

Practical Network Defense

Master's degree in Cybersecurity 2024-25

Networking 101

Angelo Spognardi spognardi@di.uniroma1.it

Dipartimento di Informatica Sapienza Università di Roma

What is Internet

- Internet: an interconnected network of networks
 - Hierarchical networks:
 - Internet backbone: connecting the ISPs' backbones
 - ISP backbone: connecting organizations' backbones
 - Organization backbone connects local area networks (LANs)
 - LAN connects end systems
 - Public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force
 - Free download of RFCs at rfc-editor.org

- Network edge
 - Hosts: server, client, P2P
 - Applications: http, mail, Facebook, Twitter
- Network core
 - Edge router: connecting an organization/ISP to the Internet
 - Interconnection of routers using fiber
 - Naming services
- Access networks
 - Wired, or wireless communication links

Internet Core

Internet Core

- Routers and fiber links (in orange) form the Internet core
- Routers work together to figure out the most efficient path for routing a packet from source to destination host
- A distributed algorithm can adapt to changing Internet conditions
- Great idea during the cold war
- Routing tables are generated and maintained in real time

Dipartimento Informatica, Sapienza Università di Roma

- The core is provided by ISPs that interconnect multiple continents
 - ISPs
 - Global ISPs or Tier-1 ISPs
 - Regional ISPs or Tier-2 ISPs

Internet: network of networks

- Internet Backbone connects tier-1 ISPs
 - e.g., Verizon, Comcast, AT&T, Telstra, Arelion
- The backbones of tier-1 ISPs are interconnected at various access points called Internet eXchange Points (IXP)
 - They do "peering", namely a direct exchange of internet traffic
- The number of IXPs around the world is continually growing
 - to date more than 1000
- Interactive (probably not exhaustive) map: https://www.pch.net

1184 IXPs shown - Number of IXPs by Country

Source: pch.net

Protocols

- Specify rules about the desired service
 - Procedure Rules
 - Types and sequences of messages exchanged
 - Syntax and semantics
 - Actions to take with respect to messages and events
 - Message Format: format, size and coding of messages.
 - Timing: the time to wait between any event.
 - Access to medium
 - Flow control
 - Timeouts

- Modularization → Many protocols for each layer
 - Hides implementation details
 - Layers can change without disturbing other layers
 - Development (one company can tackle one module)
 - Maintenance
 - Updating the system
- Packet switching
 - Best effort delivery
 - Better for resource sharing
- Network congestion and flow control

Internet uses a gateway (edge router) to connect a Local Area Network
 (LAN) or a subnet to the hierarchical network

- Point to point protocol (PPP) for access to an ISP
- Dialup via modem
- DSL: digital subscriber line
- Cable modem
- Fiber In The Loop
- Broadband over a power line
- Broadband wireless: such as WiMAX
- Satellite

Local area network connected to Internet

- Organization/home local area network (LAN) or subnet connects hosts to edge router
- Edge router connects LANs to Internet
 - Telco uses ATM over fiber
- Ethernet LAN
 - Hosts connect into Ethernet switch
 - 10Mbps, 100Mbps, 1Gbps, 10Gbps
 Ethernet
- ATM: asynchronous transfer mode

- Constituted by networks with end-points of the same local management
- Provides connectivity among stations on the same network
- Nodes in the same network can directly communicate among them
 - Used protocol: Ethernet family

Ethernet (IEEE 802.3) networks

- Each host in a Ethernet network has a NIC (Network Internet Card) with a (generally) fixed address
- MAC addresses are 48 bits (6 bytes) long and UNIQUELY ideintify hosts in the network
- Each host only processes packets intended for it
- Each Ethernet packet ("frame") has a fixed format

Preamble	SFD	Dest.	Source	Type	Data (PDU livello 3)	FCS
(7 byte)	(1 byte)	(6 byte)	(6 byte)	(2 byte)	(46-1500 byte)	(4 byte)

How to build a Ethernet network

- All the hosts connected together with a shared "transmission system" based on Ethernet are a network, as if they were connected to the same medium
 - Two computer with a single
 Ethernet cable
 - Many computer connected with several Ethernet cables to a single device (generally a switch, but also repeater, hubs or bridges)
 - Many computer connected with several Ethernet cables to several devices (generally switches)

- An Ethernet network constitutes a broadcast domain
 - For historical reasons there also exist collision domains, but full-duplex and switches have made them obsolete
- Ideally frames sent in a broadcast domain are potentially received by all the hosts in the network
 - All the host receive all the frames and only read some
- Actually, switches segment the network to limit the explosion of packets in the network
- Only broadcast messages are "replicated"

How switches segment the network

- Switches remembers the source MAC addresses on the different ports
- They only replicate the frame on the segment where the destination MAC address replies
 - Tables of MAC are
 - ARP tables for hosts
 - CAM tables for switches

- Ethernet makes high use of broadcast packets
 - Inefficient for large networks
- Large networks are split in order to reduce the broadcast domain
- There is the need of a LOGICAL division of the networks: Ethernet is the Access layer, but wee need a Distribution layer
- Hosts in a local network use a Default Gateway to go out and have access to the Distribution layer
- Distribution layer is based on IP, the Internet Protocol

Distribution and core layers

- Interconnect local networks among them
- Distribution layer is at level of Autonomous Systems (like bignarine Cable Map enterprises and ISPs)

 Distribution layer is at level of Autonomous Systems (like bignarine Cable Map is a free resource the Service of the Submarine Cable Map is a free resource the Service of the Global Bandwidth Research Service of the Global Bandwidth Research Service of the Ser
- Core layer is at the level of continents
 - Telia, Cogent, AT&T, Orange...
- Use logical addressing: IP
- The connections between the networks are done by routers

Submarine Cables

ACS Alaska-Oregon Network (AKOR Aden-Djibouti

Arria-1

ES nnect (AEC)

Africa Coast to Europe (ACE)

Alaska United East

Alaska United Southeast

Alaska United Turnagain Arm (AUTA Alaska United West

ALBA-1

Aletar

Alonso de Ojeda

ALPAL-2

To learn more about TeleGeography or this map please

Last updated on January 2

All content © 2016 PriMetrica, Inc.

Google

- Routers are the Default Gateways
- Give access to the Internet

- Ethernet has physical addresses
 - You can not(*) change the MAC address of your NICs
 - It is like your name: it goes wherever you go
 - An Ethernet address tells WHO you are, but does not tell anything on WHERE you are
- IP has logical addresses
 - You can change IP address of your NIC
 - It is like your **home address:** it changes if you go somewhere
 - IP addresses are used to identify and reach networks and hosts

- Analogy: if you want to say something to somebody
 - If both of you are in the same room, you can simply call his/her name and he/she will answer
 - Directly connected → Local address

Dipartimento Informatica, Sapienza Università di Roma

- If you are NOT in the same room, you have to know where he/she is, before sending the message AND the message has to LEAVE the room through the door
 - Remote address
- How to know if one IP is the same network than you?
 - Subnet mask

IP Addresses

Two versions of IP addresses: IPv4 and IPv6.

- IPv4 defines IP address with 32 bits organized in four octets (8 bits in each).
- IPv6 (version 6) has 128 bits.
- For human readability, the bits in each octet are separated by dots while writing an IPv4 address (colons in IPv6).
 - E.g. 69.58.201.25 and fe80::250:56ff:fec0:1
 - Certain bits from the left correspond to the network address (69.58.201) and the remaining correspond to define the computer (host) on the network (25).
 - Subnet mask defines boundary between network portion and the host portion of the IP address.

There are three types of IP addresses

- Unicast (one to one)
 - These refer to a single destination host
- Broadcast (one to all)
 - These refer to every host on a network or subnet
- Multicast (one to many)
 - Refers to a group of IP addresses in a network, not necessarily all of them
 - http://www.firewall.cx/networking-topics/general-networking/107-network-multicast.html

Allocation classes of IP addresses

- Class A (24 bits for host addresses, or /8)
 - 0.0.0.0 to 127.255.255.255
- Class B (16 bits for host addresses, or /16)
 - 128.0.0.0 to 191.255.255.255
- Class C (8 bits for host addresses, or /24)
 - 192.0.0.0 to 223.255.255.255
- Class D (Multicast)
 - 224.0.0.0 to 239.255.255.255
- Class E (Reserved)
 - 240.0.0.0 to 255.255.255.255

Class	Leading bits	Net bits	Host bits	Networks	Addresses	Start address	End address
А	0	8	24	128	16777216	0.0.0.0	127.255.255.255
В	10	16	16	16384	65536	128.0.0.0	191.255.255.255
С	110	24	8	2097152	256	192.0.0.0	223.255.255.255
D	1110	nd	nd	nd	268435456	224.0.0.0	239.255.255
E	1111	nd	nd	nd	268435456	240.0.0.0	255.255.255

- There are routeable and non-routeable address ranges
- Routeable addresses need to be unique on the Internet
- Non-routeable address can exist in different networks but can not be used on the Internet
- Several non-routeable ranges are defined in several RFCs

Class	Leading bits	Net bits	Host bits	Networks	Addresses	Start address	End address
Α	0	8	24	128	16777216	0.0.0.0	127.255.255.255
В	10	16	16	16384	65536	128.0.0.0	191.255.255.255
С	110	24	8	2097152	256	192.0.0.0	223.255.255.255

- RFC1918, private networks
 - 10.0.0.0 10.255.255.255 (10/8 prefix)
 - 172.16.0.0 172.31.255.255 (172.16/12 prefix)
 - 192.168.0.0 192.168.255.255 (192.168/16 prefix)
- Loopback: 127.0.0.0/8
- RFC3927, Link-local unicast: 169.254.0.0/16
 - Automatic Private IP Addressing (Mircosoft uses the APIPA protocol)
- RFC5737, documentation addresses:
 - TEST-NET-1, 192.0.2.0/24
 - TEST-NET-2, 198.51.100.0/24
 - TEST-NET-3, 203.0.113.0/24

192.168.8.0/24

- The last eight (32 minus 24) bits of 32 total will be used for host addresses
- The first address reserved for the network address
- The last adress reserved for the broadcast address

Dipartimento Informatica, Sapienza Università di Roma

- Then, we have 2^(32-netmask) 2 hosts in any CIDR specified network
- So, if we are given 192.168.8.0/24, 192.168.8.0 is the network address, 192.168.8.255 is the broadcast address, and .1 to .254 are host addresses

- Each set of 8-bits (octet) can hold values from 0-255
 - Poor flexibility!
- Idea: let's use a Variable Length Subnet Mask (VLSM)
- Introduced by CIDR (Classless Inter-Domain Routing), a new notation for the netmask:
 - specify how many bits of the 32-bit total will specify the network address
 - The remaining bits specify the host addresses

Dipartimento Informatica, Sapienza Università di Roma

- Ex: 10.10.10.0/26
 - the netmask can also be specified in dotted-quad notation, as in 10.10.10.0/255.255.255.192

IP Addressing, other example 192.168.1.248/30

- 2^(32-30) 2 = 2^2 2 = 4 -2 = 2 hosts (2 usable addresses)
 - 192.168.1.248 is the network address
 - 192.168.1.251 is the broadcast address
- Large networks can be subnetted:
 - We say things like "There are 64 /30 subnets in a /24 network"
- Many smaller networks can be "supernetted" for routing reasons → "summarization"

- In Point-to-Point links, using a 30 bit netmask is a waste...
 - If A sends a broadcast, only B will receive it...
- There is the proposal of RFC 3021:
 - Using 31-Bit prefixes on IPv4 Point-to-Point Links
 - https://tools.ietf.org/rfc/rfc3021.txt
- Reduce the waste of IP addresses in a subnet
 - Other ways to reduce it?
 - NAT
 - IPv6

Exercises

- Determine the network part, the host part, the network size (number of hosts), the network address, the broadcast address and the type of the following IP addresses:
 - 10.11.12.1 netmask 255.255.255.128
 - 192.168.4.32 netmask 255.255.255.224
 - 172.17.17.17 netmask 255.255.240.0
 - 10.11.12.0/21
 - 192.168.4.32/27
 - 172.17.17.17/29

- Determine whether the destination IP address is local or remote
 - Namely, if it belongs to the same network than the Host
 - It is plenty of tools online for this job, but try to put your pen to paper

Host IP address	Host subnet mask	Destination IP address
210.145.149.123	255.255.255.0	210.145.253.199
192.168.4.189	255.255.255.224	192.168.1.107
10.154.187.89	255.192.0.0	10.152.179.88
132.100.45.5	255.255.252.0	132.100.45.45
151.251.100.101	255.255.0.0	166.200.110.10
172.32.9.82	255.255.255.240	172.32.9.79

Summary

- Internet: a mess!
 - Networks connected by other networks that meet in IXP
- Hierarchical structure: to make Internet admins to survive!
 - Core and distribution layers managed by ISPs
- Protocols: the Internet manuals!
 - Describe rules and formats to exchange data and make services to be well defined
- Ethernet and IP: who you are and where you are
 - Addresses with two different meanings, for two different purposes
- Networks and subnet masks: to train with math!

- Questions?
- See you next lecture!
- Bonus reference to get used to Linux CLI and tools:

http://overthewire.org/wargames/bandit/bandit0.html

- Go to bandit and try to reach level 34!!
 - 33 is also good :-)
- Take notes of the passwords and how you obtained them
- Try to learn as much as you can solving each level