Combo 8 de teoremas

Emanuel Nicolás Herrador - November 2024

Lema

Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi =_d \varphi(v_1, \dots, v_n) \in F^{\tau}$. Entonces:

$$\mathbf{A} \vDash \varphi[a_1, \dots, a_n] \text{ sii } \mathbf{B} \vDash \varphi[F(a_1), \dots, F(a_n)]$$

para cada $a_1, \ldots, a_n \in A$

Demostración

Vamos a usar los siguientes resultados en la demostración:

- Convención notacional: Una vez declarado $\varphi =_d \varphi(v_1, \dots, v_n)$, si **A** es un modelo de tipo τ y $a_1, \dots, a_n \in A$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ significará que $\mathbf{A} \models \varphi[\vec{b}]$ donde \vec{b} es una asignación tal que a cada v_i le asigna el valor a_i .
- Lema: Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$, entonces $\mathbf{A} \vDash \varphi[(a_1, a_2, \dots)] \iff \mathbf{B} \vDash \varphi[(F(a_1), F(a_2), \dots)]$ para cada $(a_1, a_2, \dots) \in A^N$. En particular, \mathbf{A} y \mathbf{B} satisfacen las mismas sentencias de tipo τ .

Ahora, supongamos $F: \mathbf{A} \to \mathbf{B}$ isomorfismo, $\varphi =_d \varphi(v_1, \dots, v_n) \in F^{\tau}$ y $a_1, \dots, a_n \in A$ fijos pero arbitrarios. Entonces:

$$\mathbf{A} \vDash \varphi[a_1, a_2, \dots, a_n] \iff \mathbf{A} \vDash \varphi[\vec{b}] \text{ con } \vec{b} \text{ tq a } v_i \text{ le asigna } a_i$$
Por Convención Notacional
$$\iff \mathbf{B} \vDash \varphi[(F(b_1), F(b_2), \dots)] \text{ con } \vec{b} \text{ tq a } v_i \text{ le asigna } a_i$$
Por Lema
$$\iff \mathbf{B} \vDash \varphi[\vec{c}] \text{ con } \vec{c} \text{ tq a } v_i \text{ le asigna } F(a_i)$$
$$\iff \mathbf{B} \vDash \varphi[F(a_1), F(a_2), \dots, F(a_n)]$$
Por Convención Notacional

Luego, como eran fijos pero arbitrarios, se demuestra el lema para toda asignación.

Lema

Sean (P, \leq) y (P', \leq') posets. Supongamos F es un isomorfismo de (P, \leq) en (P', \leq') :

- (a) Para cada $S \subseteq P$ y cada $a \in P$, se tiene que a es cota superior (resp. inferior) de S sii F(a) es cota superior (resp. inferior) de F(S)
- (b) Para cada $S \subseteq P$, se tiene que existe $\sup(S)$ sii existe $\sup(F(S))$ y en el caso de que existan tales elementos se tiene que $F(\sup(S)) = \sup(F(S))$

Veamos cada punto por separado.

Punto (a)

Vemos la ida y la vuelta por separado. Ver la cota superior e inferior es análogo, por lo que demostramos solo la primera.

- Ida: Supongamos a cota superior de S. Sea $x \in F(S)$ fijo pero arbitrario y $s \in S$: x = F(s). Como $s \le a$, por def. de isomorfismo, $x = F(s) \le F(a)$. Luego, como x era fijo pero arbitrario, se tiene que F(a) es cota superior de F(S) y se demuestra la ida.
- Vuelta: Supongamos F(a) cota superior de F(S) con $a \in S$. Sea $s \in S$ fijo pero arbitrario, como $F(s) \leq' F(a)$ entonces por def. de isomorfismo, $s = F^{-1}(F(s)) \leq F^{-1}(F(a)) = a$. Como s era fijo pero arbitrario, se tiene que a es cota superior de S y se demuestra la vuelta.

Con ello, se demuestra la doble implicación para el caso de la cota superior. Como son análogos ambos casos de cota superior e inferior, se demuestra el punto (a).

Punto (b)

Vemos la ida y la vuelta por separado:

• Ida: Supongamos que existe $\sup(S)$. Por (a) sabemos que $F(\sup(S))$ es cota superior de F(S). Sea b un elemento fijo pero arbitrario tal que es cota superior de F(S), entonces por (a) $F^{-1}(b)$ es cota superior de $F^{-1}(F(S)) = S$ por lo que $\sup(S) \leq F^{-1}(b)$. Luego, con ello, por def. de isomorfismo, $F(\sup(S)) \leq F(F^{-1}(b)) = b$.

Con ello, como b era fijo pero arbitrario, se tiene que se cumple para todo b cota superior de F(S). Luego, por def., $F(\sup(S))$ es supremo de F(S) por lo que se demuestra la ida.

• Vuelta: Es totalmente análogo al caso anterior, dado que F es un isomorfismo.

Con ello, entonces se demuestra el punto (b). ■