Package 'fnets'

January 25, 2023

Junuary 25, 2025
Type Package
Title Factor-Adjusted Network Estimation and Forecasting for High-Dimensional Time Series
Version 0.1.1
Maintainer Haeran Cho <haeran.cho@bristol.ac.uk></haeran.cho@bristol.ac.uk>
Description Implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factoradjusted vector autoregressive model. See Barigozzi, Cho and Owens (2022) <arxiv:2201.06110> for further descriptions of FNETS methodology and Owens, Cho and Barigozzi (2023) https://drive.google.com/file/d/1Rw-xgpijF8ZIBUzjIU9emr-ucAvAhKL4/view?usp=sharing> accompanying the R package.</arxiv:2201.06110>
Depends R (>= 4.1.0)
Imports lpSolve, parallel, doParallel, foreach, MASS, fields, igraph, RColorBrewer
License GPL (>= 3)
Encoding UTF-8
LazyData false
RoxygenNote 7.1.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
R topics documented:
factor.number

2 common.predict

	fnets	
	fnets.factor.model	
	fnets.var	
	idio.predict	
	par.lrpc	
	plot.fnets	
	predict.fm	
	predict.fnets	
	sim.restricted	
	sim.unrestricted	
	sim.var	
	threshold	
Index		24
COMM	on.predict Fe	precasting the factor-driven common component

Description

Produces forecasts of the common component for a given forecasting horizon by estimating the best linear predictors

Usage

```
common.predict(object, x, h = 1, fc.restricted = TRUE, r = c("ic", "er"))
```

Arguments

object	fnets object
X	input time series matrix, with each row representing a variable
h	forecasting horizon
fc.restricted	whether to forecast using a restricted or unrestricted, blockwise VAR representation of the common component
r	number of restricted factors, or a string specifying the factor number selection method when fc.restricted = TRUE; possible values are:
	"ic" information criteria of Bai and Ng (2002)"er" eigenvalue ratio

Value

a list containing	
is	in-sample estimator of the common component
fc	forecasts of the common component for a given forecasting horizon h
r	restricted factor number
h	forecast horizon

factor.number 3

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.

Forni, M., Hallin, M., Lippi, M. & Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis. Journal of Econometrics, 199(1), 74–92.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

Examples

factor.number

Factor number selection methods

Description

Methods to estimate the number of factor. When method = 'er', the factor number is estimated by maximising the ration of successive eigenvalues. When method = 'ic', the information criterion-methods discussed in Hallin and Liška (2007) (when fm.restricted = FALSE) and Alessi, Barigozzi and Capasso (2010) (when fm.restricted = TRUE) are implemented, with the information criterion called by ic.op = 5 recommended by default.

Usage

```
factor.number(
    x,
    fm.restricted = FALSE,
    method = c("ic", "er"),
    q.max = NULL,
    do.plot = FALSE,
    center = TRUE
)
```

4 factor.number

Arguments

X	input time series matrix, with each row representing a variable
fm.restricted	whether to estimate the number of restricted or unrestricted factors
method	A string specifying the factor number selection method; possible values are:
	• "ic" information criteria-based methods of Alessi, Barigozzi & Capasso (2010) when fm.restricted = TRUE or Hallin and Liška (2007) when fm.restricted = FALSE
	• "er" eigenvalue ratio of Ahn and Horenstein (2013)
q.max	maximum number of factors; if q.max = NULL, a default value is selected as $min(50, floor(sqrt(min(dim(x)[2] - 1, dim(x)[1]))))$
do.plot	whether to plot the information criteria values
center	whether to de-mean the input x row-wise

Details

For further details, see references.

Value

if method = "ic", a vector containing minimisers of the six information criteria, otherwise, the maximiser of the eigenvalue ratio

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Alessi, L., Barigozzi, M., and Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Bai, J. & Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica. 70: 191-221.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

```
library(fnets)

set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)
x <- common$\data * apply(idio$\data, 1, sd) / apply(common$\data, 1, sd) + idio$\data</pre>
```

fnets 5

```
hl <- factor.number(x, fm.restricted = FALSE, do.plot = TRUE)
hl
library(fnets)

set.seed(123)
n <- 500
p <- 50
common <- sim.restricted(n, p)
idio <- sim.var(n, p)
x <- common$$\frac{1}{2}$$ apply(idio$$$ data, 1, sd) / apply(common$$ data, 1, sd) + idio$$ data

abc <- factor.number(x, fm.restricted = TRUE, do.plot = TRUE)
abc

er <- factor.number(x, method = "er", fm.restricted = TRUE, do.plot = TRUE)
er</pre>
```

fnets

Factor-adjusted network estimation

Description

Operating under a factor-adjusted vector autoregressive (VAR) model, the function estimates the spectral density and autocovariance matrices of the factor-driven common component and the idiosyncratic VAR process, the impulse response functions and common shocks for the common component, and VAR parameters, innovation covariance matrix and long-run partial correlations for the idiosyncratic component.

Usage

```
fnets(
  Х,
  center = TRUE,
  fm.restricted = FALSE,
  q = c("ic", "er"),
  ic.op = NULL,
  kern.bw = NULL,
 common.args = list(factor.var.order = NULL, max.var.order = NULL, trunc.lags = 20,
    n.perm = 10),
  var.order = 1,
  var.method = c("lasso", "ds"),
 var.args = list(n.iter = NULL, n.cores = min(parallel::detectCores() - 1, 3)),
  do.threshold = FALSE,
  do.lrpc = TRUE,
  lrpc.adaptive = FALSE,
 tuning.args = list(tuning = c("cv", "bic"), n.folds = 1, penalty = NULL, path.length
   = 10, do.plot = FALSE)
)
```

6 fnets

Arguments

Χ input time series matrix, with each row representing a variable

center whether to de-mean the input x row-wise

fm.restricted whether to estimate a restricted factor model using static PCA

> Either the number of factors or a string specifying the factor number selection method; possible values are:

- "ic" information criteria-based methods of Alessi, Barigozzi & Capasso (2010) when fm. restricted = TRUE or Hallin and Liška (2007) when fm. restricted = FALSE modifying Bai and Ng (2002)
- "er" eigenvalue ratio of Ahn and Horenstein (2013)

see factor.number.

choice of the information criterion penalty, see factor.number for further details ic.op

kern.bw a positive integer specifying the kernel bandwidth for dynamic PCA; by default, it is set to floor $(4 * (\dim(x)[2]/\log(\dim(x)[2]))^(1/3))$. When fm. restricted = TRUE, it is used to compute the number of lags for which au-

tocovariance matrices are estimated

a list specifying the tuning parameters required for estimating the impulse response functions and common shocks. It contains:

- factor.var.order order of the blockwise VAR representation of the common component. If factor.var.order = NULL, it is selected blockwise by Schwarz criterion
- max.var.order maximum blockwise VAR order for the Schwarz criterion
- trunc.lags truncation lag for impulse response function estimation
- n.perm number of cross-sectional permutations involved in impulse response function estimation

order of the idiosyncratic VAR process; if a vector of integers is supplied, the var.order order is chosen via tuning

> a string specifying the method to be adopted for idiosyncratic VAR process estimation; possible values are:

- "lasso" Lasso-type 11-regularised M-estimation
- "ds" Dantzig Selector-type constrained 11-minimisation

a list specifying the tuning parameters required for estimating the idiosyncratic VAR process. It contains:

- n.iter maximum number of descent steps, by default depends on var.order; applicable when var.method = "lasso"
- n. cores number of cores to use for parallel computing, see makePSOCKcluster; applicable when var.method = "ds"

whether to perform adaptive thresholding of all parameter estimators with thresh-

do.lrpc whether to estimate the long-run partial correlation whether to use the adaptive estimation procedure lrpc.adaptive

common.args

var.method

var.args

do.threshold

fnets 7

tuning.args

a list specifying arguments for tuning for selecting the tuning parameters involved in VAR parameter and (long-run) partial correlation matrix estimation. It contains:

- tuning a string specifying the selection procedure for var. order and lambda; possible values are:
 - "cv" cross validation
 - "bic" information criterion
- n.folds if tuning = "cv", positive integer number of folds
- penalty if tuning = "bic", penalty multiplier between 0 and 1; if penalty = NULL, it is set to 1/(1+exp(dim(x)[1])/dim(x)[2])) by default
- path.length positive integer number of regularisation parameter values to consider; a sequence is generated automatically based in this value
- do.plot whether to plot the output of the cross validation step

Details

See Barigozzi, Cho and Owens (2022) and Owens, Cho and Barigozzi (2022) for further details. List arguments do not need to be specified with all list components; any missing entries will be filled in with the default argument.

Value

kern.bw

an S3 object of class fnets, which contains the following fields:

input parameter

q	number of factors
spec	if fm.restricted = FALSE a list containing estimates of the spectral density matrices for x, common and idiosyncratic components
acv	a list containing estimates of the autocovariance matrices for x, common and idiosyncratic components
loadings	if fm.restricted = TRUE, factor loadings; if fm.restricted = FALSE and q >= 1, a list containing estimators of the impulse response functions (as an array of dimension (p, q, trunc.lags + 2))
factors	if fm.restricted = TRUE, factor series; else, common shocks (an array of dimension (q, n))
idio.var	a list containing the following fields:
	• beta estimate of VAR parameter matrix; each column contains parameter estimates for the regression model for a given variable
	Gamma estimate of the innovation covariance matrix
	lambda regularisation parameter
	• var.order VAR order
lrpc	see the output of par.lrpc
mean.x	if center = TRUE, returns a vector containing row-wise sample means of x; if center = FALSE, returns a vector of zeros
var.method	input parameter
do.lrpc	input parameter

8 fnets.factor.model

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Alessi, L., Barigozzi, M., & Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Bai, J. & Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica. 70: 191-221.

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

See Also

predict.fnets, plot.fnets

Examples

fnets.factor.model

Factor model estimation

Description

Performs factor modelling under either restricted (static) or unrestricted (dynamic) factor models

fnets.factor.model 9

Usage

```
fnets.factor.model(
  center = TRUE,
  fm.restricted = FALSE,
  q = c("ic", "er"),
  ic.op = NULL,
  kern.bw = NULL,
 common.args = list(factor.var.order = NULL, max.var.order = NULL, trunc.lags = 20,
    n.perm = 10
)
```

Arguments

kern.bw

input time series matrix, with each row representing a variable Х

center whether to de-mean the input x row-wise

fm.restricted whether to estimate a restricted factor model using static PCA

Either a string specifying the factor number selection method when fm. restricted q = TRUE; possible values are:

- "ic" information criteria of Hallin and Liška (2007) or Bai and Ng (2002), see factor.number
- "er" eigenvalue ratio

or the number of unrestricted factors.

ic.op choice of the information criterion penalty, see hl.factor.number or abc.factor.number

for further details

When fm. restricted = TRUE, it is used to compute the number of lags for

kernel bandwidth for dynamic PCA; by default, it is set to $4 * floor((dim(x)[2]/log(dim(x)[2]))^{(1)}$

which autocovariance matrices are estimated

a list specifying the tuning parameters required for estimating the impulse recommon.args

sponse functions and common shocks. It contains:

- factor.var.order order of the blockwise VAR representation of the common component. If factor.var.order = NULL, it is selected blockwise by Schwarz criterion
- max.var.order maximum blockwise VAR order for the Schwarz criterion
- trunc.lags truncation lag for impulse response function estimation
- n.perm number of cross-sectional permutations involved in impulse response function estimation

Details

See Barigozzi, Cho and Owens (2022) for further details.

10 fnets.factor.model

Value

an S3 object of class fm, which contains the following fields:

q	number of factors
spec	if fm.restricted = FALSE a list containing estimates of the spectral density matrices for x , common and idiosyncratic components
acv	a list containing estimates of the autocovariance matrices for \boldsymbol{x} , common and idiosyncratic components
loadings	if fm.restricted = TRUE, factor loadings; if fm.restricted = FALSE and $q \ge 1$, a list containing estimators of the impulse response functions (as an array of dimension (p, q, trunc.lags + 2))
factors	if fm.restricted = TRUE, factor series; else, common shocks (an array of dimension (q, n)) $$
mean.x	if center = TRUE, returns a vector containing row-wise sample means of x ; if center = FALSE, returns a vector of zeros

References

Alessi, L., Barigozzi, M., & Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Bai, J. & Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica. 70: 191-221.

Barigozzi, M., Cho, H. & Owens, D. (2022) Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

```
set.seed(123)
n <- 500
p <- 50
common <- sim.restricted(n, p)
x <- common$\data
out <- fnets.factor.model(x, fm.restricted = TRUE)</pre>
```

fnets.var 11

fnets.var

11-regularised Yule-Walker estimation for VAR processes

Description

Estimates the VAR parameter matrices via 11-regularised Yule-Walker estimation and innovation covariance matrix via constrained 11-minimisation.

Usage

Arguments

x input time series matrix, with each row representing a variable

center whether to de-mean the input x row-wise

method a string specifying the method to be adopted for VAR process estimation; possi-

ble values are:

- "lasso" Lasso-type 11-regularised M-estimation
- "ds" Dantzig Selector-type constrained 11-minimisation

lambda regularisation parameter; if lambda = NULL, tuning is employed to select the

parameter

var.order order of the VAR process; if a vector of integers is supplied, the order is chosen

via tuning

tuning.args a list specifying arguments for tuning for selecting the regularisation parameter (and VAR order). It contains:

- tuning a string specifying the selection procedure for var.order and lambda; possible values are:
 - "cv" cross validation
 - "bic" information criterion
- n. folds if tuning = "cv", positive integer number of folds

12 fnets.var

• penalty if tuning = "bic", penalty multiplier between 0 and 1; if penalty = NULL, it is set to 1/(1+exp(dim(x)[1])/dim(x)[2])) by default

• path.length positive integer number of regularisation parameter values to consider; a sequence is generated automatically based in this value

• do.plot whether to plot the output of the cross validation step

do.threshold whether to perform adaptive thresholding of VAR parameter estimator with

threshold

n.iter maximum number of descent steps, by default depends on var.order; applica-

ble when method = "lasso"

tol numerical tolerance for increases in the loss function; applicable when method

= "lasso"

n.cores number of cores to use for parallel computing, see makePSOCKcluster; appli-

cable when method = "ds"

Details

Further information can be found in Barigozzi, Cho and Owens (2022).

Value

a list which contains the following fields:

beta estimate of VAR parameter matrix; each column contains parameter estimates

for the regression model for a given variable

Gamma estimate of the innovation covariance matrix

lambda regularisation parameter

var.order VAR order

mean.x if center = TRUE, returns a vector containing row-wise sample means of x; if

center = FALSE, returns a vector of zeros

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

```
library(fnets)
set.seed(123)
n <- 500
p <- 50
idio <- sim.var(n, p)
x <- idio$data</pre>
```

idio.predict 13

```
fv <- fnets.var(x,
  center = TRUE, method = "lasso", var.order = 1,
  tuning.args = list(tuning = "cv", n.folds = 1, path.length = 10, do.plot = TRUE),
  n.cores = 2
)
norm(fv$beta - t(idio$A), "F") / norm(t(idio$A), "F")</pre>
```

idio.predict

Forecasting idiosyncratic VAR process

Description

Produces forecasts of the idiosyncratic VAR process for a given forecasting horizon by estimating the best linear predictors

Usage

```
idio.predict(object, x, cpre, h = 1)
```

Arguments

object	fnets object
x	input time series matrix, with each row representing a variable
cpre	output of common.predict
h	forecast horizon

Value

a list containing

is in-sample estimator of the idiosyncratic component

fc forecasts of the idiosyncratic component for a given forecasting horizon h

h forecast horizon

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

par.lrpc

Examples

```
set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)
x <- common$$\$$$data + idio$$$data
out <- fnets(x, q = NULL, var.order = 1, var.method = "lasso",
do.lrpc = FALSE, var.args = list(n.cores = 2))
cpre <- common.predict(out, x, h = 1, r = NULL)
ipre <- idio.predict(out, x, cpre, h = 1)</pre>
```

par.lrpc

Parametric estimation of long-run partial correlations of factoradjusted VAR processes

Description

Returns a parametric estimate of long-run partial correlations of the VAR process from the VAR parameter estimates and the inverse of innovation covariance matrix obtained via constrained 11-minimisation.

Usage

```
par.lrpc(
  object,
  x,
  eta = NULL,
  tuning.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
  lrpc.adaptive = FALSE,
  eta.adaptive = NULL,
  do.correct = TRUE,
  do.threshold = FALSE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

object fnets object

x input time series matrix; with each row representing a variable

eta regularisation parameter; if eta = NULL, it is selected by cross validation

tuning.args a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. It contains:

• n. folds positive integer number of folds

par.lrpc 15

• path.length positive integer number of regularisation parameter values to consider; a sequence is generated automatically based in this value

• do.plot whether to plot the output of the cross validation step, and if do.threshold = TRUE, plot the thresholding output

1rpc.adaptive whether to use the adaptive estimation procedure

eta.adaptive regularisation parameter for Step 1 of the adaptive estimation procedure; if

eta.adaptive = NULL, defaults to 2 * sqrt(log(dim(x)[1])/dim(x)[2])

do.correct whether to correct for any negative entries in the diagonals of the inverse of

long-run covariance matrix

do.threshold whether to perform adaptive thresholding of Delta and Omega parameter esti-

mators with threshold

n.cores number of cores to use for parallel computing, see makePSOCKcluster

Details

See Barigozzi, Cho and Owens (2022) for further details, and Cai, Liu and Zhou (2016) for further details on the adaptive estimation procedure.

Value

a list containing

Delta estimated inverse of the innovation covariance matrix

Omega estimated inverse of the long-run covariance matrix

pc estimated innovation partial correlation matrix

lrpc estimated long-run partial correlation matrix

eta regularisation parameter

1rpc.adaptive input argument

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and fore-casting for high-dimensional time series.

Cai, T. T., Liu, W., & Zhou, H. H. (2016) Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 44(2), 455-488.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

```
set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)</pre>
```

16 plot.fnets

```
x <- common$data + idio$data
out <- fnets(x, q = NULL, var.method = "lasso", do.lrpc = FALSE, var.args = list(n.cores = 2))
plrpc <- par.lrpc(out, x,
tuning.args = list(n.folds = 1, path.length = 10, do.plot = TRUE), n.cores = 2)
out$1rpc <- plrpc
out$do.lrpc <- TRUE
plot(out, type = "pc", display = "network", threshold = .05)
plot(out, type = "lrpc", display = "heatmap", threshold = .05)</pre>
```

plot.fnets

Plotting the networks estimated by fnets

Description

Plotting method for S3 objects of class fnets. Produces a plot visualising three networks underlying factor-adjusted VAR processes: (i) directed network representing Granger causal linkages, as given by estimated VAR transition matrices summed across the lags, (ii) undirected network representing contemporaneous linkages after accounting for lead-lag dependence, as given by partial correlations of VAR innovations, (iii) undirected network summarising (i) and (ii) as given by long-run partial correlations of VAR processes. Edge widths are determined by edge weights.

Usage

```
## $3 method for class 'fnets'
plot(
    x,
    type = c("granger", "pc", "lrpc"),
    display = c("network", "heatmap"),
    names = NA,
    groups = NA,
    threshold = 0,
    ...
)
```

Arguments

x type fnets object

a string specifying which of the above three networks (i)–(iii) to visualise; possible values are

- "granger" directed network representing Granger causal linkages
- "pc" undirected network representing contemporaneous linkages; available when x\$do.1rpc = TRUE
- "1rpc" undirected network summarising Granger causal and contemporaneous linkages; available when x\$do.1rpc = TRUE

display

a string specifying how to visualise the network; possible values are:

predict.fm 17

•	"network"	as an	igraph	object,	see	plot.igraph
---	-----------	-------	--------	---------	-----	-------------

• "heatmap" as a heatmap, see imagePlot

names a character vector containing the names of the vertices
groups an integer vector denoting any group structure of the vertices

threshold if threshold > 0, hard thresholding is performed on the matrix giving rise to

the network of interest

... additional arguments

Details

See Barigozzi, Cho and Owens (2022) for further details.

Value

A network plot produced as per the input arguments

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

See Also

fnets

predict.fm	Forecasting for factor models	

Description

Produces forecasts of the data for a given forecasting horizon by estimating the best linear predictors of the common component

Usage

```
## S3 method for class 'fm'
predict(object, x, h = 1, fc.restricted = TRUE, r = c("ic", "er"), ...)
```

18 predict.fm

Arguments

object fm object

x input time series matrix, with each row representing a variable

h forecasting horizon

fc.restricted whether to forecast using a restricted or unrestricted, blockwise VAR representation of the common component

r number of restricted factors, or a string specifying the factor number selection method when fc.restricted = TRUE; possible values are:

• "ic" information criteria of Alessi, Barigozzi & Capasso (2010)

• "er" eigenvalue ratio

Value

. . .

a list containing

is in-sample predictions

not used

forecast for the given forecasting horizon

r factor number

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Alessi, L., Barigozzi, M., & Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Barigozzi, M., Cho, H. & Owens, D. (2022) Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

See Also

fnets.factor.model, common.predict

predict.fnets 19

Description

Produces forecasts of the data for a given forecasting horizon by separately estimating the best linear predictors of common and idiosyncratic components

Usage

```
## S3 method for class 'fnets'
predict(object, x, h = 1, fc.restricted = TRUE, r = c("ic", "er"), ...)
```

Arguments

object	fnets object
X	input time series matrix, with each row representing a variable
h	forecasting horizon
fc.restricted	whether to forecast using a restricted or unrestricted, blockwise VAR representation of the common component
r	number of restricted factors, or a string specifying the factor number selection method when fc.restricted = TRUE; possible values are:
	"ic" information criteria of Bai and Ng (2002)"er" eigenvalue ratio
	not used

Value

a list containing

forecast for the given forecasting horizon

common.pred a list containing forecasting results for the common component

idio.pred a list containing forecasting results for the idiosyncratic component

mean.x argument from object

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

20 sim.restricted

See Also

fnets, common.predict, idio.predict

Examples

```
set.seed(123)
n <- 500
p <- 50
common <- sim.restricted(n, p)
idio <- sim.var(n, p)
x <- common$\frac{4}{3}\text{ tioi}$\text{ data}
out <- fnets(x, q = 2, var.order = 1, var.method = "lasso",
do.lrpc = FALSE, var.args = list(n.cores = 2))
cpre.unr <- common.predict(out, x, h = 1, fc.restricted = FALSE, r = NULL)
cpre.res <- common.predict(out, x, h = 1, fc.restricted = TRUE, r = NULL)
ipre <- idio.predict(out, x, cpre.res, h = 1)</pre>
```

sim.restricted

Simulate data from a restricted factor model

Description

Simulate the common component following an unrestricted factor model that admits a restricted representation; see the model (C2) in the reference.

Usage

```
sim.restricted(n, p, q = 2, heavy = FALSE)
```

Arguments

n	sample size
p	dimension
q	number of unrestricted factors; number of restricted factors is given by $2 * q$

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series
q number of factors

r number of restricted factors

sim.unrestricted 21

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

Examples

```
common <- sim.restricted(500, 50)</pre>
```

sim.unrestricted

Simulate data from an unrestricted factor model

Description

Simulate the common component following an unrestricted factor model that does not admit a restricted representation; see the model (C1) in the reference.

Usage

```
sim.unrestricted(n, p, q = 2, heavy = FALSE)
```

Arguments

n	sample size
р	dimension

q number of unrestricted factors

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series q number of factors

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. arXiv preprint arXiv:2201.06110

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

```
common <- sim.unrestricted(500, 50)</pre>
```

22 sim.var

sim.var	
---------	--

Simulate a VAR(1) process

Description

Simulate a VAR(1) process; see the reference for the generation of the transition matrix.

Usage

```
sim.var(n, p, Gamma = diag(1, p), heavy = FALSE)
```

Arguments

n sample size p dimension

Gamma innovation covariance matrix; ignored if heavy = TRUE

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series
A transition matrix

Gamma innovation covariance matrix

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

```
idio <- sim.var(500, 50)
```

threshold 23

threshold	Edge selection for VAR parameter, inverse innovation covariance, and
	long-run partial correlation matrices

Description

Threshold the entries of the input matrix at a data-driven level to perform edge selection

Usage

```
threshold(mat, path.length = 500, do.plot = FALSE)
```

Arguments

mat input parameter matrix

path.length number of candidate thresholds do.plot whether to plot thresholding output

Details

See Liu, Zhang, and Liu (2021) for more information on the threshold selection process

Value

a list which contains the following fields:

threshold data-driven threshold thr.mat thresholded input matrix

References

Barigozzi, M., Cho, H. & Owens, D. (2022) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Liu, B., Zhang, X. & Liu, Y. (2021) Simultaneous Change Point Inference and Structure Recovery for High Dimensional Gaussian Graphical Models. Journal of Machine Learning Research, 22(274), 1–62.

Owens, D., Cho, H. & Barigozzi, M. (2022) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

```
set.seed(123)
A <- diag(.7, 50) + rnorm(50^2, 0, .1)
threshold.A <- threshold(A)</pre>
```

Index

```
abc.factor.number, 9
common.predict, 2, 13, 18, 20
factor.number, 3, 6, 9
fnets, 5, 17, 20
fnets.factor.model, 8, 18
fnets.var, 11
hl.factor.number, 9
idio.predict, 13, 20
imagePlot, 17
makePSOCKcluster, 6, 12, 15
par.lrpc, 7, 14
plot.fnets, 8, 16
plot.igraph, 17
predict.fm, 17
predict.fnets, 8, 19
sim.restricted, 20
\verb|sim.unrestricted|, 21|
sim.var, 22
threshold, 6, 12, 15, 23
```