REPORT DOCUMENTAT		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIFIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERED
World Geodetic System 1984		
	1	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(s)
Dr. Mark M. Macomber, Deputy Di Systems and Techniques		N/A
PERFORMING DEGANIZATION NAME AND AD	DRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Defense Mapping Agency		
Bldg 56, US Naval Observatory	1	ł
Washington, D.C. 20305-3000		
11. CONTROLLING OFFICE NAME AND ADDRESS	5	12. REPORT DATE
	1	N/A
Same as above	, , , , , , , , , , , , , , , , , , ,	13. NUMBER OF PAGES
चार	different from Controlling Office)	15. SECURITY CLASS. (of this report)
	military mon comments	in second to second
AD-A147 409	,	Unclassified
AD A 14/ 403		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

Unlimited

Plus document has been approved to public release and sales its Planting is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Geodesy World Geodetic System Gravity Earth Cravitational Model

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

DoD has developed a new World Geodetic System 1984 (WGS 84) which includes an ellipsoidal model, a gravity formula, an earth gravitational model and transformation equations from conventional geodetic datums to WGS 84. Implementation of this System will be in 1985.

DD FORM 1473

11 09 026

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CLEARED OPEN PUBLICATION

WORLD GEODETIC SYSTEM 1984

NOV 6 1984 23

CORATE FOR FREEDOM OF INFORMATION
OND SECURITY REVIEW (OASD--PA)

Mark M. Macomber
Defense Mapping Agency
United States of America

The Defense Department of the United States has developed a World Geodetic System 1984 (WGS 84) for cartographic application in those cases where mapping with respect to the center of mass of the earth is desired. Use of this system will be initiated in 1985, but complete implementation will not be effected for a period of several years.

WGS 84 consists of the following components:

An ellipsoidal model.

An ellipsoidal gravity formula.

An earth gravitational model.

Transformation equations from conventional geodetic datums to WGS 84.

The ellipsoidal model is based on the Geodetic Reference System model of 1980 (GRS 80) adopted by the International Union of Geodesy and Geophysics, but the flattening term is indicated by a normalized second harmonic coefficient in lieu of the regular coefficient. The defining parameters are given in Table 1.

This document has been approved for public release and sale; its distribution is unlimited.

Page - 1

84 11 09 026

The ellipsoidal gravity formula is given in Table 2. Only the closed form of the formula is given, since the ready availability of effective calculators has eliminated the need to use a truncated infinite series as an approximation.

The earth gravitational model, given in Table 3, is complete through degree and order 12. This model is based on three independent data types:

- a. Dynamics of near-earth satellites which have been tracked by means of doppler shift, and the higher altitude Lageos satellite tracked by laser ranging.
- b. Satellite altimetry data from the world's oceans.
- c. Surface mean anomaly data (3 degree grid).

The transformation equations from conventional geodetic datums to WGS 84 have been based primarily on doppler positioning operations; however, the determination of the longitudinal zero point was made using Very Long Baseline Interferometry. Table 4 provides the equations to transform to WGS 84 from:

North American Datum 1927

South American Datum 1969

European Datum 1950

Tokyo Datum

PARTICOLOGY PROGRAM NAMES OF THE PROGRAM CONTRACT BANKS AND THE PROGRAM CONTRACT FOR THE PARTICIPATION OF THE PART

.

Australian Geodetic Datum

In the past we have used a mean datum shift for each datum, and employed the Molodensky Transformation Equations for conversions. The primary reason for using such a technique is the ease of transformation. An undesireable consequence of that technique is that distortions in the geodetic network are

transformed into the world geodetic system positions. In WGS 84, regression equations are used which fit the existing geodetic net to the observed doppler positions, thus removing many of the distortions inherent in the older geodetic nets.

In addition to being used by the Defense Mapping Agency for charting purposes, WGS 84 will be the reference frame used by the Global Positioning System when it becomes operational.

A Technical Report describing the development of WGS 84 is in preparation and should be printed by June 1985.

:

, ionatoa F	3F
LE CRACE Constant	
AraDro	Ondes
A1	,1.

TABLE 1

はいはは、そのこととなっているとのできます。

·:

WGS 84 ELLIPSOID

DEFINING PARAMETERS

PAKAMETEKS	NOTATION	VALUE
Semimajor Axis	ત્ય	6,378,137 m
Second Degree Normalized Zonal Harmonic Coefficient of the Geopotential	5 _{2,0}	- 484.166 85 x 10 ⁻⁶
Angular Velocity of the Earth	з	72.921 15 x 10 ⁻⁶ rad s
The Earth's Gravitational Constant (Mass of Earth's atmosphere included)	E 5	398,600.5 x 10 m s = 2
PARAM	PARAMETER VALUES FOR SPECIAL APPLICATIONS	. APPLICATIONS
Angular velocity of the Earth	• 3	72.921 151 467 x 10 ⁻⁶
The Earth's Gravitational Constant (Mass of Earth's atmosphere not included)	. WS	398,600.15

TABLE 2

AZZZZA WESTOWOW SYSTEMS WOODOWS WESTOWN WOODOWS

yyyen yennen bankan Z :

WGS 84

ELLIPSOIDAL GRAVITY FORMULA

 $\gamma = 978,032.677 15 \frac{(1+0.001931851353 \sin^2 \phi)}{(1-0.00669438002290 \sin^2 \phi)^2}$ mgals

MEAN VALUE OF THEORETICAL (NORMAL) GRAVITY

_ Y = 979,764.465 6 mgals TABLE 3
WGS 84
EARTH GRAVITATIONAL MODEL
(TRUNCATED TO n=m=12)

PICIENTS	, n , n		0.3278 0040 E-07		0.6133 4720 E-08			-0.5349 1073 E-06	-0.2374 1002 E-06		0.9423 1346 E-07	0.8883 5092	-0.2122 3369	-0.1269 6607	0.1732 1672 E-07	0.1520 2633 E-06	0.2280 5664 E-07			0.4785 6967 E-07	0.4786 7693 E-07	-0.8346 1853 E-07	
NORMALIZED GEOPOTENTIAL COEFFICIENTS	E,u	4821	-0.7418 0259 E-07	0.5182 4409 E-07	0.5337 0577 E-07	-0.8869 4856 E-07		-0.2681 8820 E-06	0.1023 7832 E-07	0.8581 9217 E-07	196	3832	0240	3034	0.1024 6290 E-08	-0.3584 3745 E-06	-0.2099 1457 E-08		0.4297 9835 E-07	0.1888 9342 E-07	0.7355 3952 E-07	-0.1213 2459 E-07	
DEGREE AND ORDER	E	9	9	6 2	9	9		9	9	7 0		. 7	7 3		7 5	7 6	7 7		8	8	8	8	
LIZED COEFFICIENTS	e, a			-0.1397 9548 E-05			0.2508 5759 E-06	-0.6210 2428 E-06	0.1415 2388 E-05		-0 4742 0394 E-06	9158	2491	3114		-0.9249 2959 E-07	-0.3200 7416 E-06	-0.2132 8272 E-06	0.5321 3480 E-07		-0.6705 9456 E-06		etc.
NORWALIZED GEOPOTENTIAL COEFFI	E C	-0.4841 6685 E-03		0.2439 5796 E-05		0.9570 6390 E-06	0.2031 8729 E-05	0.9066 6113 E-06	0.7177 0352 E-06	0.5369 9587 R-06	ROAA	7519	2321	6124	0.7109 2048 E-07	-0.6418 5265 E-07		-0.4490 3639 E-06	-0.2971 9055 E-06		0.1752 3221 E-06		10^{-3} , E-05 = X 10^{-5} ;
DEGREE AND ORDER	E	2 0	2	2		0 E	3 1	3	e e	4	. 4	. 4	. 4. . w	4	2	5	2	5	5 4		5 5		$E-03 = X \cdot 10^{-3}$

Table 3 - '

TABLE 3 (Continued)
WGS 84 EARTH GRAVITATIONAL MODEL (TRUNCATED TO n=m=12)

ents	R,C																							
NORMALIZED GEOPOTENTIAL COEFFICIENTS	io e,u	-0-			,																			
3		9																						
图 代	E	2	9	7	œ	δ	10			0	-	~	ო	4		2	9	7	6	0		10	=	
DEGREE AND ORDER	E	10	10	2	10	10	10			=	=	11	=	=		=	=	=	-	=		11	=	
icients	a,u S	0.7160 3924 E-07	0.8775 1047 E-07	0.3090 4202 E-06	0.7466 1766 E-07	0.1221 0258 E-06		0.2389 4354 E-07	-0.2687 6665 E-07	-0.8592 8431 E-07	0.2607 7030 E-07		-0.5033 7365 E-07	0.2227 5858 E-06	-0.9729 8769 E-07	-0.3102 6222 E-08	0.9638 1072 E-07							
NORMALIZED GEOPOTENTIAL COEFFICIENTS	E L	-0.2420 8264 E-06	-0.2496 6587 E-07	9 3424	Ŋ	~	0.3317 3231 E-07	7969	5 2093		σ		-0.1690 2791 E-07	1 7910	-0.1164 8016 E-06	9 6045	7							
REE C ER	E	4	ĸ	9	7	.	0	-	~ ~	· M	4	,	'n	9	7	- Φ	σ	١	0	•	٠,	4 m	۰ ح	P
DEGREE AND ORDER	£	Φ	α	œ	ω	&	o	0	6	0	0	•	9	 6	6	9	σ	١	10	£	•	2 2) (?

~

Table 3 - 3

TABLE 3 (Continued)
WGS 84
EARTH GRAVITATIONAL MODEL
(TRUNCATED TO n=m=12)

D FFICIENTS	to a													
NORMALIZED GEOPOTENTIAL COEFFICIENTS	in E, d													
DEGREE AND ORDER	E													
D FFICIENTS	ı v		-0-											
NORMALIZED GEOPOTENTIAL COEFFICIENTS	e, u	-0-	-0-											
	E	0	_	7	æ	4	'n	9	7	c o	0	5	=	12
DEGREE AND ORDER	E	12	12	12	12	12	12	12	12	12	12	12	12	12

Transformation Equations Conterminous States of the U.S. North American Datum 1927 (NAD 27) to WGS 84

$$\Delta \phi$$
 (") = 0.18248 - 0.86722 U + 0.11882 V + 1.21366 U² - 0.90132 U³ + 0.28702 V³ - 0.39213 U³V - 2.39061 U⁴V - 0.10417 V⁵

$$\Delta\lambda$$
 (") = - 1.16464 + 1.99762 V - 0.76293 UV - 2.64159 U³ - 0.06681 UV²

$$\Delta H$$
 (m) = - 37.486 + 4.476 U - 7.333 V - 12.375 U² + 6.543 UV + 7.968 V²

- 5.168
$$U^2V$$
 - 4.237 UV^2 + 0.883 V^3 - 47.903 U^3V + 160.491 U^5V

$$+ 121.064 U^4V^2 - 41.751 U^2V^4 + 17.008 U^2V^6 + 17.751 U^6V^5$$

where:

1日本のからなって、日本のでは、このは、日本のでは、

$$U = K(\phi - 37)$$

 $V = K(\lambda - 265)$

$$K = 0.0523599$$

 ϕ = Geodetic latitude in degrees and decimal part of a degree - positive north.

 λ = Geodetic longitude in degrees and decimal part of a degree - positive east from 0° to 360°.

H = Geodetic height.

$$φ$$
(WGS 84) = $φ$ (NAD 27) + $Δφ$
λ(WGS 84) = $λ$ (NAD 27) + $Δλ$
H(WGS 84) = H(NAD 27) + $Δ$ Η

These equations reproduced Doppler derived WGS 84 positions to an RMS accuracy of \pm 1.3 meters at over 390 stations.

$$\phi$$
 = 34° 47' 08".833 $\Delta \phi$ = 0".376 λ = 273° 25' 07".825 $\Delta \lambda$ = -0".254 ΔH = -40.03m

Transformation Equations South America South American Datum 1969 (SAD) to WGS 84

$$\Delta \phi$$
 (") = -1.70423 + 0.32457 V + 1.47643 U² + 0.16325 U³ - 1.25510 U²V

- $-0.91714 \text{ V}^3 2.04195 \text{ U}^4 0.23666 \text{ U}^4\text{V} + 0.60041 \text{ V}^5 + 0.97497 \text{ U}^6$
- 0.19572 U5V2 + 3.98279 U4V3 0.15899 U8 + 1.07084 U4V4
- $-1.74285 U^{2}V^{6} + 0.03167 U^{9}V + 0.64519 U^{7}V^{4} 1.77266 U^{6}V^{5}$
- + 2.28485 U*V* 1.36268 U*V* 0.72115 U*Y* 1.77821 U*V*
- 0.93127 U°V°

$$\Delta\lambda$$
 (") = -2.01792 + 0.43588 U + 0.45994 V - 0.08554 U² - 0.48166 UV

- $-0.94304 \text{ V}^2 0.39748 \text{ U}^2\text{V} + 0.19540 \text{ U}^2 + 2.26011 \text{ V}^4 + 4.14470 \text{ U}^3\text{V}^3$
- $-0.22411 U^2V^4 2.29019 V^6 2.30331 U^4V^3 2.61500 U^5V^3$
- $+ 0.86795 V^8 3.64267 U^4V^5 0.09489 V^9 + 1.69296 U^7V^3 3.79714 U^5V^5$
- + 11.04801 U^6V^5 2.72999 U^7V^5 + 2.42904 U^5V^7 1.57488 U^9V^5
- $-6.46086 U^8V^7 + 4.36655 U^9V^7$

$$\Delta H$$
 (m) = 5.527 - 8.550 U - 26.828 V + 43.525 U² + 12.372 V² - 33.781 UV²

- $+ 9.410 V^3 104.522 U^4 10.616 U^5 + 19.940 U^2V^3 + 81.922 U^6$
- $-175.734 \text{ U}^4\text{V}^2 + 172.237 \text{ U}^5\text{V}^2 + 28.891 \text{ U}^3\text{V}^4 9.569 \text{ V}^7 21.417 \text{ U}^8$
- + 228.440 U^6V^2 + 17.699 U^2V^6 + 18.454 UV^7 + 3.190 U^9 193.669 U^7V^2 68.982 U^8V^7
- $-31.362 \text{ U}^{4}\text{V}^{6} 54.635 \text{ U}^{3}\text{V}^{7} + 53.829 \text{ U}^{9}\text{V}^{2} + 31.681 \text{ U}^{5}\text{V}^{9} 4.609 \text{ U}^{9}\text{V}^{9}$

where:

...

$$U = K(\phi + 20)$$

 $V = K(\lambda - 300)$

$$K = 0.0523599$$

 ϕ = Geodetic latitude in degrees and decimal part of a degree - negative south.

 λ = Geodetic longitude in degrees and decimal part of a degree - positive east from 0° to 360°.

H = Geodetic height.

$$\phi$$
(MGS 84) = ϕ (SAD) + $\Delta\phi$
 λ (MGS 84) = λ (SAD) + $\Delta\lambda$
H(MGS 84) = H(SAD) + Δ H

These equations reproduced Doppler derived WGS 84 positions to an RMS accuracy of \pm 1.6 meters at over 75 stations in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Trinidad, and Venezuela.

$$\phi = -45^{\circ} 54' 34".179$$

 $\lambda = 291^{\circ} 30' 18".344$

$$\Delta \phi = -1.418$$

$$\Delta \lambda = -2"909$$

$$\Delta H = 32.10m$$

TRANSFORMATION EQUATIONS WESTERN EUROPE EUROPEAN DATUM 1950 (ED) TO WGS 84

$$\Delta \phi$$
 (") = -2.66438 + 2.07710 U + 0.68334 V + 0.58519 U² + 0.44408 U³ + 0.25393 V³ - 1.45689 U²V² + 1.25066 UV³ - 0.68969 UV⁵ - 10.16433 U³V⁴ + 42.98620 U⁵V⁶ + 1.61758 U⁴V⁸ - 48.16074 U⁷V⁸ + 4.58189 U⁹V⁷

$$\Delta\lambda$$
 (") = -4.47322 - 1.65710 U + 1.68392 V - 0.94677 U² + 1.10939 UV - 0.82969 U³ + 2.49213 U²V - 0.77921 U²V² - 0.21330 V⁴ - 5.76767 U⁴V³ + 4.00247 U²V⁵ + 0.45095 U²V⁸ - 19.06023 U⁴V⁹ + 25.31250 U⁶V⁹

$$\Delta H$$
 (") = 35.190 - 28.978 U - 24.827 V + 14.230 U² + 4.072 UV + 7.569 U²V + 9.150 UV² + 20.899 V³ - 16.693 V⁵ + 41.182 U³V³ - 5.615 UV⁸ - 81.266 U⁷V⁵

where:

$$U = K(\phi - 52)$$

 $V = K(\lambda - 10)$
 $K = 0.0523599$

 ϕ = Geodetic latitude in degrees and decimal part of a degree - positive north.

 λ = Geodetic longitude in degrees and decimal part of a degree - positive east from 0° to 180° and negative west from 0° to 180°.

H = Geodetic height.

$$\phi$$
(WGS 84) = ϕ (ED) + $\Delta\phi$
 λ (WGS 84) = λ (ED) + $\Delta\lambda$
H(WGS 84) = H(ED) + Δ H

These equations reproduced Doppler derived WGS 84 positions to an RMS accuracy of \pm 1.0 meter at over 80 stations in Austria, Denmark, Federal Republic of Germany, Finland, France, Gibraltar, Greece, Netherlands, Norway, Portugal, Spain, and Switzerland.

$$\phi$$
 = 46° 41' 42".893 $\Delta \phi$ = - 3".071 λ 13° 54' 54".088 $\Delta \lambda$ = - 3".750 ΔH = 39.19m

Transformation Equations Japan - Korea Tokyo Datum (TD) to WGS 84

$$\Delta \phi$$
 (") = 11.95340 - 9.62801 U + 0.88665 U³ - 0.47946 U²V + 7.58688 UV²

$$\Delta\lambda$$
 (") = - 10.36350 - 2.05554 V + 1.65977 U²V - 2.78777 U⁵ - 6.06792 U⁴V + 4.94331 U⁷ + 1.85890 U⁴V⁴

$$\Delta H$$
 (m) = 11.514 + 43.175 U - 24.604 V - 14.246 U² + 9.263 U³V

where:

$$U = K(\phi - 35)$$

 $V = K(\lambda - 135)$

K = 0.1570796

 ϕ = Geodetic latitude in degrees and decimal part of a degree - positive north.

 λ = Geodetic longitude in degrees and decimal part of a degree - positive east from 0° to 360°.

H = Geodetic height.

$$\phi$$
(WGS 84) = ϕ (TD) + $\Delta\phi$
 λ (WGS 84) = λ (TD) + $\Delta\lambda$
H(WGS 84) = H(TD) + Δ H

These equations reproduced Doppler derived WGS 84 positions to an RMS accuracy of \pm 1.0 meter at 13 stations in Japan, South Korea and Okinawa.

$$\phi$$
 = 40° 42' 38".260 λ = 141° 22' 23".979

$$\Delta \phi = 9.715$$
 $\Delta \lambda = -13.117$
 $\Delta H = 20.84m$

Tranformation Equations Australia Australian Geodetic Datum (AGD) to WGS 84

$$\Delta \phi$$
 (") = 5.19094 + 0.10880 U + 0.53546 V - 0.26415 U² + 0.66905 U²V + 0.70726 UV² - 1.08711 U²V² - 0.97089 UV³ + 2.86844 U⁴V² - 5.96789 U⁴V³ - 6.11875 U³V⁶

$$\Delta\lambda$$
 (") = 4.38095 - 0.91915 U - 0.62471 V + 0.20891 UV - 0.27391 V² + 0.93129 U⁴ + 0.57341 U³V² - 0.67696 U⁸

$$\Delta H$$
 (m) = 7.838 + 54.741 U + 35.354 V + 11.794 UV - 2.373 V² - 29.286 U³V - 3.921 U³V² - 11.470 UV⁴ + 30.504 U⁵V + 19.619 UV⁸ + 14.894 UV⁹

where:

$$U = K(\phi + 27)$$

 $V = K(\lambda - 134)$ $K = 0.0523599$

 ϕ = Geodetic latitude in degrees and decimal part of a degree - negative south.

 λ = Geodetic longitude in degrees and decimal part of a degree - positive east from 0° to 360°.

H = Geodetic height.

$$\phi$$
(WGS 84) = ϕ (AGD) + $\Delta\phi$
 λ (WGS 84) = λ (AGD) + $\Delta\lambda$
H(WGS 84) = H(AGD) + Δ H

These equations reproduced Doppler derived WGS 84 positions to an RMS accuracy of \pm 1.2 meters at over 100 stations.

$$\phi = -17^{\circ} \ 00' \ 32".776$$
 $\lambda = 144^{\circ} \ 11' \ 37".245$
 $\Delta \phi = 5".476$
 $\Delta \lambda = 3".636$
 $\Delta H = 55.81m$

5t 1429/84 N

TABLE 5

WGS 84 EARTH GRAVITATIONAL MODEL (TRUNCATED TO n=m=12)

GREE ND DER	NORMALIZE GEOPOTENTIAL COE		DEG AN ORD		NORMALIZED GEOPOTENTIAL COEFFICIENTS						
m	Č _{n,m}	Ŝ _{n,m}	n	m	Č _{n,m}	Ŝ _{n,m}					
0	-0.48416685E-03		6	3	0.53370577E-07	0.613347 20E-08					
1			6	4	-0.88694856E-07	-0.47260945E-06					
2	0.24395796E-05	-0.13979548E-05	6	5	-0.26818820E-06	-0.53491073E-06					
0	0.95706390E-06		6	6	0.10237832E-07	-0.23741002E-06					
1	0.20318729E-05	0.25085759E-06	7	0	0.85819217E-07						
2	0.90666113E-06	-0.62102428E-06	7	1	0.27905196E-06	0.94231346E-07					
3	0.71770352E-06	0.14152388E-05	7	2	0.32873832E-06	0.88835092E-07					
0	0.53699587E-06		7	3	0.24940240E-06	-0.21223369E-06					
. 1	-0.53548044E-06	-0.47420394E-06	7	4	-0.27123034E-06	-0.12696607E-06					
2	0.34797519E-06	0.65579158E-06	7	5	0.10246290E-08	0.17321672E-07					
3	0.99172321E-06	-0.19912491E-06	7	6	-0.35843745E-06	0.15202633E-06					
4	-0.18686124E-06	0.30953114E-06	7	7	-0.20991457E-08	0.22805664E-07					
0	0.71092048E-07	! !	8	0	0.42979835E-07						
1	-0.64185265E-07	-0.92492959E-07	8	1	0.18889342E-07	0.47856967E-07					
2	0.65184984E-06	-0.32007416E-06	8	2	0.73553952E-07	0.47867693E-07					
3	-0.44903639E-06	-0.21328272E-06	8	3	-0.12132459E-07	-0.83461853E-07					
4	-0.29719055E-06	0.53213480E-07	8	4	-0.24208264E-06	0.71603924E-07					
5	0.17523221E-06	-0.670\$9456E-06	8	5	-0.24966587E-07	0.87751047E-07					
0	-0.15064821E-06		8	6	-0.65093424E-07	0.30904202E-06					
1	-0.74180259E-07	0.32780040E-07	8	7	0.66323292E-07	0.74661766E-07					
2	0.51824409E-07	-0.35866634E-06	8	8	-0.123722 81E-06	0.12210258E-06					

 $^{-03 =} X \cdot 10^{-3}$; E-05 = X $\cdot 10^{-5}$; etc.

TABLE **5** (Cont'd)

WGS 84 EARTH GRAVITATIONAL MODEL (TRUNCATED TO n=m=12)

EGRE ND RDER		NORMALI GEOPOTENTIAL CO		DEGI AND ORD		NORMALIZED GEOPOTENTIAL COEFFICIENTS						
	m	C _{n,m}	S _{n,m}	n	m	Č,,m	S _{n,m}					
	0	0.33173231E-07		11	1	0.9537 5839E-08	-0.22094828E-07					
	1	0.14747969E-06	0.23894354E-07	11	2	0.21716225E-07	-0.10224810E-06					
	2	0.22052093E-07	-0.26876665E-07	11	3	-0.30023695E-07	-0.13422019E-06					
	3	-0.16256047E-06	-0.85928431E-07	11	4	-0.30407161E-07	-0.69823333E-07					
	4	-0.17193827E-07	0.26077030E-07	11	5	0.35104609E-07	0.49175170E-07					
	5	-0.16902791E-07	-0.50337365E-07	11	6	-0.37911105E-08	0.36848522E-07					
	6	0.65717910E-07	0.22275858E-06	11	7	0.25774039E-08	-0.88658395E-07					
	7	-0.11648016E-06	-0.97298769E-07	11	8	-0.71396627E-08	0.23243077E-07					
	8	0.18896045E-06	-0.31026222E-08	11	9	-0.30246313E-07	0.41776400E-07					
	9	-0.48275744E-07	0.96381072E-07	11	10	-0.53424279E-07	-0.18716766E-07					
}	0	0.50931575E-07		11	11	0.47514858E-07	-0.70415796E-07					
; ;) . ,	1	0.88706517E-07	-0.12536457E-06	12	0	0.34073235E-07						
)	2	-0.82375203E-07	-0.38280049E-07	12	1	-0.60609926E-07	-0.38189082E-07					
)	3	-0.13137371E-07	-0.15553732E-06	12	2	0.74200188E-08	0.24640620E-07					
)	4	-0.87424319E-07	-0.79215732E-07	12	3	0.421 49817E -07	0.32189594E-07					
)	5	-0.53980821E-07	-0.46294947E-07	12	4	-0.64346831E-07	-0.25364931E-08					
)	6	-0.42371448E-07	-0.79680607E-07	12	5	0.33126200E-07	-0.40658586E-09					
)	7	0.83736045E-08	-0.25636582E-08	12	6	0.86981502E-08	0.36711094E-07					
,	8	0.41239589E-07	-0.92269095E-07	12	7	-0.16598048E-07	0.34475954E-07					
:)	9	0.12539514E-06	-0.37687117E-07	12	8	-0.26843700E-07	0.17838309E-07					
) 	10	0.10124370E-06	-0.24874984E-07	12	9	0.42293015E-07	0.27107811E-07					
	0	-0.58114696E-07		12	10	-0.44237357E-08	0.30823394E-07					
				12	11	0.96462514E-08	-0.60711291E-08					
		X 10 ⁻³ ; E-05 = X 10 ⁻⁵		12	12	-0.30878714E-08	-0.10932316E-07					