MTH20014 Mathematics 3B. Tutorial 10

- 1. For z = 2 3i find
 - (i) iz, (ii) z^* , (iii) $\frac{1}{z}$, (iv) $(z^*)^*$.
- 2. Plot the points $z_1=-1-\sqrt{3}\mathrm{i},\,z_2=-1+\sqrt{3}\mathrm{i},\,z_3=-1,\,z_4=2+2\mathrm{i}$ on an Argand diagram.
- 3. Express $z = \frac{(2-i)(3+2i)}{3-4i}$ in (i) Cartesian form, (ii) complex exponential form.
- 4. For $z_1 = 2e^{\frac{\mathrm{i}\pi}{3}}$ and $z_2 = 4e^{-\frac{2\mathrm{i}\pi}{3}}$ find (i) $\left|\frac{z_1^2}{z_2^3}\right|$, (ii) $\arg\frac{z_1^2}{z_2^3}$.
- 5. For $z = -1 i\sqrt{3}$ find z^3 .
- 6. Show that the following functions are analytic, i.e. that their real and imaginary parts satisfy the Cauchy-Riemann conditions, and find an expression for f'(z) = $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$
 - (a) $w = (1+3i)z^2$,
 - (b) $w = (1 + i)z^3$,
 - (c) $w = \frac{z^2 + i}{z}$.
- 7. Show that the following functions u(x,y) are harmonic, find their conjugate harmonic functions v(x,y) and determine f(z) = u(x,y) + iv(x,y) as functions of z.
 - (a) $u(x,y) = 2x^2 2xy 5x 2y^2$
 - (b) $u(x,y) = 3x^2 8xy 3y^2 + 2y$,
 - (c) $u(x, y) = 2e^x \cos y 3e^x \sin y$,
 - (d) $u(x,y) = 3e^{-x}\cos y + 5e^{-x}\sin y$,
 - (e) $u(x,y) = e^x x \cos y e^x y \sin y$,
 - (f) $u(x,y) = 2x^3 3yx^2 5x^2 6y^2x + y^3 + 5y^2$.

Answers

1. (i)
$$3 + 2i$$
, (ii) $2 + 3i$, (iii) $\frac{2 + 3i}{13}$, (iv) $2 - 3i$.

3. (ii)
$$\frac{4}{5} + \frac{7}{5}$$
i, (ii) $\frac{\sqrt{65}}{5}e^{i\theta}$, where $\theta = \tan^{-1}\frac{7}{4}$.

4. (i)
$$\frac{1}{16}$$
, (ii) $\frac{2\pi}{3}$.

5. 8.

6. (a)
$$2x - 6y + i(6x + 2y)$$
,

(b)
$$3x^2 - 3y^2 - 6xy + i(3x^2 - 3y^2 + 6xy)$$
,

(c)
$$1 - \frac{2xy}{(x^2 + y^2)^2} + i \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
.

7. (a)
$$f(z) = (2+i)z^2 - 5z$$
,

(b)
$$f(z) = (3+4i)z^2 - 2jz$$
,

(c)
$$f(z) = (2+3i)e^z$$
,

(d)
$$f(z) = (3+5i)e^{-z}$$
,

(e)
$$f(z) = ze^z$$
,

(f)
$$f(z) = (2+i)z^3 - 5z^2$$
.