TD6. Espérance

Exercice 1. Soit X une variable aléatoire à valeurs dans \mathbb{N} . Montrer que

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} \mathbb{P}(X > n).$$

Exercice 2. Soit $(A_k)_{k\in\mathbb{N}}$ une suite des événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On suppose que la serie $\sum_k \mathbb{P}(A_k)$ converge.

- a) On note $\mathbf{1}_X$ la fonction indicatrice d'un ensemble X. Soit $Z = \sum_{k=0}^{\infty} \mathbf{1}_{A_k}$. Montrer que Z est une variable aléatoire à valeurs discrètes.
- b) Soit $F = \{ \omega \in \Omega : \omega \text{ appartient à un nombre fini de } A_n \}$. Montrer que F est un événement et que $\mathbb{P}(F) = 1$.
- c) Montrer que Z est d'espérance finie.

Exercice 3. [Formule du crible] Soit $A_1, ..., A_n$ des événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- a) Montrer que $\mathbf{1}_{\bigcup_{k=1}^{n} A_k} = 1 \prod_{k=1}^{n} (1 \mathbf{1}_{A_k})$.
- b) En déduire la formule du crible :

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \mathbb{P}\left(\bigcap_{j=1}^{k} A_{i_j}\right).$$

Exercice 4. Soit $n \in \mathbb{N}^*$ et $(X_k)_{k \in \mathbb{N}^*}$ une suite de variables indépendantes d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, suivant toutes la loi uniforme sur [1, n]. On note X la variable aléatoire égale au nombre de tirages nécessaires pour obtenir tous les numéros entre 1 et n au moins une fois (et à ∞ si on n'obtient jamais les n numéros). Pour $j \in [1, n]$ et $m \in \mathbb{N}$, on note $B_{j,m}$ l'événement : « au bout de m tirages, le numéro j n'est pas encore apparu ».

- a) Pour $1 \leq j_1 < j_2 < \ldots < j_k \leq n$, calculer $\mathbb{P}(B_{j_1,m} \cap \ldots \cap B_{j_k,m})$.
- b) En déduire que $\mathbb{P}(X > m) = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \left(\frac{n-k}{n}\right)^{m}$.
- c) Calculer $\lim_{m\to\infty} \mathbb{P}(X>m)$. Interpéter.
- d) Montrer que $\mathbb{E}(X) = n \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k}$.
- e) Montrer que $\mathbb{E}(X) = n\left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right)$.

Exercice 5. [Inégalité de Le Cam] L'object de l'exercice est d'étudier l'approximation de la loi de Poisson par la loi binomiale. Toutes les variables aléatoires considérées sont définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et sont à valeurs dans \mathbf{N} .

- a) Soit X et Y deux telles variable aléatoires. Pour tout $k \in \mathbb{N}$, on pose $p_k = \mathbb{P}(X = k)$ et $q_k = \mathbb{P}(Y = k)$. On définit la distance entre X et Y par $d(X, Y) = \frac{1}{2} \sum_{k=0}^{\infty} |p_k q_k|$.
 - i) Montrer que pour $A \subset \mathbb{N}$, on a $|\mathbb{P}(X \in A) \mathbb{P}(Y \in A)| \leq d(X, Y)$.
 - ii) Démontrer la formula $d(X,Y) = 1 \sum_{k=0}^{\infty} \min(p_k, q_k)$.
 - iii) En déduire $d(X, Y) \leq \mathbb{P}(X \neq Y)$.
- b) Vérifier que pour $x \in [0, 1]$, $f(x) = 1 (1 x)e^x$ appartient à [0, 1].
- c) Soit $U_1, \ldots, U_n, Y_1, \ldots, Y_n$ des variables aléatoires mutuellement indépendantes. On suppose que pour $1 \le i \le n$, U_i suit la loi de Bernoulli de paramètre $f(\frac{\lambda}{n})$ et Y_i suit la loi de Poisson de paramètre $\frac{\lambda}{n}$. On pose $Y = \sum_{i=1}^n Y_i$. Enfin, pour $1 \le i \le n$, on considère la variable de Bernoulli X_i telle que $X_i = 0$ si $U_i = Y_i = 0$ et $X_i = 1$ sinon.
 - i) Déterminer pour $1 \le i \le n$, la loi de X_i . En déduire la loi de $X = \sum_{i=1}^n X_i$. Quelle est la loi de Y.
 - ii) Montrer que pour $1 \le i \le n$, $\mathbb{P}(X_i \ne Y_i) \le \frac{\lambda^2}{n^2}$.
 - iii) En déduire l'inégalité de Le Cam :

$$d(X,Y) \le \frac{\lambda^2}{n}.$$

Exercice 6. Soit X une variable aléatoire à valeurs dans \mathbb{N}^* vérifiant pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X \ge n) > 0$. On appelle taux de panne associé à X la suite réelle $(x_n)_{n \in \mathbb{N}}$ définie par

$$x_n = \mathbb{P}(X = n | X \ge n).$$

- a) Exprimer $p_n = \mathbb{P}(X = n)$ en fonction des x_k .
- b) i) Montrer qu'on a $0 \le x_n < 1$, pour tout $n \in \mathbf{N}^*$, et que la série $(x_n)_{n \in \mathbf{N}}$ diverge.
 - ii) Réciproquement, soit $(x_n)_{n \in \mathbb{N}^*}$ une suite à valeurs dans [0, 1[telle que la série $(x_n)_{n \in \mathbb{N}}$ diverge. Montrer qu'il existe une variable aléatoire dont le taux de panne est la suite x_n .
- c) Montrer que la variable X suit une loi géométrique si et seulement on taux de panne est constant.

Exercice 7. On considère une suite d'épreuves de Bernoulli indépendantes. À chaque épreuve, la probabilité de succès est $p \in]0,1[$. Soit $r \in \mathbb{N}^*$. Pour $n \in \mathbb{N}^*$, on note Π_n la probabilité qu'au cours des n première épreuves, on ait obtenu r succès consécutifs.

- a) i) Calculer $\Pi_0, \Pi_1, \ldots, \Pi_r$.
 - ii) Montrer que pour $n \geq r$, on a $\Pi_{n+1} = \Pi_n + (1 \Pi_{n-r})p^r(1-p)$.
 - iii) Montrer que la suite $(\Pi_n)_{n\in\mathbb{N}}$ est convergente. Calculer sa limite.
- b) On définit la variable aléatoire T à valeurs dans $\mathbf{N} \cup \{\infty\}$ par le temps d'attente de r succès consécutifs.
 - i) Montrer que $\mathbb{P}(T=\infty)=0$.
 - ii) Montrer que $\mathbb{E}(T) = \frac{1-p^r}{(1-p)p^r}$.