RUTHERFORD'S NUCLEAR MODEL OF AN ATOM

- \star α particles were emitted by the radioactive element $_{83}B^{214}$ were bombarded on a thin gold foil.
- \star Scattered α particles are collected on ZnS screen.

LIMITATIONS

- → This model does not explain the presence of nucleus in the atom.
- → This is not able to explain scattering of α-particles
- → This is not able to explain the spectrum of atoms

OUTCOMES

- + Most of the α particles went straight without any deviation.
- + Some of α particles were deflected by some angles.
- → Very few α particles were deflected by an angle 180°

CONCLUSIONS

- → Positive charges was concentrated in small region of an atom is called nucleus.
- → Negative charges were revolving in circular orbit around the nucleus

LIMITATIONS

- → This model does not explain the stability of nucleus.
- → This model does not explain the line spectra of atom.

Distance of Closest Approach of Alpha Particle

At closest approach, system only have electric potential energy

$$\begin{split} \mathsf{K} &= \mathsf{U} = \frac{1}{4\pi\epsilon_0} \frac{(2\mathsf{e})(\mathsf{Z}\mathsf{e})}{\mathsf{d}} \\ \mathsf{d} &= -\frac{1}{4\pi\epsilon_0} \frac{2\mathsf{Z}\mathsf{e}^2}{\mathsf{K}} \\ \mathsf{d} &= -\frac{1}{4\pi\epsilon_0} \frac{2\mathsf{Z}\mathsf{e}^2}{(\frac{1}{2}\mathsf{m}\mathsf{v}^2)} \end{split}$$

12. ATOMS

BOHR'S MODEL

- → Valid for only one electron atom.
- **→** Electron is revolving around the nucleus in a stable orbit.
- ★ Attractive coulomb force between electron and nucleus is equal to the centripetal force on electron

$$\frac{Ze^2}{4\pi\epsilon_0 r^2} = \frac{mv^2}{r}$$
 (r = radius of orbit)

POSTULATES /

- → Electron in an atom could revolve in certain stable orbits with emission of radiant energy.
- + L= $\frac{\text{nh}}{2\pi}$; L=angular momentum, h=Planck's constant =6.6 × 10−³⁴ Js
- + hu=E_i-E_f
 E_i & E_f are the energies of initial & final states, E_i > E_f

RADIUS OF nth ORBIT

$$r_n = \frac{n^2 h^2 \varepsilon_0}{Z\pi m e^2} = \frac{0.53 n^2}{Z} \mathring{A}$$
$$r_n \propto \frac{n^2}{Z}, r_n \propto \frac{1}{m}$$

$$f_n = \frac{V}{2\pi r} = \frac{me^4 Z^2}{4\epsilon_0 n^3 h^3}$$
$$f_n \propto \frac{Z^2}{3\pi^3}$$

VELOCITY OF ELECTRON IN nth ORBIT

$$v_n = \frac{Ze^2}{2nh\epsilon_0} = 2.19 \times 10^6 \frac{Z}{n} \text{m/s}$$

 $\Rightarrow v_n \propto \frac{Z}{n}$

POTENTIAL AND KINETIC ENERGY IN nth ORBIT

$$U_n = \frac{-1}{4\pi\epsilon_0} \; \frac{Ze^2}{r} \; = \frac{-me^4z^2}{4\epsilon_0^2h^2n^2} \qquad K_n = \frac{1}{2} \, mv^2 = \frac{me^4z^2}{8\epsilon_0^2h^2n^2}$$

TOTAL ENERGY IN nth ORBIT

$$E_n = K_n + U_n = \frac{-me^4Z^2}{8\epsilon_0 h^2 n^2}$$

$$E_n = -K_n = \frac{U_n}{2}$$

$$E_n \propto \frac{-13.6z^2}{n^2} \text{ eV}$$

$$E_n \propto \frac{Z^2}{n^3} , E_n \propto m$$

EXCITATION ENERGY

- + E_{excitation} = E₂ E₁
- + E₁ = energy of lower orbit
- **★** E₂ = energy of higher orbit

EXCITATION POTENTIAL

$$V_{\text{excitation}} = \frac{E_{\text{excitation}}}{\frac{e}{e}} = \frac{E_{2} - E_{1}}{e} \text{ (volts)}$$

IONIZATION ENERGY /

→ Minimum energy required to remove the electron.

$$E_{\text{ionization}} = \frac{13.6 z^2}{n^2} \text{ eV}$$

BINDING ENERGY

- → Minimum energy required to bound the electron from nucleus
- → B.E.=-Eionization = $\frac{13.6 z^2}{n^2}$ eV

IONIZATION POTENTIAL

$$V_{\text{excitation}} = \frac{E_{\text{excitation}}}{e}$$
$$= \frac{13.6 z^2}{n^2} \text{ volts}$$

Line Spectra of the Hydrogen Atom

→ The wave number or wavelength of the emitted photon when electron jumps from higher orbital state 'n₂' to lower orbital state 'n₁' is

$$\overline{v} = \frac{1}{\lambda} = \frac{E_{n_2} - E_{n_1}}{hc} = \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

R=Rydberg constant = $1.097 \times 10^7 \text{ m}^{-1}$

→ Number of spectral lines when electron jump From

$$n^{th}$$
 orbit = $\frac{n(n-1)}{2}$

De Broglie's Explanation of Bohr's Second Postulate of Quantisation

$$2\pi r_n = n\lambda$$
$$2\pi r_n = \frac{nh}{mv_n}$$

$$mv_n r_n = \frac{nh}{2\pi}$$