COL:750

Foundations of Automatic Verification

Instructor: Priyanka Golia

Course Webpage

https://priyanka-golia.github.io/teaching/COL-750/index.html

Boolean ——> SAT Solvers /propositional formulas

If formula is SATisfiable, gives an satisfying assignment

UNSAT

DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960)

- 1. Start with F_{CNF}
- 2. For every clause C in F_{CNF} that either contains both l and $\neg l$ or has pure literal do:
 - 1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$
- 3. If F_{CNF} is empty
 - 1. Return SAT
- 4. If F_{CNF} has empty clause then
 - 1. Return UNSAT
- 5. Pick a literal l that occurs with both polarities in F_{CNF} .
 - 1. $F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$
- 6. For every clause C that contains l or $\neg l$ do:
 - 1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$(q \lor r) \land (q \lor \neg r) \land (\neg q \lor r) \land (\neg q \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p

$$(q \lor r) \land (q \lor \neg r) \land (\neg q \lor r) \land (\neg q \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p

$$(q \lor r) \land (q \lor \neg r) \land (\neg q \lor r) \land (\neg q \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p

$$(r) \wedge (r \vee \neg r) \wedge (\neg r \vee r) \wedge (\neg r)$$

$$(r) \wedge (\neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal q

*remove clauses with $l \vee \neg l$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$(q \lor r) \land (q \lor \neg r) \land (\neg q \lor r) \land (\neg q \lor \neg r)$$

$$(r) \land (r \lor \neg r) \land (\neg r \lor r) \land (\neg r)$$

- * No pure literal, no clause with $l \vee \neg l$ Pick literal q
- *remove clauses with $l \vee \neg l$ Pick literal r

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p

$$(r) \land (r \lor \neg r) \land (\neg r \lor r) \land (\neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal q

*remove clauses with $l \vee \neg l$

Pick literal r

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal p

$$(q \lor r) \land (q \lor \neg r) \land (\neg q \lor r) \land (\neg q \lor \neg r)$$

$$(r) \land (r \lor \neg r) \land (\neg r \lor r) \land (\neg r)$$

* No pure literal, no clause with $l \vee \neg l$ Pick literal q

*remove clauses with $l \vee \neg l$

Pick literal r

F has empty clause — UNSAT

$$F = (p \lor q \lor r) \land (q \lor \neg r \lor \neg s) \land (\neg q \lor s) \land (\neg p \lor \neg s)$$

Empty Formula, return SAT

Empty Formula, return SAT

* No pure literal, no clause with $l \vee \neg l$

Empty Formula, return SAT

Empty Formula, return SAT

- * No pure literal, no clause with $l \vee \neg l$ Pick literal p
- * No pure literal, no clause with $l \vee \neg l$

Empty Formula, return SAT

- * No pure literal, no clause with $l \vee \neg l$ Pick literal p
- * No pure literal, no clause with $l \vee \neg l$ Pick literal q

Empty Formula, return SAT

- * No pure literal, no clause with $l \vee \neg l$ Pick literal p
- * No pure literal, no clause with $l \vee \neg l$ Pick literal q

* remove clauses with $l \vee \neg l$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r)$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r) \land \neg p$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r) \land \neg p \quad \text{Unit clause}$$

p has to take value 0, $(\neg p \lor r) \land (\neg p \lor \neg r)$ are True

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r) \land \neg p \quad \text{Unit clause}$$

$$F = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg r) \land \neg p \quad \text{Unit clause}$$

$$(\neg p) \land (p \lor q) \equiv_{SAT} q$$

$$(\neg p) \land (p \lor q) \equiv_{SAT} q$$
$$(\neg p) \land (p \lor \neg q) \equiv_{SAT} \neg q$$

Unit Propagation

While F contains a unit clause (*l*) do:

For every clause C in F that has l do:

$$F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$$

For every clause C in F that has $\neg l$ do:

$$F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$$

$$F_{CNF} \leftarrow add_to_formula(C \setminus \neg l, F_{CNF})$$

DP algorithm for SAT Solving (Martin Davis - Hilary Putnam 1960)

- 1. Start with F_{CNF}
- 2. For every clause C in F_{CNF} that either contains both l and $\neg l$ or has pure literal do:
 - 1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$
- 3. $F_{CNF} \leftarrow \text{UnitPropagation}(F_{CNF})$
- 4. If F_{CNF} is empty
 - 1. Return SAT
- 5. If F_{CNF} has empty clause then
 - 1. Return UNSAT
- 6. Pick a literal l that occurs with both polarities in F_{CNF} .
 - 1. $F_{CNF} \leftarrow Resolution(C, l, F_{CNF})$
- 7. For every clause C that contains l or $\neg l$ do:
 - 1. $F_{CNF} \leftarrow remove_from_formula(C, F_{CNF})$

Complete and Sound algorithm & takes linear space in worst case.

Still the basis of SAT solver

zChaff Solver — efficient implementation of DPLL.

Won test of time award at CAV 2001.

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

A literal l is True if m(l)=1

A literal l is False if m(l) = 0

Otherwise:

l is unassigned.

Example: $F = (x_1 \lor x_2 \lor \neg x_3); m = \{x_1 \mapsto 1, x_3 \mapsto 1\}$

 x_1 is True, x_2 is unassigned, x_3 is False.

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

Clause C is True if there is a $l \in C$, such that l is True.

Clause C is False if for each literal $l \in C$, l is False

Otherwise:

C is unassigned.

Example: $m = \{x_1 \mapsto 1, x_3 \mapsto 1\}$

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

Clause C is True if there is a $l \in C$, such that l is True.

Clause C is False if for each literal $l \in C$, l is False

Otherwise:

C is unassigned.

Example:
$$m = \{x_1 \mapsto 1, x_3 \mapsto 1\}$$
 $C = (x_1 \lor x_2 \lor x_3)$ — True

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

Clause C is True if there is a $l \in C$, such that l is True.

Clause C is False if for each literal $l \in C$, l is False

Otherwise:

C is unassigned.

Example:
$$m = \{x_1 \mapsto 1, x_3 \mapsto 1\}$$

$$C = (x_1 \lor x_2 \lor x_3) - \text{True}$$
$$C = (\neg x_1 \lor x_2 \lor \neg x_3) - \text{Unassigned}$$

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

Clause C is True if there is a $l \in C$, such that l is True.

Clause C is False if for each literal $l \in C$, l is False

Otherwise:

C is unassigned.

Example:
$$m = \{x_1 \mapsto 1, x_3 \mapsto 1\}$$

$$C = (x_1 \lor x_2 \lor x_3) - \text{True}$$

$$C = (\neg x_1 \lor x_2 \lor \neg x_3) - \text{Unassigned}$$

$$C = (\neg x_1 \lor \neg x_3) - \text{False}$$

Partial Model: subset of elements of Vars(F) maps to {0,1}

Under partial model m,

 F_{CNF} is True if for each $C \in F_{CNF}$, C is True.

 F_{CNF} is False if there is a $C \in F_{CNF}$ such that C is False

Otherwise:

F_{CNF} is unassigned.

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

 F_{CNF} is True if for each $C \in F_{CNF}$, C is True.

 F_{CNF} is False if there is a $C \in F_{CNF}$ such that C is False

Otherwise:

 F_{CNF} is unassigned.

Unit Clause (updated): *C* is a unit clause under partial model m if there is exactly one literal *l* in *C* which is unassigned, and rest all literals of *C* are False.

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

 F_{CNF} is True if for each $C \in F_{CNF}$, C is True.

 F_{CNF} is False if there is a $C \in F_{CNF}$ such that C is False

Otherwise:

 F_{CNF} is unassigned.

Unit Clause (updated): *C* is a unit clause under partial model m if there is exactly one literal *l* in *C* which is unassigned, and rest all literals of *C* are False.

Example: $C = (x_1 \lor \neg x_3 \lor \neg x_2); m = \{x_1 \mapsto 0, x_2 \mapsto 1\}$

Partial Model: subset of elements of Vars(F) maps to $\{0,1\}$ Under partial model m,

 F_{CNF} is True if for each $C \in F_{CNF}$, C is True.

 F_{CNF} is False if there is a $C \in F_{CNF}$ such that C is False

Otherwise:

 F_{CNF} is unassigned.

Unit Clause (updated): *C* is a unit clause under partial model m if there is exactly one literal *l* in *C* which is unassigned, and rest all literals of *C* are False.

Example: $C = (x_1 \lor \neg x_3 \lor \neg x_2); m = \{x_1 \mapsto 0, x_2 \mapsto 1\}$ C is unit clause under m.

- 1. Maintains a partial model, initially Ø
- 2. Assign unassigned variables either 0 or 1
 - 1. (Randomly one after the other)
- 3. Sometime forced to make a decision due to unit clause

$$F = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$

Initially m is \varnothing

Pick a variable, say x_3 , and assign it a Boolean value, say 1. Partial model $m = \{x_3 \mapsto 1\}$

 $C_1:(x_1\vee \neg x_2)$ unassigned.

 $C_2: (\neg x_1 \lor x_2 \lor \neg x_3)$ unassigned.

Pick another variable, say x_1 , and assign it a Boolean value, say 0.

Partial model $m = \{x_1 \mapsto 0, x_3 \mapsto 1\}$

 $C_1: (x_1 \lor \neg x_2)$ Unit clause, forced decision $(x_2 \mapsto 0)$ $C_2: (\neg x_1 \lor x_2 \lor \neg x_3)$ True.

$$m = \{x_1 \mapsto 0, x_2 \mapsto 0, x_3 \mapsto 1\} \text{ and } m \models F$$

- 1. Maintains a partial model, initially Ø
- 2. Assign unassigned variables either 0 or 1
 - 1. (Randomly one after the other)
- 3. Sometime forced to make a decision due to unit clause

What to do if *F* is False under partial model m?

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

Pick a variable, say x_3 , and assign it a Boolean value, say 1. Partial model $m = \{x_3 \mapsto 1\}$

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

Pick a variable, say x_3 , and assign it a Boolean value, say 1. Partial model $m = \{x_3 \mapsto 1\}$

 $(\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$ — unit clauses

Conflict, C_3 False

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

Pick a variable, say x_3 , and assign it a Boolean value, say 1. Partial model $m = \{x_3 \mapsto 1\}$

 $(\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$ — unit clauses

Conflict, C_3 False

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

Backtrack to last decision, and change the polarity. Partial model $m = \{x_3 \mapsto 0\}$

$$F = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (\neg x_3 \lor x_1)$$

Backtrack to last decision, and change the polarity. Partial model $m = \{x_3 \mapsto 0\}$

All clauses are True, hence F is True


```
DPLL(F, m = \emptyset)
```

- 1. If F is True under m then Return SAT
- 2. If F is False under m then Return UNSAT
- 3. If there is a unit literal l under m then Return $DPLL(F, m[l \mapsto 1])$
- 4. If there is a unit literal $\neg l$ under m then Return $DPLL(F, m[l \mapsto 0])$ Choose an unassigned variable p, and random bit $b \in \{0,1\}$
- 5. If $DPLL(F, m[p \mapsto b]) == SAT$ then Return SAT Else Return $DPLL(F, m[p \mapsto 1 - b])$

```
DPLL(F, m = \emptyset)
```

- 1. If F is True under m then Return SAT
- 2. If F is False under m then Return UNSAT

Unit Propagation

- 3. If there is a unit literal l under m then Return $DPLL(F, m[l \mapsto 1])$ 4. If there is a unit literal $\neg l$ under m then Return $DPLL(F, m[l \mapsto 0])$
- 4. If there is a unit literal $\neg l$ under m then Return $DPLL(F, m|l) \vdash$ Choose an unassigned variable p, and random bit $b \in \{0,1\}$
- 5. If $DPLL(F, m[p \mapsto b]) == SAT$ then Return SAT Else Return $DPLL(F, m[p \mapsto 1 - b])$

$$DPLL(F, m = \emptyset)$$

1. If F is True under m then Return SAT

- Backtracking at conflict
- 2. If F is False under m then Return UNSAT

Unit Propagation

- 3. If there is a unit literal l under m then Return $DPLL(F, m[l \mapsto 1])$
- 4. If there is a unit literal $\neg l$ under m then Return $DPLL(F, m[l \mapsto 0])^{\prime\prime}$ Choose an unassigned variable p, and random bit $b \in \{0,1\}$
- 5. If $DPLL(F, m[p \mapsto b]) == SAT$ then Return SAT Else Return $DPLL(F, m[p \mapsto 1 - b])$

- 1. Maintains a partial model, initially Ø
- 2. Assign unassigned variables either 0 or 1
 - 1. (Randomly one after the other)
- 3. Sometime forced to make a decision due to unit clause

DPLL run consists of

- Decision
- Unit propagation
- Backtracking

$$C_1 = (\neg p_1 \lor p_2)$$

$$C_2 = (\neg p_1 \lor p_3 \lor p_5)$$

$$C_3 = (\neg p_2 \lor p_4)$$

$$C_4 = (\neg p_3 \lor \neg p_4)$$

$$C_5 = (p_1 \lor p_5 \lor \neg p_2)$$

$$C_6 = (p_2 \lor p_3)$$

$$C_7 = (p_2 \vee \neg p_3 \vee p_7)$$

$$C_8 = (p_6 \vee \neg p_5)$$

- decision variable
- propagated variables

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

 $C_8 = (p_6 \vee \neg p_5)$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

 $C_8 = (p_6 \vee \neg p_5)$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_1 = (\neg p_1 \lor p_2)$$

$$C_2 = (\neg p_1 \lor p_3 \lor p_5)$$

$$C_3 = (\neg p_2 \lor p_4)$$

$$C_4 = (\neg p_3 \lor \neg p_4)$$

$$C_5 = (p_1 \lor p_5 \lor \neg p_2)$$

$$C_6 = (p_2 \lor p_3)$$

$$C_7 = (p_2 \lor \neg p_3 \lor p_7)$$

$$C_8 = (p_6 \lor \neg p_5)$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$0,C_{5}$$

$$p_{2}$$

$$p_{3}$$

$$1,C_{2}$$

$$p_{4}$$

$$1,C_{3}$$

$$Conflict, C_{4}$$

An optimization of DPLL:

As we decide and propagate, we can observe the run, and avoid unnecessary backtracking.

An optimization of DPLL:

As we decide and propagate, we can observe the run, and avoid unnecessary backtracking.

Construct a data structure to avoid unnecessary backtracking.

An optimization of DPLL:

As we decide and propagate, we can observe the run, and avoid unnecessary backtracking.

Construct a data structure to avoid unnecessary backtracking.

$$C_1 = (\neg p_1 \lor p_2)$$

$$C_2 = (\neg p_1 \lor p_3 \lor p_5)$$

$$C_3 = (\neg p_2 \lor p_4)$$

$$C_4 = (\neg p_3 \lor \neg p_4)$$

$$C_5 = (p_1 \lor p_5 \lor \neg p_2)$$

$$C_6 = (p_2 \vee p_3)$$

$$C_7 = (p_2 \vee \neg p_3 \vee p_7)$$

$$C_8 = (p_6 \vee \neg p_5)$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$\neg p_6 @ 1$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

Assign decision level at every node in implication graph

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

The clause of the negations of the causing decisions is called conflict clause.

The clause of the negations of the causing decisions is called conflict clause.

Mistake: $p_6 = 0$ and $p_1 = 1$

The clause of the negations of the causing decisions is called conflict clause.

Mistake:
$$p_6 = 0$$
 and $p_1 = 1$

Conflict clause : $\neg (\neg p_6 \land p_1) \equiv p_6 \lor \neg p_1$

The clause of the negations of the causing decisions is called conflict clause.

Mistake:
$$p_6 = 0$$
 and $p_1 = 1$

Conflict clause :
$$\neg (\neg p_6 \land p_1) \equiv p_6 \lor \neg p_1$$

$$m(p_6) = 0, m(p_7) = 1, m(p_1) = 1$$

$$m(p_6) = 0, m(p_1) = 1$$

This will never be tried again!

The clause of the negations of the causing decisions is called conflict clause.

Mistake:
$$p_6 = 0$$
 and $p_1 = 1$

Conflict clause :
$$\neg (\neg p_6 \land p_1) \equiv p_6 \lor \neg p_1$$

$$m(p_6) = 0, m(p_7) = 1, m(p_1) = 1$$

$$m(p_6) = 0, m(p_1) = 1$$
This will never be tried again!

CDCL: Conflict Driven Clause Learning

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{9} = (p_{6} \lor \neg p_{1})$$

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

Added a new clause!
Where should we backtrack?

$$C_{1} = (\neg p_{1} \lor p_{2})$$

$$C_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$C_{3} = (\neg p_{2} \lor p_{4})$$

$$C_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$C_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$C_{6} = (p_{2} \lor p_{3})$$

$$C_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$C_{8} = (p_{6} \lor \neg p_{5})$$

$$C_{9} = (p_{6} \lor \neg p_{1})$$

Added a new clause! Where should we backtrack?

Backtrack to second largest decision in the conflict clause.

$$C_1 = (\neg p_1 \lor p_2)$$

 $C_2 = (\neg p_1 \lor p_3 \lor p_5)$

$$C_3 = (\neg p_2 \lor p_4)$$

$$C_4 = (\neg p_3 \lor \neg p_4)$$

$$C_5 = (p_1 \lor p_5 \lor \neg p_2)$$

$$C_6 = (p_2 \vee p_3)$$

$$C_7 = (p_2 \vee \neg p_3 \vee p_7)$$

$$C_8 = (p_6 \vee \neg p_5)$$

$$C_9 = (p_6 \vee \neg p_1)$$

Added a new clause!
Where should we backtrack?

Backtrack to second largest decision in the conflict clause.

Here we should backtrack to decision level 1.

$$C_1 = (\neg p_1 \lor p_2)$$

$$C_2 = (\neg p_1 \lor p_3 \lor p_5)$$

$$C_3 = (\neg p_2 \lor p_4)$$

$$C_4 = (\neg p_3 \lor \neg p_4)$$

$$C_5 = (p_1 \lor p_5 \lor \neg p_2)$$

$$C_6 = (p_2 \lor p_3)$$

 $C_7 = (p_2 \vee \neg p_3 \vee p_7)$

 $C_8 = (p_6 \vee \neg p_5)$

 $C_9 = (p_6 \vee \neg p_1)$

Here we should backtrack to decision level 1.

$$p_1@3$$

$$C_1 = (\neg p_1 \lor p_2)$$

$$C_2 = (\neg p_1 \lor p_3 \lor p_5)$$

$$C_3 = (\neg p_2 \lor p_4)$$

$$C_4 = (\neg p_3 \lor \neg p_4)$$

$$C_5 = (p_1 \lor p_5 \lor \neg p_2)$$

$$C_6 = (p_2 \lor p_3)$$

$$C_7 = (p_2 \lor \neg p_3 \lor p_7)$$

$$C_8 = (p_6 \lor \neg p_5)$$

Here we should backtrack to decision level 1.

- 1. UnitPropagation(m, F): applies unit propagation and extends m.
- 2. Decide(m, F): choose an unassigned variable in m and assign it a Boolean value.
- 3. ClauseLearning(m, F): returns a conflict clause learned using implication graph, and a decision level upto which the solver needs to backtrack.

Course Webpage

Thanks!