LEC9 Graph Algorithm

3.26 https://github.com/GUMI-21/MIT6.006_note

Terminology

```
G = (V,E)
V = Vertices
E = Edges in VxV
```

Simple Graph

- No self loops
- Every edge is distinct
- |E| = O(|V|²)
 Directed:
 |E| <= 2 (|V| 2) (V choose 2) = O(|V|^2)
 Undirected
 |E| <= (|V| 2) (V choose 2) = O(|V|^2)
- neighbors

Adjecent vertices

• degree

Adjaceny list

Set maps vertex v as Adj(v).

May Store Adj(v) as direct access array hash table.

Path

Model Graph Problems

- Single_pair_reachability(G, s, t): is there a path in G from s to t?
- Single_pair_shortest_path(G, s, t):
 return distance from s to t and a shortest path
- single_source_shortest_paths(G, s):
 Return shortest distance from s to all t plus a shortest path tree

The Sortest path tree

every vertix just store one thing which is the previous vertex on its shotest path.

P(V)
 previous of V
 but if we change the source or one edge, we may need to renew every P(V) in the grap.

Alorithm

Level Set

Breadth-First Search

• init $L_0 \, \{ {\bf s} \}$ P array $\{ \}$ inital vertix lenth array O(|V|) level set $\{ [L_0] \}$

theni = 1while L_{i-1} != {}

while loop: we going with the order of distance, means take $O(|\mathsf{E}|)$ time.

so the runtime is O(|E| + |V|)