Pex-Max Pex-Max Inhaltsverzeichnis Lösungsidee 1. Aufbau 2. Umsetzung 3. Beispiele 4. Quellcode Lösungsidee Under Stelle der Zahl, alle 15+1 Möglichkeiten sie zu verändern anzuschauen, und dann einen Depth-First-Search Algorithmus daruber laufen zu lassen. Es wird immer mitgezählt, wieviele Segmente genommen/platziert werden, und nur Veränderungen, die das Maximum minicht überschreiten
kommen infrage. Am Ende der Zahl/des Displays (Index == len (display) wird gecheckt, ob die Zahl der genommenen und platzierten Stäbchen übereinstimmt, ansonsten wird eine weitere Möglichkeit zurückverfolgt.
Aufbau segment.py class Segment Klasse, die ein Segment einer 7-Segment-Anzeige repräsentiert definit(char: str) Initialisiert das Segment von einem Zeichen [0-9A-F] defrepr() Gibt das Segment in lesbarer Form aus defeq(other) Gibt als Wahrheitswert zurück, ob das Segment identisch zum Segment other ist def ascii_art() -> List[str] Produziert ascii-art um das gegebene Segment auf 3x3 Zeichen anzuzeigen
def get_takes_gives(seg) -> Tuple[int, int] program.py def get_max_swappable(segments: List[Segment], m: int) -> str Gibt die Maximalzahl mit m Umlegungen zurück def_animate(from_: List[Segment], to: List[Segment]) -> Generator[List[Segment], None, None] Animiert die Umlegungen vom Display from_ zum Display to. def_print_asciiart(display: List[Segment]) Gibt das Display display als ascii-art in die Konsole aus Umsetzung Das Programm ist in der Sprache Python umgesetzt. Der Aufgabenordner enthält neben dieser Dokumentation eine ausführbare Python-Datei program.py. Diese Datei ist mit einer Python-Umgebung ab der Version 3.6 ausführbare.
Wird das Programm gestartet, wird zuerst eine Eingabe in Form einer einstelligen Zahl erwartet, um ein bestimmtes Beispiel auszuwählen. (Das heißt: 0 für Beispiel hexmax0.txt) Nun wird die Logik des Programms angewandt und die Ausgabe erscheint in der Kommandozeile. Beispiele Hier wird das Programm auf die sechs Beispiele aus dem Git-Repo angewendet: hexmax0.txt D24 3 Umlegungen
Ausgabe zu hexmax0.txt EE4 hexmax1.txt
##################################

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
hexmax4.txt 1A02B6B50D7489D7708A678593036FA265F2925B21C28B4724DD822038E3B4804192322F230AB7AF7BDA0A61BA7D4AD8F888 87 Ausgabe zu hexmax4.txt FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
<pre>Quellcode segmentsy from typing import Callable, Generator, List, Mapping, Tuple, Union class Segment: ""Class representing a segment of a 7-segment display.""" definit(self, chan: Union[str, Tuple[Union[int, bool]]]): Initialise the segment with data. Parameters </pre>
List(str) A 33 matrix of characters traversing every row from the top left to the bottom right. 0 1 2 \n
<pre>from itertools import poin, dirmane from typing import List, union, Tuple, Generator from segment import Segment costump. List[List[Tuple[int, int]]] - [] # create costump O(1) for x, from, in enumerate("01236597808CDSF"):</pre>
<pre>out = [[], [], []] for seg in display: asciiart = seg.ascii_art() for i in range(3): out[i] += asciiart[i*3:i*3+3] for line in out: print(''.join(line)) while True: try: choice = int(input("Bitte die Nummer des Beispiels eingeben [0-5]: ")) with open(join(dirname(_file), f'beispieldaten/hexmax{choice}.txt')) as f: display = [Segment(char) for char in f.readline().strip()] m = int(f.readline().strip()) print(get_max_swappable(display, m)) except Exception as e: print(e)</pre>