PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

Submitted By

PNT2022TMID24889

Pavithrah M - 210419205034

Nandhini S - 210419205031

Lakshmi A - 210419205021

Visaka L - 210419205061

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1Project Overview
- 1.2Purpose

2. LITERATURE SURVEY

- 2.1Existing problem
- 2.2References
- 2.3Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1Empathy Map Canvas
- 3.2Ideation & Brainstorming
- 3.3Proposed Solution
- 3.4Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1Functional requirement
- 4.2Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2Sprint Delivery Schedule
- 6.3Reports from JIRA
- 7. CODING & SOLUTIONING (Explain the features added in the project along with code)
- 8. TESTING
 - 8.1Test Cases
 - 8.2User Acceptance Testing
- 9. RESULTS
 - 9.1Performance Metrics
- 10.ADVANTAGES & DISADVANTAGES
- 11.CONCLUSION
- 12.FUTURE SCOPE
- 13.APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1Project Overview

Machine learning and deep learning play an important role in computer technology and Artificial Intelligence. With the use of Deep Learning and Machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas.

Handwritten Digit Recognition is the ability of Computer systems to recognize handwritten digits from various sources, such as images, documents, and so on. This project aims to let users take advantage of machine learning to reduce manual tasks in recognizing digits.

1.2Purpose

Digit Recognition system are capable of recognizing the digits from different sources like emails, bank cheques, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer, tablets or systems, recognize number plates of vehicles, processing bank cheque amounts, numeric enteries in forms filled up by hand (tax forms) and so on.

2. LITERATURE SURVEY

2.1Existing problem

✓ The different architectures of CNN, hybrid CNN, CNN - RNN and CNNHMM models, and domain - specific recognition system, are not thoroughly inquired and evolutionary algorithms are not clearly explored for optimizing CNN learning parameters ,the number of layers, learning rate and kernel sizes of convolutional filters.

✓ The fluctuation of accuracies for handwritten digits was observed for 15 epochs by varying the hidden layers. There is no clear explanation given for observing variation in the overall classification accuracy by varying the number of hidden layers and batch size.

2.2References

S.NO	Author Name	Paper Title	Journal/ Conference title	Page No/ Volume No	Year of Publicati on	Description
	Savita Ahlawat , Amit Choudh ary, Anand Nayyar, Saurabh Singh and Byungu n Yoon.	Improved Handwritten Digit Recognition Using Convolutiona I Neural Networks (CNN)	IEEE Sensors Journal		2020	In this paper, with the aim of improving the performance of handwritten digit recognition, they valuated variants of a convolution al neural network to avoid complex preprocessin g, costly feature extraction and a complex ensemble (classifier combination) approach

Vijayala xmi R Rudras wamima th, Bhavani shankar and Channas andra.	Handwritten Digit Recognition using CNN	International Journal of Innovative Science and Research Technology	Volume -4 Issue- 6	2019	of a traditional recognition system. In this paper, the most widely used Machine learning algorithms, KNN, SVM, RFC and CNN have been trained and tested on the same data in order acquire the comparison between the
Fathma Siddiqu e, Shadma n Sakib and Md. Abu Bakr Siddiqu e.	Recognition of Handwritten Digit using Convolutiona 1 Neural Network in Python with Tensorflow and Comparison of Performance for Various Hidden Layers	5th International Conference on Advances in Electrical Engineering (ICAEE)		2019	In this paper, they observed the variation of accuracies of CNN to classify handwritten digits for 15 epochs using various numbers of hidden layers and epochs and

Akanks ha Gupta,	Review on Deep Learning	International Journal of Recent	Volume -9 Issue- 5	2021	comparison between the accuracies. For this performance evaluation of CNN, they performed the experiment using Modified National Institute of Standards and Technology(MN IST) dataset. In this paper, Object
Ravindr	Handwritten	Technology			Character
a Pratap Narwari	Digit Recognition	and Engineering			Recognition (OCR) is
a and	using	(IJRTE)			used on
Madhav	Convolutiona				printed or
Singh	1 Neural				documented
	Network				letters to convert
					them into
					text. The
					database has
					training
					image
					database of
					60,000
					images and

	Md. Anwar Hossain and Md. Mohon Ali	Recognition of Handwritten Digit using Convolutiona 1 Neural Network (CNN)	Global Journal of Computer Science and Technology: D Neural & Artificial Intelligence	Volume 19 Issue2	2019	image database of 10,000 images. The KNN algorithm describes categorical value by making use of majority of votes of K - nearest neighbors, the K value used to differ here. The goal of this work will be to create a model that will be able to identify and determine the handwritten digit from its image with better accuracy using using the concepts of Convolution al Neural Network
--	-------------------------------------	--	---	------------------------	------	---

			dataset.
			Later it can
			be extended
			for character
			recognition
			and real-
			time
			person's
			handwriting.
			The results
			can be made
			more
			accurate
			with more
			convolution
			layers and
			more
			number of
			hidden
			neurons.

2.3 Problem Statement Definition

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort.

Hence, there comes a need for handwritten digit recognition in many real time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. this image is analyzed by the model and the detected result is returned on to UI(User Interface).

3. IDEATION & PROPOSED SOLUTION

3.1Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description
1	Problem Statement (Problem	Handwriting recognition is one
	to be solved)	of the compelling research
		works going on because every
		individual in this world has
		their own style of writing. It is
		the capability of the computer
		to identify and understand
		handwritten digits or characters
		automatically. Because of the
		progress in the field of science
		and technology, everything is
		being digitized to reduce human
		effort. Hence, there comes a
		need for handwritten digit
		recognition in many real-time
		applications. The user interacts
		with the UI (User Interface) to
		upload the image as input. The
		uploaded image is analyzed by
		the model which is integrated.
		Once the model analyses the
		uploaded image, the prediction
		is showcased on the UI.
2	Idea / Solution description	Convolutional Neural Networks
		(CNN) has become one of the
		most appealing approaches and
		has been an ultimate factor in a
		variety of recent success and
		challenging machine learning
		applications. In our model we
		use AlexNet, which is one of
		the CNN architectures.
		AlexNet allows for multi-GPU
		training by putting half of the
		model's neurons on one GPU
		and the other half on another

		GPU. Not only does this mean that a bigger model can be trained, but it also cuts down on the training time. It also reduces the overfitting problem by Data Augmentation and Dropout.
3	Novelty / Uniqueness	Handwritten Digit Recognition is the capability of a computer to fete the mortal handwritten integers from different sources like images, papers, touch defenses, etc. And classify them into 10 predefined classes (0-9). This is the existing method along with this we add some features to make our project unique among them.
4	Social Impact / Customer Satisfaction	Even the unclear or blurred digits can be recognized after the removal of noise and data preprocessing. One such application is a handwritten digit recognition system that can be used in postal mail sorting, bank check processing, form data entry, etc.,
5	Business Model (Revenue Model)	Handwritten digit recognition is necessary because everything is digitalized. The benefits of handwritten digit recognizer is high. In the banking sector, it is very efficient. It is used to recognize the figures written on cheques. So, Varied handwriting of each and every person in the cheque can be identified. Handwritten addresses are difficult to sort by machine, not

		necessarily because of sloppy
		handwriting, but because people
		write all over the envelope.We
		have hard time segmenting
		handwritten addresses into their
		components, such as ZIP code
		or street address, because very
		few people print addresses
		neatly in a prescribed format.
		So, this problem can be solved
		using Handwritten digit
		recognition system.
6	Scalability of the Solution	In our model, AlexNet
		significantly outperformed as it
		is trained on a GTX 580 GPU
		with only 3 GB of memory
		which couldn't fit the entire
		network. So the network was
		split across 2 GPUs, with half
		of the neurons(feature maps) on
		each GPU. So, a greater
		accuracy can be attained by
		allowing multi CDII training by
		allowing multi-GPU training by
		putting half of the model's

3.4 Problem Solution fit

1. CUSTOMER SEGMENT(S) 6. CUSTOMER CONSTRAINTS 5. AVAILABLE SOLUTIONS Explore AS, differentiate CS AS CC Who is your customer? Which solutions are available to the What constraints prevent your customers i.e. working parents of 0-5 y.o. Kids customers when they face the problem from taking action or limit their choices CS or need to get the job done? What have they of solutions? i.e. spending power, budget, no Organizations who want to recognize tried in the past? What pros & cons do these cash, network connection, available devices. the handwritten digits of people solutions have? i.e. pen and paper is an Example: In mobiles and laptop, there are possibilities alternative to digital note taking. Post office, for lack of stable internet connections and Already there are existing solutions available Data entry offices, unavailability of devices. It is hard task for for handwritten Forensic Departments. the machine to recognize the handwritten recognition. But, most of them are digits which are not perfect. inaccurate. The solution proposed by our system has more accuracy and it is efficient in recognition of manually written digits. 2. JOBS-TO-BE-DONE / PROBLEMS J&P 9. PROBLEM ROOT CAUSE RC BE Which jobs-to-be-done (or problems) do What is the real reason that this problem What does your customer do to address exists? What is the backstory behind the you address for your customers? There the problem and get the job done? could be more than one; explore need to do this job? i.e. directly related: find the right solar panel different sides installer, calculate usage and benefits; indirectly i.e. customers have to do it because of the associated: customers spend free time on Jobs to be done: To identify the digits in volunteering work (i.e. Greenpeace) change in regulations. the manually written forms, Cheques filled by people in banks, Handwritten digits are in different fonts and Phone numbers written manually in sizes, hard to recognize the digits due to various register notebook of hospitals. factors such as dim lighting, weakening eyesight. customer wants available devices with stable internet connection and quality cameras. Problems: Dim lighting and weak eyesight

After:(Failure) They have no need to panic when the failure occurs They can easily contact us to rectify the error. We would solve the defect as soon as possible.
--

4. REQUIREMENT ANALYSIS

4.3 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Input Correlation	Digital image correlation is a technique that combines image registration and tracking methods for accurate 2D measurements of changes in images and recognizes the characters from the images.
FR-2	Data Preparation	Data preparation is the process of preparing raw data so that it is suitable for further processing and analysis.
FR-3	Feature Extraction	Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original data set.
FR-4	Character Classification	In character classification phase, the attributes of the data in the picture are compared to the classes in the database to determine in which class the picture belongs to.

4.4 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Handwritten digit recognition is one of the major important issues in pattern recognition applications. Some of the applications for digit recognition include data entry forms, Bank check processing etc.,
NFR-2	Security	The applications of handwritten digit recognition can be used in the banking sector where it can be used to maintain the security pin numbers safely. It can be also used for blind-people by using sound output.
NFR-3	Reliability	Reliability indicates the probability that the system will perform its intended function for a larger period of sufficient time and also it will operate in a secured environment without any failures.
NFR-4	Performance	The standard implementations of neural networks achieve an accuracy of approximately (98–99)
		percent in correctly classifying the handwritten digits.
NFR-5	Availability	The features for handwritten digit recognition have been Acquainted. These features are based on shape analysis of the digit image and extract slant or slope information. They are effective in obtaining good recognition of accuracy.
NFR-6	Scalability	The scalability in the task of handwritten digit recognition, using a classifier, has great importance and it makes use of online handwriting recognition on computer tablets, recognizing zip codes on mail for postal mail sorting, processing bank check amounts, numeric entries in forms filled up manually(for example - tax forms) and so on.

5. PROJECT DESIGN

5.1Data Flow Diagrams

5.2 Solution & Technical Architecture

Solution Architecture

Technology Architecture

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI	HTML, CSS, JavaScript
2.	Application Logic-1	Model is built	Python
3.	Application Logic-2	Python model is deployed	IBM Watson Studio
4.	File Storage	Predicted outputs of the image are stored in a local folder.	Local Filesystem
5.	Machine Learning Model	To predict the image uploaded by the user.	Image Recognition Model
6.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Flask Cloud Server Configuration: IBM Watson Studio	Local, Cloud Foundry.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Flask
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	High workload can be supported without undergoing any major changes.	Technology used in the architecture is that with Python and the IBM cloud.
4.	Availability	Readily available enables the IT Infrastructure to function when some of the components fail.	Technology used is IBM cloud.
5.	Performance	Performance technology is a field which uses various tools, processes and procedures in a systematic and efficient manner to improve the desired outcomes of individuals and organizations.	Technology used is python.

5.3User Stories

User Stories

Use the below template to list all the user stories for the product.

Release	Priority	Acceptance criteria	User Story / Task	User Story	Functional Requirement	User Type	
				Number	(Epic)		
Sprint 1	High	I can see the	As a user, they can see the information	USN-1	Dashboard	Customer	
		information regarding	regarding the prediction of handwritten				
		digit recognition.	digit recognition.				
Sprint 1	High	I can see the launch	On clicking the launch button, it will	USN-2	Launch		
		button.	redirect the user to a page where the				
			images to be predicted can be uploaded.				
Sprint 2	High	I can upload the image.	Users can select the image from the local	USN-3	Upload		
			storage.				
Sprint 3	High		Once the image is uploaded, it will predict	USN-4	Predict		
			the respective image.				
Sprint 4	High	I can see the result with	The predicted image will be displayed	USN-5	Display		
		accuracy.	with the accuracy chart.				
	High			USN-5	Display		

6. PROJECT PLANNING & SCHEDULING

6.1Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Dashboard	USN-1	As a user, they can see the information	2	High	Pavithrah M,
			regarding the prediction of handwritten digit			Nandhini S,
			recognition.			Lakshmi A,
						Visaka L
Sprint-1	Launch	USN-2	On clicking the launch button, it will redirect the	2	High	Pavithrah M,
			user to a page where the images to be			Nandhini S,
			predicted can be uploaded.			Lakshmi A,
						Visaka L
Sprint-2	Upload	USN-3	Users can select the image from the local	2	High	Nandhini S,
			storage.			Visaka L
Sprint-3	Predict	USN-4	Once the image is uploaded, it will predict the	2	High	Lakshmi A,
			respective image.			Pavithrah M
Sprint-4	Display	USN-5	The predicted image will be displayed with the	2	High	Pavithrah M,
			accuracy chart.			Nandhini S,
						Lakshmi A,
						Visaka L

6.2Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3Reports from JIRA

Velocity Report

Sprint 1

Date - October 24th, 2022 - October 29th, 2022

Sprint 2

Date - October 31st, 2022 - November 5th, 2022

Sprint 3

Date - November 7th, 2022 - November 13th, 2022

Sprint 4

Date - November 14th, 2022 - November 19th, 2022

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

```
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render template, url for
from werkzeug.utils import secure filename, redirect
#from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send from directory
UPLOAD FOLDER = 'D:/ibm/data'
app = Flask(__name__)
app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
model = load model("./DigitRecog IBM model/mnistCNN.h5")
@app.route('/')
def index():
    return render template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
    if request.method == "POST":
        f = request.files["image"]
        filepath = secure filename(f.filename)
        f.save(os.path.join(app.config['UPLOAD FOLDER'], filepath))
        upload img = os.path.join(UPLOAD FOLDER, filepath)
        img = Image.open(upload img).convert("L") # convert image to monochrome
        img = img.resize((28, 28)) # resizing of input image
        im2arr = np.array(img) # converting to image
        im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
        pred = model.predict(im2arr)
        num = np.argmax(pred, axis=1) # printing our Labels
        return render_template('predict.html', num=str(num[0]))
if __name__ == '__main__':
    app.run(debug=True, threaded=False)
```

8. TESTING

8.1Test Cases

Test case ID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
Homepage_TC_OO1	Functional	Home Page	Verify user is able to see the Homepage when clicked on the link	Home Page should be displayed.	Working as expected	Pass
Homepage_TC_OO2	UI	Home Page	Verify the UI elements in Homepage	Application should show below UI elements: a.choose file button b.predict button c.clear button	Working as expected	Pass
Homepage_TC_OO3	Functional	Home Page	Verify user is able to choose file from the local system and click on predict	Choose file popup screen must be displayed and user should be able to click on predict button	Working as expected	Pass
Homepage_TC_OO4	Functional	Home page	Verify user able to select invalid file format	Application won't allow to attach formats other than ".png, .jiff, .pjp, .jpeg, .jpg, .pjpeg"	Working as expected	Pass
Predict_TC_OO5	Functional	Predict page	Verify user is able to navigate to the predict to and view the predicted result	User must be navigated to the predict page and must view the predicted result	Working as expected	Pass

8.2User Acceptance Testing

Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	0	0	0	0
Duplicate	0	0	0	0	0
External	0	0	0	0	0
Fixed	0	0	0	0	0
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	0	0	0	0	0

Test Case Analysis

Section	Total Cases	Not Tested	Fail	Pass
Client Application	5	0	0	5
Security	5	0	0	5
Final Report Output	5	0	0	5
Performance	5	0	0	5

9. RESULTS

9.1Performance Metrics

Model Summary:

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 64)	640
conv2d_1 (Conv2D)	(None, 24, 24, 32)	18464
flatten (Flatten)	(None, 18432)	0
dense (Dense)	(None, 10)	184330
		=======
Total params: 203,434		
Trainable params: 203,434		
Non-trainable params: 0		
None	-	

Accuracy:

Confusion Matrix:

Classification Report:

	precision	recall	f1-score	support
0	0.98	0.99	0.98	980
1	0.98	0.99	0.99	1135
2	0.97	0.98	0.97	1032
3	0.99	0.97	0.98	1010
4	0.98	0.97	0.98	982
5	0.96	0.99	0.97	892
6	0.98	0.98	0.98	958
7	0.98	0.97	0.97	1028
8	0.98	0.97	0.98	974
9	0.96	0.96	0.96	1009
accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000

Performance Metrics Result:

Gatling report

10.ADVANTAGES & DISADVANTAGES

Advantages

- ✓ Reduces manual work.
- ✓ More accurate than average human.
- ✓ Capable of handling a lot of data.
- ✓ Can be used anywhere from any device.

Disadvantages

- ✓ Cannot handle complex data.
- ✓ All the data must be in digital format.
- ✓ Requires high performance server for faster predictions.
- ✓ Prone to occasional errors.

11.CONCLUSION

This project demonstrated a web application that uses machine learning to recognie handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

12.FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

- ✓ Add support to detect from digits multiple images and save the results
- ✓ Add support to detect multiple digits
- ✓ Improve model to detect digits from complex images
- ✓ Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better.

Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

13.APPENDIX

Source Code

HTML AND CSS:

index.html:

```
<link rel="stylesheet"</pre>
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-gg0yR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQU0hcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
  <link rel="stylesheet" type= "text/css" href= "{{</pre>
url_for('static',filename='css/style.css') }}">
  <script src="https://kit.fontawesome.com/b3aed9cb07.js" crossorigin="anonymous"></script>
  <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-</pre>
q8i/X+965Dz00rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"</pre>
integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script>
  <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"</pre>
integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy60rQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
  <link rel="stylesheet"</pre>
href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">
  <script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.slim.min.js"></script>
  <script
src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/popper.min.js"></script>
  <script
src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></script>
</head>
<style>
    body{
     background-image: url('static/images/bc1.jpg');
     background-repeat: no-repeat;
     background-size: cover;
    }
</style>
<script>
  function preview() {
    frame.src=URL.createObjectURL(event.target.files[0]);
    $(document).ready(function() {
          $('#clear_button').on('click', function() {
              $('#image').val('');
              $('#frame').attr('src',"");
            });
        });
```

```
</script>
<body>
    <h1>HandWritten Digit Recognition System</h1>
        <div class="container p-3 my-3 bg-dark text-white">
            Handwritten Digit Recognition is a technology that is much needed in this
world as of Today.This Digit Recognition System is used to recognize the digits from
different sources like email, posts, cheque etc. Before proper implementation of this
technology we have relied on writing text with our own hands which can result in error. It's
difficult to store and access physical data with efficiency. The project presents in
representing the recognization of handwritten digits (0 - 9) from the famous MNIST dataset.
Here we will be using Convolutional Neural Network for the prediction.
        </div>
        <section id="content">
            <div class="leftside">
            <form action="/predict" method="POST" enctype="multipart/form-data">
            <label>Select a image:</label>
            <input id="image" type="file" name="image" accept="image/png, image/jpeg"</pre>
onchange="preview()"><br><br>
              <img id="frame" width="100px" height="100px"/>
              <div class="buttons div">
                <button type="submit" class="btn btn-light">Predict</button>
                <button type="button" class="btn btn-light">&nbsp Clear &nbsp</button>
              </div>
            </form>
            </div>
      </section>
</body>
</html>
```

Predict.html:

```
background-repeat: no-repeat;
    background-size: cover;
    #rectangle{
    width:600px;
    height:150px;
    background-color: #000000;
    border-radius: 25px;
    position:absolute;
    box-shadow: 0px 0px 10px 5px white;
    top:25%;
    left:50%;
    transform:translate(-50%,-50%);
   #num{
 text-align: center;
 font-size: 30px;
 margin: 0 auto;
 padding: 3% 5%;
 padding-top: 8%;
 color: white;
    }
</style>
<body>
   <div id="rectangle">
        <h1 id="num">Predicted Number is {{num}}</h1>
    </div>
</body>
</html>
```

Style.css

```
#clear_button{
  margin-left: 15px;
  font-weight: bold;
  color: rgb(0, 174, 255);
}

#confidence{
  font-family: 'Josefin Sans', sans-serif;
```

```
margin-top: 7.5%;
#content{
 margin: 0 auto;
 padding: 2% 15%;
 padding-bottom: 0;
.welcome{
  text-align: center;
  position: relative;
  color: rgb(0, 32, 112);
  background-color: skyblue;
  padding-top: 1%;
  padding-bottom: 1%;
  font-weight: bold;
   font-family: 'Bookman', 'URW Bookman L', serif;
#team_id{
  text-align: right;
  font-size: 25px;
  padding-right: 3%;
#predict_button{
 margin-right: 15px;
 color: rgb(0, 255, 72);
 font-weight: bold;
#prediction_heading{
 font-family: 'Josefin Sans', sans-serif;
 margin-top: 7.5%;
#result{
  font-size: 5rem;
#title{
 padding: 1.5% 15%;
 margin: 0 auto;
 text-align: center;
.btn {
```

```
font-size: 15px;
   padding: 10px;
    /* -webkit-appearance: none; */
   background: #eee;
   border: 1px solid #888;
   margin-top: 20px;
   margin-bottom: 20px;
.buttons_div{
 margin-bottom: 30px;
 margin-right: 80px;
.heading{
 font-family:"American Typewriter", serif;
 font-weight: 700;
 font-size: 2rem;
 display: inline;
.leftside{
 text-align: center;
 margin: 0 auto;
 margin-top: 2%;
 /* padding-left: 10%; */
#frame{
 margin-right: 10%;
.predicted_answer{
 text-align: center;
 margin: 0 auto;
 padding: 3% 5%;
 padding-top: 0;
 /* padding-left: 10%; */
h1{
  text-align: center;
 color: aliceblue;
 padding: 100px 50px 65px 100px;
@media (min-width: 720px) {
  .leftside{
```

```
padding-left: 10%;
}
```

FLASK:

app.py:

```
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render_template, url_for
from werkzeug.utils import secure_filename, redirect
#from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send_from_directory
UPLOAD FOLDER = 'D:/ibm/data'
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = load model("./DigitRecog IBM model/mnistCNN.h5")
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
    if request.method == "POST":
        f = request.files["image"]
        filepath = secure filename(f.filename)
        f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
        upload_img = os.path.join(UPLOAD_FOLDER, filepath)
        img = Image.open(upload_img).convert("L") # convert image to monochrome
        img = img.resize((28, 28)) # resizing of input image
        im2arr = np.array(img) # converting to image
        im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
        pred = model.predict(im2arr)
        num = np.argmax(pred, axis=1) # printing our Labels
```

```
return render_template('predict.html', num=str(num[0]))
if __name__ == '__main__':
    app.run(debug=True, threaded=False)
```

MODEL CREATION:

```
import numpy as np
import tensorflow #open source used for both ML and DL for computation
from tensorflow.keras.datasets import mnist #mnist dataset
from tensorflow.keras.models import Sequential #it is a plain stack of layers
from tensorflow.keras import layers #A Layer consists of a tensor- in tensor-out computat ion
funct ion
from tensorflow.keras.layers import Dense, Flatten #Dense-Dense Layer is the regular deeply
connected r
#faltten -used fot flattening the input or change the dimension
from tensorflow.keras.layers import Conv2D #onvoLutiona 1 Layer
from keras.optimizers import Adam #opt imizer
from keras. utils import np_utils #used for one-hot encoding
import matplotlib.pyplot as plt #used for data visualization
    (x_train, y_train), (x_test, y_test)=mnist.load_data ()
x train=x train.reshape (60000, 28, 28, 1).astype('float32')
x_test=x_test.reshape (10000, 28, 28, 1).astype ('float32')
number_of_classes = 10 #storing the no of classes in a variable
y_train = np_utils.to_categorical (y_train, number_of_classes) #converts the output in binary
format
y_test = np_utils.to_categorical (y_test, number of classes)
model.add(Conv2D(64, (3, 3), input_shape=(28, 28, 1), activation='relu'))
model.add(Conv2D(32, (3, 3), activation = 'relu'))
model.add(Flatten())
model.add(Dense(number_of_classes,activation = 'softmax'))
model.compile(loss= 'categorical crossentropy', optimizer="Adam", metrics=['accuracy'])
x_train = np.asarray(x_train)
y_train = np.asarray(y_train)
history = model.fit(x train, y train, validation data=(x test, y test), epochs=5,
batch_size=32)
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools
fig, ax = plt.subplots(2,1)
ax[0].plot(history.history['loss'], color='b', label="Training loss")
ax[0].plot(history.history['val_loss'], color='r', label="validation loss",axes =ax[0])
legend = ax[0].legend(loc='best', shadow=True)
```

```
ax[1].plot(history.history['accuracy'], color='b', label="Training accuracy")
ax[1].plot(history.history['val_accuracy'], color='r',label="Validation accuracy")
legend = ax[1].legend(loc='best', shadow=True)
def plot confusion matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    .....
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick marks, classes)
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
# Predict the values from the validation dataset
Y pred = model.predict(x test)
# Convert predictions classes to one hot vectors
Y_pred_classes = np.argmax(Y_pred,axis = 1)
# Convert validation observations to one hot vectors
Y_true = np.argmax(y_test,axis = 1)
# compute the confusion matrix
confusion mtx = confusion matrix(Y true, Y pred classes)
# plot the confusion matrix
plot confusion matrix(confusion mtx, classes = range(10))
import sklearn
print(sklearn.metrics.classification_report(Y_true, Y_pred_classes))
print(model.summary())
```

```
# Final evaluation of the model
metrics = model.evaluate(x_test, y_test, verbose=0)
print("Metrics (Test loss &Test Accuracy) : ")
print(metrics)

plt.imshow(x_test[5100])

import numpy as np
print(np.argmax(prediction, axis=1))

np.argmax(y_test[5100:5101]) #printing the actual labels
# Save the model
model.save('models/mnistCNN.h5')
```

GitHub & Project Demo Link

GitHub Link

https://github.com/IBM-EPBL/IBM-Project-50222-1660900453

Demo Video

https://drive.google.com/file/d/1AgZQmW69usqcweKjickhW-peehdHqH5c/view?usp=share_link