Fast practical multi-pattern matching

Mateusz Pabian

1 Wprowadzenie

Fast practical multi-pattern matching to algorytm tekstowy służący do wyszukiwania w zadanym tekście wystąpień słów z podanego zbioru wzorców.

Algorytm jest ulepszeniem algorytmu Commentz-Waltera, czerpiąc z niego kilka istotnych obserwacji takich jak przeskakiwanie nieinteresujących obszarów tekstu oraz wykorzystanie automatu Aho-Corasick. Dodatkowym elementem zwiększającym efektywność jest wykorzystanie automatu sufiksowego zwanego dalej DAWG.

Algorytm, który jest tematem pracy, dla tekstu o długości n ma pesymistyczny czas działania O(n). W przypadku średnim, gdzie najkrótszy spośród wzorców ma długość m a suma ich długości jest wielomianowa w zależności od m oraz prawdopodobieństwo wystąpienia litery z alfabetu (co najmniej dwuelementowego) jest jednostajne i niezależne, złożoność wynosi $O(\frac{n}{m}*\log m)$, co jest równocześnie dolnym ograniczeniem dla tego problemu. Dodatkowo dla odpowiednio dużego m algorytm osiąga dobre rezultaty w praktyce.

2 Idea

Idea algorytmu oparta jest o dwie fazy zwane PROCESS1 oraz PROCESS2. Pierwsza z nich skanuje test od lewej do prawej przesuwając potencjalną pozycję zakończenia wzorca co najmniej o $\frac{m}{2}$. W tej fazie bazuje on na zmiennej γ , która spełnia niezmiennik γ = najdłuższy suffix od początku tekstu do pozycji i, który jest jednocześnie prefiksem jakiegoś wzorca. Jeśli długość $\gamma \leqslant \frac{m}{2}$ kończymy pierwszą fazę algorytmu i przechodzimy do fazy drugiej. W implementacji będziemy utożsamiać γ ze stanem w AC.

Faza druga wykonuje skanowanie tekstu od tyłu od pozycji i+SHIFT na odległość równą m,gdzie $SHIFT=m-|\gamma|.$

Dodatkowo podczas fazy pierwszej, gdy wyznaczamy kolejne wartości γ , będziemy używali zbudowanego wcześniej automatu Aho-Corasick, aby robić to bardziej efektywnie. Natomiast faza druga w skanowaniu do tyłu używa DAWGa, który został zbudowany przy użyciu zbioru odwróconych wzorców.

3 Struktura dla wzorców

W celu przechowywania w pamięci zadanego zestawu wzorców należy przed przystąpieniem do wyszukiwania zbudować automat Aho-Corasick oraz DAWG. Pozwoli to szybko odpowiadać na wymagane zapytania.

Algorithm 1 Fast practical multi-pattern matching, preprocessing

Definicja 3.1. Automat Aho – Corasick powinien udostępniać:

- $step(node, a) = stan \ AC \ po \ przetworzeniu \ znaku \ a \ zaczynając \ w \ node.$
- $traverse(node, s) = stan \ AC$ po przetworzeniu słowa s zaczynając w node.
- wartość depth oznaczającą głębokość w drzewie dla każdego wierzchołka.
- liste final oznaczającą jakie wzorce powinny zostać zaakceptowane dla danego wierzchołka.

Definicja 3.2. DAWG powinien udostępniać:

• $traverse(node, s) = stan\ DAWG\ po\ przetworzeniu\ słowa\ s\ zaczynając\ w\ node.$

Definicja 3.3. Potrzebne zapytania:

- $NEXT1(\gamma, a) = najdłuższy$ sufiks słowa γa będący jednocześnie prefiksem jakiegoś wzorca.
- NEXT2(j,i) = najdłuższy sufiks podsłowa text[j...i] będący jednocześnie prefiksem jakiegoś wzorca.

Algorithm 2 Fast practical multi-pattern matching, NEXT1

- 1: **procedure** NEXT1(γ , $c\overline{haracter}$)
- 2: $\mathbf{return} \ acm.step(gamma, char)$

⊳ wykonujemy jeden krok w AC

3: end procedure

Algorithm 3 Fast practical multi-pattern matching, NEXT2

1: **procedure** NEXT2(j, i)

⊳ indeksy zakresu tekstu

2: $\gamma_{new} = dawg.traverse(dawg.root, j, i)$

⊳ przechodzimy DAWG skanując znaki od i do j

3: **return** $acm.traverse(acm.root, \gamma_{new})$

 \triangleright przechodzimy AC aby móc utożsamić γ ze stanem

4: end procedure

4 Wyszukiwanie wzorca

Wyszukiwanie wzorca działa na zasadzie przesuwania zakresu tekstu bazując na AC oraz DAWG. Wykonujemy naprzemiennie fazę pierwszą i drugą wspomniane na początku. Pierwsza z nich skanuje test od lewej do prawej, aby przesunąć potencjalną pozycję zakończenia wzorca co najmniej o $\frac{m}{2}$. Przesunięcie opieramy na zmiennej γ , która spełnia niezmiennik $\Gamma: \gamma =$ najdłuższy suffix od początku tekstu do pozycji i, który jest jednocześnie prefiksem jakiegoś wzorca. Jeśli długość $\gamma \leqslant \frac{m}{2}$, kończymy pierwszą fazę algorytmu i przechodzimy do fazy drugiej. W implementacji będziemy utożsamiać γ ze stanem w AC, a głębokość tego stanu z długością dopasowanego prefiksu wzorca. Tak długo jak nie osiągnęliśmy wymaganej długości prefiksu, skanujemy kolejne znaki tekstu przechodząc jednocześnie po AC. Jeśli w tej fazie uda nam się dopasować jakiś wzorzec (γ jest stanem akceptującym automatu AC), to zwracamy go poprzez yield.

Faza druga wykonuje skanowanie tekstu od tyłu od pozycji i+SHIFT na odległość równą m, gdzie $SHIFT=m-|\gamma|$. Skanowanie odbywa się na zasadzie skanowania tekstu od tyłu jednocześnie symulując przejścia w DAWG. Tym sposobem dopasujemy najdłuższy sufiks spośród sufiksów wszystkich wzorców. Dla znalezionego sufiksu musimy jeszcze zaktualizować naszą pozycję w AC i możemy powrócić do fazy pierwszej.

Wynikiem tej części jest lista par postaci (w, i), gdzie w to któryś z szukanych wzorców, natomiast i to pozycja w tekście, na której został znaleziony wzorzec w.

Algorithm 4 Fast practical multi-pattern matching, faza wyszukiwania

```
1: procedure MULTI-PATTERN-MATCHING(text, n, S)
                                                                                  ⊳ tekst, długość, struktura
       i := 0
                                                                                          ⊳ pozycja w tekście
2:
3:
       \gamma := S.acm.root
                                                                            \triangleright równoważnie \gamma := S.acm.root
       while True do
                                                              \triangleright faza skanowania, zachowany niezmiennik \Gamma
 4:
           while \gamma.depth \geqslant \frac{m}{2} do
                                                         ⊳ szukamy odpowiednio długiego prefiksu wzorca
5:
               if \gamma is final state then
6:
                   vield (w, i) dla każdego w \in \gamma.out
 7:
               end if
8:
               i = i + 1
9:
               if i \ge n then
10:
                   return
11:
12:
               end if
               \gamma = NEXT1(\gamma, text[i])

⊳ wykonujemy krok w AC

13:
           end while
14:
           crit\_pos := i - \gamma.depth + 1
                                                             ⊳ pierwsza pozycja, której nie wykluczyliśmy
15:
           SHIFT := m - \gamma.depth
16:
           i = i + SHIFT
                                                                          ⊳ przeskakujemy fragment tekstu
17:
           if i \ge n then
18:
               return
19:
           end if
20:
           \gamma = NEXT2(crit\_pos, i)
                                                                 ⊳ szukamy najdłuższego sufiksu w DAWG
21:
22:
       end while
23: end procedure
```

5 Złożoność obliczeniowa algorytmu

Lemat 5.1. Zakładając zbudowaną strukturę AC oraz DAWG:

- $NEXT1(\gamma, a)$ działa w czasie O(1). Wykonanie funkcji NEXT1 sprowadza się do wykonania jednego kroku w automacie AC.
- NEXT2(j,i) działa w czasie $O(min(i-j,i-crit_pos))$. Wykonanie funkcji NEXT2 wymaga przeskanowania tekstu od pozycji i do j idąc od prawej. Równoczesne symulowanie DAWG wykona taką samą liczbę kroków.

Twierdzenie 5.2. Algorytm w sumie porównuje co najwyżej 2n znaków.

Dowód. Zauważmy, że znak na danej pozycji może być przetworzony przez PROCESS1 co najwyżej raz, ponieważ indeks i jest sukcesywnie przesuwany do przodu oraz PROCESS2 nigdy nie cofa go do tyłu. Oczywistym jest, że w jednym przejściu PROCESS2, również wykona tylko jedno porównanie. Zauważmy również, że SHIFT $> \frac{m}{2}$. Aby dwa kolejne wykonania PROCESS2 odwiedziły ten sam znak, długość γ przed rozpoczęciem fazy musiała by być większa niż $\frac{m}{2}$ co jest sprzeczne z warunkiem pętli fazy pierwszej.

Niech σ to prawdopodobieństwo jednostajnego wystąpienia symbolu w tekście. Wtedy:

Lemat 5.3.
$$Pr[\Delta(i) > (3k+1) * log_{\sigma}m] \leqslant \frac{1}{m^{k+1}}$$
.

Twierdzenie 5.4. Zakładając $M \leq m^k$ algorytm wykonuje $O(\frac{n}{m} * log_{\sigma} m)$ porównań.

Dowód. Podczas działania algorytmu wykonywanych jest co najwyżej $O(\frac{n}{m})$ przesunięć. Wystarczy jeszcze udowodnić, że średnio pierwsza i druga faza algorytmu odwiedza zaledwie logarytmiczną liczbę znaków. Niech $K=(3k+1)*log_{\sigma}m$. Zgodnie z powyższym lematem PROCESS2 zakończy się z dużym prawdopodobieństwem po K krokach (prawdopodobieństwo, że dopasujemy mniej niż K symboli jest wynosi co najmniej $\frac{m^{k+1}-1}{m^{k+1}}$). Jeśli nie, zrobi on m^k kroków z prawdopodobieństwem $\frac{1}{m^{k+1}}$. Dostajemy

więc średnią złożoność O(K) co jest logarytmiczne.

Skorzystajmy z podobnego argumentu dla PROCESS1. Jeśli $\Delta(i+K) < K$ wtedy algorytm przegląda co najwyżej K znaków (od pozycji i do i+K). Prawdopodobieństwo przeciwnego zdarzenia ponownie jest bardzo małe ($\leqslant \frac{1}{m^{k+1}}$).