Last update: Oct 16

List of theorems or properties:

Properties of a probability measure:

- $0 \le P(A) \le 1$
- P(S) = 1
- If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$
- $P(A^c) = 1 P(A)$
- $ullet P(A) = P(A \cap B) + P(A \cap B^c)$
- $B \subseteq A$ then $P(A) = P(B) + P(A \cap B^c)$
- $B \subseteq A$ then $P(B) \le P(A)$
- A_1, A_2, \ldots a partition of S, then $P(B) = \sum_i P(B \cap A_i)$
- $P(A \cup B) = P(A) + P(B) + P(A \cap B)$
- $P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$

Combinatorics

- n! is the number of permutations of a set of n elements (How many different arrangements)
- $\binom{n}{k} = \frac{n!}{k!(n-k!)} o$ choose k elements from a set of n order doesn't matter
- What if order matters? $\binom{n}{k} \times k!$
- $\frac{n!}{(n-k!)}$ Number of ways to pick k items out of n where order does matter.
 - Is the same as $\binom{n}{k} \times k!$ Choosing without order and then calculating permutations of k items.

Conditional probability

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 if $P(B) > 0$

•
$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

•
$$A_1,A_2,\ldots$$
 a partition of S , then $P(B)=\sum_i P(A_i)P(B|A_i)=\sum_i P(B\cap A_i)$

•
$$P(A|B) = \frac{P(A)}{P(B)}P(B|A)$$

Independence

- A and B are independent if $P(A \cap B) = P(A)P(B)$
- A_1,A_2,A_3,\ldots are independent if $P(A_{i_1}\cap A_{i_2}\cap\ldots\cap A_{i_k})=P(A_{i_1})P(A_{i_2})\ldots P(A_{i_k})$ for any finite subcollection of events.

Continuity

- If $\{A_n\} \nearrow A$ then $\lim_{n \to \infty} P(A_n) = P(A)$
- If $\{A_n\} \searrow A$ then $\lim_{n \to \infty} P(A_n) = P(A)$

Random variables (r.v)

- A function $X:S o \mathbb{R}$ is a random variable
- The distribution of a random variable is the collection of all of the probabilities of the variable being in every possible subset of \mathbb{R} .
- A r.v. is discrete if $\sum_{x \in \mathbb{R}} P(X = x) = 1$
- Probability function $p_X(k) := P(X = k)$

Discrete random variables

ullet $X \sim Bernoulli(heta)$ if

$$p_X(k) = heta^k (1- heta)^{1-k} \, \mathbb{1}_{k \in \{0,1\}}$$

$$p_X(k) = egin{cases} heta & ext{if } k=1 \ 1- heta & ext{if } k=0 \ 0 & ext{otherwise} \end{cases}$$

ullet $X \sim Binomial(n, heta)$ if

$$p_X(k) = inom{n}{k} heta^k (1- heta)^{n-k} \, \mathbb{1}_{k \in \{0,1,...,n\}}$$

ullet $X \sim Geometric(heta)$ if

$$p_X(k)=(1- heta)^k heta\,\mathbb{1}_{k\in\{0,1,...\}}$$

This one counts # of failures before the first success.

there's a second parametrization of geometric counting the number of trials until first success. Check wikipedia!

$$p_Y(k) = (1- heta)^{k-1} heta \, \mathbb{1}_{k \in \{1,2,...\}}$$

ullet $X \sim Poisson(\lambda)$ if

$$p_x(k)=e^{-\lambda}rac{\lambda^k}{k!}\,\mathbb{1}_{k\in\{0,1,...\}}$$

Poisson approximation

If n is very large and θ very small then $Binomial(n,\theta)$ is well approximated by $Poisson(\lambda=n\theta)$

ullet $X \sim NegativeBinomial(r, heta)$ if

$$p_X(k) = inom{r-1+k}{k} heta^r (1- heta)^k \, \mathbb{1}_{k \in \{0,1,...\}}$$

This counts the number of misses before the r^{th} successwith θ as the probability of success.

ullet $X \sim Hypergeomtric(N,M,n)$ if

$$p_X(k) = rac{inom{M}{k}inom{N-M}{n-k}}{inom{N}{k}} \, \mathbb{1}_{\max\{0,n+M-N\} \leq k \leq \min\{n,M\}}$$

Here we have a big population of size N composed b 2 sub-populations:

- The population of interest (of size *M*)
- and the rest of the population (of size N-M)

We're taking a sample of size n and X counts the number of elements, in that sample, that come from the population of interest.

Continuous random variables

- A random variable is continuous if $P(X = k) = 0 \ \forall k$
- A density function is "any" function $f: \mathbb{R} \to \mathbb{R}$ with:
 - f(x) > 0
 - $\int_{-\infty}^{\infty} f(x) \ dx = 1$
- Then

$$P(a \leq X \leq b) = \int_a^b f(x) \; dx$$

 $ullet \ X \sim Uniform(a,b) ext{ for } a < b ext{ if }$

$$f(x)=rac{1}{b-a} \ \mathbb{1}_{x\in(a,b)}$$

ullet $X \sim Exponential(\lambda)$ if

$$f(x) = \lambda e^{-\lambda x} \ \mathbb{1}_{x \in (0,\infty)}$$

• $X \sim Normal(\mu, \sigma^2)$ if

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative distribution function

Any random variable X the cumulative Distribution Function (CDF) is the function J_X defined by:

$$F_X(x) = P(X \leq x) \ orall x \in \mathbb{R}$$

For X discrete

$$F_X(x) = \sum_{u \le x} P(X=u)$$

For X absolutely continuous

$$F_x(x) = \int_{-\infty}^x f_x(u) \; du$$

Properties:

- $ullet 0 \leq F_X(x) \leq 1 \ orall x \in \mathbb{R}$
- If $x \leq y$ then $F_X(x) \leq F_X(y)$
- $ullet \lim_{x o -\infty} F_X(x) = 0$
- $ullet \lim_{x o +\infty} F_X(x) = 1$

Annex

Geometric series

Let a_0 be a constant and define $a_n=a_0r^n$ as a geometric series

Define $S_n:=\sum_{k=0}^n r^k$ the partial sums of the first $\{r^k\}_{k=0}^n$ note that $\sum_{k=0}^n a_k=\sum_{k=0}^n a_0 r^k=a_0\sum_{k=0}^n r^k=a_0S_n$

Now
$$S_n=r^0+r^1+\ldots r^n$$
 and $rS_n=r^1+r^2+\ldots r^{n+1}$, then

$$S_n-rS_n=r^0-r^{n+1} \ S_n(1-r)=r^0-r^{n+1}$$
then

$$S_n = rac{r^0 - r^{n+1}}{1 - r} = rac{1 - r^{n+1}}{1 - r} \qquad ext{if } r
eq 1$$

Now if $r \in (0,1)$

$$\sum_{k=0}^{\infty} r^k = \lim_{n o \infty} \sum_{k=0}^n r^k = \lim_{n o \infty} S_n = rac{1}{1-r}$$

A little bit of topology

- Remember that both ∅ and ℝ are both open and closed sets.
 Consider ONLY nested intervals
- Class of open intervals (a_n,b_n) Closed under arbitrary unions and finite intersections This means:
- $\bigcup_{n=1}^{\infty}(a_n,b_n)$ will be an open set (either open interval or union of open intervals)
- $\bigcap_{n=1}^M (a_n,b_n)$ will be an open set (either open interval or union of open intervals or \emptyset)
- $\bigcap_{n=1}^{\infty}(a_n,b_n)$ will be a closed set (closed interval, singleton, \emptyset)
- ullet Class of closed intervals $[c_k,d_k]$ Closed under arbitrary intersections and finite unions
- $igcap_{k=1}^{\infty}[c_k,d_k]$ will be a closed set (closed interval, singleton, \emptyset)
- $\bigcup_{k=1}^{\infty} [c_k,d_k]$ most likely will be open or have a side that is open [c,d)
- $igcap_{k=1}^M[c_k,d_k]$ will be a closed set

#probability

#ta