ADS2 — Week "Network 2" (Slides-first) — Full Notes & Worked Solutions

Field	Value
Title	ADS2 Network Flow II — Weekplan "Network 2"
Date	2025-10-18
Author	ADS2 Notes Copilot
Sources used	weekplan.pdf (pp.1–2); slides-0115.png (Network Flow II deck); ex_7_8.pdf (KT 7.8, pp.418–419); ex_7_14.pdf (KT 7.14, p.421); exercise figures Pasted image.png, Pasted image (2).png, Pasted image (3).png, Pasted image (4).png
Week plan filename	weekplan.pdf

General Methodology and Theory

- Max-flow / Min-cut. Residual network, augmenting paths; Edmonds–Karp (EK) uses BFS in the residual graph \rightarrow O(V·E²). Capacity scaling augments only on residual edges with capacity $\geq \Delta$; start Δ = highest power of 2 \leq max out of s; halve Δ when no Δ -eligible path exists \rightarrow O(E² log C). (Slides.)
- Matching and b-matching by flow. $s \rightarrow Left$ (row/agents) with row quotas, unit edges to Right (columns/tasks), Right \rightarrow t with column quotas. Hopcroft–Karp for unit matching O($E\sqrt{V}$). (Slides.)
- **Disjoint paths and connectivity.** Unit-capacity edges: max number of edge-disjoint s-t paths equals min size of an s-t cut (Menger). (Slides.)
- **Node capacities via splitting.** Replace v by v_in→v_out of capacity c(v); redirect incident edges accordingly. (Slides; used in KT 7.14b.)
- **Certificates.** When done, show a cut (S,T) whose crossing capacity equals |f|; for infeasibility explain the bottleneck in plain language.

Notes (slide highlights you'll reuse)

- **EK path rule:** forward edges with leftover cap, backward edges with positive flow; bottleneck δ is min residual along the path. Tie-break lexicographically when listing neighbors.
- Scaling phases: Δ sequence ..., 8, 4, 2, 1. Within a phase, each augmentation adds $\geq \Delta$; $\leq 2m$ augmentations per phase; overall O(m² log C). (Slides 37–39.)
- Bipartite matching via flow: unit edges, value of flow = size of matching. (Slides 41–47.)
- Edge-disjoint paths / connectivity: set all caps to 1; run max-flow / min-cut; dotted edges in slides mark a min cut. (Slides 52–56.)

Coverage Table (enumerated strictly from weekplan.pdf)

Weekplan ID	Canonical ID	Title/Label (verbatim)	Assignment Source	Text Source	Status
1	_	The Edmonds-Karp algorithm and the scaling algorithm	weekplan.pdf p.1	figure images: Pasted image.png (two graphs) + slides (EK/scaling)	Solved
2	KT 7.8	Blood Donations	weekplan.pdf p.1	ex_7_8.pdf pp. 418–419 + Pasted image (4).png (table)	Solved
3	_	Christmas Trees (from the Exam E15)	weekplan.pdf p.1	weekplan text + Pasted image (2).png (example grid)	Solved
4	KT 7.14	Escape	weekplan.pdf p.1	ex_7_14.pdf p.421	Solved
5	CSES 1696	School dance	weekplan.pdf p.2	external statement (not uploaded); solved by standard matching mapping	Solved (method)
6	_	[*] Euler tours in mixed graphs	weekplan.pdf p.2	weekplan text + Pasted image (3).png (example pair)	Solved

Solutions

Exercise 1 — EK & Capacity Scaling (two graphs)

Concept mapping. Compute max flow and a min cut on each graph; show the **augmenting paths with** δ . Use EK (BFS) and then repeat with **scaling** (Δ phases $4\rightarrow2\rightarrow1$ etc.).

Left graph (nodes s, L, F, C, B, M, G, A, t; capacities as in **Pasted image.png**).

Mini augmentation trace (EK):

Step	s→t path (BFS in residual)	δ (delta)	Saturated edges	Residual note
1	s→C→G→t	2	s→C, G→t	add C→s, t→G of 2

Step	s→t path (BFS in residual)	δ (delta)	Saturated edges	Residual note
2	$S \rightarrow L \rightarrow F \rightarrow A \rightarrow t$	3	F→A	add A→F of 3
3	$S \rightarrow L \rightarrow F \rightarrow G \rightarrow A \rightarrow t$	3	F→G	add G→F of 3
4	$S \rightarrow L \rightarrow F \rightarrow G \rightarrow C \rightarrow B \rightarrow M \rightarrow t$	1	M→t	add t→M of 1

Result |f| = 9. Cut certificate: $S = \{s, L, F\}$; crossing edges: $s \rightarrow C(2)$, $F \rightarrow A(3)$, $F \rightarrow G(4) \rightarrow sum 9$, hence max flow = 9.

Scaling (\Delta = 4,2,1) gives the same value with fewer within-phase paths (slides 13–21 illustrate the mechanics).

Right graph (A,B,C,D,E,F,G,H with s,t; **Pasted image.png**). EK trace (one valid BFS order):

Step	s→t path	δ	Saturated edges
1	s→t	2	s→t
2	$s \rightarrow D \rightarrow E \rightarrow F \rightarrow t$	3	D→E, E→F
3	$s \rightarrow D \rightarrow E \rightarrow G \rightarrow H \rightarrow t$	1	D→E fully
4	$s \rightarrow D \rightarrow A \rightarrow B \rightarrow C \rightarrow F \rightarrow t$	2	F→t fully
5	$s \rightarrow D \rightarrow A \rightarrow B \rightarrow C \rightarrow F \rightarrow E \rightarrow G \rightarrow H \rightarrow t$	3	A→B fully

Result |f| = 11. Cut certificate: $S = \{s, D, A, B\}$; crossing edges: $s \rightarrow t(2) + D \rightarrow E(4) + B \rightarrow C(5) = 11$.

Pitfalls. Forgetting backward edges; in scaling: treating it as "fattest path" instead of Δ -filtered BFS.

Variant drill. Reduce A \rightarrow t on the left graph from 6 \rightarrow 4: recompute to get |f| = 8; same S but smaller capacity.

Transfer Pattern. Archetype: max s-t flow + min-cut certificate. Cues: "augmenting paths," "EK," "scaling." Mapping: build residual, BFS, augment; then report (S,T) by reachability in residual. Certificate: list crossing edges and sum.

Exercise 2 — KT 7.8 Blood Donations

Model (slides-first). Build a flow network: - Source to donor-type nodes with capacities = supplies (O:50, A:36, B:11, AB:8). - Compatibility edges: $O \rightarrow \{O,A,B,AB\}$; $A \rightarrow \{A,AB\}$; $B \rightarrow \{B,AB\}$; $A \rightarrow \{AB\}$ (unit-capacity per unit of blood; practically cap = ∞ between compatible types). - Patient-type nodes to sink with capacities = demands (O:45, A:42, B:8, AB:3).

Computation (integer max-flow). One optimal allocation: - $O \rightarrow O$: 44, $O \rightarrow A$: 6; $A \rightarrow A$: 36; $B \rightarrow B$: 8; $AB \rightarrow AB$: 3.

Total treated = **97** patients.

Why not 100? (cut & plain-English). Type A needs 42 but has only $36 \rightarrow$ must borrow 6 from O. Then O has $\geq 50-6 = 44$ left for its own 45 patients \Rightarrow at least **one O-patient** cannot be treated. This is a min-cut-style bottleneck and proves optimality (|f| = 97).

Pitfalls. Sending type A to AB while starving O; forgetting that O is the only universal donor.

Variant drill. If A-supply were 38, O would loan 4 and everyone could be served (100).

Transfer Pattern. Archetype: multi-commodity supply→demand via compatibility DAG; solved as max-flow. Cues: supplies/demands by class, compatibility table. Mapping: donors = left, patients = right; caps = supply/demand; run max-flow. Certificate: shortfall forces O-loans; count remaining O.

Answer: Maximum patients served 97; exactly 1 O-patient remains untreated.

Exercise 3 — Christmas Trees (Exam E15)

Goal. Place as many tables as possible on an n×m grid with \leq 2 per row and \leq 1 per column, forbidden at tree cells.

Flow model (b-matching). For each row R_i add s \rightarrow R_i with cap 2; for each column C_j add C_j \rightarrow t with cap 1; for each empty cell (i,j) add R_i \rightarrow C_j (cap 1). Run max-flow.

Correctness. Feasible flows correspond to placements; |f| is the number of tables. Min-cut upper-bounds any placement.

Runtime. With Hopcroft-Karp on the induced bipartite graph: $O(E\sqrt{V})$; with EK: $O(V \cdot E^2)$.

Example check. The provided 4×8 instance (**Pasted image (2).png**) has optimum **7**.

Pitfalls. Greedy per-row or per-column can block future placements; forgetting to omit tree cells.

Variant drill. If a column j allows up to 2 tables, set $cap(C_j \rightarrow t)=2$.

Transfer Pattern. *Archetype:* bipartite **b-matching** via flow. *Cues:* "≤2 per row, ≤1 per column," grid placement with forbidden cells. *Mapping:* rows columns; unit cell edges; capacities encode row/column limits. *Certificate:* min cut selecting tight rows/columns.

Answer: Build the network above and return |f| (7 in the example grid).

Exercise 4 — KT 7.14 Escape (edge- and node-disjoint)

- (a) Edge-disjoint routes. Add super-source $s \rightarrow x$ (cap 1) for each $x \in X$; keep original edges with cap 1; connect each safe $u \in S$ to t with large cap (or 1 if "at most one per safe"). Run max-flow; feasible iff value = |X|.
- **(b) Node-disjoint routes. Split** every vertex v into v_in \rightarrow v_out with cap 1 (or c(v)); replace each (u,v) by u_out \rightarrow v_in (cap 1). Keep s \rightarrow x_in and u_out \rightarrow t for u \in S. Run max-flow; feasible iff value = |X|.

Why it works. Integrality gives a set of disjoint paths from any unit max-flow; conversely, a family of k disjoint paths yields a flow of value k.

Complexity. Linear-time build; EK is fine here; Dinic/HK faster on unit graphs.

Pitfalls. Forgetting to set caps to 1; not splitting nodes for part (b).

Variant drill. If safe node u can accept c(u) evacuees, use cap $v_i \to v_j = c(u)$ for v = u.

Transfer Pattern. *Archetype:* disjoint paths via flow; *Cues:* "routes do not share edges/nodes." *Mapping:* unit edges + super-source/sink; node-split for node capacities. *Certificate:* value = |X| with path decomposition.

Answer: Build the respective networks; **YES** iff max-flow equals |X|.

Exercise 5 — CSES 1696 School Dance (method card)

- I/O gist. n boys, m girls, E allowed pairs; print maximum number of pairs and the pairs.
- **Solve:** Bipartite matching via Hopcroft–Karp (or max-flow). s→boys (1), allowed edges (1), girls→t (1). Extract matched edges.
- Time: $O(E\sqrt{(n+m)})$.
- Pitfalls: 1-based indices in output; don't print unmatched nodes.

Transfer Pattern. *Archetype:* unit bipartite matching. *Certificate:* matching size = flow value; edges in the matching.

Answer: Reduce to bipartite matching and run HK; output the matching.

Exercise 6 — [*] Euler tours in mixed graphs

Goal. Orient undirected edges so final directed graph has an **Euler tour**.

Balances. Let $r(v)=\inf_{v\in V} -\sup_{v\in V} -\sup_{$

Reduction (slides hint \Rightarrow **b-matching).** Build bipartite graph (**E_u** \leftrightarrow **V**): left nodes are undirected edges e, right nodes are vertices. Connect e to its two endpoints. Find a b-matching that matches each e exactly once and matches each vertex v exactly **h(v)** times. Flow build: - s \rightarrow e (cap 1) for each undirected edge e; e \rightarrow u and e \rightarrow v (cap 1); v \rightarrow t (cap h(v)). - Feasible flow of value |E_u| \Rightarrow choose the matched endpoint as the **head** of e (tail is the other endpoint). Combined with directed edges, every v now has in=out; connectivity (assumed when ignoring directions) gives an Euler tour.

Complexity. $O(E\sqrt{V})$ via b-matching flow.

Pitfalls. Skipping parity check; demanding strong connectivity (not needed); producing negative h(v).

Variant drill. Fix orientations of some undirected edges first, update $r(\cdot)$, re-run the test.

Transfer Pattern. *Archetype:* circulation with vertex demands via edge \rightarrow vertex **b-matching**. *Certificate:* feasible b-matching of size $|E_u|$.

Answer: YES iff all h(v) are integers in range and the b-matching flow returns value $|E_u|$; orientation is read off from the matching.

Puzzle — 99 Cops (<299 questions)

Plan. (i) Use the Boyer–Moore majority trick to find one honest cop in \leq 98 questions by pair-cancelling suspects; (ii) ask the honest cop about all others (\leq 98 more). Total \leq 196.

Why it works. Honest cops are a strict majority, so cancellation leaves an honest survivor; an honest witness then labels everyone correctly.

Summary (one-page refresher)

- **Algorithms used:** EK and scaling; Hopcroft–Karp / flow for matching and b-matching; node-splitting for node capacities.
- Certificates to give: min (S,T) cut with crossing sum = |f|; for Blood, the O-loan bottleneck \Rightarrow 97; for Trees, cut picks tight rows/columns; for Mixed-Euler, b-matching of size $|E_u|$.
- **Transfer cues:** "≤ per row/column" ⇒ b-matching; "routes don't share" ⇒ disjoint paths + node-split; "compatibility table" ⇒ supply→demand flow; "augmenting path trace" ⇒ EK/scaling.
- **Notation:** |f| flow value; δ bottleneck; r(v)=in-out on pre-directed part; h(v) incoming heads needed from undirected edges.