Quantum Algorithm For Solving Linear Systems Of Equations

Authors: Harrow, A.W., Hassidim, A. and Lloyd, S. (2009)

Peddinti Dheeraj
CSE Case Studies FS 22

Outline

Motivation HHL Algorithm Results Caveats

 $\overrightarrow{A}\overrightarrow{x} = \overrightarrow{b}$

Algorithm 1 HHL algorithm.

Input: Quantum state $|b\rangle$, Unitary e^{iAt} **Output:** Quantum state $|\tilde{x}\rangle \approx A^{-1}|b\rangle$

Algorithm Start:

- 1. Prepare the initial quantum state: $|\psi_0\rangle = |0\rangle^a |0\cdots 0\rangle^C |b\rangle^B = |0\rangle^a |0\cdots 0\rangle^C \sum_{j=1}^n \langle u_j |b\rangle |u_j\rangle^B$
- 2. Perform the unitary operation $U_{PE}(A)$ on the state: $|\psi_0\rangle \rightarrow |\psi_1\rangle = |0\rangle^a \sum_{j=1}^n \langle u_j | b \rangle |\tilde{\lambda}_j\rangle^C |u_j\rangle^B$
- 3. Apply a controlled rotation R to the ancilla qubit, controlled by Reg. C: $|\psi_1\rangle \rightarrow |\psi_2\rangle = \sum_{j=1}^n \left(\sqrt{1-\frac{\gamma^2}{\tilde{\lambda}_j^2}}|0\rangle + \frac{\gamma}{\tilde{\lambda}_j}|1\rangle\right)^a \langle u_j|b\rangle |\tilde{\lambda}_j\rangle^C |u_j\rangle^B$
- 4. Uncompute the Reg. C and Reg. B: $|\psi_2\rangle \rightarrow |\psi_3\rangle = \sum_{j=1}^n \left(\sqrt{1-\frac{\gamma^2}{\tilde{\lambda}_j^2}}|0\rangle + \frac{\gamma}{\tilde{\lambda}_j}|1\rangle\right)^a |0\cdots 0\rangle^C \langle u_j|b\rangle |u_j\rangle^B$

ho γ is a constant that become irrelevant after measurement, owing to the normalization of the projected wave function.

5. output ← Measure Ancilla()

if output is |1> then

return
$$|\tilde{x}\rangle \approx \sum_{j=1}^{n} \langle u_j | b \rangle / \lambda_j | u_j \rangle$$

 $\triangleright |\tilde{x}\rangle$ is stored in the Reg. B

else

goto Algorithm Start

end if

Algorithm End

Phase Estimation

Controlled Rotation

Inverse Phase Estimation

Measurement

Phase Estimation

Controlled Rotation

Inverse Phase Estimation

Measurement

Phase Estimation

Measurement

- 1. Superposition
- 2. Phase Kickback
 - 3. Inverse QFT
- 4. Measurement

Phase Estimation

Controlled Rotation

Inverse Phase Estimation

Transformation of basis: Computational basis → Eigen basis of A

$$e^{iAt} = \sum_{j=0}^{N-1} e^{i\lambda_j t} |u_j
angle \langle u_j|$$

$$ext{QPE}(e^{iAt}, \sum_{j=0}^{N-1} b_j |0
angle_{n_l}|u_j
angle_{n_b}) = \sum_{j=0}^{N-1} b_j |\lambda_j
angle_{n_l}|u_j
angle_{n_b}$$

Phase Estimation

Controlled Rotation

Inverse Phase Estimation

Measurement

Conditioned rotation → Eigenvalue inversion

$$A = \sum_{j=0}^{N-1} \lambda_j |u_j\rangle\langle u_j|, \quad \lambda_j \in \mathbb{R} \quad \longrightarrow \quad A^{-1} = \sum_{j=0}^{N-1} \lambda_j^{-1} |u_j\rangle\langle u_j|$$

$$|x
angle = A^{-1}|b
angle = \sum_{j=0}^{N-1} \lambda_j^{-1} b_j |u_j
angle$$

$$\sum_{j=0}^{N-1}b_j|\lambda_j\rangle_{n_l}|u_j\rangle_{n_b} \longrightarrow \sum_{j=0}^{N-1}b_j|\lambda_j\rangle_{n_l}|u_j\rangle_{n_b} \Biggl(\sqrt{1-\frac{C^2}{\lambda_j^2}}|0\rangle + \frac{C}{\lambda_j}|1\rangle \Biggr)$$

Not an unitary! Possibility of failure.

Phase Estimation

Controlled Rotation

Inverse Phase Estimation

Measurement

Transformation of basis: Eigen basis of $A \rightarrow Computational$ basis

$$\sum_{j=0}^{N-1} b_j |\lambda_j\rangle_{n_l} |u_j\rangle_{n_b} \left(\sqrt{1 - \frac{C^2}{\lambda_j^2}}|0\rangle + \frac{C}{\lambda_j}|1\rangle\right)$$

$$QPE^{\dagger}$$

$$\sum_{j=0}^{N-1} b_j |0\rangle_{n_l} |u_j\rangle_{n_b} \left(\sqrt{1 - \frac{C^2}{\lambda_j^2}}|0\rangle + \frac{C}{\lambda_j}|1\rangle\right)$$

#1. Runtime improvement over best classical algorithm for s-sparse matrices with condition number κ .

Conjugate Gradient (w/ a p.d. matrix)	HHL Algorithm (w/ a Hermitian matrix)
$\mathcal{O}(Ns\sqrt{\kappa}\log\left(\frac{1}{\epsilon}\right))$	$\mathcal{O}(\log(N) s^2 \kappa^2 / \epsilon)$

- #2. Improving probability of success using Amplitude amplification.
- #3. Extension of the algorithm to ill-conditioned and non-sparse matrices.

- Exponentially better in runtime, but exponentially worse in error of the outcome.
- Speedups hold only for the measurement of a summary statistic of the solution.
- Relies on other subroutines and existence of oracles for:
 - Proving optimality of error bounds
 - Preparation of states and unitary for Hamiltonian simulation

Further Reading

Thank you!