

Gliederung

- Projektziel
- Unsere Methodik
- Datensatz und Projektvorstellung
- Wirtschaftlicher Nutzen
- Kritische Reflektion

Projektziel und Motivation

- Prognose des Stromverbrauchs f
 ür Europa durch ML
- Use Case: Energieunternehmen können besser steuern
- Anbindung einer Live-API der Strompreis Börse
- Vorhersage der Kosten

Technologien

Projektverlauf

Konzentration auf einen US-Datensatz

Für Nahbarkeit und bessere Datenqualität Umstieg auf europäischen Datensatz

Datenvorverarbeitung

- Datenbeschaffung von Open Power System Data
- Entfernung von Zeitzoneninformationen
- Aggregation der Daten (stündlich -> täglich)
- Log-Transformation

Unser Datensatz

- Stromverbrauchsdaten für 32 europäische Länder
- Strompreisdaten

Modelltraining

- Auswahl des Modells
- Train-Test-Split
- Evaluierung

Projektvorstellung

Bewertung

Wirtschaftlichen Nutzen

- Bessere Planbarkeit und Optimierung der Energieproduktion
- Reduzierung der Betriebskosten durch genaue Bedarfsprognosen
- Beitrag zur
 Nachhaltigkeit durch effizientere Ressourcennutzung

Kritische Reflektion

- Herausforderungen:
 - Umgang mit fehlenden und ungenauen Daten
 - API-Anbindung
- Lessons Learned:
 - Wichtigkeit eines qualitativen Datensatzes
 - Wichtigkeit der Datenvorverarbeitung
 - Zeitmanagement

Danke für die Aufmerksamkeit Fragen?