ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГИМНАЗИЯ №3 Г. ГРОДНО»

Секция «Алгебра, геометрия и математический анализ»

«Красим по-латински»

Автор работы:

Кергет Артем Олегович, 6 класс ГУО «Гимназия №3 г. Гродно»,

Руководители работы:

Разумов Евгений Владимирович, учитель математики, магистр педагогических наук, ГУО «Гимназия №3 г. Гродно»

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ	
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	

ВВЕДЕНИЕ

Задачи на раскраски регулярно встречаются на различных олимпиадах и математических боях. При этом зачастую необходимо найти раскраску в наименьшее количество цветов, таким образом, для решения подобных задач помимо примера нужно привести доказательство, что меньшем количеством цветов обойтись нельзя.

На седьмом Минском городском открытом турнире юных математиков (младшая лига — 5-7 классы) в 2020 году была предложена задача «Красим полатински». В данной работе предложено решение и обобщение этой задачи [1]. Помимо предложенной задачи про наибольшее число цветов для некоторых частных случаев квадратов и кубов, в работе рассмотрены общие задачи для прямоугольника $n \times m$, параллелепипеда $m \times n \times k$ и n-мерного параллелепипеда $k_1 \times k_2 \times ... \times k_n$.

Объект исследования: задачи на раскраски.

Предмет исследования: раскраска «по-латински».

Цель работы: найти минимальное количество цветов при раскраске полатински квадрата, параллелепипеда, *п*-мерного параллелепипеда.

Задачи:

- 1. Каждая из девяти клеток квадрата 3×3 должна быть окрашена в один из нескольких цветов так, что ни в одной строчке, ни в одном столбце и ни на одной из двух главных диагоналей квадрата не нашлось бы двух клеток одинакового цвета. Будем называть такую раскраску латинской. Каким наименьшим количеством цветов можно обойтись?
- 2. Рассмотрите следующую раскраску квадрата 5×5. Первую строку раскрасим в цвета 1, 2, 3, 4, 5. Вторую строку раскрасим в цвета 3, 4, 5, 1, 2. Третью строку в цвета 5, 1, 2, 3, 4. Четвертую в цвета 2, 3, 4, 5, 1. Пятую в цвета 4, 5, 1, 2, 3. Указать, все нечётные числа, для которых нельзя раскрасить полатински квадрат соответствующих размеров с помощью указанного алгоритма.
- 3. Найти наименьшее количество цветов при раскраске по-латински для произвольного квадрата $n \times n$.
- 4. Найти в какое наименьшее число цветов нужно раскрасить клетки прямоугольника $n \times m$, чтобы любые две клетки одного цвета не были соседними (ни по стороне, ни по вершине)?
- 5. Найти в какое наименьшее число цветов нужно раскрасить клетки произвольного параллелепипеда (*n*-мерного параллелепипеда), чтобы любые две клетки одного цвета не были соседними (ни по стороне, ни по вершине)?

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Введём систему координат. Вершина квадрата соответствует точке (0;0), стороны квадрата лежат на осях координат. Каждой клетке квадрата присвоим координаты (a;b).

Например, закрашенный квадрат на рисунке 1 имеет координаты (2; 2).

Рисунок 1

Будем называть рядом строку или столбец.

Рассмотрим следующую задачу. Каждая из девяти клеток квадрата 3×3 должна быть окрашена в один из нескольких цветов так, что ни в одной строчке, ни в одном столбце и ни на одной из двух главных диагоналей квадрата не нашлось бы двух клеток одинакового цвета. Будем называть такую раскраску латинской. Каким наименьшим количеством цветов можно обойтись?

Так как по главной диагонали квадрата 3×3 не могут располагаться клетки одинаковых цветов, то надо 3 цвета для покраски главной диагонали.

Пусть клетки диагонали покрашены в цвета 1,2,3, как показано на рисунке 2. Рассмотрим клетки с координатами (1; 1) и (3; 3), лежащие на другой главной диагонали. Каждая из них не может быть покрашена в цвет \mathbb{N}_2 (так как одна клетка по диагонали уже покрашена в этот цвет), в цвета \mathbb{N}_2 1 или \mathbb{N}_2 3 (так как клетки этих цветов стоят в одних рядах с клетками (1; 1) и (3; 3)), следовательно необходимо ещё как минимум два цвета. Таких образом, для покраски квадрата необходимо минимум 5 цветов.

Рисунок 2

Пример раскраски квадрата 3×3 по-латински:

1	5	4
3	2	1
5	4	3

Теперь рассмотрим квадрат 4×4. Так как ряд содержит 4 клетки, то для раскраски квадрата 4×4 необходимо минимум 4 цвета.

Пример раскраски квадрата 4×4 по-латински:

1	2	3	4
4	3	2	1
2	1	4	3
3	4	1	2

Рассмотрим следующую раскраску квадрата 5×5 . Первую строку раскрасим в цвета 1, 2, 3, 4, 5. Вторую строку раскрасим в цвета 3, 4, 5, 1, 2. Третью строку — в цвета 5, 1, 2, 3, 4. Четвертую — в цвета 2, 3, 4, 5, 1. Пятую — в цвета 4, 5, 1, 2, 3. Убедитесь что данная раскраска является латинской. Можно ли по такому же принципу раскрасить квадрат $7 \times 7, 9 \times 9, 11 \times 11, \dots$ Если нет, то укажите, все нечётные числа, для которых нельзя раскрасить по-латински квадрат соответствующих размеров с помощью указанного алгоритма [1].

В предложенной раскраске происходит сдвиг по столбцам на 2, то есть если в клетке (x,y) стоит цвет \mathbb{N}_2 A, то в клетке с координатами (x;y-1) стоит цвет \mathbb{N}_2 (A + 2) по модулю n, где n —сторона квадрата. Так как у нас задана верхняя строка квадрата в виде 1,2,3,...,n, то рассмотрим главную диагональ квадрата $n \times n$. Пусть в клетке первой главной диагонали с координатами (x;y) стоит цвет \mathbb{N}_2 A, тогда в клетке с координатами (x+1;y-1) стоит цвет \mathbb{N}_2 (A + 3) по модулю n.

Последовательно прибавляя к предыдущему цвету 3, мы пройдём все клетки первой главной диагонали. Все эти клетки будут раскрашены в разные цвета для любых n, таких что (n;3)=1.

Если же $(n;3) \neq 1$, то встретятся как минимум два одинаковых остатка по модулю n. Следовательно, данная раскраска является латинской для любых нечётных n и взаимно простых с 3.

Докажем, что для квадрата $n \times n$, n —нечётное и $n \neq 3k$, $k \in \mathbb{N}$ данная раскраска является латинской.

Очевидно, что все числа (цвета) в любой строке будут различны. А в столбцах происходит сдвиг цветов на 2 по модулю n, таким образом все цвета в столбце различны в силу нечётности n. Во второй диагонали происходит сдвиг цвета на 1, то есть, если в клетке с координатой (x; y) стоит клетка цвета \mathbb{N} A, то

в клетке с координатой (x-1;y-1) стоит клетка с цветом $\mathbb{N}(A+1)$, по модулю n. Таким образом, клетки в этой диагонали пройдут все возможные остатки по модулю n, а значит будут раскрашены в разные цвета.

Найдем некоторые виды квадратов $n \times n$, которые можно раскрасить в n цветов по-латински.

Рассмотрим квадрат $4k \times 4k$. Разделим исходный квадрат $4k \times 4k$ на 4 квадрата, пронумеруем квадраты номерами B_1 , B_2 , B_3 , B_4 .

B ₂	B ₁
B_3	B ₄

Обозначим прямыми l и m соответственно вертикальную и горизонтальную прямые, делящие исходный квадрат на квадраты B_1 , B_2 , B_3 , B_4 .

			l			
		(1)	(1*')			
	(3)					
	A			A_3		
(2)					(2*')	
		(1*)	(1')			m
				(3')		
				A_1		
(2*)					(2')	

Раскрасим квадрат B_2 по-латински в t цветов, далее поставим в соответствие всякой клетке $A(l-x_0,m+y_0)$ из квадрата B_2 клетку A_1 из квадрата B_4 такую, что $A_1(l+x_0,y_0)$, далее в соответствующие клетки A и A_1' покрасим в 1 цвет, несложно понять, что квадрат B_4 также окажется раскрашенным по-латински в t

цветов в силу соответствующего разбиения. Таким образом, клетки (1) и (1'), (2) и (2'), (3) и (3') будут покрашены в один и тот же цвет и так далее.

Пусть квадрат B_2 (и соответственно B_4) покрашены в цвета 1, 2, ..., t. Покрасим квадрат B_3 в цвета (t+1), (t+2), ..., (2t) по-латински следующим образом: клетке $A(l-x_0, m+y_0)$ квадрата B_2 поставим в соответствие клетку A_2 такую, что $A_2(l-x_0; y_0)$, а далее покрасим соответствующие клетки A и A_2 в цвета, разность которых равна t, то есть если клетка (1) покрашена в цвет t_1 , то клетку (1^*) покрасим в цвет $(t+t_1)$. Если клетка (2) покрашена в цвет t_2 , то клетка (2^*) будет покрашена в цвет $(t+t_2)$ и так далее. Тогда квадрат B_3 будет покрашен в t цветов по-латински в силу соответствия всех его клеток. Аналогично поступим и с квадратами B_4 и B_1 , то есть клетку A_3 поставим в соответствие клетке A_2 и покрасим соответствующие клетки в цвета с номерами с разностью t. То есть если клетка (1^*) покрашена в цвет t_1 , то клетку (1^{**}) покрасим в цвет $(t+t_1)$. Если клетка (2^*) покрашена в цвет t_2 , то клетку (2^{**}) покрасим в цвет с номером $(t+t_2)$ и так далее. Тогда квадрат B_1 также будет раскрашен в t цветов по-латински.

Заметим, что при данной раскраске на главной диагонали квадрата B_2 , проходящей через клетки (1) и (2) будут стоять числа от 1 до t, при этом всякий цвет в клетке на этой диагонали будет равен цвету, находящемуся в клетке квадрата B_4 , соответствующей данной. Аналогично и с диагоналями квадратов B_1 и B_3 .

Возьмем диагонали квадратов B_2 и B_3 , проходящие через точки (2) и (1), (2*) и (1*) соответственно, и переместим соответствующие цвета в клетках местами, то есть поступим следующим образом:

			t_{2k}			
		•••				
	t_2					
t_1						
			$t + t_{2k}$			
		•••				
	$t + t_2$					
$t + t_1$						
		-		-		
		-	$t \\ + t_{2k}$	-		
			$t + t_{2k}$			
	t + t ₂		$t + t_{2k}$			
$t + t_1$			$t + t_{2k}$			
$t + t_1$			$t + t_{2k}$			
$t + t_1$						
$t + t_1$						

Такую же самую операцию проделаем и с диагоналями квадратов B_1 и B_4 , проходящими через точки (1*') и (2*'), (1') и (2') соответственно для этих

квадратов. То есть поступим следующим образом:

квад	ратов	. To e	сть по	ступим	следу	ующим	1 образ
				t			
				$+t_{2k'}$			
				2.0			
					` ` `		
				1		_	
						t	
						$+t_{2}$,	
							t
							$t + t_1$
				$t_{2k'}$			
				· 2K1			
					•••		
						t_{2}	
							t ₁ ,
							1
				t_{2k} ,			
					•••		
						t ₂ ,	
							+
							$t_{1\prime}$
				$t + t_{2k'}$			
				$+t_{2k\prime}$			
						t	
						$t + t_2$	
						۷,	t
							-

Заметим, что в силу соответствия цветов в клетках A и A_1 , можно получить, что $t_1=t_1$, $t_2=t_2$, ..., $t_{2k}=t_{2k}$, значит, проделав такую операцию, из исходного после преобразования получим:

			t_{2k}	$t + t_{2k}$			
		•••		$+\iota_{2k}$	•••		
	t_2					t + t ₂	
t_1						$+t_2$	t
							$t + t_1$
			$t + t_{2k}$	t_{2k}			
1			$-c_{2R}$				
		•••	1 °2R		•••		
$t + t_1$	$t + t_2$	•••	1 028			t_2	

			$t + t_{2k}$	t_{2k}			
		•••			•••		
	t + t ₂					t_2	
$t + t_1$							t_1
			t_{2k}	$t + t_{2k}$			
		•••	t_{2k}	$t + t_{2k}$	•••		
	t_2		t_{2k}	$t + t_{2k}$	•••	$t + t_2$	

Заметим, что изначально любой столбец квадрата $4k \times 4k$ не содержала одинаковых цветов, так как любой столбец квадрата $2k \times 2k$ не содержал два одинаковых цвета, а в двух квадратах, лежащих по одну сторону от прямой l не находится ни одного повторяющегося цвета. Таким образом любой столбец большого квадрата удовлетворяет условию латинской раскраски, так как он состоит из столбцов верхнего и нижнего квадратов $2k \times 2k$. Между этими столбцами не найдется двух одинаковых цветов, и в каждом из этих столбцов не найдется клеток, покрашенных одинаковыми цветами. После смены диагоналей столбец квадрата также будет покрашен в разные цвета, так как мы лишь поменяем местами цвета в двух клетках.

Аналогичный факт можно отметить и для любой строки полученного квадрата.

Докажем, что и на диагоналях квадрата $4k \times 4k$ не найдется клеток одного цвета. На второй главной диагонали квадрата B_2 (отличной от диагонали, содержащей (1) и (2)) все клетки, которые она содержит, закрашены цветами с номерами, не большими t, на главной диагонали квадрата B_4 , проходящей через (1') и (2'), после проделанной операции, будут находиться клетки, покрашенные цветами, с номерами, большими t. При этом на ней не найдется двух клеток, покрашенных в один цвет (по условию латинской раскраски). Значит главная диагональ квадрата $4k \times 4k$ не имеет клеток, покрашенных в один цвет, как не имеет повторов на половине, которая является диагональю квадрата B_4 , а также между этими двумя половинами, то есть эта диагональ удовлетворяет условию латинской раскраски.

В силу симметрии вторая диагональ квадрата $4k \times 4k$ также будет удовлетворять условию латинской раскраски.

Значит мы получаем, что полученная раскраска квадрата $4k \times 4k$ в 2t цветов является латинской при условии, что можно получить раскраску полатински в t цветов для квадрата $2k \times 2k$.

Построим пример для квадрата по полученному алгоритму из следующей раскраски по-латински квадрата 4 × 4 в 4 цвет:

1	2	3	4
3	4	1	2
4	3	2	1
2	1	4	3

1	2	3	4		
3	4	1	2		
4	3	2	1		
2	1	4	3		
	·				

1	2	3	4				
3	4	1	2				
4	3	2	1				
2	1	4	3				
				4	3	2	1
				2	1	4	3
			·	1	2	3	4
				3	4	1	2

1	2	3	4	8	7	6	5
3	4	1	2	6	5	8	7
4	3	2	1	5	6	7	8
2	1	4	3	7	8	5	6
5	6	7	8	4	3	2	1
7	8	5	6	2	1	4	3
8	7	6	5	1	2	3	4
6	5	7	8	3	4	1	2

1	2	3	8	4	7	6	5
3	4	5	2	6	1	8	7
4	7	2	1	5	6	3	8
6	1	4	3	7	8	5	2
5	6	7	4	8	3	2	1
7	8	1	6	2	5	4	3
8	3	6	5	1	2	7	4
2	5	8	7	3	4	1	6

Тогда, так как нами были получены примеры раскрасок по-латински для случаев 4×4 , 6×6 в 4 и 6 цветов соответственно, заключаем, что минимальное количество цветов для раскраски по-латински квадратов 2^m и $2^m \cdot 3$ равно 2^m и $2^m \cdot 3$ соответственно для всех натуральных m.

Пример для 6×6 :

пример для о х о.							
1	2	3	4	5	6		
6	5	4	3	2	1		
5	3	6	1	4	2		
4	6	5	2	1	3		
2	4	1	6	3	5		
3	1	2	5	6	4		

Рассмотрим следующую задачу:

В какое наименьшее число цветов нужно раскрасить клетки прямоугольника $n \times m$, чтобы любые две клетки одного цвета не были соседними (ни по стороне, ни по вершине)?

Найдём наименьшее число цветов необходимое чтобы раскрасить клетки прямоугольника $n \times m$, так чтобы любые 2 клетки одного цвета не были соседними, по стороне, ни по вершине. Рассмотрим квадрат 2×2 . Все клетки квадрата являются попарно соседними, а следовательно минимальное количество цветов для раскраски равно четырём.

Пример:

1	2
3	4

Так как в любом прямоугольнике $n \times m$, где $n \ge 2$ и $m \ge 2$ найдётся квадрат 2×2 , то минимальное количество цветов для раскраски прямоугольника равно 4.

Построим пример на четыре цвета для раскраски прямоугольника $n \times m$:

				η	ı				
	1	2	1	2	1	2	1	2	• • •
	3	4	3	4	3	4	3	4	
	1	2	1	2	1	2	1	2	
n	3	4	3	4	3	4	3	4	
	1	2	1	2	1	2	1	2	
	3	4	3	4	3	4	3	4	
	1	2	1	2	1	2	1	2	
	3	4	3	4	3	4	3	4	
	_								'
	:								

где в нечётных строках чередуются цвета № 1 и № 2, а в четных строках — № 3 и № 4. Следовательно, минимальное количество цветов равно 4.

Если не нарушая общности n=1 , $m\neq 1$, то рассмотрев прямоугольник $1\times m$, получим оценку на 2 цвета.

Построим пример:

Если m=n=1 , то ответ очевиден — раскраска в один цвет. Построим пример:

1

Замечание 1. Отметим, что если под соседними клетками понимать только соседние по стороне клетки (без вершин), то, рассмотрев прямоугольник 1×2 , получим оценку на минимальное количество -2. Примером является тривиальная шахматная раскраска.

Найдём наименьшее число цветов, в которые можно раскрасить кубики $1\times 1\times 1$ прямоугольного параллелепипеда $m\times n\times k$, где $n\geq 2$, $m\geq 2$, $k\geq 2$

так, чтобы любые 2 кубика одного цвета не были соседними по вершине, ни по ребру, ни по грани.

Рассмотрим куб $2 \times 2 \times 2$. Все его клетки являются попарно соседними по вершине, а следовательно, минимальное количество цветов $2 \cdot 2 \cdot 2 = 2^3 = 8$.

Пример:

нижний слой $(1 \times 2 \times 2)$

1	2
3	4

верхний слой $(1 \times 2 \times 2)$

5	6
7	8

Куб $2 \times 2 \times 2$ строится наложением этих слоев.

Таким образом, в любом параллелепипеде $m \times n \times k$, где $n \ge 2$, $m \ge 2$, $k \ge 2$ найдётся куб $2 \times 2 \times 2$, а значит минимальное количество цветов для раскраски параллелепипеда равно 8.

Построим пример:

каждый нечётный слой $n \times m$ будет иметь следующий вид:

				m			
	1	2	1	2	1	• • •	
	3	4	3	4	3		
	1	2	1	2			
n	3	4					
10	•						

где в нечётных строках чередуются цвета № 1 и № 2 , а в чётных № 3 и № 4.

Каждый чётный слой $n \times m$ будет иметь следующий вид:

				m		
	5	6	5	6	5	
	7	8	7	8	7	
	5	6	5	5		
n	7	8				
	:					

где в нечётных строках чередуются цвета № 5 и № 6, а в чётных — № 7 и № 8. Так как для любой клетки всё её соседи другого с ней цвета, условие пункта выполняется. Следовательно, минимальное количество цветов 8.

Замечание 2. Отметим, что если под соседними кубиками понимать только соседние по грани кубики (не включая вершины и рёбра), то рассмотрев параллелепипед $1 \times 1 \times 2$, получим оценку на минимальное количество цветов — 2. Примером является тривиальная шахматная трёхмерная раскраска.

Найдём наименьшее число цветов необходимое, чтобы раскрасить n —мерные кубики $1 \times 1 \times ... \times 1$ n —мерного параллелепипеда $k_1 \times k_2 \times ... \times k_n$, где $k_i \ge 2$, $j = \overline{1,n}$ так, чтобы никакие два кубика не были соседними.

Рассмотрим куб $2 \times 2 \times ... \times 2$. Все его кубики попарно соседние, а следовательно, количество цветов минимум равно $2 \cdot 2 \cdot ... \cdot 2 = 2^n$.

Пример очевиден, так как все кубики разных цветов.

Для построения примера раскраски n —мерного параллелепипеда применим метод математической индукции. Докажем, что существует раскраска в 2^{t+1} цветов (t+1)—мерного параллелепипеда $k_1 \times ... \times k_{t+1}$, $t \in \mathbb{N}$.

База индукции. Случай двухмерного пространства (t=1) был рассмотрен в пункте 7.6.

Шаг индукции. Пусть для всех $t \le q-1$ существует раскраска в 2^q цветов q —мерного параллелепипеда $k_1 \times ... \times k_q$.

Докажем, что для t=q такая раскраска в 2^{q+1} цветов тоже существует.

Исходя из предположения шага индукции, существует раскраска параллелепипеда $k_1 \times ... \times k_q \times 1$ в 2^q цветов. Рассмотрим такой же параллелепипед и раскрасим его в другие 2^q цветов.

Таким образом, мы использовали все 2^{q+1} цветов.

Чередуя попеременно k_{q+1} раз эти два (q+1)–мерных параллелепипеда по оси k_{q+1} ,получаем искомый параллелепипед.

Таким образом, основываясь на базе индукции и из справедливости доказываемого утверждения для $t \le (q-1)$, следует справедливость данного утверждения для t = q. На основании принципа математической индукции можно сделать вывод, что утверждение верно для любого $t, t \in \mathbb{N}$.

Следовательно, для n —мерного параллелепипеда $k_1 \times ... \times k_n$ наименьшее количество цветов равно 2^n .

ЗАКЛЮЧЕНИЕ

В процессе подготовки к Минскому городскому открытому турниру юных математиков (младшая лига — 5-7 классы) возникла идея обобщить задачу «Красим по-латински». Получены следующие результаты:

- 1) Исследована представленная раскраска, найдены все нечетные числа n, для которых нельзя раскрасить квадрат $n \times n$ по-латински с помощью указанного алгоритма. Доказано, что данная раскраска не является латинской для четных или кратных трем n.
- 2) Предложен алгоритм раскраски по-латински для квадратов со сторонами 2^m и $2^m \cdot 3$ в 2^m и $2^m \cdot 3$ цветов соответственно.
- 3) Доказано, что для прямоугольника $n \times m$ минимальное число цветов для раскраски клеток, чтобы любые две клетки не были соседними, равно четырем. Отдельно рассмотрены исключения, где возможны два цвета $(n=1, m \neq 1)$ или один цвет (n=m=1).
- 4) Доказано, что для прямоугольного параллелепипеда $m \times n \times k$ минимальное количество цветов для раскраски кубиков, чтобы любые два кубика не были соседними, равно 8.
- 5) Доказано, что для n-мерного параллелепипеда минимальное количество цветов для раскраски n-мерного кубиков, чтобы любые два кубика не были соседними, равно 2^n . Для построения примера данной конструкции использовался метод математической индукции.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Исследовательские задания VII Минского городского открытого турнира юных математиков (младшая лига — 5-7 классы). — Режим доступа: http://www.uni.bsu.by/arrangements/gtum57/index.html — Дата доступа: 10.03.2020.