

# **S Nagasundari**

Department of Computer Science and Engineering

# Unit – 5 Link Layer and LAN Roadmap



- Introduction
- Error detection, correction
- Multiple access protocols
- LANs
  - Addressing, ARP
  - Ethernet
  - Switches
- A day in the life of a web request
- Physical layer
- Wireless LANs: IEEE 802.11



**Class 51: Link Layer Switches: Learning Objectives** 



- Multiple Simultaneous Transmissions
- Frame Forwarding and Filtering



### **Ethernet switch**



- Switch is a link-layer device: takes an active role
  - Store, forward Ethernet frames
  - Examine incoming frame's MAC address,
  - selectively forward frame to one-or-more outgoing links,
  - uses CSMA/CD to access segment
- Transparent: hosts unaware of presence of switches
- Plug-and-play, self-learning
  - Switches do not need to be configured

# **Switch: Multiple Simultaneous Transmissions**

PES UNIVERSITY ONLINE

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, so:
  - no collisions; full duplex
  - each link is its own collision domain
- Switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions



switch with six interfaces (1,2,3,4,5,6)

# **Switch: Multiple Simultaneous Transmissions**

PES UNIVERSITY ONLINE

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, so:
  - No collisions; full duplex
  - Each link is its own collision domain
- Switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions
  - but A-to-A' and C to A' can not happen simultaneously



switch with six interfaces (1,2,3,4,5,6)

## **Switch Forwarding Table**



Q: How does switch know A' reachable via interface 4, B' reachable via interface 5?

<u>A:</u> Each switch has a switch table, each entry:

- (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!

**Q:** How are entries created, maintained in switch table?

something like a routing protocol?



Switch: Self - learning

- Switch *learns* which hosts can be reached through which interfaces
  - When frame received, switch "learns" location of sender: incoming LAN segment
  - Records sender/location pair in switch table

Switch table (initially empty)

| MAC addr | interface | TTL |
|----------|-----------|-----|
| A        | 1         | 60  |
|          |           |     |



# **Switch: Frame Filtering / Forwarding**

# PES UNIVERSITY ONLINE

## When frame received at switch:

- 1. Record incoming link, MAC address of sending host
- 2. Index switch table using MAC destination address

```
3. If entry found for destination then {
If destination on segment from which frame arrived then drop frame
    else forward frame on interface indicated by entry
}
else flood /* forward on all interfaces except arriving interface
*/
```

# **Self-learning, Forwarding: Example**

- Frame destination, A', location unknown: Flood
- Destination A location known: Selectively send on just one link

| MAC addr | interface | TTL |
|----------|-----------|-----|
| Α        | 1         | 60  |
| A'       | 4         | 60  |





# **Interconnecting Switches**



## Self-learning switches can be connected together:



<u>Q:</u>

Sending from A to G – how does S<sub>1</sub> know to forward frame destined to G via S<sub>4</sub> and S<sub>3</sub>?



 A: self learning! (works exactly the same as in single-switch case!)

# **Self-learning Multi-switch Example**



Suppose C sends frame to I, I responds to C



 $\underline{\mathbf{Q}}$ : show switch tables and packet forwarding in  $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_4$ 

## **Self-learning Multi-switch Example**

Suppose C sends frame to I, I responds to C



S1

| Addre ss | Port |
|----------|------|
| С        | ı    |
| ľ        | 4    |

**S4** 

| Addre<br>ss | Port |
|-------------|------|
| С           | 1    |
| 1           | 3    |

• Q: show switch tables and packet forwarding in S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>, S<sub>4</sub>

S2

| Addre<br>ss | Port |
|-------------|------|
| С           | 1    |
|             |      |

S3

| Addre<br>ss | Port |
|-------------|------|
| С           | 1    |
| I           | 2    |

Link Layer and LANs 6-92

## **Properties of Link Layer Switching**

# PES UNIVERSITY ONLINE

## Elimination of collisions

- In a LAN built from switches (and without hubs), there is no wasted bandwidth due to collisions!
- buffer frames and never transmit more than one frame on a segment at any one time.
- As with a router, the maximum aggregate throughput of a switch is the sum of all the switch interface rates.
- provide a significant performance improvement over LANs with broadcast links.

## Heterogeneous links

- Because a switch isolates one link from another, the different links in the LAN can operate at different speeds and can run over different media.
- Example, three1 Gbps 1000BASE-T copper links, two 100 Mbps 100BASE-FX fiber links, and one 100BASE-T copper link.

## **Properties of Link Layer Switching**



- Management
  - providing enhanced security,
  - eases network management
    - Example,
    - If an adapter malfunctions and continually sends Ethernet frames (called a jabbering adapter),
      - a switch can detect the problem and internally disconnect the malfunctioning adapter.
    - Similarly, a cable cut disconnects only that host that was using the cut cable to connect to the switch.
    - Gather statistics on bandwidth usage, collision rates, and traffic types, and make this information available to the network manager.
    - Used to debug and correct problems, and to plan future LAN

# **Small Institutional Network**





### **Switches Vs Routers**

### Both are store-and-forward:

- Routers: network-layer devices (examine network-layer headers)
- Switches: link-layer devices (examine link-layer headers)

## Both have forwarding tables:

- Routers: compute tables using routing algorithms, IP addresses
- Switches: learn forwarding table using flooding, learning, MAC addresses



### **Switches Vs Routers**



### **Switches**

### **Pros**

- plug-and-play
- relatively high filtering and forwarding rates
- prevent the cycling of broadcast frames, the active topology of a switched network is restricted to a spanning tree.

#### Cons

- large switched network would require large ARP tables in the hosts and routers and generate substantial ARP traffic and processing.
- susceptible to broadcast storms
- if one host goes haywire and transmits an endless stream of Ethernet broadcast frames, the switches will forward all of these frames, causing the entire network to collapse

### **Switches Vs Routers**



### Routers

### Pros

- Because network addressing is hierarchical, packets do not normally cycle through routers even when the network has redundant paths.
- packets can cycle when router tables are misconfigured;
- IP uses a special datagram header field to limit the cycling.
- packets are not restricted to a spanning tree and can use the best path between source and destination.
- allowed the Internet to be built with a rich topology. Ex: multiple active links between Europe and North America.
- provide firewall protection against layer-2 broadcast storms.

#### Cons

- not plug-and-play—they and the hosts that connect to them need their IP addresses to be configured.
- Larger per-packet processing time than switches

## **Hubs Vs Switches Vs Routers**

| Hubs Routers Switches  Traffic isolation No Yes Yes  Plug and play Yes No Yes |                   |      |         |          |
|-------------------------------------------------------------------------------|-------------------|------|---------|----------|
|                                                                               |                   | Hubs | Routers | Switches |
|                                                                               | Traffic isolation | No   | Yes     | Yes      |
|                                                                               |                   |      |         |          |

Table 6.1 ◆ Comparison of the typical features of popular interconnection devices





# **THANK YOU**

**S Nagasundari** 

Department of Computer Science and Engineering

nagasundaris@pes.edu