RPI Gender Breakdown Estimate

https://github.com/stensonowen/RPI_ratio

Overview

- 1) Python Scraping
- 2) Statistics
- 3) Plotting in R

Python Scraping

- Data courtesy of Rensselaer Directories
- Python's Requests library used for download
 - Session object necessary to follow redirects
- Takes about 15 minutes
- Gathers about 10,000 entries
- Relevant functions: get_by_index(n), parse(html), extract(data), fetch(n)
- Demo

Statistics

- Name data from ssa.gov/oact/babynames
- Data in the form "<Name>,<[M|F]>,<Count>"
- Data from '93-'97 gives 37k names, 18M people
- Count[i] and sum(Count) give P(Name)
- "<Name>, M, <CountM>" and
 "<Name>, F, <CountF>" give P(Name | Gender)
- Bayes' Theorem gives

$$P(Gender \mid Name) = \frac{P(Name \mid Gender) * P(Gender)}{P(Name)}$$

Plotting

- Generic barplot() in R
- Function annotated_barplot()
 automatically plots subsets of the results, and formatting can be optionally specified

Example: School of Science

Example: School of Engineering

Example: Teaching Positions

Example: Administration

Example: Employees

For More:

- Slides and more images at https://github.com/stensonowen/RPI_ratio
- More data in results.csv file
- More student data at https://rpidirectory.appspot.com/