Outline

- Probabilities
- Bayes' rule (Applied in different fields, including NLP)
- Build your own Naive-Bayes tweet classifier!

Introduction

Corpus of tweets

Tweets containing the word "happy"

Probabilities

Corpus of tweets

A → Positive tweet

$$P(A) = N_{pos} / N = 13 / 20 = 0.65$$

Probabilities

Tweets containing the word "happy"

 $B \rightarrow tweet contains "happy".$

$$P(B) = P(happy) = N_{happy} / N$$

$$P(B) = 4 / 20 = 0.2$$

Probability of the intersection

$$P(A \cap B) = P(A, B) = \frac{3}{20}$$

Conditional Probabilities

$$P(A | B) = 3/4 = 0.75$$

Conditional Probabilities

$$P(B | A) = 3 / 13 = 0.231$$

Conditional probabilities

Probability of B, given A happened

Looking at the elements of set \underline{A} , the chance that one also belongs to set \underline{B}

Conditional probabilities

$$P(\text{Positive}|\text{"happy"}) =$$

$$P(\text{Positive} \cap \text{"happy"})$$

$$P(\text{"happy"})$$

Bayes' rule

$$P(\text{Positive}|\text{"happy"}) = \frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$$

$$P(\text{"happy"}|\text{Positive}) = \frac{P(\text{"happy"} \cap \text{Positive})}{P(\text{Positive})}$$

Bayes' rule

$$P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$$

$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$

Summary

Conditional probabilities → Bayes' Rule

•
$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$

Naïve Bayes for Sentiment Analysis

Positive tweets

I am happy because I am learning NLP I am happy, not sad.

Negative tweets

I am sad, I am not learning NLP I am sad, not happy

word	Pos	Neg
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	13	12

$P(w_i | class)$

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
Nclass	13	12

Pos	Neg
0.24	0.25
0.24	0.25
0.15	80.0
80.0	0.00
80.0	80.0
80.0	0.08
80.0	0.17
0.08	0.17
	0.24 0.24 0.15 0.08 0.08 0.08

P(w_i | class)

<u> </u>		
word	Pos	Neg
	0.24	0.25
am	0.24	0.25
happy	0.15	0.08
because	0.08	0
learning	0.08	0.08
NLP	0.08	0.08
sad	0.08	0.17
not	0.08	0.17

Naïve Bayes

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20}*\frac{0.20}{0.20}*\frac{0.14}{0.10}*\frac{0.20}{0.20}*\frac{0.20}{0.20}*\frac{0.10}{0.10}$$

word	Pos	Neg
ı	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

Summary

• Naive Bayes inference condition rule for binary classification

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

• Table of probabilities

Laplacian Smoothing

$$P(w_i|class) = \frac{freq(w_i, class)}{N_{class}}$$

class ∈ {Positive, Negative}

$$P(w_i|class) = \frac{freq(w_i, class) + 1}{N_{class} + V}$$

N_{class} = frequency of all words in class

V = number of unique words in vocabulary

Introducing $P(w_i | \text{class})$ with smoothing

word	Pos	Neg		word	Pos	Neg	
I] 3	3		1	0.19	0.20	
am	3	3		am	0.19	0.20	
happy	2	1		happy	0.14	0.10	
because	1	0		because	0.10	0.05	
learning	1	1		learning	0.10	0.10	
NLP	1	1		NLP	0.10	0.10	
sad	1	2		sad	0.10	0.15	
not	1	2	V = 8	not	0.10	0.15	
Nclass	13	12	•	Sun	n 1	1	

Summary

- Laplacian smoothing to avoid $P(w_i|class) = 0$
- Naïve Bayes formula

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

Ratio of probabilities

Pos	Neg	ratio
0.20	0.20	1
0.20	0.20	1
0.14	0.10	1.4
0.10	0.10	1
0.10	0.10	1
0.10	0.10	1
0.10	0.15	0.6
0.10	0.15	0.6
	0.20 0.14 0.10 0.10 0.10 0.10	0.200.200.200.200.140.100.100.100.100.100.100.100.100.15

$$ratio(w_i) = \frac{P(w_i | Pos)}{P(w_i | Neg)}$$

$$\frac{\text{freq}(w_i, 1) + 1}{\text{freq}(w_i, 0) + 1}$$

Naïve Bayes' inference

class ∈ {pos, neg} w -> Set of m words in a tweet

$$\frac{P(pos)}{P(neg)} \left| \frac{\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}}{P(w_i|neg)} \right| > 1$$

- A simple, fast, and powerful baseline
- A probabilistic model used for classification

Log Likelihood

$$\frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

- Products bring risk of underflow
- log(a * b) = log(a) + log(b)

•
$$log(\frac{P(pos)}{P(neg)}\prod_{i=1}^{n}\frac{P(w_i|pos)}{P(w_i|neg)}) \Rightarrow log\frac{P(pos)}{P(neg)} + \sum_{i=1}^{n}log\frac{P(w_i|pos)}{P(w_i|neg)}$$

log prior + log likelihood

Summing the Lambdas

doc: I am happy because I am learning.

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(\mathrm{happy}) = log \frac{0.09}{0.01} \approx 2.2$$

word	Pos	Neg	λ
I	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-2.2
not	0.02	0.03	-0.4

Summary

Word sentiment

$$ratio(w) = \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

Log Likelihood

doc: I am happy because I am learning.

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^{m} \lambda(w_i)$$

$$log likelihood = 0 + 0 + 2.2 + 0 + 0 + 0 + 1.1 = 3.3$$

Pos	Neg	λ
0.05	0.05	0
0.04	0.04	0
0.09	0.01	2.2
0.01	0.01	0
0.03	0.01	1.1
0.02	0.02	0
0.01	0.09	-2.2
0.02	0.03	-0.4
	0.05 0.04 0.09 0.01 0.03 0.02 0.01	0.05 0.05 0.04 0.04 0.09 0.01 0.01 0.01 0.03 0.01 0.02 0.02 0.01 0.09

Log Likelihood

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} > 0$$

Summary

Tweet sentiment:

$$log \prod_{i=1}^{m} ratio(w_i) = \sum_{i=1}^{m} \lambda(w_i) > 0$$

Outline

- Predict using a N\u00e4ive Bayes Model
- Using your validation set to compute model accuracy

Predict using Naïve Bayes

- log-likelihood dictionary $\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$ -
- $logprior = log \frac{D_{pos}}{D_{neg}} = 0$
- Tweet: I passed the NLP interview.

word	λ
I	-0.01
the	-0.01
happi	0.63
because	0.01
pass	0.5
NLP	0
sad	-0.75
not	-0.75

Predict using Naïve Bayes

- log-likelihood dictionary $\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$ —
- $logprior = log \frac{D_{pos}}{D_{neg}} = 0$
- Tweet: [I, pass, the NLP interview]

$$score = -0.01 + 0.5 - 0.01 + 0 + logprior = 0.48$$

$$pred = score > 0$$

word	λ
	-0.01
the	-0.01
happi	0.63
because	0.01
pass	0.5
NLP	0
sad	-0.75
not	-0.75

Testing Naïve Bayes

• $X_{val} Y_{val} \lambda logprior$

$$score = predict(X_{val}, \lambda, logprior)$$

$$pred = score > 0$$

$$pred = score > 0$$

$$\begin{bmatrix} 0.5 \\ -1 \\ 1.3 \\ \vdots \\ score_m \end{bmatrix} > 0 = \begin{bmatrix} 0.5 > 0 \\ -1 > 0 \\ 1.3 > 0 \\ \vdots \\ score_m > 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ pred_m \end{bmatrix}$$

Testing Naïve Bayes

•
$$X_{val} Y_{val} \lambda logprior$$

$$score = predict(X_{val}, \lambda, logprior)$$

$$pred = score > 0$$

$$\frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$$

$$\begin{bmatrix} 1 & & \\ & 0 & \\ & 1 & \\ \vdots & & \\ pred_m == Y_{val_m} \end{bmatrix}$$

Summary

- X_{val} Y_{val} \longrightarrow Performance on unseen data
- ullet Predict using λ and logprior for each new tweet
- Accuracy $\longrightarrow \frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$
- What about words that do not appear in $\lambda(w)$?

Applications of Naïve Bayes

$$P(pos|tweet) \approx P(pos)P(tweet|pos)$$

$$P(neg|tweet) \approx P(neg)P(tweet|neg)$$

$$\frac{P(pos|tweet)}{P(neg|tweet)} = \frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

Applications of Naïve Bayes

Author identification:

$$\frac{P(\Box book)}{P(\Box book)}$$

Spam filtering:

$$\frac{P(\text{spam}|\text{email})}{P(\text{nonspam}|\text{email})}$$

Applications of Naïve Bayes

Information retrieval:

$$P(\text{document}_k|\text{query}) \propto \prod_{i=0}^{|query|} P(\text{query}_i|\text{document}_k)$$

Retrieve document if $P(document_k|query) > threshold$

Applications of Naïve Bayes

Word disambiguation:

$$\frac{P(\text{river}|\text{text})}{P(\text{money}|\text{text})}$$

Bank:

Naïve Bayes Applications

- Sentiment analysis
- Author identification
- Information retrieval
- Word disambiguation
- Simple, fast and robust!

Outline

- Independence
- Relative frequency in corpus

Naïve Bayes Assumptions

Independence

"It is sunny and hot in the Sahara desert."

Naïve Bayes Assumptions

"It's always cold and snowy in ___."

spring?? summer? fall?? winter??

Naïve Bayes Assumptions

Relative frequencies in corpus

Summary

- Independence: Not true in NLP
- Relative frequency of classes affect the model

Outline

- Removing punctuation and stop words
- Word order
- Adversarial attacks

Processing as a Source of Errors: Punctuation

Tweet: My beloved grandmother **X**

processed_tweet: [belov, grandmoth]

Processing as a Source of Errors: Removing Words

Tweet: This is not good, because your attitude is not even close to being nice.

processed_tweet: [good, attitude, close, nice]

Processing as a Source of Errors: Word Order

Tweet: I am happy because I did not go.

Tweet: I am not happy because I did go.

Adversarial attacks

Sarcasm, Irony and Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]