Формальные языки

Домашнее задание 3 Дмитрий Орехов

1

Нарисуем первичный автомат:

Он полный, нет недостижимых состояний.

Алгоритм минимизации:

Обратное δ отображение:

δ^{-1}	a	b
q_0	_	_
q_1	q_0	
q_2	_	q_0
q_3	q_1, q_3	
q_4	q_2	q_1
q_5	_	q_{2}, q_{5}
q_6	q_4, q_6	q_3
q_7	q_5	q_4, q_7
q_8	q_7,q_8	q_6, q_8

Очередь в ходе алгоритма:

 $(q_0,q_8), (q_1,q_8), (q_2,q_8), (q_3,q_8), (q_4,q_8), (q_5,q_8), (q_6,q_8), (q_7,q_8), (q_0,q_7), (q_0,q_6), (q_1,q_7), (q_3,q_7), (q_2,q_7), (q_1,q_6), (q_2,q_6), (q_5,q_6), (q_4,q_7), (q_6,q_7), (q_3,q_6), (q_5,q_7), (q_4,q_6), (q_0,q_5), (q_1,q_5), (q_3,q_5), (q_0,q_4), (q_0,q_3), (q_2,q_3), (q_3,q_5), (q_1,q_4), (q_4,q_5), (q_3,q_4), (q_2,q_4), (q_1,q_3), (q_0,q_2), (q_0,q_1)$ Таблица эквивалентности:

Tooviiiiqo oiibiibowioiiiiio oiiii									
	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8
q_0									
q_1	\checkmark								
q_2	\checkmark	\checkmark							
q_3	\checkmark	✓	\checkmark						
q_4	\checkmark	✓	\checkmark	√					
q_5	\checkmark	✓	\checkmark	√	\checkmark				
q_6	\checkmark	✓	\checkmark	√	\checkmark	√			
q_7	\checkmark	✓	\checkmark	√	\checkmark	\checkmark	\checkmark		
q_8	\checkmark	\checkmark	\checkmark	$ $ \checkmark	\checkmark		\checkmark	$ $ \checkmark	

Все состояния различимы, а значит автомат минимален.

2

Думаю, что я сделал данное задание неверно, потому что автомат недетерминированный. Минимизируем данный автомат, я переименовал состояния, чтобы было легче из различать:

Буду построчно строить таблицу переходов соответсвующего детерминированного автомата:

	a	b
A	A	AB
В	\mathbf{C}	С
\mathbf{C}	D	D
D	Ø	Ø
AB	AC	ABC
AC	AD	ABD
ABC	ACD	ABCD
AD	A	AB
ABD	AC	ABC
ACD	AD	ABD
ABCD	ACD	ABCD

Состояния B,C,D недостижимы в получившемся ДКА. Обратное δ отображение:

δ^{-1}	a	b
A	A, AD	_
AB	_	A, AD
AC	AB, ABD	_
ABC	_	AB, ABD
AD	AC, ACD	_
ABD	_	AC, ACD
ACD	ABC, ABCD	_
ABCD	_	ABC, ABCD

Очередь алгоритма:

(A, AD), (AB, AD), (AC, AD), (ABC, AD), (A, ABD), (AB, ABD), (AC, ABD), (ABC, ABD), (A, ACD), (AB, ACD), (AC, ACD), (ABC, ACD), (A, ABCD), (AB, ABCD), (AC, ABCD), (ABC, ABCD), (ACD, ABCD)

	A	AB	AC	ABC	AD	ABD	ACD	ABCD
A								
AB	\checkmark							
AC	✓	✓						
ABC	✓	✓	✓					
AD	✓	\checkmark	\checkmark	\checkmark				
ABD	✓	✓	✓	\checkmark	✓			
ACD	✓	✓	✓	\checkmark	✓	\checkmark		
ABCD	✓	✓	\checkmark	\checkmark	✓	\checkmark	✓	

Получилось, что все пары ДКА различны. Значит от минимален. Рисовать его уже, наверное, не буду. Кажется, достаточно таблицы переходов выше.

3

Из-за ограничения на сумму цифр, у нас число может содержать либо две единички и нули, либо одну двойку и все нули.

Случай с двойкой совсем простой, нужно с нее начать, добавление одного нуля уже приводит нас к 20, числу делимому на 4, то есть в терминальное состояние. В терминальном состоянии мы можем добавлять сколько угодно нулей, это никак не повлияет на сумму цифр, не повлияет и на делимость на 4, ведь если некоторое число x делится на 4, то и $x \cdot 10$ делится на 4

Случай с единичками: начинаем с единички, далее может идти произвольное число нулей, после опять единичка. Получившееся к данному состоянию число можно представить как 10...0+1, 10..0 всегда делится нацело на 4, начиная со 100, остается единичка, которая дает дробную часть 0.25. Есть еще случай числа 11, тогда дробная часть будет 0.75, потому что сложатся дробные части от делеия 10 на 4 и от деления 1 на 4, но это единственный такой случай.

Добавив один ноль получим число вида 10...0+10, тут 10...0 уже не может быть чем-то меньше, чем 100, поэтому дробная часть всегда будет 0.5, от деления десяти на 4.

Наконец, добавив еще ноль, получим число 10...0 + 100, тут 10...0 не меньше 1000. Придем в терминальное состояние, для которого уже показали, что добавление новых нулей ничего не

испортит.

Итак, нарисуем такой автомат, я сразу объединил состояние, соответствующее числу 20 и 10...0+10 в одно, так как в обоих случаях добавление одного нуля дает терминальное состояние, а любые другие переходы приводят к тупиковому состоянию:

Алгоритм минимизации:

Обратное δ отображение, добавим состояние F, тупиковое:

δ^{-1}	0	1	2
A			_
В	В	A	_
\mathbf{C}	_	В	_
D	С	_	A
\mathbf{E}	DΕ	_	_
F	A F	CDEF	BCDEF

Положим в очередь состояния, отличимые по ϵ . отметим эти пары и в таблице:

(A,E), (B,E), (C,E), (D,E), (E,F)

Проитерируемся по очереди, приведу здесь полную последовательность вершин, в котором они появлялись в очереди:

(A,E), (B,E), (C,E), (D,E), (E,F), (B,D), (C,D), (A,D), (D,F), (B,C), (A,C), (C,F), (A,B), (A,F), (B,F)

	A	В	С	D	Е	F
A						
В	\checkmark					
С	√	√				
D	√	√	√			
Е	√	√	√	√		
F	√	√	√	√	√	

Все состояния различны, а значит автомат минимальный.