Energie Electrique 1

Mesures et circuits électriques

- I. Activité experimentale (voir TP)
- II. COURS à compléter à partir de la page :

allophysique.com /docs/PC 1ere/energie/energie3/

1. Circuits électriques

(circuit série, série avec dérivation, points, nœuds, branches)

2. Le potentiel (tension) électrique

Le potentiel, exprimé en volts (symbole V), désigne ...

U_{CD} désigne la différence de potentiel entre les points ... et

Mesure de la tension Elle se mesure avec un, branché sur ses bornes marquéeset

symbole du voltmètre :

Exemple:

Le Voltmètre mesure ici la différence de potentiel

Potentiel électrique et conducteur idéal :

Deux points d'un circuit électrique reliés par un conducteur idéal sont au même potentiel électrique. La différence de potentielle est alors entre ces 2 points.

3. Le courant électrique

Le courant électrique est mesuré par son (notée i ou I), exprimée en (A). Le courant désigne le débit de charge électriques.

Le courant se mesure à l'aide d'un branché en Dans la branche.		
Un courant électrique peut s'établir dans une branche à condition que les 2 points auxquels est reliée la branche soient à des potentiels		
Effets du courant : Le courant qui circule dans un circuit peut avoir un effet :		
4. La résistance électrique		
La valeur d'une resistance (notée R) est mesurée en de symbole		
Le symbole d'une resistance est le suivant :		
Un conducteur idéal =		
5. Loi d'Ohm		
Pour un dipôle de résistance R, mis dans une branche entre les points A et B, et parcouru par un courant i : d'après la loi d'Ohm :		
$U_{AB} = R \times i$		
U _{AB} est la tension à ses bornes.		
(schéma)		
6. Loi d'additivité des tensions additivité des tensions dans un circuit en série : La tension aux bornes d'un ensemble de dipôles en série est égale à		
(schéma)		

_	é des tensions dans un circuit en dérivation : dipôles branchés en dérivation aux bornes d'un générateur sont soumis
(schér	na)
7.	Loi des nœuds Pour un circuit avec dérivation, présentant 2 branches en parallèle, la loi de

Pour un circuit avec dérivation, présentant 2 branches en parallèle, la loi des nœuds s'exprime de la manière suivante :

$$i_1 = i_2 + i_3$$

(schéma)

8. Court-circuit:

Un court-circuit se produit lorsque deux fils ayant des potentiels différents

Le dipôle dont les bornes sont reliées par un conducteur est court-circuité et ne fonctionne pas.

(schéma)

DANGER: Lorsqu'un *générateur est court-circuité*, le courant débité.....

Cette situation peut aussi se produire lorsque l'on branche directement un amperemetre aux 2 bornes d'un générateur (ne pas faire) : la resistance interne de l'appareil étant faible, le courant est alors très important (loi d'Ohm).

(schéma)

9. Loi de puissance électrique

La puissance électrique est la quantité d'énergie électrique échangée par seconde. (P = E/t). Son unité dans le système international (SI) est le(symbole).

Pour une branche d'un circuit :

$$P = ... \times ..$$