CSCI E-82a Probabilistic Programming and AI Lecture 3 Exact Inference for Graphical Models

Steve Elston

Copyright 2019, Stephen F Elston. All rights reserved.

Agenda

- Exact Inference for Graphical Models
- The Variable Elimination Algorithm
- Factors in Graphical Models
- Factor Example
- Variable Elimination in Undirected Graphs
- Queries with Evidence
- Problems with Variable Elimination
- The Belief Propagation Algorithm
- Background for Junction Tree Algorithm
- Junction Tree Algorithm
- Relationship between Junction Tree and Variable Elimination

Inference is the process of making **queries** on models to receive posterior distributions or marginal distributions of selected variables

- In other words, inference is the process of getting useful answers from a model!
- Evidence (observations) is typically a component of a query
- Query can be on one or more variables

In the past 2 lessons our focus was on representation

- Representation allows us to define or represent a model
- We have investigated two representations:
 - Bayes networks or directed acyclic graphs (DAGs)
 - Undirected graphical networks, Markov random fields (MRF)
- Efficient representation
 - Represent independences
 - Potentials for cliques
- A good representation is required to perform inference

Focus on Inference for Graphical Models

Schematic of intelligent agent using directed graphical model

Inference is a computationally difficult problem

- Direct tabular solutions can be computationally infeasible
- Computational complexity is NP, or O(n^k)
- But, we can work with distributions factored on a graph by independencies

Two major classes of inference algorithms

- In this lecture we focus on exact inference algorithms
 - Generally computationally efficient for problems with limited numbers of variables and states
 - Algorithms provide a basis for understanding other methods
- Take up approximate methods in later lesson
 - Highly scalable to high dimensional problems
 - Accommodate continuous variables

There are no exact algorithms which have guaranteed low computational complexity

- In practice, a number of algorithms work well most of the time
- But, computational complexity can change radically with ordering of variables

We focus on the 3 most widely used algorithms

- Variable elimination
- Message passing or belief propagation
 - Generalizes variable elimination on trees
- Junction tree
 - Generalizes belief propagation to complex graphs
- There are many other variations and research continues

Variable elimination works by marginalizing out variables one by one

- Variables are ordered
- Working in order, the variables are marginalized out, eliminated
- The result is the marginal distribution of the variable queried
- Finding the most efficient elimination order is an NP hard problem
- Different ordering of the variables changes computational complexity a lot!

Example of variable elimination on a chain graph

The joint distribution factors a follows:

$$P(V, W, X, Y, Z) = P(V) P(W \mid V) P(X \mid W) P(Y \mid X) P(Z \mid Y)$$

The DAG is a chain:

The query is to find the marginal distribution of Z

Example of variable elimination on a chain graph

Starting with the DAG chain:

The query is to find the marginal distribution of Z:

$$P(Z) = \sum_{V} \sum_{W} \sum_{X} \sum_{Y} P(V, W, X, Y, Z)$$

• Or for the factorized distribution:

$$P(Z) = \sum_{V} \sum_{W} \sum_{X} \sum_{Y} P(V) \ P(W \mid V) \ P(X \mid W) \ P(Y \mid X) \ P(Z \mid Y)$$

Example of variable elimination on a chain graph

- First, eliminate the variable V
- Start with the factorized distribution:

$$P(Z) = \sum_{V} \sum_{W} \sum_{X} \sum_{Y} P(V) \; P(W \mid V) \; P(X \mid W) \; P(Y \mid X) \; P(Z \mid Y)$$

Rearrange terms and the summation:

$$P(Z) = \sum_{W} \sum_{X} \sum_{Y} P(X \mid W) \; P(Y \mid X) \; P(Z \mid Y) \sum_{V} P(V) \; P(W \mid V)$$

Example of variable elimination on a chain graph

The marginal of the variable W is:

$$p(W) = \sum_{V} P(V) \; P(W \mid V)$$

The expression of the marginal distribution of Z is:

$$P(Z) = \sum_{W} \sum_{X} \sum_{Y} P(X \mid W) P(Y \mid X) P(Z \mid Y) p(W)$$

• The variable V is eliminated and the DAG is now:

Example of variable elimination on a chain graph

• Now eliminate W, making the marginal of Z:

$$P(Z) = \sum_{X} \sum_{Y} P(Y \mid X) P(Z \mid Y) \sum_{W} p(W) P(X \mid W)$$
$$= \sum_{X} \sum_{Y} P(Y \mid X) P(Z \mid Y) p(X)$$

The variable W is eliminated and the DAG is now:

Example of variable elimination on a chain graph

Now eliminate X, making the marginal of Z:

$$P(Z) = \sum_{Y} P(Z \mid Y) \sum_{X} p(X) P(Y \mid X)$$
$$= \sum_{Y} P(Z \mid Y) p(Y)$$

The variable X is eliminated and the DAG is now:

Example of variable elimination on a chain graph

Finally, eliminate Y, and the marginal of Z is:

$$P(Z) = \sum_{Y} p(Z) \ P(Z \mid Y)$$

The DAG now just has one variable Z:

• The variable elimination process is now complete

Variable Elimination for Undirected Graphs

The same principle of variable elimination can be applied to the potentials of an undirected graph

Start with the undirected chain graph:

• The marginal distribution is represented by the sum over the variables of the product of the 4 potentials:

$$P(E) = \sum_{A} \sum_{B} \sum_{C} \sum_{D} \frac{1}{Z} \phi(A, B) \ \phi(B, C) \ \phi(C, D) \ \phi(D, E)$$

Factors in Graphical Models

Factors are a generalized formulation

- A factor is a multidimensional table which assigns a value to a set of variables
- CPTs are factors for DAGS
- Potentials are factors for MRFs
- A joint distribution can be computed using general factors:

$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c)$$

- There are two essential operations on factors
 - Computing a product
 - Marginalization

Factor example

Taking the product of two factors with a common variable

$$\phi(A, B, C) := \phi(A, B) \times \phi(B, C)$$

Computationally is an outer product

Factor example

Computing the (unnormalized) marginal factor

Compute factor $\tau(C)$ by marginalizing $\phi(A, B, C)$

Α	В	С					
-a	-b	+c	0.02	$\nabla \phi(A, B, C)$			
-a	+b	+c	0.16	$\sum \phi(A,B,C)$	В	С	
+a	-b	+C	0.16	\boldsymbol{A}	-b	-с	0.27
+a	+b	+C	0.72		-b	+c	0.18
-a	-b	-C	0.03		+b	-C	0.77
-a	+b	-C	0.14		+b	+c	0.88
+a	-b	-C	0.24		au	(B,	C
+a	+b	-с	0.63		·	(2,	C)
$\phi(A, B, C)$							

Variable Elimination for Undirected Graphs

The same principle of variable elimination can be applied to the factors of an undirected graph

Distribution is factorized by the potentials:

$$P(E) = \sum_{A} \sum_{B} \sum_{C} \sum_{D} \frac{1}{Z} \phi(A, B) \ \phi(B, C) \ \phi(C, D) \ \phi(D, E)$$

 As with the DAG example, start by eliminating the first variable in the chain, A:

$$P(E) = \frac{1}{Z} \sum_{B} \sum_{C} \sum_{D} \phi(B, C) \phi(C, D) \phi(D, E) \sum_{A} \phi(A, B)$$

$$= \frac{1}{Z} \sum_{B} \sum_{C} \sum_{D} \phi(B, C) \phi(C, D) \phi(D, E) \tau(B)$$

Variable Elimination for Undirected Graphs

The same principle of variable elimination can be applied to the factors of an undirected graph

• Continuing with the variable elimination:

$$P(E) = \frac{1}{Z} \sum_{C} \sum_{D} \phi(C, D) \phi(D, E) \sum_{B} \phi(B, C) \tau(B)$$

$$= \frac{1}{Z} \sum_{D} \phi(D, E) \sum_{C} \phi(C, D) \tau(C)$$

$$= \frac{1}{Z} \sum_{D} \phi(D, E) \tau(D)$$

$$= \frac{1}{Z} \tau(E)$$

Queries with Evidence

How do we incorporate evidence into a query?

Need to compute the conditional distribution:

$$p(Y \mid E = e) = \frac{p(Y, E = e)}{p(E = e)}$$

- P(X,Y,E) is the distribution of query variables Y, evidence variables E and unobserved variables X
- To compute $p(Y \mid E = e)$, sum every factor $\phi(X, Y, E)$ where E is in scope of Y and is set to e
- Variable elimination is used to compute p(E = e)
- In other words, adding evidence reduces the number of states of the evidence variable

Problems with Variable Elimination

Why is variable elimination not sufficient for all inference problems?

- Computational complexity depends on order of elimination
- Finding optimal elimination order is NP hard!
- Each query requires a new series of elimination
 - Inefficient for multiple queries

Message passing algorithm enables multiple queries from a single set of messages

- Also know as the belief propagation algorithm
- Message passing algorithm works on tree graphs
- The values passed along the tree are **factors**
 - Factors are functions of potentials
 - Factors are not probabilities!
- Intermediate results are saved for future queries in the form of messages

Definition: A tree graph is a undirected acyclic graph, in which any pair of nodes are connected by exactly one path.

Example of a tree graph

This is **not a tree graph!**

Example: query variable 1 in tree graph

- Variable 1 at root of tree
- Start from the leaf nodes passing messages down the tree
- Messages propagate belief
- When each node receives messages from all 'upstream' neighbors, then emits a message down
- Final message is to the root or query node
- Executes in linear time!

What happens if we want to query node 2?

- Node 2 becomes the root
- The result is still a tree
- But, we must pass new messages!

Is there an approach that only requires **passing messages one** time?

- Yes!
- Pass messages in both directions
- Cache messages
- Add evidence
- Then, any query is computed using save messages

Steps of the two-step message passing algorithm:

- 1. CPTs are updated with evidence
- 2. Nodes **collect** messages emitted by their neighbors.
 - Leaf nodes emit messages at the start of the collection step.
- 3. Once a node has collected messages from neighbors it **distributes** or **emits** messages to its neighbors.
 - In the distribution phase, a node may only emit a message once it has collected messages from all other neighbors.

Messages are passed both directions

- 'Up' the tree from the leaves
- 'Down' the tree from the root
- Caching complete set of messages allows query on any node
- Message m_{ij} propagates a belief from one node to a neighbor
- Pass all messages in 2*node count time!

Upward pass:

- Each leaf in the junction tree sends a message to its parent
 - Message is the marginal of its table; the sum of variables not in the separator.
- When a parent receives a message from a child,
 it multiplies its table by the message table to update its table
- When a parent receives messages from all its children, it acts as the next leaf
- Process continues until the root receives messages from all children

Downward pass:

- Reverse of upward pass, starting at root
- Root sends a message to each child
- Root divides current table by the message received from the child
 - Marginalize out variables not in the separator
 - Send result to the child
- Each child multiplies its table by its parent's table
- Child then acts as the root until leaves are reached
- Find marginal of variables by summing out variables as needed
- Done!

Message passing as variable elimination

• We can formulate variable elimination in terms of factors

$$\tau_{jk}(x_k) = \sum_{x_j} \phi(x_k, x_j) \tau_j(x_j)$$

• Sum-product of messages passes from one variable, i, to the next, j:

$$m_{ji}(x_i) = \sum_{x_j} \phi(x_j) \ \phi(x_i, x_j) \prod_{f \in Pa(j) \setminus i} m_{fj}(x_j)$$
 Where,
$$\phi(x_j) = edge \ factor \ ; \text{ or junction factor}$$

$$\phi(x_i, x_j) = clique \ factor \ ; \text{ includes the nodes}$$

And, $f \in Pa(j) \setminus i$ indicates all the parents of x_i except i

Add evidence to a query:

Factor is update using evidence with the relationship:

$$\phi^{E}(x_i) = \phi(x_i) \, \delta(x_i, \bar{x}_j)$$

Where

$$\delta(x_i, \bar{x}_j) = 1 \text{ if } i = j$$

 $\delta(x_i, \bar{x}_j) = 0 \text{ otherwise}$

• Evidence reduces the number of states of variables

The Belief Propagation Algorithm

Two message phases for each node

Collect phase: node receives messages from neighbors

Emit phase: The node emits messages to its neighbors

The Belief Propagation Algorithm

The marginal distributions are computed

$$p(x_i) \propto \phi^E(x_i) \prod_{j \in N(i)} m_{ji}(x_i)$$

Where

 $m_{ji}(x_i)$ is the message from the jth neighbor $\phi(x_i)$ is the potential of the node

This is a form of variable elimination!

Background for Junction Tree Algorithm

We need some machinery to understand the junction tree algorithm

- Factor graphs are used to form the junction tree
- Running intersection property is used to construct the junction tree
- Sum product algorithm used for belief propagation on junction tree
 - Or, get MAP value with max product algorithm
- Triangulation used to break cycles to form tree

Factor Graphs

Factor graphs are another representation of graphical models

- A factor is a representation of an unnormalized conditional distribution
- Potentials are a specific case of factor
- Factor graphs are the basis of message passing algorithms
- Factor graphs include variables and (intersection) factors
- Constructing factor graphs relies on the running intersection property:
 - For each pair of cliques *U*, *V* with intersection *S*, all cliques on the path between *U* and *V* contain *S*.

Factor Graphs

The factor graph decomposition is **not unique**

Markov Network

Can use a single potential

$$p(X, Y, Z) = \phi(X, Y, Z)$$

Or, 3 cliques

$$p(X, Y, Z) = \phi(X, Y)\phi(X, Z)\phi(Z, Y)$$

Factor Network Single factor

Factor NetworkThree intersection factors

Factor Graphs

Turn a DAG into a factor graph:

- Start with a DAG
- There is one factor for the nodes
- Leaf nodes have factors
- Root node has a terminal factor

Directed Graph

Factor Graph

Running Intersection Property

Example of running intersection property

- There are three maximal cliques: {1,3,4}, {1,2,4}, and {3,4,5}
- With intersections:{1,4} between {1,3,4} and {1,2,4}{3,4} between {1,2,4} and {3,4,5}
- In summary:
 node 4 is in 4 cliques and both intersections
 node 1 is in 2 cliques and one intersection
 node 3 is in 2 cliques and one intersection

Running Intersection Property

Example of running intersection property

- Start with factor {1, 2, 4}
- Add factor {1, 3, 4}
- Intersection is factor {1,4}
- Add factor {3, 4, 5}
- Intersection is factor {3, 4}

Sum-Product Algorithm

There are **two types of messages** in factor graphs

- The sum-product algorithm is constructed from these messages
- Compute the values for two types of messages
- Variable to factor message
- Factor to variable message

Sum-Product Algorithm

Variable to factor message $\mu f_{x->f}(f)$

- Start with variable x
- Variable receives messages from factors
- Variable emits a message to factor
- The value of the message is the product of the messages from neighbor (na) factors

$$u_{x \to f}(x) = \prod_{h \in na(x) \setminus f} u_{h \to x}(x)$$

Where the notation $\setminus f$ excludes the factor f

Sum-Product Algorithm

Factor to variable message

$$\mu f_{f->x}(f)$$

- Start with factor f
- Factor receives messages from variables
- The factor emits a message to the variable
- The value of the message is the sum of product of the messages

$$u_{f\to x}(x) = \sum_{\chi_f \setminus x} \psi_f(\chi_f) \prod_{y \in na(f) \setminus x} u_{y\to f}(y)$$

And
$$\sum_{\chi_f \backslash x} \psi_f(\chi_f)$$
 is the sum over

all states of the variables $\chi_f \setminus x$

Max-Product Algorithm

Sometimes we just want the maximum or most probable value

- Use the max-product algorithm
- Max-product algorithm replaces the sum with a max operation
- The maximum a postiriori (MAP) value is found with argmax operation

Max-Product Algorithm

Formulation of the max-product algorithm

Variable to factor message remains unchanged – no sum

$$u_{x \to f}(x) = \prod_{h \in na(x) \setminus f} u_{h \to x}(x)$$

• The factor to variable message is then:

$$u_{f\to x}(x) = argmax_{\chi_f \setminus x} \phi_f(\chi_f) \prod_{y \in na(f) \setminus x} u_{y\to f}(y)$$

Algorithm is a form of linear programming

See sections 13.1, 13.2 and 13.3 of Koller and Friedman for details

Triangulation

Triangulation is a process of breaking cycles in an undirected graph

- The Markov network has a cycle
- Cycle has 4 or more nodes
- Trees cannot have cycles
- Turn Markov network into factor graph: the factor graph also has a cycle

Triangulation

Triangulation is a process of breaking cycles in an undirected graph

- How to break the cycle of the Markov network?
- Add an edge to triangulate the graph
- Turn Markov network into factor graph: the factor graph is now a tree!

Triangulation

Triangulation is a process of breaking cycles in an undirected graph

- Or, add a different edge to triangulate the graph
- The factor graph is again a tree!
- The triangulation and factor graph are **not unique!**

Junction Tree Algorithm

Steps of the Junction Tree algorithm

- 1. If Bayes network, moralize
- 2. If Bayes network, remove directional arrows
- 3. Triangulate the undirected graph if cycles
- 4. Build a clique tree
- 5. Build a junction tree, a factor graph
- Choose a root
- 7. Populate the cliques
- 8. Perform belief propagation with sum-product algorithm

Junction Tree Example

Start with the familiar student example

Remove direction from arrows

Moralize the graph

Junction Tree Example Try to build a clique tree

- Wait! This is **not a tree!**
- It has a cycle
- Must triangulate

Junction Tree Example Triangulate

- Build the clique tree using the running intersection property
- The chain is a tree so message passing works!

Relationship Between Junction Tree and Variable Elimination

There is a strong relationship between the Junction tree and variable elimination algorithms

- Combining all remaining tables containing a variable eliminates it
- A node in the junction tree corresponds to the variable in variable elimination
- An arc in the junction tree shows the flow of data for the elimination computation

Vocabulary

- Exact inference algorithms = methods to get a marginal distribution
- Variable Elimination Algorithm = marginalize variables one-by-one in order, to solve for a marginal distribution of 1 variable
- Factor = multidimensional table which assigns a value to a set of variables; representation of an unnormalized conditional distribution
- Message Passing Algorithm or Belief Propagation Algorithm = cascading queries that pass factors through a tree graph, to solve for a marginal distribution of 1 variable
- **Tree graph** = undirected acyclic graph, in which any pair of nodes are connected by exactly one path.

Vocabulary

- Message $m_{ii}(x_i)$ = the message from node j to node i
- Running Intersection Property = for each pair of cliques U, V with intersection S, all cliques on the path between U and V contain S.
- **Triangulation** = a process of breaking cycles in an undirected graph
- Cycle has 4 or more nodes

Key Points

- Faster computation is achievable by using distributions factored on a graph by independencies
- Categories of Inference on Graphical Models: exact inference, approximate
- 3 most common exact inference algorithms: variable elimination, message passing, junction tree
- Variable elimination algorithm: eliminate variables one by one; choice of variable order determines computational complexity
- Message passing algorithm: factors (not probabilities!) are passed along a tree graph; factors can be stored for speeding up later queries; messages "propagate belief"; linear time complexity

Key Points

- Belief propagation algorithm: (similar to message-passing) leaf nodes emit messages, each node collects all neighbors' messages then emits messages to all its neighbors
- Factor graphs: another graphical model representation; the basis of message passing algorithms; have variables, factors, intersections
- Factor graph message types: variable to factor, factor to variable
- Junction tree algorithm: convert to Markov, triangulate, build clique tree, build factor graph, choose root, populate cliques, use sumproduct algorithm to calculate marginal distribution