Chapitre 1 - Approche énergétique

Sciences
Industrielles de
l'Ingénieur

Application 01

Micromanipulateur compact pour la chirurgie endoscopique (MC²E)

Concours Commun Mines Ponts 2016 Savoirs et compétences :

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.

Mise en situation

Objectif Modéliser l'équation de mouvement et la caractériser en fonction des actions mécaniques extérieures, du couple moteur et des grandeurs cinétiques appropriées.

Équation de mouvement

Travail demandé

Question 1 Déterminer la relation entre v(t) et $\omega_m(t)$. Sous hypothèse de conditions initiales nulles, en déduire la relation entre z(t) et $\theta_m(t)$.

Correction

On a $\omega_i(t) = r\omega_m(t)$. De plus $\frac{\omega_e(t)}{\omega_i(t)} = \frac{R_i}{R_e} \Longleftrightarrow \omega_e(t) = \frac{R_i}{R_e} \omega_i(t)$ et donc : $\omega_e(t) = \frac{R_i}{R_e} r\omega_m(t)$. Enfin, $v(t) = R_g \omega_e(t) = R_g r \frac{R_i}{R_e} \omega_m(t)$. Les conditions initiales étant nulles, $z(t) = R_g r \frac{R_i}{R_e} \theta_m(t)$.

Question 2 Réaliser le graphe de structure associé à la translation de la pince.

1

Question 3 Donner l'expression de l'énergie cinétique de l'ensemble en mouvement par rapport à (0). Définir l'inertie équivalente J $\,$ ramenée sur l'axe du moteur M4 en fonction, notamment, des moments d'inertie, de m_4 et des données géométriques.

Correction

Tous les solides sont en mouvement « simples » par rapport au référentiel galiléen. On a :

$$\mathcal{E}_{c}\left(E/\mathcal{R}_{g}\right) = \frac{1}{2}I_{m}\omega_{m}(t)^{2} + \frac{1}{2}(I_{r} + I_{i})\omega_{i}(t)^{2} + \frac{1}{2}\left(I_{e} + 2I_{p} + 6I_{g}\right)\omega_{e}(t)^{2} + \frac{1}{2}m_{4}v(t)^{2}$$

$$\mathcal{E}_{c}\left(E/\mathcal{R}_{g}\right) = \frac{1}{2}I_{m}\omega_{m}(t)^{2} + \frac{1}{2}(I_{r} + I_{i})(r\omega_{m}(t))^{2} + \frac{1}{2}\left(I_{e} + 2I_{p} + 6I_{g}\right)\left(\frac{R_{i}}{R_{e}}r\omega_{m}(t)\right)^{2} + \frac{1}{2}m_{4}\left(R_{g}r\frac{R_{i}}{R_{e}}\omega_{m}(t)\right)^{2}$$

$$\mathcal{E}_{c}\left(E/\mathcal{R}_{g}\right) = \frac{1}{2}\left(I_{m} + (I_{r} + I_{i})r^{2} + \left(I_{e} + 2I_{p} + 6I_{g}\right)\left(\frac{R_{i}}{R_{e}}r\right)^{2} + m_{4}\left(R_{g}r\frac{R_{i}}{R_{e}}\right)^{2}\right)\omega_{m}(t)^{2}$$
On a donc $J = I_{m} + (I_{r} + I_{i})r^{2} + \left(I_{e} + 2I_{p} + 6I_{g}\right)\left(\frac{R_{i}}{R_{e}}r\right)^{2} + m_{4}\left(R_{g}r\frac{R_{i}}{R_{e}}\right)^{2}.$

Question 4 Effectuer un bilan des puissances extérieures et intérieures à ce même ensemble. Préciser l'expression analytique de chaque puissance.

Correction

On isole l'ensemble.

Bilan des puissances extérieures

- Action du ressort: $\mathscr{P}\left(\text{ressort} \to 4/\mathscr{R}_g\right) = -kz(t)v(t) = -kz(t)R_g r \frac{R_i}{R_s}\omega_m(t)$.
- Action du moteur : $\mathcal{P}\left(\text{moteur} \to 4/\mathcal{R}_g\right) = C_m \omega_m(t)$. Action de la pesanteur : $\mathcal{P}\left(\text{pesanteur} \to E/\mathcal{R}_g\right) = 0$ (La pesanteur est compensée par un système de com-

Bilan des puissances intérieures Toutes les liaisons étant supposées parfaites, $\mathcal{P}_{int}(E) = 0$.

Question 5 Par l'application du théorème de l'énergie cinétique à l'ensemble en mouvement par rapport à (0), déterminer l'expression du terme $C_e(t)$ en fonction des données du problème et de $\theta_m(t)$.

Correction

En appliquant le théorème de l'énergie cinétique on a : $J\dot{\omega_m}(t)\omega_m(t) = -kz(t)R_g r \frac{R_i}{R_s}\omega_m(t) + C_m\omega_m(t) \Rightarrow$

$$J\dot{\omega}_m(t) = -k\left(R_g r \frac{R_i}{R_e}\right)^2 \theta_m(t) + C_m.$$

En utilisant l'équation différentielle du mouvement on a alors : $C_e(t) = k \left(R_g r \frac{R_i}{R} \right)^2 \theta_m(t)$.