Sprawozdanie

Obliczenia naukowe Lista 1

Piotr Gałwiaczek

Numer indeksu: 221495

1. Zadanie 1

1.1. Epsilon maszynowy

1.1.1. Opis problemu

Wyznaczenie epsilona maszynowego w sposób iteracyjny dla typów *Float16*, *Float32*, oraz *Float64*.

1.1.2. Rozwiązanie

Tworzę pętlę, która w każdej iteracji dzieli przez dwa, dopóki 1+x ≤ 1. Po skończeniu pętli ostatnia liczba to epsilon maszynowy.

```
    Inicjuj zmienne x i y wartością 1.0 odpowiedniego typu
    Dopóki 1 + x > 1
    y = x
    x = x/2
    return y
```

Rysunek 1 Kod

1.2. Liczba eta

1.2.1. Opis problemu

Szybkie wyznaczenie liczby eta

1.2.2. Rozwiązanie

Podobnie jak w zadaniu 1.1 dzielę przez 2, aż warunek start/2 >0 nie zostanie spełniony.

```
    Inicjuj zmienna start wartoscia 1.0 odpowiedniego typu
    while start/2 > 0
    Dziel start przez 2
    return start
```

Rysunek 2 Kod

1.3. Liczba MAX

1.3.1. Opis problemu

Wyznaczenie *maksymalnej liczby* jaką może przyjąć dana arytmetyka zmiennopozycyjna.

1.3.2. Rozwiązanie

Wyznaczając liczbę MAX posługuję się zmienną x w której znajdzie się owa maksymalna wartość, oraz $ile_dodajemy$, której wartość jest dodawana do x. Na początku w pętli dodajemy do x w każdej i-tej iteracji wartość $ile_dodajemy=2^i$. W momencie gdy wartość x+ $ile_dodajemy=\infty$ wychodzimy z pętli.

```
function count_max(typ)
2.
           x = typ(1)
3.
           ile_dodajemy = typ(2)
4.
           while x+ile_dodajemy nie wyszło poza zakres
5.
                      Dodaj w i-tej iteracji do start 2<sup>i</sup>
6.
           while dodanie do x ile_dodajemy nie zmieniło wyniku
7.
                      while x+ile_dodajemy wychodzi poza zakres
                                 Dziel ile_dodajemy przez 2
8.
                      oldValue = x
9.
10.
                      while x+ile_dodajemy nie wyszło poza zakres
                                 oldValue = x
11.
12.
                                 x += ile dodajemy
13.
                                 if oldValue == x
14.
                                            Wyjdź z głównej pętli
15.
           return x
```

Rysunek 3 Kod

W następnej pętli na początku każdej iteracji szukamy liczby której dodanie do x nie spowoduje osiągnięcia przez nią wartości ∞ . Liczbę tą szukamy dzieląc zmienna $ile_dodajemy$ przez 2. Gdy dana liczba zostanie odnaleziona, dodajemy jej wartość do x. Jeżeli dodanie zmiennej $ile_dodajemy$ nie wpływa na wartość x, oznacza to, że otrzymaliśmy już maksymalną liczbę w danej arytmetyce i kończymy procedure, w przeciwnym razie dodajemy wartość zmiennej $ile_dodajemy$ ponownie. W momencie gdy suma tych zmiennych będzie równa ∞ kończymy sumowanie i rozpoczynamy kolejną iterację.

Po wyjściu z pętli otrzymana wartość x jest wartością MAX.

1.4. Wyniki oraz ich interpretacja

	Float16	Float32	Float64
Obliczone macheps	0.000977	1.1920929f-7	2.220446049250313e-16
Systemowe eps	0.000977	1.1920929f-7	2.220446049250313e-16
Macheps w float.h	-	1.192093e-07	2.22045e-016
Obliczone eta	6.0e-8	1.0f-45	5.0e-324
Systemowe eta	6.0e-8	1.0f-45	5.0e-324
Obliczone MAX	6.55e4	3.4028235f38	1.7976931348623157e308
Systemowe realmax	6.55e4	3.4028235f38	1.7976931348623157e308
MAX w float.h	-	3.402823e+038	1.797693e+308

Wyniki otrzymane z napisanych funkcji oraz z odpowiadających im funkcji wbudowanych pokrywają się. Oznacza to, że kody z *rysunków 1,2*, oraz *3* prawidłowo wyznaczyły wartości *epsilona maszynowego*, liczby *eta* i *MAX* dla poszczególnych typów zmiennopozycyjnych.

Liczba *macheps* jest równa podwojonej precyzji arytmetyki, czyli *macheps=2\varepsilon*, gdzie $\varepsilon = \frac{1}{2}\beta^{1-t}$, a t to liczba bitów mantysy.

MIN_{sub} to najmniejsza liczba nieznormalizowana większa od 0 jaką możemy reprezentować za pomocą danej arytmetyki zmiennopozycyjnej. W standardzie IEE-754 liczby zmiennopozycyjne są normalizowane, chyba że są one bardzo małe. *Subnormal numbers* to liczby z nieznormalizowaną mantysą i z najmniejszą możliwą cechą (u nas reprezentowaną przez same zera). Eta jest najmniejszą taką liczbą, zatem *MIN_{sub}* i eta są tym samym.

2. Zadanie 2 – Wyrażenie Kahana

2.1. Opis problemu

W tym zadaniu należy sprawdzić, czy wyrażenie $3*(\frac{4}{3}-1)-1$ obliczone w odpowiedniej arytmetyce zmiennopozycyjnej daje wartość równą *epsilonowi maszynowemu*.

2.2. Rozwiązanie

Obliczam wyrażenie dla trzech typów zmiennopozycyjnych.

2.3. Wyniki oraz ich interpretacja

	Float16	Float32	Float64
Obliczone wyrażenie	-0.000977	1.1920929f-7	-2.220446049250313e-16
Systemowe eps	0.000977	1.1920929f-7	2.220446049250313e-16

Wyniki pokrywają się, lecz dla typów Float16 oraz Float64 są one z przeciwnym znakiem.

3. Zadanie 3 – równomierne rozmieszczenie liczb w [1,2]

3.1. Opis problemu

W tym zadaniu należy sprawdzić jak rozmieszczone są liczby zmiennopozycyjne w przedziale [1,2], $[\frac{1}{2}, 1]$, oraz [2, 4].

3.2. Rozwiązanie

Tworzę funkcję, która dostaje na wejściu odpowiedni typ danych, ilość liczb które chcemy wyświetlić, początek przedziału, oraz liczbę δ która oznaczać będzie różnicę pomiędzy kolejno wypisywanymi liczbami.

3.3. Wyniki oraz ich interpretacja

Przedział	δ
$[\frac{1}{2}, 1]$	2^{-53}
[1,2]	2^{-52}
[2,4]	2^{-51}

Dla liczb z przedziału [1,2] różnica pomiędzy kolejnymi liczbami wynosi $\delta = 2^{-52}$. Dzieje się tak ponieważ standard *IEEE 754* zapewnia "ukrycie" pierwszego bitu będącego 1, gdzie w naszym przypadku jest to bit odpowiedzialny za część całkowitą liczby. W związku z tym na zapisanie części ułamkowej pozostają nam 52 bity.

Dla liczb w przedziale [2,4] liczby są rozmieszczone co δ = 2^{-51} . Jest to wynikiem tego, że do zapisania liczb w tym przedziale należy przesunąć bity o jedną pozycję w prawo. W związku z tym tracimy jeden bit części ułamkowej.

Liczby w przedziale $[\frac{1}{2}, 1]$ powstały przez przesunięcie mantysy o jeden w lewo, by ukryć pierwszy bit oznaczony 1. Dzięki temu $\delta = 2^{-53}$.

4. Zadanie 4 – najmniejsza liczba 1<x<2 taka, że x*(1/x)≠1

4.1. Opis problemu

W tym zadaniu mamy znaleźć najmniejszą liczbę x w danej arytmetyce, która nie spełnia równania $x^*(1/x)\neq 1$.

4.2. Rozwiązanie

Do rozwiązania tego zadania utworzyliśmy pętle rozpoczynającą działanie dla liczby x=1. W każdej iteracji wartość tej liczby jest zwiększana o $\delta=2^{-52}$, przez co nie ominiemy żadnej cyfry w przedziale [1,2]. Pętla kończy działanie w momencie gdy wartość owego wyrażenia nie będzie spełniona.

4.3. Wyniki oraz ich interpretacja

- 1. Liczba x dla ktorej x*(1/x)!=1 to: 1.000000057228997
- 2. Wynik ten wynosi: 0.99999999999999

Rysunek 4 Wynik przedstawiający szukającą najmniejszą liczbę spełniającą równanie

Ten nieprzewidywalny wynik jest konsekwencją wykonania najpierw działania (1/x) które poprzez specyfikę arytmetyki może dawać niedokładny wynik. Następnie wymnożenie tego wyniku przez x daje nam inna liczbę niż się tego spodziewamy.

5. Zadanie 5 – iloczyn skalarny wektorów

5.1. Opis problemu

W tym zadaniu mamy za zadanie obliczyć iloczyn skalarny dla tablic 5-cio elementowych:

- x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]
- *y* = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

Mamy to wykonać na cztery sposoby:

- a) od elementów pierwszych w tablicy, do ostatnich
- b) od elementów ostatnich z tablicy, do pierwszych
- c) w kolejności od największego do najmniejszego elementu tablicy
- d) w kolejności od najmniejszego do największego elementu tablicy

5.2. Rozwiązanie

Do wykonania tego zadania utworzyliśmy funkcje otrzymujące jako parametry tablice, obliczające iloczyn skalarny w odpowiedniej kolejności, oraz wypisujące wynik na ekranie.

5.3. Wyniki oraz ich interpretacja

Kolejność sumowania	Float32	Float64
W przód	-0.4999443	1.0251881368296672e-10
W tył	-0.4543457	-1.5643308870494366e-10
Od najmniejszego do największego	-0.5	0.0
Od największego do najmniejszego	-0.5	0.0

Jak widać wyniki się różnią. Wynika to z tego, że w momencie gdy dodajemy do siebie liczby z których jedna z nich jest dużo większa od drugiej, wyrównanie cech powoduje zatracenie wielu danych mniejszej liczby. Dlatego w podpunktach c) oraz d) po wykonaniu mnożenia otrzymujemy sumy częściowe o wartościach bardzo odległych od siebie. Wiemy, że te wyniki nie mogą być poprawne, gdyż redukcja cyfr przy sumowaniu może okazać się bardzo duża. Wyniki sumowania w przód lub w tył okazują się być najbliższe prawdziwemu, lecz nadal nie mamy pewności który z nich jest bardziej poprawny. Dzieje się tak, ponieważ zadanie obliczenia iloczynu skalarnego jest źle uwarunkowane.

6. Zadanie 6 – obliczenie wyrażeń dwóch funkcji

6.1. Opis problemu

W zadaniu 6 mamy do obliczenia wartości dwóch, pozornie jednakowych funkcji $f(x)=\sqrt{x^2+1}-1$ oraz $g(x)=\frac{x^2}{\sqrt{x^2+1}+1}$. Należy zbadać wiarygodność wyniku obu z nich.

6.2. Rozwiązanie

Do wykonania tego zadania utworzyliśmy dwie funkcje: pierwsza zwracająca wartość funkcji f(x), druga g(x). Rozwiązania są generowane w pętli począwszy od i=1 do i=n. W każdej iteracji na ekranie wypisywane są wartości $f(8^{-i})$ oraz $g(8^{-i})$.

6.3. Wyniki oraz ich interpretacja

i	f(x)	g(x)
1	0.0077822185373186414	0.0077822185373187065
2	0.00012206286282867573	0.00012206286282875901
3	1.9073468138230965e-6	1.907346813826566e-6
4	2.9802321943606103e-8	2.9802321943606116e-8
5	4.656612873077393e-10	4.6566128719931904e-10
6	7.275957614183426e-12	7.275957614156956e-12
7	1.1368683772161603e-13	1.1368683772160957e-13
8	1.7763568394002505e-15	1.7763568394002489e-15
9	0.0	2.7755575615628914e-17
10	0.0	4.336808689942018e-19
11	0.0	6.776263578034403e-21
12	0.0	1.0587911840678754e-22
13	0.0	1.6543612251060553e-24
14	0.0	2.5849394142282115e-26
15	0.0	4.0389678347315804e-28
16	0.0	6.310887241768095e-30
17	0.0	9.860761315262648e-32
18	0.0	1.5407439555097887e-33
19	0.0	2.407412430484045e-35
20	0.0	3.76158192263132e-37

Jak widać wyniki do pewnego momentu prawie się pokrywają, lecz dla $i \ge -9$ jest pomiędzy nimi ogromna różnica. Dzieje się tak, ponieważ odejmowanie liczb bliskich siebie daje niepoprawne wyniki. W podanym przykładzie gdy w każdej iteracji zmniejszamy x wartość wyrażenia $\sqrt{x^2+1}$ będzie coraz bliższa 1. Po odjęciu od niej 1 wyrażenie będzie generowało niepoprawny wynik, czyli 0. Aby temu zapobiec, warto wyrażenie przekształcić do postaci w której unikamy odejmowania liczb bliskich siebie. Przykładem takiego wyrażenia jest funkcja g(x), dlatego daje ona bardziej wiarygodne wyniki.

7. Zadanie 7 – przybliżona wartość pochodnej w punkcie

7.1. Opis problemu

W tym zadaniu należy obliczyć przybliżoną wartość pochodnej z podanego wzoru, oraz porównać ją z prawdziwą wartością pochodnej w tym punkcie.

7.2. Rozwiązanie

W zadaniu tym utworzyliśmy dwie funkcje:

- $f(x) = \sin(x) + \cos(3x)$
- g(x) = cos(x) 3sin(3x)

gdzie f'(x) = g(x). Następnie w każdej i-tej iteracji pętli dla $h = 2^{-i}$, oraz z wartością x podaną w parametrze funkcji sprawdzaliśmy:

- przybliżoną wartość funkcji f(x)
- wartość błędu, czyli |f(x)-g(x)|
- wartość wyrażenia 1+h

Wyniki oraz ich interpretacja

Na początku iteracji wyniki dosyć znacząco się różnią – błąd jest duży. Sytuacja poprawia się w późniejszej fazie doświadczenia, lecz dla bardzo małego h znów otrzymujemy bardzo niekorzystne wyniki.