Curso Estruturas de Dados e Algoritmos Expert

Prof. Nelio Alves

Programação dinâmica (parte 2)

1

Problemas Clássicos PD - Problema do Troco

https://devsuperior.com.br

Prof. Dr. Nelio Alves

Problema do Troco (Coin Change)

• Dado um valor V e um conjunto de N moedas, ache o número **mínimo** de moedas que representa V.

Exemplo:

Moedas disponíveis

Solução

37 = 25 + 10 + 1 + 1 4 moedas

Problema do Troco (Coin Change)

Como desenvolver um algoritmo para o problema?

Abordagem 1: Algoritmo Guloso

Solução: Escolha a maior moeda possível a cada passo.

Passo 1 37 - 25 = 12

Passo 3 2 - 1 = 1

Passo 4 1 - 1 = 0 37 = 25 + 10 + 1 + 14 moedas

1

3

Problema do Troco (Coin Change)

Como desenvolver um algoritmo para o problema?

Abordagem 1: Algoritmo Guloso

Solução: Escolha a maior moeda possível a cada passo.

Problema: não funciona para qualquer conjunto de moedas!

Caso 1

V = 8 C = {10, 7, 1}

> **Solução** 8 = 7 + 1 2 moedas

Caso 2

V = 14 C = {10, 7, 1}

Solução

14 = 10 + 1 + 1 + 1 +1 5 moedas

Errado!

Solução correta

14 = 7 + 72 moedas

5

Problema do Troco (Coin Change)

Como desenvolver um algoritmo para o problema?

Abordagem 2: Força Bruta

Solução: Testar todos os conjuntos de moedas possíveis.

Pode ser implementado recursivamente.

- **1. Formulação de Estado:** definimos a função f(V) como o mínimo de moedas para formar o valor v.
- 2. Casos Base: se V = 0, então f(0) = 0
- **3.** Transições entre Estados: em um conjunto C de moedas possíveis, consideramos cada c_i ∈ C, e a relação recursiva é:

$$f(V) = 1 + min\{ f(V - c_1), f(V - c_2), ..., f(V - c_n) \}, se(V - c_i) \ge 0$$

Ou seja, tentamos adicionar cada uma das moedas à solução se o resultado da subtração não for negativo, e adicionamos 1 para contar as moedas.

Problema do Troco (Coin Change)

- **1. Estado:** f(V) = mínimo de moedas para formar o valor V.
- 2. Casos Base: se V = 0, então f(0) = 0
- 3. Transições entre Estados: $f(y) = 1 + \min\{f(y) \in X \mid f(y) \in X \} = f(y) \in X$

```
f(V) = 1 + min\{ f(V - c_1), f(V - c_2), ..., f(V - c_n) \}, se (V - c_i) \ge 0
```

```
min_coins(v, c)
  if v == 0
    return 0

result = Infinity
  for coin in c
    if (v - coin) >= 0
       result = min(result, 1 + min_coins(v - coin, c))

return result
```

7

Melhorando a solução com memoização (Abordagem Top-Down)

```
memo = []
min_coins(v, c)
   if memo[v] not null
     return memo[v]

if v == 0
     return 0

result = Infinity
for coin in c
     if (v - coin) >= 0
        result = min(result, 1 + min_coins(v - coin, c))

memo[v] = result
return memo[v]
```

Complexidade: O(n * v)

Abordagem Bottom-Up

```
min_coins(v, c)
  memo = [Infinity] * (v + 1)

memo[0] = 0
  for i=1 to v
    for coin in c
        if (v - coin) >= 0
            memo[i] = min(memo[i], memo[v - coin] + 1)

return memo[v]
```

11

Simulação Abordagem Bottom-Up

```
v = 13
c = {11, 6, 5, 2, 1}
```

٧	0	1	2	3	4	5	6	7	8	9	10	11	12	13
mem	0	INF												

```
memo = [Infinity] * (v + 1)
memo[0] = 0
```

• Inicializamos as posições não conhecidas como INF e o caso base como 0.

```
v = 13
c = {11, 6, 5, 2, 1}
```

٧	0	1	2	3	4	5	6	7	8	9	10	11	12	13
memo	0	INF												

```
for i=1 to v
    for coin in c
        if (v - coin) >= 0
             memo[i] = min(memo[i], memo[v - coin] + 1)
```

 Percorrer cada posição v e tentar minimizar esse subproblema com base nas soluções anteriores

13

Simulação Abordagem Bottom-Up

```
v = 13
c = {11, 6, 5, 2, 1}
```


V	0	1	2	3	4	5	6	7	8	9	10	11	12	13
memo	0	1	INF											

```
for i=1 to v
    for coin in c
    if (v - coin) >= 0
        memo[i] = min(memo[i], memo[v - coin] + 1)
```



```
for i=1 to v
    for coin in c
    if (v - coin) >= 0
        memo[i] = min(memo[i], memo[v - coin] + 1)
```

15

Simulação Abordagem Bottom-Up

-1

v = 13 c = {11, 6, 5, 2, 1}


```
for i=1 to v
    for coin in c
    if (v - coin) >= 0
        memo[i] = min(memo[i], memo[v - coin] + 1)
```



```
for i=1 to v
    for coin in c
    if (v - coin) >= 0
        memo[i] = min(memo[i], memo[v - coin] + 1)
```

17

v = 13

Simulação Abordagem Bottom-Up

```
c = \{11, 6, 5, 2, 1\}
                          -2 -1
       0
                                                 7
                                                             9
                                                                  10
                                                                        11
                                                                              12
             1
                   2
                         3
                               4
                                           6
                                                       8
                                                                                    13
             1
                   1
                         2
                               2
                                          INF
                                                INF
                                                      INF
                                                            INF
                                                                  INF
                                                                        INF
                                                                              INF
                                                                                    INF
memo
```

```
for i=1 to v
    for coin in c
    if (v - coin) >= 0
        memo[i] = min(memo[i], memo[v - coin] + 1)
```



```
for i=1 to v
    for coin in c
    if (v - coin) >= 0
        memo[i] = min(memo[i], memo[v - coin] + 1)
```

19

Simulação Abordagem Bottom-Up

```
v = 13
c = {11, 6, 5, 2, 1}
```

V	0	1	2	3	4	5	6	7	8	9	10	11	12	13
memo	0	1	1	2	2	1	1	2	2	3	2	1	2	2

```
for i=1 to v
    for coin in c
    if (v - coin) >= 0
        memo[i] = min(memo[i], memo[v - coin] + 1)
```

Para cada valor v, passamos cada um dos n tipos de moeda, logo:

Complexidade: O(v * n)

https://devsuperior.com.br

Prof. Dr. Nelio Alves

21

Contando Caminhos Únicos em um Grid

• Dado um grid NxM, **de quantas formas** podemos chegar do canto superior esquerdo ao canto inferior direito, sendo que só podemos nos mover para baixo e para a direita?

N = 2, M = 3

• Dado um grid NxM, **de quantas formas** podemos chegar do canto superior esquerdo ao canto inferior direito, sendo que só podemos nos mover para baixo e para a direita?

$$N = 2, M = 3$$

Nesse grid, existem 3 caminhos!

23

Contando Caminhos Únicos em um Grid

- Identificando subproblemas
 - O Para saber de quantas maneiras podemos chegar a uma posição (i, j), devemos saber de quantas maneiras chegar a (i 1, j) e (i, j 1).

- Identificando casos base
 - O Para a primeira linha, só podemos nos mover para a direita
 - O Para a primeira coluna, só podemos nos mover para baixo
 - O Existe somente um caminho para células na primeira coluna e na primeira linha

27

Contando Caminhos Únicos em um Grid

- Identificando casos base
 - O Existe somente um caminho para células na primeira coluna e na primeira linha
 - O Logo, se i = 0 ou j = 0, a resposta é 1

- Juntando as pontas
 - O Sabemos que para i = 0 ou j = 0, a resposta é 1
 - O Sabemos que para saber a resposta de (i, j), precisamos de (i 1, j) e (i, j -1)

0

0

(•••	1	1	1	1	1	1
	1						
	1						
	1						
	1						
	1						\Rightarrow

29

Contando Caminhos Únicos em um Grid

- Juntando as pontas
 - o se i = 0 ou j = 0, retorne 1
 - o paths(i, j) = paths(i 1, j) + paths(i, j 1)

0

0

•••	1	1	1	1	1	1
1						
1						
1						
1						
1						\Rightarrow

paths(1, 1) = paths(0, 1) + paths(1, 0)

0

0

	•						
)		1	1	1	1	1	1
	1_	→ ²					
	1						
	1						
	1						
	1						\Rightarrow

31

Escrevendo solução recursiva

- Casos base
 - o se i = 0 ou j = 0, retorne 1
- Relação recursiva
 - o paths(i, j) = paths(i 1, j) + paths(i, j 1)


```
countPaths(i, j)
  if i == 0 || j == 0
    return 1

return countPaths(i - 1, j) + countPaths(i, j - 1)
```

Complexidade: O(2^(n+m))

Otimizando código com memoização (Abordagem Top-Down)

```
countPaths(i, j)
   if i == 0 || j == 0
        return 1

return countPaths(i - 1, j) + countPaths(i, j - 1)
Complexidade:
   O(2<sup>(n+m)</sup>)
```



```
memo = [array (n*m)]
    countPaths(i, j)
    if memo[i][j] not null
        return memo[i][j]
    if i == 0 || j == 0
        return 1

memo[i][j] = countPaths(i - 1, j) + countPaths(i, j - 1)
    return memo[i][j]
```

33

Otimizando código com tabulação (Abordagem Bottom-Up)

```
countPaths(n, m)
  grid = [array (n*m) inicializado com 0]
  for i=0 to n - 1
     grid[i][0] = 1

  for j=0 to m - 1
     grid[0][j] = 1

  for i=1 to n - 1
     for j=1 to m - 1
     grid[i][j] = grid[i - 1][j] + grid[i][j - 1]
```


N = 3, M = 5

```
grid = [array (nxm) inicializado com 0]
for i=0 to n - 1
    grid[i][0] = 1

for j=0 to m - 1
    grid[0][j] = 1
```

35

Otimizando código com tabulação (Abordagem Bottom-Up)


```
for i=1 to n - 1
    for j=1 to m - 1
        grid[i][j] = grid[i - 1][j] + grid[i][j - 1]
```


N = 3, M = 5

37

Otimizando código com tabulação (Abordagem Bottom-Up)

0 0	1	1	1	1
1	2	3	4 —	→ → 5
1				\rightarrow

N = 3, M = 5

39

Otimizando código com tabulação (Abordagem Bottom-Up)

0 0	1	1	1	1
1	2	3	4	5
1	3 -	→ 6		\Rightarrow

N = 3, M = 5

41

Otimizando código com tabulação (Abordagem Bottom-Up)

00	1	1	1	1
1	2	3	4	5
1	3	6	10 —	→ 15

N = 3, M = 5

paths(N, M) = 15

43

Otimizando código com tabulação (Abordagem Bottom-Up)

0 0	1	1	1	1
1	2	3	4	5
1	3	6	10 —	→ 15

N = 3, M = 5

Passamos por cada célula uma vez, logo:

Complexidade: O(N * M)

Conclusões

- Nem sempre precisamos começar da abordagem top-down para chegar à bottomup, pode ser que forma iterativa seja mais intuitiva em alguns casos
- Pode ser que precisemos de mais de uma variável para definir um estado
 - O DP em duas dimensões (2D), três dimensões (3D), etc...
 - Escolher o menor número de variáveis possível para representar estado
 - O Nesse caso, é intuitivo usar as coordenadas (x, y) como estado, mas em outros problemas temos de ser mais criativos

45

Problemas Clássicos PD - Soma Contígua Máxima

https://devsuperior.com.br

Prof. Dr. Nelio Alves

Soma Contígua Máxima de um Array

- Dado um array de inteiros não-nulos, ache o maior valor possível de ser obter com uma soma contígua de elementos de s.
 - O Soma contígua: soma de todos os elementos entre os índices i e j

Exemplo: soma contígua de 1 até 7

•
$$s(1, 7) = -10 + 2 + 3 + 6 + (-5) + 7 + (-20) = -17$$

47

Soma Contígua Máxima de um Array

• Nesse array, qual a maior soma contígua?

0	1	2	3	4	5	6	7	8
5	-10	2	3	6	-5	7	-20	10

Resposta:

$$s(2, 6) = 2 + 3 + 6 + (-5) + 7 = 13$$

Formulando um algoritmo

Abordagem 1: Força Bruta

- Testar todos os possíveis subarrays e verificar suas somas
- Para o índice i, calcular a soma de todos os subarrays que começam em V[i]

0	1	2	3	4	5	6	7	8	_
5	-10	2	3	6	-5	7	-20	10	

49

Formulando um algoritmo - Força Bruta

• Gerando todos os subarrays que começam em V[0]

5 -10 2 3 6 -	5 7 -20 10
---------------	------------

•••

5	-10	2	3	6	-5	7	-20	
5	-10	2	3	6	-5	7	-20	10

• Gerando todos os subarrays que começam em V[1]

...

-10	2	3	6	-5	7	-20		
-10	2	3	6	-5	7	-20	10	

Para cada um dos subarrays gerados, calcular a soma e manter melhor solução.

Formulando um algoritmo - Força Bruta

Problema com a solução: Ineficiente!

• Passamos muitas vezes pelas mesmas posições

Complexidade: O(n³)

Pergunta: Será que precisamos realmente percorrer de novo os subarrays para obter a soma? Como fazer passo 3 melhor?

51

Formulando um algoritmo

Abordagem 2: Força Bruta com Janela Deslizante (Sliding Window)

- Testar todos os possíveis subarrays, mantendo a soma de forma inteligente
 - O A cada novo começo, manter a soma acumulada

0	1	2	3	4	5	6	7	8	
5	-10	2	3	6	-5	7	-20	10	

Obs.: essa otimização pode ser feita também com a técnica de soma de prefixos

Gerando todos os subarrays que começam em V[1] -20 -10 2 soma -10 -8 7 -20 2 6 -5 -10 3 -17 -20 10 -7 2

Acumular soma a cada elemento novo adicionado ao subarray

-10

53

Formulando um algoritmo - Força Bruta com Janela Deslizante

• Melhor que a solução força bruta simples! Agora obtemos a soma de maneira eficiente.

```
maxSum = 0;
for(i = 0; i < n; i++){}
  currentSum = 0;
  for(j = i; j < n; j++){}
     currentSum += v[j];
     maxSum = max(maxSum, currentSum )
```

- 1. Escolher índice inicial O(n)
- 2. Gerar subarrays iniciando em i **O(n** - Mantemos a soma acumulada e testamos soma máxima - O(1)

Complexidade: O(n²)

Formulando um algoritmo

Abordagem 3: Algoritmo de Kadane

- Será que é possível achar a resposta do problema em apenas uma passada?
- Vamos voltar à abordagem força bruta, mas começaremos de trás para frente
- Para o i, começando em n 1, calcular a soma de todos os subarrays que terminam em V[i]

0	1	2	3	4	5	6	7	8
5	-10	2	3	6	-5	7	-20	10

55

Formulando um algoritmo - Algoritmo de Kadane

• Gerando todos os subarrays que terminam em V[8]

-20 10

	-10	2	3	6	-5	7	-20	10
5	-10	2	3	6	-5	7	-20	10

Gerando todos os subarrays que terminam em V[7]

-20

	-10	2	3	6	-5	7	-20
5	-10	2	3	6	-5	7	-20

Acumular soma a cada elemento novo adicionado ao subarray

Formulando um algoritmo - Algoritmo de Kadane • Se local_maximum[i] = soma do maior array que termina no índice i 3 -10 2 -5 -20 10 2 3 -5 7 -20 10 -10 6 6 3 3 3 6 2 3 5 3 6 11 2 -5 3 6 2 -10 $local_maximum[3] = 5$ soma $local_maximum[4] = 11$ soma Tudo o que está em cinza já foi analisado anteriormente, e concluímos que o maior array é o de soma 5. Logo, podemos continuar esse subarray, ou começar um novo.

Algoritmo de Kadane

- O problema se resume em, a cada índice i, achar o máximo entre dois números
 v[i] e (v[i] + local_maximum[i 1])
- Utilizamos o subproblema local_maximum[i 1] para determinar local_maximum[i]

```
local_maximum = []
local_maximum[0] = v[0];
maxSum = v[0];

for(i = 0; i < n; i++){
    local_maximum[i] = max(v[i], v[i] + local_maximum[i-1])
    if(local_maximum[i] > maxSum){
        maxSum = local_maximum[i];
    }
}
return maxSum
```

Complexidade Temporal: O(n)

Complexidade Espacial: O(n)

Algoritmo de Kadane

• Como o subproblema atual só depende do anterior, não precisamos do vetor memória o tempo inteiro

```
maxSum = v[0];
for(i = 0; i < n; i++){
    currentSum = max(v[i], v[i] + currentSum)
    if(currentSum > maxSum){
        maxSum = currentSum;
    }
}
```

Complexidade Temporal: O(n)

Complexidade Espacial: O(1)

61

Problemas Clássicos PD - Problema da Mochila 0/1

https://devsuperior.com.br

Prof. Dr. Nelio Alves

O Dilema do Caçador de Tesouros

• Um caçador de tesouros chega à sala do tesouro e se depara com um dilema. Diante dele, há N itens, cada um seu próprio peso e valor.

63

O Dilema do Caçador de Tesouros

• No entanto, ele se depara com uma limitação: sua mochila não pode carregar todos os itens, pois tem um peso máximo que pode suportar. Então, ele precisa decidir cuidadosamente que itens levar para maximizar o valor total que levará consigo. Que itens ele deve escolher?

O Problema da Mochila 0/1

• Essa situação é conhecida como o **problema da mochila**. O objetivo é selecionar itens da melhor maneira (lucro máximo), levando em consideração as restrições de peso.

65

O Problema da Mochila 0/1

- Abordagem gulosa: se escolhermos o item mais valioso até encher a mochila, conseguimos solução ótima?
 - O Para esse caso específico funciona, mas será que vale para todos?

Lucro máximo: \$23

O Problema da Mochila 0/1

- Abordagem gulosa: se escolhermos o item mais valioso até encher a mochila, conseguimos solução ótima?
 - O Para esse caso específico funciona, mas será que vale para todos? Não!
 - o Também não funciona escolhendo item mais leve primeiro...

67

O Problema da Mochila 0/1

• Abordagem Força Bruta: para garantir a corretude, podemos testar todas as combinações possíveis. Isto é, para cada item da mochila, podemos o escolher ou não. Com 3 itens, por exemplo, isso resulta na seguinte árvore de decisões.

Em cada nível d, existem 2^d escolhas. Se existem N itens, a complexidade de tempo é O(2ⁿ)

O Problema da Mochila 0/1

Definição de estados

- Apesar de lenta, a abordagem Força Bruta nos ajudará a **definir estados** para o problema.
 - Nem sempre será possível incluir um item → Limite de peso da mochila
 - O Assim um estado pode ser definido pela escolha de um **item i** e o **peso restante**

knapsack(i, w) = valor máximo considerando até o item i, com capacidade atual w

69

O Problema da Mochila 0/1

Exemplo: pesos = [1, 2, 3] valores = [6, 10, 12] w = 5

(0, 5)

Estado inicial, ainda não consideramos nenhum item, capacidade total.

O Problema da Mochila 0/1

- Problema: achar valor máximo dentre n itens, com capacidade w
- Definição de estado
 - o knapsack(n, w) = valor máximo considerando até o item n, com capacidade atual w na mochila

Subproblemas:

Incluir o item n - 1	Excluir o item n - 1
knapsack(n - 1, w - pesos[n - 1]) + valor[n - 1]	knapsack(n - 1, w)
Diminui a capacidade atual, aumenta o valor	Mantemos a capacidade atual e o valor

75

O Problema da Mochila 0/1

Se queremos maximizar o lucro, a resposta será a escolha que o maximiza, logo:

• Relação recursiva

knapsack(n, w) = max(knapsack(n - 1, w - pesos[n - 1]) + valor[n - 1], knapsack(n - 1, w))

Incluir o item n - 1

Excluir o item n - 1

O Problema da Mochila 0/1

Se queremos maximizar o lucro, a resposta será a escolha que o maximiza, logo:

Casos base

- O Se o capacidade é 0, não podemos incluir mais nada, logo o lucro é 0
- O Se não temos mais itens para considerar, o lucro é 0
- Se n == 0 ou w == 0, retorne 0
- Relação recursiva

```
knapsack(n, w) = max(knapsack(n - 1, w - pesos[n - 1]) + valor[n - 1], knapsack(n - 1, w))
```

77

O Problema da Mochila 0/1

```
knapsack(n, w)
  if n == 0 || w == 0
    return 0

// Se próximo item excede capacidade, pula ele
  if weights[n - 1] > w
    return knapsack(n - 1, w)

else
    return max(knapsack(n - 1, w - weights[n - 1]) + values[n - 1], knapsack(n - 1, w))
```

O Problema da Mochila 0/1

Problemas com a implementação atual: Recálculo de subproblemas repetidos. Ainda estamos fazendo solução força bruta!

Como otimizar? Memoização.

• Iremos utilizar uma matriz NxW para armazenar as soluções dos subproblemas definido por n (número de itens) e w (peso).

79

O Problema da Mochila 0/1 - Abordagem DP (Top-Down)

```
memo = [array (n*w)]
knapsack(n, w)
  if memo[n][w] not null
    return memo[n][w]

if n == 0 || w == 0
    return 0

// Se próximo item excede capacidade, pula ele
  if weights[n - 1] > w
    return knapsack(n - 1, w)

else
    memo[n][w] = max(knapsack(n - 1, w - weights[n - 1]) + values[n - 1], knapsack(n - 1, w))
    return memo[n][w]
```

Complexidade: O(N * W)

O Problema da Mochila 0/1 - Abordagem Bottom-Up

A partir da abordagem top-down, obtemos essa relação, que podemos usar para calcular cada item iterativamente.

$$memo[i][w] = max(memo[i - 1][w], values[i - 1] + memo[i - 1][w - weights[i - 1]])$$

81

O Problema da Mochila 0/1 -	Abordagem Bottom-Up
-----------------------------	---------------------

0 1 2 3 4 5 0 1 2

capacidade

$(v_1=6, w_1=1)$	
(v ₂ =10, w ₂ =2)

vazio

		capacidade								
		0	1	2	3	4	5			
vazio	0	0	0	0	0	0	0			
(v₁=6, w₁=1)	1									
(v ₂ =10, w ₂ =2)	2									
(v ₃ =12, w ₃ =3)	3									

			ca	pacida	de			_
		0	1	2	3	4	5	
vazio	0	0	0	0	0	0	0	
(v ₁ =6, w ₁ =1)	1	0						
(v ₂ =10, w ₂ =2)	2							
(v ₃ =12, w ₃ =3)	3							

			ca	pacida	de			
		0	1	2	3	4	5	
vazio	0	0	0	0	0	0	0	
(v ₁ =6, w ₁ =1)	1	0	6					
(v ₂ =10, w ₂ =2)	2							
(v ₃ =12, w ₃ =3)	3							

O Problema da Mochila 0/1 - Abordagem Bottom-Up capacidade vazio (v₁=6, w₁=1) $(v_2=10, w_2=2)$ (v₃=12, w₃=3)

		capacidade									
		0	1	2	3	4	5				
vazio	0	0	0	0	0	0	0				
(v ₁ =6, w ₁ =1)	1	0	6	6	6						
(v ₂ =10, w ₂ =2)	2										
(v ₃ =12, w ₃ =3)	3										

		capacidade								
		0	1	2	3	4	5			
vazio	0	0	0	0	0	0	0			
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6				
(v ₂ =10, w ₂ =2)	2									
(v ₃ =12, w ₃ =3)	3									

			ca	pacida	de		
		0	1	2	3	4	5
vazio	0	0	0	0	0	0	0
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6
(v ₂ =10, w ₂ =2)	2						
(v ₃ =12, w ₃ =3)	3						

			ca	pacida	de		
		0	1	2	3	4	5
vazio	0	0	0	0	0	0	0
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6
(v ₂ =10, w ₂ =2)	2	0					
(v ₃ =12, w ₃ =3)	3						

			ca	pacida	de		
		0	1	2	3	4	5
vazio	0	0	0	0	0	0	0
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6
(v ₂ =10, w ₂ =2)	2	0	6				
(v ₃ =12, w ₃ =3)	3						

			ca	pacida	de		
		0	1	2	3	4	5
vazio	0	0	0	0	0	0	0
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6
(v ₂ =10, w ₂ =2)	2	0	6	10			
(v ₃ =12, w ₃ =3)	3						

		capacidade									
		0	1	2	3	4	5				
vazio	0	0	0	0	0	0	0				
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6				
(v ₂ =10, w ₂ =2)	2	0	6	10	16						
(v ₃ =12, w ₃ =3)	3										

	capacidade								
		0	1	2	3	4	5		
vazio	0	0	0	0	0	0	0		
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6		
(v ₂ =10, w ₂ =2)	2	0	6	10	16	16			
(v ₃ =12, w ₃ =3)	3								

		capacidade									
0 0		1	2	3	4	5					
0	0	0	0	0	0	0					
1	0	6	6	6	6	6					
2	0	6	10	16	16	16					
3											
	2	1 0 2 0	1 0 6 2 0 6	1 0 6 6 2 0 6 10	1 0 6 6 6 2 0 6 10 16	1 0 6 6 6 6 2 0 6 10 16 16					

		capacidade									
		0	1	2	3	4	5				
vazio	0	0	0	0	0	0	0				
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6				
(v ₂ =10, w ₂ =2)	2	0	6	10	16	16	16				
(v ₃ =12, w ₃ =3)	3	0									

O Problema d	a Moch	ila 0/1 -	Aborda	agem Bo	ottom-U	lp				
		capacidade								
		0	1	2	3	4	5			
vazio	0	0	0	0	0	0	0			
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6			
(v ₂ =10, w ₂ =2)	2	0	6	10	16	16	16			
(v ₃ =12, w ₃ =3)	3	0	6							
•										

	capacidade									
		0	1	2	3	4	5			
vazio	0	0	0	0	0	0	0			
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6			
(v ₂ =10, w ₂ =2)	2	0	6	10	16	16	16			
(v ₃ =12, w ₃ =3)	3	0	6	10						

		capacidade									
		0	1	2	3	4	5				
vazio	0	0	0	0	0	0	0				
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6				
(v ₂ =10, w ₂ =2)	2	0 1	6	10	16	16	16				
(v ₃ =12, w ₃ =3)	3	0	6	10	16						

	capacidade									
		0	1	2	3	4	5			
vazio	0	0	0	0	0	0	0			
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6			
(v ₂ =10, w ₂ =2)	2	0	6	10	16	16	16			
(v ₃ =12, w ₃ =3)	3	0	6	10	16	18				

		capacidade									
		0	1	2	3	4	5				
vazio	0	0	0	0	0	0	0				
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6				
(v ₂ =10, w ₂ =2)	2	0	6	10	16	16	16				
(v ₃ =12, w ₃ =3)	3	0	6	10	16	18	22				

O Problema d	a Moch	ila 0/1 -	Aborda	agem Bo	ottom-U	lp	
			ca	pacida	de		
		0	1	2	3	4	5
vazio	0	0	0	0	0	0	0
(v ₁ =6, w ₁ =1)	1	0	6	6	6	6	6
(v ₂ =10, w ₂ =2)	2	0	6	10	16	16	16
(v ₃ =12, w ₃ =3)	3	0	6	10	16	18	22
			Lucr	o máximo	o: 22		

O Problema da Mochila 0/1 - Abordagem DP (Bottom-Up)

Complexidade: O(N * W)