Linguagens de Programação

Âmbito, Funções e Gestão de memória – Soluções –

1. (a)

```
int a = 5, b = 2, c = 0;
              while (b > 0)
      5
                  int a = 3;
                  a = (a - b) * (a + b);
      6
                  c += a; --b;
      7
              }
              {
      9
      10
                 int d;
    / 11
| D | 12
                     int a = 15, b;
    | 13
                     b = c + d + a;
    \ 14
      15
                 d = b;
      16
             }
     17
             return c;
     18 }
```

(b)

bloco	local	global
A	авс	
В	a	b c
\mathbf{C}	d	b
D	a b	сd

(c)

bloco	variável
В	dist(b)=1
	dist(c)=1
С	dist(b)=1
D	dist(c)=2
	dist(d)=1

(d)

A	CL		В	CL	A
	a	5		a	3
	b	2		a-b	1
	c	0		a+b	5

С	CL	A	D	CL	С
	d			a	15
				b	

(e)

2.

	valor	referencia	valor-resultado
1	i=1, x=1, y=1	x=y=i=1	i=1, x=1, y=1
2	i=1, x=2, y=1	x=y=i=2	i=1, x=2, y=1
3	i=1, x=2, y=3	x=y=i=3	i=1, x=2, y=3
4	i=1, x=3, y=3	x=y=i=3	i=1, x=3, y=3
5	i=2, x=3, y=3	x=y=i=4	i=2, x=3, y=3
6	2	4	3

```
3. (a) val x=ref 0;

fun p (y: int ) =

let val z = ref y in

z := 1;

x := 10;

end;

p(!x);

x = 0 \rightarrow 10
```

```
(b) val x=ref 0; fun p (y: int ref ) = ( y := 1; x := 10 ); end; p(x); x = 0 \to 1 \to 10
```

```
(c) val x=ref 0;

fun p( y: int ref ) =

let val z = ref (!y) in

z := 1;

x := 10;

y := !z

end;

p(x);

x = 0 \rightarrow 10 \rightarrow 1
```

(1)	CL	(0)
	AL	(0)
	X	2
(2)	CL	(1)
	AL	(1)
	f	
(3)	CL	(2)
	AL	(2)
	X	7
(4) f(7)	CL	(3)
	AL	(2)
	У	7

Numa chamada de função o AL refere o RA onde a função foi declarada

(a) Estático: seguir AL

(1)		X	5
(2)		AL	(1)
		f	(a)
(3)		AL	(2)
		g	(b)
(4)		AL	(3)
		X	10
(5)	g(f)	AL	(3)
		h	(a)
		X	7
(6)	h(x)	AL	(2)
		У	7

(b)
$$<$$
(3),cod g>

(b)
$$f(y)=5+y-2$$

 $g(f)=h(x)=f(7)=5+7-2=10$

$$f: int \rightarrow (int \rightarrow int)$$

$$h:\ int \to int$$

(b)

(1)	AL	(0)
	X	5
(2)	AL	(1)
	f	(a)
(3)	AL	(2)
	h	(b)
(4)	AL	(3)
	X	7
(5) f(3)	AL	(2)
	S	3
	Z	(c)
	g	(b)
(6) h(2)	AL	(5)
	W	2

(c) h(2)=w+x+s=10
w=2
$$\rightarrow$$
 parâmetro de h
x=5 \rightarrow access link de f
s=3 \rightarrow parâmetro de f

7. (a)

(1)	AL	(0)
	CL	(0)
	myop	(a)
(2)	AL	(1)
	CL	(1)
	recurse	(b)
(3)	AL	(2)
	CL	(2)
	myop	(c)
(4) recurse(1)	AL	(2)
	CL	(3)
	i	1
(5) myop(1,1)	AL	(1)
	CL	(4)
	X	1
	У	1

- (a) <(1), cod myop *linha 1*>
- (b) <(2), codigo recurse>
- (c) <(3), codigo myop linha 6>

(b) i.
$$recurse(1) = myop(1,1) = 1*1 = 1$$

ii.
$$recurse(1) = myop(1,1) = 1+1 = 2$$