Examen intermedio Inteligencia artificial, período 2017–2.

Profesor: Julio Waissman Vilanova.

	Nom	bre:
1.	(20	puntos) Responde a los siguientes enunciados como falso o verdadero.
	(a)	Existen dos entornos E_1 y E_2 completamente diferentes, en el cual un agente A es perfectamente racional en ambos.
	(b)	Existe al menos un entrono E para el cual el agente aleatorio es perfectamente racional.
	(c)	Todos los entornos tienen al menos un agente perfectamente racional.
	(d)	Un agente que juega dominó por parejas se desempeña en un entorno dinámico, discreto, parcialmente observable y estocástico.
	(e)	Es posible asegurar que, bajo ciertas condiciones, el algoritmo de temple (recocido) simulado siempre va a encontrar un mínimo global.
	(f)	Si tenemos un algoritmo genético con un solo individuo, el algoritmo se reduce a una búsqueda por descenso de colinas.
	(g)	Para los problemas CSP con restricciones binarias, mientras mayor sea el grado del método de revisión de consistencia (0-consistencia, 1-consistencia, 2-consistencia,) menor el número de <i>backtrackings</i> y por lo tanto el algoritmo tomará menos tiempo en encontrar una solución.
	(h)	El algoritmo de búsqueda A^* siempre revisa menos nodos que el algoritmo de búsqueda a profundidad (DFS).
	(i)	Si $h_1(n)$ y $h_2(n)$ son dos heurísticas admisibles, entonces $h_3(n) = (h_1(n) + h_2(n))/2$ tambien es una heurística admisible.
	(j)	El método de búsqueda por poda $\alpha - \beta$ es un método de búsqueda primero en profundidad, por lo que su problema es el tiempo de ejecución y no la cantidad de memoria utilizada.
_	(00	1012

- 2. (20 puntos) Supongamos que tenemos un problema de minimización en un espacio con 10^{12} estados diferentes (los estados tienen 12 variables con 10 valores cada una). Del problema conocemos la función de costo y tenemos una función para generar la lista de vecinos de cada estado vecinos(x), y por supuesto, podemos tener una función $vecino_A(x)$ que devuelve un vecino de el estado x en forma aleatoria.
 - (a) (5 puntos) Decidimos resolver el problema con descenso de colinas con reinicios aleatorios, y para esto se realizaron 1000 descensos de colinas con estado inicial aleatorio. los costos de los estados iniciales fue en promedio de 9.1 (mínimo de 6.3 y máximo de 11.3). Se encontró que el valor mínimo encontrado fue 1.3, el máximo de 4.9, y las soluciones en promedio dieron 3.2. En promedio en 5 pasos se encontraba el valor final en cada búsqueda individual.

(b)	(5 puntos) Para validar el resultado decidimos utilizar otro método de optimización, digamos un método de temple (recocido) simulado. Para que el método funcione, decidimos utilizar una temperatura inicial de y un método de calendarización dado por la formula										
	Completa la tabla de abajo con la probabilidad de pasar de un estado a un estado vecino,										
		algoritmo tal como s	- 1								
	Costo estad		do) iteración	Temperatura	probabilidad cambio						
	4.3	4.5	2								
	4.3	4.5	20								
	4.3	4.2	3								
	$\frac{4.3}{5.3}$	4.2	15								
	$\frac{5.3}{5.3}$	10.2	5								
	encontrado, to $c'(x) = 30$	también sería el resu	altado correcto	para la nueva : $\exp(c(x))$	tales casos el resultado función de costo $c'(x)$ $c'(x) = 100 \exp(-c(x))$						
(d)	(5 puntos) Su algoritmo gen	ipongamos que ahora	lo que queremo sitamos estable	os es resolver el 1 cer cuales serán l	mismo problema con un los operadores genéticos						
	1. La población tiene un tamaño dedebido a										
	2. La adaptación se calcula comodebido a										
	3. El operac	dor de cruza se selecc	ionó como	debid	оа						
	J. El operad				C C						

	4.	Se selecciono	con	no o	pera	adoi	de:	mu	itacion d	ebido a		
	5.	Se impuso el <i>elitismo</i> deb	ido a									
y Lı	iis (L	os) el Pato Donald (PD) s L) y su perro Plinche (Pl) e numeraron los cuartos (del	n una	casa	nu	eva	con	6 c	uartos. (Como les g	gusta comp	plicarse
•	Cac	la uno tiene su propio cua:	rto.									
=		número del cuarto del Pato		ald e	s m	ayo	r qu	ıе 3				
•		número del cuarto de Paco				-	_			l.		
-	El r	número del cuarto de Dais	y es 5	o 6.								
•	El r	número del cuarto del Pato	o Dona	ald e	s m	ayo.	r qu	ie e	l de Dais	У		
-	Elo	cuarto de Hugo tiene núme	ero pai	ſ								
•	Luis	s no tiene ni el primero, ni	el últ	imo	de l	los (cuai	rtos				
=	Luis	s tiene un cuarto contiguo	al de	Plin	che	(la	dife	eren	cia entre	ambos n	úmeros es	1)
•	Pac es 2	o y el Pato Donald están s	separa	dos j	por	un	cuai	rto	(la difere	encia entr	e ambos n	úmeros
(a)	vari	puntos) El problema se pables, las cuales tienen des binarias.						-	_			
(b)	, –	ountos) De la tabla siguier den reducir por las restrice					alor	es d	lel domir	no de cad	a variable	que se
			PD	1	2		4	5	6			
			D		2				6			
			H P	1 1	$\frac{2}{2}$	3	$\frac{4}{4}$	5 5	$\frac{6}{6}$			
			L	1	$\frac{2}{2}$	3	4	5	6			
			Pl	1	2	3	4	5	6			
(c)		puntos) De acuerdo a loccionada? □ PD □ D	s crite		vis ⊐ P		en □ I		se, ¿Cua □ Pl	ıl sería la	a primer v	variable
(d)	de (ountos) Si asumimos que la figura de la reducción de consistencia (forward checki	domin								_	
			PD	1	2	3	4	5	6			
			D	1	2		4	5	6			
			Н	1	2	3	4	5	6			
			P L	1	2	3	4	5	6			
			L L	1	2	3	4	5	6			

(e) (5 puntos) Ahora vamos a suponer que decidimos solucionar el problema por *mínimos conflictos*. Si consideramos una asignación inicial dada por {PD: 6, H: 4, Pl: 3, P: 2, L: 1, D: 5}, rellena en la tabla de abajo el número de conflictos de cada variables y marca cual es el valor que se le asignaría si se seleccionara para ser modificada dicha variable por el algoritmo.

Variables	Conflictos	1	2	3	4	5	6
PD							
D							
Н							
P							
L							
Pl							

4. (20 puntos) En esta sección vamos a explorar que pasa si modificamos el algoritmo de búsqueda por costo uniforme (UCS), modificando los costos locales por la variable $d_{i,j}$.

Para estas preguntas vamos a considerar solamente búsquedas en árboles (sin guardar estados visitados), donde $c_{i,j} > 0$ es el costo local entre el nodo padre i y el nodo sucesor j. Se asume que solamente tenemos un solo estado meta, y que los sucesores siempre se expanden en orden alfabético. Todas las heurísticas se consideran admisibles.

Vamos a considerar que dos métodos de búsueda son *equivalentes* en este caso, si ambos métodos expanden los mismos nodos y en el mismo orden.

- (a) (5 puntos) Selecciona todas las opciones en las cuales la selección de $d_{i,j}$ haga que la búsqueda UCS sea equivalente a la búsqueda primero a lo ancho (BFS).
 - $\Box d_{i,j} = 0$
 - $\Box d_{i,j} = \alpha$, donde $\alpha > 0$
 - $\Box d_{i,j} = \alpha$, donde $\alpha < 0$
 - $\Box \ d_{i,j} = 1$
 - $\Box d_{i,j} = -1$
 - $\hfill\Box$ Ninguno de los anteriores
- (b) (5 puntos) Selecciona todas las opciones en las cuales la selección de $d_{i,j}$ haga que la búsqueda UCS sea equivalente a la búsqueda primero a lo profundo (DFS).
 - $\Box d_{i,j} = 0$
 - $\Box d_{i,j} = \alpha$, donde $\alpha > 0$
 - $\Box d_{i,j} = \alpha$, donde $\alpha < 0$
 - $\Box d_{i,j} = 1$
 - $\Box d_{i,j} = -1$
 - □ Ninguno de los anteriores
- (c) (5 puntos) Selecciona todas las opciones en las cuales la selección de $d_{i,j}$ haga que la búsqueda UCS sea equivalente a la búsqueda UCS original con $d_{i,j} = c_{i,j}$.
 - $\Box \ d_{i,j} = c_{i,j}^2$
 - $\Box d_{i,j} = \frac{1}{c_{i,j}}$
 - $\Box d_{i,j} = \alpha c_{i,j}$, donde $\alpha > 0$
 - $\Box d_{i,j} = c_{i,j} + \alpha$, donde $\alpha > 0$

	$\Box \ d_{i,j} = \alpha c_{i,j} + \beta \text{ donde } \alpha, \beta > 0$
	□ Ninguno de los anteriores
b a	5 puntos) Selecciona todas las opciones en las cuales la selección de $d_{i,j}$ haga que la búsqueda UCS sea equivalente a la búsqueda $greedy$ primero el mejor si consideramos $h(n)$ como una heurística admisible evaluada en el nodo n (i.e. $h(i)$ es el valor de la deurística en el nodo i). $\Box d_{i,j} = h(i) - h(j)$ $\Box d_{i,j} = h(j) - h(i)$ $\Box d_{i,j} = \alpha h(i), \text{ donde } \alpha > 0$ $\Box d_{i,j} = \alpha h(j), \text{ donde } \alpha > 0$ $\Box d_{i,j} = c_{i,j} + h(j) + h(i)$ $\Box \text{ Ninguno de los anteriores}$
como	untos) Vamos a realizar un super exitante juego llamado el Gato de 2×2 . Este juego el juego del gato, pero con solamente 4 casillas. Como cosa adicional, a los jugadores sermite pasar. Las X siempre empiezan.
q	5 puntos) Dibuja el árbol de juego hasta una profundidad de 2. No agregues posiciones ue sean rotaciones o reflexiones de la misma jugada. El árbol deberá tener al final 5 nodos oja.

5.

(b)	(5 puntos) Si la función de utilidad es el número de X menos el número de O en el tablero, marca los valores de cada nodo, e indica cuales ramas serían podadas si utilizamos un algoritmo de poda α – β , y un ordenamiento de izquierda a derecha, de acuerdo a tu propio árbol generado.					
(c)	(5 puntos) Si quisiéramos resolver completamente el juego, explica porque en este caso la poda $\alpha - \beta$ con un ordenamiento de jugadas apropiado sería mucho mejor que el algoritmo básico de $minimax$.					
(d)	(5 puntos) Discute brevemente como debería de modificarse el algoritmo de minimax o de poda α - β para poder resolver el juego de el Gato suicida de 2 × 2, en el cual, gana el jugador que pierde. ¿Cual sería la mejor jugada del primer jugador?					