5ª aula

24 de março de 2021

2. Considere o autómato $A=(Q,A,\delta,i,F)$ onde $Q=\{1,2,3,4\},\ A=\{a,b\},\ i=1,$ $F=\{4\}$ e o conjunto de transições é definido pela função de transição δ definida pela

δ	1	2	3	4
a	{1,2}	{4}	Ø	{4}
b	{1,3}	Ø	{4}	{4}

- (a) Represente o autómato $\mathcal A$ através de um grafo
- (b) Dê exemplos de palavras aceites por $\mathcal A$ e de palavras rejeitadas por $\mathcal A$.
- (c) Descreva a linguagem reconhecida pelo autómato A.
- (d) Classifique o autómato.

$$\delta: \Theta_1 \times A \longrightarrow \mathcal{P}(\Theta_1) \\
(1,a) \longmapsto \frac{1}{1} \frac{1}{12} \\
(2,b) \longmapsto \emptyset \\
(3,b) \longmapsto \frac{1}{4} \frac{1}{5}$$

b) Exemply de palavear accites por A: aa, a com n>,2, b wm n>,2, ba^2 , a^2b , ... Exemplo de palavras nas aceites por de a, b, ab, ba, ababab

C)
$$L(A) = A^* a^2 A^* \cup A^* b^2 A^* = A^* b^2 b^3 A^*$$

(Nota: $\int ((a+b)^* (a^2+b^3) (a+b)^*) L(A)$

d). autimate not e complete parque, por exemple, 5(3, a) = of, or eya, nos existe uma transigo a partir de 3 cm etiqueta a.

· A no é deterministe page, par exemple, # 8 (1, a) > 1.

. A é acessivel parque existem caminho de 1 paraz, de 1 paraz e de 1 $\underbrace{\mathbf{0}} \xrightarrow{\alpha} \underbrace{2} \qquad \underbrace{\mathbf{0}} \xrightarrow{b} \underbrace{3}$ para 4:

· A e w-aussivil porque existen cominhon de vértia inicial 1,2 m3 e vertice final 4: $(2) \xrightarrow{a} (4)$; $(3 \xrightarrow{b} (4)$; $(4 \xrightarrow{a} (2) \xrightarrow{a} (4)$

- 3. Seja L a linguagem sobre o alfabeto $\{a,b\}$ constituída pelas palavras que não têm aaa
 - (a) Mostre que L é uma linguagem reconhecível.
 - (b) Para cada uma das expressões regulares seguintes, diga, justificando, se a expressão representa L ou não:

$$\begin{array}{c} b^*ab^*ab^+(a+b)^*;\\ \text{iii. } \varepsilon+a+a^2)(\varepsilon+b)(a+b)^*;\\ \text{iii. } \varepsilon+a+a^2+(b+ab+a^2b)(a+b)^*;\\ \text{iv. } (b+ab+a^2b)^*. \end{array}$$

L= {ue A+: aaa nd é prefins de u} = A+ \ aaa A+

a) Aurena saber se existe un autimate aya linguagem é L.

1a|a|b|

NOTA: O estado 5 nos e aces sivol.

acab nos acole pelo autimbi

Representant d'onte forma o autimate, tenn que f = (41,2,3,45, 4a,65, 8, 1, 41,21,3,45)

onde d'é definida pela tabela:

b) aabe d (b'a b'a b' (a+b)*) e
aab e' a palavra di menor wompri.
menti nentar undi voj.
a² f l (b*a b*a b (a+b)*) e
a² e L. logu i) na e' uma
opsi wretz.

 $a^3 = a^2 \cdot \epsilon \cdot a \in \mathcal{L}(\epsilon + a + a^2 (\epsilon + b)(a + b)^*)$, hogs a opp und e' a opp write.

As palavear de menor comprimente de $\int (b+ab+a^2b)^{\frac{1}{2}} sas$ E, b, bb, ab, bab, abb, a^2b , b^3 . Logo esta linguagem nos contern a nem a^2 . Como a, $a^2 \in L$, entre |v| nos e a

L= Jue A*: aaa nd : prefixu } =

 $= \left\{ u_{1} u_{2} \in A^{*} : |u_{1}| = 3 \quad e \quad |u_{1}|_{b} \geqslant 1, \quad u_{2} \in A^{*} \right\} \cup \left\{ u \in A^{*} : |u| \leq 2 \right\}$

Enta $L = \int \left(\frac{baa, bab, bbb, bba, \dots}{a+b} + \frac{ba+ab+b+a+\epsilon}{a+b} \right)$

$$= \int \left(\left(b + ab + aab \right) \left(a + b \right)^{4} + aa + a + \varepsilon \right)$$

A opgé III) e a wrreta.

- 4. Considere o alfabeto $A = \{a, b, c\}$.
 - (a) Indique um autómato finito que reconheça o conjunto de todas as palavras sobre ${\cal A}$

i. ab é um fator; ii. ab não é fator; iii. existe uma única ocorrência de ab.

- (b) Identifique a tabela das transições de cada um dos autómatos que desenhou.
- (c) Classifique os autómatos que desenhou.
- (d) Para cada linguagem da alínea anterior, indique uma expressão regular que a re-

6. Use o Lema da Iteração para provar que não são reconhecíveis as seguintes linguagens

(c) $\{w \in A^* \mid w^I = w\}.$

(d)
$$\{a^p \mid p \in \mathbb{N} \text{ e } p \text{ \'e primo}\}.$$

Recordar: Se A e B sas proposings en tas (A=DB) (1B=D7A)

Se A significar "Le rewnheaver", entre 7A significa "L'not è reunheuver. Vamos uson o Lema da Iteraja foura prover que L'nos e' numberiver. Por isto vamo verificar que 1B e'verdadeires

d) Para qualquer ne IN,

ruja u = a em que p e o menor primo maior ou igual a n. Enter lu1=|201=p>n.

tazendo u=x4z em que 4≠E e In41 ≤ r, vem en qu t > 1. $x + y = a^1 a^1 a^{1/2}$ com $l_1 + t + l_2 = p$ |x| = |x| $\pi y = a(a^t)^k a^2 = a^{l_1 + tk + l_2}$

Enta xyz EL se é só se littetle for primo.

Por exemply, so
$$K=p+1$$
, entas $\begin{cases} l_{1}+t + l_{2} + (K-1) t \\ = p + pt \\ = p (t+1) \end{cases}$

pelo que li+tk+l2 nos é primo.

Logo, nyk z & L.

Pelo Lema da Iterago, condui-se que L nos é ruanheuvel.

8. Considere-se $A=\{a,b\}$ e $L=\{a^nb^m: m\geq n\geq 0\}$. Sejam $n\in\mathbb{N},$ e $u=a^nb^n$ uma palavra de L. Qualquer que seja o prefixo xy de u tal que $|xy|\leq n$ e $y\neq \varepsilon$, tem-se que $x=a^i,$ $y=a^j$ com $i+j\leq n,$ $i\geq 0$ e $j\geq 1$. Então $|u|\geq n,$ u=xyz com $z=a^{n-i-j}b^n$. Se k=2, então $xy^kz=a^{n+j}b^n$ pelo que xy^kz não é uma palavra de L.

De entre as afirmações abaixo diga qual é a afirmação verdadeira.

- (i) Com base no Lema da Iteração, a argumentação apresentada não permite concluir que a linguagem L não é regular.
- (ii) Com base no Lema da Iteração, a argumentação apresentada prova que L é uma linguagem regular.
- (iii) Com base no Lema da Iteração, a argumentação apresentada prova que Lnão é uma linguagem regular.
- (iv) Com base no Lema da Iteração, só poderíamos concluir que Lnão é uma linguagem regular se, para qualquer $k\geq 0,\,xy^kz$ não fosse uma palavra de L.