

## Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

Cancun, Quintana Roo No aplica No aplica

Relación con otras asignaturas

Anteriores Posteriores

No aplica No aplica

Nombre de la asignatura Departamento o Licenciatura

Cálculo diferencial e integral Ingeniería en Telemática

Ciclo Clave Créditos Área de formación curricular

1 - 1 IT0102 8 Profesional Asociado y Licenciatura Básica

Tipo de asignatura Horas de estudio

Materia HT HP TH HI 64 0 64 64

# Objetivo(s) general(es) de la asignatura

### Objetivo cognitivo

Al término del curso, el estudiante será capaz de: Utilizar el cálculo diferencial e integral como una herramienta para la interpretación y modelado matemático en la solución de problemas teóricos con aplicaciones prácticas a la ingeniería.

Objetivo procedimental



## Objetivo actitudinal

No aplica

# Unidades y temas

### Unidad I. CONTINUIDAD Y LÍMITES.

No aplica

- 1) Definición de límite de una función.
- 2) Teoremas fundamentales sobre límites.
- 3) Límites infinitos y límites en el infinito.
- 4) Definición de continuidad de una función.

# Unidad II. CÁLCULO DIFERENCIAL

No aplica

- 1) Introducción.
  - a) Derivada de una función
  - b) Recta tangente.
  - c) Velocidad, aceleración y otras razones de cambio.
- 2) Obtención de derivadas.
  - a) Derivación de funciones elementales (algebraicas)
  - b) Derivación de funciones compuestas y regla de la cadena.
  - c) Derivación implícita.

| d) Derivada de funciones trascendentes.                                 |  |
|-------------------------------------------------------------------------|--|
| e) Función inversa y derivada de la inversa de una función.             |  |
| f) Variaciones en el tiempo relacionadas.                               |  |
| Unidad III. APLICACIÓN DE DERIVADAS                                     |  |
| No aplica                                                               |  |
| 1) Valores extremos y técnicas de graficación.                          |  |
| a) Teorema de Rolle y teorema del valor medio.                          |  |
| b) Funciones crecientes y decrecientes y prueba de la primera derivada. |  |
| c) Concavidad y punto de inflexión                                      |  |
| d) Máximos y mínimos (criterio de la 1ª. Y 2ª). Derivada.               |  |
| e) Aplicaciones en el trazo de la gráfica de una función.               |  |
| f) Problemas de optimización.                                           |  |
| Unidad IV. CÁLCULO INTEGRAL                                             |  |
| No aplica                                                               |  |
| 1) Integral.                                                            |  |
| a) Antidiferenciación e integración indefinida                          |  |
| b) Reglas de integración.                                               |  |
| c) Técnicas de integración.                                             |  |
| d) Fórmulas de integrales.                                              |  |
|                                                                         |  |

- 2) La integral definida.
  - a) Teoremas fundamentales del cálculo.
  - b) Propiedades de la integral definida.
- 3) Aplicaciones integrales.
  - a) Área de una región en el plano.
  - b) Superficies y volúmenes de sólido de revolución
  - c) Trabajo y energía.

## Unidad V. INTEGRACIÓN MÚLTIPLE

No aplica

- 1) Integración múltiple.
  - a) La integral doble.
  - b) Integral triple.

## Actividades que promueven el aprendizaje

### **Docente**

Exposición teórica.

Lluvia de ideas.

Dinámica de grupo para la presentación de los temas de la unidad 3.

Diseño de evaluación oral y escrita.

### **Estudiante**

Asistencia a clase. Toma de notas.

Participación individual en lluvia de ideas.

Trabajo en equipo en el aula para presentar el tema asignado por el docente eligiendo su forma de presentación.

Evaluación oral y escrita.

# Actividades de aprendizaje en Internet

## Criterios y/o evidencias de evaluación y acreditación

| Criterios                           | Porcentajes |
|-------------------------------------|-------------|
| Examen                              | 30          |
| Exámenes parciales                  | 30          |
| Trabajos prácticos de investigación | 30          |
| Participación individual            | 10          |
| Total                               | 100         |
|                                     |             |

## Fuentes de referencia básica

## **Bibliográficas**

Larson, L. ; Hostetles, E. Calculo y Geometria analítica. Mc. Graw-Hill. ISBN 8448117689 Swokowski, I W, Cálculo con Geometría Analítica. Grupo editorial iberoamericano. ISBN 9687270039

### Web gráficas

No aplica

## Fuentes de referencia complementaria

### **Bibliográficas**

### BIBLIOGRAFÍA COMPLEMENTARIA

Piskunov N. Cálculo diferencial e integral. Limusa Noriega. ISBN 9681839854 Courant y John. Introducción al cálculo y al análisis matemático. Limusa Noriega. SBN 9681806409 Churchill R. Ward J. Variable compleja y aplicaciones. ,McGraw- Hill. ISBN 8476157304

### Web gráficas

No aplica

# Perfil profesiográfico del docente

## **Académicos**

Contar con Licenciatura en áreas de Ingeniería, Matemáticas o áreas afines, preferentemente nivel de Maestría.

### **Docentes**

Tener experiencia docente mínima de 3 años a nivel superior en asignaturas afines.

## **Profesionales**

Tener experiencia en la aplicación de las matemáticas en la ingeniería y/o investigación en esta área.