Biological Modeling of Neural Networks Week 8 - Continuum models:

Cortical fields and perception

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for week 8: NEURONAL DYNAMICS +Ch. 12.3.7+Ch 15.1-15.2.3

Cambridge Univ. Press

8.1. Mean-field argument (review)

- aims and challenges for this week
- 8.2. Transients
 - generalized integrate-and-fire model
 - transients can be sharp or slow
- 8.3. Spatial continuum (cortex)
- orientation columns 8.4. Spatial cotinuum (model)
 - field equations
- 8.5. Solution types
- uniform solution bump solution
- 8.6. Perception
- 8.7. Head direction cells

Review from week 7: Interacting Populations Visual cortex

review from Week	7: mean-field arguments
A 1	Single population
	full connectivity
	All neurons receive the same total input current ('mean field')
	total input durion (moun noid)

Review: mean-field argument for homogeneous population

- single neuron is driven by the 'population activity' of all others
- all neurons in populations receive the same input
- mean-field argument work for fully connected and randomly connected populations
- in the **stationary** state, the single neuron firing rate is equal to the 'population activity' of a homogeneous population
- in the **stationary** state, 'population activity' can be predicted by
 - (i) single neuron gain function (f-I curve)
 - (ii) external input
 - (iii) intra-population coupling strength
- in the **stationary** state, choice of neuron model irrelevant (apart from gain function/f-I curve)

8.1. Aims and challenges

- beyond stationary states
 - → transients?
- more than one population how many? continuum?
- functional consequences
 - → visual perception?

8.1. Aims and challenges: perception Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014),

Biological Modeling of Neural Networks

Week 8 - Continuum models: Cortical fields and perception

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for week 8: **NEURONAL DYNAMICS** +Ch. 12.3.7+Ch 15.1-15.2.3 Cambridge Univ. Press

8.1. Mean-field argument (review) aims and challenges for this week

8.2. Transients

- generalized integrate-and-fire model
- transients can be sharp or slow
- 8.3. Spatial continuum (cortex)
- orientation columns
- 8.4. Spatial cotinuum (model) - field equations

8.5. Solution types

- uniform solution bump solution
- 8.6. Perception
- 8.7. Head direction cells

8.2. Aims and challenges

- beyond stationary states
 - → transients?
- but then neuron model matters!
 - introduce generalized integrate-and-fire models:
 - Spike Response Model (SRM)
 - Generalized Linear Model (GLM)

review from week 1 - Leaky Integrate-and-Fire Model Spike emission reset $\tau \cdot \frac{d}{dt} u = -(u - u_{rest}) + RI(t)$ linear $u(t) = \mathcal{G} \Rightarrow \text{Fire+reset } u \rightarrow u_r$ threshold

Population equations A single homogeneous population of neurons is driven by a step current causing a transient response of the population activity. [] A single cortical model population can exhibit transient oscillations [] Transients are always sharp [] Transients are always slow [] in a certain limit transients can be slow [] An escape noise model in the high-noise limit has transients which are always slow [] A single population described by a single first-order differential equation (no integrals/no delays) can exhibit transient oscillations

Biological Modeling of Neural Networks 8.1. Mean-field argument (review) - aims and challenges for this week 8.2. Transients Week 8 - Continuum models: - generalized integrate-and-fire model - transients can be sharp or slow Cortical fields and perception 8.3. Spatial continuum (cortex) Wulfram Gerstner orientation columns EPFL, Lausanne, Switzerland 8.4. Spatial cotinuum (model) - field equations Reading for week 8: 8.5. Solution types NEURONAL DYNAMICS - uniform solution - bump solution +Ch. 12.3.7+Ch 15.1-15.2.3 8.6. Perception

8.7. Head direction cells

Cambridge Univ. Press

8.4: Field equation (continuum model)

Population activity A(x,t) = F(h(x,t))

F mix 0.8 0.6 0.4 0.2 0 2 4 6 6

Membrane potential caused by input $au_{dt}^{\underline{d}}h(x,t) = -h(x,t) + R\ I(x,t)$

 $I(x,t) = I^{ext}(x,t) + I^{netw}(x,t)$

 $I^{netw}(x,t) = d \int w(x-x',t) A(x',t) dx'$

 $\tau \frac{d}{dt} h(x,t) = -h(x,t) + R I^{ext}(x,t) + d \int w(x-x') F(h(x',t)) dx'$

1 field = 1 integro-differential equation

Exercise 1.1 now (stationary solution)

Consider a continuum model, Find analytical solutions:

- spatially uniform solution A(x,t)=A0

Next lecture at 11:15

If done: start with Exercise 1.2 now (spatial stability)

Biological Modeling of Neural Networks 8.1. Mean-field argument (review) - aims and challenges for this week 8.2. Transients Week 8 - Continuum models: - generalized integrate-and-fire model - transients can be sharp or slow Cortical fields and perception 8.3. Spatial continuum (cortex) Wulfram Gerstner - orientation columns EPFL, Lausanne, Switzerland 8.4. Spatial continuum (model) field equations Reading for week 8: 8.5. Solution types NEURONAL DYNAMICS - uniform solution - bump solution 8.6. Perception Cambridge Univ. Press 8.7. Head direction cells

8.7. Summary

Continuum model provides understanding for:

- head direction cell bumps of activity
- contrast enhancement and some visual illusions

Biological Modeling of Neural Netw	vorks
Week 8 – Continuum models: Cortical fields and perception Wulfram Gerstner EPFL, Lausanne, Switzerland	Reading for week 8: NEURONAL DYNAMICS Ch. 18 + +Ch. 12.3.7+Ch 15.1-15.2.3
THE END	