Tercer Examen Geometría Diferencial III

Cristo Daniel Alvarado

11 de enero de 2024

Índice general

1.	Examen	2
	.1. Ejercicio 1	2
	.2. Ejercicio 2	4
	.3. Ejercicio 3	6
	.4. Ejercicio 4	7

Capítulo 1

Examen

1.1. Ejercicio 1

Ejercicio 1.1.1 (Pullback de una forma diferencial)

Considere $U \subseteq]0, \infty[\times]0, \pi[\times]0, 2\pi[$ abierto en el espacio (ρ, ϕ, θ) de \mathbb{R}^3 . Defina $f: F \to \mathbb{R}^3$ dada como

$$(x, y, z) = F(\rho, \phi, \theta) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$$

pruebe que $F^*(dx \wedge dy \wedge dz) = \rho^2 \sin \phi \, d\rho \wedge d\phi \wedge d\theta$.

Demostración:

Primeramente, veamos que

$$F^*(dx \wedge dy \wedge dz) = F^*dx \wedge F^*dy \wedge F^*dz$$

pues F es un mapeo C^{∞} entre las variedades U y \mathbb{R}^2 . Por la Proposición 18.11 se sigue la identidad de arriba. Pero, el producto wedge conmuta con la diferencial exterior, por lo cual

$$F^*dx = d(F^*x), \quad F^*dy = d(F^*y) \quad \text{y } F^*dz = d(F^*z)$$
 (1.1)

siendo $x, y, z : \mathbb{R}^3 \to \mathbb{R}$ las funciones coordenadas de \mathbb{R}^3 . Con esto en mente, analicemos cada una de las diferenciales exteriores de (1.1).

(I) Notemos que $F^*x = x \circ F$, por lo cual

$$d(F^*x) = d(x \circ F)$$
$$= d(F_1)$$

donde $F_1: U \to \mathbb{R}$ es la función tal que $((\rho, \phi, \theta)) \mapsto x \circ F((\rho, \phi, \theta)) = \rho \sin \phi \cos \theta$, para todo $(\rho, \phi, \theta) \in U$. Por lo cual

$$\begin{split} d(F^*x) &= d(\rho\sin\phi\cos\theta) \\ &= \frac{\partial}{\partial\rho}(\rho\sin\phi\cos\theta)d\rho + \frac{\partial}{\partial\phi}(\rho\sin\phi\cos\theta)d\phi + \frac{\partial}{\partial\theta}(\rho\sin\phi\cos\theta)d\theta \\ &= \sin\phi\cos\theta d\rho + \rho\cos\phi\cos\theta d\phi - \rho\sin\phi\sin\theta d\theta \\ \Rightarrow d(F^*x) &= \sin\phi\cos\theta d\rho + \rho\cos\phi\cos\theta d\phi - \rho\sin\phi\sin\theta d\theta \end{split}$$

(II) De forma similar al inciso (I), se tiene que

$$d(F^*y) = d(y \circ F)$$
$$= d(F_2)$$

donde $F_2: U \to \mathbb{R}$ es la función tal que $((\rho, \phi, \theta)) \mapsto y \circ F((\rho, \phi, \theta)) = \rho \sin \phi \sin \theta$, para todo $(\rho, \phi, \theta) \in U$. Luego

$$\begin{split} d(F^*y) &= d(\rho\sin\phi\sin\theta) \\ &= \frac{\partial}{\partial\rho}(\rho\sin\phi\sin\theta)d\rho + \frac{\partial}{\partial\phi}(\rho\sin\phi\sin\theta)d\phi + \frac{\partial}{\partial\theta}(\rho\sin\phi\sin\theta)d\theta \\ &= \sin\phi\sin\theta d\rho + \rho\cos\phi\sin\theta d\phi + \rho\sin\phi\cos\theta d\theta \\ \Rightarrow d(F^*y) &= \sin\phi\sin\theta d\rho + \rho\cos\phi\sin\theta d\phi + \rho\sin\phi\cos\theta d\theta \end{split}$$

(III) De forma similar al inciso (I), se tiene que

$$d(F^*z) = d(z \circ F)$$
$$= d(F_3)$$

donde $F_3: U \to \mathbb{R}$ es la función tal que $((\rho, \phi, \theta)) \mapsto z \circ F((\rho, \phi, \theta)) = \rho \cos \phi$, para todo $(\rho, \phi, \theta) \in U$. Luego

$$\begin{split} d(F^*z) &= d(\rho\cos\phi) \\ &= \frac{\partial}{\partial\rho}(\rho\cos\phi)d\rho + \frac{\partial}{\partial\phi}(\rho\cos\phi)d\phi + \frac{\partial}{\partial\theta}(\rho\cos\phi)d\theta \\ &= \cos\phi d\rho - \rho\sin\phi d\phi \\ &\Rightarrow d(F^*z) &= \cos\phi d\rho - \rho\sin\phi d\phi \end{split}$$

Por los tres incisos anteriores, se sigue que

$$F^*(dx \wedge dy \wedge dz) = (\sin \phi \cos \theta d\rho + \rho \cos \phi \cos \theta d\phi - \rho \sin \phi \sin \theta d\theta)$$
$$\wedge (\sin \phi \sin \theta d\rho + \rho \cos \phi \sin \theta d\phi + \rho \sin \phi \cos \theta d\theta) \wedge (\cos \phi d\rho - \rho \sin \phi d\phi)$$

Computemos $(\sin \phi \sin \theta d\rho + \rho \cos \phi \sin \theta d\phi + \rho \sin \phi \cos \theta d\theta) \wedge (\cos \phi d\rho - \rho \sin \phi d\phi)$:

$$(\sin\phi\sin\theta d\rho + \rho\cos\phi\sin\theta d\phi + \rho\sin\phi\cos\theta d\theta) \wedge (\cos\phi d\rho - \rho\sin\phi d\phi)$$

$$= (\rho\cos^2\phi\sin\theta d\phi \wedge d\rho + \rho\sin\phi\cos\phi\cos\theta d\theta \wedge d\rho) + (-\rho\sin^2\sin\theta\phi d\rho \wedge d\phi - \rho^2\sin^2\phi\cos\theta d\theta \wedge d\phi)$$

$$= (-\rho\cos^2\phi\sin\theta d\rho \wedge d\phi - \rho\sin\phi\cos\phi\cos\theta d\rho \wedge d\theta) + (-\rho\sin^2\phi\sin\theta d\rho \wedge d\phi + \rho^2\sin^2\phi\cos\theta d\phi \wedge d\theta)$$

$$= -\rho\sin\theta d\rho \wedge d\phi - \rho\sin\phi\cos\phi\cos\theta d\rho \wedge d\theta + \rho^2\sin^2\phi\cos\theta d\phi \wedge d\theta$$

$$= -\rho\sin\theta d\rho \wedge d\phi - \rho\sin\phi\cos\phi\cos\theta d\rho \wedge d\theta + \rho^2\sin^2\phi\cos\theta d\phi \wedge d\theta$$

luego,

$$\Rightarrow (\sin \phi \cos \theta d\rho + \rho \cos \phi \cos \theta d\phi - \rho \sin \phi \sin \theta d\theta)$$

$$\wedge (\sin \phi \sin \theta d\rho + \rho \cos \phi \sin \theta d\phi + \rho \sin \phi \cos \theta d\theta) \wedge (\cos \phi d\rho - \rho \sin \phi d\phi)$$

$$= (\sin \phi \cos \theta d\rho + \rho \cos \phi \cos \theta d\phi - \rho \sin \phi \sin \theta d\theta)$$

$$\wedge (-\rho \sin \theta d\rho \wedge d\phi - \rho \sin \phi \cos \phi \cos \theta d\rho \wedge d\theta + \rho^2 \sin^2 \phi \cos \theta d\phi \wedge d\theta)$$

$$= \rho^2 \sin \phi \sin^2 \theta d\theta \wedge d\rho \wedge d\phi - \rho^2 \sin \phi \cos^2 \phi \cos^2 \theta d\phi \wedge d\rho \wedge d\theta + \rho^2 \sin^3 \phi \cos^2 \theta d\rho \wedge d\phi \wedge d\theta$$

$$= \rho^2 \sin \phi \sin^2 \theta d\rho \wedge d\phi \wedge d\theta + \rho^2 \sin \phi \cos^2 \phi \cos^2 \theta d\rho \wedge d\phi \wedge d\theta + \rho^2 \sin^3 \phi \cos^2 \theta d\rho \wedge d\phi \wedge d\theta$$

$$= \rho^2 \sin \phi \sin^2 \theta d\rho \wedge d\phi \wedge d\theta + \rho^2 \sin \phi \cos^2 \theta \left[\cos^2 \phi + \sin^2 \phi\right] d\rho \wedge d\phi \wedge d\theta$$

$$= \rho^2 \sin \phi \sin^2 \theta d\rho \wedge d\phi \wedge d\theta + \rho^2 \sin \phi \cos^2 \theta d\rho \wedge d\phi \wedge d\theta$$

$$= \rho^2 \sin \phi \sin^2 \theta d\rho \wedge d\phi \wedge d\theta + \rho^2 \sin \phi \cos^2 \theta d\rho \wedge d\phi \wedge d\theta$$

$$= \rho^2 \sin \phi \sin^2 \theta d\rho \wedge d\phi \wedge d\theta \wedge d\theta$$

$$= \rho^2 \sin \phi \cos^2 \theta \cos^2 \theta d\rho \wedge d\phi \wedge d\theta$$

$$= \rho^2 \sin \phi \cos^2 \theta \cos^2 \theta d\rho \wedge d\phi \wedge d\theta$$

por tanto

$$F^*(dx \wedge dy \wedge dz) = \rho^2 \sin \phi \, d\rho \wedge d\phi \wedge d\theta$$

1.2. Ejercicio 2

Ejercicio 1.2.1 (Pullback de una forma diferencial)

Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$ la función dada por

$$F(x,y) = (u,v) = (x^2 + y^2, xy)$$

Compute $F^*(u du + v dv)$.

Demostración:

Como el pullback es lineal, se tiene entonces que

$$F^*(u du + v dv) = F^*(u du) + F^*(v dv)$$

Determinemos $F^*(u du)$ y $F^*(v dv)$.

(I) Veamos que

$$F^*(u du) = F^*(u \wedge du)$$
$$= (F^*u) \wedge (F^*du)$$
$$= (F^*u) \wedge d(F^*u)$$

pues, podemos ver a la 1-forma u du como el producto wedge de una 0-forma con una 1-forma. De esta forma, por propiedades del pullback, se sigue la primera y segunda igualdad. Para la tercera, se cumple ya que el producto wedge conmuta con la diferencial exterior.

Computemos F^*u :

$$F^*u = u \circ F$$

es decir, F^*u es la función de \mathbb{R}^2 en \mathbb{R} tal que $(x,y)\mapsto u\circ F(x,y)=u(x^2+y^2,xy)=x^2+y^2$. De esta forma, se tiene que

$$d(F^*u) = d(x^2 + y^2)$$

$$= \frac{\partial}{\partial x}(x^2 + y^2) dx + \frac{\partial}{\partial y}(x^2 + y^2) dy$$

$$= 2x dx + 2y dy$$

$$\Rightarrow d(F^*u) = 2x dx + 2y dy$$

Por lo cual

$$F^*(u du) = (F^*u) \wedge d(F^*u)$$

= $(x^2 + y^2) \wedge (2x dx + 2y dy)$
= $(2x^3 + 2xy^2) dx + (2x^2y + 2y^3) dy$

(II) Como en el inciso (I), se tiene que

$$F^*(v dv) = F^*(v \wedge dv)$$
$$= (F^*v) \wedge (F^*dv)$$
$$= (F^*v) \wedge d(F^*v)$$

siendo $F^*v = v \circ F : \mathbb{R}^2 \to \mathbb{R}$ tal que $(x,y) \mapsto xy$. Por lo cual

$$d(F^*v) = \frac{\partial}{\partial x}(xy) dx + \frac{\partial}{\partial y}(xy) dy$$
$$= y dx + x dy$$

entonces

$$\Rightarrow F^*(v dv) = (F^*v) \land d(F^*v)$$
$$= (xy) \land (y dx + x dy)$$
$$= xy^2 dx + x^2y dy)$$

Por el inciso (I) y (II), se sigue que

$$F^*(u du + v dv) = F^*(u du) + F^*(v dv)$$

$$= [(2x^3 + 2xy^2) dx + (2x^2y + 2y^3) dy] + [xy^2 dx + x^2y dy]$$

$$= (2x^3 + 3xy^2) dx + (2y^3 + 3x^2y) dy$$

$$= (2x^2 + 3y^2)x dx + (2y^2 + 3x^2)y dy$$

por lo tanto

$$\therefore F^*(u \, du + v \, dv) = (2x^2 + 3y^2)x \, dx + (2y^2 + 3x^2)y \, dy$$

1.3. Ejercicio 3

Ejercicio 1.3.1 (Pullback de una forma diferencial por una curva)

Sea ω la 1-forma dada por

$$\omega = \frac{-ydx + xdy}{x^2 + y^2}$$

en $\mathbb{R}^2 \setminus \{0\}$. Defina $c : \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (\cos t, \sin t)$. Compute $c^*\omega$.

Demostración:

Observemos que

$$\omega = \frac{-ydx + xdy}{x^2 + y^2}$$

$$= -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

$$= -\frac{y}{x^2 + y^2} \wedge dx + \frac{x}{x^2 + y^2} \wedge dy$$

(viendo a la 1-forma ω como el producto wedge de una 0-forma con una 1-forma). Por tanto:

$$c^*\omega = c^* \left(-\frac{y}{x^2 + y^2} \wedge dx + \frac{x}{x^2 + y^2} \wedge dy \right)$$
$$= c^* \left(-\frac{y}{x^2 + y^2} \wedge dx \right) + c^* \left(\frac{x}{x^2 + y^2} \wedge dy \right)$$
$$= c^* \left(-\frac{y}{x^2 + y^2} \wedge dx \right) + c^* \left(\frac{x}{x^2 + y^2} \wedge dy \right)$$

1.4. Ejercicio 4

Ejercicio 1.4.1 (Una forma que no se desvanece sobre una hypersuperficie suave) Resuelva los siguientes incisos.

- (a) Sea f(x,y) una función C^{∞} en \mathbb{R}^2 y asuma que 0 es valor regular de f. Por el teorema del valor regular, el conjunto cero M de f(x,y) es una subvariedad 1-dimensional de \mathbb{R}^2 . Construya una 1-forma que no se anula en M.
- (b) Sea f(x, y, z) una función C^{∞} en \mathbb{R}^3 y asuma que 0 es valor regular de f. Por el teorema del valor regular, el conjunto cero M de f(x, y, z) es una subvariedad 2-dimensional de \mathbb{R}^3 . Sean f_x , f_y y f_z las derivadas parciales de f con respecto a x, y y z, respectivamente. Muestre que las igualdades

$$\frac{dx \wedge dy}{f_z} = \frac{dy \wedge dz}{f_x} = \frac{dz \wedge dx}{f_y}$$

son válidas en M siempre y cuando estas tengan sentido, y por tanto juntas dan una 2-forma sobre M que no se desvanece en ninguna parte.

(c) Generalice este problema al conjunto de nivel regular de $f(x^1, \dots, x^{n+1})$ en \mathbb{R}^{n+1} .

Teorema 1.4.1 (Nombre) Teorema	
Proposición 1.4.1 (Nombre) Proposición	
Corolario 1.4.1 (Nombre) Corolario	
Lema 1.4.1 (Nombre) Lema	
Definición 1.4.1 (Nombre) Definición	
Observación 1.4.1 (Nombre) Observación	
Ejemplo 1.4.1 (Nombre) Ejemplo	
Ejercicio 1.4.2 (Nombre) Ejercicio	