Linear Integrated Circuit

Task-4

Name: Sparsh Arya

Registration Number: 17BEC0656

Slot: G1+TG1

Aim

To design a 2^{nd} order low pass filter and a 2^{nd} order high pass filter with cutoff frequency 1 KHz. Also, if input frequency = 500Hz ~ 20 KHz calculate gain. Let input voltage be 1 V.

CIRCUIT DIAGRAM:

LOW PASS FILTER

HIGH PASS FILTER

CALCULATIONS AND MULTISIM MODELLING:

Given:

C = 0.1uF

fc = 1 KHz

Damping factor α of a butterworth filter is =

$$1.414 R = 1/2\pi fC = 1.6K\Omega$$

Gain (A) =
$$3 - \alpha$$

$$1 + (Rf/Ri) = 3 - 1.414$$

$$Rf/Ri = 0.6$$

Let,

$$Ri = 10 K\Omega$$

$$Rf = 6K\Omega$$

Low pass filter:

High pass filter:

COMPONENTS REQUIRED:

- 1. 741 op-amp
- 2. Resistors
- 3. Capacitors
- 4. Bread board
- 5. Function generator
- 6. Oscilloscope

RESULTS:

Gain(A) = 1.62 for both high pass and low pass filters.

High pass:

Low Pass:

INFERENCE:

For a low pass filter as the frequency increases the output voltage decreases. And for a high pass filter as the frequency increases the output voltage increases.

ATTESTATION:

110.00	EATV	
1.59	Sand V	
21 49	200	
100 100	6-W.Y.	
6 29	8100	
440	37.44	
15 576	4.44	
E 4 110	44×	
	003	