

Session-Smart Grids for Smart Cities Topic- Data Analytics enabled Inertia Volatility Assessment of Smart Grid in Enhancing Grid Resiliency in presence of DER

Speaker: Dr Surekha Deshmuh

Chair -PES India Chapters Council

Introduction

- Utilities transformation journey Digitalization, Decarbonization and Deregulation
- Data-driven opportunities in leveraging the present digital enablers to address challenges of Grid.
- Today's smart grid, with large penetration of power from renewable sources has node-dependant, time-varying and more volatile "inertia", compared to the one post few decades
- Objective
 - 1) Articulate the global challenge of utilities in maintaining grid resiliency
 - 2) How availability of diverse data of renewable generation, system load variation enable the assessment of inertia volatility
 - 3) Evaluate in turn the susceptibility of grid towards any perturbation.

Context- Grid Inertia & Resiliency

02 - 04 March 2022

Digitalization and deployment of SCADA, IOT, AMI, PMU etc

- Access to the real time DATA of grid
- Giving opportunity to apply analytics to get the trend of behavior of grid
- Unlocking the potential solutions for technoeconomical vulnerabilities

- When power grid is subjected to any step change of load ie perturbation, the system frequency will alter as a function of time (RoCoF)
- Grid with significant penetration of renewable generation has overall reduced inertia, influencing more system dynamics.
- It introduces frequency overshoot, frequency nadir and high rate of change of frequency for first few seconds. Hence this assessment is important to avoid possible relay mal-operation and desynchronization.
- To get the total view of the network it is necessary to monitor
 - inertia-profile
 - the way perturbation can penetrate through network
 - Perturbation Sustainability Level (PSL) at each node and total system
 - Aggregate Sustainability Level.
- insights 1) Required inertia support to strengthen the grid
 - 2) Prescriptive guidelines on providing virtual inertia support

O Digital Platform

Relevance- Data Analytics for assessing Inertia Volatility

- Relevance demo-grid has nine generators and total capacity of 600MVA and load 590 MVA1 slide
- Case1-All generators (Conventional generators with inertia constant)
- Case 2- Four generators, out of nine generators are replaced by Solar/Wind generators
- Inertia of node is

Where H_i –Inertia of ith node, S_i –MVA at ith node, n- Number of links.

Resiliency of Grid – Perturbation Sustainability Level (Node, system- aggregated)

• It is the ability of node to sustain perturbation. To evaluate Perturbation Sustainability level, rate of change of frequency is assumed to be 0.2Hz/sec as per standard. At each node Perturbation Sustainability Level(PSL) is calculated

$$\frac{df}{dt} = \frac{f \Delta P}{2HS}$$

$$H = \frac{\sum_{i=1}^{n} H_i * S_i}{\sum_{i=1}^{n} S_i}$$

- System aggregated Inertia = 6.02 sec (Conventional), 4.21 sec(with DER)
- System Perturbation Sustainability Level (S-PSL) = 4.81MW (Conventional), 3.37 MW (with DER)
- Observations -
- With increased penetration, the inertia of the node to which RE is connected is reduced.
- The rate of change of frequency profile (RoCoF) is decided by the profile of the inertia.
- More inertia support is required at nodes with more DER presence

Node	Node Perturbation			
	inertia(s)	Sustainability		
		(MW)= case1		
1	7.50	(6.00)		
2	0	0		
3				
	6.57	7.88		
4	5.00	1.6		
5	6.42	6.68		
6	4.00	1.92		
7	5.00	2.8		
8	7.00	2		
0	5.00	2		
Node	Node	Perturbation 2		
	Node	Perturbation		
	Node inertia(s)	Perturbation Sustainability		
Node	Node	Perturbation Sustainability (MW)=case2		
Node 1	Node inertia(s)	Perturbation Sustainability (MW)=case2		
1 2	Node inertia(s) 7.50	Perturbation Sustainability (MW)=case2		
1 2 3	Node inertia(s) 7.50 0 7.5	Perturbation Sustainability (MW)=case2		
1 2 3 4	7.50 0 7.5 0	Perturbation Sustainability (MW)=case2 6.00 0 6.60		
1 2 3 4 5	7.50 0 7.5 0 4	Perturbation Sustainability (MW)=case2 6.00 0 6.60 0 2.88		

Inertia Support Required

- Occurrence of perturbation of 4.81MW, the requirement of inertia at each node is calculated to sustain the perturbation
- Node 4 being a sensitive node, requires 15.03 seconds inertia support which is large compare to remaining node. Similarly for node 8 inertia requirement is 12.03 seconds.
- Once the inertia requirement is known, the presence of inertia in the system can be leveraged as given below.
- To control RoCoF, the inertia support of 13.03seconds is required.
- Excess inertia of node 1,3 and 5 can be utilized to give support to weak nodes if required along with additional inertia support measures.

Node	Node inertia	Inertia required to	Inertia	RoCoF
	(seconds)	Sustain perturbations	availability	(Hz/s)
		(s)	status (s)	
			-deficit, +Excess	
1	7.50	6.01	+1.49	0.16
2	0	High	0	fast
3	9.86	4.01	+5.85	0.12
<mark>4</mark>	2.00	15.03	-13.03	<mark>0.60</mark>
5	8.35	4.63	+3.72	0.14
6	2.4	10.02	-7.62	0.50
7	3.5	8.59	-5.09	0.34
8	2.5	12.03	-9.53	0.48

O Digital Platform

Indicative approaches of Inertia Support India Smart Grid Forum

- 1) Transfer of inertia from one node to other connected node:
- Inertia support to node 4 is given by transferring inertia of node 5 to node 4 as interconnected through transmission line
- H becomes 6.09s after connections. Similarly rate of change of frequency (RoCoF) at node 4 and 5 when independent was 0.6 Hz/s (very fast) and 0.14Hz/s is within the standard limit after connections

Node	Node Inertia H before support (s)	Node Inertia H after support (s)	RoCoF before support Hz/s	RoCoF after support Hz/s
4	2	6.00	0.6	0.2
5	8.35	6.09	0.14	0.2

O Digital Platform

Indicative approaches of Inertia Support

- 2) Utilizing inertia of Renewable generators:
- Solar PV and wind generators are used as RE sources. Inertia from these sources can be utilized for inertia support to node 8
- 3) Installation of new transmission line:
- Excess inertia of node 3 can be provided along with other inertia support to node 8

Takeaways

- Green energy encouragement from regulatory commissions as well as governments increased investments into DER
- With digital transformation roadmap, Utilities are becoming smarter, in accessing, integrating and leveraging data across the grid for all techno-commercial decision making.
- This paper is articulated to present the potential of analyzing data to enhance the grid resiliency.
- As a known fact, penetration of RE generation not only reduces the inertia of the power system. but results into node-dependent and time- variant inertia. Reduced inertia results in fast frequency dynamics.
- Hence an attempt is made in demonstrating how to create visibility and identify locations with high as well as low inertia in the grid.
- The frequency dynamics, RoCoF can be improved by harnessing inertia support within the system along with external inertia support.

Thank You

For discussions/suggestions/queries email: d surekha@hotmail.com

Dr Surekha Deshmukh Chair- PICC IEEE R10 PES Chapters Rep — West Execom member -IEEE Pune Section

Page: 8 of 10

