Lab cycle-2

1.Print the dataset Iris

import pandas as pd
df=pd.read_csv("/content/IRIS.csv")
print(df)

Output:

sepal_	length s	epal_width	petal_len	gth pe	tal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	
	•••					
145	6.7	3.0	5.2	2.3	Iris-virginica	
146	6.3	2.5	5.0	1.9	Iris-virginica	
147	6.5	3.0	5.2	2.0	Iris-virginica	
148	6.2	3.4	5.4	2.3	Iris-virginica	
149	5.9	3.0	5.1	1.8	Iris-virginica	

[150 rows x 5 columns]

2. Print the structure of the dataset iris

Print("Structure of dataset iris")
print(df.info())

Output:

structure of dataset iris

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 5 columns):

Column Non-Null Count Dtype

0 sepal length 150 non-null float64

- 1 sepal_width 150 non-null float64
- 2 petal length 150 non-null float64
- 3 petal_width 150 non-null float64
- 4 species 150 non-null object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

None

3.Print the summary of all the variables of the dataset iris (**Hint:** Use function summary())

print(df.describe())

Output:

sepal_length sepal_width petal_length petal_width

count	150.000000	150.000000	150.0000	00 150.0000	00
mean	5.843333	3.054000	3.758667	1.198667	
std	0.828066	0.433594	1.764420	0.763161	
min	4.300000	2.000000	1.000000	0.100000	
25%	5.100000	2.800000	1.600000	0.300000	
50%	5.800000	3.000000	4.350000	1.300000	
75%	6.400000	3.300000	5.100000	1.800000	
max	7.900000	4.400000	6.900000	2.500000	

4. How many of the variables (columns) are in the dataset *iris* Print("Number of variables in the dataset iris:") print(len(df.columns))

Output:

Number of variables in the dataset iris:

5

5. How many observations (rows) are in the dataset iris Print("Number of observations in the dataset iris:",len(df))

Output:

Number of observations in the datset iris:150

6. Use *duplicated()* function to print the logical vector indicating the duplicate values present in the dataset *iris* print(df.duplicated())

Output:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

.

- 145 False
- 146 False
- 147 False
- 148 False
- 149 False

Length: 150, dtype: bool

7. Extract duplicate elements from the dataset iris print(df[df.duplicated()==True])

sepal_	length se	pal_width	petal_ler	ngth pet	tal_width	species
34	4.9	3.1	1.5	0.1	Iris-setosa	
37	4.9	3.1	1.5	0.1	Iris-setosa	

142 5.8 2.7 5.1 1.9 Iris-virginica

8. Extract unique elements from the dataset *iris* print(df[df.duplicated()==False])

Output:

sepal_	length :	sepal_width	petal_ler	ngth pe	tal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	
	•••					
145	6.7	3.0	5.2	2.3	Iris-virginica	
146	6.3	2.5	5.0	1.9	Iris-virginica	
147	6.5	3.0	5.2	2.0	Iris-virginica	
148	6.2	3.4	5.4	2.3	Iris-virginica	
149	5.9	3.0	5.1	1.8	Iris-virginica	

[147 rows x 5 columns]

9. Print the indices of duplicate elements in the dataset iris print(df[df.duplicated()==True].index)

Output:

Int64Index([34, 37, 142], dtype='int64')

10. Print the indices of unique elements in the dataset iris print(df[df.duplicated()==False].index)

Output:

11. How many unique elements are in the dataset *iris* Print("Number of unique elements:") print(len(df[df.duplicated()==False]))

Output:

Number of unique elements: 147

12. How many duplicate elements are in the dataset iris Print("number of duplicate elements:") print(len(df[df.duplicated()==True]))

Output:

Number of duplicate elements:

3

13. Print the sorted elements in the dataset iris(Ascending order based on index)

df.sort_values(by="sepal_length")

Output:

sepal_length	sepal_width	petal_length	petal_width	species	
13	4.3	3.0	1.1	0.1	Iris-setosa
42	4.4	3.2	1.3	0.2	Iris-setosa
38	4.4	3.0	1.3	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
41	4.5	2.3	1.3	0.3	Iris-setosa
•••					
122	7.7	2.8	6.7	2.0	Iris-virginica
118	7.7	2.6	6.9	2.3	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
135	7.7	3.0	6.1	2.3	Iris-virginica
131	7.9	3.8	6.4	2.0	Iris-virginica

 $150 \text{ rows} \times 5 \text{ columns}$

14. find whether any missing values are in the dataset iris df.isnull()

sepal_length	sepal_width	petal_length	petal_width	species	
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False

sepal_length	sepal_width	petal_length	petal_width	species	
4	False	False	False	False	False
•••					
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

 $150 \text{ rows} \times 5 \text{ columns}$

15. display how many missing values are present in each column df.isnull().sum()

Output:

sepal_length 0 sepal_width 0 petal_length 0 petal_width 0 species 0 dtype: int64

16. replace all missing values with zero df.fillna(0)

sepal_length	sepal_width	petal_length	petal_width	species	
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
•••					
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica

sepal_length sepal_width petal_length petal_width species

149 5.9 3.0 5.1 1.8 Iris-virginica

 $150 \text{ rows} \times 5 \text{ columns}$

17. Calculate Petal width mean ,median ,SD,Variance for the species setosa

mean=df[df['species']=="Iris-setosa"]['petal_width'].mean()

print("mean:",mean)

median=df[df['species']=="Iris-setosa"]['petal_width'].median()

print("median:",median)

standard_deviation=df[df['species']=="Iris-setosa"]['petal_width'].std()

print("standard deviation:",standard_deviation)

variance=df[df['species']=="Iris-setosa"]['petal_width'].var()

print("variance:",variance)

Output:

mean: 0.244 median: 0.2

standard deviation: 0.1072095030816784

variance: 0.011493877551020411

18. Print from 10th row to 20th row of iris dataset.

print(df.iloc[10:21,:])

Output:

species	_length petal_width	petal_	sepal_width	length	sepal
	0.2 Iris-setosa	1.5	3.7	5.4	10
	0.2 Iris-setosa	1.6	3.4	4.8	11
	0.1 Iris-setosa	1.4	3.0	4.8	12
	0.1 Iris-setosa	1.1	3.0	4.3	13
	0.2 Iris-setosa	1.2	4.0	5.8	14
	0.4 Iris-setosa	1.5	4.4	5.7	15
	0.4 Iris-setosa	1.3	3.9	5.4	16
	0.3 Iris-setosa	1.4	3.5	5.1	17
	0.3 Iris-setosa	1.7	3.8	5.7	18
	0.3 Iris-setosa	1.5	3.8	5.1	19
	0.2 Iris-setosa	1.7	3.4	5.4	20

19. Print Species and its corresponding Petal length and Width

df[['species','petal_width','petal_length']]

sepal_	length	sepal_width	petal_	_length petal_width	species
10	5.4	3.7	1.5	0.2 Iris-setosa	
11	4.8	3.4	1.6	0.2 Iris-setosa	
12	4.8	3.0	1.4	0.1 Iris-setosa	
13	4.3	3.0	1.1	0.1 Iris-setosa	

14	5.8	4.0	1.2	0.2 Iris-setosa
15	5.7	4.4	1.5	0.4 Iris-setosa
16	5.4	3.9	1.3	0.4 Iris-setosa
17	5.1	3.5	1.4	0.3 Iris-setosa
18	5.7	3.8	1.7	0.3 Iris-setosa
19	5.1	3.8	1.5	0.3 Iris-setosa
20	5.4	3.4	1.7	0.2 Iris-setosa

20. display records only with species "Iris-setosa" df[df['species']=="Iris-setosa"]

Output:

sepal_length sepal_width petal_length petal_width species

- 0 5.1 3.5 1.4 0.2 Iris-setosa
- 1 4.9 3.0 1.4 0.2 Iris-setosa
- 2 4.7 3.2 1.3 0.2 Iris-setosa
- 3 4.6 3.1 1.5 0.2 Iris-setosa
- 21. count number of times a particular species has occurred. df['species'].value_counts()

Output:

Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50 Name: species, dtype: int64

22. Identifying minimum and maximum Value of Sepal width print(df['sepal_width'].min()) print(df['sepal_width'].max())

Output:

2.0

4.4

23. Add new column to store sum of first column values

l=list(df)

1.remove('species')

df['new_col']=df[1].sum(axis=1)

	new_col	species	petal_width	petal_length	sepal_width	sepal_length
10.2	Iris-setosa	0.2	1.4	3.5	5.1	0
9.5	Iris-setosa	0.2	1.4	3.0	4.9	1
9.4	Iris-setosa	0.2	1.3	3.2	4.7	2
9.4	Iris-setosa	0.2	1.5	3.1	4.6	3

sepal_length	sepal_width	petal_length	petal_width	species	new_col	
4	5.0	3.6	1.4	0.2	Iris-setosa	10.2
•••	•••				•••	
145	6.7	3.0	5.2	2.3	Iris- virginica	17.2
146	6.3	2.5	5.0	1.9	Iris- virginica	15.7
147	6.5	3.0	5.2	2.0	Iris- virginica	16.7
148	6.2	3.4	5.4	2.3	Iris- virginica	17.3
149	5.9	3.0	5.1	1.8	Iris- virginica	15.8

 $150 \text{ rows} \times 6 \text{ columns}$