Assignment 1

Due date: 15 March 2023

TA: 盧禹丞 E814

1. Find two different row echelon forms of

$$\left[\begin{array}{cc} 1 & 3 \\ 3 & 7 \end{array}\right]$$

2. Solve the following system for x, y and z:

$$\frac{1}{x} + \frac{2}{y} - \frac{4}{z} = 1$$

$$\frac{2}{x} + \frac{3}{y} + \frac{8}{z} = 0$$

$$-\frac{3}{x} + \frac{9}{y} + \frac{10}{z} = 5$$

3. Prove that if $ad - bc \neq 0$, then the reduced row echelon form of

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \text{ is } \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

4. For the matrix
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1 & 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 1 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 1 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix}$$
, compute A^{400} .

5. If
$$\begin{bmatrix} a & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ 0 & b & 1 \end{bmatrix} \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$$
and $a > 1$, find (a, b) .

1