Lab#3 Thevenin's Equivalent Circuit & Maximum Power Transfer

It is possible to replace a complicated circuit by a simple Thevenin's equivalent circuit consisting of a voltage source V_{Th} in series with a resistor R_{TH} . The maximum power transfer of 50% occurs when the load resistor RL is equal to RTH. The efficiency of power transfer $[\eta\%]$ is the percentage of source power transfer to the load, as provided in the manual

$$\eta \% = \frac{P_L}{P_S} x 100\%$$

, where $P_L=V_LI_L$ is the power transferred to the load and $P_S=V_SI_S$ is the source power

Multisim

Please follow the steps below to setup the simulation environment and build your circuits

- 1. Setting up Interactive simulation environment
- 2. Place component on the circuit board to build your circuit

Repeat the steps above to place all components for your circuits

Circuit	Devices	Power	GROUND
			(Reference Node)
Fig (3.1)	3 RESISTOR_RATED	DC_POWER	1 optional
	1 VARIABLE_RESISTOR		
	- Resistor (R): 30 kΩ ,		
	- Increment: 1%		
Thevenin's	1 RESISTOR_RATED	DC_POWER	1 optional
Equivalent	1 VARIABLE_RESISTOR		
Part II	Change VARIABLE	DC_POWER	1 optional
Thevenin's	RESISTOR setting to:		
Equivalent	- Resistor (R): 340 kΩ ,		
	- Increment: 0.1%		

Note: You cannot search for the VARIABLE_RESISTOR, but you can find it if you scroll down in the Family window.

3. You only need to use multimeters to measure the current and voltage.

Lab Procedure

Part I. Thevenin's equivalent circuit

1. Finding the Thevenin's equivalent circuit for the 2-terminal source network:

Part II. Power Transfer

Using the same Thevenin circuit with a different load resistor setting to complete Table 3.3, using $R_{TH} = 6.8 \ k\Omega$.

Hint:

- Calculate R_L first for each column before measurement. E.g. R_L/R_{TH} = 0.05 => RL = 340 Ω
- Source power can be calculated as $P_S = (R_{TH} + R_L) I_L^2$