Indefinite Integrals: JEE Maths

G V V Sharma*

1. Let a, b, c be positive real numbers. Let

$$\theta = \tan^{-1} \sqrt{\frac{a(a+b-c)}{bc}} + \tan^{-1} \sqrt{\frac{b(a+b+c)}{ca}}$$

$$+ \tan^{-1} \sqrt{\frac{c(a+b-c)}{ab}}$$
7.

Then $\tan \theta = \dots$

2. The numerical value of

$$\tan\{2\tan^{-1}(\frac{1}{5}) - \frac{\pi}{4}\}$$

is equal to

3. The greater of the two angles

$$A = 2 \tan^{-1}(2\sqrt{2} - 1)$$

$$B = 3\sin^{-1}(\frac{1}{3}) + \sin^{-1}(\frac{3}{5})$$

is.....

MCQ's with One Correct Answer

- 4. The value of $\tan^{-1}[(\cos^{-1}\frac{4}{5}) + \tan^{-1}(\frac{2}{3})]$ is

 - d) none of these
- 5. If we consider only the principle values of the inverse trigonometric functions then the value of $\tan(\cos^{-1}\frac{1}{5\sqrt{2}}-\sin^{-1}\frac{4}{\sqrt{17}})$ is
- 6. The number of real solutions of

$$\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{2}$$

- a) zero
- b) one

- c) two
- d) infinite

$$\sin^{-1}(x - \frac{x^2}{2} + \frac{x^3}{4}...) + \cos^{-1}(x^2 - \frac{x^4}{2} + \frac{x^6}{4}...) = \frac{\pi}{2}$$

for $0 < |x| < \sqrt{2}$, then x equals

- a) 1/2
- b) 1
- c) -1/2
- d) -1
- 8. The value of x for which

$$\sin(\cot^{-1}(1+x) = \cos(\tan^{-1}x))$$

- is
- a) 1/2
- b) 1
- c) 0
- d) -1/2
- 9. If 0 < x < 1, then

$$\sqrt{1+x^2}[\{x\cos(\cot^{-1}x)+\sin(\cot^{-1}x)\}-1]^{1/2}=$$

- c) $x \sqrt{1 + x^2}$ d) $\sqrt{1 + x^2}$
- 10. The value of

$$\cot(\sum_{n=1}^{23}\cot^{-1}(1+\sum_{k=1}^{n}2k))=$$

MCQs with One or More than One Correct

- 11. The principal value of $\sin^{-1}(\sin\frac{2\pi}{3})$ is

 - b) $\frac{2\pi}{3}$ c) $\frac{4\pi}{3}$
 - d) none of these

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

- 12. If $\alpha = 3\sin^{-1}(\frac{6}{11})$ and $\beta = 3\cos^{-1}(\frac{4}{9})$, where the inverse trigonometric functions take only the principal values, then the correct option(s) is(are)
 - a) $\cos \beta > 0$
 - b) $\sin \beta < 0$
 - c) $cos(\alpha + \beta) > 0$
 - d) $\cos \alpha < 0$
- 13. For non-negative integers n, let

$$f(n) = \frac{\sum_{k=0}^{n} \sin(\frac{k+1}{n+2}\pi) \sin(\frac{k+2}{n+2}\pi)}{\sum_{k=0}^{n} \sin^{2}(\frac{k+1}{n+2}\pi)}$$

Assuming $\cos^{-1} x$ takes values $[0, \pi]$, which of the following options is/are correct?

- a) $[\lim_{n\to\infty} f(n) = \frac{1}{2}]$
- b) $f(4) = \frac{\sqrt{3}}{2}$
- c) If $\alpha = \tan(\cos^{-1} f(6))$, then $\alpha^2 + 2\alpha 1 = 0$
- d) $\sin(7\cos^{-1}f(5)) = 0$
- 14. Find the value of:

$$\cos(2\cos^{-1}x + \sin^{-1}x)atx = \frac{1}{5}$$

where $0 \le \cos^{-1} x \le \pi$ and $-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$.

15. Find all the solutions of

$$4\cos^2 x \sin x - 2\sin^2 x = 3\sin x$$

- 16. Prove that $\cos \tan^{-1} \sin \cot^{-1} x = \sqrt{\frac{x^2+1}{x^2+2}}$ **Integer Value Correct Type:**
- 17. The number of real solutions of the equation

$$\sin^{-1}(\sum_{i=1}^{\infty} x^{i+1} - x \sum_{i=1}^{\infty} (\frac{x}{2})^i)$$

$$= \frac{\pi}{2} - \cos^{-1}(\sum_{i=1}^{\infty} (\frac{-x}{2})^i - \sum_{i=1}^{\infty} (-x)^i)$$

lying in the interval $(\frac{-1}{2}, \frac{1}{2})$ is.....

18. The value of

$$\sec^{-1}\frac{1}{4}\sum_{k=0}^{10}\sec(\frac{7\pi}{12}+\frac{k\pi}{2})\sec(\frac{7\pi}{12}+\frac{(k+1)\pi}{2})$$

in the interval $\left[\frac{-\pi}{4}, \frac{3\pi}{4}\right]$ equals......

Section-B

- 19. $\cot^{-1}(\sqrt{\cos \alpha}) \tan^{-1}(\sqrt{\cos \alpha}) = x$, then $\sin x$
 - a) $tan^2(\frac{\alpha}{2})$
 - b) $\cot^2(\frac{\bar{\alpha}}{2})$
 - c) $\tan \alpha$

- d) $\cot(\frac{\alpha}{2})$
- 20. The trigonometric equation $\sin^{-1} x = 2 \sin^{-1} a$ has a solution for

 - a) $|a| \ge \frac{1}{\sqrt{2}}$ b) $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ c) all real values of a

 - d) $|a| < \frac{1}{2}$
- 21. If $\cos^{-1} x \cos^{-1} \frac{y}{2} = \alpha$, then $4x^2 4xy \cos \alpha + y^2$ is equal to
 - a) $2 \sin 2\alpha$
 - b) 4
 - c) $4\sin^2\alpha$
 - d) $-4\sin^2\alpha$
- 22. If $\sin^{-1}(\frac{x}{5}) + \csc^{-1}(\frac{5}{4}) = \frac{\pi}{2}$, then the value of x is
 - a) 4
 - b) 5
 - c) 1
 - d) 3
- 23. The value of $\cot(\csc^{-1}(\frac{5}{3}) + \tan^{-1}(\frac{2}{3}))$ is
- 24. If x, y, z are in A.P and $tan^{-1} y$, $tan^{-1} z$ are also in A.P., then
 - a) x = y = z
 - b) 2x = 3y = 6z
 - c) 6x = 3y = 2z
 - d) 6x = 4y = 3z
- 25. Let

$$\tan^{-1} y = \tan^{-1} x + \tan^{-1} (\frac{2x}{1 - x^2})$$

where $|x| < \frac{1}{\sqrt{3}}$. Then a value of y is

- 26. If $\cos^{-1}(\frac{2}{3x}) + \cos^{-1}(\frac{3}{4x}) = \frac{\pi}{2}(x > \frac{3}{4})$, then x is equal to
 - a) $\frac{\sqrt{145}}{12}$

27. Match the following:

Column I

Column II

- A. $\sum_{n=1}^{23} \tan^{-1}(\frac{1}{2i^2}) = t$, then $\tan t =$
- (p). 1
- B. Sides a, b, c of a triangle ABC are in A.P.
 - $\cos \theta_1 = \frac{a}{b+c}, \cos \theta_2 = \frac{b}{a+c}, \cos \theta_3 = \frac{c}{a+b},$ then $\tan^2(\frac{\theta_1}{2}) + \tan^2(\frac{\theta_3}{2}) =$
- (q). $\frac{\sqrt{5}}{3}$
- C. A line is perpendicular to x + 2y + 2z = 0 and passes through (0, 1, 0) Then the perpendicular distance of this line from the origin is
- (r). $\frac{2}{3}$

28. Match the following:

Column I

Column II

- A. If a = 1 and b = 0, then (x, y)
- (p). lies on the circle $x^2 + y^2 = 1$
- B. If a = 1 and b = 1, then (x, y)
- (q). lies on $(x^2 1)(y^2 1) = 0$
- C. If a = 1 and b = 2, then (x, y)
- (r). lies on y = x
- D. If a = 2 and b = 2, then (x, y)
- (s). lies on $(4x^2 1)(y^2 1) = 0$
- 29. Match the following:

Column I

Column II

P.
$$(\frac{1}{y^2}(\frac{\cos(\tan^{-1}y) + y\sin(\tan^{-1}y)}{\cot(\sin^{-1}y) + \tan(\sin^{-1}y)})^2 + y^4)^{\frac{1}{2}}$$

takes value is

Q. If $\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$ then possible

value of

$$\cos \frac{x-y}{2}$$
 is

(ii)
$$\sqrt{2}$$

R. If $\cos(\frac{\pi}{4} - x)\cos 2x + \sin x \sin 2\sec x =$ $\cos x \sin 2x \sec x + \cos(\frac{\pi}{4} + x)$

(iii) $\frac{1}{2}$

then possible value of sec x is S. If $\cot(\sin^{-1} \sqrt{1 - x^2}) = \sin(\tan^{-1} x \sqrt{6})$,

(iv) 1

 $x \neq 0$ then possible value of $\sec x$ is

P Q R S

(a) 4 3 1 2

codes: (b) 4 3 2 1

(c) 3 4 2 1 (d) 3 4 1 2