Homework 5

CSC 445-01: Theory of Computation

Matthew Mabrey, Luke Kurlandski April 8, 2021

2.30

We will prove L is not a context free language using a proof by contradiction and the Pumping Lemma.

$$L = \{t_1 \# t_2 \# ... \# t_k | k \ge 2, t_i \in \{a, b\}^*, \exists (t_i = t_j, i \ne j)\}$$

Suppose L is a CFL. Then for a string $s \in L$ of length greater than p, there exists some decomposition of s, s = uvxyz such that

- 1. $uv^i x y^i z \in L$ for $i \ge 0$
- 2. |vy| > 0
- $3. |vxy| \leq p$

We let $s = \text{because } |s| \ge p + 1 \text{ and } s \in L.$

Ooooof

3.8

b

On input string w

- 1. Move the head to the front of the tape. Scan the tape and mark the first 1 that has not been marked. If none are found, move to stage 5.
- 2. Move the head to the front of the tape. Scan the tape and mark the first 0 that has not been marked. If no 0 is found, reject.
- 3. Scan the tape and mark the first 0 that has not been marked. If no 0 is found, reject.
- 4. Go to stage 1
- 5. Move the head to the front of the tape. Scan the tape to see if any unmarked 0s remain. If none remain, accept, else reject.

 \mathbf{c}

On input string w

- 1. Move the head to the front of the tape. Scan the tape and mark the first 1 that has not been marked. If none are found, move to stage 5.
- 2. Move the head to the front of the tape. Scan the tape and mark the first 0 that has not been marked. If no 0 is found, accept.
- 3. Scan the tape and mark the first 0 that has not been marked. If no 0 is found, accept.
- 4. Go to stage 1
- 5. Move the head to the front of the tape. Scan the tape to see if any unmarked 1s remain. If none remain, reject, else accept.

3.15

b

Suppose we have Turing Machines M_1 and M_2 that decide languages L_1 and L_2 respectively. We describe the Turing Machine M' that decides the concatenation of L_1 and L_2 .

On input string w

- 1. Run M_1 on the first portion of w
 - If M_1 enters an accept state w, begin stage 2
 - If M_1 does not accept, reject
- 2. Run M_2 on the remaining portion of w.
 - If M_2 accepts, then accept
 - Else, reject

\mathbf{c}

Suppose we have a Turing Machine M that decides the language L. We describe the Turing Machine M' that decides the language L^* .

On input string w

- 1. Run M on w.
 - If w is empty, accept
 - If M enters an accept state, repeat stage 1 at the current point on input string

\mathbf{d}

Suppose we have a Turing Machine M that decides the language L. We describe the Turing Machine M' that decides the language L^c .

On input string w

- 1. Run M on w.
 - If M accepts, then reject
 - Else accept

\mathbf{e}

Suppose we have Turing Machines M_1 and M_2 that decide languages L_1 and L_2 respectively. We describe the Turing Machine M' that decides the intersection of L_1 and L_2 .

On input string w

- 1. Run M_1 on w
 - If M_1 accepts, continue to stage 2
 - Else reject
- 2. Run M_2 on w
 - If M_2 accepts, accept
 - Else reject