# Group Project Report

## A smart flight check-in kiosk ——developing the software using Agile Methods

by

### Designed by group 106

Student Name Student Number
First Surname 1234567

Instructor: I. Surname
Teaching Assistant: I. Surname

Project Duration: Month, Year - Month, Year

Faculty: Faculty of Aerospace Engineering, Delft

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA

under CC BY-NC 2.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld



### **Preface**

A preface...

Designed by group 106

Delft, May 2022

### Summary

A summary...

## 目录

| Pr | Preface                                     |   |  |  |  |  |
|----|---------------------------------------------|---|--|--|--|--|
| Sı | Summary                                     |   |  |  |  |  |
| No | Nomenclature                                |   |  |  |  |  |
| 1  | Agile Project Management                    | 1 |  |  |  |  |
|    | 1.1 First phase: Plan and Design            | 1 |  |  |  |  |
|    | 1.1.1 Project planning and scheduling       | 1 |  |  |  |  |
|    | 1.1.2                                       | 1 |  |  |  |  |
| 2  | About the Template                          | 2 |  |  |  |  |
| 3  | Analysis and Design                         | 3 |  |  |  |  |
|    | 3.1 Project Architecture                    | 3 |  |  |  |  |
|    | 3.2 Design Principles                       | 3 |  |  |  |  |
|    | 3.2.1 Single Responsibility Principle (SRP) | 3 |  |  |  |  |
| 4  | Conclusion                                  | 4 |  |  |  |  |
| Α  | Source Code Example                         | 5 |  |  |  |  |
| R  | Task Division Example                       | 6 |  |  |  |  |

### Nomenclature

If a nomenclature is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

#### **Abbreviations**

| Abbreviation | Definition                        |
|--------------|-----------------------------------|
| ISA          | International Standard Atmosphere |
|              |                                   |

### **Symbols**

| Symbol | Definition | Unit    |
|--------|------------|---------|
| V      | Velocity   | [m/s]   |
|        |            |         |
| ρ      | Density    | [kg/m³] |
|        |            |         |

### Agile Project Management

During the development of our smart flight check-in kiosk, we adopted agile project management and use "Scrum Approach" to manage the iterative development. The whole Scrum process is roughly divided into the following three phases:

- 1. **Plan and Design:** In this part, we selected our Scrum Master, wrote user story, product backlog, and completed prototype design.
- 2. **Development phase:** In this part, we followed a series of Sprint Cycles, where each cycle developed a version of working software during 2 weeks.
- 3. **Product release:** In this part, we checked our project against the requirements and wrapped up our project by writing reports, user manuals, etc.



图 1.1: Sprint Cycle

#### 1.1. First phase: Plan and Design

#### 1.1.1. Project planning and scheduling

#### 1.1.2.

### About the Template

This template aims to simplify and improve the (Xe)LaTeX report template by Delft University of Technology. Some of the main features:

- Simplicity First: A class file that has been reduced by nearly 70% to simplify customization;
- Effortless: A careful selection of common packages to get started immediately;
- Complete: Ready-to-go when it comes to the document and file structure.







图 2.1: Preview of the template

#### License

 $\bigcirc$ 

### Analysis and Design

- 3.1. Project Architecture
- 3.2. Design Principles
- 3.2.1. Single Responsibility Principle (SRP)

4

### Conclusion

A conclusion...



### Source Code Example

```
2 ISA Calculator: import the function, specify the height and it will return a
3 list in the following format: [Temperature, Density, Pressure, Speed of Sound].
4 Note that there is no check to see if the maximum altitude is reached.
7 import math
8 g0 = 9.80665
9 R = 287.0
10 layer1 = [0, 288.15, 101325.0]
11 alt = [0,11000,20000,32000,47000,51000,71000,86000]
12 a = [-.0065,0,.0010,.0028,0,-.0028,-.0020]
14 def atmosphere(h):
      for i in range(0,len(alt)-1):
15
          if h >= alt[i]:
16
              layer0 = layer1[:]
17
18
              layer1[0] = min(h,alt[i+1])
              if a[i] != 0:
                  layer1[1] = layer0[1] + a[i]*(layer1[0]-layer0[0])
                  layer1[2] = layer0[2] * (layer1[1]/layer0[1])**(-g0/(a[i]*R))
21
22
                  layer1[2] = layer0[2]*math.exp((-g0/(R*layer1[1]))*(layer1[0]-layer0[0]))
23
      return [layer1[1],layer1[2]/(R*layer1[1]),layer1[2],math.sqrt(1.4*R*layer1[1])]
```



### Task Division Example

If a task division is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

表 **B.1**: Distribution of the workload

|           | Task                       | Student Name(s) |
|-----------|----------------------------|-----------------|
|           | Summary                    |                 |
| Chapter 1 | Introduction               |                 |
| Chapter 2 |                            |                 |
| Chapter 3 |                            |                 |
| Chapter * |                            |                 |
| Chapter * | Conclusion                 |                 |
|           | Editors                    |                 |
|           | CAD and Figures            |                 |
|           | Document Design and Layout |                 |