Functional requirements

Cały projekt dostępny jest w serwisie GitHub: https://github.com/MarylaSosna/umwf projekt

1. Cel projektu

Celem projektu jest stworzenie czterech różnych modeli, spośród których wybrany zostanie ten najlepiej przewidujący oczekiwane wartości score'ów na podstawie cotygodniowych cen zamknięcia przypisanych wszystkim badanym spółkom, z horyzontem inwestycyjnym miesięcznym, kwartalnym, półrocznym i rocznym.

2. Dane

2.1. Dane wejściowe

W projekcie wykorzystano udostępniony zbiór danych zawierający podstawowe informacje o spółkach (takie jak identyfikator) oraz dodatkowe dane pochodzące z serwisu Yahoo Finance, które pobrano za pomocą udostępnionego API.

Oryginalny zbiór danych przekształcono i wybrano najbardziej istotne zmienne:

- Date data
- Comp skrócona nazwa spółki
- CompID identyfikator spółki
- Score wynik obliczony dla spółki

Dane zaciągnięte z wykorzystaniem API Yahoo Finance, zmapowano z utworzoną w wyniku przekształcenia ramką danych na podstawie daty i zmiennej Comp, lub wyłącznie z uwzględnieniem daty (w przypadku zmiennych, gdy nazwa spółki nie miała znaczenia np. Cena Ropy).

Zdecydowano się na analizę następujących dodatkowych zmiennych:

- Close cena zamknięcia
- Dividends wielkość wypłaconych dywidend
- Stock Splits
- totalRevenue całkowita wartość przychodów w danym okresie
- totalDebt całkowita wartość zadłużenia w danym okresie
- fullTimeEmployees liczba zatrudnionych pracowników
- Oil cena ropy naftowej w danym okresie
- Gold cena złota w danym okresie
- USD to Yuan kurs USD/Yuan
- industry sektor, w którym działa spółka

Wszystkie zmienne, poza industry, mają charakter liczbowy ciągły. W celach optymalizacji wyników uczenia maszynowego zmienną industry zdekodowano do poziomu binarnego (utworzono tzw. dummies variables).

W konstruowanych w dalszej części pracy modelach za zmienną objaśnianą przyjęto wynik Score.

3. Stworzone modele

3.1. Regresja liniowa

Zbiór testowy stanowił 30% wejściowych danych. Korzystano z pakietu sklearn. Wytrenowany model uzyskał następujące metryki na zbiorze testowym:

Mean absolute error	0,09
Mean squared error	0,01
Median absolute error	0,07
Explain variance score	0,15
R^2	0,15

MAE oraz MSE osiągają niskie wartości. MAE określa o ile średnio różniły się prognozy od wartości rzeczywistych.

Explain variance score mówi na ile dobrze stworzony model wyjaśnia zmienność w zbiorze danych. Im wynik bliższy jest jedności, tym lepiej.

Współczynnik R^2, który mówi nam, jak dobrze model będzie radził sobie z nieznanymi próbkami nie jest, niestety, zbyt wysoki (idealną jest wartość 1).