Math 571 - Homework 5 (05.22)

Richard Ketchersid

Notation: For $f: X \to Y$ and $E \subseteq X$ set $f(X) = \{f(e) \mid e \in E\}$, this is called the *image of* E under f.

Problem 1 (R:4:2*). Let $f: X \to Y$ be continuous. Let $E \subseteq X$, show that $f(Cl(E)) \subseteq Cl(f(E))$. By example show that this containment can be proper, that is $Cl(f(E)) \nsubseteq f(Cl(E))$ can hold.

You may take X and Y to be metric if you want, but this is not relevant.

Definition Let $f: E \subset X \to Y$, the graph of f is the set $Graph(f) = \{(x, f(x) \mid x \in E\} \subseteq X \times Y$.

Problem 2. Let $f: E \subset X \to Y$ be continuous where Y is Hausdorff, show that Graph(f) is closed in $E \times Y$.

Problem 3 (R:4:6). Suppose $f: E \subseteq X \to Y$ and E is compact. Suppose further that X and Y are Hausdorff (or metric if you prefer). Show that f is continuous on E iff Graph(f) is compact.

Hint: You may use the fact that if K and H are compact, then $K \times H$ is compact and that If K is compact and $C \subseteq K$ is closed, then C is compact. (Both of these are in notes and book.)

Problem 4. Let $f: E \subset X \to Y$ where both X and Y are metric spaces with Y complete. suppose f is uniformly continuous on E, show that there is a unique extension $\hat{f}: Cl(E) \to Y$.

Definition: A set $E \subset X$ has the *Heine-Borel* property iff every sequence in X has a convergent subsequence.

Problem 5. Show that if $E \subseteq X$ has the Heine-Borel property, then

- a) Cl(E) also has Heine-Borel property.
- b) If X is metric, then E is bounded.
- c) For X metric E has the Heine-Borel property iff Cl(E) is compact.

Problem 6 (R:4:8*). Let $f: E \subseteq X \to Y$ be uniformly continuous on E where E has the Heine-Borel property. Show that f is bounded on E, that is f(E) is bounded in Y.

Argue, from this, that if X is any Euclidean space and $E \subseteq X$ bounded. If f is continuous on E, then f(E) is bounded.

Problem 7 (R:4:19). show that if $f: \mathbb{R} \to \mathbb{R}$ satisfies the intermediate value theorem and $f^{-1}(r) = \{x \mid f(x) = r\}$ is closed for $r \in \mathbb{Q}$, then f is continuous. (See the text for a hint. \mathbb{Q} here could be replaced by any dense set.)