Model Predictive Control

Hyelin Choi

Department of Mathematics
Sungkyunkwan University

October 24, 2023

Index

1 Introduction to Optimal Control

2 Model Predictive Control(MPC)

2-1 Algorithm of MPC

2-2 Other Types of MPC

Part 1

Introduction to Optimal Control

Simple Example 1

Open-loop System

Objective : $r(t) \approx y(t)$

Simple Example 2

Simple Example 2

$$x(t+1) = f(x(t), u(t))$$
 $state\ variable\ control\ input$
 $y(t) = g(x(t), u(t))$
 $output\ state\ variable\ control\ input$

State Variable x(t)

The state variables of a system consist of a minimum set of parameters which completely summarize the system's status in the following sense. If at any time t_0 , the values of the state variables $x(t_0)$ are known, then the output $y(t_1)$ and the value $x(t_1)$ can be uniquely determined for any time t_1 , $t_1 > t_0$, provided $u_{[t_0,t_1]}$ is known.

Output Feedback System

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$
 Feedback

Using
$$u(t) = Fv(t) - Ky(t)$$
 gives

$$\begin{cases} \dot{x}(t) = \{A - BK[I + DK]^{-1}C\}x(t) + B\{F - K[I + DK]^{-1}DF\}v(t), \\ y(t) = [I + DK]^{-1}\{Cx(t) + DFv(t)\}, \end{cases}$$

where K is feedback gain, F is feed-forward matrix and v(t) is external input.

Part 2

Model Predictive Control

TABLE 1 A list of the survey results in order of industry impact as perceived by the committee members.

미래에	대한	예즉	X	
미래에	대한	예측	0	

Rank and Technology	High-Impact Ratings	Low- or No-Impact Ratings
PID control	100%	0%
Model predictive control	78%	9%
System identification	61%	9%
Process data analytics	61%	17%
Soft sensing	52%	22%
Fault detection and identification	50%	18%
Decentralized and/or coordinated control	48%	30%
Intelligent control	35%	30%
Discrete-event systems	23%	32%
Nonlinear control	22%	35%
Adaptive control	17%	43%
Robust control	13%	43%
Hybrid dynamical systems	13%	43%

Part 2-1 Algorithm of MPC

Chess

Notation

- $u_{a|k}$: t=k 에서 예측한 a 단계 이후의 control input 값 ex) $u_{3|1}$: 현재 t=1에서 예측한 t=4에서의 control input 값
- $ullet u_{a|k}^*$: t=k 에서 예측한 a 단계 이후의 최적의 control input 값 ex) $u_{3|1}^*$: t=1에서 예측한 t=4에서의 최적의 control input 값
- $||x||_P = \sqrt{x^T P x}$

MPC Solver

Prediction time is infinite.

>>> Infinite-dimensional Optimization Problem

$$u^* = \underset{u}{\operatorname{argmin}} \sum_{i=0}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2),$$

$$\mathbf{s.t.}\ x_{k+1} = Ax_k + Bu_k,$$

$$y_t = Cx_k$$

$$u_{min} \le u_{j|k} \le u_{max},$$

 $y_{min} \le y_t \le y_{max}.$

$$y_{min} \le y_t \le y_{max}$$
.

Cost Function

Equality & Inequality Constraints

The Dual-Mode Prediction Paradigm

Prediction time is <u>finite</u>.

>>> Finite-dimensional optimization Problem

Prediction time is infinite.

>>> Infinite-dimensional Optimization Problem

$$arg \min_{u} J(x_{k} | u_{k}) = arg \min_{u} \sum_{i=0}^{\infty} ||x_{i|k}||_{Q}^{2} + ||u_{i|k}||_{R}^{2}$$

$$= arg \min_{u} \sum_{i=0}^{N-1} (||x_{i|k}||_{Q}^{2} + ||u_{i|k}||_{R}^{2}) + ||x_{N|k}||_{W}^{2}$$

$$= arg \min_{u} \sum_{i=0}^{N-1} (||x_{i|k}||_{Q}^{2} + ||u_{i|k}||_{R}^{2}) + ||x_{N|k}||_{W}^{2}$$

Running Cost

Terminal Cost

where W is the solution of the Lyapunov equation,

$$W = (A + BK)^T W(A + BK) + Q + K^T RK.$$

MPC Controller

Model Predictive Control =Receding Horizon(이동 시간 구간) Control

k+1

k+2

k+N+1 k+N+2

Part 2-2 Other Types of MPC

Other Types of MPC

- Linear Quadratic MPC
- Nonlinear MPC
- Decentralized MPC
- Stochastic MPC
- Robust MPC
- Economic MPC
- Adaptive MPC
- Hybrid MPC

• ...

Robust MPC

System의 noise & disturbance에 잘 대처함

$$\min_{u} J(x_k, u_k) = \sum_{i=0}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2),$$

s.t.
$$x_{j+1|k} = Ax_{j|k} + Bu_{j|k}$$
,

$$y_{j|k} = Cx_{j|k}$$

$$u_{min} \leq u_{j|k} \leq u_{max}$$

$$y_{min} \le y_{j|k} \le y_{max}$$
.

$$x_{j+1|k} = Ax_{j|k} + Bu_{j|k} + w_{j|k}$$

$$x_{k+1} = A(\delta_{j|k})x_{j|k} + B(\delta_{j|k})u_k + w_{j|k}$$

$$y_{j|k} = Cx_{j|k} + v_{j|k}$$

$$y_{j|k} = C(\boldsymbol{\delta_{j|k}}) x_{j|k} + \boldsymbol{v_{j|k}}$$

Robust MPC

$$\min_{u} R^{cost}(J(x_{k}, u, \delta))$$
s.t $x_{j+1|k} = A(\delta_{j|k})x_{j|k} + B(\delta_{j|k})u_{j|k} + Fw_{j|k}$,
$$y_{j|k} = C(\delta_{j|k})x_{j|k} + D(\delta_{j|k})u_{j|k} + v_{j|k}$$
,
$$R^{const}(c_{ij}(x_{j|k}, u_{j|k}, \delta_{j|k}, y_{j|k})) \leq 0$$
,
$$j \in \mathbb{Z}_{[0,N_{p}-1]}, \ i \in \mathbb{Z}_{[1,N_{c}^{j}]}, \ x_{0|k} = x_{k}$$

Centralized MPC

VS

Decentralize : 분산시키다

Decentralized MPC

Decentralized MPC

$$\begin{aligned} & \min_{u} \sum_{i} \sum_{j=0}^{N-1} \left[|| \ x_{i}(k+j) ||_{Q_{i}}^{2} + || \ u_{i}(k+j) ||_{R_{i}}^{2} \right] + || \ x_{i}(k+N) ||_{P_{i}}^{2}, \\ & \text{s.t.} \ \ x_{k+1} = A x_{k} + B u_{k}, \\ & x \in X = \prod_{i} X_{i} \ , \ u \in U = \prod_{i} U_{i} \ . \end{aligned}$$

$$\quad & \text{For } j = 0, \ \cdots, N-1, \\ & u_{i}(k+j) \in U_{i}, \\ & u_{l}(k+j) = u_{l}(k+j)^{c-1}, \ \forall l \neq i, \\ & x(k+j) \in X, \\ & x(k+N) \in X_{f}. \end{aligned}$$

Thank you