Week 1 day 5

函数	概念	本质: 定义域内任何一个自变量对应唯一的函数值。两函数相等只要定义域和对应法则相			
	表示方法	解析式法、表格法、图象法。分段函数是一个函数,其定义域是各段定义域的并集、值域是各段值			
		域的并集。			
	性质	单调性	对定义域内一个区间 I , $x_1,x_2\in I, x_1< x_2$,	偶函	数在定义域关于
概念			$f(x)$ 是增函数 \Leftrightarrow $f(x_1) < f(x_2)$,	坐标	原点对称的区间
及其			$f(x)$ 是减函数 $\Leftrightarrow f(x_1) > f(x_2)$ 。	上具	有相反的单调性、
表示		奇偶性	对定义域内任意 x , $f(x)$ 是偶函数 \Leftrightarrow $f(x) = f(-x)$,	奇函	数在定义域关于
			$f(x)$ 是奇函数 $\Leftrightarrow f(-x) = -f(x)$ 。偶函数图象关于		原点对称的区间
			y 轴对称、奇函数图象关于坐标原点对称。	上具	有相同的单调性。
		周期性	对定义域内任意 x ,存在非零常数 T , $f(x+T)=f(x)$	•	
基本	指数函数 $y = a^x$	0 < a < 1	$(-\infty, +\infty)$ 单调递减, $x < 0$ 时 $y < 1$, $x > 0$ 时 $0 < y < \infty$	1	函数图象过定
		a > 1	$(-\infty, +\infty)$ 单调递增, $x < 0$ 时 $0 < y < 1$, $x > 0$ 时 $y >$	点(0,1)	
初等	对数函数	0 < a < 1	$0 < a < 1$ 在 $(0, +\infty)$ 单调递减, $0 < x < 1$ 时 $y > 0$, $x > 1$ 时 $y < 0$		函数图象过定
函数 I	$y = \log_a x$	a>1	在 $(0,+\infty)$ 单调递增, $0 < x < 1$ 时 $y < 0$, $x > 1$ 时 $y > 0$	0 点(1,0)	
	幂函数	$\alpha > 0$	在在(0,+∞)单调递增,图象过坐标原点		函数图象过定
	$y = x^{\alpha}$	$\alpha < 0$	在在 $(0,+\infty)$ 单调递减		点(1,1)

函数零点	概念	方程 $f(x) = 0$ 的实数根。方程 $f(x) = 0$ 有实数根 \Leftrightarrow 函数 $y = f(x)$ 的图象与 x 轴有交点 \Leftrightarrow 函数 $y = f(x)$ 有零点.			
	存在定理	图象在 $[a,b]$ 上连续不断,若 $f(a)f(b)<0$,则 $y=f(x)$ 在 (a,b) 内存在零点。			
函数建模	概念	把实际问表达的数量变化规律用函数关系刻画出来的方法叫作函数建模。			
		阅读审题	分析出已知什么, 求什么, 从中提炼出相应的数学问题。		
		数学建模	弄清题目中的已知条件和数量关系,建立函数关系式。		
	解题步骤	解答模型	利用数学方法得出函数模型的数学结果。		
		解释模型	将数学问题的结果转译成实际问题作出答案。		

	概念 与几	概念	函数 $y = f(x)$ 在点 $x = x_0$ 处的导数 $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 。				
4	何意	几何	$f'(x_0)$ 为曲线 $y=f(x)$ 在点 $(x_0,f(x_0)$ 处的切线斜率,切线方程是				
	义	意义	$y - f(x_0) = f'(x_0)(x - x_0)$.				
	运算	基本公式	$C' = 0 (C' \text{ 为常数}); (x^n)' = nx^{n-1}(n \in \mathbf{N}^*);$ $(\sin x)' = \cos x, (\cos x)' = -\sin x;$ $(e^x)' = e^x, (a^x)' = a^x \ln a (a > 0, \exists a \neq 1);$ $(\ln x)' = \frac{1}{x}, (\log_a x)' = \frac{1}{x} \log_a e (a > 0, \exists a \neq 1).$ $(\ln x)' = \frac{1}{x}.$				
		运算 法则	$\begin{split} & [f(x)\pm g(x)]'=f'(x)\pm g'(x)\;;\\ & [f(x)\bullet g(x)]'=f'(x)\bullet g(x)+f(x)\bullet g'(x) \qquad, \qquad [Cf(x)]'=Cf'(x) \qquad;\\ & \left[\frac{f(x)}{g(x)}\right]'=\frac{f'(x)g(x)-g'(x)f(x)}{g^2(x)}(g(x)\neq 0)\;, \left[\frac{1}{g(x)}\right]'=-\frac{g'(x)}{g^2(x)}\;.\\ & \text{复合函数求导法则}\;y=\big[f(g(x))\big]'=f'(g(x))g'(x)\;. \end{split}$				
数	研究 函数 性质	单调性	f'(x)>0 的各个区间为单调递增区间; $f'(x)<0$ 的区间为单调递减区间。				
及		极值	$f'(x_0) = 0$ 且 $f'(x)$ 在 x_0 附近左负 (正) 右正 (负) 的 x_0 为极小 (大) 值点。				
其应用		最值	[a,b]上的连续函数一定存在最大值和最小值,最大值和区间端点值和区间内的极大值中者,最小值和区间端点和区间内的极小值中的最小者。				
	定积分	概念	$f(x)$ 在区间 $[a,b]$ 上是连续的,用分点 $a=x_0 < x_1 < \cdots < x_{i-1} < x_i < \cdots < x_n = b$ 将区间 $[a,b]$ 等分成 n 个小区间,在每个小区间 $[x_{i-1},x_i]$ 上任取一点 ξ_i ($i=1,2,\cdots,n$), $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n \frac{b-a}{n} f(\xi_i).$				
		基本定理	如果 $f(x)$ 是 $[a,b]$ 上的连续函数,并且有 $F'(x)=f(x)$,则 $\int_a^b f(x)dx = F(b) - F(a)$.				
		性质	$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx (k 为常数);$ $\int_{a}^{b} [f(x) \pm g(x)]dx = \int_{a}^{b} f(x)d_{x} \pm \int_{a}^{b} g(x)dx;$ $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{d} f(x)dx.$				
		简单 应用	区间 $[a,b]$ 上的连续的曲线 $y=f(x)$,和直线 $x=ax=b(a\neq b)$, $y=0$ 所围成的曲边梯形的面积 $S=\int_a^b \left f(x)\right dx$ 。				