1. Let M be a secret message revealing the recipient of a scholarship. Suppose there were one female applicate: Anne, and three male applicants: Bob, Doug, and John. It was initially thought each applicant had the same chance of receiving the scholarship; thus $p(Anne) = p(Bob) = p(Doug) = p(John) = \frac{1}{4}$. It was later learned that the chances of a scholarship going to a female were $\frac{1}{2}$. Letting S denote the message revealing the sex of the recipient, compute $H_S(M)$.

The message S will be either Male or Female, which we will denote by Ma and Fe respectively. We are given that $p_{Fe} = \frac{1}{2}$. and from this can conclude that $p_{Ma} = \frac{1}{2}$. Assuming that Bob, Doug and John are all equally likely if a male candidate is chosen, we have the following conditional probabilities:

$$p_{Ma}(Bob) = p_{Ma}(Doug) = p_{Ma}(John) = \frac{1}{3}$$
 $p_{Ma}(Anne) = 0$ $p_{Fe}(Bob) = p_{Fe}(Doug) = p_{Fe}(John) = 0$ $p_{Fe}(Anne) = 1$

We now have everything we need to calculate $H_S(M)$. Let $\sigma := \{Ma, Fe\}$ and $\mu := \{\text{Alice}, \text{Bob}, \text{Doug}, \text{John}\}$. Note that for the purposes of this computation, $0 \log_2(0^{-1}) = 0$ despite the division by zero in the log (we can justify this by considering $\lim_{x\to 0^+} x \log_2(x^{-1}) = 0$)

$$\begin{split} H_S(M) &= \sum_{S \in \sigma} \left(p(S) \sum_{K \in \mu} p_S(K) \log_2 \left(p_S(k)^{-1} \right) \right) \\ &= p(Ma) \sum_{K \in \mu} p_{Ma}(K) \log_2 \left(p_{Ma}(K)^{-1} \right) + p(Fe) \sum_{K \in \mu} p_{Fe}(K) \log_2 \left(p_{Fe}(K)^{-1} \right) \\ &= \frac{1}{2} \left(0 \log_2(0^{-1}) + \frac{1}{3} \log_2(3) + \frac{1}{3} \log_2(3) + \frac{1}{3} \log_2(3) \right) + \frac{1}{2} \left(1 \log_2(1) + 0 \log_2(0^{-1}) + 0 \log_2(0^{-1}) + 0 \log_2(0^{-1}) \right) \\ &= \frac{1}{2} \left(0 + 3 \cdot \frac{1}{3} \log_2(3) \right) + \frac{1}{2} \left(0 \right) \\ &= \frac{1}{2} \log_2(3) \approx 0.5 \cdot 1.58 = 0.79 \end{split}$$

- 2. True or false?
- a. Every integer in the range [1,28] has a multiplicative inverse modulo 29.

True: 29 is a prime number so GF(29) is a field and every non-zero element of a field is invertible.

 $\textbf{b. Every integer in the range} \ [1,21] \ \textbf{except} \ 2 \ \textbf{and} \ 11 \ \textbf{has a multiplicative inverse modulo} \ 22.$

False: Any number a for which $gcd(a, 22) \neq 1$ has no inverse modulo 22. So 4 in particular has no multiplicative inverse modulo 22 (because $gcd(4, 22) = 2 \neq 1$) and neither does 6, 8, 10, 12, 14, 16, 18, and 20.

c. Equation $3x \mod 15 = 1$ has more than one solution.

False: $3x \mod 15 = 1$ has no solutions (gcd(3,15) = 3 which does not divide 1 so there are no solutions).

d. Equation $3x \mod 15 = 9$ has exactly one solution.

False: There are several solutions: x = 3, x = 8, and x = 13 (gcd(3, 15) = 3 which divides 9 so there are 3 solutions).

- e. Computing in $GF(2^3)$ is less efficient than computing in GF(p), as p is a prime number. False: Computing in $GF(2^n)$ is more efficient than computing in GF(p) where $2^{n-1} .$
- f. There is no efficient algorithm for computing greatest common divisors.

False: The extended euclidean algorithm is an efficient algorithm for computing greatest common divisors.

g. There exists an efficient algorithm for computing Euler's totient function.

False: Such an algorithm would require an efficient factorisation algorithm which does not exist.

h. There exists an efficient algorithm for computing a common solution of the system of equations of the form $x \mod d_i = \overline{x_i}$, $1 \le i \le k$, where d_i 's are pairwise relatively prime.

True: The chinese remainder theorem is an efficient algorithm for computing such a common solution.

- i. 100 and 110 are multiplicative inverses in $GF(2^3)$ with irreducible polynomial $p(x) = x^3 + x + 1$. False: $100 \cdot 110 \mod p(x) = 10$ which is not 1, so 100 and 110 are not multiplicative inverses of each other modulo p(x).
- j. 101 and 111 are additive inverses in $GF(2^3)$ with irreducible polynomial $p(x) = x^3 + x + 1$. False: 101 + 111 = 10 which is not 0, so 101 and 111 are not additive inverses of each other.

3. Find a solution to the equation $3x \mod 20 = 1$ in the following 3 ways:

Note that the correct answer to this problem is x = 7 which can be easily verified ($3 \cdot 7 \mod 20 = 21 \mod 20 = 1$). This is included as a reference for the following solutions.

a) Euler's Theorem (by fast exponentiation)

We have a = 3 and n = 20. Since gcd(3, 20) = 1 we can use Euler's theorem. We know from the theorem that

$$3^{\Phi(20)} \mod 20 = 1 \implies 3 \cdot 3^{\Phi(20)-1} \mod 20 = 1$$

so it must be the case that $x = 3^{\Phi(20)-1} \mod 20$.

To compute $\Phi(20)$ we first note that $20 = 2^2 \cdot 5$ so

$$\Phi(20) = 2^{2-1} \cdot (2-1) \cdot (5-1) = 2 \cdot 1 \cdot 4 = 8$$

we may now use the fast exponentiation algorithm to compute $x = 3^7 \mod 20 = 7$ (see Figure 1).

Note that instead of using the pseudocode algorithm from the notes, we can perform an equivalent computation:

$$3^7 \mod 20 = (3 \cdot 3^6) \mod 20 = (3 \cdot 9^3) \mod 20 = (3 \cdot 9 \cdot 9^2) \mod 20$$
$$= (27 \cdot 81) \mod 20 = (7 \cdot 1) \mod 20 = 7$$

b) Chinese Remainder Theorem

We know that $20 = 2 \cdot 2 \cdot 5 = 4 \cdot 5$, so we choose $d_1 = 4$ and $d_2 = 5$. We find x_1 and x_2 by solving:

$$3x_1 \mod d_1 = 1 \implies 3x_1 \mod 4 = 1$$

 $3x_2 \mod d_2 = 1 \implies 3x_2 \mod 5 = 1$

Which has solution $x_1 = 3$ and $x_2 = 2$. We therefore have the system of equations

$$x \mod d_1 = x_1 \implies x \mod 4 = 3$$

 $x \mod d_2 = x_2 \implies x \mod 5 = 2$

Which has common solution

$$x = \left(\frac{20}{d_1}y_1x_1 + \frac{20}{d_2}y_2x_2\right) \bmod 20$$

where

$$\left(\frac{20}{d_1} \cdot y_1\right) \operatorname{mod} d_1 = 1 \implies 5y_1 \operatorname{mod} 4 = 1$$

$$\left(\frac{20}{d_2} \cdot y_2\right) \operatorname{mod} d_2 = 1 \implies 4y_2 \operatorname{mod} 5 = 1$$

Which has solution $y_1 = 1$ and $y_2 = 4$. So

$$x = \left(\frac{20}{d_1}y_1x_1 + \frac{20}{d_2}y_2x_2\right) \mod 20$$

$$= (5 \cdot 1 \cdot 3 + 4 \cdot 4 \cdot 2) \mod 20 = (15 + 32) \mod 20 = (15 + 12) \mod 20$$

$$= 27 \mod 20 = 7$$

c) Extended Euclidean algorithm Applying the algorithm provided gives the table of values seen in Figure 1.

a	z	x		i	y	g	u	v
3	7	1	•	0	-	20	1	0
3	6	3		1	-	3	0	1
9	3	3		2	6	2	1	-6
9	2	7		3	1	1	-1	<u>7</u>
1	1	7		4	2	0	n/a	n/a
1	0	7						

Figure 1: Fast Exponentiation Algorithm (left) and Extended Euclidean Agorithm (right)

4. Let a=101 in $GF\left(2^3\right)$ with irreducible polynomial $p(x)=x^3+x^2+1$. Use Euler's theorem to find a^-1 and then verify that $a\times a^-1 \bmod p(x)=1$.

Because p(x) is irreducible, and $GF(2^3)$ has 8 elements it must be that $\Phi(p(x)) = 2^3 - 1 = 7$. By Euler's theorem:

$$a^{\Phi(p(x)} \bmod p(x) = 1 \implies \left(a \cdot a^{\Phi(p(x)-1)}\right) \bmod p(x) = 1 \implies a^{-1} = a^{\Phi(p(x)-1)} \bmod p(x)$$

SO

$$a^{-1} = a^6 \mod p(x) = (a^2 \cdot a^4) \mod p(x)$$

$$= (110 \cdot (110 \cdot 110)) \mod p(x) = (110 \cdot 11) \mod p(x)$$

$$= 111$$

The working for $a^2 = 110$, $a^4 = a^2 \cdot a^2 = 11$, $a^6 = a^2 \cdot a^4 = 111$, and the check that $aa^6 = 1$ is as follows:

$a^2 = 101$	\times a^4 110	\times a^6 110	\times a^6a 111 \times
101	110	11	101
-101	000		111
000	110	110	000
101	110	$\overline{1010}$	111
$\overline{10001}$	$\overline{10100}$		$\overline{11011}$
11	11	1	1
$1101)\overline{10001}$	$1101)\overline{10100}$	$1101)\overline{1010}$	$1101)\overline{11011}$
1101	1101	1101	1101
1011	1110	111	1
1101	1101		
110			

5. Give a definition and provide a formula for each of the following terms:

a. Entropy

Entropy is the average number of bits needed to encode all possible messages in an optimal encoding. The entropy of a message measures its uncertainty: it gives the number of bits of information that must be learned when the message has been distorted by a noisy channel or hidden in cyphertext.

$$H(X) = \sum_{i=1}^{n} p(x_i) \log_2 (p(x_i)^{-1})$$

b. Equivocation

Equivocation measures the entropy of a message, X, given some additional information, Y. It is the uncertainty about X given the knowledge Y. In other words, equivocation is the conditional entropy of X given Y.

$$H_Y(X) = \sum_{Y} p(Y) \sum_{Y} p_Y(X) \log_2 (p_Y(X)^{-1})$$

c. Perfect secrecy

Perfect secrecy is defined by the condition

$$p_C(M) = p(M)$$

where $p_C(M)$ is the conditional probability that message M was sent given cyphertext C was received. Perfect secrecy is achieved if no matter how much ciphertext is intercepted, nothing can be learned about the plaintext.

A necessary and sufficient condition for perfect secrecy is

$$p_M(C) = p(C)$$
 for all messages M and all cyphertexts C

so the probability of receiving a particular cyphertext C given that M was sent is the same as the probability of receiving C given that any other message M' was sent.