Exercícios #2 Solução

Valor total: 3 pontos

Questão 1

Construa um modelo matemático que determina as dimensões (raio r e altura h) de um cilindro de volume máximo cuja área de superfície total (contando o "corpo" e as duas "tampas") seja no máximo 100 cm^2 .

```
Volume: \pi r^2 h Área: 2\pi r^2 + 2\pi r h Modelo: Maximizar Volume = \pi r^2 h sujeito a: 2\pi r^2 + 2\pi r h \le 100
```

Responda: o modelo obtido acima é linear ou não-linear? Por quê?

Não linear por causa dos termos r²h, r² e rh nas equações.

Questão 2

Certa empresa fabrica 2 produtos P1 e P2. O lucro por unidade de P1 é de \$100,00 e o lucro unitário de P2 é de \$150,00. A empresa necessita de 2 horas para montar uma unidade de P1 e 3 horas para montar uma unidade de P2. O tempo mensal disponível no setor de montagem é de 120 horas. As demandas esperadas para os 2 produtos levaram a empresa a decidir que os montantes produzidos de P1 e P2 não devem ultrapassar 40 unidades de P1 e 30 unidades de P2 por mês. Construa o modelo de PL com o objetivo de maximizar o lucro da empresa.

```
x1 e x2 = quantidade de P1 e P2 fabricado por mês, respectivamente.
```

```
Maximizar Lucro = 100x1 + 150x2 sujeito a:

Montagem) 2x1 + 3x2 \le 120

Limite_P1) x1 \le 40

Limite_P2) x2 \le 30
```

Uma companhia produz dois tipos de camisas: manga longa e manga curta. Na companhia, o único ponto crítico é a mão-de-obra disponível. A camisa de manga longa consome 50% a mais de mão-de-obra do que a de manga curta. Sabe-se também que se toda a produção fosse concentrada na produção de camisas de manga curta, a companhia poderia entregar 400 camisas de manga curta por dia. O mercado limita a produção diária das camisas em 150 mangas longas e 300 mangas curtas. O lucro bruto por camisa de manga longa é de \$5,00 e por camisa de manga curta, \$3,50. Formular o problema de modo a permitir a determinação das quantidades de camisas a produzir de modo a otimizar o lucro.

```
x1 e x2 = quantidade de camisas de manga longa e curta produzidas por dia, respectivamente.
```

```
Maximizar Lucro = 5x1 + 3.5x2 sujeito a:

Mão_de_Obra) 1.5x1 + x2 \le 400

Limite_x1) x1 \le 150

Limite x2) x2 \le 300
```

Questão 4

Um fazendeiro dispõe de 800 litros de leite por dia para fazer doce de leite e queijo. Cada quilo de queijo requer 9 litros de leite e cada quilo de doce exige 7 litros de leite. Algumas exigências de mercado são impostas:

- a) a quantidade máxima de queijo que pode ser feita por dia é 50 quilos;
- b) a quantidade de queijo deve ser no máximo igual a 1,5 vezes a quantidade de doce de leite.

A fazenda dispõe de 2 empregados que trabalham, cada um, 7 horas por dia. Cada quilo de queijo requer 30 minutos de mão-de-obra e cada quilo de doce, 6 minutos. Sabendo-se que o quilo de queijo dá uma receita de \$5,00 e cada quilo de doce dá \$4,00, escreva um modelo de PL que permita determinar a produção diária que maximiza a receita.

x1 e x2 = quantidade de doce de leite e de queijo produzidas por dia, respectivamente.

```
Maximizar Receita = 4x1 + 5x2

sujeito a:

Máx. Leite) 7x1 + 9x2 \le 800

máx._queijo) x2 \le 50

x1_x2) x2 \le 1.5x1

Mão de Obra) 6x1 + 30x2 \le 2*7*60
```

Uma fundição deve produzir exatamente 10 toneladas de um tipo de ferro-gusa, a partir de quantidades variadas de produtos (ingredientes) como: lingotes de ferro, grafite, restos de processos industriais e domiciliares. O ferro-gusa é composto de carbono, silício, (entre outros elementos). Os dados dos produtos estão na tabela a seguir, bem como deve ser a composição do ferro-gusa.

Produtos Composição %	Lingotes	Grafite	Restos Industriais	Restos domiciliares	Composição Mínima
Carbono	0,5	0,9	0,5	0,15	0,43
Silício	0,2		0,02	0,29	0,19
Manganês	0,23		0,16	0,05	0,12
Custo R\$/ton	90	180	25	35	

Escreva um modelo de otimização linear para determinar as quantidades dos ingredientes na liga metálica de modo que o custo seja mínimo.

Questão 6

Certa fazenda usa no mínimo 800 kg de ração especial por dia. Essa ração é uma mistura de milho e soja com as composições elencadas na tabela abaixo.

Ingradianta	kg de nutriente por	Custo dos ingredientes	
Ingrediente	Proteína	Fibra	(R\$/kg)
Milho	0,09	0,02	0,30
Soja	0,6	0,06	0,90

Os requisitos nutricionais da ração especial são de no mínimo 30% de proteína e de no máximo 5% de fibra. A fazenda quer determinar a mistura de ingredientes que gera a ração de mínimo custo diário. Escreva um modelo de PL para resolver esse problema.

```
x1 e x2 = qtd (kg) de cada ingrediente (Milho e Soja) usado na ração. Minimizar Custo = 0.3x1 + 0.9x2 s.a: Total Ração) x1 + x2 \geq 800 Proteína) 0.09x1 + 0.6x2 \geq 0.3 * (x1 + x2) Fibra) 0.02x1 + 0.06x2 \leq 0.05 * (x1 + x2)
```

Em grande parte dos *campi* universitários, os departamentos acadêmicos contratam alunos para prestar pequenos serviços, como atender telefone e fazer trabalhos de digitação. A necessidade desse tipo de serviço varia durante o horário normal de trabalho (8h às 17h). No Departamento de Engenharia de Produção, o número mínimo necessário de estudantes é de dois entre 8h e 10h, três entre 10h01m e 11h, quatro entre 11h01m e 13h, e três entre 13h01m e 17h. Cada estudante trabalha por três horas consecutivas (exceto os que começam às 15h01m, que trabalham duas horas, e os que começam às 16h01m, que trabalham uma hora). Devido a seu horário flexível, de modo geral os estudantes podem se apresentar para o trabalho a qualquer hora durante o horário normal de trabalho, mas nenhum deles quer começar a trabalhar na hora do almoço (meio dia). Determine o número mínimo de estudantes que o Departamento de Engenharia de Produção deve contratar e especifique a quantidade de estudantes que devem se apresentar para trabalhar em cada hora durante o horário normal de trabalho.

j:	1	2	3	4	5	6	7	8	9
Horário:	08:01	09:01	10:01	11:01	12:01	13:01	14:01	15:01	16:01
Horario: 09:	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00
Demanda:	2	2	3	4	4	3	3	3	3

xj = número de alunos que começam a trabalhar no horário j. Obs.: <math>x5 = 0.

```
Min. f = x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 s.a.

1) x1 \ge 2
2) x1 + x2 \ge 2
3) x1 + x2 + x3 \ge 3
4) x2 + x3 + x4 \ge 4
5) x3 + x4 \ge 4
6) x4 + x6 \ge 3
7) x6 + x7 \ge 3
8) x6 + x7 + x8 \ge 3
9) x7 + x8 + x9 \ge 3
```

Obs.: poderíamos usar restrições do tipo "=" no lugar de "≥" para esse problema. No entanto, devemos usar "=" apenas quando for mandatório, sob o risco do modelo ficar com as restrições "apertadas" demais e não ter solução alguma.

Um fazendeiro possui três propriedades de produtividade aproximadamente igual. O total produzido em cada fazenda depende do tamanho da mesma e da quantidade de água disponível para sua irrigação. Os dados correspondentes são os seguintes:

Fazenda	Área de cultivo (hectares)	Água disponível (m³)
1	950	1500
2	735	900
3	840	1200

Três tipos de cultura devem ser desenvolvidos nas três fazendas, e cada cultura tem consumo de água e lucros próprios. Além disso, a área máxima que deve ser dedicada a cada cultura também está determinada. Os dados são:

Cultura	Área máxima (hectares)	Consumo de água (m³/hectare)	Lucro (\$)
A	950	5,0	6000
В	800	4,0	4500
С	1200	4,5	5500

Seja x_{A1} a área a ser utilizada pela cultura A na fazenda 1, e assim por diante. (a) Formule o problema usando um modelo de PL a fim de que o lucro total seja máximo. (b) Que modificações teríamos de fazer ao modelo se toda a reserva de água (3600 m³) pudesse ser compartilhada entre as três fazendas?

 X_{ij} - Quantidade da cultura i plantada na fazenda j.

```
Max. 6000 * (X_{a1} + X_{a2} + X_{a2}) + 4500X_{b1} + 4500X_{b2} + 4500X_{b3} + 5500X_{c1} + 5500X_{c2} + 5500X_{c3} s.a.
```

Área 1) $X_{a1} + X_{b1} + X_{c1} \le 950$

Área 2) $X_{a2} + X_{b2} + X_{c2} \le 735$

Área 3) $X_{a3} + X_{b3} + X_{c3} \le 840$

Água 1) $5X_{a1} + 4X_{b1} + 4.5X_{c1} \le 1500$

Água 2) $5X_{a2} + 4X_{b2} + 4.5X_{c2} \le 900$

Água 3) $5X_{a3} + 4X_{b3} + 4.5X_{c3} \le 1200$

Área A) $X_{a1} + X_{a2} + X_{a3} \le 950$

Área B) $X_{b1} + X_{b2} + X_{b3} \le 800$

Área C) $X_{c1} + X_{c2} + X_{c3} \le 1200$

b) Substituir as três restrições de Água por apenas uma:

Água)
$$5(X_{a1} + X_{a2} + X_{a3}) + 4(X_{b1} + X_{b2} + X_{b3}) + 4.5(X_{c1} + X_{c2} + X_{c3}) \le 3600$$