Introduction to Statistical Machine Learning

Christfried Webers

Statistical Machine Learning Group NICTA and College of Engineering and Computer Science The Australian National University

> Canberra February – June 2013

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Introduction to Statistical Machine Learning

Christfried Webers NICTA

The Australian National University

Overview

Introduction Linear Algebra Probability Linear Regression 1 Linear Regression 2 Linear Classification 1 Linear Classification 2 Neural Networks 1

Neural Networks 2 Kernel Methods Sparse Kernel Methods

Graphical Models 1

Graphical Models 2 Graphical Models 3

Mixture Models and FM 1 Mixture Models and EM 2

Approximate Inference Sampling

Principal Component Analysis Sequential Data 1

Sequential Data 2 Combining Models

Selected Topics

Discussion and Summary

Part IX

Neural Networks 1

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA

The Australian National University

Neural Networks

Weight-space Symmetrie.

Parameter Optimisation

Gradient Descent

Weight-space Symmetrie.

Parameter Optimisati

Fradient Descen Optimisation

- The basis functions play a crucial role in the algorithms explored so far.
- Number and parameters of basis functions fixed before learning starts (e.g. Linear Regression and Linear Classification).
- Number of basis functions fixed, parameters of the basis functions are adaptive (e.g. Neural Networks).
- Center basis function on the data, select a subset of basis functions in the training phase (e.g. Support Vector Machines, Relevance Vector Machines).

Weight-space Symmetri

Gradient Descent

Gradient Descent
Optimisation

- The functional form of the network model (including special parametrisation of the basis functions).
- How to determine the network parameters within the maximum likelihood framework? (Solution of a nonlinear optimisation problem.)
- Error backpropagation: efficiently evaluate the derivatives of the log likelihood function with respect to the network parameters.
- Various approaches to regularise neural networks.

Weight-space Symmetries

Parameter Optimisation

Gradient Descer Optimisation

Same goal as before: Decompose the target t

$$t(\mathbf{x}) = y(\mathbf{x}, \mathbf{w}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ is the residual error.

• (Generalised) Linear Model

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=0}^{M} w_j \phi_j(\mathbf{x})\right)$$

where $\phi = (\phi_0, \dots, \phi_M)^T$ is the fixed model basis and $\mathbf{w} = (w_0, \dots, w_M)^T$ are the model parameter.

- For regression: $f(\cdot)$ is the identity function.
- For classification: $f(\cdot)$ is a nonlinear activation function.
- Goal : Let $\phi_j(\mathbf{x})$ depend on parameters, and then adjust these parameters together with \mathbf{w} .

- © 2013
 Christfried Webers
 NICTA
 The Australian National
- ISML 2013

Weight-space Symmetri

Parameter Optimisat

Gradient Descer Optimisation

- Goal : Let $\phi_j(\mathbf{x})$ depend on parameters, and then adjust these parameters together with \mathbf{w} .
- Many ways to do this.
- Neural networks use basis functions which follow the same form as the (generalised) linear model.
- EACH basis function is itself a nonlinear function of an adaptive linear combination of the inputs.

• Construct M linear combinations of the input variables x_1, \ldots, x_D in the form

$$\underbrace{a_j}_{ ext{ctivations}} = \sum_{i=1}^D \underbrace{w_{ji}^{(1)}}_{ ext{weights}} x_i + \underbrace{w_{j0}^{(1)}}_{ ext{bias}} \qquad j=1,\ldots,M$$

• Apply a differentiable, nonlinear activation function $h(\cdot)$ to get the output of the hidden units

$$z_j = h(a_j)$$

• $h(\cdot)$ is typically sigmoidal or tanh.

Introduction to Statistical
Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Neural Networks

Veight-space Symmetr

Parameter Optimisation

Gradient Descent
Optimisation

 The outputs of the hidden units are again linearly combined

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}$$
 $k = 1, \dots, K$

 Apply again a differentiable, nonlinear activation function $g(\cdot)$ to get the network outputs y_k

$$y_k = g(a_k)$$

Introduction to Statistical Machine Learning

Christfried Webers NICTA The Australian National

Neural Networks

- Introduction to Statistical
 Machine Learning
 © 2013
 - © 2013
 Christfried Webers
 NICTA
 The Australian National
 - ISML 2013
- Neural Networks
- Weight-space Symmetries
- Parameter Optimisation
- Gradient Descent
 Optimisation

- The activation function $g(\cdot)$ is determined by the nature of the data and the distribution of the target variables.
- For standard regression: $g(\cdot)$ is the identity function so that $y_k = a_k$.
- For multiple binary classification, $g(\cdot)$ is a logistic sigmoid function

$$y_k = \sigma(a_k) = \frac{1}{1 + \exp(-a_k)}$$

Weight-space Symmetrie.

Parameter Optimisation

Gradient Descen
Optimisation

Combine all transformations into one formula

where w contains all weight and bias parameters.

 As before, the biases can be absorbed into the weights by introducing an extra input $x_0 = 1$ and a hidden unit $z_0 = 1$.

$$y_k(\mathbf{x}, \mathbf{w}) = g\left(\sum_{j=0}^{M} w_{kj}^{(2)} h\left(\sum_{i=0}^{D} w_{ji}^{(1)} x_i\right)\right)$$

where w now contains all weight and bias parameters.

Introduction to Statistical Machine Learning

Christfried Webers NICTA The Australian National

Neural Networks

- © 2013 Christfried Webers NICTA
- The Australian National University

Weight-space Symmetrie

Parameter Optimisation

Gradient Descent Optimisation

- A neural network looks like a multilayer perceptron.
- But perceptron's nonlinear activation function was a step function. Not smooth. Not differentiable.

$$f(a) = \begin{cases} +1, & a \ge 0 \\ -1, & a < 0 \end{cases}$$

• The activation functions $h(\cdot)$ and $g(\cdot)$ of a neural network are smooth and differentiable.

Christfried Webers The Australian National

Neural Networks

- If all activation functions are linear functions then there exists an equivalent network without hidden units. (Composition of linear functions is a linear function.)
- But if the number of hidden units in this case is smaller than the number of input or output units, the resulting linear function are not the most general.
- Dimensionality reduction.
- Principal Component Analysis (comes later in the lecture).
- Generally, most neural networks use nonlinear activation functions as the goal is to approximate a nonlinear mapping from the input space to the outputs.

- - Add more hidden layers.
 - Some units may be not fully connected to the next layer.
 - Some links may skip over one or several subsequent layer(s).
 - Still in the framework of feed-forward networks.
 - Note: If information is allowed to flow also backwards, we get a graph with cycles. This is called a recurrent neural network which can exhibit a very different dynamical behaviour (e.g. may have state, may exhibit chaos). Not further considered here.

Introduction to Statistical Machine Learning

Christfried Webers The Australian National

Neural Networks

Neural Networks as Universal Function Approximators

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Neural Networks

Weight-space Symmetries

Gradient Descent

Graaient Descent Optimisation

- Feed-forward neural networks are universal approximators.
- Example: A two-layer neural network with linear outputs can uniformly approximate any continuous function on a compact input domain to arbitrary accuracy if it has enough hidden units.
- Holds for a wide range of hidden unit activation functions, but NOT for polynomials.
- Remaining big question: Where do we get the appropriate settings for the weights from? With other words, how do we learn the weights from training examples?

© 2013
Christfried Webers
NICTA
The Australian National
University

Neural Networks

Weight-space Symmetrie.

Parameter Optimisati

Optimisation

Neural network approximating

© 2013
Christfried Webers
NICTA
The Australian National
University

Neural Networks

Weight-space Symmetrie.

Tarameter Optimisat

Optimisation

Neural network approximating

© 2013 Christfried Webers NICTA The Australian National University

Neural Networks

Weight-space Symmetrie

Parameter Optimisation

Optimisation |

Neural network approximating

f(x) = |x|

Neural network approximating Heaviside function

© 2013 Christfried Webers NICTA The Australian National University

Neural Networks

leight-space Symmetries

Parameter Optimisation

Graaient Descen Optimisation

 $f(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$

Veight-space Symmet

Parameter Optimisation

Gradient Descent Optimisation

Hidden layer nodes represent parametrised basis functions

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (0.0, 1.0, 0.1)$

Veight-space Symmetrie

Parameter Optimisatio

Gradient Descent Intimisation

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (0.0, 0.1, 1.0)$

Veight-space Symmetries

 $Parameter\ Optimis at ion$

Gradient Descen Optimisation

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (0.0, -0.5, 0.5)$

eight-space Symmetries

Parameter Optimisation

Gradient Descer Intimisation

Hidden layer nodes represent parametrised basis functions

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (10.0, -0.5, 0.5)$

Weight-space Symmetri

Gradient Desc

Optimisation

- Neural network for two-class classification.
- 2 inputs, 2 hidden units with tanh activation function, 1 output with logistic sigmoid activation function.

Red: y = 0.5 decision boundary. Dashed blue: z = 0.5 hidden unit contours. Green: Optimal decision boundary from the known data distribution.

Weight-space Symmetries

radient Descent

Gradient Descent Optimisation

- Given a set of weights w. This fixes a mapping from the input space to the output space.
- Does there exist another set of weights realising the same mapping?
- Assume \tanh activation function for the hidden units. As \tanh is an odd function: $\tanh(-a) = -\tanh(a)$.
- Change the sign of all inputs to a hidden unit and outputs of this hidden unit: Mapping stays the same.

- © 2013 Christfried Webers NICTA The Australian National
- ISML 2013
- Neural Networks

Weight-space Symmetries

ачателет орития

Gradient Descent

- M hidden units, therefore 2^M equivalent weight vectors.
- Furthermore, exchange all of the weights going into and out of a hidden unit with the corresponding weights of another hidden unit. Mapping stays the same. M! symmetries.
- Overall weight space symmetry: M! 2^M

M	1	2	3	4	5	6	7
$M! 2^M$	2	8	48	384	3840	46080	645120

- Assume the error $E(\mathbf{w})$ is a smooth function of the weights.
- Smallest value will occur at a critical point for which

$$\nabla E(\mathbf{w}) = 0.$$

- This could be a minimum, maxium, or saddle point.
- Furthermore, because of symmetry in weight space, there are at least $M! 2^M$ other critical points with the same value for the error.

Weight-space Symmetries

Parameter Optimisation

Gradient Descent
Optimisation

Parameter Optimisation

Definition (Global Minimum)

A point \mathbf{w}^* for which the error $E(\mathbf{w}^*)$ is smaller than any other error $E(\mathbf{w})$.

Definition (Local Minimum)

A point \mathbf{w}^* for which the error $E(\mathbf{w}^*)$ is smaller than any other error $E(\mathbf{w})$ in some neighbourhood of \mathbf{w}^* .

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Neural Network

Weight-space Symmetries

Parameter Optimisation

Gradient Descent

have only one minimum).

- Error functions for neural networks are not convex (symmetries!).
- But finding a local minimum might be sufficient.
- Use iterative methods with weight vector update $\Delta \mathbf{w}^{(\tau)}$ to find a local minimum.

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National University

iveurui iveiworks

Parameter Optimisation

radient Descent

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

veurai iveiworks

weight-space Symmetries

Parameter Optimisation

Gradient Descent Optimisation

• Around a minimum w* we can approximate

$$E(\mathbf{w}) \simeq E(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*),$$

where the Hessian H is evaluated at w^* .

• Using a set $\{u_i\}$ of orthonormal eigenvectors of H,

$$\mathbf{H}\mathbf{u}_i = \lambda_i \mathbf{u}_i,$$

to expand

$$\mathbf{w} - \mathbf{w}^* = \sum_i \alpha_i \mathbf{u}_i.$$

We get

$$E(\mathbf{w}) = E(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \alpha_i^2.$$

Around a minimum w* we can approximate

$$E(\mathbf{w}) = E(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \alpha_i^2.$$

Introduction to Statistical Machine Learning

Christfried Webers NICTA The Australian National

Parameter Optimisation

definite if evaluated at w*.

© 2013 Christfried Webers NICTA The Australian National

Neural Network.

Weight-space Symmetries

Parameter Optimisation

Gradient Descent
Optimisation

• Around a minimum w*, the Hessian H must be positive

• Hessian is symmetric and contains W(W + 1)/2 independent entries where W is the total number of

weights in the network.

© 2013 Christfried Webers NICTA The Australian National University

Neural Network

Weight-space Symmetrie

Parameter Optimisation

Gradient Descent Optimisation

O(W) function evaluations if nothing else is know. Get order $O(W^3)$.

• Need to gather this $O(W^2)$ pieces of information by doing

• The gradient ∇E provides W pieces of information at once. Still need O(W) steps, but the order is now $O(W^2)$.

Weight-space Symmetrie

Parameter Optin

Gradient Descent Optimisation

 Batch processing: Update the weight vector with a small step in the direction of the negative gradient

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

where η is the learning rate.

- After each step, re-evaluate the gradient $\nabla E(\mathbf{w}^{(\tau)})$ again.
- Gradient Descent has problems in 'long valleys'.

Gradient Descent Optimisation

• Gradient Descent has problems in 'long valleys'.

Example of zig-zag of Gradient Descent Algorithm.

Introduction to Statistical Machine Learning

© 2013
Christfried Webers
NICTA
The Australian National

leural Networks

Weight-space Symmetrie

arameter Optimisatio

Gradient Descent Optimisation

©2013 Christfried Webers NICTA The Australian National

Neural Networ

Weight-space Symmetric

Parameter Optimi

Gradient Descent Optimisation

- Use Conjugate Gradient Descent instead of Gradient Descent to avoid zig-zag behaviour.
- Use Newton method which also calculates the inverse Hessian in each iteration (but inverting the Hessian is usually costly).
- Use Quasi-Newton methods (e.g. BFGS) which also calculates an estimate of the inverse Hessian while iterating.
- Run the algorithm from a set of starting points to find the smallest local minimum.

- ISML 2013
- Neural Network
 - D. . . O .: . . .
- Gradient Descent
- Optimisation

- Remaining big problem: Error function is defined over the whole training set. Therefore, need to process the whole training set for each calculation of the gradient $\nabla E(\mathbf{w}^{(\tau)})$.
- If the error function is a sum of errors for each data point

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

we can use on-line gradient descent (also called sequential gradient descent or stochastic gradient descent updating the weights by one data point at a time

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)}).$$