MACA RE SA5 1-16

RESEARCH MEMORANDUM

for the

Bureau of Aeronautics, Department of the Navy

STATIC LONGITUDINAL AND LATERAL STABILITY CHARACTERISTICS OF AN 0.065-SCALE MODEL OF THE CHANCE VOUGHT XRSSM-N-9a (REGULUS II) MISSILE AT MACH NUMBERS FROM 1.60 TO 2.00 (TED NO. NACA AD 3122)

By William R. Hofstetter

Ames Aeronautical Laboratory
Moffett Field, Calif.

DECLASSIFIED AUTHORITY US: 1514 DESIMONE TO LEBON MEMO DATED 8/2/66

(DROBAR TO LEBOW DATE) 5/3/6

WASHINGTON

June 6, 1957

00PY

To be returned to the files of the Matienal Advisor Community

> for Association Washington, D. C.

22

NACA RM SA57F06

CONFIDENTIA

STATIC LONGITUDINAL AND LATERAL STABILITY CHARACTERISTICS OF AN 0.065-SCALE MODEL OF THE CHANCE VOUGHT XRSSM-N-9a (REGULUS II)
MISSILE AT MACH NUMBERS FROM 1.6 TO 2.0
(TED NO. NACA AD 3122)

By William R. Hofstetter

ABSTRACT

The static longitudinal and lateral stability characteristics of an 0.065-scale model of the XRSSM-N-9a (Regulus II) guided missile and its components have been determined for a Mach number range of 1.6 to 2.0 at a Reynolds number per foot of 2.0×10⁶.

INDEX HEADINGS

Missiles - Components in Combination	1.7.2.1
Missiles - Specific Types	1.7.2.2
Stability, Longitudinal - Static	1.8.1.1.1
Stability, Lateral - Static	1.8.1.1.2
Control, Directional	1.8.2.3

NATIONAL ADVISORY COMMITTEE FOR AFRONAUTICS

RESEARCH MEMORANDUM

for the

Bureau of Aeronautics, Department of the Navy

STATIC LONGITUDINAL AND LATERAL STABILITY CHARACTERISTICS OF AN 0.065-SCALE MODEL OF THE CHANCE VOUGHT XRSSM-N-9a (REGULUS II)

MISSILE AT MACH NUMBERS FROM 1.6 TO 2.0

(TED NO. NACA AD 3122)

By William R. Hofstetter

SUMMARY

An investigation has been conducted to obtain the static longitudinal and lateral stability characteristics of an 0.065-scale model of the XRSSM-N-9a (Regulus II) guided missile. Rudder effectiveness was also determined. Data were obtained at Mach numbers of 1.6, 1.8, and 2.0, at a Reynolds number of 2.0×10^6 per foot.

Results of the investigation indicate that a large positive change in the pitching moment at zero lift will be incurred when an antibuzz screen is extended in front of the engine duct inlet. These positive moments are overcompensated for by a simulated free-floating canard trimmer.

Static directional stability was found to decrease markedly beyond an angle of attack of 5.5° at all Mach numbers tested. The missile becomes unstable between 5.5° and 11° . Incorporation of ventral fins will maintain static directional stability to an angle of attack of 11° .

INTRODUCTION

The XRSSM-N-9 (Regulus II) guided missile, in the course of its development, has been the subject of a number of wind-tunnel and free-flight investigations. As a result of these investigations, a canard trimmer was incorporated (ref. 1) to eliminate the large negative pitching moment at zero lift which existed with the original configuration. In addition, previous investigations have considered the effects of mass-flow and boundary-layer bleed variation, control effectiveness (ref. 2), and dynamic stability (ref. 3).

Subsequent to the foregoing work the configuration was further modified to incorporate a larger consideration. In addition, the

wing was located farther aft, the vertical tail enlarged, and the inlet and fuselage afterbody modified. The latter changes were made to provide improved longitudinal and directional stability characteristics and to allow greater flexibility in engine selection.

At the request of the Bureau of Aeronautics, Department of the Navy, an investigation was conducted in the Ames Unitary 9- by 7-foot wind tunnel (ref. 4). The purpose of the investigation was to determine the static longitudinal and directional stability characteristics of the modified configuration (XRSSM-N-9a) of the missile. The results of the investigation are reported herein. Included are the effects of the canard trimmer, antibuzz screen, ventral fins, rudder deflection, and mass-flow ratio through the engine duct.

COEFFICIENTS AND SYMBOLS

Force and moment coefficients are referred to the stability axes, with the exception of the base drag, which is referred to the body axes. Moments are taken about the point of intersection of the fuselage reference axis and the projection of the leading edge of the wing meangeometric chord. Systems of axes and positive direction of forces, moments, and angles are shown in figure 1.

Ab base area, sq ft

Ac inlet capture area, sq ft

b wing span, ft

c mean geometric chord, ft

 M_{∞} free-stream Mach number

pb base pressure, lb/sq ft

 p_{∞} free-stream static pressure, lb/sq ft

pt total pressure, lb/sq ft

q free-stream dynamic pressure, lb/sq ft

R Reynolds number

S total wing area, sq ft

CL lift coefficient, lift qS

- C_D drag coefficient, drag
- C_{K_b} base drag coefficient, $\frac{(p_{\infty} p_b)A_b}{qS}$
- c_Y side-force coefficient, side force qS
- Cm pitching-moment coefficient, pitching moment
- C_n yawing-moment coefficient, yawing moment qSb
- Colling-moment coefficient, rolling moment qSb
- $\mathtt{C}_{\mathtt{m}_{\mathrm{O}}}$ pitching-moment coefficient at zero lift
- a.c. aerodynamic center, percent c
- $c_{n_{\beta}}$ rate of change of yawing-moment coefficient with sideslip angle, $\frac{\partial c_{n}}{\partial \beta}, \text{ per deg}$
- $c_{l\beta}$ rate of change of rolling-moment coefficient with sideslip angle, $\frac{\partial c_l}{\partial \beta},$ per deg
- $c_{n_{\delta_R}}$ rate of change of yawing-moment coefficient with rudder deflection, $\frac{\partial c_n}{\partial \delta_R}, \text{ per deg}$
- $\frac{m}{m_{\infty}}$ duct mass-flow ratio based on inlet capture area, $A_{\mathbf{C}}$
- α angle of attack of fuselage reference axis, deg
- β angle of sideslip of fuselage reference axis, deg
- δ_R rudder deflection, deg

MODEL

The model tested was an 0.065-scale model of the XRSSM-N-9a (Regulus II) guided missile furnished by the manufacturer, Chance Vought Aircraft, Incorporated. Geometric characteristics of the model are

listed in table I. Photographs of various test configurations are shown in figure 2. Details of the model and components are shown in figures 3 and 4.

The model was equipped with an inlet and engine ducting system to enable simulation of engine air flow through both a main duct and boundary-layer bleed duct. Internal lines of the main duct were true scale for approximately three diameters behind the duct lip. The boundary-layer bleed duct was true scale except that the center bleed channel, normally used for air-conditioning purposes, was bled into the main duct.

TEST PROCEDURE

Pitch runs were made through an angle-of-attack range from -12° to $+12^{\circ}$ at zero angle of sideslip. Yaw runs were made through an angle-of-sideslip range from $+2^{\circ}$ to -8° at nominal angles of attack of -5.5° , 0° , $+5.5^{\circ}$, and $+11^{\circ}$. Test data were taken at Mach numbers of 1.60, 1.80, and 2.00 at a Reynolds number per foot of 2.0×10°.

Forces and moments were measured by use of an internally mounted, six-component, strain-gage balance. Base static pressure, balance-chamber static pressure, main-duct static pressure, and main-duct total pressure were obtained from pressure taps.

Corrections were applied to both angle of attack and angle of sideslip to take account of stream angle and sting and balance deflection under load. Rudder deflection due to load was not known; accordingly, no corrections were applied. Longitudinal-force measurements were corrected for base and balance-chamber drag by adjusting the local static pressure to free-stream static pressure, and for buoyancy.

Precision of the test results is indicated by the number of significant figures to which the basic data are presented in tables II and III.

RESULTS

Results of the present investigation are shown in the form of graphs and tables. Plots of the longitudinal-stability parameters, c_{m_O} and a.c., and the lateral stability and control parameters, c_{n_β} and $c_{n_{\tilde{b}_R}}$, are presented for discussion and interpretation. A few basic-data plots are included only for the purpose of illustrating

typical variations of the longitudinal and lateral characteristics of the basic configuration. The foregoing graphs and plots are presented in figures 5 through 11. The basic data are presented in tabular form, the pitch characteristics in table II and the sideslip characteristics in table III.

DISCUSSION

Longitudinal Stability

Basic model. Typical longitudinal characteristics of the basic configuration are presented in figure 5. The variations indicated are representative of those obtained for the basic configuration at all three test Mach numbers. It will be noted that the pitching-moment curve is nonlinear. Correspondingly, the aerodynamic center would undergo a shift of approximately 0.2 percent of the mean geometric chord over the range of lift coefficients tested. Also shown in figure 5 are the results obtained in reference 1 for a configuration similar to that of the present test. It should be noted that the model of reference 1 utilized a more forward wing location and had a smaller trimmer mounted at a higher angle of incidence than did the present model.

Effects of changes in configuration. The variations with Mach number of $C_{m_{\rm O}}$ and a.c. for the configurations tested are presented in figure 6. A summary of the results at Mach number 2.0 is given in the following tabulation:

<u>Configuration</u> Basic	C _{mo}	a.c. 0.10
Boundary-layer bleed closed	.002	.11
Trimmer off	030	සං යා සා
Trimmer off, antibuzz screen extended	010	. 24
Ventral fins on	.004	.12

The trimmer is intended to be free-floating during the terminal maneuver. In these tests it was not feasible to float the trimmer. Accordingly, the free-floating condition was simulated by removing the trimmer entirely. Furthermore, during the terminal maneuver of the missile the engine is shut off and the antibuzz screen is extended (to eliminate flow instability within the engine duct). As indicated by the preceding tabulation and figure 6, the removal of the trimmer overcompensates for the positive C_{mo} shift that results when the

¹The trimmer of reference 1 was mounted at an angle of incidence of 9.5° and had an exposed area of 1.28 square inches.

antibuzz screen is extended. This, combined with a substantial rearward shift of the a.c. will give quite large negative pitching moments during the terminal maneuver.

Effect of Reynolds number. The variation with Reynolds number of $C_{m_{\rm O}}$ and a.c. are shown in figure 7. Reynolds number effects are small in both cases.

Effect of mass flow. The effect of mass-flow-ratio variation on C_m is indicated in figure 8. It is evident that changes in mass-flow ratio cause substantial changes in pitching moments. These changes must be considered when analysis is made of the flight characteristics of the missile during the various phases of its mission.

Lateral Stability

Basic model. Figure 9 presents typical lateral characteristics of the basic configuration. The variations shown are representative of those occurring at all three test Mach numbers for the basic configuration.

Effects of changes in configuration. The variation with Mach number of $C_{n_{\beta}}$ and $C_{l_{\beta}}$ for the configurations tested are presented in figure 10. A summary of the results at Mach number 2.0 and at an angle of attack of 0° is given in the following tabulation:

Configuration	$c_{n_{oldsymbol{eta}}}$	cιβ
Basic	0.0029	-0.0038
Vertical tail off	0098	0019
Ventral fins on	.0065	0030
Trimmer off	.0029	0037

As indicated by the preceding tabulation and figure 10, addition of ventral fins to the basic configuration results in a large increase in c_{n_β} and a decrease in c_{l_β} . Trimmer removal has negligible effect on both c_{n_β} and c_{l_β} at zero angle of attack.

Effect of angle of attack.— Examination of figure 10 indicates that for the basic and trimmer-off configurations, $C_{n\beta}$ decreases markedly beyond an angle of attack of 5.5° . With the center of gravity located at the leading edge of the mean aerodynamic chord, the missile will become directionally unstable between an angle of attack of 5.5° and 11° . Addition of ventral fins substantially increases $C_{n\beta}$, maintaining directional stability up through an angle of attack of 11° .

Rudder effectiveness.— The variation with Mach number of $C_{n\delta_R}$ is presented in figure 11. The basic test data indicate that C_n is a linear function of δ_R over the range of rudder deflections tested.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 6, 1957

Wm. Of The Letter
William R. Hofstetter

Aeronautical Research Scientist

Approved:

Ralph F. Huntsberger, Chief

Unitary Plan Wind Tunnel Division

REFERENCES

- 1. Robinson, Ross B., and Driver, Cornelius: Effects of Various Modifications on the Static Longitudinal Stability and Control Characteristics of a 0.065-Scale Model of the Chance Vought Regulus II Missile at a Mach Number of 2.01. TED No. NACA AD 398. NACA RM SL55Il5, 1955.
- 2. Robinson, Ross B., Driver, Cornelius, and Spearman, M. Leroy:
 Static Longitudinal and Lateral Stability and Control Characteristics of an 0.065-Scale Model of the Chance Vought Regulus
 II Missile at Mach Numbers of 1.41, 1.61, and 2.01. TED
 No. NACA AD 398. NACA RM SL55E31, 1955.
- 3. Wineman, Andrew R.: Some Flight Data for the Chance Vought Regulus II Missile. TED No. NACA AD 398. NACA RM SL56D02, 1956.
- 4. Huntsberger, Ralph F., and Parsons, John F.: The Design of Large High-Speed Wind Tunnels. AGARD, Fourth General Assembly Wind-Tunnel Panel, Scheveningen, Netherlands, May 4, 1954.

TABLE I GEOMETRIC CHARACTERISTICS OF MODEL	
Wing Total area (to center line), sq in	;
Total area (to center line), sq in. ".". """ ""	88.20
Exposed area, sq in.	65.8
Span, in.	15.63
Aspect ratio	2.77
Taper ratio	0.60
Sweepback of quarter chord, deg	43.5
Dihedral, deg	0
Incidence, deg	0
Airfoil section, defined by:	1
$\frac{t}{c} = 0.122496 - 0.015168 \frac{x}{c} - \left[0.028768 \left(\frac{x}{c}\right)^2 - 0.033096 \left(\frac{x}{c}\right) + 0.01500\right]$	052
Root chord (at center line), in	7. 0ี8
Tip chord, in.	4.27
Mean geometric chord, in.	5.78
Fuselage	7.10
	44.53
	3.25
	5.05
Depth, maximum, in	11.00
Fineness ratio	
Vertical tail	13.70
• · · · · · · · · · · · · · · · · · · ·	07 08
	27.08
Exposed area, sq in	15.12
Span (to center line), in.	6.48
Aspect ratio	1.55
Taper ratio	0.32
Sweepback of quarter chord, deg	45.0
Airfoil section, same as wing	C 05
Root chord (at center line), in.	6.27
Tip chord, in.	2.10
Mean geometric chord, in	4.53
Rudder	
Area aft of hinge line, sq in.	3.22
Trimmer	
Total area (to center line), sq in	5.40
Area exposed, sq in.	2.43
Span, in	3.87
Plan form Trapez	
Airfoil section 5-percent modified bic	
Root chord (at center line), in.	2.00
Tip chord, in.	0.85
Incidence, deg	6.0
Ventral fins	
Area exposed, each, sq in.	3.07
Span exposed, in	1.21
Angle with respect to vertical tail, deg	23.0
Sweep of leading edge, deg	60.0
Duct	
Inlet area, sq in.	2.62
Exit area, sq in.	2.81
I THIOLOGIA DOLOGIA	
Frontal area (screen only) sq in	0.76

	(a) Basic model M _{mo} = 1.60; R/ft = 2.0x10 ⁶											(1) Bound	lary-lay	er blee	d closed			
			M _∞ =	1.60;	R/ft = 2	.0x10 ⁶		,	,	<u> </u>		,	M _∞ = 3	L.60; R/	ft = 2.	0×10 ⁶			
a, deg	c _L	C _m	c_D	CY	Cn	cı	m/m∞	c _X _b	p _t lb/ft²	a, deg	c _L	Cm	c_{D}	c _y	Cn	Cl	m/m _∞	c^{X^p}	P _{t∞} lb/ft ²
-0.1 1 -12.9 -10.7 -8.8 -6.6 -4.4 -2.2 -1.1 1.0 2.1 4.3 6.5	-0.02 02 03 04 67 47 36 25 13 07 02 .04 .09 .20	0.012 .014 .016 .021 .125 .112 .098 .077 .050 .027 .017 .012 .007 .002	0.032 .034 .039 .043 .165 .121 .089 .062 .043 .032 .032 .032 .035 .039	-0.01 0 0 0 0 0 0 0 0 0 0 0 0 0	.003 .004 .003 .003 .002 .002 .002 .002 .003 .003	-0.001 001 001 0 0001 001 001 001 001 001 001 001	88.48888888888888	0.005 .004 .005 .006 .006 .005 .005 .005 .005 .005	989 984 986 987 992 991 991 991 991 991 991 991	-0.1 1 1 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.6 -1.2 0	03334436666555446833088	0.018 .018 .020 .023 .017 .124 .114 .095 .075 .057 .034 .024 .010	0.0333 0.0333 0.0335 0.	-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01	0.003 .003 .003 .003 .001 .001 .001 .001	-0.001 -001 -001 -001 -001 -001 -001 -001 -001 -001 -001 -001	0.87 .85 .73 .57 .86 .83 .85 .86 .87 .86 .87 .88 .88	0.004 .004 .004 .005 .005 .005 .005 .005	968 991 992 991 991 991 990 990 990 991 991 991
8.7 10.9 13.1	•42 •53 •62	041 054 056	.115 .154 .197	0 0	•003 •002 •001	001 0 0	•91 •91 •90	•004 •005 •005	991 991 991	4.3 7.2 9.4 11.6	•20 •3 ⁴ •45 •55	010 031 046 057	.055 .091 .127 .169	0000	.002 .002 .002	001 001 001	.88 .88 .87	•00 ¹ 4 •00 ¹ 4	991 991 991 991
0	0	.009	M _∞ =	1.80; : 01	R/ft = 2	002	•98	•003	1057	13.8	65	059	.214	0	0	0	.86	•005	990
0 0 -10.8 -8.7 -6.3 -4.3 -2.2 -1.1 0 1.1 2.2 4.3 6.5 8.7	-01 -02 -51 -49 -19 -19 -05 0 05 -19 -05 -05 -05 -05 -05 -05 -05 -05 -05 -05	.013 .022 .095 .072 .055 .042 .020 .011 .004 0 .012 .026 .038	.027 .034 .110 .078 .054 .029 .028 .029 .036 .053 .077 .109	01 01 01 01 01 01 01 01	.002 .002 .004 .003 .002 .002 .001 .002 .001 .002 .001	002 001 001 001 001 002 002 002 002 002 002 002	.93 .77 .93 .94 .95 .95 .97 .98 .97 .98 .95 .95	.003 .003 .004 .004 .004 .003 .003 .003	1062 1059 1057 1057 1057 1057 1057 1057 1057 1058 1058 1058 1059 1058	0 0 1 -12.4 -10.2 -8.0 -5.8 -2.2 -1.1 0 1.2 2.2 4.3	02 02 03 03 549 38 28 12 07 02 03	.019 .021 .024 .028 .104 .092 .074 .060 .039 .029 .020 .011	.028 .029 .034 .040 .145 .104 .073 .050 .028 .027 .030 .034	1.80; R 01 0 001 0 00101 0 00101	.001 .001 .001 .002 .003 .003 .002 .001 .001	001 001 001 0 0 0 001 001 001 001 001	•93 •89 •77 •62 •87 •90 •91 •91 •93 •93 •95	.002 .003 .003 .003 .004 .004 .004 .004 .003 .003	1058 1057 1057 1058 1058 1058 1058 1058 1058 1058 1058
13.1	.60	046	.185 M _w =	0 2.00; I	001 R/ft = 2	001 .0x10 ⁶	1.00	.003	1057	7.2 9.3 11.5 13.7	.42 .51 .60	024 036 045 044	•083 •116 •154 •195	0 0 0	0 0 •001	001 001	•94 •93 •93 •92	.003 .003 .003	1058 1058 1058 1058
o o	.01 01	001	•032 •035	0	.003	001 001	•99 -81	.002 .002	1149	130,1	•••	•0		2.00; R	بــــــــــــــــــــــــــــــــــــــ		1 -25	•005	1 1020
0 0 0 -13.0 -10.8 -8.6 -6.5 -4.3 -2.2 -1.1 0 1.1 2.8 6.9 9.1 11.3 13.4 0	01 0 59 - 39 - 39 - 29 - 04 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01	.019 .012 .005 .006 .092 .079 .064 .043 .022 .006 0 .009 .012 .021 .026 .034 .038 .038	.041 .033 .034 .147 .107 .076 .039 .033 .036 .041 .057 .107 .107 .107	000000000000000000000000000000000000000	.003 .002 .003 .001 .002 .002 .002 .002 .002 .002 .002	001 001 .001 .001 001 001 001 001 001 001 001 0	.63 1.00 .91 .99 1.00 1.00 1.00 1.00 1.00 1	.003 .002 .002 .003 .003 .003 .003 .002 .002	1149 1149 1149 1149 1149 1149 1149 1149	0 0 0 -12.5 -10.4 -8.2 -6.9 0 1.1 2.2 4.3 6.9 9.1 11.3,5	0 0 01 0 57 47 47 27 19 04 0 .05 .09 .30 .39 .47	.002 .004 .010 .012 .001 .091 .077 .076 .062 .043 .009 .013 .008 .002 -003 -007 -013 -022 -030 -038 -049	.031 .033 .037 .043 .103 .103 .103 .072 .052 .040 .032 .033 .033 .051 .074 .102	01010101 0 0 0 00101	.002 .003 .003 .003 .001 .002 .002 .002 .002 .002 .002 .003 .003	001 001 001 001 .001 0 0 0 001 001 001 001 001 001 001 001	.99 .88 .66 1.00 .97 .97 .97 .98 .98 .98 .99 .98 .99 .99 .99	.003 .002 .002 .003 .002 .002 .003 .003	1149 1149 1149 1149 1159 1149 1149 1149
0 -2.1	•01 -•09	005 .006	•035 •033	01 0	•002 •002	001 001	1.01	.001 .001	704 699					(c) Tri					
-1.1 1.0 2.1 13.0	04 05 10 56	0 010 014 040	.033 .038 .042 .175	0 01 01 0	.002 .003 .003	001 001 0	1.00 1.02 1.00	.001 .002 .002	695 695 697 702	-13.0 -10.9	67 57	•184 •156	M _∞ =	1.60; R	ft = 2	.001 0	.81 .84	•005 •005	991 988
-3.0	•,701	•0-01			/ft = 3		• 27 1	•00E	1 105	-8.7 -6.5	47 36	•128 •092	•083 •059	0	.001	0 001	.86 .91	•005 •005	993 995
-2.3 -1.1 0 1.1 2.2	09 04 .01 .06 .10	•009 •002 ••004 ••009 ••013	.030 .030 .032 .035 .039	0 0 0 0	.002 .002 .002 .002	001 001 001 001	1.00 1.00 1.00 1.00 .98	.003 .002 .002 .002	1724 1727 1727 1726 1725	-4.4 -2.3 -1.2 1 1.0 2.1	24 13 08 02 03	.052 .014 002 015 027 039	.043 .036 .038 .040 .045	0 0 0 0 -•01	.002 .002 .002 .003 .003	001 001 001 001 001	.90 .90 .90 .90 .93	.005 .005 .005 .004 .004	991 991 991 992 989 991
-2.3 -1.2 0 1.2 2.3	10 04 .01 .06	.011 .003 003 008 013	M _∞ = 3 •031 •030 •031 •034 •040	0 0 0 0 0 0	/ft = 3. .002 .001 .002 .002 .002	001 001 001 001 001	•99 •99 •99 •99	.002 .002 .002 .002	2108 2108 2108 2107 2106	4.3 6.4 8.6 10.7 12.9 1	.19 .28 .37 .46 .55	063 070 072 075 079	.070 .087 .109 .138	0 0 0 0	.002 .001 .002 .001 .002 .003		.93 .92 .91 .90 .90	.004 .005 .005 .004 .004	991 990 992 993 991 991

TABLE II.- PITCH CHARACTERISTICS; $\beta = 0.2^{\circ}$, $\delta_{\rm R} \cong 0^{\circ}$ - Concluded

		(d) Tr	immer o	ff, ant	ibuzz so	reen. ex	tended								
			Μ _∞ =	1.60;	R/ft = 2	.0x10e									
α, deg	$c_{ m L}$	Cm	CD.	СY	Cn	cı	m/m_{∞}	c^{X^p}	p _{t∞} lb/ft²						
-0.1 1	-0.03 03	-0.003 003	0.052 .051	-0.01 01	0.003 .003	-0.001 001	0.70 .67	0	1020 1024						
1	 03	0	•045	01	•003	001	.48	.004	1024						
1	04	•001	.046	0	•003	001	•38	.003	1025						
-6.6	36	•104	•070	0	•002	001	•39	.002	1026						
-4.4	25	•069	•052	0	•002	001	•39	•002	1026						
-2.3 -1.2	14 09	•032 •015	•044 •044	0	•002	001 001	•38	•002	1026 1026						
1	04	0	047	ő	•003 •003	001	•38 •37	.002	1026						
1.0	•02	012	•051	ŏ	•003	001	•38	.002	1026						
2.1	•07	025	•058	0	•003	001	•38	•001	1027						
4.2	•17	052	•077	0	•002	001	•38	.001	1027						
6.4	•27	064	•097	0	•002	0	-40	.001	1027						
10.7	, 44	071	•149 M =	1.80 • 1	•002 R/ft = 2	0~106	•39	.001	1027						
$M_{\infty} = 1.80$; R/ft = 2.0×10 ⁶ 102 0 .044 0 .001001 .59 .002 1058															
1															
1	03	•007	043	ō	•001	001	•39	•003	1058						
-10.7	48	.125	•118	0	•002	0	•39	•003	1057						
-6.5	29	•078	•064	0	•002	0	•40	•003	1057						
-4.3 -2.2	21 12	•061	•048 •040	0	•002	001	•40	•003	1058						
-1.2	08	•038 •023	•040	0	.001 .001	001 001	•41 •39	•003	1057 1058						
1	03	•009	042	lő	0	001	•39	.003	1057						
1.0	•01	004	.047	0	0	001	•39	•002	1058						
2.0	•05	017	•052	0	0	001	•39	.002	1058						
4.2	•14	045	•071	0	0	001	•38	•002	1057						
6.3 10.7	•23 •40	064 072	•093 •143	0	0 •001	001 0	•37	.002	1057 1058						
	• • •				R/ft = 2			1 •00L	1 1000						
0	0	013	•045	0	•003	001	•56	•003	1149						
ő	Ö	013	•045	ŏ	•003	001	•56	•003	1148						
0	0	011	•047	0	•003	001	•49	•003	1148						
0	01	009	•049	0	•003	001	•40	•003	1149						
-10.7 -6.5	44 26	•094 •052	•11 ⁴ •065	0	•001 •002	001 0	.42 .42	.003	1150 1150						
- 4.3	17	.029	.052	lő	•002	001	.42	.004	1149						
-2.2	09	.011	.046	ŏ	•002	001	42	.004	1149						
-1.1	05	•002	•045	0	•002	~.001	41	•004	1149						
1	01	009	•049	0	•003	001	•40	•004	1149						
1.0	•03	019 028	•053	0	•003	001	•41	•004	1149 1149						
2.1	•07 •15	028	•058 •073	0	•003 •003	001 001	•40 •38	•003	1149						
6.3	•23	064	•093	ő	•003	001	38	.003	1149						
10.6	•38	072	•139	0	•003	001	•39	•003	1149						
			(e) Venti	al fins	on			,						
			M _∞ =	2.00;	R/ft = 2	2,0x10 ⁶		. —							
-10.8	49	•088	.107	01	•003	0	1.01	•003	1159						
-6.5	29	•054	•053	01	•003	001	1.02	•003	1159						
-4.3 -2.2	19	•034	•038	01	•003	001 001	1.00	.003 .002	1159						
-1.1	09 04	•016	•030	01	•003 •004	001	1.01	.002	1159 1159						
0	.01	•002	.031	01	•004	001	1.01	.002	1159						
1.1	•05	003	•034	01	•004	001	1.00	.002	1159						
2.2	.10	010	•039	01	•004	00l	•99	•002	1159						
4.3	.20	021	•054	01	•005	001	•98	•002	1159						
6.5 10.8	.29 .46	031 054	.076	01 01	•005 •005	001	•97	.002	1159 1159						
0	.01	002	.031	01	•004	001	1.00	.002	1159						

		*****						(a)	Basic mo	de1; δ _π	2 ≅ 0°	<u> </u>							
	-		М	‰ = 1.6	iO; a =	0°				1	- 		Moo	= 1.80	; a. = -	5.5°			
β, deg	$c_{\mathbf{L}}$	Cm	c_{D}	CY	c _n	cı	m/m _{co}	c _{Xb}	Pt _w lb/ft ²	β, deg	$c_{\mathbf{L}}$	Cm	c _D	СY	Cn	cı	m/m _∞	c _{Xb}	Pt _∞ lb/ft²
2.1 1.1 0 -1.0 -2.0 -4.0 -6.1 -8.1	-0.02 02 02 02 02 03 03	0.015 .012 .014 .017 .033 .056 .088	0.032 .033 .033 .032 .031 .028 .024 .019	-0.04 02 0 .02 .04 .07 .12 .16	0.013 .008 .002 003 008 018 031 043 ; \alpha = 5.	-0.010 005 0 .004 .009 .018 .026 .034	0.90 .89 .90 .90 .90 .91 .90	0.004 .004 .004 .004 .004 .004	992 991 989 991 991 991 991	2.2 1.2 .2 8 -1.8 -3.8 -5.9 -7.9	-0.25 25 25 25 25 26 26 28	0.053 .050 .049 .051 .055 .068 .090	0.046 .045 .045 .045 .045 .045 .040 .037	-0.04 02 01 .03 .07 .10 .15	0.009 .005 .002 001 005 013 025 038	-0.009 005 001 .003 .007 .014 .022 .029	0.94 .94 .95 .95 .93 .92 .90	0.003 .003 .003 .003 .003 .003 .003 .00	1057 1057 1057 1057 1057 1057 1057 1057
2.2	•26	015	.068	04	•013	011	•91	•004	991	2.3	51	•097	-113	03	.014	007	•90	•004	1058
1.2 8 -1.8 -3.8 -7.8 -5.8	.26 .26 .26 .26 .26 .26	018 019 018 014 0 .054 .021	.067 .067 .067 .066 .062 .051	02 0 .02 .03 .07 .16	.008 .003 001 005 014 037	006 001 .004 .009 .018 .032 .025	.91 .91 .91 .91 .91 .90	.004 .004 .004 .004 .005 .005	991 991 991 991 991 991	1.2 8 -1.8 -3.9 -5.9 -7.9	51 51 51 51 52 53	.095 .095 .097 .100 .110 .117 .135	.112 .111 .111 .111 .112 .112	02 0 .02 .03 .06 .11 .14	.009 .003 004 010 021 036 039	003 0 .003 .007 .013 .020 .024	.91 .92 .93 .91 .89 .83	.004 .004 .004 .004 .004 .004	1058 1057 1057 1057 1057 1057 1057
L); α = 1				_			·			Ο; α =	o°	,		,
.2 2.1 1.1 7 -1.6 -3.6 -5.6 -7.6	•53 •53 •53 •53 •53 •53 •53 •53	054 050 051 054 052 039 015	•154 •153 •153 •154 •153 •150 •143 •134	01 03 02 .01 .02 .06 .11	.002 001 003 .007 .011 002 011 024	001 011 007 .004 .009 .016 .022 .026	•91 •90 •91 •91 •90 •90 •89	.005 .005 .005 .005 .005 .005 .005	991 991 991 991 991 991 991	2.0 2.0 1.0 0 -1.0 -2.0 -4.1 -6.2 -8.3	02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.001 .004 0 002 001 .003 .021 .043	.032 .031 .032 .032 .032 .031 .027 .022	04 04 02 0 .02 .03 .08 .12	.007 .007 .004 .002 001 004 010 020	008 004 004 0 .004 .007 .015 .022 .028	1.00 1.00 1.00 1.00 1.00 99 .99 .95	.002 .002 .002 .002 .002 .002 .002	1149 1149 1150 1149 1150 1149 1149 1149 1149
2.2	30	.063	.052	= 1.60	; a = -	010	.89	.005	991				5.5°	·					
1.2 .2 8 -1.8 -3.8 -5.9	30 30 31 31 32	.061 .060 .061 .065 .076 .096	.051 .052 .052 .052 .049 .047	02 0 .01 .03 .06	.006 .002 001 005 015 027	006 001 .003 .007 .016	.89 .90 .89 .89 .88 .87	.006 .005 .005 .005 .005	991 991 991 991 991 991	2.0 1.0 0 -1.0 -1.9 -3.9	.24 .24 .24 .24 .24 .23	018 022 023 021 016 .001 .029	.062 .062 .063 .062 .060 .055	04 02 0 .02 .03 .07	.008 .006 .003 .001 002 005	009 005 .004 .008 .016	.97 .97 .97 .96 .96	.002 .003 .002 .002 .002 .002	1149 1149 1149 1149 1149 1149 1149
	= 0	116			; α = -1		1 0m		1 006	-7 . 9	.22	.062	.042	•18	028	•028	.94	002	1149
2.2 1.2 .2 8 -1.8 -3.9 -5.9 -7.9 -3.9	58 57 57 58 58 60 61	.116 .113 .113 .115 .118 .128 .136 .150	.125 .125 .124 .124 .125 .123 .123	03 02 0 .01 .02 .06 .10	.011 .007 .002 003 007 020 036 040 019	007 003 0 .004 .007 .015 .023 .028	.85 .87 .86 .87 .84 .80 .77	.005 .005 .005 .005 .005 .005 .006	986 991 993 993 993 991 990 990	1.9 1.0 .1 9 -1.8 -3.8 -5.7	.46 .46 .46 .46 .46	035 037 038 036 034 016	.131 .131 .131 .131 .130 .126 .118	03 02 0 .02 .03 .08	.002 .002 .004 .007 .007 .007	008 004 0 .005 .009 .016	.96 .96 .96 .95	.003 .003 .003 .003 .003 .003	1149 1149 1149 1149 1149 1149 1149
		L ,	Мо		0; α = (<u> </u>	·	·		-7.6 .1	.46 .46	•044 -•038	.111 .131	•19 0	013 .005	.022	.94 .96	•003 •003	1149 1149
2.2	0	.016 .012	.028 .029	04 02	•009 •005	011	•97 •97	•003 •003	1057 1057		,		Мо	, = 2.0	ο; α = ·				
-2 8 -1.8 -3.8 -5.8 -7.9	0 0 01 02 02	.011 .012 .016 .031 .052 .078	.029 .029 .028 .025 .021 .016	01 .01 .03 .07 .11	-001 -001 -005 -013 -023 -038	002 .003 .007 .016 .024 .031	.98 .98 .97 .98 .96 .94	•003 •003 •003 •003 •003	1057 1057 1057 1057 1057 1057	2.0 2.0 1.0 0 -1.0 -2.0	24 24 24 24 24 24 24 25	.041 .038 .038 .040 .045	.043 .043 .043 .043 .043 .043	04 04 02 0 .04 07	.009 .009 .005 .001 003 007	006 006 003 0 .003 .006	.99 .98 1.00 1.00 1.01 .99	.003 .002 .002 .003 .003	1150 1148 1148 1148 1149 1149 1149
2.2	•25	012	M∞ •062	= 1.80	; a = 5	.5°	•98	•003	1058	-6.0 -8.1	26 28	.080 .102	•039 •036	.12 .16	026 037	•018 •024	•93 •91	•003 •003	1149 1149
1.2	•25 •25 •25	016 018 016	•063 •063	02 01 .01	.005 .001 002	006 001 .003	•90 •97 •97 •98	.003 .003 .003	1058 1058 1057	-8.1 0	28 24	.102 .036	•037 •043	0.16	038 .002	•023 ••001	•91 1•00	•003 •003	1149 1149
-1.8 -3.8 -5.8 -7.8	.25 .24 .24 .24	013 .004 .028 .062	.061 .056 .050 .044	.03 .07 .11 .16	006 012 022 03 ¹	.008 .017 .024 .031	•97 •97 •95 •94	.003 .003 .003	1057 1058 1057 1057	2.1 1.1 -1.0 -2.0	49 48 49	.083 .082 .084 .087	.107 .106 .105	04 02 .02	.015 .008 007	006 002 .005 .008	.97 1.00 .99	.003 .003 .003	1149 ⁵ 1149 1149 1149
		000	M _∞		; a = 1		1 al.	1 605	T 3057	-4.1 -6.1	49 50	.094	.106	.08	026 038	.013	.91	•003	1149 1149
2.1 1.1 .2 7 -1.7 -3.6 -5.6 -7.5	•50 •50 •50 •50 •50 •50 •50	038 040 042 040 027 004 032	.142 .142 .142 .142 .141 .138 .132	04 02 01 .01 .02 .07 .11	•004	010 006 002 .003 .008 .014 .020	.94 .94 .95 .94 .94 .94	.003 .003 .003 .003 .003 .003 .003	1057 1057 1057 1057 1057 1057 1057 1057	-8.0 0 0	52 49 49	.082 .082	•109 •104 •105	.16 0 0	-040 -002	.021 .001 .001	.81 .99 1.01	•003 •003 •003	1149 1149 1149

TABLE III. - SIDESLIP CHARACTERISTICS; R/FT = 2.0×106 - Continued

	(b) Trimmer off; δ _R \cong O ^O												c) Vent	ral fin	s on (C	oncluded	1)		
					ώ0; α =								М	‰ = 5.0	0; a =	5.5°	, ,		
β, deg	C _L	Cm	c_D	CY	Cn	c_1	m/m _{to}	СХР	Pt _∞ lb/ft²	β, deg	c _L	C _m	c _D	c _Y	c _n	cı	m/m _∞	c^{X^p}	p _{t∞} lb/ft²
2.1 1.0 0 -1.0 -2.0 -4.0 -6.1 -8.1 2.1	-0.03 03 03 03 03 04 05 03	-0.011 013 015 013 008 .005 .026 .056 011	0.039 .040 .041 .040 .038 .034 .030 .024 .039	-0.04 02 0 .02 .04 .07 .12 .16 04 01	0.012 .007 .002 003 008 018 030 040 .012 .003	-0.009 004 0 .009 .017 .025 .032 009	0.90 .91 .90 .91 .90 .91 .90	0.004 .004 .004 .004 .004 .004 .005 .005	991 992 990 990 991 991 991 992 991	2.1 1.1 0 -1.0 -2.0 -4.0 -6.1	0.24 .24 .24 .24 .24 .23 .24 .23 .24	-0.023 026 026 026 023 020 007 .016 026	0.063 .064 .064 .063 .062 .058 .051 .063	-0.04 02 02 0 .04 .08 .13	0.016 .010 .010 .003 004 010 022 037 .004	-0.006 003 003 0 .006 .012 .017 001	0.98 98 98 98 98 98 98 99 99	0.002 .002 .002 .002 .002 .002 .002 .00	1160 1159 1159 1159 1159 1159 1159 1159
		1000		= 1.60						2.0	.46	053	.139	0l4	.011	006	•97	•002	1159
2.0 1.0 0 -1.0 -2.0 -4.0 -6.0	24 23 24 23 24 23 23 23	068 068 066 060 060	.080 .078 .077 .077 .077 .077	04 02 0 .02 .04 .08	.007 .004 .001 002 005 015	008 004 0 .008 .016 .023	.94 .91 .91 .91 .94 .92	.004 .004 .004 .004 .004 .004	991 991 990 991 992 991 989	1.0 .1 9 -1.9 -3.9 -5.9	.46 .46 .46 .46 .47 .47	054 053 053 050 038 015 054	.139 .138 .138 .137 .134 .127	02 0 .02 .04 .09 .14	.007 .004 .003 001 016 027 .005	003 0 .003 .005 .009 .012	.96 .95 .96 .96 .95	.002 .002 .002 .002 .002 .003	1159 1159 1159 1159 1159 1159 1160
					0; α =					· ·		(δ _R ≅ 0 ^C			
1.0	•46 •46	073 074	•136 •136	-•05 -•03	•005	007 003	•90 •91 •93	•005 •004	988 988	1.8	02	•012	•031	M∞ = 1.6	60; α =	o° 005	•90	•004	991
-1.8 -3.7 -5.7	.46 .46 .46 .46	074 075 075 074 072	.136 .135 .137 .138 .140	-01 -01 -04 -08 -13	.006 .005 .005 .003 005	.001 .004 .008 .014 .018	•93 •91 •94 •90 •91	•004 •005 •004 •005 •005	992 989 988 992 991	-9 -2 -1.8 -3.6 -5.3	02 01 02 02 02	- 004 - 007 - 008 - 012 - 029 - 053	•033 •032 •032 •031 •030 •026	01 0 .01 .02 .04	010 002 .009 .018 .034 .039	003 001 .002 .005 .009	.90 .90 .90 .90	.004 .004 .005 .004 .005	989 989 991 991 991 991
2.0	0	02½ 028	•039 •040	04	.008 .005	008 004	1.02	.001 .002	1154 1154	.2	01	•007	•033	0	001	0	•92	•004	991
-1.0 -2.0 -4.0 -6.0	0 0 0 0 -•01 -•01	031 029 024 008 013 031	.040 .039 .038 .033 .028 .040	01 .02 .03 .07 .11 01	-003 001 004 010 018 -003	001 .003 .007 .014 .020	1.03 1.03 1.03 1.01 1.02 1.02	.002 .002 .002 .002 .002 .002	11,44 11,51 11,54 11,52 11,52 11,52	1.8 .9 .2 9 -1.8 -3.6	.01 .01 .01 .01 .01	002 005 007 006 002 .014 .038	.029 .030 .030 .030 .030 .028	M _{co} = 2.0 02 01 0 .01 .02 .05 .08	018 010 002 .009 .018 .034 .039	003 002 0 .002 .003 .007 .010	.99 .99 .99 .99 1.01 1.00	.002 .002 .002 .002 .001 .002	1149 1151 1149 1147 1149 1147 1149
2.0	•22	066 066	.072 .071	04 02	•008 •006	008 004	•96 •94 •88	•002 •002	1151 1151	.2	.01	008	.031	0 M _w = 2.0	001	0	1.00	.002	1149
0 -1.9 -3.9 -5.9	•22 •22 •22 •22	065 066 066 058 034			.004 .002 0 007 015 ins on;		•98 •99 •98 •95	.002 .002 .002 .002	1152 1149 1148 1148 1148	1.8 .9 0 9 -1.8 -3.6 -5.4	.24 .24 .24 .24 .23 .23	020 024 026 024 020 .001	.060 .061 .061 .061 .059 .053	02 01 0 .01 .03 .05	014 007 .001 .009 .016 .029	006 003 .001 .004 .007 .013	•96 •96 •97 •97 •96 •96	.002 .002 .002 .002 .002 .002	1148 1148 1148 1148 1148 1149 1149
2.1	02	.026 .024	.026 .026	04 02	•015 •007	-•008 -•00 [‡]	•97 •97	•003	1102	0	•24	026	.060	.01	.002	.001	•96	•003	1149
-1.0 -2.1 -4.1 -6.2	02 01 02 02 03 02	.024 .026 .030 .043 .070 .024	.026 .026 .025 .022 .017 .026	0 •02 •04 •08 •12	0 008 014 029 040 .002	0 •004 •007 •014 •022 ••001	•96 •97 •97 •97 •96	.003 .003 .003 .003 .003	1104 1106 1106 1106 1106 1106	1.8 .9 0 9 -1.8 -3.5	.47 .47 .47 .46 .46	037 041 040 036 018	.132 .132 .132 .131 .130	02 01 0 .02 .03	010 004 .002 .008 .014 .026	006 003 .001 .004 .007	•97 •96 •97 •95 •96	.002 .002 .002 .002 .002	1149 1149 1149 1149 1149 1149
2.0	•48	061	.148	04	0; α =	007	•95	•003	1106	-5.4 0	.46 .46	.012 041	.118 .131	.01	•029 •002	.017 .001	•95 •96	.002	1149 1149
0	.48 .48	060 061	•146 •147	0	•003	0 003	•95 •95 •95	•003	1106					o = 2.00					
9 -1.9 -4.0 -6.0	.48 .48 .49 .48	060 060 047 021 060	•147 •147 •143 •135 •144	•01 •03 •08 •13	001 002 018 031 .002	.003 .006 .010 .013 001	•95 •95 •95 •94 •95	.003 .003 .003 .003	1106 1106 1105 1106 1106	1.8 .9 0 9 -1.8 -3.6	24 24 24 24 24	.032 .029 .029 .030 .033 .046	.044 .045 .044 .045 .045	.01 .02 .04	016 008 0 .009 .018	.001 .001 0 001 002	1.00 1.01 1.01 .98		1149 1149 1149 1149 1149 1149
2.1 1.1 0 -1.0 -2.0 -4.1 -6.1	0 0 •01 •01 0 0 -•01	.006 .003 .002 .004 .007 .020 .039	.030 .031 .031 .030	04 02 0 .02 .04 .08 .12 01	00; α = .015 .008 .001 .005 .012 .023 .036 .003	007		.002 .002 .002 .002 .002 .002	1163 1158 1160 1160	-5.5 0	-,26 -,24	•061 •028	•047 •045	•07	•040	0		.002	1149 \

TABLE III. - SIDESLIP CHARACTERISTICS; $R/FT = 2.0 \times 10^6$ - Concluded

								(e) R	udder de	flected;	a = 0°)					·		
			м	l _∞ = 1.0	60; δ _R =	-4°							М	= 1.80); δ _R =	-8°			
β, deg	c _L	Cm	c _D	CA	Cn	cı	m/m _∞	c _{Xb}	p _t lb/ft ²	β, deg	$c_{ m L}$	Cm	c _D	СY	c _n	c ₁	m/m _∞	c ^{XP}	p _{t∞} lb/ft ²
2.3 1.3 .3 7 -1.88 -3.8 -5.8	-0.02 02 02 02 02 03 03	0.013 .012 .010 .012 .015 .029 .050	0.033 .034 .033 .032 .029 .024	-0.05 03 01 .01 .03 .07 .11	0.021 .015 .010 .004 001 010 021	-0.011 006 002 .003 .008 .016 .025 .032	0.90 .90 .90 .90 .90	0.004 .004 .005 .004 .005 .004 .005	993 984 989 989 991 992 991	2.1 .3 9 -1.9 -3.9 -6.0 -8.0	-0.01 01 01 02 02 03	0.018 .014 .016 .020 .037 .059 .086	0.029 .029 .029 .028 .024 .020 .016	-0.04 -01 .01 .03 .07 .11 .16	0.018 .011 .006 .003 005 016 030	-0.010 002 .003 .008 .016 .024 .031	0.98 .98 .98 .97 .97 .95 .94	0.003 .003 .003 .003 .003 .003	1055 1056 1057 1057 1057 1057 1057
$M_{\infty} = 1.60; \delta_{R} = -8^{\circ}$											01	•018	.031	05	ο; δ _R =	011	00	•003	1087
2.2 1.2 .3 9 -1.9 -3.9 -6.0 -8.0	02 02 02 02 02 02 03	.014 .012 .011 .014 .017 .033 .054 .083	.034 .035 .035 .034 .033 .030 .025	05 03 01 .01 .03 .07 .11	.025 .019 .014 .008 .003 007 018	010 006 002 .004 .008 .017 .025 .032	•90 •90 •90 •90 •90 •90	.005 .004 .004 .004 .004 .004	986 986 990 991 991 991	2.2 1.4 8 -1.9 -5.9 -5.0 -4	01 01 01 02 02 03	.016 .014 .017 .022 .039 .061 .087	.030 .030 .030 .029 .025 .021 .016	03 01 .01 .03 .07 .11	020 017 012 009 001 - 011 - 024 018	- 006 - 002 - 003 - 008 - 016 - 024 - 031	.99 .97 .98 .98 .98 .97 .96	.003 .003 .003 .003 .003 .003	1097 1092 1087 1090 1090 1088 1088 1088
			M _∞	= 1.60	; δ _R = -	15 ₀							M _∞	= 2.00); δ _R =	_4°			
2.3 1.2 8 -1.8 -3.9 -5.9 -8.0	02 02 02 02 03 03	.020 .017 .016 .019 .023 .039 .062 .090	.034 .034 .033 .032 .029 .025	05 03 01 .01 .03 .07 .11	.032 .027 .022 .016 .010 001 012	011 007 002 .003 .008 .017 .025	.90 .90 .90 .90 .90 .90	.004 .004 .004 .004 .004 .004 .004	1000 1006 993 992 992 991 991	2.3 1.3 .3 .8 -1.7 -3.7 -5.7 -7.8	0 0 0 0 0 01 01 02	.001 003 005 003 .001 .016 .036 .063	.031 .032 .031 .031 .031 .026 .022	04 03 01 .01 .03 .07 .10	.013 .010 .007 .003 .001 005 012	009 005 001 .003 .006 .013 .019	1.01 1.00 1.00 1.01 .99 .96	.002 .002 .002 .002 .002 .002 .002	1148 1147 1143 1149 1151 1150 1150 1149
			М	= 1.80); δ _R =	_4°							М	₀ = 2.0	0; δ _R =	-8°			
2.3 1.3 8 -1.8 -3.8 -5.8	01 0 01 01 01	.016 .013 .011 .013 .017 .033 .054	.027 .028 .028 .027 .027 .025 .020	05 03 01 01 03 03 07	.015 .011 .007 .004 0	011 006 001 .003 .007 .016	•97 •98 •98 •98 •97 •97	.003 .003 .003 .003 .003 .003	1054 1052 1055 1056 1054 1054 1055	-3 -1.9 -1.9 -3.9 -5.9 -7.9	.01 .01 .01 0 01	003 002 .003 .019 .041 .067	.033 .033 .031 .027 .023	01 .01 .03 .07 .11	.011 .007 .004 002 011 024	002 .003 .006 .013 .020	1.01 1.01 1.01 .99 .97	.002 .002 .002 .002 .002	1149 1149 1149 1149 1149 1149
-7.9	02	•080	015	.16	032	•031	•95 •94	•003	1055						; δ _R =				
			7							2.2 1.2 .3 9 -1.9 -3.9 -5.9	01 0 0 01 01 02	.003 0 002 .001 .005 .021 .0 ¹ +3	.034 .033 .033 .033 .031 .027 .023	05 03 01 01 03 07 11	.022 .019 .016 .012 .009 .002 007	002 .002 .006 .013	1.01 1.01 1.01 1.01 1.02 1.00 1.01	.001 .001 .002 .001 .002 .002 .002	1155 1157 1143 1141 1147 1149 1151 1152

FIGURE LEGENDS

- Figure 1. Systems of axes and positive direction of forces, moments, and angles.
- Figure 2.- Model photographs. (a) Basic configuration. (b) Configuration with ventral fins.
- Figure 2.- Concluded. (c) Inlet with antibuzz screen extended. (d) Inlet with boundary-layer bleed closed.
- Figure 3.- Model and model component details (dimensions in inches).

 (a) Three views of basic configuration.
- Figure 3.- Continued. (b) Trimmer and ventral details.
- Figure 3.- Concluded. (c) Antibuzz screen and rudder details.
- Figure 4. Thet configurations. (a) Basic inlet. (b) Inlet with boundary-layer bleed closed. (c) Inlet with antibuzz screen extended.
- Figure 5.- Longitudinal characteristics of the basic configuration; $M_{\infty} = 2.0$, $R/ft = 2.0 \times 10^6$.
- Figure 6. Variation with Mach number of pitching moment at zero lift, and aerodynamic center for the configurations tested; R/ft=2.0x10⁶.
- Figure 7. Wariation with Reynolds number of pitching moment at zero lift, and aerodynamic center; M_=2.0.
- Figure 8.- Effect of mass-flow-ratio variation on pitching moment; R/ft=2.0×10⁶, C₁≈0.
- Figure 9. Lateral characteristics of the basic configuration; M_{∞} =2.0, R/ft=2.0×10⁶, α =0 .
- Figure 10. Variation with Mach number of rolling-moment and yawing-moment derivatives for the configurations tested; $R/ft=2.0\times10^6$. (a) $\alpha=0^{\circ}$.
- Figure 10. Continued. (b) $\alpha=5.5^{\circ}$.
- Figure 10. Continued. (c) $\alpha=11^{\circ}$.
- Figure 10. Concluded. (d) α =-5.5°.
- Figure 11. Variation with Mach number of rudder effectiveness; $R/ft=2.0\times10^6$, $\alpha=0^0$, $\beta=0^0$.

Figure 1.- Systems of axes and positive direction of forces, moments, and angles.

(b) Configuration with ventral fins.
Figure 2.- Model photographs.

A-21874

(c) Inlet with antibuzz screen extended.

A-21885

(d) Inlet with boundary-layer bleed closed.

A-21881

Figure 2.- Concluded.

(a) Three views of basic configuration.

Figure 3.- Model and model component details (dimensions in inches).

(b) Trimmer and ventral details.

Figure 3.- Continued.

(c) Antibuzz screen and rudder details.

Figure 3.- Concluded.

(b) Inlet with boundary-layer bleed closed.

(c) Inlet with antibuzz screen extended.

Figure 4.- Inlet configurations.

Figure 5.- Longitudinal characteristics of the basic configuration; $\rm M_{\infty}=2.0$, $\rm R/ft=2.0\times10^6$.

Figure 6.- Variation with Mach number of pitching moment at zero lift, and aerodynamic center for the configurations tested; $R/ft=2.0\times10^6$.

Figure 7.- Variation with Reynolds number of pitching moment at zero lift, and aerodynamic center; $M_{\infty}=2.0$.

Figure 8.- Effect of mass-flow-ratio variation on pitching moment; R/ft=2.0×10 6 , $\rm C_L^{\approx~0}$.

Figure 9.- Lateral characteristics of the basic configuration; M_{∞} =2.0, R/ft=2.0x106, α =0°.

Figure 10.- Variation with Mach number of rolling-moment and yawing-moment derivatives for the configurations tested; $R/ft=2.0\times10^6$.

Figure 10.- Continued.

Figure 10.- Continued.

Figure 10.- Concluded.

Figure 11.- Variation with Mach number of rudder effectiveness; R/ft=2.0×10⁶, α =0⁰, β =0⁰ $\frac{1}{2}$ $\frac{1}{$