An Abstract Domain to Infer Symbolic Ranges over Nonnegative Parameters

Xueguang Wu Liqian Chen Ji Wang

National University of Defense Technology, Changsha, China

10/09/2014 - NSAD 2014

Overview

- Motivation
- An Abstract Domain to Infer Symbolic Ranges over Nonnegative Parameters
- Application to Infer Symbolic Ranges of List Segment Sizes
- Implementation and Experiments
- Conclusion

Motivation

Domain to Infer Symbolic Ranges over Nonnegative Parameters

Application to Infer Symbolic Ranges of List Segment Sizes

Implementation and Experiments

Motivation

Value range analysis

Range: $x \in [a, b]$ (denoting a < x < b)

- the lower & upper bound of the values that a variable may take
- applications: compiler optimization, automatic parallelization, bug detection, etc.

Numeric range

- bounds: numeric constants
- E.g., 1 < x < 3

Symbolic range

- bounds: symbolic expressions over program variables except x
- E.g., n < x < 2n + 3m

Value range analysis by abstract interpretation

Value range analysis:

 goal: to automatically infer a range [a, b] for each program variable x at compile time

Theoretical framework: abstract interpretation

- to design static analyses that are sound by construction (no behavior is omitted)
 - → over-approximate ranges

Example: the interval abstract domain [Cousot Cousot 76]

• infer the numeric range information of variables

 $x \in [a, b]$ where $a, b \in \mathbb{R}$

Motivation

Programs with parameters

- parameters
 - inputs from I/O devices
 - formal parameters of program procedures
 - global variables that are only read but never written by the considered program procedure
 - . . .
- nonnegative parameters
 - size, length, starting address of a memory region, ...

Symbolic ranges are desired

- there exist relations among program variables and parameters
- numeric ranges are not precise enough

Motivation

```
void foo(unsigned int n) {
    unsigned int x;
    x := n;
    while (x \le 2n) do {
        if (?) then x := x + 2;
        else x := 2 * x + 1;
```

Loc	Intervals	Polyhedra
1	$x \in [0, +\infty]$	$x \in [n, 4n + 2]$
2	$x \in [0, +\infty]$	$x \in [n, 2n]$
3	$x \in [1, +\infty]$	$x \in [n+1,4n+2]$

Using the polyhedra abstract domain [Cousot Halbwachs 78]

• to infer linear relations among variables x_i and parameters p_i

$$igwedge \Sigma_i a_i x_i + \Sigma_j b_j p_j \leq c$$
 where $a_i, b_i, c \in \mathbb{R}$

• drawback: computational cost is too high

3 } od }

Motivation

Our goal

- infer the symoblic lower and upper bounds for each program variable where each bound is a linear expression over nonnegative parameters
 - E.g., $x \in [p_1 + 1.5p_2, 2p_1 + 2p_2 + 3]$ where p_1 and p_2 are nonnegative parameters
 - expressiveness: between intervals and polyhedra
- be lightweight: O(nm)
 - n: the number of program variables
 - m: the number of nonnegative parameters

An Abstract Domain to Infer Symbolic Ranges over Nonnegative Parameters

The Parametric Range (PaRa) abstract domain

A program with

- *n* program variables: x_1, \ldots, x_n
- m nonnegative parameters: p_1, \ldots, p_m

Domain representation for PaRa domain

representation: a linear expression over nonnegative parameters

$$x_j \in \left[\sum_{i=1}^m a_i p_i + c, \sum_{i=1}^m b_i p_i + d\right]$$

where
$$a_i, b_i \in \mathbb{R}, c \in \mathbb{R} \cup \{-\infty\}, d \in \mathbb{R} \cup \{+\infty\}$$

semantics:

$$\gamma([\Sigma_i a_i p_i + c, \Sigma_i b_i p_i + d]) = \{x_j \in \mathbb{R} \mid \Sigma_i a_i p_i + c \le x_j \le \Sigma_i b_i p_i + d\}$$

The PaRa abstract domain (representation)

Relaxation of the non-negativity restriction

- for a parameter p_i that may take negative values, if we know its numeric lower bound c or upper bound d
- ullet introduce a new auxiliary nonnegative parameter p_i'

$$p_i' \stackrel{\text{def}}{=} p_i - c$$
 or $p_i' \stackrel{\text{def}}{=} d - p_i$

• replace all the appearances of p_i by $p'_i + c$ (or $d - p'_i$) in the program

Example (If $n \in [-5, +\infty]$ then introduce n' s.t. n' = n + 5)

Domain operations

- lattice operations
 - ordering \sqsubseteq_e : on linear expressions over nonnegative parameters

$$\Sigma_i a_i p_i + c \sqsubseteq_e \Sigma_i b_i p_i + d \stackrel{\mathrm{def}}{\Leftrightarrow} \forall p \in [\underline{p}, \overline{p}], \Sigma_i (b_i - a_i) p_i + (d - c) \geq 0$$

- where $[p, \overline{p}]$ denotes numerical ranges for parameters p
- in practice, we check

$$\Sigma_i(b_i-a_i)p_i'+(d-c)\geq 0$$
 where $p_i'=\left\{egin{array}{ll} \overline{p_i} & ext{if} \ a_i\geq b_i \ p_i & ext{otherwise} \end{array}
ight.$

• inclusion test \sqsubseteq_p : between two parametric ranges for the same variable

$$\begin{bmatrix} [\Sigma_i a_i p_i + c, \Sigma_i b_i p_i + d] \sqsubseteq_p [\Sigma_i a_i' p_i + c', \Sigma_i b_i' p_i + d'] \\ \stackrel{\text{def}}{=} \Sigma_i a_i' p_i + c' \sqsubseteq_e \Sigma_i a_i p_i + c \wedge \Sigma_i b_i p_i + d \sqsubseteq_e \Sigma_i b_i' p_i + d'$$

Example

$$[p_1 + p_2, 2p_1 + p_2] \sqsubseteq_p [p_2, 2p_1 + 2p_2]$$
, since $p_2 \sqsubseteq_e p_1 + p_2$ and $2p_1 + p_2 \sqsubseteq_e 2p_1 + 2p_2$

- lattice operations (cont)
 - meet \sqcap_p : intersection of two parametric ranges for the same variable

$$\begin{split} & \left[\sum_{i} a_{i} p_{i} + c, \sum_{i} b_{i} p_{i} + d \right] \sqcap_{p} \left[\sum_{i} a_{i}' p_{i} + c', \sum_{i} b_{i}' p_{i} + d' \right] \\ & \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \bot_{p} & \text{if } \Sigma_{i} b_{i} p_{i} + d \sqsubseteq_{e} \Sigma_{i} a_{i}' p_{i} + c' \vee \Sigma_{i} b_{i}' p_{i} + d' \sqsubseteq_{e} \Sigma_{i} a_{i} p_{i} + c \\ \left[lexp, lexp' \right] & \text{otherwise} \end{array} \right. \\ & \text{where} \quad lexp \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \Sigma_{i} a_{i}' p_{i} + c & \text{if } \Sigma_{i} a_{i}' p_{i} + c' & \sqsubseteq_{e} \Sigma_{i} a_{i}' p_{i} + c \\ \Sigma_{i} a_{i}' p_{i} + c' & \text{else if } \Sigma_{i} a_{i} p_{i} + c \sqsubseteq_{e} \Sigma_{i} a_{i}' p_{i} + c' \\ \Sigma_{i} a_{i}' p_{i} + c' & \text{otherwise} \end{array} \right. \\ & \left\{ \begin{array}{l} \Sigma_{i} b_{i} p_{i} + d & \sqsubseteq_{e} \Sigma_{i} b_{i}' p_{i} + d' \\ \Sigma_{i} b_{i}' p_{i} + d' & \text{else if } \Sigma_{i} b_{i}' p_{i} + d' & \sqsubseteq_{e} \Sigma_{i} b_{i}' p_{i} + d \\ \Sigma_{i} b_{i}' p_{i} + d' & \text{else if } \Sigma_{i} b_{i}' p_{i} + d' & \sqsubseteq_{e} \Sigma_{i} b_{i}' p_{i} + d' \\ \Sigma_{i} b_{i}' p_{i} + d' & \text{otherwise} \end{array} \right. \end{split}$$

Example

Comparable:
$$[p_1, 2p_1 + p_2] \sqcap_p [p_1 + p_2, 2p_1 + 2p_2] = [p_1 + p_2, 2p_1 + p_2]$$

Incomparable: $[2p_1 + p_2, 2p_1 + 3p_2] \sqcap_p [p_1 + 3p_2, p_1 + 5p_2] = [p_1 + 3p_2, 2p_1 + 3p_2]$

- lattice operations (cont)
 - join \sqcup_p : over-approximation of the union of two parametric ranges:

$$\begin{split} & \left[\Sigma_{i}a_{i}p_{i} + c, \Sigma_{i}b_{i}p_{i} + d \right] \sqcup_{p} \left[\Sigma_{i}a_{i}'p_{i} + c', \Sigma_{i}b_{i}'p_{i} + d' \right] \overset{\mathrm{def}}{=} \left[lexp, lexp' \right] \text{ where} \\ & lexp \overset{\mathrm{def}}{=} \begin{cases} \Sigma_{i}a_{i}p_{i} + c & \text{if } \Sigma_{i}a_{i}p_{i} + c \sqsubseteq_{e} \Sigma_{i}a_{i}'p_{i} + c' \\ \Sigma_{i}a_{i}'p_{i} + c' & \text{else if } \Sigma_{i}a_{i}'p_{i} + c' \sqsubseteq_{e} \Sigma_{i}a_{i}p_{i} + c \end{cases} \\ & \varepsilon_{i} \underset{i}{\min}(a_{i}, a_{i}')p_{i} + \underset{i}{\min}(c, c') & \text{otherwise} \end{cases} \\ & lexp' \overset{\mathrm{def}}{=} \begin{cases} \Sigma_{i}b_{i}p_{i} + d & \text{if } \Sigma_{i}b_{i}'p_{i} + d' \sqsubseteq_{e} \Sigma_{i}b_{i}p_{i} + d \\ \Sigma_{i}b_{i}'p_{i} + d' & \text{else if } \Sigma_{i}b_{i}p_{i} + d \sqsubseteq_{e} \Sigma_{i}b_{i}'p_{i} + d' \\ \Sigma_{i} \underset{i}{\max}(b_{i}, b_{i}')p_{i} + \underset{i}{\max}(d, d') & \text{otherwise} \end{cases} \end{split}$$

Example

- transfer functions
 - test transfer function $[x_j \le \sum_i a_i p_i + c]^\# (\rho_{x_i})$:

$$\llbracket x_j \leq \Sigma_i a_i p_i + c \rrbracket^{\#} \left(\rho_{x_j} \right) \stackrel{\text{def}}{=} \rho_{x_j} \sqcap_p \left[-\infty, \Sigma_i a_i p_i + c \right]$$

$$\llbracket x_j \geq \Sigma_i b_i p_i + d \rrbracket^{\#} \left(\rho_{x_j} \right) \stackrel{\text{def}}{=} \rho_{x_j} \sqcap_p \left[\Sigma_i b_i p_i + d, +\infty \right]$$

• assignment transfer function $[x_j \le \sum_i a_i p_i + c]^\# (\rho_{x_j})$:

$$\llbracket x_j := \left[\Sigma_i a_i p_i + c, \Sigma_i b_i p_i + d \right] \rrbracket^\# \left(\rho_{x_j} \right) \stackrel{\text{def}}{=} \left[\Sigma_i a_i p_i + c, \Sigma_i b_i p_i + d \right]$$

3 Widening with Thresholds ∇_p^T : a widening parameterized by a finite set of threshold values T including $-\infty$ and $+\infty$

$$[\Sigma_{i} \mathbf{a}_{i}^{i} p_{i} + c, \Sigma_{i} b_{i} p_{i} + d] \nabla_{p}^{T} [\Sigma_{i} \mathbf{a}_{i}^{\prime} p_{i} + c^{\prime}, \Sigma_{i} b_{i}^{\prime} p_{i} + d^{\prime}]$$

$$\stackrel{\text{def}}{=} [\Sigma_{i} \mathbf{a}_{i}^{\prime\prime} p_{i} + c^{\prime\prime}, \Sigma_{i} b_{i}^{\prime\prime} p_{i} + d^{\prime\prime}]$$

where

$$\begin{cases} a_i'' \stackrel{\text{def}}{=} a_i \leq a_i' ? a_i : \max\{\ell \in T \mid \ell \leq a_i'\} \\ c'' \stackrel{\text{def}}{=} c \leq c' ? c : \max\{\ell \in T \mid \ell \leq c'\} \\ b_i'' \stackrel{\text{def}}{=} b_i \geq b_i' ? b_i : \min\{h \in T \mid h \geq b_i'\} \\ d'' \stackrel{\text{def}}{=} d \geq d' ? d : \min\{h \in T \mid h \geq d'\} \end{cases}$$

Example (Widening with Thresholds)

```
void foowiden(unsigned int n) { real x; x := 0.75 * n + 1; T = \{0, 0.5, 1, 1.5, -\infty, +\infty\} while (true) do \{ 0 \quad \text{if } (?) \quad \rho_x = \begin{bmatrix} 0.75n + 1, & 0.75n + 1 \end{bmatrix} else x := 0.25 * x + 0.5 * n + 1; \rho_x \nabla_p^T \rho_x' = \begin{bmatrix} 0.6875n + 1, & n + 1.25 \end{bmatrix} } od \{
```

Application to Infer Symbolic Ranges of List Segment Sizes

Inferring symbolic ranges of list segment sizes

Analyzing programs manipulating singly linked lists (SLL) [Chen et al. 2013]

- divide a SLL into a set of non-overlapping list segments according to reachability of pointer variables to list nodes
- introduce a nonnegative integer variable t^{bitvec} to track the size for each list segment (denoted by bitvec)
- nonnegative parameters: the initial lengths of input lists

Example of deriving numeric programs from SLL programs

```
void copy_and_delete(List* x, uint n){ void copy_and_delete_num(uint n){
      List* y, p, q;
                                                   uint t^x, t^y, t^{xy}, t^p, t^q, t^{pq}.
      assume \left| \operatorname{length}(x) \right| = n;
                                                  t^{\times} := n
                                                   t^{xy} := t^x : t^x := 0;
3:
     v := x;
4.
     q := p := null;
                                                   t^p := 0 \cdot t^q := 0 \cdot t^{pq} := 0
5.
    while (v != null) do {
                                                   while (t^{xy} > 1) do {
6:
                                                       t^{x} := t^{x} + 1: t^{xy} := t^{xy} - 1:
      v := v \rightarrow next;
7: q := malloc();
                                                       t^p := t^{pq} : t^{pq} := 0 : t^q := 1:
                                                       t^{pq} := t^p : t^p := 0:
8: q \rightarrow next := pList;
                                                       t^{pq} := t^q + t^{pq} : t^q := 0:
9:
      p := q;
10:
                                                   } od
     } od
                                                   t^{xy} := t^x : t^x := 0:
11:
      v := x;
                                                  while (t^{xy} > 1) do {
12:
      while (y != null) do {
                                                      t^{x} := t^{x} + 1: t^{xy} := t^{xy} - 1:
13:
      v := v \rightarrow next:
                                                      t^p := t^p + 1: t^{pq} := t^{pq} - 1:
14: q := q \rightarrow next;
                                                      t^{y} := t^{xy} : t^{xy} := 0 : t^{x} := 0
15: free(x):
                                                      t^q := t^{pq} : t^{pq} := 0 : t^p := 0:
16: free(p);
                                                      t^{xy} := t^y : t^y := 0;
17:
         x := y;
                                                       t^{pq} := t^q : t^q := 0 : \} od \}
18·
         p := q;  } od }
```

Inferring symbolic ranges of list segment sizes

Combine PaRa and affine equalities

- there often exist affine equality relations between program variables and parameters in the derived numeric programs
 - parametric ranges: to track symbolic ranges of each program variable
 - affine equalities: to track the affine equality relations among program variables and parameters

Representation

$$A [x \ p]^T = b'$$
 affine equalities $x_j \in [\Sigma_i a_i p_i + c, \Sigma_i b_i p_i + d]$ parametric ranges $p_i \in [c', d']$ numeric ranges

Example of inferring symbolic ranges of list segment sizes

```
void copy_and_delete(List* x, uint n){
                                               void copy_and_delete_num(uint n){
      List* y, p, q;
                                                  uint t^x, t^y, t^{xy}, t^p, t^q, t^{pq}.
t^{\times} := n:
3: v := x;
                                                   t^{xy} := t^x : t^x := 0:
4:
                                                   t^p := 0: t^q := 0: t^{pq} := 0:
    q := p := null;
     while (y != null) do {
                                                   while (t^{xy} > 1) do {
                                                      t^{x} := t^{x} + 1 \cdot t^{xy} := t^{xy} - 1 \cdot
6:
     v := v \rightarrow next:
7: q := malloc();
                                                      t^p := t^{pq} : t^{pq} := 0 : t^q := 1:
                                                     t^{pq} := t^p : t^p := 0:
8: a \rightarrow next := pList:
                                                      t^{pq} := t^q + t^{pq} : t^q := 0:
9:
     p := q;
                                                  } od
10:
     } od
                                                  t^{xy} := t^x : t^x := 0:
11:
      v := x:
12:
     while (y != null) do {
                                                 while (t^{xy} > 1) do {
                                                  / * t^{xy} - t^{pq} == 0.
                                                        t^{xy} \in [1, n], t^{pq} \in [1, n], n \in [1, +\infty] * /
                                                     t^{x} := t^{x} + 1: t^{xy} := t^{xy} - 1:
13:
        v := v \rightarrow next;
14:
        a := a \rightarrow next:
                                                     t^p := t^p + 1: t^{pq} := t^{pq} - 1:
                                                     t^{y} := t^{xy} : t^{xy} := 0 : t^{x} := 0
15:
        free(x);
16:
          free(p):
                                                     t^q := t^{pq} : t^{pq} := 0 : t^p := 0:
                                                      t^{xy} := t^y \cdot t^y := 0
17.
          x := v:
                                                      t^{pq} := t^q; t^q := 0;  } od }
18:
          p := q; } od }
```

Implementation and Experiments

Prototype

Prototype implementation PARA

- using GMP (the GNU Multiple Precision arithmetic library)
 - to guarantee the soundness of the implementation

Interface:

- plugged into the APRON library [Jeannet Miné]
- programs analyzed with INTERPROC [Jeannet et al.]

Comparison with

- Box: intervals
- NewPolka: polyhedra

Example analyses

```
void foo(unsigned int n) {
    unsigned int x;
    x := n;
① while (x \le 2n) do {
②    if (?) then x := x + 2;
    else x := 2 * x + 1;
③ } od
}
```

Loc	Intervals	Polyhedra	Parametric Ranges
1	$x \in [0, +\infty]$	$x \in [n, 4n+2]$	$x \in [n, 4n+2]$
2	$x \in [0, +\infty]$	$x \in [n, 2n]$	$x \in [n, 2n]$
3	$x \in [1, +\infty]$	$x \in [n+1,4n+2]$	$x \in [n+1,4n+2]$

Experimental results on numeric programs

Program			Analysis Results						
Name	#Vars	#Pars	Box	Inv.	PaRa	Inv.	PaRa + Affine	Inv.	NewPolka
foo	1	1	6ms	<	7ms	=	8ms	=	12ms
foowiden	1	1	6ms	<	7ms	=	8ms	>	12ms
ex_ipps95	1	1	4ms	<	6ms	=	7ms	=	11ms
ex_ippms95	1	1	4ms	<	6ms	=	7ms	=	11ms
ex_sas07	2	2	5ms	<	6ms	<	6ms	=	12ms
ex_toplas05	2	1	6ms	<	8ms	<	10ms	=	16ms
ex_cav09_1	3	2	7ms	<	10ms	<	15ms	=	21ms
ex_cav09_2	2	2	7ms	<	7ms	<	10ms	=	17ms
ex_cav09_3	4	1	8ms	<	11ms	<	17ms	=	21ms
ex_cav12_1	2	1	3ms	<	4ms	=	4ms	<	10ms
ex_cav12_2	2	0	1ms	=	2ms	<	4ms	=	6ms
all_above	20	12	23ms	<	53ms	<	92ms	#	335ms

Most "Para+AffineEqs" results are better than Box and as precise as Newpolka

Experimental results on SLL programs

Program			Analysis Results				
Name	#Vars #P	#Pars	Box	Inv.	PaRa+	Inv.	NewPolka
Ivanic		#1 013			AffineEqs		
list_create	4	1	8ms	<	11ms	=	18ms
list_traverse	3	1	6ms	<	8ms	=	16ms
list_reverse	5	1	9ms	<	15ms	=	25ms
list_length_equal	4	1	7ms	<	10ms	=	17ms
list_merge	5	2	9ms	<	18ms	=	27ms
list_copy_and_delete	6	1	7ms	<	24ms	=	32ms
list_dispatch	7	1	11ms	<	29ms	=	40ms
list_all_above	34	8	36ms	<	181ms		826ms

- On these programs, "PaRa+AffineEqs" gives as precise invariants as those by NewPolka
- These invariants are precise enough to prove the memory safety of the original list-manipulating programs

Conclusion

Summary:

- goal: infer symbolic ranges of program variables efficiently
- idea: using linear expressions over nonnegative parameters as symbolic ranges
 - a new abstract domain: parametric ranges (PaRa)
 - time and space complexity of this domain: O(nm)
 - applications to infer symbolic ranges of list segment sizes
 - combining parametric ranges (PaRa) and affine equalities

Future Work

- consider the usage of parametric ranges in more applications
- use nonlinear expressions over nonnegative parameters as symbolic ranges