Cíl měření

Proměření závislosti intenzitních koeficientů odrazu elektromagnetické vlny (laserového paprsku) na dielektrickém rozhraní reprezentovaném optickým hranolem a určení Brewsterova úhlu. Nalezení úhlu dopadu, při kterém je deviace paprsku minimální a vypočtení indexu lomu hranolu a Brewsterova úhlu.

Pomůcky

Multimetr PeakTech 4000 (rozlišení $0.01\mu A$, přesnost udávaná výrobcem \pm (0.15% + 15 St.)), Nd:YVO₄ laser, optický hranol, fotodetektor, goniometr (přesnost 1°), polarizační filtr

Naměřené hodnoty

Naměřené proudy na fotodetektoru, pro různé úhly dopadu laserového paprsku na optický hranol a pro vlny kolmé a rovnoběžné k rovině dopadu:

Úhel dopadu [°]	I [μΑ] pro polarizační filtr s 0°	u _B [μΑ] pro polarizační filtr s 0°	I [μΑ] pro polarizační filtr s 90°	u _B [μΑ] pro polarizační filtr s 90°
90	86,2	0,28	94,04	0,29
85	Х	х	х	х
80	Х	х	х	х
75	37,43	0,21	8,69	0,16
70	Х	х	х	х
65	Х	х	0,79	0,15
60	19,38	0,18	0,16	0,15
55	Х	х	0,33	0,15
50	Х	х	х	Х
45	11,17	0,17	х	Х
40	X	х	х	Х
35	Х	х	х	х
30	7,38	0,16	4,04	0,16
25	Х	х	Х	Х
20	Х	х	Х	Х
15	5,68	0,16	5,51	0,16

Proud procházející detektorem bez dopadajícího laserového paprsku: I₀=(0,06±0,15)μA

Úhel s minimální deviací paprsku: Θ_{min}=59°

Výsledek

Nejistota měření úhlu θ

$$u_B = \frac{\Delta}{\sqrt{12}} = \frac{1}{\sqrt{12}} \doteq 0.29^{\circ}$$

Nejistota měření proudu I

$$u_B = \frac{0.15}{100} \times I + 15 \times \Delta = \left(\frac{0.15}{100} \times I + 0.15\right) \mu A$$

Přičemž Δ je rozlišení měřicího přístroje a I naměřený proud

Vypočtené nejistoty po dosazení do vzorce jsou uvedeny v tabulce naměřených hodnot vedle měřené veličiny.

Index lomu z úhlu Omin

$$n = 2 \sin \theta_{min} = 1,714$$

$$u_B = \sqrt{\left(\frac{\delta n}{\delta \theta_{min}}\right)^2 u_{B\theta_{min}}^2} = \sqrt{4(\cos \theta_{min})^2 u_{B\theta_{min}}^2} = \sqrt{4(\cos 59)^2 \times 0.29^2} \doteq 0.3$$

Stanovení Brewsterova úhlu z indexu lomu

$$\theta_B = arctg(n) = arctg(1,714) \doteq 59,74^\circ$$

$$u_B = \sqrt{\left(\frac{\delta\theta_B}{\delta n}\right)^2 u_{Bn}^2} = \sqrt{\left(\frac{1}{1+n^2}\right)^2 u_{Bn}^2} = \sqrt{\left(\frac{1}{1+1,714^2}\right)^2 0.3^2} = 0.076^\circ$$

Graf koeficientů

Graf porovnání teoretických průběhů s naměřenými hodnotami byl sestrojen pomocí serveru Herodes

Dosazené hodnoty vypočtené ze vzorce: $R = \frac{I - I_0}{I_{90^{\circ}} - I_0}$ (např. $R = \frac{I - I_0}{I_{90^{\circ}} - I_0} = \frac{64,13 - 0,06}{86,2 - 0,06} \doteq 0,7438$)

θ [°]	$R_{ m p}$ [-]	$R_{\rm k}$ [-]			
15	0.058	0.0652			
20	0.0541	0.071			
25	0.0488	0.0777			
30	0.0423	0.085			
35	0.034	0.0962			
40	0.0267	0.1128			
45	0.0176	0.129			
50	0.0097	0.1538			
55	0.0029	0.1869			
60	0.0011	0.2243			
65	0.0078	0.2771			
70	0.0337	0.3444			
75	0.0918	0.4338			
80	0.2254	0.5799			
85	0.4457	0.7438			
90	1	1			
n = 1 714					
n = 1.714					

Intenzitní koeficienty odrazu v závislosti na úhlu dopadu

Závěr

•••