School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 5

1. For the following dataset:

apple	ibm	lemon	sun	CLASS
TRAINING INSTANCES				
4	0	1	1	FRUIT
5	0	5	2	FRUIT
2	5	0	0	COMPUTER
1	2	1	7	COMPUTER
TEST INSTANCES				
2	0	3	1	?
1	2	1	0	?

- (a) Classify the test instances according to the method of Nearest Prototype.
- (b) Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- (c) Using the **Manhattan distance** measure, classify the test instances using the 3-NN method, for the three weightings we discussed in the lectures: majority class, inverse distance, inverse linear distance.
- (d) Can we do weighted k-NN using **cosine similarity**?
- 2. Revise SVMs, particularly the notion of "linear separability".
 - (a) If a dataset isn't linearly separable, an SVM learner has two major options. What are they, and why might we prefer one to the other?
 - (b) Contrary to many geometric methods, SVMs work better (albeit slower) with large attribute sets. Why might this be true?
- 3. We have now seen a decent selection of (supervised) learners:
 - Naive Bayes
 - 0-R
 - 1-R
 - Decision Trees
 - k-Nearest Neighbour
 - Nearest Prototype
 - Support Vector Machines
 - (a) For each, identify the model built during training.
 - (b) Rank the learners (approximately) by how fast they can classify a large set of test instances. (Note that this is largely independent of how fast they can build a model, and how well they work in general!)