Úloha 1 [5 bodů]

Pokud pro lineární zobrazení $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ a $\mathbf{B}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ platí rank $(\mathbf{A}) = \operatorname{rank}(\mathbf{B}) = 1$, platí nutně rank $(\mathbf{A} - \mathbf{B}) = 0$? Pokud ano, dokažte. Pokud ne, nalezněte protipříklad.

Úloha 2 [5 bodů]

Mějme lineární zobrazení $\mathbf{f}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, nechť $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ je báze \mathbb{R}^3 , a ať $\mathbf{f}(\mathbf{b}_1) = \mathbf{b}_2$, $\mathbf{f}(\mathbf{b}_2) = \mathbf{b}_3$. Jakých hodnot může nabývat rank (\mathbf{f}) ? Pečlivě zdůvodněte svou úvahu.

Úloha 3 [10 bodů]

Rozhodněte, zda pro zobrazení $f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \, f\begin{pmatrix} x \\ y \end{pmatrix} = x \cdot (y+1)$ platí:

- 1. $f(\mathbf{o}) = 0$,
- 2. $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$ pro všechny dvojice vektorů $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$,
- 3. $f(a \cdot \mathbf{u}) = a \cdot f(\mathbf{u})$ pro každý vektor $\mathbf{u} \in \mathbb{R}^2$ a každé reálné číslo a.

Pro množinu $M \subseteq \mathbb{R}^2$ rozhodněte, zda

- 1. obsahuje nulový vektor,
- 2. je uzavřená na sčítání vektorů,
- 3. je uzavřená na násobení skalárem.

$$M = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid 2 \cdot x + y \le 1 \right\}$$