```
#importing the libraries
import pandas as pd
import numpy as np
import os, sys
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn import svm
import warnings
warnings.filterwarnings("ignore")
#Loading the data to pandas dataframe
parkinsons_data=pd.read_csv('/content/parkinsons.data')
parkinsons data.head()
```

|                     | name           | MDVP:Fo(Hz) | MDVP:Fhi(Hz) | MDVP:Flo(Hz) | MDVP:Jitter(%) | MDVP:Jitter |  |
|---------------------|----------------|-------------|--------------|--------------|----------------|-------------|--|
| 0                   | phon_R01_S01_1 | 119.992     | 157.302      | 74.997       | 0.00784        | 0.          |  |
| 1                   | phon_R01_S01_2 | 122.400     | 148.650      | 113.819      | 0.00968        | 0.          |  |
| 2                   | phon_R01_S01_3 | 116.682     | 131.111      | 111.555      | 0.01050        | 0.          |  |
| 3                   | phon_R01_S01_4 | 116.676     | 137.871      | 111.366      | 0.00997        | 0.          |  |
| 4                   | phon_R01_S01_5 | 116.014     | 141.781      | 110.655      | 0.01284        | 0.          |  |
| 5 rows × 24 columns |                |             |              |              |                |             |  |

```
#number of rows and columns
parkinsons_data.shape
```

(195, 24)

## #Data Information parkinsons data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 195 entries, 0 to 194 Data columns (total 24 columns): # Column Non-Null Count Dtype 0 name 195 non-null object 1 MDVP:Fo(Hz) 195 non-null float64 2 MDVP:Fhi(Hz) 195 non-null float64 MDVP:Flo(Hz) 195 non-null float64 4 MDVP:Jitter(%) 195 non-null float64 5 MDVP:Jitter(Abs) 195 non-null float64 MDVP:RAP 195 non-null float64 MDVP:PPQ 195 non-null float64 Jitter:DDP 8 195 non-null float64 MDVP:Shimmer 195 non-null float64 10 MDVP:Shimmer(dB) 195 non-null float64 11 Shimmer:APQ3 195 non-null float64 12 Shimmer:APQ5 195 non-null float64 13 MDVP:APQ 195 non-null float64 14 Shimmer:DDA 195 non-null float64 15 NHR 195 non-null float64 16 HNR 195 non-null 17 status 195 non-null int64 18 RPDE 195 non-null float64 19 DFA 195 non-null float64 20 spread1 195 non-null float64 195 non-null float64 21 spread2 195 non-null float64

```
23 PPE 195 non-null float64 dtypes: float64(22), int64(1), object(1) memory usage: 36.7+ KB
```

#checking for missing values in each column
parkinsons\_data.isnull().sum()

```
name
MDVP:Fo(Hz)
                   0
MDVP:Fhi(Hz)
                   0
MDVP:Flo(Hz)
MDVP:Jitter(%)
MDVP:Jitter(Abs)
MDVP:RAP
MDVP:PPQ
Jitter:DDP
MDVP:Shimmer
                   0
MDVP:Shimmer(dB)
                   0
Shimmer:APQ3
Shimmer:APQ5
MDVP:APQ
                   0
Shimmer:DDA
HNR
status
RPDE
DFA
spread1
spread2
                   0
PPE
dtype: int64
```

#getting the statistical measures from the data
parkinsons\_data.describe()

|                     | MDVP:Fo(Hz) | MDVP:Fhi(Hz) | MDVP:Flo(Hz) | MDVP:Jitter(%) | MDVP:Jitter(Abs) | MDVP   |  |
|---------------------|-------------|--------------|--------------|----------------|------------------|--------|--|
| count               | 195.000000  | 195.000000   | 195.000000   | 195.000000     | 195.000000       | 195.00 |  |
| mean                | 154.228641  | 197.104918   | 116.324631   | 0.006220       | 0.000044         | 0.00   |  |
| std                 | 41.390065   | 91.491548    | 43.521413    | 0.004848       | 0.000035         | 0.00   |  |
| min                 | 88.333000   | 102.145000   | 65.476000    | 0.001680       | 0.000007         | 0.00   |  |
| 25%                 | 117.572000  | 134.862500   | 84.291000    | 0.003460       | 0.000020         | 0.00   |  |
| 50%                 | 148.790000  | 175.829000   | 104.315000   | 0.004940       | 0.000030         | 0.00   |  |
| 75%                 | 182.769000  | 224.205500   | 140.018500   | 0.007365       | 0.000060         | 0.00   |  |
| max                 | 260.105000  | 592.030000   | 239.170000   | 0.033160       | 0.000260         | 0.02   |  |
| 8 rows × 23 columns |             |              |              |                |                  |        |  |

```
#plotting the features
plt.figure(figsize=(10, 6))
sns.scatterplot(x='MDVP:Fo(Hz)', y='MDVP:Fhi(Hz)', data=parkinsons_data)
plt.title('Scatter Plot - MDVP:Fo(Hz) vs MDVP:Fhi(Hz)')
plt.show()
```



Next steps: Explain error

```
#Creating a heatmap of the correlation matrix
correlation_matrix = parkinsons_data.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix')
plt.show()
```



```
#outlier removal
def remove_outliers_iqr(df, column):
    Q1 = df[column].quantile(0.25)
   Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower\_bound = Q1 - 1.5 * IQR
    upper bound = Q3 + 1.5 * IQR
   outliers_removed = df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
    return outliers_removed
columns_to_check = ['MDVP:Fo(Hz)', 'MDVP:Fhi(Hz)', 'MDVP:Flo(Hz)', 'MDVP:Jitter(%)',
       'MDVP:Jitter(Abs)', 'MDVP:RAP', 'MDVP:PPQ', 'Jitter:DDP',
       'MDVP:Shimmer', 'MDVP:Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5',
       'MDVP:APQ', 'Shimmer:DDA', 'NHR', 'HNR', 'status', 'RPDE', 'DFA',
       'spread1', 'spread2', 'D2', 'PPE']
for col in columns to check:
    data after = remove outliers iqr(parkinsons data, col)
#before and after outlier removal
def plot_histograms(data_before, data_after, column):
    fig, axes = plt.subplots(1, 2, figsize=(12, 5))
    sns.histplot(data_before[column], ax=axes[0], kde=True)
    axes[0].set_title('Before Outlier Removal')
    sns.histplot(data after[column], ax=axes[1], kde=True)
    axes[1].set_title('After Outlier Removal')
    plt.show()
plot_histograms(parkinsons_data, data_after, "HNR")
```





```
min
           0.000650
25%
           0.005925
50%
           0.011660
           0.025640
75%
          0.314820
max
Name: NHR, dtype: float64
Summary Statistics After Outlier Removal:
          190.000000
count
          0.021587
mean
std
          0.032645
          0.000650
min
25%
          0.005870
50%
          0.011420
75%
          0.023320
max
          0.314820
Name: NHR, dtype: float64
```

```
parkinsons_data['status'].value_counts()
```

```
1 147
0 48
```

Name: status, dtype: int64

parkinsons\_data['status']: This selects the column named 'status'

.value\_counts(): This method counts the occurrences of each unique value in the selected column ('status')

```
parkinsons_data.groupby('status').mean(numeric_only=True)
```

|            | MDVP:Fo(Hz) | MDVP:Fhi(Hz) | MDVP:Flo(Hz) | MDVP:Jitter(%) | MDVP:Jitter(Abs) | MDVP: |
|------------|-------------|--------------|--------------|----------------|------------------|-------|
| status     |             |              |              |                |                  |       |
| 0          | 181.937771  | 223.636750   | 145.207292   | 0.003866       | 0.000023         | 0.001 |
| 1          | 145.180762  | 188.441463   | 106.893558   | 0.006989       | 0.000051         | 0.003 |
| 2 rows × 2 | 22 columns  |              |              |                |                  |       |

parkinsons\_data.groupby('status'): This groups the DataFrame parkinsons\_data by the unique values in the 'status' column. This means that it separates the data into groups based on whether the individuals have Parkinson's disease or not.

.mean(numeric\_only=True): This calculates the mean (average) of the numeric columns within each group. The numeric\_only=True parameter ensures that only numeric columns are included in the calculation of the mean.

```
X=parkinsons_data.drop(columns=['name','status'],axis=1)
Y=parkinsons_data['status']
```

X = parkinsons\_data.drop(columns=['name', 'status'], axis=1): This line creates a new DataFrame X by removing the columns named 'name' and 'status' from the original DataFrame parkinsons\_data.(axis=1 indicates columns). The resulting DataFrame X will contain all the features except 'name' and 'status'.

Y = parkinsons\_data['status']: This line creates a new Series Y by selecting only the 'status' column from the original DataFrame parkinsons\_data. This column represents the target variable, indicating whether a person has Parkinson's disease (1) or not (0).

Х

|                       | MDVP:Fo(Hz) | MDVP:Fhi(Hz) | MDVP:Flo(Hz) | MDVP:Jitter(%) | MDVP:Jitter(Abs) | MDVP:RAF |  |
|-----------------------|-------------|--------------|--------------|----------------|------------------|----------|--|
| 0                     | 119.992     | 157.302      | 74.997       | 0.00784        | 0.00007          | 0.00370  |  |
| 1                     | 122.400     | 148.650      | 113.819      | 0.00968        | 0.00008          | 0.00465  |  |
| 2                     | 116.682     | 131.111      | 111.555      | 0.01050        | 0.00009          | 0.00544  |  |
| 3                     | 116.676     | 137.871      | 111.366      | 0.00997        | 0.00009          | 0.00502  |  |
| 4                     | 116.014     | 141.781      | 110.655      | 0.01284        | 0.00011          | 0.00655  |  |
|                       |             |              |              |                |                  |          |  |
| 190                   | 174.188     | 230.978      | 94.261       | 0.00459        | 0.00003          | 0.00263  |  |
| 191                   | 209.516     | 253.017      | 89.488       | 0.00564        | 0.00003          | 0.00331  |  |
| 192                   | 174.688     | 240.005      | 74.287       | 0.01360        | 0.00008          | 0.00624  |  |
| 193                   | 198.764     | 396.961      | 74.904       | 0.00740        | 0.00004          | 0.00370  |  |
| 194                   | 214.289     | 260.277      | 77.973       | 0.00567        | 0.00003          | 0.00295  |  |
| 195 rows × 22 columns |             |              |              |                |                  |          |  |

```
Y

0 1
1 1
2 1
3 1
4 1
...
190 0
191 0
192 0
193 0
194 0
Name: status, Length: 195, dtype: int64
```

X:independent(features) Y:dependent(target variable) test\_size=20% testing 80% training

X\_train,X\_test,Y\_train,Y\_test=train\_test\_split(X,Y,test\_size=0.2,random\_state=2)

to scale and standardize the features (independent variables)

Standardization: It standardizes the features by removing the mean and scaling to unit variance. This means it transforms the data such that it has a mean of 0 and a standard deviation of 1.

Scaling: It scales the features to have a mean of 0 and a standard deviation of 1. This ensures that all features have the same scale, which can be important for certain machine learning algorithms that are sensitive to the scale of the features (e.g., gradient descent-based algorithms like linear regression or neural networks).

```
scaler.fit(X_train)

* StandardScaler
StandardScaler()
```

it calculates the mean and standard deviation for each feature (column) in the training data  $X_{train}$ . These statistics are then stored within the  $X_{train}$  train=scaler.transform( $X_{train}$ )

```
X_test=scaler.transform(X_test)
```

are used to transform (scale) the features (independent variables) in both the training set (X\_train) and the testing set (X\_test) using the scaling parameters (mean and standard deviation) computed earlier with scaler.fit(X\_train).

```
print(X_train)
     \hbox{\tt [[ 0.63239631 -0.02731081 -0.87985049 \dots -0.97586547 -0.55160318]}
       0.07769494]
      [-1.05512719 -0.83337041 -0.9284778 ... 0.3981808 -0.61014073
       0.39291782]
      [ 0.02996187 -0.29531068 -1.12211107 ... -0.43937044 -0.62849605
       -0.509484081
     [-0.9096785 \quad -0.6637302 \quad -0.160638 \quad \dots \quad 1.22001022 \quad -0.47404629
       -0.2159482 ]
      [-0.35977689  0.19731822  -0.79063679  ...  -0.17896029  -0.47272835
       0.28181221]
      [ 1.01957066  0.19922317 -0.61914972 ... -0.716232  1.23632066
       -0.0582938611
model=svm.SVC(kernel='linear')
model.fit(X_train,Y_train)
              SVC
     SVC(kernel='linear')
fit(): This is a method provided by scikit-learn's machine learning models that trains the model on the given training data.
X train prediction=model.predict(X train)
training_data_accuracy=accuracy_score(Y_train,X_train_prediction)
to make predictions on the training data (X_train) using the trained model (model)
This line computes the accuracy of the predictions (X_train_prediction) compared to the actual labels (Y_train).
print("Accuracy of training data :",training data accuracy)
    Accuracy of training data : 0.8846153846153846
X test_prediction=model.predict(X_test)
testing_data_accuracy=accuracy_score(Y_test,X_test_prediction)
they are used to make predictions on the testing data (X_test) and then compute the accuracy of the predictions compared to the actual labels
(Y_test).
print("Accuracy of testing data :",testing data accuracy)
    Accuracy of testing data : 0.8717948717948718
input data=(119.99200,157.30200,74.99700,0.00784,0.00007,0.00370,0.00554,0.01109,0.04374,0.42600,0.0218
input_data_array=np.asarray(input_data)
input data reshaped=input data array.reshape(1,-1)
std_data=scaler.transform(input_data_reshaped)
```