第1章

部分空間の基底と次元

線形部分空間

m>n の場合、 $m\times n$ 型行列 A は、写し先の空間をカバーしきれない写像を表していた。

つまり、写った結果が空間の一部、部分空間になるということである。

そこで、 \mathbb{R}^n の部分集合であって、ベクトル演算で閉じた集合について考える。これは、原 点を含む直線や平面などを一般化した概念である。

- **縁形部分空間** \mathbb{R}^n のベクトルからなる空集合でない集合 V は、次が成り立つとき線形部分空間あるいは簡単に部分空間であるという。
 - i. すべての $\boldsymbol{u}, \boldsymbol{v} \in V$ に対して $\boldsymbol{u} + \boldsymbol{v} \in V$ が成り立つ
 - ii. すべての $c \in \mathbb{R}$, $\boldsymbol{u} \in V$ に対して $c\boldsymbol{u} \in V$ が成り立つ

入れものの空間 \mathbb{R}^n のことはあまり意識せずに、集合 V とそのベクトル演算に着目して、ある \mathbb{R}^n の線形部分空間のことを単に線形空間と呼ぶこともある。

\mathbb{R}^n 自身も部分空間

たとえば、 \mathbb{R}^n 自身は明らかに \mathbb{R}^n の部分空間である。

加 − 1 次平面は部分空間

たとえば \mathbb{R}^3 において座標を (x,y,z) とするとき、xy 平面は \mathbb{R}^3 の部分空間である。

座標部分空間 $\{1,2,\ldots,n\}$ の部分集合 I に対して、 x_i ($i\in I$) 以外の座標がすべて 0 である部分集合は \mathbb{R}^n の部分集合である。

このようなものを座標部分空間といい、 \mathbb{R}^I と書く。

$$\mathbb{R}^{I} = \langle \boldsymbol{e}_{i} \mid i \in I \rangle$$

と表すこともできる。

零ベクトルだけからなる部分集合も部分空間

零ベクトルoだけからなる部分集合 $\{o\}$ も部分空間である。

・ 部分空間における零ベクトルの包含 部分空間は必ず零ベクトル o を含む。

V は空集合でないので、ある $\boldsymbol{v} \in V$ をとるとき、線形部分空間の定義 (ii) より

$$0 \cdot \boldsymbol{v} = \boldsymbol{o} \in V$$

よって部分空間は必ず 0 を含む。

線形写像の像は部分空間

証明

和について

 $m{u}, m{v} \in \mathrm{Im}(f)$ とすると、 $m{u} = f(m{v}_1), \ m{v} = f(m{v}_2)$ とおける。 よって、f の線形性より、

$$\mathbf{u} + \mathbf{v} = f(\mathbf{v}_1) + f(\mathbf{v}_2)$$

= $f(\mathbf{v}_1 + \mathbf{v}_2)$

となり、Im(f) は和について閉じている。

スカラー倍について

 $\boldsymbol{u} \in \operatorname{Im}(f)$ と $c \in \mathbb{R}$ をとると、 $\boldsymbol{u} = f(\boldsymbol{v})$ とおける。 よって、f の線形性より、

$$c\mathbf{u} = cf(\mathbf{v})$$
$$= f(c\mathbf{v})$$

となり、 $\operatorname{Im}(f)$ はスカラー倍について閉じている。

線形写像の核は部分空間

 $oldsymbol{\$}$ 部分空間の零ベクトルと線形写像 部分空間 V, W の間の線形写像 $f:V \to W$ に対して、V の零ベクトルを $oldsymbol{o}_V$ 、W の零ベクトルを $oldsymbol{o}_W$ とすると、

$$f(\mathbf{o}_V) = \mathbf{o}_W$$

証明 証明

任意の $\boldsymbol{v} \in V$, $\boldsymbol{w} \in W$ に対して、

$$0 \cdot \boldsymbol{v} = \boldsymbol{o}_V$$
$$0 \cdot \boldsymbol{w} = \boldsymbol{o}_W$$

が成り立つ。

 $f(o_V)$ は、f の線形性により、次のように変形できる。

$$f(\boldsymbol{o}_V) = f(0 \cdot \boldsymbol{v}) = 0 \cdot f(\boldsymbol{v})$$

ここで、 $f(\boldsymbol{v})$ は、f による $\boldsymbol{v} \in V$ の像であるので、W に属する。 そこで、 $\boldsymbol{w} = f(\boldsymbol{v})$ とおくと、

$$f(\mathbf{o}_V) = 0 \cdot f(\mathbf{v})$$
$$= 0 \cdot \mathbf{w}$$
$$= \mathbf{o}_W$$

となり、目標としていた式が示された。

証明

前述の定理の主張 $f(o_V) = o_W$ より、零ベクトルは核空間に属する。

$$o \in \text{Ker}(f)$$

和について

 $\boldsymbol{u}, \boldsymbol{v} \in \operatorname{Ker}(f)$ とすると、 $f(\boldsymbol{u}) = \boldsymbol{o}$ かつ $f(\boldsymbol{v}) = \boldsymbol{o}$ である。 よって、f の線形性より、

$$f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v})$$
$$= \boldsymbol{o} + \boldsymbol{o} = \boldsymbol{o}$$

したがって、 $\boldsymbol{u} + \boldsymbol{v} \in \operatorname{Ker}(f)$ である。

スカラー倍について

 $\mathbf{u} \in \operatorname{Ker}(f)$ と $c \in \mathbb{R}$ をとると、 $f(\mathbf{u}) = \mathbf{o}$ である。 よって、f の線形性より、

$$f(c\mathbf{u}) = cf(\mathbf{u})$$
$$= c \cdot \mathbf{o} = \mathbf{o}$$

したがって、 $c\mathbf{u} \in \text{Ker}(f)$ である。

ベクトルが張る空間

 $m \times n$ 型行列 A で写れる範囲を Im A として定義した。

 \boldsymbol{x} を \boldsymbol{n} 次元ベクトルとすると、 $\operatorname{Im} \boldsymbol{A}$ は次のようなものといえる。

な をいろいろ動かしたときの、

y = Ax が動ける範囲が Im A

ここで、A を列ベクトルを並べたもの $A=(oldsymbol{a}_1,\ldots,oldsymbol{a}_n)$ として書き、 $oldsymbol{x}$ も成分 x_1,\ldots,x_n で書けば、

$$oldsymbol{y} = egin{pmatrix} oldsymbol{a}_1 & \cdots & oldsymbol{a}_n \end{pmatrix} egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} = x_1 oldsymbol{a}_1 + \cdots + x_n oldsymbol{a}_n$$

つまり、

数 x_1, \ldots, x_n をいろいろ動かしたときの、

 $x_1 \boldsymbol{a}_1 + \cdots + x_n \boldsymbol{a}_n$ が動ける範囲が Im A

であり、この線形結合が動ける範囲を「ベクトル $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ の張る空間」という。

 $m{lpha}$ ベクトルが張る空間 k 個のベクトル $m{a}_1,\ldots,m{a}_k\in\mathbb{R}^n$ を与えたとき、 $m{a}_1,\ldots,m{a}_k$ の線形結合全体の集合を

$$\langle \boldsymbol{a}_1, \ldots, \boldsymbol{a}_k \rangle$$

あるいは

$$span\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k\}$$

によって表し、これを a_1, \ldots, a_k が張る空間という。

ベクトルが張る空間は部分空間

 $oldsymbol{\iota}$ ベクトルが張る空間は部分空間 $oldsymbol{v}_1,\dots,oldsymbol{v}_k$ $\in \mathbb{R}^n$ が張る空間 $\langle oldsymbol{v}_1,\dots,oldsymbol{v}_k
angle$ は部分空間である

「Todo 1: book: 行列と行列式の基礎 p94 命題 3.1.2]

 $oldsymbol{\iota}$ 部分空間の張る空間は部分空間 $V\subset \mathbb{R}^n$ を部分空間、 $oldsymbol{v}_1,\ldots,oldsymbol{v}_k\in V$ とすると、

$$\langle \boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\rangle\subset V$$

[Todo 2: book: 行列と行列式の基礎 p94 命題 3.1.4]

ベクトルが張る空間の幾何的解釈

ベクトル $\mathbf{a}_1,\ldots,\mathbf{a}_n$ の張る空間 $\langle \mathbf{a}_1,\ldots,\mathbf{a}_n \rangle$ は、 $\mathbf{a}_1,\ldots,\mathbf{a}_n$ で定まる平面の一般化といえる。(ここで、点は $\mathbf{0}$ 次元平面、直線は $\mathbf{1}$ 次元平面と考える。)

- a_1, \ldots, a_n がすべて o なら、o ただ一点が $\langle a_1, \ldots, a_n \rangle$
- a_1, \ldots, a_n がすべて一直線上にあれば、その直線が $\langle a_1, \ldots, a_n \rangle$
- a_1, \ldots, a_n がすべて平面上にあれば、その平面が $\langle a_1, \ldots, a_n \rangle$

ベクトルが張る空間と有限従属性

 $m{v}_1, m{v}_2, \dots, m{v}_k \in \mathbb{R}^n$ とする $\langle m{v}_1, m{v}_2, \dots, m{v}_k \rangle$ に含まれる k 個よりも多い個数のベクトルの集合は線形従属 である

「Todo 3: book: 行列と行列式の基礎 p41 (問 1.14)]

基底と次元

部分空間のパラメータ表示を与えるために基準として固定するベクトルの集合を定式化すると、 **基底**という概念になる。

基底は、座標空間の「座標軸」に相当するものであり、部分空間を生成する独立なベクトルの集合として定義される。

基底 V を \mathbb{R}^n の部分空間とする。ベクトルの集合 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\} \subset V$ は、次を満たすとき V の基底であるという。

i. $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k\}$ は線型独立である

ii.
$$V = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k \rangle$$

線形空間 V の基底 $\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_k\}$ を 1 つ見つけたら、ベクトルの個数を数えて、V の次元が k であるとする。

ightharpoonup 次元 線形空間 V の基底をなすベクトルの個数を V の次元といい、 $\dim V$ と書く。

また、 $dim\{o\} = 0$ と定義する。

基底の例:標準基底

たとえば、基本ベクトルの集合 $\{e_1, e_2, \ldots, e_n\}$ は \mathbb{R}^n の基底であり、これを \mathbb{R}^n の標準基底という。

標準基底 $\{e_1, e_2, \ldots, e_n\}$ は n 個のベクトルからなるため、 \mathbb{R}^n の次元は n である。

* 数ベクトル空間の標準基底 数ベクトル空間 K^n において、基本ベクトルの集合 $\{e_1,e_2,\ldots,e_n\}$ は K^n の基底である。

証明

部分空間を生成すること

任意のベクトル $\boldsymbol{v} \in K^n$ は、次のように表せる。

$$\mathbf{v} = v_1 \mathbf{e}_1 + \cdots + v_n \mathbf{e}_n$$

したがって、 K^n は $\{e_1,\ldots,e_n\}$ によって生成される。

線型独立であること

 e_1, \ldots, e_n の線形関係式

$$c_1\boldsymbol{e}_1+\cdots+c_n\boldsymbol{e}_n=\boldsymbol{o}$$

を考える。

このとき、左辺は

$$c_1oldsymbol{e}_1+\cdots+c_noldsymbol{e}_n=egin{pmatrix} c_1\ dots\ c_n \end{pmatrix}$$

と書き換えられるので、これが零ベクトルになるためには、

$$c_1=0, \ldots, c_n=0$$

でなければならない。

よって、 $\{e_1,\ldots,e_n\}$ は線型独立である。

基底と次元の定義の裏付け

このように基底と次元を定義するにあたって、次の保証が必要になる。

- i. 任意の部分空間に、基底の定義を満たす有限個のベクトルが存在すること(基底の存在)
- ii. 任意の部分空間に対して、基底をなすベクトルの個数が、基底の選び方によらず一定 であること(次元の不変性)

基底の存在

線型独立なベクトルの延長

基底の構成と存在を示すために、次の補題を用いる。

 $oldsymbol{\cdot}$ 線型独立なベクトルの延長 V を K^n の $\{o\}$ でない部分空間とする。 このとき、V の線型独立なベクトル $oldsymbol{a}_1, oldsymbol{a}_2, \ldots, oldsymbol{a}_m$ と、V に入らないベクトル $oldsymbol{a}$ は線型独立である。

証明

 $m{a}$, $m{a}_1$, $m{a}_2$, . . . , $m{a}_m$ が線型従属であるとするすると、定理「線形結合によるベクトルの表現」より、 $m{a}$ は $m{a}_1$, $m{a}_2$, . . . , $m{a}_m$ の線形結合で表され、 $m{V}$ に入り、矛盾する

よって、 \boldsymbol{a} , \boldsymbol{a}_1 , \boldsymbol{a}_2 , . . . , \boldsymbol{a}_m は線型独立である

この定理は、ベクトルの集合が張る空間の記号を用いると、次のように簡潔にまとめられる。

 $\boldsymbol{\vartheta}$ 線型独立なベクトルの延長 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}$ が線型独立であって、 $\boldsymbol{v}_{k+1}\notin \langle \boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\rangle$ ならば、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k,\boldsymbol{v}_{k+1}\}$ は線型独立である

線型独立なベクトルの基底への拡張

 K^n の $\{o\}$ でない部分空間 V の線型独立なベクトルは、V の基底に拡張できる。

 \bullet 基底の存在 K^n の $\{o\}$ でない部分空間 V には基底が存在する。

証明

 $V \neq \{o\}$ なので、V には少なくとも 1 つのベクトル $\boldsymbol{v}_1 \neq o$ が存在する。 定理「単一ベクトルの線型独立性と零ベクトル」より、 $\{\boldsymbol{v}_1\}$ は線型独立である このとき、 $\langle \boldsymbol{v}_1 \rangle \subset V$ であるが、もしも $\langle \boldsymbol{v}_1 \rangle = V$ ならば、 $\{\boldsymbol{v}_1\}$ は V の基底である。 $\langle \boldsymbol{v}_1 \rangle \subsetneq V$ ならば、 $\boldsymbol{v}_2 \subsetneq \langle \boldsymbol{v}_1 \rangle$ であるベクトルを V から選ぶことができる。 補題「線型独立なベクトルの延長」より、 $\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$ は線型独立である。

このとき、 $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle \subset V$ であるが、もしも $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = V$ ならば、 $\{ \boldsymbol{v}_1, \boldsymbol{v}_2 \}$ は V の基底である。

 $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle \subsetneq V$ ならば、 $\boldsymbol{v}_3 \subsetneq \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle$ であるベクトルを V から選ぶことができる。

補題「線型独立なベクトルの延長」より、 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$ は線型独立である。

以下同様に続けると、 $\langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \rangle = V$ となるまで、V に属するベクトルを選び続けることができる。

ここで線型独立なベクトルを繰り返し選ぶ操作が無限に続かないこと(有限値 κ が存在すること)は、有限従属性定理により、 K^n の中には n 個を超える線型独立なベクトルの集合は存在しないことから保証される。

基底の延長

基底の存在証明で行った基底の構成をさらに続けることで、次の定理が得られる。

基底の延長 V を n 次元の線形空間とし、線型独立なベクトル $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\in V$ が与えられたとする。

このとき、(n-m) 個のベクトル $\boldsymbol{v}_{m+1},\ldots,\boldsymbol{v}_n\in V$ を追加して、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m,\boldsymbol{v}_{m+1},\ldots,\boldsymbol{v}_n\}$ が V の基底になるようにできる。

証明

基底の存在の証明において、線型独立なベクトル $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\in V$ が得られたところからスタートし、同様の手続きを繰り返せばよい。

次元の不変性

** 次元の不変性 $*K^n$ の部分空間 *V の基底をなすベクトルの個数(次元)は一定である。

つまり、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}$ と $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_l\}$ がともに V の基底ならば、k=l である。

証明 証明

 $u_1, \ldots, u_l \in \langle v_1, \ldots, v_k \rangle$ であり、 u_1, \ldots, u_l は線型独立であるから、有限 従属性定理の抽象版より、l < k である。

同様にして $k \leq l$ も成り立つので、k = l である。

線型独立なベクトルと次元

証明

V の基底を $\{v_1, \ldots, v_k\}$ とすると、V には k 個の線型独立なベクトルが存在する。

また、 $V = \langle \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \rangle$ であるため、有限従属性定理の抽象版より、V 中の線型独立なベクトルの個数は k を超えることはない。

つまり、 κ は V に含まれる線型独立なベクトルの最大個数である。

・・ 線形空間を生成するベクトルの最小個数と次元 線形空間 *V* を張るベクトル の最小個数は dim *V* と等しい。

証明

「Todo 4: book: 行列と行列式の基礎 p100 問 3.3]

基底による線形写像の比較

一般に、 $\{ m{u}_1, \ldots, m{u}_n \}$ を V の基底とするとき、線形写像 f に対して $f(m{u}_1), \ldots, f(m{u}_n)$ の値が測定できれば、f の形を特定できる。

$$f(oldsymbol{v}) = f(v_1oldsymbol{u}_1 + \dots + v_noldsymbol{u}_n)$$
定数
 $= \underbrace{v_1}_{oldsymbol{v}} f(oldsymbol{u}_1) + \dots + \underbrace{v_n}_{oldsymbol{v}} f(oldsymbol{u}_n)$
変数

上の式において、 v_1, \ldots, v_n は \boldsymbol{v} によって決まる変数である。

 $f(\boldsymbol{u}_1),\ldots,f(\boldsymbol{u}_n)$ の値さえ決まれば、どんな \boldsymbol{v} を入れても f の値が定まる。これが「f の形が決まる」ということである。

このことを利用すると、基底に関する線形写像の値を比較することで、複数の線形写像を区別することができる。

基底上の値による線型写像の同一性判定 f,g をともに V から W への線型写像とする。 f と g が等しいとは、V のある基底 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ に対して、次が成り立つことと同値である。

$$f(\boldsymbol{v}_i) = g(\boldsymbol{v}_i) \quad (i = 1, \dots, n)$$

証明

$$f = g \Longrightarrow f(\boldsymbol{v}_i) = g(\boldsymbol{v}_i)$$

f = g ならば、任意の $\boldsymbol{v} \in V$ に対して $f(\boldsymbol{v}) = g(\boldsymbol{v})$ が成り立つ。 よって、基底ベクトル \boldsymbol{v}_i に対しても $f(\boldsymbol{v}_i) = g(\boldsymbol{v}_i)$ が成り立つ。

$$f(\boldsymbol{v}_i) = g(\boldsymbol{v}_i) \Longrightarrow f = g$$

V の任意のベクトル **v** は、基底ベクトルの線形結合として表される。

$$\boldsymbol{v} = c_1 \boldsymbol{v}_1 + \cdots + c_n \boldsymbol{v}_n$$

このとき、線型写像の線形性から、

$$f(\boldsymbol{v}) = f(c_1\boldsymbol{v}_1 + \dots + c_n\boldsymbol{v}_n)$$

$$= c_1f(\boldsymbol{v}_1) + \dots + c_nf(\boldsymbol{v}_n)$$

$$= c_1g(\boldsymbol{v}_1) + \dots + c_ng(\boldsymbol{v}_n)$$

$$= g(c_1\boldsymbol{v}_1 + \dots + c_n\boldsymbol{v}_n) = g(\boldsymbol{v})$$

よって、任意の $\boldsymbol{v} \in V$ に対して $f(\boldsymbol{v}) = g(\boldsymbol{v})$ が成り立つので、f = g である。

Zebra Notes

Туре	Number
todo	4