

Область определения и множество значений тригонометрических функций

Функция	Область определения	Множество значений
$y = \sin x$	R	[-1; 1]
$y = \cos x$	R	[-1; 1]
$y = \operatorname{tg} x$	$x \neq \frac{\pi}{2} + \pi n, n \in \mathbf{Z}$	R
$y = \operatorname{ctg} x$	$x \neq \pi n, n \in \mathbf{Z}$	R

Чётность, нечётность, периодичность тригонометрических функций

Функция $y=f\left(x\right)$ называется **чётной**, если для каждого значения х из её области определения выполняется равенство $f\left(-x\right)=f\left(x\right)$.

Функция $y=f\left(x\right)$ называется **нечётной**, если для каждого значения х из её области определения выполняется равенство $f\left(-x\right)=-f\left(x\right)$.

Функция $y=f\left(x\right)$ называется **периодической**, если существует такое число $T\neq 0$, то что для любого x из её области определения выполняется равенство $f\left(x-T\right)=f\left(x\right)=f\left(x+T\right)$. Число T называется **периодом** функции $y=f\left(x\right)$.

Если функция $y=f\left(x\right)$ периодическая с периодом T, то функция $y=cf\left(ax+b\right)$, где $a,\,b$ и c — постоянные и $a\neq 0$, также периодическая с периодом $t=\frac{T}{|a|}$.

Функция	Чётность, нечётность	Наименьший положительный период
$y = \sin x$	Нечётная	2π
$y = \cos x$	Чётная	2π
$y = \operatorname{tg} x$	Нечётная	π
$y = \operatorname{ctg} x$	Нечётная	π

Свойства функции $y=\cos\,x$ и её график

Область определения R.

Множество значений [-1; 1].

Функция периодическая; наименьший положительный период $T=2\pi$.

Функция чётная: $\cos (-x) = \cos x$.

Функция принимает значения: равные нулю при $x=\frac{\pi}{2}+\pi n,\,n\in {
m Z}$;

положительные при $-\frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n, \, n \in \mathbf{Z}$;

отрицательные при $\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n, \, n \in \mathbf{Z}$;

наибольшее, равное 1, при $x=2\pi n,\,n\in {\bf Z}$; наименьшее, равное -1, при $x=\pi+2\pi n,\,n\in {\bf Z}$.

Функция:

возрастает на отрезках $[\pi+2\pi n;\, 2\pi\; (n+1)],\, n\in {\bf Z}$ убывает на отрезках $[2\pi n;\, \pi+2\pi n],\, n\in {\bf Z}.$

Свойства функции $y=\sin\,x$ и её график

Область определения R.

Множество значений [-1; 1].

Функция периодическая; наименьший положительный период $T=2\pi$.

Функция нечётная: $\sin (-x) = -\sin x$.

Функция принимает значения: равные нулю при $x=\pi n,\,n\in{
m Z}$;

положительные при $2\pi n < x < \pi \ (2n+1), \, n \in \mathbf{Z}$;

отрицательные при $\pi(2n-1) < x < 2\pi n, \, n \in \mathbf{Z}$;

наибольшее, равное 1, при $x=\frac{\pi}{2}+2\pi n,\,n\in {\rm Z}$;

наименьшее, равное -1, при $x=-\frac{\pi}{2}+2\pi n,\,n\in\mathbf{Z}.$

Функция:

возрастает на отрезках $[-\frac{\pi}{2}+2\pi n;\frac{\pi}{2}+2\pi n],\,n\in\mathbf{Z}$;

убывает на отрезках $[\frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n], \, n \in {\bf Z}.$

Свойства функции $y=\operatorname{tg}\,x$ и её график

Область определения $x \neq \frac{\pi}{2} + \pi n, \ n \in \mathbf{Z}.$ Множество значений R.

Функция периодическая; наименьший положительный период $T=\pi.$

Функция нечётная.

Функция принимает значения:

равные нулю при $x=\pi n,\,n\in {\bf Z}$;

положительные при $\pi n < x < \frac{\pi}{2} + \pi n, \, n \in {\bf Z}$;

отрицательные при $-\frac{\pi}{2} + \pi n < x < \pi n, \, n \in \mathbb{Z};$

Функция возрастает при $-\frac{\pi}{2} + \pi n < x < \frac{\pi}{2} + \pi n, \, n \in \mathbf{Z}.$

