Tutoría #5

Problema 1. Análisis de DC con Ebers-Moll (saturación débil).

Un transistor NPN polarizado por resistencia de base (mostrado en la figura) presenta los siguientes parámetros: $\alpha_F = 0.99$, $\alpha_R = 0.495$, $IES = 10^{-17} A$, $ICS = 2 \times 10^{-17} A$. La fuente de alimentación es de 5 V.

Se requiere dimensionar las resistencias para obtener una corriente de I_C = 1 mA. Con el transistor en la región de saturación débil, considerando V_C = V_B - 200 mV.

Dibuje el circuito equivalente utilizando el modelo de Ebers-Moll completo, y determine:

- a. Valor de β_F y de β_R .
- b. Valor de V_{BE}, V_{BC} y V_{CE}.
- c. Valor de I_F, I_R, I_B e I_E.
- d. Valor de la resistencia R_B y R_C.

Problema 2. Análisis de DC con Ebers-Mol (Saturación fuerte).

Repetir el problema si ahora el transistor opera en la región de saturación, con una tensión V_{BC} de al menos 750 mV que polariza al diodo B-C en directa. En esta región asuma que la corriente de colector disminuyó a 300 μ A debido a la contribución de la corriente de reversa.

Utilizando el modelo de Ebers-Moll completo, determine:

- a. Valor de V_{BE}, V_{BC} y V_{CE}.
- b. Valor de IF e IR
- c. Valor de Rc y RB

Problema 3. Análisis de DC con Ebers-Moll (activa reversa).

Proponga un método para polarizar el transistor en la región activa reversa. Dibuje cómo quedaría conectado el transistor en el circuito (con el emisor arriba y el colector a tierra). Con los parámetros de los dos problemas anteriores, dimensione las resistencias para obtener una corriente de emisor de 400 µA, considerando el diodo B-C en directa, y el diodo B-E en reversa justo en el límite de saturación inversa.

Problema 5.

Para el circuito de la figura, se tienen los datos de la tabla I, y se pide encontrar las corrientes I_{x} e I_{y} .

Tabla 1. Datos del problema 5.

Dato	Valor
I _{S1}	3 x 10 ⁻¹⁶ A
I _{S2}	5 x 10 ⁻¹⁶ A
β1	100
β ₂	100
R1	5 ΚΩ
V _B	800 mV