Proof. Let N be the W*-subalgebra of M = B(H) generated by the eigenvectors of A pertaining to the eigenvalues on $i\mathbb{R}$ and let Q be the faithful normal conditional expectation from (Theorem 3.7.). Since M is atomic, N is atomic [Størmer (1972)]. N is finite since there exists a finite, faithful normal trace on N . In particular the center of N is isomorphic to $\, \, \iota^{\infty} \,$. Let S be the restriction of T to the center. Then S is a weak*-semigroup such that every $S(t) \in S$ is $\sigma(\ell^{\infty}, \ell^{1})$ -continuous and a *-automorphism. From this it follows that S(t) is induced by some continuous flow $\kappa_{\mathsf{t}} \colon \mathbb{N} \to \mathbb{N}$. Indeed, if $\delta_{\mathsf{n}}((\xi_{\mathsf{m}})) = \xi_{\mathsf{n}} (\mathsf{n} \in \mathbb{N}, (\xi_{\mathsf{m}}) \in \ell^{\infty})$, then $\delta_{\mathsf{n}} \circ \mathsf{S}(\mathsf{t})$ is a normal scalar valued *-homomorphism hence of the form δ_{m} for some $m = \kappa_{+}(n)$. But the function $(t \rightarrow \kappa_{+})$ is continuous from \mathbb{R} into N, whence constant. Hence S(t) = Id. But the semigroup S is weak*-irreducible on the center. Consequently the center is one dimensional. Using [Takesaki, Theorem V.1.27] we obtain $N = B(H_n)$ where H_n is a finite dimensional Hilbert space. But if $0 \neq i\alpha$ $\mathsf{EP}\sigma(\mathtt{A})$ \cap $\mathsf{i}\mathbb{R}$ then $\mathsf{i}\alpha\mathsf{Z}\subseteq\mathsf{P}\sigma(\mathtt{A})$ by D-III,Thm.1.10, whence N must be infinite dimensional. Therefore $P\sigma(A) \cap i\mathbb{R} = \{0\}$ as desired.

An immediate and interesting consequence of Theorem 3.8 and Proposition 3.7 is the following.

Corollary 3.9. If $(B(H), \phi, T)$ is an irreducible W*-dynamical system, then

$$\lim_{s\to\infty} T(s) = 18\phi$$

in the strong operator topology on $L(B(H)_*)$, where ϕ is the unique normal state generating the fixed space of T_* .

We are now going to discuss the asymptotic behavior of positive semigroups whose generator has boundary point spectrum different from 0 . The standard example is the following:

If Γ is the unit circle, m the normalized Haar measure on Γ and $0<\tau\in\mathbb{R}$, then we define the maps $R_{\tau}(t)$, $t\in\mathbb{R}_{+}$, on $L^{1}(\Gamma,m)$ by

$$(R_{\tau}(t)f)(\xi) = f(\xi \exp(\frac{2\pi i}{\tau}t))$$
 $(f \in L^{1}(\Gamma, m), \xi \in \Gamma)$.

Then $R := (R_{\tau}(t))_{t \ge 0}$ forms a strongly continuous one parameter semigroup which is identity preserving and of Schwarz type. Since R