Drugi jesenski ispitni rok iz Matematičke analize 1

3. rujna 2020.

Ime i prezi	me:
JMBAG:	
Tijekom	ove proviere znanja neću od drugoga primiti niti drugome pružiti pomoć te se neću i

Tijekom ove provjere znanja neću od drugoga primiti niti drugome pružiti pomoć te se neću koristiti nedopuštenim sredstvima. Ove su radnje povreda Kodeksa ponašanja te mogu uzrokovati trajno isključenje s Fakulteta.

Zdravstveno stanje dozvoljava mi pisanje ovog ispita.

Vlastoručni potpis studenta:

1. (8 bodova)

- (a) (2 boda) Definirajte sva 4 svojstva relacija na skupu A.
- (b) (6 bodova) Na skupu $A = \{1, 2, 3, 4\}$ zadana je binarna relacija

$$\varrho = \{(1,1), (1,2), (1,4), (2,2), (2,4), (4,1), (4,2), (4,4)\}.$$

Ispitajte koja svojstva zadovoljava ova relacija. Ako je potrebno, nadopunite ϱ do najmanje moguće relacije ekvivalencije te odredite pripadne klase ekvivalencije. Sve svoje tvrdnje detaljno obrazložite

2. (9 bodova)

- (a) (3 boda) Na slici je dan dio sinusoide $f(x) = A\sin(\omega x + \varphi)$. Odredite A, ω, φ
- (b) (2 boda) Neka je zadana funkcija $g: D \to K$, gdje su D i K neki skupovi. Napišite koje svojstvo funkcija g mora imati da bi imala inverz i definirajte inverz funkcije g^{-1} .
- (c) (4 boda) Odredite maksimalni interval I takav da restrikcija funkcije iz a dijela na interval I ima inverz te odredite domenu, sliku i jednad $\check{\mathbf{b}}$ u inverza.

3. (8 bodova)

- (a) (4 boda) Odredite derivaciju zadane funkcije koristeći definiciju derivacije.
 - i. $f(x) = x^2$
 - ii. $f(x) = e^{2x}$
- (b) (2 boda) Izračunajte derivaciju funkcije $f(x) = \ln^2(1 + \operatorname{tg}(x))$
- (c) (2 boda) Odredite jednadžbu tangente na graf funkcije iz b u točki $T_0(x_0, y_0)$, za $x_0 = \frac{\pi}{4}$.

4. (6 bodova)

(a) (2 boda) Dokažite sljedeću tvrdnju: Ako su (a_n) i (b_n) konvergentni nizovi, onda vrijedi

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

(b) (4 boda) U ovisnosti o realnom parametru a odredite limes

$$\lim_{n\to\infty} \left(2n - \sqrt[3]{8n^3 + n^2}\right) n^a$$

5. (7 bodova)

- (a) (2 boda) Neka je I otvoren podskup skupa \mathbb{R} . Definirajte pojmove lokalnog minimuma i maksimuma za funkciju $f:I\to\mathbb{R}$ u točki $t\in I$.
- (b) (2 boda) Iskažite Fermatov teorem.
- (c) (3 boda) Dokažite Fermatov teorem.
- 6. (8 bodova) Odredite D(f), ponašanje na rubu, intervale monotonosti. lokalne ekstreme i asimptote te nacrtajte kvalitativni graf funkcije

$$f(x) = \ln\left(1 - \frac{2}{x^2 + x}\right)$$

7. (10 bodova)

- (a) (2 boda) Iskažite i dokažite formulu za parcijalnu integraciju za neodređeni integral
- (b) (4 boda) Izračunajte integral

$$\int xe^{-2x}dx$$

(c) (4 boda) Izračunajte integral

$$\int \frac{\operatorname{tg}(\ln x)}{x} dx$$

8. (8 bodova)

- (a) (4 boda) Izračunajte površinu lika omeđenog krivuljom $y=\sqrt{x-1}$ i pravcem $y=\frac{1}{2}x-1$ u prvom kvadrantu.
- (b) (4 boda) Izračunajte volumen tijela dobivenog rotacijom like pod a oko osi x.

Napomena: Ispit se piše 150 minuta. Dozvoljena je upotreba službenog podsjetnika sa kolegija matematička analiza 1. Nije dozvoljena uporaba kalkulatora.