$17/12/2014 - de\ 08h30\ à\ 10h00$

Ce sujet comporte 3 pages – Documents autorisés

Exercice 1:5 points

Une expression de type est définie inductivement de la sorte :

- Un type de base : integer, real, character, boolean, etc. est une expression de type;
- Une variable de type 'x est une expression de type;
- Un symbole α est une expression de type;
- Si T_1 et T_2 sont deux expressions de type, $(T_1 \times T_2)$ est une expression de type;
- Si T_1 et T_2 sont deux expressions de type, $(T_1 \to T_2)$ est une expression de type;
- Si $T_1, T_2, ..., T_k$, sont des expressions de type, $C_k(T_1, T_2, ..., T_k)$ est une expression de type, où C_k est un constructeur pour un type d'arité k.

Dans le code suivant où 'T représente un pointeur sur un type T et x' la valeur pointée par x.

```
struct Link {
       info: 'x;
       next: ^Link;
  function findLink(link: ^Link, info: 'y): ^Link;
       while ((link != null) && (info != link ^.info))
          link := link^.next;
       if (link != null)
10
          return link;
11
       else
12
13
           return null;
14
str_link: ^Link;
17 actual_link: ^Link;
|str_link| = new Link;
|\operatorname{str\_link} \widehat{} . \operatorname{info} := 32;
| str_link ^ . next := new Link; | str_link ^ . next ^ . info := "John"; | str_link ^ . next ^ . next := new Link;
str_link^.next^.next^.info := true;
str_link^n.next^n.next^n.next := null;
25 actual_link := findLink(str_link, "John")
```

Questions

- 1. Écrire l'expression de type de la structure Link
- 2. La fonction findLink est-elle polymorphe? Pourquoi?
- 3. On remarquera que dans le code précédent, la taille de la structure Link est inconnue a priori. En examinant l'ensemble du code, est-ce que le compilateur peut en inférer automatiquement le type complet pour chaque pointeur et en déduire la taille à allouer lors de chaque instruction new Link?
- 4. Est-ce que le typage statique est garanti avec ce langage de programmation?

Exercice 2:5 points

Soit G une grammaire algébrique ($\{S, X\}, \{A\}, S, R$) dont les règles de production R sont les suivantes :

 $S \to A \ C \ S \ B \ S$

 $S \to A \ C \ S$

 $S \to D$

Questions

- 1. Décrire l'analyse Earley de l'expression ACACDBD
- 2. La séquence produit deux analyses distinctes. Montrer comment l'on peut favoriser l'une des analyses avec la précédence d'opérateurs B < A (B est prioritaire sur A).

Exercice 3:5 points

Soit le graphe de flot de contrôle suivant, où 1 représente le bloc initial :

1. Calculer le graphe des dominants

Réponse

Sommets	1	2	3	4	5	6	7	8	9	10	11	12	13	2 3 9 10
Sommers	1	1			1	1		0	9	10		12	10	↓ ↓ ↓
	1		$\frac{1}{\alpha}$	1	1	1	1	1	1 ~	1	$\frac{1}{2}$	1 ~	1	$\begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix}$
		2	2	2	2	2	2	2	2	12/	2	/2/	/2/	
			3	3	3	3	3	3	3	13/	13/	3	13/	7 8 (12)
				4	4	4	4	4	4	<i>#</i>	4	<i>#</i>	<i>#</i>	7 8 (12)
					5	3	3	3	13	15/	15/	5	15/	↓
						6	Ø	Ø	Ø	/6/	/6/	/6/	/6/	(11)
							7	7	7	17	7	17	17	
								8	8	<i> </i>	<i>[</i> 8	<i> </i>	<i> </i>	
									$\begin{vmatrix} \varphi \\ 9 \end{vmatrix}$	9	9	19/9/	9	
									9					
										10	1/0/	10/	10/	
											11	1/1/	1/1/	
												12	1/2/	
													13	

 $2. \ \, \text{Est-ce que ce graphe de flot de contrôle contient une ou plusieurs boucles telles que définies dans le cours? Si oui, lesquelles?}$

Exercice 4:5 points

On considère les lignes de code suivantes :

```
1 L1:
_{5}|q:=a/b
_{6}|p := q*b
_{7}|\;r\;:=\;a-p
s \mid s := x+y
_{9} if (r > 0) jump L4
10 L3:
  print s
print b
jump L5
14 L4:
15 a := b
16 jump L6
17 L5:
_{18} | a := 0
_{19} b := 0
20 jump L7
21 L6:
b := r
jump L2
24 L7:
```

Questions

1. Dessiner le graphe de flot de contrôle correspondant.

Réponse

- 2. Pour chaque bloc de contrôle, indiquer les variables vivantes en entrée et en sortie.
- 3. Comment peut-on utiliser ce résultat pour optimiser le code?

Réponse

s:=x+y est un invariant qui peut être placé dans une en-tête de la boucle $(2,\,4,\,6)$

4. Que calcule ce programme?

Réponse

Pgcd de x et y