第一章 常用公式

1.1 常用 Taylor 级数

1.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{6} + \dots + \frac{x^k}{k!} + \dots$$

2.
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^k}{k+1} x^{k+1} + \dots, x \in (-1,1].$$

3.
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots + \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \dots$$

4.
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots + \frac{(-1)^k}{(2k)!} x^{2k} + \dots$$

5.
$$\tan x = 2 \sum_{n=0}^{\infty} \frac{(4^n - 1)(2n)!}{(2n+1)!} x^{2n+1} = x + \frac{1}{3} x^3 + \frac{2}{15} x^5 + \frac{17}{315} x^7 + \frac{62}{2835} x^9 + \frac{1382}{155925} x^{11} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

6.
$$\sec x = \sum_{n=0}^{\infty} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} = 1 + \frac{1}{2} x^2 + \frac{5}{24} x^4 + \frac{61}{720} x^6 + \frac{277}{8064} x^8 + \frac{50521}{3628800} x^{10} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

7.
$$\arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (2n+1)!} x^{2n+1} = x + \frac{1}{6} x^3 + \frac{3}{40} x^5 + \frac{5}{112} x^7 + \frac{35}{1152} x^9 + \frac{63}{2816} x^{11} + o(x^{11}), x \in (-1,1).$$

8.
$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \dots + \frac{(-1)^k}{2k+1} x^{2k+1} + \dots, x \in (-1,1).$$

9.
$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

10.
$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \dots + \frac{x^{2k}}{(2k)!} + \dots$$

11.
$$\tanh x = \sum_{n=0}^{\infty} \frac{4^n (4^n - 1) B_{2n}}{(2n)!} x^{2n-1} = x - \frac{1}{3} x^3 + \frac{2}{15} x^5 - \frac{17}{315} x^7 + \frac{62}{2835} x^9 - \frac{1382}{155925} x^{11} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

12.
$$\operatorname{sech} x = \sum_{n=0}^{\infty} \frac{E_{2n} x^{2n}}{(2n)!} = 1 - \frac{1}{2} x^2 + \frac{5}{24} x^4 - \frac{61}{720} x^6 + \frac{277}{8064} x^8 - \frac{50521}{3628800} x^{10} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

13.
$$\operatorname{arsinh} x = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{4^n (2n+1)!} x^{2n+1} = x - \frac{1}{6} x^3 + \frac{3}{40} x^5 - \frac{5}{112} x^7 + \frac{35}{1152} x^9 - \frac{63}{2816} x^{11} + o(x^{11}), x \in (-1,1).$$

14.
$$\operatorname{artanh} x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \frac{1}{7}x^7 + \frac{1}{9}x^9 + \frac{1}{11}x^{11} + o(x^{11}), x \in (-1,1).$$

15.
$$e^{\sin x} = 1 + x + \frac{1}{2}x^2 - \frac{1}{8}x^4 - \frac{1}{15}x^5 - \frac{1}{240}x^6 + \frac{1}{90}x^7 + \frac{31}{5760}x^8 - \frac{1}{5670}x^9 - \frac{2951}{3628800}x^{10} + o(x^{10})$$

$$16. \ e^{\tan x} = 1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \frac{3}{8}x^4 + \frac{37}{120}x^5 + \frac{59}{240}x^6 + \frac{137}{720}x^7 + \frac{871}{5760}x^8 + \frac{41641}{3628800}x^9 + o(x^9).$$

17.
$$e^{\arcsin x} = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{5}{24}x^4 + \frac{1}{6}x^5 + \frac{17}{144}x^6 + \frac{13}{126}x^7 + \frac{629}{8064}x^8 + \frac{325}{4536}x^9 + o(x^9).$$

18.
$$e^{\arctan x} = 1 + x + \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{7}{24}x^4 + \frac{1}{12}x^5 + \frac{29}{144}x^6 - \frac{1}{1008}x^7 - \frac{1249}{8064}x^8 - \frac{1163}{72576}x^9 + o(x^9).$$

19.
$$\tan(\tan x) = x + \frac{2}{3}x^3 + \frac{3}{5}x^5 + \frac{181}{315}x^7 + \frac{59}{105}x^9 + \frac{3455}{6237}x^{11} + o(x^{11}).$$

20.
$$\sin(\sin x) = x - \frac{1}{3}x^3 + \frac{1}{10}x^5 - \frac{8}{315}x^7 + \frac{13}{2830}x^9 - \frac{47}{49896}x^{11} + o(x^{11}).$$

21.
$$\tan(\sin x) = x + \frac{1}{6}x^3 - \frac{1}{40}x^5 - \frac{107}{5040}x^7 - \frac{73}{24192}x^9 + \frac{41897}{39916800}x^{11} + o(x^{11}).$$

22.
$$\sin(\tan x) = x + \frac{1}{6}x^3 + \frac{1}{40}x^5 - \frac{55}{846}x^7 - \frac{143}{3456}x^9 - \frac{968167}{39916800}x^{11} + o(x^{11}).$$

23.
$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^k + \dots, x \in (-1,1).$$

24.
$$(1+x)^{\frac{1}{x}} = e - \frac{e}{2}x + \frac{11e}{24}x^2 - \frac{7e}{16}x^3 + \frac{2447e}{5760}x^4 - \frac{959e}{2304}x^5 + \frac{281343e}{580608}x^6 - \frac{67223e}{168885}x^7 + o(x^7).$$

25.
$$(1+x^2)^{\frac{1}{x}} = 1 + x + \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{11}{24}x^4 + \frac{11}{120}x^5 + \frac{271}{720}x^6 + \frac{53}{2320}x^7 - \frac{4069}{13410}x^8 + o(x^8).$$

26.
$$(1+\sin x)^{\frac{1}{x}} = e - \frac{e}{2}x + \frac{7e}{24}x^2 - \frac{3e}{16}x^3 + \frac{139e}{560}x^4 - \frac{899e}{11520}x^5 + \frac{29811e}{580608}x^6 - \frac{180617e}{580608}x^7 + o(x^7).$$

1.2 常用积分公式

1.2.1 不定积分

1.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C (a > 0).$$

2.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C(a > 0).$$
 3.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C(a > 0).$$

3.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C (a > 0).$$

$$4. \int \ln x dx = x \ln x - x + C.$$

5.
$$\int \sec x dx = \ln|\sec x + \tan x| + C;$$
$$\int \csc x dx = -\ln|\csc x + \cot x| + C.$$

6.
$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right] + C (a > 0);$$
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left[x \sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right] + C (a > 0).$$

7.
$$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C (ab \neq 0);$$
$$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C (ab \neq 0).$$

8.
$$\int x \cos nx \, dx = \frac{1}{n^2} \cos nx + \frac{x}{n} \sin nx + C (n \neq 0);$$
$$\int x \sin nx \, dx = \frac{1}{n^2} \sin nx - \frac{x}{n} \cos nx + C (n \neq 0).$$

$$I(m,n) = \frac{\cos^{m-1} x \sin^{n+1} x}{m+n} + \frac{m-1}{m+n} I(m-2,n) \quad (m \ge 2, n \ge 0);$$

= $-\frac{\cos^{m+1} x \sin^{n-1} x}{m+n} + \frac{n-1}{m+n} I(m,n-2) \quad (m \ge 0, n \ge 2).$

1.2.2 定积分

1. $\exists I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx, \forall n \in \mathbb{N}, \mathbb{N}$

$$I_n = \frac{n-1}{n} I_{n-2}, \quad \forall n \geqslant 2.$$

从而

$$I_n = \begin{cases} \frac{(n-1)!!}{n!!} I_0 = \frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2} &, n \neq \emptyset \\ \frac{(n-1)!!}{n!!} I_1 = \frac{(n-1)!!}{n!!} &, n \neq \emptyset \end{cases}$$
(1.1)

2. $\exists J(m,n) = \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx, \forall n, m \in \mathbb{N}, \mathbb{N}$

$$J(m,n) = \frac{m-1}{m+n}J(m-2,n), \quad \forall n,m \geqslant 2.$$

$$J(m,n) = \frac{n-1}{m+n}J(m,n-2), \quad \forall n,m \geqslant 2.$$

从而

$$J(m,n) = \begin{cases} \frac{(m-1)!!(n-1)!!}{(m+n)!!} & ,m,n$$
不全为偶数
$$\frac{(m-1)!!(n-1)!!}{(m+n)!!} \cdot \frac{\pi}{2} & ,m,n$$
全为偶数
$$(1.2)$$

注 公式(1.1)(1.2)通常称为"点火公式".

1.3 常用初等不等式

命题 1.1 (常用不等式)

(1)
$$\ln(1+x) < \frac{x}{\sqrt{1+x}}, x > 0.$$

(2) $\ln x < \sqrt{x} - \frac{1}{\sqrt{x}}, x > 0.$
(3) $e^x + e^y - 2 < e^{x+y} - 1, \forall x, y > 0.$

(2)
$$\ln x < \sqrt{x} - \frac{1}{\sqrt{x}}, x > 0$$

(3)
$$e^x + e^y - 2 < e^{x+y} - 1, \forall x, y > 0$$

证明

(1)
$$\diamondsuit f(x) = \ln(1+x) - \frac{x}{\sqrt{1+x}}, x \ge 0, \text{ }$$

$$f'(x) = \frac{2\sqrt{1+x} - x - 2}{2(1+x)^{\frac{3}{2}}} = -\frac{1+x-2\sqrt{1+x}+1}{2(1+x)^{\frac{3}{2}}} = -\frac{\left(\sqrt{1+x}-1\right)^2}{2(1+x)^{\frac{3}{2}}} < 0, \forall x > 0.$$

故 f 在 $(0,+\infty)$ 上严格单调递减, 又 $f \in C[0,+\infty)$, 因此 f 在 $[0,+\infty)$ 上也严格单调递减. 从而

$$f(x) \leqslant f(0) = 0, \forall x > 0.$$

$$\mathbb{P}\ln(1+x) < \frac{x}{\sqrt{1+x}}, x > 0.$$

(2)

(3) 注意到

$$(e^x - 1)(x^y - 1) > 0, \forall x, y > 0,$$

故

$$e^x + e^y < e^{x+y} + 1 \Longrightarrow e^x + e^y - 2 < e^{x+y} - 1, \forall x, y > 0.$$

1.4 重要不等式

定理 1.1 (Cauchy 不等式)

对任何 $n \in \mathbb{N}$, (a_1, a_2, \dots, a_n) , $(b_1, b_2, \dots, b_n) \in \mathbb{R}^n$, 有

$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2. \tag{1.3}$$

且等号成立条件为 (a_1, a_2, \cdots, a_n) , (b_1, b_2, \cdots, b_n) 线性相关.

证明 (i) 当 b_i 全为零时,(1.3)式左右两边均为零,结论显然成立.

(ii) 当
$$b_i$$
 不全为零时, 注意到 $\left(\sum_{i=1}^n (a_i+tb_i)\right)^2\geqslant 0, \forall t\in\mathbb{R}$. 等价于
$$t^2\sum_{i=1}^n b_i^2+2t\sum_{i=1}^n a_ib_i+\sum_{i=1}^n a_i^2\geqslant 0, \forall t\in\mathbb{R}.$$

根据一元二次方程根的存在性定理, 可知 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 \leqslant 0.$

从而
$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2$$
. 下证(1.3)式等号成立的充要条件.

(i) 当 b_i 全为零时,因为零向量与任意向量均线性相关,所以此时 $(a_1, a_2, \cdots, a_n), (b_1, b_2, \cdots, b_n)$ 线性相关.

(ii) 当 b_i 不全为零时, 此时我们有 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 = 0$. 根据一元二次方程根的存在性定理,可知存在 $t_0 \in \mathbb{R}$, 使得

$$\left(\sum_{i=1}^{n} (a_i + tb_i)\right)^2 = t_0^2 \sum_{i=1}^{n} b_i^2 + 2t_0 \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} a_i^2 = 0.$$

于是 $a_i + t_0 b_i = 0, i = 1, 2, \dots, n$. 即 $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$ 线性相关. 反之, 若 $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$ 线性相关,则存在不全为零的 $\lambda, \mu \in \mathbb{R}$, 使得

$$\lambda a_i + \mu b_i = 0, i = 1, 2, \dots, n.$$

不妨设
$$\lambda \neq 0$$
, 则 $a_i = -\frac{\mu}{\lambda}b_i$, $i = 1, 2, \cdots, n$. 从而当 $t = \frac{\mu}{\lambda}$ 时, $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 = 0$.

即一元二次方程
$$\left(\sum_{i=1}^{n}(a_i+tb_i)\right)^2=t_0^2\sum_{i=1}^{n}b_i^2+2t_0\sum_{i=1}^{n}a_ib_i+\sum_{i=1}^{n}a_i^2=0$$
 有实根 $\frac{\mu}{\lambda}$.

因此
$$\Delta = \left(\sum_{i=1}^{n} a_i b_i\right)^2 - \sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 = 0$$
. 即(1.3)式等号成立.

例题 1.1 证明:

组

$$\sum_{i=1}^{n} \frac{1}{x_i} \geqslant \frac{n^2}{\sum_{i=1}^{n} x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

证明 对 $\forall n \in \mathbb{N}, x_1, x_2, \dots, x_n > 0$, 由Cauchy 不等式可得

$$\sum_{i=1}^{n} \frac{1}{x_i} \cdot \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \left(\frac{1}{\sqrt{x_i}}\right)^2 \cdot \sum_{i=1}^{n} \left(\sqrt{x_i}\right)^2 \geqslant \left(\sum_{i=1}^{n} \sqrt{x_i} \cdot \frac{1}{\sqrt{x_i}}\right)^2 = n^2.$$

故
$$\sum_{i=1}^{n} \frac{1}{x_i} \geqslant \frac{n^2}{\sum_{i=1}^{n} x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

例题 1.2 求函数 $y = \sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x}$ 在定义域内的最大值和最小值.

笔记 首先我们猜测定义域的端点处可能存在最值, 然后我们通过简单的放缩就能得到 y(0) 就是最小值. 再利用Cauchy 不等式我们可以得到函数的最大值. 构造 Cauchy 不等式的思路是: 利用待定系数法构造相应的 Cauchy 不等式. 具体步骤如下:

设 A, B, C > 0, 则由 Cauchy 不等式可得

$$\left(\frac{1}{\sqrt{A}}\sqrt{Ax + 27A} + \frac{1}{\sqrt{B}}\sqrt{13B - Bx} + \frac{1}{\sqrt{C}}\sqrt{Cx}\right)^2 \leqslant \left(\frac{1}{A} + \frac{1}{B} + \frac{1}{C}\right)[(A + C - B)x + 27A + 13B]$$

并且当且仅当 $\sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx}$ 时, 等号成立.

令 A+C-B=0(因为要求解 y 的最大值, 我们需要将 y 放大成一个不含 x 的常数), 从而与上式联立得到方程

$$\begin{cases} \sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx} \\ A + C - B = 0 \end{cases}$$

解得:A = 1, B = 3, C = 2, x = 9.

从而得到我们需要构造的 Cauchy 不等式为

$$\left(\sqrt{x+27} + \frac{1}{\sqrt{3}}\sqrt{39-3x} + \frac{1}{\sqrt{2}}\sqrt{2x}\right)^2 \leqslant \left(1 + \frac{1}{3} + \frac{1}{2}\right)(x+27+39-3x+2x)$$

并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x = 9 时, 等号成立.

解 由题可知, 函数 y 的定义域就是: $0 \le x \le 13$. 而

$$y(x) = \sqrt{x + 27} + \sqrt{[\sqrt{13 - x} + \sqrt{x}]^2}$$
$$= \sqrt{x + 27} + \sqrt{13 + 2\sqrt{x(13 - x)}}$$
$$\geqslant \sqrt{27} + \sqrt{13} = 3\sqrt{3} + \sqrt{13} = y(0)$$

于是 y 的最小值为 $3\sqrt{3} + \sqrt{13}$. 由 Cauchy 不等式可得

$$y^{2}(x) = (\sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x})^{2}$$

$$= (\sqrt{x + 27} + \frac{1}{\sqrt{3}}\sqrt{39 - 3x} + \frac{1}{\sqrt{2}}\sqrt{2x})^{2}$$

$$\leq (1 + \frac{1}{3} + \frac{1}{2})(x + 27 + 39 - 3x + 2x)$$

$$= 121 = y^{2}(9)$$

即 $y(x) \le y(9) = 11$. 并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x = 9 时, 等号成立. 故 y 的最大值为 11.

定理 1.2 (均值不等式)

设 $a_1, a_2, \cdots, a_n > 0$, 则下述函数是连续递增函数

$$f(r) = \begin{cases} \left(\frac{a_1^r + a_2^r + \dots + a_n^r}{n}\right)^{\frac{1}{r}}, r \neq 0\\ \sqrt[q]{a_1 a_2 \cdots a_n}, \qquad r = 0 \end{cases}$$
 (1.4)

其中若 $r_1 \neq r_2$, 则 $f(r_1) = f(r_2)$ 的充要条件是 $a_1 = a_2 = \cdots = a_n$.

🕏 笔记 均值不等式最重要的特例是下面的均值不等式常用形式.

定理 1.3 (均值不等式常用形式)

设 $a_1, a_2, \dots, a_n > 0$, 则

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

例题 **1.3** 设 $f(x) = 4x(x-1)^2, x \in (0,1)$, 求 f 的最大值.

解 由均值不等式常用形式可得

$$f(x) = 4x (x - 1)^{2} = 2 \cdot 2x (1 - x) (1 - x)$$

$$= 2 \cdot \left[\sqrt[3]{2x (1 - x) (1 - x)} \right]^{3}$$

$$\leq 2 \cdot \left[\frac{2x + 1 - x + 1 - x}{3} \right]^{3}$$

$$= 2 \cdot \left(\frac{2}{3} \right)^{3} = \frac{16}{27}$$

并且当且仅当 2x = 1 - x, 即 $x = \frac{1}{3}$ 时等号成立.

定理 1.4 (Bernoulli 不等式)

设 $x_1, x_2, \cdots, x_n \ge -1$ 且两两同号,则

$$(1+x_1)(1+x_2)\cdots(1+x_n) \geqslant 1+x_1+x_2+\cdots+x_n$$
.

证明 当 n=1 时, 我们有 $1+x_1 \ge 1+x_1$, 结论显然成立.

假设当n=k时,结论成立.则当n=k+1时,由归纳假设可得

$$(1+x_1)(1+x_2)\cdots(1+x_{k+1}) \ge (1+x_1+x_2+\cdots+x_k)(1+x_{k+1})$$

$$= 1+x_1+x_2+\cdots+x_k+x_{k+1}+x_1x_{k+1}+x_2x_{k+1}+\cdots+x_kx_{k+1}$$

$$\ge 1+x_1+x_2+\cdots+x_k+x_{k+1}$$

故由数学归纳法可知,结论成立.

定理 1.5 (Bernoulli 不等式特殊形式)

设 $x \ge -1$, $n \ge 0$, 则

$$(1+x)^n \geqslant 1 + nx.$$

定理 1.6 (Jesen 不等式)

设
$$\lambda_i \geqslant 0, i = 1, 2, \dots, n, \sum_{i=1}^n \lambda_i = 1, 则对下凸函数 f, 有$$

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i).$$

对上凸函数 f, 有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \geqslant \sum_{i=1}^{n} \lambda_i f(x_i).$$

定理 1.7 (Young 不等式)

对任何 $a, b \ge 0, \frac{1}{p} + \frac{1}{q} = 1, p > 1$ 有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

当且仅当 $a^p = b^q$ 时等号成立.

注 这个 Young 不等式不等式和加权均值不等式等价.

证明 (i) 当 a,b 至少有一个为零时,结论显然成立.

(ii) 当 a, b 均不为零时, 我们有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

$$\Leftrightarrow \ln a + \ln b \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

$$\Leftrightarrow \frac{1}{p} \ln a^p + \frac{1}{q} \ln b^q \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

由Jesen 不等式和 $f(x) = \ln x$ 函数的上凸性可知,上述不等式成立. 等号成立的条件可由Jesen 不等式的等号成立条件直接得到. 故原结论也成立.

定理 1.8 (Hold 不等式)

设 $\frac{1}{p} + \frac{1}{q} = 1, p > 1, a_1, a_2, \dots, a_n \ge 0, b_1, b_2, \dots, b_n \ge 0$, 则有

$$\sum_{k=1}^n a_k b_k \leq \sqrt[p]{\sum_{k=1}^n a_k^p} \cdot \sqrt[q]{\sum_{k=1}^n b_k^q}.$$

证明 (i) 当 a_1, a_2, \cdots, a_n 全为零时, 结论显然成立.

(ii) 当 a_1, a_2, \cdots, a_n 不全为零时, 令

$$a'_{k} = \frac{a_{k}}{\sqrt[p]{\sum_{k=1}^{n} a_{k}^{p}}}, b'_{k} = \frac{b_{k}}{\sqrt[q]{\sum_{k=1}^{n} b_{k}^{q}}}, k = 1, 2, \dots, n.$$

从而只需证明 $\sum_{k=1}^{n} a'_k b'_k \leq 1$. 由Young 不等式可得

$$\sum_{k=1}^{n} a'_k b'_k \leqslant \sum_{k=1}^{n} \left[\frac{\left(a'_k \right)^p}{p} + \frac{\left(b'_k \right)^q}{q} \right] = \sum_{k=1}^{n} \left(\frac{a_k^p}{p \sum_{k=1}^{n} a_k^p} + \frac{b_k^p}{q \sum_{k=1}^{n} b_k^q} \right)$$

$$= \frac{\sum\limits_{k=1}^{n} a_{k}^{p}}{p \sum\limits_{k=1}^{n} a_{k}^{p}} + \frac{\sum\limits_{k=1}^{n} b_{k}^{p}}{q \sum\limits_{k=1}^{n} b_{k}^{q}} = \frac{1}{p} + \frac{1}{q} = 1.$$

故原结论成立.

定理 1.9 (排序和不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n, b_1 \leqslant b_2 \leqslant \cdots \leqslant b_n.$$

 $\{c_1, c_2, \dots, c_n\}$ 是 $\{b_1, b_2, \dots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_i b_{n+1-i} \leqslant \sum_{i=1}^{n} a_i c_i \leqslant \sum_{i=1}^{n} a_i b_i,$$

且等号成立的充要条件是 $a_i = a_j$, $1 \le i < j \le n$ 或者 $b_i = b_j$, $1 \le i < j \le n$.

拿 笔记 简单记为倒序和 ≤ 乱序和 ≤ 同序和.

定理 1.10 (Chebeshev 不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n, b_1 \leqslant b_2 \leqslant \cdots \leqslant b_n.$$

 $\{c_1, c_2, \dots, c_n\}$ 是 $\{b_1, b_2, \dots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_i b_{n+1-i} \leqslant \frac{1}{n} \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \leqslant \sum_{i=1}^{n} a_i b_i.$$

且等号成立的充要条件是 $a_i = a_j, 1 \leq i < j \leq n$ 或者 $b_i = b_j, 1 \leq i < j \leq n$.

1.5 基本组合学公式

定义 1.1

对 $\forall m \in \mathbb{R}, k \in \mathbb{N}$, 定义

$$C_m^k = {m \choose k} \triangleq \frac{m(m-1)\cdots(m-k+1)}{k!}.$$

特别地, $C_m^0 \triangleq 1$. 若 $m, k \in \mathbb{N}$, 则还有

$$C_m^k = \binom{m}{k} = \frac{m!}{k!(m-k)!}.$$

定理 1.11 (二项式定理的推广)

$$(a_1 + b_1) \cdots (a_n + b_n) = \sum_{I \subset \{1, 2, \cdots, n\}} \left(\prod_{i \in I} a_i \prod_{j \in \{1, 2, \cdots, n\} - I} b_j \right).$$

证明 用数学归纳法证明即可.

1.6 三角函数相关

1.6.1 三角函数

定理 1.12 (三角平方差公式)

 $\sin^2 x - \sin^2 y = \sin(x - y)\sin(x + y) = \cos(y - x)\cos(y + x) = \cos^2 y - \cos^2 x.$

证明 首先,我们有

$$\cos^2 x - \cos^2 y = 1 - \sin^2 x - (1 - \sin^2 y) = \sin^2 y - \sin^2 x.$$

接着,我们有

$$\sin(x - y)\sin(x + y) = (\sin x \cos y - \cos x \sin y)(\sin x \cos y + \cos x \sin y)$$

$$= \sin^2 x \cos^2 y - \cos^2 x \sin^2 y$$

$$= \sin^2 x (1 - \sin^2 y) - (1 - \sin^2 x)\sin^2 y$$

$$= \sin^2 x - \sin^2 y;$$

$$\cos(y - x)\cos(y + x) = (\cos x \cos y + \sin x \sin y)(\cos x \cos y - \sin x \sin y)$$

$$\cos(y - x)\cos(y + x) = (\cos x \cos y + \sin x \sin y)(\cos x \cos y - \sin x \sin y)$$

$$= \cos^2 x \cos^2 y - \sin^2 x \sin^2 y$$

$$= \cos^2 x \cos^2 y - (1 - \cos^2 x)(1 - \cos^2 y)$$

$$= \cos^2 x - \cos^2 y.$$

故结论得证.

定理 1.13

$$\sin(n\theta) = \sum_{\substack{r=0\\2r+1 \le n}} (-1)^r \binom{n}{2r+1} \cos^{n-2r-1}(\theta) \sin^{2r+1}(\theta).$$

2.

1.

$$\cos(n\theta) = \sum_{\substack{r=0\\2r \le n}} (-1)^r \binom{n}{2r} \cos^{n-2r}(\theta) \sin^{2r}(\theta).$$

3.

$$\tan(n\theta) = \frac{\sum\limits_{\substack{r=0\\2r+1 \le n}} (-1)^r \binom{n}{2r+1} \tan^{2r+1}(\theta)}{\sum\limits_{\substack{r=0\\2r \le n}} (-1)^r \binom{n}{2r} \tan^{2r}(\theta)}.$$

4.

$$\cos^{n}\theta = \begin{cases} \frac{1}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} \binom{n}{2r} \cos((n-2r)\theta) + \frac{1}{2^{n}} \binom{n}{\frac{n}{2}}, & n为偶数 \\ \frac{1}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} \binom{n}{2r} \cos((n-2r)\theta), & n为奇数 \end{cases}.$$

$$\sin^{n}\theta = \begin{cases} \frac{(-1)^{\frac{n}{2}}}{2^{n-1}} \sum_{\substack{r=0\\2r < n}} (-1)^{r} \binom{n}{2r} \sin\left((n-2r)\theta\right), & n\beta \text{ if } \frac{1}{2} \frac{1}{2^{n-1}} \sum_{\substack{r=0\\2r < n}} (-1)^{r} \binom{n}{2r} \cos\left((n-2r)\theta\right) + \frac{1}{2^{n}} \binom{n}{\frac{n}{2}}, & n\beta \xrightarrow{\tilde{\pi}} \end{cases}.$$

笔记 上述结论 4 表明: $\cos^n x$ 可以表示为 1, $\cos x$, \cdots , $\cos nx$ 的线性组合.

证明 具体证明见Expansions of sin(nx) and cos(nx).

1.6.2 反三角函数

定理 1.14 (常用反三角函数性质)

$$\frac{1}{\text{cresin } x + \arcsin y} = \begin{cases} \arcsin \left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) &, xy < 0 \text{ if } x^2 + y^2 \leqslant 1 \\ \pi - \arcsin \left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) &, x > 0, y > 0, x^2 + y^2 > 1 \\ -\pi - \arcsin \left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) &, x < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) &, x < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) &, x < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) &, x < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) &, x < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) &, x < y < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) &, x < y < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

$$\frac{1}{\pi} - \arccos \left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right) &, x < y < 0 \end{cases}$$

$$\frac{1}{\pi} - \arccos \left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right) &, x < y < 0 \end{cases}$$

$$\frac{1}{\pi} - \arccos \left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right) &, x < y < 0 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right) &, x < y < 0 \end{cases}$$

$$\frac{1}{\pi} - \arctan \frac{x + y}{1 - xy} &, x < 0 , xy > 1 \end{cases}$$

$$\frac{1}{\pi} - \arctan \frac{x + y}{1 - xy} &, x < 0 , xy > 1 \end{cases}$$

$$\frac{1}{\pi} - \arctan \frac{x - y}{1 - xy} &, x < 0, xy < -1 \end{cases}$$

$$\frac{1}{\pi} - \arctan \frac{x - y}{1 + xy} &, x < 0, xy < -1 \end{cases}$$

$$\frac{1}{\pi} - \arctan \frac{x - y}{1 + xy} &, x < 0, xy < -1 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(2x\sqrt{1-x^2}\right) &, |x| \leqslant \frac{\sqrt{2}}{2}}{2}$$

$$\frac{1}{\pi} - \arcsin \left(2x\sqrt{1-x^2}\right) &, |x| \leqslant \frac{\sqrt{2}}{2}$$

$$\frac{1}{\pi} - \arcsin \left(2x\sqrt{1-x^2}\right) &, -1 \leqslant x < 0 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(2x\sqrt{1-x^2}\right) &, -1 \leqslant x < 0 \end{cases}$$

$$\frac{1}{\pi} - \arcsin \left(2x\sqrt{1-x^2}\right) &, -1 \leqslant x < 0 \end{cases}$$

9.
$$2 \arctan x = \begin{cases} \arctan \frac{2x}{1 - x^2}, |x| \le 1 \\ \pi + \arctan \frac{2x}{1 - x^2}, |x| > 1 \\ -\pi + \arctan \frac{2x}{1 - x^2}, x < -1 \end{cases}$$
10. $\cos(n \arccos x) = \frac{\left(x + \sqrt{x^2 - 1}\right)^n + \left(x - \sqrt{x^2 - 1}\right)^n}{2} (n \ge 1)$.

证明

 $\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2}, & x > 0\\ -\frac{\pi}{2}, & x < 0 \end{cases}.$

$$f'(x) = \frac{1}{x^2 + 1} + \frac{1}{(\frac{1}{x})^2 + 1}(-\frac{1}{x^2}) = \frac{1}{x^2 + 1} - \frac{1}{x^2 + 1} = 0$$

故 f(x) 为常函数, 于是就有 $f(x) = f(1) = \frac{\pi}{2}, \forall x > 0$; $f(x) = f(-1) = -\frac{\pi}{2}, \forall x < 0$.

1.6.3 双曲三角函数

(1) $\cosh x = \frac{e^x + e^{-x}}{2} \ge 1$, (2) $\sinh x = \frac{e^x - e^{-x}}{2} \ge x$.

证明 可以分别利用均值不等式和求导进行证明.

命题 1.4

- $1. \cosh^2 x \sinh^2 x = 1.$
- 2. $\cosh(2x) = 2\cosh^2 x 1 = 1 2\sinh^2 x$.
- 3. $\sinh(2x) = 2\sinh x \cosh x$.

证明