Homework 2

Course: CO20-320241

September 23, 2019

Problem 2.1

Solution:

a)
$$777_8 + 1_8 = 1000_8$$

b)
$$888_16 + 1_{16} = 889_{16}$$

c)
$$32007_8 + 1_8 = 32010_8$$

d)
$$32108_{16} + 1_{16} = \mathbf{32109_{16}}$$

e)
$$8BFF_{16} + 1_{16} = 8\mathbf{C00_{16}}$$

f)
$$1219_{16} + 1_{16} = \mathbf{121A_{16}}$$

Problem 2.2

Solution:

a)
$$X = \overline{A*B*(C+D)}$$

b)
$$X = \overline{A + B + \overline{C} * D * \overline{E}} + \overline{B} + C + \overline{D}$$

Solution:

$$R1 = \overline{M*N*Q}$$

$$R2 = \overline{M*\overline{N}*Q}$$

$$R3 = \overline{\overline{M}*N*Q}$$

The truth table of the circuit:

M	N	Q	R1	R2	R3	Χ
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	1	1	0
0	1	1	1	1	0	1
1	0	0	1	1	1	0
1	0	1	1	0	1	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1

The sum of products: $X = \overline{M}*N*Q + M*\overline{N}*Q + M*N*Q$

Simplify:

$$X = \overline{M} * N * Q + M * \overline{N} * Q + M * N * Q =$$

$$Distributive\ Law := Q(M*N+M*N+M*N) =$$

$$\begin{array}{l} Distributive\ Law := Q(\overline{M}*N + M*\overline{N} + M*N) = \\ Distributive\ Law := Q(\overline{M}*N + M*\overline{N} + M*N + M*N) = \end{array}$$

$$Distributive\ Law := Q(N(\overline{M} + M) + M(\overline{N} + N)) =$$

$$Identity\ Law := Q(N*1 + M*1) =$$

$$Distributive \ Law := Q(N+M) = Q*N+Q*M$$

Circuit Representation after simplification:

Solution:

$$X + \overline{X} * Y = X + Y$$

7.7		7.7		T /	٠.
X	+	X	*	Y	•

Z1 Z1 + I .				
X	Y	\overline{X}	$\overline{X} \wedge Y$	$X \vee (\overline{X} \wedge Y)$
0	0	1	0	0
0	1	1	1	1
1	0	0	0	1
1	1	0	0	1

X + Y:

<u> </u>		
X	Y	$X \vee Y$
0	0	0
0	1	1
1	0	1
1	1	1

As it is evident, both sides of the equation result in the same output.

$$\frac{\overline{X}}{X} + X * Y = \overline{X} + Y$$

$\overline{X} + X * Y$:

$\Lambda + \Lambda + I$.				
X	Y	\overline{X}	$X \wedge Y$	$\overline{X} \lor (X \land Y)$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	0
1	1	0	1	1

$\overline{X} + Y$:

X	Y	\overline{X}	$\overline{X} \vee Y$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

As it is evident, both sides of the equation result in the same output.

Problem 2.5

Solution:

a)
$$A + 1 = 1$$

b)
$$A * A = A$$

c)
$$B*\overline{B}=0$$

d)
$$C + C = C$$

e)
$$X * 0 = 0$$

f)
$$D * 1 = D$$

g)
$$D + 0 = D$$

h)
$$C + \overline{C} = 1$$

i)
$$G + G * F = G$$

$$\mathbf{j)}\ Y + \overline{W} * Y = Y$$

Solution:

1. $\overline{W+Y} = \overline{W}*\overline{Y}$

W	Y	\overline{W}	\overline{Y}	W + Y	$\overline{W+Y}$	$\overline{W} \wedge \overline{Y}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

2. $\overline{W*Y} = \overline{W} + \overline{Y}$

W	Y	\overline{W}	\overline{Y}	W * Y	$\overline{W*Y}$	$\overline{W} + \overline{Y}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

3. 1 + W = 1

1	W	$1 \lor W$
1	0	1
1	0	1
1	1	1
1	1	1

4. 0 + W = W

0	W	$1 \lor W$
0	0	0
0	0	0
0	1	1
0	1	1

5. 0*W=0

0	W	$0 \wedge W$
0	0	0
0	0	0
0	1	0
0	1	0

6. 1 * W = W

1	W	$1 \wedge W$
1	0	0
1	0	0
1	1	1
1	1	1

DL = Distributive Law

CL = Complement Law

IL = Identity Law

The sum-of-product expression:

Problem 2.8 Solution:

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	0	1	1	0
$\overline{A}B$	0	$1 \wedge 1$	$1 \wedge 1$	0
\overline{AB}	0	1	1	0
$A\overline{B}$	1	0	0	0

Note: the 1s in the second row belong to both groups (red 1s and blue 1s) in order to give the minimalistic expression.

After building the Karnaugh-map using gray coding (00, 01, 11, 10) from the truth table given in **Problem 2.7**, we first try to create groups of 1s. We have 3 groups in total, distinguished by their colors (red, blue and green).

Green group (single 1): all terms are included $=> A * \overline{B} * \overline{C} * \overline{D}$.

Blue group: $\overline{A} * D =>$ These terms do not change regardless of the output.

Red group: similarly => B * D

As a result, we obtain: $X = A * \overline{B} * \overline{C} * \overline{D} + \overline{A} * D + B * D$