Boundary Condition for Entry Interface

Ryo Nakamura

October 16, 2019

1 (Geo)Detic Latitude / Altitude [1][2]

Given a probe position in fixed coordinate as (x, y, z), the (geo)centric latitude is written as

$$\phi_c = \arctan \frac{y}{x} \tag{1}$$

Using the equatorial radius R and flattening f, x_a in Figure 1 is written as

$$x_a = \frac{(1-f)R}{\sqrt{\tan^2 \phi_c + (1-f)^2}}$$
 (2)

Using the relationship between (geo)centric latitude at the planet's surface and (geo)detic latitude, ϕ_{dg} is written as

$$\phi_{dg} = \arctan\left(\frac{\tan\phi_c}{(1-f)^2}\right) \tag{3}$$

The radius r_a from the center of the planet (O) to the surface of the planet (S) in Figure 1 is calculated by using trigonometric relationship.

$$r_a = \frac{x_a}{\cos \phi_c} \tag{4}$$

The distance from (S) to (P) in Figure 1 is defined by

$$l = r - r_a \tag{5}$$

The angular difference between (geo)centric latitude and (geo)detic latitude at (S) in Figure 1 is defined by

$$\delta\phi_g = \phi_{dg} - \phi_c \tag{6}$$

The equation for the radius of curvature in the Meridian at ϕ_{dg} (distance between (S) and (W) in Figure 1) is written as

$$\rho_a = \frac{R(1-f)^2}{\left(1 - (2f - f^2)\sin^2\phi_{dg}\right)^{3/2}} \tag{7}$$

Then the (geo)detic latitude is calculated with

$$\phi_d = \phi_{dq} - \delta\phi \tag{8}$$

,where

$$\delta\phi = \arctan\left(\frac{l\sin\delta\phi_g}{\rho_a + l\cos\delta\phi_g}\right) \tag{9}$$

The (geo)detic altitude above the planetary ellipsoid is calculated with

$$h = \sqrt{x^2 + y^2} \cos \phi_d + (z + (2f - f^2)N \sin \phi_d) \sin \phi_d - N$$
 (10)

,where the radius of curvature in the vertical prime N (distance between (T) and (V) in Figure 1) is written as

$$N = \frac{R}{\sqrt{1 - (2f - f^2)\sin^2\phi_d}}$$
 (11)

2 Velocity vector

2.1 Magnitude

The magnitude of the entry inertial velocity vector and its derivatives are written as

$$v = |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$\frac{\partial v_r}{\partial \vec{v}} = \frac{\vec{v_r}}{v_r}$$
(12)

2.2 Azimuth in spherical local coordinate

The azimuth angle Az of the inertial velocity vector in spherical coordinate is written as

$$Az = \arctan \frac{v_{east}}{v_{north}} \tag{13}$$

Figure 1: Geometry of (geo) detic latitude and altitude $\,$

, where v_{east} and v_{north} are inertial velocity elements at the spherical local coordinate as

$$\begin{bmatrix} v_{up} \\ v_{east} \\ v_{north} \end{bmatrix} = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \lambda & \sin \lambda & 0 \\ -\sin \lambda & \cos \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_r \\ v_r \\ v_r \end{bmatrix}$$
(14)

Here, ϕ is a (geo)centric latitude and λ is a longitude.

The derivative of azimuth angle is written as

$$\frac{\partial Az}{\partial *} = \frac{v_{north}^2}{v_{north}^2 + v_{east}^2} \left(\frac{1}{v_{north}} \frac{\partial v_{east}}{\partial *} - \frac{v_{east}}{v_{north}^2} \frac{\partial v_{north}}{\partial *} \right)$$
(15)

, where derivatives of these local velocity elements are written as

$$\frac{\partial}{\partial *} \begin{bmatrix} v_{up} \\ v_{east} \\ v_{north} \end{bmatrix} = \begin{bmatrix} -\sin\phi \frac{\partial\phi}{\partial *} & 0 & \cos\phi \frac{\partial\phi}{\partial *} \\ 0 & 0 & 0 \\ -\cos\phi \frac{\partial\phi}{\partial *} & 0 & -\sin\phi \frac{\partial\phi}{\partial *} \end{bmatrix} \begin{bmatrix} \cos\lambda & \sin\lambda & 0 \\ -\sin\lambda & \cos\lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} + \begin{bmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{bmatrix} \begin{bmatrix} -\sin\lambda \frac{\partial\lambda}{\partial *} & \cos\lambda \frac{\partial\phi}{\partial *} & 0 \\ -\cos\lambda \frac{\partial\phi}{\partial *} & -\sin\lambda \frac{\partial\phi}{\partial *} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$
(16)

$$\frac{\partial}{\partial \vec{v}} \begin{bmatrix} v_{up} \\ v_{east} \\ v_{north} \end{bmatrix} = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \lambda & \sin \lambda & 0 \\ -\sin \lambda & \cos \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(17)

2.3 Horizontal Flight Path Angle in spherical local coordinate

The horizontal flight path angle HFPA of the inertial velocity vector in spherical coordinate is written as

$$HFPA = \arctan \frac{v_{up}}{\sqrt{v_{north}^2 + v_{east}^2}}$$

$$= \arccos \frac{\vec{r} \cdot \vec{v}}{|\vec{r}| |\vec{v}|}$$
(18)

The derivative of horizontal flight path angle is written as

$$\frac{\partial HFPA}{\partial *} = \frac{\sqrt{v_{north}^2 + v_{east}^2}}{v_{north}^2 + v_{east}^2 + v_{up}^2} \left(\frac{\partial v_{up}}{\partial *} - \frac{v_{up}}{v_{north}^2 + v_{east}^2} \left(v_{north} \frac{\partial v_{north}}{\partial *} + v_{east} \frac{\partial v_{east}}{\partial *} \right) \right)$$

$$(19)$$

The derivatives of the local velocity elements are same with those in 2.2

2.4 Vertical Flight Path Angle in spherical local coordinate

The vertical flight path angle VFPA of the inertial velocity vector in spherical coordinate is written as

$$VFPA = \arccos \frac{\vec{r} \cdot \vec{v}}{|\vec{r}||\vec{v}|} \tag{20}$$

The derivative of $\cos(VFPA)$ is written as

$$\frac{\partial \cos (VFPA)}{\partial \vec{r}} = \frac{\vec{v}}{|\vec{r}||\vec{v}|} - \frac{\vec{r} \cdot \vec{v}}{|\vec{r}|^2 |\vec{v}|} \frac{\partial |\vec{r}|}{\partial \vec{r}}
\frac{\partial \cos (VFPA)}{\partial \vec{v}} = \frac{\vec{r}}{|\vec{r}||\vec{v}|} - \frac{\vec{r} \cdot \vec{v}}{|\vec{r}||\vec{v}|^2} \frac{\partial |\vec{v}|}{\partial \vec{v}}$$
(21)

3 Relative velocity vector

The entry velocity vector of a vehicle relative to the Earth ground (or atmosphere) is written as

$$\vec{v_r} = \vec{v} - \vec{\omega} \times \vec{r} = \vec{v} - \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \vec{r}$$
 (22)

3.1 Magnitude

The magnitude of the relative velocity vector and its derivatives are written as

$$v_r = |\vec{v_r}| = \sqrt{v_{rx}^2 + v_{ry}^2 + v_{rz}^2}$$

$$\frac{\partial v_r}{\partial \vec{r}} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \frac{\partial v_r}{\partial \vec{v_r}}$$

$$\frac{\partial v_r}{\partial \vec{v}} = \frac{\vec{v_r}}{v_r}$$
(23)

3.2 Azimuth in (geo)detic local coordinate

The azimuth angle of the relative velocity vector Az is written as

$$Az = \arctan \frac{v_{r_{east}}}{v_{r_{north}}} \tag{24}$$

, where $v_{r_{east}}$ and $v_{r_{north}}$ are relative velocity elements at the horizontal local coordinate as

$$\begin{bmatrix} v_{r_{up}} \\ v_{r_{east}} \\ v_{r_{north}} \end{bmatrix} = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \lambda & \sin \lambda & 0 \\ -\sin \lambda & \cos \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{rx} \\ v_{ry} \\ v_{rz} \end{bmatrix}$$
(25)

Here, ϕ is a (geo)detic latitude and λ is a longitude.

The derivative of azimuth angle is written as

$$\frac{\partial Az}{\partial *} = \frac{v_{r_{north}}^2}{v_{r_{north}}^2 + v_{r_{east}}^2} \left(\frac{1}{v_{r_{north}}} \frac{\partial v_{r_{east}}}{\partial *} - \frac{v_{r_{east}}}{v_{r_{north}}^2} \frac{\partial v_{r_{north}}}{\partial *} \right)$$
(26)

, where derivatives of these local velocity elements are written as

$$\frac{\partial}{\partial *} \begin{bmatrix} v_{r_{up}} \\ v_{r_{east}} \\ v_{r_{north}} \end{bmatrix} = \begin{bmatrix} -\sin\phi \frac{\partial\phi}{\partial *} & 0 & \cos\phi \frac{\partial\phi}{\partial *} \\ 0 & 0 & 0 \\ -\cos\phi \frac{\partial\phi}{\partial *} & 0 & -\sin\phi \frac{\partial\phi}{\partial *} \end{bmatrix} \begin{bmatrix} \cos\lambda & \sin\lambda & 0 \\ -\sin\lambda & \cos\lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{rx} \\ v_{ry} \\ v_{rz} \end{bmatrix} \\
+ \begin{bmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{bmatrix} \begin{bmatrix} -\sin\lambda \frac{\partial\lambda}{\partial *} & \cos\lambda \frac{\partial\phi}{\partial *} & 0 \\ -\cos\lambda \frac{\partial\phi}{\partial *} & -\sin\lambda \frac{\partial\phi}{\partial *} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{rx} \\ v_{ry} \\ v_{rz} \end{bmatrix} \\
+ \begin{bmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\lambda & \sin\lambda & 0 \\ -\sin\lambda & \cos\lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\partial v_{rx}}{\partial *} \\ \frac{\partial v_{ry}}{\partial *} \\ \frac{\partial v_{rz}}{\partial *} \\ \frac{\partial v_{rast}}{\partial *} \\ v_{r_{north}} \end{bmatrix} = \begin{bmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\lambda & \sin\lambda & 0 \\ -\sin\lambda & \cos\lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{28}$$

3.3 Horizontal Flight Path Angle in (geo)detic local coordinate

The horizontal flight path angle of the relative velocity vector HFPA is written as

$$HFPA = \arctan \frac{v_{rup}}{\sqrt{v_{r_{north}}^2 + v_{r_{east}}^2}}$$
 (29)

The derivative of horizontal flight path angle is written as

$$\frac{\partial HFPA}{\partial *} = \frac{\sqrt{v_{r_{north}}^2 + v_{r_{east}}^2}}{v_{r_{north}}^2 + v_{r_{east}}^2 + v_{r_{up}}^2} \left(\frac{\partial v_{r_{up}}}{\partial *} - \frac{v_{r_{up}}}{v_{r_{north}}^2 + v_{r_{east}}^2} \left(v_{r_{north}} \frac{\partial v_{r_{north}}}{\partial *} + v_{r_{east}} \frac{\partial v_{r_{east}}}{\partial *} \right) \right)$$

$$(30)$$

The derivatives of the local velocity elements are same with those in 3.2

References

- $[1] \ https://jp.mathworks.com/help/aeroblks/ecefpositiontolla.html$
- $[2] \ https://jp.mathworks.com/help/aeroblks/geocentrictogeodetic$ latitude.html