Part 3: OpenCL

Andreas Klöckner

Computer Science University of Illinois at Urbana-Champaign

Outline

- 1 OpenCL
- 2 PyOpenCL
- 3 Parallel patterns

What is OpenCL?

OpenCL (Open Computing Language) is an open, royalty-free standard for general purpose parallel programming across CPUs, GPUs and other processors. [OpenCL 1.1 spec]

- Device-neutral (Nv GPU, AMD GPU, Intel/AMD CPU)
- Vendor-neutral
- Comes with RTCG

Defines:

- Host-side programming interface (library)
- Device-side programming language (!)

Who?

- Diverse industry participation
 - Processor vendors, system OEMs, middleware vendors, application developers
- Many industry-leading experts involved in OpenCL's design
 - A healthy diversity of industry perspectives
- Apple made initial proposal and is very active in the working group
 - Serving as specification editor

© Copyright Khronos Group, 2010 - Page 4

Credit: Khronos Group

Why?

OpenCL is a programming framework for heterogeneous compute resources

© Copyright Khronos Group, 2010 - Page 3

Credit: Khronos Group

Host (CPU)

32 kiB Ctx Private ("Registers")

16 kiB Ctx Shared

32 kiB Ctx Private ("Registers")

16 kiB Ctx Shared

$\overline{\mathsf{Connection: Hardware}} \leftrightarrow \mathsf{Programming} \ \mathsf{Model}$

32 kiB Ctx Private ("Registers")

16 kiB Ctx Shared

Idea:

- Program as if there were "infinitely" many cores
- Program as if there were "infinitely" many ALUs per core

Connection: Hardware \leftrightarrow Programming Model

Hardware

$\overline{\mathsf{Connection} \colon \mathsf{Hardware} \leftrightarrow \mathsf{Programming} \ \mathsf{Model}$

Software representation

Hardware

Software representation

Hardware

Software representation

Hardware

Hardware

$\overline{\mathsf{Connection} \colon \mathsf{Hardware} \leftrightarrow \mathsf{Programming} \ \mathsf{Model}$

Software representation

Hardware

$\overline{\mathsf{Connection}}$: Hardware $\leftrightarrow \mathsf{Programming}$ Model

$\overline{\mathsf{Connection}}$: Hardware $\leftrightarrow \mathsf{Programming}$ Model

Hardware

Connection: Hardware ↔ Programming Model

Hardware

Connection: Hardware ↔ Programming Model

Connection: Hardware ↔ Programming Model

Connection: Hardware \leftrightarrow Programming Model

Connection: Hardware ↔ Programming Model

Connection: Hardware ↔ Programming Model

Software representation

Hardware

Software representation

Hardware

Outline

- 1 OpenCL
- 2 PyOpenCL
- 3 Parallel patterns

DEMO TIME

Outline

- 1 OpenCL
- 2 PyOpenCL
- 3 Parallel patterns
 - Map
 - Reduce
 - Scan

Outline

- 3 Parallel patterns
 - Map
 - Reduce
 - Scan

$$y_i = f_i(x_i)$$

where $i \in \{1, ..., N\}$.

Notation: (also for rest of this lecture)

- x_i : inputs
- y_i : outputs
- f_i : (pure) functions (i.e. no side effects)

Мар

When does a function have a "side effect"?

In addition to producing a value, it

- modifies non-local state, or
- has an observable interaction with the outside world.

where $i \in \{1, \dots, r_j\}$

Notation: (also for rest of this lecture)

- $\blacksquare x_i$: inputs
- y_i : outputs
- f_i : (pure) functions (i.e. no side effects)

$$y_i = f_i(x_i)$$

where $i \in \{1, ..., N\}$.

Notation: (also for rest of this lecture)

- x_i : inputs
- y_i : outputs
- f_i : (pure) functions (i.e. no side effects)

$$y_i = f_i(x_i)$$

where $i \in \{1, ..., N\}$.

Notation: (also for rest of this lecture)

- $\blacksquare x_i$: inputs
- *y_i*: outputs
- f_i : (pure) functions (i.e. no side effects)

Often: $f_1 = \cdots = f_N$. Then

■ Python function map

Map: Graph Representation

Map: Graph Representation

Trivial? Often: no.

Embarrassingly Parallel: Examples

Surprisingly useful:

- Element-wise linear algebra:
 Addition, scalar multiplication (not inner product)
- Image Processing: Shift, rotate, clip, scale, . . .
- Monte Carlo simulation
- (Brute-force) Optimization
- Random Number Generation
- Encryption, Compression (after blocking)

DEMO TIME

- 1 OpenCL
- 2 PyOpenCL
- 3 Parallel patterns
 - Map
 - Reduce
 - Scan

$$y = f(\cdots f(f(x_1, x_2), x_3), \ldots, x_N)$$

where N is the input size.

$$y = f(\cdots f(f(x_1, x_2), x_3), \ldots, x_N)$$

where N is the input size.

Also known as...

Python function reduce

Reduction: Graph

Approach to Reduction

Can we do better?

"Tree" very imbalanced. What property of *f* would allow 'rebalancing'?

Approach to Reduction

Can we do better?

"Tree" very imbalanced. What property of *f* would allow 'rebalancing'?

$$f(f(x,y),z)=f(x,f(y,z))$$

Looks less improbable if we let $x \circ y = f(x, y)$:

$$x\circ (y\circ z))=(x\circ y)\circ z$$

Has a very familiar name: Associativity

Reduction: A Better Graph

Reduction: Examples

- Sum, Inner Product, Norm
 - Occurs in iterative methods
- Minimum, Maximum
- Data Analysis
 - Evaluation of Monte Carlo Simulations
- List Concatenation, Set Union
- Matrix-Vector product (but...)

DEMO TIME

Outline

- 3 Parallel patterns
 - Map
 - Reduce
 - Scan

$$y_1 = x_1$$

 $y_2 = f(y_1, x_2)$
 $\vdots = \vdots$
 $y_N = f(y_{N-1}, x_N)$

where N is the input size. (Think: N large, f(x, y) = x + y)

- Prefix Sum/Cumulative Sum
- Abstract view of: loop-carried dependence
- Also possible: Segmented Scan

Scan: Graph

Scan: Graph

Scan: Graph

Scan: Implementation

Scan: Implementation

Work-efficient?

Low-level building block for many higher-level algorithms algorithms

- Index computations (!)
 - E.g. sorting
- Anything with a loop-carried dependence
- One row of triangular solve
- Segment numbering if boundaries are known
- FIR/IIR Filtering
- G.E. Blelloch:

 Prefix Sums and their Applications

- Subtlety: Inclusive/Exclusive Scan
- Pattern sometimes hard to recognize
 - But shows up surprisingly often
 - Need to prove associativity/commutativity

DEMO TIME

Scan: Features

- "Map" processing on input: $f(x_i)$
 - Also: stencils $f(x_{i-1}, x_i)$
- "Map" processing on output
 - Output stencils
 - Inclusive/Exclusive scan
- Segmented scan
- Works on compound types
- Efficient!

Scan: Features

- "Map" processing on input: $f(x_i)$
 - Also: stencils $f(x_{i-1}, x_i)$
- "Map" processing on output
 - Output stencils
 - Inclusive/Exclusive scan
- Segmented scan
- Works on compound
- Efficient!

Scan: a **fundamental** parallel primitive.

Anything involving index changes/renumbering! (e.g. sort, filter, ...)

Scan: More Algorithms

- copy_if
- remove if
- partition
- unique
- sort (plain and key-value)
- build_list_of_lists
- bin_sort

All in pyopencl, all built on scan.

Outline

- 4 OpenCL runtime
 - A Kingdom of Nouns
 - Synchronization
- 5 OpenCL implementations

Outline

- 4 OpenCL runtime
 - A Kingdom of Nouns
 - Synchronization
- 5 OpenCL implementations

OpenCL Object Diagram

Credit: Khronos Group

CL "Platform"

- "Platform": a collection of devices, all from the same vendor.
- All devices in a platform use same CL driver/implementation.
- Multiple platforms can be used from one program \rightarrow *ICD*.

libOpenCL.so: ICD loader

/etc/OpenCL/vendors/somename.icd: Plain text file with name of .so containing CL implementation.

CL "Compute Device"

CL Compute Devices:

- CPUs, GPUs, accelerators, ...
 - Anything that fits the programming model.
- A processor die with an interface to off-chip memory
- Can get list of devices from platform.

Contexts

- Spans one or more Devices
- Create from device type or list of devices
 - See docs for cl.Platform, cl.Device
- dev_type: *DEFAULT*, ALL, CPU, GPU
- Needed to...
 - ...allocate Memory Objects
 - ...create and build Programs
 - ...host Command Queues
 - ...execute Grids

OpenCL: Command Queues

- Host and Device run asynchronously
- Host submits to queue:
 - Computations
 - Memory Transfers
 - Sync primitives
 -
- Host can wait for drained queue
- Profiling

Command Queues and Events

```
queue = cl. CommandQueue(context, device=None, properties = None | [(prop, value ),...])
```

- Attached to single device
- cl.command_queue_properties. . .
 - OUT_OF_ORDER_EXEC_MODE_ENABLE:
 Do not force sequential execution
 - PROFILING_ENABLE: Gather timing info

Capturing Dependencies

$$B = f(A)$$

 $C = g(B)$
 $E = f(C)$
 $F = h(C)$
 $G = g(E,F)$
 $P = p(B)$
 $Q = q(B)$
 $R = r(G,P,Q)$

- Ca
- Switch queue to out-of-order mode!
- Specify as list of events using wait_for= optional keyword to enqueue_XXX.
- Can also enqueue barrier.
- Common use case:
 Transmit/receive from other MPI ranks.
- Possible in hardware on Nv Fermi, AMD Cayman: Submit parallel work to increase machine use.
 - Not yet ubiquitously implemented

Memory Objects: Buffers

$$buf = cl. Buffer(context, flags, size = 0, hostbuf = None)$$

- Chunk of device memory
- No type information: "Bag of bytes"
- Observe: Not tied to device.
 - \rightarrow no fixed memory address
 - → pointers do *not* survive kernel launches
 - → movable between devices
 - → not even allocated before first use!
- flags:
 - READ_ONLY/WRITE_ONLY/READ_WRITE
 - {ALLOC, COPY, USE}_HOST_PTR

Memory Objects: Buffers

buf = cl. Buffer(context, flags, size = 0, hostbuf = None)

COPY_HOST_PTR:

Use hostbuf as initial content of buffer

USE_HOST_PTR:

- hostbuf is the buffer.
- Caching in device memory is allowed.

ALLOC_HOST_PTR:

New host memory (unrelated to hostbuf) is visible from device and host.

Memory Objects: Buffers

buf = cl. Buffer(context, flags, size = 0, hostbuf = None)

- Specify hostbuf or size (or both)
- hostbuf: Needs Python Buffer Interface e.g. numpy.ndarray, str.
 - Important: Memory layout matters
- Passed to device code as pointers
 (e.g. float *, int *)
- enqueue_copy(queue, dest, src)
- Can be mapped into host address space: cl.MemoryMap.

Programs and Kernels

$$prg = cl. Program(context, src)$$

- src: OpenCL device code
 - Derivative of C99
 - Functions with __kernel attribute can be invoked from host
- kernel = prg.kernel_name
- kernel(queue, (G_x, G_y, G_z) , (L_x, L_y, L_z) , arg, ..., wait for=None)

Program Objects

$$kernel(queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg, ..., wait_for = None)$$

arg may be:

- None (a NULL pointer)
- numpy sized scalars: numpy.int64,numpy.float32,...
- Anything with buffer interface: numpy.ndarray, str
- Buffer Objects
- Also: cl.Image, cl.Sampler, cl.LocalMemory

Program Objects

$$kernel \, \big(\mathsf{queue}, \, \big(\mathsf{Gx}, \mathsf{Gy}, \mathsf{Gz} \big), \, \big(\mathsf{Sx}, \mathsf{Sy}, \mathsf{Sz} \big), \, \, \mathsf{arg} \,, \, \, \, \ldots, \, \, \, \, \mathsf{wait_for} = \mathsf{None} \big)$$

* Annoying, error-prone.

Better:

kernel.set_scalar_arg_dtypes([
 numpy.int32, None,
 numpy.float32])

Use None for non-scalars.

OpenCL Object Diagram

Credit: Khronos Group

Outline

- 4 OpenCL runtime
 - A Kingdom of Nouns
 - Synchronization

Recap: Concurrency and Synchronization

GPUs have layers of concurrency. Each layer has its synchronization primitives.

Recap: Concurrency and Synchronization

GPUs have layers of concurrency.

Each layer has its synchronization primitives.

- Intra-group:
 barrier(...),
 ... =
 CLK_{LOCAL,GLOBAL}_MEM_FENCE
 Inter-group:
- Kernel launch
- CPU-GPU: Command queues, Events

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which work groups are executed.

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which work groups are executed.

Consequences:

- Work groups may read the same information from global memory.
- But: Two work groups may not validly write different things to the same global memory.
- Kernel launch serves as
 - Global barrier
 - Global memory fence

Outline

- 4 OpenCL runtime
- 5 OpenCL implementations

The Nvidia CL implementation

Targets only GPUs

Notes:

- Nearly identical to CUDA
 - No native C-level JIT in CUDA (\rightarrow PyCUDA)
- Page-locked memory:
 Use CL_MEM_ALLOC_HOST_PTR.
 (Careful: double meaning)

The Apple CL implementation

Targets CPUs and GPUs

General notes:

- Different header name OpenCL/cl.h instead of CL/cl.h Use -framework OpenCL for C access.
- Beware of imperfect compiler cache implementation (ignores include files)

CPU notes:

■ One work item per processor

GPU similar to hardware vendor implementation.

(New: Intel w/ Sandy Bridge)

The AMD CL implementation

Targets CPUs and GPUs (from both AMD and Nvidia)

GPU notes:

- Wide SIMD groups (64)
- GCN: Vector and scalar unit (previously VLIW4/5)
 - very flop-heavy machine
 - lacksquare ightarrow ILP and explicit SIMD

CPU notes:

- Many work items per processor (emulated)
- "APU": Growing CPU/GPU integration

The Intel CL implementation

CPUs, GPUs with Ivy Bridge+

CPU notes:

- Good vectorizing compiler
- Only implementation of out-of-order queues for now
- Based on Intel TBB

GPU notes:

- Flexible design: SIMD*m* VLIW*n*
- Lots of fixed-function hardware
- Last-level Cache (LLC) integrated between CPU and GPU

