Notas Curso Topología II

Cristo Daniel Alvarado

31 de agosto de 2024

Índice general

1.	Metriz	zabilidad	ĺ														2
	1.1. C	onceptos	Fundame	ntales			 			 					 		2

Capítulo 1

Metrizabilidad

1.1. Conceptos Fundamentales

¿Cuándo un espacio topológico es metrizable? Supongamos que tenemos un espacio topológico (X, τ) , queremos una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

La respuesta a esta pregunta es que no siempre será posible encontrar tal métrica. Por ejemplo, tome cualquier espacio topológico que no sea T_1 .

- Pável Urysohn 1898-1924. El Lema de Urysohn fue publicado en 1924 póstumo a la muerte de su autor.
- Primera guerra mundial 28 de julio de 1914 a 11 de noviembre de 1918, inició con el asesinato del Archiduque Franciso de Austria.
- Segunda guerra mundial 1939 a 1945, cuando Hitler invade Polonia.
- En 1950 Bing, Nagata y Morita resuelven el problema de metrizabilidad de espacios topológicos.

Lo que veremos a continuación tiene como base fundamental el siguiente lema:

Lema 1.1.1 (Lema de Urysohn)

Sea (X,τ) espacio topológico. Entonces, (X,τ) es T_4 si y sólo si dados $A,B\subseteq X$ cerrados disjuntos existe una función continua $f:X\to [0,1]$ tal que

$$f(A) = \{0\}$$
 y $f(B) = \{1\}$

Este lema se probó en el curso pasado.

Proposición 1.1.1

Sea (X, τ) un espacio topológico segundo numerable. Entonces

- 1. (X, τ) es primero numerable.
- 2. (X,τ) es de Lindelöf.
- 3. (X, τ) es separable.

Demostración:

Sea $\mathcal{B} = \{B_i\}_{i \in \mathbb{N}}$ una base numerable para τ .

De (1): Sea $x \in X$. Tomemos

$$\mathcal{B}_x = \left\{ B_n \in \mathcal{B} \middle| x \in B_n \right\}$$

este es un conjunto no vacío pues al ser \mathcal{B} base, existe $B \in \mathcal{B}$ tal que $x \in B$. Además es a lo sumo numerable por ser subcolección de \mathcal{B} .

Sea $U \subseteq X$ abierto tal que $x \in U$. Como \mathcal{B} es base de τ , existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$, luego $B \in \mathcal{B}_x$. Por tanto, \mathcal{B}_x es un sistema fundamental de vecindades de x. Al ser el x arbitrario, se sigue que (X, τ) es primero numerable.

De (2): Sea $\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in I}$ una cubierta abierta de (X, τ) . Dado $x \in X$ existe $A_{\alpha} \in \mathcal{A}$ tal que $x \in A_{\alpha}$, como $A_{\alpha} \in \tau$, existe $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq A_\alpha$$

Sea

$$\mathcal{K} = \left\{ n \in \mathbb{N} \middle| \exists A_{\alpha} \in \mathcal{A} \text{ tal que } B_n \subseteq A_{\alpha} \right\}$$

por la observación anterior, esta colección es no vacía. Dado $k \in \mathcal{K}$ escogemos un único A_{α_k} tal que

$$B_k \subseteq A_{\alpha_k}$$

Sea

$$\mathcal{A}' = \left\{ A_{\alpha_k} \right\}_{k \in \mathcal{K}}$$

se tiene que $\mathcal{A}' \subseteq \mathcal{A}$ es numerable. Sea $x \in X$, Como \mathcal{A} es cubierta, existe $A' \in \mathcal{A}$ tal que

$$x \in A' \in \tau$$

luego, al ser \mathcal{B} base existe $B_n \in \mathcal{B}$ tal que

$$x \in B_n \subseteq A'$$

Se sigue pues que $x \in A_{\alpha_n}$. Por ende, $x \in \bigcup_{n \in \mathbb{N}} A_{\alpha_n}$. Así, \mathcal{A} posee una subcubierta a lo sumo numerable. Se sigue que al ser la cubierta abierta arbitraria que el espacio (X, τ) es Lindelöf.

Proposición 1.1.2

Si (X, τ) es metrizable, entonces los coneptos de espacio de Lindelöf, espacio separable y espacio segundo numerable son equivalentes.

Demostración:

Probaremos que Lindelöf implica separabilidad que implica segunda numerabilidad.

Suponga que (X, τ) es metrizable, entonces existe una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

• Suponga que (X,τ) es Lindelöf. Sea $n\in\mathbb{N}$ y tomemos

$$\mathcal{U}_n = \left\{ B_d\left(x, \frac{1}{n}\right) \middle| x \in X \right\}$$

 \mathcal{U}_n es una cubierta abierta de (X, τ) . Como el espacio de Lindelöf, existe \mathcal{V}_n a lo sumo numerable tal que

$$\mathcal{V}_n = \left\{ B_d\left(y, \frac{1}{n}\right) \middle| y \in Y_n \right\}$$

siendo $Y_n \subseteq X$ un conjunto a lo sumo numerable, de tal suerte que \mathcal{V}_n es subcubierta de \mathcal{U}_n . Sea

$$A = \bigcup_{n \in \mathbb{N}} Y_n$$

este es un conjunto a lo sumo numerable. Sea $U \in \tau$ con $U \neq \emptyset$. Como $U \neq \emptyset$, existe $x \in U$, así existe $\varepsilon > 0$ tal que $B_d(x, \varepsilon) \subseteq U$. Sea $m \in \mathbb{N}$ tal que $\frac{1}{m} < \varepsilon$. Tenemos que \mathcal{V}_m es una cubierta de X, luego existe $y \in Y_m$ tal que

$$x \in B_d\left(y, \frac{1}{m}\right)$$

Por tanto, $y \in B_d(x, \frac{1}{m}) \subseteq B(x, \varepsilon) \subseteq U$, así $y \in U$. Pero como $y \in Y_m$ se tiene que $y \in A$. Por ende

$$U \cap A \neq \emptyset$$

lo que prueba el resultado.

• Suponga que (X, τ) es separable, entonces existe $A \subseteq X$ subconjunto denso a lo sumo numerable. Sea

$$\mathcal{B} = \left\{ B_d \left(a, \frac{1}{n} \right) \middle| a \in A \text{ y } n \in \mathbb{N} \right\}$$

Si probamos que \mathcal{B} es base para τ , se probará el resultado (pues \mathcal{B} es a lo sumo numerable). Sea $x \in X$ y $\varepsilon > 0$. Tomemos $m \in \mathbb{N}$ tal que

$$\frac{2}{m} < \varepsilon$$

como $\overline{A} = X$, entonces existe $a \in A$ tal que $a \in B_d\left(x, \frac{1}{m}\right)$. Entonces

$$x \in B_d\left(a, \frac{1}{m}\right) \subseteq B_d\left(x, \frac{2}{m}\right) \subseteq B_d\left(x, \varepsilon\right)$$

por tanto, \mathcal{B} es una base para la topología τ , luego el espacio (X,τ) es segundo numerable.

Ejemplo 1.1.1

Considere el espacio topológico (\mathbb{R}, \leq). Entonces el conjunto

$$\mathcal{B}_{l} = \left\{ [a, b) \middle| a, b \in \mathbb{R} \right\}$$

es una base para una topología sobre \mathbb{R} . La topología generada por esta base la denotamos por τ_l y se dice la topología del límite inferior.

Ejemplo 1.1.2

El espacio (\mathbb{R}, τ_l) es T_2 . Dados $a, b \in \mathbb{R}$ se tiene que si a < x < b.

$$(a,b) = \bigcup \left\{ [x,b) \middle| a < x < b \right\}$$

por tanto, $\tau_u \subseteq \tau_l$, luego (\mathbb{R}, τ_l) es T_2 pues con la topología usual lo es.

Más aún, (\mathbb{R}, τ_l) es primero numerable.

Demostración:

En efecto, sea $x \in \mathbb{R}$. Afirmamos que la colección

$$\left\{ [x, x + 1/n) \middle| n \in \mathbb{N} \right\}$$

es un sistema fundamnetal de vecindades de x, por lo que este espacio es primero numerable.

Ejemplo 1.1.3

El espacio (\mathbb{R}, τ_l) no es segundo numerable.

Demostración:

Sea \mathcal{B} una base para τ_l . Para $x \in \mathbb{R}$ escogemos $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq [x, x+1)$$

Se tiene que $x = \inf B_x$. Para $x, y \in \mathbb{R}$ se tiene que $B_x \neq B_y$ (pues si fueran iguales, tendrían el mismo ínfimo). Por tanto la colección \mathcal{B} es no numerable.

Así, el espacio (\mathbb{R}, τ_l) no es segundo numerable.

Ejemplo 1.1.4

El espacio (\mathbb{R}, τ_l) es separable.

Demostración:

Tome $\mathbb{Q} \subseteq \mathbb{R}$.

Ejemplo 1.1.5

 (\mathbb{R}, τ_l) es normal.

Demostración:

Sean $A, B \subseteq \mathbb{R}$ cerrados tales que $A \cap B = \emptyset$. Sea $a \in A$, entonces $a \notin B = \overline{B}$. Existe pues $x_a \in \mathbb{R}$ tal que

$$[a, x_a) \subseteq \mathbb{R} - B$$

(por ser el conjunto de la derecha abierto). Entonces

$$A \subseteq \bigcup_{a \in A} [a, x_a) = U \in \tau_l$$

У

$$B \subseteq \bigcup_{b \in P} [b, x_b) = V \in \tau_l$$

Si $U \cap V \neq \emptyset$, entonces existe $a \in A$ y $b \in B$ tales que

$$[a, x_a) \cap [b, x_b) \neq \emptyset$$

Si a < b entonces $b \in [a, x_a)$, lo cual es una contradición. Por tanto, $U \cap V = \emptyset$. Así, el espacio (\mathbb{R}, τ_l) es normal.

Proposición 1.1.3

Si (X, τ) es metrizable, entonces (X, τ) es normal.

Demostración:

Sea d una métrica definida sobre X tal que $\tau_d = \tau$. Como (X, τ) es metrizable, entonces es \mathbb{T}_2 y por lo tanto es T_1 . Veamos que (X, τ) es T_4 .

Sean $A, B \subseteq X$ cerrados disjuntos con $A \cap B \neq \emptyset$. Sea $a \in A$, entonces $a \in X - B \in \tau$. Entonces existe $\varepsilon_a > 0$ tal que

$$B_d(a, \varepsilon_a) \subseteq X - B$$

Sea

$$U = \bigcup_{a \in A} B_d\left(a, \frac{\varepsilon_a}{2}\right) \in \tau$$

es claro que $A \subseteq U$. De forma análoga se construye V:

$$V = \bigcup_{b \in B} B_d\left(b, \frac{\varepsilon_b}{2}\right) \in \tau$$

es tal que $B \subseteq V$. Suponga que $U \cap V \neq \emptyset$. Entonces existe $a \in A$ y $b \in B$ tales que

$$B_d\left(a, \frac{\varepsilon_a}{2}\right) \cap B_d\left(b, \frac{\varepsilon_b}{2}\right) \neq \emptyset$$

se tiene que $d(a,b) < d(a,x) + d(x,b) < \frac{\varepsilon_a}{2} + \frac{\varepsilon_b}{2} < \max\{\varepsilon_a, \varepsilon_b\}$. Por tanto, $a \in B_d(b, \varepsilon_b)$ o $b \in B_d(a, \varepsilon_a)$, lo cual contradice la elección de estas bolas. Por tanto, $U \cap B = \emptyset$.

Así, el espacio
$$(X, \tau)$$
 es T_4 .

Corolario 1.1.1

Si (X, τ) es metrizable, entonces es regular.

Demostración:

Inmediato del hecho que normalidad implica regularidad.

Proposición 1.1.4

Si (X,τ) es metrizable, entonces (X,τ) es primero numerable.

Demostración:

Sea d una métrica definida sobre X tal que $\tau = \tau_d$. Sea $x \in X$, considere

$$\mathcal{V} = \left\{ B_d \left(x, \frac{1}{n} \right) \middle| n \in \mathbb{N} \right\}$$

entonces \mathcal{V} es una colección numerable de vecindades de X y es fundamental (por construcción). Por tanto, (X, τ) es primero numerable.

Proposición 1.1.5

Sea (X,τ) un espacio T_3 y de Lindelöf, entonces (X,τ) es T_4

Demostración:

Sean $A, B \subseteq X$ cerrados disjuntos. Sea $a \in A \subseteq X - B \in \tau$. Como (X, τ) es T_3 , existe $U_a \in \tau$ tal que

$$a \in U_a \subseteq \overline{U}_a \subseteq X - B$$

Por ser (X,τ) de Lindelöf y ser $A\subseteq X$ cerrado, tenemos que (A,τ_A) es de Lindelöf. Se tiene que

$$A \subseteq \bigcup_{a \in A} U_a$$

donde $U_a \in \tau$ y $\overline{U}_a \cap B \neq \emptyset$. Existe pues $\{U_{a_n}\}_{n \in \mathbb{N}}$ tales que

$$A \subseteq \bigcup_{n \in \mathbb{N}} U_{a_n} U_{a_n}$$

y cumplen que

$$\overline{U}_{a_n} \cap B = \emptyset, \quad \forall n \in \mathbb{N}$$

De forma análoga podemos encontrar una familia $\{V_{b_n}\}_{n\in\mathbb{N}}$ de abiertos tales que

$$V \subseteq \bigcup_{n \in \mathbb{N}} U_{b_n} V_{b_n}$$

y que cumplan:

$$\overline{V}_{b_n} \cap A = \emptyset, \quad \forall n \in \mathbb{N}$$

Sea $m \in \mathbb{N}$. Se define

$$U_m = U_{a_m} - \bigcup_{l=1}^m \overline{V}_{b_l} \in \tau$$

y V_m se define de forma similar:

Observación 1.1.1

Por el ejemplo de (\mathbb{R}, τ_l) , se sigue que el recíproco de esta proposición anterior no es cierta.

Observación 1.1.2

Del ejemplo anterior se deduce de forma inmediata que el recíproco del teorema anterior no es cierto.

El objetivo de los siguientes resultados va a ser el de probar estos siguientes dos teoremas:

Teorema 1.1.1 (Teorema de Urysohn)

Si (X,τ) es un espacio normal y segundo numerable, entonces es metrizable.

Teorema 1.1.2 (Teorema de Tychonoff)

Si (X,τ) es un espacio regular y segundo numerable, entonces es metrziable.

los cuales caracterizan en su totalidad a los espacios metrizables.

Notemos antes que se cumple lo siguiente (dados los resultados probados anteriormente):

 $Metrizabilidad \Rightarrow Normalidad \Rightarrow Regularidad$

pero, más adelante se verá que

Metrizabilidad

⇒ Segunda numerabilidad

y,

Definición 1.1.1

Para todo $n \in \mathbb{N} \cup \{0\}$ se define:

$$\mathcal{D}_n = \left\{0, \frac{1}{2^n}, \frac{2}{2^n}, \dots, \frac{2^n - 1}{2^n}, 1\right\}$$

y con ello, se construye el subconjunto de \mathbb{Q} :

$$\mathcal{D} = \bigcup_{n=0}^{\infty} \mathcal{D}_n$$

Proposición 1.1.6

Sea [0,1] como subespacio de (\mathbb{R}, τ_u) , entonces \mathcal{D} es denso en $([0,1], \tau_{u_{[0,1]}})$.

Demostración:

Es inmediata.

Lema 1.1.2 (Lema de Urysohn)

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es T_4 si y sólo si para todos $A, B \subseteq X$ cerrados disjuntos, existe una función continua $f: (X, \tau) \to ([0, 1], \tau_u)$ tal que $f(A) = \{1\}$ y $f(B) = \{0\}$.

Demostración:

⇒): Para probar el resultado, debemos hacer varias cosas antes:

1. Sea

$$P=\mathbb{Q}\cap [0,1]$$

Nuestro objetivo es que para cada $p \in P$ le asignemos un conjunto abierto $U_p \subseteq X$ tal que si $p,q \in P$ son tales que

$$p < q \Rightarrow \overline{U}_p \subseteq U_q$$

de esta forma, la familia $\{U_p | p \in P\}$ estará simplemente ordenada de la misma forma en la que sus subíndices lo están en P. Como el conjunto P es numerable, podemos usar inducción para definir cada uno de los U_p . Ordenemos los elementos de P en una sucesión de tal forma que los números 0 y 1 son los primeros de la sucesión (denotada de ahora en adelante por $\{p_n\}_{n=1}^{\infty}$).

Definiremos ahora los conjuntos U_p como sigue: defina

$$U_1 = X - B$$

Como A es un cerrado contenido en U_1 , por ser (X,τ) T_4 , se tiene que existe un conjunto abierto $U_0 \subseteq X$ tal que

$$A \subseteq U_0$$
 y $\overline{U}_0 \subseteq U_1$

En general, sea P_n el conjunto de los primeros n números racionales en la sucesión de los elementos de P. Suponga que U_p está definido para cada $p \in P_n$ y, satisface la condición:

$$p, q \in P_n$$
 tal que $p < q \Rightarrow \overline{U}_p \subseteq U_q$

Sea r el siguiente número racional en la sucesión $\{p_n\}_{n=1}^{\infty}$, esto es $r=p_{n+1}$. Definiremos U_r . Considere el conjunto

$$P_{n+1} = P_n \cup \{r\}$$

Este es un subconjunto finito del intervalo [0,1] y, tiene un orden simple derivado del orden simple < de [0,1].

En un conjunto finito simplemente ordenado, todo elemento tiene un predecesor inmediato y un sucesor inmediato. El número 0 es el elemento más pequeño y, 1 es el elemento más grande de P_{n+1} y, r no es 0 o 1. Por tanto, r tiene un sucesor y un predecesor inmediato, denotados respectivamente por q y p. Los conjuntos U_p y U_q están definidos y son tales que

$$\overline{U}_p \subseteq U_q$$

por hipótesis de inducción. Como (X, τ) es T_4 , entonces existe un conjunto abierto $U_r \subseteq X$ tal que

$$\overline{U}_p \subseteq U_r \quad \text{y} \quad \overline{U}_r \subseteq U_q$$

Es claro (pues los conjuntos U_p con $p \in P_n$ están ordenados por la contención), que

$$p, q \in P_{n+1}$$
 tal que $p < q \Rightarrow \overline{U}_p \subseteq U_q$

Usando inducción, tenemos definidos los conjuntos U_p , para todo $p \in P$.

2. Ahora que se tiene definido U_p para todo número en $\mathbb{Q} \cap [0,1]$, extenderemos esta definición a todo \mathbb{Q} , haciendo

$$U_p = \emptyset, \quad p < 0$$

$$U_p = X, \quad 1 < p$$

para todo $p \in \mathbb{Q}$. Se sigue cumpliendo que para todo $p, q \in \mathbb{Q}$

$$p < q \Rightarrow \overline{U}_p \subseteq U_q$$

3. Dado un punto $p \in X$, definamos el conjunto $\mathbb{Q}(x)$ como el conjunto de todos los números racionales $p \in \mathbb{Q}$ tales que los correspondientes U_p contengan a x, es decir:

$$\mathbb{Q}(x) = \left\{ p \in \mathbb{Q} \middle| x \in U_p \right\}$$

Este conjunto no contiene a ningún número menor que 0 ya que $x \notin U_p$ para todo $p \in \mathbb{Q}^-$, además, contiene a todo número mayor que 1, pues $x \in U_p$ para todo $p \in \mathbb{Q}$, p > 1. Por tanto, $\mathbb{Q}(x)$ es acotado inferiormente y no vacío, luego tiene ínfimo en el intervalo [0,1]. Defina

$$f(x) = \inf \mathbb{Q}(x) = \inf \left\{ p \in \mathbb{Q} \middle| x \in U_p \right\}$$

4. Afirmamos que f es la función deseada. Si $x \in A$, entonces $x \in U_p$ para todo $p \in \mathbb{Q}_{\geq 0}$, luego

$$f(x) = \inf \mathbb{Q}(x) = 0$$

Similarmente, si $x \in B$, entonces $x \notin U_p$ para todo $p \in \mathbb{Q}$ con $p \leq 1$. Luego, $\mathbb{Q}(x)$ consiste de todos los números racionales mayores a 1 y, por ende, f(x) = 1.

Probaremos que f es continua. Para ello, probaremos que se cumplen dos cosas:

- I) $x \in \overline{U}_r$ implica que $f(x) \le r$.
- II) $x \notin U_r$ implica que $f(x) \ge r$.

Para probar (1), notemos que si $x \in \overline{U}_r$, entonces $x \in U_s$, para todo s > r. Entonces, $\mathbb{Q}(x)$ contiene a todos los números racionales mayores que r, así que, por definición tenemos que

$$f(x) = \inf \mathbb{Q}(x) \le r$$

Para probar (2), notemos que si $x \notin U_r$, entonces x no está en U_s para todo s < r. Por tanto, $\mathbb{Q}(x)$ no contiene números racionales menores que r, por lo cual

$$f(x) = \inf \mathbb{Q}(x) \ge r$$

Ahora probaremos la continuidad de f. Sea $x_0 \in X$ y un intervalo abierto (c,d) en \mathbb{R} tal que

$$c < f(x_0) < d$$

podemos encontrar números racionales $p, q \in \mathbb{Q}$ tales que

$$c$$

Afirmamos que el conjunto

$$U = U_q - \overline{U}_p$$

es un abierto que cumple que $f(U) \subseteq (c,d)$ y es tal que $x_0 \in U$. En efecto, notemos que $x_0 \in U_q$ pues $f(x_0) < q$ implica por (2) que $f(x_0) \in U_q$ y, como $p < f(x_0)$, implica por (1) que $f(x_0) \notin \overline{U}_p$. Por tanto, $f(x_0) \in U$.

Sea $x \in U$, entonces $x \in U_q \subseteq \overline{U}_q$, por lo cual de (1), $f(x) \leq q$ y, $x \notin \overline{U}_p$ implica que $x \notin \overline{U}_p$ por lo cual de (2) se sigue que $p \leq f(x)$. Por tanto, $f(x) \in [p,q] \subseteq (c,d)$.

Luego, $f(U) \subseteq (c, d)$. Así, f es continua en $x_0 \in X$. Como el punto fue arbitrario, se sigue que f es continua en X.

Por los 4 incisos anteriores, se sigue el resultado.

 \Leftarrow): Sean $A, B \subseteq X$ cerrados disjuntos. Por hipótesis existe una función continua $f:(X,\tau) \to ([0,1],\tau_u)$ tal que f(A)=1 y f(B)=0. Los conjuntos $U=f^{-1}((r,1])$ $V=f^{-1}([0,r))$, donde $r \in (0,1)$, son dos abiertos (ya que f es continua y $[0,r),(r,1],\in\tau_u$) tales que:

$$A \subseteq U \quad B \subseteq V$$

$$y, U \cap V = \emptyset.$$