Дискретни структури

план на упражненията КН 1.1, зимен семестър 2023/2024

Kалоян Цветков kaloyants250gmail.com

ФМИ, СУ 2.1

Ресурси (теория и задачи) по Дискретни структури

- теория
- задачи
- ____ теория + задачи
 - сайт на Скелета (задачи от минали години)
 - записки на Мария Соскова
 - записки на Ангел Димитриев
 - лични записки (по упражненията)

Съдържание

1	Вън	ведение 4
	1.1	Съждения
	1.2	Логически операции
	1.3	Квантори
		1.3.1 За всеобщност - ∀
		1.3.2 За екзистенциалност - 🖯
	1.4	Множества и операции над тях
		1.4.1 Множества
		1.4.2 Дефиниране на множества
		1.4.3 Операции над множества
		1.4.4 мултимножество
		1.4.5 разбиване
		1.4.6 покритие
		1.4.7 разкрояване
2	Инд	дукция 11
	2.1	Стандартна индукция
	2.2	Силна индукция
3	Рел	ации 12
•	3.1	Наредена двойка
	3.2	Декартово произведение
	3.3	Релация
	3.4	Домейн и кодомейн
	3.5	Свойства
	3.3	3.5.1 рефлексивност
		3.5.2 антирефлексивност
		3.5.3 симетричност
		3.5.4 антисиметричност
		3.5.5 силна антисиметричност
		3.5.6 транзитивност
	3.6	Интерпретации
	0.0	3.6.1 Матрица
		3.6.2 Граф (диаграма на Хасе)
	3.7	Релации на еквивалентност
	٠. ،	3.7.1 Примери с модулна аритметика
		3.7.2 Модифициране на ред. на екв
		3.7.3 Брой рел. на екв
	3.8	Наредби
	J. U	r-m

6	Зада	чи 2	29
	5.4	Принцип за включване и изключване	26
	5.3		26
			25
	5.2	Свойства на биномния коефициент	
	5.1		23
5		•	23
	4.9	Затвореност на изброимите множество относно някои операции	20
		$4.8.3$ R \sim R \times R	20
			20
			19
	4.8	1	19
	4.7		19
	4.6	1	19
	4.4		19 19
	$\frac{4.3}{4.4}$		19 19
	4.2 4.3	•	18 19
	4.1		18
4		· / •	18
	-		
			17
		1 1	16
			16
	0.10		16
	3 10		16
			16 16
			15
			15
			15
	3.9		15
			15
		3.8.2 Строга частична наредба	15
		3.8.1 (Нестрога) частична наредба	15

1 Въведение

1.1 Съждения

Изреченията, съдържащи информация, която може да се оцени като вярна и невярна, наричаме **съждения**.

Частта от съждението, която приписва признак, е предикат.

Предикатът може да бъде пресметнат като верен или грешен при прилагането му върху **субект**.

Пример:

"Този химикал е син." е вярно/грешно съждение, получено от пресмятането на предиката "Х е син." върху субекта "този химикал".

"Съществува просто число с 100,000,000 цифри"е съждение, но не знаем как да оценим като вярно или грешно все още.

(Най-голямото открито просто число има около 23,000,000 цифри) 1

1.2 Логически операции

Дефиниции чрез вектор/таблица от стойности и на интуитивно ниво.

отрицание

 \neg

p	$\neg p$
0	1
1	0

дизюнкция

V

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

конюнкция

Λ

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

¹Към датата 2 декември 2023 г.!

изключващо или

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

импликация (ако ..., то ...)

 \rightarrow

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

биимпликация (еквивалентност)

p	\overline{q}	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Свойства:

комутативност

$$p \wedge q = q \wedge p$$
 $p \vee q = q \vee p$ $p \oplus q = q \oplus p$

асоциативност

$$p \vee (q \vee r) = (p \vee B) \vee C \qquad p \wedge B) \wedge C) = (p \wedge B) \wedge C$$

дистрибутивност

$$p \vee (q \wedge r) = (p \vee q) \wedge (q \vee r) \qquad p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

закон за контапозицията закони на Де Морган

Нека p, q, r, s и t са следните съждения:

р: Ще разходя кучето преди обяд.

q: Сутринта ще спортувам.

r: Следобяд ще спортувам.

- s: Днес времето е хубаво.
- t: Днес влажността на въздуха е ниска.

Напишете логически изрази, съответстващи са следните изречения.

- 1. Няма да разходя кучето преди обяд.
- 2. Ще разходя кучето преди обяд и следобяд ще спортувам.
- 3. Днес ще спортувам или сутринта, или следобяд.
- 4. Днес ще спортувам сутринта или следобяд.
- 5. Ако днес времето е хубаво, следобяд ще спортувам.
- 6. Необходимо условие, за да спортувам днес следобяд е, времето да е хубаво.
- 7. Достатъчно условие, за да спортувам днес е времето да е хубаво и влажността да е ниска.

1.3 Квантори

1.3.1 За всеобщност - ∀

 $\forall x \in A : P(x)$ - предикатът P се оценява като истина за всеки/за произволен елемент от множеството A.

1.3.2 За екзистенциалност - ∃

 $\exists x \in A : P(x)$ - предикатът P се оценява като истина за някой (поне 1) от всички елементи на множеството A.

Кванторите са дуални: отрицанието на единия поражда другия.

$$\neg \exists x \in A : P(x) \longleftrightarrow \forall x \in A : \neg P(x)$$
$$\neg \forall x \in A : P(x) \longleftrightarrow \exists x \in A : \neg P(x)$$

Задача 1.1. R(x) - "x е в стая <номер на стая>";

C(x) - "x следва KH";

F(x,y) - "x е приятел на y";

 \mathcal{A} а се изразят твърденията чрез квантори и предикатите R, C, F.

"Някой следва КН."

 $\exists x : C(x);$

"Всеки е приятел на себе си."

 $\forall x : F(x, x);$

"Приятелството и неприятелството са взаимни."

 $\forall x : \forall y : F(x,y) \to F(y,x); (\exists au_0 \longleftrightarrow he \ e \ heobxodumo)$

"Всеки има приятел."

 $\forall x: \exists y: F(x,y);$

"Всички в стая <номер на стая> следват KH."

 $\forall x : R(x) \to C(x);$

"Всеки в тази стая има приятел от КН, който не е в стаята."

 $\forall x : R(x) \to (\exists y : F(x,y) \land C(y) \land \neg R(y));$

"Хората в стаята, които не следват КН, имат приятел в стаята."

$$\forall x : R(x) \land \neg C(x) \rightarrow \exists y : R(y) \land F(x,y)$$

"Да нямаш приятели е достатъчно условие да не следваш КН."

$$\forall x : (\forall y : \neg F(x, y)) \rightarrow \neg C(x)$$
. (контрапозиция?)

"Двама души са приятели тогава и само тогава, когато имат общ приятел от КН."

$$\forall x : \forall y : F(x,y) \longleftrightarrow \exists z : F(x,z) \land F(y,z) \land C(x)$$

1.4 Множества и операции над тях

1.4.1 Множества

Множество - няма дефиниция; интуитивно: колекция от неща; всички математически обекти са изградени от множества.

1.4.2 Дефиниране на множества

- чрез изброяване
- чрез предикат
- празно множество: $(\exists \emptyset :) \forall x : x \notin \emptyset$.

Дефиниции за равенство на множества, подмножество, строго подмножество.

$$A = B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \longleftrightarrow x \in B$$
$$A \subseteq B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \to x \in B$$
$$A \subset B \stackrel{def}{\longleftrightarrow} A \subseteq B \land A \neq B$$
$$\forall A : \emptyset \subseteq A \land \emptyset \subset A$$

Примери за равни множества (повторението и редът на елементите не е от значение) и подмножества.

$$\{1, 2, \emptyset\} = \{\emptyset, 1, 2\} = \{\emptyset, \emptyset, 1, 2, 1, 1\}$$
$$\{x, 1, y\} \subseteq \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y\} \subset \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y, z, 5, 2\} \subseteq \{2, y, 1, 5, z, x\}$$

1.4.3 Операции над множества

таблици (за произволен елемент "смятаме" резултат спрямо предикатите $x \in A$ и $x \in B$) Аналогии с логическите операции.

обединение

$$A \cup B := \{x | x \in A \lor x \in B\}$$

сечение

$$A\cap B:=\{x|x\in A\wedge x\in B\}$$

разлика

$$A \backslash B := \{x | x \in A \land x \not \in B\}$$

симетрична разлика

$$A\Delta B:=\{x|x\in A\oplus x\in B\}$$

Доказателтво ,че:

•
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

A	B	$A \cup B$	$A \cap B$	$A \cup B \setminus (A \cap B)$	$A\Delta B$
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

$$\implies \forall x : x \in (A \cup B) \setminus (A \cap B) \leftrightarrow x \in A\Delta B \implies (A \cup B) \setminus (B \cap A) = A\Delta B$$

•
$$A\Delta B = (A\backslash B) \cup (B\backslash A)$$
.

A	B	$A \backslash B$	$B \backslash A$	$(A \backslash B) \cup (A \backslash B)$	$A\Delta B$
0	0	0	0	0	0
0	1	0	1	1	1
1	0	1	0	1	1
1	1	0	0	0	0

$$\implies \forall x: x \in (A \backslash B) \cup (A \backslash B) \leftrightarrow x \in A \Delta B \implies (A \backslash B) \cup (A \backslash B) = A \Delta B$$

Допълнение на множество

Универсално множество - съдържа всички разглеждани множества; определя се от контекста.

$$\overline{A} := U \backslash A; \qquad \overline{\overline{A}} = A.$$

Свойства:

• комутативност

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$ $A \triangle B = B \triangle A$

• асоциативност

$$A \cup (B \cup C) = (A \cup B) \cup C \qquad A \cap (B \cap C) = (A \cap B) \cap C$$

Обединение на няколко множества: $\bigcup_{i \in I} A_i := \{x | \exists i \in I : x \in A_i\}$

Сечение на няколко множества: $\bigcap_{i \in I} A_i := \{x | \forall i \in I : x \in A_i\}$

• дистрибутивност

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

празно множество

$$A \cup \emptyset = A$$
 $A \cap \emptyset = \emptyset$ $A \setminus \emptyset = A$

закони на Де Морган

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

степенно множество

$$\mathcal{P}(A) = 2^A := \{x | x \subseteq A\}$$

Примери за степенни множества.

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\} \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$$

$$\mathcal{P}(\{\emptyset, \{1,2\}, 7\}) = \{\emptyset, \{\emptyset\} \{\{1,2\}\}, \{7\}, \{\emptyset, \{1,2\}\}, \{\emptyset, 7\}, \{\{1,2\}, 7\}, \{\emptyset, \{1,2\}, 7\}\}\}$$

Задача 1.2. Вярно ли е, че

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C) \ (ne)$$
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C) \ (\partial a)$$

1.4.4 мултимножество

Множество, в което броя на повторенията на елементите е от значение.

$$\{1,3,3,2,1\}=\{1,2,3\}\,$$
 разглеждани като множества $\{1,3,3,2,1\}
eq \{1,2,3\}\,$ разглеждани като мултимножества

1.4.5 разбиване

$$F=\{A_i|i\in I\}$$
 е разбиване на $A \stackrel{def}{\longleftrightarrow} Vi\in I: A_i
eq \emptyset$
$$\bigcup_{i\in I} A_i = A$$

$$\forall i,j\in I: i
eq j
ightarrow A_i \cap A_j = \emptyset$$

 $\{S\}$ разбиване ли е на S? (да $\longleftrightarrow S \neq \emptyset$)

1.4.6 покритие

$$F=\{A_i|i\in I\}$$
 е покритие на $A \stackrel{def}{\longleftrightarrow} Yi\in I: A_i
eq \emptyset$
$$A\subseteq \bigcup_{i\in I}A_i$$

1.4.7 разкрояване

$$F=\{A_i|i\in I\}$$
 е разкрояване на $A\overset{def}{\longleftrightarrow}$ $\forall i\in I:A_i\neq\emptyset$
$$\bigcup_{i\in I}A_i\subseteq A$$
 $\forall i,j\in I:i\neq j\to A_i\cap A_j=\emptyset$

2 Индукция

Плочки домино:

Бутнали сме първата плочка и знаем, че ако падне n-тата ще падне и n+1-вата. Тогава ще паднат всички плочки.

2.1 Стандартна индукция

$$P(0) \land (\forall n \in \mathbb{N} : (P(n) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

Принцип на индукцията

- Проверяваме верността на твърдението за n = 0 (P(0));
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq 0 : P(n)$.

Задача 2.1. Да се докаже, че $|2^A| = 2^{|A|}$.

Упътване:.
$$|A| = n + 1 \ge 1 \implies |A \setminus \{a\}| = n \ge 0 \implies |2^{A \setminus \{a\}}| = 2^n$$

 \implies Подмножествата на A не съдържащи а са 2^n . Подмножествата на A са тези, несъдържащи a, и същите, обединени c $\{a\}$ \implies

$$\mathcal{P}(A) = \{x | x \subseteq A \land a \notin x\} \cup \{x | x \subseteq A \land a \in x\}$$

 $|\mathcal{P}(A)| = |\{x | x \subseteq A \land a \notin x\}| + |\{x | x \subseteq A \land a \in x\}|$ (since they have no intersection)

$$|\mathcal{P}(A)| = |\mathcal{P}(A \setminus \{a\})| + |\{x | x \in \mathcal{P}(A \setminus \{a\}) \land a \in x\}|$$

 $me \ ca \ 2.2^n = 2^{n+1}.$

Обобщен принцип на индукцията

$$P(n_0) \land (\forall n \ge n_0 : (P(n) \to P(n+1))) \to \forall n \ge n_0 : P(n)$$

- Проверяваме верността на твърдението за $n = n_0$ $(P(n_0));$
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq n_0 : P(n)$.

2.2 Силна индукция

$$P(0) \land (\forall n \in \mathbb{N} : ((\forall k \le n : P(k)) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

3 Релации

3.1 Наредена двойка

$$(a,b) \stackrel{\text{def}}{=} \{a, \{a,b\}\}\$$
$$(a,b) = (c,d) \leftrightarrow a = c \land b = d$$

3.2 Декартово произведение

$$A \times B \stackrel{\mathrm{def}}{=} \{ (a, b) \mid a \in A \land b \in B \}$$

Пример:

$$\{1, 3, 5\} \times \{2, 4\} = \{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)\}\$$
 $\emptyset \times \{0, 2\} = \emptyset$

няма комутативност: $A \times B \neq B \times A$

Мощност на декартово произведение: $|A \times B| = |A|.|B|$ (доказателство с индукция по |A|)

3.3 Релация

релация е всяко подможество на декартово произведение

 $R \subseteq A_1 \times A_2 \times ... \times A_n$ - n-местна релация

при n=2: бинарна релация $R\subseteq A\times A$ - бинарна релация над A Пример за 3-местна релация:

 $(a,b,c) \in R \stackrel{def}{\Longleftrightarrow} a,b,c$ са страни на триъгълник.

Ако |A| = n, то колко са бинарните релации над $A(2^n)$

3.4 Домейн и кодомейн

$$dom\left(R
ight)=\{a|\exists b\in A:(a,b)\in R\}$$
 - домейн $range\left(R
ight)=\{b|\exists a\in A:(a,b)\in R\}$ - кодомейн, range

3.5 Свойства

$$R \subseteq A \times A$$

3.5.1 рефлексивност

$$\forall a \in A : (a, a) \in R$$

3.5.2 антирефлексивност

$$\forall a \in A : (a, a) \notin R$$

3.5.3 симетричност

$$\forall a, b \in A : (a, b) \in R \to (b, a) \in R$$

3.5.4 антисиметричност

$$\forall a,b \in A: a \neq b \rightarrow ((a,b) \in R \rightarrow (b,a) \not\in R)$$
 (възможно е да има и несравними елементи) \longleftrightarrow $\forall a,b \in A: (a,b) \in R \land (b,a) \in R \rightarrow a = b$

$$\forall a, b \in A : (a, b) \in R \oplus (b, a) \in R$$

3.5.6 транзитивност

$$\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$$

3.6 Интерпретации

$$R = \{(1, 2), (1, 3), (1, 4), (3, 1), (2, 4), (3, 3), (2, 5), (5, 4), (5, 2)\}$$

3.6.1 Матрица

	1	2	3	4	5	6
1		X	Х	х		
2				х	х	
3	х		Х			
4						
5		X		х		
6						

3.6.2 Граф (диаграма на Хасе)

Интерпретация на свойствата с матрица и граф.

Задача 3.1. Какви свойства притежават релациите:

- $R \subseteq \mathbb{R} \times \mathbb{R}, R = \{(a, b) | a b \in \mathbb{Z}\}$
- $R \subseteq \mathbb{R} \times \mathbb{R} : \{(a,b) | a+b \ge 5\}$
- $R \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}, R = \{(a, b) | a \cap b \neq \emptyset\}$
- $R \subseteq \{0, 1, 2\}^2, R = \{(a, b) | a + b \ge 5\}$

3.7 Релации на еквивалентност

R е релация на еквивалентност $\stackrel{def}{\longleftrightarrow} R$ е рефлексивна, симетрична и транзитивна. Примери: равенство на числа, еднаквост и подобие на триъгълници.

$$[x]_{R} \stackrel{\mathrm{def}}{=} \{ y | (x, y) \in R \}$$

Теорема: (лекции и изпит)

$$R \subseteq A \times A$$

$$F_R:=\{[x]_R\,|x\in A\}\,$$
е разбиване на A

3.7.1 Примери с модулна аритметика

$$R \subseteq \mathbb{N} \times \mathbb{N}$$

$$aRb \leftrightarrow 4 \mid a-b$$

Да се докаже, че R е релация на еквивалентност. $R \subseteq \mathbb{Z} \times \mathbb{Z}$

$$xRy \leftrightarrow 2 \mid 2x - 5y$$

Да се докаже, че R е релация на еквивалентност.

3.7.2 Модифициране на рел. на екв.

Нека R_1, R_2 са релации на еквивалентност над A. Релации на еквивалентност ли са релациите:

- $R_1 \cup R_2$ (не)
- $R_1 \cap R_2$ (да)
- $R_1 \Delta R_2$ (не)

3.7.3 Брой рел. на екв.

Колко са релациите на еквивалентност над $A = \{1, 2, 3, 4\}$? (брой разбивания на 4-елементно множество)

3.8 Наредби

3.8.1 (Нестрога) частична наредба

R е частична наредба, когато е рефлексивна, антисиметрична и транзитивна.

Примери: \geq , \leq , \subseteq .

3.8.2 Строга частична наредба

R е строга частична наредба, когато е антирефлексивна, антисиметрична и транзитивна.

Примери: $>, <, \subset$.

3.8.3 Линейна наредба

R е линейна (пълна) наредба, когато е рефлексивна, силно антисиметрична и транзитивна.

Въпрос 3.1. Колко елемента има линейна наредба над n-елементно множество? $\left(\frac{n^2+n}{2}\right)$

3.9 Специални елементи

$$R \subseteq A \times A$$

3.9.1 Минимален

aе минимален $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (b,a) \not \in R$

след обръщане на кванторите - "няма по-малък от него".

3.9.2 Най-малък

$$a$$
 е най-малък $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (a,b) \in R$

"по-малък от всички други"

3.9.3 Максимален

$$a$$
 е максимален $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (a,b) \not\in R$

след обръщане на кванторите - "няма по-голям от него".

Въпрос 3.2. Възможно ли е да има 0,1,>1 минимален/максимален елемент в частична наредба? (0 - не (ако R е частична наредба, то R има минимален и максимален елемент (теорема)), 1 - да, 2 - да)

А в линейна? (0 - не (линейната наредба е и частична), 1 - да, 2 - не)

3.9.4 Най-голям

$$a$$
 е най-голям $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (b,a) \in R$

"по-голям от всички други"

Въпрос 3.3. Възможно ли е да има повече от 1 най-малък/най-голям елемент в наредба? (не)

3.9.5 Пример:

Да се посочат минимални, максимални, най-големи и най-малки елементи

	1	2	3	$\mid 4 \mid$	5	6	7	8
1			X	X				X
2	X	X	Х	X	X	X	X	X
3							X	
4				х			Х	
5								
6					х			X
7						х		X
8								

(При наличие на най-малък/най-голям, наличието на друг минимален/максимален е изключено.)

3.10 Затваряне на релации

3.10.1 Операции с релации

- Обратна релация: $R^{-1} = \{(b, a) \mid (a, b) \in R\}$
- Допълнение на релация: $\overline{R} = \{(a,b) \mid (a,b) \not\in R\}$
- Композиция на релации: $S \circ R = \{(a,c) \mid \exists b \in A : (a,b) \in R \land (b,c) \in S\}$ $R \subseteq A \times A$

3.10.2 рефлексивно

$$refl(R) = R \cup \{(a, a) | a \in A\}$$

3.10.3 симетрично

$$sym(R) = R \cup R^{-1}$$

3.10.4 транзитивно

$$R^1=R; R^n=R\circ R^{n-1}$$
 при $n>1$ $trans(R)=\bigcup_{n\in\mathbb{N}^+}R^n$

Да се намери рефлексивното, симетричното и транзитивното затваряне на $R = \{(0,1), (0,2), (3,4), (3,5), (4,5), (6,7)\}$

(Получаваме релация на еквивалентност с класове $\mathcal{F}_R = \{\{0,1,2\},\{3,4,5\},\{6,7\}\}$)

Задача 3.2. Да се докаже, че релацията | - "дели"е частична наредба над \mathbb{N} . Да се посочат (или да се докаже, че такива няма) най-голям, най-малък, минимален и максимален елемент.

Задача 3.3 (свеждане до умножение на матрици). $He\kappa a |A| = n$.

 $He\kappa a\ S = \{x | xA\}.$

 $Heкa\ R \subseteq S \times S.$

 $R_1RR_2 \stackrel{\overline{def}}{\longleftrightarrow} R_1 \circ R_2 = R_2 \circ R_1$. Релация на еквивалентност ли е R? Докажете.

Задача 3.4. Нека $R \subseteq A \times A$ е рефлексивна и транзитивна релация.

 $He\kappa a \sim \subseteq A \times A : a \sim b \leftrightarrow aRb \wedge bRa.$

Докажете, че \sim е релация на еквивалентност.

 $F := \{ [x]_{\sim} \mid x \in A \}$

 $\langle \subseteq F \times F : [a]_{\sim} \langle [b]_{\sim} \leftrightarrow \exists x \in [a]_{\sim} \exists y \in [b]_{\sim} : xRy$

Да се докаже, че \langle е частична наредба.

4 Функции/Изброимост

$$f$$
 е (тотална) функция $\stackrel{def}{\longleftrightarrow} f \subseteq A \times B \wedge \forall a \in A: \exists! b \in B: (a,b) \in f$ (точно 1 образ)
$$f(x) = y \longleftrightarrow (x,y) \in f$$

$$f$$
 е частична функция $\stackrel{def}{\longleftrightarrow}$
$$f \subseteq A \times B \wedge \forall a \in A: \forall b_1 \in B: \forall b_2 \in B: (a,b_1) \in f \wedge (a,b_2) \in f \implies b_1 = b_2$$
 (най-много 1 образ)
$$f$$
 е функция и $f \subseteq A \times B$ - записваме $f: A \longrightarrow B$

Въпрос 4.1. Кои са релациите на еквивалентност $R \subseteq A \times A$, които са функции?

Упътване:. Допускаме, че R има клас на еквивалентност с поне 2 елемента $a \neq b \implies aRb \land aRa \implies a = b \implies npomusopevue \implies само идентитетт е релация на еквивалентност и функция едновременно.$

4.1 Свойства

$$f:A\longrightarrow B$$

- инекция: $\forall a_1 \in A : \forall a_2 \in A : a_1 \neq a_2 \longrightarrow f(a_1) \neq f(a_2)$ f е инекция $\longrightarrow |A| \leq |B|$ (необходимо условие за инекция) Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x \backslash 2^x$ са инекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash sin(x) \backslash x^2 3x + 2$ не са инекции
- сюрекция: $\forall b \in B : \exists a \in A : f(a) = b$ f е сюрекция $\longrightarrow |A| \ge |B|$ Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x$ $f : \mathbb{R} \longrightarrow (0,1); f(x) = \frac{1}{x}$ са сюрекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash \sin(x) \backslash x^2 3x + 2$ не са сюрекции
- биекция инекция и сюрекция (необходимо условие за сюрекция) $\forall b \in B: \exists ! a \in A: f(a) = b$ f е биекция $\longrightarrow |A| = |B|$ (необходимо условие за биекция) Примери: $f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^{2n+1}$ е биекции $\forall n \in \mathbb{N}$

Ако има инекция $A \longrightarrow B$, то има сюрекция $B \longrightarrow A$.

4.2 Образ на множество

Нека
$$f:A\longrightarrow B$$
 и $X\subseteq A$ $f(X)=\{f(x)|x\in X\}$

4.3 Композиция

Нека
$$f: A \longrightarrow B, g: B \longrightarrow C$$

 $g \circ f: A \longrightarrow C, (g \circ f)(x) = g(f(x))$

4.4 Обратна функция

Нека $f:A\longrightarrow B$ е биекция (при инекция обратната функция е частична). $f^{-1}:B\longrightarrow A,\ f^{-1}(y)=x\stackrel{def}{\longleftrightarrow}f(x)=y$

4.5 Крайно и безкрайно множество

A е крайно $\stackrel{def}{\longleftrightarrow} \exists n \in \mathbb{N} : \exists f : I_n \longrightarrow A : f$ е биекция. A е безкрайно $\stackrel{def}{\longleftrightarrow} A$ не е крайно. (с квантори?)

4.6 Изброимо множество

A е изброимо $\stackrel{def}{\longleftrightarrow} \exists f: \mathbb{N} \longrightarrow A: f$ е биекция. изброимост на $\mathbb{N} \times \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ (диагонален метод на Кантор)

4.7 Теорема на Кантор

 $\forall A: \neg \exists f: A \longrightarrow 2^A: f$ е биекция. неизброимост на $2^{\mathbb{N}}, \mathbb{R}$

4.8 Примери за биекции

4.8.1 $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$

• "обхождане на безкрайна таблица"

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 $i(\text{ред}), j(\text{стълб}) \in \mathbb{N}: f(i,j) = rac{(i+j)(i+j+1)}{2} + j$

• алгебрично

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
$$\forall i, j \in \mathbb{N}: f(i, j) = 2^{i}(2j + 1) - 1$$

4.8.2 $\mathbb{R} \sim (0,1)$

• тригонометрично

$$f: \mathbb{R} \to (0,1)$$
$$f(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}$$

• експонента

$$f: \mathbb{R} \to (0,1)$$
$$f(x) = \frac{1}{1 + e^x}$$

• геометрично

$$f: (0,1) \to \mathbb{R}$$
$$f(x) = \frac{\frac{2x-1}{\sqrt{1-(2x-1)^2}} + 1}{2}$$

Геометрична интерпретация:

4.8.3 $\mathbb{R} \sim \mathbb{R} \times \mathbb{R}$

Минава например през $(0,1)^2 \sim (0,1)$

$$f: (0,1)^2 \to (0,1)$$

 $f(0.a_0a_1a_2..., 0.b_0b_1b_2...) = 0.a_0b_0a_1b_1a_2b_2...$

Композиция на биекции води до $\mathbb{R} \sim \mathbb{R} \times \mathbb{R}$.

4.9 Затвореност на изброимите множество относно някои операции

- × Декартово произведение на изброими е изброимо
- U Обединение на изброими е изброимо, нещо повече: обединение на изброим брой изброими множества е изброимо

Задача 4.1. Композиция на инекции е инекция.

Доказателство. Нека $f:A\to B$ и $g:B\to C$ са инекции.

Допускаме, че $a \neq b \in A$.

$$\implies f(a) \neq f(b) \in B \implies g(f(a)) \neq g(f(b)) \implies g \circ f$$
 е инекция. \square

Задача 4.2. Композиция на сюрекции е сюрекция.

 \mathcal{A} оказателство. Нека $f:A \to B$ и $g:B \to C$ са сюрекции.

Нека
$$z \in C \implies \exists y \in B : g(y) = z \implies \exists x \in A : f(x) = y. \implies g(f(x)) = g(y) = z \implies g \circ f$$
 е сюрекция.

Задача 4.3. Изследвайте за инективност/сюрективност функциите:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}: f(x,y) = \sqrt{x^2 + y^2}$$

$$f: \mathbb{N} \longrightarrow \mathbb{N}: f(x) = \begin{cases} x+1 & \text{,ако } x \text{ е четно} \\ x-1 & \text{,ако } x \text{ е нечетно} \end{cases}$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2: f(x,y) = (2x-y, -x+2y) \quad (\text{домашна})$$

$$f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \setminus \{1\}: f(x) = \frac{x+1}{x-1}$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}: f(x) = \frac{x}{x^2+1}$$

Задача 4.4 (Конструиране на биекция). Да се построи биекция $f: \mathbb{N} \longrightarrow \mathbb{N}$, че $\forall n \in \mathbb{N}: n \mid \sum_{i=1}^n f(i)$.

Задача 4.5 (Биекциите се различават поне в две двойки). *Нека* $f: A \longrightarrow A$ u $g: A \longrightarrow A$ са биекции $u \exists x_1 \in A: f(a_1) \neq g(a_1)$. Да се докаже, че $\exists x_2 \in A: x_1 \neq x_2 \land f(x_2) \neq g(x_2)$.

Задача 4.6. Да се докаже, че множеството на булевите вектори (крайни редици от 0,1) е изброимо.

Да се докаже, че множеството на думите над азбуката $\{a,b\}$ е изброимо. (същата $\mathit{задача?}$)

Задача 4.7. Да се докаже, че множеството на крайните редици от естествени числа са изброимо много.

 $\left(\partial a\ ce\ направи\ cравнение\ между\ 2^{\mathbb{N}}\ u\ \bigcup_{i\in\mathbb{N}}\mathbb{N}^i\right)$

Задача 4.8. Да се докаже, че A и B са изброими множества, то $A \cup B$ е изброимо.

Доказателство. БОО разглеждаме случая $A \cap B = \emptyset$. Другият случай $A \cap B \neq \emptyset$ се свежда до обединението $A \cup B = A \cup (B \setminus A)$, които са непресичащи се. Тогава за $B \setminus A$ има 2 случая:

 $B \setminus A$ е крайно. Нека $|B \setminus A| = \{c_0, c_1, ..., c_{k-1}\}$. Тогава

$$h: \mathbb{N} \longrightarrow A \cup B: h(n) = \begin{cases} c_n & \text{,ako } n < k \\ g(n-k) & \text{,ako } n \ge k \end{cases}$$

 $B \backslash A$ е безкрайно. Имаме, че $B \backslash A \subseteq B \implies |B \backslash A| \leq \mathbb{N}$ и е безкрайно $\implies |B \backslash A| = \mathbb{N} \iff B \backslash A$ е изброимо и използваме аргумента за непресичащи се множества.

 $\exists f: \mathbb{N} \longrightarrow A$ - биекция и $\exists g: \mathbb{N} \longrightarrow B$ - биекция. Разглеждаме $h: \mathbb{N} \longrightarrow A \cup B: h(n)$

$$h:\mathbb{N}\longrightarrow A\cup B: h(n)=\left\{egin{array}{ll} f\left(rac{n}{2}
ight) & \text{,ако } n \text{ е четно} \\ g\left(rac{n-1}{2}
ight) & \text{,ако } n \text{ е нечетно} \end{array}
ight.$$

h е биекция?

5 Комбинаторика

5.1 Теория и примери

Принципи на събирането и умножението

(Не се използват в теретичния си вид; описват бройката на събитията в зависимост от зависимостта между тях.)

1. на събирането

Нека $R = \{S_i | i \in I\}$ е разбиване на .

Тогава
$$|A| = \sum_{i \in I} |S_i|$$
.

2. на умножението

Нека
$$|X| = n, |Y| = m$$
. Тогава $|X \times Y| = |X| \cdot |Y| = nm$.

Основни комбинаторни конфигурации (колко варианта има (рекурсивно разсъждение?)):

1. с наредба и без повторение

броят на наредените k-орки без повторение от n-елементно множество начините да изберем и подредим k души от n в редица

$$V_n^k = \frac{n!}{(n-k)!}$$

при
$$k = n : V_n^n = P_n = n!$$
 - пермутация

2. с наредба и с повторение

броят на функциите $I_k \longrightarrow I_n$

по колко начина можем да си купим k-неща измежду асортимент от n.

$$n^k$$

3. без наредба и без повторение

вариация пермутация

$$C_n^k = \frac{n!}{k! (n-k)!} =: \binom{n}{k}$$
 - биномен коефициент

Да се докаже, че $\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$. (алгебрично)

Смята броя на k-елементните подмножества на n-елементно множество (да се докаже с индукция с използване на основното свойство).

Идея за рекурсивна дефиниция на биномния коефициент чрез свойството.

Триъгълник на Паскал.

Да се докаже, че $|2^A|=2^{|A|}$ (комбинаторно с използване на горното твърдение).

4. без наредба и с повторение

броят на начините да приберем k еднакви топчета в n чекмеджета броят на решенията на $x_1+x_2+...+x_k=n; \forall i\in I_k: x_i\geq 0$

$$S_n^k = C_{n+k-1}^k = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}$$

броят на k-елементните мултимножества на n-елементно множество.

5.2 Свойства на биномния коефициент

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}$$

$$\sum_{i=0}^{n} \binom{n}{2i} = \sum_{i=0}^{n} \binom{n}{2i+1} = 2^{n-1}$$

Задача 5.1. Колко са:

- Колко са булевите вектори с дължина n, които започват с 10 и завършват с 1?
- Колко са булевите вектори, които започват и завършват с различна цифра?
- Колко са булевите вектори, които съдържат поне 3 единици и поне 2 нули?
- ullet Колко са четирицифрените числа k, за които е изпълнено, че ако k е печетно, то k съдържа 0

Задача 5.2. Дадена е стандартна колода от 52 карти. По колко начина можем да изберем от тях 13, така че сред тях да има:

- точно 1J
- поне 1A
- ullet не по-малко от 2Q
- ullet точно 3 седмици
- най-много 2💠
- точно 2A и точно 2♠
- точно 2A и не повече от $2\heartsuit$.

Задача 5.3. Колко са булевите вектори с п нули и k единици, в които няма съседни единици?

5.2.1 Нютонов бином

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Два варианта за доказателство (индукция по n или комбинаторно разсъждение за коефициента пред всеки едночлен отдясно)

Задача 5.4. Колко различни думи могат да се получат, като се разместят буквите в думата:

- "релация"
- "конституционен"

Задача 5.5. Колко правотгълника със страни ≥ 2 има в шахматна дъска 8×8 ?

Задача 5.6. По колко начина могат да седнат:

- п човека на пейка;
- п мъже и п жени на една пейка, като всяка жена седи до мъже, а всеки мъж седи до жени;
- п човека на кръгла маса;
- п мъже и п жени на кръгла маса, като всяка жена седи до мъже, а всеки мъж седи до жени;

Задача 5.7. Колко решения в естествени числа имат уравненията:

$$x_1 + x_2 + x_3 + x_4 = 15$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 \ge 3$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 \ge 3 \land x_3 \ge 5$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7 \land x_3 < 6$$

$$x_1 + x_2 + x_3 < 11$$

Задача 5.8. По колко начина може да се размеси колода от 52 карти, така че в нея да има поне 2 последователни карти A?

Задача 5.9. Колко идентификатора с дължина п могат да се съставят в езика Ada? (идентификаторите започват с буква и продължават с буква, цифра или _, като _ не могат да са съседни или в края на идентификатора)

5.3 принцип на Дирихле

формално

Нека |A| = n и |B| = k. Тогава

$$n > k \longrightarrow \forall f : A \longrightarrow B : f$$
 не е инекция

В контрапозиция води до споменатото НУ за инекция (мин. или по-миналия път). Представен чрез топки в чекмеджета:

n топки трябва да разположим в m чекмеджета. Тогава:

- има чекмедже с поне $\frac{n}{m}$ топки;
- ullet има чекмедже с най-много $rac{n}{m}$ топки.

При n = m + 1: следва, че има чекмедже с поне 2 топки.

Задача 5.10. Да се докаже, че измежду 12 различни двуцифрени числа има 2, чиято разлика е двуцифрено число с еднакви цифри.

Задача 5.11. На избори гласуват 100 души за 3 кандидата. Колко най-малко гласове ще стигнат на победителя да спечели?

Задача 5.12. На банкет има 3 маси и 4 вида питие, по 10 бутилки от всеки вид. Да се докаже, че има маса, на която има поне по 4 бутилки от 2 различни вида питие.

Задача 5.13. Матрица 2022×2022 да се попълни с числата $0, \pm 1$, така че всички сборове по редове, стълбове и диагонали да са различни

Задача 5.14. Точки с цели координати в равнината са оцветени с 8 различни цвата. Да се докаже, че има 2 едноцветни точки на растояния по-малко от 3.

Задача 5.15. 50 точки са разположени във вътрешността на квадрат със страна 35. Да се докаже, че поне 2 точки са на рзстояние по-малко от 8.

5.4 Принцип за включване и изключване

за две множества:
$$|A \cup B| = |A| + |B| - |A \cap B|$$

обобщен принцип:
$$|\bigcup_{i\in I_k}A_i|=\sum_{i=1}^k{(-1)^{i-1}\sum_{1\leq j_1\leq...\leq j_i\leq k}}\quad |\bigcap_{p\in I_i}A_{j_p}|=$$

$$=|A_1|+...+|A_k|-(|A_1\cap A_2|+...+|A_{k-1}\cap A_k|)+...+(-1)^{k-1}|A_1\cup A_2\cup...\cup A_k|$$
 Доказателства:

- Комбинаторно: използваме $(1+x)^n = ... = 0$ при x = -1;
- \bullet С индукция по n.

Задача 5.16. В група студенти всеки знае поне един от езиците Java, C++, Python. Java знаят 15 души, C++ знаят 13, а Python - 10. C++ и Java знаят 5 човека, C++ и Python - 5, Java и Python - 3. Трима души знаят и трите езика. Колко души има в групата?

$$(28 = 15 + 13 + 10 - 5 - 5 - 3 + 3)$$

Задача 5.17. $Heka\ |A|=n\ u\ |B|=m.$ Колко са различните сюрекции A o B?

$$\sum_{i=0}^{m-1} (-1)^{i} \binom{m}{i} (m-i)^{n}$$

Задача 5.18.

 $Heka\ |A|=n\ u\ |B|=m.$ Колко са различните частични функции A o B?

 $(1+m)^n$ чрез принципа или чрез нов елемент на B

Задача 5.19. Колко са пермутациите на $\{1, 2, ..., n\}$, такива, че $\forall i \in I_n : i$ не е на позиция i?

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)!$$

Задача 5.20.

Дадена е стандартна колода от 52 карти. По колко начина можем да изберем от тях 13, така че сред тях да има:

- точно 1 боя, от която няма карти
- не повече от 2 бои, в които имаме точно 1 карта.

Задача 5.21. Колко цели числа между 1 и 10000 съдържат цифрата 7?

Задача 5.22. Колко думи с дължина 5 над азбуката $\{a,b,c,d,e\}$ имат поне 2 последователни a-та?

Задача 5.23. Колко решения в цели числа има уравнението:

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7 \land x_3 < 6 \land x_4 < 5$$

Задача 5.24. Докажете чрез комбинаторни разсъждения следните твърдения:

1.
$$A\kappa o |A| = n, \ mo |2^A| = 2^n$$

2.

$$\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n}$$

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brace k},$$

където $\binom{n}{k}$ е броят на разбиванията на n-елементно множество на k непразни множества.

Задача 5.25. Heка |A|=n, |B|=m. Колко са функциите $f:A\longrightarrow B,$ които са:

- тотални
- частични
- инекции
- сюрекции

6 Задачи

(решени и нерешени на допълнително упражнение преди семестриално контролно)

Задача 6.1. *Нека* $x \in \mathbb{R}, x > 0$, $a \in \mathbb{N}, n > 0$. Докажете, че $(1+x)^n \ge 1 + nx$

Задача 6.2. Нека а и q са фиксирани реални числа. Докажете, че за всяко естествено число п е изпълнена формулата:

$$\sum_{i=0}^{n} aq^{i} = \frac{aq^{n+1} - a}{q-1}, q \neq 1$$

Задача 6.3. Да се докаже, че за всяко естествено число $n \ge 1$ е в сила равенството:

$$\sum_{\{a_1,\dots,a_k\}\subseteq\{1,2,\dots,n\}} (a_1 \cdot a_2 \cdots a_k) = (n+1)! - 1$$

(Сумирането е по всички непразни подмножества на $\{1, 2, \dots, n\}$.)

Задача 6.4.

Дадена е стандартна колода от 52 карти. По колко начина можем да изберем от тях 13, така че сред тях да има:

- точно 1 боя, от която няма карти
- не повече от 2 бои, в които имаме точно 1 карта.

Задача 6.5. Тази (4.5) задача за биекции.

Задача 6.6. Дадени са естествени числа $a_1, a_2, ..., a_n$. Да се докаже, че има подредица от последователни елементи $a_l, ..., a_r$ на $\{a_i\}_{i=1}^n$, такава, че $\sum_{i=l}^r$ се дели на n.

Задача 6.7. На витрината на магазин са наредени в редица 2 черни, 2 бели, 2 сини и 2 червени молива, различаващи се само по цвета си. По колко начина може да стане това нареждане, ако:

- (а) няма ограничения за реда им;
- (b) няма едноцветни моливи един до друг.

Задача 6.8. По колко начина върху шахматна дъска могат се разположат максимален брой топове, без да се бият взаимно? Обосновете отговора си.

Задача 6.9. По колко начина може да се размеси колода от 52 карти, така че в нея да има поне 2 последователни карти A?

Задача 6.10. Дадена е редица от 12 стола, на 9 от които седят хора. Да се докаже, че има 3 последователни заети стола.

Задача 6.11. Точките в равнината са оцветени в черно и бяло. Да се докаже, че има правоъгълник със само черни или само бели върхове.

Задача 6.12. Механизмът на сейф се състои от седем колелца, всяко от които може да заема десет различни позиции, обозначени с цифрите от 0 до 9.

Когато механизмът работи правилно, само една седемцифрена поредица може да отвори сейфа. Поради повреда в механизма сейфът се отваря, ако поне четири от седемте колелца са в правилно положение. Колко са седемцифрените поредици, от-ключващи повредения сейф?

Задача 6.13. Колко на брой са строго растящите редици от седем цели положителни числа, ако първият член е 1 и разликата на всеки 2 поредни члена не надхвърля 4?

Задача 6.14. В магистърска програма X има 17 студенти, а в магистърска програма Y - 12 студенти. Всеки от тях трябва да избере и посещава точно един от общо 10 избираеми курса. По колко начина студентите могат да направят своя избор, ако:

- няма никакви ограничения при избора;
- няма курс, избран от всеки студент от програмата Y;
- всеки курс е избран от поне един студент.

Задача 6.15. Нека сме избрали n+1 елемента на множеството $S = \{1, 2, 3, ..., 2n\}$. Покажете, че поне едно от избраните числа дели друго от избраните числа.

Задача 6.16. Колко са монотонно растящите редиците от естествени числа x_1, x_2, \ldots, x_n такива че $x_1 \geq 0, x_n \leq m$.

Задача 6.17. Означаваме множеството от реални числа с \mathbb{R} , а рационалните числа с \mathbb{Q} .

Определяме релацията $R = \{(x,y) | x \in \mathbb{R}, y \in \mathbb{R}, x - y \in \mathbb{Q}\}.$

- (а) Докажете, че R е релация на еквивалентност.
- (б) Докажете, че класове на еквивалентност, породени от R, образуват неизброимо множество.

to be continued...