Parte I: Introdução

Tarefa: ler capítulo 1 no texto

Nosso objetivo:

- obter contexto, visão geral,
 "sentimento" sobre redes
- maior profundidade e detalhes serão vistos depois no curso
- abordagem:
 - descritiva
 - usar a Internet como exemplo

Visão Geral:

- o que é a Internet
- o que é um protocolo?
- bordas da rede
- núcleo da rede
- rede de acesso e meios físicos
- performance: perda, atraso
- camadas de protocolo, modelos de serviços
- backbones, NAPs, ISPs
- história

O que é a Internet

- milhões de elementos de computação interligados: hosts, sistemas finais
 - pc's, estações de trabalho, servidores
 - telefones digitais, torradeiras de pão, etc.
 - executando *aplicações* distribuídas
- enlaces de comunicação
 - fibra, cobre, rádio, satelite
- *roteadores:* enviam pacotes (blocos) de dados através da rede

Aplicações IP "quentes"

Moldura IP para retratos http://www.ceiva.com/

O menor servidor Web do mundo http://www-ccs.cs.umass.edu/~shri/iPic.html

Torradeira e previsão do tempo pela Web http://dancing-man.com/robin/toasty/

O que é a Internet

- protocolos: controlam o envio e a recepção de mensagens
 - e.g., TCP, IP, HTTP, FTP, PPP
- *Internet*: "rede de redes"
 - fracamente hierárquica
 - Internet pública e Internets privadas (intranets)
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task
 Force

Serviços da Internet

- infraestrutura de comunicação permite aplicações distribuídas:
 - WWW, email, games, e-commerce, database, chat,
 - more?
- serviços de comunicação oferecidos:
 - sem conexão
 - orientado à conexão
- cyberspace [Gibson]:

"a consensual hallucination experienced daily by billions of operators, in every nation,"

O que é um protocolo?

Protocolos humanos:

- "Que horas são?"
- "Eu tenho uma pergunta"
- apresentações
- ... especificas msgs enviadas
- ... especificas ações tomadas quando msgs são recebidas ou outros eventos

protocolos de rede:

- máquinas ao invés de humanos
- toda a atividade de comunicação na Internet é governada por protocolos

protocolos definem os formatos, ordem das msgs enviadas e recebidas pelas entidades de rede e ações a serem tomadas na transmissão e recepção de mensagens

O que é um protocolo?

um protocolo humano e um protocolo de rede de computadores:

Uma visão mais de perto da estrutura da rede:

- borda da rede: aplicações e hosts
- núcleo da rede:
 - roteadores
 - rede de redes
- redes de acesso, meios físicos: enlaces de comunicação

As bordas da rede

• sistemas finais (hosts):

- executam programas de aplicação
- e.g., WWW, email
- localizam-se nas extremidades da rede

modelo cliente/servidor

- o cliente toma a iniciativa enviando pedidos que são respondidos por servidores
- e.g., WWW client (browser)/ server;
 email client/server

modelo peer-to-peer:

- Prevê simetria de comunicação
- e.g.: teleconferêcia

Borda da rede: serviço orientado à conexão

- **Meta:** transferência de dados entre sistemas finais.
- handshaking: estabelece as condições para o envio de dados antes de envia-los atualmente
 - Alô: protocolo humano
 - estados de "conexão"
 controlam a troca de
 mensagens entre dois hosts
- TCP Transmission Control Protocol
 - realiza o serviço orientado à conexão da Internet

serviço TCP [RFC 793]

- transferência de dados confiável e seqüêncial, orientada a cadeia de bytes
 - perdas: reconhecimentos e retransmissões
- controle de fluxo:
 - evita que o transmissor afogue o receptor
- controle de congestão:
 - transmissor reduz sua taxa quando a rede fica congestionada

Borda da rede:serviço sem conexão

Meta: transferência de dados entre sistemas finais

- o mesmo de antes!
- UDP User Datagram Protocol [RFC 768]: Oferece o serviço sem conexão da Internet
 - transferência de dados não confiável
 - sem controle de fluxo
 - sem controle de congestão

App's usando TCP:

• HTTP (WWW), FTP (file transfer), Telnet (remote login), SMTP (email)

App's usando UDP:

 streaming media, teleconferência, telefonia IP

O núcleo da rede

- malha de roteadores interconectados
- <u>A questão fundamental</u>: como os dados são transferidos através da rede?
 - comutação de circuitos: usa um canal dedicado para cada conexão.
 Ex: rede telefônica
 - comutação de pacotes: dados são enviados em "blocos" discretos, na base FIFO

Núcleo da Rede: Comutação de Circuitos

Recursos fim-a-fim são reservados por "chamada"

- taxa de transmissão, capacidade dos comutadores
- recursos dedicados: não há compartilhamento
- desempenho análogo aos circuitos físicos (QOS garantido)
- exige estabelecimento de conexão

Núcleo da Rede: Comutação de Circuitos

Recursos da rede (ex., capacidade de transmissão) dividida em "pedaços"

- pedaços alocados às chamadas
- pedaço do recurso disperdiçado se não for usado pelo dono da chamada (sem divisão)
- formas de divisão da capacidade de transmissão em "pedaços"
 - divisão em freqüência
 - divisão temporal

Comutação de Circuitos: FDMA e TDMA

Núcleo da rede: comutação de pacotes

cada fluxo de dados fim-a-fim é dividido em pacotes

- os recursos da rede são compartilhados em bases estatíticas
- cada pacote usa toda a banda disponível ao ser transmitido
- recursos são usados na medida do necessário

comutação de circuitos:

Barda passante é dividida em slots"

Alocação fixa

Reserva de recarsos

contenção de recursos:

- a demanda agregada por recursos pode exceder a capacidade disponível
- congestão: filas de pacotes, aumento do tempo de envio, perda de apcotes
- store and forward: pacotes se movem de um roteador para o outro antes de serem retransmitidos
 - transmite no enlace
 - espera vez no enlace

Núcleo da rede: comutação de pacotes

Comutação de pacotes versus comutação de circuitos: analogia com restaurante humano

outras analogias humanas?

Núcleo da rede: Comutação de Pacotes

Packet-switching: comportamento store and forward

Comutação de Pacotes versus Comutação de Circuitos

Comutação de Pacotes permite que mais usuários usem a mesma rede!

- Enlace de 1 Mbit/s
- cada usuário:
 - 100Kbits/s quando "ativo"
 - ativo 10% do tempo
- comutação de circuitos:
 - 10 usuários
- comutação de pacotes:
 - com 35 usuários,probabilidade > 10 ativosmenor que 0,0004

Comutação de Pacotes versus Comutação de Circuitos

A comutação de pacotes é melhor sempre?

- Grande para dados esporádicos
 - melhor compartilhamento de recursos
 - não há estabelecimento de chamada
- Congestão excessiva: atraso e perda de pacotes
 - protocolos são necessários para transferência confiável, controle de congestionamento
- Q: Como obter um comportamento semelhante ao de um circuito físico?
 - garantias de taxa de transmissão são necessárias para aplicações de aúdio/vídeo
 - problema ainda sem solução (capítulo 6)