

FACULTAD DE CIENCIAS

Matemáticas para las Ciencias Aplicadas II

Tarea III

Alumno: Arroyo Lozano Santiago Profesor: Héctor "Awakatito" Díaz

Ciencias de la computación

May 19, 2020

1 Localizar en el plano:

Sabemos que las coordenadas polares son de la forma (r, θ)

1.1
$$(3, \frac{-2\pi}{3})$$

Esta coordenada nos indica que tiene radio 3 y $\theta=\frac{-2\pi}{3}$. Se encuentra entonces en el circulo 3 y como $\frac{-2\pi}{3}=-120^\circ$ el grado positivo es 240°. Le llamaremos punto A

1.2
$$\left(-2, \frac{4\pi}{3}\right)$$

Esta coordenada nos indica que tiene radio -2, pero tomamos valores positivos, entonces se encuentra entonces en el circulo 2 y $\frac{-2\pi}{3}$ = 60°. Le llamaremos punto B

1.3
$$(-5, \frac{-17\pi}{6})$$

Esta coordenada nos indica que tiene radio -5, pero tomamos valores positivos, entonces se encuentra entonces en el circulo 5 y $\frac{-17\pi}{6}$ = 30°. Le llamaremos punto C

Veamos ahora donde se encuentran nuestros puntos A,B,C:

Puntos A, B, C en el plano polar

2 Demuestre que la gráfica $r = aCos\theta + bSen\theta$ es una circunferencia (Encontrar centro y radio)

Sabemos que $(x,y) \to (r,\theta)$ y además $x=rCos\theta$ $y=rSen\theta$ tal que $r^2=x^2+y^2$. Y la forma canónica del círculo es: $(x-a)^2+(y-b)^2=r^2$ Seguimos entonces:

$$r = aCos\theta + bSen\theta$$

$$r^{2} = (aCos\theta + bSen\theta) \cdot r \qquad \text{(Multiplicamos por } r\text{)}$$

$$r^{2} = arCos\theta + brSen\theta \qquad \text{(Distributividad)}$$

$$x^{2} + y^{2} = ax + by \qquad \text{(Identidades de } x, y, r^{2}\text{)}$$

$$x^{2} + y^{2} - ax - by = 0 \qquad \text{(Igualamos a 0)}$$

Formamos un trinomio cuadrado perfecto sin perder la igualdad

$$\left(x^2 - ax + \frac{a^2}{4}\right) + \left(y^2 - by + \frac{b^2}{4}\right) = 0 + \frac{a^2}{4} + \frac{b^2}{4}$$
$$\left(x - \frac{a}{2}\right)^2 + \left(y - \frac{b}{2}\right)^2 = \frac{a^2 + b^2}{4}$$

El centro del círculo estará dado por (a,b) con r = $\frac{a^2+b^2}{4}$ Y como ya obtuvimos que la ecuación sí se puede escribir como la forma canónica de un circulo queda demostrado

3 Sea $0 \le \theta < 2\pi$, demuestre:

3.1 Que $r = cos2\theta$ es una rosa de cuatro pétalos

$$\cos(2(-\theta) = \cos 2\theta$$

... SI es simétrica respecto al eje polar

$$-r = cos2\theta \rightarrow r = -cs2\theta$$

... NO es simétrica respecto al polo

$$\cos(2(\pi - \theta)) = \cos 2\theta$$

.: SI es simétrica respecto al eje copolar

Entonces la gráfica cuyas tabulaciones son:

θ	$\cos(2\theta)$
0	1
$\frac{\pi}{12}$ $\underline{\pi}$	0.866
6	0.500
$\frac{\pi}{3}$ 5π	-0.500
$\overline{12}$	-0.866
$\frac{\frac{\pi}{2}}{7\pi}$	-1
$\overline{12}$	-0.866
$\frac{4\pi}{6}$	-0.500
$\frac{5\pi}{6}$	0.500
π	1

Se replica conforme al eje polar y copolar resultando en:

3.2 Que $r = 1 + 2cos\theta$ es un caracol

$$1 + 2\cos(-\theta) = 1 + 2\cos(\theta)$$

 \therefore SI es simétrica respecto al eje polar

$$-r = 1 + 2cos2\theta \rightarrow r = 1 - cos2\theta$$

 \therefore NO es simétrica respecto al polo

$$1 + 2\cos(\pi - \theta) = 1 - 2\cos\theta$$

 \therefore NO es simétrica respecto al eje copolar

Entonces la gráfica cuyas tabulaciones son:

θ	$1 + 2\cos\theta$
$\frac{\pi}{12}$	2.93
$\frac{\pi}{6}$	2.73
$\begin{array}{c c} \frac{\pi}{12} \\ \hline \frac{\pi}{6} \\ \hline \frac{\pi}{3} \\ \hline 5\pi \end{array}$	2
$\frac{5\pi}{12}$	1.517
$\begin{array}{c c} \frac{3\pi}{12} \\ \frac{\pi}{2} \\ \hline 7\pi \end{array}$	1
$\frac{7\pi}{12}$ 4π	0.482
$\frac{4\pi}{6}$	0
$\frac{\overline{6}}{5\pi}$	-0.41
π	-1

Se replica conforme al eje polar resultando en:

4 Demostrar:
$$\frac{\vec{a} \cdot \hat{\mathbf{i}}}{|\vec{a}| \cdot |\hat{\mathbf{i}}|} = \frac{a_1}{|\vec{a}|}$$

Donde $\vec{a} = (a_1, a_2, a_3)$

Sabemos que $\hat{\mathbf{i}}$ es un vector unitario tal que $|\hat{\mathbf{i}}| = 1$ donde $\hat{\mathbf{i}} = (1, 0, 0)$, seguimos:

$$\frac{\vec{a} \cdot \hat{\mathbf{i}}}{|\vec{a}| \cdot |\hat{\mathbf{i}}|} = \frac{(a_1, a_2, a_3) \cdot (1, 0, 0)}{|\vec{a}| \cdot 1}$$
$$= \frac{a_1}{|\vec{a}|} \blacksquare$$

Y análogamente podemos notar que se cumple:

$$\frac{\vec{a} \cdot \hat{\mathbf{j}}}{|\vec{a}| \cdot |\hat{\mathbf{j}}|} = \frac{a_2}{|\vec{a}|}$$
$$\frac{\vec{a} \cdot \hat{\mathbf{k}}}{|\vec{a}| \cdot |\hat{\mathbf{k}}|} = \frac{a_3}{|\vec{a}|}$$

Donde $\hat{\mathbf{j}} = (0, 1, 0) \wedge \hat{\mathbf{k}} = (0, 0, 1)$

5 Demostrar que los ángulos directores α, β, γ de un vector $\vec{a} \neq 0 \in \mathbb{R}^3$ cumplen:

5.1
$$(\cos\alpha,\cos\beta,\cos\gamma) = \frac{1}{|\vec{a}|}(a_1,a_2,a_3)$$

Osease P.D. $(cos\alpha, cos\beta, cos\gamma) = \frac{\vec{a}}{|\vec{a}|}$ Sabemos que:

$$\cos\alpha = \frac{a_1}{|\vec{a}|} \to a_1 = |\vec{a}|\cos\alpha$$
$$\cos\beta = \frac{a_2}{|\vec{a}|} \to a_2 = |\vec{a}|\cos\beta$$
$$\cos\gamma = \frac{a_3}{|\vec{a}|} \to a_3 = |\vec{a}|\cos\gamma$$

Entonces:

$$\vec{a} = (|\vec{a}|\cos\alpha, |\vec{a}|\cos\beta, |\vec{a}|\cos\gamma)$$

$$\vec{a} = |\vec{a}|(\cos\alpha, \cos\beta, \cos\gamma)$$
 (Factorizamos)
$$\frac{\vec{a}}{|\vec{a}|} = \frac{|\vec{a}|(\cos\alpha, \cos\beta, \cos\gamma)}{|\vec{a}|}$$
 (Dividimos sobre $|\vec{a}|$)
$$\frac{\vec{a}}{|\vec{a}|} = (\cos\alpha, \cos\beta, \cos\gamma)$$

5.2 $cos\alpha^2, cos\beta^2, cos\gamma^2 = 1$

Sea $(\cos\alpha, \cos\beta, \cos\gamma)$ un vector, tenemos:

$$|(\cos\alpha, \cos\beta, \cos\gamma)| = \sqrt{\cos\alpha^2, \cos\beta^2, \cos\gamma^2}$$
 (Def. de norma)

Pero como or 5.1 sabemos que $(\cos\alpha,\cos\beta,\cos\gamma) = \frac{\vec{a}}{|\vec{a}|}$ y como $|\frac{\vec{a}}{|\vec{a}|}| = 1$ porque es un vector unitario tenemos:

$$\sqrt{\cos\alpha^2, \cos\beta^2, \cos\gamma^2} = 1$$

$$\left(\sqrt{\cos\alpha^2, \cos\beta^2, \cos\gamma^2}\right)^2 = 1^2$$
(Elevamos al cuadrado)
$$\cos\alpha^2, \cos\beta^2, \cos\gamma^2 = 1$$