

➤ Property Directed Reachability (PDR) was first devised as hardware verification technique in 2010 by Aaron Bradley¹

- ➤ Property Directed Reachability (PDR) was first devised as hardware verification technique in 2010 by Aaron Bradley¹
 - → Surprisingly won 3rd place at CAV 2010 hardware checking competition²

^{1:} Aaron R. Bradley. Sat-based model checking without unrolling. In *VMCAI*, volume 6538 of *Lecture Notes in Computer Science*, pages 70–87. Springer, 2011.

- ➤ Property Directed Reachability (PDR) was first devised as hardware verification technique in 2010 by Aaron Bradley¹
 - → Surprisingly won 3rd place at CAV 2010 hardware checking competition²

"This new method appears to be the most important contribution to bit-level formal verification in almost a decade" ³

^{1:} Aaron R. Bradley. Sat-based model checking without unrolling. In *VMCAI*, volume 6538 of *Lecture Notes in Computer Science*, pages 70–87. Springer, 2011.

^{3:} Niklas Een, Alan Mishchenko, and Robert Brayton. 2011. Efficient implementation of property directed reachability. In Proceedings of the International Conference on Formal Methods in Computer-Aided Design (FMCAD '11). FMCAD Inc, Austin, TX, 125-134.

- ➤ Property Directed Reachability (PDR) was first devised as hardware verification technique in 2010 by Aaron Bradley¹
 - → Surprisingly won 3rd place at CAV 2010 hardware checking competition²

"This new method appears to be the most important contribution to bit-level formal verification in almost a decade" ³

Using PDR on software may have similar performance!

^{1:} Aaron R. Bradley. Sat-based model checking without unrolling. In *VMCAI*, volume 6538 of *Lecture Notes in Computer Science*, pages 70–87. Springer, 2011.

- ➤ Our Goals:
 - Use PDR on software in the verification framework Ultimate¹
 - → Combining Trace Abstraction and PDR
 - → Comparison to existing techniques

Overview

- ➤ How does our PDR algorithm work?
 - Preliminaries
 - Running Example
 - Related Work

- ➢ How do we use PDR in Ultimate?
 - Combination of Trace Abstraction and our PDR algorithm
 - Implemented Improvements

Overview

- > Evaluation:
 - Comparison of Trace Abstraction using PDR and Trace Abstraction using Nested Interpolants
- What can be done in the future?
 - Implementing more Improvements

PDR Algorithm: Preliminaries

- \triangleright A control flow graph (CFG) $A = (X, L, E, \ell_0, \ell_E)$ is a graph consisting of
 - Finite set of first-order variables X
 - Finite set of locations L
 - Finite set of transitions $E \subseteq L \times FO \times L$
 - \rightarrow FO is a quantifier free first-order logic formula over variables in X and $X' = \{x \in X \mid x' \in X'\}$
 - Initial location $\ell_0 \in L$
 - Error location $\ell_E \in L$

PDR Algorithm: Datastructures

- \triangleright Frame $F_{i,\ell}$:
 - Represents a first-order formula
 - ℓ is the corresponding location
 - *i* is the corresponding iteration
 - → Each location has multiple assigned frames
- \triangleright Proof-Obligation (p, ℓ, i) :
 - p is a first-order formula
 - ℓ is the corresponding location
 - *i* is the corresponding iteration
 - → Need to be blocked

PDR Algorithm: Description

> Starts with checking for a 0-Counter-Example

> Global Initialization

- > Repeats three phases until termination:
 - 1. Next Iteration Initialization
 - 2. Blocking-Phase
 - 3. Propagation-Phase

Example: Running Example

1. Step: Check for 0-Counter-Example

- 1. Step: Check for 0-Counter-Example
- - → No, continue with initialization

location	0
$-\ell_0$	
ℓ_1	
ℓ_2	
ℓ_3	
ℓ_4	

- 2. Step: Global Initialization
- $F_{0,\ell} = \begin{cases} \text{true,} & \ell = \ell_0 \\ \text{false,} & otherwise \end{cases}$

location	0
ℓ_0	t
ℓ_1	f
ℓ_2	f
ℓ_3	f
ℓ_4	f

2. Step: Global Initialization

$$F_{0,\ell} = \begin{cases} \text{true,} & \ell = \ell_0 \\ \text{false,} & otherwise \end{cases}$$

location	0	1
ℓ_0	t	
ℓ_1	f	
ℓ_2	f	
ℓ_3	f	
ℓ_4	f	

- 3. Step: Iteration 1 Initialization
- ➤ Initialize iteration 1 frames as true

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 3. Step: Iteration 1 Initialization
- ➤ Initialize iteration 1 frames as true

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 3. Step: Iteration 1 Initialization
- > Get initial proof-obligation:

$$(p = 0, \ell_2, 1)$$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Iteration 1 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_2, 1)$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Iteration 1 Blocking-Phase:
- > Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :
 - $F_{0,\ell_1} \wedge T_{\ell_1 \to \ell_2} \wedge obligation'$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Iteration 1 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_2, 1$)
- Predecessor ℓ_1 :

•
$$f \wedge n \geq 0 \wedge p' = 0$$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Iteration 1 Blocking-Phase:
- > Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :
 - $f \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable
 - \rightarrow Strengthen frames F_{0,ℓ_2} , F_{1,ℓ_2}

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Iteration 1 Blocking-Phase:
- > Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :
 - $f \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable
 - \rightarrow Strengthen frames F_{0,ℓ_2} , F_{1,ℓ_2}

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Iteration 1 Propagation-Phase
- ➤ Is there a global fixpoint?

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Iteration 1 Propagation-Phase
- > Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for $\ell \in L \setminus \{\ell_E\}$?

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Iteration 1 Propagation-Phase
- Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for $\ell \in L \setminus \{\ell_E\}$?
- → No. Continue with iteration 2

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 6. Step: Iteration 2 Initialization
- ➤ Initialize new frames
- Add initial proof-obligation $(p = 0, \ell_2, 2)$

Proof-Obligations:

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 6. Step: Iteration 2 Initialization
- ➤ Initialize new frames
- Add initial proof-obligation $(p = 0, \ell_2, 2)$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_2, 2$)
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$

•
$$(p = 0, \ell_2, 2)$$

	location	0	1	2
	ℓ_0	t	t	t
\	ℓ_1	f	t	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t
	ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- > Try to block $(p = 0, \ell_2, 2)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Satisfiable!
 - $\Rightarrow wp(n \ge 0, p' = 0) = (p = 0)$
 - \rightarrow New proof-obligation $(p = 0, \ell_1, 1)$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- > Try to block $(p = 0, \ell_2, 2)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Satisfiable!
 - $\rightarrow wp(n \ge 0, p' = 0) = (p = 0)$
 - \rightarrow New proof-obligation $(p = 0, \ell_1, 1)$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_1, 1$)
- Predecessor ℓ_0 :

•
$$t \wedge p \neq 0 \wedge p' = 0$$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_0 :
 - $t \wedge p \neq 0 \wedge p' = 0$
 - → Unsatisfiable!
 - \rightarrow Strengthen frames $F_{0,\ell_1}, F_{1,\ell_1}$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_1, 1$)
- Predecessor ℓ_4 :

•
$$f \wedge n' = n - 1 \wedge p' = 0$$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

/	location	0	1	2
	ℓ_0	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t
	ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_4 :
 - $f \wedge n' = n 1 \wedge p' = 0$
 - → Unsatisfiable!

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_4 :
 - $f \wedge n' = n 1 \wedge p' = 0$
 - → Unsatisfiable!

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_2, 2$) again
- Predecessor ℓ_1 :
 - $t \wedge p \neq 0 \wedge n \geq 0 \wedge p' = 0$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Iteration 2 Blocking-Phase:
- Figure Try to block $(p = 0, \ell_2, 2)$ again
- Predecessor ℓ_1 :
 - $t \wedge p \neq 0 \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable!
 - \rightarrow Strengthen frames F_{2,ℓ_2}

Proof-Obligations:

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t
ℓ_4	f	t	t

- 8. Step: Iteration 2 Propagation-Phase:
- ➤ Is there a global fixpoint?
 - → No. Continue with Iteration 3

Proof-Obligations:

	location	0	1	2
	ℓ_0	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
	ℓ_3	f	t	t
	ℓ_4	f	t	t

- 9. Step: Iteration 3 Initialization
- Initialize new frames
- Get initial proof-obligations

Proof-Obligations:

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t
ℓ_4	f	t	t	t

- 9. Step: Iteration 3 Initialization
- Initialize new frames
- Get initial proof-obligations

•
$$(p = 0, \ell_2, 3)$$

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t
ℓ_4	f	t	t	t

- 10. Step: Iteration 3 Blocking-Phase
- Try to block $(p = 0, \ell_2, 3)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Like the Iteration before this is satisfiable

•
$$(p = 0, \ell_2, 3)$$

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t
ℓ_4	f	t	t	t

10. Step: Iteration 3 Blocking-Phase

- Try to block $(p = 0, \ell_2, 3)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Get same proof-obligation as before but on Iteration 2
 - $\rightarrow (p = 0, \ell_1, 2)$

•
$$(p = 0, \ell_2, 3)$$

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t
ℓ_4	f	t	t	t

10. Step: Iteration 3 Blocking-Phase

- Try to block $(p = 0, \ell_2, 3)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Get same proof-obligation as before but on Iteration 2
 - $\Rightarrow (p = 0, \ell_1, 2)$

- $(p = 0, \ell_2, 3)$
- $(p = 0, \ell_1, 2)$

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t
ℓ_4	f	t	t	t

- 10. Step: Iteration 3 Blocking-Phase
- There are a lot of repetitions
 - → Duplicate proof-obligations

- $(p = 0, \ell_2, 3)$
- $(p = 0, \ell_1, 2)$

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

- 10. Step: Iteration 3 Blocking-Phase
- There are a lot of repetitions
 - → Duplicate proof-obligations

Proof-Obligations:

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

- 11. Step: Iteration 3 Propagation-Phase
- Is there a global fixpoint?
- → No. Continue with Iteration 4

Proof-Obligations:

location	0	1	2	3	4
ℓ_0	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t	t

11. Step: Iteration 4 Initialization

location	0	1	2	3	4
ℓ_0	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t	t

12. Step: Iteration 4 Blocking-Phase

location	0	1	2	3	4
ℓ_0	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$			
ℓ_3	$f \wedge f$	$t \wedge f$	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

12. Step: Iteration 4 Blocking-Phase

location	0	1	2	3	4
ℓ_0	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$			
ℓ_3	$f \wedge f$	$t \wedge f$	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

- 13. Step: Iteration 4 Propagation-Phase
- Is there a global fixpoint?
- → No. Continue with Iteration 5

location	0	1	2	3	4	5
ℓ_0	t	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t			
ℓ_3	$f \wedge f$	$t \wedge f$	t	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t	t

14. Step: Iteration 5 Initialization

location	0	1	2	3	4	5
ℓ_0	t	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t			
ℓ_3	$f \wedge f$	$t \wedge f$	t	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t	t

15. Step: Iteration 5 Blocking-Phase

location	0	1	2	3	4	5
ℓ_0	t	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t			
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$				
ℓ_3	$f \wedge f$	$t \wedge f$	$t \wedge f$	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

15. Step: Iteration 5 Blocking-Phase

ocation	0	1	2	3	4	5
ℓ_0	t	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t			
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$				
ℓ_3	$f \wedge f$	$t \wedge f$	$t \wedge f$	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

- 16. Step: Iteration 5 Propagation-Phase
- Is there a global fixpoint?

location	0	1	2	3	4	5
ℓ_0	t	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t			
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$				
ℓ_3	$f \wedge f$	$t \wedge f$	$t \wedge f$	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

- 16. Step: Iteration 5 Propagation-Phase
- Is there a global fixpoint?
- → Yes!
 - → Algorithm termintes returning that error location is not reachable

> TODO DESCRIBING OTHER POSSIBLE TERMINATIONS 28.8.18

Related Work: Other Approaches

➤ Our Algorithm is based on the approach by Lange et al.¹

- ➤ Other possible ways of using PDR on software:
 - Bit-Blasting²:
 - Encode the variables as bitvectors with new variable pc representing the control-flow
 - Use original bit-level PDR algorithm
 - \rightarrow Not very competitive because tedious handling of pc variable

Related Work: Other Approaches

➤ Our Algorithm is based on the approach by Lange et al.¹

- ➤ Other possible ways of using PDR on software:
 - Abstract Reachability Tree (ART) Unrolling³:
 - Transform CFG into an ART
 - \rightarrow Attach program-counter variable pc and first-order formula φ to locations
 - Block proof-obligations like in our approach

Implementation in Ultimate: Description Trace Abstraction with PDR

- 1. Calculate sequence of statements from initial location to error location
 - → Possible error trace

2. Construct a path program of error trace, by projecting given program to the transitions found in trace

- 3. Use PDR to show if error is reachable or not
 - → If reachable:
 - Error trace is feasible, program is unsafe

Implementation in Ultimate: Description Trace Abstraction with PDR

- 1. Calculate sequence of statements from initial location to error location
 - → Possible error trace

2. Construct a path program of error trace, by projecting given program to the transitions found in trace

- 3. Use PDR to show if error is reachable or not
 - → If unreachable:
 - Use formulas at the fixpoint as interpolant sequence to refute other error traces

1. Step: Get possible error trace

1. Step: Get possible error trace

2. Step: Construct Path Program

2. Step: Construct Path Program

3. Step: Use PDR

location	0	1	2	3
ℓ_0				
ℓ_1				
ℓ_2				

3. Step: Use PDR

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$

3. Step: Use PDR

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$

4. Step: Use fixpoint invariants as interpolant sequence

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$

4. Step: Use fixpoint invariants as interpolant sequence

Implementation in Ultimate: Implemented Improvements

Caching proof-obligations:

- Cache the proof-obligation queue
- Start every new Iteration with the latest blocked proofobligation
- → Only proof-obligation that differs from Iteration before

on each new level Initial Obligation: Initial Obligation Blocked 1. Obligation: 1. Obligation: generated by Initial Blocked 2. Obligation: Obligation: generated by 1 Blocked Newest Obligation:

Generated by 2.

This chain of obligations is always the same

Implementation in Ultimate: Implemented Improvements

- ➤ Skipping already blocked proof-obligations:
 - Cache unsatisfiable queues to SMT-solver
 - → When a query to the SMT-solver is proven unsatisfiable, cache it
 - → If a cached query is seen again, do not call SMT-solver again, strengthen frames right away

Evaluation: Introduction

> We compared Trace Abstraction using PDR with Trace Abstraction using Nested Interpolants

> Tested on Ultimate version 0.1.23-e6fd87c, time limit: 300s, memory limit: 8000MB

Evaluation: Introduction

➤ We compared Trace Abstraction using PDR with Trace Abstraction using Nested Interpolants

> Tested on Ultimate version 0.1.23-e6fd87c, time limit: 300s, memory limit: 8000MB

- ➤ Benchmarkset contained 250 Boogie¹ Programs
 - 31 real-life code
 - 40 programs without disjunctions
 - 134 difficult programs that could not be solved in three iterations
 - 37 programs with difficult loop invariants
 - 8 non-linear arithmetic

Evaluation: Data Comparison

	Nested Interpolants PDI	R SMTInterpol	PDR Z3
Tests Solved	179/250	49/250	62/250
Solve Time	3543s	575s	1332s
Timeouts	65	90	1332s 133
Exceptions	6	111	55
	real-life		
Tests Solved	20/31	3/31	9/31
Solve Time	598s	8s	76s
Timeouts	11	10	14
Exceptions	0	18	8
	20170319-ConjunctivePat	hPrograms	
Tests Solved	29/40	6/40	16/40
Solve Time	531s	$\stackrel{'}{ ext{35}} ext{s}$	191s
Timeouts			20
Exceptions	0	19	4
	20170304-DifficultPath	Programs	
Tests Solved	105/134	24/134	24/134
Solve Time	$1435\mathrm{s}$	449s	975s
Timeouts	24	44	74
Exceptions	5	66	36
	tooDifficultLoopInva	ariants	
Tests Solved	17/37	8/37	8/37
Solve Time	944s	42s	$57\mathrm{s}$
Timeouts	19	21	22
Exceptions	1	8	7
	nonlinear		
Tests Solved	8/8	8/8	5/8
Solve Time	35s	41s	$33\mathrm{s}$
Timeouts	0	0	3
Exceptions	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	0

Evaluation: Discussion 20.09.2018

Future Work: Implementing Further Improvements

- Using Interpolation:
 - Our algorithm is inefficient when dealing with loops
 - Idea:
 - Instead of strengthening frames with negated proof-obligation, calculate Interpolant for transition and proof-obligation and add that

Future Work: Implementing Further Improvements

- Dealing with procedures:
 - C programs often contain procedures with which PDR cannot deal
 - Ideas:
 - 1. Use a non-linear approach of PDR
 - 2. Calculate a procedure summary, add that to the CFG, removing the procedure altogether

Conclusion

> We have seen:

- How PDR works on software
- How we combined Trace Abstraction and PDR
- How the combination compared to Trace Abstraction with Nested Interpolants
- What can be done to make it more efficient

Bibliography

- Aaron R. Bradley. Sat-based model checking without unrolling. In *VMCAI*, volume 6538 of *Lecture Notes in Computer Science*, pages 70–87. Springer, 2011.
- Hwmcc10 results. https://fmv.jku.at/hwmcc10/results.html. Accessed: 2018-07-20
- Niklas Een, Alan Mishchenko, and Robert Brayton. 2011. Efficient implementation of property directed reachability. In Proceedings of the International Conference on Formal Methods in Computer-Aided Design (FMCAD '11). FMCAD Inc, Austin, TX, 125-134.
- ➤ Tim Lange, Martin R. Neuhäußer, and Thomas Noll. IC3 software model checking on control flow automata. In *FMCAD*, pages 97–104. IEEE, 2015.
- ➤ Tobias Welp and Andreas Kuehlmann. QF BV model checking with property directed reachability. In *DATE*, pages 791–796. EDA Consortium San Jose, CA, USA / ACM DL, 2013.
- Alessandro Cimatti and Alberto Griggio. Software model checking via IC3. In *CAV*, volume 7358 of *Lecture Notes in Computer Science*, pages 277–293. Springer, 2012.
- Ultimate. https://ultimate.informatik.uni-freiburg.de. Accessed: 2018-07-20.
- https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/