תרגילים: NP שלמות

שאלה 1 האם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה. $C = \big\{ww \mid w \in A \land w \notin B\big\}$ עבור שתי בעיות Aוגם Bוגם או עבור את אם $C \in NP$ אזי $B \in NP$ וגם או אם $A \in NP$

 $A \leq_P C$ אזי $B \leq_P C$ וגם $A \leq_P B$ אזי אם $A \in_P B$ אזי אזי אזי $A \subseteq_P C$ הוכיחו כי לכל

שאלה 3 קבעו אם הטענה הבאה נכונה, לא נכונה או שקולה לשאלה פתוחה: $L \in NP \backslash P -$ קיימת שפה רגולירת $L \in NP \backslash P$

שאלה לשאלה שקולה לשאלה נכונה, לא נכונה אם הטענה הבאה לבעו אם הטענה הבאה $L_{\rm halt} \notin NP$ אם אם $L_{\rm acc} \notin NP$

תשובות

שאלה 1 הטענה שקולה לבעיה פתוחה:

$$.B = SAT \in NP$$
 , $A = \Sigma^* \in NP$ נבחר

נגדיר את הבעיה

$$C' = A \backslash B = \{ w \in \Sigma^* \mid w \notin SAT \} = \overline{SAT} .$$

 $.C' \leq_P C$ ע"י רדוקציה ע"י ראה כי אם אזי גם $C \in NP$ נראה כי אם נראה כי אזי גם f(w) = ww פונקצית הרדוקציה:

ניתן להראות כי

$$w \in C' \Leftrightarrow f(w) \in C$$
.

. ואו שאלה פתוחה. $C' = \overline{SAT} \in NP$ אזי אם $C \in NP$ ואו שאלה פתוחה.

 $w \in \Sigma^*$ לכל $w \in A \Leftrightarrow f(w) \in B$ שמקיימת $A \leq_P B$ לכל $w \in A \Leftrightarrow f(w) \in B$ עלכל $w \in A \Leftrightarrow f(w) \in B$

 $w \in \Sigma^*$ לכל $w \in B \Leftrightarrow f(w) \in C$ שמקיימת שמקיימת הרדוקציה הרדוקציה לכל

 $A \leq_P C$ נוכיח שקיימת רדוקציה

h פונקצית הרדוקציה

$$.h(w)=g\left(f(w)
ight)$$
 נגדיר $w\in\Sigma^{*}$ לכל

נכונות הרדוקציה

 $w \in A \Leftrightarrow h(w) \in C$ שלב 1. נוכיח כי

- $.h(w) = g\left(f(w)\right) \in C \Leftarrow f(w) \in B \Leftarrow w \in A$ אם •
- $.h(w) = g\left(f(w)\right) \notin C \Leftarrow f(w) \notin B \Leftarrow w \notin A$ אם •

שלב 2. נוכיח כי h חשיבה בזמן פולינומיאלי:

f את הפולינום של p_f את הפולינום

g את הפולינום של את p_g בסמן ב-

: אזי לכל $w \in \Sigma^*$ חסום על ידי , $w \in \Sigma^*$ אזי לכל

$$p_f(|w|) + p_g(|f(w)|) \le p_f(|w|) + p_g(p_f(|w|)) = p_f(|w|) + (p_f \circ p_f)(|w|)$$

|w| כאשר $p_f\circ p_f$ הוא הרכבה של שני פולינומים. לכן ניתן לחשב את $p_f\circ p_f$ בזמן פולינומיאלי

שאלה 3 הטענה לא נכונה.

P -לכל שפה רגולרית קיים אוטומט סופי ולכן שייכת ל

שאלה 4 הטענה נכונה.

 $L_{
m halt}
otin NP$ מתקיים מהרדוקציה אם הרדוקציה ולכן ממשפט ולכן ולכן ולכן מתקיים $L_{
m acc} \leq_P L_{
m halt}$ מתקיים