some notes on the ccast nonlinearity correction

H. E. Motteler

UMBC Atmospheric Spectroscopy Lab Joint Center for Earth Systems Technology

January 19, 2015

nonlinearity correction

let / be pointwise division, and

$$r_{\rm in}^{\rm s}=r_{\rm in}/f_{\rm N}$$

$$r_{\rm sp}^{\rm s}=r_{\rm sp}/f_{\rm N}$$

the DC level is given by

$$v_{\text{dc}} = v_{\text{inst}} + \frac{2 \cdot \sum_{i=1}^{n} |r_{\text{in}}^{\text{s}} - r_{\text{sp}}^{\text{s}}|}{c_{\text{m}} \cdot c_{\text{a}} \cdot c_{\text{p}} \cdot d \cdot n}$$

▶ the corrected radiances (scaled by f_N) are

$$r_{ ext{out}}^{ ext{s}} = r_{ ext{in}}^{ ext{s}} \cdot (1 + 2 \cdot a_2 \cdot v_{ ext{dc}})$$

$f_{\scriptscriptstyle N}$ scaling

▶ now suppose we have a scaling factor w for f_N , so that

$$r_{\text{in}}^{\text{s}\,\prime}=r_{\text{in}}/(w\cdot f_{\text{N}})$$

$$r_{\rm sp}^{\rm s}{}'=r_{\rm sp}/(w\cdot f_{\rm N})$$

then the DC level is

$$v_{\mathsf{dc}}' = v_{\mathsf{inst}} + \frac{2 \cdot \sum_{i=1}^{n} |r_{\mathsf{in}}^{\mathsf{s}} - r_{\mathsf{sp}}^{\mathsf{s}}|}{w \cdot c_{\mathsf{m}} \cdot c_{\mathsf{a}} \cdot c_{\mathsf{p}} \cdot d \cdot n}$$

 \triangleright and the corrected radiances (scaled by f_N) are

$$r_{\text{out}}^{\text{s}}' = r_{\text{in}}^{\text{s}} \cdot (1 + 2 \cdot a_2 \cdot v_{\text{dc}}')$$

▶ note that v_{dc}' and r_{out}^{s}' are both functions of w

parameters

- ► *r*_{in} is scene count spectra
- r_{sp} is space-look count spectra
- n is the number of decimated points
- d is the decimation factor
- $ightharpoonup c_{m}$ is modulation efficiency
- $ightharpoonup c_p$ is PGA gain
- $ightharpoonup c_a$ is A/D gain
- \triangleright v_{inst} instrument contribution to DC level
- \triangleright v_{dc} is estimated DC level
- $ightharpoonup f_N$ is the numeric filter at the sensor grid
- ▶ a₂ are the correction parameters

discussion

- ▶ the formulas here were reverse engineered from UW code
- ightharpoonup early versions of both UMBC and UW CCAST used a frequency domain representation of f_N from UW
- after the Aug 2013 high res test UMBC switched to a time domain representation, with weights (I think) from Joe Predina and transform to the sensor grid from Dan Mooney
- the nonlinearity correction did not work correctly until we scaled the new filters to match the norms of the 2008 UW filters,

LW:
$$f'_{N} = 1.6047 \cdot f_{N} / \max(f_{N})$$

MW: $f'_{N} = 0.9826 \cdot f_{N} / \max(f_{N})$
SW: $f'_{N} = 0.2046 \cdot f_{N} / \max(f_{N})$

Here f_N was the transform from the time domain, before any scaling

discussion

- the transform from time to frequency preserves any scaling factor
- so our problem was probably just that the weights we were starting from did not have the correct scaling or normalization
- the following figures show the filters before any scaling
- the following Matlab code is Dan's filter transform demo. filt is the time and sfilt the frequency representation at the sensor grid

```
S = fft(filt, inst.npts * inst.df);
I = ifft(S);
S1 = fft(I(1 : inst.df : inst.npts * inst.df)) * inst.df;
S2 = circshift(S1, [-inst.cutpt, 0]);
sfilt = abs(S2);
```

LW numeric filters

LW filters from UW 2008 frequency domain and MIT 2012 time domain representations

MW numeric filters

MW filters from UW 2008 frequency domain and MIT 2012 time domain representations

SW numeric filters

SW filters from UW 2008 frequency domain and MIT 2012 time domain representations