

UNION (U):

- El resultado de la operación de unión, denotada por R ∪ S, es una relación que incluye todas las tuplas que están en R o en S o en ambas. Las tuplas repetidas se eliminan.
- Las relaciones sobre las cuales se aplica la unión, intersección o diferencia deben ser compatibles.
- Se dice que dos relaciones $R(A_1,A_2,...,A_n)$ y $S(B_1,B_2,...,B_n)$ son compatibles si tienen el mismo grado y si $dom(A_i) = dom(B_i)$ para $1 \le i \le n$

UNION (U), ejemplo 1:

▶ Dadas las relaciones Alumnos Chillan (AChi)y Alumnos Concepcion (ACon):

	AChi		
ID	NOMBRE		
12	luis		

	ACon		
ID	NOMBRE		
11	pedro		
13	juan		
14	domingo		

► *Achi* ∪ *ACon* produce la relación:

ID	NOMBRE
12	luis
11	pedro
13	juan
14	domingo

- UNION (U), ejemplo 2:
 - "Obtener las lista de los DNI de todos los empleados que trabajan en el departamento 5 o que supervisan directamente a un empleado que trabaja en ese departamento"

```
EMPS_DEP5 \leftarrow \sigma_{Dno=5} (EMPLEADO)

RESULTADO1 \leftarrow \pi_{Dni} (EMPS_DEP5)

RESULTADO2(DNI) \leftarrow \pi_{SuperDni} (EMPS_DEP5)

RESULTADO \leftarrow RESULTADO1 \cup RESULTADO2
```


- INTERSECCIÓN (∩):
 - El resultado de la operación de intersección, denotada por R ∩ S, es una relación que incluye todas las tuplas que están tanto en R como S.
 - Ambas relaciones deben ser "unión compatible"
 - Ejemplo:
 - "Los empleados del Departamento 5 y que ganan más de 30000 euros"

```
RES1 \leftarrow \sigma_{Dno=5}(EMPLEADO)
RES2 \leftarrow \sigma_{Sueldo>30000} (EMPLEADO)
RES \leftarrow RES1 \cap RES2
```

O también,

- $\sigma_{Dno=5}(EMPLEADO) \cap \sigma_{Sueldo>30000}(EMPLEADO)$
- $\sigma_{Dno=5}$ and _{Sueldo>30000} (EMPLEADO)

- DIFERENCIA (-):
 - El resultado de la operación de diferencia, denotada por R S, es una relación que incluye todas las tuplas que están en R pero no en S.
 - Ejemplo 1 Dadas las relaciones Alumnos Chillan (AChi) y Alumnos Concepcion (ACon):

AChi		
ID	NOMBRE	
12	luis	
11	pedro	

ACon		
ID NOMBRE		
11	pedro	
13	juan	
14	domingo	

AChi – ACon produce la relación:

ID	NOMBRE
12	luis

ACon – AChi produce la relación:

ID	NOMBRE	
13	juan	
14	domingo	

- DIFERENCIA (-):
 - Ejemplo 2:
 - "Una lista de los DNI de los empleados que no son jefes de departamento"

 $\Pi_{Dni}(EMPLEADO) - \Pi_{DniDirector}(DEPARTAMENTO)$

- Observaciones (Unión, Intersección y Diferencia):
 - La unión y la intersección son conmutativas

$$R \cup S = S \cup R y R \cap S = S \cap R$$

La unión y la intersección son asociativas

$$R \cup (S \cup T) = (R \cup S) \cup T, y$$

 $R \cap (S \cap T) = (R \cap S) \cap T$

La operación de diferencia no es conmutativa

$$S - R \neq R - S$$

Ejercicios:

- 1. Nombre y Apellidos de los empleados que ganan menos de 30.000 y que pertenecen al departamento 5 o 6.
- 2. El DNI de los empleados supervisados por el empleado con DNI igual a 888665555.
- 3. El nombre de los familiares (SUBORDINADO) del empleado con DNI igual a 333445555.
- 4. El DNI de los empleados del departamento 5, que no supervisan a ningún empleado del departamento 4.
- 5. Los DNI de los empleados que no tienen cargas familiares.
- 6. Los DNI de los empleados que no están asignados a ningún proyecto.

- PRODUCTO CARTESIANO (x)
 - Esta operación sirve para combinar tuplas de dos relaciones de manera combinatorial.
 - $R(A_1,A_2,...,A_n) \times S(B_1,B_2,...,B_m)$ es una relación Q con n+m atributos $Q(A_1,A_2,...,A_n,B_1,B_2,...,B_m)$.
 - Q tiene una tupla por cada combinación de tuplas: una de R y otra de S.
 - Si R tiene n_R tuplas y S tiene n_S , $R \times S$ tiene $n_R * n_S$ tuplas.
 - Por sí sola no es muy útil. Es más interesante cuando se combina con operaciones de selección.

PRODUCTO CARTESIANO (x), Ejemplo 1:

Dadas las relaciones AChi y CursosChi:

AChi			
ID NOMBRE			
12	luis		

CursosChi			
ID NOMBRE_C			
1 <i>BD1</i>			
2 BD2			

AChi × CursosChi produce la relación:

1	2	3	4
12	luis	1	BD1
12	luis	2	BD2

- Producto Cartesiano (x), Ejemplo 2:
 - Una lista de los empleados mujeres y sus cargas familiares

```
\Pi_{\text{Nombre,Apellido1,NombSubordinado}}(\sigma_{\text{Dni=DniEmpleado}}(\Pi_{\text{Nombre,Apellido1,Dni}}(\sigma_{\text{Sexo='M'}}(\text{EMPLEADO}))) \times \text{SUBORDINADO})))
```

- Otra forma:
 - EMPS_MUJER $\leftarrow \sigma_{\text{Sexo}='\text{M}'}$ (EMPLEADO)
 - NOMBRES_EMP $\leftarrow \pi_{Nombre,Apellido1,Dni}$ (EMPS_MUJER)
 - SUBORDINADOS_EMP←NOMBRES_EMP×SUBORDINADO
 - DEP_REALES $\leftarrow \sigma_{\text{Dni=DniEmpleado}}$ (SUBORDINADOS_EMP)
 - RESULTADO $\leftarrow \pi_{Nombre,Apellido1, NombSubordinado}(DEP_REALES)$

- Reunión (▷□)
 - Sirve para combinar tuplas relacionadas de dos relaciones en una sola tupla.
 - Ejemplo: Listar los nombres de los departamentos junto al nombre y apellido del jefe
 - JEFE_DEPTO ← DEPARTAMENTO ▷
 DniDirector=Dni EMPLEADO
 - π NombreDepto, Nombre, Apellido1 (JEFE_DEPTO)

Otra forma:

■ π _{NombreDepto, Nombre, Apellido1} (DEPARTAMENTO ▷ □ DniDirector=Dni EMPLEADO)

■ Reunión (▷¬)

La forma general de una operación de reunión con dos relaciones $R(A_1,A_2,...,A_n)$ y $S(B_1,B_2,...,B_m)$ es:

$$R \bowtie_{\mathsf{condición}} S$$

- El resultado es una relación Q con n + m atributos $Q(A_1,A_2,...,A_n,B_1,B_2,...,B_m)$
- Q tiene una tupla por cada combinación de tuplas (una de R y una de S) siempre que la combinación satisfaga la condición de la reunión.
- Una condición de reunión tiene la forma:
 - *<condición> and ... <condición>,* donde cada condición tiene la forma $A_i \theta B_j$, con A_i un atributo de R y B_j un atributo de S, A_i y B_j tienen el mismo dominio y θ es uno de los operadores $\{=,<,\leq,>,\geq,\neq\}$
- Las tuplas cuyos atributos de reunión son nulos, no aparecen en el resultado.

- Equirreunión/EquiJoin y Reunión Natural/Natural Join
 - Equireunión es una reunión restringuida a operadores de igualdad solamente.
 - En el resultado de una Equirreunión siempre tenemos uno o más pares de atributos con valores idénticos.
 - Para resolver el problema se ha creado la reunión natural (*).
 - La reunión Natural exige que los dos atributos de reunión (o cada par de atributos) tengan el mismo nombre. Una definición más general de la reunión natural es :

$$R*_{(< lista1>),(< lista2>)} S$$

- Equirreunión/EquiJoin y Reunión Natural/Natural Join, Ejemplos:
 - Ejemplo:
 - Listar el nombre y las localizaciones de cada departamento
 - π NombreDpto, UbicacionDpto (DEPARTAMENTO * LOCALIZACIONES)
 - Listar el nombre de cada proyecto y el nombre del depto al cual está asignado
 - π NombreDpto, NombreProyecto (PROYECTO * ρ (NombreDpto, NumDptoProyecto, DniDirector, FechaIngresoDirector) (DEPARTAMENTO))

División (/):

- Supongamos que tenemos dos relaciones A(x,y) y
 B(y) donde el dominio del atributo y en las relaciones A y B es el mismo
- La operación A/B retorna todos los valores de x, tales que para todo valor y en B existe una tupla (x,y) en A

División (/), ejemplos:

► Consideremos las relaciones A y B₁

produce la relación:

Α		
sno	pno	
s ₁	<i>p</i> ₁	
s ₁	p_2	
s ₂	p ₁	
s ₂	p_2	
s 3	p_2	
S4	<i>p</i> ₂	
s ₄	p ₄	

*B*₁ pno *p*₂

sno s₁ s₂ s₃

 s_4

Consideremos las relaciones A y B₂

Α		
sno	pno	
s ₁	<i>p</i> ₁	
s_1	p_2	
s_1	p_3	
s_1	p_4	
s ₂	<i>p</i> ₁	
s ₂	p_2	
s 3	p_2	
S4	p_2	
s ₄	<i>p</i> ₄	

B₂ pno p₂ p₄

► A/B₂ produce la relación:

sno
s ₁
s_4

- División (/), Ejemplo:
 - Obtener el nombre de todos los empleados que trabajan en todos los proyectos que trabaja "José Pérez"
 - PEREZ $\leftarrow \sigma_{\text{Nombre='José'}}$ and Apellido1='Pérez' (EMPLEADO)
 - NUMP_PEREZ $\leftarrow \pi_{NumProy}(TRABAJA_EN \bowtie_{DniEmpleado=Dni} PEREZ)$
 - Obtenemos una relación con todos los empleados y proyectos asignados < NumProy, DniEmpleado >
 - DNI_NP $\leftarrow \pi_{\text{NumProy,DniEmpleado}}$ (TRABAJA_EN)
 - Luego aplicamos la operación de división a las dos relaciones obteniendo el DNI de los empleados que queremos
 - EMP(Dni) ← DNI_NP ÷ NUMP_PEREZ
 - RESULTADO ← π Nombre Apellido1 (EMP * EMPLEADO)

Funciones agregadas y de agrupación

- SUMA, PROMEDIO, MAXIMO, MINIMO y CUENTA
- Especificación:
- <atributos de agrupación> ষ lista de funciones> (R), donde <atributos de agrupación> es una lista de atributos de la relación R y lista de funciones> es una lista de pares (<función> <atributo>)
- <función> : SUMA, PROMEDIO, MAXIMO, MINIMO, CUENTA
- Ejemplo:
- P_{R(Dno, Cant_Emp,Prom_Sueldo)} (Dno ℑ CUENTA _{Dni}, PROMEDIO _{Sueldo} (EMPLEADO))
- $\rho_{R(Dno, Cant_Emp, Prom_Sueldo)}$ (\text{\text{\text{CUENTA}}}_Dni, PROMEDIO_Sueldo} (EMPLEADO))

Ejercicios:

- 1. Obtenga el nombre y la dirección de todos los empleados que trabajan para el departamento de 'investigación'.
- 2. Para cada proyecto ubicado en 'Madrid', obtenga una lista con el número de proyecto, el número del departamento que lo controla, y el apellido, la dirección y la fecha de nacimiento del jefe de dicho departamento.
- 3. Busque los nombres de los empleados que trabajan en todos los proyectos controlados por el departamento número 5.
- 4. Obtenga una lista con los números de proyectos en que interviene un empleado cuyo apellido es 'Campos', ya sea como trabajador o como jefe de departamento que controla el proyecto.
- 5. Obtenga un listado con los empleados que tienen otras personas dependientes (SUBORDINADO) de ellos.
- 6. Obtenga los nombres de los jefes de departamento que tienen por lo menos una persona dependiente (SUBORDINADO) de ella.

Unidad 4: Algebra y Cálculo Relacional

- Introducción
- Algebra Relacional

- Cálculo Relacional
- Poder expresivo del Algebra y Cálculo Relacional

Cálculo Relacional

- Es un lenguaje declarativo, es decir, especifica qué se quiere recuperar y no cómo.
- Existen dos variantes del CR:
 - Cálculo Relacional de Tuplas (CRT)
 - Cálculo Relacional de Dominios (CRD)

- Una variable tupla es una variable que adopta como valores las tuplas de una relación.
- Es decir, cualquier asignación de valores a una variable tupla tiene el mismo número y tipo de atributos
- Ejemplo: Consideremos la relación PACIENTE:

ID	NOMBRE	ISAPRE
94587123	Jacinto Romero	Eonasa

Si T es una variable de tipo tupla entonces le podemos asignar la tupla en PACIENTE, luego tenemos:

T.ID = 94587123, T.NOMBRE = "Jacinto Romero", T.ISAPRE = "Fonasa"

- Una consulta en CRT sencilla tiene la siguiente forma:
 - {T | P(T)}
 - Donde T es una variable de la tupla y P(T) es una fórmula que describe T.
- El resultado de esta consulta es el conjunto de todas las tuplas t para las cuales la expresión P(T) se evalúa como verdadera con T = t

Ejercicio: PACIENTE

ID	NOMBRE	ISAPRE	EDAD
1111111	Javier Arias	Fonasa	50
222222	Ester López	Consalud	28
3333333	Ana Gajardo	Mas Vida	49
4444444	Luis Peña	Fonasa	35
555555	Armando Perez	Banmédica	39

La consulta: "Encontrar los nombre de los pacientes de Fonasa"

{t | t ∈ PACIENTE ∧ t.Isapre="Fonasa"}

- Sintaxis de las consultas en CRT
 - Sean Rel el nombre de una relación, R, S variables tuplas con atributos a, b respectivamente, i.e. R.a, S.b
 - Y sea op uno de los siguientes operadores: (<,>,=,>=, <=,≠)</p>
 - Una fórmula atómica es:

```
■ R \in Rel, x \in PACIENTE
```

• R.a op S.b,
$$x.EDAD = y.EDAD$$

- Sintaxis de las consultas en CRT
 - Una fórmula se define recursivamente de la siguiente manera:
 - Toda fórmula atómica p es una fórmula
 - Si p y q son fórmulas, también lo son:
 - ¬ p,
 - (p^q),
 - (pvq),
 - (p→q)
 - ∃ R(p(R)), donde R es una variable tupla
 - \forall R(p(R)), donde R es una variable tupla
 - Los cuantificadores ∃, ∀ limitan la variable R
 - Una variable es libre en una fórmula (o subfórmula) si la (sub)fórmula no contiene ninguna ocurrencia de cuantificadores que la limiten.
 - En una consulta en CRT de la forma: {T| p(T)}, T es la única variable libre

- Semántica de las consultas en CRT
 - La semántica de las consultas nos permite saber cual es el conjunto respuesta para una consulta de la forma {T | p(T)}
 - La respuesta a una consulta expresada en CRT es el conjunto de todas las tuplas t para las cuales la fórmula p(T) es verdadera cuando a la variable T se le asigna el valor de t
 - Aquí surgen algunas preguntas:
 - ¿Qué significa asignar valores a una variable?
 - ¿Cuáles son los posibles valores a asignar?

- Semántica de las consultas en CRT
 - Cada consulta se evalúa sobre una instancia de la BD
 - Supongamos que cada variable libre de la fórmula F = p(T) está ligada a un valor tupla
 - Para una asignación dada de tuplas a variables con respecto a la instancia de BD, F se evalúa como verdadera si se cumple alguna de las siguientes condiciones:
 - F es la fórmula atómica R ∈ Rel y a R se le asigna una tupla de la relación R
 - F es una comparación del tipo R.a op S.b, R.a op c, c op R.a, con c constante y las tuplas asignadas a R y S tienen los valores de R.a y S.b que hacen que la comparación sea verdadera

- Semántica de las consultas en CRT
 - F es de la forma:
 - p y p no es verdadera
 - p^q y ambas p y q son verdaderas
 - pvq y al menos una de ellas es verdadera
 - p→q y q es verdadera siempre que p es verdadera
 - F es de la forma ∃ R(p(R)) y hay alguna asignación de tuplas a las variables libres de p(R), incluyendo la variable R, que hace que la fórmula sea verdadera
 - F es de la forma ∀ R(p(R)) y existe alguna asignación de tuplas a las variables libres de p(R) que hace que la fórmula p(R) sea verdadera independiente de la tupla que se asigne a R (para todas las tuplas)

 Ejemplo consultas de CRT, dado el siguiente esquema e instancia de BD:

CUR		
IDC	NOMBREC	
1	BD1	
2	BD2	

INS		
ID	IDC	NOTA
10	1	70
10	2	85
11	2	80

ALUMNOS			
ID	NOMBRE	EDAD	CIUDAD
10	luis	20	concepcion
11	pedro	21	chillan
12	antonio	23	concepcion

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q1: Encontrar el nombre y la edad de los alumnos que viven en Concepción

```
\{x \mid \exists y \in ALUMNOS (y.CIUDAD = "concepcion" \land x.NOMBRE = y.NOMBRE \land x.EDAD = y.EDAD)\}
```

- x es una variable tupla con dos atributos NOMBRE y EDAD, ya que son los únicos campos de x mencionados en la consulta
- Resultado de Q1:

NOMBRE	EDAD
luis	20
antonio	23

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q2: Encontrar el nombre de los alumnos, id del curso y nota obtenida por los alumnos

$$\{x \mid \exists y \in ALUMNOS \exists z \in INS (y.ID = z.ID \land x.IDC = z.IDC \land x.NOMBRE = y.NOMBRE \land x.NOTA = z.NOTA)\}$$

Resultado de Q2:

NOMBRE	IDC	NOTA
luis	1	70
luis	2	85
pedro	2	80

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q3: Encontrar el nombre de los alumnos que inscribieron el curso con IDC = 1

$$\{x \mid \exists y \in ALUMNOS \exists z \in INS (y.ID = z.ID \land z.IDC = 1 \land x.NOMBRE = y.NOMBRE)\}$$

Resultado de Q3?

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q4: Encontrar el nombre de los alumnos que inscribieron el curso BD2
- Consulta?:

```
 \{x \mid \exists \ y \in \mathsf{ALUMNOS} \ \exists \ z \in \mathsf{INS} \ \exists \ w \in \mathsf{CUR} \ (y.\mathsf{ID} = \mathsf{z}.\mathsf{ID} \ \land \\ \mathsf{z}.\mathsf{IDC} = \mathsf{w}.\mathsf{IDC} \ \land \ \mathsf{w}.\mathsf{NOMBREC="BD2"} \ \land \\ \mathsf{x}.\mathsf{NOMBRE} = \mathsf{y}.\mathsf{NOMBRE}) \}
```

Resultado de Q4?

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q5: Encontrar el nombre de los alumnos que inscribieron al menos dos cursos
- Consulta?:

```
\{x \mid \exists y \in ALUMNOS \exists z \in INS \exists w \in INS (y.ID = z.ID \land z.ID = w.ID \land z.IDC \neq w.IDC \land x.NOMBRE = y.NOMBRE)\}
```

Resultado de Q5?

Cálculo Relacional de Tuplas

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q6: Encontrar el nombre de los alumnos que inscribieron todos los cursos
- Consulta?:

```
\{x \mid \exists y \in ALUMNOS \ \forall z \in CUR \ (\exists w \in INS \ (y.ID = w.ID \land w.IDC = z.IDC \land x.NOMBRE = y.NOMBRE))\}
```

Resultado de Q6?

- Una variable de dominio es una variable que toma valores del dominio de algún atributo
- Una consulta en CRD es de la forma:

$$\{\langle x_1,...,x_n\rangle \mid p(x_1,...,x_n)\}$$

- donde:
 - cada xi es una variable de dominio o una constante y
 - p(x1,...,xn) es una fórmula del CRD cuyas únicas variables libres son aquellas en x1,...,xn
- El resultado una consulta en CRD es el conjunto de todas las tuplas (x1,...,xn) para las que la fórmula p(x1,...,xn) se evalúa como verdadera

Ejemplo:

Dada la relación ALUMNOS:

ALUMNOS					
ID	NOMBRE	EDAD	CIUDAD		
10	luis	20	concepcion		
11	pedro	21	chillan		
12	antonio	23	concepcion		

La consulta: Listar el ID y NOMBRE de los alumnos se expresa por:

$$\{\langle x,y\rangle\mid\exists z,w(\langle x,y,z,w\rangle\in Alumnos)\}$$

El resultado de esta consulta es:

ID	NOMBRE	
10	luis	
11	pedro	
12	antonio	

- Sintaxis de consultas CRD
- Una fórmula CRD se define de manera muy similar a una fórmula en CRT, pero ahora se trabaja con variables de dominio
- Dada una relación Rel con n atributos, las variables de tipo dominio X,Y y sea op uno de los siguientes operadores: (<,>,=,>=, <=,≠)</p>
- Son fórmulas atómicas en CRD:
 - $\langle x_1,...,x_n \rangle \in \text{Rel con cada } x_i \text{ siendo una variable o una constante}$
 - X op Y
 - X op c, o c op X, con c constante

- Sintaxis de consultas CRD
- Una fórmula se define recursivamente de la siguiente manera:
 - Toda fórmula atómica p es una fórmula
 - Si p y q son fórmulas, también lo son ¬ p, (p^q) , $(p \lor q)$, $(p \to q)$
 - \blacksquare \exists X(p(X)), donde X es una variable de dominio
 - \blacksquare \forall X(p(X)), donde X es una variable de dominio
- Los cuantificadores ∃, ∀ limitan la variable X
- En una consulta CRD $\{\langle x_1,...,x_n \rangle \mid p(x_1,...,x_n)\}$, las variables x_i para 1 <= i <= n son las únicas variables libres

 Ejemplo consultas de CRD, dado el siguiente esquema e instancia de BD:

CUR				
IDC	NOMBREC			
1	BD1			
2	BD2			

INS				
ID	IDC	NOTA		
10	1	70		
10	2	85		
11	2	80		

ALUMNOS						
ID	NOMBRE	EDAD	CIUDAD			
10	luis	20	concepcion			
11	pedro	21	chillan			
12	antonio	23	concepcion			

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q1: Encontrar el nombre y la edad de los alumnos que viven en Concepción

 $\{\langle y,z \rangle \mid \exists x,w (\langle x,y,z,w \rangle \in ALUMNOS \land w.CIUDAD = "conception")\}$

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q2: Encontrar el nombre de los alumnos, id del curso y nota obtenida por los alumnos

$$\{\langle x_2, y_2, y_3 \rangle \mid \exists \ x_1x_3 \ x_4y_1 \ (\langle x_1, x_2, \ x_3, x_4 \rangle \in ALUMNOS \ \land$$

$$\langle y_1, y_2, \ y_3 \rangle \in INS \ \land \ x_1 = y_1)$$

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q3: Encontrar el nombre de los alumnos que inscribieron el curso con IDC = 1

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q4: Encontrar el nombre de los alumnos que inscribieron el curso BD2
- Consulta?:

```
 \begin{aligned} \{\langle x_2 \rangle \mid \exists \ x_1x_3 \ x_4y_1y_2y_3z_1z_2 \ (\langle x_1,x_2,\ x_3,x_4 \rangle \in \mathsf{ALUMNOS} \ \land \\ \langle y_1,y_2,\ y_3 \rangle \in \mathsf{INS} \ \land \ \langle z_1,z_2 \rangle \in \mathsf{CUR} \ x_1 = y_1 \ \land \\ y_2 = z_1 \ \land \ z_2 = \mathsf{``BD2''}) \ \} \end{aligned}
```


- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q5: Encontrar el nombre de los alumnos que inscribieron al menos dos cursos
- Consulta?:

- Esquema: ALUMNOS(ID,NOMBRE, EDAD,CIUDAD), CUR(IDC,NOMBREC), INS(ID,IDC,NOTA)
- Q6: Encontrar el nombre de los alumnos que inscribieron todos los cursos
- Consulta?:

- El AR y el CR tienen el mismo poder de expresividad
- Toda consulta expresada en AR puede ser expresada en CR