Implementación de enlaces punto a punto

Germán Eduardo Castro Burgos Ingeniería de RF Universidad de Nariño Pasto, Colombia german_castrob@hotmail.com

I. Introducción

La creciente necesidad de acceso a recursos informáticos ha traído consigo durante las últimas décadas, un incipiente auge en el desarrollo de tecnologías que faciliten la implementación de sistemas de comunicaciones en diversos escenarios rurales y urbanos. Las barreras topográficas existentes en algunas regiones, han determinado en ocasiones la imposibilidad de brindar una solución factible para garantizar la conectividad de la región considerada, generando efectos adversos sobre la economía, educación y en general la calidad de vida de quienes habitan estas zonas. Para mitigar los efectos descritos, diferentes alternativas tecnológicas se han propuesto considerando diversas metodologías y medios de transmisión. Inicialmente los sistemas de comunicaciones basados en un medio físico (cable) contaban con capacidades operativas significativamente superiores cuando su desempeño se contrastaba con el de sistema inalámbricos, que se veían limitados por la cantidad de información que podía ser transferida luego de su despliegue.

Con el incremento en la capacidad de procesamiento de sistemas embebidos y el surgimiento de nuevas técnicas de modulación de señales, la brecha entre sistemas inalámbricos y cableados se ha visto disminuida. Como resultado, la implementación de sistemas inalámbricos en áreas rurales o de dificil acceso es cada día mas frecuente. Los radioenlaces se presentan en dicho panorama, como una solución costoefectiva para garantizar el acceso de comunidades aisladas a servicios de internet, y para establecer redes de comunicaciones multi propósito que contribuyen a garantizar la seguridad de la comunidad. El éxito de la solución propuesta estará relacionado con las consideraciones efectuadas durante la fase de diseño del enlace a emplear, siendo fundamentales la selección de los dispositivos que harán parte del sistema y la caracterización del enlace inalámbrico a partir de cálculos teóricos que requieren del uso de modelos de propagación y del reconocimiento de las regiones de Fresnel asociadas al escenario de trabajo. Este documento resume el procedimiento llevado a cabo para la implementación de un enlace inalámbrico punto a punto, señalando las principales características de los elementos empleados, las consideraciones previas a la implementación del enlace y un análisis comparativo de los resultados obtenidos frente a los pronósticos efectuados mediante la aplicación de las relaciones teóricas existentes para diferentes modelos de propagación.

Figura 1. Antena tipo Rubber Duck HG2458-5RD-RSP.

II. DESCRIPCIÓN DEL EXPERIMENTO EFECTUADO

El ejercicio efectuado en busca de identificar las etapas que deben recorrerse para implementar de forma exitosa un radio enlace, tuvo como punto de partida la selección de los dispositivos a emplear para establecer la comunicación bidireccional entre dos equipos terminales. Dado que el enlace propuesto corresponde en su configuración a un esquema punto a punto, en el que las comunicaciones se entablan exclusivamente entre dos únicos nodos, es necesario implementar dos estaciones idénticas que permitan la transmisión de paquetes entre dos equipos de cómputo conectados a cada extremo del enlace. Para identificar los efectos ocasionados sobre la potencia recibida en uno de los extremos del enlace, cuando se delimita la primera zona de Fresnel, un obstáculo ha sido posicionado en el punto medio de la distancia que separa las estaciones transmisoras en busca de que la señal reflejada sobre el mismo incremente el nivel de la potencia recibida. El escenario descrito puede apreciarse en la Figura @.

II-A. Instrumentación empleada

Cada una de las estaciones transmisoras está constituida por un conjunto antena-radio encargado de entablar comunicaciones con el nodo ubicado al otro extremo del enlace. El dispositivo principal de cada estación corresponde a un radio de referencia RocketM5 del fabricante Ubiquiti. Según la información proporcionada por el fabricante, el equipo corresponde a una estación base empleada en la construcción de radio enlaces punto a punto y punto a multi-punto. Puede alcanzar velocidades de hasta 150Mbps y ha sido diseñado en busca de facilitar la interacción con antenas de múltiple polarización.

La antena de referencia AF-5G30-S45 del fabricante L-Com fue seleccionada para hacer parte de cada nodo

Figura 2. Antena tipo Rubber Duck HG2458-5RD-RSP.

del enlace. En su hoja de datos, el fabricante describe al dispositivo como un equipo de alto desempeño empleado con frecuencia en conjunto con estaciones base de altas prestaciones, para establecer radio enlaces a largas distancias, cuando se requieren tasas de transferencia considerables, dadas su alta ganancia y patrón de radiación altamente directivo. La Figura @ muestra una imagen de los equipos empleados mientras en el Cuadro ! han sido consignados los valores correspondiente a sus pricipales parámetros operativos. Entre los accesorios adicionales empleados durante a ejecución de la práctica pueden citarse un par de trípodes para topografía, cables de red de diversas longitudes, fuentes de poder tipo Poweroverethernet(PoE), adaptadores para conexión de las antenas y dos computadores portátiles que hicieron las veces de estaciones terminales.

Estación Base Rocket M5	
Parámetro	Valor
Modos de Operación	Punto de acceso, Estación
Interfaz de Red	10/100Mbps
Puertos de Conexión RF	2 X RP-SMA
Frecuencia de Operación	5150MHz-5875MHz
Potencia Máxima Tx	27dBm
Protocolos soportados	802.11a, 802.11n/airMax
Antena AF-5F30-S45	
Parámetro	Valor
Frecuencias de Operación	4900MHz-5900MHz
Polarización	Dual (+45°), -45°
Ganancia	4.9GHz: 26dBi
	5GHz-5.9GHz: 30dBi
Diámetro	650 mm
Ángulo Radiación +45°	5,8°
Ángulo Radiación -45°	5.8°
Cuadro I	

PARÁMETROS OPERATIVOS ANTENA HG2458-5RD-RSP