Artificial Intelligence (CS311)

Lecture 9: Linear Regression & Logistic Regression

Credit: Ansaf Salleb-Aouissi, and "Artificial Intelligence: A Modern Approach", Stuart Russell and Peter Norvig, and "The Elements of Statistical Learning", Trevor Hastie, Robert Tibshirani, and Jerome Friedman, and "Machine Learning", Tom Mitchell.

Supervised Learning

```
Training data: "examples" x with "labels" y. (x_1, y_1), ..., (x_n, y_n), x_i \in \mathbb{R}^d
```

• Regression: y is a real value, $y \in \mathbb{R}$.

$$f: \mathbb{R}^d \to \mathbb{R}$$
 (f is called a regressor)

• Classification: y is discrete. To simplify, $y \in \{-1, +1\}$ $f: \mathbb{R}^d \to \{-1, +1\}$ (f is called a binary classifier)

Linear Regression: History

- A very popular technique.
- Rooted in Statistics.
- Method of Least Squares used as early as 1795 by Gauss.
- Re-invented in 1805 by Legendre.
- Frequently applied in **astronomy** to study the large scale of the universe.
- Still a very useful tool today.

Carl Friedrich Gauss

Given: Training data: $(x_1, y_1), ..., (x_n, y_n), x_i \in \mathbb{R}^d$ and $y \in \mathbb{R}$.

example $x_1 \rightarrow$	x_{11}	x_{12}	 x_{1d}	$y_1 \leftarrow label$
example $x_i \rightarrow$	x_{i1}	x_{i2}	 x_{id}	$y_i \leftarrow label$
• • •			 	
example $x_n \rightarrow$	x_{n1}	x_{n2}	 x_{nd}	$y_n \leftarrow label$

Task: Learn a regression function: $f: \mathbb{R}^d \to \mathbb{R}$, f(x) = y

Linear Regression: A regression model is said to be linear if it is represented by a linear function.

d=2, hyperplane is \mathbb{R}^3

Linear Regression Model:

$$f(x) = \beta_0 + \sum_{j=1}^d \beta_j x_j \quad \text{with} \quad \beta_j \in \mathbb{R}, \quad j \in \{1, \dots, d\}$$

 β 's are called parameters or coefficients or weights.

Learning the linear model \rightarrow learning the β ' s

Estimation with Least squares:

Use least square loss: $loss(y_i, f(x_i)) = (y_i - f(x_i))^2$

We want to minimize the loss over all examples, that is minimize the *risk or cost function R*:

$$R = \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

A simple case with one feature (d = 1): $f(x) = \beta_0 + \beta_1 x$

We want to minimize:
$$R = \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$R(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Find β_0 and β_1 that minimize:

$$R(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Find β_0 and β_1 that minimize: $argmin_{\beta}(\frac{1}{2n}\sum_{i=1}^n(y_i-\beta_0-\beta_1x_i)^2)$

Minimize:
$$R(\beta_0, \beta_1)$$
, that is: $\frac{\partial R}{\partial \beta_0} = 0$ $\frac{\partial R}{\partial \beta_1} = 0$

$$\frac{\partial R}{\partial \beta_0} = 2 \times \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \times \frac{\partial}{\partial \beta_0} (y_i - \beta_0 - \beta_1 x_i)$$

$$\frac{\partial R}{\partial \beta_0} = \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \times (-1) = 0$$

$$\beta_0 = \frac{1}{n} \sum_{i=1}^n y_i - \beta_1 \frac{1}{n} \sum_{i=1}^n x_i$$

$$\frac{\partial R}{\partial \beta_1} = 2 \times \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \times \frac{\partial}{\partial \beta_1} (y_i - \beta_0 - \beta_1 x_i)$$
$$\frac{\partial R}{\partial \beta_1} = \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \times (-x_i) = 0$$
$$\beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i - \sum_{i=1}^n \beta_0 x_i$$

Plugging β_0 and β_1 :

$$\beta_1 = \frac{\sum_{i=1}^n y_i x_i - \frac{1}{n} \sum_{i=1}^n y_i \sum_{i=1}^n x_i}{\sum_{i=1}^n x_i^2 - \frac{1}{n} \sum_{i=1}^n x_i \sum x_i}$$

With more than one feature:

$$f(x) = \beta_0 + \sum_{j=1}^d \beta_j x_j$$

Find the β_i that minimize:

$$R = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{d} \beta_j x_{ij}))^2$$

Let's write it more elegantly with matrices!

Matrix representation

Let X be an $n \times (d+1)$ matrix where each row starts with a 1 followed by a feature vector.

Let y be the label vector of the training set.

Let β be the vector of weights (that we want to estimate!).

$$X := \begin{pmatrix} 1 & x_{11} & \cdots & x_{1j} & \cdots & x_{1d} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{i1} & \cdots & x_{ij} & \cdots & x_{id} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nj} & \cdots & x_{nd} \end{pmatrix} \qquad y := \begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix} \qquad \beta := \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_j \\ \vdots \\ \beta_d \end{pmatrix}$$

Normal Equation

We want to find $(d+1)\beta'$ s that minimize R. We write R:

$$R(\beta) = \frac{1}{2n} ||(y - X\beta)||^2$$

$$R(\beta) = \frac{1}{2n} (y - X\beta)^T (y - X\beta)$$

We have that:
$$\frac{\partial^2 R}{\partial \beta} = -\frac{1}{n} X^T X$$

$$\frac{\partial R}{\partial \beta} = -\frac{1}{n} X^T (y - X\beta)$$

is positive definite which ensures that β is a minimum. We solve:

$$X^T(y - X\beta) = 0$$

The unique solution is:

$$\beta = (X^T X)^{-1} X^T Y$$

Gradient descent

Gradient descent

Gradient Descent is an optimization method.

Repeat until convergence:

Update **simultaneously** all β_j for (j = 0 and j = 1)

$$\beta_0 := \beta_0 - \alpha \frac{\partial}{\partial \beta_0} R(\beta_0, \beta_1)$$

$$\beta_1 := \beta_1 - \alpha \frac{\partial}{\partial \beta_1} R(\beta_0, \beta_1)$$

 α is a learning rate.

Gradient descent

In the linear case:

$$\frac{\partial R}{\partial \beta_0} = \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \times (-1)$$

$$\frac{\partial R}{\partial \beta_1} = \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \times (-x_i)$$

Repeat until convergence:

Update **simultaneously** all β_j for (j = 0 and j = 1)

$$\beta_0 := \beta_0 - \alpha \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)$$

$$\beta_1 := \beta_1 - \alpha \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)(x_i)$$

Pros and Cons

Analytical approach: Normal Equation

- + No need to specify a convergence rate or iterate.
- Works only if X^TX is invertible
- Very slow if d is large $\mathcal{O}(\alpha^8)$ to compute $(X^TX)^{-1}$

Iterative approach: Gradient Descent

- + Effective and efficient even in high dimensions.
- Iterative (sometimes need many iterations to converge).
- Needs to choose the rate α .

Practical considerations

- **1. Scaling**: Bring your features to a similar scale, e.g., $x_i := \frac{x_i \mu_i}{stdev(x_i)}$
- 2. Learning rate: Don't use a rate that is too small or too large.
- R should decrease after each iteration.
- 4. Declare convergence if it start decreasing by less ϵ
- 5. When X^TX is not invertible?
 - a) Too many features as compared to the number of examples (e.g., 50 examples and 500 features)
 - b) Features linearly dependent: e.g., weight in pounds and in kilo.

Classification

Given: Training data: $(x_1, y_1), ..., (x_n, y_n), x_i \in \mathbb{R}^d$ and y_i is discrete (categorical/qualitative), $y_i \in Y$.

Example $Y = \{-1, +1\}, Y = \{0, 1\}$

Task: Learn a classification function, $f: \mathbb{R}^d \to Y$

Linear Classification: A classification model is said to be linear if it is represented by a linear function f (linear hyperplane)

Classification: examples

- 1. Email Spam/Ham → Which email is junk?
- 2. Tumor benign/malignant → Which patient has cancer?
- 3. Credit default/not default → Which customers will default on their credit card debt?

Balance	Income	Default	
300	\$20,000.00	no	
2000	\$60,000.00	no	
5000	\$45,000.00	yes	

Classification: examples

Classification

- We can't predict Credit Card Default with any certainty. Suppose we want to predict how likely is a customer to default. That is output a probability between 0 and 1 that a customer will default.
- It makes sense and would be suitable and practical.
- In this case, the output is real (regression) but is bounded (classification).

$$P(y|x) = P(\text{default = yes}|\text{balance})$$

Classification

- Can we use linear regression?
- Yes. However...
 - -If we use linear regression, some of the predictions will be outside of [0, 1].
 - -Model can be poor.

Classification: example

Classification

$$y = f(x) = \beta_0 + \beta_1 x$$

Default = $\beta_0 + \beta_1 \times Balance$

We want $0 \le f(x) \le 1$; f(x) = P(y = 1|x)

We use the sigmoid function:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

$$g(z) \rightarrow 1$$
 when $z \rightarrow +\infty$
 $g(z) \rightarrow 0$ when $z \rightarrow -\infty$

$$g(\beta_0 + \beta_1 x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

New
$$f(x) = g(\beta_0 + \beta_1 x)$$

In general:

$$f(x) = g(\sum_{j=1}^{d} \beta_j x_j)$$

In other words, cast the output to bring the linear function quantity between 0 and 1.

Note: One can use other S-shaped functions.

Logistic regression is not a regression method but a classification method!

How to make a prediction?

• Suppose $\beta_0 = -10.65$ and $\beta_1 = 0.0055$. What is the probability of default for a customer with \$1,000 balance?

$$P(default = yes|balance = 1000) = \frac{1}{1 + e^{10.65 - 0.0055 * 1000}}$$

$$P(default = yes|balance = 1000) = 0.00576$$

To predict the class:

If
$$g(z) \ge 0.5$$
 predict $y = 1$ $(z \ge 0)$

If
$$g(z) < 0.5$$
 predict $y = 0$ ($z < 0$)

How to find the β 's?

$$R(\beta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (f(x) - y)^2$$

$$Loss = \frac{1}{2}(f(x) - y)^2$$

- Remember, f(x) is now the logistic function so the $(f(x) y)^2$ is not the quadratic function we had when f was linear.
- Cost/risk is a complicated non-linear function!
- Many local optima, hence Gradient Descent will not find the global optimum!
- We need a different function that is convex.

New Convex function: $Cost(f(x), y) = \begin{cases} -log(f(x)) & \text{if } y = 1 \\ -log(1 - f(x)) & \text{if } y = 0 \end{cases}$

- 1. If y = 1 if the prediction f(x) = 1 then cost = 0
- 2. If y = 1 if the prediction f(x) = 0 then cost $\rightarrow \infty$
- 3. If y = 0 if the prediction f(x) = 0 then cost $\rightarrow 0$
- 4. If y = 0 if the prediction f(x) = 1 then $cost = \infty$

Nice convex functions!

Let's combine them in a compact function (because y = 0 or y = 1!):

$$Loss(f(x), y) = -ylogf(x) - (1 - y)log(1 - f(x))$$

$$R(\beta) = -\frac{1}{n} \left[\sum_{i=1}^{n} y \log f(x) + (1-y) \log(1-f(x)) \right]$$

Gradient Descent

```
Repeat {
                Simultaneously update for all \beta' s
                                  \beta_j := \beta_j - \alpha \frac{\partial}{\partial \beta_j} R(\beta)
After some calculus:
Repeat {
                Simultaneously update for all \beta's
                             \beta_j := \beta_j - \alpha \sum_{i=1}^n (f(x) - y) x_j
```

Note: Same as linear regression BUT with the new function f.

To be continued