Здесь будет титульник, листай ниже

# СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ                   | 5  |
|---------------------------------------|----|
| 1.1 Описание входных данных           | е  |
| 1.2 Описание выходных данных          | 7  |
| 2 МЕТОД РЕШЕНИЯ                       | 8  |
| 3 ОПИСАНИЕ АЛГОРИТМОВ                 | 10 |
| 3.1 Алгоритм конструктора класса obj  | 10 |
| 3.2 Алгоритм деструктора класса obj   | 10 |
| 3.3 Алгоритм метода input класса obj  | 10 |
| 3.4 Алгоритм метода sum класса obj    | 11 |
| 3.5 Алгоритм метода mult класса obj   | 12 |
| 3.6 Алгоритм метода output класса obj | 13 |
| 3.7 Алгоритм конструктора класса obj  | 13 |
| 3.8 Алгоритм конструктора класса obj  | 14 |
| 3.9 Алгоритм функции main             | 14 |
| 3.10 Алгоритм функции func            | 15 |
| 4 БЛОК-СХЕМЫ АЛГОРИТМОВ               | 16 |
| 5 КОД ПРОГРАММЫ                       | 22 |
| 5.1 Файл main.cpp                     | 22 |
| 5.2 Файл obj.cpp                      | 22 |
| 5.3 Файл obj.h                        | 24 |
| 6 ТЕСТИРОВАНИЕ                        | 25 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ      | 26 |

### 1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, в начале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. По значению параметра определяется размерность целочисленного массива из закрытой области. В начале работы выдает сообщение;
- Метод деструктор, который выдает сообщение что он отработал;
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение.

Разработать функцию, которая в качестве параметра получает объект по значению. Функция вызывается метод 2, далее выводит сумму элементов массива

с новой строки.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание объекта с аргументом размерности массива.
- 5. Вызов метода для ввода значений элементов массива.
- 6. Вызов функции передача в качестве аргумента объекта.
- 7. Вызов метода 1 от имени объекта.
- 8. Вывод суммы элементов массива объекта с новой строки.

Разработать конструктор копии объекта для корректного выполнения вычислений. В начале работы конструктор копии выдает сообщение с новой строки.

#### 1.1 Описание входных данных

```
Первая строка:
«целое число»

Вторая строка:
«целое число» «целое число» . . . .

Пример:
```

1 2 3 4 5 6 7 8

#### 1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копирования в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

#### Пример вывода:

8 Constructor set Copy constructor 120 Destructor 56 Destructor

### 2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект object класса obj предназначен для основной работы с методами класса;
- объект ob\_local класса obj предназначен для работы с копией объекта;
- функция main для основная функция программы;
- функция func для функция для создания копии объекта и работы с ней;
- cin объект стандартного потока ввода с клавиатуры;
- cout объект стандартного потока вывода на экран;
- if..else условный оператор;
- for оператор цикла со счётчиком;
- new динамическое выделение памяти;
- delete динамическое очищение памяти.

#### Класс obj:

- свойства/поля:
  - о поле размерность массива объекта:
    - наименование n;
    - тип int;
    - модификатор доступа private;
  - о поле массив объекта:
    - наименование matrix;
    - тип int\*;
    - модификатор доступа private;
- функционал:
  - о метод obj конструктор по умолчанию;
  - о метод obj параметризированный конструктор;

- о метод obj конструктор копии объекта;
- о метод ~obj деструктор;
- о метод input ввод значений в массив объекта;
- о метод sum вычисляет сумму пар элементов объекта, записывает результат в первый элемент пары, повторяет эти действия со следующими парами, затем вычисляет сумму всего массива и возвращает его значение;
- о метод mult вычисляет произведение пар элементов объекта, записывает результат в первый элемент пары, повторяет эти действия со следующими парами, затем вычисляет произведение всего массива и возвращает его значение;
- о метод output вычисляет сумму всех элементов массива и возвращает результат.

### 3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

#### 3.1 Алгоритм конструктора класса obj

Функционал: конструктор по умолчанию.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса obj

| ľ | о Предикат | Действия                                          | No       |
|---|------------|---------------------------------------------------|----------|
|   |            |                                                   | перехода |
| 1 |            | вывод на экран сообщения: "\nDefault constructor" | Ø        |

#### 3.2 Алгоритм деструктора класса obj

Функционал: деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса obj

| N₂ | Предикат | Действия                                        | No       |
|----|----------|-------------------------------------------------|----------|
|    |          |                                                 | перехода |
| 1  |          | вывод на экран сообщения: "\nDestructor"        | 2        |
| 2  |          | динамическое очищение памяти от массива объекта | Ø        |

### 3.3 Алгоритм метода input класса obj

Функционал: ввод значений в массив объекта.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода input класса obj

| N₂ | Предикат  | Действия                                               | No       |
|----|-----------|--------------------------------------------------------|----------|
|    |           |                                                        | перехода |
| 1  |           | инициализация переменной і типа int значением 0        | 2        |
| 2  | $i \le n$ | ввод значения элемента массива объекта с<br>индексом і | 3        |
|    |           |                                                        | Ø        |
| 3  |           | увеличение значения і на 1                             | 2        |

### 3.4 Алгоритм метода sum класса obj

Функционал: вычисляет сумму пар элементов объекта, записывает результат в первый элемент пары, повторяет эти действия со следующими парами, затем вычисляет сумму всего массива и возвращает его значение.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода sum класса obj

| No | Предикат | Действия                                        | No       |
|----|----------|-------------------------------------------------|----------|
|    |          |                                                 | перехода |
| 1  |          | инициализация переменной і типа int значением 0 | 2        |
| 2  | i < n-1  | увеличение значения элемента массива объекта с  | 3        |
|    |          | индексом і на значение элемента массива объекта |          |
|    |          | с индексом i+1                                  |          |
|    |          | инициализация переменной sum типа int           | 4        |
|    |          | значением 0                                     |          |
| 3  |          | увеличение значения переменной і на 2           | 2        |

| N₂ | Предикат | Действия                                       | No       |
|----|----------|------------------------------------------------|----------|
|    |          |                                                | перехода |
| 4  |          | присваивание переменной і значение 0           | 5        |
| 5  | i < n    | увеличение значения переменной sum на значение | 6        |
|    |          | элемента массива объекта с индексом і          |          |
|    |          | возврат значения sum                           | Ø        |
| 6  |          | увеличение значения переменной і на 1          | 5        |

### 3.5 Алгоритм метода mult класса obj

Функционал: вычисляет произведение пар элементов объекта, записывает результат в первый элемент пары, повторяет эти действия со следующими парами, затем вычисляет произведение всего массива и возвращает его значение.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода mult класса obj

| N₂ | Предикат | Действия                                        | N₂       |
|----|----------|-------------------------------------------------|----------|
|    |          |                                                 | перехода |
| 1  |          | инициализация переменной і типа int значением 0 | 2        |
| 2  | i < n-1  | умножение значения элемента массива объекта с   | 3        |
|    |          | индексом і на значение элемента массива объекта |          |
|    |          | с индексом i+1                                  |          |
|    |          | инициализация переменной mult типа int          | 4        |
|    |          | значением 1                                     |          |
| 3  |          | увеличение значения переменной і на 2           | 2        |
| 4  |          | присваивание переменной і значение 0            | 5        |
| 5  | i < n    | умножение значения переменной mult на значение  | 6        |
|    |          | элемента массива объекта с индексом і           |          |
|    |          | возврат значения mult                           | Ø        |
| 6  |          | увеличение значения переменной і на 1           | 5        |

#### 3.6 Алгоритм метода output класса obj

Функционал: вычисляет сумму всех элементов массива и возвращает результат.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода output класса obj

| No | Предикат | Действия                                        | No       |
|----|----------|-------------------------------------------------|----------|
|    |          |                                                 | перехода |
| 1  |          | инициализация переменной sum типа int           | 2        |
|    |          | значением 0                                     |          |
| 2  |          | инициализация переменной і типа int значением 0 | 3        |
| 3  | i < n    | увеличение значения переменной sum на значение  | 4        |
|    |          | элемента массива объекта с индексом і           |          |
|    |          | возврат значение переменной sum                 | Ø        |
| 4  |          | увеличение значение переменной і на 1           | 3        |

### 3.7 Алгоритм конструктора класса оbj

Функционал: параметризированный конструктор.

Параметры: int n.

Алгоритм конструктора представлен в таблице 7.

Таблица 7 – Алгоритм конструктора класса obj

| N₂ | Предикат | Действия                                                         | No       |
|----|----------|------------------------------------------------------------------|----------|
|    |          |                                                                  | перехода |
| 1  |          | вывод на экран сообщения: "\nConstructor set"                    | 2        |
| 2  |          | запись в поле размерности объекта значение полученного параметра | 3        |
| 3  |          | создание динамической матрицы размерности параметра              | Ø        |

### 3.8 Алгоритм конструктора класса оbj

Функционал: конструктор копии.

Параметры: const obj & ob.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса obj

| N₂ | Предикат | Действия                                        | No       |
|----|----------|-------------------------------------------------|----------|
|    |          |                                                 | перехода |
| 1  |          | вывод на экран сообщения: "\nCopy constructor"  | 2        |
| 2  |          | присваивание полю размерности массива копии     | 3        |
|    |          | объекта значение поля размерности массива       |          |
|    |          | передаваемого объекта                           |          |
| 3  |          | динамическое выделение памяти под массив        | 4        |
|    |          | копии передаваемого объекта                     |          |
| 4  |          | инициализация переменной і типа int значением 0 | 5        |
| 5  | i < n    | присваивание элементу массива копии объекта с   | 6        |
|    |          | индексом і значение элемента массива            |          |
|    |          | передаваемого объекта с индексом і              |          |
|    |          |                                                 | Ø        |
| 6  |          | увеличение значения переменной і на 1           | 5        |

### 3.9 Алгоритм функции main

Функционал: основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 9.

Таблица 9 – Алгоритм функции таіп

| N₂ | Предикат            | Действия                                       | N₂       |
|----|---------------------|------------------------------------------------|----------|
|    |                     |                                                | перехода |
| 1  |                     | объявление переменной n типа int               | 2        |
| 2  |                     | ввод значения переменной п                     | 3        |
| 3  | n > 2 && n % 2 == 0 | вывод на экран значение переменной п           | 4        |
|    |                     | вывод на экран сообщения n "?"                 | 10       |
| 4  |                     | объявление объекта object класса obj с помощью | 5        |
|    |                     | параметризированного конструктора с аргументом |          |
|    |                     | n                                              |          |
| 5  |                     | вызов метода input объекта object              | 6        |
| 6  |                     | создание копии объекта object с помощью        | 7        |
|    |                     | функции func и конструктора копии объекта      |          |
| 7  |                     | вызов метода sum объекта object                | 8        |
| 8  |                     | вывод на экран перехода на новую строку        | 9        |
| 9  |                     | вызов метода output объекта object             | 10       |
| 10 |                     | возврат значения 0                             | Ø        |

# 3.10 Алгоритм функции func

Функционал: работа с копией объекта.

Параметры: obj ob\_local.

Возвращаемое значение: void.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции func

| N₂ | Предикат | Действия                                | No       |
|----|----------|-----------------------------------------|----------|
|    |          |                                         | перехода |
| 1  |          | вызов метода mult объекта ob_local      | 2        |
| 2  |          | вывод на экран перехода на новую строку | 3        |
| 3  |          | вызов метода output объекта ob_local    | Ø        |

# 4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-6.





Рисунок 2 – Блок-схема алгоритма



Рисунок 3 – Блок-схема алгоритма



Рисунок 4 – Блок-схема алгоритма



Рисунок 5 – Блок-схема алгоритма



Рисунок 6 – Блок-схема алгоритма

### 5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

#### 5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "obj.h"
void func(obj ob_local)
{
  ob_local.mult();
  std::cout << std::endl << ob_local.output();</pre>
int main()
{
  int n;
  std::cin >> n;
  if (n > 2 \&\& n \% 2 == 0)
     std::cout << n;
     obj object(n);
     object.input();
     func (object);
      object.sum();
     std::cout << std::endl << object.output();</pre>
  }
  else
      std::cout << n << '?';
  return(0);
}
```

### 5.2 Файл обј.срр

Листинг 2 – obj.cpp

```
#include "obj.h"
```

```
#include <iostream>
obj::obj()
{
  std::cout << "\nDefault constructor";</pre>
obj::obj(int n)
  std::cout << "\nConstructor set";</pre>
  this -> n = n;
  matrix = new int[n];
obj::obj(const obj & ob)
  std::cout << "\nCopy constructor";</pre>
  n = ob.n;
  matrix = new int [n];
  for (int i = 0; i < n; i++)
     matrix[i] = ob.matrix[i];
obj::~obj()
  std::cout << "\nDestructor";</pre>
  delete[] matrix;
void obj::input()
  for (int i = 0; i < n; i++)
     std::cin >> matrix[i];
int obj::sum()
  for (int i = 0; i < n-1; i+=2)
     matrix[i] += matrix[i+1];
  int sum = 0;
  for (int i = 0; i < n; i++)
     sum += matrix[i];
  return sum;
int obj::mult()
  for (int i = 0; i < n-1; i+=2)
     matrix[i] *= matrix[i+1];
  int mult = 1;
  for (int i = 0; i < n; i++)
     mult *= matrix[i];
  return mult;
int obj::output()
  int sum = 0;
  for (int i = 0; i < n; i++)
     sum += matrix[i];
  return sum;
}
```

# 5.3 Файл obj.h

Листинг 3 – obj.h

```
#ifndef __OBJ__H
#define __OBJ__H
class obj
private:
   int n;
  int *matrix = nullptr;
public:
  obj();
obj(int n);
  obj(const obj & ob);
  ~obj();
  void input();
  int sum();
  int mult();
  int output();
};
#endif
```

# 6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

| Входные данные       | Ожидаемые выходные<br>данные                                                        | Фактические выходные<br>данные                                                      |
|----------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 2                    | 2?                                                                                  | 2?                                                                                  |
| 7                    | 7?                                                                                  | 7?                                                                                  |
| 8<br>1 2 3 4 5 6 7 8 | 8 Constructor set Copy constructor 120 Destructor 56 Destructor                     | 8 Constructor set Copy constructor 120 Destructor 56 Destructor                     |
| 4<br>10 23 62 71     | 4<br>Constructor set<br>Copy constructor<br>4726<br>Destructor<br>260<br>Destructor | 4<br>Constructor set<br>Copy constructor<br>4726<br>Destructor<br>260<br>Destructor |

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe\_posobie\_dlya\_laboratornyh\_ra bot\_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye\_k\_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).