

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology
Department of Electrical & Computer Engineering
ENEE2103-Circuit And Electronics Laboratory
PreLab#6

Prepared by:

Saja Asfour

1210737

Instructor:

Mr.Nasser Ismail

Assistance:

Eng. Hazem Awaysa

Section:

Sec1

Date:

22/3/2024

Table of Contents

Table of Figure:	2
Table of Tables:	3
1. DIODE CHARACTERISTICS	4
2. RECTIFICATION	6
2.1 HALF - WAVE RECTIFICATION	6
2.2 FULL-WAVE RECTIFICATION	10
3-other applications:	12
3.1clipping:	12
3.2 Clamping:	14
4.VOLTAGE MULTIPLIER CIRCUITS	16

Table of Figure:

Figure 1: Diode characteristics	4
Figure 2: Diode charactristics when diode reverse	
Figure 3:Half Wave Rectification	6
Figure 4: Transient Analysis for half wave	6
Figure 5: Half-Wave rectifier curve	
Figure 6: Half-Wave rectifier with diode reversed	7
Figure 7: Half-Wave rectifier curve when the diode reversed	8
Figure 8:Half-wave Rectifier with capacitor	8
Figure 9:Half-Wave rectifier with capacitor curve	8
Figure 10:Half-wave rectifier with 47uF capacitor	9
Figure 11:Half-wave rectifier with 47uF capacitor curve	9
Figure 12:Full-Wave rectifier	.10
Figure 13:Full-wave rectifier curve	.10
Figure 14:Full-Wave rectifier with capacitor	.10
Figure 15:Full-Wave with capacitor curve	.11
Figure 16:Clipping with 0 Dc	.12
Figure 17:Clipping with 0 DC graph	.12
Figure 18:Clipping with 1.5 Dc	.12
Figure 19:Clipping with 1.5 DC graph	.13
Figure 20:Clipping with 3.5 DC	.13
Figure 21:Clipping with 3.5 DC curve	.13
Figure 22:Clamping with 0 DC	.14
Figure 23:Clamping with 0 DC graph	.14
Figure 24:Clamping with 1.5 DC	.14
Figure 25:Clamping with 1.5 DC graph	.15
Figure 26: Clamping with 3.5 DC	.15
Figure 27: Clamping with 3.5 DC graph	.15
Figure 28:Voltage Multiplier Circuit to find voltage for all capacittor	.16
Figure 29:Voltage for capacitors in voltage multiplier circuit	
Figure 30:voltage multiplier circuit to find C1+C3	.16
Figure 31:vlotage for C1+C3 graph in voltage multipler circuit	.17

Table 1:Diode characte			

1. DIODE CHARACTERISTICS

Figure1: Diode characteristics

I changed the value of VDC according to table1 and fill the result.

As shown in figure 1 the value of V_D is automatically found by the PSpice but the value of V_R it will found by the KVL \rightarrow - $V_S+V_R+V_D=0 \rightarrow V_R=V_S-V_D$

Table 1:Diode charactersitics table

V_s	V_R	V_{D}	ID
0	0	0	0
0.1	0.01mv	99.99mv	85.47nA
0.2	0.07mv	199.93mv	684.15nA
0.3	0.48mv	299.52mv	4.844uA
0.4	3.23mv	396.77mv	32.27uA
0.5	17.26mv	482.74mv	172.58uA
0.6	56.46mv	543.54mv	564.59uA
0.7	118.44mv	581.56mv	1.184mA
0.8	193.28mv	606.72mv	1.933mA
0.9	275.14mv	624.86mv	2.751mA
1	361.16mv	638.84mv	3.612mA
1.5	0.819v	681.00mv	8.190mA
2	1.29532v	704.68mv	12.95mA
2.5	1.77888v	721.12mv	17.79mA
3	2.26629v	733.71mv	22.66mA

If we reverse the diode and repeat the simulation:

Figure 2: Diode charactristics when diode reverse

→I note from the previous two circuits that the diode that has two terminals anode and cathode only passes current when the voltage on the anode is higher than the voltage of the cathode. When it was forward(the anode is on the side of the positive terminal of the voltage source) it worked as a voltage source as shown in table1, however when it was reversed on any value of the applied voltage source the current was always very close to zero and the voltage on the diode was the same as the input voltage, so it was obvious that diode acted like an open circuit where the voltage on the resistor was also very close to zero as shown in figure2.

2. RECTIFICATION.

2.1 HALF - WAVE RECTIFICATION.

Figure 3:Half Wave Rectification

As the frequency = 200 Hz, each wave needs 1/200 seconds which is equal to 5 ms, so 25 ms for 5 cycles.

Figure 4: Transient Analysis for half wave

Figure 5: Half-Wave rectifier curve

Vp-p in the output is: 4.4401v.

T(period) = 6.3377m - 1.3352m = 5.0025m A.

 $Dc = Vp-p/\pi = 1.5923v.$

Now, if we reversed the diode:

Figure 6: Half-Wave rectifier with diode reversed

Figure 7: Half-Wave rectifier curve when the diode reversed

Now adding the capacitor with a value of 2.2 uF, as shown in the figure below.

Figure 8:Half-wave Rectifier with capacitor

The output is:

Figure 9:Half-Wave rectifier with capacitor curve

$$Vp-p = 4.4256 - 3.6967 = 0.7289.$$

$$Vdc = (4.4256 + 3.6967)/2 = 4.06115v.$$

Now, I change the capacitor value to 47uF:

Figure 10:Half-wave rectifier with 47uF capacitor

The output is:

Figure 11:Half-wave rectifier with 47uF capacitor curve

Vdc=4.3233v

2.2 FULL-WAVE RECTIFICATION

Figure 12:Full-Wave rectifier

Figure 13:Full-wave rectifier curve

Vp-p = 3.9256v.

 $Dc = Vp-p/\pi = 1.4296v.$

Then, I add a capacitor with value 2.2uF:

Figure 14:Full-Wave rectifier with capacitor

And the output is:

Figure 15:Full-Wave with capacitor curve

Ripple peak = 3.8397 - 3.5418 = 0.2979v, and the DC voltage = 3.69v

3-other applications:

3.1clipping:

Figure 16:Clipping with 0 Dc

Figure 17:Clipping with 0 DC graph

Figure 18:Clipping with 1.5 Dc

Figure 19:Clipping with 1.5 DC graph

Figure 20:Clipping with 3.5 DC

Figure 21:Clipping with 3.5 DC curve

Note that in figure 21 there are two identical graphs, the reason is because since the input's voltage ranges between [-3, 3] it will always be less than the DC voltage so the diode will act as open circuit and the output voltage will equal the input voltage.

3.2 Clamping:

Figure 22:Clamping with 0 DC

Figure 23:Clamping with 0 DC graph

Figure 24: Clamping with 1.5 DC

Figure 25:Clamping with 1.5 DC graph

Figure 26: Clamping with 3.5 DC

Figure 27: Clamping with 3.5 DC graph

4.VOLTAGE MULTIPLIER CIRCUITS

*note that this part not found in lab manual 2023-2024, so I brought it from the old lab manual .

Figure 28: Voltage Multiplier Circuit to find voltage for all capacittor

The figure below shows the plot of all the voltages of the capacitors for 5 cycles.

Figure 29:Voltage for capacitors in voltage multiplier circuit

Figure 30:voltage multiplier circuit to find C1+C3

The figure below shows the voltage of C1 + C3.

Figure 31:vlotage for C1+C3 graph in voltage multipler circuit