数理工学実験 課題レポート

常微分方程式の数値解法

情報学科2回生平田蓮

学生番号: 1029342830

実験日: 10月11,17,18,24日

実験場所: 京都大学工学部総合校舎数理計算機室

10月31日提出

目次

1	F	目的	2
2	J.	原理	2
	2.1	オイラー法	2
	2.2	クランク・ニコルソン法	2
	2.3	アダムス・バッシュフォース法	2
2.3.1 $N=1$ の場合		N=1 の場合	3
	2.3.2	$N=2$ の場合 \dots	3
	2.4	ホイン法	4
	2.5	ルンゲ・クッタ法	4
_	_		
3	-	果題	4
		課題3常微分方程式の数値解	4
	3.1.1		5
	3.1.2		5
	3.1.3		5
		課題 4 アルゴリズムの安定性 1	5
	3.2.1		5
	3.2.2		5
	3.2.3	数値計算による確認	5
	3.2.4	考察	5
	3.3	課題 5 アルゴリズムの安定性 2	5
	3.3.1	数値計算による確認	5
	3.3.2	考察	5
	3.4	課題 7 ローレンツ方程式	5
	3.4.1	ローレンツ方程式の描画	5
	3.4.2	結果	5
	3.4.3	考察	5
	3.5	課題 8 連立微分方程式	5
	3.5.1	結果	5
	3.5.2	考察	5

1 目的

多くの数理モデルには、微分方程式が現れる。これの解を解析的に得ることは一般的には難しいため、数値 計算でその近似解求めるためのアルゴリズムを学習する。

2 原理

本章では、続く課題で用いるアルゴリズムについて述べる。

2.1 オイラー法

以下の関数を考える。

$$\frac{\mathrm{d}u}{\mathrm{d}t}(t) = f(t, u(t)), \ u(0) = u_0 \tag{2.1}$$

この式の両辺をtについて、 $[t_a,t_b]$ の範囲で積分すると、

$$u(t_b) - u(t_a) = \int_{t_a}^{t_b} f(t, u(t)) dt$$

を得る。 $\Delta t = t_b - t_a$ とすると、範囲内の積分を幅 Δt 、高さ $f(t_a, u(t_a))$ の長方形の面積で近似でき、

$$u(t_b) - u(t_a) \approx f(t_a, u(t_a)) \Delta t$$

$$\to u(t_b) \approx u(t_a) + f(t_a, u(t_a)) \Delta t$$

と書ける。ここで (a,b) を (n,n+1) に置き換え、さらに $u(t_n)$ を u_n に書き換えると、

$$u_{n+1} \approx u_n + f(t_n, u_n) \Delta t \tag{2.2}$$

を得る。この式を n に対して繰り返し適用することで、式 (2.1) を満たす関数を数値計算することができる。 式 (2.2) は積分の近似の際に $f(t_a,u(t_a))$ を用いたが、 $f(t_b,u(t_b))$ を用いても同様に近似でき、前者を前進オイラー法、後者を後退オイラー法と呼ぶ。

2.2 クランク・ニコルソン法

オイラー法では $[t_n,t_{n+1}]$ の積分を長方形の面積で近似したが、範囲内の関数を 1 次関数で近似することで、台形の面積で近似でき、精度を向上させることができる。台形で近似を行うと、

$$u_{n+1} \approx u_n + \frac{f(t_n, u_n) + f(t_{n+1}, u_{n+1})}{2} \Delta t$$
 (2.3)

を得る。この式は、 u_{n+1} の近似が u_{n+1} を用いて陰的に表されているため、そのまま計算するには工夫が必要である。

2.3 アダムス・バッシュフォース法

オイラー法やクランク・ニコルソン法では、 u_{n+1} を求める際に u_n のみを用いるため、一段法と呼ばれる。対して、 u_{n-1} や u_{n-2} など、より過去の値も用いて精度を高めるアルゴリズムを多段法と呼ぶ。

過去に計算した N+1 個の点を用いてラグランジュ補間により式 (2.1) を満たす f(t,u(t)) を N 次多項式で構成することを考える。

2.3.1 N=1 の場合

まず、1 次式で近似する場合を考える。すでに計算した 2 点 $(t_n,f(t_n,u_n)),(t_{n-1},f(t_{n-1},u_{n-1}))$ を用いてラグランジュ補完を行うと、

$$f(t, u(t)) \approx \frac{t - t_{n-1}}{t_n - t_{n-1}} f(t_n, u_n) + \frac{t - t_n}{t_{n-1} - t_n} f(t_{n-1}, u_{n-1})$$

を得る。 $t_n - t_{n-1} = \Delta t$ を踏まえると、

$$\begin{split} f(t,u(t)) &\approx \frac{t - t_{n-1}}{\Delta t} f(t_n,u_n) - \frac{t - t_n}{\Delta t} f(t_{n-1},u_{n-1}) \\ &= \frac{f(t_n,u_n) - f(t_{n-1},u_{n-1})}{\Delta t} t - \frac{t_{n-1} f(t_n,u_n) - t_n f(t_{n-1},u_{n-1})}{\Delta t} \end{split}$$

と書ける。これを $t_{n+1}-t_n=\Delta t$ を踏まえて $[t_n,t_{n+1}]$ の範囲で積分すると、

$$\begin{split} \int_{t_n}^{t_{n+1}} f(t', u(t)) dt' &\approx \int_{t_n}^{t_{n+1}} \left\{ \frac{f(t_n, u_n) - f(t_{n-1}, u_{n-1})}{\Delta t} t - \frac{t_{n-1} f(t_n, u_n) - t_n f(t_{n-1}, u_{n-1})}{\Delta t} \right\} dt' \\ &= 2\Delta t f(t_n, u_n) - \frac{\Delta t}{2} f(t_n, u_n) - \frac{\Delta t}{2} f(t_{n-1}, u_{n-1}) \\ &= \frac{\Delta t}{2} \left\{ 3 f(t_n, u_n) - f(t_{n-1}, u_{n-1}) \right\} \end{split}$$

よって、

$$u_{n+1} \approx u_n + \frac{\Delta t}{2} \{ 3f(t_n, u_n) - f(t_{n-1}, u_{n-1}) \}$$
 (2.4)

となる。これを2次のアダムス・バッシュフォース法と呼ぶ。

2.3.2 N=2 の場合

2 次式で近似を行う場合、3 点が必要である。 $(t_n, f(t_n, u_n)), (t_{n-1}, f(t_{n-1}, u_{n-1})), (t_{n-2}, f(t_{n-2}, u_{n-2}))$ を用いて同様に補間を行うと、

$$\begin{split} f(t,u(t)) &\approx \frac{(t-t_{n-1})(t-t_{n-2})}{(t_n-t_{n-1})(t_n-t_{n-2})} f(t_n,u_n) + \\ &\frac{(t-t_{n-2})(t-t_n)}{(t_{n-1}-t_{n-2})(t_{n-1}-t_n)} f(t_{n-1},u_{n-1}) + \\ &\frac{(t-t_n)(t-t_{n-1})}{(t_{n-2}-t_n)(t_{n-2}-t_{n-1})} f(t_{n-2},u_{n-2}) \end{split}$$

を得る。N=1 の場合と同様に積分を行うと、

$$\int_{t_n}^{t_{n+1}} f(t', u(t)) dt' \approx \frac{\Delta t}{12} \left\{ 23f(t_n, u_n) - 16f(t_{n-1}, u_{n-1}) + 5f(t_{n-2}, u_{n-2}) \right\}$$

$$\therefore u_{n+1} \approx u_n + \frac{\Delta t}{12} \left\{ 23f(t_n, u_n) - 16f(t_{n-1}, u_{n-1}) + 5f(t_{n-2}, u_{n-2}) \right\}$$
(2.5)

となる。これを3次のアダムス・バッシュフォース法と呼ぶ。

2.4 ホイン法

2.2 節で、クランク・ニコルソン法を計算するには工夫が必要であると述べた。工夫の一つとして、 $f(t_{n+1},u_{n+1})$ を u_n と $f(t_n,u_n)$ を用いて表すことを考える。 $[t_n,t_{n+1}]$ の範囲で、u(t) を (t_n,u_n) を通る傾き $f(t_n,u_n)$ の 1 次関数で近似すると、

$$u_{n+1} \approx u(t_{n+1}) = u_n + f(t_n, u_n) \Delta t$$

と書ける。これを式 (2.3) に代入すると、

$$u_{n+1} \approx u_n + \frac{f(t_n, u_n) + f(t_{n+1}, u_n + f(t_n, u_n)\Delta t)}{2} \Delta t$$
 (2.6)

を得る。これをホイン法と呼ぶ。

2.5 ルンゲ・クッタ法

ホイン法は 2 次の一段法であるが、これを 4 次に拡張したものを 4 次のルンゲ・クッタ法と呼び、これは以下の式で表される。

$$u_{n+1} = u_n + \frac{F_1 + 2F_2 + 2F_3 + F_4}{6} \tag{2.7}$$

$$\begin{cases}
F_1 = f(t_n, u_n) \\
F_2 = f(t_n + \frac{\Delta t}{2}, u_n + F_1 \frac{\Delta t}{2}) \\
F_3 = f(t_n + \frac{\Delta t}{2}, u_n + F_2 \frac{\Delta t}{2}) \\
F_4 = f(t_{n+1}, u_n + F_3 \Delta t)
\end{cases} (2.8)$$

これの証明は膨大な記述量であるため、ここでは省略する。詳細は [2] を参照されたい。

3 課題

3.1 課題3常微分方程式の数値解

式 (3.1) で表される常微分方程式の初期値問題を考える。

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u, \ u(0) = 1 \tag{3.1}$$

ステップ幅を Δt として、t での数値解を $u_{\rm calc}(t,\Delta t)$ とする。t=1 において、数値解 $u_{\rm calc}(1,\Delta t)$ と厳密解 u(1) の差を

$$E(\Delta t) = |u_{\text{calc}}(1, \Delta t) - u(1)| \tag{3.2}$$

とする。

以下のアルゴリズムに対して、式 (3.2) の関数形を調べる。

- 前進オイラー法
- 2次のアダムス・バッシュフォース法

- 3次のアダムス・バッシュフォース法
- ホイン法
- 4次のルンゲ・クッタ法
- 3.1.1 関数形の予測
- 3.1.2 結果
- 3.1.3 考察
- 3.2 課題 4 アルゴリズムの安定性 1
- 3.2.1 クランク・ニコルソン法の安定性
- 3.2.2 ホイン法の安定性
- 3.2.3 数値計算による確認
- 3.2.4 考察
- 3.3 課題 5 アルゴリズムの安定性 2
- 3.3.1 数値計算による確認
- 3.3.2 考察
- 3.4 課題7 ローレンツ方程式
- 3.4.1 ローレンツ方程式の描画
- 3.4.2 結果
- 3.4.3 考察
- 3.5 課題8連立微分方程式
- 3.5.1 結果
- 3.5.2 考察

参考文献

- [1] 実験演習ワーキンググループ、"数理工学実験 2022 年度版"、京都大学工学部情報学科数理工学コース (2022)
- [2] 斉藤宣一、"数値解析入門"、東京大学出版 (2012)