

Follow-up feasibility study on sustainable batteries under FWC ENER/C3/2015-619-Lot 1

Task 2 Report

CHARACTERISATION OF PERFORMANCE AND SUSTAINABILITY REQUIREMENTS FOR RECHARGEABLE BATTERIES WITH INTERNAL STORAGE FOR CHEMISTRIES OTHER THAN LITHIUM-ION FOR BOTH ELECTRO-MOBILITY AND STATIONARY APPLICATIONS

VITO, Fraunhofer, Viegand Maagøe

Study team leader: Paul Van Tichelen

VITO/EnergyVille – paul.vantichelen@vito.be

Key technical expert: Grietus Mulder

VITO/EnergyVille – grietus.mulder@vito.be

Authors of Task 2: Paul Van Tichelen – VITO/EnergyVille

Grietus Mulder – VITO/EnergyVille

Quality Review Task 1/2/3/4: Jan Viegand – Viegand Maagøe A/S(Tasks 1-3)

Paul Van Tichelen – VITO/EnergyVille (Task 4)

Project website: https://ecodesignbatteries.eu/

EUROPEAN COMMISSION

Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs

Directorate Directorate C - Industrial Transformation and Advanced Value Chains

Unit Directorate C1

Contact: Cesar Santos

E-mail: cesar.santos@ec.europa.eu

European Commission B-1049 Brussels

Europe Direct is a service to help you find answers to your questions about the European Union.

Freephone number (*):

00 800 6 7 8 9 10 11

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

LEGAL NOTICE

This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

This report has been prepared by the authors to the best of their ability and knowledge. The authors do not assume liability for any damage, material or immaterial, that may arise from the use of the report or the information contained therein.

More information on the European Union is available on the Internet (http://www.europa.eu).

Luxembourg: Publications Office of the European Union, 2020

ISBN 978-92-76-16376-3

Doi: 10.2873/780284

ET-02-20-132-EN-N

© European Union, 2020

Reproduction is authorised provided the source is acknowledged.

Use of number format

"space" as thousand separator

. "dot" as decimal point

Contents

2.	TASK 2 – CHARACTERISATION OF PERFORMANCE AND SUSTAINABILITY REQUIREMENTS FOR RECHARGEABLE BATTERIES WITH INTERNAL STORAGE FOR CHEMISTRIES OTHER THAN LITHIUM-ION FOR BOTH ELECTRO-MOBILITY AND STATIONARY APPLICATIONS	5
2.0.	General introduction to Task 2	5
2.1.	Key Challenges	5
2.2.	Scope considerations	5
2.2.1.	Existing scope definition for Lithium Chemistries	5
2.2.2.	New scope definition including other than lithium chemistries	6
2.3.	Example of chemistries	6
2.3.1.	For electric vehicles applications	6
2.3.2.	For stationary energy storage applications	6
2.3.3.	Battery standards	7
2.4.	Screening of the originally proposed scope versus proposed policy in follow-up study	7
2.4.1.	Minimum battery pack/system lifetime requirements	7
2.4.2.	Requirements for battery management systems	15
2.4.3.	Requirements for providing information about batteries and cells	17
2.4.4.	Requirements on the remaining three topics	20
2.5.	Conclusion on technology neutral policy	20
2.5.1.	The potential need and rational for performance concessions for other chemistries	20
2.5.2.	Rationale and method for potential concessions on remaining capacity versus lifetime in policy requirements	21
2.5.3.	Rationale and method for remaining round trip efficiency versus lifetime in policy requirements	22

2. Task 2 — Characterisation of performance and sustainability requirements for rechargeable batteries with internal storage for chemistries other than lithium-ion for both electro-mobility and stationary applications

2.0. General introduction to Task 2

The original study has focused primarily on lithium-ion batteries, which is likely to remain as the predominant technology in the market in the near future. However, any potential regulation that is proposed, after the analytical phase has concluded, should be as technology neutral as possible.

Therefore, there is a need to verify that the performance and sustainability requirements suggested in the original study are applicable for battery technologies and chemistries other than lithium ion, and what adjustments might be necessary to make an possible regulation and technology and chemistry neutral as possible. This should include an analysis of existing and prospective battery chemistries, including lithium metal, sodium-sulphur and nickel metal hydride.

2.1. Key Challenges

Key challenges are:

- Considering the current state of the proposed requirements on sustainability, for example carbon footprint information, can be easily applied to other chemistries and is relatively straightforward.
- The extension of the proposed performance requirements on battery lifetime is considered a much larger challenge, because standards are missing and here again a reliable set of public available data to set thresholds.
- In general, for ESS a technology agnostic test standard exists, but seems especially written for leadacid batteries. Specific standards for ESS application exist for lithium, lead-acid, nickel metal hydride and high temperature sodium batteries. Standards on EVs mainly focus on the Li-ion chemistry.

2.2. Scope considerations

2.2.1. Existing scope definition for Lithium Chemistries

In line with Task 1 of the preparatory study the proposed scope is 'high energy rechargeable batteries of high specific energy with solid lithium cathode chemistries for e-mobility and stationary energy storage (if any)'.

High specific energy is hereby defined by a gravimetric energy density 'typically' above 100 Wh/kg at cell level.

High capacity means that a total battery system capacity between 2 and 1000 kWh.

See Task 1 for more details.

This does not include power electronics neither heat nor cool supply systems for thermal management, which can be part of what the study defined as a battery *application* system.

Further on in Task 7 of the original study the applications EV and stationary energy storage was proposed for the regulation.

2.2.2. New scope definition including other than lithium chemistries

The scope of Task 2 is the original scope extended to all rechargeable battery chemistries with internal storage, covering the original applications (EV & ESS).

The scope becomes therefore:

'rechargeable batteries of high capacity with internal storage for e-mobility and stationary energy storage (if any)'. High capacity means that a total battery system capacity between 2 and 1000 kWh.'

2.3. Example of chemistries

2.3.1. For electric vehicles applications

We do not consider that other than lithium chemistries will play a significant role in near future. This has been underpinned recently by attributing the Noble prize for the development of lithium chemistries. Lithium chemistries have the highest energy density of all rechargeable battery types.

Lithium chemistries include besides Li-ion, also lithium alloys, lithium metal and lithium sulphur batteries. The international standardisation committee IEC SC21A includes those types in their scope of lithium batteries. Nevertheless, their prescribed test methods and rules, including battery marking, are skewed to the lithium ion industry as that is the most dominant.

2.3.2. For stationary energy storage applications

For electric vehicle applications only lithium chemistries are envisaged due to their high specific energy density. In case of stationary energy storage this is not a decisive parameter and therefore other chemistries can remain and/or enter the market. Hence the remainder of this report will focus on these chemistries for ESS. The following chemistries are taken into the evaluation:

- Li-ion
- Li-metal
- Lead-acid
- Advanced lead
- NiMH
- NiFe
- NaNiCl₂
- NaS
- hybrid-ion
- LiS
- Na-ion

Recent market data from Germany showed that for residential grid energy storage applications the market converges to lithium chemistries, despite above mentioned argument for investigating other chemistries. Consequently, it will also be difficult to obtain representative market data for other chemistries than Li-ion and much in the study will be based on assumptions.

Figure 2-1: Evolution of market share between lead-acid batteries ('Blei') and Li-ion batteries ('Lithium') on the German market for PV energy storage. Source: Speichermonitoring Jahresbericht 2018, RWTH Aachen.

2.3.3. Battery standards

The extended scope requires also an augmentation of the inventory on battery standards. For performance related standards this is given in the annex, Table 2-8.

2.4. Screening of the originally proposed scope versus proposed policy in follow-up study

In task 7 of the preparatory study for ecodesign batteries policy propositions were given on 6 topics:

- 1. Minimum battery pack/system lifetime requirements
- 2. Requirements for battery management systems
- 3. Requirements for providing information about batteries and cells
- 4. Requirements on the traceability of battery modules and packs
- 5. Carbon footprint information and the option for a threshold
- 6. Minimum battery pack design and construction requirements

Hereafter it is evaluated how well they fit for the other battery chemistries in the case of stationary energy storage (this case has been selected in the previous section as the only case where other batteries are considered than lithium chemistries).

2.4.1. Minimum battery pack/system lifetime requirements

The original lifetime requirements from the preparatory study, task 7, for stationary energy storage are reproduced here. The requirements were split into requirements at mid-life that are tested according to a cycle-life test (see Table 2-1) and into warranty requirements (see Table 2-2). **Error! Reference source not found.** These requirements are for new batteries. Storage systems made of second life batteries cannot be re-submitted to the original requirements.

The evaluation of the requirements is performed with help of three subsequent tables:

- Coverage of performance criteria in standards (Table 2-3);
- Possible performance of the selected chemistries for ESS application (Table 2-4);
- Evaluation against currently proposed criteria, including conclusion and standardisation need per chemistry (Table 2-5).

Of each battery chemistry many battery types are produced with a different set of design requirements. Even for stationary energy storage, one brand can produce several battery types with difference in predicted lifetime, maintenance need and certainly in price. The possible performances shown in the Table 2-4 is therefore not valid for all battery types. They have been assumed as plausible and the source is mentioned. Hardly, data on efficiency exists. In some case data from the battery testing lab is given as an indication. This is clearly documented in the table.

After the tables (2-1 to 2-5) conclusions are derived.

Table 2-1: Summary of minimum battery system lifetime compliance requirements as tested before bringing on the market for the ESS application. This test represents a mid-life condition (copied from Table 7-2 in the previous task 7 report).

Application	Remaining capacity (relative to the declared value)	Maximum internal resistance increase	Minimum round- trip energy efficiency	Standards (provisional -see notes on review)
ESS	90 % @ 2000 cycles	NA	94 % @ 2000 cycles	IEC 61427-2 Cycle-life test according to declared application(s)

Table 2-2: Summary of minimum battery system lifetime minimum warranty requirements (copied from Table 7-3 in the previous task 7 report).

Appli- cation	Warranty period	(whatever reached first)	Minimum warranty				Methods
	Calendar life ¹ warranty	Exceedance of minimum warranted amount of stored energy during the lifetime	Minimum energy that can be stored over life time in kWh	Remaining capacity (relative to the declared value)	Maximum internal resistance increase	Minimum round-trip energy efficiency	Standards (provisional -see notes on review)
ESS	12 years	See prescription at the right	Declared capacity [kWh]x2000	80%	NA	88%	IEC 61427-2 Cycle-life test according to declared application(s)

 $^{^{\}rm 1}$ Measured from the manufacturing time (see information proposal in previous Task 7 report).

Table 2-3: Evaluation of standards for the needed performance characteristics. (Resistance test is given. It is important for EV application, but no threshold was given for this in case of ESS. Therefore, this column is in grey colour).

Chemistry	Standard	Cycle-life test	Description test	(Remai- ning) capacity test	Energy deter- mination	Efficiency test	Resistance test	Conclusion (standardisation need)
Agnostic	IEC 61427-2	yes	Cycles for 4 applications, mostly 1 cycle per 24h. No EOL criteria.	no	no	no	no	Insufficient (see previous task 7 for details).
Li-ion	IEC 62620	yes	500 cycles with 1/51 _t . 11 _t allowed. The capacity must remain above 60% of initial capacity. The cycle test can be repeated several times until the EOL criterion.	yes	no	no	yes	Sufficient, but officially only for industrial applications.
	BVES Effizienzleitfaden	no	-	no	no	yes	no	Insufficient, focusses on performance of application system instead of battery life.
	White Paper on Test methods for improved battery cell understanding	yes	Large dataset of many conditions	yes	yes	yes	yes	Insufficient: cell level only; not application oriented.
	Summary		IEC 62620 can be sufficient if it is allowed to be used for residential storage too. The test cycle is not application dependent but with a C/5-rate representative for ESS. Other standards are insufficient.					IEC 62620 can be sufficient if it is allowed to be used for residential storage too. The test cycle is not application dependent but with a C/5-rate representative for ESS. Other standards are insufficient.
Li metal	IEC 62620	see above						See for Li-ion.
Lead-acid	IEC 61427-2	see above						The cyclelife tests in IEC 61427-2 are designed for lead batteries, but take too long for being applicable.
	IEC 60896 series	yes	Float service (daily a 40% DOD (2h) at C_{10} , until 80% of initial capacity).	yes	no	no	yes	The cyclelife test is hardly representative and slow procedure. It is more applicable for UPS service.
	IEC 61056-1	yes	2 test cycles: float service and for cycle service endurance (daily a 50% DOD(<i>C</i> ₁₀) (4 to 6h) until 50% of initial capacity).	yes	no	no	no	The discharge time in the cycle service endurance test is representative. Charge does not reflect solar energy charging. A slow procedure.
	Summary							Cycle life tests in standards take too long, performance indicators not all covered. Charge is not representative in the standards
Advanced lead	like lead-acid	see above	see above					See for lead-acid
NiMH	IEC 63115-1	yes	Cycle life consists of 2h20' discharges at $I_t/4$ and charge with same rate, until 70% of initial capacity.	yes	no	no	no	Performance indicators are mostly not covered.

Follow-up feasibility study on sustainable batteries

Chemistry	Standard	Cycle-life test	Description test	(Remai- ning) capacity test	Energy deter- mination	Efficiency test	Resistance test	Conclusion (standardisation need)
	IEC 62675	yes	Cycle life consists of 3h discharges I/S and charge with same rate, until 70% of initial capacity.	yes	no	no	no	Performance indicators are mostly not covered.
	Summary							Performance indicators lacking, cycle life tests not representative for ESS applications (more for UPS).
NiFe	lacking	-	-	-	-	-	-	No standard
NaNiCl ₂	IEC 62984-3	yes	Cycle life test is a 8h discharge at 80% DOD, repeated 300 times, with a max. energy contents loss of 5%.	yes	yes	yes	no	Cycle life test seems representative, but shorter in cycles than envisaged with the policy proposition.
NaS	IEC 62984-3	see above	11					n
Hybrid ion	lacking	-	-	-	-	-	-	No standard
LiS	lacking	-	-	-	-	-	-	No standard
Na-ion	lacking	-	-	-	-	-	-	No standard

Table 2-4: Possibilities of the chemistries for ESS

Chemistry	Reasonable # cycles	Reasonable # calendar years	DOD per cycle	Capacity retention at EOL	Lifetime energy (equivalent cycles: correction for DOD and avg. SOH)>	Lifetime estimation (min. of calendar life and cycle life)	Characteristic efficiency	Source
Proposed	2000 at midlife (4000 in total)	12 at midlife (25 in total)	80%	90% at midlife (80% at EOL)	2880 (80% DOD, 90% SOH on avg., 200 cycles/yr)	20	94% (at midlife)	From task 7
Li-ion	4000	20	80%	80%	2880	20	94%	From task 7
Li metal	unknown	unknown	unknown	unknown	unknown	unknown	unknown	Not found
Lead-acid	3000	8	40%	80%	576	8	90%²	http://www.sonnenschein.org/PDF%20files/GelHandbookPart2.pdf
Advanced lead	2400	10	60%	80%	1080	10	unknown	http://lead-crystalbatteries.co.uk/images/docs/Data/2V/BLC-CNFJ-300.pdf
NiMH	8000	20	50%	80%	1800	20	90%³ /unknown	https://www.nilar.com/wp-content/uploads/2019/05/Product-catalogue- Nilar-EC-Series-EN.pdf
NiFe	4000	20	50%	70% ³	1700 ⁴	20	70%⁵/ unknown	https://batterysupplies.be/wp-content/uploads/docs/catalog/BSCataloogENG_web_nife.pdf
NaNiCl ₂	3000	15	80%	70% ⁵	2040 ⁶ / unknown	15	84% 7	https://www.electrilabs.co.za/Electrilabs%20-%20Sodium%20 Nickel%20batteries.pdf
NaS	4500	20	50%	80%	1800	20	75%	http://ease-storage.eu/wp-content/uploads/2018/09/2018.07_ EASE_Technology-Description_NaS.pdf
Hybrid ion	3000	15	50%	70%	1275	15	85%	http://www.eventhorizonsolar.com/pdf/Batteries/aquion_energy_aspen_ 48m_25_9_product_specification_sheet1pdf

² Not in datasheet; based on solar cycle tests at VITO with a multitude of lead-acid batteries.

³ Based on measurement at VITO with NiMH for LEV it is 90% with a 50% SOC window. The datasheet in the source does not provide it.

⁴ Remaining capacity as EOL criterion is not given in datasheet: 70% is assumed.

⁵ Not in the datasheet. 70% is found in internet sources.

⁶ EOL capacity not given. Based on extrapolation of the standard (cat.A) it can be 70%.

⁷ Communication from ENEL as answer on the question in this study for data, communicated as 83 to 85%.

Chemistry	Reasonable # cycles	Reasonable # calendar years	DOD per cycle	Capacity retention at EOL	Lifetime energy (equivalent cycles: correction for DOD and avg. SOH)>	Lifetime estimation (min. of calendar life and cycle life)	Characteristic efficiency	Source
LiS (Labora- tory scale)	1500	unknown	80%	80% ⁸ / unknown	1080/ unknown	unknown	unknown	https://oxisenergy.com/wp-content/uploads/2016/10/OXIS-Li-S-Ultra- Light-Cell-v4.01.pdf
Na-ion (Laboratory scale)	2000 ⁹	unknown	100%	80%	1800	unknown	90% ⁹	https://pubs.rsc.org/en/content/articlepdf/2016/ee/c6ee00640j (Peters, Jens, et al. "Life cycle assessment of sodium-ion batteries." Energy & Environmental Science 9.5 (2016): 1744-1751)

⁸ Assumption: like Li-ion.

⁹ Based on the assumption mentioned in the source.

Table 2-5: Evaluation of currently proposed policy propositions

Chemistry	Performance: # cycles	Performance:	Performance:	Warranty:	Warranty: #	Warranty:	Warranty:	Conclusion	Standardisation need
		remaining	min. efficiency	period	cycles	remaining	min.		
Liion	OK	capacity OK	OK	OK	OK	capacity OK	efficiency OK	Dronosition is everytable	IEC 63630 is proposed
Li-ion		- OK	- OK	OK	- OK	UK .	OK	Proposition is executable	IEC 62620 is proposed.
Li metal	Unknown							Unknown if proposition is feasible due to lack	See above. Heating energy must be included
								of performance data. Inclusion needed of	however: extension needed.
								energy consumption to keep battery at	
								elevated temperature	
Lead-acid	For most lead batteries,	OK (in line with IEC 60896	Not attainable.	too long	too much.	Correct.	Too high	Adaptation of requirements is needed.	Need to cover energy and efficiency
	proposition is too much.	series)							determination. A quicker test procedure is
		·							needed too.
Advanced	Requirement is higher	OK	Unknown	should be	too much.	Correct.	unknown	See lead-acid	See lead-acid
lead	than possible			half.					
NiMH	Good	good	unknown	good	good	good	unknown	This chemistry can fulfil lifetime criteria, but at	Need for performance indicators in test regime.
								slightly lower efficiency.	Shorter test cycle is needed.
NiFe	Good	unknown	Not attainable.	good	good	unknown	unknown	This chemistry can fulfil lifetime criteria, but at	Standard is necessary.
			it has low efficiency.					low efficiency.	
NaNiCl ₂	Requirement is higher	unknown	unknown.	too long	too high	unknown	Too high	A suitable standard exists. Little data available.	Correct.
Natifici2	than possible						3	The proposed requirements are too high for	COTTCC.
								this chemistry.	
NaS	Good	unknown	Not attained.	good	good	unknown	Too high	For lifetime the criteria are good. For efficiency	Correct.
Nus				3	3			too high.	COTTCCE.
Hybrid ion	Requirement is higher	Too high	Not attained.	too long	too high	too high	too high	The proposed criteria are for lifetime and	Standard is necessary.
,	than possible	-		-	-	-		efficiency too high.	Standard Streetsbary.
LiS	Too high in the short	unknown	unknown	unknown	too high	unknown	unknown	It is a future type, little information available.	Covered by lithium standards, but methods
-	term.							Progress possible on cycles.	may be too much dedicated at Li-ion currently.
Na-ion	Probably good	Probably good	Probably good	Probably	Probably	Probably	Probably	It is a future type, it seems close to Li-ion and	Probably this chemistry can fall under
				good	good	good	good	therefore the propositions are OK.	Lithium(-ion) standardisation.

2.4.1.1. Conclusion on policy measure

The current policy propositions appear only feasible with Li-ion batteries. This is mainly due to a lower efficiency for all other battery chemistries (as far as information was found).

The best batteries after Li-ion regarding efficiency are NiMH and lead-acid, under the condition that they are not often fully charged since most energy loss occurs at almost fully charged batteries for NiMH and lead-acid batteries. For NiMH it is not problematic to avoid full charges, even in the contrary (their lifetime increases if they are not fully charged regularly). For lead-acid abstaining from frequent full charges is only possible for batteries that are dedicated for so-called "partial SOC" (pSOC) operation.

A lifetime of 20 years is for several chemistries possible: Li-ion, NiMH, NiFe and NaS. If this criterion is decreased to 15 years also NaNiCl₂ and hybrid-ion are possible.

2.4.1.2. Conclusion on the standards analysis

The analysis of the standards in Table 2-3 shows that standards are lacking for NiFe, hybrid-ion, LiS and Na-ion. Only for NaNiCl₂ and NaS all needed information is covered by a standard, being a representative cycle life test and measurement methods of the needed performance indicators, being the (remaining) energy contents and the efficiency. Of the other batteries, the standards do not cover the performance indicators and the cycle life tests are sufficiently useful: they are not representative enough or too time consuming.

2.4.2. Requirements for battery management systems

In task 7 of the preceding study requirements have been proposed for battery management systems. This covers several topics:

- Provision of partially open data covering:
 - State of *BMS update possibilities* Coupling to the information about traceability of battery modules and packs
- Diagnostics connector
- BMS update possibilities

The evaluation of the BMS requirements is given in the subsequent table (Table 2-6).

2.4.2.1. Conclusion on policy measure

Half of the chemistries use a BMS, i.e. Li-ion, Li-metal, sometimes NiMH, NaNiCl₂, NaS and Na-ion. They are probably of the advanced type, that is capable to perform analytics on the remaining capacity and the change in resistance (for ESS resistance was not seen as an issue). Currently only the Li-ion battery type is used for repurposing means, creating a necessity of partial open data on the remaining battery quality. This need is less existing for other batteries, but still sustaining a long first life operation possibility, by the means of being able to follow up the battery degradation.

For the battery types that would be able to fulfil the (adapted) policy requirements for system lifetime, it is recommended that they also fulfil the BMS requirement, at least to enable the degradation awareness. If a battery does not need a BMS for safety reasons, the ageing diagnostics can be added by an external analysing and logging device

Table 2-6: Evaluation of battery management system requirement

Chemistry	Availability BMS	Repurpo- sing ¹⁰	Communication method	BMS: partially	open data				Diagnostics connector	BMS update possibility	Conclusion	Standardisation need
				SOH info	SOH definition	Lifetime info	Traceability info	Conclusion				
Proposed	advanced BMS	yes	CAN	necessary	capacity, power, resistance, other	necessary	necessary	Partial open data is possible	necessary	possible		
Li-ion	yes, advanced BMS	yes	mostly CAN	possible	capacity, power, resistance	possible	possible	Partial open data is possible	Possible	In potential	The proposition is feasible.	Yes, as proposed.
Li metal	yes, advanced BMS	no	unknown	possible	unknown	possible	possible	Partial open data is possible	Possible	In potential	The proposition is feasible.	Yes, as proposed.
Lead-acid	no	no	n.a.	no	n.a.	no	no	Not possible without external analysing& logging device	n.a.	n.a.	n.a.	n.a.
Advanced lead	no	no	n.a.	no	n.a.	no	no	Not possible without external analysing& logging device	n.a.	n.a.	n.a.	n.a.
NiMH	sometimes, unknown whether a simple BMS or advanced.	maybe from HEV	unknown	sometimes possible	capacity	sometimes possible, but unknown if BMS advanced enough.	sometimes possible	Sometimes possible	Possible	Unknown	Unknown	Yes, as proposed.
NiFe	no	no	n.a.	no	n.a.	no	no	Not possible without external analysing& logging device	n.a.	n.a.	n.a.	n.a.
NaNiCl ₂	yes, advanced BMS	no	unknown	possible	capacity	possible	possible	Partial open data is possible	Possible	In potential	The proposition is feasible.	Yes, as proposed.
NaS	yes, advanced BMS	no	unknown	possible	capacity	possible	possible	Partial open data is possible	Possible	In potential (these systems are not used for second life applications).	The proposition is feasible.	Yes, as proposed.
Hybrid ion	no	no	n.a.	no	n.a.	no	no	Not possible without external analysing& logging device	n.a.	n.a.	n.a.	n.a.
LiS	unknown	no: research	unknown	no	n.a.	no	no	Not possible without external analysing& logging device	unknown	Unknown	Unknown	Yes, as proposed.
Na-ion	yes, advanced BMS	no: research	unknown	possible	unknown	possible	possible	Partial open data is possible	Possible	In potential	The proposition is feasible.	Yes, as proposed.

 10 Used for 2nd hand & 2nd life application or can come from first life application

2.4.3. Requirements for providing information about batteries and cells

To allow repair, reuse, remanufacturing and repurposing but also recycling of batteries data and information about the battery is required. In task 7 of the preceding study an information proposal is given for battery systems, packs and modules. A similar proposal exists for cell level.

The proposal is that the individual battery should carry at all levels (battery system, battery pack and module) a bar code, QR code or similar with an EAN number and serial number. This code provides access to a European database with information on batteries and cells, which the manufacturer or supplier bears the responsibility of updating, e.g. similar to the European Product Database for Energy Labelling (EPREL¹¹), in three levels of:

- Level 1: Public part (no access restriction) covering:
 - Carbon footprint information in CO₂eq
 - Battery manufacturer
 - Battery type, and chemistry
 - Percentage of recycled materials used in the cathode and anode material
 - A reference to a recycling method that can be used.
- Level 2: Data available to third party accredited professionals:
 - Performance data
 - BMS related data
 - Repair & dismantling information
- Level 3: Compliance part (Information available for market surveillance authorities only, protected access for intellectual property reasons).

In the subsequent table (Table 2-7) the requirements for providing information about batteries are given. To allow this evaluation the following topics are added to the table:

- Minimum traded unit
- Possibility to carry a code
- Current possibility recycling

The level 3 data (compliance) has been left out. This mainly depends whether standards are available. That analysis was performed in Table 2-3.

No evaluation for the information on cell level has been carried out. This would be identical to the analysis on battery level, except that cells must be freely on the market, from which another manufacturer makes batteries. For NiMH, NaNiCl₂, NaS and Hybrid-ion this is not the case.

2.4.3.1. Conclusion on policy measure

Since not for all battery types an PEFCR exists, the carbon footprint cannot be given for all types.

Note that only marking symbols exist for Lithium, Li-ion, lead-acid and NiMH in IEC standards. The following chemistries lack an official marking:

•	NiFe
•	INIIC

-

https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/european-product-database-energy-labelling en

- NaNiCl2
- NaS
- Hybrid-ion
- Na-ion

The NaNiCl₂ and NaS have nevertheless an UN number for transportation as sodium battery (UN 3292).

For recycling Li-ion chemistries it is helpful to know not only the family (such as Li-ion) but also subclass information like cobalt-based or iron phosphate based. This is included in standards with marking for Li-ion batteries. For most chemistries only the family name is important since there is hardly variation in materials, except Li-ion, Li-metal, Na-ion and advanced lead.

The previously proposed information requirement (preceding task 7) covers the percentage of recycled materials in the battery and also the recycling method that can be used. Currently, not for all battery types specific information on the recycling method seems to exist. To include information on the recycled material contents, recycling up to battery must exist in the first place. For e.g. sodium and sulphur this seems not the case currently. For Ni, Co but also Li this is already possible.

Table 2-7: Evaluation of the requirements for providing information about batteries

Chemistry	Minimum traded unit	Possibility to carry a code	Current possibility recycling	Level 1 data (public)				Level 2 data (professionals)				Conclusion
				Carbon footprint	Manufac- turer	Battery	Recycling	Performance	BMS related	Chemistry identification	Repair & dismantling	
Li-ion	Cell	yes, better at higher level such as module level since many cells involved.	yes	PEFCR exists	yes	yes	yes	yes	yes	yes	yes	Correct
Li metal	Battery system	yes	yes, like Li-ion	no	yes	yes	yes	yes	yes	yes	yes	PEFCR lacking
Lead-acid	Cell	yes	yes, best example	PEFCR exists	yes	yes	yes	not all, lack of suitable standard	yes	family, not necessary for subclass	yes	Correct, but performance must be standardised better.
Advanced lead	Cell	yes	yes, best example	no	yes	yes	yes	not all, lack of suitable standard	no: no BMS	yes	yes	PEFCR lacking but performance must be standardised better.
NiMH	Cell	yes	yes	PEFCR exists	yes	yes	yes	yes	no: mostly no BMS	family, not necessary for subclass	yes	Correct
NiFe	Cell	yes	yes	no	yes	yes	yes	no, no standard	no: no BMS	family, not necessary for subclass	yes	PEFCR lacking but performance must be standardised better. No family marking symbol.
NaNiCl ₂	Battery system	yes	unknown	no	yes	yes	unknown	yes	yes	family, not necessary for subclass		PEFCR lacking. No family marking symbol.
NaS	Battery application system	yes, better at lower level, although not traded as such.	unknown	no	yes	yes	unknown	yes	yes	family, not necessary for subclass		PEFCR lacking. No family marking symbol.
Hybrid ion	Battery system	yes	yes, cradle to cradle certified.	no	yes	yes	unknown	no, no standard	no: no BMS	family, not necessary for subclass		PEFCR lacking. No family marking symbol.
LiS	Research only	yes, better at higher level such as module level since many cells involved	no	no	yes	yes	unknown	no, research currently	currently not: research	family, not necessary for subclass		PEFCR lacking
Na-ion	Research only	yes, better at higher level such as module.	yes, like Li-ion	no	yes	yes	unknown	no, research currently	currently not: research	yes		No family marking symbol.

2.4.4. Requirements on the remaining three topics

The remaining three topics are:

- The traceability of battery modules and packs
- Carbon footprint information and the option for a threshold
- Minimum battery pack design and construction requirements

For these criteria no specific issues are supposed for the proposed requirements. There is no difference between Liion modules and other battery modules for the possibility to add identification like a QR code. Module and pack design differ from Li-ion counterparts especially if gas release is possible (lead-acid) or increased internal temperature is used (NaS, NaNiCl₂). Nevertheless, other battery modules and packs than Li-ion ones have no additional constraints in pack design that would hinder repair, re-use and recyclability.

Carbon footprint information can only be given if a PEFCR exists. This is given in Table 2-7.

2.5. Conclusion on technology neutral policy

2.5.1. The potential need and rational for performance concessions for other chemistries

Hereafter we will focus on grid energy storage applications (ESS) because for these applications there were new chemistries identified.

New chemistries can potentially not meet those requirements (see conclusions per policy requirement in section 2.4) and hereafter are two rationales and methods discussed for granting concessions. The idea would be that concessions can be granted to particular chemistries because the carbon footprint (GWP([CO₂eq]) is lower and/or fewer gross energy (GER[MJ]) is required. Note: GER is a parameter that stems from the MEErP but not included in the PEF CR.

2.5.1.1. A correction factor based on carbon footprint

A first rationale for a concession could be a lower carbon footprint of the particular battery chemistry. Usually such an ESS is used in conjunction with renewable energy to reduce the carbon footprint of electricity generation. However, for example, battery systems with a lower efficiency can still provide a similar service over its full life cycle when their manufacturing carbon footprint is relatively lower. Therefore, a concession can be granted on efficiency, based on their carbon footprint for manufacturing.

The preparatory study did found a GWP for production and distribution of 61 gCO₂eq per kWh functional unit (GWP_{FU}) or 155 kgCO₂eq per kWh declared storage capacity(GWP_{CAP}) for the residential ESS base case, see Table 7-5.

2.5.1.2. A correction factor based on Gross Energy Requirements

A second rationale to consider is the Gross Energy Requirements (GER) for manufacturing batteries which is related to the Primary Energy; this parameter is available from the MEErP. Therefore, the preparatory study proposed the newly defined capacity Energy Efficiency Index (cEEI). This capacity Energy Efficiency Index (cEEI) refers to the ratio of declared storage capacity relative to the embodied primary or gross energy requirement (GER) for manufacturing. It was defined in Task 7 of the preparatory study, section 7.1.2.5. It is a metric that shows how much energy the manufacturing a battery system requires compared to its storage capacity. A cEEI value of 890 was calculated for the residential base case ESS, see Table 7-5 in the Task 7 report of the preparatory study. Using the cEEI as a rationale can also be justified by the idea that the lifetime of a battery product must be sufficiently longer otherwise the embodied energy in the battery manufacturing is the primary energy supply to the system.

Note: the GER and the primary energy are currently not included in the PEF CR. Therefore, the MEErP is needed to calculate the cEEI. The GER is e.g. used in the Ecodesign study on PV systems¹². The energy needed to produce substances from raw materials are not given in the PEF CR, but in the MEErP.

This capacity Energy Efficiency Index (cEEI) is defined as:

$$cEEI = \frac{Gross\ Energy\ Requirement\ (GER)\ according\ to\ the\ MEErP[MJ]}{declared\ storage\ capacity\ [MJ] \times \frac{DOD\ from\ cycle\ life\ test\ [\%]}{100}}$$

GER: the discussion on how to calculate the Gross Energy Requirement (GER) for the cEEI is part of WP3 and eventually later standardization work.

Declared capacity: the declared capacity was defined in section 7.1.2.1 in task7 of the preparatory study. This capacity is not necessarily the initial capacity of the battery. In this way the effect of a possible quick initial capacity fade before entering a steady capacity reduction over time can be taken into account by setting the declared capacity lower than the initial capacity.

DOD from cycle life test: the DOD that is used for the cycle life test and reported in the level 2 data (data available to third party accredited professionals) of the proposed European database (section 7.1.2.3 in the preparatory study). Almost no battery types are allowed to be discharged 100% to reach a long cycle life. This is shown in Table 2-4. For Li-ion batteries this DOD is in general 80%. However, most of the battery types accept only a 50% DOD for a long life. This means that double the capacity must be installed. This must thus be taken into account in the cEEI.

The preparatory study did find a typical cEEI of 890 for a lithium battery used for the residential ESS base case, see Table 7.5. Including the DOD from cycle life test, and assuming that it is 80% for a Li-ion battery, then it becomes now 1110 MJ.

2.5.2. Rationale and method for potential concessions on remaining capacity versus lifetime in policy requirements

The current LiB policy proposal for LiB required for ESS a remaining capacity of 90 % after 2000 test cycles before the product can brought on the market.

Furthermore, it required a warranty of 12 years minimum calendar life or 2000x (Declared Capacity) in kWh functional unit. Herein the functional unit is the total measured delivered energy at the output of the battery over its lifetime.

In general, we believe that whichever cEEI, a minimum functional lifetime on capacity fade might be needed before such a storage is useful, in our opinion 1000 test cycles or 50 % and 6 years of warranty.

We recommend not to propose stronger requirements (2000 cycles) for new chemistries, preventing them from the market, which could justify to cap the requirements at the current proposal.

Therefore, it is proposed to apply the following correction factor (Kcycle) on the 2000 proposed cycles and on the warranty period of 12 years:

$$K_{cycle}[\%] = 100 \text{ x cEEI}/1110 [\%] \text{ when } 1110/2 < \text{cEEI} < 1100$$

 $K_{cycle}[\%] = 50 \% \text{ when } 1110/2 < \text{cEEI}$

12

https://susproc.jrc.ec.europa.eu/solar_photovoltaics/docs/20191220%20Solar%20PV%20Preparatory% 20Study Task%207 Final%20following%20consultation.pdf

 $K_{cycle}[\%] = 100 \% \text{ when cEEI} \ge 1110$

For example, in the best case if renewable energy is used during manufacturing then the cEEI is below 445. In that case a 50% reduce factor can be used, i.e. 1000 cycles at midlife and 6 years warranty period.

According to Table 2-4, 2000 cycles at full life can be satisfied by all chemistries, except LiS up to our knowledge. The minimum warranty period of 6 years is for most chemistries possible. For lithium metal and lithium sulphur data lacks currently. For most lead-acid batteries this period is challenging, but there are solar type lead-acid batteries for which it is feasible.

Note that alternatively GWP_{CAP} [kgCO₂eq/kWh] / 155 [kgCO₂eq/kWh], this approach is applied in the subsequent section.

2.5.3. Rationale and method for remaining round trip efficiency versus lifetime in policy requirements

The current LiB policy proposal a minimum remaining round trip efficiency versus lifetime for LiB, however here those thresholds cannot be met for other chemistries used in ESS (see Table 2-4).

A rationale for a concession can be found in the lower carbon footprint of the battery system involved. Usually such an ESS is used in conjunction with renewable energy to address Global Warming and reduce the carbon footprint of electricity. Battery systems with a lower efficiency can still provide a similar service to store renewables over its lifetime when the manufacturing carbon footprint is lower and therefore a concession can be granted on efficiency based on their carbon footprint. The study found GWP for production and distribution of 61 gCO $_2$ eq per kWh functional unit (GWP $_{FU}$) or 155 kgCO $_2$ eq per kWh declared storage capacity (GWP $_{CAP}$) for the residential ESS base case, see Table 7-5.

In general, we believe that an efficiency below 80% mid-life is unacceptable, therefore the corrections can be capped.

Therefore, it is proposed to apply the following correction factor (K_{eff}) on the 2000 proposed cycles:

 K_{eff} [%] = max(100 x GWP_{CAP}[kgCO₂eq/kWh]/155[kgCO₂eq/kWh], 75) [%] when GWP_{CAP} < 155 kqCO₂eq/kWh

 K_{eff} [%] = 100 % when $GWP_{CAP} \ge 155 \text{ kgCO}_2\text{eg/kWh}$

Note: the discussion on how to calculate the carbon footprint of production and distribution is part of WP3 and possible later standardization work.

As example, Na-ion batteries have GWP_{CAP} of $140 \text{ kgCO}_2\text{eq}$ per kWh^{13} . The decreased roundtrip efficiency therefore can be $140/155 \times 94\% = 85\%$ (at mid-life). For new batteries, which have always better efficiency than at mid-life, 85% seems not reachable for: NiFe and NaS. For the hybrid ion type the characteristic efficiency is 85% at the beginning of life, and therefore 85% at midlife is not possible currently without changing the battery design. For LMP, NaNiCl₂, and LiS characteristic efficiencies are unknown.

If the excluded batteries are manufactured with help of renewable energy, GWP_{CAP} decreases, resulting in a lower efficiency threshold, creating a possibility.

¹³ Fig. 3 in https://pubs.rsc.org/en/content/articlepdf/2016/ee/c6ee00640i

ANNEX:OVERVIEW OF STANDARDS ON BATTERY PERFORMANCE

Table 2-8: Identification of battery standards related to performance and classified per application and battery chemistry.

Application	Battery type											
	Agnostic	Li-ion	Li-metal	Pb	NiMH	NiFe	NaNiCl2	NaS	Flow battery	hybrid-ion	LiS	Na-io
Stationary												
Stationary in general	IEC 62933-2-1			IEC 60896 series	IEC 63115-1		IEC 62984-3	IEC 62984-3	IEC 62932-2-1			
	Batt. appl. system			Cell &Module	Cell to battery s	system	Battery system	Battery system	Battery system&			
									Batt.appl.system			
residential ESS (BC6)	IEC 61427-2	BVES Effizienzleitfaden für										
		PV Speichersysteme										
	Battery system	Batt. appl. system										
Grid ESS (BC7)	"	IEC 62620	IEC 62620									
	"	cell to battery system	cell to battery system									
Other	IEC 61427-1											
	Battery system											
Light EV												
LEV in general												
scooters												
bicycles												
mopeds &	ISO 13064-1& 2	ISO/DIS 18243		IEC 63193								
motorcycles	Batt. appl. system	Battery system		Modules& packs								
Industrial LEV		IEC 62620	IEC 62620	IEC 63193								
		Cell to battery system	Cell to battery system	Modules& packs								
Industrial												
mobility to stationary		IEC 62620	IEC 62620		IEC 63115-1							
		cell to battery system	Cell to battery system		Cell to battery s	system						
					IEC 62675							
					Cells							
Portable												
Portable		IEC 61960-3& 4	IEC 61960-3& 4		IEC 61951-2							
		Cell to battery system	Cell to battery system		Cell to battery s	ystem						
		ANSI C.18.2M-1	, ,		ANSI C.18.2M-1	,						
		Cell to battery system			Cell to battery s	vstem						

GETTING IN TOUCH WITH THE EU

In person

All over the European Union, there are hundreds of Europe Direct information centres. You can find the address of the centre nearest you at: https://europa.eu/european-union/contact/meet-us-en

On the phone or by email

Europe Direct is a service that answers your questions about the European Union. You can contact this service:

- by Freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),
- at the following standard number: +32 2 299 96 96, or
- by email via: https://europa.eu/european-union/contact_en

FINDING INFORMATION ABOUT THE EU

Online

Information about the European Union in all the official languages of the EU is available on the Europa website at: https://europa.eu/european-union/index en

EU publications

You can download or order free and priced EU publications from:

https://publications.europa.eu/en/publications.

Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see https://europa.eu/european-union/contact/meet-us_en).

EU law and related documents

For access to legal information from the EU, including all EU law since 1952 in all the official language versions, go to EUR-Lex at: http://eur-lex.europa.eu

Open data from the EU

The EU Open Data Portal (http://data.europa.eu/euodp/en) provides access to datasets from the EU. Data can be downloaded and reused for free, for both commercial and non-commercial purposes.

