Записки по Теория на Множествата При проф. Тинко Тинчев

Atanas Ormanov

December 14, 2022

Book recomendation:

Introduction to Set Theory (3d Edition) by Karel Hrbackeck & Toomas Yech

Съпоставка м-ду Актуална безкрайност и Потенциална безкрайност:

На пръв поглед ако $B\subseteq A$ и $B\neq A$, то B има по-малко елементи, но при безкрайни мн-ва не е задължително.

def Принцип за неограничената абстракция:

 $\overline{\text{Нека}}\ \mathcal{A}(x)$ е едноместно свойство на обекта x. Тогава има множество A, такова че $x\in A\Leftrightarrow \mathcal{A}(x)$

Парадокс на Ръсел:

Нека \mathcal{R} е св-во такова че $\mathcal{R}(x) \Leftrightarrow x \notin x$ за произволно x

От принципа за неограничената абстракция (*) - има множество R, такова че $x \in R \Leftrightarrow \mathcal{R}(x)$ за произволно х ... $R \in R \Leftrightarrow R \notin R$

Езикът на теория на множествата се състои от:

- Двуместни свойства: =, ∈ (равенство в смисъла на Лайбниц означава неотличимост)
- Булеви връзки: $\lor, \land, \neg, \Rightarrow, \Leftrightarrow$
- Квантори: $\forall x \phi, \exists x \phi$

ZF - аксиоми на Цермело Френкел

ZFC - ZF заедно с аксиомата за избора

def Теоритико множествени свойства:

В света (универсума) има само множества (това са обектите с които ще работим)

ТМ свойствата разделяме на:

- 1) Логически аксиоми
 - $\bullet \ \forall x \forall y (x = y \Rightarrow y = x)$
 - $\bullet \ \forall x \forall y (x = y \Rightarrow y = x)$
 - $\forall x \forall y \forall z (x = y \land y = z \Rightarrow x = z)$
 - $\bullet \ \forall x \forall y \forall z (x \in y \land y = z \Rightarrow x \in z)$
 - $\bullet \ \forall x \forall y \forall z (x = y \land y \in z \Rightarrow x \in z)$

1-3 са аксиомите за еквивалентност на равенството

4-5 са аксиомите за конгруентност

- 2) Аксиоми на ZF:
 - 1. $\exists x(x=x)$ Има поне един обект в света
 - 2. $\forall x \forall y (\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y))$ Обемност / екстенсионалност. Ако 2 множества имат едни и същи елементи, то те са равни.
 - 3. $\exists x(x=x)$ принцип за ограничената абстракция / схема за отделянето.

Док 2.2: $\forall y \forall z (y = z \Rightarrow \forall x (x \in y \Leftrightarrow x \in z))$

Нека предположим че y=z, нека х е произволно множество. Използваме логическа аксиома 4 за да докажем.

Док 2.3: Нека $\phi(x, u_1, u_2, ..., u_n)$ е ТМ. св-во, нека $u_1, ..., u_n$ са произволно мн-ва. Всеки път, когато A е множество, съществува множество, чийто елементи са точно онези елементи на A, за които е в сила $\phi(x, u_1, u_2, ..., u_n)$.

 $\forall u_1 u_2 ... u_n \forall A \exists B \forall x (x \in B \Leftrightarrow x \in A \land \phi(x, u_1, u_2, ..., u_n))$ - св-во на х.

Тв При фиксирани $A, u_1, ..., u_n$ - множества и теоритико множествено свойство ϕ , съществуват единствено множество B, за което $\forall x (x \in B \Leftrightarrow x \in A \land \phi(x, \overline{u}))$, където \overline{u} са параметри.

Док: Нека B_1 и B_2 са такива мн-ва, че: $\forall x(x \in B_1 \Leftrightarrow x \in A \land \phi(x, \overline{u})) \ \forall x(x \in B_2 \Leftrightarrow x \in \overline{A \land \phi(x, \overline{u})})$ Искаме да док че $B_1 = B_2$. Нека $y \in B_1$ е произволен. Тогава $y \in A \land \phi(y, \overline{u})$. Следователно $y \in B_2$. Така $\forall x(x \in B_1 \Leftrightarrow x \in B_2)$. От аксиомата за обемност $B_1 = B_2$.

Тв Съществува празно множество

Док: Ще докажем че $\exists A \forall x (x \notin A)$

Нека В е множество (От. аксиомата 0). Нека $\phi(x) \leftrightharpoons \neg(x=x)$. Нека М е единственото множество, такова че $\forall x (x \in M \Leftrightarrow x \in B \land \phi(x))$. Ще док. че $\forall x (x \notin M)$. Допускаме че $x \in M$ е произволно. Тогава $x \in B \land \phi(x)$. Така $\phi(x)$, т.е. $x \neq x$, противоречи с 1-вата лог. аксиома. Следователно $x \notin M$. Понеже x е произволно то $\forall x (x \notin M)$.

Опр За множество А, параметри \overline{u} и св-во ϕ , съществува единствено такова В, което бележим така: $B = \{x \mid x \in A \land \phi(x, \overline{u})\}$

Тв Съществува единствено празно множество.

<u>Док:</u> Нека M_1 и M_2 са празни, т.е. $\forall x (x \notin M_1)$ и $\forall x (x \notin M_2)$ Нека t е произволно множество, тогава $t \notin M_1$ и $t \notin M_2$. Но t беше произволно, значи $t \in M_1 \Leftrightarrow t \in M_2$ и от аксиомата за обемност $M_1 = M_2$ Празното множество бележим с \emptyset

Означение: $A \subseteq B \leftrightharpoons \forall x (x \in A \Rightarrow x \in B)$

Тв За всяко множество A, е изп. че $\emptyset \subseteq A$

Тв Не същ. множество, което съдържа всички мн-ва: $\neg \exists A \forall x (x \in A)$

Док: Допускаме противното. Нека B е такова че $\forall x (x \in B)$

Нека $R = \{x \mid x \in R \land x \notin x\}$. Използваме аксиомата схема за отделяне с A = B и $\phi(x) \leftrightharpoons x \notin x$. Отделяме онези x, за които $x \notin x$. Така R е множество. Тогава $R \in B$. Получаваме че $R \in R \Leftrightarrow R \notin R \land R \notin R \Leftrightarrow R \notin R$ - противоречие с допускането. Тоест няма такива мн-ва.

Future reading:

- actual infinity vs potential infinity
- Banach-Tarski paradox (occurs after the patch of Russel's paradox)
- Cantor's definition of real numbers

Тв За всеки две множества A и B, съществува единствено множество C, такова че $\forall x (x \in C \Leftrightarrow x \in A \land x \in B)$.

Док за съществуване: Нека $\phi(x,u) \leftrightharpoons x \in u$. Според аксиомната схема за отделяне в-ху множеството A и ϕ за u=B, същ. множество $C=\{x\mid x\in A\land\phi(x,B)\}=\{x\mid x\in A\land x\in B\}$. Значи за всяко $x,x\in C \Leftrightarrow x\in A\land x\in B$

Док за единственост: Нека C_1 и C_2 са такива мн-ва, че $x \in C_i \Leftrightarrow x \in A \land x \in B, i = 1, 2$. Тогава за всяко $x, x \in C_1 \Leftrightarrow x \in A \land x \in B \Leftrightarrow x \in C_2$ и по аксиомата за обемност $C_1 = C_2$. Това множество означаваме с $A \cap B$.

Тв За всеки две множества А и В, съществува единствено множество С, такова че $\forall x (x \in C \Leftrightarrow x \in A \land x \notin B)$

 $\phi(x,u)\leftrightharpoons x\notin u$, т.е. отделяме от A всички ел. х, за които $\phi(x,B)$ $x\in C\Leftrightarrow x\in A\land x\notin B, i=1,2$ $x\in C_1\Leftrightarrow x\in C_2, \forall x$ $C_1=C_2$

Това единствено множество бележим $A \setminus B$ и наричаме разлика на A и B.

Можем да правим "голямо" сечение

<u>Тв</u> Нека $A \neq \emptyset$. Тогава съществува единствено множество B, което съдържа точно множествата, които са елементи на всеки един елемент на A. $\forall x (x \in B \Leftrightarrow \forall y (y \in A \Rightarrow x \in y))$

<u>Док за същ.</u>: Нека $y_0 \in A$, защото A е непразно. Нека $\phi(x,u) \leftrightharpoons \forall y(y \in u \Rightarrow x \in y)$. От аксиомната схема за отделянето, има множество

 $B' = \{ x \in y_0 \land \phi(x, A) = \{ x \mid x \in y_0 \land \forall y (y \in A \Rightarrow x \in y) \}$

Ще док че $\forall x(x \in B' \Leftrightarrow \forall y(y \in A \Rightarrow x \in y))$ Нека $x \in B'$. Тогава $x \in y_0 \land \forall y(y \in A \Rightarrow x \in y)$, в частност $\forall y(y \in A \Rightarrow x \in y)$.

Обратното, нека x е т.ч. $\forall y (y \in A \Rightarrow x \in y)$.

Ho $y_0 \in A$, следователно $x \in y_0$. Така $x \in y_0 \land \forall y (y \in A \Rightarrow x \in y)$ от където $x \in B'$

Док единств.: Нека B_1 и B_2 са такива мн-ва че ... $x \in B_i \Leftrightarrow \forall y (y \in A \Rightarrow x \in y)$ за i=1,2 Така за всяко $x, x inB_1 \Leftrightarrow \forall y (y \in A \Rightarrow x \in y) \Leftrightarrow x \in B_2$ Т.е. има единствено такова множество, бележим го $\bigcap A$ или $\bigcap_{x \in A} x$

Приемаме че $\bigcap \emptyset \leftrightharpoons \emptyset$

Аксиома за чифта За всеки 2 мн-ва а и b, съществува множество A, измежду чиито ел. са а и b.

 $\forall a \forall b \exists A (a \in A \land b \in A)$

Тв За всеки 2 мн-ва а и в същ. единствено множество В, т.ч. $\forall x (x \in B \Leftrightarrow x = a \lor x = b)$

Док ед.: Нека B_1 и B_1 са мн-ва, т.ч. $\forall x(x \in B_i \Leftrightarrow x = a \lor x = b)$ Тогава за всяко $\mathbf{x}, \ x \in B_1 \Leftrightarrow x = a \lor x = b \Leftrightarrow x \in B_2$) След. $B_1 = B_2$

Док същ.: Нека A е такова множество че $a \in A$ и $b \in A$. Нека $\phi(x, u_1, u_2) \leftrightharpoons x = u_1 \lor x = u_2)$) По аксиомата схема за отд., същ. множество $B = \{x \mid x \in A \land \phi(x, a, b)\}$.

Ще док. че $\forall x(x \in B \Leftrightarrow x = a \lor x = b)$. Нека x е произв. и нека $x \in B$. Тогава $x \in A \land \phi(x, a, b)$, в частност $\phi(x, a, b)$ т.е. $x = a \lor x = b$.

Нека сега $x = b \lor x = b$. Така $\phi(x, a, b)$. Понеже $a \in A$ и $b \in A$, то $x \in A$. Следователно $x \in B$ Това единствено множество ще означаваме $\{a, b\}$ и ще нар. чифт на A и B.

Заб: Ако a=b, то $\{a,a\}=\{a\}$ наричаме синглетон на а.

Определимо е в езика на ТМ дали x е синглетон.

x е синглетон $\Leftrightarrow \exists a(x = \{a\}) \Leftrightarrow \exists a \forall y(y \in x \Leftrightarrow y = a).$

Тогава можем да използваме "синглетон" като свойство във ф-ла. Сега ясно се вижда че сме разширили езика защото следните са различни \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}\}$ и т.н. (така получаваме безкрайна редица)

Св $\{a,b\}=\{b,a\}$. Ясно се вижда че $\forall x(x\in\{a,b\}\Leftrightarrow x\in\{b,a\})$

$$|def| < a, b > = < a_1, b_1 > \Leftrightarrow a = a_1 \land b = b_1$$

Опр Наредена двойка на мн-вата х и у наричаме множеството $\{\{x\}, \{x,y\}\}$ и ще означаваме с < x,y>.

Заб: Ако използваме х вместо $\{x\}$ ще можем да правим цикли на принадлежност - $A \in B \in C$. другия път ще въведем "правило" което ще забрани такива неща.

Тв За всяко x1, y1, x2, y2 е в сила, че $< x1, y1> = < x2, y2> \Leftrightarrow x1=x2 \land y1=y2$

Док: (\Leftarrow) $x1 = x2 \land y1 = y2$, показваме че $\{x1\} = \{x2\} \land \{x1, y1\} = \{x2, y2\}$ $\{\{x1\}, \{x1, y1\}\} = \{\{x2\}, \{x2, y2\}\}$ и от там < x1, y1 > = < x2, y2 >

- (\Rightarrow) Нека < x1, y1 > = < x2, y2 >
 - 1. x1=y1, тогава $< x1, y1>=\{\{x1\}, \{x1, x2\}\}=\{\{x1\}, \{x1\}\}=\{x1\}\}=< x2, y2>=\{\{x2\}, \{x2, y2\}\}$. Следователно $\{x1\}=\{x2\}=\{x2, y2\}$. Така: x1=x2 и x2=y2. Тогава x1=x2=y2=y1
 - 2. $x1 \neq y1$. Тогава $\{x1\} \neq \{x1,y1\}$. Тогава $\{x2\} \neq \{x2,y2\}$. Тогава $y2 \neq x2$, защото иначе чифта и синглетона щяха да съвпадат. От тук $\{x1\} \neq \{x2,y2\}$. Но $\{x1\} \in < x2,y2>$, и така $\{x1\} = \{x2\}$. След. $\{x1,y1\} \neq \{x2\}$, от където $\{x1,y1\} = \{x2,y2\}$. От $\{x1\} = \{x2\}$, следва че x1 = x2. Тогава $\{x1,y1\} = \{x2,y2\}$. Понеже $y1 \neq x1 = x2$, то y1 = y2

Аксиома за обединение За всяко множество А съществува множество В, т.ч. всеки елемент на елемент на A е елемент на В.

 $\forall x \forall y (x \in y \land y \in A \Rightarrow x \in B)$

Тв За всяко множество А съществува единствено множество В, т.ч. $\forall x (x \in B \Leftrightarrow \exists y (y \in A \land x \in y))$

Док за ед: $i=1,2. \forall x(x\in B_i \Leftrightarrow \exists y(y\in A \land x\in y))$ за всяко x, $x\in B_1 \Leftrightarrow \exists y(y\in A \land xiny) \Leftrightarrow x\in B_2$, т.е. $B_1=B_2$

Док за същ. Нека C е такова множество, че $\forall x \forall y (y \in A \land x \in y \Rightarrow x \in C)$.

 $\overline{\text{Нека }B} = \{x \mid x \in C \land \exists y (y \in A \land x \in y)\}$

Сега ако $x \in B \implies x \in C \land \exists y (y \in A \land x \in y) \implies \exists y (y \in A \land x \in y)$

Нека $\exists y(y \in A \land x \in y)$. Нека y_0 е свидетел за това $(y_0 \in A \land x \in y_0)$.

Понеже $y_0 \in A \land x \in y_0$, то $x \in C$. Следователно $x \in B$

Значи съществува такова множество и то е единствено. Ще го бележим с $\bigcup A$.

Заб: Означение означава че ще го използваме във формула като съкращение(syntax sugar).

Не може да се дефинира операция за допълнение. Тоест:

Тв За нито едно множество A не съществува множество \overline{A} , т.ч. $\forall x (x \in \overline{A} \Leftrightarrow x \notin A)$

 $\underline{\underline{A}}$ ок: Допускаме противното - нека A и \overline{A} са такива мн-ва, такова че за всяко х $x \in \overline{A} \Leftrightarrow x \notin A$. Нека $V = \bigcup \{A, \overline{A}\}$ - от аксиомата за чифта и обединението. Нека х е произволно. Ако $x \in A$, то $\exists y (y \in \{A, \overline{A}\} \land x \in y)$ от където xinV. Ако пък $x \notin A$, то $x \in \overline{A}$ и отново $\exists y (y \in \{A, \overline{A}\} \land x \in y)$, т.е. $x \in V$. След $\forall x (x \in V)$, противоречие!

$$ar{0}=\emptyset$$
 $ar{1}=\{ar{0}\}$
 $ar{2}=ar{1}\cup\{ar{1}\}=\{ar{0},ar{1}\}$
 \ldots
 $\overline{n+1}=\overline{n}\cup\{\overline{n}\}\ (\mathrm{n}+1\ \mathrm{елементa})$

Аксиома за степенното множество За всяко множество А съществува множество В, измежду чиито елементи са всички подмножества на А. $\forall A \exists B \forall x (x \subseteq A \Rightarrow x \in B)$

Тв За всяко множество А същ. единствено множество В, т.ч. $\forall x (x \in B \Leftrightarrow x \subseteq A)$

Док за същ.: Некеа C е т.ч. $\forall x (x \subseteq A \Rightarrow x \in C)$.

 $\overline{\text{Нека }B}=\{\overline{x}\mid x\in C\land x\subseteq A\}$. Нека $x\in B$. След $x\in C\land x\subseteq A$, от където $x\subseteq A$. След. $x\in C$, от където $x\in C\land x\subseteq A$, т.е. $x\in B$ Заб: $x\in C\land x\subseteq A\Leftrightarrow x\subseteq A$, защото $x\subseteq A\Rightarrow x\in C$

Док за единственост: Взимаме B_1, B_2 и $\forall x (x \in B_i \Leftrightarrow x \subseteq A)$

 $\overline{x \in B_1 \Leftrightarrow x \subseteq A \Leftrightarrow x} \in B_2$, r.e. $B_1 = B_2$.

Такова множество В съществува и е единствено и ще означаваме с $\mathcal{P}(A) = \{x \mid x \subseteq A\}$

Какво можем да изведем от тук?

- $\emptyset \in \mathcal{P}(A)$ за всяко A
- $A \in \mathcal{P}(A)$, за всяко A

- $A \in \mathcal{P}(A)$, за всяко A
- $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B)$ монотонност
- Можем ли да твърдим монотонността в обратната посока? Да!
- Възможно ли е $\mathcal{P}(A) \subseteq A$? Не! (дори и за празното). Това е същото като $\mathcal{P}(A) \in \mathcal{P}(A)$, но това все още не можем да докажем.

Но можем да докажем следното:

 $|\operatorname{Tb}|$ Не същ. множество A, т.ч. $\mathcal{P}(A)\subseteq A$

Док: Допускаме противното и нека A е такова множество, че $\mathcal{P}(A) \subseteq A$.

Нека $\mathcal{R}_A = \{x \mid x \in A \land x \notin x\}$. Според аксиомата схема за отделяне \mathcal{R}_A е множество. Освен това, $\mathcal{R}_A \subseteq A$. След $\mathcal{R}_A \in \mathcal{P}(A)$ и по допускане $\mathcal{P}(A) \subseteq A$, от където $\mathcal{R}_A \in A$.

Но $\mathcal{R}_A \in A \Leftrightarrow \mathcal{R}_A \in A \land \mathcal{R}_A \notin \mathcal{R}_A \Leftrightarrow \mathcal{R}_A \notin \mathcal{R}_A$. Противоречие! След. ¬∃ $A(\mathcal{P}(A) \subseteq A)$

Опр Казваме, че множеството z е транзитивно, ако $z \subseteq \mathcal{P}(z)$. (ще бележим с trans(z)) Тоест z е транзитивно $\Leftrightarrow \forall y (y \in z \Rightarrow y \subseteq z) \Leftrightarrow \forall x \forall y (x \in y \land y \in z \Rightarrow x \in z)$ $\bigcup z \subseteq z$

Тв Нека х е множество. Тогава:

- 1. $trans(x) \Rightarrow trans(\bigcup x)$
- 2. $\forall y (y \in x \Rightarrow trans(y)) \Rightarrow trans(\bigcup x)$
- 3. $\forall y(y \in x \Rightarrow trans(y)) \Rightarrow trans(\bigcap x)$
- 4. $trans(x) \Rightarrow trans(\mathcal{P}(x))$
- 5. $trans(x) \Rightarrow trans(x \cup \{x\})$

Заб: $S(x) = x \cup \{x\}$ е наследник на х

<u>Док 1:</u> Нека x е транз. Нека $y \in \bigcup x$. Следователно $\exists z (y \in z \land z \in x)$. Нека z_0 е свидетел за това: $y \in z_0, z_0 \in x$. Но trans(x), от където $y \in x$. От $y \in x$, винаги е вярно че $y \subseteq \bigcup x$. Тогава $y \subseteq \bigcup x$. След $\bigcup x$ е транзитивно.

Док 2: Нека вс. ел. на x е транзитивно множество. Нека $y \in \bigcup x$. Нека z е т.ч. $y \in z \land z \in x$. Но z е транзитивно $(z \in x)$ значи $y \subseteq z$. Понеже $z \in x$, то $z \in \bigcup x$. Така $y \subseteq z \land z \subseteq \bigcup x$, от където $y \subseteq \bigcup x$. Т.е. $trans(\bigcup x)$

Док 3: Нека х е множество от транзитивни множества.

Заб: Трябва да внимаваме, защото $\forall y (y \in \emptyset \Rightarrow trans(y))$

Ако $x = \emptyset$, то $\bigcup x = \bigcup \emptyset = \emptyset$

Нека сега $x \neq \emptyset$. Нека $y \in \bigcap x$. Тогава $\forall z(z \in x \Rightarrow y \in z)$. Понеже $\forall z(z \in x \Rightarrow trans(z))$, то $\forall z(z \in x \Rightarrow y \subseteq z)$. Така y съдържа елементи, които са общи за всички елементи на x. Тогава $y \subseteq \bigcap x$. Следователно $trans(\bigcap x)$.

Док 4: Нека trans(x).

 $\overline{\text{Можем}}$ да използваме че $\bigcup z \subseteq z$ и можем да докажем следното $\bigcup \mathcal{P}(x) = x \subseteq \mathcal{P}(x)$

Друг подход:

$$trans(x) \implies x \subseteq \mathcal{P}(x) \implies \mathcal{P}(x) \subseteq \mathcal{P}(\mathcal{P}(x)) \implies trans(\mathcal{P}(x))$$

Док 5: Нека trans(x). Нека $y \in S(x) = x \cup \{x\}$. Ако $y \in x$, то понеже trans(x) имаме че $y \subseteq x$. Но $x \subseteq S(x) = x \cup \{x\}$. Така $y \subseteq S(x)$. Ако $y \in \{x\}$, то $y = x \subseteq S(x)$. $\forall y (y \in S(x) \Rightarrow y \subseteq S(x))$. Така trans(S(x))

Въвеждаме още съкратен синтаксис (синтактична захар) за $\phi(x)$ и A - множество:

- $(\exists x \in A)(\phi(x)) \leftrightharpoons \exists x(x \in A \land \phi(x))$
- $(\forall x \in A)(\phi(x)) \leftrightharpoons \forall x(x \in A \Rightarrow \phi(x))$
- $\exists ! x(\phi(x)) \leftrightharpoons \exists x(\phi(x) \land \forall y(\phi(y) \Rightarrow x = y))$

| def | Декартово произведение

 $\overline{A \times B} = \{ < a, b > \mid a \in A \land b \in B \}.$ Тук $\phi(x) \leftrightharpoons \exists a \exists b (x = < a, b > \land a \in A \land b \in B)$ и $x \in A \times B \Leftrightarrow \phi(x)$

Наблюдение: Ако $< a, b >, a \in A$ и $b \in B$

- $\{a\} \subseteq A \subseteq A \cup B, \{a,b\} \subseteq A \cup B$
- $\{a\}, \{a,b\} \in \mathcal{P}(A \cup B)$
- $\{\{a\},\{a,b\}\}\subseteq \mathcal{P}(A\cup B)$
- \bullet $< a, b > \subseteq \mathcal{P}(A \cup B)$
- $\langle a, b \rangle \in \mathcal{P}(\mathcal{P}(A \cup B))$

Тв За вс. 2 мн-ва A и B, същ. единствено мн-во C, такова че: $\forall u(u \in C \Leftrightarrow \exists a \exists b (a \in A \land b \in B \land u = < a, b >))$

Док за единственост: за домашна.

Док за съществуване: Нека $C = \{u \mid u \in \mathcal{P}(\mathcal{P}(A \cup B)) \land \phi(u)\}.$

 $\overline{\text{Имаме че } \forall u(\phi(u) \Rightarrow u \in \mathcal{P}(\mathcal{P}(A \cup B))}$, от където $\forall u(u \in C \Leftrightarrow \phi(u))$. Това единствено множество ще бележим с $A \times B$ и ще наричаме декартово произведение на A и B.

Тв За всеки A, B, C - множества, е в сила че:

- 1. $Ax\emptyset = \emptyset$
- 2. $\exists A \exists B(AxB=BxA)$, т.е. операцията не е комутативна
- 3. (AxB)xC = Ax(BxC)? Не е асоциативна!
- 4. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 5. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 6. $B \times (\bigcup A) = \bigcup \{B \times x \mid x \in A\}$ като за начоло се питаме синтаксиса коректен ли е? Тоест това от десния край е мн-во ли е?

Док 5:

- (\subseteq) Нека $x \in A \times (B \cap C)$. Нека $a \in A, b \in B \cap C$ са т.ч. x = < a, b >. Но $b \in B, b \in C$, от където $< a, b > \in A \times B$ и $< a, b > \in A \times C$. Така $x \in (A \times B) \cap (A \times C)$.
- (\supseteq) Нека $x \in (A \times B) \cap (A \times C)$. Тогава $x \in A \times B$ и $x \in A \times C$. Нека $a \in A, b \in B$, т.ч. x = < a, b >. Нека $a' \in A$ и $c \in C$ са такива че x = < a', c >>. Понеже < a, b >= x = < a', c >, то a = a' и b = c. Следователно $b \in B \cap C$, от където $x = < a, b > \in A \times (B \cap C)$.

Док 6: Първо да докажем че операцията е коректна.

$$\overline{B \times x}, x \in A \implies x \subseteq \bigcup A \implies B \times x \subseteq B \times (\bigcup A) \implies B \times x \in \mathcal{P}(B \times (\bigcup A)).$$
 Тук $M \leftrightharpoons \mathcal{P}(B \times (\bigcup A))$, което ще е резултат от отделянето.

Лема Съществува единствено мн-во $\forall u(u \in C \Leftrightarrow (\exists x \in A)(u = B \times x))$

Док: Единственост - от аксиомата за обемност.

(съществуване): Нека
$$C = \{u \mid u \in \mathcal{P}(B \times \bigcup A) \land (\exists x \in A)(u = B \times x)\}.$$
 $u \in C \implies u \in \mathcal{P}(B \times \bigcup A) \land \phi(u) \implies \phi(u).$ Сега от $\phi(u) \Rightarrow u \in \mathcal{P}(B \times \bigcup A)$ следва ...

- (\subseteq) Нека $u \in B \times (\bigcup A)$ е произволно. Нека < b, c>= u като $b \in B$ и $c \in \bigcup A$. Нека $a \in A$ е т.ч. $c \in a$. Тогава $u = < b, c> \in B \times a, a \in A$. Но $B \times a \in \{B \times x \mid x \in A\}$, от където $u \in \bigcup \{B \times x \mid x \in A\}$
- (\supseteq) Нека $u \in \bigcup \{B \times x \mid x \in A\}$. Нека $a \in A$ е т.ч. $u \in B \times a$. Нека $b \in B, c \in a$ са т.ч. u = < b, c >. Но $a \in A \implies a \subseteq \bigcup A$, така $c \in \bigcup A$. Тогава $u = < b, c > \in B \times (\bigcup A)$.

(от Тинко)

Множествата са естествени числа - N,

т.е. един обект е множество 👄 този обект е естествено число.

Нека x и y са множества, $x=y \Longleftrightarrow x=y$ като естествени числа.

Сега ще дефинираме принадлежност.

Нека
$$n > 0$$
, тогава $n = (1b_{k-1}...b_1b_0) = 1.2^k + ... + b_1.2^1 + b_0.2^0$

Нека x и y са множества. Казваме че $y \in x$ ако $b_{y-1} = 1$ в двоичното представяне на x.

Вижда се че логическите аксиоми са в сила - еквивалентност на равенството и конгруентност.

Какво означава аксиомата за екстенсионалност $\forall x \forall y (\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y)$? Ами x и y имат еднакви двоични представяния, т.е. те са равни.

Аксиома за чифта: Нека a и b са множества:

- 1. a = b, тогава $x = 2^a$
- 2. $a \neq b$, тогава $x = 2^a + 2^b$

Схема за отделяне: Нека $\phi(x)$ е ТМ свойство.

Нека A е съвкупността на естествените числа x, за които $\phi(x)$ е вярно. Нека B е множество. Сега се чудим дали $\exists C \forall x (x \in C \Leftrightarrow x \in B \land \phi(x))$ е изпълнено.

Ами това са тези битове b на B, за които е вярно свойството $\phi(b)$. Съответно в двоичния запис на C само на съответните позиции на тези b-та има 1, на всички останали има 0.

Аксиома за безкрайност

Форма на Цермело: $\exists A(\emptyset \in A \land \forall x (x \in A \Rightarrow \{x\} \in A))$

 $\overline{\text{Нека } A_0}$ е множество със свойството $\emptyset \in A_0 \land \forall x(x \in A_0 \Rightarrow \{x\} \in A_0)$. $\emptyset \in A_0 \Rightarrow \{\emptyset\} \in A_0$, така $\{\emptyset\} \in A_0$ и т.н. Показваме за произволен брой влагания на \emptyset .

Форма на Фон Нойман: $\exists A(\emptyset \in A \land \forall x (x \in A \Rightarrow x \cup \{x\} \in A)$

 $A_0: \emptyset \in A_0, \{\emptyset\} \in A_0, \{\emptyset\}\} \in A_0$ и т.н. Ние ще ползваме тази дефиниция когато говорим за естествени числа, където $0 \leftrightharpoons \emptyset$.

Аксиома за регулярност/фундираност $\forall x (x \neq \emptyset \Rightarrow \exists y (y \in x \land y \cap x = \emptyset))$ (Формулирана от Мириманов през 1917г и от Фон Нойман през 1925г)

Τ

- 1. $\neg \exists x (x \in x)$
- 2. $\neg \exists x \exists y (x \in y \land y \in x)$
- 3. $\neg \exists x \exists y \exists z (x \in y \land y \in z \land z \in x)$
- 4. Не съществува редица от мн-ва $x_0, x_1, x_2, ..., x_n, x_{n+1}, ...,$ такива че $x_0 \in x_1, x_1 \in x_2, ...$

<u>Док 1:</u> Да допусканем, че $\exists x(x \in x)$. Нека x_0 е свидетел за това съществуване, т.е. нека x_0 е мн-во със свойството $x_0 \in x_0$. Нека $x_1 = \{x_0\}$, т.е. $x_0 \in x_1$. Значи $x_1 \neq \emptyset$, следователно $\exists y(y \in x_1 \land y \cap x_1 = \emptyset)$. Нека y_0 е свидетел за това съществуване, т.е. $y_0 \in x_1 \land y_0 \cap x_1 = \emptyset$. Така $y_0 \in x_1$, но $x_1 = \{x_0\}$, следователно $y_0 = x_0$ и така $x_0 \in x_0$.

Следователно $x_0 \in y_0$, $x_0 \in \{x_0\}$, $\{x_0 = x_1\}$. Така $x_0 \in y_0$ и $x_0 \in x_1$. Значи $x_0 \in y_0 \cap x_1$. Това е абсурд, понеже $y_0 \cap x_1 = \emptyset$.

Док 2: Да доп. че $\exists x \exists y (x \in y \land y \in x)$. Нека x_0 и y_0 са мн-ва, т.ч. $x_0 \in y_0 \land y_0 \in x_0$. Нека $x_1 = \{x_0, y_0\}$. Така $x_1 \neq \emptyset$. От $x_1 \neq \emptyset \implies \exists y (y \in x_1 \land y \cap x_1 = \emptyset)$. Следователно $\exists y (y \in x_1 \land y \cap x_1 = \emptyset)$. Нека y_1 е такова мн-во, че $y_1 \in x_1 \land y_1 \cap x_1 = \emptyset$. $y_1 \in x_1, x_1 = \{x_0, y_0\}$. Следователно $y_1 = x_0 \lor y_1 = y_0$. Да разгледаме случаите:

- 1. $y_1 = x_0$. Разглеждаме y_0 . Знаем че $y_0 \in x_0$ и $x_0 \in y_0$. Така $y_0 \in y_1$, но $y_0 \in x_1$ защото $x_1 = \{x_0, y_0\} \implies y_0 \in y_1 \cap x_1 \implies$ противоречие $y_1 \cap x_1 = \emptyset$
- 2. $y_1 = y_0$. $x_0 \in y_0$, следователно $x_0 \in y_1$. Така ?...?
- 3. Сами! Hint: Допускаме че $x_0 \in y_0 \land y_0 \in z_0 \land z_0 \in x_0$ и $x_1 \leftrightharpoons \{x_0, y_0, z_0\}$

 $\overline{\text{Аксиомна схема за замяната}}$ (С тази аксиома вече имаме аксиомната схема \mathcal{ZF})

Имаме един детерминистичен преобразувател (на интуитивно ниво функция) - $\phi(x, y, \overline{u})$, в който можем да фиксираме \overline{u} и за дадено x то ни връща y.

Аксиомната схема твърди, че за такова ϕ с дефиниционна област A, има съответен образ на ϕ . Френкел забелязва че ако разгледаме $\mathbb{N}, \mathcal{P}(\mathbb{N}), ..., \mathcal{P}^n(\mathbb{N})$, то не можем да гарантираме че това последното $\mathcal{P}(N)^n$ съществува.

<u>Схемата:</u> Нека $\forall u_1...\forall u_n((\forall x \forall y_1 \forall y_2 (\phi(x,y_1,\overline{u}) \land \phi(x,y_2,\overline{u})) \Rightarrow y_1 = y_2) \Rightarrow \forall A \exists B \forall z (z \in B \Leftrightarrow \exists x (x \in A \land \phi(x,z,\overline{u}))))$

Разглеждаме: $\mathcal{P}(\emptyset) = \{\emptyset\}, A \leftrightharpoons \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\}$ $\phi(x,y) \leftrightharpoons (x = \emptyset \land y = a) \lor (x = \{\emptyset\} \land y = b))$ $\forall x \forall y_1 \forall y_2 (\phi(x,y_1) \land \phi(x,y_2) \Rightarrow y_1 = y_2)$ $\exists B \forall z (z \in B \Leftrightarrow \exists x (x \in A \land \phi(x,z)))$ Аксиома за избора (\mathcal{AC}) Нека имаме някакво разделяне(разбиване) на множеството А и вземем по един елемент от всяка част. Тоест $\forall z (z \in A \Rightarrow \bigcap z \text{ е синглетон } (\exists u (z \cap c = \{u\})))$

С помощта на аксиомата за избора се доказва че всяко множество може да бъде добре наредено. $\forall x(x \in A \Rightarrow \emptyset) \Rightarrow \exists f(Func(f))$ $Fom(f) = A \land \forall x(x \in A \Rightarrow f(x) \in x)$

Това поражда и парадокса на Банарх Тарски:

Взимаме кълбо В с r=1, значи може да разделим $B=B_1\cup B_2\cup ...\cup B_7$. След което можем да вземем $B_1\cup B_2\cup B_3$ с r=1 и $B_4\cup B_5\cup ...\cup B_1$ 7 с r=1 - абсурд! Аксиомата за избора не е конструктивна!

<u>Аксиомата:</u> Аксиома на мултипликативност - форма на Ръсел (защото още не сме въвели понятието за функция):

 $\forall A(\forall x(x\in A\Rightarrow x\neq\emptyset) \land \forall x\forall y(x\in A \land y\in A \land x\neq y\Rightarrow x\cap y=\emptyset) \Rightarrow \exists C \forall x(x\in A\Rightarrow \exists u(x\cap C=\{u\})))$

Заб: Ако A е крайно - всичко е наред, но ако A е безкрайно вече е различно.

 $f:A\to B, A woheadrightarrow B$ (сюрекция), то можем да ограничим домейна, за да получим биекция. Тоест съществува $A_0\subseteq A:f\upharpoonright A_0$ е биекция м-ду A_0 и B.

(Бинарни) Релации Това са множества (обекти от света ни).

Пример: $P_1(A, l) =$ точката A лежи на правате l.

Обаче може да имаме различни свойства, които описват еднакви релации (множества).

Ако $P_2(A, l) \leftrightharpoons$ правата l минава през точката A,

то $R_1=\{< A,l>\mid P_1(A,l)\}$ и $R_2=\{< A,l>\mid P_2(A,l)\}$ са равни. За нас релация е просто множество от наредени двойки $R\subseteq A\times B$

Опр Бинарна релация е множество, чийто елементи са наредени двойки.

$$\overline{Rel(R)} \leftrightharpoons \forall z(z \in R \Rightarrow \exists x \exists y(z = \langle x, y \rangle))$$

Примери:

- 1. ∅ никъде недефинираната релация
- 2. A е множество, $A \times A$ е релация (пълна релация над A)
- 3. A е мн-во, $id_A = \{ \langle x, x \rangle \mid x \in A \}$ е идентитет на A. Заб: $T = \{ \langle x, x \rangle \mid x = x \}$ не е множество (поражда парадокса на Ръсел)

def Нека R е релация.

Дефиниционна област на R наричаме: $Dom(R) \leftrightharpoons \{x \mid \exists y (< x, y > \in R)\}$ Област на стойностите на R наричаме: $Rng(R) \leftrightharpoons \{y \mid \exists x (< x, y > \in R)\}$

Тв За всяка релация R, Dom(R) и Rng(R) са множества.

 $\underline{\text{Док:}} \ x \in Dom(R) \implies \exists y (< x, y > \in R) \implies \exists y (\{x\} \in < x, y > \in R) \implies \{x\} \in \bigcup R \implies \overline{Dom}(R) \subseteq \bigcup R, Dom(R) \text{ е определима съвкупност (клас).}$

 $\bigcup \bigcup R$ е множество $\Longrightarrow Dom(R)$ е множество.

Аналогично получаваме $y \in Rng(R) \Rightarrow y \in \bigcup \bigcup R \implies Rng(R) \subseteq \bigcup \bigcup R$ - множество.

<u>Док:</u> Нека $z \in R$. Тогава z е наредена двойка. Нека x и y са т.ч. z = < x, y >. Тогава $x \in Dom(R)$ и $y \in Rng(R)$. Следователно $z = < x, y > \in Dom(R) \times Rng(R)$

Операции върху релации R,S - релации, то $\Longrightarrow R \cup S, R \cap S, R \setminus S$ са релации $R^{-1} \leftrightarrows \{< x,y> \mid < y,x> \in R\}$ е съвкупност от наредени двойки. Обаче множество ли е? $R^{-1} = \{< x,y> \mid < y,x> \in R\} = \{u \mid \exists x \exists y (u = < x,y> \land < y,x> \in R)\} = \{u \mid u \in Rng(R) \times Dom(R) \land \exists x,y (u = < x,y> \land < y,x> \in R)\}$

 def Операция - композиция на релации. $(f \circ g)(x) = g(f(x))$

Опр Композицията на релациите R и S наричаме мн-вото:

 $\overline{R \circ S} \leftrightharpoons \{\langle x, y \rangle \mid \exists z (\langle x, z \rangle \in R \land \langle z, y \rangle \in S)\} = \{u \mid (\exists x, y, z)(u = \langle x, y \rangle \land \langle x, z \rangle \in R \land \langle z, y \rangle \in S)\} = \{u \mid u \in Dom(R) \times Rng(S) \land (\exists x, y, z)(u = \langle x, y \rangle \land \langle x, z \rangle \in R \land \langle z, y \rangle \in S)\}$

Св Нека R, S_1, S_2 са релации. Тогава са изпълнени:

1.
$$R \circ (S_1 \circ S_2) = (R \circ S_1) \circ S_2$$
 - асоциативност

2.
$$(S_1 \cup S_2) \circ R = (S_1 \circ R) \cup (S_2 \circ R)$$

 $R \circ (S_1 \cup S_2) = (R \circ S_1) \cup (R \circ S_2)$

- 3. $R \circ (S_1 \cap S_2) \subseteq (R \circ S_1) \cap (R \circ S_2)$, обратното включване не винаги е вярно.
- 4. $R \circ (S_1 \setminus S_2) \supseteq (R \circ S_1) \cap (R \circ S_2)$
- 5. $(S_1 \circ S_2)^{-1} = S_2^{-1} \circ S_2^{-1}$

Док 3: Нека $u \in R \circ (S_1 \cap S_2)$. Нека x,y,z, т.ч. $u = \langle x,y \rangle, \langle x,z \rangle \in R$ и $\langle z,y \rangle \in S_1 \cap S_2$. Тогава $\langle z,y \rangle \in S_1$ и $\langle z,y \rangle \in S_2$. След. $\langle x,y \rangle \in R \circ S_1$ и $\langle x,y \rangle \in R \circ S_2$. Така $u = \langle x,y \rangle \in (R \circ S_1) \cap (R \circ S_2)$.

```
R = \{\langle x, z \rangle, \langle x, t \rangle\}, z \neq t
S_1 = \{\langle z, y \rangle\}
S_2 = \{\langle t, y \rangle\}
S_1 \cap S_2 = \emptyset, R \circ (S_1 \cap S_2) = R \circ \emptyset = \emptyset
R \circ S_1 = \langle x, y \rangle
R \circ S_2 = \langle x, y \rangle
R \circ S_2 = \langle x, y \rangle
R \circ S_1 \cap (R \circ S_2) = \{\langle x, y \rangle\}
```

Док 4: Нека $u \in (R \circ S_1) \setminus (R \circ S_2)$. Така $u \in R \circ S_1$ и $u \notin R \circ S_2$. Нека x,y,z са такива $u \in R \circ S_1$ и $u \notin R \circ S_2$. Нека x,y,z са такива $u \in R \circ S_2$, то $\forall t (< x,t> \in R \Rightarrow < t,y> \notin S_2)$. Но $< x,z> \in R$, след. $< z,y> \notin S_2$. Обаче $< z,y> \in S_1$, от където $< z,y> \in S_1 \setminus S_2$. От $< x,z> \in R$, следва че $u = < x,y> \in R \circ (S_1 \setminus S_2)$

Обратното не е винаги вярно!

Заб: (0) не е комутативна!

| Опр | Нека Rel(R) и $A \subseteq Dom(R)$. Образ на A при R наричаме множеството: $R[A] = \{y \mid \exists (x \in A) (< x, y > \in R)\} \subseteq Rng(R)$

[Oпр] Нека Rel(R) и $B\subseteq Rng(R)$. Праобраз на B при R наричаме множеството: $R^{-1}[B]=\{x\mid \exists (y\in B)(< x,y>\in R)\}\subseteq Dom(R)$

Тв (за коректност) Нека R е релация и $B \subseteq Rng(R)$. Тогава $(R^{-1})[B] = R^{-1}[B]$, където $(R^{-1})[B]$ е образ на B ри R^{-1} , а $R^{-1}[B]$ е праобраз на B при R.

<u>Док:</u> За вс. x е в сила че $x \in (R^{-1}[B]) \iff \exists y (< y, x > \in R^{-1} \land y \in B) \iff \exists y (y \in B \land < x, y > \in (R^{-1})^{-1}) \iff \exists y (y \in B \land < x, y > \in R) \iff x \in (R)^{-1}[B]$

Тв Нека $\forall x(x \in X \Rightarrow x \subseteq Dom(R))$. Тогава $R[\bigcup X] = \bigcup \{R[x] \mid x \in X\}$. Тук Rel(R) и X е множество. Това е коректно защото $(\forall x \in X)x \subseteq Dom(R)) \implies \bigcup X \subseteq Dom(R)$. $a \in \bigcup X \implies \exists x(x \in X \land a \in x) \implies a \in Dom(R)$. Сега това множество ли е? Нека $x \in X \implies x \subseteq Dom(R) \implies R[x] \subseteq R[Dom(R)]$. Тогава ако $A \subseteq A_1 \subseteq Dom(R) \implies R[A] \subseteq R[A_1]$ и съответно $B \subseteq B_1 \subseteq Rng(R) \implies R^{-1}[A] \subseteq R^{-1}[B_1]$. Значи това е определима съвкупност $\{R[x] \mid x \in X\} \subseteq \mathcal{P}(Rng(R))$. Всичко е коректно, сега доказателството.

Док: Нека $b \in R[\bigcup X]$. Нека $a \in \bigcup X$ е т.ч. $< a, b > \in R$. Нека $x_0 \in X$ е такъв че $a \in x_0$. Тогава $b \in R[x_0]$. Следователно $b \in \bigcup \{R[x] \mid x \in X\}$

Сега обратното включване. Нека $b \in \bigcup \{R[x] \mid x \in X\}$. Нека $x_0 \in X$ е т.ч. $b \in R[x_0]$. Но $x_0 \subseteq \bigcup X$. Пак от монотонността следва че $b \in R[x_0] \subseteq R[\bigcup X]$.

Тв Нека Rel(R) и X е мн-во за което е изп. че $\forall x (x \in X \Rightarrow x \subseteq Dom(R))$. Тогава $R[\cap X] \subseteq \cap \{R[x] \mid x \in X\}$, като не винаги е в сила обратното включване. Ако допълнително $(\forall y Rng(R))(\exists !x \in Dom(R))(< x, y > \in R))$ (нещо като инективност), то тогава $R[\cap X] = \cap \{R[x] \mid x \in X\}$.

Док: Нека $b \in R[\cap X]$. Нека $a \in \cap X$ е такова че $< a, b > \in R$. Следователно за всяко $x \in X, a \in x$. Следователно за вскяо $x \in X, b \in R[x]$. Така b принадлежи на всички елементи на $\{R[x] \mid x \in X\}$, значи $b \in \cap \{R[x] \mid x \in X\}$.

```
Пример: X = \{\{a_1\}, a_2\} и a_1 \neq a_2, R = \{< a_1, b_1 >, < a_2, b_2 >\} \cap X = \{a_1\} \cap \{a_2\} = \emptyset, R[\cap X] = \emptyset R[\{a_1\}] = \{y \mid (\exists x \in \{a_1\})(< x, y > \in R)\} = \{y \mid < a_1, y > \in R\} = \{b\}. Значи R[\{a_2\}] = \{b\}, \{R[x] \mid x \in X\} = \{\{b\}\}. \cap \{\{b\}\} = \{b\}, A = \{a\}, a = \{b\}, x \in \cap A \Leftrightarrow \forall a \in A(x \in a)
```

Нека $(\forall y \in Rng(R))(\exists ! x \in Dom(R))(< x, y > \in R)$. Нека $b \in \cap \{R[x] \mid x \in X\}$. Следователно за всяко $x \in X, b \in R[x]$, т.е. за всяко $x \in X$ същ $a \in x$, т.ч. $< a, b > \in R$.

 $b \in Rng(R)$: $x \neq \emptyset$. Нека $x_0 \in X$. Тогава $b \in R[x_0]$. След $b \in Rng(R)$. Нека $a_0 \in x_0$ е т.ч. $< a_0, b > \in R$. Нека сега $x \in X$ е произволно и $a \in x$ е т.ч. $< a, b > \in R$. Но $< a_0, b > \in R$, от където $a_0 = a$. В частност $a_0 \in x$, но x е произволно. Следователно $a_0 \in \cap X$. Но тогава $b \in R[\cap X]$, защото $< a_0, b > \in R$ и $a_0 \in \cap X$. Така $\cap \{R[x] \mid x \in X\} \subseteq R[\cap X]$

< Функции >

Опр Казваме че релацията R е функция, ако Funct(R), където $Funct(R) \leftrightharpoons Rel(R) \land \forall x \forall y \forall y' (< x,y> \in R \land < x,y'> \in R \Rightarrow y=y')$

- 1. $Funct(R) \implies Rel(R)$
- 2. $Funct(R), Dom(R) = A, Rng(R) \subseteq B$, то пишем $R: A \to B$
- 3. $Funct(R), Dom(R) \subseteq A, Rng(R) \subseteq B$, то ще казваме че R е частична функция от A към B. Ще пишем $R:A \Rightarrow B$
- 4. $R:A\to B$ и Rng(R)=B, ще казваме че R е сюрекция (епиморфизъм) на A върху B. Означаваме с $R:A\to B$
- 5. $R:A\to B,R$ е инекция (мономорфизъм), ако $\forall x\forall x'\forall y(x\neq x'\land < x,y>\in R\Rightarrow < x',y>\notin R$). Означаваме $R:A\rightarrowtail B$
- 6. $R:A\to B$ е биекция, ако R е сюрекция на A в-ху B и R е инекция. Означаваме $R:A\rightarrowtail B$

Понеже функциите са релации, директно се пренасят и понятията за образ и праобраз. Ще използваме f,g,h..., за да означаваме че дадена релация е функция. Ако Func(f), вместо $< x,y> \in f$ ще пишем f(x)=y

Следствие Нека Func(f) и нека X и Y са такива мн-ва че: $(\forall x \in X)(x \subseteq Dom(f))$ и $(\forall y \in Y)(y \subseteq Rng(f))$

Тогава $f[\bigcup X] = \bigcup \{f[x] \mid x \in X\}$ и $f[\cap X] \subseteq \cap \{f[x] \mid x \in X\}$ (равенство не винаги се достига). Изпълнено е че $f^{-1}[\bigcup X] = \bigcup \{f^{-1}[x] \mid x \in X\}$ и $f^{-1}[\cap X] = \cap \{f^{-1}[x] \mid x \in X\}$. $\forall y \in Rng(R) \exists ! x \in Dom(R) (< x, y > \in R)$

- (\Rightarrow) Нека $Func(f^{-1})$. Нека x, x', y са т.ч. $x \neq x'$ и $< x, y > \in f$. Тогава $< y, x > \in f^{-1}$. Ако доп, че $< x', y > \in f$, то $< y, x' > \in f^{-1}$. Понеже f^{-1} е функция, то x = x'. Но f^{-1} е функция, т.е. $x \neq x' \implies$ Противоречие! $\implies < x', y > \notin f$ и значи f е инективна.
- $\underline{(\Leftarrow)}$ Нека f е инективна. Нека x,y,y' са т.ч. $< x,y>, < x,y'> \in f^{-1}$. Тогава $< y,x>, < y',x> \in f$ и понеже f е инективна то y=y'. Следователно $Func(f^{-1})$.

[Тв] Нека f и g са функции. Тогава $f \circ g$ е функция с $Dom(f \circ g) = \{x \mid x \in Dom(f) \land f(x) \in Deom(g)\}.$

Тогава $f \circ g$ е функция с $Dom(f \circ g) = \{x \mid x \in Dom(f) \land f(x) \in Deom(g)\}$ За всяко $x \in Dom(f \circ g)$ е вярно $(f \circ g)(x) = f(g(x))$.

Док: $Rel(f \circ g)$. Нека $< x, y >, < x, y' > \in f \circ g$. Нека z, z' са т.ч. $< x, z > \in f \land < z', y > \in g$ и $< x, z' > \in f \land < z', y' > \in g$ $Func(f) \implies z = z' \implies < z, y >, < z, y' > \in g \implies y = y' \text{ (or } Func(g))$

Нека $x \in Dom(f \circ g)$. Нека y е т.ч. $< x, y > \in f \circ g$. Нека z е т.ч. $< x, z > \in f$ и $< z, y > \in g$. Тогава $x \in Dom(f)$ и z = f(x). Но $z \in Dom(g)$, от където $f(x) \in Dom(g)$.

Сега наобратно. Взимаме $x \in Dom(f)$ и $f(x) \in Dom(g)$. Тогава $\langle x, f(x) \rangle \in f$ и $\langle f(x), g(f(x)) \rangle \in g$. Следователно $\langle x, g(f(x)) \rangle \in f \circ g$. В частност получаваме че $x \in Dom(f \circ g)$ и понеже $Func(f \circ g)$, то $(f \circ g)(x) = g(f(x))$.

Опр Казваме, че функциите f и g са съвместими, ако $Func(f \cup g)$.

Onp
$$f: A \to B, A_1 \subseteq A$$

 $\overline{\text{Рестр}}$ икция на f до A_1 : $f \upharpoonright A_1 \leftrightharpoons f \cap (A_1 \times Rng(f))$

Да уточним някои неща:

 $\overline{f:A \to B, A_1 \subseteq A = Dom(f)}$

Рестрикция на f до A_1 : $f \upharpoonright A_1 = f \cap (A_1 \times Rng(f)) = \{ \langle x, f(x) \rangle \mid x \in A_1 \}$

- 1. $Func(f \upharpoonright A_1)$
- 2. $f \upharpoonright A_1 \subseteq f \upharpoonright A$
- 3. $A_1 \subseteq A_2 \subseteq A \Rightarrow f \upharpoonright A_1 \subseteq f \upharpoonright A_2$

Oпр f и g са съвместими функции, ако $f \cup g$ е функция.

Тв Функциите f и g са съвместими $\Leftrightarrow f \upharpoonright (Dom(f) \cap Dom(g)) = g \upharpoonright (Dom(f) \cap Dom(g))$

 (\Rightarrow) Нека $Funct(f \cup g)$. Нека $u \in f \upharpoonright (Dom(f) \cap Dom(g))$. Тогава $u = \langle x, y \rangle$ като $x \in \overline{Dom}(f) \cap Dom(g)$ и $y = (f \upharpoonright (Dom(f) \cap Dom(g)))(x) = f(x)$.

Понеже $x \in Dom(g)$, то $< x, g(x) > \in g$. Така $< x, f(x) > , < x, g(x) > \in f \cup g$.

Понеже $Funct(f \cup g)$, то f(x) = y = g(x). Следователно $u = \langle x, y \rangle = \langle x, g(x) \rangle \in g$ и понеже $x \in Dom(f) \cap Dom(g)$, то $u = \langle x, y \rangle \in y \upharpoonright (Dom(f) \cap Dom(g))$.

 $\underbrace{(\Leftarrow)}_{< x,y} \text{ Нека } f \upharpoonright (Dom(f) \cap Dom(g)) = g \upharpoonright (Dom(f) \cap Dom(g)). \text{ Ясно е, че } Rel(f \cup g). \text{ Нека } < x,y>, < x,y'> \in f \cup g$

Възможни са 3 случея:

- 1. $\langle x, y \rangle, \langle x, y' \rangle \in f$. Ho Funct(f), от където y = y'.
- 2. < x, y >, < x, y' > ∈ g. Подобно получава се y = y'
- 3. $< x,y> \in f, < x,y'> \in g$. Тогава $x \in Dom(f), x \in Dom(g)$. След $x \in Dom(f) \cap Dom(g)$. Така y = f(x) = g(x) = y'

[Тв] Нека F е множество от две по две съвместими функции. Тогава $\bigcup F$ е функция като: $Dom(\bigcup F) = \bigcup \{Dom(f) \mid f \in F\}$ $Rng(\bigcup F) = \bigcap \{Rng(f) \mid f \in F\}$

<u>Док:</u> Ясно е, че $Rel(\bigcup F)$. Нека $< x, y > \in \bigcup F$ и $< x, y' > \in \bigcup F$. Нека $f, f' \in F$ са такива че $< x, y > \in f$ и $< x, y' > \in f'$. Тогава $Funct(f \cup f')$, като $< x, y > , < x, y' > \in f \cup f'$. Следователно y = y'. Така получаваме $Funct(\bigcup F)$.

Нека $x \in Dom(\bigcup F)$. Нека y е т.ч. $\langle x, y \rangle \in \bigcup F$. Нека $f_0 \in F$ е такова че $\langle x, y \rangle \in f_0$. Тогава $x \in Dom(f_0)$ и следователно $x \in \bigcup \{Dom(f) \mid f \in F\}$. Нека сега $f_0 \in F$ е т.ч. $x \in Dom(f_0)$. Но $f_0 \subseteq \bigcup F$ и $\bigcup F$ е функция, следователно $Dom(f_0) \subseteq Dom(\bigcup F)$. Следователно $x \in Dom(\bigcup F)$

Лекция 5

Опр За $f: \mathcal{P}(A) \to \mathcal{P}(A)$, ще казваме че f е монотонна, ако: $(\forall X_1 \supset A)(\forall X_2 \subseteq A)(X_1 \subseteq X_2 \to f(X_1) \subseteq f(X_2))$

Опр За монотонна $f: B \to B, x$ е неподвижида точка на f, ако f(x) = x

|Лема | (Тарски)

Нека $f:\mathcal{P}(A)\to\mathcal{P}(A)$ е монотонна функция. Тогава f има неподвижнда точка. Нещо повече, f има най-малка и най-голяма неподвижнда точка: тоест съществуват $X_1,X_2\in\mathcal{P}(A)$ т.ч. $f(X_1)=X_1,f(X_2)=X_2$ и за всяко $X\in\mathcal{P}(A)$ с f(X)=X е изпълнено, че $X_1\subseteq X\subseteq X_2$.

Док: Нека $\Pi = \{X \mid X \subseteq A \land f(X) \subseteq X\}$ Понеже $A \in \Pi$, то $\Pi \neq \emptyset$. Нека $X_1 = \bigcap \Pi$. За всяко $X \in \Pi$, $X_1 = \bigcap \Pi \subseteq X$. Понеже f е монотонна, то за вс. $X \in \Pi$, $f(X_1) \subseteq f(X) \subseteq X$. Следователно $f(X_1) \subseteq \bigcap \Pi = X_1$. Понеже $X_1 \subseteq A$, то $X_1 \in \Pi$. Отново от монотонността на f имаме, че $f(f(X_1)) \subseteq f(X_1)$. Значи $f(X_1) \in \Pi$. Следователно $X_1 \subseteq f(X_1)$. От тук $f(X_1) = X_1$ и така X_1 е неподвижнда точка на f. Ясно се вижда че: $f(X) = X \implies x \in \Pi \implies X_1 = \bigcap \Pi \subseteq X \implies X_1$ е най-малката неподвижна точка на f. За най-голяма неподвижна точка - за домашна!

(от Тинко)

< Равномощни множества. Сравняване на множества по мощност >

Казваме че мощността на A не надминава мощността на B, ако $\exists f(f:A\rightarrowtail B).$ Пишем $\overline{\overline{A}}\leq \overline{\overline{B}}.$

Казваме че мощността на A е строго по-малка от мощността на B, ако $\overline{\overline{A}} \leq \overline{\overline{B}} \wedge \overline{\overline{A}} \neq \overline{\overline{B}}$. Пишем $\overline{\overline{A}} < \overline{\overline{B}}$.

Св

1.
$$\overline{\overline{A}} = \overline{\overline{A}}$$
, or $Id_A : A \rightarrow A$

2.
$$\overline{\overline{A}} = \overline{\overline{B}} \implies \overline{\overline{B}} = \overline{\overline{A}}$$

3.
$$\overline{\overline{A}} = \overline{\overline{B}} \wedge \overline{\overline{B}} = \overline{\overline{C}} \implies \overline{\overline{A}} = \overline{\overline{C}}$$

Док 2: Нека $f_0: A \rightarrowtail B$ (свидетел за съществуващата биекция), тогава $f_0^{-1}: B \rightarrowtail A$. Значи $\exists f'(f': B \rightarrowtail A)$

Док 3: $\exists f(A \rightarrowtail B)$ и $\exists f(B \rightarrowtail C)$. Нека вземем свидетели: $f_0: A \rightarrowtail B, f_1: B \rightarrowtail C$. Нека $h = f_0 \circ f_1$, т.е. $h(x) = f_1(f_0(x))$. Вижда се че $h: A \rightarrowtail C$. Следователно $\exists f'(f': A \rightarrowtail C)$.

Нека A и c са произволни множества. Тогава $\overline{\overline{A}} = \overline{\overline{A} \times \{c\}}$ и $\overline{\overline{A}} = \overline{\overline{\{c\}} \times \overline{A}}$ Дефинираме $f: f(a) = \langle a, c \rangle$ за вс. $a \in A$. $f = \{u \mid \exists a (a \in A \land u = \langle a, \langle a, c \rangle \rangle)\} = \{\langle a, c \rangle \mid a \in A\}$, съответно тук отделяме $u \in A \times \{c\}$. idk????

$$\boxed{\text{Tb}} \ A \neq \emptyset \Longleftrightarrow \neg \exists B \forall x (x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$$

<u>Док:</u> Нека $A \neq \emptyset$. $a_0 \in A$. Да доп. че $\exists B \forall x (x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$. Нека B е свидетел за съществуването $\forall x (x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$. И нека вземем $B_0 \leftrightharpoons \{w \mid w \in B \land \exists c (w = A \times \{c\})\}$. Значи $Rel(\bigcup B_0)$.

Нека t е произволно множеството, тогава $A \times \{t\} \in B_0$. Значи за $a_0, t > \in \bigcup B_0$. Тогава $t \in Rng(\bigcup B_0)$. Така, $\forall t (t \in Rng(\bigcup B_0))$ - абсурт! (от допускането че B_0 съществува).

Допускането че $A \neq \emptyset$ беше съществено.

Ако $A = \emptyset$, то $\exists B(x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$. И единствената възможност е $B = \{\emptyset\}$

$$\boxed{\text{Tb}} \ \forall A \forall B \exists A' \exists B' (\overline{\overline{A}} = \overline{\overline{A'}} \land \overline{\overline{B}} = \overline{\overline{B'}} \land A' \cap B' = \emptyset)$$

Ще дефинираме $\overline{\overline{A}} + \overline{\overline{B}} \leftrightharpoons \overline{\overline{A' \cup B'}}$. Как го постигаме?

Взимаме $c_1 \neq c_2$ и тогава $A' \leftrightharpoons A \times \{c_1c1\}$ и $B' \leftrightharpoons B \times \{c_2\}$. А $A' \cap B' = \emptyset$

$$\overline{\text{Cb}} \text{ Ako } \overline{\overline{A'}} = \overline{\overline{A''}} \wedge \overline{\overline{B'}} = \overline{\overline{B''}} \wedge A' \cap B' = \emptyset \wedge A'' \cap B'' = \emptyset \implies \overline{\overline{A' \cup B''}} = \overline{\overline{A'' \cup B''}}$$

Док: Взимаме свидетели $f_1: A' \rightarrowtail A''$ и $f_2: B' \rightarrowtail B''$, тогава $f_1 \cup f_2$ е функция, защото f_1 и f_2 са съвместими. Съответно $Dom(f_1 \cup f_2) = Dom(f_1) \cup Dom(f_2) = A' \cup B'$. Аналогично за за $Rng(f_1 \cup f_2)$

[def] Бихме искали да го дефинираме така $[\overline{\overline{A}}, \overline{\overline{B}}] = [\overline{\overline{A} \times \overline{B}}]$.

Пак ще вземем равномощни на A и B. $\overline{\overline{A}} = \overline{\overline{A'}} \wedge \overline{\overline{B}} = \overline{\overline{B'}} \implies \overline{\overline{A \times B}} = \overline{\overline{A' \times B'}}$.

 $\overline{\overline{\overline{A}}} = k$ и $\overline{\overline{\overline{B}}} = n$, то това ще са всички функции от B в A. Искаме да покажем $\overline{\overline{\overline{A}}} = \overline{\overline{\overline{B}}}_A$, където $B_A = \{f \mid f: B \to A\}$. $\overline{\overline{\overline{A}}} = \overline{\overline{\overline{A'}}} \wedge \overline{\overline{\overline{B}}} = \overline{\overline{\overline{B'}}} \implies \overline{\overline{\overline{\overline{A}}}} = \overline{\overline{\overline{B'}}}_A$

Задачи

1.
$$\forall A \exists A' (\overline{\overline{A}} = \overline{\overline{A'}} \land A \cap A' = \emptyset)$$

2. Нека
$$A\cap B=\emptyset$$
, тогава $\overline{\overline{^{A\cup B}c}}=\overline{\overline{^{A}c}} imes\overline{\overline{^{B}c}}$

3.
$$2 \leftrightharpoons \{0,1\}$$
, където $0 \leftrightharpoons \emptyset$, $1 \leftrightharpoons \{\emptyset\}$

4.
$$\overline{\overline{A_2}} = \overline{\overline{\mathcal{P}(A)}}$$

5.
$$\overline{(A \times B)_C} = \overline{\overline{A_{B_C}}}$$

$\overline{\mathbf{T}}$ (Кантор-Шрьодер-Берщайн) $\overline{\overline{A}} \leq \overline{\overline{B}} \wedge \overline{\overline{B}} \leq \overline{\overline{A}} \implies \overline{\overline{A}} = \overline{\overline{B}}$

<u>Док:</u> Нека $f: A \rightarrow B, g: B \rightarrow A$. Търсим биекция h. Можем да дефинираме $h = (f \upharpoonright X) \cup (h^{-1} \upharpoonright (A \backslash X))$, за някое $X \subseteq A$. Как да вземем такова X?

Трябва ни $A \setminus g[B \setminus f[x]] = X$ (търсим неподвижна точка?).

Дефинираме $\mathcal{F}: \mathcal{P}(A) \to \mathcal{P}(A)$, за $X \subseteq A$ полагаме $\mathcal{F}(X) \leftrightharpoons A \setminus g[B \setminus f[x]]$ и твърдим че \mathcal{F} е монотонно. Наистина нека $X_1 \subseteq X_2 \subseteq A$ и $f[X_1] \subseteq f[X_2]$. Значи $B \setminus f[X_2] \subseteq B \setminus f[X_1] \subseteq B$ и $g[B \setminus f[X_2]] \subseteq g[B \setminus f[X_1]] \subseteq A \setminus g[B \setminus f[X_1]] \subseteq A$.

 $\mathcal{F}(X_1)\subseteq \mathcal{F}(X_2)$. Следователно от Лемата на Тарски за неподвижната точка - \mathcal{F} ма неповижна точка. Нека X_0 е неподвижна точка на \mathcal{F} , т.е. $X_0\subseteq A$ и $\mathcal{F}(X_0)=X_0$.

 $A \setminus g[B \setminus f[X_0]] = X_0$ и $A \setminus X_0 = g[B \setminus f[X_0]] = x_0$. Това може ли да е вярно за произволно ножество? Не, защото $X_0 \subseteq A$, т.е. $Rng(g) \subseteq A$

Ние дефинирахме $h \leftrightharpoons (f \upharpoonright X) \cup (h^{-1} \upharpoonright (A \setminus X))$. Това е възможно защото $Dom(g^{-1}) = Rng(g)$ и $A \setminus X_0 \subseteq Dom(g^{-1})$. Каква е дефиниционната област на h? $Dom(h) = Dom(f \upharpoonright x_0) \cup Dom(g^{-1} \upharpoonright (A \setminus X_0)) = X_0 \cup (A \setminus x_0) = A$

 $Rng(h) = Rng(f \upharpoonright X_0) \cup Rng(g^{-1} \upharpoonright (A \setminus X_0)) = f[X_0] \cup (B \setminus X_0) = B$. Това което се случва е че ако $Dom(f \upharpoonright X_0) \cap Dom(g^{-1} \upharpoonright (A \setminus X_0)) = \emptyset$ и $Rng(f \upharpoonright X_0) \cap Rng(g^{-1} \upharpoonright (A \setminus X_0)) = \emptyset$ и те са инекции, е в сила твърдението че тяхното обединение също е инекция. Така теоремата е доказана.

 $\boxed{\mathrm{T}}$ В \mathcal{ZF} следните са еквивалентни:

- $\forall A \forall B (\overline{\overline{A}} \leq \overline{\overline{B}} \vee \overline{\overline{B}} \leq \overline{\overline{A}})$
- Аксиомата за избора

Т за междинното множество

Нека $A\subseteq B\subseteq C$. Тогава ако $\overline{\overline{A}}=\overline{\overline{C}}$, то $\overline{\overline{A}}=\overline{\overline{B}}$ и $\overline{\overline{B}}=\overline{\overline{C}}$

 \underline{A} ок: $A \subseteq B, B \subseteq C, \overline{\overline{A}} = \overline{\overline{C}}$. Тогава: $\overline{\overline{A}} \leq \overline{\overline{B}}$. $B \subseteq C \Longrightarrow \overline{\overline{B}} \leq \overline{\overline{C}}$. Нека $f: B \rightarrowtail C$ и $g: C \rightarrowtail A$, тогава $h \leftrightharpoons f \circ g$ и $h: B \to A$. $h(x_1) = h(x_2) \Longrightarrow g(f(x_1)) = g(f(x_2))$, g е инекция и $f(x_1) = f(x_2)$ - инекция. Тоест $x_1 = x_2$. $g: B \to A$, т.е. $\overline{\overline{B}} \leq \overline{\overline{A}}$. Получаваме $\overline{\overline{A}} = \overline{\overline{B}}$ (от Т на К.Ш.Б)

 $\overline{\mathrm{T}}$ на Кантор за степенното множество $\forall A(\overline{\overline{A}}<\overline{\overline{\mathcal{P}(A)}})$

Док: 1) $\overline{\overline{A}} < \overline{\overline{\mathcal{P}(A)}}$?

 $\overline{\Box}$ ефинираме $f(a) = \{a\}$ за $a \in A$. Или по друг начин записано $f \leftrightharpoons \{z \mid z \in A \times \mathcal{P}(A) \land \exists x \exists y (z = \langle x, y \rangle \land x \in A \land y = \{y\})\}$

 $2) \neg \exists f(f: A \twoheadrightarrow \mathcal{P}(A))$

Да доп че $\exists f(f:A \to \mathcal{P}(A))$. Нека $g:A \to \mathcal{P}(A)$ е свидетел за това съществуване. Нека $B \leftrightharpoons \{x \mid x \in A \land x \notin g(x)\}, B \subseteq A$, т.е. $B \in \mathcal{P}(A), \exists x(g(x) = B)$. Нека $x_0 \in A$ и $g(x_0) = B$ 1) $x_0 \in g(x_0)$. Тъй като $g(x_0) = B$, то $x_0 \in B$. Тогава $x_0 \notin g(x_0)$. Знаем че $x_0 \in g(x_0) \Longrightarrow x_0 \notin g(x_0)$. Следователно $x_0 \notin g(x_0)$, но $x_0 \in A$ и от деф. на B заключваме $x_0 \in B$. Тъй като $g(x_0) = B$, то $x_0 \in g(x_0)$. Тогава $x_0 \notin g(x_0) \Longrightarrow x_0 \in g(x_0) \Longrightarrow$ Противоречие!

Щом $\neg \exists f(f: A \rightarrow \mathcal{P}(A))$, значи $\overline{\overline{A}} < \overline{\overline{\mathcal{P}(A)}}$.

 $\neg \exists V \forall x (x \in V)$, да допуснем че $\exists V \forall x (x \in V)$.

Нека вземем такова V, тогава от $\overline{\mathcal{P}}(V) \leq V, \overline{\overline{\mathcal{P}(V)}} \leq \overline{\overline{V}}$ и $\overline{\overline{V}} < \overline{\overline{\mathcal{P}(V)}} \implies$ противоречие! Получаваме го от $\overline{\overline{V}} < \overline{\overline{\mathcal{P}(V)}} \implies \overline{\overline{V}} \leq \overline{\overline{\mathcal{P}(V)}}$, т.е. съществува биекция - абсурд!

 $\underline{\underline{\mathcal{H}}}$ ок: $\underline{\mathcal{H}}$ а допуснем, че $\exists A \forall x (\exists y \in A) (\overline{\overline{x}} = \overline{\overline{y}})$. Нека A_0 е свидетел за съществуването, т.е. A_0 е такова че $\forall x (\exists y \in A_0) (\overline{\overline{x}} = \overline{\overline{y}})$. Нека разгледаме $\bigcup A_0$. Нека x е произволно множество, т.ч. $(\exists y \in A_0) (\overline{\overline{x}} = \overline{\overline{y}})$. $y \subseteq A_0, \overline{\overline{y}} \le \overline{\bigcup A_0}$. От тук получаваме $\overline{\overline{x}} \le \overline{\overline{A_0}}$. В частност за $x = \mathcal{P}(\bigcup A_0)$ и $\overline{\mathcal{P}(\bigcup A_0)} \le \overline{\bigcup A_0}$ - противоречие!

< Частични наредби >

Опр | Нека R е бинарна релация. Казваме че:

- R е над A, ако $R \subseteq A \times A$
- R е рефлексивна в A, ако $\forall x (x \in A \Rightarrow \langle x, x \rangle \in R)$
- R е антисиметрична, ако $\forall x \forall y (\langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow x = y)$
- R е асиметрична, ако $\forall x \forall y (< x, y > \in R \Rightarrow < y, x > \notin R)$
- R е транзитивна, ако $\forall x \forall y \forall z (< x, y > \in R \land < y, z > \in R \Rightarrow < x, z > \in R)$
- R е ирефлексивна, ако $\forall x (x \in A \Rightarrow < x, x > \notin R)$

Тв Нека R е бинарна релация над A. Тогава:

- R е рефлексивна в $A \iff id_A \subseteq R$
- R е транзитивна $\iff R \circ R \subseteq R$
- R е антисиметрична $\iff R \cap R^{-1} \subseteq id_A$
- R е асиметрична $\iff R \cap R^{-1} = \emptyset$
- R е ирефлексивна $\iff R \cap id_A = \emptyset$

Опр R е частична наредба в A, ако R е над A, ако R е рефлексивна, антисиметрична и транзитивна в A. Тогава наредената двойка A, A, B ще наричаме частично наредено множество.

Вярно ли е че $\forall A \exists R (< A, R > - \text{ч.н.м.})?$ Да: $id_A^{-1} = id_A$

Опр Ако < A, R> е частично наредено множество, $x,y \in A$. Казваме че x и y са R-сравними, ако $< x,y > \in R \lor < y,x > \in R$.

<u>Заб:</u> "< A, R > е ч.н.м." е определимо свойство - $\phi(A, R)$.

Ако < A,R > - ч.н.м, $A_1\subseteq A\implies$ < $A_1,R\cap(A_1\times A_1)$ > - тази наредба се нарича индуцирана наредба в A_1

Опр R е строга частична наредба в A ако R е над A, R е антисиметрична и транзитивна. (+ ирефлексивност). Тогава A, A - строго частично наредено множество.

Тв Нека R е релация над A, която е асиметрична. Тогава R е ирефлексивна.

<u>Док:</u> Нека $R \subseteq A \times A$ е асиметрична, но не е ирефлексивна. Тоест $\exists x (x \in A \land < x, x > \in R)$. Нека a е свидетел за това, т.е. $a \in A \land < a, a > \in R$. Тогава по асиметричността на R получаваме, че $< a, a > \notin R$. Противоречие! $\implies R$ е ирефлексивна.

Вярно ли е че $\forall A \exists R(R$ - строга ч.н. в A)? Да това е \emptyset

Тв Нека R е ралация над A. Ако R е частична наредба в A, то $R \setminus id_A$ е строга частична наредба в A. Ако R е с.ч.н. в A, то $R \cup id_A$ е ч.н. в A.

Док:

1) Нека R е ч.н. в A. Тогава $(R \setminus id_A) \cap (R \setminus id_A)^{-1} = (R \setminus id_A) \cap (R^{-1} \setminus id_A^{-1}) = (R \setminus id_A) \cap (R^{-1} \setminus id_A) = (R \cap R^{-1}) \setminus id_A \subseteq id_A \setminus id_A = \emptyset$, защото R е антисиметрична, т.е. $R \cap R^{-1} \subseteq id_A$. Следователно $R \setminus id_A$ е асиметрична.

Сега док че тя е транзитивна. Нека $< x, y >, < y, z > \in R \setminus id_A$. Но тогава $< x, y >, < y, z > \in R$ и от транзитивността на R имаме, че $< x, z > \in R$. Да допуснем, че $< x, z > \in id_A$, тогава x = z. Така $< x, y >, < y, x > \in R$. От където y = x, т.е. $< x, y > \in id_A$. Но $< x, y > \in R \setminus id_A \implies$ Противоречие! Следователно $< x, z > \notin R \setminus id_A$. Тогава $R \setminus id_A$ е транзитивна. И така получаваме че е с.ч.н в A.

2) Нека R е с.ч.н. в A. Тогава $id_A\subseteq R\cup id_A$, от където $R\cup id_A$ е рефлексивна в A. Понеже R е асиметрична, то $R\cap R^{-1}=\emptyset$. Тогава $(R\cup id_A)\cap (R\cup id_A)^{-1}=(R\cup id_A)\cap (R^{-1}\cup id_A^{-1})=(R\cup id_A)\cap (R^{-1}\cup id_A)=(R\cup R^{-1})\cup id_A=\emptyset\cup id_A=id_A$. В частност $R\cup id_A$ е антисиметрична. Накрая имаме, че $(R\cup id_A)\circ (R\cup id_A)=R\circ R\cup R\circ id_A\circ R\cup id_A\circ id_A=R\circ R\cup R\cup R\cup id_A\subseteq R\cup id_A$, защото R е транзитивна $\Longrightarrow R\cup id_A$ е транзитивна. Така получаваме че $R\cup id_A$ е ч.н.

Ако R е ч.н. в A, то $R=(R\setminus id_A)\cup id_A$, като $R\setminus id_A$ е строга ч.н. в A. R - ч.н. в A \Longleftrightarrow съществува S - с.ч.н. в A, т.ч. $R=S\cup id_A$.

Подобно, ако S е с.ч.н. в A, то $S=(S\cup id_A)\setminus id_A$, като $S\cup id_A$ е ч.н. в A. S - с.ч.н. в \Longleftrightarrow съществува R - ч.н. в A, т.ч. $S=R\setminus id_A$.

Тв Ако < A, R > е (с.)ч.н. $\iff < A, R^{-1} >$ - (с.)ч.н. множество. $< A, R^{-1} >$ наричаме обратна наредба на R.

<u>Док:</u> R е рефлексивна в $A \iff id_A \subseteq R \iff id_A^{-1} \subseteq R^{-1} \iff id_A \subseteq R^{-1} \iff R^{-1}$ е рефлексивна в A.

R е асиметрична $\iff R \cap R^{-1} = \emptyset \iff R^{-1} \cap R = \emptyset \iff R^{-1} \cap (R^{-1})^{-1} = \emptyset \iff R^{-1}$ е асиметрична

R е антисиметрична $\iff R \cap R^{-1} \subseteq id_A \iff R^{-1} \cap (R^{-1})^{-1} \iff R^{-1}$ е антисиметрична R е транзитивна $\iff R \circ R \subseteq R \iff (R \circ R)^{-1} \subseteq R^{-1} \iff R^{-1} \circ R^{-1} \subseteq R^{-1}$ е транзитивна

Опр Нека A, R > - ч.н.м., $B \subseteq A$ и $a \in A$. Казваме че:

- a е горна граница за B в < A, R>, ако $\forall x(x \in B \Rightarrow < x, a> \in R)$
- a е най-голям елемент на B, ако $a \in B$ и a е горна граница за B
- ullet а е долна граница за B в < A, R>, ако a е горна граница за B в $< A, R^{-1}>$
- ullet а е най-малък елемент на B в < A, R>, ако a е най-голям елемент на B в $< A, R^{-1}>$
- a е точна горна граница за B в < A, R >, ако a е горна граница за B в < A, R > и a е най-малкия елемент на множеството от горни граници за B в < A, R > в < A, R >. Означава се a = sup(B) < A, R >. (Тук ч.н.м. го записа на долния ред ??)

- a е точна долна граница за B в < A, R>, ако a е точна горна граница за B в $< A, R^{-1}>$. Означава се $a=inf(B)< A, R>=sup(B)< A, R^{-1}>$
- a е максимален елемент на B в A, R, ако $\forall x (x \in B \land A, x > \in R \Rightarrow x = a)$
- a е минимален елемент на B в < A, R >, ако е максимален е $< A, R^{-1} >$

Нова лекция!

Предния път разглеждахме наредени множества.

 $< A, \subseteq_A >$ - ч.н.м. (правим ограничение до елементите на A) $x \subseteq_A y \leftrightharpoons x, y \in A \land x \subseteq y$, ако $B \subseteq A$, то не е задължително B да има точна горна граница.

Пример: $A = \{\{0\}, \{1\}\}$ и B = A. B дори няма горна граница. Тоест $\neg \exists x (x \in A \land \forall y \in B(y \subseteq_A x))$

Това не е така при $\langle \mathcal{P}(A), \subseteq_{\mathcal{P}(A)>B\subset\mathcal{P}(A)}$. Тогава $\bigcup B$ е такова множество, че:

- 1. $\forall x \in B(x \subseteq \bigcup B)$
- 2. ако C е т.ч. $\forall x \in B(x \subseteq C)$, то $\bigcup B \subseteq C$ $a \in \bigcup B \implies$ има $x \in B$ т.ч. $a \in x \implies a \in x \subseteq C$
- 3. $\bigcup B \in \mathcal{P}(A)$, $(\forall x \in B)(x \in \mathcal{P}(A)) \implies (\forall x \in B)(x \subseteq A) \implies \bigcup B \subseteq A \implies \bigcup B \in \mathcal{P}(A) \implies (\forall x \in B)(x \subseteq_{\mathcal{P}(A)} \bigcup B)$ и $\bigcup B$ е най-малкото с това св-во по отношение на $\subseteq_{\mathcal{P}(A)}$. $\bigcup B$ е т.г.гр. за B в $< \mathcal{P}(A), \subseteq_{\mathcal{P}(A)>)}$

Опр Нека < A, R > е ч.н.м., $B \subseteq A$. Казваме, че B е верига в < A, R >, ако всеки два елемента са R-сравними. Тоест $(\forall x \in B)(\forall y \in B)(< x, y > \in R \lor < y, x > \in R)$

В верига, ако $< B, R \cap (B \times B) >$ е линейно наредено множество.

Пример: ∅ е верига във всяко ч.н.м.

$$A_B = (A \to B) = \{ f \mid f : A \to B \}$$

Кои са непразните вериги в (A_B,\subseteq_{A_B}) ? Тв? Никоя една верига няма повече от 1 елемент. Тоест всички вериги имат вида $\{f\}, f:A\to B$

$$(A \Rightarrow B) = \{f \mid f : A \Rightarrow B\}, Dom(f) \subseteq A, Rng(f) \subseteq B$$

Всяка верига в $<(A \Rightarrow B), \subseteq_{(A \Rightarrow B)}>$ има точна горна граница.

<u>Док:</u> Нека $\Lambda \subseteq (A \Rightarrow B)$ е верига. Тогава:

- 1. $(\forall f \in \Lambda)(f \subseteq \bigcup \Lambda)$
- 2. За всяко C, за което $(\forall f \in \Lambda)(f \subseteq C)$ е в сила че $\bigcup \Lambda \subseteq C$
- 3. $\bigcup \Lambda \in (A \multimap B)$. Знаем, че Λ е верига $\Longrightarrow \forall f,g \in \Lambda (f \subseteq g \lor g \subseteq f) \Longrightarrow (\forall f,g \in \Lambda) (Funct(f \cup g)) \Longrightarrow \Lambda$ е мн-во от съвместими функции $\Longrightarrow Funct(\bigcup \Lambda) \land Dom(\bigcup \Lambda) = \bigcup \{Dom(f) \mid f \in \Lambda\} \land Rng(\bigcup \Lambda) = \bigcup \{Rng(f) \mid f \in \Lambda\}) \Longrightarrow Funct(\bigcup \Lambda) \land Dom(\bigcup \Lambda) \subseteq A \land Rng(\bigcup \Lambda) \subseteq B \Longrightarrow \bigcup \Lambda \in (A \multimap B)$

Тв Нека < A, R > е ч.н.м. Нека $\rfloor = \{B \mid B \text{ е верига в } < A, R > \}$. Тогава всяка верига в $< \mathcal{C}, \subseteq_{\mathcal{C}} >$ има точна горна граница.

Док: Нека Λ е верига в $\langle C, \subseteq_{\mathcal{C}} \rangle$

- 1. $(\forall B \in \Lambda)(B \subseteq \bigcup \Lambda)$
- 2. $\forall X((\forall B \in \Lambda)(B \subseteq X) \Rightarrow \bigcup \Lambda \subseteq X)$
- 3. $\bigcup \Lambda$ е верига в A, R >, т.е. $\bigcup \Lambda \in \mathcal{C}$
- 3) $(\forall B \in \Lambda)(B \subseteq A) \implies \bigcup \Lambda \subseteq A$.

Нека $x, y \in \bigcup \Lambda$. Нека $B_1, B_2 \in \Lambda$ са т.ч. $x \in B_1$ и $y \in B_2$. Но Λ е верига: така без ограничение можем да считаме, че $B_1 \subseteq B_2$ тогава $x, y \in B_2$; Но B_2 е верига в $A_1 \in A_2$ където $A_2 \in A_3$ и $A_3 \in A_4$ са $A_4 \in A_4$ е верига в $A_4 \in A_4$ е верига

Опр Казваме че ч.н.м. $< A_1, R_1 > u < A_2, R_2 >$ са изоморфни, ако същ. биекция $f: A_1 \to A_2$, т.ч. $(\forall x \in A_1)(\forall y \in A_1)(< x, y > \in R_1 \Leftrightarrow < f(x), f(y) > \in R_2), < A_1, R_1 > \overline{\sim} < A_2, R_2 >$...

Ще казваме, че $< A_1, R_1 >$ е изоморфно вложима в $< A_2, R_2 >$, ако съществува инекция $f: A_1 \to A_2$, която запазва наредбата: $(\forall x \in A_1)(\forall y \in A_1)(< x, y > \in R_1 \Rightarrow < f(x), f(y) > \in R_2)$ $< A_1, R_1 > \subseteq < A_2, R_2 >$

Тв Нека A, R > e ч.н.м. Тогава $A, R > \subseteq P(A), \subseteq_{\mathcal{P}(A)} >$.

Док: TODO!

< Добре наредени множества >

Опр Казваме, че ч.н.м. $< W, \le >$ е добре наредено множество, ако всяко непразно подмножество на W има най-малък относно

 \leq . $\forall B(B \neq \emptyset \land B \subseteq W \Rightarrow \exists y(y \in B \land (\forall x \in B)(y \leq x)))$

3аб: ще използваме \leq , < за да отбелязваме релация за наредба.

<u>Еквивалентно:</u> $< W, \le >$ е д.н.м. в което всяко непразно множество има минимален елемент.

Примери за д.н.м:

- 1. $<\omega,\leq>$, където $\omega=\{x\mid x$ е естествено число $\}$
- 2. $n <_1 k \leftrightharpoons (2/n \land \neg(2/k)) \lor (2/(k-n) \land n < k)$
- 3. Всяко крайно л.н.м.
- $4. < W, \le >$ е д.н.м. то при $B \subseteq W \implies < B, \le \cap (B \times B) >$ д.н.м.

Опр Казваме че $x \in W$ е граничен, ако $x \neq 0_W$ и нев е наследник на никой в W. $Limit(x) \leftrightharpoons x \neq 0_W \land \neg \exists y \in W(x = S(y))$

Опр | Нека $x \in W$. Начален сегмент на x е мн-вото $seg(x) \leftrightharpoons \{y \mid y < x\}$

Опр I е начален елемент на $< W, \le >$, ако $I \le W$ и е затворено надолу отн. \le : $(\forall x \in I) \forall y (y \le x \Rightarrow y \in I)$

(от Тинко)

A е безкрайно \implies същ. $A_0, A_0 \subseteq A, A_0$ е изброимо $a_0 \in A, A \setminus \{a_0\}$ не е крайно, поради което то е безкр. Можем да продължим да повтаряме този процес. (използваме аксиомата за избора в някаква слаба форма)

- ullet изброимо много
- Q изброимо много

Можем да представим рационалните числа $\mathbb Q$ като пълно двоично дърво, свърхове съответно:

- Root = 1/1
- $Left = p/p + q, whereRoot \leftrightharpoons p/q$
- $Right = p + q/q, where Root \leftrightharpoons p/q$

Те са изброимо много (доказваме с индукция по p+q), защото върховете са изброимо много. Всички пътища в пълното двоично дърво от дръга страна - са неизброимо много (доказваме с диагонален метод).

Тв Реалните числа са неизброимо много.

<u>Док:</u> Всяко реално число $r \in (0,1]$ има десетично представяне $r = 0.r_1r_2...r_n$, където $r_n \in \{0,1,...,9\}$.

Проблем! 1/2 има два записа:

- 1/2 = 0,50000...
- 1/2 = 0,49999...

Забраняваме записите от вида $0, r_1 r_2 ... r_n 00000000...$. Така се отърваваме от нулите, които могат да са произволно много. ...

Лема за горното Тв Нека A е множество, $A_0\subseteq A$ и A_0 е изброимо. Ако B е изброимо и $B\cap A=\emptyset$, то $\overline{\overline{A}}=\overline{\overline{A\cup B}}$

 $\boxed{\mathrm{Tb}} \ \overline{\mathbb{R} \times \mathbb{R}} = \overline{\mathbb{R}}$

Лекция 7

<u>Заб!</u> \mathcal{AL}_0 вместо първата буква от иврид - алеф??

Ще докажем че $\overline{(0,1] \times (0,1]} = \overline{(0,1]}$. Ще забраним представяния, чийто запис се стабилизират на 0. Тоест $\neg \exists k \forall n > k(x_n = 0)$. Тогава $0.x_0y_0x_1y_1$ също няма да се стабилизира на 0, но ще загубим свойството за сюрекция.

 $\mathcal{AL}_0^n = \mathcal{AL}_0$ Нека въведем $\mathbb{N}_n \leftrightharpoons \mathbb{N}_{n-1} \times \mathbb{N}$. Тогава крайните редици $\mathbb{N} \cup \mathbb{N}_2 \cup \dots$?? \mathcal{AL}_0 и са изброими.

Нека означим множеството на онези редици $\{a_n\}_{n=0}^{\infty}$ естествени числа, т.ч. съществува $\lim_{n\to\infty}a_n$, т.е. A е множество от сходящи редици от естествени числа.

 $\{a_n\}_{n=0}^{\infty}$ от ествествени числа е сходяща \iff същ. $k: \forall m(a_k=a_{k+m})$

Правим съпоставката $\{a_n\}_{n=0}^{\infty}$ е сходяща $\to (a_0, a_1, ..., a_k)$, $a_{k+1} \neq a_k$

Да разгледаме множеството на полиномите с цели коеф. (с 1 неизвестно) - \mathcal{P} . Това са редиците от цели числа съответстващи на коефициенти. Тоест $\overline{\overline{\mathcal{P}}} = \mathcal{AL}_0$. Тоест те са изброимо много. Следователно онези реални числа, които са корени на полином със цели коеф. и степен ≥ 1 са изброимо много. Тоест алгебричните числа (Alg) са изброимо много. $\mathbb{R} \setminus Alg$ са трансцендентните числа. Те са колкото реалните.

Колко са множествата от всички редици $\{a_n\}_{n=0}^\infty$ от реални числа? Това е броя на всички функции $\mathbb{N}_\mathbb{R}$

Континиум хипотеза (Кантор) Няма множество $A \subseteq \mathbb{R}: \mathcal{AL}_0 < \overline{\overline{A}} < c$

 $\underline{1939,~K.~\Gamma}$ Ако \mathcal{ZF} е непротиворечива, то и $\mathcal{ZF}+\mathcal{CH}$ също е непротиворечива. $\underline{1963}$

Хипотеза на Линденбаум и Тарски $\mathcal{CH} \Rightarrow \mathcal{AC}$ (доказана от В. Серпински през 1947) Обобщена \mathcal{CH} : Ако A е безкрайно, то няма мн-во B, т.ч. $\overline{\overline{A}} < \overline{\overline{B}} < \overline{\overline{\mathcal{P}(A)}}$

[def] Индексирана фамилия от множества $I \neq \emptyset$, f - функция с Dom(f) = I. Казваме че имаме индекси $\{f(i)\}_{i \in I}$, $\{A_i\}_{i \in I}$. $\bigcup_{i \in I} f(i) \leftrightharpoons \bigcup Rng(f)$.

 $\forall x(x \in \bigcup_{i \in I} f(i) \Leftrightarrow (\exists i \in I)(x \in f(i))) \bigcap_{i \in I} f(i) \leftrightharpoons \bigcap Rng(f) \ \forall x(x \in \bigcap_{i \in I} f(i) \Leftrightarrow (\forall i \in I)(x \in f(i)))$

Задача Нека J е безкрайно множество и $\{A_j\}_{j\in J}$ е индексирана фамилия от множества от естествени числа. $A_j\subseteq \mathbb{N}$. Докажете че съществува най-много изброимо $I\subseteq J$, такова че $\bigcup_{i\in I}A_i=\bigcup_{j\in J}A_j$ и $\bigcap_{i\in I}A_i=\bigcap_{j\in J}A_j$

< Добре наредени множества >

 $< W, \le >$ - д.н.м. , ако \le е ч.н. в W и всяко непразно подмножество на W има най-малък елемент относно \le . Този елемент означаваме с $0_w = min_{\le}(W)$. $S(x) = min\{y \mid x < y\}$ е наследник на x, ако такъв има.

x е граничен: $Limit(x) \leftrightharpoons x \neq 0_w \land \forall y \in W(x \neq S(y))$

Начален сегмент на $x \in W$ е $seg(x) \leftrightharpoons \{y \mid y \in W \land y < x\}$

- $seg(0_w) = \emptyset$
- $seg(S(x)) = seg(x) \cup \{x\}$
- $Limit(x) \Rightarrow seg(x) = \bigcup \{seg(y) \mid y \in seg(x)\}$

 $I \subseteq W$ е начален сегмент, ако е затворено над W относно \leq : $(\forall x \in I)(\forall y \leq x)(y \in I)$

Тв Нека $< W, \le >$ е д.н.м. и $I \subseteq W$ е начален сегмент. Тогава I = W или I = seg(x) за някое $x \in W$.

<u>Док:</u> Нека $I \neq W$ е начален елемент. Тогава $W \setminus I \neq \emptyset$ и нека $x = min_{\leq}(W \setminus I)$. Нека $y \in I$. Да предположим че $y \notin seg(x)$, т.е. $\neg (y < x)$. Тогава $x \leq y$, защото W е добре наредено. Но I е начален елемент и $y \in I$ - следователно $x \in I$. Противоречие! Следователно $y \in seg(x)$ и $I \subseteq seg(x)$.

Нека $y \in seg(x)$. Тогава y < x, от където $y \notin W \setminus I$. Следователно $y \in I$. Значи $seg(x) \subseteq I$.

Tака I = seg(x).

Опр Нека $< W, \le >$ е д.н.м. . Казваме, че $B \subseteq W$ е \le -индуктивно, ако:

 $\overline{\forall x}(\overline{\forall y}(y < x \Rightarrow y \in B) \Rightarrow x \in B)$ или еквивалентното - $\forall x(seg(x) \subseteq B \Rightarrow x \in B)$

Тв Нека $< W, \le >$ е д.н.м. . Тогава W е единственото \le -индуктивно множество.

<u>Док:</u> Нека $B \subseteq W$ е \leq -индуктивно и да допуснем, че $B \neq W$. Тогава $W \setminus B \neq \emptyset$ и нека $x = min_{\leq}(W \setminus B)$. Тогава за всяко y < x имаме, че $y \notin W \setminus B$ и така $y \in B$. Тоест $seg(x) \subseteq B$. Но B е \leq -индуктивно, значи $x \in B$. Противоречие! Защото $x \in W \setminus B$. Следователно B = W.

Тв Нека $< W, \le >$ е линейно наредено мн-во и единственото \le -индуктивно подмножество на W е W. Тогава $< W, \le >$ е д.н.м.

Док: Нека $B \subseteq W$. Нека C е множество от строгите долни граници на B: $C = \{t \in W \mid (\forall x \in B)(t < x)\}$ Тогава $B \cap C = \emptyset$. Възможни са 2 случея:

- 1. C е \leq -индуктивно. Следователно C=W и значи $B=\emptyset$
- 2. C не е \leq -индуктивно. Значи $\exists x (seg(x) \subseteq C \land x \notin C)$. Нека $t \in W$ е такъв че $t \notin C$ и $seg(t) \in C$. Значи $\exists x (x \in B \land \neg (t < x))$. Нека x_0 е представител. Но $< W, \leq >$ е л.н.м. и така $x \leq t$. Но ако x < t, то $x \in seg(t) \subseteq C$ и значи $x \notin B$, защото $B \cap C = \emptyset$. Понеже $x \in B$, то $x = t \in B$. Но всичко, което е по-малко от x = t е в $seg(t) \subseteq C$ и така е извън B, т.е. $\forall y (y < t \Rightarrow y \notin B)$. Еквивалентно: $\forall y (y \in B \Rightarrow \neg (y < t))$, т.е. $\forall y (y \in B \Rightarrow t \leq y)$ и понеже $t \in B$, то t е най-малкият елемент на B.

Опр Нека $\pi:A\to A$ и $< A, \le >$ е ч.н.м. Казваме, че π е разширяваща, ако за вс. $x\in A$ е изп. $x\le \pi(x)$

Тв Нека $< W, \le >$ е д.н.м. и функцията $\pi : W \to W$ е инективна и запазваща наредбата. Тогава π е разширяваща. Интективност: $\forall x, y \in W (x \neq y \Rightarrow \pi(x) \neq \pi(y))$. Запазване на наредбата: $\forall x, y \in W (x \leq y \Rightarrow \pi(x) \leq \pi(y))$.

Док: Да допуснем, че π не е разширяваща. Тогава множеството $\{x \in W \mid \pi(x) > \pi(y)\}$ е непразно. Нека $x^* = \min_{\leq} \{x \in W \mid \pi(x) < x\}$. В частност, $\pi(x^*) < x^*$. Тогава $\pi(\pi(x^*)) < \pi(x^*)$. Следователно $\pi(x^*) \in \{x \in W \mid \pi(x) < x\}$. Но x^* е наймалкият елемент на това множество и така $x^* \leq \pi(x^*)$. Противоречие! Следователно π е разширяващо.

Тв Никое добре наредено множество не е изоморфно на на свой собствен начален сегмент.

Док: Нека $< W, \le >$ е д.н.м. и $I \subseteq W, I \ne W$ и I е начален сегмент т.ч. $< W, \le > \eqsim < I, \le \cap (I \times I) >$. Нека $\pi : W \to I$ е изоморфнизъм. В частност π е инекция и запазва наредбата. Следователно π е разширяващо. Понеже I е начален сегмент и $I \ne W$, то I = seg(x) за някое $x \in W$. Тогава $\pi(x) \in I = seg(x)$, т.е. $\pi(x) < x$. Но π е разширяваща \Longrightarrow противоречие! Следователно W не е изоморфно на I

Тв Между всеки две добре наредени множества има най-много един изоморфнизъм.

Док: Нека $< W, \le > \eqsim < I, \le >$ са добре наредени множества и $\pi, \psi: W_1 \to W_2$ са изоморфизми. $\pi \neq \psi, \ \{x \in W_1 \mid \pi(x) \neq \psi(x)\} \neq \emptyset$. Нека $x^* = \min_{\le_1} \{x \in W_q \mid \pi(x) \neq \psi(x)\}$. $\pi(x^*) \neq \psi(x^*)$. БОО, $\pi(x^*) <_2 \psi(x^*) \implies \pi(x^*) \in W_2, \psi$ - сюрекция в-ху W_2 . Нека $y \in W_1$, е т.ч. $\psi(y) <_2 \psi(x^*)$ и следователно $y <_1 x^*$, т.е. $y \notin \{x \in W_1 \mid \pi(x) \neq \psi(x)\}$ и така $\pi(y) = \psi(y) = \pi(x^*)$, от където $y = x^*$. Но $y < x^* \implies$ Противоречие!

 \mathbb{Q} са изброимо много.

 \mathbb{R} са неизброимо много.

 \mathbb{Q} са гъсти в \mathbb{R} : $\forall a \in \mathbb{R} \forall b \in \mathbb{R} (a < b \Rightarrow (\exists c \in \mathbb{Q}) (a < c \land c < b)) (\exists c \in \mathbb{R} \setminus \mathbb{Q})$

 $\mathbb{R} \setminus \mathbb{Q}$ са също гъсти в \mathbb{R}

А в равнината? Нека A е множество от отворени подмножества на Евклидовата равнина и всеки два разл. елем. на A са непресичащи се. Тогава $\overline{\overline{A}} \leq \overline{\overline{\mathcal{AL}_0}}$

 $\boxed{\operatorname{def}}$ A е отворено множество, ако за $(\forall x \in A) \exists D("D)$ е отворен кръг с център $x" \land D \subseteq A)$

<u>Зад:</u> Нека A е отворено множество в Евклидовата равнина. Тогава съществува най-много изброимо множество B, такво че $\alpha \in B \Rightarrow \alpha$ е отворен кръг с център рационални координати и рационален радиус. Освен това $\bigcup B = A$.

<u>Зад:</u> Нека l е фиксирана права в Евклидовата равнина. Нека A е множество от окръжности в равнината, такова че $(\forall p \in l)(\exists C \in A)("C$ се допира до "l). Да се докаже, че в A има поне 2 пресичащи се окръжности.

Нека за всяка точка $P \in l$ фиксираме една окръжност C_p , т.ч. $C_p \in A \land C \cap l = \{p\}$. Тогава множеството $A_l = \{C_p \mid p \in l\}$ е неизброимо. Във всяка окръжност $C \in A_l$ да фиксираме точка P_c , която има рационални координати (във вътрешността на окръжността C). Нека $B = \{P_c \mid c \in A_l\}$. $B \subseteq \mathbb{Q} \times \mathbb{Q}$ и е изброимо. Значи имаме $\overline{B} = \mathcal{AL}_0$ и $\overline{A}_l = 2^{\mathcal{AL}_0}$. Дефинирахме $f: A_l \to B$, където $f(c) = P_c$. Вижда се че f не е инекция, т.е. има $c_1, c_2 \in A_l, c_1 \neq c_2, f(c_1) = f(c_2)$. Това означава че има две окръжности с обща вътрешна точка. Разглеждаме случаите за това и единствената възможност е те да са различни окръжности

def Регулярно каберче вравнината - като Т, перпендикулярни отсечки, с дължина 1 и пресечната точка е среда на горната.

def каберче в равнината - като регулярно каберче, но само перпендикулярно с > 0 дължини на компонентите.

Зад: в равнината са разхвърляни регулярни каберчета, никои две от които не се наслагват (най-много се допират). Док., че каберчетата са $\leq \mathcal{AL}_0$.

Взимаме окръжности с център лежащ на основата на каберчето и радиус $\leq 1/4$. Можем да ги нареждаме едно до друго и се вижда, че защото в равнината можем да насложим изброимо много отворени множества, то и каберчетата ще са изброимо много.

Но при нормалните каберчета, не е толкова просто. Нека $K_n = \{min(|\alpha|, |\beta|, |\gamma|) \ge 1/n\}$, ще докажем че K_n е изброимо.

Тв Нека $f: \mathbb{R} \to \mathbb{R}$ и f е монотонна. Нека D_f е множеството от всички точки на прекъсване на f. Тогава $D_f \leq \mathcal{AL}_0$

Док: БОО: f е монотонно растяща $x < y \Rightarrow f(x) \le f(y), x \in D_f \Rightarrow \lim_{x \to x_0} f(x) < \lim_{x \to x_0} f(x)...$

[Аксиома за мултипликативност] За фамилия X_i от непресичащи се непразни множества, съществува множество Y, такова че $Y \cap X_i = \{x\}$ за някое x. Тоест:

$$\forall A((\forall x \in A)(x \neq \emptyset) \land (\forall x \in A)(\forall y \in A)(x \neq y \Rightarrow x \cap y = \emptyset) \Rightarrow \exists B(\forall x \in A)\exists u(B \cap x = \{u\}))$$

От $\mathcal{AM} \Rightarrow \forall A((\forall x \in A)(x \neq \emptyset) \land (\forall x \in A)(\forall y \in A)(x \neq y \Rightarrow x \cap y = \emptyset) \Rightarrow \exists B)(B \subseteq \bigcup A \land (\forall x \in A)\exists u(B \cap x = \{u\}))$. Наистина, нека A удовл. пред. и тогава от \mathcal{AM} моем да вземем конкретно мн-во $B: (\forall x \in A)\exists u(B \cap x = \{u\})$. Нека $B_1 = B \cap (\bigcup A)$. Тогава $B_1 \subseteq (\bigcup A)$ и за произв. $x \in A \ x \cap B_1 = (x \cap B) \cap (x \cap (\bigcup A)) = (x \cap B) \cap x = B \cap x \neq \emptyset$, защото от $x \in A \implies x \subseteq (\bigcup A) \implies x \cap (\bigcup A)$.

Това ни напомня за класове на еквивалентност, може да си мислим че \mathcal{AM} твърди - ако имаме класове на еквивалентност, то има множество от представители на тези класове.

Аксиома за избора
$$\forall A((\forall x \in A)(x \neq \emptyset) \Rightarrow \exists f(Func(f) \land Dom(f) = A \land (\forall x \in A)(f(x) \in x)))$$

 $| \text{Тв} | \text{В } \mathcal{ZF}$ е изпълнено $\mathcal{AM} \Longleftrightarrow \mathcal{AC}$

<u>Док:</u> Нека \mathcal{AC} е в сила. Нека A е множество, за което предиката на \mathcal{AM} е в сила. Нека f е функция на избора за A, т.е. $Func(f) \wedge Dom(f) = A \wedge (\forall x \in A)(f(x) = x)$. Нека $B \leftrightharpoons Rng(f)$, сега ще докажем че B има желаното свойство. Нека $x \in A$. Тогава $f(x) \in x$ и е дефинирана, но $f(x) \in Rng(f)$. Значи $f(x) \in B \cap x$, т.е. $\{f(x)\} \subseteq B \cap x$. Нека $a \in B \cap x$. Но $a \in Rng(f)$ и a = f(y) за някое $y \in A$. Нека разгледаме една точка $y \in A$, такава че a = f(y). $f(y) \in y$

 $x = y \ \forall a (a \in B \cap x \Rightarrow a = f(x)),$ тоест $B \cap x \subseteq \{f(x)\}.$ Така u = f(x).

Сега ще докажем че $\mathcal{AM} \Rightarrow \mathcal{AC}$. Нека A е множество и $(\forall x \in A)(x \neq \emptyset)$. Искаме да сме сигурни че работим с непресичащи се множества, затова решаваме да оцветим множествата (например x оцветяваме с $\{x\}$). Дефинираме A_1 , такова че $A_1 = \{z \mid z \in A \times (\bigcup A) \land (\exists x \in A)(z = \{x\} \times x)\}$. Нека $x \in A$ и $z = \{x\} \times x$, значи $z \in Ax(\bigcup A)$. Така елементите на A са $\neq \emptyset$. Нека вземем свидетел - $x \in A$ и $z = \{x\} \times x$. $x \in A \implies x \neq \emptyset$. Нека $a \in x$ и така $\langle x, a \rangle \in z$, т.е. $z \neq \emptyset$. Нека $z_1, z_2 \in A$ и $z_1 \neq z_2$. Значи $z_1 = \{x_1\} \times x_1, z_2 = \{x_2\} \times x_2$, където $x_1, x_2 \in A$. Да допуснем, че $z_1 \cap z_2 \neq \emptyset$. Нека $u \in z_1 \cap z_2$,

 $u \in z_1 \implies u = \langle x_1, a_1 \rangle, a_1 \in x_1$

 $u \in z_2 \implies u = \langle x_2, a_2 \rangle, a_2 \in x_2$

 $< x_1, a_1 > = < x_2, a_2 >, x_1 = x_2$ и $a_1 = a_2$. Така $\{x_1\} \times x_1 = \{x_2\} \times x_2$ и $z_1 = z_2 \Longrightarrow$ Противоречие! Следователно $z_1 \cap z_2 = \emptyset$. Ето защо \mathcal{AM} е приложима към A_1 . Нека $B \subseteq \bigcup A_1 \wedge (\forall z \in A_1) \exists u (B \cap z = \{u\})$.

Нека $v \in B$. Тогава $v \in \bigcup A_1$, значи има елемент $z \in A_1$, т.ч. $v \in z$. Следователно v = < x, a >, където $x \in A$ и $a \in x$. Така Rel(B). Нека < x, y >, $< x, y' > \in B$. Значи < x, y >, $< x, y' > \in \{x\} \times x$, още $y \in x$ и $y' \in x$. < x, y >, $< x, y' > \in (\{x\} \times x) \cap B$, но $(\{x\} \times x) \cap B = \{w\}$ за някое w : < x, y >, $< x, y' > \in \{w\} \implies < x, y >$ $= < x, y' > \implies y = y'$. Следователно Func(B).

Сега твърдим че тази функция е функция на избора. Нека $w \in Dom(B)$. Тогава за някой елемент $z \in A_1 < w, v > \in z$, където $< w, v > \in B$. Значи $z = \{x\} \times x$, за някое $x \in A$. Следователно w = x. Така $Dom(B) \subseteq A$. Обратно - нека $x \in A$, тогава $\{x\} \times x \in A_1$. Значи $\{x\} \times x \cap B = \{u\}$, за някое u. Тоест u = < x, a >, където $a \in x$. Следователно

 $x \in Dom(B)$. Поради което A = Dom(B). Освен това $\langle x, a \rangle \in B$ за някое $a \in x$. Но Func(B) и $\langle x, a \rangle \in B \Leftrightarrow a = B(x); B(x) \in x$. И така B е функция на избора.

def Heka $I \neq \emptyset$, I е индексирана фамилия. $\{A_i\}_{i \in I}$ наричаме функция A с Dom(I) и вместо A(i) пишем A_i .

 $\prod_{i \in I} A_i = \{ f \mid Func(f) \land Dom(f) = I \land (\forall i \in I)(f(i) \in A_i) \}$

Тв В $\mathcal{ZF} + \mathcal{AC}$ твърдим че декартовото произведение на индексирана фамилия от непразни множества е непразно множество: $\forall I((\forall i \in I)(A_i \neq \emptyset) \Rightarrow \prod_{i \in I} A_i \neq \emptyset)$

Док: 1) Нека \mathcal{AC} е в сила. $I \neq \emptyset$, $(\forall i \in I)(A_i \neq \emptyset)$. $A_i = \{\{i\} \times A_i \mid i \in I\}$. Значи $(\forall z \in A_1)(z \neq \emptyset)$ и $(\forall z_1 \in A_1)(\forall z_2 \in A_1)(z_1 \neq z_2 \Rightarrow z_1 \cap z_2 = \emptyset)$.

Тогава от $\mathcal{AM} \implies \exists B(B \subseteq A_1 \land (\forall z \in A_1) \exists u(B \cap z = \{u\}))$. Така $B \in \prod_{i \in I} A_i$ (от тук идва името на аксиомата).

2) Нека $\forall I((\forall i \in I)(A_i \neq \emptyset) \Rightarrow \prod_{i \in I} A_i \neq \emptyset)$. Нека A е множество от непразни множества, т.е. $(\forall x \in A)(x \neq \emptyset)$. Разглеждаме A фамилия с индексно множество A (??). $\{x\}_{x \in A}, Id_A$ - индекс. ф-я.

 $\prod_{x\in A} x \neq \emptyset$. Нека $f\in \prod_{x\in A} x$. Тогава $Func(f),\ Dom(f)=A$ и $(\forall x\in A)(f(x)\in x)$. След f е функция на избора за $\{x\}_{x\in A}$

Some definitions and properties

 $< W, \le >$ е д.н.м., ако е ч.н.м. и всяко непразно подмножество на W има най-малък елемент относно \le .

 $I \subseteq W$ е начален сегмент в $< W, \le >$ - $(\forall x \in I) \forall y (y \le x \Rightarrow y \in I)$

$$x \in W, seq(x) = \{ y \in W \mid y < x \}$$

 $I \neq W$ е начален сегмент, то I = seg(t) за някое $t \in W$

Между всеки две добре наредени множества има най-много един изоморфизъм.

Никое добре наредено множество не е изоморфно на свой собствен начален сегмент.

За всяко добре наредено множество съществува единствен автоморфизъм: $(\forall x, y \in W)(x \leq y \Leftrightarrow f(x) \leq f(y))$, където $f: W \to W$ е биекция

Т Нека $< W_1, \le_1 >$ и $< W_2, \le_2 >$ са д.н.м. Тогава е в сила точно едно от:

- 1. $< W_1, \le_1 > \overline{\sim} < W_2, \le_2 >$
- 2. $< W_1, \le_1 >$ е изоморфно на собствен начален сегмент на $< W_2, \le_2 >$
- 3. $< W_2, \le_2 >$ е изоморфно на собствен начален сегмент на $< W_1, \le_1 >$

Освен това, този изоморфизъм е единствен.

Няма как повече от едно от изброените може да е вярно.

<u>Означение:</u> $a \in W_1, W_1(a) \leftrightharpoons < seg(a), \leq_1 \cap (seg(a) \times seg(a)),$ аналогично $b \in W_2, W_2(b) \leftrightharpoons < seg(b), \leq_2 \cap (seg(b) \times seg(b))$ Нека $f = \{ < a, b > \mid a \in W_1 \land b \in W_2 \land W_1(a) \eqsim W_2(b) \}$

Док:

- 1. Funct(f): Нека $< a, b_1 >, < a, b_2 > \in f$ и $b_1 \neq b_2, a \in W_1; b_1, b_2 \in W_2$. БО, $b_1 <_2 b_2$. Тогава $W_2(b_1) \approx W_1(a) \approx W_2(b_2) \implies W_2(b_1) \approx W_2(b_2)$. Значи $W_2(b_1)$ е собствен начален сегмент на $W_2(b_2) \implies$ Противоречие! $\implies b_1 = b_2 \implies Funct(f)$
- 2. f е инекция: Нека $< a_1, b>, < a_2, b> \in f$, съответно $a_1, a_2 \in W_1; b \in W_2, a_1 \neq a_2$. БО $a_1 <_1 a_2$. Значи $W_1(a_1) \eqsim W_2(b) \eqsim W_1(a_2)$. Но $W_1(a_1)$ е собствен начален сегмент на $W_1(a_2)$ и те са изоморфни \Longrightarrow Противоречие! $\Longrightarrow a_1 = a_2$, тоест f е инекция.

3. f запазва наредбата: Тоест $(\forall a_1, a_2 \in Dom(f))(a_1 <_1 a_2 \Rightarrow f(a_1) <_2 f(a_2))$. Нека $a_1, a_2 \in Dom(f)$, и $a_1 <_1 a_2$. Тогава $W_1(a_2) \eqsim W_2(f(a_2))$ и h е единственият изоморфизъм между двете. Но така $W_1(a_1) \eqsim W_2(h(a_1))$ посредством $h \upharpoonright seg(a_1)$. Тогава $W_1(a_1) \eqsim W_2(f(a_1))$, следователно $f(a_1) = h(a_1) <_2 f(a_2)$. Значи f запазва наредбата.

Св. 4 Dom(f) е начален сегмент на $< W_1, \le_1 >$. Нека $a \in Dom(f)$ и $c <_1 a, c \in W_1$. Тогава $W_1(a) = W_2(f(a))$. Нека h е изоморфизъм между двете. Тогава $h \upharpoonright seg(c)$ е изоморфизъм между $W_1(c)$ и $W_2(h(c))$. Следователно $< c, h(c) > \in f$ и така $c \in Dom(f)$.

Упражнение: Покажете че Rng(f) е начален сегмент на $< W_2, \le_2 >$ (напълно подобно)

f е изоморфизъм между Dom(f) и Rng(f). Да допуснем, че $Dom(f) \neq W_1$ и $Rng(f) \neq W_2$. Следователно Dom(f) и Rng(f) са собствени начални сегменти съответно на $< W_1, \leq_1 >$ и $< W_2, \leq_2 >$. Нека $a \in W_1$ и $b \in W_2$ са такива че Dom(f) = seg(a) и Rng(f) = seg(b). Понеже $< Dom(f), \leq_1 >$ и $< Rng(f), \leq_2$ са изоморфии, то $< a, b > \in f$ и така $a \in Dom(f) = seg(a) \Longrightarrow$ Противоречие!

Така виждаме че е изпълнен точно в един от случаите:

- 1. $Dom(f) = W_1, Rng(f) = W_2 \implies 1$
- 2. $Dom(f) = W_1, Rng(f) \neq W_2 \implies 2$
- 3. $Dom(f) \neq W_1, Rng(f) = W_2 \implies 3$

Опр x е транзитивно множество, ако $\forall y \forall z (y \in x \land z \in y \Rightarrow z \in x) \implies \forall y (y \in x \Rightarrow y \subseteq x) \implies \forall y (y \in x \Rightarrow y \in \mathcal{P}(x)) \implies x \subseteq \mathcal{P}(x)$

 $trans(x) \Rightarrow trans(s(x)), s(x) = x \cup \{x\}$ $\forall y (y \in x \Rightarrow trans(y)) \Rightarrow trans(\bigcup x) \land trans(\bigcap x)$

Опр x е ε -добре наредено, ако: $\forall y \forall z (y \in x \land z \in x \Rightarrow (y \in z \lor y = z \lor z \in y)) \land \forall u (u \neq \emptyset \land u \subseteq x \Rightarrow \exists y (y \in u \land y \cap u = \emptyset))$ Пишем EWO(x)

Опр Множеството x е ординал, ако е транзитивно и ε -д.н.: $ord(x) \leftrightharpoons trans(x) \land EWO(x)$

Заб: Тази дефиниция не използва акс. за регулярност, акс. за замяната и акс. за избора.

Наблюдение: Ако EWO(x) и $\emptyset \neq u \subseteq x \implies \exists ! y (y \in u \land y \cap u = \emptyset)$

<u>Означение:</u> $\alpha < \beta \leftrightharpoons \alpha \in \beta$ и съответно $\alpha \le \beta \leftrightharpoons \alpha \in \beta \lor \alpha = \beta$

Свойства

- 1. $\alpha \notin \alpha$; $\neg \exists x (x \in \alpha \land \alpha \in x)$ и т.н. за вериги с произвлна дължина
- 2. $\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$ (директно от транзитивността на γ)
- 3. $\alpha < \beta \Rightarrow \neg(\beta < \alpha)$
- 4. $ord(S(\alpha)), \neg \exists \beta (\alpha < \beta \land \beta < S(\alpha))$

Още свойства (общо около 10) ->

CB. 5
$$x \in \alpha \Rightarrow ord(x)$$

Док а: Ще покажем че trans(x). Нека $y \in x \land z \in y$. Понеже $y \in x, x \in \alpha$ и $trans(\alpha)$, то $y \in \alpha$. Но $z \in y$ и отново по транзитивността на α , получаваме че $z \in \alpha$. Но $EWO(\alpha)$, от където $x \in z \lor x = z \lor z \in x$ (защото $x, z \in \alpha$).

- Ако x = z, то $y \in x$ и $x \in y$ като $x, y \in \alpha$ (невъзможно). Тогава $\emptyset \neq \{x, y\} \subseteq \alpha$ и $\exists t (t \in \{x, y\} \land t \cap \{x, y\} = \emptyset)$. Ако t = x, то $y \in x$ и $y \in \{x, y\}$. Значи $y \in t \cap \{x, y\}$ противоречие! От друга страна ако t = y, то $x \in y$ и $x \in \{x, y\}$, от където $x \in t \cap \{x, y\} = \emptyset$ противоречие! $\implies x \neq z$
- Ако $x \in z$, то $y \in x$ и $x \in z$ и $z \in y$, като $x, y, z \in \alpha$ (също невъзможно). Тогава $\emptyset \neq \{x, y, \} \subseteq \alpha$ и $\exists t (t \in \{x, y, z\} \land t \cap \{x, y, z\} = \emptyset)$. Пак разглеждаме случаи (3) и аналогично всики са противоречиви. Така $x \notin z$.

Следователно $z \in x$ и така trans(x).

Док б: Нека $y,z\in x$, но $x\in \alpha$ и $trans(\alpha)\implies y,z,\in \alpha$. Но $EWO(\alpha)\implies y\in z\vee y=z\vee z\in y$

Сега ще покажем че всяко непразно множество на x има най-малък елемент. Нека $\emptyset \neq u \subseteq x$. Понеже $trans(\alpha)$, то $u \subseteq \alpha$. $(y \in u \Rightarrow y \in x \implies y \in \alpha)$ (от $x \in \alpha$ и $trans(\alpha)$). Тъй като $EWO(\alpha)$, то $\exists y \in u(y \cap u = \emptyset)$. От (a) и (б) - ord(x)

CB. 6
$$x \subseteq \alpha \land trans(x) \Rightarrow x \in \alpha \lor x = \alpha$$

<u>Док:</u> Нека $x \neq \alpha$. Тогава, ако $u = \alpha \setminus x$, то $\emptyset \neq u \subseteq \alpha$. Идея - ще покажем че x е най-малкият елемент на α , който е по-голям от всеки един елемент на x. Нека $y \in u$ е такова че $y \cap u = \emptyset$ (такова има защото $EWO(\alpha)$). Нека $z \in y$. Понеже $y \cap u = \emptyset$, то $z \notin u$. Обаче $y \in u \subseteq \alpha$ и от $trans(\alpha) \implies z \in \alpha$. Но $u = \alpha \setminus x$, следователно $z \in x$. Така $y \subseteq x$.

Сега нека $z \in x$. Но $y \in u \subseteq \alpha$ и $z \in x \subseteq \alpha$, следователно $y, z, \in \alpha$. Понеже $EWO(\alpha)$, то $y \in z \lor y = z \lor z \in y$.

Ако $y \in z$, то понеже $z \in x$ и trans(x), имаме, че $y \in x$. Обаче $y \in u = \alpha \setminus x$ - противоречие! Следователно $y \notin z$

От друга страна ако y=z, то $y=z\in x$ и $y\in u=\alpha\setminus x$ - противоречие! Следователно $y\neq z$. Така $z\in y$. Така $x\subseteq y$. Следователно $x=y\in u\subseteq \alpha$, т.е. $x\in \alpha$

CB. 7
$$\alpha \leq \beta \Leftrightarrow \alpha \subseteq \beta$$

 $\underline{\text{Док}(\Rightarrow)}$: Нека $\alpha \leq \beta$. Тогава $\alpha \in \beta$ или $\alpha = \beta$. Понеже $trans(\beta)$, то $\alpha \subseteq \beta$ или $\alpha = \beta$, т.е.

Док(\Leftarrow): Нека $\alpha \subseteq \beta$. Понеже $trans(\alpha)$, по (св. 6) $\alpha \in \beta \vee \alpha = \beta$, т.е. $\alpha \leq \beta$.

Св. 8 (Закон за трихотомия на ординалите) $\alpha < \beta \lor \alpha = \beta \lor \beta < \alpha$

<u>Док:</u> Нека $x = \alpha \cap \beta$, тогава trans(x), като сечение на транзитивни множества. Но $x \subseteq \alpha$ и $x \subseteq \beta$, от където (от св. 6) ($x \in \alpha \lor x = \alpha$) и ($x \in \beta \lor x = \beta$). Има 4 възможности:

- 1. $x \in \alpha$ и $x \in \beta \implies x \in \alpha \cap \beta$, но така $x \in x$ и ord(x) противоречие!
- 2. $x \in \alpha$ и $x = \beta$. Следователно $\beta < \alpha$
- 3. $x = \alpha$ и $x \in \beta$. Следователно $\alpha < \beta$
- 4. $x = \alpha$ и $x = \beta$. Следователно $\alpha = \beta$

C_B. 9
$$\alpha < \beta \Leftrightarrow S(\alpha) \leq \beta$$

<u>Док(⇒):</u> Нека $\alpha < \beta$ и да допуснем че ¬ $(S(\alpha) \le \beta)$. По (св. 8) следва, че $\beta < S(\alpha)$ - противоречие със (св. 4). Следователно $S(\alpha \le \beta)$

 $\underline{\underline{\Lambda}}$ ок (\Leftarrow) : Нека $S(\alpha \leq \beta)$ и да допуснем че $\neg(\alpha < \beta)$. Следователно $\beta \leq \alpha$. Тогава $S(\alpha) \leq \alpha$, т.е. $\neg(\alpha < S(\alpha))$ - противоречие със (св. 4).

C_B. 10 $\forall y \in x(ord(y)) \Rightarrow EWO(x) \land ord(\bigcup x)$

Док а: Ще док. че EWO(x). Нека $y,z \in x$. Следователно ord(y) и ord(z) и по (св.8): $y < z \lor y = z \lor z < y$, т.е. $y \in z \lor y = z \lor z \in y$.

Док б: Нека $\emptyset \neq u \subseteq x$. Нека $\alpha \in u$ (търсим най-малкия). Ако $\alpha \cap u = \emptyset$, то α е най-малкият елемент на u. Нека $u' = u \cap \alpha$. Тогава $\emptyset \neq u' \subseteq \alpha$ и понеже $EWO(\alpha)$ - нека y е най-малкият елемент на u'. Тоест $y \in u'$ и $y \cap u' = \emptyset$. $y \in u' = u \cap \alpha \subseteq u$ и $y \in \alpha$. Да допуснем, че $y \cap u \neq \emptyset$. Нека $z \in y \cap u$. Така $z \in y$ и $z \in u$. Но $y \in \alpha$ и $trans(\alpha)$, от където $z \in \alpha$. Тъй като $z \in u$, то $z \in u \cap \alpha = u'$. Следователно $z \in u \cap \alpha = 0$ и $z \in u$ противоречие! Следователно $z \in u$ и $z \in u$

Да си припомним някои дефиниции:

```
trans(x) \leftrightharpoons \forall y \forall x (y \in x \land z \in y \Rightarrow z \in x) EWO(x) \leftrightharpoons \forall y \forall z (y \in x \land z \in x \Rightarrow y \in z \lor y = z \lor z \in y) \land \forall u (\emptyset \neq u \land u \subseteq x \Rightarrow \exists y (y \in u \land y \cap u = \emptyset)) (трябва да е \epsilon WO) ord(x) \leftrightharpoons trans(x) \land EWO(x) 10) \ \forall y (y \in x \Rightarrow ord(y)) \Rightarrow EWO(x) \land ord(\bigcup x)
```

Остава да покажем, че $EWO(\bigcup x)$, за което е достатъчно да покажем, че $\bigcup x$ е множество от ординали и да използваме първата част на (10)

Нека $z \in \bigcup x$. Нека y е свидетел за това $y \in x$ и $z \in y$. Така ord(y) и значи z е елемент на ординал. Следователно z е ординал. По (Св. 5) $\Rightarrow EWO(\bigcup x)$

11) $\forall y(y \in x \Rightarrow ord(y)) \Rightarrow < x, \epsilon_x >$ - с.д.н.м., където (припомняме) $\epsilon_x = \{ < y, z > \mid y, z \in x \land y \in z \}$

```
\neg(\alpha \in \alpha), \alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma
 \alpha < \beta \Rightarrow \neg(\beta < \alpha). Следователно \langle x, \epsilon_x \rangle - с.ч.н.м.
Нека \emptyset \neq u \subseteq x (нещо е забравене, to be continued later)
```

- 12) $\forall y(y \in x \Rightarrow ord(y)) \Rightarrow (\bigcup x \leq \beta \Leftrightarrow (\forall \alpha \in x)(\alpha \leq \beta))$ т.е. $\bigcup x$ е най-малкият ординал, който е над всеки един елемент на x
- (\Rightarrow) Нека $\bigcup x \leq \beta$ и $\alpha \in x$ е произволен. Тогава $\alpha \subseteq \bigcup x$. Но $trans(\alpha)$ и по (Св. 6) $\alpha \leq \bigcup x$, от където $\alpha \leq \beta$
- $\underline{(\Leftarrow)}$: Нека $(\forall \alpha \in x)(\alpha \leq \beta)$. Нека $z \in \bigcup x$ и α е свидетел за това, т.е. $\alpha \in x$ и $z \in \alpha$. Тогава $\overline{ord(z)}, z < \alpha$ и $\alpha \leq \beta$, т.е. $z < \beta$ и така $z \in \beta$. Тогава $\bigcup x \subseteq \beta$ и от $trans(\bigcup x), \bigcup x \leq \beta$.
- 13) $\forall y(y \in x \Rightarrow ord(y)) \Rightarrow \exists \beta \forall \alpha \in x(\alpha < \beta).$ Or $\forall \alpha \in x(\alpha \le \bigcup x) \implies \forall \alpha \in x(\alpha < S(\bigcup x))$
- 14) (Парадокс на Бурали-Форти) $\neg \exists A \forall x (ord(x) \Rightarrow x \in A)$

Док: Допускаме противното. Нека A е такова множество, че $\forall x (ord(x) \Rightarrow x \in A)$ Нека $B = \{x \mid x \in A \land ord(x)\}$. Щом A е множество, то по аксиомната схема за отделянето - B е множество. Ако ord(x), то $x \in A$ и значи $x \in A \land ord(x)$, т.е. $x \in B$. Ако $x \in B$, то $x \in A$ и ord(x); в частност ord(x). Така $\forall x (x \in B \Leftrightarrow ord(x))$. В частност, B е множество от ординали. По (Св. 13) - има ординал т.ч. $\forall \alpha \in B(\alpha < \beta)$ и $\beta \geq S(\bigcup B)$. Следователно $\beta \notin B$, защото е строго по-голям от всеки негов елемент. Противоречие! Защото B съдържа всички ординали. Значи няма такова множество.

15)
$$x \neq \emptyset \land \forall y \in x(ord(y)) \implies \exists \alpha \in x \forall y \in x(\alpha \leq y)$$