## Problem 2

소프트웨어학부 20204898 박소은

### Environment

• **Processor**: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz

• Number of cores: 4

• **RAM**: 16.0GB

• **OS**: Window 11 (64 bit)

# Tables and graphs

#### Execution time

| exec time | chunk<br>size | 1        | 2        | 4        | 6        | 8        | 10       | 12       | 14       | 16       |
|-----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| static    | 1             | 0.444291 | 0.246296 | 0.188144 | 0.177182 | 0.17452  | 0.18497  | 0.187023 | 0.182787 | 0.18554  |
| dynamic   |               | 0.523303 | 0.472047 | 0.46261  | 0.486447 | 0.509843 | 0.504809 | 0.517833 | 0.528168 | 0.532738 |
| guided    |               | 0.439086 | 0.22355  | 0.11241  | 0.078545 | 0.079472 | 0.090731 | 0.097595 | 0.117503 | 0.088084 |
| static    | 5             | 0.435648 | 0.242498 | 0.155559 | 0.128669 | 0.149407 | 0.137178 | 0.141968 | 0.157498 | 0.14254  |
| dynamic   |               | 0.450172 | 0.404378 | 0.335581 | 0.330263 | 0.340171 | 0.338306 | 0.335508 | 0.335836 | 0.352766 |
| guided    |               | 0.446144 | 0.2154   | 0.109825 | 0.080536 | 0.085715 | 0.079979 | 0.087289 | 0.075839 | 0.09547  |
| static    | 10            | 0.443584 | 0.241867 | 0.151993 | 0.14062  | 0.133576 | 0.132264 | 0.134204 | 0.126253 | 0.141576 |
| dynamic   |               | 0.463189 | 0.363377 | 0.310272 | 0.285163 | 0.294232 | 0.295213 | 0.301459 | 0.332782 | 0.302244 |
| guided    |               | 0.467248 | 0.224505 | 0.116302 | 0.089851 | 0.081728 | 0.094305 | 0.090735 | 0.100114 | 0.091296 |
| static    | 100           | 0.449662 | 0.23416  | 0.174131 | 0.123938 | 0.126779 | 0.133901 | 0.137898 | 0.09752  | 0.082855 |
| dynamic   |               | 0.445432 | 0.192383 | 0.106857 | 0.080091 | 0.090317 | 0.097189 | 0.105372 | 0.097958 | 0.084178 |
| guided    |               | 0.450153 | 0.224617 | 0.110209 | 0.080666 | 0.08254  | 0.078047 | 0.075459 | 0.107674 | 0.099522 |

#### Performance

| performance | chunk<br>size | 1        | 2        | 4        | 6        | 8        | 10       | 12       | 14       | 16       |
|-------------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| static      | 1             | 2.250777 | 4.060155 | 5.315078 | 5.643914 | 5.730002 | 5.406282 | 5.346936 | 5.470849 | 5.389673 |
| dynamic     |               | 1.910939 | 2.118433 | 2.161648 | 2.055722 | 1.961388 | 1.980947 | 1.931125 | 1.893337 | 1.877095 |
| guided      |               | 2.277458 | 4.473272 | 8.896006 | 12.73156 | 12.58305 | 11.02159 | 10.24643 | 8.510421 | 11.3528  |
| static      | 5             | 2.295431 | 4.123745 | 6.428429 | 7.77188  | 6.693127 | 7.289799 | 7.043841 | 6.349287 | 7.015575 |
| dynamic     |               | 2.221373 | 2.472934 | 2.979906 | 3.02789  | 2.939698 | 2.955904 | 2.980555 | 2.977644 | 2.83474  |
| guided      |               | 2.241429 | 4.642526 | 9.105395 | 12.41681 | 11.66657 | 12.50328 | 11.4562  | 13.18583 | 10.47449 |
| static      |               | 2.254364 | 4.134504 | 6.57925  | 7.111364 | 7.486375 | 7.560636 | 7.451343 | 7.920604 | 7.063344 |
| dynamic     | 10            | 2.158946 | 2.751963 | 3.222979 | 3.506766 | 3.398679 | 3.387385 | 3.317201 | 3.00497  | 3.308585 |
| guided      |               | 2.140191 | 4.454244 | 8.598304 | 11.12954 | 12.23571 | 10.60389 | 11.02111 | 9.988613 | 10.95338 |
| static      | 100           | 2.223893 | 4.270584 | 5.742803 | 8.06855  | 7.887742 | 7.468204 | 7.251737 | 10.25431 | 12.06928 |
| dynamic     |               | 2.245012 | 5.197964 | 9.358301 | 12.4858  | 11.07211 | 10.28923 | 9.490187 | 10.20846 | 11.87959 |
| guided      |               | 2.221467 | 4.452023 | 9.073669 | 12.3968  | 12.11534 | 12.81279 | 13.25223 | 9.287293 | 10.04803 |

















## Explanation / Analysis

Regardless of the chunk size or scheduling type, it can be seen that when the number of threads is one, similar performance comes out.

Number of threads: 1 Number of threads: 1

Chunck size: 1 Chunck size: 1

In the case of static scheduling, the larger the chunk size, the higher the performance from 5.38 (chunk size: 1) to 12.06 (chunk size: 100). When the chunk size is small, one thread is responsible for only one for statement, so the switching time of the threads was longer than the execution time of the for statement, resulting in lower performance. In addition, compared to other scheduling types, static scheduling has the second highest performance after guided.

Number of threads: 10 Number of threads: 10

Chunck size: 1 Chunck size: 100

In the case of dynamic scheduling, the performance improved as the chunk size increased. When the chunk size was 1, the performance was 1.87, and when the chunk size was increased to 100, it was confirmed that the performance increased to 11.87. This is because if the chunk size is small, there will be more thread switching. In addition, in the case of dynamic, it can be confirmed that the performance is worse than other scheduling types because even runtime overhead occurs.

<< Dynamic >>

Execution Time : 0.502508ms pi=3.141592653589805994585049

Number of threads: 10

Chunck size: 1

<< Dynamic >>

Execution Time : 0.091720ms pi=3.141592653589813100012407

Number of threads: 10

Guided scheduling performed the best among scheduling types. Guided allocates tasks if there is a valid thread like dynamic, but as the program progresses, each thread is assigned a task of a constant reduced chunk size. Since the chunk size decreases as the task is repeatedly assigned, it shows more effective performance.

<< Guided >>

Execution Time : 0.096406ms pi=3.141592653589799777336111

Number of threads: 10

Chunck size: 1

<< Guided >>

Execution Time : 0.094763ms pi=3.141592653589813988190826

Number of threads: 10