SSY281 Model Predictive Control

Assignment 4

Optimization basics and QP problems

Due February 20 at 23:59

Systems & Control

Department of Electrical Engineering

Chalmers University of Technology

January 2019

Instructions

This assignment is **individual** and must be solved according to the following rules and instructions:

• Written report:

- For those questions where a text (motivations, explanations, observations from simulations) rather than a numerical value is asked, the answers should be concisely written in the report.
- Figures included in the report should have legends, and axes should be labeled.
- The report should be uploaded before the deadline to your project document area in PingPong.
- Name the report as A4_XX.pdf, where XX is your *group* number.

• Code:

- Your code should be written in the Matlab template provided with this assignment following the instructions therein.
- Name the Matlab script as A4_XX.m where XX is your group number.
- Strictly follow the instructions in the Matlab template.

• Grading:

- This assignment if worth **15 points** in total.

1 Optimization Basics

Consider the optimization problem

$$\min_{x} f(x)$$
s.t. $g(x) \le 0$

$$h(x) = 0$$
(1)

where

$$f: \mathbb{R}^n \to \mathbb{R} \quad g: \mathbb{R}^n \to \mathbb{R}^m$$

 $h: \mathbb{R}^n \to \mathbb{R}^q \quad x \in \mathbb{R}^n$

Unless otherwise stated, assume that f,g and h are general nonlinear functions.

Question 1 (Points: 3). Consider the optimization problem (1). Let x_1 and x_2 be feasible points.

- (a) Can you find simple conditions such that $z = \frac{x_1 + x_2}{2}$ is a feasible solution?
- (b) Can you find conditions such $z = ax_1 + bx_2$ with $a, b \in \mathbb{R}$ is never worse than both x_1 and x_2 ? If this conditions holds, can it happen that z is better than both of them?
- (c) Can you do the same for a point $z = \frac{x_1 + x_2}{2}$?

Question 2 (Points: 3). Which of the following sets are convex? Motivate your answers.

- (a) A slab, i.e., $\{x \in \mathbb{R}^n | \alpha \le a^\top x \le \beta\}$
- (b) The set

$$M = \{x | ||x - y|| \le f(y) \text{ for all } y \in S\},$$

where $S \subseteq \mathbb{R}^n$.

(c) A set of points closer to a given point than to a given set, i.e.,

$$\{x | ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\},\$$

where $S \subseteq \mathbb{R}^n$.

Question 3 (Points: 3). Linear programs have the general form:

$$\min_{x} b^{\top} x$$
s.t. $Fx \le g$

Show that these problems can be rewritten as linear programs.

The 1-norm objective is given by:

$$\min_{x} ||Ax||_{1}$$
s.t. $Fx \le g$

The ∞ -norm objective is given by:

$$\min_{x} ||Ax||_{\infty}$$
 s.t. $Fx \le g$

Question 4 (Points: 3). Solve the following linear regression problems

- (a) Fill in the function N1.m which takes A and b as inputs and returns the x^* that minimizes $||Ax^* b||_1$.
- (b) Fill in the function Ninf.m which takes A and b as inputs and returns the x^* that minimizes $||Ax^* b||_{\infty}$.

2 QP Problems

Question 5 (Points: 3). Consider the optimization problem:

$$\min_{x,u} f(x,u) = \frac{1}{2} (x_1^2 + x_2^2 + u_0^2 + u_1^2)$$

$$s.t. \quad 2.5 \le x_1 \le 5$$

$$-1 \le x_2 \le 1$$

$$-2 \le u_0 \le 2$$

$$-2 \le u_1 \le 2$$
(2)

resulting from a finite-time constrained optimal control problem for the SISO process: $x_{k+1} = 0.5x_k + u_k$, with initial state $x_0 = 2$.

(a) Solve the QP using MATLAB.

- (b) Do the KKT conditions hold at the solution found at point (a)? Which constraints are active? (Hint: The Lagrangian multipliers are calculated by the MATLAB command quadprog).
- (c) What would happen in the optimization problem if we remove lower bound on x_1 , and what if we remove the upper bound on x_1 ? Why?