Exercise 1.1

```
In [ ]: import pandas as pd
```

1. Data Preparation

```
In []: # load the dataset and display the first 5 rows
df = pd.read_csv('Files_For_A2/cancer_data.csv')
df.head()
```

Out[]:		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sr
	0	842302	М	17.99	10.38	122.80	1001.0	
	1	842517	М	20.57	17.77	132.90	1326.0	
	2	84300903	М	19.69	21.25	130.00	1203.0	
	3	84348301	М	11.42	20.38	77.58	386.1	
	4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 32 columns

We first need to check for missing values and convert non-numeric to numeric

```
In []: # display the number of missing values for each column
missing_values = df.isnull().sum()
missing_values
```

df.info()

```
Out[]: id
                                     0
         diagnosis
                                     0
                                     0
         radius_mean
                                     0
         texture_mean
         perimeter_mean
                                     0
         area_mean
                                     0
         smoothness_mean
                                     0
         compactness_mean
                                     0
         concavity_mean
         concave_points_mean
                                     0
         symmetry_mean
                                     0
         fractal_dimension_mean
                                     0
         radius se
                                     0
         texture_se
         perimeter_se
                                     0
         area_se
                                     0
                                     0
         smoothness_se
                                     0
         compactness_se
                                     0
         concavity_se
         concave_points_se
                                     0
         symmetry_se
                                     0
                                     0
         fractal_dimension_se
                                     0
         radius_worst
                                     0
         texture_worst
         perimeter worst
                                     0
                                     0
         area_worst
         smoothness_worst
                                     0
                                     0
         compactness_worst
                                     0
         concavity_worst
                                     0
         concave_points_worst
                                     0
         symmetry_worst
         fractal_dimension_worst
                                     0
         dtype: int64
In [ ]: # display key information about the dataset
```

file:///Users/bradymitchelmore/Library/Mobile Documents/com~apple~CloudDocs/MUN/Year 3/Term 7/COMP 3401/Assignments/Assignment 2/ex_1.1.html

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave_points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave_points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave_points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
dtype	es: float64(30), int64(1)	<pre>, object(1)</pre>	
memo	ry usage: 142.4+ KB		

We can see that there is only 1 categorical attribute, so we need to convert in to a numeric attribute and save it for later use. We will also remove the 'id' attribute as it would skew our results.

```
In [ ]: # drop the id column
        df.drop('id', axis=1, inplace=True)
In [ ]: # display the counts of the categorical data
        df['diagnosis'].value_counts()
Out[]: diagnosis
             357
             212
        Name: count, dtype: int64
```

```
In []: # convert the categorical data to numerical data
from sklearn.preprocessing import LabelEncoder

# initialize LabelEncoder
labelencoder = LabelEncoder()

# convert the categorical data to numerical data and display the first 5 row
df['diagnosis'] = labelencoder.fit_transform(df['diagnosis'])
diagnosis = df['diagnosis']
df.drop('diagnosis', axis=1, inplace=True)
df.head()
```

Out[]:		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
	0	17.99	10.38	122.80	1001.0	0.11840	
	1	20.57	17.77	132.90	1326.0	0.08474	
	2	19.69	21.25	130.00	1203.0	0.10960	
	3	11.42	20.38	77.58	386.1	0.14250	
	4	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 30 columns

Now we have:

- B == 0
- M == 1

Now we can scale the data using the z-score method

Out[]:		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CC
	0	1.096100	-2.071512	1.268817	0.983510	1.567087	
	1	1.828212	-0.353322	1.684473	1.907030	-0.826235	
	2	1.578499	0.455786	1.565126	1.557513	0.941382	
	3	-0.768233	0.253509	-0.592166	-0.763792	3.280667	
	4	1.748758	-1.150804	1.775011	1.824624	0.280125	
	•••						
	564	2.109139	0.720838	2.058974	2.341795	1.040926	
	565	1.703356	2.083301	1.614511	1.722326	0.102368	
	566	0.701667	2.043775	0.672084	0.577445	-0.839745	
	567	1.836725	2.334403	1.980781	1.733693	1.524426	
	568	-1.806811	1.220718	-1.812793	-1.346604	-3.109349	

569 rows × 30 columns

We can see that the data is normalized by checking if the mean and standard deviation are 0, and 1 respectively

```
In [ ]: normalized_df.std().mean(), round(normalized_df.mean().mean())
Out[ ]: (1.0, 0)
```

2. PCA Application

Here we will use the sklearn PCA class to perform the PCA

```
In []: from sklearn.decomposition import PCA
    num_components = 10
    pca = PCA(n_components=num_components)
    pca.fit(normalized_df)

principalComponents = pca.fit_transform(normalized_df)
    pca_df = pd.DataFrame(data=principalComponents, columns=[f"PC{i+1}" for i ir
    pca_df
```

Out[]:		PC1	PC2	PC3	PC4	PC5	PC6	PC7
	0	9.184755	1.946870	-1.122179	3.630536	-1.194059	1.410184	2.157471
	1	2.385703	-3.764859	-0.528827	1.117281	0.621228	0.028631	0.013347
	2	5.728855	-1.074229	-0.551263	0.911281	-0.176930	0.540976	-0.667580
	3	7.116691	10.266556	-3.229948	0.152413	-2.958275	3.050738	1.428653
	4	3.931842	-1.946359	1.388545	2.938054	0.546267	-1.225416	-0.935389
	•••						1.410184 2.157471 - 0.028631 0.013347 0.540976 -0.667580 3.050738 1.428653	
	564	6.433655	-3.573673	2.457324	1.176279	-0.074759	-2.373105	-0.595606
	565	3.790048	-3.580897	2.086640	-2.503825	-0.510274	-0.246493	-0.715697
	566	1.255075	-1.900624	0.562236	-2.087390	1.808400	-0.533977	-0.192589
	567	10.365673	1.670540	-1.875379	-2.353960	-0.033712	0.567437	0.222885
	568	-5.470430	-0.670047	1.489133	-2.297136	-0.184541	1.616415	1.697457

569 rows × 10 columns

3. Variance Analysis

```
import matplotlib.pyplot as plt
import numpy as np

explained_variance = pca.explained_variance_ratio_

cumulative_explained_variance = np.cumsum(explained_variance)

# plot the explained variance and the cumulative explained variance
plt.figure(figsize=(10, 6))
plt.title('Explained Variance by Different Principal Components')
plt.plot(range(len(explained_variance) + 1), [0] + list(cumulative_explained
plt.bar(range(len(explained_variance)), explained_variance, alpha=0.5, align
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
```


4. Visualization

```
In [ ]: pca_df['diagnosis'] = diagnosis
        # separate the data into two categories
        category_M = pca_df[pca_df['diagnosis'] == 1]
        category_B = pca_df[pca_df['diagnosis'] == 0]
        # plot the first two principal components
        plt.figure(figsize=(10, 6))
        plt.scatter(category_M['PC1'], category_M['PC2'], c='red', label='M', marker
        plt.scatter(category_B['PC1'], category_B['PC2'], c='blue', label='B', marke
        # add title and labels
        plt.title('Scatter Plot of First Two Principal Components')
        plt.xlabel('PC1')
        plt.ylabel('PC2')
        # add legend
        plt.legend(title='Diagnosis')
        # display the plot
        plt.show()
```



```
In []: # create a 3D scatter subplot
    fig = plt.figure(figsize=(10, 6))
    ax = fig.add_subplot(111, projection='3d')

# plot the first three principal components
    ax.scatter(category_M['PC1'], category_M['PC2'], category_M['PC3'], c='red',
    ax.scatter(category_B['PC1'], category_B['PC2'], category_B['PC3'], c='blue'

# add title and labels
    ax.set_xlabel('PC1')
    ax.set_ylabel('PC2')
    ax.set_zlabel('PC3')

ax.set_title('Scatter Plot of First Three Principal Components')

ax.legend()
plt.show()
```

Scatter Plot of First Three Principal Components

5. Interpretation

Based on the visualizations, it does appear that a predictive model could be developed to distinguish between malignant and benign tumors with a resonable degree of accuracy.

The 3D scatter plot shows a clear distintion between malignent and benign tumors, this suggests that the principle components have captured significant features which differenciate the 2 types of tumors. We can also observe that both tumors form distinct clusters, which indicates that there is a pattern a predictive model could learn from.

Overall, since there is a clear distinction in the data and we are using PCA which implies these components retain most of the variance in the dataset, we can say that a predictive model should perform well.