Devoir surveillé n°15

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – CCINP PSI 2019 – Théorème de Borel

Objectifs

Dans la partie I, on considère deux exemples de fonctions indéfiniment dérivables sur $\mathbb R$ et on s'interroge sur l'existence d'un développement en série entière dans un voisinage de 0 pour ces fonctions. Dans la partie II, indépendante de la partie I, on démontre le théorème de Borel en construisant, pour toute suite réelle $(b_p)_{p\in\mathbb N}$, une fonction f indéfiniment dérivable sur $\mathbb R$ telle que pour tout $p\in\mathbb N$, on ait : $f^{(p)}(0)=b_p$.

I Deux exemples de fonctions indéfiniment dérivables

On considère la fonction f définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ f(x) = \int_0^{+\infty} e^{-t(1-itx)} \ \mathrm{d}t.$$

1 Montrer que la fonction f est bien définie sur \mathbb{R} .

Pour tout $p \in \mathbb{N}$, on note $\Gamma_p = \int_0^{+\infty} t^p e^{-t} dt$.

- 2 Pour tout $p \in \mathbb{N}$, justifier l'existence de Γ_p et déterminer une relation entre Γ_{p+1} et Γ_p .
- **3** En déduire, pour tout $p \in \mathbb{N}$, la valeur de Γ_p .
- **4** Montrer que f est indéfiniment dérivable sur \mathbb{R} et déterminer, pour tout $x \in \mathbb{R}$ et tout $p \in \mathbb{N}$, $f^{(p)}(x)$.
- En déduire le rayon de convergence de la série entière $\sum_{p\geq 0} \frac{f^{(p)}(0)}{p!} x^p$. La fonction f est-elle développable en série entière en 0?

La fonction j est-elle developpable en serie entière en 0

On considère la fonction g définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ g(x) = \sum_{k=0}^{+\infty} e^{-k(1-ikx)}.$$

- **6** Montrer que g est indéfiniment dérivable sur \mathbb{R} et déterminer, pour tout $x \in \mathbb{R}$ et tout $p \in \mathbb{N}$, $g^{(p)}(x)$.
- **7** Montrer que pour tout $p \in \mathbb{N}$, on a : $|g^{(p)}(0)| \ge p^{2p}e^{-p}$.
- **8** En déduire le rayon de convergence de la série entière $\sum_{p\geq 0} \frac{g^{(p)}(0)}{p!} x^p$. La fonction g est-elle développable en série entière en 0?

II Le théorème de Borel

9 Déterminer deux nombres complexes a et b tels que pour tout $x \in \mathbb{R}$:

$$\frac{1}{1+x^2} = \frac{a}{x-i} + \frac{b}{x+i}$$

On considère la fonction ψ définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $\psi(x) = \frac{1}{x-i}$. Montrer par récurrence que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}$:

$$\psi^{(p)}(x) = \frac{(-1)^p p!}{(x-i)^{p+1}}$$

11 Déterminer, pour tout $p \in \mathbb{N}$, la dérivée p-ième de la fonction φ_1 définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ \varphi_1(x) = \frac{1}{1 + x^2}$$

Montrer que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}$, on a : $|(x+i)^{p+1} - (x-i)^{p+1}| \le 2(1+x^2)^{\frac{p+1}{2}}$. En déduire que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$, on a :

$$\left|\varphi_1^{(p)}(x)\right| \le \frac{p!}{|x|^{p+1}}$$

13 Pour tout réel α , notons ϕ_{α} la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ \varphi_{\alpha}(x) = \frac{1}{1 + \alpha^2 x^2}$$

Montrer que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$:

$$|\alpha| \cdot \left| \varphi_{\alpha}^{(p)}(x) \right| \le \frac{p!}{|x|^{p+1}}$$

On considère une suite réelle $(a_n)_{n\in\mathbb{N}}$ et on lui associe la suite de fonctions $(u_n)_{n\in\mathbb{N}}$ définies sur \mathbb{R} par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ u_n(x) = \frac{a_n x^n}{1 + n! a_n^2 x^2}.$$

Pour tout $n \in \mathbb{N}$, on note $\alpha_n = \sqrt{n!}a_n$. Montrer que pour tout entier $p \ge 0$, tout entier $n \ge p$ et tout réel x, on a :

$$u_n^{(p)}(x) = a_n \sum_{k=0}^{p} \binom{p}{k} \frac{n!}{(n-k)!} x^{n-k} \varphi_{\alpha_n}^{(p-k)}(x)$$

En déduire que pour tout entier $n \ge 0$ et tout entier $p \in [0, n-1]$, on a : $u_n^{(p)}(0) = 0$, et déterminer $u_n^{(n)}(0)$.

16 Montrer que pour tout entier $n \in \mathbb{N}^*$, tout entier $p \in [0, n-1]$ et tout réel x, on a :

$$\left|u_n^{(p)}(x)\right| \leq \frac{2^n|x|^{n-p-1}p!}{\sqrt{n!}}$$

17 En déduire que la fonction $U = \sum_{n=0}^{+\infty} u_n$ est bien définie et indéfiniment dérivable sur \mathbb{R} .

18 Montrer que $U(0) = a_0$ et que pour tout entier $p \ge 1$, on $a : U^{(p)}(0) = \sum_{n=0}^{p-1} u_n^{(p)}(0) + p! a_p$.

Déduire de ce qui précède que pour toute suite réelle $(b_p)_{p\in\mathbb{N}}$, il existe une fonction f indéfiniment dérivable sur \mathbb{R} telle que pour tout $p\in\mathbb{N}$, on ait : $f^{(p)}(0)=b_p$.

Ce résultat est appelé théorème de Borel. Il a été démontré par Peano et Borel à la fin du XIX^e siècle.

© Laurent Garcin MP Dumont d'Urville

Problème 2 - CCINP PSI 2019

Notations et définitions

- soient $n \in \mathbb{N}^*$ et $(p,q) \in (\mathbb{N}^*)^2$;
- R[X] désigne l'ensemble des polynômes à coefficients dans R; si P ∈ R[X], on notera encore P la fonction polynomiale associée;
- $\mathcal{M}_p(\mathbb{R})$ et $\mathcal{M}_p(\mathbb{C})$ désignent respectivement les ensembles des matrices carrées de taille p à coefficients dans \mathbb{R} et dans \mathbb{C} , et $\mathcal{M}_{p,q}(\mathbb{R})$ et $\mathcal{M}_{p,q}(\mathbb{C})$ désignent respectivement les ensembles des matrices à p lignes et q colonnes à coefficients dans \mathbb{R} et dans \mathbb{C} ;
- on note I_p la matrice identité de $\mathcal{M}_p(\mathbb{C})$ et 0_p la matrice de $\mathcal{M}_p(\mathbb{C})$ ne comportant que des 0;
- on note χ_A le polynôme caractéristique d'une matrice $A \in \mathcal{M}_p(\mathbb{C})$, c'est-à-dire le polynôme $\det(XI_p A)$;
- étant donnée une matrice $M \in \mathcal{M}_p(\mathbb{C})$, on note Sp(M) l'ensemble des valeurs propres complexes de M.

Objectifs

Dans la partie I, on détermine les valeurs propres d'une matrice tridiagonale symétrique réelle particulière. On utilise les résultats démontrés dans la I pour résoudre, dans la partie II, un système différentiel.

I Eléments propres d'une matrice

I.A Localisation des valeurs propres

On considère une matrice $A = ((a_{i,j}))_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$. Soient une valeur propre $\lambda \in \mathbb{C}$ de A et un vecteur

$$\text{propre associ\'e} \; x = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \left\{ 0_{\mathcal{M}_{n,1}(\mathbb{C})} \right\}.$$

- 1 Montrer que pour tout $i \in [1, n]$, on $a : \lambda x_i = \sum_{i=1}^n a_{i,j} x_j$.
- Soit $i_0 \in [1, n]$ tel que $|x_{i_0}| = \max_{j \in [1, n]} |x_j|$. Montrer que : $|\lambda| \le \sum_{j=1}^n |a_{i_0, j}|$. En déduire que :

$$|\lambda| \le \max_{i \in [\![1,n]\!]} \left\{ \sum_{j=1}^n |a_{i,j}| \right\}$$

Soient α et β deux nombres réels. On considère la matrice $A_n(\alpha, \beta) \in \mathcal{M}_n(\mathbb{R})$ définie par :

$$\mathbf{A}_{n}(\alpha,\beta) = \begin{pmatrix} \alpha & \beta & 0 & \cdots & 0 \\ \beta & \alpha & \beta & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \beta & \alpha & \beta \\ 0 & \cdots & 0 & \beta & \alpha \end{pmatrix}.$$

- **3** Justifier que les valeurs propres de $A_n(\alpha, \beta)$ sont réelles.
- **4** Soit $\lambda \in \mathbb{R}$ une valeur propre de $A_n(\alpha, \beta)$. Montrer que :

$$|\lambda| \le |\alpha| + 2|\beta|$$
.

© Laurent Garcin MP Dumont d'Urville

I.B Calcul des valeurs propres de $A_n(\alpha, \beta)$

5 En utilisant la question **4**, montrer que pour toute valeur propre λ de $A_n(0,1)$, il existe $\theta \in [0,\pi]$ tel que $\lambda = 2\cos(\theta)$.

On note U_n le polynôme $\chi_{A_n(0,1)}(2X)$.

- Etablir, pour $n \ge 3$, une relation entre $\chi_{A_n(0,1)}$, $\chi_{A_{n-1}(0,1)}$ et $\chi_{A_{n-2}(0,1)}$. En déduire, pour $n \ge 3$, une relation entre U_n , U_{n-1} et U_{n-2} .
- 7 Montrer par récurrence sur n que pour tout $\theta \in]0, \pi[$:

$$U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin(\theta)}$$

8 Déduire de la question précédente que le spectre de $A_n(0,1)$ est $\left\{2\cos\left(\frac{j\pi}{n+1}\right)\;;\;j\in [\![1,n]\!]\right\}$. Déterminer la multiplicité des valeurs propres et la dimension des sous-espaces propres associés.

Considérons $j \in [1, n]$ et posons $\theta_j = \frac{j\pi}{n+1}$

9 Montrer que pour tout vecteur propre $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ de $A_n(0,1)$ associé à la valeur propre $2\cos(\theta_j)$,

on a:

$$\begin{cases} -2\cos(\theta_j)x_1 + x_2 = 0 \\ \forall k \in [\![2,n-1]\!], \ x_{k-1} - 2\cos(\theta_j)x_k + x_{k+1} = 0 \\ x_{n-1} - 2\cos(\theta_j)x_n = 0 \end{cases}$$

Soit E l'ensemble des suites réelles $(u_k)_{k\in\mathbb{N}}$ vérifiant la relation de récurrence :

$$\forall k \in \mathbb{N}^*, \ u_{k-1} - 2\cos(\theta_i)u_k + u_{k+1} = 0.$$

- **10** Montrer que E est un espace vectoriel sur \mathbb{R} dont on précisera la dimension.
- 11 Déterminer l'ensemble des suites $(u_k)_{k\in\mathbb{N}} \in E$ telles que $u_0 = u_{n+1} = 0$.
- **12** En déduire l'espace propre de $A_n(0,1)$ associé à la valeur propre $2\cos(\theta_j)$.
- En déduire, pour tout $(\alpha, \beta) \in \mathbb{R}^2$, l'ensemble des valeurs propres de $A_n(\alpha, \beta)$ et les espaces propres associés. On distinguera le cas $\beta \neq 0$ du cas $\beta = 0$.

II Système différentiel

II.A Matrices par blocs

On considère A, B, C et D des matrices de $\mathcal{M}_n(\mathbb{C})$ telles que C et D commutent.

14 Calculer
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & 0_n \\ -C & I_n \end{pmatrix}$$
.

L'objectif des trois prochaines questions est de démontrer la relation :

$$\det\left(\begin{pmatrix} A & B \\ C & D \end{pmatrix}\right) = \det(AD - BC) \tag{1}$$

- 15 Montrer l'égalité (1) dans le cas où D est inversible.
- On ne suppose plus D inversible. Montrer qu'il existe $p_0 \in \mathbb{N}^*$ tel que pour tout $p \ge p_0$, la matrice D + $\frac{1}{p}I_n$ soit inversible.
- 17 En déduire que l'égalité (1) est également vraie dans le cas où D n'est pas inversible.

Considérons une matrice $M \in \mathcal{M}_n(\mathbb{C})$ et formons la matrice :

$$\mathbf{N} = \left(\begin{array}{cc} \mathbf{0}_n & \mathbf{I}_n \\ \mathbf{M} & \mathbf{0}_n \end{array} \right).$$

- 18 Montrer que $Sp(N) = \{ \mu \in \mathbb{C}; \mu^2 \in Sp(M) \}.$
- Soient $\mu \in \operatorname{Sp}(\mathbb{N})$ et $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$ un vecteur propre de \mathbb{M} associé à la valeur propre μ^2 . Montrer que le vecteur $\begin{pmatrix} x \\ \mu x \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{C})$ est vecteur propre de \mathbb{N} associé à la valeur propre μ .
- **20** Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et inversible.

II.B Application à un système différentiel dans le cas où n = 2

On considère le système différentiel :

$$\begin{cases} x_1'' = -2x_1 + x_2 \\ x_2'' = x_1 - 2x_2 \end{cases}$$
 (2)

21 Déterminer $(\alpha, \beta) \in \mathbb{R}^2$ tel que le système (2) soit équivalent au système différentiel du premier ordre

$$\mathbf{X}' = \mathbf{B}\mathbf{X}, \text{ où } \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_1' \\ x_2' \end{pmatrix} \text{ et } \mathbf{B} = \begin{pmatrix} 0_2 & \mathbf{I}_2 \\ \mathbf{A}_2(\alpha, \beta) & \mathbf{0}_2 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

Que déduit-on du théorème de Cauchy quant à la structure de l'ensemble des solutions de ce système?

22 En utilisant la question **18**, déterminer les valeurs propres de B et en déduire que B est diagonalisable.

On considère la matrice :

$$D = \begin{pmatrix} -i\sqrt{3} & 0 & 0 & 0 \\ 0 & i\sqrt{3} & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \end{pmatrix}.$$

- En utilisant la question 19, déterminer une matrice inversible $P \in \mathcal{M}_4(\mathbb{C})$ dont la première ligne ne comporte que des 1 et telle que $B = PDP^{-1}$.
- Déterminer la solution du système différentiel (2) avec conditions initiales $(x_1(0), x_2(0), x_1'(0), x_2'(0)) = (1, 0, 0, 0)$.