	Name:	5	0	ufi	وسره
drill	time:				

1. Given the force field $F(x,y,z)=\langle x,y,z\rangle$, find the work required to move an object along the line segment from (1,1,1) to (1,2,4).

Parametrize the line segment
$$r(t) = (1, 1+t, 1+3t) = r(x(t), y(t), z(t))$$

$$0 \le t \le 1$$

$$r'(t) = (0, 1, 3)$$

Work =
$$\int_{-\infty}^{\infty} f(t) dt = \int_{-\infty}^{\infty} (1+3+)(3) dt$$

line
segment = $\int_{-\infty}^{\infty} (4+10+) dt = 4+10+2$

2. Find the scalar integral $\int_C x ds$ where C is the curve $y = x^2$ from (0,0) to (2,4).

Write
$$r(t) = \langle t, t^2 \rangle$$
 $0 \le t \le 2$; $r'(t) = \langle 1, 2t \rangle$

$$= \int_{0}^{2} t |r'(t)| dt \qquad |r'(t)| = \int_{0}^{2} t (2+)^{2} dt = \int_{0}^{2} t |r'(t)| dt = \int_{0}^{2} t (2+)^{2} dt = \int_{0}^{2} t |r'(t)| dt = \int_{0}^{2} t |r'(t)|$$