Instrument ShAred Artifact for Computing (ISAAC)

Newton QMFIR Spec

FPGA Specification for ISAAC Newton Quadrature Modulation with Polyphase Decimation Filter

ISAAC Document Number: D-xxxxxx

Revision: 1.0

FPGA Rev:

Date: January 14, 2009

FPGA Authors: Kayla Nguyen

Jason Zheng

Custodian: Kayla Nguyen

Summary: This document serves as the documentation for the FPGA design for ISAAC

Newton Quadrature Modulation with Polyphase Decimation Filter. This document only has the information relating to the FPGA and its internal modules. This does not provide interface information between

the FPGA and its surroundings.

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the ISAAC Project Library at https://isaac/

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109-8099

Contents

Ι	IN	TRODUCTION	5
	0.1	Purpose	6
	0.2	ISAAC Background	6
	0.3	Overview of Requirements	6
1	•	IFIR FPGA Overall Architecture	7
	1.1	One Stream (QM + FIRDecim)	7
II	\mathbf{Q}	MFIR FPGA MODULES DESCRIPTION	9
2	Qua	adrature Modulation	10
	2.1	Theory of QM	10
	2.2	Interface	11
	2.3	Parameters	12
	2.4	Look-up Table	12
		2.4.1 Look-up Table Interface	12
		2.4.2 Look-up Table Generation	13
		2.4.3 Look-up Table Memory	13
	2.5	Quadrature Modulation Core	16
	2.6	Resource Usage	17
	2.7	Code Download	17
3	Poly	yphase Decimation Filter 1	18
	3.1	Theory of Polyphase Decimcation Filter	18
	3.2	Design of Firdecim1	18
	3.3	Interface	19
	3.4	Parameters	20
	3.5	Multiply-Accumulate (MAC)	20
		3.5.1 MAC Interface	20
		3.5.2 MAC Parameters	21
		3.5.3 MAC Logic	21
	3.6	FIRDecim1 Module	22
	3.7	Resource Usage	23
	3 8	Code Download	2/

CONTENTS

4	Poly	yphase Decimation Filter 2	25
	4.1	Theory of Polyphase Decimcation Filter	25
	4.2	Design of Firdecim2	
	4.3	Interface	26
	4.4	Parameters	27
	4.5	Multiply-Accumulator	28
	4.6	FIRDecim2 Module	29
	4.7	Resource Usage	29
	4.8	Code Download	30
5	Poly	yphase Decimation Filter 3	31
	5.1	Theory of Polyphase Decimcation Filter	31
	5.2	Design of Firdecim3	31
	5.3	Interface	32
	5.4	Parameters	33
	5.5	Multiply-Accumulator	33
	5.6	FIRDecim3 Module	33
	5.7	Resource Usage	34
	5.8	Code Download	34
Π	I A	APPENDIX	35

List of Figures

1.1	ISAAC Newton FPGA Architecture (QM + FIRDecim)	7
2.1	QM Interface Block	11
2.2	LUT Interface Block	
2.3	QM Logic	16
3.1	FIRDecim1 Design Block Diagram	18
3.2	FIRDecim1 Inputs and Outputs	19
3.3	MAC Inputs and Outputs	20
3.4	MAC Logic	22
3.5	FIRDecim1 Logic	
4.1	FIRDecim2 Design Block Diagram	25
4.2	FIRDecim2 Inputs and Outputs	26
4.3	FIRDecim2 Multiply Accumulate	28
4.4	FIRDecim2 Logic	29
5.1	FIRDecim3 Design Block Diagram	31
5.2	FIRDecim3 Inputs and Outputs	32

List of Tables

1	Digital Filter Design Parameters	6
2.1	Quadrature Modulation Module Signals	11
2.2	Quadrature Modulation Module Signals	12
2.3	Memory Size of the Three Look-up Tables in QM Module	13
2.4	Memory Map of LkupTbl1 (Channel 1)	14
2.5	Memory Map of LkupTbl2 (Noise Channel)	14
2.6	Memory Map of LkupTbl3 (Channel 2)	15
2.7	Resource Usage for Quadrature Modultion Module	17
3.1	FIRDecim1 Design Parameters	19
3.2	Interface Signals for Firdecim1	19
3.3	Interface Signals for MAC	21
3.4	Resource Usage for FIRDecim1 Module	23
4.1	FIRDecim2 Design Parameters	26
4.2	Interface Signals for Firdecim2	
4.3	Resource Usage for FIRDecim2 Module	
5.1	FIRDecim3 Design Parameters	32
5.2	Interface Signals for Firdecim3	
5.3	Resource Usage for FIRDecim3 Module	
5.4	Stream Representation of FIRDecim1	

${f Part\ I}$ INTRODUCTION

0.1 Purpose

This document serves as the ISAAC Newton Quadrature Modulation with Polyphase Decimation Filter (QMFIR) FPGA design specification. This has sufficient details for future ISAAC FPGA review and usage of the core.

0.2 ISAAC Background

ISAAC is a 3-year R&TD task (starting on fiscal year 2008), focusing on reusable modules used by different instruments. Currently there are four subtasks within the ISAAC framework: Asimov, Stern, Singer, and Newton. ISAAC Newton focuses on the radar application; specifically for fiscal year 2008, the on-board processing power which eventually supports the SMAP (Soil Moister Active-Passive) project. The FPGA module QMFIR is the on-board processing Quadrature Modulation and Polyphase Decimation Filter.

0.3 Overview of Requirements

Table 1: Digital Filter Design Parameters

Design Parameter	Requirement
Bandwidth	1 MHz
Input Sampling Rate	60 MHz
Output Sampling Rate	1.2 MHz
Passband Ripple	-40 dB
Stopband Ripple	0.1 dB
Integrate SideLobe Ratio (ISLR)	-20 dB
Peak SideLobe Ration (PSLR)	-30 dB
Pulse Broadening	1.2

Algorithm development for the digital filter was done by Charles Le (section 334).

Chapter 1

QMFIR FPGA Overall Architecture

1.1 One Stream (QM + FIRDecim)

The overall architecture of the ISAAC Newton FPGA consists of the Quadrature Modulation (QM) module along with three Polyphase Decimation Finite Impulse Response Filter (FIRDecim) modules. The data flow between the modules is as follows:

Figure 1.1: ISAAC Newton FPGA Architecture (QM + FIRDecim)

From figure (1.1), the input to the QM module is a 60MHz ADC signal. The goal is to bring the input

signal down to baseband and decimate it by 50 times such that the output is at 1.2MHz. The Quadrature Modulation module takes in one input and splits the signals into its respective Band 1, Band 2, and noise band (real and imaginary for all 3 bands). At the end, there are six chains of FIRDecim filters. Each chain of filters consists of three separate filter modules called FIRDecim1, FIRDecim2, and FIRDecim3. Each FIRDecim module is designed specifically to the input bandwidth, output bandwidth, and the decimation factor. The next few chapters describes in detail all of the blocks from the above figure.

Part II QMFIR FPGA MODULES DESCRIPTION

Chapter 2

Quadrature Modulation

2.1 Theory of QM

Quadrature Modulation takes an incoming signal and demodulate the incoming signal from 60MHz down to baseband by performing a multiplication with sine or cosine:

Real_Output = Input *
$$cos(2\pi f)$$

Imag_Output = Input * $sin(2\pi f)$

where f is the frequency and is defined as

$$f = \frac{\text{center frequency}}{\text{sampling frequency}} \tag{2.1}$$

2.2 Interface

Figure (2.1) shows the interface block diagram of the QM module. It shows the inputs and outputs interface, as well as the internal modules that it uses.

Figure 2.1: QM Interface Block

Table 2.1: Quadrature Modulation Module Signals

Signal	Direction	Size	Active Level	Description
CLK	Input	1-bit	Rising Edge	Clock input value.
ARST	Input	1-bit	High	Asynchronous reset. All module registers are
				cleared when this signal is high
Sync	Input	1-bit	High	Synchronization to beginning of the look-up
				tables. All counters are cleared when this
				signal is high.
Constant	Input	IWIDTH	N/A	Input data.
InputValid	Input	1-bit	High	Indicate that the value on the Constant
				signal is valid.
Real1	Output	OWIDTH	N/A	Band 1 real data output. Result of input by
				cosine of frequency 1.
Imag1	Output	OWIDTH	N/A	Band 1 imaginary data output. Result of input
				by sine of frequency 1.
Real2	Output	OWIDTH	N/A	Noise real data output. Result of input by
				cosine of noise frequency.
Imag2	Output	OWIDTH	N/A	Noise imaginary data output. Result of input
				by sine of noise frequency.
Real3	Output	OWIDTH	N/A	Band 2 real data output. Result of input by
				cosine of frequency 2.
Imag3	Output	OWIDTH	N/A	Band 2 imaginary data output. Result of input
				by sine of frequency 2.
OutputValid	Output	1-bit	High	Indicate that the output data are valid.

2.3 Parameters

The main parameters that are open to the user for the QM module are:

OWIDTH Output bit-width IWIDTH Input bit-width

MAXCNT1 Counter up to repeating for channel 1 & 2 (Look-up table 1 & 3)

MAXCNT2 Counter up to repeating for channel 3 (Look-up table 2)
CNTWIDTH1 Counter bit-width for channel 1 & ch 2 (Look-up table 1 & 3)

CNTWIDTH2 Counter bit-width for channel 3 (or Look-up table 2)

The parameters MAXCNT1, MAXCNT2, CNTWIDTH1, CNTWIDTH2 can be found within the Look-up table Verilog files.

2.4 Look-up Table

In order to implement the sine and cosine function, look-up tables specialized in the specific frequencies are used.

2.4.1 Look-up Table Interface

The Look-up Table (LkupTbl) that is used by the QM module is the sin/cos look-up table. Figure (2.2) shows the interface of the look-up table module.

Figure 2.2: LUT Interface Block

Table 2.2: Quadrature Modulation Module Signals

Signal	Direction	Size	Active Level	Description
CLK	Input	1-bit	Rising Edge	Input clock value.
ARST	Input	1-bit	High	Asynchronous reset. All module registers are
				cleared when this signal is high
cntr	Input	CNTWIDTH1,	N/A	Input counter to select memory space.
		CNTWIDTH2		
sine	Output	OWIDTH	N/A	Output sine data from memory.
cosine	Output	OWIDTH	N/A	Output cosine data from memory.

2.4.2 Look-up Table Generation

The look-up table used by the QM module is a memory mapping to each cntr address. The Verilog code for the look-up table is generated by a python script. This script is able to optimized the look-up table to a center frequency and to the sampling frequency. For the specific SMAP radar application, these are the requirements:

Sampling Frequency = 60 MHzCenter Frequency 1 = 12.5 MHzNoise Frequency = 15 MHzCenter Frequency 2 = 17.5 MHz

The sine and cosine outputs are defined as follows:

$$\begin{array}{lcl} \text{sine} & = & \sin \left(2\pi \cdot \operatorname{cntr} \cdot \frac{\operatorname{center frequency}}{\operatorname{sampling frequency}} \right) \\ \\ \operatorname{cosine} & = & \cos \left(2\pi \cdot \operatorname{cntr} \cdot \frac{\operatorname{center frequency}}{\operatorname{sampling frequency}} \right) \end{array}$$

The outputs of the three look-up tables used by the QM module are different, depending on the specific frequencies.

2.4.3 Look-up Table Memory

As mentioned above, the look-up tables are optimized to their center frequencies and sampling frequencies. This means that the sine and cosine function repeats, minimizing the memory size of the look-up tables.

Table 2.3: Memory Size of the Three Look-up Tables in QM Module

	LkupTbl1	LkupTbl2	LkupTbl3
Memory	24	4	24

From the above table, the counter (cntr) into the module has fixed bit width, CNTWIDTH1/CNTWIDTH2, depending on the memory size. This parameter is also optimized during the python scripting step with no extra inputs from the user.

2.4.3.1 Look-up Table 1

Note that the values in the Look-up Tables are stored in two's complement binary number, with 2 bits of integer and 14 bits of decimal.

Center Frequency = 12.5MHz

Table 2.4: Memory Map of LkupTbl1 (Channel 1)

Table 2.4: Memory Map of Lkup 1 bit (Channel 1)				
Memory (cntr)	Sine Value	Cosine Value	Equivalent Input in Radians	
0	0000_0000_0000_0000	0100_0000_0000_0000	0	
1	0011_1101_1101_0001	0001_0000_1001_0000	1.3090	
2	0001_1111_1111_1111	1100_1000_1001_0100	2.6180	
3	1101_0010_1011_1111	1101_0010_1011_1111	3.9270	
4	1100_1000_1001_0100	0010_0000_0000_0000	5.2360	
5	0001_0000_1001_0000	0011_1101_1101_0001	0.2618	
6	0100_0000_0000_0000	0000_0000_0000_0000	1.5708	
7	0001_0000_1001_0000	1100_0010_0010_1111	2.8798	
8	1100_1000_1001_0100	1110_0000_0000_0001	4.1888	
9	1101_0010_1011_1111	0010_1101_0100_0001	5.4978	
10	0001_1111_1111_1111	0011_0111_0110_1100	0.5236	
11	0011_1101_1101_0001	1110_1111_0111_0000	1.8326	
12	0000_0000_0000_0000	1100_0000_0000_0000	3.1416	
13	1100_0010_0010_1111	1110_1111_0111_0000	4.4506	
14	1110_0000_0000_0000	0011_0111_0110_1100	5.7596	
15	0010_1101_0100_0001	0010_1101_0100_0001	0.7854	
16	0011_0111_0110_1100	1110_0000_0000_0000	2.0944	
17	1110_1111_0111_0000	1100_0010_0010_1111	3.4034	
18	1100_0000_0000_0000	0000_0000_0000_0000	4.7124	
19	1110_1111_0111_0000	0011_1101_1101_0001	6.0214	
20	0011_0111_0110_1100	0010_0000_0000_0000	1.0472	
21	0010_1101_0100_0001	1101_0010_1011_1111	2.3562	
22	1110_0000_0000_0001	1100_1000_1001_0100	3.6652	
23	1100_0010_0010_1111	0001_0000_1001_0000	4.9742	

2.4.3.2 Look-up Table 2

Center Frequency = 15MHz

Table 2.5: Memory Map of LkupTbl2 (Noise Channel)

Memory (cntr)	Sine Value	Cosine Value	Equivalent Input in Radians
0	0000_0000_0000_0000	0100_0000_0000_0000	0
1	0100_0000_0000_0000	0000_0000_0000_0000	1.5708
2	0000_0000_0000_0000	1100_0000_0000_0000	3.1416
3	1100_0000_0000_0000	0000_0000_0000_0000	4.7124

2.4.3.3 Look-up Table 3

Center Frequency = 17.5MHz

Table 2.6: Memory Map of LkupTbl3 (Channel 2)

Memory (cntr)	Sine Value	Cosine Value	Equivalent Input in Radians
0	0000_0000_0000_0000	0100_0000_0000_0000	0
1	0011_1101_1101_0001	1110_1111_0111_0000	1.8326
2	1110_0000_0000_0001	1100_1000_1001_0100	3.6652
3	1101_0010_1011_1111	0010_1101_0100_0001	5.4978
4	0011_0111_0110_1100	0010_0000_0000_0000	1.0472
5	0001_0000_1001_0000	1100_0010_0010_1111	2.8798
6	1100_0000_0000_0000	0000_0000_0000_0000	4.7125
7	0001_0000_1001_0000	0011_1101_1101_0001	0.2618
8	0011_0111_0110_1100	1110_0000_0000_0001	2.0944
9	1101_0010_1011_1111	1101_0010_1011_1111	3.9270
10	1110_0000_0000_0000	0011_0111_0110_1100	5.7596
11	0011_1101_1101_0001	0001_0000_1001_0000	1.3090
12	0000_0000_0000_0000	1100_0000_0000_0000	3.1416
13	1100_0010_0010_1111	0001_0000_1001_0000	4.9742
14	0001_1111_1111_1111	0011_0111_0110_1100	0.5236
15	0010_1101_0100_0001	1101_0010_1011_1111	2.3542
16	1100_1000_1001_0100	1110_0000_0000_0000	4.1888
17	1110_1111_0111_0000	0011_1101_1101_0001	6.0214
18	0100_0000_0000_0000	0000_0000_0000_0000	1.5708
19	1110_1111_0111_0000	1100_0010_0010_1111	3.4034
20	1100_1000_1001_0100	0001_1111_1111_1111	5.2360
21	0010_1101_0100_0001	0010_1101_0100_0001	0.7854
22	0010_0000_0000_0000	1100_1000_1001_0100	2.6180
23	1100_0010_0010_1111	1110_1111_0111_0000	4.4506

2.5 Quadrature Modulation Core

The Quadrature Modulation (QM) core consists of 6 multipliers along with the three look-up tables described above. The module takes in the measured data and demodulates it according to the center frequencies. The algorithm for the quadrature modulation is:

Real = Constant * Cosine_n Imag = Constant * Sine_n

where Cosine_n and Sine_n are the outputs of the Look-up Table for n=1:3.

Figure (2.3) shows the logic for the QM core.

Figure 2.3: QM Logic

In figure (2.3), counter1 is the input counter to look-up table 1 and 3 since they have the same memory size, and counter2 is the input counter to look-up table 2.

2.6 Resource Usage

Table 2.6 summarizes the resource usage for different devices for the Quadrature Modulation module. Note that the input bit width (IWIDTH) and output bit width (OWIDTH) are 16-bit in this resource usage report.

Table 2.7: Resource Usage for Quadrature Modultion Module

Device	XC2V3000-BF957-4	XQR4VFX60-CF1144-10	XC5VFX130F-FF1738-1
Maximum Speed	$115 \mathrm{MHz}$	$150 \mathrm{MHz}$	$175 \mathrm{MHz}$
# of Multipliers	6	6	6
# of Flip Flops	177	177	177
# of LUTs	108	108	63
# of Slices	114	114	80
Power Usage			

2.7 Code Download

Chapter 3

Polyphase Decimation Filter 1

3.1 Theory of Polyphase Decimcation Filter

The purpose of the Polyphase Decimation Filter is to use a Finite Impulse Response Filter (FIR) to decimate the incoming signal by a factor of M.

3.2 Design of Firdecim1

The Polyphase Decimation Filter 1 (FIRDecim1) is a filter with 15 taps which filters the input signal and decimates the input by a factor of 5. The core of the FIRDecim1 design is the multiply-accumulate (MAC) unit. The basic idea behind the design for FIRDecim1 is given in figure (3.1).

Figure 3.1: FIRDecim1 Design Block Diagram

Table 3.1: FIRDecim1 Design Parameters

Design Parameter	Requirement
Input clock rate	60 MHz
Input data rate	60 MHz
Output data rate	12 MHz
Number of taps	15
Decimation factor	5

3.3 Interface

Figure (3.2) shows the inputs and outputs of the FIRDecim1 module.

Figure 3.2: FIRDecim1 Inputs and Outputs

Table 3.2: Interface Signals for Firdecim1

Signal	Direction	Size	Active Level	Description	
CLK	Input	1-bit	Rising Edge	Clock input value.	
ARST	Input	1-bit	High	Asynchronous reset. All module registers are	
				cleared when this signal is high	
Sync	Input	1-bit	High	Synchronization to beginning of the look-up	
				tables. All counters are cleared when this	
				signal is high.	
InputValid	Input	1-bit	High	Indicate that SigIn is valid.	
SigIn	Input	IWIDTH	N/A	Input data.	
DataValid	Output	1-bit	High	Indicate that SigOut is valid.	
SigOut	Output	OWIDTH	N/A	Output data.	

3.4 Parameters

The goal of ISAAC is to make cores which are parameterizable to different instrument needs. Therefore, the following is a list of the parameters that can be adjusted as needed according to design.

e1 - eNTAPS Filter Coefficients (NTAPS of them)

OWIDTH Output bit width
IWIDTH Input bit width
NTAPS Number of taps
CNTWIDTH Counter bit width

Note that the current Verilog code is written for NTAPS = 15 taps.

3.5 Multiply-Accumulate (MAC)

3.5.1 MAC Interface

The inputs and output of the MAC module is given in figure (3.3).

Figure 3.3: MAC Inputs and Outputs

Table 3.3: Interface Signals for MAC

Signal	Direction	Size	Active Level	Description	
CLK	Input	1-bit	Rising Edge	Clock input value.	
ARST	Input	1-bit	High	Asynchronous reset. All module registers are	
				cleared when this signal is high	
Sync	Input	1-bit	High	Synchronization to beginning of the look-up	
				tables. All counters are cleared when this	
				signal is high.	
initialize	Input	1-bit	High	Initialize the accumulator and counter to 0	
filterCoef	Input	IWIDTH	N/A	Filter coefficient input	
input_Valid	Input	1-bit	High	Indicates that value in InData is valid	
InData	Input	IWIDTH	N/A	Input data	
output_Valid	Output	1-bit	High	Indicates that value in OutData is valid	
OutData	Output	OWIDTH	N/A	Output Data from MAC	

3.5.2 MAC Parameters

The Multiply-Accumulate (MAC) unit has been designed to be parameterizable. This MAC can be incorporated into any filter of any length with any numbers of taps. It also takes into account that not every input data is valid, and only accumulates the inputs that are valid. The parameters are:

IWIDTH Input bit widthOWIDTH Output bit width

AWIDTH Internal bit width (accumulator, multiplier)

NTAPS Total number of taps (including zeros)

NTAPSr Real number of taps in the filter

CNTWIDTH Counter bit width

NMULT Number of clocks it takes for multiplier to generate answer

This is to accommodate slow multipliers

3.5.3 MAC Logic

The logic for the MAC module is shown in figure (3.4). The design of this MAC allows the user to control when to reset the accumulator, counter, and when to assert the output_Valid signal. The reset of the accumulator and counter depends on the initialize signal. The assertion of output_Valid depends on the number of taps that is chosen as a parameter and the number of clocks it takes the multiplier to generate a valid answer.

For the current ISAAC design, the MAC resets and outputs a valid data every 15 clocks.

Figure 3.4: MAC Logic

3.6 FIRDecim1 Module

The FIRDecim1 block diagram was shown in figure (3.1). Figure (3.5) shows how the inputs to the MACs are generated inside the module, and how the outputs of the MACs are generated to be the outputs of the FIRDecim1 core.

There is an internal counter inside the FIRDecim1 block that controls when each MAC gets initialized. Each input signal to the MACs come straight from the inputs of the FIRDecim1 core. The coefficients to the MAC are generated this way:

MAC1	MAC filterCoef comes from coe0
	When the core gets Sync or ARST, the initialized value of coe0 is the parameter e0
MAC2	MAC filterCoef comes from coe10
	When the core gets Sync or ARST, the initialized value of coe10 is the parameter e10
MAC3	MAC filterCoef comes from coe5
	When the core gets Sync or ARST, the initialized value of coe5 is the parameter e5

Figure 3.5: FIRDecim1 Logic

After initialization, the coefficients gets rotated every clock that there is a valid input data. This way, the inputs gets multiplied by the correct coefficient. To get a more detailed description of the data flow inside the MAC and the FIRDecim1 module, refer to appendix.

3.7 Resource Usage

Table 2.6 summarizes the resource usage for different devices for the FIRDecim1 module. Note that the input bit width (IWIDTH) and output bit width (OWIDTH) are 16-bit in this resource usage report.

Table 3.4: Resource Usage for FIRDecim1 Module

Device	XC2V3000-BF957-4	XQR4VFX60-CF1144-10	XC5VFX130F-FF1738-1
Maximum Speed	132MHz	$159 \mathrm{MHz}$	180MHz
# of Multipliers	3	3	3
# of Flip Flops	488	488	488
# of LUTs	634	634	494
# of Slices	369	369	175
Power Usage			

3.8 Code Download

Chapter 4

Polyphase Decimation Filter 2

4.1 Theory of Polyphase Decimcation Filter

The purpose of the Polyphase Decimation Filter is to use a Finite Impulse Response Filter (FIR) to decimate the incoming signal by a factor of M.

4.2 Design of Firdecim2

The Polyphase Decimation Filter 2 (FIRDecim2) is a filter with 20 taps which filters the incoming data and decimates the input by a factor of 5. The core of the FIRDecim2 design is the 4 accumulators. The basic idea behind the design for FIRDecim2 is given in figure (4.1).

Figure 4.1: FIRDecim2 Design Block Diagram

Notice that the structure for FIRDecim2 is different than that of FIRDecim1. Table 4.2 is a list of the design parameters for FIRDecim2.

Table 4.1: FIRDecim2 Design Parameters

Design Parameter	Requirement
Input clock rate	60 MHz
Input data rate	12 MHz
Output data rate	2.4 MHz
Number of taps	15
Decimation factor	5

The main difference between FIRDecim1 and FIRDecim2 is the ratio of Input clock rate vs. Input data rate. In FIRDecim1, the Input clock rate vs. Input data rate ratio is 1:1. In FIRDecim2, the Input clock rate vs. Input data rate ratio is 5:1. This means that one input is valid for 5 internal clocks. By using this advantage, the design for FIRDecim2 utilized one single multiplier with 4 accumulators.

4.3 Interface

Figure (4.2) shows the inputs and outputs of the FIRDecim2 module.

Figure 4.2: FIRDecim2 Inputs and Outputs

Table 4.2: Interface Signals for Firdecim2

Signal	Direction	Size	Active Level	Description	
CLK	Input	1-bit	Rising Edge	Clock input value.	
ARST	Input	1-bit	High	Asynchronous reset. All module registers are	
				cleared when this signal is high	
Sync	Input	1-bit	High	Synchronization to beginning of the look-up	
				tables. All counters are cleared when this	
				signal is high.	
InputValid	Input	1-bit	High	Indicate that SigIn is valid.	
SigIn	Input	IWIDTH	N/A	Input data.	
DataValid	Output	1-bit	High	Indicate that SigOut is valid.	
SigOut	Output	OWIDTH	N/A	Output data.	

4.4 Parameters

The following is a list of the parameters that can be changed according to user.

e1 - eNTAPS Filter Coefficients (NTAPS number)

OWIDTH Output bit width
IWIDTH Input bit width
AWIDTH Internal bit width
NTAPS Number of taps

ACCUMCNTWIDTH Accumulator counter bit width

CNTWIDTH Counter bit width

NACCUM Number of accumulators

Note that the current Verilog code is written for 20 taps according to algorithm design.

4.5 Multiply-Accumulator

The Multiply-Accumulator in FIRDecim2 is different compared to the MAC in FIRDecim1. The function of the multiplier is to act as a filter with 20 taps. The function of the accumulator is to decimate the input down by 5. The multiplier in FIRDecim2 runs at the internal clock speed, but only gets a new input data every 5 clocks. The advantage of this is the design can use the same input data to multiply with different coefficients every clock. This allows the design to use one single multiplier.

Figure 4.3: FIRDecim2 Multiply Accumulate

4.6 FIRDecim2 Module

The FIRDecim2 block diagram was shown in figure (4.1). Figure (4.4) shows how the output signals are generated with the inputs to the Multiply-Accumulator shown in the previous section.

Figure 4.4: FIRDecim2 Logic

4.7 Resource Usage

Table 2.6 summarizes the resource usage for different devices for the FIRDecim2 module. Note that the input bit width (IWIDTH) and output bit width (OWIDTH) are 16-bit in this resource usage report.

Table 4	13.	Resource	Usage	for	FIR	Decim2	Module
	I.U.	T C C C C C C C C C C C C C C C C C C C	CBace	TOT	T 11		module

Device	Device XC2V3000-BF957-4		XC5VFX130F-FF1738-1	
Maximum Speed 100MHz		128MHz	145MHz	
# of Multipliers	# of Multipliers 1		1	
# of Flip Flops 540		534	538	
# of LUTs 749		749	695	
# of Slices	402	406	237	
Power Usage				

4.8 Code Download

Chapter 5

Polyphase Decimation Filter 3

5.1 Theory of Polyphase Decimcation Filter

The purpose of the Polyphase Decimation Filter is to use a Finite Impulse Response Filter (FIR) to decimate the incoming signal by a factor of M.

5.2 Design of Firdecim3

The Polyphase Decimation Filter 3 (FIRDecim3) is a filter with 50 taps which filters the incoming data and decimates the input by a factor of 2. The core of the FIRDecim3 design is the 25 accumulators. The basic idea behind the design for FIRDecim3 is given in figure (5.1).

Figure 5.1: FIRDecim3 Design Block Diagram

Notice that the structure for FIRDecim3 is similar to that of FIRDecim2. Table 5.2 is a list of the design parameters for FIRDecim3.

Table 5.1: FIRDecim3 Design Parameters

Design Parameter	Requirement
Input clock rate	60 MHz
Input data rate	2.4 MHz
Output data rate	1.2 MHz
Number of taps	50
Decimation factor	2

Similar to FIRDecim2, the Input Clock rate is faster than the Input Data rate (25:1) for FIRDecim3. This means that one input is valid for 25 internal clocks. By using this advantage, the design for FIRDecim3 utilized one single multiplier with 25 accumulators.

5.3 Interface

Figure (5.2) shows the inputs and outputs of the FIRDecim3 module.

Figure 5.2: FIRDecim3 Inputs and Outputs

Table 5.2: Interface Signals for Firdecim3

Signal	Direction	Size	Active Level	Description	
CLK	Input	1-bit	Rising Edge	Clock input value.	
ARST	Input	1-bit	High	Asynchronous reset. All module registers are	
				cleared when this signal is high	
Sync	Input	1-bit	High	Synchronization to beginning of the look-up	
				tables. All counters are cleared when this	
				signal is high.	
InputValid	Input	1-bit	High	Indicate that SigIn is valid.	
SigIn	Input	IWIDTH	N/A	Input data.	
DataValid	Output	1-bit	High	Indicate that SigOut is valid.	
SigOut	Output	OWIDTH	N/A	Output data.	

5.4 Parameters

The following is a list of the parameters that can be changed according to user.

e1 - eNTAPS Filter Coefficients (NTAPS number)

OWIDTH Output bit width
IWIDTH Input bit width
AWIDTH Internal bit width
NTAPS Number of taps

ACCUMCNTWIDTH Accumulator counter bit width

CNTWIDTH Counter bit width

NACCUM Number of accumulators

Note that the current Verilog code is written for 50 taps according to algorithm design.

5.5 Multiply-Accumulator

The Multiply-Accumulator for FIRDecim3 is the same as that of FIRDecim2 with the difference of 25 accumulators instead of 4 accumulators. Please refer to section 4.5 for the Multiply-Accumulator details.

5.6 FIRDecim3 Module

FIRDecim3 module is the same as that of FIRDecim2 module with the difference of 25 accumulator results instead of 4 accumulator results. Please refer to section 4.6 for the FIRDecim module details.

5.7 Resource Usage

Table 2.6 summarizes the resource usage for different devices for the FIRDecim3 module. Note that the input bit width (IWIDTH) and output bit width (OWIDTH) are 16-bit in this resource usage report.

Table 5.3: Resource Usage for FIRDecim3 Module

Device	XC2V3000-BF957-4	XQR4VFX60-CF1144-10	XC5VFX130F-FF1738-1
Maximum Speed	Maximum Speed 101MHz		134MHz
# of Multipliers	1	1	1
# of Flip Flops	1,787	1,792	1,785
# of LUTs	3,207	3,197	3,037
# of Slices	1,653	1,674	864
Power Usage			

5.8 Code Download

Part III APPENDIX

Table 5.4: Stream Representation of FIRDecim1

i35	e5	e14	eg	o2b
i30 i31 i32 i33 i34	e4	e13	e8	
i33	e2	e12	e7	
132	e1	e11	ga	
131	e0	010	e5	
130	214	e9 e10 e11 e12 e13	e4	olb
29	13	e8	e3	
28 j	12 6	e7	62	
27 j	11 6	g_{θ}	eI	
i26 i27 i28 i29	10	65	$e\theta$	
25 i	e9 e10 e11 e12 e13 e14 e0 e1	64	e10 e11 e12 e13 e14 e0 e1	o3a
i21 i22 i23 i24 i25	e8	63	313 e	
i23 li	e7 e8	e2	э12 е	
i 22	ga	e1	e11 e	
i21	65	$e\theta$	e10	
117 118 119 120	e3 e4	e10 e11 e12 e13 e14 e0 e1	69	o2a
i19	e3	e13	e8	
118	e2	e12	e2	
i17	e1	e11	9e	
i16	$e\theta$	e10	e2	
i14 i15	e12 e13 e14 e0 e1 e2	69	e4	ola
i14	e13	e8	63	
i13	e12	e2	e2	
i12)e11	9e	e1	
) i11	e1(e5	e0	
) 11(8 e9	e14 e0 e1 e2 e3 e4	e14	ox2 $ $
3:	34 E	52 e.	e12 e13	
i7 j	99	e1 (e11 e	
9i	e5	e0	e10 e11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64	e14	e9	ox1
14 i4	e3	2 e13	e8	
) i3	$1 e^{\frac{1}{2}}$	e1	6 e7	
[] I	0 ej	0 e11	ē	
Input ii	MAC1 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10	MAC2 $e10$	$\mathrm{MAC3}_{e5}$	Output

From table III, i's are inputs, e's are coefficients, o's are valid outputs. Each MAC accumulates for 15 clocks then gets an initialize signal to reset itself. Before it gets reset, it outputs the last valid accumulated value to the FIRDecim1 core. Each MAC stream starts to accumulate 5 clocks apart, and outputs a valid data 5 clocks apart. The following is a brief description of the MAC process. t1 means 1st clock, t2 means 2nd clock, etc.

MAC1:	ij	MAC2:	••1	MAC3:	
t1.)	accum = e0.i1	t1.)	$accum = x \cdot i1$	t1.)	$accum = x \cdot i1$
t2.)	$accum = accum + e1 \cdot i2$	t2.)	$accum = accum + x \cdot i2$	t2.)	$accum = accum + x \cdot i2$
(3.)	accum = accum + e2i3			t3.)	$accum = accum + x \cdot i3$
t4.)	accum = accum + e3.i4	t4.)	$\begin{array}{c} \cdot \\ \text{accum} = \text{accum} + \text{x-i4} \end{array}$		
•••	•••	t5.)	accum = accum + e14.i5, RESET	t8.)	$accum = accum + x \cdot i8$
t12.)	accum = accum + e11.i12	t6.)	accum = (accum = 0) + e0.i6	t9.)	$accum = accum + x \cdot i9$
t13.)	accum = accum + e12.i13	t7.)	$accum = accum + e1 \cdot i7$	t10.)	$accum = accum + e14 \cdot i10, RESET$
t14.)	accum = accum + e13.i14			t11.)	accum = (accum = 0) + e0.i11
t15.)	accum = accum + e14·i15, RESET	· t19.)	$\frac{\cdot}{\text{accum}} \equiv \frac{\cdot}{\text{accum}} + e13.119$	t12.)	accum = accum + e1.i12
(116.)	accum = (accum = 0) + e0.i16	t20.)	$accum = accum + e14 \cdot i20, RESET$	•••	
tI'(.)	accum = accum + e1.117	t21.)	accum = (accum = 0) + e0.i21	t24.)	$accum = accum + e13 \cdot i24$
•••	•••	t22.)	accum = accum + e1.i22	t25.)	accum = accum + e14.i25, RESET
t29.)	accum = accum + e13.i29				
t30.)	accum = accum + e14·i30, RESET	· t34.)	$\begin{array}{c} \cdot \\ \text{accum} = \text{accum} + \text{e} 13 \cdot \text{i} 34 \end{array}$		
		(135.)	accum = accum + e14.i35, RESET		

From the above description, a valid output (in red) happens every 5 clocks on time (t5, t10, t15, t20, t25, t30, etc...). The outputs from time t5 and t10 are invalid outputs and should not be considered. Also after the MAC outputs a valid data, its accumulator gets reset to 0 and starts accumulating from the next clock with initial value 0.