

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Mode of Exam
OFFLINE
SLOT-D1

Academic Year: 2021-2022

Test: CLA-3
Course Code & Title: 18MAB203T / Probability and Stochastic Processes
Duration: 23/06/2022
Duration: 8.00 am-9.40 am

Year & Sem: II & IV Max. Marks: 50

Course Articulation Matrix:

At the	e end of this course, learners will be able to:		Program Outcomes (PO)											
Course Outcomes (CO)		Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Compare the fundamentals between discrete and continuous random variables.	4	3	3										
C02	Choose the model and analyze systems using two-dimensional random variables.	4	3	3										
CO3	Describe limit theorems using various inequalities.	4	3	3										
CO4	Interpret the characteristics of random processes.	4	3	3										
CO5	Evaluate problems on spectral density functions and linear time invariant systems.	4	3	3										
C06	Explain how random variables and stochastic processes can be described and analyzed.	4	3	3										

	Part – A (10 x 1= 10 Marks) Answer all the questions							
Q. No.	Question	Marks	BL	CO	PO	PI Code		
1	If $R_{xx}(\tau) = \frac{4\tau^2 + 100}{\tau^2 + 4}$, then the mean of the stationary random process is	1	2	4	1,2	1.2.2		
	(a) 2 (b) 4 (c) 3 (d) 9	1	2	4	1,2	1.2.2		
2	A random process $X(t)$ has four sample function: $X(t, s_1) = -\cos t$, $X(t, s_2) = -\cos t$ and $X(t, s_3) = \sin t$,	•		7	1,2	1.2.2		
	$X (t,s_4) = -\sin t$, which are equally likely, then the mean value of $\{X(t)\}$ is (a) -1 (b) 0 (c) 1 (d) 2							

3	If X(t) and Y(t) are two random process and $R_{\chi\chi}(\mathcal{T})$ and $R_{\gamma\gamma}(\mathcal{T})$ are their respective autocorrelation function, then $ \begin{aligned} &(a) \left R_{\chi\gamma}(\mathcal{T}) \right \leq \sqrt{R_{\chi\chi}(0) + R_{\gamma\gamma}(0)} \\ &(b) \left R_{\chi\gamma}(\mathcal{T}) \right \geq \sqrt{R_{\chi\chi}(0) R_{\gamma\gamma}(0)} \end{aligned} $ $ (c) \left R_{\chi\gamma}(\mathcal{T}) \right \leq R_{\chi\chi}(0) - R_{\gamma\gamma}(0) $ $ (d) \left R_{\chi\gamma}(\mathcal{T}) \right \leq \frac{1}{2} [R_{\chi\chi}(0) + R_{\gamma\gamma}(0)] $	1	1	4	1,2	1.2.2
4	If the random process $Z(t)=X(t)+Y(t)$, where $X(t)$ and $Y(t)$ are random process then, $R_{ZZ}(\tau)$ is (a) $R_{XX}(\tau)+R_{YY}(\tau)+R_{XY}(\tau)+R_{YX}(\tau)$ (b) $R_{XX}(\tau)+R_{YY}(\tau)$ (c) $R_{XY}(\tau)+R_{YX}(\tau)$ (d) $R_{XX}(\tau)+R_{YY}(\tau)+R_{XY}(\tau)$	1	2	4	1,2	1.2.2
5	If the autocorrelation function $R_{xx}(r) = 75e^{-10 r } + 25\cos r + 49$, then the average power of the random process is (a) 49 (b) 149 (c) 249 (d) 349	1	1	4	1,2	1.2.2
6	If the power spectral density of a WSS process is given by $S_{xx}(\omega) = \begin{cases} \pi, \omega < 1, \\ 0, \text{ otherwise,} \end{cases}$ then $R_{xx}(\tau)$ is $(a) \frac{\cos \tau}{\tau} \qquad (b) \frac{\sin \tau}{\tau^2} \qquad (c) \tau^2 \sin \tau \qquad (d) \frac{\sin \tau}{\tau}$	1	2	5	1,2	1.2.2
7	Real part of $S_{xy}(\omega)$ is an (a) Odd function (b) even function	1	1	5	1,2	1.2.2
8	(c) neither even nor odd (d) trail function If the power spectral density of a WSS process is $S_{xx}(\omega) = \frac{6}{9 + \omega^2}, \text{ then } R_{xx}(\tau) \text{ is}$ (a) $e^{-2 \tau }$ (b) $e^{-3 \tau }$ (c) $e^{-4 \tau }$ (d) 1	1	2	5	1,2	1.2.2
9	If $Y(t) = f[X(t)]$ is time invariant system then for $\tau \in (-\infty, \infty)$, $Y(t+\tau) =$ (a) $f[X(t)]$ (b) $f[X(t-\tau)]$ (c) $f[X(t+\tau)]$ (d) $f[X(t+n\tau)]$	1	1	5	1,2	1.2.2

10	The mean square value of the process whose power spectral	1	2	5	1,2	1.2.2				
	density $S_{xx}(\omega) = \frac{2}{1+\alpha^{\frac{2}{f}}}$ is									
	$1+\omega^2$									
	(a) 0 (b) 1 (c) -1 (d) 2									
	e Code & Title: 18MAB203T / Probability and Stochastic Processes	Date: Dura	-	06/2022 8.00 am	? -9.40 am	ı				
- rear a	Part-B (4 x 10= 40 Marks: 50									
	Amount Amu TIMO Occastion									
	Answer Any TWO Question	IS								
11	Given a random variable Y with characteristic function $\phi(\omega) = E[e^{i\omega x}]$ and a random process	10	3	4	1,2	2.8.1				
	$X(t) = \cos(\lambda t + Y)$, show that $X(t)$ is stationary in									
	the wide-sense if $\phi(1) = \phi(2) = 0$.									
12	If $\{X(t)\}$ is a WSS process with autocorrelation function $R_{xx}(7)$ and if	10	3	4	1,2	2.8.1				
	Y(t) = X(t+a) - X(t-a), show that									
	$R_{yy}(\tau) = 2R_{xx}(\tau) - R_{xx}(\tau + 2a) - R_{xx}(\tau - 2a).$									
10	,,									
13	Consider the two random process $X(t) = 3\cos(\omega t + \theta)$ and $Y(t) = 2\sin(\omega t + \theta)$, where θ	10	4	4	1,2	2.8.1				
	is uniformly distributed in $(0,2\pi)$. Prove that									
	$\left R_{XY}(T)\right \leq \sqrt{R_{XX}(0)R_{YY}(0)}$.									
	Answer Any TWO Question	 1S								
14	If the power spectral density of a WSS									
	process is given by $s_{xx}(\omega) = \begin{cases} \frac{b}{a}(a- \omega), \omega \le a, \\ 0, \text{ otherwise,} \end{cases}$	10	3	5	1,2	2.8.1				
	process is given by $S_{xx}(\omega) = \frac{1}{a}$									
	compute $R_{xx}(7)$.									
15		10	4	5	1,2	2.8.1				
	Determine the power spectral density of the random process, if its autocorrelation	10	4	ן ט	1,4	۷.0. I				
	function is given by $R_{xx}(r) = e^{-A r } \cos \beta r$.									
	Turiction is given by $R_{xx}(\tau) = e^{-\tau} \cos \beta \tau$.									
16	A random process X(t) is the input to a linear	10	4	5	1,2	2.8.1				
	system whose impulse response is									
	$h(t) = 2e^{-t}, t \ge 0$. If the $R_{xx}(7) = e^{-2 7 }$, Determine the									
	power spectral density of the output process $Y(t)$.									

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student:

Register No.	R	Α							

	Part - A (10X1=10 Marks)							
Q. No	СО	Marks Obtained	Total					
1	4							
2	4							
3	4							
4	4							
5	4							
6	5							
7	5							
8	5							
9	5							
10	5							
	Part- B (4x10= 40 Marks)							
	A	nswer any two quest	ions					
11	4							
12	4							
13	4		1					

	Answer any two questions							
14	5							
15	5							
16	5							

Consolidated Marks:

CO	Marks Scored
CO4	
CO5	
Total	

Signature of the Course Teacher