

Data Science for Assistive Health Technologies

Dr. Muhammad Adeel Nisar

Assistant Professor – Department of IT, Faculty of Computing and Information Technology, University of the Punjab, Lahore

Contents

- Recurrent Neural Networks
- Vanishing and Exploding Gradients
- Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
- Applications of RNN in Assistive Health Technologies
- Conclusion

Acknowledgement

- The slides material is acquired from the lectures/publications of
- Andrew Ng, Stanford University,
- Chris Olah, Google Brain,
- Fei-Fei Li, Stanford University,
- Geoffrey Hinton, Google & University of Toronto,
- Alexandar and Ava Amini, MIT
- Hongyi Zhu and Hsinchun Chen, University of Arizona
- Hung-yi Lee, National Taiwan University,
- Ian Goodfellow, Google Brain,
- Yann LeCun, New York University,
- Yoshua Bengio, Universite de Montreal
- Colah's Blog, "Understanding LSTM Networks," 2015
- I. Witten, et al., "Data Mining," 2017
- Frederic Li, Adeel Nisar, Kimiaki Shirahama, University of Siegen

Human Brain and Sequential Data

- Human brain deals with information streams. Most data is obtained, processed, and generated sequentially.
 - E.g., listening: soundwaves → vocabularies/sentences
 - E.g., action: brain signals/instructions \rightarrow sequential muscle movements
- Human thoughts have persistence; humans don't start their thinking from scratch every second.
 - As you read this sentence, you understand each word based on your prior knowledge.

Real-life Sequence Learning Applications

- Long-term Activity Recognition (e.g., Activities of Daily Living)
- Flow Detection
- Sleep Stage Classification
- Parkinson Patient's Tremor Detection
- Pain Monitoring
- Speech Recognition
- Text Translation
- Stock Price Prediction

Sequence Modeling Applications

- The applications of standard Artificial Neural Networks (and also Convolutional Networks) are limited due to:
 - They only accepted a fixed-size vector as input (e.g., an image) and produce a fixed-size vector as output (e.g., probabilities of different classes).
 - These models use a fixed amount of computational steps (e.g. the number of layers in the model).
- Recurrent Neural Networks (RNNs) are a family of neural networks introduced to **learn sequential data**.
 - Inspired by the temporal-dependent and persistent human thoughts

Perceptron Revisited

Feedforward Network Revisited

Feedforward Network Revisited

Multiple Feedforward Networks

 Recurrent Neural Networks are networks with loops, allowing information to persist.

Output is to predict a vector h_t , where $output y_t = \varphi(h_t)$ at some time steps (t)

Recurrent Neural Networks have loops.

In the above diagram, a chunk of neural network, $\mathbf{A} = \mathbf{f}_{W}$, looks at some input \mathbf{x}_t and outputs a value \mathbf{h}_t . A loop allows information to be passed from one step of the network to the next.

Unrolling RNN

An unrolled recurrent neural network.

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor. The diagram above shows what happens if we **unroll the loop**.

- The recurrent structure of RNNs enables the following characteristics:
 - Specialized for processing a sequence of values $x^{(1)}, \dots, x^{(\tau)}$
 - Each value $x^{(i)}$ is processed with the same network A that preserves past information
 - Can scale to much longer sequences than would be practical for networks without a recurrent structure
 - Reusing network **A** reduces the required amount of parameters in the network
 - Can process variable-length sequences
 - The network complexity does not vary when the input length change
 - However, vanilla RNNs suffer from the training difficulty due to exploding and vanishing gradients.

Exploding and Vanishing Gradients

In vanilla RNNs, computing this gradient involves many factors of W_{hh} (and repeated \tanh)*. If we decompose the singular values of the gradient multiplication matrix,

- Largest singular value > 1 → Exploding gradients
 - Slight error in the late time steps causes drastic updates in the early time steps

 Unstable learning
- Largest singular value < 1 → Vanishing gradients
 - Gradients passed to the early time steps is close to 0. → Uninformed correction

^{*} Refer to Bengio et al. (1994) or Goodfellow et al. (2016) for a complete derivation

Networks with Memory

- Vanilla RNN operates in a "multiplicative" way (repeated tanh).
- Two recurrent cell designs were proposed and widely adopted:
 - Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)
 - Gated Recurrent Unit (GRU) (Cho et al. 2014)
- Both designs process information in an "additive" way with gates to control information flow.
 - Sigmoid gate outputs numbers between 0 and 1, describing how much of each component should be let through.

A Sigmoid Gate

Long Short-Term Memory (LSTM)

- The key to LSTMs is the **cell state**.
 - Stores information of the past → long-term memory

 - Results in an **uninterrupted gradient flow** \rightarrow errors in the past pertain and impact learning in the future
- The LSTM cell manipulates input information with three gates.
 - Input gate → controls the intake of new information
 - Forget gate → determines what part of the cell state to be updated
 - Output gate → determines what part of the cell state to output

LSTM: Components & Flow

- LSM unit output
- **Output gate** units
- Transformed memory cell contents
- Gated update to memory cell units
- Forget gate units
- *Input gate* units
- Potential input to memory cell

$$h_t = o_t * \tanh(C_t)$$

$$o_t = \sigma(\underline{W_o[h_{t-1}, x_t] + b_o}) \longrightarrow \tanh(C_t)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$f_t = \sigma \left(\underline{W_f \cdot [h_{t-1}, x_t] + b_f} \right) \rightarrow$$

$$i_t = \sigma \left(\underline{W_i \cdot [h_{t-1}, x_t] + b_i} \right)$$

$$\tilde{C}_t = \tanh(\underline{W_C \cdot [h_{t-1}, x_t] + b_C})$$

- Step 1: Decide what information to throw away from the cell state (memory) $\rightarrow f_t * C_{t-1}$
 - The output of the previous state h_{t-1} and the new information x_t jointly determine what to forget
 - h_{t-1} contains selected features from the memory \mathcal{C}_{t-1}
 - Forget gate f_t ranges between [0, 1]

Text processing example:

Cell state may include the gender of the current subject (h_{t-1}) . When the model observes a new subject (x_t) , it may want to forget $(f_t \to 0)$ the old subject in the memory (C_{t-1}) .

- Step 2: Prepare the updates for the cell state from input $\rightarrow i_t * \tilde{C}_t$
 - An alternative cell state \widetilde{C}_t is created from the new information x_t with the guidance of h_{t-1} .
 - Input gate i_t ranges between [0, 1]

Example:

The model may want to add $(i_t \to 1)$ the gender of new subject (\widetilde{C}_t) to the cell state to replace the old one it is forgetting.

- Step 3: Update the cell state \rightarrow $f_t * C_{t-1} + i_t * \tilde{C}_t$
 - The new cell state C_t is comprised of information from the past f_t*C_{t-1} and valuable new information $i_t*\widetilde{C_t}$
 - * denotes elementwise multiplication

Example:

The model <u>drops the old gender</u> information $(f_t * C_{t-1})$ and <u>adds</u> new gender information $(i_t * \widetilde{C}_t)$ to form the <u>new cell state</u> (C_t) .

- Step 4: Decide the filtered output from the new cell state $\rightarrow o_t * \tanh(C_t)$
 - tanh function filters the new cell state to characterize stored information
 - Significant information in $C_t \rightarrow \pm 1$
 - Minor details \rightarrow 0
 - Output gate o_t ranges between [0, 1]
 - h_t serves as a control signal for the next time step

Example:

Since the model just saw a new subject (x_t) , it might want to output $(o_t \rightarrow 1)$ information relevant to a verb $(\tanh(C_t))$, e.g., singular/plural, in case a verb comes next.

Gated Recurrent Unit (GRU)

- GRU is a variation of LSTM that also adopts the gated design.
- Differences:
 - GRU uses an **update gate** z to substitute the input and forget gates i_t and f_t
 - Combined the cell state C_t and hidden state h_t in LSTM as a single cell state h_t
- GRU obtains similar performance compared to LSTM with fewer parameters and faster convergence. (Cho et al. 2014)

$$z_t = \sigma\left(W_z \cdot [h_{t-1}, x_t]\right)$$

$$r_t = \sigma\left(W_r \cdot [h_{t-1}, x_t]\right)$$

$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Update gate: controls the composition of the new state

Reset gate: determines how much old information is needed in the alternative state $\widetilde{h_t}$

Alternative state: contains new information

New state: replace selected old information with new information in the new state

Sequence Learning Architectures

- Learning on RNN is more robust when the vanishing/exploding gradient problem is resolved.
 - RNNs can now be applied to different Sequence Learning tasks.
- Recurrent NN architecture is flexible to operate over various sequences of vectors.
 - Sequence in the input, the output, or in the most general case both
 - Architecture with one or more RNN layers

Sequence Learning with One RNN Layer

- Each rectangle is a vector and arrows represent functions (e.g. matrix multiply).
- Input vectors are in red, output vectors are in blue and green vectors hold the RNN's state

- (1) Standard NN mode without recurrent structure (e.g. image classification, one label for one image).
- (2) Sequence output (e.g. image captioning, takes an image and outputs a sentence of words).
- (3) Sequence input (e.g. <u>sentiment analysis</u>, a sentence is classified as expressing positive or negative sentiment).
- (4) Sequence input and sequence output (e.g. machine translation, a sentence in English is translated into a sentence in French).
- (5) Synced sequence input and output (e.g. video classification, label each frame of the video).

Applications of RNN in Assistive Health Technologies

By using timeseries sensor data for the following domains:

- Emotion Recognition
- Pain Recognition
- Activity Recognition
- Sleep Stage Classification
- Parkinson Patient's Tremor Detection

Applications of RNN in Assistive Health Technologies

Sensor-Based Emotion Recognition

AF1 (%)	Subject-dependent	Subject-independent
HCF	91.49	28.85
MLP	32.60	26.74
CNN	34.95	15.99
LSTM	35.27	27.83

Sensor headband (BVP, PPG, GSR, EEG, EOG)

Happiness, frustration, boredom, other (4 classes)

A. Grünewald, F. Li, H. Kampling, D. Krönert et al., Biomedical Data Acquisition and Processing to Recognize Emotions for Affective Learning, Proc. of IEEE BIBE, 2018

Sensor-Based Pain Monitoring

- Smartwatch (GSR, T°, BVP)
- Multisensor platform (GSR, EMG, ECG, Respiration)

Pain, no pain (2 classes)

DI Ammanah	Pain Recognition				
DL Approach	Acc (%)	AF1 (%)			
MLP	84.01	83.58			
LSTM	83.48	83.12			

<u>P. J. Gouverneur</u>, **F. Li,** T. M. Szikszay, W. M. Adamczyk, K. Luedtke, M. Grzegorzek, *Classification of Heat-induced Pain using Physiological Signals*, Proc. of ITIB 2020

Sensor-Based Activity Recognition

<u>F. Li</u>, K. Shirahama, M. A. Nisar, L. Köping, M. Grzegorzek, *Comparison of Feature Learning Methods for Human Activity Recognition using Wearable Sensors*, Sensors (MDPI), 2018

Results

OPPORTUNITY dataset [1]

7 IMUs (3D acceleration, angular velocity, magnetometer) and 12 3D accelerometers placed all over the body

17 activities of daily life and one NULL class (18 classes)

Method	Accuracy	Weighted F1-Score	Average F1-Score
HCF	89.96	89.53	63.76
CBH	89.66	88.99	62.27
CBS	90.22	89.88	67.50
MLP	91.11	90.86	68.17
CNN	90.58	90.19	65.26
LSTM	91.29	91.16	69.71
Hybrid	91.76	91.56	70.86
AE	87.80	87.60	55.62

[1] R. Chavarriaga et al., The Opportunity Challenge: a Benchmark Database for On-body Sensor-based Activity Recognition, Pattern Recognition Letters (Elsevier), 2013

UniMIB SHAR dataset [2]

Smartphone (3D acceleration)

9 activities of daily life and 7 falling movements (16 classes)

[2] <u>D. Micucci</u> et al., *UniMIB SHAR: a New Dataset for Human Activity Recognition using Acceleration Data from Smartphone*, Applied Sciences (MDPI), 2016

Method	Accuracy	Weighted F1-score	Average F1-score
Baseline [2]	54.70		
HCF	32.01	22.85	13.78
CBH	75.21	74.13	60.01
CBS	77.03	75.93	63.23
MLP	71.62	70.81	59.97
CNN	74.97	74.29	64.65
LSTM	71.47	70.82	59.32
Hybrid	74.63	73.65	64.47
$\overline{\mathrm{AE}}$	65.67	64.84	55.04

Aging Society and Health Assessment

- Elderly population is expected to double by 2050^[1]
- Activities of Daily Living (ADLs) as a health assessment tool^[2]

Continuous monitoring of ADLs

Human Activity Recognition (HAR) System

Sensor-based HAR

Acquisition of CogAge Datasets^[1]

Hierarchical Multitask Learning

- Objective
 - Preserve the temporal evolution
 - Augment the dataset by learning all three types of activities
- Issues with existing approaches
 - Built for the activities with same temporal scales
- Proposed approach
 - Multitask model for different temporal scales
 - Time-distributed CNN-LSTM modules
 - Compared to baseline with single task learning (STL) models

MTL Models

$$L(f_i) = -\frac{1}{U} \sum_{u=1}^{U} \boldsymbol{y}_i^{(u)^T} \log(\boldsymbol{q}_i^{(u)})$$

Where $i \in \{S, B, C\}$

$$L(f_{\text{MTL-SB}}) = w_S . L(f_S) + w_B . L(f_B)$$

$$L(f_{\text{MTL-SBC}}) = w_S \cdot L(f_S) + w_B \cdot L(f_B) + w_C \cdot L(f_C)$$

MTL Models – Results and Issues

Models		State	Behavioural	Composite	
Atomic	Composite	Accuracy (%)			
M-CNN	RP+MP+AP	92.4	71.8	88.5	
MTL-SB		77.4	72.0		
MTL-SBC		74.4	72.2	92.9	

Confusion Matrix – State Activities – MTL-SB							
Activities	Bending	Lying	Sitting	Squatting	Standing	Walking	
Bending	69	0	0	0	0	0	
Lying	6	63	0	0	0	0	
Sitting	43	2	19	3	0	0	
Squatting	17	0	2	48	0	0	
Standing	43	0	0	2	27	0	
Walking	5	0	0	0	0	65	

MTL-StateComposite-BehaviouralComposite

MTL-SC-BC

$$L(f_{SC}) = w_S \cdot L(f_S) + w_C \cdot L(f_C)$$

MTL-SC-BC

$$L(f_{BC}) = w_B \cdot L(f_B) + w_C \cdot L(f_C)$$

Final Results – All Methods

Recognition of State, Behavioural and Composite Activities							
Method		State		Behavioural		Composite	
Atomic	Comp.	AF1	Acc	AF1	Acc	AF1	Acc
СВ	RP+MP+AP	88.2	88.6	67.9	68.2	88.0	88.5
M-CNN	RP+MP+AP	92.3	92.4	71.7	71.8	87.4	87.9
MTL-SBC		73.3	74.4	71.7	72.2	92.3	92.9
MTL-SC-BC		95.1	95.2	73.4	73.9	93.8	94.0

More Application of Assistive Health Technologies

- Emotion Recognition
- Anxiety and Stress Detection
- Dataset
 - Sensors
 - Audio
 - Visual
 - Data
 - RAVDESS
 - https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio
 - TESS
 - https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess
 - Stress Detection
 - https://figshare.com/articles/dataset/Anxiety_Dataset_2022/19875217