MBA CLASIFICATION JAVIER ELIZONDO TREVINO

October 6, 2024

1 MBA Admission

2 1. Abstracto con motivación y audiencia

2.1 Motivación:

El proceso de admisión universitaria es crucial tanto para las instituciones educativas como para los aspirantes. Analizar los datos de admisión puede ayudar a identificar patrones y factores clave que influyen en la decisión de admitir o rechazar a un estudiante. Este análisis no solo optimiza el proceso de selección, sino que también promueve la equidad y la transparencia en las decisiones de admisión.

2.2 Audiencia:

Administradores y Oficiales de Admisión Universitaria: Para mejorar y optimizar los criterios de selección. Estudiantes y Aspirantes: Para entender mejor los factores que influyen en su admisión. Investigadores y Científicos de Datos: Para desarrollar modelos predictivos y análisis de datos en el ámbito educativo. Policymakers: Para formular políticas educativas basadas en datos.

3 2. Resumen de metadata

- application_id: Identificador único para cada solicitud
- gender: Género del solicitante (Masculino, Femenino)
- international: Estudiante internacional (VERDADERO/FALSO)
- gpa: Promedio de calificaciones del solicitante (en una escala de 4.0)
- major: Carrera de pregrado (Negocios, STEM, Humanidades)
- race: Antecedentes raciales del solicitante (por ejemplo, Blanco, Negro, Asiático, Hispano, Otro / estudiante internacional)
- gmat: Puntuación GMAT del solicitante (800 puntos)
- work exp: Número de años de experiencia laboral (Años)
- work_industry: Industria de la experiencia laboral previa del solicitante (por ejemplo, Consultoría, Finanzas, Tecnología, etc.)
- admission: Estado de admisión (Admitido, Lista de espera, Rechazado)

4 Importar las bibliotecas necesarias

```
[4]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import plotly.express as px
  import plotly.graph_objects as go
  import plotly.io as pio
  from plotly.subplots import make_subplots
  pio.templates.default = "plotly_white"
  import warnings
  warnings.filterwarnings("ignore")
```

5 Cargar y explorar el dataset

```
[6]: # Mostrar las primeras filas del dataset df.head()
```

```
[6]:
       application_id gender international
                                              gpa
                                                        major
                                                                        race
                    1 Female
                                      False 3.30
                                                     Business
                                                                       Asian
    1
                         Male
                                      False 3.28 Humanities
                                                                       Black
    2
                    3 Female
                                      True 3.30
                                                     Business International
    3
                    4
                         Male
                                      False 3.47
                                                         STEM
                                                                       Black
                    5
                         Male
                                      False 3.35
                                                         STEM
                                                                    Hispanic
```

	gmat	work_exp	work_industry	admission
0	620	3	Financial Services	Admit
1	680	5	Investment Management	Deny
2	710	5	Technology	Admit
3	690	6	Technology	Deny
4	590	5	Consulting	Deny

6 Información general del dataset

```
[7]: # Información general del dataset df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6194 entries, 0 to 6193

Data columns (total 10 columns): Column Non-Null Count Dtype -----0 application_id 6194 non-null int64 gender 6194 non-null 1 object 2 international 6194 non-null bool 3 gpa 6194 non-null float64 4 major 6194 non-null object 5 race 6194 non-null object 6 6194 non-null int64 gmat 7 6194 non-null int64work_exp work_industry 6194 non-null object admission 6194 non-null object dtypes: bool(1), float64(1), int64(3), object(5) memory usage: 441.7+ KB

7 Estadísticas descriptivas

[8]: # Estadísticas descriptivas df.describe()

[8]:		application_id	gpa	gmat	work_exp
	count	6194.000000	6194.000000	6194.000000	6194.000000
	mean	3097.500000	3.250714	651.092993	5.016952
	std	1788.198115	0.151541	49.294883	1.032432
	min	1.000000	2.650000	570.000000	1.000000
	25%	1549.250000	3.150000	610.000000	4.000000
	50%	3097.500000	3.250000	650.000000	5.000000
	75%	4645.750000	3.350000	680.000000	6.000000
	max	6194.000000	3.770000	780.000000	9.000000

8 Verificar valores nulos

[9]: # Verificar valores nulos
df.isnull().sum()

[9]: application_id 0 gender 0 international 0 0 gpa major 0 0 race 0 gmat work_exp work_industry 0 admission 0 dtype: int64

9 Lista de Preguntas y/o Hipótesis

9.1 Hipótesis 1:

Los estudiantes con un GPA más alto tienen una mayor probabilidad de ser admitidos.

9.2 Hipótesis 2:

Los estudiantes con puntajes GMAT más altos tienen una mayor probabilidad de ser admitidos.

9.3 Hipótesis 3:

La experiencia laboral en ciertas industrias (e.g., Consultoría, Tecnología) aumenta la probabilidad de admisión.

9.4 Hipótesis 4:

Los estudiantes internacionales tienen diferentes tasas de admisión en comparación con los estudiantes nacionales.

10 Preprocesamiento de datos

11 Análisis exploratorio de datos (EDA)

12 Primero revisaremos la cantidad de aplicantes.

```
[70]: # Distribución de la variable objetivo
plt.figure(figsize=(12, 6))
ax = sns.countplot(x='admission', data=df)
ax.bar_label(ax.containers[0])
plt.xlabel('Admisión')
plt.ylabel('Frecuencia')
plt.title('Distribución de la Variable Objetivo')
plt.show()
```


13 Cuantos son Mujeres y Hombres.

```
[71]: plt.figure(figsize=(12, 6))
   ax=sns.countplot(x='gender', data=df)
   ax.bar_label(ax.containers[0])
   plt.xlabel('Gender')
   plt.ylabel('Frecuencia')
   plt.title('Distribucion de aplicantes dvidido por genero')
   plt.show()
```


14 Cuantas admisiones se tuvieron por genero.

```
[72]: # Distribución de admisiones por género
plt.figure(figsize=(12, 6))
ax=sns.countplot(x='gender', hue='admission', data=df)
ax.bar_label(ax.containers[0])
ax.bar_label(ax.containers[1])
ax.bar_label(ax.containers[2])
ax.legend(title='Admisión')
plt.xlabel('Género')
plt.ylabel('Frecuencia')
plt.title('Distribución de Admisiones por Género')
plt.show()
```



```
[53]: # Tasa de admision de Mujeres

# Filter the DataFrame to include only male applicants
Female_applicants = df[df['gender'] == 'Female']

# Count the number of male applicants admitted
admit_Females = Female_applicants[Female_applicants['admission'] == 'Admit'].

$\infty$ shape[0]

# Count the total number of male applicants
```

```
total_Females = Female_applicants.shape[0]

# Calculate the percentage of admitted males
percentage_admitted_Females = (admit_Females / total_Females) * 100

print(f"Percentage of admitted Females: {percentage_admitted_Females:.2f}%")
```

Percentage of admitted Females: 19.99%

```
# Tasa de admision de Hombres

# Filter the DataFrame to include only male applicants
male_applicants = df[df['gender'] == 'Male']

# Count the number of male applicants admitted
admit_males = male_applicants[male_applicants['admission'] == 'Admit'].shape[0]

# Count the total number of male applicants
total_males = male_applicants.shape[0]

# Calculate the percentage of admitted males
percentage_admitted_males = (admit_males / total_males) * 100

print(f"Percentage of admitted males: {percentage_admitted_males:.2f}%")
```

Percentage of admitted males: 11.41%

```
[96]: # Comparativa de admision po GPA de estudiantes dividido por Genero
plt.figure(figsize=(12, 6))
sns.scatterplot(x='gpa', y='admission', hue='gender', data=df)
plt.title('GPA vs ADMISSION por GENDER')
plt.show()
```


15 # Hipótesis 1: Los estudiantes con un GPA más alto tienen una mayor probabilidad de ser admitidos?

```
[73]: # Hipótesis 1: Los estudiantes con un GPA más alto tienen una mayor∟

→ probabilidad de ser admitidos.

plt.figure(figsize=(12, 6))

sns.boxplot(x='admission', y='gpa', data=df)

plt.title('GPA vs Admisión')

plt.show()
```


16 Hipótesis 2: Los estudiantes con puntajes GMAT más altos tienen una mayor probabilidad de ser admitidos?

```
[74]: # Hipótesis 2: Los estudiantes con puntajes GMAT más altos tienen una mayor probabilidad de ser admitidos.

plt.figure(figsize=(12, 6))

sns.boxplot(x='admission', y='gmat', hue='gender', data=df)

plt.title('GMAT vs Admisión')

plt.show()
```


17 Hipótesis 3: La experiencia laboral en ciertas industrias (e.g., Consultoría, Tecnología) aumenta la probabilidad de admisión?

```
[75]: # Hipótesis 3: La experiencia laboral en ciertas industrias (e.g., Consultoría, ☐ → Tecnología) aumenta la probabilidad de admisión.

plt.figure(figsize=(12, 6))

sns.boxplot(x='admission', y='work_exp', data=df)

plt.title('Experiencia Laboral vs Admisión')

plt.show()
```



```
[76]: # Industria de trabajo anterior vs Admisión

plt.figure(figsize=(12, 6))

sns.countplot(x='work_industry', hue='admission', data=df)

plt.title('Industria de Trabajo Anterior vs Admisión')

plt.xticks(rotation=90)

plt.show()
```



```
[77]: # La experiencia laboral en industrias como Investment Management y Financial
       →Services parece aumentar la probabilidad de admisión.
      # Agrupar por industria y calcular la tasa de admisión
      admission_rates_by_industry = df.groupby('work_industry')['admission'].
       apply(lambda x: (x == 'Admit').mean()).sort_values(ascending=False)
      # Mostrar las industrias con las tasas de admisión más altas
      print(admission_rates_by_industry.head(5))
      print('\n')
      # Mostrar las industrias con las tasas de admisión más bajas
      print(admission_rates_by_industry.tail(5))
      print('\n')
      # Crear un gráfico de barras para visualizar las tasas de admisión por industria
      plt.figure(figsize=(12, 6))
      sns.barplot(x=admission_rates_by_industry.index, y=admission_rates_by_industry.
       ⇔values)
      plt.xticks(rotation=90)
      plt.xlabel('Industria')
      plt.ylabel('Tasa de Admisión')
```

plt.title('Tasa de Admisión por Industria') plt.show()

work_industry

Investment Management 0.216867
Financial Services 0.190687
CPG 0.175439
Real Estate 0.162162
Technology 0.156425
Name: admission, dtype: float64

work_industry

 PE/VC
 0.134509

 Retail
 0.121212

 Health Care
 0.119760

 Media/Entertainment
 0.118644

 Energy
 0.093750

 Name: admission, dtype: float64

18 Hipótesis 4: Los estudiantes internacionales tienen diferentes tasas de admisión en comparación con los estudiantes nacionales?

```
[80]: # Hipótesis 4: Los estudiantes internacionales tienen diferentes tasas de admisión en comparación con los estudiantes nacionales.

plt.figure(figsize=(12, 6))
ax= sns.countplot(x='international', hue='admission', data=df, palette='Set1')
ax.bar_label(ax.containers[0])
ax.bar_label(ax.containers[1])
ax.bar_label(ax.containers[2])
plt.xlabel('Estudiantes Internacionales vs. Admisión')
plt.ylabel('Número de Estudiantes')
plt.title('Admisión de Estudiantes Internacionales vs. Nacionales')
plt.show()
```



```
[81]: # Hipótesis 4: Estudiantes internacionales vs. Admisión
plt.figure(figsize=(12, 6))
ax= sns.countplot(x='admission', hue='international', data=df)
ax.bar_label(ax.containers[0])
ax.bar_label(ax.containers[1])
plt.xlabel('Admisión')
plt.ylabel('Número de Estudiantes')
plt.title('Estudiantes Internacionales vs. Admisión')
plt.show()
```



```
[91]: # Los estudiantes internacionales con buenos puntajes en el GMAT y un GPA altou
      ⇔tienen una mayor probabilidad de ser admitidos
     # Filtrar los estudiantes internacionales
     international_students = df[df['international'] == True]
     # Crear un diagrama de dispersión para visualizar la relación entre GMAT, GPA y_{\sqcup}
      →admisión para estudiantes internacionales
     plt.figure(figsize=(12, 6))
     sns.scatterplot(x='gmat', y='gpa', hue='admission', data=international_students)
     plt.title('Relación entre GMAT, GPA y Admisión para Estudiantes⊔
      plt.xlabel('Puntaje GMAT')
     plt.ylabel('GPA')
     plt.show()
     # Calcular la tasa de admisión para estudiantes internacionales con altos⊔
      ⇔puntajes de GMAT y GPA
     high_gmat_gpa_international =_
       \neginternational_students[(international_students['gmat'] >= 700) &
       admitted_high_gmat_gpa_international =_
       high_gmat_gpa_international[high_gmat_gpa_international['admission'] ==

¬'Admit'].shape[0]
     total_high_gmat_gpa_international = high_gmat_gpa_international.shape[0]
     if total_high_gmat_gpa_international > 0:
```

```
admission_rate_high_gmat_gpa_international = (admitted_high_gmat_gpa_international) * (admitted_high_gmat_gpa_international) * (admitted_high_gmat_gpa_international) * (admitted_high_gmat_gpa_international) * (admitted_high_gmat_gpa_international) * (admission_rate_high_gmat_gpa_international) * (admissio
```


Tasa de admisión para estudiantes internacionales con alto GMAT y GPA:# 45.90%

```
# Alumnos nacionales admitidos por raza

# Filtrar por alumnos nacionales
national_students = df[df['international'] == 0]

# Grafico de Alumnos nacionales admitidos por raza
plt.figure(figsize=(12, 6))
ax = sns.countplot(x='race', hue='admission', data=national_students)
ax.bar_label(ax.containers[0])
ax.bar_label(ax.containers[1])
ax.bar_label(ax.containers[2])
plt.xlabel('Raza')
plt.ylabel('Número de Estudiantes')
plt.title('Alumnos Nacionales Admitidos por Raza')
plt.legend(title='Admisión')
plt.show()
```



```
[94]: # Tasa de admision por raza sin contar other
      # Filtrar por alumnos nacionales y sin contar 'Other' en la raza
      national_students_no_other = df[(df['international'] == 0) & (df['race'] !=_u
       # Agrupar por raza y calcular la tasa de admisión
      admission_rates_by_race = national_students_no_other.
       Groupby('race')['admission'].apply(lambda x: (x == 'Admit').mean()).
       ⇒sort_values(ascending=False)
      # Mostrar las razas con las tasas de admisión más altas
      print(admission_rates_by_race)
      print('\n')
      # Crear un gráfico de barras para visualizar las tasas de admisión por raza
      plt.figure(figsize=(12, 6))
      ax= sns.barplot(x=admission_rates_by_race.index, y=admission_rates_by_race.
       ⇔values)
      ax.bar_label(ax.containers[0])
      plt.xlabel('Raza')
      plt.ylabel('Tasa de Admisión')
      plt.title('Tasa de Admisión por Raza (Estudiantes Nacionales, sin "Other")')
     plt.show()
```

race White 0.167582

Asian 0.165650 Hispanic 0.104027 Black 0.087336

Name: admission, dtype: float64

19 Los estudiantes asiáticos y blancos con buenos puntajes en el GMAT y GPA altos tienen una mayor probabilidad de ser admitidos.

```
[90]: # Los estudiantes asiáticos y blancos con buenos puntajes en el GMAT y GPA

→ altos tienen una mayor probabilidad de ser admitidos.

# Filtrar por estudiantes asiáticos y blancos
asian_white_students = df[(df['race'] == 'Asian') | (df['race'] == 'White')]

# Crear un diagrama de dispersión para visualizar la relación entre GMAT, GPA y

→ admisión para estudiantes asiáticos y blancos
plt.figure(figsize=(12, 6))
sns.scatterplot(x='gmat', y='gpa', hue='admission', data=asian_white_students)
plt.title('Relación entre GMAT, GPA y Admisión para Estudiantes Asiáticos y

→ Blancos')
plt.xlabel('Puntaje GMAT')
plt.ylabel('GPA')
plt.show()
```

```
# Calcular la tasa de admisión para estudiantes asiáticos y blancos con altosurpuntajes de GMAT y GPA
high_gmat_gpa_asian_white = asian_white_students[(asian_white_students['gmat']_u_s)= 700) & (asian_white_students['gpa'] >= 3.5)]
admitted_high_gmat_gpa_asian_white =_u_shigh_gmat_gpa_asian_white[high_gmat_gpa_asian_white['admission'] == 'Admit'].
shape[0]
total_high_gmat_gpa_asian_white = high_gmat_gpa_asian_white.shape[0]

if total_high_gmat_gpa_asian_white > 0:
    admission_rate_high_gmat_gpa_asian_white =_u_s(admitted_high_gmat_gpa_asian_white / total_high_gmat_gpa_asian_white) * 100
    print(f"Tasa de admisión para estudiantes asiáticos y blancos con alto GMAT yuselfa. {admission_rate_high_gmat_gpa_asian_white:.2f}%")
else:
    print("No hay estudiantes asiáticos y blancos con alto GMAT y GPA en el_useconjunto de datos.")
```


Tasa de admisión para estudiantes asiáticos y blancos con alto GMAT y GPA: 46.32%

```
[83]: plt.figure(figsize=(12, 6))
sns.scatterplot(x='gpa', y='gmat', hue='admission', data=df)
plt.title('GPA vs GMAT por Admisión')
plt.show()
```


20 Resumen de Hallazgos del Proyecto

20.1 Distribución de Admisiones por Género:

Las mujeres tienen una tasa de admisión relativamente alta en comparación con los hombres, y son admitidas con menor relacion de GPA y GMAT.

20.2 Impacto del GPA:

Los estudiantes con un GPA de 3.5 o más tienen una mayor probabilidad de ser admitidos.

20.3 Puntaje GMAT:

Un puntaje GMAT alto (700 o más) tiene una mayor probabilidad de admisión.

20.4 Estudiantes Internacionales:

Los estudiantes internacionales con buenos puntajes en el GMAT y un GPA alto tienen una mayor probabilidad de ser admitidos.

20.5 Experiencia Laboral:

La experiencia laboral en industrias como Investment Management y Financial Services parece aumentar la probabilidad de admisión, especialmente cuando se combina con un buen GPA y puntaje GMAT.

20.6 Raza y Admisión:

Los estudiantes Nacionales tienen mayor probabilidad de ser aceptados que los Internacionales. y dentro de los estudiantes nacionales los blancos y asiáticos con buenos puntajes en el GMAT y GPA altos tienen una mayor probabilidad de ser admitidos.