ELEC 302-81 Lab 3 Non-Ideal Transformer Properties

February 11, 2013

Date Performed: February 4, 2013

Partners: Rawley Dent Charles Pittman

Instructor: Dr. Weatherford

1 Purpose of Experiment

In this experiment, the non-ideal properties of a transformer were examined. The performance of the transformer at the Lab-Volt station was first analyzed by measuring the primary and secondary: voltages, currents, and powers. Then the transformer was subjected to an open-circuit test and a short-circuit test in order to generate the equivalent circuit components. These results were then compared to the original performance specifications to show the transformer's non-ideal properties.

2 Procedure

2.1 EMS Workstation Set-up

At the Lab-Volt EMS workstation, a Fluke multi-meter was used to measure the DC resistance of the transformer windings. These values are recorded in Table 1. The DAI 24V supply was turned on, and the DAI USB connector was connected between the EMS workstation and the PC. On the LVDAM EMS application software, the metering windows for E_1 , E_2 , I_1 , and I_2 were opened, set to continuous refresh.

2.2 Transformer Performance

With the main power switch set off and the voltage control knob fully CCW, the voltmeter selector switch was set to position 4–N. The circuit represented by Figure 1 was constructed with the secondary voltmeter E_2 open-circuited at first to simulate an infinite load. The main power supply was turned on, and the supply voltage was adjusted to 120V. The primary voltage E_1 , primary current I_1 , input power P_1 , secondary voltage E_2 , secondary current I_2 , and output power P_2 were then measured for each of the four different loads listed in Table 2. Prior to changing each load, the voltage supply knob was set fully CCW and the main power switch to off.

2.3 Open Circuit Test

The circuit shown in Figure 2 was then constructed. The main power switch was turned on and the voltage control knob was adjusted to 120V. The values of the primary voltage E_1 , primary current I_1 , and input power P_1 were measured. These values were recorded in Table 3. The main power switch was turned off and the voltage control knob fully CCW.

2.4 Short Circuit Test

The circuit shown in Figure 3 was then constructed. It was noted that I_2 short circuited the secondary windings 5-6. Thus the voltage supply knob was slowly adjusted until a secondary current of 0.4A was obtained. The primary voltage,

primary current, input power, and the secondary current were measured. These values were recorded in Table 4. The main power switch was turned off and the voltage control knob fully CCW.

3 Results

3.1 Transformer Performance

Winding	Resistance	
#	Ω	
1–2	7.9	
5-6	7.9	

Table 1: Winding Resistances

	Primary		Input Secondary		Output	
Load	$\mathbf{Voltage}$	Current	Power	$\mathbf{Voltage}$	Current	Power
$ m Z_L \Omega$	$E_1 V$	I_1 A	$P_1 W$	$E_2 V$	I_2 A	P_2 W
∞	119.9	0.027	2.453	119.0	0.003	0
300	119.3	0.388	46.01	112.4	0.368	41.35
300 + j300	119.5	0.270	23.63	112.4	0.244	20.20
300 - j300	119.5	0.281	27.30	120.0	0.276	23.52

Table 2: Primary and secondary voltages and currents

3.2 Open Circuit Test

Prin	Input	
$\mathbf{Voltage}$	Current	Power
$E_1 V$	I_1 A	P_2 W
119.7	0.027	2.44

Table 3: Open Circuit

3.3 Short Circuit Test

Primary		Input	Secondary
Voltage	Current	Power	Current
$E_1 V$	I_1 A	$P_1 W$	I_2 A
11.7	0.403	2.607	0.398

Table 4: Data for Fig 3

	Load Ω	$\mathbf{V}\mathbf{R}$	$\mathbf{V}\mathbf{R}$	Percent
		Part 1	R_{eq}	Difference
Η.	∞	0.00	0.00	0.00
11	300	5.97	6.39	7.0
	300 + j300	6.16	6.69	8.6
	300 - j300	-0.92	-1.25	35.9

Table 7: Transformer Voltage Regulation (VR)

4 Analysis

4.1 Transformer Equivalent Circuit Component Values

$$egin{array}{ccccccc} {\bf R}_C & {\bf X}_M & {\bf R}_{eq} & {\bf X}_{eq} \\ \Omega & \Omega & \Omega & \Omega \\ \hline 5.85 k & 6.80 k & 16.05 & 24.19 \\ \hline \end{array}$$

Table 5: Equivalent Transformer Components

Equivalent cicuit components found from the following methods: the admittance $Y_E = \frac{I_{OC}}{V_{OC}} \angle -\theta = \frac{1}{R_C} - j\frac{1}{X_M}$ the series impedance $Z_{SE} = \frac{V_{SC}}{I_{SC}} \angle \theta = R_e q + j X_e q$

4.2 Transformer Losses

		Losses		
	Load Ω	$\mathbf{P_{Cu}} \ \mathrm{W}$	$\mathbf{P_{core}} \ \mathbf{W}$	
•	∞	0.0014	2.453	
	300	2.162	2.433	
	300 + j300	0.956	2.441	
	300 - j300	1.223	2.437	

Table 6: Copper and Core Losses

Equations Used: $P_{Cu} = I_S^2 * R_{eq} \ P_{core} = (V_P/a)^2 * 1/R_C$

4.3 Voltage Regulation VR and Efficiency Comparison

Load Ω	η	η	Percent
	Part 1	R_{eq}	Difference
∞	0.00	0.00	0.00
300	89.72	87.41	2.6
300 + j300	85.57	86.02	0.5
300 - j300	86.11	86.93	0.9

Table 8: Transformer Efficiencies (η)

Equations Used:

$$\begin{split} VR &= \frac{V_P - V_S}{V_S} * 100\% \\ V_P &= V_S + R_{eq} * I_S + \text{j} X_{eq} * I_S \\ \eta &= \frac{P_{out}}{P_{\text{in}}} * 100\% \\ \end{split}$$
 Percent Diff =
$$\frac{\text{difference}}{\text{average}} * 100\%$$

5 Conclusions

By measuring the resistance of each transformer winding and not getting any extremely high resistance readings similar to an open circuit, it was determined that the windings were intact and had integrity.

In Table ??, the component values for the transformer equivalent circuit are listed. These values were needed to accurately model the equivalent circuit due to the imperfections in real transformers. The resistance R_{eq} was made up of $R_P + R_S$. R_P was a resistance in the primary circuit that represented the resistive losses in the primary windings of the transformer core. Similarly, R_S was a resistance in the secondary circuit that represented the resistive losses in the secondary windings of the transformer core. The reactance X_{eq} was made up of $X_P + X_S$. These reactances represented the leakage inductances of the primary and secondary coils. The core excitation losses were modeled with a resistance R_C in parallel with a reactance X_M .

In Table 6 the copper and core excitation losses for each load are listed. These losses were accounted for by the component values for the equivalent circuit found in Table ??.

In Table ??, the transformer voltage regulation and efficiencies for the transformer modeled in Part 1 and the equivalent circuit are compared. On average small percent differences were obtained, thus the equivalent circuit constructed was an accurate model of the transformer in Part 1.

Circuits Tested

Figure 1: Single Phase Transformer Circuit for part one

Figure 2: Single Phase Transformer Circuit for part two (open circuit test)

Figure 3: Single Phase Transformer Circuit for part two (short circuit test)