Gaussian Mixture Models

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia

aliakbars@live.com

May 26, 2020

SELAYANG PANDANG

1 Motivasi

2 Gaussian Mixture Models

Bahan Bacaan

- VanderPlas, J. (2016). Python Data Science Handbook. (In Depth: Gaussian Mixture Models) http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/ 05.12-Gaussian-Mixtures.ipynb
- 2 Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. (Section 9.3)
- 3 Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer, Berlin: Springer series in statistics. (Section 14.3.12)

MOTIVASI

Coba kelompokkan berita-berita berikut...

NEWS CLUSTERING

Antihero Sergio Ramos Berpotensi Membuatmu Jadi Moralis

Sergio Ramos memantik orang untuk bicara tentang moral, etika, dan sportivitas. Itulah arti penting antihero.

NEWS CLUSTERING

Debar dan Getar Jiwa Nabi Muhammad Kala Menerima Wahyu Pertama

Peristiwa turunnya wahyu pertama adalah momen paling menggetarkan dalam hidup Nabi Muhammad.

NEWS CLUSTERING

Mohamed Salah di Antara Pemain Muslim, Puasa, dan Liga Champions

GAMBAR: Agama? Olahraga?

Apakah sepakbola harus dibedakan dengan olahraga? Bagaimana dengan fikih dan akidah?

JENIS-JENIS CLUSTERING

- 1 Tujuan:
 - 1 Monothetic: common property
 - 2 Polythetic: kemiripan data dengan pengukuran jarak
- 2 Irisan:
 - 1 Hard clustering
 - 2 Soft clustering
- 3 Flat vs hierarchical

$\begin{array}{c} \text{k-Means} \\ \text{Polythetic, hard boundaries, flat} \end{array}$

K-MEANS

Gaussian Mixture Models Polythetic, soft boundaries, flat

GMM

GAUSSIAN MIXTURE MODELS

- Pendekatan probabilistik untuk clustering
- Setiap klaster adalah model generatif, e.g. Gaussian atau multinomial
- Menggunakan parameter
- Didasarkan pada algoritma Expectation Maximisation (EM)

Bagaimana kalau kita tidak tahu kelasnya?

EXPECTATION MAXIMISATION (EM)

- **1** Inisialisasi dengan dua Gaussians secara acak (μ_a, σ_a^2) , (μ_b, σ_b^2)
- 2 Ulangi hingga konvergen
 - A. **E-step**: Apakah x_i terlihat masuk ke a atau b, i.e. $P(a|x_i)$?¹

$$a_i = P(a|x_i) = \frac{P(x_i|a)P(a)}{P(x_i)}$$

$$b_i = P(b|x_i) = 1 - a_i$$

B. **M-step**: Perbaiki nilai $(\mu_a, \sigma_a^2), (\mu_b, \sigma_b^2)$

$$\mu_a = \frac{a_1 x_1 + a_2 x_2 + \dots + a_n x_n}{a_1 + a_2 + \dots + a_n}$$

$$\sigma_a^2 = \frac{a_1(x_1 - \mu_a)^2 + \dots + a_n(x_n - \mu_a)^2}{a_1 + a_2 + \dots + a_n}$$

¹Bayes' rule!

PRIOR DARI BAYES' RULE

- Bisa dibuat tetap, atau
- Dibuat berubah-ubah, i.e.

$$P(a) = \frac{a_1 + a_2 + \dots + a_n}{n}$$
$$P(b) = 1 - P(a)$$

BERAPA NILAI K?

• Model probabilistik \rightarrow maximum likelihood

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} \sum_{k=1}^{K} P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} P(x_i|k) P(k)$$

BERAPA NILAI K?

• Model probabilistik \rightarrow maximum likelihood

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} \sum_{k=1}^{K} P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} P(x_i|k) P(k)$$

• \mathcal{L} bisa dimaksimalkan dengan membuat $K = n \rightarrow overfitting!$

Berapa nilai K?

• Model probabilistik \rightarrow maximum likelihood

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} \sum_{k=1}^{K} P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} P(x_i|k)P(k)$$

- \mathcal{L} bisa dimaksimalkan dengan membuat $K = n \rightarrow overfitting!$
- Occam's razor
 - Bayes. Inf Criterion (BIC): $\max_{p} (\mathcal{L} \frac{1}{2}p \log n)$
 - Akaike Inf Criterion (AIC): $\min_{p}(2p \mathcal{L})$

dengan \mathcal{L} adalah $log\ likelihood\ dan\ p$ adalah jumlah parameter

Tenang, sudah ada di scikit-learn!

AIC DAN BIC

Gambar: Nilai terbaik adalah saat n_components antara 8-12 [VanderPlas, 2016]

Perbandingan Algoritma

Gambar: Intuisi cara kerja algoritma dengan visualisasi, mungkin tidak berlaku di dimensi tinggi [Pedregosa et al., 2019]

IKHTISAR

- GMM adalah algoritma clustering yang bersifat polythetic, soft boundary, dan flat
- 2 GMM adalah pendekatan probabilistik untuk clustering
- 3 Algoritma Expectation-Maximisation (EM) yang digunakan seperti halnya di k-Means
- 4 Konsep AIC dan BIC untuk menggambarkan kompleksitas dari model

Referensi

Jake VanderPlas (2016)

In Depth: Gaussian Mixture Models

http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/05. 12-Gaussian-Mixtures.ipynb

Fabian Pedregosa et al. (2019)

Comparing different clustering algorithms on toy datasets

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

Terima kasih