Clustering Analysis

Lesson 7 – Section 4

PROFESSIONAL & CONTINUING EDUCATION

Some Definitions

- Cluster: a group of observations that are similar with each other
- Clustering Analysis: Find groups of objects (observations), such that observations within each cluster are similar with each other, and observations in different clusters are dissimilar with each other
 - -Intra-cluster **similarity** is higher than inter-cluster **similarity**
- Unsupervised Machine Learning: there is no labels telling you which observations should be in the same cluster. You need to determine the clustering pattern based on the features that describe the objects

A Toy Example

PROFESSIONAL & CONTINUING EDUCATION

Unsupervised Machine Learning

• Might be useful for supervised machine learning

X₁
PROFESSIONAL & CONTINUING EDUCATION

Clustering Analysis for Supervised Machine Learning (Classification) Tasks

- Do not include the label column in your clustering analysis
 - -Since the observations are always clustered at the dimension of the label column
 - -You will always see clustering pattern in this dimension

PROFESSIONAL & CONTINUING EDUCATION

Can Be Used to Assess the Difficulty of your Classification Task

A dual assessment is the relevance of the data (feature) set with your classification task

PROFESSIONAL & CONTINUING EDUCATION

How do we define "similarity"?

Goal: Group "similar" data

Similarity measure more important than clustering algorithm

Depends on what to emphasize in the data:

- Data reduction
- "natural clusters"
- "useful" clusters
- Outlier detection
- Et cetera

PROFESSIONAL & CONTINUING EDUCATION

Similarity Measures

Euclidean Distance

JING EDUCATION

Problem of Euclidean Distance as Similarity Measurement

• It assumes that clusters are spheres

Mahalanobis Distance

$$D(\mathbf{x}_i, \mathbf{c}_k) = \{(\mathbf{x}_i - \mathbf{c}_k)' \mathbf{S}^{-1}_k (\mathbf{x}_i - \mathbf{c}_k)\}^{1/2}$$

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Other Similarity Measures

Manhattan Distance

$$d_{\text{Manhattan}}(\mathbf{X},\mathbf{Y}) = \| \mathbf{X} - \mathbf{Y} \|_{1} = \| x_{1} - y_{1} \| + \| x_{2} - y_{2} \| + \cdots$$

Jaccard Distance

$$d_{\text{Jaccard}}(X, Y) = 1 - \frac{|X \cap Y|}{|X \cup Y|}$$

PROFESSIONAL & CONTINUING EDUCATION

Outliers

Outliers are objects that do not belong to any cluster or form clusters of very small cardinality

In some applications we are interested in discovering outliers, not clusters (outlier analysis)

Notion of a Cluster can be Ambiguous

Types of Clusterings

Partitional Clustering

 A division of data objects into non-overlapping subsets (clusters) such that each data object is exactly one subset

Hierarchical Clustering

 A set of nested clusters organized as a hierarchical tree

PROFESSIONAL & CONTINUING EDUCATION

Partitional Clustering

Hierarchical Clustering Tree, Dendogram

The hierarchy of clustering is given as a clustering tree or dendrogram

- leaves of the tree represent the individual objects
- internal nodes of the tree represent the clusters

Two main types of hierarchical clustering

- agglomerative (bottom-up)
- place each object in its own cluster (a singleton)
- merge in each step the two most similar clusters until there is only one cluster left or the termination condition is satisfied
- divisive (top-down)
 - start with one big cluster containing all the objects
- divide the most distinctive cluster into smaller clusters and proceed until there are n clusters or the termination condition is satisfied

Example of Agglomerative Hierarchical Clustering

How to Determine Which Two Clusters to Merge in Agglomerative Hierarchical Clustering Analysis?

- Each cluster (before merge) might have multiple objects
- We need a measure to describe the similarity between two clusters

- Single linkage tends to create bigger clusters than complete linkage.
- Centroid method is the most popular linkage in use

Summary

- >Basic concepts in clustering analysis
- >Similarity measurements
- >Hierarchical clustering analysis

