Difféomorphismes du cercle et théorème de Nash-Moser

Sacha Ben-Arous, Mathis Bordet

14 Mai 2024

ENS Paris-Saclay

Difféomorphismes du cercle

Théorème d'Arnold

Théorème de Nash-Moser

Difféomorphismes du cercle

Dynamique en dimension 1

On considère le cercle $\mathbb{S}^1:=\{z,|z|=1\}$, ainsi que le plongement $\Pi:\mathbb{R}\mapsto\mathbb{S}^1,t\mapsto e^{2i\pi t}$. Pour $f:\mathbb{S}^1\mapsto\mathbb{S}^1$, on dit que $F:\mathbb{R}\mapsto\mathbb{R}$ est un relèvement si $\Pi\circ F=f\circ\Pi$, i.e $f(e^{2i\pi t})=e^{2i\pi F(t)}$

Lemme : Si f est un \mathcal{C}^k -difféomorphisme du cercle, alors il existe un relèvement de f qui est un \mathcal{C}^k -difféomorphisme (de \mathbb{R}).

Dans la suite, on considèrera a minima des homéomorphismes, ainsi que leur relèvements réguliers associés.

Nombre de rotation

Si f est un homéomorphisme, F un relèvement, et $x \in \mathbb{R}$, la suite $(\frac{F^n(x)}{n})_{n \in \mathbb{N}}$ converge vers une limite indépendante de x, notée $\rho(F)$. On définit alors $\rho(f) := \rho(F) \mod 1$.

 ρ n'est ${\bf pas}$ un morphisme, mais vérifie $\rho(h\circ f\circ h^{-1})=\rho(f)$, c'est un invariant de conjuguaison.

On se demande alors si il existe un représentant simple de la classe de f, à savoir $R_{\rho(f)}.$

3

Théorème de Poincaré

Le résultat est clairement faux quand $\rho(f) \in \mathbb{Q}$. Dans le cas irrationnel, on a le résultat suivant :

Théorème (Poincaré) : Si f est un homéomorphisme de nombre de rotation α irrationnel, alors f est semi-conjugué à R_{α} , i.e il existe h continue telle que $h \circ f = R_{\alpha} \circ h$.

Que dire de l'inversibilité de h ?

Théorème de Denjoy

Théorème (Denjoy) : Si f est un \mathcal{C}^2 -difféomorphisme de nombre de rotation α irrationnel, alors f est conjugué à R_{α} par un homéomorphisme.

Idée de la preuve : Il ne peut pas exister d'intervalle errant pour h.

Question : Le résultat est-il optimal ?

Contre-exemples

Théorème (Herman) : Pour tout α irrationnel, $\forall \epsilon > 0$, il existe un $\mathcal{C}^{2-\epsilon}$ -difféomorphisme f tel que $\rho(f) = \alpha$ et f n'est pas conjugué à la rotation R_{α} . Ces contre-exemples sont de plus denses dans l'ensemble des difféomorphismes de nombre de rotation α .

 $\label{eq:local_def} \begin{array}{ll} \underline{\mathsf{Id\acute{e}e}} : \ \mathsf{Un} \ \mathsf{hom\acute{e}omorphisme} \ f \ \mathsf{est} \ \mathsf{dit} \ \mathit{minimal} \ \mathsf{si} \ \mathsf{tout} \ \mathsf{ensemble} \ \mathsf{ferm\acute{e}} \\ \mathsf{invariant} \ \mathsf{par} \ f \ \mathsf{est} \ \mathsf{vide} \ \mathsf{ou} \ \mathsf{\acute{e}gal} \ \mathsf{au} \ \mathsf{cercle} \ \mathsf{tout} \ \mathsf{entier}. \ \mathsf{Cette} \ \mathsf{propri\acute{e}t\acute{e}} \ \mathsf{est} \\ \mathsf{un} \ \mathsf{invariant} \ \mathsf{de} \ \mathsf{conjuguaison}. \end{array}$

Construction explicite

Figure 1: Schéma de la construction où $f = R_{\alpha}$

On construit un difféo non minimal mais suffisamment régulier en choisissant judicieusement la famille d'intervalles errants.

Théorème d'Arnold

Cadre

Prenons un relevé F analytique de rotation α (et donc semi-conjugué à R_{α}). Que l'on écrit :

$$F(x) = x + \alpha + \eta(x)$$

avec η analytique et "assez petit".

 η est également 1-périodique.

Détermination

Par théorème de semi-conjugaison, on a :

$$F \circ H(x) = H(x + \alpha)$$
 et on cherche H de la forme $H = \mathrm{id} + U$

$$\Rightarrow U(x+\alpha) - U(x) = \eta(x+U(x))$$
 simplifié en $U(x+\alpha) - U(x) = \eta(x)$

On choisit de chercher U 1-périodique. On a que

$$(\exp(2i\pi n\alpha) - 1)\widehat{U}(n) = \widehat{\eta}(n)$$

Perte de régularité et petits diviseurs

Dans quelle mesure \widehat{U} est-elle liée à une série de Fourier convergente ?

En effet, $\exp(2i\pi n\alpha)-1$ peut arbitrairement s'approcher de 0.

Petit diviseur avec α irrationnel:

$$\left\|\alpha - \frac{m}{n}\right\| \ge \frac{k}{n^{\nu}} \Rightarrow \left\|\exp(2i\pi n\alpha) - 1\right\| \ge \frac{4k}{n^{\nu-1}}$$

Induit la perte de régularité suivante

$$\begin{split} \|F\|H\mathsf{per}^s &= \left(\sum_{n \in \mathbb{Z}} |n|^{2s} |\hat{F}(n)|^2\right)^{1/2}, \quad s \geq 0 \\ \|U\|H\mathsf{per}^s &\leq \frac{1}{4K} \|\eta\|H\mathsf{per}^{s+\nu-1}. \end{split}$$

Enoncé et Preuve

Le théorème d'Arnold affirme donc que si F a un relevé $F(x)=x+\alpha+\eta(x)$ avec η analytique et assez petit (au sens d'une norme analytique), alors F est analytiquement conjugué à R_{α} .

Éléments de démonstration :

- U_n la solution de $U_n(x+\alpha) U_n(x) = \eta_n(x) \hat{\eta}_n(0)$.
- $\bullet \ H_n(x) = x + U_n(x).$
- $F_{n+1} = H_n^{-1} \circ F_n \circ H_n = (H_1 \circ \cdots \circ H_n)^{-1} \circ F \circ (H_1 \circ \cdots \circ H_n).$

Théorème de Nash-Moser

Cadre

On considère ici deux suites d'espaces de Banach $E\sigma, \|\cdot\|\sigma$ et $F\sigma, \|\cdot\|\sigma$.

De telle sorte qu'il existe une fonction régularisante S telle que

$$\forall \theta \in \mathbb{R}, \quad S: E \to F$$

- 1. $||S_{\theta}u||_b \leq C||u||_a$, si $b \leq a$
- 2. $||S_{\theta}u||_{b} \leq C\theta^{b-a}||u||_{a}$, si a < b
- 3. $||u S_{\theta}u||_b \le C\theta^{b-a}||u||_a$, si a > b
- 4. $\left\| \frac{d}{d\theta} S_{\theta} u \right\|_b \le C \theta^{b-a-1} \|u\|_a$.

Enoncé

Soit $a_2 \in \mathbf{R}$ et soit $\alpha, \beta \in [0; a_2]$. De plus, considérons une application $\Phi: E_{\alpha} \to F_{\beta} C^2$ vérifiant :

$$\|\Phi''(u)(v,w)\|\beta + \delta \le C(1 + \|u\|\alpha) \|w\|\alpha - \frac{\epsilon}{2} \cdot \|v\|\alpha - \frac{\epsilon}{2}$$

On a de plus l'existence d'une inverse à droite pour Φ' , c'est-à-dire : $\forall v \in E_\infty$, on a $\Psi(v): f_\infty \to E_\infty$ avec

$$\left\|\Psi(v)g\right\|a \leq C\left\|g\right\|\beta + a - \alpha + \left\|g\right\|0\left\|v\right\|\alpha + \beta$$

Alors, $\exists \eta > 0$ telle que $\forall f \in F_\beta$ vérifiant $\|f\| \beta \leq \eta$, alors $\exists u \in E\alpha$ vérifiant $\Phi(u) - \Phi(0) = f$.

Outil

On prend θ_j une suite d'indices divergents et on définit $\Delta_j=\theta_{j+1}-\theta_j$ et $R_ju=\left(S_{\theta_{j+1}}u-S_{\theta_j}u\right)/\Delta_j$ si j>0, $R_0u=S_{\theta_1}u/\Delta_0$.

On obtient alors:

$$u = \sum_{j=0}^{\infty} \Delta_j R_j u$$

Convergente dans E_a si $u \in E_b$ et a < b.

Schéma de la preuve:

On construit les suites suivantes en prenant g $\in F_{\beta}$

$$g = \sum \Delta_j g_j; \quad \|g_j\| b \le C_b \theta_j^{b-\beta-1} \|g\| \beta'.$$

$$u_{j+1} = u_j + \Delta_j \dot{u}j, \quad \dot{u}_j = \psi(v_j) g_j, \quad v_j = S\theta_j u_j$$

et on montre que $\Phi(u) - \Phi(0) = T(g) + g$ avec T application continue .

Fin

Merci pour votre attention !

Q&A