

Customer Segmentation: An Overview

- -Each Customer is Different
- -Can one single approach to dealing with customers work? Most likely no.
- -Customer segmentation is the process of categorizing both current and potential customers into distinct groups based on common attributes or characteristics they share.

Customer Segmentation: An Overview

Tech companies such as Google and Meta have built their business models around targeted advertising, thanks to customer segmentation.

- Enhances customer relationship and brand loyalty
- Enhances customer experiences and sales

Objectives and Steps Involved

In this project, we will perform a customer personality analysis based on retail stores. This project aims to analyze a dataset provided in CSV format, comprising 29 key customer attributes including education level, marital status, income, and expenditure on various products such as wine, fruits, meat, and gold. Additionally, the dataset includes information on how customers respond to promotions or discounts, as well as the distribution of purchases across different sources such as catalogs, stores, and websites.

Cleaning/Wrangling

EDA

Preprocessing

Modeling

Project Dataset Attributes

Cleaning and Wrangling

```
df2['Income'] = df2['Income'].fillna(df2['Income'].median())
   df2.isnull().sum()
ID
Year Birth
Education
Marital Status
Income
Kidhome
Teenhome
Dt Customer
Recency
MntWines
MntFruits
MntMeatProducts
MntFishProducts
MntSweetProducts
MntGoldProds
NumDealsPurchases
NumWebPurchases
NumCatalogPurchases
NumStorePurchases
NumWebVisitsMonth
AcceptedCmp3
AcceptedCmp4
AcceptedCmp5
AcceptedCmp1
AcceptedCmp2
Complain
Z CostContact
Z Revenue
Response
dtype: int64
```

- The 'Income' column is the only feature where there are null values
- Missing values are filled with median values

"Customer_For" Feature Created

```
df2["Date_Customer"] = pd.to_datetime(df2["Dt_Customer"])
newest_date = df2["Date_Customer"].min().date()

oldest_date = df2["Date_Customer"].min().date()

print("The newest customer's enrollment date in the records:", newest_date)
print("The oldest customer's enrollment date in the records:", oldest_date)

The newest customer's enrollment date in the records: 2014-12-06
The oldest customer's enrollment date in the records: 2012-01-08

/var/folders/2r/qvwb_4916233q75v3pr4dlx00000gn/T/ipykernel_97584/2632591379.py:1: UserWarning: Parsing dates in DD/M
M/YYYY format when dayfirst=False (the default) was specified. This may lead to inconsistently parsed dates! Specify
```

df2["Date_Customer"] = pd.to_datetime(df2["Dt_Customer"])

Next, I'll create a new feature ("Customer_For") indicating the number of days since customers first started shopping relative to the last recorded date.

a format to ensure consistent parsing.

```
days_since_registration = (newest_date - df2["Date_Customer"].dt.date).dt.days
df2["Customer_For"] = days_since_registration
```

Customer Demographics

Average Year of Birth: 1968

Married: 864

Divorced: 232

Together: 580

Widow: 77

Single: 480

Demographics

- Half of the dataset includes households with one child at 50.4%
- 0 children: 28.5%
- 2 children: 18.8%
- 3 children: 2.4%

Products Purchased Based on Education and Income

The average amount purchased for wine products increase the higher the educational degrees are.

- So few purchases are made in the 0-30k income bracket.
- 50-70k and 70-100k income bracket have high total wine purchases.
- 70-100k and 100k income bracket have high total meat purchases.

Preprocessing and Feature Engineering

Range	eIndex: 2240 entries,	0 to	2239	
Data	columns (total 33 co.	Lumns):	
#	Column	Non-	Null Count	Dtype
0	ID	2240	non-null	int64
1	Year_Birth	2240	non-null	int64
2	Education	2240	non-null	object
3	Marital_Status	2240	non-null	object
4	Income	2240	non-null	float64
5	Kidhome	2240	non-null	int64
6	Teenhome	2240	non-null	int64
7	Dt_Customer	2240	non-null	object
8	Recency	2240	non-null	int64
9	MntWines	2240	non-null	int64
10	MntFruits	2240	non-null	int64
11	MntMeatProducts	2240	non-null	int64
12	MntFishProducts	2240	non-null	int64
13	MntSweetProducts	2240	non-null	int64
14	MntGoldProds	2240	non-null	int64
15	NumDealsPurchases	2240	non-null	int64
16	NumWebPurchases	2240	non-null	int64
17	NumCatalogPurchases	2240	non-null	int64
18	NumStorePurchases	2240	non-null	int64
19	NumWebVisitsMonth	2240	non-null	int64
20	AcceptedCmp3	2240	non-null	int64
21	AcceptedCmp4	2240	non-null	int64
22	AcceptedCmp5	2240	non-null	int64
23	AcceptedCmp1	2240	non-null	int64
24	AcceptedCmp2	2240	non-null	int64
25	Complain	2240	non-null	int64
26	<pre>Z_CostContact</pre>	2240	non-null	int64
27	Z_Revenue	2240	non-null	int64
28	Response	2240	non-null	int64
29	Date_Customer	2240	non-null	object
30	Customer_For	2240	non-null	int64
31	Children	2240	non-null	int64
32	Income_Group	2240	non-null	object
dtype	es: float64(1), int64	(27),	object(5)	

- Feature Selection, Engineering
- Address outliers
- Encoding Categorical Variables

Outliers

Income Feature

- One observation with an income of over 600,000

```
# Filtering out records with income greater than $600,000
df = df[df['Income'] < 600000]</pre>
```

- Filtering so that we get rid of this outlier

Outliers

Age Feature

- Three observations of age where it is over 115.

	ID	Age	Education	Status	Status	Children	Kidhome	Teenhome	Income	Spending	 Meat	Fish	Sweets	Gold	Web	Catalog	Store	Purc
192	7829	115	Undergraduate	Alone	1	1	1	0	36640.0	65	 8	7	4	25	2	1	2	
239	11004	122	Undergraduate	Alone	1	1	0	1	60182.0	22	 5	7	0	2	1	0	2	
339	1150	116	Postgraduate	Couple	0	0	0	0	83532.0	1853	 562	104	64	224	4	6	4	

- Filtering so that we get rid of this outlier

```
df = df[(df["Age"]<95)]
df[df["Age"]>95]

ID Age Education Marital Status Children Kidhome Teenhome Income Spending ... Meat Fish Sweets Gold Web Catalog Store Pro

O rows × 24 columns
```

Label Encoding, Scaling

```
data_types = df.dtypes

# Filtering columns with data type 'object' or 'category'
categorical_variables = data_types[data_types == 'object'].index.tolist() + data_types[data_types == 'category'].ir

# Display the list of categorical variables
print("Categorical variables:", categorical_variables)
```


Categorical Variables

'Education'

'Marital Status'


```
# Label Encoding the object dtypes.
LE = LabelEncoder()
for col in categorical_variables:
df[col] = LE.fit_transform(df[col])
```



```
# Creating a copy of the original DataFrame excluding specified columns
cols_to_keep = [col for col in df.columns if col not in ['ID', 'Total Promo', 'Complain', 'Response']]
ds = df[cols_to_keep].copy()

# Scaling
scaler = StandardScaler()
scaled_ds = pd.DataFrame(scaler.fit_transform(ds), columns=ds.columns)
```

Modeling - Dimensionality Reduction (PCA)

Dimensionality reduction involves decreasing the number of variables under consideration by extracting a set of principal variables.

- PCA -> Dimensions to 3


```
x = PCA_sdf["col1"]
y = PCA_sdf["col2"]
z = PCA_sdf["col3"]

# Creating a 3D projection plot
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection="3d")
ax.scatter(x, y, z, c="maroon", marker="o")
ax.set_title("A 3D Projection Of Data In The Reduced Dimension")
plt.show()
```

Distortion Score Elbow for K-Means Clustering

Based on the analysis conducted in the preceding cell, it appears that the dataset is best segmented into 4 distinct clusters.

Count per Cluster

Cluster 0: 624

Cluster 1: 621

Cluster 2: 502

Cluster 3: 489

The clusters are closely aligned in count, with only a 135 count difference from cluster 0 and 3.

Income vs Spending

- Cluster 0: average income | high spending
- Cluster 1: low income | low spending
- Cluster 2: high income | high spending
- Cluster 3: average income | low spending

Age

Education

Children

Marital Status

Parental Status

Cluster 0: Mostly parents 1/3 used promos

Age: 35-65

Spending: \$100-\$1750 Majority spend \$500-\$1000

Educated: Graduate or undergrad Mostly married with 1-2 kids

Many made 2-4 discounted purchases

Cluster 1:

Some parents

Few used promos

Age: 30-50

Spending: \$0-\$600 Educated: Graduate

Mixed marital status, few kids

Majority made 1 discounted purchase

Cluster 2:

Mostly non-parents Many used promos

Age: 30-65

Spending: \$750-\$2300 Majority spend over \$1000 Mostly married, no kids

Majority made 1 discounted purchase

Cluster 3:

Mostly parents

Few used promos

Age: 40-65

Spending: \$0-\$500 Educated: Graduate

Mixed marital status, 1-3 kids

Majority made 1-3 discounted purchases

Cluster Insights

= Clusters to Focus

Target Marketing

Cluster 0: Family oriented bundles

Cluster 1: Value-driven Promotions

Cluster 2: Exclusive Discounts for frequent shoppers

Product Assortment

Cluster 1: Budget friendly deals

Cluster 2: Exclusive, premium specials for these frequent shoppers

Promotion Refinement

Refined targeted promotions

Loyalty Programs

Engagement
Conversion Rates

Recommendations