Aplicación de la Metaheurística "Simulated Annealing" al Balanceo de Líneas de Ensamble Simples

Leticia Capella¹, Agustín Montagna¹, NélidaCamussi¹, Diego Cafaro¹

¹Depto. de Ingeniería Industrial - Facultad de Ingeniería Química - Univ. Nacional del Litoral leticapella@gmail.com; agumontagna@gmail.com; ncamussi@intec.unl.edu.ar; dcafaro@fiq.unl.edu.ar

Abstract. Una línea de ensambleen términos generales es un agrupamiento de tareas en estaciones de trabajo que deben respetar determinadas relaciones de precedencia que resulta muy eficiente para la producción en masa. Uno de los desafíos de este sistema de producción es el denominado balanceo y que consiste en la asignación de las tareas a las estaciones de trabajo en función de la capacidad de producción y el tiempo productivo de la línea de tal manera que la carga de las estaciones sea lo más equitativa posible. Este trabajo presenta una experiencia positiva en la resolución del balanceo de líneas de ensamble simples (manufacturan un solo producto) utilizando la metaheurística" simulatedannealing". En la literatura se reporta muy frecuentemente la aplicación de otras metaheurísticas, como búsqueda tabú y algoritmos genéticos a este tipo de problemas, pero muy escasamente la aplicación de "simulatedannealing", lo cual motivó el interés por implementarla ya que posee característicasdentro de las metaheurísticas que la vuelven muy atractiva para usar.

Keywords:SimulatedAnnealing, Líneas de Ensamble Simples, Balanceo de una Línea.

1 Introducción

Las líneas de ensamble modernas constan de una serie de estaciones de trabajo conectadas entre sí por mecanismos manuales y/o automáticos de manejo de materiales, y presentan una alta eficiencia para la producción en masa. Uno de los desafíos de este sistema de producción es el de balancear la línea. Esto se abordamediante la asignación de tareas (unidades indivisibles) a las estaciones de trabajo, de tal manera que será factible si se cumplen las relaciones de precedencia impuestas y si la suma de las duraciones de las tareas asignadas a cada estación no sobrepasa el tiempo de despacho de las piezas (tiempo de ciclo). Un objetivo bastante común es la minimización del número de estaciones a tiempo de ciclo conocido. Si se logra un buen balanceo, las distintas estaciones quedan aproximadamente con una carga de trabajo similar. Se ha publicado una gran cantidad de trabajos para abordar este desafío aplicando procedimientos de solución tanto heurísticos como exactos [1].Dentro de los heurísticos,Dolgui y Proth [2] mencionan a "simulatedannealing"como una metaheurística adecuada para encarar este problema de optimización, el cual, entre otras característi-

adfa, p. 1, 2011. © Springer-Verlag Berlin Heidelberg 2011 cas, posee múltiples soluciones óptimas alternativas.Manavizadeh y colab.[5] lo aplicaron más recientemente a una línea de ensamble en forma de "U".

2 Objetivos

Se pretende aplicar la metaheurística, llamada "simulatedannealing", (a la que denotaremos como SA de aquí en más) propuesta por Kirkpatrick y colab. [3] para resolver el problema de balanceo de líneas de ensamble simple. Se la programó usando la plataforma de desarrolloMatlab [4] parael balanceo de líneas de ensamble de un solo producto, a fin de conocer el desempeño de la mencionada metaheurística a tales problemas. Las características primordiales de ese procedimiento son varias: (i) siempre trabaja sobre puntos factibles del problema que se está resolviendo, (ii) la estrategia de movimientos no es estrictamente descendente, sino que permite con una cierta "probabilidad" moverse a puntos factibles eventualmente "peores" que la solución vigente a los fines de usar tales puntos como partida de nuevos caminos descendentes. Esa posibilidad es potencialmente muy favorable para problemas con múltiples óptimos locales.

3 Aplicación de SA a líneas de ensamble de un solo producto

3.1 Breve introducción a la metaheurística

Esta técnicaestá inspirada en el proceso de enfriamiento de los sólidos. Lo que busca realizar la estrategia es encontrar el mínimo de una función objetivo determinada.

Al aplicar este concepto al caso de líneas de ensamble, el algoritmo se concentra en generar una secuencia de soluciones, la cual no requiere necesariamente una mejora de la solución en cada paso dado. Por el contrario, puede aceptar una solución que es peor que la anterior con una probabilidad p. Esta probabilidad p, disminuye cuando el deterioro de la función objetivo crece y también a medida que van sucediendo las iteraciones. La meta de este enfoque es evitar quedar entrampado en el entorno de una solución local, pudiendo lograr, a partir de un nuevo punto, una solución eventualmente mejor.

El algoritmo tiene parámetros que marcarán sus movimientos iterativos sucesivos. Uno de los más significativos es la temperatura que descenderá gradualmente, por lo que hace falta definir un valor de temperatura inicial, cada cuántas iteraciones la temperatura disminuirá y un criterio con el cual se defina cómo se produce ese cambio de temperatura iteración a iteración.

A su vez, se debe definir una solución inicial factible a partir de la cual el algoritmo va a buscar moverse a otra solución en su entorno de manera tal que pueda minimizar una función objetivo determinada.

La elección de la temperatura inicial, está dada por un valor inicial T₀con un valor "grande", para que el sistema tengacierto de libertad, y a su vez garantizar un número suficiente de iteraciones que permita alcanzar una "buena" solución (aunque nunca se puede hablar de optimicidad en metaheurísticas).

Se debe definir la evolución de la temperatura a medida que el algoritmo está iterando. La temperatura decrece cada K_n iteraciones, donde n representa el índice de la solución actual. Por lo tanto, K_n es el número máximo de iteraciones donde se aceptarán puntos después dealgún S_{n+1} "malo". Apenas detecta una mejora en la solución, K_n se reinicia y comienzan nuevamente las iteraciones. Algunos de los criterios para actualizar K_n son:

```
-K_n = constante
-K_n = K_{n+1} + constante, con K_0 dada.
-K_n = \frac{K_{n-1}}{a}, con a < 1
-K_n = (K_{n-1})^{1/a} con a < 1
-K_n = \frac{constante}{\ln (T_n)}
```

Luego, se deben definir las reglas para la reducción de la temperatura. Se pueden considerar diferentes criterios para que la temperatura vaya disminuyendo, entre ellos se encuentran:

```
\begin{split} &- \ T_n = T_{n-1} - constante \\ &- \ T_n = a \ T_{n-1}, con \ a < 1 \\ &- \ T_n = constante/(1-n) \\ &- \ T_n = constante/ln(1-n) \end{split}
```

Se debe proceder a la elección de la función objetivo, la misma puede ser el tiempo ocioso de la línea, la eficiencia de la línea, el número de estaciones de trabajo, etc. Y la misma va a estar denotada como U(*), donde * es cualquier configuración factible de la línea.

Luego, se debe definir una solución inicial S_0 . A partir de la cual el algoritmo va a comenzar a buscar mejores soluciones. Para esto, se puede aplicar algún procedimiento heurístico para obtener la solución S_0 de partida y su respectivo valor de función objetivo $U(S_0)$. Cabe destacar que esta solución inicial así como las sucesivas, deben ser siempre factibles.

3.2 Concepto de "entorno" en líneas de ensamble

Para realizar esta búsqueda de una próxima configuración factible, el algoritmo se basa en la creación de otro "individuo" factible en el entorno de una solución factible. Para generar ese otro "individuo cercano pero diferente" S_{n+1} en el "entorno" de S_n , se proponen para el caso de líneas de ensamble las dos posibles operaciones:

1. Permutar dos operaciones ubicadas en dos estaciones adyacentes. Para lo cual se elige aleatoriamente dos estaciones de trabajo contiguas y una tarea en cada una de ellas para realizar el intercambio. Una vez realizado el mismo, se debe verificar la factibilidad del cambio, es decir que no se supere el tiempo de ciclo ni se violen las relaciones de precedencia. Si la permutación no es posible, el algoritmo procede a elegir otras dos estaciones, y así hasta encontrar una solución factible. Se puede observar un ejemplo de permutación en la Fig. 1.

Fig.1.Ejemplo de una permutación entre dos estaciones de trabajo contiguas, en donde las relaciones de precedencia se respetan

2. Transferir una operación a la próxima estación. Para ello, se procede a la elección aleatoria de una estación de trabajo y de una tarea dentro de la misma. Luego, se transfiere a la estación siguiente, y se verifica que la operación sea factible, es decir que no se incumpla la condición de superar el tiempo de ciclo ni las relaciones de precedencia. Si la transferencia se aplica a una operación asignada a la última estación de la línea de ensamble, entonces se crea una nueva estación. Si una estación de la línea contiene solamente una operación antes de transferir, entonces esta estación desaparece, es decir se produce una fusión. Se puede observar un ejemplo de una transferencia en la Fig. 2.

Fig.2.Ejemplo de una transferencia de una tarea entre dos estaciones contiguas, en donde se respetan las relaciones de precedencia.

Una vez encontrada una nueva configuración factible $S_{n+1}y$ evaluado el correspondiente valor de función $U(S_{n+1})$, pueden suceder dos cosas: (a) $U(S_{n+1})$ es menor

o igual a $U(S_n)$, es decir el valor objetivo de la nueva solución es mejor que la solución previa, entonces S_{n+1} es mejor solución que S_n (en un problema de minimización), por lo que se actualiza a S_{n+1} como la mejor solución disponible; (b) S_{n+1} no es mejor solución que S_n ($U(S_{n+1})$ es mayor a $U(S_n)$), la aceptación o rechazo de la nueva solución va a depender de la probabilidad p, la cual está dada por la Ecuación 1:

$$p_n = e^{-\Delta_n/T_n} \tag{1}$$

donde, $\Delta_n = |U(S_{n+1}) - U(S_n)|$ y T_n es el parámetro decreciente llamada "temperatura". Luego para decidir si se acepta o se rechaza S_{n+1} cuando es peor que S_n , se debe generar un número aleatorio x en el intervalo [0,1]; calcular p_n , y si p_n es mayor o igual que x, entonces se acepta a S_{n+1} como la próxima solución actual de la secuencia, caso contrario, se rechaza a S_{n+1} y se mantiene S_n como la solución vigente. Cabe destacar que la probabilidad p_n es una función decreciente a medida que avanza el algoritmo, por lo que en cada iteración va a ser menos probable aceptar una solución "mala".

Finalmente, se deben definir las reglas de terminación. Entre ellas se encuentran:

- Cuando la temperatura se hace menor que un valor dado ε
- Cuando el número de iteraciones excede un valor dado
- Cuando ninguna mejora ocurre después de una dada cantidad de iteraciones.

3.3 Pseudocódigo

En esta sección se provee el pseudocódigo utilizado para la resolución de problemas para líneas de ensamble

- **1.** Introducir T, a, K, ε .
- **2.** Generar una solución factible S_0 , calcular el correspondiente valor del criterio $U(S_0)$ y adoptar $S^*=S_0$, $U(S^*)=U(S_0)$.
- **3.** Sea k=0
- **4.** k=k+1
- **5.** Generar una solución factible aleatoria S_1 en el entorno de S_0 y calcular $U(S_1)$.
- **6.** Calcular: $\Delta = U(S_1) U(S_0)$
- 7. Si $\Delta \leq 0$:

Poner
$$S_0 = S_1$$
 y U(S_0) = U(S_1).
Si U(S_1) < U(S^*) entonces $S^* = S_1$ y U(S^*) = U(S_1).

 $\operatorname{Si} \Delta > 0$

Generar un valor aleatorio $x \in [0,1]$ (distribución uniforme)

Calcular
$$p = \exp(-\Delta/T)$$

Si $x \le p$, entonces $S_0 = S_1 y U(S_0) = U(S_1)$.

8. Si k≥K, hacer:

T=aT

k=0

Si $T \ge \varepsilon$, entonces volver a 4.

Si T <ε, finaliza el algoritmo y retorna la última solución obtenida.

3.4 Ejemplos de Aplicación

Para mostrar el comportamiento del algoritmo explicado, se presentan dos ejemplos de aplicación, el primero con 30 tareas y el segundo con 148 tareas.

Los dos casos se resuelven mediante SA programado en Matlab7.9.0(R2009b), en un procesador Intel (R) Atom(TM) CPU @ 1.66 GHz 1.66 GHz, con una memoria instalada (RAM) de 0.98 GB, a partir de una configuración inicial S_0 dada.

Los parámetros que se tuvieron en cuenta para la resolución, en los dos ejemplos, fueron los siguientes:

- La temperatura inicial es $T_0 = 5000$.
- La temperatura decrece cadaK = 100 iteraciones.
- El criterio para la disminución de la temperatura es de la forma: $T_n = a T_{n-1}$, donde la constante a = 0.98.
- El valor mínimo que se permite para la temperatura es $\varepsilon = 50$.
- Se considera que el número máximo de iteraciones que puede realizar el algoritmo es de 100000.
- Y, finalmente se considera que la cantidad permitida de iteraciones que ocurran sin que se produzca ninguna mejora es de 20000.

Ejemplo de aplicación con 30 tareas

Se considera un proceso de manufactura compuesto de 30 operaciones, denotadas por T1, T2,..., T30. En la Tabla 1 se presenta la lista de las tareas, sus relaciones de precedencia y la duración en minutos de cada una de ellas. Se considera en este problema untiempo de ciclo de 250 minutos.

Operación Elemental	Operaciones Precedentes	Tiempo (min)
T1	-	54
T2	-	144
Т3	T1	138
T4	T1, T2	144
T5	T3	24
Т6	T3	102
T7	T4	150
Т8	T7	114
Т9	T5, T6	36
T10	T6	114

Operación Elemental	Operaciones Precedentes	Tiempo (min)
T11	Т8	84
T12	Т9	72
T13	T10, T11	72
T14	T11	24
T15	T12	90
T16	T14	72
T17	T15	60
T18	T15	180
T19	T16	36
T20	T17	114
T21	T13, T18	96
T22	T13, T19	24
T23	T20	30
T24	T21	78
T25	T22	12
T26	T23, T24	135
T27	T25	78
T28	T26	90
T29	T24, T27	150
T30	T28, T29	36

Tabla1. Lista de actividades a realizar con las operaciones de precedentes y la duración en minutos de cada una de ellas.

Vale aclarar que el número mínimo teórico de estaciones está dado por la expresión (2).

$$k_{min} = \left[\frac{\sum_{j:tarea} t_j}{TC}\right] = [10.21] = 11$$
, donde TC es el tiempo de ciclo (2)

La *solución inicial* que se considera es una solución propuesta en forma arbitraria factible que cuenta con 15 estaciones de trabajo, con tiempo de ciclo para esta configuración inicial de TC=198 minutos.

Estación	Tareas Asignadas	Tiempo Ocupado (min)	Tiempo Ocioso (min)
ET1	T2	144	102
ET2	T1,T3	192	54

Estación	Tareas Asig- nadas	Tiempo Ocupado (min)	Tiempo Ocioso (min)
ET7	T12, T15, T16	234	12
ET8	T17, T18	240	6

ET3	T4,T6	246	-
ET4	Т7	150	96
ET5	T8,T10	228	18
ET6	T5, T9, T11, T13, T14	240	6

ЕТ9	T19, T20, T21	246	0
ET10	T22, T23,T24, T25,T27	222	24
ET11	T26, T28	225	21
ET12	T29, T30	186	60

Tabla2. Distribución de las tareas en las estaciones de trabajo obtenido con SA, tiempos ocupados de cada estacion y tiempo ocioso

Con esta solución inicial se aplicó la metaheurística de SA, con la cualse consiguen varias configuraciones alternativas con 12 estaciones, tiempo de ciclo de 246 minutos y eficiencia de línea del 86.48%. Una de ellas es la que se muestra en la Tabla 2.El tiempo de CPU incurrido para la resolución de este problema fue de 299.10 segundos encontrándose la solución reportada en la Tabla 2 en un total de 22157 iteraciones.

Si este mismo problema se resuelve mediante modelado matemático con la misma funcion objetivo, es decir, la minimización de las estaciones de trabajo utilizadas usando una versión del lenguaje GAMS win32 24.1.3, se llega a una solución alternativa a la anteriormente presentada, donde el tiempo de ciclo es de 246 min, la eficiencia de la linea es de 86.48% y el CPU incurrido es de 75.156 segundos.

Ejemplo de aplicación con 148 tareas

Se considera un proceso de manufactura compuesto de 148 operaciones, denotadas por T1, T2,..., T148. En la Tabla 3 se presenta la lista de las tareas, sus relaciones de precedencia y la duración en minutos de cada una de ellas. Se considera en este problema que el tiempo de ciclo es de 390 minutos.

Tareas	Tareas Pre-	Tiempo
	decesoras	(min)
T1	1	16
T2	1	30
Т3	2	7
T4	3	47
T5	3	29
Т6	1	8
T7	1	39
Т8	4,5	37
Т9	6,7	32
T10	8,9	29
T11	-	17
T12	10	11
T13	10	32
T14	10,11	15
T15	12,13,14	53
T16	15	53

Tareas	Tareas Pre-	Tiempo
	decesoras	(min)
T75	73	101
T76	73	5
T77	74	28
T78	74	8
T79	74	281
T80	75	7
T81	80	26
T82	-	10
T83	81,82	21
T84	76	26
T85	83	20
T86	84	21
T87	77,78	47
T88	79	23
T89	88	13
T90	88	19

T17	16	8
T18	17	24
T19	17	24
T20	18,19	8
T21	20	7
T22	20	8
T23	20	14
T24	20	13
T25	21	10
T26	22	25
T27	23	11
T28	24	25
T29	25,26,27,2	11
T30	8 29	29
T31	30	25
T32	30	10
T33	-	
	- 22	14
T34	32	41
T35	33	42
T36	31,34,35	47
T37	36	7
T38	37	80
T39	38	7
T40	39	41
T41	37	47
T42	-	16
T43	42	32
T44	43	66
T45	41	80
T46	45	7
T47	44,46	41
T48	40	13
T49	47	47
T50	47	33
T51	48,49,50	34
T52	_	11
T53	51,52	118
T54	53	25
T55	54	7
T56	54	28
T57	54	12
T58	55	52
T59	55	14
T60	55	3

T91	87	115
T92	89,91	35
T93	90	26
T94	92,93	46
T95	85,86,94	20
T96	95	31
T97	96	19
T98	97	34
T99	97	51
T100	97	39
T101	98	30
T102	99	26
T103	99	13
T104	99,100	45
T105	104	58
T106	104	28
T107	104	8
T108	103	383
T109	101,102	40
T110	101,102	34
T111	109,110	23
T112	111	162
T113	108	11
T114	105,106	19
T115	107	14
T116	112,113	31
T117	115	32
T118	114,116,1 17	26
T119	118	55
T120	118	31
T121	118	32
T122	120,121	26
T123	119	19
T124	123	14
T125	123	19
T126	122	48
T127	124	55
T128	-	8
T129	124	11
T130	125	27
T131	126	18
T132	126	36
T133	131,132	23
T134	129,130	20

T61	56	3
T62	57	8
T63	57	16
T64	61,62	33
T65	63	8
T66	58	18
T67	59,60	10
T68	66,67	14
T69	64	28
T70	65,69	11
T71	68,70	118
T72	71	25
T73	72	40
T74	72	40

T135	127,128	46
T136	134,135	64
T137	133	22
T138	136,137	15
T139	138	34
T140	139	22
T141	139	151
T142	139	148
T143	140,141	64
T144	-	170
T145	144	137
T146	142,143	64
T147	145,146	78
T148	147	78

Tabla3. Lista de actividades a realizar con sus operaciones de precedencia y su duración en minutos

El número mínimo teórico de estaciones está dado por la expresión $k_{min} = [14.44] = 15$ estaciones.

La solución inicial que se considera es una solución factible, seleccionada en forma arbitraria. La misma cuenta con 22 estaciones de trabajo, con un tiempo de ciclo para esta solución inicial de TC=383 minutosy eficiencia del 66,86%. A partir de esta solución inicial, se consiguen resultados con 16 estaciones de trabajo, un tiempo de ciclo de 390 minutos y una eficiencia de línea del 90,28%

La configuración factible resultante tras aplicar SA se representa en la Tabla 4.

Estación	Tareas Asigna- das	Tiempo Ocupado (min)	_		Tareas Asigna- das	Tiempo Ocu- pado(min)	Tiempo Ocioso (min)
ET1	T2, T3, T5, T11, T144, T145	390	-	ЕТ9	T76, T80, T81, T82, T83, T84, T85, T86, T89, T90, T92, T93, T94, T95, T96, T97, T98	379	11
ET2	T1, T4, T6, T7, T8, T9, T10, T12, T13, T14, T15, T16	372	18	ET10	T99, T100, T101, T102, T103, T104, T105, T106, T107, T109, T110, T128	380	10

	1			1		ı	
ET3	T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T30, T31, T42, T43, T44	356	34	ET11	T108	383	7
ET4	T32, T33, T34, T35, T36, T37, T38, T41, T45	368	22	ET12	T111, T112, T113, T114, T115, T116, T117, T118, T119	373	17
ET5	T39, T40, T46, T47, T48, T49, T50, T51, T52, T53, T54	377	13	ET13	T120, T121, T122, T123, T124, T125, T126, T127, T129, T130, T131, T132, T133, T134	379	11
ET6	T55, T56, T57, T58, T59, T60, T61, T62, T63, T64, T65, T66, T67, T68, T69, T70, T71	383	7	ET14	T135, T136, T137, T138, T139, T141, T140	354	36
ET7	T72, T74, T79	346	44	ET15	T142, T143	212	178
ET8	T73, T75, T77, T78, T87, T88, T91	362	28	ET16	T146, T147, T148	220	170

Table 4. Distribución de las tareas en las estaciones de trabajo obtenido con SA, tiempos ocupados de cada estacion y tiempo ocioso

El tiempo de CPU incurrido para la resolucion de este problema a partir de este configuración inicial fue de 2643.9 segundos encontrándose la solución reportada en 2116 iteraciones.

Al querer resolver la minimización del número de las estaciones de trabajo mediante modelado matematico utilizando GAMS win32 24.1.3, se obtiene una solucion optima consistente en 16 estaciones con tiempo de ciclo de 390 minutos, pero en 5900 segundos de CPU, que es más del doble del tiempo consumido por la metaheuristica SA

4 Conclusiones

Se desarrolló y aplicó la metaheurística del SA a problemas de líneas de ensamble para estudiar la minimización del número de estaciones de trabajo. La complejidad

del problema está dada fundamentalmente por el número de tareas involucradas y su interacción a través del grafo de precedencias. El método resulta con muy buena performance tanto para problemas de mediano tamaño como para problemas de mayor tamaño. En el caso de los problemas relativamente pequeños, la estrategia de SA produce buenas soluciones (que nunca pueden catalogarse como óptimas) en tiempos que compiten con los requeridos por los modelos matemáticos para resolver el mismo problema. Sin embargo, cuando se pasa a problemas de mayor porte, el modelo matemático determina la optimicidad de las soluciones en tiempos de cómputo muy por encima de los requeridos por SA, el cual alcanza soluciones igualmente buenas en tiempos de cálculo moderados.

Si bien la metaheurísticaSA no permite garantizar la optimicidad de las soluciones halladas, el procedimiento aplicado es muy promisorio pues permite obtener soluciones alternativas cercanas al valor mínimo dado por el número teórico de estaciones, además no reporta una única solución sino que puede reportar varias soluciones alternativas, permite además poner una configuración inicial factible de partida, lo cual también influye en la convergencia de la metaheurística, tiene gran facilidad de uso y su programación puede ser desarrollada en la mayoría de las plataformas de programación disponibles.

Estas características no se dan cuando se quiere resolver problemas de gran tamaño mediante programación matemática, ya que requiere una gran cantidad de recurso computacional.

5 Referencias

- Scholl, A., Becker, C. State-of-the-art exact and heuristicsolutionprocedures for simple assembly line balancing. European Journal of Operational Research 168, 666-693 (2006)
- 2. AlexandreDolgui, Jean-Marie Proth: Supply-ChainEngineering. EditoralSpringer (2010)
- 3. Kirkpatrick, S., GellatJr, C.D., Vecchi, M.P. OptimizationbySimulatedAnnealing. Science 220, 671-980 (1983)
- 4. Matlab 7.9.0 (R2009b), MathWorks (2009).
- NedaManavizadeh, Nilufar-sadatHosseini, MasoudRabbani, FariborzJolai. A SimulatedAnnealingalgorithmfor a mixedmodelassembly U-line balancingtype-I problemconsidering human efficiency and Just-In-Time approach.Computers& Industrial Engineering, Volume 64, Issue 2, Pages 669-685 (2013).