Stochastic Processes and Applications, Fall 2015 Homework Five (5%)

- 1. (1.5%) Let $X(\mu, t)$ and $Y(\mu, t)$ be independent Poisson random processes with rates λ_X and λ_Y , respectively. Answer the following:
 - (A) (0.5%) Find the characteristic functions of $X(\mu, t)$ for a fixed t, i.e., $E\{\exp\{j\omega X(\mu, t)\}\}$. Sol: Now,

$$E\{\exp\{j\omega X(\mu,t)\}\} = \sum_{n=0}^{\infty} \exp\{-\lambda_X t\} \frac{(\lambda_X t)^n}{n!} [\exp\{j\omega\}]^n$$

$$= \exp\{-\lambda_X t\} \sum_{n=0}^{\infty} \frac{(\lambda_X t \exp\{j\omega\})^n}{n!}$$

$$= \exp\{-\lambda_X t\} \exp\{\lambda_X t \exp\{j\omega\}\}$$

$$= \exp\{\lambda_X t [\exp\{j\omega\} - 1]\}$$

- (B) (1%) Prove that $X(\mu, t) + Y(\mu, t)$ is also a Poisson process with rate $\lambda_X + \lambda_Y$.
- Sol: Let $N(\mu, t) = X(\mu, t) + Y(\mu, t)$. We are going to show that $N(\mu, t)$ is a Poisson process with rate $\lambda_X + \lambda_Y$. First, $N(\mu, t)$ has stationary increment because

$$\Pr\{N(\mu, t + s) - N(\mu, t) = K\}$$

$$= \Pr\{[X(\mu, t + s) + Y(\mu, t + s)] - [X(\mu, t) - Y(\mu, t)] = K\}$$

$$= \sum_{k=0}^{K} \Pr\{X(\mu, t + s) - X(\mu, t) = k, Y(\mu, t + s) - Y(\mu, t) = K - k\}$$

$$= \sum_{k=0}^{K} \Pr\{X(\mu, t + s) - X(\mu, t) = k\} \Pr\{Y(\mu, t + s) - Y(\mu, t) = K - k\}$$

$$= \sum_{k=0}^{K} \Pr\{X(\mu, s) - X(\mu, 0) = k\} \Pr\{Y(\mu, s) - Y(\mu, 0) = K - k\}$$

$$= \sum_{k=0}^{K} \Pr\{X(\mu, s) - X(\mu, 0) = k, Y(\mu, s) - Y(\mu, 0) = K - k\}$$

$$= \Pr\{[X(\mu, s) + Y(\mu, s)] - [X(\mu, 0) - Y(\mu, 0)] = K\}$$

$$= \Pr\{N(\mu, s) - N(\mu, 0) = k\} \quad \forall t, s \ge 0, \forall K \in \mathcal{N}.$$

Second, because $X(\mu,t)$ and $Y(\mu,t)$ are independent and $\{X(\mu,t_j)-X(\mu,s_j)\}_{j=0}^n$ and $\{Y(\mu,t_j)-Y(\mu,s_j)\}_{j=0}^n$ are independent random variables, $\{N(\mu,t_j)-N(\mu,s_j)\}_{j=0}^n$ are also independent increments and thus $N(\mu,t)$ has independent increment, where we let $s_1 \leq t_1 \leq s_2 \leq t_2 \leq ... \leq s_n \leq t_n$. Third, it is shown that

$$\Pr\{N(\mu, t) = K\} = \Pr\{X(\mu, t) + Y(\mu, t) = K\}$$

$$= \sum_{k=0}^{K} \Pr\{X(\mu, t) = k\} \Pr\{Y(\mu, t) = K - k\}$$

$$= \sum_{k=0}^{K} [e^{-\lambda_X} \frac{\lambda_X^k}{k!}] [e^{-\lambda_Y} \frac{\lambda_Y^{K-k}}{(K-k)!}]$$

$$= \frac{e^{-\lambda_X + \lambda_Y}}{K!} \sum_{k=0}^K \frac{K!}{k!(K-k)!} \lambda_X^k \lambda_Y^{K-k}$$
$$= e^{-\lambda_X + \lambda_Y} \frac{(\lambda_X + \lambda_Y)^K}{K!}.$$

Because $N(\mu, t)$ has stationary and independent increments and $\Pr\{N(\mu, t) = K\} = e^{-\lambda_X + \lambda_Y} \frac{(\lambda_X + \lambda_Y)^K}{K!}$, $N(\mu, t)$ is a Poisson process with rate $\lambda_X + \lambda_Y$.

- 2. (1%) Let $\{X(\mu,t); t \geq 0\}$ be the random telegraph signal of rate λ , and $\{Y(\mu,t); t \geq 0\}$ be a continuous-time process derived from $X(\mu,t)$ as follows:
 - a. $Y(\mu, t)$ takes values from the set $\{0, 1\}$.

b.
$$\Pr\{X(\mu,0) = +1\} = \Pr\{X(\mu,0) = -1\} = \frac{1}{2}$$
.

- c. Each time $X(\mu,t)$ changes polarity, $Y(\mu,t)$ switches value between 0 and 1.
- d. If $X(\mu, t)$ does not change polarity, $Y(\mu, t)$ does not switch value, either.
- (A) (0.5%) Find $E\{Y(\mu, t)\}.$
- Sol: Because $\{X(\mu,t); t \geq 0\}$ is a random telegraph signal with $\Pr\{X(\mu,0) = +1\} = \Pr\{X(\mu,0) = -1\} = \frac{1}{2}$,

$$\Pr\{X(\mu, t) = +1\} = \Pr\{X(\mu, t) = -1\} = \frac{1}{2}$$

for $t \geq 0$. Because $Y(\mu, t)$ is obtained by switching between the values 0 and 1 according to the polarity change in $X(\mu, t)$,

$$\Pr\{Y(\mu, t) = +1\} = \frac{1}{2} = \Pr\{Y(\mu, t) = 0\}.$$

Thus, $E\{Y(\mu, t)\} = \frac{1}{2}$.

- (B) (0.5%) Find the autocorrelation function of $Y(\mu, t)$.
- Sol: For $t_2 \geq t_1$, the autocorrelation function of $Y(\mu, t)$ is

$$\begin{split} R_Y(t_1,t_2) &= E\{Y(\mu,t_1)Y(\mu,t_2)\} \\ &= \Pr\{Y(\mu,t_1) = 1, Y(\mu,t_2) = 1\} \\ &= \Pr\{Y(\mu,t_2) = 1 | Y(\mu,t_1) = 1\} \Pr\{Y(\mu,t_1) = 1\} \\ &= \frac{1}{2} \Pr\{\text{There are even numbers of polarity changes} \\ &= \frac{1}{2} \times \frac{1}{2} [1 + \exp\{-2\lambda(t_2 - t_1)\}]. \end{split}$$

Thus, the autocorrelation function of $Y(\mu, t)$ is given by $R_Y(t_1, t_2) = \frac{1}{4}[1 + \exp\{-2\lambda|t_2 - t_1|\}]$.

3. (0.5%) Packets arrive at a network router according to a Poisson process of rate λ packets per second. Find the probability that in a one-second period K packets arrive in the first half second and no packet arrives in the last half second, where K is a nonnegative integer.

Sol: Let $N(\mu, t), t \geq 0$, be the Poisson process of rate λ packets per second. Now, we want to find

$$\Pr\{N(\mu, \frac{1}{2}) - N(\mu, 0) = K, N(\mu, 1) - N(\mu, \frac{1}{2}) = 0\}$$

$$= \Pr\{N(\mu, \frac{1}{2}) - N(\mu, 0) = K\} \Pr\{N(\mu, 1) - N(\mu, \frac{1}{2}) = 0\}$$
(because of independent increments)
$$= \Pr\{N(\mu, \frac{1}{2}) = K\} \Pr\{N(\mu, \frac{1}{2}) = 0\}$$
(because of stationary increments and $N(\mu, 0)$ is zero by default)
$$= \frac{(\frac{1}{2}\lambda)^K}{K!} \exp\{-\lambda\}.$$

- 4. (2%) Messages arrive at a customer from two telephone lines according to independent Poisson processes of rates λ_1 and λ_2 messages per second, respectively.
 - (A) (0.5%) Find the probability that a message arrives first on line one.

Sol: Let $T_n(\mu)$ be the time till the first arrival on line n. Thus,

$$\Pr\{T_1(\mu) < T_2(\mu)\} = \int_0^\infty \Pr\{x < T_2(\mu) | T_1(\mu) = x\} f_{T_1}(x) dx$$
$$= \int_0^\infty \exp\{-\lambda_2 x\} \lambda_1 \exp\{-\lambda_1 x\} dx$$
$$= \lambda_1 \int_0^\infty \exp\{-(\lambda_1 + \lambda_2) x\} dx$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

- (B) (0.5%) Find the probability density function for the time until a message arrives on either line.
- Sol: Now, $T(\mu) = \min\{T_1(\mu), T_2(\mu)\}$ is the time until a message arrives on either line. Because $T_1(\mu)$ and $T_2(\mu)$ are independent,

$$\Pr\{T(\mu) > x\} = \Pr\{\min\{T_1(\mu), T_2(\mu)\} > x\}$$

$$= \Pr\{T_1(\mu) > x, T_2(\mu) > x\}$$

$$= \Pr\{T_1(\mu) > x\} \Pr\{T_2(\mu) > x\}$$

$$= \exp\{-\lambda_1 x\} \exp\{-\lambda_2 x\}$$

$$= \exp\{-(\lambda_1 + \lambda_2)x\}.$$

Thus, the probability density function of $T(\mu)$ is

$$f_T(x) = (\lambda_1 + \lambda_2) \exp\{-(\lambda_1 + \lambda_2)x\}, \ x \ge 0.$$

(C) (0.5%) Find the probability $\Pr\{N(\mu,t)=n\}$ for any nonnegative integer n where $N(\mu,t)$ is the total number of messages on both lines that arrive in an interval of length t.

Sol: Now, because the arrival patterns from both lines are independent Poisson processes, $N(\mu, t)$ is Poisson process of rate $\lambda = \lambda_1 + \lambda_2$. Thus,

$$\Pr\{N(\mu, t) = n\} = \exp\{-\lambda t\} \frac{(\lambda t)^n}{n!}.$$

- (D) (0.5%) Find the probability that there is no message on both lines for the first second given that there is one message in a two-second period.
- Sol: The probability is given by

$$\Pr\{N(\mu, \frac{1}{2}) = 0 | N(\mu, 1) = 1\}$$

$$= \frac{\Pr\{N(\mu, \frac{1}{2}) = 0, N(\mu, 1) = 1\}}{\Pr\{N(\mu, 1) = 1\}}$$

$$= \frac{\Pr\{N(\mu, \frac{1}{2}) = 0, N(\mu, 1) - N(\mu, \frac{1}{2}) = 1\}}{\Pr\{N(\mu, 1) = 1\}}$$

$$= \frac{\Pr\{N(\mu, \frac{1}{2}) = 0\} \Pr\{N(\mu, 1) - N(\mu, \frac{1}{2}) = 1\}}{\Pr\{N(\mu, 1) = 1\}}$$
(because of independent increments)
$$= \frac{\Pr\{N(\mu, \frac{1}{2}) = 0\} \Pr\{N(\mu, \frac{1}{2}) = 1\}}{\Pr\{N(\mu, 1) = 1\}}$$
(because of stationary increments)
$$= \frac{\exp\{-\frac{\lambda}{2}\} \exp\{-\frac{\lambda}{2}\}(\frac{\lambda}{2})}{\exp\{-\lambda\}\lambda}$$

$$= \frac{1}{2}.$$