Health_Care_Project

April 12, 2023

0.1 Importing Required Libraries

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import warnings
     warnings.filterwarnings('ignore')
[2]: #Load the data
     df=pd.read_csv('health_care_diabetes.csv')
     df.head()
[2]:
                     Glucose BloodPressure SkinThickness
        Pregnancies
                                                              Insulin
                                                                        BMI
                  6
                          148
                                                                       33.6
     1
                  1
                          85
                                          66
                                                          29
                                                                    0
                                                                       26.6
     2
                  8
                         183
                                          64
                                                          0
                                                                    0 23.3
                  1
                          89
                                          66
                                                          23
                                                                   94
                                                                       28.1
     3
     4
                  0
                         137
                                          40
                                                          35
                                                                  168 43.1
        DiabetesPedigreeFunction Age
                                       Outcome
     0
                            0.627
                                    50
                           0.351
     1
                                    31
                                              0
     2
                           0.672
                                    32
                                              1
     3
                            0.167
                                              0
                                    21
     4
                           2.288
                                    33
                                              1
[3]: df.isnull().sum()
[3]: Pregnancies
                                  0
     Glucose
                                  0
     BloodPressure
                                  0
     SkinThickness
                                  0
     Insulin
                                  0
    BMT
                                  0
     DiabetesPedigreeFunction
                                  0
```

Age 0
Outcome 0

dtype: int64

There is no Missing value. The data is clean.

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	${\tt DiabetesPedigreeFunction}$	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

 ${\tt dtypes: float64(2), int64(7)}$

memory usage: 54.1 KB

[5]: df.describe()

[5]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	\
	count	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	
	min	0.00000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	
		BMI DiabetesPedigreeFunction		Age O	lutcome		

	BMT	DiabetesPedigreeFunction	Age	Uutcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

```
[6]: df['Glucose'].value_counts()
[6]: 99
            17
     100
             17
     111
            14
     129
             14
     125
             14
     191
             1
     177
             1
     44
             1
     62
             1
     190
             1
     Name: Glucose, Length: 136, dtype: int64
[7]: df['Glucose'].plot(kind='hist')
     plt.title('Glucose')
     plt.show()
```



```
[8]: df['BloodPressure'].value_counts()
```

Γο] .	70		-7
[8]:	70		57
	74		52
	78		45
	68		45
	72		44
	64		43
	80		40
	76		39
	60		37
	0		35
	62		34
	66		30
	82		30
	88		
			25
	84		23
	90		22
	86		21
	58		21
	50		13
	56		12
	52		11
	54		11
	75		8
	92		8
	65		7
	85		6
	94		6
	48		5
	96		4
	44		4
	100)	3
	106		3
		,	
	98		3
	110)	3
	55		2
	108	3	2
	104	Į.	2
	46		2 2
	30		2
	122)	1
	95	-	1
	102)	1
	61		1
	24		1
	38		1
	40		1
	114	Į.	1

Name: BloodPressure, dtype: int64

```
[9]: plt.hist(x=df['BloodPressure'])
  plt.title('Blood Pressure')
  plt.show()
```



```
[10]: df['SkinThickness'].value_counts()
```

```
25
             16
      26
             16
      22
             16
      37
             16
             15
      41
      35
             15
      36
             14
      15
             14
      17
             14
      20
             13
             12
      24
      42
             11
      13
             11
      21
             10
      46
              8
      34
              8
      12
              7
      38
              7
              6
      11
      43
              6
      16
              6
              6
      45
              6
      14
      44
              5
      10
              5
              4
      48
      47
              4
      49
              3
              3
      50
      8
              2
              2
      7
      52
              2
      54
              2
      63
              1
      60
              1
      56
              1
      51
              1
      99
              1
      Name: SkinThickness, dtype: int64
[11]: plt.hist(x=df['SkinThickness'])
      plt.title('Skin Thickness')
      plt.show()
```



```
[12]: df['Insulin'].value_counts()
[12]: 0
             374
      105
              11
      130
               9
      140
               9
      120
               8
      73
               1
      171
               1
      255
               1
      52
               1
      112
      Name: Insulin, Length: 186, dtype: int64
[13]: plt.hist(x=df['Insulin'])
      plt.title('Insulin')
      plt.show()
```



```
[14]: df['BMI'].value_counts()
[14]: 32.0
              13
      31.6
              12
      31.2
              12
      0.0
              11
      32.4
              10
              . .
      36.7
               1
      41.8
               1
      42.6
               1
      42.8
               1
      46.3
               1
      Name: BMI, Length: 248, dtype: int64
[15]: plt.hist(x=df['BMI'])
      plt.title('BMI')
      plt.show()
```


[16]:	<pre>df.describe().transpose()</pre>						
[16]:		count	mean	std	min	25%	\
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	
	Insulin	768.0	79.799479	115.244002	0.000	0.00000	
	BMI	768.0	31.992578	7.884160	0.000	27.30000	
	DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	
	Age	768.0	33.240885	11.760232	21.000	24.00000	
	Outcome	768.0	0.348958	0.476951	0.000	0.00000	
		-	ov 75	<i>y</i>			
			0% 755				
	Pregnancies	3.00	00 6.0000	0 17.00			
	Glucose	117.00	00 140.2500	0 199.00			
	BloodPressure	72.00	00 80.0000	0 122.00			
	SkinThickness	23.00	00 32.0000	99.00			
	Insulin	30.50	00 127.2500	0 846.00			
	BMI	32.00	00 36.6000	0 67.10			
	DiabetesPedigreeFunction	0.37	25 0.6262	5 2.42			

Age 29.0000 41.00000 81.00 Outcome 0.0000 1.00000 1.00

```
[17]: #Checking the Balance of the data by outcome df['Outcome'].plot(kind='hist')
```

[17]: <Axes: ylabel='Frequency'>

The Data is not much Imbalanced. Lets Check the values of other column where the Outcome column has 1. And lets plot them and check their difference with the plots that we created earlier. And let us look in details of this plot.

```
[18]: Outcome_1=df[df['Outcome']==1]
Outcome_1.head()
```

[18]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	\mathtt{BMI}	\
0	6	148	72	35	0	33.6	
2	8	183	64	0	0	23.3	
4	0	137	40	35	168	43.1	
6	3	78	50	32	88	31.0	
8	2	197	70	45	543	30.5	

```
DiabetesPedigreeFunction
                                      {\tt Outcome}
                                Age
0
                        0.627
                                  50
                                             1
2
                        0.672
                                  32
                                             1
4
                        2.288
                                  33
                                             1
6
                        0.248
                                  26
                                             1
8
                        0.158
                                  53
                                             1
```

```
[19]: plt.hist(x=Outcome_1['Glucose'])
   plt.title('Outcome 1 Glucose')
   plt.show()
```



```
[20]: plt.hist(x=Outcome_1['BloodPressure'])
   plt.title('Outcome_1 Blood Pressure')
   plt.show()
```



```
[21]: plt.hist(x=Outcome_1['SkinThickness'])
    plt.title('Skin Thickness')
    plt.show()
```



```
[22]: plt.hist(x=Outcome_1['Insulin'])
   plt.title('Outcome_1 Insulin')
   plt.show()
```



```
[23]: plt.hist(x=Outcome_1['BMI'])
  plt.title('Outcome_1 BMI')
  plt.show()
```


There are Zeros in every column. To drop this values will make the data too small and we will miss some valuable data. So We can replace the zeros with the mean of the repsective columns so that no data is missed.

```
[24]: df['Glucose']=df['Glucose'].replace(0,df['Glucose'].mean())
    df['BloodPressure']=df['BloodPressure'].replace(0,df['BloodPressure'].mean())
    df['SkinThickness']=df['SkinThickness'].replace(0,df['SkinThickness'].mean())
    df['Insulin']=df['Insulin'].replace(0,df['Insulin'].mean())

df['BMI']=df['BMI'].replace(0,df['BMI'].mean())

[25]: print((df['Glucose'].values==0).sum())
    print((df['BloodPressure'].values==0).sum())
    print((df['SkinThickness'].values==0).sum())
    print((df['Insulin'].values==0).sum())
    print((df['BMI'].values==0).sum())

0
0
0
0
0
0
```

0

Now we can see that all the zeros has been replaced by the mean of the respective columns.

0.1.1 Lets Create Scatter Plot to understand the relation between different variables.

```
[26]: sns.scatterplot(x='Glucose',y='BloodPressure',hue='Outcome',data=df)
    plt.title('Blood Pressure vs Glucose')
    plt.show()
```


If the Glucose is high with an average of Blood Pressure has the Diabetes. We can see that even if Blood Pressure is about normal, there is chance of getting Diabetes if the level of Glucose is high.

```
[27]: sns.scatterplot(x='BMI',y='Insulin',hue='Outcome',data=df)
plt.title('BMI vs Insulin')
plt.show()
```


If the Insulin is low, the person will be Diabetic. The body mass index will also effect when it is above average. The person with low Insulin and High BMI has the chance of getting Diabetes. Most of our data is spread across the Low Area of the insulin.

```
[28]: sns.scatterplot(x='BloodPressure',y='Insulin',hue='Outcome',data=df)
   plt.title('Blood Pressure vs Insulin')
   plt.show()
```



```
[29]: sns.scatterplot(x='Glucose',y='Insulin',hue='Outcome',data=df)
plt.title('Glucose Vs Insulin')
plt.show()
```


If Glucose is high there is a great chance of getting Diabetics. And here we can see that There is line in the plot that the Outcome is one where the glucose level is high.

[30]:	df.corr()						
[30]:		Pregnancie	s Gluco	ose B	loodPressure	SkinThickness	\
	Pregnancies	1.00000	0.1279	964	0.208984	0.013376	
	Glucose	0.12796	1.0000	000	0.219666	0.160766	
	BloodPressure	0.20898	4 0.2196	366	1.000000	0.134155	
	SkinThickness	0.01337	6 0.1607	766	0.134155	1.000000	
	Insulin	-0.01808	0.396	597	0.010926	0.240361	
	BMI	0.02154	6 0.2314	178	0.281231	0.535703	
	DiabetesPedigreeFunction	-0.03352	3 0.137	106	0.000371	0.154961	
	Age	0.54434	1 0.2666	300	0.326740	0.026423	
	Outcome	0.22189	0.4929	808	0.162986	0.175026	
		Insulin	BMI	Diabe	etesPedigreeF	unction \	
	Pregnancies	-0.018082	0.021546		-0	.033523	
	Glucose	0.396597	0.231478		0	.137106	
	BloodPressure	0.010926	0.281231		0	.000371	

```
SkinThickness
                               0.240361 0.535703
                                                                   0.154961
      Insulin
                               1.000000 0.189856
                                                                   0.157806
      BMI
                               0.189856 1.000000
                                                                   0.153508
     DiabetesPedigreeFunction 0.157806 0.153508
                                                                   1.000000
      Age
                               0.038652 0.025748
                                                                   0.033561
      Outcome
                               0.179185 0.312254
                                                                   0.173844
                                    Age
                                          Outcome
                               0.544341 0.221898
     Pregnancies
     Glucose
                               0.266600 0.492908
     BloodPressure
                               0.326740 0.162986
     SkinThickness
                               0.026423 0.175026
      Insulin
                               0.038652 0.179185
     BMI
                               0.025748 0.312254
     DiabetesPedigreeFunction 0.033561 0.173844
                               1.000000 0.238356
      Age
      Outcome
                               0.238356 1.000000
[31]: plt.figure(figsize=(8,8))
      sns.heatmap(df.corr(),annot=True)
      plt.title('Correlation Analysis')
      plt.show()
```


In this Correlation Matrix, Glucose has the highest correlation with the Outcome Column. Glucose has 0.49 correlation with Outcome. BMI has the second highest correlation of 0.31 with Outcome Column. The insulin has correlation of 0.4 with Glucose. The BMI, Blood Pressure and age has a slightly correlation with Glucose which is correlated with Outcome.

0.1.2 Lets do the spliting of the Dataset into Training and testing

```
[32]: X=df.iloc[:,[0,1,2,3,4,5,6,7]]
y=df.iloc[:,8]
```

```
[33]: X.head()
[33]:
         Pregnancies
                      Glucose BloodPressure SkinThickness
                                                                  Insulin
                                                                            BMI \
                   6
                         148.0
                                         72.0
                                                    35.000000
                                                                79.799479
                                                                            33.6
                                         66.0
                         85.0
                                                    29.000000
                                                                79.799479
                                                                            26.6
      1
                   1
                                         64.0
      2
                   8
                         183.0
                                                    20.536458
                                                                79.799479
                                                                            23.3
                                         66.0
                                                    23.000000
      3
                   1
                         89.0
                                                                94.000000
                                                                            28.1
                                         40.0
      4
                   0
                         137.0
                                                    35.000000
                                                               168.000000 43.1
         DiabetesPedigreeFunction
                                    Age
      0
                             0.627
                                     50
      1
                             0.351
                                     31
      2
                             0.672
                                     32
                             0.167
      3
                                     21
      4
                             2.288
                                     33
[34]: y.head()
[34]: 0
           1
           0
      1
      2
           1
      3
           0
           1
      Name: Outcome, dtype: int64
[35]: from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2)
[36]: print(X_train.shape,X_test.shape)
     (614, 8) (154, 8)
[37]: print(y_train.shape,y_test.shape)
     (614,) (154,)
     Logistic Regression Model
[38]: from sklearn.linear_model import LogisticRegression
      lr=LogisticRegression()
      lr.fit(X_train,y_train)
[38]: LogisticRegression()
[39]: y_pred=lr.predict(X_test)
```

```
[40]: print(lr.score(X_train,y_train)) print(lr.score(X_test,y_test))
```

- 0.7736156351791531
- 0.7792207792207793

```
[41]: from sklearn.metrics import confusion_matrix cm=confusion_matrix(y_test,y_pred) cm
```

```
[41]: array([[88, 8], [26, 32]], dtype=int64)
```

The model has predicted 94 true positive and 30 true negative.

```
[42]: from sklearn.metrics import classification_report print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.77	0.92	0.84	96
1	0.80	0.55	0.65	58
accuracy			0.78	154
macro avg	0.79	0.73	0.75	154
weighted avg	0.78	0.78	0.77	154

```
[43]: from sklearn.metrics import accuracy_score print(accuracy_score(y_test,y_pred))
```

0.7792207792207793

```
[44]: #Preparing ROC Curve
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

probs = lr.predict_proba(X_test)
probs = probs[:, 1]
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
```

AUC: 0.858

[44]: [<matplotlib.lines.Line2D at 0x2b2e63d04c0>]


```
Lets go for another classifier: Decision tree Classifier
```

```
[45]: from sklearn.tree import DecisionTreeClassifier dt=DecisionTreeClassifier(max_depth=5) dt.fit(X_train,y_train)
```

[45]: DecisionTreeClassifier(max_depth=5)

```
[46]: print(dt.score(X_train,y_train)) print(dt.score(X_test,y_test))
```

- 0.8208469055374593
- 0.7597402597402597

```
[47]: pred_y=dt.predict(X_test)
```

[48]: print(accuracy_score(y_test,pred_y))

0.7597402597402597

```
Random Forest Classifier
[49]: from sklearn.ensemble import RandomForestClassifier
      rf=RandomForestClassifier(n_estimators=12)
      rf.fit(X_train,y_train)
[49]: RandomForestClassifier(n_estimators=12)
[50]: print(rf.score(X_train,y_train))
      print(rf.score(X_test,y_test))
     0.995114006514658
     0.7337662337662337
[51]: rf_pred=rf.predict(X_test)
[52]: print(accuracy_score(y_test,rf_pred))
     0.7337662337662337
     Support Vector Machine
[53]: from sklearn.svm import SVC
      sv=SVC(kernel='rbf',gamma='auto')
      sv.fit(X_train,y_train)
[53]: SVC(gamma='auto')
[54]: print(sv.score(X_test,y_test))
     0.6233766233766234
     KNN Classifier
[55]: from sklearn.neighbors import KNeighborsClassifier
      knn=KNeighborsClassifier(n_neighbors=7,metric='minkowski',p = 2)
      knn.fit(X_train,y_train)
[55]: KNeighborsClassifier(n_neighbors=7)
[56]: probs = knn.predict_proba(X_test)
      probs = probs[:, 1]
      # calculate AUC
      auc = roc_auc_score(y_test, probs)
      print('AUC: %.3f' % auc)
      # calculate roc curve
      fpr, tpr, thresholds = roc_curve(y_test, probs)
      print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".
       →format(tpr,fpr,thresholds))
```

```
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
```

[56]: Text(0, 0.5, 'True Positive Rate')


```
[57]: #Precision Recall Curve for Logistic Regression
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
```

```
from sklearn.metrics import average_precision_score
# predict probabilities
probs = lr.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = lr.predict(X_test)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(y_test, probs)
# calculate F1 score
f1 = f1_score(y_test, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(y_test, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.653 auc=0.703 ap=0.711

[57]: [<matplotlib.lines.Line2D at 0x2b2e6494250>]


```
[58]: #Precision Recall Curve for KNN
      from sklearn.metrics import auc
      # predict probabilities
      probs = knn.predict_proba(X_test)
      # keep probabilities for the positive outcome only
      probs = probs[:, 1]
      # predict class values
      yhat = knn.predict(X_test)
      # calculate precision-recall curve
      precision, recall, thresholds = precision_recall_curve(y_test, probs)
      # calculate F1 score
      f1 = f1_score(y_test, yhat)
      # calculate precision-recall AUC
      auc = auc(recall, precision)
      # calculate average precision score
      ap = average_precision_score(y_test, probs)
      print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
      plt.plot([0, 1], [0.5, 0.5], linestyle='--')
      # plot the precision-recall curve for the model
      plt.plot(recall, precision, marker='.')
```

f1=0.630 auc=0.723 ap=0.681

[58]: [<matplotlib.lines.Line2D at 0x2b2e6506f70>]


```
[59]: #Precision Recall Curve for Decission Tree Classifier
      from sklearn.metrics import auc
      # predict probabilities
      probs = dt.predict_proba(X_test)
      # keep probabilities for the positive outcome only
      probs = probs[:, 1]
      # predict class values
      yhat = dt.predict(X_test)
      # calculate precision-recall curve
      precision, recall, thresholds = precision_recall_curve(y_test, probs)
      # calculate F1 score
      f1 = f1_score(y_test, yhat)
      # calculate precision-recall AUC
      auc = auc(recall, precision)
      # calculate average precision score
      ap = average_precision_score(y_test, probs)
      print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
      plt.plot([0, 1], [0.5, 0.5], linestyle='--')
      # plot the precision-recall curve for the model
      plt.plot(recall, precision, marker='.')
```

[59]: [<matplotlib.lines.Line2D at 0x2b2e6ab5400>]


```
[60]: #Precision Recall Curve for Random Forest
      from sklearn.metrics import auc
      # predict probabilities
      probs = rf.predict_proba(X_test)
      # keep probabilities for the positive outcome only
      probs = probs[:, 1]
      # predict class values
      yhat = rf.predict(X_test)
      # calculate precision-recall curve
      precision, recall, thresholds = precision_recall_curve(y_test, probs)
      # calculate F1 score
      f1 = f1_score(y_test, yhat)
      # calculate precision-recall AUC
      auc = auc(recall, precision)
      # calculate average precision score
      ap = average_precision_score(y_test, probs)
```

```
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.610 auc=0.680 ap=0.688

[60]: [<matplotlib.lines.Line2D at 0x2b2e6435640>]

[]:

