

COMP3055 Machine Learning

Topic 6 – Instance Based Learning

Ying Weng 2024 Autumn

Instance Based Learning

Directly compare new problem instances with instances seen in training

No explicit modeling of the training data

Complexity grows with the training data

- Classical instance based learning technique
 - K Nearest Neighbour

Example

Classify whether a customer will respond to a survey question using a 3-Nearest Neighbour classifier.

Customer	Age	Income	No. credit cards	Response
John	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom	59	170K	1	No
Nellie	25	40K	4	Yes
David	37	50K	2	?

Objects, Feature Vectors, Points

Nearest Neighbours

Nearest Neighbour Algorithm

Given training data (X(1),D(1)), (X(2),D(2)), ..., (X(N),D(N)),

Define a distance metric between points in inputs space. Common measures are:

Euclidean Distance

$$D(i,j) = (\sum_{k=1}^{n} (x_k(i) - x_k(j))^2)^{1/2}$$

Given test point *X*

- Find the K nearest training inputs to X
- Denote these points as

$$(X(1),D(1)), (X(2), D(2)), ..., (X(k), D(k))$$

Instance based learning

The class identification of X

 $Y = \text{most common class in set } \{D(1), D(2), ..., D(k)\}$ Majority rule

Example

Classify whether a customer will respond to a survey question using a 3-Nearest Neighbour classifier.

Customer	Age	Income	No. credit cards	Response
John	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom	59	170K	1	No
Nellie	25	40K	4	Yes
David	37	50K	2	?

Example

3-Nearest Neighbours

Example

3-Nearest Neighbours

Three nearest ones to David are: No, Yes, Yes

Example

3-Nearest Neighbors

Three nearest ones to David are: No, Yes, Yes

Picking K

- Use N fold cross validation Pick K to minimize the cross validation error
- For each of N training example
 - Find its K nearest neighbours
 - Make a classification based on these K neighbours
 - Calculate classification error
 - Output average error over all examples
- Use the K that gives lowest average error over the N training examples

Q&A

For the example we saw earlier, pick the best K from the set {1, 2, 3} to build a K-NN classifier.

Customer	Age	Income	No. credit cards	Response
John	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom	59	170K	1	No
Nellie	25	40K	4	Yes
David	37	50K	2	?

Q&A

For the example we saw earlier, pick the best K from the set {1, 2, 3} to build a K-NN classifier.

Further Readings

Chapter 8, T. M. Mitchell, Machine Learning, McGraw-Hill International Edition, 1997

Any Questions?

