MOTOR ACTUATOR

Publication number:

JP62023361

Publication date:

1987-01-31

Inventor:

HOSOKAWA TAKASHI

Applicant:

HOSOKAWA TAKASHI

Classification:

- international:

H02K41/06; H02K41/00; (IPC1-7): H02K41/06

- european:

Application number:

JP19850162559 19850722

Priority number(s):

JP19850162559 19850722

Report a data error here

Abstract of JP62023361

PURPOSE:To facilitate production and enhance efficiency, by providing the center of a rolling and rotating rotor with a female screw, and by forming an output shaft for output of a male screw which is inserted into and is engaged with the female screw. CONSTITUTION: A rotor chamber 2 is formed cylindrically inside a stator 1, and in the chamber 2, a disc-formed rotor 10 is fitted. The stator 1 is organized so that respective coils 50-53 may be wound up to surround respective yokes 60-63. Then, the rotor 10 is magnetically attracted so that a part of the external surface of the cylinder may always come in contact with the rolling surface 3 of the stator 1, and a female screw 35 is formed in the central section. Besides, a male screw 36 for an output shaft 15 penetrates the rotor 10, and is supported by a cover. In this state, when the coils 50-53 are electrically conducted, then the yokes 60-63 are magnetized, and the rotor 10 is rotated coming contact with the rolling surface 3. As a result, the rotation is turned into screwing motion for applying thrust to the male screw 36 via the female screw 35 of the rotor 10, and the output shaft 15 can be rotated.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭62-23361

@Int.Cl.4

識別記号

庁内整理番号

❸公開 昭和62年(1987)1月31日

H 02 K 41/06

7052-5H

審査請求 未請求 発明の数 1 (全14頁)

❷発明の名称 電動アクチエータ

②特 願 昭60-162559

②出 願 昭60(1985)7月22日

四発 明 者 細 川

⑪出 願 人 細 川

明細糖

1. 発明の名称

電動アクチェータ

2. 特許請求の範囲

(2) 第1項の記載の回転子の中心に、雄ネジの

ねじ怪より、固定子と回転子の偏芯量の2倍だけ ねじ怪を大きくなされた離ネジを固著し、該雌ネジが雄ネジの周りを、みそすり運動しながら回転 することを特徴とする第1項記載の電動アクチエータ、

(3) 雌ネジと雄ネジは密に係合し、雌ネジの外間と回転子の係合が回転面の方向には遊に、且つ回転の方向には回転を伝達可能に係合することを特徴とする第1項記載の電動アクチエータ

3. 発明の詳細な説明

「産業上の利用分野」

この発明は、電動機の回転運動を直線運動に変え被駆動物を直線的に駆動するに際し、電動機と 直線運動機構を一体となし、使用に便利にならし めた電動アクチエータに関するものである。

「従来の技術」

電動機の回転運動から直線運動に変換する機構 として、従来殆どの場合、電動機の回転を減速機 で減速して、雌ネジあるいは雄ネジに伝え、雌ネ ジにかみあう雄ネジが雌ネジとの相対関係を変化

させることを利用した機構のものが用いられてい か.

またこのような電動機と減速機と概ネジ雄ネジ からなる機構を一体として使用に便利になした, 電動アクチエータも市販されている.

本発明は、このような従来の電動アクチェータ を改良し、安備で、構造構成の簡単な電動アクチ エータを提供せんとするものである。

「発明が解決しようとする問題点」

上述のように、従来用いられている電動アクチエータは電動機の回転を減速機で減速し、雄ネジあるいは雌ネジを回転せしめ、これに係合する雌ネジあるいはは雄ネジが相対関係を偏位するような機構によっている。

このため、減速機が必用となり機構が複雑となり、そのため高値であり、また、装置が大きく、 切付に場所をとつたり、重量が大きく、このよう な欠点の改善が観まれていた。

「問題を解決するための手段」

本発明は、従来のものと異なり原則的には緩速

このような可変ギャップ型旋転電動機の特徴として回転子はみそすり運動をしながら、固定子は対して回転するが、回転子のみそすり運動に対して、回転子の固定子に対する回転変位は、みそすり運動数よりもずつと少なく、(この関係は透する)あたかも一般の定ギャップ型の電動機に於いて、回転子の回転を高減速比の減速機を用いて減速した場合に相当する回転となる。

本発明では可変ギャップ型旋転電動機を用い、 転がり回転する回転子の中心に雌ネジを設け、雌 ネジに挿入され係合する雄ネジが、可変ギャップ 型錠転電動機を貫通して、出力用の出力軸を形成 するようになし、雌ネジが出力用の雄ネジの周り を個芯回転するようになし、雌ネジが進むことを利 用し、減速機なしで減速機を有するものと、同等 の推力効果を保有せしめるようになした。

本発明になる電動アクチェータの可変ギャップ 型旋転電動機の回転子と雌ネジと雄ネジの3者の 間には、回転子はみそすり運動しながら回転し、 機を必用としない。

従来のものでは、電動機の回転子が一定の中心 軸を中心として回転した。

このような電動機は固定子と回転子とのラジアル方向の隙間が回転子の回転にかかわらず一定であり、定ギャップ型の電動機とよぶこととする.

本発明に用いる電動機は回転子が固定子の内周あるいは側面を転がり回転する。

このような、電動機の回転子が固定子の内周あるいは側面を転がるような構造構成の電動機は、 固定子と回転子との間のラジアル方向の隙間、あるいは固定子の側面の転がり面と回転子の間の隙 間が、回転子の回転に従って変化する.

これに対して、一般の電動機の固定子と回転子とは常に一定の間隔即ち、固定子と一定の相対位 履で回転子が回転する。

このような一般の定ギャップ型の電動機と本発明で使用する電動機を区別するために、本明細律で使用する電動機を可変ギャップ型旋転電動機と称することとする.

雄ネジは籍芯を一定にして、固定子に対して変位 しなければならないので、この間を係合させるに は2っの形態が考えられる。

即ち、第1は回転子と継ネジは固定され、雄ネジと離ネジが遊に係合しみそすり運動を吸収しながらねじ作用をするような形態である。この形態は後述するように構造が極めて簡単であるが、地ネジの寿命はあまり長くは期待できない。

第2の形態は雌ネジと雄ネジは密に係合し、雌ネジと回転子が遊に係合しながら回転を伝達可能になさしめる形態で、雌ネジと回転子の間に製作のコストが発生するが雌ネジと雄ネジの寿命は長くなる.

本発明では基本的に減速機が不用であり、しかも、出力用の雑ネジが、回転予の中を貫通して設けられているので、全体がコンパクトになり、且つ、形態も電動機の中心に出力用の雑ネジが位置するので合理的となり、従来のものに比べ構造機成が簡単で製作が容易となり、効率もすぐれている。

「作用」

本発明のものの作用は実施例を説明することに よって極めて明白となるので実施例を説明しなが ら作用をも説明したい.

「実施例」

第1図は、本発明の好ましい1実施例の横断面図であり、第2図は第1図のものの従断面図である。

説明には、理解を容易にするために、図面について、上下、左右、前後を用いて説明する。実際の実施にあたつては、例立、左右対象裏返しなどになつていても、構造構成がこの発明の本質から 逸脱していなければよいことは言うまでもない。

第1図1は圀定子である。圀定子の内側は円筒状をなし、回転子室2を形成し、円筒状の内面は 転がり面3を形成するようになされている。

閻定子1は軟磁性体で構成されている。

固定子1の前記閲転子室2の内部には、図示のように、円筒状内至は円盤状の回転子10が装着されている。

る.

第1回の例では、コイルおよびヨークは4ヶの場合を示しているが、3、5、6など、本実施例と異となった数であっても差し支えない。

一般的にいつて、コイルとヨークの数がふえると電気的なコイルに対する給電のピッチが変わらないとすれば、回転子10のみそすり運動数は遅く、回転子10の固定子1に対する回転数も少なくなることは、定ギャップ型の電動機と同様である

回転子10の円筒外径は回転子渡2の内径より やや小さな直径になされている。

回転子10はラジアル方向には自由に移動可能なように、且つ、積芯の方向(即ち、第2関に於いて左右の方向)には移動しないように設けてお

このような手段の1例としては第2図に示すような手段が用いられる.

即ち、第2図20、21はカバーであつて、固定子1の第2図において左右に設けられている。

回転子10は第1圏のものの場合、軟磁性体で 構成されている。

間定子には、コイル50、51、52、53、 が装着されている。

コイル50,51,52,53の装着の状態を 説明すると、固定子1には回転子度2の円筒の方 向に平行して、固定子を貫通して、(即ち、回転 子室2と平行に)貫通孔55,56,57,58 が固定子1の円周を等分割とするように設けられ ている。

固定子1の貫通孔55と56の間は図示のようにヨーク60を形成し、同じように貫通孔56と57の間はヨーク61、貫通孔57と58の間はヨーク62、貫通孔58と55の間はヨーク63が形成されるようになされている・

・コイル50はヨーク60を取り巻くようにして 巻き付けられている。

同じように, コイルち!はヨーク61を, コイル52はヨーク62を, コイル53はヨーク63を取り着くように, 図示のように, 設けられてい

同定子1とカバー20あるいは21の間には、 図示のようにリテーナ22あるいは、23によっ て支持された複数個のボール28あるいは、29 の群が、丁度平面座スラスト玉軸受におけるボー ルとリテーナようにして設けられている。

24はカバー20に設けられた軌道輪である。 おなじょうに25はカバー21に設けられた軌道 輪,28,27はそれぞれ回転子10の第2図に おける左右端面に設けられたボール28およびボ ール29の軌道輪である。

このように、軌道輪24,26とボール28が 平面座スラスト玉軸受を形成し、このような軌道 輪24,26がボールの転がり面を平面になされ ているときは、軌道輪26がみぞすり運動をなし でも、支際なくスラスト推力を支えることはよく 知られている。

したがつて、回転子10は第1図の状態で平面の (ラジアル方向) 方向の移動は可能であり、第

2 国の状態からみて左右の方向には、移動は抑制 されている

回転子10の直径と回転子第2の内径の大きさは、回転子10の回転の速さを左右し、後述するように本発明になる電動アクチェータの機能の上から嫌嗄である。

回転子10は回転子室2より小さくなされており、且つ、この可変ギャップ型旋転電動機の使用状態として、回転子10の円筒外面の一部は常に限定子1の転がり買3に接するように磁気で吸引するようになるので、回転子底2の中心90と、回転子10の中心91は通常の電動機のように一致しない。

回転子10の中心部には、触ネジ35が、回転 子10の外周と同芯になるように、設けられている。

また、本発明の電動アクチェータの出力用の出力額15として、雄ネジ36が囲転子10を貫通し、更にカバー20および21に支持され、固定子1の転がり面3と同芯で、且つ、第2関で左右

(即ち, 難ネジ35のねじ径は雄ネジ36のねじ径よりも、仮芯及xのほぼ2倍だけ大きなものになされている)

さて、第1図に示すように、転がり面3の直径 より回転子10の外径が小さくなされているため に、回転子10の上部に転がり面3との間に跛問 92が存在する、一方雄ネジは転がり面3に同芯 に設けられているので、その中心は転がり面3と 同じで、第1図90で図示する位置にある、

回転子10の中心91の位置は、第1図では回転子10が下方を転がり両3に接しているために、隙間92の半分だけ下方にある、即ち、回転子10は、転がり両3との直径差の1/2の寸後だけ偏芯している。

この偏芯量を説明が容易なようにxとして呼ぶ こととする。

雄ネジ36と雌ネジ35も何じ量 x だけ偏芯して設けられていることになる。

このような本発明の構造構成における作用を説 明する. の方向に移動可能に設けられている.

雄ネジ36は更に中心軸に対して見て、回転は 抑制されるようになされている。

この具体的手段としては、第3図、第4図に示すように、雄ネジ36の中心軸に平行にキー満37を設け、カバー20あるいは21あるいは20、21の両者にキー38を設ける等の従来公知の手段が用いられる。

雄ネジ36の回転を抑止する手段として、この 電動アクチエータが使用される被駆動側を利用し 例えば、雄ネジ36の端郎の接続金具70が、被 駆動物との関係に於いて回転を抑止されるように なされていてもよい.

回転子10に設けられた機ネジ35と雄ネジ3 6のねじのピッチは同じになしておく.

また、雄ネジ36と雌ネジ35の径は、ちょうど第1回において固定子1の転がり面3に回転子10の下端が接するときに、雄ネジ36の上部が雌ネジ35の上部と鬼なるような寸法関係になしておく、

第1 図でコイル 5 D に通電しヨーク G O が 磁化 されると、ヨーク G O の転がり 面が回転子 1 O を 吸引する。

すると、回転子10は通電前までは、下方が転がり面3に接していたのが、転がり面3を転がりながら左端102の部分が接するようになる。

次いでコイル51に通電すると、ヨーク61が磁化され、回転子10の第1図102で示す部分が、転がり面3に接するように、転がり面を転がりながら移動する。

この運動は回転子10の中心は循芯量だけ第1 図の左に移動するが、回転子10の固定子1に対する回転は極くわずかなものとなる。

この回転子10の回転は、雌ネジ35の雄ネジ36に対するねじ作用となり雄ネジ36に推力を与える。

このようにコイル 5 0 から次々にコイル 5 1 . 5 2 , 5 3 と通電を続けてゆくと , 回転子 1 0 は 転がり面 3 を転がりながら回転する .

この回転子10の運動は、回転子10の中心は

回転予10の回転は、固定予1の転がり面3の 直径と回転予10の外径との発によって決まる回 転数となる。

回転子10の転がり面3への転がりによるみそすり運動は、コイル50、 51、52、53、50・・・・と次々と磁化される磁化の回転の速さNに等しい。

転がり両3の直径をRとし、回転子10の直径を「とすると、回転子10の間定子1に対する回転数nは、

n ≒ N × (R − r) / R となる.

ここに、R=転がり面3の直径,

r = 恒転子10の直径.

この回転数 n は、例えば、転がり面3の直径が100mm、回転子10の直径を99mmとすると磁化の回転数 Nの1/100となる。

一般の誘導電動機においては、磁化回転数が回

に対する法線力による力は、一般の誘導電動機に おけるフレミングの左手の法則による力より、同 じ磁東密度で数倍内系数十倍強いことは良く知ら れている.

即ち、固定子と回転子が同芯で回転する普通型の電動機に対して、可変ギャップ型旋転電動機は 回転が速く回転力は大きく、あたかも普通型の電 動機に減速機を付けて残速したと同様の機能がある。

しかしながら、可変ギャップ型旋転電動機の回転子10は、みそすり運動をしながら回転するので、これを回転運動として取り出す機構は難しく 昨命が長く、振動の少ないものが容易には得られ ないという欠点があつた。

本発明の上述の第1図、第2図の例では、上述のような回転子10の回転の取り出し機構は不用で、極めて合理的でしかも簡単な機構になつている。即ち、回転子10のみそすり運動を雄ネジ36の外側を固る维ネジ36のほほとして、回転子10の回転力を雄ネジ36に伝達し雄ネジ36の

転子10の回転数となるのが通例であるから、上述の回転子10と固定子1の回転の関係は、通常の電動機の回転に比べて、あたかも大きく波速されたかのようになる。

その上に、例えばヨーク60と回転子10との 磁気の作用を見ると、磁力線は第1図で水平の方 向に即ち、ヨーク60から回転子10の102で 示す部分の方向に生じ、且つ、固定子1が回転子 10を吸引する方向も同じ水平の方向となる。

即ち、このような可変ギャップ型旋転電動機で は磁力線の法線力によつて作動する、

普通の電動機、即ち、固定子の中心と回転子の中心が一致して回転子が回転する形式(定ギャップ型)の電動機では、磁力線の法線力では回転力が発生しないので磁力線の法線力を斜めの分力として用いるか、回転子に巻き線を設け、固定子の磁気がこの巻き線に作用し、発生するフレミングの左手の法則に基づく力によつて作動するようになっている。

上記した。可変ギャップ型旋転電動機の磁力線

推進力に変換するようになしている。

即ち、雄ネジ36の間りを雌ネジ35が傷芯量xだけ偏芯して転動する。このとき回転子10の転動によつて雄ネジ36と雌ネジ35は相対的に回転位便を変化させることになる。

雄ネジ36の回転は前記したように回転を抑止されているので雄ネジ36は第2図の左右方向に移動する。

このようにして、雄ネジ36は固定子1に対して推力を生じ、コイルの助磁の脚を前記とは逆に50、53、52、51、50のようになせば、前記とは逆の方向に雄ネジ36は移動し、雄ネジはコイル50、51、52、53の助磁順序の制御によつて、第2図における左右方向に制御され移動する。

雄ネジ3 6 と雌ネジ3 5 の形態は雌ネジと雄ネジの関係にある従来公知のどのような形態をもちいてもよいが、雌ネジ3 5 としてボールねじを用いることは効率が高く、寿命が長く、本発明の実施の形態としては好ましい。

また、ボールねじと類似のローラねじも有用に 使用できる。

さらに雄ネジ36や雌ネジ35の磨耗を減少せしめるために、第5関に示すように、雌ネジ35に代え、獲数個の雄ネジ351、352、353、354を対として出力用の雄ネジ36の周りに配列しても、作用機能としては、雌ネジ35と同等の機能が得られる。

即ち、第5図、第6図に於いて雄ネジ351の中心に報120が設けられ、回転子10には報120を装着する孔111、112が設けられていて雄ネジ351が回転可能に装着されている。

間じように、雄ネジ352には軸121が設けられ、回転子10に設けられた孔113,114に接着され、雄ネジ353には軸122が設けられ、回転子10に設けられた孔115,116に接着され、雄ネジ354には、軸123が設けられ、回転子10に設けられた孔117,118に接着されている。

孔111, 113, 115, 117および孔1

ネジ36の周りに第7図、第8図に示すように遊 裏のように配列した、雄ネジ365、366、3 67、368に簡単な歯車機構を付与し、回転子 10に対して相対的に回転するようにすることに よつて、さらに高度の機能を付与し本発明を一層 有用なものにすることが出来る。

即ち、第7図、第8図に示すように雄ネジ365、365、367、368の左右に確取371、372、373、374、375、376、377、378を失々設け、同転子10に設けられた満取380、381とかみ合うようになしておく、

雄ネジ365,366,367,368はケージ340,341によつて,あたかもニードルベアリングのニードルのように連結されている。

このような構造構成になすときは、雄ネジ365,366,367,368は自転しながら公転するわく屋のように作動し、単に雄ネジ361.362,363,364が出力用の雄ネジ36に従って回転したときとは異となった雄ネジ36の

12、114、116、118は回転子10の外周と同志円の上に設けられ、第6図に図示するように、例えば雄ネジ352のラジアル方向の延長上に存在する隙間92が最大となる時に、雄ネジ352が出力用の雄ネジ36にぴったりとはまりあうようになされている。

雄ネジ351,352,353,354は雄ネジ36とのかみ合に際し、自身がわずかに回転するので磨耗が減少する。また雄ネジ36および351,352,353,354は工作が容易であり、硬度の大きい材料を使用することができるので磨耗を少なくすることが出来る。

このような雄ネジ351,352,353,3 54のように、複数個の雄ネジからなる雌ネジの 代用はさらにはもつと本発明を有効にならしめる ことが出来る.

本明細書の曹頭に述べたように、本発明になる 電動アクチエータは減速機がなくとも、従来の減 連機を用いた電動アクチエータと同じ作用と効果 をもたらすのが特徴であるが、上述の出力用の雄

動きが得られる。

即ち、いま回転子10が停止しており仮に雌ネジ365、366、367、368がおのおの1回転したとすると出力用の雌ネジ36は1ピッチだけ進むであらうことは容易に納得しうるであらう。

従って、回転子10が例えば時計方向に1回転する間に越ネジ351、352、353、354が反時計方向に1回転するとすれば、出力用の雄ネジ36はまつたく回転子10に対して相対位置を変えることはない。

博車371,372.373,374.375 ,376,377,378の前面の直径と、協車380,381の胸面の直径を、適当に選ぶと、 回転子10の1回転に対して、雄ネジ365,3 66,367,368が逆に1回転と+αだけ回転せしめることが可能となる。

この + α が 1 回転より小さい場合は、第 1 図、第 5 図のものに比べ同じ回転子 1 0 の回転で、出力用の雄ネジ 3 6 の移動速さは遅くなり、推力は

大きくなる。

また、+ αが1回転より大きい場合は、出力用の雄ネジ36の推力は第1個、第5回のものに比べて小さく、偏位の速さは早くなる。

雌ネジ35の変形として、第9図に示すように 雄ネジ36のねじ山にはまり合うローラビン13 0を複数個便転子10にラジアル方向に配列して も同様の効果が得られる。

第9 関は、このようになしたものの一部従断而 図である。

第9図の131はローラビン130を支えるニードルベアリングである。

第9図で示す構造構成は、ローラビンが無理なく出力用の雄ネジ36のねじ山を転がるので効率がよく、本発明に使用した可変ギャップ型旋転電動機においては、回転子10の内部が広く、第9図に示すようなローラビン130とニードルベアリング131は容易に設置が可能で好ましい実施例となる。

第9回の例では、軌道輪24および25は関示

10は回転子である。何転子10の中心部に雌ネジ35が設けられ、雌ネジ35の中央を夏通して雄ネジ36が設けられていることは第1回、第2 図のものと同じである。

カバー20の右に更に、固定子401が設けられ、固定子401の内部に回転子410が設けられている。

回転子410は、回転子10とは回転子10の回転面で180度位置をたがえて装着されている即ち、第10関で回転子35と固定子1とは回転子10の上方に隙間が位置しているが回転子410では、隙間は回転子410の下方に来ている。

カバー21の左にも固定子501が設けられ、回転子510が内部に装着されている。

回転子510の競符の状態も回転子410におけるように、回転子10とは、180度たがえて 装着されている。

このような構造構成において、回転子10および410および510がみそすり運動および回転運動を行うとき、回転子10と回転子410、5

のように、畑バネ75、78および77、78に よつて回転子10のほうに伊圧するようになされ ている。

またカバー20,21を貫通して該軌道輪24 および25にリミットスイッチ80および81の 作動棒82,83が接するようになされている.

この構造構成でもし、雑ネジ36に外部より過 大な推力が作用すると、雌ネジ35を介して、執 進輸24あるいは25が押され、リミットスイッ チ80あるいは81が作動して、雌ネジ36に過 大な推力が作用したことを感知せしめることがで まる。

回転子10は転がり前3をみそすり運動するので、固定子1に対して、偏動を与え、これが電動アクチエータの外部に与える振動となって、不都合な場合が生じる場合もある。

このような場合、第10関に示すように串製に 可変ギャップ型旋転電動機を並べて、固転子の原 動をパランシングすることが考えられる。

即ち、第10図の中央において、1は歴定子、

10は,運動に基づく振動の方向が,互いに逆となるので,振動が互いに補間しあって,外部への振動はなくなる.

従って、このような構造構成のものは価格も安価に、製作も容易である。その上面定子I、401、501の外径を細くしても、出力は強く、小型で外径がまとまりのよいものとなる。

回転子10に設着される雌ネジと出力用の雄ネジ36とは、上述のように説明したもののほか、従来公知のねじ機構の何れを用いても、本発明の本質を損なうものではなく、ねじ機構が効率のよいものであれば、どのようなねじ機構でも用いることができる。

また、上述までの説明では、雌ネジ35のねじ 徭が雄ネジ36のねじ後より固定子1の転がり而 3のと回転子10の偏芯能の2倍だけ大きくした 構造について説明した。

このような構造構成は極めて簡単で安備な電動アクチエータがえられ、本発明の有用な実施例となるが、雌ネジ35の雄ネジ36に対する寿命は通常のねじに比べて短くなる。

第11図は、雄ネジ36と雌ネジ35を通常の わじのようにぴったりと係合せしめ即ち、密に係 合せしめ、雌ネジ35の外周と、回転子10の内 周とにスプラインを設け、雌ネジ35か一定の位 優にあり、その周りを回転子10がみそすり運動 しても雌ネジ35には支続無く回転が伝えられる ようになしたもので、ねじ部の寿命は長い。

第11図ではスプラインによって雌ネジ35の ラジアル方向には遊であるが、回転子10の回転 雌ネジ35への伝達には支降のない構造構成とし たが、軸と軸とをガタを持たせた浮遊せしめた接 統の方法、例えばオルダム雑手などに用いられる 従来公知の手段を回転子10と雌ネジ35の係合の構造構成として用いることができる。

また、固定子1の転がり面3と、該転がり面3 に接触転動する回転子10の外面とはスリップ(滑り現象)が生じることが考えられる。

このスリップ現象は、本発明の電動アクチェータにとつて、好ましく作用する場合と、使用の用途によつては、好ましくない場合とがある、

即ち、出力用の雄ネジ36に外力が作用し、雄ネジ36が第1図の左右方向への移動が抑制された場合、回転子10の回転が停止する代わりに回転子10が転がり面3から離れて、宙で回転するような現象が生じる。

この現象は、もし回転子10が回転を停止した、場合、コイルに交番電流を流していたとすると、大きな過電流が流れ、コイルの焼損が生じるが、回転子35が空ら回りすると、コイルを流れる電流は回転子10が停止した場合より少なく、コイルの焼損を減少せしめる効果があるが、一方このような現象は、正確な回転からは困った現象とな

る.

即ち、NC制御におけるように、出力軸の変位の制御を、コイルにあたえる電気の信号によって定めようという場合、スリップ現象は正確さからは困った存在となる。

このような場合、転がり面3や回転子35の転がり面3に接する面を感じの大きな材料を使用したり、あるいは凹凸を設けたり、密車を設けたりすることが考えられる。

可変ギャップ型遊転電動機の構造構成としては 本明細律では、コイル50,51,52,53に ようではない。カークを介して回転を 引き付ける構成として説明した。しか子10 は機成として説したり、回転子10 は破石を埋設したり、回転発したり、回転発力としたり、コイルによく、すた生産 を破気の吸引作用を利用してもよく、また、生産 ののにまず、アプ型旋転電動機に利用で ものもあり、このような公知の構造構成の可クチェ を変更が続きないるで動きである。 ものもあり、このような公別になる電動アクチェ ータの電動機として用いられる.

本発明はこのような公知の構造構成になる可変 ギャップ型旋転電動機のいかなるものでも使用す ることが出来る.

このような第1図、第2図の例とは異なった可 変ギャップ型旋転電動機を用いた、好ましい実施 例を説明しておく.

今までの説明では可変ギャップ型旋転電動機の 転がり面3は個定子1の内部で円筒面であった。

これに対して、固定子1の側面を転がり面とした可変ギャップ型旋転電動機も公知である.

第12図はこのような公知の可変ギャップ型旋転電動機を巧みに利用し、優れた電動アクチエータとなした1例の従断面関である。

第13図は第12図のA-B-C-Dに沿った 横断面図である。

第12関,第13関において、201は固定子であるが、第1図の例と異なり、非既性体で出来でいる:

厨定子201を挟んで、 図示のように円盤状で

牧磁性体で造られた回転子210、211が固定 子201の左右に設けられている.

固定子201には軟磁性体で構成されたヨーク 260が埋設され、ヨーク260にはコイル25 りが装着されている。 ヨーク260とコイル2 60の態様は図示のように、ヨーク260の中央 にヨーク260を取りかこむようにコイル250 が設けられている。

同じように、261、262、263は軟碓性 体で造られたヨークであり、各々のヨーク261 , 262, 263には失々コイル251, 252 , 253が複雑され用定子201に埋設されてい

固定子201の第12関における左右の側面の 回転子210,211に対面するところは、図示 のようにコーン状をなし、転がり面203、20 4を形成している。

ヨーク260, 261, 282, 263の中間 には、軟磁性体で構成された補助ヨーク266、 266,267,268が関示のように固定子2

コイル250に通電したとすると、生じた磁気 は、ヨーク260から回転子2.10を通り、補助 ヨーク265, 268を通り, 回転子211から ヨーク250に戻る磁路が形成され、ヨーク25 0 および補助ヨーク265,268が,回転子2

01に埋設され、その第12回における左右の鳩

而は転がり面203、204と同一面になるよう

になされている.

10,211を固定子201の転がり面203, 204に吸引する。

回転子210および211の転がり面203, 204に対面する面は、前記転がり面203,2 04のコーンより図示のように、やや深い角度で 円錐を形成し図示のように固定子201の下部で 回転子210および211が固定子201に接す る場合固定子201の上部では固定子201の転 がり面203と面転子210との間には隙間があ るような角度になされている。

また、固定子201の転がり面204と回転子 211の関係も上記と間様である.

235は雌ネジで、固定子201の中心で回転 子210,211を貫通して設けられた雄ネジ2 36に密にねじ係合するようになされ、雌ネジ2 36はカバー220,221に設けられた軸受け 222, 223によつて支持され, 且つ, 第12 図の左右の方向には移動を抑制するようにして設 けられている.

雌ネジ235の外周と、回転子210,211 の雌ネジ235にはまり合う内孔の部分とは遊に はまり合うようになされ、 第13 図で示すように ボール228と、雌ネジ235の外間に、雌ネジ 235の輸芯の方向に設けられた、断面半円形の 満230と、同転子210、211の内孔の内周 に、雌ネジ235の軸芯の方向に設けられた断面 半円形の満231,232とが関示のように係合 して、(丁度、可とう継手のある種のものにみら れるような手段のようにして)回転子210.2 11の回転が、雌ネジ235に伝達されるように なされている.

第12國,第13國に示す回転子210,21

1の状態は、コイル252が励磁され回転子21 0,211を吸引している時の状態と同様で図の 下方において固定子201と回転子210,21 1が接触している。

次に、コイル253が励磁されるとヨーク26 3 が回転子210,211を吸引し、次いで、コ イル250が励磁されるとヨーク260が回転子 210,211を吸引する。(このとき固定子2 01と回転子210,211は第12図第13図 の上方で接することになる)

このように次々とコイル252から253,2 50, 251, 252, 253, ・・・・と順次 励戦を繰り返せば回転子210および211は転 がり面203および204の上を揺動みそすり運 動をしながら回転する。

この回転子210,211の固定子201に対 する回転変位は、固定子201の転がり面210 , 204を, 回転子210, 211がころがつて 生じるが、転がり面203、204の平均転がり 長さはしは,

 $L = 2 \pi (R + 2 b)$ 224.

R=転がり面203,204の内径

b = 転がり面203,204のラジアル方向の 幅の2分の1 (即ち、内径Rの円周から平均 転がり終までの距離)

となるのに対して、転がり面203、204のコーン角度が180°に近い場合、回転子210、211においてはコーンの角度が深くなるだけ短く、回転子210、211の平均転がり長さしは1=2π(R+2bCosa)

ZZC,

α = 転がり面 2 0 3 あるいは 2 0 4 と回転子 2 1 0 あるいは 2 1 1 とのコーン角度の差の 角度

である. 従って,

回転子210,211の回転数nは,

 $n = N \times (R + 2b) / (R + 2bCos\alpha)$ $\geq \alpha \delta$

従って、転がり面203あるいは204と、回

の各相をサイクルの順に各々のコイルに給電し、 旋回経路をうるような手段を利用したり、コークを6極となし、3相交流の各相を主にそれ とし、そのまま1っ飛びの3っのコイル群にそれ ぞれの相を給電し、且つ、別の3っのコイルを対 となし、のこ対のコイルには主同路から分娩を されてし、のこれのはな介して遅れさせて給 はするようになしてもよい、また、給電用の制御護 開いコイル50、51、52、53に次次と給電 するようにしてもよい、

確流電動機におけるように、回転子10にプラシを連動せしめこれによつて接触片を介してコイルに給電するなど、一般の定ギャップ型の電動機に用いられるコイルえの給電の手段をそのまま可変ギャップ型旋転電動機のコイルの給電に適するように用いることもできる。

これらは、すべて目的に応じて本発明の電動アクチェータの可変ギャップ型旋転電動機として用いられる.

「発明の効果」

転子210,211のコーン角度の差αが少ない程,磁気の旋回数Νに対する,回転子210,2 11の回転数ηは遅くなる.

この形式の可変ギャップ型旋転電動機では、第 1 図に示した、ラジアル隙間のものでは回転子1 0 の大きな慣性体が偏芯みそすり運動したが、第 1 2 図のものでは、偏芯量は殆どないので、コー ン角度の差を概めて少なくすると、回転トルクは 強力で回転数は遅くしかも振動の少ない可変ギャップ型旋転電動機となる。

その上、第12図、第13図に示したものは、第12図の左右に2つの回転子210、211を設けたので、回転子210、211の揺動みそすり運動および回転運動に基づく低動が両者が互いに(第12図で左右に)反対の方向に動くので振動が打ち消され静かな運転を行う。

第12図, 第13図のコイル250, 251, 252, 253や第1図のもののコイル50, 5 1, 52, 53に順に電流を給電する手段として も、例えばコイルとヨークを3極とし、3相交流

本発明の構選構成によるときは、強力な可変ギャップ型旋転電動機の回転子のトルクを利用することができるので、小型で強力な電動アクチェータをうることができる。

また、可変ギャップ型旋転電動機の回転子のみそすり運動しながらゆっくりと回転する回転によって離ネジが回転し、係合する雌ネジが送られるので原則的に減速機が必用でなく、従来の定ギャップ型の電動機と減速機を組み合わせ用いる電動アクチェータに比べ構造簡単であり、製作は容易であり、従って価格も安備にできる。

本発明が特に有用な機構であるゆえんは,傾位量×を小さく,即ち,転がり面3の直径に対して回転子10の直径をわずかに小さくすると回転子10の回転は磁気の回転に対して減速比が大きくなり,その上回転子10を吸引する磁力の力も験間が小さくなることから,距離の2乗に反比例して強くなり,可変ギャップ型旋転電動機の回転子10の減速効果が大きくなるという2重の効果がある点

である.

また佛車が原則的になく、回転子が出力用の雄ネジの周りを旋転するので、騒音も少く、効率がよい、歯車を用いるものにおいても、備車の構成が簡単であり騒音は少なくなる。

その上外観も従来の定ギャップ製電動機と減速機を用いたものに比べ当然シンプル、且つ、小型になることは、容易に推察出来よう。また、重量も経滅されることは明らかである。実際本発明によって設計した世数アクチエータは従来のものに比べ重量は約1/2という結果の得られたものもまる。

外銀がシンブルで小型ということは、この種のアクチェータを産業機械等に用いるに際いして、 物めて装着が容易であり、且つ、軽量に製作しう るということとなり、このことは産業用のロボットなどにとって待望されていた機能である。本発 明はこのように、構造簡単製作容易、高効率、安 価という特徴に加え、小型軽量という特徴を有せ しめうるという効果がある。 4. 図面の簡単な説明

第1回は本発明になる電動アクチェータの1実施 例の機断面図.

第2図は第1図のものの従断面図.

第3図は本発明になる電動アクチエータの、出力 用の雄ネジ3 8 の、回転を仰止する部分の横断面 図、

第4図は第4図のものの一部従断面図.

第5 図は雌ネジ35 に代え複数個の雄ネジ351 ,352,353,354を出力用の雄ネジ36 の周りに配列したものの一部従術面図。

第6図は第5図のものの一部横断面図。

第7回は出力用の雄ネジ36の周りに配列した複数個の雄ネジ365,366,367,368に自転を与える歯車を設けたものの従胼面図。

第8図は第7図のものの一部被断面図.

第9 図は雌ネジ35に代え、ローラピン130を 用いたものの一部従断面図。

第10図は可変ギャップ型旋転電動機を再型に設 けたものの従断面図。

第11回は雌ネジ35と雄ネジ36を密に係合し たものの一部機断面関、

第12図は本発明になる電動アクチェータの代わり型のものの従版面図。

第13図は第12図のものの横断面図である。 次に、

1は御定子、2は回転子塩、3は転がり面。

10は回転予.

15は出力報.

20,214111-.

22, 23はリテーナ.

24, 25, 26, 27 は軌道輪.

28,29はポール.

35は雌ネジ.

36は雄ネジ.

37はキー満,38はキー.

50, 51, 52, 53 H コイル...

55,56,57,58 は黄遙孔.

60,61,82,63はヨーク.

70は接続金具.

75, 76, 77, 78 は皿パネ.

80,81はリミットスイッチ.

82、83はリミットスイッチの作動株、

90は回転子室2の中心・

91は回転子10の中心,

92は隙間.

101,102,103,104は回転子10の外面.

111, 112, 113, 114, 115, 11

6,117,118は孔.

120, 121, 122, 123は軸.

130はローラピン。

131はニードルベアリング、

201は固定子。

203,204 は転がり面.

210,211は回転子.

220, 221 はカバー.

222,223は軸受.

228はボール.

230,231,232は構.

特開昭62-23361(12)

235は雌ネジ.

236は雄ネジ.

250, 251, 252, 253 はコイル.

260, 261, 262, 263 はヨーク.

265, 266, 267, 268 は補助ヨーク.

340,34147-9.

351, 352, 353, 354 は雄ネジ.

365,366,367,368は雄ネジ、

371, 372, 373, 374, 375, 37

6,377,378は簡単.

380,381は歯車.

401は固定子.

410は回転子。

501は固定子.

510は回転子である.

特許出願人 細川 **克**

狩開昭62-23361 (13)

