

Effects of Amazon deforestation on Forest fires and CO₂ emissions in Brazil.

Presented by: Muhammad Azam Khan Khattak

Methods of Advanced Data Engineering Project (Winter 2024/25) FAU Erlangen Nürnberg, Department Mathematik M.Sc. Data Science

Objectives

- Introduction
- Datasets
- ETL Pipeline
- Analysis
- Conclusion

Introduction: Why I choose this topic?

- The Amazon rainforest, Earth's largest tropical rainforest, is vital for regulating global carbon dioxide levels.
- Decades of extensive deforestation have significantly disrupted the Amazon's ecosystem. The region has become increasingly prone to forest fires.
- Human activities, such as slash-and-burn agriculture, are a primary cause.
- Deforestation and fires are interconnected, creating a feedback loop:
 - a. Forest loss leads to drier conditions.
 - b. Drier conditions, in turn, fuel more fire outbreaks.

Introduction: Objectives

- Investigate the relationship between:
 - Deforestation
 - Forest fires
 - CO₂ emissions
- Focus on the Amazon Basin states in Brazil.
- Provide a clearer understanding of how deforestation and fires impact CO₂ emissions.
- Utilize statistical analysis to uncover patterns and relationships.

Datasets Used for Analysis

Dataset 1: Amazon_Deforestration

- Source: Kaggle
- <u>Deforestation in Amazon (Brazil) Data</u>
- o Key Features:
 - Annual deforestation data for Brazil's Amazon from 2004 to 2019.
 - Reliable satellite-derived data from Brazilian government sources ensures accuracy.
 - High-quality, well-structured CSV files with year, state, and area details.

Datasets Used for Analysis

Dataset 2: Burned_Area

- Source: Global Wildfire Information System
- Burned Area in Brazil
- o Key Features:
 - Monthly burned area data state wise from 2002 to 2023.
 - Categorized by land cover classes, including Amazon forest fire analysis.
 - Consistently formatted CSVs with year, month, country, state, and land type.
 - Enables correlation analysis between deforestation and forest fires in the Amazon.

Datasets Used for Analysis

Dataset 3: Carbon_Emissions

- Source: Global Wildfire Information System
- Carbon Emissions in Brazil
- o Key Features:
 - Monthly emissions data from 2002 to 2023.
 - Categorized by pollutant type, including data for Brazil's Amazon.
 - Structured CSV files with year, month, country, and pollutant details.
 - High-quality, consistent format suitable for detailed environmental analysis.

ETL Pipeline

- Extraction
 - Kaggle API for dataset retrieval
- Transformation
 - Data cleaning, Transformation and Merging
- Loading
 - SQLite database for storing merged dataset

- Line graph: State-wise distribution; bar chart: total burned area/emissions.
- Mato Grosso, Para lead in forest burned area and CO₂ emissions.

- These graphs show statewise and total deforestation that occurred from 2004 till
 2019 in Brazil states that come under Amazon Basin.
- The most deforestation of the rainforest occurred in Para.

- Pearson correlation (0.95) shows strong link between burned area and CO₂ emissions.
- We have established link between CO₂ emissions and forest fires.

- Predicted link between deforestation, fires, and CO₂ emissions was partially incorrect.
- Graphs show a positive Pearson correlation, but it's relatively weak.
- Deforestation's role in rising burned areas and CO2 emissions is inconclusive.

Conclusion

- Para had the highest deforestation, but Mato Grosso led in emissions/burned area.
- Weak correlation suggests deforestation isn't the sole driver of emissions/fires.
- Other factors like climate, policies, and human activities significantly influence outcomes.
- Aggregated annual data may miss temporal variations and long-term deforestation impacts.
- Limited data and yearly aggregation reduced ability to generate meaningful correlations.

Limitations

- Analysis lacks details on wildfire causes like human activities and climatic factors.
- Annual data aggregation overlooks temporal variations and long-term deforestation impacts.
- Limited dataset prevented creation of a meaningful correlation heatmap for variables.