MemAgent: Reshaping Long-Context LLM with Multi-Conv RLbased Memory Agent (arxiv)

Key Highlights

問題

- **這篇論文旨在解決哪些問題?** 本文解決了在使用大型語言模型(LLMs)處理無限 長文檔時面臨的挑戰,同時保持線性複雜度並防止外推過程中的性能下降。目前的 LLMs在處理極長的上下文(整本書、複雜的推理鏈、長期代理記憶)時存在關鍵 限制。
- 現有方法有哪些,它們有什麼限制?主要有三種方法:(1)長度外推方法擴展上下文窗口但遭受O(n²)計算複雜度和性能下降的困擾;(2)稀疏/線性注意力機制需要從頭訓練且難以並行化;(3)上下文壓縮方法在外推時困難,並且需要額外的模塊,進而干擾標準生成過程。

解決方案

- 這篇論文提出了什麼解決方案? MemAgent引入了一種處理文本段落並使用覆寫 策略更新固定長度記憶的新型代理工作流程。該方法使用強化學習(RL)來訓練模 型選擇性地保留重要信息,同時捨棄無關的細節。
- **這一想法受到什麼啟發?是否受到其他論文的影響?** 該方法受到人類認知過程的啟 發——人類如何抽象主要概念,記錄關鍵細節,並使用速記來記錄要點,同時捨棄 冗餘信息。此方法擴展了用於多對話強化學習訓練的DAPO算法。
- 有什麼理論基礎支持這個方法?該方法通過引入潛在記憶變量重新定義了自回歸語言建模,將似然分解為 $p(x_1:N) = \Sigma \prod p(c_k|m_{k-1})p(m_k|c_k,m_{k-1})$,其中固定長度記憶保持O(1)每塊複雜度,從而總體上實現了線性O(N)複雜度。

實驗

- 實驗表現如何? MemAgent展示了顯著的性能:在32K文檔和8K上下文窗口上訓練的模型可以外推到3.5M個標記,性能損失小於5%。 MemAgent-14B在512K RULER測試中取得了95%以上的準確率,顯著超越了即使在其理論上下文限制內也失敗的基準模型。
- **該方法的局限或假設是什麼?** 該方法需要RL訓練以學習合適的記憶管理,使用基於規則的驗證器來提供獎勵信號,並主要在問答任務上進行評估。性能依賴於通過RL 學習的記憶更新策略的質量。

創新

• 這篇論文做出了哪些重要或新穎的發現?該論文提出了三大創新:(1)使LLMs能夠在有限上下文窗口內處理任意長的輸入,同時保持線性複雜度;(2)引入多對話DAPO算法,用於獨立上下文的代理工作流訓練;(3)展示了標記空間中的記憶標記允許人類可讀的摘要,可以檢查和編輯,這不同於隱含壓縮方法。

評論 / 評論

- **這篇論文有什麼局限嗎?** 該方法主要在QA任務上評估,因此限於普遍性評估。該 方法需要額外的RL訓練開銷,並依賴基於規則的獎勵設計。記憶容量是固定的,可 能限制了對極其複雜任務的信息保留。
- 這篇論文是否有效地證實了其主張? 是的,該論文提供了跨多個上下文長度(7K到 3.5M標記)的全面實驗驗證,詳細的消融研究顯示了RL的必要性,以及在多樣化 RULER基準任務上的分佈外評估。線性複雜度主張得到了FLOP計算的支持,案例 研究展示了記憶行為的學習。

Comprehensive Analysis

Abstract

摘要

- 這份摘要介紹了 MemAgent, 一種處理機器學習中超長文本文件的新方法。
- 所解決的問題:當前的方法在以線性複雜度處理無限長的文件時,難以在長度外推時維持性能。
- 解決方案:MemAgent 使用基於代理(agent-based)的流程,該方法:
 - 。 分段閱讀文本而非一次性讀取全部
 - ∘ 使用"覆寫策略"更新記憶
 - 。專門針對長文本任務進行端到端訓練
- **技術創新**:作者擴展了 DAPO(直接對齊偏好優化)算法,以實現通過獨立上下文 多對話生成的訓練。
- 性能結果: MemAgent 展現了令人印象深刻的可擴展性:
 - 。在32K上下文上訓練,並在8K上下文上進行測試
 - 。成功外推到3.5M令牌的問答任務,性能下降不到5%
 - 。在512K RULER基準測試中達到超過95%的準確率
- 這項工作在長上下文語言處理中實現了顯著的進步,保持了規模上的效率和性能。

Introduction

Summary

• 這篇介紹提出了 **MemAgent**,一種解決大型語言模型(LLMs)處理長文本上下 文的關鍵挑戰的新方法。

- **問題**:目前的LLMs因上下文窗口有限而在處理長文本上下文時遇到困難。現有解 決方案存在顯著缺陷:
 - 。長度外推方法因O(n²)複雜度而導致性能退化
 - 。稀疏/線性注意力需要從零開始訓練,且存在並行化問題
 - 。 上下文壓縮會破壞標準生成和兼容性
- 提出的解決方案:受到人類認知過程中的選擇性注意和筆記整理的啟發,作者提出 使用強化學習來創建動態更新的固定長度記憶系統。主要特點:
 - 。 分段處理長文本
 - 。維持固定大小的記憶系统並進行選擇性更新
 - 。 推理過程中實現線性時間複雜度
 - 。 在有限上下文窗口內處理任意長度的文本
- 技術創新:該方法引入了多卷積DAPO(基於DAPO算法)來訓練代理工作流程, 在多個獨立上下文中進行,將每個上下文獨立對話視為優化目標。
- **結果**:他們通過強化學習訓練的模型在具有8K上下文窗口時成功處理最多400萬个標記的文檔而不導致性能退化,顯著提高了可擴展性。
- 主要貢獻:
 - 1. 新方法使任意長度輸入的處理具線性複雜度
 - 2. 代理工作流程設計,端到端多卷積DAPO訓練
 - 3. 實證展示了在極長文件中進行外推,性能損失極小

'Hence, a successful LLM with strong long-context capabilities requires the trinity of: 1) processing infinite length of text; 2) scaling without performance drop; and 3) efficient decoding with linear complexity.'

因此,一個成功的長程文脈能力強大的大型語言模型需要以下三個要素:1) 處理無限長的文本;2) 在性能不下降的情況下進行擴展;以及3) 具有線性複雜度的高效解碼。

'Following this anthropocentric intuition, we propose a novel use of Reinforcement Learning (RL) to equip LLMs with a dynamically updated fixed-length 'memory', as illustrated in Figure 2. During inference, the LLM processes the input text segment-by-segment. As it reads each segment, the model proactively and selectively updates the memory, which then contributes to the generation of the final output after all relevant messages are aggregated and synergized in the memory.'

按照這種以人為中心的直覺,我們提出了一種新穎的強化學習(RL)方法來裝備大型語言模型,使其具有動態更新的固定長度"記憶",如圖2所示。在推理過程中,LLM分段處理輸入文本。在讀取每一段時,模型主動且有選擇性地更新記憶,然後在所有相關信息在記憶中聚合和協同處理後,生成最終輸出。

'In our experiments, an RL-trained model with a modest 8K context window (with a 1024-token memory and a 5000-token document chunk) trained on 32K documents exhibits consistently superb capabilities for Question Answering (QA) tasks on documents of up to 4 million tokens, without performance drop and with linear computation cost.'

在我們的實驗中,一個經過RL訓練的模型具有適中的8K上下文窗口(帶有1024標記的記憶和5000標記的文檔塊)並在32K文檔上訓練,展示了對多達400萬標記的文檔進行問答(OA)任務的一致卓越能力,且沒有性能下降,計算成本為線性。

Related Work

摘要

本相關工作部分涵蓋了兩個主要研究領域:

長上下文的大型語言模型 (Long Context LLMs): - 外推方法 (NTK, PI, YaRN, DCA) 修改基於RoPE模型的位置信息嵌入來處理更長的序列。 - 替代架構 如線性注意力、RNN和狀態空間模型實現了O(N)的複雜度以處理非常長的上下文。 - 稀疏注意力 使用滑動窗口等模式大幅減少計算開銷,最近也探索了動態稀疏注意力。 - 記憶機制 傳統上依賴於外部記憶模塊或數據庫,但本文提出使用強化學習來實現內部記憶能力。

大型語言模型的強化學習 (Reinforcement Learning for LLMs): - 獎勵信號 已從人類偏好進化到基於規則的反饋以改進推理能力。 - 主要算法 包括PPO、演員-評論框架、以及GRPO並具有各種增強以提高訓練穩定性。 - 最近發展 在多輪代理訓練(Search-R1, Agent-R1, RAGEN, GiGPO)側重於使用工具的代理,但僅限於交替觀察-生成模式。

作者將其工作定位為通過使用強化學習來實現內部記憶,而非依賴外部記憶,並可能超越 現有多輪代理訓練方法的限制。

"Extrapolation methods for RoPE-based LLMs [11], such as NTK [12], PI [13], YaRN [14] and DCA [15], modify the base frequency, position index and other components of positional embeddings, enabling the model to capture long-range semantic dependencies."

基於RoPE的LLMs的推算方法,例如NTK、PI、YaRN和DCA,修改了基頻、位置索引和位置嵌入的其他組成部分,使模型能夠捕捉長距離語義依賴。

"In contrast, we use reinforcement learning (RL) to enable LLM itself the ability to memorize."

相比之下,我們使用強化學習(RL)使LLM本身具備記憶能力。

"However, these approaches are limited to optimizing interleaved trajectories of observation and generation, making them difficult to apply to more general agent workflows."

然而,這些方法僅限於優化觀察和生成交織的軌跡,使它們難以應用於更一般的代理工作流程。

The Proposed MemAgent

- 這一部分介紹了一種新穎的方法 **MemAgent**,其目的是讓大型語言模型能夠有效 處理任意長度的文件。
- 其關鍵創新在於將長文件視為**塊流**(streams of chunks)而不是整體塊(monolithic blocks)。

核心機制: -模型逐塊處理文件,維持一個**固定長度的記憶**,總結重要信息。 - 在閱讀每一個新的塊後,模型會用更新版本**覆蓋**之前的記憶。 - 記憶由上下文窗口內的普通標記組成,保留了基礎大型語言模型(LLM)的牛成過程。

強化學習框架: - 記憶的更新被設計為使用多對話 DAPO 演算法的強化學習(RL)問題。 - 該代理人因保留有用信息和丟棄無關內容而獲得獎勵。 - 這使得在保留關鍵事實的同時實現積極壓縮。

雙模塊架構: 1. **上下文處理模塊**:迭代處理塊並更新記憶。 2. **答案生成模塊**:僅使用最終記憶和問題陳述生成答案。

主要優勢: 1. **無限長度**:通過流式處理可以處理數百萬個標記。 2. **無性能下降**:經過 RL 優化的記憶保留保持質量。 3. **線性計算成本**:由於窗口大小固定,複雜度為 O(N)。

• 這種方法有效地將任何中等上下文的大型語言模型轉變為高效的長上下文推理器, 且無需進行架構上的修改。

"MemAgent views an arbitrarily long document not as a monolithic block but as a controlled stream of evidence. At every step, the model sees exactly two things: the next chunk of text and a compact, fixed-length memory that summarizes everything deemed important so far."

MemAgent 將任意長度的文檔視為一個受控的證據流,而不是一個整體的區塊。在每一步,模型準確看到兩件事:下一段文本以及一個緊湊的、固定長度的記憶,該記憶總結了至今被認為重要的所有內容。

"We formulate the overwrite decision as a reinforcement learning problem: the agent is rewarded for retaining information that will later prove useful and for discarding distractors that would waste precious tokens."

我們將覆蓋決策制定為一個強化學習問題:代理為保留日後證明有用的信息而獲得獎勵, 並丟棄那些會浪費寶貴標記的干擾項目。

"MemAgent therefore enjoys three benefits from this design: (1) Unlimited length: the document can be millions of tokens because it is processed as a stream; (2) No performance cliff: RL encourages the memory to retain exactly the information needed, yielding near-lossless extrapolation; (3) Linear cost: a constant window size implies decoding time and memory consumption grow linearly with input length (O(N))"

因此,MemAgent 從這種設計中獲得三個好處:(1) 無限長度:該文檔可以是數百萬個標記,因為它是以流的形式處理的;(2) 無性能崖:強化學習促使記憶精確保留所需的信息,從而實現近乎無損的外推;(3) 線性成本:恆定的窗口大小意味著解碼時間和記憶消耗隨輸入長度以線性方式增長 (O(N))。

Experiments

摘要

- 本實驗部分描述了使用多跳問題回答任務來評估長文本語言模型的方法。
- 研究人員使用了兩個主要數據集:
 - RULER數據集:一個具有可控文本長度的合成基準,採用"大海撈針"的範式在大量干擾內容(大海)中嵌入正確答案段落(針)以測試模型在長文件中定位相關信息的能力。
 - HotpotQA數據集處理:作者創建了合成的訓練數據:
 - 處理了80,000個HotpotQA樣本,過濾掉約50%代表常識的樣本。
 - 選擇了32,768個訓練樣本和128個驗證樣本。
 - 創建了具有不同文本長度的測試集(包含50至6400篇文章,對應7K至3.5M個標記)。
- 實驗設計側重於比較模型在不同文本長度下的性能,以評估其對長文本的外推能力,並使用之前的長文本方法作為基準。
- 這種設置允許系統地調查隨著輸入長度增加模型性能的下降情況,將合成評估與真實長文本應用相連接。

"We select prior long-context methods as baselines to evaluate the long-text extrapolation capabilities of the models by comparing performance changes as the length of the test set data increases."

我們選擇先前的長上下文方法作為基準,通過比較測試集數據增加時性能變化來評估模型的長文本推斷能力。

"The Question Answering subset of RULER adapts existing short-context QA datasets for long-context evaluation by embedding golden paragraphs (containing correct answers) within extensive distractor content sampled from the same dataset. This configuration represents a real-world adaptation of the Needle in a Haystack (NIAH) paradigm, where questions serve as queries, golden paragraphs function as needles, and distractor paragraphs constitute the haystack."

RULER 的問答子集通過將包含正確答案的黃金段落嵌入來自同一數據集的大量干擾內容中,將現有的短上下文問答數據集調整為長上下文評估。這種配置代表了真實世界中的「大海撈針」範例,其中問題作為查詢,黃金段落作為針,而干擾段落則構成稻草堆。

"To further investigate how model performance varies with length, we synthesized test sets with different context lengths using the same questions. The number of articles ranges from 50, 100, up to 6400, corresponding to context lengths of approximately 7K, 14K, and up to 3.5M tokens, respectively."

為進一步研究模型性能如何隨長度變化,我們使用相同的問題合成了具有不同上下文長度的測試集。文章數量從50、100到6400不等,對應的上下文長度分別約為7K、14K和最高達3.5M個標記。

Main Results

這部分展示了在不同上下文長度(7K到896K tokens)下,將所提出的MemAgent模型與基線模型進行比較的實驗結果。主要發現如下:

MemAgent表現:-展現了出色的長度推斷能力,即使在超長上下文(1.75M和3.5M tokens)下,性能也能維持穩定-隨著上下文長度的增加,性能僅有微小的衰退-驗證了將記憶機制與強化學習結合對於超長上下文的有效性

基線模型限制: - DS-Distill-Qwen系列:隨著上下文長度增加,性能迅速下降 - QwenLong-L1:在其60K訓練長度內表現合理,但在此範圍之外的性能顯著下降 - Qwen2.5-Instruct-1M系列:在112K tokens下保持合格的性能,但在896K tokens時完全失效(準確度為零),遠低於其理論的1M token容量

結果表明,雖然許多模型聲稱具有延長上下文的能力,但實踐中卻難以高效利用信息,而 MemAgent 的架構能夠成功處理超長上下文,且沒有顯著的性能損失。

"MemAgent exhibits remarkable length extrapolation capabilities with only marginal performance decay as the input context length increases."

MemAgent 顯示出顯著的長度推斷能力,隨著輸入上下文長度的增加,其性能衰退僅為 微小。

"This demonstrates the effectiveness of the proposed memory mechanism combined with reinforcement learning for handling ultralong context scenarios."

這證明了所提出的記憶機制結合強化學習在處理超長上下文情境中的效果。

"The Qwen2.5-Instruct-1M series models maintains an acceptable performance within 112K tokens. However, their performances deteriorate to zero at 896K tokens, well before reaching their theoretical 1M token capacity."

Qwen2.5-Instruct-1M 系列模型在 112K tokens 內保持了可接受的性能。然而,在896K tokens 時,其性能降至零,遠低於理論上的 1M tokens 容量。

Conclusion

這篇論文介紹了 **MemAgent**,這是一種通過潛在變量記憶機制在大型語言模型(LLMs)中處理長上下文任務的新方法。

核心創新:

- 將連續的自回歸生成分解為從記憶中生成上下文的連續步驟
- 在處理無限長的輸入文本時實現 O(N) 的計算複雜度
- 使用現有的 Dense-Attention Transformer 而不進行架構更改

技術實施:

- 使用強化學習(RL)訓練記憶組件
- 使得選擇性保留信息(相關細節)同時過濾掉無關信息
- 以 5000 個標記為一個步驟處理輸入,並有 1024 個標記的記憶緩衝區

性能結果:

- 在長度為 32K 的數據上訓練,具有 8K 的上下文窗口
- 成功推廣到 3.5M 個標記,性能下降極小
- 在域內和域外的長上下文任務中均達到最先進的性能
- 超越現有的長上下文模型、推理模型和其他基線
- 消融研究證實了記憶機制本身及額外的強化學習訓練組件的有效性。

References

No references found.