CDS Spread

核心思想

- 无套利原则
 - o 等式:支出和流出**现金流**等价:可以是折现 PV 或者复利 FV。
 - 概率、时间、数量、折现。
- 注意
 - o 折现或者复利法结果不一定一样,主要是RR的定义。
 - o 要判断 spread 是如何定义的。
 - o 要注意 RR 是如何定义的。

一年折现法,教材

- 假定未来收到1块钱
- 考虑违约和回收
 - $\circ (1 PD) \times 1 + PD \times RR = (1 PD) \times 1 + PD \times RR \times 1$
 - \circ = 1 PD + PD × RR = 1 PD × (1 RR) = 1 PD × LGD = 1 EL
 - o 注意: 回收的 recover rate 是基于未来值(可能是本金加利息)的
 - o 折现到现在是 $PV = \frac{1-EL}{1+R_f}$
- 补偿风险,加上风险溢价,未来收到1块,现值是

$$O PV = \frac{1}{1 + YTM}$$

• 等式

$$0 \quad \frac{1}{1 + YTM} = \frac{1 - EL}{1 + R_f} \to 1 + YTM = \frac{1 + R_f}{1 - EL} \to YTM = \frac{R_f + EL}{1 - EL}$$

• Spread

$$z = YTM - R_f = \frac{EL}{1 + YTM}$$

$$z = YTM - R_f = \frac{R_f + EL}{1 - EL} = \frac{R_f \times EL + EL}{1 - EL}$$

一年复利法,考题

- 假定现值是1块
- 无风险时
 - o 按照自然利率复利 $FV = 1 + R_f$
- 有风险时
 - 理论收入是 1 + YTM, 考虑到违约后是

• FV =
$$(1 - PD) \times (1 + YTM) + PD \times RR$$

= $(1 - PD) \times (1 + YTM) + PD \times RR \times 1$

- o 注意: 回收的 recover rate 是基于现值(本金)的
- 等式

$$\circ 1 + R_f = (1 - PD) \times (1 + YTM) + PD \times RR$$

$$o \rightarrow 1 + R_f = 1 - PD + YTM \times (1 - PD) + PD \times RR$$

$$\circ \to R_f = \text{YTM} \times (1 - \text{PD}) - \text{PD} \times \text{LGD} = \text{YTM} \times (1 - \text{PD}) - \text{EL}$$

$$\bigcirc \rightarrow YTM = \frac{R_f + EL}{1 - RD}$$

spread

$$o \quad z = YTM - R_f = \frac{R_f \times PD + EL}{1 - PD}$$

CDS spread

- 2种
- 第一是支付的 spread, 钱
 - o PD 增加, CDS 价值增加
 - 相关性增加,价值降低。
 - Higher PD, higher CDS, but more WWR.
 - The higher the correlation risk, the lower the CDS spread s.
 - o 如果 r=1, 价值为 0。
 - o 相关性增加,价值不是单增的:有时增加、有时减少
 - 相关性从-1 到-0.4, 价值增加 slightly
- 第二是 bond 的 spread premium YTM-rf

一年复利法,考虑 CDS seller 的违约

- 假定现值是1块
- 假定
 - o 按照自然利率复利 $FV = 1 + R_f$
 - o P_b is the default probability of bond
 - o P_s is the default probability of CDS seller
 - o P_{bs} is the joint default probability of bond and CDS

o
$$\rho$$
 is the correlation between Bond and CDS seller
$$\rho = \frac{P_{bs} - P_b \times P_s}{\sigma_b \times \sigma_s} \rightarrow P_{bs} = \frac{P_b}{\rho} \times \frac{P_s}{\rho} + \rho \times \sigma_b \times \sigma_s$$

- 不考虑 CDS seller 违约, 理论收入是 $1 + R_f + z$
 - o $FV = (1 P_b) \times (1 + R_f + z) + P_b \times RR$
- 考虑 CDS seller 违约,理论收入是 $1 + R_f + z'$

o
$$FV = (1 - P_b) \times (1 + R_f + z') + (P_b - P_{bs}) \times RR + P_{bs} \times 0$$

- P_{bs} both bond and CDS seller default, get **zero**
- P_b P_{bs} is the probability that bond default but CDS seller does not default -> recovery RR
- 让上面2个公式相等

$$(1 - P_b) \times (1 + R_f + z) + P_b \times RR = (1 - P_b) \times (1 + R_f + z') + (P_b - P_{bs}) \times RR$$

$$0 \rightarrow (1 - P_b) \times (1 + R_f + z) + P_{bs} \times RR = (1 - P_b) \times (1 + R_f + z')$$

$$0 \rightarrow z' = z + \frac{P_{bs} \times RR}{1 - P_b} = z + \frac{P_b \times P_s \times RR}{1 - P_b} + \rho \times \frac{\sigma_b \times \sigma_s \times RR}{1 - P_b}$$

$$0 \rightarrow z' = z + \frac{P_{bs} \times RR}{1 - P_b} = z + \frac{P_b \times P_s \times RR}{1 - P_b} + \rho \times \frac{\sigma_b \times \sigma_s \times RR}{1 - P_b}$$

Handbook 1 P116

The value of the CDS, i.e., the fixed CDS spread S, is mainly determined by the default probability of the

FIGURE 6-1 An investor hedging his Spanish bond exposure with a CDS.

FIGURE 6-2 CDS spread s of a hedged bond purchase (as displayed in Figure 6-1) with respect to the default correlation between the reference entity r and the counterparty c.

	折现法	复利法	
Recover Rate	基于本金加利息	基于本金	
YTM	$R_f + EL$	$R_f + EL$	
	$\overline{1-EL}$	$\overline{1-PD}$	
spread	$R_f \times EL + EL$	$R_f \times PD + EL$	
	1-EL	1-PD	
复利法 FV 等式	$(1 - PD) \times (1 + YTM) + PD \times RR = 1 + R_f$		
折现法 PV 等式	1 $(1 - PD) \times 1 + PD \times RR _ 1 - EL$		
	$\frac{1}{1 + YTM} = \frac{1}{1}$	${+R_f} = {1+R_f}$	

Case 1: Yield Spread 收益 spread

- Define
 - o Theoretical face value \$1
 - Number of years n
 - Risk free rate R_f
 - Yield-to-maturity YTM
 - Spread: $spread = YTM R_f$
 - Default only occurs at the end of a year
 - o Loss given default is LGD, recover rate is RR
- Risk-premium Approach

$$\begin{array}{ll}
\circ & FV = 1 \\
\circ & PV = \frac{1}{(1 + YTM)^n}
\end{array}$$

Risk-free Approach

k-free Approach

Payoff =
$$\begin{cases} 1 - LGD, & \text{if default with probability PD} \\ 1, & \text{not efualt } 1 - PD \end{cases}$$

FV = PD × (1 - LGD) + 1 - PD = 1 - PD × LGD

PV =
$$\frac{1 - PD \times LGD}{(1 + R_f)^n}$$

PV equal

$$0 \frac{1}{(1+YTM)^n} = \frac{1-PD \times LGD}{(1+R_f)^n} \to \frac{(1+R_f)^n}{(1+YTM)^n} = 1 - PD \times LGD$$

PV of one year

Spread of one year

$$\circ PD \times LGD = \frac{\text{spread}}{1 + \text{YTM}}$$

- PV of one year when YTM is small
 - o **spread = PD × LGD** (这是 notes 里提到的)
 - o spread 就是用来补偿风险的

Case 2: Face Value Spread 基于 Face Value 的 Spread

- Assumption 假设
 - o CDS lasts for one year 一年的 CDS
 - o Default only once at time $0 < t \le 1$ 只违约一次
 - o Spread 定义
 - Spread s is the percentage of face value. Spread 是 FV 占比
 - Buyer pay spread 何时支付? 支付多少?
 - Pay the full spread s at the end of a year 在年底支付全部 spread s
 - or pay accrued spread **s** × **t** when default occurs 或者在违约时支付应 \forall spread $\mathbf{s} \times \mathbf{t}$
 - Seller will pay RR when default happens
- Define
 - Risk free rate R_f
 - Loss given default is LGD, recover rate is RR
- Discount Factor 很多种方法,差别应该不大
 - o Continuous 连续复利 $d_t = e^{-R_f \times t}$ (Practice 里用的是这个)

- Annual compounding $d_t = \frac{1}{(1+R_f)^t}$
- o Simple compounding 单利 $d_t = \frac{1}{1 + R_f \times t}$
- Cash Flow 现金流分析

Time (year)	Probability 发生概率	Discount Factor	Spread Accrued %	Buyer FV 买方支付	Seller FV 卖方支付
1	1 – p	d_1	1	S	0
$0 < t \le 1$	р	d_t	t	$s \times t$	RR
平均概率折现	$d_{buyer} = (1 - p) \times d_1 + p \times t \times d_t$				$d_{seller} = p \times d_t$

PV Equal

- $\circ (1-p) \times s \times d_1 + p \times s \times t \times d_t = p \times RR \times d_t$
- o $s \times [(1-p) \times d_1 + p \times t \times d_t] = RR \times p \times d_t$
- \circ $s = RR \times d_{seller}/d_{ps}$
- 假设在年底才可能会违约t = 1
 - $\circ \quad s \times [(1-p) \times d_1 + p \times 1 \times d_1] = RR \times p \times d_1$
 - \circ => $s = RR \times p$

问题

A risk analyst is valuing a 1-year credit default swap (CDS) contract that will pay the buyer 80% of the face value of a bond issued by a corporation immediately after a default by the corporation. To purchase this CDS, the buyer will pay the CDS spread, which is a percentage of the face value, once at the end of the year. The analyst estimates that the risk-neutral default probability for the corporation is 7% per year. The risk-free rate is 2.5% per year. Assuming defaults can only occur halfway through the year and that the accrued premium is paid immediately after a default, what is the estimate for the CDS spread?

- a. 560 basis points
- b. 570 basis points
- c. 580 basis points
- d. 590 basis points

Correct answer: d

Explanation: The key to CDS valuation is to equate the present value (PV) of payments to the PV of expected payoff in the event of default. Let:

Explanation: The key to CDS valuation is to equate the present value (PV) of payments to the PV of expected payoff in the event of default. Let:

r = risk-free rate = 2.5%

s = CDS spread.

 π = probability of default during year 1 = 7%

C = contingent payment in case of default = 80%

 $d_{0.5}$ =discount factor for half-year = $e^{-0.5*r}$ = $e^{-0.5*0.025}$ = 0.987578

 $d_{1.0}$ =discount factor for 1-year = $e^{-1.0*r}$ = $e^{-0.025}$ = 0.975310

Therefore, to solve for the CDS spread (s):

The PV of payments (premium leg, which includes the spread payment and accrual) is:

$$s*[0.5*d_{0.5}*\pi + d_{1.0}*(1-\pi)] = s*[0.034565 + 0.907038] = s*0.941603$$

The payoff leg (in the event of default) = $C * d_{0.5} * \pi = 0.8*0.987578*0.07 = 0.055304$ Equating the two PVs and solving for the spread: s*0.941603 = 0.055304 Thus, s = 0.058734 or a spread of approximately 587 basis points.

建议列出现金流表,不容易出错

2017 Practice Q43

Explanation: This can be calculated by using the formula which equates the future value of a risky box with

yield (y) and default probability (p) to a risk free asset with yield (r). That is,

$$1 + r = (1 - \pi) * (1 + y) + \pi R$$

where π = Probability of default and R = Recovery rate