Risposte Orale Breve MD

Alessandro Pagiaro

Aggiornato al 23 Giugno 2014

Indice

1	Domanda 2 - Somma dei primi n numeri	3
2	Domanda 3 - Induzione	3
3	Domanda 4 - Fare una dimostrazione del Principio del minimo	3
4	Domanda 8 - $g \circ f$ iniettività	3
5	Domanda 9 - $g \circ f$ surgettività	4
6	Domanda 12 - $\binom{n}{r} = \binom{n}{n-r}$	4
7	Domanda 13 - $\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$	4
8	Domanda 17 - $\sum_{i=0}^{n} (-1)^{i} \binom{n}{i}$	5
9	Domanda 20 - $ax \equiv b \ (m)$ ha soluzione se	6
10	Domanda 21 - $ax + by = c$ ha soluzione se	6
11	Domanda 22 - Se $ax + bt = c$ ha sol \Rightarrow le sol. sono infinite	7
12	Domanda 23 - Bezout	8
13	Domanda 24 - $\not a \cdot a \equiv \not a \cdot b \ (\frac{m}{MCD(d,m)})$	9
14	Domanda ${f 25}$ - Moltiplicare a destra e a sinistra una congruenza	10
15	Domanda 26 - Piccolo teorema cinese del resto con moduli coprimi	11
16	Domanda 27 - Ancora roba cinese	11
17	Domanda 28 - $ax+by=c$ e $ax=c$ (b) in che modo sono collegate?	12

18	Domanda 29 - I numeri primi sono infiniti	12
19	Domanda 30 - $a' = \frac{a}{MCD(a,b)}$ e $b' = \frac{b}{MCD(a,b)}$ sono coprimi	12
20	Domanda 31 - Perchè l'algoritmo di Euclide funziona	13
21	Domanda 32 - Criteri di divisibilità 21.1 Criterio di divisibilità per 3	13 13 14 14
22	Domanda 33 - Classi di resto et alia	14
23	Domanda 34 - Piccolo Teorema di Fermat	15
24	Domanda 36 - $a^{561} \equiv a \ (561)$	16
2 5	Domanda 44 - Scrittura unica per i vettori	16
26	Domanda 45 - Scarti successivi per estrarre base	17
27	Domanda 48 - Numero di pivot non dipende dalla riduzione a scala	17
2 8	Domanda 50 - Inettività $\Leftrightarrow ker = \{O\}$	18
29	Domanda 53 - Teorema della dimensione	19
30	Domanda 58 - Matrice associata e cambiamento di base	19
31	L_A è invertibile $\Leftrightarrow A$ non è singolare	20

1 Domanda 2 - Somma dei primi n numeri...

$$\sum_{i=0}^{n} i = \frac{(n+1)n}{2}$$

Questo risultato si dimostra facilmente per via grafica. Basterà immaginare un triangolo rettangolo con i cateti di lunghezza n e calcolarne l'area.

Per quanto riguarda la somma dei quadrati possiamo procedere in maniera analoga e ottenere che

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Approfondisci >>

2 Domanda 3 - Induzione

Gli esercizi così si risolvono trovando il minimo numero $n \in \mathbb{N}$ per cui vale la relazione data e la si dimostra per induzione su n.

3 Domanda 4 - Fare una dimostrazione del Principio del minimo

Teorema (Principio del minimo o del Buon Ordinamento). Ogni sotto
insieme non vuoto di $\mathbb N$ ha un elemento minimo.

Una dimostrazione dove lo si usa è quella del Teorema di Bezout.

4 Domanda 8 - $g \circ f$ iniettività

Data $f: X \to Y$ e $g: Y \to Z$ Data $g \circ f: X \to Z$ iniettiva, è vero che:

- $\bullet \Rightarrow f$ iniettiva
- $\bullet \Rightarrow g$ iniettiva

VERO!

Dimostrazione. difatti, se una delle due non fosse iniettiva potrei avere una \bar{x} e una \bar{y} con $\bar{x} \neq \bar{y}$ tale che $f(\bar{x}) = f(\bar{y})$ per cui $g(f(\bar{x})) = g(f(\bar{y}))$ con $\bar{x} \neq \bar{y}$. Cioè avrei $g \circ f$ non iniettiva, assurdo, visto che per ipotesi la composizione è iniettiva.

Si dimostra in maniera analoga che g deve essere iniettiva.

5 Domanda 9 - $g \circ f$ surgettività

Data $f:X\to Y$ e $g:Y\to Z$

Data $g \circ f: X \to Z$ surgettiva, è vero che:

- $\bullet \Rightarrow f$ surgettiva
- $\Rightarrow g$ surgettiva

Se $g \circ f$ è surgettiva $\Rightarrow |X| \supseteq |Z|$.

È FALSO che $\Rightarrow f$ surgettiva. Costruisco un esempio che mi nega l'affermazione. Prendo $X = \{1, 2, 3, 4\} = \mathbb{N}_4, Y = \mathbb{N}_5, Z = \mathbb{N}_4$. Definisco ora:

$$f(x) = x$$

$$g(x) = \left\{ \begin{array}{ll} x & se \ x \in \{1,2,3,4\} \\ 4 & se \ x = 5 \end{array} \right.$$

La composizione risulterà chiaramente surgettiva eppure la f non è surgettiva, difatti l'elemento $5 \in Y$ non viene mai raggiunto da alcuna $x \in X$ eppure $\forall z \in Z \ \exists x | f \circ g(x) = z$.

È VERO che $\Rightarrow g$ surgettiva.

Dimostrazione. Se infatti non fosse così, poichè per definizione di funzione

$$g \circ f = g(f(x))$$

non riuscirei a raggiungere un elemento in Z poichè qualunque elemento x scelgo, g(f(x)) non lo raggiungerebbe e quindi $g\circ f$ risulterebbe non surgettiva. Ma questo va contro la nostra ipotesi iniziale.

6 Domanda 12 - $\binom{n}{r} = \binom{n}{n-r}$

 $\binom{n}{n-1} = \binom{n}{1}$ difatti dato X tale che |X| = n i suoi sottoinsiemi di cardinalità 1 sono tanti quanti sono i sottoinsiemi di cardialità n-1. La corrispondenza biunivoca è data dall'operazione di prendere il complementare.

Più in generale, dato $0 \le r \le n$, vale che

$$\binom{n}{r} = \binom{n}{n-r}$$

7 Domanda 13 -
$$\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$$

Dato $1 \leqslant r \leqslant n-1$

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

poichè $n \geqslant 1$, posso prendere un elemento $a \in X$. Per calcolare $\binom{n}{r}$ devo calcolare la $|\mathcal{P}_r(X)|$.

Prendo

$$L_1 = \{ \mathcal{P}_r(X) \mid a \in \mathcal{P}_r(X) \}$$

$$L_2 = \{ \mathcal{P}_r(X) \mid a \notin \mathcal{P}_r(X) \}$$

Quindi

$$\mathcal{P}_r(X) = L_1 \cup L_2$$

Trattandosi di insiemi disgiunti:

$$\binom{n}{r} = |\mathcal{P}_r(X)| = |L_1| + |L_2|$$

Vediamo quindi quanto vale $|L_1|$. L_1 sono tutti quei sottoinsiemi che oltre ad a contengono elementi di X. Cioè:

$$\binom{n-1}{r-1} = |L_1|$$

Analogamente prendo l'insieme $X - \{a\}$, che conterrà quindi n-1 elementi, formando sottoinsiemi da r elementi, cioè:

$$\binom{n-1}{r} = |L_2|$$

Quindi:

$$\binom{n}{r} = |\mathcal{P}_r(X)| = \binom{n-1}{r-1} + \binom{n-1}{r}$$

8 Domanda 17 - $\sum_{i=0}^{n} (-1)^{i} \binom{n}{i}$

Sia $n \in \mathbb{N}$. Quanto vale $\sum_{i=0}^{n} (-1)^{i} {n \choose i}$? Spiegare. La sommatoria vale 0.

Dimostrazione. Per n pari è banalmente verificato, difatti $\binom{n}{1} = \binom{n}{n}$. Per n dispari invece io la dimostro così (credo che Gaiffi ce la lasciò per esercizio): Data la formula del binomio di Newton (Teorema 8.1, pag 79)

$$(a+b)^{n} = \sum_{i=0}^{n} \binom{n}{i} a^{n-1} b^{i}$$
 (1)

Vogliamo ora usare questa formula per dimostrare che:

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} = 0 \tag{2}$$

Quindi scelgo opportunamente a e b affinché la sommatoria della formula (1) faccia 0. So che la sommatoria (1) = $(a+b)^n$. Data la somiglianza con la formula (2) pongo a = 1 e b = -1, così facendo il termine a sinistra della formula (1) mi risulterà 0, mentre quello a destra risulterà:

$$\sum_{i=0}^{n} \binom{n}{i} 1^{n-1} (-1)^{i}$$

1 elevato a qualcosa in un prodotto non mi da alcun contributo, ergo lo posso trascurare, riordinando i termini ottengo proprio la formula (2), che è quella che volevo dimostrare.

9 Domanda 20 - $ax \equiv b \ (m)$ ha soluzione se...

Siano $a, b, c \in \mathbb{Z}$ con $m \geq 1$. Esporre una condizione necessaria e sufficiente perchè l'equazione $ax \equiv b$ (m) abbia soluzione e spiegare la motivazione.

L'equazione $ax \equiv b$ (m) non ha soluzione se MCD(a, m) non divide b.

Dimostrazione. Se $ax \equiv b \ (m)$ ha soluzione esiste un interno \bar{x} e un intero k tali che $a\bar{x} = b + km$, ma supponendo che d = MCD(a, m) divide a e m si vede subito che deve dividere anche b.

L'equazione $ax \equiv b$ (m) ha soluzione se MCD(a, m) divide b.

Dimostrazione. Se MCD(a, m) non divide b sappiamo già che la congruenza non ha soluzioni. Quindi consideriamo il caso in cui MCD(a, m) divide b. In questo caso MCD(a, m) è dunque anche il massimo fattore positivo comune a tutti e tre i numeri a, b, m; dividendo per MCD(a, m) otteniamo la congruenza equivalente $a'x \equiv b'$ (m'). A questo punto osserviamo che, per costruzione, a' e m' sono coprimi e sappiamo che in questo caso a' ha un inverso e' modulo m'. Una volta trovato e' sappiamo che le soluzioni della $a'x \equiv b'$ (m'), sono tutti e soli gli interi della forma e'b'+km' al variare di k in \mathbb{Z} . Visto che $m'=\frac{m}{MCD(a,m)}$ ci sono esattamente MCD(a,m) interi di questa forma in ogni sequenza di m elementi consecutivi.

10 Domanda 21 - ax + by = c ha soluzione se...

Teorema. L'equazione diofantea ax + by = c (con a e b non entrambi nulli) ha soluzione se e solo se MCD(a, b) divide c.

Dimostrazione. Sappiamo, per Bezout, che se l'equazione ax + by = c fosse

$$ax + by = MCD(a, b)$$

questa avrebbe soluzioni certamente.

Ma l'equazione che dobbiamo risolvere differisce da questa perchè abbiamo c invece di MCD(a, b). Quindi, ci basterà chiederci se

$$MCD(a,b)|c|$$
?

Se sì:

 \rightarrow L'equazione ammette soluzioni.

No. altrimenti.

Infatti si parte da una coppia (m, n) che risolve l'equazione ax+by = MCD(a, b):

$$am + bn = MCD(a, b)$$

e si moltiplicano entrambi i membri per k. Troviamo allora:

$$a(mk) + b(nk) = MCD(a, b) \cdot k = c$$

dunque (mk, nk) è una soluzione dell'equazione iniziale.

Viceversa, se la risposta è no, cio
è $MCD(a,b) \not| c$, allora l'equazione non può avere soluzioni e lo possiamo dimostrare per assurdo.

Dimostrazione. Ammettiamo che esiste una soluzione (\bar{x}, \bar{y}) . Consideriamo l'uguaglianza

$$a\bar{x} + b\bar{y} = c$$

ricaveremo che, visto che $MCD(a,b)|a\bar{x}+b\bar{y}$ deve dividere anche quello a destra. Questo è però assurdo poichè eravamo nel caso in cui $MCD(a,b) \not\mid c$.

11 Domanda 22 - Se ax + bt = c ha sol \Rightarrow le sol. sono infinite

Prendiamo l'equazione omogenea associata:

$$ax + by = 0$$

Cerchiamo (\bar{x}, \bar{y}) che mi risolvono l'equazione:

$$ax + by = 0 (3)$$

$$ax = -by (4)$$

$$\frac{a}{MCD(a,b)}x = -\frac{b}{MCD(a,b)}y\tag{5}$$

Questa equazioni è equivalente a quella iniziale. Supponiamo di avere una soluzione (γ, δ) :

$$\frac{a}{MCD(a,b)}\gamma = -\frac{b}{MCD(a,b)}\delta$$

A questo punto, visto che i numeri $\frac{a}{MCD(a,b)}, \frac{b}{MCD(a,b)}$ sono primi fra loro, allora δ è della forma $\frac{a}{MCD(a,b)}t$ e γ risulta uguale a $-\frac{b}{MCD(a,b)}t$. Quindi una qualunque coppia della forma

$$\left(-\frac{b}{MCD(a,b)}t, \frac{a}{MCD(a,b)}t\right)$$

con $t \in \mathbb{Z}$ è una soluzione dell'equazione omogenea associata.

Teorema. Se l'equazione diofantea ammette soluzioni, allora ammette infinite soluzioni. Presa una soluzione particolare $(\bar{x}.\bar{y})$, l'insieme S di tutte le soluzioni può essere descritto così:

 $S = \{(\bar{x} + \gamma, \bar{y} + \delta | (\gamma, \delta) \text{ è solutione dell'equatione omogenea associata}\}$

12 Domanda 23 - Bezout

Teorema (di Bezout). Dati due interi a e b con $(a,b) \neq (0,0)esistono$ due numeri interi m e n tali che

$$MCD(a,b) = am + bn$$

Dimostrazione. Consideriamo l'insieme CL(a,b) di tutte le possibili combinazioni lineari positive a coefficienti interi di a e b, cioè

$$CL(a,b) = \{ar + bs \mid r \in \mathbb{Z}, s \in \mathbb{Z}, ar + bs > 0\}$$

Tale insieme è non vuoto (difatti $(a, b) \neq (0, 0)$).

Inoltre $CL(a,b)\subseteq \mathbb{N}$. Dunque per il principio del buon ordinamento ammette minimo.

Sia d tale minimo: in particolare, dato che $d \in CL(a,b)$, esistono un $m \in \mathbb{Z}$ ed un $n \in \mathbb{Z}$ tali che

$$d = am + bn$$

La dimostrazione del teorema si conclude ora mostrando che d = MCD(a, b). Infatti d soddisfa le proprietà del massimo comune divisore, cioè:

- *d* | *a*
- se $c \mid a$ e $c \mid b$ allora $c \leq d$

Per il primo punto facciamo la divisione euclidea tra a e d. Sarà a=qd+r con $0 \le r < d$.

Allora

$$a = q(am + bn) + r$$

da cui

$$r = (-qm+1)a + (-qn)b$$

Ma allora r si esprime come combinazione lineare a coefficienti interi di a e di b. Si fosse r>0 avremmo che $r\in CL(a,b)$ per definizione di CL(a,b). Questo non può succedere perchè $0\leq r< d$ e d era stato scelto come minimo elemento di CL(a,b). Dunque deve essere r=0. Questo vuol dire che a=qd+0, ossia $d\mid a$. Allo stesso modo si verifica $d\mid b$.

Il secondo punto è immediato. Infatti se c|a e c|b allora $c\mid am+bn$, cioè c|d, in particolare $c\leq d$.

13 Domanda 24 - $\mathbb{A} \cdot a \equiv \mathbb{A} \cdot b \ (\frac{m}{MCD(d,m)})$

$$d \cdot a \equiv d \cdot b \ (m) \Leftrightarrow a \equiv b \ \left(\frac{m}{MCD(d,m)}\right)$$

Dimostrazione. Dimostriamo \Leftarrow)

Supponiamo che $a \equiv b \left(\frac{m}{MCD(d,m)}\right)$ e cerchiamo di dimostrare che $d \cdot a \equiv d \cdot b \ (m)$.

Da

$$a \equiv b \; \left(\frac{m}{MCD(d,m)} \right)$$

{per definizione di congruenza}

$$\frac{m}{MCD(d,m)} \mid a-b$$

{che equivale a dire}

$$\frac{m}{MCD(d,m)} \cdot \gamma = a - b$$

$$m \cdot \gamma = (a - b)MCD(d, m)$$

Vorrei quindi ora dimostrare che $m|(a-b)\cdot d \Leftrightarrow a\cdot d \equiv b\cdot d \ (m)$

$$m \cdot \gamma \cdot d_1 = (a - b) \cdot MCD(d, m) \cdot d_1 = (a - b) \cdot d$$

Quindi:

$$m|(a-b)\cdot d$$

Dimostriamo ora \Rightarrow)

Dal fatto che

$$da \equiv db \ (m)$$

{per definizione di equivalenza}

$$m|da - db$$

$$m \cdot \nu = da - db = d(a - b)$$

{divido per MCD(d, m)}

$$\frac{m}{MCD(d,m)} \cdot \nu = \frac{d}{MCD(d,m)}(a-b)$$

{Poichè $MCD\left(\frac{m}{MCD(d,m)},\frac{d}{MCD(d,m)}\right)=1$, cioè sono coprimi, per Bezout}

$$MCD(d, m) = \lambda d + \mu m$$

{divido per MCD(d, m)}

$$1 = \lambda \frac{d}{MCD(d,m)} + \mu \frac{m}{MCD(d,m)}$$

Per Bezout, 1 allora è l'MCD cercato (non so cosa intendevo con quest'ultima frase).

Poichè sono primi tra loro:

$$\frac{m}{MCD(d,m)}|\frac{d}{MCD(d.m)}(a-b)$$

Difatti $\frac{m}{MCD(d,m)},\frac{d}{MCD(d.m)}$ sono primi tra loro.

$$\frac{m}{MCD(d,m)}|(a-b)$$

cioè

$$a \equiv b \left(\frac{m}{MCD(d,m)} \right)$$

14 Domanda 25 - Moltiplicare a destra e a sinistra una congruenza

Teorema. Sia MCD(k, m) = 1, allora $ak \equiv bk$ $(m) \Rightarrow a \equiv b$ (m)

Dimostrazione. Dall'ipotesi che MCD(k,m)=1 segue che $1=\lambda k+\mu m$ e quindi λ è l'inverso di k. Moltiplicando entrambi i membri per λ otteniamo $\lambda ak=\lambda bk$ (m). Siccome $\lambda k=1$ (m) otteniamo allora

$$a \equiv b \ (m)$$

15 Domanda 26 - Piccolo teorema cinese del resto con moduli coprimi

$$\begin{cases} x \equiv a \ (m_1) \\ x \equiv b \ (m_2) \end{cases}$$

Osserviamo che le soluzioni della prima equazione sono

$$x = a + km_1 \text{ con } k \in \mathbb{Z}$$

Mi chiedo se tale numero risolve la seconda soluzione. Sostituisco quindi \boldsymbol{x} nella seconda equazione ottendendo

$$a + km_1 \equiv b \ (m_2)$$

Qui la nostra variabile è quindi diventata k:

$$m_1 k \equiv b - a \ (m_2)$$

E sappiamo che ha soluzione solo se MCD(m1, m2)|b-a

Poichè noi abbiamo che $MCD(m_1, m_2) = 1$, il nostro sistema ammetterà sempre soluzione. Tale soluzione sarà $0 \le x_o < m_1 m_2$. Tutte le soluzioni del sistema sono della forma $x_0 + q m_1 m_2$ con $q \in \mathbb{Z}$.

16 Domanda 27 - Ancora roba cinese...

Le soluzioni di

$$ax \equiv b \ (m_1 m_2)$$

coincidono con le soluzioni di

$$\begin{cases} ax \equiv b \ (m_1) \\ ax \equiv b \ (m_2) \end{cases}$$

VERO!

Dimostrazione. Se \bar{x} è soluzione di

$$ax \equiv b \ (m_1 m_2)$$

allora \bar{x} è soluzione anche di

$$ax \equiv b \ (m_1)$$

e di

$$ax \equiv b \ (m_2)$$

Detto in altro modo

$$m_1 m_2 | a\bar{x} - b \Leftrightarrow m_1 | a\bar{x} - b \wedge m_2 | a\bar{x} - b$$

Viceversa se \bar{x} risolve il sistema allora posso dire che

$$m_1|a\bar{x}-b \wedge m_2|a\bar{x}-b$$

e quindi

$$m_1m_2|a\bar{x}-b$$

17 Domanda 28 - ax + by = c e ax = c (b) in che modo sono collegate?

Data (x,y) la soluzione della diofantea ax+by=c, il numero intero x deve anche soddisfare $ax\equiv c$ (b). Infatti by=c-ax, cioè b|c-ax. Dunque se esiste una x che soddisfa $ax\equiv c$ (b) allora soddisfa anche b|ax-c e quindi esiste una y tale by=ax-c trova soluzione.

18 Domanda 29 - I numeri primi sono infiniti

Teorema. I numeri primi sono infiniti.

Dimostrazione. Sia P l'insieme dei numeri primi. Supponiamo per assurdo che P sia finito e dunque siano

$$p_1, p_2, ..., p_n$$

tutti i numeri primi. Consideriamo allora il numero

$$a = (p_1 \cdot p_2 \cdot \dots \cdot p_n) + 1$$

Come accade per tutti i numeri maggiori o uguali a 2, c'è un numero primo che divide a. Nel nostro caso vuol dire che uno dei p_i divide a. Ma nessuno dei nostri p_i divide a, visto che, per ogni i = 1, 2, ..., n vale $a \equiv 1 \pmod{p_i}$.

19 Domanda 30 - $a' = \frac{a}{MCD(a,b)}$ e $b' = \frac{b}{MCD(a,b)}$ sono coprimi

Teorema. Presi due numeri interi a e b non entrambi nulli, se li dividiamo per il loro MCD, cioè:

$$a' = \frac{a}{MCD(a,b)} \ e \ b' = \frac{b}{MCD(a,b)}$$

MCD(a',b')=1.

Dimostrazione. Se ci fosse un divisore d>1 di a' e b', allora $d\cdot MCD(a,b)$ dividerebbe sia a che b e sarebbe più grande di MCD(a,b), assurdo.

20 Domanda 31 - Perchè l'algoritmo di Euclide funziona

Perchè l'algoritmo di Euclide termina?

$$a = bq + r$$
$$b = b'q' + r'$$

 r^n nel nostro algoritmo sarà sempre

$$0 \le r^n < r^{n-1}$$

cioè prima o poi arriverà a 0.

Perchè funziona?

Funziona poichè:

Teorema. Se $c \equiv c'(m)$ allora MCD(c, m) = MCD(c', m). In particolare MCD(c, m) = MCD(Resto(c, m), m).

Dimostrazione. Consideriamo un divisore d di m. Allora, visto che per la definizione di congruenza deve valere c = c' + mk per un certo intero k, possiamo concludere che $d|c \Leftrightarrow d|c'$. Quindi i divisori comuni di m e c coincidono con i divisori comuni di m ed c'. Anche i massimo devono allora coincidere.

21 Domanda 32 - Criteri di divisibilità

21.1 Criterio di divisibilità per 3

Cosa dice il criterio

Sommo le cifre che compongono il numero, se il risultato che ottengo è divisibile per 3 allora anche il numero iniziale risulta divisibile per 3.

Perchè funziona

Prendiamo ad esempio 18743291.

$$18743291 = 1 \cdot 10^7 + 8 \cdot 10^6 + 7 \cdot 10^5 + 4 \cdot 10^4 + 3 \cdot 10^3 + 2 \cdot 10^2 + 9 \cdot 10^1 + 1$$

$$10 \equiv 1 \pmod{3}$$

Quindi: $18743291 = 1 + 8 + 7 + 4 + 3 + 2 + 9 + 1 = 8 = 2 \pmod{3}$

21.2 Criterio di divisibilità per 7

Cerco un multiplo di 10 comodo per l'operazione mod 7

$$10 \equiv 3 \ (7)$$

 $100 \equiv 2 \ (7)$
 $1000 \equiv -1 \ (7)$

Prendiamo 3417822.

$$3417822 = 3 \cdot 1000^2 + 417 \cdot 1000 + 822$$
 Essendo
$$1000 \equiv -1 (7):$$

$$3417822 = 3 \cdot (-1)^2 + 417 \cdot (-1) + 822$$

$$= 3 - 417 + 822$$

$$= 408$$

$$= 7 \cdot 58 + 2$$

21.3 Criterio di divisibilità per 11

$$10 \equiv -1 \ (11)$$

 $\equiv 2 \pmod{7}$

Prendiamo 78922.

$$78922 = 7 \cdot 10^{4} + 8 \cdot 10^{3} + 9 \cdot 10^{2} + 2 \cdot 10 + 2$$

$$\equiv 7 \cdot (-1)^{4} + 8 \cdot (-1)^{4} + 9 \cdot (-1)^{2} + 2 \cdot (-1) + 2$$

$$= 7 - 8 + 9 - 2 + 2$$

$$\equiv 8 \pmod{11}$$

22 Domanda 33 - Classi di resto et alia

Sia m un numero intero positivo. Per ogni i = 0, 1, 2, ..., m - 1 chiamiamo $[i]_m$ la classe di resto di i modulo m, ossia l'insieme dei numeri che danno resto i quando si considerano la loro divisione euclidea per m:

$$[i]_m = \{x \in \mathbb{Z} \mid x \equiv i \ (m)\}$$

Definiamo poi \mathbb{Z}_m l'insieme di tutte le classi di resto modulo m:

$$\mathbb{Z}_m = \{[0]_m, [1]_m, ..., [m-1]_m\}$$

Teorema. Se p è un numero primo, allora \mathbb{Z}_p è un campo.

Dimostrazione. Se prendiamo una classe di resto $[a]_p \neq [0]_p$ in \mathbb{Z}_p , allora deve valere che MCD(a, p) = 1. allora la congruenza $ax \equiv 1$ (p) ha soluzione, dunque esiste $b \in \mathbb{Z}$ tale che $ab \equiv 1$ (p). Come conseguenza in \mathbb{Z}_p vale

$$[a]_p[b]_p = [ab]_p = [1]_p$$

Abbiamo allora dimostrato che $[a]_p$ è invertibile in \mathbb{Z}_p e che $[b]_p$ è il suo inverso. Quindi \mathbb{Z}_p ha l'inverso per ogni numero \Rightarrow è un campo.

23 Domanda 34 - Piccolo Teorema di Fermat

Teorema (Il piccolo teorema di Fermat). Se p è un numero primo e a è un numero intero che non è multiplo di p, allora vale che

$$a^{p-1} \equiv 1 \ (p)$$

Dimostrazione. Consideriamo l'anello \mathbb{Z}_p delle classi di resto modulo p:

$$\mathbb{Z}_p = \{[0], [1], ..., [p-1]\}$$

Vista la scelta di a, sappiamo che $[a] \neq [0]$. Moltiplichiamo ora tutti gli elementi di \mathbb{Z}_p per [a]:

$$[a][0], [a][1], ..., [a][p-1]$$

Questi p elementi sono tutti diversi fra loro?

Se sì \Rightarrow sappiamo esattamente tutti gli elementi di \mathbb{Z}_p , che ha cardinalità p. Verifichiamo dunque che sono tutti diversi fra loro: supponiamo, per assurdo, che esistano i e j, con $(0 \le i \le j \le p-1)$ con $[i] \ne [j]$ ma tali che [a][i] = [a][j].

Poichè p è primo, \mathbb{Z}_p è un campo, quindi ogni elemento $\in \mathbb{Z}_p$ ha un inverso. Sia dunque [b] l'inverso di [a]. Moltiplicando per [b] otteniamo:

$$[b][a][i] = [b][a][j]$$

Siccome [a][b] = 1

$$[i] = [j]$$

Poichè avevamo supposto $[i] \neq [j]$, abbiamo trovato un assurdo.

Visto ora che sono tutti distinti, sappiamo che la lista

$$[a][0], [a][1], ..., [a][p-1]$$

ha esattamente tutti gli elementi di \mathbb{Z}_p . allora facciamo il prodotto degli elementi di questa lista, eccetto di [a][0] = [0], deve valere

$$[a][1]...[a][p-1] = [1][2][3]...[p-1]$$

visto che nel membro a sinistra e in quello a destra abbiamo tutti gli elementi (magari in ordine diverso).

Per la proprietà commutativa possiamo riscrivere l'uguaglianza nella forma

$$[a]^{p-1}[1]...[p-2][p-1] = [1][2][3]...[p-2][p-1]$$

Poichè [p-1] è invertibile in \mathbb{Z}_p , moltiplichiamo entrambi i membri per il suo inverso. Otteniamo quindi

$$[a]^{p-1}[1]...[p-2] = [1][2][3]...[p-2]$$

Poi moltiplichiamo entrambi i membri per l'inverso di [p-2], poi di [p-3] e così via...

Alla fine troviamo

$$[a]^{p-1} = [1]$$

che si riscrive, in termini di congruenze come

$$a^{p-1} \equiv 1 \ (p)$$

che è proprio l'enunciato che volevamo dimostrare.

24 Domanda 36 - $a^{561} \equiv a (561)$

Vale poichè 561 è un numero di Carmichael. Approfondisci su Wikipedia >>

25 Domanda 44 - Scrittura unica per i vettori

Teorema. Ogni elemento di uno spazio vettoriale si scrive in modo unico come combinazione lineare degli elementi di una base.

Dimostrazione. Prendiamo la base B di V

$$V = \{v_1, v_2, ..., v_n\}$$

Prendiamo il vettore

$$q = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n$$

e prendiamo anche il vettore

$$t = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + \dots + \beta_n v_n$$

. Visto che questi due vettori sono uguali

$$q = t$$

$$q - t = 0$$

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n - (\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + \dots + \beta_n v_n) = 0$$
$$(\alpha_1 - \beta_1) v_1 + (\alpha_2 - \beta_2) v_2 + \dots + (\alpha_n - \beta_n) v_3 = 0$$

Poichè $v_i \neq 0 \forall i$ devono essere = 0 i coefficienti $\alpha_i \beta_i \forall i$. Quindi:

$$\alpha_i - \beta_i = 0$$
$$\alpha_i = \beta_i$$

26 Domanda 45 - Scarti successivi per estrarre base

Teorema. Sia V uno spazio vettoriale di dimensione finita su \mathbb{K} . Da ogni insieme di generatori di V si può estrarre una base. Formalmente:

$$\forall g \subseteq V < g >= V \Rightarrow \exists B \subseteq g | B \ \dot{e} \ una \ base \ di \ V)$$

Dimostrazione. Se g è linearmente indipendente allora questo è già una base di V.

Se invece g è composto da elementi linearmente dipendenti, ovvero $\alpha_1 v_1 + ... + \alpha_n v_n = 0$ per a_i non tutti nulli $\Rightarrow \exists i | \alpha_i \neq 0$ (esiste un elemento non nullo) ma allora

$$v_i = \frac{-1}{\alpha_i}(\alpha_1 v_1 + \dots + \alpha_i v_i + \dots + \alpha_n v_n)$$

e quindi abbiamo scoperto che $v_i \in \langle v_1, ..., v_n \rangle$ cio
è v_i è combinazione lineare di $g - \{v_i\}$.

Questo vuol dire che l'insieme g si può ridurre eliminando l'elemento a esso dipendente. \Box

27 Domanda 48 - Numero di pivot non dipende dalla riduzione a scala

Saper spiegare perchè il numero di pivot di una matrice non dipende dalla riduzione a scala effettuata. Definizione di rango di una matrice.

Diciamo innanzitutto che il rango della matrice è il numero di pivot che presenta la matrice. I pivot sono il numero di righe in una matrice a scala che presentano come primo elemento un numero non nullo.

Ci basta ora dimostrare quindi che la riduzione a scala effettuata, quindi le operazioni elementari di riga effettuate, non alterano il rango di una matrice.

Teorema. Siano $\{v_1,...,v_m\} \in \mathbb{K}^n \mid \langle v_1,...,v_m \rangle = V \subseteq \mathbb{K}^n$.

Sia A una matrice e S la sia S la sua riduzione a scala.

Siano $j_1,...,j_r$ le colonne che contengono i pivot. Allora i vettori $V_{j_1},...,v_{j_r}$ (della matrice A) sono una base di V estratta dall'insieme dei generatori $\{v_1,...,v_m\}$

Dimostrazione. Dimostriamo che $V_{j_1},...,v_{j_r}$ sono una base di V.

1) Sono linearmente indipendenti. Data la matrice M, le colonne di M sono linearmente indipendenti $\Leftrightarrow Mx=0$ ha come unica soluzione x=0 cioè, $\Leftrightarrow rkM=|\text{Colonne di }M|$

Calcoliamo quindi il rango di M e verificare che sia r.

Agisco su M con le stesse operazioni fatte su A per ottenere S. Il numero di Pivot che ottengo è ancora r e quindi rkM=r. ciò dimostra che $\{V_{j_1},...,v_{j_r}\}$ sono linearmente indipendenti.

2) Generano V, cioè che $\langle V_{j_1},...,v_{j_r} \rangle = \langle V_1,...,v_m \rangle = V$

Vediamo se $\langle V_{j_1}, ..., v_{j_r} \rangle \subseteq \langle V_1, ..., v_m \rangle$.

Quest'inclusione è ovvia (mmm, mica tanto ovvia!)

Vediamo ora l'inclusione opposta, cioè: $\forall i \ v_i \in < V_{j_1},...,v_{j_r}>$, cioè che ogni vettore è generato da $< V_{j_1},...,v_{j_r}>$.

Perchè questo sia vero occorre che Mx=b abbia soluzione. Mx=b ha soluzione se $b\in$ colonne di M $(V_{j_1},...,v_{j_r})$

Applichiamo quindi le stesso operazioni fatte su A per ottenere S sulla matrice M|b con $b=v_i$.

$$(M|v_i) \xrightarrow{Gauss} S_0 = (V_{j_1}, ..., v_{j_r}|v_i)$$

e si nota facilmente che $rkM = rkS_o = r$ quindi genera.

28 Domanda 50 - Inettività $\Leftrightarrow ker = \{O\}$

Teorema. L'applicazione lineare $f: X \to Y$ è iniettiva $\Leftrightarrow Kerf = \{O\}$

Dimostrazione. Dimostro \Rightarrow)

Supponiamo f iniettiva. Se $x \in Kerf$

$$f(x) = 0 = f(0) \Rightarrow x = 0$$

dunque Kerf = 0.

(f(0) = 0 poichè l'applicazione è **lineare**, poichè avevamo supposto che fosse iniettiva possiamo dire che quella x che abbiamo preso è l'unica x che va in 0.)

Dimostro \Leftarrow)

Supponiamo che Kerf = 0

$$f(x) = f(y)$$

$$f(x - y) = 0$$

$$\Rightarrow x - y \in Kerf$$

$$x - y = 0$$

$$x = y$$

Dunque, essendo x = y segue che f è iniettiva.

29 Domanda 53 - Teorema della dimensione

Teorema (della dimensione). Sia F un'applicazione lineare da $X \to Y$. Dim Dom F = Dim Im F + Dim Ker F

Dimostrazione. Sia $\{u_1,...,u_r\}$ una base di KerF. La completo a base di X: $\{u_1,...,u_r,v_{r+1},...,u_n\}$ {se $KerF=\{O\}$, prendiamo direttamente una base $\{v_1,...,v_n\}$ di V, e consideriamo r=0 ed s=n nel seguito}. Poniamo $w_j=F(v_{r+j})\in W$ per j=1,...,s=n-r; se dimostraimo che $F(u_i)=O$ per i=1,...,r) sappiamo già che B è un sistema di generatori di ImF; dobbiamo solo far vedere che $w_1,...,w_s\in\mathbb{R}$ siano tali che

$$\alpha_1 w_1 + \dots + \alpha_s w_s = O$$

Allora

$$O = \alpha_1 F(v_{r+1}) + \dots + \alpha_s F(v_{r+s}) = F(\alpha_1 v_{r+1} + \dots + \alpha_s v_{r+s})$$

per cui $\alpha_1 v_{r+1} + ... + \alpha_s v_{r+s} \in KerT$. Questo vuol dire che esistono $\beta_1, ..., \beta_r \in \mathbb{R}$ tali che $\alpha_1 v_{r+1} + ... + \alpha_s v_{r+s} = \beta_1 u_1 + ... + \beta_r u_r$; quindi

$$\beta_1 u_1 + \dots + \beta_r u_r - a_1 v_{r+1} - \dots - \alpha_s v_{r+s} = 0$$

e l'indipendenza lineare di $\{u_1,...,u_r,v_{r+1},...,v_{r+s}\}$ implica $\alpha_1=...=\alpha_s=0$, come desiderato.

30 Domanda 58 - Matrice associata e cambiamento di base

Matrice associata ad un'applicazione lineare

La matrice associata ad un applicazione lineare è una matrice che ha per colonne tutti i vettori della base dell'immagine dell'applicazione lineare. Formalmente:

Definizione. Sia $f: X \to Y$ un'applicazione lineare. Sia $\mathscr{B} = \{v_1, ..., v_n\}$ una base di X.

La matrice A associata all'applicazione lineare sarà così formata:

$$A = \left(\begin{array}{c} \left(\begin{array}{c} | \\ fv_1 \\ | \end{array} \right) \quad \left(\begin{array}{c} | \\ fv_2 \\ | \end{array} \right) \quad \dots \quad \left(\begin{array}{c} | \\ fv_n \\ | \end{array} \right) \end{array} \right)$$

Cambiamento di base

Partiamo da un esempio esplicativo per capire il cambiamento di base: Sia

$$B = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\5 \end{pmatrix} \right\}$$

e sia

$$C = \left\{ \left(\begin{array}{c} 1\\0\\0 \end{array} \right), \left(\begin{array}{c} 0\\1\\0 \end{array} \right), \left(\begin{array}{c} 0\\0\\1 \end{array} \right) \right\}$$

Se volessi scrivere il vettore $\begin{pmatrix} 3\\1\\2 \end{pmatrix}$ come combinazione della base B dovrei

scriverlo così:

$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}_B$$

mentre lo stesso vettore scritto rispetto alla base C lo scrivo così:

$$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}_C$$

Ora quindi ci serve solamente trovare un modo per fare questi passaggi più velocemente possibile. Poichè un'applicazione lineare è definita su una base, se io cambio la base cambio l'intera applicazione. Prendiamo la nostra matrice associata all'applicazione lineare

$$A = \left(\begin{array}{c} \left(\begin{array}{c} | \\ fv_1 \\ | \end{array} \right) \quad \left(\begin{array}{c} | \\ fv_2 \\ | \end{array} \right) \quad \dots \quad \left(\begin{array}{c} | \\ fv_n \\ | \end{array} \right) \right)$$

Per rendere A una matrice del cambiamento di base devo solamente riscrivere i suoi vettori nella nuova base, cioè:

$$A = \left(\begin{array}{c} \left(\begin{array}{c} | \\ fv_1 \\ | \end{array} \right)_{B_2} \quad \left(\begin{array}{c} | \\ fv_2 \\ | \end{array} \right)_{B_2} \quad \dots \quad \left(\begin{array}{c} | \\ fv_n \\ | \end{array} \right)_{B_2} \right)$$

Quindi avrò così ottenuto una matrice A' con i miei vettori della base B_1 in partenza e quelli della base B_2 in arrivo.

La matrice quindi cambia come cambiano i vettori in essa contenuti rispetto alla nuova base, cioè, al variare della base d'arrivo varieranno i vettori all'interno della matrice A.

31 L_A è invertibile $\Leftrightarrow A$ non è singolare

Definizione. Una matrice A si dice singolare se rkA = max

Teorema. Data un'applicazione lineare L_A , quest'applicazione è invertibile \Leftrightarrow la matrice A associata ad L_A è non singolare.

 $Dimostrazione.\ L_A$ è invertibile \Leftrightarrow è iniettiva e surgettiva $\Leftrightarrow L_A$ è surgettiva.

$$\Leftrightarrow ImL_A = \mathbb{K}^n$$

e sono uguali

$$\Leftrightarrow DimL_A = Dim\mathbb{K}^n = n \Rightarrow rkA = n$$

 $\Rightarrow A$ non è singolare.