

555 Timer

- The 555 Timer is one of the most popular and versatile integrated circuits ever produced!
- It is 30 years old and still being used!
- It is a combination of digital and analog circuits.
- It is known as the "time machine" as it performs a wide variety of timing tasks.
- Applications for the 555 Timer include:
 - Bounce-free switches and Cascaded timers
 - Frequency dividers
 - Voltage-controlled oscillators
 - Pulse generators and LED flashers

555 Timer TRIGGER . DISCHARGE OUTPUT . THRESHOLD RESET VOLTAGE Top View

Each pin has a function, the meaning of which will become clearer later.

DS007851-3

Note some familiar components inside

Inside the 555 Timer

Inside the 555 Timer

- You will learn more about these components later in the course, for now just understand the following:
 - The voltage divider has three equal 5K resistors. It divides the input voltage (Vcc) into three equal parts.
 - The two comparators are op-amps which compare the voltages at their inputs and saturate depending upon which is greater.
 - The flip-flop is a bi-stable device. It generates two values, a "high" value equal to Vcc and a "low" value equal to 0V.
 - The transistor is being used as a switch, it connects pin 7 (discharge) to ground when it is closed.

Periodic Pulse Train from a 555 Timer

555-Timers, like op-amps can be configured in different ways to create different circuits. We will now look into how this one creates a train of equal pulses, as shown at the output.

Capacitor C1 is charged up by current flowing through R1

$$I = \frac{V1 - V_{CAPACITOR}}{R1} = \frac{10 - V_{CAPACITOR}}{1k}$$

• As the capacitor charges up, its voltage increases and the current charging it decreases, resulting in the charging rate shown

Capacitor Charging Equations

- Capacitor Current $I = I_0 e^{-\frac{t}{\tau}}$
 - Capacitor Voltage $V = V_o \left(1 e^{-t/\tau} \right)$
- Where the time constant $\tau = RC = R1 \cdot C1 = 1ms$

Understanding the equations

Note that the voltage rises to a little above 6V in 1ms. $(1 - e^{-1}) = .632$

Capacitor Charging and Discharging

• There is a good description of capacitor charging and its use in 555 timer circuits at

http://www.uoguelph.ca/~antoon/gadgets/555/555.html

• At the beginning of the cycle, C1 is charged through resistors R1 and R2. The charging time constant is

$$\tau = (R1 + R2)C1$$

The voltage reaches (2/3)Vcc in a time

$$\tau = 0.693(R1 + R2)C1$$

• When the voltage on the capacitor reaches (2/3)Vcc, a switch (the transistor) is closed at pin 7 and the capacitor is discharged to (1/3)Vcc, at which time the switch is opened and the cycle starts over

The capacitor voltage cycles back and forth between (2/3)Vcc and (1/3)Vcc at times and $\tau_1 = 0.693(R1 + R2)C1$

$$\tau_2 = 0.693(R2)C1$$

The frequency is then given by

$$f = \frac{1}{0.693(R1 + 2 \cdot R2)C1} = \frac{1.44}{(R1 + 2 \cdot R2)C1}$$

555 Animation

• http://www.williamson-labs.com/pu-aa-555-timer-slow.htm

555 Animation

Types of 555-Timer Circuits

Astable Multivibrator
puts out a continuous
sequence of pulses

Monostable Multivibrator (or one-shot) puts out one pulse each time the switch is connected

Monostable Multivibrator (One Shot)

Behavior of the Monostable Multivibrator

 The monostable multivibrator is constructed by adding an external capacitor and resistor to a 555 timer.

• The circuit generates a single pulse of desired duration when it receives a trigger signal, hence it is also called a one-shot.

The time constant of the resistor-capacitor combination determines the length of the pulse.

Uses of the Monostable Multivibrator

- Used to generate a clean pulse of the correct height and duration for a digital system
- Used to turn circuits or external components on or off for a specific length of time.
- Used to generate delays.
- Can be cascaded to create a variety of sequential timing pulses. These pulses can allow you to time and sequence a number of related operations.

Astable Pulse-Train Generator (Multivibrator)

Behavior of the Astable Multivibrator

- The astable multivibrator is simply an oscillator. The astable multivibrator generates a continuous stream of rectangular off-or pulses that switch between two voltage levels.
- The frequency of the pulses and their duty cycle are dependent upon the RC network values.

The capacitor C charges through the series resistors R₁ and R₂

with a time constant

$$(R_1 + R_2)C.$$

The capacitor discharges through R_2 with a time constant of R_2 C

Uses of the Astable Multivibrator

- Flashing LED's
- Pulse Width Modulation
- Pulse Position Modulation
- Periodic Timers (see mushroom timer in the experiment).

555

F

u

