Shigeo Hattori bayship.org@gmail.com October 30, 2019 First version: September, 2019 1 Introduction First of all, $\forall m$ is said a **memBer** if it is a member of some set. This article generalizes the notion of homeomorphisms of topological spaces to isomorphisms of memBers. And it is proved that homeomorphic toplological spaces are isomorphic as memBers. And it is proved that the isomorphisms of memBers define an equivalence relation on the set of memBers in the domain of discourse. As the secondary subject, using the notion of isomorphism of memBers, it is defined that, given $\forall (m1, m2)$ as memBers, what conditions are required to say m1 is a minor of m2. I expect that the definition of the minor relation is most suitable to describe that some memBers not isomorphic to each other are almost isomorphic to each other. Backing to the main subject, take $\forall c$ as a chain of set ¹membership. Then all member of c is said a **deep member** of the maximum member of c. And all memBer m is said a **constant-memBer** if all deep member of m is not a point. And all memBer m is said an ²end-memBer if m is either a constant-memBer 20 or a point. 21 Needless to say all topological space is a memBer and all memBer m is expressed 22 as a deep graph. To ³resolve "deep graph", take $\forall m$, then the **deep graph** of m is defined as the directed graph (V, E) on the set V of all deep members of m such that $E = \{(v1, v2) \in V * V \mid v1 \in v2\}.$

Isomorphism of memBers

Ultimately, two memBers are said **isomorphic** or **isomorphic** by f if (their

¹The order implies that all member is smaller than the set.

²This word will not be used in the rest.

³In this article, "to resolve" means to defines the meaning of words after the usage of the words.

deep graphs are isomorphic by f as a graph isomorphism and relate-constant-memBer (f) . To resolve "relate-constant-memBer",take $\forall L$ as a binary relation, then it is written as relate-constant-memBer (L) if $(take \ \forall (x,y) :\in L \ such that either x or y is a constant-memBer, then x=y).$	27 28 29 30 31
Shifting to the notion of minors of memBers. Take $\forall (m1, m2)$ such that (take $\forall d : \neq m1$ as a deep member of $m1$, then d is a deep member of $m2$). Then $m1$ is said a minor of $m2$ if *1 implies *2.	32 33 34 35
1 Take $\forall (d1, d2, d3)$ as deep members of $m1$ such that $((m2, d1, d3), (m2, d2, d3))$ are isomorphic).	36 37
2 $((m1, d1, d3), (m1, d2, d3))$ are isomorphic.	38
2 Notations	39
Consider a proposition, e.g., a and b .	40
And consider a proposition, e.g., $a \wedge b$.	41
The two example propositions are unclear whether they are equivalent to each	42
other.	43
In this article, the two are possibly different.	44
Speaking simply, " a and b " are not checked by the author(me) if it can be com-	45
mutative.	46
In this sense, "a and b" is written as "a $and \wedge b$ ".	47
And in this sense, "a or b" is written as "a $_{or} \lor b$ ".	48
As a remark, I don't have any actual example of "a and b" which is not com-	49
mutative.	50
	51
Definition 2.1 (Restriction of binary relation).	52
Take $\forall (L, X, Y)$ as a binary relation L and sets (X, Y) .	53
$L[X] := \{ (x, y) \in L \mid x \in X \}.$	54
$L[,Y] := \{(x,y) \in L \mid y \in Y\}.$	55
3 Properties of equivalence relation	56
Proposition 1 (Reflexive, symmetry, transitive properties).	57
The relation by isomorphisms of memBers has properties of reflexive, symmetry	58
and transitive.	59

Proof.	60
• *1 has been proved in graph theory.	61
• It is trivial that (*2 $_{and} \land \dots _{and} \land \ *5$) holds.	62
• Hence this proposition holds.	63
1 The relation by graph isomorphisms has properties of reflexive, symmetry and transitive.	64 65
2 Take $\forall f_1, f_2, f_3$ as graph isomorphisms such that $domain(f_2) = image(f_1)$ $and \land f_3$ is the identity function on $domain(f_3)$.	66 67 68
3 relate-constant-memBer (f_3) and \land	69
4 relate-constant-memBer (f_1) = relate-constant-memBer (f_1^{-1}) and \land	70
5 (relate-constant-memBer (f_1) and \land relate-constant-memBer (f_2)) \equiv relate-constant-memBer $(f_2 \circ f_1)$	71 72
	73
4 Homeomorphic topological spaces as isomor-	74
phic memBers	7 5
Definition 4.1. Take $\forall (m1, m2, c)$ such that (76 77
c is a chain of set membership $_{and}\wedge$	78
m1 is the ⁴ minimum member of $cm2$ is the ⁵ maximum member of c .	79 80
). Then define (*1 $_{and} \wedge \ _{and} \wedge \ *5$).	81 82
1 $m1$ is said a deep member of $m2$.	83 84
Hence all memBer is a deep member of itself.	85
2 c - 1 is said a power of $(m1, m2)$.	86
$\frac{1}{4}$ No member of c is a member of $m1$.	

 $^{^5\}mathrm{No}$ member of c has m2 as a member.

3 It is written as $m1 \in c -1$ $m2$.	87
4 Let p be the maximum power of $(m1, m2)$. Then $depth(m1, m2) := p$.	88 89
5 Let $S := \{d \mid \text{there exists } \exists m \text{ such that } d = depth(m, m2)\}.$ Then $depth(m2) :=$ "the maixmum member of S ".	90 91
Then $uepin(m2)$.— the maximum member of S .	
	92
Definition 4.2 (Space of memBer).	93
Take $\forall m$.	94
Then define that $Vertex(m) := \{d \mid d \text{ is a deep member of } m \}.$	95 96
$Space(m) := \{ p \in Vertex(m) \mid p \text{ is a point } \}.$	97
Proposition 2 (Isomorphism of vertices).	98
Take $\forall (m1, m2, f, v1)$ such that (99
$(m1, m2)$ are isomorphic by f and $v1 \in Vertex(m1)$	100
).	101
Then $v1, f(v1)$ are isomorphic by $f[Vertex(v1)]$.	1 02
Proof.	103
• Let $v2 := f(v1)$.	104
• As C1, claim that $Vertex(v2) \subset image(f[Vertex(v1)])$.	105
• Assume that the claim fails.	106
• There exists $\exists w2 :\in Vertex(v2)$	107
as a minimum counterexample to *C1 compared by $depth(w2, v2)$.	108
• It is trivial that $w2 \neq v2$.	109
• There exists $\exists x2 :\in Vertex(v2)$ such that $w2 \in x2$.	110
• Hence x2 is not a counterexample to *C1	111
because $depth(w2, v2) < depth(x2, v2)$.	112
• Hence There exists $\exists x1 :\in Vertex(v1)$ such that $f(x1) = x2$.	113
• Hence There exists $\exists w1 :\in x1$ such that	114
$(f(w1) = w2 and \land \ w1 \in Vertex(v1)). \ A \ contradiction.$	115
• Hence The assumption on $(\neg *C1)$ is false	116

• As C2, claim that ($Vertex(v1) \subset image(\ f^{-1}[Vertex(v2)]\)).$	117
• Though it is trivial that the same logic for the proof of *C1 proves *C2.	118
• Hence $Vertex(v2) = image(f[Vertex(v1)])$.	119
• Hence $f[Vertex(v1)]$ is a graph isomorphism from*to $Vertex(v1) * Vertex(v2)$.	120 121
• And it is trivial that ${\it relate-constant-memBer}(f) \Rightarrow {\it relate-constant-memBer}(f[Vertex(v1)]).$	122 123
	124
Proposition 3 (Isomorphism of Spaces). Take $\forall (m1, m2, f)$ such that $(m1, m2)$ are isomorphic by f . Then $f[Space(m1)]$ is a bijection from*to $Space(m1) * Space(m2)$.	125 126 127
Proof.	128
• Assume it is false.	129
• $image(f[Space(m1)]) \neq Space(m2)$.	130
• $image(f[Space(m1)]) \not\subset Space(m2)$ $_{or} \lor image(f[Space(m1)]) \not\supset Space(m2).$	131 132
• Then there exists $\exists (m1, m2, f, p1, p2)$ as a counterexample such that $(*A0 \ _{and} \land \ (*A1 \ _{or} \lor \ *A2))$ holds. A0 $(p1, p2) :\in Space(m1) * Space(m2))$. A1 $f(p1) \not\in Space(m2)$. A2 $p2 \not\in image(f[Space(m1)])$.	133 134 135 136 137
• Assume *A1 holds.	138
\bullet Then $f(p1)$ is either a constant-memBer (or a non-constant-memBer as a set).	139 140
\bullet Though $f(p1)$ can not be a constant-memBer by that relate-constant-memBer(f).	141 142
• Hence $f(p1)$ is a non-constant-memBer as a set.	143
• Though it contradicts to that f is a graph isomorphism because $f(p1)$ has edge to some its member.	144 145

• Hence the assumption of *A1 is false $_{and}\wedge$ *A2 holds. • There exists $\exists c1 : \notin Space(m1)$ such that f(c1) = p2. 147 • Hence $f^{-1}(p2) = c1$ 148 • Though this condition has been denied in the disproof of *A1. • Hence the assumption of *A2 is false $and \wedge$ the main assumption is false. 150 **151** Proposition 4 (Pair of member's isomorphisms). Take $\forall (I := \{1, 2, 3, 4\}, \{m_i\}_{i \in I}, f_{1,2}, f_{3,4})$ such that (*1 $_{and} \land$ $_{and} \land *4$) holds. Then (*5 $_{and} \land$ *6) holds. 1 (m1, m2) are isomorphic by $f_{1,2}$. 2 (m3, m4) are isomorphic by $f_{3,4}$. **3** Let $f := f_{1,2} \cup f_{3,4}$ and $f_s := f[Space(f)]$. 158 4 Then f_s is a bijection. **5** f is a function. $\mathbf{6}$ f is a bijection. 7 relate-constant-memBer(f). Proof of *5. • Let $(V, E)_{i:\in\{1,2,3,4\}}$ be the deep graph of m_i . • Assume it is false. • Then there exists $\exists ((m1, m3), (m2, m4))$ as a minimum counterexample 167 by depth((m1, m3)) such that f is not a function. • Let us make sure that f is a union of a set of bijections. • There exists $\exists v :\in V_1 \cap V_3$ such that $|f[\{v\}]| \geq 1$ and $\forall v \notin \{m1, m3\}$. 170 • By the way, this proposition accepts the following $args_v$ 171 in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$. 172

$\bullet \ args_v := ($	173
v,	174
$f_{1,2}(v),$	175
v,	176
$f_{3,4}(v),$	177
$f_{1,2}[Vertex(v)],$	178
$f_{3,4}[Vertex(v)]$	179
).	180
$ullet$ In the rest, this $args_v$ is proved to be a counterexample smaller than a minimal counterexample.	181 182
• As the first step, the such-that clause of this proposition holds for $args_v$	183
as follows.	184
• Equivalently (*1 $_{and} \wedge \dots _{and} \wedge *4$) holds for $args_v$ as follows.	185
• Assume *1 fails for $args_v$.	186
• Hence $(v, f_{1,2}(v))$ is not isomorphic by $f_{1,2}[Vertex(v)]$.	187
• Though it contradicts to the proposition titled as "Isomorphism of ver-	188
tices".	189
• Hence the last assumption is false.	190
• Hence *1 holds for $args_v$.	191
• Hence *2 holds for $args_v$ because (for $args_v$, *1 and *2 are logically equiv-	192
alent).	193
• Assume *4 fails for $args_v$.	194
• Let $f_v := f_{1,2}[Vertex(v)] \cup f_{3,4}[Vertex(v)]$ and	195
$\operatorname{let} f_{v,s} := f_{1,2}[\operatorname{Vertex}(v)][\operatorname{Space}(f_v)] \cup f_{3,4}[\operatorname{Vertex}(v)][\operatorname{Space}(f_v)].$	196
• Then $f_{v,s}$ is not a bijection.	197
• Though it is false because $f_{v,s} \subset f_s$. Hence *4 holds for $args_v$.	198
• Hence (*1 $_{and} \wedge \ldots _{and} \wedge *4$) holds for $args_v$.	199
• Moreover *5 fails for $args_v$ as follows.	200
• Assume *5 holds for $args_v$.	201

• Then f_v is a function.	202
$v \in Vertex(v)$ and \land $f_v[\{v\}] = f[\{v\}]$ and \land	203 204 205 206
• Hence *5 fails for $args_v$.	207
• $args_v$ is a counterexample.	208
• And the size as a counterexample of $args_v$ equals to $depth((v, v))$.	209
	210 211
$ullet$ Hence arg_v is a counterexample smaller than a minimum counterexample.	212
• Hence the main assumption is false.	213
	214
Proof of *6.	215
Onsider the proposition *P $_S$ titled as "Reflexive, symmetry,transitive properties".	216 217
\bullet Consider the proposition *P _I titled as "Isomorphism of spaces".	218
	219 220
S1 $(m2, m1)$ are isomorphic by $f_{1,2}^{-1}$ as an isomorphism.	221
S2 $(m4, m3)$ are isomorphic by $f_{3,4}^{-1}$ as an isomorphism.	222
S3 Let $f_{-1} := f_{1,2}^{-1} \cup f_{3,4}^{-1}$ and \land let $f_{s,-1} := f_{-1}[Space(f_{-1})]$.	223
S4 Then $f_{s,-1}$ is a bijection.	224
	225 226
• Moreover *5 implies that f_{-1} is a function. $ \frac{1}{6(x,y) := \{\{x\}, \{x,y\}\}} $	227

• Hence f^{-1} is a function.	228
• Hence *5 implies that f is an injection.	229
ullet By the way, f is surjective because f is not defined the codomain.	230
• Hence f is a bijection.	231
	232
Proof of *7.	233
• Assume it is false.	234
• There exists $\exists (x,y) :\in f$ such that (either x or y is a constant-memBer) $and \land (x \neq y)$.	235 236
• Though $f = f_{1,2} \cup f_{3,4}$.	237
• Hence $(x,y) \in f_{1,2}$ or $(x,y) \in f_{3,4}$.	238
• There exists $\exists g :\in \{f_{1,2}, f_{3,4}\}$ such that \neg (relate-constant-memBer (g)).	239 240
• It contradicts to (*1 $_{and} \land$ *2).	241
• The assumption is false.	242
	243
Definition 4.3 (Constant space). A constant space D is most likely a function to be used to state conditions on variables.	244 245 246
For example, let D be a function and let $x,y,z:\in Z*Z*Z$ such that $x=D(z)$ and $y=D(z)$. Then $x=y$. In this case, D is used to make sure that variables hold equal values. Be careful that all constant space is just a usual variable but a global constant.	248249250
Proposition 5 (Isomorphism by member's isomorphisms). Let *P_P denote the proposition titled as "Pair of member's isomorphisms". Take $\forall (S1,S2,f,F)$ as sets $(S1,S2)$ such that (*A1 ${}_{and}\wedge$ ${}_{and}\wedge$ *A7). Then (*10 ${}_{and}\wedge$ ${}_{and}\wedge$ 12) holds.	252253254255
$\mathbf{A1} \mid Vertex(\{S1, S2\}) \mid \leq \text{continuum}.$	256

A2 f is a bijection from*to $S1 * S2$.	257
A3 There exists $\exists D$ as a function and as a constant space.	258
A4 Take $\forall ((m1, m2), (m3, m4)) :\in f^2$.	259
A5 There exists $\exists f_{1,2}, f_{3,4}$ such that $f_{1,2} = D((m1, m2))$ and $f_{3,4} = D((m3, m4))$.	260 261
A5 Let $args := (m1, m2, m3, m4, f_{1,2}, f_{3,4})$. Then *P _P accepts $args$ in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.	262 263 264 265 266 267 268
A6 *P _P .(*1 $_{and} \land$ $_{and} \land *4$) holds for $args$.	269
A7 Let $D_{1,2} := \{D((m1, m2)) \mid (m1, m2) \in f\}.$ Then $F = \text{union } D_{1,2}.$	270 271
C10 $F[Space(F)]$ is bijective.	272
C11 F is a function.	273
\mathbf{C} 12 F is bijective.	274
C13 relate-constant-memBer (F) .	275
C14 $(S1, S2)$ are isomorphic by $F \cup \{S1, S2\}$.	276
	277
Proof of *C10.	278
• First of all, it is trivial that $domain(F[Space(F)]) = Space(S1) and \land \\ image(F[Space(F)]) = Space(S2).$	279 280 281
• Assume it is false.	282
• There exists $\exists (p1, p2) :\in Space(S1) * Space(S2)$ such that $ F(p1) \geq 1$ or $\lor F^{-1}(p2) \geq 1$.	283 284
• Though it implies that the antecedent of this proposition have failed.	285

• Namely, there exists $\exists ((m1, m2), (m3, m4))$ which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4 such that, of *A6, *P _P .(*4) have failed for $((m1, m2), (m3, m4))$.	286 287 288
• Hence the assumption is false.	289
	290
Proof of (*C11 $_{and} \land \ ^*C12 \ _{and} \land \ ^*C13$).	291
• First of all, consider the proposition titled as "Pair of member's isomorphisms".	292 293
\bullet The proposition implies that the antecedent of this proposition implies that *A6 can be modified as the following *A6 typed in red.	294 295
• That is, the original "*4" has been replaced with "*7".	296
• A6 *P _P .(*1 $_{and} \land \dots _{and} \land \ *7$) holds for $args$.	297
\bullet Call this modified antecedent as the modified antecedent.	298
\bullet By the way, assume (*C11 $_{and}\wedge$ *C12 $_{and}\wedge$ *C13) is false.	299
• (*B1 $_{or} \lor$ *B2) holds.	300
• B1 There exists $\exists (x1, x2) :\in S1 * S2$ such that $ F(x1) \ge 1$ or $\lor F^{-1}(x2) \ge 1$.	301 302
• B2 There exists $\exists f_{1,2} :\in D_{1,2}$ such that \neg relate-constant-memBer $(f_{1,2})$.	303 304
• Though it implies that the modified antecedent have failed.	305
• Namely, there exists $\exists ((m1, m2), (m3, m4))$ which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4 such that, of *A6, $P_P.(*5_{and} \land *6_{and} \land *7)$ have failed for $((m1, m2), (m3, m4))$.	306 307 308 309
• Hence the assumption is false.	310
	311
Proof of *C14.	312
• Assume it is false.	313

• Let $F_+:=F\cup\{S1,S2\},$ Then (*B1 $_{or}\vee$ *B2) holds.	314
• As B1 , $(S1, S2)$ are not graph-isomorphic by F_+ .	315
• As B2 , \neg relate-constant-memBer(F_+).	316
• Assume *B2 holds.	317
• Hence \neg relate-constant-memBer($\{S1, S2\}$).	318
• Hence there exists $\exists (T1, T2) :\in \{(S1, S2), (S2, S1)\}$ such that $T1$ is a constant-memBer $and \land T2$ is not a constant-memBer.	319 320
• There exists $\exists (c_1, p_2) :\in F$ such that $(c_1 \text{ is a constant-memBer } and \land p_2)$ is not a point. By this contradiction, the assumption on *B2 is false.	321 322 323
• Hence *B1 holds.	324
• There exists $\exists (v1, v2) :\in S1 * S2$ such that $F(v1) \not\in S2 or \lor F^{-1}(v2) \not\in S1$.	325 326
• Though there exists $\exists f_{1,2} :\in D_{1,2}$ such that ($(v1, F(v1)) \in f_{1,2}$ and \land $f_{1,2}$ is a bijection from*to $Vertex(v1)$ * $Vertex(F(v1))$).	327 328 329 330
• Moreover $F \supset f_{1,2}$.	331
• Hence the assumption on *B1 is false.	332
• The main assumption is false.	333
	□ 334
Definition 4.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}} := \{x_1, x_2\}$, in mathematics.	335 336
In this article, analogously (x_1) $x_2 := (x_1, x_2)$	337 338
analogously, $(x_i)_{i \in \{1,2\}} := (x_1, x_2)$. As an alternative simplified form, $(x)_{i \in \{1,2\}} := (x_1, x_2)$.	339
As one of many variations, $(\{x\})_{i \in \{1,2\}} := (\{x_1\}, \{x_2\}).$	340
As a comment, the order on the composed sequence should respect the management of the composed sequence should respect the composed sequence should be a composed sequence of the composed sequence should be a composed sequence of the composed sequence should be a composed sequence of the composed sequence sequence should be a composed sequence of the composed sequence sequence of the composed sequence of	ost 341
natural order on the index set.	342

Proposition 6 (Isomorphisms by spaces).	343
Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,g)$ such that (344
$(S)_{i:\in\{1,2\}}$ are isomorphic by f and also by g $_{and}\wedge$	345
f[Space(f)] = g[Space(g)]	346
).	347
Then $f = g$.	348
Proof.	349
• Assume it is false.	350
• There exists $\exists v_1 :\in Vertex(S1)$ as a minimum counterexample	351
compared by $depth(v_1)$ such that	352
$f(v_1) \neq g(v_1).$	353
• It is trivial that $depth(v_1) > 0$.	354
• Hence v_1 is a set.	355
• $f[v_1] = g[v_1]$ because (356
take $\forall w_1 :\in v_1$,	357
then $(\operatorname{depth}(w_1) < \operatorname{depth}(v_1) and \land w_1 \text{ is not a counterexample})$	358
).	359
• Hence $f(v_1) = image(f[v_1]) = image(g[v_1]) = g(v_1)$.	360
• The assumption is false.	361
	□ 362
Definition 4.5 (Isomorphism by spaces).	363
Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,F)$ such that	364
$(S)_{i:\in\{1,2\}}$ are isomorphic by F and \wedge $Space(F) \subset f \subset F$.	365
Then $(S)_{i:\in\{1,2\}}$ are also said isomorphic by f .	366
Proposition 7 (Homeomorphism as isomorphism).	367
As you know, the set theory defines that	368
$(x,y) := \{\{x\}, \{x,y\}\}.$	369
Take $\forall ((X,T))_{i:\in\{1,2\}}, \forall H \text{ such that } ($	370
$((X,T))_{i:\in\{1,2\}}$ is a pair of topological spaces $and \land$	371
H is a bijection from*to $X_1 * X_2$ and \wedge	372
$((X,T))_{i:\in\{1,2\}}$ are homeomorphic by H	373
).	374
Then (*1 $_{and} \land \dots _{and} \land *5$) holds.	375

1. $(X)_{i:\in\{1,2\}}$ are isomorphic by H .	376
2. Take $\forall (t_1, t_2) :\in T1 * T2$ such that $t_2 = image(H[t_1])$. Then $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1]$.	377 378
3. $(T)_{i:\in\{1,2\}}$ are isomorphic by H .	379
4. $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by H .	380
5. $({X,T})_{i:\in{1,2}}$ are isomorphic by H .	381
6. $(\{\{X\}, \{X, T\}\})_{i:\in\{1,2\}}$ are isomorphic by H .	382
	383
Proof of *1.	384
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	- 385 386
• $(X)_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2)\}.$	387
	388
Proof of *2.	389
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	- 390 391
• $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1] \cup \{(t1,t2)\}.$	392
	393
Proof of *3.	394
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	- 395 396
• Consider *2.	397
• Let $t_{1,2} := \{(t_1, t_2) \in T1 * T2 \mid t_2 = image(H[t_1])\}.$	398
• $(T)_{i:\in\{1,2\}}$ are isomorphic by $H \cup t_{1,2} \cup \{(T1,T2)\}.$	399
	400
Proof of *4.	401

• Consider the proposition titled as "Isomorphism by member's phisms".	isomor- 402 403
• Consider *1.	404
• $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1, X2), (\{X1\}, \{X2\})\}.$	405
	□ 406
Proof of *5.	407
• Consider the proposition titled as "Isomorphism by member's phisms".	isomor- 408 409
• Consider *1 and *3.	410
• $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2),(T1,T2),(\{X1,T1\},\{X2,T2\})\}.$	411 412
	□ 413
Proof of *6.	414
• Consider the proposition titled as "Isomorphism by member's phisms".	isomor- 415 416
• Consider *4 and *5.	417
• $(\{\{X\},\{X,T\}\})_{i:\in\{1,2\}}$ are isomorphic	418
• by $H \cup \{$ (X1, X2), (T1, T2), $(\{X1, T1\}, \{X2, T2\}),$ $(\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\})$ $\}.$	419 420 421 422 423 424
	\square 425

References 426