Computer Graphics Lighting Models

Prof. Piotr Didyk

Faculty of Informatics Università della Svizzera italiana

Last Assignment

Plan for Today

- Adding light into the scene
- How to model reflections:
 - Diffuse reflection
 - Specular reflection
 - Ambient illumination
- Different light sources
- Distance attenuation
- Generalization: BRDF

Reflection (or Lighting) Models

- Rule for computing color values on an object's surface
 - Based on the laws of physic (radiometry, photometry)
 - Models the effect of:
 - <u>light sources</u> (position, intensity, colour)
 - <u>object surface</u> (geometry, reflection properties)

- Very simple, <u>local</u> models for real time applications
 - Only primary light exchange between light source and object
 - No secondary effects (light exchange between objects)

Illumination Factors

- Intensity depends on:
 - Color and reflective properties of the object
 - Position and intensity of the light sources
 - Position of the viewer
 - Normal (n) of the surface at point p
 - Distance from p to the light source

Primary ray Object

Let's build some better intuition

Components of Simple (Phong) Lighting Model

Diffuse Reflection

- Simulation of "matte" surfaces (Lambertian surface)
 - Incoming light is reflected evenly in all directions
 - Material-dependent reflection constant $\rho_d \leq 1$
- Examples: paper, dry stone, unfinished wood
- Intensity:
 - Does not dependent on the viewpoint
 - It does depend on the light direction and the normal

Lambert's Cosine Law

The intensity I_d of a surface coming from the diffuse reflection is proportional to the cosine of the angle between the surface normal n and the direction to the light source l.

$$I_d = \rho_d \cdot \cos \phi \cdot I = \rho_d \cdot \langle n, l \rangle \cdot I$$

I- light intensity ρ_d- diffuse coefficient of the surface

Assumption: ||n|| = ||l|| = 1

Important: What if $\langle n, l \rangle \leq 0$?

Components of Simple (Phong) Lighting Model

Ambient Illumination

- So far, surfaces that do not face the light source are black
- Ambient illumination simulates indirect lighting:
 - Effect of multiple inter-reflections of light between all objects
 - Isotropic and independent of light source and viewpoint
- Global, scene constant I_a
- Material-dependent:
 - reflection constant $\rho_a \leq 1$
- Ambient term: $\rho_a \cdot I_a$

diffuse + ambient

Components of Simple (Phong) Lighting Model

Specular Reflection

- Simulates shiny surfaces
- Incoming light is reflected in exactly one, reflection direction
- In practice: directed diffuse reflection
 - maximal intensity in the direction of the perfect reflection

Specular Reflection

Reflected light vector:

$$r = 2n \cdot \langle n, l \rangle - l$$

• Specular term:

$$I_s = \rho_s \cdot (\cos \alpha)^k \cdot I$$

k — shininess ≥ 1 ρ_s — specular coefficient of the surface

Specular Reflection

ullet Exponent k controls the highlight characteristic

Phong Lighting Model

• Superposition of <u>ambient</u>, <u>diffuse</u>, and <u>specular</u> terms for each light source:

Phong Lighting Model

 Superposition of <u>ambient</u>, <u>diffuse</u>, and <u>specular</u> terms for each light source:

$$I = I_e + \rho_a \cdot I_a + \sum_{j=1}^n \left(\rho_d \cdot \cos \phi_j + \rho_s \cdot \cos^k \alpha_j \right) \cdot I_j$$

- n light sources with intensities I_j
- self-emitting intensity I_e
- reflection constants (surface properties): ho_a , ho_d , ho_s
- shininess: k (no physical meaning)

Effect of Parameters

Plastics

• Dielectrics (e.g., plastics) do not color the reflection of light source

Metals

• Conductors (metals) do color the reflections

Copper

Gold

http://www.mitsuba-renderer.org/docs.html

Plastics vs. Metals

http://www.mitsuba-renderer.org/docs.html

Specular Reflection (Blinn-Phong)

- Requires computing r and $\langle r, v \rangle$
- Instead we can use half vector:

$$h = \frac{1}{2} \left(l + \nu \right)$$

- $\beta \approx \alpha/2$, more precisely:
 - $\beta = \alpha/2$ when v, l, n, r are coplanar
 - $\beta \ge \alpha/2$ otherwise
- Since $\cos \alpha \approx \cos^4 \beta$:

$$I_{s} = \rho_{s} \cdot (\cos \beta)^{4k} \cdot I$$

Point Light Sources

- So far: point light sources:
 - ullet with intensity I
 - Specified by position
 - Radiate evenly (isotropic) in all directions

- Special case: directional light source
 - Point light source in ∞
 - Specified by direction

Spot Light Sources

- Preferred direction of radiation
- Generates a light cone
- Specified by its position p, direction d and opening angle θ_L
- Maximal intensity in direction d
- Otherwise decreasing intensity: (similar to specular reflection)
 - $I'(\theta) = \cos^k \theta \cdot I$
 - $I'(\theta) = 0$ if $\theta > \theta_L$

Distance Attenuation

Distance Attenuation

- Light intensity attenuation is proportional to r^2
- Do you see why there is no attenuation for directional light?

$$\operatorname{att}(r) = \frac{1}{r^2}$$

Problem with distances close to 0!

Distance Attenuation

- Light intensity attenuation is proportional to r^2
- Do you see why there is no attenuation for directional light?

$$att(r) = \frac{1}{\max(r, r_{\min})^2} \qquad att(r) = \frac{1}{a_1 + a_2 r + a_3 r^2}$$

 r_{\min} , a_1 , a_2 , a_3 — extra parameters

Extended Phong model:

$$I = I_e + \rho_a \cdot I_a + \sum_{j=1}^n \left(\rho_d \cdot \cos \phi_j + \rho_s \cdot \cos^k \alpha_j \right) \cdot I_j \cdot \text{att}(d)$$

Beyond Simple Models

• Bidirectional Reflectance Distribution Function (BRDF)

Beyond Simple Models

Bidirectional Reflectance Distribution Function (BRDF)

Beyond Simple Models

- Phong model allow obtaining plastic-like look
- More complex models (not too difficult):
 - Cook–Torrance model
 - Ward model

•

Summary

- Intensity depends on:
 - Position and intensity of the light sources
 - Position of the viewer
 - Position and normal of the surface point p
 - Several parameters (reflections constants, etc.)
 - Angles and distances
- When computing illumination:
 - Direction vectors have to be normalized
 - Handle the case when cosines are negative
 - Each color channel can be treated independently, lights may have color!

Questions?