# Tensorflow

TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms.

### Outline

- Introduction
- VS.
- Basic concept about NN
- Programming model and basic concept
  - o Operation and kernels
- Local vs. distributed system
- Example: MNIST
- Tensor Board
- Easy ML with tf.contrib.learn
- More advanced features
- Reference

### Introduction

#### DistBelief

- Unsupervised learning
- Language representation
- Models for image classification and object detection
- Video classification
- Speech recognition
- Sequence prediction
- Move selection for Go
- Pedestrian detection
- Reinforcement learning
- And so on

#### Used by:

- Google Search
- Advertising products
- Speech recognition systems
- Google Photos
- Google Maps and StreetView
- Google Translate
- YouTube
- And so on

Tensorflow is the second-generation system for the implementation and deployment of large-scale machine learning model.

- Programming model is more flexible.
- Performance is significantly better.
- Support training and using a broader range of models on a wider variety of heterogeneous hardware platforms

# VS.

| System          | Core   | Binding           | Devices      | Distri- | Imperative   | Declarative  |
|-----------------|--------|-------------------|--------------|---------|--------------|--------------|
|                 | Lang   | Langs             | (beyond CPU) | buted   | Program      | Program      |
| Caffe [7]       | C++    | Python/Matlab     | GPU          | ×       | ×            | <b>√</b>     |
| Torch7 [3]      | Lua    | -                 | GPU/FPGA     | ×       | $\checkmark$ | ×            |
| Theano [1]      | Python | -                 | GPU          | ×       | ×            | $\checkmark$ |
| TensorFlow [11] | C++    | Python            | GPU/Mobile   | √       | ×            | V            |
| MXNet           | C++    | Python/R/Julia/Go | GPU/Mobile   | V       | $\checkmark$ | <b>√</b>     |

### Pros/Cons of frameworks

https://deeplearning4j.org/compare-dl4j-torch7-pylearn

# Basic concept about NN

#### Neuron:

- A 'neuron' has a number of input connections
- Each input connection has a 'weight', that is multiplied by the value of the input
- The weighted inputs are then summed
- A 'bias' is then added to the sum of the weighted inputs
- This final 'sum' is then put through an 'activation' function to produce an output value



#### Activation Function:



#### Layer:



### **Programming Model and Basic Concepts**

#### https://www.tensorflow.org/get\_started/basic\_usage

- Graph: represent a dataflow computation.
- Node: represent an operation (+ \* / ...).
- Tensor: represent input/output of nodes.
- Variable: a special kind of operation that return a handle to a persistent mutable tensor.
- Session: client programs interact with the TensorFlow system by creating a Session.
- Client-Master: common concept for distributed system.

Client construct a computational graph using one of the supported frontend languages (C++ or Python). Call session.run() to submit the computation task.

### **Operations and Kernels**

Figure 1: Example TensorFlow code fragment



# **Operation type**

| Category                             | Examples                                              |  |  |  |
|--------------------------------------|-------------------------------------------------------|--|--|--|
| Element-wise mathematical operations | Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,   |  |  |  |
| Array operations                     | Concat, Slice, Split, Constant, Rank, Shape, Shuffle, |  |  |  |
| Matrix operations                    | MatMul, MatrixInverse, MatrixDeterminant,             |  |  |  |
| Stateful operations                  | Variable, Assign, AssignAdd,                          |  |  |  |
| Neural-net building blocks           | SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,       |  |  |  |
| Checkpointing operations             | Save, Restore                                         |  |  |  |
| Queue and synchronization operations | Enqueue, Dequeue, MutexAcquire, MutexRelease,         |  |  |  |
| Control flow operations              | Merge, Switch, Enter, Leave, NextIteration            |  |  |  |

Table 1: Example TensorFlow operation types

# Local VS. distributed system



Figure 3: Single machine and distributed system structure

### **Example: MNIST**

https://www.tensorflow.org/tutorials/mnist/beginners/

data source: 28x28



Input:



Target:



#### Softmax:

- 'softmax' is a function that takes N inputs, and produces N outputs whose values have properties of probability:
  - o Sum to 1.0
  - Non-negative



ations, we get:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \underset{\mathsf{softmax}}{\mathsf{softmax}} \begin{bmatrix} W_{1,1}x_1 + W_{1,2}x_2 + W_{1,3}x_3 + b_1 \\ W_{2,1}x_1 + W_{2,2}x_2 + W_{2,3}x_3 + b_2 \\ W_{3,1}x_1 + W_{3,2}x_2 + W_{3,3}x_3 + b_3 \end{bmatrix}$$

cedure, turning it into a matrix multiplication and vector addition. This It's also a useful way to think.)



### **TensorBoard**

A tool for graph visualization

https://www.tensorflow.org/how\_tos/graph\_viz/

# Easy ML with tf.contrib.learn

TensorFlow's high-level machine learning API.

- Load CSVs containing Iris training/test data into a TensorFlow Dataset
- Construct a neural network classifier
- Fit the model using the training data
- Evaluate the accuracy of the model
- Classify new samples

https://www.tensorflow.org/tutorials/tflearn/

### **Several more advanced features**

- Gradient Computation
- Partial Execution: execute just a subgraph of the entire execution graph.
- Device Constraints: specify the device to execute one operation. (control the placement of nodes on devices)
- Control Flow: add control flow for graph. (if...else/do...while/...)
- Input Operations: worker read data from underlying storage system into memory directly.
- Queues: different portions of the graph can run asynchronously.
- Containers: Variable lives in containers.

### Reference

Tensorflow tutorials: <a href="https://www.tensorflow.org/tutorials/">https://www.tensorflow.org/tutorials/</a>

Tensorflow white paper: <a href="https://www.tensorflow.org/resources/">https://www.tensorflow.org/resources/</a>

MxNet tutorials: <a href="http://mxnet.io/tutorials/index.html">http://mxnet.io/tutorials/index.html</a>