De Novo Assembly of High-throughput Short Read Sequences

Chuming Chen

Center for Bioinformatics and Computational Biology (CBCB)
University of Delaware

NECC Third Skate Genome Annotation Workshop May 23, 2011

Outline

- Genome assembly primer
- High-throughput short read sequencing (NGS) assembly pipeline
- Case study

Genome sequencing and assembly

Genome

- Long stretches of contiguous DNA sequences (base pairs)
- Different genome sizes (i. e. virus: 3.5k, Human: 3.3 billion)
- Genome sequencers (NHGRI, Feb. 4, 2011)
 - Sanger-based sequencing (500-600 bases)
 - 454 sequencing (300-400 bases)
 - Illumina and SOLiD sequencing (50-100 bases)
- Sequencing and assembly
 - A genome must be fragmented, sequenced piece by piece and then re-assembled to obtain the full contiguous sequence

Assembly approaches

- Hierarchical assembly
 - Mapping the genome to a set of large insert clones
 - Reduce the assembly of the sequencing reads from the entire genome to a single clone, typically 40 - 200 Kb
 - The genome sequence is then assembled by aligning sequences of adjacent clones
- Whole genome shot-gun assembly
 - The entire genome is fragmented
 - The shotgun process takes reads from random positions along the chromosomes that make up one genome
 - The assembler then reconstructs the reads up to the chromosome length
 - Assembly is possible because the target is over-sampled by the shotgun reads, such that reads overlap

Whole genome shot-gun sequencing and assembly

Paired-end vs. mate-pair reads

Assembly pipeline

HiSeq2000 sequence data processing pipeline

FASTQ format sequence files

s_?_2_sequence.txt

A closer look at sequence file

1 2 3 4 5 6 7

@HWI-ST741_0085;1:1101:1444:1939#0/1
ATAGTTACAATCGATCCATTTGCAGAGTACAGATACATGATACGGGAAT
+HWI-ST741_0085:1:1101:1444:1939#0/1
ffffdfdfffffgggfafffcdfcfffbfdddeaegfgfgafaffW^a]

1 2 3 4 5 6 7

@HWI-ST741_0085:1:1101:1444:1939#0/2

CCCAGCTTATCCTTGCAACTCTTCTTAAATAGAGGCACAACATTAATCA
+HWI-ST741_0085:1:1101:1444:1939#0/2

Edeaadffffcaffcdaeaeffdfdecfefaceccfdffdfddfffffd

- 1. the unique instrument name
- 2. flowcell lane
- 3. tile number within the flowcell lane
- 4. 'x'-coordinate of the cluster within the tile
- 5. 'y'-coordinate of the cluster within the tile
- 6. index number for a multiplexed sample (0 for no multiplexing)
- 7. the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Quality scores

- Phred quality scores Q are defined as a property which is logarithmically related to the base-calling error probabilities P
- A Phred score of a base is: Q_{phred} =-10 $log_{10}P$, where P is the estimated probability of a base being wrong

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90 %
20	1 in 100	99 %
30	1 in 1000	99.9 %
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %

Phred scoring scheme, encoded as an ASCII character by adding 64 to the Phred value

Sequence reads quality assessment

- FastQC (Baraham Bioinformatics, UK)
 - Basic Statistics
 - Per Base Sequence Quality
 - Per Sequence Quality Scores
 - Per Base Sequence Content
 - Per Base GC Content.
 - Per Sequence GC Content
 - Per Base N Content
 - Sequence Length Distribution
 - Duplicate Sequences
 - Overrepresented Sequences
 - Overrepresented Kmers

Per base sequence quality

Yellow box: 25-75 quartile; Black whisker: min-max; Red line: median; Blue line: mean

Trim Sequences

- Quality trimming
 - Based on quality scores
- Ambiguity trimming
 - Remove stretches of Ns
- Adapter sequence trimming
 - Remove sequence adapters
- Base trim
 - Remove a specified number of bases at either 3' or 5' end of the reads
- Length trimming
 - Remove reads shorter or longer than a specified threshold

De Novo Assembly algorithms

- Overlap/Layout/Consensus Graph
- de Brujin Graph

Overlap/Layout/Consensus graphs

- A node corresponds to a read, an edge denotes an overlap between two reads.
- The overlap graph is used to compute a layout of reads and consensus sequence of contigs by pair-wise sequence alignment.
- Good for sequences with limited number of reads but significant overlap.
 Computational intensive for short reads (short and high error rate).
- Example assemblers: Celera Assembler, Arachne, CAP and PCAP

de Brujin graphs

- No need for all against all overlap discovery.
- Break reads into smaller sequences of DNA (K-mers, K denotes the length in bases of these sequences).
- Captures overlaps of length K-1 between these K-mers.
- More sensitive to repeats and sequencing errors.
- By construction, the graph contains a path corresponding to the original sequence.
- Example assemblers: Euler, Velvet, ABySS, AllPaths, SOAPdenovo, CLC Bio

CLC Bio De Novo assembly

- Make a table of the words (K-mers) seen in the reads.
- Build de Bruijn graph from the word table.
- Use the reads to resolve the repeats.
- Use the information from paired reads to resolve larger repeats.
- Output resulting contigs based on the paths.

Word (K-mer) size

To strike a balance, CLC bio's de novo assembler chooses a word length based on the amount of input data: the more data, the longer the word length. It is based on the following:

```
word size 12: 0 bp - 30000 bp
word size 13: 30001 bp - 90002 bp
word size 14: 90003 bp - 270008 bp
word size 15: 270009 bp - 810026 bp
word size 16: 810027 bp - 2430080 bp
word size 17: 2430081 bp - 7290242 bp
word size 18: 7290243 bp - 21870728 bp
word size 19: 21870729 bp - 65612186 bp
word size 20: 65612187 bp - 196836560 bp
word size 21: 196836561 bp - 590509682 bp
word size 22: 590509683 bp - 1771529048 bp
word size 23: 1771529049 bp - 5314587146 bp
word size 24: 5314587147 bp - 15943761440 bp
word size 25: 15943761441 bp - 47831284322 bp
word size 26: 47831284323 bp - 143493852968 bp
word size 27: 143493852969 bp - 430481558906 bp
word size 28: 430481558907 bp - 1291444676720 bp
word size 29: 1291444676721 bp - 3874334030162 bp
word size 30: 3874334030163 bp - 11623002090488 bp
word size 31: 11623002090489 bp and up
```

(CLC Bio, 2011)

Repeats or sequencing errors

Graph Reduction

SNP or Sequencing Error

(modified from CLC Bio, 2011)

Assembly quality assessment

Continuity

- Lengths distribution of contigs/scaffolds.
- Average length, minimum and maximum lengths, combined total lengths.
- N50 captures how much of the assembly is covered by relatively large contigs.
- The N50 is the length of the smallest contig in the set that contains the fewest (largest) contigs whose combined length represents at least 50% of the assembly.
- Compute N50
 - first ordering all contigs (or scaffolds) by length,
 - then summing up their lengths (starting with the longest) until the sum exceeds 50% of the total length of all contigs.
 - the corresponding contig length is N50.
- Accuracy or "Correctness"
 - Base accuracy the frequency of calling the correct nucleotide at a given position in the assembly.
 - Mis-assembly rate the frequency of rearrangements, significant insertions, deletions and inversions.

Case study

- Show the basic steps involved in De Novo assembly of high-throughput short read sequences
- Data
 - 3 lanes of Illumina HiSeq 2000 short read sequences for the little skate (a couple weeks ago)
- Assembler
 - CLC Bio Genomics Workbench 4.6

Import sequence data

Quality trimming

Adapter trimming

Sequence filtering

Trimming result handling

Trimming report

Summary

Name	Number of reads	Avg. length	Number of reads after trim	Percentage retained	Avg. length after trim
S_1_1_sequence (paired)	190,790,624	93.4	190,784,343	~100%	93.1
S_1_1_sequence	1,655,955	63.9	1,654,977	99.94%	63.0
S_3_1_sequence (paired)	209,140,424	92.9	209,131,515	~100%	92.6
S_3_1_sequence	2,016,294	62.4	2,015,199	99.95%	61.8
S_5_1_sequence (paired)	223,212,034	92.4	223,201,524	~100%	92.1
S_5_1_sequence	2,373,091	62.2	2,371,693	99.98%	61.5

Trim settings

- Removal of low quality sequence. (limit = 0.05).
- · Removal of ambigious nucleotides: maximal 2 nucleotides allowed.
- · Removal of adapter sequences, using the following adapters :
- # Illumina HiSeq 2000 PE Adapter (ACACTCTTTCCCTACACGACGCTCTTCCGATCT), strand = Plus, acti on = Remove adapter, score = [2, 3, 10, 4]

Detailed results

Trim	Input reads	No trim	Trimmed	Nothing left or Discarded
Trim on quality	629,187,422	618,707,269	10,474,178	5,975
Ambiguity trim	629,181,447	628,910,632	256,018	14,797
Adapter trimming	629,166,650	617,589,894	11,569,357	7,399

Assembly parameters

General assembly options

Assembly result handling

Assembly report

Summary statistics

	Count	Average length	Total bases
Reads	629,173,407	92.43	58,156,992,907
Matched	599,285,257	92.94	55,697,623,043
Not matched	29,888,150	82.29	2,459,369,864
Contigs	2,494,829	610	1,523,965,030
Reads in pairs	162,778,034	362.64	
Broken paired reads	431,137,809	91.92	

Quality assessment

Total length of sequences (bp): 1,523,965,030

Total number of contigs: 2,494,829

Max contig length (bp): 22,049 Mean contig length (bp): 610.85 Median contig length (bp): 371 Min contig length (bp): 200

N25: 1720 N50: 891 N75: 435 N90: 251

Total GC count (bp): 650,659,197

GC (%): 42.70

View assembled contig

Base level view

Assembled contigs

Contig ID

Average coverage

>ConsensusfromContigl Average coverage: 25.94
ACCATCATCAGCGATGATAGGGTTTACTTTAGAAATTATTCTGAGCAGAAACTTGAAGCT
AAACCTCTGAAAATTTTTTGCAAATCCTTTTGTATCTTTTGCAGCTGAGTTTAGAATTGTACC
AAAGCACTCTAATCTTTTTTCGCAATTGATAAAACTGATGCTTCTGTAGCACGTGGAGTA
AACACTTCCTCTGAATTAAAGTCCTGTTGAAATGGTACAGAAACACTGCCAGAAGAACAC
TTGGCACCTCAATCACAATATTCTTGTAGCACTTGGTGCGTTTA

Summary

- Genome sequencing and assembly problem
- Short read sequence assembly pipeline
 - Sequence data format (FASTQ)
 - Read quality assessment
 - Sequence trimming
 - De Novo assembly algorithms and tools
 - Assembly quality assessment
- Case study
 - Little Skate Illumina HiSeq 2000 short read sequences
 - CLC Bio Genomics Workbench

References

- Dawei Lin, Short Read Assembly, UC Davis 2010 Bioinformatics Short Course, September 13, 2010, UC Davis
- Joe Fass, Genome Sequence Assembly in Action!, UC Davis 2010 Bioinformatics Short Course, September 13, 2010, UC Davis
- NHGRI, http://www.genome.gov/sequencingcosts/, Feb. 4, 2011
- Phillippy AM, Schatz MC, Pop M. Genome assembly forensics: finding the elusive mis-assembly. Genome Biol. 2008;9(3):R55. Epub 2008 Mar 14.
- Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res. 2010 Sep;20(9):1165-73. Epub 2010 May 27.
- CLC Bio. Manual for CLC Genomics Workbench 4.6 Windows, Mac OS X and Linux April 1, 2011
- CLC Bio. Manual for CLC Genomics Workbench 4.7 Windows, Mac OS X and Linux
- May 14, 2011
- Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010 Jun;95(6):315-27. Epub 2010 Mar 6.

Thank You!

Questions???