```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib as plt
%matplotlib inline
```

1.数据概览

In [2]:	df=pd.read_csv("./mobike.csv")
In [3]:	df.head()

Out[3]:		Unnamed: 0	user_id	start_time	end_time	timeduration	bikeid	tripduration	from_station_id
	0	439283	21499218	11/14/2018 7:37	11/14/2018 7:44	7	2631	436	319
	1	603317	21694389	12/18/2018 19:02	12/18/2018 19:10	7	1565	445	164
	2	109957	21110722	10/9/2018 12:37	10/9/2018 12:55	18	2231	1090	163
	3	428082	21485409	11/12/2018 12:30	11/12/2018 12:40	9	4226	581	226
	4	395437	21445994	11/7/2018 7:29	11/7/2018 7:35	6	3475	390	77

有unnamed的列,实际意义为索引

```
In [4]: #指定索引列
df=pd.read_csv("./mobike.csv", index_col=0)
```

In [5]: df.head()

Out[5]:		user_id	start_time	end_time	timeduration	bikeid	tripduration	from_station_id	fron
	439283	21499218	11/14/2018 7:37	11/14/2018 7:44	7	2631	436	319	G
	603317	21694389	12/18/2018 19:02	12/18/2018 19:10	7	1565	445	164	Fra
	109957	21110722	10/9/2018 12:37	10/9/2018 12:55	18	2231	1090	163	
	428082	21485409	11/12/2018 12:30	11/12/2018 12:40	9	4226	581	226	
	395437	21445994	11/7/2018 7:29	11/7/2018 7:35	6	3475	390	77	

```
df. shape
(6427, 14)
 df. info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6427 entries, 439283 to 278179
Data columns (total 14 columns):
#
    Column
                       Non-Null Count Dtype
0
    user_id
                       6427 non-null
                                       int64
    start_time
                                       object
 1
                       6427 non-null
 2
    end_time
                       6427 non-null
                                       object
 3
    timeduration
                                       int64
                       6427 non-null
 4
    bikeid
                                       int64
                       6427 non-null
 5
    tripduration
                                      int64
                       6427 non-null
 6
    from_station_id
                       6427 non-null
                                      int64
 7
    from_station_name 6427 non-null
                                      object
 8
    to_station_id
                       6427 non-null
                                      int64
 9
    to_station_name
                       6427 non-null
                                       object
 10 usertype
                       6427 non-null
                                       object
 11 gender
                       5938 non-null
                                       object
 12 birthyear
                       5956 non-null
                                       float64
 13 age
                       6427 non-null
                                       object
```

jupyter

- ·start_time和end_time是object,需要转换为日期时间格式
- ·usertype和gender需要转换为dummy型

dtypes: float64(1), int64(6), object(7)

·age需要转化为数值型

memory usage: 753.2+ KB

·gender和birthyear有缺失值,但是birthyear与age意义相同,不对birthyear做处理

In [8]: df.describe()

Out[8]:	user_id		timeduration	bikeid	tripduration	from_station_id	to_station_id	bir
	count	6.427000e+03	6427.000000	6427.000000	6.427000e+03	6427.000000	6427.000000	5956.0
	mean	an 2.135519e+07 11.778902		3491.637934 1.060471e+03		195.038432	198.502567	1982.4
	std	2.181294e+05	81294e+05 9.692236 19		1.456811e+04	148.170025	148.939873	11.1
	min	2.098358e+07	0.000000	2.000000	6.100000e+01	2.000000	2.000000	1906.0
	25%	2.116805e+07	5.000000	1852.000000	3.490000e+02	77.000000	80.000000	1977.0
	50%	2.135114e+07	9.000000	3618.000000	5.590000e+02	168.000000	172.000000	1986.0
	75 %	2.154376e+07	15.000000	5179.500000	9.320000e+02	287.000000	287.000000	1991.0
	max	2.174223e+07	59.000000	6470.000000	1.139070e+06	662.000000	661.000000	2002.0

[·]birthyear有异常值,用age验证

·timeduration最小值为0,需要关注

```
In [9]: #检查是否有重复数据 sum(df. duplicated())
Out[9]: 0
```

2.数据处理

2.1检查use id有无重复值

```
In [10]: df.user_id.nunique()
Out[10]: 6427
```

·无重复值

2.2数据类型转换以及提取新数据

2.2.1 starttime

```
In [11]: #因为有timeduration, 所以只用关注start_time df["start_time"]=pd. to_datetime(df["start_time"])

In [12]: df["start_time"].dt. year. unique()

Out[12]: array([2018], dtype=int64)

·表明全部是2018年的数据

In [13]: df["start_time"].dt. month. unique()

Out[13]: array([11, 12, 10], dtype=int64)

·表明只有第四季度的数据
·故选择提取星期和小时作为新数据

In [14]: df["dayofweek"]=df["start_time"].dt. dayofweek df["hour"]=df["start_time"].dt. hour
```

2.2.2 timeduration

```
In [15]: df["timeduration"].describe()

Out[15]: count 6427.000000
mean 11.778902
std 9.692236
min 0.000000
```

 25%
 5.000000

 50%
 9.000000

 75%
 15.000000

 max
 59.000000

Name: timeduration, dtype: float64

```
In [16]: #查看异常数据
df[df["timeduration"]<1]
```

Out[16]:		user_id	start_time	end_time	timeduration	bikeid	tripduration	from_station_id	from _.
	109113	21109759	2018-10- 09 11:29:00	10/9/2018 12:29	0	4875	3616	225	
	72232	21067313	2018-10- 06 10:15:00	10/6/2018 11:15	0	4733	3606	419	Li
	69595	21064115	2018-10- 05 18:27:00	10/5/2018 19:28	0	2064	3650	50	Clark
	302629	21336986	2018-10- 27 15:33:00	10/27/2018 16:34	0	5051	3634	3	Sł
	592619	21681993	2018-12- 17 09:17:00	12/17/2018 10:18	0	4316	3652	99	Lŧ

•0实际上表明骑行了1小时

```
df["timeduration"]=df["timeduration"].replace(0,60).astype(int)
  [18]:
           df["timeduration"].describe()
         count
                   6427.000000
Out[18]:
                     11.825580
          mean
                      9.779498
          std
                      1.000000
          min
          25%
                      5.000000
          50%
                      9.000000
          75%
                     15.000000
                     60.000000
         Name: timeduration, dtype: float64
```

2.2.3 tripduration

```
In [19]: df["tripduration"].plot(kind="box");
```


•存在异常值,需要处理

```
df["tripduration"].describe()
          count
                    6.427000e+03
Out[20]:
          mean
                    1.060471e+03
          std
                    1.456811e+04
          min
                    6.100000e+01
          25%
                    3.490000e+02
          50%
                    5.590000e+02
          75%
                    9.320000e+02
                    1.139070e+06
          max
          Name: tripduration, dtype: float64
           df["tripduration"]. quantile (0.25)
          349.0
Out[21]:
           IQR=df["tripduration"]. quantile (0.75)-df["tripduration"]. quantile (0.25)
           Max=df["tripduration"].quantile(0.75)+1.5*IQR
          1806.5
           df=df[df["tripduration"] <= Max]</pre>
```

2.2.4 station相关

```
In [24]:
#将id从int更改为字符型
df["from_station_id"]=df["from_station_id"].astype(str)
df["to_station_id"]=df["to_station_id"].astype(str)
```

2.2.5 usertype

```
In [25]: df.usertype.unique()

Out[25]: array(['Subscriber', 'Customer'], dtype=object)
```

2.2.6 age

```
df. age. unique()
                           ['37', '31', '30', '40', '25', '48', '', '28', '27', '34', '33', '26', '20', '23', '22', '54', '52', '57', '29', '39', '51', '55', '32', '49', '58', '42', '61', '35', '41', '63', '50', '38', '36', '43', '44', '19', '59', '45', '46', '56', '21', '24', '47', '66', '64', '62', '77', '69', '60', '68', '70', '53', '113', '73', '18', '67', '65', '71', '79', '17', '74', '72', '101'], dtype=object)
Out[26]: array(['37', '31', '26', '20',
                  df[df["age"]==" "]
Out[27]:
                                 user_id start_time
                                                                    end_time timeduration bikeid tripduration from_station_id from
                                                  2018-11-
                                                                   11/3/2018
                 371796 21417733
                                                          03
                                                                                                    22
                                                                                                               983
                                                                                                                                  1347
                                                                                                                                                               31
                                                                          16:54
                                                   16:32:00
                                                  2018-10-
                                                                   10/8/2018
                  92242 21090205
                                                          08
                                                                                                      7
                                                                                                             1582
                                                                                                                                    453
                                                                                                                                                              341
                                                                                                                                                                         Ad
                                                                          12:18
                                                   12:10:00
                                                  2018-10-
                                                                 10/30/2018
                 331956 21371191
                                                          30
                                                                                                    17
                                                                                                             6267
                                                                                                                                  1056
                                                                                                                                                              128
                                                                          18:59
                                                   18:42:00
                                                  2018-10-
                                                                 10/18/2018
                 208326 21225619
                                                                                                             4129
                                                                                                                                  1465
                                                                                                                                                               97
                                                          18
                                                                                                    24
                                                                         11:17
                                                   10:52:00
                                                  2018-10-
                                                                   10/4/2018
                   46950 21037586
                                                          04
                                                                                                    15
                                                                                                             5393
                                                                                                                                    956
                                                                                                                                                                31
                                                                           0:57
                                                  00:41:00
                                                  2018-10-
                                                                 10/18/2018
```

17

18

20

20

24

6188

2566

718

762

2591

1063

1093

1255

1246

1458

176

3

284

76

90

CI

Sł

Λ

Lá

Ν

292 rows × 16 columns

205299 21221955

6782 20991669

306859 21341969

484317 21553590

244515 21268874

18

01

28

22

22

07:14:00

2018-10-

14:59:00

2018-10-

12:24:00

2018-11-

15:38:00

2018-10-

14:16:00

7:31

15:17

12:45

15:59

14:40

10/1/2018

10/28/2018

11/22/2018

10/22/2018

[·]age为空值是birthyear也是空值

[·]无法用birthyear补充age的空值

•有大量不合常理的异常值

```
#填充缺失值
           age_median=int(df[df["age"]!=" "]["age"].astype(int).median())
           age_median
         33
Out[29]:
           df["age"]=df.age.str.replace(" ", str(age_median)).astype(int)
           df["age"].describe()
                   5968.000000
Out[31]:
         count
                     36. 303619
          mean
                     10.851063
          std
                     17.000000
          min
          25%
                     28.000000
          50%
                     33.000000
          75%
                     42.000000
                    113.000000
          max
         Name: age, dtype: float64
           df["age"]. quantile (0.25)
         28.0
Out[32]:
           IQR_age=df["age"]. quantile(0.75)-df["age"]. quantile(0.25)
           Max_age=df["age"].quantile(0.75)+1.5*IQR_age
           Max age
Out[33]:
         63.0
  [34]:
           df=df[df["age"]<=63]
```

2.2.7 删除无关变量

In [35]: df. info() <class 'pandas.core.frame.DataFrame'> Int64Index: 5853 entries, 439283 to 278179 Data columns (total 16 columns):

```
#
    Column
                        Non-Null Count Dtype
0
    user id
                        5853 non-null
                                        int64
                                        datetime64[ns]
1
    start time
                        5853 non-null
2
    end time
                        5853 non-null
                                        object
3
    timeduration
                        5853 non-null
                                        int32
4
    bikeid
                        5853 non-null
                                        int64
5
    tripduration
                        5853 non-null
                                        int64
6
    from station id
                        5853 non-null
                                        object
7
    from station name 5853 non-null
                                        object
8
    to station id
                        5853 non-null
                                        object
9
    to station name
                        5853 non-null
                                        object
10
    usertype
                        5853 non-null
                                        object
11
    gender
                        5548 non-null
                                        object
12
    birthyear
                        5561 non-null
                                        float64
13
                        5853 non-null
                                        int32
    age
14
    dayofweek
                        5853 non-null
                                        int64
15
    hour
                        5853 non-null
                                        int64
dtypes: datetime64[ns](1), float64(1), int32(2), int64(5), object(7)
```

memory usage: 731.6+ KB

In [36]:

useless=["user_id", "start_time", "end_time", "bikeid", "from_station_name", "to_station_name", "b df=df. drop (useless, axis=1)

2.3 处理后数据查看

In [37]:

df. info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 5853 entries, 439283 to 278179

Data columns (total 9 columns): Non-Null Count Dtyro Column

₩	Column	Non-Null Count	Dtype
0	timeduration	5853 non-null	int32
1	tripduration	5853 non-null	int64
2	from_station_id	5853 non-null	object
3	to_station_id	5853 non-null	object
4	usertype	5853 non-null	object
5	gender	5548 non-null	object
6	age	5853 non-null	int32
7	dayofweek	5853 non-null	int64
8	hour	5853 non-null	int64
dtvr	oes: int32(2), int	64(3), object(4)	

[38]:

df.describe()

memory usage: 411.5+ KB

Out[38]:

	timeduration	tripduration	age	dayofweek	hour
count	5853.000000	5853.000000	5853.000000	5853.000000	5853.000000
mean	9.934393	625.527593	35.683752	2.513070	13.261746
std	6.339840	380.226556	9.970922	1.832262	4.749735
min	1.000000	61.000000	17.000000	0.000000	0.000000
25%	5.000000	336.000000	28.000000	1.000000	9.000000

	timeduration	tripduration	age	dayofweek	hour
50%	8.000000	521.000000	33.000000	2.000000	14.000000
75%	13.000000	828.000000	41.000000	4.000000	17.000000
max	30.000000	1805.000000	63.000000	6.000000	23.000000

3.单变量分析

3.1 数值变量

3.1.1 timeduration

·数据主要集中分布在0~15分钟

3.1.2 tripduration

In [40]: df["tripduration"].plot(kind="hist"); 1400 1200 1000 Frequency 800 600 400 200 0 500 750 1000 250 1250 1500 1750

·数据集中分布在1000以内,符合"最后一公里"的目标

3.1.3 age

```
In [41]: df["age"].plot(kind="hist");
```


•主要为25~40岁的人

3.2 分类变量

3.2.1 dayofweek

```
In [42]: df["dayofweek"].value_counts().sort_index().plot(kind="bar");
```


•主要在工作日骑行

3.2.2 hour

```
In [43]: df["hour"].value_counts().sort_index().plot(kind="bar");
```


•骑行时间主要在上班和下班时间达到高峰

3.2.3 gender

In [44]: df["gender"].value_counts().sort_index().plot(kind="pie",autopct="%1.1f%%");

·男性客户占超过4/3

3.2.4 usertype

In [45]: df["usertype"].value_counts().sort_index().plot(kind="pie", autopct="%1.1f%%");

·办理单车卡的用户占绝大多数

4. 多变量

4.1 将数值变量分类

In [46]: sns. barplot(x="gender", y="timeduration", data=df, estimator=sum);

•男性总骑行时长高于女性

In [47]: sns.barplot(x="gender", y="timeduration", data=df);

•但女性平均骑行时长高于男性

In [48]: sns.barplot(x="gender", y="tripduration", data=df, estimator=sum);

•男性的总骑行里程高于女性

•但女性的平均骑行里程也高于男性

4.2 将分类变量分类

In [50]: tmp=pd.DataFrame(df.groupby(["dayofweek","gender"])["hour"].count()).reset_index() tmp

Out[50]:		dayofweek	gender	hour
	0	0	Female	206
	1	0	Male	720
	2	1	Female	245
	3	1	Male	786
	4	2	Female	201
	5	2	Male	799
	6	3	Female	191

```
dayofweek gender hour
7
                         738
                  Male
8
             4
                Female
                         150
 9
             4
                  Male
                         665
10
             5
                Female
                         129
11
             5
                  Male
                         330
12
               Female
                         102
             6
13
             6
                  Male
                         286
```

```
In [51]: tmp=tmp.rename(columns={'hour':'count'})
tmp
```

```
In [52]: sns.barplot(x="dayofweek", y="count", hue="gender", data=tmp);
```


•男女在一周内骑行的趋势是统一的,工作日多而周末少

```
In [53]: tmp=pd.DataFrame(df.groupby(["dayofweek","usertype"])["hour"].count()).reset_index() tmp
```

Out[53]:		dayofweek	usertype	hour
	0	0	Customer	69
	1	0	Subscriber	906
	2	1	Customer	46
	3	1	Subscriber	1016
	4	2	Customer	47
	5	2	Subscriber	986
	6	3	Customer	56
	7	3	Subscriber	916
	8	4	Customer	49
	9	4	Subscriber	793
	10	5	Customer	78
	11	5	Subscriber	439
	12	6	Customer	85
	13	6	Subscriber	367

```
In [54]: tmp=tmp.rename(columns={'hour':'count'})
tmp
```

```
Out[54]:
               dayofweek
                            usertype count
           0
                                         69
                        0
                            Customer
           1
                           Subscriber
                                        906
           2
                                         46
                        1
                            Customer
           3
                           Subscriber
                                       1016
```

	dayofweek	usertype	count
4	2	Customer	47
5	2	Subscriber	986
6	3	Customer	56
7	3	Subscriber	916
8	4	Customer	49
9	4	Subscriber	793
10	5	Customer	78
11	5	Subscriber	439
12	6	Customer	85
13	6	Subscriber	367

```
In [55]:
```

```
sns.barplot(x="dayofweek", y="count", hue="usertype", data=tmp);
```


- •购买单车卡的用户在在工作日骑行多而周末少
- •没有购买单车卡的用户在一周七天内骑行时间没有明显区别

5.建模

5.1 gender和usertype数据处理

Out[56]:		timeduration	tripduration	usertype	gender	age	dayofweek	hour
	439283	7	436	Subscriber	Male	37	2	7
	603317	7	445	Subscriber	Male	31	1	19
	109957	18	1090	Customer	Male	30	1	12
	428082	9	581	Subscriber	Female	30	0	12

	timeduration	timeduration tripduration userty		gender	age	dayofweek	hour	
395437	6	390	Subscriber	Male	40	2	7	

```
In [57]: dfl=pd.get_dummies(dfl,drop_first=True) dfl.head()
```

Out[57]:		timeduration	tripduration	age	dayofweek	hour	usertype_Subscriber	gender_Male
	439283	7	436	37	2	7	1	1
	603317	7	445	31	1	19	1	1
	109957	18	1090	30	1	12	0	1
	428082	9	581	30	0	12	1	0
	395437	6	390	40	2	7	1	1

5.2 聚类分析

5.2.1 建立模型

```
In [58]:

from sklearn.preprocessing import scale
from sklearn.cluster import KMeans as kms
from sklearn.metrics import silhouette_score
```

```
In [59]: x=df1[["timeduration", "tripduration", "age", "dayofweek", "hour", "usertype_Subscriber", "gender_
kms_3=kms (n_clusters=3, random_state=10)
model_3=kms_3. fit(x)
```

```
In [60]: df1["cluster"]=mode1_3.labels_df1.head()
```

Out[60]:		timeduration	tripduration	age	dayofweek	hour	usertype_Subscriber	gender_Male	clust
	439283	7	436	37	2	7	1	1	
	603317	7	445	31	1	19	1	1	
	109957	18	1090	30	1	12	0	1	
	428082	9	581	30	0	12	1	0	
	395437	6	390	40	2	7	1	1	

5.2.2 用轮廓系数评估

```
In [61]: pre_3=model_3.predict(x)
score_3=silhouette_score(x, pre_3)
print(score_3)
```

0. 5927291085417886

kms 4=kms (n clusters=4, random state=10)

5.2.3 优化

 $model_4=kms_4. fit(x)$

```
pre_4=model_4. predict(x)
          score_4=silhouette_score(x, pre_4)
          print(score_4)
         0.5544459748009721
          kms_5=kms(n_clusters=5, random_state=10)
          model 5=kms 5. fit(x)
          pre_5=model_5. predict(x)
          score_5=silhouette_score(x, pre_5)
          print(score_5)
         0.5338770991550901
             ·分成3组是得分最高的
         5.2.4 查看分群效果
          dfl.groupby(['cluster'])['age'].describe()
Out[66]:
                  count
                            mean
                                         std min 25% 50% 75% max
          cluster
                  831.0 35.854392
                                    9.359705
                                             18.0
                                                   30.0
                                                         33.0
                                                               40.0
              0
                                                                     63.0
                 3145.0 35.409857
                                   10.052038
                                              17.0
                                                   28.0
                                                         33.0
                                                               41.0
                                                                     63.0
                 1877.0 36.067128 10.086871
                                             17.0
                                                   29.0
                                                         33.0
                                                              41.0
                                                                    63.0
             ·对年龄没有很好的分群效果
          dfl.groupby(['cluster'])['timeduration'].describe()
Out[67]:
                                                       50% 75%
                  count
                                            min 25%
                            mean
                                        std
          cluster
              0
                  831.0 22.216606 3.403579
                                                  19.0
                                                        22.0
                                                              25.0
                                                                   30.0
                                            17.0
                 3145.0
                          5.296979
                                  1.963456
                                                         5.0
                                                               7.0
                                                                    9.0
               1
                                              1.0
                                                   4.0
                 1877.0 12.266915 2.339892
                                                  10.0
                                             9.0
                                                        12.0
                                                              14.0
                                                                   17.0
  [68]:
          sns. scatterplot (x="age", y="timeduration", hue="cluster", data=df1);
```


·对timeduration分群效果不错

In [69]:	dfl.groupby(['cl	<pre>dfl.groupby(['cluster'])['tripduration'].describe()</pre>											
Out[69]:	count	mean	std	min	25%	50%	75%	max					
	cluster												

0 831.0 1362.537906 203.515491 1064.0 1190.0 1328.0 1517.0 1805.0

1 3145.0 346.956439 116.665077 61.0 252.0 348.0 442.0 556.0

2 1877.0 765.991476 139.274957 557.0 644.0 748.0 877.0 1063.0

```
In [70]: sns.scatterplot(x="age", y="tripduration", hue="cluster", data=df1);
```


·对tripduration分群效果不错

```
dfl.groupby(['cluster'])['dayofweek'].describe()
Out[71]:
                   count
                             mean
                                             min
                                                   25%
                                                         50%
                                                               75%
                                                                     max
          cluster
               0
                   831.0
                         2.651023
                                   1.984517
                                              0.0
                                                     1.0
                                                           2.0
                                                                 4.0
                                                                       6.0
```

	count	mean	std	min	25%	50%	75%	max
cluster								
1	3145.0	2.478537	1.786007	0.0	1.0	2.0	4.0	6.0
2	1877.0	2.509856	1.836764	0.0	1.0	2.0	4.0	6.0

·对dayofweek分群效果不佳

In [72]:	df1.grou	dfl.groupby(['cluster'])['hour'].describe()										
Out[72]:	C	count	mean	std mir	25%	50%	75%	max				
	cluster											

cluster								
0	831.0	13.771360	4.514042	0.0	11.0	15.0	17.0	23.0
1	3145.0	13.120191	4.837452	0.0	8.0	14.0	17.0	23.0
2	1877.0	13.273308	4.689552	0.0	8.0	14.0	17.0	23.0

·对hour分群效果不佳

6.业务解读

- ·超过95%的用户办理了单车卡
- ·用户的主要使用时间在工作日,但没有购买单车卡的用户在周末与工作日的骑行时间没有明显差别
- •男性用户多于女性用户,超过4/3 的男性用户
- •男性总骑行时间和里程高于女性,但平均值小于女性
- ·分为3组时效果最佳
- ·仅对timeduration和tripduration两个连续型变量有较好的分群效果
- •对其余变量分群效果均不佳
- ·timeduration被分为1~9,9~17,17~30三组
- ·tripduration被分为61~556,557~1063,1064~1805