

Introduzione al Modello Relazionale

Definizione Generale

Il modello relazionale organizza i dati in tabelle chiamate relazioni, garantendo una rappresentazione chiara e strutturata. Ogni relazione contiene tuple con attributi, offrendo una modalità flessibile e comprensibile di organizzare le informazioni.

Activity Code	Activity Name					
23	Patching Overlay					
24						
25	Crack Sealing		1	Key = 2	4	
				Activity Code	Date	Route No.
				24	01/12/01	I-95
			/[24	02/08/01	I-66
Date	Activity Code	Route No.				
01/12/01	24	I-95				
01/15/01	23	I-495				
3.77		No. and	ľ			

4

Struttura di una Relazione

Una relazione è rappresentata come una tabella con colonne (attributi) e righe (tuple). Ad esempio:

Relazione: Studenti

Matricola	Nome	Corso
1	Mario	Informatica
2	Laura	Fisica
3	Alessio	Matematica

Ogni riga rappresenta una tupla, e ogni colonna è un attributo.

Definizione di Relazioni

Per definire una relazione, si utilizza un linguaggio di definizione dei dati. Esempio in SQL:

```
CREATE TABLE Studenti (
   Matricola INT PRIMARY KEY,
   Nome VARCHAR(50),
   Corso VARCHAR(50)
);
```

Operazioni nel Modello Relazionale

Operazioni Principali

1. **Selezione:** Estrazione di tuple che soddisfano una condizione.

```
SELECT * FROM Studenti WHERE Corso = 'Informatica';
```

2. Proiezione: Estrazione di colonne specifiche da una relazione.

```
SELECT Nome FROM Studenti;
```

3. Join: Combinazione di tuple da relazioni correlate.

```
SELECT * FROM Studenti JOIN Corsi ON Studenti.Corso = Corsi.CorsoID;
```

4. **Unione:** Combinazione di tuple da due relazioni.

```
SELECT * FROM Studenti UNION SELECT * FROM Docenti;
```

8

Vantaggi e Svantaggi del Modello Relazionale

Vantaggi

- 1. Semplicità di Utilizzo: Struttura tabellare intuitiva.
- 2. Integrità dei Dati: Chiavi e vincoli garantiscono coerenza.
- 3. Flessibilità: Adattabile a diverse esigenze.

Svantaggi

- 1. Complessità delle Query: Alcune query possono richiedere più operazioni.
- 2. **Prestazioni in Caso di Grandi Dati:** Inefficienze con dataset estremamente grandi.
- 3. Flessibilità Limitata: Non sempre ideale per modellare relazioni complesse.

Sintesi

Il modello relazionale fornisce una struttura organizzata e chiara per la gestione dei dati, con una corretta progettazione e uso delle operazioni. Le tabelle e le relazioni offrono un'ottima visualizzazione delle informazioni.

Il modello più diffuso

Il modello relazionale è uno dei modelli di basi di dati più utilizzati e diffusi, proposto da Edgar F. Codd nel 1970. Questo modello rivoluzionò il campo della gestione dei dati, superando i limiti dei modelli precedenti, come il modello reticolare e il modello gerarchico, e introducendo il concetto di **indipendenza fisica dei dati**.

1. Indipendenza Fisica dei Dati

Nel modello relazionale, i dati sono gestiti a un livello **logico**, separato dalla loro rappresentazione **fisica**. Questo significa che l'utente e le applicazioni interagiscono con i dati senza preoccuparsi di come sono effettivamente memorizzati su disco o nei dispositivi di memoria. L'accesso avviene tramite concetti logici, come **tabelle** e **relazioni**, e non richiede conoscenze dettagliate sui percorsi di memorizzazione fisica (ad esempio, gli indirizzi di memoria). Questo approccio offre numerosi vantaggi, tra cui:

- Indipendenza dai dettagli fisici: permette di cambiare la rappresentazione fisica dei dati (ad esempio, spostare i dati su un altro disco) senza influire sull'accesso ai dati o sulle applicazioni che li utilizzano.
- Flessibilità: l'utente può lavorare con una rappresentazione astratta dei dati (come tabelle e colonne) senza preoccuparsi dei dettagli di implementazione fisica.

2. Le Componenti del Modello Relazionale

Il modello relazionale si basa su due componenti principali:

a. Strutture per organizzare i dati

I dati nel modello relazionale sono organizzati in **tabelle**. Ogni tabella rappresenta una **relazione** tra entità e consiste di:

- **Righe** (tuple o record): Ogni riga rappresenta una singola istanza dell'entità o relazione.
- Colonne (attributi): Ogni colonna rappresenta una proprietà specifica della relazione.
- Una **tabella** è quindi una struttura bidimensionale, con righe e colonne, che rappresenta un insieme di dati omogenei.

Esempio: Una tabella "Studenti" potrebbe contenere colonne come ID_Studente, Nome, Cognome, Data_Nascita.

b. Vincoli di integrità

I vincoli di integrità sono regole che assicurano che i dati inseriti nelle tabelle siano corretti e consistenti rispetto alla realtà modellata. I principali vincoli di integrità nel modello relazionale sono:

- Integrità dell'entità: ogni tupla in una tabella deve essere univoca e identificabile tramite una chiave primaria. La chiave primaria è un attributo (o un insieme di attributi) che identifica in modo univoco ogni riga della tabella.
- Integrità referenziale: assicura che le relazioni tra le tabelle siano coerenti. Per esempio, se una tabella "Ordini" fa riferimento a un "Cliente", allora ogni valore nella colonna del cliente deve corrispondere a un valore valido nella tabella "Clienti" (chiave esterna).
- **Domini**: ogni attributo ha un dominio specifico, che stabilisce i tipi di valori che possono essere associati a quel particolare attributo (ad esempio, un campo "Data_Nascita" può contenere solo date valide).

3. Vantaggi del Modello Relazionale

Il modello relazionale ha avuto un grande successo e diffusione grazie a vari vantaggi:

- Semplicità: L'organizzazione dei dati in tabelle è intuitiva e facile da comprendere.
- **Indipendenza fisica**: Gli utenti possono interagire con i dati senza preoccuparsi di come sono memorizzati fisicamente.
- Flessibilità e scalabilità: Le tabelle possono essere facilmente modificate per adattarsi a nuove esigenze senza compromettere il funzionamento complessivo del sistema.
- Standardizzazione: I linguaggi di interrogazione, come SQL (Structured Query Language), sono basati su questo modello, facilitando l'accesso e la manipolazione dei dati.

4. Evoluzione e Adozione

Nonostante la proposta iniziale di Codd avesse incontrato alcune difficoltà pratiche, specialmente nell'implementazione efficiente del modello, a partire dagli anni '80 il modello relazionale è diventato il paradigma dominante per la gestione dei dati.

L'introduzione di sistemi di gestione di basi di dati relazionali (RDBMS) come **Oracle**, **MySQL**, **PostgreSQL**, e **Microsoft SQL Server** ha permesso una rapida diffusione del modello grazie anche alla standardizzazione del linguaggio SQL e ai miglioramenti nelle tecniche di ottimizzazione delle performance.

In sintesi, il **modello relazionale** è la base di gran parte delle applicazioni moderne di gestione dei dati, grazie alla sua semplicità, indipendenza fisica dei dati e l'efficace uso dei vincoli di integrità per garantire la coerenza e la qualità dei dati.