无穷小量和无穷大量

定义: 设 f(x) 在 $U(x_0)$ 上定义,对于任意 $\epsilon > 0$,存在 $\delta > 0$,当 $0<|x-x_0|<\delta$ 时,有 $|f(x)|<\epsilon$,则称f(x)是当 $x o x_0$ 的无穷小量,记作 $\lim f(x) = 0$

$$\lim_{x o\infty}rac{1}{x}=0\Rightarrow f(x)=rac{1}{x}$$
是当 $x o\infty$ 时的无穷小量 \cdot 定理 $|:$ 设 $f(x)=A+lpha(x)$,A为不为零的常数 $^{\mathbf{Q}}$ 。

例: $\lim_{x \to 0} x = 0 \Rightarrow f(x) = x$ 是当 $x \to 0$ 时的无穷小量

 $\lim f(x) = A \Leftrightarrow \lim \alpha(x) = 0$

证明:不妨设
$$\lim_{x o x_0}f(x)=A$$

由定义知 $orall \epsilon > 0$ 因 $\delta > 0$,当 $\delta < |x-x_0| < \delta$ 时有 $|\alpha(x)| = |f(x)-A| < \epsilon$

 $\mathbb{P} \lim \alpha(x) = 0$

渇 lim $\alpha(x) = 0$, 则 $|f(x) - A| = |\alpha(x)| < \epsilon$

· 所以, 若在某种趋势下 f(x) 有极限 αA , 则 $f(x) = A + \alpha(x)$, 其中 $\alpha(x)$ 为无

 $\mathbb{P} \lim f(x) = A$

 $x \rightarrow x_0$

穷小量

等价无穷小代换 🥒

表示极限存在)

 $x \to \infty$))

|f(x)| > M

・ 负无穷大量 $^{\mathsf{Q}}\lim_{x o -\infty}f(x)=-\infty$: $orall M > 0, \exists \delta > 0, ext{ } ext$ 无穷大量 \rightarrow 无界, 无界 \rightarrow 无穷大量 (反例: $y = x \sin x$ 无界但非无穷大(

定理2: 同一变化趋向下, 若f(x) 为无穷大量, 则 $\frac{1}{f(x)}$ 为无穷小量; 若f(x) 为无

・ 正 无 穷 大 量 $^{\mathsf{Q}}\lim_{x o +\infty} f(x) = +\infty$: $orall M > 0, \exists X > 0, \exists X > X$ 时,f(x) > M

|f(x)|>M 成立,则称 f(x) 是当 $x o x_0$ 的无穷大量,记作 $\lim_{x o x_0}f(x)=\infty$ (不

定义: 若对任意M>0,总存在 $\delta>0$,当 $0<|x-x_0|<\delta$ 时,恒有

穷小量,则 $\frac{1}{f(x)}$ 为无穷大量[$f(x) \neq 0$] 证明: 以 $\lim_{x o x_0}f(x)=\infty$, $orall \epsilon>0$ 当 $0<|x-x_0|<\delta$ 时,有

取 $M=rac{1}{\epsilon}$,此时 $\left|rac{1}{f(x)}
ight|=rac{1}{|f(x)|}<rac{1}{M}=\epsilon$,即有 $\lim_{x o x_0}rac{1}{f(x)}=0$ 设 $\lim_{x o x_0}f(x)=0$, $orall \epsilon>0$ 当 $0<|x-x_0|<\delta$ 时,有 $|f(x)|<\epsilon$ 取 $M=rac{1}{\epsilon}$,此时 $\left|rac{1}{f(x)}
ight|=rac{1}{f(x)}>rac{1}{\epsilon}=M$,即有 $\lim_{x o x_0}rac{1}{f(x)}=\infty$ • 几个常用的无穷小量和无穷大量 $\lim_{x o\infty}x^n=\infty\quad \lim_{x o\infty}rac{1}{x_n}=0$

66 特别提示: 77 简单来说就是:在自变量的某种变化趋势之下,

·以无穷为极限的称为无穷大,以0为极限的称为无穷小;

因此,后面我们只研究无穷小的相关性质。

·无穷大量的倒数是无穷小量,非0无穷小量的倒数是无穷大量;

 $egin{aligned} & \cdot \lim_{x o +\infty} e^x = +\infty & \lim_{x o +\infty} rac{1}{e^x} = \lim_{x o +\infty} e^{-x} = 0 \ & \cdot \lim_{x o 0^+} e^{rac{1}{x}} = +\infty & \lim_{x o 0^+} rac{1}{e^{rac{1}{x}}} = \lim_{x o 0^+} e^{-rac{1}{x}} = 0 \end{aligned}$

三、无穷小量的性质 1. (有限项 $^{\mathbf{Q}}$ 的代数和) 若 $\alpha(x)$ 、 $\beta(x)$ 无穷小, 且趋势相同, 则 $\alpha(x) \pm \beta(x)$ 无穷 $|2. \, eta \, |f(x)| < M$,lpha(x) 为无穷小量,则f(x)lpha(x) 为无穷小量 $|f(x)\alpha(x) - 0| = |f(x)||\alpha(x)| < M|\alpha(x)| < M \cdot \epsilon \sim \epsilon$

推论2. 若 $\alpha_1(x), \alpha_2(x), \cdots, \alpha_i(x)$ 无穷小,则 $\prod_{k=1}^i \alpha_k(x)$ 是无穷小量

推论|. 若 $\alpha(x)$ 为无穷小量, c 是常数, 则 $c \cdot \alpha(x)$ 是无穷小量

小技巧

无穷小量的加法运算: 取次方最低的 (例: X2+X3=X2, 二阶无穷小) 无穷小的阶: X的次方数, 阶越高越趋近于0.