```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
        using SSBR
In [2]:
        function getPos(ped,IDs)
            posAi = Array(Int64, size(IDs, 1))
            for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
            end
            return posAi
        end
Out[2]: getPos (generic function with 1 method)
In [3]: | ; cd Data/0.5a0/M/7
        /home/nicole/Jupyter/JG3/Data/0.5a0/M/7
In [4]:
        ;ls
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        MarNF.txt
        MarNFCenter.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        all.ID
        genotype.ID
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' MarNFCenter.txt | sort -b > genotype.ID
In [7]:
        ;join -v1 all.ID genotype.ID > noGenotype.ID
```

```
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [10]:
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]:
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]:
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
         ;join G0.ID genotype.ID > G0.Genotype.ID
In [16]:
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
         ; join G3.ID genotype.ID > G3.Genotype.ID
In [19]:
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [21]:
         ;join G5.ID genotype.ID > G5.Genotype.ID
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [22]:
In [23]:
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ; join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: | ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNFCenter.txt", numSSBayes) # genotype file - cen
         M Mats = make MMats(df,A Mats,ped);
                                                                 # M file centered alre
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J_Vecs = make_JVecs(numSSBayes,A_Mats)
         Z Mats = make ZMats(ped, y Vecs, numSSBayes)
                                                                                  # wit
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
         nothing
         vRes
                = 0.738
In [31]:
                = 0.738
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M Mats,y Vecs,J Vecs,Z Mats,X Mats,W Mats,A Mats, numSSBayes,vRes,vG
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         3676.674278 seconds (23.01 G allocations: 723.132 GB, 7.43% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
           1.00305
          -2.76301
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
            0.0157717
            0.0756223
           -0.117183
            0.00336481
            0.0438372
           -0.202481
           -0.0172156
            0.0144092
            0.0648119
            0.133406
           -0.0646764
           -0.159109
           0.105842
            0.0895759
            0.0295807
          -0.117306
            0.0198256
            0.0258394
           -0.0068585
            0.060779
            0.0321913
            0.0150344
           -0.0648659
            0.0648771
            0.116919
```

In [34]: writedlm("alphaEstimatesLeggaraJC",alphaHat)

```
In [35]: epsiHat
Out[35]: 45885-element Array{Float64,1}:
          -0.582555
          -0.330915
           0.310186
           0.383455
          -0.467154
           0.601823
          -0.809419
          -0.274005
          -0.262379
          -0.281979
          -0.405287
          -0.0839759
          -0.82952
           0.250157
          -0.208485
           0.222444
           0.299228
           0.0657388
          -0.693018
          -0.275312
           0.0302035
          -0.533467
          -0.240071
           0.196072
           0.513018
In [36]: writedlm("epsiEstimatesLeggaraJC",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.901
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 1.002
Out[39]: 0.9008552308180721
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.6003036459248103
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.810
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.997
Out[41]: 0.8096257061566148
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 2.7630099615799772
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         req3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.873
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.967
Out[43]: 0.8731642875791128
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: 1.3319868038505407
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.714
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.862
Out[45]: 0.7144766401079451
```

```
In [46]: | GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: 0.13281621054582388
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = 0.970
Out[47]: 0.757833994089983
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: 0.8618453594316047
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.757
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 1.017
Out[49]: 0.7571274258115752
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: 1.4339006579011488
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.757
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.013
Out[51]: 0.7568253241218127
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 1.9591722429801164
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.006
Out[53]: 0.726127202884884
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 2.412311838652496
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.786
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.951
Out[55]: 0.7862637679763668
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 2.8017755660376715
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.9399302066060669
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          0.861845
          1.4339
          1.95917
          2.41231
          2.80178
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          1.29101
          0.951216
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.3689286940925807
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.5399637294086136
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.3509310329374613
In [63]: b=Cov/VarGEBV
Out[63]: 0.9512164235438868
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.826
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 0.954
Out[64]: 0.8258592754162714
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 1.7108054417392484
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation =
                                                              0.758
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.901
Out[66]: 0.7579511046305256
```

```
In [67]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[67]: 2.0943734531789984
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation =
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.843
Out[68]: 0.8159346057523839
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 2.5032802749768237
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.707
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.751
Out[70]: 0.7070501641995497
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 2.811474497118721
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.754
         SSBRJC from Gibbs - G4.Genotype.ID: regression of TBV on GEBV = 0.866
Out[72]: 0.7538211574640202
```

```
In [73]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: 3.1444919625783405
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation =
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.951
Out[74]: 0.7862637679763668
In [75]: writedlm("Correlation.G5.M.JC*.txt",cor13)
In [76]: writedlm("Regression.G5.M.JC*.txt",reg13)
In [77]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[77]: 3.9561027499999994
In [78]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[78]: 2.8017755660376715
In [79]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.699
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.883
Out[79]: 0.6986377878029955
In [80]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[80]: 0.09235494820753092
```

```
In [81]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.743
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.978
Out[81]: 0.7430843267927831
In [82]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[82]: 0.8302420749765435
In [83]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.740
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.017
Out[83]: 0.7400849130773576
In [84]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[84]: 1.4064806677197212
In [85]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.745
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.006
Out[85]: 0.7450521419326923
In [86]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[86]: 1.9373183390278443
```

```
In [87]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.712
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 0.991
Out[87]: 0.7118942072944184
In [88]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[88]: 2.3935379893210635
In [89]: numSSBayes
Out[89]: SSBR.NumSSBayes(54885,45885,9000,40000,39000,1000,150)
In [90]:
         J1 = sortrows(J_Vecs.J1)
Out[90]: 45885x1 Array{Float64,2}:
          -0.990515
          -0.988862
          -0.986904
          -0.985937
          -0.985772
          -0.98563
          -0.985588
          -0.985585
          -0.985577
          -0.985568
          -0.985522
          -0.985411
          -0.985291
           6.28015e-17
           6.28015e-17
           6.66725e-17
           7.05189e-17
           7.40958e-17
           7.41458e-17
           7.43712e-17
           7.70326e-17
           8.89475e-17
           1.001e-16
           1.0697e-16
           1.11088e-16
```

```
In [91]: J1[J1 .< 0.0,:]
Out[91]: 43889x1 Array{Float64,2}:
          -0.990515
          -0.988862
           -0.986904
          -0.985937
          -0.985772
           -0.98563
          -0.985588
          -0.985585
          -0.985577
          -0.985568
          -0.985522
          -0.985411
           -0.985291
           -1.25934e-35
           -1.15288e-35
          -7.22719e-36
           -7.21871e-36
          -7.2166e-36
          -7.2166e-36
          -2.59644e-65
          -7.1781e-66
          -2.56107e-66
          -3.40781e-67
           -1.77903e-67
           -8.89515e-68
```

```
In [92]: | J1[J1 .> 0.0,:]
Out[92]: 1241x1 Array{Float64,2}:
           1.97512e-83
          8.01203e-52
           1.53474e-51
           1.60241e-51
           1.60288e-51
           1.60476e-51
          2.5599e-51
           3.06949e-51
           3.20571e-51
           4.91957e-51
          9.69951e-51
          1.1534e-50
           2.30681e-50
           6.28015e-17
           6.28015e-17
           6.66725e-17
           7.05189e-17
          7.40958e-17
           7.41458e-17
          7.43712e-17
           7.70326e-17
           8.89475e-17
          1.001e-16
           1.0697e-16
```

1.11088e-16