Topic 2. Visual data analysis

Practice. Analyzing "Titanic" passengers

Fill in the missing code ("You code here").

Competition Kaggle "Titanic: Machine Learning from Disaster".

```
In [11]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import itertools

sns.set()
   import matplotlib.pyplot as plt
```

Read data

[n [2]:	<pre>train_df = pd.read_csv("titanic_train.csv", index_col="PassengerId")</pre>									
In [3]:	train_df.head(2)									
Out[3]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	Passengerld									
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	- 1
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	7:

```
In [4]: train_df.describe(include="all")
```

Out[4]:		Survived	Pclass	Name	Sex	Age	SibSp	Pa
	count	891.000000	891.000000	891	891	714.000000	891.000000	891.000
	unique	NaN	NaN	891	2	NaN	NaN	
	top	NaN	NaN	Braund, Mr. Owen Harris	male	NaN	NaN	I
	freq	NaN	NaN	1	577	NaN	NaN	
	mean	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.381
	std	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.806
	min	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.000
	25%	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.000
	50 %	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.000
	75%	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.000
	max	1.000000	3.000000	NaN	NaN	80.000000	8.000000	6.000

```
In [5]: train_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
```

Index: 891 entries, 1 to 891
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype		
0	Survived	891 non-null	int64		
1	Pclass	891 non-null	int64		
2	Name	891 non-null	object		
3	Sex	891 non-null	object		
4	Age	714 non-null	float64		
5	SibSp	891 non-null	int64		
6	Parch	891 non-null	int64		
7	Ticket	891 non-null	object		
8	Fare	891 non-null	float64		
9	Cabin	204 non-null	object		
10	Embarked	889 non-null	object		
<pre>dtypes: float64(2), int64(4), object(5)</pre>					

memory usage: 83.5+ KB

Let's drop Cabin, and then - all rows with missing values.

```
In [6]: train_df = train_df.drop("Cabin", axis=1).dropna()
In [7]: train_df.shape
Out[7]: (712, 10)
```

1. Build a picture to visualize all scatter plots for each pair of features Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js h and Survived . (scatter_matrix from

Pandas or pairplot from Seaborn)

```
In [20]: features = ["Age", "Fare", "SibSp", "Parch", "Survived"]
    sns.pairplot(train_df[features])
```

Out[20]: <seaborn.axisgrid.PairGrid at 0x7bd898aa4ad0>

2. How does ticket price (Fare) depend on Pclass? Build a boxplot.

 Out[38]:
 Pclass
 None

 0
 1
 Axes(0.125,0.11;0.775x0.77)

 1
 2
 Axes(0.125,0.11;0.775x0.77)

 2
 3
 Axes(0.125,0.11;0.775x0.77)

3. Let's build the same plot but restricting values of Fare to be less than 95% quantile of the initial vector (to drop outliers that make the plot less clear).

Out[39]:		Pclass	None
	0	1	Axes(0.125,0.11;0.775x0.77)
	1	2	Axes(0.125,0.11;0.775x0.77)
	2	3	Axes(0.125,0.11;0.775x0.77)

4. How is the percentage of surviving passengers dependent on passengers' gender? Depict it with Seaborn.countplot using the hue argument.

In [43]: sns.countplot(train_df, x="Survived", hue="Sex")

Out[43]: <Axes: xlabel='Survived', ylabel='count'>

5. How does the distribution of ticket prices differ for those who survived and those who didn't. Depict it with Seaborn.boxplot

```
In [44]: sns.boxplot(train_df, y="Fare", hue="Survived")
Out[44]: <Axes: ylabel='Fare'>
```


6. How does survival depend on passengers' age? Verify (graphically) an assumption that youngsters (< 30 y.o.) survived more frequently than old people (> 55 y.o.).

