Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM) École Normale Supérieure de Natitingou

Examen de rattrapage de Calcul différentiel Année 2022 - 2023, Durée 3 H

Exercice I

Pour $(x,y) \in \mathbb{R}^2$, on pose

$$f(x,y) = x^2 + 2y^2 - 18x - 24y + 2xy + 120$$

- 1. Étudier les éventuels extrema locaux de f sur \mathbb{R}^2
- 2. Étudier les extrema globaux de f sur \mathbb{R}^2

Exercice II

On considère la fonction $f:(x,y)\mapsto f(x,y)=x^2+3y^2-6x+2y+3$

- 1. Peut-on affirmer a priori l'existence de point(s) de maximum ou de minimum global de f sur \mathbb{R}^2 ?
- 2. Chercher ses points critiques et dire s'il s'agit de col(s) ou de point(s) de minimum ou de maximum local sur \mathbb{R}^2 .
- 3. Ecrire le développement limité de f à l'ordre 2 au voisinage d'un point critique.
- 4. Calculer les valeurs propres et les vecteurs propres de la matrice Hessienne de f
- $5.\ {\rm Que}$ pouvez-vous dire du reste dans le développement limité ?
- 6. Qu'en déduisez-vous sur l'existence de point(s) de maximum ou de minimum global de f sur \mathbb{R}^2 ?

Exercice III

On considère une application $f: \mathbb{R}^n \to \mathbb{R}$.

- 1. Quand dit-on que f est différentiable en un point $a \in \mathbb{R}^n$?
- 2. On considère une matrice carrée d'ordre n, symétrique $A \in \mathcal{S}_n(\mathbb{R})$ et $g : \mathbb{R}^n \to \mathbb{R}$ définie par $g(x) = \langle Ax, x \rangle$, où $\langle ., . \rangle$ est le produit scalaire canonique. Montrer que g est différentiable en tout point $x \in \mathbb{R}^n$ et préciser sa différentielle en x, appliquée à $h \in \mathbb{R}^n$, $dg_x(h)$
- 3. On considère dans cette question, la fonction $\phi : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$, définie par $\phi(A) = tr(A^2)$, où $\mathcal{M}_n(\mathbb{R})$ désigne l'ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{R} et $tr(A^2)$, la trace de la matrice A^2 .
 - (a) Justifier sans calcul que ϕ est de classe C^1 sur $\mathcal{M}_n(\mathbb{R})$
 - (b) Pour $1 \leq i, j \leq n$, on note $e_{i,j}$ la matrice dans $\mathcal{M}_n(\mathbb{R})$ dont les coefficients sont tous nuls, sauf celui de la i-ième ligne et la j-ième colonne qui vaut 1. Exprimer le développement limité à l'ordre 1 de $\phi(A + tE_{i,j})$ en fonction de A et $E_{i,j}$.
 - (c) En déduire $\frac{\partial \phi}{\partial E_{i,j}}|_A$ en fonction des coefficients $(a_{k,l})$ de A