Deep Learning

AlejandroMllo

This document serves as a very brief summary of the topics covered in each chapter of the book Deep Learning [1].

Disclaimer: This document is completely extracted from [1], the author does not attribute any ownership over the material.

1 Introduction

- Deep Learning (DL) learns complicated concepts by building them out of simpler ones. DL is the study of models composed of either learned functions or learned concepts.
- Data Representation is key when finding patterns.
- Many AI tasks can be solved by designing the right set of features to extract.
- Representation Learning: discovers the mapping from representation to output and the representation itself.
 - Makes use of an Autoencoder which is a combination of:
 - * Encoder: Converts the input data into a different representation.
 - * Decoder: Converts the new representation back into the original format.
- Factors: sources of influence in the model.
- **Depth**, in a DL model, enables the computer to learn a multistep computer program (not all the information in a layer's activations necessarily encodes factors that explain the input). There are two ways to measure it:
 - Based on the number of sequential instructions, or
 - Based on the depth of the graph describing how concepts are related to each other (used by deep probabilistic models).
- DL is not an attempt to simulate the brain. It borrows ideas from different fields (one of which is neuroscience).

2 Linear Algebra

- Scalar: a single number. Denoted by lowercase variable names and italics.
- Vectors: ordered array of numbers. Denoted by lowercase and bold typeface. $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
- ullet Matrices: ordered 2-D $m \times n$ array of numbers. Denoted by uppercase and bold typeface.

$$\mathbf{A} = \begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \dots & \vdots \\ A_{1,m} & \dots & A_{m,n} \end{bmatrix}$$

- Tensors: array of numbers arranged on a regular grid with a variable number of axes.
- Transpose: mirror image of a matrix/vector. $(A^{\top})_{i,j} = A_{j,i}$.
- It is possible to add $m \times n$ matrices together. $\mathbf{C} = \mathbf{A} + \mathbf{B}$, where $C_{i,j} = A_{i,j} + B_{i,j}$.
- To add a scalar to a matrix or multiply a matrix by a scalar, perform that operation on each element
 of the matrix.

1

• Matrix Multiplication: C = AB is defined as:

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

where **A** is of shape $m \times n$, **B** is of shape $n \times p$ and **C** is of shape $m \times p$. Matrix product has some useful properties not covered in detail in the book.

- System of linear equations: Ax = b, where x is a vector of unknown variables to be solved.
- Identity Matrix (I_n) : $n \times n$ matrix whose entries along the main diagonal are 1, while all the other entries are zero.
- Matrix Inverse (\mathbf{A}^{-1}): $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$. For a matrix to have an inverse, it must be $n \times n$ and all its columns be linearly independent, it means that no column is a linear combination of another column.
- Norm (L^p) : function that measures the size of vectors.

$$\|\mathbf{x}\|_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

where $p \in \mathbb{R}, p \geq 1$.

- The squared L^2 norm is commonly used and can be calculated as $\mathbf{x}^{\top}\mathbf{x}$.
- $-L^{\infty}$ norm (max norm): absolute value of the element with the largest magnitude in the vector.
- Frobenius Norm: used to measure the size of a matrix (analogous to the L^2 norm of a vector).

$$\left\|\mathbf{A}\right\|_{F} = \sqrt{\sum_{i,j} A_{i,j}^{2}}$$

- Symmetric Matrix: $\mathbf{A} = \mathbf{A}^{\top}$.
- Unit Vector: $\|\mathbf{x}\|_2 = 1$ (unit norm).
- Vectors \mathbf{x} and \mathbf{y} are orthogonal if $\mathbf{x}^{\top}\mathbf{y} = 0$. If both this vectors have unit norm, then they are called orthonormal.
- Orthogonal Matrix: square matrix whose rows are mutually orthonormal and whose columns are mutually orthonormal.
- An eigenvector of a square matrix \mathbf{A} is a nonzero vector \mathbf{v} such that multiplication by \mathbf{A} alters only the scale of \mathbf{v} : $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$. The scalar λ is known as the eigenvalue corresponding to this eigenvector. The eigendecomposition of \mathbf{A} is given by: $\mathbf{A} = \mathbf{V} \operatorname{diag}(\lambda) \mathbf{V}^{-1}$, where \mathbf{V} is the matrix whose columns are each eigenvector of \mathbf{A} and $\operatorname{diag}(\lambda)$ is the diagonal matrix of eigenvalues such that the eigenvalue at $\lambda_{i,i}$ is the one associated with the eigenvector (column) i of \mathbf{V} . Eigendecomposition is not defined for every matrix.
- Singular Value Decomposition (SVD): $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$, where \mathbf{A} is a $m \times n$ matrix. \mathbf{U} ($m \times m$) is composed by the eigenvectors of $\mathbf{A}\mathbf{A}^{\top}$; \mathbf{V} ($n \times n$) is composed by the eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$; and \mathbf{D} ($m \times n$) is a diagonal matrix composed by the eigenvalues of $\mathbf{A}\mathbf{A}^{\top}$ or $\mathbf{A}^{\top}\mathbf{A}$.
- Moore-Penrose pseudoinverse: The pseudoinverse of **A** is defined as a matrix $A^+ = VD^+U^\top$, where **U**, **D** and **V** are the SVD of **A**, and the pseudoinverse D^+ of a diagonal matrix **D** is obtained by taking the reciprocal of its nonzero elements then making the transpose of the resulting elements.
- The Trace operator gives the sum of the diagonal entries of a matrix: $\text{Tr}(\mathbf{A}) = \sum_{i} \mathbf{A}_{i,i}$. It has some useful identities to manipulate expressions.
- Determinant $(\det(\mathbf{A}))$: function that maps matrices to real scalars. It is equal to the product of all the eigenvalues of a matrix.
- Principal Components Analysis (PCA): ML algorithm that can be derived using only knowledge of basic Linear Algebra. The reader can find a description of the implementation at section 2.12.

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.