PSIO: Fundamentos de procesemiento

digital de imágenes

CIASE

* Def:

- 1) Processamiento de insigenes
 - 2) Visian por computadora
 - 3) Inteligencia Artificial 8

1) REPRESENTACIÓN DE IMÁGONES DIGITALES.

A) DOMINIO ESPACIAL

B) INTENSIDAD NOZMALIZADA

Se quiere) I fuin fuzz fux, y entre v y 1 22 normalizadz.

TRANSFORMACIÓN LINEAL

fu, y & 4 fmin, fmax 8. ——> guys & 40;18

[chesidad Normalizada]

 $T \langle f(x,y) \rangle = \frac{f(x,y) - f(x)}{f(x,y) - f(x)}$

=) Aniloso a [y= mx+h]

$$f(x,y) \in 12^{2x3}$$

$$f(x,y) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 56 \end{pmatrix} 2x3$$

(tilo ties tilo) Bom -major

$$\begin{cases}
\frac{1}{2} \\
\frac{3}{4} \\
\frac{4}{5}
\end{cases}$$
Vectoritze

Coolumns tres columnas

$$\oint_{CM} = \begin{pmatrix} 1 \\ 4 \\ 2 \\ 5 \\ 3 \end{pmatrix}$$

Momeron -

$$f_{RM} = 41, 2, 3, 4, 5, 66$$

- REGIÓN HISTEA A CUBRIR.

4) INTERPOLACIÓN DE INTENSIDAD:

* interés: aumentar el tamaño por un factor 2 l'resizel.

Yander
$$\Rightarrow$$
 A) CRITERIO VECINO MÁS CERCANO: $f(\frac{1}{3},\frac{2}{3}) = f(0,1) = 49$

Interpretation BILINDAL

$$f(u,y) = ax + by + cxy + d$$

$$f(u,y) = d = 10$$

$$f(u,y) = b + d = 49 \quad (b = 39)$$

$$f(1,0) = a + d = 120 \quad (a = 110)$$

$$f(1,1) = a + b + c + d = 4$$

$$(c = -155)$$

& SISTEMA LINEAL MARA OSPEJAR. 10,6,0,04

$$\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 \\
6 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
10 \\
49 \\
120 \\
4
\end{pmatrix}$$

5) A dysciencia entre pixales e;

10 0 240 × 89 15 2 × > no pulerace of 1550 V

due preles on veunos a U?

vecinos: (Es compretz) B-adj: (No es compres hay 2 aninos)

estanos testando de eucontrar commos.

Borde fina -> Ecompacto.

00 fix,y) = 110 x + 394 -155 x y 110

* SISTEMA LINEAL MARA OBPRIJAR. Ja, b, c, d4

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 6 \\ a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 49 \\ 120 \\ 4 \end{pmatrix}$$

5) A dyaciencia entre pixaes e;

711,15,190,2404

$$f(x,y) = \begin{pmatrix} 10 & 1 & 240 \\ 99 & 10 & 2 \\ 23 & 50 & 190 \end{pmatrix}$$

4-24;

dock prelis in veuros a U?

vecinos: (Es compretz)

8 - adj: (No es compto hay 2 aninos)

estanos tratindo de encontrar cammos.

Borde fino -> compacto.

Def. Distancia: (para que se considere dist delse complir).

Ej. Distancia ontre
$$P=[1,1)$$
 , $q=(3,5)$;

* Transformación Espacial:

$$M = r \cos(\alpha)$$
 , $V = r \sin(\alpha)$
 $\chi = r \cos(\alpha + \theta)$, $\gamma = r \sin(\alpha + \theta)$
 $\chi = r \cos(\alpha) \cos(\theta)$ - $r \sin(\alpha) \sin(\theta)$
 $\gamma = r \sin(\alpha) \cos(\theta)$ + $r \cos(\alpha) \sin(\theta)$

$$\Rightarrow \chi = \mu(\cos(\theta) - v\sin(\theta))$$

 $y = v\cos(\theta) + \mu\sin(\theta)$

* EJGHING
$$(1,1) = (1,1)$$

$$0 = tr/4$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(1\pi/a) & \sin(\pi/a) & \omega \\ \sin(\pi/a) & \cos(1\pi/a) & \omega \\ \omega & \omega & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$(x, y) = (0, \sqrt{2})$$

TRANSFORMS CIONES DE

$$f(x,y) = \begin{pmatrix} \frac{1}{2} & 10 & 6 & 5 \\ \frac{1}{2} & A & 7 & 9 \\ 15 & 3 & 12 & 7 \\ 10 & 3 & 9 & 1 & 4 \times 4 \end{pmatrix}$$

Transformación negetive:
$$g(x,y) = \lim_{n \to \infty} -f(x,y) = \begin{cases} 14 & 5 & 9 & 10 \\ 13 & 11 & 6 & 6 \\ 6 & 12 & 3 & 6 \\ 5 & 12 & 6 & 14 \end{cases}$$

* RESTRICTION DE PROVECCIÓN DE TO; L-1] a
$$50$$
; L-1]

 $0^{\circ}l_{+}=0$ $log 1 + ll-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log 1 + (l-1)$ 1
 $1 - 1 = 0 \log$

$$g(x_1y) = \begin{pmatrix} 3.75 & 12.97 & 10.52 & 9.69 \\ 5.94 & 8.7 & 11.25 \\ 15 & 7.5 & 12.46 \end{pmatrix}$$

$$15 & 7.5 & 12.46 \\ 12.97 & 12.46 & 3.75 \end{pmatrix}$$

& Sin embergo, 9 & 17 antonces reclarateo simple

$$\hat{g}(x,y) = \begin{pmatrix} 4 & 13 & 11 & 10 \\ 6 & 9 & 11 & 12 \\ 15 & 8 & 14 & 11 \\ 13 & 8 & 12 & 4 \end{pmatrix}$$

Entonos aumento las bajos intensidades.

$$(L-1) = (L-1)^{N}, C = (L-1)^{1-N}$$

$$g(x_{4}) = \begin{cases} 0,67 & 6,67 & 2,4 & 1.67 \\ 0,27 & 1,07 & 327 & 3.07 \\ 15 & 0,6 & 4.6 & 3.07 \\ 6,67 & 0,6 & 5.4 & 0.07 \end{cases}$$

$$\frac{1}{9}a_{1}y_{1} =$$

$$\frac{1}{0} \frac{1}{1} \frac{2}{3} \frac{2}{5}$$

$$\frac{1}{15} \frac{1}{1} \frac{10}{5} \frac{3}{0}$$

$$f(x,y) = c \log 1 + g(x,y)^{\frac{1}{2}}$$

$$f(x,y) = c \log 1 + g(x,y)^{\frac{1}{2}} - 1 , c = \frac{17}{\log 1168}$$

fund) propriesto. INDEN PRETURNIE Hourson tocen:

CAGON PATRICLAIRES

() Inervision

fu,y) 23 5040 Gam (K'X) () Umbrallzación gary) 0

$$f(x,y) = \begin{pmatrix} v & 267 \\ 63 & 13 \end{pmatrix}$$

$$B.P.3 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, BP7 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

(Ashograms ej.

$$f(x,y) = \begin{cases} 1 & 10 & 6 & 5 \\ 2 & 4 & 7 & 9 \\ 15 & 5 & 12 & 7 \\ 10 & 3 & 9 & 1 \end{cases} = 4, N = 9$$

bits 4, lum = 0, lux = 15

GRAFIC A Nº 28: FUNCION DENSIDAD EMPIRICA VA FUNCION GA MBEL

20 hin = 40,2,1,2,1,1,1,2,0,2,2,0,1,0,0,18

TVLO			Я	I				
		64.19			0	0.01		J.C. Sept
* Ecrui	2017 - 80,18	87.4	3	0.069	0.0086	0.058	O Breaker	31878E
	#15 · E13	27.8		1.138	0.0172	0.23	[Notice]	
	10 le 18 15			3241	0.0301	0.39	03.25	
3	12.00 - 900	6.0	15	0.371	0.0329	0753	17.7	
	1477 - 1518	76.7		TYL.	17.8	, IS:	1-7	
,7,1	The second second	et de Vestada		100 AV	7 - 1 A			

EE 239

METORA ON EL POMINIO CAMUAL (CONT)

of CLASE PARADA

- 1) trutes the LENER SLICING
- 2) BIT PLANE SLICING.
- 3) ECUALIZACIÓN DE HICTOGRAMA
- 1) Sistemas Lineales e invariante ante displazamentos (USI)

Coshit innunt

A) LINEAL :

T fafs(x,4) + bfz (x,4) f = ags(x,4) + bgz(x,4)

B) INV, ANTE DESPARAMIENTO:

+ {f(x-x0, y-y0) } = g(x-x0, y-y0)

* PADA SIST. LSJ

T4 f(x,y) f = f(x,y) *h(x,y)

$$= \sum_{s=-\infty}^{+\infty} \sum_{t=-\infty}^{+\infty} f(s,t) h(x-s,y-t)$$

$$= \sum_{s=-\infty}^{+\infty} \sum_{t=-\infty}^{+\infty} f(s,t) h(x-s,y-t)$$

$$= \sum_{s=-\infty}^{+\infty} \sum_{t=-\infty}^{+\infty} f(s,t) h(x-s,y-t)$$

dorde :

huy) = Theky)6

 $f(x,y) = \begin{cases} 1, & x = 0, y = 0 \\ 0, & 0; \text{ other assure} \end{cases}$

SJEMPU: DADA LA INAGEN

[Impulso Uniterio 2-D]

DE ENTRADA FIXIYI Y EL SISTEMA

LSI LON RET NESTAT AL MAPUSO

WIX, y), DETERMINAR LA IMAGEN DE

SALIDA 9 (x,y)

$$W(x,y) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} f(x,y) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

PROCEDIMIENTO:

() ZENO-DADDING

ESTABLECEN IMENSIDADES FLERA DE LA IMAGEN

W LXIA) SIENIDE TENCA ELEMENTOS CON 102 WALES MULTIPULARSE

u(=x,-y)

((1) SUMA DE PRODUCTOS: *g(0,0) = 12

II. Copperación (no es connutativa).

2) Etiminación de rejdo aditivo a partir de un esistema linest - (filtro promedio). * Modelo de rido: Lung = Mu, y) + M (x,y) Us imagen original n: vido de distribución goussiens de media. * Uso del filho promodio. (medio novil) glans = TAR of fax, y) & = TMA { M(x,4) + M(x,4) } - LINEAL = TMA (MOLY) FA + TMAGN (XY) & INVIANTE DESPLAT. = W(x,9) * M(x,y) + W(x,y) * h(x,y) *ELIMINA COMPONENTE / DE MEDIA Q. DESVENTATA: EL PROMODIO SVAVILA LOS BORDES DE UN IMAGEN ONG MAI. 3) BLIMINAGEO DE RUIDO IMPUISAVO A PAINTIR

BLIMINACIÓN DE RUIDO IMPOSOVO A PAINTIL

RE UN SISTEMA NO LINEAL (FILTRE MEDIANO)

* SAL Y PIMIENTA: MODERO DE RUIDO.

 $f(x,y) = SP\{L(x,y)\}$ $\int M(x,y) = con prob : 1 - B$ $\int Mmn = con prob : P/2$ $\int Mmx = con prob : P/2$

of Considerando una region constaute (place) de la magai Mixa)

Assumendo una vedidad de 3x3

* entonces:

* VENTAJA: NO SUAVIZA BODDES

* DESVENTAJA! ALTO CONTENIDO DE 120100

AUNENTA LAS DISTORSIONES

4) FILTRO LA PLACIANA:

* Note AGERCA DE MÁSCARAS TECNEDEZ TEXPIECO (1 11+12do de 1 mágenes por convolución.

$$\nabla^2_{(x_{jy})} = \begin{pmatrix} 0 & 1 & 0 \\ +1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

of descemposiçãos en impulsos unitorios

$$\nabla^{2}_{x,y} = -48(x,y) + 6(x-1,y) + 6(x+1,y) + 6(x,y+1)$$

$$= -46(x,y) + 6(x-1,y) + 6(x+1,y) + 6(x,y+1) + 6(x,y+1)$$

$$= -46(x,y) + 6(x-1,y) + 6(x+1,y) + 6(x,y+1)$$

$$= -46(x,y) + 6(x-1,y) + 6(x-1,y) + 6(x-1,y)$$

$$= -46(x,y) + 6(x-1,y) + 6(x-1,y)$$

$$= -46(x-1,y) + 6(x-1,y) + 6(x-1,y)$$

$$= \frac{\partial^2}{\partial x^2} f(x,y) + \frac{\partial^2}{\partial y^2} f(x,y)$$

5) Magnitud y fasse lángulo) de gradiente ej.

* Utilizando máscaras simples de derivadas de Jerorden en (x,y) basada en diferencias finitas, forward difference,

$$\frac{\partial}{\partial x} \left(\frac{1}{1} \right) = \delta(x, y+1) - \delta(x, y)$$

$$\frac{\partial}{\partial y} \left(\frac{1}{1} \right) = \delta(x, y+1) - \delta(x, y)$$

$$f(x,y) = \begin{cases} 1 & 1 & 9 & 9 \\ 1 & \frac{1}{9} & \frac{9}{9} & 9 \\ 1 & \frac{9}{9} & \frac{9}{9} & 9 \\ 9 & 9 & 9 & 9 \end{cases}$$
Rere $(x,y) = (1,1)$

COLVADAS DETERMINAL CONVOLUCION gx { fexial & = gx * fexial = fix+1, y) = fix,y) a pernede por def. hace adelante. 34 16 min 1 & = 34 * tomas = f(x,y+1) - f(x,y)80 3x tails = d-1=8 3 f(1,1) = 9-1=8 $\int_{0}^{\infty} \nabla f(x,y) = \left\langle \frac{\partial x}{\partial x} \right\rangle \frac{\partial x}{\partial x} = \left\langle \frac{\partial x}{\partial x} \right\rangle = \left\langle \frac{\partial x}{\partial x} \right\rangle = \left\langle \frac{\partial x}{\partial x} \right\rangle$ |Pf(1,1) |= 11.31; I I f (1,1) = T/4 i Si V sputz a T/4, entonces, el borde apula en alrecum ortogonil: 3T/4

6) DEPLYACIÓN DE MASCARAS DE CRAPIENTE SOBEL PREWITT.

I CONCESSOR MALICS!

1) DEMINADA POL PIFERENCIA LENTEAL

(i) Promedio (mediz mont) (le order (3)

gon 7 = = = { ((n+1)+ fcn)+ fcn-17}

(ii) ANNEOLO DE CROOK 3 LOW PERO DOBLE EN EL DRIGON:

A) Masiana PREVITT : ejex

$$= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} * f(x,y)$$

Detalles:

* factor 1/3 descertado (convención)

* filtro promedio rechaz > posible ruido aditivo.

* Moscora separable eu:

(1 0 -1)

* Moscora Prewit + eje y:

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0 -1)

(1 0

Detalles: * 1/4 descertado (conuención)

* f. promedio rechazz ruido aditivo, Meyer

en fais en el puto certal

* separable en:

$$F(u,v) = \begin{cases} 1 & |u| \leq \pi/2 \\ 0 & |v| \leq \pi/2 \end{cases}$$

$$f(w, v) = \left(\frac{54}{11}\right)^{2} \int_{-1/2}^{-1/2} \int_{-1/2}^{-1/2} (1) e^{\int (\mu w + \rho u) du dx}$$

$$-\int_{-\sqrt{1/2}}^{\sqrt{1/2}} \frac{1}{2\pi} e^{\int_{-\sqrt{1/2}}^{\sqrt{1/2}} \frac{1}{2\pi}$$

=
$$\frac{1}{\pi m} \sin \left(\frac{\pi}{z} m \right) \frac{1}{\pi n} \sin \left(\frac{\pi}{z} n \right)$$