Assignment 4: Spanning, and Linear Independence and Basis in \mathbb{R}^n

Math 264 Dr. Rebin Muhammad

Objective:

To implement Python functions that determine if a set of vectors spans a space, is linearly independent, and forms a basis for \mathbb{R}^n .

Prerequisites:

- Understanding of vector spaces, spanning sets, and linear independence.
- Installed numpy library.
- Previous work with Math264_RREF function.

Tasks:

1. Understanding the Matrix A:

- 1. Accept the matrix A as a list of lists, where each list is a column vector.
- 2. Convert the list of lists into a numpy array.

2. Check if A Spans \mathbb{R}^n :

[resume] Write a function named math264_Span(A). Utilize the Math264_RREF function to convert A into its RREF. Count the number of pivot columns in the RREF. Determine if A spans \mathbb{R}^n based on the number of pivot columns.

3. Check for Linear Independence:

[resume] Write a function named $\mathtt{math264_LI}(A)$. Use the Math264_RREF function to get the RREF of A. Count the number of pivot columns in the RREF. Determine if A consists of linearly independent vectors.

4. Check for Basis:

[resume] Write a function named math264_Basis(A). Utilize math264_Span(A) and math264_LI(A) to check if A is spanning and linearly independent. Determine if A forms a basis for \mathbb{R}^n .

Instructions:

- \clubsuit Each function should accept a single argument: the matrix A.
- Include comments in your code for better clarity.
- Test all functions with different matrices to ensure their functionality.

Submission:

Complete the tasks using Google Colab or any Python environment you're comfortable with. Once finished, share the link of your Colab notebook or submit the Python script.

Additional Resources:

For further reading and clarification, students can refer to the notes available at this link.