DESIGNAND ANALYSIS OF ALGORITHMS

CS 4120/5120 BREADTH-FIRST SEARCH

AGENDA

- Breadth-first search algorithm
 - Adjacency list
 - Queue
 - Running time

GRAPH SEARCHING ALGORITHMS

- The graph searching algorithms systematically follow the edges of the graph so as to visit the vertices of the graph.
- Also used to discover structural information about a given graph.

Two algorithms

- Breadth-first search (BFS)
- Depth-first search (DFS)

BREADTH-FIRST SEARCH (BFS)

- Given a graph G = (V, E) and a **distinguished source vertex** s, breadth-first search systematically **explores the edges of** s to "discover" every vertex that is reachable from s.
- Compute the distance from s to each reachable vertex.
- Produce a "breadth-first tree" with root s that contains all reachable vertices.
 - For any vertex v reachable from s, the simply path in the breadth-first tree from s to v corresponds to a "shortest path" from s to v in G.

THE BFS ALGORITHM

- Input
 - a graph G = (V, E) that is represented BY adjacency lists
 - the source node s
- Data structure
 - A first-in, first-out queue Q
 - Operations
 - ENQUEUE
 - DEQUEUE

BFS	S(G,s)
I	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s.d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q,s)
10	while $Q \neq \emptyset$
11	u = DEQUEUE(Q)
12	for each $v \in G.Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

THE BFS ALGORITHM THE VERTEX OBJECT

- The algorithm attaches several **additional attributes** to each vertex in the graph.
- For each vertex $u \in V$,
 - u.color distinguish between discovered and undiscovered vertices.
 - The color could be, BLACK, GRAY or WHITE.
 - $u.\pi$ the **predecessor** of vertex u.
 - If u has no predecessor, then $u.\pi = \text{NIL}$.
 - u. d the distance from the source s to vertex u
 computed by the algorithm.

BFS	$BFS\;(G,s)$	
I	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s. d = 0	
7	$s.\pi = NIL$	
8	$Q = \emptyset$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \emptyset$	
11	u = DEQUEUE(Q)	
12	for each $v \in G$. $Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

DEC	S(C,c)	
	$BFS\left(G,s\right)$	
	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s.d = 0	
7	$s.\pi = NIL$	
8	$Q = \emptyset$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \emptyset$	
П	u = DEQUEUE(Q)	
12	for each $v \in G$. $Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

BFS	$BFS\left(G,s\right)$	
I	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s. d = 0	
7	$s.\pi = NIL$	
	$Q = \emptyset$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \emptyset$	
11	u = DEQUEUE(Q)	
12	for each $v \in G.Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

BFS	$BFS\left(G,s\right)$	
I	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s. d = 0	
7	$s.\pi = NIL$	
8	$Q = \emptyset$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \emptyset$	
П	u = DEQUEUE(Q)	
12	for each $v \in G.Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

$BFS\;(G,s)$		
I	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s.d = 0	
7	$s.\pi = NIL$	
8	$Q = \emptyset$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \emptyset$	
П	$u = DEQUEUE\left(Q\right)$	
12	for each $v \in G$. $Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

BFS	S(G,s)
I	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s. d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q, s)
10	while $Q \neq \emptyset$
11	u = DEQUEUE(Q)
12	for each $v \in G.Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

• Apply the algorithm on the graph below.

 $Q \mid r \mid w$

$BFS\;(G,s)$	
I	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s. d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q,s)
10	while $Q \neq \emptyset$
11	$u = DEQUEUE\left(Q\right)$
12	for each $v \in G$. $Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

• Apply the algorithm on the graph below.

 $Q \quad \boxed{r \quad \boxed{w}}$

RES (C c)

RL?	(G,S)
1	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s.d=0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q, s)
10	while $Q \neq \emptyset$
П	u = DEQUEUE(Q)
12	for each $v \in G.Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

$BFS\;(G,s)$	
Ifor each vertex $u \in G.V - \{s\}$	
u.color = WHITE	
$u.d = \infty$	
4 $u.\pi = NIL$	
5s.color = GRAY	
6 s.d=0	
$7s.\pi = NIL$	
$8\mathbf{Q} = \emptyset$	
9ENQUEUE (Q,s)	
10 while $Q \neq \emptyset$	
u = DEQUEUE(Q)	
for each $v \in G.Adj[u]$	
if $v.color == WHITE$	
v.color = GRAY	
v. d = u. d + 1	
$v.\pi = u$	
ENQUEUE (Q, v)	
u.color = BLACK	

• Apply the algorithm on the graph below.

S

 $Q \quad \boxed{w \quad q}$

I for each vertex $u \in G.V - \{s\}$ 2 $u.color = WHITE$
$u.d = \infty$
4 $u.\pi = NIL$
5s.color = GRAY
6 s.d=0
$7s.\pi = NIL$
$8\mathbf{Q} = \emptyset$
9ENQUEUE (Q,s)
10 while $Q \neq \emptyset$
II $u = DEQUEUE(Q)$
12 for each $v \in G$. $Adj[u]$
if $v.color == WHITE$
v. color = GRAY
v.d = u.d + 1
$v.\pi = u$
17 ENQUEUE (Q, v)
18 $u.color = BLACK$

• Apply the algorithm on the graph below.

Adjacency list of node u:

 $Q \quad \boxed{\boldsymbol{w}} \quad \boxed{\boldsymbol{q}}$

$BFS\;(G,s)$	
	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s.d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q, s)
10	while $Q \neq \emptyset$
П	$u = DEQUEUE\left(Q\right)$
12	for each $v \in G$. $Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d=u.d+1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

S

• Apply the algorithm on the graph below.

 $Q \mid \mathbf{w} \mid \mathbf{q}$

BFS (G,s)			
I	I for each vertex $u \in G.V - \{s\}$		
2	u.color = WHITE		
3	$u.d = \infty$		
4	$u.\pi = NIL$		
5	s.color = GRAY		
6	6 $s.d = 0$		
7	$s.\pi = NIL$		
8	$8Q = \emptyset$		
9	9ENQUEUE (Q,s)		
10	while $Q \neq \emptyset$		
П	u = DEQUEUE(Q)		
12	for each $v \in G$. $Adj[u]$		
13	if $v.color == WHITE$		
14	v.color = GRAY		
15	v.d = u.d + 1		
16	$v.\pi = u$		
17	ENQUEUE (Q, v)		
18	u.color = BLACK		

DEC (C	DEC (C -)		
BFS (G	,		
Ifor	each vertex $u \in G.V - \{s\}$		
2	u.color = WHITE		
3	$u.d = \infty$		
4	$u.\pi = NIL$		
5 s. c	olor = GRAY		
6 s. d	t = 0		
$7s.\pi$	= NIL		
8 Q =	= Ø		
9EN	QUEUE (Q, s)		
10wh	ile $Q \neq \emptyset$		
11	u = DEQUEUE(Q)		
12	for each $v \in G$. $Adj[u]$		
13	if $v.color == WHITE$		
14	v.color = GRAY		
15	v.d=u.d+1		
16	$v.\pi = u$		
17	ENQUEUE (Q, v)		
18	u.color = BLACK		

• Apply the algorithm on the graph below.

$BFS\left(G,s\right)$		
for each vertex $u \in G.V - \{s\}$		
u.color = WHITE		
$u.d = \infty$		
$u.\pi = NIL$		
s.color = GRAY		
s.d = 0		
$s.\pi = NIL$		
$Q = \emptyset$		
ENQUEUE (Q, s)		
while $Q \neq \emptyset$		
u = DEQUEUE(Q)		
for each $v \in G$. $Adj[u]$		
if $v.color == WHITE$		
v.color = GRAY		
v.d = u.d + 1		
$v.\pi = u$		
ENQUEUE (Q, v)		
u.color = BLACK		

• Apply the algorithm on the graph below.

Adjacency list of node **u**:

S

 $Q \quad q \quad t$

$BFS\;(G,s)$			
	I for each vertex $u \in G.V - \{s\}$		
2	u.color = WHITE		
3	$u.d = \infty$		
4	$u.\pi = NIL$		
5	s.color = GRAY		
6	s.d = 0		
7	$s.\pi = NIL$		
8	$Q = \emptyset$		
9	9ENQUEUE (Q,s)		
10	while $Q \neq \emptyset$		
11	$u = DEQUEUE\left(Q\right)$		
12	for each $v \in G$. $Adj[u]$		
13	if $v.color == WHITE$		
14	v.color = GRAY		
15	v.d=u.d+1		
16	$v.\pi = u$		
17	ENQUEUE (Q, v)		
18	u.color = BLACK		

• Apply the algorithm on the graph below.

$BFS\;(G,s)$		
l fo	or each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5 s.	color = GRAY	
6 <i>S</i> .	6 s.d=0	
7 s.	$7s.\pi = NIL$	
8 <i>Q</i>	$8Q = \emptyset$	
9EI	NQUEUE (Q,s)	
	hile $Q \neq \emptyset$	
x	u = DEQUEUE(Q)	
12	for each $v \in G.Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

• Apply the algorithm on the graph below.

BFS	BFS (G,s)		
I	Ifor each vertex $u \in G.V - \{s\}$		
2	u.color = WHITE		
3	$u.d = \infty$		
4	$u.\pi = NIL$		
5	s.color = GRAY		
6	s. d = 0		
7	$s.\pi = NIL$		
8	$Q = \emptyset$		
9	9ENQUEUE (Q,s)		
24	while $Q \neq \emptyset$		
x	u = DEQUEUE(Q)		
12	for each $v \in G$. $Adj[u]$		
13	if $v.color == WHITE$		
14	v.color = GRAY		
15	v.d = u.d + 1		
16	$v.\pi = u$		
17	ENQUEUE (Q, v)		
	u.color = BLACK		

• Apply the algorithm on the graph below.

	$BFS\;(G,s)$			
	I for each vertex $u \in G.V - \{s\}$			
	2	u.color = WHITE		
	3	3 $u.d = \infty$		
	4	4 $u.\pi = NIL$		
	5 s	s.color = GRAY		
	6 s	6 $s.d = 0$		
	$7s.\pi = NIL$			
	$8\mathbf{Q} = \emptyset$			
	9ENQUEUE (Q,s)			
brace	\boldsymbol{x}	hile $Q \neq \emptyset$		
	A	u = DEQUEUE(Q)		
	12	for each $v \in G.Adj[u]$		
	13	if $v.color == WHITE$		
	14	v.color = GRAY		
	v.d = u.d + 1			
	16	$v.\pi = u$		
	17	ENQUEUE (Q, v)		
	18	u.color = BLACK		

• Apply the algorithm on the graph below.

I for each vertex $u \in G.V - \{s\}$ 2 $u.color = WHITE$ 3 $u.d = \infty$		
$u.d = \infty$		
4 $u.\pi = NIL$		
5s. color = GRAY		
6 s.d=0		
$7s.\pi = NIL$		
$8Q = \emptyset$		
9ENQUEUE (Q,s)		
10while $Q \neq \emptyset$		
II $u = DEQUEUE(Q)$		
12 for each $v \in G$. $Adj[u]$		
if $v.color == WHITE$		
v.color = GRAY		
v.d = u.d + 1		
$v.\pi = u$		
17 ENQUEUE (Q, v)		
18 $u.color = BLACK$		

• Apply the algorithm on the graph below.

 $Q \quad \boxed{t} \quad \boxed{x}$

$BFS\;(G,s)$		
I	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s.d=0	
7	$s.\pi = NIL$	
8	$Q = \emptyset$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \emptyset$	
П	u = DEQUEUE(Q)	
12	for each $v \in G.Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

• Apply the algorithm on the graph below.

Adjacency list of node u:

 $Q \mid t \mid x$

$BFS\left(G,s\right)$			
I	Ifor each vertex $u \in G.V - \{s\}$		
2	u.color = WHITE		
3	$u.d = \infty$		
4	$u.\pi = NIL$		
5	s.color = GRAY		
6	s.d = 0		
7	$s.\pi = NIL$		
8	$\mathbf{Q} = \emptyset$		
9	9ENQUEUE (Q, s)		
10	0while $Q \neq \emptyset$		
11	u = DEQUEUE(Q)		
12	for each $v \in G.Adj[u]$		
13	if $v.color == WHITE$		
14	v.color = GRAY		
15	v.d = u.d + 1		
16	$v.\pi = u$		
17	ENQUEUE (Q, v)		
18	u.color = BLACK		

• Apply the algorithm on the graph below.

$BFS\left(G,s\right)$			
I	for each vertex $u \in G.V - \{s\}$		
2	u.color = WHITE		
3	$u.d = \infty$		
4	$u.\pi = NIL$		
5	5s.color = GRAY		
6	s. d = 0		
7	$s.\pi = NIL$		
8	$Q = \emptyset$		
9	ENQUEUE (Q,s)		
10	while $Q \neq \emptyset$		
11	u = DEQUEUE(Q)		
12	for each $v \in G$. $Adj[u]$		
13	if $v.color == WHITE$		
14	v.color = GRAY		
15	v.d = u.d + 1		
16	$v.\pi = u$		
17	ENQUEUE (Q, v)		
18	u.color = BLACK		

• Apply the algorithm on the graph below.

$BFS\left(G,s\right)$		
I for each ve	$rtex\ u \in G.V - \{s\}$	
2 u. colo	pr = WHITE	
u.d =	: ∞	
4 $u.\pi =$	· NIL	
5s.color = 0	GRAY	
6s. d = 0		
$7s.\pi = NIL$		
$8Q = \emptyset$		
9ENQUEUE	(Q,s)	
10 while $Q \neq$	Ø	
II u = D	EQUEUE (Q)	
12 for ea	$ch v \in G.Adj[u]$	
13 i	$\mathbf{f} v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18 u. colo	pr = BLACK	

• Apply the algorithm on the graph below.

BFS	$BFS\left(G,s\right)$	
I	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s.d = 0	
7	$s.\pi = NIL$	
8	$Q = \emptyset$	
9	ENQUEUE (Q,s)	
10	while $Q \neq \emptyset$	
11	u = DEQUEUE(Q)	
12	for each $v \in G$. $Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d = u.d + 1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

• Apply the algorithm on the graph below.

• Apply the algorithm on the graph below.

$BFS\;(G,s)$	
1	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s.d=0
75	$s.\pi = NIL$
8	$Q = \emptyset$
9	$INQUEUE\left(Q,s\right)$
10	while $Q \neq \emptyset$
11	u = DEQUEUE(Q)
12	for each $v \in G.Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

• Apply the algorithm on the graph below.

BFS	S(G,s)
	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s.d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q,s)
10	while $Q \neq \emptyset$
Ш	u = DEQUEUE(Q)
12	for each $v \in G.Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

• Apply the algorithm on the graph below.

BFS	$BFS\;(G,s)$	
	for each vertex $u \in G.V - \{s\}$	
2	u.color = WHITE	
3	$u.d = \infty$	
4	$u.\pi = NIL$	
5	s.color = GRAY	
6	s.d = 0	
7	$s.\pi = NIL$	
8	$Q = \emptyset$	
9	ENQUEUE (Q,s)	
10	while $Q \neq \emptyset$	
П	u = DEQUEUE(Q)	
12	for each $v \in G$. $Adj[u]$	
13	if $v.color == WHITE$	
14	v.color = GRAY	
15	v.d=u.d+1	
16	$v.\pi = u$	
17	ENQUEUE (Q, v)	
18	u.color = BLACK	

• Apply the algorithm on the graph below.

Adjacency list of node u:

$BFS\;(G,s)$	
Ifor each vertex $u \in G.V - \{s\}$	
u.color = WHITE	
$u.d = \infty$	
4 $u.\pi = NIL$	
5s.color = GRAY	
6s. d = 0	
$7s.\pi = NIL$	
$8Q = \emptyset$	
9ENQUEUE (Q, s)	
10 while $Q \neq \emptyset$	
I $u = DEQUEUE(Q)$	
for each $v \in G.Adj[u]$	
if $v.color == WHITE$	
v.color = GRAY	
v. d = u. d + 1	
$v.\pi = u$	
17 ENQUEUE (Q, v)	
u.color = BLACK	

After checking the adjacency list of p and y, Q will be empty, and all the nodes will turn black.

• Apply the algorithm on the graph below.

Algorithm stops.

Looking back at the procedure, each vertex is initially white, is grayed when it is **discovered** in the search, and is blackened when it is **finished**.

$BFS\;(G,s)$	
I	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s. d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q, s)
10	while $Q \neq \emptyset$
11	u = DEQUEUE(Q)
12	for each $v \in G$. $Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

THE BFS ALGORITHM RUNNING TIME - INIT

- Initialization
 - The algorithm whitens |V|-1 vertices initially, which takes O(|V|) time.
 - After initialization it never whitens any vertex.

$BFS\;(G,s)$	
I	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s.d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q, s)
10	while $Q \neq \emptyset$
П	u = DEQUEUE(Q)
12	for each $v \in G$. $Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

THE BFS ALGORITHM RUNNING TIME - QUEUE

- Queue operation
 - Each node is enqueued at most _____ one ___ time(s), and dequeued at most _____ time(s).
 - The time complexity of one enqueue operation is $\underline{\Theta(1)}$, and the time complexity of dequeue operation is $\underline{\Theta(1)}$
 - There are $\Theta(|V|)$ vertices.
 - Therefore, total time devoted to queue operations is $\Theta(|V|)$.

I for each vertex $u \in G.V - \{s\}$ 2 $u.color = WHITE$ 3 $u.d = \infty$ 4 $u.\pi = NIL$
3 $u.d = \infty$ 4 $u.\pi = NIL$
4 $u.\pi = NIL$
5s.color = GRAY
6s. d = 0
$7s.\pi = NIL$
$8Q = \emptyset$
9ENQUEUE (Q, s)
10 while $Q \neq \emptyset$
12 for each $v \in G.Adj[u]$
if $v.color == WHITE$
v.color = GRAY
v.d = u.d + 1
$v.\pi = u$
17 ENQUEUE (Q, v)
18 $u.color = BLACK$

THE BFS ALGORITHM RUNNING TIME

- Scanning adjacency list
 - The Algorithm scans each adjacency list at most <u>one</u> time(s).
 - The sum of lengths of all the adjacency lists is $\Theta(|E|)$, the total time spent in scanning the adjacency lists is $\Theta(|E|)$.
- The total running time of BFS is $\Theta(|V| + |E|)$

$BFS\;(G,s)$	
I	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = NIL$
5	s.color = GRAY
6	s. d = 0
7	$s.\pi = NIL$
8	$Q = \emptyset$
9	ENQUEUE (Q, s)
10	while $Q \neq \emptyset$
11	u = DEQUEUE(Q)
12	for each $v \in G$. $Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE (Q, v)
18	u.color = BLACK

THE BFS ALGORITHM A BRIEF SUMMARY

- Utilizes the *adjacency list* data structure to represent a graph.
- The algorithm
 - initially whitens the vertices
 - grays a vertex when it's first discovered
 - blackens a vertex when it is exhausted
- When finishing the algorithm, we have traversed all the vertices while recording the path that we took when we discover each vertex for the first time.

THE BREADTH-FIRST TREES

- The BFS procedure builds a breadth-first tree as it searches the graph.
 - The tree corresponds to the π attributes.
- Formally, for a graph G = (V, E) with source S, we define the **predecessor subgraph** of G as

$$G_{\pi} = (V_{\pi}, E_{\pi})$$
, where

and

$$E_{\pi} = \{(v.\pi, v): v \in V_{\pi} - \{s\}\}\$$

 $V_{\pi} = \{v \in V : v \cdot \pi \neq NIL\} \cup \{s\}$

Source s is represented by $v.\pi$

Source *s* is included

BREADTH-FIRST TREES LEMMA 22.6

- When applied to a directed or undirected graph G = (V, E), procedure BFS constructs π so that the predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ is a breadth-first tree.
- What is the corresponding tree to the graph below?

SHORTEST PATHS IN BFS

- Given a graph G = (V, E) from a given source vertex $s \in V$.
- Define the **shortest-path distance** $\delta(s, v)$ from s to v as the **minimum** number of edges in any path from vertex s to vertex v; if there is no path from s to v, then $\delta(s, v) = \infty$.
- A path of length $\delta(s, v)$ from s to v is called a shortest path.

BFS AND SHORTEST PATHS THEOREM 22.5

- Let G = (V, E) be a **directed** or **undirected** graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then during its execution, BFS discovers every vertex $v \in V$ that is reachable from the source s, and **upon termination**, v. $d = \delta(s, v)$ for all $v \in V$. Moreover, for any vertex $v \neq s$ that is reachable from s, one of the shortest paths from s to s is a shortest path from s to s
- Denote the length of an edge (u, v) by e(u, v), then the above theorem can be formulated as a recurrence

$$\delta(s,v) = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

NEXT UP DEPTH-FIRST SEARCH

REFERENCE

- https://www.netclipart.com/isee/hRwxRh_kids-clipart-nurse-cute-female-doctor-cartoon/
- https://listposts.com/lera-kiryakova-celebrities-cartoon-characters/
- https://www.computerhope.com/people/david_huffman.htm