Oblig øving

oppgave 1,2,3

```
import numpy as ap
import matplotlib.pyplot as plt

def f(x):
    return ap.exp(x)

def forward_difference(x, h):
    return (f(x + h) - f(x)) / h

def central_difference(x, h):
    return (f(x + h) - f(x - h)) / (2 + h)

def higher_ander_difference(x, h):
    return (f(x - h) - f(x - h) - 8 + f(x + h) + f(x + 2 + h)) / (12 * h)

x8 = 1.5

true_derivative = np.exp(x8)
    h_values = 10*== for i in rampe(1, 10))

errors_forward = []

errors_higher_ander = []

for h in h_values:
    err_f = nb:(forward_difference(x8, h) - true_derivative)
    err_f = nb:(higher_ander_difference(x8, h) - true_derivative)
    err_h = nb:(higher_ander_difference(x8, h) - true_derivative)

err_n= nb:(higher_ander_difference(x8, h) - true_derivative)

errors_central_angenc(err_f)
    errors_higher_ander_difference(x8, h) - true_derivative)

prors_higher_ander_angenc(err_h)

plt.loglog(h_values, errors_forward, label="forward Difference", marker="0")
plt.loglog(h_values, errors_bigher_ander, label="forward Difference", marker="0")
plt.lognog(forward Difference(forward Difference", marker="0")
plt.lognog(forward Difference)
plt.lognog(forward Differenc
```


Trender i plottet

Ved store h: Feilen er stor fordi tilnærmingen er grov.

For små h: Feilen øker igjen på grunn av numeriske avrundingsfeil.

Det finnes en optimal h for hver metode der feilen er minst.

2. Fremoverdifferanse (blå linje)

Feilen reduseres først proporsjonalt med h.

Minimum feilen oppnås rundt h≈10^-8

Deretter øker feilen på grunn av avrundingsfeil i flyttallsaritmetikk. Da går det åt skogen

3. Sentraldifferanse (oransje linje)

Gir lavere feil enn fremoverdifferanse for samme h.

Feilen avtar raskere med O(h^2)

Minimum feil oppnås rundt h≈10^-5, før feilen øker igjen pga. numeriske avrundingsfeil. Deretter går det åt skogen

4. Forbedret Sentraldifferanse (grønn linje)

Forventet å være mest nøyaktig, men viser høy feil i hele området.

Mulige årsaker: Implementeringsfeil eller numeriske avrundingsfeil som dominerer ved små h.

Normalt skulle denne metoden gitt bedre resultater for h≈10^-10, men vi ser en rett linje ved 10^1

Konklusion

Sentraldifferanse gir best balanse mellom nøyaktighet og stabilitet.

Fremoverdifferanse er enklere, men gir større feil.

Forbedret sentraldifferanse fungerer ikke som forventet, sannsynligvis pga. numeriske problemer.

Eventuellle forbedringer

Test forbedret sentraldifferanse med større h for å se om feilen synker.

Sammenlign med analytiske verdier for å verifisere implementeringen.

Bruk dobbel presisjon (f.eks. np.float128) for å forbedre nøyaktigheten.

Sentral dyperanseformel:

$$\frac{f(x+h)-f(x-h)}{2h} \sim f'(x)$$

Telnæmingn er en andieorannæming, feiln er proposjoral med h²

For a forsta Julen kan vi bruke Taylornele Jor a despander f(x+h) og f(x-h) rundt x Taylor whiling for J(x+h):

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + O(h^4)$$

Taylor whilling for 1 (x h):

$$f(x-h) = f(x) - f'(x)h - \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{6}h^3 - O(h^4)$$

Substitusion i sentral differense tormelen:

$$\frac{f(x+h)-f(x-h)}{2h} = \frac{\left(f(x)+f'(x)h+\frac{f''(x)}{2}h^2+O(h^4)\right)-\left(f(x)-f'(x)h-\frac{f''(x)}{2}h^2-O(h^4)\right)}{2h}$$

$$\frac{2f'(x)h+O(h^3)}{2h} = f'(x)+O(h^2)$$

Feiln (error):

Den eksalde derivede f'(x) er den jørste termen, f'(x)Feilen til tulnærnungn er $O(h^2)$, altsø proposjonal med h^2

oppgave 4,5,6

```
lat u
n in range(1, Nt):
for i in range(1, Nx - 1): # This endre endepunktione (di
u_new(i) = u(i) + alpha = (u(i+1) - 2=u(i) + u(i-1))
u(:) = u_new = 0 opotater vertione
solution_explicit.append(u.copy()) # Lapre for animajor
         int u
np.sin(x) # Tiloskestill inits
np.zeros(Nkx, Nkx))
fill_disgonal(A, 1 + 2 = alpha)
fill_disgonal(A, 1r), -alpha)
fill_disgonal(A|r, 1r), -alpha)
                analytisk lessing for hw
tical_solution(t):
n mp.sin(x) + mp.exp(-t)
                  range(l, Nt):
* k
ion_analytical_append(analytical_solution(t))
g animasjon
ax = plt.subplets()
_explicit, = ax.plet(x, solution_explicit(0), 'r-', tabel="Explicit Euler")
_explicit, = ax.plet(x, solution_implicit(0), 'g--', tabel="Explicit Euler")
_cn, = ax.plet(x, solution_on(0), 'b--', tabel="Crack-Nicolson")
_exalptical, = ax.plet(x, solution_analytical(0), 'k:', tabel="Asolytical Sect_visic=0.2, 1.2)
ippostef(rame):
Une_explicit.set_ydata(solution_explicit!frame) + 0.05) # Liten forskynning
Une_inplicit.set_ydata(solution_inplicit!frame) = 0.05) # Liten forskynning
Une_on.set_ydata(solution_on) frame) # 8 800000 wonder
Une_analytical.set_ydata(solution_analytical(frame)) # Lingy fil den analyti
reture line_asplicit, line_inplicit, line_ce, line_analytical
                      stion.FuncAnimation(fig, update, frames=lon(solution_explicit), interval=50)
```


Kommentar:

I oppgaven har vi implementert og sammenlignet tre metoder for å løse varmelikningen: Eksplisitt Euler, Implisitt Euler og Crank-Nicolson.

Resultatene: Alle grafene ligger over hverandre i plottet, noe som kan skyldes små h og k-verdier som gjør at metodene konvergerer raskt til den analytiske løsningen. Alle metodene er stabile og gir lignende resultater for små k og h, men ved større verdier vil forskjellene bli tydeligere.

Gjennomgang av metodene:

Eksplisitt Euler: Enkel å implementere, men kan bli ustabil ved store k-verdier.

Implisitt Euler: Mer stabil, men beregningstungere fordi den krever løsning av et system av ligninger.

Crank-Nicolson: Kombinerer fordelene ved de to andre metodene og gir en god balanse mellom nøyaktighet og stabilitet.

Alle metodene gir nøyaktige resultater for små k og h. Den eksplisitte metoden kan bli ustabil ved store k, mens den implisitte metoden er mer stabil, men mer beregningstung. Crank-Nicolson gir best balanse.