

Figure 1: Different geological features considered in this study. Top row shows 'lobosity' in porosity distribution: (a) flat shore-line, (b) one lobe, (c) two lobes. The middle row shows 'barrier' by the distribution of zero transmissibility multipliers: (d) low, (e) medium, (f) high. The lower row shows 'aggradation' in rock-type distribution: (g) low angle of interface between the transitional rock-types leads to parallel layers; this angle is increasing in cases (h) and (i), which correspond to higher levels of aggradation. An up-dip progradation direction is shown in (b), and if the lobe flips over the long axis, we will have down-dip progradation.

the channeling branches, while dense rock with low permeability fills the space between them. Reservoir quality decreases with distance from the shoreface. We expect that the level of lobosity can have a considerable effect on the CO₂ injection and plume size in the aquifer. In this study, models of three levels of lobosity are used: flat shoreline, one lobe and two lobes, see Fig. 1.

Barriers: Periodic floods result in a sheet of sandstone that dips, thins, and fines in a seaward direction. In the lower front, thin sheets of sandstone are interbedded with the mudstones deposited from suspension. These mud-draped surfaces are potential significant barriers to both horizontal and vertical flow. In the SAIGUP domain used here, these barriers were modeled by transmissibility multipliers in three levels of zero value percentage: low (10%), medium (50%), and high (90%). We use the same variations in this study, see Fig. 1.

Aggradation: In shallow-marine systems, two main factors control the shape of the transition zone between the river and the basin: amount of deposition supplied by the river and the accommodation space that the sea provides for these depositional masses. One can imagine a constant situation in which the river is entering the sea and the flow