Perceptron Learning II

Last Lecture

Perceptron Learning Algorithm

Today's Topics

- Numerical Example
- Convergence theorem

Perceptron

A more accepted convention,

$$y=1$$
 if $\sum_{i=0}^n w_i * x_i \geq 0$
 $=0$ if $\sum_{i=0}^n w_i * x_i < 0$

where, $x_0=1$ and $w_0=- heta$

$$egin{aligned} y &= 1 & if \sum_{i=1}^n \ w_i * x_i \geq heta \ &= 0 & if \sum_{i=1}^n \ w_i * x_i < heta \end{aligned}$$

Rewriting the above,

$$egin{aligned} y &= 1 & if \sum_{i=1}^n \ w_i * x_i - heta \geq 0 \ &= 0 & if \sum_{i=1}^n \ w_i * x_i - heta < 0 \end{aligned}$$

Algorithm: Perceptron Learning Algorithm

```
P \leftarrow inputs \ with \ label \ 1;
N \leftarrow inputs \ with \ label \ 0;
Initialize \mathbf{w} randomly;
while !convergence do
     Pick random \mathbf{x} \in P \cup N;
     if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < 0 then
          \mathbf{w} = \mathbf{w} + \mathbf{x};
     end
     if \mathbf{x} \in \mathbb{N} and \sum_{i=0}^{n} w_i * x_i \geq 0 then
          \mathbf{w} = \mathbf{w} - \mathbf{x};
     end
end
```

//the algorithm converges when all the inputs are classified correctly

Perceptron Learning Algorithm

If the perceptron makes a
 mistake (incorrect
 prediction) and the target = 1,
 we update weights as:
 w=w+x

If the perceptron makes a
 mistake (incorrect
 prediction) and the target = 0,
 we update weights as:
 w=w-x

Numerical Example: OR

Input (x1, x2)	Output (OR)
(0, 0)	0
(0, 1)	1
(1, 0)	1
(1, 1)	1

Parameters:

•Initial Weights: w1=0,w2=0,b=0

•Threshold: 0

Activation Function:

$$y=1 \text{ if } w1 \cdot x1 + w2 \cdot x2 + b) > = 0$$

 $Y=0 \text{ if } w1\cdot x1+w2\cdot x2+b) < 0$

• If the perceptron makes a **mistake (incorrect prediction)** and the **target = 1**, we **update weights as**:

W=M+X

• If the perceptron makes a **mistake** (incorrect prediction) and the **target = 0**, we **update weights as**:

W=M-X

Epoch 1:

- 1. Input (0, 0) -> Target = 0
- Net input = $0 \cdot 0 + 0 \cdot 0 + 0 = 0$
- Output = 1 (because net input ≥ 0)
- Mistake (output 1, target 0), so update rule w = w x:
 - w1 = 0 0 = 0
 - w2 = 0 0 = 0
 - b = 0 1 = -1

- 2. Input (0, 1) -> Target = 1
- Net input = $0 \cdot 0 + 0 \cdot 1 + (-1) = -1$
- Output = 0 (because net input < 0)
- Mistake (output 0, target 1), so update rule w=w+x:

•
$$w1 = 0 + 0 = 0$$

•
$$w2 = 0 + 1 = 1$$

•
$$b = -1 + 1 = 0$$

Epoch 1:

Step	Input (x1, x2)	Target (t)	Net Input (w1 <i>x1</i> + <i>w2</i> x2 + b)	Output (y)	Update Rule	Updated w1	Updated w2	Updated b
1	(0, 0)	0	$0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0 = 0$	1	w = w - x	0	0	-1
2	(0, 1)	1	$0 \cdot 0 + 0 \cdot 1 + (-1) = -1$	0	w = w + x	0	1	0
3	(1, 0)	1	$\begin{aligned} 0 \cdot 1 + 1 \cdot \\ 0 + 0 &= 0 \end{aligned}$	1	No update	0	1	0
4	(1, 1)	1	$\begin{aligned} 0 \cdot 1 + 1 \cdot \\ 1 + 0 &= 1 \end{aligned}$	1	No update	0	1	0

Epoch 2:

Step	Input (x1, x2)	Target (t)	Net Input (w1x1 + w2x2 + b)	Output (y)	Update Rule	Updated w1	Updated w2	Updated b
1	(0, 0)	0	$0 \cdot 0 + 1 \cdot 0 + 0 = 0$	1	w = w - x	0	1	-1
2	(0, 1)	1	$0 \cdot 0 + 1 \cdot 1 + (-1) = 0$	1	No update	0	1	-1
3	(1, 0)	1	$0 \cdot 1 + 1 \cdot 0 + (-1) = -1$	0	$egin{aligned} w = \ w + x \end{aligned}$	1	1	0
4	(1, 1)	1	$1 \cdot 1 + 1 \cdot 1 + 0 = 2$	1	No update	1	1	0

Input (x1, x2)	Target (OR)	Net Input (w1 * x1 + w2 * x2 + b)	Output (y)	Correct?
(0, 0)	0	$1 \cdot 0 + 1 \cdot 0 + 0 = 0$	0	Yes
(0, 1)	1	$1 \cdot 0 + 1 \cdot 1 + 0 = 1$	1	Yes
(1, 0)	1	$1 \cdot 1 + 1 \cdot 0 + 0 = 1$	1	Yes
(1, 1)	1	$1\cdot 1 + 1\cdot 1 + 0 = 2$	1	Yes

Perceptron Learning on Iris Dataset (Binary Class)

- self.weights = np.zeros(n_features)
- self.bias = 0
- for _ in range(self.n_iters):
- for idx, x_i in enumerate(X):
 - o linear_output = np.dot(x_i, self.weights) + self.bias
 - o y_predicted = self.activation_function(linear_output)
 - o update = self.learning_rate * (y[idx] y_predicted)
 - o self.weights += update * x_i
 - o self.bias += update

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called absolutely linearly separable if n+1 real numbers $w_0, w_1, ..., w_n$ exist such that every point $(x_1, x_2, ..., x_n) \in P$ satisfies $\sum_{i=1}^n w_i * x_i > w_0$ and every point $(x_1, x_2, ..., x_n) \in N$ satisfies $\sum_{i=1}^n w_i * x_i < w_0$.

Proposition: If the sets P and N are finite and linearly separable, the perceptron learning algorithm updates the weight vector \mathbf{w}_t a finite number of times. In other words: if the vectors in P and N are tested cyclically one after the other, a weight vector \mathbf{w}_t is found after a finite number of steps t which can separate the two sets.

- If $x \in N$ then $-x \in P$ (:: $w^T x < 0 \implies w^T (-x) \ge 0$)
- We can thus consider a single set $P' = P \cup N^-$ and for every element $p \in P'$ ensure that $w^T p \ge 0$

• Further we will normalize all the p's so that ||p|| = 1 (notice that this does not affect the solution $: if \quad w^T \frac{p}{||p||} \ge 0$ then $w^T p \ge 0$)

Algorithm: Perceptron Learning Algorithm

• w^* is some optimal solution which exists but we don't know what it is

• We make a correction only if $w^T \cdot p_i \leq 0$ at that time step

Proof:

- Now suppose at time step t we inspected the point p_i and found that $w^T \cdot p_i \leq 0$
- We make a correction $w_{t+1} = w_t + p_i$
- Let β be the angle between w^* and w_{t+1}

$$\cos\beta = \frac{w^* \cdot w_{t+1}}{||w_{t+1}||}$$

$$Numerator = w^* \cdot w_{t+1} = w^* \cdot (w_t + p_i)$$

$$= w^* \cdot w_t + w^* \cdot p_i$$

$$\geq w^* \cdot w_t + \delta \quad (\delta = min\{w^* \cdot p_i | \forall i\})$$

$$\geq w^* \cdot (w_{t-1} + p_j) + \delta$$

$$\geq w^* \cdot w_{t-1} + w^* \cdot p_j + \delta$$

$$\geq w^* \cdot w_{t-1} + 2\delta$$

$$\geq w^* \cdot w_0 + (k)\delta \quad (By \ induction)$$

- We make a correction only if $w^T \cdot p_i \leq 0$ at that time step
- So at time-step t we would have made only $k \leq t$ corrections
- Every time we make a correction a quantity δ gets added to the numerator
- So by time-step t, a quantity $k\delta$ gets added to the numerator

Proof (continued:)

So far we have,
$$w^T \cdot p_i \leq 0$$
 (and hence we made the correction)
$$cos\beta = \frac{w^* \cdot w_{t+1}}{||w_{t+1}||} \quad (by \ definition)$$

$$Numerator \geq w^* \cdot w_0 + k\delta \quad (proved \ by \ induction)$$

$$Denominator^2 = ||w_{t+1}||^2$$

$$= (w_t + p_i) \cdot (w_t + p_i)$$

$$= ||w_t||^2 + 2w_t \cdot p_i + ||p_i||^2)$$

$$\leq ||w_t||^2 + ||p_i||^2 \quad (\because w_t \cdot p_i \leq 0)$$

$$\leq ||w_t||^2 + 1 \quad (\because ||p_i||^2 = 1)$$

$$\leq (||w_{t-1}||^2 + 1) + 1$$

$$\leq ||w_{t-1}||^2 + 2$$

$$\leq ||w_0||^2 + (k) \quad (By \ same \ observation \ that \ we \ made \ about \ \delta)$$

Proof (continued:)

So far we have, $w^T \cdot p_i \leq 0$ (and hence we made the correction) $cos\beta = \frac{w^* \cdot w_{t+1}}{||w_{t+1}||} \quad (by \ definition)$ $Numerator \geq w^* \cdot w_0 + k\delta \quad (proved \ by \ induction)$ $Denominator^2 \leq ||w_0||^2 + k \quad (By \ same \ observation \ that \ we \ made \ about \ \delta)$ $cos\beta \geq \frac{w^* \cdot w_0 + k\delta}{\sqrt{||w_0||^2 + k}}$

- $cos\beta$ thus grows proportional to \sqrt{k}
- As k (number of corrections) increases $\cos\beta$ can become arbitrarily large
- But since $\cos\beta \leq 1$, k must be bounded by a maximum number
- Thus, there can only be a finite number of corrections (k) to w and the algorithm will converge!

Multi-layer Perceptrons

Perceptron Limitations

For a linearly not-separable problem:

- Would it help if we use more layers of neurons?
- What could be the learning rule for each neuron?

Solution: Multilayer networks and the backpropagation learning algorithm

Boolean XOR

Boolean functions from 2 inputs

x_1	x_2	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
_ 1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

• Of these, how many are linearly separable? (turns out all except XOR and !XOR - feel free to verify)

what do we do about functions which are not linearly separable?

$\overline{x_1}$	x_2	XOR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
1	1	0	$w_0 + \sum_{i=1}^{2} w_i x_i < 0$ $w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$ $w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$ $w_0 + \sum_{i=1}^{2} w_i x_i < 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

 $w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 1 < 0 \implies w_1 + w_2 < -w_0$

- The fourth condition contradicts conditions 2 and 3
- Hence we cannot have a solution to this set of inequalities

• And indeed you can see that it is impossible to draw a line which separates the red points from the blue points

Non-linearly separable data

- Most real world data is not linearly separable and will always contain some outliers
- In fact, sometimes there may not be any outliers but still the data may not be linearly separable
- We need computational units (models) which can deal with such data
- While a single perceptron cannot deal with such data, we will show that a network of perceptrons can indeed deal with such data

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the **hidden layer**
- The final layer containing one output neuron is called the **output layer**

Source: Prof. Mithesh Khapra Deep Learning Course

red edge indicates w = -1blue edge indicates w = +1

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the **hidden layer**
- The final layer containing one output neuron is called the **output layer**
- The outputs of the 4 perceptrons in the hidden layer are denoted by h_1, h_2, h_3, h_4
- The red and blue edges are called layer 1 weights
- w_1, w_2, w_3, w_4 are called layer 2 weights

• Let w_0 be the bias output of the neuron (i.e., it will fire if $\sum_{i=1}^4 w_i h_i \ge w_0$)

x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^4 w_i h_i$
							$\cdot w_1$

Source: Prof. Mithesh Khapra Deep Learning Course

red edge indicates w = -1blue edge indicates w = +1 • Let w_0 be the bias output of the neuron (i.e., it will fire if $\sum_{i=1}^4 w_i h_i \geq w_0$)

x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^{4} w_i h_i$
0	0	0	1	0	0	0	w_1
0	1	1	0	1	0	0	w_2
1	0	1	0	0	1	0	w_3
_1	1	0	0	0	0	1	w_4

- This results in the following four conditions to implement XOR: $w_1 < w_0, w_2 \ge w_0, w_3 \ge w_0, w_4 < w_0$
- Unlike before, there are no contradictions now and the system of inequalities can be satisfied
- Essentially each w_i is now responsible for one of the 4 possible inputs and can be adjusted to get the desired output for that input

red edge indicates w = -1blue edge indicates w = +1

- It should be clear that the same network can be used to represent the remaining 15 boolean functions also
- Each boolean function will result in a different set of non-contradicting inequalities which can be satisfied by appropriately setting w_1, w_2, w_3, w_4

Source: Prof. Mithesh Khapra Deep Learning Course

more than 3 inputs

- Again each of the 8 perceptorns will fire only for one of the 8 inputs
- Each of the 8 weights in the second layer is responsible for one of the 8 inputs and can be adjusted to produce the desired output for that input

How to solve real world problem?

n inputs

Theorem

Any boolean function of n inputs can be represented exactly by a network of perceptrons containing 1 hidden layer with 2^n perceptrons and one output layer containing 1 perceptron

Proof (informal:) We just saw how to construct such a network

Note: A network of $2^n + 1$ perceptrons is not necessary but sufficient. For example, we already saw how to represent AND function with just 1 perceptron

Catch: As n increases the number of perceptrons in the hidden layers obviously increases exponentially

Last Lecture

- MLP
- Any boolean function can be represented using an MLP

Sigmoid Neuron

- Negatives of thresholding logic in perceptron
- How sigmoid neuron overcomes this limitation?
- Learning algorithm of sigmoid neuron
- How sigmoid neurons represents arbitrary functions?

Thresholding Logic of Perceptron

- The thresholding logic used by a perceptron is very harsh!
- For example, let us return to our problem of deciding whether we will like or dislike a movie
- Consider that we base our decision only on one input $(x_1 = criticsRating \text{ which lies between } 0 \text{ and } 1)$
- If the threshold is 0.5 ($w_0 = -0.5$) and $w_1 = 1$ then what would be the decision for a movie with criticsRating = 0.51? (like)
- What about a movie with criticsRating = 0.49? (dislike)
- It seems harsh that we would like a movie with rating 0.51 but not one with a rating of 0.49

Thresholding Logic of Perceptron

- This behavior is not a characteristic of the specific problem we chose or the specific weight and threshold that we chose
- It is a characteristic of the perceptron function itself which behaves like a step function
- There will always be this sudden change in the decision (from 0 to 1) when $\sum_{i=1}^{n} w_i x_i$ crosses the threshold $(-w_0)$
- For most real world applications we would expect a smoother decision function which gradually changes from 0 to 1

Sigmoid Neuron

- Introducing sigmoid neurons where the output function is much smoother than the step function
- Here is one form of the sigmoid function called the logistic function

$$y = \frac{1}{1 + e^{-(w_0 + \sum_{i=1}^n w_i x_i)}}$$

- We no longer see a sharp transition around the threshold $-w_0$
- Also the output y is no longer binary but a real value between 0 and 1 which can be interpreted as a probability
- Instead of a like/dislike decision we get the probability of liking the movie

Perceptron Vs Sigmoid

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$

Sigmoid (logistic) Neuron

$$y = \frac{1}{1 + e^{-(\sum_{i=0}^{n} w_i x_i)}}$$

Perceptron Vs Sigmoid

Not smooth, not continuous (at w0), **not** differentiable

 $Smooth,\,continuous,\,\mathbf{differentiable}$

How do we learn weights of Sigmoid Neuron?

Learning Setup

- Data: $\{x_i, y_i\}_{i=1}^n$
- Model: Our approximation of the relation between x and y. For example,

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{T}\mathbf{x})}}$$
or $\hat{y} = \mathbf{w}^{T}\mathbf{x}$
or $\hat{y} = \mathbf{x}^{T}\mathbf{W}\mathbf{x}$

or just about any function

- Parameters: In all the above cases, w is a parameter which needs to be learned from the data
- Learning algorithm: An algorithm for learning the parameters (w) of the model (for example, perceptron learning algorithm, gradient descent, etc.)
- Objective/Loss/Error function: To guide the learning algorithm the learning algorithm should aim to minimize the loss function

Example

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Input for training

 $\{x_i, y_i\}_{i=1}^N \to N \text{ pairs of } (x, y)$

Training objective

Find w and b such that:

$$\underset{w,b}{\text{minimize}} \mathcal{L}(w,b) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

What does it mean to train the network?

- Suppose we train the network with (x, y) = (0.5, 0.2) and (2.5, 0.9)
- At the end of training we expect to find w*, b* such that:
- $f(0.5) \to 0.2$ and $f(2.5) \to 0.9$

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

- Can we try to find such a w^*, b^* manually
- Let us try a random guess.. (say, w = 0.5, b = 0)
- Clearly not good, but how bad is it?
- Let us revisit $\mathcal{L}(w,b)$ to see how bad it is ...

$$\mathcal{L}(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$= \frac{1}{2} * (0.9 - f(2.5))^2 + (0.2 - f(0.5))^2$$

$$= 0.073$$

We want $\mathcal{L}(w,b)$ to be as close to 0 as possible

Let us try some other values of w, b

\overline{w}	b	$\mathscr{L}(w,b)$
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028
1.65	-2.08	0.0003
1.78	-2.27	0.0000

Error Surface

Random search on error surface

Gradient Descent

Goal

Find a better way of traversing the error surface so that we can reach the minimum value quickly without resorting to brute force search!

```
Algorithm: gradient_descent()
t \leftarrow 0;
max\_iterations \leftarrow 1000;
\mathbf{while} \ t < max\_iterations \ \mathbf{do}
w_{t+1} \leftarrow w_t - \eta \nabla w_t;
b_{t+1} \leftarrow b_t - \eta \nabla b_t;
t \leftarrow t + 1;
end
```

Multi Layer Network of Sigmoid Neurons

Representation power of a multilayer network of perceptrons

A multilayer network of perceptrons with a single hidden layer can be used to represent any boolean function precisely (no errors) Representation power of a multilayer network of sigmoid neurons

A multilayer network of neurons with a single hidden layer can be used to approximate any continuous function to any desired precision

How to represent an arbitrary function?

- We are interested in knowing whether a network of neurons can be used to represent an arbitrary function (like the one shown in the figure)
- We observe that such an arbitrary function can be approximated by several "tower" functions
- More the number of such "tower" functions, better the approximation
- To be more precise, we can approximate any arbitrary function by a sum of such "tower" functions

How do we generate tower functions using sigmoid neuron?

2 inputs

