

Cache Replacement Based on Reuse-Distance Prediction

Georgios Keramidas, Pavlos Petoumenos, Stefanos Kaxiras
University of Patras, Greece

Introduction

- We need caches
 - The memory wall rises more and more

- Contributions:
 - Instruction based reuse distance prediction
 - Potential for cache level optimizations
 - Case study: a replacement algorithm for second level caches

LRU vs Belady's Optimal Replacement

- LRU: Inefficient for L2 caches
- Reasons:
 - L1 filtering
 - Highly associative caches

Can we see the future?

- Yes, via prediction
- Memory behavior → repeating patterns
- Our Motivation:
 - Strong correlation between instructions (PC) and moment of next access (reuse distance)

Reuse Distance of A = 4 Reuse Distance of B = 4 Reuse Distance of C = 0

Reuse distances are predictable

- Significant PCs:
 - Are few → Easily stored
 - Have predictable reuse distances

Instruction based Predictor

- Predicts the reuse distance of an access based on the PC which initiated the access
- Tracks the accessed line
- Upon reuse calculates the reuse distance
- Updates the predictor entry associated with the PC

Accuracy and Coverage

- Not bad, but also not perfect
 - The concept works
 - Even better implementations are possible

A case study: replacement policy

- Not all accesses are predictable
 - We cannot implement a perfect optimal algorithm
- Hybrid algorithm:
 - Replace the line used farthest in the future (OPT) when you have enough info
 - Replace the line used farthest in the past (LRU) if you don't.
- More reliable predictor → policy closer to OPT

Miss rate reduction

- Significant improvement
- Benchmarks with low accuracy are not greatly affected

Conclusions and Future Work

- Instruction based reuse distance predictor
 - Proof of concept
 - Low overhead (< 2%)
 - Good accuracy
- Replacement policy for L2 caches
 - Speed ups in many benchmarks
 - 60% in art
 - 43% in ammp
 - Slowdown in vpr
- Future Work:
 - Improve the effectiveness of the predictor
 - More cache level optimizations

Speedup (IPC)

Dead Block Prediction vs Reuse Distance Prediction

Reuse Distance Prediction

- Predicts when the line is going to be accessed again
- Fine grained prediction
- Can identify which line is less needed
 - Very large RDs indicate dead lines
- More information can be extracted
- Proof of concept predictor

Dead Block Prediction

- Predicts when the line is going to be evicted
- Coarse grained prediction
- Can identify only dead lines
 - Not which is less needed

- Less information is stored
- Sophisticated predictor