MHF3202 Challenge Problem

Oliver Deng

April 8, 2025

Lemma 0.0.1 Given a function $f: \mathbb{Z}_n \to \mathbb{Z}_n$, it is injective if and only if it is surjective.

Let f be a function that maps from \mathbb{Z}_n to \mathbb{Z}_n .

First we prove that if f is injective, then it is surjective.

To that end, assume by way of contradiction that f is injective and not surjective.

Observe that since f is injective and our domain is \mathbb{Z}_n , f maps $|\mathbb{Z}_n|$ distinct elements to $|\mathbb{Z}_n|$ distinct elements

Thus, its domain is of the same cardinality as its codomain, i.e. $|\mathbb{Z}_n| = |\mathbb{Z}_n|$.

However, since f is not surjective, $|\mathbb{Z}_n| < |\mathbb{Z}_n|$ by the pigeonhole principle, which is a contradiction.

Now we prove that if f is surjective, then it is injective.

To that end, assume by way of contradiction that f is surjective and not injective.

Observe that since f is surjective and our domain is \mathbb{Z}_n , f maps $|\mathbb{Z}_n|$ distinct elements to $|\mathbb{Z}_n|$ distinct elements.

Thus, its domain is of the same cardinality as its codomain, i.e. $|\mathbb{Z}_n| = |\mathbb{Z}_n|$.

However, since f is not injective, $|\mathbb{Z}_n| > |\mathbb{Z}_n|$ by the pigeonhole principle, which is a contradiction.

So a function f is injective if and only if it is surjective.

Theorem 0.0.1 Given the function f([x]) = 3[x], $f: \mathbb{Z}_n \to \mathbb{Z}_n$, if $3 \mid n$, then f is neither injective nor surjective.

Proof: Let f be the function as given and let $3 \mid n$.

We want to show that f is not injective.

Observe that $f([0]) = 3[0] = [3 \cdot 0] = [0]$.

Also, n = 3k for some $k \in \mathbb{Z}$ by definition of divisibility.

Observe that f([k]) = 3[k] = [3k] = [n] = [0] under \mathbb{Z}_n .

Note that $k \neq 0$ since n > 0.

Thus, we can observe that 0 < k < n, so $[0] \neq [k]$ under \mathbb{Z}_n since k cannot be a representative of [0]

Since $[0] \neq [k]$ and we have that f([0]) = f([k]), f is not injective, and by lemma 0.0.1, f is also not surjective.

Theorem 0.0.2 Given the function f([x]) = 3[x], $f: \mathbb{Z}_n \to \mathbb{Z}_n$, if $3 \nmid n$, then f is both injective and surjective, i.e. bijective.

Let f be the function as given and let $3 \nmid n$.

To show that f is surjective, let $[y] \in \mathbb{Z}_n$ be given.

We need to show that there is some $[x] \in \mathbb{Z}_n$ for which 3[x] = [3x] = [x].

If $3 \mid y$, then y = 3m for some $m \in \mathbb{Z}$ and f([m]) = 3[m] = [3m] = [y].

Since \mathbb{Z}_n is a partition of \mathbb{Z} , then $m \in \mathbb{Z}_n$.

However, if $3 \nmid y$, then we can observe that y is either in the form 3m+1 or 3m+2 for some $m \in \mathbb{Z}$ by the division algorithm.

Also, n can similarly either be in the form 3k+1 or 3k+2 for some $k \in \mathbb{Z}$ by the division algorithm.

Case 1: n = 3k + 1

In the case where n = 3k + 1, we have two options.

If y = 3m + 1, we observe, by the equivalence classes under \mathbb{Z}_n , that [y] = [y + 2n] = [3m + 1 + 6k + 2] = [6k + 3m + 3] = [3(2k + m + 1)] = [3l] where $l = 2k + m + 1 \in \mathbb{Z}$.

Since \mathbb{Z}_n is a partition of \mathbb{Z} , $l \in \mathbb{Z}_n$, and we have f([l]) = 3[l] = [3l] = [y].

Similarly for the case where y = 3m + 2, by replacing 2n with n and therefore l with k + m + 1, we have $l \in \mathbb{Z}_n$ such that f([l]) = [y].

Case 2: n = 3k + 2

In the case where n = 3k + 2, we have two options.

If y = 3m + 1, we observe, by the equivalence classes under \mathbb{Z}_n , that [y] = [y + n] = [3m + 1 + 3k + 2] = [3k + 3m + 3] = [3(k + m + 1)] = [3j] where $j = k + m + 1 \in \mathbb{Z}$.

Since \mathbb{Z}_n is a partition of \mathbb{Z} , $j \in \mathbb{Z}_n$, and we have f([j]) = 3[j] = [j] = [y].

Similarly for the case where y = 3m + 2, by replacing n with 2n and therefore j with 2k + m + 2, we have $j \in \mathbb{Z}_n$ such that f([j]) = [y].

Since cases 1 and 2 are exhaustive for the rest of the cases, we have $[x] \in \mathbb{Z}_n$ in all cases such that f([x]) = [y], and so f is surjective.

Also, f is surjective by lemma 0.0.1.

Hence, f is bijective.