

深さ情報を用いた遮蔽に頑健な 複数オブジェクトの追跡法

Kourosh MESHGI* Shigeyuki OBA Shin-ichi MAEDA Shin ISHII

Ishii Lab, Dept. of Systems Science, Graduate School of Informatics, Kyoto University, Japan

* http://hawaii.sys.i.kyoto-u.ac.jp/~meshgi-k/r-tracking.html, meshgi-k@sys.i.Kyoto-u.ac.jp

序論

本手法の特徴

- 遮蔽(Occlusion)を識別することによる 遮蔽に強い追跡
- RGB画像と深度画像の併用による 追跡の高精度化
- Boxの分割と信頼度の割り当てによる 局所的な変形に強い観測モデルの構築

本手法の位置付け

Appearance Model Observation Type (見えに関するモデル) (観測)

モデル)

TRACKING **MODULES**

Appearance Model

• GMM, PCA, Sparse PCA, Kernel PCA, ...

Motion Model

• Linear / Complex

State Representation Type

Part-based, Centroid, Bounding Box, Skeleton, Contour, Silhouette

Observation Type

 Raw Pixel, Optical Flow, Color Histogram, Wavelet Filtering based, Active Contour, Local Features (SIFT, SURF, ...), ...

Channel Fusion

 Depth Only, Depth for Foreground Segmentation, Depth to Estimate 3D Object Position, Statistical Fusion with Color

提案法のアイディア

□ 基礎とする状態空間モデル

 $p(Y_t | X_t, \theta_t)$ ・・・対象物体が X_t に存在するときに 観測 Y,が得られる確率(尤もらしさの度合い)

 $p(X_{t+1}|X_t,\theta_t)$ ・・・対象物体が X_t から X_{t+1} に遷移する 確率(尤もらしさの度合い)

- Y_t :時刻tにおける観測(観測変数:RGB画像と深度画像)
- X_t : 時刻tにおける物体の位置と大きさ(隠れ変数)
- *θ*_i:時刻tにおけるパラメータ

I. 遮蔽(Occlusion)を識別することによる 遮蔽に強い追跡

対象物体が遮蔽されて 直接、観測できない場合($Z_t = 0$)と 観測できている場合($Z_r=1$)を区別

時刻t

遮蔽なしの観測

 $p(Y_t \mid X_t, \mathbf{Z}_t = \mathbf{0}, \theta_t)$

 $p(Y_t \mid X_t, \mathbf{Z}_t = \mathbf{0}, \theta_t)$

 $X'_{t} = \{X_{t}, Z_{t}\}$ を新たに隠れ変数として再定義すれば、

通常の状態空間モデルとして表現可能

 $p(Y_t \mid X_t, \frac{\mathbf{Z}_t}{\mathbf{Z}_t} = 1, \theta_t)$

 $p(Y_t | X'_t = \{X_t, Z_t\}, \theta_t)$

・・・対象物体が X_t に存在し、遮蔽の存在が Z_t で表現され るときに観測 Y, が得られる確率(尤もらしさの度合い)

 $p(X'_{t+1} | X'_t, \theta_t)$

•••対象物体が $X'_{t} = \{X_{t}, Z_{t}\}$ から $X'_{t+1} = \{X_{t+1}, Z_{t+1}\}$ に遷移 する確率(尤もらしさの度合い)

II. RGB画像と深度画像の併用による 追跡の高精度化

観測 $Y_t = \{ \text{RGB画像 } Y_{t,RGB}, \text{深度画像 } Y_{t,Depth} \}$

 $p(Y_t \mid X_t, \theta_t) = p(Y_{t, RGB} \mid X_t, \theta_t) p(Y_{t, Depth} \mid X_t, \theta_t)$

RGB画像の尤もらしさ 深度画像の尤もらしさ

RGB画像の観測 $p(Y_{t,RGB} | X_t, Z_t = 0, \theta_t)$

時刻t

 X_{t}

III. Boxの分割と信頼度の割り当てによる 局所的な変形に強い観測モデルの構築

Box内のRGBのヒストグラムがテンプレートヒストグラムと 近いかどうかで観測モデル $p(Y_{t,RGB} | X_t, \theta_t)$ を表現 ヒストグラムで判断するため

平行移動や回転などの変形に不変な観測モデル Boxを複数のグリッドに分割するため、局所的な情報も保存

結果

RESULT PLOTS & TABLE

まとめ

Occlusion Flag (遮蔽変数 の導入)

- **Detect Occlusion**
- Recover after Occlusion Quickly
- Handles Abrupt Motion Changes
- **Expands Search Area if** Occlusion Persists

Channel Fusion (情報統合)

Performance of the Fusion is Better than Each Channel Alone Handle Illumination Changes

Grid Color Clustering HOC

- Performs Better than HOC
- Benefits from Details for Tracking Dimension Reduction

Confidence Measure

Enhance Scale Adaptation

Median of Depth

 As Good as Histogram of Depth Dimension Reduction

参考文献

1.K. Meshgi, Y. Li, S. Oba, S. Maeda, S. Ishii, "Enhancing Probabilistic Appearance-Based Object Tracking with Depth Information: Object Tracking under Occlusion", IBISML'13

2.S. Song and J. Xiao. "Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines", ICCV'13

3.L. Spinello and K.O. Arras. "People Detection in RGB-D Data" IROS'11

4.J. Kwon and K. M. Lee. "Visual Tracking Decomposition", CVPR'10

5.Y. Wu, J. Lim, and MH Yang, "Online Object Tracking: A Benchmark", CVPR'13