CHAPTER - 01 SET, RELATIONS AND REAL FUNCTIONS

- 1. Since, $y = e^x$ and y = x do not meet for any $x \in R$ $\therefore A \cap B = \phi$.
- 2. $A \cap (A \cup B)' = A \cap (A' \cap B'), \ (\because (A \cup B)' = A' \cap B')$ $= (A \cap A') \cap B', \ (\text{by associative law})$ $= \phi \cap B', \ (\because A \cap A' = \phi)$ $= \phi.$

Brilliant STUDY CENTRE

4. 4 For
$$(a, b)$$
, $(c, d) \in \mathbb{N} \times \mathbb{N}$ $(a,b)R(c,d) \Rightarrow ad(b+c) = bc(a+d)$ Reflexive: Since $ab(b+a) = ba(a+b) \forall ab \in \mathbb{N}$, $\therefore (a,b)R(a,b)$, $\therefore R$ is reflexive. Symmetric: For (a,b) , $(c,d) \in \mathbb{N} \times \mathbb{N}$, let $(a,b)R(c,d)$ $\therefore ad(b+c) = bc(a+d) \Rightarrow bc(a+d) = ad(b+c)$ $\Rightarrow cb(d+a) = da(c+b) \Rightarrow (c,d)R(a,b)$ $\therefore R$ is symmetric

Transitive: For (a,b) , (c,d) , $(e,f) \in \mathbb{N} \times \mathbb{N}$,

Let $(a,b)R(c,d)$, $(c,d)R(e,f)$ $\therefore ad(b+c) = bc(a+d)$, $cf(d+e) = de(c+f)$ $\Rightarrow adb+adc = bca+bcd$ (i)

and $cfd+cfe=dec+def$ (ii)

(i) $\times ef+(ii) \times ab$ gives, adbef+adcef+cfdab+cfeab = bcaef+bcdef+decab+defab $\Rightarrow adcf(b+e) = bcde(a+f) \Rightarrow af(b+e) = be(a+f) \Rightarrow (a,b)R(e,f)$. $\therefore R$ is transitive. Hence R is an equivalence relation

5. 4 A = Set of all values
$$(x, y) : x^2 + y^2 = 25 = 5^2$$

B =
$$\frac{x^2}{144} + \frac{y^2}{16} = 1$$
 i.e., $\frac{x^2}{(12)^2} + \frac{y^2}{(4)^2} = 1$.

Clearly, A ∩ B consists of four points.

6. 1 Let
$$A = \{1,2,3\}$$
 and $R = \{(1,1),(1,2)\}$, $S = \{(2,2)(2,3)\}$ be transitive relations on A. Then $R \cup S = \{(1,1);(1,2);(2,2);(2,3)\}$ Obviously, $R \cup S$ is not transitive. Since $(1,2) \in R \cup S$ and $(2,3) \in R \cup S$ but $(1,3) \notin R \cup S$.

7. 1
$$S = \{1, 2, 3, ..., 100\}$$
 = Total non-empty subsets-subsets with product of element is odd
$$= 2^{100} - 1 - 1[(2^{50} - 1)] = 2^{100} - 2^{50} = 2^{50}(2^{50} - 1)$$

8.
$$A = \{x \in Z : 2^{(x+2)(x^2-5x+6)} = 1\}$$

$$2^{(x+2)(x^2-5x+6)} = 2^0 \implies x = -2, 2, 3$$

$$A = \{-2, 2, 3\},$$

$$B = \{x \in Z : -3 < 2x - 1 < 9\}$$

$$B = \{0, 1, 2, 3, 4\}$$

A \times B has is 15 elements, so number of subsets of A \times B is 2^{15}

9. 4 Let
$$a^2 + b^2 \in Q$$
 and $b^2 + c^2 \in Q$
E.g. $a = 2 + \sqrt{3}$ and $b = 2 - \sqrt{3} \implies a^2 + b^2 = 14 \in Q$
Let $c = (1 + 2\sqrt{3}) \implies b^2 + c^2 = 20 \in Q$
But $a^2 + c^2 = (2 + \sqrt{3})^2 + (1 + 2\sqrt{3})^2 \notin Q$ for R_2
Let $a^2 = 1$, $b^2 = \sqrt{3}$ and $c^2 = 2 \implies a^2 + b^2 \notin Q$ and $b^2 + c^2 \notin Q$
But $a^2 + c^2 \in Q$.

- Number of onto function such that exactly three elements in $x \in A$ such that $f(x) = y_2$ is equal to $= {}^7C_3 \cdot \{2^4 2\} = 14 \cdot {}^7C_3$
- 11. 3 Let $S = \{1, 2, 3\} \Rightarrow n(S) = 3$ Now, P(S) = set of all subsets of STotal No. of subsets $= 2^3 = 8$ $\therefore n[P(S)] = 8$ Now, number of one to one functions from $S \rightarrow P(S)$ is ${}^8P_3 = \frac{8!}{5!} = 8 \times 7 \times 6 = 336$.
- 12. 3 Let $\alpha \in (A \cap B) \Rightarrow \alpha \in A$ and $\alpha \in B$ $\Rightarrow g(\alpha) = 0$ and $f(\alpha) = 0$ $\Rightarrow \{f(\alpha)\}^2 + \{g(\alpha)\}^2 = 0$ $\Rightarrow \alpha$ is a root of $\{f(x)\}^2 + \{g(x)\}^2 = 0$ Hence, statement-I is true and statement-II is false

13. 2 Statement-I

- (a) Reflexive xRy : (x x) is an integer, which is true,
- Hence, it is reflexive.
- (b) Symmetric xRy: (x y) is an integer
- \Rightarrow -(y x) is also an integer
- ∴ (y x) is also an integer ⇒ yRx

Hence, it is symmetric.

- (c) Transitive xRy and yRz
- \Rightarrow (x y) and (y z) are integer and
- \Rightarrow (x-y)+(y-z) is an integer.
- \Rightarrow (x z) is an integer
- $\Rightarrow xRz$
- .. It is transitive

Hence, it is equivalence relation

Statement-II

 $B = \{(x,y) \in R \times R : x = \alpha y \text{ for some relational number } \alpha \}$

If $\alpha = 1$, then xRy: x = y (To check equivalence)

- (a) Reflexive xRx: x = x (True)
- .. Reflexive
- (b) Symmetric xRy: $x = y \Rightarrow y = x \Rightarrow yRx$
- .: Symmetric
- (c) Transitive xRy and yRz \Rightarrow x = y and y = z \Rightarrow x = z \Rightarrow xRz
- .: Transitive

Hence, it is equivalence relation.

.. Both are true but statement-II is not correct explanation of statement-I

14. 2

$$f(x) = \log(x + \sqrt{x^2 + 1})$$

$$f(-x) = \log(-x + \sqrt{x^2 + 1}) + \log(-x + \sqrt{x^2 + 1})$$

$$f(x) + f(x) = \log(x + \sqrt{x^2 + 1}) + \log(-x + \sqrt{x^2 + 1})$$

$$= \log(x + \sqrt{x^2 + 1})(-x + \sqrt{x^2 + 1})$$

$$= \log(1)$$

$$= 0$$

$$f(x) \text{ is an odd function.}$$

15.
$$\frac{x^2 + 14x + 9}{x^2 + 2x + 3} = y \Rightarrow x^2 + 14x + 9 = x^2y + 2xy + 3y$$

$$\Rightarrow x^2(y - 1) + 2x(y - 7) + (3y - 9) = 0$$
Since x is real, $\therefore 4(y - 7)^2 - 4(3y - 9)(y - 1) > 0$

$$\Rightarrow 4(y^2 + 49 - 14y) - 4(3y^2 + 9 - 12y) > 0$$

$$\Rightarrow 4y^2 + 196 - 56y - 12y^2 - 36 + 48y > 0$$

$$\Rightarrow 8y^2 + 8y - 160 < 0 \Rightarrow y^2 + y - 20 < 0$$

$$\Rightarrow (y + 5)(y - 4) < 0; \therefore y \text{ lies between } -5 \text{ and } 4.$$

16. D Given
$$f: (2,3) \to (0,1)$$
 and $f(x) = x - [x]$

$$f(x) = y = x - 2 \Rightarrow x = y + 2 = f^{-1}(y) \Rightarrow f^{-1}(x) = x + 2.$$

17. C
$$4-x^{2} \neq 0; \quad x^{3}-x>0$$

$$x = \pm 2 \quad x(x-1)(x+1)>0$$

$$\therefore D_{f} \in (-1,0) \cup (1,2) \cup (2,\infty)$$

18. 3

C.
$$y = \frac{8^{8x} - 9^{-8x}}{8^{8x} + 8^{-9x}}$$

$$= \frac{8^{9x} - \frac{1}{8^{2x}}}{8^{2x} + \frac{1}{8^{2x}}}$$

$$= \frac{8^{4x} - 1}{8^{4x} + 1}$$

$$y \times 8^{4x} + y = 8^{4x} - 1$$

$$(y - 1) 8^{4x} = -y - 1$$

$$8^{4x} = \frac{-y - 1}{y - 1}$$

$$4x = \log_8(\frac{-y - 1}{y - 1})$$

Brilliant STUDY CENTRE

$$4x = \log_8 \left(\frac{1+y}{1-y} \right)$$
$$x = \frac{1}{4} \log_8 \left(\frac{1+y}{1-y} \right).$$

19. 3
$$f(x) = \log(\sqrt{x-4} + \sqrt{6-x})$$
$$x-4 \ge 0 \Rightarrow x \ge 4$$
$$6-x \ge 0 \Rightarrow x \le 6$$
$$Domain = [4,6]$$

20. 3
$$y = 5 \log x$$
$$y = x \log 5$$
$$x = y^{\frac{1}{\log 5}}$$

SECTION II (NUMERICAL)

21.
$$160 n(C \cup H \cup B) = 224 + 240 + 336 - 64 - 80 - 40 + 24 = 640$$

 $n(C \cup H \cup B)' = 800 - 640 = 160$

- 22. 12 Total number of reflexive relations in a set with n elements = 2^{n^2n} . Therefore, total number of reflexive relation set with 4 elements = $2^{\frac{164}{2}}$
- 23. 30 $n(X_i) = 10$, $\bigcup_{i=1}^{50} X_i = T \implies n(T) = 500$ each element of T belongs to exactly 20 elements of X_i $\Rightarrow \frac{500}{20} = 25$ distinct elements So, $\frac{5n}{6} = 25 \implies n = 30$.

24. 20 Replace x by x+5

We get
$$f(x+5)+f(x+15)=f(x+10)+f(x+20)$$
 $f(x)=f(x+20)$

25. 29
$$n(A) = 25$$
, $n(B) = 7$, $n(A \cap B) = 3$, $n(A \cup B) = 25 + 7 - 3 = 29$

JEE ADVANCED LEVEL SECTION III

26. C
$$f(a-(x-a)) = f(a)f(x-a) - f(0)f(x)$$
(i)
Put $x = 0$, $y = 0$; $f(0) = (f(0))^2 - [f(a)]^2 \Rightarrow f(a) = 0$
[: $f(0) = 1$]. From (i), $f(2a-x) = -f(x)$.

27. B
$$f(x) = \frac{\sin^{-1}(3-x)}{\log[|x|-2]}$$
 Let $g(x) = \sin^{-1}(3-x) \Rightarrow -1 \le 3-x \le 1$ Domain of $g(x)$ is $[2,4]$ and let $h(x) = \log[|x|-2] \Rightarrow |x|-2 > 0$
$$\Rightarrow |x| > 2 \Rightarrow x < -2 \text{ or } x > 2 \Rightarrow (-\infty,-2) \cup (2,\infty)$$
 we know that $(f/g)(x) = \frac{f(x)}{g(x)} \forall x \in D_1 \cap D_2 - \{x \in R : g(x) = 0\}$
$$\therefore \text{ Domain of } f(x) = (2,4] - \{3\} = (2,3) \cup (3,4].$$

28. B We have
$$f(x) = \left[\log_{10}\left(\frac{5x-x^2}{4}\right)\right]^{1/2}$$
(i)

From (i), clearly $f(x)$ is defined for those values of x for which $\log_{10}\left[\frac{5x-x^2}{4}\right] \ge 0$

$$\Rightarrow \left(\frac{5x-x^2}{4}\right) \ge 10^0 \Rightarrow \left(\frac{5x-x^2}{4}\right) \ge 1$$

$$\Rightarrow x^2 - 5x + 4 \le 0 \Rightarrow (x-1)(x-4) \le 0$$
Hence domain of the function is $[1, 4]$.

29. C
$$g(x) = x^{3} + \tan x + \frac{x^{2} + 1}{P}$$

$$g(-x) = (-x)^{3} + \tan(-x) + \frac{(-x)^{2} + 1}{P}$$

$$g(-x) = -x^{3} - \tan x + \frac{x^{2} + 1}{P}$$

$$g(x) + g(-x) = 0 \text{ because } g(x) \text{ is a odd function}$$

$$\therefore \left[x^{3} + \tan x + \frac{x^{2} + 1}{P} \right] + \left[-x^{3} - \tan x + \frac{x^{2} + 1}{P} \right] = 0$$

$$\Rightarrow \frac{2(x^{2} + 1)}{P} = 0 \Rightarrow 0 \le \frac{x^{2} + 1}{P} < 1 \text{ because } x \in [-2, 2]$$

$$\Rightarrow 0 \le \frac{5}{P} < 1 \Rightarrow P > 5.$$

30. D
$$f(x) = \begin{cases} \frac{x}{x^2 + 1}; & x \in (1, 2) \\ \frac{2x}{x^2 + 1}; & x \in [2, 3) \end{cases}$$
$$f(x) \text{ is decreasing function}$$
$$\therefore f(x) \in \left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}, \frac{4}{5}\right].$$

31. A
$$f(x) = \log_{e} \left(\frac{1-x}{1+x} \right), |x| < 1$$

$$f\left(\frac{2x}{1+x^2} \right) = \ln \left(\frac{1 - \frac{2x}{1+2x^2}}{1 + \frac{2x}{1+x^2}} \right)$$

$$= \ln \left(\frac{(x-1)^2}{(x+1)^2} \right) = 2\ln \left| \frac{1-x}{1+x} \right| = 2f(x)$$

32. A Solve for x, the system of simulteneous inequations
$$(2\{x\}-1)(3\{x\}-2) \le 0$$
 and $(3[x]-4)$ $(2[x]-8) \le 0$, where [.] is GIV function and $\{\}$ is fractional part of function Given in inequations $(2\{x\}-1)(3\{x\}-2) \le 0$ (1)

And $(3[x]-4)(2[x]-8) \le 0$ (2)

From (1), $\frac{1}{3} \le \{x\} \le \frac{2}{3}$ (3)

From (2), $\frac{4}{3} \le [x] \le 4 \Rightarrow [x] \in \{2,3,4\}$

SECTION - IV (More than one correct answer)

33. A,B,C,D
$$f(x) = |x-1| + |x-2| + |x-3|$$

$$\Rightarrow f(x) = \begin{cases} -3x + 6, x < 1 \\ -x + 4, 1 \le x \le 2 \\ x, 2 < x \le 3 \\ 3x - 6, x > 3 \end{cases}$$

34. A,C
$$f(x) = \frac{x^2 + 5x - 6}{2x^2 + 7x - 9} = \frac{(x - 1)(x + 6)}{(x - 1)(2x + 9)} = \frac{x + 6}{2x + 9}, x \neq 1$$

$$\therefore \text{ Domain of } f(x) = R - \left\{ \frac{-9}{2}, 1 \right\}; \text{ Range of } f(x) = R - \left\{ \frac{1}{2}, \frac{7}{11} \right\}$$

Brilliant STUDY CENTRE

35. A,B,C From fig, by transformation methods\

36.
$$A,B,C,D \quad f(x) = \begin{cases} x^2 - 1, x < 0 \\ 4 - x^2, x \ge 10 \end{cases} & & & & & & & & & & & & \\ g(x) = \begin{cases} x + 1, x < 0 \\ 2 - x, x \ge 0 \end{cases} \\ g(f(x)) = \begin{cases} f(x) + 1, f(x) < 0 \\ 2 - f(x), f(x) \ge 0 \end{cases} \\ g[f(x)] = \begin{cases} x^2, x \in (-1,0) \\ 5 - x^2, x \in (2,\infty) \\ 3 - x^2, x \in (-\infty, -1) \\ x^2 - 2, x \in [0,2] \end{cases}$$

SECTION - V (Numerical Type - Upto two decimal place)

37. 34
$$f(x) = ax^{7} + bx^{5} + cx - 5$$

$$f(-7) = a(-7)^{7} + b(-7)^{5} + c(-7) - 5...(1)$$

$$f(7) = a(7)^{7} + b(7)^{5} + c(7) - 5...(2)$$

$$(1) + (2) \Rightarrow f(7) + f(-7) = -10$$

$$f(7) = -10 - 7 = -17$$

$$f(7) + 17 \cos x = -17(\cos x - 1) \in [-34, 0]$$

38. 0
$$f(x) = \cos(\log x)$$
Now let $y = f(x) \cdot f(4) - \frac{1}{2} \left[f\left(\frac{x}{4}\right) + f(4x) \right]$

$$\Rightarrow y = \cos(\log x) \cdot \cos(\log 4) - \frac{1}{2} \left[\cos(\log \left(\frac{x}{4}\right) + \cos(\log 4x) \right]$$

$$\Rightarrow y = \cos(\log x) \cos(\log 4) - \frac{1}{2} \left[\cos(\log x - \log 4) + \cos(\log x + \log 4) \right]$$

$$\Rightarrow y = \cos(\log x) \cos(\log 4) - \frac{1}{2} \left[2\cos(\log x) \cos(\log 4) \right] \Rightarrow y = 0.$$

39. 2
$$f^{-1}og^{-1} = (gof)^{-1}$$
$$gof = 2(x^3 + 3) + 1$$
$$(gof)^{-1} = \left(\frac{x - 7}{2}\right)^{1/3}$$
$$\therefore (gof)^{-1}(23) = 8^{1/3} = 2$$

40. 3
$$f(x) = \frac{a-x}{a+x}, \ x \in R - \{-a\} \to R$$

$$f(f(x)) = \frac{a-f(x)}{a+f(x)} = \frac{a - \left(\frac{a-x}{a+x}\right)}{a + \left(\frac{a-x}{a+x}\right)}$$

$$f(f(x)) = \frac{(a^2-a) + x(a+1)}{(a^2+a) + x(a-1)} = x$$

$$\Rightarrow (a^2-a) + x(a+1) = (a^2+a)x + x^2(a-1)$$

$$\Rightarrow a(a-1) + x(1-a^2) - x^2(a-1) = 0 \Rightarrow a = 1$$

$$f(x) = \frac{1-x}{1+x}, \ f\left(\frac{-1}{2}\right) = \frac{1+\frac{1}{2}}{1-\frac{1}{2}} = 3.$$