Université de Haute-Alsace

2022/2023

Outils Géométrie CPB 1 ENSCMU - PC renfort

Quentin Ehret quentin.ehret@uha.fr

Chapitre 3: Espaces vectoriels

 \mathbb{K} désigne \mathbb{Q} , \mathbb{R} ou \mathbb{C} .

1 Espaces vectoriels et sous-espaces vectoriels

1.1 Définition, exemples fondamentaux

Définition 1

Un espace vectoriel sur \mathbb{K} (\mathbb{K} -ev) est un quadruplet $(E, +, \cdot, 0)$, avec :

- E un ensemble;
- $+: E \times E \longrightarrow E$, $(u, v) \longmapsto u + v$ (loi interne additive);
- $\cdot : \mathbb{K} \times E \longrightarrow E$, $(\lambda, u) \longmapsto \lambda \cdot u$ (loi externe, action);
- \bullet $0 \in E$

qui vérifient les huit axiomes suivants, pour $u, v, w \in E$ et $\lambda, \mu \in \mathbb{K}$:

- 1. La loi + est associative : u + (v + w) = (u + v) + w;
- 2. 0 + u = u + 0 = u;
- 3. Pour tout $u \in E$, il existe $-u \in E$ tel que u + (-u) = 0;
- 4. La loi + est commutative : u + v = v + u;
- 5. $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$;
- 6. $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$;
- 7. $(\lambda \mu) \cdot u = \lambda \cdot (\mu \cdot u)$;
- 8. $1 \cdot u = u$.

On reconnaît les propriétés énoncées dans le chapitre précédent pour les vecteurs. Habituellement, on note la loi \cdot par une simple juxtaposition : $\lambda \cdot x = \lambda x$.

Vocabulaire : Les éléments de E sont appelés vecteurs et les éléments de \mathbb{K} sont appelés scalaires.

Exemples:

1. (Fondamental) Soit $n \in \mathbb{N}$. Alors \mathbb{K}^n est muni d'une structure de \mathbb{K} -ev. On écrit $x \in \mathbb{K}$ sous la forme d'une matrice-colonne avec ses coordonnées :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Les deux lois sont alors données par

$$x+y=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}+\begin{pmatrix} y_1\\y_2\\\vdots\\y_n \end{pmatrix}=\begin{pmatrix} x_1+y_1\\x_2+y_2\\\vdots\\x_n+y_n \end{pmatrix};\quad \lambda\cdot x=\lambda\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}=\begin{pmatrix} \lambda x_1\\\lambda x_2\\\vdots\\\lambda x_n \end{pmatrix}. \text{ V\'erifiez les 8 axiomes!}$$

- 2. L'espace des matrices de taille $n \times m$ est un \mathbb{K} -ev avec l'addition des matrices et la multiplication par un scalaire $\lambda(a_{i,j}) = (\lambda a_{i,j})$.
- 3. L'espace $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K} : si $P = \sum p_i X^i$ et $Q = \sum q_i X^i$, alors

$$P + Q = \sum (p_i + q_i)X^i$$
 et $\lambda p = \sum \lambda p_i X^i$.

- 4. Pour A un ensemble quelconque, on note $\mathcal{F} = \{f : A \longrightarrow \mathbb{K}\}$ l'ensemble des fonctions de A dans \mathbb{K} . C'est un espace vectoriel avec les deux lois suivantes :
 - $\bullet (f+g)(x) = f(x) + g(x);$
 - $(\lambda f)(x) = \lambda f(x);$
 - le neutre est la fonction nulle $0: x \longmapsto 0$.
- 5. \mathbb{C} est à la fois un \mathbb{C} -ev et un \mathbb{R} -ev.

Exercice: Si E_1 et E_2 sont deux K-ev, montrer qu'on peut munir l'ensemble

$$E_1 \times E_2 = \{(u, v), u \in E_1, v \in E_2\}$$

d'une structure de K-ev. (Trouvez +, ·, 0 et vérifiez les 8 axiomes)

Remarque. Pour différencier le 0 de \mathbb{K} de celui de E, on note parfois $0_{\mathbb{K}}$ et 0_{E} .

Proposition 2

Soient $\lambda \in \mathbb{K}$ et $x \in E$.

- 1. $\lambda 0_E = 0_E$; $0_{\mathbb{K}} x = 0_E$;
- 2. $\lambda x = 0_E \iff \lambda = 0_K \text{ et/ou } x = 0_E;$
- 3. $(-\lambda)x = \lambda(-x) = -(\lambda x)$.

Démonstration. Voir TD.

1.2 Sous-espaces vectoriels

Il est pénible de vérifier les huit axiomes à chaque fois. Habituellement, une fois qu'on a montré que les exemples précédents sont bien des \mathbb{K} -ev, on va essentiellement rencontrer des ev construits à partir de ces derniers, et on aura pas besoin de vérifier les 8 axiomes.

Définition 3

Soient E un \mathbb{K} -ev et $F \subset E$ non vide. Alors F est un sous-espace vectoriel de E (sev) si :

- 1. Pour tous $u, v \in F$, $u + v \in F$ (stable par +);
- 2. Pour tous $u \in F$ et $\lambda \in \mathbb{K}$, $\lambda u \in F$ (stable par ·).

Clairement, un sev est un espace vectoriel, les axiomes vrais dans E le restent bien sûr dans $F \subset E$.

Remarque. Si $u \in F$, alors $0_{\mathbb{K}}u \in F$. Mais comme $0_{\mathbb{K}}u = 0_E$, on obtient $0_E \in F$.

Proposition 4 (Condition suffisante pour être un sev)

Soient E un \mathbb{K} -ev et $F \subset E$.

$$F \text{ sev de } E \iff F \neq \emptyset \text{ et } \lambda x + y \in F, \ \forall \ x, y \in F \text{ et } \forall \ \lambda \in \mathbb{K}.$$

Exemples de sev:

- 1. (Droite vectorielle) Soient E un \mathbb{K} -ev et $v \in E$ non nul. Posons $F = \{y \in E, \exists \lambda \in \mathbb{K}, y = \lambda v\}$. Ainsi, si $x, y \in F$, il existe $\lambda, \mu \in \mathbb{K}$ tels que $x = \lambda u$ et $y = \mu v$. Montrons que F est un sev de E.
 - (a) F est non vide car $v \in F$;
 - (b) Soit $a \in \mathbb{K}$. Montrons que $ax + y \in F$. $ax + y = a\lambda v + \mu y = (a\lambda + \mu)v \in F$.
- 2. (Généralisation : sev engendré) Soient $(x_1, ..., x_n) \in E$. On pose $F = \{y \in E, y = \lambda_1 x_1 + ... + \lambda_n x_n, \lambda_i \in \mathbb{K}\}$. f est un sev de E, engendré par les x_i . On note $F = \text{Vect}(x_1, ..., x_n)$.
- 3. (Noyau) Soit $A \in M_n(\mathbb{K})$. On prend $E = \mathbb{K}^n$ et $F = \{x \in E, Ax = 0\}$. Alors F est un sev de E, appelé noyau de A.

Remarque. Ax = 0 est un système linéaire de n équations à n inconnues. On peut ainsi définir un sev par un tel système. Tout système d'équations linéaires définit un sev.

4. L'ensemble des solutions d'une équation différentielle linéaire est un sev. Par exemple,

$$\{f: I \longrightarrow \mathbb{R} \text{ de classe } \mathcal{C}^2, \ 3f'' - 5f' + f = 0\}$$

est un sev du \mathbb{R} -ev des fonctions de I dans \mathbb{R} .

2 Bases et dimension d'un espace vectoriel

2.1 Familles libres, familles génératrices

Définition 5

Soit E un \mathbb{K} -ev et $e_1, e_2, ..., e_n$ des éléments de E. Une **combinaison linéaire** de ces éléments est une somme de la forme

$$\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n, \ \lambda_i \in \mathbb{K}.$$

On note

$$\{y \in E, y = \lambda_1 e_1 + ... + \lambda_n e_n, \lambda_i \in \mathbb{K}\} := \text{Vect}(e_1, ..., e_n)$$

(cf. exemple précédent : c'est un sev de E)

Exemple:

 $E = \mathbb{R}^3$, $e_1 = (1, 5, -2)$, $e_2 = (3, 0, -1)$. Soit $v(x, y, z) \in E$. À quelles conditions $v \in \text{Vect}(e_1, e_2) := F$?

$$v \in F \iff \exists \lambda_1, \lambda_2 \in \mathbb{K}, \ v = \lambda_1 e_1 + \lambda_2 e_2$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$$

$$\iff \begin{cases} x = \lambda_1 + 3\lambda_2 \\ y = -5\lambda_1 \\ z = -2\lambda_1 - \lambda_2 \\ \implies 5x - 5y + 15z = 0. \end{cases}$$

On trouve bien un plan vectoriel.

Définition 6

Soit E un \mathbb{K} -ev et $e_1, e_2, ..., e_n$ des éléments de E. On dit que la famille $\{e_1, e_2, ..., e_n\}$ est **génératrice** de E si $E = \text{Vect}(e_1, ..., e_n)$.

En d'autres termes, la famille est génératrice si tout élément de E peut s'écrire comme combinaison linéaire d'éléments de la famille.

Exemple: $E = \mathbb{R}^2$. $e_1 = (1,0)$, $e_2 = (0,1)$. Alors la famille $\{e_1, e_2\}$ est génératrice de E. En effet, soit v = (x,y) un élément quelconque de E. Alors

$$\begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} = xe_1 + ye_2.$$

Pour un espace vectoriel donné, il n'a pas unicité de la famille génératrice. Dans cet exemple, la famille $\left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ est aussi génératrice de \mathbb{R}^2 . En fait deux vecteurs non nuls et non colinéaires sont toujours générateurs de \mathbb{R}^2 .

Définition 7

Un K-ev est dit de **dimension finie** s'il existe une famille génératrice finie.

Par exemple, \mathbb{K}^n et $M_n(\mathbb{K})$ sont de dimension finie (trouvez des familles génératrices!) mais $\mathbb{K}[X]$ ne l'est pas (pourquoi?).

Définition 8

Soit E une \mathbb{K} -ev et $\{e_1, e_2, ..., e_n\}$ une famille d'éléments de E. On dit que cette famille est **libre** lorsque l'équation d'inconnues $\lambda_i \in \mathbb{K}$

$$\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n = 0$$

n'admet qu'une unique solution : $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$.

Exemple: $E = \mathbb{R}^2$. $e_1 = (-5, 1), e_2 = (3, 7)$. $\{e_1, e_2\}$ est une famille libre. En effet :

$$\lambda_1 e_1 + \lambda_2 e_2 = 0 \Longleftrightarrow \begin{cases} -5\lambda_1 + 3\lambda_2 = 0 \\ \lambda_1 + 7\lambda_2 = 0 \end{cases} \Longleftrightarrow \lambda_1 = \lambda_2 = 0.$$

Contrexemple: si on rajoute $e_3 = (-2, 8)$, on obtient alors

$$e_1 + e_2 - e_3 = 0.$$

La famille $\{e_1, e_2, e_3\}$ n'est donc pas libre.

Définition 9

Une famille non libre est dite liée.

Proposition 10

Une famille $(e_1, ... e_n)$ est liée si et seulement si au moins un élément e_i est combinaison linéaire des autres, c'est-à-dire qu'il existe un indice i tel que $e_i \in \text{Vect}(e_1, ... e_{i-1}, e_{i+1}, ... e_n)$.

Démonstration. (\Rightarrow) Supposons la famille liée. Alors il existe des scalaires λ_i non tous nuls tels que $\sum \lambda_i e_i = 0$. Quitte à renuméroter, on peut supposer que λ_1 est non nul. On obtient donc

$$e_1 = -\frac{\lambda_2}{\lambda_1} e_2 - \dots - \frac{\lambda_n}{\lambda_1} e_n.$$

(\Leftarrow) Supposons par exemple que $e_{,} \in \text{Vect}(e_2,...,e_n)$. Alors on écrit $e_1 = \lambda_2 e_2 + ... + \lambda_n e_n$. Alors $e_1 - \lambda_2 e_2 - ... - \lambda_n e_n = 0$ et la famille est liée.

2.2 Bases et coordonnées d'un vecteur dans une base

$\{ \mathbf{D} \hat{\mathbf{e}} \mathbf{f} \mathbf{i} \mathbf{n} \mathbf{i} \mathbf{t} \mathbf{i} \mathbf{o} \mathbf{n} \mathbf{1} \mathbf{1} \}$

Soit E un \mathbb{K} -ev. Une base de E est une famille d'éléments de E qui est à la fois libre et génératrice.

Exemple : base canonique de \mathbb{K}^n .

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

Alors la famille formée par les vecteurs e_i , $1 \le i \le n$, est une base de \mathbb{K}^n appelée base canonique.

Exemple : base de $\mathbb{K}_n[X] := \{P \in \mathbb{K}[X], \deg(P) \leq n\}$. La famille $\{1, X, X^2, ..., X^n\}$ constitue une base de $\mathbb{K}_n[X]$ appelée aussi base canonique. Attention, elle comporte n+1 éléments!

Proposition 12

- 1. Soit x un vecteur. $\{x\}$ libre $\iff x \neq 0$;
- 2. Toute famille contenant une famille génératrice est génératrice;
- 3. Toute sous-famille d'une famille libre est libre;
- 4. Toute famille contenant une famille liée est liée;
- 5. Toute famille contenant 0 est liée.

Démonstration. Exercice.

L'intérêt des bases est de pouvoir utiliser la notion de **coordonnées**. Si e est un \mathbb{K} -ev, $(e_i)_{i=1}^n$ une base de E et $v \in E$, alors v se décompose en une combinaison linéaire d'éléments de la base, puisqu'elle est génératrice. De plus, comme la base est une famille libre, cette décomposition est unique :

Si
$$v = \sum_{i} \lambda_{i} e_{i} = \sum_{i} \mu_{i} e_{i}$$
, alors $\sum_{i} (\lambda_{i} - \mu_{i}) e_{i} = 0$, donc $\lambda_{i} = \mu_{i} \, \forall i$.

Définition 13

Soient E un \mathbb{K} -ev muni d'une base $\mathcal{B} = (e_i)_{i=1}^n$ et $v \in E$. On écrit donc v de façon unique

$$v = \sum_{i=1}^{n} \lambda_i e_i, \ \lambda_i \in \mathbb{K}.$$

Les scalaires λ_i sont les coordonnées de v dans la base \mathcal{B} de E.

Pour la suite, nous allons répondre aux deux questions suivantes :

- Comment être sûr qu'il existe bien des bases?
- Si on dispose de deux bases différentes, comment passer de l'une à l'autre?

2.3 Théorème de la base incomplète

Soit E un \mathbb{K} -ev non réduit à $\{0\}$ de dimension finie. Soit $G = \{v_1, ..., v_p\}$ une famille génératrice (finie) de E.

Théorème 14 (Existence de bases)

Soit $E \neq \{0\}$ un espace vectoriel de dimension finie, et G une famille génératrice. Considérons une famille libre $L \subset G$. Il existe alors une base \mathcal{B} telle que $L \subset \mathcal{B} \subset G$.

Démonstration. Voir annexe.

Théorème 15 (Base incomplète)

- 1. De toute famille génératrice, on peut extraire une base.
- 2. Toute famille libre peut être complétée en une base.

Démonstration. 1. Voir annexe.

2. Si L est libre et G est génératrice, alors $G' := G \cup L$ est génératrice et contient la famille L. Il suffit alors d'appliquer le théorème d'existence ci-dessus.

2.4 Compléments: résultats fondamentaux sur la dimension

Lemme 16

Dans un espace vectoriel engendré par n éléments, toute famille contenant plus de n éléments est liée.

Démonstration. Voir annexe.

Définition 17

La cardinal (unique) d'une base d'un \mathbb{K} -ev E est appelé **dimension** de E sur \mathbb{K} . On note ce nombre $\dim_{\mathbb{K}}(E)$ ou simplement $\dim(E)$.

Exemples: $\dim_{\mathbb{K}}(\mathbb{K}^n) = n$; $\dim_{\mathbb{R}}(\mathbb{C}) = 2$; $\dim_{\mathbb{C}}(\mathbb{C}) = 1$.

Proposition 18

- 1. Dans un \mathbb{K} -ev de dimension n, toute famille ayant strictement plus de n éléments est liée.
- 2. Dans un \mathbb{K} -ev de dimension n, toute famille ayant strictement moins de n éléments n'est pas génératrice.

Théorème 19

Soit E un \mathbb{K} -ev de dimension n.

- 1. Toute famille génératrice ayant n éléments est une base.
- 2. Toute famille libre ayant n éléments est une base.

Démonstration. 1. Soit G génératrice comportant n éléments. On peut en extraire une base $\mathcal{B} \subset G$. Mais cette base doit nécessairement comporter n éléments, donc $G = \mathcal{B}$.

2. Soit L libre comportant n éléments. Par le théorème de la base incomplète, on peut compléter L en une base \mathcal{B} . Mais alors \mathcal{B} aurait strictement plus de n éléments, ce qui est une contradiction. Donc L est déjà une base.

Proposition 20

Soit E un \mathbb{K} -ev de dimension finie et $F \subset E$ un sev.

- 1. F est de dimension finie.
- 2. $\dim_{\mathbb{K}}(F) \leq \dim_{\mathbb{K}}(E)$.
- 3. $\dim_{\mathbb{K}}(F) = \dim_{\mathbb{K}}(E) \iff E = F$.

Démonstration. Voir annexe.

2.5 Changement de base

Soient E un \mathbb{K} -ev de dimension n, $\mathcal{B} = \{e_1, ..., e_n\}$ et $\mathcal{B}' = \{e'_1, ..., e'_n\}$ deux bases de E. On écrit

$$\begin{cases} e'_1 = p_{1,1}e_1 + p_{2,1}e_2 + \dots + p_{n,1}e_n \\ e'_2 = p_{1,2}e_1 + p_{2,2}e_2 + \dots + p_{n,2}e_n \\ \vdots \\ e'_n = p_{1,n}e_1 + p_{2,n}e_2 + \dots + p_{n,n}e_n \end{cases}$$

П

Définition 21

On appelle matrice de passage de \mathcal{B} à \mathcal{B}' la matrice notée $P_{e_i \to e'_i}$ ou bien $P_{\mathcal{B} \to \mathcal{B}'}$ dont les colonnes sont les composantes des vecteurs e'_i dans la base \mathcal{B} :

$$P_{\mathcal{B}\to\mathcal{B}'} = \begin{pmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,n} \\ p_{2,1} & p_{2,2} & \dots & p_{2,n} \\ \vdots & \vdots & \dots & \vdots \\ p_{n,1} & p_{n,2} & \dots & p_{n,n} \end{pmatrix}$$

Proposition 22

Supposons disposer de trois bases \mathcal{B} , \mathcal{B}' et \mathcal{B}'' .

- 1. Transitivité : $P_{\mathcal{B} \to \mathcal{B}'} P_{\mathcal{B}' \to \mathcal{B}''} = P_{\mathcal{B} \to \mathcal{B}''}$.
- 2. Inversibilité : $P_{\mathcal{B}\to\mathcal{B}'}^{-1} = P_{\mathcal{B}'\to\mathcal{B}}$.

Proposition 23

Soit
$$x \in E$$
. On pose $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ les coordonnées de x dans la base \mathcal{B} et $X' = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}$ les coordonnées

de x dans la base \mathcal{B}' . On pose $P = P_{\mathcal{B} \to \mathcal{B}'}$. On peut montrer (voir TD) que

$$PX' = X$$
, donc $X' = P^{-1}X$.

Exemple:

3 Annexe au cours : quelques résultats fondamentaux d'algèbre linéaire

Théorème 24 (Existence de bases)

Soit $E \neq \{0\}$ un espace vectoriel de dimension finie, et G une famille génératrice. Considérons une famille libre $L \subset G$. Il existe alors une base \mathcal{B} telle que $L \subset \mathcal{B} \subset G$.

Démonstration. Soit $G = \{v_1, ..., v_p\}$ une famille génératrice, et L_1 une famille libre contenue dans G. Supposons que $L_1 = \{v_1, ..., v_r\}$, $r \leq p$. Si L_1 est génératrice, alors c'est une base et le théorème est démontré. Supposons donc que L_1 n'est pas génératrice.

- 1. Montrons qu'il existe $v_{i_1} \in \{v_{r+1,\dots,v_p}\}$ tel que $L_2 := L_1 \cup \{v_{i_1}\}$ soit libre. Supposons que ce ne soit pas le cas. Alors tout vecteur de $\{v_{r+1},\dots,v_p\}$ serait combinaison linéaire de $\{v_{1,\dots,v_r}\}$. Or ceci est impossible car L_1 n'est pas génératrice. On peut donc agrandir la famille libre L_1 de telle sorte que $L_2 := L_1 \cup \{v_{i_1}\}$ soit libre elle aussi.
- 2. Si L_2 est génératrice, c'est terminé et on pose $\mathcal{B} = L_2$. Sinon, on continue comme au point 1. et on construit une suite

$$L_1 \subsetneq L_2 \subsetneq ... \subset G$$
.

Comme G est finie, ce processus va s'arrêter et on aura bien un $k \ge 1$ tel que L_k est libre et génératrice. On prendra alors $\mathcal{B} = L_k$ pour ce k.

Théorème 25 (Base incomplète)

- 1. De toute famille génératrice, on peut extraire une base.
- 2. Toute famille libre peut être complétée en une base.

Démonstration. 1. Montré ci-dessus.

2. Si L est libre et G est génératrice, alors $G' := G \cup L$ est génératrice et contient la famille L. Il suffit alors d'appliquer le théorème d'existence ci-dessus.

Lemme 26

Dans un espace vectoriel engendré par n éléments, toute famille contenant plus de n éléments est liée

Démonstration. Considérons $\mathcal{F} = \{v_1, ..., v_n\}$ une famille génératrice d'un espace vectoriel E et $\mathcal{F}' = \{w_1, ... w_m\}$ une autre famille de E, avec m > n. Montrons que \mathcal{F}' est liée.

1. Supposons que les w_i sont tous non nuls (sinon la famille est tout de suite liée). Comme \mathcal{F} est génératrice, on peut écrire

$$w_1 = \alpha_1 v_1 + \dots + \alpha_n v_n,$$

avec (au moins) un des α_i non nul, puisque $w_1 \neq 0$. Quitte à renuméroter, supposons que c'est α_1 qui est non nul. On écrit alors

$$v_1 = \frac{1}{\alpha_1} w_1 - \left(\frac{\alpha_2}{\alpha_1} v_2 + \ldots + \frac{\alpha_n}{\alpha_1} v_n \right).$$

On en déduit que $\{w_1, v_2, ..., v_n\}$ est génératrice.

2. Comme $\{w_1, v_2, ..., v_n\}$ est génératrice, on peut écrire

$$w_2 = \beta_1 w_1 + \dots + \beta_n v_n.$$

- Si $\beta_2 = ... = \beta_n = 0$, alors $w_2 = \beta_1 w_1$ et donc \mathcal{F}' est liée.
- Sinon, il existe $i \leq 2$ tel que $\beta_i \neq 0$. Supposons que c'est β_2 . Alors

$$v_{2} = \frac{1}{\beta_{2}}w_{2} - \frac{1}{\beta_{2}}\left(\beta_{1}w_{1} + \beta_{3}v_{3} + \dots + \beta_{n}v_{n}\right),\,$$

donc la famille $\{w_1, w_2, v_3, ..., v_n\}$ est génératrice.

3. On peut ainsi remplacer de proche en proche les v_i par des w_i en obtenant une famille génératrice à chaque étape. Au terme, $\{w_1, ..., w_n\}$ est génératrice, donc w_{n+1} est combinaison linéaire de $w_1, ..., w_n$, et donc \mathcal{F}' est liée.

Théorème 27 (Dimension)

Soit E un espace vectoriel de dimension finie et $F \subset E$. Alors F est de dimension finie et

$$\dim(F) \le \dim(E)$$
.

Démonstration. Supposons $F \neq \{0\}$. Soit $x_1 \in F$, $x_1 \neq 0$. Alors $L_1 = \{x_1\}$ est libre. On construit une suite

$$L_1 \subsetneq L_2 \subsetneq ... \subset F$$

de familles libres comme dans le théorème d'existence. Ce processus ne s'arrêt que si on atteint un k tel que L_k est génératrice de \mathcal{F} .

Supposons que F n'admet pas de famille génératrice finie. Il existe donc k > n tel que L_k ne soit pas génératrice. On aurait alors construit une famille libre de plus de n éléments, impossible par le lemme. Donc F admet une famille génératrice finie, donc est de dimension finie. De plus, F admet une famille génératrice d'au plus n éléments, donc

$$\dim(F) \leq \dim(E)$$
.