## Case 3: Perfect Dielectric / Perfect Conductor Boundary

Perfect

Dielochic (1)

$$\nabla_1 = 0, \epsilon_1, \mu_1$$
 $\nabla_2 \rightarrow \infty$ 
 $\nabla_2 \rightarrow \infty$ 

Perfect conductor
Remember, we have

$$\eta = \sqrt{3\mu\mu} \quad \text{in good}$$

$$t = 0$$

$$t = 0$$

$$t = 0$$

$$t = 0$$

in this medium (2) which is a project conductor with 500.

(Also, lim =0 =) S\_=0

For skin

depth in a

perject conductor.

Then, 
$$\Gamma = \frac{M_2 - M_1}{M_2 + M_1} = -1$$
and  $T = \frac{2M_2}{M_2 + M_1} = 0$ 

can also be obtained by directly applying the BC's at 2=0 as shown below:

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_1 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_1 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_1 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_1 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_1 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
& \vec{E}^i = \hat{a}_x \vec{E}_1 e^{jk_1 z} \\
& \vec{E}^i = \hat{a}_x \vec{E}_2 e^{jk_1 z}
\end{aligned}$$

$$\end{aligned}$$

$$\Rightarrow \boxed{E_2 = -E_1} \Rightarrow \boxed{\Gamma = \frac{E_2}{E_1} = -1}$$

In this case, presence of the perfect conductor causes "Standing waves" to form in the perfect dielectric side.

To see this, let's write the total fields in medium ():

$$\overline{E}_{D}^{\text{total}} = \overline{E}_{1}^{\text{total}} + \overline{E}_{1}^{\text{total}} = \hat{a}_{x} E_{1} e^{jk_{1}z} + \hat{a}_{x} E_{2} e^{jk_{1}z}$$

Assuming EI to be real for computational simplicity,

$$\overline{\mathcal{F}}_{0}^{\text{total}}(t) = \text{Re}\left\{\overline{E}_{0}^{\text{total}}e^{3\omega t}\right\} = \text{Re}\left\{-j2E_{i}\sin(k_{i}z)\left(\cos\omega t + j\sin\omega t\right)\hat{a}_{x}\right\}$$

$$\overline{\mathcal{F}}_{0}^{\text{total}}(t) = 2 E_{1} \sin(k_{1}z) \sin(\omega t) \hat{\alpha}_{x}$$
 in time-domain

Similarly, the total H-field in medium (1) can be obtained as:

$$\frac{-1}{H_0} = H^i + H' = \hat{a}_y \frac{E_i}{m_i} \left( e^{-jk_i z} - \prod_{i=1}^{n} e^{jk_i z} \right) = \hat{a}_y \frac{E_i}{m_i} \left( e^{-jk_i z} + e^{jk_i z} \right)$$

$$\frac{1}{H_0^{total}} = \frac{2E_1}{\eta_1} \cos(k_1 z) \hat{a}_y$$

$$= \frac{1}{\eta_1} \cos(k_1 z) \cos(k_1 z)$$



FIGURE 7-9 Standing waves of  $\mathbf{E}_{\widehat{\mathbf{I}})}^{\uparrow \downarrow +} = \mathbf{a}_x E_{\widehat{\mathbf{I}}}$  and  $\mathbf{H}_{\widehat{\mathbf{I}})}^{\uparrow \downarrow -} = \mathbf{a}_y H_{\widehat{\mathbf{I}}}$  for several values of  $\omega t$ .

(\*) From the superposition of oppositely traveling waves, STANDING WAVES are formed in the dielectric medium (i.e for 2<0).

| wt    | sin wt    | cos wt | Eo              | HO                    |
|-------|-----------|--------|-----------------|-----------------------|
| 0,211 | 0         | 1      | 0               | 2E1 cosk, Z           |
| 11/4  | 1/52      | 1/12   | 2EI LE sinkiz   | 2E1 1 cosk, 2         |
| 11/2  | 1         | 0      | 2E, sink,z      | 0                     |
| 3 17  | 1         | -1/2   | 28, 1/2 sink,2  | - 2E1 to cosk, 2      |
| π     | 0         | -1     | 0               | - 2 <u>E1</u> cosk, 2 |
| 517/4 | - 1<br>V2 | -1/2   | -2E, 1/2 sink,2 | -2 = 1 12 cosk, 2     |
| 3.5.  | -1        | 0      | -2E1 sink, 2    | 0                     |

## Basic observations about the STANDING WAVES

(1) Zeros (nulls) of 
$$\overline{E_0}(t)$$
  $\overline{\int_0^{tot}(t)}$   $\overline{\int_0^{tot}(t)}$ 

Similarly,

Maxima/minima of 
$$\overline{E}_{0}(t)$$
 occur when  $\left[k_{12}=-(2n+1)\frac{T}{2}\right]$  and  $\left[k_{12}=-(2n+1)\frac{T}{2}\right]$  or  $\left[k_{12}=-(2n+1)\frac{T}{2}\right]$   $\left[k_{12}=-(2n+1)\frac{T}{2}\right]$ 

- 2) Etotal always becomes zero on the perfect conductor boundary, i.e, at z=0 due to the sin(k,z) term.
- (3) Flood takes its either maximum or minimum value (depending on the value of as with term at a given time instant) at the boundary z=0 due to the as(k,z)term.
  - The surface current density vector  $\overline{J}_S$  at  $\overline{z}=0$  boundary candidate on torgetical can be computed using the boundary condition on torgetical H-field (taking into account the fact that  $\overline{H}=0$  in the perfect conductor medium.

    Perfect conductor medium.  $\hat{n}=-\hat{q}_z$   $\hat{q}_z$   $\hat{q}_z$

$$D = -a_2$$
 $D = \frac{1}{2}$ 
 $D = \frac{1$ 

- Distance between two successive nodes is  $\frac{2}{2}$ Distance """ maxima is  $\frac{2}{2}$ Distance """ minima is  $\frac{2}{2}$ Distance between a node and the closest extremm point (minimum or maximum) is  $\frac{2}{4}$ .
  - (6) Standing waves  $\overline{E}_0^{tot}$  and  $\overline{H}_0^{tot}$  are in time quadrature (having sin wt and cos wt terms) and in space quadrature (i.e, shifted by a quarter wavelength (2) with respect to each other due to the sink, 2 and cosk, 2 terms).

Problem: In the figure below, a receiving antenna (RA) is placed "d" meters in front of a large PEC place. The antenna responds to the total field  $E^{total} = E^{t} + E^{t}$ . If the incoming EM radiation is a u.p. oscillating at  $f = 100 \, \text{MHz}$ ,

a) For which & values, antenna picks up the max. field?
b) For which & values, antenna senses no field at all?



Soln: We know

that there will

be both incident

and reflected

field in our

Jue to the presence

of PEC plate.

A large PEC plate (Perject Electric Conductor) Nodes of  $\overline{E}$  total =  $\overline{E}^i + \overline{E}^r$  occur at  $z = n \frac{\lambda}{2}$ 

Extremum of  $\overline{F}$  for occur at  $z=(2n+1)\frac{\lambda}{4}$ where  $\lambda = \frac{C}{f} = \frac{3\times10^8}{100\times10^6} = 3 \text{ m.}$   $\lambda = 3 \text{ m.}$   $\lambda = 3 \text{ m.}$   $\lambda = 3 \text{ m.}$ 

Su, (a) for d=0,1.5m, 3m, 4.5m, 6m., -... RA senses zero intentity (b) For d=0.75m., 2.25m, 3.75m., 5.25m, -... RA senses maximum intensity.