

Brayan Fabian Sierra Rodriguez Juan David Puenayan Aza

Presentado a

Edier Aristizabal

Universidad Nacional de Colombia - Sede Medellín Facultad de minas Diciembre 2022

AGENDA

- (1) Generalidades
- 2 Cartografia Tematica
- 3 Metodología

INTRODUCCIÓN

Los estudios relacionados con los movimientos en masa son indispensables para realizar una correcta gestión del riesgo en los distintos sectores del territorio, ya sea para elaborar mapas de susceptibilidad, amenaza o riesgo requeridos para el correcto ordenamiento territorial.

En este trabajo realizamos un estudio de susceptibilidad a los movimientos en masa para la cuenca de la quebrada El Salado ubicada en el municipio de Girardota en el departamento de Antioquia

GENERALIDADES Objetivo

Realizar un mapas de suceptibilidad a Movimientos en masa en escala 1:10.000 para la Cuenca de la quebrada el Salado, municipio de Girardota usando diferentes modelos

GENERALIDADES

DE LA CUENCA

Localización

Zona de Estudio

Figura 1. Mapa de localización de la zona de estudio. Fuente: Propia.

Mapa Geologico 1:10.000

Figura 2. Mapa de Geologico de la zona de estudio. Fuente: Propia.

Mapa Geomorfológico 1:10.000

Figura 3. Mapa geomorfologico de la zona de estudio. Fuente: Propia.

Inventario

1:10.000

Figura 4. inventario de la zona de estudio. Fuente: Propia.

Metodología

Seleccion de variables

- Análisis de matriz de correlación
- Análisis componentes principales
 - Análisis de diagramas de cajas

Figura 5 : Analsis de seleccion de variables Fuente: Propia.

Metodologia

Metodos Heuristicos

- Peso a las variables
- Reclasificacion de las variables en clases
- Aplicacion de la ecuacion IS

Pendiente			
Clase [°]	Pesos		
0-7	0.100		
7-17	0.200		
17-23	0.300		
23-32	0.800		
32-38	0.400		
>38	0.200		

Aspecto				
Clase [°]	Pesos			
< 90	0.900			
90-180	0.300			
180-270	0.300			
270-360	0.700			

	Geología								
	Clase	Pesos							
	9	0.800							
	6	0.400							
	1,2,3,4,5 ,7,8,10	0.100							

	Pendiente	Aspecto	Litologia
Pendiente	1.00	7.00	5.00
Aspecto	0.14	1.00	0.33
Litologia	0.20	3.00	1.00

Figura 6. Mapa de suceptibilidad a movimientos en masa Fuente: Propia.

Metodos Bivariados

Frequency ratio model (Likelihood)

- Metodo basado en la densidad de ocurrencia de MenM en cada clase
- Transformacion de variables continuas a categoricas
- Calculo de un peso para cada clase
- Sumatoria de todos los pesos

Frequency Ratio Model: Pendiente					
Clase [°]	N° Celdas	N° MenM	Pesos		
0-10	153150	1	0.195		
10-17	184130	4	0.648		
17-23	188639	6	0.948		
23-32	315658	17	1.605		
32-38	162086	7	1.287		
>38	69472	1	0.429		

Frequency Ratio Model: Aspecto					
Clase [°]	N° Celdas	N° MenM	Pesos		
0-90	360800	15	1.239		
90-180	121881	4	0.978		
180- 270	177399	5	0.840		
270- 360	413055	12	0.866		

Frequency Ratio Model: Geología					
Clase [°]	N° Celdas	N° MenM	Pesos		
1	5453	1	5.467		
2	39173	0	0.000		
3	28895	0	0.000		
4	2130	0	0.000		
5	958	0	0.000		
6	63269	6	2.827		
7	14194	0	0.000		
8	229	0	0.000		
9	897456	29	0.963		
10	21378	0	0.000		

Figura 7 . Mapa de suceptibilidad a movimientos en masa Fuente: Propia.

Metodos Bivariados

Statistical index model

- Metodo basado en la densidad de ocurrencia de MenM en cada clase
- $egin{aligned} ullet w_{ij}^n = \ln(rac{
 ho_{clase}}{
 ho_{total}}) = \ln(rac{rac{N_{ij}}{S_{ij}}}{rac{N}{S}}) \end{aligned}$
- Calculo de un peso para cada celda perteneciente a la clase de una variable
- Sumatoria de todos los pesos

Figura 8. Mapa de suceptibilidad a movimientos en masa Fuente: Propia.

Metodos Bivariados

Peso de la Evidencia

- Metodo basado en el teorema de bayes
- Calculo de los pesos W+ , W- y el contraste C
- Reclasificacion de los mapas con el valor del contraste C
- Valores de 0 = 1
- Sumatoria de todos los mapas reclasificados con el valor deC

Peso de la evidencia: Pendiente				
Clase [°]	Wp_Cla se	Wn_Cla se	Contras te (c)	
0-10	-1.64	0.13	-1.76	
10-17	-0.43	0.07	-0.50	
17-23	-0.12	0.03	-0.15	
23-32	0.41	-0.26	0.67	
32-38	0.25	-0.05	0.31	
>38	-0.85	0.04	-0.88	

Peso de la evidencia: Aspecto					
Clas e [°]	Wp_C lase	Wn_C lase	Contr aste (C)		
0-90	0.21	-0.13	0.34		
90- 180	-0.02	0.00	-0.02		
180- 270	-0.17	0.03	-0.21		
270- 360	-0.14	0.08	-0.22		

Peso de la evidencia: Geología					
		Wn_Cla se	Contras te (C)		
1	1.70	-0.02	1.72		
2	-0.27	0.01	-0.28		
3	0.03	0.00	0.03		
4	2.64	-0.03	2.67		
5	3.44	-0.03	3.47		
6	1.04	-0.12	1.16		
7	0.74	-0.01	0.76		
8	4.87	-0.03	4.90		
9	-0.04	0.17	-0.21		
10	0.33	-0.01	0.34		

Figura 9. Mapa de suceptibilidad a movimientos en masa Fuente: Propia.

Metodos Multivariados

Regresión logística

- Clasificacion de la ocurrencia = 1 o no ocurrienta = 0 de
 MenM de una variable predictora
- Las variables pueden ser discretas o continuas
- No requieren distribucion normal
- Trasformacion a variables binarias todas las clases

Logit Regression Results						
Dep. Variable:	inventario No. Observations		ons:	 107313	:= 35	
Model:		Logit	Df Residuals:		107312	23
Method:		MLE	Df Model:		1	1
Date:	Thu, 08 Dec	2022	Pseudo R-squ.:	:	0.0281	16
Time:	17:	:59:04	Log-Likelihood	d:	-395.4	14
converged:		False	LL-Null:		-406.8	39
Covariance Type:	non	robust	LLR p-value:		0.0181	.8
	coef	std e	======== rr z	P> z	[0.025	0.975]
Intercept	-8.4447	1.0	00 -8.444	0.000	-10.405	-6.485
C(geologia)[T.2.0]	-26.4770	2.59e+	05 -0.000	1.000	-5.09e+05	5.08e+05
C(geologia)[T.3.0]	-20.9651	2.24e+	04 -0.001	0.999	-4.4e+04	4.4e+04
C(geologia)[T.4.0]	-12.1904	745.9	18 -0.016	0.987	-1474.164	1449.783
C(geologia)[T.5.0]	-13.2843	2073.0	14 -0.006	0.995	-4076.318	4049.749
C(geologia)[T.6.0]	-0.3700	1.0	88 -0.340	0.734	-2.503	1.763
C(geologia)[T.7.0]	-24.8493	1.36e+	05 -0.000	1.000	-2.67e+05	2.67e+05
C(geologia)[T.8.0]	-8.1519	281.3	44 -0.029	0.977	-559.576	543.273
C(geologia)[T.9.0]	-2.1343	1.0	27 -2.078	0.038	-4.147	-0.122
C(geologia)[T.10.0]	-8.6720	28.0	62 -0.309	0.757	-63.672	46.328
pendiente	0.5936	0.2	00 2.966	0.003	0.201	0.986
aspecto	-0.1535	0.1	68 -0.912 	0.362	-0.483	0.176

Figura 10. Mapa de suceptibilidad a movimientos en masa Fuente: Propia.

Metodos con base fisica

Modelo SHALSTAB

- Parámetros de factor de seguridad y probabilidad de ocurrencia para evaluar la susceptibilidad a los MenM
- Áreas pequeñas y escalas detalladas
- Tiene en cuenta las características geomecánicas del suelo y la complejidad de los factores detonante
- Se requieren mapas con valores de : cohesión, fricción, permeabilidad, peso unitario del suelo, área acumulada, pendiente y espesor del suelo

UNIDAD	Φ[°]	C [kPa]	Peso unitario [kPa]	Permeabilidad Ks [cm/h]
1	16	20	16	0.036
2	28	26	18	0.036
3	35	5	20	0.15
4	28	26	18	0.036
5	28	26	18	0.18
6	28	26	18	0.036
7	28	26	18	0.036
8	16	8	19	0.036
9	27	17	17	0.018
10	21	32	18	0.0216

Valor Celda	Significado
1	Incondicionalmente estable
2	Incondicionalmente inestable
3	Inestable
4	Estable

Figura 11. Mapa de estabilidad Fuente: Propia.

EVALUACION

CAPACIDAD DE PREDICCION

ROC Curve for prediction

Figura 12 . Capacidad de prediccion Fuente: Propia.

• AUROC ≈ 0.5

REFERENCIAS

- Aristizábal, Edier. 2022. Libro Guía del curso Cartografía Geotécnica. Universidad Nacional de Colombia, Departamento de Geociencias y Medio Ambiente, Facultad de Minas
- ESTUDIOS Y DISEÑOS GEOLOGICOS, GEOTÉCNICOS, HIDRÁULICOS YESTRUCTURALES DE 1 KM DE VÍA EN LA VEREDA EL TOTUMOMUNICIPIO DE GIRARDOTA,2015
- E. F. García-Aristizábal, E. V. Aristizábal Giraldo, R. J. Marín Sánchez, y J. C. Guzmán Martínez, «Implementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por Iluvia», TecnoL., vol. 22, n.º 44, pp. 111–129, ene. 2019.
- https://www.geotechdata.info/parameter/permeability
- Gao, L., Zhang, L. M., & Chen, H. X. (2017). Likely Scenarios of Natural Terrain Shallow Slope Failures on Hong Kong Island under Extreme Storms.
 Natural Hazards Review, 18(1), B4015001. doi:10.1061/(asce)nh.1527-6996.0000207

iiMUCHAS GRACIAS!!

Universidad Nacional de Colombia - Sede Medellín Facultad de minas Diciembre 2022

