•	We are given as input a set of n requests (e.g., for the use of an auditorium), with a known start time s_i and finish time t_i for each request i . Assume that all start and finish times are distinct. Two requests $conflict$ if they overlap in time if one of them starts between the start and finish times of the other. Our goal is to select a maximum-cardinality subset of the given requests that contains no conflicts. (For example, given three requests consuming the intervals $[0,3]$, $[2,5]$, and $[4,7]$, we want to return the first and third requests.) We aim to design a greedy algorithm for this problem with the following form: At each iteration we select a new request i , including it in the solution-sofar and deleting from future consideration all requests that conflict with i .	
	Which solutio	of the following greedy rules is guaranteed to always compute an optimal n?
		At each iteration, pick the remaining request which requires the least time (i.e., has the smallest value of t_i-s_i) (breaking ties arbitrarily).
		At each iteration, pick the remaining request with the fewest number of conflicts with other remaining requests (breaking ties arbitrarily).
		At each iteration, pick the remaining request with the earliest start time.
		At each iteration, pick the remaining request with the earliest finish time.
	j th	R_j denote the requests with the j earliest finish times. Prove by induction on at this greedy algorithm selects the maximum-number of non-conflicting uests from S_j .
•	We are given as input a set of n jobs, where job j has a processing time p_j and a deadline d_j . Recall the definition of $completion\ times\ C_j$ from the video lectures. Given a schedule (i.e., an ordering of the jobs), we define the $lateness\ l_j$ of job j as the amount of time C_j-d_j after its deadline that the job completes, or as 0 if $C_j\leq d_j$. Our goal is to minimize the maximum lateness, $\max_j l_j$. Which of the following greedy rules produces an ordering that minimizes the maximum lateness? You can assume that all processing times and deadlines are distinct.	
		None of the other answers are correct.
		Schedule the requests in increasing order of deadline d_{j}
		of by an exchange argument, analogous to minimizing the weighted sum of pletion times.
		Schedule the requests in increasing order of the product $d_i \cdot p_j$
		Schedule the requests in increasing order of processing time p_{j}
	such the matche has a percentage of the consideration of the considerati	cted, connected, and acyclic). A perfect matching of T is a subset $F \subset E$ of edges hat every vertex $v \in V$ is the endpoint of exactly one edge of F . Equivalently, F as each vertex of T with exactly one other vertex of T . For example, a path graph perfect matching if and only if it has an even number of vertices. We the following two algorithms that attempt to decide whether or not a given tree perfect matching. The degree of a vertex in a graph is the number of edges incident the two algorithms differ only in the choice of v in line 5.) While T has at least one vertex: If T has no edges: halt and output "T has no perfect matching." Else: Let v be a vertex of T with maximum degree. Choose an arbitrary edge v incident to v .
	7 8 9	Delete e and its two endpoints from T. [end of while loop] Halt and output "T has a perfect matching."
	Algorithm B:	
	1 2 3	While T has at least one vertex: If T has no edges: halt and output "T has no perfect matching."
	4 5 6 7	Else: Let v be a vertex of T with minimum non-zero degree. Choose an arbitrary edge e incident to v. Delete e and its two endpoints from T.
	9	<pre>[end of while loop] Halt and output "T has a perfect matching."</pre>
	Is eithe	er algorithm correct?
		Algorithm A always correctly determines whether or not a given tree graph has a perfect matching; algorithm B does not.
		Both algorithms always correctly determine whether or not a given tree graph has a perfect matching. Algorithm B always correctly determines whether or not a given tree graph has
		a perfect matching; algorithm A does not.
	正确 Algorithm A can fail, for example, on a three-hop path. Correctness of algorithm B can be proved by induction on the number of vertices in T . Note that the tree property is used to argue that there must be a vertex with degree 1; if there is a perfect matching, it must include the edge incident to this vertex.	
		Neither algorithm always correctly determines whether or not a given tree graph has a perfect matching.
•	Assum G and every G	der an undirected graph $G=(V,E)$ where every edge $e\in E$ has a given cost c_e . It is a that all edge costs are positive and distinct. Let T be a minimum spanning tree of P a shortest path from the vertex s to the vertex t . Now suppose that the cost of edge e of G is increased by 1 and becomes c_e+1 . Call this new graph G' . Which following is true about G' ? The may not be a minimum spanning tree and P may not be a shortest s - t path.
		T may not be a minimum spanning tree but P is always a shortest $s ext{-}t$ path.
		T is always a minimum spanning tree and P is always a shortest $s ext{-}t$ path.

T must be a minimum spanning tree but P may not be a shortest s-t path.

The positive statement has many proofs (e.g., via the Cut Property). For the

think about two different paths from \boldsymbol{s} to \boldsymbol{t} that contain a different number of

Suppose T is a minimum spanning tree of the connected graph G. Let H be a connected

induced subgraph of G. (I.e., H is obtained from G by taking some subset $S\subseteq V$ of

vertices, and taking all edges of ${\cal E}$ that have both endpoints in ${\cal S}.$ Also, assume ${\cal H}$ is

Proof via the Cut Property (cuts in ${\cal G}$ correspond to cuts in ${\cal H}$ with only fewer

For every ${\cal G}$ and ${\cal H}$, these edges form a minimum spanning tree of ${\cal H}$

For every G and H and spanning tree T_H of H, at least one of these edges is

For every G and H, these edges form a spanning tree (but not necessary

connected.) Which of the following is true about the edges of T that lie in H? You can

assume that edge costs are distinct, if you wish. [Choose the strongest true statement.]

For every ${\it G}$ and ${\it H}$, these edges are contained in some minimum spanning

正确

edges.

negative statement,

 ${\rm tree}\ {\rm of}\ H$

crossing edges).

missing from $T_{\cal H}$

minimum-cost) of \boldsymbol{H}

正确