Algorithms & Complexity Lecture 5: Maximum Flow

Antoine Vigneron

Ulsan National Institute of Science and Technology

March 18, 2018

- Introduction
- 2 The maximum flow problem
- The Ford-Fulkerson Method
- Residual network
- Cuts of flow networks
- 6 The basic Ford-Fulkerson algorithm
- The Edmonds-Karp algorithm
- 8 Integer values
- Maximum Bipartite Matching

Reference

- Assignment 1 is due now.
- Chapter 26 in Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein.
 - ► These slides are based on the *2nd edition* (2001), also available at the library.
 - ▶ The 3rd edition uses a different convention: If edge $(u, v) \in E$ then $(v, u) \notin E$, and then flow conservation is written differently and skew symmetry is irrelevant.

Flow Networks

- A *flow network* G = (V, E) is a directed graph.
- Each edge (u, v) is weighted by a non-negative capacity c(u, v) ≥ 0.
 If (u, v) ∉ E, then c(u, v) = 0.
- Two special vertices: the *source* s and the *sink* t.
- For each $v \in V$, there is a path $s \rightsquigarrow v \rightsquigarrow t$.

Flows

A *flow* in G is a function $f: V \times V \to \mathbb{R}$ such that:

•
$$\forall u, v \in V, f(u, v) \leq c(u, v).$$

•
$$\forall u, v \in V, f(u, v) = -f(v, u).$$

•
$$\forall u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0.$$

(Capacity constraint)

(Skew symmetry)

(Flow conservation)

Terminology

- f(u, v) is called the *flow* from u to v.
- The *value* of a flow is $|f| = \sum_{v \in V} f(s, v)$.
- The maximum-flow problem is to find a flow of maximum value in a flow network.

Augmenting Path

Definition

A simple path in a graph is a path with no repeated vertices.

An augmenting path is a simple path $p: s \leadsto t$ along which we can send more flow.

Augmenting Path

Result after sending 4 units of flow along the augmenting path p.

The Ford-Fulkerson Method

Ford-Fulkerson method for maximum flow

- 1: Initialize flow *f* to 0.
- 2: while there exists an augmenting path p do
- 3: augment flow f along p.
- 4: return f

A flow network G and a flow f.

The *residual capacity* of (u, v) is $c_f(u, v) = c(u, v) - f(u, v)$.

- Here, $c_f(s, v_2) = 5$ and $c_f(v_2, v_3) = 0 (-4) = 4$.
- Intuitively, the residual capacity $c_f(u, v)$ is the additional amount of flow we can push from u to v.

The *residual network* $G_f(V, E_f)$, with edge set

$$E_f = \{(u,v) \in V \times V \mid c_f(u,v) > 0\}.$$

The residual capacity of a path p is $c_f(p) = \min\{c_f(u, v) \mid (u, v) \text{ is on } p\}$.

The augmenting path p, with residual capacity 4.

Property

An augmenting path in G is a simple path $p: s \rightsquigarrow t$ such that $c_f(p) > 0$, or equivalently, it is a simple path $p: s \rightsquigarrow t$ in G_f .

The flow after augmenting p by its residual capacity 4.

The residual network after augmenting p by its residual capacity 4.

There is no augmenting path now, the Ford-Fulkerson method returns this flow.

Flow Sums

Definition

Let f_1 and f_2 be flows in G. Let $f_1 + f_2 : V \times V \to \mathbb{R}$ be the function such that $(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v)$ for all $u, v \in V$. If $f_1 + f_2$ is a flow in G, then we say that $f_1 + f_2$ is the *flow sum* of f_1 and f_2 .

• Which flow property can fail for $f_1 + f_2$?

Lemma

Let f be a flow in the flow network G. Let f' be a flow in the residual network G_f . Then f + f' is a flow in G with value |f + f'| = |f| + |f'|.

Proof done in class.

Augmenting Paths

Let G=(V,E) be a flow network. Let f be a flow in G, and let p be an augmenting path in G_f . Define $f_p:V\times V\to \mathbb{R}$ by

$$f_p(u,v) = \left\{ egin{array}{ll} c_f(p) & ext{if } (u,v) ext{ is on } p, \\ -c_f(p) & ext{if } (v,u) ext{ is on } p, \\ 0 & ext{otherwise.} \end{array}
ight.$$

Lemma

The function f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$.

Proof done in class.

Corollary

Let $f': V \times V \to \mathbb{R}$ be defined by $f' = f + f_p$. Then f' is a flow in G with value $|f'| = |f| + |f_p| > |f|$.

Definition

A $\operatorname{cut}(S,T)$ of a flow network G=(V,E) is a partition of V into S and $T=V\setminus S$ such that $s\in S$ and $t\in T$.

Here $(S, T) = (\{s, v_1, v_2\}, \{v_3, v_4, t\}).$

Definition

The *capacity* of a cut (S, T) is $c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$.

Here c(S, T) = 12 + 14 = 26.

Definition

A *minimum cut* is a cut (S, T) with minimum capacity.

Here the minimum cut (S, T) has capacity c(S, T) = 12 + 7 + 4 = 23.

Definition

The *net flow* across a cut (S, T) is $f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v)$.

Here f(S, T) = 12 + 11 - 4 = 19.

Lemma

For any cut (S, T), the net flow f(S, T) across (S, T) is equal to the value |f| of the flow.

Proof (sketch).

For any
$$X, Y \subset V$$
, we denote $f(X, Y) = \sum_{u \in X} \sum_{v \in Y} f(u, v)$.

$$f(S, T) = f(S, V) - f(S, S)$$

$$= f(S, V)$$

$$= f(\{s\}, V) + f(S \setminus \{s\}, V)$$

$$= f(\{s\}, V)$$

$$= |f|$$

Corollary (1)

The flow $\sum_{u \in V} f(u, t)$ into the sink is equal to |f|.

Corollary (2)

The value |f| of any flow f is at most the capacity c(S, T) of any cut (S, T).

Theorem (Max-flow min-cut theorem)

In a flow network, the maximum value of a flow is equal to the minimum capacity of a cut.

Proof: follows from the Lemma below.

Lemma

If f is a flow in a network G, then the following three conditions are equivalent:

- 1 f is a maximum flow in G.
- ② The residual network G_f admits no augmenting path.
- **3** The value |f| of f is equal to the capacity c(S, T) of a cut (S, T).

Proof of the Lemma: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.

The Basic Ford-Fulkerson Algorithm

Ford-Fulkerson

```
1: for each edge (u, v) \in E do

2: f[u, v] \leftarrow 0

3: f[v, u] \leftarrow 0

4: while \exists simple path p: s \leadsto t in G_f do

5: c_f(p) \leftarrow \min\{c_f(u, v) \mid (u, v) \text{ is in } p\}

6: for each edge (u, v) in p do

7: f[u, v] \leftarrow f[u, v] + c_f(p)

8: f[v, u] \leftarrow -f[u, v]

9: return f
```

At Line 4, the path p is found by depth-first search or breadth-first search.

Analysis

- We assume integral capacities: $c(u, v) \in \mathbb{N}$ for each u, v.
- Denote by $|f^*|$ the value of an optimal flow.
- Lines 1-3: O(|E|).
- The While loop is iterated at most $|f^*|$ times.
- At each iteration:
 - ▶ Line 4: graph search (DFS or BFS) can be done in O(|E| + |V|) time.
 - * This is O(|E|) in our case because the graph is connected, hence $|E|\geqslant |V|-1$.
 - ► Lines 5–8: O(|E|).
- Overall running time: $O(|E| \times |f^*|)$.

Bad Case

- $|f^*| = 2.10^6$.
- ullet In this example, in the worst case, the while loop is iterated $|f^*|$ time.

The Edmonds-Karp Algorithm

The *Edmonds-Karp* algorithm is the basic Ford-Fulkerson method with breadth-first search.

• In particular, we take an augmenting path with as few edges as possible.

Theorem

The Edmonds-Karp algorithm computes a maximum flow in $O(|V| \cdot |E|^2)$ time.

We denote by $\delta_f(u, v)$ the shortest path distance from u to v in G_f , where each edge has unit distance.

Lemma

For each vertex v, the shortest path distance $\delta_f(s, v)$ never decreases during the course of the Edmonds-Karp algorithm.

See next slides for the proofs of the lemma and the theorem.

The flow network G.

Breadth-first search in G_f for f = 0.

The augmenting path p, with residual capacity $c_f(p) = 12$.

The flow f after pushing 12 units through p.

The residual network G_f .

Breadth-first search in G_f .

The augmenting path p, with residual capacity $c_f(p) = 4$.

The flow f after pushing 4 units through p.

The residual network G_f .

Breadth-first search in G_f .

The augmenting path p, with residual capacity $c_f(p) = 7$.

The flow f after pushing 7 units through p.

The residual network G_f .

Breadth-first search in G_f .

The sink t is unreachable, so the algorithm terminates.

The Edmonds-Karp Algorithm: Proof of the Lemma

We want to prove that for each v, the distance $\delta_f(s, v)$ never decreases during the course of the Edmonds-Karp algorithm.

- When the flow is augmented along p, some edges are created or deleted in G_f , which may affect δ_f .
- ullet We will first apply the insertions, and then the deletions, and see how δ_f is affected.
- So we first consider the new edges.
 - ▶ An edge (v, u) may be created if $(u, v) \in p$.
 - ▶ But then, before the edge is introduced, $\delta_f(v) = \delta_f(u) + 1$.
 - ightharpoonup So in the resulting graph, a shortest path to u cannot go through v.
 - ▶ Therefore, the insertion of edge (v, u) does not affect δ_f .
- So after we insert all the new edges, δ_f is unchanged.
- Then we delete some edges.
 - When we delete an edge, δ_f cannot decrease.
- So overall, $\delta_f(s, v)$ cannot decrease for any vertex v.

The Edmonds-Karp Algorithm: Proof of the Theorem

It suffices to prove that there are $O(|V| \cdot |E|)$ flow augmentations. Proof done in class.

Integer Values

• If all the capacities c(u, v) are integers, then the Ford-Fulkerson algorithm (both the basic version and the Edmonds-Karp algorithm) never introduce any number that is not an integer. It follows that:

Theorem (integrality theorem)

If the capacity function c takes only integral values, then the maximum flow f^* produced by the Ford-Fulkerson method is such that for all u, v, the value $f^*(u, v)$ is an integer. Thus, the value $|f^*|$ of a maximum flow is an integer.

Maximum Bipartite Matching

Definition

A graph G = (V, E) is *bipartite* if its vertex set V can be partitioned into two sets L, R such that $E \subseteq L \times R$.

Example:

Maximum Bipartite Matching

Definition

A $maximum\ bipartite\ matching\ of\ a\ bipartite\ graph\ G$ is a matching in G with maximum cardinality.

Example:

The problem of computing a maximum bipartite matching reduces to computing a maximum flow.

Instance *G* of maximum bipartite matching.

The corresponding flow network G'. All capacities c(u, v) are set to 1.

A maximum bipartite matching in *G*.

The corresponding maximum flow in G'.

Let G = (V, E) be an instance of maximum bipartite matching, with V partitioned into L, R, and all edges in $L \times R$.

As above, we transform it into a flow network G'(V', E') such that:

- $V' = V \cup \{s, t\}.$
- $E' = E \cup (\{s\} \times L) \cup (R \times \{t\}).$
- c(u, v) = 1 for all $(u, v) \in E'$.

We say that a flow f is *integer-valued* if f(u, v) is an integer for all (u, v).

Lemma

If M is a matching in G, then there is an integer-valued flow f in G' with value |f| = |M|. Conversely, if f is an integer-valued flow in G', then there is a matching M in G with cardinality |M| = |f|.

Proof done in class.

So it follows from the integrality theorem that:

Corollary

The cardinality of a maximum matching M^* in a bipartite graph G is the value $|f^*|$ of a maximum flow in the corresponding flow network G'.

Thus, using the Edmonds-Karp algorithm:

Corollary

We can compute a maximum matching in a bipartite graph G(V,E) in time $O(|V| \cdot |E|^2)$.