Qiuz8

P(Ci): bays computer = 'yes' -> 9/16 = 0.143
bays computer = 'no' -> 5/18 = 0.557

P(x/c;)

P(me="101...40"|buy_computer="yes")= 1/9 = 0.11 +1

P (age = " >1... 40 " | buy _ computer = " no ") = " no ") = 0/5 = 0 -> 1/5 = 0.2

P (income = "high" | buy _ computer = "yes") = 2/9 = 0.22

P(income = "high" buy computer = "no") = 1/5 = 0.1

P(std = "yes" | buy _ conputer = "yes") = 6/9 = 0.67

P(std = "yes " | buy _ conputer = " no ") = 1/5 = 0.2

P(Cradit = "fiar " | buy _ conputer = "yes") = 6/9 = 0.69

P (Cradit: "fiar" buy - computer = "no") = 2/5 = 0.4

Computers no 15 1/5 - 0.4

P(x(c;)): P(x|buys_computer = "yes") = 1.46 x 0.12 x 0.17 x 0.19 = 0.142
P(x|buys_computer = "no") = 0.2 x 0.4 x 0.2 x 0.4 = 0.0064

PCX 164ys_ computer = "no") = 0.2 × 0.1 × 0.1 × 0.4 = 0.0011

P(x(Cj)*P(Cj): P(x/buys_conputer="yes")*P(buys_conputer="xes") = 0.182 x 0.660 = 0.091
P(x/buys_conputer="no")*P(buys_conputer="no") = 0.0018x 0.557 = 0.002

Therefore, X belongs to class ("buxs_computer = yes")

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no