

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 2° semestre de 2008.

-	τ	
	ama	
1.4	will	

Assinatura:

Observações:

- 1. A prova é acompanhada de uma tabela da distribuição Normal.
- 2. É permitido o uso de máquina de calcular.
- 3. Todos os cálculos têm que ser mostrados passo a passo para a questão ser considerada
- 4. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 5. Você pode usar lápis para responder as questões.
- 6. Ao final da prova devolva as folhas de questões e as de respostas.
- 7. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

1 - Primeira questão (2,0 pontos)

Uma distribuição de probabilidade é dada da seguinte maneira: para x menor que zero ela é nula; para x maior ou igual a zero e menor que um meio ela é expressada por x + 1; para x maior ou igual a um meio e menor que três quartos ela é igual a um e meio; para x igual ou maior que três quartos ela é nula.

a) Calcule o valor médio da distribuição (0,5 pontos);

Resposta: Vamos usar a definição de média para distribuições contínuas dentro do intervalo para o qual a função de probabilidade é não nula.

$$\mu = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1/2} x (x+1) dx + \int_{1/2}^{3/4} x 1,5 dx = \left(\frac{x^3}{3} + \frac{x^2}{2}\right) \Big|_{0}^{1/2} + 1,5 \frac{x^2}{2} \Big|_{1/2}^{3/4} = \frac{1}{6} + \frac{15}{64} \approx 0,401$$

b) Calcule a variância da distribuição (1,0 pontos);

Resposta: Agora passamos para a definição de variância que resulta em

$$\sigma^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1/2} x^{2} (x+1) dx + \int_{1/2}^{3/4} x^{2} 1,5 dx = \left(\frac{x^{4}}{4} + \frac{x^{3}}{3}\right) \Big|_{0}^{1/2} + 1,5 \frac{x^{3}}{3} \Big|_{1/2}^{3/4}$$

$$\sigma^{2} = \frac{1}{64} + \frac{1}{24} + \frac{3}{128} \approx 0,080$$

c) Calcule a moda desta distribuição (0,5 pontos).

Resposta: Pela definição de moda, vemos que o valor máximo da distribuição está nos valores de x no intervalo [1/2, 3/4]. Logo, qualquer valor neste intervalo é moda da distribuição.

2 – Segunda questão (2,0) pontos

Foi sorteada uma amostra de 18 postos de saúde da rede pública em uma determinada cidade e anotado o número de casos de dengue em cada uma delas no mês de setembro. Os resultados foram: 10, 8, 5, 4, 3, 7, 1, 11, 3, 6, 6, 7, 3, 4, 8, 9, 5, 5. Deseja-se estimar o número médio de casos e sua variância para apoio à população devido ao início da época chuvosa. Faça uma estimativa da média e da variância (1,0 ponto). Baseado nestes valores, calcule o intervalo de confiança com coeficiente de confiança igual a 95% (1,0 ponto).

Resposta: Calculemos a média e variância amostrais amostrais usando os seguintes estimadores:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
 e $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} - n \bar{X}^{2}$

Para os dados apresentados teremos

$$\bar{X} = \frac{10+8+5+4+3+7+1+11+3+6+6+7+3+4+8+9+5+5}{18} = \frac{105}{18} = 5,833$$

$$\sum_{1}^{18} x_{i}^{2} = 10^{2} + 8^{2} + 5^{2} + 4^{2} + 3^{2} + 7^{2} + 1^{2} + 11^{2} + 3^{2} + 6^{2} + 6^{2} + 7^{2} + 3^{2} + 4^{2} + 8^{2} + 9^{2} + 5^{2} + 5^{2} = 735$$

$$S^{2} = \frac{1}{17} (735 - 18 \times 5,833^{2}) \approx \frac{122,57}{17} \approx 7,210$$

Temos que o intervalo de confiança é dado por

$$IC(\mu, \gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$$

Para os dados que temos do problema teremos

$$\frac{\sigma^2}{n} = \frac{7,210}{18} = 0,405 \Rightarrow \frac{\sigma}{\sqrt{n}} = 0,633$$
 e $z_{y/2} = z_{0,475} = 1,96$

Assim, teremos para o intervalo de confiança

$$IC(\mu, \gamma) = [5.833 - 1.96 \times 0.633; 5.833 + 1.96 \times 0.633] = [4.592; 3.200]$$

3 – Terceira questão (2,0 pontos)

Uma amostra de 12 observações de uma variável aleatória Normal forneceu média de 5,5 e variância amostral 4. Deseja-se testar, ao nível de significância de 5%, se a média na população é igual ou é maior que 5,7 (1,0 ponto). Qual é a conclusão? (1,0 ponto).

Resposta: Faremos um teste de hipótese unilateral. Aqui as hipóteses são H_0 : μ <5,7 versus H_a : μ ≥5,7 .

Para

$$z_c = \frac{x_c - 5.5}{\sqrt{4/12}} = (x_c - 5.5)\sqrt{3}$$
 ou $x_c = \frac{z_c}{\sqrt{3}} + 5.5$

A região crítica é dada por

$$RC = |x \in \mathbb{R}: x > x_c|$$

Para $\alpha = 0.05$ teremos $0.05 = P(Z > z_c)$

Assim, temos que $z_c=1.64$ e que nos leva à $x_c=6.447$ e então a região crítica será dada por

$$RC = [x \in \mathbb{R}: x > 6,447]$$

Por este resultado rejeitamos a hipótese H_0 .

4 – Quarta questão (2,0 pontos)

Uma fábrica de cabos de nylon testava uma amostra de seu produto quanto à resistência. Numa máquina um pedaço de cabo de 2 metros era tracionada até o rompimento. A distância do ponto de rompimento do cabo à suas extremidades era anotada. Queremos saber qual a probabilidade do cabo se romper nos primeiros 35 centímetros. Suponha que a distribuição seja uniforme.

Resposta: Como a a distribuição é uniforme e o comprimento dos cabos de teste é de dois metros, a distribuição terá a forma

$$f(x) = \frac{1}{b-a} = \frac{1}{2-0} = \frac{1}{2}; 0 \le x \le 2$$

e valerá zero fora deste intervalo. A probabilidade nos primeiros 35 cm = 0,35 m será a área compreendida neste intervalo, ou seja,

$$P(X \in [0;0,35]) = \int_{0}^{0,35} \frac{1}{2} dx = \frac{x}{2} \Big|_{0}^{0,35} = \frac{0,35}{2} = 0,175$$

ou seja, 17,5%.

5 – Quinta questão (2,0 pontos)

Uma equipe médica media o comprometimento nos reflexos de pacientes que tomavam um novo medicamento anti-alérgico. Colocaram 12 pacientes diante de um jogo de computador que simulava uma corrida de fórmula 1. A média do tempo de reação de cada paciente foram: 0,35; 0,42; 0,51; 0,38; 0,41; 0,40; 0,34; 0,38; 0,34; 0,50; 0,48; 0,43. Num outro experimento sem a droga o tempo de reação teve como média 0,39 e desvio padrão 0,12. Faça teste de hipóteses e calcule a região crítica(1,0 ponto). Baseado nesta informação podemos dizer que o novo medicamento afeta os reflexos dos pacientes? Justifique (1,0 ponto).

Resposta: Aqui temos um teste de hipótese bilateral da forma H_0 : μ =0,39 *versus* H_a : μ ≠0,39 .

A região crítica será dada por

$$RC = |x \in \mathbb{R}: x < x_{c1} \text{ ou } x > x_{c2}|$$

e os valores para

$$z_{c1} = \frac{x_{cj} - 0.39}{0.12 / \sqrt{12}} = (x_{cj} - 0.39) 28.867$$
 j = 1, 2.

Como não foi dado o nível de significância basta chegar à este resultado.

Tabela da distribuição Normal $N(0,\!1)$

Z _c	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,035
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,075
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,114
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,151
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,187
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,222
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,254
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,285
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,313
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,338
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,362
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,383
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,401
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,417
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,431
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,444
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,454
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,463
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,470
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,476
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,481
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,485
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,489
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,491
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,493
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,495
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,496
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,497
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,498
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,498
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,499
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,499
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,499
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,499

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.