E & M Proficiency Exam, Spring 2002

Useful constants:

• $e = 1.60 \times 10^{-19} \text{ C}$

• $m_e = 0.511 \frac{\text{MeV}}{\text{c}^2}$

• $c = 3.00 \times 10^8 \frac{\text{m}}{\text{s}}$

• $k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$

• $\epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$

- 1. A parallel-plate capacitor is constructed using a dielectric whose constant varies with position. The plates have area A. The bottom plate is at y=0 and the top plate is at $y=y_0$. The dielectric constant is given as a function of y according to $\kappa=1+\frac{3}{y_0}y$.
 - (a) What is the capacitance?
 - (b) Find the ratio σ_b/σ_f between the bound and free area charge densities on the the surfaces of the dielectric.
 - (c) Use Gauss's law to find the induced volume charge density $\rho(y)$ within this dielectric.
 - (d) Integrate the expression for the volume charge density found in (c) over the dielectric and show that the total induced bound charge, including that on the surfaces, is zero.

В •

2. A non-conducting sphere of mass $m=1.3\,\mathrm{g}$ hangs vertically from a massless string of length $l=0.6\,\mathrm{m}$. The sphere carries a charge of $-3.4\times10^{-4}\,\mathrm{C}$. A constant, uniform electric field of strength $E=5.4\,\mathrm{V/m}$ is oriented horizontally from right to left. (See the figure.)

- (a) What is the equilibrium position (θ) of the sphere?
- (b) If the electric field is then removed, write an equation approximately describing the position of the sphere as a function of time [i.e., $\theta(t)$].
- (c) When the sphere is at point A and swinging from left to right, what is the direction of the magnetic field at point B?
- (d) Qualitatively describe the motion of the sphere if, instead of removing the electric field, it is quickly reduced to half its original value.
- 3. An infinitely long cylinder of radius R has a uniform charge density σ deposited on its outer surface. The charges are fixed to the surface and do not move with respect to it. However, the cylinder itself is rotating at an angular speed ω about its axis. Find the magnetic field \vec{B} , as a function of the distance r from the cylinder axis, both inside and outside the cylinder.