On Reducing Maximum Independent Set to Minimum Satisfiability

Alexey Ignatiev¹, Antonio Morgado¹, and Joao Marques-Silva^{1,2}

¹ INESC-ID/IST, Lisbon, Portugal ² CASL/CSI, University College Dublin, Ireland

17th International Conference on Theory and Applications of Satisfiability Testing

Vienna, Austria July 14, 2014

MIS: compute the **largest** number of pairwise non-connected vertices in \mathcal{G} . **MVC**: compute the **smallest** number of vertices in \mathcal{G} that are incident to all edges of \mathcal{G} .

MVC: compute the **largest** number of pairwise non-connected vertices in \mathcal{G} . **MVC**: compute the **smallest** number of vertices in \mathcal{G} that are incident to all edges of \mathcal{G} .

Given \mathcal{G} , $\mathcal{I} \subseteq \mathcal{G}$ is an MIS solution $\Leftrightarrow \mathcal{G} \setminus \mathcal{I}$ is an MVC solution.

MVC: compute the **largest** number of pairwise non-connected vertices in \mathcal{G} . **MVC**: compute the **smallest** number of vertices in \mathcal{G} that are incident to all edges of \mathcal{G} .

Given \mathcal{G} , $\mathcal{I}\subseteq\mathcal{G}$ is an MIS solution $\Leftrightarrow \mathcal{G}\setminus\mathcal{I}$ is an MVC solution.

$$MaxClq = \overline{MIS}$$

MIS: compute the **largest** number of pairwise non-connected vertices in \mathcal{G} . **MVC**: compute the **smallest** number of vertices in \mathcal{G} that are incident to all edges of \mathcal{G} .

Given \mathcal{G} , $\mathcal{I} \subseteq \mathcal{G}$ is an MIS solution $\Leftrightarrow \mathcal{G} \setminus \mathcal{I}$ is an MVC solution.

$$MaxClq = \overline{MIS}$$

MinSAT: compute the **smallest** number of simultaneously **satisfied** clauses in \mathcal{F} . **MaxFalse**: compute the **largest** number of simultaneously **falsified** clauses in \mathcal{F} .

MIS: compute the **largest** number of pairwise non-connected vertices in \mathcal{G} . **MVC**: compute the **smallest** number of vertices in \mathcal{G} that are incident to all edges of \mathcal{G} .

 \downarrow

Given \mathcal{G} , $\mathcal{I} \subseteq \mathcal{G}$ is an MIS solution $\Leftrightarrow \mathcal{G} \setminus \mathcal{I}$ is an MVC solution.

MaxClq = MIS

MinSAT: compute the **smallest** number of simultaneously **satisfied** clauses in \mathcal{F} . **MaxFalse**: compute the **largest** number of simultaneously **falsified** clauses in \mathcal{F} .

 $^{\parallel}$

Given \mathfrak{F} , $\mathfrak{M} \subseteq \mathfrak{F}$ is a MaxFalse solution $\Leftrightarrow \mathfrak{F} \setminus \mathfrak{M}$ is a MinSAT solution.

MIS and MaxFalse

 $\textbf{MIS} \leftrightarrow \textbf{MaxFalse}$

 $\mathbf{MVC} \leftrightarrow \mathbf{MinSAT}$

$$\mathcal{F} = \left\{ \begin{array}{lll} c_1 & = & x_{1,2} \\ c_2 & = & \neg x_{1,2} \lor x_{2,3} \lor x_{2,4} \lor x_{2,5} \\ c_3 & = & \neg x_{2,3} \lor x_{3,5} \\ c_4 & = & \neg x_{2,4} \\ c_5 & = & \neg x_{2,5} \lor \neg x_{3,5} \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{ll} c_1 & = & \mathbf{x}_{1,2} \\ c_2 & = & \neg \mathbf{x}_{1,2} \lor \mathbf{x}_{2,3} \lor \mathbf{x}_{2,4} \lor \mathbf{x}_{2,5} \\ c_3 & = & \neg \mathbf{x}_{2,3} \lor \mathbf{x}_{3,5} \\ c_4 & = & \neg \mathbf{x}_{2,4} \\ c_5 & = & \neg \mathbf{x}_{2,5} \lor \neg \mathbf{x}_{3,5} \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{ll} c_1 & = & x_{1,2} \\ c_2 & = & \neg x_{1,2} \lor x_{2,3} \lor x_{2,4} \lor x_{2,5} \\ c_3 & = & \neg x_{2,3} \lor x_{3,5} \\ c_4 & = & \neg x_{2,4} \\ c_5 & = & \neg x_{2,5} \lor \neg x_{3,5} \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{ll} c_1 & = & x_{1,2} \\ c_2 & = & \neg x_{1,2} \lor x_{2,3} \lor x_{2,4} \lor x_{2,5} \\ c_3 & = & \neg x_{2,3} \lor x_{3,5} \\ c_4 & = & \neg x_{2,4} \\ c_5 & = & \neg x_{2,5} \lor \neg x_{3,5} \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{ll} c_1 & = & x_{1,2} \\ c_2 & = & \neg x_{1,2} \lor x_{2,3} \lor x_{2,4} \lor x_{2,5} \\ c_3 & = & \neg x_{2,3} \lor x_{3,5} \\ c_4 & = & \neg x_{2,4} \\ c_5 & = & \neg x_{2,5} \lor \neg x_{3,5} \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{lll} c_1 & = & x_{1,2} \\ c_2 & = & \neg x_{1,2} \lor x_{2,3} \lor x_{2,4} \lor x_{2,5} \\ c_3 & = & \neg x_{2,3} \lor x_{3,5} \\ c_4 & = & \neg x_{2,4} \\ c_5 & = & \neg x_{2,5} \lor \neg x_{3,5} \end{array} \right\}$$

$$\mathfrak{F} = \left\{ \begin{array}{ll} \mathbf{c_1} & = & \mathbf{x_{1,2}} \\ \mathbf{c_2} & = & \neg \mathbf{x_{1,2}} \lor \mathbf{x_{2,3}} \lor \mathbf{x_{2,4}} \lor \mathbf{x_{2,5}} \\ \mathbf{c_3} & = & \neg \mathbf{x_{2,3}} \lor \mathbf{x_{3,5}} \\ \mathbf{c_4} & = & \neg \mathbf{x_{2,4}} \\ \mathbf{c_5} & = & \neg \mathbf{x_{2,5}} \lor \neg \mathbf{x_{3,5}} \end{array} \right\}$$

Given a graph $\mathcal{G} = (V, E)$, **basic reduction** constructs a formula \mathcal{F} with exactly |V| clauses and |E| variables.

$$\mathcal{F} = \left\{ \begin{array}{lll} c_1 & = & \neg x_2 \\ c_2 & = & x_2 \\ c_3 & = & \neg x_2 \lor x_3 \\ c_4 & = & \neg x_2 \\ c_5 & = & \neg x_2 \lor \neg x_3 \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{ccc} c_1 & = & \neg x_2 \\ c_2 & = & x_2 \\ c_3 & = & \neg x_2 \lor x_3 \\ c_4 & = & \neg x_2 \\ c_5 & = & \neg x_2 \lor \neg x_3 \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{ccc} c_1 & = & \neg x_2 \\ c_2 & = & x_2 \\ c_3 & = & \neg x_2 \lor x_3 \\ c_4 & = & \neg x_2 \\ c_5 & = & \neg x_2 \lor \neg x_3 \end{array} \right\}$$

$$\mathcal{F} = \left\{ \begin{array}{ccc} \mathbf{c_1} & = & \neg \mathbf{x_2} \\ \mathbf{c_2} & = & \mathbf{x_2} \\ \mathbf{c_3} & = & \neg \mathbf{x_2} \lor \mathbf{x_3} \\ \mathbf{c_4} & = & \neg \mathbf{x_2} \\ \mathbf{c_5} & = & \neg \mathbf{x_2} \lor \neg \mathbf{x_3} \end{array} \right\}$$

Given a graph $\mathcal{G} = (V, E)$, greedy reduction constructs a formula \mathcal{F} with exactly |V| clauses and $\leq |V|$ variables.

• original idea — compatible states in finite-state machines simplification

- original idea compatible states in finite-state machines simplification
- compatible variables can replace each other

- original idea compatible states in finite-state machines simplification
- compatible variables can replace each other
- variable compatibility rules:
 - no tautology

given a clause $\neg x_1 \lor x_2$, variables x_1 and x_2 are not compatible

- original idea compatible states in finite-state machines simplification
- compatible variables can replace each other
- variable compatibility rules:
 - ① no tautology given a clause $\neg x_1 \lor x_2$, variables x_1 and x_2 are not compatible
 - ② no new connection given two clauses $\neg x_1 \lor x_2$ and $\neg x_3$, variables x_2 and x_3 are not compatible

Variable compatibility¹

(a) Graph
$$\mathcal{G}$$

$$\begin{array}{rcl} c_{1} & = & x_{1} \\ c_{2} & = & \neg x_{1} \lor x_{2} \lor x_{3} \lor x_{4} \\ c_{3} & = & \neg x_{2} \lor x_{5} \\ c_{4} & = & \neg x_{3} \\ c_{5} & = & \neg x_{4} \lor \neg x_{5} \end{array}$$

(b) Set of clauses for $\mathcal G$

	χ_1	χ_2	χ_3	χ_4	χ_{5}
χ_1	_				
χ_2	* * 2 1,3	_			
χ_3	* * 2 1,4		-		
χ_4	* * 2 1,5			-	
χ_5	* 1,5	* 3	* 3,4		_

¹Literal compatibility is similar.

Variable compatibility¹

(a) Graph
$$\mathcal{G}$$

$$\begin{array}{rcl} c_1 & = & x_1 \\ c_2 & = & \neg x_1 \lor x_2 \lor x_3 \lor x_4 \\ c_3 & = & \neg x_2 \lor x_5 \\ c_4 & = & \neg x_3 \\ c_5 & = & \neg x_4 \lor \neg x_5 \end{array}$$

(b) Set of clauses for ${\cal G}$

	χ_1	χ_2	χ_3	χ_4	χ_{5}
χ_1	_				
χ_2	* * 2 1,3	-			
χ_3	* * 2 1,4		-		
χ_4	* * 2 1,5			-	
χ_5	* 1,5	* 3	* 3,4		_

¹Literal compatibility is similar.

Variable compatibility¹

(a) Graph
$${\mathcal G}$$

$$c_1 = x_1$$

$$c_2 = \neg x_1 \lor x_2$$

$$c_3 = \neg x_2 \lor x_5$$

$$c_4 = \neg x_2$$

$$c_5 = \neg x_2 \lor \neg x_5$$

(b) Set of clauses for ${\mathcal G}$

	χ_1	χ_2	χ_3	χ_4	χ_{5}
χ_1	_				
χ_2	* * 2 1,3	_			
χ_3	* * 2 1,4		-		
χ_4	* * 2 1,5			-	
χ_5	* 1,5	* 3	* 3,4		_

¹Literal compatibility is similar.

Weighting clauses and removing duplicates

			basic		greedy		greedy+vc			
		vars	clauses	time²	vars	clauses	time²	vars	clauses	time²
Instance	c-fat200-1	18366	200	0.4	188	200	0.05	35	37	0
	c-fat200-2	16665	200	0.75	176	200	0.07	16	18	0
	c-fat200-5	11427	200	0.96	142	200	0.07	5	7	0
	c-fat500-1	120291	500	_	486	500	0.63	78	80	0
	c-fat500-10	78123	500	_	374	500	0.53	6	8	0
	c-fat500-2	115611	500	_	474	500	0.51	38	40	0
	c-fat500-5	101559	500	_	436	500	0.37	14	16	0

²Running time for MinSatz.

Benchmarks (233 in total):

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver
 - MinSatz branch and bound MinSAT solver

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver
 - MinSatz branch and bound MinSAT solver
 - MaxSatz branch and bound MaxSAT solver

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver
 - MinSatz branch and bound MinSAT solver
 - MaxSatz branch and bound MaxSAT solver
 - MiFuMaX Fu&Malik algorithm for MaxSAT (best for MS industrial in 2013)

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver
 - MinSatz branch and bound MinSAT solver
 - MaxSatz branch and bound MaxSAT solver
 - MiFuMaX Fu&Malik algorithm for MaxSAT (best for MS industrial in 2013)
- Machine configuration:
 - Intel Xeon 5160@3GHz with 4GB RAM

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver
 - MinSatz branch and bound MinSAT solver
 - MaxSatz branch and bound MaxSAT solver
 - MiFuMaX Fu&Malik algorithm for MaxSAT (best for MS industrial in 2013)
- Machine configuration:
 - Intel Xeon 5160@3GHz with 4GB RAM
 - running Fedora Linux

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver
 - MinSatz branch and bound MinSAT solver
 - MaxSatz branch and bound MaxSAT solver
 - MiFuMaX Fu&Malik algorithm for MaxSAT (best for MS industrial in 2013)
- Machine configuration:
 - Intel Xeon 5160@3GHz with 4GB RAM
 - running Fedora Linux
 - 2GB memout

Experimental evaluation

- Benchmarks (233 in total):
 - crafted MaxClq instances: DIMACS MaxClq, FRB, etc.
 - MIS instances obtained from Binate Covering Problem benchmarks (BCP)
- Tools:
 - MaxCLQ native MaxClq solver
 - MinSatz branch and bound MinSAT solver
 - MaxSatz branch and bound MaxSAT solver
 - MiFuMaX Fu&Malik algorithm for MaxSAT (best for MS industrial in 2013)
- Machine configuration:
 - Intel Xeon 5160@3GHz with 4GB RAM
 - running Fedora Linux
 - 2GB memout
- Timeout value 3600 seconds

Experimental results

_	CLQ	MinSz	MaxSz-d	MaxSz-mf	FM-d	FM-mf	VBS-d	VBS-mf	VBS
Native	_								~
MaxFalse-based		/		✓		~		~	~
Direct MaxSAT			\		~		~		~

Experimental results

_	CLQ	MinSz	MaxSz-d	MaxSz-mf	FM-d	FM-mf	VBS-d	VBS-mf	VBS
Native	_								~
MaxFalse-based		~		~		~		~	~
Direct MaxSAT			✓		~		~		~

_	CLQ	MinSz	MaxSz-d	MaxSz-mf	FM-d	FM-mf	VBS-d	VBS-mt	ARZ
Crafted Clq	66	59	43	36	19	30	45	74	76
BCP	63	65	61	55	56	53	66	72	76
Total	129	124	104	91	75	83	111	146	152

Performance of the considered approaches

proposed a reduction from MIS to MinSAT

- proposed a reduction from MIS to MinSAT
- heuristics to reduce obtained MinSAT formulas

- proposed a reduction from MIS to MinSAT
- heuristics to reduce obtained MinSAT formulas
- experimental results:
 - comparable to native MaxClq solvers

- proposed a reduction from MIS to MinSAT
- heuristics to reduce obtained MinSAT formulas
- experimental results:
 - comparable to native MaxClq solvers
 - outperforms MaxSAT-based approaches

- proposed a reduction from MIS to MinSAT
- heuristics to reduce obtained MinSAT formulas
- experimental results:
 - comparable to native MaxClq solvers
 - outperforms MaxSAT-based approaches
 - portfolios of solvers

- proposed a reduction from MIS to MinSAT
- heuristics to reduce obtained MinSAT formulas
- experimental results:
 - comparable to native MaxClq solvers
 - outperforms MaxSAT-based approaches
 - portfolios of solvers
- further improvements to the proposed MinSAT models

- proposed a reduction from MIS to MinSAT
- heuristics to reduce obtained MinSAT formulas
- experimental results:
 - comparable to native MaxClq solvers
 - outperforms MaxSAT-based approaches
 - portfolios of solvers
- further improvements to the proposed MinSAT models
- portfolios of solvers for NP-hard graph problems

- proposed a reduction from MIS to MinSAT
- 4 heuristics to reduce obtained MinSAT formulas
- experimental results:
 - comparable to native MaxClq solvers
 - outperforms MaxSAT-based approaches
 - portfolios of solvers
- further improvements to the proposed MinSAT models
- portfolios of solvers for NP-hard graph problems
- development of efficient MinSAT solvers

Thank you for your attention!