A fuel consumption study of Stata's auto dataset

We conduct a study of the fuel consumption of cars in Stata's auto dataset.

```
. sysuse auto, clear (1978 Automobile Data)
```

Perform data transformation

We generate a variable, **fuel**, that measures the fuel consumption rate in the unit of Gallons per 100 Miles.

```
. generate fuel = 100/mpg
. label variable fuel "Fuel consumption (Gallons per 100 Miles)"
```

Gallons per 100 Mile is a better measurement than Miles per Gallon. Going from a 10 Miles per Gallon car to a 20 Miles per Gallon car saves 5 Gallons per 100 Miles when Miles per Gallon increases 10. Going from a 20 Miles per Gallon car to a 40 Miles per Gallon car *only* saves 2.5 Gallons per 100 Miles when Miles per Gallon increases 20.

Examine the variables

We examine variables for possible errors in the data.

. describe fuel weight

2	storage	display	value	
variable name	type	format	label	variable label
fuel	float	%9.0g		Fuel consumption (Gallons per 100
				Miles)
weight	int	%8.0gc		Weight (lbs.)

. summarize weight

Variable		Obs	Mean	Std.	Dev.	Min	Max
	+						
weight		74	3019.459	777.2	1936	1760	4840

The variable weight has minimum value 1760.00, maximum value 4840.00, and range 3080.00.

Plot fuel consumption and vehicle weight

. twoway lfitci fuel weight || scatter fuel weight, mcolor(%20) scheme(538)

Explore relationship between fuel consumption and vehicle weight - linear regression

. regress fuel weight

Source	SS	df	MS	Number of obs	=	74
+				F(1, 72)	=	194.71
Model	87.2964969	1	87.2964969	Prob > F	=	0.0000
Residual	32.2797639	72	.448330054	R-squared	=	0.7300
+				Adj R-squared	=	0.7263
Total	119.576261	73	1.63803097	Root MSE	=	.66957

					[95% Conf.	-
	+					
weight	.001407	.0001008	13.95	0.000	.001206	.0016081
_cons	.7707669	.3142571	2.45	0.017	.1443069	1.397227

The regression shows that for every unit increase in weight, a 0.0014 unit increase in fuel consumption is predicted.

Produce an HTML table from regression results

. _coef_table, markdown

fuel	Coef.	Std. Err.	t	P > t	[95% Con Interval	nf.]
weight	.001407	.0001008	13.95	0.000	.001206	.0016081
_cons	.7707669	.3142571	2.45	0.017	.1443069	1.397227

Produce a table from estimates table

- . quietly regress fuel weight gear turn
- . estimates store model1
- . quietly regress fuel weight gear turn foreign
- . estimates store model2

. estimates table model1 model2, variabel b(%7.4f) stats(N r2_a) star markdown

Variable	model1	model2	
Weight (lbs.)	0.0014***	0.0013***	
Gear Ratio	0.1706	-0.3367	
Turn Circle (ft.)	0.0243	0.0613	
Car type		0.8650***	
Constant	-0.5814	-0.4661	
N	74	74	
r2_a	0.7218	0.7637	

legend: * p<0.05; ** p<0.01; *** p<0.001

Produce a table from community-contributed esttab

```
. eststo : quietly regress fuel weight gear turn
(est1 stored)

. eststo : quietly regress fuel weight gear turn foreign
(est2 stored)

. esttab using esttab_ex.html, label ///
> width(80%) nogaps ///
> mtitles("Model 1" "Model 2") ///
> title(Regression table using -esttab-)
(output written to esttab_ex.html)
```

Regression table using -esttab-

	(1) Model 1	(2) Model 2
Weight (lbs.)	0.00136***	0.00126***
Wolghe (1881)	(6.09)	(6.06)
Gear Ratio	0.171	-0.337
	(0.64)	(-1.19)
Turn Circle (ft.)	0.0243	0.0613
	(0.70)	(1.81)
Car type		0.865***
		(3.66)
Constant	-0.581	-0.466
	(-0.38)	(-0.33)
Observations	74	74

t statistics in parentheses

* *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001

The community-contributed \mathbf{esttab} is available on the Boston College Statistical Software Components (SSC) archive; see \mathbf{ssc} install for details.