ECE353 Lectures

Hanhee Lee

January 10, 2025

Contents

1	Pro	ogue	2
	1.1	Components of a Robotic System	2
		1.1.1 Overview (Robots, the Environment)	3
		1.1.2 Robot (Sensors, Actuators, the Brain)	3
		1.1.3 Brain (Tracker, Planner, Memory)	4
		1.1.4 Environment (Physics, State)	4
	1.2	Equations of a Robotic System	4
		1.2.1 Sensing	4
		1.2.2 Tracking	5
		1.2.3 Planning	5
		1.2.4 Acting	6
		1.2.5 Simulating	6
	1.3	Setup of Planning Problems	7
2	Sear	rch Problems	7
	2.1	Setup	7
	2.2	Search Graphs	7
	2.3	Path Trees	7
	2.4	Search Algorithms	8
		2.4.1 Characteristics of a Search Algorithm	8
		2.4.2 Breadth First Search (BFS)	8
		2.4.3 Depth First Search (DFS)	9
		2.4.4 Iterative Deepening DFS (IDDFS)	9
		2.4.5 Cheapest-First Search (CFS)	9
	2.5	Modifications to Search Algorithms	9
		2.5.1 Depth-Limiting	9
		2.5.2 Iterative Deepening	10
		2.5.3 Cost-Limiting	10
			10
			11
			11
	2.6		11
			11
			12
			12
			12
			12
			12
			12
	2.7	$oldsymbol{\phi}$	12
	2.8	Anytime Search Algorithms	12
	2.9	Formulating a Search Problem	12

1 Prologue

Summary:

- This course will focus on planning
- Variables:
 - State: $\mathbf{x}(t)$
 - Action(s): $\mathbf{u}(t)$
 - Measurement: $\mathbf{y}_k^{(i)}$
 - Context: $\mathbf{z}_k^{(i)}$
 - Old Context: $\mathbf{z}_{k-1}^{(i)}$

 - Plan: $\mathbf{p}_k^{(i)}$ (i): Ith agent
- Conversion to DT is necessary because robots are digitalized system and then converted back to CT for execution.

FAQ:

- What does the environment do?
- What is the joint action set?

Components of a Robotic System 1.1

Summary:

Figure 1: Components of a Robotic System (Words)

1.1.1 Overview (Robots, the Environment)

Figure 3: Overview (Robots, the Environment)

environment

Notes:

• Environment \rightarrow previous actions + current state \rightarrow robot \rightarrow new action \rightarrow environment

1.1.2 Robot (Sensors, Actuators, the Brain)

Definition:

Figure 4: Robot (Sensors, Actuators, the Brain)

Notes:

- Measurements can be noisy and inaccurate if not a perfect sensor.
- Measurements go into the brain which can create a plan.

1.1.3 Brain (Tracker, Planner, Memory)

Definition:

Figure 5: Brain (Tracker, Planner, Memory)

Notes:

- The tracker takes in the measurements and old context and updates the context.
- The planner takes in the context and creates a plan.
- The memory stores the context.

1.1.4 Environment (Physics, State)

Definition:

Figure 6: Environment (Physics, State)

1.2 Equations of a Robotic System

1.2.1 Sensing

Definition: Take a measurement:

$$\mathbf{y}^{(i)}(t) = \mathrm{sns}^{(i)}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Convert the measurement into a discrete-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{y}_k^{(i)} = \mathrm{dt}(\mathbf{y}^{(i)}(t), t, T^{(i)})$$

Figure 7: Sensing

1.2.2 Tracking

Definition: Track (update) the context:

$$\mathbf{z}_k^{(i)} = \operatorname{trk}^{(i)} \left(\mathbf{z}_{k-1}^{(i)}, \mathbf{y}_k^{(i)}, k \right)$$

Figure 8: Tracking

1.2.3 Planning

Definition: Make a plan:

$$\mathbf{p}_k^{(i)} = \mathrm{pln}^{(i)} \big(\mathbf{z}_k^{(i)}, k \big)$$

Figure 9: Planning

1.2.4 Acting

Definition: Convert the plan into a continuous-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{p}(t) = \operatorname{ct}(\mathbf{p}_k^{(i)}, t, T^{(i)})$$

Execute the plan:

$$\mathbf{u}^{(i)}(t) = \cot^{(i)}(\mathbf{p}^{(i)}(t), t)$$

Figure 10: Acting

1.2.5 Simulating

Definition: Simulate the environment's response:

$$\dot{\mathbf{x}}(t) = \text{phy}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Figure 11: Simulating

1.3 Setup of Planning Problems

Summary: In a planning problem, it is assumed that:

- ullet the environment is representable using a discrete set of states, ${\mathcal S}$
- for each state, $s \in \mathcal{S}$, each agent, i, has a discrete set of actions, $\mathcal{A}_i(s)$, with $\mathcal{A}(s) := \times_i \mathcal{A}_i(s)$
- a move is any tuple, (s, a), where $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
- a transition is any 3-tuple, (s, a, s'), where $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
- the transition resulting from a move may be deterministic/stochastic
- $rwd_i(s, a, s')$ is agent i's reward for the transition, (s, a, s')
- a **path** is any sequence of transitions of the form

$$p = \langle (s^{(0)}, a^{(1)}, s^{(1)}), (s^{(1)}, a^{(2)}, s^{(2)}), \dots \rangle$$

• each agent wants to realize a path that maximizes its own reward

Warning: A(s) is the joint action set of all agents at state s.

2 Search Problems

Summary:

• Not responsible for proofs, but know when to use each algorithm.

2.1 Setup

Definition: In a search problem, it is assumed that:

- There is only one agent (us).
- For each state, $s \in S$, we have a discrete set of actions, $\mathcal{A}(s)$.
- The transition resulting from a move, (s, a), is deterministic; the resulting state is tr(s, a).
- cst(s, a, tr(s, a)) is our cost for the transition, (s, a, tr(s, a)).
- We want to realize a path that minimizes our cost.

A search problem may have no solutions, in which case, we define the solution as NULL.

2.2 Search Graphs

Definition: In a search graph (a graph representing a search problem):

- S is defined by the vertices.
- \mathcal{G} is a subset of the vertices.
- $s^{(0)}$ is some vertex.
- $tr(\cdot, \cdot)$ and \mathcal{T} are defined by the edges.
- $cst(\cdot,\cdot,\cdot)$ is defined by the edge weights.

2.3 Path Trees

Definition: A search algorithm explores a tree of possible paths.

- In such a tree, each node represents the path from the root to itself.
 - The node may also include other info (such as the path's origin, cost, etc).

2.4 Search Algorithms

Definition: All search algorithms follow the template below:

• $\langle \rangle$ is the empty path, and 0 is the cost of the empty path.

```
procedure SEARCH(\mathcal{O})

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow Remove(\mathcal{O})

if \mathrm{Dst}(n) \in \mathcal{G} then

return n

for n' \in \mathrm{CHL}(n) do

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCH(\mathcal{O})

procedure SEARCH(\mathcal{O})

the search algorithm failed to find a path to a goal by "explore" a node n

the search algorithm found a path to a goal by "expand" n and "export" its children by "expand" n and "export" its children
```

- Explore: Remove a node from the open set.
- Exapnd: Generate the children of the node.
- Export: Add the children to the open set.

Warning: The key difference is in the order that $Remove(\cdot)$ removes nodes.

2.4.1 Characteristics of a Search Algorithm

Definition: We want to choose REMOVE(·) so that the algorithm exhibits the following characteristics:

Characteristic	Description	
Halting	Terminates after finitely many nodes explored	
Sound	Returned (possibly NULL) solution is correct	
Complete	Halting and sound when a non-NULL solution exists	
Optimal	Returns an optimal solution when multiple exist	
Time Efficient	Minimizes the nodes explored /expanded/exported	
Space Efficient	Minimizes the nodes simultaneously open	

• Will be using explored for time efficiency.

The characteristics of the algorithm also depend on several properties of the path tree over which it searches. These properties include:

- Branching factor: b ($b < \infty$), the maximum number of children a node can have.
- \bullet Depth: d, the length of the longest path.
- Length of the shortest solution: l^*
- Cost of the cheapest solution: c^*
- Cost of the cheapest edge: ϵ

We want to choose REMOVE(·) so that the algorithm exhibits the aforementioned characteristics for as many path trees as possible.

2.4.2 Breadth First Search (BFS)

Definition: Explores the least-recently expanded open node first.

Property	Description
Halting	$d < \infty$
	non-NULL
Sound	always
Complete	always
Optimal	constant cst
Time	b^{l^*}
Space	b^{l^*+1}

2.4.3 Depth First Search (DFS)

Definition: Explores the most-recently expanded open node first.

Property	Description
Halting	$d < \infty$
Sound	always
Complete	$d < \infty$
Optimal	never
Time	b^d
Space	bd

2.4.4 Iterative Deepening DFS (IDDFS)

Definition: Same as DFS but with iterative deepening.

Property	Description
Halting	always
Sound	always
Complete	always
Optimal	constant cst
Time	b^{l^*}
Space	bl^*

2.4.5 Cheapest-First Search (CFS)

Definition: Explores the cheapest open node first.

Property	Description
Halting	$d < \infty$
	non-NULL
Sound	yes
Complete	$\epsilon > 0$
Optimal	$\epsilon > 0$
Time	$b^{c^*/\epsilon}$
Space	$b^{c^*/\epsilon+1}$

2.5 Modifications to Search Algorithms

2.5.1 Depth-Limiting

Definition: Depth limit of d_{\max} to any search algorithm by modifying SEARCH(·) as follows:

```
procedure SEARCHDL(\mathcal{O}, d_{\max}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then
```

2.5.2 Iterative Deepening

Definition: Iteratively increase the depth-limit, d_{max} , to any search algorithm w/ depth-limiting, by placing SEARCHDL(·) in a wrapper, SEARCHID(·):

```
procedure SEARCHID():

n \leftarrow \text{NULL}

d_{\text{max}} \leftarrow 0

by while a solution has not been found, reset the open set, run the search algorithm, then increase the depth-limit

while n = \text{NULL} do

\mathcal{O} \leftarrow \{(\langle \rangle, 0)\}

n \leftarrow \text{SEARCHDL}(\mathcal{O}, d_{\text{max}})

d_{\text{max}} \leftarrow d_{\text{max}} + 1

return n
```

Warning: Increasing d_{max} can be done in different ways.

2.5.3 Cost-Limiting

Definition: Cost limit of c_{max} to any search algorithm by modifying SEARCH(·) as follows:

```
procedure SEARCHCL(\mathcal{O}, c_{\max}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then

return n

for n' \in \text{chl}(n) do

if \text{cst}(n') \leq c_{\max} then

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCHCL(\mathcal{O}, c_{\max})

b the search algorithm failed to find a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the properties of the search algorithm found a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the searc
```

2.5.4 Iterative-Inflating

Definition: Iteratively increase the cost limit, c_{max} , to any search algorithm with cost-limiting, by placing SEARCHCL(·) in a wrapper, SEARCHII(·):

```
procedure SEARCHII(): n \leftarrow \text{NULL} \\ c_{\text{max}} \leftarrow 0 \\ \text{$\rightarrow$ while a solution has not been found, reset the open set, run the search algorithm, then increase the cost-limit while <math>n = \text{NULL do} \mathcal{O} \leftarrow \{(\langle \rangle, 0)\} \\ n \leftarrow \text{SEARCHCL}(\mathcal{O}, c_{\text{max}}) \\ c_{\text{max}} \leftarrow c_{\text{max}} + \epsilon \\ \text{return } n
```

Warning: Increasing c_{max} can be done in different ways.

2.5.5 Intra-Path Cycle Checking

```
Definition: Do not expand a path if it is cyclic. Modify SEARCH(·) as follows:
```

```
procedure SEARCH(\mathcal{O}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then

return n

for n' \in \text{chl}(n) do

if not CYCLIC(n') then

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCH(\mathcal{O})
```

• Optimately of an algorithm is preserved provided $\epsilon > 0$.

2.5.6 Inter-Path Cycle Checking

```
Definition: We modify SEARCH(\cdot) as follows:
```

and then call the algorithm as follows:

```
 \begin{array}{c} 1 \\ \mathcal{O} \leftarrow \{(\langle \rangle, 0)\} \\ \mathcal{C} \leftarrow \emptyset \\ \text{SEARCH}(\mathcal{O}, \ \mathcal{C}) \end{array} \qquad \qquad \triangleright \text{ initialize a set of closed vertices}
```

2.6 Informed Search Algorithms

Motivation: We want to somehow explore more "promising" paths first.

2.6.1 Estimated Cost

Definition: $ecst(\cdot)$, to estimate the total cost to a goal given a path, p, based on the following:

- Cost of path p: cst(p)
- Estimate of the extra cost needed to get to a goal from dst(p): hur: $S \to \mathbb{R}_+$
 - $\operatorname{hur}(s)$ estimates the cost to get to \mathcal{G} from s and $\operatorname{hur}(p)$ means $\operatorname{hur}(\operatorname{dst}(p))$.

```
Example: Some common choices for ecst(\cdot) include:
```

- 1. $\operatorname{ecst}(p) = \operatorname{hur}(p)$; called nearest-first search (NFS)
- 2. $\operatorname{ecst}(p) = \operatorname{cst}(p) + \operatorname{hur}(p)$; called A* (A-star)

- 2.6.2 Heuristics
- 2.6.3 Heuristic-First Search (HFS)
- 2.6.4 A-Star Search (A*)
- 2.6.5 Iterative Inflating A-Star Search (IIA*)
- 2.6.6 Designing Heuristics via Problem Relaxation
- 2.6.7 Combining Heuristics
- 2.7 Characteristics of an Informed Search Algorithm
- 2.8 Anytime Search Algorithms
- 2.9 Formulating a Search Problem