MATHEMATICS 1LS3 TEST 4

Day Class	F. Font, M. Lovrić, D. Lozinski
Duration of Examination: 60 minutes	
McMaster University, 28 November 2016	
First name (Pl	LEASE PRINT):
Family name (F	PLEASE PRINT):
	Student No.:

THIS TEST HAS 8 PAGES AND 6 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

EXCEPT ON QUESTIONS 1 AND 2, YOU MUST SHOW CORRECT WORK TO EARN CREDIT.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You must show work to receive full credit.

Problem	Points	Mark
1	4	
2	6	
3	8	
4	6	
5	6	
6	10	
TOTAL	40	

1. Multiple choice questions: circle ONE answer. No justification is needed.

- (a)[2] Which of the following improper integrals are convergent?
- (I) $\int_{1}^{\infty} x^{-1.5} dx$ (II) $\int_{1}^{\infty} x^{-1} dx$ (III) $\int_{1}^{\infty} x^{-0.5} dx$
- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

- (b)[2] Identify all correct statements about the dynamical system $m_{t+1} = 1.4m_t$, $m_0 = 1$.
 - (I) The updating function is $f(m_t) = 1.4$
 - (II) The corresponding backward dynamical system is $m_t = \frac{1.4}{m_{t+1}}$
 - (III) $m_t = 1.4^t$ for all $t \ge 1$.
- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

2. Identify each statement as true or false (circle your choice). You do not need to justify your answer.

(a)[2] A population of bacteria triples every hour. Every hour, before reproduction, 700 bacteria are removed. The population starts with 1,000 bacteria. Let p_t denote the population size (i.e., number of bacteria) at time t. The dynamical system which describes this population is given by $p_{t+1} = 3(p_t - 700)$, $p_0 = 1000$.

TRUE FALSE

(b)[2] The solid of revolution whose volume is given by $\pi \int_0^2 x^2 dx$ is a cone of base radius 4 and height 2.

TRUE FALSE

(c)[2] The dynamical system $h_{t+1} = 1.5h_t + 0.45$ describes the height of a tree in metres, where t is time in years. Converted so that the height is in centimetres, this dynamical system reads $H_{t+1} = 150H_t + 45$.

TRUE FALSE

MATH 1LS	53 * 7	lest 4	* 28	November	2016
----------	--------	--------	------	----------	------

Name:_	
Student No.:	

Questions 3-6: You must show CORRECT work to receive full credit.

3. (a)[4] Sketch (shade) the region bounded by the graphs of $y = 3e^x$ and $y = e^{2x}$ on [0, 4]. Write a formula for its area. Your answer should not contain absolute value. **Do not evaluate the integral(s) involved.**

Name:_	
Student No.:	

(b)[4] Consider the region bounded by the graphs of $y = \sin x$, y = 1/2, x = 0 and $x = \pi/2$. Write a formula for the volume of the solid obtained by revolving this region about the x-axis. Do not evaluate the integral(s) involved.

4. (a)[1] Write the Taylor polynomial $T_2(x)$ for the function $f(x) = e^x$ at x = 0.

(b)[2] Use (a) to show that the function $f(x) = xe^{-x^2}$ can be approximated by the polynomial $T(x) = x - x^3 + \frac{x^5}{2}$ near x = 0.

(b)[3] Use your answer to (b) to find an estimate for $\int_0^1 xe^{-x^2} dx$.

5. (a)[3] Determine whether the improper integral $\int_5^6 \frac{1}{\sqrt{x-5}} dx$ is convergent or divergent. If convergent, find its value.

(b)[3] Determine whether the improper integral $\int_1^\infty \frac{3}{(1+x)^{4/3}} dx$ is convergent or divergent. If convergent, find its value.

6. (a)[3] Find $\int x^2 \ln x \, dx$.

(b)[3] Find
$$\int \frac{(1+\sqrt{x})^3}{\sqrt{x}} dx$$
.

(c)[4] Find the most general antiderivative of the function $f(x) = \frac{3-2x}{1+x^2}$.