Control and Automation IC2122 Robotics Lab with VREP

Instructor: Louis Wong

Industrial Centre

The Hong Kong Polytechnic University

Software platform

V-REP UR3

- Joints (UR3):
 - From UR3_joint1 to UR3_joint6

• End-effector (Tip):

V-REP Tools

• Camera Pan:

- Moving the camera
- Camera Rotate:
 - Rotating the camera
- Camera Shift:

V-REP Tools

Object Position:

1. Select the object

3. Position: X, Y, Z

1. Select the object

2. Click

3. Orientation: Alpha (α), Beta (β), Gamma(γ)

INDUSTRIAL CENTRE 工業中心

Task 1: Forward Kinematics

Start-up — V-REP

Start the V-REP (Task1_vrep.bat)

Start-up – Anaconda Navigator

Start the Anaconda Navigator on Taskbar or search Windows

Start-up – Spyder

Launch Spyder

Start-up – Spyder

Start-up – Spyder

Open Python file at editor

Run the program at Spyder

D:\01-Home\IoT\IC2122-Robotics\Task1

Start-up – Control panel window

- Control panel window will be appeared after running the program
- After switching to the V-REP, the control panel window will be hidden
- Click the Control panel window icon to open it.

Start-up

V-REP interface :

V-REP Joint Angle - Keyboard Control

Joint Movement (+/- 1 degree)

Joint Name	Keyboard		
	-1 degree	+1 degree	
Joint 1	(W)	(Q)	
Joint 2	(S)	(A)	
Joint 3	(X)	(Z)	
Joint 4	(R)	(E)	
Joint 5	(F)	(D)	
Joint 6	(V)	(C)	

- Pose:
 - (L): Home Position
 - Return all of the joint angles as 0 degrees
- Gripper (RG2):
 - (Y): Close RG2
 - ➤ Grip object
 - (T): Open RG2
 - ➤ Release object

V-REP Joint Angle - Control Panel

V-REP Joint Angle - Control Panel

- Joint Angle Movement:
 - 1. 5 degrees of Joint angle
 - 2. 1 degrees of Joint angle
 - 3. + 1 degrees of Joint angle
 - 4. + 5 degrees of Joint angle
- Home Position:
 - 1. Return all of the joint angles as 0 degrees

V-REP Joint Angle - Control Panel

- Gripper (RG2):
 - 1. Close RG2 to Grip object

Clsoe RG2 (T)

2. Open RG2 to Release object

Open RG2 (Y)

- Joint Angle Configuration
 - 1. Set all of the joint angles in the IPython Console

Joint Angle Configuration (input joint angle at administrator)

(Input value and press enter at Spyder IPython Console)

```
pygame 2.0.1 (SDL 2.0.14, Python 3.8.11)

Hello from the pygame community. https://www.pygame.org/contribute.html

Simulation started
connect successfully
Simulation start

Input Joint 1 Angle: 0

Input Joint 2 Angle: 0

Input Joint 3 Angle: 0

Input Joint 4 Angle: 0

Input Joint 5 Angle: 0

Input Joint 6 Angle: |
```

V-REP Joint Angle – Example 1

- Example 1: Move the end-effector on top of the RED rectangle.
- Steps:
 - Switch to the "V-REP Control Panel" window and observe the UR3's movement when clicking

the button to adjust joint angle (synchronizing with V-REP)

Tune Joint 3 angle as -90 degree (Press "X" or click button "<" / "<<" to adjust)

Elbow (Joint3)

-90.01 deg

Wrist 2 (Joint5)

IC2122 - Task 1a

• Task 1a: Move the end-effector to the RED block using Forward Kinematics and write down the joint angles.

Red Block Po	Position X	Position Y	Position Z
Position:	0.125 m	-0.35 m	0.435 m

End-effector information

--- End-Effector (Tip) Position and Orientation---

X: 0.1254 m Y: -0.3579 m Z: 0.4514 m

Alpha: 86.2592 Beta: -0.1106 Gamma: 90.527

IC2122 - Task 1a (Hints)

Task 1a: Move the end-effector to the RED block using Forward Kinematics and

write down the joint angles.

(Hints: Adjust the joint angles one by one)

- Step 1: Adjust two joint angles
 - ➤ Make the RG2 parallel to the table

- Step 2: Adjust one joint angle
 - Make the end-effector vertically to the ground

Step 1

IC2122 – Task 1a (Hints)

Task 1a: Move the end-effector to the RED block using Forward Kinematics and

write down the joint angles.

(Hints: Adjust the joint angles one by one)

Step 3: Adjust the joint angles to reach the RED block

(End-effector's position ≈ Red block's position)

---End-Effector (Tip) Position and Orientation---

X: 0.1254 m Y: -0.3579 m Z: 0.4514 m

Alpha: 86.2592 Beta: -0.1106 Gamma: 90.527

IC2122 – Task 1b

• Task 1b: Move the end-effector to the YELLOW block using Forward Kinematics

(Remark: end-effector should be located inside the YELLOW block)

Yellow Block	Position X	Position Y	Position Z
Position:	0.25 m	-0.225 m	0.435 m

End-effector information

and write down the joint angles.

--- End-Effector (Tip) Position and Orientation---

X: 0.2516 m Y: -0.2261 m Z: 0.4374 m

Alpha: 86.8039 Beta: -0.0816 Gamma: 90.324

Final Goal

IC2122 – Task 1c

Stop the program by holding "Ctrl" and clicking "C" (IPython console)

- Open a new console by holding "Ctrl" and clicking "D" (IPython console)
- Close the previous V-REP
- Start a new V-REP (Task1c vrep.bat)

Run the Task1.py program (Spyder)

IC2122 – Task 1c

• Task 1c: Place the BLUE block on the table (inside Blue colour area) using

Forward Kinematics and write down the procedure.

Blue Block original	Position X	Position Y	Position Z
Position:	0.35 m	0.025m	0.435 m

Blue Block final	Position X	Position Y	Position Z
Position:	≈ -0.667 m	≈ 0 m	0.846 m

IC2122 – Task 1c

- Second chance (Failed for picking and placing BLUE block)
- Task 1c: Place the PURPLE block on the table (inside Blue colour area) using

Position:

Forward Kinematics and write down the procedure.

- Arrive at PURPLE block:
 - 1. Click "Home Position"
- 2. Click "Joint Angle Configuration" and input the following value and press enter

Task1 – Troubleshoot

• Step 1: Switch to the Spyder IPython Console

- Step 2: Stop the program by holding "Ctrl" and clicking "C"
- Step 3: Open a new console by holding "Ctrl" and clicking "D"
- Step 4: Stop the V-REP simulation

Step 5: Run the program at Spyder

IC2122 – Additional Task (optional)

Place the RED and WHITE block on the table (red colour area) using Forward

Kinematics.

(Remark: The position and orientation should be same)

WHITE Block original Position:	Position X	Position Y	Position Z
	0.125 m	+0.325 m	0.435 m
Yellow Block original Position:	Position X	Position Y	Position Z
	0.25 m	-0.225 m	0.435 m
WHITE Block final Position:	Position X	Position Y	Position Z
	-0.54 m	-0.165 m	0.846 m
Yellow Block final Position:	Position X	Position Y	Position Z
	-0.54 m	+0.165 m	0.846 m

