

Hi-Rel 40 V - 0.8 A NPN transistor

Datasheet — production data

Features

Parameter	ESCC	JANS	
BV _{CEO min}	40 V	50 V	
I _C (max)	0.8 A		
h _{FE} at 10 V - 150 mA	100		

- Linear gain characteristics
- Hermetic packages
- ESCC and JANS qualified
- European preferred part list EPPL
- Up to 100 krad(Si) low dose rate

Description

The 2N2222AHR is a silicon planar NPN transistor specifically designed and housed in hermetic packages for aerospace and Hi-Rel applications. It is available in the JAN qualification system (MIL-PRF19500 compliance) and in the ESCC qualification system (ESCC 5000 compliance). In case of discrepancies between this datasheet and the relevant agency specification, the latter takes precedence.

TO-18

TO-18

LCC-3

LCC-3UB

Pin 4 in LCC-3UB is connected to the metallic lid.

Figure 1. Internal schematic diagraml

Table 1. Devices summary⁽¹⁾

Device	Qualification	Agency spec.	Package	Radiation level	EPPL
JANS2N2222A	JANS	MIL-PRF-19500/255	LCC-3UB	-	-
JANSR2N2222A	JANS	WIIL-PHF-19500/255	LCC-30B	100 krad	-
SOC2222AUB		5201/002	LCC-3UB	-	Yes
SOC2222AUBxxSW	5000		LCC-30B	100 krad	Yes
SOC2222A			LCC-3	-	Yes
SOC2222AxxSW	ESCC		LOC-3	100 krad	Yes
2N2222AHR			TO 10	-	-
2N2222ASW			TO-18	100 krad	-

^{1.} Contact ST sales office for information about the specific conditions for products in die form and other JAN quality levels

Content 2N2222AHR

Content

1	Electrical ratings		
2	Elect	rical characteristics 4	
	2.1	JANS electrical characteristics	
	2.2	ESCC electrical characteristics 5	
	2.3	Electrical characteristics (curves) 6	
	2.4	Test circuits	
3	Radi	ation hardness assurance9	
4	Pack	age mechanical data	
5	Orde	r codes 15	
6	Ship	ping details	
	6.1	Data code	
	6.2	Documentation	
7	Revi	sion history17	

2N2222AHR Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-base voltage (I _E = 0)	75	V
V	Collector-emitter voltage (I _B = 0) for JANS devices	50	V
V_{CEO}	Collector-emitter voltage (I _B = 0) for ESCC devices	40	V
V _{EBO}	Emitter-base voltage (I _C = 0)	6	V
I _C	Collector current	0.8	Α
P _{TOT}	Total dissipation at T _{amb} ≤25 °C ESCC: TO-18 LCC-3 and LCC-3UB LCC-3 and LCC-3UB (1) JANS: LCC-3UB Total dissipation at T _{case} ≤25 °C ESCC: TO-18	0.5 0.5 0.73 0.5	w
	Total dissipation at T _{sp(IS)} = 25 °C JANS: LCC-3UB	1	w
T _{STG}	Storage temperature	-65 to 200	°C
TJ	Max. operating junction temperature	200	°C

^{1.} When mounted on a 15 \times 15 \times 0.6 mm ceramic substrate.

Table 3. Thermal data

Symbol	Parameter	LCC-3 LCC-3UB	TO-18	Unit
	Thermal resistance junction-case (max) for JANS	-	-	
R _{thJC}	Thermal resistance junction-case (max) for ESCC	-	97	
Pt	Thermal resistance junction-solder pad (infinite sink) (max) for JANS	90	-	
Rt _{hJSP(IS)}	Thermal resistance junction-solder pad (infinite sink) (max) for ESCC	-	-	°C/W
В	Thermal resistance junction-ambient (max) for JANS	325	-	
R _{thJA}	Thermal resistance junction-ambient (max) for ESCC	350 240 ⁽¹⁾	350	

^{1.} When mounted on a 15 x 15 x 0.6 mm ceramic substrate.

Electrical characteristics 2N2222AHR

2 Electrical characteristics

JANS and ESCC version of the products are assembled and tested in compliance with the agency specification it is qualified in. The electrical characteristics of each version are provided in dedicated tables.

 T_{case} = 25 °C unless otherwise specified.

2.1 JANS electrical characteristics

Table 4. JANS electrical characteristics

Symbol	Parameter	Test co	nditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 75 V V _{CB} = 60 V V _{CB} = 60 V	T _{amb} = 150 °C		-	10 10 10	μA nA μA
I _{CES}	Collector cut-off current (I _E = 0)	V _{CE} = 50 V			-	50	nA
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 6 V V _{EB} = 4 V			-	10 10	μA nA
V _{(BR)CEO} (1)	Collector-emitter breakdown voltage (I _B = 0)	I _C = 10 mA		50	-		V
V _{CE(sat)} (1)	Collector-emitter saturation voltage	$I_C = 150 \text{ mA}$ $I_C = 500 \text{ mA}$	$I_B = 15 \text{ mA}$ $I_B = 50 \text{ mA}$		-	0.3 1	V V
V _{BE(sat)} (1)	Base-emitter saturation voltage	I _C = 150 mA I _C =500mA	I _B = 15 mA I _B =50mA	0.6		1.2 2	V
h _{FE} ⁽¹⁾	DC current gain	$\begin{split} I_{C} &= 0.1 \text{ mA} \\ I_{C} &= 1 \text{ mA} \\ I_{C} &= 10 \text{ mA} \\ I_{C} &= 150 \text{ mA} \\ I_{C} &= 500 \text{ mA} \\ I_{C} &= 10 \text{ mA} \\ T_{amb} &= -55 \text{ °C} \end{split}$	$V_{CE} = 10 \text{ V}$	50 75 100 100 30 35	-	325 300	
h _{fe}	Small signal current gain	V _{CE} = 20 V f = 100 MHz V _{CE} = 10 V f = 1 kHz	$I_C = 20 \text{ mA}$ $I_C = 1 \text{ mA}$	2.5 50	-		
C _{obo}	Output capacitance (I _E = 0)	$V_{CB} = 10 \text{ V}$ 100 kHz \le f \le 1	MHz		-	8	pF
C _{ibo}	Output capacitance (I _E = 0)	$V_{EB} = 0.5 \text{ V}$ 100 kHz \le f \le 1	MHz		-	25	pF

Table 4. JANS electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-on time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = 15 \text{ mA}$		-	35	ns
t _{off}	Turn-off time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = -I_{B2} = 15 \text{ mA}$		-	300	ns

^{1.} Pulsed duration = 300 μ s, duty cycle \leq 2 %

2.2 ESCC electrical characteristics

Table 5. ESCC electrical characteristics

Symbol	Parameter	Test co	nditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 60 V V _{CB} = 60 V	T _{amb} = 150 °C		-	10 10	nΑ μΑ
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 3 V			-	10	nA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA		75	1		٧
V _{(BR)CEO} (1)	Collector-emitter breakdown voltage (I _B = 0)	I _C = 30 mA		40	ı		V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 100 μA		6	1		٧
V _{CE(sat)} (1)	Collector-emitter saturation voltage	I _C = 150 mA	I _B = 15 mA		ı	0.3	٧
V _{BE(sat)} (1)	Base-emitter saturation voltage	I _C = 150 mA	I _B = 15 mA		0.87	1.2	٧
h _{FE} ⁽¹⁾	DC current gain	I _C = 500 mA	$V_{CE} = 10 \text{ V}$	35 75 100 40	-	300	
h _{fe}	Small signal current gain	V _{CE} = 20 V f = 100 MHz	I _C = 20 mA	3	-	10	
C _{obo}	Output capacitance (I _E = 0)	$V_{CB} = 10 \text{ V}$ 100 kHz \le f \le 1	MHz		-	8	pF

Electrical characteristics 2N2222AHR

 Table 5.
 ESCC electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-on time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = 15 \text{ mA}$		-	35	ns
t _{off}	Turn-off time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = -I_{B2} = 15 \text{ mA}$		-	285	ns

^{1.} Pulsed duration = 300 μ s, duty cycle \leq 2 %

2.3 Electrical characteristics (curves)

Figure 2. DC current gain

Figure 3. Collector emitter saturation voltage

Figure 4. Base emitter saturation voltage

2.4 Test circuits

Figure 5. JANS saturated turn-on switching time test circuit

Figure 6. JANS saturated turn-off switching time test circuit

Electrical characteristics 2N2222AHR

Figure 7. ESCC resistive load switching test circuit

- 1. Fast electronic switch
- 2. Non-inductive resistor

3 Radiation hardness assurance

The products guaranteed in radiation within the JANS system fully comply with the MIL-PRF-19500/255 specification.

The ESCC detail specifications for bipolar do not include any specification supporting radiation guarantee. ST has therefore developed its own qualification procedure, which is described below:

JANS radiation assurance

ST JANS parts guaranteed at 100 krad (Si), tested, in full compliancy with the MIL-PRF-19500 specification, specifically the Group D inspection, between 50 and 300 rad/s. A brief summary is provided below:

- All test are performed in accordance to MIL-PRF-19500 and test method 1019 of MIL-STD-750 for total lonizing dose.
- Each wafer of each lot is tested. The table below provides for each monitored parameters of the test conditions and the acceptance criteria

Table 6. MIL-PRF-19500 (test method 1019) post radiation electrical characteristics

Cymbal	Dovometer	Test conditions	Va	Unit	
Symbol	Parameter	arameter Test conditions		Max.	Unit
	Collector to base	V _{CB} = 75		20	μΑ
I _{CBO}	cutoff current	V _{CB} = 60 V		20	nA
1 .	Emitter to base	V _{EB} = 6 V		20	μΑ
I _{EBO}	cutoff current	V _{EB} = 4 V		20	nA
V _{(BR)CEO}	Breakdown voltage, collector to emitter	I _C = 10 mA	50		V
I _{CES}	Collector to emitter cutoff current	V _{CE} = 50 V		100	nA
		V _{CE} = 10 V; I _C = 0.1 mA	[25] ⁽¹⁾		
		V _{CE} = 10 V; I _C = 1.0 mA	[37.5] ⁽¹⁾	325	
h _{FE}	Forward-current transfer ratio	V _{CE} = 10 V; I _C = 10 mA	[50] ⁽¹⁾		
		V _{CE} = 10 V; I _C = 150 mA	[50] ⁽¹⁾	300	
		$V_{CE} = 10 \text{ V}; I_{C} = 500 \text{ mA}$	[15] ⁽¹⁾		
V	Collector-emitter	I _C = 150 mA; I _B = 15 mA		0.35	V
V _{CE(sat)}	saturation voltage	I _C = 500 mA; I _B = 50 mA		1.15	v
V	Base-emitter	I _C = 150 mA; I _B = 15 mA	0.6	1.38	V
V _{BE(sat)}	saturation voltage	$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$		2.3	v

^{1.} See method 1019 of MIL-STD-750 for how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the pre- and Post-radiation h_{FE} . Notice the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

ST radiation guarantee on ESCC devices

Each product lot is tested according to the ESCC Basic Specification 22900, with a minimum of 11 samples per diffusion lot and 5 samples per wafer, one sample being kept as unirradiated sample, all of them being fully compliant with the applicable ESCC generic and/or detailed specification.

The radiation test is made on biased parts, at $V_{ces} = 80\% \ V_{(BR)ceo}$. They are irradiated between 36 and 360 rad (Si)/h. The key parameters listed in table 7 of each samples are tested when irradiation reaches 30, 50, 70 and 100 krad (Si) after a 24 hour annealing at room temperature and then after a 168 hours annealing at $100^{\circ}C$.

If all tested parameters stay within their pre-radiation specification at all measurements steps, parts compliant with the applicable ESCC generic and/or detailed specification are guaranteed by ST at 100 krad (Si).

Table 7. ESCC post radiation electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 60 V		-	10	nA
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 3 V		-	10	nA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA	75	-		V
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage (I _B = 0)	I _C = 30 mA	40	-		V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 100 μA	6	-		V
V _{CE(sat)} (1)	Collector-emitter saturation voltage	I _C = 150 mA I _B = 15 mA		-	0.3	V
V _{BE(sat)} (1)	Base-emitter saturation voltage	I _C = 150 mA I _B = 15 mA			1.2	V
h _{FE} ⁽¹⁾	DC current gain	$\begin{split} & I_{C} = 0.1 \text{ mA} & V_{CE} = 10 \text{ V} \\ & I_{C} = 10 \text{ mA} & V_{CE} = 10 \text{ V} \\ & I_{C} = 150 \text{ mA} & V_{CE} = 10 \text{ V} \\ & I_{C} = 500 \text{ mA} & V_{CE} = 10 \text{ V} \end{split}$	35 75 100 40	-	300	

^{1.} Pulsed duration = 300 μ s, duty cycle \leq 2 %

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 8. Product mass summary

Package	Mass (g)
LCC-3UB	0.06
LCC-3	0.06
TO-18	0.40

Table 9. LCC-3UB mechanical data

Dim.	mm.				
	Min.	Тур.	Max.		
А	1.16		1.42		
С	0.46	0.51	0.56		
D	0.56	0.76	0.96		
E	0.92	1.02	1.12		
F	1.95	2.03	2.11		
G	2.92	3.05	3.18		
I	2.41	2.54	2.67		
J	0.42	0.57	0.72		
К	1.37	1.52	1.67		
L	0.41	0.51	0.61		
M	2.46	2.54	2.62		
N	1.81	1.91	2.01		
r		0.20			
r1		0.30			
r2		0.56			

Figure 8. LCC-3UB drawings

Table 10. LCC-3 mechanical data

Dim.	mm.				
	Min.	Тур.	Max.		
А	1.16		1.42		
С	0.45	0.50	0.56		
D	0.60	0.76	0.91		
E	0.91	1.01	1.12		
F	1.95	2.03	2.11		
G	2.92	3.05	3.17		
I	2.41	2.54	2.66		
J	0.42	0.57	0.72		
К	1.37	1.52	1.67		
L	0.40	0.50	0.60		
М	2.46	2.54	2.62		
N	1.80	1.90	2.00		
R		0.30			

Figure 9. LCC-3 drawings

Table 11. TO-18 mechanical data

Dim.	mm.				
	Min.	Тур.	Max.		
А		12.7			
В			0.49		
D			5.3		
E			4.9		
F			5.8		
G	2.54				
Н			1.2		
I			1.16		
L	45°				

Figure 10. TO-18 drawings

5 Order codes

Table 12. Ordering information

Part number	Agency specification	EPPL	Quality level	Radiatio n level	Package	Lead finish	Marking ⁽¹⁾	Packing
2N2222AUB1	-	-	Engineering model ESCC	-	LCC-3UB	Gold	U20	Waffle pack
J2N2222AUB1		-	Engineering model JANS		LCC-3UB	Gold	J2N2222A	Waffle pack
SOC2222A	-	-	Engineering model ESCC	-	LCC-3	Gold	N20	Waffle pack
JANS2N2222AUBG	MIL-PRF-19500/255	-	JANS flight	-	LCC-3UB	Gold	JS2222	Waffle pack
JANS2N2222AUBT	MIL-PRF-19500/255	-	JANS flight	-	LCC-3UB	Solder dip	JS2222	Waffle pack
JANSR2N2222AUBG	MIL-PRF-19500/255	-	JANS flight	100 krad	LCC-3UB	Gold	JSR2222	Waffle pack
JANSR2N2222AUBT	MIL-PRF-19500/255	-	JANS flight	100 krad	LCC-3UB	Solder dip	JSR2222	Waffle pack
SOC2222AUB11SW	5201/002/11	Yes	ESCC flight	100 krad	LCC-3UB	Gold	520100211	Waffle pack
SOC2222AUB12SW	5201/002/12	Yes	ESCC flight	100 krad	LCC-3UB	Solder dip	520100212	Waffle pack
SOC2222AUB11	5201/002/11	Yes	ESCC flight	-	LCC-3UB	Gold	520100211	Waffle pack
SOC2222AUB12	5201/002/12	Yes	ESCC flight	-	LCC-3UB	Solder dip	520100212	Waffle pack
SOC2222ASW	5201/002/04 or 05 ⁽²⁾	Yes	ESCC flight	100 krad	LCC-3	Gold or solder dip (2)	520100204 or 05 ⁽²⁾	Waffle pack
SOC2222AHRB	5201/002/04 or 05 ⁽²⁾	Yes	ESCC flight	-	LCC-3	Gold or solder dip (2)	520100204 or 05 ⁽²⁾	Waffle pack
2N2222AHR	5201/002/01 or 02 ⁽²⁾	-	ESCC flight	-	TO-18	Gold or solder dip (2)	520100201 or 02 ⁽²⁾	Waffle pack

^{1.} Specific marking only. The full marking includes in addition:

Doc ID 16558 Rev 9

For the engineering models: ST logo, date code, country of origin (FR).

For ESCC flight parts: ST logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

For JANS flight parts: ST logo, date code, country of origin (FR), manufacturer code (CSTM), serial number of the part within the assembly lot.

^{2.} Depending ESCC part number mentioned on the purchase order.

Shipping details 2N2222AHR

Contact ST sales office for information about the specific conditions for:

- Products in die form
- Other JANS quality levels
- Tape and reel packing

6 Shipping details

6.1 Data code

Data code is structured as described below:

- EM (ESCC and JANS) xyywwz
- ESCC Flight yywwz
- JANS Flight xyywwz

where:

6.2 Documentation

Table 13. Documentation provided for each type of product

Quality level	Radiation level	Documentation	
Engineering model	-	-	
JANS Flight	- Certificate of conformance		
JANSR Flight	100 krad Certificate of conformance 50 rad/s radiation verification test report		
	-	Certificate of conformance	
ESCC Flight	100 krad	Certificate of conformance	
		0.1 rad/s radiation verification test report	

2N2222AHR Revision history

7 Revision history

Table 14. Document revision history

Date	Revision	Changes
04-Jan-2010	1	Initial release
16-Apr-2010	2	Added Table 1 on page 1
09-Jul-2010	3	Modified: Table 1 on page 1 and Table 11 on page 14
30-Nov-2011	4	 Modified: Table 5 on page 5 Added: Section 2.3: Electrical characteristics (curves) Modified: Table 1 and 2 Added: Table 2, 11, 12 Minor text changes in the document title and description on the coverpage
12-Dec-2011	5	Minor text changes to improve readability
17-Apr-2012	6	Updated: - Title and description in cover page. - P _{TOT} in Table 2: Absolute maximum ratings. - The entire Section 2: Electrical characteristics. - Table 12: Ordering information. Added: - Table 3: Thermal data, Section 3: Radiation hardness assurance and Table 12: Ordering information. - Figure 5: JANS saturated turn-on switching time test circuit and Figure 6: JANS saturated turn-off switching time test circuit. - Section 6: Shipping details.
19-Apr-2012	7	Updated titles in Figure 5: JANS saturated turn-on switching time test circuit and Figure 6: JANS saturated turn-off switching time test circuit.
24-Apr-2012	8	Updated R _{thJA} value in <i>Table 3: Thermal data</i> .
14-May-2012	9	Updated Table 12: Ordering information.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

18/18 Doc ID 16558 Rev 9