Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Test 12

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{2} : 0, 5\right) \cdot \frac{12}{13} = \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - 1\right) \cdot \frac{12}{13} = \left(\frac{6}{12} + \frac{4}{12} + \frac{3}{12}\right) \cdot \frac{12}{13} = \left(\frac{6}{12} +$	3p
	$=\frac{13}{12} \cdot \frac{12}{13} = 1$	2p
2.	$x_1 + x_2 = 7$, $x_1 x_2 = 10$	2p
	$2(x_1 + x_2) - x_1 x_2 = 2 \cdot 7 - 10 = 4$	3 p
3.	5x + 1 = 36	3 p
	x = 7, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numerele de două cifre care sunt multipli de 11 sunt 11, 22, 33, 44, 55, 66, 77, 88 și 99, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	AO = 6, BO = 8, AB = 10	3 p
	$h = \frac{AO \cdot BO}{AB} = \frac{6 \cdot 8}{10} = \frac{24}{5} = 4.8$	2 p
6.	$\cos B = \frac{AB}{BC} \Rightarrow \frac{\sqrt{2}}{2} = \frac{AB}{5\sqrt{2}}$	3p
	AB = 5	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 0 \\ -2 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot (-2) =$	3p
	=1-0=1	2p
b)	$2A - A \cdot A = \begin{pmatrix} 2 & 0 \\ -4 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
c)	$ \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x-2 & y \\ z+1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x-3 & y \\ -2x+z+5 & -2y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $	2p
	x = 3, $y = 0$, $z = 1$	3 p
2.a)	$0 \circ 2 = 0 \cdot 2 + 0^2 + 2^2 - 1 = 3$	3 p
	$1 \circ (0 \circ 2) = 1 \circ 3 = 1 \cdot 3 + 1^2 + 3^2 - 1 = 12$	2 p

Probă scrisă la matematică *M_tehnologic*

Test 12

Barem de evaluare și de notare

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

b)	$x \circ (-x) = x \cdot (-x) + x^2 + (-x)^2 - 1 = -x^2 + x^2 + x^2 - 1 = x^2 - 1$, pentru orice număr real x	2p
	$x^2 - 1 = 3 \Leftrightarrow x^2 - 4 = 0$, de unde obținem $x = -2$ sau $x = 2$	3 p
c)	$mn + m^2 + n^2 - 1 = -mn \Leftrightarrow m^2 + n^2 + 2mn = 1 \Leftrightarrow (m+n)^2 = 1$	3 p
	Cum m și n sunt numere naturale, obținem $(0,1)$ și $(1,0)$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$2x \cdot \left(x^2 + 1\right) - \left(x^2 - 1\right) \cdot 2x$	
	$f'(x) = \frac{2x \cdot (x^2 + 1) - (x^2 - 1) \cdot 2x}{(x^2 + 1)^2} =$	3p
	$2x \cdot (x^2 + 1 - x^2 + 1)$ 4x	
	$= \frac{2x \cdot (x^2 + 1 - x^2 + 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}, \ x \in \mathbb{R}$	2 p
b)	$\lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{(x - 1)(x^2 + 1)} = \lim_{x \to 1} \frac{x + 1}{x^2 + 1} =$	3p
	$=\frac{2}{2}=1$	2p
c)	$f''(x) = \frac{4(1-3x^2)}{(x^2+1)^3}, \ x \in \mathbb{R}$	2p
	$f''(x) \ge 0$, pentru orice $x \in \left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right]$, deci funcția f este convexă pe $\left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right]$	3 p
2.a)	$\int_{-1}^{1} \left(f(x) - x^2 - 3x \right) dx = \int_{-1}^{1} \left(x^3 + x^2 + 3x - x^2 - 3x \right) dx = \int_{-1}^{1} x^3 dx =$	2 p
	$=\frac{x^4}{4} \begin{vmatrix} 1 \\ -1 \end{vmatrix} = \frac{1}{4} - \frac{1}{4} = 0$	3р
b)	$\int_{0}^{1} \left(f(x) - x^{3} - x^{2} \right) e^{x} dx = \int_{0}^{1} \left(x^{3} + x^{2} + 3x - x^{3} - x^{2} \right) e^{x} dx = 3 \int_{0}^{1} x e^{x} dx = 3 (x - 1) e^{x} \Big _{0}^{1} = 0$	3p
	= 3	2p
c)	$F(x) = \frac{x^4}{4} + \frac{x^3}{3} + \frac{3x^2}{2} + c$, $c \in \mathbb{R}$ şi, cum $F(0) = 1 \Rightarrow c = 1$, deci $F(x) = \frac{x^4}{4} + \frac{x^3}{3} + \frac{3x^2}{2} + 1$	3р
	$\int_{0}^{1} \frac{f(x)}{F^{2}(x)} dx = \int_{0}^{1} \frac{F'(x)}{F^{2}(x)} dx = -\frac{1}{F(x)} \Big _{0}^{1} = -\frac{1}{F(1)} + \frac{1}{F(0)} = -\frac{12}{37} + 1 = \frac{25}{37}$	2p