyano groups and singly-bound nitrogen atoms, not being further bound to other
253/26	 containing carbon-to-carbon multiple bonds, e.g. 	hetero atoms, bound to the same saturated acyclic
253/28	unsaturated aldehydes [5, 2006.01]containing six-membered aromatic rings, e.g.	carbon skeleton [5, 2006.01] 255/25 • • • Aminoacetonitriles [5, 2006.01]
233/20	styrene [5, 2006.01]	255/26 • • • containing cyano groups, amino groups and
253/30	 by reactions not involving the formation of cyano groups [5, 2006.01] 	singly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01]
253/32	• Separation; Purification; Stabilisation; Use of additives [5, 2006.01]	255/27 • • • containing cyano groups, amino groups and doubly-bound oxygen atoms bound to the
253/34	• • Separation; Purification [5, 2006.01]	carbon skeleton [5, 2006.01]
255/00	Carboxylic acid nitriles (cyanogen or compounds thereof C01C 3/00) [5, 2006.01]	255/28 • • • containing cyano groups, amino groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton [5, 2006.01]
255/01	 having cyano groups bound to acyclic carbon atoms [5, 2006.01] 	255/29 • • • containing cyano groups and acylated amino groups bound to the carbon
255/02	of an acyclic and saturated carbon	skeleton [5, 2006.01]
255/03	skeleton [5, 2006.01] • • • Mononitriles [5, 2006.01]	255/30 • • containing cyano groups and singly-bound nitrogen atoms, not being further bound to other
255/03	containing two cyano groups bound to the	hetero atoms, bound to the same unsaturated
200701	carbon skeleton [5, 2006.01]	acyclic carbon skeleton [5, 2006.01]
255/05	• • • containing at least three cyano groups bound to the carbon skeleton [5, 2006.01]	• • having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing rings other
255/06	of an acyclic and unsaturated carbon	than six-membered aromatic rings [5, 2006.01] 255/32 • having cyano groups bound to acyclic carbon
255/07	skeleton [5, 2006.01] • • • Mononitriles [5, 2006.01]	atoms of a carbon skeleton containing at least one
255/08	• • • • Acrylonitrile; Methacrylonitrile [5, 2006.01]	six-membered aromatic ring [5, 2006.01]
255/09	• • containing at least two cyano groups bound to	255/33 • • • with cyano groups linked to the six-membered aromatic ring, or to the condensed ring system
055/40	the carbon skeleton [5, 2006.01]	containing that ring, by saturated carbon
255/10	 containing cyano groups and halogen atoms, or nitro or nitroso groups, bound to the same acyclic 	chains [5, 2006.01]
	carbon skeleton [5, 2006.01]	255/34 • • • with cyano groups linked to the six-membered aromatic ring, or to the condensed ring system
255/11	containing cyano groups and singly-bound oxygen	containing that ring, by unsaturated carbon
	atoms bound to the same saturated acyclic carbon skeleton [5, 2006.01]	chains [5, 2006.01]
255/12	containing cyano groups and hydroxy groups	255/35 • • • the carbon skeleton being further substituted by halogen atoms, or by nitro or nitroso
	bound to the carbon skeleton [5, 2006.01]	groups [5, 2006.01]
255/13	• • • containing cyano groups and etherified hydroxy groups bound to the carbon	255/36 • • • the carbon skeleton being further substituted by hydroxy groups [5, 2006.01]
255/14	skeleton [5, 2006.01] • • • containing cyano groups and esterified hydroxy	255/37 • • • the carbon skeleton being further substituted by
	groups bound to the carbon	etherified hydroxy groups [5, 2006.01] 255/38 • • • the carbon skeleton being further substituted by
DEE /45	skeleton [5, 2006.01]	esterified hydroxy groups [5, 2006.01]
255/15	 containing cyano groups and singly-bound oxygen atoms bound to the same unsaturated acyclic 	255/39 • • • with hydroxy groups esterified by
	carbon skeleton [5, 2006.01]	derivatives of 2,2-dimethylcyclopropane carboxylic acids, e.g. chrysanthemumic
255/16	containing cyano groups and singly-bound oxygen	acids [5, 2006.01]
	atoms bound to the same carbon atom of an acyclic carbon skeleton [5, 2006.01]	255/40 • • • the carbon skeleton being further substituted by
255/17	 containing cyano groups and doubly-bound 	doubly-bound oxygen atoms [5, 2006.01] 255/41 • • the carbon skeleton being further substituted by
	oxygen atoms bound to the same acyclic carbon skeleton [5, 2006.01]	carboxyl groups, other than cyano groups [5, 2006.01]
255/18	 containing cyano groups bound to carbon atoms of carboxyl groups [5, 2006.01] 	255/42 • • • the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further
255/19	containing cyano groups and carboxyl groups, other than cyano groups, bound to the same	bound to other hetero atoms [5, 2006.01] 255/43 • • • the carbon skeleton being further substituted
255/20	saturated acyclic carbon skeleton [5, 2006.01]the carbon skeleton being further substituted by	by singly-bound oxygen atoms [5, 2006.01]
255/21	singly-bound oxygen atoms [5, 2006.01] • • • the carbon skeleton being further substituted by	255/44 • • • at least one of the singly-bound nitrogen atoms being acylated [5, 2006.01]
	doubly-bound oxygen atoms [5, 2006.01]	• having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
255/22	• • • containing cyano groups and at least two carboxyl groups bound to the carbon cycleton [5, 2006, 01].	255/46 • • to carbon atoms of non-condensed rings [5, 2006.01]
255/23	skeleton [5, 2006.01] • • containing cyano groups and carboxyl groups,	• • to carbon atoms of rings being part of condensed
233,23	other than cyano groups, bound to the same unsaturated acyclic carbon skeleton [5, 2006.01]	ring systems [5, 2006.01]

255/48	 to carbon atoms of 2,2-dimethylcyclopropane rings, e.g. nitrile of chrysanthemumic acids [5, 2006.01] 	257/08	 having carbon atoms of imino-carboxyl groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
255/49	 having cyano groups bound to carbon atoms of six- membered aromatic rings of a carbon skeleton [5, 2006.01] 	257/10	 with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines [5, 2006.01]
255/50	 to carbon atoms of non-condensed six-membered aromatic rings [5, 2006.01] 	257/12	 having carbon atoms of amidino groups bound to hydrogen atoms [5, 2006.01]
255/51	• • containing at least two cyano groups bound to the carbon skeleton [5, 2006.01]	257/14	 having carbon atoms of amidino groups bound to acyclic carbon atoms [5, 2006.01]
255/52	 to carbon atoms of six-membered aromatic rings being part of condensed ring systems [5, 2006.01] 	257/16	 having carbon atoms of amidino groups bound to carbon atoms of rings other than six-membered
255/53	 containing cyano groups and hydroxy groups bound to the carbon skeleton [5, 2006.01] 	257/18	aromatic rings [5, 2006.01]having carbon atoms of amidino groups bound to
255/54	 containing cyano groups and etherified hydroxy groups bound to the carbon skeleton [5, 2006.01] 		carbon atoms of six-membered aromatic rings [5, 2006.01]
255/55	 containing cyano groups and esterified hydroxy groups bound to the carbon skeleton [5, 2006.01] 	257/20	 having nitrogen atoms of amidino groups acylated [5, 2006.01]
255/56	 containing cyano groups and doubly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01] 	257/22	 having nitrogen atoms of amidino groups further bound to nitrogen atoms, e.g. hydrazidines [5, 2006.01]
255/57	 containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton [5, 2006.01] 	259/00	Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a
255/58	 containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon 		nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups [5, 2006.01]
255 /50	skeleton [5, 2006.01]	259/02	 with replacement of the other oxygen atom of the carboxyl group by halogen atoms [5, 2006.01]
255/59	• • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	259/04	• without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids [5, 2006.01]
255/60 255/61	 • at least one of the singly-bound nitrogen atoms being acylated [5, 2006.01] • containing cyano groups and nitrogen atoms being 	259/06	 having carbon atoms of hydroxamic groups bound to hydrogen atoms or to acyclic carbon
	part of imino groups bound to the same carbon skeleton [5, 2006.01]	259/08	 atoms [5, 2006.01] having carbon atoms of hydroxamic groups bound to carbon atoms of rings other than six-membered
255/62	containing cyano groups and oxygen atoms being part of oxyimino groups bound to the same carbon	259/10	aromatic rings [5, 2006.01] • having carbon atoms of hydroxamic groups bound
255/63	skeleton [5, 2006.01]containing cyano groups and nitrogen atoms further	200710	to carbon atoms of six-membered aromatic rings [5, 2006.01]
	bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton [5, 2006.01]	259/12	 with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. N- hydroxyamidines [5, 2006.01]
255/64	 with the nitrogen atoms further bound to oxygen atoms [5, 2006.01] 	259/14	 having carbon atoms of hydroxyamidine groups
255/65	 with the nitrogen atoms further bound to nitrogen atoms [5, 2006.01] 		bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
255/66	 having cyano groups and nitrogen atoms being part of hydrazine or hydrazone groups bound to the same carbon skeleton [5, 2006.01] 	259/16	 having carbon atoms of hydroxyamidine groups bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
255/67	• • having cyano groups and azido groups bound to the same carbon skeleton [5, 2006.01]	259/18	 having carbon atoms of hydroxyamidine groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
257/00	Compounds containing carboxyl groups, the doubly- bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen	259/20	 with at least one nitrogen atom of hydroxyamidine groups bound to another nitrogen atom [5, 2006.01]
255 (22	atom, e.g. imino-ethers, amidines [5, 2006.01]	261/00 261/02	Derivatives of cyanic acid [5, 2006.01]
257/02	 with replacement of the other oxygen atom of the carboxyl group by halogen atoms, e.g. imino- halides [5, 2006.01] 	261/04	• Cyanamides (unsubstituted cyanamide C01C 3/16) [5, 2006.01]
257/04	 without replacement of the other oxygen atom of the carboxyl group, e.g. imino-ethers [5, 2006.01] 	263/00	Preparation of derivatives of isocyanic acid [5, 2006.01]
257/06	 having carbon atoms of imino-carboxyl groups bound to hydrogen atoms, to acyclic carbon atoms, 	263/02	 by reaction of halides with isocyanic acid or its derivatives [5, 2006.01]
	or to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	263/04	• from or <u>via</u> carbamates or carbamoyl halides [5, 2006.01]
		263/06	• from or <u>via</u> ureas [5, 2006.01]

263/08	• from or <u>via</u> heterocyclic compounds, e.g. pyrolysis of furoxans [5, 2006.01]	271/10	• •		with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic
263/10	• by reaction of amines with carbonyl halides, e.g. with	271 /12		-	carbon atoms [5, 2006.01]
263/12	phosgene [5, 2006.01]from or <u>via</u> nitrogen analogues of carboxylic acids,	271/12	• •	•	 to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon
	e.g. from hydroxamic acids, involving a Hofmann,				radicals [5, 2006.01]
	Curtius or Lossen-type rearrangement (C07C 209/56	271/14	• •	•	to carbon atoms of hydrocarbon radicals
262/14	takes precedence) [5, 2006.01]				substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
263/14	 by catalytic reaction of nitro compounds with carbon monoxide [5, 2006.01] 	271/16			to carbon atoms of hydrocarbon radicals
263/16	 by reactions not involving the formation of 				substituted by singly-bound oxygen
	isocyanate groups [5, 2006.01]				atoms [5, 2006.01]
263/18	• Separation; Purification; Stabilisation; Use of	271/18	• •	•	to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen
263/20	additives [5, 2006.01] • Separation; Purification [5, 2006.01]				atoms [5, 2006.01]
	•	271/20	• •	•	to carbon atoms of hydrocarbon radicals
265/00	Derivatives of isocyanic acid [5, 2006.01]				substituted by nitrogen atoms not being part
265/02	 having isocyanate groups bound to acyclic carbon atoms [5, 2006.01] 	271/22			of nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals
265/04	• • of a saturated carbon skeleton [5, 2006.01]	2/1/22			substituted by carboxyl groups [5, 2006.01]
265/06	• • of an unsaturated carbon skeleton [5, 2006.01]	271/24	• •	• 1	with the nitrogen atom of at least one of the
265/08	• • the carbon skeleton containing				carbamate groups bound to a carbon atom of a
	rings [5, 2006.01]				ring other than a six-membered aromatic
265/10	 having isocyanate groups bound to carbon atoms of 	271/26			ring [5, 2006.01] with the nitrogen atom of at least one of the
	rings other than six-membered aromatic	2/1/20			carbamate groups bound to a carbon atom of a
265/12	rings [5, 2006.01] • having isocyanate groups bound to carbon atoms of				six-membered aromatic ring [5, 2006.01]
203/12	six-membered aromatic rings [5, 2006.01]	271/28	• •	•	to a carbon atom of a non-condensed six-
265/14	• containing at least two isocyanate groups bound to	271/30			membered aromatic ring [5, 2006.01] to a carbon atom of a six-membered
265/16	the same carbon skeleton [5, 2006.01] • having isocyanate groups acylated [5, 2006.01]	2, 1, 30			aromatic ring being part of a condensed ring
		271/22		L	system [5, 2006.01]
267/00	Carbodiimides [5, 2006.01]	271/32	• •		ring oxygen atoms of carbamate groups bound carbon atoms of rings other than six-membered
				to c	dibon deoms of fings other than six membered
269/00	Preparation of derivatives of carbamic acid, i.e.				matic rings [5, 2006.01]
269/00	compounds containing any of the groups	271/34		aro	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate
269/00	compounds containing any of the groups	271/34		aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic
269/00	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O-			aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
269/00	compounds containing any of the groups O O- N-C-O-, N-C-Hal, -N=C-O-, O- Hal	271/34 271/36	• •	aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic
269/00	compounds containing any of the groups O O- N-C-O-, N-C-Hal, -N-C-O-, O- Hal -N-C-Hal or -N-C-Hal the nitrogen atom			aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic
	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N-C-O- O- Hal -N-C-Hal or -N-C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01]	271/36		aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01]
269/00 269/02	compounds containing any of the groups O O- N-C-O- N-C-Hal N-C-O- O- Hal -N-C-Hal or -N-C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate			aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the
269/02	compounds containing any of the groups O O- N-C-O- N-C-Hal, -N=C-O- O- Hal -N=C-Hal or -N=C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate groups [5, 2006.01]	271/36		aroi	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01]
	compounds containing any of the groups O O- N-C-O- N-C-Hal N-C-O- O- Hal -N-C-Hal or -N-C-Hal the nitrogen atom not being part of nitro or nitroso groups [5, 2006.01] • from isocyanates with formation of carbamate	271/36		aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound
269/02	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38		aro:	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic
269/02 269/04 269/06	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40		aron	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic groups double carbon atoms of six-membered aromatic groups [5, 2006.01]
269/02 269/04	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38		aron	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic groups distributed aromatic groups [5, 2006.01] with the nitrogen atoms of the carbamate
269/02 269/04 269/06	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40		aron	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic groups double carbon atoms of six-membered aromatic groups [5, 2006.01]
269/02 269/04 269/06	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40		aron	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42		aron	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42		aron	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01]
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44		aro. § § § § § have to coring	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44 271/46		aro. § § § § § have to coring	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals
269/02 269/04 269/06 269/08 271/00	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44 271/46		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen
269/02 269/04 269/06 269/08	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44 271/46		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals
269/02 269/04 269/06 269/08 271/00	compounds containing any of the groups O O O O O O O O O O O O O O O O O O O	271/36 271/38 271/40 271/42 271/44 271/46 271/48		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound rarbon atoms of six-membered aromatic groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to thydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen
269/02 269/04 269/06 269/08 271/00	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48 271/50		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01]
269/02 269/04 269/06 269/08 271/00 271/02 271/04 271/06	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01]
269/02 269/04 269/06 269/08 271/00	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48 271/50		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic ring [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01]
269/02 269/04 269/06 269/08 271/00 271/02 271/04 271/06	compounds containing any of the groups O	271/36 271/38 271/40 271/42 271/44 271/46 271/48 271/50		aro.	matic rings [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] ring oxygen atoms of carbamate groups bound carbon atoms of six-membered aromatic gs [5, 2006.01] with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part

271/56	• • • with the nitrogen atom of at least one of the	275/16	• • being further substituted by carboxyl
	carbamate groups bound to a carbon atom of a		groups [5, 2006.01]
	ring other than a six-membered aromatic ring [5, 2006.01]	275/18	 of a saturated carbon skeleton containing rings [5, 2006.01]
271/58	• • with the nitrogen atom of at least one of the	275/20	• • of an unsaturated carbon skeleton [5, 2006.01]
	carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]	275/22	 containing rings other than six-membered aromatic rings [5, 2006.01]
271/60	 having oxygen atoms of carbamate groups bound to nitrogen atoms [5, 2006.01] 	275/24	• • • containing six-membered aromatic rings [5, 2006.01]
271/62	Compounds containing any of the groups	275/26	 having nitrogen atoms of urea groups bound to
	0 X 0 X -0-C-N-C Hal-C-N-C		carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
	Y Y	275/28	 having nitrogen atoms of urea groups bound to
	0		carbon atoms of six-membered aromatic rings of a carbon skeleton [5, 2006.01]
	[†] X being a hetero	275/30	• • being further substituted by halogen atoms, or by nitro or nitroso groups [5, 2006.01]
	atom, Y being any atom, e.g. N-acylcarbamates [5, 2006.01]	275/32	• • being further substituted by singly-bound oxygen atoms [5, 2006.01]
271/64	 Y being a hydrogen or a carbon atom, e.g. benzoylcarbamates [5, 2006.01] 	275/34	 having nitrogen atoms of urea groups and
271/66	• • Y being a hetero atom [5, 2006.01]		singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-
271/68	Compounds containing any of the groups		membered aromatic ring [5, 2006.01]
	• Compounds containing any of the groups O- O- Hal -N=C or -N=C O- Hal Hal [5, 2006.01]	275/36	• • • with at least one of the oxygen atoms further
	-N=C or -N=C		bound to a carbon atom of a six-membered
	U- Hal Hal [5, 2006.01]		aromatic ring, e.g. N- aryloxyphenylureas [5, 2006.01]
273/00	Preparation of urea or its derivatives, i.e. compounds	275/38	 being further substituted by doubly-bound oxygen
	containing any of the groups		atoms [5, 2006.01]
	0	275/40	being further substituted by nitrogen atoms not
	The nitrogen atoms	275/42	being part of nitro or nitroso groups [5, 2006.01]being further substituted by carboxyl
272 (02	not being part of nitro or nitroso groups [5, 2006.01]	2/3/42	• • being further substituted by carboxyl groups [5, 2006.01]
273/02	 of urea, its salts, complexes or addition compounds [5, 2006.01] 	275/44	 having nitrogen atoms of urea groups doubly-bound
273/04	 from carbon dioxide and ammonia [5, 2006.01] 		to carbon atoms [5, 2006.01]
273/06	from cyanamide or calcium	275/46	 containing any of the groups □ X □ X
	cyanamide [5, 2006.01]		N-C-N-C or N-C-N=C 0 1
273/08	• • from ammoniacal liquor [5, 2006.01]		Y X being a hetero
273/10	 combined with the synthesis of ammonia [5, 2006.01] 		atom, Y being any atom, e.g. acylureas [5, 2006.01]
273/12	 combined with the synthesis of 	275/48	• • Y being a hydrogen or a carbon atom [5, 2006.01]
	melamine [5, 2006.01]	275/50	• • Y being a hydrogen or an acyclic carbon
273/14	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01] 	275/52	atom [5, 2006.01]Y being a carbon atom of a ring other than a
273/16	• • • Separation; Purification [5, 2006.01]	275/54	six-membered aromatic ring [5, 2006.01]
273/18	• of substituted ureas [5, 2006.01]	275/54	• • • Y being a carbon atom of a six-membered aromatic ring, e.g. benzoylureas [5, 2006.01]
275/00	Derivatives of urea, i.e. compounds containing any of	275/56	• • • X being a nitrogen atom [5, 2006.01]
	0 N- N- 11 N-C-N- N-C-O- or N-C-Hal the	275/58 275/60	Y being a hetero atom [5, 2006.01]Y being an oxygen atom, e.g. allophanic
	the groups the nitrogen atoms not being part of nitro or nitroso	273700	acids [5, 2006.01]
	groups [5, 2006.01]	275/62	• • Y being a nitrogen atom, e.g.
275/02	• Salts; Complexes; Addition compounds [5, 2006.01]		biuret [5, 2006.01]
275/04	 having nitrogen atoms of urea groups bound to acyclic carbon atoms [5, 2006.01] 	275/64	 having nitrogen atoms of urea groups singly-bound to oxygen atoms [5, 2006.01]
275/06	 of an acyclic and saturated carbon skeleton [5, 2006.01] 	275/66	 having nitrogen atoms of urea groups bound to halogen atoms or to nitro or nitroso
275/08	• • being further substituted by halogen atoms, or		groups [5, 2006.01]
	by nitro or nitroso groups [5, 2006.01]	275/68	• • N-nitroso ureas [5, 2006.01]
275/10	• • • being further substituted by singly-bound oxygen atoms [5, 2006.01]	275/70	 Compounds containing any of the groups N- N-
275/12	• • • being further substituted by doubly-bound oxygen atoms [5, 2006.01]		-N=C or -N=C Hal e.g. isoureas [5, 2006.01]
275/14	 • being further substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] 		e.g. isoureas [5, 2006.01]

277/00	Preparation of guanidine or its derivatives, i.e.	281/02	 Compounds containing any of the groups
			\ \N-N-C-O- or \N-N=C-O- _{e.g.}
	compounds containing the group N-C-N the		- 0
	singly-bound nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01]		carbazates [5, 2006.01]
277/02	of guanidine from cyanamide, calcium cyanamide or	281/04	• • the other nitrogen atom being further doubly-
277702	dicyandiamides [5, 2006.01]	281/06	bound to a carbon atom [5, 2006.01]Compounds containing any of the groups
277/04	of guanidine from ammonium	201/00	
	thiocyanate [5, 2006.01]		
277/06	• Purification or separation of guanidine [5, 2006.01]		0
277/08	 of substituted guanidines [5, 2006.01] 		or >N-N-C=N-
279/00	Derivatives of guanidine, i.e. compounds containing		e.g.
2/3/00	N-	201 /00	semicarbazides [5, 2006.01]
	the group $N = 0$ the singly-bound nitrogen atoms	281/08	 the other nitrogen atom being further doubly- bound to a carbon atom, e.g.
	not being part of nitro or nitroso groups [5, 2006.01]		semicarbazones [5, 2006.01]
279/02	Guanidine; Salts, complexes or addition compounds	281/10	• • the carbon atom being further bound to an
	thereof [5, 2006.01]		acyclic carbon atom or to a carbon atom of a
279/04	 having nitrogen atoms of guanidine groups bound to 		ring other than a six-membered aromatic
	acyclic carbon atoms of a carbon		ring [5, 2006.01]
250 / 26	skeleton [5, 2006.01]	281/12	• • • the carbon atom being part of a ring other than
279/06	• • being further substituted by halogen atoms, or by	201/14	a six-membered aromatic ring [5, 2006.01]
279/08	nitro or nitroso groups [5, 2006.01] • being further substituted by singly-bound oxygen	281/14	• • • the carbon atom being further bound to a carbon atom of a six-membered aromatic
2/3/00	atoms [5, 2006.01]		ring [5, 2006.01]
279/10	 being further substituted by doubly-bound oxygen 	281/16	Compounds containing any of the groups
	atoms [5, 2006.01]		NN-
279/12	 being further substituted by nitrogen atoms not 		>N−Ň−Ö−N< or >N−N=Ö−N< e.g.
	being part of nitro or nitroso groups [5, 2006.01]		aminoguanidine [5, 2006.01]
279/14	being further substituted by carboxyl	281/18	 the other nitrogen atom being further doubly-
050/46	groups [5, 2006.01]		bound to a carbon atom, e.g.
279/16	 having nitrogen atoms of guanidine groups bound to carbon atoms of rings other than six-membered 	281/20	guanylhydrazones [5, 2006.01]
	aromatic rings [5, 2006.01]	201/20	 the two nitrogen atoms of the functional groups being doubly-bound to each other, e.g.
279/18	 having nitrogen atoms of guanidine groups bound to 		azoformamide [5, 2006.01]
	carbon atoms of six-membered aromatic		
	rings [5, 2006.01]	291/00	Compounds containing carbon and nitrogen and
279/20	• containing any of the groups		having functional groups not covered by groups C07C 201/00-C07C 281/00 [5, 2006.01]
	>N N N N N N N N N N N N N N N N N N N	291/02	• containing nitrogen-oxide bonds [5, 2006.01]
	Y Y	291/04	 containing amino-oxide bonds [5, 2006.01]
		291/06	• • Nitrile oxides [5, 2006.01]
	X being a hetero	291/08	 Azoxy compounds [5, 2006.01]
	atom, Y being any atom, e.g.	291/10	• Isocyanides [5, 2006.01]
	acylguanidines [5, 2006.01]	291/12	• Fulminates [5, 2006.01]
279/22	 Y being a hydrogen or a carbon atom, e.g. 	291/14	 containing at least one carbon atom bound to a nitro
	benzoylguanidines [5, 2006.01]		or nitroso group and doubly-bound to a hetero
279/24	• • Y being a hetero atom [5, 2006.01]		atom [5, 2006.01]
279/26	• • X and Y being nitrogen atoms, i.e. biguanides [5, 2006.01]		
270/20		Compou	nds containing carbon together with sulfur, selenium or
279/28	 having nitrogen atoms of guanidine groups bound to cyano groups, e.g. cyanoguanidines, 		ı, with or without hydrogen, halogens, oxygen or
	dicyandiamides [5, 2006.01]	<u>nitrogen</u>	
279/30	 having nitrogen atoms of guanidine groups bound to 	301/00	Esters of sulfurous acid [5, 2006.01]
	nitro or nitroso groups [5, 2006.01]	301/00	 having sulfite groups bound to carbon atoms of six-
279/32	• • N-nitroguanidines [5, 2006.01]	301/02	membered aromatic rings [5, 2006.01]
279/34	• • • N-nitroguanidine [5, 2006.01]		[-,,,
279/36	• • • Substituted N-nitroguanidines [5, 2006.01]	303/00	Preparation of esters or amides of sulfuric acids;
281/00	Derivatives of carbonic acid containing functional		Preparation of sulfonic acids or of their esters,
=01/00	groups covered by groups C07C 269/00-C07C 279/00	303/02	halides, anhydrides or amides [5, 2006.01]of sulfonic acids or halides thereof [5, 2006.01]
	in which at least one nitrogen atom of these	303/02	Of sufformed acids of names thereof [5, 2006.01] A by substitution of hydrogen atoms by sulfo or

303/04

303/06

by substitution of hydrogen atoms by sulfo or

halosulfonyl groups [5, 2006.01]

• • • by reaction with sulfuric acid or sulfur trioxide **[5, 2006.01]**

group [5, 2006.01]

functional groups is further bound to another

nitrogen atom not being part of a nitro or nitroso

303/08	• • • by reaction with halogenosulfonic acids [5, 2006.01]	307/00	Amides of sulfuric acids, i.e. compounds having singly-bound oxygen atoms of sulfate groups
303/10	• • • by reaction with sulfur dioxide and halogen or		replaced by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]
303/12	by reaction with sulfuryl halides [5, 2006.01] • • by reaction with thionylhalides [5, 2006.01]	307/02	Monoamides of sulfuric acids or esters thereof, e.g.
303/14	by sulfoxidation, i.e. by reaction with sulfur		sulfamic acids [5, 2006.01]
	dioxide and oxygen with formation of sulfo or	307/04	• Diamides of sulfuric acids [5, 2006.01]
202/46	halosulfonyl groups [5, 2006.01]	307/06	having nitrogen atoms of the sulfamide groups having nitrogen atoms of the sulfamide groups
303/16	 by oxidation of thiols, sulfides, hydropolysulfides, or polysulfides with formation of sulfo or 	307/08	bound to acyclic carbon atoms [5, 2006.01]having nitrogen atoms of the sulfamide groups
	halosulfonyl groups [5, 2006.01]	307700	bound to carbon atoms of rings other than six-
303/18	 by reaction of sulfides with compounds having 		membered aromatic rings [5, 2006.01]
	functional groups with formation of sulfo or	307/10	having nitrogen atoms of the sulfamide groups
303/20	halosulfonyl groups [5, 2006.01]by addition of sulfurous acid or salts thereof to		bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
303/20	compounds having carbon-to-carbon multiple		-
	bonds [5, 2006.01]	309/00	Sulfonic acids; Halides, esters, or anhydrides
303/22	• • from sulfonic acids by reactions not involving the	309/01	thereof [5, 2006.01]Sulfonic acids [5, 2006.01]
	formation of sulfo or halosulfonyl groups [5, 2006.01]	309/02	having sulfo groups bound to acyclic carbon
303/24	• of esters of sulfuric acids [5, 2006.01]		atoms [5, 2006.01]
303/26	 of esters of sulfonic acids [5, 2006.01] 	309/03	 • of an acyclic saturated carbon
303/28	• • by reaction of hydroxy compounds with sulfonic	200.40.4	skeleton [5, 2006.01]
	acids or derivatives thereof [5, 2006.01]	309/04 309/05	containing only one sulfo group [5, 2006.01]containing at least two sulfo groups bound to
303/30	 by reactions not involving the formation of esterified sulfo groups [5, 2006.01] 	309/05	the carbon skeleton [5, 2006.01]
303/32	• of salts of sulfonic acids [5, 2006.01]	309/06	• • • containing halogen atoms, or nitro or nitroso
303/34	• of amides of sulfuric acids [5, 2006.01]		groups bound to the carbon
303/36	 of amides of sulfonic acids [5, 2006.01] 	200 /07	skeleton [5, 2006.01]
303/38	• • by reaction of ammonia or amines with sulfonic	309/07	• • • containing oxygen atoms bound to the carbon skeleton [5, 2006.01]
	acids, or with esters, anhydrides, or halides thereof [5, 2006.01]	309/08	• • • • containing hydroxy groups bound to the
303/40	 by reactions not involving the formation of 		carbon skeleton [5, 2006.01]
5057 10	sulfonamide groups [5, 2006.01]	309/09	• • • • containing etherified hydroxy groups
303/42	 Separation; Purification; Stabilisation; Use of 	309/10	bound to the carbon skeleton [5, 2006.01] • • • • with the oxygen atom of at least one of
202/44	additives [5, 2006.01]	303/10	the etherified hydroxy groups further
303/44 303/46	Separation; Purification [5, 2006.01]from by-products of refining mineral oils with		bound to an acyclic carbon
303/40	sulfuric acid [5, 2006.01]	200/44	atom [5, 2006.01]
20=100		309/11	• • • • • with the oxygen atom of at least one of the etherified hydroxy groups further
305/00	Esters of sulfuric acids [5, 2006.01]		bound to a carbon atom of a six-
305/02	 having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon 		membered aromatic ring [5, 2006.01]
	skeleton [5, 2006.01]	309/12	• • • • containing esterified hydroxy groups
305/04	• • being acyclic and saturated [5, 2006.01]	309/13	bound to the carbon skeleton [5, 2006.01] • • • containing nitrogen atoms, not being part of
305/06	• • • Hydrogenosulfates [5, 2006.01]	303/13	nitro or nitroso groups, bound to the carbon
305/08	 Dialkylsulfates; Substituted dialkylsulfates [5, 2006.01] 		skeleton [5, 2006.01]
305/10	• • being further substituted by singly-bound	309/14	• • • • containing amino groups bound to the
505, 10	oxygen atoms [5, 2006.01]	309/15	carbon skeleton [5, 2006.01] • • • • • the nitrogen atom of at least one of the
305/12	• • being saturated and containing rings [5, 2006.01]	303/13	amino groups being part of any of the
305/14	• • being acyclic and unsaturated [5, 2006.01]		
305/16	 being unsaturated and containing rings [5, 2006.01] 		X >N-C-Y or -N=C
305/18	• • containing six-membered aromatic		groups Y X being
505, 10	rings [5, 2006.01]		a hetero atom, Y being any
305/20	 having oxygen atoms of sulfate groups bound to 	200/16	atom [5, 2006.01]
	carbon atoms of rings other than six-membered	309/16	• • • • containing doubly-bound nitrogen atoms bound to the carbon skeleton [5, 2006.01]
305/22	aromatic rings [5, 2006.01]having oxygen atoms of sulfate groups bound to	309/17	• • • containing carboxyl groups bound to the
505/22	carbon atoms of six-membered aromatic		carbon skeleton [5, 2006.01]
	rings [5, 2006.01]	309/18	• • • • containing amino groups bound to the
305/24	• • of non-condensed six-membered aromatic	309/19	same carbon skeleton [5, 2006.01] • • • of a saturated carbon skeleton containing
305/26	rings [5, 2006.01] • Halogenosulfates, i.e. monoesters of halogenosulfuric	JUJ/ 1J	rings [5, 2006.01]
505/20	acids [5, 2006.01]	309/20	 of an acyclic unsaturated carbon
			skeleton [5, 2006.01]

309/21	 containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon 	309/49 • • • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]
309/22	skeleton [5, 2006.01] • • • containing carboxyl groups bound to the	309/50 • • • • having at least one of the sulfo groups bound to a carbon atom of a six-
	carbon skeleton [5, 2006.01]	membered aromatic ring being part of a
309/23	• • • of an unsaturated carbon skeleton containing rings other than six-membered aromatic	condensed ring system [5, 2006.01] 309/51 • • • at least one of the nitrogen atoms being part
200 /24	rings [5, 2006.01]	>N-C or -N=C
309/24	 • of a carbon skeleton containing six-membered aromatic rings [5, 2006.01] 	
309/25	 having sulfo groups bound to carbon atoms of 	of any of the groups Y
303723	rings other than six-membered aromatic rings of a	X being a hetero atom, Y being any atom [5, 2006.01]
	carbon skeleton [5, 2006.01]	309/52 • • • the carbon skeleton being further substituted
309/26	• • containing nitrogen atoms, not being part of	by doubly-bound oxygen atoms [5, 2006.01]
	nitro or nitroso groups, bound to the carbon	309/53 • • • • the carbon skeleton containing carbon
	skeleton [5, 2006.01]	atoms of quinone rings [5, 2006.01]
309/27	 containing carboxyl groups bound to the carbon skeleton [5, 2006.01] 	309/54 • • • • at least one of the nitrogen atoms being part of any of the groups
309/28	 having sulfo groups bound to carbon atoms of six- 	
	membered aromatic rings of a carbon	X N-C or -N=C Y X being a
200 /20	skeleton [5, 2006.01]	Y Y X being a
309/29	 • of non-condensed six-membered aromatic rings [5, 2006.01] 	hetero atom, Y being any
309/30	• • • of six-membered aromatic rings substituted	atom [5, 2006.01]
303730	by alkyl groups [5, 2006.01]	309/55 • • • • • Y being a hydrogen or a carbon
309/31	• • • • by alkyl groups containing at least three	atom [5, 2006.01]
000.01	carbon atoms [5, 2006.01]	309/56 • • • • • Y being a hetero atom [5, 2006.01]
309/32	• • • containing at least two non-condensed six-	309/57 • • containing carboxyl groups bound to the carbon
	membered aromatic rings in the carbon	skeleton [5, 2006.01]
	skeleton [5, 2006.01]	309/58 • • • • Carboxylic acid groups or esters
309/33	of six-membered aromatic rings being part of	thereof [5, 2006.01] 309/59 • • • Nitrogen analogues of carboxyl
200/24	condensed ring systems [5, 2006.01]	groups [5, 2006.01]
309/34	• • • • formed by two rings [5, 2006.01]	309/60 • • • the carbon skeleton being further substituted
309/35	• • • • Naphthalene sulfonic acids [5, 2006.01]	by singly-bound oxygen atoms [5, 2006.01]
309/36	• • • • • • substituted by alkyl groups [5, 2006.01]	309/61 • • • the carbon skeleton being further substituted
309/37	• • • • • by alkyl groups containing at least	by nitrogen atoms, not being part of nitro or
303/3/	three carbon atoms [5, 2006.01]	nitroso groups [5, 2006.01]
309/38	• • • • formed by at least three rings [5, 2006.01]	309/62 • Sulfonated fats, oils or waxes of undetermined
309/39	• • containing halogen atoms bound to the carbon	constitution [5, 2006.01]
	skeleton [5, 2006.01]	309/63 • Esters of sulfonic acids [5, 2006.01]
309/40	• • • containing nitro or nitroso groups bound to the carbon skeleton [5, 2006.01]	• • having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms [5, 2006.01]
309/41	• • containing singly-bound oxygen atoms bound	309/65 • • • of a saturated carbon skeleton [5, 2006.01]
	to the carbon skeleton [5, 2006.01]	309/66 • • • • Methanesulfonates [5, 2006.01]
309/42	 • • having the sulfo groups bound to carbon 	309/67 • • • of an unsaturated carbon skeleton [5, 2006.01]
	atoms of non-condensed six-membered	309/68 • • • of a carbon skeleton substituted by singly-bound oxygen atoms [5, 2006.01]
200 / 42	aromatic rings [5, 2006.01]	309/69 • • • of a carbon skeleton substituted by nitrogen
309/43	 • • having at least one of the sulfo groups bound to a carbon atom of a six-membered 	atoms, not being part of nitro or nitroso
	aromatic ring being part of a condensed ring	groups [5, 2006.01]
	system [5, 2006.01]	309/70 • • • of a carbon skeleton substituted by carboxyl
309/44	• • containing doubly-bound oxygen atoms bound	groups [5, 2006.01]
	to the carbon skeleton [5, 2006.01]	309/71 • • having sulfur atoms of esterified sulfo groups
309/45	 containing nitrogen atoms, not being part of 	bound to carbon atoms of rings other than six-
	nitro or nitroso groups, bound to the carbon	membered aromatic rings [5, 2006.01]
200746	skeleton [5, 2006.01]	309/72 • having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic
309/46	 • • having the sulfo groups bound to carbon atoms of non-condensed six-membered 	rings of a carbon skeleton [5, 2006.01]
	aromatic rings [5, 2006.01]	309/73 • • • to carbon atoms of non-condensed six-
309/47	• • • having at least one of the sulfo groups bound	membered aromatic rings [5, 2006.01]
	to a carbon atom of a six-membered	309/74 • • to carbon atoms of six-membered aromatic
	aromatic ring being part of a condensed ring	rings being part of condensed ring
	system [5, 2006.01]	systems [5, 2006.01]
309/48	• • • the carbon skeleton being further substituted	309/75 • • • containing singly-bound oxygen atoms bound
	by halogen atoms [5, 2006.01]	to the carbon skeleton [5, 2006.01]

311/07 311/08 311/09 311/10 311/11	 sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] the carbon skeleton being further substituted by at least two halogen atoms [5, 2006.01] of a saturated carbon skeleton containing rings [5, 2006.01] of an acyclic unsaturated carbon 	311/33 311/34 311/35 311/36	 • of an acyclic saturated carbon skeleton [5, 2006.01] • of a saturated carbon skeleton containing rings [5, 2006.01] • of an acyclic unsaturated carbon skeleton [5, 2006.01] • of an unsaturated carbon skeleton containing rings [5, 2006.01] • having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic
311/08	 a ring other than a six-membered aromatic ring [5, 2006.01] having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] the carbon skeleton being further substituted by at least two halogen atoms [5, 2006.01] 	311/34	 skeleton [5, 2006.01] of a saturated carbon skeleton containing rings [5, 2006.01] of an acyclic unsaturated carbon skeleton [5, 2006.01] of an unsaturated carbon skeleton containing rings [5, 2006.01]
	 a ring other than a six-membered aromatic ring [5, 2006.01] having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of 		 skeleton [5, 2006.01] of a saturated carbon skeleton containing rings [5, 2006.01] of an acyclic unsaturated carbon
	a ring other than a six-membered aromatic ring [5, 2006.01]	311/33	skeleton [5, 2006.01] • • • of a saturated carbon skeleton containing
311/07	sulfonamide groups bound to a carbon atom of		
	 having the nitrogen atom of at least one of the 	311/32	bound to acyclic carbon atoms [5, 2006.01]
311/06	 • • • to acyclic carbon atoms of hydrocarbon radicals substituted by carboxyl groups [5, 2006.01] 	311/31	atoms, not being part of nitro or nitroso groups [5, 2006.01]having the sulfur atoms of the sulfonamide groups
	radicals substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]	311/30	 six-membered aromatic ring [5, 2006.01] Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen
311/05	radicals substituted by singly-bound oxygen atoms [5, 2006.01] • • • to acyclic carbon atoms of hydrocarbon	311/29	 ring [5, 2006.01] having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a
311/04	carbon atoms [5, 2006.01] • • • to acyclic carbon atoms of hydrocarbon		sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic
311/03	• having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic	311/27	rings [5, 2006.01] • having the sulfur atom of at least one of the
311/02	 groups bound to acyclic carbon atoms [5, 2006.01] of an acyclic saturated carbon skeleton [5, 2006.01] 	311/26 311/27	 • of an acyclic unsaturated carbon skeleton [5, 2006.01] • of an unsaturated carbon skeleton containing
311/01	 • Sulfonamides having sulfur atoms of sulfonamide • Sulfonamides having sulfur atoms of sulfonamide 	311/25	• • • of a saturated carbon skeleton containing rings [5, 2006.01]
	singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso	311/24	• • • of an acyclic saturated carbon skeleton [5, 2006.01]
311/00	Amides of sulfonic acids, i.e. compounds having	311/23	 having the sulfur atoms of the sulfonamide groups bound to acyclic carbon atoms [5, 2006.01]
309/89	skeleton [5, 2006.01] • • • containing carboxyl groups bound to the carbon skeleton [5, 2006.01]	311/ 22	being further substituted by singly-bound oxygen atoms [5, 2006.01]
309/88	• • • containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon	311/22	sulfonamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]Sulfonamides, the carbon skeleton of the acid part
309/87	 containing singly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01] 	311/21	ring [5, 2006.01] • having the nitrogen atom of at least one of the
309/86	 having halosulfonyl groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton [5, 2006.01] 	311/20	 having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic
309/85	 having halosulfonyl groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 	311/19	 to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01]
309/84	groups [5, 2006.01] • • • of a carbon skeleton substituted by carboxyl groups [5, 2006.01]		radical substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]
309/83	 • of a carbon skeleton substituted by nitrogen atoms, not being part of nitro or nitroso 	311/18	radical substituted by singly-bound oxygen atoms [5, 2006.01] • • • to an acyclic carbon atom of a hydrocarbon
309/82	• • of a carbon skeleton substituted by singly-bound oxygen atoms [5, 2006.01]	311/17	to an acyclic carbon atom [5, 2006.01] • • to an acyclic carbon atom of a hydrocarbon
309/80 309/81	• of a saturated carbon skeleton [5, 2006.01]• of an unsaturated carbon skeleton [5, 2006.01]	311/16	 having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or
309/79	 having halosulfonyl groups bound to acyclic carbon atoms [5, 2006.01] 	311/13	groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
309/77 309/78	 containing carboxyl groups bound to the carbon skeleton [5, 2006.01] Halides of sulfonic acids [5, 2006.01] 	311/15	groups bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01] • Sulfonamides having sulfur atoms of sulfonamide
	nitro or nitroso groups, bound to the carbon skeleton [5, 2006.01]	311/14	aromatic rings [5, 2006.01]Sulfonamides having sulfur atoms of sulfonamide
		311/13	 the carbon skeleton containing six-membered

311/38	 having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six- 	311/60	• • • • having nitrogen atoms of the sulfonylurea groups bound to carbon atoms of six-
	membered aromatic rings of the same carbon skeleton [5, 2006.01]	211/61	membered aromatic rings [5, 2006.01]
311/39	• • • having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen	311/61	• • • • having nitrogen atoms of the sulfonylurea groups further bound to another hetero atom [5, 2006.01]
	atoms or to an acyclic carbon atom [5, 2006.01]	311/62	• • • • having nitrogen atoms of the sulfonylurea
311/40	• • • • to an acyclic carbon atom of a	311/63	groups further acylated [5, 2006.01] • • • • N-sulfonylisoureas [5, 2006.01]
0-1-, 10	hydrocarbon radical substituted by singly-	311/64	• • • X and Y being nitrogen atoms, e.g. N-
	bound oxygen atoms [5, 2006.01]		sulfonylguanidine [5, 2006.01]
311/41	• • • • to an acyclic carbon atom of a hydrocarbon radical substituted by	311/65	• N-sulfonylisocyanates [5, 2006.01]
	nitrogen atoms, not being part of nitro or	313/00	Sulfinic acids; Sulfenic acids; Halides, esters or
211/42	nitroso groups [5, 2006.01]		anhydrides thereof; Amides of sulfinic or sulfenic
311/42	• • • • to an acyclic carbon atom of a hydrocarbon radical substituted by		acids, i.e. compounds having singly-bound oxygen atoms of sulfinic or sulfenic groups replaced by
	carboxyl groups [5, 2006.01]		nitrogen atoms, not being part of nitro or nitroso
311/43	• • • having the nitrogen atom of at least one of		groups [5, 2006.01]
	the sulfonamide groups bound to a carbon	313/02	• Sulfinic acids; Derivatives thereof [5, 2006.01]
	atom of a ring other than a six-membered	313/04	• • Sulfinic acids; Esters thereof [5, 2006.01]
211/44	aromatic ring [5, 2006.01]	313/06	• • Sulfinamides [5, 2006.01]
311/44	• • • having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon	313/08	• Sulfenic acids; Derivatives thereof [5, 2006.01]
	atom of a six-membered aromatic	313/10	• • Sulfenic acids; Esters thereof [5, 2006.01]
311/45	ring [5, 2006.01] • • at least one of the singly-bound nitrogen atoms	313/12	 having sulfur atoms of sulfenic groups bound to acyclic carbon atoms [5, 2006.01]
311/43	being part of any of the groups	313/14	 having sulfur atoms of sulfenic groups bound to carbon atoms of rings other than six-membered
	X		aromatic rings [5, 2006.01]
	>N−C′ or −N=C′	313/16	 having sulfur atoms of sulfenic groups bound to
	Y Y X being a hetero atom, Y		carbon atoms of six-membered aromatic
	being any atom, e.g. N-		rings [5, 2006.01]
311/46	acylaminosulfonamides [5, 2006.01]Y being a hydrogen or a carbon	313/18	• • Sulfenamides [5, 2006.01]
311/40	atom [5, 2006.01]	313/20	 having sulfur atoms of sulfenamide groups bound to acyclic carbon atoms [5, 2006.01]
311/47	• • • Y being a hetero atom [5, 2006.01]	313/22	• • • having sulfur atoms of sulfenamide groups
311/48	 having nitrogen atoms of sulfonamide groups further bound to another hetero atom [5, 2006.01] 	313/22	bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
311/49	• • to nitrogen atoms [5, 2006.01]	313/24	• • having sulfur atoms of sulfenamide groups
311/50	 Compounds containing any of the groups 		bound to carbon atoms of six-membered
	X X		aromatic rings [5, 2006.01]
	$C-SO_2-N-C$ or $C-SO_2-N=C$	313/26	• • Compounds containing any of the groups
	Y X being a		X ≩C-S-N-C-Y or ≩C-S-N=C-Y X being a
D44 /E4	hetero atom, Y being any atom [5, 2006.01]		hetero atom, Y being any atom [5, 2006.01]
311/51	• • Y being a hydrogen or a carbon atom [5, 2006.01]	313/28	• • • • Y being a hydrogen or a carbon
311/52	• • Y being a hetero atom [5, 2006.01]	313/20	atom [5, 2006.01]
311/53	 X and Y not being nitrogen atoms, e.g. N- sulfonylcarbamic acid [5, 2006.01] 	313/30	• • • Y being a hetero atom [5, 2006.01]
311/54	• • either X or Y, but not both, being nitrogen	313/32	• • • • • X and Y not being nitrogen atoms, e.g. N-sulfenylcarbamic acid [5, 2006.01]
011/FF	atoms, e.g. N-sulfonylurea [5, 2006.01] • • • having sulfur atoms of the sulfonylurea	313/34	• • • • either X or Y, but not both, being nitrogen
311/55	groups bound to acyclic carbon		atoms, e.g. N-sulfenylureas [5, 2006.01]
	atoms [5, 2006.01]	313/36	 having nitrogen atoms of sulfenamide groups further bound to other hetero
311/56	• • • having sulfur atoms of the sulfonylurea		atoms [5, 2006.01]
	groups bound to carbon atoms of rings other than six-membered aromatic	313/38	• • • N-sulfenylisocyanates [5, 2006.01]
	rings [5, 2006.01]	313, 33	1. Saireny 1150ey anates [5, 2000.02]
311/57	• • • having sulfur atoms of the sulfonylurea groups bound to carbon atoms of six-	315/00	Preparation of sulfones; Preparation of sulfoxides [5, 2006.01]
	membered aromatic rings [5, 2006.01]	315/02	 by formation of sulfone or sulfoxide groups by
311/58	• • • having nitrogen atoms of the sulfonylurea		oxidation of sulfides, or by formation of sulfone
	groups bound to hydrogen atoms or to	D.1 = · -	groups by oxidation of sulfoxides [5, 2006.01]
	acyclic carbon atoms [5, 2006.01]	315/04	• by reactions not involving the formation of sulfone or
311/59	• • • • having nitrogen atoms of the sulfonylurea	215 /00	sulfoxide groups [5, 2006.01]
	groups bound to carbon atoms of rings other than six-membered aromatic	315/06	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01]
	other than six-membered aromatic rings [5, 2006.01]		additives [5, 2000.01]
	50 [0, 2 000,01]		

317/00	Sulfones; Sulfoxides [5, 2006.01]	317/50	• • • at least one of the nitrogen atoms being part of
317/02	 having sulfone or sulfoxide groups bound to acyclic carbon atoms [5, 2006.01] 		X >N−C or −N=C X
317/04	 of an acyclic saturated carbon skeleton [5, 2006.01] 		any of the groups YX being a hetero atom, Y being any
317/06	 of a saturated carbon skeleton containing rings [5, 2006.01] 		atom [5, 2006.01]
317/08	 of an acyclic unsaturated carbon skeleton [5, 2006.01] 	319/00	Preparation of thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01]
317/10	 of an unsaturated carbon skeleton containing rings [5, 2006.01] 	319/02 319/04	 of thiols [5, 2006.01] by addition of hydrogen sulfide or its salts to
317/12	having sulfone or sulfoxide groups bound to carbon atoms of rings other than six-membered aromatic	319/06	 unsaturated compounds [5, 2006.01] from sulfides, hydropolysulfides or
317/14	 rings [5, 2006.01] having sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] 	319/08	 polysulfides [5, 2006.01] by replacement of hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01]
317/16	 having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton [5, 2006.01] 	319/10	• • by replacement of hydroxy groups or etherified or esterified hydroxy groups bound to carbon atoms of six-membered aromatic
317/18	• • with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01]	319/12	rings [5, 2006.01] • by reactions not involving the formation of
317/20	with sulfone or sulfoxide groups bound to carbon atoms of rings other than six-membered aromatic	319/14	mercapto groups [5, 2006.01] • of sulfides [5, 2006.01]
317/22	rings of the carbon skeleton [5, 2006.01] • with sulfone or sulfoxide groups bound to carbon	319/16	by addition of hydrogen sulfide or its salts to unsaturated compounds [5, 2006.01]
317722	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01]	319/18	 by addition of thiols to unsaturated compounds [5, 2006.01]
317/24	 having sulfone or sulfoxide groups and doubly-bound oxygen atoms bound to the same carbon 	319/20	• • by reactions not involving the formation of sulfide groups [5, 2006.01]
317/26	skeleton [5, 2006.01]having sulfone or sulfoxide groups and nitrogen	319/22	• of hydropolysulfides or polysulfides [5, 2006.01]
517720	atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton [5, 2006.01]	319/24	• • by reactions involving the formation of sulfur-to- sulfur bonds [5, 2006.01]
317/28	 with sulfone or sulfoxide groups bound to acyclic 	319/26	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01]
317/30	carbon atoms of the carbon skeleton [5, 2006.01]with sulfone or sulfoxide groups bound to carbon	319/28	• • Separation; Purification [5, 2006.01]
317730	atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]	319/30	• • • from the by-products of refining mineral oils [5, 2006.01]
317/32	 with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the 	321/00	Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01]
317/34	carbon skeleton [5, 2006.01]having sulfone or sulfoxide groups and amino	321/02	 Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01]
	groups bound to carbon atoms of six-membered aromatic rings being part of the same non-	321/04	of an acyclic saturated carbon skeleton [5, 2006.01]
	condensed ring or of a condensed ring system containing that ring [5, 2006.01]	321/06	of a saturated carbon skeleton containing rings [5, 2006.01]
317/36	 • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] 	321/08	• • of an acyclic unsaturated carbon skeleton [5, 2006.01]
317/38	• • • with the nitrogen atom of at least one amino group being part of any of the groups	321/10	 of an unsaturated carbon skeleton containing rings [5, 2006.01]
	× × × × × × × × × × × × × × × × × × ×	321/12	 Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01]
	Y X being a hetero atom, Y being any atom, e.g. N-	321/14	 of an acyclic saturated carbon skeleton [5, 2006.01]
317/40	acylaminosulfones [5, 2006.01] • • • • Y being a hydrogen or a carbon	321/16	of a saturated carbon skeleton containing rings [5, 2006.01]
	atom [5, 2006.01]	321/18	 of an acyclic unsaturated carbon
317/42 317/44	• • • • Y being a hetero atom [5, 2006.01]• having sulfone or sulfoxide groups and carboxyl	321/20	skeleton [5, 2006.01] • of an unsaturated carbon skeleton containing
	groups bound to the same carbon skeleton [5, 2006.01]	321/22	rings [5, 2006.01] • Thiols, sulfides, hydropolysulfides, or polysulfides
317/46	the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	3==/ ==	having thio groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
317/48	 the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01] 	321/24	 Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01]

221/26	This [F 2000 01]	222/21
321/26 321/28	 Thiols [5, 2006.01] Sulfides, hydropolysulfides, or polysulfides	• • • with the sulfur atom of the thio group bound to a carbon atom of a six-membered aromatic ring
321/20	having thio groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01]	being part of a condensed ring system [5, 2006.01]
321/30	• • • Sulfides having the sulfur atom of at least one	323/22 • containing thio groups and doubly-bound oxygen
521,50	thio group bound to two carbon atoms of six- membered aromatic rings [5, 2006.01]	atoms bound to the same carbon skeleton [5, 2006.01]
	-	323/23 • containing thio groups and nitrogen atoms, not being
323/00	Thiols, sulfides, hydropolysulfides or polysulfides	part of nitro or nitroso groups, bound to the same
	substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio	carbon skeleton [5, 2006.01]
	groups [5, 2006.01]	323/24 • having the sulfur atoms of the thio groups bound
323/01	 containing thio groups and halogen atoms, or nitro or 	to acyclic carbon atoms of the carbon skeleton [5, 2006.01]
3 2 37 01	nitroso groups bound to the same carbon	323/25 • • • the carbon skeleton being acyclic and
	skeleton [5, 2006.01]	saturated [5, 2006.01]
323/02	 having sulfur atoms of thio groups bound to 	323/26 • • • the carbon skeleton being saturated and
	acyclic carbon atoms of the carbon	containing rings [5, 2006.01]
222 /02	skeleton [5, 2006.01]	323/27 • • • the carbon skeleton being acyclic and
323/03	• • • the carbon skeleton being acyclic and	unsaturated [5, 2006.01]
323/04	saturated [5, 2006.01] • • • the carbon skeleton being saturated and	323/28 • • • the carbon skeleton being unsaturated and
323/04	containing rings [5, 2006.01]	containing rings other than six-membered
323/05	• • • the carbon skeleton being acyclic and	aromatic rings [5, 2006.01] 323/29 • • • the carbon skeleton containing six-membered
3237 03	unsaturated [5, 2006.01]	323/29 • • • the carbon skeleton containing six-membered aromatic rings [5, 2006.01]
323/06	 the carbon skeleton being unsaturated and 	323/30 • having the sulfur atom of at least one of the thio
	containing rings other than six-membered	groups bound to a carbon atom of a ring other than
	aromatic rings [5, 2006.01]	a six-membered aromatic ring of the carbon
323/07	• • • the carbon skeleton containing six-membered	skeleton [5, 2006.01]
222/00	aromatic rings [5, 2006.01]	323/31 • having the sulfur atom of at least one of the thio
323/08	 having sulfur atoms of thio groups bound to carbon atoms of rings other than six-membered 	groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton [5, 2006.01]
	aromatic rings of the carbon skeleton [5, 2006.01]	323/32 • • having at least one of the nitrogen atoms bound
323/09	 having sulfur atoms of thio groups bound to 	to an acyclic carbon atom of the carbon
	carbon atoms of six-membered aromatic rings of	skeleton [5, 2006.01]
222/12	the carbon skeleton [5, 2006.01]	323/33 • • having at least one of the nitrogen atoms bound
323/10	 containing thio groups and singly-bound oxygen atoms bound to the same carbon 	to a carbon atom of the same non-condensed
	skeleton [5, 2006.01]	six-membered aromatic ring [5, 2006.01] 323/34 • • • the thio group being a mercapto
323/11	 having the sulfur atoms of the thio groups bound 	323/34 • • • • the thio group being a mercapto group [5, 2006.01]
	to acyclic carbon atoms of the carbon	323/35 • • • the thio group being a sulfide
	skeleton [5, 2006.01]	group [5, 2006.01]
323/12	• • • the carbon skeleton being acyclic and	323/36 • • • • the sulfur atom of the sulfide group being
323/13	saturated [5, 2006.01] • • • the carbon skeleton being saturated and	further bound to an acyclic carbon
323/13	containing rings [5, 2006.01]	atom [5, 2006.01] 323/37 • • • • • the sulfur atom of the sulfide group being
323/14	• • • the carbon skeleton being acyclic and	323/37 • • • • the sulfur atom of the sulfide group being further bound to a carbon atom of a six-
	unsaturated [5, 2006.01]	membered aromatic ring [5, 2006.01]
323/15	 the carbon skeleton being unsaturated and 	323/38 • • • with the sulfur atom of the thio group bound to
	containing rings other than six-membered	a carbon atom of a six-membered aromatic ring
222/16	aromatic rings [5, 2006.01]	being part of a condensed ring
323/16	 • the carbon skeleton containing six-membered aromatic rings [5, 2006.01] 	system [5, 2006.01] 323/39 • at least one of the nitrogen atoms being part of any
323/17	 having the sulfur atom of at least one of the thio 	
0-0,-	groups bound to a carbon atom of a ring other than	X >N-C-Y or -N=C
	a six-membered aromatic ring of the carbon	
	skeleton [5, 2006.01]	of the groups 'X being a hetero atom, Y being any atom [5, 2006.01]
323/18	having the sulfur atom of at least one of the thio	323/40 • • • Y being a hydrogen or a carbon
	groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton [5, 2006.01]	atom [5, 2006.01]
323/19	• • with singly-bound oxygen atoms bound to	323/41 • • • Y being a hydrogen or an acyclic carbon
5_5, 15	acyclic carbon atoms of the carbon	atom [5, 2006.01]
	skeleton [5, 2006.01]	323/42 • • • Y being a carbon atom of a six-membered
323/20	• • with singly-bound oxygen atoms bound to	aromatic ring [5, 2006.01]
	carbon atoms of the same non-condensed six-	323/43 • • • Y being a hetero atom [5, 2006.01]
	membered aromatic ring [5, 2006.01]	323/44 • • • • X or Y being nitrogen atoms [5, 2006.01]
		• • having at least one of the nitrogen atoms doubly-bound to the carbon skeleton [5, 2006.01]
		bound to the curbon skereton [0, 2000.01]

323/46	having at least one of the nitrogen atoms, not being part of nitro or nitroso groups, further bound	327/10 • • • to carbon atoms of an acyclic unsaturated carbon skeleton [5, 2006.01]
222/45	to other hetero atoms [5, 2006.01]	327/12 • • • to carbon atoms of an unsaturated carbon
323/47	• • • to oxygen atoms [5, 2006.01]	skeleton containing rings [5, 2006.01]
323/48	• • • to nitrogen atoms [5, 2006.01]	327/14 • having carbon atoms of thiocarboxyl groups
323/49 323/50	to sulfur atoms [5, 2006.01]containing thio groups and carboxyl groups bound to	bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
323/30	the same carbon skeleton [5, 2006.01]	327/16 • • having carbon atoms of thiocarboxyl groups
323/51	 having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon 	bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
	skeleton [5, 2006.01]	327/18 • Dithiocarboxylic acids [5, 2006.01]
323/52	• • • the carbon skeleton being acyclic and saturated [5, 2006.01]	 327/20 • Esters of monothiocarboxylic acids [5, 2006.01] 327/22 • having carbon atoms of esterified thiocarboxyl
323/53	 the carbon skeleton being saturated and containing rings [5, 2006.01] 	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
323/54	• • • the carbon skeleton being acyclic and unsaturated [5, 2006.01]	327/24 • having carbon atoms of esterified thiocarboxyl groups bound to carbon atoms of rings other than
323/55	 the carbon skeleton being unsaturated and 	six-membered aromatic rings [5, 2006.01]
	containing rings other than six-membered aromatic rings [5, 2006.01]	327/26 • having carbon atoms of esterified thiocarboxyl groups bound to carbon atoms of six-membered
323/56	 the carbon skeleton containing six-membered aromatic rings [5, 2006.01] 	aromatic rings [5, 2006.01] 327/28 • having sulfur atoms of esterified thiocarboxyl
323/57	• • the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or	groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]
323/58	nitroso groups [5, 2006.01] • • • with amino groups bound to the carbon	327/30 • having sulfur atoms of esterified thiocarboxyl
323/59	skeleton [5, 2006.01] • • • with acylated amino groups bound to the	groups bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms, not being
	carbon skeleton [5, 2006.01]	part of nitro or nitroso groups [5, 2006.01] 327/32 • having sulfur atoms of esterified thiocarboxyl
323/60	 • with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms [5, 2006.01] 	groups bound to carbon atoms of hydrocarbon radicals substituted by carboxyl
323/61	 having the sulfur atom of at least one of the thio 	groups [5, 2006.01]
	groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon	327/34 • • • with amino groups bound to the same hydrocarbon radicals [5, 2006.01]
	skeleton [5, 2006.01]	• Esters of dithiocarboxylic acids [5, 2006.01]
323/62	having the sulfur atom of at least one of the thio	 327/38 • Amides of thiocarboxylic acids [5, 2006.01] 327/40 • having carbon atoms of thiocarboxamide groups
323/63	groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton [5, 2006.01]	bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
323/03	 the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01] 	327/42 • • • to hydrogen atoms or to carbon atoms of a saturated carbon skeleton [5, 2006.01]
323/64	containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon	327/44 • • • to carbon atoms of an unsaturated carbon skeleton [5, 2006.01]
	skeleton [5, 2006.01]	327/46 • having carbon atoms of thiocarboxamide groups
323/65	 containing sulfur atoms of sulfone or sulfoxide groups bound to the carbon skeleton [5, 2006.01] 	bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
323/66	 containing sulfur atoms of sulfo, esterified sulfo or 	327/48 • having carbon atoms of thiocarboxamide groups
	halosulfonyl groups, bound to the carbon	bound to carbon atoms of six-membered aromatic
202/65	skeleton [5, 2006.01]	rings [5, 2006.01]
323/67	 containing sulfur atoms of sulfonamide groups, bound to the carbon skeleton [5, 2006.01] 	327/50 • • Compounds containing any of the groups S S S S C -C-N-C-Y or -C-N-C
325/00	Thioaldehydes; Thioketones; Thioquinones; Oxides thereof [5, 2006.01]	X being a hetero atom, Y being any atom [5, 2006.01]
325/02	• Thioketones; Oxides thereof [5, 2006.01]	327/52 • • • Y being a hydrogen or a carbon
325/04	• Thioquinones; Oxides thereof [5, 2006.01]	atom [5, 2006.01]
327/00	Thiocarboxylic acids [5, 2006.01]	327/54 • • • Y being a hetero atom [5, 2006.01]
327/02	Monothiocarboxylic acids [5, 2006.01]	• • having nitrogen atoms of thiocarboxamide groups
327/04	 having carbon atoms of thiocarboxyl groups 	further bound to another hetero atom [5, 2006.01]
	bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]	 Derivatives of thiocarboxylic acids, the doubly-bound oxygen atoms being replaced by nitrogen atoms, e.g. imino-thio ethers [5, 2006.01]
327/06	 to hydrogen atoms or to carbon atoms of an acyclic saturated carbon skeleton [5, 2006.01] 	327/60 • Thiocarboxylic acids having sulfur atoms of
327/08	• • • to carbon atoms of a saturated carbon skeleton	thiocarboxyl groups further doubly-bound to oxygen atoms [5, 2006.01]
	containing rings [5, 2006.01]	ucomo [5, 2000.01]

329/00	Thiocarbonic acids; Halides, esters or anhydrides thereof [5, 2006.01]	333/00	Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups
329/02	 Monothiocarbonic acids; Derivatives thereof [5, 2006.01] 		\$
329/04	• Esters of monothiocarbonic acids [5, 2006.01]		
329/06	 having sulfur atoms of thiocarbonic groups bound to acyclic carbon atoms [5, 2006.01] 		S S- O- >N-C-Hal, >N=C-S-, >N=C-S-
329/08	 having sulfur atoms of thiocarbonic groups bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01] 		S- or N=C-Hal the nitrogen storm
329/10	• • having sulfur atoms of thiocarbonic groups		not being part of nitro or nitroso groups [5, 2006.01]
320710	bound to carbon atoms of six-membered aromatic rings [5, 2006.01]	333/02	 Monothiocarbamic acids; Derivatives thereof [5, 2006.01]
329/12	 Dithiocarbonic acids; Derivatives thereof [5, 2006.01] 	333/04	 having nitrogen atoms of thiocarbamic groups bound to hydrogen atoms or to acyclic carbon
329/14	• • Esters of dithiocarbonic acids [5, 2006.01]		atoms [5, 2006.01]
329/16	 having sulfur atoms of dithiocarbonic groups bound to acyclic carbon atoms [5, 2006.01] 	333/06	having nitrogen atoms of thiocarbamic groups bound to carbon atoms of rings other than six-
329/18	• • • having sulfur atoms of dithiocarbonic groups	222/00	membered aromatic rings [5, 2006.01]
220 /20	bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	333/08	 having nitrogen atoms of thiocarbamic groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
329/20	 having sulfur atoms of dithiocarbonic groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] 	333/10	having nitrogen atoms of thiocarbamic groups being part of any of the groups
	aromatic rings [3, 2000.01]		
331/00	Derivatives of thiocyanic acid or of isothiocyanic acid [5, 2006.01]		0 × S × -S-C-N-C × -0-C-N-C ×
331/02	• Thiocyanates [5, 2006.01]		s x o x
331/04	 having sulfur atoms of thiocyanate groups bound to acyclic carbon atoms [5, 2006.01] 		S
331/06	 having sulfur atoms of thiocyanate groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 		\$ X \$ X -0-C-N=C Hal-C-N=C
331/08	having sulfur atoms of thiocyanate groups bound to carbon atoms of six-membered aromatic		Y X being a hetero atom, Y being any atom, e.g., N-acyl-
221/10	rings [5, 2006.01]		thiocarbamates [5, 2006.01]
331/10	 having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen 	333/12	 having nitrogen atoms of thiocarbamic groups bound to other hetero atoms [5, 2006.01]
331/12	atoms [5, 2006.01] • having sulfur atoms of thiocyanate groups bound	333/14	 Dithiocarbamic acids; Derivatives thereof [5, 2006.01]
331/12	to carbon atoms of hydrocarbon radicals	333/16	• • Salts of dithiocarbamic acids [5, 2006.01]
	substituted by nitrogen atoms, not being part of	333/18	• Esters of dithiocarbamic acids [5, 2006.01]
	nitro or nitroso groups [5, 2006.01]	333/20	• • having nitrogen atoms of dithiocarbamate
331/14	having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals	222/22	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
331/16	substituted by carboxyl groups [5, 2006.01]	333/22	 having nitrogen atoms of dithiocarbamate groups bound to carbon atoms of rings other
331/18	 Isothiocyanates [5, 2006.01] having isothiocyanate groups bound to acyclic		than six-membered aromatic rings [5, 2006.01]
551/10	carbon atoms [5, 2006.01]	333/24	 having nitrogen atoms of dithiocarbamate
331/20	• • • of a saturated carbon skeleton [5, 2006.01]		groups bound to carbon atoms of six-membered
331/22	• • • of an unsaturated carbon skeleton [5, 2006.01]	222/26	aromatic rings [5, 2006.01]
331/24	• • • the carbon skeleton containing six- membered aromatic rings [5, 2006.01]	333/26	• • containing any of the groups S S S S Or S C Or S C Or S S S S S S S S S S S S S
331/26	 having isothiocyanate groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 		-S-U-N-U or -S-U-N=U Y X being a hetero atom, Y being any atom, e.g. N-
331/28	having isothiocyanate groups bound to carbon		acyldithiocarbamates [5, 2006.01]
	atoms of six-membered aromatic rings [5, 2006.01]	333/28	• • having nitrogen atoms of dithiocarbamate groups bound to other hetero
331/30	 containing at least two isothiocyanate groups bound to the same carbon skeleton [5, 2006.01] 	333/30	atoms [5, 2006.01]having sulfur atoms of dithiocarbamic groups
331/32	 having isothiocyanate groups 		bound to other sulfur atoms [5, 2006.01]
	acylated [5, 2006.01]	333/32	• • • Thiuramsulfides; Thiurampolysulfides [5, 2006.01]

335/00	Thioureas, i.e. compounds containing any of the	337/02	Compounds containing any of the groups
	S S- SN-C-NC or -N=C-NC the nitrogen atoms not		S S- >N-N-C-S-
225 (22	being part of nitro or nitroso groups [5, 2006.01]		S 0 >N-N-C-0-, >N-N-C-S-
335/02 335/04	 Thiourea [5, 2006.01] Derivatives of thiourea [5, 2006.01]		
335/04	having nitrogen atoms of thiourea groups bound to		\$- or >N-N=C-O-
5557 00	acyclic carbon atoms [5, 2006.01]		or >N-N=C-O- e.g.
335/08	• • of a saturated carbon skeleton [5, 2006.01]		thiocarbazates [5, 2006.01]
335/10	• • • of an unsaturated carbon skeleton [5, 2006.01]	337/04	• • the other nitrogen atom being further doubly-
335/12	• • • the carbon skeleton containing six- membered aromatic rings [5, 2006.01]	337/06	bound to a carbon atom [5, 2006.01]Compounds containing any of the groups
335/14	having nitrogen atoms of thiourea groups bound to	337700	S S-
	carbon atoms of rings other than six-membered		>N-N-Ë-N<
225 /16	aromatic rings [5, 2006.01]		, Ş-
335/16	 having nitrogen atoms of thiourea groups bound to carbon atoms of six-membered aromatic rings of a 		or >N−Ň−Ċ=N <e.g.< th=""></e.g.<>
	carbon skeleton [5, 2006.01]		thiosemicarbazides [5, 2006.01]
335/18	• • being further substituted by singly-bound	337/08	the other nitrogen atom being further doubly-
335/20	oxygen atoms [5, 2006.01] • • being further substituted by nitrogen atoms, not		bound to a carbon atom, e.g. thiosemicarbazones [5, 2006.01]
333/20	being further substituted by nitrogen atoms, not being part of nitro or nitroso	337/10	 the two nitrogen atoms of the functional group being
	groups [5, 2006.01]		doubly-bound to each other [5, 2006.01]
335/22	• • • being further substituted by carboxyl	381/00	Compounds containing carbon and sulfur and
335/24	groups [5, 2006.01] • • containing any of the groups	5017 00	having functional groups not covered by groups
333724	S X S X		C07C 301/00-C07C 337/00 [5, 2006.01]
	S X S X X X X X X X X X X X X X X X X X	381/02	• Thiosulfates [5, 2006.01]
	o de la companya de	381/04 381/06	 Thiosulfonates [5, 2006.01] Compounds containing sulfur atoms only bound to
DD= /0.6	atom, Y being any atom [5, 2006.01]	301/00	two nitrogen atoms [5, 2006.01]
335/26	• • Y being a hydrogen or a carbon atom, e.g. benzoylthioureas [5, 2006.01]	381/08	 having at least one of the nitrogen atoms acylated [5, 2006.01]
335/28	• • Y being a hetero atom, e.g. thiobiuret [5, 2006.01]	381/10	 Compounds containing sulfur atoms doubly-bound to nitrogen atoms [5, 2006.01]
335/30 335/32	 Isothioureas [5, 2006.01] having sulfur atoms of isothiourea groups bound	381/12	• Sulfonium compounds [5, 2006.01]
333/32	to acyclic carbon atoms [5, 2006.01]	381/14	Compounds containing a carbon atom having four
335/34	having sulfur atoms of isothiourea groups bound		bonds to hetero atoms, with a double bond to one hetero atom and at least one bond to a sulfur atom
	to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]		further doubly-bound to oxygen atoms [5, 2006.01]
335/36	having sulfur atoms of isothiourea groups bound	391/00	Compounds containing selenium [5, 2006.01]
	to carbon atoms of six-membered aromatic rings [5, 2006.01]	391/02	 having selenium atoms bound to carbon atoms of six- membered aromatic rings [5, 2006 01]
335/38	containing any of the groups		membered aromatic rings [5, 2006.01]
	şx	395/00	Compounds containing tellurium [5, 2006.01]
	\$-		
	S − × or −N=C−N=C	401/00	Irradiation products of cholesterol or its derivatives;
	or -N=C-N=C		Vitamin D derivatives, 9,10-seco
	[†] X being a hetero		cyclopenta[a]phenanthrene or analogues obtained by chemical preparation without irradiation [5, 2006.01]
225 / 40	atom, Y being any atom [5, 2006.01]		Chemical preparation without irradiation [3, 2000.01]
335/40	 having nitrogen atoms of thiourea or isothiourea groups further bound to other hetero 	403/00	Derivatives of cyclohexane or of a cyclohexene,
	atoms [5, 2006.01]		having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this
335/42	• • Sulfonylthioureas;		part being directly attached to the cyclohexane or
335/44	Sulfonylisothioureas [5, 2006.01] • Sulfenylthioureas;		cyclohexene rings, e.g. vitamin A, beta-carotene,
555, 11	Sulfenylisothioureas [5, 2006.01]	403/02	beta-ionone [5, 2006.01]having side-chains containing only carbon and
337/00	•	705/02	hydrogen atoms [5, 2006.01]
33//00	Derivatives of thiocarbonic acids containing functional groups covered by groups C07C 333/00 or	403/04	• having side-chains substituted by halogen
	C07C 335/00 in which at least one nitrogen atom of	402706	atoms [5, 2006.01]
	these functional groups is further bound to another	403/06	 having side-chains substituted by singly-bound oxygen atoms [5, 2006.01]
	nitrogen atom not being part of a nitro or nitroso group [5, 2006.01]	403/08	• • by hydroxy groups [5, 2006.01]
		403/10	• • by etherified hydroxy groups [5, 2006.01]

403/12	• • by esterified hydroxy groups [5, 2006.01]	409/12	• • • with two alpha,alpha-dialkylmethyl-
403/14	having side-chains substituted by doubly-bound		hydroperoxy groups bound to carbon atoms of the same six-membered aromatic
400 / 40	oxygen atoms [5, 2006.01]		of the same six-membered aromatic ring [5, 2006.01]
403/16	• • not being part of —CHO groups [5, 2006.01]	409/14	the carbon atom belonging to a ring other than a
403/18	 having side-chains substituted by nitrogen atoms [5, 2006.01] 		six-membered aromatic ring [5, 2006.01]
403/20	 having side-chains substituted by carboxyl 	409/16	• the —O—O— group being bound between two
	groups [5, 2006.01]		carbon atoms not further substituted by oxygen
403/22	 having side-chains substituted by sulfur 	400 / 10	atoms, i.e. peroxides [5, 2006.01]
	atoms [5, 2006.01]	409/18	 at least one of the carbon atoms belonging to a ring other than a six-membered aromatic
403/24	 having side-chains substituted by six-membered non- 		ring [5, 2006.01]
	aromatic rings, e.g. beta-carotene [5, 2006.01]	409/20	• the —O—O— group being bound to a carbon atom
405/00	Compounds containing a five-membered ring having	403720	further substituted by singly-bound oxygen
405700	two side-chains in ortho position to each other, and		atoms [5, 2006.01]
	having oxygen atoms directly attached to the ring in	409/22	 having two —O—O— groups bound to the carbon
	ortho position to one of the side-chains, one side-		atom [5, 2006.01]
	chain containing, not directly attached to the ring, a	409/24	 the —O—O— group being bound between a C=O
	carbon atom having three bonds to hetero atoms		group and hydrogen, i.e. peroxy acids [5, 2006.01]
	with at the most one bond to halogen, and the other	409/26	 Peracetic acid [5, 2006.01]
	side-chain having oxygen atoms attached in gamma- position to the ring, e.g. prostaglandins [5, 2006.01]	409/28	• • a)C=O group being bound to a carbon atom of a
	position to the ring, e.g. prostagiantins [3, 2000.01]		ring other than a six-membered aromatic
407/00	Preparation of peroxy compounds [5, 2006.01]	100 /00	ring [5, 2006.01]
		409/30	• • a C=O group being bound to a carbon atom of a
409/00	Peroxy compounds [5, 2006.01]	400 / 22	six-membered aromatic ring [5, 2006.01]
409/02	• the —O—O— group being bound between a carbon	409/32	• the —O—O— group being bound between two C=O groups [5, 2006.01]
	atom, not further substituted by oxygen atoms, and	409/34	both belonging to carboxylic acids [5, 2006.01]
400 / 0.4	hydrogen, i.e. hydroperoxides [5, 2006.01]	409/36	 Diacetyl peroxide [5, 2006.01]
409/04 409/06	the carbon atom being acyclic [5, 2006.01]Compounds containing rings other than six-	409/38	• the —O—O— group being bound between a C=O
409/00	membered aromatic rings [5, 2006.01]	405/50	group and a carbon atom, not further substituted by
409/08	Compounds containing six-membered aromatic		oxygen atoms, i.e. esters of peroxy acids [5, 2006.01]
1 03/00	rings [5, 2006.01]	409/40	• containing nitrogen atoms [5, 2006.01]
409/10	• • • • Cumene hydroperoxide [5, 2006.01]	409/42	 containing sulfur atoms [5, 2006.01]
		409/44	• • with sulfur atoms directly bound to the —O—O—
			groups, e.g. persulfonic acids [5, 2006.01]