

Meccanica Newtoniana
Termodinamica

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is the *atomic* hypothesis [...] that all things are $made\ of\ atoms{--little}\ particles$ that move around in perpetual $motion,\ attracting\ each\ other$ when they are a little distance apart, but repelling upon being squeezed into one another. In that one sentence, you will see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied.

Richard P. Feynman, The Feynman Lectures on Physics Vol. I

Consigliamo di consultare questa dispensa ascoltando il brano seguente: $Cornfield\ Chase$ by Hans Zimmer (from Interstellar by Christopher Nolan)

Avvertenze!

Questa è una raccolta di appunti redatta da studenti e condivisa per altri studenti. Non pretende di essere un libro di testo, ma una forma di aiuto libero e gratuito per coloro che fossero in cerca di materiale di supporto allo studio. Pertanto, si raccomanda di non preparare l'esame basandosi unicamente su questi appunti, ma di fare riferimento alle lezioni frontali e ai libri (in breve, a chi è esperto in merito). Qualora quindi vi fossero affermazioni fuorvianti o false contenute in queste pagine, gli autori non si assumono la responsabilità di eventuali esiti (1) non corrispondenti alle aspettative oppure (2) negativi di esami o altre forme di prove ufficiali presso l'Università; gli autori sono anzi aperti a eventuali segnalazioni e correzioni, in primo luogo per colmare lacune di natura concettuale nell'esposizione delle nozioni.

Prefazione

Saremo onesti e concisi: Questi appunti sono lunghi e prolissi (facciamo presente alla lettrice o al lettore che, se ella o egli sta leggendo questa sezione, non ci troviamo ancora all'indice). Ma tutti i fini che ci prefiggiamo sono ben giustificati.

Cominciamo dal primo: La pazienza. La fisica non è una scienza come tutte le altre; è un pensiero dalle radici filosofiche e devoto alla comprensione totale della realtà, intesa nei suoi aspetti quantitativi e misurabili. Dunque, non è solo la matematica che rende questa materia apparentemente così complessa, ma è prima di tutto la sua visione del mondo. Se nel passato si è avuto poco a che fare con la fisica, è necessaria pazienza per adottare questa visione. La fisica fonda sulla pazienza, ovvero il metodo scientifico: Provare e riprovare, imboccare una strada con in mano un'ipotesi per poi tornare sui propri passi se i presupposti non sono corretti. E osservare, osservare con attenzione. Ciò è parimenti valido per gli esercizi. Non esistono esercizi di fisica "standard", affrontabili sempre con la stessa "formulina". Servono tentativi, pensare anche fuori dagli schemi e affrontare il problema sfruttando i pochi strumenti matematici e principi che si hanno a disposizione.

Il secondo fine: La curiosità. Se non si è cursiosi in una materia scientifica il suo studio perde di valore, privato dell'interesse. Parimenti la fisica richiede grande curiosità, perché tramite essa sorgono domande, che alimentano la curiosità, che generano altre domande, che conducono a ipotesi, a modelli della realtà che, mano a mano che si sviluppano, sono in grado di rispondere, almeno in parte, a quelle domande. La fisica non è fatta di sole teorie immutabili; è frutto di rivoluzioni e persone che per curiosità hanno messo in dubbio molte convinzioni. Per questo quelle persone ci hanno permesso di conoscere di più.

Il terzo fine: L'immaginazione. Molte delle teorie appartenenti alla fisica sono frutto di intuizioni e processi creativi. Ma il difetto della scienza è di non ammettere questa "debolezza", perché ad ogni teoria deve essere accompagnata una buona giustificazione, una solida base matematico-quantitativa. Sappia chi sta leggendo che la fisica, anche se lo nasconde con vergogna, è nulla senza immagniazione. Non fatevi ingannare dai rigidi formalismi che si incontrano negli studi di questa scienza, perché Clausius, Carnot, Newton, Galileo e molti altri citati o non citati in questa dispensa hanno immaginato, intuito. La domanda "E se...?" dovrebbe essere incisa nella mente di chi studia fisica, in qualità di timone della curiosità.

Bisogna ammettere che la fisica è un libro per tutti e per nessuno per altri due motivi: Essa non piace a tutti e sovente viene esposta ai più in maniera inutilmente complessa e oscura. È tuttavia innegabile che la fisica debba essere un sapere degno di interesse per tutti i campi scientifici ed ingegneristici, anche solamente come una piccola conoscenza basilare all'interno del bagaglio culturale di una persona studiosa contemporanea, perché è la scienza che forse più di tutte unisce due aspetti: Il desiderio di scoperta e l'ingegno dell'umanità.

Buono studio! ZS 🖸

Errata

È statisticamente difficile eliminare ogni errore da una qualsiasi opera scritta, sia essa un breve articolo di un paio di pagine, oppure un tomo di qualche decina di milioni di caratteri. Questi appunti non sono un'eccezione. Spieghiamo di seguito *come* e *cosa* si può segnalare circa questi appunti.

Come segnalare

Puoi inviare le tue segnalazioni nei seguenti modi, dal più semplice al più complesso (può richiedere dimestichezza con strumenti "avanzati"):

- Se conosci gli autori, contattandoli o cercandoli direttamente in Università o su canali di comunicazione come Telegram o E-Mail istituzionale (zeno.saletti@studenti.unitn.it).
- Se conosci GitHub, aprendo una issue sulla repo (\mathbb{O} Link).

Cosa segnalare

Vengono ora elencate, in ordine di priorità secondo gli autori, le immperfezioni che meritano una correzione:

- Errori grammaticali, lessicali, sintattici e tutti quegli errori nell'impiego del linguaggio che ostacolano la comprensione del testo.
- Nozioni che non corrispondono al vero o incomplete, di qualsiasi genere (ma attinenti alla materia trattata in queste pagine): leggi mal formulate; affermazioni, supposizioni, definizioni imprecise, false o superficiali; affermazioni false relative a fatti o persone reali.
- Errori di calcolo o risultati errati nelle equazioni e negli esempi del testo e negli esercizi dell'appendice.
- Irregolarità nell'utilizzo di notazioni standard, come i simboli matematici o la citazione di testi.
- Link malfunzionanti.
- Altri errori di battitura oppure grafici ed estetici.

Vengono contemplati con riguardo anche eventuali miglioramenti o integrazioni, qualora il tempo e le energie a disposizione lo permettano:

- Esercizi.
- Immagini che arricchiscono il testo e a supporto della comprensione.
- Rivisitazioni dell'ordine dei capitoli, delle sezioni, dei paragrafi, della veste grafica.
- Approfondimenti inerenti agli argomenti affrontati nel corso.

Riconoscimenti

Questi appunti non sono stati realizzati del tutto dall'etere o dal nulla. Alcuni materiali di supporto sono stati impiegati per portare alla luce queste pagine.

Testi

Gran parte del testo è una trascrizione in linguaggio tipografico IATEX degli appunti reperiti durante il corso di Fisica (a.a. 2023-2024) tenuto dal prof. Roberto Iuppa, presso l'Università degli Studi di Trento. Organizzazione e ordine dei capitoli ricalcano la successione delle lezioni frontali, con alcune rivisitazioni dell'ordine di esposizione degli argomenti.

Di grande ispirazione sono stati:

- R. P. Feynman, R. B. Leighton, M. Sands. The Feynman Lectures on Physics. Volume I: Mainly Mechanics, Radiation, and Heat. Addison-Wesley. 1964¹.
- J. Walker. Dalla Meccanica alla Fisica Moderna. Meccanica Termodinamica. Pearson (edizione italiana). 2012.

Immagini

Tutte le immagini che si trovano in questi appunti sono state realizzate integralmente a mano, incluso il design di copertina, utilizzando lo strumento Disegni appartenente alla suite Google. Tutte le risorse grafiche di questo testo sono incluse nella repository del progetto in formato .pdf.

Esercizi

Gli esercizi proposti sono una selezione di problemi giudicati interessanti o di importanza basilare, perché incorporano principi chiave studiati nel corso. Questi esercizi sono stati reperiti dai libri di testo citati precedentemente e da fogli relativi ad esercitazioni dell'anno accademico corrente (a loro volta raccolti dal Web), più alcuni testi d'esame antecedenti l'anno accademico nel quale questa dispensa è stata redatta per la prima volta. Questi testi d'esame sono stati pubblicati dal professore stesso sul canale Moodle del corso.

¹La Bibbia della fisica, ma si tratta di una lettura ardua.

Guida al testo

Saremo onesti e concisi: Questi appunti sono lunghi e prolissi. Ma alcuni aspetti sono stati curati per soddisfare le esigenze di coloro che intendono solo dare rapide occhiate alle nozioni di questo corso.

- Indice: l'indice è la prima arma a portata di studenti che intendono consultare rapidamente gli appunti. Ci siamo impegnati al meglio per rendere concisi i titoli di capitoli e sezioni per raggiungere questo scopo. L'indice contiene collegamenti cliccabili che conducono direttamente alla pagina selezionata.
- *Microindici*: all'inizio di ogni capitolo viene collocato un microindice contenente la lista di macrosezioni, visibile al margine destro. Anche questi microindici sono dotati di collegamenti (cliccabili) interni alle rispettive pagine del testo.
- Box colorati: definizioni, leggi e principi notevoli sono risaltati da box colorati
- Equazioni etichettate: se non evidenziate dai box, le leggi e altri risultati (per lo più matematici) rilevanti sono comunque numerati tra parentesi tonde.
- Appendici: vengono anche curate alcune appendici che riportano risorse utili di svariato genere, quali un piccolo compendio di esercizi, le leggi fisiche rilevanti in questo corso e altro ancora. L'indice riporta anche queste appendici.

Per coloro che invece manifestano maggiore interesse per questa scienza, alcuni capitoli includono approfondimenti che possono stuzzicare conoscenze impavide (anche se non sono di certo questi appunti a contenere tutti quelli più interessanti, qui troverete solo un minimo assaggio). Anche queste sezioni potrebbero essere contrassegnate nell'indice. Gli approfondimenti non sono stati trattati durante le lezioni frontali, ma *alcuni* possono esser stati citati.

Sulla notazione

Si utilizzano spesso in questo testo notazioni matematiche compatte. Invitiamo il lettore a consultare l'appendice dei simboli per eventuali chiarimenti.

Indice

1		roduzione alla Fisica 11
	1.1	Definizione e scopi della fisica
	1.2	Grandezze fisiche
	1.3	Incertezza
	1.4	Notazione scientifica
2	Des	crizione del moto
	2.1	Moto del punto
		2.1.1 Sistemi di riferimento
		2.1.2 Posizione e traiettoria
		2.1.3 Distanza e spostamento
	2.2	Interpretazioni geometriche
	2.3	Moto rettilineo uniforme
	2.4	Accelerazione
	2.5	Moto circolare
		2.5.1 Velocità angolare e velocità tangenziale 19
		2.5.2 Moto circolare uniforme
	2.6	Moto armonico
	2.7	Moto nel piano
		2.7.1 Vettori
3	Din	amica 25
	3.1	Leggi della dinamica
		3.1.1 La prima legge
		3.1.2 La seconda legge
		3.1.3 Analisi dimensionale
		3.1.4 Molla e forza elastica
	3.2	Forza agente sul moto
	3.3	Lancio verso l'alto
	0.0	3.3.1 La terza legge
	3.4	Statica
	3.5	Dinamica e moti armonici
	0.0	3.5.1 Le equazioni del moto armonico
		3.5.2 L'oscillatore a molla
		3.5.3 Il pendolo
	3.6	Forze
	0.0	3.6.1 Peso
		3.6.2 Forza elastica
		3.6.3 Attrito
4	Ma	ccanica 37
4	4.1	Energia
	4.1	Lavoro di una forza
	$\frac{4.2}{4.3}$	Teorema delle forze vive
	4.3	4.3.1 Perché "forze vive"?
		4.3.1 Perche norze vive ?
	4.4	Forze conservative
	$\frac{4.4}{4.5}$	Energia potenziale
	4.0	45.1 Energia potenziale gravitazionale
		4.5.1 Energia dotenziale gravitazionale 44

10 INDICE

	4.6	4.5.2 Energia potenziale elastica	
_			
5		ccanica degli Urti	47
	5.1	Quantità di moto	47
	5.2	Impulso	47
	5.3	Il fenomeno dell'urto	48
	5.4	Conservazione	50
		5.4.1 Forze interne ed esterne	50
		5.4.2 Centro di massa	51
		5.4.3 La legge di conservazione della quantità di moto	52
	5.5	Urti elastici	53
	5.6	Urti anelastici	53
	5.7	Aggeggi interessanti	54
		5.7.1 Pendolo balistico	55
		5.7.2 Pendolo di Newton	56
		5.7.3 Carrelli	56
6	Rel	atività del Moto	57
Ū	6.1	Sistemi di riferimento	
	6.2	Principio di relatività galileiana	
	6.3	Forze apparenti	
	0.0	6.3.1 L'ascensore	59
		U.S.I Lascensore	0.0
7		vitazione	61
	7.1	Gravità e forze fondamentali	61
	7.2	Il principio di equivalenza	61
	7.3	Approfondimenti	63
		7.3.1 Energia potenziale gravitazionale	63
		7.3.2 Eratostene e Cavendish	64
		7.3.3 Gravitazione universale	64
8	Ter	modimaica	67
	8.1	Introduzione	67
		8.1.1 Sistemi termodinamici	68
		8.1.2 Variabili termodinamiche	68
		8.1.3 Trasformazioni termodinamiche ed equilibrio	68
		8.1.4 Caldo e freddo	68
	8.2	Principio zero	68
	8.3	Esperienza di Joule	68
	8.4	Principio primo	69
		8.4.1 Energia interna	69
		8.4.2 Calore	70
		8.4.3 Modalità di trasmissione del calore	70
	8.5	Gas ideali	71
		8.5.1 Leggi dei gas ideali	71
		8.5.2 Lavoro di un gas ideale	72
	8.6	La teoria cinetica dei gas	72
	8.7	Trasformazioni	72
	J. I	871 Reversibilità e irreversibilità	72

INDICE	11

	8.8	Macchine
		8.8.1 Rendimento
		8.8.2 Ciclo Diesel e ciclo di Otto
	8.9	Principio secondo
		8.9.1 Equivalenza degli enunciati del secondo principio 72
	8.10	Esperienza di Carnot
		8.10.1 Ciclo e macchina di Carnot
	0.44	8.10.2 Teorema di Carnot
		Esperienza di Clausius
		Entropia
	8.13	Oltre la termodinamica classica
	014	8.13.1 Microstato e macrostato
	8.14	Approfondimenti
		8.14.1 La questione del calorico
Ι	Λn	pendici 89
_	Αр	pendici
A	Ese	rcizi 91
	A.1	Effetto centrifuga
	A.2	Rincorsa sul cuneo
	A.3	Raindrops are falling on my head
	A.4	Valuta l'offerta
В	Legg	n fisiche notevoli 95
	B.1	Legge di Hooke
	B.2	Legge di Stefan-Boltzmann $\ \ldots \ \ldots \ \ldots \ \ 95$
	B.3	Legge di Newton gravitazione universale 95
	B.4	Legge di Avogadro
	B.5	Legge di Boyle
	B.6	Equazione armonica
	B.7	Oscillatore a molla $\dots \dots \dots$
	B.8	Pendolo
\mathbf{C}	Cos	tanti 97
D	Tav	ola dei simboli e notazioni 99
	D.1	Sulla notazione vettoriale
	D.2	Sui separatori decimali
	D.3	Simboli
	D.4	Sui pedici

12 INDICE

Introduzione alla Fisica

1.1 Definizione e scopi della fisica

Si possono formulare definizioni diverse riguardo la disciplina scientifica della fisica, come la seguente:

Fisica

La fisica è lo studio quantitativo delle leggi fondamentali della natura, cioè delle leggi che governano tutti i fenomeni naturali dell'universo.

Una legge fisica (o principio) è una regolarità della natura esprimibile in forma matematica, ma anche una verità non dimostrabile che tuttavia non contraddice i fenomeni osservabili dell'esperienza.

La fisica si avvale del *metodo sceintifico*, secondo cui la natura deve essere interrogata per vie sperimentali, facendosi guidare da *ipotesi* e modelli teorici. Una particolarità di questo metodo è la capacità di isolare un certo fenomeno che si intende studiare, tralasciando (si userà spesso il termine *trascurare*) certi aspetti ritenuti non rilevanti in modo da scoprire quelle regolarità dalle quali potrebbe essere dedotta una certa relazione matematica.

Il ruolo della matematica è quello di fornire un linguaggio formale per descrivere quantitativamente i fenomeni osservati e costruire modelli utili alla loro trattazione.

1.2 Grandezze fisiche

La fisica è una scienza quantitativa, ovvero essa si occupa di caratteristiche e proprietà del reale che possono essere misurate e quantificate: Le cosiddette grandezze fisiche. Esempi di grandezze fisiche sono la lunghezza, la massa, la temperatura, la durata temporale e così via.

Grandezza fisica

Una grandezza fisica è una caratteristica di un oggetto o di un fenomeno che può essere misurata in termini quantitativi (oltre che oggettivi, ovvero indipendentemente dalle sensazioni personali degli individui).

È implicito, intuitivamente, il concetto di *misura*. Misurare una grandezza fisica significa confrontarla con una grandezza "campione", detta *unità di misura*, e stabilire quante volte l'unità è contenuta nella grandezza data. Il

- 1.1 Definizione e scopi della fisica
- 1.2 Grandezze fisiche
- 1.3 Incertezza
- 1.4 Notazione scientifica

valore numerico ottenuto è la misura della grandezza e deve essere sempre accompagnato dall'unità scelta. In altre parole, la *misura* non è altro che un *rapporto* tra la grandezza che si intende misurare e la grandezza campione scelta convenzionalmente per tale scopo.

Mostriamo un esempio: supponiamo di voler misurare la lunghezza di qualsiasi cosa in "chiavette USB" (si potrebbe argomentare circa quale chiavetta si stia impiegando e quale posizione la chiavetta debba assumere durante la misura. Supponiamo qui che la chiavetta sia posta in verticale, senza perderci in ulteriori dettagli). Decidiamo poi di misurare l'altezza di una porta—anche qui, non specifichiamo quale porta—utilizzando l'unità appena scelta. Supponiamo quindi di aver registrato il seguente dato:

$$H=20$$
 chiavette USB

Notare come siano stati specificati:

- Un nome per l'oggetto che si intendeva misurare, H, ovvero l'altezza della porta.
- Il valore numerico individuato, 20.
- Una affermazione per legare il nome e il dato, = ("corrisponde a", "è uguale a")—caratteristica che peraltro si trova anche nei linguaggi di programmazione. Si presti bene attenzione che l'uguaglianza matematica non implica a priori l'equivalenza fisica. Questa sottigliezza si noterà bene nella formulazione del principio zero della termodinamica.
- L'unità di misura, chiavette USB.

Tuttavia, tale misurazione non è stata affatto sincera: non vi è la garanzia che il valore registrato sia esatto. La prossima sezione tratterà questo problema, ovvero quello dell'*incertezza*.

1.3 Incertezza

Idealmente, si vorrebbe impiegare, grazie alle misure, numeri puntuali ed esatti. In altre parole, dei numeri con una precisione indefinita, aventi un numero illimitato di cifre decimali e non.

Ma quando si effettua una misura di una grandezza, il risultato ottenuto è noto solo con una certa precisione. Riprendendo l'esempio della chiavetta USB, è impossible misurare con certezza tutte le lunghezze, in quanto non multipli esatti della chiavetta stessa: ci sarà sempre un certo margine di "un pezzo di chiavetta", minore dell'unità prescelta. Ma al di sotto di quella unità non è possibile fornire alcuna garanzia sulla puntualità del dato. In altre parole, la sensibilità dello strumento è uno dei limiti alla precisione della misura.

¹La più piccola variazione della grandezza che lo strumento è in grado di rilevare.

Cifre significative del risultato di una misura

Le cifre significative del risultato di una misura sono le cifre note con certezza e la prima cifra incerta. In altre parole, esse sono le cifre che si possono controllare con lo strumento impiegato nella misura.

Ad esempio, il valore corrispondente alla lunghezza di una barca $L=10.5~\mathrm{m}$ possiede tre cifre significative, che non equivale a 10.50 m. Il secondo dato, infatti, dichiara che la misurazione è stata possibile controllando le cifre fino al centimetro. L=0.002 possiede solo una cifra significativa, perché in genere si ignorano gli zeri a sinistra della prima cifra significativa diversa da zero. Possono essere ambigui valori come $L=2500~\mathrm{m}$: Quali zeri sono cifre significative? Chi ha compiuto la misura può aver utilizzato un'asta lunga un centinaio di metri, dunque non è possibile stabilire il valore delle cifre meno significative delle centinaia. Come vedremo tra poco, è utile esprimere questi valori in notazione scientifica per eliminare ambiguità.

Vi potrebbero anche essere errori dovuti a imprecisioni introdotte nell'utilizzo degli strumenti di misura. Questo errore deve tuttavia essere quantificato ed ogni misura ne è affetta (comprese quelle che non la riportano).

Risultato della misura di una grandezza

Il risultato della misura di una grandezza è sempre un'approssimazione accompagnata da una certa incertezza, ovvero un valore attendibile e un errore assoluto (o semplicemente *incertezza*).

$$x = \overline{x} \pm e_x$$

Questo risultato non è quindi altro che un intervallo in cui il valore reale della misura si trova. Ci limiteremo agli errori relativi a singole misure, nelle quali x corrisponde al valore misurato e e_x la sensibilità dello strumento². Di conseguenza, possiamo ora correggere il risultato della misura effettuata in chiavette USB:

$$H = (20 \pm 1)$$
 chiavette USB

1.4 Notazione scientifica

Unità di misura come il metro e il kologrammo sono comode nella vita di tutti i giorni, ma rappresentano quantità enormi su scala atomica e subatomica e quantità minuscole su scala astronomica e cosmica. Conseguenza di ciò è che alcune misure possono essere espresse da numeri "scomodi". Considerando solo valori attendibili, la massa dell'atomo di idrogeno è circa

 $^{^2{\}rm Gli}$ errori si propagano tuttavia anche durante i calcoli, secondo definizioni che tuttavia non verranno affrontate.

mentre la massa della Terra è

È pressoché evidente il motivo di tale scomodità: La notazione è di difficile trattazione. Viene dunque in aiuto la **notazione scientifica**, ovvero una notazione numerica che permette di contrarre rappresentazioni estese impiegando potenze di 10. Nella notazione scientifica, ogni numero è scritto come prodotto di due fattori:

- Un numero decimale $x : x \in \mathbb{R}, 1 \le x < 10[^3]$.
- Una potenza di 10, con esponente intero.

Pertanto, le misure precedenti si possono esprimere in notazione scientifica come segue:

$$m_H = 1,67 \cdot 10^{-27} \text{ kg}$$

 $m_T = 5,97 \cdot 10^{24} \text{ kg}$

Notare come la notazione sia in grado di eliminare ambiguità sul numero di cifre significative: ora sappiamo che la massa della Terra è stata calcolata fino a tre cifre significative e non 25.

Non sempre è necessario calcolare esattamente il valore di una certa grandezza. Talvolta basta averne solo un'idea approssimata. Supponiamo, ad esempio, che sia sufficiente sapere se una certa massa vale all'incirca 1 grammo oppure 1 ettogrammo. In questo caso, possiamo accontentarci di stimare il valore della massa con un'accuratezza di un fattore 10, cioè di calcolare il suo ordine di grandezza.

Ordine di grandezza

L'ordine di grandezza di un numero è la potenza di 10 più vicina a quel numero.

Per determinare l'ordine di grandezza di un numero occorre quindi esprimerlo in notazione scientifica—prodotto di un numero decimale compreso tra 1 e 10 e di una potenza di 10—e poi approssimare il valore alla potenza di 10 più vicina. In particolare:

• Se il numero decimale è minore di 5, si mantiene l'esponente della potenza. Ad esempio:

$$3, 6 \cdot 10^2 \rightarrow \text{ Ordine di grandezza } 10^2$$

 $4, 2 \cdot 10^{-3} \rightarrow \text{ Ordine di grandezza } 10^{-3}$

• Se il numero decimale è maggiore di 5, si somma +1 all'esponente della potenza. Ad esempio:

$$9\cdot 10^2\approx 10\cdot 10^2 \to \text{ Ordine di grandezza }10^3$$

$$8,1\cdot 10^{-12}\approx 10\cdot 10^{-12} \to \text{ Ordine di grandezza }10^{-11}$$

³In realtà, questa notazione corrisponde alla variante "ingegneristica". Esiste anche una notazione che prevede che il valore espresso x sia 0 < x < 1.

Sono stati definiti dei prefissi stadard per certi ordini di grandezza notevoli, cioè quelli che, escludendo la potenza nulla, rappresentano multipli di tre. Utilizzando questi prefissi, di fianco all'unità di misura adottata, si contrae ancora di più la notazione scientifica, sottointendendo un certo ordine di grandezza.

Potenza	Simbolo	Prefisso
10^{12}	Т	Tera
10^{9}	G	Giga
10^{6}	M	Mega
10^{3}	k	kilo
10^{-3}	m	milli
10^{-6}	μ	micro
10^{-9}	n	nano
10^{-12}	р	pico

Descrizione del moto

2.1 Moto del punto

Un corpo è in moto quando la sua posizione cambia nel tempo. Nel descrivere il moto, si introdurrà la seguente semplificazione: Gli oggetti saranno trattati come punti materiali, ovvero concentrati in un punto adimensionale. In particolare, le dimensioni dell'oggetto del quale si intende studiare il moto saranno considerate trascurabili rispetto a quelle dell'ambiente circostante.

Come comportarsi in situazioni come la descrizione del moto di un'auto, che è un corpo esteso? In questo corso, possiamo supporre che tutta l'auto si concentri in un punto specifico, o che venga trattato il moto di una sua parte puntiforme: Un pezzo del lunotto, lo specchietto retrovisore, la punta del paraurti anteriore o una parte molto piccola rispetto a tutto il resto. È tuttavia fondamentale che, se si parla del moto dell'auto, si intenda sempre quel punto che abbiamo scelto in partenza.

2.1.1 Sistemi di riferimento

Abbiamo detto che il moto è caratterizzato da un cambiamento di posizione. Il primo passo nella descrizione del moto di un corpo consiste quindi nello stabilire il modello da adottare per catturare il concetto di **posizione**. Sappiamo già che i modelli della fisica si basano sul linguaggio matematico; il modello più naturale che si possa adottare è dunque un sistema di assi cartesiani. Da qui, la posizione del corpo può essere specificata mediante coordinate. Una speciale coordinata è il tempo (in caso di moti in più di una dimensione spaziale, il tempo viene spesso omesso dalla rappresentazione grafica).

La scelta del sistema di riferimento di assi cartesiani è del tutto arbitraria¹, ma una volta fissata è necessario essere coerenti con essa. Questo permette di riflettere sul fatto che il moto è sempre relativo al sitema di riferimento adottato: cambiando sistema di riferimento, il moto cambia.

Fissando gli assi cartesiani, si fissa una componente di un $sistema\ di\ riferimento.$ Intuitivamente, un sistema di riferimento è il "punto di vista" da cui si sceglie di effettuare misure ed osservazioni riguardo ad un certo fenomeno.

2.1.2 Posizione e traiettoria

Alla base della descrizione del moto, è importante individuare quelli che sono chiamati posizione e traiettoria. Avendo assunto la semplificazione

- 2.1 Moto del punto
- 2.2 Interpretazioni geometriche
- 2.3 Moto rettilineo uniforme
- 2.4 Accelerazione
- 2.5 Moto circolare
- 2.6 Moto armonico
- 2.7 Moto nel piano

Figura 2.1: Sistema di riferimento con una sola dimensione spaziale (x) in funzione del tempo (t). All'istante t_i , il punto materiale P si trova nella posizione x_i

¹Gli assi possono addirittura non essere ortogonali, purché si segua la *regola del paral-lelogramma* e si rinunci alle proprietà e alle regolarità matematiche degli assi ortogonali, come il teorema di Pitagora per il calcolo del modulo dei vettori.

del punto materiale, è intuibile che la posizione verrà descritta matematicamente come una tupla di coordinate inserite in un sistema di assi cartesiani. Tra le coordinate, è importante tenere presente anche il tempo. Di fatto, abbiamo introdotto il moto definendolo come variazione della posizione nel tempo.

La traiettoria non è altro che la linea che unisce le posizioni occupate successivamente dal corpo. Tratteremo prima moti con traiettorie rettilinee, per poi passare a traiettorie curvilinee semplici, come il moto circolare.

Posizione e traiettoria

- La posizione di un corpo è il punto nel quale esso si trova entro un determinato sistema di riferimento.
- La traiettoria di un corpo è l'insieme di posizioni occupate da esso durante il suo moto.

2.1.3 Distanza e spostamento

Durante il moto, è possibile registrare la **distanza** percorsa dall'oggetto e il suo **spostamento**. Il primo è una grandezza scalare e corrisponde alla distanza totale percorsa durante il tragitto effettuato dall'oggetto in moto. Il secondo è una grandezza vettoriale e corrisponde al cambiamento di posizione, cioè la differenza tra la posizione iniziale e quella finale dell'oggetto:

$$\Delta \mathbf{x} = \mathbf{x}_f - \mathbf{x}_i$$

2.2 Interpretazioni geometriche

2.3 Moto rettilineo uniforme

2.4 Accelerazione

2.5 Moto circolare

Cambiamo ora la traiettoria dell'oggetto in moto, considerando quella circolare. Per descrivere un moto circolare è conveniente impiegare coordinate differenti, dette polari. Fissando il centro di un piano cartesiano al centro di una circonferenza di raggio r, possiamo identificare la posizione di ogni punto della circonferenza con la coppia (r, θ) , dove θ è l'angolo formato dalla semiretta appartenente al sistema di riferimento e dalla semiretta che interseca la circonferenza nel punto desiderato (entrambe le semirette hanno origine nel centro del piano cartesiano, quindi della circonferenza).

Assumeremo qui che r non varia durante il moto. Per questo, viene omessa la coordinata r e si considera invece la posizione derivante da θ , detta anche posizione angolare. Convenzionalmente, $\theta > 0$ se misurato in senso antiorario a partire dall'asse di riferimento (come in Figura 2.3).

Figura 2.2: Oggetti in moto rettilineo uniforme con velocità differenti

Figura 2.3: Sistema di riferimento per un moto circolare

Si utilizzano inoltre i radianti per misurare θ . I radianti tornano infatti comodi, perché permettono di semplificare le relazioni tra le grandezze in gioco durante il moto circolare. Innanzitutto, dato l'arco a in Figura 2.3, vale la relazione

$$a = r\theta$$

Di fatto, la lunghezza totale della circonferenza corrisponde a $C=2\pi r$, dove 2π corrisponde ad un angolo giro espresso in radianti.

2.5.1 Velocità angolare e velocità tangenziale

Studiamo ora il cambiamento della posizione angolare nel tempo. Come per il moto rettilineo, possiamo considerare il rapporto tra lo spostamento angolare e l'intervallo di tempo trascorso. Da qui, si ottiene la velocità angolare:

$$\omega = \frac{d\theta}{dt}$$

In ogni istante, una particella in moto circolare si muove in direzione tangenziale alla traiettoria. È chiaro che la particella, muovendosi, copre una certa distanza sulla circonferenza in un dato intervallo di tempo. Possiamo quindi affermare che essa ha una velocità, detta tangenziale, v, oltre che quella angolare ω . Cerciamo una relazione tra esse: supponiamo che la particella effettui, in un intervallo infinitesimo Δt , uno spostamento angolare altrettanto piccolo $\Delta \theta$ come mostrato in Figura 2.4. Lo spostamento Δs , dato dalla corda che sottende l'angolo $\Delta \theta$, approssima l'arco $a = r\Delta \theta$. Quindi:

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{r\Delta \theta}{\Delta t} = r \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = r\omega$$

Abbiamo quindi ottenuto la relazione cercata:

$$v = r\omega$$

Notare come $v \propto r$, al contrario di ω . Ciò significa che, assumendo una velocità angolare costante, la velocità tangenziale è tanto maggiore quanto più r cresce.

2.5.2 Moto circolare uniforme

Un moto circolare uniforme è un moto circolare con velocità angolare costante. Le regolarità di questo tipo di moto permettono di studiare altre grandezze importanti per il moto circolare: periodi e accelerazioni.

Periodo e frequenza

La particolarità di questo moto è la sua periodicità, perché esso si ripete ciclicamente nel tempo. In particolare, un oggetto torna ad occupare la medesima posizione iniziale dopo un certo intervallo di tempo, chiamato $\mathbf{periodo}$ (T): in altre parole, il tempo necessario per compiere "un giro

Figura 2.4: Velocità tangenziale

(ciclo) completo". Nel nostro caso, un giro completo corrisponde all'intera circonferenza $C=2\pi$. Sapendo che $\omega=\frac{d\theta}{dt}$, è immediato ricavare il periodo:

$$T = \frac{2\pi}{\omega}$$

Si impiega spesso anche la **frequenza**, che corrisponde al reciproco del periodo:

$$f = \frac{1}{T}$$

L'unità di misura è l'Hertz (Hz), ovvero "cicli al secondo" (s⁻¹), quindi il numero di cicli compiuti nell'unità di tempo.

Accelerazione centripeta

Riprendendo la prima legge della dinamica, sappiamo che un corpo permane nel suo stato di moto rettilineo uniforme a meno dell'intervento di agenti esterni. Nel caso dell'intervento di tali agenti, si osserva un'accelerazione dell'oggetto, ovvero un cambiamento del suo stato di moto e dunque della sua velocità. Non viene specificato se questo cambiamento avviene al modulo oppure alla direzione della velocità. Infatti, la velocità è una grandezza vettoriale e una variazione di anche una sola delle sue caratteristiche comporta un'accelerazione. Per questo motivo, nonostante il modulo della velocità tangenziale di un corpo in moto circolare uniforme sia costante, la direzione del suo vettore cambia.

Vi è però il problema aperto di trovare l'agente esterno (la forza) che mantiene l'oggetto (dotato di massa) nella traiettoria del suo moto circolare. Esso può essere di varia natura: la tensione di una corda attaccata ad una pallina che viene fatta roteare; la forza di gravitazione universale che mantiene in orbita (assumiamo circolare) un pianeta intorno ad un sole; la forza elettrica che mantiene un elettrone vicino al nucleo (secondo un modello classico dell'atomo).

Vista quindi l'esistenza di un'accelerazione determinata da un agente esterno, rimane da capire come è fatto il suo vettore (modulo, verso e direzione). L'esperienza ci dice che questa accelerazione: (1) cresce con l'aumentare della velocità angolare; (2) è diretta verso il centro della circonferenza. Ma come dimostrarlo formalmente per tutti i moti circolari uniformi? Consideriamo la situazione in Figura 2.5. consideriamo una variazione molto piccola nella posizione angolare dell'oggetto, che parte con una velocità iniziale \mathbf{v}_i e termina con la velocità finale \mathbf{v}_f , uguali in modulo ma diverse in direzione. Come già detto, possiamo esprimere l'accelerazione come variazione della velocità tangenziale.

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} \simeq \frac{\Delta \mathbf{v}}{\Delta t}$$

Concentriamoci sul termine $\Delta \mathbf{v}$.

$$\Delta \mathbf{v} = \mathbf{v}_f - \mathbf{v}_i = \mathbf{v}_f + (-\mathbf{v}_i)$$

Figura 2.5: Dimostrazione delle caratteristiche geometriche del vettore accelerazione centripeta

Geometricamente, i vettori velocità si sommano secondo la "regola del parallelogramma" come mostrato nella Figura. Con i dovuti formalismi geometrici, sapendo che il modulo di v è sempre costante, possiamo dimostrare che l'accelerazione è effettivamente centripeta e ortogonale alla velocità tangenziale, ovvero il suo vettore punta sempre verso il centro della circonferenza. Sempre dalla Figura, possiamo osservare che al crescere di v cresce anche a; tenendo poi presente che la variazione $\Delta \mathbf{v}$, che è un vettore, viene moltiplicata per la quantità scalare $\frac{1}{\Delta t}$, il vettore risultante dell'accelerazione cresce in modulo quanto più piccolo diventa l'intervallo Δt : ovvero la velocità dell'oggetto è maggiore. Dimostreremo più avanti che la relazione precisa tra i moduli di queste grandezze è data da

$$a = \frac{v^2}{r} = \omega^2 r$$

2.6 Moto armonico

Supponiamo di osservare un oggetto in moto circolare uniforme, ma invece di vederlo "dall'alto" lo guardiamo con la riconferenza della traiettoria posta orizzontalmente. Da questo punto di vista, vedremo l'oggetto oscillare a destra e sinistra all'interno di uno spazio la cui larghezza corrisponde al diametro della circonferenza. Ciò che si vede è un moto particolare, il moto armonico semplice.

Dalla Figura 2.6 possiamo notare che, fissato il solito sistema di riferimento xy, il moto armonico semplice non è altro che la proiezione sugli assi di un moto circolare uniforme. Per questo motivo, possiamo descrivere la posizione dell'oggetto caratterizzato da tale moto:

$$\begin{cases} x_p(t) = r\cos\theta = r\cos(\omega t) \\ y_p(t) = r\sin\theta = r\sin(\omega t) \end{cases}$$

Possiamo quindi notare che il moto circolare è la composizione di due moti armonici. Sapendo che la velocità corrisponde alla derivata della funzione che descrive la posizione:

$$\begin{cases} v_x(t) = -\omega R \sin(\omega t) \\ v_y(t) = \omega R \cos(\omega t) \end{cases}$$

Derivando nuovamente, otteniamo l'accelerazione:

$$\begin{cases} a_x(t) = -\omega^2 R \cos(\omega t) \\ a_y(t) = -\omega^2 R \sin(\omega t) \end{cases}$$

Esiste anche una dimostrazione geometrica di tali relazioni, che non impiega esplicitamente i metodi del calcolo infinitesimale. È sufficiente tenere in considerazione la posizione angolare θ , avere dimestichezza con le funzioni sinusoidali e ricordare direzione e verso dei vettori velocità tangenziale e accelerazione centripeta durante un moto circolare uniforme.

Figura 2.6: Modello di moti armonici semplici a partire da proiezioni di un moto circolare uniforme

Relazione tra accelerazione centripeta e velocità

Siamo ora in grado di mostrare l'origine della relazione $a = \frac{v^2}{r} = \omega^2 r$ tra accelerazione centripeta e velocità (angolare e tangenziale) in un moto circolare uniforme.

Osserviamo che il sistema che descrive l'accelerazione del moto armonico contiene i termini $r\cos(\omega t)$ e $r\sin(\omega t)$: le coordinate del punto in moto circolare uniforme in funzione del tempo. Dunque

$$\begin{cases} a_x(t) = -\omega^2 r \cos(\omega t) \\ a_y(t) = -\omega^2 r \sin(\omega t) \end{cases} \Rightarrow \begin{cases} a_x(t) = -\omega^2 x(t) \\ a_y(t) = -\omega^2 y(t) \end{cases}$$

Queste non sono altro che le componenti dell'accelerazione centripeta solidali al sistema di riferimento di assi xy. Sapendo che il modulo di un vettore corrisponde a $|\mathbf{r}| = r = \sqrt{x_r^2 + y_r^2}$ (con x_r, y_r le componenti del vettore rrispetto ad un sistema di assi ortogonali xy), è immediato mostrare che

$$|\mathbf{a}| = a = \sqrt{(-\omega^2 x)^2 + (-\omega^2 y)^2} = \sqrt{\omega^4 x^2 + \omega^4 y^2} = \omega^2 \sqrt{x^2 + y^2} = \omega^2 r$$

Dal precedente sistema, è possibile capire perché il vettore dell'accelerazione è diretto verso il centro della circonferenza: x ed y sono le componenti del vettore posizione dell'oggetto in movimento; tale vettore non è altro che una freccia di modulo uguale alla lunghezza del raggio e la cui punta indica il punto in cui il corpo si trova sulla circonferenza, dunque questo vettore punta verso l'esterno; ma dato che ogni componente viene moltiplicata per la quantità negativa $-\omega^2$, il vettore accelerazione centripeta non può che puntare nel verso opposto, quindi verso il centro della circonferenza. L'equazione vettoriale è dunque la seguente:

$$\mathbf{a} = -\frac{\mathbf{v}^2}{\mathbf{r}}$$

Accelerazione centripeta, traiettorie curvilinee, raggio di curvatura

L'accelerazione centripeta non esiste solamente nei moti circolari uniformi, ma, come possiamo ricordare da esperienze quotidiane, qualsiasi variazione nella traiettoria di un corpo in moto, attraverso una "sterzata", permette di percepire l'effetto e la direzione dell'accelerazione. Possiamo dunque estendere la descrizione del moto circolare uniforme a casi meno eccezionali, come quelli dei moti dalle traiettorie curvilinee. È interessante come l'equazione dell'accelerazione centripeta permetta di ottenere informazioni interessantissime su moti come questi, come il raggio di curvatura. Si osservi l'esempio in Figura 2.7.

Tratti di traiettorie come queste possono essere approssimate da archi di circonferenze con raggi di lunghezze differenti. Durante ognuno di questi brevi tratti, percorsi sugli archi, l'oggetto in moto è sottoposto ad una certa accelerazione centripeta. Assumento che tale oggetto abbia una massa, è possibile misurare l'accelerazione rilevando la forza esercitata sull'oggetto durante il tratto di curva. Dall'equazione dell'accelerazione centripeta, vale

$$\frac{F}{m} = \frac{v^2}{r}$$

Figura 2.7: Una traiettoria curvilinea apporssimata da archi di circonferenze con raggi differenti

Date le nostre supposizioni sulle grandezze conosciute (forza, massa e velocità), l'unico dato che rimane è il raggio, che in questo caso prende il nome di raggio di curvatura:

$$r = \frac{v^2 m}{F}$$

2.7 Moto nel piano

Parabola di un proiettile

$$\begin{cases} x = v_{0,x}t \\ y = v_{0,y}t - \frac{1}{2}t^2 \end{cases}$$

Esprimiamo y in funzione di x:

$$y = \frac{v_{0,y}}{v_{0,x}}x - \frac{1}{2}\frac{g}{v_{0,x}^2}x^2 = Bx - Cx^2$$

Tangente a questa parabola:

$$y' = B - 2Cx$$

2.7.1 Vettori

Vettori posizione e spostamento.

$$\Delta \mathbf{s} = \mathbf{s}_f - \mathbf{s}_i$$

Vettore velocità

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{s}}{\Delta t} = \frac{d\mathbf{s}}{dt} \sim ds \cdot \frac{1}{dt}$$

Per definizione *sempre* tangente alla traiettoria. La traiettoria è la serie dei punti che si ottiene percorrendo per tratti infinitesimi le velocità istantanee.

Accelerazione tangente e accelerazione normale.

Esercizio

 $|\mathbf{v}_i|=50$ km/h, $|\mathbf{v}_f|=100$ km/h, m=1800 kg, R=20 m, $\Delta t=2$ s. $|\mathbf{F}_n|=?$ (forza normale), $|\mathbf{a}_t|=?$. Assumiamo che l'auto acceleri con costanza tra le due velocità.

- $a_{n,i} = \frac{v_i^2}{R}, a_{n,f} = \frac{v_f^2}{R}$
- $F_{n,i} = ma_{n,i} \simeq 17100 \text{ N}, F_{n,f} = ma_{n,f} \simeq 68400 \text{ N}$
- $|\mathbf{a}_t| = cost = \frac{|\Delta \mathbf{v}|}{\Delta t} \simeq 6,95 \text{ m/s}^2$

Recap

$$\mathbf{x} = \mathbf{x_0} + \mathbf{v}(t - t_0)$$

Semplificazioni in termini di variazioni, infinità.

Dinamica

3.1 Leggi della dinamica

Nella descrizione introduttiva del moto, non è stata analizzata alcuna causa del fenomeno.

3.1.1 La prima legge

Prima legge della dinamica (legge di inerzia)

Un corpo permane nel suo stato di *quiete* o moto rettilineo uniforme finché non intervenga un *agente esterno*.

In altre parole, se nulla "rompe le scatole" al corpo, esso permanerà nel suo stato di moto, naturalmente.

Sistema inerziale

Sistema nel quale vale la prima legge della dinamica.

3.1.2 La seconda legge

Quando l'agente esterno agisce sull'oggetto, l'effetto è un cambiamento nello stato di moto di quell'oggetto. Ovvero, cambia la sua velocità. La variazione della velocità nel tempo è chiamata **accelerazione**.

$$\lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = a$$

Seconda legge della dinamica

Il cambiamento dello stato di moto è proporzionale all'intensità della forza applicata.

$$F \propto a$$
 (3.1)

Inoltre, il cambiamento avviene lungo la retta secondo la quale la forza si applica.

$$\mathbf{F} = m\mathbf{a} \tag{3.2}$$

- 3.1 Leggi della dinamica
- 3.2 Forza agente sul moto
- 3.3 Lancio verso l'alto
- 3.4 Statica
- 3.5 Dinamica e moti armonici
- 3.6 Forze

28 3. DINAMICA

Gli oggetti hanno inerzia, ovvero capacità di opporsi all'agire dell'agente esterno. Questa capacità di opporsi è rappresentato da una quantità detta $massa\ inerziale$. Essa è la costante di proporzionalità che lega forza applicata e accelerazione: fissata una accelerazione a, più m è grande, tanto più F cresce. Questo è l'effetto tangibile dell'inerzia.

3.1.3 Analisi dimensionale

$$[F] = [ma] = \left[m \cdot \frac{v}{t}\right] = \left[m \cdot \frac{l}{t^2}\right]$$

$$1 \text{ kg} \cdot \frac{m}{s^2} = \text{udm}\left[M \cdot \frac{L}{T^2}\right] = \text{udm}[F] = 1 \text{ N}$$

3.1.4 Molla e forza elastica

$$F \propto \Delta x$$

La forza che la molla esercita, essendo in opposizione alla direzione nella quale la deformazione viene effettuata, corrisponde a:

$$F_{el} = -k\Delta x$$

3.2 Forza agente sul moto

Un blocco di massa m=10 kg viaggia ad una velocità $v_i=2$ m/s. Una forza F=20 N agisce sul blocco per T=5 s. Quale velocità raggiungerà il blocco dopo T?. Dopo T, la forza cessa di agire e il blocco viaggia a v_f trovata precedentemente. Includendo lo spazio percorso durante T (e dunque il tempo T), quanto tempo impiega il blocco a coprire $s_w=2$ km di distanza?

Per rispondere al primo quesito, possiamo assumere un moto rettilineo uniformemente accelerato durante l'intervallo T. Sappiamo che

$$a = \frac{F}{m} = \frac{dv}{dt}$$

Da cui possiamo esprimere la velocità in funzione del tempo (la velocità iniziale la conosciamo già, ma assumiamo un tempo iniziale $t_0 = 0$):

$$\frac{F}{m}dt = dv \rightarrow \int_{t_0}^t \frac{F}{m}dp = \int_{v_0}^v dw \rightarrow \frac{F}{m} \int_0^t dp = v - v_0 \rightarrow \frac{F}{m}t = v - v_0$$

Dunque

$$v(t) = v_0 + \frac{F}{m}t$$

Non ci manca che calcolare la velocità in corrispondenza di un $t_f = t_0 + \Delta t = 0 + T = T$:

$$v(t_f) = v(T) = v_0 + \frac{F}{m}T$$

Figura 3.1: Forza agente su una massa in moto

Nel secondo quesito, possiamo spezzare il problema in due parti: durante l'azione della forza, la distanza percorsa (s_a) deve essere calcolata tenendo conto del moto uniformemente accelerato, mentre nell'intervallo di tempo successivo (T_v) il moto è semplicemente uniforme. Dalla seguente equazione, possiamo ricavare T_v (T lo conosciamo già).

$$s_w = s_a + s_v = s_a + v_f T_v = \int_0^T (v_0 + at) dp + v_f T_v = v_0 T + \frac{1}{2} a T^2 + v_f T_v$$

Il tempo per percorrere 2 km è dunque:

$$T_{2 \text{ km}} = T + \frac{s_w - v_i T - \frac{F}{2m} T^2}{v_f} = T + \frac{s_w - v_i T - \frac{F}{2m} T^2}{v_i + \frac{F}{m} T}$$

3.3 Lancio verso l'alto

Si consideri la situazione mostrata in Figura 3.2. Durante la salita, l'oggetto rallenta a causa dell'accelerazione di gravità g. Determiniamo la quota che l'oggetto raggiungerà.

$$a = \frac{dv}{dt} \to dv = adt \to \int_{v_0}^{v} dw = \int_{t_0}^{t} adp \to v - v_0 = a \int_{t_0}^{t} dp \to v - v_0 = a(t - t_0)$$

Dunque

$$v(t) = v_0 + a(t - t_0) = v_0 + at$$

Rallentando, si arriverà ad un istante t_f nel quale l'oggetto avrà velocità nulla:

$$v(t_f) = 0 \to v_0 + at_f = 0$$

Non disponiamo tuttavia del tempo, ma possiamo avvalerci della legge oraria che descrive la distanza percorsa:

$$v(t) = \frac{dh}{dt} \to \int_{h_0}^{h} dk = \int_{t_0}^{t} v(t)dp \to h - h_0 = \int_{t_0}^{t} (v_0 + ap)dp$$

$$h - h_0 = v_0 \int_{t_0}^t dp + a \int_{t_0}^t p dp \to h - h_0 = v_0 t + \frac{1}{2} a t^2$$

Da cui:

$$h(t) = h_0 + v_0 t + \frac{1}{2}at^2 = v_0 t + \frac{1}{2}at^2$$

Abbiamo quindi ottenuto la quota in funzione del tempo, che possiamo ricavare dall'equazione $v_0 + at_f = 0 \rightarrow t_f = -\frac{v_0}{a}$.

$$h(t_f) = v_0 t_f + \frac{1}{2} a t_f^2 = -\frac{v_0^2}{a} + \frac{1}{2} a \frac{v_0^2}{a^2} = -\frac{v_0^2}{a} + \frac{v_0^2}{2a} = -\frac{v_0^2}{2a}$$

Sapendo che a = -|g|, la quota massima h_m raggiunta è:

$$h_m = \frac{v_0^2}{2|a|}$$

Figura 3.2: Lancio di un oggetto verso l'alto

30 3. DINAMICA

Spostamento

$$\Delta \mathbf{s} = \mathbf{s}_f - \mathbf{s}_i$$

3.3.1 La terza legge

Terza legge della dinamica (legge di azione e reazione)

La forza che un corpo Aesercita su un corpo B è uguale e opposta alla forza che

$$\mathbf{F}_{A\to B} = -\mathbf{F}_{B\to A}$$

3.4 Statica

$$\sum_{i=1}^{N} \mathbf{F}_i = m\mathbf{a}$$

La somma nel membro di sinistra è detta risultante (**R**). In quiete, non c'è accelerazione:

$$R = 0$$

Se la velocità è costante, possiamo parlare di problemi di quiete? Yes.

Esercizio

$$\mathbf{P} + \mathbf{T} = \mathbf{0} \Rightarrow -mg + T = 0 \Rightarrow T = mg.$$

Esercizio

Come quello precedente ma con due corde che tengono m, inclinate di tot gradi fissate al soffitto. Trovare la tensione su ciascun filo.

3.5 Dinamica e moti armonici

Tratteremo il moto armonico introducendo elementi di dinamica newtoniana, studiando in particolare i cosiddetti oscillatori armonici.

Oscillatore armonico

Un oscillatore armonico è un oggetto su cui agisce una forza proporzionale, in modulo, allo spostamento dalla posizione di equilibrio e diretta in verso opposto rispetto a tale spostamento.

Figura 3.3: Massa appesa ad un filo

Saranno due gli oscillatori armonici di nostro interesse: l'oscillatore a molla e il pendolo semplice. Tuttavia, esistono numerosi esempi di oscillatori armonici in natura, come uno snowboarder che compie evoluzioni in un halfpipe o un atomo che vibra intorno al suo punto di equilibrio, il bilanciere di un orologio (con le dovute approssimazioni).

3.5.1 Le equazioni del moto armonico

Riprendiamo le equazioni del moto armonico introdotto nel capitolo precedente. Il cuore pulsante di tutte le leggi orarie del moto armonico è la funzione periodica, seno o coseno. La scelta tra queste due dipende dal sistema di riferimento scelto e dalle condizioni iniziali dell'oscillatore. Nel nostro caso, scegliamo un oscillatore che parte dalla posizione di equilibrio (e che come vedremo avrà velocità massima in questo punto), quindi utilizziamo il seno per descrivere la sua posizione in funzione del tempo:

$$x(t) = A\sin(\omega t)$$

È necessario fare alcune precisazioni: per posizione non intendiamo solo quella spaziale, ma anche, per esempio, quella angolare; inoltre, l'equazione precedente non è sufficientemente generale, perché abbiamo implicitamente supposto che l'istante temporale iniziale sia $t_0=0$. Per questo, la legge oraria generale della posizione di un oscillatore armonico è $x(t) = A\sin(\omega(t-t_0)) = A\sin(\omega t - \omega t_0)$ (è facile verificare che effettivamente $x(t_0) = 0$, in accordo con la nostra scelta del sistema di riferimento). In genere la legge si scrive in questo modo

$$x(t) = A\sin(\omega t + \phi) \tag{3.3}$$

Introduciamo alcune terminologie tecniche:

- Ampiezza A: si tratta del massimo spostamento spaziale dell'osillatore a partire dal suo punto di equilibrio, in genere assunto come origine del sistema di riferimento adottato per la posizione. Nell'esempio del moto circolare, corrisponde al raggio della circonferenza. L'oscillatore si muove di fatto tra il massimo A e il minimo -A.
- Pulsazione ω : è un indice della "rapidità" dell'oscillatore nel compiere i suoi cicli. Approfondiremo meglio l'interpretazione della pulsazione nei prossimi paragrafi.
- Fase $\phi = -\omega t_0$: intuitivamente, lo "sfasamento" dell'oscillatore. Incontriamo spesso oscillatori sfasati quando essi vengono messi in moto in istanti differenti. Per comodità, ometteremo spesso la fase, sottointendendo $t_0 = 0$.

Con qualche derivata della posizione, otteniamo velocità e accelerazione dell'oscillatore in fuznione del tempo:

$$v(t) = \frac{d}{dt}x(t) = \frac{d}{dt}(A\sin(\omega t + \phi)) = A\omega\cos(\omega t + \phi)$$

$$a(t) = \frac{d}{dt}v(t) = \frac{d}{dt}(A\omega\cos(\omega t + \phi)) = -A\omega^2\sin(\omega t + \phi)$$

3. DINAMICA

Ecco dunque le leggi orarie generali della velocità e dell'accelerazione di un oscillatore armonico:

$$v(t) = A\omega\cos(\omega t + \phi) \tag{3.4}$$

$$a(t) = -A\omega^2 \sin(\omega t + \phi) \tag{3.5}$$

Concludiamo scrivendo la legge per eccellenza di un moto armonico, ovvero la *condizione sufficiente*. Sappiamo che l'accelerazione non è altro che la derivata seconda della posizione rispetto al tempo:

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Ma dall'Equazione 3.5 notiamo che

$$a = -A\omega^2 \sin(\omega t + \phi) = -\omega^2 (A\sin(\omega t + \phi)) = -\omega^2 x$$

Dunque

$$\frac{d^2x}{dt^2} + \omega^2 x = 0 \tag{3.6}$$

Abbiamo appena definito matematicamente l'oscillatore armonico: cinematicamente, in un oscillatore l'accelerazione è proporzionale allo spostamento con costante di proporzionalità negativa.

Interpretazione dell'ampiezza

Interpretazione della fase

Interpretazione della pulsazione

In tutte le equazioni dei moti armonici dominano le funzioni goniometriche. Esse sono periodiche, ovvero esiste una quantità T tale per cui f(x+T)=f(x) per ogni x appartenente al dominio di f. In parole meno fredde, dopo un certo periodo la funzione si ripete, ciclicamente. Per seno e coseno, il periodo corrisponde a 2π (infatti, vale per esempio $\sin(x+2\pi)=\sin(x)$ $\forall x$).

Isoliamo la componente goniometrica delle equazioni armoniche, considerando per esempio il seno e ignorando la fase ϕ (per il coseno il ragionamento è analogo, mentre per ϕ possiamo risolvere il problema mediante trasformazioni). Supponiamo di avere il periodo T, ovvero quel valore per cui la funzione ritorna uguale a se stessa:

$$\sin(\omega t) = \sin(\omega(t+T)) = \sin(\omega t + \omega T)$$

Sapendo che il periodo del seno è 2π :

$$\omega T = 2\pi$$
 \therefore $\omega = \frac{2\pi}{T}$

Possiamo dunque comprendere il significato della pulsazione ω : il suo valore è inversamente proporzionale al periodo T, ovvero la pulsazione cresce al diminuire di T, e viceversa. Questo vuol dire che ω fornisce un indice della "rapidità" con la quale le oscillazioni di un moto armonico avvengono. Graficamente, ω comprime verso l'asse dell'ampiezza la funzione goniometrica quando il suo valore cresce.

3.5.2 L'oscillatore a molla

Consideriamo un carrello di una rotaia a cuscino d'aria di massa m attaccato ad una molla di costante elastica k, indice della durezza della molla. Quando la molla si trova nella posizione di equilibrio, cioè né estesa né compressa, il carrello rimane fermo. Poniamo questa posizione come l'origine $x_o=0$ di un asse delle posizioni. Se il carrello viene spostato dall'equilibrio e portato a una distanza \overline{x} da tale posizione, la molla esercita una forza elastica di richiamo che, per la legge di Hooke, corrisponde a

$$F = -k(x - x_o) = -kx$$

Il segno negativo indica appunto che si tratta di una forza di richiamo, dunque opposta, nel suo verso, allo spostamento dalla posizione di equilibrio. Possiamo applicare la seconda legge di newton:

$$-kx = ma = m\frac{d}{dt}(v) = m\frac{d}{dt}\frac{d}{dt}(x) = m\frac{d^2x}{dt^2}$$

Da cui

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

È evidente che si tratta di un oscillatore armonico, perché l'accelerazione è proporzionale allo spostamento, con costante di proporzionalità negativa. Questa costante è $-\frac{k}{m} = -\omega^2$, da cui possiamo dedurre il periodo dell'oscillatore a molla:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{3.7}$$

Oscillatori verticali

Anche una massa appesa ad una molla verticale può comportarsi come un oscillatore armonico. L'unica differenza è la posizione di equilibrio, nella quale il peso della massa eguaglia la forza di richiamo della molla:

$$mg = kx_0$$

Indipendentemente dal sistema di riferimento utilizzato, l'equazione del periodo non cambia. La forma delle equazioni armoniche rimane pressoché invariata, ma è necessario fare attenzione ad eventuali traslazioni spaziali derivanti dalla scelta del sistema di riferimento.

Misurare dinamicamente k di molle per ammortizzatori

Per misurare la costante elastica di una molla, è immediato tentare un approccio statico, quindi allungando la molla, registrando la lunghezza di tale allungamento e la forza di richiamo della molla in seguito alla deformazione. Esiste tuttavia un metodo ancora più interessante che sfrutta le equazioni armoniche, in particolare il periodo espresso nell'equazione 3.7.

$$k = 4\pi^2 \frac{m}{T^2}$$

3. DINAMICA

Supponiamo di voler misurare la costante elastica dell'ammortizzatore di un'auto. Con un po' di ingegno, deduciamo che se affrontiamo un dosso ad alta velocità l'auto oscillerà verticalmente per qualche istante, per poi assestarsi. Possiamo dunque stimare il tempo che l'auto impiega per compiere la primissima oscillazione, che in realtà corrisponderà pressapoco alla metà del periodo di oscillazione. Infine, conoscendo la massa dell'auto, è possibile utilizzare l'equazione precedente, ma con una massa divisa per quattro, perché essa viene distribuita sulle quattro ruote.

3.5.3 Il pendolo

Quello del pendolo semplice è un sistema fisico descrivibile mediante il modello del moto armonico. Un pendolo semplice è formato da una massa m appesa ad un filo o un'asta (idealmente inestensibili e di massa trascurabile) con una certa lunghezza l. Il punto di equilibrio stabile del pendolo si trova esattamente al di sotto del punto di sospensione. Di fatto, la posizione a riposo corrisponde a quella illustrata nel sistema della Figura 3.3, dove è stato appunto mostrato che la risultante delle forze agenti sulla massa appesa è nulla.

Supponiamo di spostare la massa dalla sua posizione di equilibrio, formando un angolo θ tra il filo e la verticale. Sappiamo che la massa può oscillare lungo un arco di circonferenza. Fissiamo un sistema di riferimento solidale alla massa, con un asse coincidente con la retta passante per il filo e l'altro ad esso perpendicolare, dunque tangente all'arco. Scomponiamo dunque il peso della massa lungo questi assi (perpendicolare e tangenziale) e applichiamo la seconda legge della dinamica:

$$ma_t = P_t = -mg\sin\theta$$

$$ma_n = -P_n + T + F_c = 0$$

Notare che nella seconda equazione è presente anche la forza centripeta F_c derivante dal moto circolare, oltre la tensione. Concentriamoci sull'accelerazione tangenziale nella prima equazione. Ricordando che gli angoli sono in relazione con la lunghezza degli archi a secondo l'equazione $a = l\theta$:

$$a_t = \frac{dv_t}{dt} = \frac{d}{dt}(\omega l) = l\frac{d}{dt}\left(\frac{d\theta}{dt}\right) = l\frac{d^2\theta}{dt^2}$$

Dunque, riprendendo la primissima equazione riguardo la componente tangenziale del peso, semplificando la massa:

$$l\frac{d^2\theta}{dt^2} + g\sin\theta = 0$$

Per rendere più semplice la trattazione del sistema fisico, supporremo per ipotesi che $\theta \ll 1$ (in radianti), dunque ciò che calcoleremo in seguito varrà solamente per piccole oscillazioni del pendolo. Ricordando le proprietà delle serie di Taylor, possiamo approssimare il seno nella precedente equazione, dividere per la lunghezza l del pendolo ottenendo

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0$$

Prima	$\varepsilon \to 0$	Dopo
$\sin \varepsilon$		ε
$ an \varepsilon$		ε
$\cos \varepsilon$ e^{ε}		$1 - \frac{\varepsilon^2}{2}$ $1 + \varepsilon$
$(1+\varepsilon)^{\alpha}$		$1 + \alpha \varepsilon$

Diventa dunque evidente il motivo della semplificazione: abbiamo ottenuto una relazione nella quale l'accelerazione (angolare) dipende proporzionalmente dallo spostamento (angolare) con costante di proporzionalità negativa. In altre parole, si tratta della descrizione di un moto armonico semplice nella forma $\frac{d^2x}{dt^2} + \omega^2 x = 0$, dalla quale si deduce che $\omega^2 = \frac{g}{l}$. Ma sapendo che $\omega^2 = (\frac{2\pi}{T})^2$ abbiamo modo di determinare il periodo di oscillazione del pendolo:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{3.8}$$

Isocronismo del pendolo

Come già aveva concluso Galileo nel 1583, il periodo di oscillazione del pendolo, ristretta ad angoli ridotti a partire dalla posizione di equilibrio, non dipende dall'ampiezza, come altri moti armonici. Questo fatto è dimostrato dall'equazione precedentemente ottenuta (Equazione 3.8). Ciò che rende un pendolo diverso dall'altro è la lunghezza del filo e "il pianeta su cui si trova", intendendo l'accelerazione gravitazionale g. Mantenendo invariati questi parametri, possiamo fissare una qualsiasi massa m e caricare il pendolo a nostro piacere (sempre entro i limiti di angoli ridotti), ma T non cambierà.

Il fatto che l'oscillazione non dipenda dalla massa fissata trova una motivazione analoga a quella di una massa in caduta libera, dove l'accelerazione è sempre la stessa. Masse ridotte si muovono più facilmente per la loro piccola inerzia, ma tuttavia su di esse agisce una forza altrettanto ridotta; d'altra parte, masse maggiori sono sottoposte a forze gravitazionali maggiori, ma sono anche più difficili da spostare. Per giustificare intuitivamente l'indipendenza dall'ampiezza, è sufficiente pensare che una maggiore "carica" è compensata da un tragitto maggiore (l'arco di circonferenza descritto durante l'oscillazione). Possiamo dunque concludere che queste compensazioni sono il motivo delle indipendenze osservabili nell'equazione 3.8.

Analisi approfondita del moto di un pendolo

Alla luce delle equazioni sul moto armonico semplice, poniamo

$$\theta = A\sin(\omega t + \phi)$$

e definiamo la velocità angolare di una massa di un pendolo semplice:

$$\nu = \frac{d\theta}{dt} = A\omega\cos(\omega t + \phi)$$

Ricordiamo che l'ampiezza A corrisponde all'angolo massimo spazzato durante l'oscillazione, quindi si tratta di una grandezza adimensionale, seppur col significato di radianti. Per quanto riguarda l'accelerazione angolare:

$$\alpha = \frac{d\nu}{dt} = -A\omega^2 \sin(\omega t + \phi)$$

Descriviamo a, l'arco di circonferenza descritto durante il moto, sapendo che la lunghezza del filo è l:

$$a = l\theta = lA\sin(\omega t + \phi)$$

3. DINAMICA

Per quanto riguarda velocità tangenziale e accelerazione tangenziale:

$$v_t = \frac{da}{dt} = \frac{d}{dt}(l\theta) = l\frac{d\theta}{dt} = l\nu = lA\omega\cos(\omega t + \phi)$$
$$a_t = \frac{dv}{dt} = -lA\omega^2\sin(\omega t + \phi)$$

Tensione del filo di un pendolo semplice in funzione del tempo

All'inizio di questa sottosezione, abbiamo analizzato le forze in gioco distinguendo le componenti tangenziali e perpendicolari alla circonferenza descritta dal pendolo. È ora di analizzare la componente perpendicolare, la quale permette al pendolo di non distruggersi durante l'oscillazione. Infatti, la massa è mantenuta nella sua traiettoria per mezzo della tensione del filo, che si contrappone alla componente perpendicolare del peso della massa appesa più la forza centripeta derivante dal moto circolare in atto. La relazione tra i moduli di queste forze è dunque la seguente:

$$T = P_{\perp} + F_c = mg\cos\theta + ma_c = mg\cos\theta + m\frac{v_t^2}{l}$$

Data la variazione di θ e di v_t durante l'oscillazione, segue che la tensione dipende dal tempo. Approssimiamo l'equazione supponendo $\theta \ll 1$, possiamo utilizziare l'equazione della velocità tangenziale ottenuta precedentemente:

$$T(t) = mg\cos\theta(t) + mlA^2\omega^2\cos^2(\omega t + \phi)$$

Per via delle approssimazioni, possiamo semplificare anche la funzione coseno dipendente da θ , rimanendo con il termine $mg(1-\frac{\theta^2}{2})$. Avendo la descrizione armonica $\theta(t)=A\sin(\omega t+\phi)$ otteniamo la funzione della tensione di un pendolo per piccole oscillazioni:

$$T(t) = mg\left(1 - \frac{(A\sin(\omega t + \phi))^2}{2}\right) + mlA^2\omega^2\cos^2(\omega t + \phi)$$
 (3.9)

3.6 Forze

Il mondo che ci circonda è costituito da oggetti che esercitano delle azioni gli uni sugli altri. Tali azioni impresse da agenti esterni su altri agenti sono generalmente chiamate forze, ma possono avere natura differente a seconda del fenomeno fisico in esame. Ad esempio, le forze possono agire per contatto, come la spinta delle ruote di un'auto sull'asfalto, o a distanza, come la forza di gravità. Rimane tuttavia la caratteristica comune del loro effetto, ovvero la capacità di modificare il moto dei corpi in accordo con la seconda legge della dinamica.

3.6. FORZE 37

3.6.1 Peso

3.6.2 Forza elastica

3.6.3 Attrito

Anche la più liscia delle superfici, se osservata a livello atomico, risulta scabra. Per far scorrere due superfici l'una sull'altra, occorre superare la resistenza dovuta agli urti fra i loro minuscoli avvallamenti e sporgenze. Questo modello grossolano spiega intuitivamente l'origine della forza chiamata attrito. Esso dipende da molti fattori, come il materiale, la finitura delle superfici, la presenza di lubrificanti, e pertanto non esiste una legge fisica semplice ed universale che lo descriva. È tuttavia possibile derivare alcune leggi empiriche in grado di calcolare le forze di attrito.

Attrito radente

L'attrito radente si manifesta durante lo scivolamento tra due superfici (esiste anche l'attrito volvente, che riguarda corpi estesi che rotolano e ruotano, ma non è di nostro interesse dato lo studio del punto materiale). La forza di attrito radente è proporzionale alla forza normale alla superficie ma è indipendente dalla superficie di contatto fra le superfici ed è espressa dalla relazione

$$\mathbf{F}_A = \mu \mathbf{F}_{\perp}$$

dove \mathbf{F}_{\perp} è la forza perpendicolare, o premente, alla superficie, mentre μ è un coefficiente di attrito che dipende dai materiali degli oggetti e altri fattori e spesso è compreso tra 0 e 1.

Le forze di attrito si suddividono a loro volta in attrito dinamico e statico.

Attrito dinamico

L'attrito dinamico si oppone allo scorrimento di un corpo su una superficie.

Attrito statico

L'attrito statico si oppone al distacco di un corpo da una superficie. Esso tende a impedire che un oggetto fermo su una superficie si distacchi da essa, cominciando a scivolare. L'attrito statico è generalmente maggiore di quello dinamico, perché, quando le supefici sono in contatto statico, i loro microscopici avvallamenti (riprendiamo il modello introdotto per spiegare l'origine dell'attrito) possono aderire maggiormente l'uno all'altro, determinando una maggiore interazione tra superfici.

• • •

 $\mathbf{F}_{\mathbf{A}} = \mu |\mathbf{N}| \hat{A}$. Grafico, zona statica forza di attrito statica, regime dinamico forza di attrito dinamica.

38 3. DINAMICA

Statica

$$\mathbf{F}_{A,S} = -\mathbf{F}_{\mathrm{app},T} \tag{3.10}$$

$$\mathbf{F}_{A,S} = -\mathbf{F}_{\text{app},T}$$

$$|\mathbf{F}_{A,S}| = |\mathbf{F}_{A,S}^{\text{max}}| = \mu_s |\mathbf{N}|$$
(3.10)

 ${\bf Dinamica}$

$$\mathbf{F}_{A,D} = -\mu_d |\mathbf{N}| \hat{v} \tag{3.12}$$

Meccanica

4.1 Energia

Con la cinematica abbiamo trattato unicamente il moto "come appare", slegato dalle sue cause. Con la dinamica abbiamo invece introdotto quelle cause, ovvero le forze. In questo capitolo effettueremo un passo in più: Unendo i concetti definiti fino ad ora, scopriremo una quantità spesso interpretata come il costo con il quale si pagano cambiamenti e trasformazioni nell'universo: L'energia. Spiegare cosa sia l'energia valica il confine della filosofia; la fisica contemporanea si limita a postulare l'esistenza di questa quantità, misurabile indirettamente da altre quantità, che possiede la peculiare caratteristica di conservarsi in sistemi isolati. In altre parole, se un sistema non comunica in nessun modo con l'esterno, la quantità di energia di quel sistema non cambia mai. Essa può al più trasformarsi e per questo motivo non è un qualcosa di tangibile e direttamente osservabile; possiamo solo vederne le varie forme e manifestazioni. Questo perché l'energia viene sempre definita attraverso altre proprietà invece ben riconoscibili: Distanze, masse, lo scorrere del tempo. Moltiplicando, dividendo ed effettuando altre operazioni (che definiremo) di queste quantità su un sistema, scopriremo che il risutato che si ottiene è sempre lo stesso.

Quella della conservazione è una caratteristica che contraddistingue altre quantità fisiche, tra le quali vedremo, nel prossimo capitolo, solo la quantità di moto

4.2 Lavoro di una forza

Precedentemente abbiamo introdotto l'energia come un costo, che può essere convertito e speso per effettuare certi cambiamenti in natura. Il lavoro di una forza è la forma di energia più familiare, perché esprime il contributo di una forza allo spostamento di un oggetto, qualcosa che associamo al moto e dunque ad un'espressione di "vitalità": Auto in movimento mediante il motore, una persona che cammina per mezzo della muscolatura, un oggetto in caduta libera a causa del suo peso.

Il lavoro di una forza \mathbf{F} costante corrisponde al prodotto scalare¹ tra la forza e lo spostamento $\mathbf{s} = \Delta \mathbf{r} = \mathbf{r}_f - \mathbf{r}_i$, dove \mathbf{r}_i e \mathbf{r}_f sono vettori che descrivono rispettivamente le posizioni iniziale e finale del punto materiale in moto:

$$W \stackrel{\text{def}}{=} \mathbf{F} \cdot \mathbf{s} \tag{4.1}$$

- 4.1 Energia
- 4.2 Lavoro di una forza
- 4.3 Teorema delle forze vive
- 4.4 Forze conservative
- 4.5 Energia potenziale
- 4.6 Conservazione dell'energia meccanica

Ricordiamo che il prodotto scalare p tra due vettori a e b è un valore scalare definito da $p = ab \cos \theta_{ab}$, con θ_{ab} l'angolo tra i vettori.

4. MECCANICA

Il lavoro si misura in Joule (J), dove

$$1 \text{ J} = 1 \text{ Nm} = 1 \text{ kg} \frac{\text{m}^2}{\text{s}^2}$$

La definizione 4.1 presuppone che la forza \boldsymbol{F} rimanga sempre constante durante lo spostamento \boldsymbol{r} . Questo non è sempre vero nella realtà. Per questo possiamo definire il lavoro infinitesimo nel seguente modo

$$dW \stackrel{\text{def}}{=} \mathbf{F} \cdot d\mathbf{s} \tag{4.2}$$

dove supponiamo che per il tratto infinitesimo $d\mathbf{r}$ agisca una certa forza costante \mathbf{F} . Se poi definiamo \mathbf{F} in funzione dello spostamento, $\mathbf{F}(\mathbf{r})$, allora possiamo integrare su tale funzione per ottenere il lavoro totale tra due coordinate A, B.

$$W_{AB} = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{s} \tag{4.3}$$

Se si sviscera il prodotto scalare della definizione 4.2, otteniamo

$$dW = \mathbf{F} \cdot d\mathbf{s} = Fds \cos \theta$$

dove θ è l'angolo compreso tra i vettori \boldsymbol{F} e \boldsymbol{s} . Notiamo che, per via del prodotto scalare, dW è uno scalare, non un vettore, e può essere positivo, negativo o nullo. A seconda del caso, il lavoro viene in genere nominato come segue:

- Lavoro motore: dW > 0
- Lavoro resistente: dW < 0 (la forza si oppone allo spostamento)
- Lavoro nullo: dW = 0 (forza nulla o spostamento nullo o la forza è ortogonale allo spostamento): un esempio è la forza centripeta.

Esempio cammino sentiero

$$W_{A o B} = \sum_{i=A}^{N=B} dW_i o \int_A^B dW \text{ per } N o \infty$$

$$W_{A o B} = \int_A^B m{F} \cdot dm{r}$$

Notiamo che

$$P \cdot dr = |P|(|dr|\cos\theta)$$

Dove abbiamo la proiezione dello spostamento sul peso P. Questo significa che per calcolo del lavoro importa solo la variazione della quota, dh.

$$W_{0\to 2000 \text{ m}} = \sum_{0}^{2000} \mathbf{P} \cdot d\mathbf{r} = \int_{0}^{2000} mgdh = mgh_{bondone}$$

4.3 Teorema delle forze vive

Osserviamo ora come il lavoro può condurre a risultati teorici molto importanti. Per i più frettolosi, consigliamo di saltare direttamente al sottoparagrafo 4.3.2.

4.3.1 Perché "forze vive"?

Il lavoro di una forza è ben visibile quando esso agisce su un corpo in movimento. Prendiamo l'esempio di un razzo che viene lanciato verso il cielo: La propulsione data dal propellente spinge il razzo verso l'alto e in termini sempliciotti lo "aiuta" a guadagnare velocità durante la salita, perché la forza è concorde con lo spostamento (entrambi i vettori puntano verso l'alto perpendicolarmente al terreno) e compie lavoro motore. Quando il razzo raggiunge la sua altezza massima, in genere comincia a cadere, ma supponiamo che ad un certo punto esso liberi un paracadute. La resistenza data dal paracadute determina una forza che si oppone alla caduta del razzo; dunque, in questo secondo caso, la resitenza dell'aria che gonfia il paracadute compie un lavoro resistente, che si oppone al moto di caduta e per questo frena il razzo e ne riduce la velocità.

Agli albori della meccanica ci si sarebbe riferiti all'effetto di queste forze in gioco come vis viva, o forza viva, una quantità o un'essenza dotata di vita propria, che trasferendosi da corpo a corpo determinava cambiamenti nello stato di moto di quegli stessi corpi. Per tale ragione storica, il teorema porta ancora in sé il termine di forza viva, anche se la fisica contemporanea propende sempre più verso la denominazione di teorema dell'energia cinetica. Definiremo l'energi cinetica, altra forma dell'energia, nel prossimo paragrafo.

4.3.2 Energia cinetica e dimostrazione del teorema

L'ipotesi fondamentale per giungere all'enunciato del teorema è la seconda legge della dinamica, oltre alla definizione di lavoro. Supponiamo che \boldsymbol{F} sia una forza totale esercitata su di un corpo di massa m. L'azione di \boldsymbol{F} produce uno spostamento, che considereremo infinitesimo in modo da generalizzare il ragionamento a forze variabili e dipendenti dallo spostamento stesso. Allora

$$\boldsymbol{F} = m \frac{d\boldsymbol{v}}{dt}$$

Senza giustificare le ragioni matematiche dei prossimi passaggi, ma facendoci guidare dall'intuizione fisica, eseguiamo il prodotto scalare con ds su entrambi i membri

$$\mathbf{F} \cdot d\mathbf{s} = m \frac{d\mathbf{v}}{dt} \cdot d\mathbf{s} = m d\mathbf{v} \cdot \frac{d\mathbf{s}}{dt}$$

Notiamo che questa operazione ha permesso di ottenere un lavoro al membro di sinistra, mentre a destra si ottiene il termine ds/dt, che corrisponderebbe proprio alla velocità v. Con ulteriori sviluppi, si raggiunge la seguente equazione (il simbolo d ha il significato fisico di variazione o differenza

4. MECCANICA

infinitesima).

$$\mathbf{F} \cdot d\mathbf{s} = m\mathbf{v} \cdot d\mathbf{v} = m \ d\left[\frac{v^2}{2}\right]$$

Dimostriamo come sviluppare il termine $\mathbf{v} \cdot d\mathbf{v} = d\left[\frac{v^2}{2}\right]$. Ricorriamo alla definizione vettoriale di prodotto scalare² e utilizziamo questo abuso di notazione, ma ragionevole dal punto di vista fisico:

$$\int x \, dx = \frac{x^2}{2} + c \Rightarrow \frac{d}{dx} \left[\frac{x^2}{2} + c \right] = x \Rightarrow \int x \, dx = \int d \left[\frac{x^2}{2} \right]$$

Quindi

$$v_x dv_x + v_y dv_y + v_z dv_z \Rightarrow d\left[\frac{v_x^2}{2}\right] + \dots = d\left[\frac{v_x^2 + \dots}{2}\right] = d\left[\frac{v^2}{2}\right]$$

Riprendendo l'equazione $\textbf{\textit{F}}\cdot d\textbf{\textit{s}}=m~d\left\lceil\frac{v^2}{2}\right\rceil$ otteniamo

$$dW = d \left[\frac{1}{2} m v^2 \right]$$

Il termine $E_K=\frac{1}{2}mv^2$ viene chiamato $energia\ cinetica.$ Quindi

$$dW = dE_K$$

Questa equazione può essere tradotta come "una infinitesima quantità di lavoro corrisponde ad una variazione infinitesima dell'energia cinetica". Ora possiamo enunciare il teorema delle foze vive:

Teorema dell'energia cinetica (o delle forze vive)

Quando una forza (risultante) applicata a un oggetto per un dato tratto di traiettoria, compie su di esso un lavoro, il risultato è una variazione del modulo della velocità dell'oggetto e quindi una variazione della sua energia cinetica. Quindi, il lavoro compiuto su un oggetto è uguale alla variazione della sua energia cinetica.

$$W_{i \to f}^{(R)} = \Delta E_K \tag{4.4}$$

È necessario sottolineare alcune osservazioni:

- 1. Il teorema presuppone che il lavoro sia dovuto all'effetto della risultante delle forze agenti sul corpo.
- 2. Il lavoro è rappresentato da una variazione di energia cinetica. Possiamo descrivere dunque lo stato finale come

$$E_{K,f} = E_{K,i} + W_{i \to f}$$

dunque se il lavoro, quindi l'energia trasferita all'oggetto, è positivo, l'energia cinetica aumenta e viceversa.

- 3. Il teorema sposta la descrizione del sistema fisico dal piano vettoriale a quello scalare. Ovvero, partendo da grandezze vettoriali, abbiamo ottenuto una legge dove compaiono solamente dei numeri. Ciò rende particolarmente agevole l'utilizzo del teorema in svariati problemi nei quali l'analisi vettoriale può essere ostica.
- 4. Il teorema è molto potente per la sua validità generale, perché non sono state fatte ipotesi sulla natura delle forze, se non presupponendo come vera la seconda legge della dinamica $\mathbf{F} = m\mathbf{a}$. La legge può essere dunque applicata ad un pendolo, ad una palla da bowling, a delle molecole microscopiche in movimento.

Teorema delle forze vive (fato ben)

Come adesso scopriremo, la definizione del lavoro introduce una quantità fisica estremamente utile nella trattazione di fenomeni di natura meccanica. Un risultato molto importante in merito è il teorema dell'energia cinetica (o, come un tempo, delle forze vive, da vis viva).

Riprendiamo il secondo principio della dinamica

$$\mathbf{F} = m\mathbf{a} = m\frac{d\mathbf{v}}{dt}$$

$$\mathbf{F} \cdot d\mathbf{s} = m \frac{d\mathbf{v}}{dt} \cdot d\mathbf{s}$$

dove al memobro di sinistra abbiamo ottenuto il lavoro infinitesimale corrispondente, dW. Osserviamo tuttavia che al membro di destra vale

$$md\boldsymbol{v} \cdot \frac{d\boldsymbol{s}}{dt} = md\boldsymbol{v} \cdot \boldsymbol{v}$$

per definizione di velocità (istantanea). Osserviamo dunque ciò che accade passando all'integrazione:

$$\int_{i}^{f} m\boldsymbol{v} \cdot d\boldsymbol{v} = m \left[\frac{v^{2}}{2} \right]_{i}^{f}$$

Per questo ultimo passaggio, abbiamo fatto ricorso alla definizione di prodotto scalare e alle proprietà degli integrali:

$$\int \mathbf{v} \cdot d\mathbf{v} = \int v_x dv_x + v_y dv_y + \dots = \frac{v_x^2}{2} + \frac{v_y^2}{2} + \dots = \frac{v^2}{2}$$

Abbiamo dunque mostrato che

$$W_{i \to f} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$

ovvero il lavoro totale (derivante cioè dalla risultante ${\pmb F}$ su m, come avevamo supposto), dipende solo da certe quantità che definiscono l'oggetto prima e dopo lo spostamento nel quale ha agito la forza. La quantità $\frac{1}{2}mv^2$ corrisponde dimensionalmente ad una certa energia e viene definita energia cinetica

4. MECCANICA

$$E_K \stackrel{\text{def}}{=} \frac{1}{2} m v^2$$

e rappresenta l'energia che un corpo possiede in virtù del suo stato di moto, dunque della sua velocità ad un certo istante.

4.4 Forze conservative

In fisica, possiamo classificare le forze in conservative e non conservative. La distinzione tra di esse sta nel fatto che quando agisce una forza conservativa, il lavoro compiuto viene immagazzinato in una forma di energia, l'energia potenziale, che è possibile risprigionare. Il lavoro compiuto da una forza non conservativa, invece, non può essere recuperato in seguito come energia cinetica, ma viene trasformato in altre forme di energia. Le differenze tra forze conservative e non conservative emergono se prendiamo in esame il moto di un oggetto lungo una traiettoria chiusa.

Forza conservativa (condizione I)

Una forza conservativa è una forza che compie un lavoro totale nullo lungo ogni percorso chiuso. Se il percorso è $\gamma = A \rightarrow A$ (il percorso si chiude su se stesso) e F è una forza conservativa, allora:

$$W_{A\to A} = \oint_{\gamma} \mathbf{F} \cdot d\mathbf{s} = 0 \qquad \forall \gamma \tag{4.5}$$

Da questa prima caratteristica delle forze conservative ne segue nua seconda. Si considerino i percorsi tra A e B in Figura 4.1. Supponiamo di dover raggiungere il punto A partendo da B e possiamo fare ciò percorrendo due strade differenti, α e γ . Disegnamo poi un terzo percorso, che invece riporta A in B. Per ipotesi vale la condizione I, ovvero sta agendo una forza conservativa lungo tali percorsi. Dunque, il lavoro compiuto dalla forza nei percorsi chiusi $\alpha\beta$ e $\beta\gamma$ è nullo:

$$W_{\alpha\beta} = W_{\alpha} + W_{\beta} = 0$$
$$W_{\beta\gamma} = W_{\beta} + W_{\gamma} = 0$$

Ma allora

$$W_{\beta} = -W_{\alpha} = -W_{\gamma}$$
 : $W_{\alpha} = W_{\gamma}$

Abbiamo mostrato che il lavoro compiuto dalla forza conservativa dal punto B al punto A è uguale per entrambi i percorsi. In altre parole, il lavoro totale dipende solo dai punti A e B.

Possiamo dimostrare questa proprietà in un altro modo. Consideriamo il percorso chiuso $\beta\gamma$. Vale per ipotesi

$$W_{\alpha\beta} = W_{\beta} + W_{\gamma} = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{s} + \int_{B}^{A} \mathbf{F} \cdot d\mathbf{s} = 0$$

Figura 4.1: Percorsi tra due punti in presenza di una forza conservativa

Quindi

$$\int_{A}^{B} \mathbf{F} \cdot d\mathbf{s} = -\int_{B}^{A} \mathbf{F} \cdot d\mathbf{s} = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{s}$$

Forza conservativa (condizione II)

Una forza è conservativa se il lavoro totale compiuto da essa durante uno spostamento da A a B dipende unicamente da questi punti di partenza e di arrivo, non dal percorso seguito tra essi.

 $W[\mathbf{F}]_{A\to B}$ indipendente dai percorsi tra A e B

4.5 Energia potenziale

Una forza conservativa può essere caratterizzata da una terza condizione che deriva dalla seconda.

Forza conservativa (condizione III)

Una forza è conservativa se il lavoro effettuato da essa è esprimibile in funzione delle sole "coordinate" A e B tramite una primitiva nella forma seguente:

$$W_{A\to B} = -\left[\mathcal{U}(\boldsymbol{x}_B) - \mathcal{U}(\boldsymbol{x}_A)\right] = -\Delta\mathcal{U}$$

Questa condizione esprime la proprietà delle forze conservative di consentire agli oggetti ad essa sottoposti di immagazzinare una certa quantità di energia da essa trasferita se l'oggetto passa da A a B e di liberare quella stessa energia nel tragitto inverso. Immaginiamo di lanciare una palla nel vuoto. La forza peso, derivante dalla gravità, è conservativa. Mentre la palla cade, il peso effettua un lavoro su di essa e di fatto la sua energia cinetica aumenta. Quella energia deve pur provenire da qualche parte. Se osserviamo questo esperimento "invertendo il tempo" (o equivalentemente lanciamo in alto la palla), osseviamo che la forza peso esegue un lavoro negativo sulla palla, quindi la sua energia cinetica diminuisce mano a mano. Ma il peso è una forza conservativa, dunque l'energia da essa sottratta viene comunque conservata in qualche forma. Questa è l'energia potenziale, che dipende appunto dalla differenza di quota della palla.

Mostriamo come ricavare la condizione III. Sappiamo che il lavoro di una forza conservativa è definita da un integrale, che non dipende dal percorso effettuato tra l'inizio A e la fine B. Dunque il lavoro deve in qualche modo poter essere descritto da una funzione nelle variabili A e B.

$$W_{A \to B} = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{s} = f(A, B)$$

4. MECCANICA

Questa funzione sarà una qualche primitiva della funzione integranda, che sarà quindi composta da dei contributi lineari di A e B dentro qualche funzione \mathcal{U} (a meno di costanti moltiplicative esterne alla funzione). Abbiamo quindi le seguenti scelte:

$$\mathcal{U}(A) + \mathcal{U}(B)$$

 $\mathcal{U}(A) - \mathcal{U}(B)$

Ma sapendo che la funzione f(A, B) è una qualche primitiva, ciò significa che deve valere la proprietà di antisimmetria (invertendo gli estremi di integrazione, deve cambiare il segno). Questa proprietà vale solo per la seconda funzione:

$$f(B, A) = \mathcal{U}(B) - \mathcal{U}(A) = -(\mathcal{U}(A) - \mathcal{U}(B))$$

Definiamo dunque la differenza di energia potenziale per forze conservative.

$$\Delta \mathcal{U}_{A \to B} = \mathcal{U}(B) - \mathcal{U}(A) = -W_{A \to B}$$

Notare che stiamo definendo solo la differenza di energia potenziale, non l'energia potenziale in sé. Possiamo infatti fissare lo "zero" dell'energia potenziale in modo del tutto arbitrario, in quanto esso non sarà mai utile nel risultato finale di un problema di meccanica.

4.5.1 Energia potenziale gravitazionale

4.5.2 Energia potenziale elastica

4.6 Conservazione dell'energia meccanica

Ricordiamo il teorema delle forze vive (Equazione 4.4)

$$W = E_{K,f} - E_{K,i}$$

dove W corrisponde al lavoro totale delle forze che agiscono sul corpo tra i momenti i e f. Abbiamo inoltre mostrato che il lavoro dovuto alle forze conservative (\mathfrak{C}) è legato ad una differenza di energia potenziale:

$$W_{\mathfrak{C}} = -(\mathcal{U}_f - \mathcal{U}_i)$$

Per il principio di sovrapposizione, possiamo esprimere il lavoro totale nel seguente modo, separando l'insieme forze conservative \mathfrak{C} e non conservative \mathfrak{N} :

$$W = W_{\mathfrak{C}} + W_{\mathfrak{N}}$$

Unendo le equazioni finora ottenute,

$$W_{\mathfrak{N}} = \Delta E_K + \Delta \mathcal{U} = (E_{K,f} + \mathcal{U}_f) - (E_{K,i} + \mathcal{U}_i) = \Delta E \tag{4.6}$$

Abbiamo unito quantità relative a momenti correlati, cioè abbiamo unito energia cinetica finale con energia potenziale finale ed energia cinetica iniziale con energia potenziale iniziale. La somma di queste quantità viene chiamata energia meccanica:

$$E \stackrel{\text{def}}{=} E_K + \mathcal{U} \tag{4.7}$$

Dalla 4.6 possiamo notare che, se agiscono forze non conservative, la variazione di energia meccanica corrisponde al lavoro effettuato dalle froze non conservative stesse. Per questo, è intuitivo utilizzare l'equazione nella forma

$$E_f = E_i + W_{\mathfrak{N}}$$

perché permette di capire che l'energia meccanica finale del sistema cambierà da quella iniziale di una certa quantità dovuta all'azione delle forze non conservative, che possono aggiungere o sottrarre energia meccanica. In assenza di forze non conservative, allora $W_{\mathfrak{N}}=0$. Segue dunque un importante teorema, ovvero il teorema di conservazione dell'energia meccanica, che abbiamo appena dimostrato.

Teorema di conservazione dell'energia meccanica

Se su un oggetto il lavoro totale delle forze non conservative è nullo, allora la sua energia meccanica si conserva.

$$\Delta E = 0 \tag{4.8}$$

4. MECCANICA

Meccanica degli Urti

Fino ad ora abbiamo trattato il moto di corpi "solitari", ovvero non perturbati da altri corpi, ma al massimo influenzati da qualche agente esterno (le forze). Trattiamo ora gli urti, fenomeni dei quali abbiamo un'idea intuitiva secondo la quale lo "scontro" determina un qualche cambiamento nella velocità e nella traiettoria degli oggetti coinvolti. Per trattare gli urti è necessario introdurre due nuove grandezze: Quantità di moto e impulso.

5.1 Quantità di moto

Abbiamo sempre espresso la seconda legge come

$$\mathbf{F} = m\mathbf{a} = m\frac{d\mathbf{v}}{dt}$$

ma questa proposizione afferma che l'effetto dell'agente esterno (la forza \mathbf{F}) si traduce interamente in una variazione dello stato di moto del corpo (accelerazione \mathbf{a}). Si suppone quindi che la massa sia sempre costante, anche se ciò non è sempre vero. Ad esempio, un razzo pieno di carburante non avrà la stessa massa che aveva in partenza una volta arrivato in orbita, quindi la forza esercitata dalla propulsione dei motori si è tradotta non solo in una variazione dello stato di moto, ma anche in una variazione della massa. Non tratteremo sistemi complessi come il razzo, ma ciò fa intuire che la seconda legge della dinamica può essere generalizzata nella forma seguente

$$\mathbf{F} = \frac{d}{dt}(m\mathbf{v}) = \frac{d\mathbf{p}}{dt} \tag{5.1}$$

Dove la quantità \boldsymbol{p} prende il nome di quantià di moto, definita come

$$\boldsymbol{p} \stackrel{\text{def}}{=} m\boldsymbol{v} \tag{5.2}$$

Come dice il termine, la quantità di moto descrive il moto dei corpi sulla base della velocità di una massa più la massa stessa, a differenza di quanto accade nello studio cinematico del moto, dove solo le variazioni dello stato di moto contano, slegate da cause (forze) e materia (massa). La quantità di moto è inoltre una grandezza vettoriale, perché contiene in sé la velocità, a sua volta grandezza vettoriale.

5.2 Impulso

In molte situazioni comuni le forze agiscono per un tempo brevissimo, come negli urti. In questi casi è utile introdurre la grandezza dell'impulso. Supponiamo, ad esempio, che in una partita di baseball il lanciatore faccia partire la palla a una velocità di 150 km/h. Il battitore ruota il braccio e

- 5.1 Quantità di moto
- 5.2 Impulso
- 5.3 Il fenomeno dell'urto
- 5.4 Conservazione
- 5.5 Urti elastici
- 5.6 Urti anelastici
- 5.7 Aggeggi interessanti

colpisce con la mazza la palla, che ritorna verso il lanciatore a 185 km/h. Nel breve intervallo di tempo durante il quale la palla e la mazza sono in contatto, dell'ordine del millesimo di secondo, la forza fra esse cresce rapidamente fino ad un valore massimo molto grande, quindi si annulla quando la palla si stacca dalla mazza.

Descrivere l'andamento nel tempo della forza che la mazza esercita sulla palla è difficile. Ciò che possiamo conoscere più facilmente con una strumentazione adeguata è la variazione della quantità di moto (massa e velocità) della palla a causa del colpo e il tempo Δt di contatto tra mazza e palla. Da questi dati possiamo allora accontentarci di ottenere, usando l'equazione 5.1 una forza media, ovvero una forza che si è mantenuta costante per tutto l'intervallo di tempo del contatto mazza-palla.

$$\langle \boldsymbol{F} \rangle = \frac{\Delta \boldsymbol{p}}{\Delta t}$$

Riformulando questa equazione per variazioni infinitesime, possiamo ottenere la variazione di quantità di moto in funzione di \mathbf{F} e dt:

$$d\mathbf{p} = \mathbf{F}dt$$

Il prodotto Fdt viene definito impulso e non è altro che una definizione matematica alternativa della variazione della quantità di moto, utilizzata però più spesso in contesti in cui agiscono forze impulsive, cioè forze variabili che agiscono per tempi molto brevi rispetto a quelli comunemente misurabili nel sistema esaminato.

$$\boldsymbol{I} \stackrel{\text{def}}{=} \boldsymbol{F} dt \tag{5.3}$$

L'impulso è particolarmente utile per spiegare il motivo per cui è più confortevole atterrare su 10 metri di neve dopo una caduta di 100 metri piuttosto che su una lastra di pietra. Per frenare la nostra caduta, la neve ci permette di sprofondare al suo interno, quindi essa varia la nostra quantità di moto in maniera graduale e su un intervallo di tempo prolungato. Al contrario, la lastra di pietra non si deforma in maniera apprezzabile e l'impatto determina un impulso molto forte rispetto alla neve, tanto da essere letale.

5.3 Il fenomeno dell'urto

Hrte

Un urto è un'interazione tra corpi, nella quale si osservano forze denominate *impulsive*, che cioè agiscono per tempi e su distanze molto più brevi di quelli *tipici* osservabili all'infuori dell'urto.

Cosa si intende per distanze e tempi tipici? Per i lettori che ancora si ricordano, immaginiamo una puntata di Holly & Benji: Quando i calciatori si apprestano a sferrare un calcio, il disegnatore sceglie sempre di rappresentare l'istante del colpo deformando il pallone. Anche se questa

raffigurazione è evidentemente esagerata, essa ha un fondo di verità e offre una spiegazione intuitiva di cosa si intende per distanze tipiche dell'urto: in un urto, gli oggetti coinvolti si deformano. Queste deformazioni avvengono su distanze ben minori di quelle, per esempio, della traiettoria del calcio o della lunghezza del campo. In urti reali, inoltre, come il calcio alla palla di Holly & Benji, queste deformazioni sono inevitabili, nonostante i corpi che collidono sembrino apparentemente i più rigidi su questo pianeta¹. Bisogna poi specificare che le deformazioni sono molto difficili da osservare perché, oltre ad avvenire su distanze ridotte rispetto a quelle tipiche, anche i tempi nelle quali accadono sono molto brevi. Il contatto tra piede e pallone è molto ridotto rispetto a quello che invece è richiesto al calciatore per correre dall'angolo al centro del campo. Riassumendo questo esempio calcistico, quando osserviamo una partita siamo di fronte a grandezze tipiche (dimensioni del campo da calcio, velocità dei calciatori e della palla, ecc.); negli urti, invece, possiamo trascurare le deformazioni e le distanze, perché troppo piccole rispetto a quelle tipiche, e i tempi, perché gli urti appaiono come eventi istantanei ai nostri occhi.

L'intenzione della meccanica di questo capitolo, dunque, non è quella di descrivere ciò che accade durante l'urto, ma prevedere, date le informazioni precedenti all'urto, lo stato del sistema successivamente all'urto. Idealmente, l'urto avviene istantaneamente e i corpi coinvolti sono sempre punti materiali, che dunque non conoscono deformazioni.

Urti e quantità di moto

Vogliamo prevedere lo stato del sistema dopo l'urto, in termini di velocità (vettori) dei corpi coinvolti. Sorprendentemente, gli unici strumenti che servono per trattare in modo semplice questo problema sono i tre principi della dinamica, più la definizione di quantità di moto e l'assunzione del sistema isolato, ovvero non disturbato da forze esterne.

Un classico esempio che unisce nozioni su urti e quantità di moto è il tavolo da biliardo. Supponiamo di avere due palle, 1 e 2, sul tavolo in moto rettilineo uniforme e in rotta di collisione tra loro; ovvero, sappiamo con certezza che la loro traiettoria si intersecherà e che tale punto verrà raggiunto da entrambi i corpi nel medesimo istante di tempo. L'esprerienza ci permette di concludere che, passata la zona d'urto, le palle non procederanno sulle stesse rette dei moti precedenti, ma devieranno. Dobbiamo fare alcune assunzioni fondamentali. Innanzitutto, supporremo che nessun altro agente agirà sul sistema appena descritto (aiuterebbe immaginare due palle che vagano nello spazio profondo, o in altre parole: Nulla deve disturbare il sistema). Immaginiamo l'intervallo temporale nel quale le due palle saranno a contatto tra loro, collidendo: entrambe eserciteranno una forza sull'altra e aiutati dalla terza legge della dinamica sappiamo che

$$\pmb{F}_{1\rightarrow 2} = -\pmb{F}_{2\rightarrow 1}$$

cioè l'applicazione di una forza su una palla determina una forza identica in modulo e direzione, ma verso opposto e applicata sull'altra palla. Svilup-

 $^{^1 \}mathrm{II}$ suono è prova del fatto che sono avvenute vibrazioni nei corpi, che dunque si sono deformati.

piamo l'equazione sfruttando la definizione di quantità di moto, ricordando che una forza $x \to y$ determina una variazione dello stato di moto di y.

$$\frac{d\boldsymbol{p}_2}{dt} = -\frac{d\boldsymbol{p}_1}{dt}$$

Ricorrendo agli usuali abusi di notazione matematica, ma ragionevoli da un punto di vista fisico, semplifichiamo l'intervallo di tempo infinitesimale del differenziale:

$$d\mathbf{p}_2 = -d\mathbf{p}_1$$
$$d[\mathbf{p}_1 + \mathbf{p}_2] = 0$$
$$d\mathbf{p}_{\text{tot}} = 0$$

Abbiamo mostrato, in anticipo, che per un sistema di due corpi come le palle da biliardo, assumendo che non agiscano forze esterne, la quantità di moto totale del sistema si conserva. Come l'energia meccanica, possiamo dunque concludere che un urto ideale non modifichi la quantità di moto del sistema. Questa conclusione è ancora incompleta e inesatta perché, come scopriremo in una prossima sezione, la quantità di moto si conserva sempre in un sistema isolato e non dipende dalla natura dell'urto.

5.4 Conservazione

Come l'energia, nella storia della fisica si è sempre pensasto al moto come una quantità che potesse essere trasferita da un corpo ad un altro, fatto ragionevole ben giustificato dall'esperienza: basti pensare al gioco del biliardo. Come già dedusse Cartesio, la "macchina dell'universo", assimilata ad un orologio, non può continuare a funzionare senza che una qualche quantità si conservi. Egli stesso fu tra i primi a proporre il prodotto massavelocità come misura di tale quantità: due carri identici che viaggiano a velocità differenti hanno chiaramente quantità di moto diverse, ma una palla di cannone racchiude in sé maggior moto rispetto ad un sasso lanciato alla stessa velocità. Queste quantità sono presenti negli oggetti secondo distribuzioni differenti e variabili nel tempo, ma nel complesso esse non possono che sommarsi (vettorialmente!) sempre nella medesima quantità; se l'universo è un sistema chiuso, e lo si può supporre per definizione, allora la quantità di moto non può sparire o comparire, ma può trasferirsi tra gli oggetti al suo interno, trasformarsi.

5.4.1 Forze interne ed esterne

Approfondiamo il concetto di sistema di punti materiali e studiamone uno contentente un certo numero di punti materiali N. Immaginiamo che tra questi punti agiscano forze di varia natura: repulsive elettriche, attrattive gravitazionali ecc.; inoltre, supponiamo che vengano applicate altre forze dall'esterno di questo sistema di punti materiali². Possiamo suddividere le forze in gioco in due insiemi:

²Una immagine esplicativa è il polmone, dove le molecole dell'aria formano i punti materiali e i muscoli del torace sono gli agenti esterni.

- 53
- 1. **Forze interne**: le forze che i punti esercitano gli uni sugli altri. Forze che descrivono l'interazione tra i punti.
- 2. Forze esterne: le forze che l'ambiente esterno esercita sul sistema, l'insieme di punti.

Ogni punto i-esimo sarà sottoposto ad una certa forza totale, o risultante, derivante dalla somma/sovrapposizione di tutte le forze precedentemente descritte

$$egin{aligned} oldsymbol{R}_i &= m_i oldsymbol{a}_i \ oldsymbol{R}_i^{(E)} + oldsymbol{R}_i^{(I)} &= m_i oldsymbol{a}_i \end{aligned}$$

Definiamo le risultanti delle forze esterne, ed interne agenti sul punto i-esimo:

$$egin{aligned} m{R}_i^{(E)} &\stackrel{ ext{def}}{=} \sum_k m{F}_{k o i}^{(E)} \ m{R}_i^{(I)} &\stackrel{ ext{def}}{=} \sum_j m{F}_{j o i}^{(I)} \qquad j
eq i \end{aligned}$$

Supponiamo che un punto non eserciti alcuna forza su se stesso (per questo poniamo $i \neq j$). La risultante di tutte le forze in gioco sarà

$$m{R} = \sum_i m{R}_i$$

In tale somma, concentriamoci sulla risultante delle forze interne:

$$oldsymbol{R}^{(I)} = \sum_i oldsymbol{R}_i^{(I)} = \sum_i \sum_j oldsymbol{F}_{j
ightarrow i}^{(I)}$$

In questa somma, supponiamo che non vi siano forze agenti su un corpo ed esercitate dal corpo stesso, dunque poniamo $\boldsymbol{F}_{j\to i}^{(I)} = \overrightarrow{0} \quad \forall j=i$. Sappiamo che vale la terza legge della dinamica, dunque $\boldsymbol{F}_{j\to i}^{(I)} = -\boldsymbol{F}_{i\to j}^{(I)}$. Ma allora

$$\mathbf{R}^{(I)} = \sum_{i} \sum_{j} \mathbf{F}_{j \to i}^{(I)} = \overrightarrow{0}$$
 (5.4)

Abbiamo appena dimostrato, grazie all'ipotesi della terza legge, che, in un sistema di punti materiali, la risultante delle forze interne è nulla.

5.4.2 Centro di massa

Dall'Equazione 5.4 possiamo dedurre che la risultante delle forze, interne ed esterne, coinvolte in un sistema di punti materiali è determinata solamente dalle forze esterne.

$$\boldsymbol{R} = \boldsymbol{R}^{(E)} = \sum_i \boldsymbol{R}_i^{(E)} = \sum_i m_i \boldsymbol{a}_i$$

Dalla precedente equazione, si può ricavare un'interessante definizione:

$$\sum_{i} m_{i} \boldsymbol{a}_{i} = \sum_{i} m_{i} \frac{d^{2} \boldsymbol{x}_{i}}{dt^{2}} = \left(\sum_{i} m_{i}\right) \frac{d^{2}}{dt^{2}} \left[\frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{\sum_{i} m_{i}}\right]$$

Abbiamo ottenuto un termine molto interessante, un artificio matematico che ha interpretazioni e applicazioni piuttosto importanti: il centro di massa.

$$\boldsymbol{x}_{\text{CM}} \stackrel{\text{def}}{=} \frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{\sum_{i} m_{i}} \tag{5.5}$$

Dalla definizione è banane³ ricavare la velocità e l'accelerazione del centro di massa. Riprendendo le equazioni precedenti e ponendo $M = \sum_i m_i$, possiamo concludere che

$$\boldsymbol{R}^{(E)} = M \frac{d^2 \boldsymbol{x}_{\mathrm{CM}}}{dt^2} = M \boldsymbol{a}_{\mathrm{CM}}$$

5.4.3 La legge di conservazione della quantità di moto

In un sistema isolato, non si rilevano forze esterne. Allora

$$\mathbf{R}^{(E)} = \overrightarrow{0}$$
 : $M\mathbf{a}_{\text{CM}} = 0$: $\mathbf{a}_{\text{CM}} = 0$

ovvero, la velocità del centro di massa è costante, quindi la quantità di moto del centro di massa è costante e si conserva in un sistema isolato. Vale dunque la seguente:

$$egin{aligned} oldsymbol{v}_{ ext{CM},i} &= oldsymbol{v}_{ ext{CM},f} \ rac{\sum_{j} m_{j} oldsymbol{v}_{j,i}}{M} &= rac{\sum_{j} m_{j} oldsymbol{v}_{j,f}}{M} \ oldsymbol{p}_{ ext{tot},i} &= oldsymbol{p}_{ ext{tot},f} \end{aligned}$$

Da cui

$$\frac{d}{dt}\mathbf{p}_{\text{tot}} = 0 \tag{5.6}$$

Tale risultato ha conseguenze di portata non trascurabile. Si consideri infatti il problema esposto nella prossima sottosezione.

Punto di collisione

Due magneti di massa m e 5m sono mantenuti ad una distanza fissa tra di loro. Una volta rimossi i vincoli, i due magneti si attraggono fino a schiantarsi. Sapendo che il primo magnete si trovava in posizione $x_1 = 0$ mentre il secondo in $x_2 = 8$ cm, si intende individuare la posizione della collisione.

³Hai letto bene.

Alla luce della legge di conservazione della quantità di moto, sappiamo che nella situazione iniziale la quantità di moto totale del sistema è nulla, in quanto i due magneti sono mantenuti fermi.

$$p_{i} = 0$$

Il problema non fa alcun cenno all'azione di forze esterne, dunque possiamo supporre che il sistema sia isolato e che dunque la quantità di moto iniziale si conserverà anche subito prima dell'urto. Vale allora:

$$p_i = m v_{i,\text{tot}} = 0 \Rightarrow v_{i,\text{tot}} = 0$$

Ma sappiamo anche che la velocità totale è rappresentato dal centro di massa del sistema. Ciò significa che se il centro di massa era "fermo" inizialmente, rimarrà tale anche poco prima dell'urto, grazie alla legge di conservazione della quantità di moto. Basta dunque trovare la posizione del centro di massa e il gioco è fatto.

$$x_{\text{CM}} = \frac{mx_1 + 5mx_2}{m + 5m} = \frac{x_1 + 5x_2}{6} = \frac{5}{6}x_2$$

5.5 Urti elastici

Urto

In un urto elastico, si conservano la quantità di moto e l'energia cinetica.

Un sistema contenente un certo numero di corpi può dunque essere descritto come segue:

$$\begin{cases} \sum_{j} m_{j} \mathbf{v}_{0,j} = \sum_{j} m_{j} \mathbf{v}_{f,j} & \text{conservazione della quantità di moto} \\ \sum_{j} m_{j} \mathbf{v}_{0,j}^{2} = \sum_{j} m_{j} \mathbf{v}_{f,j}^{2} & \text{conservazione dell'energia cinetica} \end{cases}$$
(5.7)

Nella realtà comunemente osservabile, urti pressoché elasti avvengono tra oggetti che rimbalzano tra loro dopo un urto, anche se in realtà l'energia cinetica viene inevitabilmente dissipata in altre forme (suono e calore), rendendo l'urto stesso non del tutto elastico. Sono idealmente elastici urti tra particelle, a livello molecolare e atomico⁴.

5.6 Urti anelastici

Urto

In un urto anelastico, la quantità di moto del sistema si conserva, mentre l'energia cinetica totale no.

⁴Questa assunzione sarà fondamentale nella teoria cinetica dei gas

Negli urti anelastici, vale sempre la legge di conservazione della quantità di moto. Tutti gli urti reali sono anelastici e un esempio di urto perfettamente anelastico è quello di due corpi che rimangono uniti dopo l'urto. Supponiamo di avere due masse che viaggiano ad una certa velocità e in rotta di collisione tra loro. Dopo l'urto, le due masse rimangono in contatto. Supponendo che le due masse attaccate formino un unico corpo, Vale:

$$p_{1,i} + p_{2,i} = p_{3,f}$$

Dal punto di vista energetico, però, accade qualcosa di strano. Osserviamo l'energia cinetica:

$$E_{K,i} = E_{K1,i} + E_{K2,i} = \frac{1}{2}m_1\mathbf{v}_{1,i}^2 + \frac{1}{2}m_2\mathbf{v}_{2,i}^2$$

Supponiamo di porre gli oggetti nel sistema di riferimento del centro di massa e di osservare esternamente la situazione (poniamo $v = v_{\text{CM}} + v_{\text{scm}}$):

$$E_{K,i} = \frac{1}{2} m_1 (\mathbf{v}_{\text{CM}} + \boldsymbol{v}_{1,i,\text{scm}})^2 + \frac{1}{2} m_2 (\mathbf{v}_{\text{CM}} + \boldsymbol{v}_{2,i,\text{scm}})^2 = \frac{1}{2} (m_1 + m_2) \boldsymbol{v}_{\text{CM}}^2 + E_{K,i}'$$

dove abbiamo isolato i termini nei quali compare la velocità del centro di massa elevata al quadrato, per poi condensare l'energia rimanente in $E'_{K,i}$, la cui forma non è per noi rilevante. Se invece calcoliamo l'energia cinetica finale,

$$E_{K,f} = \frac{1}{2}(m_1 + m_2)\boldsymbol{v}_{3,f}^2 = \frac{1}{2}(m_1 + m_2)\boldsymbol{v}_{\text{CM}}^2$$

è immediato infatti notare che, data la conservazione della quantità di moto, il corpo finale comprensivo di entrambe le masse non potrà che muoversi con velocità identica a quella del centro di massa. Abbiamo dunque mostrato che in generale l'energia cinetica non si conserva nell'urto. In particolare, essa diminuisce sempre in situazioni reali.

$$E_{K,f} \le E_{K,i} \tag{5.8}$$

Il motivo di tale fenomeno può essere spiegato attraverso numerose interpretazioni, che possono dipendere dal sistema analizzato. In generale, la perdita di energia cinetica è dovuta al costo per mantenere unite le masse dopo l'urto, oppure, come accade sempre nella realtà, quell'energia viene dissipata in calore, deformazioni permanenti dei materiali, suono e così via.

5.7 Aggeggi interessanti

Sono numerosissimi i sistemi che possono essere resi affascinanti se analizzati da un punto di vista meccanico. Qui tratteremo solo alcuni dei più semplici di questi sistemi.

5.7.1 Pendolo balistico

Dedichiamo una sezione ad un dispositivo molto divertente, che per qualche strano motivo eccita a dismisura la materia grigia di un qualsiasi fisico: Il pendolo balistico. Scegliamo questo sistema fisico perché unisce lo studio di quantità di moto ed energia meccanica, le due principali grandezze conservative affrontate nel corso.

La figura 5.1 mostra lo schema essenziale di un pendolo balistico. Un pendolo balistico è costituito da due elementi principali: Un pendolo, costituito da un filo o asta al quale è agganciato un bersaglio (spesso un sacco di sabbia o un blocco di legno), e un proiettile. Generalmente, per funzionare bene, ci si aspetta che la massa del proiettile sia relativamente ridotta rispetto a quella del bersaglio. Per utilizzare il pendolo balistico, si spara il proiettile verso il bersaglio fermo, in modo che la traiettoria del proiettile sia perpendicolare al filo del pendolo. Quando il proiettile colpisce il bersaglio, esso si conficca al suo interno e il pendolo comincia ad oscillare per via dell'urto.

Il pendolo balistico è un metodo ingegnoso per misurare in particolare la velocità del proiettile. Ciò che è sufficiente conoscere sono le masse del proiettile (m) e del bersaglio (M), l'altezza massima di oscillazione del pendolo (h), a partire dalla posizione di equilibrio, e l'accelerazione di gravità del pianeta sul quale ci si trova (nel caso della Terra, g). Si consideri l'istante immediatamente precedente all'urto proiettile-bersaglio: in questo caso, la quantità di moto dell'intero sistema è data dalla somma della quantità di moto del proiettile e quella del bersaglio appeso al pendolo, ma sappiamo che quest'ultimo è fermo.

$$\mathbf{p}_i = m\mathbf{v} + M\vec{0} = m\mathbf{v}$$

Il proiettile si conficca nel bersaglio, rimanendovi incastrato. Si tratta dunque di un urto idealmente anelastico. Stavolta il pendolo comincerà a muoversi con una certa velocità \boldsymbol{V} ma la sua massa include quella del proiettile.

$$\boldsymbol{p}_f = (m+M)\, \boldsymbol{V}$$

La quantità di moto del sistema si conserva e dunque $p_i = p_f$, ma supponendo di voler ottenere v, serve un'ulteriore via per trovare l'incognita V. Per fare questo, ricorriamo alla meccanica. Immediatamente dopo l'urto, il pendolo comincia ad elevarsi ad una certa altezza h, che possiamo facilmente misurare, dove il pendolo si fermerà per poi oscillare ciclicamente. Supponiamo che l'energia cinetica del pendolo sia massima nel punto di equilibrio e che invece la sua energia potenziale sia nulla. All'altezza h, invece, l'energia cinetica è nulla, perché il pendolo si ferma per invertire l'oscillazione, mentre l'energia potenziale è massima. Dal momento che sul sistema solo le forze conservative compiono lavoro (la forza peso), possiamo applicare il principio di conservazione dell'energia meccanica.

$$\Delta E = E_{K_f} + \mathcal{U}_f - (E_{k_i} + \mathcal{U}_i) = (m+M)gh - \frac{1}{2}(m+M)\mathbf{V}^2 = 0$$

Figura 5.1: Il pendolo balistico

Da cui otteniamo il modulo di $\boldsymbol{V}.$

$$V = \sqrt{2gh}$$

Passando ai moduli, consapevoli del fatto che i vettori di \boldsymbol{V} e \boldsymbol{v} hanno direzione perpendicolare al filo del pendolo, ricaviamo facilmente il risultato dall'equazione sulla conservazione della quantità di moto:

$$v = \frac{m+M}{m}\sqrt{2gh}$$

Ovviamente questa equazione può essere invertita a piacere a seconda del dato che si intende individuare, non necessariamente la velocità del proiettile.

5.7.2 Pendolo di Newton

5.7.3 Carrelli

Relatività del Moto

"That view of things would be normal for me if I normally walked on my hands."

> Frames of Reference (1960) -Hume, Ivey

6.1 Sistemi di riferimento

6.2 Principio di relatività galileiana

6.3 Forze apparenti

Cominciamo questo capitolo ponendo al lettore una domanda:

Sei aristotelica/o oppure copernicana/o?

Senza soffermarci troppo su cosa essa intenda, sottolineamo brevemente che ciò di cui si tratta in questo capitolo è stato uno dei temi più controversi nella storia della fisica, quello che forse ha sconvolto di più convinzioni un tempo ben radicate e che ha infiammato dibattiti che hanno pure fatto la storia della letteratura¹. E non è tutto qui: Gli ultimi grandi sviluppi della relatività del moto sono avvenuti poco più di un secolo fa ad opera di Einstein e molti altri e i cambiamenti da loro apportati hanno condotto a stravolgimenti ancora più bizzarri. Perché ciò che questo ramo della fisica rivela è che più osserviamo con attenzione la realtà, più essa non è come un attimo prima poteva sembrare. Per tale motivo la relatività può essere allo stesso tempo semplice e complessa, perché offre una visione del tutto insolita di ciò che ci appare come "normale".

6.1 Sistemi di riferimento

"Relativo" è un termine che ben si sposa con l'espressione "a qualcosa". Quel qualcosa viene definito nelle teorie relativistiche della fisica sistema di riferimento, che intuitivamente rappresenta il punto di vista dal quale si effettuano delle misurazioni o semplici osservazioni di fenomeni. Ricordiamo che tra le coordinate di un sistema di riferimento è presente anche il tempo.

Sistema di riferimento

Un insieme di strumenti geometrico-algebrici, di coordinate solidali con un oggetto arbitrario, e di procedure che consentono di individuare la posizione di un punto di uno spazio metrico.

Una volta fissato il sistema di riferimento, tutte le misurazioni devono essere coerenti con esso, se si intende adottare quel punto di vista. Quando diciamo che un'auto viaggia a 110 km/h, stiamo in realtà fornendo un'informazione incompleta, perché sottintendiamo che tale misurazione sia stata

¹ Marco Paolini - ITIS Galileo (circa 10 minuti a partire dal tempo 1:43:00).

effettuata rispetto alla strada. Non potremmo dire la stessa cosa se viaggiassimo su un'altra auto che affianca la prima, con stessa direzione e verso: Diremmo che l'auto che prima, vista dalla strada, si muoveva a 110 km/h ora sta viaggiando con velocità minore rispetto a noi. Il moto di un corpo è sempre relativo a un sistema di riferimento. Cambiando il sistema, il moto cambia. Vedremo nei prossimi paragrafi che però non tutti i sistemi di riferimento sono uguali e possono distinguersi in inerziali e non inerziali.

Il cambiamento riguarda anche le traiettorie: Se lanciassimo una pallina verso l'alto mentre viaggiamo sulla carrozza di un treno con velocità costante, vedremmo la pallina salire e scendere su una linea retta. Un osservatore esterno, invece vedrebbe la pallina muoversi secondo una traiettoria parabolica. Vedremo che i moti si compongono ed è necessario effettuare trasformazioni tra le coordinate dei sistemi di riferimento.

6.2 Principio di relatività galileiana

In questo corso ci limiteremo a studiare sistemi di riferimento che descrivono punti materiali che traslano soltanto e non ruotano in alcun modo. Dato che molti oggetti sono in movimento l'uno rispetto all'altro, vogliamo ora descrivere come essi sono tra loro legati, ovvero come possiamo "passare" da un sistema all'altro, trasformando le misure effettuate in un sistema in quelle che misureremmo nell'altro.

Supponiamo di avere due sistemi di riferimento, S ed S' centrati rispettivamente in o e o', come mostrati in figura 6.1. Consideriamo poi un punto materiale P qualsiasi e i vettori posizione che individuano P nei sistemi di riferimento; otterremo r, che è la posizione che S misura, e r', misurata invece da S'. Possiamo notare poi che il sistema S può misurare la posizione del centro o' individuando il vettore oo'. Ora è chiaro come questi vettori sono tra loro in relazione:

$$r = r' + oo' \tag{6.1}$$

Non abbiamo fatto supposizioni sul moto relativo dei due sistemi, ma se volessimo estendere l'analisi a velocità e accelerazione di P rispetto ai due sistemi è sufficiente applicare alla 6.1 le definizioni di velocità e accelerazione, come visto in cinematica, derivando l'equazione:

$$\boldsymbol{v} = \boldsymbol{v}' + \boldsymbol{v}_{o'} \tag{6.2}$$

$$\boldsymbol{a} = \boldsymbol{a}' + \boldsymbol{a}_{o'} \tag{6.3}$$

Notiamo che in queste equazioni compaiono $\mathbf{v}_{o'}$ e $\mathbf{a}_{o'}$, che corrispondono alla velocità e all'accelerazione di S' misurate in S. Se $\mathbf{v}_{o'}$ non è nullo, allora si può concludere che S' si sta muovendo rispetto a S. Se $\mathbf{a}_{o'}$ non è nullo, S' sta accelerando rispetto ad S. Ci occuperemo nel seguito del caso in cui S è inerziale e $\mathbf{a}_{o'}$ è nullo.

Dal momento che S è inerziale, in esso vale la seconda legge della dinamica $\mathbf{F} = m\mathbf{a}$. Essa avrà la stessa forma anche in S', che si muove rispetto

Figura 6.1: Relazione tra due sistemi di riferimento che misurano la posizione del punto P.

a S con $\boldsymbol{v}_{o'}$ costante? Ovvero, se \boldsymbol{F} è la forza in S e $\boldsymbol{F}' = m\boldsymbol{a}'$ in S', varrà $\boldsymbol{F} = \boldsymbol{F}'$? Dalle relazioni precedenti, possiamo notare che

$$\boldsymbol{F} = m\boldsymbol{a} = m(\boldsymbol{a}' + \boldsymbol{a}_{o'}) = m\boldsymbol{a}' + \frac{d}{dt}\boldsymbol{v}_{o'} = m\boldsymbol{a}' = \boldsymbol{F}'$$

La seconda legge non è cambiata e possiamo dunque concludere che S' è un sistema di riferimento inerziale.

Principio dei relatività galileiana

Le leggi della dinamica newtoniana hanno la stessa forma in tutti i sistemi di riferimento inerziali.

Con riferimento alle proprietà cinematiche di posizione e velocità di un punto materiale, il legame tra un sistema di riferimento inerziale, con origine o, e un altro sistema di riferimento inerziale, con origine o', è descritta dalla seguente trasformazione:

$$\begin{cases}
\mathbf{r} = \mathbf{r}' + \mathbf{oo'} \\
\mathbf{v} = \mathbf{v}' + \mathbf{v}_{o'}
\end{cases}$$
(6.4)

In sistemi di riferimento inerziali, la velocità $\boldsymbol{v}_{o'}$ prende il nome di velocità di trascinamento.

6.3 Forze apparenti

6.3.1 L'ascensore

Gravitazione

7.1 Gravità e forze fondamentali

Conosciamo bene la seconda legge della dinamica $\mathbf{F}=m\mathbf{a}$. Sappiamo che il termine \mathbf{F} rappresenta l'azione di un agente esterno, chiamato forza, che può avere natura diversa a seconda del sistema studiato. Pertanto, possiamo esprimere la sua intensità in forme a volte diverse, sia essa il peso, l'attrito, la forza elastica e così via. Tuttavia tutte queste forze, per quanto sappiamo al giorno d'oggi, sono riconducibili a quattro interazioni fondamentali che si manifestano nella materia (dalla più forte alla più debole):

- Forza forte: la più forte tra tutte. Tiene insieme i nuclei degli atomi.
- Forza elettromagnetica: accoppia le cariche elettriche e le correnti.
- Forza debole: si manifesta in fenomeni di decadimento nucleare.
- Forza gravitazionale: la più debole tra tutte.

Lo stato attuale della fisica suggerisce che molte di queste forze possano essere unificate, ovvero esse non sono altro che la manifestazione, in nature differenti, della stessa forza fondamentale. Sorprendentemente, è stata la forza più debole ad essere studiata per prima. La legge fondamentale venne formulata da Newton nel seguente modo:

$$\mathbf{F}_{G,1\to 2} = -G \frac{m_{G,1} m_{G,2}}{r_{1,2}^2} \hat{r}_{1,2}$$
 (7.1)

Che esprime il vettore della forza gravitazionale che un corpo 1 esercita su un altro corpo 2. Il vettore giace sulla congiungente tra i due corpi (considerati come punti materiali), separati da una distanza $r_{1,2}$ e dotati di una certa massa gravitazionale m_G . Il segno negativo, accompagnato dalla costante di gravitazione universale, indica che la forza gravitazionale è sempre attrattiva.

7.2 Il principio di equivalenza

Soffermiamoci a chiarire alcuni concetti. Innanzitutto, vogliamo esprimere la legge 7.1 in maniera più generica.

$$\mathbf{F} = c \frac{p_1 p_2}{r^2} \hat{r} \tag{7.2}$$

- 7.1 Gravità e forze fondamentali
- 7.2 Il principio di equivalenza
- 7.3 Approfondimenti

Sorprendentemente, questa forma verrà proposta da Coulomb per esprimere l'interazione tra due cariche elettriche, secondo la legge (in moduli)

$$F_E = k \frac{|q_1||q_2|}{r^2}$$

Diventa naturale pensare che la 7.2 possa rappresentare una sorta di "template" con il quale esprimere quantitativamente l'interazione tra due oggetti dotati di una certa qualità o proprietà intrinseca p, che consente agli oggetti in questione di partecipare nell'interazione. Nel caso delle cariche elettriche, essa sarà, per l'appunto, una carica elettrica. Per quanto riguarda la gravità, questa qualità è la massa gravitazionale. Ci si può chiedere se stiamo parlando della stessa massa della seconda legge di Newton. In realtà, esse sono ben diverse:

- La massa inerziale m_I esprime la capacità di un corpo di opporsi all'azione di agenti esterni e, di conseguenza, al cambiamento del proprio stato di moto. In breve, essa misura l'inerzia del corpo.
- La massa gravitazionale m_G esprime la capacità di un corpo di partecipare, contribuire ed essere soggetto all'interazione gravitazionale in presenza di un altro corpo dotato di massa gravitazionale.

Seppur sottile, la differenza tra queste quantità è comunque diversa (un oggetto "massivo" è difficile da spostare; un oggetto "massiccio" interagisce maggiormente con un altro oggetto). La parola "carica" sarebbe più intuitiva per spiegare la differenza e viene infatti utilizzata per le interazioni elettriche: più "carico" di una certa proprietà dell'interazione, più "intensa" l'interazione stessa. Nella pratica ci riferiamo sempre alla stessa massa (i kilogrammi), ma nulla impedisce di pensare che le masse di uno stesso corpo siano effettivamente quantità distinte.

Consideriamo un corpo in prossimità della superficie terrestre. Possiamo approssimare la Terra ad una sfera uniforme e supporre che la forza gravitazionale corpo-Terra giaccia sulla congiungente tra il centro del pianeta e il corpo (puntiforme). Il corpo si trova ad una certa altezza h e conosciamo inoltre il raggio della Terra R_T . Il corpò sarà soggetto alla forza gravitazionale della Terra; uniamo le equazioni di Newton (consideriamo i moduli):

$$F = m_{I,C}a \qquad F = G \frac{m_{G,C} M_{G,T}}{(R_T + h)^2}$$

Supponiamo che $R_T \gg h$. Dunque la distanza Terra-corpo può essere approssimata:

$$r_{\mathrm{T,C}} = R_T + h = R_T \left(1 + \frac{h}{R_T} \right)$$
$$r_{\mathrm{T,C}}^2 \simeq R_T^2 \left(1 + 2 \frac{h}{R_T} \right)$$
$$\frac{1}{r_{\mathrm{T,C}}^2} \simeq \frac{1}{R_T^2} \left(1 - 2 \frac{h}{R_T} \right)$$

Da cui concludiamo che possiamo trascurare h. Dunque, sapendo che a=g,

$$m_{\rm I,C}g = G \frac{m_{\rm G,C} M_{\rm G,T}}{R_T^2}$$

Isoliamo q

$$g = \frac{m_{\rm G,C}}{m_{\rm I,C}} G \frac{M_{\rm G,T}}{R_T^2}$$

Se assumessimo che le masse inerziale e gravitazionale di uno stesso corpo fossero diverse, l'accelerazione g non sarebbe la stessa per tutti gli oggetti. Tuttavia, non è ancora stata trovata evidenza della differenza quantitativa (apprezzabile, in quanto misure sperimentali) tra le due proprietà. L'osservazione galileiana stessa sulla caduta libera, ovvero che tutti i corpi cadono con la stessa accelerazione, indica che

$$m_I = m_G (7.3)$$

che rappresenta il principio di equivalenza tra massa inerziale e massa gravitazionale. Possiamo affermare ciò perché, fisttata la massa della Terra e il suo raggio, il rapporto m_I/m_G deve essere costante affinché g sia uguale per tutti i corpi di massa distinta.

7.3 Approfondimenti

Forse il campo della fisica più affascinante è l'astrofisica. Citiamo solo alcuni approfondimenti infinitesimi rispetto all'immensità della fisica astronomica¹.

7.3.1 Energia potenziale gravitazionale

Si usa spesso calcolare l'energia potenziale di un oggetto vicino alla superficie terrestre, ad un'altitudine h, con la seguente legge:

Tuttavia sappiamo che g non è costante al variare della quota e su grandi distanze questa legge non è più una buona approssimazione. Calcoliamo dunque la differenza di energia potenziale tra la superficie terrestre e una certa quota h da essa alla luce della legge di Newton.

$$\Delta \mathcal{U} = -W = -\int_{R}^{R+h} -G\frac{mM}{s^2} ds = GmM \int_{R}^{R+h} \frac{ds}{s^2} = GmM \left[-\frac{1}{s} \right]_{R}^{R+h} =$$
$$= -GmM \left(\frac{1}{R+h} - \frac{1}{R} \right)$$

 $^{^{1}}$ Così ampia per via della sua storia millenaria, al contrario della meccanica descritta in queste pagine

Notiamo che $\Delta \mathcal{U} > 0$, dunque allontanando un oggetto di massa m dalla superficie terrestre, esso guadagna una certa energia potenziale. Più in generale, se poniamo un punto di riferimento X arbitrario dal quale calcolare la (differenza di) energia potenziale verso un punto P, otteniamo la seguente espressione:

$$\mathcal{U}(P) = -GmM\left(\frac{1}{r_P} - \frac{1}{r_X}\right)$$

Per convenienza è utile porre $r_X = +\infty$, ovvero ad una distanza infinita da M, ottenendo dunque

$$\mathcal{U} = -\frac{GmM}{r}$$

L'energia meccanica di un corpo è dunque

$$E = E_K + \mathcal{U} = \frac{1}{2}mv^2 - \frac{GmM}{r}$$

Ovviamente supponiamo che tutte queste leggi valgano per punti materiali. In un caso reale, per esempio per il calcolo dell'energia potenziale gravitazionale in prossimità della Terra, quando si "sprofonda" nel corpo che genera il campo gravitazionale, l'estensione di tale corpo modifica l'andamento dell'energia potenziale.

7.3.2 Eratostene e Cavendish

Per giungere alla conclusione mostrata nell'equazione 7.3, sono necessari due dati molto importanti: Il raggio della Terra e la costante G.

Bibliotecario della Biblioteca di Alessandria, Eratostene fu uno dei maggiori ricercatori della sua epoca. Tra le altre cose, misurò il raggio della Terra

7.3.3 Gravitazione universale

Secondo la legge di Newton, tutti gli oggetti nell'universo si attraggono l'un l'altro attraverso l'interazione gravitazionale. è in questo senso che la legge viene detta "universale".

Modelli astronomici

La terza legge di Keplero

Ovviamente la legge di Newton ha grande importanza in campo astronomico (anche se espressa in forme assai più complesse) ed è stata la conferma di una legge scoperta sperimentalmente tempo addietro da Keplero, appunto la terza legge di Keplero:

$$T \propto r^{\frac{3}{2}}$$

Secondo tale legge, il periodo T di rivoluzione di un pianeta attorno al Sole è proporzionale alla distanza media r del pianeta dal Sole elevata a 3/2. Dunque esiste una costante k tale che $T = kr^{\frac{3}{2}}$. In realtà questa legge vale

per tutti i sistemi astronomici (solari e non) simili al nostro, ma gli studi di Keplero si basavano sugli attenti dati raccolti dal maestro Tycho Brahe sui moti orbitali dei corpi celesti appartenenti al sistema solare.

Per dimostrare la terza legge per via teorica, è necessario supporre che il pianeta in rivoluzione intorno al Sole viaggia secondo un moto circolare uniforme², del quale conosciamo bene le relazioni che legano periodo, velocità angolare, velocità tangenziale e accelerazione centripeta: $T=2\pi/\omega$, $v=\omega r$ e $a_c=v^2/r$. Sapendo poi che la forza di gravità tra un pianeta e il Sole è proprio la forza centripeta del moto orbitale, possiamo effettuare i seguenti calcoli unendo tutte le leggi scoperte fino ad ora:

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{v}r = \frac{2\pi}{\sqrt{a_c r}}r = \frac{2\pi}{\sqrt{\frac{GM}{r}}}r = \left(\frac{2\pi}{\sqrt{GM}}\right)r^{\frac{3}{2}}$$

Non solo abbiamo dimostrato la terza legge, ma abbiamo pure individuato la costante di proporizonalità k.

Sistemi binari

Dedichiamo questa sezione ad un classico problema di gravitazione piuttosto complesso, ma altrettanto interessante, presente peraltro in natura nonostante il classico modello copernicano al quale siamo abituati.

In sistemi non simili a quello solare vale ancora la legge di Newton. Consideriamo per esempio un sistema di stelle binarie, ovvero stelle con una differenza di massa non trascurabile rispetto alla distanza del centro di massa del sistema dal centro di massa di una delle due stelle. In tale caso, le stelle orbiteranno attorno al loro centro di massa, situato in qualche punto dello spazio intermedio sulla loro congiungente. Anche nel sistema solare la Terra e il Sole ruotano attorno al centro di massa totale, che tuttavia si trova ben al di sotto della superficie del Sole, il che permette di ridurre la trattazione del problema ad una rivoluzione della Terra attorno al Sole.

 $^{^2{\}rm Anche}$ se in realtà l'orbita è ellittica, la distanza media tra pianeta e Sole è la stessa durante una rivoluzione e dunque il moto è circolare.

Termodimaica

8.1 Introduzione

A partire da questo capitolo il ruolo dell'energia sarà ancora più importante. In precedenza abbiamo dimostrato che la differenza di energia meccanica di un sistema corrisponde al lavoro totale delle forze non conservative che agiscono sul sistema, quindi $W^{\rm NC}=\Delta E$. In altri termini, l'energia che un sistema possiede viene persa o acquistata nel caso in cui vi siano forze non conservative che compiono lavoro su di esso. Ma quindi l'unico modo di "parlare", trasferire energia, ad un sistema dell'universo è quello di compiere lavoro? In realtà no, come mostreremo parlando di calore, un'altra forma di energia in movimento come il lavoro, ma in un certo senso più disordinata.

Ci occuperemo inoltre di sistemi fisici contenenti un numero di costituenti dell'ordine del numero di Avogadro

$$N_A = 6 \cdot 10^{23}$$

Il sistema di questo tipo che più ci interessa è quello dei gas. Supporremo che i gas saranno costituiti da particelle infinitesime che dovranno seguire certi comportamenti ideali. Ma trattandosi di punti materiali, non possiamo studiare questi sistemi in termini meccanici, secondo la dinamica newtoniana, come abbiamo sempre fatto? Se seguissimo questa strada, potremmo non vivere abbastanza per vedere i risultati: Dovremmo prima di tutto osservare e misurare le caratteristiche cinematiche e meccaniche di ogni singola particella, quanto meno ad un preciso istante di tempo (dovremmo dunque misurare tutte le particelle pressoché contemporaneamente), stilare poi un sistema di equazioni che descriva le quantità di moto, le energie in gioco ed eventualmente altre informazioni per analizzare gli urti e prevedere lo stato futuro del sistema. Due vie alternative sono possibili: La prima è quella di introdurre nuove grandezze che misurino lo stato globale del sistema, rinunciando ad elencarne minuziosamente i dettagli come abbiamo descritto sopra; la seconda, una sorta di compromesso, è di ricorrere alla statistica. Noi tratteremo qui la prima modalità per ragioni storiche e semplicità (la seconda, chiamata meccanica statistica, è una delle ultime evoluzioni della termodinamica, assai più complessa della formulazione classica).

In effetti, l'individuazione delle relazioni tra le varie proprietà dei materiali, senza conoscere la loro struttura interna, è l'oggetto di studio della termodinamica¹. In realtà cercheremo una spiegazione di certi fenomeni analizzando ciò che accade nel microscopico, come mostreremo con la teoria cinetica, ma ciò che soprenderà di più sarà il fatto che effetti come pressione e variazioni di temperatura sono pressoché indipendenti dai dettagli interni delle particelle del materiale come le loro singole collisioni.

- 8.1 Introduzione
- 8.2 Principio zero
- 8.3 Esperienza di Joule
- 8.4 Principio primo
- 8.5 Gas ideali
- 8.6 La teoria cinetica dei gas
- 8.7 Trasformazioni
- 8.8 Macchine
- 8.9 Principio secondo
- 8.10 Esperienza di Carnot
- 8.11 Esperienza di Clausius
- 8.12 Entropia
- 8.13 Oltre la termodinamica classica
- 8.14 Approfondimenti

¹Feynman, 44-1

8.1.1 Sistemi termodinamici

Le nostre trattazioni avranno per oggetto i sistemi termodinamici, per definizione immersi in un ambiente esterno. Ambiente esterno e il suo contenuto costituiscono l'universo, un sistema che per definizione non è contenuto in un altro ambiente esterno. Altro oggetto di nostro interesse per lo studio di questi sistemi sono le trasformazioni termodinamiche, ovvero processi nei quali avvengono scambi di energia e che si osservano nei sistemi elencati sopra. Qualsiasi cosa può essere un sistema termodinamico, ma l'esempio più classico è quello della pentola sul fuoco, dove il contenuto è il sistema termodinamico mentre la cucina e il fornello sono l'ambiente esterno. Nel complesso, questi elementi costituiscono un universo (dunque non è necessariamente la realtà intera o il cosmo!), all'interno del quale avvengono scambi di energia. Si suppone che questi scambi siano indipendenti da ciò che, se esiste, si trova fuori dall'universo.

Possiamo classificare i sistemi termodinamici sulla base di due criteri: capacità di scambiare materia e capacità di scambiare energia.

- Sistema aperto:
- Sistema chiuso:
- Sistema isolato:

È immediato chiedersi se esistono sistemi opposti a quelli chiusi, che scambiano materia ma non energia con l'ambiente esterno. Ma questo è impossibile, perché vale

$$E = mc^2$$

dove c corrisponde alla velocità della luce nel vuoto. Questa celebre equazione, anche se più complessa di quel che sembra, mostra che ogni corpo possiede una certa energia E per il semplice motivo che esso possiede una massa m.

8.1.2 Variabili termodinamiche

variabili intensive estensive. Temperatura pressione volume. Piano pv.

8.1.3 Trasformazioni termodinamiche ed equilibrio

8.1.4 Caldo e freddo

8.2 Principio zero

Temperature di equilibrio, termometro, taratura del termometro

8.3 Esperienza di Joule

A metà del Diciannovesimo secolo, James Prescott Joule compì alcuni esperimenti celebri che misero in luce il legame tra alcune forme di energia

e temperatura. Il più noto esperimento è quello del mulinello, con il quale Joule mostrò l'equivalente meccanico del calore. Il dispositivo di Joule consisteva in un serbatoio adiabatico contenente acqua, la cui temperatura veniva controllata per mezzo di un termometro infilato in un'apertura del serbatoio. Nell'acqua vi era poi immerso un mulinello azionato dall'esterno da un sistema di carrucole e masse in caduta libera. L'esperimento consisteva nel sollevare una certa massa totale m ad una altezza h; cadendo, la massa avrebbe messo il mulinello in rotazione, agitando l'acqua del serbatoio. Joule osservò che la temperatura dell'acqua aumentava dopo la caduta della massa e l'incremento di temperatura era proporzionale alla massa e all'altezza.

Un'analisi energetica del sistema mette in luce che un certo lavoro è stato compiuto sull'acqua del serbatoio:

$$W = mgh$$

Per principio di conservazione dell'energia, il lavoro non può essere sparito nel nulla. L'effetto della caduta della massa è stato però un aumento di temperatura. La conclusione più ragionevole è che temperatura ed energia sono tra loro legati da qualche relazione.

8.4 Principio primo

8.4.1 Energia interna

Come abbiamo osservato con Joule, è sperimentalmente evidente che se si compie lavoro sull'acqua, essa aumenta la propria temperatura. Inoltre, se la temperatura iniziale dell'acqua è la stessa in tutti gli esperimenti e il lavoro compiuto è sempre uguale, allora la temperatura finale sarà anch'essa la stessa in tutte le situazioni. Da ciò si può dedurre che l'aumento di temperatura non dipende dalla natura del lavoro. Cos'è allora la temperatura? Non possiamo ancora rispondere a questa domanda, ma sicuramente sappiamo che essa è legata in qualche modo all'energia, quantomeno al lavoro.

La temperatura ci fornisce un'informazione sullo stato di un corpo, cioè una proprietà che lo caratterizza in un dato istante in una certa situazione. Il lavoro è invece qualcosa di dinamico, una "energia in movimento" dovuta al moto di qualche cosa. Il lavoro si trasferisce da corpo a corpo e ne altera una proprietà di stato, il cui indicatore è la temperatura. L'energia del lavoro, allora, si può immagazzinare nei corpi, come abbiamo visto parlando di (variazione di) energia potenziale $\Delta \mathcal{U} = -W$. Anche qui potremmo parlare di una qualche energia potenziale, ma non possiamo denominarla in questo modo perché in generale non si osservano forze conservative in azione. Introduciamo allora *l'energia interna* di un sistema, che, come si è osservato dagli esperimenti, è funzione della temperatura

$$U = U(T)$$

8.4.2 Calore

Il primo principio della termodinamica si riassume in una sola equazione essenziale:

$$\Delta U = Q - W \tag{8.1}$$

Sarebbe più corretto mostrare la seguente forma differenziale

Primo principio della termodinamica $dU = \delta Q - \delta W \tag{8.2}$

Ci limetermo alla seguente interpretazione: d rappresenta un differenziale esatto, che sottolinea l'indipendenza della differenza dal percorso. La differenza di energia interna dU dipende solo dagli stati iniziale e finale, ignorando ciò che è accaduto nel mezzo. Il simbolo δ indica invece che i contributi di calore e lavoro possono essere differenti a seconda della trasformazione che è avvenuta. In altre parole, la stessa differenza dU può aver avuto origine da trasformazioni termodinamiche differenti, ognuna delle quali ha osservato un diverso contributo di lavoro e calore.

8.4.3 Modalità di trasmissione del calore

Come il lavoro può presentarsi in svariate forme, come abbiamo visto dagli esperimenti di Joule ma già anche dalla meccanica, anche il calore può essere scambiato in vari modi. Queste modalità di trasmissione hanno in comune la condizione di *contatto termico*, ovvero situazioni in cui due corpi sono in grado di trasmettere calore tra di loro. È importante non confondere il contatto termico con quello fisico, perché, come vedremo, non sempre il calore si trasmette solo se due corpi si toccano tra loro.

Altro punto da ricordare è che possiamo distinguere che l'energia si trasferisce sotto forma di calore perché non si compie lavoro.

Conduzione

Nella conduzione, il calore viene scambiato per contatto tra corpi. Un semplice modello per descrivere questo fenomeno è la finestra di un edificio.

Convezione

Nella convezione, il calore viene scambiato per mezzo di masse calde in movimento, all'interno di masse più fredde. Questa modalità è caratteristica dei fluidi, data la necessità del moto. Semplici esempi di questo fenomeno sono la pentola d'acqua sul fornello acceso e la lava-lamp.

8.5. GAS IDEALI 73

Irraggiamento

L'irraggiamento permette lo scambio di energia per mezzo di onde elettromagnetiche, quindi senza la necessità di essere in contatto termico con un corpo. Un esempio è il Sole, che di fatto scalda la Terra mediante le radiazioni emesse. In realtà non è propriamente corretto dire che il calore viene trasmesso durante il tragitto tra i due corpi, ma l'effetto delle onde elettromagnetiche che raggiungono la destinazione è un aumento di temperatura, che assimiliamo ad uno scambio di calore.

Una legge degna di nota è la legge di Stefan-Boltzmann del potere emissivo di un corpo

$$\varepsilon = \sigma e T^4 \tag{8.3}$$

Questa legge esprime la quantità di energia che un corpo può emettere per irraggiamento data la sua temperatura. Nella realtà, un corpo non è in grado di emettere la totalità di questa energia e per tale motivo è presente un fattore e adimensionale, tale che 0 < e < 1. Nel caso ideale e = 1 si parla di $corpo \ nero$. La quantità

8.5 Gas ideali

8.5.1 Leggi dei gas ideali

Prima legge di Gay-Lussac

Seconda legge di Gay-Lussac

Legge di Boyle

Legge di Avogadro

Esempio di equazione di stato.

- 8.5.2 Lavoro di un gas ideale
- 8.6 La teoria cinetica dei gas
- 8.7 Trasformazioni
- 8.7.1 Reversibilità e irreversibilità
- 8.8 Macchine
- 8.8.1 Rendimento
- 8.8.2 Ciclo Diesel e ciclo di Otto
- 8.9 Principio secondo
- 8.9.1 Equivalenza degli enunciati del secondo principio
- 8.10 Esperienza di Carnot

Nel 1824, l'ingegnere francese Sadi Carnot pubblicò il *Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance*. Trascurando il titolo altisonante, la questione che egli affrontò nell'opera scaturì dalla nascente competizione alimentata dalla rivoluzione industriale: In quali condizioni una macchina termica ha il redimento massimo, indipendentemente da come essa viene costruita? Come vedremo, la potenza di questa domanda (e della sua risposta) sta proprio nell'indipendenza dalla tecnologia con la quale la macchina funziona. Non importa se essa è il motore di una monoposto di Formula 1, lo scramjet del Boeing X-43 o un altro metodo di propulsione di qualche civiltà aliena a noi sconosciuta.

8.10.1 Ciclo e macchina di Carnot

8.10.2 Teorema di Carnot

Teorema di Carnot

Il rendimento di una qualsiasi macchina termica \mathcal{M} (reversibile o non) che opera tra due temperature costanti $T_1, T_2 : T_1 > T_2$ è limitato superiormente dal rendimento della macchina di Carnot \mathcal{C} che lavora tra le medesime temperature.

$$\eta_{\mathcal{M}} \le \eta_{\mathcal{C}} \quad \text{per } T_1 > T_2$$
(8.4)

Inoltre, tutte le macchine reversibili che operano tra le medesime temperature hanno lo stesso rendimento, che equivale a quello della corrispondente macchina di Carnot. Se $\mathcal R$ è una macchina reversibile, allora:

$$\eta_{\mathcal{R}} = \eta_{\mathcal{C}} \tag{8.5}$$

Ricordiamo che $\eta_{\mathcal{C}} = 1 - T_2/T_1$.

8.11 Esperienza di Clausius

8.12 Entropia

Si consideri una trasformazione termodinamica reversibile qualsiasi. Per ipotesi di reversibilità, l'integrale di Clausius calcolato sulla curva γ di tale trasformazione nel piano pressione-volume è nullo.

$$\oint_{\gamma} \frac{dQ}{T} = 0$$

Selezioniamo due punti, A e B, distinti su questo ciclo. Scomponiamo dunque l'integrale nei due percorsi, sempre reversibili, α e β .

$$\int_{A,\alpha}^{B} \frac{dQ}{T} + \int_{B,\beta}^{A} \frac{dQ}{T} = 0$$

Trattandosi di un ciclo reversibile, vale la proprietà antisimmetrica dell'integrale. Giungiamo dunque alla seguente conclusione:

$$\int_{A,\alpha}^{B} \frac{dQ}{T} = \int_{A,\beta}^{B} \frac{dQ}{T}$$

Dunque, qualsiasi sia il percorso tra A e B, l'uguaglianza precedente vale sempre per percorsi reversibili. Vi è dunque una dipendenza di una

certa quantità dai soli stati iniziale e finale della trasformazione. Definiamo dunque, in modo simile all'energia potenziale studiata in meccanica, la differenza di entropia tra due stati termodinamici.

$$\Delta S_{AB} = S_B - S_A = \stackrel{\text{def}}{=} \int_{A \text{ rev}}^B \frac{dQ}{T}$$
 (8.6)

8.13 Oltre la termodinamica classica

8.13.1 Microstato e macrostato

8.14 Approfondimenti

8.14.1 La questione del calorico

La fisica poggia su un substrato filosofico molto sofisticato e sviluppato, dal quale hanno origine, per esempio, molte interpretazioni della realtà che viene studiata. Una questione che segnò le ricerche nel campo della termodinamica fu quella di definire e chiarire le ragioni d'essere del *calore*, ovviamente avanzando ipotesi secondo il metodo scientifico.

Prima di Joule, si parlava in letteratura di calorico, qualcosa che veniva interpretato come un fluido vero e proprio, dotato di esistenza propria e in grado di muoversi da corpo a corpo, da sorgenti più calde a quelle più fredde. La temperatura veniva poi definita sulla base della concentrazione di calorico in un certo corpo, anche se calore e temperatura rimanevano in molti casi concetti confusi, come a volte capita anche nell'esperienza.

Grazie agli esperimenti di Joule, la fisica comprese che il calore rappresenta in realtà una forma di energia. Nell'esperimento del mulinello, l'innalzamento di temperatura dell'acqua è dovuto al lavoro compiuto da una massa.

Variabili termodinamiche

In cinematica utilizziamo variabili spazio-temporali per descrivere i nostri sistemi di punti materiali. Fare questo per un numero di punti o costituenti dell'ordine di 10^{23} è di fatto proibitivo. In termodinamica si utilizzano invece grandezze diverse, dette variabili (o coordinate) termodinamiche. Le distinguiamo in

- Grandezze intensive: si possono misurare localmente, indipendentemente dall'estensione dell'oggetto che ne è caratterizzato. Sono grandezze intensive la pressione e la temperatura.
- Grandezze estensive: è necessario considerare l'oggetto nel suo complesso, non ha senso o non si può misurare in un punto locale arbitrario. Sono grandezze estensive il *volume* e la *massa*.

Come in cinematica impiegavamo un sistema di assi cartesiani come forma di rappresentazione del sistema di punti materiali in moto nelle dimensioni, anche in termodinamica utilizziamo il medesimo strumento, ma utilizzando le coordinate termodinamiche. Una trasformazione termodinamica consiste in uno spostamento tra due punti A e B su questo nuovo piano cartesiano e assumeremo sempre, affinché la nostra teoria funzioni, che A e B siano situazioni, stati, di $equilibrio\ termodinamico$. Nel mezzo non vi è garanzia di equilibrio.

Un sistema si dice in equilibrio dinamico se esso rispetta i seguenti equilibri:

- 1. **Equilibrio meccanico**: lo stato non è sottoposto a forze totali non nulle, in qualsiasi coppia delle sue parti.
- 2. Equilibrio chimico: non esiste alcuna reazione chimica tra una qualsiasi coppia di parti dello stato.
- Equilibrio termico: per ogni coppia di parti, la temperatura è la stessa.

Per "parti" di uno stato o di un sistema intendiamo sottoinsiemi abbastanza piccoli rispetto al sistema originale ma allo stesso tempo sufficientemente grandi affiché gli strumenti della termodinamica funzionino.

Calore e scambi

Gas ideali

Leggi dei gas ideali Lavoro di un gas ideale

La teoria cinetica dei gas

Finora abbiamo affrontato la termodinamica parlando spesso di gas. Lo abbiamo fatto inoltre da un punto di vista macroscopico, ovvero utilizzando variabili termodinamiche (pressione, volume, temperatura). Tuttavia, vogliamo ora tentare di costruire un modello che permetta di spiegare cosa accade a livello microscopico e che sia allo stesso tempo coerente con le leggi mostrate fino ad ora. Per giungere a tale obbiettivo, ovvero collegare macroscopico e mocroscopico, l'unico strumento che abbiamo a diposizione in questo corso è la meccanica. Questa è la via che porta alla cosiddetta teoria cinetica dei qas.

Ipotesi e presupposti della teoria cinetica

La teoria cinetica dei gas semplifica molto ciò che veramente accade nella realtà fisica, ma è una approssimazione piuttosto buona e soddisfacente. In particolare, chiariamo che la teoria si basa sulle seguenti ipotesi:

• Oggetto delle osservazioni è un gas ideale (o perfetto) che si trova all'interno di un contenitore con volume V.

- Il gas è ideale nel senso che esso è costituito da particelle infinitamente piccole rispetto al contenitore nel quale sitrovano e alle distanze che le separano; tali particelle sono inoltre tutte uguali, compresa massa e altre proprietà.
- Il gas ha una densità bassa nell'ordine in cui le interazione tra le sue particelle è minimo o possibilmente nullo (non avvengono urti, interazioni gravitazionali o di qualsiasi altra natura).
- Gli unici urti di interesse teorico, non trascurabili, sono quelli con le pareti del contenitore, perfettamente elastici (la massa delle particelle è infinitamente piccola rispetto a quella delle pareti del contenitore).

Logica della teoria

Per semplificare i calcoli, supponiamo che il contenitore sia un cubo con lati di lunghezza L. Si consideri una sola particella di gas (massa m) che sta per urtare la parete destra e la componente x della sua velocità (v_x) . La quantità di moto iniziale di tale particella è

$$\mathbf{p}_{x,i} = m\mathbf{v}_{x,i}$$

Avviene un urto elastico con la parete destra, dunque la velocità finale della particella è uguale in modulo a quella iniziale, ma con verso opposto:

$$\mathbf{p}_{x,f} = m\mathbf{v}_{x,f} = -m\mathbf{v}_{x,i}$$

La variazione della quantità di moto della particella equivale dunque a

$$\Delta \mathbf{p}_x = -2mv_x \hat{x}$$

Utilizziamo d'ora in poi i moduli dei vettori. Sappiamo che tale variazione nella quantità di moto della particella può essere interpretata come un impulso esercitato dalla parete; dunque la parete esercita una forza sulla particella, ma come calcolarla? Diventa necessario trovare un intervallo temporale entro il quale agisce l'impulso per ricavare l'intensita della forza. Semplicemente notiamo che la velocità della particella non varia, per via degli urti elastici, e dunque essa rimbalza ripetutamente a destra e sinistra nel cubo. Dunque, la particella impiega un tempo

$$\Delta t = \frac{2L}{v_x}$$

Per lasciare la parete e tornarvici per un altro urto. In media nel tempo, dunque, la forza impulsiva esercitata dalla parete destra sulla particella equivale a

$$F_x = \left| \frac{\Delta p_x}{\Delta t} \right| = 2mv_x \cdot \frac{v_x}{2L} = \frac{mv_x^2}{L}$$

Dalla definizione di pressione, otteniamo la pressione esercitata dalla particella che rimbalza tra due pareti opposte (di superficie $S = L^2$):

$$p_x = \frac{F_x}{S} = \frac{mv_x^2}{L^3} = \frac{mv_x^2}{V}$$

Lo stesso ragionamento vale per tutte le componenti spaziali. Macroscopicamente, osserviamo che la pressione è una quantità intensiva, che non dipende dalla località della misurazione. Dunque tutte le dimensioni spaziali sono equivalenti e possiamo effettuare la seguente semplificazione:

$$p_x = p_y = p_z = p$$

Unendo la legge dei gas perfetti al risultato ottenuto precedentemente,

$$pV = mv_x^2$$

Ma ciò riguarda solamente una singola particella. Sommiamo dunque tutti i contributi:

$$F_{\text{tot},x} = \sum_{i} F_{x,i} = \sum_{i} \frac{m v_{x,i}^2}{L} = \frac{m}{L} \sum_{i} v_{x,i}^2$$

In generale le velocità delle particelle potrebbero non essere tutte uguali. Supponendo che il gas sia costituito da N particelle, possiamo determinare la loro velocità quadratica media

$$F_{\text{tot},x} = N \frac{m}{L} \overline{v_x^2}$$

Dunque

$$pV = Nm\overline{v_x^2}$$

Sappiamo che $v^2=v_x^2+v_y^2+v_z^2$, che vale anche per la velocità quadratica media $\overline{v^2}$. Ma trattando delle medie, i contributi di tutte le dimensioni sono tra loro equivalenti:

$$\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$$

Da cui

$$\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} = 3\overline{v_x^2}$$

Allora

$$pV=Nm\frac{\overline{v^2}}{3}=\frac{2}{3}N\overline{E_K}$$

Dove abbiamo esplicitato l'energia cinetica media della singola particella. Per andare più in profondità, possiamo notare che la teoria può portarci a concludere che

$$N\overline{E_K} = E_{int} = U$$

Abbiamo dunque collegato la nostra teoria da un lato e gli esperimenti dall'altro:

$$pV = Nk_BT = \frac{2}{3}U$$

Possiamo inoltre osservare dalla precedente che

$$\overline{E_K} = \frac{3}{2}k_B T$$

Che esprime la relazione tra energia cinetica media di una particella e la temperatura. In un certo senso, dunque, la temperatura \dot{e} proprio l'energia cinetica media delle particelle.

Risultati della teroria

Il risultato più importante della teoria cinetica è l'unione tra il mondo macroscopico osservato sperimentalmente e il mondo microscopico modellato teoricamente. In particolare:

- La teoria cinetica offre una spiegazione dell'origine della pressione esercitata da un gas in un contenitore.
- La teoria cinetica mostra che la temperatura è strettamente legata all'energia cinetica media delle particelle. Intuitivamente, la temperatura è interpretabile proprio come l'agitazione media delle particelle, per l'appunto l'energia del loro movimento.
- La teoria cinetica costruisce un modello generalizzabile a sistemi di costituenti non necessariamente monoatomico-puntiformi, come approfondito nella prossima sezione.

Gradi di libertà

Il fattore 1/2 deriva dalla definizione di enrgia cinetica, ma il numero 3 invece? Esso dipende dal numero di dimensioni entro le quali le particelle possono muoversi, ovvero i gradi di libertà. Se compissimo lo studio da capo, costringendo però le particelle a giacere su un piano, i gradi di libertà sarebbero solo due e il fattore moltiplicativo dell'energia cinetica media sarebbe diverso. Ciò è dovuto al fatto che ogni grado di libertà permette alla particella di muoversi su un'altra dimensione e dunque di aggiungere un contributo in più alla propria energia cinetica. In generale, dunque, ogni grado di liberta comporta un contributo energetico di $\frac{1}{2}k_BT$ e dunque, per l gradi di libertà, si ottiene

$$\overline{E_K} = \frac{l}{2}k_B T$$

I gradi di libertà possono crescere all'aumentare della complessità della particella di gas. Oltre alle tre dimensioni, una molecola biatomica (quindi non puntiforme come abbiamo sempre supposto finora) può anche ruotare su due assi 2 ; i due atomi possono poi vibrare intorno alla loro "sede" nella molecola, dunque anche questa energia deve essere presa in considerazione. In totale, una molecola biatomica ideale può avere l=6 gradi di libertà.

 $^{^2\}mathrm{Due}$ assi sono sufficienti a coprire tutte le rotazioni nelle tre dimensioni

Trasformazioni termodinamiche

Abbiamo mostrato che il lavoro di un gas ideale (ovvero a bassa densità) è legato al volume e alla temperatura dalla seguente relazione:

$$W_{A\to B} = \int_{A,\gamma}^{B} p(V)dV$$

Notare che è sempre necessario specificare il "percorso" γ che il gas intraprende nel piano pressione-volume (e temperatura), perchè in generale il lavoro dipende da tale percorso. Ricordiamo infatti che

$$\Delta U = Q - W$$
 ma $dU = \delta Q - \delta W$

dove δ indica una quantità dipendente dai punti attraversati. La differenza finale dU sarà sempre la stessa, ma può derivare da contributi differenti di calore e lavoro. Nelle prossime sezioni sostituiremo δ con d, perché ci limiteremo a definire una sola trasformazione alla volta, quindi un solo tratto di percorso ben definito. L'equazione $dU = \delta Q - \delta W$ è più generale perché presuppone la possibilità che il gas possa compiere più di una trasformazione per variare la propria energia interna.

Il "percorso" prende il nome di trasformazione termodinamica e studieremo ora le più semplici. Ricordiamo inoltre che le trasformazioni che verranno mostrate sono quasistatiche e che quindi ogni punto può essere approssimato ad uno stato di equilibrio differente.

Trasformazione isocora

Nelle trasformazioni isocore, il volume del gas rimane costante. Segue dunque

$$dV = 0 \Rightarrow dW = pdV = 0 \Rightarrow dU = dQ$$

Sappiamo dagli studi di calorimetria che possiamo associare al gas un certo calore specifico c_v che permette di descrivere il calore scambiato rispetto alla variazione di temperatura. Utilizziamo per convenienza un calore specifico molare, anziché ricorrere alla massa. Bisogna però specificare che tale calore specifico vale solo a volume costante.

$$dQ = nc_V dT$$

Da cui

$$dU = nc_V dT$$

Dal momento che l'energia interna di un gas dipende solamente dalla temperatura, ciò vale anche per la sua variazione. Dunque, anche nelle trasformazioni che vedremo di seguito possiamo supporre che valga tale relazione.

Dalla teoria cinetica abbiamo inoltre osservato che l'energia interna di un gas equivale a $U = \frac{3}{2}nRT$, da cui $dU = \frac{3}{2}nRdT$ Possiamo dunque concludere con la seguente proposizione (per i gas ideali monoatomici):

$$c_V = \frac{3}{2}R$$

In generale, avendo l gradi di libertà vale $c_V = \frac{l}{2}R$.

Trasformazione isobara

Per una trasformazione isobara, la pressione rimane costante. Diventa dunque facile calcolare il lavoro effettuato in tale trasformazione:

$$W_{\text{isobara}} = p\Delta V = nR\Delta T$$

Dalle trasformazioni isocore abbiamo concluso che $dU = nc_V dT$. Per quanto riguarda il calore, dobbiamo introdurre un ulteriore calore specifico c_p che invece vale per trasformazioni isobare.

$$dQ = nc_p dT$$

Riproponiamo l'equazione di stato dei gas ideali pV = nRT e consideriamo una variazione infinitesimale su entrambi i membri.

$$d[pV] = d[nRT]$$

$$dpV + pdV = nRdT$$

$$pdV = dW = nRdT$$

Dunque $dU = nc_p dT - nRdT = nc_v dT$, da cui la seguente relazione.

$$c_p - c_v = R \tag{8.7}$$

Quella che abbiamo appena ottenuto è la cosiddetta relazione di Mayer (esatto, lo studentato). Dai risultati precedenti otteniamo

$$c_p = c_v + R = \frac{5}{2}R$$

Se riformuliamo la relazione di Mayer otteniamo una ulteriore relazione molto impiegata nello studio di un'altra trasformazione che vedremo.

$$R = c_V \left(\frac{c_p}{c_V} - 1\right) = c_V(\gamma - 1) > 0$$

Incontreremo di nuovo il rapporto γ . Da questo risultato risulta dunque che

$$c_p > c_V$$

sempre (entro il nostro modello). Ma come mai è importante precisare questa osservazione? In verità tale relazione ha un riscontro reale e sperimentale: in una trasformazione isocora, il volume non varia; d'altra parte in trasformazioni isobare la pressione viene mantenuta costante e ciò significa che il gas deve esercitare tale pressione costante durante tutal la trasformazione. Ciò comporta la necessità di un supplemento di energia dovuto alla variazione di volume e alla costanza della pressione. Di fatto,

per aumentare l'energia interna di un gas è necessario fornire maggior energia qualora la pressione rimanga costante (per esempio in un contenitore chiuso da uno stantuffo mobile, dove il gas impiega energie per sollevare lo stantuffo), mentre risulta meno dispendioso innalzare l'energia interna di un gas a volume costante. Da qui il motivo della disuguaglianza $c_p > c_V$.

Trasformazioni isoterme

Nelle trasformazioni isoterme, la temperatura non varia. Come conseguenza, nemmeno l'energia interna varia.

$$dU = nc_V dT = 0$$

Segue dunque che

$$dQ - dW = 0$$

$$dQ = dW = pdV = nRT\frac{dV}{V}$$

$$Q_{\rm isoterma} = \int_{i}^{f} nRT\frac{dV}{V} = nRT\ln\left(\frac{V_f}{V_i}\right) = W_{\rm isoterma}$$

In una isoterma, dunque, non varia l'energia interna, perché il calore scambiato viene "consumato" in una quantità uguale di lavoro.

Trasformazioni adiabatiche

In queste trasformazioni non avvengono scambi di calore.

$$dU = dQ - dW = -dW$$

Come sempre, sapendo che la variazione di energia interna è esprimibile attraverso una corrispondente variazione di temperatura legata a c_V ,

$$nc_V dT = -pdV$$

$$nc_V dT = -nRTdV$$

Otteniamo dunque la seguente relazione:

$$\frac{dT}{T} = -\frac{R}{c_V} \frac{dV}{V}$$

$$\int_i^f \frac{dT}{T} = -\frac{R}{c_V} \int_i^f \frac{dV}{V}$$

$$\ln\left(\frac{T_f}{T_i}\right) = -(\gamma - 1) \ln\left(\frac{V_f}{V_i}\right)$$

$$T_i V_i^{\gamma - 1} = T_f V_f^{\gamma - 1}$$

Vale allora per le adiabatiche

$$TV^{\gamma - 1} = \text{const} \tag{8.8}$$

$$pV^{\gamma} = \text{const}$$
 (8.9)

In particolare, nel caso di trasformazioni adiabatiche che coinvolgono gas monotatomici risulta $pV^{\frac{5}{3}}=\mathrm{const.}$

Trasformazioni cicliche

Combinando insieme le trasformazioni semplici viste fino ad ora, è possibile comporre trasformazioni più complesse. Tra queste, quelle più interessanti sono forse le trasformazioni cicliche (o cicli termodinamici), nelle quali, data una coordinata termodinamica, il sistema ritorna nello stesso punto dopo aver compiuto alcune trasformazioni. Seguendo i nostri presupposti, possiamo concludere che la variazione di energia interna dei sistemi che subiscono trasformazioni cicliche non varia per definizione:

$$\Delta U_{\gamma} = 0 \quad \forall \gamma = A \to A$$

in quanto quest'ultima dipende unicamente dallo stato.

Macchine

I cicli termodinamici caratterizzano i principi di funzionamento delle *macchine*. Il motore due-tempi dell'Husqvarna sotto casa è una macchina; ma lo è anche un freezer. Di fatto, la termodinamica distingue due categorie principali di macchine sulla base del verso con il quale avvengono gli scambi di energia:

• Macchine termiche: per queste macchine valgono

ovvero compiono lavoro al prezzo di un consumo di calore.

• Macchine frigorifere: vale

ossia esse dissipano calore al prezzo di un lavoro esterno.

Notare che la classificazione parte dal segno del lavoro, per poi dedurre il flusso di calore mediante la definizione di trasformazione ciclica combinata alla prima legge della termodinamica $\Delta U = 0 = Q - W$.

Rendimento

Sappiamo bene che è necessario un costo in termini energetici (dunque monetari, ambientali e così via nella nostra vita economica) per far funzionare una macchina e ottenere da essa i risultati attesi. Dal motore dell'auto è desiderabile ottenere il massimo della distanza percorribile e della potenza sprigionabile partendo dalla benzina pagata al pieno precedente. Ma come valutare la bontà di un motore?

Consideriamo una macchina termica, ovvero il motore dell'auto. Il suo scopo è produrre lavoro, cioè trasmettere forza motrice alle ruote. Per far funzionare una macchina termica è necessario fornire calore. Dunque, possiamo valutare l'efficienza del motore dell'auto secondo il seguente rapporto:

$$\eta = \frac{W}{Q_A} \tag{8.10}$$

Dove Q_A rappresenta il calore assorbito dalla macchina, o l'energia pagata e immessa nell'auto. Possiamo riformulare la definizione di rendimento notando che, durante il funzionamento del motore, parte del calore assorbito Q_A viene sì trasformato in lavoro, ma anche in altre forme, che racchiuderemo nel calore totale ceduto Q_C . Vale dunque:

$$\Delta U = 0 = Q - W = Q_A + Q_C - W$$

$$W = Q_A + Q_C$$

da cui riformuliamo l'efficienza:

$$\eta = 1 + \frac{Q_C}{Q_A} = 1 - \frac{|Q_C|}{|Q_A|} \tag{8.11}$$

Notare che, per definizione di macchina termica, il calore ceduto possiede segno negativo.

Utopie

Chiaramente, senza l'intervento di agenti esterni, non è possibile ottenere dal nostro motore più lavoro di quanto calore è stato fornito inizialmente

$$Q_A < W$$

perché, come sappiamo dalla meccanica, l'energia si conserva e non è possibile dunque crearne "magicamente". È però lecito chiedersi se è possibile ottenere qualcosa come questo:

$$Q_A \stackrel{?}{=} W$$

ovvero costruire un motore completamente efficiente. Sempre dalla meccanica, possiamo ipotizzare che, anche solo teoricamente e in situazioni ideali,

ciò sarebbe ammesso, perché i sistemi meccanici sono *reversibili*, ovvero è sempre possibile riportarli allo stato iniziale dopo un certo fenomeno. Non aggiungiamo altro per riservare la sorpresa ai lettori.

In ogni caso, un buon motore dovrebbe produrre quanto più lavoro rispetto ad un quantitativo basso di calore assorbito:

Minimo sforzo, massima resa. Spendi poco, ottieni molto.

Il secondo principio della termodinamica

Ricordando il primo principio della termodinamica, $\Delta U = Q - W$, per una macchina che opera ciclicamente l'energia interna non varia mai dopo un determinato "giro", ovvero $\Delta U = 0$ e da cui W = Q. Già attraverso il primo principio notiamo che non potremmo mai sperare di creare una macchina in grado di produrre più lavoro di quanto calore ad essa viene fornito. Si tratta in realtà di una conclusione ancora "meccanica": quando l'energia passa da una forma all'altra, non sparisce né tantomeno aumenta senza altri apporti esterni. L'uguaglianza W = Q fa tuttavia sperare che si possa convertire tutta l'energia rievuta interamente in lavoro in uscita. Anche questa sarebbe una conclusione legittima e in accordo con la meccanica studiata fino ad ora.

Tuttavia, il sogno della macchina perfetta, con un rendimento del 100%, è per esperienza un obiettivo estremamente difficile da raggiungere. Vedremo che un limite naturale equivalente è il seguente: il calore non fluisce mai spontaneamente da un corpo freddo ad uno più caldo. Queste evidenze sperimentali supportano alla base il secondo principio della termodinamica, del quale esistono due formulazioni:

• Enunciato di Kelvin-Plank

È impossibile realizzare una macchina il cui unico risultato sia quello di trasformare calore, da una sorgente, interamente in lavoro.

• Enunciato di Clausius

È impossibile realizzare un processo il cui unico risultato sia quello di trasferire calore da un corpo ad uno più caldo.

Purtroppo per la nostra umanità (e probabilmente per tutte le civiltà avvenire), non è possibile realizzare macchine perfette, ovvero dal rendimento del 100%, perché questo è impedito dal secondo principio, in particolar modo dalla formulazione di Kelvin-Plank.

Entrambe le formulazioni sono date per vere, ma possiamo tuttavia dimostrarne l'equivalenza. Equivalenza e quival enza. Enza, ciao.

Ciò che anticipa questa analisi del secondo principio è che, secondo i risultati della termodinamica, non è possibile (neppure teoricamente!) realizzare macchine perfette. L'indagine sull'efficienza delle macchine termiche venne approfnodita nel Diciannovesimo secolo dal francese Nicolas Léonard Sadi Carnot.

Esperienza di Carnot

Qual è la macchina più efficiente in assoluto? Oppure, in quali condizioni una macchina può ottenere il rendimento massimo? Queste sono domande che Carnot si pose ai suoi tempi.

Esperienza di Clausius

Altra figura importante in termodinamica è il tedesco Rudolf Clausius, che estese gli studi importanti di Carnot ad un livello superiore.

Teorema di Clausius

Abbiamo appena visto che una delle relazioni ottenute da Carnot è la somma di rapporti $\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \leq 0$. Ciò vale per tutte le macchine, reversibili o no, che operano tra due sorgenti $T_1 < T_2$. Avere però solamente due sorgenti è piuttosto limitante, perché nella realtà le macchine operano su cicli ben più complessi e dunque è come se operassero tra più di due sorgenti. Clausius ebbe così la brillante idea di generalizzare le conclusioni di Carnot per un ciclo termodinamico qualsiasi.

Supponiamo di osservare un cilo motore qualsiasi (la nocciolina motrice, che carina). Questo ciclo attraversa gradi di temperatura molteplici. Possiamo però effettuare una approssimazione della curva del ciclo immaginando di percorrerla mediante piccole trasformazioni adiabatiche e isoterme. Se estendiamo queste piccole trasformazioni, otterremo una suddivisione dell'area interna del nostro ciclo in tanti piccoli cicli di Carnot. Per allora il ciclo *i*-esimo, vale la relazione

$$\frac{Q_{1,i}}{T_{1,i}} + \frac{Q_{2,i}}{T_{2,i}} \le 0$$

È allora immediato osservare che sommando questa quantità per ogni ciclo interno all'area del ciclo vale

$$\sum_{i} \left(\frac{Q_{1,i}}{T_{1,i}} + \frac{Q_{2,i}}{T_{2,i}} \right) \le 0$$

Questa relazione non ci dice ancora molto di straordinario. Possiamo però notare due cose: i tratti adiabatici non coinvolgono scambi di calore per definizione, e dunque possiamo ignorarli nel nostro calcolo, perché il rapporto calore-temperatura è sempre nullo durante questo tipo di trasformazione; esistono molti tratti isotermi che vengono percorsi in versi opposti. Questi sono i tratti interni alla nostra curva origniale ed essendo percorsi in versi opposti non introducono ulteriori contributi calorici. Gli unici tratti di nostro interesse, dunque, sono quelli delle trasformazioni isoterme $ai\ bordi$ del ciclo. Possiamo allora riformulare la sommatoria unendo solo questi rapporti. Supponendo che il tratto j-esimo sia una isoterma che costituisce un pezzo di bordo della curva originale, otteniamo

$$\sum_{j} \frac{Q_j}{T_j} \le 0$$

o più elegantemente, passando all'infinitesimo

$$\oint \frac{dQ}{T} \le 0$$
(8.12)

che è proprio la tesi del teorema di Clausius. L'integrale prende il nome di *integrale di Clausius*, giusto per sottolineare che se un qualche oggetto matematico porta il nome di una persona, esso è più importante di quanto si possa credere. Inoltre, come sempre, l'uguaglianza vale solamente per trasformazioni reversibili.

Entropia

Supponiamo di avere un ciclo reversibile γ qualsiasi. Essendo reversibile, possiamo concludere che

$$\oint_{\gamma} \frac{dQ}{T} = 0$$

Selezioniamo due punti distinti su questo ciclo, A e B e scomponiamo l'integrale di Clausius nei due percorsi α e β :

$$\int_{A}^{B} \frac{dQ}{T} + \int_{B}^{A} \frac{dQ}{T} = 0$$

Trattandosi di un ciclo reversibile, vale la proprietà antisimmetrica dell'integrale. Giungiamo dunque alla seguente conclusione:

$$\int_{A.\alpha}^{B} \frac{dQ}{T} = \int_{A.\beta}^{B} \frac{dQ}{T}$$

Dunque, qualsiasi sia il percorso tra A e B, luguaglianza precedente valle sempre per percorsi reversibili. Vi è dunque una dipendenza di una certa quantita dai soli stati iniziale e finale. Definiamo dunque, come abbiamo fatto per l'energia potenziale, la differenza di entropia tra due stati termodinamici:

$$\Delta S_{AB} = S_B - S_A \stackrel{\text{def}}{=} \int_{A \text{ rev}}^B \frac{dQ}{T}$$

L'entropia è a tutti gli effetti una funzione di stato. Possiamo inoltre ricavare le seguenti osservazioni:

• La somma dell'entropia di due sottosistemi corrisponde all'entropia del sistema complessivo. Da questa osservazione è possibile supporre che l'universo abbia una propria entropia, derivante da tutti i suoi sottosistemi, conosciuti e non.

- Si tratta di una grandezza estensiva. Ha significato solo se si considera l'intero sistema.
- Per calcolare le differenze di entropia nelle trasformazioni reversibili, è sufficiente essere furbi utilizzando le trasformazioni reversibili più comode dal punto di vista computazionale, perché l'entropia è una funzione di stato e non dipende dal percorso.

Variazione di entropia nelle trasformazioni reversibili elementari

• Isoterma:

Il teorema dell'entropia

Consideriamo due trasformazioni termodinamiche che collegano due punti A e B descritti da coordinate termodinamiche. Tuttavia, il primo, α , è irreversibile, mentre β , il secondo, è reversibile. Unendo α e β (invertito), otteniamo un ciclo per il quale vale la seguente disuguaglianza, che segue dal teorema di Clausius

$$\oint_{\gamma} \frac{dQ}{T} < 0$$

Perché il tratto α rende l'intera trasfomrazione irreversibile. Come per la definizione di variazione di entropia, spezziamo l'integrale di Clausius:

$$\oint_{\gamma} \frac{dQ}{T} = \int_{A,\alpha}^{B} \frac{dQ}{T} + \int_{B,\beta}^{A} \frac{dQ}{T} < 0$$

Da cui, sapendo che β è reversibile,

$$\int_{A}^{B} \frac{dQ}{T} < \int_{A}^{B} \frac{dQ}{T} = \Delta S_{AB}$$

Il fatto che la variazione di entropia dipenda solo dagli stati iniziale e finale, è possibile concludere con la seguente generalizzazione

$$\Delta S_{AB} \ge \int_{A,\text{qualsiasi}}^{B} \frac{dQ}{T} \tag{8.13}$$

che è l'enunciato del teorema dell'entropia (come sempre, l'uguaglianza vale solamente per trasformazioni reversibili). Dal teorema segue un'osservazione inquietante. Per un sistema isolato, non vi è alcuno scambio di calore con l'esterno, qualunque siano le trasformazioni che stanno avvenendo al suo interno, reversibili oppure no. Dunque dQ=0 e l'integrale è sempre nullo.

$$\Delta_{AB} \ge \int_{A}^{B} \frac{dQ}{T} = 0 \qquad \Delta_{AB} \ge 0$$

ovvero

$S_B \ge S_A$

Segue che per il nostro sistema isolato l'entropia non può mai diminuire; essa può al più rimanere costante. Ma la cosa più sconcertante è che anche quest'ultima prospettiva è pressoché un miraggio: dovremmo riprodurre trasformazioni sempre reversibili.

Entropia e tempo

$egin{aligned} & \mathbf{Parte} & \mathbf{I} \\ & \mathbf{Appendici} \end{aligned}$

Esercizi

A.1 Effetto centrifuga

Un corpo è vincolato a muoversi lungo una guida rigida (può muoversi parallelamente alla guida ma non perpendicolarmente ad essa) che sta ruotando intorno ad uno dei suoi estremi con velocità angolare ω (rad/s). Inizialmente il corpo si trova a d_0 m dall'asse di rotazione ed è fermo; dopo un certo intervallo di tempo il corpo ha raggiunto una posizione d_f (m) ed ha una velocità v_f (m/s). Dati $d_0 = 1$, $d_f = 2.5$, $v_f = 8.1$, trovare ω .

- 1. 5.0
- 2. 5.6
- 3. 8.9
- 4. 3.5

Soluzione: Fissiamo un sistema di riferimento solidale con la guida. In tal modo, è come se l'oggetto si stesse muovendo solamente in linea retta sulla guida stessa. In tale situazione, l'oggetto si sposta verso l'esterno per via della forza centrifuga, una forza apparente, perché il sistema di riferimento scelto non è inerziale.

Ricorriamo ad una analisi energetica. L'energia cinetica dell'oggetto viene incrementata dall'azione della forza centrifuga; ciò suggerisce il ricorso al teorema dell'energia cinetica:

$$\Delta E_K = W_{F_c} \tag{A.1}$$

$$K_f - K_0 = \int_{d_0}^{d_f} F_c ds \tag{A.2}$$

$$\frac{1}{2}mv_f^2 = \int_{d_0}^{d_f} m\omega^2 s ds \tag{A.3}$$

$$v_f^2 = \omega^2 (d_f^2 - d_0^2) \tag{A.4}$$

da cui il risultato cercato

$$\omega = \frac{v_f}{\sqrt{d_f^2 - d_0^2}}$$

Eseguendo i calcoli, risulta che la risposta (4) è quella corretta. Analizziamo più chiaramente i passaggi: In A.1 esprimiamo il teorema delle forze
vive come variazione dell'energia cinetica dell'oggetto equivalente al lavoro
compiuto dalla forza centrifuga F_c . In A.2 esplicitiamo la differenza tra le
energie cinetiche iniziale e finale; dall'altro membro costruiamo invece l'integrale che permette di ottenere il lavoro totale dalla posizione iniziale d_0 a

94 A. ESERCIZI

 d_f : ricorriamo alla definizione più generale di lavoro (appunto impiegando il calcolo integrale), perché F_c varia durante il percorso da d_0 a d_f . In A.3 possiamo accorgerci che l'energia cinetica iniziale è nulla (il testo afferma che l'oggetto è inizialmente fermo rispetto alla guida); al membro di destra esprimiamo invece F_c in funzione di m, ω e s, dove s rappresenta la posizione dell'oggetto a partire dal fulcro sul quale ruota la guida. Per ricavare questa relazione abbiamo utilizzato la definizione di forza centripeta (che si rivela essere, in modulo, la stessa di quella centrifuga)

$$a_c = \omega^2 s$$

In A.4 cancelliamo i termini comuni come la massa e il fattore $\frac{1}{2}$ (che compare anche al membro di destra per via dell'integrazione del tipo $\int x dx = x^2/2$). Notiamo poi che ω è costante, perché la guida ruota con velocità angolare costante, e può essere "estratto" dall'integrale.

A.2 Rincorsa sul cuneo

Una massa m (kg) si muove inizialmente su un piano orizzontale privo di attrito con velocità v_0 (m/s). Successivamente essa sale su un piano inclinato, inizialmente fermo rispetto al piano orizzontale, di massa M (kg), che consiste in un cuneo libero di muoversi anch'esso sul piano. La velocità v_0 è tale che m si ferma esattamente sulla sommità del cuneo, ad altezza h (cm). Si supponga che non vi siano attriti di alcun genere. Dati m = 11.0, M = 47.0 e h = 25.0, trovare v_0 .

- 1. 4.1
- 2. 8.5
- 3. 2.5
- 4. 6.0

Soluzione:

A.3 Raindrops are falling on my head

Una goccia di pioggia di raggio R (mm) cade da una nuvola. Durante la caduta questa risente della resistenza aerodinamica opposta dall'aria che possiamo modellizzare come $F=\frac{1}{2}D\rho_{\rm aria}Sv^2$, dove D è il coefficiente aerodinamico, S la superficie d'impatto della goccia e v la sua velocità. Si assuma la goccia sferica e le densità di aria e acqua pari a $\rho_{\rm aria}=1.2~{\rm kg/m^3}$ e $\rho_{\rm H_2O}=1000~{\rm kg/m^3}$. Sotto queste assunzioni la velocità limite della goccia cresce fino a stabilizzarsi al valore limite v_f (m/s). Dati D=0.78, $v_f=24.0$, trovare R.

- 1. 40.4
- 2. 28.1

- 3. 59.2
- 4. 20.6

Soluzione:

A.4 Valuta l'offerta

Vostro cugino Nunzio vi dice che ha inventato una macchina termica che assorbe calore da una fonte a 30°C e cede calore ad un pozzo a 15°C. Secondo Nunzio l'efficienza della macchina è pari al 15%. La comprereste?

Soluzione: L'obiettivo dell'esercizio consiste nel verificare se, date le temperature, l'efficienza della macchina di Nunzio è corretta. Idealmente, una macchina termica reversibile che opera tra le due temperature (in Kelvin!) può avere un rendimento massimo del

$$\eta = 1 - \frac{T_{\rm fredda}}{T_{\rm calda}} = 1 - \frac{15 + 273.16}{30 + 273.16} \simeq 0.05 = 5\%$$

Nunzio ci sta dunque raccontando una baggianata e conviene non comprare la sua invenzione.

96 A. ESERCIZI

$Leggi\ fisiche\ notevoli$

B.1 Legge di Hooke

La legge di Hooke è una legge empirica che pone in relazione la forza di richiamo esercitata da una molla e l'estensione della deformazione che genera quella stessa forza.

$$\boldsymbol{F} = -k\Delta \boldsymbol{x} \tag{B.1}$$

Si suppone che la deformazione Δx avvenga sulla stessa retta sulla quale la molla giace.

B.2 Legge di Stefan-Boltzmann

$$\varepsilon = \sigma e T^4 \tag{B.2}$$

B.3 Legge di Newton gravitazione universale

$$\mathbf{F} = -G\frac{mM}{\mathbf{r}^2}\hat{r} \tag{B.3}$$

B.4 Legge di Avogadro

$$N = \frac{1}{k_B} \frac{pV}{T} \tag{B.4}$$

B.5 Legge di Boyle

$$p \propto \frac{1}{V} \tag{B.5}$$

B.6 Equazione armonica

$$\frac{d^2 \mathbf{x}}{dt^2} + \omega^2 \mathbf{x} = 0 \tag{B.6}$$

B.7 Oscillatore a molla

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{B.7}$$

B.8 Pendolo

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{B.8}$$

Costanti

La fonte dei valori delle costanti è la calcolatrice CASIO fx-991ES PLUS.

g	Accelerazione di gravità (superficie terrestre)	9.80665 m/s^2
G	Costante di gravitazione universale	$6.67428\times 10^{-11}~{\rm Nm}^2/{\rm kg}^2$
σ	Costante di Stefan-Boltzmann	$5.6704 \times 10^{-8} \mathrm{W/(m^2 K^4)}$
k_B	Costante di Boltzmann	000
R	Costante dei gas ideali	000
N_A	Numero di Avogadro	6.022×10^{23}
c	Velocità della luce nel vuoto	299,792,458 m/s

Note

Curiosità: Lettere maiuscole Vi siete mai chiesti perché i simboli di alcune unità di misura sono in maiuscolo, come W (Watt), N (Newton) e Pa (Pascal)? Nella stragrande maggioranza dei casi, ciò si deve al fatto che l'unità è dedicata ad una persona realmente esistita¹ e dunque è doveroso utilizzare una sua iniziale con la prima lettera maiuscola.

Sulla costante di Stefan-Boltzmann Ricordare questa costante fino alle primissime cifre significative è una passeggiata: si tratta di ricordare la sequenza "5678", con l'8 all'esponente e negativo.

Curiosità: Velocità della luce Fizeau misurò la luce in maniera assai bizzarra, mediante un complesso meccanismo costituito da una ruota dentata e specchi, ricorrendo a precisione e tempistiche finissime.

Curiosità: Numero di Avogadro Nonostante il nome, Avogadro non calcolò questo numero. Jean Baptiste Perrin effettuò misure sperimentali che condussero successivamente al valore oggi accettato, ma pure Albert Einstein, mediante studi sul moto browniano, diede importanti contributi alla stima di questa costante. Molte altre leggi e costanti che portano nomi di persone hanno avuto storie inaspettate, simili a questa.

 $^{^1}$ Almeno per ora...

100 C. COSTANTI

Tavola dei simboli e notazioni

D.1 Sulla notazione vettoriale

Il testo rappresenta i vettori con lettere maiuscole o minuscole, italiche e in grassetto. Tale scelta è stata adottata in quanto standardizzata e più pratica da impiegare su carta. Questa notazione è equivalente a quella utilizzata abitualmente alla lavagna, dove le lettere sono sovrastate da una freccia che punta verso destra.

 \boldsymbol{v} equivale a \vec{v}

Se la lettera non è grassettata e il contesto di interpretazione non è ambiguo, si intende il *modulo* del vettore.

v equivale a $|\vec{v}|$

D.2 Sui separatori decimali

In questi appunti si utilizza la notazione anglosassone per separare tra loro le cifre dei numeri. Il punto (.) ha significato di separatore tra parte intera e frazionaria, mentre la virgola (,) separa le cifre presenti tra ordini di grandezza multipli di 3 nella parte intera. Ecco alcuni esempi:

123.456 = centoventitré virgola quattro cinque sei 123,456 = centoventitrémilaquattrocentocinquantasei

D.3 Simboli

<i>:</i> .	Quindi
F	Forza, modulo
$oldsymbol{F}$	Forza, vettore
ω	Velocità angolare
p	Quantità di moto, modulo
p	Quantità di moto, vettore
I	Impulso, vettore

D.4 Sui pedici

I pedici aiutano a rendere più espliciti i simboli, ma alcuni possono aver bisogno di chiarimenti. Ogniqualvolta si tratta di quantità che variano nel tempo, come ad esempio uno spostamento nello spazio, il pedice i indica l'istante iniziale della variazione, mentre f quello finale. Nel caso dello spostamento, \boldsymbol{x}_i indica la posizione iniziale (descritta dal rispettivo vettore), \boldsymbol{x}_f quella finale. Può capitare, per evitare ambiguità, che al posto del pedice i si utilizzi la cifra numerica 0, sempre per indicare l'istante iniziale. In tal caso \boldsymbol{x}_i ha lo stesso significato di \boldsymbol{x}_0