Density of modular points in pseudo-deformation rings

Shaunak Deo

Indian Institute of Science

IISc-IISER Pune Twenty-20 Symposium 17 September, 2021

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p.

Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N. However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Ouestion

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p. Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N. However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Ouestion

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p. Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N. However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Ouestion

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p. Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N. However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Ouestion

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p. Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N.

However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Question

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p. Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N. However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Ouestion

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p. Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N. However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Question

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

Let p be an odd prime, \mathbb{F} be a finite extension of \mathbb{F}_p , $W(\mathbb{F})$ be the ring of Witt vectors of \mathbb{F} and $N \geq 1$ be an integer not divisible by p. Denote the Galois group of the maximal extension of \mathbb{Q} unramified outside $Np\infty$ over \mathbb{Q} by $G_{\mathbb{Q},Np}$.

Let $\bar{\rho}: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(\mathbb{F})$ be a continuous, odd and semi-simple representation with Artin conductor N_0 and suppose $N_0 \mid N$.

Khare–Winterberger: $\bar{\rho}$ arises from a modular eigenform of level N. However, all lifts of $\bar{\rho}$ to finite extensions of $W(\mathbb{F})$ do not arise from modular forms (it can be seen using determinants).

Question

Does every lift of $\bar{\rho}$ to a finite extension of $W(\mathbb{F})$ arise from an arithmetic object?

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

Note that when $\bar{\rho}$ is absolutely irreducible, then universal pseudo-deformation ring of $\bar{\rho}$ is same as universal deformation ring of

A natural approach to answer the question is to compare the 'universal deformation ring' $R_{\bar{\rho}}$ of $\bar{\rho}$ (which interpolates all the lifts of $\bar{\rho}$ to CNL $W(\mathbb{F})$ -algebras) with the 'big' p-adic Hecke algebra acting on the space of modular forms of level N and all weights.

When $\bar{\rho}$ is absolutely irreducible, the universal deformation ring of $\bar{\rho}$ exists due to work of Mazur.

However, when $\bar{\rho}$ is reducible, the universal deformation ring $R_{\bar{\rho}}$ of $\bar{\rho}$ (in the sense of Mazur) does not exist.

So the appropriate object to consider here is the universal deformation ring of the pseudo-representation corresponding to $\bar{\rho}$ i.e. universal pseudo-deformation ring of $\bar{\rho}$ which we will denote by $R_{\bar{\rho}}^{\rm pd}$.

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{Q},N_p}$,
- $\bullet \ d(g)t(g^{-1}h) + t(gh) = t(g)t(h) \text{ for all } g, h \in G_{\mathbb{Q},Np}.$

Example: If $\rho: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(R)$ is a representation, then $(\operatorname{tr}(\rho), \operatorname{det}(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$. We call it the pseudo-representation corresponding to ρ .

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{Q},Np}$,
- $d(g)t(g^{-1}h) + t(gh) = t(g)t(h)$ for all $g, h \in G_{\mathbb{Q},Np}$.

Example: If $\rho: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(R)$ is a representation, then $(\mathrm{tr}(\rho), \det(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$. We call it the pseudo-representation corresponding to ρ .

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{Q},Np}$,
- $d(g)t(g^{-1}h) + t(gh) = t(g)t(h)$ for all $g, h \in G_{\mathbb{Q},Np}$.

Example: If $\rho: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(R)$ is a representation, then $(\mathrm{tr}(\rho), \det(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$. We call it the pseudo-representation corresponding to ρ .

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{O},Np}$,
- $d(g)t(g^{-1}h) + t(gh) = t(g)t(h)$ for all $g, h \in G_{\mathbb{Q},Np}$.

Example: If $\rho: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(R)$ is a representation, then $(\operatorname{tr}(\rho), \operatorname{det}(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$. We call it the pseudo-representation corresponding to ϱ .

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{Q},Np}$,
- $d(g)t(g^{-1}h) + t(gh) = t(g)t(h)$ for all $g, h \in G_{\mathbb{Q},Np}$.

Example: If $\rho: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(R)$ is a representation, then $(\operatorname{tr}(\rho), \operatorname{det}(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$. We call it the pseudo-representation corresponding to ϱ .

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{Q},Np}$,
- $d(g)t(g^{-1}h) + t(gh) = t(g)t(h)$ for all $g, h \in G_{\mathbb{Q},Np}$.

Example: If $\rho: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(R)$ is a representation, then $(\operatorname{tr}(\rho), \operatorname{det}(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$. We call it the pseudo-representation corresponding to ρ .

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{Q},Np}$,
- $d(g)t(g^{-1}h) + t(gh) = t(g)t(h)$ for all $g, h \in G_{\mathbb{Q},Np}$.

Example: If $\rho: G_{\mathbb{Q},Np} \to \mathrm{GL}_2(R)$ is a representation, then $(\mathrm{tr}(\rho), \det(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$.

Roughly speaking, a 2-dimensional pseudo-representation of a group G over a ring R is a tuple of functions which 'behaves' like the trace and determinant of a 2-dimensional representation.

Definition

Given a topological ring R, a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$ over R is a tuple $(t,d):G_{\mathbb{Q},Np}\to R$ of continuous functions such that

- $d: G_{\mathbb{Q},Np} \to R^{\times}$ is a homomorphism of groups,
- t(1) = 2,
- t(gh) = t(hg) for all $g, h \in G_{\mathbb{Q},Np}$,
- $d(g)t(g^{-1}h) + t(gh) = t(g)t(h)$ for all $g, h \in G_{\mathbb{Q},Np}$.

Example: If $\rho: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(R)$ is a representation, then $(\operatorname{tr}(\rho), \operatorname{det}(\rho))$ is a 2-dimensional pseudo-representation of $G_{\mathbb{Q},Np}$. We call it the pseudo-representation corresponding to ρ .

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N, W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N, W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$. Here S_ℓ is the operator whose action on $M_k(N,W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N, W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N, W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$. Here S_ℓ is the operator whose action on $M_k(N,W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N,W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N,W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$.

Here S_{ℓ} is the operator whose action on $M_k(N, W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N, W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N, W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$. Here S_ℓ is the operator whose action on $M_k(N,W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N, W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N, W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$. Here S_ℓ is the operator whose action on $M_k(N,W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N, W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N, W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$. Here S_ℓ is the operator whose action on $M_k(N,W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N,W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N,W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$. Here S_ℓ is the operator whose action on $M_k(N,W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

Let $M_k(N, W(\mathbb{F}))$ be the space of classical modular forms of weight k and level N with Fourier coefficients in $W(\mathbb{F})$.

Let
$$M(N, W(\mathbb{F})) = \sum_{k=0}^{\infty} M_k(N, W(\mathbb{F})) \subset W(\mathbb{F})[[q]].$$

Let $\mathbb{T}(N)$ be the $W(\mathbb{F})$ -subalgebra of $\operatorname{End}_{W(\mathbb{F})}(M(N,W(\mathbb{F})))$ generated by the Hecke operators T_ℓ and S_ℓ for primes $\ell \nmid Np$. Here S_ℓ is the operator whose action on $M_k(N,W(\mathbb{F}))$ coincides with the action of the operator $\langle \ell \rangle \ell^{k-2}$.

Let $m_{\bar{\rho}}$ be the maximal ideal of $\mathbb{T}(N)$ corresponding to $\bar{\rho}$. Let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Note that $\mathbb{T}(N)_{\bar{\rho}}$ is a complete Noetherian local ring with residue field \mathbb{F} and it is also reduced.

History

Theorem (Gouvêa–Mazur)

- Every component of Spec($\mathbb{T}(N)_{\bar{\rho}}$) has Krull dimension at least 4.
- If $\bar{\rho}$ is absolutely irreducible, then there exists a surjective map $\phi: R_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ and it is an isomorphism when $\bar{\rho}$ is unobstructed (i.e. when $R_{\bar{\rho}} \simeq W(\mathbb{F})[[X,Y,Z]]$).

Theorem (Böckle)

If $\bar{\rho}$ is absolutely irreducible, then, under some mild hypotheses (Taylor–Wiles hypotheses), the surjective map $\phi:R_{\bar{\rho}}\to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism.

Allen has extended the results of Böckle to prove big $R=\mathbb{T}$ theorems in the context of polarized Galois representations for CM fields and also for Hilbert modular forms under some hypotheses.

4 D > 4 A > 4 B > 4 B > 9 Q O

History

Theorem (Gouvêa–Mazur)

- Every component of Spec($\mathbb{T}(N)_{\bar{\rho}}$) has Krull dimension at least 4.
- If $\bar{\rho}$ is absolutely irreducible, then there exists a surjective map $\phi: R_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ and it is an isomorphism when $\bar{\rho}$ is unobstructed (i.e. when $R_{\bar{\rho}} \simeq W(\mathbb{F})[[X,Y,Z]]$).

Theorem (Böckle)

If $\bar{\rho}$ is absolutely irreducible, then, under some mild hypotheses (Taylor–Wiles hypotheses), the surjective map $\phi:R_{\bar{\rho}}\to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism.

Allen has extended the results of Böckle to prove big $R=\mathbb{T}$ theorems in the context of polarized Galois representations for CM fields and also for Hilbert modular forms under some hypotheses.

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 0 0

History

Theorem (Gouvêa–Mazur)

- Every component of Spec($\mathbb{T}(N)_{\bar{\rho}}$) has Krull dimension at least 4.
- If $\bar{\rho}$ is absolutely irreducible, then there exists a surjective map $\phi: R_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ and it is an isomorphism when $\bar{\rho}$ is unobstructed (i.e. when $R_{\bar{\rho}} \simeq W(\mathbb{F})[[X,Y,Z]]$).

Theorem (Böckle)

If $\bar{\rho}$ is absolutely irreducible, then, under some mild hypotheses (Taylor–Wiles hypotheses), the surjective map $\phi: R_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism.

Allen has extended the results of Böckle to prove big $R=\mathbb{T}$ theorems in the context of polarized Galois representations for CM fields and also for Hilbert modular forms under some hypotheses.

However, he still keeps the assumption that $\bar{\rho}$ is absolutely irreducible

History

Theorem (Gouvêa–Mazur)

- Every component of Spec($\mathbb{T}(N)_{\bar{\rho}}$) has Krull dimension at least 4.
- If $\bar{\rho}$ is absolutely irreducible, then there exists a surjective map $\phi: R_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ and it is an isomorphism when $\bar{\rho}$ is unobstructed (i.e. when $R_{\bar{\rho}} \simeq W(\mathbb{F})[[X,Y,Z]]$).

Theorem (Böckle)

If $\bar{\rho}$ is absolutely irreducible, then, under some mild hypotheses (Taylor–Wiles hypotheses), the surjective map $\phi:R_{\bar{\rho}}\to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism.

Allen has extended the results of Böckle to prove big $R = \mathbb{T}$ theorems in the context of polarized Galois representations for CM fields and also for Hilbert modular forms under some hypotheses.

However, he still keeps the assumption that $\bar{\rho}$ is absolutely irreducible.

History

Theorem (Gouvêa–Mazur)

- Every component of Spec($\mathbb{T}(N)_{\bar{\rho}}$) has Krull dimension at least 4.
- If $\bar{\rho}$ is absolutely irreducible, then there exists a surjective map $\phi: R_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ and it is an isomorphism when $\bar{\rho}$ is unobstructed (i.e. when $R_{\bar{\rho}} \simeq W(\mathbb{F})[[X,Y,Z]]$).

Theorem (Böckle)

If $\bar{\rho}$ is absolutely irreducible, then, under some mild hypotheses (Taylor–Wiles hypotheses), the surjective map $\phi:R_{\bar{\rho}}\to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism.

Allen has extended the results of Böckle to prove big $R = \mathbb{T}$ theorems in the context of polarized Galois representations for CM fields and also for Hilbert modular forms under some hypotheses. However, he still keeps the assumption that $\bar{\rho}$ is absolutely irreducible.

Aim

To explore big $R = \mathbb{T}$ theorems for reducible $\bar{\rho}$.

Setup

Suppose $\bar{\rho}:G_{\mathbb{Q},Np}\to \mathrm{GL}_2(\mathbb{F})$ is odd and reducible such that $\bar{\rho}=\bar{\chi}_1\oplus\bar{\chi}_2$ for some continuous characters $\bar{\chi}_1,\bar{\chi}_2:G_{\mathbb{Q},Np}\to\mathbb{F}^\times$. Let $\bar{\chi}=\bar{\chi}_1\bar{\chi}_2^{-1}$. Let N_0 be the Artin conductor of $\bar{\rho}$. Suppose $N_0\mid N$.

Note that $\bar{\rho}$ defines a maximal ideal $m_{\bar{\rho}}$ of $\mathbb{T}(N)$ and let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Aim

To explore big $R = \mathbb{T}$ theorems for reducible $\bar{\rho}$.

Setup

Suppose $\bar{\rho}:G_{\mathbb{Q},Np}\to \mathrm{GL}_2(\mathbb{F})$ is odd and reducible such that $\bar{\rho}=\bar{\chi}_1\oplus\bar{\chi}_2$ for some continuous characters $\bar{\chi}_1,\bar{\chi}_2:G_{\mathbb{Q},Np}\to\mathbb{F}^\times$. Let $\bar{\chi}=\bar{\chi}_1\bar{\chi}_2^{-1}$. Let N_0 be the Artin conductor of $\bar{\rho}$. Suppose $N_0\mid N$.

Note that $\bar{\rho}$ defines a maximal ideal $m_{\bar{\rho}}$ of $\mathbb{T}(N)$ and let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Aim

To explore big $R = \mathbb{T}$ theorems for reducible $\bar{\rho}$.

Setup

Suppose $\bar{\rho}: G_{\mathbb{Q},Np} \to \operatorname{GL}_2(\mathbb{F})$ is odd and reducible such that $\bar{\rho} = \bar{\chi}_1 \oplus \bar{\chi}_2$ for some continuous characters $\bar{\chi}_1, \bar{\chi}_2: G_{\mathbb{Q},Np} \to \mathbb{F}^{\times}$. Let $\bar{\chi} = \bar{\chi}_1 \bar{\chi}_2^{-1}$. Let N_0 be the Artin conductor of $\bar{\rho}$. Suppose $N_0 \mid N$.

Note that $\bar{\rho}$ defines a maximal ideal $m_{\bar{\rho}}$ of $\mathbb{T}(N)$ and let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Aim

To explore big $R = \mathbb{T}$ theorems for reducible $\bar{\rho}$.

Setup

Suppose $\bar{\rho}:G_{\mathbb{Q},Np}\to \mathrm{GL}_2(\mathbb{F})$ is odd and reducible such that $\bar{\rho}=\bar{\chi}_1\oplus\bar{\chi}_2$ for some continuous characters $\bar{\chi}_1,\bar{\chi}_2:G_{\mathbb{Q},Np}\to\mathbb{F}^\times$. Let $\bar{\chi}=\bar{\chi}_1\bar{\chi}_2^{-1}$. Let N_0 be the Artin conductor of $\bar{\rho}$. Suppose $N_0\mid N$.

Note that $\bar{\rho}$ defines a maximal ideal $m_{\bar{\rho}}$ of $\mathbb{T}(N)$ and let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Aim

To explore big $R = \mathbb{T}$ theorems for reducible $\bar{\rho}$.

Setup

Suppose $\bar{\rho}:G_{\mathbb{Q},Np}\to \mathrm{GL}_2(\mathbb{F})$ is odd and reducible such that $\bar{\rho}=\bar{\chi}_1\oplus\bar{\chi}_2$ for some continuous characters $\bar{\chi}_1,\bar{\chi}_2:G_{\mathbb{Q},Np}\to\mathbb{F}^\times$. Let $\bar{\chi}=\bar{\chi}_1\bar{\chi}_2^{-1}$. Let N_0 be the Artin conductor of $\bar{\rho}$. Suppose $N_0\mid N$.

Note that $\bar{\rho}$ defines a maximal ideal $m_{\bar{\rho}}$ of $\mathbb{T}(N)$ and let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Let $R^{\mathrm{pd}}_{\bar{\rho}}$ be the universal deformation ring of the pseudo-representation $(\mathrm{tr}(\bar{\rho}), \det(\bar{\rho})): G_{\mathbb{Q},Np} \to \mathbb{F}$ in the category \mathcal{C} of complete Noetherian local rings with residue field \mathbb{F} . So it interpolates all pseudo-representations which take values in objects of \mathcal{C} and lift

Aim

To explore big $R = \mathbb{T}$ theorems for reducible $\bar{\rho}$.

Setup

Suppose $\bar{\rho}:G_{\mathbb{Q},Np}\to \mathrm{GL}_2(\mathbb{F})$ is odd and reducible such that $\bar{\rho}=\bar{\chi}_1\oplus\bar{\chi}_2$ for some continuous characters $\bar{\chi}_1,\bar{\chi}_2:G_{\mathbb{Q},Np}\to\mathbb{F}^\times$. Let $\bar{\chi}=\bar{\chi}_1\bar{\chi}_2^{-1}$. Let N_0 be the Artin conductor of $\bar{\rho}$. Suppose $N_0\mid N$.

Note that $\bar{\rho}$ defines a maximal ideal $m_{\bar{\rho}}$ of $\mathbb{T}(N)$ and let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Aim

To explore big $R = \mathbb{T}$ theorems for reducible $\bar{\rho}$.

Setup

Suppose $\bar{\rho}:G_{\mathbb{Q},Np}\to \mathrm{GL}_2(\mathbb{F})$ is odd and reducible such that $\bar{\rho}=\bar{\chi}_1\oplus\bar{\chi}_2$ for some continuous characters $\bar{\chi}_1,\bar{\chi}_2:G_{\mathbb{Q},Np}\to\mathbb{F}^\times$. Let $\bar{\chi}=\bar{\chi}_1\bar{\chi}_2^{-1}$. Let N_0 be the Artin conductor of $\bar{\rho}$. Suppose $N_0\mid N$.

Note that $\bar{\rho}$ defines a maximal ideal $m_{\bar{\rho}}$ of $\mathbb{T}(N)$ and let $\mathbb{T}(N)_{\bar{\rho}}$ be the completion of $\mathbb{T}(N)$ at $m_{\bar{\rho}}$.

Lemma

There exists a pseudo-representation $(\tau_N, \delta_N): G_{\mathbb{Q}, Np} \to \mathbb{T}(N)_{\bar{\rho}}$ lifting $(\operatorname{tr}(\bar{\rho}), \operatorname{det}(\bar{\rho}))$ such that the morphism $\Phi: R^{\operatorname{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induced by it is surjective.

Theorem (D.)

- The morphism $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induces an isomorphism $(R^{\mathrm{pd}}_{\bar{\rho}})^{\mathrm{red}} \simeq \mathbb{T}(N)_{\bar{\rho}}$ of local complete intersection rings of Krull dimension 4.
- Moreover, if $1 \leq \dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},Np},\bar{\chi}^{-1})) \leq 3$, then the map $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism of local complete intersection rings of Krull dimension 4.

Lemma

There exists a pseudo-representation $(\tau_N, \delta_N): G_{\mathbb{Q}, Np} \to \mathbb{T}(N)_{\bar{\rho}}$ lifting $(\operatorname{tr}(\bar{\rho}), \operatorname{det}(\bar{\rho}))$ such that the morphism $\Phi: R^{\operatorname{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induced by it is surjective.

Theorem (D.)

Suppose we are in the setup above. Suppose $\bar{\chi}|_{G_{\mathbb{Q}_p}} \neq 1, \omega_p^{-1}|_{G_{\mathbb{Q}_p}}$, $\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},N_p},\bar{\chi})) = 1$ and $p \nmid \phi(N)$. Then:

 $(R_{\bar{\rho}}^{\mathrm{pd}})^{\mathrm{red}} \simeq \mathbb{T}(N)_{\bar{\rho}}$ of local complete intersection rings of Krull dimension A

• Moreover, if $1 \le \dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},Np}, \bar{\chi}^{-1})) \le 3$, then the map $\Phi: R_{\bar{p}}^{\mathrm{pd}} \to \mathbb{T}(N)_{\bar{p}}$ is an isomorphism of local complete intersection rings of Krull dimension 4

Lemma

There exists a pseudo-representation $(\tau_N, \delta_N): G_{\mathbb{Q}, Np} \to \mathbb{T}(N)_{\bar{\rho}}$ lifting $(\operatorname{tr}(\bar{\rho}), \operatorname{det}(\bar{\rho}))$ such that the morphism $\Phi: R^{\operatorname{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induced by it is surjective.

Theorem (D.)

- The morphism $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induces an isomorphism $(R^{\mathrm{pd}}_{\bar{\rho}})^{\mathrm{red}} \simeq \mathbb{T}(N)_{\bar{\rho}}$ of local complete intersection rings of Krull dimension 4.
- Moreover, if $1 \leq \dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},Np},\bar{\chi}^{-1})) \leq 3$, then the map $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism of local complete intersection rings of Krull dimension 4.

Lemma

There exists a pseudo-representation $(\tau_N, \delta_N): G_{\mathbb{Q}, Np} \to \mathbb{T}(N)_{\bar{\rho}}$ lifting $(\operatorname{tr}(\bar{\rho}), \operatorname{det}(\bar{\rho}))$ such that the morphism $\Phi: R^{\operatorname{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induced by it is surjective.

Theorem (D.)

- The morphism $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induces an isomorphism $(R^{\mathrm{pd}}_{\bar{\rho}})^{\mathrm{red}} \simeq \mathbb{T}(N)_{\bar{\rho}}$ of local complete intersection rings of Krull dimension 4.
- Moreover, if $1 \leq \dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},Np},\bar{\chi}^{-1})) \leq 3$, then the map $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism of local complete intersection rings of Krull dimension 4.

Lemma

There exists a pseudo-representation $(\tau_N, \delta_N): G_{\mathbb{Q}, Np} \to \mathbb{T}(N)_{\bar{\rho}}$ lifting $(\operatorname{tr}(\bar{\rho}), \operatorname{det}(\bar{\rho}))$ such that the morphism $\Phi: R^{\operatorname{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induced by it is surjective.

Theorem (D.)

- The morphism $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ induces an isomorphism $(R^{\mathrm{pd}}_{\bar{\rho}})^{\mathrm{red}} \simeq \mathbb{T}(N)_{\bar{\rho}}$ of local complete intersection rings of Krull dimension 4.
- Moreover, if $1 \leq \dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},Np},\bar{\chi}^{-1})) \leq 3$, then the map $\Phi: R^{\mathrm{pd}}_{\bar{\rho}} \to \mathbb{T}(N)_{\bar{\rho}}$ is an isomorphism of local complete intersection rings of Krull dimension 4.

Theorem (D.)

Let p be a regular prime and k_0 be an even integer such that $2 < k_0 < p-1$. Let ℓ_1, \dots, ℓ_r be primes such that

- $p \nmid \ell_i^2 1$,
- Either $p \mid \ell_i^{k_0} 1$ for all $1 \le i \le r$ or $p \mid \ell_i^{k_0 2} 1$ for all $1 \le i \le r$.

If k is an integer such that $k \equiv k_0 \pmod{p-1}$, then there exists a newform f of level $\Gamma_0(\ell_1 \cdots \ell_r)$ and weight k such that ρ_f lifts $1 \oplus \omega_p^{k_0-1}$.

For r = 1, the theorem is known, under less restrictive hypotheses, by work of Billerey–Menares. Their method is different from ours.

Theorem (D.)

Let p be a regular prime and k_0 be an even integer such that $2 < k_0 < p-1$. Let ℓ_1, \dots, ℓ_r be primes such that

- $p \nmid \ell_i^2 1$,
- Either $p \mid \ell_i^{k_0} 1$ for all $1 \le i \le r$ or $p \mid \ell_i^{k_0 2} 1$ for all $1 \le i \le r$.

If k is an integer such that $k \equiv k_0 \pmod{p-1}$, then there exists a newform f of level $\Gamma_0(\ell_1 \cdots \ell_r)$ and weight k such that ρ_f lifts $1 \oplus \omega_p^{k_0-1}$.

For r = 1, the theorem is known, under less restrictive hypotheses, by work of Billerey–Menares. Their method is different from ours.

Theorem (D.)

Let p be a regular prime and k_0 be an even integer such that $2 < k_0 < p-1$. Let ℓ_1, \dots, ℓ_r be primes such that

- $p \nmid \ell_i^2 1$,
- Either $p \mid \ell_i^{k_0} 1$ for all $1 \le i \le r$ or $p \mid \ell_i^{k_0-2} 1$ for all $1 \le i \le r$.

If k is an integer such that $k \equiv k_0 \pmod{p-1}$, then there exists a newform f of level $\Gamma_0(\ell_1 \cdots \ell_r)$ and weight k such that ρ_f lifts $1 \oplus \omega_p^{k_0-1}$.

For r = 1, the theorem is known, under less restrictive hypotheses, by work of Billerey–Menares. Their method is different from ours.

Theorem (D.)

Let p be a regular prime and k_0 be an even integer such that $2 < k_0 < p-1$. Let ℓ_1, \dots, ℓ_r be primes such that

- $p \nmid \ell_i^2 1$,
- Either $p \mid \ell_i^{k_0} 1$ for all $1 \le i \le r$ or $p \mid \ell_i^{k_0-2} 1$ for all $1 \le i \le r$.

If k is an integer such that $k \equiv k_0 \pmod{p-1}$, then there exists a newform f of level $\Gamma_0(\ell_1 \cdots \ell_r)$ and weight k such that ρ_f lifts $1 \oplus \omega_p^{k_0-1}$.

For r = 1, the theorem is known, under less restrictive hypotheses, by work of Billerey–Menares. Their method is different from ours.

Theorem (D.)

Let p be a regular prime and k_0 be an even integer such that $2 < k_0 < p-1$. Let ℓ_1, \dots, ℓ_r be primes such that

- $p \nmid \ell_i^2 1$,
- Either $p \mid \ell_i^{k_0} 1$ for all $1 \le i \le r$ or $p \mid \ell_i^{k_0-2} 1$ for all $1 \le i \le r$.

If k is an integer such that $k \equiv k_0 \pmod{p-1}$, then there exists a newform f of level $\Gamma_0(\ell_1 \cdots \ell_r)$ and weight k such that ρ_f lifts $1 \oplus \omega_p^{k_0-1}$.

For r = 1, the theorem is known, under less restrictive hypotheses, by work of Billerey–Menares. Their method is different from ours.

Theorem (D.)

Let p be a regular prime and k_0 be an even integer such that $2 < k_0 < p-1$. Let ℓ_1, \dots, ℓ_r be primes such that

- $p \nmid \ell_i^2 1$,
- Either $p \mid \ell_i^{k_0} 1$ for all $1 \le i \le r$ or $p \mid \ell_i^{k_0-2} 1$ for all $1 \le i \le r$.

If k is an integer such that $k \equiv k_0 \pmod{p-1}$, then there exists a newform f of level $\Gamma_0(\ell_1 \cdots \ell_r)$ and weight k such that ρ_f lifts $1 \oplus \omega_p^{k_0-1}$.

For r = 1, the theorem is known, under less restrictive hypotheses, by work of Billerey–Menares. Their method is different from ours.

Thank You!