

3 Stallins Why (and How) does Booth's Algorithm work? Case I! - tre multiplier: - (Mx(00011110) = Mx (24+23+22+21) $= m \times (2^{5} - 2^{1})$ (5) WX (00011101) = Mx (24+23+22+20) = m χ (25-22+21-20) A Observe whenever block of 'I' is coming we a Subtracting & whenever a block 'd' starts, we a adding. And while doing Right-shift, we are just multiplying by 2. X = 0 $x_{m-2}x_{m-3} - x_0$; Starting -bit =0 i.e. tre For Block of (K+1) 1's $2^{n} + 2^{n-1} + 2^{n-2} + \dots + 2^{n+1} = 2^{n+1} - 2^{n-1}$ Case II: - - ve multiplier! 1 xn-2 xn-3 1-0 x0 = -2n-1 + 21 n-2 + 21 n-3 x 2 n-3 --...+ x, x2' +x0 x2° Eg1- 11-11110,214-2/12---- No -2^{m-1} + 1×2^{m-2} + 2^{m-3} + 2^{m-4} + ... +2^{K+1} + N_{K+1}·2^{K-1}
+ N_{K-2}·2^{K-2} + ... +2^N = -2^{m-1} + (2^{m-1} - 2^{m+1}) + NK1.2^{k+1} + - - +No.2° = -2 k+1 + 4 k-1. 2 K-1 + --. + 36.2