AMS526: Numerical Analysis I (Numerical Linear Algebra)

Lecture 7: Sensitivity of Linear Systems

Xiangmin Jiao

Stony Brook University

Outline

- Condition Number of a Matrix
- 2 Perturbing Right-hand Side
- Perturbing Coefficient Matrix
- 4 Putting All Together

Condition Number of Matrix

• Consider f(x) = Ax, with $A \in \mathbb{R}^{m \times n}$

$$\kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{\|A\|\|x\|}{\|Ax\|}$$

• If A is square and nonsingular, since $||x||/||Ax|| \le ||A^{-1}||$

$$\kappa \leq \|A\| \|A^{-1}\|$$

• We define condition number of matrix A as

$$\kappa(A) = \|A\| \|A^{-1}\|$$

- It is the upper bound of the condition number of f(x) = Ax for any x
- For any induced matrix norm, $\kappa(I) = 1$ and $\kappa(A) \ge 1$
- Note about the distinction between the condition number of a *problem* (the map f(x)) and the condition number of a *problem instance* (the evaluation of f(x) for specific x)

Geometric Interpretation of Condition Number

• Another way to interpret at $\kappa(A)$ is

$$\kappa(A) = \sup_{\delta x, x} \frac{\|\delta f\|/\|\delta x\|}{\|f(x)\|/\|x\|} = \frac{\sup_{\delta x} \|A\delta x\|/\|\delta x\|}{\inf_{x} \|Ax\|/\|x\|}$$

• Question: For what x and δx is the equality achieved?

Geometric Interpretation of Condition Number

• Another way to interpret at $\kappa(A)$ is

$$\kappa(A) = \sup_{\delta x, x} \frac{\|\delta f\| / \|\delta x\|}{\|f(x)\| / \|x\|} = \frac{\sup_{\delta x} \|A\delta x\| / \|\delta x\|}{\inf_{x} \|Ax\| / \|x\|}$$

- Question: For what x and δx is the equality achieved? Answer: When x is in direction of minimum magnification, and δx is in direction of maximum magnification
- Define maximum magnification of A as

$$\mathsf{maxmag}(A) = \max_{\|x\|=1} \|Ax\|$$

and minimum magnification of A as

$$\mathsf{minmag}(A) = \min_{\|x\|=1} \|Ax\|$$

- Then condition number of matrix is $\kappa(A) = \max(A)/\min(A)$
- For 2-norm, $\kappa(A) = \sigma_1/\sigma_n$, the ratio of largest and smallest singular values (in later sections)

Example of III-Conditioned Matrix

Example

Let
$$A = \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. It is easy to verify that $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$. So $\kappa_{\infty}(A) = \kappa_1(A) = 1999^2 = 3.996 \times 10^6$.

Example of Ill-Conditioned Matrix

Example

A famous example is Hilbert matrix, defined by $h_{ij} = 1/(i+j-1)$, $1 \le i, j \le n$. The matrix is ill-conditioned for even quite small n. For $n \le 4$, we have

$$H_4 = \left[\begin{array}{cccc} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{array} \right],$$

with condition number $\kappa_2(H_4) \approx 1.6 \times 10^4$, and $\kappa_2(H_8) \approx 1.5 \times 10^{10}$.

Outline

- Condition Number of a Matrix
- Perturbing Right-hand Side
- Perturbing Coefficient Matrix
- 4 Putting All Together

Condition Number of Linear System

• What is the condition number for $f(b) = A^{-1}b$?

Condition Number of Linear System

• What is the condition number for $f(b) = A^{-1}b$? Answer: $\kappa \le \kappa(A) \equiv \|A\| \|A^{-1}\|$, as in matrix-vector multiplication

Theorem

Let A be nonsingular, and let x and $\hat{x} = x + \delta x$ be the solutions of Ax = b and $A\hat{x} = b + \delta b$, respectively. Then

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|},$$

and there exists ||b|| and $||\delta b||$ for which the equality holds.

• Question: For what b and δb is the equality achieved?

Condition Number of Linear System

• What is the condition number for $f(b) = A^{-1}b$? Answer: $\kappa \le \kappa(A) \equiv \|A\| \|A^{-1}\|$, as in matrix-vector multiplication

Theorem

Let A be nonsingular, and let x and $\hat{x} = x + \delta x$ be the solutions of Ax = b and $A\hat{x} = b + \delta b$, respectively. Then

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|},$$

and there exists ||b|| and $||\delta b||$ for which the equality holds.

• Question: For what b and δb is the equality achieved? Answer: When b is in direction of minimum magnification of A^{-1} , and δb is in direction of maximum magnification of A^{-1} . In 2-norm, when b is in direction of maximum magnification of A^{T} , and δb is in direction of minimum magnification of A^{T} .

Singular and Nearly Singular Linear System

• Question: What is condition number of Ax if A is singular?

Singular and Nearly Singular Linear System

- Question: What is condition number of Ax if A is singular? Answer: ∞ .
- We say a matrix is *nearly singular* if its condition number is very large
- In other words, columns of A are nearly linearly dependent
- If A is nearly singular, for matrix-vector multiplication, Ax, error is large if x is nearly in null space of A
- If A is nearly singular, for linear system Ax = b, error is large if b is NOT nearly in null space of A^T
- Therefore, ill-conditioning (near singularity) has a much bigger impact on solving linear system than matrix-vector multiplication!

III Conditioning Caused by Poor Scaling

• Some matrices are ill conditioned simply because they are out of scale.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be any nonsingular matrix, and let a_k , $1 \le k \le n$ denote the kth column of A. Then for any i and j with $1 \le i, j, \le n$, $\kappa_D(A) \ge \|a_i\|_D / \|a_i\|_D$.

- This theorem indicates that poor scaling inevitably leads to ill conditioning
- A *necessary* condition for a matrix to be well conditioned is that all of its rows and columns are of roughly the same magnitude.

Estimating Condition Number

- We would like to estimate $\kappa_1(A) = ||A||_1 ||A^{-1}||_1$ without computing A^{-1} , but allow LU factorization of A
- For any vector $w \in \mathbb{R}^n$ and $\|w\|_1 = 1$, we have lower bound

$$\kappa_1(A) \ge \|A\|_1 \|A^{-1}w\|_1$$

• If w has a significant component in direction near maximum magnification by A^{-1} , then

$$\kappa_1(A) \approx \|A\|_1 \|A^{-1}w\|_1$$

- Note statement on p. 132 of textbook "Actually any w chosen at random is likely to have a significant component in the direction of maximum magnification by A^{-1} " is unjustified for large n in 1-norm
- Good estimators conduct systematic searches for w that approximately maximizes $\|A^{-1}w\|_1$

Outline

- Condition Number of a Matrix
- 2 Perturbing Right-hand Side
- Perturbing Coefficient Matrix
- 4 Putting All Together

Non-singularity of Perturbed Matrix

Theorem

If A is nonsingular and

$$\|\delta A\|/\|A\|<1/\kappa(A),$$

then $A + \delta A$ is nonsingular.

Non-singularity of Perturbed Matrix

Theorem

If A is nonsingular and

$$\|\delta A\|/\|A\|<1/\kappa(A),$$

then $A + \delta A$ is nonsingular.

Proof.

$$\begin{split} &\|\delta A\|/\|A\|<1/\kappa(A) \text{ is equivalent to } \|\delta A\|\|A^{-1}\|<1. \text{ Suppose } A+\delta A \text{ is singular, then } \exists y\neq 0 \text{ such that } (A+\delta A)y=0, \text{ and } y=-A^{-1}\delta Ay. \\ &\text{Therefore, } \|y\|\leq \|A^{-1}\|\|\delta A\|\|y\|, \text{ or } \|A^{-1}\|\|\delta A\|\geq 1. \end{split}$$

• If $A + \delta A$ is the singular matrix closest to A, in the sense that $\|\delta A\|_2$ is as small as possible, then $\|\delta A\|_2/\|A\|_2 = 1/\kappa_2(A)$

Linear System with Perturbed Matrix

- Suppose Ax = b and $\hat{A}\hat{x} = b$ where $\hat{A} = A + \delta A$. Let $\delta x = \hat{x} x$ and $\hat{x} = x + \delta x$.
- We would like to bound $\|\delta x\|/\|x\|$, but first we bound $\|\delta x\|/\|\hat{x}\|$

Theorem

If A is nonsingular, and let $b \neq 0$. Then

$$\frac{\|\delta x\|}{\|\hat{x}\|} \leq \kappa(A) \frac{\|\delta A\|}{\|A\|}.$$

Proof.

Rewrite $(A + \delta A)\hat{x} = b$ as $Ax + A\delta x + \delta A\hat{x} = b$, where Ax = b. Therefore,

$$\|\delta x\| \le \|A^{-1}\| \|\delta A\| \|\hat{x}\|.$$

Therefore,

$$\frac{\|\delta x\|}{\|\hat{x}\|} \leq \|A^{-1}\| \|\delta A\| = \kappa(A) \frac{\|\delta A\|}{\|A\|}.$$

Linear System with Perturbed Matrix Continued

• Ax = b and $\hat{A}\hat{x} = b$ where $\hat{A} = A + \delta A$. Let $\delta x = \hat{x} - x$ and $\hat{x} = x + \delta x$.

Theorem

If A is nonsingular and $\|\delta A\|/\|A\| < 1/\kappa(A)$, and let $b \neq 0$. Then

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)\|\delta A\|/\|A\|}{1-\kappa(A)\|\delta A\|/\|A\|}.$$

Proof.

$$\|\delta x\| \le \|A^{-1}\| \|\delta A\| \|\hat{x}\| \le \|A^{-1}\| \|\delta A\| (\|x\| + \|\delta x\|).$$
 Therefore,

$$(1 - ||A^{-1}|| ||\delta A||) \delta x \le ||A^{-1}|| ||\delta A|| ||x||,$$

where $||A^{-1}|| ||\delta A|| = \kappa(A) ||\delta A|| / ||A||$.

We typically expect $\kappa(A) \|\delta A\| \ll \|A\|$, so the denominator is close to 1.

Xiangmin Jiao Numerical Analysis I 15 / 18

Outline

- Condition Number of a Matrix
- 2 Perturbing Right-hand Side
- Perturbing Coefficient Matrix
- Putting All Together

Perturbed RHS and Matrix

• Suppose Ax = b and $(A + \delta A)(x + \delta x) = (b + \delta b)$, where $\hat{A} = A + \delta A$, $b = b + \delta b$ and $\hat{x} = x + \delta x$.

Theorem

Let A be nonsingular, and suppose $\hat{x} \neq 0$ and $\hat{b} \neq 0$. Then

$$\frac{\|\delta x\|}{\|\hat{x}\|} \leq \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|\hat{b}\|} + \frac{\|\delta A\|}{\|A\|} \frac{\|\delta b\|}{\|\hat{b}\|} \right) \approx \kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|\hat{b}\|} \right).$$

Theorem

If A is nonsingular and $\|\delta A\|/\|A\| < 1/\kappa(A)$, and let $b \neq 0$, then

$$\frac{\|\delta x\|}{\|x\|} \lesssim \frac{\kappa(A)(\|\delta A\|/\|A\| + \|\delta b\|/\|b\|)}{1 - \kappa(A)\|\delta A\|/\|A\|}.$$

Roughly speaking, $\kappa(A)$ determines loss of digits of accuracy in x in addition to loss of digits of accuracy in perturbations in A and b

A Posteriori Error Analysis Using Residual

• Suppose \hat{x} is a computed solution of Ax = b, and residual $\hat{r} = b - A\hat{x}$. How to bound error in $x - \hat{x}$?

Theorem

Let A be nonsingular, let $b \neq 0$. Then

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\hat{r}\|}{\|b\|}.$$

- If the residual is tiny and A is well conditioned, then \hat{x} is an accurate approximation to x.
- For a posteriori error bound, one needs to estimate $\|\hat{r}\|$ and $\kappa(A)$