STRUKTUR DAN FUNGSI KOMPUTER

Fungsi dasar yang dilakukan komputer:

- Pengolahan data
- Penyimpanan data
- Pemindahan data antara komputer dan dunia luar
- Pengontrolan terhadap ketiga operasi tersebut

RUANG LINGKUP OPERASI

(Sumber dan tujuan data)

Struktur utama komputer :

- Central Processing Unit (CPU): Mengontrol operasi komputer dan membentuk fungsi-fungsi pengolahan datanya
- Memori Utama : Menyimpan data
- I/O : Memindahkan data antara komputer dengan lingkungan luarnya
- System interconnection : Beberapa mekanisme komunikasi antara CPU, memori utama dan I/O

Struktur utama CPU:

- Control Unit : Mengontrol operasi CPU dan pada gilirannya mengontrol komputer.
- Arithmetic and Logic Unit (ALU) : Membentuk fungsi-fungsi pengolahan data komputer.
- Register : Sebagai penyimpan internal bagi CPU.
- CPU interconnection : Sejumlah mekanisme komunikasi antara Control Unit, ALU, dan register-register.

SEJARAH SINGKAT KOMPUTER

<u>Generasi Pertama (Tabung Vakum) : 1946 – 1957</u>

ENIAC

- Dikembangkan untuk menghitung tabel lintasan peluru kendali pada PD II
- Dikembangkan oleh Mauchly dan Eckbert dari Universitas Pennsylvania.
- Merupakan komputer elektronik yang pertama
- Ukurannya sangat besar :
 - 18.000 tabung
 - 10.000 kapasitor
 - 6.000 saklar
 - Berukuran 30 x 50 kaki
 - Mengkonsumsi daya 140 kW
- Menggunakan sistem bilangan desimal
- Diprogram dengan mengubah-ubah koneksi saklar secara manual

- IAS (Institute for Advanced Studies)
 - Dikembangkan oleh von Neumann dan Goldstine
 - Dikembangkan berdasarkan ENIAC dan mengunakan konsep penyimpanan program di memori
 - Dikenal sebagai arsitektur "von Neumann" yang merupakan cikal bakal komputer modern
 - Feature :
 - Data dan instruksi (program) disimpan pada memori yang sama.
 - Isi memori diakses berdasarkan lokasinya, bukan berdasarkan isinya.
 - Eksekusi program berlangsung secara sekuensial

Generasi kedua: Transistor

- Transistor merupakan perangkat padat (solid-state device) yang terbuat dari silikon.
- Keunggulan transistor dibanding tabung vakum : lebih kecil, lebih murah, lebih rendah konsumsi dayanya.
- Penemuan transistor mengakibatkan terjadinya perubahan besar di dalam komputer elektronik : kecepatan lebih tinggi, kapasitas memori lebih besar, dan ukuran lebih kecil.
- Pada komputer generasi kedua mulai digunakan ALU (Arithmetic and Logic Unit) yang lebih kompleks, penggunaan bahasa pemrograman tingkat tinggi dan tersedianya software system.

Generasi ketiga : Integrated Circuit (IC)

- Untuk meningkatkan kemampuan komputer dibutuhkan jumlah transistor yang lebih besar. Akibatnya ukuran fisik komputer semakin besar dan tidak praktis.
- Integrated Circuit (IC) memungkinkan digunakannya jumlah transistor yang banyak pada sebuah keping (chip) silikon tunggal.
- Dengan adanya IC, komponen-komponen seperti transistor, resistor, kapasistor dapat dibuat pada sebuah keping tunggal.
- Dari tahun ke tahun jumlah transistor yang dikemas dalam IC semakin meningkat.
- Peningkatan ini menguntungkan karena :

- Pada ukuran keping yang konstan dapat dihasilkan rangkaian yang lebih kompleks.
- Ukuran semakin kecil berarti lintasan makin pendek akibatnya kecepatan meningkat.
- Ukuran komputer semakin kecil.
- Konsumsi daya semakin kecil.

Generasi-generasi komputer

Generasi	Tahun	Teknologi	Laju khas (operasi per detik)
1	1946 – 1957	Tabung vakum	40.000
2	1958 – 1964	Transistor	200.000
3	1965 – 1971	Small and Medium Scale Integration	1.000.000
4	1972 – 1977	Large Scale Integration	10.000.000
5	1978 -	Very Large Scale Integration	100.000.000

Mikroelektronika

- Ada 2 jenis komponen fundamental dari komputer digital : gate (gerbang) dan sel memori.
- Komputer digital dibangun dengan menginterkoneksikan komponen-konmponen tersebut, sehingga membentuk keempat fungsi dasar komputer :
 - Pengolahan data : dilakukan oleh sel-sel memori.
 - Penyimpanan data : dilakukan oleh gate-gate.
 - Perpindahan data: Lintasan antara dua komponen digunakan untuk memindahkan data dari memori ke memori lainnya dan dari memori melalui gate ke memori lainnya.
 - Kontrol : Lintasan antara 2 komponen dapat membawa sinyal kontrol.

Mikroprosesor

Mikroprosesor : CPU yang dikemas dalam sebuah keping IC.

- Mikroprosesor pertama adalah 4004, sebuah mikroprosesor 4-bit.
- Mikroprosesor 8086, sebuah mikroprosesor 16-bit, adalah mikroprosesor yang dipakai pada PC generasi awal.

Evolusi Mikroprosesor Intel

Feature	8008	8080	8086	80386	80486
Tahun	1972	1974	1978	1985	1989
diperkenalkan					
Jumlah instruksi	66	111	133	154	235
Lebar bus	8	16	20	32	32
alamat					
Lebar bus data	8	8	16	32	32
Jumlah register	8	8	16	8	8
Kemampuan	16KB	64KB	1MB	4GB	4GB
pengalamatan					
memori					
Bus bandwidth	-	0,75MB/	5MB/s	32MB/s	32MB/s
		S			

Keseimbangan kinerja

- Perkembangan kecepatan mikroprosesor tidak bisa diimbangi oleh pengembangan kecepatan komponen-komponen memori dan I/O.
- Untuk mengatasi masalah tersebut digunakan berbagai cara, di antaranya :
 - Memperlebar data bus.
 - Menggunakan hirarki memori dengan menggunakan register, cache memori dan memori utama.
 - Meningkatkan kecepatan bus.

CISC dan RISC

- Arsitektur komputer bisa dikelompokkan menjadi dua : CISC dan RISC
- CISC : Complex Instruction Set Computers
- RISC : Reduced Instruction Set Computers
- Pentium adalah contoh arsitektur CISC, sedangkan PowerPC merupakan contoh arsitektur RISC.