END TERM EXAMINATION

FOURTH SEMESTER [B.TECH] July 2023

Paper Code- ETCS 206

Subject: Theory of Computation

Time: 3 Hours

Maximum Marks:75

Note: Attempt five questions in all including Q.No.1 which is compulsory.

Select one question from each unit.

Q1 Attempt all questions:

(5x5=25)

- (a) State the differnces between a NFA and DFA?
- (b) Differentiate between Moore and Melay Machines?
- (c) Find a regular expression corresponding to the language of all strings over the alphabet { a, b } that contain exactly two a's.
- (d) State Church's hypothesis about computability of a machine
- (e) Prove that the graph coloring problem is NP-complete

UNIT-I

Q2 a) Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \neq \varepsilon \text{ and the first and last character of } w \text{ are the same } \}$. Design aDFA for L (6)

b) For the following NFA. Convert it into its equivalent DFAwhere Q0 is the initial state and Q2 is the final state. (6.5)

	a	b
Q0	{Q0}	{Q0,Q1}
Q1	€	{Q2}
Q2	€	€

Q3 a) Prove the pumping lemma for regular lanuages with examples.

(6)

b) Minimize the following DFA over alphates as 0,1

(6.5)

UNIT-II

Q4 a) What are inherently ambiguous languages. Check whether the following Grammar is Ambiguous or not-S->A/B, A->aAb /ab, B->abB/€
(6)

	b)	What are the steps to simplify a Context Free Grammar. Simplify the following CFG:	
		S->AbaC, A->BC, B->b/€, C->D/€, D->d (6.5)	
Q5	a)	What is PDA. Construct a pda to find 2's complemet of a binary number.	
	b)	Covert the following grammar into Chomsky Normal Form: S->ABCa, A->aAbb, A->e, B->bB, B->b, B->AC, C->aCa, C->e (6.5)	
		UNIT- III	
Q6	a) b)	Design a Turing Machine for the language { a ⁿ b ⁿ c ⁿ n>=1 } Design a Turing Machine to check if a set of parenthesis is we formed. (6)	
Q7	a) b)	State and prove the halting problem of Turing Machines Explain the Closure properties of Recursive Languages (6.5)	
		UNIT- IV	
Q8	a) b)	State and prove the Savitch theorem. Differentiate between P, NP, NP-hard and NP-complete problems with examples. (6.	
Q9	a) b)	State and prove the Cook's theorem. Is PSPACE harder than NP? How can you show a problem in PSPACE (6.5)	

https://www.ggsipuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षेजे और 10 रुपये पायें,

Paytm or Google Pay से