第7章

扭转与剪切

工程力学

第7章 扭转与剪切

- § 7.1 扭转的概念和实例
- § 7.2 外力偶矩的计算 扭矩和扭矩图
- § 7.3 薄壁圆筒的扭转 纯剪切
- § 7.4 圆轴扭转时的应力与强度条件
- § 7.5 圆轴扭转时的变形与刚度条件
- § 7.6 非圆截面杆扭转的概念
- § 7.7 薄壁杆件的自由扭转
- § 7.8 剪切和挤压的实用计算

7.1 扭转的概念和实例

一. 工程实例

7.1 扭转的概念和实例

二. 受力特点:

力偶矩作用面垂直轴线,即作用在横截面内

三. 变形特点

任意两横截面产生相对转动

四. 受力简图

五. 主要研究对象

以圆轴为主(等直轴, 阶梯轴, 空心轴)

- 一. 外力偶矩的计算
 - 1. 直接给出 M_e (N•m)
 - 2. 给出功率, 转速

$$M_{\rm e} = 9549 \frac{P}{n} \text{ (N· m)}$$

$$\text{(r/min)}$$

二.横截面上的内力

截面法求内力: 截,取,代,平

 M_x 称为截面上的扭矩 $\sum M_x = 0$ $M_x - M_e = 0$ 即 $M_x = M_e$

按右手螺旋法: Mx 指离截面为正, 指向截面为负。

三. 内力图(扭矩图)

如同轴力图一样,将扭矩用图形表示称扭矩图

M_x 图特点:

- 1.有M作用处, M_x图有突变,突变值=M
- 2. 无力偶作用段, M_x 图为水平线

例1. 已知: n=300r/min, $P_A=50$ kW, $P_B=P_C=15$ kW, $P_D=20$ kW

求: 画扭矩图, 判断危险截面。

解:1.求力偶矩

$$M_{\rm eA} = 9549 \cdot P_A/n = 9549 \times 50/300 = 1591.5 \,\rm N \cdot m$$

$$M_{eC} = M_{eB} = 477.5 \text{N} \cdot \text{m}$$
 $M_{eD} = 636.5 \text{N} \cdot \text{m}$

2.求扭矩

$$M_{x1} = M_{eD} = 636.5 \text{N} \cdot \text{m}$$

$$M_{x2} = -(M_{eB} + M_{eC}) = -955 \text{N} \cdot \text{m}$$

$$M_{x3} = -M_{eB} = -477.5 \text{N} \cdot \text{m}$$

 $M_{x2} = -955 \text{N} \cdot \text{m}$

$$M_{x3} = -477.5 \text{N} \cdot \text{m}$$

危险截面: AC段 $|M_x|_{\text{max}} = 955 \text{ N} \cdot \text{m}$

 $|M_x|_{\text{max}} = 1591.5 \,\text{N·m}$ 不合理

一. 薄壁筒扭转实验

实验观察 分析变形

$$mn$$
没变 $\varepsilon_x = 0$ $\sigma_x = 0$

$$r$$
没变 $\varepsilon_{\theta} = 0$ $\sigma_{\theta} = 0$

由于轴为薄壁,所以认为 τ

沿t 均布. 即 $\tau = C$

列平衡方程:

$$M_x = \int_A \tau \cdot dA \cdot r = \tau \cdot 2\pi rt \cdot r$$

解得

$$\tau = \frac{M_x}{2\pi r^2 t}$$

二. 切应力互等定理

$$\tau(dy \cdot t)dx = \tau'(dx \cdot t)dy$$
$$\tau = \tau'$$

互相垂直的两个平面上, 切应力必成对存在, 且大小相等, 方向同时指向或背离两个面的交线。

切应力互等定理口诀

相互垂直两平面,有切应力必成对,方向垂直于交线,头对头或尾对尾。

三. 剪切胡克定律

实验表明: $\tau \leq \tau_p$ 时 $\tau \propto \gamma$

剪切胡克定律

$$\tau = G\gamma$$

G一 剪切弹性模量 剪变模量

$$E,G,\mu$$
 三者关系: $G = \frac{E}{2(1+\mu)}$

一. 圆轴扭转时横截面上的应力

实验观察:

$$mn$$
没变 $\varepsilon_x = 0$ $\sigma_x = 0$

$$R$$
没变 $\varepsilon_{\theta} = 0$ $\sigma_{\theta} = 0$

假设: 刚性平面

推理:外 \Bigg 里

Before

After

1. 几何方程

表面处
$$aa' = \gamma \cdot dx = \frac{d}{2} \cdot d\varphi$$

$$\rho \not \Delta b = \gamma_{\rho} \cdot dx = \rho \cdot d\varphi$$

得:
$$\gamma_{\rho} = \rho \frac{\mathrm{d}\varphi}{\mathrm{d}x}$$

2. 物理方程

$$\tau \leq \tau_{\mathrm{p}} \qquad \tau_{\rho} = G \gamma_{\rho}$$

$$\tau_{\rho} = G\rho \frac{\mathrm{d}\varphi}{\mathrm{d}x}$$

$$\tau_{\rho} = G\rho \frac{\mathrm{d}\varphi}{\mathrm{d}x}$$

3. 静力方程

$$M_{x} = \int_{A} \tau_{\rho} dA \cdot \rho = \int_{A} G \frac{d\varphi}{dx} \rho^{2} dA$$

$$M_x = G \frac{\mathrm{d}\varphi}{\mathrm{d}x} \int_A \rho^2 \mathrm{d}A$$
 $I_P = \int_A \rho^2 \mathrm{d}A$ I_P 极惯性矩

故
$$M_x = G \frac{\mathrm{d}\varphi}{\mathrm{d}x} I_{\mathrm{P}}$$

得
$$\frac{d\varphi}{dx} = \frac{M_x}{GI_P}$$
 GI_P 抗扭刚度

$$\frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{M_x}{GI_P} \quad \text{HA} \quad \tau_\rho = G\rho \frac{\mathrm{d}\varphi}{\mathrm{d}x}$$

得

$$\tau_{\rho} = \frac{M_{x} \cdot \rho}{I_{P}}$$

$$\rho_{\text{max}} = \frac{D}{2} \implies W_{\text{P}} = \frac{I_{\text{P}}}{D/2}$$

$$\tau_{\text{max}} = \frac{M_{x}}{W_{\text{P}}}$$

Wp抗扭截面模量

切应力互等定理

切应力互等定理

二. 计算 I_p , W_p

1. 实心圆截面

$$I_{\rm P} = \int_A \rho^2 \mathrm{d}A = \int_0^{\frac{D}{2}} \rho^2 2\pi \rho \mathrm{d}\rho$$

$$=2\pi \int_0^{\frac{D}{2}} \rho^3 \, \mathrm{d} \, \rho = \frac{\pi D^4}{32}$$

$$W_{\rm P} = \frac{I_{\rm P}}{R} = \frac{I_{\rm P}}{D/2} = \frac{\pi D^3}{16}$$

$$I_{\rm P} = \frac{\pi D^4}{32}$$

$$W_{\rm P} = \frac{\pi D^3}{16}$$

2. 空心圆截面

$$I_{\rm P} = \frac{\pi D^4}{32} - \frac{\pi d^4}{32} = \frac{\pi (D^4 - d^4)}{32} = \frac{\pi D^4}{32} (1 - \alpha^4)$$

$$W_{\rm P} = \frac{I_{\rm P}}{R} = \frac{I_{\rm P}}{D/2} = \frac{\pi D^3}{16} (1 - \alpha^4)$$

$$I_{\rm P} = \frac{\pi D^4}{32} (1 - \alpha^4)$$

$$I_{\rm P} = \frac{\pi D^4}{32} (1 - \alpha^4)$$
 $W_{\rm P} = \frac{\pi D^3}{16} (1 - \alpha^4)$

三. 圆轴扭转时的强度条件

对等直轴:

$$\tau_{\text{max}} = \frac{M_{x \text{max}}}{W_{\text{P}}} \le [\tau]$$

Mxmax为危险截面扭矩

对阶梯轴:

$$\tau_{\text{max}} = \frac{M_{x \text{max}}}{W_{\text{P}}} \le [\tau]$$

分段计算,求出 τ_{max}

例2 已知: $D = 76 \text{mm}, t = 2.5 \text{mm}, [\tau] = 100 \text{MPa}$ $M_e = 1.98 \text{kN} \cdot \text{m}$

1.校核扭转强度 2.改为强度相同实心轴 求 D', W_{φ} / W_{φ}

解: 1。 · 求内力 $M_{x \text{max}} = M_{e} = 1.98 \text{kN} \cdot \text{m}$

· 求
$$\tau_{\text{max}}$$
 代入 $\tau_{\text{max}} = \frac{M_{x \text{max}}}{W_{\text{p}}} \le [\tau]$

$$\alpha = \frac{d}{D} = \frac{D - 2t}{D} = \frac{76 - 2 \times 2.5}{76} = 0.935$$

$$W_{\rm P} = \frac{\pi D^3}{16} (1 - \alpha^4) = 20.3 \times 10^{-6} \,\mathrm{m}^3$$

$$\tau_{\text{max}} = \frac{M_{x \text{max}}}{W_{\text{p}}} = \frac{1.98 \times 10^3}{20.3 \times 10^{-6}} = 97.5 \text{ MPa} \le [\tau]$$
 此轴安全

$$\tau_{\text{max}} = \frac{M_{x \text{max}}}{W_{\text{p}}} = \frac{1.98 \times 10^3}{\pi D'^3 / 16} = 97.5 \times 10^6 \text{ Pa}$$

$$D' = \sqrt[3]{\frac{1.98 \times 10^3 \times 16}{\pi \cdot 97.5 \times 10^6}} = 0.0469 \,\mathrm{m}$$

$$D' = 46.9 \,\mathrm{mm}$$

·比较重量:

$$\frac{W_{\underline{\Xi}}}{W_{\underline{\Xi}}} = \frac{A_{\underline{\Xi}}}{A_{\underline{\Xi}}} = \frac{D^2 - d^2}{D'^2} = \frac{76^2 - (76 - 2 \times 2.5)^2}{46.9^2} = 0.334$$

$$\frac{W_{\underline{\Xi}}}{W_{\underline{\Xi}}} = 0.334$$

显然,空心轴比实心轴节省材料. 在扭转轴设计中,选用空心轴是

一种合理的设计.

四. 圆轴扭转时斜截面的应力

如何解释扭转破坏产生的原因呢?

-.两横截面间相对扭转角 φ

C 由前节

$$\frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{M_x}{GI_{\mathrm{P}}}$$

得
$$d\varphi = \frac{M_x}{GI_p} dx$$

积分得
$$\varphi = \int_{l}^{l} d\varphi = \int_{0}^{l} \frac{M_{x}}{GI_{P}} dx$$

1. 当l段内 M_x 、 GI_P 为常数

$$U = W = \frac{1}{2} M_x \varphi = \frac{M_x^2 l}{2GI_P}$$

2. 当 M_x , GI_P 为分段常数

$$U = \sum_{i=1}^{n} \frac{M_{xi}^2 l_i}{2GI_{\text{P}i}}$$

$$U = \sum_{i=1}^{n} \frac{M_{xi}^{2} l_{i}}{2GI_{Pi}}$$

3. 当 M_x 沿x为连续函数 $M_x(x)$

$$\overline{m}$$

$$U = \int \frac{M_x^2(x)}{2GI_{\rm P}} \mathrm{d}x$$

二. 刚度条件

对等直轴:
$$\theta = \frac{d\varphi}{dx} = \frac{M_x}{GI_P}$$
 θ 单位长度的扭转角

$$\theta_{\text{max}} = \frac{M_{x \text{max}}}{GI_{\text{P}}} \cdot \frac{180}{\pi} \leq [\theta](^{\text{o}}/\text{m})$$

$$\theta_{\text{max}} = \frac{M_{x \text{max}}}{GI_{\text{P}}} \cdot \frac{180}{\pi} \leq [\theta] (^{\text{o}}/\text{m})$$

阶梯轴,分段校核

精密机床,[θ]=(0.25~0.5)°/m;

一般传动轴, $[\theta]=(0.5\sim1)^{\circ}/m; [\theta]=(2\sim4)^{\circ}/m;$

三.计算 强度条件 刚度条件

解决三类问题

1.校核

2.设计

3. 确载

步骤

- 1.求外力 $M_{\rm e}$
- 2.求内力(画 M_x 图 — M_{xmax})
- 3.强度计算

$$\tau_{\text{max}} = \frac{M_{x \text{max}}}{W_{\text{p}}} \le [\tau]$$

(先计算 $I_{P_{I}}W_{P}$)

刚度计算

$$\theta_{\text{max}} = \frac{M_{\text{x max}}}{GI_{\text{P}}} \cdot \frac{180}{\pi} \leq [\theta] (^{\circ}/\text{m})$$

等直圆轴扭转

例3. 已知: P_A =6kW, P_B =4kW, P_C =2kW, [τ]=30MPa, [θ]=1 $^{\circ}$ m, G=80GPa,

n=208转/min, 求: d=?

解: 计算外力矩:

$$M = 9549 \frac{P}{n} = 9549 \cdot \frac{6}{208} = 275.4 \text{N} \cdot \text{m}$$

$$M_B = 183.6 \text{N} \cdot \text{m}$$
 $M_C = 91.8 \text{N} \cdot \text{m}$

·求内力(扭矩图)

$$M_{x \text{max}} = 183.6 \text{N} \cdot \text{m}$$

·由强度条件

$$\tau_{\text{max}} = \frac{M_{x \text{max}}}{W_{\text{p}}} \le [\tau] \quad \cancel{\ddagger} \quad \Psi_{\text{p}} = \frac{\pi d^3}{16}$$

$$M_{x \text{max}} = 183.6 \text{N} \cdot \text{m}$$

$$\theta_{\text{max}} = \frac{M_{x\text{max}}}{GI_{\text{P}}} \cdot \frac{180}{\pi} \le [\theta] \quad \sharp \, \mathbf{p} = \frac{\pi d^4}{32}$$

得
$$d_2 \ge \sqrt[4]{\frac{32M_{x \text{max}} \cdot 180}{G\pi^2 [\tau]}} = \sqrt[4]{\frac{32 \times 183.6 \times 180}{80 \times 10^9 \cdot \pi^2 \cdot 1}} = 34 \times 10^{-3} \text{ m}$$

$$= 34 \text{mm}$$

取直径
$$d = \{d_1, d_2\}_{\text{max}} = 34 \text{mm}$$

例4 阶梯轴 d_1 =4cm, d_2 =7cm, P_3 =30kW, P_1 =13kW,n=200r/min, [τ]=60MPa G=80GPa, [θ]=2°/m 试校核轴的强度和刚度

解: 1. 求外力偶矩

$$M_{e1} = 9549 \frac{P_1}{n} = 621 \text{N} \cdot \text{m}$$

 $M_{e3} = 9549 \frac{P_3}{n} = 1432 \text{N} \cdot \text{m}$
 $M_{e2} = M_{e3} - M_{e1} = 811 \text{N} \cdot \text{m}$

2.求内力(画 M_x 图,判断危险截面)

$$AC$$
段 $M_{1\text{max}} = 621 \text{N·m}$

$$DB$$
段 $M_{2\text{max}} = 1432 \text{N·m}$

3.分段作校核

·校核AC段

$$\tau_1 = \frac{M_{1\text{max}}}{W_{\text{Pl}}} = \frac{M_{1\text{max}}}{\frac{1}{16}\pi d_1^3} = \frac{16 \times 621}{\pi \cdot 0.04^3} = 49.4 \,\text{MPa} < [\tau]$$

$$\theta_{1} = \frac{M_{1\text{max}}}{GI_{P1}} \cdot \frac{180}{\pi} = \frac{M_{1\text{max}}}{G \cdot \frac{1}{32} \pi d_{1}^{4}} \cdot \frac{180}{\pi} = \frac{32 \times 621 \times 180}{80 \times 10^{9} \cdot \pi^{2} \cdot 0.04^{4}}$$
$$= 1.77^{\circ} / \text{m} < [\theta]$$

·校核DB段

$$\tau_2 = \frac{M_{2\text{max}}}{W_{P2}} = \frac{M_{2\text{max}}}{\frac{1}{16}\pi d_2^3} = \frac{16 \times 1432}{\pi \cdot 0.07^3} = 21.3 \text{ MPa} < [\tau]$$

$$\theta_{1} = \frac{M_{2\text{max}}}{GI_{P2}} \cdot \frac{180}{\pi} = \frac{M_{2\text{max}}}{G \cdot \frac{1}{16} \pi d_{2}^{4}} \cdot \frac{180}{\pi} = \frac{32 \times 1432 \times 180}{80 \times 10^{9} \cdot \pi^{2} \cdot 0.07^{4}}$$
$$= 0.435^{\circ} / \text{m} < [\theta]$$

此轴安全

7.5 圆轴扭转时的变形与刚度条件

四. 圆轴扭转时弹性变形能

$$\tau \leq \sigma_{\rm P} \qquad U = W = \frac{1}{2} M_{\rm e} \varphi$$

7.5 圆轴扭转时的变形与刚度条件

1. 当l段内 M_x 、 GI_P 为常数

$$U = W = \frac{1}{2}M_x \varphi = \frac{M_x^2 l}{2GI_P}$$

2. 当 M_x , GI_P 为分段常数

$$U = \sum_{i=1}^{n} \frac{M_{xi}^2 l_i}{2GI_{\text{P}i}}$$

$$U = \sum_{i=1}^{n} \frac{M_{xi}^{2} l_{i}}{2GI_{Pi}}$$

3. 当 M_x 沿x为连续函数 $M_x(x)$

$$U = \int \frac{M_x^2(x)}{2GI_P} \mathrm{d}x$$

7.6 非圆截面杆扭转的概念

一.非圆截面杆和圆截面杆扭转时的区别

变形特点:

圆截面杆: 刚性平面

非圆截面杆:横截面产生翘曲.

前面的公式均不适用 引用弹性理论的结论.

7.6 非圆截面杆扭转的概念

二. 矩形截面杆的扭转

横截面上切应力分布特点:

- 1.周边的 τ 必与周边相切
- 2.外尖角处 $\tau \equiv 0$
- 3. τ_{max}发生在长边中点

$$\tau_{\text{max}} = \frac{M_x}{\alpha h b^2}$$
 $\alpha 与 h/b$ 有关

4. 当
$$h/b>10$$
时 $\tau_{\text{max}} = \frac{M_x}{\frac{1}{3}h\delta^2}$

7.7 薄壁杆件的自由扭转

一. 开口薄壁杆件的自由扭转

$$\tau_{\text{max}} = \frac{M_x \delta_{\text{max}}}{I_{\text{t}}} \qquad I_{\text{t}} = \eta \sum_{i=1}^{\infty} \frac{1}{3} h_i \delta_i^3$$

中线为曲线的开口薄壁杆件,计算时可将截面展开,作为狭长矩形截面处理。

7.7 薄壁杆件的自由扭转

二. 闭口薄壁杆件的自由扭转

$$\tau = \frac{t}{\delta} = \frac{M_x}{2\omega\delta}$$

$$\varphi = \frac{M_x lS}{4G\omega^2 \delta} = \frac{M_x l}{GI_t}$$

ω是截面中线所围面积 S是截面中线的长度

7.7 薄壁杆件的自由扭转

三.开口薄壁杆件与闭口薄壁杆件扭转的比较

$$\tau_{\text{max}} = \frac{M_x}{2\omega\delta} = \frac{2M_x}{\pi d^2\delta}$$

$$\tau_{\max \# \square} = \frac{M_x}{\frac{1}{3}h\delta^2} = \frac{3M_x}{\pi d\delta^2}$$

d>>δ, 开口薄壁杆件的应力远大于闭口薄壁杆件的杆件, 所以工程上不采用开口薄壁杆件

一. 剪切构件的受力和变形特点

受力特点: 外力大小相等、方向相反, 且作用线相距很近

变形特点: 剪切面发生相对错动

工程实例: 螺栓

销钉

二. 剪切的实用计算

实用计算方法: 内力分布复杂, τ不能推导,只能作出尽量反映实际的假设,简化计算。

- 1. 认为受剪面上只有剪力 F_Q
- $2. \tau$ 平行 F_Q ,方向同 F_Q
- 3. 切应力在受剪面上均匀分布

剪切强度条件

$$\tau = \frac{F_{Q}}{A} \le [\tau]$$

单剪
$$F_Q=F$$

双剪
$$F_Q = F/2$$

{安全计算(联接的钉,键要满足剪切强度条件)破坏计算(安全销、安全阀、冲剪板...)

三. 挤压的实用计算

联接件与被联接件之间接触--挤压力 $F_{\rm bs}$

1.假定在挤压面上挤压应力是均匀分布的

2. 当接触面为圆柱形,用直径平面作为挤压面

挤压强度条件

$$\sigma_{\rm bs} = \frac{P_{\rm bs}}{A_{\rm bs}} \le [\sigma_{\rm bs}]$$

$$A_{\rm bs} = td$$

例5 电瓶车挂钩由插销连接,插销[τ]=30MPa, [σ_{bs}]=60MPa, d=20mm, δ =8mm, 牵引力F=15kN. 试校核插销的强度。

解: 1.校核插销剪切强度

两个剪切面: mm 和 nn

剪切面上的剪力: $F_Q = \frac{F}{2}$

剪切面面积: $A = \frac{\pi d^2}{4}$

校校文 : $\tau = \frac{F_Q}{A} = \frac{\frac{1}{2}F}{\frac{1}{4}\pi d^2} = \frac{2F}{\pi d^2} = \frac{2 \times 15 \times 10^3}{\pi \times 20^2 \times 10^{-6}} = 23.9 \text{MPa} < [\tau]$

2.校核插销挤压强度

计算挤压力
$$F_{bs1} = \frac{F}{2}$$
 $F_{bs2} = F$

计算挤压面面积 $A_1 = \delta \cdot d$ $A_2 = 1.5 \delta \cdot d$

校校:
$$\sigma_{bs1} = \frac{F_{bs1}}{A_1} = \frac{F/2}{\delta \cdot d} = \frac{F}{2\delta d}$$

$$\sigma_{\text{bs2}} = \frac{F_{\text{bs2}}}{A_2} = \frac{F}{1.5\delta \cdot d} = \frac{15 \times 10^3}{1.5 \times 8 \times 20 \times 10^{-6}} = 62.5 \text{ MPa}$$

$$\frac{\sigma_{\text{bs}2} - [\sigma]}{[\sigma]} = \frac{62.5 - 60}{60} = 4.17\% < 5\%$$

例6 板厚 \mathcal{E} 5mm, 剪切强度极限 τ_b =320MPa, 如用冲床冲出直径d=15mm

的孔, 需要多大的力F?

解:分析冲孔就是发生剪切破坏条件 $\tau > \tau_b$

剪切面上的剪力 $F_Q = F$

计算剪切面积 $A = \pi d\delta$

由破坏条件 $\tau > \tau_b$ $\frac{F_Q}{A} = \frac{F}{\pi d \delta} > \tau_b$

得 $F \ge \pi d \delta \tau_{\rm b} = \pi \cdot 15 \times 5 \times 10^{-6} \times 320 \times 10^{6} = 75.5 \text{kN}$

F至少为75.5kN力

例7 木榫接头,当F 作用时,求:接头的剪切面积和挤压面积, 并求 τ , σ _{bs}

解:接头的剪切面积: A = bl

$$\tau = \frac{F_{Q}}{A} = \frac{F}{lb}$$

接头的挤压面积: $A_{bs} = cb$

$$\sigma_{\rm bs} = \frac{F_{\rm bs}}{A_{\rm bs}} = \frac{F}{cb}$$

例8 接头,受轴向力F 作用。已知F=50kN b=150mm, $\mathcal{E}=10$ mm,d=17mm,a=80mm,[σ]=160MPa,[τ]=120MPa,[σ_{bs}]=320MPa,铆钉和板的材料相同,试校核其强度。

解: 1.板的拉伸强度

$$\sigma = \frac{F_{\text{N}}}{A} = \frac{F}{(b-2d)\delta} = \frac{50 \times 10^3}{(0.15 - 2 \times 0.017) \times 0.01} = 43.1 \text{MPa} < [\sigma]$$

板的拉伸强度足够

2.板的剪切强度

$$\tau = \frac{F_{Q}}{A} = \frac{F}{4a\delta} = \frac{50 \times 10^{3}}{4 \times 0.08 \times 0.01} = 15.6 \text{MPa} < [\tau]$$

板的剪切强度足够

3.铆钉的剪切强度

$$\tau = \frac{F_{Q}}{A} = \frac{F/2}{\pi d^{2}/4} = \frac{2F}{\pi d^{2}} = \frac{2 \times 50 \times 10^{3}}{\pi \times 0.017^{2}} = 110 \text{MPa} < [\tau]$$

铆钉的剪切强度足够

4.板和铆钉的挤压强度

$$\sigma_{\text{bs}} = \frac{F_{\text{bs}}}{A_{\text{bs}}} = \frac{F}{2d\delta} = \frac{50 \times 10^3}{2 \times 0.017 \times 0.01} = 147 \text{MPa} < [\sigma_{\text{bs}}]$$

Thank you!