The IPWE calculation

$$V(D) = E_X(E_{Z|X}(Y|X, T = D(X)))$$

$$V(\hat{D}) = \sum_{i=1}^{n} Z_i I_{T_i = D(X_i)} / \sum_{i=1}^{n} I_{T_i = D(X_i)}$$

where Z is the criterion to measure the treatment performance. Z can be chosen as (i) change score, (ii) curve integral (area under the curve), (iii) weighted integral.

To train the data

- 1. Obtain the $\hat{\alpha}$ by maximizing purity or likelihood
- 2. Estimate the coefficients:

$$\operatorname{coef}_{drg} = \hat{\beta}_1 + \hat{\Gamma}_1(\hat{\alpha}'x)$$

$$\operatorname{coef}_{pbo} = \hat{\beta}_2 + \hat{\Gamma}_2(\hat{\alpha}'x)$$

• 3. Calculate the treatment decision rule:

	Change Score	Integral	Weighted Integral 1	Weighted Integral 2
Training set	$\hat{Y}_k = X \operatorname{coef}_k$	$\hat{\theta} = \operatorname{coef}_k$	$ \hat{\theta} = \operatorname{coef}_k \hat{\theta}_1 = \{\hat{\theta}, \hat{\beta}_{pbo}\} $	$ \hat{\theta} = \operatorname{coef}_{k} \hat{\theta}_{0} = \{\hat{\theta} \mid \hat{\beta}_{k}\} $
	$\hat{Z}_k = \hat{Y}_k(t=8) - \hat{Y}_k(t=0)$	$\hat{Z}_k = \int_0^8 f(t; \hat{\theta}) dt$	$\hat{Z}_k = \int_0^8 w(t; \hat{\theta}_1) f(t; \hat{\theta}) dt$	$\hat{\theta}_2 = \{\hat{\theta}, \hat{\beta}_{pbo}\} $ $\hat{Z}_k = \int_0^8 w(t; \hat{\theta}_2) f(t; \hat{\theta}) dt$
Decision rule \hat{T}_i	$\hat{T}_i = \text{drug if } \hat{Z}_{drg} < \hat{Z}_{pbo}$	$\hat{T}_i = \text{drug if } \hat{Z}_{drg} < \hat{Z}_{pbo}$	$\hat{T}_i = \text{drug if } \hat{Z}_{drg} < \hat{Z}_{pbo}$	$\hat{T}_i = \text{drug if } \hat{Z}_{drg} < \hat{Z}_{pbo}$
Test set Z_i	Y(t=8) - Y(t=0) (observed)	$\hat{\theta}^* = \hat{\beta}^*$ (LME without predictor) $Z_i = \int_0^8 f(t; \hat{\theta}^*) dt$	$\hat{\theta}^* = \hat{\beta}^*$ (LME without predictor) $Z_i = \int_0^8 w(t; \hat{\theta}^*, \beta_{pbo}) f(t; \hat{\theta}^*) dt$	$\hat{\theta}^* = \hat{\beta}^*$ (LME without predictor) $Z_i = \int_0^8 w(t; \hat{\theta}^*, \hat{\beta}_{pbo}) f(t; \hat{\theta}^*) dt$