3666 ANLP

Predicting ECB Monetary Policy

Jonathan Fu Fernando Espinosa Shabnam Balamchi

Dec 16th/2023

Outline

- Project Overview
- Challenges, Complexities and Use Cases
- Process Flow
- Exploratory Data Analysis (EDA)
- Methods and Models
- Next steps

Project Overview: ECB Speech Analysis for Rate Change Prediction

Objective:

Predict ECB rate changes ("No Change," "Increase," or "Decrease") using speech text analysis.

Date range: 1999–2023

Language: Majority in English

• Key Question:

"How does speech content correlate with monetary policy decisions?"

Columns:

- Speaker details (e.g., who, date, speech title).
- Extracted text and term frequencies.
- Monetary policy rate changes (% changes, direction).

Main Scope:

Data Analysis: Extraction and analysis of ECB speeches and press releases for predictive modeling.

Model Development: Building and fine-tuning a BERT-based vs LSTM vs Tree-based classification model for forecasting ECB rate changes.

Challenges, Approaches, and Use Cases

Challenge	Impact	Approach/Technique			
Class Imbalance	Minority classes ("Increase" & "Decrease") were underrepresented. Leads to poor performance.	 Class Weights: Adjusted loss function. Manual Oversampling: Balanced training data SMOTE: Synthetic Minority Oversampling Technique in imbalance pipeline Tree-Based Models (XGBoost, LightGBM, CatBoost): Handled imbalance effective with ensemble methods. 			
Semantic Complexity	Complex language made it challenging for simpler models.	 BERT Fine-Tuning: Extracted semantic-rich features. Keyphrase Extraction for LSTM: Simplified inputs. Tree-Based Models: Captured complex patterns using gradient boosting. 			
Overfitting Risks	Deep learning models overfit due to small dataset size.	 Early Stopping: Stopped training to prevent overfitting. Data Augmentation: Paraphrased existing data. Voting Classifier: Combined robust models to generalize better. 			

Examples

Corporate treasury management (eg. lower borrowing costs) FX, currency trading/hedging and Sovereign debt analysis Optimize investment strategy and portfolio management (eg. asset allocation)

Better risk management (eg. minimize the cost of interest rate hedging)

Process Flow

Title: Methodology Overview for ECB Rate Change Prediction

Screen-scraped ECB speeches and press releases using BeautifulSoup; tagged articles by dates between monetary policy decisions.

ii https://www.kaggle.com/datasets/robertolofaro/ecb-speeches-1997-to-20191122-frequencies-dm

iii https://www.ecb.europa.eu/stats/policy and exchange rates/key ecb interest rates/html/index.en.html

Exploratory Analysis

Frequency Analysis: Understanding key terms and bigrams in the speeches.

Distribution Insights: Temporal and categorical patterns of the data.

Topic Modeling: Extracting dominant topics and their keywords using LDA.

Clustering Analysis: Visualizing clusters and validating using silhouette scores.

Frequency Distribution

Key Topics in Speeches (Gensim LDA Visualization)

How ECB prioritizes its messaging in response to economic changes

Speeches cluster around 3–4 major themes:

- Topic 1: Monetary policy, inflation, and price stability dominate discussions.
- Topic 2: Digital euro and fiscal policy have emerged in recent years.
- Topic 3: Broader economic growth and crisis-related topics.

N-Grams

No significant difference between the overall topics vs. increase/decrease classes

Temporal Trends in Topics

- Digital euro and fiscal policy discussions have risen sharply since 2015.
- Inflation and monetary policy remain consistently discussed across years.
- This demonstrates how the ECB adapts its messaging to evolving economic conditions.

- Topic 0 (financial growth and markets) saw a rise around 2010 but declined in prominence after 2015.
- Topic 3 (economic and fiscal policy) peaked during the late 2000s, possibly reflecting responses to the 2008 financial crisis.
- Topic 4 (central banking and risk management) had a steady focus, indicating its importance across different timeframes.

Unsupervised Cluster Analysis/t-SNE visualization

- ☐ **Best Clustering:** The silhouette score is highest at **k=2**, indicating two dominant groupings or themes in ECB speeches.
- Cohesion & Separation: k=2 provides the best balance between cohesion (within-cluster similarity) and separation (between-cluster distance).
- □ **Diminishing Returns:** Lower scores for higher **k** suggest limited benefits from additional clusters, though finer nuances might still be captured.

Methods and Models

- Metrics: F1-Score (Macro and Weighted), Precision and Recall, Confusion Matrix
- Train/Eval split: 80/20 Test split: 20% held-out data to evaluate the final model.
- BERT, LSTM, and Voting Classifier models
- Classification Task: multiclass

* Labels: No Change/Increase/Decrease

Model	Architecture	Size	Challenges Addressed	
BERT	Transformer	Base	Semantic Complexity, Class Imbalance	
LSTM	RNN	Base	Class Imbalance, Small Data Handling	
Voting Classifier	Voting Classifier	Voting Classifier	Voting Classifier	

^{*} The Voting Classifier outperformed all other models by combining strengths of XGBoost, LightGBM, and CatBoost through weighted soft voting

BERT

BERT - 14 Additional Epochs

LSTM

Classification	n Report:			
	precision	recall	f1-score	support
Decrease	0.06	0.02	0.03	59
Increase	0.12	0.04	0.06	50
No Change	0.84	0.95	0.89	578
accuracy			0.80	687
macro avg	0.34	0.34	0.33	687
weighted avg	0.72	0.80	0.76	687

Voting Classifier: The Best Performing Model

Model	Macro Precision	Macro Recall	Macro F1-Score	Increase F1-Score	Decrease F1-Score	Comments
Logistic Regression	0.57	0.68	0.61	0.57	0.39	Good recall but lower precision.
XGBoost	0.86	0.50	0.55	0.57	0.15	High precision, poor recall for "Decrease".
LightGBM	0.76	0.57	0.61	0.65	0.25	Balanced but weak "Decrease" recall.
CatBoost	0.61	0.62	0.60	0.58	0.32	Best "Decrease" F1-score so far.
Voting Classifier	0.79	0.59	0.62	0.63	0.29	Best overall balance across metrics.

	precision	recall	f1-score	support
No Change	0.90	0.97	0.93	578
Increase	0.65	0.62	0.63	50
Decrease	0.69	0.19	0.29	59
accuracy			0.87	687
macro avg	0.74	0.59	0.62	687
weighted avg	0.86	0.87	0.85	687

"Voting Classifier achieves the best trade-off between overall accuracy and minority class performance."

Why Tree-Based Models Performed Better? (possibilities)

Handling Imbalanced Data:

 Tree-based models use class weights and ensemble methods to manage class imbalance effectively.

Small Dataset Suitability:

 BERT and LSTM require large datasets; tree-based models generalize better with limited data.

• Efficient Training:

Tree-based models are faster to train and less computationally intensive.

Next Steps

- Enhance Minority Class Detection:
 - Adjust decision thresholds and explore precision-recall trade-offs for Increase and Decrease classes.
- Newer Transformer Models:
 - Test models like **FinBERT**, **RoBERTa**, and **DeBERTa** for improved text understanding.
- Improved Sampling:
 - Use ADASYN and Cluster-Based Sampling for better handling of class imbalance.

Q&A