Parameter control in the presence of uncertainties

Victor Trappler victor.trappler@univ-grenoble-alpes.fr Élise Arnaud, Laurent Debreu, Arthur Vidard AIRSEA Research team (Inria) – Laboratoire Jean Kuntzmann

Workshop on Sensitivity Analysis and Data Assimilation in Meteorology and Oceanography, Aveiro, Portugal 2018

How can one calibrate a numerical model so that it performs reasonably well for different random operating conditions? Objectives

- ▶ Define suitable definitions of robustness in the field of computer code calibration
- ► Develop efficient techniques and algorithms in order to estimate those parameters
- ▶ Deal with the high-dimension of the parameter spaces: Dimension reduction

Background: estimation of the bottom friction in a shallow water model

The calibration problem is to be able to find a value of $\pmb{k} \in \mathcal{K}$ denoted $\hat{\pmb{k}}$ that matches the best the observations \pmb{y}_{obs} . We define a loss function, that is the misfit between the observations to the model.

$$J(oldsymbol{k}) = rac{1}{2} \| M(oldsymbol{k}) - oldsymbol{y}_{
m obs} \|_{oldsymbol{\Sigma}^{-1}}^2$$

and we have to perform the following minimisation problem, usually with the help of the adjoint method

$$\hat{\mathbf{k}} = \arg\min_{\mathbf{k} \in \mathcal{K}} J(\mathbf{k})$$

Stochastic Inverse Problem

Now, $m{u} \in \mathcal{U} \sim m{U}$ of density $m{p}_U$ and $m{y}_{
m obs} = m{M}(m{k}_{
m ref}, m{u}_{
m ref})$

The loss function is now

$$J(\mathbf{k}, \mathbf{U}) = \frac{1}{2} \|M(\mathbf{k}, \mathbf{U}) - \mathbf{y}_{\text{obs}}\|_{\Sigma^{-1}}^{2}$$
Random variable

- \blacktriangleright What criteria to use to "optimize" in a sense J?
- \triangleright Evaluating J is time consuming. How to deal with a limited budget of evaluations?

Which criterion to choose?

► Global minimum

$$(\mathbf{k}^*, \mathbf{u}^*) = \operatorname*{arg\,min} J(\mathbf{k}, \mathbf{u}) \quad \text{and} \quad \hat{\mathbf{k}}_{\mathrm{global}} = \mathbf{k}^*$$
 (\mathbf{k}, \mathbf{u})

► Assuming that the environmental variables have little influence:

$$J_{\mathbb{E}}(m{k}) = J(m{k}, \mathbb{E}[m{U}])$$
 and $\hat{m{k}}_{\mathbb{E}} = rg\min_{m{k}} J_{\mathbb{E}}(m{k})$

(Classical methods)

- \longrightarrow Those approaches are not robust: inherent variability of $m{U}$ not taken into account
- Consider the worst-case scenario

$$J_{\mathrm{W}}(\boldsymbol{k}) = \max_{\boldsymbol{u} \in \mathcal{U}} J(\boldsymbol{k}, \boldsymbol{u})$$
 and $\hat{\boldsymbol{k}}_{\mathrm{WC}} = \arg\min_{\boldsymbol{k}} J_{\mathrm{W}}(\boldsymbol{k})$ (Explorative EGO)

► The solution gives good results on average:

$$\mu(m{k}) = \mathbb{E}_{U}[J(m{k}, m{U})]$$
 and $\hat{m{k}}_{\mu} = rg \min \mu(m{k})$ (Iterative EGO)

► The estimate gives steady results:

$$\sigma^2(\mathbf{k}) = \mathbb{V}\mathrm{ar}_U[J(\mathbf{k}, \mathbf{U})]$$
 and $\hat{\mathbf{k}}_{\sigma^2} = \arg\min \sigma^2(\mathbf{k})$ (PCE gradient)

ightharpoonup Compromise between Mean and Variance ightharpoonup multiobjective optimization problem:

Pareto front of
$$(\mu(\mathbf{k}), \sigma^2(\mathbf{k}))$$
 (Layered kriging)

ightharpoonup Probability of being below threshold $T \in \mathbb{R}$: Reliability analysis

$$R_T(\mathbf{k}) = \mathbb{P}\left[J(\mathbf{k}, \mathbf{U}) \le T\right], \quad \hat{\mathbf{k}}_{R_T} = \arg\max R_T(\mathbf{k})$$
 (GP simulations)

▶ Distribution of minimizers: $T_{\min} = T(\boldsymbol{U}) = \min_{\boldsymbol{k}} J(\boldsymbol{k}, \boldsymbol{U})$

$$R_{\mathsf{min}}(m{k}) = \mathbb{P}\left[J(m{k}, m{U}) \leq T_{\mathsf{min}}\right] = \mathbb{P}\left[m{k} = rg\min_{m{k}} J(m{ ilde{k}}, m{U})\right]$$
 (Estimation and maximization of density)

▶ Relaxation of the constraint: we define $T_{\alpha}(\mathbf{U}) = \alpha \min_{\mathbf{k}} J(\mathbf{k}, \mathbf{U})$, for $\alpha \geq 1$, and $R_{\alpha} = R_{T_{\alpha}}$

2D Illustration

General methods

- Design of Experiment
- ▶ Efficient exploration of the input space: LHS, space filling designs
- Statistical/Probabilistic aspects
 - ▶ Bayesian/Frequentist approach: Markov-chain based methods, study of the posterior distribution
 - \blacktriangleright Choice of prior on K to take into account specific information on spatial variation of the friction
 - Marginalization with respect to U
- Surrogate modelling
- Kriging (Gaussian Process Regression)
- Polynomial Chaos Expansion
- Optimization
- lacktriangle Adjoint method provides the gradient of the cost function o Adapt principles of gradient descent on specific objectives
- Adaptative sampling: based on surrogate, choose the next point to be evaluated based on a specific criterion: EGO, IAGO and more general Stepwise Uncertainty Reduction strategies

Numerical Results: toy model of Shallow Waters

Conclusion and perspectives

- ► Several objectives can be defined, often concurrent
- ► Choice of criterion of robustness is application-dependent
- lacktriangle Scalability of methods in high dimension ? Need to perform Dimension reduction on ${\cal K}$ and ${\cal U}$