

参考教材

- 1. 《深入理解计算机系统》(Computer Systems: A Programmer's Perspective),第二版 或第三版均可
 - 第2、3章
 - 课程ppt的部分素材也来源于该书作者的课程网站
- 2. SEE MIPS RUN (MIPS体系结构透视)第二版, 2008

总分

• 考试 (60%) + 作业 (10%) + 实验 (30%)

Outline

- 课程介绍
- 汇编语言与计算机系统结构
- 典型指令集初步介绍

课程定位

"汇编课的应用二进制接口(ABI)内容简化了编译系统相关内容的讲解难度……"

编译原理主讲 王生原副教授

与计算机组成原理、编译原理、 操作系统、数字逻辑设计等组 成计算机系统核心课程

·<u>汇编语言程序设计</u>与计算机组成原理作为软硬件界面起到"承上启下"的作用

"汇编指令内容可以直接用于本课程的处理器设计……" 计算机组成原理主讲 刘卫东教授 "原先的学生不熟悉课程中涉及到的汇编指令,需要重新学习,现在这方面上手很快……" 操作系统课程主讲向勇副教授

计算机应用类

为后续课程打下指令集、汇编编程以及微体系结构入门的基础。

看待计算机系统的不同角度

- 传统角度: 从计算机构造者的角度入手
- 本课程角度: 从编程者、使用者的角度入手
- 其它角度:对于构建新型存算合一计算系统的启示
 - 补充内容

国外著名大学一二年级课程特点

MIT

Stanford

UC Berkeley

学期	MIT-EECS	MIT-CSE	СМИ	Stanford	UCB
1 秋	18.01.徽积分 2	18.01.微积分 2	21-120 Differential & Integral Calculus 10	以下1秋总计18	MATH 1A (4): 微积分
	8.01 物理 1	8.01 物理 1	21-127 Concepts of Mathematics 10	MATH41(5)	
			15-122 Principles of Imperative Computa- tion 10 命令式计算原理	THINK (4) +WRITING (4) 程序结构	CS 10(4): The Beauty and Joy of Computing 导论课
			15-128:Freshman Immigration Course 1	CS106A(5) Programming Methodology	Reading & Composition A (4)
			15-131:Great Practical Ideas in Computer Science (optional) 计算机科学中的实践	以下1冬总计14 思维	L&S Breadth(3)
			76-101:Interpretation and Argument 9	MATH42(5) 41 10 11 14	
			99-10x:Computing @ Carnegie Mellon 3	MATH 42(5) PHYSICS(4) 数据结构	
1 春	18.02 徽积分 2	18.02 微积分 2	15-150 Principles of Functional Programming 10 函数式编程原理程序/	CS106B(5) Programming Abstractions 软件结构 编程抽象	EL ENG 16A(4) Designing Information Devices and Systems I
	8.02 物理 2	8.02 物理 2	15-251 Great Theoretical Ideas in Computer Science 12 计算机科学中的	以下1春总计17 理论思维	L&S Breadth(3)
	6.01 EECS 导论	6.01 EECS 导论	21-122 Integration, Differential Equations, and Approximation 10	MATH 选(5)+ PHYSICS43 (4) +ENGR 40M(5) Introductory Electronics +Intro Sem(3)	CS 61A(4) 程序结构 The Structure and Interpre- tation of Computer Programs
			1人文选+1科学选: 总计18		Reading & Composition A (4)
2 秋	18.03 微分方程	18.06 线性代数	21-241 Matrices and Linear Transformations 10	以下 2 秋总计 19	EL ENG 16B (4) Designing Information Devices and Systems II
	6.041/6.042 概率论/离散数学 数 报	6.042 离散数学 结构	15-213 Introduction to Computer Systems 12 计算机系统导论机器结构	CS103(5) Mathematical Foundations of Computing +CS107(5) Computer Organization and System	CS 61B(4) 数据结构 Data Structures
	CS Fundation	•	15-221 Technical Communication for Computer Scientists 9 * 17 41 16	语言(5)+写作(4) 计算机组织与系统	L&S Breadth(4)
			1科学选+1自选:总计1数人7/6 26 79	以下 2 冬总计 15	L&S Breadth(3)
2 春	6.02 EECS 导论 机 哭	结构	15-210 Parallel and Sequential Data Structures and Algorithms 12 数据结构与	语言(5) 算法	CS 61C(4) 机器结构
	EE Foundation	CS Equidation	1 CS 选+1 人文选+1 科学选+1 自选: 总计 36	CS109(5) Introduction to Probability for Computer Scientists 计算机系统原理	CS 70(4) Discrete Mathematics and
	课程	名字虽然	然不同,但课程	大学 Principles of Computer Systems 文	Probability Theory (古代) (本文) (本文) (本文)

美国一流大学相关必修课情况

₽	MITℯ UC Berkeleyℯ		stanford₽	CMU₽	
课程名称₽	Computation Structures	Great Ideas in Computer Architecture (Machine Structures) €	Computer Organization and Systems (COS) ₽	Introduction to Computer System(ICS) ₽	
开设专业*↩	EE \ CS₽	CS₽	CS₽	CS₽	
课程描述↩	门电路→功能部件→ 单周期和流水线 CPU; C 语言→汇编→指令→ 过程→进程;并行、性 能评价→	c 语言→汇编→指令;应用级 并行→数据级并行→线程级并 行→指令级并行→寄存器传送 级硬件描述』	系结构;编译→链接→装入	C语言→汇编→指令→微体系结构;编译→链接→装入→执行;程序性能优化、存储器结构与管理、并发和多线程、网络编程→	
粉材** 。	未指字(进义)』	C"K&R"+ COD "P&H"↔	DD"R8.O"+ C"K8.D"	A DD"B&O"+ C"K&D" 43	
	1302	+ WSC"B&H"₽	7. 500 7 6 11011	,,, , , , , , , , , , , , , , , , , ,	
模型机₽	型机→ 自定义 (RISC) → MIPS (RISC) →		IA32₽	IA32₽	
助教人数↩ 12↩		7↔	15₽	未列出↩	
先行课程或 要求₽	了解编程(函数式)和 数据结构基础,具备电 子技术基础知识₽	了解和掌握编程(函数式)和 数据结构基础,具备电子技术 基础知识₽	了解和掌握编程和数据结 构基础,具备电子技术基础 知识₽	了解和掌握编程(函数式) 和数据结构基础,具备电子 技术基础知识₽	
实验内容₽	共 8 个实验,涉及门电路特性、ALU、图灵机、汇编、处理器设计、鼠标中断方式 I/O 等₽	共 12 个实验,4 个大作业,涉 及到 Debug、EC2、MapReduce, MIPS 汇编、数据级并行、线程 级并行、Cache、虚拟存储管理 等,大作业和实验成绩占 60%	共 8 个实验和 7 个大作业, 涉及数据的表示、堆区分 配、过程调用和栈的构成及 使用、溢出、编译工具和编 译优化等,大作业和实验成 绩占 60%₽	共7个实验,涉及数据的表示、Cache、缓冲区溢出、过程调用及栈的构成与使用、 堆的分配、代理设置等,实验成绩占50%₽	
实验手段₽	各类模拟器↩	编程、云计算平台、模拟器↩	编程↩	编程↩	
相关后维课 程或教学内 容₽	"数字系统设计"和 "计算机体系结构及 系统"等,涉及 CPU 设 计实验和体系结构方 面的模拟实验₽	"数字系统设计"和"计算机体系结构及工程"等,涉及 CPU设计实验和体系结构方面的模拟实验,前者是同时为 CS 和EE 的学生开设的课程₽	后继课程为" Digital Systems II ",教材为 COD"P&H", 主要是流水线 CPU 和存储 系统设计,实验为用 DHL 设计 CPU(CS 学生不需要)	CS 学生可选 ECE 开设的课程 "Introduction to Computer Architecture",教材为 COD"P&H",主要是流水线 CPU 和存储系统设计,实验为 用 Verilog 语言设计 CPU4	

具体讲什么?

应用软件(高级语言)

系统软件 (编译器/操作系统)

汇编语言

中央处理器

计算机系统层次结构 (system hierarchy)

核心内容

• 高级语言程序 (C语言) 在机器层面的 表示与运行

基本目标

- 将程序的执行与计算机的工作过程紧密联系起来
- 为后续课程,如编译原理、计算机组成原理等提供先导知识

运行

```
int array[2] = \{1, 2\};
int main()
    int val = sum(array, 2);
    return val:
                      main.c
```

内存地址

```
00000000004004d0 \( \text{main} \):
  4004d0:
                48 83 ec 08
                be 02 00 00 00
 4004d4:
 4004d9:
                bf 18 10 60 00
 4004de:
                e8 05 00 00 00
 4004e3:
                48 83 c4 08
 4004e7:
                c3
00000000004004e8 <sum>:
 4004e8:
                b8 00 00 00 00
 4004ed:
                ba 00 00 00 00
 4004f2:
                eb 09
 4004f4:
                48 63 ca
 4004f7:
                03 04 8f
 4004fa:
                83 c2 01
                39 f2
 4004fd:
  4004ff:
                7c f3
  400501:
                f3 c3
                          #<array>没有给出
```

0000000000000000 (array): 01 00 %eax, (%rax) add add %a1, (%rax) 00 00 编译 (%rax), %al 02 00 add 000000000000000 (main): \$0x8, %rsp 0: 48 83 ec 08 sub be 02 00 00 00 \$0x2, %esi mov bf 00 00 00 00 \$0x0, %edi mov a: R X86 64 32 array 链接 e8 00 00 00 00 callq $13 \langle main+0x13 \rangle$ e: f: R X86 64 PC32 sum-0x4 13: 48 83 c4 08 add \$0x8, %rsp 17: c3retq main.o 机器指令

Addresses

Data

Instructions

Memory

汇编指令

数据段

0000000000601030 <array>: 601030: 01 00 601032: 00 00 601034: 02 00

代码段

000000000004004d0 <main>:

4004d0: 48 83 ec 08 be 02 00 00 00 4004d4: 4004d9: bf 18 10 60 00 4004de: 48 83 c4 08

4004e7:

程序在机器层面的表示与运行

Registers

Condition

Codes

CPU

运行

- (看上去) 一个程序占据 了一个处理器以及一块 完整的内存空间
- 在编译、操作系统、 处理器共同支持下实 现
- 课程讲解这儿涉及到的基本概念与过程
- 完整的实现要到后续 课程中学习

0000000000000000 (array): int $array[2] = \{1, 2\};$ 01 00 %eax, (%rax) addint main() %al, (%rax) 00 00 4: 02 00 (%rax), %a1 add 0000000000000000 (main): int val = sum(array, 2): \$0x8, %rsp 48 83 ec 08 汇编指令 return val; be 02 00 00 00 \$0x2, %esi main.c bf 00 00 00 00 \$0x0, %edi a: R X86 64 32 array 链接 e8 00 00 00 00 callq $13 \langle main+0x13 \rangle$ 内存地址 f: R X86 64 PC32 sum-0x4 48 83 c4 08 \$0x8, %rsp 00000000004004d0 <main>: 17: c3 main.o 4004d0: 48 83 ec 08 be 02 00 00 00 4004d4: 机器指令 bf 18 10 60 00 4004d9: 4004de: e8 05 00 00 00 **CPU** Memory 4004e3: 48 83 c4 08 运行 Addresses 4004e7: c3数据段 000000000004004e8 <sum>: Registers 4004e8: b8 00 00 00 00 P 00 00 Data 4004ed: ba 00 00 00 00 代码段 4004f2: eb 09 Condition 4004f4: 48 63 ca Instructions 4004f7: 03 04 8f 4004de: 4004fa: 83 c2 01 4004e7: 4004fd: 39 f2 4004ff: 7c f3 400501: f3 c3 #〈array〉没有给出 程序在机器层面的表示与运行

C程序在硬件层面的表示

- 数据
 - 整数 (第二讲)
 - 浮点数 (第三讲)
 - · 数组、结构 (第八讲)
- 代码
 - 基本概念/基本指令/寻址方式(第五讲)
 - 程序控制流与相关指令 (第六讲)
 - 函数调用与相关指令 (第七讲)

编译器如何工作由后续课程讲授

C程序在硬件层面的表示

- 数据/代码的内存地址定位
 - 链接 (第九讲)
- 数据/代码的内存布局
 - 栈、堆等各类数据段以 及代码段的layout (第 十讲)
 - 缓冲区溢出等 (第十讲)
- 讲解基本调试工具 (GDB) 的使用


```
int array[2] = {1, 2};
int main()
{
    int val = sum(array, 2);
    return val;
}
```

内存地址

```
00000000004004d0 <main>:
  4004d0:
                48 83 ec 08
  4004d4:
                be 02 00 00 00
  4004d9:
               bf 18 10 60 00
  4004de:
                e8 05 00 00 00
  4004e3:
                48 83 c4 08
  4004e7:
                c3
00000000004004e8 <sum>:
  4004e8:
                b8 00 00 00 00
  4004ed:
                ba 00 00 00 00
  4004f2:
                eb 09
  4004f4:
                48 63 ca
  4004f7:
                03 04 8f
               83 c2 01
  4004fa:
               39 f2
  4004fd:
               7c f3
  4004ff:
  400501:
                f3 c3
                         #<array>没有给出
```


华州市方地北方

在硬件层面的运行

- 线性内存地址的基本概念 (第四讲)
- 初步介绍下处理器流水线的概念 (第六讲)
 - 具体在组成原理等后 续课程

39 f2

7c f3

f3 c3

4004fd: 4004ff:

400501:

(看上去) 一个程序占据了 一个处理器以及一块完整的 内存空间。 但是实际情况要远为复杂!

怎么做到的?

汇编指令

Memory

数据段

代码段

4004d4: 4004d9: 4004de:

程序在机器层面的表示与运行

00000000004004d0 <main>:
4004d0: 48 83 ec 08
4004d4: be 02 00 00 00
4004d9: bf 18 10 60 00

e8 05 00 00 0 48 83 c4 08 c3

7c f3

f3 c3

4004ff:

400501:

 $int array[2] = \{1, 2\};$ 汇编指令 48 83 ec 08 \$0x8, %rsp sub int main() be 02 00 00 00 \$0x2, %esi mov bf 00 00 00 00 \$0x0, %edi a: R X86 64 32 array int val = sum(array, 2); callq 13 (main+0x13) e8 00 00 00 00 return val: f: R_X86_64_PC32 sum-0x4 add \$0x8, %rsp main.c 48 83 c4 08 17: c3retq main.o 机器指令 链接 内存地址 00000000004004d0 <main>: 4004d0: 48 83 ec 08 4004d4: be 02 00 00 00 4004d9: bf 18 10 60 00 **CPU** Memory e8 05 00 00 00 4004de: Addresses 4004e3: 48 83 c4 08 数据段 运行 4004e7: c3000000000004004e8 <sum>: Data 4004e8: b8 00 00 00 00 代码段 4004ed: ha 00 00 00 00 d0 <main>: 48 83 ec 08 be 02 00 00 00 bf 18 10 60 00 4004f2: eb 09 Instructions 4004d4: 4004d9: 4004de: 4004f4: 48 63 ca e8 05 00 00 0 48 83 c4 08 c3 4004f7: 03 04 8f 4004e7: 83 c2 01 4004fa: 4004fd: 39 f2

程序在机器层面的表示与运行

(看上去)一个程序占据了一个处理器以及一块完整的内存空间,但是实际情况要远为复杂! 怎么做到的?

关系到计算机系统的两个 重要概念:

- 虚存——在有限物理内 存前提下设计出连续的、 相互独立的虚拟内存
- 异常——各个任务切换的重要机制(当然异常还有很多其他作用)

- 虚存——在有限的物理内存前 提下设计出连续的、独立的虚 拟内存
- 异常——各个任务切换的重要
 机制(当然异常还有很多其他作用)

与系统课组结合,采用MIPS 32指令集 (逐步更新到RISC-V)

- MIPS 32处理器结构与指令集初步(第 十二讲)
- MIPS32指令集与编程(第十三讲)
- MIPS32<mark>异常</mark>处理 (第十四讲)
- 虚存与MIPS 32内存管理 (第十五讲)

Outline

- •课程介绍
- 汇编语言与计算机系统结构
- 典型指令集初步介绍

计算机系统结构

计算机系统结构 (中国计算机科学技术百科全书第一版的定义)

- 计算机系统的物理或者硬件结构、各部分组成的属性以及这些部分的相互联系
- 系统软件开发人员看到的计算机系统的功能行为和概念结构
- 计算机系统的结构与实现 (计算机组成)

计算机系统结构

其它定义:对计算机系统中各级之间界面的划分和定义,以及对各级界面上、下的功能进行分配

- 1964年, IBM/360系列机的总设计工程师G.M.Amdahl、G.A.Blaauw、F.P.Brooks等人提出。也称体系结构
- 是从系统程序员的角度所看到的系统的属性,是概念上的结构和功能上的行为
 - 程序员: 系统程序员 (包括: 汇编语言、机器语言、编译程序、操作系统、虚拟机等)
 - 看到的: 编写出能在机器上正确运行的程序所必须了解到的
- 它不同于数据流程和控制的组织,不同于逻辑设计以及物理实现方法
 - 一般认为这是一种狭义的定义

□ 计算机系统结构

计算机系统结构(<mark>狭义)</mark> Computer Architecture

程序员所看的计算机系统的属性

计算机组成 Computer Organization

计算机系统的逻辑实现

计算机实现 Computer Implementation

计算机系统的物理实现

计算机系统结构是研究计算机系统自身的学科

范围 (广义)

指令系统 (Instruction set architecture, or ISA 或指令集体系结构)

机器语言,还包括机器字长、内存地址模式、处理器寄存器等程序员可见的系统状态、数据格式等

微体系结构 (Micro-architecture)

如何实现指令集 处理器内部的实现,包括流水线、处理部件、缓存等内容

计算机系统

计算机系统里的其它硬件,包括总线、交换开关(Switch)、内存控制器、DMA控制器等

其他内容

虚拟化、计算机集群等等

14令系统

指令系统 (汇编语言可以看做是它的一种助记符)

计算机处理器对外提供的主要接口与规格 软硬件的分界

系统程序员看到的计算机的主要属性

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Device

Memory Unit

A design architecture for an electronic digital computer with parts consisting of a processing unit containing an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms.

John Von Neumann, 1903—1957 (From wiki)

Long live the von Neumann architecture!

□ 指令系统分类

CISC (复杂指令系统, Complex Set Instruction Computer)

面向高级语言,缩小机器指令系统与高级语言语义差距

指令条数多, 寻址方式多变

单条指令功能相对复杂

代表: X86

RISC (精简指令系统, Reduced instruction set computer)

通常只支持常用的能在一个周期内完成的操作(80:20原则)

简单而统一的指令格式

只有LOAD和STORE指令可以访问存储器,简单的寻址方式

较多的寄存器

指令条数相对较少,依赖于编译器产生高效的代码

处理器微体系结构相对简单,运行频率高

代表: MIPS / ARM / PowerPC / RISC-V

11令系统分类

CISC与RISC走向融合

X86处理器内部采用类似RISC的micro-op

出于兼容性考虑,其指令集一直属于CISC

经典的RISC指令集也日益扩展、复杂化

PowerPC指令集(RISC)有超过230多条指令,也很复杂

主要的区分标准——Load / store with (without) other operations?

通用指令系统的共性——图灵完备性

•最简单的指令集

subneg a, b, c ; Mem[b] = Mem[b] - Mem[a]
 ; if (Mem[b] < 0) goto c</pre>

Carbon nanotube computer. NATURE. Volume 501, pp.526–530 (26 September 2013)

- •实用的指令集
 - X86指令集
 - 1000多条*
 - · RISC-V基本指令集
 - 40条指令
 - 包含整数的基本计算、Load/ Store 和控制流

*Intel® 64 and IA-32 Architectures Software Developer's Manual.

- Statefulness Principle
 The instruction set must be
 stateful by state and a next state
 function
- State Change Principle
 There must be an instruction to modify state
- Next State Change Principle
 There must be an instruction to modify next state function

通用计算机与编程语言的图灵完备性

- 软硬件解耦合的计算机层 次结构是通用计算机迅猛 发展的体系结构基础
- 图灵完备性是这一层次结构的可行性基石

Outline

- •课程介绍
- 汇编语言与计算机系统结构
- 典型指令集初步介绍

X86指令集

X86指令集的基本特色

向下兼容

变长指令

1-15 字节,多数为2-3字节长度

多种寻址方式 (可访问不对齐内存地址)

X86-32指令集为例

Base Index scale displacement

X86指令集的基本特色

指令集的通用寄存器个数有限

X86-32系统下拥有8个通用寄存器(x86-64扩展到16个)

至多能有一个操作数在内存中,另一个操作数为立即数或者寄存器

x86-32/64 General Purpose Registers

%rax	%eax
%rdx	%edx
%rcx	%есх
%rbx	%ebx
%rsi	%esi
%rdi	%edi
%rsp	%esp
%rbp	%ebp

%r8	%r8d
%r9	%r9d
%r10	%r10d
% r11	%r11d
% r12	%r12d
%r13	%r13d
%r14	%r14d

□ 为何X86指令集长久不衰?

商业上的成功是其主要原因 (生态环境)

技术上注重向下兼容

一个反例是Itanium(IA-64, Explicitly Parallel Instruction Computing),技术创新但是无法兼容,已"死亡"(2021年7月29日, Intel正式停止出货安腾9700系列处理器)

X86指令集的缺点?

向下兼容导致指令集越来越大、越复杂

类RISC内核,采用micro-op模式进行翻译,使得功耗相对增大,这导致其 在注重低功耗的领域不易占优势

对很多领域而言, 资源利用率低

在高性能计算领域, 普遍使用的300余条X86指令中, 大致只有80余条是被科学计算所需要的(美国劳伦斯伯克利国家实验室的研究, 2009)

MIPS指令集

经典的RISC指令集

MIPS I、MIPS II、MIPS III、MIPS IV到MIPS V,嵌入式指令体系 MIPS16、MIPS32到MIPS64的发展已经十分成熟

为充分利用处理器的流水线结构,其设计思想是使得各个指令的流水线分段较为均匀

分段一致, 每段的操作时延相差不多, 以提高主频

尽量利用软件办法避免流水线中的控制相关问题

实例: Branch Delay Slot

RISC提出者之一John Hennessy创办了MIPS公司;本世纪初, ARM与MIPS两者发展几乎不分伯仲 (1999年以前MIPS架构是世界上 用得最多的处理器,按片数计算的话)

经典的RISC指令集

以寄存器为中心(32个),只有Load/Store指令访问内存,所有的 计算类型的指令均从寄存器堆中读取数据并把结果写入寄存器堆中。 MIPS32还定义了32个浮点寄存器

MIPS32指令集的指令格式非常规整,所有的指令长度一定,而且指令操作码在固定的位置上。

MIPS指令的寻址方式非常简单,每条指令的操作也较简单

MIPS32TM的指令格式只有3种

R (register) 类型的指令从寄存器堆中读取两个源操作数,计算结果写回寄存器堆

- I (immediate) 类型的指令使用一个16位的立即数作为源操作数
- J (jump) 类型的指令使用一个26位立即数作为跳转的目标地址 (target address)

	31/	26	25	/ 2	1	20	16	15	11	10	06	05	00
R类型	op		rs			rt		rd		sa		func	
	6位	÷		5位		5位		5	位	5	位	(6位
	31	26	25	2	1	20	16	15	11	10	06	05	00
I类型	op			rs		rt				imme	ediate	/	
	6位		5位			5位				1	6位		
	31	26	25	2	1	20	16	15	11	10	06	05	00
J类型	ор				target								
	6位	•						26	6位				

Load和Store指令都为立即数 (I-type) 类型,用来在存储器和通用寄存器之间的储存和装载数据。MIPS指令集只有该类指令能访问内存,而其它指令操作寄存器

该类指令只有基址寄存器的值加上扩展的16位有符号立即数一种寻址模式,数据的存取方式可以是字节(byte)、半字(half-word)、字(word)和双字(Double word)

MIPS扩展指令集

MIPS-3D, 浮点SIMD 用于三维几何处理 (MIPS64架构下)

Vertex transformation (matrix multiplication)

Clip-check (compare and branch)

Transform to screen coordinates (perspective division using reciprocal)

Lighting: infinite and local (normalization using reciprocal square root)

采用MIPS64浮点运算单元和双单精度数据类型。

PS (paired-single,双单精度)操作可对64位寄存器中的两个32位浮点值进

行运算,从而提供2路SIMD (单指令多数据)能力

MIPS扩展指令集

MIPS16e——16位指令,指令集被压缩,代码存储容量要求减小,从而降低系统成本;相比MIPS32,利用MIPS16e编译的应用程序平均减小30%

32个通用寄存器中有8个可用于MIPS16e模式

与MIPS32一起使用时,支持8位、16位和32位数据类型;与MIPS64一起使用时, 支持8位、16位、32位和64位数据类型

MIPS16e 和 MIPS32/64之间的模式切换支持:通过一条特殊的跳转指令 来实现模式切换的软件控制

RISC-V指令集

退 很像MIPS的指令集

与MIPS近乎同源(David Patterson教授主导,RISC的发明人之一)

模块化与增量型 ISA——

RV32I (64I): 32个通用寄存器, 40条指令 (整数计算、load/store、条件分支、无

条件跳转、杂项指令; RV64I额外增加了12条)

RV32M:添加了整数乘法和除法指令

RV32A: 原子操作指令

RV32F: 单精度浮点数指令

RV32D: 双精度浮点数指令

RV32V: 向量指令

RISC-V指令格式

31 30 25	24 21 20	19 1	15 14 12	11 8 7	6 0	
funct7	rs2	rs1	funct3	rd	opcode	R-type
			<u> </u>			
imm[11	1:0]	rs1	funct3	rd	opcode	I-type
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	S-type
imm[12] imm[10:5]	rs2	rs1	funct3	imm[4:1] imm[11]	opcode	B-type
	[04.40]			<u> </u>		/.
<u> </u>	imm[31:12]			rd	opcode	U-type
[: [00]]	1 [11]		10.10]			/
imm[20] imm[10):1] imm[11]	ımm	19:12]	rd	opcode	J-type

也可视 为一种

也可视 为一种

与MIPS指令集的对比*

	MIPS32	RV32I
简洁性	立即数支持零扩展及符号 扩展;一些算术指令会造 成溢出异常	立即数只进行符号扩展; 算术指令不抛出异常
指令集和具体实 现的分离	Branch Delay Slot; 乘除使用单独的HI, LO寄存器	分支指令没有延迟槽; 乘除指令通用寄存器
易于编程/编译/ 链接	内存数据必须对齐、不规 则的数据寻址模式	内存数据可以不对齐、 PC 相对的数据寻址模 式

^{*}参考了RISC-V 手册。http://crva.ict.ac.cn/documents/RISC-V-Reader-Chinese-v2p1.pdf

本讲心得

计算机体系结构的层次化设计理念

- 汇编指令(指令集体系结构)是软硬件分界线, 体现了冯.诺依曼结构核心概念
 - 以指令为中心的执行模式
 - 存算分离执行模式
- 软硬件去耦合 / 软硬件独立发展是IT至今繁荣的体系结构基础
- 兼容性考虑是计算机体系结构发展的关键因素之一

