Multi-agent Feature Selection for Integrative Multi-omics Analysis

Presenter: Sina Tabakhi

Supervisor: Haiping Lu

Department of Computer Science, University of Sheffield

44th International Engineering in Medicine and Biology Conference (EMBC 2022)

Motivation

- Multi-omics data
 - ☐ Deep understanding of complex molecular mechanisms
 - ☐ Diagnose, treat, and cure cancers through biological omics data

Representation for multi-agent feature selection

- > A complete weighted graph
- corr(.,.): correlation function
- > rel(.): relevance function
- $\succ \tau_i^j$: Pheromone level

Multi-agent feature selection algorithm

- Goal
 - Minimum redundancy
 - Maximum relevance

State transition rules in the framework

> The greedy rule

$$f_j^v = \underset{j \in \Omega_{iv}^v}{\operatorname{arg\,max}} \left[\tau_j^v(t) \left[\eta_1 \left(f_j^v \right) \right]^\alpha \left[\eta_2 \left(f_i^v, f_j^v \right) \right]^\beta \right] \text{ if } q \leq q_0.$$
Pheromone Relevance of feature correlation

> The probabilistic rule

$$v' = \operatorname{choice}(V, \mathbb{P}) \quad \text{if} \quad q > q_0$$

$$P(f_{j}^{v'}|f_{i}^{v}) = \frac{\tau_{j}^{v'}(t) \left[\eta_{1}(f_{j}^{v'})\right]^{\alpha} \left[\eta_{2}(f_{i}^{v}, f_{j}^{v'})\right]^{\beta}}{\sum_{u \in \Omega_{iv}^{v'}} \tau_{u}^{v'}(t) \left[\eta_{1}(f_{u}^{v'})\right]^{\alpha} \left[\eta_{2}(f_{i}^{v}, f_{u}^{v'})\right]^{\beta}}$$

Fitness function to evaluate subsets

$$\mathrm{fitness}(S_a) = \underbrace{\frac{\sum_{f_i^v \in S_a} \mathrm{rel}(f_i^v) / |S_a|}{\sum_{f_i^v, f_j^{v'} \in S_a} \mathrm{corr}(f_i^v, f_j^{v'}) / \sum_{i=1}^{|S_a|-1} i} \xrightarrow{\mathrm{Maximal relevance}} \underbrace{\frac{\sum_{f_i^v \in S_a} \mathrm{corr}(f_i^v, f_j^{v'}) / \sum_{i=1}^{|S_a|-1} i}{\sum_{f_i^v \in S_a} \mathrm{corr}(f_i^v, f_j^{v'}) / \sum_{i=1}^{|S_a|-1} i}}_{\mathrm{redundancy}}$$

Experiments

Dataset

☐ The ovarian cancer data from The Cancer Genome Atlas (TCGA)

Omics Type	#Features	#Samples
DNA methylation	27,578	616
Gene-level copy number variation	24,776	579
Gene expression RNA-seq	20,530	308

> Preprocessing

- ☐ Remove features with missing values
- □ Normalize values to the range of [0, 1]
- ☐ Remove features with variance lower than 0.05

Results

Performance of the proposed method (MAgentOmics)

LOGISTIC REGRESSION CLASSIFIER

Conclusion

Summary

- ☐ Tackled the high-dimensionality challenge of integrative multi-omics
- ☐ Assessed the relative importance of each view
- Demonstrated the MAgentOmics outperforms the mRMR-mv

> Future directions

- ☐ Improve efficiency by considering a sparse graph
- Design of new fitness functions
- Apply the proposed framework to other multi-omics data

Thank You!