HOMEWORK ASSIGNMENT 2: DUE OCTOBER 18

Reading: Chapters 3-4 of L&Y, Introduction to Linear and Nonlinear Programming.

- 1. Farkas' lemma can be used to derive many other (named) theorems of the alternative. This problem concerns a few of these pairs of systems. Using Farkas's lemma, prove each of the following results.
- (a) Gordan's Theorem. Exactly one of the following systems has a solution:

$$\begin{aligned} & (\mathrm{i}) \quad A\mathbf{x} > \mathbf{0} \\ (\mathrm{ii}) \quad \mathbf{y}^T A = \mathbf{0}, \quad \mathbf{y} \geq \mathbf{0}, \quad \mathbf{y} \neq \mathbf{0}. \end{aligned}$$

(b) Stiemke's Theorem. Exactly one of the following systems has a solution:

(i)
$$A\mathbf{x} \ge \mathbf{0}$$
, $A\mathbf{x} \ne \mathbf{0}$
(ii) $\mathbf{y}^T A = \mathbf{0}$, $\mathbf{y} > \mathbf{0}$

(c) Gale's Theorem. Exactly one of the following systems has a solution:

(i)
$$A\mathbf{x} \leq \mathbf{b}$$

(ii) $\mathbf{y}^T A = \mathbf{0}$, $\mathbf{y}^T \mathbf{b} < 0$, $\mathbf{y} \geq \mathbf{0}$

2. Given that the dual of a linear program

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

in standard form is

$$\begin{array}{ll} \text{maximize} & \mathbf{y}^T \mathbf{b} \\ \text{subject to} & \mathbf{y}^T A \leq \mathbf{c}^T \ , \\ & (\mathbf{y} \text{ free}) \end{array} ,$$

develop an appropriate dual for each of the following LPs:

(b) minimize
$$\mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} \ge \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$

(c) minimize
$$\mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} = \mathbf{b}$ $\bar{A}\mathbf{x} \geq \bar{\mathbf{b}}$ $\mathbf{x} \geq \mathbf{0}$

3. Consider the auction problem in Lecture note #4. The LP pricing problem has an objective

$$\pi^T \mathbf{x} - z$$

where the scalar

$$z = \max[A\mathbf{x}]$$

is the maximum number of contracts among all states (recall that $A\mathbf{x} \in R^m$ is a vector representing the number of contracts in each state). Thus, z represents the worst-case payback amount. Now assuming that the auction organizer knows the discrete probability distribution, say $\mathbf{v} \in R_+^m$, for each state to win. Then the expected payback amount would be

$$\left(\sum_{i=1}^{n} v_i \cdot [Ax]_i\right) = \mathbf{v}^T A \mathbf{x}$$

Develop an LP model to decide the contract award vector \mathbf{x} and to price each state using the expected payback rather than the worst-case payback, that is, using the objective function

$$\pi^T \mathbf{x} - \mathbf{v}^T A \mathbf{x}$$

in the LP setting. How to solve the problem faster? Moreover, explain the price properties using duality and/or complementarity.

- 4. Strict Complementarity Theorem:
- Read the proof of the strict complementarity theorem for the LP standard form in Lecture note #3.

• Consider the LP problem

(LP) maximize
$$\mathbf{c}^T \mathbf{x} = \sum_{j=1}^n c_j x_j$$

subject to $\sum_{j=1}^n \mathbf{a}_j x_j = A\mathbf{x} \leq \mathbf{b}, \ \mathbf{0} \leq \mathbf{x} \leq \mathbf{e};$

where data $A \in \mathbb{R}^{m \times n}$, $\mathbf{a}_j \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ and \mathbf{e} is the vector of all ones, and variables $\mathbf{x} \in \mathbb{R}^n$. You may interpret this is a linear program to sell the items of inventory \mathbf{b} to n customers such that the revenue is maximized.

Suppose the problem is feasible and bounded.

- 1. Write down the dual of the problem. What are the interpretations of the dual price vector associated with the constraints $A\mathbf{x} \leq \mathbf{b}$ and the dual price vector associated with the constraints $\mathbf{x} \leq \mathbf{e}$)?
- 2. What properties does a strictly complementary solution have for this linear program pair?
- 3. Suppose the linear program pair has a strictly complementary primal solution \mathbf{x}^* such that $x_j^* = 0$ or $x_j^* = 1$ for all j, and let \mathbf{y}^* be a strictly complementary dual price vector associated with the constraints $A\mathbf{x} \leq \mathbf{b}$. Now consider a on-line linear program where customer (c_j, \mathbf{a}_j) comes sequentially, and the seller have to make a decision $x_j = 0$ or $x_j = 1$ as soon as the customer arrives. Prove that the following mechanism or decision rule, given \mathbf{y}^* being known, is optimal: If $c_j > \mathbf{a}_j^T \mathbf{y}^*$ then set $x_j = 1$; otherwise, set $x_j = 0$.
- **5.** Consider a system of m linear equations in n nonnegative variables, say

$$A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}.$$

Assume the right-hand side vector ${\bf b}$ is nonnegative. Now consider the (related) linear program

minimize
$$\mathbf{e}^T \mathbf{y}$$

subject to $A\mathbf{x} + I\mathbf{y} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}, \ \mathbf{y} \ge \mathbf{0}$

where **e** is the m-vector of all ones, and I is the $m \times m$ identity matrix. This linear program is called a Phase One Problem.

- (a) Write the dual of the Phase One Problem.
- (b) Show that the Phase One Problem always has a basic feasible solution.

- (c) Using theorems proved in class, show that the Phase One Problem always has an optimal solution.
- (d) Write the complementary slackness conditions for the Phase One Problem.
- (e) Prove that $\{\mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\} \neq \emptyset$ if and only if the optimal value of the objective function in the corresponding Phase One Problem is zero.
 - **6.** Exercise 4.8-7 of of L&Y.
 - **7.** Exercise 4.8-8 of of L&Y.
 - **8.** Exercise 4.8-10 of of L&Y.
- **9.** Let A be an m by n matrix and let \mathbf{b} be a vector in R^m . We consider the problem of minimizing $||A\mathbf{x} \mathbf{b}||_{\infty}$ over all $\mathbf{x}inR^n$. Let v be the value of the optimal cost.
- (a) Let **p** be any vector in R^m that satisfies $\|\mathbf{p}\|_1 = \sum_{i=1}^m |p_i| \le 1$ and $A^T \mathbf{p} = \mathbf{0}$. Show that $\mathbf{b}^T \mathbf{p} \le v$
- (b) In order to obtain the best possible lower bound of the form considered in part (a), we form the linear programming problem

maximize
$$\mathbf{b}^T \mathbf{p}$$

subject to $A^T \mathbf{p} = \mathbf{0}$
 $\|\mathbf{p}\|_1 \le 1$.

Show that the optimal cost on this problem is equal to v.