Data Structures, Algorithms & Data Science Platforms

Instructor: Chirag Jain (slides from Prof. Simmhan)

L2: More on Basic Data Structures

Stack, Queue, Trees

Stacks

- Add a cup to the stack.
- Remove a cup from new stack.
- A stack is a LIFO list: Last in, First out

Stacks

- Container of objects that are inserted and removed according to the LIFO principle
- Objects can be inserted at any time, but only the last object can be removed.
 - Inserting:"pushing"
 - Removing: "Popping"

Stacks (definition)

- New() creates a new stack
- Push(item) inserts the item onto top of stack
- item Pop() removes and returns the top item of stack
- item Top() returns (but retains) the top item of stack (sometimes called Peek())
- int Size() returns number of objects in stack
- Invariants
 - S.Push(v); S.Top(); Returns the value v
 - S.Push(v); S.Pop(); Same stack state as before push

Parenthesis Matching

- Problem: Match the left and right parentheses in a character string
- $\bullet (a*(b+c)+d)$
 - Left parentheses: positions 0 and 3
 - Right parentheses: positions 7 and 10
 - Left at position 0 matches with right at position 10
- (a+b))*((c+d)
 - (0,4) match
 - _ (8,12) match
 - Right parenthesis at 5 has no matching left parenthesis
 - Left parenthesis at 7 has no matching right parenthesis

Parenthesis Matching

```
0 1 2 3 4 5 6 ...
```

```
(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)
```

- Output pairs (u,v) such that the left parenthesis at position u is matched with the right parenthesis at v.
- -(2,6)(1,13)(15,19)(21,25)(27,31)(0,32)(34,38)
- How do we implement this using a stack?

Parenthesis Matching

0 1 2 3 4 5 6 ...

$$(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)$$

- Output pairs (u,v) such that the left parenthesis at position u is matched with the right parenthesis at v.
- -(2,6)(1,13)(15,19)(21,25)(27,31)(0,32)(34,38)
- How do we implement this using a stack?
 - 1. Scan expression from left to right
 - 2. When a left parenthesis is encountered, add its position to the stack
 - 3. When a right parenthesis is encountered, remove matching position from the stack

Example

a*(b+c)+d

0										
(a	*	(b	+	С)	+	d)

0

3

0

3,7

0,10

- **FIFO** Principle: *First in, First Out*
- Elements inserted only at rear (enqueued) end and removed from front (dequeued)
 - Also called "Head" and "Tail"

Front Rear

- FIFO Principle: First in, First Out
- Elements inserted only at rear (enqueued) end and removed from front (dequeued)
 - Also called "Head" and "Tail"

- **FIFO** Principle: *First in, First Out*
- Elements inserted only at rear (enqueued) end and removed from front (dequeued)
 - Also called "Head" and "Tail"

- **FIFO** Principle: *First in, First Out*
- Elements inserted only at rear (enqueued) end and removed from front (dequeued)
 - Also called "Head" and "Tail"

Queue - Methods

- queue New() Creates and returns an empty queue
- Enqueue(item v) Inserts object v at the rear of the queue
- item **Dequeue**() Removes the object from *front* of the queue. Error occurs if the queue is empty
- item Front() Returns, but does not remove the front element. An error occurs if the queue is empty (also called Peek())
- int Size() number of items in queue

Queue -Invariants

- Q=New();Q.Enqueue(v);Q.front(); returns vQ=New();Q.Enqueue(v);Q.Dequeue(); has
- same queue state as New()
- Q.Enqueue(w);Q.Enqueue(v);Q.front(); returns the same value as
 - Q.Enqueue(w);Q.front();
- Q.Enqueue(w);Q.Enqueue(v);Q.Dequeue(); has same queue state as
 - Q.Enqueue(w);Q.Dequeue();Q.Enqueue(v);

Array Implementation of Queue

- Using array in circular fashion
 - Wraparound using mapping function (recollect from List ADT discussion)
- A max size N is specified
- Q consists of an N element array and 2 integer variables having array index:
 - f: index of the front element (head, for dequeue)
 - r: index of the element after the rear one (tail, for enqueue)

Array Implementation of Queue

What does f=r mean?

- Resolve Ambiguity:
 - We will never add nth element to Queue (declare full if the size of queue is N-1).

Pseudo Code

```
int front()
 If size()==0 then Return QueueEmptyException
 Else Return Q[f]
int Dequeue()
 If isEmpty() then Return QueueEmptyException
 v = O[f]
 Q[f] = null
 f = (f+1) \mod N
 Return v
Enqueue (v)
 If size()==N-1 then Return QueueFullException
 Q[r] = v
 r = (r+1) \mod N
int size()
 Return (N-f+r) mod N
```


Queue using a Linked List

■ Problem with array: Requires the number of elements (capacity) *a priori*.

Queue using a Linked List

Nodes (data, pointer) connected in a chain by links

- Maintain two pointers, to head and tail of linked list.
- The head of the list is FRONT of the queue, the tail of the list is REAR of the queue.
- Why not the opposite?

Linear Lists vs. Trees

- Linear lists are useful for <u>serially ordered</u> data
 - $-(e_1,e_2,e_3,...,e_n)$
 - Days of week
 - Months in a year
 - Students in a class
- Trees are useful for hierarchically ordered data
 - Joe's descendants
 - Corporate structure
 - Government Subdivisions
 - Software structure

Joe's Descendants

Definition of Tree

- A tree t is a finite non-empty set of elements
- One of these elements is called the root
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

Subtrees

Tree Terminology

- The element at the top of the hierarchy is the root.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the roo and so on.
- Elements at the lowest level of the hierarchy are the leaves.

Tree Terminology

 Leaves, Parent, Grandparent, Siblings, Ancestors, Descendents


```
Leaves = {Mike,AI,Sue,Chris}
Parent(Mary) = Joe
Grandparent(Sue) = Mary
Siblings(Mary) = {Ann,John}
Ancestors(Mike) = {Ann,Joe}
Descendents(Mary)={Mark,Sue}
```


Tree Terminology

- **Depth** of Node = No. of edges from the root to that node
- Height of Tree = No. of edges from root to farthest leaf
- Number of Levels of a Tree = Height + 1
- Node degree is the number of children it has

Binary Tree

- A finite (possibly empty) collection of elements
- A non-empty binary tree has a root element and the remaining elements (if any) are partitioned into two binary trees
- They are called the left and right sub-trees of the binary tree

Binary Tree for Expressions

Figure 11.5 Expression trees

Binary Tree Properties

- 1. The drawing of every binary tree with n elements, n > 0, has exactly n-1 edges.
 - Each node has exactly 1 parent (except root)
- 2. A binary tree of height h, h >= 0, has at least h + 1 and at most $2^{h+1} 1$ elements in it.
 - h+1 levels; at least 1 element at each level →
 #elements = h+1
 - At most 2^{i-1} elements at i-th level $\rightarrow \Sigma$ 2ⁱ⁻¹ = 2^{h+1}-1 a+ar¹+ar²+...+ arⁿ = a(rⁿ⁺¹-1)/(r-1)

Note: Some tree definitions differ between computer science & discrete math

Binary Tree Properties

- 3. The height of a binary tree that contains n elements, n >= 0, is at least $\log_2 n$ and at most n-1.
 - At least one element at each level \rightarrow h_{max} = #elements 1
 - From prev: $h_{min} = ceil(log(n+1))$

minimum number of elements

maximum number of elements

Full Binary Tree

- A full binary tree of height h has exactly 2h+1-1 nodes
- Numbering the nodes in a full binary tree
 - Number the nodes 1 through 2^{h+1}-1
 - Number by levels from top to bottom
 - Within a level, number from left to right

Complete Binary Tree with N Nodes

- Start with a full binary tree that has at least n nodes
- Number the nodes as described earlier
- The binary tree defined by the nodes numbered 1 through n is the n-node complete binary tree
- A full binary tree is a special case of a complete binary tree

Complete Binary Tree

- Complete binary tree with 10 nodes.
- Same node number properties (as in full binary tree) also hold here.

Binary Tree Representation

- Array representation
- Linked representation

Array Representation

 The binary tree is represented in an array by storing each element at the array position corresponding to the number assigned to it.

Incomplete Binary Trees

Complete binary tree with some missing elements

Figure 8.8 Incomplete binary trees

What tree type would lead to least space wastage? What tree type would lead to most space wastage?

Right-Skewed Binary Tree

- An n node binary tree needs an array whose length is between n+1 and 2n.
- Right-skewed binary tree wastes the most space
- What about left-skewed binary tree?
 - Equally bad, O(2ⁿ) space

Linked Representation

- The most popular way to present a binary tree
- Each element is represented by a node that has two link fields (leftChild and rightChild) plus an item field
- Each binary tree node is represented as an object whose data type is BinTreeNode
- The space required by an n node binary tree is n*sizeof(BinTreeNode)

Linked Representation

Node Class For Linked Binary Tree

```
class BinTreeNode {
  int item;
  BinTreeNode *left, *right;
  BinTreeNode() {
    left = right = NULL;
```


Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree
- In a traversal, each element of the binary tree is visited exactly once
- During the visit of an element, all actions (make a copy, display, evaluate the operator, etc.) with respect to this element are taken

Binary Tree Traversal Methods

Preorder

 The root of the subtree is processed first before going into the left then right subtree (root, left, right)

Inorder

 After the complete processing of the left subtree first the root is processed followed by the processing of the complete right subtree (left, root, right)

Postorder

 The left and right subtree are completely processed, before the root is processed (left, right, root)

Level order

- The tree is processed one level at a time
- First all nodes in level i are processed from left to right
- ► Then first node of level *i+1* is visited, and rest of level *i+1* processed

Preorder Traversal

```
void preOrder(BinTreeNode *t) {
 if (t != NULL) {
                  // Visit root 1st
   visit(t);
   Subtree
   preOrder(t->right);  // Right
Subtree
```


Preorder Example (visit action = print)

Inorder Traversal

```
void inOrder(BinTreeNode *t) {
  if (t != NULL) {
    inOrder(t->left); // Left Subtree 1st
                          // Visit root
    visit(t);
    inOrder(t->right);  // Right
Subtree last
```


Inorder example

Postorder Traversal

```
void postOrder(BinTreeNode *t) {
  if (t != NULL) {
    postOrder(t->left); // Left Subtree
1st
    postOrder(t->right);// Right Subtree
                          // Visit root
    visit(t);
last
```


Level Order Traversal

```
void levelOrder(BinTreeNode *t){
  Queue < BinTreeNode *> q;
  while (t != NULL) {
    visit(t); // visit t
   // push children to queue
    if (t->left) q.enqueue(t->left);
    if (t->right) q.enqueue(t->right);
    t = q.dequeue(); // next node to
visit
```


Level Order Example

- Add and delete nodes from a queue
- Output: a b c d e f g h i j

Space and Time Complexity

- The worst-case space complexity of each of the four traversal algorithms is O(n)
 - Find out the best-case space complexity for each traversal
- The worst-case time complexity of each of the four traversal algorithm is O(n)
 - Each node visited only once

Math Expression Evaluation: Binary Tree Form

Binary Tree Form

$$(((a + b) * (c - d)) / (e + f))$$

Merits Of Binary Tree Form

- Left and right operands are easy to visualise
- Code optimisation algorithms work with the binary tree form of an expression
- Simple recursive evaluation of expression

Work it out!

Postorder of Expression Tree

a b + c d - * e f + /
Gives postfix form of expression.

How can you evaluate this postfix expression using a stack? Try out yourself.

Inorder of Expression Tree

- Gives infix form of expression, which is how we normally write math expressions.
 - What about parentheses?
 - Fully parenthesized output of the above tree?

Tasks

- Self study (Sahni Textbook)
 - Chapter 8, Stacks
 - Chapter 9, Queues from textbook
 - ► Chapter 11.0-11.6, Trees & Binary Trees from textbook