CS 530: High-Performance Computing Seminar 2: Quantum Computing

Nathan Chapman

Department of Computer Science Central Washington University

May 19, 2024

Contents

1	History of Quantum Computation & Information	1
	Quantum Bits	1
3	Quantum Computation	2
	3.1 Quantum Gates	2
	3.2 Quantum Circuits	2
	3.3 Examples	
	3.3.1 Bell States	
	3.3.2 Quantum Teleportation	2
4	Quantum Algorithms	2
	4.1 Examples	2
	4.1.1 The Quantum Fourier Transform	2
	4.1.2 The Quantum Search Algorithm	2
5	Quantum Information	2
	5.1 Quantum Cryptography	2
1	History of Quantum Computation & Information	

2 Quantum Bits

- The bit and qubit is the most fundamental concept of information
- ullet A classical bit has a state: either 0 or 1
- A quantum bit has a state: $|0\rangle$, $|1\rangle$, α , $|0\rangle$ + β , $|1\rangle$ for complex α , β such that $|\alpha|^2 + |\beta|^2 = 1$
- The state of a qubit is a unit vector in a two-dimensional complex vector space. In other words, qubits similar to are unit quarternions.
- $\left|0\right\rangle,\left|1\right\rangle$ are orthonormal and form computational basis states
- Can't directly measure α, β

- Example: a "quantim coin" with state $|+\rangle=\frac{1}{\sqrt{2}}\,|0\rangle+\frac{1}{\sqrt{2}}\,|1\rangle$ and 50-50 probability
- Can write $|\psi\rangle=e^{i\gamma}\left(\cos\left(\frac{\theta}{2}\right)|0\rangle+e^{i\phi}\sin\left(\frac{\theta}{2}\right)|0\rangle\right)$
- Because $e^{i\gamma}$ has no observable effect, we can reduced the above to $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|0\rangle$
- $\bullet\,$ Finished page 15 at Bloch sphere

3 Quantum Computation

- 3.1 Quantum Gates
- 3.2 Quantum Circuits
- 3.3 Examples
- 3.3.1 Bell States
- 3.3.2 Quantum Teleportation

4 Quantum Algorithms

- 4.1 Examples
- 4.1.1 The Quantum Fourier Transform
- 4.1.2 The Quantum Search Algorithm

5 Quantum Information

5.1 Quantum Cryptography

References

[1] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010.