This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

	The second
	e ₂
×.	
	O Maria
	# ₄ - 1

(1) Int. Cl.

39日本分類

日本国特許庁

①特許出願公告

昭47-33279

C 08 g 26(5)G 13 26(5)G 112 26(5)F 131

昭和47年(1972)8月24日

発明の数 1

(全.6頁)

図樹脂の製法

创特 昭 4 3 - 9 3 1 2 1 願

22)出 昭43(1968)12月20日

砂発 明 伊藤正·

千葉市千城台西町1の2872-

3 0 7

同 小笠原芳彌

市原市辰巳台西3の12

冏 梅原正志

千葉県印旛郡四衛道町三才251

の出 願 人 大日本インキ化学工業株式会社 東京都板橋区坂下3の35の58

代 理 人 弁理士 小田島平吉 外1名

発明の詳細な説明

本発明は、縮合度が比較的低い可溶性ポリカー ポジイミトの末端イソシアネート基を、カルポキ シル 基及び/又は酸無水基を有する化合物と反応 せし めてアミドあるいはイミド基で結合すること 20 本発明における上記の反応は、例えば次式の如 により、カーボジイミト基の特性とアミドあるい はイミド基の特性とを併有した耐熱性樹脂を製造 する方法に関するものである。

ポリカーボジイミトは、縮合度が比較的高い (約4以上)ものは不溶不融であり、縮合度が比。25

密取的低い(約4以下)ものは、有機溶媒(とくK フエノール系溶媒)に可溶であるけれども、耐熱 性において劣ることが知られている〔D.J.Lyman N. Sadri, Mak romol. Ohem. , 67 , 1] (1963) .

2

本発明の目的は、上記の如き低縮合度のポリカ ーポジイミドから、溶媒可溶性で、しかも耐熱性 を始めとして耐薬品性その他の諸物性において優 れた樹脂を製造することにある。

本発明のこの目的は、有機ジイソシアネートの 縮合 により得られるカーボジィミド化した末端に イソシアネート基を有する化合物と、一般式: X - A - X, X - A < Y 又 は Y > A < Y (但し、 Xはカルポキシル基、Yは酸無水基、Aはペンゼ 15 ン性の不飽和結合で特徴づけられる少なくとも 1 個の環を持つ2~4価の基である。)で表わされ る多官能化合物とを、イソシアネート基と X又は Yとの当量比 0.8: 1~1: 0.8 において反応さ せることによつて運成することができる。

く説明される。式中、Rはイソシアネート残基。 n はポリカーボジイミドの縮合度。mは樹脂の縮 合度を表わし、 Aは F配と同じである。

- (1) OGN \in R-N-C=N \Rightarrow n R-NCO+HOCO -A-GOOH → {+R-N=C=N+n R-NHCO-A-CONH}m
- OCN FR-N=C-N+n R-NOO+HOCO E+R-N-C-N+n R-NHOO-A

直接 结节

3

(3)
$$OCN \leftarrow R - N = C = N + nR - NCO + OCO + OCO$$

本発明の方法における末端にイソシアネート基 を有するポリカーボジイミドは、公知の方法に従 反応により合成される。 ジイソシアネートの例と しては、ジフエニルメタンー4・41-ジイソシア オート、ジフェニルエーテルー4・41-ジイソシ アネート、3・3'ージメチルジフエニルー4・4' - ジイソシアネート、J -メチル・ベンゾール - 15 マスクされている際には、無水の不活性溶媒中 2・4~及び1-メチルベンゾール-2・6-ジ イソンアネート及びそれらの異性体混合物などの 如き芳香族ジイソシアネート、或いはヘキサメチ レン- コ・6 -ジイソシアネート。 1 -カルポメ ト、 1・3-及び1・4- キシリレンジイソシア オート及びその異性体混合物などの如き脂肪族シ イソシアネートが挙げられる。縮合度が4以上の ポリカーボジイミドは不容不融性であるので。本 発明においては縮合度が4以下のポリカーポジイ 25 溶媒を用いない直接反応の場合。反応成分をよ ミドが使用される。二種以上のジイソシアネート 混合物の縮合生成物であるコポリカーボジイミド も 本発明方法の原料となり得る。イソシアネート 差は、そのままでも、マスクされていても良い。 ネート基を再生する結合をイソシアネートと作る 活性水案を有する化合物が 適当 であり、例えばフ エノール、クレゾール、マロン酸エチルエステル あるいはピスルフィドがある。

で表わされる化合物の例としては、イソフタル酸、 テ レフタル酸、トリメリツト酸無水物、ピロメリ ット酸2無水物、ベンゾフエノンテトラカルボン 酸 2 水物などを挙げることができる。

スクされているか否かで反応条件は異なる。

マスクされていない際には、無水の不活性溶媒 を用い、温度50~160℃、無水窒素ガス気流 中で反応を行なう。

反応時間は20分~4.0時間である。適当な溶媒 としては、アミド系溶媒例えばジメチルホルムア いそれぞれのジイソシアネートの脱炭酸ガス縮合 10 ミド、ジメチルアセタミドあるいはN-メチルピ ロリトンや、スルホキシド系溶媒例えばジメチル スルホキシドや、ヘキサメチレンホスホルアミド 又はこれらの混合物がある。反応成分の濃度は20 ~80%、好ましくは40~60%である。

において、反応温度130~220℃で反応を行 なう。反応時間は 1.0~7.0 時間である。適当な 溶媒としては、フエノール系溶媒例えばフエノー ル、メタクレゾールまた混合クレゾールや。ジメ トキシベンタメテレン- 1・5 -ジイソシアネー 20 チルスルホキシドや、ヘキサメチレンホスホルア ミドがある。フエノール系容媒はイソシアネート のマスク剤ともなり得るが、こうした反応条件下 では不活性溶媒である。反応成分の濃度は10~ 80%好ましくは30~50%である。

く混合L反応時間120~260℃、窒素気流中 で反応を行なう。反応時間20分~90分で生成 した泡状固形分を、さらに160~220cで 2.0~5.0時間加熱して反応を終了する。との反 マスク剤としては加熱により容易に元のイソシア 30 応の際に消泡剤としてシリコン系 樹脂を併用する と、反応が均一に行なえる。

反応方法の如何にかかわらず。イソシアネート 基とカルボキシル基あるいは酸 無水基との当量比 は、0.8:1~1:0.8である。反応成分の添加 一般式 X~A~X、X~A<Y及び Y>A<Y 35 順序は、いずれでも大差なく、また成分は粉末状 でも溶液状でも添加できる。反応速度を上げるた めに、触媒を反応成分に対し、0.1~0.01%重 量加えることもできる。適当な触媒としては、例 えばボロントリフルオライドエーテル錯体、酢酸 溶液中での反応の場合、イソシアネート基がマ 40 亜鉛、塩化第一錫、塩化亜鉛、 p - トルエンスル ルホ ン酸。チタンテトラブチレートおよびジプチ ル錫ジラウレートの如き酸性触媒並びに例えばト リエチルアミン。ジメチルアニリンおよびN-メ チルモルホリンの如き塩基性触媒が挙げられる。

-214-

以上のようにして得られるポリカーボジィミドア ミド、アミドイミド、およびイミドは、140~ 300℃に加熱することによつて硬化することが できるが、これに該樹脂中のカーボジイミド基に を架橋削として粉末または溶液状態で混合し、200 υ以上の高温下において、または触媒を添加し 90 ~180℃の温度において、反応させることによ り硬化させることもできる。適当な架橋削として タフエニレンジアミンおよびトリメシン酸がある。 触媒として適当なものはトリフェニルホスフィン オキシド、およびリーフエニル・3-メチル・3 -ホスフイン-1-オキサイドであり、その使用 量は架橋削に対し1.0~0.1%重量が好ましい。 15 実施例 2

本発明によつて得られるポリカ ーポジィミドア ミド、アミドイミドおよびイミドは次のごとき特 徽を有している。

- カーボジイミド基がアミドあるいはイミド基 するため、硬化樹脂の耐薬品性殊化耐水および 耐酸性が向上する。
- ② カーボジイミド基が活性水素を有する多官能 化合物と架橋反応して熱硬化性樹脂となるため 殊に耐熱性が改良される。
- ③ 比較的高価なアミドあるいはスルホン系溶媒 よりもむしろ比較的安価なフエノール系溶媒に 易溶である。
- ④ カーボジイミド基もさることながらイミドや ドヤポリイミダゾール等と同程度の耐熱性を有

従って本発明によって製造されたポリカーボジ イミド、アミドイミドおよびイミドは、熱安定性 の高い電線被覆、塗料、バインダー、ラミネート、35 アセタミドには不溶)。 フィルム、接着剤などとして有用である。

次に、本発明を実施例によつて更に具体的に説 明する。

実施例 1

水窒素気流 中で、カーボジィミ ド化ジフエニルメ タンジィソシアネート (イソシアネート第20.3) n=0.6) 71.09. トリメリット酸無水物33.0 ダ及び無水ジメギルアセタミド104.09を加え

る。80~120℃に加熱攪拌すると炭酸ガス の流出がみられ粘度が増加する。 75 分後に一部 の粘稠な溶液を取り出し、150℃、20分間で フィルムに形成すると淡黄色透明で強靱なフィル 対して当量以下の活性水素を有する多官能化合物 5 ムが得られる。このフィルムの赤外スペクトルに は、2140cm-1 にカーボジィミド基の、1770及び1720㎝-1にイミド基の、1660㎝-1 にアミド基の、それぞれ特性吸収がみられる。な お、反応系は120分で攪拌不能になるが、これ は、例えばメラミン、ペンタエリスリトール、メ 10は130gのメタクレゾール室温で溶解し暗赤色 の溶液になる。

> なお、以下に述べる実施例の反応装置および反 応の様子は、特別に断らない限り、この実施例と 同様である。

実施例1のカーボジイミド化ジフエニルメタン ジイソンアネート77.08、トリメリツト酸無水 物 3 5.5 8、ジメチルアセタミド 1 0 2.0 8 及び ジプチル錫ジラウレート0.39を10~80に加 の分解を行なう活性水素を有する化合物を捕把 20 熱攪拌し、5 5分後に反応を中止する。とのフィ ルムの性質は実施例1に示したものとまつたく同 様である。

実施例 3

実施例 1のカーポジイミド化ジフエニルメタン 25 ジイソシアネート6 5.0 ダ、ペンソフェノンテト トラカルポン酸 2無水物 5 2.0 8及び無水ジメチ チルスルホキント 27 3.0gを 70~100cに 加熱攪拌し、30分後に取り出した粘稠溶液から のフイルムは淡黄色透明で強靱であつた。とのフ アミド基の導入により、一般の芳香族ポリイミ 30 イルムの赤外スペクトルには、2150㎝-1に カーボジイミドの、1770及び1720cm-1 . にイミド基に基づく特性吸収がみられた。反応系 は34分で攪拌不能になるが、これは3.00分の メタクレゾールに可溶である(等重量のジメチル

実施例 4

実施例 1のカーボジイミド化ジフエニルメタン ジイソシアネート71.09、ピロメリット酸二無 水物37.49及びジメチルアセタミド108.09 温度計及び攪拌棒を付けた 4口フラスコに、無 40 を 60~80℃加熱攪拌し、30分後に取り出し た溶液のフィルムは淡黄色でややもろい。34分 後に反応系は攪拌不能になる。

実施例 5

実施例 1 のカーボジイミド化ジフエニルメタン

ジイソシアネート 8 2.0 g とシリコ ン D O ー 710 ②攪拌し、 75 分後に — 部取り出した溶液のフィル (ダウコーニング社製) 1.0 まとを 1 4 0 ℃に加 熱攪拌した中に、粉末化したトリメツト酸2無水 - 物 3 7.8 9 を 5 分間要して徐々に添加する。 激し く炭酸ガスが流出し増粘する。反応温度を240 5 ℃に上げると、16分後に攪拌不可能になる。こ の発泡体の赤外スペクトルは実施例 1のフィルム とまつたく同様である。

実施例 6

ネート(イソシアホート % 1 8.5。 n = 1.0) 3 2.3 9、トリメリット酸無水物 1 3.6 9 及びジ メチルアセタミド 5 2.3 8 を 9 0~ 1 0 0℃ に加 熱攪拌し、54分後に取り出した赤色粘稠液のフ イルムは黄色 透明で強靱である。 反応系は 7 7分 15 物 2 1.1 9 及びジメチルアセタミド 6 1.1 9を 後に攪拌不能となるが、これは約1709のメタ クレゾールに可容で暗赤色溶液となる。

実施例 7

実施例 6 のカーボジイミド化ジフェニルメタン ジイソシアネート48.29に32.09のメタクレ 20 前記実施例で得られた樹脂の耐熱性を測定した。 ゾールを加え、140℃に加熱攪拌し、15分後 にペンゾフエノンテトラカルポン酸二無水物 34.1 タをジメチルアセタミド 27 1.0 夕に容かして添 :加し。さらに18分後の溶液から黄色透明なやや もろいフイルムを得る。 反応系は23分後に沈殿 25 リメリント酸無水物とからのポリイミドアミド を生じる。

実施例 8

実 施例 1 のカーボジイミド化ジフエニルメタ ン ジイソシアネート73.0g、イソフタル酸29.3 g及びジメチルアセタミド 1 0 2.3 g を <math>9 0 \sim 30 空気中、昇温測定 1 0 で /分で測定した分解開始100℃に30分、次に120~135℃に加熱◎ 温度で表わした。

ムは羨黄色やや不透明でややもろい。反応系は 4.0時間後も攪拌可能である。

実施例 9

カーボジイミド化 1 -メチルベンゾール-2. 6 - ジイソシアネート (イソシアネート 53 3.2。 n = 1.4) 4 2.2 g、ペンゾフエノンテトラカル ボン酸二無水物 5 3.7 g 及び無水N -メチルピロ リドン1 4 3.0 8を100~110℃に加熱攪拌 カーボジイミド化ジフエニルメタンジイソシア 10 し、23 分後の溶液フイルムは黄褐 色透明でやや 硬い。 反応系は29分後に提拌不能になる。

実施例 10

実施例1のカーボジイミド化ジフエニルメタン シイソシアネート 4 0.0 8、トリメリット酸無水 100~105℃に加熱攪拌し、17分後の溶液 のフィルムは黄褐色透明でややもろい。反応系は「 22分後に攪拌不能になる。

参考例 1

結果を次に表示する。比較のため、公知の方法で 合成したイソシアネート第13.1、n=1.3のカ ーポジイミド化ジフエニルメタ ンジイソシアネー ト(対照例1)。ジアミノジフエニルメタンとト (対照例2) 及びジアミノジフエニルメタンとペ ンソフエノンテトラカルボン酸二無水物とからの ポリイミド(対照例3)についても、同様に測定 した。なお、耐熱性は一尺度である熱重量分析を

	1	美 施	9 1	त्रभ	照	例 .	
	1	3	6	1	2	3	
略称	ポリカーボジイ ミドアミド・イ ミド	ポリカーボジイ ミドイミド	ポリカーボ ジイミドナ ミド・イミド		ポリアミト	ポリイミト	
分解開始温 度(で)	440~450	540~550	430~440	27.0~280	4.40~460	540 ~ 560	

参考例 2

. 前記実施例で得られた樹脂の硬化反応と耐熱性へ

10

,3及び6の樹脂溶液に、樹脂に対し0.5多(重 量)の硬化剤を混ぜ、300~320℃に15分 間加 熱する。架橋後の樹脂はいずれも過剰のメタ クレゾールに溶けなくなり、また赤外スペクトル 5 えた場合の結果を併記する。 によればカーボジイミド基の特性吸収がみられな必

の分解開始温度とサンブル 重量半減温度を対比し て示す。なお、比較のため、前記対照例2及び3 の各樹脂にそれぞれ架橋剤を上記と同様にして加

		架橋前	架橋	後	
		2/2 1/2 1/2	メラミン	ト リ メ シン酸	
	1	440~450	4 4 0 ~ 4 5 0	450~460	
実		7 3 0 ~ 7 5 0	770~780	780~790	
施	3	5 4 0 ~ 5 5 0	550~560	550~560	
例		850~860	870~880	8 9 0 ~ 9 0 0	
ניס	6	430~440	430~450	450~455	
		7 20 ~ 7 3 0	7 3 0 ~ 7 5 0	765~770	
স্থ	2	440~460	4 1 0 ~ 4 2 0	4 1 0 ~ 4 2 0	
照		750~760	730~750	7 3 0 ~ 7 4 0	
69	3	540~560	510~530	5 1 0 ~ 5 3 5	
		900~910	870~880	875~885	

上表において、上段は分解開始温度(で)、下段はサンプル重量半減温度(で)であり、熱重量分析 測定条件は空気中、昇温速度10℃/分である。

参考例 3

前 記実施例1,3および6で得られた樹脂のメ タクレゾールに対する溶解性を測定した。結果を 次に表示する。比較のため、前記対照例1~3の 30 参考例 4 各樹脂についても同様に測定した。

	寒	施	例.	対	稱	Ø	
メタクレノ ール 樹脂 (重量比)	1	3	6	1	2	3	
5	0	4	0	0	0	×]
1 0	0	Δ	0	0	Δ	×	C

) よくとける。

膨潤程度に溶ける。

: ぜんぜん溶けない。

実施例1,3および6で得られた樹脂のフイル ムにつ いて耐薬品性を試験した。その結果を次に に示す。比較のため、前記対照例1~3の各樹脂 からのフィルムについても同様に試験した。いず 35 れも48時間後の結果である。

試験項目	実	施	[7]	対	無	例
	1	3	6	1	2	3
5 多苛性ソーダ水溶液	不変	不变	不変	不変	不変	不変

試験項目	実	施	例	স্থ	釈	例
	1	3	6	1	2	3
5 多硫酸水溶液	不变	不変	不変	不変	不変	不変
飽和水蒸気(60℃)	不変	- 不変	不変	不変	脆化	不変
ガソリン	不変	不変	不変	不変	脆化	不変

特許請求の範囲

1 有機ジイソシアネートの縮合により得られる カーボジイミド化した末端にイソシアネート基を 有する化合物と、一般式: X - A - X、 X - A < Y 又は Y > A < Y (但し、Xはカルボキシル基、

10 1:0.8 において反応させることを特徴とする樹脂の製法。

1473600

引用文献

Yは酸無水基、Aはベンゼン性の不飽和結合で特 15 仏国特許 酸づけられる少なくとも 1個の環をもつ 2 ~4 価 英国特許 の基である。)で表わされる多官化合物とを、1 米国特許 ソシアネート基と X 又は Y との当量比 0.8:1~

英国特許 1105437 米国特許 2268586