0.1 杂题

例题 **0.1** 设 $Y, x_0, \delta > 0$, 计算

$$\lim_{n\to\infty} \sqrt{n} \int_{x_0-\delta}^{x_0+\delta} e^{-nY(x-x_0)^2} dx.$$

证明

$$\lim_{n \to \infty} \sqrt{n} \int_{x_0 - \delta}^{x_0 + \delta} e^{-nY(x - x_0)^2} dx = \lim_{n \to \infty} \sqrt{n} \int_{-\delta}^{\delta} e^{-nYx^2} dx = \lim_{n \to \infty} \frac{1}{\sqrt{Y}} \int_{-\delta\sqrt{nY}}^{\delta\sqrt{nY}} e^{-x^2} dx$$

$$= \lim_{n \to \infty} \frac{2}{\sqrt{Y}} \int_{0}^{\delta\sqrt{nY}} e^{-x^2} dx = \frac{2}{\sqrt{Y}} \int_{0}^{+\infty} e^{-x^2} dx$$

$$= \sqrt{\frac{\pi}{Y}}.$$

例题 0.2 设 $f \in C^3[0,x], x > 0$, 证明: 存在 $\xi \in (0,x)$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} f''(\xi).$$
 (1)

若还有 $f'''(0) \neq 0$, 计算 $\lim_{x\to 0^+} \frac{\xi}{x}$.

\$

笔记 我们当然可以直接用 Lagrange 插值公式得到

$$f(t) = (f(x) - f(0))t + f(0) + f''(\xi)t(t - x), t \in [0, x].$$

两边同时对t在[0,x]上积分就能得到(1)式.

证明 设 $K \in \mathbb{R}$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} K,$$

则考虑

$$g(y) \triangleq \int_0^y f(t) dt - \frac{y}{2} [f(0) + f(y)] + \frac{y^3}{12} K,$$

于是

$$g'(y) = f(y) - \frac{1}{2}[f(0) + f(y)] - \frac{yf'(y)}{2} + \frac{y^2K}{4} = \frac{f(y) - f(0)}{2} - \frac{yf'(y)}{2} + \frac{y^2K}{4}$$

以及

$$g''(y) = -\frac{yf''(y)}{2} + \frac{yK}{2}.$$

由 g(x) = g(0) = 0 和罗尔中值定理得 $\xi_1 \in (0,x)$ 使得 $g'(\xi_1) = 0$. 注意到 g'(0) = 0. 再次由罗尔中值定理得 $\xi \in (0,x)$ 使得

$$g''(\xi) = -\frac{\xi f''(\xi)}{2} + \frac{\xi K}{2} = 0,$$

即 $K = f''(\xi)$, 这就得到了(1)式. 由(1)式得

$$f''(\xi) = -12 \frac{\int_0^x f(t) dt - \frac{x}{2} [f(0) + f(x)]}{r^3}$$

由 Lagrange 中值定理得

$$f''(\xi) = f''(0) + f'''(\eta)\xi, \eta \in (0, \xi).$$

于是

$$f'''(\eta)\frac{\xi}{x} = \frac{-12\frac{\int_0^x f(t) dt - \frac{x}{2}[f(0) + f(x)]}{x^3} - f''(0)}{x}$$

现在利用 L'Hospital 法则就有

$$\lim_{x \to 0^{+}} f'''(\eta) \frac{\xi}{x} = \lim_{x \to 0^{+}} \frac{-12 \frac{\int_{0}^{x} f(t) dt - \frac{x}{2} [f(0) + f(x)]}{x^{3}} - f''(0)}{x}$$

$$= \lim_{x \to 0^{+}} \frac{-12 \int_{0}^{x} f(t) dt + 6x [f(0) + f(x)] - f''(0)x^{3}}{x^{4}}$$

$$= \lim_{x \to 0^{+}} \frac{-12 f(x) + 6 [f(x) + f(0)] + 6x f'(x) - 3f''(0)x^{2}}{4x^{3}}$$

$$= \lim_{x \to 0^{+}} \frac{6x f''(x) - 6f''(0)x}{12x^{2}}$$

$$= \lim_{x \to 0^{+}} \frac{f'''(x) - f''(0)}{2x} = \frac{1}{2} f'''(0).$$

因为 $0 < \eta < \xi < x$,所以

$$\lim_{x \to 0^+} f'''(\eta) = f'''(0),$$

我们有

$$\lim_{x \to 0^+} \frac{\xi}{x} = \frac{1}{2}.$$

例题 **0.3** 设 $f \in [0, +\infty)$ 上的递增正函数. 若 $g \in C^2[0, +\infty)$ 满足

$$g''(x) + f(x)g(x) = 0.$$
 (2)

证明: 存在 M > 0 使得

$$|g(x)| \le M, \quad |g'(x)| \le M\sqrt{f(x)}, \quad \forall x > 0.$$
 (3)

证明 对 $\forall x > 0$, 有 f 在 [0,x] 上单调递增, 从而由闭区间上单调函数必可积可知 $f \in R[0,x], \forall x > 0$, f 在 $[0,+\infty)$ 上内闭连续. 由(2)知

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + \int_0^x f(y)g'(y)g(y) \, \mathrm{d}y = 0, \forall x > 0$$
 (4)

利用 f 递增和第二积分中值定理和 (4), 我们有

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + f(x) \int_{\xi}^x g'(y)g(y) \, \mathrm{d}y = 0, \xi \in [0, x].$$

即

$$\frac{1}{2}|g'(x)|^2 - \frac{1}{2}|g'(0)|^2 + \frac{[f(x)]^2}{2}\left[g^2(x) - g^2(\xi)\right] = 0.$$

现在一方面

$$|g'(x)|^2 = |g'(0)|^2 - f(x)g^2(x) + f(x)g^2(\xi) \le |g'(0)|^2 + f(x)g^2(\xi).$$
(5)

另外一方面由(2)得

$$\frac{g''(x)g'(x)}{f(x)} + g'(x)g(x) = 0, \forall x > 0.$$

即

$$\int_0^x \frac{g''(y)g'(y)}{f(y)} \, \mathrm{d}y + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \forall x > 0$$

由 f 递增和第二积分中值定理, 我们有

$$\frac{1}{f(0)} \int_0^{\eta} g''(y)g'(y) \, \mathrm{d}y + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \eta \in [0, x]$$

从而

$$\frac{1}{2f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0$$

即

$$|g(x)|^2 = g^2(0) - \frac{1}{f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] \leqslant g^2(0) + \frac{|g'(0)|^2}{f(0)}, \forall x > 0.$$
 (6)

由 $g \in C[0, +\infty)$ 知 g 有界, 即存在 $C_1 > 0$, 使得 $|g(x)| < C_1, \forall x > 0$. 于是由(5)式知

$$|g'(x)|^2 \le |g'(0)|^2 + f(x)g^2(\xi) \le |g'(0)|^2 + C_1 f(x), \forall x > 0.$$
 (7)

又因为 f 是递增正函数, 所以 $f(x) \ge f(0) > 0$, $\forall x > 0$. 从而存在 $C_2 > 0$, 使得

$$|g'(0)|^2 \le C_2 f(0) \le f(x), \forall x > 0.$$

于是取 $M = \max \left\{ C_1 + C_2, g^2(0) + \frac{|g'(0)|^2}{f(0)} \right\}$,则由(7)式和(6)式可得, 对 $\forall x > 0$,有

$$|g(x)|^2 \leqslant M \leqslant M^2$$
,

$$|g'(x)|^2 \le C_2 f(x) + C_1 f(x) \le M f(x) \le M^2 f(x)$$
.

进而

$$|g(x)| \leq M, |g'(x)| \leq M\sqrt{f(x)}, \forall x > 0.$$

这就证明了(3). □

例题 0.4 设 $f \in C^2[0,1]$, 证明

(a)

$$|f'(x)| \le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx. \tag{8}$$

(b)

$$\int_{0}^{1} |f'(x)| dx \le 4 \int_{0}^{1} |f(x)| dx + \int_{0}^{1} |f''(x)| dx.$$
 (9)

(c) 若 $f(0)f(1) \ge 0$, 则

$$\int_{0}^{1} |f'(x)| \mathrm{d}x \le 2 \int_{0}^{1} |f(x)| \mathrm{d}x + \int_{0}^{1} |f''(x)| \mathrm{d}x. \tag{10}$$

Ŷ 笔记 对于 [a,b] 的情况, 考虑 f(a+(b-a)x), x ∈ [0,1], 我们有

$$|f'(x)| \le \frac{4}{(b-a)^2} \int_a^b |f(x)| dx + \int_a^b |f''(x)| dx,$$

以及

$$\int_{a}^{b} |f'(x)| dx \le \frac{4}{b-a} \int_{a}^{b} |f(x)| dx + (b-a) \int_{a}^{b} |f''(x)| dx.$$

当 $f(a)f(b) \ge 0$, 我们有

$$\int_a^b |f'(x)| \mathrm{d}x \leqslant \frac{2}{b-a} \int_a^b |f(x)| \mathrm{d}x + (b-a) \int_a^b |f''(x)| \mathrm{d}x.$$

证明

(a) 注意到对任何 $\theta \in [0,1]$, 我们有

$$|f'(x)| \le |f'(x) - f'(\theta)| + |f'(\theta)| \le \left| \int_{\theta}^{x} f''(y) dy \right| + |f'(\theta)|$$
$$\le \int_{0}^{1} |f''(y)| dy + |f'(\theta)|.$$

于是只需证明存在 $\theta \in [0,1]$ 使得

$$|f'(\theta)| \leqslant 4 \int_0^1 |f(x)| \mathrm{d}x. \tag{11}$$

如果 f' 有零点,则显然存在 $\theta \in [0,1]$, 使得 $f(\theta) = 0$,从而满足 (11) 式. 下设 f' 没有零点. 由 f' 的介值性可

知,f' 要么恒正,要么恒负. 不妨设 f 严格递增. 若 f 没有零点,不妨设 f > 0,则由 Lagrange 中值定理可得

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \min_{[0,1]} |f'| \implies \int_0^1 |f(x)| dx \geqslant \min_{[0,1]} |f'| \geqslant \frac{1}{4} \min_{[0,1]} |f'|,$$

这也给出了 (11) 式. 若存在 $t \in [0,1]$, 使得 f(t) = 0. 由 Lagrange 中值定理可知

$$f(x) = f'(\theta)(x - t).$$

从而

$$\int_0^1 |f(x)| \mathrm{d}x \geqslant \min_{[0,1]} |f'| \cdot \int_0^1 |x - t| \mathrm{d}x \stackrel{\text{deg.??}}{\geqslant} \min_{[0,1]} |f'| \cdot \int_0^1 \left| x - \frac{1}{2} \right| \mathrm{d}x = \frac{1}{4} \min_{[0,1]} |f'|.$$

这也给出了(11)式. 于是我们证明了不等式(8)式.

- (b) 直接对(8)式两边关于 x 在 [0,1] 上积分得(9)式。
- (c) 由 (a) 同理只需证明存在 $\theta \in [0,1]$ 使得

$$|f'(\theta)| \le 2 \int_0^1 |f(x)| \mathrm{d}x. \tag{12}$$

不妨假定 f' 没有零点且 $f(0) \ge 0$, 则当 f 递增, 由 Lagrange 中值定理, 我们有

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \cdot \min|f'| \Longrightarrow \int_0^1 |f(x)| dx \geqslant \min|f' \geqslant \frac{1}{2} \min|f'|.$$

当 f 递减, 由 Lagrange 中值定理, 我们有

$$f(x) = f(1) + (x - 1)f'(\alpha) \ge (1 - x)\min|f'| \implies \int_0^1 |f(x)| dx \ge \frac{1}{2}\min|f'|.$$

于是必有(12)式成立,这就给出了(10)式,

例题 0.5 设函数 f(x) 在 $(a, +\infty)$ 上严格单调下降, 证明: 若 $\lim_{n\to\infty} f(x_n) = \lim_{x\to +\infty} f(x)$, 则 $\lim_{n\to\infty} x_n = +\infty$. 证明 反证, 假设 $\lim_{n\to\infty} x_n = c \in (a, +\infty)$, 则存在子列 $\{x_{n_k}\}$, 满足 $x_{n_k}\to c$. 记

$$\lim_{n \to \infty} f(x_n) = \lim_{x \to +\infty} f(x) = A,$$

 $\lim_{n\to\infty}f\left(x_{n}\right)=\lim_{x\to+\infty}f\left(x\right)=A,$ 则 $f\left(x_{n}\right)$ 的子列极限也收敛到 A, 即 $\lim_{k\to\infty}f\left(x_{n_{k}}\right)=A$. 由 $x_{n_{k}}\to c$ 知, 存在 $K\in\mathbb{N}$, 使得

$$x_{n_k} \in (c - \delta, c + \delta), \forall k > K.$$

其中 $\delta = \min \left\{ \frac{c-a}{2}, \frac{1}{2} \right\}$. 任取 $x_1, x_2 \in (c+\delta, +\infty)$ 且 $x_1 < x_2$, 则由 f 严格递减知

$$f(x_{n_k}) > f(x_1) > f(x_2) > f(x), \forall x > x_2, \forall k > K.$$

左边今k → +∞. 右边今x → +∞ 得

$$A = \lim_{k \to \infty} f\left(x_{n_k}\right) \geqslant f\left(x_1\right) > f\left(x_2\right) \geqslant \lim_{x \to +\infty} f\left(x\right) = A,$$

显然矛盾!

例题 0.6 设 $\{x_n\} \subset (0,1)$ 满足对 $i \neq j$, 有 $x_i \neq x_j$, 讨论函数 $f(x) = \sum_{i=1}^{\infty} \frac{\operatorname{sgn}(x - x_n)}{2^n}$ 连续性.

证明 由

$$\sum_{n=1}^{\infty} \left| \frac{\operatorname{sgn}(x - x_n)}{2^n} \right| \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty,$$

故级数一致收敛. 注意到对 $\forall n \in \mathbb{N}$, 都有 $\operatorname{sgn}(x-x_n)$ 在 $x=x_n$ 处间断, 在 $x \neq x_n$ 处连续.

当 $x \neq x_k, \forall k \in \mathbb{N}$ 时, f(x) 的每一项都连续. 又 f(x) 一致收敛, 故 f 在 $x \neq x_k, \forall k \in \mathbb{N}$ 处都连续. 当 $x = x_k$, $\forall k \in \mathbb{N}$ 时, 有

$$f(x) = \frac{\text{sgn}(x - x_k)}{2^k} + \sum_{n \neq k} \frac{\text{sgn}(x - x_n)}{2^n}$$

4

在 $x = x_k$ 处间断. 故 f(x) 在 $x = x_k, \forall k \in \mathbb{N}$ 处都间断.

例题 0.7 证明 $\sum_{t=1}^{\infty} (-1)^t \frac{t}{t^2 + x}$ 在 $x \in [0, +\infty)$ 一致收敛性. 证明 由 Abel 变换得, 对 $\forall m \in \mathbb{N}, \forall x \geqslant 0$ 成立

$$\begin{split} \sum_{t=m}^{\infty} (-1)^t \frac{t}{t^2 + x} &= \lim_{n \to \infty} \sum_{t=m}^n (-1)^t \frac{t}{t^2 + x} \\ &= \lim_{n \to \infty} \left[\sum_{t=m}^{n-1} \left(\frac{t}{t^2 + x} - \frac{t+1}{(t+1)^2 + x} \right) s_t + \frac{n}{n^2 + x} s_n \right] \\ &= \sum_{t=m}^{\infty} \left(\frac{t}{t^2 + x} - \frac{t+1}{(t+1)^2 + x} \right) s_t \\ &= \sum_{t=m}^{\infty} \frac{t^2 + t}{(x+t^2)(x+t^2 + 2t+1)} s_t - \sum_{t=m}^{\infty} \frac{x}{(x+t^2)(x+t^2 + 2t+1)} s_t, \end{split}$$

这里 $s_t = \sum_{i=1}^{t} (-1)^i = (-1)^t \in \{1, -1\}.$ 一方面

$$\left| \sum_{t=m}^{\infty} \frac{t^2 + t}{(x + t^2)(x + t^2 + 2t + 1)} s_t \right| \leqslant \sum_{t=m}^{\infty} \frac{t^2 + t}{t^2(t^2 + 2t + 1)},$$

另外一方面

$$\left| \sum_{t=m}^{\infty} \frac{x}{(x+t^2)(x+t^2+2t+1)} s_t \right| \leqslant \sum_{t=m}^{\infty} \frac{1}{t^2+t+1}.$$

而由
$$\sum_{t=1}^{\infty} \frac{t^2 + t}{t^2(t^2 + 2t + 1)}$$
 和 $\sum_{t=1}^{\infty} \frac{1}{t^2 + t + 1}$ 都收敛知

$$\lim_{m \to \infty} \sum_{t=m}^{\infty} \frac{1}{t^2 + t + 1} = \lim_{m \to \infty} \sum_{t=m}^{\infty} \frac{t^2 + t}{t^2 (t^2 + 2t + 1)} = 0.$$

于是我们有

这就证明了 $\sum_{t=0}^{\infty} (-1)^t \frac{t}{t^2 + x}$ 在 $x \in [0, +\infty)$ 一致收敛.

设 f(x) 是 [a,b] 上连续实值右可导函数, 记 $D^+f(x)$ 为 f(x) 的右导函数, 如果 f(a) = 0, 且 $D^+f(x) \leq 0$, 则 $f(x) \le 0, x \in [a, b].$

证明 (1) 先假定 $D^+f(x) < 0$, 如果结论不成立, 则存在 $x_1 \in (a,b)$, 使 $f(x_1) > 0$. 记

$$x_0 = \inf\{x \mid f(x) > 0\}.$$

由 x_0 的定义, 我们有序列 $\{x_n\}$, 使 x_n 单调递减趋于 x_0 , 且 $f(x_n) > 0$. 从而由 f(x) 的连续性知

$$f(x_0) = \lim_{n \to \infty} f(x_n) \geqslant 0. \tag{13}$$

根据 x_0 的定义可知, 对 $\forall x < x_0$, 都有 $f(x) < f(x_0)$, 否则与下确界定义矛盾! 于是有序列 $\{x'_n\}$ 单调递增趋于 x_0 , 且 $f(x'_n)$. 于是由 f(x) 的连续性知

$$f(x_0) = \lim_{n \to \infty} f(x_n') \le 0. \tag{14}$$

故由(13)(14)知 $f(x_0) = 0$. 于是

$$D^+ f(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \geqslant 0,$$

这与 $D^+ f(x_0)$ < 0 矛盾, 于是 f(x) ≤ 0,x ∈ [a,b].

(2) 若 $D^+ f(x) \leq 0$, 对任给的 $\varepsilon > 0$ 构造函数

$$f_{\varepsilon}(x) = f(x) - \varepsilon(x - a),$$

对 $f_{\varepsilon}(x)$ 有 $f_{\varepsilon}(a) = 0$ 且

$$D^+ f_{\varepsilon}(x) \leqslant -\varepsilon < 0.$$

从而由 (1) 得 $f_{\varepsilon}(x) \leq 0, x \in [a, b]$. 因此 $f(x) \leq \varepsilon(x - a) \leq \varepsilon(b - a)$, 由 ε 的任意性, 得 $f(x) \leq 0, x \in [a, b]$. 例题 0.8 设 $\varphi(x)$ 是 [a,b) 上连续且右可导的函数, 如果 $D^+\varphi(x)$ 在 [a,b) 上连续, 证明: $\varphi(x)$ 在 [a,b) 上连续可 导, $\varphi'(x) = D^+\varphi(x)$.

证明 设

$$f(x) = \varphi(a) + \int_{a}^{x} D^{+}\varphi(t)dt - \varphi(x), \quad x \in [a, b).$$

则 f(x) 在 [a,b) 上连续且右可导,并且

$$D^+ f(x) = D^+ \varphi(x) - D^+ \varphi(x) = 0.$$

又 f(a) = 0, 由命题 0.1得 $f(x) \leq 0$. 又 -f(x) 满足 -f(a) = 0, $D^+[-f(x)] = 0$, 同理由命题 0.1得 $-f(x) \leq 0$, 故 f(x) = 0. 于是

$$\varphi(x) = \varphi(a) + \int_{a}^{x} D^{+} \varphi(t) dt.$$

由 $D^+\varphi(x)$ 的连续性, 得 $\varphi'(x) = D^+\varphi(x)$.

例题 0.9 证明:

$$\sum_{k=1}^{n-1} \frac{1}{\sin \frac{k\pi}{n}} = \frac{2n}{\pi} \left(\ln 2n + \gamma - \ln \pi \right) + o\left(1 \right).$$

例题 0.10
$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{n} (-1)^k \operatorname{C}_n^k \ln k}{\ln (\ln n)} = 1.$$
 证明 证法一:对任意充分大的 n , 由 Frullani(傅汝兰尼) 积分知

$$\ln k = \int_0^{+\infty} \frac{e^{-x} - e^{kx}}{x} \mathrm{d}x.$$

再结合二项式定理可得

$$A \triangleq \sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \ln k = \sum_{k=1}^{n} \left[(-1)^{k} C_{n}^{k} \left(\int_{0}^{+\infty} \frac{e^{-x} - e^{-kx}}{x} dx \right) \right] = \int_{0}^{+\infty} \frac{\sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx$$

$$= \int_{0}^{+\infty} \frac{\sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx = \int_{0}^{+\infty} \frac{1 - e^{-x} + \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx$$

$$= \int_{0}^{+\infty} \frac{1 - e^{-x} + e^{-x} \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} - \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} e^{-kx}}{x} dx = \int_{0}^{+\infty} \frac{1 - e^{-x} + e^{-x} (1 - 1)^{n} - (1 - e^{-x})^{n}}{x} dx$$

$$= \int_{0}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^{n}}{x} dx.$$

由 Bernoulli 不等式知

$$(1 - e^{-x})^n \ge 1 - ne^{-x}$$
.

取
$$M_n > 1$$
, 满足 $M_n e^{M_n} = n$. 于是

$$0 \leqslant \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx \leqslant \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - ne^{-x})}{M_n} dx = \frac{n}{M_n} \int_{M_n}^{+\infty} e^{-x} dx = \frac{n}{M_n e^{M_n}} = 1.$$

$$A = \int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx = \int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + O(1).$$
 (15)

$$M_n = \ln n + o(\ln n), n \to \infty. \tag{16}$$

于是

$$(1 - e^{-x})^{n-1} = e^{(n-1)\ln(1 - e^{-x})} \leqslant e^{-(n-1)e^{-x}} \leqslant e^{-(n-1)e^{-Mn}} = e^{-\frac{M_n(n-1)}{n}} \to 0, \forall x \in [0, M_n].$$

从而

$$\frac{\int_{0}^{M_{n}} \frac{(1-e^{-x})^{n}}{x} dx}{\int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx} \leqslant \frac{e^{-\frac{M_{n}(n-1)}{n}} \int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx}{\int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx} = e^{-\frac{M_{n}(n-1)}{n}} \to 0, n \to \infty.$$

$$\square \int_{0}^{M_{n}} \frac{(1-e^{-x})^{n}}{x} dx = o\left(\int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx\right), n \to \infty. \quad \square$$

$$\square \int_{0}^{M_{n}} \frac{1-e^{-x}-(1-e^{-x})^{n}}{x} dx = \int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx - \int_{0}^{M_{n}} \frac{(1-e^{-x})^{n}}{x} dx = (1+o(1)) \int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx, n \to \infty. \quad (17)$$

$$\square \stackrel{\cong}{\Rightarrow} \square$$

注意到

$$\lim_{x\to 0}\frac{1-e^{-x}}{x}\xrightarrow{\text{L'Hospital}}\lim_{x\to 0}e^x=1,$$
 故 $\frac{1-e^{-x}}{x}$ 在 $[0,1]$ 上有界,进而 $\int_0^1\frac{1-e^{-x}}{x}\mathrm{d}x=O(1)$. 又注意到
$$\int_1^{M_n}\frac{-e^{-x}}{x}\mathrm{d}x\leqslant -e^{-M_n}\int_1^{M_n}\frac{1}{x}\mathrm{d}x\to 0, n\to\infty,$$

故 $\int_{-r}^{M_n} \frac{-e^{-x}}{r} dx = O(1)$. 于是再结合(16)式可知

$$\int_0^{M_n} \frac{1 - e^{-x}}{x} dx = \int_0^1 \frac{1 - e^{-x}}{x} dx + \int_1^{M_n} \frac{-e^{-x}}{x} dx + \int_1^{M_n} \frac{1}{x} dx$$

$$= O(1) + \ln M_n = \ln(\ln n + o(\ln n)) + O(1)$$

$$= \ln \ln n + o(1) + O(1) = \ln \ln n + O(1), n \to \infty.$$

$$\int_{0}^{M_{n}} \frac{1 - e^{-x} - (1 - e^{-x})^{n}}{x} dx = (1 + o(1)) \int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx = (1 + o(1)) (\ln \ln n + O(1)) = \ln \ln n + o(\ln \ln n), n \to \infty.$$

$$\text{id} \ \text{id} \ (15) \ \vec{\text{T}} \ \vec{\text{$$

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} (-1)^k C_n^k \ln k}{\ln(\ln n)} = \lim_{n \to \infty} \frac{A}{\ln(\ln n)} = \lim_{n \to \infty} \frac{\int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + O(1)}{\ln(\ln n)}$$
$$= \lim_{n \to \infty} \frac{\ln \ln n + o(\ln \ln n) + O(1)}{\ln(\ln n)} = 1.$$

证法二:注意到

$$S \triangleq \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} \ln k = \sum_{k=1}^{n} (-1)^{k} \left[\binom{n-1}{k} + \binom{n-1}{k-1} \right] \ln k$$

$$= \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k-1} \ln k$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=0}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln (k+1)$$

$$\begin{split} &= \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \ln k + \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln(k+1) \\ &= -\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} (\ln(k+1) - \ln k) \\ &= -\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \int_0^1 \frac{1}{k+x} \mathrm{d}x. \end{split}$$

又由二项式定理可知

$$\begin{split} \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+y} &= \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \int_0^1 t^{k+y-1} \mathrm{d}t = \int_0^1 \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} t^{k+y-1} \mathrm{d}t \\ &= \int_0^1 t^{y-1} \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} t^k \mathrm{d}t = \int_0^1 t^{y-1} \left[(1-t)^{n-1} - 1 \right] \mathrm{d}t. \end{split}$$

故

$$S = -\int_0^1 \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+y} dy = \int_0^1 \int_0^1 t^{y-1} \left[1 - (1-t)^{n-1} \right] dt dy$$

$$= \int_0^1 \int_0^1 t^{y-1} \left[1 - (1-t)^{n-1} \right] dy dt = \int_0^1 \frac{t-1}{t \ln t} \left[1 - (1-t)^{n-1} \right] dt$$

$$\xrightarrow{\underline{t=e^{-x}}} \int_0^{+\infty} \frac{(1-e^{-x}) \left[1 - (1-e^{-x})^{n-1} \right]}{x} dx.$$

后续估阶与证法一相同.

证法三:注意到

$$S \triangleq \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} \ln k = \sum_{k=1}^{n} (-1)^{k} \left[\binom{n-1}{k} + \binom{n-1}{k-1} \right] \ln k$$

$$= \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k-1} \ln k$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=0}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln (k+1)$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln (k+1)$$

$$= -\sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \left(\ln (k+1) - \ln k \right)$$

$$= -\sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \int_{0}^{1} \frac{1}{k+x} dx$$

$$= -\int_{0}^{1} \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \frac{1}{k+x} dx$$

$$= \int_{0}^{1} \left(\frac{1}{x} - \sum_{k=0}^{n-1} (-1)^{k} \binom{n-1}{k} \frac{1}{k+x} \right) dx$$

$$\stackrel{\text{deg}(??}{=} \int_{0}^{1} \left(\frac{1}{x} - \frac{(n-1)!}{(x+1)(x+2)\cdots(x+(n-1))} \right) dx$$

$$= \int_{0}^{1} \frac{1}{x} \left(1 - \frac{(n-1)!}{(1+x)(1+\frac{x}{k-1})} \cdots (1+\frac{x}{k-1}) \right) dx.$$

由命题??(4) 知

$$e^{x^2-x} \geqslant \frac{1}{1+x} \geqslant e^{-x}, \forall x > 0.$$

于是

$$e^{x^2-x} \cdot e^{\left(\frac{x}{2}\right)^2 - \frac{x}{2}} \cdots e^{\left(\frac{x}{n-1}\right)^2 - \frac{x}{n-1}} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x} \cdot e^{-\frac{x}{2}} \cdots e^{-\frac{x}{n-1}},$$

即

$$e^{x^2\left(1+\frac{1}{2^2}+\cdots+\frac{1}{(n-1)^2}\right)-x\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)}.$$

注意到

$$x^{2}\left(1+\frac{1}{2^{2}}+\cdots+\frac{1}{(n-1)^{2}}\right) \leqslant x\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}x<2x, \forall x\in[0,1],$$

故

$$e^{-x\left(-2+\sum_{j=1}^{n-1}\frac{1}{j}\right)} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x\sum_{j=1}^{n-1}\frac{1}{j}}.$$

从而由连续函数 e^{-x} 的介值性知, 存在 $C_n \in \left[-2 + \sum_{j=1}^{n-1} \frac{1}{j}, \sum_{j=1}^{n-1} \frac{1}{j}\right]$, 使得

$$\frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)}=e^{-C_nx}.$$

于是由
$$-2 + \sum_{j=1}^{n-1} \frac{1}{j} \leqslant C_n \leqslant \sum_{j=1}^{n-1} \frac{1}{j}$$
 知

$$C_n = \ln n + O(1), n \to \infty$$

因此

$$S = \int_0^1 \frac{1}{x} \left(1 - \frac{1}{(1+x)\left(1 + \frac{x}{2}\right) \cdots \left(1 + \frac{x}{n-1}\right)} \right) dx = \int_0^1 \frac{1}{x} \left(1 - e^{-C_n x} \right) dx$$
$$= \int_0^{C_n} \frac{1 - e^{-t}}{t} dt = \int_0^1 \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1}{t} dt.$$

注意到

$$\lim_{t \to 0} \frac{1 - e^{-t}}{t} \xrightarrow{\text{L'Hospital}} \lim_{t \to 0} e^{t} = 1,$$

故 $\frac{1-e^{-t}}{t}$ 在 [0,1] 上有界, 进而 $\int_0^1 \frac{1-e^{-t}}{t} dt = O(1)$. 又注意到

$$\int_{1}^{C_n} \frac{1 - e^{-t}}{t} dt \leqslant 1 - e^{-C_n} = 1 - e^{-\ln n + O(1)} \to 1, n \to \infty,$$

故 $\int_{1}^{C_n} \frac{1 - e^{-t}}{t} dt = O(1).$ 从而

$$S = \int_0^1 \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1}{t} dt = \ln C_n + O(1)$$
$$= \ln (\ln n + O(1)) + O(1) = \ln \ln n + O(1), n \to \infty.$$

因此

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{n}\left(-1\right)^{k}\binom{n}{k}\ln k}{\ln\ln n}=\lim_{n\to\infty}\frac{S}{\ln\ln n}=\lim_{n\to\infty}\frac{\ln\ln n+O(1)}{\ln\ln n}=1.$$

例题 0.11 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} x f(x) dx = 0.$$

证明:f(x) 在 (a,b) 上至少 2 个零点.

证明 设 $F_1(x) = \int_a^x f(t) dt$, 则 $F_1(a) = F_1(b) = 0$. 再设 $F_2(x) = \int_a^x F_1(t) dt = \int_a^x \left[\int_a^t f(s) ds \right] dt$, 则 $F_2(a) = 0$, $F_2(x) = 0$ $F_1(x), F_2''(x) = F_1'(x) = f(x)$. 由条件可知

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F_{1}'(x) dx = \int_{a}^{b} x dF_{1}(x) = x F_{1}(x) \Big|_{a}^{b} - \int_{a}^{b} F_{1}(x) dx = -F_{2}(b).$$

于是由 Rolle 中值定理可知, 存在 $\xi \in (a,b)$, 使得 $F_2'(\xi) = F_1(\xi) = 0$. 从而再由 Rolle 中值定理可知, 存在 $\eta_1 \in$ $(a,\xi),\eta_2 \in (\xi,b), \ \notin \ F_1'(\eta_1) = F_1'(\eta_2) = 0. \ \ \mathbb{P} \ f(\eta_1) = f(\eta_2) = 0.$

例题 0.12 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, 2, \dots, n.$$

证明: f(x) 在 (a,b) 上至少 n+1 个零点

笔记 利用分部积分转换导数的技巧. 证明 令 $F(x) = \int_a^x \int_a^{x_n} \cdots \int_a^{x_3} \left[\int_a^{x_2} f(x_1) \mathrm{d} x_1 \right] \mathrm{d} x_2 \cdots \mathrm{d} x_n$. 则 $F(a) = F'(a) = \cdots = F^{(n)}(a) = 0$, $F^{(n+1)}(x) = f(x)$. 由已知条件,再反复分部积分,可得当 $1 \leqslant k \leqslant n$ 且 $k \in \mathbb{N}$ 时,有

$$0 = \int_{a}^{b} f(x) dx = \int_{a}^{b} F^{(n+1)}(x) dx = F^{(n)}(x) \Big|_{a}^{b} = F^{(n)}(b),$$

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F^{(n+1)}(x) dx = \int_{a}^{b} x dF^{(n)}(x) = x F^{(n)}(x) \Big|_{a}^{b} - \int_{a}^{b} F^{(n)}(x) dx = -F^{(n-1)}(b),$$

$$0 = \int_{a}^{b} x^{n} f(x) dx = \int_{a}^{b} x^{n} F^{(n+1)}(x) dx = \int_{a}^{b} x^{n} dF^{(n)}(x) = x^{n} F^{(n)}(x) \Big|_{a}^{b} - n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx$$
$$= -n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx = \dots = (-1)^{n} n! \int_{a}^{b} F'(x) dx = (-1)^{n} n! F(b).$$

从而 $F(b) = F'(b) = \cdots = F^{(n)}(b) = 0$. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (a,b)$, 使得 $F'(\xi_1^1) = 0$. 再利 用 Rolle 中值定理可知存在 $\xi_1^2, \xi_2^2 \in (a,b)$, 使得 $F''(\xi_1^2) = F''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^{n+1}, \xi_2^{n+1}, \cdots, \xi_{n+1}^{n+1} \in (a,b), \ \notin \ \vec{F}^{(n+1)}(\xi_1^{n+1}) = F^{(n+1)}(\xi_2^{n+1}) = \cdots = F^{(n+1)}(\xi_{n+1}^{n+1}) = 0. \ \text{IV} \ f(\xi_1^{n+1}) = f(\xi_2^{n+1}) = \cdots = f(\xi_n^{n+1}) = f(\xi$ $f(\xi_{n+1}^{n+1}) = 0.$

例题 **0.13** 已知 $f(x) \in D^2[0,1]$, 且

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{6}, \int_0^1 x f(x) \, \mathrm{d}x = 0, \int_0^1 x^2 f(x) \, \mathrm{d}x = \frac{1}{60}.$$

证明: 存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 16$.

笔记 构造 $g(x) = f(x) - (8x^2 - 9x + 2)$ 的原因: 受到上一题的启发, 我们希望找到一个 g(x) = f(x) - p(x), 使得

$$\int_0^1 x^k g(x) dx = \int_0^1 x^k [f(x) - p(x)] dx = 0, \quad k = 0, 1, 2.$$

成立.即

$$\int_0^1 x^k f(x) dx = \int_0^1 x^k p(x) dx, \quad k = 0, 1, 2.$$

待定 $p(x) = ax^2 + bx + c$, 则代入上述公式, 再结合已知条件可得

$$\frac{1}{6} = \int_0^1 p(x) dx = \int_0^1 \left(ax^2 + bx + c \right) dx = \frac{a}{3} + \frac{b}{2} + c,$$

$$0 = \int_0^1 x p(x) dx = \int_0^1 \left(ax^3 + bx^2 + cx \right) dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2},$$

$$\frac{1}{60} = \int_0^1 x^2 p(x) dx = \int_0^1 \left(ax^4 + bx^3 + cx^2 \right) dx = \frac{a}{5} + \frac{b}{4} + \frac{c}{3}.$$

解得:a = 8, b = -9, c = 2. 于是就得到 $g(x) = f(x) - (8x^2 - 9x + 2)$.

$$\int_0^1 x^k g(x) dx = 0, \quad k = 0, 1, 2.$$

再令
$$G(x) = \int_0^x \left[\int_0^t \left(\int_0^s g(y) dy \right) ds \right] dt$$
,则 $G(0) = G'(0) = G''(0) = 0$, $G'''(x) = g(x)$. 利用分部积分可得
$$0 = \int_0^1 g(x) dx = \int_0^1 G'''(x) dx = G''(1),$$

$$0 = \int_0^1 xg(x) dx = \int_0^1 xG'''(x) dx = \int_0^1 xdG''(x) = xG''(x) \Big|_0^1 - \int_0^1 G''(x) dx = -G'(1),$$

$$0 = \int_0^1 x^2g(x) dx = \int_0^1 x^2G'''(x) dx = \int_0^1 x^2dG''(x) = x^2G''(x) \Big|_0^1 - 2\int_0^1 xG''(x) dx$$

$$= -2\int_0^1 xdG'(x) = 2\int_0^1 G'(x) dx - 2xG'(x) \Big|_0^1 = 2G(1).$$

从而 G(1) = G'(1) = G''(1) = 0. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (0,1)$, 使得 $G'(\xi_1^1) = 0$. 再利用 Rolle 中值定理可知, 存在 $\xi_1^2, \xi_2^2 \in (0,1)$, 使得 $G''(\xi_1^2) = G''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^3, \xi_2^3, \xi_3^3 \in (0,1)$, 使得 $G'''(\xi_1^3) = G'''(\xi_2^3) = G'''(\xi_3^3) = 0$. 即 $g(\xi_1^3) = g(\xi_2^3) = g(\xi_3^3) = 0$. 再反复利用 Rolle 中值定理可得, 存在 $\xi \in (0,1)$, 使得 $g''(\xi) = 0$. 即 $f''(\xi) = 16$.

例题 0.14 设

$$x_n = \int_0^1 \ln(1 + x + \dots + x^n) \cdot \ln \frac{1}{1 - x} dx, n = 1, 2, \dots$$

- (1) 证明: $\lim_{n \to \infty} x_n = 2$.
- (2) 计算: $\lim_{n\to\infty} \left[\frac{n}{\ln n} (2 x_n) \right]$.

证明

(1) 注意到

$$x_n = \int_0^1 \ln \frac{1 - x^{n+1}}{1 - x} \cdot \ln \frac{1}{1 - x} dx,$$

于是

$$\int_0^1 \left| \ln \frac{1 - x^{n+1}}{1 - x} \cdot \ln \frac{1}{1 - x} \right| dx \leqslant \int_0^1 \ln^2 \frac{1}{1 - x} dx = \int_0^1 \ln^2 x dx$$

$$\frac{\cancel{\triangle} \text{ in } \cancel{R} \cancel{\triangle}}{1 - x} - 2 \int_0^1 \ln x dx = \frac{\cancel{\triangle} \text{ in } \cancel{R} \cancel{\triangle}}{1 - x} = 2.$$

从而

$$\lim_{n \to \infty} x_n = \int_0^1 \lim_{n \to \infty} \ln \frac{1 - x^{n+1}}{1 - x} \cdot \ln \frac{1}{1 - x} dx = \int_0^1 \ln^2 \frac{1}{1 - x} dx$$
$$= \int_0^1 \ln^2 x dx = 2.$$

(2) 注意到

$$x_n = \int_0^1 \ln(1 - x^{n+1}) \cdot \ln\frac{1}{1 - x} dx + \int_0^1 \ln^2\frac{1}{1 - x} dx$$
$$= \int_0^1 \ln(1 - x^{n+1}) \cdot \ln\frac{1}{1 - x} dx + 2,$$

从而

$$2 - x_n = -\int_0^1 \ln(1 - x^{n+1}) \cdot \ln\frac{1}{1 - x} dx$$

$$\frac{x=e^{-\frac{y}{n+1}}}{n+1} \frac{1}{\int_{0}^{+\infty} \ln(1-e^{-y}) \cdot \ln\left(1-e^{-\frac{y}{n+1}}\right) \cdot e^{-\frac{y}{n+1}} dy}$$

$$= \frac{1}{n+1} \int_{0}^{+\infty} \ln(1-e^{-y}) \cdot \ln\left(\frac{1-e^{-\frac{y}{n+1}}}{\frac{y}{n+1}}\right) \cdot e^{-\frac{y}{n+1}} dy$$

$$+ \frac{1}{n+1} \int_{0}^{+\infty} \ln(1-e^{-y}) \cdot \ln y \cdot e^{-\frac{y}{n+1}} dy$$

$$- \frac{\ln(n+1)}{n+1} \int_{0}^{+\infty} \ln(1-e^{-y}) e^{-\frac{y}{n+1}} dy.$$

$$\frac{1}{n+1} \frac{1-e^{x}}{n+1} = \lim_{x \to +\infty} e^{-x} \ln \frac{1-e^{x}}{x} = 0, \text{ in } \frac{1-e^{x}}{x} = 0, \text{ in } \frac{1-e^{x}}{x} = 0, \text{ in } \frac{1-e^{x}}{x} = 0.$$

$$\left| e^{-x} \ln \frac{1-e^{x}}{x} \right| \leq M, \forall y \in (0, +\infty).$$
(18)

又注意到

$$\left|\ln\left(1 - e^{-y}\right) \cdot \ln y \cdot e^{-\frac{y}{n+1}}\right| \leqslant \ln\left(1 - e^{-y}\right) \cdot \ln y, \forall y \in (0, +\infty).$$

因此

$$\lim_{n \to \infty} \int_0^{+\infty} \ln(1 - e^{-y}) \cdot \ln\left(\frac{1 - e^{-\frac{y}{n+1}}}{\frac{y}{n+1}}\right) \cdot e^{-\frac{y}{n+1}} dy = \int_0^{+\infty} \lim_{n \to \infty} \ln(1 - e^{-y}) \cdot \ln\left(\frac{1 - e^{-\frac{y}{n+1}}}{\frac{y}{n+1}}\right) \cdot e^{-\frac{y}{n+1}} dy$$

$$= \int_0^{+\infty} \ln(1 - e^{-y}) \cdot 0 \cdot 1 dy = 0.$$

$$\lim_{n \to \infty} \int_0^{+\infty} \ln (1 - e^{-y}) \cdot \ln y \cdot e^{-\frac{y}{n+1}} dy = \int_0^{+\infty} \lim_{n \to \infty} \ln (1 - e^{-y}) \cdot \ln y \cdot e^{-\frac{y}{n+1}} dy$$

$$= \int_0^{+\infty} \ln (1 - e^{-y}) \cdot \ln y dy \xrightarrow{\underline{x} = e^{-y}} - \int_0^1 \ln (1 - x) dx$$

$$= \int_0^1 \ln x dx = 1.$$

$$\lim_{n \to \infty} \int_0^{+\infty} \ln(1 - e^{-y}) e^{-\frac{y}{n+1}} dy = \int_0^{+\infty} \lim_{n \to \infty} \ln(1 - e^{-y}) e^{-\frac{y}{n+1}} dy$$

$$= \int_0^{+\infty} \ln(1 - e^{-y}) dy = -\int_0^{+\infty} \sum_{n=1}^{\infty} \frac{e^{-ny}}{n} dy$$

$$= -\sum_{n=1}^{\infty} \int_0^{+\infty} \frac{e^{-ny}}{n} dy = -\sum_{n=1}^{\infty} \frac{1}{n^2} = -\frac{\pi^2}{6}.$$

故再由(18)式可得

$$\begin{split} \lim_{n \to \infty} \frac{n}{\ln n} \left(2 - x_n \right) &= \lim_{n \to \infty} \frac{n}{(n+1) \ln n} \int_0^{+\infty} \ln \left(1 - e^{-y} \right) \cdot \ln \left(\frac{1 - e^{-\frac{y}{n+1}}}{\frac{y}{n+1}} \right) \cdot e^{-\frac{y}{n+1}} \mathrm{d}y \\ &+ \lim_{n \to \infty} \frac{n}{(n+1) \ln n} \int_0^{+\infty} \ln \left(1 - e^{-y} \right) \cdot \ln y \cdot e^{-\frac{y}{n+1}} \mathrm{d}y \\ &- \lim_{n \to \infty} \frac{n \ln (n+1)}{(n+1) \ln n} \int_0^{+\infty} \ln \left(1 - e^{-y} \right) e^{-\frac{y}{n+1}} \mathrm{d}y \\ &= \lim_{n \to \infty} \int_0^{+\infty} \ln \left(1 - e^{-y} \right) e^{-\frac{y}{n+1}} \mathrm{d}y \\ &= \frac{\pi^2}{6}. \end{split}$$

例题 0.15 设 f 在 $[0,+\infty)$ 的任意闭区间上 Riemann 可积. 对于 $x \ge 0$,定义 $F(x) = \int_0^x t^\alpha f(t+x) dt$.

(1) 若 $\alpha \in (-1,0)$ 且 $\lim_{x \to +\infty} f(x) = A$, 证明:F 在 $[0,+\infty)$ 上一致连续.

- (2) 若 $\alpha \in (0,1)$, f 以 T > 0 为周期, $\int_0^3 f(t) dt = 2022$. 证明: F 在 $[0,+\infty)$ 上非一致连续.
- 章 笔记 本题 (1) 中的 $\lim_{x\to +\infty} f(x) = A$ 可以削弱为 $\exists M, X>0$, 使得 $|f(x)| \leq M, x \in [X, +\infty)$. 证明
 - (1) 由于 f 在 $[0,+\infty)$ 的任意闭区间上 Riemann 可积且 $\lim_{x\to+\infty} f(x) = A$, 所以 $\exists M>0$, 使得 $|f(x)| \leq M, \forall x \in [0,+\infty)$.

対
$$\forall \varepsilon > 0$$
, 取 $\delta = \left[\frac{(\alpha+1)\varepsilon}{3M}\right]^{\frac{1}{\alpha+1}}$, 则当 $0 \leqslant x < \delta$ 时, 有
$$x^{\alpha+1} - y^{\alpha+1} < \delta^{1+\alpha}$$

当 x ≥ δ 时,有

$$x^{\alpha+1} - y^{\alpha+1} = \frac{x - y}{\left[\left(x^{\alpha+1} \right)^{\frac{1}{\alpha+1} - 1} + \left(x^{\alpha+1} \right)^{\frac{1}{\alpha+1} - 2} y^{\alpha+1} + \dots + \left(y^{\alpha+1} \right)^{\frac{1}{\alpha+1} - 1} \right]}$$

$$< \frac{\delta}{\left(x^{\alpha+1} \right)^{\frac{1}{\alpha+1} - 1}} < \frac{\delta}{\left(\delta^{\alpha+1} \right)^{\frac{1}{\alpha+1} - 1}} = \delta^{1+\alpha}.$$

因此对 $\forall x, y \in [0, +\infty)$ 且 $0 < x - y < \delta$, 都有

$$x^{\alpha+1} - y^{\alpha+1} < \delta^{1+\alpha}.$$

从而对 $\forall x, y \in [0, +\infty)$ 且 $0 < x - y < \delta$, 都有

$$|F(x) - F(y)| = \left| \int_{0}^{x} t^{\alpha} f(t+y) dt - \int_{0}^{y} t^{\alpha} f(t+x) dt \right| = \left| \int_{x}^{2x} (t-x)^{\alpha} f(t) dt - \int_{y}^{2y} (t-y)^{\alpha} f(t) dt \right|$$

$$= \left| \int_{2y}^{2x} (t-x)^{\alpha} f(t) dt - \int_{y}^{x} (t-y)^{\alpha} f(t) dt + \int_{x}^{2y} \left[(t-x)^{\alpha} - (t-y)^{\alpha} \right] f(t) dt \right|$$

$$\leq \int_{2y}^{2x} (t-x)^{\alpha} |f(t)| dt + \int_{y}^{x} (t-y)^{\alpha} |f(t)| dt + \int_{x}^{2y} \left[(t-x)^{\alpha} - (t-y)^{\alpha} \right] |f(t)| dt$$

$$\leq M \left[\int_{2y}^{2x} (t-x)^{\alpha} dt + \int_{y}^{x} (t-y)^{\alpha} dt + \int_{x}^{2y} \left[(t-x)^{\alpha} - (t-y)^{\alpha} \right] dt \right]$$

$$= \frac{M}{\alpha+1} \left[x^{\alpha+1} - (2y-x)^{\alpha+1} + (x-y)^{\alpha+1} + (2y-x)^{\alpha+1} - y^{\alpha+1} + (x-y)^{\alpha+1} \right]$$

$$= \frac{M}{\alpha+1} \left(x^{\alpha+1} - y^{\alpha+1} + 2(x-y)^{\alpha+1} \right)$$

$$< \frac{3M}{\alpha+1} \delta^{1+\alpha} < \varepsilon.$$

故 F 在 [0,+∞) 上一致连续.

(2) 假设 F(x) 在 $[0, +\infty)$ 上一致连续. 那么存在 a, b > 0, 使得 F(x) < a|x| + b. 从而 $\left| \frac{F(x)}{x^{\alpha+1}} \right| < \frac{a|x| + b}{|x|^{\alpha+1}}$, 进而 $\lim_{x \to +\infty} \frac{F(x)}{x^{\alpha+1}} = 0$. 于是

$$\lim_{x \to +\infty} \frac{F(x)}{x^{\alpha+1}} = \frac{\int_0^x t^\alpha f(t+x) \, \mathrm{d}t}{x^{\alpha+1}} \xrightarrow{\underline{\underline{\#}}\overline{L}} \frac{\int_x^{2x} (t-x)^\alpha f(t) \, \mathrm{d}t}{x^{\alpha+1}} \xrightarrow{\underline{\underline{\#}}\overline{L}} \frac{\int_1^2 x^{\alpha+1} (t-1)^\alpha f(tx) \, \mathrm{d}t}{x^{\alpha+1}}$$

$$\xrightarrow{\underline{\mathrm{Riemann}} \exists |\underline{\underline{\#}}|} \int_1^2 (t-1)^\alpha f(tx) \, \mathrm{d}t = \frac{1}{T} \int_0^T f(x) \, \mathrm{d}t \int_1^2 (t-1)^\alpha \, \mathrm{d}t = 0$$

$$\underline{\underline{\#}} \Leftrightarrow \int_1^2 (t-1)^\alpha \, \mathrm{d}t > 0, \ \underline{\underline{\#}} \int_0^T f(x) \, \mathrm{d}t = 0.$$

现在有

$$F(x) = \int_0^x t^{\alpha} f(t+x) dt = \int_0^x t^{\alpha} d \left[\int_0^{x+t} f(y) dy \right]$$

$$\xrightarrow{\text{$\frac{\alpha}{2}$}} x^{\alpha} \int_0^{2x} f(y) dy - \alpha \int_0^x t^{\alpha-1} \left[\int_0^{x+t} f(y) dy \right] dt$$

$$= x^{\alpha} \int_0^{2x} f(y) dy - \alpha \int_0^x t^{\alpha-1} F(x+t) dt$$

设 $G(x) = \int_0^x f(x) dt$, 则由 $f \in [0, +\infty)$ 的任意闭区间上 Riemann 可积知, $G \in C[0, +\infty)$. 又由 $\int_0^T f(x) dt = 0$,

$$G(x+T) - G(x) = \int_0^x f(x+T)dt - \int_0^x f(x)dt = \int_x^{x+T} f(x)dt = \int_0^T f(x)dt = 0$$

因为连续的周期函数必有界, 所以 G(x) 有界. 又 $\alpha-1\in (-1,0)$, 故由 (1) 可得, $-\alpha\int_0^x t^{\alpha-1}F(x+t)\mathrm{d}t$ 在 $[0,+\infty)$ 上一致连续.

下面证明 $x^{\alpha} \int_{-\infty}^{2x} f(y) dy$ 不一致连续.

由于 G(2x) 在 $\left[0,\frac{T}{2}\right]$ 上连续, 所以由连续函数最大、最小值定理知

记 $M = \max_{x \in [0, \frac{T}{2}]} G(2x)$, 则存在 $x_2 \in \left[0, \frac{T}{2}\right]$, 使得 $M = G(2x_2) \geqslant G(2x)$, $x \in \left[0, \frac{T}{2}\right]$.

又因为 $G(3) = \int_0^3 f(t) dt = 2022$, 且 G(2x) 以 $\frac{T}{2}$ 为周期, 所以存在 $x_1 \in \left[0, \frac{T}{2}\right]$, 使得 $G(2x_1) = G(3) > 0$.

因此, $M = G(2x_2) \geqslant G(2x_1) = G(3) = \int_0^3 f(t) dt > 0.$

构造数集 $E = \left\{ x' \in \left[0, \frac{T}{2}\right] \mid G\left(2x'\right) = M \right\}$, 由 $x_2 \in E$ 知, $E \neq \emptyset$. 又因为 E 有界, 所以由确界存在定理知, E

必有上确界, 取 $x_0 = \sup E$. 假设 $x_0 \notin E$, 取 $\varepsilon_0 = \frac{1}{2} |G(2x_0) - M|$, 则 $\varepsilon_0 > 0$, 否则 $x_0 \in E$ 矛盾. 从而 $\forall \delta' > 0$, $\exists x_{\delta'} \in E$, 使得 $x_0 - \delta' < x_{\delta'} < x_0$, 都有 $\left| G(2x_0) - G\left(2x'_{\delta'}\right) \right| \geq \varepsilon_0$.

这与 G(2x) 在闭区间 $\left[0,\frac{T}{2}\right]$ 上连续, 进而一致连续矛盾. 故 $x_0 \in E$.

任取 $\delta \in \left(0, \frac{1}{2}\left(\frac{T}{2} - x_0\right)\right)$, 则 $G\left(2x_0 + \delta\right) < M = G\left(2x_0\right)$, 否则与 $x_0 = \sup E$ 矛盾.

进而
$$\left| \int_{2x_0}^{2x_0+\delta} f(y) \, dy \right| = |G(2x_0+\delta) - G(2x_0)| > 0.$$

从而当 $n > \left(\frac{2}{s}\right)^{\frac{1}{\alpha}}$ 时,由积分中值定理,得

存在 $\xi_n \in \left(2x_0, 2x_0 + \frac{2}{x_0^{\frac{\alpha}{2}}}\right)$, 使得

$$\left| \int_{2x_0}^{2x_0 + \frac{2}{n^{\frac{\alpha}{2}}}} f(y) \, dy \right| = \frac{2}{n^{\frac{\alpha}{2}}} |f(\xi_n)| > 0 \tag{19}$$

又因为 f 在 $[0,+\infty)$ 的任意闭区间上 Riemann 可积, 所以 f 在 $\left(2x_0,2x_0+\frac{2}{n^{\frac{\alpha}{2}}}\right)$ 上有界. 于是存在 K, L > 0, 使得

$$K \leqslant |f(\xi_n)| \leqslant L \tag{20}$$

取数列 $\{x_n\}$ 、 $\{y_n\}$, 其中 $x_n = x_0 + n\frac{T}{2}$, $y_n = x_0 + n\frac{T}{2} + \frac{2}{n^{\frac{\alpha}{2}}}$, $n \in \mathbb{N}_+$. 并且 $\lim_{n \to +\infty} (x_n - y_n) = \lim_{n \to +\infty} \left(\frac{2}{n^{\frac{\alpha}{2}}}\right) = 0$.

由拉格朗日中值定理, 得对
$$\forall n \in \mathbb{N}_+$$
, 存在 $\xi_n \in \left(x_0 + n\frac{T}{2}, x_0 + n\frac{T}{2} + \frac{2}{n^{\frac{\alpha}{2}}}\right)$, 使得 $\left(x_0 + n\frac{T}{2}\right)^{\alpha} - \left(x_0 + n\frac{T}{2} + \frac{2}{n^{\frac{\alpha}{2}}}\right)^{\alpha} = \frac{2\alpha}{n^{\frac{\alpha}{2}}} \xi_n^{\alpha - 1}$

从而

$$\begin{split} \frac{2\alpha}{n^{\frac{\alpha}{2}}} \left(x_0 + n \frac{T}{2} \right)^{\alpha - 1} & \leqslant \frac{2\alpha}{n^{\frac{\alpha}{2}}} \varepsilon_n^{-\alpha - 1} \leqslant \frac{2\alpha}{n^{\frac{\alpha}{2}}} \left(x_0 + n \frac{T}{2} + \frac{2}{n^{\frac{\alpha}{2}}} \right)^{\alpha - 1} \\ & \Leftrightarrow n \to +\infty, \, \hat{\pi} \lim_{n \to +\infty} \left[\left(x_0 + n \frac{T}{2} \right)^{\alpha} - \left(x_0 + n \frac{T}{2} + \frac{2}{n^{\frac{\alpha}{2}}} \right)^{\alpha} \right] = \lim_{n \to +\infty} \frac{2\alpha}{n^{\frac{\alpha}{2}}} \varepsilon_n^{-\alpha - 1} = 0. \\ & + \mathcal{F} \underbrace{\hat{\pi} \, \hat{\pi} \, N > 0, \, \hat{\varphi} \, \forall N > N, \, \hat{\pi}} \\ & \left(x_0 + n \frac{T}{2} + \frac{2}{n^{\frac{\alpha}{2}}} \right)^{\alpha} < \frac{\varepsilon}{n^{\frac{\alpha}{2}}} \varepsilon_n^{-\alpha - 1} = 0. \\ & \left(x_0 + n \frac{T}{2} \right)^{\alpha} - \left(x_0 + n \frac{T}{2} + \frac{2}{n^{\frac{\alpha}{2}}} \right)^{\alpha} < \frac{\varepsilon}{\int_0^{2x_0} f(y) \, dy} \end{split}$$
 (21)
$$\underbrace{\hat{\mathcal{R}} \, \hat{\mathcal{L}} \, \hat{\mathcal{L}$$

例题 0.16 计算

 $\lim_{t \to 1^{-}} (1 - t) \left(\frac{t}{1 + t} + \frac{t^{2}}{1 + t^{2}} + \dots + \frac{t^{n}}{1 + t^{n}} + \dots \right)$

这与 F(x) 在 $[0,+\infty)$ 上一致连续矛盾. 因此,F在 $[0,+\infty)$ 上非一致连续.

解 对 $\forall t \in (0,1)$, 一方面, 我们有

$$(1-t)\sum_{k=1}^{\infty}\frac{t^k}{1+t^k}=\sum_{k=1}^{\infty}\int_{t^{k+1}}^{t^k}\frac{1}{1+t^k}\mathrm{d}x\leqslant\sum_{k=1}^{\infty}\int_{t^{k+1}}^{t^k}\frac{1}{1+x}\mathrm{d}x=\int_0^t\frac{1}{1+x}\mathrm{d}x=\ln{(1+t)}$$

另一方面, 我们有

$$(1-t)\sum_{k=1}^{\infty} \frac{t^k}{1+t^k} = \sum_{k=1}^{\infty} \int_{t^k}^{t^{k-1}} \frac{t}{1+t^k} dx \geqslant \sum_{k=1}^{\infty} \int_{t^k}^{t^{k-1}} \frac{t}{1+x} dx = \int_0^1 \frac{t}{1+x} dx = t \ln 2.$$

15

故

$$\ln 2 = \lim_{t \to 1^{-}} \left[\ln (1+t) \right] \leqslant \lim_{t \to 1^{-}} (1-t) \sum_{k=1}^{\infty} \frac{t^{k}}{1+t^{k}} \leqslant \lim_{t \to 1^{-}} (t \ln 2) = \ln 2.$$

例题 **0.17** 计算极限 $\lim_{n\to\infty}\int_0^n \frac{\mathrm{d}x}{1+n^2\cos^2x}$.

解 对 $\forall n \in \mathbb{N}$, 存在 $t_n \in \mathbb{N}$, 使得 $(t_n + 1)\pi < n < (t_n + 2)\pi$. 从而 $n - 7 < t_n\pi < n$, $\forall n \in \mathbb{N}$. 于是 $\lim_{n \to \infty} \frac{t_n}{n} = \frac{1}{\pi}$. 现在 我们有

$$\int_{0}^{n} \frac{dx}{1 + n^{2} \cos^{2} x} = \sum_{k=0}^{t_{n}} \int_{k\pi}^{(k+1)\pi} \frac{dx}{1 + n^{2} \cos^{2} x} + \int_{(t_{n}+1)\pi}^{n} \frac{dx}{1 + n^{2} \cos^{2} x}$$

$$= \sum_{k=0}^{t_{n}} \int_{0}^{\pi} \frac{dx}{1 + n^{2} \cos^{2} (x + k\pi)} + \int_{0}^{n - (t_{n}+1)\pi} \frac{dx}{1 + n^{2} \cos^{2} (x + (t_{n}+1)\pi)}$$

$$= t_{n} \int_{0}^{\pi} \frac{dx}{1 + n^{2} \cos^{2} x} + \int_{0}^{n - (t_{n}+1)\pi} \frac{dx}{1 + n^{2} \cos^{2} x}.$$
(22)

注意到对 $\forall n \in \mathbb{N}$, 都有

$$\left| \frac{1}{1 + n^2 \cos^2 x} \right| \leqslant \frac{1}{1 + \cos^2 x},$$

$$n \left| \frac{1}{1 + n^2 \cos^2 x} - \frac{1}{1 + n^2 x^2} \right| = \left| \frac{n^3 (x^2 - \cos^2 x)}{(1 + n^2 \cos^2 x) (1 + n^2 x^2)} \right|$$

$$\leqslant \left| \frac{n^3 (x^2 - \cos^2 x)}{n^4 x^2 \cos^2 x} \right| \leqslant \frac{|x^2 - \cos^2 x|}{x^2 \cos^2 x},$$

故由控制收敛定理知

$$\lim_{n \to \infty} \int_0^{n - (t_n + 1)\pi} \frac{\mathrm{d}x}{1 + n^2 \cos^2 x} \le \lim_{n \to \infty} \int_0^{\pi} \frac{\mathrm{d}x}{1 + n^2 \cos^2 x} = \int_0^{\pi} \lim_{n \to \infty} \frac{\mathrm{d}x}{1 + n^2 \cos^2 x} = 0,$$

$$\lim_{n \to \infty} n \int_0^{\pi} \left(\frac{1}{1 + n^2 \cos^2 x} - \frac{1}{1 + n^2 x^2} \right) \mathrm{d}x = \int_0^{\pi} \lim_{n \to \infty} \left(\frac{n}{1 + n^2 \cos^2 x} - \frac{n}{1 + n^2 x^2} \right) \mathrm{d}x = 0.$$
(23)

因此

$$\lim_{n \to \infty} t_n \int_0^{\pi} \frac{\mathrm{d}x}{1 + n^2 \cos^2 x} = \lim_{n \to \infty} \frac{t_n}{n} \cdot n \int_0^{\pi} \frac{\mathrm{d}x}{1 + n^2 \cos^2 x}$$

$$= \frac{1}{\pi} \lim_{n \to \infty} \left[n \int_0^{\pi} \frac{1}{1 + n^2 x^2} + n \int_0^{\pi} \left(\frac{1}{1 + n^2 \cos^2 x} - \frac{1}{1 + n^2 x^2} \right) \mathrm{d}x \right]$$

$$= \frac{1}{\pi} \lim_{n \to \infty} n \int_0^{\pi} \frac{\mathrm{d}x}{1 + n^2 x^2} = \frac{1}{\pi} \lim_{n \to \infty} \int_0^{n\pi} \frac{\mathrm{d}x}{1 + x^2} = 1.$$
(24)

综上, 由(22)(23)(24)式知

$$\lim_{n \to \infty} \int_0^n \frac{\mathrm{d}x}{1 + n^2 \cos^2 x} = 1.$$

例题 0.18 计算积分 $\int_0^{+\infty} \frac{x-x^2+x^3-x^4+\cdots-x^{2018}}{(1+x)^{2021}} dx.$ 证明 注意到对 $\forall k \in [1,2018] \cap \mathbb{N}$,都有

$$\int_0^{+\infty} \frac{x^k}{(1+x)^{2021}} dx \xrightarrow{t=\frac{1}{x}} \int_0^{+\infty} \frac{t^{2018-k}}{(1+t)^{2021}} dt = \int_0^{+\infty} \frac{x^{2018-k}}{(1+x)^{2021}} dx.$$

故

$$\int_0^{+\infty} \frac{x^k - x^{2018 - k}}{(1 + x)^{2021}} dx = 0, \quad \forall k \in [1, 2018] \cap \mathbb{N}.$$

因此

$$\int_0^{+\infty} \frac{x - x^2 + x^3 - x^4 + \dots - x^{2018}}{(1+x)^{2021}} dx = 0.$$

例题 **0.19** 设 $I(f) = \int_0^{\pi} (\sin x - f(x)) f(x) dx$, 求当遍历 $[0, \pi]$ 上所有连续函数 f 时 I(f) 的最大值. 解 对函数配方, 有

$$(\sin x - f(x))f(x) = -\left(f(x) - \frac{\sin x}{2}\right)^2 + \frac{\sin^2 x}{4}.$$

代入积分式,得

$$I(f) = \int_0^{\pi} \frac{\sin^2 x}{4} dx - \int_0^{\pi} \left(f(x) - \frac{\sin x}{2} \right)^2 dx$$
$$= \frac{\pi}{8} - \int_0^{\pi} \left(f(x) - \frac{\sin x}{2} \right)^2 dx.$$

故当 $f(x) = \frac{\sin x}{2}$ 时,I(f) 取得最大值 $\frac{\pi}{8}$

例题 **0.20** 设 $\alpha > 1$, $\Gamma_k = \left[k^{\alpha}, \left(k + \frac{1}{2}\right)^{\alpha}\right) \cap \mathbb{N}(k \ge 1)$. 试判断级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 的敛散性, 其中

$$a_n = \begin{cases} \frac{1}{n}, & \text{存在}k 使得 n = \min \Gamma_k, \\ \frac{1}{n^{\alpha}}, & \text{其他}, \end{cases}$$
 $b_n = \begin{cases} \frac{1}{n}, & \text{存在}k 使得 n \in \Gamma_k, \\ \frac{1}{n^{\alpha}}, & \text{其他}. \end{cases}$

证明 由 $\alpha > 1$ 和条件直接可得

$$\sum_{n=1}^{\infty} a_n = \sum_{\substack{n \neq \min \Gamma_k, \\ \forall k \in \mathbb{N}}}^{\infty} \frac{1}{n^{\alpha}} + \sum_{\substack{\exists k \in \mathbb{N}, \\ n = \min \Gamma_k}}^{\infty} \frac{1}{n} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} + \sum_{k=1}^{\infty} \frac{1}{\min \Gamma_k} = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} + \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} < \infty.$$

注意到

$$\sum_{n=1}^{\infty} b_n = \sum_{n \notin \bigcup_{k \in \mathbb{N}}}^{\infty} \frac{1}{n^{\alpha}} + \sum_{n \in \bigcup_{k \in \mathbb{N}}}^{\infty} \frac{1}{n} = \sum_{n \notin \bigcup_{k \in \mathbb{N}}}^{\infty} \frac{1}{n^{\alpha}} + \sum_{k=1}^{\infty} \sum_{n \in \Gamma_k} \frac{1}{n}$$

$$\geqslant \sum_{n \notin \bigcup_{k \in \mathbb{N}}}^{\infty} \frac{1}{n^{\alpha}} + \sum_{k=1}^{\infty} \sum_{n \in \Gamma_k} \frac{1}{\left(k + \frac{1}{2}\right)^{\alpha}}.$$
(25)

记 N_k 为 Γ_k 所含元素的个数,则

$$\lfloor \left(k+\frac{1}{2}\right)^{\alpha}-k^{\alpha}\rfloor \leqslant N_{k} < \lfloor \left(k+\frac{1}{2}\right)^{\alpha}-k^{\alpha}\rfloor+1, \quad \forall k \in \mathbb{N}.$$

再结合 Lagrange 中值定理知

$$N_k \sim \left(k+\frac{1}{2}\right)^\alpha - k^\alpha \sim \frac{\alpha}{2} k^{\alpha-1}, \quad k \to \infty.$$

而

$$\sum_{k=1}^{\infty} \frac{\frac{\alpha}{2} k^{\alpha - 1}}{\left(k + \frac{1}{2}\right)^{\alpha}} \geqslant \frac{\alpha}{2} \sum_{k=1}^{\infty} \frac{k^{\alpha - 1}}{2^{\alpha} k^{\alpha}} = \frac{\alpha}{2^{\alpha + 1}} \sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

因此

$$\sum_{k=1}^{\infty} \sum_{n \in \Gamma_k} \frac{1}{\left(k + \frac{1}{2}\right)^{\alpha}} = \sum_{k=1}^{\infty} \frac{N_k}{\left(k + \frac{1}{2}\right)^{\alpha}} = +\infty.$$

故由 (25) 式知 $\sum_{n=1}^{\infty} b_n$ 发散.

例题 0.21 设 a_1 , a_2 , a_3 为满足 $a_1^2 + a_2^2 + a_3^2 = 1$ 的一组实数, b_1 , b_2 为满足 $b_1^2 + b_2^2 = 1$ 的一组实数. 又设 M_1 为 5×3 矩阵, 其每一行都为 a_1 , a_2 , a_3 的一个排列; M_2 是 5×2 矩阵, 其每一行都为 b_1 , b_2 的一个排列. 令 $M = (M_1, M_2)$, 它 为 5×5 矩阵. 证明:

- (1) $(\operatorname{tr} M)^2 \le (5 + 2\sqrt{6}) \operatorname{rank} M$;
- (2) M 必有绝对值小于或等于 $\sqrt{2} + \sqrt{3}$ 的实特征值 λ .

证明

(1) 由
$$a_1^2 + a_2^2 + a_3^2 = 1, b_1^2 + b_2^2 = 1$$
 知 $a_1, a_2, a_3, b_1, b_2 \le 1$. 从而 $(\operatorname{tr} M)^2 \le 5^2 = 25$.

且有均值不等式可得

$$a_1 + a_2 + a_3 \le 3\sqrt{\frac{a_1^2 + a_2^2 + a_3^2}{3}} = \sqrt{3}, \quad b_1 + b_2 \le 2\sqrt{\frac{b_1^2 + b_2^2}{2}} = \sqrt{2}.$$
 (26)

当 r(M) ≥ 3 时, 就有

$$(\mathrm{tr} M)^2 \leqslant 25 < \left(5 + 2\sqrt{6}\right) \cdot 3 \leqslant \left(5 + 2\sqrt{6}\right) \mathrm{r} \left(M\right)$$

恒成立. 故只需考虑 r(M) = 1,2 的情形. 当 r(M) = 1 时, 不妨设

$$M = \begin{pmatrix} a_1 & a_2 & a_3 & b_1 & b_2 \\ a_1 & a_2 & a_3 & b_1 & b_2 \\ a_1 & a_2 & a_3 & b_1 & b_2 \\ a_1 & a_2 & a_3 & b_1 & b_2 \\ a_1 & a_2 & a_3 & b_1 & b_2 \end{pmatrix},$$

则由(26)式可得

$$(\operatorname{tr} M)^2 = (a_1 + a_2 + a_3 + b_1 + b_2)^2 \leqslant \left(\sqrt{3} + \sqrt{2}\right)^2 = 5 + 4\sqrt{6}.$$

当 r(M) = 2 时, 不妨设

$$M = \begin{pmatrix} a_1 & a_2 & a_3 & b_1 & b_2 \\ a_1 & a_3 & a_2 & b_2 & b_1 \\ a_1 & a_2 & a_3 & b_1 & b_2 \\ a_1 & a_3 & a_2 & b_2 & b_1 \\ a_1 & a_2 & a_3 & b_1 & b_2 \end{pmatrix},$$

其中 $a_3 = \max_{i=1,2,3} a_i, b_2 = \max_{i=1,2} b_i$. 否则,trM 都没有上述矩阵的迹大. 则

$$a_1 + 2a_3 \leqslant 3\sqrt{\frac{a_1^2 + 2a_3^2}{3}} = \sqrt{3}\sqrt{\left(a_1^2 + a_2^2 + a_3^2\right) + a_3^2 - a_2^2}$$
$$= \sqrt{3}\sqrt{\left(a_1^2 + a_2^2 + a_3^2\right) + a_3^2 - a_2^2} = \sqrt{3}\sqrt{1 + a_3^2 - a_2^2}$$
$$\leqslant \sqrt{6}.$$

于是

$$(\operatorname{tr} M)^2 = (a_1 + 2a_3 + 2b_2)^2 \le (\sqrt{6} + 2)^2 = (5 + 2\sqrt{6}) \operatorname{r} (M).$$

综上, 我们有

$$(\mathrm{tr}M)^2 \leqslant \left(5+2\sqrt{6}\right)\mathrm{r}\left(M\right).$$

(2) 注意到

$$M\begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} = (a_1 + a_2 + a_3 + b_1 + b_2)\begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix},$$

故 $(a_1 + a_2 + a_3 + b_1 + b_2)$ 是 M 的一个特征值, 并且由(26)式可得

$$a_1 + a_2 + a_3 + b_1 + b_2 \le \sqrt{3} + \sqrt{2}$$
.

例题 0.22 证明:

(1)
$$\lim_{\alpha \to 0^+} \sum_{n=1}^{\infty} \frac{\cos\left(n + \frac{1}{2}\right)}{n^{1+\alpha}} = \sum_{n=1}^{\infty} \frac{\cos\left(n + \frac{1}{2}\right)}{n};$$

(2) 计算
$$\lim_{\alpha \to 0^+} \sum_{n=1}^{\infty} \frac{\sin n}{n^{\alpha}}$$
, 并说明理由.

证明

(1) 注意到对 $\forall \alpha \geq 0$, 都有

$$\left|\frac{\cos\left(n+\frac{1}{2}\right)}{n^{1+\alpha}}\right| \leqslant \frac{\left|\cos\left(n+\frac{1}{2}\right)\right|}{n},$$

并且对 $\forall n \in \mathbb{N}$, 有

$$\sum_{k=1}^{n} \cos\left(k + \frac{1}{2}\right) = \frac{\sum_{k=1}^{n} 2\sin\frac{1}{2}\cos\left(k + \frac{1}{2}\right)}{2\sin\frac{1}{2}} = \frac{\sum_{k=1}^{n} \left[\sin\left(k + 1\right) - \sin k\right]}{2\sin\frac{1}{2}}$$
$$= \frac{\sin\left(n + 1\right) - \sin 1}{2\sin\frac{1}{2}} \leqslant \frac{1}{\sin\frac{1}{2}}.$$

故由 Dirichlet 判别法知 $\sum_{n=1}^{\infty} \frac{\cos\left(n+\frac{1}{2}\right)}{n}$ 收敛, 因此 $\sum_{n=1}^{\infty} \frac{\cos\left(n+\frac{1}{2}\right)}{n^{1+\alpha}}$ 关于 $\alpha\geqslant 0$ 一致收敛. 从而

$$\lim_{\alpha \to 0^+} \sum_{n=1}^{\infty} \frac{\cos\left(n + \frac{1}{2}\right)}{n^{1+\alpha}} = \sum_{n=1}^{\infty} \lim_{\alpha \to 0^+} \frac{\cos\left(n + \frac{1}{2}\right)}{n^{1+\alpha}} = \sum_{n=1}^{\infty} \frac{\cos\left(n + \frac{1}{2}\right)}{n}.$$

(2) 注意到对 $\forall \alpha \in (0,1)$, 都有

$$\begin{split} \sum_{n=1}^{\infty} \frac{\sin n}{n^{\alpha}} &= \sum_{n=1}^{\infty} \frac{2 \sin \frac{1}{2} \sin n}{2n^{\alpha} \sin \frac{1}{2}} = \sum_{n=1}^{\infty} \frac{\cos \left(n - \frac{1}{2}\right) - \cos \left(n + \frac{1}{2}\right)}{2n^{\alpha} \sin \frac{1}{2}} \\ &= \sum_{n=1}^{\infty} \frac{\cos \left(n - \frac{1}{2}\right)}{2n^{\alpha} \sin \frac{1}{2}} - \sum_{n=1}^{\infty} \frac{\cos \left(n + \frac{1}{2}\right)}{2n^{\alpha} \sin \frac{1}{2}} \\ &= \frac{\cos \frac{1}{2}}{2 \sin \frac{1}{2}} + \sum_{n=2}^{\infty} \frac{\cos \left(n - \frac{1}{2}\right)}{2n^{\alpha} \sin \frac{1}{2}} - \sum_{n=1}^{\infty} \frac{\cos \left(n + \frac{1}{2}\right)}{2n^{\alpha} \sin \frac{1}{2}} \\ &= \frac{\cos \frac{1}{2}}{2 \sin \frac{1}{2}} + \sum_{n=1}^{\infty} \frac{\cos \left(n + \frac{1}{2}\right)}{2(n+1)^{\alpha} \sin \frac{1}{2}} - \sum_{n=1}^{\infty} \frac{\cos \left(n + \frac{1}{2}\right)}{2n^{\alpha} \sin \frac{1}{2}} \\ &= \frac{\cos \frac{1}{2}}{2 \sin \frac{1}{2}} + \frac{1}{2 \sin \frac{1}{2}} \sum_{n=1}^{\infty} \left[\frac{1}{(n+1)^{\alpha}} - \frac{1}{n^{\alpha}} \right] \cos \left(n + \frac{1}{2}\right). \end{split}$$

由 Lagrange 中值定理知, 对 $\forall n \in \mathbb{N}$, 存在 $\xi \in (n, n+1)$, 使得

$$\sum_{n=1}^{\infty} \left[\frac{1}{(n+1)^{\alpha}} - \frac{1}{n^{\alpha}} \right] \cos \left(n + \frac{1}{2} \right) = -\alpha \sum_{n=1}^{\infty} \frac{\cos \left(n + \frac{1}{2} \right)}{\xi^{1+\alpha}} \leqslant \alpha \sum_{n=1}^{\infty} \frac{|\cos \left(n + \frac{1}{2} \right)|}{n^{1+\alpha}}.$$

于是再结合(1)的结论可得

$$\lim_{\alpha \to 0^+} \sum_{n=1}^{\infty} \left[\frac{1}{(n+1)^{\alpha}} - \frac{1}{n^{\alpha}} \right] \cos\left(n + \frac{1}{2}\right) = -\lim_{\alpha \to 0^+} \alpha \sum_{n=1}^{\infty} \frac{\cos\left(n + \frac{1}{2}\right)}{\xi^{1+\alpha}} = 0.$$

故

$$\lim_{\alpha \to 0^+} \sum_{n=1}^{\infty} \frac{\sin n}{n^{\alpha}} = \frac{\cos \frac{1}{2}}{2 \sin \frac{1}{2}}.$$

例题 **0.23** 计算广义积分 $\int_1^{+\infty} \frac{(x)}{x^3} dx$, 这里 (x) 表示 x 的小数部分 (例如: 当 n 为正整数且 $x \in [n, n+1)$ 时,则 (x) = x - n).

证明 注意到 (x) 是周期为 1 的函数,并且在 [0,1) 上恒有 (x) = x. 因此

$$\int_{1}^{+\infty} \frac{(x)}{x^{3}} dx = \sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{(x)}{x^{3}} dx = \sum_{k=1}^{\infty} \int_{0}^{1} \frac{(x+k)}{(x+k)^{3}} dx$$

$$= \sum_{k=1}^{\infty} \int_{0}^{1} \frac{(x)}{(x+k)^{3}} dx = \sum_{k=1}^{\infty} \int_{0}^{1} \frac{x}{(x+k)^{3}} dx$$

$$= \sum_{k=1}^{\infty} \int_{0}^{1} \left[\frac{1}{(x+k)^{2}} - \frac{k}{(x+k)^{3}} \right] dx$$

$$= \sum_{k=1}^{\infty} \left[\frac{1}{k} - \frac{1}{k+1} + \frac{1}{2} \left(\frac{k}{(1+k)^{2}} - \frac{1}{k} \right) \right]$$

$$= \sum_{k=1}^{\infty} \left[\frac{1}{2k} - \frac{1}{2(k+1)} + \frac{1}{2} \left(\frac{k}{(1+k)^{2}} - \frac{1}{1+k} \right) \right]$$

$$= \sum_{k=1}^{\infty} \left[\frac{1}{2k} - \frac{1}{2(k+1)} - \frac{1}{2(1+k)^{2}} \right]$$

$$= \sum_{k=1}^{\infty} \left[\frac{1}{2k} - \frac{1}{2(k+1)} \right] - \frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{k^{2}}$$

$$= \frac{1}{2} - \frac{1}{2} \left(\sum_{k=1}^{\infty} \frac{1}{k^{2}} - 1 \right)$$

$$= 1 - \frac{1}{2} \cdot \frac{\pi^{2}}{6} = 1 - \frac{\pi^{2}}{12}.$$

例题 0.24 设 f(x) 在 \mathbb{R} 上连续, 且 $g(x) = f(x) \int_0^x f(t) dt$ 单调递减, 证明 $f(x) \equiv 0$.

证明 证法一: 令 $F(x) = \int_0^x f(t) dt$, $G(x) = \frac{F^2(x)}{2}$, 则

$$g\left(x\right)=F\left(x\right)F'\left(x\right)=\left\lceil\frac{F^{2}\left(x\right)}{2}\right\rceil'=G'\left(x\right),$$

由条件知 g(x) = G'(x) 单调递减, 故 G(x) 是上凸函数. 注意到 G'(0) = g(0) = 0, 由 g 递减知, $G'(x) = g(x) \le 0$, $\forall x > 0$. 从而 G(x) 在 $[0, +\infty)$ 上递减. 故

$$0 \leqslant G(x) = \frac{F^2(x)}{2} \leqslant G(0) = 0.$$

因此 $G(x) = 0, \forall x \ge 0$. 于是 F(x) = 0, 故 $f(x) = F'(x) = 0, \forall x \ge 0$.

证法二: 证明: 若 $\exists X_0 > 0$, s.t. $f(X_0) \neq 0$. 不妨设 $f(X_0) > 0$, 则由 g 递减知

$$g(X_0) = f(X_0) \int_0^{X_0} f(t) dt \le g(0) = 0 \Rightarrow \int_0^{X_0} f(t) dt \le 0.$$

从而由积分中值定理知, $\exists \xi \in (0, X_0), s.t. f(\xi) \leq 0$ 于是由介值定理知, $\exists x_1 \in (0, X_0), s.t. f(x_1) = 0$. 记

$$x_2 \triangleq \sup\{x \in [x_1, X_0) \mid f(x) = 0\}.$$

则 $f(x) > 0, \forall x \in (x_2, X_0)$, 否则,

$$\exists \eta \in (x_2, X_0), s.t. f(\eta) \leq 0.$$

由介值定理知, $\exists \eta' \in (x_2, X_0)$, s.t. $f(\eta') = 0$. 这与上确界定义矛盾! 再记 $f(x') = \max_{x \in [x_2, X_0]} f(x)$, 任取 $x_3 \in (x_2, x')$. 则 $f(x_3) > 0$, 进而 $\int_{x_3}^{x'} f(t) dt > 0$. 于是

$$g(x_3) = f(x_3) \int_0^{x_3} f(t) dt < f(x') \left(\int_0^{x_3} f(t) dt + \int_{x_3}^{x'} f(t) dt \right)$$

$$= f(x') \int_0^{x'} f(t) dt = g(x').$$

这与 g 递减矛盾! 故 f(x) = 0, $\forall x > 0$. 同理可得 f(x) = 0, $\forall x < 0$. 再由 f 的连续性可知 f(0) = 0, 故 $f(x) \equiv 0$.

例题 0.25 设 $f \in C^1[0, +\infty)$ 满足

$$|f(x)| \le e^{-\sqrt{x}}, f'(x) = -3f(x) + 6f(2x), \forall x \ge 0.$$

证明:

$$\sum_{n=0}^{\infty} \left(\frac{3^n}{n!} \int_0^{\infty} x^n f(x) \, \mathrm{d}x \right) < \infty.$$

并且证明

$$\sum_{n=0}^{\infty} \left(\frac{3^n}{n!} \int_0^{\infty} x^n f(x) \, \mathrm{d}x \right) = 0$$

的充要条件是 $\int_0^\infty f(x) dx = 0$.

证明 (1) 因为 $|f(x)| \le e^{-\sqrt{x}}, \forall x \ge 0$. 所以 $\lim_{x \to +\infty} f(x) = 0$. 注意到

$$\frac{3^n}{n!} \int_0^\infty x^n f(x) \mathrm{d}x = \frac{3^n}{n!} \int_0^\infty e^{n(\ln t - \sqrt{t})} \mathrm{d}t. \tag{27}$$

 $\overline{X} \frac{3^n}{n!} \sim \frac{(3e)^n}{\sqrt{2\pi n}n^n}, n \to \infty.$ 故

$$\frac{3^n}{n!} \int_0^\infty e^{n(\ln t - \sqrt{t})} \mathrm{d}t \sim \frac{(3e)^n}{\sqrt{2\pi n} n^n} \int_0^\infty e^{(n+1)(\ln t - \sqrt{t})} \mathrm{d}t, \quad n \to \infty.$$

由 Taylor 公式知, 存在 $\delta \in (0,1)$, 使得

$$\begin{split} & \ln x - \sqrt{x} \geqslant -1 + \frac{1}{2}(x-1) - \frac{3}{4}(x-1)^2 - \varepsilon(x-1)^2, \forall x \in [1-\delta, 1+\delta]. \\ & \ln x - \sqrt{x} \leqslant -1 + \frac{1}{2}(x-1) - \frac{3}{4}(x-1)^2 + \varepsilon(x-1)^2, \forall x \in [1-\delta, 1+\delta]. \end{split}$$

于是

$$\int_0^\infty e^{n(\ln t - \sqrt{t})} dt = \int_0^{1-\delta} e^{n(\ln t - \sqrt{t})} dt + \int_{1-\delta}^{1+\delta} e^{n(\ln t - \sqrt{t})} dt + \int_{1+\delta}^{+\infty} e^{n(\ln t - \sqrt{t})} dt.$$

注意到对 $\forall n \in \mathbb{N}$, 有

$$\int_{0}^{1-\delta} e^{n(\ln t - \sqrt{t})} dt \leqslant \int_{0}^{1} e^{n \ln t} dt = \int_{0}^{1} t^{n} dt = \frac{1}{n}.$$
 (28)

由 $\lim_{x\to+\infty} \frac{\ln x}{\frac{\sqrt{x}}{2}} = 0$ 知, 存在 $X_1 > 1$, 使得

$$\ln x \leqslant \frac{\sqrt{x}}{2}, \forall x \geqslant X_1.$$

从而

$$\int_{1+\delta}^{+\infty} e^{n(\ln t - \sqrt{t})} dt \leqslant \int_{1+\delta}^{X_1} e^{n \ln t} dt + \int_{X_1}^{+\infty} e^{-\frac{n\sqrt{t}}{2}} dt = \int_{1+\delta}^{X_1} t^n dt + 2 \int_{\frac{nX_1}{2}}^{+\infty} t e^{-t} dt$$

$$\leqslant X_1^n + 2(1+t)e^{-t} \Big|_{\frac{nX_1}{2}}^{\frac{nX_1}{2}} = X_1^{n+1} + (nX_1 + 2)e^{-\frac{nX_1}{2}}.$$
(29)

由 (0.1) 式可得

$$\begin{split} \int_{1-\delta}^{1+\delta} e^{n(\ln t - \sqrt{t})} \mathrm{d}t &\leqslant \int_{1-\delta}^{1+\delta} e^{n\left[-1 + \frac{1}{2}(x-1) - \frac{3}{4}(x-1)^2 + \varepsilon(x-1)^2\right]} \mathrm{d}t \\ &= \int_{-\delta}^{\delta} e^{n\left[-1 + \frac{1}{2}x + \left(\varepsilon - \frac{3}{4}\right)x^2\right]} \mathrm{d}t \leqslant e^{n\left(\frac{1}{2}\delta - 1\right)} \int_{-\delta}^{\delta} e^{\left(\varepsilon - \frac{3}{4}\right)nx^2} \mathrm{d}t \end{split}$$

$$= 2e^{n(\frac{\delta}{2}-1)} \int_0^{\delta} e^{-(\frac{3}{4}-\varepsilon)nx^2} dt = 2e^{n(\frac{\delta}{2}-1)} \int_0^{\sqrt{(\frac{3}{4}-\varepsilon)n}\delta} e^{-x^2} dt$$

$$\leq 2e^{n(\frac{\delta}{2}-1)} \int_0^{+\infty} e^{-x^2} dt = \sqrt{\pi}e^{n(\frac{\delta}{2}-1)}.$$
(30)

现在由(28)(29)(30)可得

$$\begin{split} \frac{(3e)^n}{\sqrt{2\pi n}n^n} \int_0^\infty e^{n(\ln t - \sqrt{t})} \mathrm{d}t &\leqslant \frac{(3e)^n}{\sqrt{n}n^n} \left[\frac{1}{n} + X_1^n + (nX_1 + 2)e^{-\frac{nX_1}{2}} + \sqrt{\pi}e^{n\left(\frac{\delta}{2} - 1\right)} \right] \\ &\leqslant \frac{(3e)^n}{\sqrt{n}n^n} \left[X_1^n + 2nX_1e^{-\frac{nX_1}{2}} + \sqrt{\pi}e^{n\left(\frac{\delta}{2} - 1\right)} \right] \\ &\leqslant \frac{(3eX_1)^n + (3e)^n \cdot 2nX_1e^{n\left(\frac{\delta}{2} - 1\right)}}{\sqrt{n}n^n} = \frac{(3eX_1)^n + 2nX_1 \cdot 3^n e^{\frac{n\delta}{2}}}{\sqrt{n}n^n} \end{split}$$

故再由(27)式知

$$\sum_{n=0}^{\infty} \left(\frac{3^n}{n!} \int_0^{\infty} x^n f(x) dx \right) \leqslant \sum_{n=0}^{\infty} \frac{1}{n^2} < \infty.$$

由 f'(x) = -3f(x) + 6f(2x) 可得

$$I_{n} \triangleq \frac{3^{n}}{n!} \int_{0}^{\infty} x^{n} f(x) dx = \frac{\frac{2^{n+1}}{n+1}}{\frac{2^{n+1}}{n+1}} - \frac{3^{n}}{(n+1)!} \int_{0}^{\infty} x^{n+1} f'(x) dx$$

$$= \frac{3^{n+1}}{(n+1)!} \int_{0}^{\infty} x^{n+1} \left[f(x) - 2f(2x) \right] dx$$

$$= \frac{3^{n+1}}{(n+1)!} \left[\int_{0}^{\infty} x^{n+1} f(x) dx - 2 \int_{0}^{\infty} x^{n+1} f(2x) dx \right]$$

$$= \frac{3^{n+1}}{(n+1)!} \left[\int_{0}^{\infty} x^{n+1} f(x) dx - \frac{1}{2^{n+1}} \int_{0}^{\infty} x^{n+1} f(x) dx \right]$$

$$= \frac{2^{n+1} - 1}{2^{n+1}} \cdot \frac{3^{n+1}}{(n+1)!} \int_{0}^{\infty} x^{n+1} f(x) dx = \frac{2^{n+1} - 1}{2^{n+1}} \cdot I_{n+1}.$$

故

$$I_{n+1} = \frac{2^{n+1}}{2^{n+1} - 1} I_n, \forall n \in \mathbb{N}.$$

从而对 $\forall n \in \mathbb{N}$, 都有

$$I_n = \frac{2^n}{2^n - 1} I_{n-1} = \dots = \frac{2^n}{2^n - 1} \cdot \frac{2^{n-1}}{2^{n-1} - 1} \cdot \dots \frac{2}{2 - 1} I_0 = \frac{2^{\frac{n(n+1)}{2}}}{(2^n - 1)(2^{n-1} - 1) \cdot \dots \cdot 1} I_0.$$

$$(2) \, \hat{\mathbf{n}} \, \hat{\mathbf{n}} \, \mathbf{n} \, \mathbf{n} = \int_0^\infty f(x) dx = 0 \, \hat{\mathbf{n}} \, \mathbf{n} \, \mathbf$$

 $I_n = \frac{2^{\frac{n(n+1)}{2}}}{(2^n - 1)(2^{n-1} - 1)\cdots 1}I_0 = 0.$

故

$$\sum_{n=0}^{\infty} \frac{3^n}{n!} \int_0^{\infty} x^n f(x) dx = \sum_{n=0}^{\infty} I_n = 0.$$

必要性: 设

$$\sum_{n=0}^{\infty} \frac{3^n}{n!} \int_0^{\infty} x^n f(x) dx = \sum_{n=0}^{\infty} I_n = 0,$$

则由 (31) 式可得

$$0 = \sum_{n=0}^{\infty} I_n = I_0 + \sum_{n=1}^{\infty} \frac{2^{\frac{n(n+1)}{2}}}{(2^n-1)(2^{n-1}-1)\cdots 1} I_0 = I_0 \left(1 + \sum_{n=1}^{\infty} \frac{2^{\frac{n(n+1)}{2}}}{(2^n-1)(2^{n-1}-1)\cdots 1}\right).$$

因为

$$1 + \sum_{n=1}^{\infty} \frac{2^{\frac{n(n+1)}{2}}}{(2^n - 1)(2^{n-1} - 1)\cdots 1} > 0,$$

	0.1 杂题
所以 $I_0 = \int_0^\infty f(x) dx = 0$. 例题 0.26 证明	
例题 0.27	
<mark>证明</mark>	
例题 0.28 证明	
例题 0.29	