Yilun Wang(yilun830@bu.edu) - ASSIGNMENT #3

convert notebook to html then print as PDF

In [1]:

%matplotlib inline

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.p y:19: FutureWarning: pandas.util.testing is deprecated. Use the func tions in the public API at pandas.testing instead. import pandas.util.testing as tm

In [3]:

```
# import temp1.csv
temp1 = pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-sessi
on02/main/temp1.csv')
```

In [4]:

```
# import project tickers.csv
data1 = pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-sessi
on02/main/ProjectTickers.csv')
```

In [5]:

```
temp1.head(5)
```

Out[5]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	tic	curcd	ceq	csho
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	974.4	35.375
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	-7340.0	647.728
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	5906.2	112.927
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	35802.0	1764.082
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	7497.0	1207.000

In [6]:

```
temp1.isna().sum()
```

Out[6]:

gvkey 0 datadate 0 fyear 0 indfmt 0 consol 0 popsrc 0 datafmt 0 tic 0 curcd 0 ceq 0 csho ebit 0 ni 0 sale costat 0 prcc_c dtype: int64

In [7]:

data1.head(5)

Out[7]:

Ticker		Name	RetYTD
0	А	Agilent Technologies	-0.2080
1	AA	Alcoa Corp	0.4731
2	AAL	American Airlines Gp	0.0579
3	AAN	Aarons Holdings Company	-0.1327
4	AAON	Aaon Inc	-0.3456

In [8]:

```
# rename column
temp1.rename(columns={'tic':'Ticker'}, inplace=True)
temp1.head()
```

Out[8]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	Ticker	curcd	ceq	csho
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	974.4	35.375
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	-7340.0	647.728
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	5906.2	112.927
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	35802.0	1764.082
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	7497.0	1207.000

In [9]:

```
# merge two datasets
df = pd.merge(temp1, data1, how='outer', on='Ticker')
```

In [10]:

```
df.head(5)
```

Out[10]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	Ticker	curcd	ceq	csho
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	974.4	35.375
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	-7340.0	647.728
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	5906.2	112.927
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	35802.0	1764.082
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	7497.0	1207.000

Create ratios

In [11]:

```
df['Book/Price'] = df['ceq'] / (df['prcc_c'] * df['csho'])
df['E/P'] = df['ni'] / (df['prcc_c'] * df['csho'])
df['EBIT/P'] = df['ebit'] / (df['prcc_c'] * df['csho'])
df['SALE/P'] = df['sale'] / (df['prcc_c'] * df['csho'])
```

In [12]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1886 entries, 0 to 1885
Data columns (total 22 columns):

	COTUMNIS (CO			
#	Column	Non-N	Null Count	t Dtype
0	gvkey	1886	non-null	int64
1	datadate	1886	non-null	int64
2	fyear	1886	non-null	int64
3	indfmt	1886	non-null	object
4	consol	1886	non-null	object
5	popsrc	1886	non-null	object
6	datafmt	1886	non-null	object
7	Ticker	1886	non-null	object
8	curcd	1886	non-null	object
9	ceq	1886	non-null	float64
10	csho	1886	non-null	float64
11	ebit	1886	non-null	float64
12	ni	1886	non-null	float64
13	sale	1886	non-null	float64
14	costat	1886	non-null	object
15	prcc c	1886	non-null	float64
16	Name	1886	non-null	object
17	RetYTD	1886	non-null	_
18	Book/Price	1886	non-null	float64
19	E/P	1886	non-null	float64
20	EBIT/P	1886	non-null	float64
21	SALE/P	1886		
	es: float64(
	ry usage: 338			5 (0)

```
In [13]:
```

```
# check null value
df.isna().sum()
Out[13]:
               0
gvkey
datadate
               0
fyear
               0
indfmt
               0
consol
               0
               0
popsrc
datafmt
               0
Ticker
               0
curcd
               0
               0
ceq
               0
csho
ebit
               0
ni
               0
sale
               0
costat
               0
prcc c
               0
               0
Name
RetYTD
               0
Book/Price
               0
E/P
EBIT/P
               0
```

Winsorize

dtype: int64

```
In [14]:
```

SALE/P

```
#import winsorize
from scipy.stats.mstats import winsorize
```

winsorize for Book/Price:

0

```
In [15]:
```

```
# winsorize
df['B/P_win'] = winsorize(df['Book/Price'], (0.01,0.01))
df['B/P_win'].describe()

Out[15]:
```

```
1886.000000
count
mean
            0.418525
std
            0.357610
           -0.337273
min
            0.161112
25%
50%
            0.337004
75%
            0.613868
max
            1.677414
```

Name: B/P_win, dtype: float64

winsorize for E/P:

```
In [16]:
```

```
# winsorize
df['E/P_win'] = winsorize(df['E/P'], (0.01,0.01))
df['E/P_win'].describe()
```

Out[16]:

```
1886.000000
count
mean
            0.028863
             0.104543
std
min
           -0.521213
25%
             0.008113
50%
             0.036704
75%
             0.076322
             0.279700
max
```

Name: E/P_win, dtype: float64

winsorize for EBIT/P:

```
In [17]:
```

```
# winsorize
df['EBIT/P_win'] = winsorize(df['EBIT/P'], (0.01,0.01))
df['EBIT/P_win'].describe()
```

Out[17]:

```
count
         1886.000000
mean
            0.061663
std
            0.111000
min
           -0.378436
25%
            0.019641
50%
            0.056821
75%
            0.113822
max
            0.415467
```

Name: EBIT/P_win, dtype: float64

winsorize for Sale/P:

```
In [18]:
# winsorize
df['SALE/P_win'] = winsorize(df['SALE/P'], (0.01,0.01))
df['SALE/P win'].describe()
Out[18]:
count
         1886.000000
mean
            0.715741
std
            0.984946
min
            0.000060
25%
            0.176223
50%
            0.350729
75%
            0.814565
max
            6.119348
Name: SALE/P win, dtype: float64
```

Save variables to new csv

```
In [19]:
```

Out[19]:

	Ticker	Book/Price	E/P	EBIT/P	SALES/P	RetYTD
0	AIR	0.760488	0.027941	0.051121	1.288865	0.2944
1	AAL	-0.337273	-0.171320	-0.378436	2.568684	0.0579
2	PNW	0.740913	0.077616	0.101023	0.477178	0.0985
3	ABT	0.144202	0.028480	0.036113	0.173496	-0.1638
4	AMD	0.043164	0.018205	0.021176	0.094618	-0.3533

```
In [20]:
```

```
# dataframe to csv
new.to_csv("Assign4.csv")
```

```
In [20]:
```

Examine the correlations between Book/Price, E/P, EBIT/P, SALES/P, and RetYTD.

In [21]:

new.corr()

Out[21]:

	Book/Price	E/P	EBIT/P	SALES/P	RetYTD
Book/Price	1.000000	0.221258	0.275611	0.244706	0.239582
E/P	0.221258	1.000000	0.776840	0.040736	0.065767
EBIT/P	0.275611	0.776840	1.000000	0.242110	0.130149
SALES/P	0.244706	0.040736	0.242110	1.000000	0.155575
RetYTD	0.239582	0.065767	0.130149	0.155575	1.000000

In [22]:

```
sns.heatmap(new.corr(), annot=True)
plt.show()
```


We can see the four variables(B/P, E/P, EBIT/P, SALES/P) have positive correlaton with RetYTD. So those four variables have positive effect on the stock return from January 1, 2022 to January 14, 2022.

Estimate 4 linear regression models (using StatsModel API)

In [23]:

new['constant'] = 1

RetYTD = a + b1*Book/P + e

```
In [24]:
```

```
X = new[['constant','Book/Price']]
y = new['RetYTD']
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
```

OLS Regression Results _____ ======== Dep. Variable: RetYTD R-squared: 0.057 Model: OLS Adj. R-squared: 0.057 Least Squares F-statistic: Method: 114.7 Date: Fri, 22 Apr 2022 Prob (F-statistic): 4.99e-26 01:29:56 Log-Likelihood: Time: 42.030 No. Observations: 1886 AIC: -80.06 Df Residuals: 1884 BIC: -68.98 Df Model: Covariance Type: nonrobust ______ _____ coef std err t P>|t| [0.025] 0.975] ______ constant -0.1318 0.008 -15.707 0.000 -0.148 -0.115 Book/Price 0.1633 0.015 10.711 0.000 0.133 ______ 645.593 Durbin-Watson: Omnibus: 1.931 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3688.505 Skew: 1.495 Prob(JB): 0.00

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

9.164 Cond. No.

RetYTD = a + b2*E/P + e

```
In [25]:
```

```
X = new[['constant','E/P']]
y = new['RetYTD']
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
```

OLS Regression Results

0.004

Model: OLS Adj. R-squared:

Model 0.004

Method: Least Squares F-statistic:

8.184

Date: Fri, 22 Apr 2022 Prob (F-statistic):

0.00427

Time: 01:29:56 Log-Likelihood:

-9.6261

No. Observations: 1886 AIC:

23.25

Df Residuals: 1884 BIC:

34.34

Df Model: 1

Covariance Type: nonrobust

Constant -0.06/9 0.006 -11.683 0.000 -0.0/9 -0.057 E/P 0.1534 0.054 2.861 0.004 0.048 0.259

========

Omnibus: 713.441 Durbin-Watson:

1.944

Prob(Omnibus): 0.000 Jarque-Bera (JB):

4570.972

Skew: 1.636 Prob(JB):

0.00

Kurtosis: 9.889 Cond. No.

9 58

========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

RetYTD = a + b3*EBIT/P + e

```
In [26]:
```

```
X = new[['constant','EBIT/P']]
y = new['RetYTD']
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
```

OLS Regression Results

_____ ======== Dep. Variable: RetYTD R-squared: 0.017 Model: OLS Adj. R-squared: 0.016 Least Squares F-statistic: Method: 32.46 Date: Fri, 22 Apr 2022 Prob (F-statistic): 1.41e-08 01:29:56 Log-Likelihood: Time: 2.3964 No. Observations: 1886 AIC: -0.7929 Df Residuals: 1884 BIC: 10.29 Df Model: Covariance Type: nonrobust ______ _____ coef std err t P>|t| [0.025] 0.9751 ______ -0.0811 0.006 -12.7340.000 -0.094

constant -0.069 EBIT/P 0.2859 0.050 5.698 0.000 0.187 ______ ======== 736.933 Durbin-Watson: Omnibus: 1.944 0.000 Jarque-Bera (JB):

4929.333

Prob(Omnibus):

Skew: 0.00

1.685 Prob(JB):

9.05

Kurtosis: 10.167 Cond. No.

=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

RetYTD = a + b4*SALES/P + e

In [27]:

```
X = new[['constant','SALES/P']]
y = new['RetYTD']
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
```

OLS Regression Results

Dep. Variable: RetYTD R-squared: 0.024 Model: OLS Adj. R-squared: 0.024 Method: Least Squares F-statistic: 46.73 Fri, 22 Apr 2022 Prob (F-statistic): Date: 1.10e-11 01:29:56 Log-Likelihood: Time: 9.3911 No. Observations: 1886 AIC: -14.78Df Residuals: 1884 BIC: -3.698 Df Model: 1 Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.9751 ----constant -0.0910 0.007 -13.277 0.000 -0.104 -0.078 0.0385 0.006 6.836 0.000 SALES/P 0.027 0.050 _____

=======

Omnibus: 645.760 Durbin-Watson:

1.960

Prob(Omnibus): 0.000 Jarque-Bera (JB):

4090.493

Skew: 1.460 Prob(JB):

0.00

Kurtosis: 9.598 Cond. No.

2.03

========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

From four regressions above, we can see:

- R2 are 0.057, 0.004, 0.017, 0.024.
- Adj.R2 are 0.057, 0.004, 0.016, 0.024.
- b1=0.1633, b2=0.1534, b3=0.2859, b4=0.0385.
- T-stats are 10.711, 2.861, 5.698 and 6.836.

We can conclude that the R-square and Adj.R-square of four regressions are not high enough, all below 0.06, which means the extent of interpretation of four regressions are not good.

The four b values are all positive, which means the four variables all have positive relationship with RetYTD(stock return). Particularly, b3 is the highest one, which means EBIP/Price has the most positive relationship with stock return.

Finally, because all of the four t-stats are higher than 2.58(according to 99% significant level), so the four regression's significant level are bigger than 99%.