## CS524: Introduction to Optimization Lecture 16

Michael Ferris

Computer Sciences Department University of Wisconsin-Madison

October 16, 2019

## Modeling Trick (#1)

#### Last Time

• Suppose we wish to have a constraint hold if an associated indicator variable  $\delta$  is flipped to 1. That is...

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \le b$$

- This can be represented by the constraint

  - $ightharpoonup \mathcal{M}$  is an upper bound for the expression  $\sum_{j \in N} a_j x_j b$ .

## The Logic

$$\delta = 1 \Rightarrow \sum_{j \in N} \mathsf{a}_j \mathsf{x}_j \leq \mathsf{b} \Leftrightarrow \sum_{j \in N} \mathsf{a}_j \mathsf{x}_j + \mathcal{M} \delta \leq \mathcal{M} + \mathsf{b}$$

- Equivalent to  $\sum_{j \in N} a_j x_j b \le \mathcal{M}(1 \delta)$
- $\delta = 0 \Rightarrow \sum_{j \in N} a_j x_j b \leq \mathcal{M}$ 
  - (true by definition of  $\mathcal{M}$ )
- $\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j b \le 0$

## Modeling Trick #2: Converse of First

$$\sum_{j\in N} a_j x_j \leq b \Rightarrow \delta = 1$$

- $\delta = 0 \Rightarrow \sum_{i \in N} a_i x_i \not\leq b$
- $\delta = 0 \Rightarrow \sum_{i \in N} a_i x_i > b$
- $\delta = 0 \Rightarrow \sum_{j \in N} a_j x_j \ge b + \epsilon$ , so this is equivalent to above statement • If  $a_i, x_i$  are integer, we can choose  $\epsilon = 1$
- Model as  $\sum_{i \in N} a_i x_i (m \epsilon) \delta \ge b + \epsilon$ 
  - ▶ *m* is a lower bound for the expression  $\sum_{i \in N} a_i x_i b$
- Note: if  $\delta = 0$  then  $\sum_{j \in N} a_j x_j \ge b + \epsilon$  (as required above)
- but  $\delta=1$  results in  $m \leq \sum_{j \in N} a_j x_j b$  (i.e. nothing)

## Some Last Modeling Tricks

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \ge b$$

• Model as  $\sum_{j \in N} a_j x_j + m\delta \ge m + b$ 

$$\sum_{j\in N} a_j x_j \geq b \Rightarrow \delta = 1$$

• Model as  $\sum_{j \in N} a_j x_j - (\mathcal{M} + \epsilon)\delta \leq b - \epsilon$ 

# Slide of Tricks: $m \le \sum_{j \in N} a_j x_j - b \le \mathcal{M}$



$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \le b$$

$$\sum_{i \in N} a_j x_i + \mathcal{M} \delta \le \mathcal{M} + b$$

#### More Tricks

- The first tricks we learned can be derived from these general tricks.
- $x > 0 \Rightarrow \delta = 1$ •  $x \le \mathcal{M}\delta$  (Trick 6)
- $\delta = 1 \Rightarrow x \ge b$ •  $x \ge b\delta$  (Trick 4)

(Note that we require a lower bound m on x-b and this is m=-b. Substituting this into Trick 4 expression above gives the result.)





- GAP: Generalized Assignment Problem
- We have a set  $M = \{1, 2, ..., m\}$  of machines
- and a set  $N = \{1, 2, ..., n\}$  of jobs that must be performed on the machines.
- Each machine i has a capacity of b<sub>i</sub> units of work
- Each job j requires a<sub>ij</sub> units of work to be completed if it is scheduled on machine i.
- All jobs must be assigned to exactly one machine.
- Suppose there is a fixed cost  $h_i$  of assigning any jobs to machine i

#### **GAP Models**

$$\min \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{i \in M} h_i z_i$$

$$\sum_{j \in N} c_{ij} x_{ij} \leq h_i \quad \forall i \in N$$

$$\sum_{j \in N} a_{ij} x_{ij} \le b_i \qquad \forall i \in M$$
$$\sum_{i \in M} x_{ij} = 1 \qquad \forall j \in N$$

 $z_i$  is 1 if machine i is on

$$x_{ij}, z_i \in \{0, 1\}$$
  $\forall i \in M, j \in N$ 

## Fixed Cost Logic

• Logic 1:

$$\sum_{j\in N} x_{ij} > 0 \Rightarrow z_i = 1 \quad \forall i \in M$$

• Slide of Trix (6):

$$\sum_{j\in N} x_{ij} \le \mathcal{M} z_i \quad \forall i \in M$$

- ▶  $vub\_eq\_1$ :  $\mathcal{M} = |N| \quad (\forall i \in M)$
- ▶ vub\_eq\_2:  $\mathcal{M}_i = |\{j : j \text{ may be assigned to } i\}|$
- Logic 2:

$$x_{ij} > 0 \Rightarrow z_i = 1 \quad \forall i \in M, \forall j \in N$$

• Slide of Trix (6): vub\_eq\_3

$$x_{ii} \leq z_i \quad \forall i \in M, \ \forall j \in N$$

## More Fixed Cost Logic

• Logic 3:

$$\sum_{j\in N} a_{ij} x_{ij} > 0 \Rightarrow z_i = 1 \quad \forall i \in M$$

• Slide of Trix (6): vub\_eq\_4

$$\sum_{j\in N} a_{ij} x_{ij} \le \mathcal{M} z_i \quad \forall i \in M$$

 $ightharpoonup \mathcal{M}_i = b_i$ 

#### Which is Best?!?!?

Let's go to the GAMS

#### Some Additional Problems on GAP

- lacktriangledown If you use k or more machines, then you must pay a penalty cost of  $\lambda$
- ② If you operate machine one or two, then you may not operate both machines 3 and 4
- If you operate both machine 1 and machine 2, then you may use no more than 50% of the capacity of machine 3
- **3** Each job  $j \in N$  has a duration (or length)  $d_i$ . Minimize makespan.

ullet If you use k or more machines, then you must pay a penalty cost of  $\lambda$ 

- Need (earlier) "fixed cost" logic for z<sub>i</sub>
- Model  $\sum_{i \in M} z_i \ge k \Rightarrow \delta_1 = 1$
- Add  $\lambda \delta_1$  to objective function
- Appropriate trick (5) is

$$\sum_{j\in\mathcal{N}}\mathsf{a}_{j}\mathsf{x}_{j}\geq b\Rightarrow \delta=1\Leftrightarrow \sum_{j\in\mathcal{N}}\mathsf{a}_{j}\mathsf{x}_{j}-(\mathcal{M}+\epsilon)\delta\leq b-\epsilon$$

•  $\mathcal{M} = |M| - k^1$ .  $\epsilon = 1$ :

$$\sum_{i\in M} z_i - (|M|-k+1)\delta_1 \leq k-1.$$

<sup>&</sup>lt;sup>1</sup>bad notation clash, sorry!

 If you operate machine one or two, then you may not operate both machines 3 and 4

- May want to model (iff):  $z_i = 1 \Rightarrow \sum_{j \in N} x_{ij} \ge 1$
- Then need to model  $z_1 + z_2 \ge 1 \Rightarrow z_3 + z_4 \le 1$ 
  - $z_1 + z_2 > 1 \Rightarrow \delta_2 = 1$
  - $\delta_2 = 1 \Rightarrow z_3 + z_4 \le 1$
- Trick for  $z_i = 1 \Rightarrow \sum_{j \in N} x_{ij} \ge 1$  is

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \ge b \Leftrightarrow \sum_{j \in N} a_j x_j + m\delta \ge m + b$$

$$m = -1, \ \epsilon = 1$$
:

$$\sum_{i\in N} x_{ij} - z_i \ge 0.$$

## Gap 2, cont.

First trick is:

$$\sum_{j\in N} a_j x_j \geq b \Rightarrow \delta = 1 \Leftrightarrow \sum_{j\in N} a_j x_j - (\mathcal{M} + \epsilon)\delta \leq b - \epsilon$$

 $\mathcal{M}=1$ ,  $\epsilon=1$ :

$$z_1+z_2-2\delta_2\leq 0.$$

(Note: could also model (better) as  $\delta_2 \geq z_1, \delta_2 \geq z_2$ )

Second trick is:

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \leq b \Leftrightarrow \sum_{j \in N} a_j x_j + \mathcal{M} \delta \leq \mathcal{M} + b$$

$$\mathcal{M}=1, \epsilon=1$$
:

$$z_3 + z_4 + \delta_2 \le 2$$
.

- If you operate both machine 1 and machine 2, then you may use no more than 50% of the capacity of machine 3
- May want to model:  $z_i = 1 \Rightarrow \sum_{j \in N} x_{ij} \ge 1 \quad \forall i \in M$
- Then model  $z_1 + z_2 \ge 2 \Rightarrow \sum_{j \in N} a_{3j} x_{3j} \le 0.5 b_3$ 
  - ▶ Then model  $z_1 + z_2 \ge 2 \Rightarrow \delta_3 = 1$
  - $\delta_3 = 1 \Rightarrow \sum_{j \in N} a_{3j} x_{3j} \le 0.5 b_3$

## GAP 3, Cont.

• Trick for  $z_1 + z_2 \ge 2 \Rightarrow \delta_3 = 1$  is

$$\sum_{j\in N} \mathsf{a}_j \mathsf{x}_j \geq b \Rightarrow \delta = 1 \Leftrightarrow \sum_{j\in N} \mathsf{a}_j \mathsf{x}_j - (\mathcal{M} + \epsilon)\delta \leq b - \epsilon$$

 $\mathcal{M}=0$ ,  $\epsilon=1$ :

$$z_1 + z_2 - \delta_3 \le 1$$

• Trick for  $\delta_3=1\Rightarrow \sum_{j\in N}a_{3j}x_{3j}\leq 0.5b_3$  is

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \le b \Leftrightarrow \sum_{j \in N} a_j x_j + \mathcal{M} \delta \le \mathcal{M} + b$$

 $\mathcal{M} = b_3 - 0.5b_3 = 0.5b_3$ :

$$\sum_{i \in N} a_j x_j + 0.5 b_3 \delta_3 \le b_3$$

- Each job  $j \in N$  has a duration (or length)  $d_j$ . Minimize makespan.
- MINIMAX again. (No integer variables needed)
- Let  $t \ge \max_{i \in M} \{ \sum_{j \in N} d_j x_{ij} \}$ .

min t

$$t \geq \sum_{j \in N} d_j x_{ij} \quad \forall i \in M$$