Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Факультет программной инженерии и компьютерной техники

Отчет по учебно-исследовательской работе 1 по дисциплине "Моделирование" Вариант 78

Выполнили: студенты группы Р34131

Бусыгин Дмитрий Алексеевич и Лазеев Сергей Максимович Преподаватель: Тропченко Андрей Александрович

1. Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

2. Задание

В процессе исследований необходимо выполнить обработку заданной числовой последовательности (ЧП) для случаев, когда путем измерений получено 10, 20, 50, 100, 200 и 300 значений случайной величины, а именно:

- рассчитать значения следующих числовых моментов заданной числовой последовательности:
 - ➤ математическое ожидание;
 - ➤ дисперсию;
 - ➤ среднеквадратическое отклонение;
 - ➤ коэффициент вариации;

 - ➤ относительные отклонения (в процентах) полученных значений от наилучших значений, полагая, что наилучшими (эталонными) являются значения, рассчитанные для наиболее представительной выборки из трехсот случайных величин;
- построить график значений для заданной числовой последовательности и определить ее характер, а именно: является эта последовательность возрастающей/убывающей, периодичной (при наличии периодичности оценить по графику длину периода);
- выполнить автокорреляционный анализ и определить, можно ли заданную числовую последовательность считать случайной;
- построить гистограмму распределения частот для заданной числовой последовательности;
- выполнить аппроксимацию закона распределения заданной случайной последовательности по двум начальным моментам, используя, в зависимости от значения коэффициента вариации, одно из следующих распределений:

- ✓ равномерный;
- ✓ экспоненциальный;
- ✓ нормированный Эрланга k-го порядка или гипоэкспоненциальный с заданным коэффициентом вариации;
- ✓ гиперэкспоненциальный с заданным коэффициентом вариации;
- реализовать генератор случайных величин в соответствии с полученным аппроксимирующим законом распределения (в EXCEL или программно) и проиллюстрировать на защите его работу;
- сгенерировать последовательность случайных величин с использованием реализованного генератора и рассчитать значения числовых моментов по аналогии с заданной числовой последовательностью;
- выполнить автокорреляционный анализ сгенерированной последовательности случайных величин;
- выполнить сравнительный анализ сгенерированной последовательности случайных величин с заданной последовательностью, построив соответствующие зависимости на графике значений и гистограмме распределения частот;
- оценить корреляционную зависимость сгенерированной и заданной последовательностей случайных величин. Результаты проводимых исследований представить в виде таблиц и графиков.

Выполнение

1. Характеристика заданной последовательности

· · · · · · · · · · · · ·									
Характеристика			Коли	чество случа	ество случайных величин				
		10	20	50	100	200	300		
Мат.ож.	знач.	186,146	178,555	156,202	152,845	137,347	125,716		
	%	4,25%	14,31%	2,20%	11,28%	9,25%	123,/10		
Дов. инт. (0,9)	знач.	±90,328	±52,773	±36,718	±23,952	±15,792	±12,221		
	%	639,12%	331,82%	-200,45%	-95,99%	29,22%			
Дов. инт. (0,95)	знач.	±107,756	±107,756	±43,803	±28,573	±18,839	±14,579		
	%	639,12%	331,82%	200,45%	95,99%	29,22%			
Дов. инт. (0,99)	знач.	±141,622	±82,740	±57,569	±37,554	±24,760	±19,160		
	%	639,15%	331,84%	200,46%	96,00%	29,23%			
Дисперсия	знач.	30225,430	20633,506	24972,332	21252,607	18476,608	16597,357		
	%	82,11%	24,32%	50,46%	28,05%	11,32%	10397,337		
С.К.О.	знач.	173,855	143,644	158,026	145,783	135,929	128,831		
	%	34,95%	11,50%	22,66%	13,16%	5,51%			
К-т вариации	знач.	0,934	0,804	1,012	0,954	0,990	1,025		
	%	8,88%	21,56%	1,27%	6,93%	3,41%			

Можем заметить, что на эталонной выборке к-т вариации > 1, что впоследствии повлияет на аппроксимацию

2. График и характер последовательности

Заданная числовая последовательность

По графику видно, что ЧП не является ни монотонной, ни периодической.

3. Автокорреляционный анализ

Сдвиг	1	2	3	4	5	6	7	8	9	10
к-т АК	0,0728	0,0988	0,1101	0,0336	0,0096	-0,0470	0,1141	-0,0106	0,1078	0,0504

К-т АК относительно сдвига ЧП

Заданную ЧП можно считать случайной, т.к коэффициенты автокорреляции не подтвердили наличие зависимостей, тенденций или периодичности.

4. Гистограмма распределения частот

По гистограмме видим, что наибольшее количество значений расположено в интервале (0, 375), но при этом есть сильно отклоняющиеся от общего распределения выбросы

5. Аппроксимация закона распределения

Для заданной ЧП коэффициент вариации (v) больше 1. Будем использовать гиперэкспоненциальное распределение с заданным коэффициентом вариации.

$$q \le \frac{2}{1+v^2} \approx 0,98$$

$$q = 0.1$$

$$t_1 = t * [1 + \sqrt{\frac{1-q}{2q}(v^2 - 1)}] \approx 185,448$$

$$t_2 = t * [1 + \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}] \approx 119,079$$

6. Генерация ЧП на основе параметров аппроксимации

- Генерируем 300 чисел с помощью = RANDARRAY(301;1)
- Аппроксимируем их =ECЛИ('Генератор (0-1)'!A1 < <q>;<t1>;<t2>)*(-LN(1-'Генератор (0-1)'!A2))

Получили:

Характеристика	Количество случайных величин							
жириктериетики	10	20	50	100	200	300		
Мат.ож.	157,796	127,904	108,705	112,982	117,791	123,099		
Дов. инт. (0,9)	±59,861	±35,419	±24,443	±20,143	±15,090	±13,120		
Дов. инт. (0,95)	±71,411	±42,253	±29,159	±24,029	±18,001	±15,652		
Дов. инт. (0,99)	±93,854	±55,532	±38,324	±31,581	±23,659	±20,571		
Дисперсия	13274,490	9294,617	11066,461	15029,857	16870,362	19130,594		
C.K.O.	115,215	96,409	105,197	122,596	129,886	138,313		
К-т вариации	0,730	0,754	0,968	1,085	1,103	1,124		

Математическое ожидание полученной ЧП отличается от МО исходной ЧП на величину, меньшую доверительных интервалов, значит аппроксимацию можно считать выполненной.

Гистограммы распределения двух ЧП весьма схожи, в том числе видно, что обе ЧП имеют шум

Вывод

В процессе выполнения работы мы узнали, что аппроксимировать можно даже совершенно случайные последовательности, а также моделировать на их основе новые "псевдо-случайные". Также мы в очередной раз попрактиковались и укрепили свои умения в работе с EXCEL и числовыми массивами в целом.