CANDIDATE'S NAME						
Signature	to the same provide	and the second	The state of the s	- The day of		
			and the same of the	1 1	6	
				Index No:		4

545/1 CHEMISTRY Paper 1 July/Aug 2023 21/2 hrs

ERETA EDUCATION CONSULTS

JOINT MOCK EXAMINATIONS 2023

Uganda Certificate of Education

CHEMISTRY

Paper One

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES.

The paper consists of 50 objective type questions.

All questions are compulsory.

You are required to write the correct answer A, B,C or D in blue or black ink in the box provided on the right-hand side of each questions.

All workings must be done with in the paper and therefore no extra sheets are allowed.

o not use a Pencil to answer.	For Examiner's use only		
Marks scored	Charle attention of	Initial	

P.T.O

	A 117	aatlana === ==	mpuleamy Anous	ver all	N. C. HARRING
1	Which one of the following re	estions are co	mpulsory. Answ	hange? A. Melt	ing of ice
1.	B. Vaporization of water.	eactions repres	enis a chemical c	manger 11. 1.1es	B 01100
	C Explosion of natural and and	:41:-			
	C. Explosion of natural gas wD. Magnetization of Iron.	im air			
2	Gas Y has the following				
2.	Gas X has the following prop (i) Colourless	erties.			2 TOTAL
	(ii) No effect on litmus.				
	(iii) no observable change with (iv) flammable	n Lime water			
	Gas X is likely to be				. (3)
	A. Hydrogen.	••••	Se .		
	B. Chlorine				
	C. Ammonia	٠.,			
	D. Oxygen				
3.	Which one of the techniques	can be emplo	wed to senarate o	range dve from	blue dye in
	black ink? A. Sublimation.	can be empre	yeu to separate c	runge aj e zioni	
	B. Chromatography.				
	C. Use of a magnet.				
	D. Fractional distillation.	-76 1 10 10 10			
4.	Which one of the following b	oases is insolut	ole?		
	A. Cu(OH) ₂				
	B. KOH	4/1/1	10.75		
	C. NaOH		= 2 1, a		- 1
	D. CaO	*	Linearity		
5	When testing for sulphate is		n, dilute nitric ac	cid is added bef	ore aqueous
	barium nitrate in order to		u i n Eii	lands and Culm	hita iama an
	A. Change the Sulphate io	ns into sulph	ite ions B. Elim	imate any Suip	inte ions or .
	Carbonate ions.	- was ation			TO ONL
	C. Acidify the medium for the	ie reaction.			
_	D. Catalyse the reaction.An aqueous solution contain	ing equal cond	centration of $7n^{2+}$	ion and Cu2+(ac	was reacted
6	with Sodiumhydroxide solut	ion until in exc	ess after which t	the mixture was	filtered.
	What was the residue that ren	nained on the	filter paper? A.	1	1 1-12 6
	Zn(OH) ₂ and Cu(OH) ₂ .			11.0	
	B. Zn(OH) ₂				
	C. Cu(OH) ₂			r(5a,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	. D. [Zn(NH ₃) ₄] ²⁺		antonia nii		100 mg 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•	7. Potassium chlorate decompo	ses according	to the following of	equation .	* 12.56
	2 KClO _{3(S)}	2KCl(s)	+ 3O _{2(g)}		Language Contraction
	The volume of oxygen evolv	ed at stp, wher	1 5.0g of potassium	m chlorate is de	composed is
	$\frac{5 \times 22.4}{122.5}$) dm ³				
	A. 122.5		;		
	•	-	- 2		

B. $\left(\frac{2 \times 22.4}{122.5}\right) \text{dm}^3$	Same Rec. R	Series Series April	Carried Water
C. $\left(\frac{3 \times 22.4}{245}\right) \text{dm}^3$	•		
D. $\left(\frac{5 \times 22.4 \times 3}{245}\right) \text{dm}^3$	N. *2	· 1 1500	Sept. 1.
(Cl = 35.5, O = 16, K = 39, 1 mg)	ole of gas occupies	22.4dm³ at stp)	District Annual Control
 8. Which one of the following subst A. C₂ H₄ B. MgCl₂ C. Cu(NH₃)₄²⁺ D. CaO 	stances contains a c	lative bond?	
 A glass rod dipped in a solution containing dilute sulphuric acid. Which one of the following observation. B. Yellow Precipitate C. White Precipitate 		2	into a boiling tube
D. D. Dense white fumes, 10. Aluminium Sulphate reacts with Al ₂ (SO ₄) _{3(aq)} + 6NaHCO _{3(aq)} , 6CO _{2(g)}		> 2Al(OH)	$_{3(S)} + 3Na_2SO_{4(ac)} +$
The Mass of aluminium hydroxid $(Al = 27, S = 32, O = 16, H = 1)$ Λ . 15.6g B. 21.2g	e precipitated by re	eacting 34.2g of al	uminium sulphate is
C. 78.0g D. 156.0g			
11. A white compound T on strong I remained in the test tube. The po	neating produced b ssible cation in T i	rown fumes and fi	nally a yellow solid
A. Zn ²⁺ B. Al ³⁺ C. Pb ²⁺ D. Cu ²⁺			
12. Which one of the following comp solution at room temperature?		s acidified Potassi	ım manganate (VII)
A. C ₂ H ₆ B. C ₂ H ₄ C. C ₄ H ₁₀ D. C ₇ H ₁₆	F.		80° at 50° 1
13. Some Zinc Sulphate crystals wer of Crucible = 20.0g Mass of Crucible and crystals = 2	. ·	t mass with the foll	owing results. Mass

Mass	of Crucible and residue = 23.22g		
rrom	the data the value of X in the formula ZnSO ₄ ,X H ₂ O is		
A. 1			
B. 2			
C. 7			
D. 1			
14, WIII	ch one of the following contains elements that make up duralumin?		
A. Z	inc and Copper only		
D, A	luminium and Magnesium only		
	on and Carbon.		
15 Whi	administry viagnesium and Copper	on?	
	ch one of the following precipitates is soluble in dilute ammonia soluti	0111	
	(OH) ₂		
B. Ag			
C. Al			
	o(OH) ₂	drogen	
	g of the oxide of a metal Y gave 1.44g of the metal when reduced in hy	di ogen.	
	mine the formula of the oxide of Y;		
- 2	63.5, O = 16)		
A. Y			
B. Y			
C. Y			
D. Y			,
	B are atoms of elements in the same period 2 of the periodic table.		•
	in group II and B is in group III.		-
	of the following statements is true?		1 1
A. B has	one more Proton in its nucleus than A.	ic mass	
	lative atomic mass of B must be one unit greater than the relative atom	i i i i i i i i i i i i i i i i i i i	
of A.	alection many than D in the outermost energy level		
	one electron more than B in the outermost energy level.		
D. A and	B have the same number of neutrons. In of the following is the correct order with which halogens displace ex	ich other	r from
18. Which	of the following is the correct order with which harogens displace of	ich chie.	110112
solutio	ons of their salts? Br C1		
	\longrightarrow I \longrightarrow Cl		
C. CI	\longrightarrow Br \longrightarrow I		
D. Br	Cl I em³ of Sulphuric acid required 25.00cm³ of 0.12M Sodium hydroxid	1 1	on for
		ie soluu	on for
compl	ete neutralization.		-
Calcul	ate the molar concentration of Sulphuric acid.		
A. 0.0	265mol/dm ³ B. 0.0360mol/dm ³ C. 0.0480mol/dm ³		
	530mol/dm ³		0
20. Which	of the following is the reason why Zinc is used for sacrificial protec	ion of li	ron?
	ic is less reactive than Iron		
	n is more electro positive than Zinc.		
C. Zin	ic forms a film of Zinc oxide on the surface of Iron		

D. Zinc and Iron react in the same way.

21.8.50g of an impure sample of Iron required just 75cm3 of 3M hydrochloric acid to dissolve it and give neutral solution.

The percentage purity of the sample of Iron is (Fe = 56) A. 63% B. 74%

C. 85%

D. 90%

22. Ammonium chloride dissolves in water according to the following equation.

 $NH_4Cl_{(s)} + H_2O_{(l)}$ $\sim NH_4^+_{(aq)} + Cl^-_{(aq)} = {}^+\Delta H$

What does the sign ⁺ΔH mean?

- A. Reaction involved is Endothermic
- B. Reaction involved is Exothermic
- C. Heat content of the Reactants is greater than the heat content of the Products.

D. Ammonium chloride is only slightly soluble in water.

23. Which one of the following is the structural formula of the compound formed when Ethene reacts with Bromine?

24. What volume of oxygen at st; is required for complete combustion of 40cm3 of Butane according to the equation below?

$$C^{4}H_{10(g)} + \frac{13}{2}O_{2(g)}$$
 $\longrightarrow 4CO_{2(g)} + 5H_2O_{(l)}$

- A. 40cm³
- B. 224cm3 C. 260cm3 D. 448cm3
- 25. Which one of the following is Not a synthetic polymer?
 - A. Starch
 - B. Nylon
 - C. Perspex
 - Polyethene
- 26. Which one of the following is the correct overall cell equation in an electro-chemical cell made of Magnesium and Copper as electrode in dilute Sulphuric acid as the electrolyte?
 - \rightarrow Mg²⁺(aq) + 2e
 - B. $Cu^{2+}_{(aq)} + 2e \rightarrow Cu_{(s)}$
 - C. $Mg(s) + Cu2+(aq) \longrightarrow Mg2+(aq) Cu(s)$
 - Mg(s) + 2H+(aq) \rightarrow Mg2+(aq) H2(g).
- 27. Which one of the following elements does not exhibit allotropy?
 - A. Phosphorus
 - B. Sulphur
 - C. Chlorine.
 - D. Carbon.
- 28. Which one of the following observations is made when hydrogen Sulphide is bubbled into a solution of Lead (II) nitrate?
 - A. Yellow deposit
 - Dark brown precipitate. C. Colourless solution
 - D. Black precipitate.
- 29. Which one of the following gases is evolved when bleaching powder (Calcium hypochlorite) reacts with Carbondioxide?
 - A. Chlorine
 - Carbon-monoxide В.
 - C. Ammonia,
 - D. Oxygen.

Study the graph below and use it to answer questions 30 and 31.

The graph shows the reaction between metal Carbonate and a fixed volume of hydrochloric acid

30. Point X on the graph indicates that

A. Low yield of Carbondioxide is realized in a longer period of time.

B. C. D. 2. Wheresi The	Maximum yield of Carbondioxide is realized by Mass of metal carbonate continues to decrease Reaction requires more time to reach completic would the rate of reaction be determined using By drawing a tangent at some point on the curv By determining the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the metal of the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the metal of the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By measuring volume of Carbondioxide over a By determining the average mass of the gas where the point at which the least dec By	the graph above? e and determine its slope. rease in mass occurs. long period of time. Carbonate that reacts. as produced at room temperature and
A.	$\left[\frac{(2.5-1.4)X\ 24}{560\ X\ 1000}\right] \text{ cm}^3$	
В,	$\left[\frac{1.4 \times 24 \times 1000}{560}\right] \text{ cm}^3$	
C.	$\left[\frac{(2.5-1.4) \times 24000}{560}\right] \text{ cm}^3$	And the first of the second
D.	$\left[\frac{560 \times 2.5}{24 \times 1.4}\right] \text{dm}^3$	
2H WI roo (A A. B.	rdrogen Sulphide burns in excess of oxygen according to $2S_{(g)} + 3O_{2(g)}$ $\longrightarrow 2H_2O_{(1)} + 2SO_{(2g)}$ at is the volume of oxygen required to react with temperature and pressure? It volumes are measured at same temperature and $24dm^3$ $36dm^3$ C. $48dm^3$ $72dm^3$	th 48dm³ of hydrogen sulphide completely a pressure)
be 2P (P) A. B. C. D. 35. Ca 20 W de B.	0.0673g 0.01345g 0.2690g alcium nitrate decomposes on heating according according to the composes of the composed? A. 1.12dm ³ 2.24dm ³ 3.36dm ³	to the equation.
D	. 4.48dm³	

(1 mole of gas occupies 22.4dm ³ , $Ca = 40$, $O = 16$, $N = 14$)	
 36. 1.50g of Sodium hydroxide contained in 250cm³ of solution was use hydrochloric acid. What volume of the acid would be needed to react with 20 A. 11.5cm³ B. 15cm³ C. 30cm³ D. 45cm³ 37. Ethane burns in air according to the equation. 2C₂ H_{6(g)} + 7O_{2(g)} → 4CO_{2(g)} + 6H₂O_(l) ΔH = 1560KJ/mol Calculate the amount of heat required to liberate 0.46dm³ of Carbondioxide. A B. 6.24KJ C. 12.48KJ D. 16.02KJ 	of the alkali?
(1 mole of a gas at s.t.p occupies 22.4dm ³) 38. During the haber process. Nitrogen reacts with the	finesemencol
38. During the haber process, Nitrogen reacts with hydrogen according to the equa	tion.
N _{2(g)} + 3H _{2(g)} \ 2 NH _{3(g)} . The forward reaction in the above case is favoured by A. Decreasing the concentration of reactants. B. Increasing the pressure of the system. C. Increasing concentration of ammonia D. Not applying a catalyst. 39. What is the number of moles of Sodium ions contained in 17.75g of Sodium Sui (Na = 23, O = 16, S = 32)	lphate solution?
A. 0.125 moles B. 0.160 moles C. 0.250 moles D. 0.375 moles	
40. What mass of copper contains 2.4 x 10 ²³ atoms. (Cu = 64 Avogadro's constan A. 20.45g B. 25.23g C. 25.51g	$t = 6.02 \times 10^{23})$
D. 51.02g	
Each of the questions $41 - 45$ consists of an assertion (statement) on the left reason on the right hand side. Select;	hand side and g
A. If both the assertion and reason are true statements and the reason is a correct of the assertion.	7
B. If both the assertion and reason are true statements but the reason is not a corre of the assertion.	ct explanation

- C. If the assertion is true but the reason is not a correct statement.
- D. If the assertion is not correct but the reason is a correct statement.

ANIMINED.

INSTRUCTIONS SUMMARISED			
Assertion Reason			
A. True	True and reason is a correct explanation		
B. True	True but reason is not a correct explanation		
C. True	Incorrect		
D. Incorrect	True		

41.	During electrolysis of concentrated sodium		Se Sodium ions reactions forming	t with excess hydroxide Sodium hydroxide.
	Solution, the PH of the the Cathode becomes a		- transmission of a second	
42	The heat of combustion is greater than that of l		Propane has higher to than methane	nolecular mass
43	B. Bond breaking is an en Process	ndothermic BECAUSI	It involves the evolution su	of heat to the arrounding.
44	4. Covalent compounds a Conduct electricity an Non - electrolytes	are unable to d so are the	ECAUSE they consist of	of molecules and do not nation ions.
4	5. All metals of group I in Periodic table are high electro positive		They all accept elect to form positive	rons in their reactions ions.
	In each of the question of	ons 46 – 50, one or mor carefully and then indic	e of the answers given neate the correct answer a	nay be correct. according to the following
	A. If 1, 2 and 3 only a B. If 1 and 3 only are C. If 2 and 4 only are D. If 4 only is correct	correct.		
		Instructions	summarized	
	A	В	C	D
	1,2, and 3 correct	1 and 3 correct	2 and 4 correct	4 correct

46. The following are ores from which iron car	n be extracted.
(1 Haematite	
(2 Magnetite	
(3 Siderite (Spathic Iron)	
(4 Cryolite.	
Tormed.	ilute sodium hydroxide solution, the following are
(1 Sodium chlorate.	
(2 sodium chloride	
(3 Oxygen gas	
(4 Sodium hypochlorite	
48. The following cations form precipitates with	th solutions of alkalis Except.
(1 Fe ²⁺	
$(2 Fe^{3+})$	2000
$(3 A1^{3+})$	
(4 ^L NH ₄ +	
49. Which of the following compounds are for	med when Ammonium nitrate decomposes?
(1 Nitrogen.	Santa Santa Santa
(2 Dinitrogen oxide	
(3 Ammonia	
(4 Water	to the second se
50. Which of the following ions in water form p	recipitates when washing is done with ordinary soap?
$(1 Ca^{2+})$	• • •
(2 Na ⁺	-
(3 Mg ²⁺	The state of the same of the s
(4 K ⁺	

END