Math 3T03 - Topology

Sang Woo Park

March 15, 2018

Contents

1	Introduction to topology	2
	1.1 What is topology?	2
	1.2 Set theory	3
2	Functions	4
3	Relation	6
4	Finite and infinite sets	7
5	Topological spaces	10
6	Basis for a Topology	12
7	The Subspace Topology	16
8	The Order Topology	18
9	Interior and Closure	21
10	Sequences	24
11	Continuous Functions	26
12	The Product Topology	2 8
13	Metric Topology	33
14	Comparing metrics	35
15	Connectedness	41
16	Homeomorphism	45

1 Introduction to topology

1.1 What is topology?

Definition 1.1 (Topology). Let X be a set. A topology on X is a collection τ of subsets of X satisfying:

- $\bullet \ \varnothing \in \tau.$
- $X \in \tau$.
- The union of any collections of elements in τ is also in τ .
- The intersection of any finite collection of elements in τ is also in τ .

Definition 1.2. (X, τ) is a topological space.

Definition 1.3. The elements of τ are called the open sets.

Example 1.1. Consider $X = \{a, b, c\}$. Is $\tau_1 = \{\emptyset, X, \{a\}\}$ a topology?

Proof. Yes, τ_1 is a topology. Clearly, $\emptyset \in \tau_1$ and $X \in \tau_1$ so it suffices to verify the arbitrary unions and finite intersection axioms.

Let $\{V_{\alpha}\}_{{\alpha}\in A}$ be a subcollection of τ_1 . Then, we want to show

$$\bigcup_{\alpha \in A} V_{\alpha} \in \mathsf{\tau}_1.$$

If $V_{\alpha} = \emptyset$ for any $\alpha \in A$, then this does not contribute to the union. Hence, φ can be omittied:

$$\bigcup_{\alpha \in A} V_{\alpha} = \bigcup_{\substack{\alpha \in A \\ V_{\alpha} \neq \emptyset}} V_{\alpha}.$$

If $V_{\alpha} = X$ for some $\alpha \in A$, then

$$\bigcup_{\alpha \in A} V_{\alpha} = X \in \mathsf{\tau}_1$$

and we are done. So we may assume $V_{\alpha} \neq X$ for all $\alpha \in A$. Similarly, if $V_{\alpha} = V_{\beta}$ for $\alpha \neq \beta$, then we can omit V_{β} from the union. Since τ_1 only contains \emptyset , X and $\{a\}$, we must have

$$\bigcup_{\alpha \in A} V_{\alpha} = \{a\} \in \mathsf{\tau}_1.$$

Similarly, if any element of $\{V_{\alpha}\}_{{\alpha}\in A}$ is empty, then

$$\bigcap_{\alpha \in A} V_{\alpha} = \varnothing \in \mathsf{\tau}_1.$$

We can therefore assume $V_{\alpha} \neq \emptyset$ for all $\alpha \in A$. Again, repetition can be ignored and any V_{α} that equals X can be ignored. Then,

$$\bigcap_{\alpha \in A} V_{\alpha} = \begin{cases} \{a\} \in \tau_1 \\ X \in \tau_1 \end{cases}$$

Example 1.2. Consider $X = \{a, b, c\}$. Is $\tau_2 = \{\emptyset, X, \{a\}, \{b\}\}$ a topology?

Proof. No. Note that $\{a\} \in \tau_2$ and $\{b\} \in \tau_2$ but $\{a\} \cup \{b\} = \{a,b\} \notin \tau_2$.

Example 1.3. Consider $X = \{a, b, c\}$. Then, $\tau_3 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ is a topology.

1.2 Set theory

Definition 1.4. If X is a set and a is an element, we write $a \in X$.

Definition 1.5. If Y is a subset of X, we write $Y \subset X$ or $Y \subseteq X$.

Example 1.4. Suppose X is a set. Then, *power set* of X is the set P(X) whose elements are all subsets of X. In other words,

$$Y \in P(X) \iff Y \subseteq X$$

Note that P(X) is closed under arbitrary unions and intersections. Hence, P(X) is a topology on X.

Definition 1.6. P(X) is the discrete topology on X.

Definition 1.7. The indiscrete (trivial) topology on X is $\{\emptyset, X\}$.

Definition 1.8. Suppose U, V are sets. Then, their union is

$$U \cup V = \{x | x \in U \text{ or } x \in V\}.$$

Note that if U_1, U_2, \dots, U_10 are sets, their union can be written as follows:

- $U_1 \cup U_2 \cup \cdots \cup U_{10}$
- $\bullet \bigcup_{k=1}^{10} U_k$
- $\bullet \bigcup_{k=\{1,2,\ldots,10\}} U_k$

Definition 1.9. Let A be any set. Suppose $\forall \alpha \in A$, I have a set U_{α} . The union of the U_{α} over $\alpha \in A$ is

$$\bigcup_{\alpha \in A} U_{\alpha} = \{x | \exists \alpha \in A, x \in U_{\alpha}\}.$$

Similarly, the intersection is

$$\bigcap_{\alpha \in A} U_{\alpha} = \{x | \exists \alpha \in A, x \in U_{\alpha}\}.$$

2 Functions

Definition 2.1. A function is a rule that assigns to element of a given set A, an element in another set B.

Often, we use a formula to describe a function.

Example 2.1. $f(x) = \sin(5x)$

Example 2.2. $g(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Definition 2.2. A rule of assignment is a subset R of the Cartesian product $C \times D$ of two sets with the property that each element of C appears as the first coordinate of at most one ordered pair belonging to R. In other words, a subset R of $C \times D$ is a rule of assignment if it satisfies

If
$$(c, d) \in R$$
 and $(c, d') \in R, d = d'$.

Definition 2.3. Given a rule of assignment R, we define the doamin of R to be the subset of C consisting of all first coordinates of elements of R:

$$domain(R) \equiv \{c \mid \exists d \in D \ s.t. \ (c, d) \in R\}$$

Definition 2.4. The image set of R is defined to be the subset of D consisting of all second coordinates.

$$image(R) \equiv \{d \mid \exists c \in C \ s.t. \ (c, d) \in R\}$$

Definition 2.5. A function is a rule of assignment R, together with a set that contains the image set of R. The domain of the rule of assignment is also called the domain of f, and the image of f is defined to be the image set of the rule of assignment.

Definition 2.6. The set B is often called the range of f. This is also referred to as the codomain.

If A = domain(f), then we write

$$f: A \to B$$

to indicate that f is a function with domain A and codomain B.

Definition 2.7. Given $a \in A$, we write $f(a) \in B$ for the unique element in B associated to a by the rule of assignment.

Definition 2.8. If $S \subseteq A$ is a subset of A, let

$$f(S)\{f(a) \mid a \in S\} \subseteq B.$$

Definition 2.9. Given $A_0 \subseteq A$, we can restrict the domain of f to A_0 . The restriction is denoted

$$f|A_0 \equiv \{(a, f(a)) \mid a \in A_0\} \subseteq A \times B.$$

Definition 2.10. If $f: A \to B$ and $g: B \to C$ then $g \circ f: A \to C$ is defined to be

$$\{(a,c) \mid \exists b \in B \text{ s.t. } f(a) = b \text{ and } g(b) = c\} \subseteq A \times C.$$

Definition 2.11. A function $f: A \to B$ is called injective (or one-to-one) if f(a) = f(a') implies a = a' for all $a, a' \in A$.

Definition 2.12. A function $f: A \to B$ is called surjective (or onto) if the image of f equals B, i.e. f(A) = B., i.e. if, for every $b \in B$, there exists $a \in A$ with f(a) = b.

Definition 2.13. $f: A \rightarrow B$ is a bijection if it is one-to-one and onto.

Definition 2.14. If $B_0 \subseteq B$ is a subset and $f: A \to B$ is a function, then the preimage of B_0 under f is the subset of A given by

$$f^{-1}(B_0) = \{ a \in A \mid f(a) \in B_0 \}$$

Example 2.3. If B_0 is disjoint from f(A) then $f^{-1}(B_0) = \emptyset$.

3 Relation

Definition 3.1. A relation on a set A is a subset R of $A \times A$.

Given a relation R on A, we will write xRy "x is related to y" to mean $(x,y) \in R$.

Definition 3.2. An equivalence relation on a set is a relation with the following properties:

- Reflexivity. $xRx \text{ holds } \forall x \in A.$
- Symmetric. if xRy then yRx holds $\forall x, y \in A$.
- Transitive. if xRy and yRz then xRz holds $\forall x, y, z \in A$.

Definition 3.3. Given $a \in A$, let $E(a) = \{x \mid x \sim a\}$ denote the equivalence class of a.

Remark. $E(a) \subseteq A$ and it is nonempty because $a \in E(a)$.

Proposition 3.1. If $E(a) \cap E(b) \neq \emptyset$ then E(a) = E(b).

Proof. IAssume the hypothesis, i.e., suppose $x \in E(a) \cap E(b)$. So $x \sim a$ and $x \sim b$. By symmetry, $a \sim x$ and by transitivity $a \sim b$.

Now suppose that $y \in E(a)$. Then $y \sim a$ but we just saw that $a \sim b$ so $y \sim b$ and $y \in E(b)$. Hence, $E(a) \subseteq E(b)$. Likewise, we can show that $E(b) \subseteq E(a)$.

Definition 3.4. A partition of a set is a collection of pairwise disjoint subsets of A whose union is all of A.

Example 3.1. Consider $A = \{1, 2, 3, 4, 5\}$. Then, $\{1, 2\}$ and $\{3, 4, 5\}$ is a partition of A.

Proposition 3.2. An equivalence relation in a set determines a partition of A, namely the one with equivalence classes as subsets. Conversely, a partition¹ $\{Q_{\alpha}|\alpha\in J\}$ of a set A determines an equivalence relation on A by: $x\sim y$ if and only if $\exists \alpha\in J$ s.t. $x,y\in Q_{\alpha}$. The equivalence classes of this equivalence relation are precisely the subsets Q_{α} .

 $^{^1}$ Note that J is an index set: $Q_\alpha\subseteq A$ for each $\alpha\in J$ and $Q_\alpha\cap Q_\beta=\varnothing$ if $\alpha\neq\beta.$ Furthermore, $\cup_{\alpha\in J}=A.$

4 Finite and infinite sets

Definition 4.1. A nonempty set A is finite if there is a bijection from A to $\{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$.

Remark. Consider $n, m \in \mathbb{Z}^+$ with $n \neq m$. Then, there is no bijection from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, m\}$.

Definition 4.2. Cardinality of a finite set A is defined as follows:

- 1. $\operatorname{card}(A) = 0$ if $A = \emptyset$.
- 2. $\operatorname{card}(A) = n$ if there is a bijection form A to $\{1, 2, \dots, n\}$.

Note that \mathbb{Z}^+ is not finite. How would you prove this? A sneaky approach is that there is a bijection from \mathbb{Z}^+ to a proper subset of \mathbb{Z}^+ .

Consider the shift map:

$$S: \mathbb{Z}^+ \to \mathbb{Z}^+$$

where S(k) = k + 1. So S is a bijection from \mathbb{Z}^+ to $\{2, 3, ...\} \subset \mathbb{Z}^+$, a proper subset of \mathbb{Z}^+ . On the other hand, any proper sbset B of a finite set A with $\operatorname{card}(A) = n$ has $\operatorname{card}(B) < n$. In particular, there is no bijection from A to B. Therefore, \mathbb{Z}^+ is not finite.

Theorem 4.1. A non-empty set is finite if and only if one of the following holds:

- 1. \exists bijection $f: A \to \{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$.
- 2. \exists injection $f: A \rightarrow \{1, 2, ..., N\}$ for some $N \in \mathbb{Z}^+$
- 3. \exists surjection $g: \{1, \ldots, N\} \rightarrow A$ for some $N \in \mathbb{Z}^+$

Remark. Finite unions of finite sets are finite. Finite products of finite sets are also finite.

Recall that if X is a set, then

$$X^w = \pi_{n \in \mathbb{Z}^+} X = \{ (x_n) \mid x_n \in X \forall n \in \mathbb{Z}^+ \}$$

the set of infinite sequences in X.

If $X = \{a\}$ is a singleton, then X^w is also a singleton. Otherwise, if card(X) > 1, then X^w is an infinite set.

Example 4.1. Consider $X = \{0,1\}$. Then, X^w is a set of binary sequences.

Definition 4.3. If there exists a bijection from a set X to \mathbb{Z}^+ , then X is said to be countably infinite.

Definition 4.4. Let A be a nonempty collection of sets. An indexing family is a set J together with a surjection $f: J \to A$. We use A_{α} to denote $f(a) \subseteq A$. So

$$\mathcal{A} = \{ A_{\alpha} \mid \alpha \in J \}$$

Most of the time, we will be able to use \mathcal{Z}^+ for the index set J.

Definition 4.5 (Cartesian product). Let $\mathcal{A} = \{A_i \mid i \in \mathbb{Z}^+\}$. Finite cartesian product is defined as

$$A_1 \times \cdots \times A_n = \{(x_1, \dots, x_n) \mid x_i \in A_i\}$$

It is a vector space of n tuples of real numbers.

Definition 4.6 (Infinite Cartesian product). Infinite Cartesian product \mathbb{R}^{ω} is an ω -tuple $x : \mathbb{Z}^+ \to \mathbb{R}$, i.e., a sequence

$$x = (x_i)_{i=1}^{\infty} = (x_1, x_2, \dots, x_n, \dots)$$

= $(x_i)_{i \in \mathbb{Z}^+}$

More generally, if $A = \{A_i \mid i \in \mathbb{Z}^+\}$. Then,

$$\prod_{i \in \mathbb{Z}^+} A_i = \{(a_i)_{i \in \mathbb{Z}^+} \mid a_i \in A_i\}.$$

Definition 4.7. A set A is countable if A is finite or it is countably infinite.

Theorem 4.2 (Criterion for countability). Suppose A is a non-empty set. Then, the following are equivalent.

- 1. A is countable
- 2. There is an injection $f: A \to \mathbb{Z}^+$
- 3. There is a surjection $g: \mathbb{Z}^+ \to A$

Theorem 4.3. If $C \subseteq \mathbb{Z}^+$ is a subset, then C is countable.

Proof. Either C is finite or infinite. If C is finite, it follows C is countable.

Assume that C is finite. We will define a bijection $h: \mathbb{Z}^+ \to C$ by induction. Let h(1) be the smallest element in C^2 . Suppose

$$h(1),\ldots,h(n-1)\in C$$

and are defined. Let h(n) be the smallest element in $C \setminus \{h(1), \dots h(n-1)\}$. (Note that this set is nonempty.)

We want to show that h is inejctive. Let $n, m \in \mathbb{Z}$ where $n \neq m$. Suppose n < m. So $h(n) \in \{h(1), \dots, h(n)\}$ and

$$h(n) \in C \setminus \{h(1), h(2), \dots, h(m-1)\}.$$

So $h(n) \neq h(m)$.

We want to show that h is surjective. Suppose $c \in C$. We will show that c = h(n) for some $n \in \mathbb{Z}^+$. First, notice that $h(\mathbb{Z}^+)$ is not contained in $\{1, 2, \dots, c\}$

 $^{^2}$ $C \neq \emptyset$ and every nonempty subset of \mathbb{Z}^+ has a smallest elemnt

because $h(\mathbb{Z}^+)$ is an infinite set. Therefore, there must exists $n \in \mathbb{Z}^+$ such that h(n) > c. So let m be the smallest element with $h(m) \geq c$. Then for all i < m, h(i) < c. Then,

$$c \notin \{h(1), \dots, h(m-1)\}.$$

By definition, h(m) is the smallest element in

$$C \setminus \{h(1), \ldots, h(m-1)\}.$$

Then, $h(m) \leq c$. Therefore, h(m) = c.

Corollary 4.1. Any subset of a countable set is countable.

Proof. Suppose $A \subset B$ with B countable. Then, there exists an injection $f: B \to \mathbb{Z}^+$. The restriction

$$f|_A:A\to\mathbb{Z}^+$$

is also injective. Therefore, A is countable by the criterion.

Theorem 4.4. Any countable union of countable is countable. In other words, if J is countable and A_{α} is countable for all $\alpha \in J$, then $\bigcup_{\alpha \in J}$ is countable.

Theorem 4.5. A finite product of countable sets is countable.

Example 4.2. $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.

Note that a countable product of countable sets is not countable.

Example 4.3. Consider $X = \{0, 1\}$. Then, X^{ω} binary sequence is not countable.

Proof. Suppose $g: \mathbb{Z}^+ \to X^\omega$ is a function. We will show g is not surjective by contructing an element $y \neq g(n)$ for any $n \in \mathbb{Z}^+$.

Write $g(n) = (x_{n1}, x_{n2}, \dots) \in X^{\omega}$ for each $x_{ni} \in \{0, 1\}$. Define

$$y = (y_1, y_2, \dots)$$

where $y_i = 1 - x_{ii}$. Clearly, $y \in X^{\omega}$ but $y \neq g(n)$ for any n since $y_n = 1 - x_{nn} \neq x_{nn}$, the n-th entry in g(n).

Example 4.4. Let X be a set and $\{V_{\alpha}\}_{{\alpha}\in I}$ a collection of subsets of X. Show

$$\bigcup_{\alpha \in I} (X - V_{\alpha}) = X - \bigcap_{\alpha \in I} V_{\alpha}$$

Proof.

$$x \in \bigcup_{\alpha \in I} X - V_{\alpha} \iff \exists \alpha \in I, x \in X - V_{\alpha}$$

$$\iff \exists \alpha \in I, x \in X, x \notin V_{\alpha}$$

$$\iff x \in X, \exists \alpha \in I, x \notin V_{\alpha}$$

$$\iff x \in X, x \notin \bigcup_{\alpha \in I} V_{\alpha}$$

$$\iff x \in X - \bigcap_{\alpha in I} V_{\alpha}$$

5 Topological spaces

Definition 5.1 (Topology). Let X be a set. A topology on X is a collection τ of subsets of X satisfying:

- \bullet $\varnothing \in \tau$.
- $X \in \tau$.
- If $\{V_{\alpha}\}_{{\alpha}\in I}\subseteq \tau$, then $\bigcup_{{\alpha}\in I}V_{\alpha}\in \tau$.
- If $\{V_1, \ldots, V_n\} \subseteq \tau$, then $\bigcap_{k=1}^n V_k inI$.

Remark. If τ is a topology, then $\{\emptyset, X\} \subseteq \tau$ and $\tau \subseteq \mathcal{P}(X)$, where \mathcal{P} is a power set.

Definition 5.2. Suppose τ, τ' are topologies on X. We say τ is coarser than τ' if $\tau \subseteq \tau'$.

Example 5.1. If X is a set and τ is a topology. Then, τ is coarser than the discrete topology, $\mathcal{P}(X)$, and finer than the trivial topology, $\{\emptyset, X\}$.

Note that if $\tau \subseteq \tau'$ and $\tau' \subseteq \tau$, then $\tau = \tau'$.

Example 5.2. Define τ_f to consist of the subsets U of X wiith the property that X - U is finite or all of X.

Lemma 5.1. τ_f is a topoology on X. This is defined as the finite complement topology.

Proof. To show $\emptyset \in \tau_f$, notice that $X - \emptyset = X$. So $\emptyset \in \tau_f$. To show that $X \in \tau_f$, notice that $X - X = \emptyset$, which is finite. So $X \in \tau_f$.

To show that it is closed under arbitrary unions, suppose

$${V_{\alpha}}_{\alpha\in I}\subseteq \tau_f.$$

It suffices to show that $X - \bigcup_{\alpha \in I} V_{\alpha}$ is finite. For this, note

$$X - \bigcup_{\alpha \in I} V_{\alpha} = \bigcap_{\alpha \in I} (X - V_{\alpha}).$$

 $X - V_{\alpha}$ is finite so

$$\bigcap_{\alpha \in I} (X - V_{\alpha}) \subseteq X - V_{\alpha}'$$

for any $\alpha' \in I$ which implies $\bigcap_{\alpha \in I} X - V_\alpha$ is finite. For closure under finite intersections, let

$$\{V_1,\ldots,V_n\}\subseteq \mathsf{\tau}_f.$$

Then,

$$X - \bigcap_{k=1}^{n} V_k = \bigcup_{k=1}^{n} (X - V_k)$$

is a finite union of finite sets and so it is finite.

Example 5.3. Consider $X = \mathbb{R}$. Then, $\mathbb{R} - \{0\}$ is open in the finite complement topology. $\mathbb{R} - \{0, 3, 100\}$ is open in τ_f . Note that $(4, \infty)$ is not open in τ_f because its complement is not finite.

Remark. Assume τ is a topology on X.

- (X, τ) is a topological space.
- \bullet X is a topological space.
- $U \in \tau$ iff U is open in τ iff U is an open set.

6 Basis for a Topology

Definition 6.1. Let X be a set. A basis for topology on X is a collection \mathcal{B} of subsets of X satisfying:

- $\forall x \in X, \exists B \in \mathcal{B}, x \in B$
- $\forall B_1, B_2 \in \mathcal{B}$, if $x \in B_1 \cap B_2$ then $\exists B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$.

Example 6.1. Consider $X = \mathbb{R}^2$. Let \mathcal{B}_1 be a collection of interiors of circles in \mathbb{R}^2 . Then, \mathcal{B}_1 is a basis.

Example 6.2. Consider $X = \mathbb{R}^2$. Let \mathcal{B}_2 be collection of interiors of axis-parallel rectangles. Then, \mathcal{B}_2 is a basis. Note that nontrivial intersection is always a rectangle.

Definition 6.2. The topology generated by a basis \mathcal{B} is the collection τ satisfying:

$$U \in \tau \iff \forall x \in U, \exists B \in \mathcal{B}, x \in B \subseteq U.$$

Example 6.3. Consider $X = \mathbb{R}$ with standard topology, τ_{st} . Consider $U = \mathbb{R} - \{0\}$. Then, $U \in \tau_{st}$. Let $x \in U$:

- 1. (Case 1) x > 0. Let B = (0, x + 1). Then, $x \in B \subseteq \mathbb{R} \{0\}$.
- 2. (Case 2) x < 0. Let B = (x 1, 0). Then, $x \in B \subseteq \mathbb{R} \{0\}$.

Example 6.4. Let τ_f be finite complement topology on \mathbb{R} . If $U \in \tau_f$, then $U \in \tau_{st}$. So $\tau_f \subseteq \tau_{st}$.

Remark. $(3, \infty)$ is open in τ_{st} but not in τ_f .

Lemma 6.1. If \mathcal{B} is a basis and τ is the topology generated by \mathcal{B} , then τ is a topology.

Proof. $\emptyset \in \tau$ is vacuously true. If $x \in \emptyset$ then $\exists B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq \emptyset$.

Now, we want to prove that $X \in \tau$. Let $x \in X$. By the axioms for basis, $\exists B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq X$. Hence, $X \in \tau$.

Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be a collection of τ . Let

$$x \in \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}.$$

Then, $\exists \mathcal{B} \in A$ with $x \in \mathcal{U}_{\mathcal{B}}$. Since $\mathcal{U}_{\mathcal{B}} \in Tau$, $\exists B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq \mathcal{U}_{\mathcal{B}}$. Then, $x \in B$ and $B \subseteq \mathcal{U}_{\mathcal{B}}$. So τ is closed under arbitrary unions.

Let $\{V_1, \ldots, V_n\} \subseteq \tau$. We want to use proof by induction to show that τ is closed under finite intersections. When n = 1,

$$\bigcap_{k=1}^{n} V_k = V_1 \in \tau.$$

Assume the claim is true for n. Then,

$$\bigcap_{k=1}^{n+1} V_k = \underbrace{V_{n+1}}_{W} \cap \bigcap_{k=1}^{n} V_k$$

Note $W \in \tau$ and $W' \in \tau$ by the induction hypothesis. If $W \cap W' = \emptyset$ then we are done $(\emptyset \in \tau)$. Let $x \in W \cap W'$. Then, $x \in W$ and $x \in W'$, implying that $\exists B_1, B_2 \in \mathcal{B}$ such that $x \in B_1 \subseteq W$ and $x \in B_2 \subseteq W'$. Hence, $\exists B_3 \in \mathcal{B}$ with $x \in B_3 \subseteq B_1 \cap B_2 \subseteq W \cap W'$.

Example 6.5. Consider $X = \mathbb{R}$. Define

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$

for $a, b \in \mathbb{R}$. Show

$$\mathcal{B}_{st} = \{(a, b) | a, b \in \mathbb{R}\}$$

is a basis.

Let $x \in \mathbb{R}$. Then,

$$x \in (x-1, x+1) \in \mathcal{B}_{st}$$
.

For the second axiom, let $(a, b), (c, d) \in \mathcal{B}_{st}$ and assume $x \in (a, b) \cap (c, d)$. Then, $x \in (c, b) \subseteq (a, b) \cap (c, d)$.

Definition 6.3. The standard topology on \mathbb{R} is the topology τ_{st} generated by \mathcal{B}_{st} .

Lemma 6.2. Suppose \mathcal{B} and \mathcal{B}' are bases on X and τ and τ' are the topologies they generate. Then, the following are equivalent:

- 1. τ' is finer than τ ($\tau \subset \tau'$)
- 2. $\forall x \in X \text{ and } \forall B \in \mathcal{B} \text{ with } x \in B, \exists B' \in \mathcal{B}' \text{ with } x \in B' \subseteq B.$

Proof. First, we want to show that 1 implies 2. Assume $\tau \subseteq \tau'$. Let $x \in X$ and $B \in \mathcal{B}$ such that $x \in B$. Since \mathcal{B} generates τ , $B \in \tau$. Then, $B \in \tau'$. Since τ' is generated by \mathcal{B}' ,

$$\exists B' \in \mathcal{B} \text{ with } x \in B' \subseteq B$$

Other direction is left to readers as an exercise.

Let $X = \mathbb{R}^2$. Consider \mathcal{B}_1 , a collection of interior of circles, and \mathcal{B}_2 , a collection of interior of axis-parallel rectangles. Let τ_j be toplogies generated by \mathcal{B}_j where j = 1, 2.

Lemma 6.3. $\tau_1 = \tau_2$

Proof. $(\tau_1 \subseteq \tau_2)$. We use the theorem from earlier. Let $x \in \mathbb{R}^2$ and $x \in B_1 \subseteq \mathcal{B}_1$. We have to show that $\exists B_2 \in \mathcal{B}_2$ with $x \in B_2 \subseteq B_1$. Since $x \in B_1$, x sits inside a circle. But we can always construct a rectangle B_2 smaller than B_1 but contains x.

 $(\tau_2 \subseteq \tau_1)$. Let $x \in \mathbb{R}^2$ and $B_2 \in \mathcal{B}_2$ with $x \in B_2$. We can always take $B_1 \in \mathcal{B}_1$ to be a circle inside rectangle B_2 and contains x. So $x \in B_1 \subseteq B_2$. \square

Lemma 6.4. Suppose (X, τ_x) and (Y, τ_Y) are topological spaces. Consider

$$X \times Y = \{(a, b) | a \in X, b \in Y\}$$

Then,

$$\mathcal{B} = \{U \times V | U \in \tau_X, V \in \tau_Y\}$$

is a basis on $X \times Y$.

Proof. Let $(a,b) \in X \times Y$. Then, $X \times Y \in \mathcal{B}$ and $(a,b) \in X \times Y$. Let $U_1 \times V_1, U_2 \times V_2 \in \mathcal{B}$ and assume

$$(a,b) \in U_1 \times V_1 \cap U_2 \times V_2.$$

Note

$$(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) \in \mathcal{B}.$$

So

$$(a,b) \in (U_1 \cap U_2) \times (V_1 \cap V_2) \subseteq (U_1 \times V_1) \cap (U_2 \times V_2)$$

Definition 6.4. The product topology is the topology generated by this basis.

Theorem 6.1. Suppose \mathcal{B}_x and \mathcal{B}_y are bases for τ_x and τ_y , respectively. Then,

$$\{B_1 \times B_2 | B_1 \in \mathcal{B}_x, B_2 \in \mathcal{B}_y\}$$

is a basis for product topology on $X \times Y$.

Example 6.6. $(X, \tau_x) = (\mathbb{R}, \tau_{st}) = (Y, \tau_Y).$

Definition 6.5. The standard topology on \mathbb{R}^2 is the product topology of the (\mathbb{R}, τ_{st}) .

Remark. The theoremm tells us that \mathbb{R}^2 has a basis

$$\{(a,b)\times(c,d)|a,b,c,d\in\mathbb{R}\}$$

Suppose \mathcal{B} is a basis for a topology τ on X.

• First, if $B \in \mathcal{B}$, then $B \in \tau$. Recall that

$$U \in \tau \iff \forall x = U, \exists B' = \mathcal{B}, x \in \mathcal{B}' \subseteq U.$$

So let $x \in B$. Then, B' = B satisfies the above condition $(x \in B \subseteq B)$. Hence, $B \in \tau$.

• Let $U \in \tau$. Then, U is a union of elements in \mathcal{B} . To prove this, let $U \in \tau$. By definition,

$$\forall x \in U, \exists B_x \in \mathcal{U}$$

such that $x \in B_x \subseteq U$. Then,

$${B_x}_{x\in U}\subseteq \tau.$$

Then,

$$\bigcup_{x \in X_U} B = U.$$

Suppose X,Y are topological spaces and equip $X\times Y$ with the product topology. Define

$$\pi_1: X \times Y \to X$$

$$\pi_2: X \times Y \to Y$$

Define

$$\mathcal{S} = \{\pi_1^{-1}(U) | U \subset X\} \cup \{\pi_2^{-1} | V \subset Y\}$$

The collection S is called a subbasis. The product topology is obtained by considering all unions of finite intersection of elements in S.

Definition 6.6. If X is a set, a subbasis is a collection S of subsets whose union is X. This generates a topology by considering all unions of finite intersections of things in S.

7 The Subspace Topology

Definition 7.1. Let (X,τ) be a topological space and $Y \subseteq X$ be any subset. The subspace topology on Y is

$$\tau_Y = \{ U \cap Y | U \in \tau \}$$

Lemma 7.1. τ_Y is a topology.

Proof.

- $\varnothing \cap Y = \varnothing \in \tau_Y$.
- $X \cap Y = Y \in \tau_Y$.
- (Unions) Let $\{V_{\alpha}\}_{{\alpha}\in A}\subseteq {\tau}_Y$, then $V_{\alpha}=U_{\alpha}\cap Y$ for some $U_{\alpha}\in {\tau}$. Then,

$$\bigcup_{\alpha \in A} V_{\alpha} = \bigcup_{\alpha \in A} (U_{\alpha} \cap Y) = \left(\bigcup_{\alpha \in A} U_{\alpha}\right) \cap Y \in \tau_{Y}$$

Theorem 7.1. Suppose \mathcal{B} is a basis for X and $Y \subseteq X$. Then,

$$\{B \cap Y | B \in \mathcal{B}\}$$

is a basis for the subspace topology on Y.

Example 7.1. Let $X = \mathbb{R}$ with $\mathcal{B} = \{(a,b)|a,b \in \mathbb{R}\}$. Consider

$$Y = [1, \infty).$$

Then, the basis for this topology is given by

$$\mathcal{B}_Y = \{[1, a) | a \in \mathbb{R}, a > 1\} \cup \{(a, b) | a, b \in \mathbb{R}, 1 \le a < b\}$$

Example 7.2. $(3,7] \notin \tau_Y$ because there does not exist open $U \in \tau$ $(U \in \mathcal{B})$ such that

$$(3,7] = U \cap [1,\infty).$$

Proof. To yield contradiction, suppose there exists such U. Then,

$$7 \in (a,b) \cap [1,\infty).$$

So $7 \in (a, b)$ and $7 \in [1, \infty)$. In other words, a < 7 < b.

Let $\epsilon = (b-7)/2$. Then, $a < 7 + \epsilon < b$ so $7 + \epsilon \in (a,b)$ and $7 + \epsilon \in [1,\infty)$. Then,

$$7 + \epsilon \in (a, b) \cap [1, \infty) = (3, 7] \implies 3 < 7 + \epsilon \le 7$$

yielding contradiction.

Example 7.3. Let $X = \mathbb{R}$ and Y = [0, 1]. A basis for the subspace on Y is

$$\{(a,b)|0 \le a < b \le 1\} \cup \{[a,b)|0 \le b \le 1\} \cup \{(a,1)|0 \le a \le 1\}$$

Example 7.4. Consider a rectangle

$$R = [0, 1] \times [2, 6].$$

There are two ways of thinking of topology on this rectangle. Since $R \subseteq \mathbb{R}^2$, we can think of it as a subspace topology. We can also think of it as a product topology. So are they same topologis in this case?

Theorem 7.2. Suppose X and Y are topological spaces and $A \subseteq X$ and $B \subseteq Y$ are subspaces. Then, the product topology on $A \times B$ equals the topology $A \times B$ inherits as a subset of $X \times Y$.

Proof. In the subspace topology, basis element is given by

$$(A \times B) \cap (U \times V)$$

where $U \subseteq X$ and $V \subseteq Y$. Likewise, basis element of product topology is given by

$$(A \cap U) \times (B \cap V)$$
.

But then

$$(A \cap U) \times (B \cap V) = (A \times B) \cap (U \times V).$$

8 The Order Topology

Let X be a set.

Definition 8.1. An order relation (or simple order or linear order) is relation R on X so

- 1. (comparability) If $x, y \in X$ and $x \neq y$. Then either xRy or yRx.
- 2. (Nonreflexivity) $\not\exists x \in X \text{ such that } xRx$.
- 3. (Transitivity)s If xRy and yRz then xRz.

Example 8.1. Define $X \subseteq \mathbb{R}$ and R = <. Then, R is an order relation *Proof.*

- 1. If $x \neq qy$, either x < y or y < x.
- 2. $\not\exists x \in X$ such that x < x.
- $3. \ x < y, y < z \implies x < z.$

If X has an order relation, we often denote it <. Suppose (X,<) is a set with an order relation for $a,b\in X$.

Definition 8.2. $(a, b) = \{x \in X | a < x, x < b\}.$

Definition 8.3. $(a, b] = \{x \in X | a < x, x < b, or x = b\}.$

Definition 8.4. $[a, b) = \{x \in X | a < x, x < b, or x = a\}.$

Definition 8.5. $a_0 \in X$ is a minimal element if $\forall x \in X$, $a_0 \leq x$.

Definition 8.6. $b_0 \in X$ is a maximal element if $\forall x \in X, x \leq b_0$.

Definition 8.7. Suppose $(X, <_x)$ and $(Y, <_y)$ are simply ordered sets. The dictionary order on $X \times Y$ is the order $<_{x \times y}$ defined as follows:

$$(a_1, b_1) <_{X \times Y} (a_2, b_2)$$

if $a_1 <_x a_2$ or $a_1 = a_2$ and $b_1 <_y b_2$.

Example 8.2. Define $X = Y = \mathbb{R}$ and $<_x = <_y = <$, usual inequality. Then,

- $(0,0) <_{X \times Y} (1,-3)$ is true
- $(0,0) <_{X \times Y} (0,-3)$ is false.

Definition 8.8. Suppose (X, <) is a simply ordered set. Then, the order topology on X is the one with basis elements: (a, b) for $a, b \in X$, $[a_0, b)$ for $b \in X$ provided a_0 is the minimal element of X, and $(a, b_0]$ for $a \in X$ provided $b_0 \in X$ is the maximal element.

Example 8.3. Consider X = [0, 1] with <, the standard inequality. The order topology is the topology inherited as a subset.

Example 8.4. Consider $(\mathbb{R}^2, <_o)$ where $<_0$ is the dictionary order. The order topology is called the dictionary order topology.

Think about what this set looks like:

Example 8.5. Let X be a set with the discrete topology (all subsets are open). Show that

$$\mathcal{B}_1 = \{\{x\} | x \in X\}$$

is a basis.

Proof. Let $x \in X$ then $x \in \{x\} \subseteq B$. Let $B_1, B_2 \in \mathcal{B}_1$ and $x \in B_1 \cap B_2$. Then,

$$B_1 = \{x\} = B_2$$

so $x \in \{x\} \subseteq B_1 \cap B_2$

Let τ_1 be the topology generated by \mathcal{B}_1 . We clearly have $\tau_1 \subseteq \tau_d$, where τ_d is the discrete topology. To show that $\tau_d \subseteq \tau_1$, let $U \in \tau_d$ and let $x \in U$. Then, $x \in \{x\} \subseteq U$ and $\{x\} \in \mathcal{B}_1$. So the results follows by a theorem in section 13.

Example 8.6. Show that

$$\mathcal{B}_2 = \{ \{x\} \times (a,b) | x, a, b \in \mathbb{R} \}$$

forms a basis for $\mathbb{R} \times \mathbb{R}$ with the dictionary order topology.

Proof. Assume that it's a basis. We will show that the associated topology τ_2 is the dictionary order topology τ_{DO} .

Note that if $B \in \mathcal{B}_2$, then $\exists x, a, b \in \mathbb{R}$ such that

$$B = \{x\} \times (a,b) = ((x,a),(x,b)) = \{y \in \mathbb{R} \times \mathbb{R} | (x,a) <_{DO} y <_{DO} (x,b) \}.$$

So this is open in τ_{DO} . So $\tau_2 \subseteq \tau_{DO}$.

Let $((a_1, b_1), (a_2, b_2))$ be a basis element in the dictionary order topology. Let $y \in ((a_1, b_1), (a_2, b_2))$. Write $y = (x_1, y_1)$. There are three cases:

- 1. $a_1 < x_1 < a_2$
- 2. $a_1 = x_1$
- 3. $a_2 = x_1$

Here, we will prove case 1. Assume $a_1 < x < a_2$. Then,

$$y \in \{x\} \times (y_1 - 1, y_1 + 1)$$

Then, $\{x\} \times (y_1 - 1, y_1 + 1) \in \mathcal{B}_2$ and also

$$\{x\} \times (y_1 - 1, y_1 + 1) \subseteq ((a_1, b_1), (a_2, b_2))$$

Assuming these the topology on $\mathbb{R}_d \times \mathbb{R}$ has basis

$$\{\{x\} \times (a,b) | x, a, b \in \mathbb{R}\}.$$

This is exactly the basis that generates the dictionary order topology. So two topologies are same. $\hfill\Box$

Example 8.7. Let $X = \mathbb{R}$. The set

$$\mathcal{B}_{\ell} = \{ [a, b) | a, b \in \mathbb{R} \}$$

is a basis. The topology it generates is called the lower limit topology on \mathbb{R} . \mathbb{R} with the lower limit topology is denoted \mathbb{R}_{ℓ} .

Remark. Lower limit topology is strictly finer than standard topology, i.e., every open set in standard topology is open in lower limit topology but not vice-versa

Example 8.8. Is [0,1) open in the standard topology? No [0,1) is not open in standard topology. If it were, then there would be some $(a,b) \subseteq \mathbb{R}$ such that

$$0 \in (a, b) \subseteq [0, 1).$$

But then

$$0 \in (a,b) \implies a < 0, b > 0$$

So $a/2 \in (a, b)$. But a/2 < 0 so $a \notin [0, 1)$.

Example 8.9. Is (0,1) open in \mathbb{R}_{ℓ} ? Yes because

$$(0,1) = \bigcup_{x \in \{y|y>0\}} [x,1).$$

9 Interior and Closure

Recall De Morgan's Laws:

- $\bigcup_{\alpha \in I} (X \setminus U_{\alpha}) = X \setminus \bigcap_{\alpha \in I} U_{\alpha}$
- $\bigcap_{\alpha \in I} (X \setminus U_{\alpha}) = X \setminus \bigcup_{\alpha \in I} U_{\alpha}$

Definition 9.1. If (X,τ) is a topological space then a subset $A \subseteq X$ is called closed if $X \setminus A$ is open, i.e., if $X \setminus A \in \tau$

If \mathcal{C} is a collection of all closed sets in X,

- 1. $X \in \mathcal{C}$
- $2. \varnothing \in \mathcal{C}$
- 3. \mathcal{C} is closed under arbitrary intersection.
- 4. C is closed under finite union.

Example 9.1. In \mathbb{R} , consider $U_n = [1/n, 1 - 1/n]$ for $n \in \mathbb{Z}^+$. U_n is a closed interval for each $n \in \mathbb{Z}^+$. Hoever,

$$\bigcup_{n\in\mathbb{Z}^+} U_n = (0,1)$$

is open and not a closed set.

Definition 9.2 (Interior). Suppose (X, τ) is a topological space and $A \subseteq X$. Define Int(A) to be the union of all open sets contained in A.

$$Int A = \bigcup_{\alpha \in J} U_{\alpha}$$

where $\{U_{\alpha}, \alpha \in J\}$ consists of all $U_{\alpha} \in J$ such that $U_{\alpha} \subseteq A$.

Observe that $\operatorname{Int} A$ is an open set. Notice also that $\operatorname{Int}(A) \subseteq A$. So $\operatorname{Int} A$ is the maximal open set contained in A. In other words, any open set V contained in A is a subset of $\operatorname{Int} A$.

Remark. If A is open, Int A = A.

Definition 9.3. The closure of A, denoted \bar{A} , is defined as the intersection of all closed sets that contain A:

$$\bar{A} = \bigcap_{\beta \in K} C_{\beta},$$

where $\{C_{\beta}: \beta \in K\}$ consists of all closed sets hat contain A.

Observe that \bar{A} is a closed set because it is an intersection of closed sets. Notice that $A \subseteq \bar{A}$. Then, \bar{A} is the smallest closed set that contains A, i.e. any closed set that contains A must contain \bar{A} .

Remark. If A is closed, then $A = \bar{A}$.

Example 9.2. If $U_{\alpha}, \alpha \in J$ is a collection of sets with $B \subseteq U_{\alpha}$ for all α , then $B \subseteq \bigcap_{\alpha \in J} U_{\alpha}$. Further, if $B = U'_{\alpha}$ for some $\alpha' \in J$, then

$$B = \bigcap_{\alpha \in J} U_{\alpha} \subset U_{\alpha'}$$

for all α' .

Proposition 9.1.

- $\operatorname{Int}(X A) = X \bar{A}$
- $\overline{(X-A)} = X \operatorname{Int}(A)$.

Example 9.3. Define

$$X = \{a, b, c\}$$

 $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$

Then,

$$\mathcal{C} = \{X, \{b, c\}, \{c\}, \emptyset\}$$

Consider $A = \{a\}$. Then, $Int A = \{a\}$ and $\bar{A} = X$.

Consider $B = \{b\}$. Then, $Int B = \emptyset$ and $\bar{B} = \{b, c\}$.

Consider $C = \{c\}$. Then, $\operatorname{Int} C = X$ and $\overline{C} = \{c\}$.

Let

$$X = \mathbb{C} = \{x + iy | x, y \in \mathbb{R}\}\$$

Example 9.4. Consider

$$A = \{ re^{i\theta} | 0 \le \theta \le 2\pi, 0 \le r \le 1 \text{ or } r1, \theta \in \mathbb{Q} \}$$

Then,

$$\begin{split} \text{Int} A &= \{re^{i\theta}|0 < r < 1\}\\ \bar{A} &= \{re^{i\theta}|0 \leq r \leq 1\} \end{split}$$

Notice that if $z \in \overline{A}$ and U is an arbitrary open set in $\mathbb C$ containing z then $U \cap A \neq \emptyset$.

Theorem 9.1. If $A \subseteq X$ is any subset then $X \in \overline{A}$ if and only if every open set U containing X intersects A nontrivially.

Proof. Recall \bar{A} is a closed set, so $X-\bar{A}$ is open. We will show conversely that $x\notin \bar{A}$ if and only if there exists an open set U containing x such that $U\cap A=\varnothing$. But since $X-\bar{A}$ is open, if $x\notin \bar{A}$, then $x\in X-\bar{A}$. Openness of $X-\bar{A}$ now implies that there exists small open set U about x with $U\subseteq X-\bar{A}$. As such, $U\cap \bar{A}=\varnothing$, since $A\subseteq \bar{A}$, it follows that $U\cap A=\varnothing$.

Definition 9.4. If $A \subseteq X$ is a subset,

$$\bar{A} = \{x \in X | U \cap A \neq \emptyset \text{ for every open set } U \text{ about } X\}.$$

Definition 9.5 (Limit point). A point X is a limit point of the set A if every open set U about x satisfies $(U - \{x\}) \cap A \neq \emptyset$, i.e., we require U intersects A in some point other than x. We write

$$A' = \{x | x \text{ is a limit point of } A\}.$$

Theorem 9.2. $\bar{A} = A \cup A'$.

Proof.

$$(U - \{x\}) \cap A \neq \emptyset \implies U \cap A \neq \emptyset$$

which implies $A \subseteq \bar{A}$. But we already know that $A \subseteq \bar{A}$. Then,

$$A \cup A' \subseteq \bar{A}$$
.

Suppose $x \in \bar{A}$. Either $x \in A$, in which case $x \in A \cup A'$ or $x \notin A$. In this case, since $x \in \bar{A}$, every open set U about satisfies $U \cap A \neq \emptyset$. But $x \notin A$ so $x \notin A$. So

$$(U - \{x\}) \cap A \neq \emptyset$$
.

So
$$x \in A'$$
.

Let X be a topological space with $Y \subseteq X$ a subset. Regard Y as a topological space using the subspace topology, i.e., $V \subseteq Y$ is open in the subspace topology if and only if there eixsts an open set $U \subseteq X$ with $V = U \cap Y$.

Theorem 9.3. In the subspace topology on Y, a subset $B \subseteq Y$ is closed if and only if $B = A \cap Y$ for some closed set $A \subseteq X$.

Proof.

$$B\subseteq Y$$
 is closed $\iff V=Y-B$ if open
$$\iff \exists U \text{ open in } X \text{ such that } V=U\cap Y$$
 $\iff A=X-U \text{ is closed}$

23

10 Sequences

Definition 10.1 (Convergence). If $\{X_n\}$ is a sequence of points in a topological space X, we say $\{X_n\}$ converges to $x \in X$ if for every neighborhood U about x, there exists integer N such that $n \ge N \implies X_n \in U$.

Remark. In a general topological space, a sequence may converge to more than one point.

Example 10.1. Consider the trivial topology:

$$\tau_{\mathrm{triv}} = \{\varnothing, X\}.$$

Every sequence converges and it converges to every point in X.

Example 10.2. Given $X = \{a, b, c\}$, consider the following topology:

$$\tau = \{\emptyset, \{a\}, \{a, b\}, X\}.$$

Then, the sequence $X_n = b$ for all n converges to b as well as c but not to a.

Example 10.3. If X has the discrete topology, then show that a sequence $\{X_n\}$ is convergent if and only if $\{X_n\}$ is eventually constant, i.e., $\exists x \in X$ and $N \in \mathbb{Z}^+$ such that

$$n \ge N \implies X_n = X$$
.

Definition 10.2. A topological space A is called Hausdorff if for any two distinct points $x, y \in X$ there exists disjoint open sets U, V with $x \in U$ and $Y \in V$.

Example 10.4. If $\{X_n\}$ is a sequence of points in Hausdorff space, then if it converges, the point it converges to is unique.

Theorem 10.1. If (X, τ) is Hausdorff, then every finite subset of X is a closed set.

Remark. If X is Hausdorff, then every singleton $\{x\}$ is closed.

Example 10.5. Consider

$$\mathcal{C} = \left\{ \left[\frac{1}{n}, 1 - \frac{1}{n} \right] | n \ge 3 \right\}$$

Then,

$$\bigcup_{n=3}^{\infty} C_n = (0,1)$$

is not closed in \mathbb{R} .

Example 10.6. An infinite collection of open sets whose intersection is not necessarily open. Consider

$$U_n = \left(-\frac{1}{n}, \frac{1}{n}\right).$$

Then,

$$\bigcap_{n=1}^{\infty} U_n = \{0\}$$

is closed in standard topology.

Definition 10.3. A topological space X in which all finite sets are closed is called a T_1 space.

Theorem 10.2. If (X, τ) is Hausdorff, then X is a T_1 space. Note that converse is not necessarily true.

Example 10.7. If X is inifinite and τ is finite complement topology is a T_1 space but not Hausdorff.

Example 10.8. Notice if X is finite, then the every subset $U \subseteq X$ has a finite complement. So in this case, the finite complement topology is the same as the discrete topology. So it is a T_1 space and Hausdorff.

Theorem 10.3. If X is Hausdorff and $\{x_n\}$ is a convergent sequence converging to $x \in X$, then the point x is unique. In this case, we say x is the limit of the sequence $\{x_n\}$ and write

$$\lim_{n\to\infty} x_n = x.$$

Theorem 10.4. If (X, <) is a simply ordered set, then it is Hausdorff in the order topology.

Theorem 10.5. If X, Y are two topological spaces and both are Hausdorff then so is the product $X \times Y$.

Theorem 10.6. If X is Hausdorff and $Y \subseteq X$ is a subset, then Y is Hausdorff in subspace topology.

11 Continuous Functions

What does it mean to say that a function $f: \mathbb{R} \to \mathbb{R}$ is continuous?

- $\forall x \in \mathbb{R}$, $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$.
- $\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0).$
- $\forall x_0 (\forall \epsilon > 0, \exists \delta \text{ such that } |x x_0| < \delta \implies |f(x) f(x_0)| < \epsilon.$

Definition 11.1. If $f: X \to Y$ is a function between two topological spaces X, Y, then f is continuous if $f^{-1}(V)$ is open for every open set $V \subseteq Y$.

Example 11.1. Consider $f : \mathbb{R} \to \mathbb{R}_{\ell}$, where \mathbb{R}_{ℓ} is the lower limit topology and f(x) = x. This map is not continuous. Take V = [a, b). This is open in \mathbb{R}_{ℓ} but $f^{-1}(V) = V$ is not open in the standard topology.

Example 11.2. $g: \mathbb{R}_{\ell} \to \mathbb{R}$ with g(x) = x is continuous.

Example 11.3. If $f: X \to Y$ is the constant map $f(x) = y_0 \forall x \in X$, then f is continuous for any topology on X, Y.

Theorem 11.1. Let X, Y be two toplogical spaces and $f: X \to Y$ is a function. If $f: X \to Y$ then the following are equivalent:

- 1. f is continuous
- 2. for all subsets $A \subseteq X$, $f(\bar{A}) \subseteq \overline{f(A)}$
- 3. for all closed sets $B \subseteq Y$, $f^{-1}(B)$ is closed in X
- 4. for each $x \in X$ if V is open about f(x), then \exists open set U about x such that $f(U) \subseteq V$.

Example 11.4. Consider $f: X \to Y$ any function. If X has discrete topology, f is automatically continuous.

Proof. Let $U \subseteq Y$ be open. Then, $f^{-1}(U)$ is a subset of X. By the definition of the discrete topology, $f^{-1}(U)$ is therefore open in X. Thus, it is true for all open $U \subseteq Y$, so f is continuous.

Example 11.5. Consider $Y = [0,1) \subseteq \mathbb{R}$ with standard topology on \mathbb{R} . Find the closure \bar{Y} .

We can define closure in three different ways:

- 1. Intersection of all closed sets containing Y
- 2. $\bar{Y} = Y \cup \{\text{limit points}\}\$
- 3. \bar{Y} is the smallest closed set containing Y.

Note that $[0,1) \subseteq [0,1]$ and [0,1] is closed in standard topology $([0,1] = \mathbb{R} - ((-\infty,0) \cup (1,\infty)))$. This implies that $\bar{Y} \subseteq [0,1]$.

We also have $[0,1) \subseteq \bar{Y}$. If $\bar{Y} \neq [0,1]$, then $1 \notin \bar{Y}$ and $\bar{Y} = [0,1)$. However, [0,1) is not closed in standard topology and this is a contradiction. Therefore, Y = [0,1].

Example 11.6. Define $X = [0, \infty)$. Consider $X \times X$ with dictionary order topology. Show that $X \times X$ is Hausdorff.

Proof. Let $(x_1, y_1), (x_2, y_2) \in X \times X$ with $(x_1, y_1) \neq (x_2, y_2)$. We may assume $(x_1, y_1) < (x_2, y_2)$. There are 7 cases that we have to consider:

- 1. $0 < x_1 < x_2 \text{ and } y_1, y_2 > 0$
- 2. $0 = x_1 < x_2 \text{ and } y_1, y_2 > 0$
- 3. $0 = x_1 = x_2$ and $0 < y_1 < y_2$
- 4. $0 = x_1 = x_2$ and $0 = y_1 < y_2$
- 5. $0 < x_1 < x_2$ and $y_1 = 0$ or $y_2 = 0$
- 6. $x_1 = x_2 > 0$ and $y_2 > y_1 > 0$
- 7. $x_1 = x_2 > 0$ and $y_1 = 0$ or $y_2 \neq 0$

For case 1, consider

$$U_1 = \left(\left(x_1, y_1 - \frac{y_1}{2} \right), \left(x_1, y_1 + \frac{y_1}{2} \right) \right)$$

$$U_2 = \left(\left(x_2, y_2 - \frac{y_2}{2} \right), \left(x_2, y_2 + \frac{y_2}{2} \right) \right)$$

Then, there intersection is empty and $(x_1, y_1) \in U_1$ and $(x_2, y_2) \in U_2$.

Definition 11.2. Let X and Y be topological spaces. A function $f: X \to Y$ is a homeomorphism if

- 1. f is continuous
- 2. f is bijective (so f^{-1} exists)
- 3. $f^{-1}: Y \to X$ is continuous

Example 11.7. Suppose X is a topological space. Then, identity function

$$\mathrm{Id}:X\to X$$

with Id(x) = x is a homeomorphism.

Example 11.8. If $f: X \to Y$ is homeomorphism, then $f^{-1}: Y \to X$ is a homeomorphism.

Example 11.9. Consider $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^3$. Then, this is a homeomorphism. Furthermore,

$$f^{-1}(y) = y^{1/3}.$$

12 The Product Topology

Definition 12.1. Let $\{X_{\alpha}\}$ be a collection of sets indexed by $\alpha \in J$. Then,

$$\prod_{\alpha \in J} X_{\alpha} = \left\{ f : J \to \bigcup_{\alpha \in J} X_{\alpha}, f(\beta) \in X_{\beta} \forall \beta \in J \right\}.$$

Example 12.1. Consider $J = \{1, 2\}$. Then,

$$\prod_{\alpha \in J} X_{\alpha} = \{ f : \{1, 2\} \to X_1 \cup X_2 | f(1) \in X_1, f(2) \in X_2 \}$$

$$= \{ (f_1, f_2) | f_1 \in X_1, f_2 \in X_2 \}$$

$$= X_1 \times X_2$$

More generally, if $J = \{1, 2, ..., n\}$, then

$$\prod_{\alpha \in J} X_{\alpha} = X_1 \times X_2 \times \dots \times X_n$$

If $J = \mathbb{Z}_+ = \{1, 2, 3, \dots\}$, then we can write

$$\prod_{\alpha \in J} = X_1 \times X_2 \times X_3 \times \cdots$$

If $J = \mathbb{Z}_+$ and $X_{\alpha} = X \forall \alpha \in J$, then

$$\prod_{\alpha \in I} X_{\alpha} = X \times X \times \dots = X^{\omega}.$$

Example 12.2. Consider $J = \mathbb{R}$ and let $X_{\alpha} = \mathbb{R} \forall \alpha \in \mathbb{R}$. Then,

$$\prod_{\alpha \in J} X_{\alpha} = \prod_{\alpha \in \mathbb{R}} \mathbb{R}$$

$$= \left\{ f : \mathbb{R} \to \bigcup_{\alpha i n \mathbb{R}} \mathbb{R} \mid f(x) \in \mathbb{R} \forall x \in \mathbb{R} \right\}$$

$$= \left\{ f : \mathbb{R} \to \mathbb{R} \middle| f \text{ is a function} \right\}.$$

Definition 12.2 (Box topology). Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be a collection of topological spaces. The box topology on $\prod X_{\alpha}$ is the one with basis

$$\left\{ \prod_{\alpha \in J} U_{\alpha} \, \big| \, U_{\alpha} \subseteq X_{\alpha} \ open \right\}$$

Lemma 12.1. If \mathcal{B}_{α} is a basis for X_{α} , then

$$\left\{ \prod_{\alpha \in J} B_{\alpha} \mid B_{\alpha} \in \mathcal{B}_{\alpha} \right\}$$

is a basis for the box topology.

Definition 12.3. For βinJ , define

$$\pi_{\beta}: \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}$$

Example 12.3. Consider $J = \{1, 2\}$. Then,

$$\prod_{\alpha \in J} X_{\alpha} = X_1 \times X_2.$$

Furthermore,

$$\pi_1: X_1 \times X_2 \to X_1$$

$$\pi_2: X_2 \times X_2 \to X_2$$

Definition 12.4 (Product topology). The product topology on $\prod_{\alpha \in J} X_{\alpha}$ is the one with subbasis given by

$$\left\{ \pi_{\beta}^{-1}(U_{\beta}) \mid U_{\beta} \subseteq X_{\beta} \text{ open }, \beta \in J \right\}$$

If $\prod X_{\alpha}$ is equipped with the product topology, we call $\prod X_{\alpha}$ the product space.

Lemma 12.2. If \mathcal{B}_{α} is a basis for X_{α} , then

$$\left\{ \pi_{\beta}^{-1}(B_{\beta}) \mid B_{\beta} \in \mathcal{B}_{\beta}, \beta \in J \right\}$$

is a subbasis for the product topology.

Remark. If J is finite, then the box topology on $\prod X_{\alpha}$ equals the product topology.

Example 12.4. Consider $J = \mathbb{Z}_+$ with $X_{\alpha} = \mathbb{R}$. Then,

$$\prod_{\alpha \in J} X_{\alpha} = \mathbb{R}^{\omega}.$$

For example, a box topology can be

$$\prod_{\alpha \in J} B_{\alpha} = B_1 \times B_2 \times B_3 \times \cdots.$$

Then,

$$(-1,1) \times (-2,2) \times \cdots \times (-n,n) \times \cdots$$

is a basis element in box topology.

On the other hand,

$$(-1,1) \times (-2,2) \times \cdots \times (-n,n) \times \cdots$$

is not open in product topology.

$$(-1,1) \times (-2,2) \times \cdots \times (-n,n) \times \mathbb{R} \times \cdots \times \mathbb{R} \cdots$$

is open in product topology.

Lemma 12.3. The collection

$$\left\{ \prod_{\alpha \in J} U_{\alpha} \mid U_{\alpha} \subseteq X_{\alpha} \text{ is open }, U_{\alpha} = X_{\alpha} \text{ for all but a finite number of } \alpha \in J \right\}$$

forms a subbasis for the product topology on $\prod_{\alpha \in I} X_{\alpha}$.

Example 12.5.

$$(-1,1) \times (-1,1) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

is open in the product topology on \mathbb{R}^{ω} but

$$(-1,1) \times (-1,1) \times \cdots \times (-1,1) \times \cdots$$

is not open in product topology.

If we define $\pi_1: \mathbb{R}^{\omega} \to \mathbb{R}$ where $\pi_1(x_1, x_2, \dots,) \to x_1$. Then,

$$\pi_1^{-1}((-1,1)) = (-1,1) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

is open in product topology. Likewise, we have

$$\pi_2^{-1}((-1,1)) = \mathbb{R} \times (-1,1) \times \mathbb{R} \times \cdots$$

open in product topology. Then,

$$\pi_1^{-1}((-1,1)) \times \pi_2^{-1}((-1,1)) = (-1,1) \times (-1,1) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

is open in product topology. Note that we can only take finite intersections.

Example 12.6. Consider $\mathbb{R}^{\omega} = \mathbb{R} \times \mathbb{R} \times \cdots$ with the product topology. Show

$$(-1,1) \times \left(-\frac{1}{2},\frac{1}{2}\right) \times \cdots \times \left(-\frac{1}{n},\frac{1}{n}\right) \times \cdots$$

is not open.

Solution. Recall that U is open if and only if $\forall x \in U$ there exists $B \in \mathcal{B}$ a basis element such that

$$x \in B \subseteq U$$
.

Observe that

$$(0,0,\ldots,0) \in U = (-1,1) \times \left(-\frac{1}{2},\frac{1}{2}\right) \times \cdots \times \left(-\frac{1}{n},\frac{1}{n}\right) \times \cdots$$

Assume B is a basis element containing x. Then, we can write

$$B = V_1 \times V_2 \times \cdots \times V_m \times \mathbb{R} \times \mathbb{R} \times \cdots$$

where $V_l \subseteq \mathbb{R}$ open and $1 \leq l \leq m$. If $B \subseteq U$, then the following condition must be satisfied:

$$\mathbb{R} \subseteq \left(-\frac{1}{m+1}, \frac{1}{m+1}\right).$$

This is false. So $B \not\subseteq U$. Therefore, U is not open.

Example 12.7. Is the following function continuous? $f: \mathbb{R} \to \mathbb{R}^2$ where

$$f(t) = (\cos(t), t^2 + e^t)$$

Theorem 12.1. Let $\{X_{\alpha}\}$ be topological space and give $\prod X_{\alpha}$ the product topology. Let

$$f:A\to\prod X_{\alpha}$$

be any function. Then, f is continuous if and only if $\pi_{\alpha} \circ f : A \to X_{\alpha}$ is continuous $\forall \alpha \in J$.

Example 12.8. Let $J = \mathbb{Z}_+$. Then,

$$\prod X_{\alpha} = X_1 \times X_2 \times \cdots$$

Consider $f: A \to X_1 \times X_2 \times \cdots$ with

$$f(a) = (f_1(a), f_2(a), \dots)$$

$$f_1 = \pi_1 \circ f$$

$$f_2 = \pi_2 \circ f$$

:

Note that $f_{\alpha} = \pi_{\alpha} \circ f$ is the α -th component of f.

Example 12.9. Recall that the product topology has subbasis

$$\mathcal{S} = \{ \prod_{\alpha}^{-1} (U) \mid U \subseteq X_{\alpha} \text{ open }, \alpha \in J \}$$

So $\pi_{\beta}: \prod X_{\alpha} \to X_{\beta}$ is continuous $\forall \beta \in J$.

Now, we will prove the theorem.

Proof. (\Rightarrow) If f is continuous, then $\pi_{\alpha} \circ f$ is continuous because composition of continuous functions is continuous.

 (\Leftarrow) Assume $\pi_{\alpha} \circ f$ is continuous $\forall \alpha \in J$. Let $\pi_{\alpha}^{-1}(U) \subseteq \prod X_{\alpha}$ be a subbasis element. Then,

$$f^{-1}(\pi_{\alpha}^{-1}(U)) = (\pi_{\alpha} \circ f)^{-1}(U).$$

Then, this is open because the composition map $(\pi_{\alpha} \circ f)$ is assumed to be continuous and $U \subseteq X_{\alpha}$ is open.

Recall that a basis for product topology is

$$\prod_{\alpha \in J} U_{\alpha}$$

where $U_{\alpha} \subseteq X$ where $U_{\alpha} = X_{\alpha}$ for all but a finite number of $\alpha \in J$. Note

$$\pi_{\beta}^{-1}\left(U_{\beta}\right) = \prod_{\alpha \in J} U_{\alpha}$$

where $U_{\alpha} = U_{\beta}$ if $\alpha = \beta$ and $U_{\alpha} = X_{\alpha}$ if $\alpha \neq \beta$.

Example 12.10. Consider $\prod X_{\alpha} = \mathbb{R} \times \mathbb{R}$. Then,

$$\pi_1^{-1}((-1,1)) = (-1,1) \times \mathbb{R}.$$

On the other hand, the basis from S is

$$\pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \dots \cap \pi_{\alpha_n}^{-1}(U_{\alpha_n}) = \prod_{\alpha \in J} U_{\alpha}$$

where $U_{\alpha} = U_{\alpha_j}$ if $\alpha = \alpha_j$ and $U_{\alpha} = X_{\alpha}$ otherwise. Hence,

$$x \in \pi_{\beta}^{-1}(U_{\beta})$$

if and only if

$$\pi_{\beta}(x) \in U_{\beta}$$

if and only if the β -composition of x is in U_{β} (no restriction on the other components).

Example 12.11. Consider $f: \mathbb{R} \to \mathbb{R}^{\omega}$ where

$$f(t) = (t, t, t, \dots).$$

By the previous theorem, this is continuous in the product topology on \mathbb{R}^{ω} . However, this is not continuous with the box topology on \mathbb{R}^{ω} .

Proof. Consider

$$U = (-1, 1) \times \left(-\frac{1}{2}, \frac{1}{2}\right) \times \dots \times \left(-\frac{1}{n}, \frac{1}{n}\right) \times \dots$$

We will show that $f^{-1}(U)$ is not open in \mathbb{R} . We claim that $f^{-1}(U) = \{0\}$. If $t \in f^{-1}(U)$, then $f(t) \in U$. Note that

$$(t, t, t, \dots) \in U$$

So

$$t \in (-1,1)$$
$$t \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$

 $t \in \left(-\frac{1}{n}, \frac{1}{n}\right)$

So $|t| < 1/n \,\forall n$. This implies that t = 0. Conversely, $f(0) \in U$.

13 Metric Topology

Definition 13.1. Let X be a set. A metric on X is a function $d: X \times X \to \mathbb{R}$ satisfying

- 1. $d(x,y) \ge 0 \forall x, y \in X \text{ and } d(x,y) = 0 \iff x = y$
- $2. \ \forall x, y \in X, d(x, y) = d(y, x)$
- 3. (triangle inequality) $\forall x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z)$

Definition 13.2. (X,d) is a metric space.

We can think d(x, y) as the "distance" between x and y.

Definition 13.3. Let $x \in X$ and $\epsilon > 0$. We can define

$$B_d(x,\epsilon) = \{ y \in X | d(x,y) < \epsilon \},$$

the ball of radius epsilon centered at x, relative to the metric d.

Example 13.1. Define $d: X \times X \to \mathbb{R}$ as follows:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

We want to verify three axioms.

- 1. $1 \le 0$ and d(x, y) = 0 iff x = y
- 2. $x = y \iff y = x \text{ and } x \neq y \iff y \neq x$
- 3. Note that d(x,z), d(x,y), d(y,z) are all either equal to 0 or 1. The triangle inequality can only fail if

$$d(x, z) = 1$$
 and $d(x, y) + d(y, z) = 0$

Note that

$$d(x,y) + d(y,z) = 0 \implies d(x,y) = 0, d(y,z) = 0 \implies x = y, y = z$$

This implies that x = z by transitivity and d(x, z) = 0. This yields contradiction because we assumed d(x, z) = 1. So the triangle inequality does not fail.

Example 13.2. Let $X = \mathbb{R}$ and define d as above. Sketch the ball with radius 1 centered at 0. Sketch $B_d(0,2)$.

Note that

$$B_d(0,1) = \{ y \in \mathbb{R} | d(0,y) < 1 \} = \{ 0 \}$$

and

$$B_d(0,2) = \{ y \in \mathbb{R} | d(0,y) < 2 \} = \mathbb{R}.$$

Example 13.3. Let $X = \mathbb{R}$ and define $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ where

$$d(x,y) = |x - y|.$$

We want to check that d is a metric.

1. $d(x,y) = |x-y| \ge 0$. Furthermore,

$$d(x,y) = 0 \iff x - y = 0 \iff x = y.$$

2. d(x,y) = |x - y| = |-y + x| = |-(y - x)| = |y - x| = d(y,x)

3.

$$d(x,z) = |x-z| = |x-y+y-z| \le |x-y| + |y-z| = d(x,y) + d(y,z)$$

Example 13.4. Define d as in previous example. Then,

$$B_l(3, \epsilon) = \{ y \in \mathbb{R} | d(3, y) < \epsilon \} = \{ y \in \mathbb{R} | |3 - y| < \epsilon \}$$

Note that $|3-y|<\epsilon$ is equivalent to $3-y<\epsilon$ and $-(3-y)<\epsilon$. Rearranging, we have

$$B_l(3,\epsilon) = \{ y \in \mathbb{R} | -\epsilon + 3 < y < \epsilon + 3 \} = (3 - \epsilon, 3 + \epsilon)$$

Lemma 13.1. Let (X, d) be a metric space. The collection

$$B = \{B_l(X, \epsilon) | x \in X, \epsilon \in (0, \infty)\}\$$

forms a basis. The induced topology is called the metric topology if (X, τ) is a topological space and τ is induced from a metric as above $(\exists \text{ a metric } d \text{ so } \tau \text{ is in the metric associated to } d \text{ then we call } (X, \tau) \text{ metrizable})$

Example 13.5. Consider X with

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ 1 & \text{if } x \neq y \end{cases}$$

The metric topology is the discrete topology. $B_d(x,1) = \{x\}$ are contained in the basis.

Example 13.6. Consider $X = \mathbb{R}$ with d(x,y) = |x-y|. Then, the metric topology is the standard topology and the basis is $B_d(x,\epsilon) = (x-\epsilon,x+\epsilon)$.

Example 13.7. Consider $X = \mathbb{R}^n$ where $n \geq 1$. Then, for $x, y \in X$, we can write

$$x = (x_1, x_2, \dots, x_n)$$

 $y = (y_1, y_2, \dots, y_n)$

Let

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Lemma 13.2. This is a metric called the Euclidean metric. For n = 2, $B_d(x, \epsilon)$ is a circle centered at x with radius ϵ .

Example 13.8. Consider $X = \mathbb{R}^n$ and define

$$\rho(x,y) = (|x_1 - y_1|, \dots, |x_n - y_n|)$$

When n=2 $B_{\rho}(X,\epsilon)$ forms a square whose sidelength is 2ϵ . For example,

$$B_{\rho}(0,\epsilon) = \{y | \max(|y_1|, |y_2|) < \epsilon\}$$

Example 13.9. Show every metric space is Hausdorff.

Proof. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Set $\epsilon = \frac{1}{2}d(x_1, x_2)$. Since $x_1 \neq x_2$, so $\epsilon > 0$. Hence,

$$x_1 \in B_d(x_1, \epsilon)$$
 and $x_2 \in B_d(x_2, \epsilon)$

Also,

$$B_d(x_1, \epsilon) \cap B_d(x_2, \epsilon) = \emptyset$$

because if $z \in B_d(x_1, \epsilon) \cap B_d(x_2, \epsilon)$, then

$$d(x_1, x_2) \le d(x_1, z) + d(z, x_2)$$

$$< \epsilon + \epsilon$$

$$= d(x_1, x_2)$$

which is a contradiction.

14 Comparing metrics

Consider $X = \mathbb{R}^n$ and $x, y \in X$ such that

$$x = (x_1, \dots, x_n)$$
$$y = (y_1, \dots, y_n)$$

Recall that Euclidean metric is defined as

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n + y_n)^2}$$

and the square metric is defined by

$$\rho(x,y) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\}$$

= $\max_{i}\{|x_i - y_i|\}$

Consider $B_d(0, \epsilon)$. By definition,

$$B_d(0,\epsilon) = \{y|d(0,y) < \epsilon\}$$

$$= \{(y_1, \dots, y_n)|\sqrt{y_1^2 + \dots + y_n^2} < \epsilon\}$$

$$= \{(y_1, \dots, y_n)|y_1^2 + \dots + y_n^2 < \epsilon^2\}$$

is the interior of a radius- ϵ sphere. On the other hand,

$$B_{\rho}(0, \epsilon) = \{(y_1, \dots, y_n) | \max_{i} \{|x_i - y_i|\}\}$$
$$= (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times \dots \times (-\epsilon, \epsilon)$$

Hence, when n = 2, $B_d(0, \epsilon)$ is a circle of radius ϵ and $B_{\rho}(0, \epsilon)$ is a square whose side lengths are 2ϵ . We know how to compare two toplogies generated by these metrics but how can we compare the metrics?

Lemma 14.1. Suppose d and d' are metrics on X and τ and τ' are their respective topologies. The following are equivalent:

1.
$$\tau \subseteq \tau'$$

2.
$$\forall x \in X, \forall \epsilon > 0, \exists \delta > 0 \text{ such that } B_{d'}(x, \delta) \subseteq B_d(x, \epsilon).$$

Proof. Assume $\tau \subseteq \tau'$. Let $x \in X$ and $\epsilon > 0$. By Lemma 13.3, there exists a basis element B' for τ' so

$$x \in B' \subseteq B_d(x, \epsilon).$$

We have $B' = B_{d'}(y, r)$ for some $y \in X$ and r > 0. Let $\delta = r - d'(x, y)$. Since $x \in B_{d'}(y, r)$, we have $\delta > 0$.

We claim that $B_{d'}(x,\delta) \subseteq B_{d'}(y,r)$. Let $z \in B_{d'}(x,\delta)$. Then,

$$d'(z,y) \le d'(x,y) + d'(x,y)$$
$$< \delta + d'(x,y)$$
$$= r$$

This implies that $z \in B_{d'}(y, r)$. Hence,

$$B_{d'}(x,\delta) \subseteq B' \subseteq B_d(x,\epsilon)$$

So this proves the second statement.

Now, assume that the second statement is true. Let $B_d(x,\epsilon)$ be a τ -basis element. Let $y \in B_d(x,\epsilon)$ then the assumed statement implies that we can find $\delta > 0$ such that

$$y \in B_{d'}(y, \delta) \subseteq B_d(x, \epsilon)$$

Then, $\tau \subseteq \tau'$ follows by Lemma 13.3.

Theorem 14.1. The topologies on \mathbb{R}^n coming from the Euclidean metric and the square metric are equivalent. These both equal the product topology.

Proof. Let τ_{ρ} be the topology coming from the square metric ρ and τ_d that coming from the euclidean metric d. Note

$$\rho(x,y) = \max_{i} \{|x_i - y_i|\}$$

$$= |x_{i_*} - y_{y_*}| \text{ for some } i_* \in \{1, 2, \dots, n\}$$

$$= \sqrt{(x_{i_*} - y_{i_*})^2}$$

$$\leq \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

$$= d(x,y)$$

So

$$B_d(x,\epsilon) = \{y|d(x,y) < \epsilon\}$$

$$\subseteq \{y|\rho(x,y) < \epsilon\}$$

$$= B_{\rho}(x,\epsilon).$$

By the previous lemma, $\tau_{\rho} \subseteq \tau_d$. For the reverse inequality,

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

$$= \sqrt{(x_{i_*} - y_{i_*})^2 + \dots + (x_{i_*} - y_{i_*})^2}$$

$$= \sqrt{n(x_{i_*} - y_{i_*})^2}$$

$$= \sqrt{n}\rho(x,y).$$

This implies that $B_{\rho}(x, \epsilon/\sqrt{n}) \subseteq B_d(x, \epsilon)$. Therefore, $\tau_d \subseteq \tau_{\rho}$ Finally, we want to prove that ρ -topology equals the product topology. Let $(a_1, b_1) \times \cdots \times (a_n, b_n)$ be a product topology basis element and

$$(x_1,\ldots,x_n)\in(a_1,b_1)\times\cdots\times(a_n,b_n).$$

Set

$$\epsilon = \min_{i \in \{1, \dots, n\}} \{ |x_i - a_i|, |x_i - b_i| \}$$

Then,

$$(x_1, \dots, x_n) \in (x_1 - \epsilon, x_1 + \epsilon) \times \dots \times (x_n - \epsilon, x_n + \epsilon)$$

 $\subseteq (a_1, b_1) \times \dots \times (a_n, b_n),$

where

$$(x_1 - \epsilon, x_1 + \epsilon) \times \cdots \times (x_n - \epsilon, x_n + \epsilon) = B_o((x_1, \dots, x_n), \epsilon)$$

Conversely, let

$$B_{\rho}((x_1,\ldots,x_n),\epsilon) = (x_1-\epsilon,x_1+\epsilon)\times\cdots\times(x_n-\epsilon,x_n+\epsilon)$$

and $y \in B_{\rho}(x, \epsilon)$. Then,

$$y \in B_o(x, \epsilon) \subseteq B_o(x, \epsilon)$$

Example 14.1. For $1 \le p < \infty$, then

$$d_p((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = ((x_1-y_1)^p + \cdots + (x_n-y_n))^{1/p}$$

on \mathbb{R}^n . This is a metric on \mathbb{R}^n .

We want to draw $B_{d_p}(0,1)$ for different values of p. When p=1, we have a rhombus. When p=2, we have a circle. When p>2, we get a "fat" circle. Note that

$$B_{d_p}(0,1) = \{(x,y)|x^p + y^p = 1\} \implies y = \pm (1-x^p)^{1/p}$$

As $p \to \infty$, we get a square. Hence,

$$\lim_{p \to \infty} d_p(x, y) = \rho(x, y)$$

Example 14.2. Consider

$$X = C^{0}([0,1]) = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}.$$

For $1 \le p < \infty$, define

$$d_p(f,g) = \left(\int_0^1 |f(x) - g(x)|^p dx\right)^{1/p}.$$

This is a metric on X. When p = 2, d_2 is very important in physics.

Theorem 14.2. Suppose (X, d_X) and (Y, d_Y) are metric spaces (with the metric topology). Let $f: X \to Y$ be a function. Then, f is continuous if and only if

$$\forall x \in X \ \forall \epsilon > 0 \ \exists \delta > 0 \ such \ that \ d_X(x,y) < \delta \implies d_y(f(x),f(y)) < \epsilon$$

Proof. Assume f is continuous. Let $x \in X$ and $\epsilon > 0$. Since f is continuous and $B_{d_y}(f(x), \epsilon)$ is open, it follows that $f^{-1}(B_{d_y}f(x), \epsilon)$ is open in X. Note that

$$x \in f^{-1}(B_{d_n}f(x), \epsilon) \implies \exists \delta > 0$$

such that

$$x \in B_{d_x}(x,\delta) \subseteq f^{-1}(B_{d_y}f(x),\epsilon).$$

Assume $y \in X$ satisfies $d_x(x,y) < \delta$. Then, $y \in B_{d_x}(x,\delta)$, so

$$y \in f^{-1}(B_{d_y}f(x), \epsilon).$$

Hence, $f(y) \in B_{d_u}(f(x), \epsilon)$. So

$$d_{y}(f(x), f(y)) < \epsilon.$$

Conversely, assume the $\delta - \epsilon$ condition. Let $U \subseteq Y$ be open. If $U = \emptyset$ then $f^{-1}(\emptyset) = \emptyset$ is open. More generally, if $f^{-1}(U) = \emptyset$, then we're done. We may assume $\exists x \in f^{-1}(U)$. Note $f(x) \in U$ since U is open. Then, there exists $\epsilon > 0$ such that

$$f(x) \in B_{d_y}(f(x), \epsilon) \subseteq U.$$

The $\delta - \epsilon$ condition implies that there exists $\delta > 0$ such that

$$d_x(x,y) < \delta \implies d_y(f(x),f(y)) < \epsilon.$$

So $B_x(x,\delta) \subseteq f^{-1}(U)$. That is, for every $x \in f^{-1}(U)$, there exists $\delta > 0$ so that

$$x \in B_{d_{\sigma}}(x,\delta) \subset f^{-1}(U).$$

So
$$f^{-1}(U)$$
 is open.

Example 14.3. Show the function $m: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as

$$m(a,b) = a + b$$

is continuous.

Proof. Let $d_{\mathbb{R}\times\mathbb{R}}$ be a square metric. Consider $(a,b),(a_2,b_2)\in\mathbb{R}\times\mathbb{R}$. Then,

$$d_{\mathbb{R} \times \mathbb{R}}((a, b), (a_2, b_2)) < \delta \implies |a - a_2| + |b - b_2| < \delta.$$

Note that

$$\begin{split} d_{\mathbb{R}}(m(a,b),m(a_2,b_2)) &= |m(a,b) - m(a_2,b_2)| \\ &= |a+b-a_2-b_2| \\ &= |a-a_2+b-b_2| \\ &\leq |a-a_2| + |b-b_2| < \delta < \epsilon \end{split}$$

Similarly, we can show that subtraction, multiplication, and divisions (as long as we don't divide by 0) are continuous functions $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Corollary 14.1. Suppose $f, g: X \to \mathbb{R}$ are continuous where X is a topological space. Then,

$$f + g : X \times X \to \mathbb{R}$$
$$(x, y) \mapsto f(x) + g(x)$$
$$f - g : X \times X \to \mathbb{R}$$
$$(x, y) \mapsto f(x) - g(x)$$
$$f \cdot g : X \times X \to \mathbb{R}$$
$$(x, y) \mapsto f(x)g(x)$$

are continuous with the product topologyon $X \times X$.

Proof. Note that f + g is the composition of

$$X \times X \to \mathbb{R} \times \mathbb{R}$$
$$(x,y) \mapsto (f(x),g(y))$$
$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(s,t) \mapsto s+t$$

These are continuous so the composition is continuous.

Definition 14.1. Let X be a set and (Y,d) a metric space. Suppose

$$f_n:X\to Y$$

is a sequence of functions. Then, $(f_n)_{n\in\mathbb{Z}_+}$ converge uniformly to $f:X\to Y$ if

$$\forall \epsilon > 0 \ \exists N \in \mathbb{Z}_+ \ \forall n \geq N \ \forall x \in X \ d(f_n(x), f(x)) < \epsilon$$

Theorem 14.3. Sppose X is a topological space and (Y, d) is a metric space. Suppose (f_n) is a sequence of functions converging uniformly to $f: X \to Y$. If each f_n is continuous then f is continuous.

Proof. Let $V \subseteq Y$ be open. We want to show that $f^{-1}(V) \subseteq X$ is open. It is sufficient to show that

$$\forall x_0 \in f^{-1}(V) \; \exists U \text{ open in } X \text{ such that } x_0 \in U \subseteq f^{-1}(V)$$

Consider $V = B_d(f(x_0), \epsilon) \subseteq Y$. Then, take

$$U = f_n^{-1}(B_d(f_n(x_0), \epsilon/3)) \subseteq X$$

is open. We want to show that

1.
$$x_0 \in f_n^{-1}(B_d(f_n(x_0), \epsilon/3))$$

2.
$$f_n^{-1}(B_d(f_n(x_0), \epsilon/3)) \subseteq f^{-1}(B_d(f(x_0), \epsilon))$$

The first part is true if and only if $f_n(x_0) \in B_d(f_n(x_0), \epsilon/3)$. This is clearly true because $d(f_n(x_0), f_n(x_0)) = 0 < \epsilon/3$.

Now, we want to prove the second statement. Let $x \in f_n^{-1}(B_d(f_n(x_0), \epsilon/3))$.

$$x \in f^{-1}(B_d(f(x_0), \epsilon)) \iff f(x) \in B_d(f(x_0), \epsilon)$$

 $\iff d(f(x), f(x_0)) < \epsilon.$

Hence, it suffices to show that this is true.

Observe that

$$d(f(x), f(x_0)) \le d(f(x), f_n(x)) + d(f_n(x), f(x_0))$$

$$\le d(f(x), f_n(x)) + d(f_n(x_0), f(x_0)) + d(f_n(x), f_n(x_0))$$

Since $f_n(x) \in B_d(f_n(x_0), \epsilon/3)$, it follows that $d(f_n(x), f_n(x_0)) < \epsilon/3$. Since f_n converges to f uniformly, there exists N such that

$$d(f_n(y), f(y)) < \epsilon/3$$

for all $y \in X$ and for all $n \geq N$. For such n, we have

$$d(f_n(x_0), f(x_0)) < \epsilon/3$$

$$d(f_n(x), f(x)) < \epsilon/3$$

Then, it follows that

$$d(f(x), f(x_0)) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

15 Connectedness

Definition 15.1. Suppose X is a topological space. A separation of X is a pair $U, V \subseteq X$ such that

- $U \neq \emptyset$ is open
- $V \neq \emptyset$ is open
- $U \cap V = \emptyset$
- $U \cup V = X$

Definition 15.2. X is connected if it does not have a separation.

Lemma 15.1. X is connected if and only if the following holds: If $U \subseteq X$ is open and closed, then $U = \emptyset$ or U = X.

Proof. (\Rightarrow) Assume X is connected and $U \subseteq X$ is open and closed. Then, $V = U^c = X - U$ is also open and closed. So U, V are both open and $X = U \cup V$ and $U \cap V = \emptyset$. But X is connected so either $U = \emptyset$ or $V = \emptyset$.

(\Leftarrow) Assume that X satisfies the condtion of the lemma. Suppose U and V are open, non-empty sets such that $U \cap V = \emptyset$ and $U \cup V = X$. Then, $V = U^c$ so U is open and closed. So $U = \emptyset$ (contradition) or U = X implying that $V = \emptyset$ (again, contradiction).

Example 15.1. Consider $X = \{1, 2\}$ with discrete topology. This is not connected:

$$U = \{1\}, V = \{2\}$$

satisfies the conditions.

Example 15.2. Consider $X = \{1, 2\}$ with trivial topology. Then, X is connected. Assume $U \subseteq X$ is both open and closed. Since we are in a trivial topology, $U = \emptyset$ or U = X.

Example 15.3. \mathbb{R} under standard topology and (a,b),[a,b],(a,b],[a,b) under subspace topology are connected.

Example 15.4. \mathbb{Q} with subspace topology is not connected. In particular, $U = (-\infty, \pi) \cap \mathbb{Q}$, $V = (\pi, \infty) \cap \mathbb{Q}$ is a separation.

Theorem 15.1. Suppose X is countable and $f: X \to Y$ is continuous. Then, $\text{Im}(f) = \{f(x) | x \in X\}$ is connected in the subspace topology coming from Y.

Proof. Set $z = \text{Im}(f) \subseteq Y$ with the subspace topology. Define

$$g: X \to Z$$

 $x \mapsto f(x)$

we claim that g is continuous. Let $U \subseteq Z$ be open. Then, $U = Z \cap U'$ where $U' \subseteq Y$ is open. Then, $g^{-1}(U) = f^{-1}(U')$ is open in X. We therefore assume f is surjective.

Now, we want to prove the theorem. Let $U \subseteq Y$ be closed, open and nonempty. It suffices to show that U = Y. If f is continuous, $f^{-1}(U)$ is open and closed. If f is surjective and $U \neq \emptyset$. Then, $f^{-1}(U) \neq \emptyset$. By the lmma and connectivity of X, $f^{-1}(U) = X$. This implies that U = f(X) = Y.

Theorem 15.2. Suppose $A \subseteq X$ is a subspace and A is connected. If $A \subseteq B \subseteq \overline{A}$, then B is connected.

Proof. Assume B is not connected so there is a separation U, V of B. Then,

$$U = B \cap U'$$
$$V = B \cap V'$$

for $U',V'\subseteq X$ open. Note that $U'\cap A,V'\cap A$ are open in A, disjoint, and cover A. It follows $U'\cap A=\varnothing$ or $V'\cap A=\varnothing$. Assume $V'\cap A=\varnothing$. Then, $\bar{A}\subseteq \bar{U}'$. In fact, since $A\subseteq B$, we actually have $A\subseteq U=U'\cap B$ so $\bar{A}\subseteq \bar{U}$. Hence, $B\subseteq \bar{U}$. Then, $V\ne\varnothing$ so there exists $b\in V\subseteq B$. So $\exists Q\subseteq B$ open where $b\in Q\subseteq V$. But $B\subseteq \bar{U}$ so $b\in \bar{U}$. So every neighborhood of b intersects U. But $U\cap V=\varnothing$. So this is a contradiction.

Remark. All intervals in \mathbb{R} are connected.

Example 15.5. Consider

$$A = \{(x, \sin(1/x)) \mid x \in (0, 1/\pi)\} \subseteq \mathbb{R}^2.$$

Then, A is the image of

$$f: (0, 1/\pi) \to \mathbb{R}^2$$

 $x \mapsto (x, \sin(1/x)).$

This is continuos. So A is connected and hence $\bar{A} \subseteq \mathbb{R}^2$ is connected. (A is the topologist's sine curve).

Theorem 15.3. Suppose X is a topological space and $\{A_{\alpha}\}$ is a collection of connected subspaces $(A_{\alpha} \subseteq X \text{ and } A_{\alpha} \text{ is connected})$. If $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$ then $\bigcup_{\alpha} A_{\alpha}$ is connected.

Proof. Assume U,V is a separation of $\bigcup_{\alpha} A_{\alpha}$. Let $p \in \bigcap_{\alpha} A_{\alpha}$. WLOG, we may assume $p \in U$. Fix α . Then, once of $U \cap A_{\alpha}$ or $V \cap A_{\alpha}$ is empty because A_{α} is connected. Since $p \in U \cap A_{\alpha}$, we must have $V \cap A_{\alpha} = \emptyset$. So $U \cap A_{\alpha} = A_{\alpha}$ so $A_{\alpha} \subseteq U$. Then,

$$\bigcup_{\alpha} A_{\alpha} \subseteq U.$$

Since U, V is a separation, $\bigcup A_{\alpha} = U \cup V$ so $V = \emptyset$. This is a contradiction. \square

Theorem 15.4. Suppose X, Y are connected. Then, $X \times Y$ is connected.

Proof. Fix $(a,b) \in X \times Y$. For $x \in X$, consider

$$T_X = \{x\} \times Y \cup X \times \{b\}.$$

Then, $X \times \{b\}$ is homeomorphic to X so it is connected. Likewise, $\{x\} \times Y$ is homeomorphic to Y so it is connected. Since $(x,b) \in X \times \{x\} \cap \{x\} \times Y$, so T_x is connected by the previous theorem. Note that

$$\bigcup_{x \in X} T_x = X \times Y, \bigcap_{x \in X} T_x \neq \varnothing.$$

By the pervious theorem, it follows $X \times Y$ is connected.

Corollary 15.1. \mathbb{R}^n is connected $\forall n \geq 1$.

In summary, here are some useful facts related to connectedness:

- \mathbb{R} (and its subintervals) is connected
- If $A \subseteq X$ is connected, then \bar{A} is connected.
- If $A_{\alpha} \subseteq X$ are connected and $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$ then $\bigcup_{\alpha} A_{\alpha}$ is connected
- If X, Y are connected, then $X \times Y$ is connected

Corollary 15.2. If X_1, \ldots, X_n are connected, then $X_1 \times \cdots \times X_n$ is connected.

Proof. Use the previous bullet and induction.

Consider

$$\mathbb{R}^{\omega} = \mathbb{R} \times \mathbb{R} \times \dots = \prod_{\mathbb{Z}_{\perp}} \mathbb{R}.$$

Theorem 15.5. \mathbb{R}^{ω} is not connected in the box topology.

Proof. Let

$$U = {\mathbf{x} = (x_1, x_2, \dots) \mid \mathbf{x} \text{ is bounded}}.$$

and

$$V = \{ \mathbf{x} \mid \mathbf{x} \text{ is unbounded} \}.$$

Then, we have

$$\mathbb{R}^{\omega} = U \cup V$$

$$U \cap V = \varnothing$$

$$U \neq \varnothing$$

$$V \neq \varnothing$$

Let $\mathbf{x} = (x_1, x_2, \dots) \in \mathbb{R}^{\omega}$. Then,

$$\mathbf{x} \in W = (x_1 - 1, x_1 + 1) \times (x_2 - 1, x_2 + 1) \times \cdots \times (x_n - 1, x_n + 1) \times \cdots$$

If \mathbf{x} is bounded, then everything in W is bounded. Then,

$$\mathbf{x} \in U \implies \mathbf{x} \in W \subseteq U$$

So U is open.

If \mathbf{x} is unbounded, then everything in W is unbounded so

$$\mathbf{x} \in V \implies \mathbf{x} \in W \subseteq V$$

and hence V is open. So U, V is a separation.

Theorem 15.6. \mathbb{R}^{ω} is connected in the product topology.

Proof. Define

$$\tilde{\mathbb{R}}^n = \{(x_1, x_2, \dots, x_n, 0, 0, \dots)\} \subseteq \mathbb{R}^\omega$$

Then, $\tilde{\mathbb{R}}^n$ is homeomorphic to \mathbb{R}^n so \mathbb{R}^n is connected.

$$(0,0,0,\dots) \in \tilde{\mathbb{R}}^n \ \forall n$$

so $\bigcap_{n\in\mathbb{Z}_+}\tilde{\mathbb{R}}^n\neq\varnothing$. Then, $\mathbb{R}^\infty=\bigcup_n\tilde{\mathbb{R}}^n$ is connected. Hence, $\overline{\mathbb{R}^\infty}\subseteq\mathbb{R}^\omega$ is connected.

Now, we claim that $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$. Let $\mathbf{x} = (x_1, x_2, \dots) \in \mathbb{R}^{\omega}$ and U a basis element for \mathbb{R}^{ω} with $\mathbf{x} \in U$. We want to show that $U \cap \mathbb{R}^{\omega} \neq \emptyset$. we have

$$U = U_1 \times U_2 \times \cdots \times U_n \times \mathbb{R} \times \mathbb{R} \times \cdots$$

Notice $\mathbf{y} = (x_1, x_2, \dots, x_n, 0, 0, \dots)$ is in \mathbb{R}^n and hence $\mathbf{y} \in \mathbb{R}^\omega$. Then, $x_1 \in U_1, \dots, x_n \in U_n, 0 \in \mathbb{R}$ so $\mathbf{y} \in U$. Therefore, $U \cap \mathbb{R}^\omega \neq \emptyset$.

Definition 15.3. Let X be a topological space and $x_0, x_1 \in X$. A path in X from x_0 to x_1 is a continuous function

$$\gamma:[a,b]\to X$$

such that $\gamma(a) = x_0$ and $\gamma(b) = x_1$.

Example 15.6. $\gamma(t) = tx_1 + (1-t)x_0$ where $t \in [0,1]$.

Definition 15.4. X is path-connected if $\forall x_0, x_1 \in X$, there exists path in X from x_0 to x_1 .

Theorem 15.7. If X is path-connected then X is connected.

The converse of the theorem is false.

Example 15.7. Consider

$$A = \{(x, \sin(1/x)) \mid x \in (0, 1/\pi)\}.$$

Last time, we showed that \bar{A} is connected. However, \bar{A} is not path connected.

Consider $x_0 = (0,0) \in \bar{A}$ and $x_1 = (1/\pi,0) \in \bar{A}$. Suppose $\gamma : [0,1] \to \bar{A}$ is a path from x_0 to x_1 . Then, we can write $\gamma(t) = (x(t), y(t))$. So

$$x: [0,1] \to [0,1/\pi]$$

 $y: [0,1] \to [-1,1]$

are continuous. The set $\{t \in [0,1] \mid x(t)=0\}$ is closed. Let $b=\sup\{t \in [0,1] \mid x(t)=0\}$. Then, x(b)=0 and x(t)>0 for $t \in (b,1]$ with $y(t)=\sin(1/x(t))$. By reparameterizing, we may assume that b=0. For each n, find 0 < u < x(1/n) so $\sin(1/u) = (-1)^n$. By the intermediate value theorem, there exists $0 < t_n < 1/n$ so $x(t_n) = u$. Note that

$$y(t_n) = \sin\left(\frac{1}{x(t_n)}\right)$$
$$= \sin\left(\frac{1}{u}\right)$$
$$= (-1)^n$$

Then,

$$\lim_{n \to \infty} y(t_n) = \lim_{t \to 0} y(t) = y(0).$$

But $\lim_{n\to\infty} (-1)^n$ does not exist.

16 Homeomorphism

Definition 16.1. A homeomorphism is a function $f: X \to Y$ that satisfies the following conditions:

- continuous
- invertible (bijective)
- f^{-1} is also continuous

Example 16.1. Consider

$$f: [0, 2\pi) \to S^1$$

 $\theta \mapsto (\cos \theta, \sin \theta)$

Here, inverse breaks circle so f is continuous but f^{-1} is not continuous.

Definition 16.2. X, Y are homeomorphic if there exists homeomorphism from X to Y. If this is true, we write $X \cong Y$ and say that X is homeomorphic to Y.

Theorem 16.1. Assume $X \cong Y$. Then X is connected iff Y is connected.

Theorem 16.2 (Intermediate value theorem). Suppose $f: X \to \mathbb{R}$ is continuous. Assume X is connected. Let $x, y \in X$ and $r \in \mathbb{R}$ such that r is between f(x) and f(y). Then, there exists $z \in X$ such that f(z) = r.

Proof. Consider $(-\infty, r)$ and (r, ∞) . Those are open in \mathbb{R} , nonempty, and disjoint. Let $U = f^{-1}((-\infty, r))$ and $V = f^{-1}((-\infty, r))$. These are also open, nonempty, and disjoint. But X is connected so U, V can't be a separation. So $U \cup V \neq X$ and hence $\exists z \in X - (U \cup V)$. Then, $f(z) \notin (-\infty, r)$ and $f(z) \notin (r, \infty)$. Therefore, f(z) = r.

Theorem 16.3. \mathbb{R} *is connected.*

Proof. Suppose $A \subseteq \mathbb{R}$ is nonempty and bounded above. Then, there exists a least upper bound M for A and any other upper bound M' satisfies $M \leq M'$. We write A f or this LUB.

Suppose U, V is a separation of \mathbb{R} . So there exists $a \in U$ and $b \in U$. Then, WLOG, we may assume a < b. Sets

$$U_0 = U \cap [a, b]$$
$$V_0 = V \cap [a, b]$$

form a separation of [a,b]. Notice $U_0 \neq \emptyset$ and $x \in U_0$ satisfies $x \leq b$. So $C = \sup(U_0)$ exists. Then, $c \in U$ or $C \in V$. In fact, $c \geq a$ and $c \leq b$ so $c \in U_0$ or $c \in V_0$. Assume $c \in V_0$. Since V_0 is open in [a,b] so there exists < c such that $(d,c] \subseteq V_0$. Note if x < g then $x \notin U_0$ because c is an upper bound of U_0 . This implies that $[c,b] \subseteq V_0$. Then,

$$(d,c] \cup [c,b] \subseteq V_0 \implies (d,b] \subseteq V_0.$$

But then d is an upper bound for U_0 so $c \leq d$. This is a contradiction.

Now, suppose $c \in U_0$. Then, Y_0 is open in [a,b]. Then, there exists e > c such that $[c,e) \subseteq U_0$. Let f = (e+c)/2. Then, c < f < e and $f \in [c,e)$. Then, $f \in U_0$. Then, $c \ge f$ because it is an upper bound. This is a contradiction. \square

Example 16.2. $(-\pi/2, \pi/2)$ is connected.

Proof.
$$\tan^{-1}: \mathbb{R} \to (-\pi/2, \pi/2)$$
 is a homeomorphism.

Example 16.3. $(0,1) \cong (a,b)$ if a < b.

Proof. $f:(0,1)\to(a,b)$ given by f(t)=(1-t)a+b is a homeomorphism. \square

Corollary 16.1. (0,1) is connected.

Corollary 16.2. (a,b) is connected for any a < b.

Recall that if A is connected then $\forall A \subseteq B \subseteq \overline{A}$, B is connected. We apply this with A = (a, b). Then, [a, b) or (a, b] or [a, b] are connected.

Corollary 16.3. Suppose $I \subseteq \mathbb{R}$ is a subspace. Then, I is connected if and only if $I = \mathbb{R}$ or I is an interval or I is any of the following:

$$(a, \infty), (-\infty, b), [a, \infty), (-\infty, b].$$

Example 16.4. $\mathbb{R}^n - \{0\}$ is path-connected for $n \geq 2$.

Proof. Let $x, y \in \mathbb{R}^n - \{0\}$.

- (Case 1) The line l passing through x and y does not contain 0. Then, $\gamma:[0,1]\to\mathbb{R}^n-\{0\}$ given by $\gamma(t)=(1-t)x+ty$ has image in l and hence in $\mathbb{R}^n-\{0\}$. So this is a path from x to y.
- (Case 2) $0 \in l$. Since $n \geq 2$, $\mathbb{R}^n \neq \mathbb{R}$ and $\mathbb{R}^n \neq l$. So there exists $z \in (\mathbb{R}^n \{0\}) l$. Define $\gamma : [0, 1] \to \mathbb{R}^n \{0\}$ by concatenating a path from x to z with one from z to y.

Example 16.5. Write down a formula for the path that goes from x to z and from z to y.

Definition 16.3. For $n \ge 1$, define the n-sphere:

$$S^n = \{(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} \mid x_0^2 + x_1^2 + \dots + x_n^2 = 1\}$$

Lemma 16.1. S^n is path connected.

Proof. Consider

$$f: \mathbb{R}^n - \{0\} \to S^n$$
$$x \mapsto \frac{x}{|x|}$$

where

$$|x| = \sqrt{x_0^2 + \dots + x_n^2}$$

f is continuous and $\text{Im}(f)=S^n$. Since $\mathbb{R}^{n+1}-\{0\}$ is path-connected, so S^n is path-connected. \square

Midterm

Roughly, the test covers up to chapter 24 (skip 22) with an emphasis on product topology, metric spaces, and connectedness.