Práctico 9

Coordenadas, Matrices de transformaciones lineales y Diagonalización

Objetivos.

- Aprender a calcular coordenadas y la matriz de cambio de base.
- Aprender a calcular la matriz de una transformación lineal.
- Saber decidir si una transformación lineal es diagonalizable.
- Aprender a construir transformaciones lineales que satisfagan las propiedades solicitadas.

Ejercicios. Los ejercicios con el símbolo ⓐ tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco.

(1) Dar las coordenadas del polinomio $2x^2 + 10x - 1 \in \mathbb{K}_3[x]$ en la base ordenada

$$\mathcal{B} = \{1, x+1, x^2 + x + 1\}.$$

(2) Dar las coordenadas de la matriz $A=\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$ en la base ordenada

$$\mathcal{B} = \left\{ \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \right\}.$$

Más generalmente, dar las coordenadas de cualquier matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ en la base \mathcal{B} .

- (3) (a) Dar una base del subespacio $W = \{(x, y, z) \in \mathbb{K}^3 \mid x y + 2z = 0\}.$
 - (b) Dar las coordenadas de w = (1, -1, -1) en la base que haya dado en el item anterior.
 - (c) Dado $(x, y, z) \in W$, dar las coordenadas de (x, y, z) en la base que haya calculado en el item anterior.
- (4) Sea \mathcal{C} la base canónica de \mathbb{K}^2 y $\mathcal{B} = \{(1,0),(1,1)\}$ otra base de \mathbb{R}^2 .
 - (a) Encontrar la matriz de cambio de base $P_{\mathcal{C},\mathcal{B}}$ de \mathcal{C} a \mathcal{B} .
 - (b) Encontrar la matriz de cambio de base $P_{\mathcal{B},\mathcal{C}}$ de \mathcal{B} a \mathcal{C} .
 - (c) ¿Qué relación hay entre $P_{\mathcal{C},\mathcal{B}}$ y $P_{\mathcal{B},\mathcal{C}}$?
 - (d) Encontrar $(x, y), (z, w) \in \mathbb{K}^2$ tal que $[(x, y)]_{\mathcal{B}} = (1, 4)$ y $[(z, w)]_{\mathcal{B}} = (1, -1)$.
 - (e) Determinar las coordenadas de (2,3) y (0,1) en las bases \mathcal{B}_2 .
- (5) Sea $P = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \end{pmatrix} \in \mathbb{K}^{3 \times 3}$.
 - (a) Calcular la inversa de P.
 - (b) ⓐ Dar una base ordenada \mathcal{B} de \mathbb{K}^3 tal que P es la matriz de cambio de coordenadas de la base canónica de \mathbb{K}^3 a la base \mathcal{B} .
 - (c) Encontrar $(x, y, z) \in \mathbb{K}^3$ tal que su vector de coordenadas con respecto a \mathcal{B} es

$$[(x, y, z)]_{\mathcal{B}} = (2, -1, -1).$$

(6) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y, x - z).$$

Sean \mathcal{C} la base canónica de \mathbb{R}^3 y $\mathcal{B}' = \{(1,1),(1,-1)\}$ base de \mathbb{R}^2 .

- (a) Calcular la matriz $[T]_{\mathcal{CB}'}$, es decir la matriz de T respecto de las bases \mathcal{C} y \mathcal{B}' .
- (b) Sea $(x, y, z) \in \mathbb{R}^3$. Dar las coordenadas de T(x, y, z) respecto de la base \mathcal{B}' .
- (c) Sea $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ una transformación lineal tal que su matriz respecto a las bases \mathcal{B}' y \mathcal{C} es

$$[S]_{\mathcal{B}'\mathcal{C}} = \left(\begin{array}{cc} 1 & 2\\ 1 & -1\\ 1 & 0 \end{array}\right).$$

Calcular la matriz de la composición $T \circ S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con respecto a la base \mathcal{B}' .

- (d) Calcular la matriz de $T \circ S$ respecto a la base \mathcal{B} del Ejercicio (4) usando las matrices de cambio de base calculadas en ese ejercicio.
- (7) Sea A la primer matriz del Ejercicio 1 del Práctico 5 y $T_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la transformación lineal dada por $T_A(v) = Av$. Hallar los autovalores de T_A , y para cada uno de ellos, dar una base de autovectores del correspondiente autoespacio. Decidir si T_A es o no diagonalizable. En caso de serlo dar una matriz invertible P tal que $P^{-1}AP$ es diagonal. Repetir esto para cada una de las matrices de dicho ejercicio.
- (8) Repetir el ejercicio anterior para cada matriz del Ejercicio 1 del Práctico 5 pero ahora consideradando a la transformación como una transformación lineal entre los \mathbb{C} -espacios vectoriales \mathbb{C}^n .
- (9) Sea $T:V\longrightarrow V$ una transformación lineal y $v\in V$ un autovector de autovalor λ . Probar las siguientes afirmaciones.
 - (a) Si $\lambda = 0$, entonces $v \in \text{Nu}(T)$.
 - (b) Si $\lambda \neq 0$, entonces $v \in \text{Im}(T)$.
 - (c) Si $T^2 = 0$, entonces T Id es un isomorfismo.
- (10) ⓐ Sea V un espacio vectorial de dimensión 3 y $T:V\longrightarrow V$ una transformación lineal. Supongamos que existe $v\in V$ tal que $T^3(v)=0$ pero $T^2(v)\neq 0$.
 - (a) ⓐ Probar que $\mathcal{B} = \{v, T(v), T^2(v)\}$ es una base de V.
 - (b) Calcular la matriz de T respecto de la base \mathcal{B} .
 - (c) Calcular los autovalores de T y sus correspondientes autoespacios. Decidir si T es diagonalizable.
- (11) Definir en cada caso una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ que satisfaga las condiciones requeridas. ¿Es posible definir más de una transformación lineal?
 - (a) $(1,0,0) \in Nu(T)$
 - (b) $(1, 0, 0) \in \text{Im}(T)$
 - (c) $(1,0,0), (1,2,1) \in \text{Nu}(T) \text{ y } (1,0,0) \in \text{Im}(T)$
- (12) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\langle (1,2,3), (2,1,-1) \rangle$ es el autoespacio asociado a 0 y $\langle (3,1,1), (1,1,3) \rangle$ es el autoespacio asociado a 5.
 - (b) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\langle (1,2,3) \rangle$ es el autoespacio asociado a 0 y $\langle (3,1,1) \rangle$ es el autoespacio asociado a 5.

- (c) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\{(1,0,1),(0,1,0)\}$ es una base de Nu(T) y $\{(1, 0, -1), (0, 1, 0)\}$ es una base de la Im(T).
- (d) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\{(1,0,1)\}$ es una base de Nu(T) y $\{(1,0,-1),(0,1,0)\}$ es una base de la Im(T).

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- (13) Repetir el ejercicio (4) con la base canónica de \mathbb{R}^3 y la base $\mathcal{B}_3 = \{(1,0,0), (1,1,0), (1,1,1)\}.$ Considerar las 3-upla (1,2,3) y (0,1,2) para los últimos dos items.
- (14) Repetir los últimos items del Ejercicio (6) con la transformación lineal $S \circ T$ y la base del ejercicio anterior.
- (15) ⓐ Sea V un espacio vectorial con base $\mathcal{B} = \{v_1, ..., v_n\}$ y $A = (a_{ij}) \in \mathbb{K}^{n \times n}$ una matriz. Sea $\mathcal{B}' = \{v'_1, ..., v'_n\}$ donde

$$v'_j = \sum_{i=1}^n a_{ij} v_i$$
 para todo $1 \le j \le n$.

Probar que \mathcal{B}' es una base de V si y sólo si A es inversible. En tal caso determinar la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} y viceversa.

- (16) Para cada una de las siguientes transformaciones lineales, hallar sus autovalores, y para cada uno de ellos, dar una base de autovectores del espacio propio asociado. Luego, decir si la transformación considerada es o no diagonalizable.

 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (y,0). (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z) = (x+2z, -x-y+z, x+2y+z). (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z) = (4x+y+5z, 4x-y+3z, -12x+y-11z).
 - (d) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
- (17) Repetir el Ejercicio (10) pero para cualquier $n \in \mathbb{N}$ en vez de 3.

Ayudas. (5b) Usar que $P_{\mathcal{C},\mathcal{B}} = P_{\mathcal{B},\mathcal{C}}^{-1}$ y recordar como se define $P_{\mathcal{B},\mathcal{C}}$.

- (10a) Es suficiente probar que $\mathcal{B} = \{v, T(v), T^2(v)\}$ es LI. Sean a, b, c escalares tales que $av + bT(v) + cT^{2}(v) = 0$. Si aplicamos T^{2} en ambos lados deducimos que $aT^{2}(v) = 0$ dado que $T^3(v) = 0$. Entonces a = 0 porque (completar argumento). Con un razonamiento similar deducir que a = b = c = 0.
- (15) Es suficiente probar que \mathcal{B}' es LI si y sólo si A es invertible. Usar una estrategia similar a la demostración del Teorema 3.3.1 para probar esta equivalencia.