

T25. Forecasting Big Time Series: Theory and Practice

Christos Faloutsos, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Yuyang (Be<u>rnie</u>) Wang

@Summit 5- Ground Level, Egan

Outline

- Motivation
- Part 1: Classical methods
 - Similarity Search and Indexing
 - DSP (Digital Signal Processing)
 - Linear Forecasting
 - Non-linear forecasting
 - Tensors
 - Conclusions
- Part 2: Modern methods Neural Networks Faloutsos et. al.

Problem definition

• Given: one or more sequences

$$x_1, x_2, \dots, x_t, \dots$$

 $(y_1, y_2, \dots, y_t, \dots$
...)

- Find
 - Forecast; similar sequences
 - patterns; clusters; outliers

Motivation - Applications

- Financial, sales, economic series
- Medical
 - -ECG
 - reactions to new drugs
 - elderly care

physionet.org

EEG - epilepsy

Motivation - Applications (cont'd)

- civil/automobile infrastructure
 - bridge vibrations [Oppenheim+02]
 - road conditions / traffic monitoring

Motivation - Applications (cont'd)

- Weather, environment/anti-pollution
 - volcano monitoring
 - air/water pollutant monitoring
 - Sunspots (magnetic storms)

Motivation - Applications (cont'd)

- Computer systems
 - Disks (buffering, prefetching)
 - web servers (ditto)
 - network traffic monitoring

— ...

Problem #1:

Goal: given a signal (eg., #packets over time)

Find: patterns, periodicities, and/or compress

lynx caught per year (packets per day; temperature per day)

year

KDD 2019 Faloutsos et. al. 9

Problem#2: Forecast

Given x_t , x_{t-1} , ..., forecast x_{t+1}

KDD 2019 Faloutsos et. al.

Problem#2': Similarity search

Eg., Find a 3-tick pattern, similar to the last one

KDD 2019 Faloutsos et. al.

Problem #3:

- Given: A set of correlated time sequences
- Forecast 'Sent(t)'

Important observations

Patterns, rules, forecasting and similarity indexing are closely related:

- compress
- to find **similar** settings in the past

- (outlier = too far away from our forecast)

Outline

- Motivation
- Part 1: classical methods

- Similarity Search and Indexing
- DSP
- Linear Forecasting
- Non-linear forecasting
- Tensors
- Conclusions

Detailed Outline

- Motivation
- Part 1

- Similarity Search and Indexing
 - distance functions: Euclidean; Time-warping
 - indexing
 - feature extraction
- DSP

— ...

Importance of distance functions

Subtle, but absolutely necessary:

- A 'must' for similarity indexing (-> forecasting)
- A 'must' for clustering

Two major families

- Euclidean and Lp norms
- Time warping and variations

Euclidean and Lp

$$D(\vec{x}, \vec{y}) = \sum_{i=1}^{n} (x_i - y_i)^2$$

$$L_p(\vec{x}, \vec{y}) = \sum_{i=1}^n |x_i - y_i|^p$$

- • L_1 : city-block = Manhattan
- $\bullet L_2 = Euclidean$
- $ullet L_{\infty}$

Time Warping

'stutters':

Other Distance functions

- piece-wise linear/flat approx.; compare pieces [Keogh+01] [Faloutsos+97]
- 'cepstrum' (for voice [Rabiner+Juang])
 - do DFT; take log of amplitude; do DFT again!
- Allow for small gaps [Agrawal+95]

More distance functions.

- Chen + Ng [vldb'04]: ERP 'Edit distance with Real Penalty': give a penalty to stutters
- Keogh+ [kdd'04]: VERY NICE, based on information theory: compress each sequence (quantize + Lempel-Ziv), using the other sequences' LZ tables

On The Marriage of Lp-norms and Edit Distance, Lei Chen, Raymond T. Ng:, VLDB'04

Towards Parameter-Free Data Mining, E. Keogh, S. Lonardi, C.A. Ratanamahatana, KDD'04

Conclusions

Prevailing distances:

- Euclidean and
- time-warping

Outline

- Motivation
- Part 1: classical methods
 - Similarity Search and Indexing
 - distance functions
 - indexing
 - feature extraction
 - DSP

Important observations

Patterns, rules, forecasting and similarity indexing are closely related:

- To do forecasting, we need
 - to find patterns/rules
 - compress
 - to find similar settings in the past
- to find outliers, we need to have forecasts
 - (outlier = too far away from our forecast)

Indexing

Problem:

- given a set of time sequences,
- find the ones similar to a desirable query sequence

Idea: 'GEMINI'

Eg., 'find stocks similar to MSFT'

Seq. scanning: too slow

How to accelerate the search?

[Faloutsos96]

'GEMINI' - Pictorially

30

GEMINI

Solution: Quick-and-dirty' filter:

- extract *n* features (numbers, eg., avg., etc.)
- map into a point in *n*-d feature space
- organize points with off-the-shelf spatial access method ('SAM')
- discard false alarms

Examples of GEMINI

- Time sequences: DFT (up to 100 times faster) [SIGMOD94];
- [Kanellakis+], [Mendelzon+]

Indexing - SAMs

Q: How do Spatial Access Methods (SAMs) work?

A: they group nearby points (or regions) together, and answer spatial queries quickly ('range queries', 'nearest neighbor' queries etc)

k-d tree

Conclusions

- Fast indexing: through GEMINI
 - feature extraction and
 - (off the shelf) Spatial Access Methods[Gaede+98]

But: features?

• How to extract 'a few, good features'?

• A1: SVD

• A2: Fourier; Wavelets

But: features?

- How to extract 'a few, good features'?
- A1: SVD
- A2: Fourier; Wavelets

Feature extraction

- = (lossy) compression
- = Dimensionality reduction
- = Embedding
- = Auto-encoding

Conclusions - Practitioner's guide

Similarity search in time sequences

- 1) establish/choose distance (Euclidean, time-warping,...)
- 2) extract features (SVD, DWT), and use an SAM (R-tree/k-d-tree/variant)
- 2') for high <u>intrinsic</u> dimensionalities, consider sequential scan (it might win...)

Books

- William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery: *Numerical Recipes in C*, Cambridge University Press, 1992, 2nd Edition. (Great description, intuition and code for SVD)
- C. Faloutsos: *Searching Multimedia Databases by Content*, Kluwer Academic Press, 1996 (introduction to SVD, and GEMINI)

References

• Agrawal, R., K.-I. Lin, et al. (Sept. 1995). Fast Similarity Search in the Presence of Noise, Scaling and Translation in Time-Series Databases. Proc. of VLDB, Zurich, Switzerland.

- Ciaccia, P., M. Patella, et al. (1997). M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. VLDB.
- Guttman, A. (June 1984). R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD, Boston, Mass.

• Gaede, V. and O. Guenther (1998). "Multidimensional Access Methods." Computing Surveys 30(2): 170-231.

- Gunopulos, D. and G. Das (2001). Time Series Similarity Measures and Time Series Indexing. SIGMOD Conference, Santa Barbara, CA.
- Eamonn J. Keogh, <u>Themis Palpanas</u>, <u>Victor B.</u>
 <u>Zordan</u>, <u>Dimitrios Gunopulos</u>, <u>Marc Cardle</u>:
 Indexing Large Human-Motion Databases. <u>VLDB</u>
 2004: 780-791

KDD 2019 Faloutsos et. al. Part2.1 #44

- Hatonen, K., M. Klemettinen, et al. (1996).
 Knowledge Discovery from Telecommunication
 Network Alarm Databases. ICDE, New Orleans,
 Louisiana.
- Jolliffe, I. T. (1986). Principal Component Analysis, Springer Verlag.

- Oppenheim, I. J., A. Jain, et al. (March 2002). A MEMS
 Ultrasonic Transducer for Resident Monitoring of Steel
 Structures. SPIE Smart Structures Conference SS05, San
 Diego.
- Rabiner, L. and B.-H. Juang (1993). Fundamentals of Speech Recognition, Prentice Hall.

• Dennis Shasha and Yunyue Zhu *High Performance* Discovery in Time Series: Techniques and Case Studies Springer 2004

Signal Processing)

Outline

- Motivation
- Part 1: classical methods
 - Similarity Search
 - DSP (DFT, DWT)
 - Linear Forecasting
 - Non-linear forecasting
 - Tensors
 - Conclusions

Outline

DFT

- Definition of DFT and properties
- how to read the DFT spectrum
- DWT
 - Definition of DWT and properties
 - how to read the DWT scalogram

Important observations

Patterns, rules, forecasting and similarity indexing are closely related:

- to find patterns/rules
- compress
- to find similar settings in the past

(outlier = too far away from our forecast)

Introduction - Problem#1

Goal: given a signal (eg., packets over time)

Find: patterns and/or compress

count

lynx caught per year (packets per day; automobiles per hour)

year

What does DFT do?

A: highlights the periodicities

DFT: definition

- For a sequence x_0 , x_1 , ... x_{n-1}
- the (**n-point**) Discrete Fourier Transform is
- $X_0, X_1, ... X_{n-1}$:

$$X_{f} = 1/\sqrt{n} \sum_{t=0}^{n-1} x_{t} * \exp(-j2\pi tf/n) \qquad f = 0,...,n-1$$

$$(j = \sqrt{-1})$$
inverse DFT

$$x_{t} = 1/\sqrt{n} \sum_{t=0}^{n-1} X_{f} * \exp(+j2\pi tf/n)$$

DFT: definition

• Good news: Available in all symbolic math packages, eg., in 'mathematica'

```
x = [1,2,1,2];X = Fourier[x];Plot[ Abs[X] ];
```

Amplitude:
$$A_f^2 = \text{Re}^2(X_f) + \text{Im}^2(X_f)$$

X

Plot[Abs[Fourier[x]]];

count

year

Freq.

count

KDD 2019 Faloutsos et. al. 67

• excellent approximation, with only 2 frequencies!

• so what?

- excellent approximation, with only 2 frequencies!
- so what?
- A1: (lossy) compression
- A2: pattern discovery

- excellent approximation, with only 2 frequencies!
- so what?
- A1: (lossy) compression
- A2: pattern discovery

DFT - Conclusions

- It spots periodicities (with the 'amplitude spectrum')
- can be quickly computed (O(n log n)), thanks to the FFT algorithm.
- standard tool in signal processing (speech, image etc signals)
- (closely related to DCT and JPEG)

Outline

- Motivation
- Part 1: classical methods
 - Similarity Search and Indexing
 - DSP
 - DFT
 - DWT
 - Definition of DWT and properties
 - how to read the DWT scalogram

Problem #1:

Goal: given a signal (eg., #packets over time)

Find: patterns, periodicities, and/or compress

lynx caught per year (packets per day; virus infections per month)

year

KDD 2019 Faloutsos et. al. 73

Wavelets - DWT

• DFT suffers on short-duration waves (eg., baritone, silence, soprano)

time

Wavelets - DWT

 Solution#1: Short window Fourier transform (SWFT)

• But: how short should be the window?

freq

value

time

Wavelets - DWT

• Answer: multiple window sizes! -> DWT

KDD 2019

Faloutsos et. al.

Haar Wavelets

- subtract sum of left half from right half
- repeat recursively for quarters, eight-ths, ...

Haar Wavelets

- subtract sum of left half from right half
- repeat recursively for quarters, eight-ths, ...

x0 x1 x2 x3 x4 x5 x6 x7

etc ...

Q: map each coefficient

on the time-freq. plane

Q: map each coefficient

Haar wavelets - code

```
#!/usr/bin/perl5
# expects a file with numbers
# and prints the dwt transform
# The number of time-ticks should be a power of 2
# USAGE
# haar.pl <fname>

my @vals=();
my @smooth; # the smooth component of the signal
my @diff; # the high-freq. component
# collect the values into the array @val
while(<>){
     @vals = ( @vals , split );
}
```

```
my $len = scalar(@vals);
my $half = int($len/2);
while($half >= 1){
    for(my $i=0; $i < $half; $i++){
        $diff [$i] = ($vals[2*$i] - $vals[2*$i + 1])/ sqrt(2);
        print "\t", $diff[$i];
        $smooth [$i] = ($vals[2*$i] + $vals[2*$i + 1])/ sqrt(2);
}
print "\n";
@vals = @smooth;
$half = int($half/2);
}
print "\t", $vals[0], "\n"; # the final, smooth component</pre>
```

Observation1:

- '+' can be some weighted addition
- '-' is the corresponding weighted difference ('Quadrature mirror filters')

Observation2: unlike DFT/DCT,

there are *many* wavelet bases: **Haar**, Daubechies-4, Daubechies-6, Coifman, Morlet, Gabor, ...

Outline

- Motivation
- Part 1: classical methods
 - Similarity Search and Indexing
 - DSP
 - DFT
 - DWT
 - Definition of DWT and properties
 - how to read the DWT scalogram

Wavelets - Drill#1:

• Q: baritone/silence/soprano - DWT?

t

time

Wavelets - Drill#1:

• Q: baritone/silence/soprano - DWT?

time

Advantages of Wavelets

- Better compression (better RMSE with same number of coefficients used in JPEG-2000)
- fast to compute (usually: O(n)!)
- very good for 'spikes'
- mammalian eye and ear: Gabor wavelets

Overall Conclusions

- DFT, DCT spot periodicities
- **DWT**: multi-resolution matches processing of mammalian ear/eye better
- All three: powerful tools for compression,
 pattern detection in real signals
- All three: included in math packages
 - (matlab, 'R', mathematica, ... often in spreadsheets!)

Overall Conclusions

- DWT : very suitable for self-similar traffic
- DWT: used for summarization of streams [Gilbert+01], db histograms etc

Resources: software and urls

- xwpl: open source wavelet package from Yale, with excellent GUI
- http://monet.me.ic.ac.uk/people/gavin/java /waveletDemos.html : wavelets and scalograms

Books

- William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery: *Numerical Recipes in C*, Cambridge University Press, 1992, 2nd Edition. (Great description, intuition and code for DFT, DWT)
- C. Faloutsos: Searching Multimedia Databases by Content, Kluwer Academic Press, 1996 (introduction to DFT, DWT)

Additional Reading

• [Gilbert+01] Anna C. Gilbert, Yannis Kotidis and S. Muthukrishnan and Martin Strauss, *Surfing Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries*, VLDB 2001

Linear Foresting

Outline

- Motivation
- Part 1: classical methods
 - Similarity Search and Indexing
 - DSP

- Linear Forecasting
- Non-linear forecasting
- Tensors
- Conclusions

Forecasting

"Prediction is very difficult, especially about the future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/thoughts.ht ml

Outline

- Motivation
- Part 1: classical methods

— ...

- Linear Forecasting
 - Auto-regression: Least Squares; RLS
 - Co-evolving time sequences
 - Examples
 - Conclusions

Problem#2: Forecast

• Example: give x_{t-1} , x_{t-2} , ..., forecast x_t

KDD 2019 Faloutsos et. al. 101

Forecasting: Preprocessing

MANUALLY:

remove trends

spot periodicities

time

Problem#2: Forecast

Solution: try to express

 x_t as a linear function of the past: x_{t-2} , x_{t-2} , ..., (up to a window of w)

Formally:

$$x_t \approx a_1 x_{t-1} + \ldots + a_w x_{t-w} + noise$$

(Problem: Back-cast; interpolate)

• Solution - interpolate: try to express

 X_t

as a linear function of the past AND the future:

$$X_{t+1}, X_{t+2}, \ldots X_{t+wfuture}; X_{t-1}, \ldots X_{t-wpast}$$

(up to windows of w_{past} , w_{future})

• EXACTLY the same algo's

Linear Regression: idea

patient	weight	height
1	27	43
2	43	54
3	54	72
	•••	
N	(25)	??

- express what we don't know (= 'dependent variable')
- as a linear function of what we know (= 'indep. variable(s)')

Linear Auto Regression:

Time	Packets Sent(t)
1	43
2	54
3	72
•••	•••
N	??

Linear Auto Regression:

Time	Packets Sent (t-1)	Packets Sent(t)
1	-	43
2	43	54
3	54	72
•••		•••
N	(25)	??

Number of packets sent (t-1)

- lag w=1
- <u>Dependent</u> variable = # of packets sent (S[t])
- Independent variable = # of packets sent (S[t-1])

Outline

Motivation

•

Linear Forecasting

- Auto-regression: Least Squares; RLS
- Co-evolving time sequences
- Examples
- Conclusions

- Q1: Can it work with window w>1?
- A1: YES!

- Q1: Can it work with window w>1?
- A1: YES! (we'll fit a hyper-plane, then!)

- Q1: Can it work with window w>1?
- A1: YES! (we'll fit a hyper-plane, then!)

- Q1: Can it work with window w>1?
- A1: YES! The problem becomes:

$$\mathbf{X}_{[\mathbf{N}\times\mathbf{w}]}\times\mathbf{a}_{[\mathbf{w}\times\mathbf{1}]}=\mathbf{y}_{[\mathbf{N}\times\mathbf{1}]}$$

- OVER-CONSTRAINED
 - a is the vector of the regression coefficients
 - **X** has the N values of the w indep. variables
 - y has the N values of the dependent variable

•
$$\mathbf{X}_{[\mathbf{N} \times \mathbf{w}]} \times \mathbf{a}_{[\mathbf{w} \times 1]} = \mathbf{y}_{[\mathbf{N} \times 1]}$$

Ind-var1 Ind-var-w

time
$$\begin{bmatrix} X_{11}, X_{12}, \cdots, X_{1w} \\ X_{21}, X_{22}, \dots, X_{2w} \\ \vdots \\ \vdots \\ X_{N1}, X_{N2}, \dots, X_{Nw} \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_w \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_N \end{bmatrix}$$

$$[X_{N1}, X_{N2}, \dots, X_{Nw}]$$

•
$$\mathbf{X}_{[\mathbf{N} \times \mathbf{w}]} \times \mathbf{a}_{[\mathbf{w} \times 1]} = \mathbf{y}_{[\mathbf{N} \times 1]}$$

Ind-var1 Ind-var-w

time
$$\begin{bmatrix} X_{11}, X_{12}, \cdots, X_{1w} \\ X_{21}, X_{22}, \dots, X_{2w} \\ \vdots \\ \vdots \\ X_{N1}, X_{N2}, \dots, X_{Nw} \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_w \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_N \end{bmatrix}$$

$$\times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

- Q2: How to estimate $a_1, a_2, \dots a_w = a$?
- A2: with Least Squares fit

$$\mathbf{a} = (\mathbf{X}^T \times \mathbf{X})^{-1} \times (\mathbf{X}^T \times \mathbf{y})$$

- (Moore-Penrose pseudo-inverse)
- a is the vector that minimizes the RMSE from y

- Q3: Can we estimate a incrementally?
- A3: Yes, with the brilliant, classic method of 'Recursive Least Squares' (RLS) (see, e.g., [Yi+00], for details) pictorially:

Independent Variable

Independent Variable

RLS: quickly compute new best fit

Independent Variable

- Straightforward Least Squares
 - Needs huge matrix(growing in size)O(N×w)
 - Costly matrix operation $O(N \times w^2)$

- Recursive LS
 - Need much smaller, fixed size matrix

$$O(w \times w)$$

- Fast, incremental computation $O(1 \times w^2)$

$$N = 10^6$$
, $w = 1-100$

Outline

- Motivation
- •
- Linear Forecasting
 - Auto-regression: Least Squares; RLS

- Co-evolving time sequences
- Examples
- Conclusions

Co-Evolving Time Sequences

- Given: A set of correlated time sequences
- Forecast 'Repeated(t)'

Solution:

Q: what should we do?

Solution:

Least Squares, with

- Dep. Variable: Repeated(t)
- Indep. Variables: Sent(t-1) ... Sent(t-w); Lost(t-1) ...Lost(t-w); Repeated(t-1), ...
- (named: 'MUSCLES' [Yi+00])

Time Series Analysis - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
- Conclusions

Conclusions - Practitioner's guide

- AR(IMA) methodology: prevailing method for linear forecasting
- Brilliant method of Recursive Least Squares for fast, incremental estimation.
- See [Box-Jenkins]

Resources: software and urls

- MUSCLES: Prof. Byoung-Kee Yi: http://www.postech.ac.kr/~bkyi/ or christos@cs.cmu.edu
- free-ware: 'R' for stat. analysis (clone of Splus)

http://cran.r-project.org/

Books

- George E.P. Box and Gwilym M. Jenkins and Gregory C. Reinsel, *Time Series Analysis: Forecasting and Control*, Prentice Hall, 1994 (the classic book on ARIMA, 3rd ed.)
 - Brockwell, P. J. and R. A. Davis (1987). Time Series: Theory and Methods. New York, Springer Verlag.

Additional Reading

- [Papadimitriou+ vldb2003] Spiros Papadimitriou, Anthony Brockwell and Christos Faloutsos *Adaptive, Hands-Off Stream Mining* VLDB 2003, Berlin, Germany, Sept. 2003
- [Yi+00] Byoung-Kee Yi et al.: *Online Data Mining for Co-Evolving Time Sequences*, ICDE 2000. (Describes MUSCLES and Recursive Least Squares)

Part 1.4: chaos and non-linear forecasting

Outline

- Motivation
- Part 1: classical methods
 - Similarity Search and Indexing
 - DSP
 - Linear Forecasting

- Tensors
- Conclusions

Detailed Outline

- Non-linear forecasting
 - Problem
 - Idea
 - How-to
 - Experiments
 - Conclusions

Recall: Problem #1

Time

Given a time series $\{x_t\}$, predict its future course, that is, x_{t+1} , x_{t+2} , ...

KDD 2019 Faloutsos et. al. 133

How to forecast?

• ARIMA - but: linearity assumption

• ANSWER: 'Delayed Coordinate Embedding' = Lag Plots [Sauer92]

Example: logistic parabola

Models population of flies [R. May/1976]

$$x_{t+1} = ax_t \cdot (1 - x_t)$$

Linear equations, e.g., AR, ARIMA, ...

KDD 2019 Faloutsos et. al.

Linear equations, e.g., AR, ARIMA, ...

e.g., AR(1)
$$x_{t+1} = ax_t + \epsilon$$

KDD 2019

Faloutsos et. al.

Linear equations, e.g., AR, ARIMA, ...

but: linearity assumption

KDD 2019 Faloutsos et. al.

Solution?

"Delayed Coordinate Embedding"

= Lag Plots

[Sauer92]

k-nearest neighbor search

KDD 2019

Faloutsos et. al.

General Intuition (Lag Plot)

Questions:

- Q1: How to choose lag *L*?
- Q2: How to choose k (the # of NN)?
- Q3: How to interpolate?
- Q4: why should this work at all?

Q1: Choosing lag L

• Manually (16, in award winning system by [Sauer94])

Q2: Choosing number of neighbors *k*

• Manually (typically ~ 1-10)

Q3: How to interpolate?

How do we interpolate between the *k* nearest neighbors?

A3.1: Average

A3.2: Weighted average (weights drop with distance - how?)

Q3: How to interpolate?

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)

KDD 2019 Faloutsos et. al. 145

Q4: Any theory behind it?

A4: YES!

Theoretical foundation

- Based on the "Takens' Theorem" [Takens81]
- which says that <u>long enough</u> delay vectors can do prediction, even if there are unobserved variables in the dynamical system (= diff. equations)

Theoretical foundation

Example: Lotka-Volterra equations

$$dH/dt = r H - a H*P$$

 $dP/dt = b H*P - m P$

H is count of prey (e.g., hare)
P is count of predators (e.g., lynx)

Suppose only P(t) is observed (t=1, 2, ...).

Theoretical foundation

Example: Lotka-Volterra equations

$$dH/dt = r H - a H*P$$

 $dP/dt = b H*P - m P$

intuition: 'eliminate the H variable'

Solution to Volterra-Lotka eq.

predators

prey

time

KDD 2019

from wikipedia

Detailed Outline

- Non-linear forecasting
 - Problem
 - Idea
 - How-to

- Experiments
 - Conclusions

Datasets

Logistic Parabola:

time

153

$$x_t = ax_{t-1}(1-x_{t-1}) + noise$$

Models population of flies [R. May/1976]

Lag-plot

Datasets

Logistic Parabola:

time

$$x_t = ax_{t-1}(1-x_{t-1}) + noise$$

Models population of flies [R. May/1976]

Lag-plot

ARIMA: fails

Datasets

LORENZ: Models convection currents in the air

$$dx / dt = a (y - x)$$

$$dy / dt = x (b - z) - y$$

$$dz / dt = xy - cz$$

Equations -> prediction (?)

- ~1950s conventional wisdom: 'if we know the equations of a system, we can predict its evolution'
 - Thus, weather prediction is within reach
- Lorenz: **not necessarily**, if the equations are non-linear
- 'butterfly effect'

'strange attractor' - fractal

Dim: ~2.06 Dim: ~1.58

Conclusions

- Lag plots for non-linear forecasting (Takens' theorem)
- suitable for 'chaotic' signals

KDD 2019

Faloutsos et. al.

References

- Deepay Chakrabarti and Christos Faloutsos *F4: Large-Scale Automated Forecasting using Fractals* CIKM 2002, Washington DC, Nov. 2002.
- Sauer, T. (1994). *Time series prediction using delay coordinate embedding*. (in book by Weigend and Gershenfeld, below) Addison-Wesley.
 - Takens, F. (1981). *Detecting strange attractors in fluid turbulence*. Dynamical Systems and Turbulence. Berlin: Springer-Verlag.

References

• Weigend, A. S. and N. A. Gerschenfeld (1994). *Time Series Prediction: Forecasting the Future and Understanding the Past*, Addison Wesley. (Excellent collection of papers on chaotic/non-linear forecasting, describing the algorithms behind the winners of the Santa Fe competition.)

Part 1.5: Tensors — time evolving graphs

Outline

- Motivation
- Part 1: Classical methods
 - Similarity Search and Indexing
 - DSP
 - Linear Forecasting

- Non-linear forecasting
- Tensors
- Conclusions

Problem: co-evolving graphs

- How to forecast?
 - $-4M \times 4M \times 15 \text{ days}$

Faloutsos et. al.

A: tensors

• Q: what is a tensor?

Tensor examples

• A: N-D generalization of matrix:

arxiv' 17	data	mining	classif.	tree	•••
John	13	11	22	55	
Peter	5	4	6	7	
John Peter Mary Nick					
N ₁ ck					

KDD 2019

Faloutsos et. al.

Tensor examples

• A: N-D generalization of matrix:

arxiv'		, '							
arxiv' 18		/							
arxiv' 17	1	data	mining	<u>)</u>	classif.	tree		•••	
John Peter		13	11		22		55		
Peter		5	4		6		7		
Mary Nick									
		•							
•••									

KDD 2019

Faloutsos et. al.

Tensors are useful for 3 or more modes

Terminology: 'mode' (or 'aspect'): mining classif. tree 13 22 55 ... 11

KDD 2019

Mode (== aspect) #1

170

Tensor Basics

• Recall: (SVD) matrix factorization: finds blocks

PARAFAC decomposition

PARAFAC decomposition

- PARAFAC decomposition
- Results for who-calls-whom-when

– 4M x 15 days

KDD 2019 Faloutsos et. al.

PARAFAC decomposition

Results for who-calls-whom-when

– 4M x 15 days

Forecast in, eg, 3, instead of 1M*1M series

Faloutsos et. al.

PARAFAC decomposition

Results for who-calls-whom-when

– 4M x 15 days

Detection in time-evolving

graphs

- Strange communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

KDD 2019 Faloutsos et. al. 179

Detection in time-evolving

graphs

- Strange communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

KDD 2019 Faloutsos et. al. 180

Overall conclusions

- P1.1. Similarity search: Euclidean/timewarping; feature extraction and SAMs
- P1.2. Signal processing: **DFT**, **DWT** are powerful tools
- P1.3. Linear Forecasting: AR (Box-Jenkins)
- P1.4. Non-linear forecasting: **lag-plots** (Takens)
- P1.5. Tensors: PARAFAC etc

Important observations

Patterns, rules, forecasting and similarity indexing are closely related:

- To do forecasting, we need
 - to find patterns/rules
 - compress
 - to find similar settings in the past
- to find outliers, we need to have forecasts
 - (outlier = too far away from our forecast)

THANK YOU!

christos AT cs.cmu.edu www.cs.cmu.edu/~christos

DFT

AR

Non-lin./
chaos

tensors

