Guía Investigación con el apoyo de Herramientas IA

Introducción

Partes de una investigación

Título de la investigación: Identifica claramente el tema de estudio.

Planteamiento del problema: Describe la situación o necesidad que se pretende abordar con la investigación.

Justificación: Explica por qué es importante llevar a cabo la investigación y cuáles son sus posibles aplicaciones o beneficios.

Objetivos: Definen las metas específicas que se quieren alcanzar con la investigación, tanto generales como específicos.

Marco teórico: Presenta los fundamentos teóricos y conceptos relevantes para el estudio. **Metodología**: Describe el diseño de la investigación, los métodos de recopilación de datos (como encuestas, entrevistas, experimentos, etc.), y el análisis de los datos.

Cronograma y presupuesto: Establecen los plazos y recursos necesarios para llevar a cabo la investigación.

Tipos de investigación:

Investigación según su enfoque:

• Investigación cualitativa:

Se centra en la comprensión profunda de fenómenos, utilizando métodos como entrevistas, observaciones y análisis de contenido. Busca entender las razones y motivaciones detrás de comportamientos y opiniones.

• Investigación cuantitativa:

Se enfoca en la medición y el análisis estadístico de datos. Utiliza encuestas, experimentos y otros métodos para obtener resultados numéricos y generalizables.

• Investigación mixta:

Combina elementos de la investigación cualitativa y cuantitativa para obtener una comprensión más completa de un fenómeno.

Investigación según su objetivo:

• Investigación básica (o pura):

Busca ampliar el conocimiento científico sin un propósito práctico inmediato. Se centra en el desarrollo de teorías y conceptos.

Investigación aplicada:

Se utiliza para resolver problemas específicos o para aplicar conocimientos en situaciones prácticas. Por ejemplo, el desarrollo de una vacuna.

Investigación según su alcance:

• Investigación exploratoria:

Se utiliza cuando el tema es poco conocido o se necesita definirlo mejor. Busca identificar problemas, generar hipótesis y establecer un punto de partida para investigaciones más profundas.

Investigación descriptiva:

Busca describir características, propiedades o perfiles de un fenómeno o población. Proporciona información detallada sobre lo que existe, sin buscar explicaciones causales.

• Investigación correlacional:

Examina las relaciones entre dos o más variables. Determina si las variables tienden a variar juntas, pero no necesariamente establece una relación de causa y efecto.

• Investigación explicativa:

Busca explicar las causas de un fenómeno, estableciendo relaciones causa-efecto. Utiliza métodos como experimentos para probar hipótesis.

Otras clasificaciones:

• Investigación documental:

Se basa en la revisión de documentos y fuentes bibliográficas.

• Investigación de campo:

Implica la recolección de datos en el entorno natural donde ocurre el fenómeno estudiado.

• Investigación experimental:

Manipula variables para observar sus efectos en otras.

• Investigación no experimental:

Observa fenómenos sin manipular variables.

Tipos de Investigación: Enfoques y Objetivos

Tópicos de Ciencia Abierta

La ciencia abierta en la investigación académica abarca varios temas clave, incluyendo **el acceso abierto a publicaciones, datos, código y recursos educativos**. También involucra la revisión por pares abierta, la ciencia ciudadana, y la evaluación abierta de la investigación. Además, se centra en la integridad científica, la gestión e infraestructura de la ciencia, y el desarrollo de métricas de próxima generación.

Temas específicos dentro de la ciencia abierta:

Acceso Abierto:

• Permite que las publicaciones científicas, datos de investigación, metodologías, software y código fuente estén disponibles para todos, facilitando la reutilización y distribución.

Datos Abiertos:

• Implica compartir datos de investigación de manera que sean accesibles, encontrables, interoperables y reutilizables (principios FAIR).

Código Abierto:

• Hace que el software y código utilizado en la investigación estén disponibles para su uso y modificación por otros.

• Recursos Educativos Abiertos:

• Permite el acceso y reutilización de materiales educativos, como cursos y tutoriales, para apoyar la investigación y el aprendizaje.

• Revisión por Pares Abierta:

• Involucra la transparencia en el proceso de revisión por pares, permitiendo que los comentarios y las respuestas de los revisores sean públicos.

• Ciencia Ciudadana:

• Involucra la participación del público en la investigación, a menudo a través de la recopilación y análisis de datos.

• Integridad Científica:

• Asegura la honestidad, rigurosidad y transparencia en todas las etapas de la investigación.

• Métricas de la Próxima Generación:

• Se enfoca en el desarrollo de nuevas formas de evaluar la investigación, más allá de los factores de impacto tradicionales.

• Infraestructura de Ciencia Abierta:

• Implica el desarrollo de plataformas y herramientas que apoyen la implementación de la ciencia abierta.

• Comunicación Abierta:

• Promueve la comunicación transparente y accesible de los resultados de la investigación.

Temas de Ciencia Abierta

Característica	Descripción
Acceso Abierto	Investigación disponible de forma gratuita para reutilización.
Datos Abiertos	Compartir datos de investigación utilizando principios FAIR.
Código Abierto	Software disponible para uso/modificación.
Recursos Educativos Abiertos	Materiales educativos disponibles de forma gratuita.
Revisión por Pares Abierta	Proceso de revisión transparente con comentarios públicos.
Ciencia Ciudadana	Participación pública en actividades de investigación.
Integridad Científica	Honestidad y transparencia en la investigación.
ๆ Métricas de Nueva Generación	Nuevas formas de evaluar el impacto de la investigación.
Infraestructura de Ciencia Abierta	Plataformas que apoyan la implementación de la ciencia abierta.
Comunicación Abierta	Difusión transparente de los resultados de la investigación.

Componentes de la Ciencia Abierta

La ciencia abierta busca transformar las prácticas científicas tradicionales hacia un modelo más colaborativo, transparente y accesible, lo que puede llevar a una mayor innovación y un mejor impacto social de la investigación.

La ciencia abierta en la investigación académica **abarca la apertura, transparencia y colaboración en todas las etapas del proceso de investigación, desde la planificación hasta la divulgación de resultados**. Incluye conceptos como el acceso abierto a publicaciones y datos, la revisión por pares abierta, la ciencia ciudadana y la reutilización de recursos educativos abiertos.

Tópicos clave de la ciencia abierta:

- Acceso abierto a publicaciones:
- Permite que los resultados de la investigación, como artículos científicos, estén disponibles gratuitamente para todos, sin restricciones de acceso.
- Datos abiertos:
- Implica compartir los datos de investigación de manera que sean accesibles, reutilizables y comprensibles para otros investigadores y el público en general, siguiendo los principios FAIR (Findable, Accessible, Interoperable, and Reusable).
- Software y código abierto:
- Promueve el uso y la reutilización de herramientas de software y código fuente utilizados en la investigación, fomentando la transparencia y la colaboración.
- Revisión por pares abierta:
- Implica la transparencia en el proceso de revisión por pares, donde se pueden publicar las revisiones y comentarios de los revisores, permitiendo una mayor escrutinio y mejora de la calidad de la investigación.
- Ciencia ciudadana:
- Involucra a ciudadanos no académicos en el proceso de investigación, ya sea contribuyendo con datos, participando en experimentos o revisando resultados, lo que puede generar una mayor inclusión y participación pública en la ciencia.
- Recursos educativos abiertos:
- Fomenta el desarrollo y la compartición de materiales educativos relacionados con la investigación de forma gratuita, democratizando el acceso a la información y fomentando la innovación.

• Metodología abierta:

• Involucra la transparencia en la metodología de investigación, incluyendo el preregistro de estudios y la descripción detallada de los métodos utilizados, lo que ayuda a prevenir el sesgo y la falta de reproducibilidad.

• Reproducibilidad y replicación:

• La ciencia abierta busca garantizar que los resultados de la investigación puedan ser reproducidos por otros investigadores, lo que es fundamental para la validación y la confianza en los hallazgos científicos.

• Integridad científica:

• La ciencia abierta promueve prácticas de investigación honestas, rigurosas y transparentes, que son esenciales para la confianza en la ciencia.

• Educación y habilidades en ciencia abierta:

• La formación en ciencia abierta es crucial para las nuevas generaciones de investigadores, para que puedan adoptar estas prácticas y contribuir a la transformación de la cultura científica.

Construyendo la ciencia abierta

Ciencia abierta

La ciencia abierta busca construir una cultura científica más transparente, colaborativa e inclusiva, que permita un mayor impacto de la investigación en la sociedad.

Tipos de publicaciones en investigaciones científicas

Tipos de Publicaciones Académicas:

- Artículos de Investigación: Presentan resultados originales de un estudio, típicamente con secciones de introducción, metodología, resultados y discusión (IMRaD).
- Artículos de Revisión: Analizan y sintetizan resultados de investigaciones previas, pudiendo ser revisiones bibliográficas, sistemáticas o metaanálisis.
- Cartas al Editor: Comentarios breves sobre artículos publicados, o investigaciones emergentes.
- Reseñas: Ofrecen una evaluación crítica de libros, trabajos, o investigaciones.
- Comentarios: Discusiones sobre artículos o temas relevantes en el campo.
- **Editoriales:** Escritos por el editor de una revista o publicación, a menudo sobre temas de interés.
- **Ponencias:** Presentaciones orales en congresos, a menudo con texto escrito como respaldo.
- Posters: Presentaciones visuales de investigaciones, usualmente en congresos.
- Libros y Capítulos de Libros: Publicaciones más extensas que presentan investigaciones o perspectivas.
- Tesis y Tesinas: Trabajos académicos extensos que demuestran la investigación original del autor.

- Informes: Documentos que presentan resultados de investigaciones, estudios, o análisis.
- Patentes: Documentos que protegen la propiedad intelectual de una invención.
- **Textos de Divulgación:** Publicaciones dirigidas a un público más amplio, con el objetivo de difundir conocimiento científico.

Clasificación Adicional:

- Publicaciones Primarias: Presentan resultados originales de investigación.
- Publicaciones Secundarias: Analizan y sintetizan publicaciones primarias.
- Publicaciones Terciarias: Artículos de opinión o comentarios sobre investigaciones.

Clasificación de Tipos de Publicaciones Académicas

Vías para el Intercambio Académico

4

Editoriales

Escritos editoriales sobre temas de interés en revistas.

Cartas al Editor

Comentarios breves sobre artículos o investigaciones emergentes.

Artículos de Investigación

Presentan resultados originales de estudios con estructura IMRaD.

Textos de Divulgación

Publicaciones para difundir conocimier

difundir conocimiento científico al público general.

8

Reseñas

Evaluaciones críticas de libros, trabajos o investigaciones.

Artículos de Revisión

Analizan y sintetizan investigaciones previas de manera sistemática.

Tipos de Fuentes:

• Fuentes Primarias:

• Son documentos originales que proporcionan información de primera mano, como manuscritos, cartas, entrevistas, diarios, informes de investigación, etc.

• Fuentes Secundarias:

• Ofrecen análisis, interpretaciones o resúmenes de las fuentes primarias. Ejemplos incluyen libros, artículos de revistas, reseñas, etc.

• Fuentes Terciarias:

• Compilan y organizan información de fuentes primarias y secundarias, como enciclopedias, diccionarios, bases de datos, etc.

Estilos de Referencias:

• APA (American Psychological Association):

 Ampliamente utilizado en ciencias sociales, psicología, educación y áreas relacionadas. Se caracteriza por el uso de citas autor-fecha en el texto y una lista de referencias alfabética.

• MLA (Modern Language Association):

• Común en humanidades, especialmente en literatura, lingüística y estudios culturales. Utiliza citas autor-página y referencias bibliográficas al final del documento.

• Chicago:

 Se usa en una amplia gama de disciplinas, incluyendo humanidades, historia, artes y ciencias sociales. Puede utilizar notas a pie de página o notas finales, además de una bibliografía.

• IEEE (Institute of Electrical and Electronics Engineers):

• Predominante en ingeniería y ciencias de la computación. Utiliza un sistema de citas numéricas y referencias al final.

• Vancouver:

• Estilo utilizado en ciencias de la salud y biomedicina, con un sistema de citas numéricas y referencias ordenadas por aparición en el texto.

• UNE-ISO 690:

• Un estándar internacional para referencias bibliográficas, aplicable a diversas disciplinas.

Pasos para la Elaboración de la Bibliografía:

1. Selección de Estilo:

1. Elige el estilo de referencia que sea apropiado para tu disciplina o institución.

2. Recopilación de Datos:

2. Asegúrate de tener toda la información necesaria para cada fuente, como autor, título, fecha, editorial, etc.

3. Citas en el Texto:

3. Asegúrate de citar correctamente en el texto utilizando el estilo elegido.

4. Elaboración de la Lista:

4. Crea una lista de referencias al final del trabajo, siguiendo las normas del estilo elegido.

Tipos de citas:

- Citas textuales o directas: Reproducción exacta de un texto.
- Citas parafraseadas o indirectas: Reexpresión de la idea de otro autor con tus propias palabras.
- Citas de citas: Cuando se cita a un autor que a su vez está citando a otro autor.

Preocupaciones Sobre el uso de la IA en la Investigación Académica

El Postulado FAIR en la investigación académica

El postulado FAIR (por sus siglas en inglés: Findable, Accessible, Interoperable, Reusable) es un conjunto de principios fundamentales en la investigación académica moderna, diseñados para optimizar la gestión y el uso de los datos científicos. Su objetivo es promover la ciencia abierta, reproducible y colaborativa. Aquí te explico sus componentes clave, relevancia y desafíos:

Los 4 Pilares de FAIR

1. F (Findable - Localizables)

- Los datos deben ser fácilmente descubribles por humanos y máquinas.
- Implementación:
- Metadatos ricos y estandarizados.
- Identificadores persistentes únicos (ej: DOI, Handle).
- Registro en repositorios indexados (ej: Zenodo, Dataverse).

2. A (Accessible - Accesibles)

- Los datos deben poder ser recuperados con claridad en las condiciones de acceso.
- Implementación:
- Protocolos estandarizados (ej: HTTPS, APIs).
- Metadatos accesibles incluso si los datos están restringidos.
- Autenticación/autorización cuando sea necesario.

3. I (Interoperable - Interoperables)

- Los datos deben integrarse con otros conjuntos y herramientas.
- Implementación:
- Uso de formatos abiertos y no propietarios (ej: CSV, JSON, HDF5).
- Vocabularios controlados y ontologías (ej: OBO Foundry, Schema.org).
- Metadatos alineados con estándares de la comunidad.

4. R (Reusable - Reutilizables)

- Los datos deben estar descritos con suficiente contexto para su replicación y reutilización.
 - Implementación:
 - Licencias claras (ej: CC BY, MIT).
 - Documentación detallada (métodos, instrumentos, variables).
 - Cumplimiento de estándares éticos y de atribución.

¿Por qué son importantes en la investigación académica?

- **Reproducibilidad**: Facilita la verificación de resultados.
- Transparencia: Evita la "caja negra" en la generación de conocimiento.
- Colaboración: Permite integrar datos de múltiples fuentes.
- Impacto: Aumenta la visibilidad y citación de los trabajos.
- Eficiencia: Reduce la duplicación de esfuerzos en la recolección de datos.

ÁreaProblemas ComunesCultura académicaFalta de incentivos; priorización de publicaciones sobre datos. **Técnicos**Heterogeneidad de formatos; falta de habilidades en gestión de datos. **Económicos**Costos de almacenamiento y curación de datos. **Éticos/Legales** Datos sensibles (salud, indígenas); propiedad intelectual.

Tendencias y ampliación del concepto

- **FAIR beyond data**: Aplicación a software, flujos de trabajo (workflows) y modelos algorítmicos.
- Integración con Open Science: Vinculación con publicaciones de acceso abierto (ej: directrices Plan S).
- **Herramientas FAIR**: Plataformas como Galaxy, Open Science Framework, y repositorios institucionales.
- **Políticas obligatorias**: Financiadores (ERC, NIH) y revistas (Nature, Science) exigen planes de gestión de datos FAIR.

Desafíos en la implementación

Área

Problemas Comunes

Cultura académica

Falta de incentivos; priorización de publicaciones sobre datos.

Técnicos

Heterogeneidad de formatos; falta de habilidades en gestión de datos.

Económicos

Costos de almacenamiento y curación de datos.

Éticos/Legales

Datos sensibles (salud, indígenas); propiedad intelectual.

Ejemplo práctico en investigación

Un biólogo que publica datos genómicos:

- 1. F: Deposita en NCBI (con DOI).
- 2. A: Define acceso público o controlado.
- 3. I: Usa formatos FASTQ y vocabularios de genómica.
- 4. **R**: Incluye protocolos de laboratorio y licencia CC BY 4.0.

Reflexión

FAIR no es solo una guía técnica, sino un **cambio de paradigma** hacia una ciencia más robusta y colaborativa. Su adopción requiere compromiso institucional, formación de investigadores y desarrollo de infraestructuras, pero sus beneficios en innovación y credibilidad científica son estratégicos para el futuro del conocimiento.

Recursos de estudio gratuitos para la formación en investigación académica

ACS Institute

https://institute.acs.org/

ACS Authors Lab

https://institute.acs.org/courses/acs-author-lab.html

Cochrane

https://www.cochrane.org/learn/webinars

https://www.cochrane.org/learn/courses-and-resources/interactive-learning

https://cochrane.unam.mx/curso_introduccion/

https://es.cochrane.org/es/cursos-y-eventos

Capacitaciones de Empresas en el ramo Académico https://www.recursoscientificos.fecyt.es/servicios/formacion/online Science Direct

Material de estudio:

La mejor práctica para la Búsqueda Bibliográfica

https://ifis.libguides.com/spanish_best_practice/home

Kit de herramientas de ciencia abierta de la UNESCO

https://unesdoc.unesco.org/ark:/48223/pf0000387983_spa

DIAMAS. esarrollo de un Marco para la Publicación Académica en Acceso Abierto Institucional

https://diamasproject.eu/

Estilo Turabian: notas al pie / notas al final y bibliografía

https://m.euclid.int/es/turabian-style-footnotes-endnotes-bibliography/