

An Introduction to Declarative Programming for Blockchain Applications

Declarative Programming

V.S. Imperative programming

- Example:
 - o Declarative: SQL, Prolog, Haskel, ...
 - Imperative Rust, C++, ...

Logic without control flow

No explicit algorithms

Minimize side effects

What v.s. How

Constraints on "Decision Variables"

Describe *properties* of a "solution" to be found

Example:

- find x and y such that
 - x * y = 100
 - x + y = 25
- One possible solution: x = 20 and y = 5

Smart contracts describe state updates

Imperative contracts: state updates are a side effect

Constraint-based contracts are a better fit!

- Describe allowed state changes
- "Solution" = proposed state changes **computed off-chain**
- Validators verify constraints given a solution

Constraint-based DSL for declarative chains

Contract:

- Storage
- Set of predicates

Predicate:

- Variables
- Set of constraints

Demo

