Equilibrio Chimico

- Fenomenologia dell'equilibrio chimico (variazione composizione in una reazione)
- Legge dell'azione di massa: quoziente di reazione Q e costante di equilibrio K di una reazione
- relazioni tra $\triangle G$, $\triangle G^0$ e Q, K
- Principio di Le Chatelier
- Effetto di P, V e T sulla composizione all'equilibrio

Equilibrio chimico: A \(\sigma \) B

$$H_2O(1) \leftrightarrows H_2O(g)$$

 $3H_2(g) + N_2(g) \leftrightarrows 2NH_3(g)$

- · Le reazioni, in condizioni opportune, raggiungono l'equilibrio: una composizione di reagenti e prodotti che resta costante
- Non si ha "mai" trasformazione "completa" reagenti ⇒ prodotti
- All'equilibrio: velocità con cui reagenti si trasformano in prodotti = velocità con cui i prodotti si trasformano in reagenti (equilibrio dinamico)

p_{x} Pressione di Vapore P° $P(gas) = p_{etanolo}^{o} = tensione di vapore$ $P_{\rm gas}$ = Equilibrium vápor pressure $CH_3CH_2OH_{(1)} \Rightarrow CH_3CH_2OH_{(9)}$ Etanolo liquido

- · La pressione del gas X in equilibrio con il liquido X ad una data temperatura T, raggiunge il valore della pressione o tensione di vapore di X, ed è indicata con p°_{x} .
- · in presenza di altri gas, p_x (= P parziale) $\Rightarrow p_x^o < P_{tot}$

L'equilibrio chimico è dinamico

$$H_2O_{(g)} + CO_{(g)} \Rightarrow H_{2(g)} + CO_{2(g)}$$

Anche raggiunto l'equilibrio, la trasformazione reagenti = prodotti continua

L'equilibrio chimico è dinamico

 $3H_2(g) + N_2(g) + 2NH_3(g)$

Aggiungiamo D_2 , N_2 e ND_3 nelle giuste proporzioni, ad un reattore in cui N_2 , H_2 , e NH_3 sono in equilibrio dinamico.

Anche se si è già all'equilibrio, si formano una serie di specie nuove: HD, NH₂D, NHD₂, ND₃.

La reazione continua anche dopo che l'equilibrio è stato raggiunto, senza alterare le proporzioni tra reagenti e prodotti.

Legge azione di massa (Guldberg e Waage 1864)

Per la generica reazione: aA + bB = CC + dD

indipendentemente dalle condizioni iniziali, all'equilibrio, le concentrazioni di reagenti e prodotti soddisfano la relazione:

$$\frac{\left[C\right]_{(eq)}^{c}\left[D\right]_{(eq)}^{d}}{\left[A\right]_{(eq)}^{a}\left[B\right]_{(eq)}^{b}} = K_{C}$$

$$\text{nel caso di gas, possiamo scrivere:} \quad \frac{\left(p_{C(eq)}\right)^c \left(p_{D(eq)}\right)^d}{\left(p_{A(eq)}\right)^a \left(p_{B(eq)}\right)^b} = K_P$$

infatti, assumendo i gas ideali, si ha:

$$p_X = \frac{n_X}{V}RT = [X]RT \implies K_P = K_C (RT)^{c+d-a-b} = K_C (RT)^{\Delta n}$$

 K_c (e K_p) dipendono solo da T.

$3H_2(g) + N_2(g) + 2NH_3(g)$

$N_2O_4(g) \Rightarrow 2 NO_2(g)$

Sperimentalmente, all'equilibrio:

la composizione di reagenti e prodotti non varia nel tempo

e

le pressioni parziali soddisfano la relazione:

$$K_P = \frac{(p_{NO_2(eq)})^2}{(p_{N_2O_4(eq)})} =$$

costante (per T =cost.)

G di gas a una P generica (condizioni non standard)? Dipendenza di G dalla pressione (gas ideale)

Abbiamo visto che per un gas ideale, che si espande a T = costante, E e H sono costanti e :

$$\begin{aligned} w_{rev} &= -\int\limits_{V_1}^{V_2} P dV = -nRT \int\limits_{V_1}^{V_2} \frac{1}{V} dV \\ q_{rev} &= -w_{rev} = nRT \ln \frac{V_2}{V_1} \\ &= -nRT \ln \frac{p_2}{p_1} \quad \textit{essendo} \quad \frac{V_2}{V_1} = \frac{p_1}{p_2} \\ \textit{inoltre, a T = cost.:} \quad \Delta S = \frac{q_{rev}}{T} \end{aligned}$$

 $\Delta G = \Delta H - T\Delta S$ e, per un gas ideale H = E + PV = cost a T = cost. si ha $\Delta G = -T\Delta S$. Quindi portando n moli di un gas ideale, alla temperatura T, dalla pressione parziale p_1 alla p_2 : $\Delta G = -T\Delta S = nRT \ln \frac{p_2}{p_1}$ Se porto a moli di un gas ideale A, alla temperatura T, da p_A° (= 1) dello stato standard alla pressione arbitraria p_A :

$$\Delta G_A = a G_A - a G_A^{\circ} = aRT \ln \frac{p_A}{p_A^{\circ}} \quad e \quad aG_A = a G_A^{\circ} + aRT \ln \frac{p_A}{p_A^{\circ}}$$

con G_A e G_A ° rispettivamente G_{molari} di A alla pressione parziale p_A e alla pressione parziale standard p_A ° a quella T.

Per la generica reazione : aA(g) + bB(g) + cC(g) + dD(g)

$$\Delta G_{reaz} = c G_C + d G_D - a G_A - b G_B = c G_C^{\circ} + cRT \ln \frac{p_C}{p_C^{\circ}} + d G_D^{\circ} + dRT \ln \frac{p_D}{p_D^{\circ}} - a G_A^{\circ} - aRT \ln \frac{p_A}{p_A^{\circ}} - b G_B^{\circ} - bRT \ln \frac{p_B}{p_B^{\circ}} =$$

$$\Delta G_{reaz} = c G_C^{\circ} + d G_D^{\circ} - a G_A^{\circ} - b G_B^{\circ} + RT \ln \frac{\left(\frac{p_C}{p_C^{\circ}}\right)^c \left(\frac{p_D}{p_D^{\circ}}\right)^d}{\left(\frac{p_A}{p_A^{\circ}}\right)^a \left(\frac{p_B}{p_B^{\circ}}\right)^b}$$

$$\text{l'argomento del ln in (1) è adimensionale!} \tag{1}$$

L'equazione (1) può essere semplificata perché:

$$\Delta G^{\circ}_{reaz} = c G_{C}^{\circ} + d G_{D}^{\circ} - a G_{A}^{\circ} - b G_{B}^{\circ} \quad e \quad p_{A}^{\circ} = p_{B}^{\circ} = p_{C}^{\circ} = p_{D}^{\circ} = 1.0 \, atm$$

$$e \text{ quindi: } \Delta G_{reaz} = \Delta G_{reaz}^{\circ} + RT \ln \frac{(p_{C})^{c} (p_{D})^{d}}{(p_{A})^{a} (p_{B})^{b}} \quad (2)$$

L'espressione :
$$\frac{(p_C)^c(p_D)^d}{(p_A)^a(p_B)^b} = Q_P = \text{quoziente di reazione}$$

 Q_P può avere qualsiasi valore compreso tra $0 e \infty$

All'equilibrio:
$$\Delta G_{reaz} = 0 = \Delta G_{reaz}^{\circ} + RT \ln \frac{(p_{C(eq)})^{c}(p_{D(eq)})^{d}}{(p_{A(eq)})^{a}(p_{B(eq)})^{b}}$$

$$= \frac{(p_{C(eq)})^{c}(p_{D(eq)})^{d}}{(p_{A(eq)})^{a}(p_{B(eq)})^{b}} = \text{costante di equilibrio}$$

$$= \text{da cui: } \Delta G_{reaz}^{\circ} = -RT \ln \frac{(p_{C(eq)})^{c}(p_{D(eq)})^{d}}{(p_{A(eq)})^{a}(p_{B(eq)})^{b}} = -RT \ln K_{p}$$
(3)

 ΔG°_{reaz} e K_P , per ogni reazione ad una data T, hanno un ben preciso valore costante.

In generale possiamo scrivere:

$$\Delta G_{reaz} = \Delta G_{reaz}^{\circ} + RT \ln \frac{(p_C)^c (p_D)^d}{(p_A)^a (p_B)^b} = -RT \ln K_P + RT \ln Q_P$$

$$\Rightarrow \Delta G_{reaz} = RT \ln \frac{Q_P}{K_P}$$
(4)

Confronto tra Q e K

Criterio di spontaneità equivalente a ΔG

$$Q/K > 1$$
 $Q>K$ $\Delta G > 0$

$$Q/K < 1$$
 $Q < K$ $\Delta G < 0$

$$Q/K = 1$$
 $Q=K$ $\Delta G = 0$

$$\Delta G \rightarrow 0 \Leftrightarrow Q \rightarrow K$$

Il minimo di G per una reazione non si ha (quasi) mai nel caso dei prodotti (o dei reagenti) puri.

Il minimo di G in genere si ha per certi valori relativi di concentrazioni o pressioni parziali di miscele all'equilibrio di reagenti e prodotti. Questo perché G di una miscela dipende anche dalle $p_{\rm x}$ (o dalle [X])

G e la Condizione di Equilibrio

- · G tende a un valore minimo
- · Il ΔG_r (o dG_r) è la pendenza della curva di G all'avanzare della reazione
- L'equilibrio si raggiunge quando $\Delta G_r = 0$

$$\Delta G \rightarrow 0$$

$$2H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$

Combustione, diminuiscono moli gas

$$\Delta H^0 < 0$$
 e $\Delta S^0 < 0$
 $\Delta G^0 = \Delta H^0 - T\Delta S^0$

$$2H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$

 $\Delta H^0 < 0 e \Delta S^0 < 0$

$$K = e^{-\frac{\Delta G^{\circ}}{RT}}$$

$$\Delta G^{0}$$
<0 K>1
 ΔG^{0} =0 K=1
 ΔG^{0} >0 K<1

K>1

K>1

dalla $\Delta G_{reaz}^{\circ} = -RT \ln K_p$ ho che, per una generica reazione, se $\Delta G_{reaz}^{\circ} < 0 \Rightarrow K > 1 \Rightarrow$ all'equilibrio prevarranno i prodotti se $\Delta G_{reaz}^{\circ} > 0 \Rightarrow K < 1 \Rightarrow$ all'equilibrio prevarranno i reagenti Quando si ha : $\Delta G_{reaz} = \Delta G_{reaz}^{\circ}$? L'abbiamo già visto: se ho $p_A = p_B = p_C = p_D = 1.0 \, atm$ nella miscela iniziale. Reagenti e prodotti sono quindi nello stato standard:

$$\Delta G_{reaz} = \Delta G_{reaz}^{\circ} + RT \ln \frac{(p_C)^c (p_D)^d}{(p_A)^a (p_B)^b} \qquad \frac{(p_C)^c (p_D)^d}{(p_A)^a (p_B)^b} = Q_P = 1$$

Se, per una reazione a una certa T, $\Delta G_{\text{reaz}}^{\circ} = 0$ \Rightarrow $K_p = 1$ e $p_{A(eq)} = p_{B(eq)} = p_{C(eq)} = p_{D(eq)} = 1.0 atm$ Quindi, se $\Delta G_{\text{reaz}}^{\circ} = 0$, reagenti e prodotti possono

essere assunti, all'equilibrio, nello stato standard

Reagenti

$$K = 10^{-3}$$

$$K = 1$$

$$K = 10^3$$

si è all'equilibrio.

$$Q = 10^{-3}$$
 $Q = 1$ non si è all'equilibrio

$$Q = 10^3$$

 La composizione di un sistema all'equilibrio permette la misura della costante di equilibrio a T = cost.

A 298 °K si hanno le seguenti pressioni parziali per i gas H₂, N₂ e NH₃ :

$$p_{N_2} = 0,080 \text{ atm}$$
 $p_{H_2} = 0,050 \text{ atm}$ $p_{NH_3} = 2,60 \text{ atm}$

la relativa K_p per la reazione : $N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}$

è:
$$K_p = \frac{p_{NH_3}^2}{p_{N_2} \cdot p_{H_2}^3} = \frac{(2,60)^2}{(0,080) \cdot (0,050)^3} = 6,8 \times 10^5 \text{ atm}^{-2}$$

La costante di equilibrio di una reazione è calcolabile dal ∆G°.

A 298 °K il ΔG_f° di NH₃ è -16,67 kJ/mol, determinare la K

$$K = e^{-(\Delta G^{\circ}/RT)} = 6.8 \times 10^{5}$$

$$\Delta G^{\circ}_{reaz} = 2 \Delta G^{\circ}_{f}(NH_{3})$$
R= 8.3145 J mol⁻¹ K⁻¹ con questi valori viene K = 6.9 × 10⁵

Costante di Equilibrio Termodinamica

Affinché valga la relazione:
$$K=e^{-\frac{1}{RT}}$$

- · K deve essere la K di equilibrio termodinamica
- K deve essere un numero puro, adimensionale $(e p_X \hat{e} in realtà p_X/p^{\circ} con p^{\circ}=1 bar)$

Per K bisogna rispettare le convenzioni relative agli stati di riferimento (standard) usate per i ΔG °.

Per i gas la K termodinamica è la K_p e non la K_c , perché lo stato standard dei gas è definito per le pressioni parziali p $^{\circ}$ = 1 bar (e non a [X] = 1 mol/L]

Equilibri in soluzione acquosa: K_c e Q_c

Per reazioni in soluzione acquosa, stato di riferimento definito estrapolando il comportamento di soluzioni diluite⁽¹⁾ \Rightarrow a concentrazioni [X] = 1 M = 1 mol L⁻¹

Per la generica reazione : $aA_{(aq)} + bB_{(aq)} + cC_{(aq)} + dD_{(aq)}$ in soluzione acquosa, si dimostra che, in analogia a quanto visto per la K_p :

$$\begin{split} \Delta G_{reaz} &= c\,G_C + d\,G_D - a\,G_A - b\,G_B \quad G_X = G_X^{\,\,\circ} + RT\ln\frac{\lfloor X\,\rfloor}{\lfloor X\,\rfloor_0} \\ \Delta G_{reaz} &= c\,G_C^{\,\,\circ} + cRT\ln\frac{\lfloor C\,\rfloor}{\lfloor C\,\rfloor_0} + d\,G_D^{\,\,\circ} + dRT\ln\frac{\lfloor D\,\rfloor}{\lfloor D\,\rfloor_0} - \\ &- a\,G_A^{\,\,\circ} - aRT\ln\frac{\lfloor A\,\rfloor}{\lfloor A\,\rfloor_0} - b\,G_B^{\,\,\circ} - bRT\ln\frac{\lfloor B\,\rfloor}{\lfloor B\,\rfloor_0} \\ \Delta G_{reaz} &= c\,G_C^{\,\,\circ} + d\,G_D^{\,\,\circ} - a\,G_A^{\,\,\circ} - b\,G_B^{\,\,\circ} + RT\ln\frac{\left\lfloor C\,\rfloor}{\lfloor C\,\rfloor_0} \cdot \left(\frac{\lfloor D\,\rfloor}{\lfloor D\,\rfloor_0}\right)^d - \\ &\frac{\left\lfloor L\,\rfloor}{\lfloor A\,\rfloor_0} \cdot \left(\frac{\lfloor A\,\rfloor}{\lfloor A\,\rfloor_0}\right)^d \cdot \left(\frac{\lfloor A\,\rfloor_0}{\lfloor A\,\rfloor_0}\right)^d \cdot \left(\frac{\lfloor$$

Per reazioni in soluzione acquosa, si ha quindi, semplificando:

$$\Delta G_{reaz} = \Delta G_{reaz} \circ + RT \ln \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}} = \Delta G_{reaz} \circ + RT \ln Q_{c} = RT \ln \frac{Q_{c}}{K_{c}}$$

essendo, in analogia a quanto visto per la $K_{p:}$

$$\Delta G_{reaz}^{\circ} = -RT \ln K_c$$

K termodinamica: caso generale

Generalizzando, definiamo concetto di attività a : a è il contributo efficace di reagenti e prodotti all'equilibrio, e quindi a K e Q. Vale per gas, soluti, liquidi e solidi.

Ad es., per la reazione:

$$N_2(g) + 3H_2(g) + 2NH_3(g)$$

■ Il Q di reazione e la K di equilibrio sono

$$Q = \frac{p_{NH_3}^2}{p_{N_2}p_{H_2}^3} = \frac{a_{NH_3}^2}{a_{N_2}a_{H_2}^3} \qquad K = \frac{\left(a_{NH_3}\right)_{eq}^2}{\left(a_{N_2}\right)_{eq}^2\left(a_{H_2}\right)_{eq}^3}$$

Attività

Per gas:

attività \approx pressione parziale (che assumeremo sempre valida; in realtà a P molto elevate sarebbe $a_x < p_x$)

Per soluti (in soluzione acquosa):

• attività \approx concentrazione (mol/L) (che assumeremo sempre valida; in realtà ad alte concentrazioni ho $a_x < [X]$)

Gas e soluti, nei loro stati di riferimento, e pure liquidi e solidi puri, hanno attività a=1

Tutte le considerazioni fatte su Q e K, e le predizioni per equilibri di gas ideali, possono essere estese al caso generale.

In generale:

$$\Delta G_{reaz} = \Delta G_{reaz} \circ + RT \ln \frac{a_C^c a_D^d}{a_A^a a_B^b} = \Delta G_{reaz} \circ + RT \ln Q = RT \ln \frac{Q}{K}$$

Dove Q e K sono espresse in funzione delle attività:

 $a_X = p_X$ per gas,

 $a_X = [X]$ per soluto in soluz. acquosa,

 $a_X = 1$ per X solido puro o liquido puro.

Equilibri eterogenei

· Consideriamo la reazione:

$$CaCO_{3(s)} \leftrightarrows CaO_{(s)} + CO_{2(g)}$$

$$K = \frac{a_{CaO(eq)}a_{CO_2(eq)}}{a_{CaCO_3(eq)}}$$

· Solidi puri, se presenti, hanno attività unitaria.

$$K = \frac{1}{1} \frac{a_{CO_2(eq)}}{1} \approx p_{CO_2(eq)} / p^0 = p_{CO_2(eq)}$$

Dove p° è la P nello stato standard per i gas, quindi $p^{\circ} = 1$ bar

Equilibri eterogenei

· Consideriamo l'equilibrio

$$H_2O_{(1)} \leftrightarrows H_2O_{(g)}$$
 $K = \frac{a_{H_2O(g)}}{a_{H_2O(l)}}$

· Liquidi puri, se presenti, hanno attività unitaria

$$K = K_P = \frac{a_{H_2O}}{1} \approx \frac{p^{\circ}_{H_2O}}{1} = p^{\circ}_{H_2O}$$

Dove $p^{\circ}(H_2O)$ è la tensione di vapore di H_2O alla T in questione

Equilibri eterogenei

Consideriamo la reazione:

$$Fe_{(s)}+2H_3O^+_{(aq)} + Fe^{2+}_{(aq)}+H_{2(g)}+2H_2O_{(l)}$$

$$K = \frac{a_{Fe^{2+}(eq)} \cdot a_{H_2(eq)} \cdot a^2_{H_2O(l,eq)}}{a_{Fe(s,eq)} \cdot a^2_{H_3O^+(eq)}}$$

- Solidi e liquidi puri, se presenti, hanno a = 1, indipendentemente dalla quantità
- Per gas $a_x \approx p_x$, per soluti $a_x \approx [X]$,

$$K = \frac{[Fe^{2+}]p_{H_2(eq)} \cdot a^2_{H_2O(l)}}{a_{Fe(s)} \cdot [H_3O^+]^2} = \frac{[Fe^{2+}]p_{H_2(eq)} \cdot 1}{1 \cdot [H_3O^+]^2}$$

Esercizio

A 25°C per la reazione $SO_{2(g)} + NO_{2(g)} \leftrightarrows SO_{3(g)} + NO_{(g)}$ la costante di equilibrio $K_p = 0.13$. Calcolare il ΔG della reazione a 25°C per p (NO₂) = p (SO₂)= 1 atm e p (NO) = p (SO₃) = 0.10 atm. Dire se in queste condizioni la reazione procede spontaneamente verso destra o verso sinistra e determinare ΔG ° e ΔG di reazione.

$$SO_{2(g)} + NO_{2(g)} \leftrightarrows SO_{3(g)} + NO_{(g)}$$

 $\Delta G = \Delta G^{\circ} + RT \ln Q$ tutti gas: bisogna usare $Q_{\rho} e K_{\rho}$ $Q = p(SO_3)p(NO) / p(SO_2)p(NO_2) = 0.010$ K = Q(equilibrio) Q < K e quindi la reazione evolve verso dx.; ΔG sarà < 0

 $\Delta G^{\circ} = -RT \ln K = -8.31 \text{ J/mol K} \times 298 \text{ K} \times \ln (0.13) = 5.05 \text{ kJ mol.}$ $\Delta G = \Delta G^{\circ} + RT \ln Q = 5.05 \text{ kJ/mol} + 8.31 \text{ J/mol K} \times 298 \text{ K} \times \ln (0.01) = -6.35 \text{ kJ / mol.}$

Esercizio

• Inizialmente abbiamo 0.060 mol di SO_3 in 1.0 L a 1000K; all'equilibrio (a V = cost) troviamo che il 36.7% della SO_3 inziale e' dissociata secondo la reazione:

$$25O_3(g) \stackrel{r}{\to} 25O_2(g) + O_2(g)$$

• Calcolare la $K_c \in K_p$

Concentrazioni: $[SO_3]$ $[SO_2]$ $[O_2]$ Iniziali: 0.060 0 0 Equilibrio: 0.060 - 2x 2x x

Calcolo di 2x:

 $36.7\% \text{ di } SO_3 = 2x = 0.060 \text{ mol/L} \times 36.7/100 = 0.022 \text{ M}$

$$K_c = \frac{[SO_2]_{(eq)}^2 [O_2]_{(eq)}}{[SO_3]_{(eq)}^2} = \frac{[0.022]^2 [0.011]}{[0.038]^2} = 3.7 \times 10^{-3} \text{ M}$$

$$K_P = K_C (RT)^{2+1-2} = K_C (RT) =$$

= 0.082 L atm mol⁻¹ K⁻¹ 1000 K 3.7 10⁻³ mol L⁻¹ = 0.30 atm

Perturbazioni dell'equilibrio

- · Supponiamo di avere un sistema all'equilibrio
- · "Disturbiamo" l'equilibrio:
 - Aggiungendo o sottraendo reagenti e/o prodotti
 - Variando le dimensioni del contenitore (V)
 - Variando P totale
 - Variando T

· Come reagisce il sistema?

Principio di Le Chatelier

Henri Le Chatelier (1850 - 1936)

Un sistema chimico all'equilibrio reagisce a perturbazioni trasformandosi in modo da minimizzare l'effetto delle perturbazioni stesse

Equilibrio dinamico

Se perturbato, un sistema chimico all'equilibrio, risponde in modo da minimizzare l'effetto della perturbazione

Principio di Le Chatelier

$$aA + bB = cC + dD$$

Variazione di componenti che compaiono in Q:

- · Se aggiungo reagenti, l'equilibrio si sposta a dx
- · Se aggiungo prodotti, l'equilibrio si sposta a sin
- · Se sottraggo reagenti, l'equilibrio si sposta a sin
- · Se sottraggo prodotti, l'equilibrio si sposta a dx

K non varia, dipende solo da T!!

$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$$

Solo quantità componenti variabili in Q influenzano equilibrio. Per altri conta solo presenza/assenza.

Principio di Le Chatelier

$$aA + bB = cC + dD$$

Se un componente ha attività costante = 1 (non compare nella K): attenzione!

CaCO_{3(s)}
$$\Rightarrow$$
 CaO_(s) + CO_{2(g)} $K = \frac{1 - a_{CO_2(eq)}}{1} \approx p_{CO_2(eq)} / p^0 = p_{CO_2(eq)}$

- Se aggiungo il reagente $CaCO_{3(s)}$ non succede nulla!
- Se aggiungo il prodotto CaO_(s) non succede nulla!
- Se aggiungo il prodotto $CO_{2(q)}$ l'equilibrio si sposta a sin
- Se sottraggo prodotto $CO_{2(q)}$ l'equilibrio si sposta a dx

l'attività di solidi (e liquidi) puri non varia, a condizione che restino presenti! ⇒ La quantità di solidi e liquidi puri presenti non influenza gli equilibri!

Compressione $Cl_2(g) = 2Cl(g)$

Si comprime il sistema all'equilibrio: $p_{C|2}$ e $p_{C|}$ aumentano

 T,P'_{tot},V'

Cla

Cl Cl_2 T, P_{tot}, V

La reazione si sposta nella direzione in cui diminuisce la P, cioè in cui diminuiscono n_{tot} gas

$$K = \frac{p_{Cl(eq)}^2}{p_{Cl_2(eq)}} = \frac{p_{Cl(eq)}'^2}{p_{Cl_2(eq)}'}$$

$$K = \frac{p_{Cl(eq)}^{2}}{p_{Cl_{2}(eq)}} = \frac{\left(P_{tot}x_{Cl(eq)}\right)^{2}}{\left(P_{tot}x_{Cl_{2}(eq)}\right)} = \frac{P_{tot}x_{Cl(eq)}^{2}}{x_{Cl_{2}(eq)}}$$

Se aumenta P_{tot} e K_p deve restare invariata \Rightarrow diminuisce x(Cl) ed aumenta $x(Cl_2)$. Accordo con principio Le Chatelier!

Aggiunta di Gas Inerte

$$Cl_2(g) \leftrightarrows 2Cl(g)$$

$$K = \frac{p_{Cl(eq)}^2}{p_{Cl_2(eq)}} = \frac{p_{Cl(eq)}'^2}{p_{Cl_2(eq)}'}$$

• Se P_{tot} viene aumentata con del gas inerte, ad es. Ne, mantenendo V cost., x_{Cl2} e x_{Cl} diminuiscono ma p_{Cl2} e p_{Cl} sono invariate, e l'equilibrio non si sposta.

$$p_{Cl} = p'_{Cl}$$

$$p_{Cl_2} = p'_{Cl_2}$$

$$K = \frac{p_{Cl_2(eq)}^2}{p_{Cl_2(eq)}} = \frac{(P_{tot} x_{Cl_2(eq)})^2}{(P_{tot} x_{Cl_2(eq)})^2}$$

Variazione di T o scambio di calore

$$\Delta H^0 < 0$$

 $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g) + calore Q$

Aumentando T, l'equilibrio si sposta nella direzione endotermica (che assorbe Q)

Diminuendo T, l'equilibrio si sposta nella direzione esotermica (che sviluppa Q)

Con T varia K!

Equazione di van't Hoff

Dipendenza della K di equilibrio da T

- Parto dalla: $\Delta G^0 = -RT \ln K$ (a T = cost)
- Esplicito che $\Delta G^{0}(T) = \Delta H^{0} T\Delta S^{0}$

$$K = e^{-\frac{\Delta G^{\circ}}{RT}} = e^{\left(-\frac{\Delta H^{\circ} + \Delta S^{\circ}}{RT}\right)}$$

$$\ln K = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$
 da cui:

$$\frac{d(\ln K)}{dT} = \frac{\Delta H^{\circ}}{RT^{2}} > 0: \ln Ke K \text{ crescono se } \Delta H^{\circ} > 0$$

$$< 0: \ln Ke K \text{ decrescono se } \Delta H^{\circ} < 0$$

Equazione di van't Hoff

• L'equazione di van't Hoff (forma integrata) \Rightarrow determinazione delle K di equilibrio a diverse T.

$$\ln K_X = -\frac{\Delta H^{\circ}_{reaz}}{RT_X} + \frac{\Delta S^{\circ}_{reaz}}{R}$$

· Se si assume che ΔH° e ΔS° di reazione non varino con T, ricaviamo:

$$\ln \frac{K_2}{K_1} = \ln K_2 - \ln K_1 = -\frac{\Delta H_{reaz}^0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Esempio

$$25O_3(g) \leftrightarrows 25O_2(g) + O_2(g)$$

 $-+ SO_3(g)$ aumenta $pSO_3(g)$

l'equilibrio si sposta a dx

$$K = \frac{p_{SO_2(eq)}^2 p_{O_2(eq)}}{p_{SO_3(eq)}^2}$$

 \blacksquare + $SO_2(g)$ o $O_2(g)$ aumenta $pSO_2(g)$ o $pO_2(g)$

l'equilibrio si sposta a sinistra

 $-5O_3(g)$ diminuisce $pSO_3(g)$

l'equilibrio si sposta a sinistra

■- $SO_2(g)$ o $O_2(g)$ diminuisce $pSO_2(g)$ o $pO_2(g)$ l'equilibrio si sposta a dx

K non varia, dipende solo da T !!!!

Esempio

$$25O_3(g) \pm 25O_2(g) + O_2(g)$$

- Aumento P_{tot} (T costante) (riduco il V_{tot})
- l'equil. si sposta a sin. riducendo le moli e P_{tot}
- Diminuisco P_{tot} (T costante) (aumento il V_{tot})

l'equil. si sposta a dx aumentando le moli e P_{tot}

K non varia, dipende solo da T!!!!

$$K = \frac{p_{SO_2(eq)}^2 p_{O_2(eq)}}{p_{SO_3(eq)}^2} = \frac{P_{tot} x_{SO_2(eq)}^2 x_{O_2(eq)}}{x_{SO_3(eq)}^2}$$

Esempio

$$25O_3(g) + Q \leftrightarrows 25O_2(g) + O_2(g)$$

 $\Delta H^0 > 0$ endotermica

Aumento T, fornisco Q (reagente)

l'equil. si sposta verso destra per assorbirlo

- ⇒ K aumenta!!
- Diminuisco T, sottraggo Q (reagente)

l'equil. si sposta verso sinistra per compensare

⇒ K diminuisce !!