

Problem Identification

<u>Planning</u>: invest an addition chair lift, and charge the price above the average market price

Operating cost: increase by \$1,540,000 this season

Goal: identify the competitive ticket prices, and opportunity to improve the profit.

Important factors affect the price

- Top 4 features: Vetical_drop, FastQuads, Total_chairs and Runs
- Big Mountain predict price: \$94.22
- Mean absolute error: \$10.39

Heatmap

Scatter plot

The relationship between ticket price with other features

Model results and analysis:

Ticket price distributions of Big Mountain comparing to the market, and Montana state.

Distributions of top 4 features

Vertical Drop

Total number of runs

Total number of chairs

Fast quads

Recommendations

Two model scenarios can increases the ticket price to \$2 more that can increase the revenue to \$3,464,638:

 Adding a run to increase the vertical drop by 150 feets, and installing an additional chair lift (as planned).

OR

Adding 2 acres of snow making cover

Conclusion

Big Mountain resort can improve in the next coming year, particularly with an extra lift chair. The business can raise the ticket price to a competitive value compared to the market rate and still generate high increase in revenue.