GTI Aufgaben Serie 4

Vithusan Ramalingam (21-105-515)

Jan Ellenberger (21-103-643)

Aufgabe1.) Bestimme eine möglichst vereinfachte Schaltfunktion, die dem folgenden Diagramm entspricht.

$$76d + 76c7d + 70767d$$

$$= 76d + 76(c7d) + (707d)$$

$$-76d + 76(c + 70)$$

$$-76d + 76c + 7076$$

Aufgabe 2.) Wie findet man Primimplikanten in Karnaugh-Diagrammen?

- Die grösstmöglichen Blöcke im Diagramm entsprechen den Primimplikanten. Man sucht sich die maximalen Blöcke aus dem Diagramm und erhält so die Primimplikanten.

Aufgabe 3. Entwickle unter Verwendung des Karnaugh-Verfahrens eine Schaltfunktion, welche für eine einstellige BCD-Zahl feststellt, ob sie ein Teiler (6= 1) von 252 ist. Führe dazu die folgenden Schritte aus: Bestimme mit Hilfe einer Wertetabelle ein Karnaugh-Diagramm unter Ausnutzung der Don't-Care-Fälle.

Aufgabe 3 b.) Bestimme eine möglichst vereinfachte Schaltfunktion, die der Wertetabelle von (a) entspricht.

Aufgabe 4.) Die Funktion f: B5 → B habe genau die folgenden einschlägigen Indizes: 0, 1, 4, 5, 8, 12, 17, 20, 23, 28, 31 Bestimme mit Hilfe des Verfahrens von Quine und McCluskey die Primimplikanten ... Nur ein Kleiner Fehler am besten Quine Mccluskey selber anwend

	m	XO	X1	X2	Х3	X4
_	0	0	0	0	0	0
_	1	0	0	0	0	1
	2	0	0	0	1	0
	3	0	0	0	1	1
_	4	0	0	1	0	0
_	- 5	0	0	1	0	1
	6	0	0	1	1	0
	7	0	0	1	1	1
	8	0	1	0	0	0
	9	0	1	0	0	1
	10	0	1	0	1	0
	11	0	1	0	1	1
_	12	0	1	1	0	0
	13	0	1	1	0	1
	14	0	1	1	1	0
	15	0	1	1	1	1
	16	1	0	0	0	0
_	17	1	0	0	0	1
	18	1	0	0	1	0
	19	1	0	0	1	1
_	20	1	0	1	0	0
	21	1	0	1	0	1
	22	1	0	1	1	0
-	23	1	0	1	1	1
	24	1	1	0	0	0
	25	1	1	0	0	1
	26	1	1	0	1	0
	27	1	1	0	1	1
_	28	1	1	1	0	0
	29	1	1	1	0	1
	30	1	1	1	1	0
	31	1	1	1	1	1

Xo	X				
	. (2	X 3	X4
8 0 1 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	NO	31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$2 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1	KS	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

einschlägige Indizes			
00	binār	Gruppe	
0	00000	5	
1	00001	4	
4	00100	4	
5	00101	3	
8	01000	4	
12	01100	3	
17	10001		
20	10100	3	\
23	10 111	\ 1	
28	11100	5	
34	11111	Ō	

- Nächster Schritt: Anwenden der Resolutionsregel

,		1	I .
Gruppe	Minterm	einschlaziger Index	Index in decimal
0	x, x, x, x, x, x, x, 4	11111	31
1	X ₀ X ₁ X ₂ X 3 X4	10111	23
2	X ₀ X ₁ X ₂ X̄ ₃ X̄ ₄	11100	28
3	To X, X, X, X, X, X,	00101	5
	Xox, xz Xxx	01100	12)
	~ x, x, x, x, x, x, x,	01110	17
	$x_0 \overline{x_1} x_2 \overline{x_3} \overline{x_4}$	10100	20
	\(\bar{\chi}_{\omega}\bar{\chi}_{\omega}\bar{\chi}_{\omega}\bar{\chi}_{\omega}\chi_{\omega}	0 0001	1
4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00100	4
($\sqrt{2}$	01000	8
5 /	To Va Va X3X4	00000	0

Nochmal Resolutionsregel anwenden um Primimplikanten zu finden:

Gruppe	Implikant	Index	Mintem - Dumms
0	X0 X2 X3 X4	<u>1</u> * 111	23,31
2	X2 X3 X4	* * 100	4,12,20,28
	x x, x, x,	011 * 0	12,17
	\(\overline{\chi_0} \overline{\chi_1} \overline{\chi_3} \overline{\chi_2} \\	00 * 01	1,5
3	70 X3 X4	0 * * 00	0,8,12

Implikationsmatrix:

Kostengünstige Darstellung

Aufgabe 5.a) Stelle die folgende Funktion f(x, y, z) als OBDD zur Ordnung x < z < y dar und vereinfache dieses anschliessend.

Aufgabe 5 b.) Gibt es eine Variablenordnung, die ein kleineres OBDD erzeugt? Falls ja, zeichne das entsprechende OBDD. Falls nein, weshalb nicht?

