Solutions for MAx.Stress and Anchor force: 0.9 0.7 50 - 60 \$ |||| 8 6.0 0.3 5.0 4.0 0.0 8.0 7.0 6.0 7.0 7.0 0.4 3.0 2.0 2 0: 0.2 (m/B)Q/n Note: A fixing point restricts to form with a uniform relation of full length only at both ends Sch.80 E cm Item (4) from R' Chart m/B /tem (7) from R' Chart 8 U/D = 2.92 m/B /tem (7) Item (2) (b) Alloy/Stainless Steel Pipe \$1.........Not Required cm/m YES, (3) Material = Carbon Steel, (4) Thermal Expansion e = 4.812 (a) Carbon Steel Pipe 180 2 180 Ë 67 0 Y/U = c =_ x= 35 m, y= 0 (2) Design Temp T = _ (5) Pipe Length L = | |---U/D= (6) Fix – Fix Distance (8) Movement of Fix II Č ch c = d/n (L) (1) Pipe Size D = $U = \sqrt{x^2 + y^2 + z}$ U= 35 m Note: A mark is attached in the moving direction of a fixed point and the direction of the growth of the pipe, and is compared with them. (c) The Total Displacement Absorbed by the Diameter of Pipe (11) The conclusion whether detailed examination is required $\forall = \sqrt{\left[(\Delta x + \Delta x')^2 + (\Delta y + \Delta y')^2 + (\Delta z + \Delta z')^2 \right]}$ (9) It Asks for R' by U/D and Y/U from chart ≥1.....Required 7 199 1. Check pipe bending examination 2.Calculate maximum stress (Mpa) 3.Calculate maximum force(N) (b) Amount of Displacement of a Fix Point (a) Amount of Growth by Temperature u ∓ d # cm # CM PIPE BENDING EXAMINATION Piping Schematic View 6.73 ± cm # cm . 1 cm 'n 0 0 261:0 = 0/A(P) $\Delta x = e \times x =$ Y= 6.72 cm R'/R = 0.93 Δz = e × z = __ $\Delta y = e \times y = _$ $(10) R = L/U_-$ Participant Name: Examination Date: Δx′ = Δy' = _

 Em | Em | Con | Con |

SECURITY LEVEL 2

TEG1-1313-014B Appendix 2 (1/3)

APPENDIX2: Simple decision table for thermal stress

簡悪判定テーブル

A2.1 Simple calculation table for horizontal loop 水平ループに対する簡易計算テーブル

The maximum bending stress and anchor force for a horizontal loop is indicated in Table A2.1. The calculation condition is as follows and in case that the temperature, material, wall thickness, or dimension is changed, the table should be corrected according to para. A2.3.

水平ループに生じる最大曲げあ力およびアンカーフォースを装 A21 にまとめる。なお、計算条件は以下の通りとし、温度、材質、肉厚、寸法が変わる場合はA2.3項に従って補正する。

<Calculation condition>

Pipe material: carbon steel Pipe wall thickness: Sch.80

Dimensional condition: L=30m, W=1~4m, L1=6~12m Calculation temperature: 200 °C

(See Fig.A2.1)

配管材質:炭素類 く非解除性と

計算温度: 200 °C 記(報) Sch. 80

寸弦条件:L=30m, W=1~4m, L₁=6~12m (図 A2.1 参照)

3

Fig. A2,1

0.5

ð

Normal Bore

0.5

ő

		9	11-	\	\	1	\	\	\	1	\	403	(3,953)	870	(8,535)	1,555	(15,255)	2,260	(22,171)	2,835	(27,811)	4,657	(45,685)	6,361	(62,401)	13,656	(133,965)
			တ			1		1	\	1	/	578	(57)	648	(64)	980	(67)	680	(67)	610	(80)	844	(83)	791	(78)	1,200	(118)
		5	Ŀ	/	/		/-	99	(647)	235	(2,305)	280	(5,494)	1,210	(11,870)	2,160	(21,190)	3,140	(30,803)	4,127	(40,486)	666'9	(68,660)	10,075	(98,836)	20,369	(189,820)
			Ø.	1	/	1	\	400	<u>@</u>	615	(09)	725	(71)	800	(78)	815	(80)	815	(80)	756	(74)	1,083	(404)	1 126	(110)	1,420	(139)
Table A2.1	Dimension H (m)	4	L	11	(108)	48	(481)	108	(1,059)	390	(3,826)	925	(9,074)	. 2,000	(19,620)	3,580	(35, 120)	5,200	(51,012)	7,005	(63,719)	11,516	(112,972)	18,392	(180,426)	39,062	(235) (589,728) (224) (383,198) (139)
Tak Tak	Dímen		ဟ	346	(34)	490	(48)	929	(9	848	(83)	066	(97)	1,090	(107)	1,110	(108)	1,070	(105)	1,120	(110)	1,408	(138)	1,769	(173)	2,289	(224)
		27	11.	72	(206)	93	(912)	207	(2,031)	743	(7,289)	1,770	(17,364)	3,810	(37,376)	058'9	(61, 199)	006'6	(97,119)	14,490	(142,147)	23,540	(230,927)	31,700	(310,977)	60,115	(589,728)
			Ø	505	(64)	127	(1)	920	8	1,230	(121)	1,420	(139)	1,550	(152)	1,580	(155)	1,590	(156)	1 885	(185)	2,230	(219)	2,152	(211)	2,398	(235)
,		2	ь	55	(230)	243	(2,384).	240	(5,297)	1,940	(19,031)	1	\	1	/	/	/	1	\	1	\	/	/	/	\	/	1
	,		ø	850	(83)	1,220	(120)	1,520	(149)	2,000	(196)	1	/	1	/	/	/	/	/	1	/	1	/	/	\	/	V
	JE	3016	I N	Ě	7	**	ç	**	ŧ	80	•	8	0	Š	2	7	4	47	<u>*</u>	40.	2	40,	9	.00	3	a.F.C	5

S: 最大曲げ応力/Maximum bending stress (〔MPa〕kgfkm2 〕. F: アンカーフォース/Anchor force ((N) kgf 〕

SECURITY LEVEL 2 TEG1-1313-014B Appendix 2 (2/3)

A2,2 Simple calculation table for the three dimensional loop 3次元ループに対する簡易計算テーブル The maximum bending stress and anchor force for a three dimensional loop are indicated in Table A2.2. The calculation condition is as fullows, and in case that the temperature, material, wall thickness, or dimension is changed, this table should be corrected according to para. A2.3.
3 次元ループに生じる軽大曲げあわおよびアンカーフォースを表 A2.2 にまとめる。なお、計算条件は以下の通りとし、温度、材質、肉厚、寸法が変わる場合はA2.3 項に従って補正する。

<Calculation condition>

Pipe material : carbon steel Pipe wall thickness: Sch.80

Calculation temperature: 200 °C

Dimension condition: L=30m, L1=6-12m

W=1~4m (NPS 8 and below) =2~5m (NPS 10 and above) (See Fig.A2.2)

配管肉厚: Sch. 80 計算温度:200 ℃ 寸法条件: L=30m, L,=6~12m 配簡材質:液接線

W=1~4m (NPS8以下) =2~5m(NPS10以上) (图A2.2参照)

엥	
묎	
ģ	
ш	

Table A2.2

15	(m) uc	C Artifornia	9-7-1	Normal	ក្ន	Dimension(m)	(C (Jee) C	(kmb)
	I	מ (שלוות וועל)	(IPV) L	Bore	_	I	C (Nga canal)	(May)
_	1.5	921	28			2.8	1,513	5,795
	2,5	503	21		77	3.8	1,089	3,211
	3.5	321	10			4.8	829	1,987
Γ	1.5	1,322	263	<u>*</u> 4	4	5.0	776	1,804
	2.5	127	88		2	6.0	627	1,239
	3.5	467	42		ç	7.0	497	843
П	1.5	1,674	577		7	8.0	424	838
	2.5	926	202		1	5.0	838	2,890
Γ	3.0	459	117	ě	2	6.0	878	1,974
	4.0	463	\$	2	ć	0.7	540	1,347
	1,5	2,239	2,013		3	8.0	460	1,021
	2.5	1,248	708		ų	5.0	910	4,396
	3.0	896	416	20,4	<u>.</u>	6,0	736	3,022
	4.0	639	230	2	5	7.0	588	2,065
Г	20	1,668	2,067		7.	8,0	205	1,566
	3.0	1,106	27.6		ć	5.0	893	5,784
	4.0	792	543	č) V	6.0	738	4,058
	5.0	909	337	3	ď	.7.0	280	2,784
	20	1,913	4,316		3	8.0	508	2,135
	3.0	1,265	2,035	į	6	5.0	666	11,019
	0,4	606	1,133		3	6.0	819	7,713
	5,0	691	705	24"		7.0	299	5,301
	5.0	849	661		25	8.0	999	4,061
	6.0	524	455			9.0	493	3,191
	3.0	1,403	3,696	f				
	4.0	1,009	2,059					
	5.0	692	1,282					
	5.0	733	1,188					
	6.0	593	818					•
_	7.0	470	556					
	8.0	400	421					

10

6.5

1,0

ξņ

5

Ċ.

12 20

4

2

ģ

0.

0.5

*

teg11313014ba2.doc

teg11313014ba2,doc

A2.3 Correction formula for the change of calculation condition 計算上条件の変更に対する補正式

in case that the calculation condition of TableA2.1 and TableA2.2 is changed, the value of the table needs to be corrected by using the following formula. 表A2.1 および表A2.2 において計算条件が変わる場合,以下の式にて表中の数値を答正する。

. T.M.L/30 The maximum stress : S=(Indicated value) 最大曲げ応力 : S=(後示値) Anchor force : F=(Indicated value) アンカーフォース : F=(後示値)

* T · M · K · L / 30

(1)Correction factor due to temperature (T) 温度による修正係数(T)

,	,							
	7						500	3
		7					\$	Sture (
			7				300	► temneratura (°C;)
		_		7			200	1
1				12	7		100	
						7		
9	9 1	S .	,	2 6	<u>.</u>	92	•	
			_	-				

(2)Material coefficient (M) 材料係数(M)

For stainless steel, M=1.43 ステンレス網に対しては、M=1.43とする。 For carbon steel, M=1.0

(3)Correction factor due to wall thickness 配管肉厚による修正係数 (K)

呼び径 (B)	2	60	4	8	80	10	12	14	18	18	ಜ	24
Sch.40	0.674	0.720		0,692 0.643	0.648	0.622	0.597 0,594	0.594	4 0.807 0	0.817	0.593	0.582
Sch.80	1.0	1.0	1.0	1.0	0.1	1,0	1.0	5.	1.0	1.0	1.0	10

(4)Correction of dimension (L.) 寸法の修正 (L.) (fixed-to-fixed distance)

L'indicates the corrected anchor span. 変更となるアンカー間隔をじとして格正する。

206444= 2 4 A	(1)(00%)	陳 英. (n公 nO)	融 常 (ns rO)	発酵やでは	40=\$4T	~4~=\$9£ ₩ (IN-%E)
(4) Fe O+)	-2.46	823	18.8 -	į	16.8 -	6 8.I -
	- 3,2.6 - 2,0.6	-2.99	~ 3,06 ~ 2,78 ~ 2,50		988-	291- 621-
	19T- 98T-	-214 -214	122-		27.2 88.2-	122
H.	121-	- 175.8 - 172.8	-1.62		- 1.67 - 2.03	\$0.1 - 88.0 -
	69'0- 98'0-	290- 660-	0°0~ ToT~		880	\$ 9 0 -
0'0	1 6.0 ~	9 0 0 - 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	980 -	0.0	9 7 0 -	F 2.0
7 8.0 8 8.0	82.0 6 2.0	28.0 7 8.0	£ £.0	020	2 1.0 8 8.0	22.0
\$ Y Z	08.0 22.1	1.89 1.89	1'0'2 1'0'2	1.0.0	78.1 98.1	88.0
1 4 4 1 7 7	98°T 79°T	1.76 2.18	1:79 2,16	126	£ & 2 £ & 3	111
246 211	21 9 2.52	2.51	2.54 2.91	2 7.f	385	29T
31.6	982	3.69	9 2 8 7 8,6 7	220 736	4.90	245
6 7 G		0 9 P 6 0 P	777 90°F	2,70	279	362
05'F		789 267	22.2 2.2.2	322	6.07	3.53
6 I'S . 9 8 %		620	2.62 5.62	97.5	¥ 9"L	3.8.2
289 729	<u>.</u>	80.7	189	4.04		468
779 .		7.53	127	68.4		L67
9679		978	8.03	8 P'9 8 T'9		988
892 182		176	988	843	•	988
87.8 87.8		8501	8 9.6	0 T/9		9 2 2 9
916		.ZETT	1009	2 T.9		507
166		17.87	26.01			
2901 6201		12,90	11.80			
06TI 67TI 80TI			. — -			
12.32						
13.60	197	-		-		
E 0. P.1						

		se	alnintë	機構の調金	S'o.	. dw
* * *	来176-7	来4 h·4	17.4f	秦林含▲ □ € 秦林含▲ □ €	日本 第 第 第 日本 1 日本 1 日本 1 日本 1 日本 1 日本 1 日	材
(BD06 17/78)	(1875) (1875)	(250r 20NI)		機を含すが ~めばかひま) (。M(1000	(301 Mo)	3.3
-2.1 9 - 2.0 9	851- 178		128- 862-	- 1.73 - 1.85	78T - 46T -	861
-1.96 -1.82	7 5 T -		17.8- 4 1.2-	9 7 T -	79T-	071
71 :	<u> </u>	` .	977-	92.1-	-T37	021
927-	8 8 9 - 2 7.0 -		85.1	81.1 - 81.1 -	1.02	08-
6 Z 0 -		j	86.0 -	09.0-	79.0 - E8.0 -	07-
₹9°0-	85.0- 040-		990-	15.0-	-0.44	02-
0.0	0.00-	. 00	. a.o	0.0	0.0	20
0.26 0.54	86.0	0 E.0 2 8.0	\$9'0 1 8 0	170	7 F 0 1 Z 0	09
28.0	8 4:0 8 4:0	86.0 32.1	66.0 88.1	8 8.0 8 8.0	16.0	80
141	12.1	7.5.T	1'83	601	5 J.I.	021
202	79T	1,90	202	28.1 1.56	991	091
232		28.2 78.2	2.73	1.80	20.1 21.9	002
96'Z	21.5	9.1.9	97°C 60°C	239	2.46	022
328	233	19'E	18.6	286	3.0.5	092
3.95	2.8 I 3.0 5	9T7	75°7	90.8	08.8	083
824		. 187 877	679 167	25.E	0.6.6	320
867	33.8 .	214	999	3.8.6	4.20	078
200	9 0,1	6 7,8 6 7,8	7279 709	TP'P	1.5.1	380
9.0.5	26.4 88.4	11.9	78'9	694	915	007
23-9 23-9		97.8	7.5.1	82.8 4.98	5.47	077
2172	11.2 11.2	01.7	66.7	222	11.0	081
86.7 86.7	8 5.8 5 6.8	187	6 E.B	2.86	6 7.0 6 7.0	200
\$5.8 \$7.8	0 2.9 2.92	828 858	1.2.6	972 972	217	079
81.6	2 1 9 2 7 9	768	20.03	707	6 L.T	099
76'6 79'6		996	78'0T	18.7	813	089
1036	827	10.05	11.25	P6.7	67.8	029
87.01 11.20	28.7	78°01	175.07	728	176	099
8911	96.8	\$2.1.1	12.47	5 8.8	87.6	080
12.66		897.7	12.88	976 976	11.01	100
1292	- 158	95.71	89.61	\$7.6	84'01	074
9881	87.6	15.71	95'91	F001	21.11	094
			1203			818

- tro -

teg11313014ba2.doc