

Tarea 5 - Procesos estocásticos - 202410 - Michael A. Hoegele

Entrega: Jueves, 18.04., antes de la clase

en formato .pdf al correo ma.hoegele(arroba)uniandes.edu.co.

Información: se reciben entregas hasta el mismo día a las medianoche (00.00), pero con una penalización de un 10% sobre los puntos alcanzados. Entregas más tarde ya no se reciben.

Nombre, Apellido, Código.

1. Consideremos la matriz de transición

$$\Pi = \begin{pmatrix} 0 & \frac{1}{3} & 0 & 0 & \frac{2}{3} \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ 0 & \frac{2}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{2}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & 0 & 0 & \frac{2}{3} & 0 \end{pmatrix}$$

- (a) Construya un sistema dinámico aleatório que parametriza esta cadena de Markov.
- (b) ¿Por qué existe una única distribución invariante?
- (c) Calcule la distribución invariante π y verifique si es reversible.
- (d) Verifique que es fuertemente irreducible. ¿Cuál es exponente m?
- (e) La caminata aleatória en \mathbb{Z} con incrementos independientes $\frac{2}{3}\delta_{-1} + \frac{1}{3}\delta_1$ no es fuertemente irreducible. Explique la diferencia entre este caso y el caso de Π .
- (f) Determine el tiempo $\mathbb{E}[T_i^r]$ para cada $i = 1, \dots, 5$.
- (g) Calcule la tasa de converencia

$$\mu\Pi^n \to \pi$$
, $n \to \infty$

2. Consideremos el grafo de 6 puntos siguente y una caminata aleatória sobre estos estados.

- (a) Muestre que esta caminata aleatoria es irreducible.
- (b) Construya el sistema lineal de los tiempos de primera llegada para todos los estados y resuelva los.
- (c) Infiera la medida invariante.
- (d) Si arrancamos en el estado más a la derecha, ¿converge la ley marginal a la medida invariante?

- 3. Consideremos un proceso de ramificación con una distribución de reproducción geométrica con parámetro $\frac{1}{2}$.
 - (a) ¿Cuáles son las entradas de las filas en la matriz de transición?
 - (b) ¿Es irreducible?
 - (c) ¿Cuáles estados son recurrentes, cuáles son transientes?
 - (d) Construya el sistema de recurrencias para la medida invariante y resuelvalo.
 - (e) ¿Es reversible esta distribución conrespecto a la matriz de transición?
 - (f) Usando esta la matriz de transición. ¿Cuál es la distribución del tiempo de extinción si arrancamos en la distribución invariante?

4.	Consideremos el sistema con la edad actual de las máquinas i.i.d. Usando el criterio analítico de recurrencia y transiencia. Determine un criterio en términos de las probabilidades transición, para cuándo todos los estados son recurrentes o transientes.

- 5. Consideremos el modelo de Ehrenfest macroscópico 'inverso'. Tenemos dos compartamentos para las partículas y en cada paso una partícula cambia su pertenencia. Sin embargo, en caso de una totalidad de N partículas y k partículas en el primer compartamento la probabilidad de perder una partícula es k/N (en vez de (N-k)/N) y de ganar es su complemento y el resto es 0.
 - (a) Modele este sistema, esboce la matriz de transición.
 - (b) ¿Es irreducible?
 - (c) Arrancando en un estado $i \in \{1, ..., N-1\}$ escriba el sistema lineal de las probabilidades de absorpción en los extremos. Escriba y calcúlelo para N=7.
 - (d) Para N=7 calcule los tiempos de absorbción en 0 y en 7 y en $\{0,7\}$.