通讯规约

共7页

项目名称: ETJ-N3 测温接收模块

项目编号: YD11014

编制:	何运村
审核:	
审定:	
会签:	
批准:	

文档修改记录

日期	版本	修改内容	修改人	批准人
2011. 05. 16	V1. 00	初始版本	何运村	
2011. 07. 09	V1. 01	增加相对湿度	何运村	
2011. 08. 15	V1. 02	修订	何运村	
2013. 09. 09	V1. 03	增加小数点部分	何运村	

目 录

1	前吉	. 2
2.	数据传送	. 3
	2. 1. 传送方式	. 3
	2. 2. 报文类型 ·····	. 3
	2. 3. 报文格式	. 3
	2. 4. 校验码·····	. 4
	寄存器分配	
4.	寄存器格式	. 5
	4. 1 寄存器 0000H 配置无线参数 ····································	
	4. 2 寄存器 0001H 配置 RS485 参数 ·······	. 5
	4. 3 寄存器 0003H-00DAH	. 5
5.	参数设置方法······	. 6
	5. 1 获取装置参数信息	. 6
	5. 2 设置装置参数信息	. 6
	5. 3. 设置工具	. 6

ETJ-N3 测温接收模块 Modbus-Rtu 通讯规约

1. 前言

本通讯规约为后台软件与 ETJ-N3 测温接收模块之间的通讯协议,在通讯接口,数据定义,交换方式等方面作出了规定。文中称后台软件发给 ETJ-N3 测温接收模块的报文为下行报文, ETJ-N3 测温接收模块发给后台软件的报文为上行报文。如无特殊说明,文中"主机"一律指后台软件,"装置"一律指 ETJ-N3 测温接收模块。

2. 数据传送

2.1. 传送方式

- 1. 主机和装置间以串行方式连接, 主机以问答方式与装置通讯, 每帧报文不超过 255 字节。
- 2. 异步 8N1 方式,起始位(1bit)+数据位(8bit)+停止位(1bit),无奇偶校验,CRC16-IBM 校验。
- 3. 通讯接口为 2 线 RS485, 波特率 1200bps, 2400bps, 4800bps, 9600bps (采用用 RS485 设置)。
- 4. 数据传送采用 Modbus Rtu 规约。
- 5. 如下行报文的装置地址,报文类型,数据和校验码均正确,则应在500ms内响应正常上行报文。
- 6. 如下行报文的装置地址或校验码不正确,则不响应。主机侧判断超时后继续后续通讯。
- 7. 如下行报文的地址和校验码正确,但报文类型或数据不正确,则应在500ms内响应异常上行报文。

2.2.报文类型

主机-	〉装置	装置->主机				
报文类型	类型码	报文类型	正常码/异常码			
读寄存器	03Н	读寄存器响应	03Н/83Н			
写寄存器	06Н	写寄存器相应	06Н/86Н			

表 1. 报文类型

主机通过读寄存器报文可获取各无线测温接点当前温度信息,通过串口调试助手可配置装置参数如:无线信道,无线速率,RS485 地址,RS485 速率,RS485 上传类型。

2.3. 报文格式

2.3.1. 装置地址范围

合法的地址范围为 001~247。

2.3.2. 正常报文

如下行报文的装置地址,报文类型,数据和校验码均正确,则应在500ms内响应正常上行报文。

	主站→装置	2	装置→主站
字节1	装置地址	字节1	装置地址
字节2	报文类型 (03H)	字节 2	报文类型 (03H)
字节3	寄存器起始地址(高字节)	字节3	数据长度(数据个数 N×2)
字节4	寄存器起始地址(低字节)		
字节 5	读取寄存器个数 N(高字节)	字节 3+(i-1)*2+1	寄存器 i 数据(高)(1≤i≤N)
字节 6	读取寄存器个数 N(低字节)	字节 3+(i-1)*2+2	寄存器 i 数据(低)(1≤i≤N)
字节7	校验码(CRC 低字节)	•••••	•••••
字节8	校验码(CRC 高字节)	字节 3+N*2+1	校验码(CRC 低字节)
		字节 3+N*2+2	校验码(CRC 高字节)

表 2. 正常报文

2.3.3. 异常报文

如下行报文的装置地址和校验码正确,但报文类型或数据内容不正确(如不支持的报文类型或数据地址越界),则应在500ms 内响应异常上行报文。异常报文的类型码为下行报文的类型码最高位置高。如主机发送 03H 报文,装置响应 83H 报文)

异常类型码	含义	异常类型码	含义
01H	无效报文类型		
02Н	无效数据地址		
03Н	数据长度越界	06Н	装置忙

表 3. 异常类型码

	主站→装置	装置→主站					
字节1	装置地址	字节1	装置地址				
字节2	报文类型(03H)	字节2	报文类型 (83H)				
字节3	寄存器起始地址(高字节)	字节3	异常码类型				
字节4	寄存器起始地址(低字节)	字节4	校验码(CRC 低字节)				
字节5	读取寄存器个数 N(高字节)	字节5	校验码(CRC 高字节)				
字节6	读取寄存器个数 N(低字节)						
字节7	校验码(CRC 低字节)						
字节8	校验码(CRC 高字节)						

表 4. 异常报文

2.4. 校验码

校验码的计算范围(长度)为缓冲区的第一字节开始,到校验码的前一字节.采取 CRC16 校验。

从站地址	类型码	数据	CRC16
			,

校验码计算范围

表 5. CRC16 校验范围

CRC16-IBM 校验程式(生成多项式: X16+X15+X2+1)

3. 寄存器分配

寄存器地址	字节数		高	字节	低字节	功能说明			
0X0000	0X0000 2		格式	空中速率	无线信道	无线参数			
0X0001	2	预留	格式	RS485 波特率	RS485 地址	RS485 参数			
0X0002	2					预留			
0X0003	2			A011 节点信息		地址 011 传感器(多点)			
•••••	2			•••••					
0X000B	2		A019 节点信息 地址 019 传感器						
•••••	2			•••••		•••••			
0X000C	2			A021 节点信息		地址 021 传感器(多点)			
•••••	2			•••••		•••••			
0X0014	2			A029 节点信息		地址 029 传感器(多点)			
•••••	2			•••••		•••••			
•••••	2								
OXOODA	2			A249 节点信息		地址 249 传感器(多点)			

表 6. 寄存器分配

4. 寄存器格式

4.1 寄存器 0000H 配置无线参数

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	bit
	Reserve				Type bps			Channel (1~155)								位域
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	默认值

表 7. 寄存器格式

此寄存器 16bit, 其中:

bit00~bit07被定义为传感器无线信道(无线电波载波频率);

bit08~bit09 被定义为传感器空中速率(无线电波在空气中的传播速率);

bit10°bit11被定义为传感器数据类型(是否有小数点).

具体描述如下:

无线信道取值范围: $01H^{2}9BH$; (无线测温信道 $1^{2}155$, 其他不合法)

空中速率取值范围: 00H^o02H;例如: 00H表示 10Kbps(普通无线测温); 01H表示 100Kbps;02表示 250Kbps;数据类型取值范围: 00H^o1H;例如: 00H表示发射上传数据不带小数点; 01H表示发射上传数据带有小数点;

4.2 寄存器 0001H 配置 RS485 参数

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	bit
Reserve				Type bps				$Address(1^2247)$								位域
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	默认值

表 8. 寄存器格式

此寄存器 16bit, 其中:

bit00 ~ bit07 被定义为 RS485 地址;

bit08 ~ bit09 被定义为 RS485 速率;

bit10 ~ bit11 被定义为 RS485 数据类型;

具体描述如下:

RS485 地址取值范围: 01H~F7H(RS485 地址范围 1~247);

RS485 速率取值范围: 00H~03H;例如: 00H表示 1200bps; 01H表示 2400bps;

02H 表示 4800bps; 03H 表示 9600bps;

RS485 数据类型表示: 00H~03H;例如: 00H表示上传寄存器为温度和电池等级,信号等级;

01H表示上传寄存器为温度,传感器上传高字节(如电压或湿度等);

02H 标示上传寄存器为温度, 高字节为 00H; 03H 表示上传寄存器为温度放大 10 倍;

4.3 寄存器 0003H-00DAH

4.3.1. 当寄存器 0001H 位域 bit10~bit11 为 00H 时:表示上传温度和电池等级,信号等级;

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	bit
Rssi-Level Battery-Level							Temperature								位域	
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	默认值

4.3.2. 当寄存器 0001H 位域 bit10 bit11 为 01H 时:表示上传温度和传感器上传高字节(如电压或湿度);

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	bit
Others								Temperature								位域
1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	默认值

4. 3. 3. 当寄存器 0001H 位域 bit10 $^{\circ}$ bit11 为 02H 时:表示上传温度,高字节为 00H;

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	bit
00Н								Temperature								位域
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	默认值

4.3.4. 当寄存器 0001H 位域 bit10~bit11 为 03H 时:表示上传温度值放大 10 倍;

4 14 11																	
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	bit
	Temperature														位域		
	0	0	0	0	1	0	0	1	1	1	1	0	1	1	0	0	默认值

5. 参数设置方法

5.1 获取装置参数信息

当拿到一台无任何标识的装置时,需要先知道该装置的参数状况,可以采用串口调试助手通过广播地址获取装置参数, 具体步骤如下:

- a. 串口调试助手下行报文: FF 03 00 00 00 03 10 15
- b. 等待装置回复,如 500ms 内未能回复,更改串口调试助手波特率,再次下行报文,直至装置回应。

5.2 设置装置参数信息

获取装置参数信息后,根据需要可更改相应参数,即刻生效,设置装置参数也可采用广播地址FF。

5. 3. 设置工具(可跳过 5. 1, 5. 2 直接配置参数)

使用设置工具可简化设置过程,但设置时,请确保总线上仅有一台设备,防止其他设备被误修改。a. 找到 Yado-ETJ-N3 设置工具,如下图:

b. 打开相关界面,如下图:

- c. 选择正确的端口(此端口为与设备通讯的端口),点击 OPEN 按钮,如果提示警告,说明端口不存在或被其他软件占用。
- d. 单击读参数按钮,可读取设备当前参数情况。
- e. 修改您所需要的参数,单击相应的设置按钮,例如:

改变无线信道,无线速率,无线数据,请单击设置无线参数按钮,如提示设置成功,说明你成功了。

改变 RS485 地址, RS485 速录, RS485 数据, 请单击设置 RS485 参数按钮, 如提示设置成功,说明你又成功了。

- f. 设置完毕后,可以再次单击读参数按钮确认参数是否设置正确。
- g. 如果您还有不清楚的, 在标题栏右键->说明, 查看相关说明。
- h. 再次说明如下:
 - 1. 无线信道须与发射一致;
 - 2. 无线速率须与发射一致,如无特殊说明,一般为 10Kbps;
 - 3. 无线数据须与发射一致,如无特殊说明,一般为不带小数点;
 - 4. RS485 地址即为您想设置的地址;
 - 5. RS485 速率即为您想设置的速率:
 - 6. RS485 数据即为您想设置的规约格式:
 - "温度+电量+信号"对应原程序"温度+其他"版本。
 - "高字节为湿度或电压,温度"对应源程序"温度+湿度"版本。
 - "高字节为 00H,温度"对应普通版本。
 - "温度*10"对应温度放大10倍版本。