Class 6 (17-02-2021)

Make a <u>menu driven program using</u> Two Phase Simplex/ Dual Simplex with the following options (a) initial table (b) List of basic & non-basic variables for ith iteration (c) table of i^{th} iteration (f) optimal solution (if exists otherwise generate report for infeasibility, unboundedness, alternative optimum etc.)

- 1. Minimize $Z = 20x_1 + 16x_2$, Subject to $x_1 \ge 2.5$, $x_2 \ge 6$, $2x_1 + x_2 \ge 17$, $x_1 + x_2 \ge 12$, $x_1, x_2 \ge 0$.
- 2. Minimize $Z = 4x_1 + 8x_2 + 3x_3$, Subject to $x_1 + x_2 \ge 2$, $2x_1 + x_3 \le 5$, $x_1, x_2, x_3 \ge 0$.
- 3. Maximize $Z = 15x_1 + 6x_2 + 9x_3 + 2x_4$, Subject to $10x_1 + 5x_2 + 25x_3 + 3x_4 \le 50$, $12x_1 + 4x_2 + 12x_3 + x_4 \le 48$, $7x_1 + x_4 \le 35$, $x_1, x_2, x_3, x_4 \ge 0$.
- 4. Maximize $Z = 5x_1 2x_2 + 3x_3$, Subject to $2x_1 + 2x_2 x_3 \ge 2$, $3x_1 4x_2 \le 3$, $x_2 + 3x_3 \le 3$, $x_1, x_2, x_3 \ge 0$.
- 5. Max z = 2x1 + 3x2 + x3, Subject to $x1 + x2 + x3 \le 40$, $2x1 + x2 x3 \ge 10$,, $-x2 + x3 \ge 10$; x1, x2, $x3 \ge 0$
- 6. Max Z = 5x1 + 8x2, Subject to $3x1 + 2x2 \ge 3$, $x1 + 4x2 \ge 4$, $x1 + x2 \le 5$; $x1 \ge 0$, $x2 \ge 0$