5.1 环境参数检测 (一) 废气

5.1.1 主要有害物质测定

项目	方法	方法比较
二氧化硫	(1) 盐酸付 玫瑰苯胺比色 法。 (2) 双氧水 吸收-络合滴 定法。 (3) 定电位 电解法 (4) 库仑滴 定法。	(1) 灵敏,选择性好;吸收剂毒性大。其一可以是试剂空白值高,灵敏度高,可用手校正仪器,测盘浓度范围 $0.025\sim1.0mg/m^3$ 。其二也可以是试剂空白值低,灵敏度低,可用于常规监测。 (2) 可消除酸性物质干扰,结果较准确。 (3) 干扰物质少,结构简单,移动性能稳定。 (4) 和计算机联用,可将环境大气二氧化硫小时平均浓度和日平均浓度测量范围:(分4个量程) $0\sim0.5$ 、 $0\sim1$ 、 $0\sim2$ 、 $0\sim4mg/m^3$ 。
氮氧化物 (换算成 NO_2)	(1) 化学发 光法。 (2) 盐龄萘 乙二胺比色 法。 (3) 定电位 电解法。	(1) 快速、准确,该法适用于大气中 $0.009\sim18.8mg/m^3$ 浓度范围的NO;测定。 (2) 方法灵敏,可一边采样,一边显色;以 $0.6L/min$,采样 $10\sim15min$ 测定 NO_2 范围是 $11\sim9400\mu g/m^3$ 。采用高浓度三氧化铬氧化管两种串联氧化,可基本上消除 SO_2 、 H_2S 的干扰。 (3) 干扰物质少,可携带,适于现场连续测定。
一氧化碳	(1) 红外吸 收法 (NDIR 法)。 (2) 五氧化 二碘氧化法。 (3) 气相色 谱法。 (4) 汞置换 法。	(1) 流量对其影响不大,不需化学溶液;测量范围宽;响应时间短。缺点是零点飘移,标气昂贵,灵敏度不高。 (2) 采用锌铵络盐溶液、碱性双氧水溶液及铬酸、硫酸混合溶液进行串联预吸收可以消除 SO_2 、 NO_x 的干扰。 (3) 方法无干扰,并能测量 $0.03\sim 50mg/m^3$ 范围的一氧化碳。需配专门训练人员操作。 (4) 灵敏,快速,响应时间 $<10s$,一氧化碳浓度测量范围 $0.05\sim 63mg/m^3$ (分档进样)。

项目	方法	方法比较	
光化学氧化剂	(1) 磷酸盐 缓冲的法 (NBKI 法)。 (2) 碘 (KIBRT 法)。 础 (BAKI 法)。 《 (4)。 《 (4)。 《 (5)。 化 法)。	(1) 适于采样时间最高为 $30min$ 。由于碘络合物随时间而损失,因此,必须迅速分析; NO_2 、 SO_2 为严重干扰物,灵故度低,标准偏差 $S=22.4$,变异系数 13.1% 。 (2) 由于在吸收被中加人 $3Na_2S_2O_3$ 及 KBr ,提高了样品的稳定性及采样效率。操作不简便。标准偏差 $S=4.0$,变异系数 1.4% 。 (3) 操作简便, I_2/Q_2 当量关系接近于 $1:1$ 的关系,可用于常规监测。 (4) 标准俯差 $S=7.3$; 变异系数 $S=3.8\%$ 。 (5) 本法适于测大气中臭氧浓度在 $S=3.8\%$ 。 正常状态的大气测量推荐是 $S=3.8\%$ 0~ $S=3.8\%$ 0。 正常状态的大气测量推荐是 $S=3.8\%$ 0~ $S=3.8\%$ 0。	
H_2S	(1) 锌氨铬 盐吸收法。 (2) 氢氧化 镉-聚乙烯醇 磷改接吸收 法。 (3) 膜量 法。	(1) 方法灵墩,显色稳定,干扰小。由于低浓度的硫化氢在水溶液中极不稳定,易氧化因此,解决采样过程和存放过程中硫化氢稳定性问题是该法的关键。 (2) 用锌氨铬盐级收液测定结果普遍都比用氯氧化镉-聚乙烯醇酸铵吸收液低。说明该法在现场采样更有利 H_2S 稳定。 (3) 用酸性双罩水预吸收,在 SO_2 浓度 $< 2500ppm$,N,浓度 $< 300ppm$ 时,测定误差 < 10 。	
氨	(1) 纳氏试 剂比色法。 (2) 靛酚蓝 比色法。 (3) 亚硝酸 盐比色法。	(1) 方法简便,选择性略差。 (2) 方法较灵敏、准确、选择性好,但操作夏杂。 (3) 方法较灵敏、操作较复杂,要求严,标准曲线,在 $NH_30{\sim}8\mu g/5mg$,范圈是直线关系。检出下限为 $1\mu g/5mg$ 。	
硫酸盐化 速率	(1) 二氧化 铅法。 (2) 减片 法。	(1) PbO_2 有毒,难以获得合格试剂,采样复杂。 (2)操作简便,试剂毒性低。检出下限 SO_3 为 $0.05mg/100cm^2$ 。	
西分	(1) 4-氨基 安替吡啉比色 法。 (2) 气相色 谱法。	(1)可测大气中低浓度的份,该法较好适用范围广、重现性好, 干扰小,但不能测出对位酚。 (2)检出下限为 $0.5\mu g/10mL$ 液晶PBOB柱FID检测器。	
甲醛	(1) 酚试剂比色法。(2) 乙胱丙酮比色法。	(1) 灵敏度较好,选择性咯差。采样简便可用常规监测。 (2) 灵敏度略低,但选泽性好,操作复杂。	

项目	方法	方法比较	
二甲基甲 酰胺 (DMF)	气相色谱法	适于大气中微量DMF的测定。	
丙烯醛	(1) 气相色 谱法。 (2) 4-己基 间苯二酚比色 法。	(1) 本法适于测大气中 $0.05\sim5.0mg/m^3$ 的两烯醛,当浓度高于此范围上限时可直接进样,方法灵敏、准确。分子微球 $GOX-103$,氢火焰检测器。 (2) 丙烯醛在 $1\sim30\mu g$ 时,在波长 605 mm下比色符合比耳定律,检出下限 $5\mu g/10mL$ 。	
乙腈	气相色谱法	本法适于测大气中 $0.2\sim20mg/m^3$ 的乙睛,当波度高于此范围上限时,可直接进样测 定。方法灵敏、准确。聚乙二醇-20M,氢火焰检浏器。	
丙烯腈	气相色谱法	聚乙二醇-20M,氢火焰检测器。	
乙醛	气相色谱法	方法灵敏,应用广泛。高分子微球GOD-103,氢火焰检测器。	
丙酮	(1) 气相色进法。(2) 糠醛比色法。	(1) 本法适于测大气中 $0.05\sim5.0mg/m^3$ 的丙酮,当波度高于此范围上限时,可直接进样方法灵敏、快速。 (2) 灵敏、重现性好、误差小,检出下限 $2\mu g/5mL$ 。	
硫醇	对氨基二甲基 苯胺比色法	本法虽然对低分子量的烷基硫醇最灵敏,但是测定的是总硫醇。	
过氧乙酰 硝酸酯 (PAN)	气相色谱法	本法的准确度可达到5%范围内。"PAN"标气难得;操作要求严格。	
苯基丙烯 酸甲酯	羟肟酸比色法		
苯乙烯	(1) 气相色 谱法。 (2) 硝化比 色法。	(1) 测定ppb级的萃乙烯,采用色谱法。 (2) 放空的塔顶气体通人燃烧炉中,环氧乙烷的含量必须严格控制。	
环氧乙烷 (环氧丙 烷)	气相色谱法	角鲨烷,氢火焰检测器。	
环氧氯丙 烷	气相色谱法	丁二酸、乙二醇聚酯和硅油DC-200,氢火焰检测器。	
总烃及非 甲烷总烃	色谱直接进样法	一次分析仅需 $5s$ 无氧干扰。同时出甲烷和总经量,二者之差求出非甲烷烃。	
乙烯、丙 烯、丁二 烯	吸附富集气相 色谱法	采用 GDX - TDX 复合富集柱采样,氮气流下热解析,可消除氧和 CH_4 的干扰,使测定准确.	

项目	方法	方法比较
苯、甲 苯、乙 苯、异丙 萃	气相色谱法	
二硫化碳	二乙胺比色法	
光气	(1) 气相色 谱法。 (2) N,N二 甲基对苯二胺 比色法。	硅油DC-200,电子捕获检测器。
甲醇	(1) 变色酸 比色法。 (2) 气相色 谱法。	有机担体401,氢火焰检测器。
有机硫化 物	气相色谱法	TCEP固定液,火焰光度检测器。
脂肪胺	气相色谱法	(1) $5\%KOH$ 鉴于102上,氮磷检测器。 (2) FFAP、 H_3PO_4 氢火焰检测器。

5.1.2 烟道尘量及烟尘浓度的测定方法

• 测试方法采用过滤定量烟气,由集尘器增重而得其尘量,再结合所测得流量即可计算出单位时间内的排放量和排烟浓度。

$$G = C \cdot Q_{snd} \cdot 10^5$$

• 式中:

G: 排尘总量, kg/h。

 \circ C: 烟尘浓度, mg/m^3 。

。 Q_{snd} : 标况下排气量干气, m^3/h 。

尘称量一般采用精密天平称重,目前又发展为用β射线吸收法和利用压电晶体法测量集尘器增重的方法。适用于连续监测的情况。这类方法可以克服湿法采样时由于某些离子溶解而产生的称量误差。

5.1.3 大气颗粒物中苯并 (a) 芘测定方法

• 大气颗粒物中苯并(a) 芘要经过提取、分离和测定等步骤。每一步骤有几种可选用的方法,常用的方法如下表。

提取	分离	测定
1、真空充氮升华法 2、索氏器连续提取法 3、超声波提取法	1、硅胶G、乙酰化纤维素薄板层析 2、乙酰化滤纸层析 3、高压液相色谱柱层析	1、紫外分光光度法 2、荧光分光光度法

• 方法比较:

- 。 紫外分光光度法的灵敏度虽不及荧光分光光度法,但仪器易得,其检出限为 $0.3\mu g/5mL$ 。
 - 。 荧光分光光度法在定性与定量方面较为优越,其检出限为 $0.001\mu g/5mL$;
 - 。 高压液相色谱法用紫外检测器时,检出限 $10ng/1\sim10\mu L$;用荧分光检测器时,检出限为 $0.1ng/1\sim10\mu L$ 。它的操作时间短,程序简单,灵敏度高,能够有选择性地分离一些多环芳 烃。
- 苯并(a) 芘(Bap)为强致癌物,操作时要防止受占污。试验时应在瓷盘中进行。在操作Bap标准溶液或层析后的Bap洗脱被防,要借不会渗透有机溶剂的手套(例如聚乙烯手套)。Bap及其标准溶液应严格保管。用过的玻璃器皿、石英皿要用重铬酸钾一浓硫酸浓液浸泡后洗净。
- Bap废液应集中存放,统一处理。
- 本试验要在避光下进行,以防Bap光分解。