F07 - Problemlösningsstrategier 5DV149 Datastrukturer och algoritmer

Niclas Börlin niclas.borlin@cs.umu.se

2020-02-10 Mon

Design av algoritmer

- Problemlösningsstrategier:
 - ► Top-down.
 - Bottom-up.
- Typer av algoritmer (lösningstekniker)
 - ► Brute force ("råstyrka").
 - ► Giriga algoritmer (*Greedy algorithms*).
 - Söndra och härska (Divide-and-Conquer).
 - Dynamisk programmering.
 - (Stokastiska (slumpbaserade).)
 - (Branch-and-Bound.)

Brute force

- Rättfram ansats: Utgå direkt från problemställningen med dess definitioner, begränsningar, etc.!
- Om problemet är kombinatoriskt: Gör en fullständig sökning!
 - ► Generera och enumerera alla tänkbara lösningar.
 - Kom ihåg den bästa lösningen.
- Egenskaper
 - Bra metod att starta med.
 - Garanterar en korrekt lösning om en sådan finns.
 - ► Garanterar inte effektivitet.
 - Ofta enkla, "naiva", algoritmer.

Brute force, exempel 1

- Linjär sökning: Finn det största talet talet i ett fält.
 - ▶ Gå igenom varje element. Kom ihåg det största.

```
Algorithm arrayMax(A,n)
input: An array A storing n integers
output: The maximum element of A
currentMax ← A[0]
for i ← 1 to n-1 do
if currentMax ← A[i] then
currentMax ← A[i]
return currentMax
```

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil
 - 6. 1-2-5-4-3-1: 280 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil
 - 6. 1-2-5-4-3-1: 280 mil
 - 7. 1-3-2-4-5-1: 240 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil
 - 6. 1-2-5-4-3-1: 280 mil
 - 7. 1-3-2-4-5-1: 240 mil
 - 8. 1-3-2-5-4-1: 215 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil
 - 6. 1-2-5-4-3-1: 280 mil
 - 7. 1-3-2-4-5-1: 240 mil
 - 8. 1-3-2-5-4-1: 215 mil
 - 9. 1-3-4-2-5-1: 274 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil
 - 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil
 - 6. 1-2-5-4-3-1: 280 mil
 - 7. 1-3-2-4-5-1: 240 mil
 - 8. 1-3-2-5-4-1: 215 mil
 - 9. 1-3-4-2-5-1: 274 mil
 - 10. 1-3-5-2-4-1: 242 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 274 mil
 - 5. 1-2-5-3-4-1: 249 mil
 - 6. 1-2-5-4-3-1: 280 mil
 - 7. 1-3-2-4-5-1: 240 mil
 - 8. 1-3-2-5-4-1: 215 mil
 - 9. 1-3-4-2-5-1: 274 mil
 - 10. 1-3-5-2-4-1: 242 mil
 - 11. 1-4-2-3-5-1: 210 mil

- Given *n* städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- \blacktriangleright Komplexitet: (n-1)!/2. För n = 5, 12 alternativ:
- - 1. 1-2-3-4-5-1: 247 mil 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil 6. 1-2-5-4-3-1: 280 mil
 - 7. 1-3-2-4-5-1: 240 mil
 - 8. 1-3-2-5-4-1: 215 mil 9. 1-3-4-2-5-1: 274 mil
 - 10. 1-3-5-2-4-1: 242 mil
 - 11. 1-4-2-3-5-1: 210 mil

Niclas Borin 1-4-3-2-5-1: 216 mil

- ▶ Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- Komplexitet: (n-1)!/2.
- För n = 5, 12 alternativ:
 - 1. 1-2-3-4-5-1: 247 mil 2. 1-2-3-5-4-1: 216 mil
 - 3. 1-2-4-3-5-1: 274 mil
 - 4. 1-2-4-5-3-1: 273 mil
 - 5. 1-2-5-3-4-1: 249 mil
 - 6. 1-2-5-4-3-1: 280 mil 7. 1-3-2-4-5-1: 240 mil
 - 8. 1-3-2-5-4-1: 215 mil 9. 1-3-4-2-5-1: 274 mil
 - 10. 1-3-5-2-4-1: 242 mil
 - 10. 1-3-3-2-4-1: 242 mil

Niclas Borin 1-4-3-2-5-1: 216 mil

- Given n städer, finn den kortaste rutten som besöker varje stad exakt en gång.
- ► Komplexitet: (n-1)!/2.
- För n = 15: $4.4 \cdot 10^{10}$ alternativ.

Brute force, exempel 3 — The 0-1 Knapsack Problem

- Givet en mängd med n element där element i har värde $v_i > 0$ och en vikt $w_i > 0$:
 - ► Välj element med maximalt värde utan att den totala vikten blir mer än W.
- ▶ Låt $x_i \in \{0, 1\}$:
 - $ightharpoonup Om x_i = 1$ så är elementet med.
 - $ightharpoonup Om x_i = 0$ så låter vi elementet vara.

CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=985491

Brute force, exempel 3 — The 0-1 Knapsack Problem

Matematisk formulering:

$$\max_{x_i \in \{0,1\}} \sum_{i=1}^n x_i v_i \text{ med begränsningen } \sum_{i=1}^n x_i w_i \leq W.$$

 \triangleright Kombinatoriskt problem, komplexitet 2^n .

CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=985491

Brute force, exempel 3 — The 0-1 Knapsack Problem

Element	Värde	Vikt		
1	4	12		
2	2	2		
3	2	1		
4	1	1		
5	10	4		
Maxvikt: $W = 15$				

				•		_	_
i	x ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	$\sum x_i w_i$	$\sum x_i v_i$
0	0	0	0	0	0	0	0
1	0	0	0	0	1	4	10
2	0	0	0	1	0	1	1
3	0	0	0	1	1	5	11
4	0	0	1	0	0	1	2
5	0	0	1	0	1	5	12
6	0	0	1	1	0	2 6	3
7	0	0	1	1	1	6	13
8	0	1	0	0	0	2	2
9	0	1	0	0	1	6	12
10	0	1	0	1	0	3 7	3
11	0	1	0	1	1		13
12	0	1	1	0	0	3 7	4
13	0	1	1	0	1		14
14	0	1	1	1	0	4	5
15	0	1	1	1	1	8	15
16	1	0	0	0	0	12	4
17	1	0	0	0	1	16	14
18	1	0	0	1	0	13	5
19	1	0	0	1	1	17	15
20	1	0	1	0	0	13	6
21	1	0	1	0	1	17	16
22	1	0	1	1	0	14	7
23	1	0	1	1	1	18	17
24	1	1	0	0	0	14	6
25	1	1	0	0	1	18	16
26	1	1	0	1	0	15	7
27	1	1	0	1	1	19	17
28	1	1	1	0	0	15	8
29	1	1	1	0	1	19	18
30	1	1	1	1	0	16	9
31	1	1	1	1	1	20	19

Brute force, summering

- Många problem vet man inte av någon bättre lösning.
- ► Ger ofta hög tidskomplexitet.
- ► Går ofta att effektivisera de naiva algoritmerna.
 - Avbryta så fort man inser att vägen inte leder till en lösning.
 - Testa alternativen i någon speciell ordning.
 - Avslutar när vi funnit en lösning.
 - Avslutar när vi funnit en lösning som är nästan optimal.
- Eller så relaxerar vi problemet (släpper på någon begränsning).

Giriga (Greedy) algoritmer

- Metod:
 - I varje steg, titta på alla möjliga nästa steg och välj det som ger störst förbättring.
- För vissa problem kan en girig algoritm ge optimal lösning:
 - Om den optimala lösningen kan nås via stegvisa lokala förändringar av starten.
- Giriga algoritmer specialfall av heuristiska (tumregelsbaserade).
 - Tumregel: Ta så mycket så fort som möjligt!
- Bra alternativ till brute force-algoritmer.

Giriga algoritmer, exempel

- Problem: Lämna tillbaka växel med så få mynt som möjligt.
 - Heuristik:
 - ► Ta alltid det myntet med högst värde i varje iteration.
- Minimalt uppspännande träd:
 - Kruskals algoritm.
 - Prims algoritm.
- Kortaste vägen i en graf (Dijkstras algoritm).
- Huffman-kodning.

Element	Värde	Vikt
1	4	12
2	2	2
3	2	1
4	1	1
5	10	4

▶ Välj alltid det värdefullaste element som får plats!

Element	Värde	Vikt
1	4	12
2	2	2
3	2	1
4	1	1
5	10	4

- ▶ Välj alltid det värdefullaste element som får plats!
- ► Iteration 1: $x_5 = 1$, $\sum x_i v_i = 10$, $\sum x_i w_i = 4$.

Element	Värde	Vikt
1	4	12
2	2	2
3	2	1
4	1	1
5	10	4

- ▶ Välj alltid det värdefullaste element som får plats!
- lteration 1: $x_5 = 1$, $\sum x_i v_i = 10$, $\sum x_i w_i = 4$.
- lteration 2: $x_3 = 1$, $\sum x_i v_i = 12$, $\sum x_i w_i = 5$.

Element	Värde	Vikt
1	4	12
2	2	2
3	2	1
4	1	1
5	10	4

- Välj alltid det värdefullaste element som får plats!
- lteration 1: $x_5 = 1$, $\sum x_i v_i = 10$, $\sum x_i w_i = 4$.
- lteration 2: $x_3 = 1$, $\sum x_i v_i = 12$, $\sum x_i w_i = 5$.
- ► Iteration 3: $x_2 = 1$, $\sum x_i v_i = 14$, $\sum x_i w_i = 7$.

Element	Värde	Vikt
1	4	12
2	2	2
3	2	1
4	1	1
5	10	4

- ▶ Välj alltid det värdefullaste element som får plats!
- lteration 1: $x_5 = 1$, $\sum x_i v_i = 10$, $\sum x_i w_i = 4$.
- lteration 2: $x_3 = 1$, $\sum x_i v_i = 12$, $\sum x_i w_i = 5$.
- ► Iteration 3: $x_2 = 1$, $\sum x_i v_i = 14$, $\sum x_i w_i = 7$.
- ► Iteration 4: $x_4 = 1$, $\sum x_i v_i = 15$, $\sum x_i w_i = 8$.

Element	Värde	Vikt
1	4	12
2	2	2
3	2	1
4	1	1
5	10	4

- Välj alltid det värdefullaste element som får plats!
- ▶ Iteration 1: $x_5 = 1$, $\sum x_i v_i = 10$, $\sum x_i w_i = 4$.
- lteration 2: $x_3 = 1$, $\sum x_i v_i = 12$, $\sum x_i w_i = 5$.
- ► Iteration 3: $x_2 = 1$, $\sum x_i v_i = 14$, $\sum x_i w_i = 7$.
- ► Iteration 4: $x_4 = 1$, $\sum x_i v_i = 15$, $\sum x_i w_i = 8$.
- Inget till element får plats: klara!

Element	Värde	Vikt
1	4	12
2	2	2
3	2	1
4	1	1
5	10	4

- Välj alltid det värdefullaste element som får plats!
- ▶ Iteration 1: $x_5 = 1$, $\sum x_i v_i = 10$, $\sum x_i w_i = 4$.
- lteration 2: $x_3 = 1$, $\sum x_i v_i = 12$, $\sum x_i w_i = 5$.
- ► Iteration 3: $x_2 = 1$, $\sum x_i v_i = 14$, $\sum x_i w_i = 7$.
- ► Iteration 4: $x_4 = 1$, $\sum x_i v_i = 15$, $\sum x_i w_i = 8$.
- Inget till element får plats: klara!
- \triangleright Optimal lösning på O(n) tid! Eller?

Relaxering — The Fractional Knapsack Problem

- Samma som *The 0-1 Knapsack Problem*, men vi får ta en *del* av varje element.
- Låt $x_i \in [0,1]$ vara andelen vi tar av element i.
- ► Matematisk formulering:

$$\max_{x_i \in [0,1]} \sum_{i=1}^n x_i v_i \text{ med begränsningen } \sum_{i=1}^n x_i w_i \leq W.$$

- ▶ I varje iteration, ta så mycket som möjligt av det element som har högst värde per viktenhet v_i/w_i .
- ► Kan lösas i $O(n \log n)$ tid (sortering).

The Fractional Knapsack Problem, exempel

Element	Värde	Vikt	Värde/vikt
5	10	4	2.5
3	2	1	2
2	2	2	1
4	1	1	1
1	4	12	0.33

- lteration 1: $x_5 = 1$, $\sum x_i w_i = 4$.
- lteration 2: $x_3 = 1$, $\sum x_i w_i = 5$.
- lteration 3: $x_2 = 1$, $\sum x_i w_i = 7$.
- lteration 4: $x_4 = 1$, $\sum x_i w_i = 8$.
- ► Iteration 5: $x_1 = \frac{7}{12}$, $\sum x_i w_i = 15$.

Söndra och härska (Divide-and-Conquer)

- Metod:
 - Söndra: Dela upp problemet i två eller flera delar som löses rekursivt. Delarna bör vara ungefär lika stora.
 - Härska: Konstruera en slutlösning från dellösningarna.
- Leder till rekursiva algoritmer
 - Kan vara en bra lösning om det är svårt hitta iterativa lösningar.
 - Ar ibland effektivare även om det finns iterativ lösning.
 - ▶ Ibland beräknas en dellösning många gånger (= ineffektivt).
- $ightharpoonup O(n \log n)$ är vanligt.
- Merge-sort och Quick-sort

Söndra och härska, exempel: Beräkna x^n

- ▶ Beräkna iterativt $f(x) = x \cdot x \cdots x$ ger en algoritm som är O(n).
- ▶ *Divide-and-Conquer*: Vi kan bryta ner problemet och beräkna $x^{\lceil n/2 \rceil} \cdot x^{\lfloor n/2 \rfloor}$ rekursivt.
- Exempel: Beräkna x^9 .

- ► Fast det ger inget!
- ► I de rekursiva anropen så beräknar vi i stort sett samma värden.
- Kan vi utnyttja detta och vinna något?

Dynamisk programmering

- Använder lite minne till att undvika att lösa samma delproblem flera gånger.
- ► Metod:
 - Ställ upp en tabell som håller reda på redan kända lösningar.
 - För varje nytt anrop kollar man om man redan löst det problemet.
 - ▶ Om inte löser man det och sätter in lösningen i tabellen.

Andra exempel

► En-dimensionellt: Fibonacci-sekvensen:

$$F(n) = F(n-1) + F(n-2),$$

 $F(0) = 1,$
 $F(1) = 1.$

- ► Multi-dimensionell dynamisk programmering:
 - Matrisbaserad shortest path (Floyd).
 - ▶ 0-1 Knapsack.