

INSTITUTO LATINO-AMERICANO DE CIÊNCIAS DA VIDA E DA NATUREZA ILACVN CÁLCULO II

GUSTAVO BENITES WENCESLAU

RESOLUÇÃO DAS LISTAS

GUSTAVO BENITES WENCESLAU

RESOLUÇÃO DAS LISTAS

Tentarei resolver todas as questões das listas Prof. Dr. Jonny Ardila Ardila.

Sumário

		Pa	áginas
1	Lista	I	4
	1.1		. 4
		a) $\sum_{n=2}^{\infty} \frac{\ln(n^2)}{n} \dots \dots$	
		b) $\sum_{n=1}^{\infty} \frac{1}{(3n-1)^4} \dots \dots$	
		c) $\sum_{n=1}^{\infty} \frac{n-4}{n^2-2n+1}$	
	1.2	$\int_{2}^{\infty} \frac{dx}{x(\ln(x))^{p}} \dots \dots \dots \dots \dots \dots$	
	1.3	J2 x(m(x)),	
		a) $\sum_{n=0}^{\infty} \frac{\sqrt{n}+4}{n^2} \dots \dots$. 6
		b) $\sum_{n=0}^{\infty} \frac{1}{n^2+2n+2}$	
		c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n} \dots $	
		d) $\sum_{n=1}^{\infty} \frac{n}{n^4+1} \dots \dots$	
		e) $\sum_{n=1}^{\infty} \frac{n-1}{n^3+1} \dots \dots$	
		f) $\sum_{k=0}^{\infty} \frac{k \sec^2(k)}{1+k^3} \dots \dots$	
		g) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}} \dots $	
		h) $\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n} \dots \dots$	
		i) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}} \dots \dots \dots \dots \dots \dots \dots \dots$	
		$ \begin{array}{ll} $	
		k) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{10^n} \dots \dots$	
		1) $\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{2^n} \dots \dots$. 11
		m) $\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n} \dots \dots$	
		n) $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right) \dots \dots \dots \dots \dots \dots$	
		o) $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n}) \dots \dots$	
	1.4	Encontre os valores de p para os quais a série converge	
		a) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \dots \dots$. 13
		b) $\sum_{n=1}^{\infty} n \left(1 + n^2\right)^p \dots \dots$	
		c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p} \dots \dots$. 14
	1 5		
	1.5	Calcule a soma da série $\sum_{n=1}^{\infty} ne^{-2n}$ com precisão de 4 casa decimais	. 16

1 Lista I

1.1

a)
$$\sum_{n=2}^{\infty} \frac{\ln(n^2)}{n}$$

Primeiro devemos testar se a sequência a_n é decrescente, para isso relacionamos a sequência a uma função f(x) tq: $a_n = f(n), \forall n \in \mathbb{N}$ e derivar para fazer a analise do sinal:

$$f(x) = \frac{\ln(x^2)}{x}$$
$$f'(x) = \frac{2 - 2\ln(x)}{x^2}$$
$$f'(e) = 0$$

Fazendo a analise do sinal vemos que para $x \ge e$, $f'(x) \le 0$, como n começa em 2 temos que para $n \ge 2$, f(n) é decrescente logo podemos aplicar o teste da integral na série para testar a convergência.

$$\sum_{n=2}^{\infty} \frac{\ln(n^2)}{n} \ge \int_{2}^{\infty} \frac{\ln(x^2)}{x} dx$$

$$\int \frac{\ln(x^2)}{x} dx = 2 \int \frac{\ln(x)}{x} = 2 \left[\ln(x)^2 - \int \frac{\ln(x)}{x} dx \right]$$

$$\int \frac{\ln(x^2)}{x} dx = \ln(x)^2 \Rightarrow \int_{2}^{\infty} \frac{\ln(x^2)}{x} dx = \ln(x)^2 \Big|_{2}^{\infty} = \infty$$

A série diverge!!!

b)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-1)^4}$$

$$\sum_{n=1}^{\infty} \frac{1}{(3n-1)^4} = \sum_{n=1}^{\infty} f(n) \ge \int_{1}^{\infty} \frac{1}{(3x-1)^4} dx$$
$$\int \frac{1}{(3x-1)^4} dx = \frac{-1}{9(3x-1)^3}$$
$$\int_{1}^{\infty} \frac{1}{(3x-1)^4} = -\frac{1}{9} \left[\frac{1}{(3x-1)^3} \right] \Big|_{1}^{\infty} = \frac{1}{72}$$

A série converge!!!

c)
$$\sum_{n=1}^{\infty} \frac{n-4}{n^2-2n+1}$$

$$\sum_{n=1}^{\infty} \frac{n-4}{n^2 - 2n + 1} = \sum_{n=2}^{\infty} \ge \int_{2}^{\infty} \frac{x-4}{x^2 - 2x + 1} dx$$

$$\int \frac{x-1}{x^2 - 2x + 1} dx = \ln|x-1| + \frac{3}{x-1}$$

$$\int_{2}^{\infty} \frac{x-4}{x^2 - 2x + 1} dx = \left[\ln|x-1| + \frac{3}{x-1}\right] \Big|_{2}^{\infty} = \infty$$

Diverge!!!

1.2
$$\int_2^\infty \frac{dx}{x(\ln(x))^p}$$

$$\int_{2}^{\infty} \frac{dx}{x(\ln(x))^{p}}$$

$$p \neq 1$$

$$u = \ln(x) \Rightarrow du = \frac{dx}{x}$$

$$\int_{2}^{\infty} \frac{dx}{x(\ln(x))^{p}} = \int_{\ln 2}^{\infty} \frac{du}{u^{p}} = \int_{\ln 2}^{\infty} u^{-u} du$$

$$\int_{\ln 2}^{\infty} u^{-u} du = \frac{u^{1-p}}{1-p}$$

$$\alpha = 1-p$$

$$p < 1 \to \alpha > 0 \Rightarrow$$

$$\frac{u^{\alpha}}{\alpha} \Big|_{\ln 2}^{\infty} = \infty$$

Diverge para p < 1 !!!

$$p > 1 \rightarrow \alpha < 0 \Rightarrow \frac{u^{1-p}}{1-p} \Big|_{\ln 2}^{\infty} = \frac{1}{\alpha u^{\alpha}} \Big|_{\ln 2}^{\infty} = \frac{1}{\alpha (\ln 2)^{\alpha}}$$

Converge para p > 1!!!

Agora vamos ver para p = 1

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)}$$

$$u = \ln x \Rightarrow du = \frac{dx}{x} \rightarrow$$

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)} = \int_{\ln 2}^{\infty} \frac{du}{u} = \ln u \Big|_{\ln 2}^{\infty} = \infty$$

A integral diverge para p = 1

Com esse resultado podemos dizer que a série $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converge apenas para p>1

1.3

 $\mathbf{a)} \quad \sum_{n=0}^{\infty} \frac{\sqrt{n}+4}{n^2}$

$$\sum_{n=0}^{\infty} \frac{\sqrt{n}+4}{n^2} = \sum_{n=0}^{\infty} f(n) \Rightarrow f(x) = \frac{\sqrt{x}+4}{x^2}$$

Como x^2 é um polinomio de grau maior que $\sqrt{x} + 4$, então f(x) é decrescente e positivo por ser uma função par, então o teste da integral se aplica para testar a convergência da série.

$$\int_{0}^{\infty} \frac{\sqrt{x} + 4}{x^2} dx = \int_{0}^{\infty} \frac{\sqrt{x}}{x^2} dx + \int_{0}^{\infty} \frac{4}{x^2} dx$$

$$\int_{0}^{\infty} \frac{\sqrt{x}}{x^2} dx + \int_{0}^{\infty} \frac{4}{x^2} dx = \int_{0}^{\infty} x^{-\frac{3}{2}} dx + 4 \int_{0}^{\infty} x^{-2} dx$$

$$\Rightarrow \left[\frac{-2}{\sqrt{x}} - \frac{4}{x} \right]_{0}^{\infty} = \infty$$

Como a integral diverge a série também diverge!!

b)
$$\sum_{n=0}^{\infty} \frac{1}{n^2+2n+2}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 2n + 2}$$

Por comparação vou utilizar o teste do limite se $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$ então a_n e b_n convergem e divergem juntos, sendo:

$$a_n = \frac{1}{n^2 + 2n + 2}, \quad b_n = \frac{1}{n^2}$$

Temos:

$$\lim_{n \to \infty} \frac{\frac{1}{n^2 + 2n + 2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n^2 + 2n + 2} = 1$$
$$\sum_{n=0}^{\infty} \frac{1}{n^2}$$

Converge, logo:

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 2n + 2}$$

Converge!!!

c)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

Por se tratar de uma sequência positiva e decrescente podemos usar o teste da integral

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n} \ge \int_{2}^{\infty} \frac{1}{x \ln x} dx$$

$$u = \ln x \Rightarrow du = \frac{dx}{x}$$

$$\int_{\ln 2}^{\infty} = \ln u \Big|_{\ln 2}^{\infty} = \infty$$

A série diverge!!!

$$\mathbf{d)} \quad \sum_{n=1}^{\infty} \frac{n}{n^4+1}$$

$$\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$$

$$\int_{1}^{\infty} \frac{x}{x^4 + 1} dx, u = x^2 \Rightarrow 2x$$

$$\int_{2}^{\infty} \frac{2x}{2(x^4 + 1)} dx = \frac{1}{2} \int_{4}^{\infty} \frac{du}{u^2 + 1}$$

$$\frac{1}{2} \int_{4}^{\infty} \frac{du}{u^2 + 1} = \frac{1}{2} \left[\arctan(u) \right] \Big|_{4}^{\infty} =$$

$$\frac{1}{2} \left[\frac{\pi}{2} - \arctan(4) \right]$$

A série é converge!!!

e)
$$\sum_{n=1}^{\infty} \frac{n-1}{n^3+1}$$

se $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$, então se b_n converge ou diverge a_n converge ou diverge junto

$$a_n = \frac{n-1}{n^3+1}, \quad b_n = \frac{1}{n^2}$$

$$\lim_{n \to \infty} \frac{\frac{n-1}{n^3+1}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^3 - n^2}{n^3+1} = 1$$

Como $\sum b_n$ converge por ser uma séri p, onde p > 1, a série $\sum a_n$, também converge!!

$$\mathbf{f)} \quad \sum_{k=0}^{\infty} \frac{k \operatorname{sen}^{2}(k)}{1+k^{3}}$$

$$\sum_{k=0}^{\infty} \frac{k \operatorname{sen}^{2}(k)}{1 + k^{3}}$$

$$\operatorname{sen}^{2}(k) \le 1$$

$$k \operatorname{sen}^{2}(k) \le k$$

$$\frac{k \operatorname{sen}^{2}(k)}{1 + k^{3}} \le \frac{k}{1 + k^{3}}$$

$$\sum_{k=0}^{\infty} \frac{k \operatorname{sen}^{2}(k)}{1 + k^{3}} \le \sum_{k=0}^{\infty} \frac{k}{1 + k^{3}}$$

$$\lim_{n \to \infty} \frac{\frac{k}{1 + k^{3}}}{\frac{1}{k^{2}}} = \lim_{n \to \infty} \frac{k^{3}}{1 + k^{3}} = 1$$

Como $\sum \frac{1}{k^2}$ converge $\sum \frac{k}{1+k^3}$ também converge!!!

$$\mathbf{g}) \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}} \ge \int \frac{1}{\sqrt{x^2 + 1}} dx$$

$$tg \theta = x \to dx = \sec^2 \theta d\theta$$

$$\sec \theta = \sqrt{x^2 + 1}$$

$$\int \frac{\sec^2 \theta}{\sec \theta} d\theta = \int \sec \theta d\theta = \int \sec \theta \frac{tg \theta + \sec \theta}{tg \theta + \sec \theta} d\theta$$

$$\int \frac{\operatorname{tg} \theta + \sec^2 \theta}{\operatorname{tg} \theta + \sec \theta} d\theta$$

$$u = \operatorname{tg} \theta + \sec \theta \to du = (\sec^2 \theta + \sec \theta \operatorname{tg} \theta) d\theta$$

$$\int \frac{du}{u} = \ln u = \ln |\tan \theta + \sec \theta| = \ln |x + \sqrt{x^2 + 1}|$$

$$\int_{1}^{\infty} \frac{1}{\sqrt{x^2 + 1}} dx = \ln\left|x + \sqrt{x^2 + 1}\right| \Big|_{1}^{\infty} = \infty$$

Logo a série diverge!!!

h)
$$\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n}$$

$$\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n}$$

$$\frac{n+4^n}{n+6^n} \le \frac{n+4^n}{6^n} \le \frac{2(4^n)}{6^n}$$

Podemos usar o teste da raiz para ver se a série que vamos comparar converge, caso convirja todas as séries menores convergem.

$$\lim_{n \to \infty} \sqrt[n]{\frac{2(4^n)}{6^n}} = \lim_{n \to \infty} \left| \frac{4}{6} \sqrt[n]{2} \right| = \frac{4}{6}$$

Como $\lim_{n\to\infty} \sqrt[n]{|b_n|} < 1$ a série converge. Por comparação $\sum_n \frac{n+4^n}{n+6^n}$ Converge!!!

i)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$

$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}} = \sum_{n=2}^{\infty} f(n)$$

$$\int_{2}^{\infty} f(x)dx < \sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}} < a_2 + \int_{2}^{\infty} f(x)dx$$

$$\int_{2}^{\infty} f(x)dx = \int_{2}^{\infty} \frac{1}{x\sqrt{x^2 - 1}} dx$$

$$\int \frac{1}{x\sqrt{x^2 + 1}} dx \begin{vmatrix} \sec \theta = x \\ dx = \sec \theta \operatorname{tg} \theta d\theta \\ \operatorname{tg} \theta = \sqrt{x^2 + 1} \end{vmatrix}$$

$$\int \frac{1}{x\sqrt{x^2 + 1}} dx = \int \frac{\sec \theta \operatorname{tg} \theta}{\sec \theta \operatorname{tg} \theta} d\theta$$

$$\int d\theta = \theta = \arccos^{-1} x$$

$$\Rightarrow \int_{2}^{\infty} f(x)dx = \arccos^{-1}(x) \Big|_{2}^{\infty} = \arccos^{-1}(\infty) - \arccos^{-1}(2)$$

$$= \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$$

Logo pelo teste da integral a série converge!!

$$\mathbf{j}) \quad \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Vou usar o teste de D'Alembert $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$ a série é convergente.

$$\lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \frac{\frac{(n+1)n!}{(n+1)^n(n+1)}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \frac{\frac{n!}{(n+1)^n}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \frac{n^n}{(n+1)^n}$$

$$\lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^{n+1-1}$$

$$\lim_{u \to \infty} \left(1 - \frac{1}{u}\right)^{u-1} = \lim_{u \to \infty} \frac{\left(1 - \frac{1}{u}\right)^u}{\left(1 - \frac{1}{u}\right)} = \frac{\lim_{u \to \infty} \left(1 - \frac{1}{u}\right)^u}{\lim_{u \to \infty} \left(1 - \frac{1}{u}\right)}$$

$$\frac{\lim_{u \to \infty} \left(1 - \frac{1}{u}\right)^u}{1} = \lim_{u \to \infty} \left(1 - \frac{1}{u}\right)^u = \lim_{u \to \infty} \left(1 + \frac{-1}{u}\right)^u = \lim_{u \to \infty} \left(1 - \frac{1}{u}\right)^u$$

$$=e^{-1}<1$$

Logo a série converge!

$$\mathbf{k}) \quad \sum_{n=1}^{\infty} (-1)^n \frac{n}{10^n}$$

Vou usar o teste de Cauchy $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$ a série é convergente.

$$\lim_{n \to \infty} \sqrt[n]{(-1)^n \frac{n}{10^n}} = \lim_{n \to \infty} \left| \frac{\sqrt[n]{n}}{10} \right| = \frac{1}{10} < 1$$

Logo a série é convergente!!

$$1) \quad \sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{2^n}$$

Podemos dizer que a sequência $c_n = \frac{n\cos(n\pi)}{2^n}$ é o produto de duas séries $a_n = \frac{n}{2^n}$ e $b_n = \cos(n\pi)$. Vamos analisar a sequência b_n

$$b_0 = 1$$

$$b_1 = -1$$

$$b_2 = 1$$

$$b_3 = -1$$

$$b_n = \cos(n\pi) = (-1)^n$$

Então como podemos escrever c_n como $a_n \times b_n$ e $b_n = (-1)^n$, então $c_n = (-1)^n \frac{n}{2^n}$. Usando o teste de Cauchy para determinar a convergência da série temos:

$$\lim_{n \to \infty} \sqrt[n]{(-1)^n \frac{n}{2^n}} = \lim_{n \to \infty} \left| \frac{\sqrt[n]{n}}{2} \right| = \frac{1}{2} < 1$$

Logo fica claro que a série converge!!

m)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n}$$

Novamente pelo teste de Cauchy é fácil provar a convergência da série.

$$\lim_{n \to \infty} \sqrt[n]{|(-1)^{n+1} n e^{-n}|} = \lim_{n \to \infty} e^{-1} \sqrt[n]{n} = e^{-1} < 1$$

Logo a série é convergente!!

n)
$$\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$$

$$\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right) = 0 + \sum_{n=2}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$$

$$b_n = \sin\left(\frac{\pi}{n}\right) \to \sum_{n=2}^{\infty} (-1)^n b_n = \sum_{n=2}^{\infty} (-1)^n f(n)$$

$$f(x) = \sin\left(\frac{\pi}{x}\right)$$

$$f'(x) = \left(\frac{-\pi}{x^2}\right) \cos\left(\frac{\pi}{x}\right) = \frac{-\pi \cos\left(\frac{\pi}{x}\right)}{x^2}$$

$$f'(x) \le 0 \quad \forall x \in [2, \infty[$$

O que siguinifica que a série é descrescente para n > 2

$$\lim_{n \to \infty} \sin\left(\frac{\pi}{n}\right) = 0$$

Pelo teste Leibniz a série é convergente!!!

o)
$$\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$$

$$a_n = \sqrt{n+1} - \sqrt{n} = f(n)$$

$$f(x) = \sqrt{x+1} - \sqrt{x}$$

$$f'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{\sqrt{x}}$$

$$f'(x) < 0 \qquad \forall x \in]0, \infty[$$

Logo a_n é decrescente

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} \left(\frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \right)$$

$$\lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

Pelo teste de Leibniz a série é convergente!!

1.4 Encontre os valores de p para os quais a série converge.

$$\mathbf{a)} \quad \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

Para p = 0 temos $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} = \sum_{n=2}^{\infty} \frac{1}{n}$ que é divergente.

Para p < 0 temos que:

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{-p}} = \sum_{n=2}^{\infty} \frac{(\ln n)^p}{n}$$
$$\frac{(\ln n)^p}{n} \ge \frac{1}{n}$$

Como a série $\sum_{n=2}^{\infty} \frac{1}{n}$ diverge por teste de comparação a série $\sum_{n=2}^{\infty} \frac{(\ln n)^p}{n}$ diverge!! Agora para p > 0, temos que a série é descrescente, então podemos aplicar o teste da integral

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{p}} \qquad \begin{vmatrix} u = \ln x \\ du = \frac{dx}{x} \end{vmatrix}$$

$$\int_{\ln 2}^{\infty} \frac{du}{u^{p}} = \frac{u^{1-p}}{1-p} \Big|_{\ln 2}^{\infty}$$

Se $0 temos que a série diverge, pois tomando <math>\alpha = 1 - p \rightarrow \alpha > 0$

$$\frac{u^{\alpha}}{\alpha}\Big|_{\ln 2}^{\infty} = \infty$$

Se p > 1 temos que a série CONVERGE, pois temos $\alpha < 0$

$$\frac{1}{\alpha u^{\alpha}}\bigg|_{\ln 2}^{\infty} = \frac{-1}{\alpha (\ln 2)^{\alpha}}$$

Portanto chegasse a conclusão que a série $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converge para p > 1!!!

b) $\sum_{n=1}^{\infty} n \left(1+n^2\right)^p$

Para $p \ge 0$ temos que $\lim_{n\to\infty} a_n = \infty$, então diverge. Agora para p < 0 temos:

$$\sum_{n=1}^{\infty} \frac{n}{\left(1+n^2\right)^p}$$

Usando o teste de D'Alembert:

$$\lim_{n \to \infty} \frac{\frac{n}{(1+n^2)^p}}{\frac{1}{n^p}} = 1$$

Sabe que a série hârmonica $\sum_n \frac{1}{n^p}$ corvege apenas para p > 1, podemos dizer então que a série $\sum_n n \left(1 + n^2\right)^p$ converge $\forall p \in]1, \infty[$

c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$

Para p > 0 temos que a série converge, por se tratar de uma série hârmonica alternada que é sabido que converge.

Para p = 0 temos $\sum_{n=1}^{\infty} (-1)^{n-1}$ que diverge.

Para p < 0 temos $\sum_{n=1}^{\infty} (-1)^{n-1} n^p$ como $\lim_{n \to \infty} n^p = \infty$, temos que a série diverge.

Portanto temos que a série converge apenas para $p \in [1, \infty[$

d) $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}$

Como $\lim_{n\to\infty}\frac{(\ln n)^p}{n}=0$, precisamos achar para quais valores de p a sequência $\frac{(\ln n)^p}{n}$ é decrescente. Tomando uma função $f:\mathbb{R}^+\to\mathbb{R}$ tq $a_n=\frac{(\ln n)^p}{n}=f(n),\ \forall\,n\in\mathbb{N}$ então temos que:

14

$$f(x) = \frac{(\ln x)^p}{x} < 0 \Rightarrow$$

$$f(x) = \frac{(\ln x)^p}{x}$$

$$p(\ln x)^{p-1} - (\ln x)^p < 0$$

$$f'(x) = \frac{p(\ln x)^{p-1} - (\ln x)^p}{x^2} \Rightarrow$$

$$p < \frac{(\ln x)^p}{(\ln x)^{p-1}} \Rightarrow$$

$$p < \ln x$$

$$x > e^p$$

O que é provado nas equações anteriores é que a função (portanto a sequência) começa a decrescer a partir de um número que depende de p, em razão da série começar com n=2 queremos que a função seja decrescente para $x \le 2$ substituindo na expressçao anterior temos:

$$2 \ge x > e^p \implies 2 > e^p$$
 $\ln 2 > \ln e^p$
 $p < \ln 2$

Então pelo teste de Leibniz a série converge para $p \in]-\infty, \ln 2[$

1.5 Calcule a soma da série $\sum_{n=1}^{\infty} ne^{-2n}$ com precisão de 4 casa decimais.

Corrigir essa conta usando o método mostrado pelo professor.

$$\sum_{n=1}^{\infty} ne^{-2n} = \sum_{n=1}^{N} ne^{-2n} + \sum_{n=N+1}^{\infty} ne^{-2n}$$

$$\sum_{n=1}^{\infty} ne^{-2n} - \sum_{n=1}^{N} ne^{-2n} = \sum_{n=N+1}^{\infty} ne^{-2n}$$

$$\sum_{n=N+1}^{\infty} ne^{-2n} < 0,0001$$

$$\int_{N+1}^{\infty} xe^{-2x} dx \le \sum_{n=N+1}^{\infty} ne^{-2n} \le \int_{N}^{\infty} xe^{-2x} dx$$

$$\int_{N}^{\infty} xe^{-2x} dx \quad \begin{vmatrix} u = -2x \\ du = -2dx \end{vmatrix}$$

$$-\frac{1}{2} \int_{-2N}^{\infty} \frac{-u}{2} e^{u} du = \frac{1}{4} \int_{-2N}^{\infty} ue^{u} du$$

$$w = u \quad dv = e^{u} du$$

$$dw = du \quad v = e^{u}$$

$$\frac{1}{4} \int_{-2N}^{-\infty} u e^u du = \frac{1}{4} \left[u e^u \Big|_{-2N}^{-\infty} - \int_{-2N}^{-\infty} e^u du \right]$$

$$= \frac{1}{4} \left[u e^u - e^u \right] \Big|_{-2N}^{-\infty}$$

$$u = -2x$$

$$\Rightarrow \frac{1}{4} \left[-2x e^{-2x} - e^{-2x} \right] \Big|_{N}^{\infty}$$

$$= \frac{1}{4} \left[2N e^{-2N} + e^{-2N} \right]$$

$$= \frac{2N+1}{4e^{2N}}$$

Temos que $\sum_{n=N+1}^{\infty} ne^{-2n}$ precisa ser menor que 0, 0001, como:

$$\int_{N+1}^{\infty} xe^{-2x} dx \le \sum_{n=N+1}^{\infty} ne^{-2n} \le \int_{N}^{\infty} xe^{-2x} dx$$

Então temos que fazer:

$$\int_{N}^{\infty} xe^{-2x} dx < 0,0001$$

$$\int_{N}^{\infty} xe^{-2x} dx = \frac{2N+1}{4e^{2N}}$$

$$\Rightarrow \frac{2N+1}{4e^{2N}} < 0,0001$$

$$\Rightarrow (2N+1)e^{-2N} < 0,0004$$

$$\Rightarrow (-2N-1)e^{-2N} > -0,0004$$

$$\Rightarrow (-2N-1)e^{-2N-1} > -0,0004e^{-1}$$

Usando a Função *W* de Lambert:

$$-2N - 1 > W_0 \left(-0,0004e^{-1}\right) \quad \text{ou} \quad -2N - 1 > W_{-1} \left(-0,0004e^{-1}\right)$$
 Então
$$N < -\frac{1}{2} - \frac{W_0 \left(-0,0004e^{-1}\right)}{2} \quad \text{ou} \quad N < -\frac{1}{2} - \frac{W_{-1} \left(-0,0004e^{-1}\right)}{2}$$

Colando em um calculadora temos:

$$-\frac{1}{2} - \frac{W_0\left(-0,0004e^{-1}\right)}{2} \approx -0.4999264133$$

$$-\frac{1}{2} - \frac{W_{-1}\left(-0,0004e^{-1}\right)}{2} \approx 5.121935$$

$$Logo \rightarrow$$

$$N \leq -0.499926413 \text{ ou } N \leq 5.121935$$

Como N é um numero natural descartamos o resultado negativo e como N < 5.121935 temos então que N = 5