Supervised Learning & CNNs

Narada Warakagoda

Outline Architecture Losses Training Regularization 1/30

Supervised Learning outline

- Given: A set of training examples (input, label) pairs { (x,y)}
- Find: Model parameters θ such that the similarity between the model output \hat{y} and the labels y are maximized. Similarity is expressed as a loss/error/cost function.

Outline Architecture

Losses

Γraining

Main aspects of supervised deep learning

- What is the model architecture?
- What is the loss function?
- How do we update the model parameters?
- How do we maintain the generalization ability of the model?

Outline Architecture Losses Training Regularization 3 / 30

Neuron

Mathematical Model

Illustrations from http://cs231n.github.io/neural-networks-1/

Activation Functions

Sigmoid

Tanh Sigmoid

Rectified Linear (ReLu)

Outline Architecture

Losses

Training

Regularization

5/30

Fully Connected (Dense) Network

- Each layer performs y = f(xW + b)
- Single hidden layer can approximate any function (Universal approximation theorem)
- Number of parameters can grow quickly

Outline Architecture

Losses

Iraining

Convolutional Neural Network (CNN)

- Can be seen as:
 - Crude model of human visual cortex
 - Generalization of Gabor filters
 - Generalization of template matching
 - Way of parameter sharing and hence parameter reduction

Outline Architecture Losses Training Regularization 7 / 30

CNN as glorified template matching

 Try to match template as each location by sliding it over the input image

Outline Architecture

A typical CNN

Outline Architecture Losses Training Regularization 9 / 30

Convolutional Layer

Convolution of 2D-inputs (eg: single channel images)

Outline Architecture

Losses

Training

Convolutional Layer

 Convolution with 3D inputs (eg: multiple channel images or feature maps)

4 channels of 2-D Images

Outline Architecture

Losses

Training

Sub-sampling layer

Max-pooling operation

Outline Architecture Losses Training Regularization 12 / 30

Padding

- Convolution and sub-sampling (max-pooling) lead to an output dimension $N_o = \frac{N_i F}{s} + 1$ where $N_o = \text{input dimension}$, F = Filter dimension and S = stride
- Output dimension can decrease even when stride s = 1.
- Apply zero padding around the image to prevent such reduction of dimensions.

Outline Architecture Losses Training Regularization 13 / 30

Padding

 Tensorflow padding options illustrated using 1D signals

Outline Architecture Losses Training Regularization 14 / 30

Loss functions

- Also called Cost/Error/Objective functions
- A loss function measures the similarity between model output $\hat{\mathbf{y}} = f_{\theta}(\mathbf{X})$ and the corresponding label \mathbf{y}
- Common loss functions:
 - Mean Squared Error (MSE)
 - (Categorical) Cross Entropy (CE)

Outline Architecture Losses Training Regularization 15 / 30

Mean Squared Error (MSE)

- $E_{MSE} = \frac{1}{N} \sum_{i} (y_i \hat{y}_i)^2$
- Suitable for regression (i.e. predict y_i)
- It can be shown that MSE is equivalent to the conditional maximum likelihood of labels, when the prediction error ϵ_i has a zero mean Gaussian distribution.

$$\arg\min_{\boldsymbol{\theta}} \{E_{MSE}\} = \arg\min_{\boldsymbol{\theta}} \{-\sum_{i} \log p(y_i|\mathbf{X}_i)\}$$

Outline Architecture

Losses

Iraining

Cross Entropy (CE)

- Suitable for classification (i.e. predicting the class probabilities of K given classes)
- Labels can be:
 - One-hot encoded or class probability label:

$$[y_i(1), y_i(2), \cdots, y_i(K)]$$

- Sparse: index of the only correct class j is given, i.e. $y_i = j$

Outline Architecture Losses Training Regularization 17 / 30

Cross Entropy (Ctd)

- Model outputs a categorical distribution i.e. probability of each class $p(c(k)|\mathbf{X}_i)$, where i is the sample index and c(k) is the class of index k
- Cross Entropy:
 - One-hot encoded or class probability labels:

$$E_{CE} = -\frac{1}{N} \sum_{i} \sum_{k} y_i(k) \log p(c(k)|\mathbf{X}_i)$$

- Sparse labels: Assume the correct class is y_i

18 / 30

Training

- The process of fitting the model parameters to the given training data
 - This is the same as optimizing the loss function with respect to model parameters
- Parameters are updated using gradient descent
 - Plain gradient descent: $\theta_{t+1} = \theta_t \epsilon \frac{\partial E}{\partial \theta_t}$
 - More fanzy algorithms (ADAM, RmsPROP, and many more)
- Estimation of gradients $\frac{\partial E}{\partial \theta_t}$ is the core problem of training
 - Back-propagation algorithm

Outline Architecture Losses Training Regularization 19 / 30

Back-Propagation

Outline Architecture

Losses

Training

Model Parameter Update

- Batch gradient descent:
 - Gradients are accumulated for the whole training set, and do the update
- Stochastic gradient descent:
 - No gradient accumulation, update after processing each (randomly selected) sample
- Mini-batch gradient descent:
 - Divide the training set into several mini-batches, accumulate gradient and update after each (randomly selected) mini-batch

Outline Architecture Losses Training Regularization 21 / 30

Regularization

- Network should perform well on unseen data
 - Generalization ability
- Too much adaptation to training data (overfitting) harms generalization ability.
- Regularization prevents over-fitting

Outline Architecture

Losses

Training

Regularization vs Optimization

- Optimization: Try to reduce training loss
 - Often test loss is reduced as a side effect
 - Test loss may not be the minimum if over-fitting occurs
- Regularization: Try to reduce the test loss
 - Regularization imposes "restrictions" on training.
 - Minimum test loss is not necessarily corresponding to the minimum training loss

Outline Architecture Losses Training Regularization 23 / 30

Popular regularization techniques in deep learning

- Early stopping in training
- Data shuffling
- Data Augmentation
- Weight decay
- Dropout
- Batch Normalization

Outline Architecture Losses Training Regularization 24 / 30

Weight Decay

Modify the loss function

- Add a penalty term for high parameter values
- $E_{reg}(\boldsymbol{\theta}) = E(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||^2$
- λ is a positive constant and $||\cdot||$ is Eucledian norm of the parameter vector heta

Outline Architecture Losses Training Regularization 25 / 30

Dropout

- Randomly remove neurons from a given layer every time a sample is processed
- Removal percentage is a parameter of Dropout
- Typically done only in training (i.e. NOT in testing)

Outline Architecture

Batch Normalization (BN)

- Normalize the input of a neuron (or inputs to a set of related neurons) with the mean and standard deviation of the batch.
- This will prevent "covariate shift" (i.e. large changes of input distribution from one batch to another)
- Initially proposed as a method for improving the training speed
- BN has a regularization effect as well.

Outline Architecture Losses Training Regularization 27 / 30

BN for image data

$$\mu_{d} \leftarrow \frac{1}{N*H*W} \sum_{i=1}^{N} \sum_{h=1}^{H} \sum_{w=1}^{W} x_{i,h,w,d}$$

$$\sigma_{d}^{2} \leftarrow \frac{1}{N*H*W} \sum_{i=1}^{N} \sum_{h=1}^{H} \sum_{w=1}^{W} (x_{i,h,w,d} - \mu_{d})^{2}$$

$$\hat{x}_{i,h,w,d} \leftarrow \frac{x_{i,h,w,d} - \mu_{d}}{\sqrt{(\sigma_{d}^{2} + \epsilon)}}$$

$$y_{i,h,w,d} \leftarrow \gamma \hat{x}_{i,h,w,d} + \beta$$

- $x_{i,h,w,d}$ is an element of the input tensor of size $N \times H \times W \times D$ where N= batch size, H=image height, W=image width and D= image depth (number of channels)
- $y_{i,h,w,d}$ is the corresponding element of the output tensor
- γ and β are trainable parameters called *scale* and *center*
- ϵ is a small constant to prevent numerical instability (i.e. divide by zero)

BN Practise

- Full BN is performed only in training
- Global standard deviations and means of the training set σ_d^g and μ_d^g are stored during training (as the moving average of σ_d and μ_d of each batch
- In testing (inference) the stored global standard deviations and means are used.

Outline Architecture Losses Training Regularization 29 / 30

Other Issues

- How to select hyper-parameters
 - Learning rate
 - Regularization parameters
 - Model architecture
- Initialization of model parameters

Outline Architecture Losses Training Regularization 30 / 30