Scilab Textbook Companion for Statics And Strength Of Materials by I. J. Levinson¹

Created by
K E K Sashank
CL 231
Chemical Engineering
Indian Institute of Technology,Bombay
College Teacher
Prof. Rochish Thaokar
Cross-Checked by
Lavitha Pereira

May 25, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Statics And Strength Of Materials

Author: I. J. Levinson

Publisher: Prentice Hall Inc.

Edition: 20

Year: 2002

ISBN: 9780138445065

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Introduction	5
2	Force Systems Components Resultants Equivalence	8
3	Center of Gravity	13
4	Equilibrium	17
5	Force Analysis of Structures	21
6	Friction	24
7	Moment of Inertia	28
8	Concept of Stress	33
9	Concept of Strain	39
10	Torsion	45
12	Stresses in Beam	5 1
13	Deflection in Beams	58
14	Combined Loading	63
15	Welded Bolted and Riveted Connection	72

16 Columns 78

List of Scilab Codes

Exa 1.1	chapter 1 example 1	5
Exa 1.2	chapter 1 example $2 \ldots \ldots \ldots \ldots$	5
Exa 1.3	chapter 1 example 3	6
Exa 1.4	chapter 1 example 4	6
Exa 1.5	chapter 1 example 5	7
Exa 1.6	chapter 1 example 6	7
Exa 2.3	chapter 2 example 3	8
Exa 2.4	chapter 2 example 4	8
Exa 2.5	chapter 2 example 5	9
Exa 2.6		10
Exa 2.7		11
Exa 2.8		11
Exa 2.9		12
Exa 3.1		13
Exa 3.2		13
Exa 3.3		14
Exa 3.4		15
Exa 3.5	chapter 3 example 5	15
Exa 4.3		17
Exa 4.4		17
Exa 4.5	chapter 4 example 5	18
Exa 4.6	chapter 4 example 6	19
Exa 4.7		19
Exa 5.1	chapter 5 example 1	21
Exa 5.2	chapter 5 example 2	22
Exa 6.1		24
Exa 6.2		24
Exa 6.3	chapter 6 example 3	25

Exa 6.4	chapter 6 example 4	25
Exa 6.5	chapter 6 example 5	26
Exa 6.6	chapter 6 example 6	26
Exa 6.7	chapter 6 example 7	27
Exa 6.8	chapter 6 example 8	27
Exa 7.1	chapter 7 example 1	28
Exa 7.2	chapter 7 example 2	29
Exa 7.3	chapter 7 example 3	29
Exa 7.4	chapter 7 example 4	30
Exa 7.5	chapter 7 example 5	30
Exa 7.6	chapter 7 example 6	31
Exa 7.8	chapter 7 example 8	31
Exa 8.1	chapter 8 example 1	33
Exa 8.2	chapter 8 example 2	33
Exa 8.3	chapter 8 example 3	34
Exa 8.4	chapter 8 example 4	34
Exa 8.5	chapter 8 example 5	35
Exa 8.6	chapter 8 example 6	36
Exa 8.7	chapter 8 example 7	36
Exa 8.8	chapter 8 example 8	37
Exa 9.1	chapter 9 example 1	39
Exa 9.2	chapter 9 example 2	39
Exa 9.4	chapter 9 example 4	39
Exa 9.5	chapter 9 example 5	40
Exa 9.6	chapter 9 example 6	41
Exa 9.7	chapter 9 example 7	41
Exa 9.8	chapter 9 example 8	42
Exa 9.9	chapter 9 example 9	42
Exa 9.10	chapter 9 example 10	43
Exa 9.11	chapter 9 example 11	43
Exa 10.1	chapter 10 example 1	45
Exa 10.2	chapter 10 example 2	45
Exa 10.3	chapter 10 example 3	46
Exa 10.4	chapter 10 example 4	47
Exa 10.5	chapter 10 example 5	47
Exa 10.6	chapter 10 example 6	48
Exa 10.7	chapter 10 example 7	48
Exa. 10.8	chapter 10 example 8	49

Exa 10.10	chapter 10 example 10	49
Exa 10.11	chapter 10 example 11	50
Exa 12.1	chapter 12 example 1	51
Exa 12.2	chapter 12 example 2	52
Exa 12.3	chapter 12 example 3	52
Exa 12.4	chapter 12 example 4	53
Exa 12.5	chapter 12 example 5	53
Exa 12.6	chapter 12 example 6	54
Exa 12.7	chapter 12 example 7	54
Exa 12.8	chapter 12 example 8	55
Exa 12.9	chapter 12 example 9	56
Exa 12.10	chapter 12 example 10	57
Exa 13.1	chapter 13 example 1	58
Exa 13.2	chapter 13 example 2	58
Exa 13.3	chapter 13 example 3	59
Exa 13.5	chapter 13 example 5	59
Exa 13.6	chapter 13 example 6	60
Exa 13.7	chapter 13 example 7	60
Exa 13.8	chapter 13 example 8	61
Exa 13.9	chapter 13 example 9	62
Exa 14.1	chapter 14 example 1	63
Exa 14.2	chapter 14 example $2 \dots \dots \dots \dots \dots$	64
Exa 14.3	chapter 14 example 3	64
Exa 14.4	chapter 14 example 4	65
Exa 14.5	chapter 14 example 5	65
Exa 14.6	chapter 14 example 6	66
Exa 14.7	chapter 14 example 7	66
Exa 14.8	chapter 14 example 8	67
Exa 14.9	chapter 14 example 9	68
Exa 14.10	chapter 14 example 10	68
Exa 14.11	chapter 14 example 11	69
Exa 14.12	chapter 14 example 12	69
Exa 14.13	chapter 14 example 13	70
Exa 15.1	chapter 15 example 1	72
Exa 15.2	chapter 15 example $2 \dots \dots \dots \dots \dots$	72
Exa 15.3	chapter 15 example 3	73
Exa 15.4	chapter 15 example 4	74
Exa. 15.5	chapter 15 example 5	75

Exa 15.6	chapter 15 example 6										75
Exa 15.7	chapter 15 example 7										76
Exa 16.1	chapter 16 example 1										78
Exa 16.2	chapter 16 example 2										78
Exa 16.3	chapter 16 example 3										79
Exa 16.4	chapter 16 example 4										79
	chapter 16 example 5										
Exa 16.6	chapter 16 example 6										81
Exa 16.7	chapter 16 example 7										81
Eva 16.8	chapter 16 example 8										82

Introduction

Scilab code Exa 1.1 chapter 1 example 1

```
1 clc
2 //initialisation of variables
3 L= 20 //ft
4 angle= 30 //degrees
5 //CALCULATIONS
6 d= L*sind(angle)
7 //RESULTS
8 printf ('Desitance from foot of Ladder= %.2 f ft',d)
```

Scilab code Exa 1.2 chapter 1 example 2

```
1 clc
2 //initialisation of variables
3 a= 5
4 b= 12
5 angle= 60 //degrees
6 //CALCULATIONS
7 c= sqrt(a^2+b^2-2*a*b*cosd(angle))
```

```
8 //RESULTS 9 printf ('c = %.1f',c)
```

Scilab code Exa 1.3 chapter 1 example 3

```
1 clc
2 //initialisation of variables
3 a= 5
4 b= 12
5 angle= 120 //degrees
6 //CALCULATIONS
7 c= sqrt(a^2+b^2-2*a*b*cosd(angle))
8 //RESULTS
9 printf ('c = %.1f',c)
```

Scilab code Exa 1.4 chapter 1 example 4

```
1 clc
2 //initialisation of variables
3 b= 12
4 angle1= 35 //degrees
5 angle2= 43 //degrees
6 //CALCULATIONS
7 angle3= 180-angle1-angle2
8 a= sind(angle2)*b/sind(angle3)
9 c= a*sind(angle1)/sind(angle2)
10 //RESULTS
11 printf ('c = %.2 f ',c)
12 printf (' \a=%.2 f .',a)
```

Scilab code Exa 1.5 chapter 1 example 5

```
1 clc
2 //initialisation of variables
3 Wofaninch= 0.29 //lb
4 L= 3.5 //ft
5 width= 1.75 //ft
6 t= 1 //in
7 //CALCULATIONS
8 W= L*width*t*12*12*Wofaninch
9 //RESULTS
10 printf ('W = %. f lb', W)
```

Scilab code Exa 1.6 chapter 1 example 6

```
1 clc
2 //initialisation of variables
3 V= 30 //mph
4 //CALCULATIONS
5 Vinfps= V*5280*(1/60)*(1/60)
6 //RESULTS
7 printf ('v = %. f fps', Vinfps)
```

Force Systems Components Resultants Equivalence

Scilab code Exa 2.3 chapter 2 example 3

```
1 clc
2 //initialisation of variables
3 f1= 20 //lb
4 f2= 40 //lb
5 alpha= 30 //degrees
6 //CALCULATIONS
7 R= sqrt(f1^2+f2^2+2*f1*f2*cosd(alpha))
8 angle= asind((f2*sind(180-alpha))/(R))
9 //RESULTS
10 printf ('R = %.1 f lb',R)
11 printf (' \angle=%.1 f degrees',angle)
```

Scilab code Exa 2.4 chapter 2 example 4

```
1 clc
2 //initialisation of variables
```

```
3 fx= 100 //lb
4 f1= 200 //lb
5 f2= 100 //lb
6 f3= 50 //lb
7 a1= 30 //degrees
8 a2= 45 //degrees
9 a3= 60 //degrees
10 //CALCULATIONS
11 Rx= fx+f1*cosd(a1)-f2*cosd(a2)-f3*cosd(a3)
12 Ry= f1*sind(a1)+f2*sind(a2)-f3*sind(a3)
13 R= sqrt(Rx^2+Ry^2)
14 angle= atand(Ry/Rx)
15 //RESULTS
16 printf ('R = %. f ',R)
17 printf ('\angle=\%.1 f degrees',angle)
```

Scilab code Exa 2.5 chapter 2 example 5

```
1 clc
2 //initialisation of variables
3 \text{ f1} = 100 // \text{lb}
4 f2 = 200 // lb
5 x1 = 2
6 x2 = -3
7 y1 = 3
8 y2 = 5
9 z1 = 4
10 z2 = -2
11 //CALCULATIONS
12 d1 = sqrt(x1^2+y1^2+z1^2)
13 d2 = sqrt(x2^2+y2^2+z2^2)
14 f1x = f1 * x1/d1
15 f1y = f1 * y1/d1
16 \text{ f1z= f1*z1/d1}
17 	ext{ } f2x = f2 * x2/d2
```

```
18 f2y= f2*y2/d2

19 f2z= f2*z2/d2

20 Rx= f1x+f2x

21 Ry= f1y+f2y

22 Rz= f1z+f2z

23 R= sqrt(Rx^2+Ry^2+Rz^3)

24 I1= Rx/R

25 I2= Ry/R

26 I3= Rz/R

27 //RESULTS

28 printf ('R = %.2 f lb',R)

29 printf ('\11=%.3 f',I1)

30 printf ('\12=%.3 f',I2)

31 printf ('\13=%.3 f',I3)
```

Scilab code Exa 2.6 chapter 2 example 6

```
1 clc
 2 //initialisation of variables
3 \text{ F} = 100 // \text{lb}
4 x1 = 6 //in
5 \text{ x2} = 8 //\text{in}
6 x3 = 2 //in
 7 //CALCULATIONS
8 \text{ xab} = \text{sqrt}(x1^2+x2^2)
9 d = x3*x1/xab
10 \text{ M1= F*d}
11 Fx= F*x2/xab
12 Fy= F*x1/xab
13 \text{ M2= Fy*xab-Fx*x1}
14 M3 = Fy * x3
15 //RESULTS
16 printf ('M1 = \%. f lb.in', M1)
17 printf (' \M2=\%. f lb.in', M2)
18 printf (' \M3=\%.f lb.in', M3)
```

Scilab code Exa 2.7 chapter 2 example 7

```
1 clc
2 //initialisation of variables
3 Fy1= 2 //kips
4 Fy2= 5 //kips
5 Fy3= 10 //kips
6 Fy4= 3 //kips
7 L= 5 //ft
8 Ry= Fy1+Fy2+Fy3+Fy4
9 x= (Fy1*L+Fy2*2*L+Fy3*3*L+Fy4*4*L)/Ry
10 //RESULTS
11 printf ('Ry= %.2 f kips',Ry)
12 printf (' \n x=\%.1 f ft to the right of O',x)
```

Scilab code Exa 2.8 chapter 2 example 8

```
1 clc
2 //initialisation of variables
3 Fx1= -15 //lb
4 Fx2= 55 //lb
5 Fy1= 70 //lb
6 Fy2= -40 //lb
7 x1= 4 //in
8 x2= 3 //in
9 x3= 5 //in
10 y1= 4 //in
11 y2= 2 //in
12 //CALCULATIONS
13 Rx= Fx1+Fx2
14 Ry= Fy1+Fy2
```

```
15  R= sqrt(Rx^2+Ry^2)
16  angle= atand(Ry/Rx)
17  //RESULTS
18  printf ('R= %.2 f lb',R)
19  printf (' \n angle=%.1 f degrees',angle)
```

Scilab code Exa 2.9 chapter 2 example 9

```
1 clc
2 //initialisation of variables
3 Fy= 200 //lb
4 Fx= 100 //lb
5 y= 3 //in
6 x= 6 //in
7 //CALCULATIONS
8 M= Fy*x-Fx*y
9 //RESULTS
10 printf ('Moment= %.2 f lb in',M)
```

Center of Gravity

Scilab code Exa 3.1 chapter 3 example 1

```
1 clc
 2 //initialisation of variables
3 \text{ W} = 3000 // \text{lb}
4 L = 10 //ft
5 \text{ Wf1} = 1200 // lb
6 \text{ Wf2} = 1500 // lb
7 angle= 30 //degrees
8 //CALCULATIONS
9 d1= Wf1*cosd(angle)*L/W
10 d2 = Wf2*L/W
11 xbc= d1/cosd(angle)
12 \text{ xab} = d2 - xbc
13 y= xab/tand(angle)
14 //RESULTS
15 printf ('x = \%.2 \, \text{f} ft', d2)
16 printf ('\n y=\%.1f ft',y)
```

Scilab code Exa 3.2 chapter 3 example 2

```
1 clc
 2 //initialisation of variables
3 \text{ W4= 3 } // \text{lb}
 4 \text{ W3} = 5 //1b
 5 \text{ W2} = 2 //1b
 6 \text{ W1= } 6 \text{ } // \text{lb}
 7 \text{ x1} = 10 // \text{in}
8 \text{ x2} = 4 //in
 9 z = 5 //in
10 //CALCULATIONS
11 \quad W = W1 + W2 + W3 + W4
12 x = (W1*0+W2*0+W3*x2+W4*x1)/W
13 z = (W1*z+W2*0+W3*0+W4*0)/W
14 //RESULTS
15 printf ('x = \%.2 \, \text{f} in',x)
16 printf ('\n z=\%.2f in',z)
```

Scilab code Exa 3.3 chapter 3 example 3

```
1 clc
 2 //initialisation of variables
3 \text{ W1} = 3 // \text{lb}
4 \text{ W2} = 5 // \text{lb}
5 \text{ x1} = 8 // \text{in}
6 \text{ x2} = 7 // \text{in}
7 y1 = 2 //in
8 \text{ y2} = 5 // \text{in}
9 z1 = 6 //in
10 z2 = 4 //in
11 //CALCULATIONS
12 \ W = W1 + W2
13 x = (W1 * x1 + W2 * x2)/W
14 y = (W1*y1+W2*y2)/W
15 z = (W1*z1+W2*z2)/W
16 //RESULTS
```

```
17 printf ('x = %.2 f in',x)
18 printf ('\n y=%.2 f in',y)
19 printf ('\n z=%.2 f in',z)
```

Scilab code Exa 3.4 chapter 3 example 4

```
1 clc
2 //initialisation of variables
3 L= 9 //in
4 B= 16 //in
5 B1= 6 //in
6 d= 2 //in
7 //CALCULATIONS
8 x= ((L*(B-B1)*(L/2)+(1/2)*L*B1*(L/3)-(%pi/4)*d^2*(L /2)))/(L*(B-B1)+(1/2)*L*B1-(%pi/4)*d^2)
9 y= ((L*(B-B1)*((B-B1)/2)+(1/2)*L*B1*(B1/3+(B-B1))-(%pi/4)*d^2*((B-B1)/2)))/(L*(B-B1)+(1/2)*L*B1-(%pi/4)*d^2)
10 //RESULTS
11 printf ('x = %.2 f in to the right of y-axis',x)
12 printf ('\n y=%.2 f in above x axis',y)
```

Scilab code Exa 3.5 chapter 3 example 5

```
1 clc
2 //initialisation of variables
3 Gt= 0.25 //in
4 St= 0.25 //in
5 Gw= 3.5 //lb/sq ft
6 Sw= 10 //lb/sq ft
7 Sb= 36 //in
8 Sb1= 18 //in
9 Sb2= 12 //in
```

```
10 Sb3= 6 //in
11 Sy1= 6 //in
12 Sy2= 12 //in
13 Sy3= 6 //in
14 Gb= 1 //ft
15 Sh= 24 //in
16 Gh= 1 //ft
17 //CALCULATIONS
18 W= ((Sb*Sh)/(12*12)-(Gh*Gb))*Sw+(Gh*Gb)*Gw
19 x= ((Sb*Sh)*Sw*(Sb/24)/(12*12)-(Gh*Gb)*Sw*((Sb1+(Sb2-2))/12)+(Gh*Gb)*Gw*((Sb1+(Sb2/2))/12))/W
20 //RESULTS
21 printf ('centre of gravity = %.2 f ft to the right of y-axis',x)
```

Equilibrium

Scilab code Exa 4.3 chapter 4 example 3

```
1 clc
2 //initialisation of variables
3 W= 100 //lb
4 a1= 30 //degrees
5 a2= 45 //degrees
6 //CALCULATIONS
7 A=[(cosd(a2)),(-cosd(a1));(sind(a2)),(sind(a1))]
8 b=[0;W]
9 c= A\b
10 Tbc= c(1,1)
11 Tab= c(2,1)
12 //RESULTS
13 printf ('Tbc= %.1 f lb',Tbc)
14 printf (' \n Tab=%.1 f lb',Tab)
```

Scilab code Exa 4.4 chapter 4 example 4

1 clc

```
2 //initialisation of variables
3 W1= 7000 //lb
4 W2= 1000 //lb
5 W3= 3000 //lb
6 x1= 6 //in
7 x2= 9 //in
8 x3= 10 //in
9 x4= 5 //in
10 //CALCULATIONS
11 Rb= (W1*x1+W2*(x1+x2)+W3*(x1+x2+x3))/(x1+x2+x3+x4)
12 Ra= W1+W2+W3-Rb
13 //RESULTS
14 printf ('Rb= %.1 f lb',Rb)
15 printf (' \n Ra=%.1 f lb',Ra)
```

Scilab code Exa 4.5 chapter 4 example 5

```
1 clc
2 //initialisation of variables
3 Fc= 500 //lb
4 Fd= 1000 //lb
5 xc= 2 //in
6 xd= 8 //in
7 y= 6 //in
8 //CALCULATIONS
9 Ay= Fc+Fd
10 Bx= (Fc*xc+Fd*xd)/y
11 Ax= Bx
12 A= sqrt (Ax^2+Ay^2)
13 //RESULTS
14 printf ('A= %. f lb', A)
15 printf (' \n B=%. f lb', Bx)
```

Scilab code Exa 4.6 chapter 4 example 6

```
1 clc
 2 //initialisation of variables
 3 W = -300 //1b
4 r = 4 //in
5 \text{ x1} = 2 // \text{ft}
6 	ext{ x2= 3 } // ft
7 x3 = 1 // ft
8 y1 = 1 //ft
9 x4 = 3 //in
10 //CALCULATIONS
11 F = -W*r/(y1*12)
12 By= -W*x1/(x1+x2)
13 Bz= -F*(x1+x2+x3+(x4/12))/(x1+x2)
14 \text{ Ay} = -W - By
15 \text{ Az} = -F - Bz
16 //RESULTS
17 printf ('Ay = \%.2 \, \text{f lb}', Ay)
18 printf (' \ \  By=%.2 f lb',By)
19 printf ('\n Az=\%.2 f lb', Az)
20 printf (' \ \ Bz=\%.2 f \ lb',Bz)
21 printf ('\n F=\%.2 f lb',F)
```

Scilab code Exa 4.7 chapter 4 example 7

```
1 clc
2 //initialisation of variables
3 W= 500 //lb
4 r= 4 //in
5 Lx= 3 //in
6 Ly= 12 //in
7 Lz= 4 //in
8 //CALCULATIONS
9 Tbd= W*(sqrt((-Lx)^2+(-Ly)^2+(-Lz)^2))/Ly
```

```
10 Tcd= Lx*Tbd/(sqrt((-Lx)^2+(-Ly)^2+(-Lz)^2))
11 Tad= Lz*Tbd/(sqrt((-Lx)^2+(-Ly)^2+(-Lz)^2))
12 //RESULTS
13 printf ('Tbd= %. f lb', Tbd)
14 printf (' \n Tcd=%. f lb', Tcd)
15 printf (' \n Tad=%. f lb', Tad)
```

Force Analysis of Structures

Scilab code Exa 5.1 chapter 5 example 1

```
1 clc
2 //initialisation of variables
3 \text{ Fc} = -1000 // \text{lb}
4 A= 60 // degrees
5 E1 = 60 // degrees
6 E2 = 60 // degrees
7 D= 60 // degrees
8 L1 = 10 //ft
9 L2 = 10 //ft
10 //CALCULATIONS
11 Ax = 0
12 Ay = (-Fc)*L1*cosd(D)/(L1+L2)
13 Dy = -Fc - Ay
14 Fab= Ay/sind(A)
15 Fae= Fab*cosd(A)
16 Fbe= Fab*cosd(90-E1)/cosd(90-A)
17 Fbc= Fab*sind(90-A)+Fbe*sind(90-E1)
18 Fce= Fbc*cosd(90-(180-E2-D))/cosd(90-E2)
19 Fde= Fae+Fbe*cosd(E1)+Fce*cosd(E2)
20 Fcd= (-Fc-Fbc*cosd(90-E2-D))/cosd(90-E)
21 //RESULTS
```

```
22 printf ('Ax= %.3 f lb', Ax)
23 printf (' \n Ay=%.2 f lb', Ay)
24 printf (' \n Dy=%.3 f lb', Dy)
25 printf (' \n Fab=%.2 f lb(compression)', Fab)
26 printf (' \n Fae=%.2 f lb(tension)', Fae)
27 printf (' \n Fbe=%.2 f lb(tension)', Fbe)
28 printf (' \n Fbc=%.2 f lb(compression)', Fbc)
29 printf (' \n Fce=%.2 f lb(compression)', Fce)
30 printf (' \n Fde=%.2 f lb(tension)', Fde)
31 printf (' \n Fcd=%.2 f lb(compression)', Fcd)
```

Scilab code Exa 5.2 chapter 5 example 2

```
1 clc
 2 //initialisation of variables
 3 W = -100 // lb
4 angle= 45 // degrees
5 x1 = 2 //ft
 6 \text{ x2} = 2 // \text{ft}
 7 y1 = 2 //ft
8 y2 = 4 //ft
9 Fx = 200 / 1b
10 //CALCULATIONS
11 Cx = Fx * y1/y2
12 Bx = Fx + Cx
13 By= (y2*Bx+x1*(-W))/(x1+x2)
14 \text{ Cy} = \text{By}
15 \text{ Ax= Bx}
16 \text{ Ay= W+By}
17 //RESULTS
18 printf ('Ax= \%.3 f lb', Ax)
19 printf ( ' \n Ay=%.2 f lb ',Ay)
20 printf ('\n Bx=\%.3 f lb', Bx)
21 printf (' \ \ \  By=%.2 f lb',By)
22 printf (' \n Cx=\%.2 f lb', Cx)
```

23 printf (' \n Cy=%.2 f lb',Cy)

Friction

Scilab code Exa 6.1 chapter 6 example 1

```
1 clc
2 //initialisation of variables
3 W= 100 //lb
4 Frictioncoefficient= 0.65
5 //CALCULATIONS
6 A1= atand(Frictioncoefficient)
7 //RESULTS
8 printf ('Maximum Incliantion= %.f degrees',A1)
```

Scilab code Exa 6.2 chapter 6 example 2

```
1 clc
2 //initialisation of variables
3 W= 100 //lb
4 Frictioncoefficient= 0.40
5 x= 3
6 y= 4
7 //CALCULATIONS
```

Scilab code Exa 6.3 chapter 6 example 3

```
1 clc
2 //initialisation of variables
3 mus= 0.25
4 d= 0.5 //in
5 h= 3 //in
6 //CALCULATIONS
7 A=[1 -1; mus mus]
8 b= [0;1]
9 c= A\b
10 Na= c(1,1)
11 Nb= c(2,1)
12 d= -d*mus*Na+h*Na
13 //RESULTS
14 printf ('minimu distance= %.2 f in',d)
```

Scilab code Exa 6.4 chapter 6 example 4

```
1 clc
2 //initialisation of variables
3 Ft= 1000 //lb
4 a1= 5 //degrees
5 mu= 0.30
6 //CALCULATIONS
```

```
7 R1= Ft/cosd(a1+atand(mu))
8 F= R1*sind(a1+atand(mu)+atand(mu))/sind(90-atand(mu))
9 //RESULTS
10 printf ('Forec required to start wedge= %.f lb',F)
```

Scilab code Exa 6.5 chapter 6 example 5

```
1 clc
2 //initialisation of variables
3 W= 100 //lb
4 n1= 1/2
5 n2= 3/2
6 mus= 0.40
7 //CALCULATIONS
8 Ts1= W/(exp(mus*n1*2*%pi))
9 Ts2= W/(exp(mus*n2*2*%pi))
10 //RESULTS
11 printf ('Ts1= %.2 f lb', Ts1)
12 printf (' \n Ts2=%.2 f lb', Ts2)
```

Scilab code Exa 6.6 chapter 6 example 6

```
1 clc
2 //initialisation of variables
3 F= 20//lb
4 L1= 6 //in
5 L2= 12 //in
6 L3= 24 //in
7 mus= 0.60
8 //CALCULATIONS
9 A=[(1),(-exp(mus*%pi));(L1+L2),(L1)]
10 b=[0;F*(L1+L2+L3)]
```

```
11 c= A\b
12 TL= c(1,1)
13 Ts= c(2,1)
14 //RESULTS
15 printf ('TL= %.2 f lb',TL)
16 printf (' \n Ts=%.2 f lb',Ts)
```

Scilab code Exa 6.7 chapter 6 example 7

```
1 clc
2 //initialisation of variables
3 d= 24 //in
4 mu= 0.05
5 W= 2000 //lb
6 //CALCULATIONS
7 F= W*mu*2/d
8 //RESULTS
9 printf ('F= %.2 f lb',F)
```

Scilab code Exa 6.8 chapter 6 example 8

```
1 clc
2 //initialisation of variables
3 F= 800 //lb
4 muk= 0.10
5 Do= 5 //in
6 Di= 3 //in
7 //CALCULATIONS
8 M= 2*muk*F*((Do/2)^3-(Di/2)^3)/(3*((Do/2)^2-(Di/2)^2))
9 //RESULTS
10 printf ('M= %. f lb in', M)
```

Moment of Inertia

Scilab code Exa 7.1 chapter 7 example 1

```
1 clc
 2 //initialisation of variables
 3 \text{ x1} = 3 // \text{in}
4 \times 2 = 3 //in
5 \text{ x3} = 3 // \text{in}
6 \text{ x4} = 3 // \text{in}
7 x5 = 5 //in
 8 \text{ x6} = 5 // \text{in}
9 x7 = 5 //in
10 x8= 5 //in
11 L1= 1 //in
12 L2= 1 //in
13 L3= 1 //in
14 L4= 1 //in
15 L5= 1 //in
16 \text{ L6} = 1 // \text{in}
17 L7 = 1 //in
18 L8= 1 //in
19 y= 7.5 //in
20 //CALCULATIONS
21 \text{ Ix1= x1*L1*(y)^2}
```

```
22  Ix2= x2*L2*(y-L2)^2
23  Ix3= x3*L3*(y-L3-L2)^2
24  Ix4= x4*L4*(y-L4-L3-L2)^2
25  Ix5= x5*L5*(y-L5-L4-L3-L2)^2
26  Ix6= x6*L6*(y-L6-L5-L4-L3-L2)^2
27  Ix7= x7*L7*(y-L7-L6-L5-L4-L3-L2)^2
28  Ix8= x8*L8*(y-L8-L7-L6-L5-L4-L3-L2)^2
29  Ix= Ix1+Ix2+Ix3+Ix4+Ix5+Ix6+Ix7+Ix8
30  //RESULTS
31  printf ('Ix= %. f in^4', Ix)
```

Scilab code Exa 7.2 chapter 7 example 2

```
1 clc
2 //initialisation of variables
3 Iy= 60 //in^4
4 A= 25 //sq in
5 x= 10 //in
6 //CALCULATIONS
7 Ia= Iy+ A*x^2
8 //RESULTS
9 printf ('I= %. f in^4', Ia)
```

Scilab code Exa 7.3 chapter 7 example 3

```
1 clc
2 //initialisation of variables
3 L= 5 //in
4 B= 12 //in
5 Ix= 227 //in^4
6 Iy= 10 //in^4
7 A= 10.2 //sq in
8 //CALCULATIONS
```

```
9 Kx= sqrt(Ix/A)
10 Ky= sqrt(Iy/A)
11 //RESULTS
12 printf ('Radius of gyration wrt x= %.2 f in', Kx)
13 printf ('\n Radius of gyration wrt y=\%.2 f in', Ky)
```

Scilab code Exa 7.4 chapter 7 example 4

```
1 clc
2 //initialisation of variables
3 L1= 8 //in
4 B1= 1 //in
5 L2= 1 //in
6 B2= 6 //in
7 L3= 8 //in
8 B3= 1 //in
9 //CALCULATIONS
10 Iy= (B1*L1^3/12)+(B2*L2^3/12)+(B3*L3^3/12)
11 Ix= (L1*B1^3/12)+L1*B1*((B2/2)+(B1/2))^2+(L2*B2^3/12)+(L3*B3^3/12)+L3*B3*((B2/2)+(B3/2))^2
12 //RESULTS
13 printf ('Ix= %.2 f in^4',Ix)
14 printf (' \n Iy=%.2 f in^4',Iy)
```

Scilab code Exa 7.5 chapter 7 example 5

```
1 clc
2 //initialisation of variables
3 H= 8 //in
4 b= 6 //in
5 d= 4 //in
6 H1= 5 //in
7 //CALCULATIONS
```

```
8  Ia1= ((b*H^3)/12)+b*H*d^2
9  Ia2= %pi*((d/2)^2)+%pi*((d/2)^2)*(H1)^2
10  I= Ia1-Ia2
11  //RESULTS
12  printf ('I= %.2 f in^4',I)
```

Scilab code Exa 7.6 chapter 7 example 6

```
1 clc
2 //initialisation of variables
3 W= 64.4 //lb
4 I= 10 //slugft^2
5 g= 32.2 //ft/sec^2
6 //CALCULATIONS
7 m= W/g
8 k= sqrt(I/m)
9 //RESULTS
10 printf ('k= %.2 f ft',k)
```

Scilab code Exa $7.8\,$ chapter 7 example $8\,$

```
1 clc
2 //initialisation of variables
3 d1= 18 //in
4 d2= 10 //in
5 d3= 4 //in
6 Wpercuin= 0.31 //lb
7 L1= 4 //in
8 L2= 8 //in
9 g= 32.2 //ft/sec^2
10 //CALCULATIONS
11 m1= %pi*(d1/2)^2*L1*Wpercuin/g
12 I1= m1*(d1/24)^2/2
```

```
13  m2= %pi*(d2/2)^2*L2*Wpercuin/g
14  I2= m2*(d2/24)^2/2
15  m3= %pi*(d3/2^2)*(L1+L2)*Wpercuin/g
16  I3= m3*(d3/24)^2/2
17  I= I1+I2-I3
18  //RESULTS
19  printf ('I= %.2 f slug ft^2',I)
```

Chapter 8

Concept of Stress

Scilab code Exa 8.1 chapter 8 example 1

```
1 clc
2 //initialisation of variables
3 F= -100 //lb
4 x1= 3 //in
5 y= 6 //in
6 x2= 24 //in
7 x3= 12 //in
8 //CALCULATIONS
9 Force= -F
10 Moment= -F*(x2+x1)
11 Torque= -F*y
12 //RESULTS
13 printf ('Force= %.2 f lb', Force)
14 printf (' \n Moment=%.2 f lb.in', Moment)
15 printf (' \n Torque=%.2 f lb.in', Torque)
```

Scilab code Exa 8.2 chapter 8 example 2

```
1 clc
 2 //initialisation of variables
3 \text{ F} = -5000 //1b
4 D= 250 //lb/ft
5 y1 = 4 //in
6 \text{ y2} = 2 // \text{in}
 7 y3 = 5 //in
8 \text{ y4} = 3 //\text{in}
9 x = 3 //in
10 //CALCULATIONS
11 Ax = -D*y1
12 \text{ Ay} = -F
13 M = (D*y1*(y2+y3+y1/2))-F*x
14 //RESULTS
15 printf ('Ax= \%.2 f lb', Ax)
16 printf (' \n Ay=%.2 f lb', Ay)
17 printf ('\n M=\%.2f lb.in',M)
```

Scilab code Exa 8.3 chapter 8 example 3

```
1 clc
2 //initialisation of variables
3 P= 5 //kips
4 angle= 30 //degrees
5 //CALCULATIONS
6 Fn= P*sind(angle)
7 Ft= P*cosd(angle)
8 //RESULTS
9 printf ('Fn= %.2 f lb',Fn)
10 printf (' \n Ft=\%.2 f lb',Ft)
```

Scilab code Exa 8.4 chapter 8 example 4

```
1 clc
2 //initialisation of variables
3 p = 5 //tons
4 dt = 0.75 //in
5 \text{ db} = 0.5 //in
6 b = 0.5 //in
7 h = 2 //in
8 //CALCULATIONS
9 Sc= p*2000/((\%pi/4)*(dt^2))
10 Sr= p*2000/(b*h)
        p*2000/(2*(%pi/4)*db^2)
11 Sb=
12 //RESULTS
13 printf ('Stress in circular scetion= %.2f psi
      tension', Sc)
14 printf ('\n Stress in rectangular section=%.2f psi
      tension',Sr)
15 printf ('\n Stress in bolt=\%.2f psi tension', Sb)
```

Scilab code Exa 8.5 chapter 8 example 5

```
1 clc
2 //initialisation of variables
3 w= 8 //in
4 wperft= 35 //lb/ft
5 A= 10.3 //sq in
6 F1= 3 //tons
7 F2= 3 //tons
8 F3= -8 //tons
9 F4= -8 //tons
10 F5= -5 //tons
11 F6= -5 //tons
12 P1= 12 //in
13 Pb= 12 //in
14 //CALCULATIONS
15 Sa= (F1+F2)*2000/A
```

```
16 Sb= -(F3+F4+F1+F2)*2000/A

17 Sc= -(F3+F4+F1+F2+F5+F6)*2000/A

18 Sp= -(F3+F4+F1+F2+F5+F6)*2000/(P1*Pb)

19 //RESULTS

20 printf ('Stress in a= %.2 f psi tension',Sa)

21 printf ('\n Stress in b=%.2 f psi tension',Sb)

22 printf ('\n Stress in c=%.2 f psi tension',Sc)

23 printf ('\n Stress in plate=%.2 f psi tension',Sp)
```

Scilab code Exa 8.6 chapter 8 example 6

```
1 clc
2 //initialisation of variables
3 \text{ Ns} = 8000 // \text{psi}
4 Ss= 4000 // psi
5 \text{ Ws} = 25000 // \text{psi}
6 angle= 30 //degrees
7 L = 4 //in
8 b = 1 //in
9 //CALCULATIONS
10 P= Ns*L*b/((cosd(2*angle))^2)
11 P1= 2*Ss*L*b/(sind(2*angle))
12 Pts= Ws*L*b
13 e= P1/Pts
14 //RESULTS
15 if (P<P1)
       printf ('P= %.2 f lb',P)
16
17 else
       printf ('P1= %.2 f lb',P1)
18
19 end
20 printf ('\n efficiency of the joint=\%.2 \,\mathrm{f}',e)
```

Scilab code Exa 8.7 chapter 8 example 7

```
1 clc
2 //initialisation of variables
3 T = 15000 // psi
4 h1= 3 //in
5 \text{ h2} = 2.5 // in
6 t = 0.25 //in
7 r = 5/16 //in
8 d = 1 //in
9 //CALCULATIONS
10 P1= T*(h1-d)*t/2.18
11 P2= T*h2*t/1.7
12 if (P1<P2)
13
       printf ('Safe axial load= %.2 f lb',P1)
14 else
       printf ('Safe axial load= %.f lb',P2)
15
16
17 \text{ end}
```

Scilab code Exa 8.8 chapter 8 example 8

```
1 clc
2 //initialisation of variables
3 d= 16 //ft
4 h= 24 //ft
5 P= 160 //lb/cu ft
6 hs1= 8 //ft
7 hs2= 8 //ft
8 hs3= 8 //ft
9 Tsmax= 5000 //psi
10 //CALCULATIONS
11 SW= P/1728
12 P8= SW*hs1*12
13 P16= SW*(hs1+hs2)*12
14 P24= SW*(hs1+hs2+hs3)*12
15 t8= (P8*d*12)/(2*Tsmax)
```

```
16 t16= P16*d*12/(2*Tsmax)
17 t24= P24*d*12/(2*Tsmax)
18 //RESULTS
19 printf ('t8= %.2 f in',t8)
20 printf ('\n t16=%.2 f in',t16)
21 printf ('\n t24=%.2 f in',t24)
```

Chapter 9

Concept of Strain

Scilab code Exa 9.1 chapter 9 example 1

```
1 clc
2 length=10 //ft
3 delta=0.024 //in
4 epsilon=delta/(length*12)
5 printf("Axial strain=%f in/in", epsilon)
```

Scilab code Exa 9.2 chapter 9 example 2

```
1 clc
2 drop=5 //in
3 width=8 //ft
4 deltaMB=sqrt((width*12/2)^2 +drop^2) - (width*12/2)
5 epsilon=deltaMB/(width*12/2)
6 printf("Strain in the wire= %f in/in", epsilon)
```

Scilab code Exa 9.4 chapter 9 example 4

```
1 clc
2 length=15 //in
3 \text{ tension} = 5000 //lb
4 UltStress=20000 //psi
5 \text{ delta=0.005 } //\text{in}
6 E=30*10^6 //psi
7 A1=tension/UltStress
8 A2=tension*length/(delta*E)
9 \text{ if } A1 >= A2
                then
        A = A1
10
11 else
12
        A = A2
13 end
14 Dia=sqrt(4*A/\%pi)
15 printf("diameter required= %f in", Dia)
```

Scilab code Exa 9.5 chapter 9 example 5

```
1 clc
2 L1=5
3 L2 = 10
4 T1 = 2.5
5 T2 = 5
6 T3=5
7 T4 = 5
8 T5 = 2.5
9 E=30*10^6 //psi
10 outDia=2 //in
11 inDia=1/8 //in
12 RE=(T1+T2+T3+T4+T5)/2 //kips
13 RA = RE
14 disp("From the figure 9.12")
15 GH = (RA * L2 - T2 * L1 - T1 * L2) / 4
16 printf("Stress in GH=%f kips",GH)
17 A=\%pi*(outDia^2-(outDia-2*inDia)^2)/4
```

```
18  delta=GH*10^3 *(L1*12)/(E*A)
19  printf("\n Deformation=%f in",delta)
20  sigma=GH*10^3 /A
21  printf("\n Stress=%d psi",sigma)
22  SF=65000/sigma
23  printf("\n Factor of safety=%f ",SF)
```

Scilab code Exa 9.6 chapter 9 example 6

```
1 clc
2 //initialisation of variables
3 Es= 30*10^6 // psi
4 As= 1 //in^2
5 \text{ Ea} = 10*10^6 // psi
6 Aa = 2 // in^2
7 Ls= 10 // ft
8 La= 5 // ft
9 //CALCULATIONS
10 A = [(Ls/(Es*As)) (-La/(Ea*Aa)); 1 1]
11 b= [0;1]
12 c= A \setminus b
13 Fa= c(1,1)
14 Fb= c(2,1)
15 d= Fb*Ls
16 //RESULTS
17 printf ('distance= \%.2 \, f ft',d)
```

Scilab code Exa 9.7 chapter 9 example 7

```
1 clc
2 P=40000 //lb
3 L=15 //in
4 delta=0.0032 //in
```

```
5 dia=4 //in
6 axial=0.0032 //in
7 lateral=0.00022 //in
8 E=P*L/(delta*%pi*(dia/2)^2)
9 printf("Modulus of elasticity=%f psi",E)
10 Mu=lateral*L/(axial*dia)
11 printf("\n Poisson ratio= %f",Mu)
```

Scilab code Exa 9.8 chapter 9 example 8

```
1 clc
2 alpha=11.2*10^(-6) //in/in/F
3 E=15*10^6 //psi
4 L=60 //in
5 deltaT1=0.01 //in
6 T2=50 //F
7 deltaT=deltaT1/(alpha*L)
8 printf("The temperature increase necessary to cause free end to touch B=%f F", deltaT)
9 disp("From the geometry of the figure")
10 sigma=(alpha*L*T2-deltaT1)*E/L
11 printf("Stress in the rod=%d psi", sigma+1)
```

Scilab code Exa 9.9 chapter 9 example 9

```
1 clc
2 weight=25000 //Kg
3 A=2 //sq.in
4 alphaS=6.5*10^(-6) //in/in/F
5 alphaB=11.2*10^(-6) //in/in/F
6 Es=30*10^6 //psi
7 Eb=15*10^6 //psi
8 disp("From the figure, DeltaTs+DeltaPs=DeltaTb")
```

```
9 deltaT=weight/(Es*A*(alphaB-alphaS))
10 printf("Net temperature drop=%f F",deltaT)
```

Scilab code Exa 9.10 chapter 9 example 10

```
1 clc
2 S=5 //in
3 \text{ Al}=6 //\text{in}
4 alphaS=6.5*10^(-6) //in/in/F
5 alphaAl=13.1*10^(-6) //in/in/F
6 Es=30*10^6 //psi
7 EAl=10*10^6 / psi
8 As=1 //in^2
9 AA1=2 //in^2
10 T=50 / F
11 dia=1 //in
12 disp("From the figure, it is evident that DeltaPs+
     DeltaPAl=DeltaTs+DeltaTAl")
13 P=(alphaS*S*12*T + alphaAl*Al*12*T)/(S*12/(Es*As) +
     A1*12/(EA1*AA1))
14 printf ("Shearing force= %d lb",P)
15 T=P/(%pi*(dia/2)^2)
16 printf("\n The shear stress in the pin=%d psi",T)
```

Scilab code Exa 9.11 chapter 9 example 11

```
1 clc
2 edge=2 //in
3 height=3 //in
4 F=20000 //lb
5 deltaS=0.00234 //in
6 deltaA=0.00088 //in
7 E=F*height/(deltaA*edge*edge)
```

```
8 printf("Modulus of elasticity=%f psi",E)
9 G=F*height/(deltaS*edge*edge)
10 printf("\n Modulus of Rigidity=%f psi",G)
11 Mu=E/(2*G) -1
12 printf("\n Poisson ratio=%f ",Mu)
```

Chapter 10

Torsion

Scilab code Exa 10.1 chapter 10 example 1

```
1 clc
2 //initialisation of variables
3 L= 50 //ft
4 Do= 2 //in
5 Di= 1.5 //in
6 Mt= 10000 //lb in
7 G= 12*10^6
8 //CALCULATIONS
9 Tmax= 16*Mt*Do/(%pi*(Do^4-Di^4))
10 angle= (Mt*L*12*32)*57.3/(G*%pi*(Do^4-Di^4))
11 //RESULTS
12 printf ('Maximum shearing strees= %.2 f psi', Tmax)
13 printf (' \n twist angle=%.2 f degrees', angle)
```

Scilab code Exa 10.2 chapter 10 example 2

```
1 clc
2 //initialisation of variables
```

```
3 d= 4 //ft
4 T= 5000 //psi
5 angle= 0.1 //degrees
6 //CALCULATIONS
7 T1= (%pi*d^3)*T/16
8 T2=angle*%pi*G*%pi*d^4/(180*12*32)
9 //RESULTS
10 if (T1<T2)
11    printf ('Safe torque= %.2 f lb in',T1)
12 else
13    printf ('Safe torque= %.2 f lb',T2)
14 end</pre>
```

Scilab code Exa 10.3 chapter 10 example 3

```
1 clc
2 //initialisation of variables
3 Ds = 1 //in
4 Db= 1.5 //in
5 Ls= 4 //in
6 Lb= 6 //in
7 Gs= 12*10^6 // psi
8 Gb= 6.4*10^6 // psi
9 T= 10000 // lb in
10 //CALCULATIONS
11 A = [(1), (1); (Ls*12/(Gs*Ds^4)), (-Lb*12/(Gb*Db^4))]
12 b=[T;0]
13 c= A \setminus b
14 Tab= c(1,1)
15 Tbc= c(2,1)
16 //RESULTS
17 printf ('Torque in section AB= \%.2 \,\mathrm{f} lb in', Tab)
18 printf ('\n Torque in section AB =%.2 f lb in', Tbc)
```

Scilab code Exa 10.4 chapter 10 example 4

```
1 clc
2 //initialisation of variables
3 T= 10000 //lb in
4 G= 12*10^6
5 Dab= 1.5 //in
6 Lab= 4 //in
7 Dcd= 1 //in
8 Lcd= 3 //in
9 //CALCULATIONS
10 F= T/2
11 Tab= F*Lab
12 angle= ((T*32*12*Lcd/(G*%pi*Dcd^4))+2*(Tab*32*12*Lab /(G*%pi*Dab^4)))*(180/%pi)
13 //RESULTS
14 printf ('angle of twist= %.2 f degrees', angle)
```

Scilab code Exa 10.5 chapter 10 example 5

```
1 clc
2 //initialisation of variables
3 Tallowable= 5000 //psi
4 power= 250 //hp
5 n= 1800 //rpm
6 //CALCULATIONS
7 T= 63000*power/n
8 d= (16*T/(%pi*Tallowable))^(1/3)
9 //RESULTS
10 printf ('Torque= %.2 f lb in',T)
11 printf ('\n diameter=%.2 f in',d)
```

Scilab code Exa 10.6 chapter 10 example 6

```
1 clc
2 //initialisation of variables
3 \, ds = 2 \, //in
4 n = 315 //rpm
5 \text{ Gs} = 12*10^6
6 Lab= 5 //in
7 Lbc= 15 //in
8 \text{ Pa} = 10 //\text{hp}
9 Pc = 40 //hp
10 Pb= 50 //hp
11 //CALCULATIONS
12 Tab= 63000*Pa/n
13 Tbc= 63000*Pc/n
14 angle= ((32*Tbc*Lbc*12/(%pi*ds^4*G))-(32*Tab*Lab
      *12/(%pi*ds^4*G)))*(180/%pi)
15 //RESULTS
16 printf ('angle of twist of gear C releative to a= \%
      .2 f degrees', angle)
```

Scilab code Exa 10.7 chapter 10 example 7

```
1 clc
2 //initialisation of variables
3 k1= 6*10^6 //lb in/rad
4 k2= 3*10^6 //lb in/rad
5 k3= 2*10^6 //lb in/rad
6 T= 10000 //lb in
7 //CALCULATIONS
8 ke= 1/((1/k1)+(1/k2)+(1/k3))
9 angle= T*180/(ke*%pi)
```

```
10 //RESULTS
11 printf ('equivalent spring constant= %.2e lb in/rad'
          ,ke)
12 printf ('\n angle of twist d/a=%.2f degrees',angle)
```

Scilab code Exa 10.8 chapter 10 example 8

```
1 clc
2 //initialisation of variables
3 k1= 2*10^6 //lb in/rad
4 k2= 3*10^6 //lb in/rad
5 T= 20000 //lb in
6 //CALCULATIONS
7 ke= k1+k2
8 angle= T*180/(ke*%pi)
9 //RESULTS
10 printf ('equivalent spring constant= %.2e lb in/rad', ke)
11 printf ('\n angle of twist at B=%.2f degrees', angle)
```

Scilab code Exa 10.10 chapter 10 example 10

```
1 clc
2 //initialisation of variables
3 di= 0.2 //in
4 dm= 2 //in
5 n= 10
6 F= 10 //lb
7 G= 12*10^6
8 //CALCULATIONS
9 k= G*di^4/(64*dm^3*n)
10 ke= 1/((1/(k+k))+(1/k)+(1/k))
11 delta= F/ke
```

```
//RESULTS
printf ('elongation= %.2 f in',delta)
```

Scilab code Exa 10.11 chapter 10 example 11

```
1 clc
2 //initialisation of variables
3 d= 0.5 //in
4 n= 315 //rpm
5 t1= 5000 //psi
6 r1= 8 //in
7 r2= 4 //in
8 n1= 6
9 n2= 4
10 //CALCULATIONS
11 t2= r2*t1/r1
12 T= r1*n1*(%pi/4)*d^2*t1+r2*n2*(%pi/4)*d^2*t2
13 hp= T*n/63000
14 //RESULTS
15 printf ('Premissible horsepower= %.f hp',hp)
```

Chapter 12

Stresses in Beam

Scilab code Exa 12.1 chapter 12 example 1

```
1 clc
2 //initialisation of variables
3 L = 20 // ft
4 b1= 12 //in
5 \text{ h1} = 4 // \text{in}
6 b2 = 4 //in
7 h2 = 12 //in
8 \text{ Fs} = 1200 // \text{psi}
9 La= 5 //ft
10 Lb= 15 // ft
11 //CALCULATIONS
12 Ina= b1*h1^3/12
13 P1= (Fs*Ina*4)/((h1/2)*12*La*3)
14 Ina1= b2*h2^3/12
15 P2= (Fs*Ina1*4)/((h2/2)*12*La*3)
16 //RESULTS
17 printf ('P max in first case= \%.2 f lb', P1)
18 printf ('\n P max in second case= \%.2\,\mathrm{f} lb',P2)
```

Scilab code Exa 12.2 chapter 12 example 2

```
1 clc
2 //initialisation of variables
3 b= 0.5 //in
4 h= 1/32 //in
5 d= 4 //ft
6 E= 30*10^6
7 //CALCULATIONS
8 stress= E*(h/2)/((d/2)*12)
9 Ina= b*h^3/12
10 M= stress*Ina/(h/2)
11 //RESULTS
12 printf ('maximum stress= %.2 f psi', stress)
13 printf ('\n internal moment= %.2 f lb in', M)
```

Scilab code Exa 12.3 chapter 12 example 3

```
1 clc
2 //initialisation of variables
3 \text{ W} = 1000 // \text{lb} / \text{ft}
4 L = 10 //in
5 b1 = 4 //in
6 \text{ h1} = 1 // \text{in}
7 b2= 1 //in
8 h2 = 6 //in
9 //CALCULATIONS
10 Mmax = 12500 // lb ft
11 y = ((b1*h1*h1/2)+(b2*h2*((h2/2)+h1)))/(b1*h1+b2*h2)
12 Ina= (b1*h1^3/12)+b1*h1*(y-h1/2)^2+(b2*h2^3/12)+b2*
      h2*(h1+h2-y-(h2/2))^2
13 sigmat = Mmax * 12 * y / Ina
14 sigmac = Mmax*12*(h1+h2-y)/Ina
15 //RESULTS
16 printf ('maximum tensile stress= %.2f psi', sigmat)
```

```
17 printf ('\n maximum compressive bending stress= \%.2\,\mathrm{f} psi', sigmac)
```

Scilab code Exa 12.4 chapter 12 example 4

```
1 clc
2 //initialisation of variables
3 \text{ st} = 1200 // psi
4 \text{ sc} = 100 // psi
5 h = 12 //in
6 b = 4 //in
7 //CALCULATIONS
8 I = b*h^3/12
9 P1= st*I/(b*12*(h/2))
10 P2= 2*sc*b*12/3
11 if (P1<P2)
        printf ('Safe value of p= \%. f lB', P1)
13 else
            printf ('Safe value of p= %.f lB',P2)
14
15
16 \text{ end}
```

Scilab code Exa 12.5 chapter 12 example 5

```
1 clc
2 //initialisation of variables
3 W= 600 //lb/ft
4 L1= 8 //in
5 L2= 4 //in
6 b= 6 //in
7 h= 8 //in
8 t= 1 //in
9 //CALCULATIONS
```

```
10 R1= W*(L1+L2)*((L1+L2)/2)/L1
11 R2= W*(L1+L2)*(L1-(L1+L2)/2)/L1
12 Vmax= 3000 //lb
13 I= (b*h^3/12)-(L2*b^3/12)
14 Ay= b*L2*(L2/2)-L2*b/2*b/4
15 b= t+t
16 Tmax= Vmax*Ay/(I*b)
17 //RESULTS
18 printf ('maximum shear stress= %.2 f psi', Tmax)
```

Scilab code Exa 12.6 chapter 12 example 6

```
1 clc
2 //initialisation of variables
3 \text{ w} = 4000 // \text{lb} / \text{ft}
4 1 = 20 //ft
5 y = 0.96
6 \text{ A= } 4.18 //in^2
7 Icq= 5.6 //in^4
8 d = 28 //in
9 b = 0.5 //in
10 T = 8000 // psi
11 d1= 0.75 //in
12 //CALCULATIONS
13 \ V = w * 1/2
14 Ay = 2*A*((d/2)-y)
15 I= b*d^3/12+4*(Icq+A*((d/2)-y)^2)
16 p= (2*T*(\%pi/4)*d1^2*I)/(V*Ay)
17 //RESULTS
18 printf ('Rivet spacing= \%.2 \, \text{f} in',p)
```

Scilab code Exa 12.7 chapter 12 example 7

```
1 clc
2 //initialisation of variables
3 \text{ Es} = 30*10^6
4 Ew= 1.5*10^6
5 \text{ w} = 500 // \text{lb per ft}
6 \text{ span} = 12 // ft
7 t = 0.25 //in
8 h = 12 //in
9 n = 3
10 b= 5 //in
11 //CALCULATIONS
12 \text{ bw} = \text{Es}*t/\text{Ew}
13 Ina= n*b*h^3/12
14 M = (w * span * (h/2) * 12) / 4
15 S = M*(h/2)/I
16 \text{ Ss} = \text{Es} * \text{S} / \text{Ew}
17 bs = Ew*bw/Es
18 Ina1= n*t*h^3/12
19 Ss1= M*(h/2)/Ina1
20 \text{ Sw} = \text{Ew} * \text{Ss} 1 / \text{Es}
21 //RESULTS
22 printf ('Maximum bending stress in steel= \%.3 f psi',
23 printf ('\n Maximum bending stress in wood= \%.2 f
       psi',Sw)
```

Scilab code Exa 12.8 chapter 12 example 8

```
1 clc
2 //initialisation of variables
3 Ss= 15000 //psi
4 Sa= 6000 //psi
5 Es= 30*10^6
6 Ea= 10*10^6
7 Sl= 16 //ft
```

```
8 ba= 3 //in
9 ha= 8 //in
10 hs= 1 //in
11 b= 1 //in
12 //CALCULATIONS
13 bs = (Ea/Es)*ba
14 Y = ((ba-b)*b*(hs/2)+(ha+b)*b*((ha/2)+(hs/2)))/(ba*b+
     ha*b)
15 I= (ba*hs^3/12)+ba*hs*(Y-(hs/2))^2+((b*ha^3/12)+b*ha
      *(ha-Y-(ha/2))^2
16 w1= Ss*I/(Y*(1/2)*ha*(ha)*12)
17 Ss= Es*Sa/Ea
18 w2 = Ss*I/((ha-Y)*(1/2)*ha*(ha)*12)
19 if (w1 < w2)
       printf ('Greatest uniformly distributed load= %
20
          .2 f lb per ft', w1)
21 else
22
       printf ('Greatest uniformly distributed load= %
          .2 f lb per ft', w2)
23
24 end
```

Scilab code Exa 12.9 chapter 12 example 9

```
1 clc
2 //initialisation of variables
3 M= 500000 //lb in
4 r= 15
5 n=3
6 b= 20 //in
7 l= 12 //in
8 As= 1 //in^2
9 //CALCULATIONS
10 At= r*As*n
11 x= (-2*At+sqrt((2*At)^2+8*At*b*1))/(2*1)
```

```
12 Ina= ((1*x^3)/3)+At*(b-x)^2
13 Scmax= M*x/Ina
14 Ssmax= r*M*(b-x)/Ina
15 //RESULTS
16 printf ('Maximum bending stress in concrete= %.3 f
        psi',Scmax)
17 printf ('\n Maximum bending stress in steel= %.2 f
        psi',Ssmax)
```

Scilab code Exa 12.10 chapter 12 example 10

```
1 clc
2 //initialisation of variables
3 \text{ Sc} = 800 // \text{psi}
4 Ss = 18000 // psi
5 ratio= 15
6 d = 5/8 //in
7 1 = 20 //in
8 b = 10 //in
9 //CALCULATIONS
10 x= Sc*ratio*l/(Ss+Sc*ratio)
11 As= b*x*(x/2)/((1-x)*ratio)
12 Ina= (b*x^3/3)+ratio*As*(1-x)^2
13 M = Sc * I/x
14 N= As/(\%pi*(d/2)^2)
15 //RESULTS
16 printf ('Number of steel bars required = %.2f', N)
17 disp("it rounds to 6 bars")
```

Chapter 13

Deflection in Beams

Scilab code Exa 13.1 chapter 13 example 1

```
1 clc
 2 //initialisation of variables
3 E = 1.5 * 10^6
4 F1 = -100 //lb
5 \text{ F2} = -100 // \text{lb}
6 \text{ x1} = 6 // \text{in}
7 \text{ x2= } 6 \text{ } //\text{in}
8 Ina= 64 //in^4
9 \text{ h1} = -600 // \text{lb} \text{ ft}
10 h2 = -1200 // lb ft
11 xa1 = 10 // in
12 \text{ xa2} = 8 //\text{in}
13 //CALCULATIONS
14 deltamax = ((1/2)*x1*xa1*h1+(1/2)*(x1+x2)*h2*xa2)
       *(1728)/(E*Ina)
15 //RESULTS
16 printf ('maximum deflection= %.2 f in', deltamax)
```

Scilab code Exa 13.2 chapter 13 example 2

```
1 clc
2 //initialisation of variables
3 E= 1.5*10^6
4 I= 50 //in^4
5 delta= -1 //in
6 l= 8 //ft
7 //CALCULATIONS
8 w= -delta*8*E*I/(1^4*1728)
9 //RESULTS
10 printf ('distributed weight= %.1f lb per ft',w)
```

Scilab code Exa 13.3 chapter 13 example 3

```
1 clc
2 //initialisation of variables
3 \text{ W} = 50 // \text{lb} / \text{ft}
4 x = 5 // ft
5 \text{ x1= 2 } // \text{ft}
6 //CALCULATIONS
7 \quad V = W * x
8 M = W * ((x/2) + x1) * x
9 M1 = W * x * (x + x1)
10 \text{ M2} = -\text{M}
11 M3 = -W * x * x / 2
12 EIdeltamax = ((1/2)*(x+x1)*M1*((x+x1)/3))+(x+x1)*M2
       *((x+x1)/2)+(1/3)*x*M3*(x/4)
13 //RESULTS
14 printf ('maximum value of Eldeltax= %.1 f lb ft^3',
       EIdeltamax)
```

Scilab code Exa 13.5 chapter 13 example 5

```
1 clc
```

```
2 //initialisation of variables
3 w= 180 //lb/ft
4 l= 8 //ft
5 P= 1200 //lb
6 b= 6 //ft
7 E= 3*10^6
8 I= 64 //in^4
9 //CALCULATIONS
10 delta= ((w*l^4)/(8))+((P*b^2)*(3*l-b)/(6))
11 //RESULTS
12 printf ('deflection of the free end= %.1 fbyEI ft', delta)
```

Scilab code Exa 13.6 chapter 13 example 6

```
1 clc
2 //initialisation of variables
3 P= 6 //kips
4 w= 3 //kips/ft
5 L1= 8 //ft
6 L2= 8 //ft
7 //CALCULATIONS
8 delta= (P*(L1+L2)^3/192)+(w*(L1+L2)^4/768)
9 //RESULTS
10 printf ('midspan value of deflection= %.1f kip ft^3', delta)
```

Scilab code Exa 13.7 chapter 13 example 7

```
1 clc
2 //initialisation of variables
3 x1= 3 //ft
4 x2= 3 //ft
```

```
5 x3 = 3 //ft
6 x4 = 3 //ft
7 W1= 4 // kips
8 \text{ W2} = 8 // \text{kips}
9 1 = x1 + x2 + x3 + x4
10 //CALCULATIONS
11 b= x2+x3+x4
12 b1 = x4
13 \ a = x1
14 x = 1/2
15 P = (((W1*b*(1/b*(x-a)^3+(1^2-b^2)*x-x^3))/(6*1))+((
      W2*b1*x*(1^2-x^2-b1^2))/(6*1))*(48/1^3)
16 R1 = 3 + 2 - (P/2)
17 R2= P
18 R3 = 1+6-(P/2)
19 //RESULTS
20 printf ('R1= \%.3 f kips',R1)
21 printf ('\n R2=\%.2 f kips',R2)
22 printf ('\n R3=\%.3 f kips',R3)
```

Scilab code Exa 13.8 chapter 13 example 8

```
1 clc
2 //initialisation of variables
3 P= 680 //lb
4 K= 1000 //lb/in
5 L= 6 //ft
6 E= 30*10^6
7 Ina= 1.728 //in^4
8 //CALCULATIONS
9 A= [((L*12)^3/(3*E*Ina)),-(1/K);1,1]
10 b= [0;P]
11 c= A\b
12 Pb= c(1,1)
13 Ps= c(2,1)
```

```
14 //RESULTS
15 printf ('Force in the spring= %.2f psi',Ps)
```

Scilab code Exa 13.9 chapter 13 example 9

```
1 clc
2 //initialisation of variables
3 I= 1.5 //in^4
4 Da= 0.5 //in
5 E= 30*10^6
6 l= 60 //in
7 //CALCULATIONS
8 F= 6*Da*E*I/(1^3)
9 //RESULTS
10 printf ('F= %.2 f lb',F)
```

Chapter 14

Combined Loading

Scilab code Exa 14.1 chapter 14 example 1

```
1 clc
 2 //initialisation of variables
3 h = 6 //in
4 \times 1 = 7 //in
5 \text{ x2= 1 } // \text{in}
6 x3 = 2 //in
7 P = 600 // 1b
8 //CALCULATIONS
9 By= P*(x1+x2+x3)/(x1+x2)
10 Bx = By *(x1+x2)/h
11 \text{ Fx= Bx}
12 \quad V = By - P
13 M = -P*(x2+x3)+By*x2
14 S1= -Fx/(x3*h)
15 I = x3*h^3/12
16 \text{ S2} = -M*12*(h/2)/I
17 \text{ Scmax} = \text{S1} - \text{S2}
18 \text{ Stmax} = \text{S1} + \text{S2}
19 //RESULTS
20 printf ('Maximum tensile stress at =\%.1\,\mathrm{f} psi', Scmax
```

```
21 printf (' \n Maximum compressive stress at = \%.1\,\mathrm{f} psi', Stmax)
```

Scilab code Exa 14.2 chapter 14 example 2

```
1 clc
2 //initialisation of variables
3 P= 10000 //lb
4 A= 11.77 //in^2
5 Z= 51.9 //in^3
6 x= 5 //ft
7 y= 12 //ft
8 //CALCULATIONS
9 S1= -P/A
10 S2= P*x*y/Z
11 Sc= S1-S2
12 St= S1+S2
13 //RESULTS
14 printf ('Axial stress at c= %.1 f psi',Sc)
15 printf ('\n Axial stress at t= %.1 f psi',St)
```

Scilab code Exa 14.3 chapter 14 example 3

```
1 clc
2 //initialisation of variables
3 b= 6 //in
4 h= 12 //in
5 l= 20 //ft
6 P= 100000 //lb
7 //CALCULATIONS
8 S= -P/(b*h)
9 S1= l^2*6*12/(8*b*h^2)
10 w= -S/S1
```

```
//RESULTS
printf ('Safe distributed load= %.1 f lb per ft',w)
```

Scilab code Exa 14.4 chapter 14 example 4

```
1 clc
2 //initialisation of variables
3 b = 4 //in
4 h = 9 //in
5 1 = 6 //in
6 \text{ Mx} = 600 // lb
7 \text{ My} = 100 // \text{lb}
8 //CALCULATIONS
9 \text{ Zx= } b*h^3/(12*h/2)
10 Zy = b^3*h/(12*b/2)
11 S1= Mx*1*12/Zx
12 S2= My*b*12/Zy
13 \text{ Sb= } S1+S2
14 \text{ Sd} = -S1 - S2
15 //RESULTS
16 printf ('Maximum stress= %.1f psi (tension)',Sb)
17 printf ('\n Maximum stress=%.1f psi (compression)',
      Sd)
```

Scilab code Exa 14.5 chapter 14 example 5

```
1 clc
2 //initialisation of variables
3 d= 2 //in
4 Px= -600 //lb
5 Py= 1200 //lb
6 x1= 2 //in
7 x2= 2 //in
```

```
8 x3 = 2 //in
9 Ray= -400 // lb
10 Rax= 400 //lb
11 Rbx = 200 //1b
12 Rby = -800 // lb
13 //CALCULATIONS
14 Mb= sqrt((Rax*x1)^2+(Ray*x1)^2)
15 Mc = sqrt((Rbx*x3)^2+(Rby*x3)^2)
16 \text{ if } (Mb < Mc)
17
       M = Mc
18 else
19
       M = Mb
20 \text{ end}
21 Smax = M*12*64*(d/2)/(%pi*d^4)
22 //RESULTS
23 printf ('Maximum normal stress= %.1f psi', Smax)
```

Scilab code Exa 14.6 chapter 14 example 6

```
1 clc
2 //initialisation of variables
3 P= 100 //kips
4 M= 400 //kip in
5 A= 14.7 //in^2
6 Z= 80.7 //in^3
7 //CALCULATIONS
8 Smax= -(P*10^3)/A-(M*10^3)/Z
9 Smin= -(P*10^3)/A+(M*10^3)/Z
10 //RESULTS
11 printf ('Maximum stress= %.1 f psi', Smax)
12 printf (' \ n Minimum stress= %.1 f psi', Smin)
```

Scilab code Exa 14.7 chapter 14 example 7

```
1 clc
2 //initialisation of variables
3 As= 1 //in^2
4 Zs= 0.167 //in^3
5 Ah= 1 //in^2
6 Zh= 0.984 //in^3
7 es= 0.5 //in
8 eh= 0.5 //in
9 //CALCULATIONS
10 phbyps= (1/As+es/Zs)/(1/Ah+eh/Zh)
11 //RESULTS
12 printf ('ratio= %.1 f', phbyps)
```

Scilab code Exa 14.8 chapter 14 example 8

```
1 clc
2 //initialisation of variables
3 \text{ Sx} = 1800 // \text{psi}
4 Sy = 1000 // psi
5 angle= 30 // degrees
6 t = 0.25 //in
7 t1 = 3 //in
8 t2 = 5 //in
9 //CALCULATIONS
10 Sx1= Sx/(t1*t)
11 Sy1= Sy/(t2*t)
12 S= ((Sx+Sy)/2+((Sx-Sy)/2)*cosd(2*angle))+(Sx-Sy)*
      cosd(2*angle)
13 T = (Sx - Sy) * sind(2* angle)
14 //RESULTS
15 printf ('S= %.1 f psi',S)
16 printf ('\n T=\%.1 f psi',T)
```

Scilab code Exa 14.9 chapter 14 example 9

```
1 clc
2 //initialisation of variables
3 \text{ Sx} = 1800 // \text{lb}
4 Sy= 1000 // lb
5 angle= 30 // degrees
6 //CALCULATIONS
7 Sa=-((Sx+Sy)/2+((Sx-Sy)/2)*cosd(2*angle))*cosd(2*
      angle)-(Sx-Sy)
8 Ta= -((Sx+Sy)/2+((Sx-Sy)/2)*cosd(2*angle))*sind(2*
      angle)
  Sb = ((Sx+Sy)/2+((Sx-Sy)/2)*cosd(2*angle))*cosd(2*
      angle)-(Sx-Sy)
10 Tb= ((Sx+Sy)/2+((Sx-Sy)/2)*cosd(2*angle))*sind(2*
      angle)
11 //RESULTS
12 printf ('Sa= \%.1 \,\mathrm{f} psi', Sa)
13 printf (' \n Sb=\%.1 f psi',Sb)
14 printf ('\n Ta=\%.1f psi', Ta)
15 printf ('\n Tb=\%.1 f psi', Tb)
```

Scilab code Exa 14.10 chapter 14 example 10

```
1 clc
2 //initialisation of variables
3 angle= 15 //degrees
4 Tyx= -1000 //psi
5 Txy= 1000 //psi
6 //CALCULATIONS
7 Sx= Txy*sind(2*angle)
8 Tx= Txy*cosd(2*angle)
9 Sy= Tyx*sind(2*angle)
10 Ty= Tyx*cosd(2*angle)
11 Sx1= Txy
```

```
12 Sy1= Tyx
13 Txy= 0
14 //RESULTS
15 printf ('Sx= %.1 f psi',Sx)
16 printf (' \n Tx=%.1 f psi',Tx)
17 printf (' \n Sy=%.1 f psi',Sy)
18 printf (' \n Ty=%.1 f psi',Ty)
19 printf (' \n Sx1=%.1 f psi',Sx1)
20 printf (' \n Sy1=%.1 f psi',Sy1)
21 printf (' \n Txy=%.1 f psi',Txy)
```

Scilab code Exa 14.11 chapter 14 example 11

```
1 clc
2 //initialisation of variables
3 d= 4 //in
4 n= 315 //rpm
5 Ss= 8000 //psi
6 Ns= 12000 //psi
7 //CALCULATIONS
8 T= Ss*%pi*d^4/(32*(d/2))
9 hp= T*n/63000
10 //RESULTS
11 printf ('T= %.1 f lb in',T)
12 printf (' \n horsepower rating=%.1 f hp',hp)
```

Scilab code Exa 14.12 chapter 14 example 12

```
1 clc
2 //initialisation of variables
3 Sx= 9 //ksi
4 Sy= -5 //ksi
5 Txy= 4 //ksi
```

```
6 //CALCULATIONS
7 R = sqrt(((Sx-Sy)/2)^2+Txy^2)
8 \quad Smax = ((Sx + Sy)/2) + R
9 Smin= ((Sx+Sy)/2)-R
10 ap1= (1/2)*atand(2*Txy/(Sx-Sy))
11 \text{ ap2} = 90 + \text{ap1}
12 Sc= (Sx+Sy)/2
13 \text{ Tc= R}
14 \text{ Sd} = (Sx+Sy)/2
15 \text{ Td} = -R
16 \text{ a1} = (90-2*ap1)/2
17 \quad a2 = 90 + a1
18 //RESULTS
19 printf ('Smax= \%.1 \, \text{f ksi'}, Smax)
20 printf (' n Smin=\%.1 f ksi', Smin)
21 printf ('\n R=\%.1 f psi',R)
22 printf (' \n palne1=\%.1 f degrees',ap1)
23 printf (' \n plane 2=\%.1f degrees',ap2)
25 printf ('\n Sd=\%.1 f ksi', Sd)
26 printf ('\n Tc=%.1 f ksi',Tc)
27 printf ('\n Td=%.1 f ksi',Td)
28 printf (' \n palne1=\%.1f degrees',a1)
29 printf (' \n plane 2=\%.1 \, \text{f} degrees',a2)
```

Scilab code Exa 14.13 chapter 14 example 13

```
1 clc
2 //initialisation of variables
3 d= 4 //in
4 T= 40000 //lb in
5 Th= 20000 //lb in
6 //CALCULATIONS
7 t= T*(d/2)*32/(%pi*d^4)
8 S= Th/(%pi*(d/2)^2)
```

```
9 Smax= -(S/2)-sqrt(t^2+(S/2)^2)
10 Tmax= sqrt(t^2+(S/2)^2)
11 //RESULTS
12 printf ('Maximum normal stress= %.1 f psi', Smax)
13 printf ('\n Maximum shearing stress=%.1 f psi', Tmax)
```

Chapter 15

Welded Bolted and Riveted Connection

Scilab code Exa 15.1 chapter 15 example 1

```
1 clc
2 //initialisation of variables
3 sigma= 20000 //psi
4 b= 6 //in
5 h= 0.5 //in
6 p1= 3750
7 //CALCULATIONS
8 P= sigma*b*h
9 L= (P-p1*b)/(2*p1)
10 //RESULTS
11 printf ('L= %.2 f in',L)
```

Scilab code Exa 15.2 chapter 15 example 2

```
1 clc
2 //initialisation of variables
```

```
3 P= 5000 //lb per in
4 T1= 75 //kips
5 y1= 2.63 //in
6 y2= 1.37 //in
7 //CALCULATIONS
8 A= [P P ; y1*P -y2*P]
9 b= [T1*10^3 ; 0]
10 c= A\b
11 L1= c(1,1)
12 L2= c(2,1)
13 //RESULTS
14 printf ('L1= %.2 f in',L1)
15 printf ('\n L2= %.2 f in',L2)
```

Scilab code Exa 15.3 chapter 15 example 3

```
1 clc
2 //initialisation of variables
3 d = 3/8 //in
4 d1 = 1/8 //in
5 y = 1 //in
6 T = 15000 //psi
7 sigmab= 32000 // psi
8 sigmat= 18000 //psi
9 //CALCULATIONS
10 Ps= \pi *T*(d/2)^2
11 Pt= sigmat*d1*(y-d)
12 Pb= sigmab*d1*d
13 Pmin=Ps
14 \text{ sigma=T}
15 if (Pt < Pmin)
16
       Pmin=Pt
       sigma=sigmat
17
18 else
19
       Pmin=Pb
```

Scilab code Exa 15.4 chapter 15 example 4

```
1 clc
2 //initialisation of variables
3 d = 7/8 //in
4 Ss= 15000 // psi
5 \text{ Sb} = 32000 // psi
6 St = 20000 // psi
7 n=8
8 t = 3/8 //in
9 1 = 10 //in
10 //CALCULATIONS
11 Ps= Ss*\%pi*n*(d/2)^2
12 Pb= Sb*%pi*n*d*t
13 Pt1= St*(1-d*2)*t
14 \text{ Pt2} = 4*St*(1-d*4)*t/3
15 Pt3= 4*St*(1-d*2)*t
16 Pmin= Ps
17 sigma= Ss
18 if (Pb < Pmin)
19
       Pmin=Pb
20
       sigma=Sb
21 elseif (Pt1 < Pmin)
22
       Pmin=Pt1
23
       sigma=St
24 elseif (Pt2<Pmin)
       Pmin=Pt2
25
26
       sigma=St
27 else (Pt3<Pmin)
```

```
28     Pmin=Pt3
29     sigma=St
30     end
31     e= Pmin*100/(sigma*t*1)
32     //RESULTS
33     printf ('e= %.1 f per cent',e)
```

Scilab code Exa 15.5 chapter 15 example 5

```
1 clc
2 //initialisation of variables
3 n = 8
4 shear= 15 //ksi
5 Dr = 7/8 //in
6 Ss= 32 //ksi
7 Ds = 40 // si
8 D = 3/8 //in
9 x = 0.504 //in
10 //CALCULATIONS
11 Ps= shear*n*(Dr/2)^2
12 Pb= Ds*(n/2)*x*Dr
13 Pb1= Ss*n*D*Dr
14 \text{ pmin} = Ps
15 if (Pb < Pmin)
       Pmin= Pb
16
17 else
18
       Pmin = Pb1
19
       end
20 //RESULTS
21 printf ('load capacity of connection= %.2 f kips',Pb)
```

Scilab code Exa 15.6 chapter 15 example 6

```
1 clc
2 //initialisation of variables
3 T = 15000 // psi
4 x1 = 3 //in
5 \text{ x2} = 3 // \text{in}
6 \text{ y1} = 3 // \text{in}
7 y2 = 3 //in
8 d = 0.5 //in
9 \quad n = 4
10 //CALCULATIONS
11 P = T*(\%pi/4)*d^2/(sqrt((1/n)^2+(1/((sqrt(y1^2+y2^2)/
      y1)*n))^2+(2*(1/n)*(1/(n*(sqrt(y1^2+y2^2))/y1))*
      cosd(45))))
12 P1= T*(\%pi/4)*d^2/((1/n)+(y1/(n*y1)))
13 if (P>P1)
        printf ('Stornger P= %.2f lb',P)
14
15 else
        printf ('Stornger P= %.2 f lb',P1)
16
17 \text{ end}
```

Scilab code Exa 15.7 chapter 15 example 7

```
1 clc
2 //initialisation of variables
3 P= 5 //kips
4 xab= 3 //in
5 xbc= 6 //in
6 xbp= 1 //in
7 y= 6 //in
8 n= 3
9 //CALCULATIONS
10 Dl= P/3
11 Pct= (6*P)/(((xab+xbp)*(xab+xbp)/(xbc-xbp))+(xbp/(xbc-xbp))+(xbc-xbp))
12 R= sqrt(Pct^2+D1^2)
```

```
//RESULTS
frintf ('Greatest Load= %.2 f kips',R)
```

Chapter 16

Columns

Scilab code Exa 16.1 chapter 16 example 1

```
1 clc
2 //initialisation of variables
3 E= 10*10^6 //psi
4 ys= 6000 //psi
5 //CALCULATIONS
6 lbyr= sqrt(%pi^2*E/ys)
7 //RESULTS
8 printf ('Slenderness Ratio= %.f', lbyr)
```

Scilab code Exa 16.2 chapter 16 example 2

```
1 clc
2 //initialisation of variables
3 fs= 3
4 W= 50 //kips
5 l= 20 //ft
6 E= 30*10^6 //psi
7 //CALCULATIONS
```

```
8 Pcr= fs*W
9 I= Pcr*10^3*(1*12)^2/(%pi^2*E)
10 r= 2.01
11 lbyr= l/r
12 //RESULTS
13 printf ('Required I = %.2 f in^4', I)
14 printf ('\n slenderness ratio=%.2 f ',lbyr)
```

Scilab code Exa 16.3 chapter 16 example 3

```
2 //initialisation of variables
3 L1= 18 // ft
4 L2= 9 //ft
5 I1 = 12.1 //in^4
6 I2= 1.2 //in^4
7 E = 30*10^6 //psi
8 //CALCULATIONS
9 \text{ r1} = 2.05
10 lbyr= L1*12/r1
11 r2 = 0.65
12 \text{ lbyr2= } L2*12/r2
13 Pcr1= %pi^2*E*I1/(L1*12)^2
14 Pcr2= %pi^2*E*I2/(L2*12)^2
15 P = Pcr1/2.5
16 P2 = Pcr2/2.5
17 //RESULTS
18 printf ('Design load of 1 = \%.2 \, \text{f lb}',P)
19 printf (' \n Design load of 2=\%.2 \,\mathrm{f} lb',P2)
```

Scilab code Exa 16.4 chapter 16 example 4

```
1 clc
```

```
2 //initialisation of variables
3 E= 30*10^6
4 syp= 30000 //psi
5 I= 143.5 //in^4
6 A= 7.32 //in
7 //CALCULATIONS
8 I1= 2*I
9 A1= 2*A
10 L= sqrt(2*%pi^2*E*I1/(syp*A1))
11 //RESULTS
12 printf ('Critical length of the column= %.2 f in',L)
```

Scilab code Exa 16.5 chapter 16 example 5

```
1 clc
2 //initialisation of variables
3 x = 30 //in
4 \times 1 = 10 //in
5 E = 30*10^6
6 d = 0.5 //in
7 \text{ syp} = 60000 // psi
8 y1 = 8 //in
9 y2 = 2 //in
10 //CALCULATIONS
11 ratio= 0.8
12 1 = x + x 1
13 lr= ratio*l
14 I = (\%pi*(d)^4)/64
15 Pcr= %pi^2*E*I/lr^2
16 scr= Pcr/(\%pi*(d/2)^2)
17 F = Pcr*y2/(y1+y2)
18 //RESULTS
19 printf ('Stress in the critical load= \%.2 f psi', scr)
20 printf ('\n Critical force F=\%.2f lb',F)
```

Scilab code Exa 16.6 chapter 16 example 6

```
1 clc
2 //initialisation of variables
3 l= 10 //ft
4 Ys= 33000 //psi
5 E= 30*10^6
6 A= 13.24 //in^4
7 //CALCULATIONS
8 r= 2
9 lbyr= 1*12/r
10 Cc= sqrt(2*%pi^2*E/Ys)
11 fs= 5/3+3*(lbyr)/(8*Cc)+(lbyr)^3/(5*Cc^3)
12 Sa=((1-((lbyr)^2/(2*Cc^2)))*(Ys))/fs
13 Pa= Sa*A
14 //RESULTS
15 printf ('Premissible load= %.2e kips',Pa)
```

Scilab code Exa 16.7 chapter 16 example 7

```
1 clc
2 //initialisation of variables
3 L= 12 //ft
4 Po= 100 //kips
5 e= 2 //ft
6 ys= 42000 //psi
7 A= 11.77 //in^2
8 rmin= 195 //in
9 Zmin= 11.0 //in^3
10 lbyr= 74.2
11 stress= 18 //ksi
12 //CALCULATIONS
```

```
13 P= (stress-(Po/A)/((1/A)+((e*12)/Zmin)))
14 //RESULTS
15 printf ('Additional Load= %.2 f kips ',P)
```

Scilab code Exa 16.8 chapter 16 example 8

```
1 clc
2 //initialisation of variables
3 1 = 15 //ft
4 Al = 80 // kips
5 El= 60 // kips
6 \text{ Ys} = 33 // \text{ksi}
7 e = 4 //in
8 //CALCULATIONS
9 \quad A = 14.4
10 \text{ rmin} = 2.54
11 \ Zxx = 54.6
12 lbyr= 1*12/rmin
13 Smax = ((Al+El)/A)+El*e/Zxx
14 //RESULTS
15 printf ('Maximum stress %.2 f ksi', Smax)
16 disp("10 WF 49 is the suitable one")
```