

7

<u>Step</u>	Party i	Party j
(1)	Party i's cryptography device generates a correct signature E for message m and transmits E to party j's cryptography device.	
		Party j's cryptography device receives E and stores it in memory.
(2)	Party i's cryptography device generates incorrect signature Ê for the same message m and transmits Ê to party j's cryptography device.	
		Party j's cryptography device receives \hat{E} and stores it in memory.
(3)		Party j's cryptography device determines $a(E_1-\hat{E}_1)$; $gcd(E-\hat{E}, N)=q$.
(4)		Having determined q, party j's cryptography device determines N.

٠.,

. . .

(3)

Fig. 4

Party i <u>Step</u> Party i's cryptography (1) device generates erroneous signature \hat{E} for known message m (i.e., message m is generated without padding or with non-random padding) and transmits \hat{E} to party j's cryptography device. (2)

Party j

Party j's cryptography device receives \hat{E} .

Party j's cryptography device determines $gcd(M-\hat{E}^{ei}, N)=q$.

Having determined q, party j's cryptography device determines N.

Step	Fig. 5 Party i	Party j
(1)	Party i's cryptography device selects a random r, generates $r^2 \mod N$, and transmits this value to party j's cryptography device.	
		Party j's cryptography device observes the value $r^2 \mod N$.
(2)		Party j's cryptography device generates a random subset $S \subseteq (1, \ldots, t)$ and transmits S to party i's cryptography device.
(3)	While waiting to receive S from party j 's device, a value in party i 's device is inverted. After receiving S from party j 's device, party i 's device generates $\hat{y}=(r+\hat{E})\prod_{i\in S}s_i$ Party i 's device transmits \hat{y} to party j 's device.	
		Party j's device receives \hat{y} .
(4)		Party j's device determines É by finding an É satisfying $(r+E)^2 = \frac{\hat{y}^2}{m} \pmod{N}$
(5)		$\Pi_{i \in S} v_i$ This is possible because $\acute{E} = 2^k$ for some $1 \le k \le n$
		Party j's device may determine r using:

Fig. 5 Con't

$$(r+\cancel{E})^2 - r^2 = 2\cancel{E}r + \cancel{E}^2 \pmod{N}$$

Party j may use r to determine $\Pi_{i \in s} s_i$ using:

$$\prod_{i \in S} s_i = \frac{2 \hat{E} \hat{y}}{\prod_{i \in S} v_i} - r^2 + \hat{E}^2 \qquad (\text{mod } N)$$

Party j's cryptography device determines $\Pi_{i \in S_i}$ for various sets U_i construced as either (1) singleton sets or (2) selected at random such that resulting characteristic vectors are linearly independent.

Using the sets constructed above, party j's device performs the F i a t - S h a m i r authentication scheme, providing the sets to party i's device.

Using the response to the sets sent to party i's device, party j determines the secret values s_1, \ldots, s_t .

()(∀)

7 (*)

& (**)**)

(9)

7

14. .:

: