Licence 3 de mathématiques à distance

Cours d'analyse complexe

Lionel BAYLE 5 février 2024

Chapitre 1, partie 2.

Les fonctions holomorphes.

^{1. © 2020,} Lionel Bayle : Cours de licence 3 de mathématiques à distance. Tous droits réservés.

Table des matières

2	Lien avec la différentiabilité.		1
	2.1	Rappels sur la différentiabilité	1
	2.2	Dérivées partielles par rapport à z et \bar{z}	3
	2.3	Conditions de dérivabilité en coordonnées cartésiennes et conditions de Cauchy en coordonnées cartésiennes.	5
	2.4	Conditions de dérivabilité en coordonnées polaires et conditions de Cauchy en coordonnées polaires	6
3	Rap	opels.	8

2 Lien avec la différentiabilité.

But: On va montrer que dérivable (au sens complexe) équivaut à différentiable plus les conditions de Cauchy.

2.1 Rappels sur la différentiabilité.

Remarque 1.

Pour une fonction $f: U \to \mathbb{C}$ et $z \in U$, on peut écrire z = x + iy donc f(z) = f(x + iy) est en fait une fonction f(x, y) des deux variables réelles x et y. On peut donc utiliser la notion de différentiabilité des fonctions de plusieurs variables.

Notation 1.

Définissons la bijection $e: \mathbb{R}^2 \to \mathbb{C}$, $(x,y) \mapsto x+iy$. Notons l'application première coordonnée définie sur \mathbb{R}^2 , $dx: (x,y) \mapsto x$ et de même l'application seconde coordonnée, $dy: (x,y) \mapsto y$. Notons $dz = \mathrm{Id}_{\mathbb{C}}: \mathbb{C} \to \mathbb{C}$, $z \mapsto z$. Remarquons que via la bijection e, dz = dx + idy. La bijection e permet de voir une application comme une application définie sur \mathbb{R}^2 quand nous voulons faire du calcul différentiel et comme une application définie sur \mathbb{C} pour faire de la dérivation complexe, par l'identification f(x,y) = f(x+iy) = f(z), qui constitue un abus de notation, car nous notons de la même manière deux application différentes, nous devrions noter f(x,y) = h(z). Exemple : $f: z \mapsto 2z$, f(x,y) = f(x+iy) = f(z) = 2z = 2x + 2iy, $\frac{\partial f}{\partial x}(x,y) = 2$, $\frac{\partial f}{\partial y}(x,y) = 2i$ et f'(z) = 2.

^{1. © 2020,} Lionel Bayle : Cours de licence 3 de mathématiques à distance. Ce document est protégé par la législation sur le droit d'auteur.

Définition 1 (différentiabilité).

f est différentiable en $z_0 \in U$ si il existe $a,b \in \mathbb{C}$ tels que $\frac{f(z)-f(z_0)-a(x-x_0)-b(y-y_0)}{z-z_0} \to 0$ quand $z \to z_0, z \neq z_0, z \in U$. Ce qui équivaut à dire qu'il existe une fonction $\epsilon: U \to \mathbb{C}$ tendant vers 0 quand z tend vers z_0 telle que $f(z) = f(z_0) + a(x-x_0) + b(y-y_0) + (z-z_0)\epsilon(z)$. On dit que f est différentiable sur U si elle est différentiable en tout point de U.

Remarque 2.

La notion de différentielle définie ci-dessus correspond à celle vue en cours de calcul différentiel si on identifie \mathbb{C} à \mathbb{R}^2 . a et b sont alors uniques.

Preuve:

Si un autre couple (a',b') est solution, il vérifie $f(z) = f(z_0) + a'(x-x_0) + b'(y-y_0) + (z-z_0)\epsilon'(z)$, avec $\lim_{z\to z_0} \epsilon'(z) = 0$. On a par différence : $0 = (a'-a)(x-x_0) + (b'-b)(y-y_0) + (z-z_0)(\epsilon'(z)-\epsilon(z))$. En posant $z = x+iy_0$, on trouve $0 = (a'-a)(x-x_0) + (x-x_0)(\epsilon'(z)-\epsilon(z))$. Soit $0 = a'-a+\epsilon'(z)-\epsilon(z) \to a'-a$ quand $z\to z_0$, donc a'=a. De même, en posant $z=x_0+iy$, on trouve b'=b.

Ceci implique que f (abus de notations) admet des dérivées partielles par rapport à x et y, et on a : $a = \frac{\partial f}{\partial x}(z_0) = f'_x(z_0)$ et $b = \frac{\partial f}{\partial y}(z_0) = f'_y(z_0)$. L'application \mathbb{R} -linéaire d $f(z_0)$: $\mathbb{C} \to \mathbb{C}$, $z = x + iy \mapsto ax + by$ est appelée différentielle de f en z_0 . Si on note d $x = \mathrm{Re}$ et d $y = \mathrm{Im}$, on a d $f(z_0)(z - z_0) = a$ d $x(z - z_0) + b$ d $y(z - z_0)$.

Définition 2 (\mathbb{R} -linéarité).

Une application $f: \mathbb{C} \to \mathbb{C}$ est dite \mathbb{R} -linéaire, si $\forall c \in \mathbb{R}$, $\forall (z, z') \in \mathbb{C}^2$, f(cz + z') = cf(z) + f(z'). Ce qui est équivalent à dire que si on considère f comme une application de \mathbb{R}^2 dans \mathbb{R}^2 , elle est linéaire.

Proposition 1.

Si f et g sont des fonctions de U vers \mathbb{C} différentiables en z_0 et si $\lambda \in \mathbb{C}$ alors λf , f+g et fg sont différentiables en z_0 . Si de plus $g(z_0) \neq 0$ alors $\frac{f}{g}$ est différentiable en z_0 .

L'exercice 4 montre la différentiabilité de fg.

Proposition 2.

Si f est de classe C^1 sur U, c'est à dire qu'elle possède des dérivées partielles f'_x et f'_y continues sur U, alors f est différentiable sur U.

^{1. © 2020,} Lionel Bayle : Cours de licence 3 de mathématiques à distance. Tous droits réservés.

Remarque 3.

x et y sont des variables réelles paramétrant $\mathbb C$ comme $\mathbb R$ -espace vectoriel, on peut aussi paramétrer $\mathbb C$ comme $\mathbb R$ -espace vectoriel à l'aide de combinaisons linéaires de x et y, z=x+iy et $\bar z=x-iy$.

2.2 Dérivées partielles par rapport à z et \bar{z} .

Définition 3 (dérivée partielle par rapport à z ou \bar{z}).

Si f est différentiable en z_0 , on note :

$$\frac{\partial f}{\partial z}(z_0) = f_z'(z_0) = \frac{1}{2} \left(\frac{\partial f}{\partial x}(z_0) - i \frac{\partial f}{\partial y}(z_0) \right) \text{ appelée dérivée partielle par rapport à } z.$$

$$\frac{\partial f}{\partial \bar{z}}(z_0) = f_{\bar{z}}'(z_0) = \frac{1}{2} \left(\frac{\partial f}{\partial x}(z_0) + i \frac{\partial f}{\partial y}(z_0) \right) \text{ appelée dérivée partielle par rapport à } \bar{z}.$$

On définit les applications \mathbb{R} -linéaires de \mathbb{C} dans \mathbb{C} : $\mathrm{d}z = \mathrm{Id} = \mathrm{d}x + i \mathrm{d}y$ et $\mathrm{d}\bar{z} = \mathrm{d}x - i \mathrm{d}y$ qui est en fait la conjugaison.

Remarque 4.

dz est \mathbb{C} -linéaire, en effet si $z_0 \in \mathbb{C}$ et $\lambda \in \mathbb{C}$, $dz(\lambda z_0) = Id(\lambda z_0) = \lambda z_0 = \lambda Id(z_0)$. Si de plus, $z_1 \in \mathbb{C}$, $dz(z_0 + z_1) = Id(z_0 + z_1) = z_0 + z_1 = Id(z_0) + Id(z_1)$.

Pourquoi ces notations?

C'est pour avoir l'écriture naturelle en (z, \bar{z}) :

$$df(z_0) = \frac{\partial f}{\partial x}(z_0) dx + \frac{\partial f}{\partial y}(z_0) dy = \frac{1}{2} \left(\frac{\partial f}{\partial x}(z_0) - i \frac{\partial f}{\partial y}(z_0) \right) (dx + i dy) + \frac{1}{2} \left(\frac{\partial f}{\partial x}(z_0) + i \frac{\partial f}{\partial y}(z_0) \right) (dx - i dy) = \frac{\partial f}{\partial z}(z_0) dz + \frac{\partial f}{\partial z$$

Proposition 3.

f est différentiable en z_0 avec dérivées partielles $\frac{\partial f}{\partial z}(z_0)$ et $\frac{\partial f}{\partial \bar{z}}(z_0)$ si et seulement si

$$\frac{f(z) - f(z_0) - \frac{\partial f}{\partial z}(z_0)(z - z_0) - \frac{\partial f}{\partial \bar{z}}(z_0)(\bar{z} - \bar{z_0})}{z - z_0} \to 0 \text{ quand } z \to z_0, \ z \in U.$$

Preuve:

C'est la définition de la différentiabilité car
$$\frac{\partial f}{\partial x}(z_0)(x-x_0) + \frac{\partial f}{\partial y}(z_0)(y-y_0) = \frac{\partial f}{\partial x}(z_0) dx(z-z_0) + \frac{\partial f}{\partial y}(z_0) dy(z-z_0) = \frac{\partial f}{\partial z}(z_0) dz(z-z_0) + \frac{\partial f}{\partial z}(z_0) dz(z-z_0) + \frac{\partial f}{\partial z}(z_0) dz(z-z_0) = \frac{\partial f}{\partial z}(z_0) dz(z-z_0) + \frac{\partial f}{\partial z}(z_0) dz(z-z_0) + \frac{\partial f}{\partial z}(z_0) dz(z-z_0) = \frac{\partial f}{\partial z}(z_0) dz(z-z_0) + \frac{\partial f}{\partial z}(z-z_0) dz(z-z_0) + \frac{\partial f}{\partial z}$$

^{1. ©2020,} Lionel Bayle : Cours de licence 3 de mathématiques à distance. Tous droits réservés.

 $\frac{\partial f}{\partial \bar{z}}(z_0) d\bar{z}(z-z_0) = \frac{\partial f}{\partial z}(z_0)(z-z_0) + \frac{\partial f}{\partial \bar{z}}(z_0)(\bar{z}-\bar{z_0}).$ En effet, $dx(z-z_0) = x - x_0$ et $dy(z-z_0) = y - y_0$. La suite du calcul se justifie par les

Proposition 4.

Soit $f: U \to \mathbb{C}$ différentiable en $z_0 \in U$, alors \bar{f} est différentiable en z_0 et $\frac{\partial f}{\partial z}(z_0) = \frac{\partial f}{\partial \bar{z}}(z_0)$ et $\frac{\partial f}{\partial \bar{z}}(z_0) = \frac{\partial f}{\partial z}(z_0)$.

Preuve:

On remarque que $\frac{f(z) - f(z_0) - a(z - z_0) - b(\bar{z} - \bar{z_0})}{z - z_0} \to 0$ quand $z \to z_0$ équivaut à $\frac{f(z) - f(z_0) - a(z - z_0) - b(\bar{z} - \bar{z_0})}{|z - z_0|} \to 0$ quand $z \to z_0$, car un nombre tend vers 0 si et seulement si son module tend vers 0 et les deux nombres ont même module.

En effet
$$\left| \frac{f(z) - f(z_0) - a(z - z_0) - b(\bar{z} - \bar{z_0})}{z - z_0} \right| = \left| \frac{f(z) - f(z_0) - a(z - z_0) - b(\bar{z} - \bar{z_0})}{|z - z_0|} \right|.$$

On peut donc prendre comme définition de la différentiabilité en z_0 , $\frac{f(z) - f(z_0) - \frac{\partial f}{\partial z}(z_0)(z - z_0) - \frac{\partial f}{\partial \bar{z}}(\bar{z} - \bar{z_0})}{|z - z_0|} \to 0$ quand $z \to z_0$, $z \in U$. Ceci

implique par conjugaison $\frac{\bar{f}(z) - \bar{f}(z_0) - \frac{\overline{\partial f}}{\partial z}(z_0)(\bar{z} - \bar{z_0}) - \frac{\overline{\partial f}}{\partial \bar{z}}(z - z_0)}{|z - z_0|} \to 0$ quand $z \to z_0, z \in U$, ce qui signifie que \bar{f} est différentiable en z_0 et

$$\frac{\partial \bar{f}}{\partial z}(z_0) = \frac{\overline{\partial f}}{\partial \bar{z}}(z_0), \ \frac{\partial \bar{f}}{\partial \bar{z}}(z_0) = \frac{\overline{\partial f}}{\partial z}(z_0).$$

Proposition 5.

Soit $f: U \to \mathbb{C}$ une fonction différentiable en $z_0 \in U$ et $g: V \to \mathbb{C}$ une fonction différentiable en $f(z_0) \in V$, alors $g \circ f$ est différentiable en $z_0 \text{ et } \frac{\partial g \circ f}{\partial z}(z_0) = \frac{\partial g}{\partial z}(f(z_0)) \frac{\partial f}{\partial z}(z_0) + \frac{\partial g}{\partial z}(f(z_0)) \frac{\partial \bar{f}}{\partial z}(z_0) \text{ et } \frac{\partial g \circ f}{\partial z}(z_0) = \frac{\partial g}{\partial z}(f(z_0)) \frac{\partial f}{\partial z}(z_0) + \frac{\partial g}{\partial z}(f(z_0)) \frac{\partial \bar{f}}{\partial z}(z_0).$

Soit
$$z_1 = f(z_0)$$
, on a $f(z) = f(z_0) + a(z - z_0) + b(\bar{z} - \bar{z_0}) + (z - z_0)\epsilon_1(z)$ et $g(z) = g(z_1) + c(z - z_1) + d(\bar{z} - \bar{z_1}) + (z - z_1)\epsilon_2(z)$.
 $g \circ f(z) = g(f(z_0)) + c(f(z) - f(z_0)) + d(\bar{f}(z) - \bar{f}(z_0)) + (f(z) - f(z_0))\epsilon_2(f(z)) = g(f(z_0)) + ca(z - z_0) + cb(\bar{z} - \bar{z_0}) + d\bar{a}(\bar{z} - \bar{z_0}) + d\bar{b}(z - z_0) + c(z - z_0)\epsilon_1(z) + d(\bar{z} - \bar{z_0})\epsilon_1(z) + (f(z) - f(z_0))\epsilon_2(f(z)) = g(f(z_0)) + (ca + d\bar{b})(z - z_0) + (cb + d\bar{a})(\bar{z} - \bar{z_0}) + (z - z_0)\epsilon_3(z)$ avec $\epsilon_3(z) \to 0$ quand $z \to z_0$. Donc $g \circ f$ est différentiable en z_0 . Puisque $a = \frac{\partial f}{\partial z}(z_0)$, $b = \frac{\partial f}{\partial \bar{z}}(z_0)$, $c = \frac{\partial g}{\partial z}(f(z_0))$ et $d = \frac{\partial g}{\partial z}(f(z_0))$, on a $d(z) = \frac{\partial g}{\partial z}(f(z_0)) + d(z) = \frac{\partial g}{\partial z}(f(z_0)) + d(z) = \frac{\partial g}{\partial z}(f(z_0)) + \frac{\partial g}{\partial$

^{1. © 2020,} Lionel Bayle: Cours de licence 3 de mathématiques à distance. Tous droits réservés.

Conditions de dérivabilité en coordonnées cartésiennes et conditions de Cauchy en coordonnées cartésiennes.

Proposition 6 (condition nécessaire de dérivabilité).

Si f est dérivable en $a \in U$ alors f est différentiable en a et sa différentielle est \mathbb{C} -linéaire.

On a
$$\lim_{z\to a} \left(\frac{f(z)-f(a)}{z-a}-f'(a)\right)=0$$
 donc $\lim_{z\to a} \left(\frac{f(z)-f(a)-f'(a)(z-a)}{z-a}\right)=0$. Donc f est différentiable en a de différentiable l'application \mathbb{C} -linéaire d $f(a):\mathbb{C}\to\mathbb{C},\,z\mapsto f'(a)z$.

Remarque 5.

On a d f(a) = f'(a) d z, c'est pour celà qu'on note $f' = \frac{\mathrm{d} f}{\mathrm{d} z}$.

Théorème 1 (conditions de dérivabilité en coordonnées cartésiennes).

Soit U un ouvert de \mathbb{C} et f différentiable en $a \in U$, alors les conditions suivantes sont équivalentes :

i)f est dérivable en a

$$ii)\frac{\partial f}{\partial u}(a) = i\frac{\partial f}{\partial x}(a)$$

iii) d f(a) est \mathbb{C} -linéaire.

Preuve:

i) implique
$$d f(a)$$
 est \mathbb{C} -linéaire d'après la proposition précédente, donc $d f(a)(i) = i d f(a)(1)$. Or, $d f(a) = \frac{\partial f}{\partial x}(a) d x + \frac{\partial f}{\partial y}(a) d y$, donc $d f(a)(i) = \frac{\partial f}{\partial x}(a) d x(i) + \frac{\partial f}{\partial y}(a) d y(i) = \frac{\partial f}{\partial y}(a) car d x(i) = \text{Re}(i) = 0 \text{ et } d y(i) = \text{Im}(i) = 1, \text{ et } d f(a)(1) = \frac{\partial f}{\partial x}(a) d x(1) + \frac{\partial f}{\partial y}(a) d y(1) = \frac{\partial f}{\partial x}(a) car d x(1) = \text{Re}(1) = 1 \text{ et } d y(1) = \text{Im}(1) = 0$. D'où, $d f(a)(i) = \frac{\partial f}{\partial y}(a) = i d f(a)(1) = i \frac{\partial f}{\partial x}(a)$. Soit $\frac{\partial f}{\partial y}(a) = i \frac{\partial f}{\partial x}(a)$, donc on a ii).

ii) implique
$$d f(a) = \frac{\partial f}{\partial x}(a) d x + i \frac{\partial f}{\partial x}(a) d y = \frac{\partial f}{\partial x}(a) d z = \frac{\partial f}{\partial x}(a) \operatorname{Id} \text{ est } \mathbb{C}\text{-lin\'eaire}.$$

ii) implique $d f(a) = \frac{\partial f}{\partial x}(a) dx + i \frac{\partial f}{\partial x}(a) dy = \frac{\partial f}{\partial x}(a) dz = \frac{\partial f}{\partial x}(a) \text{ Id est \mathbb{C}-linéaire.}$ iii) implique $d f(a) : z \mapsto cz, c \in \mathbb{C}$ donc $\frac{f(z) - f(a) - c(z - a)}{z - a}$ tend vers 0 quand z tend vers a, ce qui signifie que $\frac{f(z) - f(a)}{z - a} \xrightarrow[z \to a]{} c$, donc fest dérivable en a.

^{1. © 2020,} Lionel Bayle: Cours de licence 3 de mathématiques à distance. Tous droits réservés.

Remarque 6 (moyen mnémotechnique).

Pour retrouver la condition $\frac{\partial f}{\partial y}(a) = i \frac{\partial f}{\partial x}(a)$, il suffit de la tester sur l'application identique $\frac{\partial z}{\partial y}(a) = i = i \frac{\partial z}{\partial x}(a)$.

Exemple 1.

Soit $e^z = \exp(z) : \mathbb{C} \to \mathbb{C}$, $z = x + iy \mapsto e^x(\cos y + i\sin y)$. Montrons que f est holomorphe. On a $\frac{\partial f}{\partial x}(z) = e^x(\cos y + i\sin y)$ et $\frac{\partial f}{\partial y}(z) = e^x(-\sin y + i\cos y) = ie^x(\cos y + i\sin y)$. $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ étant continues sur \mathbb{C} , f est différentiable sur \mathbb{C} , puisque $\frac{\partial f}{\partial y} = i\frac{\partial f}{\partial x}$, f est holomorphe sur \mathbb{C} .

Proposition 7 (conditions de Cauchy en coordonnées cartésiennes).

Soit f = P + iQ une fonction différentiable, définie par ses parties réelle et imaginaire (P = Re(f), Q = Im(f)), sur un ouvert U de \mathbb{C} . Soit $a \in U$, alors f est dérivable en a si et seulement si $\frac{\partial P}{\partial x}(a) = \frac{\partial Q}{\partial y}(a)$ et $\frac{\partial P}{\partial y}(a) = -\frac{\partial Q}{\partial x}(a)$.

Preuve:
$$\frac{\partial f}{\partial x}(a) = \frac{\partial P}{\partial x}(a) + i\frac{\partial Q}{\partial x}(a), \quad \frac{\partial f}{\partial y}(a) = \frac{\partial P}{\partial y}(a) + i\frac{\partial Q}{\partial y}(a). \quad f \text{ est dérivable en } a \text{ si et seulement si } \frac{\partial f}{\partial y}(a) = i\frac{\partial f}{\partial x}(a), \text{ ce qui équivaut à } \frac{\partial P}{\partial y}(a) = -\frac{\partial Q}{\partial x}(a)$$
 et
$$\frac{\partial Q}{\partial y}(a) = \frac{\partial P}{\partial x}(a).$$

2.4 Conditions de dérivabilité en coordonnées polaires et conditions de Cauchy en coordonnées polaires.

Proposition 8 (condition dérivabilité en coordonnées polaires).

 $v: \mathbb{R}^{+*} \times [0, 2\pi[\to \mathbb{R}^2, (r, \theta) \mapsto (x = r \cos \theta, y = r \sin \theta) \text{ réalise un changement de variables. Soit } g(r, \theta) = f(r \cos \theta, r \sin \theta) = h(z) \text{ une fonction différentiable de } (r, \theta), \text{ alors } g \text{ est holomorphe sur un ouvert } U \text{ de } \mathbb{C}^* \text{ (plus exactement } h, il s'agit d'un abus de notations) si et seulement si } \frac{1}{r} \frac{\partial g}{\partial \theta} = i \frac{\partial g}{\partial r} \text{ sur } U. \text{ Le résultat peut aussi s'énoncer en terme de dérivabilité en un point } a.$

Preuve:

^{1. © 2020,} Lionel Bayle : Cours de licence 3 de mathématiques à distance. Tous droits réservés.

$$\begin{vmatrix} \frac{\partial g}{\partial r} = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial \theta} = -r \sin \theta \frac{\partial f}{\partial x} + r \cos \theta \frac{\partial f}{\partial y} \end{vmatrix}$$
. D'après les formules de Cramer :
$$\begin{vmatrix} \frac{\partial f}{\partial x} = \cos \theta \frac{\partial g}{\partial r} - \frac{\sin \theta}{r} \frac{\partial g}{\partial \theta} \\ \frac{\partial f}{\partial y} = \sin \theta \frac{\partial g}{\partial r} + \frac{\cos \theta}{r} \frac{\partial g}{\partial \theta} \end{vmatrix}$$
.

Or g est holomorphe si et seulement si $\frac{\partial f}{\partial y} = i\frac{\partial f}{\partial x}$, soit $\sin\theta \frac{\partial g}{\partial r} + \frac{\cos\theta}{r} \frac{\partial g}{\partial \theta} = i\left(\cos\theta \frac{\partial g}{\partial r} - \frac{\sin\theta}{r} \frac{\partial g}{\partial \theta}\right)$, soit $i(\cos\theta + i\sin\theta) \frac{\partial g}{\partial r} = \left(\frac{\cos\theta}{r} + i\frac{\sin\theta}{r}\right) \frac{\partial g}{\partial \theta}$, soit $i(\cos\theta + i\sin\theta) \frac{\partial g}{\partial r} = i\frac{\partial g}{\partial r}$.

Proposition 9 (conditions de Cauchy en coordonnées polaires).

On reprend les hypothèses de la proposition précédente en écrivant la décomposition en parties réelle et imaginaire $g(r,\theta) = P(r,\theta) + iQ(r,\theta)$, alors g est holomorphe sur un ouvert U de \mathbb{C}^* si et seulement si $\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \theta}$ et $\frac{\partial Q}{\partial r} = -\frac{1}{r} \frac{\partial P}{\partial \theta}$ sur U. Le résultat peut aussi s'énoncer en terme de dérivabilité en un point a.

Preuve:

$$\frac{1}{r}\frac{\partial g}{\partial \theta} = i\frac{\partial g}{\partial r} \text{ s'écrit } \frac{1}{r}\left(\frac{\partial P}{\partial \theta} + i\frac{\partial Q}{\partial \theta}\right) = i\left(\frac{\partial P}{\partial r} + i\frac{\partial Q}{\partial r}\right) \text{ soit } \frac{\partial P}{\partial r} = \frac{1}{r}\frac{\partial Q}{\partial \theta} \text{ et } \frac{\partial Q}{\partial r} = -\frac{1}{r}\frac{\partial P}{\partial \theta}.$$

Application 1 (Existence d'une fonction racine carrée holomorphe).

Soit
$$f: \mathbb{C}^* \to \mathbb{C}$$
, $z = r(\cos \theta + i \sin \theta)$ avec $r > 0$ et $0 < \theta < 2\pi$ associe $f(z) = \sqrt{r} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}\right)$. On a $f(z)^2 = z$ donc $f(z)$ est une racine carrée de z et f est holomorphe car $\frac{\partial P}{\partial r} = \frac{1}{2\sqrt{r}}\cos \frac{\theta}{2} = \frac{1}{r} \left(\frac{1}{2}\sqrt{r}\cos \frac{\theta}{2}\right) = \frac{1}{r}\frac{\partial Q}{\partial \theta}$ et $\frac{\partial Q}{\partial r} = \frac{1}{2\sqrt{r}}\sin \frac{\theta}{2} = -\frac{1}{r}\left(-\frac{1}{2}\sqrt{r}\sin \frac{\theta}{2}\right) = -\frac{1}{r}\frac{\partial P}{\partial \theta}$.

Proposition 10 (expression de la dérivée en fonction des dérivées partielles).

On reprend les notations précédentes. Si f est dérivable en z, on a

$$f'(z) = \frac{\partial f}{\partial x}(z) = -i\frac{\partial f}{\partial y}(z) = (\cos \theta - i\sin \theta)\frac{\partial f}{\partial r}(z) = -\frac{i}{z}\frac{\partial f}{\partial \theta}(z).$$

Preuve:

On a
$$df(z) = f'(z) dz = f'(z) dx + if'(z) dy = \frac{\partial f}{\partial x}(z) dx + \frac{\partial f}{\partial y}(z) dy$$
 donc $f'(z) = \frac{\partial f}{\partial x}(z) = -i\frac{\partial f}{\partial y}(z)$.

$$dz = d(r\cos\theta + ir\sin\theta) = (\cos\theta + i\sin\theta) dr + r(-\sin\theta + i\cos\theta) d\theta = (\cos\theta + i\sin\theta) dr + ir(\cos\theta + i\sin\theta) d\theta, \text{ or } df(z) = f'(z) dz = f'(z) dz$$

^{1. © 2020,} Lionel Bayle : Cours de licence 3 de mathématiques à distance. Tous droits réservés.

$$f'(z)(\cos\theta + i\sin\theta) dr + f'(z)ir(\cos\theta + i\sin\theta) d\theta = \frac{\partial f}{\partial r}(z) dr + \frac{\partial f}{\partial \theta}(z) d\theta, \text{ donc } f'(z) = \frac{1}{\cos\theta + i\sin\theta} \frac{\partial f}{\partial r}(z) = (\cos\theta - i\sin\theta) \frac{\partial f}{\partial r}(z) = \frac{-i}{r(\cos\theta + i\sin\theta)} \frac{\partial f}{\partial \theta}(z) = -\frac{i}{z} \frac{\partial f}{\partial \theta}(z).$$

Écoutez le bilan du deuxième paragraphe.

3 Rappels.

Définition 4 (ouvert).

Un sous-ensemble U de \mathbb{C} est un ouvert de \mathbb{C} si $\forall x \in U$, $\exists r > 0$ tel que le disque ouvert $D(x,r) = \{y \in \mathbb{C}, |y-x| < r\}$ soit inclus dans U.

Bon travail, posez-moi des questions sur le forum et lors des classes virtuelles, s'il y a des points à éclaircir.

Lionel Bayle

^{1. © 2020,} Lionel Bayle : Cours de licence 3 de mathématiques à distance. Ce document est protégé par la législation sur le droit d'auteur.