Energy release rate of the fiber/matrix interface crack in cross-ply $[0_{k\cdot 2n}^{\circ}, 90_{n}^{\circ}]_{S}$ laminates under transverse loading: debond/bi-material interface interaction

Luca Di Stasio^{a,b}, Janis Varna^b, Zoubir Ayadi^a

^a Université de Lorraine, EEIGM, IJL, 6 Rue Bastien Lepage, F-54010 Nancy, France
^bLuleå University of Technology, University Campus, SE-97187 Luleå, Sweden

Abstract

The effects of crack shielding, fiber content and ratio of 0° to 90° ply thickness on fiber/matrix debond growth in thin cross-ply laminates are investigated with Representative Volume Elements (RVEs) of different ordered microstructures. Debond growth is characterized by the estimation of the Energy Release Rates (ERRs) using the Virtual Crack Closure Technique (VCCT) and the J-integral. It is found that

Keywords: Polymer-matrix Composites (PMCs), Thin-ply, Transverse Failure, Debonding, Finite Element Analysis (FEA)

1. Introduction

Since the development of the *spred tow* technology or "FUKUI method" [1, 2], significant efforts have been directed toward the characterization of *thin-ply* laminates [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and their application to mission-critical structures in the aerospace sector [16, 17, 18, 19].

At the lamina level, the use of *thin-plies* leads to more regular and homogeneous microstructures but no significant imporvement in static properties except for an apparent improvement in compressive strength [12]. Improvements in fatigue life have been observed, although contrasting results can be found in the literature [4, 5, 6]. The beneficial effect of the use of *thin-plies* with respect

to damage propagation has been instead commonly observed by different re-

searchers under static [3, 6, 7, 8, 9, 10, 11, 12], fatigue [4, 6, 7, 8, 12] and impact loadings [6, 7, 8, 12]. It seems apparent that *thin-ply* laminates possess an increased ability to delay, and in some cases even suppress, the onset and propagation of transverse cracks (or matrix or micro-cracks).

The first appearance of transverse cracking phenomena is known to be characterized by the appearance of fiber/matrix interface cracks (also referred to as debonds), which grow along the fiber's arc direction, then kink out of the interface and coalesce forming a transverse crack [20]. Different approaches have been applied to model the initiation and growth of debonds. The Cohesive Zone Model (CZM) has been used to mimic the propagation of debonds along fiber interfaces; coupled with a failure criterion for the matrix, it has provided simulations of the growth of transverse cracks starting from a virgin material [21, 22, 23, 24]. The main advantages of this approach are the possibility to observe the development of a simulated crack path and to record a load-displacement curve to compare with experimental measurement. However, various observations cast a doubt about the applicability of the CZM: the bi- (for 2D models) and tri- (in 3D) axiality of the matrix stress state in the inter-fiber region that is linked with a cavitation-like failure of the polymer [25]; the locality and mode dependency of the interface failure [26]; the problematic use at the microscopic level of properties measured in UD specimens at the laminate level [22]. A second approach that obviates these drawbacks is the application of Linear Elastic Fracture Mechanics (LEFM) arguments to the study of debond growth. The analysis focuses on the evaluation of Mode I and Mode II Energy Release Rate (ERR) at the crack tip by means of the Virtual Crack Closure Technique (VCCT) [27] or the J-Integral method [28]. The stress and strain field, required for the ERR computation, can be solved by application of different methodologies such as analytical solutions [29], the Boundary Element Method (BEM) [30] or the Finite Element Method (FEM) [31]. Different works have followed this approach and studied models of one or two fibers in an effectively infinite matrix [32, 33, 34, 35, 36] and of an hexagonal cluster of

fibers in an effectively infinite homogenized UD composite [37, 31]. The problem

of debond growth along the fiber-matrix interface in a cross-ply laminate has been only addressed very recently in [38, 39], where the author embed a single partially debonded fiber in an effectively infinite homogenized 90° ply bounded by homogenized 0° layers. Thus, the effect of debond-debond interaction and of the relative proximity of a bi-material interface on the debond's ERR in cross-ply laminates is yet to be addressed. The present work is devoted to this problem. Models of Repeating Unit Cells (RUCs) are developed to represent laminates with different degrees of damage (here only in the form of debonds). The number of fully bonded fibers across the thickness of the 90° ply is varied in order to investigate the effect of the proximity of the bi-material interface. The thickness of the bounding 0° layers is also analyzed as a parameter of the study. The stress and strain fields are solved with the Finite Element Method in Abaqus [40] and the crack characterized by its Mode I and Mode II ERR, calculated with the VCCT and the J-integral method.

2. RVE models & FE discretization

2.1. Introduction & Nomenclature

In the present work, we investigate debond development in cross-ply $[0^{\circ}_{k\cdot 2n}, 90^{\circ}_{n}]_{S}$ laminates under in-plane transverse tension. The interaction between debonds in the presence of a stiff bi-material interface is studied with the use of different RUCs (see Figures 1 and 2 in Sec. 2.2), in which only the central fiber presents damage in the form of a debond. Repetition of the composite RUC can occur only along the in-plane transverse direction only, thus representing a cross-ply laminate with a thin or even ultra-thin 90° ply in the middle.

The thickness of the 90° ply depends on the number of fibers present across the thickness (the vertical or z direction in Figures 1 and 2) and the value of the fiber volume fraction V_f . On the other hand, the thickness of the 0° layers can be assigned freely as a multiple of the 90° ply thickness, i.e. $t_{0°} = i \cdot t_{90°}$ where i is an arbitrary integer. The thickness ratio i could in theory be assumed to be a real positive number; however, it seems more reasonable to consider it only

as a positive integer based on practical considerations on the actual manufacturing of laminates (stacking of a discrete number of pre-impregnated layers). Thus, the thickness ratio i represents one additional parameter for the investigation. In the RUCs proposed, we consider the 90° ply with debonds as a series of stacked damaged and undamaged fiber rows, each row with only one fiber in the thickness direction. All the RUCs present regular microstructures with fibers placed according to a square-packing configuration and consequently they are Representative Volume Elements (RVE) of cross-ply laminates with a certain distribution of debonds in the middle 90° layer. In the following, let us consider in-plane coordinates x and y, where x is in the transverse direction of the crossply laminate under consideration. In the presence of a load in the x-direction, the strain in the y-direction is small, due to the very small minor Poisson's ratio of the laminate. Furthermore, debonds are considered to be significantly longer in the fiber direction than in the arc direction [41]. Therefore we use 2D models under the assumption of plane strain, defined in the x-z section of the composite. The study presented in this paper thus applies to long debonds and its focus ia on understanding the mechanisms of growth along their arc direction. The laminates are assumed to be subject to transverse tensile strain, which is applied in the form of a constant displacement in the x-direction along both vertical boundaries of the RUC as shown in Figure 3. In summary, the models are differentiated by: first, the spacing between debonds

In summary, the models are differentiated by: first, the spacing between debonds along the horizontal direction in the 90° layer, which corresponds to the number n of fibers in the RUC's horizontal direction; second, the thickness of the middle 90° ply measured in terms of the number k of fiber rows; third, the factor i which provides the thickness of the 0° layers as an integer multiple of the 90° ply thickness. It thus seems natural to introduce the common notation $n \times k - i \cdot t_{90°}$. A final additional model is considered to study the effect of equivalent boundary conditions 3.4. This final model is constituted by only one partially debonded fiber. The application of coupling of horizontal displacements in the form of a constant applied displacement along the right and left sides allows for repetition along the horizontal direction. The pres-

ence of coupling of vertical displacements and a linear distribution of horizontal displacements on the bottom and top surfaces models the presence of the stiff bi-material interface between the 90° and the 0° layers. This model is referred to as $1 \times 1 - H + V$ given that: it has respectively 1 fiber in the horizontal and in the vertical direction; on the top and bottom surfaces, both horizontal (H) and vertical (V) displacements are assigned.

2.2. Models of Representative Volume Element (RVE)

Figure 1: Models of $\left[0_{k\cdot 2n}^{\circ}, 90_{n}^{\circ}\right]_{S}$ cross-ply laminates with an ultra-thin 90° layer, where the 90° ply is made up by a single "row" of fibers. Debonds are repeating at different distances, measured in terms of the number n of fully bonded fibers appearing between two consecutive debonds.

Figure 2: Models of $\left[0_{k\cdot 2n}^{\circ}, 90_{n}^{\circ}\right]_{S}$ cross-ply laminates with a 90° layer of variable thickness, determined by the number k of "rows" of fibers along the vertical direction. Debonds are repeating at different distances along the horizontal direction, measured in terms of the number n of fully bonded fibers appearing between two consecutive debonds.

Figure 3: Schematic of the model with its main parameters.

2.3. Finite Element (FE) discretization

3. Results & Discussion

- 3.1. Interaction between debonds in a 90° ply with a single layer of fibers inside a $[0_n^\circ, 90^\circ]_S$ laminate
- 3.2. Interaction between layers of fully bonded fibers and a centrally located line of debonded fibers in a 90° ply inside a $[0_n^{\circ}, 90^{\circ}]_S$ laminate
- 3.3. Interaction of debonds within a 90° ply with multiple layers of fibers inside a $[0_n^\circ, 90^\circ]_S$ laminate
- 3.4. Comparison with the single fiber model with equivalent boundary conditions

4. Conclusions & Outlook

120 Acknowledgements

115

Luca Di Stasio gratefully acknowledges the support of the European School of Materials (EUSMAT) through the DocMASE Doctoral Programme and the European Commission through the Erasmus Mundus Programme.

References

130

140

145

- [1] K. Kawabe, New spreading technology for carbon fiber tow and its application to composite materials, Sen'i Gakkaishi 64 (8) (2008) 262–267. doi:10.2115/fiber.64.p_262.
 - [2] K. Kawabe, H. Sasayama, S. Tomoda, New carbon fiber tow-spread technology and applications to advanced composite materials, SAMPE Journal 45 (2) (2008) 6–17.
 - [3] H. Sasayama, K. Kawabe, S. Tomoda, I. Ohsawa, K. Kageyama, N. Ogata, Effect of lamina thickness on first ply failure in multidirectionally laminated composites, in: Proceedings of the 8th Japan SAMPE Symposium, SAMPE, 2003.
- [4] K. Yamaguchi, H. Hahn, The improved ply cracking resistance of thinply laminates, in: Proceedings of the 15th International Conference on Composite Materials (ICCM-15), SAMPE, 2005.
 - [5] S. Tsai, S. Sihn, R. Kim, Thin ply composites, in: Proceedings of 46th AIAA/ASME/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005.
 - [6] S. Sihn, R. Kim, K. Kawabe, S. Tsai, Experimental studies of thin-ply laminated composites, Composites Science and Technology 67 (6) (2007) 996-1008. doi:10.1016/j.compscitech.2006.06.008.
 - [7] T. Yokozeki, Y. Aoki, T. Ogasawara, Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates, Composite Structures 82 (3) (2008) 382–389. doi:10.1016/j.compstruct.2007.01.015.
 - [8] T. Yokozeki, A. Kuroda, A. Yoshimura, T. Ogasawara, T. Aoki, Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings, Composite Structures 93 (1) (2010) 49–57. doi: 10.1016/j.compstruct.2010.06.016.

[9] H. Saito, H. Takeuchi, I. Kimpara, Experimental evaluation of the damage growth restraining in 90 layer of thin-ply cfrp cross-ply laminates, Advanced Composite Materials 21 (1) (2012) 57–66. doi:10.1163/ 156855112X629522.

155

160

165

- [10] A. Arteiro, G. Catalanotti, J. Xavier, P. Camanho, Notched response of non-crimp fabric thin-ply laminates, Composites Science and Technology 79 (2013) 97–114. doi:10.1016/j.compscitech.2013.02.001.
- [11] A. Arteiro, G. Catalanotti, J. Xavier, P. Camanho, Large damage capability of non-crimp fabric thin-ply laminates, Composites Part A: Applied Science and Manufacturing 63 (2014) 110–122. doi:10.1016/j.compositesa. 2014.04.002.
- [12] R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, C. Dransfeld, Thin ply composites: Experimental characterization and modeling of sizeeffects, Composites Science and Technology 101 (2014) 121–132. doi:10. 1016/j.compscitech.2014.06.027.
- [13] G. Guillamet, A. Turon, J. Costa, J. Renart, P. Linde, J. Mayugo, Damage occurrence at edges of non-crimp-fabric thin-ply laminates under off-axis uniaxial loading, Composites Science and Technology 98 (2014) 44–50. doi: 10.1016/j.compscitech.2014.04.014.
- [14] C. Huang, S. Ju, M. He, Q. Zheng, Y. He, J. Xiao, J. Zhang, D. Jiang, Identification of failure modes of composite thin-ply laminates containing circular hole under tension by acoustic emission signals, Composite Structures 206 (2018) 70–79. doi:10.1016/j.compstruct.2018.08.019.
- [15] J. Cugnoni, R. Amacher, S. Kohler, J. Brunner, E. Kramer, C. Dransfeld, W. Smith, K. Scobbie, L. Sorensen, J. Botsis, Towards aerospace grade thin-ply composites: Effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance, Composites Science and Technology 168 (2018) 467–477. doi:10.1016/j.compscitech.2018.08.
 037.

- [16] J.-B. Moon, M.-G. Kim, C.-G. Kim, S. Bhowmik, Improvement of tensile properties of CFRP composites under LEO space environment by applying MWNTs and thin-ply, Composites Part A: Applied Science and Manufacturing 42 (6) (2011) 694-701. doi:10.1016/j.compositesa.2011.02.011.
- [17] Y. H. N. Kim, S. Ko, W.-S. Lay, J. Tian, P. Chang, S. U. Thielk, H.-J. Bang, J. Yang, Effects of shallow biangle, thin-ply laminates on structural performance of composite wings, AIAA Journal 55 (6) (2017) 2086–2092. doi:10.2514/1.j055465.
 - [18] A. Kopp, S. Stappert, D. Mattsson, K. Olofsson, E. Marklund, G. Kurth, E. Mooij, E. Roorda, The aurora space launcher concept, CEAS Space Journal 10 (2) (2017) 167–187. doi:10.1007/s12567-017-0184-2.

190

- [19] D. A. McCarville, J. C. Guzman, A. K. Dillon, J. R. Jackson, J. O. Birkland, 3.5 Design, Manufacture and Test of Cryotank Components, Elsevier, 2018, pp. 153–179. doi:10.1016/b978-0-12-803581-8.09958-6.
- [20] J. E. Bailey, A. Parvizi, On fibre debonding effects and the mechanism of transverse-ply failure in cross-ply laminates of glass fibre/thermoset composites, Journal of Materials Science 16 (3) (1981) 649–659. doi: 10.1007/bf02402782.
- [21] V. Kushch, S. Shmegera, P. Brøndsted, L. Mishnaevsky, Numerical simulation of progressive debonding in fiber reinforced composite under transverse loading, International Journal of Engineering Science 49 (1) (2011) 17–29. doi:10.1016/j.ijengsci.2010.06.020.
 - [22] L. P. Canal, C. González, J. Segurado, J. LLorca, Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling, Composites Science and Technology 72 (11) (2012) 1223–1232. doi:10.1016/ j.compscitech.2012.04.008.
 - [23] L. Bouhala, A. Makradi, S. Belouettar, H. Kiefer-Kamal, P. Fréres, Modelling of failure in long fibres reinforced composites by x-FEM and co-

hesive zone model, Composites Part B: Engineering 55 (2013) 352–361. doi:10.1016/j.compositesb.2012.12.013.

210

220

- [24] M. Herráez, D. Mora, F. Naya, C. S. Lopes, C. González, J. LLorca, Transverse cracking of cross-ply laminates: A computational micromechanics perspective, Composites Science and Technology 110 (2015) 196–204. doi:10.1016/j.compscitech.2015.02.008.
- [25] L. E. Asp, L. A. Berglund, P. Gudmundson, Effects of a composite-like stress state on the fracture of epoxies, Composites Science and Technology 53 (1) (1995) 27–37. doi:10.1016/0266-3538(94)00075-1.
 - [26] V. Mantič, Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. application of a coupled stress and energy criterion, International Journal of Solids and Structures 46 (6) (2009) 1287– 1304. doi:10.1016/j.ijsolstr.2008.10.036.
 - [27] R. Krueger, Virtual crack closure technique: History, approach, and applications, Applied Mechanics Reviews 57 (2) (2004) 109. doi:10.1115/1. 1595677.
- [28] J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics 35 (2) (1968) 379. doi:10.1115/1.3601206.
 - [29] M. Toya, A crack along the interface of a circular inclusion embedded in an infinite solid, Journal of the Mechanics and Physics of Solids 22 (5) (1974) 325–348. doi:10.1016/0022-5096(74)90002-7.
 - [30] F. París, J. C. Caño, J. Varna, The fiber-matrix interface crack a numerical analysis using boundary elements, International Journal of Fracture 82 (1) (1996) 11–29. doi:10.1007/bf00017861.
- [31] L. Zhuang, A. Pupurs, J. Varna, R. Talreja, Z. Ayadi, Effects of inter-fiber spacing on fiber-matrix debond crack growth in unidirectional composites

- under transverse loading, Composites Part A: Applied Science and Manufacturing 109 (2018) 463-471. doi:10.1016/j.compositesa.2018.03.031.
- [32] E. Correa, V. Mantič, F. París, Effect of thermal residual stresses on matrix failure under transverse tension at micromechanical level: A numerical and experimental analysis, Composites Science and Technology 71 (5) (2011) 622–629. doi:10.1016/j.compscitech.2010.12.027.
 - [33] E. Correa, F. París, V. Mantič, Effect of the presence of a secondary transverse load on the inter-fibre failure under tension, Engineering Fracture Mechanics 103 (2013) 174–189. doi:10.1016/j.engfracmech.2013.02.026.
 - [34] E. Correa, F. París, V. Mantič, Effect of a secondary transverse load on the inter-fibre failure under compression, Composites Part B: Engineering 65 (2014) 57–68. doi:10.1016/j.compositesb.2014.01.005.
 - [35] C. Sandino, E. Correa, F. París, Numerical analysis of the influence of a nearby fibre on the interface crack growth in composites under transverse tensile load, Engineering Fracture Mechanics 168 (2016) 58–75. doi:10.1016/j.engfracmech.2016.01.022.

250

- [36] C. Sandino, E. Correa, F. París, Interface crack growth under transverse compression: nearby fibre effect, in: Proceeding of the 18th European Conference on Composite Materials (ECCM-18), 2018.
- [37] J. Varna, L. Q. Zhuang, A. Pupurs, Z. Ayadi, Growth and interaction of debonds in local clusters of fibers in unidirectional composites during transverse loading, Key Engineering Materials 754 (2017) 63-66. doi: 10.4028/www.scientific.net/kem.754.63.
- [38] M. Velasco, E. Graciani, L. Távara, E. Correa, F. París, BEM multiscale modelling involving micromechanical damage in fibrous composites, Engineering Analysis with Boundary Elements 93 (2018) 1–9. doi: 10.1016/j.enganabound.2018.03.012.

- [39] F. París, M. L. Velasco, E. Correa, Micromechanical study on the influence of scale effect in the first stage of damage in composites, Composites Science and Technology 160 (2018) 1–8. doi:10.1016/j.compscitech.2018.03. 004.
 - [40] Simulia, Providence, RI, USA, ABAQUS/Standard User's Manual, Version 6.12 (2012).
- [41] H. Zhang, M. Ericson, J. Varna, L. Berglund, Transverse single-fibre test for interfacial debonding in composites: 1. experimental observations, Composites Part A: Applied Science and Manufacturing 28 (4) (1997) 309–315. doi:10.1016/s1359-835x(96)00123-6.