Seção 1.5. Teoria Local das Curvas Parametrizadas pelo Comprimento de Arco

By Gabriela Silva

26 de fevereiro de 2020

Exercício 3. Suponha que $\alpha(I) \subset \mathbb{R}^2$ (i.e. α é uma curva plana), escolha uma base ortonormal $\{e_1, e_2\}$ de \mathbb{R}^2 , e considere k com um sinal, como fizemos no texto. Translade o vetor $\alpha'(s)$ de modo que sua origem vá na origem de \mathbb{R}^2 . Considere a curva parametrizada $s \to \alpha'(s)$, chamada indicatriz tangente de α . Seja $\theta(s)$ o ângulo de e_1 a $\alpha'(s)$ na orientação de \mathbb{R}^2 . Prove que (note que estamos admitindo $k \neq 0$).

(a) A indicatriz tangente de uma curva parametrizada regular.

Solução. Vamos mostrar que $\alpha'(s) \neq 0$, $\forall s \in I$. De fato, $0 \neq k(s) = |\alpha''(s)| \Rightarrow 0 \neq \alpha''(s) = \alpha'(s) \Rightarrow \alpha'(s) \neq 0$, $\forall s \in I$.

(b)
$$\frac{dt}{ds} = \left(\frac{d\theta}{ds}\right)n$$
, isto é, $k = \frac{d\theta}{ds}$.

Solução. Seja $\theta(s)$ o ângulo formado por e_1 e $\alpha'(s) = (x'(s), y'(s))$.

$$cos(\theta(s)) = \frac{\langle \alpha'(s), e_1 \rangle}{|\alpha'(s)||e_1|} = \langle (x'(s), y'(s)), (1, 0) \rangle = x'(s)$$

Logo, temos

$$\alpha'(s) = (\cos(\theta(s)), y'(s))$$

Mas como $\alpha(s)$ é parametrizada pelo comprimento de arco, temos que $|\alpha''(s)|=1$. Logo

$$1 = \sqrt{\cos^{2}(\theta(s)) + (y'(s))^{2}}$$
$$\left(\sqrt{\cos^{2}(\theta(s)) + (y'(s))^{2}}\right)^{2} = 1^{2}$$
$$(y'(s))^{2} = 1 - \cos^{2}(\theta(s))$$
$$(y'(s))^{2} = \sin^{2}(\theta(s))$$
$$y'(s) = \sin(\theta(s))$$

Assim, $\alpha'(s) = (\cos(\theta(s)), \sin(\theta(s)))$. Além disso, temos que:

$$\frac{dt}{ds} = \left(-\frac{d\theta}{ds}\sin(\theta(s)), \frac{d\theta}{ds}\cos(\theta(s))\right) = \frac{d\theta}{ds}\left(-\sin(\theta(s)), \cos(\theta(s))\right)$$

$$\frac{dt}{ds} = \frac{d\theta}{ds}n(s)$$

Temos que $n(s) = (-\sin(\theta(s)), \cos(\theta(s)))$, já que:

$$\langle \alpha'(s), n(s) \rangle = \langle (\cos(\theta(s)), \sin(\theta(s)), (-\sin(\theta(s)), \cos(\theta(s))) \rangle = 0$$

Portanto, como $\alpha''(s) = k(s)n(s)$, concluímos que $k(s) = \frac{d\theta}{ds}$.