| Nome: Eduardo Hurrique de Almeido Izidorio Matricula: 2020000,315 Disciplina: Geometria Amalitica IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Desença referente ao dio 04/08/21  DAche il de morma v5, ortegonal a (2,1,-1), tal que (il, (4,11), (0,1,-1)) seja LD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $  \vec{u}   = \sqrt{5}$ $  \vec{u}   = \sqrt{5}$ $  (a_1b_1C)   = \sqrt{5}$ $\sqrt{a_2^2 + b_2^2 + c^2} = \sqrt{5}$ $ (a_1b_1C) \cdot (a_1b_1C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{\sqrt{a+b+c} = \sqrt{s}}{a^2 + b^2 + c^2 = 5}  \text{(i)}$ $A = \{\vec{u}_i(1,1,1); (0,1,-1)\} = \{(a,b,c); (1,1,1); (0,1,-1)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \frac{dt}{dt} = \frac{a \cdot b \cdot c}{a \cdot b \cdot c} = \frac{(4.64) - 1.1}{a - (4.64) - 0.1} + \frac{(4.64) - 0.1}{a - (4.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Indaude C: C=2a $2a+C^2=5$ $2a-C=0$ (V) $a^2+4a^2=5$ ·leva $a=-1 \Rightarrow C=-2$ , $5a^2=5$ ·leva $a=1 \Rightarrow C=2$ , $a^2=1$ lego temos duas assibilidades para vilos $a^2=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Q = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) $ and $Q = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac$ |