Références

- X. Lagrange, P. Godlewski, S. Tabbane, "Réseaux GSM", Hermès Lavoisier, 978-2-7462-0153-8
- J.G.Remy, J.Cueugniet, C.Siben, "Systèmes de Radiocommunications avec les Mobiles", Eyrolles
- A. Goldsmith, "Wireless Communications", Cambridge University Press, 978-0-5218-3716-3
- J. G. Proakis, "Digital Communications", Mc Graw-Hill, 978-0-0711-3814-5
- H. Holma, A. Toskala, "WCDMA for UMTS", Wiley, 978-0-470-84467-1
- X. Lagrange, "Principes et évolutions de l'UMTS", Lavoisier (Hermes science), 978-2-7462-1040-1
- J. Sanchez, M. Thioune, "UMTS", Hermes, 978-2-7462-0856-8
- [VIT 94] VITERBI A.J., VITERBI A.M., ZEHAVI E., "Other-cell interference in celular power-controlled CDMA", IEEE Trans. On Com. Vol. 42, n°2-4, 1994
- http://www.3gpp.org/
- H. Holma, A. Toskala, "HSDPA/HSUPA for UMTS", Wiley, 978-0-470-01884-2
- M. Terré, M. Pischella, E. Vivier, "Systèmes sans fil, Problèmes résolus", Hermès Lavoisier, 978-2-7462-3906-7

2 G - 2.5 G: GSM / GPRS / EDGE

Histoire

- Groupe Spécial Mobile ⇒ Global System for Mobile communications
 - Système novateur, conçu par deux laboratoires de R&D publics (France, Allemagne) :
 - Commutation de <u>circuits</u>
 - Système cellulaire numérique + Modulation radio robuste
 - Roaming automatique
 - Séparation de la fonction téléphonique du mobile de la fonction « identification », placée dans une carte à puce (SIM)
 - Cryptage des communications; protection de l'identité de l'abonné
- Normalisation (1987- 1995) : par l'organisme de normalisation européen ETSI
 - Réservation d'un espace suffisant dans le spectre radioélectrique (dès 1979 dans la bande des 900 MHz)
 - Etablissement de normes très détaillées et précises, sans options
- Ouverture des réseaux :
 - 1992 : Orange France & SFR
 - 1996 : Bouygues Telecom
 - □ Taux de pénétration (fin 2006) : 82.5 % en France
- Réseau concurrent : IS-95 (< 10% parts de marché)</p>

Technologie mondiale!

Organisation fréquentielle

- Deux bandes de fréquences, aux alentours de :
 - 900 MHz (GSM historique)
 - 1800 MHz (DCS)
- Bande unitaire : 200 kHz
- En France, les opérateurs ont désormais une sous-bande dans chacune des bandes
 - 10 MHz dans la bande 900 MHz
 - ~25 Mhz dans la bande 1800 MHz
 - □ ⇒ couverture des zones rurales et des zones urbaines

Architecture du réseau GSM

- Mobiles : puissance max d'émission : 1 W (2W)
- Réseau d'accès :
 - BTS : points d'accès au réseau
 - BSC : contrôle des BTS
- Réseau cœur :
 - MSC : commutateur
 - G-MSC : passerelle vers les autres réseaux : fixe ou mobile.
 - d'autres éléments de réseau assurent :
 - l'authentification, le chiffrement :
 - AuC,
 - la vérification des services souscrits par l'abonné :
 - HLR, VLR
 - la supervision & la maintenance du réseau :
 - OMC, NMC

Multiplexage des utilisateurs GSM

- Rappel : RA CH=Random Access Chance répartition des différents utilisateurs sur la voie radio, entre le mobile et le point d'accès au réseau
- F/TDMA : multiplexage en fréquence et en temps
 - Largeur des canaux radios : 200 kHz
 - Durée de la trame radio : 4,615 ms, 8 IT (slots, timeslots)

Duplexage des comm. 2G – 2,5G

- Duplexage FDD, écart duplex :
 - 45 MHz dans la bande 900 MHz
 - 95 MHz dans la bande 1800 MHz
- Organisation fréquentielle/temporelle :
 - Les données d'un utilisateur ne sont transmises qu'1/8 du temps!
 - Décalage voie ↑ / voie ↓ : 3 timeslots

Organisation Fréq./Temp. en GSM

Ressources radios utilisées pour une comm. GSM

Capacité d'une cellule GSM

- 1 « TRX » = 1 bande de fréquence duplex parmi celles allouées à l'opérateur :
 - 200 kHz ↓
 - □ 200 kHz ↑
- Suivant le motif de réutilisation des fréquences adopté, chaque cellule comporte un certain nombre de TRX :
 - ⇒ elle peut donc écouler une certaine capacité de trafic, que l'on peut exprimer sous diverses formes, dont :
 - lacksquare le nb de communications simultanées par cellule : $8\! imes\!N_{TRX}$
 - l'efficacité spectrale utile (en bits utiles/sec/Hz) : $\frac{8 \times 12.2}{200} = 0.49 \ bits / s / Hz$
 - le nombre d'Erlangs écoulés par la cellule pour une probabilité de blocage donnée
- Attention à prévoir une partie de la capacité pour la signalisation (voie balise, signalisation de début/fin de communication, supervision de la communication, etc)

Structure d'un slot en GSM

- Un slot = timeslot = IT = 577 μs, contient :
 - un burst :
 - élément d'information contenu dans le slot : 156,25 bits au max.
 - 4 types de burst (Normal, Frequency, Synchronization, Access)
 - structure générale :
 - bits de tête permettant la montée en puissance de l'émetteur
 - bits d'information
 - séquence d'apprentissage permettant d'évaluer la qualité du canal radio
 - bits de queue permettant le retour au repos de l'émetteur
 - Un délai de garde: pour tenir compte des aléas du temps de transmission
- Exemple: « normal burst » :

Canaux logiques GSM

- Fonctions des différents canaux logiques :
 - diffusion des informations systèmes
 - Broadcast Control Channel, BCCH diffusion ↓ (simplex): information système
 - Frequency Correction Channel, FCCH diffusion ↓ (simplex): calage de fréquence
 - Synchronization Channel, SCH diffusion ↓ (simplex)
 - appel des mobiles, accès au réseau
 - Paging Channel, PCH diffusion ↓ (simplex),
 - Random Access Channel: RACH accès multiple ↑ (simplex),
 - Access Grant Channel: AGCH diffusion ↓ (simplex),
 - Cell Broadcast Channel, CBCH diffusion ↓ (simplex)
 - communication
 - Trafic Channel, TCH dédié ↓↑ (duplex)
 - contrôle des paramètres durant la communication
 - Slow Associated Control CHannel SACCH dédié ↓↑ (duplex): Gestion de liaison
 - Fast Associated Control CHannel FACCH dédié ↓↑ (duplex): Exécution du Handover
 - signalisation
 - Stand-alone Dedicated Control Channel SDCCH dédié ↓↑ (duplex)

ISEP – Domaine Réseaux & Télécommunications – Emmanuelle Vivier

Mise sous tension du mobile :

Canaux logiques GSM

3/

Réponse à un appel entrant :

- multiplexage de plusieurs canaux logiques sur un même canal physique
- multitrame TDMA :
 - succession de plusieurs (26 ou 51) trames TDMA consécutives
 - définit la période de transmission de chacune des infos véhiculées sur les canaux logiques

Multitrame GSM à 26 trames

- informations :
 - parole (13 kbits/s, 5,6 kbits/s, 12,2 kbits/s)
 - données (9,6 kbits/s, 14,4 kbits/s)
- multiplexage :
 - 24 trames / multitrame à 26 (6 x 4 bursts / 120 ms)

T: canal TCH Traffic CHannel

Mobilité 2G – 2,5G : Timing Advance

- Timing Advance :
 - Sur le lien uplink, la BTS estime la distance MS-BTS en fonction du TA et de la position de l'access burst dans le slot.
 - Sur le lien downlink, la BTS envoie toutes les 480 ms la valeur mise à jour du Timing Advance (1 unité = 553m ~ 600 m)
 - Imprécision du TA : Fluctuation possible
 - burst d'accès au réseau (RACH) : 252 μs ↔ 37.8 km A/R
 - en cours de com. : délai de garde : 30.46 μs ↔ 4.5 km A/R

Mobilité 2G – 2,5G : Handover

- Préparation d'un HO sur la cellule courante :
 - Remontées des mesures vers le BSC, toutes les 480 ms des moyennes de :
 - Rxleveldown
 - Rxqualdown
 - Rxlevelup
 - Rxqualup
 - RXIevel est codé sur 6 bits, de :
 - '0' : niveau de champ inférieur à -110 dBm à
 - '63' : niveau de champ supérieur à -48 dBm
 - par pas de 1 dB.
 - RXqual est codé sur 3 bits

RXqual	TEB
•	correspondant
'0'	TEB < 0,2 %
' 1'	0,2 % < TEB < 0,4 %
'2'	0,4 % < TEB < 0,8 %
' 3'	0,8 % < TEB < 1,6 %
' 4'	1,6 % < TEB < 3,2 %
' 5'	3,2 % < TEB < 6,4 %
' 6'	6,4 % < TEB < 12,8 %
'7'	12,4 % < TEB

Mobilité 2G – 2,5G : Handover

- Préparation d'un HO : synchronisation sur les cellules voisines :
 - à chaque trame idle, le mobile est sûr de décoder le slot 0 d'une BTS voisine, *i.e.* sa voie balise :
 - au bout d'un moment, il va tomber sur son canal FCCH, puis sur son canal SCH et enfin son canal BCCH (droits d'entrée, ...).
 - il saura donc qui elle est exactement et fera ensuite régulièrement des mesures de puissance sur ce canal voisin

Mobilité 2G – 2,5G : Handover

- Décision de HO prise par le BSC, à partir des paramètres :
 - RXlevelup, RXqualup
 - RXleveldown, RXqualdown
 - RXleveldown_voisine_k
 - timing advance
 - et d'un algorithme propre à l'opérateur
- déclenché par le MSC ou par le BSC
- type de handovers :
 - HARD HO
 - Suivant la situation de l'abonné et la topologie du réseau :
 - intra-cellulaire (interférences)
 - inter-cellulaire,
 - inter-BSC,
 - inter-MSC...

Sécurité 2G – 2,5G

Sécurité 2G – 2,5G: authentification

- L'authentification de l'abonné :
 - protège le réseau de l'utilisation frauduleuse de ses ressources
 - protège l'abonné de l'utilisation frauduleuse de son compte
 - exigible lors :
 - des MAJ localisation
 - des établissements d'appels (entrants/sortants)
 - La clé Ki (128 bits) n'est jamais transmise à travers le réseau (fixe ou radio)

Sécurité 2G – 2,5G: chiffrement

En 1999, l'algorithme A5 est cassé...

Short Message Services

- coût très faible pour l'opérateur :
 - messages courts (160 caractères / SMS)
 - débit très faible : < 1kb/s</p>
 - transmission sur des voies de signalisation :
 - SACCH
 - SDCCH
- 2012 :
 - 40 milliards de SMS/ trimestre en France
 - 242 SMS / abonné /mois(> 800 pour les 16-25 ans)

1,5 milliards de SMS échangés en France (30 000 / sec. à minuit chez Orange) pour le nouvel an... 25 milliards en Chine...

Conclusion 2G

- GSM est un/le réseau cellulaire numérique mondial :
- Qualité des communications vocales :
 - ~ identique à celle des communications sur réseau fixe
- Limitations : Transfert de données :
 - à très bas débit (14,4 kbits/s)
 - en mode circuit, ie canal réservé (et payé) même en cas d'inactivité
- Caractéristiques essentielles des données / voix :
 - Flux de données en rafales (« bursty »)
 - □ Taux d'erreur nécessairement très bas (≠ voix)
 - Contraintes temps réel plus ou moins forte

⇒ nécessité d'une évolution dans le réseau : 2.5G :

General Packet Radio Services, disponible en France à partir de 2001/2002

GPRS network architecture

- SGSN (Serving GPRS Support Node) :
 - Manages GPRS services in a geographical area :
 - for the mobile: Access Point to GPRS network
 - Security (in collaboration with HLR): authentication, encryption
 - Mobility: paging, location update
 - Billing
 - Transfers packets :
 - Switch
 - Compression / Decompression
- GGSN (Gateway GPRS Support Node) :
 - Serves as gateway towards other data networks
 - Allocates IP @ to mobile
 - Switches packets
 - Bills

Historique Caractéristiques 2G - 2,5 G: GSM / GPRS / EDGE 3G: UMTS 3.5G: HSPA 4G: LTE PMR

- ISEP Domaine Réseaux & Télécommunications Emmanuelle Vivier
- Impact on existing GSM network's elements:
 - BTS & BSC reuse, with:
 - Radio re-dimensioning
 - New devices :
 - PCU (Packet Control Unit) in BSC
 - Segmentation, Re-assembly, Acknowledgement of packets,
 - Radio access (arbitration)
 - CCU (Channel Control Unit) in BTS
 - Packet processing (coding, interleaving)
 - HLR reuse, and in addition (similarly to GSM), for each subscriber:
 - settings to allow the access to packet services: subscribed QoS
 - current Location (SGSN)
 - mobile state : on/off
 - increased capacity

GPRS main characteristics

- Packet switching
 - new network elements
 - new user equipments
- up to 8 slots can be allocated to each user.
 - All must belong to the same TRX.
- a slot can be shared by up to 8 users.
- data throughput on each slot :
 - 9.05 , 13.4 , 15.6 or 21.4 kbits/s
- data networks (IP, X25...) connection
- 29 multislot classes handsets determining the maximum achievable data rates in uplink and downlink directions:
 - total number of slots that can be used simultaneously for both uplink and downlink communications,
 - amount of uplink & downlink timeslots that can be used for transmission.

GPRS coding scheme

- Four coding schemes:
 - CS1: 9.05 kbits/s
 - CS2: 13.4 kbits/s
 - CS3: 15.6 kbits/s
 - CS4: 21.4 kbits/s

GPRS slot structure

GPRS data flow

- one GPRS data flow = one Temporary Block Flow TBF
- one Web session = several TBF and reading intervals:

Radio resources for a TBF

Frequency/Time grid for a TBF

'Packet Data Protocol context'

- set of information stored in MS, SGSN and GGSN in order to enable a data transfer.
- preliminary activation before data transfer:
 - On radio interface:
 - TLLI (Temporary Link Layer Identity): ~ P-TMSI
 - External data network (X25, IP...)
 - Terminal PDP @ (dynamically allocated by GGSN)
 - Subscriber's current SGSN IP @
 - Negotiated QoS
 - In the network :
 - IMSI (recovered by SGSN from TLLI)
 - APN (Access Point Name): GGSN selected by SGSN to access the external data network.

Historique Caractéristiques 2G - 2,5 G: GSM / GPRS / EDGE 3G: UMTS 3.5G: HSPA 4G: LTE PMR

2/

PDP Quality of Service

- can be renegociated in case of PDP update
- is described with several parameters :
 - precedence:
 - 3 classes (priority vs other services)
 - reliability:
 - 3 classes (packet loss/out of sequence/corrupted rate)
 - variations from 10⁻⁹ to 10⁻²
 - delay in the GPRS core network:
 - 4 classes
 - variations from 0,5 sec to >250 sec
 - mean throughput: 19 classes
 - variations from 100 bytes/h to 50 Mbytes/h
 - peak throughput: 9 classes
 - variations from 1 kbytes/s to 256 kbytes/s

GPRS Mobility Management

- Information broadcasting on BCCH:
 - Cell identity
 - Location Area (GSM)
 - Routing Area (GPRS)
- Cell Location Update (in ready state)
- Combined LA-RA Location Update (in standby state)
 via Gs MSC SGSN interface:
 - \square RA \subset LA or LA \subset RA

- Former RA / LA included in the LU request message (for update in HLR connection with former SGSN/MSC)
- New (P)-TMSI allocation, if necessary

GPRS Logical channels

- GSM Beacon channel reuse:
 - ↓ : FCCH, SCH, BCCH, PCH, AGCH
 - ↑ : RACH
- specific GPRS logical channels addition:
 - □ Traffic channels ↓ ↑:
 - PDTCH (Packet Data Traffic Channel)
 - □ Control channels ↓ ↑:
 - PACCH (Packet Associated Control Channel):
 - during a session : packets Ack/Nack, radio measurements, handover...
 - session start/end
 - PTCCH (Packet Timing Control Channel):
 - Timing advance control
 - Extra (if mentionned on BCCH SYSTEM INFO 13 message):
 - ↓ : PBCCH, PPCH, PAGCH
 - ↑: **P**RACH

GPRS multiframe structure

- A 52-frames multiframe is divided into:
 - □ $12 \times 4 = 48$ PDTCH or PACCH frames,
 - 2 PTCCH frames,
 - 2 Idle frames.
- PDTCH or PACCH <u>dynamic</u> multiplexing (≠ GSM)

B0 to B11: RLC/MAC blocks

T: PTCCH slot

i: Idle slot

GPRS Radio Resource Management

- Downlink TBF: The mobile decodes the overhead of each downlink RLC/MAC block transmitted on the slots that are or could be allocated to the user:
 - the overhead identifies the block recipient.
 - the message of the block contains either data or control information.
- Uplink TBF: Two types of allocation resources:
 - fixed allocation: at the beginning of its TBF, the mobile exactly knows when its data will be transmitted.
 - dynamic allocation:
 the network informs the mobile about the transfer of a packet, one after the other.
 - The mobile decodes the overhead of each downlink RLC/MAC block transmitted on the slots that are or could be allocated to the user, in order to detect:
 - either a downlink signalling message from the network,
 - or an "invitation" to transfer a packet (only for dynamic allocation)

GPRS Abis interface re-dimensioning

CS-1 & CS-2 : OK (16 kbits/s)

CS-3 & CS-4 : NOK (32 kbits/s)

Conclusion 2.5G

- No resource monopolization
- GPRS/GSM management based on "Capacity on demand"
 - but preemption is still allocated to voice services
- Simultaneous Trans./Rec. Handsets
- ~identical logical channels
 - but dynamic multiplexing
- CS-1 & CS-2 deployment (3+1 and 4+1)
- Limitations :
 - Throughputs: 171.2 kbits/s...
 - blocks retransmission with original CS
 - \Rightarrow a new evolution is necessary in the network: 2.75G:

Enhanced Data for GSM Evolution, available in France since 2002/2003

EDGE main characteristics

- GSM:
 - GMSK modulation
- EDGE :
 - 8PSK modulation
- data rate increased
 - □ ×3
- new pulse shaping filter
 - 8PSK spectrum ≈ GMSK spectrum

EDGE modulation

1/

EDGE pth symbol to be transmitted:

$$s_p = e^{j k\pi/4} \times e^{j p 3\pi/8}$$

Bits to be modulated (b _{3p} b _{3p+1} b _{3p+2})	Associated symbol k
111	0
011	1
010	2
000	3
0 0 1	4
101	5
100	6
110	7

EDGE modulation

Example: $b_0 = b_1 = b_2 = 1 \Rightarrow s_0 = 1$, and s_1 symbol can take one of the 8 positions below, depending on b₃, b₄ and b₅ values:

ISEP – Domaine Réseaux & Télécommunications – Emmanuelle Vivier

EDGE slot structure

- one symbol = 3 bits
- data rate:
 - \mathbf{D} 116 x 3 bits / 5 ms = 69,6 kbits/s

EDGE Throughputs

Circuits services (8PSK) ECSD:

28.8 kbits/s, 32 kbits/s, 43.2 kbits/s

Packets services EGPRS:

GMSK: MCS-1 to MCS-4:

8.8 kbits/s

Bad radio conditions: ~ GPRS

- 11.2 kbits/s,
- 14.8 kbits/s,
- 17.6 kbits/s

8PSK: MCS-5 to MCS-9:

- 22.4 kbits/s,
- 29.6 kbits/s,
- 44.8 kbits/s,
- 54.4 kbits/s,
- 59.2 kbit/s

Good radio conditions: > GPRS

Coding	Family
MCS-1	С
MCS-2	В
MCS-3	А
MCS-4	С
MCS-5	В
MCS-6	А
MCS-7	В
MCS 8	~A
MCS9	А

Link Adaptation in EDGE

- Link Adaptation :
 - DURING THE SESSION, selects automatically the most appropriate
 Modulation Coding Scheme (MCS) for transmission of the next packet
 - parameters : channel quality (Packet Error Rate)

ARQ Mechanisms in EDGE

- Automatic ReQuest for repetition:
 When a corrupted block is received, the block is retransmitted using:
 - Type I ARQ retransmission:
 - the same MCS, or
 - a more robust MSC, issued from the same family
 - Type II ARQ (Incremental Redundancy) retransmission: retransmitted data are combined until the block is successfully decoded:
 - successive erroneous blocks are not discarded, but stored and combined
 - the block is retransmitted, using the same MCS and a different puncturing scheme

Conclusion 2,75G

- Significative and « cheap » GPRS evolution
- effective throughput:
 - □ ~120 kbits/s (4+1 handsets)
- market :
 - operators with no UMTS licence
- network capacity redimensionning
- additional features in BTS & new handsets
- GSM / EDGE Radio Access Network GERAN :
 - existing {GSM/GPRS + EDGE} network 'migration' for integration into 3rd generation european network: UMTS