Week 3: Cumulative distribution function.

mathematical expectation

Armenak Petrosyan

Relative frequency histogram of data

- ▶ Data = values of the random variable on a sequence of trial outcomes.
- ▶ As mentioned earlier, probability of an event represents how frequent the experiment outcome terminates in the event, in a large number of repetitive trials.
- lacktriangle Hence, the pmf at $x \in \operatorname{Range}(X)$ can be empirically estimated using the relative frequency

$$f_{\rm emp}(x) = \frac{{\rm number\ of\ measurements\ in\ data} = x}{{\rm size\ of\ data}}.$$

Resulting relative frequency histogram will approximate the pmf histogram.

- ▶ A dice is tossed twice and the random variable is the maximum of the two tosses.
- $S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$ and for any s = (i, j),

$$X(i,j) = \max\{i,j\}.$$

▶ Range(X) = {1,...,6} and, for any $x \in \text{Range}(X)$,

$$f(x) = \frac{2x-1}{6^2}.$$

ightharpoonup Data = value of X on 1000 random pairs of tosses.

Cumulative distribution function (cdf)

Often times we are interested in the following function.

Definition (cdf)

The function

$$F(x) = P(X \le x), \ x \in \mathbb{R}$$

is called cumulative distribution function (cdf).

Example

- ▶ Let S be the set of all people in Georgia.
- Let X(s) be the age of the person $s \in S$.
- lacktriangle Then F(x) is the probability that a randomly chosen person is of age or younger than x.

Connection between pmf and cdf

Note the following: if Range(X) = $\{x_1, \ldots, x_n\}$ with $x_1 < \cdots < x_n$ then

 $\blacktriangleright (\mathsf{pmf} \to \mathsf{cdf})$

$$F(x) = \begin{cases} 0 & x < x_1 \\ \sum_{i=1}^{k} f(x_i) & x_k \le x < x_{k+1} \text{ for } k = 1, \dots, n-1 \\ 1 & x_n \le x \end{cases}$$

$$f(x_1) = F(x_1), \quad f(x_k) = F(x_k) - F(x_{k-1})$$
 for $k=2,\dots,n$.

In the double coin flap experiment, where number of heads was the random variable, we have

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{4} & 0 \le x < 1 \\ \frac{1}{4} + \frac{1}{2} & 1 \le x < 2 \\ \frac{1}{4} + \frac{1}{2} + \frac{1}{4} & 2 \le x \end{cases}$$

 $(pmf \rightarrow cdf)$

For any discrete random variable, its cdf is al

- ► a piece-wise constant function,
- ▶ non-decreasing (if $x \le y$ then $F(x) \le F(y)$),
- right-continuous ($\lim_{y\to x^+} F(y) = F(x)$).

Problem

Suppose $Range(X) = \{1, 0, -2, 10, 5\}$ and the pmf of X is

$$f(1) = 0.05, f(0) = 0.1, f(-2) = 0.3, f(10) = 0.2, f(5) = 0.35.$$

Compute and draw the cdf of X.

Solution

ightharpoonup Arrange $\operatorname{Range}(X)$ is ascending order

Range
$$(X) = \{-2, 0, 1, 5, 10\}.$$

$$F(x) = \begin{cases} 0, & x < -2 \\ f(-2) = 0.3 & -2 \le x < 0 \\ f(-2) + f(0) = 0.4 & 0 \le x < 1 \\ f(-2) + f(0) + f(1) = 0.45 & 1 \le x < 5 \\ f(-2) + f(0) + f(1) + f(5) = 0.8 & 5 \le x < 10 \\ 1 & 10 < x \end{cases}.$$

A. Petrosyan - Math 3215-C - Probability & Statistics

Empirical cdf

- ▶ Data = values of the random variable on a sequence of trial outcomes.
- ► The empirical cdf is computed as follows:

$$F_{\mathsf{emp}}(x) = \frac{\mathsf{number\ of\ values\ } \leq x}{\mathsf{size\ of\ data}}.$$

Example

- $ightharpoonup S = \{(i,j): 1 \le i \le 6, 1 \le j \le 6\}$ and for any $s = (i,j), X(i,j) = \max\{i,j\}.$
- lacktriangle Range $(X)=\{1,\ldots,6\}$ and it can be checked that

$$F(x) = \begin{cases} 0 & x < 1 \\ \sum_{i=1}^{k} \frac{2i-1}{6^2} = \frac{k^2}{6^2} & k \le x < k+1, \text{ for } k = 1, \dots, 5 \\ 1 & 6 < x \end{cases}$$

ightharpoonup Data = value of X on 100 random pairs of tosses.

A. Petrosyan — Math 3215-C — Probability & Statistics

Uniform distribution

Definition

If $\operatorname{Range}(X)=\{x_1,\ldots,x_k\}$ and $P(x_1)=\cdots=P(x_k)=\frac{1}{k}$ then we say that X has uniform distribution.

A. Petrosyan — Math 3215-C — Probability & Statistics

Hypergeometric distribution

- ightharpoonup Suppose there are N balls in an urn, K of which are red, the rest are blue.
- ▶ *n* balls are selected without order and without replacement.
- S is the set of all such selections.
- ▶ For $s \in S$, let X(s) be the number of red balls in s.

Definition (Hypergeometric distribution)

The pmf of the above random variable is called hypergeometric distribution with parameters (N,K,n).

Theorem

1. The support of the hyper-geometric distribution with parameters (N,K,n) is equal to the set

Range(X) = {max{0,
$$n - (N - K)}, ..., min{n, K}}.$$

2. For any $x \in \text{Range}(X)$,

$$f(x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}.$$

Proof.

- 1. If $n \ge N K$ (the number of blue balls) then there must be at least n (N K) red balls in any selection thus x is all larger than n (N K) in this case.
 - If $n \leq N K$, then in some selection may not be any red balls.
 - \blacktriangleright Hence the number of selection all satisfies x > n (N K).
 - The number of red balls in a selection cannot be more than the number of all selected balls thus x < n.
 - The number of red balls in a selection cannot be more than the number of all possible red balls thus $x \leq K$.
 - ► Combining the upper and lower inequalities, we arrive at

$$\max\{0, n - (N - K)\} \le x \le \min\{n, K\}.$$

Proof (cont.)

- The total number of selections is $\binom{N}{n}$.
 - The x red balls can be chosen in $\binom{n}{x}$.
 - The remaining n-x blue balls can be chosen in $\binom{N-K}{n-x}$.
 - lacktriangleright Using multiplication principle, the number of all n samples without order and without replacement is

$$\binom{K}{x}\binom{N-K}{n-x}$$
.

lackbox Thus, the probability of the event that there are exactly x balls in a random selection of n is equal to

$$f(x) := P(X = x) = \frac{\binom{K}{x} \binom{N - K}{n - x}}{\binom{N}{n}}.$$

Hypergeometric distribution: the histogram

A. Petrosyan — Math 3215-C — Probability & Statistics

Problem

There are 1000 voters in a district and 600 of them are voting for Party 1 candidate and 400 are voting for the Party 2 candidate. If an exit poll is conducted with 10 random people leaving the voting station, what is the probability that 6 of them voted for party 1 candidate?

Solution

- Let s denote the group of people that have been polled.
- Let X(s) denote the number of people in s that voted for Party 2 candidate.
- \blacktriangleright X has a hypergeometric distribution with parameters (N = 1000, K = 600, n = 10).
- We want to compute f(6).
- From the theorem we just proved,

$$f(6) = \frac{\binom{600}{6}\binom{400}{4}}{\binom{1000}{10}} \approx 0.252.$$

Exercise 3

Problem (1.2-15 in the textbook)

Five cards are selected at random without replacement from a standard, thoroughly shuffled 52-card deck of playing cards. Let X equal the number of face cards (kings, queens, jacks) in the hand. Forty observations of X yielded the following data:

$$\begin{aligned} \textit{Data} &= \{2, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 0, 2, 3, 0, 1, 1, 0, 3, \\ &1, 2, 0, 2, 0, 2, 0, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0.\} \end{aligned}$$

- 1. Determine the pmf of X.
- 2. Draw a probability histogram for this distribution.
- 3. Determine the relative frequencies of 0, 1, 2, 3, and superimpose the relative frequency histogram on your probability histogram.

Solution

- 1. \blacktriangleright X has Hypergeometric distribution with parameters (N = 52, K = 12, n = 5).
 - ightharpoonup Range(X) = $\{0, ..., 5\}$ and

$$f(x) = \frac{\binom{12}{x} \binom{40}{5-x}}{\binom{52}{5}}.$$

Solution

2. Numerically can be checked that

$$f(0) \approx 0.2532$$
 $f(1) \approx 0.4220$ $f(2) \approx 0.2509$ $f(3) \approx 0.0660$ $f(4) \approx 0.0076$ $f(5) \approx 0.0003$

3. $\textit{Data} = \{0 \ (\times 13), 1 \ (\times 16), 2 \ (\times 9), 3 \ (\times 2)\} \ \textit{hence}$

$$f_{freq}(0) = \frac{13}{40} \approx 0.3250$$
 $f_{freq}(1) = \frac{16}{40} \approx 0.400$ $f_{freq}(2) = \frac{9}{40} \approx 0.225$ $f_{freq}(3) = \frac{2}{40} \approx 0.0500$ $f_{freq}(4) = 0.0000$ $f_{freq}(5) = 0.0000$

A. Petrosvan — Math 3215-C — Probability & Statistics

Example

A local government is conducting a survey to understand the average household size under its jurisdiction. They randomly select n households and record the number of people. The estimated average size is

$$\mathsf{Average} = \frac{\# \text{ of all people in the surveyed households}}{n} = \frac{1 \times (\# \text{ of households with 1 people}) + 2 \times (\# \text{ of households with 2 people}) + \cdots}{n} = \frac{1 \times \# \text{ of households with 1 people}}{n} + 2 \times \frac{\# \text{ of households with 2 people}}{n} + \cdots$$

- Let S denote the set of all households.
- Let X(s) be the number of people in household s.
- ▶ Let f(n) be the pmf of X for n = 1, 2, ...
- Compare above sum to

$$1 \cdot f(1) + 2 \cdot f(2) + \cdots$$

in terms of relative frequencies.

Mathematical expectation

Definition (Mathematical expectation)

The **mathematical expectation** or the **expected value** of the random variable X is called the number $\underline{\hspace{1cm}}$

$$E[X] = \sum_{x \in \text{Range}(X)} x f(x)$$

assuming the sum is absolutely convergent:

$$\sum_{x \in \text{Range}(X)} |x| f(x) < \infty.$$

X is a discrete random variable, so $\mathrm{Range}(X)$ can be enumerated: $\mathrm{Range}(X) = \{x_1, x_2, \dots\}$. Then we understand

$$\sum_{x \in \text{Bange}(X)} x f(x) := \lim_{N \to \infty} \sum_{i=1}^{N} x_i f(x_i)$$

for one such enumeration.

- ▶ Without absolute convergence, E[X] is not well defined it will depend on the order of enumeration of Range(X) (Rieman series theorem).
- ▶ If the sum above is not absolutely convergent, we say that the **expected value of** X **does not exist**

Example

If Range(X) is finite, the mathematical expectation of X always exists.

Example (Problem 2.2-6 in the textbook)

- ightharpoonup Let $S = \mathbb{N}$
- ▶ Take $X(n) = n^2$, for every $n \in \mathbb{N}$.
- ightharpoonup Range(X) = {1², 2², 3², ...}
- ▶ Take $f(x) = \frac{6}{-2\pi}$, for every $x \in \text{Range}(X)$.
- $\blacktriangleright \sum_{x \in \mathrm{Range}(X)} f(x) = \sum_{n=1}^{\infty} \frac{6}{\pi^2 n^2} = 1$ so this is a pmf.
- Notice that

$$E[X] = \sum_{x \in \text{Range}(X)} f(x) = \sum_{n=1}^{\infty} n^2 f(n^2) = \frac{6}{\pi^2} \sum_{n=1}^{\infty} 1 = \infty.$$

▶ Thus the mathematical expectation of X does not exist.

Change of a random variable

- ▶ Let $X: S \to \mathbb{R}$ be a random variable on the set of outcomes S.
- ▶ Let $u : \mathbb{R} \to \mathbb{R}$ be any function (e.g. $u(x) = x^2$).
- ► Then the composition function

$$Y = u(X), \quad u(X): S \to \mathbb{R}$$

will be a new random variable.

A. Petrosyan — Math 3215-C — Probability & Statistics

Example

A local government planning a crisis relief to the population during a pandemic. The proposed plan is to provide 1000\$ to households with 1-2 people, \$2000 to households with 3-4 people, and \$3000 for households with 5 or more people. Let us find the expected value of the amount a household will receive as part of this relief plan.

On one hand

- Let S denote the set of all households.
- \blacktriangleright Let Y(s) be the amount of help the household s receives.
- ▶ Let $f_Y(y)$ be the pmf of Y at $y \in \text{Range}(Y) = \{1000, 2000, 3000\}.$
- ► Then

$$E[Y] = 1000 \cdot f_Y(1000) + 2000 \cdot f_Y(2000) + 3000 \cdot f_Y(3000).$$

On the other hand

- \blacktriangleright Let X(s) be the number of people in household s.
- Let $f_X(n)$ be the pmf of X for $n = 1, 2, \ldots$
- ▶ Then Y = u(X) for

$$u(x) = \begin{cases} 0 & x < 1\\ 1000 & 1 \le x < 3\\ 2000 & 3 \le x < 5\\ 3000 & 5 < x \end{cases}.$$

Notice that

$$f_Y(1000) = f_X(1) + f_X(2)$$

$$f_Y(2000) = f_X(3) + f_X(4)$$

$$f_Y(3000) = f_X(5) + f_X(6) + \cdots$$

Consequently,

$$\begin{split} E[Y] &= 1000 \cdot [f_X(1) + f_X(2)] + 2000 \cdot [f_X(3) + f_X(4)] + 3000 \cdot [f_X(5) + f_X(6) + \cdots] \\ &= u(1) \cdot f_X(1) + u(2) \cdot f_X(2) + \cdots = \\ &= \sum_{x \in \text{Range} X} u(x) f_X(x). \end{split}$$

A. Petrosyan — Math 3215-C — Probability & Statistics

Theorem

Let X be a random variable and $u: \mathbb{R} \to \mathbb{R}$ be a function. If

$$\sum_{x \in \text{Range}(X)} |u(x)| f(x) < \infty.$$

Then the expected value of the random variable Y = u(X) exists and

$$E[Y] = \sum_{x \in \text{Range}(X)} u(x)f(x).$$

- ▶ We do not prove this theorem but you can use it.
- ▶ The idea of proof: similar to the example above combined with Fubini's theorem.

Exercise 4

Problem (2.2-5 in the textbook)

Let the random variable X be the number of days that a certain patient needs to be in the hospital. Suppose X has the pmf

$$f(x) = \frac{5-x}{10}, \quad x = 1, 2, 3, 4.$$

If the patient is to receive \$200 from an insurance company for each of the first two days in the hospital and \$100 for each day after the first two days, what is the expected payment for the hospitalization?

Solution

- $\blacktriangleright X(s) =$ number of days the patient S spends in the hospital.
- ightharpoonup u(x) = amount of money received for staying in hospital for <math>x days:

$$u(1) = 200, \quad u(2) = 400, \quad u(3) = 500, \quad u(4) = 600.$$

- ightharpoonup Y(s) = amount of money patient s receives.
- $E[Y] = \sum_{x} u(x)f(x) = 200\frac{4}{10} + 400\frac{3}{10} + 500\frac{2}{10} + 600\frac{1}{10} = 360.$

Properties of expectation

Theorem

1. For constant random variable $X \equiv c$ (this notation means X(s) = c for all $s \in S$)

$$E[c] = c.$$

2. For any number c and any random variable X whose expected value exists,

$$E[c \cdot X] = c \cdot E[X].$$

3. For any numbers c_1, c_2 , any functions u_1, u_2 , and any random variable X,

$$E[c_1u_1(X) + c_2u_2(X)] = c_1E[u_1(X)] + c_2E[u_2(X)].$$

(under the assumption that all the above expected values exist).

Proof

1. Range $(X) = \{c\}$ and f(c) = P(S) = 1 so

$$E[c] = \sum_{x \in \text{Range}(X)} x f(x) = c f(c) = c.$$

cont.

2. Take u(x) = cx, then

$$E[c \cdot X] = \sum_{x \in \text{Range}(X)} u(x) f(x) = \sum_{x \in \text{Range}(X)} cx f(x) = c \sum_{x \in \text{Range}(X)} f(x) = cE[X].$$

3. $u(x) = c_1 u_1(x) + c_2 u_2(x)$. Then

$$\begin{split} E[c_1u_1(X) + c_2u_2(X)] &= E[u(X)] \\ &= \sum_{x \in \text{Range}(X)} u(x)f(x) \\ &= \sum_{x \in \text{Range}(X)} [c_1u_1(x) + c_2u_2(x)]f(x) = \\ &= c_1 \sum_{x \in \text{Range}(X)} u_1(x)f(x) + c_2 \sum_{x \in \text{Range}(X)} u_2(x)f(x) \\ &= c_1E[u_1(X)] + c_2E[u_2(X)]. \end{split}$$

ightharpoonup Condition 3. extends to multiple function u_1, \ldots, u_k by induction

$$E[c_1u_1(X) + \dots + c_ku_k(X)] = c_1E[u_1(X)] + \dots + c_kE[u_k(X)].$$

- lacktriangle Due to properties 2. and 3., we say that $X\mapsto E[X]$ correspondence is a linear functional.
- ▶ The line function l(z) = az has similar properties; the name is derived from there.

Example

- ▶ Put $u(x) = (x b)^2$.
- Notice

$$g(b) = E[(X - b)^{2}] = E[X^{2} - 2bX + b^{2}] = E[X^{2}] - 2bE[X] + b^{2}.$$

▶ Let us compute the minimum of the function g(b):

$$\frac{\partial g}{\partial b}(b) = 2b - 2E[X] = 0$$

hence the minimum is at b = E[X].

Intuitively: expected value is the "center" of the histogram where it concentrates (the point all of them are simultaneously close to).

Hypergeometric distribution

Theorem

Let X be a hypergeometric distribution with parameters (N,K,n). Then

$$E[X] = \frac{nK}{N}.$$

Intuitively: red balls are the $\frac{K}{N}$ part of all balls. We are doing n selections so expect to get on average $n\frac{K}{N}$ red balls.

