WO 2004/094050 PCT/US2004/012673

9

CLAIMS

What is claimed is:

1

2

7.

1	1.	A fibrous assembly comprising:
2		a first fiber that sequesters a first reactive component; and
3		a second fiber that sequesters a second reactive component,
4		wherein at least the first or second fiber releases its reactive component when the
5		fiber is in the presence of a releasing agent, and
6		wherein when the at least first or second fiber releases its reactive component, the
7		first and second reactive components react with each other to form a reaction
8		product.
1	2.	The fibrous assembly of claim 1, wherein at least the first or second fiber is
2		polymeric.
1	3.	The fibrous assembly of claim 1, wherein at least the first or second fiber is a
2		nanofiber.
1	4.	The fibrous assembly of claim 1, wherein at least the first or second fiber is a
2		nanofiber prepared by an electrospinning or gas-jet method.
_	_	
<u> </u>	5.	The fibrous assembly of claim 1, wherein at least the first or second reactive
2		component is a particle, a dissolved molecule, a fibrous skeleton that was created by
3		electrospinning, a uniform coating, a ribbon, a tube, a gas-filled pore, a fluid-filled
1		pore, or bound to an ion-exchange-resin bead.
	_	
L -	6.	The fibrous assembly of claim 1, wherein the reaction product of the first reactive
2		component and the second reactive component is nitric oxide.

The fibrous assembly of claim 1, wherein the first reactive component is a

carboxylic acid and the second reactive component is nitrite.

WO 2004/094050 PCT/US2004/012673

10

1	8.	The fibrous assembly of claim 1, wherein the first reactive component is a urethane
2		prepolymer and the second reactive component is a diamine or diol.
1	9.	The fibrous assembly of claim 1, wherein at least the first or second reactive
2		component is bound to an ion-exchange-resin bead.
1	10.	The fibrous assembly of claim 1, wherein the releasing agent is a solvent, a signaling
2		substance, radiation, heat, a mechanical force, a charged particle, an electron, a
3		magnetic particle, a magnetic field, forces from a flowing fluid, hydrostatic pressure,
4		mechanical deformation, or a combination thereof.
1	11.	The fibrous assembly of claim 1, wherein the releasing agent is a solvent.
т	11.	The notous assembly of claim 1, wherein the feleasing agent is a solvent.
1	12.	The fibrous assembly of claim 1, wherein at least the first or second fiber dissolves
2		or swells in the presence of the releasing agent.
1	13.	The fibrous assembly of claim 5, wherein the fluid is a wax, oil, oligomer-containing
2		fluid, low-molecular-weight liquid, or combination thereof.
1	14.	The fibrous assembly of claim 7, wherein the carboxylic acid is ascorbic acid.
4	1.5	A
1	15.	A method for preparing a fibrous assembly comprising the steps:
2		preparing a first fiber that sequesters a first reactive component;
3		preparing a second fiber that sequesters a second reactive component; and
4		incorporating the first and second fiber into a fibrous assembly,
5		wherein at least the first or second fiber releases its sequestered reactive component
6		when that fiber is exposed to a releasing agent, and
7		wherein when at least the first or second sequestered reactive component is released
8		from its respective fiber, the first and second reactive components react with each
9		other to form a reaction product.

other to form a reaction product.

		·
1	16.	The method of claim 15, wherein the step of preparing a first fiber or the step of
2		preparing a second fiber is performed by using at least an electrospinning or gas-jet
3		method.
1	17.	The method of claim 15, wherein the first fiber is prepared by electrospinning a first
2		electrospinnable solution having a first polymer and a first reactive component; and
3		the second fiber is prepared by electrospinning a second electrospinnable
4		solution having a second polymer and a second reactive component,
* 5		wherein the second reactive component is reactable with the first reactive
6		component.
1	18.	The method of claim 15, wherein a reaction product of the first reactive component
2		and the second reactive component is nitric oxide.
1	19.	The method of claim 15, wherein the first reactive component is a carboxylic acid
2		and the second reactive component is nitrite.
1	20.	The method of claim 15, wherein the first reactive component is a urethane
2		prepolymer and the second reactive component is a diamine or diol.
1	21.	The method of claim 15, wherein at least the first or second reactive component is
2		bound to an ion-exchange-resin bead.
1	22.	The method of claim 15, wherein at least the first or second reactive component is a
2		particle, a dissolved molecule, a fibrous skeleton that was created by electrospinning
3		a uniform coating, a ribbon, a tube, a gas-filled pore, a fluid-filled pore, or bound to
4		an ion-exchange-resin bead.
1	23.	The method of claim 17, wherein electrospinning the first electrospinnable solution
2		results in a first fiber that sequesters the first reactive component, and wherein

WO 2004/094050 PCT/US2004/012673

12

3		electrospinning the second electrospinnable solution results in a second fiber that
4		sequesters the second reactive component.
1	24.	The method of claim 19, wherein the carboxylic acid is ascorbic acid.
1	25.	The method of claim 22, wherein the fluid is a wax, oil, oligomer-containing fluid,
2		low-molecular-weight liquid, or combination thereof.
1	26.	A medical-treatment method comprising the step:
2		treating a patient with a fibrous assembly, wherein the fibrous assembly has
3		a first fiber that sequesters a first reactive component; and
4		a second fiber that sequesters a second reactive component,
5		wherein at least the first or second fiber releases its reactive component when that
6		fiber is exposed to a releasing agent, and
7		wherein when at least the first or second reactive component is released from its
8		respective fiber, the first and second reactive components react to form a reaction
9		product.
1	27.	The method of claim 26, wherein a reaction product of the first reactive component
2		and the second reactive component is nitric oxide.
1	28.	The method of claim 26, wherein the first reactive component is a carboxylic acid
2		and the second reactive component is nitrite.
1	29.	The method of claim 26, wherein the releasing agent is a solvent, a signaling
2		substance, radiation, heat, a mechanical force, a charged particle, an electron, a
3		magnetic particle, a magnetic field, forces from a flowing fluid, hydrostatic pressure,
4		mechanical deformation, or a combination thereof.

30. The method of claim 26, wherein at least the first or second fiber is a nanofiber.

1

1	31.	The method of claim 26, wherein at least the first or second fiber is a nanofiber
2		prepared by an electrospinning or gas-jet method.
1	32.	The method of claim 28, wherein the carboxylic acid is ascorbic acid.
1	33.	A method for creating an epoxy-type adhesive comprising the step:
2		adding a releasing agent to a fibrous assembly having a first fiber that
3		sequesters a urethane prepolymer and second fiber that sequesters a diamine,
4		wherein at least the urethane prepolymer or the diamine is released from its fiber
5		when that fiber is in the presence of the releasing agent, and
6		wherein when at least the urethane prepolymer or the diamine is released from its
7		respective fiber, the urethane prepolymer and diamine react with each other to form
8		an epoxy-type adhesive.
1	34.	The method of claim 33, wherein the releasing agent is water.
1	35.	A fibrous assembly comprising:
2		a first fiber that sequesters a first reactive component,
3		wherein when the first reactive component is in the presence of a releasing agent, the
4		first reactive component reacts with the releasing agent to produce a reaction
5		product.
1	36.	The fibrous assembly of claim 35, wherein the first fiber is polymeric.
1	37.	The fibrous assembly of claim 35, wherein the first fiber is a nanofiber.
1	38.	The fibrous assembly of claim 35, wherein the first fiber is a nanofiber prepared by
2		an electrospinning or gas-jet method.
1	39.	The fibrous assembly of claim 35, wherein at least the first reactive component is a

particle, a dissolved molecule, a fibrous skeleton that was created by electrospinning,

2

3		a uniform coating, a ribbon, a tube, a gas-filled pore, a fluid-filled pore, or bound to
4		an ion-exchange-resin bead.
1	40.	The fibrous assembly of claim 35, wherein the reaction product of the first reactive
2		component and the releasing agent is nitric oxide.
1	41.	The fibrous assembly of claim 35, wherein the first reactive component is a
2		carboxylic acid or nitrite.
1	42.	The fibrous assembly of claim 35, wherein the first reactive component is a urethane
2		prepolymer, a diamine, or a diol.
1	43.	The fibrous assembly of claim 35, wherein at least the first reactive component is
2 .		bound to an ion-exchange-resin bead.
1	44.	The fibrous assembly of claim 35, wherein the releasing agent is a solvent, a
2		signaling substance, radiation, heat, a mechanical force, a charged particle, ar
3		electron, a magnetic particle, a magnetic field, forces from a flowing fluid
4		hydrostatic pressure, mechanical deformation, or a combination thereof.
1	45.	The fibrous assembly of claim 35, wherein the releasing agent is a solvent.
1	46.	The fibrous assembly of claim 35, wherein the first fiber dissolves or swells in the
2		presence of the releasing agent.
1	47.	The fibrous assembly of claim 39, wherein the fluid is a wax, oil, oligomer-
2		containing fluid, low-molecular-weight liquid, or combination thereof.

48. The fibrous assembly of claim 41, wherein the carboxylic acid is ascorbic acid.

1