PRÁCTICA Nro. 1

Carrera Computación

A. DATOS INFORMATIVOS				
Asignatura: Análisis Numérico	Ciclo / Semestre: Quinto	Paralelo: A		
Docente: Andrés Roberto Navas Castellanos	Período Académico: Sep 24 – Feb 25			
Integrantes: Leonardo Peralta				

B. INFORMACIÓN GENERAL

Unidad:

Introducción a los métodos numéricos. Errores Raíces de ecuaciones

Tema

Instalación Matlab / Octave, configuración de ambientes

Fecha: Loja,9 de Noviembre 2024 Nro. horas: 2 horas

Objetivos:

Comparar los métodos de Gauss Seidel

Corresponde al resultado de aprendizaje:

R1. Aplica los métodos numéricos en la solución de problemas de: Ecuaciones Lineales. Diferenciación Numérica. Integración Numérica. Ecuaciones Diferenciales Ordinarias y Parciales, bajo los principios de solidaridad, transparencia, responsabilidad y honestidad.

Recursos y/o materiales:

- Computador.
- Matlab / Octave.
- GeoGebra.
- Excel / OpenOffice.
- Material bibliográfico o recurso indicado en el EVA.

C. DESARROLLO

Instrucciones:

- 1. Descargar el archivo definido en el EVA para la presente práctica.
- 2. Implementar el método indicado.
- 3. Validar con el caso de prueba estudiado en clase o definido en el archivo del EVA.
- 4. Organizar un archivo principal para modificar el caso de prueba.
- 5. No utilizar variables simbólicas (syms)

	.,,		
Resolución:			

atriz: 4 1 1 3 1 1	1 1					
1 3						
1 1	5					
	5					
rror:						
0.0100000000	100000					
0.010000000	00000					
etodo Gauss S.	.Convencional:					
Iteracion	x1	x2	x 3	Error x1	Error x2	Error x3
				_	_	_
1	1.75	3.33333333333333	2.6	1.75	3.3333333333333	2
2	0.26666666666667	1.88333333333333	1.58333333333333	1.48333333333333	1.45	1.01666666666
3	0.883333333333333	2.71666666666667	2.17	0.61666666666666	0.83333333333333	0.586666666666
4	0.528333333333333	2.3155555555556	1.88	0.355	0.401111111111111	0.
5	0.701111111111111	2.5305555555556	2.0312222222222	0.17277777777778	0.215	0.151222222222
6	0.60955555555556	2.4225555555556	1.95366666666667	0.091555555555554	0.108	0.0775555555555
7	0.65594444444444	2.47892592592593	1.99357777777778	0.046388888888886	0.0563703703703702	0.03991111111111
8	0.631874074074074	2.45015925925926	1.97302592592593	0.0240703703703702	0.028766666666668	0.02055185185185
9	0.644203703703704	2.465033333333333	1.98359333333333	0.0123296296296298	0.0148740740740743	0.01056740740740
10	0.637843333333333	2.45740098765432	1.97815259259259	0.00636037037037052	0.00763234567901261	0.005440740740740
todo Gauss S.	Mejorado:					
Iteracion	x1	x2	ж3	Error_x1	Error_x2	Error_x3
1	1.75	2.75	1.7	1.75	2.75	
2	0.6375	2.55416666666667	1.96166666666667	1.1125	0.1958333333333333	0.26166666666
	0.621041666666667	2.47243055555556 2.46070949074074	1.9813055555556	0.0164583333333333 0.0155243055555556	0.0817361111111112 0.0117210648148149	0.01963888888
4	0.636565972222222					

1 3	1					
1 1	5					
ror:						
1.00000000	0000000e-04					
etodo Gauss S.	Convencional:					
Iteracion	x1	x2	x 3	Error_x1	Error_x2	Error_x3
1	1.75	3.33333333333333	2.6	1.75	3.33333333333333	2
2	0.26666666666667	1.883333333333333	1.583333333333333	1.48333333333333	1.45	1.016666666666
3	0.883333333333333	2.71666666666667	2.17	0.616666666666667	0.833333333333333	0.586666666666
4	0.528333333333333	2.3155555555556	1.88	0.355	0.401111111111111	0.
5	0.701111111111111	2.5305555555556	2.0312222222222	0.17277777777778	0.215	0.151222222222
6	0.60955555555556	2.4225555555556	1.95366666666667	0.091555555555554	0.108	0.0775555555555
7	0.65594444444444	2.47892592592593	1.99357777777778	0.046388888888886	0.0563703703703702	0.03991111111111
8	0.631874074074074	2.45015925925926	1.97302592592593	0.0240703703703702	0.028766666666668	0.02055185185185
9	0.644203703703704	2.465033333333333	1.98359333333333	0.0123296296296298	0.0148740740740743	0.01056740740740
10	0.6378433333333333	2.45740098765432	1.97815259259259	0.00636037037037052	0.00763234567901261	0.005440740740740
11	0.641111604938272	2.46133469135802	1.98095113580247	0.00326827160493837	0.00393370370370372	0.002798543209876
12	0.639428543209877	2.45931241975309	1.97951074074074	0.00168306172839516	0.00202227160493829	0.001440395061728
13	0.640294209876543	2.46035357201646	1.98025180740741	0.00086566666666653	0.00104115226337465	0.000741066666665
14	0.639848655144033	2.45981799423868	1.9798704436214	0.000445554732510178	0.00053557777777796	0.0003813637860079
15	0.640077890534979	2.46009363374486	1.98006667012346	0.000229235390946325	0.000275639506172709	0.0001962265020576
16	0.639959924032922	2.45995181311385	1.97996569514403	0.000117966502057421	0.000141820631001099	0.0001009749794238
17	0.640020622935528	2.46002479360768	1.98001765257064	6.06989026061822e-05	7.29804938268686e-05	5.19574266117928e-
etodo Gauss S.	Mejorado:					
Iteracion	x 1	x2	х3	Error_x1	Error_x2	Error_x3
1	1.75	2.75	1.7	1.75	2.75	
2	0.6375	2.55416666666667	1.96166666666667	1.1125	0.195833333333333	0.261666666666
3	0.621041666666667	2.47243055555556	1.9813055555556	0.0164583333333333	0.0817361111111112	0.0196388888888
4	0.636565972222222	2.46070949074074	1.98054490740741	0.015524305555556	0.0117210648148149	0.0007606481481481
5	0.639686400462963	2.45992289737654	1.9800781404321	0.00312042824074066	0.000786593364197508	0.0004667669753088
6	0.639999740547839	2.45997403967335	1.98000524395576	0.00031334008487649	5.11422968108022e-05	7.28964763372364e-
7	0.640005179092721	2.45999652565051	1.97999965905135	5.43854488177509e-06	2.24859771522645e-05	5.58490440694115e-

Caso 2

Ambos métodos de Gauss validan que el caso de prueba no es diagonal dominante pero igualmente se procede a ejecutar ambos métodos y al no haber convergencia se detendrán al llegar al numero máximo de iteraciones (100).

Todo lo relacionado con la parte de instrucciones, se debe ubicar fragmentos de código y demostraciones en caso de que sea necesaria (captura de pantalla de la ejecución).

Conclusiones:

En el caso ideal donde se tiene una diagonal dominante se evidencia un número menor de iteraciones por parte del método mejorado esto debido a la forma en como se actualiza y emplea los resultados intermedios de manera más inmediata, también considerando que estos métodos tienden a diferir en el calculo de error en cada paso lo que implica que se obtengan valores e iteraciones distintas

Para el caso de prueba que no tiene diagonal dominante se puede ver que no se llega a la convergencia ya que la diagonal dominante permite que las aproximaciones se acerquen a la solución real de forma mas estable, sin esta propiedad los métodos de Gauss S. arrojan valores que oscilan demasiado.

D. RÚBRICA DE EVALUACIÓN

Nota: En caso de no cumplir con alguno de los parámetros establecidos se calificará la nota igual a 0 Si se encuentra copia con algún compañero o prácticas realizadas de otros años, o bajados del internet, se aplicará el reglamento de deshonestidad estudiantil y se calificará sobre 0.

No se aceptará trabajos atrasados, se calificará sobre 0.

Todo acerca de deshonestidad académica que no diga este documento.

Informe de trabajo:

- ·
- Contenido: pertinente y concreto.
 Estructura y organización: Elementos vinculados y estructurados coherentemente.
- Originalidad y creatividad: trabajo inédito, presentación de nuevas ideas.

Resolución de Ejercicios:

8 ptos

1 ptos

•	Ejecución de programa que entregue el valor exacto (debe cumplir los requerimientos al 100%)		
Conclusiones:			
•	Redacción		
•	Originalidad y creatividad: conclusiones inéditas en base a su experiencia y objetivos planteados.		
Total		10 ptos	

E. FIRMAS DE RESPONSABILIDAD DE LO ACTUADO		
Estudiante(s):	Firma	
Leonardo Augusto Peralta Sarango	Jan	