CS 3568: Intelligent Systems

Reinforcement Learning

Instructor: Tara Salman

Texas Tech University

Computer Science Department

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Texas Tech University

Tara Salman

Reinforcement Learning

The same of the sa

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- > All learning is based on observed samples of outcomes!

Initial

A Learning Trial

After Learning [1K Trials]

Initial

[Kohl and Stone, ICRA 2004]

[Kohl and Stone, ICRA 2004]

Training

Texas Tech University

Tara Salman

[Kohl and Stone, ICRA 2004]

Finished

Texas Tech University

Example: Toddler Robot

The Crawler!

[You, in Project 3]

Video of Demo Crawler Bot

Texas Tech University

Tara Salman

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - \triangleright A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- \square Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - > I.e. we don't know which states are good or what the actions do
 - Must actually try out actions and states to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

12

Model-Based Learning

Texas Tech University

13

Tara Salman

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - > Solve for values as if the learned model were correct

- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - > Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')

For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

 $\widehat{T}(s, a, s')$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

• •

 $\widehat{R}(s,a,s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

•••

Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Why does this work? Because samples appear with the right frequencies.

Texas Tech University

16

Tara Salman