1. (2 points) Prove that $C(\mathcal{A}, \mathcal{B})C(\mathcal{B}, \mathcal{A}) = I_n$.

$$C(B,A) = C(A,B)^{-1}$$
 by th. 15.1.3
Also, $A \cdot A^{-1} = I_n$
Thus, $C(A,B) \cdot C(A,B)^{-1} = I_n$

2. (2 points) Find $C(\mathcal{A}, \mathcal{B})$ and $C(\mathcal{B}, \mathcal{A})$ for

(a)
$$\mathcal{A} = ((x-2)(x-3), (x-1)(x-2), (x-1)(x-3)), \mathcal{B} = (1, x, x^2) \text{ in } \mathbb{R}[x, 2];$$

(b)
$$\mathcal{A} = (1, (x-1), (x-1)^2), \mathcal{B} = (1, x, x^2) \text{ in } \mathbb{R}[x, 2].$$

a) if
$$B = (1, X, X^2) \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

$$A = \left((6 - 5 \times + X^2), (2 - 3 \times + X^2), (3 - 4 \times + X^2) \right)$$

$$\begin{bmatrix} 6 & 2 & 3 \\ -5 & -3 & -4 \\ 1 & 1 & 1 \end{bmatrix} = \left((+, B) \right)$$

$$\begin{bmatrix} (+, B) & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/4 & 1/4 & 1/4 \\ 1/2 & 3/4 & 9/4 \\ -1 & -2 & -4 \end{bmatrix} = C(B, A)$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \Leftrightarrow C(A, B)$$

$$C(B, A) = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

3. (2 points) Prove that

- (a) If φ is injective then $\operatorname{Ker} \varphi_A = 0$ (b) If $\operatorname{Ker} \varphi_A = 0$ then φ_A is injective.
- a) If φ is injective, the inverse image of every element consists of a single element. Thus, only one input to the function gives o as a result => ker \(\varphi_A = 0 \) b) f(x) = f(y) iff f(y-x) = 0 iff $y-x \in \ker \varphi_A \Rightarrow y = x \Rightarrow$ => \varphi_A is injective.
 - **4.** (2 points) Prove that if m > n then φ_A is not surjective.

Suppose a Function T: V -> W, where V are polynomials of at most segree 2. Clearly, when taking a derivative we won't be able to get a polynomial with Leg=2, so our V is going to look like this!

Let's prove it: T is surjective when basis of T= basis of W = (1, x) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Thus, range of T = W

5. (2 points) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$ be three distinct nonzero vectors. Suppose there exists a 3×3 matrix A and distinct numbers $\lambda_1, \lambda_2, \lambda_3$ such that $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for i = 1, 2, 3.

(a) Prove that $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is a basis;

(b) Let
$$\mathcal{A} = (\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3})$$
 be the standard basis, i.e. $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and so on. Prove that

$$C(\mathcal{B}, \mathcal{A})AC(\mathcal{A}, \mathcal{B}) = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{bmatrix}$$

a) 1)
$$dim(B) = 3 \le dim(R^3) = 3$$
2) Suppose v_1 and v_2 are LD , then $V_2 = d \cdot V_4$:

 $Av_2 = \lambda_2 v_2 = \lambda_2 dv_4$
 $Also: Av_2 = A(dv_1) = dAv_1 = d\lambda_1 v_4$.

Since $A_1 \neq A_2 = dA_1 \neq A_2 = dA_2 \neq A_3 \neq A_4 \neq A_4$

b)
$$C(\mathcal{L}, \mathcal{B}) = \mathcal{B}$$
 as $\mathcal{L} = I_3$.
 $C(\mathcal{B}, \mathcal{L}) = C(\mathcal{L}, \mathcal{B})^{-1} = \mathcal{B}^{-1}$
Thus,
 $\mathcal{B}^{-1} \cdot A \cdot \mathcal{B} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$

$$AB = A[v_1, v_2, v_3] = [Av_1, Av_2, Av_3] = [\lambda_1 v_1, \lambda_2 v_2, \lambda_3 v_3]$$
 $B^{-1}(AB) = B^{-1}[\lambda_1 v_1, \lambda_2 v_2, \lambda_3 v_3] = [\lambda_1 (B^{-1}v_1), \lambda_2 (B^{-1}v_2), \lambda_3 (B^{-1}v_3)]$
 $Also B^{-1}v_1 = e_i \quad since B^{-1} = C(B, A)$

Hence: