

Tidy Time Series & Forecasting in R

7. Exponential smoothing

robjhyndman.com/workshop2020

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

How do the level, trend and seasonal components evolve over time?

ETS models

General notation ETS: ExponenTial Smoothing

✓ ↑ ✓

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

ETS models

```
General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

ETS models

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

ETS(A,N,N): SES with additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1} + \varepsilon_t$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N): SES with additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1} + \varepsilon_t$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Measurement equation: relationship between observations and states.
- Transition/state equation(s): evolution of the state(s) through time.

ETS(M,N,N): SES with multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(M,N,N): SES with multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15

Holt's linear trend

Additive errors: ETS(A,A,N)

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

$$\mathbf{y}_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

Holt's linear trend

Additive errors: ETS(A,A,N)

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation
$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$

State equations
$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

Multiplicative errors: ETS(M,A,N)

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation
$$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$$

State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

```
aus_economy <- global_economy %>% filter(Code == "AUS") %>%
 mutate(Pop = Population/1e6)
fit <- aus_economy %>% model(AAN = ETS(Pop))
report(fit)
## Series: Pop
## Model: ETS(A,A,N)
##
    Smoothing parameters:
      alpha = 1
##
##
      beta = 0.327
##
##
    Initial states:
##
    1 h
##
   10.1 0.222
##
##
    sigma^2: 0.0041
##
    AIC AICC BIC
##
## -77.0 -75.8 -66.7
```

4 Australia AAN

5 Australia AAN

7 Australia AAN

6 Australia AAN

8 Australia AAN

9 Australia AAN

10 Auctralia AAN

##

##

##

##

##

components(fit) ## # A dable: 59 x 7 [1Y] ## # Key: Country, .model [1] ## # ETS(A,A,N) Decomposition: Pop = lag(level, 1) + lag(slope, 1) ## # remainder Country .model Year Pop level slope remainder ## ## <fct> <chr> <dbl> <dbl> <dbl> <dbl> <fdb>> ## 1 Australia AAN 1959 NA 10.1 0.222 NA 2 Australia AAN 1960 10.3 10.3 0.222 -0.000145

3 Australia AAN 1961 10.5 10.5 0.217 -0.0159

1060

1962 10.7 10.7 0.231 0.0418

1963 11.0 11.0 0.223 -0.0229

1964 11.2 11.2 0.221 -0.00641

1965 11.4 11.4 0.221 -0.000314

1966 11.7 11.7 0.235 0.0418

1967 11.8 11.8 0.206 -0.0869

12 0 12 0 0 200 0 00250

12

components(fit) %>% autoplot()


```
fit %>%
  forecast(h = 20) %>%
  autoplot(aus_economy) +
  ylab("Population") + xlab("Year")
```


ETS(A,Ad,N): Damped trend method

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + (\phi + \cdots + \phi^{h-1})b_T$$

Measurement equation $y_t = (\ell_{t-1} + \phi b_{t-1}) + \varepsilon_t$
State equations $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$
 $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$

ETS(A,Ad,N): Damped trend method

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + (\phi + \cdots + \phi^{h-1})b_T$$

Measurement equation $y_t = (\ell_{t-1} + \phi b_{t-1}) + \varepsilon_t$

State equations $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$
 $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

```
aus_economy %>%
  model(holt = ETS(Pop ~ trend("Ad"))) %>%
  forecast(h = 20) %>%
  autoplot(aus_economy)
```


Example: National populations

```
fit <- global_economy %>%
 mutate(Pop = Population/1e6) %>%
 model(ets = ETS(Pop))
fit
## # A mable: 263 x 2
## # Key: Country [263]
## Country
                        ets
## <fct>
                       <model>
## 1 Afghanistan
                       <ETS(A,A,N)>
## 2 Albania
                        <ETS(M,A,N)>
## 3 Algeria
                        <ETS(M,A,N)>
## 4 American Samoa
                        <ETS(M,A,N)>
## 5 Andorra
                        <ETS(M,A,N)>
## 6 Angola
                        <ETS(M,A,N)>
## 7 Antigua and Barbuda <ETS(M,A,N)>
## 8 Arab World
                        <ETS(M,A,N)>
## 9 Argentina
                        <ETS(A,A,N)>
## 10 Armenia
                        <ETS(M,A,N)>
## # ... with 253 more rows
```

Example: National populations

##

```
fit %>%
 forecast(h = 5)
## # A fable: 1,315 x 5 [1Y]
  # Key: Country, .model [263]
##
## Country .model Year Pop .distribution
## <fct> <chr> <dbl> <dbl> <dist>
##
   1 Afghanistan ets 2018 36.4 N(36, 0.012)
##
   2 Afghanistan ets
                      2019 37.3
                                N(37, 0.059)
   3 Afghanistan ets
                       2020 38.2 N(38, 0.164)
##
                       2021 39.0 N(39, 0.351)
##
   4 Afghanistan ets
##
   5 Afghanistan ets
                       2022 39.9
                                N(40, 0.644)
                       2018 2.87 N(2.9, 0.00012)
##
   6 Albania
               ets
##
   7 Albania
               ets
                       2019 2.87 N(2.9, 0.00060)
                       2020 2.87 N(2.9, 0.00169)
##
   8 Albania
               ets
   9 Albania
                       2021 2.86 N(2.9, 0.00362)
```

ets

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15

Lab Session 14

Consider the data set fma::eggs, the price of a dozen eggs in the United States from 1900-1993. Experiment with the various options in the 'ETS()" function to see how much the forecasts change with damped trend, or with a Box-Cox transformation. Try to develop an intuition of what each is doing to the forecasts. How can we stop the forecasts becoming negative?

[Hint: use h=100 when forecasting, so you can clearly see the differences between the various options when plotting the forecasts.]

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15

ETS(A,A,A): Holt-Winters additive method

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

Observation equation $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$
State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $b_t = b_{t-1} + \beta \varepsilon_t$
 $s_t = s_{t-m} + \gamma \varepsilon_t$

- k = integer part of (h-1)/m.
- lacksquare $\sum_i s_i \approx 0.$
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

ETS(M,A,M): Holt-Winters multiplicative method

Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

Observation equation $y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
State equations $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
 $b_t = b_{t-1}(1 + \beta \varepsilon_t)$
 $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

- k is integer part of (h-1)/m.
- lacksquare $\sum_i s_i \approx m$.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

Example: Australian holiday tourism

```
holidays <- tourism %>%
  filter(Purpose == "Holiday")
fit <- holidays %>% model(ets = ETS(Trips))
fit
## # A mable: 76 x 4
## # Key: Region, State, Purpose [76]
##
      Region
                                State
                                                   Purpose ets
      <chr>
                                 <chr>>
                                                   <chr> <model>
##
    1 Adelaide
                                South Australia Holiday <ETS(A,N,A~
##
    2 Adelaide Hills
##
                                South Australia
                                                   Holiday <ETS(A,A,N~
##
   3 Alice Springs
                                Northern Territo~ Holiday <ETS(M,N,A~
    4 Australia's Coral Coast
##
                                Western Australia Holiday <ETS(M,N,A~
    5 Australia's Golden Outba~
##
                                Western Australia Holiday <ETS(M,N,M~
    6 Australia's North West
##
                                Western Australia Holiday <ETS(A,N,A~
                                Western Australia Holiday <ETS(M,N,M~
##
    7 Australia's South West
##
   8 Ballarat
                                Victoria
                                                   Holiday <ETS(M,N,A~
##
    9 Barkly
                                Northern Territo~ Holiday <ETS(A,N,A~
                                South Australia Holiday <ETS(A,N,N~ <sup>24</sup>
## 10 Barossa
```

Example: Australian holiday tourism

```
fit %>% filter(Region=="Snowy Mountains") %>% report()
```

```
## Series: Trips
## Model: ETS(M,N,A)
##
    Smoothing parameters:
##
       alpha = 0.157
##
      gamma = 1e-04
##
##
    Initial states:
##
     l s1 s2 s3 s4
##
   142 -61 131 -42.2 -27.7
##
##
    sigma^2: 0.0388
##
##
   AIC AICC BIC
##
   852 854 869
```

Example: Australian holiday tourism

fit %>% filter(Region=="Snowy Mountains") %>% components(fit)

```
## # A dable:
                             84 x 9 [10]
## # Key:
                             Region, State, Purpose, .model [1]
## # ETS(M,N,A) Decomposition: Trips = (lag(level, 1) + lag(season,
## # 4)) \star (1 + remainder)
##
     Region State Purpose .model
                                   Quarter Trips level season
##
     <chr> <chr> <chr> <chr>
                                    <qtr> <dbl> <dbl> <dbl> <dbl>
##
   1 Snowy~ New ~ Holiday ets
                                   1997 Q1 NA
                                                  NA
                                                       -27.7
##
   2 Snowy~ New ~ Holiday ets
                                   1997 Q2 NA
                                                  NA
                                                      -42.2
##
   3 Snowv~ New ~ Holiday ets
                                                      131.
                                   1997 03 NA NA
                                   1997 04 NA 142. -61.0
##
   4 Snowy~ New ~ Holiday ets
##
   5 Snowy~ New ~ Holiday ets
                                   1998 Q1 101. 140.
                                                      -27.7
##
   6 Snowy~ New ~ Holiday ets
                                   1998 Q2 112. 142. -42.2
   7 Snowy~ New ~ Holiday ets
                                   1998 Q3 310. 148. 131.
##
                                   1998 04 89.8 148. -61.0
##
   8 Snowy~ New ~ Holiday ets
##
   9 Snowy~ New ~ Holiday ets
                                   1999 01 112. 147. -27.7
## 10 Snowv~ New ~ Holiday ets
                                  1999 Q2 103. 147.
                                                       -42.2
## # ... with 74 more rows, and 1 more variable: remainder <dbl>
```

Example: Australian holiday tourism

```
fit %>% filter(Region=="Snowy Mountains") %>%
  components(fit) %>% autoplot()
```


Example: Australian holiday tourism

fit %>% forecast()

```
## # A fable: 608 x 7 [10]
## # Key:
             Region, State, Purpose, .model [76]
##
     Region
               State Purpose .model
                                        Quarter Trips .distribution
##
     <chr> <chr> <chr> <chr> <chr>
                                          <atr> <dbl> <dist>
   1 Adelaide South A~ Holiday ets
                                        2018 Q1 210. N(210, 457)
##
   2 Adelaide South A~ Holiday ets
##
                                        2018 Q2 173. N(173, 473)
   3 Adelaide South A~ Holiday ets
                                        2018 Q3 169. N(169, 489)
##
##
   4 Adelaide South A~ Holiday ets
                                        2018 Q4 186. N(186, 505)
##
   5 Adelaide South A~ Holiday ets
                                        2019 Q1 210. N(210, 521)
##
   6 Adelaide South A~ Holiday ets
                                        2019 Q2 173. N(173, 537)
##
   7 Adelaide South A~ Holiday ets
                                        2019 03 169. N(169, 553)
   8 Adelaide South A~ Holiday ets
##
                                        2019 04 186. N(186, 569)
   9 Adelaide~ South A~ Holiday ets
##
                                        2018 01 19.4 N(19, 36)
## 10 Adelaide~ South A~ Holiday ets
                                        2018 02 19.6 N(20, 36)
## # ... with 598 more rows
```

Example: Australian holiday tourism

```
fit %>% forecast() %>%
  filter(Region=="Snowy Mountains") %>%
  autoplot(holidays) +
    xlab("Year") + ylab("Overnight trips (thousands)")
```


Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15

Exponential smoothing models

Additive Error		Seasonal Component			
Trend		N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	A,N,N	A,N,A	<u> </u>	
Α	(Additive)	A,A,N	A,A,A	Δ,Δ,Δ	
A_{d}	(Additive damped)	A,A_d,N	A,A_d,A	$\Delta_{+}\Delta_{-}\Delta$	

Multiplicative Error		Seasonal Component			
Trend		N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	M,N,N	M,N,A	M,N,M	
Α	(Additive)	M,A,N	M,A,A	M,A,M	
A_d	(Additive damped)	M,A_d,N	M,A_d,A	M,A_d,M	

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, not equivalent to minimising SSE.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

AIC and cross-validation

Minimizing the AIC assuming
Gaussian residuals is asymptotically
equivalent to minimizing one-step
time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data.

 Optimize parameters and initial values using

 MLE.
- 2 Select best method using AICc.
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.
 - Method performed very well in M3 competition.
 - Used as a benchmark in the M4 competition.

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15

Lab Session 15

Find an ETS model for the Gas data from aus_production.

- Why is multiplicative seasonality necessary here?
- Experiment with making the trend damped. Does it improve the forecasts?