KI Musterlösung 6. Übung

1. Aufgabe

Jeder weiß, dass mindestens einer der Punkte weiß ist.

$$\Box_{fool}(ws_a \vee ws_b)$$

Hat einer einen weißen Punkt, kann der andere diesen sehen.

$$\Box_{fool}(ws_a \Rightarrow \Box_b ws_a)$$

$$\Box_{fool}(ws_b \Rightarrow \Box_a ws_b)$$

Hat einer einen schwarzen Punkt, kann der andere diesen sehen.

$$\Box_{fool}(\neg ws_a \Rightarrow \Box_b \neg ws_a)$$

$$\Box_{fool}(\neg ws_b \Rightarrow \Box_a \neg ws_b)$$

Wenn etwas Allgemeinwissen ist, dann wissen es auch a und b.

$$(\Box_{fool} p) \Rightarrow (\Box_a p)$$

$$(\Box_{fool}p) \Rightarrow (\Box_b p)$$

Wenn eine Person etwas weiß/nicht weiß, dann weiß die andere Person, dass diese es weiß/nicht weiß.

$$(\Box_a p) \Rightarrow (\Box_b \Box_a p)$$

$$(\Box_b p) \Rightarrow (\Box_a \Box_b p)$$

$$(\neg \Box_a p) \Rightarrow (\Box_b \neg \Box_a p)$$

$$(\neg \Box_b p) \Rightarrow (\Box_a \neg \Box_b p)$$

Die erste Person weiß nicht ob ihr Punkt schwarz oder weiß ist.

$$\neg \Box_a ws_a$$

Die zweite Person weiß nun, dass ihr Punkt weiß ist.

 $\Box_b w s_b$

□ fool wird als S4 Operator modelliert. (Nicht notwendig, wenn man die S4 Ableitungsregeln anwendet)

$$(\Box_{fool}p) \Rightarrow p$$

$$(\Box_{fool} p) \Rightarrow \Box_{fool} \Box_{fool} p$$

 \square_a, \square_b werden durch die Ableitungsregeln als K Operatoren modelliert (geht nicht so einfach mit Axiomen).

2. Aufgabe

a.

$$\Diamond(p\Rightarrow \Box p)$$
 in T

1:
$$(1) \neg \diamondsuit (p \Rightarrow \Box p)$$

2: $(1) \neg (p \Rightarrow \Box p)$ $T(1)$
3: $(1) p$ $\neg \Rightarrow (2)$
4: $(1) \neg \Box p$ $\neg \Rightarrow (2)$
5: $(1.1) \neg p$ $\neg \Box (4)$
6: $(1.1) \neg (p \Rightarrow \Box p)$ $\neg \diamondsuit (1)$
7: $(1.1) p$ $\neg \Rightarrow (6)$
8: $(1.1) \neg \Box p$ $\neg \Rightarrow (6)$

 $5+7 \quad \cancel{t} \Rightarrow \diamondsuit(p \Rightarrow \Box p) \text{ in T gilt.}$

b.

 $(\Box p \land \Box q) \Rightarrow \Box(\Box p \land \Box q) \text{ in } K4$

1:
$$(1) \neg ((\Box p \land \Box q) \Rightarrow \Box (\Box p \land \Box q))$$

2: $(1) \Box p \land \Box q$ $\neg \Rightarrow (1)$
3: $(1) \neg \Box (\Box p \land \Box q)$ $\neg \Rightarrow (1)$
4: $(1) \Box p$ $\land (2)$
5: $(1) \Box q$ $\land (2)$
6: $(1.1) \neg (\Box p \land \Box q)$ $\neg \Box (3)$
7: $(1.1) \neg \Box p$ $\neg \land (6)$ $8: (1.1) \neg \Box q$ $\neg \land (6)$
9: $(1.1) \Box p$ $4(4)$ $10: (1.1) \Box q$ $4(5)$

7 + 9, 8 + 10 $\not = (\Box p \land \Box q) \Rightarrow \Box(\Box p \land \Box q)$ in K4 gilt.

c.

$$\Box(p \Rightarrow q) \lor \Box \neg \Box (\neg q \Rightarrow \neg p)$$
 in S5

1:
$$(1) \neg (\Box(p \Rightarrow q) \lor \Box \neg \Box(\neg q \Rightarrow \neg p))$$

2: $(1) \neg \Box(p \Rightarrow q)$ $\neg \lor (1)$
3: $(1) \neg \Box \neg \Box(\neg q \Rightarrow \neg p)$ $\neg \lor (1)$
4: $(1.1) \neg (p \Rightarrow q)$ $\neg \Box(2)$
5: $(1.1) p$ $\neg \Rightarrow (4)$
6: $(1.1) \neg q$ $\neg \Rightarrow (4)$
7: $(1.2) \neg \neg \Box(\neg q \Rightarrow \neg p)$ $\neg \Box(3)$
8: $(1.2) \Box(\neg q \Rightarrow \neg p)$ $\neg \neg (7)$
9: $(1) \Box(\neg q \Rightarrow \neg p)$ $4r(8)$
10: $(1.1) \neg q \Rightarrow \neg p$ $\Box(9)$
11: $(1.1) \neg \neg q \Rightarrow (10)$ $12: (1.1) \neg p \Rightarrow (10)$
13: $(1.1) q$ $\neg \neg (11)$

6 + 13, 5 + 12 $\not = \Box(p \Rightarrow q) \lor \Box \neg \Box(\neg q \Rightarrow \neg p)$ in S5 gilt.