Tensor Categories, Sections 9.6–9.8

Marcelo De Martino

Ghent University

March 28, 2022

Recall: Chapter 3

A $(ring, free \mathbb{Z}-mod)$

$$\begin{array}{ll} A & \text{(ring, free \mathbb{Z}-mod)} \\ B = \{b_i\}_{i \in I}, b_i b_j = \sum_k c_{ij}^k b_k & (c_{ij}^k \geq 0) & \text{(with \mathbb{Z}_+-basis)} \\ 1 = \sum_i a_i b_i, & (a_i \geq 0) & (\mathbb{Z}_+\text{-ring}) \end{array}$$

```
\begin{array}{ll} A & \text{(ring, free $\mathbb{Z}$-mod)} \\ B = \{b_i\}_{i \in I}, b_i b_j = \sum_k c_{ij}^k b_k & (c_{ij}^k \geq 0) & \text{(with $\mathbb{Z}_+$-basis)} \\ 1 = \sum_i a_i b_i, & (a_i \geq 0) & (\mathbb{Z}_+$-ring) \\ & \text{with inv } * \text{s.t. } \tau(b_i b_j^*) = \delta_{ij} & \text{(based ring)} \\ & \text{fin rank} & \text{(multifusion ring)} \end{array}
```

$$\begin{array}{ll} A & \text{(ring, free \mathbb{Z}-mod)} \\ B = \{b_i\}_{i \in I}, b_i b_j = \sum_k c_{ij}^k b_k & (c_{ij}^k \geq 0) \\ 1 = \sum_i a_i b_i, & (a_i \geq 0) & (\mathbb{Z}_+\text{-ring}) \\ \text{with inv } * \text{s.t. } \tau(b_i b_j^*) = \delta_{ij} & \text{(based ring)} \\ \text{fin rank} & \text{(multifusion ring)} \\ 1 \in B & \text{(fusion ring)} \end{array}$$

Recall: Chapter 3

$$A \\ B = \{b_i\}_{i \in I}, b_i b_j = \sum_k c_{ij}^k b_k \quad (c_{ij}^k \geq 0) \\ 1 = \sum_i a_i b_i, \quad (a_i \geq 0) \\ \text{with inv } * \text{ s.t. } \tau(b_i b_j^*) = \delta_{ij} \\ \text{fin rank} \\ 1 \in B \\ \text{(fusion ring)}$$

E.g.: $\mathbb{Z}G$ or $R_{\mathbb{Z}}(G)$ is fusion (G fin), $Mat_n(\mathbb{Z})$ multifusion (n > 1)

Recall: Chapter 3

$$\begin{array}{ll} A & \text{(ring, free \mathbb{Z}-mod)} \\ B = \{b_i\}_{i \in I}, b_i b_j = \sum_k c_{ij}^k b_k & (c_{ij}^k \geq 0) \\ 1 = \sum_i a_i b_i, & (a_i \geq 0) & (\mathbb{Z}_+\text{-ring}) \\ \text{with inv } * \text{s.t. } \tau(b_i b_j^*) = \delta_{ij} & \text{(based ring)} \\ \text{fin rank} & \text{(multifusion ring)} \\ 1 \in B & \text{(fusion ring)} \end{array}$$

E.g.: $\mathbb{Z}G$ or $R_{\mathbb{Z}}(G)$ is fusion (G fin), $\mathsf{Mat}_n(\mathbb{Z})$ multifusion (n > 1)

$$\operatorname{FPdim}(b_i) = \operatorname{max-eig}_{\geq 0}([M_{b_i}^L]) \text{ and } \operatorname{FPdim}(b) = \operatorname{FPdim}(b^*).$$
 $R = \sum_i \operatorname{FPdim}(b_i)b_i \text{ reg. elem (fusion), } \operatorname{FPdim}(A) = \operatorname{FPdim}(R).$

Recall: Chapter 3

```
\begin{array}{ll} A & \text{ (ring, free $\mathbb{Z}$-mod)} \\ B = \{b_i\}_{i \in I}, b_i b_j = \sum_k c_{ij}^k b_k & (c_{ij}^k \geq 0) & \text{ (with $\mathbb{Z}_+$-basis)} \\ 1 = \sum_i a_i b_i, & (a_i \geq 0) & (\mathbb{Z}_+$-ring) \\ & \text{ with inv } * \text{ s.t. } \tau(b_i b_j^*) = \delta_{ij} & \text{ (based ring)} \\ & \text{ fin rank } & \text{ (multifusion ring)} \\ 1 \in B & \text{ (fusion ring)} \end{array}
```

E.g.: $\mathbb{Z}G$ or $R_{\mathbb{Z}}(G)$ is fusion (G fin), $\mathsf{Mat}_n(\mathbb{Z})$ multifusion (n > 1)

$$ext{FPdim}(b_i) = \max ext{-eig}_{\geq 0}([M_{b_i}^L]) ext{ and } ext{FPdim}(b) = ext{FPdim}(b^*).$$
 $R = \sum_i ext{FPdim}(b_i)b_i ext{ reg. elem (fusion), FPdim}(A) = ext{FPdim}(R).$

 $A ext{ is } \mathbf{w}. ext{ int. } ext{FPdim}(A) \in \mathbb{Z}$

Recall: Chapter 3

$$\begin{array}{ll} A & \text{(ring, free \mathbb{Z}-mod)} \\ B = \{b_i\}_{i \in I}, b_i b_j = \sum_k c_{ij}^k b_k & (c_{ij}^k \geq 0) & \text{(with \mathbb{Z}_+-basis)} \\ 1 = \sum_j a_i b_i, & (a_i \geq 0) & (\mathbb{Z}_+$-ring) \\ & \text{with inv } * \text{s.t. } \tau(b_i b_j^*) = \delta_{ij} & \text{(based ring)} \\ & \text{fin rank} & \text{(multifusion ring)} \\ 1 \in B & \text{(fusion ring)} \end{array}$$

E.g.: $\mathbb{Z}G$ or $R_{\mathbb{Z}}(G)$ is fusion (G fin), $Mat_n(\mathbb{Z})$ multifusion (n > 1)

$$ext{FPdim}(b_i) = \max ext{-eig}_{\geq 0}([M_{b_i}^L]) ext{ and } ext{FPdim}(b) = ext{FPdim}(b^*).$$
 $R = \sum_i ext{FPdim}(b_i)b_i ext{ reg. elem (fusion), FPdim}(A) = ext{FPdim}(R).$

 $A ext{ is } \mathbf{w}. ext{ int. } ext{FPdim}(A) \in \mathbb{Z}$

A is int. FPdim $(b) \in \mathbb{Z}$ for all $b \in B$

e fusion ⇒ Gr(e) fusion ring

9.6.1. Def: \mathcal{C} fusion is $\begin{cases} w. & \text{int.} & \text{if } \mathsf{FPdim}(\mathcal{C}) \in \mathbb{Z} \\ \text{int.} & \text{if } \mathsf{FPdim}(X) \in \mathbb{Z} \ \forall X. \end{cases}$ $\mathsf{d}_{\mathsf{k}}^2 \leqslant \mathsf{Fpo}^2 \ \forall \mathsf{k}$ **9.6.2. Exer:** \mathcal{C} spherical fusion, $\mathsf{dim}(X) \in \mathbb{Z} \ \forall X.$ **9.6.2.** Exer: C spherical fusion, $\dim(X) \in \mathbb{Z} \ \forall X$. Then C is int. and $\dim(X) \in \{\pm \mathsf{FPdim}(X)\} \ \forall X \ \mathsf{simple}$.

 $\underline{P!}$ $(e, \psi): d_X = T_r^{L}(\psi_X) \in \mathbb{Z} \ \forall \ obj \ X, \ \psi_{x!} \times \xrightarrow{\sim} x^{+\epsilon}$ $\dim (e) = \sum_{x \in G(e)} |x|^2 = \sum_x d_x d_{x^*} = \sum_x d_x^2 \in \mathbb{Z}.$

9.6.3. Exer: The cat $C_2(q)$, q primitive 8^{th} root of unity w. int. but not int. The categories $C_k(q)$ are not w. int. for k > 2.

9.6.5. Prop:
$$C$$
 w. int. fusion over \mathbb{C} . Then C pseudo unitary.
(9.4.2) $\frac{d_1 m \cdot e}{d_1 m \cdot e} \leq 1$ alg. int. $D := d_1 m \cdot (e)$, $D_1 = D$, ..., $D_N = (G_N(D))$

$$\frac{\Im_{1,...,} \Im_{N} \in Gal(\widehat{\mathbb{Q}}/\mathbb{Q}) \Rightarrow \frac{\dim (\mathfrak{q}_{i}(e))}{\operatorname{FP}(\mathfrak{q}_{i}(e))} \leq 1 \Rightarrow \frac{\Pi}{\operatorname{FP}(\mathfrak{q}_{i}(e))} \leq 1 \Rightarrow \frac{D}{\operatorname{FP}(a^{-1})}.$$

9.6.6. Cor: C w. int. fusion over \mathbb{C} . (9.8.1) Then $\exists ! a_X : X \cong X^{**}$ s.t. $d_X = \mathsf{FPdim}(X)$ for all X.

9.6.7. Cor: H semisimple Hopf alg over k, char(k) = 0. Then $S^2 = id$.

ReD (H) is inf $(FP(X) = dim_{R}(X))$ in fin. order. => 31 sph str: given by gp-like i with uxil = 52(2) 6Try(w)=dw => Z\(\lambda_i = m => \lambda_i = 1 \text{ \text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\tiliex{\text{\texi}\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi{\texi}\text{\texi}\titit{\text{\texit{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{

9.6.9. Prop: C w. int. fusion. Then

•
$$\forall X, \exists n_X \in \mathbb{Z} \text{ with } \mathsf{FPdim}(X) = \sqrt{n_X}$$

• deg : $\mathcal{O}(X) \to \mathbb{Q}_+^{\times}/(\mathbb{Q}_+^{\times})^2$ with deg $(X) = [\mathsf{FPdim}(X)^2]$ is a grading.

9.6.10. Cor: \mathcal{C} fusion with FPdim(\mathcal{C}) odd integer. Then \mathcal{C} is int. (3.5.8)

9.6.11. Prop: \mathcal{C} int. fusion and \mathcal{M} indecomposable \mathcal{C} -mod cat.

Then
$$\mathcal{C}_{\mathcal{M}}^{*}$$
 int. fusion.

F = Forg: $\mathbb{Z}(\mathcal{C}) \longrightarrow \mathcal{C}$
 $(7.13.1)$

Sury (any $\times \mathcal{C}(\mathcal{C})$ is subof. of $\mathcal{C}(\mathcal{C})$)

 $(2.16.2)$
 $\mathbb{Z}(\mathcal{C}_{\mathcal{M}}^{*}) \cong \mathbb{Z}(\mathcal{C}) \Longrightarrow \mathbb{Z}(\mathcal{C}_{\mathcal{M}}^{*})$ is int

 $\mathbb{Z}(\mathcal{C}_{\mathcal{M}}^{*}) \cong \mathbb{Z}(\mathcal{C}) \Longrightarrow \mathbb{Z}(\mathcal{C}_{\mathcal{M}}^{*})$, $\mathbb{Z}(\mathcal{C}_{\mathcal{M}}^{*}) \cong \mathbb{Z}(\mathcal{C}_{\mathcal{M}}^{*})$.

FP(Y) $\in \mathbb{Z} \Longrightarrow \mathbb{PP}(X)$, $\mathbb{PP}(X) \in \mathbb{Z}$.

- **9.6.12. Exer:** C w. int. fusion, then C_{ad} is int. fusion.
- **9.6.13.** Exer: \mathcal{C} fusion, \mathcal{D} full abelian subcat st $X \in \mathcal{D}$ iff $\mathsf{FPdim}(X) \in \mathbb{Z}$. Then \mathcal{D} is fusion.

Section 9.7: Group-theoretical fusion cats

Recall (5.11.1): C ptd fusion if every simple object is invertible.

E.g. (2.3.8): $\mathcal{C} = \operatorname{Vec}_G^{\omega}$, G finite gp, $\omega \in Z^3(G, k^{\times})$ is ptd fusion.

Vec
$$G \ni V = \bigoplus Vg$$
 $G - graded$, G fin. gp .

assoc. comes from $w \in Z^3(G, k^x)$: $dw = 0 \sim p$ portagor

Simple objects $f \in G$, $g \in G^1$ with $(g_1)_x = f k$ $f \in G$
 $w = 0$: assoc. an identities!

9.7.1. Def: \mathcal{C} fusion is gp theor if $\mathcal{C}^*_{\mathcal{M}} \cong \operatorname{Vec}_G^{\omega}$ for some indec \mathcal{C} -mod \mathcal{M} . **9.7.2.** E.g.: Classification of $\operatorname{Vec}_G^{\omega}$ -module cats:

(7.4.10)
$$C = Vec_G^0$$
. \mathcal{M} C -mod cat \iff (\mathcal{H}, F, η)
 $F_g: \mathcal{M} \to \mathcal{M}$, $F_g(\mathcal{N}) = \delta_g \otimes \mathcal{M}$, $\Lambda_{gh}: F_{g^o}F_h \simeq F_{gh}$

Section 9.7, still

Given $M \sim D$ $\exists L < G < sJ$. O(M) = G/Lassoc. of $m \sim D$ $\forall : G \times G \rightarrow Fun(G/L, k^x) =: colnd_L^G k^x$ $\underline{\Psi}(x,y)(b) = m_{X,Y}, \underline{\Psi}^{-1}b$ (pant.) $\Psi \in Z^2(G, coind_L^G k^x)$

Similarly $w \neq 0$: $d\psi = w|_{L\times L\times L}$ (L, ψ), $\psi \in C^2(L_k)$

but H2 (G, coind kx) ~ H2 (L, kx)

9.7.3. Rem: $\mathcal{M}(L, \psi) \sim_{\mathit{Mor}} \mathcal{M}(L', \psi')$ iff

$$L' = {}^{g}L = gLg^{-1}$$
 and $\psi' = \psi^{g} = \psi({}^{g} \bullet, {}^{g} \bullet).$

- 9.7.4 9.7.6: skip
- **9.7.7.** Rem: gp theor fusion cats are int.
- **9.7.8. Def:** \mathcal{D} is a *quotient* of a fusion \mathcal{C} if $\exists F: \mathcal{C} \to \mathcal{D}$ surjective.

Recall 4.3: If $\mathbb{1} = \bigoplus_i \mathbb{1}_i$ then $C_{ij} = \mathbb{1}_i \otimes C \otimes \mathbb{1}_j$ are the components of C. **9.7.9. Prop:**

- (i) Subcats of gp theor fusion is gp theor fusion.
- (ii) Components in a quotient of a gp theor fusion is gp theor fusion.

Recall: Section 3.6, 4.14 Let (A, B) a unital based ring

Recall: Section 3.6, 4.14

Let (A, B) a unital based ring

 $A_{ad} \subset A$ minimal based subring containing $\{bb^* \mid b \in B\}$

Recall: Section 3.6, 4.14 Let (A, B) a unital based ring

 $A_{ad} \subset A$ minimal based subring containing $\{bb^* \mid b \in B\}$ \mathcal{C}_{ad} smallest tensor Serre subcat containing $X \otimes X^*, X \in \mathcal{O}(\mathcal{C})$

Recall: Section 3.6, 4.14 Let (A, B) a unital based ring

 $A_{ad} \subset A$ minimal based subring containing $\{bb^* \mid b \in B\}$ \mathcal{C}_{ad} smallest tensor Serre subcat containing $X \otimes X^*, X \in \mathcal{O}(\mathcal{C})$ **E.g.:** If G fin grp $\mathcal{C} = \text{Rep}(G)$ then $\mathcal{C}_{ad} = \text{Rep}(G/Z(G))$

Recall: Section 3.6, 4.14 Let (A, B) a unital based ring

 $A_{ad} \subset A$ minimal based subring containing $\{bb^* \mid b \in B\}$ \mathcal{C}_{ad} smallest tensor Serre subcat containing $X \otimes X^*, X \in \mathcal{O}(\mathcal{C})$ **E.g.:** If G fin grp $\mathcal{C} = \text{Rep}(G)$ then $\mathcal{C}_{ad} = \text{Rep}(G/Z(G))$

A is nilp if $A = A^{(0)} \supset A^{(1)} \supset \cdots \supset A^{(n)} = \mathbb{Z}.1$ for some n, with $A^{(1)} = A_{ad}$ and $A^{(k)} = (A^{(k-1)})_{ad}$

Recall: Section 3.6, 4.14

Let (A, B) a unital based ring

 $A_{ad} \subset A$ minimal based subring containing $\{bb^* \mid b \in B\}$ \mathcal{C}_{ad} smallest tensor Serre subcat containing $X \otimes X^*, X \in \mathcal{O}(\mathcal{C})$ **E.g.:** If G fin grp $\mathcal{C} = \text{Rep}(G)$ then $\mathcal{C}_{ad} = \text{Rep}(G/Z(G))$

A is nilp if $A = A^{(0)} \supset A^{(1)} \supset \cdots \supset A^{(n)} = \mathbb{Z}.1$ for some n, with $A^{(1)} = A_{ad}$ and $A^{(k)} = (A^{(k-1)})_{ad}$ \mathcal{C} is nilp if $\mathcal{C} = \mathcal{C}^{(0)} \supset \mathcal{C}^{(1)} \supset \cdots \supset \mathcal{C}^{(n)} = \text{Vec for some n,}$ with $\mathcal{C}^{(1)} = \mathcal{C}_{ad}$ and $\mathcal{C}^{(k)} = (\mathcal{C}^{(k-1)})_{ad}$

Recall: Section 3.6, 4.14 Let (A, B) a unital based ring

 $A_{ad} \subset A$ minimal based subring containing $\{bb^* \mid b \in B\}$ \mathcal{C}_{ad} smallest tensor Serre subcat containing $X \otimes X^*, X \in \mathcal{O}(\mathcal{C})$ **E.g.:** If G fin grp $\mathcal{C} = \text{Rep}(G)$ then $\mathcal{C}_{ad} = \text{Rep}(G/Z(G))$

A is nilp if $A = A^{(0)} \supset A^{(1)} \supset \cdots \supset A^{(n)} = \mathbb{Z}.1$ for some n, with $A^{(1)} = A_{ad}$ and $A^{(k)} = (A^{(k-1)})_{ad}$ \mathcal{C} is nilp if $\mathcal{C} = \mathcal{C}^{(0)} \supset \mathcal{C}^{(1)} \supset \cdots \supset \mathcal{C}^{(n)} = \text{Vec for some n,}$ with $\mathcal{C}^{(1)} = \mathcal{C}_{ad}$ and $\mathcal{C}^{(k)} = (\mathcal{C}^{(k-1)})_{ad}$

G-grading: $B = \coprod_g B_g \rightsquigarrow A = \oplus_g A_g$, with $A_g A_h \subset A_{gh}, A_g^* \subset A_{g^{-1}}$

Recall: Section 3.6, 4.14 Let (A, B) a unital based ring

 $A_{ad} \subset A$ minimal based subring containing $\{bb^* \mid b \in B\}$ \mathcal{C}_{ad} smallest tensor Serre subcat containing $X \otimes X^*, X \in \mathcal{O}(\mathcal{C})$ **E.g.:** If G fin grp $\mathcal{C} = \operatorname{Rep}(G)$ then $\mathcal{C}_{ad} = \operatorname{Rep}(G/Z(G))$

A is nilp if $A = A^{(0)} \supset A^{(1)} \supset \cdots \supset A^{(n)} = \mathbb{Z}.1$ for some n, with $A^{(1)} = A_{ad}$ and $A^{(k)} = (A^{(k-1)})_{ad}$ \mathcal{C} is nilp if $\mathcal{C} = \mathcal{C}^{(0)} \supset \mathcal{C}^{(1)} \supset \cdots \supset \mathcal{C}^{(n)} = \text{Vec for some n,}$ with $\mathcal{C}^{(1)} = \mathcal{C}_{ad}$ and $\mathcal{C}^{(k)} = (\mathcal{C}^{(k-1)})_{ad}$

G-grading: $B = \coprod_g B_g \rightsquigarrow A = \oplus_g A_g$, with $A_g A_h \subset A_{gh}, A_g^* \subset A_{g^{-1}}$ faithful grading: $B_g \neq \emptyset$ for all $g \in G$

Recall: Section 3.6, 4.14 Let (A, B) a unital based ring

$$A_{ad} \subset A$$
 minimal based subring containing $\{bb^* \mid b \in B\}$ \mathcal{C}_{ad} smallest tensor Serre subcat containing $X \otimes X^*, X \in \mathcal{O}(\mathcal{C})$ **E.g.:** If G fin grp $\mathcal{C} = \operatorname{Rep}(G)$ then $\mathcal{C}_{ad} = \operatorname{Rep}(G/Z(G))$

A is nilp if
$$A = A^{(0)} \supset A^{(1)} \supset \cdots \supset A^{(n)} = \mathbb{Z}.1$$
 for some n, with $A^{(1)} = A_{ad}$ and $A^{(k)} = (A^{(k-1)})_{ad}$ \mathcal{C} is nilp if $\mathcal{C} = \mathcal{C}^{(0)} \supset \mathcal{C}^{(1)} \supset \cdots \supset \mathcal{C}^{(n)} = \text{Vec for some n,}$ with $\mathcal{C}^{(1)} = \mathcal{C}_{ad}$ and $\mathcal{C}^{(k)} = (\mathcal{C}^{(k-1)})_{ad}$

G-grading:
$$B = \coprod_g B_g \rightsquigarrow A = \bigoplus_g A_g$$
, with $A_g A_h \subset A_{gh}, A_g^* \subset A_{g^{-1}}$ faithful grading: $B_g \neq \emptyset$ for all $g \in G$

Fact: C is nilp iff exists $C_0 = \text{Vec} \subsetneq C_1 \subsetneq \cdots \subsetneq C_n = C$ with C_i faithful G_i -grd with trivial comp C_{i-1} . C cycl nilp cat if G_i cyclic.

- **9.8.1. Def:** C fusion is $\begin{cases} w \text{ gp theor} & \text{if } \sim_{Mor} \text{ to a nilp cat} \\ & \text{solv} & \text{if } \sim_{Mor} \text{ to a cycl nilp cat} \end{cases}$
- **9.8.2. Rem:** $\mathsf{FPdim}(\mathcal{A}) \in \mathbb{Z}$ for all w gp theor fusion cats.

9.8.3. Lem: G fin, A a G-ext of $A_0 \sim_{Mor} B_0$. Then exists a G-ext B of B_0 with $C \sim_{Mor} A$.

ts a
$$G$$
-ext B of B_0 with $C \sim_{Mor} A$.

$$C = C_0 \oplus \dots$$

$$C = C_0 \oplus$$

AGGO SQ

9.8.4. Prop: The class of w gp theor fusion cats is closed under:

- G-extensions,
- G-equivariantizations,
- categorical Morita,
- tensor prods,
- centers,
- subcats,
- components of quotient cats.

- **9.8.5.** Prop: (i) The class of solv fusion cats is closed under:
 - *G*-extensions with *G* solvable,
 - G-equivariantizations with G solvable,
 - categorical Morita,
 - tensor prods,
 - centers (?),
 - subcats,
 - components of quotient cats.

- **9.8.5.** Prop: (i) The class of solv fusion cats is closed under:
 - *G*-extensions with *G* solvable,
 - G-equivariantizations with G solvable,
 - categorical Morita,
 - tensor prods,
 - centers (?),
 - subcats,
 - components of quotient cats.
- (ii) The cats Vec_G^{ω} and Rep(G) are solv iff G solvable.

- **9.8.5.** Prop: (i) The class of solv fusion cats is closed under:
 - *G*-extensions with *G* solvable,
 - G-equivariantizations with G solvable,
 - categorical Morita,
 - tensor prods,
 - centers (?),
 - subcats,
 - components of quotient cats.
- (ii) The cats $\operatorname{Vec}_G^{\omega}$ and $\operatorname{Rep}(G)$ are solv iff G solvable.
- (iii) If $\mathcal{A} \neq \mathsf{Vec}$ is solv then it contains a nontrivial invertible object.

- **9.8.5.** Prop: (i) The class of solv fusion cats is closed under:
 - *G*-extensions with *G* solvable,
 - G-equivariantizations with G solvable,
 - categorical Morita,
 - tensor prods,
 - centers (?),
 - subcats,
 - components of quotient cats.
- (ii) The cats Vec_G^{ω} and Rep(G) are solv iff G solvable.
- (iii) If $\mathcal{A} \neq \mathsf{Vec}$ is solv then it contains a nontrivial invertible object.

9.8.6. Question: Is Rep(H) w gp theor if H is ss fin dim Hopf algebra?