Chapter 1

Characterization of Positive Semigroups on W*-Algebras

Since the positive cone of a C*-algebra has non-empty interior many results of Chapter B-II can be applied verbatim to the characterization of the generator of positive semigroups on C*-algebras. On the other hand a concrete and detailed representation of such generators has been found only in the uniformly continuous case (see Lindblad (1976)). A third area of active research has been the following: Which maps on C*-algebras (in particular, which derivations) commuting with certain automorphism groups are automatically generators of strongly continuous positive semigroups. For more information we refer to the survey article of Evans [?].

1.1 Semigroups on Properly Infinite W*-Algebras

The aim of this section is to show that strongly continuous semigroups of Schwarz maps on properly infinite W*-algebras are already uniformly continuous. In particular, our theorem is applicable to such semigroups on B(H).

It is worthwhile to remark, that the result of Lotz [?] on the uniform continuity of every strongly continuous semigroup on L^{∞} (see A-II, Sec.3) does not extend to arbitrary W*-algebras.

Example 1.1. Take M=B(H), H infinite dimensional, and choose a projection $p\in M$ such that Mp is topologically isomorphic to H. Therefore $M=H\oplus M_0$, where $M_0=\ker(x\mapsto xp)$. Next take a strongly, but not uniformly continuous, semigroup S on H and consider the strongly continuous semigroup $S\oplus I$ d on M.

For results from the classification theory of W^* -algebras needed in our approach we refer to Sakai [?, 2.2] and Takesaki [?, V.1].

Theorem 1.2. Every strongly continuous one-parameter semigroup of Schwarz type on a properly infinite W^* -algebra M is uniformly continuous.

Proof. Let $T=(T(t)_{t\geq 0})$ be strongly continuous on M and suppose T not to be uniformly continuous. Then there exists a sequence $(T_n)\subset T$ and $\varepsilon>0$ such that $\|T_n-\operatorname{Id}\|\geq \varepsilon$ but $T_n\to \operatorname{Id}$ in the strong operator topology. We claim that for every

sequence (P_k) of mutually orthogonal projections and all bounded sequences (\boldsymbol{x}_k) in M

$$\lim_{n} \|(T_n - \operatorname{Id})(P_k x_k P_k)\| = 0$$

uniformly in $k \in \mathbb{N}$. This follows from an application of the *Lemma of Phillips* and the fact that the sequence $(P_k x_k P_k)$ is summable in the $s^*(M, M_*)$ -topology (compare Elliot (1972)).

Let (P_k) be a sequence of mutually orthogonal projections in M such that every P_k is equivalent to 1 via some $u_k \in M$ [?, 2.2]. Without loss of generality we may assume $||(T_n - \operatorname{Id})(u_n)|| \le n^{-1}$ since the semigroup T is strongly continuous. Thus we obtained the following:

- (i) $\lim_n \|(T_n \operatorname{Id})(P_k x_k P_k)\| = 0$ uniformly in $k \in \mathbb{N}$ for every bounded sequence (x_k) in M.
- (ii) Every projection P_k is equivalent to 1 via some $u_k \in M$.
- (iii) $||(T_n \operatorname{Id})u_n|| \le n^{-1}$ for all $n \in \mathbb{N}$.

For the following construction see A-I,3.6 and D-II,Sec.2. Let

- (i) \widehat{M} be an ultrapower of M,
- (ii) let $p := \widehat{(P_k)} \in \widehat{M}$,
- (iii) $T:=\widehat{(T_n)}\in L(\widehat{M})$
- (iv) and $u := \widehat{(u_k)} \in \widehat{M}$.

Then T is identity preserving and of Schwarz type on \widehat{M} . Since $u^*u=p$ and $uu^*=1$ it follows $pu^*=u^*$ and $(uu^*)x(uu^*)=x$ for all $x\in \widehat{M}$. Finally, T(pxp)=pxp for all $x\in \widehat{M}$, which follows from (i), and $T(u^*)=T(pu^*)=pu^*=u^*$ and T(u)=u, which follows from (iii). Using the Schwarz inequality we obtain

$$T(uu^*) = T(1) \le 1 = uu^* = T(u)T(u)^*.$$

Using D-III, Lemma 1.1. we conclude T(ux)=uT(x) and $T(xu^*)=T(x)u^*$ for all $x\in \widehat{M}$. Hence

$$T(x) = T(uu^*xuu^*) = uT(u^*xu)u^* = uT(pu^*xup)u^*$$
$$= upu^*xupu^* = uu^*xuu^* = x$$

for all $x \in \widehat{M}$. From this we obtain that for every bounded sequence (x_k) in M

$$\lim_{k} ||T_k x_k - x_k|| = 0$$

for some subsequence of the T_n 's and of the x_k 's. This conflicts with our assumption at the beginning, hence the theorem is proved.

Bibliography

- [1] Evans, D.: Quantum dynamical semigroups, symmetry groups, and locality. Acta Appl Math 2, 333–352 (1984)
- [2] Lotz, H.P.: Uniform convergence of operators on L^∞ and similar spaces. Math. Z. 190, 207–220 (1985)
- [3] Sakai, S.: C*-Algebras and W*-Algebras. Springer, Berlin-Heidelberg-New York (1971)
- [4] Takesaki, M.: *Theory of Operator Algebras I.* Springer, New York-Heidelberg-Berlin (1979)