Time Limit 60 minutes

- 1. A batsman hits a ball at an angle of 30° with an initial speed of 30 ms⁻¹. Assuming that the ball travels in a vertical plane, calculate.
 - (a) The time at which the ball reaches the highest point
 - (b) The maximum height reached
 - (c) The horizontal range of the ball
 - (d) The time for which the ball is in the air
- 2. A body is projected horizontally from the top of a tower with initial velocity 18 ms⁻¹. It hits the ground at angle 45°. What is the vertical component of velocity when it strikes the ground?
- 3. A particle is projected with relocity u at angle θ with horizontal. Calculate the time when it is moving perpendicular to initial direction. Also calculate the velocity at this position.

4. An object is thrown between two tall buildings 180 m from each other. The object thrown horizontally from a window 55 m above the ground from one building strikes a window 10 m above the ground in another building. Find out the speed of projection.

- 5. Three projectiles are fired with velocities u_1 , u_2 and u_3 at inclinations θ_1 , θ_2 and θ_3 , respectively, with the horizontal such that the maximum heights attained by all of them are same.
 - (a) Which projectile will take maximum time to reach the ground?
 - (b) Which projectile will possess the maximum speed on reaching the ground?

- 6. An aeroplane is flying in horizontal direction with a velocity 600 km/hr and at a height of 1960 m. When it is vertically above a point A on the ground, a body is dropped from it. The body strikes the ground at point B. The distance AB equals to:
 - (1) 3.333 km
- (2) 33.33 km
- (3) 333.3 km
- (4) 33.33 m
- 7. A vertical pole has a black mark at some height. A stone is projected from a fixed point on the ground. When projected at an angle of 45° it hits the pole orthogonally 1 m above the mark. When projected with a different speed at an angle of $\tan^{-1}(3/4)$, it hits the pole orthogonally 1.5 m below the mark. Find the speed and angle of projection so that it hits the mark orthogonally to the pole. $[g = 10 \text{ m/sec}^2]$
 - (1) $\frac{\sqrt{3620}}{3}$ ms⁻¹, tan⁻¹ $\left(\frac{9}{10}\right)$
 - (2) $160 \text{ ms}^{-1}, 30^{\circ}$
 - (3) $\frac{3620}{9} \text{ ms}^{-1}, \tan^{-1} \left(\frac{9}{\sqrt{181}} \right)$
 - (4) None of these

- A projectile has a time of flight T and range R. If the 8. time of flight is doubled, keeping the angle of projection same, what happens to the range?
 - (1) R/4
- (2) R/2
- (3) 2 R
- (4) 4 R
- 9. A projectile can have the same range R for two angles of projection at a given speed. If T₁ and T₂ be the times of flight in two cases, then find out relation between T_1 , T_2 and R?
 - (1) $T_1 T_2 = \frac{R}{g}$ (2) $\frac{T_1}{T_2} = \frac{R}{g}$

 - (3) $\frac{T_1}{T_2} = \frac{2R}{g}$ (4) $T_1 T_2 = \frac{2R}{g}$
- 10. During a projectile motion, if the maximum height equals the horizontal range, then the angle of projection with the horizontal is:
 - (1) $tan^{-1}(1)$
- (2) $\tan^{-1}(2)$
- $(3) \tan^{-1}(3)$
- (4) $tan^{-1}(4)$
- In the figure, the angle of inclination of the inclined 11. plane is 30°. Find the horizontal velocity V₀ so that the particle hits the inclined plane perpendicularly.

- **12.** Three projectiles A, B and C are thrown simultaneously from the same point in the same vertical plane. Their trajectories are shown in the figure. Then which of the following statement(s) is/are correct.

- (1) The time of flight is the same for all the three.
- (2) The launch speed is greatest for particle C
- (3) The vertical velocity component for particle C is greater than that for the other particles
- (4) Y-coordinate of all particles is always same

- A body is projected at an angle of 30° with the horizontal and with a speed of 30 ms⁻¹. What is the angle with the horizontal after 1.5 s?
 - $(g = 10 \text{ ms}^{-2}).$ (1) 0°
- $(2) 30^{\circ}$
- (3) 60°
- (4) 90°
- 14. A particle is projected from the ground with velocity u at angle θ with horizontal. The horizontal range, maximum height and time of flight are R, H and T respectively. They are given by,

$$R = \frac{u^2 \sin 2\theta}{g}$$
, $H = \frac{u^2 \sin^2 \theta}{2g}$ and $T = \frac{2u \sin \theta}{g}$

Now keeping u as fixed, θ is varied from 30° to 60°. Then,

- (1) R will first increase then decrease, H will increase and T will decrease
- (2) R will first increase then decrease while H and T both will increase
- (3) R will decrease while H and T will increase
- (4) R, H and T will increase

Passage for questions no. 15 to 19:

A particle is fired from A in the diagonal plane of a building of dimension 20 m (length) × 15 m (breadth) × 12.5 (height), just clears the roof diagonally and falls on the other side of the building at B. It is observed that the particle is travelling at an angle 45° with the horizontal when it clears the edges P and Q of the diagonal. Take $g = 10 \text{ m/s}^2$.

- The speed of the particle at point P will be: **15.**
- (1) $5\sqrt{10}$ m/s (2) $10\sqrt{5}$ m/s (3) $5\sqrt{15}$ m/s (4) $5\sqrt{5}$ m/s

- **16.** The speed of the particle at the top of the trajectory:
 - (1) $5\sqrt{10} \text{ m/s}$
- (2) $10\sqrt{5} \text{ m/s}$
- (3) $5\sqrt{15}$ m/s
- (4) $5\sqrt{5} \text{ m/s}$
- 17. The angle of projection at A will be:
 - $(1) 30^{\circ}$
- (2) 45°
- (3) 60°
- (4) 75°
- **18.** The speed of projection of the particle at A will be:
 - (1) $5\sqrt{10} \text{ m/s}$
- (2) $10\sqrt{5} \text{ m/s}$
- (3) $5\sqrt{15}$ m/s
- (4) $5\sqrt{5} \text{ m/s}$
- **19.** The range that is AB will be:
 - (1) $5\sqrt{10} \text{ m/s}$
- (2) $25\sqrt{3} \text{ m/s}$
- (3) $5\sqrt{15}$ m/s
- (4) $25\sqrt{5}$ m/s

20. A ball is projected from the ground with velocity v such that its range is maximum.

Column-I		Column-II	
i.	Velocity at half of the maximum height	a.	$\frac{\sqrt{3}v}{2}$
ii.	Velocity at the maximum height	b.	$\frac{v}{\sqrt{2}}$
iii.	Change in its velocity when it returns to the ground	c.	$v\sqrt{2}$
iv.	Average velocity when it reaches the maximum height	d.	$\frac{v}{2}\sqrt{\frac{5}{2}}$

Answer Key

- 1. (a) 1.5 s, (b) 11.25 m, (c) $45\sqrt{3}$ m, (d) 3 s
- 2. (18 ms^{-1})
- $3. t = \frac{u}{g\sin\theta}$
- 4. (60 ms^{-1})
- 5. (a) The time of ascent and descent will be same and have they will reach the ground at the same time.
 - (b) The third projectile will reach the ground with maximum velocity i.e. u_3 will be maximum.
- **6.** (1)
- 7. (1)

- 8. (4)
- 9. (4)
- 10. (4)
- 11. (1)
- 12. (1, 2, 4)
- 13. (1)
- 14. (2)
- 15. (1)
- 16. (4)
- 17. (3)
- 18. (2)
- 19. (2)
- 20. $i \rightarrow a$; $ii \rightarrow b$; $iii \rightarrow c$; $iv \rightarrow d$

Library- https://smart.link/sdfez8ejd80if