

GRUNDLAGEN DER ELEKTROTECHNIK ET1

Teil 1: Von Einheiten bis Wirkungsgrad

TEIL 1: GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

SI EINHEITEN – SYSTÈME INTERNATIONAL D'UNITÉS

Größe	Bezeichnung	Einheit	Symbol
Länge	Meter	m	ℓ
Masse	Kilogramm	kg	m
Zeit	Sekunde	s	t
Strom	Ampere	A	I
Temperatur	Kelvin	K	Т

MKSA System: m, kg, s, A

SI-PRÄFIX

Frage:

Wie schreiben wir sehr große oder sehr kleine Werte?

SI-Präfix		Faktor	SI-Präfix		Faktor
m µ n p	Milli Micro Nano Pico	10 ⁻³ 10 ⁻⁶ 10 ⁻⁹ 10 ⁻¹²	k M G	Kilo Mega Giga	10 ³ 10 ⁶ 10 ⁹

Beispiel: $10^6 \text{ W} = 1.000.000 \text{ W} =$

TEIL 1: GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

GLEICHUNGEN

Physikalische Größe = Wert · Einheit

Basiseinheiten: m, kg, s, A

Abgeleitete Einheiten: z.B. Kraft in Newton: $1 N = 1 kg m/s^2$

Größengleichungen:

Einheitengleichungen:

Frage:

Warum sind Einheiten bei Umformungen stets mitzuführen?

Wenn Einheiten nicht stimmen ⇒ Fehler

ZUGESCHNITTENE GRÖßENGLEICHUNGEN

Frage:

Was machen wir, wenn eine physikalische Gleichung per Computer berechnet werden soll?

Mathematisch korrekt als zugeschnittene Größengleichung:

$$\frac{U}{V} = C \cdot \left(\frac{I}{A}\right)^{\beta}$$

ZUGESCHNITTENE GRÖßENGLEICHUNG

Aufgabe: Finden Sie den Zusammenhang zwischen C, β und C', β' .

$$\frac{U}{V} = C \cdot \left(\frac{I}{A}\right)^{\beta} \qquad \Rightarrow \qquad \frac{U}{V} = C' \cdot \left(\frac{I}{mA}\right)^{\beta'}$$

A.
$$\beta = \beta'$$
 und $C = 1000^{\beta'} \cdot C'$

B.
$$\beta = \beta'$$
 und $C' = 1000^{\beta'} \cdot C$

C.
$$\beta = 1000 \beta'$$
 und $C = C'$

SIGNIFIKANTE STELLEN

Wie genau soll ein Ergebnis angegeben werden?

→ Nicht genauer als es gemessen werden kann.

Typisch: 0.1% Messgenauigkeit → 4 signifikante Stellen

scientific format: $1 \cdot 10^{-5}$ $B = 2,983 \cdot 10^{-5} T$

engineering format: $1, 10^{-3}, 10^{-6}, \dots B = 29,83 \cdot 10^{-6}T = 29,83 \mu T$

TEIL 1: GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHE LADUNG

Frage:

Wie kann man die Ablenkung des Wasserstrahls erklären?

Frage:

Woher kommt eigentlich der Begriff Elektron?

ELEKTRISCHE LADUNG Q

Die Ursache für elektrische Erscheinungen ist die Ladung:

ohne Ladung gäbe es kein

ohne bewegte Ladung kein

$$[Q] = 1 C \text{ (Coulomb)} = 1 As$$

BOHRSCHES ATOMMODELL

- Niels Bohr in 1913
- Atomkern + Elektronenhülle
- Kern positiv, Elektron negativ geladen

Ladung des Elektrons: Elementarladung: $e = 1.602 \cdot 10^{-19} \, As$

Frage: Was konnte Nils Bohr mit diesem Modell erklären?

- A. Bestimmung des Atomdurchmessers
- B. Bestimmung des Elektrondurchmessers
- c. Modell zur Erklärung der Spektrallinien

TEIL 1: GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

COULOMBSCHES GESETZ

gleichnamige geladene Kugeln stossen sich ab

Frage:

Was hat Coulomb in seinen Versuchen mit geladenen Kugeln in 1785 festgestellt?

- Kraft *F* ∼
- Kraft F ∼

entgegengesetzt geladene Kugeln ziehen sich an

Coulombsches Gesetz:

$$F_C = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 \cdot Q_2}{r^2}$$

Permittivität des Vakuums:

$$\varepsilon_0 = 8,854 \cdot 10^{-12} \frac{As}{Vm}$$

ELEKTRISCHE FELDSTÄRKE *E*

Um Ladungen unterschiedlicher Polarität zu trennen, muss man von außen Energie aufbringen. Man spricht von Ladungstrennung.

Es entsteht ein elektrisches Feld.

Elektrische Feldstärke E = Kraft F auf Probeladung Q

$$E = \frac{F}{Q}$$
 mit $[E] = 1\frac{N}{C} = 1\frac{Nm}{Cm} = 1\frac{VAS}{ASm} = 1\frac{V}{m}$

COULOMBSCHES GESETZ UND FELDSTÄRKE

Aufgaben:

- 1) Wie groß ist die Feldstärke im Abstand von 37 pm (entspricht dem mittleren Atomradius von Wasserstoff) zu einem einfach geladenen Wasserstoffatomkern? $(e = 1,602 \cdot 10^{-19} As \text{ und } \varepsilon_0 = 8,854 \cdot 10^{-12} As/Vm)$
- 2) Welche Kraft wirkt auf ein Elektron in diesem Abstand?

A.
$$E = 1.052 \cdot 10^{12} V/m$$

B.
$$E = 1.052 \cdot 10^{-12} V/m$$

C.
$$F = 168,5 \, nN$$

$$D. F = 1,685 \cdot 10^{-7} N$$

BEISPIEL FÜR LADUNGSTRENNUNG

Aufbau einer Solarzelle

LADUNGSTRENNUNG

Aufgabe: Finden Sie Beispiele für Ladungstrennung.

•

•

•

•

•

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHE SPANNUNG U

Spannung ist ein Maß für die Arbeit, die man aufwendet, wenn eine Ladung in einem elektrischen Feld bewegt wird.

Für ein konstantes elektrisches Feld *E* gilt:

$$W=F\cdot s=$$
 $\phi=W/Q$ heißt elektrisches Potential $U_{12}=\phi_1-\phi_2$ ist die Potentialdifferenz und heißt **Spannung**

$$U_{12} = \frac{W_{12}}{Q}$$
 mit $[W]/[Q] = 1 Ws/As = 1 VAs/As = 1 Volt = 1 V$

ELEKTRISCHE SPANNUNG

Aufgabe: Bestimmen Sie die folgenden Spannungen.

- $U_{12} =$
- 2) $U_{23} =$ 3) $U_{31} =$
- 4) $U_{12} + U_{23} + U_{31} =$

$$\phi_2 = 2V$$

Endergebnis für Klicker-Abfrage:

a)
$$U_{12} + U_{23} + U_{31} = 2V$$

b)
$$U_{12} + U_{23} + U_{31} = 8 V$$

c)
$$U_{12} + U_{23} + U_{31} = 0 V$$

$$\phi_1 = 12V$$

$$\phi_3 = 20V$$

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHER STROM *I*

Elektrischer Strom ist bewegte Ladung

Strom wird angegeben als Ladungsmenge pro Zeit:

$$I = \frac{\Delta Q}{\Delta t}$$

$$mit[I] = 1 Ampere = 1 A$$

GLEICHSTROM UND MOMENTAN-STROM

Gleichstrom:

(DC – direct current)

$$I = const.$$

$$I = \frac{\Delta Q}{\Delta t}$$

Zeitabhängiger Strom:

(AC – alternating current)

$$i = f(t)$$

 $i = \frac{dQ}{dt}$

$$i = \frac{dQ}{dt} \quad \Leftrightarrow \quad Q = \int_{0}^{t} i dt$$

STROMDICHTE J

Frage:

Was passiert mit dem Strom, wenn ein Draht dünner wird?

Stromdichte

$$J = \frac{I}{A}$$

$$mit [J] = 1 A/m^2$$

BEISPIEL STROMDICHTE

Aufgabe

Beim Starten des Autos fließt I = 120 A.

Die Stromdichte darf höchstens $4 A/mm^2$ betragen.

Welchen Durchmesser muss ein rundes Kabel mindestens haben?

A. 3,09 mm

B. 6,18 *mm*

C. 9,18 *mm*

BEISPIELE FÜR LADUNGSTRANSPORT

Ladungsträger

Medium

Anwendung

Elektronen

Metall

Kupferleiter

•

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHER WIDERSTAND R

Aufgabe:

Vergleichen Sie den elektrischen Strom mit Wasser.

Wie können Sie den "Wasserstrom" reduzieren?

ANALOGIE ELEKTRISCHER STROM UND WASSER

Widerstand

Ladungsmenge

Strom: Ladung pro Zeit

Spannung: Potentialdifferenz

Widerstand

ELEKTRISCHER WIDERSTAND R

Im allgemeinen gilt:

- ein Leiter hat einen elektrischen Widerstand
- je höher die Spannung desto höher der Strom

Elektrischer Widerstand

•
$$[R] = 1 V/A = 1 \Omega \text{ (Ohm)}$$

$$R = U/I$$

$$G = I / U$$

• [G] = 1 A/V = 1Siemens = 1 S oder (US: 1 mho)

SPEZIFISCHER WIDERSTAND ρ

Frage: Wovon hängt der Widerstand eines Leiters ab?

•

•

materialabhängige Komponente wird zusammengefasst zu dem **spezifischen Widerstand** ρ (rho)

⇒ spezifischer Widerstand ist von der Geometrie unabhängig

SPEZIFISCHER WIDERSTAND ho

Der spezifische Widerstand ρ ist eine Materialkonstante:

Querschnitt A

$$R = \rho \cdot \frac{l}{A}$$

$$\mathsf{mit} [\rho] = 1 \Omega m$$

Kehrwert heißt spez. Leitfähigkeit σ

$$\sigma = \frac{1}{\rho}$$

$$\mathsf{mit} \; [\; \sigma \;] \; = \;$$

Beispiele

 $\rho_{CU} = 0.0167 \Omega \, \text{mm}^2/\text{m}$

 $\rho_{FE} = 0.0971 \Omega \, \text{mm}^2/\text{m}$

 $\rho_{Konstantan} = 0.5 \Omega \text{ mm}^2/\text{m}$

(55% Cu, 44% Ni, 1% Mn)

 $\rho_{Graphit} = 8 \Omega \, \text{mm}^2/\text{m}$

 $\rho_{Silizium} = 2 \ 300 \ 000 \ 000 \ \Omega \ \text{mm}^2/\text{m}$

AUFGABE DRAHTWIDERSTAND

Ein Drahtwiderstand mit

 $R = 10 \Omega$ besteht aus einem Konstantandraht mit

 $\rho = 0.5 \,\Omega \,\mathrm{mm^2} \,/\,\mathrm{m}$. Der Drahtquerschnitt ist $A = 0.025 \,\mathrm{mm^2}$.

Wie lang ist der Draht?

Lösung:

- a) 50 cm
- b) 0,5 m
- c) 1,50 m

OHMSCHES GESETZ

Bei einem metallischen Leiter und konstanter Temperatur ist der Widerstand *R* konstant.

⇒ Spannung proportional zum Strom

Ohmsches Gesetz: $U = R \cdot I \text{ mit } R = const.$

Nur wenn *R* konstant ist, spricht man von einem **ohmschen Widerstand.**

⇔ lineare Kennlinie

FRAGE: WELCHER WIDERSTAND IST GRÖßER?

AUFGABE: WIDERSTANDSBERECHNUNG

Sie haben ein 5V Ausgangssignal am Rechner und wollen damit eine Leuchtdiode (LED) versorgen. Der maximal zulässige Strom für die Leuchtdiode ist $I_{max} = 15 \, mA$.

Wählen Sie den Vorwiderstand so, dass auch ohne LED der Strom I_{max} niemals überschritten wird. Wie hoch ist der entsprechende Leitwert G?

A.
$$R = 333 \Omega \text{ und } G = 3 \text{ mS}$$

B.
$$R = 333 \, m\Omega \text{ und } G = 3 \, mS$$

C.
$$R = 3 k\Omega$$
 und $G = 333 S$

NICHT-OHMSCHE WIDERSTÄNDE

PTC: R = f(T)

(Metall)

NTC: R = f(T)

Varistor VDR: R = f(U)

MDR: R=f(B)

speziell: GMR

(Giant magneto resistance)

LDR:

R = f(Light intensity)

Variabel: Potentiometer

Technik und Informatik

BEISPIEL VARISTOR

Voltage Dependent Resistor VDR

—<u>—</u>—

Schaltzeichen VDR

hohe Spannung

→ Widerstand bricht zusammen

Anwendung:

Schutz elektronischer Schaltungen vor Überspannung

Beispiel:

Schutz von Telefonleitungen gegen Überspannung durch Blitzschlag

BESCHREIBUNG EINES NICHTLINEAREN WIDERSTANDES

$$R_{AP} = \frac{U_{AP}}{I_{AP}}$$

$$r_d = \frac{dU}{dI} \bigg|_{I = I_{AP}}$$

GLEICHSTROM- UND DIFFERENTIELLER WIDERSTAND

Bei nichtlinearen Widerständen gibt man den Widerstand für einen bestimmte Spannungs-Strom-Punkt an

⇒ **Arbeitspunkt** AP (operating point OP)

Gleichstromwiderstand im AP

$$R_{AP} = \frac{U_{AP}}{I_{AP}}$$

Differentieller Widerstand im AP

$$r_d = \frac{dU}{dI} \bigg|_{I = I_{AP}}$$

AUFGABE: VARISTOR

Im Arbeitspunkt $U_{AP}=10~V$ habe ein VDR einen Gleichstromwiderstand von $R_{AP}=200~\Omega$ und einen differentiellen Widerstand von $r_d=5~\Omega$.

- a) Bestimmen Sie den Strom I im Arbeitspunkt.
- b) Welcher Strom I_1 fließt bei einer höheren Spannung von $U_1 = 10.5 V$?

$$A. I_{AP} = 2 A$$

$$B. I_{AP} = 48,8 \, mA$$

C.
$$I_{AP} = 50 \, mA$$

$$D. I_1 = 100 \, mA$$

$$E. I_1 = 150 \, mA$$

TEMPERATURABHÄNGIGKEIT DES WIDERSTANDS

Niedrige Temperatur Hohe Temperatur → Atomschwingungen → Widerstandserhöhung

TEMPERATURKOEFFIZIENT α

typischer Temperaturverlauf:

⇒ Näherung durch:

$$R = R_{20} \cdot (1 + \alpha_{20} \cdot \Delta \theta)$$

wobei:

R₂₀: Widerstand bei 20°C

 α_{20} : Temperaturkoeffizient für 20°C

 $\Delta \theta = 9 - 20^{\circ} C \text{ mit}$

∃ : Temperatur in °C

$$\alpha = TK = \frac{\Delta R}{\Delta T} \frac{1}{R_{20}}$$

α: relative Widerstandsänderungbei 1 K Temperaturänderung

TEMPERATURKOEFFIZIENT WOLFRAM

AUFGABE: TEMPERATURABHÄNGIGKEIT

Ein Wolfram-Glühfaden einer herkömmlichen Glühlampe erreicht eine Betriebstemperatur von 2550°. Der Temperaturkoeffizient von Wolfram kann über den Temperaturbereich 20 ... 2550 °C als näherungsweise konstant mit $5,6\cdot10^{-3}~K^{-1}$ angenommen werden.

Bei Betriebstemperatur hat eine 100 W Glühbirne mit Wolfram-Faden einen Widerstand von $R_{2550^{\circ}} = 530 \Omega$. Wie groß ist der Widerstand im kalten Zustand bei $20^{\circ}C$ und um welchen Faktor ist der Einschaltstrom größer als im

Betrieb der Glühbirne.

Antwort:

- A) 43,9 Ω und 15-facher Einschaltstrom
- B) 43,9 Ω und 10-facher Einschaltstrom
- C) 34,9 Ω und 15-facher Einschaltstrom

TEMPERATURKOEFFIZIENT

Wir unterscheiden:

PTC: Positive Temperature Coefficient mit a > 0 bei Metallen

NTC: Negative Temperature Coefficient mit a < 0 bei Halbleitern

(Bei Bedarf: zur näherungsweisen Berechnung siehe Skript)

WICHTIGE TEMPERATURKOEFFIZIENTEN

AUFBAU VON WIDERSTÄNDEN

Kohleschichtwiderstand

Metallfilmwiderstand

SMD-Widerstand

(surface mounted)

Drahtwiderstand

FARBCODIERUNG VON WIDERSTÄNDEN

Color	1 st band	2 nd band	3 rd band (multiplier)	4 th band (tolerance)
Black	0	0	×10 ⁰	
Brown	1	1	×10 ¹	±1% (F)
Red	2	2	×10 ²	±2% (G)
Orange	3	3	×10 ³	
Yellow	4	4	×10 ⁴	
Green	5	5	×10 ⁵	±0.5% (D)
Blue	6	6	×10 ⁶	±0.25% (C)
Violet	7	7	×10 ⁷	±0.1% (B)
Gray	8	8	×10 ⁸	±0.05% (A)
White	9	9	×10 ⁹	
Gold			×10 ⁻¹	±5% (J)
Silver			×10 ⁻²	±10% (K)
None				±20% (M)

Bei Präzisionswiderständen zusätzliches Band ⇒ eine signifikante Ziffer mehr

AUFGABE WIDERSTANDSBESTIMMUNG

Lösung von oben nach unten:

A. 20 $M\Omega$, 205 Ω

B. $10 M\Omega$, $2 M\Omega$

C. 10 $M\Omega$, 20 x 10⁵ Ω

NUR WERTE DER E-REIHEN SIND ERHÄLTLICH

E-Reihe	Faktor	Toleranz
E6	+/- 20%	$\sqrt[6]{10} = 1,462$
E12	+/- 10%	$\sqrt[12]{10} = 1,212$
E24	+/- 5%	$\sqrt[24]{10} = 1,101$
E48	+/- 2%	$\sqrt[48]{10} = 1,049$
E96	+/- 1%	$\sqrt[96]{10} = 1,024$
E192	+/- 0,5%	$\sqrt[192]{10} = 1,0121$

which the short of the state of the state of		
E6	E 12	E 24
Toleranz	Toleranz	Toleranz
± 20 %	± 10 %	±5%
1,0	1,0	1,0
		1,1
riteratura de la companiona de la compan	1,2	1,2
		1,3
1,5	1,5	1,5
		1,6
,	1,8	1,8
		2,0
2,2	2,2	2,2
		2,4
	2,7	2,7
		3,0
3,3	3,3	3,3
		3,6
	3,9	3,9
	,	4,3
4,7	4,7	4,7
		5,1
J	5,6	5,6
1		6,2
6,8	6,8	6,8
		7,5
-	8,2	8,2
	,	9,1

Technik und Informatik

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHE LEISTUNG UND ARBEIT

Ein Strom I durch einen Widerstand R verrichtet bei einem Spannungsabfall U in der Zeit Δt elektrische Arbeit W:

$$W = U \cdot I \cdot \Delta t$$
 mit $[W] = 1 VAs = 1 Ws = 1 Joule = 1 J$

Die Menge der Energie pro Zeiteinheit, die umgeformt wird, bezeichnet man als **elektrische Leistung** *P*

$$P = \frac{W}{\Delta t} = U \cdot I \qquad \qquad \text{mit } [P] = 1 VA = 1 Watt = 1 W$$

MOMENTANLEISTUNG UND MITTELWERT

Bei zeitlich veränderlichen Größen u(t), i(t) gilt:

Momentanleistung $p(t) = u \cdot i$

arithmetischer Mittelwert der Leistung (oder mittlere Leistung)

$$\bar{p} = \frac{1}{\Delta t} \int_{t_1}^{t_2} p(t) dt$$

WIRKUNGSGRAD η

Wenn Energie umgewandelt wird, entstehen stets Verluste

Das Verhältnis von Nutzleistung zu Eingangsleistung heißt: **Elektrischer Wirkungsgrad** η (eta)

AUFGABE ZUR LEISTUNG

Wie groß ist der Strom, der durch eine 100 W-Lampe bei einer Gleichspannung von 230 V fließt?

- A. kann nur bei Wechselspannung berechnet werden
- B. 0,343 *A*
- C. 434 *mA*
- D. hängt von der Größe der Glühbirne ab

WAS SIE MITNEHMEN SOLLEN... (1)

SI Einheiten und SI Präfix

Einheiten

Ladung

Spannung

Strom

Stromdichte

Widerstand

ohmscher Widerstand?

Leitwert

Spezifischer Widerstand

Spezifischer Leitwert

Gleichstromwiderstand

Differentieller Widerstand

MKSA, pico = 10^{-12} , ...

Hilfe bei Fehlersuche

Quelle des elektrischen Feldes

$$U = W / Q$$

$$I = \Delta Q / \Delta t$$

$$J = I/A$$

$$R = U/I$$

R = const., Ohmsches Gesetz

$$G = 1/R$$

$$R = \rho l/A$$

$$\sigma = 1/\rho$$

$$R = U / I \text{ im AP}$$

$$r_d = dU / dI \text{ im AP}$$

WAS SIE MITNEHMEN SOLLEN ... (2)

Temperaturkoeffizient

Temperaturempfindlichkeit

Arbeit

Leistung

Wirkungsgrad

•
$$R = R_0 (1 + a \Delta \theta)$$

•
$$E = dR / d\vartheta$$

•
$$W = U I \Delta t$$

•
$$P = UI$$

•
$$\eta = P_{out}/P_{in}$$