That thing you keep on forgetting

Let n and m be positive integers. Let $\varphi(x) = n \cdot x$ be a homomorphism on \mathbb{Z}_m .

Theorem 1 $|\ker \varphi| = (n, m)$

Proof Let k be the size of im φ . Then k is the least positive integer such that m|nk.

So nk is the least positive integer that is a multiple of m and n. That is, k = lcm(m, n)/n.

Hence k = m/(n, m).

So $|\operatorname{im} \varphi| = m/(n, m)$.

Thus, $|\ker \varphi| = (n, m)$. \square

Example The multiplicative group \mathbb{F}_q^* is cyclic of order q-1. Hence it is isomorphic to \mathbb{Z}_{q-1} and the subgroup of nth roots of unity has order (n, q-1).

Example Let n be an integer such that \mathbb{Z}_n^* is cyclic. Then \mathbb{Z}_n has $(\varphi(n), k)$ kth roots of unity.

Example Suppose that we have an n sided polygon and k colours of paint. We wish to count the number of distinct ways of painting the sides of the polygon.

The symmetry group of the polygon is \mathbb{Z}_n and for each $x \in \mathbb{Z}_n$ the number of colourings invariant under rotation by x is $k^{(n,x)}$. Why?

Identify together edges of the polygon that are congruent under the action of x. So identify together elements a and b of \mathbb{Z}_n if x|a-b.

Hence the set of equivalence classes is the set of cosets of the subgroup $x\mathbb{Z}_n$.

The subgroup $x\mathbb{Z}_n$ has size n/(x,n).

Hence there are (x, n) different colours in a colouring invariant under x, so $k^{(x,n)}$ different colourings.

Hence the total number of colourings, by the orbit counting formula (Burnside's lemma) is

$$\frac{1}{n} \sum_{r=0}^{n-1} k^{(n,r)}$$

Now never forget it again.