Int. Cl. 2:

® BUNDESREPUBLIK DEUTSCHLAND

C 07 C 103-46 C 07 C 103-66 C 07 C 103-737 C 07 C 103-52 A 01 N 5-00 A 01 N 9-20

Offenlegungsschrift 25 15 113

Aktenzeichen:

P 25 15 113.7

Anmeldetag:

7. 4.75

Offenlegungstag:

23. 10. 75

30 Unionspriorität:

39 39 39

9. 4.74 Schweiz 4998-74

7. 3.75 Schweiz 2906-75

Bezeichnung:

Mikrobizide und wachstumsregulierende Mittel

7

Anmelder:

CIBA-GEIGY AG. Basel (Schweiz)

<u> 74</u>

2

22

43)

Vertreter:

Zumstein sen., F., Dr.: Assmann, E., Dipl-Chem. Dr.rer.nat.;

Koenigsberger, R., Dipl.-Chem. Dr.: Holzbauer, R., Dipl.-Phys.:

Zumstein jun., F., Dipl.-Chem. Dr.rer.nat.: Pat.-Anwälte, 8000 München

72

Erfinder:

Hubele, Adolf, Dr., Magden (Schweiz)

5-936C/1+2/=

Deutschland

Dr. F. Zumstein von - Dr. E. Assmann Dr. R. Mechanistany ram (1) What fit into Izbauer Gr. L. John M. Grand ram (1) Januari vin jun. Patonianwälle 8 Münchon 2, Brauhausstraffe 4

Mikrobizide und wachstumsregulierende Mittel

Die vorliegende Erfindung betrifft Verbindungen der Formel I

worin

C1-C4-Alkyl, C1-C4-Alkoxy oder Halogen,

 R_2 Wasserstoff, $C_1^- - C_3^- - Alkyl C_1 - C_4^- - Alkoxy oder Halogen,$

R₅ Wasserstoff, C₁-C₃-Alkyl oder Halogen

Wasserstoff oder Methyl sind, wobei die Gesamtzahl von C-Atomen der Substituenten R₁,R₂,R₅ und R₆ im Phenylring die Zahl 8 nicht übersteigt,

-CH₂-oder -CH³,
-COOR' oder -CON darstellen, wobei

R', R'' und R''' unabhängig voneinander Wasserstoff, Methyl oder Aethyl bedeuten und

R₄ ein gegebenenfalls durch Cyano (-CN) oder Rhodano (-SCN) substituiertes C₁-C₆-Alkyl, C₂-C₅-Alkenyl oder C₃-C₇-Cycloalkyl bedeuten.

ein Verfahren zur Herstellung dieser Verbindungen sowie Mittel, die diese Verbindungen als Wirkstoffe enthalten, und die Verwendung dieser Wirkstoffe als Mikrobizide und als pflanzenwachstumsregulierende Mittel.

Unter Alkyl und als Alkyl-Teil einer Alkoxy-Gruppe sind je nach Zahl der angegebenen Kohlenstoffatome folgende Gruppen zu verstehen: Methyl, Aethyl, n-Propyl, iso-Propyl oder n-, iso-, sec- oder tert-Butyl sowie die Pentyl- oder Hexyl-Isomeren. Als Alkenylreste sollen z.B. Vinyl, Allyl, Methylallyl, Butenyl, Methylbutenyl und ihre Isomeren verstanden werden, während die Cycloalkylreste Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl umfassen. Als Halogen kommen Fluor, Chlor, Brom oder Jod in Frage.

In der Deutschen Offenlegungsschrift Nr. 2'212'268 wird in allgemeiner Form angegeben. dass N-haloacylierte Anilino-alkancarbonsäureester selektive herbizide Wirkung besitzen. Es werden jedoch nur einige N-haloacetylierte 2,6-Di-alkylanilino-essigsäuren und ihre Ester namentlich genannt und als Herbizide belegt. Hinweise auf mikrobizide, insbesondere pflanzenfungizide Wirkung werden nicht gegeben.

Es wurde nun überraschend gefunden, dass Verbindungen mit der deutlich abweichenden Struktur der Formel I ein für die praktischen Bedürfnisse sehr günstiges Mikrobizid-Spektrum zum Schutze von Kulturpflanzen aufweisen. Kulturpflanzen seien im Rahmen vorliegender Erfindung beispielsweise Getreide, Mais, Reis, Gemüse, Zuckerrüben, Soja, Erdnüsse, Obstbäume, Zierpflanzen, vor allem aber Reben, Hopfen, Gurkengewächse (Gurken, Kürbis,

Melonen), Solanaceen wie Kartoffeln. Tebak und Tomaten, sowie auch Bananen-, Kakao- und Naturkautschuk-Gewächse.

Mit den Wirkstoffen der Formel I können an Pflanzen oder Pflanzenteilen (Früchte, Blüten, Laubwerk, Stengel, Knollen, Wurzeln) dieser und verwandter Nutzkulturen die auftretenden Pilze eingedämmt oder vernichtet werden, wobei auch später zuwachsende Pflanzenteile von derartigen Pilzen verschont bleiben. Die Wirkstoffe sind gegen die den folgenden klassen angehörenden phytopathogenen Pilze wirksam: Ascomycetes (z.B. Erysiphaceae); Basidiomycetes wie vor allem Rostpilze; Fungi imperfecti (z.B. Moniliales); dann aber besonders gegen die der Klasse der Phycomycetes angehörenden Oomycetes wie Phytophthora, Peronospora, Pseudoperonospora, Pythium oder Flasmopara. Ucberdies wirken die Verbindungen der Formel I systemisch. Sie können ferner als Beizmittel zur Behandlung von Saatgut (Früchte, Knollen, Körner) und Pflanzenstecklingen zum Schutz vor Pilzinfektionen sowie gegen im Erdboden auftretende phytopathogene Pilze eingesetzt werden.

Bevorzugt als Mikrobizide sind Verbindungen der Formel I, bei denen R_1 Methyl bedeutet, R_2 in ortho-Position zur Aminogruppe steht und Methyl, Aethyl oder Chlor bedeutet, $-X-R_3$ die Gruppierung (H_3) besitzt, während R_4 , R_5 , R_6 und R' die -CH-COOR'

angegebene Bedeutung haben. Diese sollen Verbindungsgruppe Ia genannt werden.

Unter diesen Verbindungen der Gruppe Ia sind solche auf Grund ihrer Wirkung hervorzuheben, bei denen R' Methyl bedeutet, R_4 für einen Alkyl-, Alkenyl- oder Cycloalkylrest mit 2 - 4 C-Atomen steht und R_5 und R_6 die angegebene Bedeutung haben, wobei die Gesamtzahl von C-Atomen der Substituenten R_1, R_2, R_5 und R_6 im Phenylring die Zahl 4 nicht übersteigt.

Eine andere wichtige Untergruppe von Verbindungen sind diejenigen der Formel I.worin R_2 Wasserstoff, C_1 - C_3 -Alkyl oder Halogen und die Substituenten R_5 und R_6 Wasserstoff bedeuten, während die Substituenten R_1 , R_3 , R_4 , X, R', R'' und R''' die für Formel I gegebene Bedeutung haben.

Auf speziellen Einsatzgebieten, z.B. als Beizmittel oder gegen Bodenpilze, sind ferner solche Verbindungen der Formel I oder der Untergruppe Ia sehr vorteilhaft, bei denen \mathbf{R}_4 eine Cyanomethyloder Rhodanomethyl-Gruppe bedeutet.

Eine weitere, zur Pflanzenregulation bevorzugte Verbindungsgruppe sind solche der Formel I, bei denen R_1 Methyl oder Aethyl bedeutet, R_2 in ortho-Position zur Aminogruppe steht und Methyl, Aethyl oder Chlor bedeutet, -X-R $_3$ die Gruppierung -CH $_2$ -CON(R")(R"') darstellt, während R_4 , R_5 , R_6 , R" und R'" die angegebene Bedeutung haben.

Unter Pflanzenregulation soll in erster Linie die rewrdierende Steuerung der natürlichen Pflanzenentwicklung verstanden werden, vornehmlich die wünschenswerte Reduktion der Pflanzengrösse, insbesondere der Wuchshöhe. Diese Wuchsreduktion wird an mono- und dicotylen Pflanzen, insbesondere an Gräsern, Getreidekulturen, Soja und Zierpflanzen beobachtet.

Die Herstellung der Verbindungen der Formel I erfolgt erfindungsgemäss beispielsweise durch Acylierung einer Verbindung der Formel II

$$\begin{array}{c}
R_5 \\
R_6 \\
R_2
\end{array}$$
NH
$$X - R_3 \\
(II)$$

mit einer Carbonsäure der Formel III

oder ihrem Säurehalogenid, Säureanhydrid oder Ester, in Einzel-fällen auch mit einem ihrer Säureamide (Umamidierung).

Nach einer anderen erfindungsgemässen Methode können die Verbindungen der Formel I auch aus den Acylaniliden der Formel IV

$$\begin{array}{c}
R_{5} \\
R_{6} \\
R_{2}
\end{array}$$
NH-CO-R₄
(IV)

mit Eutyl-Lithium oder Na-Hydrid in das entsprechende Alkalisalz überführt werden, welches dann mit einer Verbindung der Formel V

$$Hal-X-R_3$$
 (V)

zum gewünschten Endprodukt führt, oder aus den Acylaniliden der Formel IV mit der Verbindung der Formel V in Gegenwart eines Alkalicarbonats (wie ${\rm Na_2CO_3}$ oder ${\rm K_2CO_3}$) als Protonenakzeptor, vorzugsweise unter Zusatz katalytischer Mengen Alkalijod (wie KJ) hergestellt werden.

In den Formeln II, III, IV und V haben R₁ bis R₆ und X die für Formel I angegebene Bedeutung, während "Hal" für ein Halogenatom, vorzugsweise Chlor oder Brom, oder einen anderen leicht abspaltbaren Rest steht. Der Begriff "Säurehalogenid" steht vorzugsweise für das Säurechlorid oder Säurebromid.

Die Umsetzungen können in An- oder Abwesenheit von gegenüber den Reaktionsteilnehmern inerten Lösungs- oder Verdünungsmitteln durchgeführt werden. Es kommen beispielsweise folgende in Frage: aliphatische oder aromatische Kohlenwasserstoffe wie Benzol, Toluol, Xylole, Petroläther; halogenierte Kohlenwasserstoffe wie Chlorbenzol, Methylenchlorid, Aethylenchlorid, Chloroform; Aether und ätherartige Verbindungen wie Dialkyläther, Dioxan, Tetrahydrofuran; Nitrile wie Acetonitril; N.N-dialkylierte Amide wie Dimethylformamid; wasserfreie Essigsäure, Dimethylsulfoxid, Ketone wie Methyläthylketon und Gemische solcher Lösungsmittel untereinander.

Die Reaktionstemperaturen liegen zwischen 0° und 180° C, vorzugsweise zwischen 20° und 120°. In manchen Fällen ist die Verwendung von säurebindenden Mitteln bzw. Kondensationsmitteln vorteilhaft. Als solche kommen tertiäre Amine wie Trialkylamine (z.B. Triäthylamin), Pyridin und Pyridinbasen, oder anorganische Basen, wie die Oxide und Hydroxide, Hydrogencarbonate und Carbonate von Alkali- und Erdalkalimetallen sowie Natriumacetat in Betracht. Als säurebindendes Mittel kann ausserdem beim ersten Verfahren ein Ueberschuss des jeweiligen Anilinderivates der Formel II dienen.

Das von Verbindungen der Formel II ausgehende Herstellungsverfahren kann auch ohne säurebindende Mittel durchgeführt werden,
wobei in einigen Fällen das Durchleiten von Stickstoff zur
Vertreibung des gebildeten Halogenwasserstoffs angezeigt ist.
In anderen Fällen ist ein Zusatz von Dimethylformamid als
Reaktionskatalysator sehr vorteilhaft.

Einzelheiten zur Herstellung der Zwischenprodukte der Formel II kann man den Methoden entnehmen, wie sie allgemein für die Herstellung von Anilino-alkansäureestern in folgenden Publikationsorganen angegeben werden:

J.Org. Chem. <u>30</u>, 4101 (1965), Tetrahedron <u>1967</u>, 487, Tetrahedron 1967, 493,

Die Verbindungen der Formel I mit der Bedeutung X = -*CHbesitzen ein asymmetrisches Kohlenstoffatom (*) und können auf
übliche Art in optische Antipoden gespalten werden. Hierbei
besitzt die enantiomere D-Form die stärkere mikrobizide Wirkung.

Im Rahmen der Erfindung sind demgemäss diejenigen Verbindungen, ihre Mittel und ihre Verwendung bevorzugt, welche sich auf die D-Konfigurationen der Formel I beziehen. Diese D-Formen besitzen bei der Messung in Aethanol oder Aceton in der Regel einen negativen Drehungswinkel.

Zur Herstellung der reinen ophischen D-Antipaden wird z.B. die racemische Verbindung der Formel VI

$$\begin{array}{c}
R_{5} \\
R_{6}
\end{array}$$

$$\begin{array}{c}
R_{1} \\
R_{2}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
NH - CH - COOH
\end{array}$$
(VI)

worin R_1, R_2, R_5 und R_6 die für Formel I genannte Bedeutung haben, hergestellt und dann in an sich bekannter Weise mit einer N-haltigen optisch aktiven Base zum entsprechenden Salz umgesetzt. Durch fraktionierte Kristallisation des Salzes und nachfolgende Freisetzung der mit dem optischen D-Antipoden angereicherten Säure der Formel VI und gegebenenfalls Wiederholung (auch mehrfache Wiederholung) der Salzbildung, Kristallisation und Freisetzung der α -Anilinopropionsäure der Formel VI gewinnt man stufenweise die reine D-Form. Aus dieser lässt sich dann, soweit erwünscht, auf übliche Art, z.B. in Gegenwart von HCl oder H₂SO₄, mit Methanol oder Aethanol die optische D-Konfiguration des der Formei II zugrundeliegenden Esters herstellen, oder mit dem entsprechenden Amin der Formel HN(R") (R"") das der Formel II entsprechende Amid, vorzugsweise über das Säurehalogenid, herstellen. Als optisch aktive organische Base kommt z.B. α-Phenylathylamin in Frage.

Anstelle der fraktionierten Kristallisation lässt sich die enantiomere D-Form der Formel VII

$$\begin{array}{c|c}
R_{5} & CH_{3} \\
R_{6} & R_{2}
\end{array}$$

$$(VII)$$

auch darstellen, wenn man die Aminogruppe im natürlich vorkommenden L-Alanin in Gegenwart von z.B. HCl oder HBr diazotiert und damit unter N_2 -Abspaltung und unter Retention der L-Konfiguration gegen Halogen austauscht, danach gegebenenfalls

mit Methanol oder Aethanol verestert und dann mit dem Anilin der Formel VIII

$$\begin{array}{c}
R_{6} \\
R_{5} \\
R_{2}
\end{array}$$
(VIII)

umsetzt, wobei überwiegend Inversion zu den D-Konfigurationen der Formel VII eintritt (J.Am.Chem. Soc. $\underline{76}$,6056). Sinngemäss lassen sich auch die Amide mit R_3 =CON(R")(R") auf diese Art darstellen. Unabhängig von der genannten optischen Isomerie wird in der Regel eine Atropisomerie um die

Phenyl—N—Achse in den Fällen beobachtet, wo der Phenylring mindestens in 2,6-Stellung und gleichzeitig unsymmetrisch zu dieser Achse (gegebenenfalls also auch durch die Anwesenheit zusätzlicher Substituenten) substituiert ist. Diese Erscheinung ist bedingt durch die sterische Hinderung der zusätzlich am N-Atom eingeführten Reste -X-R₃ und -CO-R₄.

Unabhängig von der genannten optischen Isomerie kann ferner im Falle R_4 = Alkenyl eine cis/trans-Isomerie an der Doppelbindung auftreten.

Sofern keine gezielte Synthese zur Isolierung reiner Isomerer durchgeführt wird, fällt normalerweise ein Produkt als Gemisch zweier optischer Isomerer, zweier Atropisomerer, zweier cis, trans-Isomerer oder als Gemisch dieser möglichen Isomeren an. Die grundsätzlich günstigere fungizide Wirkung der enantiomeren D-Form (im Vergleich zur D,L-Form oder zur L-Form) bleibt jedoch erhalten und wird nicht nennenswert durch die Atropisomerie oder die cis/trans-Isomerie beeinflusst.

Die nachfolgenden Beispiele dienen zur naheren Erläuterung der Erfindung, ohne dieselbe einzuschränken. Die Temperaturangaben beziehen sich auf Celsiusgrade. Sofern nicht anders vermerkt, ist bei der Nennung eines Wirkstoffs der Formel I, der in optisch aktiven Formen auftreten kann, stets das racemische Gemisch gemeint.

Beispiel 1

Herstellung von
$$CH_3$$
 CH_3 CH_3 CH_4 CH_5 CH_5

N-(1'-Methoxycarbonyl-athyl)-N-crotonoyl-2,3-dimethyl-6-aethylanilin.

- a) 100 g 2,3-Dimethyl-6-aethylanilin, 223 g 2-Brompropionsäuremethylester und 84 g NaHCO₃ wurden 17 Std. bei 140° gerührt, dann gekühlt, mit 300 ml Wasser verdünnt und mit Diäthyläther extrahiert. Der Extrakt wurde mit wenig Wasser gewaschen, über Natriumsulfat getrocknet, filtriert und der Aether abgedampft. Nach dem Abdestillieren des überschüssigen 2-Brompropionsäuremethylesters wurde das Rohprodukt im Hochvakuum destilliert; Sdp. 88-90° C/0,04 Torr.
- b) 17 g des gemäss a) erhaltenen Ester, 10,4 g Crotonsäurechlorid 2 ml Dimethylformamid und 150 ml abs. Toluol wurden eine Stunde unter Rückfluss erhitzt. Nach dem Abdampfen des Lösungsmittels wurde das Rohprodukt im Vakuum destilliert. Sdp. 128-129°/0,03Torr.

Wenn man die reine D-Form des α -(2,3-Dimethyl-6-aethylanilino)-propionsäuremethylesters mit Crotonsäure oder einem ihrer reaktionsfähigen Derivate acyliert, erhält man die D-Formen der beiden cis/trans-Isomeren (Verb. 141a und 141b).

Auf eine zu Beispiel la) analoge Art werden auch die übrigen Zwischenprodukte hergestellt, darunter z.B. die folgenden der Formel IIa: $(R_1=2-Stellung)$

• .		R_{5} R_{2}	NH - X - R	·3	(IIa)
R ₁	R ₂	R ₅	-X-	R 3	Physikalische Konstante
CH ₃	CH ₃	н	-CH (CH	3) - соосн ₃	Sdp. 98°/0.8Torr ·
CH ₃	C ₂ H ₅	Н	11	11	Sdp.88-90°/0.01Torr
CH ₃	C ₂ H ₅	5-CH ₃	11	H	Sdp.96-99°/O.C3Torr
CH ₃	CH ₃	3-CH ₃	11	11	Sdp.83°/0,03Torr; 145°/9Torr
CH ₃	CH ₃	4-CH ₃	11	11	Sdp.88-90°/0.04Torr
CH ₃	C ₂ H ₅	3-CH ₃	f f	и,	Sdp.88-90°/0.04Torr
CH ₃	Н	4-CH ₃	н	11	Sdp.95-100°/0,C2Torr
CII ₃	Н	5-CH ₃	11	II	Sdp.106-108°/0.1Torr
CH ₃	Н	3-CH ₃	11	11	Sdp.146°/5Torr
isoC3H7	н	н	11	H ·	Sdp.110°/0.2Torr
isoC3117	isoC ₃ H ₇	н	11	**	Sdp. 105°/0.5Torr
t.C ₄ H ₉	н	Н	11	H ·	Sdp.93°/0.07Torr
CH ₃	н	4-C1	11	11	Sdp.125-127°/C.07Torr
сн ₃	C1	Н	11	H .	Sdp.88-89°/O.03Torr
CH ₃	CH ₃	4-Br	11		Smp.31,5-32,5°
CH ₃	CII3	3-Br	10	11	Smp.46-47,5°
F	н	Н	11	11	Sdp.98°/0.15Torr
C1	н	н	11	11	Sdp.90-100°/0.09Torr
Br	H	н	11	11	Sdp.110°/0.01Torr

2515113

R ₁ .	R ₂	R ₅	-X-R ₃	Fhysikalische Konstante
J	н	н	-CH(CH ₃)-COOCH ₃	Sdp. 105°/0.15Torr
nC ₄ ¹¹ 9 ⁰ -	H	н	" "	Sdp.132°/0.5Torr
CII ₃	н	4-CH ₃ 0-	11 11	Sdp.131°/0.5Torr
CH ₃	Н	4sec C ₄ H ₉ O-	11	Sdp.138°/0.15Torr
C1	н	5-C1	tt tt	Smp. 51,5-54°
CH ₃	C2H5	н	-сн(сн ₃)-сохн ₂	Sdp.155-157°/0.1Torr
^C 2 ^H 5	C ₂ H ₅	Н	-CH(CH ₃)-CONH ₂	Smp.71-73°
^C 2 ^H 5	C ₂ H ₅	Н	-CH ₂ -CONH ₂	Smp.103-106°
^C 2 ^H 5	C ₂ H ₅	Н	-CH ₂ -COOC ₂ H ₅	Sdp.100-103°/0.04Torr
^C 2 ¹¹ 5	C ₂ 11 ₅	н	-CH ₂ -CON(CH ₃) ₂	wachsartig
CH ₃	CH ₃	Н	-CH ₂ -CONH ₂	Smp.89-91°
CII ₃	CII3	H	-CH(CH ₃)-COMH ₂	Smp. 102-103°
CH ₃	CH ₃	Н	-CH(CH ₃)-CONHCH ₃	Smp.75-76°
CH ₃	CH ₃	Н	-CH(CH ₃)-CON(CH ₃) ₂	Sdp.104-108°/0.02Torr
C ₂ 11 ₅	C ₂ H ₅	Н	-CH ₂ -CONHCH ₃	Smp.59-61,5°
C ₂ H ₅	С ₂ н ₅	H	-CH ₂ -CONHC ₂ H ₅	Smp.79-80°
CH ₃	CH ₃	Ĥ	-сн ₂ -соосн ₃	Sdp.155-160°/20Torr
Cll ₃	C1	Н	-сн(сн ₃) -соос ₂ н ₅	Sdp.110-120°/0.3Torr
CII ₃	C ₂ 11 ₅	Н	-сн ₂ -соосн ₃	Sdp.168-171°/30Torr
CII3	C1	H	-сн(сн ₃) -соинсн ₃	Smp. 51-53°
	j			
1	İ			•

Beispiel 2

Herstellung von

N-(1'-Methoxycarbonyl-äthyl)-N-cyclopropylcarbonyl--2,6-dimethylanilin

51,8 g α -(2,6-Dimethylanilino)-propionsäuremethylester in 200 ml abs. Toluol wurden unter Rühren bei Raumtemperatur mit 31,3 g Cyclopropanearbonsäurechlorid in 50 ml abs. Toluol versetzt. Nach Zugabe von 2 ml Dimethylformamid wurde zwei Stunden unter Rückfluss erhitzt und dann das Lösungsmittel und der Cyclopropanearbonsäurechlorid-Veberschuss im Vakuum abdestilliert. Durch Anreiben mit etwas Petroläther wurde das zurückgebliebene Oel zur Kristallisation gebracht. Nach dem Umkristallisieren in Toluol-Petroläther schmolz die Verbindung Nr. 1 bei 84-87°.

Beispiel 3

Herstellung von

N-(1'-Methoxycarbonyl-athyl)-N-vinylcarbonyl-2,6-dimethylanilin

Zu 166 g α -(2,6-Dimethylanilino)-propionsäuremethylester und 70,4 g Fyridin in 600 ml abs. Toluol wurden ünter gutem Rühren bei 20° 80,6 g Acrylsäurechlorid in 150 ml abs. Toluol zugetropft. Nach 20stündigem Rühren bei Raumtemperatur wurde vom ausgeschiedenen Pyridinhydrochlorid abfiltriert, das Lösungsmittel im Vakuum abdestilliert und dann des übriggebliebene Oel im Vakuum rektifiziert; Sdp. 130-135°/0,01 Torr (Verb.Nr. 2).

Auf diese Art oder nach einer der oben angegebinen Methoden werd. Olgende Verbindungen der Formel Ib hergestellt: $R_1 = 2$ -Stellung)

Verb.	R_1		R ₄	Physikalische Konstante				
1	CH ₃	6-CH ₃		Smp. 84-87°				
2 3	CH ₃	6-CH ₃	-CH=CH ₂ -CH ₂ -CH(CH ₃) ₂	Smp. 130-135°/0.01Torr Sdp. 140°/0.01 Torr				
4	CH ₃	4-01	-C(CH ₃) ₃					
5	CH ₃	6-CH ₃	-C(CH ₃) ₃	Smp. 64-67°				
6	CH ₃	Н	-c ₆ H ₁₃ (n)					
7	CH ₃	6-СН ₃	-CH ₂ SCN	Smp. 101-103°				
8	CH ₃	6-С ₂ н ₅	-C(CH ₃) ₃					
9	C1	5-C1	-CH ₂ -CN					
10	сн ₃	6-СН ₃	-CH ₃	Sdp. 108-110°/0,03Torr				
11	CH ₃	6-CH ₃	-c ₂ H ₅	Smp. 78-80°				
12	CH ₃	6-CH ₃	-C ₃ H ₇ (n)	Smp. 49-51°				
13	CH ₃	6-CH ₃	-C ₃ H ₇ (iso)	Smp. 122-123°				
14	CH ₃	6-C ₂ 11 ₅	-C ₃ H ₇ (iso)	Smp. 93-95°				
15	CH ₃	6-CH ₃	-C ₆ H ₁₃ (n)	Sdp. 140-142°/0,05Torr				
16	CH ₃	6-сн ₃	-C ₄ H ₉ (iso)	Sdp. 138-140°/0,03				
17	CH ₃	6-сн ₃	-C ₅ H ₁₁ (n)	Torr. Sdp. 140°/0.25 Torr				
18	CH ₃	3-CH ₃	-C ₃ H ₇ (iso)	Sdp. 133°/0.4 Torr				
19	CH ₃	3-CH ₃	-CH-C ₂ H ₅	Sdp. 136-142°/0,03Torr				
. 1	509843/0963							

				2515113
Verb. Nr.	R ₁	R ₂	R ₄	Physikalische Konstante
20	СП3 6-СН3		-CH-C ₂ H ₅	Smp. 71-72°
21	CH ₃	6-C1	-CH ₃	Sdp. 123°/G.07 Torr
22	CH ₃	6-C1	$-C_3H_7(n)$	Sdp. 170°/0,04 Torr
23	· CH ₃	6-C1	-CH-C ₂ H ₅	Smp. 70-71°
24	CH ₃	6-C ₂ H ₅	-CH-C ₂ H ₅	Sdp. 135-136°/0,1Torr
25	CH ₃	6-C1	-C ₃ H ₇ (iso)	Smp. 90-93°
26	CH ₃	4-CH ₃ -O	-C ₃ H ₇ (iso)	Smp. 96-98°
27	isoC ₃ H ₇	н	-C ₃ H ₇ (iso)	Smp. 62-64°
28	isoC ₃ H ₇	Н	-CH-C ₂ H ₅	Smp. 74-76°
29	nC4H9-0-	н	-C3H7(iso)	Sdp. 152°/0,05 Torr
30	nC4 ^H 9-0-	Н	-CH-C ₂ H ₅ C ₂ H ₅	Sdp. 145°/0.05 Torr
31	isoC ₃ H ₇	6-isoCH7	-C ₃ H ₇ (iso)	Sdp. 133°/0.1 Torr
32	isoC ₃ H ₇	5-isoGH7	-CH-C ₂ H ₅	Sdp. 147°/0,03 Torr
33	1		-C ₅ H ₁₁ (n)	Sdp. 143°/0.03 Torr
34	CH3	4-CH ₃ -0	-СН -С ₂ Н ₅ С ₂ Н ₅	Sdp. 154°/0.6 Torr
35	F	н	-C ₃ H ₇ (iso)	Sdp. 118-122°/0,35Torr
36	F	Н	-C ₄ H ₉ (iso)	Sdp. 105°/0.04 Torr
37	J 1	-CH ₃	-CH=CH-CH ₃	Smp. 80-82°
38	- 1	-CH ₃	J 2	Sap. 118°/0.07 Torr
39	i	-C ₂ H ₅	-CH=CH-CH ₃	Sdp. 130-132°/0.05Torr
40	СН3	-C ₂ H ₅	-CH=C(CH ₃) ₂	Sdp. 128°/0.07 Torr
41	C ₂ H ₅ 6	-C ₂ H ₅	-CH=CH-CH ₃	Sdp. 136-138°/0,04Torr
	ı	,	509843/0963	

				2010110
Verb. Nr.	R ₁	R ₂	R ₄	Physikalische Konstante
42	C2H5	6-C ₂ 11 ₅	-CH=C(CH ₃) ₂	Sdp. 135°/0.07 Torr
43	CH ₃	. н	-CH=CH ₂	0el
44 .	CH ₃	н	-CH=CH-CH ₃	Sdp. 130°/0,05 Torr
45	CH ₃ -0-	н	-CH=CH ₂	Sdp. 138-139°/0.02Torr
46	CH ₃	5-CH ₃	-СН=СН-СН3	Sdp. 122-123°/0.05Forr
47	CH ₃	5-CH ₃	-CH=C(CH ₃) ₂	Sdp. 147°/0.09 Torr
48	CH ₃	6-C1	-CH=C(CH ₃) ₂	Sdp. 141°/0,03 Torr
49	CH ₃	6-C1	-CH=CH-CH ₃	Smp. 106-113°
50	CH ₃	4-CH ₃	-CH=C(CH ₃) ₂	Sdp. 129-131°/0,03 Torr
51	isoC3H7	H :	-CH=C(CH ₃) ₂	Sdp. 129-131°/0.03Torr
52	CH ₃	6-CH ₃	-CH ₂ -CH=CH ₂	Sdp.143-145°/0,04Torr
53	CH ₃	4-CH ₃ -0-	-CH=C(CH ₃) ₂	Sdp. 148-150°/0.1Torr
54	isoC ₃ H ₇	Н	-CH=CH-CH ₃	Sdp. 142°/0.3 Torr
55	CH ₃	3-CH ₃	-CH=C(CH ₃) ₂	Sdp. 147°/0.35 Torr
56 ·	nC ₄ H ₉ -0-	Н .	-CH=C(CH ₃) ₂	Sdp. 160°/0.05 Torr
57	nC ₄ H ₉ -0-	н	-CH=CH-CH ₃	Sdp. 157°/0.05 Torr
58	isoC3 ^H /	6-isoGH	-CH=CH-CH ₃	Sdp. 140°/0.1 Torr
59	isoC ₃ H ₇	6-isoC ₃ H ¹ /	$-CH=C(CH_3)_2$	Sdp. 170°/0.1 Torr
60	F	н	-CH=C(CH ₃) ₂	Sdp. 125°/0.3 Torr
61	F	н	-CH=CH-CH ₃	Sdp. 126-131°/0.35Torr
62	Cl	н	-CH=C(CH ₃) ₂	Sdp. 118-122°/0.05Torr
63	Br	н	-CH=C(CH ₃) ₂	Sdp. 140°/0.04 Torr
64	Br	н	-CH=CH-CH ₃	Sdp. 138°/0.04 Torr
65	C1	н	-CH=CH-CH ₃	Sdp. 132°/0.01 Torr
66	CH ₃	6-C1		Sdp.140-142°/0.04Torr
67	CH ₃	4-CH ₃		Sdp.138-140°/0.05Torr
68	CH ₃	5-CH ₃	509843/0963	Sdp. 137-138°/0.07Torr

Verb. Nr.	R _{1.}	R ₂	R ₄	Physikalische Konstante
69	C ₂ H ₅	6-C ₂ H ₅		Smp. 43-45°
70	CH ₃	6-C ₂ H ₅		Smp. 71-76°
71	CH ₃	4-CH ₃ -O		Smp. 82-83°
72	CH ₃	3-CH ₃	-	Sdp. 142°/0.03 Torr
73	CH ₃	4-sec - C ₄ H ₉ -0-	\triangleleft	Sdp. 156°/0.04 Torr
74	tertC ₄ H ₉			Sdp. 150-152°/0.1 Torr
75	nC ₄ H ₉ -0-	н		Sdp. 149-151°/0.04Forr
76	isoC ₃ H ₇	н		Sdp. 135°/0.03 Torr
77	isoC ₃ H ₇	6-is-댓 ₇		Sdp. 138°/0.03 Torr
78 -	F	Н	\triangleleft	Sdp. 125°/0.03 Torr
79	C1	Н	\triangleleft	Sdp. 140°/0.06 Torr
80	J	н	-	Sdp. 143°/0.15 Torr
81	CH ₃	6-CH ₃	-	Smp. 92-96°
82	CH ₃	6-CH ₃	- H	Smp. 116-121°
83	CH ₃	6-C1	- H	Smp. 105-108°
84	CH ₃	6-CH ₃	—(H)	Smp. 138-140°
85	снз	6-C1	—(H)	Smp. 129-130.5°
!	- 1		509843/0963	

Verb. Nr.	R ₁	R ₂	R ₄	Physikalische Konstante
86	СН3	6-С ₂ н ₅		Smp. 125-127°
87	nC ₄ H ₉ -0-	н	— Н	Smp. 73-74,5°
88	CH ₃	3-CH ₃	-{н}	Smp. 51-54°
89	isoC ₃ H ₇	Н	—(H)	Sdp. 145°/0.04 Torr
90	tertC449	н	—(H)	Sdp. 152-155°/0.06Torr
91	CH ₃	4-CH ₃	—(H)	Smp. 69-72°
92	Ċн ₃	4-CH ₃ -O-	H	wachsartig
93	F	Н	—(H)	Sdp.132°/0.05 Torr
94	Br	н	—(H.)	Sdp. 135-145°/0.05Torr
95	C1	н	$\overline{\mathbb{A}}$	Smp. 102-104°
96	CH ₃	4-CH ₃	-CH ₂ -SCN	Smp. 68-72°
97	CH ₃	5-CH ₃	-CH ₂ SCN	Smp. 86-88°
			·	
			509843/0963	

Nach Art der Leispiele 1-3 oder nach einer der oben angegebenen Methoden werden auch folgende Verbindungen der Formel Ic hergestelli:

(R ₁	=2-Stell	ung)	R ₁	×-R ₃	
			R_2 N	CO-R ₄	(Ic)
Ver Nr.	b. R ₁	R ₂	-X-R ₃	R ₄	Physikalische Konstante
98	CH ₃	6-CH ₃	-CH-CONH ₂		Smp.142,5-144
99	CH ₃	6-CH ₃	-CH-CONH ₂	-C(CH ₃) ₃	Smp.175-177°
100	с ₂ н ₅	6-C ₂ H ₅	-CH ₂ -CONH ₂		Smp. 140,5-143°
101	CH ₃	6-CH ₃	-CH-CON(CH ₃) ₂	-CH=C(CH ₃) ₂	Sdp.115-120°/ 0,08Torr
102	CH ₃	6-CH ₃ .	-сн-сомнен ₃	-CH=CH-CH ₃	Smp.114-115°
103	сн ₃	6-CH ₃	-CH-CONHCH ₃ CH ₃		Smp.131-134°
104	CH ₃	6-СН ₃	-CH-CONH ₂	-CH=CH-CH ₃	Smp.149-150°
105	CH ₃	6-C1	-CH -COOC 2 ^H 5	-CH=C(CH ₃) ₂	Sdp.146-150°
106	сн ₃	6-C1	-CH-COOC ₂ H ₅	-CH=CH-CH ₃	Smp.88-92°
107	С ₂ Н ₅	6-C ₂ H ₅	-CH ₂ -COOCH ₃	-CH=CH-CH ₃	Smp.55-57°
108	С ₂ Н ₅	6-C ₂ H ₅	-CH ₂ -COOCH ₃	-c(CH ₃) ₃	Smp.72,5-73°
	C ₂ H ₅	6-C ₂ H ₅		-CH ₃	Smp.141-142°
110	C ₂ H ₅	6-C ₂ H ₅	-CH ₂ -CONHCH ₃	-CH ₃	Smp.123-124°
			509843/096	3	

Verb.	R ₁	R ₂	-X-R ₃	R ₄	Physikalische Konstante
111	C ₂ H ₅	6-C ₂ H ₅	-сн ₂ -сомисн ₃	-C(CH ₃) ₃	Smp. 183-1843
112	C ₂ 11 ₅	6-C ₂ H ₅	-CH ₂ -CON(CH ₃) ₂		Smp. 71-74°
113	с ₂ н ₅	6-C ₂ H ₅	-сн ₂ -сом(сн ₃) ₂	H	n _D ^{2C} 1.6859
114	С ₂ н ₅	6-C ₂ H ₅	-CH ₂ -CON(CH ₃) ₂	-CH ₃	Smp.137-139°
115	с ₂ н ₅	6-C ₂ H ₅	-сн ₂ -ссосн ₃		Sdp. 132 - 134°
116	с ₂ н ₅	6-C ₂ H ₅	-сн ₂ -ссосн ₃	-c ₃ H ₇ (n)	0,03Torr Sdp.167-170°
117	с ₂ н ₅	6-C ₂ H ₅	-си ₂ -соосн ₃	-CH ₃	0.4 Torr Sdp.170°/0.5
118	CH ₃	6-CH ₃	-сн ₂ -сомнсн ₃	-CH ₃	Torr Smp.129-130°
119	CH ₃	6-CH ₃	-CH ₂ -CONHCH ₃	-C ₃ H ₇ (n)	Smp. 63-65°
120	C ₂ 11 ₅	6-C2H5	-CH ₂ -CONH ₂	-CH ₃	Smp. 138°
121	CH3	6-CH ₃	-сн ₂ -соосн ₃	-CH ₂ -CH(CH ₃) ₂	Sdp.130°/0.01
122	сн ³	6-CII ₃	-CH ₂ -CONHCH ₃	-CH ₂ -CH(CH ₃) ₂	Torr Smp. 80-26°
123	С ₂ н ₅	6-C ₂ H ₅	-CH ₂ -CONHCH ₃	-CH=CH-CH ₃	Smp.107-109°
124	с ₂ н ₅	6-C ₂ H ₅	-CH ₂ -CONH ₂	-C ₃ H ₇ (n)	Smp. 103°
125	с ₂ н ₅	6-C ₂ H ₅	-CH2-CONHC2H5	-CH ₃	Smp. 73-74°
126	^С 2 ^Н 5	6-C ₂ H ₅	-CH ₂ -CONHC ₂ H ₅	-C ₄ H ₉ (iso)	Sdp.152°/ 0.01Torr
:				·	
ļ					
					·
				·	
		•	509843/096	3 '	

Nach Art der Beispiele 1-3 oder nach einer der oben angegebenen Methoden werden auch folgende Verbindungen der Formel Id hergestellt: $(R_1=2-Stellung)$

$$\begin{array}{c|c}
R_5 & R_1 & CH-COOCH_3 \\
\hline
R_6 & R_2
\end{array}$$
(1d)

Verb. Nr.	R_1	R ₂	R ₅	R ₆	R ₄	Physikalische Konstante		
127	CH ₃	CH ₃	н	4-CH ₃	-C3H7(n)	Smp.65-66,5°		
128	C ₂ H ₅	CH ₃	CH ₃	Н	-CH=CH-CH ₃	Sdp.150-152°/ 0,06Torr		
129	С ₂ н ₅	СН 3	СН3	н	-C ₃ H ₇ (n)	Sdp.143-145'/		
130	CH ₃	CH ₃	CH ₃	Н	-CH=CH-CH ₃	0,03Torr Sdp.138-140°/ 0,1Torr		
131	CH ₃	CH ₃	CH ₃	Н	-C ₃ H ₇ (n)	Sdp.130-132 ³ / 0.04 Torr		
132	CH ₃	Сн3	СН3	н	-	Sdp. 130-1323/		
133	CH ₃	CH ₃	Br	Н	-CH=CH-CH ₃	0,04Torr Sdp.155-160 ⁻		
134	CH ₃	C ₂ H ₅	CH ₃	Н	-C ₃ H ₇ (n)			
135	CH ₃	CH ₃	Н	4-CH ₃	-CH ₂ -CH(CH ₃) ₂			
136	CH ₃	CH ₃	CH ₃	н	-CH ₂ -CH(CH ₃) ₂			
137	CH ₃	CH ₃	CH ₃	5-СН ₃	-CII ₂ -CH(CH ₃) ₂			
138	CH ₃	CH ₃	CH ₃	5-CH ₃	-C ₃ H ₇ (n)	Sdp.174-177°/		
139	CH ₃	CH ₃	CH ₃	5-CH ₃	-CH=CH-CH ₃	0,04 Torr Sdp.184-189°		
140	CH ₃	сн ₃	CH ₃	5-CH ₃		0,03 Torr		
141	CH ₃	C ₂ ¹¹ 5	CH ₃	н	-CH=CH-CH ₃	Sdp.128-129°/0.03 Torr		
142	CH ₃	сн ₃	H	4-CH ₃	-CH=CH-CH ₃	Sdp.138-140°/0,1 Torr		
143	CII3	CH ₃	Н	4-CH ₃	-	Smp.88,5-89.5°		
509843/0963								

Verb. Nr.	R ₁	R ₂	R ₅	R ₆	R ₄	Physikalische Daten
144	CH ₃	CH ₃	н	4-C1	-C ₃ H ₇ (n)	Sdp.147-149°/ 0.03 Torr
145	CH ₃	C1	н	4-C1	-<	Sdp.162-165°/ 0,02 Torr
146	CH ₃	CII ₃	Н	4-Br	-	Smp.122-123,5°
147	CH ₃	CII ₃	Н	4-C1	-CH=CH-CH3	Sdp.152-154°/ 0,04 Torr
148	CH ₃	CH ₃	н	4-CH ₃	-СН ₂ -СН=СН ₂	
149	CH ₃	CH ₃	CII ₃	н	-CH ₂ -CH=CH ₂	·
150	CII3	CH ₃	Н	4-C1		Sdp.172-174°/ 0,02 Torr
151	CII3	CH ₃	Н	4-Br	-сн=сн-сн3	Smp. 110-112°
152	CH ₃	CH ₃	Н	4-Br	-C ₃ H ₇ (n)	Smp. 102-105°
153	CH ₃	C1	Н	4-C1	-C ₃ H ₇ (n)	Sdp. 189-193°/ 0,02 Torr
154	CH ₃	C1	Н	4-Br	A TOTAL OF THE PARTY OF THE PAR	
155	CH ₃	C1	Н	4-Br	-C ₃ ll ₇ (n)	Sdp. 187-190°/ 0,03 Torr
156	CH ₃	C1	H	4-C1	-CH=CH-CH ₃	Sdp. 187-190°/ 0,01 Torr
157	CH ₃	C1	Н	4-Br	-сн=сн-сн ₃	Sdp. 193-195°/ 0,02 Torr
						·
1			509	843/0	963	
				· •		

Die Verbindungen der Formel I können zur Verbreiterung ihres Wirkungsspektrums mit anderen geeigneten pestiziden oder den Pflanzenwuchs fördernden Wirkstoffen eingesetzt werden.

Als Mischkomponenten, die je nach Einsatzgebiet in Frage kommen, seien folgende bekannte Mikrobizide genannt, wobei teilweise synergistisch gesteigerte Wirkungen erzielt werden:

Elesontarer Schrefel Assoniunpolysulfid Katriumpolysulfid Bariuspolysulfid Calciumpolysulfid und Calciuathiosulfat Calciumhypochlorit Borsāure Natriumtetraborat-dekahydrat (BORAX) Zinkchlorid Kagnes iucborat Hickelsulfat Kaliumchromat Bleiarsenat Cadaiuachlorid Cadalu-carbonat Kupfer(1)oxyd (KUPFEROXID) Bordeaux-Brühe Kupfer(II)sulfat-pentahydrat (KUPFERSULFAT) Basisches Kupfer(II)chlorid (KUPFERGXICHLORID) Kupfer (11) phosphat Tribasischæ Kupfer(II)sulfat (DREIBASISCHES KUPFERSULFAT) Basisches Kupfer(II)carbonat (KUPFERCAREGNAT) Kupfer(II)-dihydrazin-sulfat Kupferamninkomplexe Kupfer(II)sulfat-Anmoniumcarbonat-Mischung Kupfer(II)chlorid-basisches Kupfer(II)sulfat-Mischung Basisches Kupfer(II)carbonat-Zinksalz-Mischung Kupfer(11)-Zink-chromat-Komplex (KUPFER ZINK CHROMAT) Kupfer(II)-Zink-cadium-caicium-chromat-Komplex Kupfer(II)Salz der Gelsäure (KUPFEROLEAT) Kupfer(II)salze von Feitsäuren Kupfer(II)salz der Nachthensäure Kupfer(11)salz des 8-Hydroxychinolins Kupfer(II)salz des 1,2-Nachthochincnoxims-(2) Kupfer(11)salz des 3-Fhenylsalicylats Bis-(tri-n-butylzinn)oxid Iriphenylzinnhydroxyd (MERTINHYDROXID) Triphonylzinnacetat (FENTINICETAT) Bis-(tributylzinn)succinat Quechsilter(1)chlorid (KALOMEL) Quecksilter(|Chlorid Quecksilber (II)oxyd Quecksilber-Zink-chromat-Komplex Quecksilber(||)|actat Aethy lquecks ilberchlorid 2-Hydroxyäthylquecksilberacetat Methy Iquecks ilterisothiocyanat 3-Aethoxypropylquecksilberbromid Chloreethoxypropylquecksilberacetat Kethoxyäthylquecksilberchlorid 2-Kethoxyäthylquecksilbersilikat Bis-(nethylquecksilber)sulfat Bis-(rethylquekosilber)armoniumacetat Acthylquecksilberacetat 2-Methoxyāthylquecksilberacetat - Aethylquecksilberphosphat

Isopropylaethylquecksilberacetat

Kethylquecksilbercyanid Methylquecksilberbenzoat N-Cyano-N'(rethylquecksilber)guanidin Kethylquecksilberpentachlorphenolat Aethylquecksilber-2,3-dihydroxypropylmerkaptid Methylquecksilber-8-hydroxychirolat (Ortho LII) N-(Methylquecksilber)-1,4,5,6,7,7-hexachlorobicyclo [2.2.1]hept-5-en-2,3-dicarboxinid N-(Aethylquecksilber)-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-en-2,3-dicarboxiald Natriumsalz des Methylquecksilberthiosalicylats N-(Aethylquecksilber)-p-toluolsulfonsäureanilid Phenylquecksilboracetat (PAM) Phenylquecksilberpropionat Phenylquecksilbertriäthanolanmoniumlactat (PAS) Phenylquecksilberharnstoff N-(Phenylquecksilber)-1,4,5,6,7,7-hexachlorobicyclo [2.2.1]hept-5-en-2,3-dicarboximid Phenylquecksilberdimethyldithiocarbamat Phenylquecksilberformamid Phenylquecksilberchlorid Phenylquecksilberacetat Phenylquecksilbertenzoat Phenylquecksilberborat Phenylquecksilterhydroxyd Phenylquecksilberjodid Basisches Phenylquecksilternitrat Phenylquecksilbermonoäthanolaminlactat Phenylquecksilbersalicylat Hydroxyquecks ilberchlorphenol Hydroxyquecksilbertrichlorphenol Hydroxyquecks ilbernitrophenol N-Phenylquecksilberäthylendiamin Phenylquecksilbermonoāthanolammoniumacetat Pyridy Iquecks il beracetat Diphenylquecksilber-2-hydroxychinolat Quecksilber(!!)-Komplex mit organische Phosphaten Bischung von Methylquecksilber-2,3-dinydroxypropylmerkaptid und Methylquecksilberacetat Bischung von Aethylquecksilber-2,3-dihydroxypropylmerkaptid und Aethylquecksilberacetat Hischung von Hydroxyquecksilberchlorphenol und Hydroxyquecksilbernitrophenol Quecksilber-Cadmium-organischer Komplex

Cadaium-di-n-propyl-xanthogenat Cadmium-8-hydroxychinolat Phenylaminocadmiunacetat Thenylaminocaemiundislactat **Methylarsinsulfid** Zinkoktat Zinkoleat Formalin Paraformaldehyd Acrolein Methy Ibromid Methylisothiccyanat Tetra jodathylen 1,3-Dichlorpropen und verwandte chlorierte C_3 -Kohlenwasserstoffe

509843/0963

Cada lunsuce in a t

1-Chlor-3-brompropen(i)

```
trans-1,4-Olbro=buten(2)
 1,3-Gichlorpropen(1)
 1-Chlor-2-mitro-propan
 2-Chlor-1-nitroprosen
 Trichlornitrorethan
 Dichlortetrafluoraceion
 Natriu-salz der Propionsäure
 Calciursalz der Propionsäure
 Chlorfumarsaure-bis-?-chlorathylester
 Sorbinsäure und deren Kaliwasalz
 2-Prosen-1, 1-diolacetat
 2-Asinobulan
 Dodecyclquanidinacetat (dodine)
 Dodccylguanidinphthalat
 a-Chloracetyl-1,3-aninopropionitril
 @-Brctacetylvalinamid
 1,2-Dichlor-1-(rethylsulfanyl)-āthylen
 1,2-Dichlor-1-(butylsulforyl)-äthylen
 trans-1,2-Bis-(n-propylsulfonyl)-äthylen
 p-Nichlortenzol
Resachtortenzol (MCS)
 1,2,4,5-Tetrachlor-4-miirobenzol (TECHAZEN)
Pentachlornitrotenzol (CUINTOZEN)
 1,3,4-Trichlor-2,4,2-trinitrotenzol
Isorerengemisch von 1,3,4-Trichlor-2,5-dinitrobenzol und 1,2,3-Trichlor-4,6-dinitrobenzol
2,4,5,6-Tetrachloriscanthalsäurenitril
2,4-Dinitrophenyl-thiocyanat
 Diphenyl
0-Nitrediphenyl
1-Chlor-2, 4-dinitronaphthalin
Acenaphthen
2,4,6-Trichlorphenol
2,4,5-Trichlorphenol
2,4,5-Trichlorphenylacetat
2,4,5-Trichlorphenyl-chloracetat
Trichlorphenol, Zinksalz
m-Kresylacetat
2,3,4,6-Tetrachlorphenol
Pentachlorphenol (PCP)
O-Dihydroxybenzol
2,4-Dioxy-n-hexylbenzol
2-Phenylphenol
3,5-Dibromsalicylaldehyd
2-Benzyl-4-chlorphenol
2,2'-Bihydroxy-5,5'-dichlor-diphenylmethan (DICHLORFHEN)
2,2'-(lihydroxy-3,3',5,5',6,6'-hexachlor-diphenylmethan
2,2'-Dihydroxy-5,5'-dichlor-diphenylsuifid
2,2'-Dihydroxy-3,3',5,5'-tetrachlor-diphenylsulfid
2,2'-Dihydroxy-3,3',5,5'-tetracmlor-diphenylsulfid-di-Watriumsalz
4-Chlor-O-phonylphenol
1,4-Dichlor-2,5-direthoxybenzol (CHLORNER)
Salicylanilid
Wiscutsalicylat
Mit Chlor oder Brom halogeniertes Trifluormethylsalicylanilid
```

```
Bromiertes Salicylanilid
 (3,5-Dimethyl-4-chlorphenoxy)-āthanol
 2-(1-Methyl-n-propyl)-4,6-dimitrophenyl-2-methylcrotonat (BIWAPACRYL)
 2-(1-Methyl-n-propyl)-4,5-dimitropnenylisopropylcarbonat (DIMOBUTON)
 2-(1-Methyl-n-heptyl)-4,5-dimitrophenylcrotonat (DINGCAP)
 Kethyl-2,6-dimitro-4-(1-2thyl-hexyl)phenylcarbonat + Kethyl-2,6-dimitro-4-(1-propyl-pentyl)phenylcarbonat(01N0C10N)
 4-Nony1-2,6-dimitro-phenylcutyrat
 S-Methyl-2-(1-methyl-n-heptyl)-4,6-dinitrophenylthiocarbonat
2,6-Dichlor-4-mitroamilim (DICHLORAN)
 2-Cyanoathyl-M-phenylcarbarat
 Propynyl-H-; henylcarbamat
 a-(2-Bromacetoxy )-acetanilid
2,3,5,6-Tetrachlor-benzochinon(1,4) (CHLORANIL)
2,3-Dichlor-naphthochincn(1,4) (DICHLON)
2-Amino-3-chlor-naphthochinen(1,4)
2-Chlor-3-acetamino-naphthochinon(1,4)
 4-Kethyl-2,3,5,10-tetrahydro-3,5,10-trioxo-4H4-<u>H</u>-naohtho (1,3,-b)-1,4- triazin
2,3,6,7-Tetrachloro-4a,6a-e>>xy-1,2,3,4,4a,&a-hexahydro-1,4-cethanonaphthalin-5,8-dion
Chinonoximbenzo/Inydrazon (BELOUINOX)
N-Orichlormethylthio)phthalimid (FOLPET)
N-(Irichlormethylthio)cyclohex-4-en-1,2-dicarboximid (CAPTAM)
N-(1,1,2,2-tetrachlorathylthio)cyclohex-4-en-1,2-dicarboximid (CAPTAFGL)
N-Methansulfonyl-N-trichlor-etnyltnio-p-onloranilin
N'-Dichlorfluormethylthio-MM-dimethyl-M'-pnenylsulfamid (DICHLORFLUAMID)
S-(2-Pyridy1-1-oxyd)-S'-trichlornethyl-disulfid; Hydrochlorid
0,0,0-Trimethylthiophosphat
0,0-Diathyl-phthalimideprosphenethicat
5-Amino-bis-(direthylamido)phosphinyl-3-phenyl-1,2,4-triazol (TRIAMIPHOS)
5-Methylanino-bis-(dimethylanido)phosphinyl-3-phenyl-1,2,4-triazol
0,0-Diathy1-0-2-pyraziny1-phosphorthicat
O-Aethyl-S,S-diphenyl-dithiolphosphat
O-Aethyl-S-tenzyl-phenyldithiophosphonat
0,0-Diathyl-S-tenzyl-thiolphosphat
Zinksalz der Dithiocarbazinsäure
Natrium-N-methyl-dithiocarba-at (METHAM)
Katrium-M-methoxy Withy I-oithiccarbamat
Natrium-N,N-dimethyl-dithiocarbamat (DDC)
Ammonium-N.N-dimethyl-dithiocarbatat
Zink-N, N-direthyl-dithiocarbanat (ZIRAM)
Eisen-N, N-direthyl-dithiocarbamat (FERSA)
Kupfer-N,N-direthyl-dithiocarbamat
Dinatrium-äthylen-1,2-bis-dithiocarbamat (HABAN)
Zink-äthylen-1,2-bis-dithiccartamat (ZIME8)
Eisen-äthylen-1,2-bis-dithiccarbamat
Mangan(11)-äthylen-1,2-bis-dithiocarbamat (MANEB)
Calcium-ăth/len-1,2-bis-dithiocartamat
Ammonium-athylen-1,2-bis-dithiocarbamat
Zink-propylen-1,2-bis-dithiocarbasat (MEZINEB) (PROPINEB)
Bis (direthylthiccarbanyl)-Sthylen-1,2-bis-dithiccarbamat
Komplex bestehend aus (MANCOZEB) und Zinksalz (MANCOZEB)
Tetraäthylthiuran monosulfid
Bis-(N,N-direthyldithiocarbacylaerkapto)-methylarsin
Tetramethylthiuramdisulfid (THIRAU)
```

```
Dipyrrolidylthiurandisulfid
   R, R'-Bis-(dimethylamino)thiurandisulfid
  Polyathylenthicransulfid
  Komplex bestehend aus (ZINES) und polyāthylenthiurandisulfid (METIRAM)
  Bis-(3,4-dichlor-2(5)-furancyl)āther (nucochloric anhydric)
  2-Hethoxymethyl-5-mitrofuran
  5-Hitro-furfuraldoxin-(2)
  5-Kitro-furfuryl-amidoxim-(2)
  1-Oxy-3-acety1-6-methy1-cyclohexcn-(5)dion-(2,4) (dehydroacetic acid)
  3-[-(3,5-Dinethyl-2-oxycyclohexyl)-2-hydroxyäthyl]-glutariaid (cyclohexialde)
  Phthalicid
  Pyridin-2-thiol-1-oxyd-bay, 1-Mydroxypyridin-2-thion
  Zinksalz des Fyridin-2-tricl-i-oxyds
  Kangan(II)salz des fyridin-2-thiol-1-oxyds
  S-1(1-0xido-2-pyridyl)isothiuroniumchlorid
  a, a-bis(4-Enlerphenyl)-3-pyridinrethanol (PARINOL)
  8-Hydroxychinolin (8-4.145E155E)
  8-Nydroxychinelin-sulfat (CHILOSOL)
  Benzoyl-S-hydroxychinolin-salicylat
  3-(2-Ucthylpiperidino)propyi-3,4-dichlorbenzoat
 6-Aethoxy-1,2-dihydro-2,2,4-inimethylchinolin (ETHOXYQUIN)
 N-Lauryl-isochinoliniumbromid
  9-(p-n-Hexyloxychenyl)-10-rethyl-admidiniumchlomid
 9-(p-n-Hexylexyphenyl)-IC-retbyl-acridinium-p-toluoisulfonat
 2-m-Meptascoylimicazoliminacetai (GL36214)
 1-Nydroxyäthy1-2-heptaccylimidazelidin
 1-Phony 1-3,5-directly 1-4-ditrosocy razol
 1-p-Chloryteny1-3,5-diretty1-4-mitroscoyracol
 1-p-Sulfary lpt eny 1-3, 5-directly 1-4-ni trospy razol
 K-(1-Phonyl-2-mitroprogyi)piperazin
 2-Direthylamino-S-methyl-S-m-budyl-4-hydroxy-pyrimidin
 N-Dodey1-1,4,5,5-tetrahydrocyrimidin
 N-Dodecyl-2-tethyl-1,4,5,8-tetrahydropyrimidin
 2-n-Heriadecyltetrahydrosyrimidin
 1-(4-\lambda cine-4-propy)1-5-pyrinidy1-pethy1)-2-pethy1pyridiniumch1oridhydroxych1orid
 2-(2'-Furyl)-benzimidazoi (FURIDAZOL)
 3-Dodccyl-1-tethyl-2-phenylbenzimidazolium-ferricyanid
Methyl-M-tenzinidazol-2-yl-M-(tutylcarbamoyl)carbamat (BENGMYL)
2-(0-Chleranilino)-4,6-dichlor-sym.-triazin
2-Acthylamino-6-methyl-5-n-butyl-4-hydroxy pyrimidin
 5-Chlor-4-phenyl-1,2-dithiol-3-on
2,3-Dicyaro-1,4-dithia-anthrachinen (DITHIAMON)
2-(4-Thiazoly1)-benzinidazol
4-(2-Chlorphonylhydrazono)-3-meibyl-5-isoxazolon (DRAZOLON)
Thiazolidinen-4-thion-(2) (RMCDANIN)
3-(p-Chlorphenyl)-5-rethylchodanin
3,5-Direttyltetrahydro-1,3,5-thiadiazin-2-thion (DAZOMET)
3,3'-Acthylen-bis-(tetrahydro-4,6-direthyl)-2H-1,3,5-thiadazin-2-thion)(MILNEB)
3-Benzylidenamino-4-phenylibiazolin-2-thien
6-Chloric zimiazoi-2-inici, Zinksalz
6-A-Diallylanino-athoxy-2-direthylanino-benzthiazol dihydrochlorid
Monoāthanolammonium-benzthiazol-2-thicl
Lauryipyridinium-5-chler-2-rerkaptclerzthiazol 843/0963
```

```
Zink- und Natirunsalze des 2-Mertkaptobenzthiazols und Dimethyldithiocarbanals
     6-(PDiathylaminoathoxy)-2-dimethylaminobenzthiazol-dihydrochlorid
     3-Irichlorsethylthiobenzothiazolon
     3-Irichloree thy I thichenzoxazolon
     3-(Trichlormethyl)-5-äthoxy-1,2,4-thiadiazol
    6-Methyl-2-oxo-1,3-dithiolo[4,5-b]-chinoxalin (QUINCMETHIONAT)
    2-Thio-1,3-dithiolo [4,5-b]-chinoxalin (THICQUINOX)
   2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathin
   3,3,4,4-Tetrachlorietrahydrothiophen-1,1-dioxyd
   2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathim-4,4-dioxyd
   Acthyl-trimethylasmoniumbromid
   n-Alkyl(C<sub>12</sub>,C<sub>14</sub>,C<sub>15</sub>) direthylbenzylamnoniumchlorid
Alkenyl-dimetnyläthylanmoniumbromid
   Dialkyldimethylanmoniumbromid
   Alkyldimethylbenzylannoniumchlorid
   Alkyl C_{Q}-C_{15} tolylmethyltrimethylammoniumchlorid
   Di-isobuty Kresoxy athoxy athyldimethylbenzylammoniumchlorid
   p-Di-IsobutyIphenoxyäthoxyäthyldimethylbenzylamnoniumchlorid
   Benzoyltricethylammoniumbromid
  Gliotoxin
  2,4-Diguanidino-3,5,5-trihydroxycyclohexyl 5-deoxy-2-0-(2-deoxy-2-cethylamino-\alpha-L-glucopyranosyl)3-C-formyl-\beta-
  L-lyxopentofuranosid (STREPTOMYCIN)
  7-Chlor-4,6-dimethoxycumaran-3-on-2-spiro-1'-(2'-methoxy-6'-methylcyclohex-2'-en-4'on) (GRISEGEULVIN)
  \textbf{4-Dimethylamino-1,4,4} \\ \textbf{4,5,5} \\ \textbf{\alpha,6,11,12} \\ \textbf{a-octahydro-3,5,5,10,12,12} \\ \textbf{a-hexahydroxy-6-methyl-1,11-dioxo-2-naphthacenearies} \\ \textbf{1-1} \\ \textbf{
  (OXYTETRICYCLIN)
  7-Chlor-4-dimethylamino-1,4,4α,5,5α,6,11,12α-octahydro-3,6,10,12,12α pentahydroxy-6-methyl-1,11-dioxo-2-maphthacer = 3
  boximid (CHLORTETRACYCLIN)
  (PIMARICIN)
  (HANCONYCHE)
  (PHLEONYCIA)
  (KASUGAMYCIN)
  (PHYTO4CTER)
  D(-)-threo-2,2-dichlor-N-[3-hydroxy-a-(hydroxymethy17-p-nitrophen-āthy1]acetamid (CHLORAMPHENICOL)
  Blasticidin-S-benzylamino-benzolsulfonat
 N-(3-nitrophenyl)itaconimid
 Phenovyessigsäure
 Natrium-p-direthylamino-benzoldiazosulfonat
 Acrolein-phenylhydrazon
 2-Chloracetaldehyd(2,4-dinitrophenyl)-hydrazon
 2-Chlor-3-(tolylsulfonyl)-propionitril
 1-Chlor-2-phenyl-pentan-diol(4,5)-thion(3)
p-Monylphenoxypolyäthylenoxyäthanol-Jod-Komplex
 (a-Kitromethyl)-O-chlorbenzylthioäthylamin-hydrochlorid
3-(p.-t.-butyl-phenylsulfonyl)acrylonitril
Oklachlorcyclohexenon
Pentachlortenzylakohol
Pontachlorbenzylacetat
Pentachlorbenzaldehyd-cyanhydrin
2-Norcamphanmethanol
2,6-Bis-(directly laminomethy 1)-cycl chexanon
Decachloroctahydro-1,3,4-metheno-2H-cyclobuta[cd]-pentalen-2-on
1-(3-Chlorally1)-3,5,7-triaza-1-azoniaadamantanchlorid
Kohlenteer und Hochofenteer
```

Hischung Nickelsulfat-Maneb . Mischung Maneb-Merkaptobenzthiazol Mischung Zineb-Merkaptobenziniazol Hischung Zineb-Nickel(II)-colorid Rischung Zinet-Nickel(11)-sulfat Rischung Ziram-basisches Kupfersulfat Bischung Ziram-Zink-nerkaptobenzthiazol Rischung Thiram-Cadmiumchloridhydrat Mischung Thiram-Hydroxyquecksilberchlorphenol Mischung Thirzz-Phenylquecksilteracetat Kischung Polyäthylen-bis-thiuramaulfid-Kupferoxychlorid Mischung Methylarsin-bis-(dinethyldithiocarbanat)-ziram-thiram Kischungforpet-Phenylquecksilberacetat Bischung Oddine-Ferbam-Schlefel Mischung Dithianon-Kupferoxychlorid Mischung Dichlone-Fercam-Schwefel Kischung Dinocap-dinitrooctylphenol Bischung Captan-quintozene-tribasischem Kupfersulfat Mischung Cadhiumpropional-Phenylquecksilberpropional Formaldehyd-Harnstoff-Mischung Kischung Phenylamnoniumcadmiundilactat-Phenylquecksilberformamid Mischung basisches Kupfersulfat-Zinksalze

Die Verbindungen der Formel I können für sich allein oder zusammen mit geeigneten Trägern und/oder anderen Zuschlagstoffen verwendet werden. Geeignete Träger und Zuschlagstoffe können fest oder flüssig sein und entsprechen den in der Formulierungstechnik üblichen Stoffen wie z.B. natürlichen oder regenerierten mineralischen Stoffen, Lösungs-,Dispergier-, Netz-, Haft-, Verdickungs-, Binde- oder Düngemitteln.

Der Gehalt an Wirkstoff in handelsfähigen Mitteln liegt zwischen 0,1 bis 90 %.

Zur Applikation können die Verbindungen der Formel I in den folgenden Aufarbeitungsformen vorliegen (wobei die Gewichts-Prozentangaben in Klammern vorteilhafte Mengen an Wirkstoff darstellen):

Feste Aufarbeitungsformen: Stäubemittel und Streumittel (bis zu
10 %). Granulate, Umhüllungsgranulate, Imprägnierungsgranulate und Homogengranulate (1 bis 80 %);

Flüssige Aufarbeitungsformen:

- a) in Wasser dispergierbare Wirkstoffkonzentrate: Spritzpulver (wettable powders) und Pasten (25-90 % in der Handelspackung, 0,01 bis 15 % in gebrauchsfertiger Lösung); Emulsions- und Lösungskonzentrate (10 bis 50 %; 0,01 bis 15 % in gebrauchsfertiger Lösung);
- b) Lösungen (0,1 bis 20 %);

Die Wirkstoffe der Formel I vorliegender Erfindung können beispielsweise wie folgt formuliert werden: Stäubemittel: Zur Herstellung eines a) 5%igen und b) Züigen Stäubemittels werden die folgenden Stoffe verwenitt

- a) 5 Teile Wirkstoff
 - 95 Teile Talkum:
- b) 2 Teile Wirkstoff
 - 1 Teil hochdisperse Kiesclsäure,
 - 97 Teile Talkum;

Die Wirkstoffe werden mit den Trägerstoffen vermischt und vermahlen und können in dieser Form zur Anwendung versmübt werden.

Granulat: Zur Herstellung eines 5 %igen Granulates werden die folgenden Stoffe verwendet:

- 5 Teile Wirkstoff
- 0,25 Teile Epichlorhydrin,
- 0,25 Teile Cetylpolyglykoläther,
- 3,50 Teile Polyäthylenglykol
- 91 Teile Kaolin (Korngrösse 0,3 0,8 mm).

Die Aktivsebstanz wird mit Epichlorhydrin vermischt und mit 6 Teilen Aceton gelöst, hierauf wird Polyäthylenglykol und Cetylpolyglykoläther zugesetzt. Die so erhaltene Lösung wird auf Kaolin aufgesprüht, und anschliessend wird das Aceton im Vakuum verdampft. Ein derartiges Mikrogranulat wird vorteilhaft zur Bekämpfung von Bodenpilzen verwendet.

Spritzpulver: Zur Herstellung eines a) 70 %igen b) 40 %igen
c) und d) 25 %igen e) 10 %igen Spritzpulvers werden
folgende Bestandteile verwendet:

- a) 70 Teils Wirkstoff
 - 5 Teile Natriumdibutylnaphthylsulfonat,
 - 3 Teile Naphthalinsulfonsäuren-Phenolsulfonsäuren-Formaldehyd-Kondensat 3:2:1,

- 10 Teile Kaolin,
- 12 Teile Champagne-Kreide;
- b) 40 Teile Wirkstoff
 - 5 Teile Ligninsulfonsäure-Natriumsalz,
 - 1 Teil Dibutylnaphtalinsulfonsäure-Natriumsalz,
 - 54 Teile Kicselsaure:
- c) 25 Teile Wirkstoff
 - 4,5 Teile Calcium-Ligninsulfonat,
 - 1,9 Teile Champagne-Kreide/Hydroxyäthylcellulose-Gemisch (1:1),
 - 1,5 Teile Natrium-dibutyl-naphthalinsulfonat,
 - 19,5 Teile Kicselsäure,
 - 19,5 Teile Champagne-Kreide,
 - 28,1 Teile Kaolin;
- d) 25 Teile Wirkstoff
 - 2,5 Teile Isooctylphenoxy-polyoxyäthylen-äthanol,
 - 1,7 Teile Champagne-Kreide/Hydroxyathylcellulose-Gemisch (1:1),
 - 8,3 Teile Natriumaluminiumsilikat,
 - 16,5 Teile Kieselgur,
 - 46 Teile Kaolin:
- e) 10 Teile Wirkstoff
 - 3 Teile Gemisch der Natriumsalze von gesättigten Fettalkoholsulfaten,
 - 5 Teile Naphthalinsulfonsäure/Formaldehyd-Kondensat,
 - 82 Teile Kaolin;

Die Wirkstoffe werden in geeigneten Mischern mit den Zuschlagstoffen innig vermischt und auf entsprecherden Mühlen und Walzen vermahlen. Man erhält Spritzpulver von vorzüglicher Benetzbarkeit und Schwebefähigkeit, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen und insbesondere zur Blattapplikation verwenden lassen.

Emulgierbare Konzentrate: Zur Herstellung eines 25%igen emulgierbaren Konzentrates werden folgende Stoffe verwendet:

- 25 Teile Wirkstoff
- 2,5 Teile epoxydiertes Pflanzenöl,
- Teile eines Alkylarylsulfonat/Fettalkoholpolyglykoläther-Gemisches,
- 5 Teile Dimethylformamid,
- 57,5 Teile Xylol.

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden, die besonders zur Blattapplikation geeignet sind.

Peispiel 4

Wirkung gegen Phytophthora infestans auf Solanum lycopersicum (=Tomaten).

Ia) Residual-präventive Wirkung

Solanum lycopersicum- Pflanzen der Sorte "Roter Gnom" werden nach 3-wöchiger Anzucht nach dem Besprühen mit einer 0,05 % Aktivsubstanz enthaltenden Brühe (hergestellt aus der zu einem Spritzpulver aufgearbeiteten Wirksubstanz) und deren Antrocknen mit einer Zoosporensuspension von Phytophthora infestans infiziert. Sie bleiben dann während 6 Tagen in einer Klimakammer bei 18 bis 20° und hoher Luftfeuchtigkeit, die mittels eines künstlichen Sprühnebels erzeugt wird. Nach dieser Zeit zeigen sich typische Blattflocken. Ihre Anzahl und Grösse sind der Bewertungsmassstab für die geprüfte Substanz.

Ib) Kurative Wirkung

Tomatenpflanzen der Sorte "Roter Gnom" werden nach dreiwöchiger Anzucht mit einer Zoosporensuspension des
Pilzes besprüht und in einer Kabine bei 18 bis 20° und
gesättigter Luftfeuchtigkeit inkubiert. Unterbruch
der Befeuchtung nach 24 Stunden. Nach dem Abtrocknen
der Pflanzen werden diese mit einer Brühe besprüht,
die die als Spritzpulver formulierte Wirksubstanz in
einer Konzentration von 0,05 % enthält. Nach dem
Antrocknen des Spritzbelages werden die Pflanzen wieder
in der Feuchtkabine während 4 Tagen aufgestellt.
Anzahl und Grösse der nach dieser Zeit auftretenden
typischen Blattflecken sind der Bewertungsmassstab
für die Wirksamkeit der geprüften Substanzen.

II) Präventiv-Systemische Wirkung

Die als Spritzpulver formulierte Wirksubstanz wird in einer Konzentration von 0,05 % (bezogen auf das Bodenvolumen) auf die Bodenoberfläche von drei Wochen alten eingetopften Tomatenpflanzen der Sorte "Roter Gnom" gegeben. Nach dreitägiger Wartezeit wird die Blattunterseite der Pflanzen mit einer Zoosporensuspension von Phytophthora infestans besprüht. Sie werden dann 5 Tage in einer Sprühkabine bei 18 bis 20° und gesättigter Luftfeuchtigkeit gehalten. Nach dieser Zeit bilden sich typische Blattflecken, deren Anzahl und Grösse zur Bewertung der Wirksamkeit der geprüften Substanzen dienen.

In diesen drei Versuchen zeigen die Verbindungen der Formel I starke blattfungizide Wirkung. Bei Applikation der Verbindungen der Untergruppe Ia mit R'=Methyl wird ein Pilzbefall von unter 20 % (Durchschnittswerte) beobachtet. Mit den Verbindungen Nr. 1,2,7,12,22,37,39,49,66,81,101,102,103,119,127,130,131,132,138,139,140,141,142,144,148 und anderen wird der Pilzbefall fast vollständig gehemmt (0-5 %).

Beispiel5

Wirkung gegen Plasmopara viticola (Bert. et Curt.) (Berl. et DcToni) auf Reben

a) Residual-präventive Wirkung

Im Gewächshaus wurden Rebenstecklinge der Sorte "Chasselas" herangezogen. Im 10-Blatt-Stadium wurden 3 Pflanzen mit einer aus der als Spritzpulver formulierten Wirksubstanz hergestellten Brühe (G,05 % Wirkstoff) besprüht. Nach dem Antrocknen des Spritzbelages wurden die Pflanzen auf der Blattunterseite mit der Sporensuspension des Pilzes gleichmässig infiziert. Die Pflanzen wurden anschliessend während 8 Tagen in einer Feuchtkammer gehalten. Nach dieser Zeit zeigten sich deutliche Krankheitssymptome an den Kontrollpflanzen. Anzahl und Grösse der Infektionsstellen an den behandelten Pflanzen dienten als Bewertungsmassstab für die Wirksamkeit der geprüften Substanzen.

b) Kurative Wirkung

Rebenstecklinge der Sorte "Chasselas" wurden im Gewächshaus herangezogen und im 10-Blatt-Stadium mit einer Sporensuspension von Plasmopara viticola an der Blattunterseite infiziert. Nach 24 Std. Aufenthalt in der Feuchtkabine wurden die Pflanzen mit einer 0,05igen Wirkstoffbrühe besprüht, die aus einem Spritz-pulver des Wirkstoffs hergestellt worden war. Anschliessend wurden die Pflanzen 7 Tage weiterhin in der Feuchtkabine gehalten. Nach dieser Zeit zeigten sich die Krankheitssymptome an den Kontroll-pflanzen. Anzahl und Grösse der Infektionsstellen an den behandelten Pflanzen dienten als Bewertungsmassstab für die Wirksamkeit der geprüften Substanzen.

Die Verbindungen der Formel I zeigten starke blattfungizide Wirkungen in diesen beiden Versuchen. Mit den Verbindungen der Untergruppe Ia (R'= Methyl) wurde der Pilzbefall durchweg auf unter 20 % reduziert, teilweise, wie z.B. bei den Verbindungen Nr. 1,2,7,10,12,13,22,37,39,40,48,49,66,81,82, 150,127,128,130,131,132,136,142,143 und anderen trat fast kein Befall auf (0-5%).

Beispiel 6

Wirkung gegen Erysiphe graminis auf Hordeum vulgare (Gerste)

Residual-protektive Wirkung

Ca. 8 cm hohe Gerstenpflanzen wurden mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,05 % Aktivsubstanz) besprüht. Nach 48 Stunden wurden die behandelten Pflanzen mit Konidien des Pilzes bestäubt. Die infizierten Gerstenpflanzen wurden in einem Gewächshaus bei ca. 22° C aufgestellt und der Pilzbefall nach 10 Tagen beurteilt.

Ein Teil der Verbindungen der Formel I. z.B. die Verbindungen Nr. 33,34,50.56,57,58,69,73,74 und andere zeigen in diesem Test eine Reduktion des Pilzbefalls auf \leq 20 %.

Beispicl 7

Wirkung gegen Pythium debaryanum an Beta vulgaris (Zuckerrübe)

a) Wirkung nach Bodenapplikation

Der Pilz wird auf sterilen Haferkörnern kultiviert und einer Erde-Sand-Mischung beigegeben. Die so infizierte Erde wird in Blumentöpfe abgefüllt und mit Zuckerrübensamen besät. Gleich nach der Aussaat werden die als Spritzpulver formulierten Versuchspräparate als wässerige Suspensionen über die Erde gegossen (20 ppm Wirkstoff bezogen auf das Erdvolumen).

Die Töpfe werden darauf während 2-3 Wochen im Gewächshaus bei 20-24° C aufgestellt. Die Erde wird dabei durch leichtes Besprühen mit Wasser gleichmässig feucht gehalten. Bei der Auswertung der Tests wird der Auflauf der Zuckerrüben-pflanzen sowie der Anteil gesunder und kranker Pflanzen bestimmt.

b) Wirkung nach Beizapplikation

Der Pilz wird auf sterilen Haferkörnern kultiviert und einer Erde-Sand-Mischung beigegeben. Die so infizierte Erde wird in Blumentöpfe abgefüllt, und mit Zuckerrübensamen besät, die mit den als Beizpulver formulierten Versuchspräparaten gebeizt worden sind (1000 ppm Wirkstoff bezogen auf das Samengewicht). Die besäten Töpfe werden während 2-3 Wochen im Gewächshaus bei 20-24° C aufgestellt. Die Erde wird dabei durch leichtes Besprühen mit Wasser gleichmässig feucht gehalten. Bei der Auswertung wird der Auflauf der Zuckerrübenpflanzen sowie der Anteil gesunder und kranker Pflanzen bestimmt.

Nach der Behandlung mit den Wirkstoffen der Formel I liefen, sowohl unter den Testbedingungen a) wie b) mehr als 85 % der Zuckerrübenpflanzen auf und hatten ein gesundes Aussehen. Bei der unbehandelten Kontrolle liefen weniger als 20 % Pflanzen mit zum Teil kränklichem Aussehen auf.

Beispiel 8

Wuchshemmung an Gräsern

Auf einem etablierten Freiland-Rasen bestehend aus den Gräsern Lolium perenne, Poa pratensis und Festuca rubra wurden Parzellen von 3 m² Grösse zwei Tage nach dem ersten Schnitt im Frühjahr mit wässrigen Zubereitungen eines Wirkstoffs der Formel I besprüht. Die eingesetzte Wirkstoffmenge betrug umgerechnet 5 kg AS/pro Hektar. Unbehandelte Parzellen wurden als Kontrollen belassen. 6 Wochen nach der Applikation wurde die mittlere

Wuchshöhe der Gräser in behandelten und umbehandelten Parzellen ermittelt. Die mit den Wirkstoffen behandelte Grasnarbe war gleichmässig kompakt und hatte ein gesundes Aussehen. Insbesondere Wirkstoffe der Formel I, worin -X-R₃ den für Formel I definierten Rest -CO-N(R")(R"") bedeutet, zeigten starke oder fast vollständige Wuchshemmung.

Patentansprüche

1. Verbindungen der Formel I

worin

R₁ C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen,

R₂ Wasserstoff, C₁-C₃-Alkyl, C₁-C₄-Alkoxy oder Halogen,

R₅ Wasserstoff, C₁-C₃-Alkyl oder Halogen

Wasserstoff oder Methyl sind, wobei die Gesamtzahl von C-Atomen der Substituenten R_1 , R_2 , R_5 und R_6 im Phenylring die Zahl 8 nicht übersteigt, CH3 - CH2 oder - CH-,

$$R_3$$
 -COOR' oder -CON darstellen, wobei

- R', R" und R"' unabhängig voneinander Wasserstoff, Methyl oder Aethyl bedeuten und
- ein gegebenenfalls durch Cyano oder Rhodano substituiertes C_1-C_6 -Alkyl, C_2-C_5 -Alkenyl oder C_3-C_7 -Cycloalkyl bedeuten.
- 2. Verbindungen der Formel I gemäss Anspruch 1, bei denen R₁ Methyl bedeutet, R₂ in ortho-Position zur Aminogruppe steht und Methyl, Aethyl oder Chlor bedeutet, -X-R3 die Gruppierung -CH-COOR' darstellt, während R₄,R₅, R₆ und R' die angegebene Bedeutung haben.

- 3. Verbindungen der Formel I gemäss Anspruch 2, bei denen R' Methyl bedeutet, R_4 für einen Alkyl-, Alkenyl- oder Cycloalkylrest mit 2-4 C Atomen steht und R_5 und R_6 die angegebene Bedeutung haben, wobei die Gesamtzahl von C-Atomen der Substituenten R_1 , R_2 , R_5 und R_6 im Phenylring die Zahl 4 nicht übersteigt.
- 4. Verbindungen der Formel I gemäss Anspruch 1, worin R_2 Wasserstoff, C_1 - C_3 -Alkyl oder Halogen und die Substituenten R_5 und R_6 Wasserstoff bedeuten, während die Substituenten R_1 , R_3 , R_4 , R_5 , R_6 ,
- 5. Verbindungen der Formel I gemäss Anspruch 1, bei denen R_4 eine Cyanomethyl- oder Rhodanomethyl-Gruppe bedeutet.
- 6. Verbindungen der Formel I gemäss Anspruch 1, bei denen R_1 Methyl oder Aethyl bedeutet. R_2 in ortho-Position zur Aminogruppe steht und Methyl, Aethyl oder Chlor bedeutet, $-X-R_3$ die Gruppierung $-CH_2-CON(R'')(R''')$ darstellt, während R_4 , R_5 , R_6 , R'' und R''' die angegebene Eedeutung haben.
- 7. Die Verbindung N-(1'-Methoxycarbonyl-äthyl)-N-rhodanoacetyl-2,6-dimethylanilin gemäss Anspruch 1.
- 8. Die Verbindung N- (1'-Methoxycarbonyl-äthyl)-N-cyclopropanoyl-2.6-dimethylanilin gemäss Anspruch l.
- 9. Die Verbindung N-(1'-Methoxycarbonyl-äthyl)-N-acryloyl-2.6-dimethylanilin gemäss Anspruch 1.
- 10. Die Verbindung N-(1'-Methoxycarbonyl-äthyl)-N-crotonoy1-2.6-dimethylanilin gemäss Anspruch 1.
- 11. Die Verbindung N-(1'-Methoxycartonyl-äthyl)-N-crotonoyl-2-methyl-6-äthylanilin gemäss Anspruch 1.

12. Die Verbindung N-(1'-Methoxycarbonyl-athyl)-N-cyclopmopanoyl-2-methyl-6-chloranilin gemäss Anspruch 1.

13. Die Verbindung N-(1'-Methoxycarbonyl-äthyl)-N-crotonoyl-2-methyl-6-chloranilin gemäss Anspruch 1.

14. Die Verbindung N-(1'-Methoxycarbonyl-äthyl)-N-butyryl-2-methyl-6-chloranilin gemäss Anspruch 1.

15. Die Verbindung N-(1'-Methoxycarbonyl-athyl)-N-(3"-methyl-butyryl)-2,6-dimethylanilin gemäss Anspruch 1.

16. Die D-Konfigurationen der Verbindungen der Formel I gemäss Anspruch 1.

17. Verfahren zur Herstellung einer Verbindung der Formel I des Anspruchs 1, gekennzeichnet durch Acylierung einer Verbindung der Formel II

$$\begin{array}{c|c}
R_5 & & \\
R_6 & & \\
R_2 & & \\
\end{array}$$
(II)

mit einer Carbonsäure der Formel III

oder ihrem Säurehalogenid, Säureanhydrid, Säureamid oder Ester.

18. Verfahren gemäss Anspruch 17, gekennzeichnet durch Acylierung mit dem entsprechenden Säurechlorid oder Säurebromid in einem Temperaturbereich von 0° bis 180° C.

19. Mikrobizides und das Pflanzenwachstum regulierendes Mittel enthaltend als Wirkstoff eine Verbindung der Formel I

worin

 R_1 C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder Halogen,

 R_2 Wasserstoff, C_1 - C_3 -Alkyl, C_1 - C_4 -Alkoxy oder Halogen,

 R_5 Wasserstoff, C_1 - C_3 -Alkyl oder Halogen

 $^{R}6$ Wasserstoff oder Methyl sind, wobei die Gesamtzahl von C-Atomen der Substituenten $^{R}1$, $^{R}2$, $^{R}5$ und $^{R}6$ im Phenylring die Zahl 8 nicht übersteigt,

X -CH₂-oder -CH₃
R₃ -COOR' oder -CON darstellen, wobei

R', R' und R'' unabhängig voneinander Wasserstoff, Methyl oder Aethyl bedeuten und

 $^{R}_{4}$ ein gegebenenfalls durch Cyano oder Rhodano substituiertes $^{C}_{1}$ - $^{C}_{6}$ -Alkyl, $^{C}_{2}$ - $^{C}_{5}$ -Alkenyl oder $^{C}_{3}$ - $^{C}_{7}$ -Cycloalkyl bedeuten, zusammen mit geeigneten Trägerstoffen und gegebenenfalls weiteren applikationsfördernden Zusätzen.

20. Mittel gemäss Anspruch 19 enthaltend eine Verbindung der Formel I, bei der R_1 Methyl bedeutet, R_2 in ortho-Position zur Aminogruppe steht und Methyl, Aethyl oder Chlor bedeutet, $-X-R_3$ die Gruppierung -CH-COOR' darstellt, während R_4 , R_5 , R_6 und R' die angegebene Bedeutung haben.

- 21. Mittel gemäss Anspruch 19 enthaltend eine Verbindung der Formel I, bei der R' Methyl bedeutet, R_4 für einen Alkyl-, Alkenyl-oder Cycloalkylrest mit 2-4 C-Atomen steht und R_5 und R_6 die angegebene Bedeutung haben, wobei die Gesamtzahl von C-Atomen der Substituenten R_1 , R_2 , R_5 und R_6 im Phenylring die Zahl 4 nicht übersteigt.
- 22. Mittel gemäss Anspruch 19 enthaltend eine Verbindung der Formel I, bei der R_2 Wasserstoff, C_1 - C_3 -Alkyl oder Halogen und die Substituenten R_5 und R_6 Wasserstoff bedeuten, während die Substituenten R_1 , R_3 , R_4 , X, R', R'' und R''' die für Formel I gegebene Bedeutung haben.
- 23. Mittel gemäss Anspruch 19 enthaltend eine Verbindung der Formel I, bei der R_4 eine Cyanomethyl- oder eine Rhodanomethyl-Gruppe bedeutet.
- 24. Mittel gemäss Anspruch 19 enthaltend eine Verbindung der Formel I, bei der R_1 Methyl oder Aethyl bedeutet, R_2 in orthoposition zur Aminogruppe steht und Methyl, Aethyl oder Chlor bedeutet, -X-R₃ die Gruppierung -CH₂-CON(R')(R''') darstellt,während R_4 , R_5 , R_6 , R'' und R''' die angegebene Bedeutung haben.
- 25. Mittel gemäss Anspruch 19 enthaltend eine Verbindung der Formel I in der D-Konfiguration.
- 26. Mittel gemäss Anspruch 19 enthaltend N-(l'-Methoxycarbonyl-äthyl)-N-rhodanoacetyl-2,6-dimethylanilin.
- 27. Mittel gemäss Anspruch 19 enthaltend N-(1'-Methoxycarbonyl-äthyl)-N-cyclopropanoyl-2,6-dimethylanilin.
- 28. Mittel gemäss Anspruch 19 enthaltend N-(1'-Methoxycarbonyl-äthyl)-N-acryloyl-2,6-dimethylanilin.
- 29. Mittel gemäss Anspruch 19 enthaltend N-(1'-Methoxycarbonyl-äthyl)-N-crotonoyl-2,6-dimethylanilin. 509843/0963

- 30. Mittel gemäss Anspruch 19 enthaltend N-(1'-Methoxycarbony1-athy1)-N-crotonoy1-2-methy1-6-athylanilin.
- 31. Mittel gemäss Anspruch 19 enthaltend N-(1'-Methoxycarbonyl-athyl)-N-cyclopropanoyl-2-methyl-6-chloranilin.
- 32. Mittel gemass Anspruch 19 enthaltend N-(1'-Methoxycarbonyl-athyl)-N-crotonoyl-2-methyl-6-chloranilin.
- 33. Mittel gemäss Anspruch 19 enthaltend N-(1'-Methoxycarbonyl-athyl)-N-butyryl-2-methyl-6-chloranilin.
- 34. Mittel gemäss Anspruch 19 enthaltend N-(1'-Methoxycarbonyl-athyl)-N-(3''-methyl-butyryl)-2,6-dimethylanilin.
- 35. Mittel gemäss Anspruch 19 enthaltend eine Verbindung der Formel I in der D-Konfiguration.
- 36. Verwendung einer Verbindung gemäss einem der Ansprüche 1 bis 16 zur Bekämpfung phytopathogener Pilze.
- 37. Verwendung einer Verbindung gemäss Anspruch 6 zur Regulierung des Pflanzenwachstums.

THIS PAGE BLANK (USPTO)