Fysik og Mekanik – formelsamling

Noah Rahbek Bigum Hansen

Efteråret 2024

Indhold

1	Enh	neder,	fysiske størrelser og vektorer	9
	1.1	Vekto	rprodukter (1.10)	S
		1.1.1	Skalarproduktet	9
		1.1.2	Krydsproduktet	S
2	Bev	ægelse	e langs en ret linje	10
	2.1	Stræk	ning, tid og hastighed (2.1-2)	10
		2.1.1	Gennemsnitlig hastighed	10
		2.1.2	Øjeblikshastighed (Eng: Instantaneous velocity)	10
	2.2	Accele	eration (2.3)	10
		2.2.1	Gennemsnitlig acceleration	10
		2.2.2	Øjebliksacceleration (Eng: Instantaneous acceleration)	10
	2.3	Bevæg	gelse med konstant acceleration	11
		2.3.1	Hastighed ved konstant acceleration	11
		2.3.2	Position ved konstant acceleration	11
	2.4	Hastig	ghed og position ved integration (2.6)	11
		2.4.1	Hastighed som integralet af acceleration	11
		2.4.2	Position som integralet af hastighed	11
3	Bev	ægelse	e i to eller tre dimensioner	12
	3.1	Hastig	ghedsvektorer (3.1)	12
		3.1.1	Gennemsnitshastigshedsvektor (Eng: Average velocity vector)	12
		3.1.2	Øjeblikshastighedsvektor (Eng: instantaneous velocity vector)	12
		3.1.3	Hastighedskomposanter	12
		3.1.4	Størrelsen af hastighedsvektoren fra komposanter	12
	3.2	Accele	erationsvektorer (3.2)	13

		3.2.1	Gennemsnits accelerationsvektor (Eng. Average acceleration vector)	13
		3.2.2	Øjebliksaccelerationssvektor (Eng: $instantaneous\ acceleration\ vector)$	13
		3.2.3	Accelerationskomposanter	13
		3.2.4	Størrelsen af accelerationsvektoren fra komposanter	13
	3.3	Det sk	rå kast (Eng: Projectile motion) (3.3)	13
		3.3.1	Afstand ved skråt kast	13
		3.3.2	Højde ved skråt kast	13
		3.3.3	Horisontal hastighed ved skråt kast	13
		3.3.4	Vertikal hastighed ved skråt kast	14
	3.4	Bevæg	gelse i en cirkel (3.4)	14
		3.4.1	$\label{lem:acceleration} \mbox{Acceleration for uniform cirkulær bevægelse} - (\mbox{Centripetal acceleration}) \ \ \dots \ \ \dots \ \ .$	14
	3.5	Relati	v hastighed (3.5)	14
		3.5.1	Den gallilæiske hastighedstransformation (Eng: The Galilean velocity transformation)	14
4	Nev	vtons l	pevægelseslove	15
	4.1	Krafte	er og interaktioner (4.1)	15
		4.1.1	Den resulterende kraft	15
	4.2	Newto	ons love (4.2-4.5)	15
		4.2.1	Newtons 1. lov	15
		4.2.2	Newtons 2. lov	15
		4.2.3	Newtons 2. lov med komposanter	15
		4.2.4	Newtons 3. lov	15
5	Anv	endels	se af Newtons love	16
	5.1	Newto	ons 1. lov som komposanter på partikler i ligevægt (5.1)	16
	5.2	Newto	ons 2. lov som komposanter på partikler i bevægelse (5.2)	16
	5.3	Friktio	onskrafter (5.3)	16
		5.3.1	kinestisk friktionskraft	16
		5.3.2	Statisk friktionskraft	16
	5.4	Kræft	er i cirkelbevægelse (Eng: Dynamics of circular motion) (5.4)	17
6	Arb	ejde o	g kinetisk energi	18
	6.1	Arbejo	de af konstante kræter (6.1-6.2)	18
		6.1.1	Arbejde i 1 dimension	18
		6.1.2	Arbejde i flere dimensioner	18
		6.1.3	Kinetisk energi	18
		6.1.4	Arbejde-energi-teoremet	18

	6.2	Arbejo	de og energi for variable kræfter (6.3) \dots	19
		6.2.1	Arbejde af variabel kraft	19
		6.2.2	Arbejde-energi-teoremet for bevægelse langs en kurve	19
	6.3	Effekt	$(6.4) \ldots \ldots$	19
		6.3.1	Gennemsnitseffekt	19
		6.3.2	Øjeblikseffekt	19
7	Pot	entiel	energi og energikonservation	20
	7.1	Gravit	tationel potentiel energi (7.1)	20
		7.1.1	Tyngdekraftens arbejde	20
		7.1.2	Energikonservation i et tyngdefelt	20
	7.2	Elastis	sk potentiel energi (7.2)	20
		7.2.1	Elastisk potentiel energi	20
		7.2.2	Arbejdet udført af den elastiske kraft	21
		7.2.3	Mekanisk energibevarelse med arbejde fra andre kræfter	21
	7.3	Konse	rvative og ikke-konservative kræfter (7.3)	21
		7.3.1	Konservation af energi	21
	7.4	Kraft	og potentiel energi (7.4)	21
		7.4.1	Kraft fra potentiel energi i en dimension	21
		7.4.2	Kraft fra potentiel energi i 3 dimensioner	21
8	Imp	uls, kı	raftimpuls og kollisioner	23
	8.1	Impuls og kraftimpuls (8.1)		
		8.1.1	En partikels impuls	23
		8.1.2	Newtons 2. lov for impuls	23
	8.2	Krafti	mpuls-impuls teoeremet	23
	8.3	Impul	skonservation (8.2)	23
		8.3.1	Totalimpuls for et system af partikler	24
	8.4	Impul	skonservation og kollisioner (8.3)	24
		8.4.1	Impulskoknservation i en komplet inelastisk kollision	24
		8.4.2	Restitutionskoefficienten	24
	8.5	Elastis	ske kollisioner (8.4)	24
	8.6	Masse	midtpunkt (8.5)	24
		8.6.1	Massemidtpunktet for et system af partikler	24
		8.6.2	Massemidtpunktets bevægelse	25
		8.6.3	Eksterne kræfter der virker på en samling af partikler eller et objekt	25

9	9 Rotation af rigide legemer				
	9.1	Vinkel	hastighed og -acceleration (9.1)	26	
		9.1.1	Gennemsnitlig vinkelhastighed	26	
		9.1.2	Øjebliksvinkelhastighed	26	
		9.1.3	Gennemsnitlig vinkelacceleration	26	
		9.1.4	Øjebliksvinkelacceleration	27	
	9.2	Rotati	on med konstant vinkelacceleration (9.2)	27	
		9.2.1	Vinkelhastighed efter tid med konstant vinkelacceleration	27	
		9.2.2	Ændring i vinkel efter tid med konstant vinkelacceleration givet start- og slutvinkelhastighed	27	
		9.2.3	Ændring i vinkel efter tid med givet konstant vinkel acceleration	27	
		9.2.4	Vinkelvastighed ved konstant vinkelacceleration givet start-vinkelhastighed, vinkelaccelerationen og start- og slutvinkel	27	
	9.3	Samme	enhæng mellem lineær og rotationskinematik (9.3)	27	
		9.3.1	Tangentiel hastighed for punkt på roterende objekt	27	
		9.3.2	Tangentiel acceleration for et roterende rigidt legeme	28	
		9.3.3	Centripetalacceleration	28	
	9.4	Energi	for roterende bevægelse (9.4)	28	
		9.4.1	Inertimoment for et legeme om en given rotationsakse	28	
		9.4.2	Rotationel kinetisk energi	28	
		9.4.3	Inertimomenter for forskellige legemer	28	
	9.5	Paralle	el-akse-teoremet	28	
10	Rot	ations	lynamik	29	
	10.1	Kraftn	noment (10.1)	29	
		10.1.1	Størrelsen af kraftmomentet	29	
		10.1.2	Kraftmomentvektoren	30	
	10.2	Kraftn	noment og vinkelacceleration for et rigidt legeme (10.2)	30	
		10.2.1	Newtons 2. lov et rigidt legeme	30	
	10.3	Rotati	on for et rigidt legeme omkring en akse i bevægelse (10.3)	30	
		10.3.1	Kinetisk energi for et legeme med rotationel og translatorisk bevægelse	30	
		10.3.2	Rulning uden glid (Eng: Rolling without slipping)	30	
	10.4	Arbejo	le og effekt for roterende bevægelse (10.4)	30	
		10.4.1	Arbejdet udført af et kraftmoment	30	
		10.4.2	Arbejdet udført af et konstant kraftmoment	30	
		10.4.3	Arbejdet udført af et kraftmoment givet vinkelhastighed og inertimoment	31	

		10.4.4 Effekten af et kraftmoment	31
	10.5	Impulsmoment (10.5)	31
		10.5.1 Impuls momentet givet tangentiel impuls eller -hastighed	31
		10.5.2 Impulsmomentet givet vinkelhastighed	31
		10.5.3 Sammenhæng mellem impulsmoment og kraftmoment	31
	10.6	Konservation af impulsmoment (10.6) $\dots \dots \dots$	31
11	Lige	evægt og elasticitet	32
	11.1	Ligevægtsbetingelser (11.1)	32
		11.1.1 Summen af kræfter for ligevægt (Den første ligevægtsbetingelse) $\ \ldots \ \ldots \ \ldots$	32
		11.1.2 Summen af kraftmomenter for ligevægt (Den anden ligevægtsbetingelse)	32
	11.2	Løsningsmetode for ligevægtsproblemer for rigide legemer (11.3) $\dots \dots \dots \dots$	32
	11.3	Spænding, tøjning og elasticitetsmodul (11.4)	32
		11.3.1 Hookes lov	32
		11.3.2 Spænding	32
		11.3.3 Tøjning	33
		11.3.4 Youngs modul	33
		11.3.5 Tabel over elasticitetsmoduler	33
		11.3.6 Kompressibilitetsmodul	33
		11.3.7 Forskydningsmodul	33
	11.4	Perturbationsteoretisk ligevægt	34
12	Flui	dmekanik	35
	12.1	Densitet og tryk (12.1-12.2)	35
		12.1.1 Densiteten af et homogent legeme	35
		12.1.2 Definition af tryk i en væske	35
		12.1.3 Trykforskel mellem to punkter i en væske med uniform densitet	35
		12.1.4 Trykket til en given dybde i en væske med uniform densitet	35
		12.1.5 Pascals lov	35
		12.1.6 Absolut tryk og overtryk (manometertryk)	35
	12.2	Opdrift (12.3)	36
		12.2.1 Arkimedes princip	36
		12.2.2 Matematisk formulering af Arkimedes princip	36
	12.3	Væskestrømning (Eng: Fluid Flow) (12.4)	36
		12.3.1 Ideele væsker	36
		12.3.2 Kontinuitetsligningen	36

		12.3.3	Volumenstrømningshastighed	36
	12.4	Bernou	llis ligning (12.5)	36
		12.4.1	Bernoullis ligning	36
13	Gra	vitatior	1	38
	13.1	Newton	s tyngdelov (13.1)	38
		13.1.1	Newtons tyngdelov	38
		13.1.2	Matematisk formulering af Newtons tyngdelov	38
	13.2	Tyngde	e (Eng: Weight) (13.2)	38
		13.2.1	Tyngden af et objekt ved jordens overflade	38
		13.2.2	Tyngdeaccelerationen	38
	13.3	Potenti	el energi i et tyngdefelt (13.3)	39
		13.3.1	Tyngdekraftens arbejde	39
		13.3.2	Potentiel energi i et tyngdefelt	39
	13.4	Satellit	ter i cirkulær bevægelse (13.4)	39
		13.4.1	Hastigheden af en satellit i et cirkulært kredsløb	39
		13.4.2	Perioden for en satellit i et cirkulært kredsløb	39
	13.5	Keplers	s love og planeters bevægelse (13.5)	39
		13.5.1	Keplers love	39
		13.5.2	Matematisk formulering af Keplers 2. lov	40
		13.5.3	Matematisk formulering af Keplers 3. lov	40
	13.6	Sorte h	uller (13.8)	40
		13.6.1	Swarzschild-radiussen af et sort hul	40
14	Peri	odisk b	pevægelse	41
	14.1	Beskriv	relse af oscillationer (14.1)	41
		14.1.1	Forholdet mellem frekvens og periode	41
		14.1.2	Vinkelfrekvens og periode eller frekvens	41
	14.2	Simpel	harmonisk bevægelse (SHM) (14.2)	42
		14.2.1	Kraften for SHM (Fjederkraften)	42
		14.2.2	Acceleration for SHM	42
		14.2.3	Vinkelfrekvens for SHM	42
		14.2.4	Frekvens for SHM	42
		14.2.5	Perioden for SHM	42
		14.2.6	Position som funktion af tid for SHM	42
	14.3	Energi	i SHM (14.3)	43

		14.3.1 M	Mekanisk energi for SHM	43
	14.4	Det sim	ple pendul (14.5)	43
		14.4.1 V	Vinkelfrekvensen for et simpelt pendul	43
		14.4.2 I	Frekvens af et simpelt pendul	43
		14.4.3 I	Periode for et simpelt pendul	43
	14.5	Det fysis	ske pendul (14.6)	43
		14.5.1 I	Bevægelsesligningen for et pendul	43
		14.5.2 V	Vinkelfrekvens for et fysisk pendul	44
		14.5.3 I	Perioden for et fysisk pendul	44
	14.6	Dæmpe	de oscillationer (14.7)	44
		14.6.1 I	Forskydningen af oscillator med dæmpning	44
		14.6.2 V	Vinkelfrekvens af en dæmpet oscillation	44
		14.6.3 A	Amplitude af dæmpet oscillation	44
	14.7	Tvungn	e oscillationer og resonans (14.8)	44
		14.7.1 A	Amplitude af tvungen oscillation	45
15	Mek	aniske l	bølger	46
	15.1	Periodis	ke bølger og matematiske beskrivelser heraf (15.2-15.3)	46
		15.1.1 I	Bølgehastighed for periodiske bølger	46
		15.1.2 I	Bølgefunktion for en bølge givet vinkel- og bølgehastighed	46
		15.1.3 I	Bølgefunktion for en bølge givet bølgelængde og periode	46
		15.1.4 I	Bølgefunktion givet bølgetal og vinkelhastighed	46
		15.1.5 I	Bølgeligningen	47
	15.2	Hastighe	eden af en transversal bølge (15.4)	47
		15.2.1 I	Hastigheden af en transversal bølge på en snor	47
		15.2.2 I	Hastigheden af en mekanisk bølge	47
	15.3	Energi i	en bølge (15.5)	47
		15.3.1	Gennemsnitseffekten for en sinusoidal bølge på en snor	47
		15.3.2 I	Den omvendte kvadratlov (Eng: Inverse square law)	47
	15.4	Interfere	ens, grænsebetingelser og superposition (15.6)	48
		15.4.1	Superpositionsprincippet	48
	15.5	Stående	bølger på en snor og en snors normalmoder (15.7-15.8)	48
		15.5.1 I	Bølgefunktionen for en stående bølge på en snor	48
		15.5.2 I	En streng fastspændt i begge enders normalmoder	48
		15.5.3 I	Fundamentalfrekvensen for en streng fastspændt i begge ender	48

16 Mekanik i ikke-inertial systemer	49
16.1 Acceleration uden rotation	. 49
16.1.1 Inertialkraftens størrelse	. 49
16.2 Vinkelhastighedsvektoren	. 49
16.2.1 Tangentiel hastighed fra radius og vinkelhastighed	. 49
16.2.2 Sammenhæng mellem afledede i inertial- og ikke-inertialsystemer	. 49
16.3 Newtons 2. lov for et roterende referencesystem	. 49
16.3.1 Korioliskraften	. 49
16.3.2 Centrifugalkraften	. 49
17 Grundlæggende og afledte SI-enheder	50
17.1 SI-prefixer	. 50
17.2 De 7 grundlæggende SI-enheder	. 50
17.3 De 22 afledte SI-enheder	. 51
17.4 Andre hyppigt brugte enheder	. 51
18 Almindelige trigonometriske identiteter	52
18.1 Omregning mellem grader og radianer	. 52
18.1.1 Grader til radianer	. 52
18.1.2 Radianer til grader	. 52
18.2 Omregning mellem trigonometriske funktioner	. 52
18.3 Den pythagoræiske identitet (idiotformlen)	. 52
18.4 Eksakte værdier af de trigonometriske funktioner	. 52
18.5 Sammenligning af vinkler	. 54
19 Hyppigt brugte symboler til kopiering	55

1 Enheder, fysiske størrelser og vektorer

1.1 Vektorprodukter (1.10)

1.1.1 Skalarproduktet

Lad \vec{A} og \vec{B} være to vektorer. Prikproduktet $\vec{A} \cdot \vec{B}$ er da defineret som

$$\vec{A} \cdot \vec{B} = AB\cos\phi = \left| \vec{A} \right| \left| \vec{B} \right| \cos\phi$$

Hvor A og $|\vec{A}|$ er størrelsen af \vec{A} , B og \vec{B} er størrelsen af \vec{B} og ϕ er vinklen mellem de to vektorer, hvis de lægges så deres "startpunkter" er sammenfaldende. For $0^{\circ} < \phi < 90^{\circ}$ er skalarproduktet positivt mens det for $90^{\circ} < \phi < 180^{\circ}$ er negativt – for $\phi = 90^{\circ}$ er skalarproduktet 0.

Skalarproduktet kan også skrives som

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z.$$

Hvor $\vec{A} = (A_x, A_y, A_y)$ og $\vec{B} = (B_x, B_y, B_z)$.

1.1.2 Krydsproduktet

Lad \vec{A} og \vec{B} være to vektorer. Krydsproduktet $\vec{A} \times \vec{B}$ er da defineret som

$$\left| \vec{C} \right| = \left| \vec{A} \right| \left| \vec{B} \right| \sin \phi.$$

Hvor $|\vec{C}|$ er længden af den resulterende vektor som fås fra krydsproduktet. $|\vec{A}|$ og $|\vec{B}|$ er længden af hhv. \vec{A} og \vec{B} mens ϕ er vinklen mellem de to vektorer, hvis de lægges så deres "startpunkter" er sammenfaldende.

Komposanterne til den resulterende vektor af krydsproduktet $\vec{C} = (C_x, C_y, C_z)$ kan findes som

$$C_x = A_y B_z - A_z B_y$$
, $C_y = A_z B_z - A_x B_z$, $C_z = A_x B_y - A_y B_x$.

Hvor $\vec{A} = (A_x, A_y, A_y)$ og $\vec{B} = (B_x, B_y, B_z)$.

2 Bevægelse langs en ret linje

Givet	Ønsker at finde	Relevante formler
Strækning og tid	Hastighed	2.1.1 – Gennemsnitlig hastighed
Strækning og tid		2.1.2 – Øjeblikshastighed
Hastighed og tid	Acceleration	2.2.1 – Gennemsnitlig acceleration
mastigned og tid	Acceleration	2.2.2 – Øjebliksacceleration
Konstant acceleration, starthastighed, tid	Sluthastighed	2.3.1
Konstant acceleration, tid, starthastighed, startposition	Slutposition	2.3.2
Acceleration, starthastighed, tid	Sluthastighed	2.4.1
Hastighed, startposition, tid	Slutposition	2.4.2

2.1 Strækning, tid og hastighed (2.1-2)

2.1.1 Gennemsnitlig hastighed

Den gennemsnitlige hastighed er givet som ændringen i strækning $\Delta x = x_2 - x_1$ over ændringen i tid $\Delta t = t_2 - t_1$. Altså har vi at

$$v_{av_x} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}.$$

2.1.2 Øjeblikshastighed (Eng. Instantaneous velocity)

Øjeblikshastigheden i x-retningen v_x er givet ved den gennemsnitlige hastighed når $\Delta \to 0$. Altså

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t}.$$

2.2 Acceleration (2.3)

2.2.1 Gennemsnitlig acceleration

Vi betragter en partikel der bevæger sig langs x-aksen. Lad P_1 angive et punkt hvor partiklen har hastighed v_{1x} til tiden t_1 og P_2 angive et tilsvarende punkt hvor partiklen istedet har hastigheden v_{2x} til tiden t_2 . Idet partiklen bevæger sig fra P_1 til P_2 på $\Delta t = t_2 - t_1$ og ændrer sin hastighed med $\Delta v_x = v_{2x} - v_{1x}$ så er den gennemsnitlige acceleration givet som

$$a_{av_x} = \frac{\Delta v_x}{\Delta t} = \frac{v_{2x} - v_{1x}}{t_2 - t_1}.$$

2.2.2 Øjebliksacceleration (Eng. Instantaneous acceleration)

Øjebliksaccelerationen i x-retningen a_x er defineret som den gennemsnitlige acceleration når $\Delta t \to 0$. Altså

$$a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{\mathrm{d}v_x}{\mathrm{d}t}.$$

2.3 Bevægelse med konstant acceleration

2.3.1 Hastighed ved konstant acceleration

Vi betragter en partikel, der bevæger sig langs x-aksen. Lad v_{0x} være partiklens hastighed til t = 0, a_x være partiklens konstante acceleration og t være tiden. Hastigheden i x-retningen v_x til tiden t er da givet som

$$v_x = v_{0x} + a_x t.$$

Har man i stedet fået givet to punkter x og x_0 men ingen tid t kan følgende formel benyttes i stedet

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0).$$

2.3.2 Position ved konstant acceleration

Vi betragter en partikel, der bevæger sig langs x-aksen. Lad x_0 være partiklens position til t = 0, v_{0x} være partiklens hastighed til t = 0, a_x være partiklens konstante acceleration og t være tiden. Positionen af partiklen til tiden t er da givet som

$$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2.$$

Har man ikke fået opgivet den konstante acceleration a_x men i stedet en start og en sluthastighed v_{0x} og v_x kan følgende formel benyttes

$$x - x_0 = \frac{1}{2}(v_{0x} + v_x)t.$$

Her er det værd at bemærke at formlen ovenfor kun kan benyttes for konstant acceleration, dette gælder selvom denne acceleration ikke er givet.

2.4 Hastighed og position ved integration (2.6)

2.4.1 Hastighed som integralet af acceleration

Har man fået oplyst en funktion a_x der beskriver accelerationen som funktion af tid samt en initialhastighed v_{0x} kan hastigheden v_x til tiden t findes som

$$v_x = v_{0x} + \int_0^t a_x \, \mathrm{d}t.$$

2.4.2 Position som integralet af hastighed

Har man fået oplyst en funktion v_x der beskriver hastigheden som funktion af tid samt en initialposition x_0 kan positionen x til tiden t findes som

$$x = x_0 + \int_0^t v_x \, \mathrm{d}t.$$

3 Bevægelse i to eller tre dimensioner

Givet	Ønsker at finde	Relevante formler
Ctroling og tid	Hastighed	3.1.1 – Gennemsnitlig hastighed
Strækning og tid	Trastigned	3.1.2 – Øjeblikshastighed
Hastighed og tid	Acceleration	2.2.1 – Gennemsnitlig acceleration
Hastighed og tid	Acceleration	2.2.2 – Øjebliksacceleration
Hastighed	Hastighedskomposanter	3.1.3
Hastighedskomposanter	Hastighed	3.1.4
Hastighed, tid	acceleration	3.2.1 – Gennemsnitlig acceleration
Hastighed, tid	acceleration	3.2.2 – Øjebliksacceleration
Acceleration	Accelerationskomposanter	3.2.3
Accelerationskomposanter	Acceleration	3.2.4
Kastevinkel, starthastighed, tid	Kasteafstand	3.3.1
Starthastighed, kastevinkel, tid	Kastehøjde	3.3.2
Starthastighed, kastevinkel	Horisontal hastighed	3.3.3
Starthastighed, kastevinkel, tid	Vertikal hastighed	3.3.4
Hastighed, radius	Centripetalacceleration	3.4.1
Hastighed ift. to reference systemer	Relativ hastighed	3.5.1

3.1 Hastighedsvektorer (3.1)

3.1.1 Gennemsnitshastigshedsvektor (Eng. Average velocity vector)

På samme måde som i **2.1.1: Gennemsnitlig hastighed** kan vi finde gennemsnitshastighedsvektoren $\vec{v_{av}}$ som kvotienten mellem ændringen i positionsvektoren $\Delta \vec{r}$ og ændringen i tid Δt . Altså

$$\vec{v}_{\rm av} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r_2} - \vec{r_1}}{t_2 - t_1}.$$

3.1.2 Øjeblikshastighedsvektor (Eng. instantaneous velocity vector)

På samme måde som i 2.1.2: Øjeblikshastighed (Eng: Instantaneous velocity) kan vi finde øjeblikshastighedsvektoren \vec{v} som kvotienten mellem ændringen i positionsvektoren $\Delta \vec{r}$ og ændringen i tid Δt når $\Delta t \to 0$. Altså

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}.$$

3.1.3 Hastighedskomposanter

Hastigheden i en given retning er blot ændringen i position i denne retning over tid. Altså

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t}, v_y = \frac{\mathrm{d}y}{\mathrm{d}t}, v_z = \frac{\mathrm{d}z}{\mathrm{d}t}.$$

3.1.4 Størrelsen af hastighedsvektoren fra komposanter

Givet størrelen på komposanterne, (v_x, v_y, v_z) til hastighedsvektoren \vec{v} kan størrelsen af hastighedsvektoren $|\vec{v}|$ findes med Pythagoras som

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}.$$

3.2 Accelerationsvektorer (3.2)

3.2.1 Gennemsnitsaccelerationsvektor (Eng. Average acceleration vector)

På samme måde som i **2.2.1: Gennemsnitlig acceleration** kan vi finde gennemsnitsaccelerationsvektoren $\vec{a_{av}}$ som kvotienten mellem ændringen i hastighedsvektoren $\Delta \vec{v}$ og ændringen i tid Δt . Altså

$$\vec{a}_{\rm av} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v_2} - \vec{v_1}}{t_2 - t_1}.$$

3.2.2 Øjebliksaccelerationssvektor (Eng. instantaneous acceleration vector)

På samme måde som i 2.2.2: Øjebliksacceleration (Eng: Instantaneous acceleration) kan vi finde øjebliksaccelerationsvektoren \vec{a} som kvotienten mellem ændringen i hastighedsvektoren $\Delta \vec{v}$ og ændringen i tid Δt når $\Delta t \to 0$. Altså

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}.$$

3.2.3 Accelerationskomposanter

Accelerationen i en given retning er blot ændringen i position i denne retning over tid. Altså

$$a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t}, a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t}, a_z = \frac{\mathrm{d}v_z}{\mathrm{d}t}.$$

3.2.4 Størrelsen af accelerationsvektoren fra komposanter

Givet størrelen på komposanterne, (a_x, a_y, a_z) til accelerationsvektoren \vec{a} kan størrelsen af accelerationsvektoren $|\vec{a}|$ findes med Pythagoras som

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}.$$

3.3 Det skrå kast (Eng. Projectile motion) (3.3)

3.3.1 Afstand ved skråt kast

Givet en initialhastighed v_0 , en kastevinkel α_0 og en tid t kan den tilbagelagte horisontale afstand for et skråt kast findes som

$$x = (v_0 \cos \alpha_0)t$$
.

3.3.2 Højde ved skråt kast

Givet en initialhastighed v_0 , en kastevinkel α_0 kan højden y til tiden t findes som

$$y = (v_0 \sin \alpha_0)t - \frac{1}{2}gt^2.$$

3.3.3 Horisontal hastighed ved skråt kast

Givet en initalhastighed v_0 og en kastevinkel α_0 kan hastigheden i x-retningen v_x findes som

$$v_x = v_0 \cos \alpha_0$$
.

3.3.4 Vertikal hastighed ved skråt kast

Givet en initialhastighed v_0 og en kastevinkel α_0 kan den vertikale hastighed v_y til tiden t findes som

$$v_y = v_0 \sin \alpha_0 - gt.$$

3.4 Bevægelse i en cirkel (3.4)

3.4.1 Acceleration for uniform cirkulær bevægelse – (Centripetalacceleration)

Idet et objekt i cirkulær bevægelse er nødt til konstant at ændre sin bevægelsesretning for at følge cirkelbevægelsen rundt. Dette betyder at objektet er nødt til at have en acceleration selvom størrelsen på dens hastighed ikke ændrer sig. Denne acceleration kaldes centripetalaccelerationen a_{rad} og kan findes ud fra en given hastighed v og radiussen af cirkelbevægelsen R som

$$a_{rad} = \frac{v^2}{R}.$$

Idet hastigheden kan findes ud fra radiussen R og perioden T som

$$v = \frac{2\pi R}{T}$$

kan centripetalaccelerationen findes som

$$a_{rad} = \frac{4\pi^2 R}{T^2}.$$

3.5 Relativ hastighed (3.5)

3.5.1 Den gallilæiske hastighedstransformation (Eng. The Galilean velocity transformation)

Givet et objekt P's hastighed, i forhold til et referencesystem B, $\vec{v}_{P/B}$ og referencesystem B's hastighedm i forhold til et andet referencesystem A, $\vec{v}_{B/A}$ kan objektet P's hastighed i forhold til A findes som

$$\vec{v}_{P/A} = \vec{v}_{P/B} + \vec{v}_{B/A}.$$

4 Newtons bevægelseslove

4.1 Krafter og interaktioner (4.1)

4.1.1 Den resulterende kraft

For et legeme påvirket af kræfter kan den samlede kraftpåvirkning $\vec{F_{res}}$ findes som summen af af de andre påvirkende kræfter $\vec{F_1}, \vec{F_2}, \vec{F_3}, \dots$ som

$$\vec{F}_{\rm res} = \sum \vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots$$

4.2 Newtons love (4.2-4.5)

4.2.1 Newtons 1. lov

Newtons 1. lov siger, at et objekt der bliver påvirket af $F_{res} = 0$ har en acceleration a = 0. Dette kan også formuleres som, at et objekt i ligevægt har en samlet kraftpåvirkning på 0. Altså

$$\sum \vec{F} = 0.$$

4.2.2 Newtons 2. lov

Newtons 2. lov foreskriver at der er ligefrem proportionalitet mellem accelerationen og den resulterende kraft som forårsager accelerationen. Proportionalitetsfaktoren vil da være objektets masse m. Desuden bemærker Newtons 2. lov, at retningen på accelerationen vil være den samme som retningen for den resulterende kraft. Altså

$$\sum \vec{F} = m\vec{a}.$$

4.2.3 Newtons 2. lov med komposanter

Newtons 2. lov gælder uafhængigt i alle bevægelsesretninger – den del af kraften der skubber i en given retning er proportionel med accelerationen i samme retning. Vi har altså

$$\sum F_x = ma_x, \qquad \sum F_y = ma_y, \qquad \sum F_z = ma_z.$$

4.2.4 Newtons 3. lov

Newtons 3. lov foreskriver, at hvis et objekt A yder en kraft på et objekt B (en aktion) så vil objekt B udøve en tilsvarende men modsatrettet kraft på objekt A (en reaktion). Altså

$$\vec{F}_{A/B} = -\vec{F}_{B/A}.$$

5 Anvendelse af Newtons love

Givet	Ønsker at finde	Relevante formler
Masse, acceleration	Kraft	5.2
Normalkraft, friktionskoefficient	Frilstianskraft	5.3.1 – Kinetisk Friktion
Normarkian, miktionskoemeient	FIRTIONSKIAIT	5.3.2 – Statisk Friktion
Hastighed, radius	Centripetalacceleration	5.4
masse, hastighed, radius	Centripetalkraft	5.4

5.1 Newtons 1. lov som komposanter på partikler i ligevægt (5.1)

Newtons 1. lov foreskriver at for et objekt i ligevægt fås

$$\sum \vec{F} = 0.$$

Denne kan deles op i komposanter som

$$\sum F_x = 0, \qquad \sum F_y = 0.$$

På den måde kan problemet i mange tilfælde reduceres til noget mere simpelt, idet man nu blot kan sørge for at der er ligevægt i hver retning enkeltvist.

5.2 Newtons 2. lov som komposanter på partikler i bevægelse (5.2)

Newtons 2. lov foreskriver at der for et objekt gælder at

$$\sum \vec{F} = m\vec{a}.$$

Denne kan deles op i komposanter som

$$\sum F_x = ma_x, \qquad \sum F_y = ma_y.$$

På den måde kan problemet i mange tilfælde reduceres til noget mere simpelt, idet man nu blot kan regne accelerationen eller kræfterne i hver retning enkeltvist.

5.3 Friktionskrafter (5.3)

5.3.1 kinestisk friktionskraft

Givet størrelsen på normalkraften N og en kinetisk friktionskoefficient μ_k kan den kinetiske friktionskraft f_k for et objekt i bevægelse findes som

$$f_k = \mu_k N$$
.

5.3.2 Statisk friktionskraft

Givet størrelsen på normalkraften N og en statisk friktionskoefficient N kan den maksimale statiske friktionskraft $(f_s)_{max}$ findes som

$$(f_s)_{max} = \mu_s N.$$

Størrelsen på den faktiske friktionskraft f_s vil netop modvirke enhver kraftpåvirkning indtil komposanten af kraftpåvirkning der går parallelt med overfladen mellem objektet som kraftpåvirkningen udføres på od underlaget når $(f_s)_{max}$. Altså

$$f_s \leq (f_s)_{max} = \mu_s N.$$

Den faktiske statiske friktionskraft f_s kan antage alle værdier mellem 0 og $(f_s)_m ax$ afhængigt af størrelsen på den kraft som friktionskraften skal modvirke.

5.4 Kræfter i cirkelbevægelse (Eng. Dynamics of circular motion) (5.4)

Fra 3.4.1: Acceleration for uniform cirkulær bevægelse – (Centripetalacceleration) har vi at centripetalaccelerationen a_{cp} i jævn cirkelbevægelse er givet som

$$a_{cp} = \frac{v^2}{R}.$$

Vha. Newtons 2. lov kan den tilsvarende centripetalkraft F_{cp} i jævn cirkelbevægelse da findes som

$$F_{cp} = ma_{cp} = m\frac{v^2}{R}.$$

6 Arbejde og kinetisk energi

Givet	Ønsker at finde	Relevante formler
Kraft, strækning, (vinkel)	Arbejde	6.1.1 - 1 dimension
Krait, strækning, (vinker)		6.1.2 – flere dimensioner
Masse, hastighed	Kinetisk energi	6.1.3
Forskel mellem kinetiske energier	Arbejde	6.1.4
Kraft, strækning	Arbejde	6.2.1
Kraft, strækning, vinkel	Arbejde	6.2.2
Ændring i arbejde, tid	Effekt	6.3.1 – gennemsnitseffekt
Endring rarbejde, tid		6.3.2 – øjeblikseffekt
Kraft, hastighed	Effekt	6.3.2

6.1 Arbejde af konstante kræter (6.1-6.2)

6.1.1 Arbejde i 1 dimension

Arbejdet W udført af en konstant kraft F over en strækning s kan findes som

$$W = Fs$$
.

6.1.2 Arbejde i flere dimensioner

Arbejdet W udført af en konstant kraft F over en strækning s med en vinkel ϕ mellem F og s er

$$W = Fs\cos\phi$$
.

Dette er i øvrigt det samme som prikproduktet mellem kraft-vektoren \vec{F} og strækningsvektoren \vec{s} . Altså

$$W = \vec{F} \cdot \vec{s}$$
.

6.1.3 Kinetisk energi

Den kinetiske energi K af et objekt med masse m og hastighed v kan findes som

$$K = \frac{1}{2}mv^2.$$

6.1.4 Arbejde-energi-teoremet

Arbejde-energi-teoremet lyder, at arbejdet W_{tot} udført af den resulterende kraft på en partikel tilsvarer ændringen i partiklens energi ΔK . Altså

$$W_{tot} = \Delta K = K_2 - K_1.$$

Dette betyder bl.a. at den kinetiske energi af en partikel netopsvarer til alt det arbejde der er udført på partiklen siden stilstand.

6.2 Arbejde og energi for variable kræfter (6.3)

6.2.1 Arbejde af variabel kraft

For en 1-dimensional variabel kraft F_x , der virker fra x_1 til x_2 er det totale arbejde udført af kraften givet som

 $W = \int_{x_1}^{x_2} F_x \, \mathrm{d}x.$

Det ses også at såfremt kraften er konstant simplificeres udtrykket ovenfor til arbejdet for en konstant kraft

$$W = \int_{x_1}^{x_2} F_x \, \mathrm{d}x = F_x \int_{x_1}^{x_2} \, \mathrm{d}x = F_x (x_2 - x_1).$$

6.2.2 Arbejde-energi-teoremet for bevægelse langs en kurve

Givet en partikel der bevæger sig langs en kurve fra P_1 til P_2 kan kurven deles op i en række små forskydninger d \vec{I} . Kaldes kraften ved hver lille forskydning d \vec{I} for \vec{F} og vinklen mellem \vec{F} og d \vec{I} for ϕ kan det totale arbejde findes som

 $W = \int_{P_1}^{P_2} \vec{F} \cdot d\vec{I} = \int_{P_1}^{P_2} F \cdot \cos \phi \, dI.$

6.3 Effekt (6.4)

6.3.1 Gennemsnitseffekt

Givet en ændring i arbejde ΔW og en ændring i tid Δt kan den gennemsnitlige effekt af arbejdet $P_{avg.}$ findes som

 $P_{avg.} = \frac{\Delta W}{\Delta t}.$

6.3.2 Øjeblikseffekt

For en ændring i arbejde ΔW og en ændring i tid Δt kan øjeblikseffekten P findes som

$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{\mathrm{d}W}{\mathrm{d}t}.$$

For en kraft \vec{F} der udfører et arbejde på en partikel med en hastighed \vec{v} kan øjeblikseffekten i øvrigt findes som

 $P = \vec{F} \cdot \vec{v}.$

7 Potentiel energi og energikonservation

Givet	Ønsker at finde	Relevante formler
Masse, højde	Potentiel energi for tyngdekraft	7.1
masse, højdeforskel	Tyngdekraftens arbejde	7.1.1
		7.1.2 – i tyngdefelt
Kinetisk- og potentiel energiforskel	Energikonservation	7.2.3 – inkl. eksterne kræfter
		7.3.1 – ændringer lig 0
Fjederkonstant, udstrækning	Potentiel energi i fjeder	7.2.1
Forskel i potentiel energi i fjeder	Arbejdet af en fjeder	7.2.2
Potentiel energi	Kraft	7.4.1 - 1 dimension
		7.4.2 - 3 dimensioner

7.1 Gravitationel potentiel energi (7.1)

Betragtes en partikel kun udsat for en tyngdekraft kan dens samlede energi findes som

$$U_{grav} = mgy.$$

Hvor m er partiklens masse, g er tyngdeaccelerationen og y er den vertikale afstand af partiklen.

7.1.1 Tyngdekraftens arbejde

Givet en partikels masse m, tyngde
accelerationen g starthøjden y_1 og sluthøjden y_2
kan det samlede arbejde udført af tyngdefeltet findes som

$$W_{grav} = mgy_1 - mgy_2 = U_{grav,1} - U_{grav,2} = -\Delta U_{grav}$$

7.1.2 Energikonservation i et tyngdefelt

Såfremt kun tyngdekraften yder et arbejde på en partikel er mekanisk energi konserveret, altså

$$K_1 + U_{grav,1} = K_2 - U_{grav,2} \implies \frac{1}{2} m v_1^2 + m g y_1 = \frac{1}{2} m v_2^2 + m g y_2.$$

Hvor m er partiklens masse, v_1 og v_2 er henholdsvis partiklens start- og sluthastighed, g er tyngdeaccelerationen og y_1 og y_2 er henholdsvis partiklens start- og sluthøjde.

7.2 Elastisk potentiel energi (7.2)

7.2.1 Elastisk potentiel energi

Givet fjederkonstanten k og forskydningen af en fjeder x (x > 0 for en udstrakt fjeder og x < 0 for en sammenpresset fjeder) kan den elastiske potentielle energi lagret i fjederen findes som

$$U_{el} = \frac{1}{2}kx^2.$$

7.2.2 Arbejdet udført af den elastiske kraft

Arbejdet udført af den elastiske kraft er på mange måder parallelt med 7.1.1: Tyngdekraftens arbejde idet arbejdet udført af den elastiske kraft kan findes som

$$W_{el} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2 = U_{el,1} - U_{el,2} = -\Delta U_{el}.$$

Hvor k er fjederkonstanten og x er fjederens forskydning (x > 0 for en udstrakt fjeder og x < 0 for en sammenpresset fjeder).

7.2.3 Mekanisk energibevarelse med arbejde fra andre kræfter

Mekanisk energibevarelse foreskriver at

$$K_1 + U_1 + W_{other} = K_2 + U_2.$$

Hvor K_1 og K_2 er hhv. start- slut-kinetisk energi, U_1 og U_2 er start- og slut-potentiel energi og W_{other} er arbejdet udført af alle kræfter der ikke er associeret med den potentielle energi. Altså er arbejdet udført af alle andre kræfter end tyngdekraften og den elastiske kraft lig ændringen i mekanisk energi.

7.3 Konservative og ikke-konservative kræfter (7.3)

7.3.1 Konservation af energi

Energikonservationsloven foreskriver at

$$\Delta K + \Delta U + \Delta U_{int} = 0.$$

Hvor ΔK er ændringen i kinetisk energi, ΔU er ændringen i potentiel energi og ΔU_{int} er ændringen i indre energi. Det gælder generelt at energi er konserveret for lukkede systemer, hvor der kun virker konservative kræfter. Konservative kræfter (tyngdekraften, fjederkraften, elektromagnetiske kræfter) er alle kræfter der er stiuafhængige.

7.4 Kraft og potentiel energi (7.4)

7.4.1 Kraft fra potentiel energi i en dimension

Givet en potentiel-energi funktion i en dimension U(x) kan den associerede kraft findes som

$$F_x(x) = -\frac{\mathrm{d}U(x)}{\mathrm{d}x}.$$

Resultatet ovenfor gælder kun for konservative kræfter (tyngde-, fjeder- eller elektromagnetisk-kraft). For eksempelvis fjederkraften ses dog også at resultatet holder idet

$$F_x(x) = -\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{2} kx^2 = -kx.$$

7.4.2 Kraft fra potentiel energi i 3 dimensioner

Analogt med resultatet fra 7.4.1: Kraft fra potentiel energi i en dimension kan det vises at komposanterne for en konservativ kraft $(F_x, F_y \text{ og } F_z)$ kan findes som den negative partielt afledede til det punkt af den

associerede potentiel-energi-funktion (U(x,y,z)) som

$$F_x = -\frac{\partial U}{\partial x}, \qquad F_y = -\frac{\partial U}{\partial y} \qquad F_z = -\frac{\partial U}{\partial z}.$$

Dette kan også skrives som et samlet udtryk for \vec{F} som

$$\vec{F} = -\left(\frac{\partial U}{\partial x}\hat{\imath} + \frac{\partial U}{\partial y}\hat{\jmath} + \frac{\partial U}{\partial z}\hat{k}\right) = -\vec{\nabla}U.$$

8 Impuls, kraftimpuls og kollisioner

Givet	Ønsker at finde	Relevante formler
Masse, hastighed	Impuls	8.1.1
Impuls	Kraft	8.1.2
Kraft, ændring i tid	Kraftimpuls	8.2
Ændring i impuls	Kraftimpuls	8.2
Række af impulser	Totalimpuls	8.3.1
Masse og hastighed af to objekter	Samlet hastighed efter	8.4.1
før inelastisk kollision	inelastisk kollision	0.4.1
Masse og hastighed af to objekter	Masse og hastighed af de to	8.5
før elastisk kollision	objekter efter elastisk kollision	0.0
Masser, afstande	Massemidtpunkt	8.6.1
Masser, hastigheder	Impuls	8.6.2
Masse, acceleration af massemidtpunkt	Summen af eksterne kræfter	8.6.3

8.1 Impuls og kraftimpuls (8.1)

8.1.1 En partikels impuls

Givet en partikels masse m og dens hastighedsvektor \vec{v} kan impulsvektoren \vec{p} findes som

$$\vec{p} = m\vec{v}$$
.

8.1.2 Newtons 2. lov for impuls

Det gælder at

$$\sum \vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}.$$

Hvor \vec{F} er kræfterne der virker på partiklen og $\frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$ er ændringen i impuls over tid.

8.2 Kraftimpuls-impuls teoeremet

Betragtes en partikel der kun påvirkes af en konstant ekstern kraft $\sum \vec{F}$ over et tidsinterval $\Delta t = t_2 - t_1$ kan kraftimpultsen \vec{j} af de eksterne kræfter findes som

$$\vec{\jmath} = \sum \vec{F}(t_2 - t_1) = \sum \vec{F} \Delta t.$$

Det ovenstående kan også skrives som

$$\vec{j} = \vec{p_2} - \vec{p_1} = \Delta \vec{p}.$$

Hvor hhv. $\vec{p_2}$ og $\vec{p_1}$ er slut- og start-impulsen.

Det ovenstående kan også skrives som

$$\vec{\jmath} = \int_{t_1}^{t_2} \sum \vec{F} \, \mathrm{d}t.$$

8.3 Impulskonservation (8.2)

Generelt gælder, at når summen af eksterne kræfter på et system er 0 så er impuls konserveret.

8.3.1 Totalimpuls for et system af partikler

Givet impulsen for alle partikler i et lukket system $\vec{p_A}, \vec{p_B} \dots$ kan den samlede impuls i systemet findes som

$$\vec{P} = \vec{p}_{A} + \vec{p}_{B} + \ldots = m_{A}\vec{v}_{A} + m_{B}\vec{v}_{B} + \ldots$$

8.4 Impulskonservation og kollisioner (8.3)

Elastiske kollisioner er alle kollisioner, hvor der ikke tabes mekanisk energi (tænk to billiard- eller marmorkugler der kolliderer). Inelastiske kollisioner er alle kollisioner, hvor den mekaniske energi falder (komplet uealstisk vil medføre at de to kolliderende objekter sidder sammen efter kollisionen).

8.4.1 Impulskoknservation i en komplet inelastisk kollision

Eftersom de to objekter sidder sammen efter en inelastisk kollision har vi at

$$\vec{v}_{A2} = \vec{v}_{B2} = \vec{v}_2.$$

Impulskonservation foreskriver da at

$$m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = (m_A + m_B) \vec{v}_2.$$

8.4.2 Restitutionskoefficienten

For et stød gælder at resitutionskoefficienten e kan findes som

$$e = -\frac{v_{2f} - v_{1f}}{v_{2i} - v_{1i}}.$$

Hvor v_{1i} og v_{1f} er hastigheden af objekt 1 hhv. før- og efter kollisionen og v_{2i} og v_{2f} er objekt 2's ditto. For elastiske kollisioner er e = 1 og for uelastiske kollisioner er e = 0 for fuldstædigt uelastiske kollisioner.

8.5 Elastiske kollisioner (8.4)

For en elastisk kollision i 1 dimension giver konservation af kinetisk energi at

$$\frac{1}{2}m_{A}v_{A1x}^{2} + \frac{1}{2}m_{B}v_{B1x}^{2} = \frac{1}{2}m_{A}v_{A2x}^{2} + \frac{1}{2}m_{B}v_{B2x}^{2}$$

og konservation af impuls giver at

$$m_A v_{A1x} + m_B v_{B1x} = m_A v_{A2x} + m_B v_{B2x}.$$

Dermed kan sluthastighederne v_{A2x} og v_{B2x} findes såfremt initialhastighederne v_{A1x} og v_{B1x} og masserne m_A og m_B er kendt.

8.6 Massemidtpunkt (8.5)

8.6.1 Massemidtpunktet for et system af partikler

Er masserne m_1, m_2, m_3, \ldots og stedvektorerne $\vec{r_1}, \vec{r_2}, \vec{r_3}, \ldots$ for en række partikler kendt kan deres fælles massemidtpunkt findes som

$$\vec{r}_{\rm cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3 + \dots}{m_1 + m_2 + m_3 + \dots} = \frac{\sum_i m_i \vec{r}_i}{\sum_i m_i}.$$

8.6.2 Massemidtpunktets bevægelse

Udtrykket fra 8.6.1: Massemidtpunktet for et system af partikler kan omskrives til

$$M\vec{v}_{cm} = m_1\vec{v}_1 + m_2\vec{v}_2 + m_3\vec{v}_3 + \ldots = \vec{P}.$$

Hvor M er den totale masse af alle partiklerne i systemet, $\vec{v_{cm}}$ er massemidtpunktets hastighedsvektor, m_1, m_2, m_3, \ldots er masserne af de individuelle partikler, $\vec{v_1}, \vec{v_2}, \vec{v_3}, \ldots$ er hastighedsvektorerne til de individuelle partikler og \vec{P} er systemets totale impuls.

8.6.3 Eksterne kræfter der virker på en samling af partikler eller et objekt

Det gælder at

$$\sum \vec{F_{\text{ext}}} = M \vec{a_{\text{cm}}}.$$

Hvor $\sum \vec{F}_{\text{ext}}$ er summen af de eksterne kræfter, der virker på et objekt eller en gruppe af partikler, M er totalmassen af objektet eller gruppen af partikler og \vec{a}_{cm} er accelerationen af objektets eller gruppen af partiklers massemidtpunkt.

Altså har vi at når et objekt eller en gruppe af partikler bliver påvirket af en elelr flere eksterne kræfter bevæger massemidtpunktet sig som om al massen var koncentreret netop i det punkt og blev påvirket af en kraft der svarer til summen af alle de eksterne kræfter der virker på systemet.

9 Rotation af rigide legemer

Givet	Ønsker at finde	Relevante formler
Ændring i vinkel, ændring i tid	Vinkelhastighed	9.1.1 – Gennemsnitsvinkelhastighed 9.1.2 – Øjebliksvinkelhastighed
Ændring i vinkelhastighed, ændring i tid	Vinkelacceleration	9.1.3 – Gennemsnitsvinkelacceleration 9.1.4 – Øjebliksvinkelacceleration
Initial vinkelhastighed, vinkelacceleration, tid	Vinkelhastighed	9.2.1
Initial- og slutvinkelhastighed, tid, startvinkel	Vinkel	9.2.2
Initialvinkel, initialvinkelhastighed, tid, vinkelacceleration	Vinkel	9.2.3
Initialvinkelhastighed, vinkelacceleration, initialog slutvinkel	Vinkelhastighed	9.2.4
Radius, vinkelhastighed	Tangential hastighed	9.3.1
Radius, vinkelacceleration	Tangentiel acceleration	9.3.2
Radius, vinkelhastighed	Radiel acceleration	9.3.3
Masser, afstande	Inertimoment for et legeme	9.4.1
Inertimoment, vinkelhastighed	Rotationel kinetisk energi	9.4.2
Form	Inertimoment	9.4.3
Inertimoment, masse, afstand til ny omdrejningsakse	Inertimoment om ny (parallel) omdrejningsakse	9.5

9.1 Vinkelhastighed og -acceleration (9.1)

9.1.1 Gennemsnitlig vinkelhastighed

Analogt med 2.1.1: Gennemsnitlig hastighed kan den gennemsnitlige vinkelhastighed ω_{av-z} , idet start- og slutvinklen i radianer θ_1 og θ_2 same start- og sluttidspunktet t_1 og t_2 er kendt, findes som

$$\omega_{av-z} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}.$$

9.1.2 Øjebliksvinkelhastighed

Analogt med 2.1.2: Øjeblikshastighed (Eng
: Instantaneous velocity) kan øjebliksvinkelhastigheden ω_z findes som

$$\omega_z = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{\mathrm{d}\theta}{\mathrm{d}t}.$$

Hvor θ angiver vinklen i radianer og t er tiden.

9.1.3 Gennemsnitlig vinkelacceleration

På samme måde som i 9.1.1: Gennemsnitlig vinkelhastighed kan den gennemsnitlige vinkelacceleration α_{av-z} findes som

$$\alpha_{av-z} = \frac{\omega_{2z} - \omega_{1z}}{t_2 - t_1} = \frac{\Delta \omega_z}{\Delta t}.$$

Hvor ω_{1z} og ω_{2z} er hhv. start- og slutvinkelaccelerationen og t_1 og t_2 er start- og sluttiden.

9.1.4 Øjebliksvinkelacceleration

På samme måde som i 9.1.2: Øjebliksvinkelhastighed kan den øjeblikkelige vinkelacceleration α_z findes som

$$\alpha_z = \lim_{\Delta t \to 0} \frac{\Delta \omega_z}{\Delta t} = \frac{\mathrm{d}\omega_z}{\mathrm{d}t}.$$

Hvor ω_z er vinkelaccelerationen og t er tiden.

9.2 Rotation med konstant vinkelacceleration (9.2)

9.2.1 Vinkelhastighed efter tid med konstant vinkelacceleration

Givet initialvinkelhastigheden ω_{0z} , vinkelaccelerationen α_z samt tiden t kan vinkelhastigheden ω_z til tiden t findes som

$$\omega_z = \omega_{0z} + \alpha_z t.$$

9.2.2 Ændring i vinkel efter tid med konstant vinkelacceleration givet start- og slutvinkelhastighed

Givet initial- og slutvinkelhastigheden hhv. ω_{0z} og ω_z , tiden t og initialvinklen θ_0 kan vinklen θ til tiden t findes som

$$\theta = \frac{1}{2}(\omega_{0z} + \omega_z)t + \theta_0.$$

9.2.3 Ændring i vinkel efter tid med givet konstant vinkelacceleration

Givet startvinklen θ_0 , startvinkelhastigheden ω_{0z} og vinkelaccelerationen α_z kan vinklen θ til tiden t findes som

$$\theta = \theta_0 + \omega_{0z}t + \frac{1}{2}\alpha_z t^2.$$

9.2.4 Vinkelvastighed ved konstant vinkelacceleration givet start-vinkelhastighed, vinkelaccelerationen og start- og slutvinkel

Givet initialvinkelhastigheden ω_{0z} , vinkelaccelerationen α_z og start- og slutvinklen hhv. θ_0 og θ kan vinkelhastigheden ω_z findes som

$$\omega_z = \sqrt{\omega_{0z}^2 + 2\alpha_z(\theta - \theta_0)}.$$

9.3 Sammenhæng mellem lineær og rotationskinematik (9.3)

9.3.1 Tangentiel hastighed for punkt på roterende objekt

Givet vinkelhastigheden ω af et roterende objekt og afstanden r til rotationsaksen kan den tangentielle hastighed $v_{\rm tan}$ for ethvert punkt på det roterende objekt findes som

$$v_{\rm tan} = r\omega$$
.

9.3.2 Tangentiel acceleration for et roterende rigidt legeme

Den tangentielle acceleration $a_{\rm tan}$ kan findes som

$$a_{\rm tan} = \frac{\mathrm{d}v}{\mathrm{d}t} = r\frac{\mathrm{d}\omega}{\mathrm{d}t} = r\alpha.$$

Hvor v er hastigheden, r er afstanden til rotationsaksen, ω er vinkelhastigheden, t er tiden og α er vinkelaccelerationen

9.3.3 Centripetalacceleration

Centripetalaccelerationen til et givent punkt $a_{\rm rad}$ kan findes som

$$a_{\rm rad} = \frac{v_{\rm tan}^2}{r} = \omega^2 r.$$

Hvor $v_{\rm tan}$ er den tangentielle hastighed til det givne punkt, r er afstanden fra det givne punkt til rotationsaksen og ω er vinkelhastigheden til det givne punkt.

9.4 Energi for roterende bevægelse (9.4)

9.4.1 Inertimoment for et legeme om en given rotationsakse

Inertimomentet I for et legeme om en given rotationsakse kan findes som

$$I = m_1 r_1^2 + m_2 r_2^2 + \dots = \sum_i m_i r_i^2 = \int r^2 dm.$$

Hvor m_1, m_2, \ldots er masserne af partiklerne der indgår i legemet og r_1, r_2, \ldots er den vinkelrette afstand fra partiklerne til rotationsakserne.

9.4.2 Rotationel kinetisk energi

Givet inertimomentet I om en given omdrejningsakse og vinkelhastigheden ω om den givne omdrejningsakse kan den rotationelle kinetiske energi K om selvsamme omdrejningsakse findes som

$$K = \frac{1}{2}I\omega^2.$$

9.4.3 Inertimomenter for forskellige legemer

Følgende oversigt (Figur 1) over inertimomenter for forskellige legemer er hentet fra bogens side 285.

9.5 Parallel-akse-teoremet

Parallel-akse-teoremet foreskriver at

$$I_P = I_{\rm cm} + Md^2.$$

Hvor M er massen af legemet, I_P er inertimomentet for rotation gennem punktet P, I_{cm} er inertimomentet for en akse gennem legemets massemidtpunkt, der er parallel med aksen gennem P og d er afstanden fra massemidtpunktet til punktet P.

Figur 1: Inertimomenter for forskellige legemer

10 Rotationsdynamik

Givet	Ønsker at finde	Relevante formler
Kraft, "arm" eller vinkel og afstand	Kraftmomentets størrelse	10.1.1
Kraft, arm	Kraftmomentvektoren	10.1.2
Inertimoment, vinkelacceleration	Kraftmoment	10.2.1
Masse, hastighed af massemidtpunkt, inertimoment, vinkelhastighed	Kinetisk energi for legeme med rotationel og translatorisk bevægelse	10.3.1
Radius, vinkelhastighed (ingen glidning)	Hastighed	10.3.2
Kraftmoment, start- og slutvinkel	Arbejde udført af kraftmoment	10.4.1
Konstant kraftmoment, start- og slutvinkel	Arbejde udført af kraftmoment	10.4.2
Inertimoment, vinkelhastighed	Samlet arbejde	10.4.3
Kraftmoment, vinkelhastighed	Effekt	10.4.4
Afstand, impuls	Impulsmoment	10.5.1
Afstand, masse, hastighed	Impulsmoment	10.5.1
Inertimoment, vinkelhastighed	Impulsmoment	10.5.2

10.1 Kraftmoment (10.1)

10.1.1 Størrelsen af kraftmomentet

Størrelsen på kraftmomentet τ forårsaget af kraften \vec{F} omkring punktet O kan findes som

$$\tau = Fl = rF\sin\phi = F_{\tan}r.$$

Hvor \vec{F} er størrelsen på \vec{F} , l er "armen" til \vec{F} , r er størrelsen på stedvektoren fra O til \vec{F} , ϕ er vinklen mellem \vec{r} og \vec{F} og $F_{\rm tan}$ er den tangentielle komposant af \vec{F} .

10.1.2 Kraftmomentvektoren

Kraftmomentvektoren $\vec{\tau}$ forårsaget af \vec{F} omkring punktet O kan findes som

$$\vec{\tau} = \vec{r} \times \vec{F}$$
.

Hvor \vec{r} er stedvektoren fra O til \vec{F} .

10.2 Kraftmoment og vinkelacceleration for et rigidt legeme (10.2)

10.2.1 Newtons 2. lov et rigidt legeme

Givet inertimomentet I og vinkelaccelerationen omkring z-aksen α_z kan det samlede kraftmoment omkring z-aksen $\sum \tau_z$ findes som

$$\sum \tau_z = I\alpha_z.$$

10.3 Rotation for et rigidt legeme omkring en akse i bevægelse (10.3)

10.3.1 Kinetisk energi for et legeme med rotationel og translatorisk bevægelse

Givet massen af legemet M, massemidtpunktets hastighed $v_{\rm cm}$, inertimomentet omkring omdrejningsaksen igennem massemidtpunktet $I_{\rm cm}$ og vinkelhastigheden ω kan den samlede kinetiske energi K findes som

$$K = \frac{1}{2}Mv_{\rm cm}^2 + \frac{1}{2}I_{\rm cm}\omega^2.$$

10.3.2 Rulning uden glid (Eng. Rolling without slipping)

Givet radiussen R og vinkelhastigheden ω for et hjul kan massemidtpunktets hastighed $v_{\rm cm}$ findes som

$$v_{\rm cm} = R\omega$$
.

10.4 Arbejde og effekt for roterende bevægelse (10.4)

10.4.1 Arbejdet udført af et kraftmoment

Arbejdet W udført af kraftmomentet τ_z kan findes som integralet af kraftmomentet ift. vinklen θ som

$$W = \int_{\theta_1}^{\theta_2} \tau_z \, \mathrm{d}\theta.$$

Hvor θ_1 og θ_2 er start- og slutvinklen

10.4.2 Arbejdet udført af et konstant kraftmoment

Holdes kraftmomentet τ_z konstant kan det vises at resultatet fra 10.4.1: Arbejdet udført af et kraftmoment reduceres til

$$W = \tau_z(\theta_2 - \theta_1) = \tau_z \Delta \theta.$$

10.4.3 Arbejdet udført af et kraftmoment givet vinkelhastighed og inertimoment

Givet et inertimoment I og en start- og slutwinkelhastighed ω_1 og ω_2 kan det totale arbejde $W_{\rm tot}$ udført af kraftmomentet findes som

 $W_{\text{tot}} = \int_{\omega_1}^{\omega_2} I\omega_z \, d\omega_z = \frac{1}{2} I\omega_2^2 - \frac{1}{2} I\omega_1^2.$

10.4.4 Effekten af et kraftmoment

For et kraftmoment τ_z der virker omkring et legemes rotationsakse og vinkelhastigheden ω_z om selvsamme rotationsakse kan effekten P forårsaget af kraftmomentet findes som

$$P = \tau_z \omega_z.$$

10.5 Impulsmoment (10.5)

10.5.1 Impulsmomentet givet tangentiel impuls eller -hastighed

Givet positionsvektoren \vec{r} og den tangentielle impuls \vec{p} eller den tangentielle hastighed \vec{v} kan impulsmomentet \vec{L} findes som

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}.$$

10.5.2 Impulsmomentet givet vinkelhastighed

Givet inertimomentet I og vinkelhastigheden $\vec{\omega}$ kan impulsmomentet \vec{L} findes som

$$\vec{L} = I\vec{\omega}$$
.

10.5.3 Sammenhæng mellem impulsmoment og kraftmoment

Det gælder at

$$\sum \vec{\tau} = \frac{\mathrm{d}\vec{L}}{\mathrm{d}t}.$$

Hvor $\sum \vec{\tau}$ er summen af kraftmomenterne og $\frac{d\vec{L}}{dt}$ er ændringen i impulsmoment over tid.

10.6 Konservation af impulsmoment (10.6)

Når summen af kraftmomenter der virker på et system er 0 og massen af systemet ikke ændrer sig (altså at systemet er lukket) så er det totale impulsmoment konserveret.

11 Ligevægt og elasticitet

Givet	Ønsker at finde	Relevante formler
Kraft, areal	Spænding	11.3.2
Start- og slutlængde	Tøjning	11.3.3
Spænding, tøjning	Youngs modul	11.3.4
Spænding, tøjning	Kompressibilitetsmodul	11.3.6
Spænding, tøjning	Forskydningsmodul	11.3.7

11.1 Ligevægtsbetingelser (11.1)

11.1.1 Summen af kræfter for ligevægt (Den første ligevægtsbetingelse)

For et objekt i ligevægt gælder at

$$\sum \vec{F} = 0.$$

Hvor $\sum \vec{F}$ er summen af alle eksterne kræfter på objektet.

11.1.2 Summen af kraftmomenter for ligevægt (Den anden ligevægtsbetingelse)

For et objekt i ligevægt gælder at

$$\sum \vec{\tau} = 0.$$

Hvor $\sum \vec{\tau}$ er summen af alle eksterne kraftmomenter på objektet.

11.2 Løsningsmetode for ligevægtsproblemer for rigide legemer (11.3)

For at løse et ligevægtsproblem for et rigidt legeme kræver det typisk at man opskriver ligevægtsbetingelserne

$$\sum F_x = 0, \qquad \sum F_y = 0, \qquad \sum \tau_z = 0$$

og løser de tre ligninger med tre ubekendte. Det kan være en hjælp at kigge i 8.6.1: Massemidtpunktet for et system af partikler.

11.3 Spænding, tøjning og elasticitetsmodul (11.4)

11.3.1 Hookes lov

Hookes lov foreskriver at

$$Y = \frac{\sigma}{\epsilon}$$
.

Dette gælder såfremt spændingen σ og den resulterende tøjning ϵ på objektet er tilpas små (er under proportionalitetsgrænsen).

11.3.2 Spænding

Trækspændingen $\sigma_{\text{træk}}$ er givet som

$$\sigma_{\rm træk} = \frac{F_{\perp}}{A}.$$

Hvor F_{\perp} er kraften vinkelret på overfladen med areal A.

11.3.3 Tøjning

Træktøjningen $\epsilon_{\rm træk}$ er givet som

$$\epsilon_{\text{træk}} = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0}.$$

Hvor l og l_0 er hhv. slut- og startlængden.

11.3.4 Youngs modul

Ved at indsætte udtrykkene fra 11.3.2: Spænding og 11.3.3: Tøjning ind i udtrykket fra 11.3.1: Hookes lov fås at

$$Y = \frac{\sigma}{\epsilon} = \frac{F_{\perp}/A}{\Delta l/l_0} = \frac{F_{\perp}}{A} \frac{l_0}{\Delta l}.$$

Hvor Y er Younds modul, F_{\perp} er den vinkelrette kraft, A er tværsnitsarealet af objektet, l_0 er startlængden og Δl er forlængelsen.

11.3.5 Tabel over elasticitetsmoduler

Materiale	Youngs modul, Y (Pa)	Kompressibilitetsmodul, B (Pa)	Forskydningsmodul, S (Pa)
Aluminium	$7.0 \cdot 10^{10}$	$7.5 \cdot 10^{10}$	$2.5 \cdot 10^{10}$
Messing	$9.0 \cdot 10^{10}$	$6.0 \cdot 10^{10}$	$3.5 \cdot 10^{10}$
Kobber	$11 \cdot 10^{10}$	$14 \cdot 10^{10}$	$4.4 \cdot 10^{10}$
Jern	$21 \cdot 10^{10}$	$16 \cdot 10^{10}$	$7.7 \cdot 10^{10}$
Bly	$1,6 \cdot 10^{10}$	$4.1 \cdot 10^{10}$	$0.6 \cdot 10^{10}$
Nikkel	$21 \cdot 10^{10}$	$17 \cdot 10^{10}$	$7.8 \cdot 10^{10}$
Silikone	$0,001 \cdot 10^{10}$	$0.2 \cdot 10^{10}$	$0,0002 \cdot 10^{10}$
Stål	$20 \cdot 10^{10}$	$16\cdot 10^{10}$	$7.5 \cdot 10^{10}$
Ledbånd	$0,\!12\cdot10^{10}$	_	_

11.3.6 Kompressibilitetsmodul

Kompressibilitetsmodulet B er givet som

$$B = \frac{\sigma_{\rm tryk}}{\epsilon_{\rm tryk}} = -\frac{\Delta p}{\Delta V/V_0}.$$

Hvor Δp er ændringen i trykket, der forårsager kompressionen, ΔV er ændringen i volumen og V_0 er initialvolumenet

11.3.7 Forskydningsmodul

Forskydningsmodulet S kan findes som

$$S = \frac{\sigma_{\rm forskydning}}{\epsilon_{\rm forskydning}} = \frac{F_{\parallel}/A}{x/h} = \frac{F_{\parallel}}{A}\frac{h}{x}.$$

Hvor F_{\parallel} er kraften der påføres parallelt med ovjektets overflade, A er arealet som kraften arbejder over, x er deformationen og h er den tværgående afstand (se evt. **Figur 2** fra bogens side 350).

Figur 2: Figur til forklaring af forskydningsmodulet

11.4 Perturbationsteoretisk ligevægt

Fra perturbationsteori har vi at et system i ligevægt er stabilt (en lille ændring i systemet ødelægger ikke ligevægten) såfremt

$$\frac{\mathrm{d}U^2}{\mathrm{d}^2x} > 0,$$

Hvor U er potentiel energi og x er position. Dette resultat gælder eftersom enhver lille forskydning af massen dx i dette tilfælde medfører en restaurerende kraft og vice versa.

12 Fluidmekanik

Givet	Ønsker at finde	Relevante formler
Masse, volumen	Densitet	12.1.1
Kraft, areal	Tryk	12.1.2
Densitet, højdeforskel	Trykforskel	12.1.3
Densitet, dybde	Tryk til dybde	12.1.4
Densitet, volumen	Opdriftskraft	12.2.2
Areal, strømningshastighed	Volumenstrømningshastighed	12.3.3
Tryk, densitet, dybde, hastighed	Tryk, densitet, dybde, hastighed	12.4.1

12.1 Densitet og tryk (12.1-12.2)

12.1.1 Densiteten af et homogent legeme

Givet et homogent legemes masse m og dets volumen V kan densitet ρ findes som

$$\rho = \frac{m}{V}.$$

12.1.2 Definition af tryk i en væske

Trykket p i en væske er defineret som

$$p = \frac{\mathrm{d}F_{\perp}}{\mathrm{d}A}.$$

Hvor $\mathrm{d}F_{\perp}$ er normalkraften udøvet af en væske på en lille overflade med overfladeareal $\mathrm{d}A.$

12.1.3 Trykforskel mellem to punkter i en væske med uniform densitet

Trykforskellen p_2-p_1 mellem to punkter i en væske med uniform densitet er givet ved

$$p_2 - p_1 = -\rho g(y_2 - y_1).$$

Hvor ρ er den uniforme densitet, g er tyngdeaccelerationen og y_2 og y_1 er højden til to forskellige punkter.

12.1.4 Trykket til en given dybde i en væske med uniform densitet

Givet et initialtryk p_0 , en densitet ρ og dybden h kan trykket p findes som

$$p = p_0 + \rho g h.$$

12.1.5 Pascals lov

Pascals lov siger at: "Tryk, der påføres en indelukket væske, overføres uformindsket til alle dele af væsken og væggene i det beholdende kar."

12.1.6 Absolut tryk og overtryk (manometertryk)

Det totale tryk (inkl. atmosfærisk tryk) kaldes normalt for absolut tryk og *overtrykket* ift. atmosfærisk tryk (altså det totale tryk minus det absolutte tryk) kaldes normalt overtrykket eller manometertrykket.

12.2 Opdrift (12.3)

12.2.1 Arkimedes princip

Arkimedes princip siger at: "Når en genstand er helt eller delvist nedsænket i en væske, udøver væsken en opadrettet kraft på genstanden, der er lig med vægten af den væske, som genstanden fortrænger."

12.2.2 Matematisk formulering af Arkimedes princip

Givet densiteten af en uniform væske ρ , volumenet af den fortrængte væske V og tyngdeaccelerationen g kan opdriftskraften F_b findes som

$$F_b = \rho V g$$
.

12.3 Væskestrømning (Eng. Fluid Flow) (12.4)

12.3.1 Ideele væsker

En ideel væske er en matematisk model der simplificerer fluidmekanik. Det antages at en ideel væske er

- Inkompressibel: Altså at væskens densitet ikke kan ændres
- Inviskos: Altså at væsken ingen indre friktion har

De fleste væsker kan under normale omstændigheder antages at være inkompressible – det samme gør sig gældende for gasser, så længe trykforskellene ikke er for store. Inviskositet er et rimeligt krav for letflydende væsker og gasser såfremt de andre kræfter der virker på væsken eller gassen er væsentligt større end den interne friktion ville være.

12.3.2 Kontinuitetsligningen

Kontinuitetsligningen for en inkompressibel væske er

$$A_1v_1 = A_2v_2.$$

Hvor v_1 og v_2 er strømningshastigheden to forskellige steder og A_1 og A_2 er tværsnitsarealerne de samme to steder.

12.3.3 Volumenstrømningshastighed

Produktet Av fra 12.3.2: Kontinuitetsligningen er lig volumenstrømningshastigheden $\frac{dV}{dt}$. Altså

$$\frac{\mathrm{d}V}{\mathrm{d}t} = Av.$$

12.4 Bernoullis ligning (12.5)

12.4.1 Bernoullis ligning

Bernoullis ligning er

$$p + \rho gy + \frac{1}{2}\rho v^2 = \text{const.}.$$

Hvor p er trykket, ρ er væskens densitet, g er tyngdeaccelerationen, y er elevationen og v er hastigheden. **Bemærk**: Bernoullis ligning gælder kun for idelle væsker med stationær strømning. Denne kan også skrives som

$$p_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2.$$

13 Gravitation

Givet	Ønsker at finde	Relevante formler
To masser, afstand	Tyngdekraft	13.1.2
To masser, afstand	Tyngde	13.2.1
Masse af objekt, radius af objekt	Tyngdeacceleration ved overflade	13.2.2
To masser, to afstande	Tyngdekraftens arbejde	13.3.1
To masser, afstand	Potentiel energi for tyngdekraften	13.3.2
Masse, kredsløbsradius	Hastighed af sattelit	13.4.1
Kredsløbsradius, omløbshastighed	Periode for sattelit	13.4.2

13.1 Newtons tyngdelov (13.1)

13.1.1 Newtons tyngdelov

Newtons tyngdelov siger at: "Enhver partikel i universet tiltrækker enhver anden partikel med en kraft, der er direkte proportional med produktet af partikernes masser og omvendt proportional med kvadratet af afstanden mellem dem."

13.1.2 Matematisk formulering af Newtons tyngdelov

Matematisk kan Newtons tyngdelov formuleres som

$$F_g = \frac{Gm_1m_2}{r^2}.$$

Hvor F_g er tyngdekraften, $G \approx 6.674\,08 \cdot 10^{-11}\,\mathrm{N}\,\mathrm{m}^2\,\mathrm{kg}^{-2}$ er gravitationskonstanten, m_1 og m_2 er masserne af de to legemer som påvirker hinanden gravitationelt og r er afstanden mellem de to legemer.

13.2 Tyngde (Eng. *Weight*) (13.2)

13.2.1 Tyngden af et objekt ved jordens overflade

Tyngden w af et objekt ved jordens overflade er lig tyngdekraften fra jorden på objektet. Altså

$$w = F_g = \frac{Gm_Em}{R_E^2}.$$

Hvor m_E er jordens masse, R_E er jordens radius og m er massen af objektet, hvis tyngde man ønsker at finde.

13.2.2 Tyngdeaccelerationen

Tyngdeaccelerationen ved jordens overflade g kan findes som

$$g = \frac{Gm_E}{R_E^2}.$$

Hvor m_E er jordens masse og R_E er jordens radius.

13.3 Potentiel energi i et tyngdefelt (13.3)

13.3.1 Tyngdekraftens arbejde

Tyngdekraftens arbejde $W_{\rm grav}$ kan findes som

$$W_{\text{grav}} = -GMm \int_{r_1}^{r_2} \frac{dr}{r^2} = \frac{GMm}{r_2} - \frac{GMm}{r_1}.$$

Hvor M og m er masserne af de to objekter tyngdekraften yder et arbejde på og r_1 og r_2 er hhv. start- og slutafstanden mellem de to masser.

13.3.2 Potentiel energi i et tyngdefelt

Den potentielle energi i et tyngdefelt U på et objekt med masse m kan findes som

$$U = -\frac{GMm}{r}.$$

Hvor M er massen af objektet som påvirker massen m og r er den indbyrdes afstand mellem massemidtpunktet af massen M og massemidtpunktet af massen m.

13.4 Satellitter i cirkulær bevægelse (13.4)

13.4.1 Hastigheden af en satellit i et cirkulært kredsløb

For en sattelit i et cirkulært kredsløb om en masse M med en kredsløbsradius på r kan hastigheden af satellitten v findes som

$$v = \sqrt{\frac{GM}{r}}.$$

13.4.2 Perioden for en satellit i et cirkulært kredsløb

For en sattelit med hastighed v i en cirkulær bane med radius r omkring et legeme med masse M kan perioden T findes som

$$T = \frac{2\pi r}{v} = 2\pi r \sqrt{\frac{r}{GM}} = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{GM}}.$$

13.5 Keplers love og planeters bevægelse (13.5)

13.5.1 Keplers love

Keplers love lyder

- 1. Alle planeter bevæger sig i elliptiske baner omkring Solen, hvor Solen befinder sig i det ene brændpunkt.
- 2. En linje trukket fra en planet til Solen overstryger lige store arealer på lige lange tidsrum.
- 3. Kvadratet af en planets omløbstid er proportionalt med kuben af dens middelafstand fra Solen.

13.5.2 Matematisk formulering af Keplers 2. lov

Keplers 2. lov kan skrives som

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{2}r^2 \frac{\mathrm{d}\theta}{\mathrm{d}t}.$$

Hvor r er radiussen af planetens bane og d θ og dA er hhv. vinklen der tilbagelægges og arealet der overstryges i det lille tidsinterval dt.

13.5.3 Matematisk formulering af Keplers 3. lov

Keplers 3. lov kan skrives som

$$T = \frac{2\pi a^{\frac{3}{2}}}{\sqrt{Gm_s}}.$$

Hvor T er perioden, a er planetens middelafstand fra en sol med massen m_s .

13.6 Sorte huller (13.8)

13.6.1 Swarzschild-radiussen af et sort hul

Radiussen som en masse M maksimalt må have for at opføre sig som et sort hul betegnes massens Schwarzschild-radius R_s og kan findes som

$$R_s = \frac{2GM}{c^2}.$$

Hvor c er lysets has tighed i et vakuum.

14 Periodisk bevægelse

Givet	Ønsker at finde	Relevante formler
Periode	Frekvens	14.1.1
Periode eller frekvens	Vinkelfrekvens	14.1.2
Fjederkonstant, forskydning	Kraft i SHM	14.2.1
Fjederkonstant, masse, forskydning	Acceleration i SHM	14.2.2
Fjederkonstant, masse	Vinkelfrekvens i SHM	14.2.3
Vinkelfrekvens	Frekvens i SHM	14.2.4
Fjederkonstant, masse	Frekvens i SHM	14.2.4
Frekvens	Periode i SHM	14.2.5
Amplitude, vinkelfrekvens, tid, faseforskydning	Position i SHM	14.2.6
Masse, hastighed, fjederkonstant, forskydning, amplitude	Mekanisk energi i SHM	14.3.1
Kraftkonstant og mase	Vinkelfrekvens for simpelt pendul	14.4.1
Længde	Vinkelfrekvens for simpelt pendul	14.4.1
Vinkelfrekvens eller længde	Periode for simpelt pendul	14.4.3
Masse, længde, inertimoment	Vinkelfrekvens for fysisk pendul	14.5.2
Inertimoment, masse, længde	Periode for fysisk pendul	14.5.3
Amplitude, dæmpningskonstant, masse, vinkelfrekvens, tid, faseforskydning	Forskydning i dæmpet oscillation	14.6.1
Kraftkonstant, masse, dæmpningskonstant	Vinkelfrekvens i dæmpet oscillation	14.6.2
Størrelsen af drivkraften, kraftkonstant, masse, drivende vinkelfrekens, dæmpningskonstant	Amplitude af tvungen oscillation	14.7.1
Initialamplitude, dæmpningskonstand, masse, tid	Amplitude til tid af dæmpet oscillation	14.6.3
Inertimoment, kraft, kraftarm	Bevægelsesligning for pendul	14.5.1

14.1 Beskrivelse af oscillationer (14.1)

14.1.1 Forholdet mellem frekvens og periode

Det gælder at frekvensen af en oscillation f og perioden af selvsamme T er inverst proportionelle. Altså at

$$f = \frac{1}{T} \iff T = \frac{1}{f}.$$

14.1.2 Vinkelfrekvens og periode eller frekvens

Vinkelfrekvensen ω forholder sig til frekvensen f og perioden T som

$$\omega = 2\pi f = \frac{2\pi}{T}.$$

14.2 Simpel harmonisk bevægelse (SHM) (14.2)

14.2.1 Kraften for SHM (Fjederkraften)

For ideelle fjedre (dvs. dem der overholder 11.3.1: Hookes lov) gælder at

$$F_x = -kx$$
.

Hvor F_x er den restaurerende kraft udøvet af fjederen, k er fjederkonstanten og x er forskydningen.

14.2.2 Acceleration for SHM

Accelerationen a_x for SHM kan findes som

$$a_x = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{k}{m}x.$$

Hvor x er forskydningen, k er fjederkonstanten og m er massen af objektet der laver SHM.

14.2.3 Vinkelfrekvens for SHM

Vinkelfrekvensen ω for et objekt der undergår SHM kan findes som

$$\omega = \sqrt{\frac{k}{m}}.$$

Hvor k er fjederkonstanten og m er massen af objektet.

14.2.4 Frekvens for SHM

Frekvensen f for et objekt der undergår SHM kan findes som

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}.$$

Hvor ω er vinkelfrekvensen, k er fjederkonstanten og m er massen af objektet.

14.2.5 Perioden for SHM

Perioden T for et objekt der undergår SHM kan findes som

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}.$$

Hvor f er frekvensen, ω er vinkelhastigheden, m er massen af objektet og k er fjederkonstanten.

14.2.6 Position som funktion af tid for SHM

Givet en amlitude A, en vinkelfrekvens ω og en faseforskydning ϕ kan forskydningen af et objekt x der undergår SHM til tiden t findes som

$$x = A\cos(\omega t + \phi).$$

14.3 Energi i SHM (14.3)

14.3.1 Mekanisk energi for SHM

Den totale mekaniske energi E kan for et objekt der undergår SHM findes som

$$E = \frac{1}{2} m v_x^2 + \frac{1}{2} k x^2 = \frac{1}{2} k A^2 = {\rm const.}.$$

Hvor m er massen af objektet, v_x er hastigheden, k er fjederkonstanten, x er forskydningen og A er amplituden.

14.4 Det simple pendul (14.5)

14.4.1 Vinkelfrekvensen for et simpelt pendul

For et simpelt (matematisk) pendul med tilpas lav amplitude kan vinkelfrekvensen ω findes som

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{L}}.$$

Hvor k er pendulets kraftkonstant $(k = \frac{mg}{L})$, m er pendulets masse og L er pendulets længde.

14.4.2 Frekvens af et simpelt pendul

For et simpelt pendul med tilpas lav amplitude kan frekvensen f findes som

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{g}{L}}.$$

Hvor ω er vinkelfrekvensen og L er pendulets længde.

14.4.3 Periode for et simpelt pendul

For et simpelt pendul med tilpas lav amplitude kan perioden T findes som

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{g}}.$$

Hvor f er pendulets frekvens, ω er dets vinkelfrekvens og L er dets længde.

14.5 Det fysiske pendul (14.6)

14.5.1 Bevægelsesligningen for et pendul

Bevægelsesligningen for et pendul er

$$I\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = -F \cdot r\theta.$$

Hvor I er pendulets inertimoment, F er kraften og r er armen.

14.5.2 Vinkelfrekvens for et fysisk pendul

Vinkelfrekvensen ω for et fysisk pendul med tilpas lav amplitude kan findes som

$$\omega = \sqrt{\frac{mgd}{I}}.$$

Hvor m er pendulets masse, d er afstanden fra rotationsaksen tilpendulets massemidtpunkt og I er dets inertimoment.

14.5.3 Perioden for et fysisk pendul

Perioden T for et fysisk pendul med tilpas lav amplitude kan findes som

$$T = 2\pi \sqrt{\frac{I}{mgd}}.$$

Hvor m er pendulets masse, d er afstanden fra rotationsaksen tilpendulets massemidtpunkt og I er dets inertimoment.

14.6 Dæmpede oscillationer (14.7)

14.6.1 Forskydningen af oscillator med dæmpning

Givet en dæmpet oscillator med relativt lav dæmpningsgrad kan forskydningen x som funktion af tiden t findes som

$$x(t) = Ae^{-\left(\frac{b}{2m}\right)t}\cos(\omega't + \phi).$$

Hvor A er den initiale amplitude, b er en dæmpningskonstant, m er massen af oscillatoren, ω' er vinkelfrekvensen af den dæmpede oscillation og ϕ er faseforskydningen

14.6.2 Vinkelfrekvens af en dæmpet oscillation

Vinkelfrekvensen af en dæmpet oscillation ω' kan findes som

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}.$$

Hvor k er kraftkonstanten for den restaurerende kraft, m er massen og b er en dæmpningskonstant.

14.6.3 Amplitude af dæmpet oscillation

Givet en initialamplitude A_1 , en dæmpningskonstant b og en masse m kan amplituden A_2 til tiden t findes som

$$A_2 = A_1 e^{-\frac{b}{2m}t}$$
.

14.7 Tvungne oscillationer og resonans (14.8)

En dæmpet oscillator vil over tid stoppe med at bevæge sig. Dette kan forhindres ved at tilføje en periodisk kraft (tænk at du skubber din ven på en gynge 1 gang pr. cyklus), denne kraft kaldes drivkraften.

14.7.1 Amplitude af tvungen oscillation

Amplituden af en tvungen oscillation A kan findes som

$$A = \frac{F_{\text{max}}}{\sqrt{\left(k - m\omega_d^2\right)^2 + b^2\omega_d^2}}.$$

Hvor F_{\max} er den største størrelse drivkraften antager, k er kraftkonstanten af den restaurerende kraft, m er massen, ω_d er den drivende vinkelfrekvens og b er en dæmpningskonstant.

15 Mekaniske bølger

Givet	Ønsker at finde	Relevante formler
Bølgelænde, frekvens	Bølgehastighed	15.1.1
Amplitude, vinkelhastighed, position, bølgehastighed, tid	Bølgefunktion	15.1.2
Amplitude, position, bølgelængde, tid, periode	Bølgefunktion	15.1.3
Ampltide, bølgetal, position, vinkelfrekvens, tid	Bølgefunktion	15.1.4
Spænding, masse pr. længde	Bølgehastighed af trans- versalbølge på en snor	15.2.1
Masse pr. længde, spænding, vinkelfrekvens, amplitude	Gennemsnitseffekten for sinusoidal bølge på snor	15.3.1
Intensitet og to afstande	Intensitet til anden afstand	15.3.2
Ampltiude af stående bølge, bølgetal, position, vinkelfrekvens, tid	Bølgefunktion for stående bølge	15.5.1
Bølgehastighed, længde på snor	Normalmoder for en snor	15.5.2
Bølgehastighed, snorens længde	Fundamentalfrekvens	15.5.3
Spænding, masse pr. længde	Fundamentalfrekvens	15.5.3

15.1 Periodiske bølger og matematiske beskrivelser heraf (15.2-15.3)

15.1.1 Bølgehastighed for periodiske bølger

Givet en periodisk bølge
s bølgelængde λ og dens frekvens fkan bølge
hastigheden v findes som

$$v = \lambda f$$
.

15.1.2 Bølgefunktion for en bølge givet vinkel- og bølgehastighed

Bølgefunktionen for en sinusoidal bølge i +x-retningener givet ved

$$y(x,t) = A\cos\left(\omega\left(\frac{x}{v} - t\right)\right).$$

Hvor A er amplituden, ω er vinkelfrekvensen, x er positionen, v er bølgehastigheden og t er tiden.

15.1.3 Bølgefunktion for en bølge givet bølgelængde og periode

Bølgefunktionen fra ovenfor kan også skrives som

$$y(x,t) = A\cos\left(2\pi\left(\frac{x}{\lambda} - \frac{t}{T}\right)\right).$$

Hvor A er amplituden, x er positionen, λ er bølgelængden, t er tiden og T er perioden.

15.1.4 Bølgefunktion givet bølgetal og vinkelhastighed

Bølgefunktionen fra ovenfor kan også skrives som

$$y(x,t) = A\cos(kx - \omega t).$$

Hvor A er amplituden, k er bølgetallet $(k = \frac{2\pi}{\lambda})$, x er positionen, ω er vinkelfrekvensen og t er tiden.

15.1.5 Bølgeligningen

Bølgeligningen er

$$\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}.$$

Hvor $\frac{\partial^2 y(x,t)}{\partial x^2}$ er den anden partielt afledede med hensyn til x,v er bølgehastigheden of $\frac{\partial^2 y(x,t)}{\partial t^2}$ er den anden partielt afledede med hensyn til t.

15.2 Hastigheden af en transversal bølge (15.4)

15.2.1 Hastigheden af en transversal bølge på en snor

For en snor med spænding F og masse pr. længde μ kan bølgehastigheden v findes som

$$v = \sqrt{\frac{F}{\mu}}.$$

15.2.2 Hastigheden af en mekanisk bølge

Hastigheden v af en mekanisk bølge kan findes som

$$v = \sqrt{\frac{\text{Størrelsen på den restaurerende kraft der søger mod at bringe systemet til ligevægt}{\text{Inertien der forsøger at modstå kraften der søger mod at bringe systemet til ligevægt}}.$$

15.3 Energi i en bølge (15.5)

15.3.1 Gennemsnitseffekten for en sinusoidal bølge på en snor

Gennemsnitseffekten for en sinusoidal bølge på en snor $P_{\rm av}$ kan findes som

$$P_{\rm av} = \frac{1}{2} \sqrt{\mu F} \omega^2 A^2.$$

Hvor μ er massen pr. længde, F er spændingen i snoren, ω er vinkelfrekvensen for bølgen og A er bølgens amplitude.

15.3.2 Den omvendte kvadratlov (Eng: Inverse square law)

Den omvendte kvadratlov foreskriver en sammenhæng mellem to intensiteter I og to afstande r som

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}.$$

Denne lov gælder generelt for bølger der breder sig i 3 dimensioner.

15.4 Interferens, grænsebetingelser og superposition (15.6)

15.4.1 Superpositionsprincippet

Superpositionsprincippet foreskriver at

$$y(x,t) = y_1(x,t) + y_2(x,t).$$

Altså kan summen af to overlappende bølgefunktioner blot adderes for alle punkter for at finde den resulterende kombinerede bølge.

15.5 Stående bølger på en snor og en snors normalmoder (15.7-15.8)

15.5.1 Bølgefunktionen for en stående bølge på en snor

For en stående bølge på en snor med x=0-enden fastspændt er bølgefunktionen

$$y(x,t) = (A_{SW} \sin kx) \sin \omega t.$$

Hvor $A_{\rm SW}$ er amplituden af den stående bølge, k er bølgetallet, x er positionen, ω er vinkelfrekvensen og t er tiden.

15.5.2 En streng fastspændt i begge enders normalmoder

Frekvenserne f_n som tilsvarer normalmoderne for en snor kan findes som

$$f_n = n \frac{v}{2L}.$$

Hvor n er et heltal, v er bølgehastigheden og L er snorens længde.

15.5.3 Fundamentalfrekvensen for en streng fastspændt i begge ender

Fundamentalfrekvensen for en streng fastspændt i begge ender f_1 er normalmoden der tilsvarer n=1. Altså

$$f_1 = \frac{v}{2L} = \frac{1}{2L} \sqrt{\frac{F}{\mu}}.$$

Hvor v er bølgehastigheden, L er snorens længde, F er spændingen i snoren og μ er snorens masse pr. længde.

16 Mekanik i ikke-inertial systemer

16.1 Acceleration uden rotation

16.1.1 Inertialkraftens størrelse

Inertialkraftens størrelse F_{inertial} kan findes som

$$F_{\text{inertial}} = -m\vec{A}.$$

Hvor \vec{A} er accelerationen af det accelererende koordinatsystem og m er massen

16.2 Vinkelhastighedsvektoren

16.2.1 Tangentiel hastighed fra radius og vinkelhastighed

Givet en stedvektor \vec{r} og en vinkelhastighedsvektor $\vec{\omega}$ kan den tangentielle hastighedsvektor $\vec{v}_{ axt{tan}}$ findes som

$$\vec{v_{\mathrm{tan}}} = \vec{\omega} \times \vec{r}$$
.

16.2.2 Sammenhæng mellem afledede i inertial- og ikke-inertialsystemer

Det gælder at

$$\left(\frac{\mathrm{d}\vec{Q}}{\mathrm{d}t}\right)_{S_0} = \left(\frac{\mathrm{d}\vec{Q}}{\mathrm{d}t}\right)_S + \vec{\Omega} \times \vec{Q}.$$

Hvor \vec{Q} er en vektor, Ω er vinkelhastigheden mellem inertialsystemet S_0 og ikke-inertialsystemet S.

16.3 Newtons 2. lov for et roterende referencesystem

Newtons 2. lov for et roterende referencesystem er givet som

$$m\ddot{r} = \vec{F} + \underbrace{2m\dot{r}\times\vec{\Omega}}_{\vec{F}_{\rm cor}} + \underbrace{m(\vec{\Omega}\times\vec{r})\times\Omega}_{\vec{F}_{\rm rf}}.$$

Hvor m er massen, \vec{r} er stedvektoren, \ddot{r} er den anden tidsafledte af r, \dot{r} er den første tidsafledte af r, \vec{F} er summen af alle kræfter i det tilsvarende inertialsystem og $\vec{\Omega}$ er vinkelhastigheden af det roterende referencesystem.

16.3.1 Korioliskraften

Korioliskraften \vec{F}_{cor} er givet som

$$\vec{F}_{\rm cor} = 2m\dot{r} \times \Omega.$$

Hvor m er massen, \dot{r} er den første tidsafledte af stedvektoren \vec{r} og $\vec{\Omega}$ er vinkelhastigheden af det roterende koordinatsystem.

16.3.2 Centrifugalkraften

Centrifugalkraften \vec{F}_{cf} er givet som

$$\vec{F}_{cf} = m(\vec{\Omega} \times \vec{r}) \times \vec{\Omega}.$$

Hvor m er massen, $\vec{\Omega}$ er vinkelhastigheden af det roterende koordinatsystem og \vec{r} er stedvektoren.

17 Grundlæggende og afledte SI-enheder

17.1 SI-prefixer

Navn	Symbol	Størrelse
quetta	Q	10^{30}
ronna	R	10^{27}
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	Е	10^{18}
peta	P	10^{15}
tera	Т	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hekto	h	10^{2}
deka	da	10^{1}
-	-	10^{0}
deci	d	10^{-1}
centi	С	10^{-2}
mili	m	10^{-3}
mikro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	Z	10^{-21}
yocto	у	10^{-24}
ronto	r	10^{-27}
quecto	q	10^{-30}

17.2 De 7 grundlæggende SI-enheder

Størrelse	Grundenhed	Enhedssymbol
Tid	Sekund	s
Længde	Meter	m
Masse	Kilogram	kg
Strømstyrke	Ampere	A
Temperatur	Kelvin	K
Stofmængde	Mol	mol
Lysintensitet	Candela	cd

17.3 De 22 afledte SI-enheder

Enhedsnavn	Symbol	Størrelse	I standard enheder	I andre SI-enheder	
Radian	rad	Planvinkel	$ m mm^{-1}$	1	
Steradian	sr	Rumvinkel	${ m m}^2{ m m}^{-2}$	1	
Hertz	Hz	Frekvens	s^{-1}		
Newton	N	Kraft	$ m kgms^{-2}$		
Pascal	Pa	Tryk	${\rm kg}{\rm m}^{-1}{\rm s}^{-2}$	$N \mathrm{m}^{-2} = J \mathrm{m}^{-3}$	
Joule	J	Energi, arbejde	$ m kgm^2s^{-2}$	$N m = Pa m^3$	
Watt	W	Effekt	$ m kgm^2s^{-3}$	$\mathrm{J}\mathrm{s}^{-1}$	
Coulomb	C	Elektrisk ladning	s A		
Volt	V	Elektrisk spænding	${\rm kg}{\rm m}^2{\rm s}^{-3}{\rm A}^{-1}$	$WA^{-1} = JC^{-1}$	
Farad	F	Kapacitans	${\rm kg^{-1}m^{-2}s^4A^2}$	$W A^{-1} = J C^{-1}$	
Ohm	Ω	Modstand	${ m kg}{ m m}^2{ m s}^{-3}{ m A}^{-2}$	$V A^{-1} = J s C^{-2}$	
Siemens	S	Konduktans	${\rm kg}^{-1}{\rm m}^{-2}{\rm s}^3{\rm A}^2$	$\Omega^{-}1$	
Weber	Wb	Magnetisk flux	${\rm kg}{\rm m}^2{\rm s}^{-2}{\rm A}^{-1}$	Vs	
Tesla	Т	Magnetisk fluxtæthed	${\rm kg}{\rm s}^{-2}{\rm A}^{-1}$	${ m Wbm^{-2}}$	
Henry	Н	Induktans	$kg m^2 s^{-2} A^{-2}$	$\mathrm{Wb}\mathrm{A}^{-1}$	
Grader Celsius	$^{\circ}\mathrm{C}$	Temperatur	K		
Lumen	lm	Lysflux	$ m cdm^2m^{-2}$	$\operatorname{cd}\operatorname{sr}$	
Lux	lx	Illuminans	$\mathrm{cd}\mathrm{m}^2\mathrm{m}^{-4}$	$\operatorname{lm} \operatorname{m}^{-2} = \operatorname{cd} \operatorname{sr} \operatorname{m}^{2}$	
Becquerel	Bq	Radioaktiv aktivitet	s^{-1}		
Gray	Gy	Absorberet dosis	${ m m}^2{ m s}^{-2}$	$\rm Jkg^{-1}$	
Sievert	Sv	Ækvivalent dosis	${ m m}^2{ m s}^{-2}$	$J \mathrm{kg}^{-1}$	
Katal	kat	Katalytisk aktivitet	$ m mols^{-1}$		

17.4 Andre hyppigt brugte enheder

Længde:

 $1\,\mathrm{light-year} = 9{,}461\cdot10^{15}\,\mathrm{m}$

Tid:

 $1 \min = 60 \mathrm{s}$

 $1\,\mathrm{h} = 3600\,\mathrm{s}$

1 d = 86400 s

 $1 \, y = 365,24 \, d = 3,156 \cdot 10^7 \, s$

Vinkel:

 $1 \, \mathrm{rad} = 57,\! 30^{\circ} = 180^{\circ} / \pi$

 $1^{\circ} = 0.01745 \, \text{rad} = \pi/180 \, \text{rad}$

 $1\,\mathrm{rev} = 360^\circ = 2\pi\mathrm{rad}$

 $1 \operatorname{rev/min}(\operatorname{rpm}) = 0.1047 \operatorname{rad/s}$

18 Almindelige trigonometriske identiteter

18.1 Omregning mellem grader og radianer

18.1.1 Grader til radianer

For at gå fra en vinkel i grader $\theta_{\rm grad}$ til en vinkel i radianer $\theta_{\rm rad}$ kan følgende formel benyttes

$$\theta_{\rm rad} = \theta_{\rm grad} \cdot \frac{\pi}{180}.$$

18.1.2 Radianer til grader

For at gå fra en vinkel i radianer $\theta_{\rm rad}$ til en vinkel i grader $\theta_{\rm grad}$ kan følgende formel benyttes

$$\theta_{\rm grad} = \theta_{\rm rad} \cdot \frac{180}{\pi}.$$

18.2 Omregning mellem trigonometriske funktioner

Figur 3: Hver af de trigonometriske funktioner skrevet afhængigt af hver af de 5 andre

in terms of	$\sin heta$	$\csc \theta$	$\cos \theta$	$\sec \theta$	an heta	$\cot heta$
$\sin heta =$	$\sin heta$	$\frac{1}{\csc \theta}$	$\pm\sqrt{1-\cos^2\theta}$	$\pm \frac{\sqrt{\sec^2\theta - 1}}{\sec\theta}$	$\pm \frac{\tan \theta}{\sqrt{1+\tan^2 \theta}}$	$\pm rac{1}{\sqrt{1+\cot^2 heta}}$
$\csc heta =$	$\frac{1}{\sin \theta}$	$\csc heta$	$\pm \frac{1}{\sqrt{1-\cos^2\theta}}$	$\pm \frac{\sec \theta}{\sqrt{\sec^2 \theta - 1}}$	$\pm rac{\sqrt{1+ an^2 heta}}{ an heta}$	$\pm\sqrt{1+\cot^2 heta}$
$\cos heta =$	$\pm\sqrt{1-\sin^2 heta}$	$\pm \frac{\sqrt{\csc^2\theta - 1}}{\csc\theta}$	$\cos \theta$	$\frac{1}{\sec \theta}$	$\pm \frac{1}{\sqrt{1+\tan^2\theta}}$	$\pm \frac{\cot \theta}{\sqrt{1+\cot^2 \theta}}$
$\sec heta =$	$\pm \frac{1}{\sqrt{1-\sin^2\theta}}$	$\pm \frac{\csc \theta}{\sqrt{\csc^2 \theta - 1}}$	$\frac{1}{\cos \theta}$	$\sec heta$	$\pm\sqrt{1+ an^2 heta}$	$\pm \frac{\sqrt{1+\cot^2\theta}}{\cot\theta}$
an heta=	$\pm \frac{\sin \theta}{\sqrt{1-\sin^2 \theta}}$	$\pm \frac{1}{\sqrt{\csc^2 \theta - 1}}$	$\pm \frac{\sqrt{1-\cos^2\theta}}{\cos\theta}$	$\pm\sqrt{\sec^2\theta-1}$	an heta	$\frac{1}{\cot \theta}$
$\cot heta =$	$\pm \frac{\sqrt{1-\sin^2\theta}}{\sin\theta}$		cos A	$\pm \frac{1}{\sqrt{\sec^2\theta - 1}}$	$rac{1}{ an heta}$	$\cot heta$

På **Figur 3** ses en omregningstabel, hvor hver af de trigonometriske funktioner er givet afhængigt af hver af de 5 andre.

18.3 Den pythagoræiske identitet (idiotformlen)

Den pythagoræiske identitet foreskriver at

$$\sin^2 \theta + \cos^2 \theta = 1$$
.

18.4 Eksakte værdier af de trigonometriske funktioner

På **Figur 4** ses en oversigt over de eksakte værdier af de trigonometriske funktioner for de mest almindelige vinkler.

Figur 4: Eksakte værdier af de trigonometriske funktioner for almindelige vinkler

Angle θ Values of the trigonometric function					ions			
de	in egrees	in radians	sin(θ)	cos(θ)	tan(θ)	cot(θ)	sec(θ)	csc(θ)
	0°	0	0	1	0	undef.	1	undef.
	30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3	$\frac{2\sqrt{3}}{3}$	2
	45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
	60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
	90°	$\frac{\pi}{2}$	1	0	undef.	0	undef.	1
1	120°	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	-√3	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2\sqrt{3}}{3}$
	135°	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1	-√2	$\sqrt{2}$
1	150°	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-√3	$-\frac{2\sqrt{3}}{3}$	2
	180°	π	0	-1	0	undef.	-1	undef.
2	210°	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3	$-\frac{2\sqrt{3}}{3}$	-2
2	225°	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
2	240°	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	√3	<mark>√3</mark> 3	-2	$-\frac{2\sqrt{3}}{3}$
2	270°	$\frac{3\pi}{2}$	-1	0	undef.	0	undef.	-1
	300°	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	1/2	-√3	$-\frac{\sqrt{3}}{3}$	2	$-\frac{2\sqrt{3}}{3}$
3	315°	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\sqrt{2}$	-1	-1	$\sqrt{2}$	-√2
-	330°	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{2}{\sqrt{3}}$	$-\frac{\sqrt{3}}{3}$	-√3	$\frac{2\sqrt{3}}{3}$	-2
3	360°	2π	0	1	0	undef.	1	undef.

18.5 Sammenligning af vinkler

ANGLE RELATIONSHIPS

corresponding angles alternate interior angles

vertical angles alternate exterior angles

Figur 5: Cheat Sheet til sammenligning af vinkler

På **Figur** 5 ses en oversigt hvilke vinkler der er ens.

19 Hyppigt brugte symboler til kopiering

- \bullet \approx
- ±
- °
- – (langt minus til MathCad-subskript)
- ≠
- «
- >>
- ~
- N
- Z
- ullet $\mathbb Q$
- R
- C
- 0
- ∃
- _
- \/
- ^
- ⇒
- =
- <
- ullet \rightarrow
- ullet \longrightarrow
- ullet
- ↑
- ↓
- \bullet ∞
- ±
- ∓
- \bullet
- []
- \bullet ∇