BC Cumulative 3

- 1. $x(t) = \cos t$ and $y(t) = \sin t$ are the parametric equations for
 - a. A circle
 - b. A square
 - c. A parabola
 - d. A hyperbola
- 2. If x(t) and y(t) are the parametric equations of a curve, the curve will have a horizontal tangent line at t = c if
 - a. y'(c) = 0 and $x'(c) \neq 0$
 - b. $x'(c) = 0 \text{ and } y'(c) \neq 0$
 - c. x(c) = 0 and y(c) = 0
 - d. x(c) = 0 and x'(c) = 0
- 3. To find the slope of the tangent line to a parametric curve at the point where t = c you should
 - a. Evaluate y'(c)/x'(c)
 - b. Evaluate x'(c)/y'(c)
 - c. Evaluate y'(c)
 - d. Evaluate x'(c)
- 4. To determine concavity of a parametric curve at the point where t=c
 - a. Evaluate y''(c)/x''(c)
 - b. Evaluate x''(c)/y''(c)
 - c. Evaluate $\frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$ d. Evaluate $\frac{d}{dt} \left(\frac{dy}{dt}\right)$
- 5. If a parametric curve has a point where x'(a) = 0 and y'(a) = 0 then
 - a. There is a horizontal tangent line at t = a
 - b. There is a vertical tangent line at t = a
 - c. There is no tangent lint at t = a
 - d. The curve must cross itself
- 6. The distance traveled from t = a to t = b of a particle with position vector $\langle x(t), y(t) \rangle$ is given by

a.
$$\int_{a}^{b} \sqrt{\frac{dx^{2}}{dt}(t) + \frac{dy}{dt}^{2}(t)} dt$$

b.
$$\int_{a}^{b} \sqrt{x^{2}(t) + y^{2}(t)} dt$$

b.
$$\int_{a}^{b} \sqrt{x^{2}(t) + y^{2}(t)} dt$$

c.
$$\int_{a}^{b} |x'2(t) + y'(t)| dt$$

- d. $\sqrt{(x(t)-x(0))^2+(y(t)-y(0))^2}$
- 7. The displacement of a particle moving in the plane over an interval of time
 - a. Can be positive or negative
 - b. Is the same as the distance traveled
 - c. Is never less than the distance traveled

- d. Depends on the shape of the path taken
- 8. If a particle in the first quadrant is accelerating towards the x axis then

 - a. $\frac{dy}{dt} < 0$ b. $\frac{dx}{dt} < 0$ c. $\frac{d^2x}{dt^2} > 0$ d. $\frac{d^2y}{dt^2} > 0$
- 9. Which of the following is not a polar-rectangular transformation equation? a. $\tan\theta=\frac{x}{y}$ b. $x^2+y^2=r^2$

 - c. $x = r \cos \theta$
 - d. $y = r \sin \theta$
- 10. If n is a positive integer, the graph of $r = \sin(n\theta)$ always
 - a. Has one intercept at (0,0)
 - b. Is a rose with n petals
 - c. Is a rose with 2n petals
 - d. Completes exactly one period of the graph over $0 \le \theta < 2\pi$
- 11. The graph of $r = a + b\sin(\theta)$
 - a. Has an inner loop whenever a < b
 - b. Has an inner loop whenever a > b
 - c. Never intersects the x-axis
 - d. Never intersects the y-axis
- 12. The area enclosed by a polar curve between $\theta = \alpha$ and $\theta = \beta$ is always
 - a. Dependent on if the curve intersects itself in the interval $\alpha < \theta < \beta$

 - b. $\int_{a}^{b} \frac{1}{2}r^{2}(\theta) d\theta$ c. $\int_{a}^{b} r^{2}(\theta) d\theta$ d. $\int_{a}^{b} r(\theta) d\theta$
- 13. If $\frac{dr}{d\theta} > 0$ at a point where $\theta = \alpha$ then a. The graph's radius is increasing at $\theta = \alpha$

 - b. The graph's radius is decrasing at $\theta = \alpha$
 - c. The tangent line to the graph $\theta = \alpha$ has a positive slope
 - d. The tangent line to the graph at $\theta = \alpha$ has a negative slope
- 14. A logistic population graph y = f(t) with a max population of L
 - a. Has an asymptote at y = L
 - b. Has a decreasing growth rate when t > 0
 - c. Has an increasing growth rate when t > 0
 - d. Can oscillate for certain initial conditions
- 15. The maximum growth rate for a logistic population with carrying capacity L
 - a. Occurs when the population is L/2
 - b. Depends on the initial conditions

- c. Always occurs at t = 0
- d. Can happen more than once during a given solution