CSC HW3

Alex Zhang

January 2023

Question 1

(a)

By SVD, we can get that $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$, which

$$\mathbf{A}^\top = (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top)^\top = \mathbf{V} \mathbf{\Sigma}^\top \mathbf{U}^\top$$

Since with SVD, matrix Σ is a diagonal matrix, which means the transpose of it will still be itself. If the singular values for \mathbf{A} are $\sigma_1, \sigma_2, \ldots, \sigma_n$, then the singular values for \mathbf{A}^{\top} will not change since $\Sigma = \Sigma^{\top}$.

(b)

Using SVD,

$$\mathbf{A}^{-1} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^\top)^{-1} = (\boldsymbol{\Sigma}\mathbf{V}^\top)^{-1}\mathbf{U}^{-1} = (\mathbf{V}^\top)^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{-1}$$

Since **U** and **V** are orthogonal matrices, their transpose equals their inverse. The only change is Σ^{-1} . The diagonal matrix's inverse is just taking the reciprocals on the entries on main diagonal. So the singular values for \mathbf{A}^{-1} will be $1/\sigma_1, 1/\sigma_2, \ldots, 1/\sigma_n$

(c)

The matrix \mathbf{A} with rank r can also be written as,

$$\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\top$$

then

$$\alpha \mathbf{A} = \sum_{i=1}^{r} \alpha \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

Because singular values are all scalars, when $\alpha > 0$, the singular values for $\alpha \mathbf{A}$ will be $\alpha \sigma_1, \alpha \sigma_2, \dots, \alpha \sigma_n$

Questino 2

(a)

By definition, $\|\mathbf{A}\|_2 = \max \sigma = \sigma_1$ and $\|\mathbf{A}\|_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_r^2}$. Since for all $i \leq r$, $\sigma_i^2 \geq 0$, and $\sigma_1 = \sqrt{\sigma_1^2}$. Showing that $\sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_r^2} \geq \sqrt{\sigma_1^2}$ which is the same as $\|\mathbf{A}\|_2 \leq \|\mathbf{A}\|_F$.

(b)

In this case, $\sqrt{n}\|\mathbf{A}\|_2 = \sqrt{n}\sigma_1 = \sqrt{n}\sigma_1^2$. We know that $\operatorname{rank}(\mathbf{A}) = r$, so $r \leq n$ and σ_1 is the largest singular value. We can get the inequality:

$$\sqrt{n\sigma_1^2} \ge \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_r^2}$$

which is the same as $\sqrt{n} \|\mathbf{A}\|_2 \ge \|\mathbf{A}\|_F. \blacksquare$