Introduction to motion planning

Big picture

Hierarchical architecture

- Graph theory
- Search algorithms (A*, D*, ...)
- Finite state machine
- Variational methods (e.g., PF)
- Graph-search methods (e.g., cell/grid)
- Incremental search methods (e.g., RRT)

Motion planning

- Motion Planning: Find a feasible, collision-free path from given start pose to given destination pose.
- Constraints on path:
 - Starts at current position.
 - Ends at goal position.
 - Robot does not collide with obstacles
 - Respect kinematics constraints: limited turning-radius

Motion primitives

 A discrete set of maneuvers that a vehicle can execute from each configuration

Expanding maneuvers into future time steps from initial configuration

• Score each trajectories or use search algorithms to find the shortest

path to the desired region

Pros/Cons

- Can handle differential constraints
- Model agnostic
- Can be efficient (real-time) and more deterministic
- ROS package: http://wiki.ros.org/sbpl

Completeness and optimality achieved only up to discretization resolution

Localization

 Necessary: because no global position information is provided and because inertial sensors have noise and drift issues

DEAD RECKONING AT SEA

Dead reckoning has error accumulation issues!!

Better localization

- Using external landmarks to reduce/avoid drift: need sensors like lidar, camera,...
 - If the landmarks are at known locations, it is a localization problem.
 - If the landmarks are at unknown locations, it is SLAM (simultaneous localization and mapping).
- Fuse odometry information with external landmark information
 - EKF
 - Particle filter
 - MAP (Maximum a posteriori) estimation
 - ROS package: gmapping (requires a 2D laser scanner and a decent odometry), ORB-SLAM (monocular, stereo, RGB-D), g2o, gtsam