NATIONAL INSTITUTE OF TECHNOLOGY CALICUT DEPARTMENT OF MATHEMATICS

Fourth Semester B.Tech. First interim test - February 2015 MA 2002 MATHEMATICS IV

Time: 75 minutes

Answer all questions

Max. marks: **20** T + **5** A

PART - A (5 marks)

1. Obtain power series solution of $(1+x^2)y'' + xy' - y = 0$.

(3)

2. Reduce into Bessel equation and hence write solution: $4x^2y'' + 4xy' + (64x^2 - 9)y = 0$.

(2)

PART - B (20 marks)

3. Obtain the Rodrigue's formula for Legendre polynomials.

(3)

4. With usual notations prove that

(i)
$$P_{2n}(0) = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2}$$
 and (ii) $P_{2n+1}(0) = 0$.

(3)

5. Obtain the Fourier - Legendre series expansion (with at least two non-zero terms) of the function $f(x) = \begin{cases} 1+x, & -1 < x < 0 \\ 1-x, & 0 < x < 1 \end{cases}$.

(3)

6. Prove that the Bessel functions of the first kind $J_n(x)$ and $J_{-n}(x)$ are linearly dependent, when n is an integer.

(2)

7. Prove that $\frac{2p}{x}J_p(x) = J_{p+1}(x) + J_{p-1}(x)$. Hence obtain $J_3(x)$ in terms of $J_0(x)$ and $J_1(x)$.

(3)

8. Prove that $\int_{0}^{1} x J_n(\alpha x) J_n(\beta x) dx = 0$, if α and β are distinct positive roots of the equation $J_n(x) = 0$.

(3)

9. Obtain the eigenvalues and eigenfunctions for the periodic Sturm-Liouville problem $y'' + \lambda^2 y = 0$; y(0) = y(2L) and y'(0) = y'(2L). Verify orthogonality property of eigenfunctions by direct calculations.

(3)