# Python for Science and Engg: Plotting experimental data

#### **FOSSEE**

Department of Aerospace Engineering IIT Bombay

25 September, 2010 Day 1, Session 2

- Plotting Points
- Lists
- Simple Pendulum
- Strings
- Summary

- Plotting Points
- 2 Lists
- Simple Pendulum
- Strings
- Summary

# Why would I plot f(x)?

In []: time = [0, 1, 2, 3]

In []: distance = [7, 11, 15, 19]

Do we plot analytical functions or experimental data?

```
In []: plot(time, distance)
Out[]: [<matplotlib.lines.Line2D object at 0xa73a
In []: xlabel('time')
Out[]: <matplotlib.text.Text object at 0x986e9ac>
In []: ylabel('distance')
Out[]: <matplotlib.text.Text object at 0x98746ec>
```



Is this what you have?



# Plotting points

What if we want to plot the points!

```
In []: clf()
In []: plot(time, distance, 'o')
Out[]: [<matplotlib.lines.Line2D object
In []: clf()
In []: plot(time, distance, '.')
Out[]: [<matplotlib.lines.Line2D object</pre>
```





# Additional Plotting Attributes

- 'o' Filled circles
- ' . ' Small Dots
- '-' Lines
- '--' Dashed lines



- Plotting Points
- Lists
- Simple Pendulum
- Strings
- Summary

#### **Lists: Introduction**

```
In []: time = [0, 1, 2, 3]
In []: distance = [7, 11, 15, 19]
What are x and y?
lists!!
```

# Lists: Initializing & accessing elements

```
In []: mtlist = []
```

#### **Empty List**

```
In []: p = [2, 3, 5, 7]
```

```
In []: p[1]
```

Out[]: 3

```
In []: p[0]+p[1]+p[-1]
```

Out[]: 12



### List: Slicing

#### Remember...

```
In []: p = [2, 3, 5, 7]
```

```
In []: p[1:3]
Out[]: [3, 5]
```

#### A slice

```
In []: p[0:-1]
Out[]: [2, 3, 5]
In []: p[::2]
Out[]: [2, 5]
```

list[initial:final:step]

### List operations

```
In []: b = [11, 13, 17]
In []: c = p + b
In []: c
Out[]: [2, 3, 5, 7, 11, 13, 17]
In []: p.append(11)
In []: p
Out[]: [ 2, 3, 5, 7, 11]
```

- Plotting Points
- 2 Lists
- Simple Pendulum
- Strings
- Summary

# Simple Pendulum - L and T

Let us look at the Simple Pendulum experiment.

| L   | T    | $T^2$ |
|-----|------|-------|
| 0.1 | 0.69 |       |
| 0.2 | 0.90 |       |
| 0.3 | 1.19 |       |
| 0.4 | 1.30 |       |
| 0.5 | 1.47 |       |
| 0.6 | 1.58 |       |
| 0.7 | 1.77 |       |
| 0.8 | 1.83 |       |
| 0.9 | 1.94 |       |
| 2   |      |       |

 $L\alpha T^2$ 

#### Lets use lists

# Plotting L vs $T^2$

- We must square each of the values in t
- How to do it?
- We use a for loop to iterate over t

# Plotting L vs $T^{2}$

```
In []: tsq = []
In []: for time in t:
             tsq.append(time*time)
 . . . . :
 . . . . :
 . . . . :
This gives tsq which is the list of squares of t values.
In []: print len(L), len(t), len(tsq)
Out[1: 9 9 9
```

### How to come out of the for loop?

Hitting the "ENTER" key twice returns the cursor to the previous indentation level



# What about larger data sets?

#### Data is usually present in a file!

Lets look at the **pendulum.txt** file.

```
In []: cat pendulum.txt
1.0000e-01 6.9004e-01
1.1000e-01 6.9497e-01
1.2000e-01 7.4252e-01
1.3000e-01 7.5360e-01
```

. . .

#### Reading pendulum.txt

- File contains L vs. T values
- First Column L values
- Second Column T values
- Let us generate a plot from the data file

### Plotting from pendulum.txt

Open a new script Save as **pendulum\_plot.py** after typing first line L = []t = []for line in open('pendulum.txt'): point = line.split() L.append(float(point[0])) t.append(float(point[1])) tsq = []for time in t: tsq.append(time\*time) plot(L, tsq, '.')

#### Save and run

- Save as pendulum\_plot.py.
- Run using %run -i pendulum\_plot.py



# Reading files ...

```
for line in open('pendulum.txt'):
```

- opening file 'pendulum.txt'
- reading the file line by line
- line is a string

- Plotting Points
- 2 Lists
- Simple Pendulum
- Strings
- Summary

# Strings

Anything within "quotes" is a string!

```
' This is a string '
" This too! "
""" This one too! """
''' And one more! '''
```



# Strings and split()

```
In []: greet = 'hello world'
In []: greet.split()
Out[]: ['hello', 'world']
This is what happens with line
In []: line = '1.20 \ 7.42'
In []: point = line.split()
In []: point
Out[]: ['1.20', '7.42']
```

# Getting floats from strings

```
In []: type(point[0])
Out[]: <type 'str'>
But, we need floating point numbers
In []: t = float(point[0])
In []: type(t)
Out[]: <type 'float'>
```

#### Let's review the code

```
L = []
t = []
for line in open('pendulum.txt'):
    point = line.split()
    L.append(float(point[0]))
    t.append(float(point[1]))
tsq = []
for time in t:
    tsq.append(time*time)
plot(L, tsq, '.')
```



- Plotting Points
- 2 Lists
- Simple Pendulum
- Strings
- Summary

#### What did we learn?

- Plotting points
- Plot attributes
- Lists
- for
- Reading files
- Tokenizing
- Strings

