

Week 9's Tutorial

# **Graph Convolutional Networks and Social Recommender System**



Speaker: Xin Xia

Course: INFS7450

# 1 Graph Convolutional Networks



#### **CNN**

- Convolutional Neural Networks (CNN)
  - Operates on images captures the spatial structure
  - Consists of learnable set of filters which perform 2D convolution on the image to get activation map



Image



Convolved Feature



#### **CNN**

CNN is very powerful for image classification.



An example architecture of a CNN being used for classification

#### **Drawbacks of CNN**

- However, when it comes to graph data, CNN struggles.
- CNN is designed for data with Euclidean structures. But the structure of graph is arbitrary.



#### **Drawbacks of CNN**

Image as a Graph



- Each pixel has 8 neighbors
- The node attributes are scalar values for grayscale image and 3dimensional for RGB images
- The edge weights are binary (0 or 1), either present or absent

# Why GCN

 Their arises many scenarios where the inherent structure of the data is a graph (e.g. social networks) and one has to learn from it. One can employ GCN for classification/clustering tasks!

#### What is GCN

• Graph Convolutional Network is a type of Neural Network which directly operates on the graph structure. A typical application of GNN is node classification. Essentially, every node in the graph is associated with a label, and we want to predict the label of the nodes without ground-truth.

#### What is GCN

 The architecture is similar to a traditional CNN but it takes graphs as input, also the convolution and pooling operations are different in principle.



#### **CNN vs GCN**



W<sup>(I)</sup>: The filter to learn

 $H^{(l)}$ : The representations of nodes in layer I



**Aggregate information from the neighbors** 

W<sup>(I)</sup>: The filter to learn

 $H^{(l)}$ : The representations of nodes in layer I





$$H^{(l+1)} = \sigma \left( \widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} H^{(l)} W^{(l)} \right) \qquad \widetilde{A} = A + I_N, \ \ \widetilde{D}_{ii} = \sum_j \widetilde{A}_{ij}$$

A common variant of GCN: Graph Attention Networks (GAT)



A common variant of GCN: Graph Attention Networks (GAT)

#### What NN learns

: Convolution weight and attention coefficient

$$H_i^{(l+1)} = \sigma \left( \sum_{j \in N(i)} \alpha_{ij}^{(l)} H_j^{(l)} W^{(l)} \right) \qquad \alpha_{ij} = f(H_i W, H_j W)$$



A common variant of GCN: Graph Attention Networks (GAT)

#### What NN learns

: Convolution weight and attention coefficient

$$H_i^{(l+1)} = \sigma \left( \sum_{j \in N(i)} \alpha_{ij}^{(l)} H_j^{(l)} W^{(l)} \right) \qquad \alpha_{ij} = f(H_i W, H_j W)$$

Velickovic, Petar, et al. – network analysis

$$\alpha_{ij} = softmax(e_{ij}) = \frac{e_{ij}}{exp(\sum_{k \in N(i)} e_{ik})} \qquad e_{ij} = LearkyReLU(a^{T}[H_{i}W, H_{j}W])$$

Seongok Ryu, et al. – molecular applications

$$\alpha_{ij} = \tanh\left((H_i W)^T C(H_j W)\right)$$

## **Application – Node classification**

Good node features → Good node classification results



Figure 1: Left: Schematic depiction of multi-layer Graph Convolutional Network (GCN) for semi-supervised learning with C input channels and F feature maps in the output layer. The graph structure (edges shown as black lines) is shared over layers, labels are denoted by  $Y_i$ . Right: t-SNE (Maaten & Hinton, 2008) visualization of hidden layer activations of a two-layer GCN trained on the Cora dataset (Sen et al., 2008) using 5% of labels. Colors denote document class.

# Social Recommender System



- Recommender systems (RS) play an important role in our lives.
- Recommender systems are algorithms aimed at suggesting relevant items to users.







- Collaborative filtering is the mainstream paradigm of recommender systems.
- The main idea that rules collaborative methods is that past user-item interactions are sufficient to detect similar users and/or similar items and make predictions based on these estimated proximities.



- However, recommender systems are often compromised by the problem of data sparsity.
- For the users with few interactions, it is difficult to generate good recommendations.

|             | Item 1 | Item 2 | <br>Item 99 | Item 100 |
|-------------|--------|--------|-------------|----------|
| Customer 1  | 5      | NA     | <br>NA      | 3        |
| Customer 2  | NA     | 2      | <br>3       | NA       |
|             |        |        | <br>        |          |
| Customer 49 | 2      | 3      | <br>NA      | 4        |
| Customer 50 | 1      | NA     | <br>NA      | NA       |

- To alleviate data sparsity, side information should be incorporated into recommender systems to help infer user preference.
- With the popularity of social platforms, social networks may be the antidote to data sparsity.



#### **Introduction - Social Networks**

#### Homophily

 The tendency for people to have ties with people who are similar to themselves in socially significant ways.

#### Social Influence

 The change in an individual's thoughts, feelings, attitudes, or behaviors that results from interaction with another individual or a group.

#### **Introduction - Social Networks**

 Because of homophily and social influence, we can infer users' preferences according to their friends' behaviors, which is the basis of social recommender systems (SRS).

#### Definition of social recommendation

• is any recommendation with online social relations as an additional input, i.e., augmenting an existing recommendation engine with additional social signals. Social relations can be trust relations, friendships, memberships or following relations.

• How social recommender systems work?



#### **SRS Models**

Two main categories:



#### Model based

Define a model for user-item interactions where users and items representations have to be learned from interactions matrix.

#### Memory based

Define no model for user-item interactions and rely on similarities between users or items in terms of observed interactions.

## **SRS Models – Memory Based**

- Memory based approaches
  - Explore the social network for raters.
  - Aggregate the ratings to compute prediction.
  - Store the social rating network.
  - No learning phase.
  - Slow in prediction.

First generation of recommenders in SN were memory based approaches.

#### SRS Models – Model Based

- Model based approaches
  - Learn a model.
  - Store the model parameters only.
  - Substantial time for learning.
  - Fast in prediction.

#### SRS Models – MF Based

- Early studies are most based on matrix factorization.
  - Observed ratings  $R_{u,i}$
  - Latent factors for users

$$U \in \mathbb{R}^{K \times N}$$

Latent factors for items

$$V \in \mathbb{R}^{K \times M}$$

$$p(R|U, V, \sigma_R^2) = \prod_{u=1}^{N} \prod_{i=1}^{M} \left[ \mathcal{N} \left( R_{u,i} | U_u^T V_i, \sigma_r^2 \right) \right]^{I_{u,i}^R}$$

## SRS Models - MF Based

Graphical model



Learn U, V that minimize

$$\sum_{\text{all observed}(u,i)} (R_{ui} - \widehat{R}_{ui})^2 + \lambda (\|U\|^2 + \|V\|^2)$$

#### SRS Models – SoRec

- Matrix factorization model
  - Factorize the ratings and links together.
  - Social network as a binary matrix.
- One latent factor for items.
- Two latent factors for users:
  - One for the initiator,
  - One for the receiver.



 Same user factor for both contexts (rating actions and social actions).

#### SRS Models – STE

- Social Trust Ensemble (STE)
- Linear combination of
  - Basic matrix factorization and Latent factors of the user and the item determine the observed rating.
  - Social network based approach
     Latent factors of the neighbors and the latent
     factor of the item determine the observed rating.

### **SRS Models – STE**

#### Graphical model



$$\hat{R}_{u,i} = \alpha U_u^T V_i + (1 - \alpha) \sum_{v \in N_u} T_{u,v} U_v^T V_i$$

### **SRS Models – SocialMF**

- Social Regularization Based
- Social influence: behavior of a user u is affected by his direct neighbors  $N_u$ .
- Latent factors of a user depend on those of his neighbors.

$$\widehat{U}_u = \sum_{v \in N_u} T_{u,v} U_v$$

•  $T_{u,v}$  is the normalized trust value.

#### SRS Models - SocialMF



$$\sum_{\text{all observed}(u,i)} (R_{ui} - \widehat{R}_{ui})^2 + \lambda (\|U\|^2 + \|V\|^2)$$

$$+ \beta (\sum_{u} ((U_{u} - \sum_{v} T_{u,v} U_{v}) (U_{u} - \sum_{v} T_{u,v} U_{v})^{T})$$

## SRS Models – Graph Based

#### **SocialGCN**



## SRS Models – Graph Based





Social Recommendation is not as successful as expected.

- Three possible causes:
  - 1. Social networks are as sparse as user-item interactions.
  - 2. Social networks are noisy.
  - 3. Social relationships have multi-facets.

#### Social networks are sparse

Followees & Followers



Users



Social networks are noisy.



Social relations are multi-faceted

### **Tool for RS**

#### **Opensource Project**

RecQ: A Python Framework for Recommender Systems (TensorFlow Based)

https://github.com/Coder-Yu/RecQ



## Thank you!

