2.6 Clinical Trials: Current + NextGen

Alihan Huyuk

ah2075@cam.ac.uk

Clinical trials

- Difficult, expensive, and ripe for disruption
- Average PoS per Phase II/III trial: 50-60%
- 1-2 years for trial
- Up to 2,000 trials per year
 - Half for oncology
- Opportunity
 - Despite flaws, RCTs remained dominant approach for decades
 - o Innovation:
 - Improve patient benefit
 - Reduce required patient numbers
 - Replace controls and preventing dropouts
 - Reduce cost per patient
 - Improved recruitment, monitoring and operations
 - Improve PoS
 - Better recruitment, prediction, trial design, and analytics
 - Cost and time savings by running better trials
- Clinical trial phases

	Exploratory		Confirmatory	Extrapolatory
	Phase I	Phase 2	Phase III	Phase IV
Goal	Safety	Dose finding	Efficacy	Retargeting
# of patients	10 -100	~100	~1000	>1000
Regulations	Less regulated, company's own risk		Highly regulated	Regulated
Input data	 Pre-clinical (Animal models) Related clinical trials Baseline data (current practice) PKPD models 		Results from Phase I/II Interim analysis	Real world usage (incl. Off- label data & other drugs)

- Steps taken for each phase of the study
 - Planning
 - Spec out the trial protocol
 - Conduct
 - Logistical challenges

- Analysis
 - Produce trial findings
- Clinical Use (for Phase IV)
 - Usage of the approved treatment
- Challenges and potential solutions felt through the clinical development journey
 - Step 1: Planning -> what data?
 - Causal ML
 - Determining endpoints
 - Transfer Learning
 - Incorporating observational data
 - Incorporating pre-clinical data
 - Incorporating cross-trial results
 - Optimal Design
 - Optimal design of trials
 - Synthetic Data
 - · Augmenting preclinical/ cross-trial data
 - Step 2: Conduct
 - Reinforcement learning/ Multi-armed Bandits
 - Determining dosage
 - Discovering drug combinations
 - Identifying "good" subpopulations
 - Recruitment "right" patients
 - Inverse Reinforcement Learning
 - Retaining recruited patients
 - Synthetic data
 - Streamlining data sharing
 - internal/ external
 - Contractors
 - Step 3: Analysis
 - Treatment effect estimation
 - Predicting personalized response
 - Subpopulation analysis
 - Time series analysis
 - Time to event analysis
 - Competing risk analysis
 - Few-Shot learning
 - Combining models (e.g. PKPD)
 - Synthetic data
 - Anonymising results for reporting
 - Step 4: Clinical use
 - Treatment effect estimation
 - Refining guidelines (e.g. timing, dosage)
 - Indication expansion
 - Time series analysis

- Effect and impact on comorbidity
- Modeling disease progression
- Few-shot learning
 - Rapid deployment
- Synthetic Data
 - Facilitating RWD access and anlayiss
- Machine learning can help in two ways:
 - SyncTwin
 - https://proceedings.neurips.cc/paper/2021/hash/19485224d128528da160 2ca47383f078-Abstract.html

Adaptive Recruitment

• Identifying good subpopulations fast with confidence

AdaGGI:

https://arxiv.org/pdf/2208.05844.pdf

Individualized treatment effect inference:

https://www.vanderschaar-lab.com/individualized-treatment-effect-inference/

Next generation clinical trial:

https://www.vanderschaar-lab.com/adaptive-clinical-trials/