Resumen del Manual 1: Redes - Direccionamiento IP

1. Conceptos Previos

Las direcciones IP se basan internamente en el sistema binario.

Sistema de Numeración	Base	Dígitos	Uso
Decimal (D)	10	{0-9}	Representación para humanos (IPv4).
Binario (B)	2	{0, 1}	Base para ordenadores. Cada dígito es un bit .
Hexadecimal (H)	16	{0-9, A-F}	Intermedio entre decimal y binario (IPv6). Cada dígito son 4 bits .

Se detallan los métodos de **conversión** entre binario, decimal y hexadecimal.

2. Direccionamiento IPv4

Una **dirección IP** es un conjunto de números que identifica un dispositivo en una red.

• **Estructura:** 32 bits, separados en 4 bloques de 8 bits (**octetos**), representados en notación decimal punteada (ejemplo: 192.168.10.10).

• **Rango:** 0.0.0.0 a 255.255.255.255.

• Partes:

• **NetID:** Identifica la red.

• **HostID:** Identifica al host dentro de esa red.

2.2. Clases de Direcciones IP

La cantidad de bits para NetID y HostID depende de la clase:

Clase	Primer Octeto (Decimal)	Rango del Primer Octeto	Bits de Red	Bits de Host	Máscara por Defecto	N.º Redes (Usables)	N.º Hosts/Red (Usables)
A	0xxxxxxx (0 en binario)	1-126	8	24	255.0.0.0 (/8)	126 (27 - 2)	16.777.214 (2 ²⁴ - 2)
В	10xxxxxx (10 en binario)	128-191	16	16	255.255.0.0 (/16)	16.384 (2 ¹⁴)	65.534 (2 ¹ 6 - 2)
С	110xxxxx (110 en binario)	192-223	24	8	255.255.255.0 (/24)	2.097.152 (2 ²¹)	254 (2 ⁸ - 2)
D	1110xxxx (1110 en binario)	224-239	-	-	-	Multicast	-
E	1111xxxx (1111 en binario)	240-255	-	-	-	Reservada	-

2.3. Direcciones Especiales (No asignables a un host)

Tipo de Dirección	Descripción	Uso		
Dirección de Red	HostID todo a ceros.	Identifica la red. No se asigna a un host.		
Broadcast Directo	HostID todo a unos.	Envía un paquete a todos los hosts de una red específica.		
Broadcast Limitado	NetID y HostID todo a unos (255.255.255.255).	Envía un mensaje a todos los componentes de la red actual . Bloqueado por routers.		
Este Host en esta Red	Todos los bits a cero (0.0.0.0).	Usado por un host que no conoce su IP para solicitarla a un servidor.		
Host Específico en esta Red	NetID todo a ceros.	Usado para enviar un paquete a otro host dentro de la misma red . Bloqueado por routers.		
Loopback	Comienza por 127.x.x.x.	Se usa para chequear el software de un host. El paquete nunca abandona el host.		

2.4. Direcciones IP Privadas

Bloques de direcciones designados para uso en redes que **no requieren acceso a Internet**:

• Clase A: 10.0.0.0 a 10.255.255.255

• Clase B: 172.16.0.0 a 172.31.255.255

• Clase C: 192.168.0.0 a 192.168.255.255

3. Subnetting (Subdireccionamiento)

El subnetting consiste en subdividir grandes redes en subredes más pequeñas, tomando bits de la parte de **Host** para identificar la **Subred**. La máscara de subred indica qué bits son de red/subred (1s) y cuáles son de host (0s).

Fórmulas Clave:

- Cantidad de Subredes: 2^n (donde n es el número de bits prestados de la parte de host).
- Cantidad de Hosts por Subred: $2^m 2$ (donde m es el número de bits disponibles para host. Se restan 2 por la dirección de red y la de broadcast).

3.1. Técnica FLSM (Fixed Length Subnet Mask)

Permite crear múltiples subredes del **mismo tamaño**. Se utiliza una máscara de subred fija para todas las subredes resultantes.

• Proceso:

- 1. Determinar los bits (n) necesarios para la cantidad de subredes requeridas.
- 2. Verificar que los bits restantes (m) sean suficientes para la cantidad de hosts requeridos.
- 3. Calcular la **máscara ampliada** (sumando los n bits prestados a la máscara por defecto).
- 4. Calcular el **rango de subredes** (salto) restando el último octeto de la máscara ampliada a 256.
- 5. Listar las subredes, identificando la dirección de red y la dirección de broadcast para cada una.

3.2. Técnica VLSM (Variable Length Subnet Mask)

Permite crear subredes de **diferentes tamaños**, optimizando el uso de direcciones IP al asignar solo el número necesario de hosts a cada subred.

Proceso:

- 1. **Organizar** las subredes requeridas de **mayor a menor** cantidad de hosts.
- 2. Para la subred con más hosts, calcular los bits (m) necesarios para albergar esa cantidad $(2^m 2 \ge \text{Hosts requeridos})$.
- 3. Calcular la máscara de subred y la primera dirección de red.
- 4. Para las subredes restantes, repetir el proceso, tomando la primera dirección disponible después de la subred anterior.

4. Conceptos Básicos de IPv6

IPv6 fue diseñado para reemplazar a IPv4 debido al agotamiento de direcciones.

- **Estructura:** 128 bits, representados en **hexadecimal** (ejemplo: 2001:0db8:85a3:0000:0000:8a2e:0370:7334).
- **Notación:** Se usan dos puntos (:) para separar 8 grupos de 4 dígitos hexadecimales.
- Simplificación:
 - Se pueden omitir los ceros iniciales en cada grupo (ej: 0db8 es db8).
 - Se puede usar doble doble punto (::) una sola vez para representar una secuencia continua de grupos de ceros (ej: 2001:db8::8a2e:370:7334).
- Tipos de Direcciones IPv6:
 - o Unicast: Identifica una única interfaz.
 - **Multicast:** Identifica un grupo de interfaces.
 - **Anycast:** Identifica un grupo de interfaces, el paquete se envía a la interfaz más cercana.
- **Direcciones Unicast Globales:** Equivalentes a las direcciones públicas de IPv4. Comienzan con 2000::/3.
- **Direcciones Link-Local:** Se usan para la comunicación entre dispositivos en el mismo enlace local. Comienzan con fe80::/10.
- Dirección Loopback: ::1.
- Dirección No Especificada: :: (todo ceros).
- **EUI-64:** Método para generar la parte de HostID (Interface ID) de una dirección IPv6 a partir de la dirección MAC del dispositivo, garantizando una identificación única.
- **Autoconfiguración sin Estado (SLAAC):** Permite a los dispositivos configurarse automáticamente con una dirección IPv6 sin un servidor DHCPv6.
- **Prefijo:** Indica la porción de red de la dirección, similar al CIDR de IPv4 (ej: /64).
- Longitud de Prefijo: Generalmente se usa /64 para la porción de red y /48 para la asignación a organizaciones.
- Fragmentación: No se permite en IPv6; solo el host de origen puede fragmentar.

- **Checksum:** Eliminado en el encabezado de IPv6 para mejorar el rendimiento.
- **Encabezado:** Más simple y eficiente que IPv4.