Systematic Design of Operational Amplifiers

Willy Sansen
KULeuven, ESAT-MICAS
Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Design of Single-stage OTA
- Design of Miller CMOS OTA
- Design for GBW and Phase Margin
- Other specs: Input range, output range, SR, ...

Ref.: Sansen: Analog design essentials, Springer 2006

Single-stage CMOS OTA: GBW

$$A_{v} = g_{m1} \frac{r_{o}}{2}$$
if $r_{o2} = r_{o4} = r_{o}$

$$BW = \frac{1}{2\pi \frac{r_{o}}{2} (C_{L} + C_{n1})}$$

$$GBW = \frac{g_{m1}}{2\pi \left(C_L + C_{n1}\right)}$$

CMOS OTA: Maximum GBW

$$GBW = \frac{g_{m1}}{2\pi C_{L}} \qquad g_{m1} = \frac{I_{B}}{V_{GS1} - V_{T}}$$

$$GBW_{max} = \frac{I_{B}}{V_{GS1} - V_{T}} \frac{1}{2\pi C_{L}}$$

$$0.2 V$$

$$I_{B} = 10 \ \mu A \quad C_{L} = 1 \ pF \quad GBW_{max} \approx 10 \ MHz$$

$$[8]$$

$$FOM = \frac{GBW.C_{L}}{I_{B}} = \frac{1000}{MHzpF/mA}$$

Single stage CMOS OTA: fnd

$$GBW = \frac{g_{m1}}{2\pi (C_L + C_{n1})}$$

$$f_{nd} = \frac{g_{m3}}{2\pi C_{n2}}$$

$$C_{n2} \approx 2C_{GS3} + C_{DB3} + C_{DB1}$$

$$\approx 4 C_{GS3}$$

$$f_{nd} \approx \frac{f_{T3}}{4}$$

Simple CMOS OTA: fnd

Single stage CMOS OTA: Design 1

GBW = 100 MHz for
$$C_L = 2 pF$$

Techno: $L_{min} = 0.35 \mu m$; $K'_n = 60 \mu A/V^2 \& K'_p = 30 \mu A/V^2$

I_{DS} ? W ? L ?

$$g_m = GBW 2\pi CL = 1.2 mS$$

$$V_{GS}-V_{T} = 0.2 V I_{DS} = g_{m} \frac{V_{GS}-V_{T}}{2} = \frac{g_{m}}{10} = 0.12 mA$$

$$\frac{W}{L} = \frac{I_{DS}}{K'(V_{GS}-V_T)^2} = 100$$

$$\frac{L_p = L_n = 1 \ \mu m}{W_p = 100 \ \mu m; \ W_n = 50 \ \mu m}$$

Table of contents

- Design of Single-stage OTA
- Design of Miller CMOS OTA
- Design for GBW and Phase Margin
- Other specs: Input range, output range, SR, ...

Miller CMOS OTA

Miller CMOS OTA: small-signal

Miller CMOS OTA: GBW

Miller CMOS OTA: poles and zero

Pole splitting starts at

$$C_{ct} \approx \frac{C_{n1}}{A_{v2}} \approx 20 \text{ fF}$$

but is sufficient for $C_c = 1pF$

$$f_z = \frac{g_{m6}}{2\pi C_c}$$

Table of contents

- Design of Single-stage OTA
- Design of Miller CMOS OTA
- Design for GBW and Phase Margin
- Other specs: Input range, output range, SR, ...

Miller CMOS OTA: Design plan

$$GBW = \frac{g_{m1}}{2\pi C_c}$$

GBW = 100 MHz and $C_L = 2 pF$

$$f_{nd} \approx \frac{g_{m6}}{2\pi} \frac{1}{C_{Ln4}} + \frac{C_{n1}}{C_{c}}$$

Two equations for

Three variables g_{m1} , g_{m6} and C_c ?!?

Solution: choose g_{m1} or g_{m6} or C_c !!!

What is wrong with

choosing
$$C_c = 1 pF$$
?

П

Miller CMOS OTA: Design vs C_c

Choose
$$C_c \approx 3 C_{n1}$$
 GBW = $\frac{g_{m1}}{2\pi C_c}$
 $3GBW \approx \frac{g_{m6}}{2\pi C_{Ln4}} \frac{1}{1.3}$

$$\frac{g_{m6}}{g_{m1}} \approx 4 \frac{C_{l}}{C_{c}}$$

GBW = 100 MHz and
$$C_L = 2 pF$$

Choose
$$C_{n1} < C_c < C_L$$

Choice $C_c = 1 \text{ pF}$ gives $g_{m1} = 0.6 \text{ mS}$ and $g_{m6} = 4.8 \text{ mS}$

Miller CMOS OTA: Design vs C_c

1 MHz Miller CMOS OTA: Design vs C_c

Miller CMOS OTA: Design vs I_{DS6}

Miller CMOS OTA: Design vs I_{DS1}

Optimum design for high speed Miller OTA - 1

$$GBW = \frac{g_{m1}}{2\pi C_c}$$

$$C_L = \alpha C_c$$

$$C_c = \beta C_{n1} = \beta C_{GS6}$$

$$\beta \approx 3$$

$$f_{nd} = \frac{g_{m6}}{2\pi C_L} \frac{1}{1 + C_{n1}/C_c}$$

$$f_{nd} = \gamma GBW$$

$$\gamma \approx 2$$

$$C_{GS} = kW$$

$$k = 2 \cdot 10^{-11} \text{ F/cm}$$

$$\begin{aligned} \text{GBW} &= \frac{\mathsf{f}_{nd}}{\gamma} = \frac{\mathsf{g}_{m6}}{2\pi \, \mathsf{C}_{\mathsf{L}}} \, \frac{1}{\gamma \, (1 + 1/\, \beta)} \\ \mathsf{C}_{\mathsf{L}} &= \alpha \, \mathsf{C}_{\mathsf{c}} = \alpha \, \beta \, \mathsf{C}_{\mathsf{n1}} = \alpha \, \beta \, \mathsf{C}_{\mathsf{GS6}} = \alpha \, \beta \, \mathsf{kW}_{\mathsf{6}} \end{aligned} \qquad \mathsf{W}_{\mathsf{6}} \, \stackrel{\uparrow}{\mathsf{l}} \, \mathsf{if} \, \mathsf{C}_{\mathsf{L}} \, \stackrel{\uparrow}{\mathsf{l}} \end{aligned}$$

Optimum design Miller for high speed OTA - 2

Elimination of C_I yields

GBW =
$$\frac{g_{m6}}{2\pi \text{ kW}_{6}} \frac{1}{\alpha \beta \gamma (1 + 1/\beta)}$$
 $g_{m} = \frac{W}{L} \frac{17 \cdot 10^{-5}}{1 + 2.8 \cdot 10^{4} \text{ L}/V_{GST}}$ W, L in cm

GBW =
$$\frac{1}{2\pi L_6} \frac{1}{\alpha \beta \gamma (1 + 1/\beta)} \frac{8.5 \cdot 10^6}{1 + 2.8 \cdot 10^4 L_6 / V_{GST6}}$$
 L in cm

GBW is not determined by C_L , only by L (and V_{GST}) !! f_T is also determined by L !!!

Optimum design Miller for high speed OTA - 3

Substitution for f_T **yields**

GBW =
$$\frac{f_{T6}}{\alpha \beta \gamma (1 + 1/\beta)}$$

$$f_{T} = \frac{g_{m}}{2\pi C_{GS}}$$

$$f_{T} = \frac{1}{L} \frac{1.35}{1 + 2.8 \cdot 10^{4} \, \text{L} / \text{V}_{GST}}$$
L in cm
 f_{T} in MHz

GBW is not determined by C_L , only by f_T f_T is determined by L (and V_{GST}) !!!

If V_{GST} = 0.2 V, v_{sat} takes over for L < 65 nm (If 0.5 V for L < 0.15 μ m)

Maximum GBW versus channel length L

Design optimization for high speed Miller OTA

- Choose $\alpha \beta \gamma$
- Find minimum f_{T6} for specified GBW
- Choose maximum channel length L₆ (max. gain) for a chosen V_{GS6}-V_T
- W_6 is calculated from C_L , and determines I_{DS6}
- C_c is calculated from C_L through α
- g_{m1} and I_{DS1} are calculated from C_c
- Noise is determined by g_{m1} or C_c

Design Ex. for GBW = 0.4 GHz & CL = 5 pF

- Choose $\alpha \beta \gamma$
- Minimum f_{T6} for GBW = 0.4 GHz
- Maximum channel length L₆
 for a chosen V_{GS6}-V_T = 0.2 V
- L₆ is taken to be the minimum L
- W_6 is calculated from C_L , and determines I_{DS6} (K'_n = 70 μ A/V²) and determines C_{n1} (k = 2 fF/ μ m)
- C_c is calculated from C_L through α
- g_{m1} and I_{DS1} are calculated from C_c

2 3 2

 $f_{T6} = 6.4 \, GHz$

 $L_6 = 0.5 \mu m$

 $W_6 = 417 \mu m$

 $I_{DS6} = 2.3 \text{ mA}$

 $C_{n1} = 0.83 \text{ pF}$

 $C_c = 2.5 \, pF$

 $I_{DS1} = 0.63 \text{ mA}$

Optimum design Miller for low speed OTA

GBW =
$$\frac{f_{T6}}{\alpha \beta \gamma (1 + 1/\beta)}$$

GBW =
$$\frac{f_{T6}}{\alpha \beta \gamma (1 + 1/\beta)}$$
 $\frac{f_{T}}{f_{TH}} = \sqrt{i} (1 - e^{-\sqrt{i}}) \approx i \text{ for small i}$

$$f_{TH} = \frac{2 \mu kT/q}{2\pi L^2}$$

GBW is not determined by C_I, only by f_T f_T is determined by L and i!!!

Design optimization for low speed Miller OTA

- Choose $\alpha \beta \gamma$
- Find minimum f_{T6} for specified GBW
- Choose channel length L₆ (max. gain), which gives f_{TH6}
- Calculate i₆
- W_6 is calculated from C_L , and determines I_{DST6} and I_{DS6}
- C_c is calculated from C_L through α
- g_{m1} and I_{DS1} are calculated from C_c
- Noise is determined by g_{m1} or C_c

Design Ex. for GBW = 1 MHz & CL = 5 pF

- Choose $\alpha \beta \gamma$
- Minimum f_{T6} for GBW = 1 MHz
- Maximum channel length L₆
 gives f_{TH6}
- Inversion coefficient i is
- W_6 is calculated from C_L , and determines I_{DST6} (K'_n = 70 μ A/V²) and determines I_{DS6} and determines C_{n1} (k = 2 fF/ μ m)
- C_c is calculated from C_L through α
- g_{m1} and I_{DS1} are calculated from C_c

2 3 2

 $f_{T6} = 16 \text{ MHz}$

 $L_6 = 0.5 \mu m$

 $f_{TH6} = 2 GHz$

i = 0.008

 $W_6 = 417 \mu m$

 $I_{DST6} = 0.33 \text{ mA}$

 $I_{DS6} = 2.7 \, \mu A$

 $C_{n1} = 0.83 \text{ pF}$

 $C_c = 2.5 \, pF$

 $I_{DS1} = 1.6 \mu A$

Table of contents

- Design of Single-stage OTA
- Design of Miller CMOS OTA
- Design for GBW and Phase Margin
- Other: SR, Output Impedance, Noise, ...

1. Introductory analysis

- 1.1 DC currents and voltages on all nodes
- 1.2 Small-signal parameters of all transistors

2. DC analysis

- 2.1 Common-mode input voltage range vs supply Voltage
- 2.2 Output voltage range vs supply Voltage
- 2.3 Maximum output current (sink and source)

3. AC and transient analysis

- 3.1 AC resistance and capacitance on all nodes
- 3.2 Gain versus frequency: GBW, ...
- 3.3 Gainbandwidth versus biasing current
- 3.4 Slew rate versus load capacitance
- 3.5 Output voltage range versus frequency
- 3.6 Settling time
- 3.7 Input impedance vs frequency (open & closed loop)
- 3.8 Output impedance vs frequency (open & closed loop)

4. Specifications related to offset and noise

- 4.1 Offset voltage versus common-mode input Voltage
- 4.2 CMRR versus frequency
- 4.3 Input bias current and offset
- 4.4 Equivalent input noise voltage versus frequency
- 4.5 Equivalent input noise current versus frequency
- 4.6 Noise optimization for capacitive/inductive sources
- 4.7 PSRR versus frequency
- 4.8 Distortion

5. Other second-order effects

- 5.1 Stability for inductive loads
- 5.2 Switching the biasing transistors
- 5.3 Switching or ramping the supply voltages
- 5.4 Different supply voltages, temperatures, ...

M C O: Other specifications

- o Common-mode input voltage range
- o Output voltage range
- o Slew Rate
- o Output impedance
- o Noise

Miller CMOS OTA

Miller CMOS OTA: CM Input Voltage Range

Miller CMOS OTA: Output Voltage Range

Miller CMOS OTA: Slew Rate - 1

Switch input:

$$v_{+} > 1$$

$$v_{-} > 0$$

$$SR = \frac{\Delta V_{OUT}}{\Delta t}$$

$$SR = \frac{I_{B1}}{C_c}$$

Miller CMOS OTA: Slew Rate - 2

Miller CMOS OTA: Slew Rate - 3

Design for GBW or SR?

$$\frac{SR}{GBW} = 4\pi \frac{I_{DS1}}{g_{m1}}$$

$$\frac{I_{DS1}}{g_{m1}} = \frac{V_{GS1} - V_T}{2} \approx 0.1 \dots 0.3 \text{ V for MOST (si)}$$

$$\frac{I_{DS1}}{g_{m1}} = \frac{nkT}{q} \approx 30 \dots 50 \text{ mV for MOST (wi)}$$

$$\frac{I_{CE1}}{g_{m1}} = \frac{kT}{q}$$
 ≈ 26 mV for Bipolar trans.

$$\frac{I_{CE1}}{g_{m1}} = (1 + g_{m1}R_E) \frac{kT}{q} \approx ... 0.5 \text{ V with } R_E$$

Solomon, JSSC Dec 74, 314-332 □

High SR by g_m reduction

Ref. Schmoock, JSSC Dec.75, 407-411

External vs internal Slew Rate

Slew Rate and settling

$$t_{TOT} = t_{Slew} + t_{0.1}$$

$$t_{Slew} = \frac{V_{OUT}}{SR}$$

$$t_{0.1} = \frac{7}{2\pi BW}$$

Miller CMOS OTA Output Impedance

Miller CMOS OTA: Output impedance Z_{OUT}

Miller CMOS OTA: Noise density 1

$$\frac{\overline{dv_{in1}^2}}{dv_{in1}^2} \approx 4kT \frac{4/3}{g_{m1}} df$$

$$\frac{\overline{dv_{in2}^2}}{dv_{in2}^2} \stackrel{C_c}{C_c}$$

$$\frac{d}{dv_{in2}^2} \stackrel{C_c}{C_c}$$

$$\frac{d}{d} \stackrel{V_{out}}{V_{out}}$$

Miller CMOS OTA: Noise density 2

Miller CMOS OTA: Integrated Noise

$$C_c = 1pF$$
 $V_{Rs} = 74 \mu V_{RMS}$

$$\overline{v_{\text{nieq}}^2} = \int_0^\infty \frac{dv_{\text{nieq}}^2}{1 + (f/\text{ GBW})^2}$$

$$\int_0^\infty \frac{dx}{1 + x^2} = \frac{\pi}{2}$$

$$\overline{v_{\text{nieq}}^2} = 4kT \frac{4/3}{g_{\text{m1}}} \text{ GBW } \frac{\pi}{2}$$

$$\overline{v_{\text{nieq}}}^2 = \frac{4}{3} \frac{kT}{C_c}$$

Noise density vs integrated noise

$$\frac{\overline{dv_{ni}^2}}{dv_{ni}^2} = 4kT \frac{4/3}{g_m} df$$

$$\frac{1}{v_{ni}^2} = \int_0^\infty \frac{dv_{ni}^2}{1 + (f/BW)^2} = \frac{4kT}{3C_c}$$

Noise density $(V^2/Hz) \sim 1/g_m \text{ (or } R_S)$

Integrated noise $(V_{RMS}) \sim 1/C_c$

CMOS Miller OTA layout

Miller CMOS OTA: Exercise

GBW = 50 MHz for $C_L = 2 pF$: use min. I_{DS6} !

Techno:
$$L_{min} = 0.5 \ \mu m$$
; $K'_n = 50 \ \mu A/V^2 \ \& \ K'_p = 25 \ \mu A/V^2$
 $C_{GS} = kW \ (= C_{ox}WL)$ and $k = 2 \ fF/ \ \mu m$

$$V_{GS} - V_T = 0.2 V$$

Find $g_{m6} I_{DS6} W_6 C_{n1} = C_{GS6} C_c g_{m1} I_{DS1} dv_{ineq}^2 v_{inRMS}$

Conclusion: Table of contents

- Design of Single-stage OTA
- Design of Miller CMOS OTA
- Design for GBW and Phase Margin
- Other specs: Input range, output range, SR, ...