Meta Learning (Part 2): Gradient Descent as LSTM

Hung-yi Lee

OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING

Learning to learn by gradient descent by gradient descent

Sachin Ravi* and Hugo Larochelle

Twitter, Cambridge, USA {sachinr, hugo}@twitter.com

Marcin Andrychowicz¹, Misha Denil¹, Sergio Gómez Colmenarejo¹, Matthew W. Hoffman¹, David Pfau¹, Tom Schaul¹, Brendan Shillingford^{1,2}, Nando de Freitas^{1,2,3}

¹Google DeepMind ²University of Oxford ³Canadian Institute for Advanced Research

Recurrent Neural Network

• Given function f: h', y = f(h, x)

h and h' are vectors with the same dimension

No matter how long the input/output sequence is, we only need one function f

c change slowly c^t is c^{t-1} added by something

h change faster h^t and h^{t-1} can be very different

Review: LSTM

$$z = tanh(W) \frac{x^{t}}{h^{t-1}})$$

$$c^{t-1}$$

$$z^{i} = \sigma(W^{i})$$
input

$$z^{f} = \sigma(W^{f})$$
forget

$$z^{\circ} = \sigma(W^{\circ})$$
output

Review: LSTM

Review: LSTM

Similar to gradient descent based algorithm

Similar to gradient descent based algorithm

Real Implementation

The LSTM used only has one cell. Share across all parameters

- Reasonable model size
- In typical gradient descent, all the parameters use the same update rule
- Training and testing model architectures can be different.

Experimental Results

Parameter update depends on not only current gradient, but *previous gradients*.

LSTM for Gradient Descent (v2)

3 training steps Testing Data $\longrightarrow l(\theta^3)$ m can store previous gradients θ^1 "LSTM" "LSTM" "LSTM" "LSTM" "LSTM" 記住前一次的結果 $-\nabla_{\theta}l$ Batch Batch Batch from train from train from train

Experimental Results

Meta Learning (Part 3) Hung-yi Lee

Even more crazy idea ...

- Input:
 - Training data and their labels
 - Testing data
- Output:
 - Predicted label of testing data

identification:是那組人臉的哪一個人

Face Verification

verification:判斷是否是某個人(驗證)

In each task:

註冊的臉就是訓練資料

Training

Few-shot Learning

Registration (Collecting Training data)

Testing

Unlock your phone by Face

https://support.apple.com/zh-tw/HT208109

Meta Learning

Same approach for Speaker Verification

Test

Yes

Training Tasks

Test

No

Test

No

Testing Tasks

Test

Yes or

No.

not shown in training tasks

Siamese Network

No

Siamese Network

- Intuitive Explanation

Siamese Network

- Intuitive Explanation

To learn more ...

- What kind of distance should we use?
 - SphereFace: Deep Hypersphere Embedding for Face Recognition
 - Additive Margin Softmax for Face Verification
 - ArcFace: Additive Angular Margin Loss for Deep Face Recognition
- Triplet loss
 - Deep Metric Learning using Triplet Network
 - FaceNet: A Unified Embedding for Face Recognition and Clustering

N-way Few/One-shot Learning

Prototypical Network

-> softmax -> minimize cross entropy

Matching Network

Considering the relationship among the training examples

Relation Network

Few-shot learning for imaginary data

blue heron

https://arxiv.org/abs/1801.05401

Few-shot learning for imaginary data

