An Invitation to Concress

250401

Reference]
[Lurie] Higher Topos Theory

[Töen] Denved Algebraic Geometry

§1. Model Cate	egonies.	
bef A model	category is a Category	C W/
fibrations. Cof	ibrations, weak equivalences	satisfying
Axiom 1. has st	mall limit & Colimits	
	-3 Olxiom on weak equi	
	The retract of $3: X' \rightarrow 2$ the above 3 classes	
4. (Extension		
		n, P Inivial fibration
i [,	→ X for O i Cofibration in 1P or in 2 i trivial Co	Cu. 10 C. Lil banding
		fibration, P fibration
5. (Factorizati		£iL .
X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	thv. fib	1'0'. → Y
Def A cylinder	opsect of X is X II X	Cofib weak es
		i
f,9: X → Y	are homotopic if	fold map.
	bject C st. X 11 X —	\longrightarrow C
Cymacr	(f,a) (f,a)	2/6
Def homotopy Co		7
	nt Cofibrant objects	
	lotopy equivalence classes.	
Thm (Quillen).	he ~ W¹'c.	
	11 — VV — .	

Examples. 1. C=Top: W = Weak eq. Fib = Serre fibrations Cofib = retract of relative cell complexes 2. C = Ch(R-mod): W = weak e3. \rightarrow Hovey. projective O Fib = degreewise surjective, Cofib) 2 moders injective O Cofib = " injective, Fib. Note that they have equivalent homotopy Category, namely D(R). Quillen's thm formalizes the fact: D(R) is equivalent to studying injective / projective complexes "injective / Projective resolutions". 3. C = SSet := Fun ($\triangle^{\circ P}$ Set) Note Δ^n is the simplicial set Hom (-, [n]) $\Delta^n \xrightarrow{} \Upsilon$ 1 is the ith horn generated by non-degenerate (n-1)-face except the ith one. Remark (Geometric Realization) X be a Compactly generated Hausdorff space. C' be Cosimplicial space s.t. $C^n = \{(X_i) \in [0,1]^{n+1} \mid \Sigma X_i = 1\}$ Define $(Sing_c(x))_n := Hom(c^n, x)$ s.t. $Sing_c(x) \in SSet$. i.e. $Sing_{C}$: $Sp \rightarrow sSet$ is a functor. this has a left adjoint, denoted S -> 151, Called the "geometric realization". * For experts: $|S| := \int_{n \in \Delta} S_n \times C^n$ "Gend"

Def (Quillen adjunction) C, D be model Categories w/ 3: C=D:f. adjoint f.g are called Quillen adjunction if Of Preserves fib & trivial fib or @ } preserves Cofib & trivial Cofib. By fibrant (or Cofibrant replacement), we get Lq: he ≥ hD: IRf. Thm. This is an adjoint in homotopy Categories. If they are moreover equivalences, we call them Quillen equivalence. Examples (Exercise?) 1. 1.1: sSet = Top: Sing. is a Quiller equivalence. 2. $R' \otimes_{R} - : Ch(R-mod) \rightarrow Ch(R'-mod)$ is left Quillen (endowed W/ Projective model structure). \$ 2. Why 00 - Categories? Idea. We want to remember All the data on Hom. i.e. Want to view Hom not only as a set, but as a "space" Example. Ch(R-Mod) For C', D' E Ch (R-Mod), Hom Ch(R-Mod) (C', D') is a priori a set. But... define $Hom^{\circ}(C',D') := \prod_{k \in \mathcal{F}} Hom_{\mathcal{R}}(C^{\dot{\circ}},D^{k+\dot{\circ}})$ & d_{λ} . Hom^(c', D') \rightarrow Hom^(t) (c', D') as Sfkikez Holdpofk - (-1) fk odcik then $Hom^{1}(C,D) \in Ch(k-Mod)$

```
Exercise. Check Hom (c', b') & Hom (b', E) -> Hom (c', E')
                      by Composition.
Thus, in fact ch(R-mod) is a category "enriched in Ch(k-mod)"
                                       * It's a dq category.
Example. Catant. (2-category)
Consider Codegory of (Small) Categories. Morphisms are functors.
But we know that there are natural transformations as
                                                "morphism of functors"
Thus, in fact Catcat is a Category "enriched in Cat"
We formalize these:
 Def M, Ø, I, &, \lambda, P be a monoidal Category
    (I: unit, \alpha_{A,B,C}: A\otimes (B\otimes C) \xrightarrow{\Xi} (A\otimes B)\otimes C, \lambda_A: L\otimes A \xrightarrow{\Xi} A, \rho_A: A\otimes I
                                                  natural
       satisfying pentagon / identity triangle axioms)
  A Category enriched over M is C w/
   objects : ob (e)
   Morphisms: MaplableM for Vabet wr
        \Phi = identity ida I \rightarrow Map(a,a) in M
        @ oabc: Map(b,C) & Map(a,b) -> Map(a,c) "Composition"
          W/ Pentagon / identity triangle axioms Coherently stated
                                                 using of & A,P.
Philosophy We should NOT say two functors are the "same"
            the Correct notion is that they are (naturally) equivalent.
                                  (by some Coherent higher homotopy)
```

Example. Fundamental Groupoid. Theo X. (all morphisms are equivalences) An attempt to view space as a category. X be topological sp. Points of X are objects, Paths are 1-morphisms, homotopies are 2-morphisms Note that associativity is NOT strict. x. f. y g. z h. w fo(g.h) . | f g h H (f.9) oh: | f 3 h However, there is a natural equivalence Connecting them. Considering higher morphisms, it is incredibly thicky to keep track of all homotopy Coherence relations. \$3. Defining 00-Categories. Category of Attempt 1. Define n-Category as a Category enriched in (n-1)-Cat ⇒ define 10- category as sort of their limit" (inductively) Problem: the associativity relations are strict: NOT what we want Attempt 2. Define n-Category as a Category enriched in n-Category of (n-11-Cat. Problem: it's circular So we need to define 60 - Category encoding all homotopy Coherence data, intrinsically. Inspired by the above example, (A space encodes all higher morphisms as homotopies) Attempt 3. Define (00,1) - Codegory as a Codegory enriched in Top. We Call this "topological Category". Good ((00, n) category means all > n-morphisms are equivalences.) But then one may give...

Attempt 4 Define (00,1) - Codegory as a Codegory enriched in SSet. We Call this "Simplicial Category". Since we know Top & sset are Quillen - equivalent, they are Quillen - equivalent. (I haven't introduced model structures on topological / simplicial cat, but for those who are interested, look up Bergner model Structure) Attempt 5 Define (00,1) - Codegory as a Codegory enriched in Ch(k-Mod) We Call this "dg Category". This is related to the simplicial Category by Dold-Kan. Thm (Dold - Kan Correspondence) Ch > (Ab) = s Ab. Now we want a model independent description of a (00,1) - Category Final Attempt An (00.11 - Category is a Weak Kan Complex. What an abrupt definition ? But we will see what this means... Def A weak Kan complex is a simplicial set we the following lifting property: $\Lambda_{\lambda}^{n} \longrightarrow X$ for $\forall o < \lambda < n$. § 4. Relation with other Categories Def (Nerve Construction) C be a classical Category Define $N(Z)_n := Fun(In), C)$ i.e. N(Z)n = { Co - ··· - · Cn } w/ face & degeneracy maps

Composing adjacent two insert id.

11115	s detines	a Sin	plical	set	NC	Called	the r	erve	of a	Cotes
Thm.	TFAE	(1) 5	mplicial	sef	k =	¥ N(€)	for	some	Cate	ory 7
		(2) U	nique	inner	horn	liftmgs				
In	particular,	a cli	assical	Cotego	ry Ca	n Viewed				•
							ner	ve C	mstructio) n .
Rmk.	What d	oes ho	rn lift	ings 1	mean?					
$\sqrt{\frac{2}{2}}$	· Co —	' \	extend	s to	,	<u>C</u> 1	⇒ "	existe	nce of	
					C. '.	$\xrightarrow{(1/)} C_2$		htpy	in/er≤	se"
1	: x ^C 1	×		,	1	1111	⇒ "•	existen	ce of	
		, ,					G	omposa	ion up t	· htp
Thus	if o	C is	a g	roupoid	. we'	11 have	all h	om l	ift.ngs	
				j.	e. N	(C) is	a Ka	an Cor	nplex.	
Top	નનાંત્રી (ategory	ζ.							
				0-1-	T	.				
Det	Define i-	is 0-th	nucoteg	catego	الم الم	,C by			norphisr To.	n Sp
In	Particular	. let	74 k	e the	htev	Codegory				ego⊦y
	Whitehead's									
Det D	Define its	homo t	pbh (-ategon	/ h(by			orphism lass in	
Smaar	dolm:L:	c L	Sh. l		Caula O		νντη	us C	(ass in	70
١١١١١١٥١	definition		-mnpl	1001	7016201	7 C.				
Next	t time									
-	•									
Ke	elations l	otwn O	o - Cate	gory &	k Sim	plicial/	topolog	}i Cal	Cat.	