

EK "Risikoanalysen in der IT"

Importanzkenngrössen

Dr.-Ing. Ralf Mock

Zürcher Hochschule für für Angewandte Wissenschaften

15. Dezember 2014

Zürcher Fachhochschu

Lernziele

Lernziele

Bedeutung

Problem kreise

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz Beispiel

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Literatur

Die Teilnehmenden

- ▶ kennen die wichtigsten Importanzkenngrössen
- können diese Kenngrössen für einfache Systeme berechnen
- ▶ können die Ergebnisse beurteilen

Grundlagen

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz

Beispiel

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Literatur

Importanz-Analysen

Beim Entwurf und der Analyse eines Systems ist es oft wichtig, die Wichtigkeit der einzelnen Systemeinheiten zu kennen und welchen Beitrag sie für die Systemzuverlässigkeit beitragen. Hierfür dienen Importanz-Analysen. Dabei gilt:

- ▶ Die Zuverlässigkeit eines Systems wird bestimmt durch
 - die Merkmale seiner Einheiten
 - die Anordnung der Einheiten (Systemstruktur)
 - die Zuverlässigkeitskenngrössen der Einheiten.
- ▶ Wichtigkeit ist je nach Problemstellung anders definiert.
- Je nach Datenbasis sind unterschiedliche Methoden der Importanz-Analyse möglich.

Grundlagen

Lernziele

Bedeutung

Problemkreise

Notation

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Beispiel

Literatur

Problemkreise von Importanz-Analysen

- 1. Identifizierung jener Einheit, deren Verbesserung sich am stärksten auf der Systemebene auswirkt (*Systemoptimierung*).
- 2. Der Zeitpunkt des Systemausfalls fällt stets mit dem Zeitpunkt des Ausfalls einer Einheit zusammen (*Einheit i löst den Systemausfall aus*).
- 3. Zur Fehlererkennung und -diagnose ist die Reihenfolge der zu reparierenden Einheiten bedeutungsvoll (*Optimierung der Instandhaltung:* Beginn einer Instandsetzung mit der Einheit, die das System mit grösster Wahrscheinlichkeit wieder in den Zustand "Funktion" bringt).

erber Fashborhschilde

Grundlagen

Lernziele

Bedeutung

Problemkreise

Notation

Strukturelle Importanz

Ansatz

Beispiel

Marginale Importanz

Ansatz Beispiel

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Literatur

Bezeichnungen

Problemkreis 1 Pro

Problemkreis 2

Problemkreis 3

- strukturelle Importanz *
- marginale (Birnbaum) Importanz*
- fraktionelle Importanz
- kompetetive (Barlow-Proschan) Importanz
- sequentielle kontributive Importanz
- diagnostische (Fussell-Vesely) Importanz*

Anmerkungen

- *: vorgestellte Methoden
- Quellen:

Grundlagen [7, 5, 3, 6, 2]; F&E: [8, 1, 4]

Strukturelle Importanz $I_{\Phi}(i)$

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz Beispiel

Diagnostische Importanz

Ansatz Erläuterung

Beispiel

Literatur

Ansatz

- ► Einheit: jede Einheit *i* weist entweder den Zustand $x_i = 0$ (ausgefallen) oder $x_i = 1$ (intakt) auf.
- ▶ Systemfunktion $\phi(\underline{\mathbf{x}})$: Ein System besteht aus den Einheiten x_i , mit i=1,...,n. Das System kann ebenfalls nur die Zustände 0 oder 1 annehmen (Boolescher Ansatz).
- Zustandsvektor <u>x</u>: Realisierung der Einheiten-Zustände in einem System.
- ➤ Anzahl Kombinationen: Es gibt 2ⁿ unterschiedliche Zustandsvektoren eines Systems ("Kombinationen von Nullen und Einsen").

Strukturelle Importanz $I_{\Phi}(i)$

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz

Beispiel

Diagnostische Importanz

Ansatz Erläuterung

Beispiel Literatur

Ansatz (Forts.)

▶ Ein System fällt aus ($\phi(0_i;\underline{x})=0$), falls Einheit i ausfällt ($x_i=0$), und es bleibt intakt ($\phi(1_i;\underline{x})=1$), falls i intakt ist ($x_i=1$). Damit bestimmt der Zustand der Einheit i den Systemzustand. Damit gilt die **Bedingung** der Gl. 1:

$$\phi(1_i; \underline{x}) - \phi(0_i; \underline{x}) = 1, \text{ "ist wahr"}$$
(1)

- Gibt man den Zustand der Einheit i vor, dann reduziert sich die Anzahl der Vektoren auf 2ⁿ⁻¹
- ▶ Vektoren, die die Bedingung erfüllen, nennt man kritische Vektoren.
- Die Strukturelle Importanz ist definiert als der Quotient aus der Anzahl der kritischen Vektoren der Einheit i und der Gesamtanzahl aller Vektoren. Die relative Wichtigkeit einer Einheit i für das Funktionieren des Gesamtsystems ist damit

$$I_{\phi(i)} = \frac{1}{2^{n-1}} \cdot n_{\phi(i)}$$
, wobei

- -2^{n-1} : Anzahl möglicher Vektoren
- $-n_{\phi(i)}$: Anzahl der kritischen Vektoren der Einheit i

Strukturelle Importanz $I_{\phi}(i)$

Lernziele

Bedeutung

Problemkreise

Toblellikiet

Strukturelle Importanz

Ansatz

Beispiel

Marginale Importanz

Ansatz

Beispiel

Diagnostische Importanz

Ansatz

Erläuterung

Beispiel Literatur

Beispiel

Serien-Parallelsystem

Boolesche Funktion

$$\overline{y} = \phi(\underline{x}) = \overline{x}_1 + \overline{x}_2 \overline{x}_3 - \overline{x}_1 \overline{x}_2 \overline{x}_3$$

 \overline{x}_i : Einheit i ausgefallen

Einheit 1

setze $\overline{x}_1 = 1$ ("Unterbruch"):

$$\phi(1_1; \underline{\overline{x}}) = 1 + \overline{x}_2 \overline{x}_3 - \overline{x}_2 \overline{x}_3 = 1$$

▶ setze $\overline{x}_1 = 0$ ("Kurzschluss"): $\phi(0_1; \underline{x}) = \overline{x}_2 \overline{x}_3$

► Einsetzen in die Bedingung:

$$\phi(1_1; \underline{x}) - \phi(0_1; \underline{x}) = 1$$
 ergibt $1 - \overline{x}_2 \overline{x}_3 = 1$

Strukturelle Importanz $I_{\phi}(i)$

Lernziele

Bedeutung

Problemkreise

Notation

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz Beispiel

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Literatur

Beispiel (Forts.)

Frage: Welche Zustände erfüllen die Bedingung $1 - \overline{x}_2 \overline{x}_3 = 1$?

Zustandstabelle

$\overline{x}_2 =$	$\overline{x}_3 =$	resultierender Zustand aus $1 - \overline{x}_2 \overline{x}_3 = ?$
0	0	1
0	1	1
1	0	1
1	1	0

- ▶ drei kritische Vektoren erfüllen die Gl. 1, d.h. $n_{\phi(1)} = 3$
- ▶ damit ist die strukturelle Importanz der Einheit 1

$$I_{\phi(1)} = \frac{1}{2^{n-1}} \cdot n_{\phi(1)} = \frac{1}{2^{3-1}} \cdot 3 = \frac{3}{4}$$

Strukturelle Importanz $I_{\Phi}(i)$

Lernziele

Bedeutung

Problemkreise

Notation

Strukturelle Importanz

Ansatz

Beispiel

Marginale Importanz

Ansatz Beispiel

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Literatur

Beispiel (Forts.)

restliche Finheiten

Einheit 2	Einheit 3
setze $\overline{x}_2 = 1 : \phi(1_2; \overline{\underline{x}} = \overline{x}_1 + \overline{x}_3 - \overline{x}_1 \overline{x}_3)$ setze $\overline{x}_2 = 0 : \phi(0_2; \overline{\underline{x}} = \overline{x}_1)$	$\begin{array}{l} \text{setze } \overline{x}_3 = 1 : \phi(1_3; \underline{\overline{x}} = \overline{x}_1 + \overline{x}_2 - \overline{x}_1 \overline{x}_2) \\ \text{setze } \overline{x}_3 = 0 : \phi(0_3; \underline{\overline{x}} = \overline{x}_1) \end{array}$
Einsetzen in die Gl. 1: $\phi(1_i; \underline{x}) - \phi(0_i; \underline{x}) = 1$ $\overline{x}_3 - \overline{x}_1 \overline{x}_3 = 1$	$\overline{x}_1 - \overline{x}_1 \overline{x}_2$
kritischer Vektor gem. Zustandstabelle $\{\overline{x}_3=1; \overline{x}_2=0\}$	$\{\overline{x}_2=1; \overline{x}_1=0\}$
und damit $n_{\phi(2)} = 1$	$n_{\phi(3)}=1$
Importanzen $I_{\phi(2)} = \frac{1}{2^2} \cdot 1 = \frac{1}{4}$	$I_{\phi(3)} = \frac{1}{2^2} \cdot 1 = \frac{1}{4}$

Resultat: Einheit 1 ist strukturell am wichtigsten (grösste Importanz).

20/16 10 / 16

Marginale Importanz $I_m(i)$

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Beispiel

Literatur

Ansatz

Wahrscheinlichkeit, dass sich das System in einem Zustand befindet, in dem der "Betrieb" der Einheit *i* kritisch ist.

Die Marginale Importanz (Birnbaum Importanz) ist die partielle Ableitung der Systemausfallwahrscheinlichkeit $F\left(\underline{q}\right)$ in Bezug auf eine zu untersuchende Komponente q_i , und damit

$$I_{m}(i) = \frac{F(\underline{q})}{\partial q_{i}} = F(q_{i} = 1; F(\underline{q})) - F(q_{i} = 0; F(\underline{q}))$$

Mathematisch ist $I_m(i)$ ist die Änderung der Ausfallwahrscheinlichkeit eines Systems mit ausgefallener Komponente i, d.h. setze $q_i = 1$, minus der Ausfallwahrscheinlichkeit des Systems bei funktionierender Komponente i, d.h. setze $q_i = 0$. Damit gibt es auch zwei Arten, $I_m(i)$ zu berechnen (siehe Beispiel).

one Fantocoluciulus

Marginale Importanz $I_m(i)$

Lernziele

Bedeutung

Problemkreise

...

Strukturelle Importanz

Ansatz

Beispiel

Marginale Importanz

Ansatz Beispiel

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Literatur

Ansatz

Serien-Parallelsystem

System-

Ausfallwahrscheinlichkeitsfunktion

$$F\left(\underline{q}\right) = q_1 + q_2q_3 - q_1q_2q_3$$

partielle Ableitung

$$I_m(1) = \frac{\partial F(\underline{q})}{\partial q_1} = 1 - q_2 q_3$$

$$I_m(2) = \frac{\partial F(\underline{q})}{\partial q_2} = q_3 - q_1 q_3$$

$$I_m(3) = \frac{\partial F(\underline{q})}{\partial q_3} = q_2 - q_1 q_2$$

Differenz

$$\begin{array}{l} & l_m(1) = \\ & F\left(q_1 = 1; F\left(\underline{q}\right)\right) - F\left(q_1 = 0; F\left(\underline{q}\right)\right) = \\ & 1 + q_2q_3 - 1 \cdot q_2q_3 - (0 + q_2q_3 - 0) = \\ & 1 - q_2q_3 \end{array}$$

$$I_m(2) = q_1 + q_3 - q_1 q_3 - (q_1 + 0 - 0)$$

= $q_3 - q_1 q_3$

$$I_m(3) = q_2 - q_1 q_2$$

Resultat: Nach dem Einsetzen der Ausfallwahrscheinlichkeiten q_i folgt die wichtigste Einheit (grösste Importanz). Im Beispiel ist dies immer die Komponente 1.

Diagnostische Importanz $I_{d}\left(i ight)$

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz

Diagnostische Importanz

Ansatz

Erläuterung

Beispiel

Beispiel

Literatur

Ansatz

Es gibt zwei Ansätze zur Berechnung der diagnostischen Importanz (Fussell-Vesely-Importanz)

▶ Wahrscheinlichkeit, die Komponente i zum Systemausfall beiträgt (Importanz des Basisereignisses q_i), und damit in den Minimalschnitten vorkommt:

$$I_{d,BE}(i) = \frac{F_i(\underline{q})}{F(\underline{q})}$$

▶ Wahrscheinlichkeit, die der einzelne Minimalschnitt σ_i zum Systemausfall beiträgt (Importanz des Minimalschnittes σ_i):

$$I_{d,\sigma_i}(i) = \frac{F_{\sigma_i}(\underline{q})}{F(\underline{q})}$$

Anmerkungen

- ightharpoonup Der Systemausfall ist im Zeitintervall [0;t] aufgetreten.
- ▶ Die Ausfallwahrscheinlichkeiten sind somit (auch) zeitabhängig verteilt, z.B. $q_i = q_i(t) = 1 e^{-\lambda_1 \cdot 1}$

Diagnostische Importanz $I_d(i)$

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz Beispiel

Marginale Importanz

Ansatz

Beispiel

Diagnostische Importanz

Erläuterung Beispiel

Literatur

Erläuterung zu $I_{d,\sigma_i}(i) = \frac{F_{\sigma_i}(\underline{q})}{F(\underline{q})}$

 $ightharpoonup F_{\sigma_i}(q)$: Systemfunktion aller Minimalschnitte, die *i* enthalten, d.h.

$$- F_{\sigma_i}(\underline{q}) = Pr\left(\bigvee_{j=1}^n \left[\bigwedge_{c_{ij}} \overline{X}_c\right]\right)$$

- ▶ *n*: Anzahl der Minimalschnitte, die *i* enthalten
- C_{ii}-ter Minimalschnitt, der i enthält
- \triangleright F(q) Ausfallwahrscheinlichkeit des Systems

Berechnungsbeispiel: aus einer System-Analyse ergeben sich zwei Minimalsohnitte, die Komponente 1 enthalten: $\sigma_1 = \{\overline{x}_1; \overline{x}_2\}; \sigma_2 = \{\overline{x}_1; \overline{x}_3\}.$

- ightharpoonup exakt: $F_{\sigma_1}(q) = q_1q_2 + q_1q_3 q_1q_2q_2$ (nach Anwendung des Idempotenzgesetzes)
- ▶ näherungsweise: $F_{\sigma_1}(q) \approx q_1 q_2 + q_1 q_3$

Diagnostische Importanz $I_d(i)$

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz

Beispiel

Marginale Importanz

Ansatz Beispiel

Diagnostische Importanz

Ansatz

Erläuterung Beispiel

Literatur

Beispiel

Serien-Parallelsystem

System-

Ausfallwahrscheinlichkeitsfunktion

$$F\left(\underline{q}
ight)=q_{1}+q_{2}q_{3}-q_{1}q_{2}q_{3}$$
 mit

Minimalschnitte: $\{\overline{x}_1\}$; $\{\overline{x}_2; \overline{x}_3\}$.

Importanzen I_{d,BE}

$$I_{d,BE}(1) = \frac{F_1(q)}{F(q)} = \frac{q_1}{q_1 + q_2q_3 - q_1q_2q_3}$$

$$I_{d,BE}(2) = \frac{F_2(q)}{F(q)} = \frac{q_2 q_3}{q_1 + q_2 q_3 - q_1 q_2 q_3}$$

 $ightharpoonup I_{d,BE}(3)$ entspricht $I_{d,BE}(2)$

Resultat: Nach dem Einsetzen der Ausfallwahrscheinlichkeiten q_i folgt die wichtigste Einheit (grösste Importanz)

Unterschiede: $I_{d,BE}$ berücksichtigt im Zähler alle Minimalschnitte, die die interessierende Komponente i enthalten (siehe auch Tool LOGAN). $I_{d,\sigma}$ berücksichtigt den einzelnen Minimalschnitt.

Literatur

Lernziele

Bedeutung

Problemkreise

Strukturelle Importanz

Ansatz

Beispiel

Marginale Importanz

Ansatz Beispiel

$Diagnostische\ Importanz$

Ansatz

Erläuterung Beispiel

Literatur

- BORGONOVO, E. and G. E. APOSTOLAKIS: A New Importance Measure for Risk-informed Decision Making. Reliability Engineering and System Safety, 72(2):193–212, 2001.
- [2] BORST, M. VAN DER and SCHOONAKKER: An overview of PSA importance measures. Reliability Engineering & System Safety, 72:241 – 245, 2001.
- [3] CAMARINOPOULOS, L. and A. BECKER: Zuverlässigkeits- und Risikoanalysen, volume 2 of KTG-Seminar. Verlag TÜV Rheinland, Köln, 1983.
- [4] DUTUIT, Y. and A. RAUZY: Efficient Algorithms to Assess Component and Gate Importance in Fault Tree Analysis. Reliability Engineering and System Safety, 72(2):213–222, 2001.
- HENLEY, E.J. and H. KUMAMOTO: Reliability Engineering and Risk Assessment. Prentice Hall, Englewood Cliffs, 1981.
- [6] MEYNA, ARNO: Vorlesungsunterlagen: Sicherheitstheorie. Bergische Universität GH Wuppertal FB Sicherheitstechnik, WS 1984/85, (persönliche Unterlagen), 1985.
- VDI-4008: Strukturfunktion und ihre Anwendung.
 Technical Report VDI-4008-Blatt 7, Beuth Verlag, Berlin, 1986.
- [8] WAKEFIELD, D.J. and Y. XIONG: Importance Measures Computed in RISKMAN for Windows (Presentation), November 27 - December 1, 2000 2000.