ECE – 6100 Cache Coherence PROJECT REPORT Balaji Mamidala GTID - 903060531

Below I have attached the state-machines used to implement the protocols:

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	219	8	12	0	6
MSI	317	7	12	0	4
MESI	317	7	12	0	4
MOSI	217	7	12	0	5
MOESI	217	7	12	0	5
MOESIF	217	7	12	0	5

- 1. MOSI protocol has the best run-time because of high \$-\$ transfers.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding Exclusive state to MSI doesn't change the run-time. Thus, this trace doesn't benefit from E-state which can be observed in the fact that MOESI and MOSI have the same run-time.
- 4. Adding owned state reduces run-time by increasing \$-\$ transfer by 1.
- 5. Adding F-state does not improve run-time.
- 6. As O gives significant improvement run-time this experiment might have write-shared property.

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	757	77	104	0	71
MSI	2367	30	104	0	7
MESI	2267	30	104	1	8
MOSI	1167	30	104	0	19
MOESI	975	31	104	1	22
MOESIF	683	34	104	1	28

- 1. MOESIF protocol has the best run-time.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding Exclusive state to MSI doesn't change the run-time drastically. Thus, this trace doesn't benefit from E-state significantly which can be observed in the fact that MOESI and MOSI have very close run-time. Also, adding E-state only gives 1 silent upgrade hence the performance gain by adding E is not worth it.
- 4. Adding owned state reduces run-time significantly by increasing \$-\$ transfer. It can be observed in the fact that MSI had 7 \$-\$ transfers whereas MOSI had 19 \$-\$ transfers.
- 5. Adding F-state provides improvement in run-time by increasing \$-\$ transfers by 6.
- 6. Thus, MI requires very little states but gives very good performance. But MI also produces very large \$-\$ transfers. MOESIF has just 28 \$-\$ transfers and produces best performance. However, we could have eliminated E-state and had MOSIF as E-doesn't add much performance. Note that adding more \$-\$ transfer increases the traffic on bus.
- 7. As O and E provide significant improvement this experiment probably has write-shared and read-only patterns.

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	1427	49	200	0	36
MSI	3723	56	200	0	20
MESI	2607	48	200	8	23
MOSI	3723	56	200	0	20
MOESI	2607	48	200	8	23
MOESIF	1425	48	200	8	35

- 1. MI and MOESIF protocol has the best run-time.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding owned state to MSI doesn't change the run-time drastically. Thus, this trace doesn't benefit from O-state significantly which can be observed in the fact that MOESI and MESI have very close run-time.
- 4. Adding exclusive state reduces run-time significantly by increasing silent upgrades. It can be observed in the fact that adding E-state gives 8 silent upgrade.
- 5. Adding F-state provides significant improvement in run-time by increasing \$-\$ transfers by 12.
- 6. Thus, MI requires very little states but gives very good performance. Both MI and MOESIF produce roughly equal \$-\$ transfers, hence, MI is the best suited protocol for this experiment.
- 7. As E and F provide significant improvement this experiment probably has private and readonly patterns.

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	569	31	60	0	26
MSI	2265	27	60	0	5
MESI	1447	19	60	3	5
MOSI	1869	29	60	0	11
MOESI	851	19	60	3	11
MOESIF	551	19	60	3	14

- 1. MI and MOESIF protocol has the best run-time. However, MI produces 26 \$-\$ transfers compared to 14 \$-\$ transfers in MOESIF protocol. Thus, if we are concerned about bus traffic then we should choose MOESIF protocol for this experiment.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding owned state reduces run-time significantly by increasing \$-\$ transfer. It can be observed in the fact that MSI had 5 \$-\$ transfers whereas MOSI had 11 \$-\$ transfers.
- 4. Adding exclusive state reduces run-time significantly by increasing silent upgrades. It can be observed in the fact that adding E-state gives 3 silent upgrade.
- 5. Adding F-state provides significant improvement in run-time by increasing \$-\$ transfers by 3.
- 6. In this experiment O, E and F states provide significant improvement in performance making MOESIF a justifiable choice.
- 7. As O, E and F provide significant improvement this experiment probably has write-shared and read-only and private patterns.

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	465	23	37	0	19
MSI	1661	21	37	0	5
MESI	1561	21	37	0	6
MOSI	1261	21	37	0	9
MOESI	1161	21	37	0	10
MOESIF	461	21	37	0	17

- 1. MI and MOESIF protocol has the best run-time. Both MI and MOESIF produce roughly equal \$-\$ transfers, hence, MI is the best suited protocol for this experiment.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding owned and exclusive states improves performance by increasing \$-\$ transfers.
- 4. However, adding F-state provides significant improvement in run-time by increasing \$-\$ transfers by 7.
- 5. Thus MI is the best choice for this experiment.
- 6. As there is heavy dependent on F this experiment has read-only sharing pattern.

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	3307	190	747	0	161
MSI	7775	87	747	0	12
MESI	4925	62	747	25	15
MOSI	6975	87	747	0	20
MOESI	4125	62	747	25	23
MOESIF	3125	62	747	25	33

- 1. MI and MOESIF protocol has the best run-time. However, MI produces 161 \$-\$ transfers compared to 33 \$-\$ transfers in MOESIF protocol. Thus, we should choose MOESIF protocol for this experiment as MI will cause a huge increase in bus traffic.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding owned state reduces run-time by increasing \$-\$ transfer. It can be observed in the fact that MSI had 12 \$-\$ transfers whereas MOSI had 20 \$-\$ transfers. However, adding E-state results in better performance compared to O-state for this experiment.
- 4. Adding exclusive state reduces run-time significantly by increasing silent upgrades. It can be observed in the fact that adding E-state gives 25 silent upgrade.
- 5. Adding F-state provides significant improvement in run-time by increasing \$-\$ transfers by 10.
- 6. In this experiment O, E and F states provide significant improvement in performance making MOESIF a justifiable choice.
- 7. As E and F provides significant improvement this experiment probably has private and readonly pattern.

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	3053	150	952	0	123
MSI	6459	79	952	0	17
MESI	3993	55	952	24	17
MOSI	5359	79	952	0	28
MOESI	2909	55	952	24	28
MOESIF	2909	55	952	24	28

- 1. MI, MOESI and MOESIF protocols have the best run-time. However, MI produces 123 \$-\$ transfers compared to 28 \$-\$ transfers in MOESI and MOESIF protocols. Thus, we should choose MOESI protocol for this experiment as MI will cause a huge increase in bus traffic.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding owned state reduces run-time by increasing \$-\$ transfer. It can be observed in the fact that MSI had 17 \$-\$ transfers whereas MOSI had 28 \$-\$ transfers. However, adding E-state results in better performance compared to O-state for this experiment.
- 4. Adding exclusive state reduces run-time significantly by increasing silent upgrades. It can be observed in the fact that adding E-state gives 24 silent upgrade.
- 5. Adding F-state provides no improvement in run-time.
- 6. In this experiment O and E states provide significant improvement in performance making MOESI a justifiable choice.
- 7. As O and E provides significant improvement this experiment probably has private and write-shared pattern.

Protocol	Run Time	Cache Misses	Cache Accesses	Silent upgrade	\$-\$ Transfers
MI	4193	118	800	0	79
MSI	9477	110	800	0	18
MESI	6441	92	800	19	30
MOSI	8477	110	800	0	28
MOESI	5241	92	800	19	42
MOESIF	4141	92	800	19	53

- 1. MI, MOESI and MOESIF protocols have the best run-time. However, MI produces 79 \$-\$ transfers compared to 53 \$-\$ transfers in MOESIF protocols. Thus, we should choose MOESIF protocol for this experiment as MI will cause a huge increase in bus traffic.
- 2. Performance of MSI is worse compared to MI as S-state does not allow \$-\$ transfers.
- 3. Adding owned state reduces run-time by increasing \$-\$ transfer. It can be observed in the fact that MSI had 18 \$-\$ transfers whereas MOSI had 28 \$-\$ transfers. However, adding E-state results in better performance compared to O-state for this experiment.
- 4. Adding exclusive state reduces run-time significantly by increasing silent upgrades. It can be observed in the fact that adding E-state gives 19 silent upgrade.
- 5. Adding F-state provides significant improvement in run-time by increasing \$-\$ transfers by
- 6. In this experiment E and F states provide significant improvement in performance making MOESIF a justifiable choice.
- 7. As E and F provides significant improvement this experiment probably has private and readonly pattern.

Inferences:

Below table summarizes experimentation results:

Experiment#	Best suited protocol	Possible Sharing Pattern
1	MOSI	write-shared
2	MOESIF	write-shared and read-only
3	MI	private and read-only
4	MOESIF	write-shared, read-only and private patterns
5	MI	read-only
6	MOESIF	private and read-only
7	MOESI	private and write-shared
8	MOESIF	private and read-only