A Reference Material

Selection of CMOS imaging sensors (Section 1.7.1)

C: charge saturation capacity in electrons, FR: frame rate in s^{-1} , PC: pixel clock in MHz, QE: peak quantum efficiency

Chip	$\begin{array}{c} \text{Format} \\ \text{H} \times \text{V} \end{array}$	FR	PC	Pixel size $H \times V$, μm	Comments
Linear response					
Micron ³ MT9V403	656×491	200	66	9.9×9.9	QE 0.32 @ 520 nm
Fillfactory ² IBIS54-1300	1280×1024	30	40	6.7×6.7	QE 0.30-0.35 @ 600 nm, C 60k
Fillfactory ² IBIS4-4000	2496×1692	4.5		11.4×11.4	C 150k
Fast frame rate linear	response				
Fillfactory ² LUPA1300	1280 × 1024	450	40	12.0 × 12.0	16 parallel ports
Micron ³ MV40	2352×1728	240	80	7.0×7.0	16 parallel 10-bit ports
Micron ^{3,5} MT9M413	1280×1024	600	80	12.0×12.0	QE 0.27 @ 520 nm, C 63k, 10 parallel 10-bit ports
Micron ⁴ MV02	512×512	4000	80	16.0×16.0	16 parallel 10-bit ports
Logarithmic response	2				
IMS HDRC VGA ⁴	640 × 480	25	8	12×12	
PhotonFocus ¹	1024 × 1024	150	80	10.6 × 10.6	QE 0.29 @ 600 nm, C 200k, linear response at low light levels with adjustable transition to logarithmic response
Солимовол					

Sources:

R1

 $^{^{1}}$ http://www.photonfocus.com

² http://www.fillfactory.com

³ http://www.photobit.com

⁴ http://www.ims-chips.de

⁵ http://www.pco.de

R2 Selection of CCD imaging sensors (Section 1.7.1)

C: charge saturation capacity in electrons, eNIR: enhanced NIR sensitivity, FR: frame rate in $\rm s^{-1}$, ID: image diagonal in mm, QE: peak quantum efficiency, Sony (ICX...) and Kodak (KAI...) sensors

Chip	Format H × V	FR	ID	Pixel size $H \times V$, μm	Comments
Interlaced EIA vide	eo				
ICX278AL 1/4"	768 × 494	30	4.56	4.75×5.55	eNIR
ICX258AL 1/3"	768×494	30	6.09	6.35×7.4	eNIR
ICX248AL 1/2"	768×494	30	8.07	8.4×9.8	eNIR
ICX422AL 2/3"	768×494	30	11.1	11.6×13.5	
Interlaced CCIR vi	deo				
ICX279AL 1/4"	752 × 582	25	4.54	4.85×4.65	eNIR
ICX259AL 1/3"	752×582	25	6.09	6.5×6.25	eNIR
ICX249AL 1/2"	752×582	25	8.07	8.6×8.3	eNIR
ICX423AL 2/3"	752×582	25	10.9	11.6×11.2	
Progressive scann	ing interline				
ICX098AL 1/4"	659 × 494	30	4.61	5.6×5.6	
ICX424AL 1/3"	659×494	30	6.09	7.4×7.4	
ICX074AL 1/2"	659×494	40	8.15	9.9×9.9	C 32k, QE 0.43 @ 340 nm
ICX414AL 1/2"	659×494	50	8.15	9.9×9.9	C 30k, QE 0.40 @ 500 nm
ICX075AL 1/2"	782×582	30	8.09	8.3×8.3	
ICX204AL 1/3"	1024×768	15	5.95	4.65×4.65	
ICX205AL 1/2"	1360×1024	9.5	7.72	4.65×4.65	C 13 ke
ICX285AL 2/3"	1360×1024	10	11.0	6.45×6.45	C 18k, QE 0.65 @ 500 nm
ICX085AL 2/3"	1300×1030	12.5	11.1	6.7×6.7	C 20k, QE 0.54 @ 380 nm
ICX274AL 1/1.8"	1628×1236	12	8.99	4.4×4.4	
KAI-0340DM 1/3"	640×480	200	5.92	7.4×7.4	C 20k, QE 0.55 @ 500 nm
KAI-1010M	1008×1018	30	12.9	9.0×9.0	QE 0.37 @ 500 nm
KAI-1020M	1000×1000	49	10.5	7.4×7.4	C 42k, QE 0.45 @ 490 nm
KAI-2001M	1600×1200	30	14.8	7.4×7.4	C 40k, QE 0.55 @ 480 nm
KAI-4020M	2048×2048	15	21.4	7.4×7.4	C 40k, QE 0.55 @ 480 nm
KAI-10000M	4008×2672	3	43.3	9.0×9.0	C 60k, QE 0.50 @ 500 nm

Sources:

http://www.framos.de

http://www.kodak.com/global/en/digital/ccd/

http://www.pco.de

Imaging sensors for the infrared (IR, Section 1.7.1)

C: full well capacity in millions of electrons [Me], IT: integration time, NETD: noise equivalent temperature difference, QE: peak quantum efficiency

Chip	Format H × V	FR	PC	Pixel size $H \times V$, μm	Comments
Near infrared (NIR)					
Indigo ¹ InGaAs	320 × 256	345		30×30	0.9-1.68 μm, C 3.5 Me
Mid wave infrared (M	WIR)				
AIM ² PtSi	640 × 486	50	12	24 × 24	3.0-5.0 μm, NETD < 75 mK @ 33 ms IT
Indigo ¹ InSb	320×256	345		30×30	2.0-5.0 μm, C 18 Me
Indigo ¹ InSb	640×512	100		25×25	2.0-5.0 μm, C 11 Me
AIM ² HgCdTe	384×288	120	20	24×24	3.0 – $5.0 \mu\mathrm{m}$, NETD $< 20 \mathrm{mK}$ @ 2 ms IT
AIM ² /IaF FhG ³ QWIP	640×512	30	18	24×24	3.0 – $5.0\mu\mathrm{m}$, NETD $< 15\mathrm{mK}$ @ 20 ms IT
Long wave infrared (L	WIR)				
AIM ² HgCdTe	256 × 256	200	16	40×40	$8-10\mu\mathrm{m},$ NETD $<20\mathrm{mK}$ @ 0.35 ms IT
Indigo ¹ QWIP	320×256	345		30×30	$8.09.2\mu\mathrm{m},\mathrm{C}18\mathrm{Me},\mathrm{NETD}$ $<30\mathrm{mK}$
AIM ² /IaF FhG ³ QWIP	256×256	200	16	40×40	8.0 – $9.2 \mu\mathrm{m}$, NETD $< 8 \mathrm{mK} \;$ @ $20 \mathrm{ms}$ IT
AIM ² /IaF FhG ³ QWIP	640×512	30	18	24×24	8.0–9.2 μ m, NETD < 10 mK @ 30 ms IT
Uncooled sensors					
Indigo ¹ Microbolometer	320 × 240	60		30×30	$7.0\text{-}14.0\mu\text{m},$ NETD $< 120\text{mK}$

Sources:

R3

¹ http://www.indigosystems.com

² http://www.aim-ir.de

³ http://www.iaf.fhg.de/tpqw/frames_d.htm

$\overline{R4}$ Properties of the W-dimensional Fourier transform (Section 2.3.4)

 $g(\mathbf{x}) \circ \longrightarrow \hat{g}(\mathbf{k})$ and $h(\mathbf{x}) \circ \longrightarrow \hat{h}(\mathbf{k})$ are Fourier transform pairs: $\mathbb{R}^W \mapsto \mathbb{C}$:

$$\hat{g}(\mathbf{k}) = \int_{-\infty}^{\infty} g(\mathbf{x}) \exp\left(-2\pi i \mathbf{k}^T \mathbf{x}\right) d^W \mathbf{x} = \left\langle \exp\left(2\pi i \mathbf{k}^T \mathbf{x}\right) | g(\mathbf{x}) \right\rangle;$$

s is a real, nonzero number, *a* and *b* are complex constants; *A* is a W×W matrix, \mathbf{R} is an orthogonal rotation matrix ($\mathbf{R}^{-1} = \mathbf{R}^T$, det $\mathbf{R} = 1$)

Property	Spatial domain	Fourier domain
Linearity	$ag(\mathbf{x}) + bh(\mathbf{x})$	$a\hat{g}(\mathbf{k}) + b\hat{h}(\mathbf{k})$
Similarity	$g(s\boldsymbol{x})$	$\hat{g}(oldsymbol{k}/arsigma)/ arsigma ^W$
Generalized similarity	g(Ax)	$\hat{g}\left((\pmb{A}^{-1})^T\pmb{k}\right)/\det\pmb{A}$
Rotation	$g(\mathbf{R}\mathbf{x})$	$\hat{g}(\mathbf{R}\mathbf{k})$
Separability	$\prod_{w=1}^{W} g_{w}(x_{w})$	$\prod_{w=1}^{W}\hat{g}_{w}(k_{w})$
Shift in <i>x</i> space	$g(\mathbf{x} - \mathbf{x}_0)$	$\exp(-2\pi i \boldsymbol{k}^T \boldsymbol{x}_0) \hat{\boldsymbol{g}}(\boldsymbol{k})$
Finite difference	$g(x + x_0/2) - g(x - x_0/2)$	$2i\sin(\boldsymbol{\pi}\boldsymbol{x}_0^T\boldsymbol{k})\hat{\boldsymbol{g}}(\boldsymbol{k})$
Shift in k space	$\exp(2\pi \mathrm{i} \boldsymbol{k}_0^T \boldsymbol{x}) g(\boldsymbol{x})$	$\hat{g}(oldsymbol{k} - oldsymbol{k}_0)$
Modulation	$\cos(2\pi \boldsymbol{k}_0^T \boldsymbol{x}) g(\boldsymbol{x})$	$(\hat{g}(\mathbf{k}-\mathbf{k}_0)+\hat{g}(\mathbf{k}+\mathbf{k}_0))/2$
Differentiation in x space	$\frac{\partial g(\mathbf{x})}{\partial x_p}$	$2\pi \mathrm{i} k_p \hat{g}(\boldsymbol{k})$
Differentiation in <i>k</i> space	$-2\pi \mathrm{i} x_p g(\boldsymbol{x})$	$rac{\partial \hat{g}(m{k})}{\partial k_p}$
Definite integral, mean	$\int_{-\infty}^{\infty} g(\boldsymbol{x}') \mathrm{d}^W x'$	$\hat{oldsymbol{g}}(oldsymbol{0})$
Moments	$\int_{-\infty}^{\infty} x_p^m x_q^n g(\boldsymbol{x}) \mathrm{d}^W x$	$\left. \left(\frac{\mathrm{i}}{2\pi}\right)^{m+n} \left. \left(\frac{\partial^{m+n} \hat{g}(\boldsymbol{k})}{\partial k_p^m \partial k_q^n}\right) \right _{\boldsymbol{0}}$
Convolution	$\int_{-\infty}^{\infty} h(\mathbf{x}')g(\mathbf{x} - \mathbf{x}')d^{W}x'$ $\int_{-\infty}^{\infty} h(\mathbf{x}')g(\mathbf{x}' + \mathbf{x})d^{W}x'$	$\hat{h}(m{k})\hat{g}(m{k})$
Spatial correlation	$\int_{-\infty}^{\infty} h(\boldsymbol{x}') g(\boldsymbol{x}' + \boldsymbol{x}) \mathrm{d}^W x'$	$\hat{g}^*(m{k})\hat{h}(m{k})$
Multiplication	$h(\boldsymbol{x})g(\boldsymbol{x})$	$\int\limits_{-\infty}^{\infty}\hat{h}(\boldsymbol{k}')\hat{g}(\boldsymbol{k}-\boldsymbol{k}')\mathrm{d}^{W}k'$
Inner product	$\int_{-\infty}^{\infty} g^*(\boldsymbol{x}) h(\boldsymbol{x}) \mathrm{d}^W x$	$\int_{-\infty}^{\infty} \hat{h}(\mathbf{k}') \hat{g}(\mathbf{k} - \mathbf{k}') \mathrm{d}^{W} k'$ $\int_{-\infty}^{\infty} \hat{g}^{*}(\mathbf{k}) \hat{h}(\mathbf{k}) \mathrm{d}^{W} k$

R5

2-D and 3-D functions are marked by † and ‡, respectively.

Space domain	Fourier domain
Delta, $\delta(x)$	const., 1
const., 1	Delta, $\delta(k)$
$\cos(k_0x)$	$\frac{1}{2}\left(\delta(k-k_0)+\delta(k+k_0)\right)$
$\sin(k_0x)$	$\frac{\mathrm{i}}{2}\left(\delta(k-k_0)-\delta(k+k_0)\right)$
$\operatorname{sgn}(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$	$\frac{-\mathrm{i}}{\pi k}$
Box, $\Pi(x) = \begin{cases} 1 & x < 1/2 \\ 0 & x \ge 1/2 \end{cases}$	$\operatorname{sinc}(k) = \frac{\sin(\pi k)}{\pi k}$
Disk, † $\frac{1}{\pi r^2} \Pi\left(\frac{ \mathbf{x} }{2r}\right)$	Bessel, $\frac{J_1(2\pi r m{k})}{\pi r m{k} }$
Ball, † $\Pi\left(\frac{ \boldsymbol{x} }{2}\right)$	$\frac{\sin(\boldsymbol{k}) - \boldsymbol{k} \cos(\boldsymbol{k})}{ \boldsymbol{k} ^3/(4\pi)}$
Bessel, $\frac{J_1(2\pi x)}{x}$	$2(1-k)^{1/2}\Pi\left(\frac{k}{2}\right)$
$\exp(- x), \exp(- x)^{\dagger}$	$\frac{2}{1+(2\pi k)^2}, \frac{2\pi}{(1+(2\pi \pmb{k})^2)^{3/2}}^{\dagger}$

Functions invariant under the Fourier transform

R6

Space domain	Fourier domain
Gaussian, $\exp\left(-\pi \boldsymbol{x}^T \boldsymbol{x}\right)$	Gaussian, $\exp\left(-\pi \boldsymbol{k}^T \boldsymbol{k}\right)$
$oldsymbol{x}_p \exp\left(-oldsymbol{\pi} oldsymbol{x}^T oldsymbol{x} ight)$	$-\mathrm{i}k_{p}\exp\left(-\pioldsymbol{k}^{T}oldsymbol{k} ight)$
$\operatorname{sech}(\pi x) = \frac{1}{\exp(\pi x) + \exp(-\pi x)}$	$\operatorname{sech}(\pi k) = \frac{1}{\exp(\pi k) + \exp(-\pi k)}$
Hyperbola, $ \boldsymbol{x} ^{-W/2}$	$ \boldsymbol{k} ^{-W/2}$
1-D δ comb, $\mathbf{III}(x) = \sum_{n=-\infty}^{\infty} \delta(x-n)$	$\mathrm{III}(k) = \sum_{v=-\infty}^{\infty} \delta(k-v)$

R7 Properties of the 2-D DFT (Section 2.3.4)

 ${\it G}$ and ${\it H}$ are complex-valued M×N matrices, $\hat{\it G}$ and $\hat{\it H}$ their Fourier transforms,

$$\hat{g}_{u,v} = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_{m,n} \mathbf{w}_{M}^{-mu} \mathbf{w}_{N}^{-nv}, \ \mathbf{w}_{N} = \exp(2\pi \mathbf{i}/N)$$

$$g_{m,n} = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \hat{g}_{u,v} \mathbf{w}_{M}^{mu} \mathbf{w}_{N}^{nv},$$

and a and b complex-valued constants. Stretching and replication by factors $K, L \in \mathbb{N}$ yields KM×LN matrices. For proofs see Cooley and Tukey [25], Poularikas [156].

Property	Space domain	Wave-number domain
Mean	$\frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} G_{mn}$	$\hat{\mathcal{G}}_{0,0}$
Linearity	aG + bH	$a\hat{\mathbf{G}} + b\hat{\mathbf{H}}$
Spatial stretching (upsampling)	$\mathcal{G}_{Km,Ln}$	$ \hat{g}_{uv}/(KL) (\hat{g}_{kM+u,lN+v} = \hat{g}_{u,v}) $
Replication (frequency stretching)	$g_{m,n} (g_{kM+m,lN+n} = g_{m,n})$	$\hat{\mathcal{G}}_{Ku,Lv}$
Shifting	$\mathcal{G}m-m',n-n'$	$W_M^{-m'u}W_N^{-n'v}\hat{\mathcal{G}}uv$
Modulation	${\rm w}_{M}^{u'm}{\rm w}_{N}^{v'n}{g}_{m,n}$	$\hat{\mathcal{G}}u-u',v-v'$
Finite differences	$(g_{m+1,n} - g_{m-1,n})/2$ $(g_{m,n+1} - g_{m,n-1})/2$	$i \sin(2\pi u/M)\hat{g}_{uv}$ $i \sin(2\pi v/N)\hat{g}_{uv}$
Convolution	$\sum_{m'=0}^{M-1} \sum_{n'=0}^{N-1} h_{m'n'} g_{m-m',n-n'}$	$MN\hat{h}_{uv}\hat{g}_{uv}$
Spatial correlation	$\sum_{m'=0}^{M-1} \sum_{n'=0}^{N-1} h_{m'n'} g_{m+m',n+n'}$	$MN\hat{h}_{uv}\hat{g}^*_{uv}$
Multiplication	$g_{mn}h_{mn}$	$\sum_{u'=0v'=0}^{M-1} \sum_{hu'v'} g_{u-u',v-v'}$
Inner product	$\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_{mn}^* h_{mn}$	$\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \hat{g}_{uv}^* \hat{h}_{uv}$
Norm	$\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_{mn} ^2$	$\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \hat{g}_{uv} ^2$

R8

Properties of the continuous 1-D Hartley transform (Section 2.4.2)

 $g(x) \circ - \hat{g}(k)$ and $h(x) \circ - \hat{h}(k)$ are Hartley transform pairs: $\mathbb{R} \to \mathbb{R}$,

$$^{h}\hat{g}(k) = \int_{-\infty}^{\infty} g(x) \cos(2\pi kx) dx \quad \circ \longrightarrow \quad g(x) = \int_{-\infty}^{\infty} {^{h}\hat{g}(k)} \cos(2\pi kx) dk$$

with

$$\cos 2\pi kx = \cos(2\pi kx) + \sin(2\pi kx).$$

s is a real, nonzero number, a and b are real constants.

Property	Spatial domain	Fourier domain
Linearity	ag(x) + bh(x)	$a\hat{g}(k) + b\hat{h}(k)$
Similarity	g(sx)	$\hat{g}(k/s)/ s $
Shift	$g(x-x_0)$	$\cos(2\pi k x_0)\hat{g}(k) - \sin(2\pi k x_0)\hat{g}(-k)$
in x space		
Modulation	$\cos(2\pi k_0 x)g(x)$	$\left(\hat{g}(k-k_0)+\hat{g}(k+k_0)\right)/2$
Differentiation in <i>x</i> space	$\frac{\partial g(\mathbf{x})}{\partial x_p}$	$-2\pi k_p \hat{g}(-k)$
Definite integral, mean	$\int_{-\infty}^{\infty} g(\mathbf{x}') \mathrm{d}x'$	$\hat{g}(0)$
Convolution	$\int_{-\infty}^{\infty} h(x')g(x-x')\mathrm{d}x'$	$[\hat{g}(k)\hat{h}(k) + \hat{g}(k)\hat{h}(-k) + \hat{g}(-k)\hat{h}(k) - \hat{g}(-k)\hat{h}(-k)]/2$
Multiplication	h(x)g(x)	$[\hat{g}(k) * \hat{h}(k) + \hat{g}(k) * \hat{h}(-k) + \hat{g}(-k) * \hat{h}(k) - \hat{g}(-k) * \hat{h}(-k)]/2$
Autocorrelatio	$\prod_{-\infty}^{\infty} g(x')g(x'+x)dx'$	$[\hat{g}^2(k) + \hat{g}^2(-k)]/2$

1. Fourier transform expressed in terms of the Hartley transform

$$\hat{g}(k) = \frac{1}{2} \left({}^h \hat{g}(k) + {}^h \hat{g}(-k) \right) - \frac{\mathrm{i}}{2} \left({}^h \hat{g}(k) - {}^h \hat{g}(-k) \right)$$

2. Hartley transform expressed in terms of the Fourier transform

$${}^h\hat{g}(k) = \Re[\hat{g}(k)] - \Im[\hat{g}(k)] = \frac{1}{2}\left(\hat{g}(k) + \hat{g}^*(k)\right) + \frac{\mathrm{i}}{2}\left(\hat{g}(k) - \hat{g}^*(k)\right)$$

R9 Probability density functions (PDFs, Section 3.4).

Definition, mean, and variance of some PDFs

Name	Definition	Mean	Variance
Discrete PDFs f_n			
Poisson $P(\mu)$	$\exp(-\mu)\frac{\mu^n}{n!},\ n\geq 0$	μ	μ
Binomial $B(Q, p)$	$\frac{Q!}{n!(Q-n)!}p^n(1-p)^{Q-n}, 0 \le n < Q$	Qp	Qp(1-p)
Continuous PDFs	f(x)		
Uniform $U(a, b)$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal $N(\mu, \sigma)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	μ	σ^2
Rayleigh $R(\sigma)$	$\frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \ x > 0$	$\sigma\sqrt{\pi/2}$	$\sigma^2(4-\pi)/2$
Chi-square $\chi^2(Q,\sigma)$	$\frac{x^{Q/2-1}}{2^{Q/2}\Gamma(Q/2)\sigma^Q}\exp\left(-\frac{x}{2\sigma^2}\right),\ x>0$	$Q \sigma^2$	$2Q \sigma^4$

Addition theorems for independent random variables g_1 and g_2

PDF	g_1	g_2	$g_1 + g_2$
Binomial	$B(Q_1, p)$	$B(Q_2, p)$	$B(Q_1+Q_2,p)$
Poisson	$P(\mu_1)$	$P(\mu_2)$	$P(\mu_1 + \mu_2)$
Normal	$N(\mu_1,\sigma_1)$	$N(\mu_2,\sigma_2)$	$N(\mu_1 + \mu_2, (\sigma_1^2 + \sigma_2^2)^{1/2})$
Chi-square	$\chi^2(Q_1,\sigma)$	$\chi^2(Q_2,\sigma)$	$\chi^2(Q_1+Q_2,\sigma)$

PDFs of functions of independent random variables g_n

PDF of variable	Function	PDF of function
g_n : $N(0,\sigma)$	$(g_1^2 + g_2^2)^{1/2}$	$R(\sigma)$
g_n : $N(0,\sigma)$	$\arctan(g_2^2/g_1^2)$	$U(0,2\pi)$
g_n : $N(0,\sigma)$	$\sum_{n=1}^{Q} g_n^2$	$\chi^2(Q,\sigma)$

Error propagation (Sections 3.2.3, 3.3.3, and 4.2.8)

 f_g is the PDF of the random variable (RV) g, a, and b are constants, g' = p(g) a differentiable monotonic function with the derivative dp/dg and the inverse function $g = p^{-1}(g')$.

Let g be a vector with P RVs with the covariance matrix cov(g), g' a vector with Q RVs and with the covariance matrix cov(g'), M a $Q \times P$ matrix, and a a column vector with Q elements.

1. PDF, mean, and variance of a linear function g' = ag + b

$$f_{g'}(g') = \frac{f_g((g'-a)/b)}{|a|}, \quad \mu_{g'} = a\mu_g + b, \quad \sigma_{g'}^2 = a^2\sigma_g^2$$

2. PDF of monotonous differentiable nonlinear function g' = p(g)

$$f_{g'}(g') = \frac{f_g(p^{-1}(g'))}{|dp(p^{-1}(g'))/dg|},$$

3. Mean and variance of differentiable nonlinear function g' = p(g)

$$\mu_{g'} \approx p(\mu_g) + \frac{\sigma_g^2}{2} \frac{\mathrm{d}^2 p(\mu_g)}{\mathrm{d}g^2}, \quad \sigma_{g'}^2 \approx \left| \frac{\mathrm{d}p(\mu_g)}{\mathrm{d}g} \right|^2 \sigma_g^2$$

4. Covariance matrix of a linear combination of RVs, g' = Mg + a

$$cov(\boldsymbol{g}') = \boldsymbol{M} cov(\boldsymbol{g}) \boldsymbol{M}^T$$

5. Covariance matrix of a nonlinear combination of RVs, g' = p(g)

$$cov(\boldsymbol{g}') \approx \boldsymbol{J} cov(\boldsymbol{g}) \boldsymbol{J}^T$$
 with the Jacobian matrix \boldsymbol{J} , $j_{q,p} = \frac{\partial p_q}{\partial g_p}$.

- 6. Homogeneous stochastic field: convolution of a random vector by the filter $\mathbf{h} \ \mathbf{g}' = \mathbf{h} * \mathbf{g}$ (Section 4.2.8)
 - (a) With the autocovariance vector \boldsymbol{c}

$$\mathbf{c}' = \mathbf{c} \star (\mathbf{h} \star \mathbf{h}) \quad \circ \longrightarrow \quad \hat{\mathbf{c}}'(k) = \hat{\mathbf{c}}(k) \left| \hat{\mathbf{h}}(k) \right|^2.$$

(b) With the autocovariance vector $\mathbf{c} = \sigma^2 \delta_n$ (uncorrelated elements)

$$\mathbf{c}' = \sigma^2(\mathbf{h} \star \mathbf{h}) \quad \circ \longrightarrow \quad \hat{\mathbf{c}}'(k) = \sigma^2 \left| \hat{\mathbf{h}}(k) \right|^2.$$

R10

R11 | 1-D LSI filters (Sections 4.2.6, 11.2, and 12.3)

- 1. Transfer function of a 1-D filter with an odd number of coefficients $(2R + 1, [h_{-R}, \dots, h_{-1}, h_0, h_1, \dots, h_R])$
 - (a) General

$$\hat{h}(\tilde{k}) = \sum_{v'=-R}^{R} h_{v'} \exp(-\pi i v' \tilde{k})$$

(b) Even symmetry $(h_{-v} = h_v)$

$$\hat{h}_{v} = h_0 + 2 \sum_{v'=1}^{R} h_{v'} \cos(\pi v' \tilde{k})$$

(c) Odd symmetry $(h_{-v} = -h_v)$

$$\hat{h}_{v} = -2i \sum_{v'=1}^{R} h_{v'} \sin(\pi v' \tilde{k})$$

- 2. Transfer function of a 1-D filter with an even number of coefficients $(2R, [h_{-R}, ..., h_{-1}, h_1, ..., h_R]$, convolution results put on intermediate grid)
 - (a) Even symmetry $(h_{-v} = h_v)$

$$\hat{h}_{v} = 2 \sum_{v'=1}^{R} h_{v'} \cos(\pi (v' - 1/2)\tilde{k})$$

(b) Odd symmetry $(h_{-v} = -h_v)$

$$\hat{h}_{v} = -2i \sum_{v'=1}^{R} h_{v'} \sin(\pi(v'-1/2)\tilde{k})$$

- 3. Transfer function of the two elementary filters
 - (a) Averaging of two neighboring points

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \end{bmatrix}/2 \quad \circ \longrightarrow \quad \hat{b}(\tilde{k}) = \cos(\pi \tilde{k}/2)$$

(b) Difference of two neighboring points

$$D_1 = \begin{bmatrix} 1 & -1 \end{bmatrix} \quad \circ \longrightarrow \quad \hat{d}_1(\tilde{k}) = 2i\sin(\pi \tilde{k}/2)$$

1-D recursive filters (Section 4.5).

1. General filter equation

$$g'_{n} = -\sum_{n''=1}^{S} a_{n''} g'_{n-n''} + \sum_{n'=-R}^{R} h_{n'} g_{n-n'}$$

2. General transfer function

$$\hat{h}(\tilde{k}) = \frac{\sum\limits_{n'=-R}^{R} h_{n'} \exp(-\pi i n' \tilde{k})}{\sum\limits_{n''=0}^{S} a_{n''} \exp(-\pi i n'' \tilde{k})}$$

3. Factorization of the transfer function using the *z* transform and the fundamental law of algebra

$$\hat{h}(z) = h_{-R} z^{R} \frac{\prod\limits_{n'=1}^{2R} (1 - c_{n'} z^{-1})}{\prod\limits_{n''=1} (1 - d_{n''} z^{-1})}$$

- 4. Relaxation filter
 - (a) Filter equation ($|\alpha| < 1$)

$$g_n' = \alpha g_{n+1}' + (1 - \alpha)g_n$$

(b) Point spread function

$${}^{\pm} \gamma_{\pm n} = \begin{cases} (1 - \alpha) \alpha^n & n \ge 0 \\ 0 & \text{else} \end{cases}$$

(c) Transfer function of the symmetric filter (running filter successively in positive and negative direction)

$$\hat{r}(\tilde{k}) = \frac{1}{1 + \beta - \beta \cos \pi \tilde{k}}, \quad \left(\hat{r}(0) = 1, \hat{r}(1) = \frac{1}{1 + 2\beta}\right)$$

with

$$\beta = \frac{2\alpha}{(1-\alpha)^2}, \ \alpha = \frac{1+\beta-\sqrt{1+2\beta}}{\beta}, \ \beta \in]-1/2, \infty[$$

- 5. Resonance filter with unit response at resonance wave number \tilde{k}_0 in the limit of low damping $1-r\ll 1$
 - (a) Filter equation (damping coefficient $r \in [0,1[$, resonance wave number $\tilde{k}_0 \in [0,1])$

$$g'_n = (1 - r^2)\sin(\pi \tilde{k}_0)g_n + 2r\cos(\pi \tilde{k}_0)g'_{n+1} - r^2g'_{n+2}$$

(b) Point spread function

$$h_{\pm n} = \begin{cases} (1-r^2)r^n \sin[(n+1)\pi \tilde{k}_0] & n \geq 0 \\ 0 & n < 0 \end{cases}$$

(c) Transfer function of the symmetric filter (running filter successively in positive and negative direction)

$$\hat{s}(\tilde{k}) = \frac{\sin^2(\pi \tilde{k}_0)(1-r^2)^2}{\left(1-2r\cos[\pi(\tilde{k}-\tilde{k}_0)]+r^2\right)\left(1-2r\cos[\pi(\tilde{k}+\tilde{k}_0)]+r^2\right)}$$

(d) For low damping, the transfer function can be approximated by

$$\hat{s}(\tilde{k}) \approx \frac{1}{1 + (\tilde{k} - \tilde{k}_0)^2 / \frac{(1 - r^2)^2}{4r^2\pi^2}}$$
 for $1 - r \ll 1$

(e) Halfwidth Δk , defined by $\hat{s}(\tilde{k}_0 + \Delta k) = 1/2$

$$\Delta k \approx (1 - r)/\pi$$

R13 Gaussian and Laplacian pyramids (Section 5.2)

1. Construction of the *Gaussian pyramid* $G^{(0)}$, $G^{(1)}$,..., $G^{(P)}$ with P+1 planes by iterative smoothing and subsampling by a factor of two in all directions

$$G^{(0)} = G$$
, $G^{(p+1)} = \mathcal{B}_{12}G^{(p)}$

2. Condition for smoothing filter to avoid aliasing

$$\hat{B}(\tilde{\boldsymbol{k}}) = 0 \ \forall \tilde{k}_p \ge \frac{1}{2}$$

3. Construction of the *Laplacian pyramid* $L^{(0)}, L^{(1)}, \dots, L^{(P)}$ with P+1 planes from the Gaussian pyramid

$$L^{(p)} = G^{(p)} - \uparrow_2 G^{(p+1)}, \quad L^{(p)} = G^{(p)}$$

The last plane of the Laplacian pyramid is the last plane of the Gaussian pyramid.

- 4. Interpolation filters for upsampling operation \uparrow_2 (> R22)
- 5. Iterative reconstruction of the original image from the Laplacian pyramid. Compute

$$G^{(p-1)} = L^{(p-1)} + \uparrow_2 G^{(p)}$$

starting with the highest plane (p = P). When the same upsampling operator is used as for the construction of the Laplacian pyramid, the reconstruction is perfect except for rounding errors.

6. Directio-pyramidal decomposition in two directional components

$$G^{(p+1)} = \downarrow_2 \mathcal{B}_X \mathcal{B}_y G^{(p)}$$

$$L^{(p)} = G^{(p)} - \uparrow_2 G^{(p+1)}$$

$$L^{(p)}_X = 1/2(L^{(p)} - (\mathcal{B}_X - \mathcal{B}_y)G^{(p)})$$

$$L^{(p)}_y = 1/2(L^{(p)} + (\mathcal{B}_X - \mathcal{B}_y)G^{(p)})$$

Basic properties of electromagnetic waves (Section 6.3)

R14

1. The *frequency* v (cycles per unit time) and *wavelength* λ (length of a period) are related by the *phase speed* c (in vacuum *speed of light* $c = 2.9979 \times 10^8 \,\mathrm{m\,s^{-1}}$):

$$\lambda \nu = c$$

2. Classification of the ultraviolet, visible and infrared part of the electromagnetic spectrum (see also Fig. 6.6)

Name	Wavelength range	Comment
VUV (vacuum UV)	30-180 nm	Strongly absorbed by air; requires evacuated equipment
UV-C	100-280 nm	CIE standard definition
UV-B	280-315 nm	CIE standard definition
UV-A	315-400 nm	CIE standard definition
Visible (light)	400-700 nm	Visible by the human eye
VNIR (very near IR)	0.7-1.0 μm	IR wavelength range to which standard silicon image sensors respond
NIR (near IR)	0.7 – $3.0\mu\mathrm{m}$	
TIR (thermal IR)	3.0-14.0 μm	Range of largest emission at environmental temperatures
MIR (middle IR)	$3-100\mu\mathrm{m}$	
FIR (far IR)	100-1000 μm	

3. Energy and momentum of particulate radiation such as β radiation (electrons), α radiation (helium nuclei), neutrons, and photons (electromagnetic radiation):

v = E/h Bohr frequency condition, $\lambda = h/p$ de Broglie wavelength relation.

R15 | Radiometric and photometric terms (Section 6.2)

 dA_0 is an element of area in the surface, θ the angle of incidence, Ω the solid angle. For energy-, photon-, and photometry-related terms, often the indices e, p, and ν , respectively, are used.

Term	Energy-related	Photon-related	Photometric quantity
Energy	Radiant energy Q [Ws]	Photon number	Luminous energy [lm s]
Energy flux (power)	Radiant flux $\Phi = rac{dQ}{dt}$ [W]	Photon flux [s ⁻¹]	Luminous flux [lumen (lm)]
Incident energy flux density	Irradiance $E=rac{d\Phi}{dA_0}$ [W m $^{-2}$]	Photon irradiance [m ⁻² s ⁻¹]	Illuminance $[Im/m^2 = Iux [(Ix)]$
Excitant energy flux density	Radiant excitance (emittance) $M = \frac{d\Phi}{dA_0} \ [\mathrm{W} \mathrm{m}^{-2}]$	Photon flux density [m ⁻² s ⁻¹]	Luminous excitance [lm/m²]
Energy flux per solid angle	Radiant intensity $I=rac{d\Phi}{d\Omega}$ [Wsr $^{-1}$]	Photon intensity $[s^{-1}sr^{-1}]$	Luminous intensity [lm/sr = candela (cd)]
Energy flux density per solid angle	Radiance $L = \frac{d^2\Phi}{d\Omega dA_0\cos\theta}$ [W m $^{-2}$ sr $^{-1}$]	Photon radiance $[m^{-2}s^{-1}sr^{-1}]$	Luminance [cd m ⁻²]
Energy/area	Energy density [W s m ²]	Photon density [m ⁻²]	Exposure [lm s m ⁻² = lx s]

Computation of luminous quantities from the corresponding radiometric quantity by the *spectral luminous efficacy* $V(\lambda)$ for daylight (photopic) vision:

$$Q_{\nu} = 683 \frac{\text{lm}}{\text{W}} \int_{380 \, \text{nm}}^{780 \, \text{nm}} Q(\lambda) V(\lambda) \, d\lambda$$

λ [nm]	$V(\lambda)$	λ [nm]	$V(\lambda)$	λ [nm]	$V(\lambda)$
380	0.00004	520	0.710	660	0.061
390	0.00012	530	0.862	670	0.032
400	0.0004	540	0.954	680	0.017
410	0.0012	550	0.995	690	0.0082
420	0.0040	560	0.995	700	0.0041
430	0.0116	570	0.952	710	0.0021
440	0.023	580	0.870	720	0.00105
450	0.038	590	0.757	730	0.00052
460	0.060	600	0.631	740	0.00025
470	0.091	610	0.503	750	0.00012
480	0.139	620	0.381	760	0.00006
490	0.208	630	0.265	770	0.00003
500	0.323	640	0.175	780	0.000015
510	0.503	650	0.107		

Table with the 1980 CIE values of the spectral luminous efficacy $V(\lambda)$ for photopic vision

Color systems (Section 6.2.4)

R16

- 1. Human color vision based on three types of cones with maximal sensitivities at 445 nm, 535 nm, and 575 nm (Fig. 6.4b).
- 2. *RGB* color system; additive color system with the three primary colors red, green, and blue. This could either be monochromatic colors with wavelengths 700 nm, 646.1 nm, and 435.8 nm or red, green, and blue phosphor as used in *RGB* monitors (e. g., according to the European EBU norm). Not all colors can be represented by the *RGB* color system (see Fig. 6.5a).
- 3. Chromaticity diagram: reduction of the 3-D color space to a 2-D color plane normalized by the intensity:

$$r=\frac{R}{R+G+B},\quad g=\frac{G}{R+G+B},\quad b=\frac{B}{R+G+B}.$$

It is sufficient to use the two components r and g: b = 1 - r - g.

4. XYZ color system (Fig. 6.5c): additive color system with three virtual primaries X, Y, and Z that can represent all possible colors and is given by the following linear transform from the EBU RGB color

system:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.490 & 0.310 & 0.200 \\ 0.177 & 0.812 & 0.011 \\ 0.000 & 0.010 & 0.990 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}.$$

- 5. Color difference or *YUV* system: color system with an origin at the white point (Fig. 6.5b).
- 6. Hue-saturation (HSI) color system: color system using polar coordinates in a color difference system. The saturation is given by the radius and the hue by the angle.

R17 Thermal emission (Section 6.4.1)

1. Spectral emittance (law of Planck)

$$M_e(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{k_BT\lambda}\right) - 1}$$

with

$$h=6.6262\times 10^{-34}\,\mathrm{J\,s}$$
 Planck constant,
 $k_B=1.3806\times 10^{-23}\,\mathrm{J\,K^{-1}}$ Boltzmann constant, and $c=2.9979\times 10^8\,\mathrm{m\,s^{-1}}$ speed of light in vacuum.

2. Total emittance (law of Stefan and Boltzmann)

$$M_e = \frac{2}{15} \frac{k_B^4 \pi^5}{c^2 h^3} T^4 = \sigma T^4 \text{ with } \sigma \approx 5.67 \cdot 10^{-8} \text{W m}^{-2} \text{K}^{-4}$$

3. Wavelength of maximum emittance (Wien's law)

$$\lambda_m \approx \frac{2898 \mathrm{K} \, \mu \mathrm{m}}{T}$$

R18 Interaction of radiation with matter (Section 6.4)

1. *Snell's law* of *refraction* at the boundary of two optical media with the indices of refraction n_1 and n_2

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$

 θ_1 and θ_2 are the angles of incidence and refraction, respectively.

2. *Reflectivity* ρ : ratio of the reflected radiant flux to the incident flux at the surface. *Fresnel's equations* give the reflectivity for parallel polarized light

$$\rho_{\parallel} = \frac{\tan^2(\theta_1 - \theta_2)}{\tan^2(\theta_1 + \theta_2)},$$

for perpendicular polarized light

$$\rho_{\perp} = \frac{\sin^2(\theta_1 - \theta_2)}{\sin^2(\theta_1 + \theta_2)},$$

and for unpolarized light

$$\rho = \frac{\rho_{\parallel} + \rho_{\perp}}{2}.$$

3. Reflectivity at normal incidence ($\theta_1 = 0$) for all polarization states

$$\rho = \frac{(n_1 - n_2)^2}{(n_1 + n_2)^2} = \frac{(n-1)^2}{(n+1)^2} \quad \text{with} \quad n = n_1/n_2$$

4. *Total reflection*. When a ray enters into a medium with lower refractive index, beyond the critical angle θ_c all light is reflected and none enters the optically thinner medium:

$$\theta_c = \arcsin \frac{n_1}{n_2}$$
 with $n_1 < n_2$

Optical imaging

R19

1. Perspective projection with pinhole camera model

$$x_1 = -\frac{d'X_1}{X_3}, \quad x_2 = -\frac{d'X_2}{X_3}$$

Pinhole located at origin of world coordinate system $[X_1, X_2, X_3]^T$, d' is distance of image plane to projection center, X_3 axis aligned perpendicular to image plane.

2. Image equation (Newtonian and Gaussian form)

$$dd' = f^2$$
 or $\frac{1}{d' + f} + \frac{1}{d + f} = \frac{1}{f}$

d and d' are the distances of the object and image to the front and back focal points of the optical system, respectively (see Fig. 7.7).

3. Lateral magnification

$$m_l = \frac{x_1}{X_1} = \frac{f}{d} = \frac{d'}{f}$$

4. Axial magnification

$$m_a\approx\frac{d'}{d}=\frac{f^2}{d^2}=\frac{d'^2}{f^2}=m_l^2$$

5. The f-number n_f of an optical system is the ratio of the focal length and diameter of lens aperture

$$n_f = \frac{f}{2r}$$

6. Depth of focus (image space)

$$\Delta x_3 = 2n_f \left(1 + \frac{d'}{f}\right)\epsilon = 2n_f (1 + m_l)\epsilon$$

7. Depth of field (object space)

Distant objects
$$(\Delta X_3 \ll d)$$
 $\Delta X_3 \approx 2n_f \cdot \frac{1+m_l}{m_l^2} \epsilon$ d_{\min} for range including infinity $d_{\min} \approx \frac{f^2}{4n_f \epsilon}$ Microscopy $(m_l \gg 1)$ $\Delta X_3 \approx \frac{2n_f \epsilon}{m_l}$

8. Resolution of a diffraction-limited optical system: angular resolution

Angular resolution
$$\Delta\theta_0 = 0.61\frac{\lambda}{r}$$

Lateral resolution at image plane $\Delta x = 0.61\frac{\lambda}{n_a'}$
Lateral resolution at object plane $\Delta X = 0.61\frac{\lambda}{n_a}$

The resolution is given by the Rayleigh criterion (see Fig. 7.15b); n_a and $n_{a'}$ are the object-sided and image sided numerical aperture of the light cone entering the optical system:

$$n_a = n\sin\theta_0 = \frac{2n}{n_f} = \frac{nr}{f};$$

n is the index of refraction.

9. Relation of the irradiance at image plane E' to the object radiance L (see Fig. 7.10)

$$E' = t\pi \left(\frac{r}{f + d'}\right)^2 \cos^4 \theta \ L \approx t\pi \frac{\cos^4 \theta}{n_f^2} L \quad \text{for} \quad d \gg f$$

R20

Point operation that is independent of the position of the pixel

$$G'_{mn} = P(G_{mn})$$

1. Negative

$$P_N(q) = Q - 1 - q$$

2. Detection of underflow and overflow by a pseudocolor [r, g, b] mapping

$$P_{uo}(q) = \begin{cases} [0, 0, Q - 1] & \text{(blue)} \quad q = 0\\ [q, q, q] & \text{(gray)} \quad q \in [1, Q - 2]\\ [Q - 1, 0, 0] & \text{(red)} \quad q = Q - 1 \end{cases}$$

3. Contrast stretching of range $[q_1, q_2]$

$$P_{cs}(q) = \begin{cases} 0 & q < q_1 \\ \frac{(q - q_1)(Q - 1)}{q_2 - q_1} & q \in [q_1, q_2] \\ Q - 1 & q > q_2 \end{cases}$$

Calibration procedures

R21

1. Noise equalization (Section 10.2.3)
If the variance of the noise depends on the image intensity, it can be equalized by a nonlinear grayscale transformation

$$h(g) = \sigma_h \int_0^g \frac{\mathrm{d}g'}{\sqrt{\sigma^2(g')}} + C$$

with the two free parameters σ_h and C. With a linear variance function (Section 3.4.5)

$$\sigma_g^2(g) = \sigma_0^2 + \alpha g$$

the transformation becomes for $g \in [0, g_{\max}] \mapsto h \in [0, \gamma g_{\max}]$

$$h(g) = \gamma g_{\text{max}} \frac{\sqrt{\sigma_0^2 + Kg} - \sigma_0}{\sqrt{\sigma_0^2 + Kg_{\text{max}}} - \sigma_0}, \quad \sigma_h = \frac{\gamma Kg_{\text{max}}/2}{\sqrt{\sigma_0^2 + Kg_{\text{max}}} - \sigma_0}.$$

2. Linear photometric two-point calibration (Section 10.3.3) Two calibration images are taken, a dark image *B* without any illumination and a reference image *R* with an object of constant radiance. A normalized image corrected for both the fixed pattern noise and inhomogeneous sensitivity is given by

$$G'=c\frac{G-B}{R-B}.$$

R22 Interpolation (Section 10.5)

1. Interpolation of continuous function from sampled points at distances Δx_w is an convolution operation:

$$g_r(\mathbf{x}) = \sum_{\mathbf{n}} g(\mathbf{x}_{\mathbf{n}}) h(\mathbf{x} - \mathbf{x}_{\mathbf{n}}).$$

Reproduction of the grid points results in the interpolation condition

$$h(\boldsymbol{x_n}) = \begin{cases} 1 & \boldsymbol{n} = \boldsymbol{0} \\ 0 & \text{otherwise.} \end{cases}$$

2. Ideal interpolation function

$$h(\mathbf{x}) = \prod_{w=1}^{W} \operatorname{sinc}(x_w/\Delta x_w) \quad \circ \longrightarrow \quad \hat{h}(\mathbf{k}) = \prod_{w=1}^{W} \Pi(\tilde{k}_w/2)$$

3. Discrete 1-D interpolation filters for interpolation of intermediate grid points halfway between the existing points

Туре	Mask	Transfer function
Linear	L	$\cos(\pi \tilde{k}/2)$
Cubic	$\left[\begin{array}{cccc} -1 & 9 & 9 & -1 \end{array}\right]/16$	$\frac{9\cos(\pi\tilde{k}/2)-\cos(3\pi\tilde{k}/2)}{8}$
Cubic B-spline	$\begin{bmatrix} 1 & 23 & 23 & 1 \end{bmatrix} / 48$ $\begin{bmatrix} 3 - \sqrt{3}, & \sqrt{3} - 2 \end{bmatrix}^{\dagger}$	$\frac{23\cos(\pi\tilde{k}/2) + \cos(3\pi\tilde{k}/2)}{16 + 8\cos(\pi\tilde{k})}$

Recursive filter applied in forward and backward direction, see Section 10.6.1

Averaging convolution filters (Chapter 11)

1. Summary of general constraints for averaging convolution filters

Property	Space domain	Wave-number domain
Preservation of mean	$\sum_{n} h_n = 1$	$\hat{h}(0) = 1$
Zero shift, even symmetry	$h_{-n}=h_n$	$\Im\left(\hat{h}(\boldsymbol{k})\right) = 0$
Monotonic decrease from one to zero	_	$\hat{h}(\tilde{k}_2) \leq \hat{h}(\tilde{k}_1) \text{ if } \tilde{k}_2 > \tilde{k}_1, \\ \hat{h}(\boldsymbol{k}) \in [0, 1]$
Isotropy	$h(\boldsymbol{x}) = h(\boldsymbol{x})$	$\hat{h}(\boldsymbol{k}) = \hat{h}(\boldsymbol{k})$

2. 1-D smoothing box filters

Mask	Transfer function	Noise suppression [†]
3 R = [1 1 1]/3	$\frac{1}{3} + \frac{2}{3}\cos(\pi\tilde{k})$	$\frac{1}{\sqrt{3}} \approx 0.577$
$^{4}\mathbf{R} = [1\ 1\ 1\ 1]/4$	$\cos(\pi \tilde{k})\cos(\pi \tilde{k}/2)$	1/2 = 0.5
${}^{R}\mathbf{R} = \underbrace{[1 \dots 1]}_{R \text{ times}} / R$	$\frac{\sin(\pi R\tilde{k}/2)}{R\sin(\pi\tilde{k}/2)}$	$\frac{1}{\sqrt{R}}$

[†]For white noise

3. 1-D smoothing binomial filters

Mask	TF	Noise suppression [†]
$B^2 = [1\ 2\ 1]/4$	$\cos^2(\pi \tilde{k}/2)$	$\sqrt{\frac{3}{8}} \approx 0.612$
$\mathbf{B}^4 = [1\ 4\ 6\ 4\ 1]/16$	$\cos^4(\pi \tilde{k}/2)$	$\sqrt{\frac{35}{128}} \approx 0.523$
B ^{2R}	$\cos^{2R}(\pi \tilde{k}/2)$	$\left(\frac{\Gamma(R+1/2)}{\sqrt{\pi}\Gamma(R+1)}\right)^{1/2} \approx \left(\frac{1}{R\pi}\right)^{1/4} \left(1 - \frac{1}{16R}\right)$

[†]For white noise

R24 First-order derivative convolution filters (Chapter 12)

1. Summary of general constraints for a first-order derivative filter into the direction x_w for W-dimensional signals; w' denotes any of the possible directions and \boldsymbol{n} vector indexing (Section 4.2.1)

Property	Space domain	Wave-number domain
Zero mean	$\sum_{n} h_{n} = 0$	$\hat{h}(\tilde{k}) \Big _{\tilde{k}=0} = 0$
Zero shift, odd symmetry	$\begin{array}{l} h_{n_1,\ldots,-n_w,\ldots,n_W} = \\ -h_{n_1,\ldots,n_w,\ldots,n_W} \end{array}$	$\Re\left(\hat{H}(\boldsymbol{k})\right) = 0$
First-order derivative	$\sum_{n} n_{w'} h_{n} = \delta_{w'-w}$	$\frac{\partial \hat{h}(\tilde{\mathbf{k}})}{\partial \tilde{k}_w} \bigg _{\tilde{\mathbf{k}}=0} = \pi \mathrm{i} \delta_{w'-w}$
Isotropy		$\hat{h}(\tilde{k}) = \pi i \tilde{k}_w \hat{b}(\left \tilde{k}\right)$ with $\hat{b}(0) = 1, \nabla_k \hat{b}(\left \tilde{k}\right) = 0$

2. First-order discrete difference filters

Name	Mask	Transfer function
\mathcal{D}_{x}	[1 -1]	$2i\sin(\pi \tilde{k}_x/2)$
Symmetric difference, \mathcal{D}_{2x}	$\left[\begin{array}{cc}1&0&-1\end{array}\right]/2$	$i\sin(\pi \tilde{k}_x)$
Cubic B-spline $\mathcal{D}_{2x}{}^{\pm}\mathcal{R}$	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}/2,$ $\begin{bmatrix} 3 - \sqrt{3}, & \sqrt{3} - 2 \end{bmatrix}^{\dagger}$	$i\frac{\sin(\pi\tilde{k}_x)}{2/3+1/3\cos(\pi\tilde{k}_x)}$

Recursive filter applied in forward and backward direction, see Section 10.6.1

3. Regularized first-order discrete difference filters

Name	Mask	Transfer function
2×2 , $\mathcal{D}_{x}\mathcal{B}_{y}$	$\frac{1}{2} \left[\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array} \right]$	$2i\sin(\pi \tilde{k}_x/2)\cos(\pi \tilde{k}_y/2)$
Sobel, $\mathcal{D}_{2x}\mathcal{B}_{\mathcal{Y}}^2$	$\frac{1}{8} \left[\begin{array}{rrr} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{array} \right]$	$i\sin(\pi \tilde{k}_x)\cos^2(\pi \tilde{k}_y/2)$
		$i\sin(\pi\tilde{k}_x)(3\cos^2(\pi\tilde{k}_y/2)+1)/4$

4. Performance characteristics of edge detectors: angle error, magnitude error, and noise suppression for white noise. The three values in the two error columns give the errors for a wave number range of 0–0.25, 0.25–0.5, and 0.5–0.75, respectively.

Name	Angle error [°]	Magnitude error	Noise factor
\mathcal{D}_{x}			$\sqrt{2} \approx 1.414$
\mathcal{D}_{2x}	1.36 4.90 12.66	0.026 0.151 0.398	$1/\sqrt{2}\approx 0.707$
$\mathcal{D}_{2x}{}^{\pm}\mathcal{R}$	0.02 0.33 2.26	0.001 0.023 0.220	$\sqrt{3\ln 3/\pi} \approx 1.024$
$\mathcal{D}_{X}\mathcal{B}_{\mathcal{Y}}$	0.67 2.27 5.10	0.013 0.079 0.221	1
$\mathcal{D}_{2x}\mathcal{B}_{\mathcal{Y}}^2$	0.67 2.27 5.10	0.012 0.053 0.070	$\sqrt{3}/4 \approx 0.433$
$\mathcal{D}_{2x}(3\mathcal{B}_y^2+\mathcal{I})/4$	0.15 0.32 0.72	0.003 0.005 0.047	$\sqrt{59}/16\approx 0.480$

R25 Second-order derivative convolution filters (Chapter 12)

1. Summary of general constraints for a second-order derivative filter into the direction x_w for W-dimensional signals; w' denotes any of the possible directions and \boldsymbol{n} vector indexing (Section 4.2.1)

Property	Space domain	Wave-number domain
Zero mean	$\sum_{n} h_{n} = 0$	$\hat{h}(\tilde{k}) \Big _{\tilde{k}=0} = 0$
Zero slope	$\sum_{n} n_{w'} h_{n} = 0$	$\frac{\partial \hat{h}(\tilde{\mathbf{k}})}{\partial \tilde{\mathbf{k}}_{w'}} \bigg _{\tilde{\mathbf{k}} = 0} = 0$
Zero shift, even symmetry	$h_{-n}=h_n$	$\Im\left(\hat{H}(\boldsymbol{k})\right) = 0$
2nd-order derivative	$\sum_{n} n_{w'}^2 h_n = 2\delta_{w'-w}$	$\left. \frac{\partial^2 \hat{h}(\tilde{\mathbf{k}})}{\partial \tilde{k}_{w'}^2} \right _{\tilde{\mathbf{k}} = 0} = -2\pi^2 \delta_{w' - w}$
Isotropy		$\hat{h}(\tilde{k}) = -(\pi \tilde{k}_w)^2 \hat{b}(\tilde{k})$ with $\hat{b}(0) = 1$, $\nabla_k \hat{b}(\tilde{k}) = 0$

2. Second-order discrete difference filters

Name	Mask	Transfer function
1-D Laplace \mathcal{D}_{x}^{2}	[1 -2 1]	$-4\sin^2(\pi \tilde{k}_x/2)$
2-D Laplace $\it L$	$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{array}\right]$	$-4\sin^2(\pi\tilde{k}_x/2)-4\sin^2(\pi\tilde{k}_y/2)$
2-D Laplace \mathcal{L}'	$\frac{1}{4} \left[\begin{array}{rrrr} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{array} \right]$	$4\cos^2(\pi\tilde{k}_x/2)\cos^2(\pi\tilde{k}_y/2)-4$

Because of the multidisciplinary nature of digital image processing, a consistent and generally accepted terminology — as in other areas — does not exist. Two basic problems must be addressed.

- *Conflicting terminology.* Different communities use different symbols (and even names) for the same terms.
- *Ambiguous symbols*. Because of the many terms used in image processing and the areas it is related to, one and the same symbol is used for multiple terms.

There exists no trivial solution to this awkward situation. Otherwise it would be available. Thus conflicting arguments must be balanced. In this textbook, the following guidelines are used:

- Stick to common standards. As a first guide, the symbols recommended by international organizations (such as the International Organization for Standardization, ISO) were consulted and several major reference works were compared [46, 123, 128, 156]. Additionally cross checks were made with several standard textbooks from different areas [13, 61, 148, 158]. Only in a few conflicting situations deviations from commonly accepted symbols are used.
- *Use most compact notation.* When there was a choice of different notations, the most compact and comprehensive notation was used. In rare cases, it appeared useful to use more than one notation for the same term. It is, for example, sometimes more convenient to use indexed vector components ($\mathbf{x} = [x_1, x_2]^T$), and sometimes to use $\mathbf{x} = [x, y]^T$.
- *Allow ambiguous symbols.* One and the same symbol can have different meanings. This is not so bad as it appears at first glance because from the context the meaning of the symbol becomes unambiguous. Thus care was taken that ambiguous symbols were only used when they can clearly be distinguished by the context.

In order to familiarize readers coming from different backgrounds to the notation used in this textbook, we will give here some comments on deviating notations.

Wave number. Unfortunately, different definitions for the term *wave number* exist:

 $k' = \frac{2\pi}{\lambda}$ and $k = \frac{1}{\lambda}$. (B.1)

Physicists usually include the factor 2π in the definition of the wave number: $k' = 2\pi/\lambda$, by analogy to the definition of the circular frequency $\omega = 2\pi/T = 2\pi\nu$. In optics and spectroscopy, however, it is defined as the inverse of the wavelength without the factor 2π (i. e., number of wavelengths per unit length) and denoted by $\tilde{\nu} = \lambda^{-1}$.

Imaginary unit. The imaginary unit is denoted here by i. In electrical engineering and related areas, the symbol j is commonly used.

Time series, image matrices. The standard notation for *time series* [148], x[n], is too cumbersome to be used with multidimensional signals: g[k][m][n]. Therefore the more compact notation x_n and $g_{k,m,n}$ is chosen.

Partial derivatives. In cases were it does not lead to confusion, partial derivates are abbreviated by indexing: $\partial g/\partial x = \partial_x g = g_x$

Typeface	Description	
e, i, d, w	Upright symbols have a special meaning; examples: e for the base of natural logarithm, i = $\sqrt{-1}$, symbol for derivatives: d g , w = $e^{2\pi i}$	
a, b,	Italic (not bold): scalar	
g, k, u, x, \dots	Lowercase italic bold: <i>vector</i> , i.e., a coordinate vector, a time series, row of an image,	
G, H, J, \dots	Uppercase italic bold: <i>matrix</i> , <i>tensor</i> , i.e., a discrete image, a 2-D convolution mask, a structure tensor; also used for signals with more than two dimensions	
$\mathcal{B}, \mathcal{R}, \mathcal{F}, \dots$	Caligraphic letters indicate a representation-independent $\it{operator}$	
\mathbb{N} , \mathbb{Z} , \mathbb{R} , \mathbb{C}	Blackboard bold letters denote sets of numbers or other quantities	
Accents	Description	
\bar{k}, \bar{n}, \dots	A bar indicates a <i>unit vector</i>	
$\tilde{k},\tilde{k},\tilde{x},\dots$	A tilde indicates a <i>dimensionless normalized</i> quantity (of a quantity with a dimension)	
$\hat{\boldsymbol{G}}, \hat{\boldsymbol{g}}(k), \dots$	A hat indicates a quantity in the <i>Fourier domain</i>	

Subscript	Description	
g_n	Element n of the vector $oldsymbol{g}$	
g_{mn}	Element m, n of the matrix G	
$\mathcal{G}_{\mathcal{P}}$	Compact notation for first-order partial derivative of the continuous function g into the direction p : $\partial g(\mathbf{x})/\partial x_p$	
Gpq	Compact notation for second-order partial derivative of the continuous function $g(\mathbf{x})$ into the directions p and q : $\partial^2 g(\mathbf{x})/(\partial x_p \partial x_q)$	

Superscript	Description
A^{-1} , A^{-g}	Inverse of a square matrix A ; generalized inverse of a (non-square) matrix A
\boldsymbol{A}^T , \boldsymbol{a}^T	Transpose of a matrix or vector; (includes conjugation for complex numbers)
$a^T b$, $\langle a b \rangle$	Scalar product of two vectors
a^{\star}	Conjugate complex
$oldsymbol{A}^{\star}$	Conjugate complex and transpose of a matrix

Indexing	Description	
K, L, M, N	Extension of discrete images in t , z , y , and x directions	
k, l, m, n	Indices of discrete images in t , z , y , and x directions	
r, s, u, v	Indices of discrete images in Fourier domain in t , z , y , and x directions	
P	Number of components in a multichannel image; dimension of a feature space, number of components, pyramid planes or data points	
Q	Number of quantization levels, number of object classes, or number of regression parameters	
R	Size of masks for neighborhood operators	
W	Dimension of an image or feature space	
p, q, w	Indices of a component in a multichannel image, dimension in an image, quantization level or feature	

Function	Description		
$\cos(x)$	Cosine function		
$\exp(x)$	Exponential function		
ld(x)	Logarithmic function to base 2		
ln(x)	Logarithmic function to base e		
$\log(x)$	Logarithmic function to base 10		
$\sin(x)$	Sine function		
$\operatorname{sinc}(x)$	Sinc function: $\operatorname{sinc}(x) = \sin(\pi x)/(\pi x)$		
$\det(\boldsymbol{G})$	Determinant of a square matrix		
$\operatorname{diag}(\boldsymbol{G})$	Vector with diagonal elements of a square matrix		
$trace(\mathbf{G})$	Trace of a square matrix		
$cov(\boldsymbol{g})$	Covariance matrix of a random vector		
E(g), $var(G)$	Expectation (mean value) and variance		
Image operato	ors Description		
	Pointwise multiplication of two images		
*	Convolution		
*	Correlation		
\ominus, \oplus	Morphological erosion and dilation operators		
∘, •	Morphological opening and closing operators		
8	Morphological hit-miss operator		
\vee , \wedge	Boolean <i>or</i> and <i>and</i> operators		
\cup , \cap	Union and intersection of sets		
⊂,⊆	Set is subset, subset or equal		
U	Shift operator		
\downarrow_{S}	Sample or reduction operator: take only every $\mathfrak s$ th pixel, row, etc.		
† _s	Expansion or interpolation operator: increase resolution in every coordinate direction by a factor of s , the new points are interpolated from the available points		

Symbol	Definition, [Units]	Meaning		
Greek sy	Greek symbols			
α	$[m^{-1}]$	Absorption coefficient		
β	$[m^{-1}]$	Scattering coefficient		
$\delta(x)$, δ_n		Continuous, discrete δ distribution		
Δ	$\sum_{w=1}^{W} \frac{\partial^2}{\partial x_w^2}$	Laplacian operator		
ϵ	[1]	Specific emissivity		
ϵ	[m]	Radius of blur disk		
К	$[m^{-1}]$	Extinction coefficient, sum of absorption and scattering coefficient		
∇	$\left[\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_W}\right]^T$	Gradient operator		
λ	[m]	Wavelength		
ν	$[s^{-1}]$, [Hz] (hertz)	Frequency		
abla imes		Rotation operator		
η	$n + i\xi$, [1]	Complex index of refraction		
η	[1]	Quantum efficiency		
ϕ	[rad], [°]	Phase shift, phase difference		
ϕ_e	[rad], [°]	Azimuth angle		
Φ	$[J/s]$, $[W]$, $[s^{-1}]$, $[lm]$	Radiant or luminous flux		
Φ_e, Φ_p	$[W], [s^{-1}], [lm]$	Energy-based radiant, photon-based radiant, and luminous flux		
$ ho, ho_\parallel, ho_\perp$	[1]	Reflectivity for unpolarized, parallel polarized, and perpendicularly polarized light		
ho	$[kg/m^3]$	Density		
$\sigma_{\!\scriptscriptstyle X}$		Standard deviation of the random variable x		
σ	$5.6696 \cdot 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$	Stefan-Boltzmann constant		
$\sigma_{\scriptscriptstyle \mathcal{S}}$	$[m^2]$	Scattering cross-section		
τ	[1]	Optical depth (thickness)		
τ	[1]	Transmissivity		
τ	[s]	Time constant		
θ	[rad], [°]	Angle of incidence		
$ heta_b$	[rad], [°]	Brewster angle (polarizing angle)		
$ heta_c$	[rad], [°]	Critical angle (for total reflection)		
$ heta_e$	[rad], [°]	Polar angle		
$ heta_i$	[rad], [°]	Angle of incidence		
		continued on next page		

Symbol	Definition, [Units]	Meaning
continue	d from previous page	
Ω	[sr] (steradian)	Solid angle
ω	$\omega=2\pi\nu,[s^{-1}],[Hz]$	Circular frequency
Roman s	ymbols	
\overline{A}	[m ²]	Area
a, a	$\boldsymbol{a} = \boldsymbol{x}_{tt} = \boldsymbol{u}_t, [\text{m/s}^2]$	Acceleration
$\hat{b}(ilde{m{k}})$		Transfer function of binomial mask
В	$[Vs/m^2]$	Magnetic field
В		Binomial filter mask
${\mathcal B}$		Binomial convolution operator
С	$2.9979 \cdot 10^8 \text{ms}^{-1}$	speed of light
\mathbb{C}		set of complex numbers
d	[m]	Diameter (aperture) of optics, distance
d'	[m]	Distance in image space
$\hat{d}(\tilde{\boldsymbol{k}})$		Transfer function of \boldsymbol{D}
D	$[m^2/s]$	Diffusion coefficient
D		First-order difference filter mask
\mathcal{D}		First-order difference operator
e	$1.6022 \cdot 10^{-19} \mathrm{As}$	Elementary electric charge
e	2.718281	Base for natural logarithm
E	$[W/m^2]$, $[lm/m^2]$, $[lx]$	Radiant (irradiance) or luminous (illuminance) incident energy flux density
E	[V/m]	Electric field
$ar{e}$	[1]	Unit eigenvector of a matrix
f, f_e	[m]	(Effective) focal length of an optical system
f_b , f_f	[m]	Back and front focal length
f		Optical flow
f		Feature vector
F	[N] (newton)	Force
\boldsymbol{G}		Image matrix
Н		General filter mask
h	$6.6262 \cdot 10^{-34} \mathrm{Js}$	Planck's constant (action quantum)
ħ	$h/(2\pi)$ [Js]	
i	$\sqrt{-1}$	Imaginary unit
I	[W/sr], [lm/sr]	Radiant or luminous intensity
I	[A]	Electric current
		continued on next page

Symbol	Definition, [Units]	Meaning
continue	d from previous page	
I		Identity matrix
1		Identity operator
J		Structure tensor, inertia tensor
k_B	$1.3806 \cdot 10^{-23} \text{J/K}$	Boltzmann constant
k	$1/\lambda$, [m ⁻¹]	Magnitude of wave number
k	$[m^{-1}]$	Wave number (number of wavelengths per unit length)
\tilde{k}	$k\Delta x/\pi$	Wave number normalized to the maximum wave number that can be sampled (Nyquist wave number)
K_q	[l/mol]	Quenching constant
K_r	Φ_{ν}/Φ_{e} , [lm/W]	Radiation luminous efficiency
K_s	Φ_{V}/P [lm/W]	Lighting system luminous efficiency
K_I	[1]	Indicator equilibrium constant
L	[W/(m ² sr)], [1/(m ² sr)], [lm/(m ² sr)], [cd/m ²]	Radiant (radiance) or luminous (luminance) flux density per solid angle
L		Laplacian filter mask
L		Laplacian operator
m	[kg]	Mass
m	[1]	Magnification of an optical system
m		Feature vector
M	$[W/m^2], [1/(s m^2)]$	Excitant radiant energy flux density (excitance, emittance)
M_e	$[W/m^2]$	Energy-based excitance
M_p	$[1/(s m^2)]$	Photon-based excitance
M		Feature space
n	[1]	Index of refraction
n_a	[1]	Numerical aperture of an optical system
n_f	f/d, [1]	Aperture of an optical system
\bar{n}	[1]	Unit vector normal to a surface
N		Set of natural numbers: $\{0, 1, 2, \ldots\}$
p	[kg m/s], [W m]	Momentum
p	$[N/m^2]$	Pressure
pН	[1]	pH value, negative logarithm of proton concentration
Q	[Ws] (joule), [lms] number of photons	Radiant or luminous energy
Q_s	[1]	Scattering efficiency factor continued on next page

Symbol	Definition, [Units]	Meaning
continue	d from previous page	
r	[m]	Radius
$r_{m,n}$	$\boldsymbol{r}_{m,n} = [m\Delta x, n\Delta y]^T$	Translation vector on grid
$\hat{m{r}}_{p,q}$	$\hat{\boldsymbol{r}}_{p,q} = \left[p/\Delta x, q/\Delta y \right]^T$	Translation vector on reciprocal grid
R	Φ/s , [A/W]	Responsivity of a radiation detector
\boldsymbol{R}		Box filter mask
\mathbb{R}		Set of real numbers
S	[A]	Sensor signal
T	[K]	Absolute temperature
t	[s]	Time
t	[1]	Transmittance
u	[m/s]	Velocity
u	[m/s]	Velocity vector
U	[V]	Voltage, electric potential
V	$[\mathbf{m}^3]$	Volume
$V(\lambda)$	[lm/W]	Spectral luminous efficacy for photopic human vision
$V'(\lambda)$	[lm/W]	Spectral luminous efficacy for scotopic human vision
w	$\mathrm{e}^{2\pi\mathrm{i}}$	
\mathbf{w}_N	$\exp(2\pi \mathrm{i}/N)$	
x	$\begin{bmatrix} x,y \end{bmatrix}^T, \begin{bmatrix} x_1,x_2 \end{bmatrix}^T$	Image coordinates in the spatial domain
X	$[X, Y, Z]^T, [X_1, X_2, X_3]^T$	World coordinates
\mathbb{Z} , \mathbb{Z}^+		Set of integers, positive integers

- [1] E. H. Adelson and J. R. Bergen. Spatio-temporal energy models for the perception of motion. *J. Opt. Soc. Am. A*, 2:284–299, 1985.
- [2] E. H. Adelson and J. R. Bergen. The extraction of spatio-temporal energy in human and machine vision. In *Proceedings Workshop on Motion: Representation and Analysis, May 1986, Charleston, South Carolina*, pp. 151–155. IEEE Computer Society, Washington, 1986.
- [3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. *The Design and Analysis of Computer Algorithms*. Addison Wesley, Reading, MA, 1974.
- [4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. *The Design and Analysis of Computer Algorithms*. Addison-Wesley, Reading, MA, 1974.
- [5] J. Anton. Elementary Linear Algebra. John Wiley & Sons, New York, 2000.
- [6] G. R. Arce, N. C. Gallagher, and T. A. Nodes. Median filters: theory for one and two dimensional filters. JAI Press, Greenwich, USA, 1986.
- [7] S. Beauchemin and J. Barron. The computation of optical flow. *ACM Computing Surveys*, 27(3):433–467, 1996.
- [8] L. M. Biberman, ed. *Electro Optical Imaging: System Performance and Modeling.* SPIE, Bellingham, WA, 2001.
- [9] J. Bigün and G. H. Granlund. Optimal orientation detection of linear symmetry. In *Proceedings ICCV'87, London*, pp. 433–438. IEEE, Washington, DC, 1987.
- [10] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon, Oxford, 1995.
- [11] R. Blahut. *Fast Algorithms for Digital Signal Processing*. Addison-Wesley, Reading, MA, 1985.
- [12] M. Born and E. Wolf. *Principles of Optics*. Cambridge University Press, Cambridge, UK, 7th edn., 1999.
- [13] R. Bracewell. *The Fourier Transform and its Applications*. McGraw-Hill, New York, 2nd edn., 1986.
- [14] C. Broit. *Optimal registrations of deformed images*. Diss., Univ. of Pennsylvania, USA, 1981.
- [15] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig. *Handbook of Mathematics*. Springer, Berlin, 4th edn., 2004.
- [16] H. Burkhardt, ed. *Workshop on Texture Analysis*, 1998. Albert-Ludwigs-Universität, Freiburg, Institut für Informatik.

[17] H. Burkhardt and S. Siggelkow. Invariant features in pattern recognition fundamentals and applications. In C. Kotropoulos and I. Pitas, eds., *Nonlinear Model-Based Image/Video Processing and Analysis*, pp. 269–307. John Wiley & Sons, 2001.

- [18] P. J. Burt. The pyramid as a structure for efficient computation. In A. Rosenfeld, ed., *Multiresolution image processing and analysis*, vol. 12 of *Springer Series in Information Sciences*, pp. 6–35. Springer, New York, 1984.
- [19] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. *IEEE Trans. COMM*, 31:532–540, 1983.
- [20] P. J. Burt, T. H. Hong, and A. Rosenfeld. Segmentation and estimation of image region properties through cooperative hierarchical computation. *IEEE Trans. SMC*, 11:802–809, 1981.
- [21] J. F. Canny. A computational approach to edge detection. *PAMI*, 8:679–698, 1986.
- [22] R. Chelappa. *Digital Image Processing*. IEEE Computer Society Press, Los Alamitos, CA, 1992.
- [23] N. Christianini and J. Shawe-Taylor. *An Introduction to Support Vector Machines*. Cambridge University Press, Cambridge, 2000.
- [24] C. M. Close and D. K. Frederick. *Modelling and Analysis of Dynamic Systems*. Houghton Mifflin, Boston, 1978.
- [25] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series. *Math. of Comput.*, 19:297–301, 1965.
- [26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. MIT Press, Cambridge, MA, 2nd edn., 2001.
- [27] J. Crank. *The Mathematics of Diffusion*. Oxford University Press, New York, 2nd edn., 1975.
- [28] P.-E. Danielsson, Q. Lin, and Q.-Z. Ye. Efficient detection of second degree variations in 2D and 3D images. Technical Report LiTH-ISY-R-2155, Department of Electrical Engineering, Linköping University, S-58183 Linköping, Sweden, 1999.
- [29] P. J. Davis. *Interpolation and Approximation*. Dover, New York, 1975.
- [30] C. DeCusaris, ed. *Handbook of Applied Photometry*. Springer, New York, 1998.
- [31] C. Demant, B. Streicher-Abel, and P. Waszkewitz. *Industrial Image Processing. Viusal Quality Control in Manufacturing*. Springer, Berlin, 1999. Includes CD-ROM.
- [32] P. DeMarco, J. Pokorny, and V. C. Smith. Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. *J. of the Optical Society*, A9:1465–1476, 1992.
- [33] J. Dengler. Methoden und Algorithmen zur Analyse bewegter Realweltszenen im Hinblick auf ein Blindenhilfesystem. Diss., Univ. Heidelberg, 1985
- [34] R. Deriche. Fast algorithms for low-level vision. *IEEE Trans. PAMI*, 12(1): 78–87, 1990.

[35] N. Diehl and H. Burkhardt. Planar motion estimation with a fast converging algorithm. In *Proc. 8th Int. Conf. Pattern Recognition, ICPR'86, October 27–31, 1986, Paris*, pp. 1099–1102. IEEE Computer Society, Los Alamitos, 1986.

- [36] R. C. Dorf and R. H. Bishop. *Modern Control Systems*. Addison-Wesley, Menlo Park, CA, 8th edn., 1998.
- [37] S. A. Drury. *Image Interpretation in Geology*. Chapman & Hall, London, 2nd edn., 1993.
- [38] R. O. Duda, P. E. Hart, and D. G. Stork. *Pattern Classification*. Wlley, New York, 2nd edn., 2001.
- [39] M. A. H. Elmore, W. C. *Physics of Waves*. Dover Publications, New York, 1985.
- [40] A. Erhardt, G. Zinser, D. Komitowski, and J. Bille. Reconstructing 3D light microscopic images by digital image processing. *Applied Optics*, 24:194– 200, 1985.
- [41] J. F. S. Crawford. *Waves*, vol. 3 of *Berkely Physics Course*. McGraw-Hill, New York, 1965.
- [42] O. Faugeras. *Three-dimensional Computer Vision. A Geometric Vewpoint*. MIT Press, Cambridge, MA, 1993.
- [43] O. Faugeras and Q.-T. Luong. *The Geometry of Multiple Images*. MIT Press, Cambdridge, MA, 2001.
- [44] M. Felsberg and G. Sommer. A new extension of linear signal processing for estimating local properties and detecting features. In G. Sommer, N. Krüger, and C. Perwass, eds., *Mustererkennung 2000, 22. DAGM Symposium, Kiel*, Informatik aktuell, pp. 195–202. Springer, Berlin, 2000.
- [45] R. Feynman. *Lectures on Physics*, vol. 2. Addison-Wesley, Reading, Mass., 1964.
- [46] D. G. Fink and D. Christiansen, eds. *Electronics Engineers' Handbook*. McGraw-Hill, New York, 3rd edn., 1989.
- [47] M. A. Fischler and O. Firschein, eds. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms. Morgan Kaufmann, Los Altos, CA, 1987.
- [48] D. J. Fleet. *Measurement of Image Velocity*. Diss., University of Toronto, Canada, 1990.
- [49] D. J. Fleet. *Measurement of Image Velocity*. Kluwer Academic Publisher, Dordrecht, 1992.
- [50] D. J. Fleet and A. D. Jepson. Hierarchical construction of orientation and velocity selective filters. *IEEE Trans. PAMI*, 11(3):315–324, 1989.
- [51] D. J. Fleet and A. D. Jepson. Computation of component image velocity from local phase information. *Int. J. Comp. Vision*, 5:77-104, 1990.
- [52] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. *Computer Graphics, Principles and Practice.* Addison Wesley, Reading, MA, 2nd edn., 1995.
- [53] W. Förstner. Image preprocessing for feature extraction in digital intensity, color and range images. In A. Dermanis, A. Grün, and F. Sanso, eds., *Geomatic Methods for the Analysis of Data in the Earth Sciences*, vol. 95 of *Lecture Notes in Earth Sciences*. Springer, Berlin, 2000.

[54] D. A. Forsyth and J. Ponce. *Computer Vision, a Modern Approach*. Prentice Hall, Upper Saddle River, NJ, 2003.

- [55] W. T. Freeman and E. H. Adelson. The design and use of steerable filters. *IEEE Trans. PAMI*, 13:891–906, 1991.
- [56] G. Gaussorgues. Infrared Thermography. Chapman & Hall, London, 1994.
- [57] P. Geißler and B. Jähne. One-image depth-from-focus for concentration measurements. In E. P. Baltsavias, ed., *Proc. ISPRS Intercommission work-shop from pixels to sequences, Zürich, March 22-24*, pp. 122–127. RISC Books, Coventry UK, 1995.
- [58] J. Gelles, B. J. Schnapp, and M. P. Sheetz. Tracking kinesin driven movements with nanometre-scale precision. *Nature*, 331:450-453, 1988.
- [59] F. Girosi, A. Verri, and V. Torre. Constraints for the computation of optical flow. In *Proceedings Workshop on Visual Motion, March 1989, Irvine, CA*, pp. 116–124. IEEE, Washington, 1989.
- [60] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.
- [61] G. H. Golub and C. F. van Loan. *Matrix Computations*. The John Hopkins University Press, Baltimore, 1989.
- [62] R. C. Gonzalez and R. E. Woods. *Digital image processing*. Prentice Hall, Upper Saddle River, NJ, 2nd edn., 2002.
- [63] G. H. Granlund. In search of a general picture processing operator. *Comp. Graph. Imag. Process.*, 8:155–173, 1978.
- [64] G. H. Granlund and H. Knutsson. *Signal Processing for Computer Vision*. Kluwer, 1995.
- [65] L. D. Griffin and M. Lillhom, eds. Scale Space Methods in Computer Vision, vol. 2695 of Lecture Notes in Computer Science, 2003. 4th Int. Conf. Scale-Space'03, Springer, Berlin.
- [66] M. Groß. Visual Computing. Springer, Berlin, 1994.
- [67] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan. *Magnetic Resonance Imaging: Physical Principles and Sequence Design*. John Wiley & Sons, New York, 1999.
- [68] M. Halloran. 700×9000 imaging on an integrated CCD wafer affordably. *Advanced Imaging*, Jan.:46–48, 1996.
- [69] J. G. Harris. *The coupled depth/slope approach to surface reconstruction.* Master thesis, Dept. Elec. Eng. Comput. Sci., Cambridge, Mass., 1986.
- [70] J. G. Harris. A new approach to surface reconstruction: the coupled depth/slope model. In *1st Int. Conf. Comp. Vis. (ICCV), London*, pp. 277–283. IEEE Computer Society, Washington, 1987.
- [71] H. Haußecker. *Messung und Simulation kleinskaliger Austauschvorgänge* an der Ozeanoberfläche mittels Thermographie. Diss., University of Heidelberg, Germany, 1995.
- [72] H. Haußecker. Simultaneous estimation of optical flow and heat transport in infrared imaghe sequences. In *Proc. IEEE Workshop on Computer Vision beyond the Visible Spectrum*, pp. 85–93. IEEE Computer Society, Washington, DC, 2000.
- [73] H. Haußecker and D. J. Fleet. Computing optical flow with physical models of brightness variation. *IEEE Trans. PAMI*, 23:661–673, 2001.

- [74] E. Hecht. *Optics*. Addison-Wesley, Reading, MA, 1987.
- [75] D. J. Heeger. Optical flow from spatiotemporal filters. *Int. J. Comp. Vis.*, 1:279–302, 1988.
- [76] E. C. Hildreth. Computations underlying the measurement of visual motion. *Artificial Intelligence*, 23:309–354, 1984.
- [77] G. C. Holst. *CCD Arrays, Cameras, and Displays*. SPIE, Bellingham, WA, 2nd edn., 1998.
- [78] G. C. Holst. *Testing and Evaluation of Infrared Imaging Systems*. SPIE, Bellingham, WA, 2nd edn., 1998.
- [79] G. C. Holst. Common Sense Approach to Thermal Imaging. SPIE, Bellingham, WA, 2000.
- [80] G. C. Holst. *Electro-optical Imaging System Performance*. SPIE, Bellingham, WA, 2nd edn., 2000.
- [81] B. K. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.
- [82] S. Howell. *Handbook of CCD Astronomy*. Cambridge University Press, Cambridge, 2000.
- [83] T. S. Huang, ed. *Two-dimensional Digital Signal Processing II: Transforms and Median Filters*, vol. 43 of *Topics in Applied Physics*. Springer, New York, 1981.
- [84] S. V. Huffel and J. Vandewalle. *The Total Least Squares Problem Computational Aspects and Analysis.* SIAM, Philadelphia, 1991.
- [85] K. Iizuka. *Engineering Optics*, vol. 35 of *Springer Series in Optical Sciences*. Springer, Berlin, 2nd edn., 1987.
- [86] B. Jähne. Image sequence analysis of complex physical objects: nonlinear small scale water surface waves. In *Proceedings ICCV'87*, *London*, pp. 191–200. IEEE Computer Society, Washington, DC, 1987.
- [87] B. Jähne. Motion determination in space-time images. In *Image Processing III, SPIE Proceeding 1135, international congress on optical science and engineering, Paris, 24-28 April 1989,* pp. 147–152, 1989.
- [88] B. Jähne. *Spatio-temporal Image Processing*. Lecture Notes in Computer Science. Springer, Berlin, 1993.
- [89] B. Jähne. *Handbook of Digital Image Processing for Scientific Applications*. CRC Press, Boca Raton, FL, 1997.
- [90] B. Jähne. Vergleichende Analyse moderner Bildsensoren für die optische Messtechnik. In *Sensoren und Messsysteme 2004*, vol. 1829 of *VDI-Berichte*, pp. 317–324. VDI Verlag, Düsseldorf, 2004.
- [91] B. Jähne, ed. *Image Sequence Analysis to Investigate Dynamic Processes*, Lecture Notes in Computer Science, 2005. Springer, Berlin.
- [92] B. Jähne, E. Barth, R. Mester, and H. Scharr, eds. *Complex Motion, Proc.* 1th Int. Workshop, Günzburg, Oct. 2004, vol. 3417 of Lecture Notes in Computer Science, 2005. Springer, Berlin.
- [93] B. Jähne and H. Haußecker, eds. *Computer Vision and Applications. A Guide for Students and Practitioners.* Academic Press, San Diego, 2000.
- [94] B. Jähne, H. Haußecker, and P. Geißler, eds. Handbook of Computer Vision and Applications. Volume I: Sensors and Imaging. Volume II: Signal Processing and Pattern Recognition. Volume III: Systems and Applications.

- Academic Press, San Diego, 1999. Includes three CD-ROMs.
- [95] B. Jähne, J. Klinke, and S. Waas. Imaging of short ocean wind waves: a critical theoretical review. *J. Optical Soc. Amer. A*, 11:2197–2209, 1994.
- [96] B. Jähne, H. Scharr, and S. Körgel. Principles of filter design. In B. Jähne, H. Haußecker, and P. Geißler, eds., Computer Vision and Applications, volume 2, Signal Processing and Pattern Recognition, chapter 6, pp. 125–151. Academic Press, San Diego, 1999.
- [97] A. K. Jain. *Fundamentals of Digital Image Processing*. Prentice-Hall, Englewood Cliffs, NJ, 1989.
- [98] R. Jain, R. Kasturi, and B. G. Schunck. *Machine Vision*. McGraw-Hill, New York, 1995.
- [99] J. R. Janesick. *Scientific Charge-Coupled Devices*. SPIE, Bellingham, WA, 2001.
- [100] J. T. Kajiya. The rendering equation. *Computer Graphics*, 20:143–150, 1986.
- [101] M. Kass and A. Witkin. Analysing oriented patterns. *Comp. Vis. Graph. Im. Process.*, 37:362–385, 1987.
- [102] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. In Proc. 1st Int. Conf. Comp. Vis. (ICCV), London, pp. 259–268. IEEE Computer Society, Washington, 1987.
- [103] B. Y. Kasturi and R. C. Jain. *Computer Vision: Advances and Applications*. IEEE Computer Society, Los Alamitos, 1991.
- [104] B. Y. Kasturi and R. C. Jain, eds. *Computer Vision: Principles*. IEEE Computer Society, Los Alamitos, 1991.
- [105] J. K. Kearney, W. B. Thompson, and D. L. Boley. Optical flow estimation: an error analysis of gradient-based methods with local optimization. *IEEE Trans. PAMI*, 9 (2):229–244, 1987.
- [106] M. Kerckhove, ed. *Scale-Space and Morphology in Computer Vision*, vol. 2106 of *Lecture Notes in Computer Science*, 2001. 3rd Int. Conf. Scale-Space'01, Vancouver, Canada, Springer, Berlin.
- [107] R. Kimmel, N. Sochen, and J. Weickert, eds. *Scale-Space and PDE Methods in Computer Vision*, Lecture Notes in Computer Science, 2005. 5th Int. Conf. Scale-Space'05, Springer, Berlin.
- [108] C. Kittel. *Introduction to Solid State Physics*. Wiley, New York, 1971.
- [109] R. Klette, A. Koschan, and K. Schlüns. *Computer Vision. Three-Dimensional Data from Images.* Springer, New York, 1998.
- [110] H. Knutsson. *Filtering and Reconstruction in Image Processing*. Diss., Linköping Univ., Sweden, 1982.
- [111] H. Knutsson. Representing local structure using tensors. In *The 6th Scandinavian Conference on Image Analysis, Oulu, Finland, June 19-22, 1989*, 1989.
- [112] H. E. Knutsson, R. Wilson, and G. H. Granlund. Anisotropic nonstationary image estimation and its applications: part I restoration of noisy images. *IEEE Trans. COMM*, 31(3):388–397, 1983.
- [113] J. J. Koenderink and A. J. van Doorn. Generic neighborhood operators. *IEEE Trans. PAMI*, 14(6):597–605, 1992.

[114] C. Koschnitzke, R. Mehnert, and P. Quick. *Das KMQ-Verfahren: Medienkompatible Übertragung echter Stereofarbabbildungen*. Forschungsbericht Nr. 201, Universität Hohenheim, 1983.

- [115] P. Lancaster and K. Salkauskas. *Curve and Surface Fitting. An Introduction*. Academic Press, London, 1986.
- [116] S. Lanser and W. Eckstein. Eine Modifikation des Deriche-Verfahrens zur Kantendetektion. In B. Radig, ed., *Mustererkennung 1991*, vol. 290 of *Informatik Fachberichte*, pp. 151–158. 13. DAGM Symposium, München, Springer, Berlin, 1991.
- [117] Laurin. *The Photonics Design and Applications Handbook*. Laurin Publishing CO, Pittsfield, MA, 40th edn., 1994.
- [118] D. C. Lay. Linear Algebra and Its Applications. Addison-Wesley, Reading, MA, 1999.
- [119] R. Lenz. Linsenfehlerkorrigierte Eichung von Halbleiterkameras mit Standardobjektiven für hochgenaue 3D-Messungen in Echtzeit. In E. Paulus, ed., *Proc. 9. DAGM-Symp. Mustererkennung 1987, Informatik Fachberichte 149*, pp. 212–216. DAGM, Springer, Berlin, 1987.
- [120] R. Lenz. Zur Genauigkeit der Videometrie mit CCD-Sensoren. In H. Bunke, O. Kübler, and P. Stucki, eds., *Proc. 10. DAGM-Symp. Mustererkennung* 1988, *Informatik Fachberichte* 180, pp. 179–189. DAGM, Springer, Berlin, 1988.
- [121] M. Levine. Vision in Man and Machine. McGraw-Hill, New York, 1985.
- [122] Z.-P. Liang and P. C. Lauterbur. *Principles of Magnetic Resonance Imaging: A Signal Processing Perspective.* SPIE, Bellingham, WA, 1999.
- [123] D. R. Lide, ed. *CRC Handbook of Chemistry and Physics*. CRC, Boca Raton, FL, 76th edn., 1995.
- [124] J. S. Lim. *Two-dimensional Signal and Image Processing*. Prentice-Hall, Englewood Cliffs, NJ, 1990.
- [125] T. Lindeberg. *Scale-space Theory in Computer Vision*. Kluwer Academic Publishers, Boston, 1994.
- [126] M. Loose, K. Meier, and J. Schemmel. A self-calibrating single-chip CMOS camera with logarithmic response. *IEEE J. Solid-State Circuits*, 36(4), 2001.
- [127] D. Lorenz. *Das Stereobild in Wissenschaft und Technik*. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Köln, Oberpfaffenhofen, 1985.
- [128] V. K. Madisetti and D. B. Williams, eds. *The Digital Signal Processing Hand-book*. CRC, Boca Raton, FL, 1998.
- [129] H. A. Mallot. *Computational Vision: Information Processing in Perception and Visual Behavior.* The MIT Press, Cambridge, MA, 2000.
- [130] V. Markandey and B. E. Flinchbaugh. Multispectral constraints for optical flow computation. In *Proc. 3rd Int. Conf. on Computer Vision 1990 (ICCV'90), Osaka*, pp. 38–41. IEEE Computer Society, Los Alamitos, 1990.
- [131] S. L. Marple Jr. *Digital Spectral Analysis with Applications*. Prentice-Hall, Englewood Cliffs, NJ, 1987.
- [132] D. Marr. Vision. W. H. Freeman and Company, New York, 1982.

[133] D. Marr and E. Hildreth. Theory of edge detection. *Proc. Royal Society, London, Ser. B*, 270:187–217, 1980.

- [134] E. A. Maxwell. *General Homogeneous Coordinates in Space of Three Dimensions*. University Press, Cambridge, 1951.
- [135] C. Mead. *Analog VLSI and Neural Systems*. Addison-Wesley, Reading, MA, 1989.
- [136] W. Menke. *Geophysical Data Analysis: Discrete Inverse Theory*, vol. 45 of *International Geophysics Series*. Academic Press, San Diego, 1989.
- [137] C. D. Meyer. *Matrix Analysis and Applied Linear Algebra*. SIAM, Philadelphia, 2001.
- [138] D. G. Mitchell and M. S. Cohen. *MRI Principles*. Saunders, Philadelphia, 2nd edn., 2004.
- [139] A. Z. J. Mou, D. S. Rice, and W. Ding. VIS-based native video processing on UltraSPARC. In *Proc. IEEE Int. Conf. on Image Proc., ICIP'96*, pp. 153–156. IEEE, Lausanne, 1996.
- [140] T. Münsterer. Messung von Konzentrationsprofilen gelöster Gase in der wasserseitigen Grenzschicht. Diploma thesis, University of Heidelberg, Germany, 1993.
- [141] T. Münsterer, H. J. Mayer, and B. Jähne. Dual-tracer measurements of concentration profiles in the aqueous mass boundary layer. In B. Jähne and E. Monahan, eds., *Air-Water Gas Transfer, Selected Papers, 3rd Intern. Symp. on Air-Water Gas Transfer*, pp. 637–648. AEON, Hanau, 1995.
- [142] H. Nagel. Displacement vectors derived from second-order intensity variations in image sequences. *Computer Vision, Graphics, and Image Processing (GVGIP)*, 21:85–117, 1983.
- [143] Y. Nakayama and Y. Tanida, eds. *Atlas of Visualization III.* CRC, Boca Raton, FL, 1997.
- [144] V. S. Nalwa. A Guided Tour of Computer Vision. Addison-Wesley, Reading, MA, 1993.
- [145] M. Nielsen, P. Johansen, O. Olsen, and J. Weickert, eds. Scale-Space Theories in Computer Vision, vol. 1682 of Lecture Notes in Computer Science, 1999. 2nd Int. Conf. Scale-Space'99, Corfu, Greece, Springer, Berlin.
- [146] H. K. Nishihara. Practical real-time stereo matcher. *Optical Eng.*, 23:536–545, 1984.
- [147] J. Ohser and F. Mücklich. *Statistical Analysis of Microstructures in Material Science*. Wiley, Chicester, England, 2000.
- [148] A. V. Oppenheim and R. W. Schafer. *Discrete-time Signal Processing*. Prentice-Hall, Englewood Cliffs, NJ, 1989.
- [149] A. Papoulis. *Probability, Random Variables, and Stochastic Processes.* McGraw-Hill, New York, 3rd edn., 1991.
- [150] J. R. Parker. *Algorithms for Image Processing and Computer Vision*. John Wiley & Sons, New York, 1997. Includes CD-ROM.
- [151] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. In *Proc. IEEE comp. soc. workshop on computer vision (Miami Beach, Nov. 30-Dec. 2, 1987)*, pp. 16–20. IEEE Computer Society, Washington, 1987.

[152] Photobit. PB-MV13 20 mm CMOS Active Pixel Digital Image Sensor. Photobit, Pasadena, CA, August 2000. www.photobit.com.

- [153] M. Pietikäinen and A. Rosenfeld. Image segmentation by texture using pyramid node linking. *SMC*, 11:822-825, 1981.
- [154] I. Pitas. *Digital Image Processing Algorithms*. Prentice Hall, New York, 1993.
- [155] I. Pitas and A. N. Venetsanopoulos. *Nonlinear Digital Filters. Principles and Applications*. Kluwer Academic Publishers, Norwell, MA, 1990.
- [156] A. D. Poularikas, ed. *The Transforms and Applications Handbook*. CRC, Boca Raton, 1996.
- [157] W. K. Pratt. *Digital image processing, PIKS Inside*. Wiley, New York, 3rd edn., 2001.
- [158] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. *Numerical Recipes in C: The Art of Scientific Computing*. Cambridge University Press, New York, 1992.
- [159] J. G. Proakis and D. G. Manolakis. *Digital Signal Processing. Principles, Algorithms, and Applications*. McMillan, New York, 1992.
- [160] L. H. Quam. Hierarchical warp stereo. In *Proc. DARPA Image Understanding Workshop, October 1984, New Orleans, LA*, pp. 149–155, 1984.
- [161] A. R. Rao. A Taxonomy for Texture Description and Identification. Springer, New York, 1990.
- [162] A. R. Rao and B. G. Schunck. Computing oriented texture fields. In *Proceedings CVPR'89*, San Diego, CA, pp. 61–68. IEEE Computer Society, Washington, DC, 1989.
- [163] T. H. Reiss. *Recognizing Planar Objects Using Invariant Image Features*, vol. 676 of *Lecture notes in computer science*. Springer, Berlin, 1993.
- [164] J. A. Rice. *Mathematical Statistics and Data Analysis*. Duxbury Press, Belmont, CA, 1995.
- [165] A. Richards. *Alien Vision: Exploring the Electromagnetic Spectrum with Imaging Technology.* SPIE, Bellingham, WA, 2001.
- [166] J. A. Richards. *Remote Sensing Digital Image Analysis*. Springer, Berlin, 1986.
- [167] J. A. Richards and X. Jia. *Remote Sensing Digital Image Analysis*. Springer, Berlin, 1999.
- [168] M. J. Riedl. *Optical Design Fundamentals for Infrared Systems*. SPIE, Bellingham, 2nd edn., 2001.
- [169] K. Riemer. Analyse von Wasseroberflächenwellen im Orts-Wellenzahl-Raum. Diss., Univ. Heidelberg, 1991.
- [170] K. Riemer, T. Scholz, and B. Jähne. Bildfolgenanalyse im Orts-Wellenzahlraum. In B. Radig, ed., *Mustererkennung 1991, Proc. 13. DAGM-Symposium München, 9.-11. October 1991*, pp. 223–230. Springer, Berlin, 1991.
- [171] A. Rosenfeld, ed. *Multiresolution Image Processing and Analysis*, vol. 12 of *Springer Series in Information Sciences*. Springer, New York, 1984.
- [172] A. Rosenfeld and A. C. Kak. *Digital Picture Processing*, vol. I and II. Academic Press, San Diego, 2nd edn., 1982.

[173] J. C. Russ. *The Image Processing Handbook*. CRC, Boca Raton, FL, 4th edn., 2002.

- [174] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image processing, and GIS. Addison-Wesley, Reading, MA, 1990.
- [175] H. Samet. *The Design and Analysis of Spatial Data Structures*. Addison-Wesley, Reading, MA, 1990.
- [176] H. Scharr and D. Uttenweiler. 3D anisotropic diffusion filtering for enhancing noisy actin filaments. In B. Radig and S. Florczyk, eds., *Pattern Recognition, 23rd DAGM Stmposium, Munich*, vol. 2191 of *Lecture Notes in Computer Science*, pp. 69–75. Springer, Berlin, 2001.
- [177] H. Scharr and J. Weickert. An anisotropic diffusion algorithm with optimized rotation invariance. In G. Sommer, N. Krüger, and C. Perwass, eds., *Mustererkennung 2000*, Informatik Aktuell, pp. 460–467. 22. DAGM Symposium, Kiel, Springer, Berlin, 2000.
- [178] T. Scheuermann, G. Pfundt, P. Eyerer, and B. Jähne. Oberflächenkonturvermessung mikroskopischer Objekte durch Projektion statistischer Rauschmuster. In G. Sagerer, S. Posch, and F. Kummert, eds., *Mustererkennung* 1995, *Proc.* 17. DAGM-Symposium, Bielefeld, 13.-15. September 1995, pp. 319–326. DAGM, Springer, Berlin, 1995.
- [179] C. Schnörr and J. Weickert. Variational image motion computations: theoretical framework, problems and perspective. In G. Sommer, N. Krüger, and C. Perwass, eds., *Mustererkennung 2000*, Informatik Aktuell, pp. 476– 487. 22. DAGM Symposium, Kiel, Springer, Berlin, 2000.
- [180] B. Schöllkopf and A. J. Smola. Learning with Kernels, Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.
- [181] J. R. Schott. Remote Sensing. The Image Chain Approach. Oxford University Press, New York, 1997.
- [182] J. Schürmann. Pattern Classification. John Wiley & Sons, New York, 1996.
- [183] R. Sedgewick. *Algorithms in C, Part 1–4*. Addison-Wesley, Reading, MA, 3rd edn., 1997.
- [184] J. Serra. *Image analysis and mathematical morphology*. Academic Press, London, 1982.
- [185] J. Serra and P. Soille, eds. Mathematical Morphology and its Applications to Image Processing, vol. 2 of Computational Imaging and Vision. Kluwer, Dordrecht, 1994.
- [186] L. G. Shapiro and G. C. Stockman. *Computer Vision*. Prentice Hall, Upper Saddle River, NJ, 2001.
- [187] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable multiscale transforms. *IEEE Trans. IT*, 38(2):587–607, 1992.
- [188] R. M. Simonds. Reduction of large convolutional kernels into multipass applications of small generating kernels. J. Opt. Soc. Am. A, 5:1023-1029, 1988.
- [189] A. Singh. *Optic Flow Computation: a Unified Perspective*. IEEE Computer Society Press, Los Alamitos, CA, 1991.

[190] A. T. Smith and R. J. Snowden, eds. *Visual Detection of Motion*. Academic Press, London, 1994.

- [191] W. J. Smith. *Modern Optical Design*. McGraw-Hill, New York, 3rd edn., 2000.
- [192] P. Soille. *Morphological Image Analysis. Principles and Applications.* Springer, Berlin, 2nd edn., 2002.
- [193] G. Sommer, ed. *Geometric Computing with Clifford Algebras*. Springer, Berlin, 2001.
- [194] J. Steurer, H. Giebel, and W. Altner. Ein lichtmikroskopisches Verfahren zur zweieinhalbdimensionalen Auswertung von Oberflächen. In G. Hartmann, ed., *Proc. 8. DAGM-Symp. Mustererkennung 1986, Informatik-Fachberichte 125*, pp. 66–70. DAGM, Springer, Berlin, 1986.
- [195] R. H. Stewart. *Methods of Satellite Oceanography*. University of California Press, Berkeley, 1985.
- [196] T. M. Strat. Recovering the camera parameters from a transformation matrix. In *Proc. DARPA Image Understanding Workshop*, pp. 264–271, 1984.
- [197] B. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, eds. Scale-Space Theory in Computer Vision, vol. 1252 of Lecture Notes in Computer Science, 1997. 1st Int. Conf., Scale-Space'97, Utrecht, The Netherlands, Springer, Berlin.
- [198] D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. *IEEE Trans. PAMI*, 8:413-424, 1986.
- [199] D. Terzopoulos. The computation of visible-surface representations. *IEEE Trans. PAMI*, 10 (4):417–438, 1988.
- [200] D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-seeking models for 3D object reconstruction. In *Proc. 1st Int. Conf. Comp. Vis. (ICCV), London*, pp. 269–276. IEEE, IEEE Computer Society Press, Washington, 1987.
- [201] D. H. Towne. Wave Phenomena. Dover, New York, 1988.
- [202] S. Ullman. *High-level Vision. Object Recognition and Visual Cognition.* The MIT Press, Cambridge, MA, 1996.
- [203] S. E. Umbaugh. Computer Vision and Image Processing: A Practical Approach Using CVIPTools. Prentice Hall PTR, Upper Saddle River, NJ, 1998.
- [204] M. Unser, A. Aldroubi, and M. Eden. Fast B-spline transforms for continuous image representation and interpolation. *IEEE Trans. PAMI*, 13: 277–285, 1991.
- [205] F. van der Heijden. *Image Based Measurement Systems. Object Recognition and Parameter Estimation*. Wiley, Chichester, England, 1994.
- [206] W. M. Vaughan and G. Weber. Oxygen quenching of pyrenebutyric acid fluorescence in water. *Biochemistry*, 9:464, 1970.
- [207] A. Verri and T. Poggio. Against quantitative optical flow. In *Proceedings ICCV'87*, *London*, pp. 171–180. IEEE, IEEE Computer Society Press, Washington, DC, 1987.
- [208] A. Verri and T. Poggio. Motion field and optical flow: qualitative properties. *IEEE Trans. PAMI*, 11 (5):490–498, 1989.
- [209] K. Voss and H. Süße. *Praktische Bildverarbeitung*. Hanser, München, 1991.

[210] B. A. Wandell. Foundations of Vision. Sinauer Ass., Sunderland, MA, 1995.

- [211] A. Watt. *3D Computer Graphics*. Addison-Wesley, Workingham, England, 3rd edn., 1999.
- [212] A. Webb. Statistical Pattern Recognition. Wiley, Chichester, UK, 2002.
- [213] J. Weickert. *Anisotropic Diffusion in Image Processing*. Dissertation, Faculty of Mathematics, University of Kaiserslautern, 1996.
- [214] J. Weickert. *Anisotropic Diffusion in Image Processing*. Teubner, Stuttgart, 1998.
- [215] E. W. Weisstein. *CRC Concise Encyclopedia of Mathematics*. CRC, Boca Raton, FL, 2nd edn., 2002.
- [216] I. Wells, W. M. Efficient synthesis of Gaussian filters by cascaded uniform filters. *IEEE Trans. PAMI*, 8(2):234–239, 1989.
- [217] J. N. Wilson and G. X. Ritter. *Handbook of Computer Vision Algorithms in Image Algebra*. CRC, Boca Raton, FL, 2nd edn., 2000.
- [218] G. Wiora. *Optische 3D-Messtechnik: Präzise Gestaltvermessung mit einem erweiterten Streifenprojektionsverfahren.* Dissertation, Fakultät für Physik und Astronomie, Universität Heidelberg, 2001. http://www.ub.uni-heidelberg.de/archiv/1808.
- [219] G. Wolberg. *Digital Image Warping*. IEEE Computer Society, Los Alamitos, CA, 1990.
- [220] R. J. Woodham. Multiple light source optical flow. In *Proc. 3rd Int. Conf. on Computer Vision 1990 (ICCV'90), Osaka*, pp. 42–46. IEEE Computer Society, Los Alamitos, 1990.
- [221] P. Zamperoni. *Methoden der digitalen Bildsignalverarbeitung*. Vieweg, Braunschweig, 1989.

Symbols 3-D imaging 217 4-neighborhood 35 6-neighborhood 35 8-neighborhood 35	autoregressive moving average process 124 averaging recursive 318 axial magnification 197
A absorption coefficient 181 accurate 81 acoustic imaging 173 acoustic wave 173 longitudinal 173 transversal 173 action quantum 172 action-perception cycle 16 active contour 464 active vision 16, 18 adiabatic compressibility 173 aerial image 534 AI 535 aliasing 243 alpha radiation 172 AltiVec 25 amplitude 57 amplitude 57 amplitude of Fourier component 57 anaglyph method 222 analog-digital converter 259 analytic function 378 analytic signal 378, 380 and operation 501 aperture problem 222, 401, 406, 407, 413, 416, 422, 483, 492 aperture stop 200 area 528 ARMA 124 artificial intelligence 18, 535 associativity 116, 504 astronomy 3, 18 autocorrelation function 99 autocovariance function 99	B B-splines 286 back focal length 196 band sampling 162 band-limited 246 bandwidth-duration product 57 bandpass decomposition 141, 150 bandpass filter 129, 138 base orthonormal 41 basis image 41, 113 BCCE 408, 413 bed-of-nails function 246 Bessel function 209 beta radiation 172 bidirectional reflectance distribution function 181 bimodal distribution 450 binary convolution 501 binary image 38, 449 binary noise 312 binomial distribution 94, 307 binomial filter 414 bioluminescence 184 bit reversal 70, 71 blackbody 175, 177 block matching 414 Bouger's law 182 bounding box 519 box filter 302, 414 box function 206 BRDF 181 Brewster angle 180 brightness change constraint equation 408
autocovariance ranction 33	equation 400

butterfly operation 71	complex exponential 121, 124
	complex number 43, 114
C	complex plane 45
calibration error 81	complex polynomial 124
camera coordinates 190	complex-valued vector 45
Camera link 24	computational complexity 67
Canny edge detector 351	computer graphics 17
Cartesian coordinates 95	computer science 17
Cartesian Fourier descriptor 524	computer tomography 8
cartography 219	computer vision 18
Cauchy-Schwarz inequality 424	confocal laser scanning microscopy
causal filter 122, 124	227
CCD 21	connected region 34
center of mass 520	connectivity 455
central limit theorem 95	constant neighborhood 322
central moment 84, 520	continuity equation 408
centroid 524	continuous-wave modulation 228
chain code 515, 518	controlled smoothness 471
characteristic value 121	convolution 54, 91, 100, 206, 245,
characteristic vector 121	370
charge coupled device 21	binary 501
chemiluminescence 184	cyclic 111
chess board distance 36	discrete 108
chi density 95	normalized 323
chi-square density 96, 97	convolution mask 54
child node 517	convolution theorem 54, 114, 122
circular aperture 211	Cooley-Tukey algorithm 74
circularity 530	coordinates
circularly polarized 171	camera 190
city block distance 36	Cartesian 95
classification 16, 536	homogeneous 212
object-based 536	polar 95
pixel-based 536	world 189
supervised 543	corner 332
unsupervised 543	correlation 118
classifier 543	cyclic 100
closing operation 507	correlation coefficient 87
cluster 537	correspondence
CMOS image sensor 22	physical 403
co-spectrum 102	visual 403
coherence 171	correspondence problem 401
coherence function 102	cosine transform 65
coherency length 219	covariance 87, 99
coherency measure 369	covariance matrix 87, 117, 483, 541
coherency radar 7, 229	cross section 183
coherent 171	cross-correlation coefficient 424
color difference system 167	cross-correlation function 100
color image 299	cross-correlation spectrum 102
colorimetry 166	cross-covariance 541
commutativity 116 504	cross-covariance function 100

CT 8 curvature 334	digitization 15, 189, 243 dilation operator 502
cyclic 363	direction 362
cyclic convolution 111	directional derivate 333
cyclic correlation 100	directional derivative 384, 387
,	directiopyramidal decomposition
D	143, 428, 442
data space 482	discrete convolution 108
data vector 479, 485	discrete delta function 122
decimation-in-frequency FFT 75	discrete difference 331
decimation-in-time FFT 70	discrete Fourier transform 45, 124
decision space 543	discrete Hartley transform 66
deconvolution 121, 489	discrete inverse problem 464
defocusing 487	discrete scale space 151
deformation energy 493	disparity 221
degree of freedom 483	dispersion 169
delta function, discrete 122	displacement vector 401, 407, 492
depth from	displacement vector field 408, 464,
coherency 219	492
multiple projections 220	distance transform 512
phase 219	distortion
time-of-flight 219	geometric 201
triangulation 219	distribution function 83
depth imaging 217, 218	distributivity 117, 505
depth map 6, 224, 463	divide and conquer 68, 74
depth of field 199, 224, 489	DoG 353, 388
depth of focus 198	Doppler effect 185
depth range 220	dual base 252
depth resolution 220	dual operators 506
depth-first traversal 517	duality 506
derivative	DV 401, 407
directional 387	DVD 24
partial 333	DVF 408
derivative filter 370	dyadic point operator 292, 339
design matrix 479, 485	dynamic range 220
DFT 45	_
DHT 66	E
difference of Gaussian 353, 388	eccentricity 522
differential cross section 183	edge 322, 332
differential geometry 429	in tree 457
differential scale space 150	edge detection 331, 342, 359
differentiation 331	edge detector
differentiation theorem 55	regularized 349
diffraction-limited optics 209	edge strength 331
diffusion coefficient 144	edge-based segmentation 453
diffusion equation 497	effective focal length 196
diffusion reaction system 474	effective inverse OTF 490
diffusion-reaction system 474	efficiency factor 183
digital object 34	eigen vector 90
digital signal processing 81	eigenimage 121

eigenvalue 90, 121, 477	decimation-in-frequency 75
eigenvalue analysis 420	decimation-in-time 70
eigenvalue problem 366	multidimensional 75
eigenvector 121, 419	radix-2 decimation-in-time 68
elastic membrane 492	radix-4 decimation-in-time 74
elastic plate 494	field
elastic wave 173	electric 169
elasticity constant 493	magnetic 169
electric field 169	fill operation 520
3 3 3 3	- ,
electromagnetic wave 169	binomial 306
electron 172	causal 122
electron microscope 173	difference of Gaussian 388
ellipse 522	finite impulse response 123
elliptically polarized 171	Gabor 381, 427, 432
emission 174	infinite impulse response 123
emissivity 176	mask 115
emittance 160	median 119, 321
energy 60	nonlinear 120
ensemble average 99	polar separable 389
ergodic 100	quadrature 432
erosion operator 502	rank value 119, 502
error	recursive 122
calibration 81	separable 116
statistical 81	stable 123
systematic 81	transfer function 115
error functional 467	filtered back-projection 238, 239
error propagation 483	finite impulse response filter 123
error vector 479	FIR filter 123
Ethernet 24	Firewire 24
Euclidian distance 36	first-order statistics 82
Euler-Lagrange equation 467, 474	fix point 322
excitance 160	fluid dynamics 408
expansion operator 141	fluorescence 184
expectation value 84	focus series 489
exponential scale space 150	forward mapping 276
exponential, complex 121	four-point mapping 278
exposure time 92	Fourier descriptor 515
extinction coefficient 182	Cartesian 524
	polar 525
F	Fourier domain 578
fan-beam projection 235	Fourier ring 50
Faraday effect 184	Fourier series 47, 523
fast Fourier transform 68	Fourier slice theorem 238
father node 457	Fourier torus 50
feature 105	Fourier transform 31, 42, 44, 48,
feature image 15, 105, 359	100, 206
feature space 537	discrete 45
feature vector 537	infinite discrete 47
FFT 68	multidimensional 47

one-dimensional 44 homogeneous coordinates 212, 277 windowed 137 homogeneous point operation Fourier transform pair 45 homogeneous random field 99 Fraunhofer diffraction 210 Hough transform 459, 482 frequency 169, 565 HT 65 frequency doubling 171 hue 167 Fresnel's equations 180, 568 human visual system 18, 164 front focal length 196 Huygens' principle 210 FS 47 hyperplane 482

G

Gabor filter 381, 427, 432 gamma transform 265 gamma value 40 Gaussian noise 312 Gaussian probability density 93 Gaussian pyramid 136, 138, 139, 564 generalized image coordinates 195 generalized inverse 481 geodesy 219 geometric distortion 201 geometric operation 257 geometry of imaging 189 global optimization 463 gradient space 230 gradient vector 333 gray value corner 430, 431 gray value extreme 430, 431 grid vector 36 group velocity 383

Н

Haar transform 66
Hadamard transform 66
Hamilton's principle 466
Hankel transform 208
Hartley transform 65
Hermitian symmetry 50
Hessian matrix 334, 429
hierarchical processing 15
hierarchical texture organization 435
Hilbert filter 376, 427, 442
Hilbert operator 376
Hilbert space 64
Hilbert transform 375, 377
histogram 83, 537

hit-miss operator 508

homogeneous 83, 113

I

IA-64 25 idempotent operation 508 IDFT 47 IEEE 1394 24 IIR filter 123 illumination slicing 220 illumination, uneven 269 image analysis 449 image averaging 268 image coordinates 193 generalized 195 image cube 403 image data compression 65 image equation 197 image flow 407 image formation 246 image preprocessing 15 image processing 17 image reconstruction 16 image restoration 16 image sensor 22 image sequence 8 image vector 484 impulse 322 impulse noise 312 impulse response 114, 122 incoherent 171 independent random variables 87 index of refraction 169 inertia tensor 386, 522 infinite discrete Fourier transform 47 infinite impulse response filter 123 infrared 23, 176 inhomogeneous background 299

inhomogeneous point operation 268

inner product 41, 44, 63, 386

integrating sphere 272

input LUT 259

intensity 167	local orientation 380, 388
interferometry 219	local phase 378, 380
interpolation 249, 252, 279	local variance 439
interpolation condition 280, 572	local wave number 375, 388, 393,
inverse filtering 121, 464, 489	442
inverse Fourier transform 44, 48	LoG 352
inverse mapping 276	log-polar coordinates 62
inverse problem	lognormal 389, 393
overdetermined 479	longitudinal acoustic wave 173
irradiance 31, 160	look-up table 259, 339
isotropic edge detector 338	look-up table operation 259
isotropy 305	low-level image processing 105, 449
1500104) 505	LSI 130, 205
J	LSI operator 113
Jacobian matrix 91, 354	LTI 113
joint probability density function 87	luminance 167
JPEG 65	_
JPEG 03	luminescence 184 LUT 259
V	LU1 259
K Kerr effect 184	M
Kerr effect 184	M m votational exponentus. 525
T	m-rotational symmetry 525
L	machine vision 18
Lagrange function 467	magnetic field 169
Lambert-Beer's law 182	magnetic resonance 236
Lambertian radiator 175, 181	magnetic resonance tomography 7,
Laplace of Gaussian 352	8
Laplace transform 125	magnification
Laplacian equation 470	axial 197
Laplacian operator 145, 150, 334,	lateral 197
345	marginal probability density function
Laplacian pyramid 136, 138, 141,	87
428, 564	Marr-Hildreth operator 352
lateral magnification 197	mask 106
leaf node 517	mathematics 17
leaf of tree 457	matrix 578
learning 543	maximization problem 366
least squares 468	maximum filter 119
lens aberration 487	maximum operator 502
line 332	mean 84, 438
line sampling 162	measurement space 537
linear discrete inverse problem 478	median filter 119, 321, 330
linear interpolation 282	medical imaging 18
linear shift-invariant operator 113	membrane, elastic 492
linear shift-invariant system 130,	memory cache 73
205, 486	metameric color stimuli 165
linear symmetry 361	metrology 18
linear time-invariant 113	MFLOP 67
linearly polarized 171	microscopy 199
local amplitude 378	microscopy 199 microwave 176
local extreme 332	Mie scattering 184

minimum filter 119 minimum operator 502 minimum-maximum principle 148 MMX 25 model 464 model matrix 479 model space 459, 482 model vector 479 model-based segmentation 449, 458 model-based spectral sampling 162 Moiré effect 243, 248 molar absorption coefficient 182 moment 515, 520 central 520 scale-invariant 521 moment tensor 522 monogenic signal 379	spectrum 118 white 322 zero-mean 99, 100 noise suppression 311, 322 non-closed boundaries 525 non-uniform illumination 299 nonlinear filter 120 nonlinear optical phenomenon 171 norm 63, 190, 480 normal density 480 normal distribution 95 normal probability density 93 normal velocity 421, 427 normalized convolution 323 null space 367 numerical aperture 212
monogenic signal 379	0
monogic signal 384 monotony 505 morphological operator 503 motility assay 9 motion 15 motion as orientation 405 motion field 407, 408 moving average 148 MR 236	object-based classification 536 occlusion 194 OCR 12, 533, 540 octree 518 OFC 408, 413 opening operation 507 operator 578 operator notation 107
MRT 8	operator, Laplacian 334
multigrid representation 136, 138 Multimedia Instruction Set Extension	operator, morphological 503 optical activity 184
25	optical axis 190, 195
multiscale representation 136	optical character recognition 12,
multiscale texture analysis 436	533, 540
multispectral image 299	optical depth 182
multiwavelength interferometry 229	optical engineering 17
	optical flow 407
N	optical flow constraint 408
neighborhood 4- 35	optical illusions 19 optical signature 535
6- 35	optical thickness 182
8- 35	optical transfer function 207, 487
neighborhood operation 105	or operation 501
neighborhood relation 34	orientation 362, 363, 405, 438, 522
network model 494	local 492
neural network 549	orientation invariant 393
neural networks 18	orientation vector 368
neutron 172	orthonormal 190
node 71 node, in tree 457	orthonormality relation 42
node, in tree 457 noise 299	orthonormality relation 42 OTF 207, 487, 490
binary 312	outer product 48
	F

****** O = O	TO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
output LUT 259	Poisson distribution 172
oversampling 251	Poisson process 92
oxygen 185	polar coordinates 95
n.	polar Fourier descriptor 525
P	polar separable 324, 389
paradigm, depth from 219	polarization
parallax 221	circular 171
parameter vector 479, 485	elliptical 171
partial derivative 333	linear 171
particle physics 3	positron emission tomography 7, 8
particulate radiation 172	potential 493
Pascal's triangle 308	power spectrum 59, 101, 118
pattern recognition 18, 533	precise 81
PBA 185	primary colors 166
PDF 83	principal axes 416
pel 31	principal component transform 90
perimeter 529	principal coordinate system 334
periodicity 49, 50	principal plane 195
DFT 49	principal point 195
perspective projection 192, 194, 213	principal ray 200
PET 8	principal-axes transform 541
phase 57, 375, 426	principle of superposition 112, 504
phase angle 43	probability density function 83
phase of Fourier component 57	process
phase speed 565	homogeneous 83
phosphorescence 184	projection operator 237
photogrammetry 3, 18	projection theorem 238
photography 3	proton 172
photometric stereo 231, 463	pseudo-color image 260, 262
photometry 161	pseudo-noise modulation 229
photon 172	PSF 114, 205, 490
photonics 17	pulse modulation 228
photopic vision 164	pyramid 21
photorealistic 17, 410	pyramid linking 455
physical correspondence 403	pyrene butyric acid 185
physics 17	
pinhole camera 192, 569	Q
pixel 31, 82	quad-spectrum 102
pixel-based classification 536	quadrant 517
pixel-based segmentation 449	quadratic scale space 150
Planck 175	quadrature filter 375, 380, 432
Planck's constant 172	quadrature filter pair 442
plane polarized 171	quadtree 515, 516
plate, elastic 494	quantization 37, 83, 189, 253
point operation 82, 105, 257, 370	quantum efficiency 22, 97
homogeneous 258	quantum mechanics 64
inhomogeneous 268	quenching 185
point operator 85	
point spread function 114, 120, 122,	R
205, 450, 486, 487	radiant energy 159

radiant flux 159	root of tree 457
radiant intensity 160	rotation 37, 190, 213, 277
radiometric calibration	run-length code 515
nonlinear 272	RV 83
two-point 271	
radiometry 159	S
radiometry of imaging 189	sample variance 96, 99
radiosity 410	sampling 246
radius 525	standard 249
radix-2 FFT algorithm 68	sampling theorem 139, 244, 246,
radix-4 FFT algorithm 74	247
Radon transform 237	satellite image 534
RAID array 24	saturation 167
random field 82, 98	scalar 578
ergodic 100	scalar product 42, 46, 48, 386
homogeneous 99	scale 144, 438
random variable 83, 172	scale invariance 147, 148
independent 87	scale invariant 521
uncorrelated 88	scale mismatch 135
rank 366	scale space 136, 144, 474
rank-value filter 119, 321, 502	scaling 36, 213, 277
ratio imaging 231	scaling theorem 209
Rayleigh criterion 211	scotopic vision 164
Rayleigh density 95	searching 67
Rayleigh theorem 60	segmentation 15, 449, 464
reciprocal base 252	edge-based 453
reciprocal grid 246	model-based 458
reciprocal lattice 252	pixel-based 449
reconstruction 16, 106, 463	region-based 454
rectangular grid 34, 35	semi-group property 148
recursive averaging 318	sensor element 82
recursive filter 122, 123	separability
reduction operator 141	FT 52
reflectivity 179, 568	separable filter 116, 126
refraction 179, 568	shape 501
region of support 106	shape from refraction 232
region-based segmentation 454	shape from shading 9, 219, 220,
regions 299	229, 463
regularized edge detector 349	shearing 277
relaxation filter 125, 127	shift invariant 99, 113, 504
remote sensing 18	shift operator 113, 504
rendering equation 410	shift theorem 54, 59, 138, 526
representation-independent notation	SIMD 25
107	similarity constraint 463
resonance filter 125	simple neighborhood 361
responsivity 163	sine transform 65
restoration 106, 463, 468, 486	single instruction multiple data 25
Riesz transform 379	singular value decomposition 483
robustness 371	skewness 84
root 322, 517	smoothing filter 370
1000 022, 011	omooding inter 570

smoothness 470 temperature distribution 176 smoothness constraint 463 tensor 578 snake 464 terminal node 517 Snell's law 179, 568 test image 305 Sobel operator 371 text recognition 533 software engineering 17 texture 15, 359, 435 solid angle 160 TF 114 son node 457 theoretical mechanics 466 space-time image 403 thermal emission 175 spatiotemporal energy 432 thermal imaging 268 spatiotemporal image 403 thermography 176, 179 specific rotation 184 three-point mapping 277 spectral luminous efficacy 566 TIFF 516 spectroradiometry 161 time series 61, 113, 578 spectroscopic imaging 162 tomography 16, 106, 220, 235, 463 specular surface 179 total least squares 419 speech processing 18 total reflection 180, 569 speech recognition 533 tracing algorithm 454 speed of light 169, 565 transfer function 114, 115, 486 speed of sound 173 recursive filter 124 spline 286 translation 36, 190, 213, 277 standard deviation 89 translation invariance 519 standard sampling 249 translation invariant 113 statistical error 81 transmission tomography 236 steerable filter 324 transmissivity 182 Stefan-Boltzmann law 176 transmittance 182 step edge 455 transport equation 497 stereo image 463 transversal acoustic wave 173 stereo system 221 tree 457, 517 stereoscopic basis 221 Stern-Vollmer equation 185 triangular grid 35 stochastic process 82, 98 triangulation 219 tristimulus 166 stretching 277 structure element 106, 503 structure tensor 365, 461 IJ subsampling 139 ultrasonic microscopy 173 subtree 457 ultrasound 173 superposition principle 112, 504 ultraviolet 23 supervised classification 543 uncertainty relation 57, 138, 141, support vector machine 549 309, 385 surface 332 uncorrelated random variable 88 symmetry 525 uneven illumination 269 DFT 50 uniform density 95 system, linear shift-invariant 130 uniform distribution 86 systematic error 81 unit circle 45 unit vector 578 Т target function 347 unitary transform 31,63 unsupervised classification 543 telecentric 5 telecentric illumination system 232 upsampling 53

zero crossing 345, 472 Van Cittert iteration 491 zero-mean noise 99 variance 84, 87, 99, 438, 483 zero-phase filter 126, 300 variance operator 226, 439 variation calculus 466 vector 578 vector point operation 261 vector space 46 vector, complex-valued 45 vectorial feature image 299 vertex, in tree 457 vignetting 203 VIS 25 visual computing 17 visual correspondence 403 visual inspection 5 visual instruction set 25 visual perception 18 volume element 34 volumetric image 6, 332 volumetric imaging 217, 218 voxel 34, 403 Waldsterben 534 wave acoustic 173 elastic 173 electromagnetic 169 wave number 42, 161, 578 wavelength 42, 161, 168, 169, 206, 565 weighted averaging 323 white noise 102, 322 white point 167 white-light interferometry 7, 229 Wien's law 176 window 106 window function 248, 274 windowed Fourier transform 137 windowing 274 world coordinates 189 X x-ray 23 x-rays 8 x86-64 25 XYZ color system 167 Z

z-transform 50, 125