· suppose now we are given a DT DE $x^{+}=F(x,u), x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$ and we wish to choose inputs over time u: [o,t] -> IR m to minimize cost $c(x,u) = l(t,x(t)) + \sum_{s=0}^{t-1} l(s,x(s),u(s))$ "final" cost "running" cost

> given $\tilde{\mathcal{Z}}(s, \chi(s+1), \chi(s), u(s)) = \chi(s+1)$ define $\mathcal{L}(s, \chi(s), u(s)) = \tilde{\mathcal{L}}(s, F(\chi(s), u(s)), \chi(s), u(s))$

 $V_{S}^{*}(\chi(s)) = min \left[J(s, \chi |_{[s,t]}, u^{*}|_{[s,t]}, u(s)) + V_{s+1}^{*}(\chi(s+1)) \right]$

ex: suppose 2nd-order approx to c at u. EIR" is exact i.e.: $(c(u)-c(u_0)) = b^{T}(u-u_0) / \neq c: \mathbb{R}^{M} \rightarrow \mathbb{R}$

+ = (u-vo) C (u-vo):

→ determine necessary conditions on bTEIRIXM, CT=C for user to be local min

-> determine sufficient cond's on spec D'c(V) for u. EIRM to be strict local min

-> if strict local min, solve for u.

- necessary that $DC(u_0) = b^T + (u_0 - u_0)^TC$

and
$$D^2C(u_0) = C \geq 0$$

 $C: \mathbb{R}^{m} \to \mathbb{R}$ $Dc(u) \in \mathbb{R}^{1 \times m}$ 11 $[\partial_{u}, c(u), \dots, \partial_{u_{m}} c(u)] \in \mathbb{R}^{1 \times m}$

of the arguadratic regulation (DT-LQR)

min $C_{\tau}(x,u)$ s.t. $x_{t+1} = A_{t}x_{t} + B_{t}u_{t}$

