Proof

Zark Zijian Wang

January 05, 2024

Optimal discounting

$$\max_{\mathcal{W}} \quad \sum_{t=0}^{T} w_t u(s_t) - C(\mathcal{W})$$
s.t.
$$\sum_{t=0}^{T} w_t = 1$$

$$w_t > 0 \text{ for all } t \in \{0, 1, ..., T\}$$

separable information cost function

$$C(\mathcal{W}) = \sum_{t=0}^{T} f_t(w_t)$$

Axiom 1 (sequential outcome betweenness) For any $s_{0\to T}$, there exists a $\alpha \in (0,1)$ such that $s_{0\to T} \sim \alpha \cdot s_{0\to T-1} + (1-\alpha) \cdot s_T$.

Axiom 2 (sequential bracket independence) For any $s_{0\to T}$, if there exists non-negative real numbers α_1 , α_2 , β_0 , β_1 , β_2 , such that $s_{0\to T} \sim \alpha_1 \cdot s_{0\to T-1} + \alpha_2 \cdot s_T$, and $s_{0\to T} \sim \beta_0 \cdot s_{0\to T-2} + \beta_1 \cdot s_{T-1} + \beta_2 \cdot s_T$, then we must have $\alpha_2 = \beta_2$.

Axiom 3 (state independence) $s_t \succ s_t'$ implies that for any $\alpha \in (0,1)$ and reward c, $\alpha \cdot s_t + (1-\alpha) \cdot c \succ \alpha \cdot s_t' + (1-\alpha) \cdot c$.

Axiom 4 (aggregate invariance to constant sequences) Consider two constant sequences, denoted as s_c and s'_c , where each element in s_c equals c and each element in s'_c equals c'. For

any $s_{0\to T}$, $s'_{0\to T}$ and $\alpha \in (0,1)$, if $\alpha \cdot s_t + (1-\alpha) \cdot c \sim \alpha \cdot s'_t + (1-\alpha) \cdot c'$ holds for every t, then $\alpha \cdot s_{0\to T} + (1-\alpha) \cdot s_c \sim \alpha \cdot s'_{0\to T} + (1-\alpha) \cdot s'_c$.

Proof.

Lemma 1. If Axiom 1 holds, for any $s_{0\to T}$, there exist non-negative real numbers w_0, w_1, \ldots, w_T such that $s_{0\to T} \sim w_0 \cdot s_0 + w_1 \cdot s_1 + \ldots + w_T \cdot s_T$ where $\sum_{t=0}^T w_t = 1$.

When T = 1, the lemma is a direct application of Axiom 1.

When $T \geq 2$, according to Axiom 1, for any $2 \leq t \leq T$, there should exist a real number $\alpha_t \in (0,1)$ such that $s_{0\to t} \sim \alpha_t \cdot s_{0\to t-1} + (1-\alpha_t) \cdot s_t$. For sequence $s_{0\to T}$, we can recursively apply such preference relations as follows:

$$s_{0\to T} \sim \alpha_{T-1} \cdot s_{0\to T-1} + (1 - \alpha_{T-1}) \cdot s_{T}$$

$$\sim \alpha_{T-1}\alpha_{T-2} \cdot s_{0\to T-2} + \alpha_{T-1}(1 - \alpha_{T-2}) \cdot s_{T-1} + (1 - \alpha_{T-1}) \cdot s_{T}$$

$$\sim \dots$$

$$\sim w_{0} \cdot s_{0} + w_{1} \cdot s_{1} + \dots + w_{T} \cdot s_{T}$$

where $w_0 = \prod_{t=0}^{T-1} \alpha_t$, $w_T = 1 - \alpha_{T-1}$, and for 0 < t < T, $w_t = (1 - \alpha_{t-1}) \prod_{\tau=t}^{T-1} \alpha_{\tau}$. It is easy to show the sum of all these weights, denoted by w_t $(0 \le t \le T)$, equals 1.

Therefore, if Axiom 1 holds, for any sequence $s_{0\to T}$, we can always find a convex combination of all elements in it, such that the decision maker is indifferent between the sequence and the convex combination of its elements. By Lemma 2, I show this convex combination is unique.

Lemma 2. If Axiom 1-3 holds, suppose $s_{0\to T} \sim \sum_{t=0}^T w_t \cdot s_t$ and $s_{0\to T+1} \sim \sum_{t=0}^{T-1} w_t' \cdot s_t$, where $w_t > 0$, $w_t' > 0$, $\sum_{t=0}^T w_t = 1$, $\sum_{t=0}^{T+1} w_t' = 1$, we must have $\frac{w_0'}{w_0} = \frac{w_1'}{w_1} = \dots = \frac{w_T'}{w_T}$.

When T=1, according to Axiom 1, there exist $\alpha, \zeta \in (0,1)$ such that $s_{0\to 1} \sim \alpha \cdot s_0 + (1-\alpha) \cdot s_1$, $s_{0\to 2} \sim \zeta \cdot s_{0\to 1} + (1-\zeta) \cdot s_2$. Meanwhile, we set $s_{0\to 2} \sim w_0' \cdot s_0 + w_1' \cdot s_1 + (1-w_0' - w_1') \cdot s_2$, where $w_0', w_1' > 0$.

According to Axiom 2, we must have $1 - \zeta = 1 - w'_0 - w'_1$. So, $w'_1 = \zeta - w'_0$.

According to Axiom 3, it can be derived that $s_{0\to 1} \sim \frac{w_0'}{\zeta} \cdot s_0 + (1 - \frac{w_0'}{\zeta}) \cdot s_1$.

Given that $s_{0\to 1} \sim \alpha \cdot s_0 + (1-\alpha) \cdot s_1$, suppose $\alpha > \frac{w_0'}{\zeta}$, we can rewrite this preference relation as $s_{0\to 1} \sim (\alpha - \frac{w_0'}{\zeta}) \cdot s_0 + (1-\alpha) \cdot s_1 + \frac{w_0'}{\zeta} \cdot s_0$.

If $s_0 \succ s_1$, by applying Axiom 3, we can derive that $(\alpha - \frac{w_0'}{\zeta}) \cdot s_0 + (1 - \alpha) \cdot s_1 + \frac{w_0'}{\zeta} \cdot s_0 \succ (\alpha - \frac{w_0'}{\zeta}) \cdot s_1 + (1 - \alpha) \cdot s_1 + \frac{w_0'}{\zeta} \cdot s_0$, where the right-hand side, according to the above preference relation, is indifferent from $s_{0 \to 1}$. Thus, we get a contradiction.

Similarly, suppose $\alpha < \frac{w_0'}{\zeta}$, we will also get a contradiction.

Thus, $\alpha = \frac{w'_0}{\zeta}$, which indicates $\frac{w'_0}{\alpha} = \frac{w'_1}{1-\alpha} = \zeta$.

We can decompose $s_{0\to T+1}$ by

$$s_{0 \to T+1} \sim (1 - \alpha) \cdot s_{0 \to T} + \alpha \cdot s_{T+1}$$
$$\sim (1 - \alpha)\zeta \cdot s_{0 \to T-1} + (1 - \alpha)(1 - \zeta) \cdot s_T + \alpha \cdot s_{T+1}$$

Suppose there is another way to decompose $s_{0\to T+1}$ using a combination of $s_{0\to T-1}$, s_T , and s_{T+1} . We can denote this alternative decomposition as

$$s_{0 \to T+1} \sim \beta_0 \cdot s_{0 \to T-1} + \beta_1 \cdot s_T + \beta_2 \cdot s_{T+1}$$

According to Axiom 2, we must have $\alpha = \beta_2$.

Corollary 1.

Lemma 3. If Axiom 1 and Axiom 3-4 holds, then for any $s_{0\to T}$ and $s'_{0\to T}$, where $u(s_t) = u(s'_t) + \Delta u$ holds for any t and Δu is a constant real number, we have $w_t = w'_t$.

Suppose
$$\alpha \cdot s_t + (1 - \alpha) \cdot c \sim \alpha \cdot s_t' + (1 - \alpha) \cdot c'$$

From Axiom 3,
$$\alpha \cdot u(s_t) + (1 - \alpha) \cdot u(c) = \alpha \cdot u(s_t') + (1 - \alpha) \cdot u(c')$$

This yields
$$u(s_t) - u(s_t') = \Delta u$$
, where $\Delta u = \frac{1-\alpha}{\alpha}(u(c') - u(c))$.

By Lemma 1, if Axiom 1 holds, we have $V(s_c) = u(c)$. The same applies to $V(s'_c)$.

By Axiom 4, we have $V(s_{0\to T}) = V(s'_{0\to T}) + \Delta u$.

This yields
$$\sum_{t=0}^{T} w_t u(s_t) - w_t' u(s_t') = \Delta u$$

Replace
$$\Delta u$$
, we have $\sum_{t=0}^{T} w_t u(s_t) - w_t' u(s_t') = \sum_{t=0}^{T} w_t (u(s_t) - u(s_t'))$

So,
$$\sum_{t=0}^{T} (w_t - w_t') u(s_t') = 0$$

Given instantaneous utility can be any non-negative real number, we must have $w_t = w'_t$.

The FOC condition of the constrained optimal discounting problem is:

$$f'_t(w_t) = u(x_t) + \theta, \ \forall t \in \{0, 1, ..., T\}$$