§ 3.2 边缘分布 Marginal Distribution

• 边缘分布函数

• 边缘分布律

• 边缘概率密度

边缘分布marginal distribution

边缘分布 也称为 边沿分布 或 边际分布

1. 二维随机变量的边缘分布函数

由联合分布函数 ⇒ 边缘分布函数, 逆不真.

例 设随机变量(X,Y)的联合分布函数为

$$F(x,y) \square A \left(B \square \arctan \frac{x}{2} \right) \left(C \square \arctan \frac{y}{2} \right)$$

$$-\infty \square x \square \square \infty, -\infty \square y \square \square \infty$$

其中A, B, C 为常数.

- (1) 确定A, B, C;
- (2) 求 X 和 Y 的边缘分布函数;
- (3) 求P(X > 2).

解 (1)
$$F(\square \infty, \square \infty) \square A \left(B \square \frac{\pi}{2} \right) \left(C \square \frac{\pi}{2} \right) \square 1$$

$$F(-\infty,\square\infty) \square A \left(B-\frac{\pi}{2}\right) \left(C \square \frac{\pi}{2}\right) \square 0$$

$$F(\square \infty, -\infty) \square A \left(B \square \frac{\pi}{2} \right) \left(C - \frac{\pi}{2} \right) \square 0$$

$$B \square \frac{\pi}{2}, C \square \frac{\pi}{2}, A \square \frac{1}{\pi^2}$$

(2)
$$F_X(x) \square F(x,\square \infty)$$

$$\square \frac{1}{2} \square \frac{1}{\pi} \arctan \frac{x}{2}, \qquad -\infty \square x \square \square \infty.$$

$$F_{Y}(y) \square F(\square \infty, y)$$

$$\Box \frac{1}{2} \Box \frac{1}{\pi} \arctan \frac{y}{2}, -\infty \Box y \Box \infty.$$

(3)
$$P(X \square 2) \square 1 - P(X \le 2) \square 1 - F_X(2)$$

$$\Box 1 - \left(\frac{1}{2} \Box \frac{1}{\pi} \arctan \frac{2}{2}\right)$$

 $\Box 1/4$.

 $arctan 1 = \pi /4$

2. 二维离散型随机变量的边缘分布 鑿 >>>

$$P(X \square x_i)$$
 $\square \sum_{j \square 1}^{\infty} p_{ij}$ 记作 $p_{i\square}$, $i \square 1, 2, \cdots$

$$P(Y \square y_j) \square \sum_{i \square 1}^{\infty} p_{ij} \stackrel{i \square f_i}{\square} p_{\square j}, \qquad j \square 1, 2, \cdots$$

由联合分布律可确定边缘分布律

联合分布律及边缘分布律

Y	x_1	• • •	x_i	• • •	$p_{\bullet j}$
\mathcal{Y}_1	p_{11}	• • •	p_{i1}	• • •	$p_{\bullet 1}$
• •	•	• • •	$\vdots \ p_{ij}$	• • •	•
\mathcal{Y}_{j}	p_{1j}	• • •	$p_{\it ij}$	• • •	$p_{ullet j}$
•	•	• • •	•	• • •	•
$p_{i^{ullet}}$	p_{1ullet}	• • •	$p_{i^{ullet}}$	• • •	1

例(P61) 设随机变量 X 在 1,2,3三个数中等可能地取值,另一个随机变量 Y 在1~X 中等可能地取一整数值,试求 X, Y 的边缘分布律。

□X,Y□的联合分布律为

Y X	1	2	3
1	$\frac{1}{3}$	0	0
2	$\frac{1}{6}$	$\frac{1}{6}$	0
3	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

□X,Y□的联合与边缘分布律

X	1	2	3	$p_{i\square}$
1	$\frac{1}{3}$	0	0	$\frac{1}{3}$
2	$\frac{1}{6}$	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
$p_{\scriptscriptstyle \Box j}$	$\frac{11}{18}$	<u>5</u> 18	$\frac{2}{18}$	1

例箱子里装有4只白球和2只黑球,在其中随机地取两次,每次取一只。考虑两种试验:

(1) 有放回抽样, (2) 不放回抽样。 定义随机变量 X, Y 如下, 写出X和Y的联合 分布律和边缘分布律。

 $X = \begin{cases} 0, 若第一次取出的是黑球, \\ 1, 若第一次取出的是白球. \end{cases}$

 $Y = \begin{cases} 0, 若第二次取出的是黑球, \\ 1, 若第二次取出的是白球. \end{cases}$

$$P(X=0)=2/6$$
 $P(X=1)=4/6$ $P(Y=0)=2/6$ $P(Y=1)=4/6$

X	0	1	$p_{i\square}$
0	<u>1</u> 9	<u>2</u> 9	$\frac{1}{3}$
P(X=0,Y=0))=P(X=0)P(Y=0)	
1	$\frac{2}{9}$	4 9	$\frac{2}{3}$
$p_{\scriptscriptstyle \Box j}$	$\frac{1}{3}$	$\frac{2}{3}$	1

(2) 不放回抽样

X	0	1	$p_{i\square}$
0 P(X=0,Y=0) =P(X=0)P(Y=0	$\frac{1}{15}$ $ X=0 $	4 15	$\frac{1}{3}$
=P(X=0)P(Y=0 =2/6 * 1/5 = 1/2 1	$\frac{5}{15}$	<u>6</u> 15	$\frac{2}{3}$
$p_{\scriptscriptstyle \Box j}$	$\frac{1}{3}$	$\frac{2}{3}$	1

3. 二维连续型随机变量的边缘分布 墨豐

$$F_{X}(x) \square \int_{-\infty}^{x} \int_{-\infty}^{\infty} f(u,v) dv du$$

$$F_{Y}(y) \square \int_{-\infty}^{y} \int_{-\infty}^{\infty} f(u,v) du dv$$

$$f_{X}(x) \square \int_{-\infty}^{\infty} f(x,y) dy$$

$$f_{Y}(y) \square \int_{-\infty}^{\infty} f(x,y) dx$$

已知联合密度可以求得边缘密度

例设随机变量 $\square X, Y$ 服从区域D上的均匀分布.

其中
$$D \square \{(x,y) \mid x \ge 0, y \ge 0, x \square \frac{y}{2} \le 1\}$$
,

试求随机变量 $\bigcup X, Y$ 的边缘密度函数.

解: 区域D的面积为 $A \square 1$

DX,Y 的联合密度函数为

$$f \Box x, y \Box \Box \begin{cases} 1, & \Box x, y \Box \in D \\ 0, & \Box x, y \Box \notin D \end{cases}$$

当 $0 \le x \le 1$ 时,

$$f_X \Box x \Box \Box \int_{-\infty}^{\infty} f(x,y) dy \ \Box \int_{-\infty}^{0} 0 dy \ \Box \int_{0}^{2(1-x)} 1 dy \ \Box \int_{2(1-x)}^{\infty} 0 dy$$

$$\Box 2\Box -x\Box$$

随机变量X的边缘密度函数为

同理, 随机变量Y的边缘密度函数为

$$f_Y(y) \square \int_{-\infty}^{\infty} f(x,y) dx$$

例 设二维随机变量 $\Box X, Y \Box N(\Box_1, \Box_2, \sigma_1^2, \sigma_2^2, \rho)$ 试求 X 及 Y 的边缘密度函数.

解: $\Box X, Y$ 的联合密度函数为

$$f(x,y) \Box \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}$$

$$\cdot \exp\left\{-\frac{1}{2\left[1-\rho^{2}\right]}\left[\frac{x-\sqrt{1}}{\sigma_{1}^{2}} - \frac{2\rho\left[x-\sqrt{1}\right]y-\sqrt{2}}{\sigma_{1}\sigma_{2}}\right]\frac{y-\sqrt{2}}{\sigma_{1}\sigma_{2}}\right\}$$

$$f_X \Box x \Box \Box \int_{-\infty}^{\infty} f \Box x, y \Box dy$$

$$f_X x \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{x-\sigma_1^2}{2\sigma_1^2}}$$

$$f_{Y} \longrightarrow \frac{1}{\sqrt{2\pi\sigma_{2}}} e^{-\frac{\Box y - \Box_{2}\Box^{2}}{2\sigma_{2}^{2}}} \qquad \qquad \Box \infty \Box y \Box \infty \Box$$

这表明,
$$X \sim N \square_1, \sigma_1^2$$

$$Y \sim N \square_2, \sigma_2^2 \square$$

 $|+\infty \sqcap x \sqcap \neg \infty|$

通过本题,我们有如下几条结论:

结论(一)

二维正态分布的边缘分布是一维正态分布

即若
$$X,Y$$
 $\sim N$ $\square_1, \square_2, \sigma_1^2, \sigma_2^2, \rho$ 则有, $X \sim N$ \square_1, σ_1^2 $Y \sim N$ \square_2, σ_2^2 Q

结论(二)

上述的两个边缘分布中的参数与二维正态分 布中的常数ρ无关

总结

- 1. 边缘分布
 - a. 分布函数边缘化
 - b. 分布律边缘化
 - c. 密度函数边缘化 画图确定密度非0区域

确定定义域

负无穷到正无穷边缘化掉某一分量