## Как вода точит камень

Власов Алексей, Литвинов Марк vlasoff.al03@gmail.com, mark.litvinov.2003@mail.ru Научные руководители: Челноков Григорий Ривенович, Христофоров Михаил Игоревич

4 апреля 2022 г.

Данная работа — исследование модели протекания воды из физики. В последнее время она представляет интерес для ученых, в ней сравнительно недавно были получены свежие результаты. В работе содержится доказательство Теоремы A, использующее остальные предложения, леммы и теоремы без доказательств.

Работа была проделана на майской проектной программе 2021 года в Сириусе. Мотивировка предложенных результатов дана в проекте "Как вода точит камень".

### Вводные определения и постановка задачи

Мы будем работать на действительной плоскости и отождествлять точки с комплексными числами естественным образом.

Определение 1.  $au\in\mathbb{C}$  - комплексный корень 3-й степени из 1, равный  $-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ .

Определение 2. n-замощением назовем любое замощение плоскости равными правильными шестиугольниками без просветов и наложений со стороной  $\frac{1}{n}$  ориентированных так, что одна из сторон шестиугольников параллельна вектору i.

**Определение 3.**  $M_n$  назовем множество шестиугольников из n-замощения, попавших внутрь треугольника c вершинами b точках b = b , b = b .

**Определение 4.** Назовем раскраской  $M_n$  любую покраску шестиугольников из  $M_n$  в 2 цвета: желтый и синий.  $^1$ .

**Определение 5.** Будем говорить, что вода протекает между двумя ломаными, проходящими по периметру границы  $M_n$ , если существует последовательность синих шестиугольников  $a_1, a_2, \ldots, a_k \in M_n$  такая, что  $a_i$  имеет общую сторону с  $a_{i+1}$ , для всех  $i = 1, 2 \ldots, k-1$ , и что одна из сторон  $a_1$  является частью первой ломаной, одна из сторон  $a_k$  - частью второй ломаной.

**Определение 6.** Вероятность протекания для двух данных ломаных - доля всевозможеных раскрасок шестиугольников из  $M_n$  таких, что между этими ломаными протекает вода.

**Определение 7.**  $u_n(Z)$  - точка, являющаяся серединой стороны шестиугольника  $M_n$ , ближайшая для данной точки Z комплексной плоскости. Если таких точек несколько, выбирается любая.

 $<sup>^{1}</sup>$ всего различных раскрасок  $2^{\#M_n}$ , где  $\#M_n$  - количество шестиугольников в  $M_n$ 

**Замечание 1.** Стоит отметить, что на самом деле u - функция двух переменных:  $\mathbb{C} \times \mathbb{N} \to \mathbb{C}$ . Ее аргумент - пара из точки комплексной плоскости, номера выбранного замощения u его расположения, а множество значений - середины отрезков n-замощения.

Определение 8. Пусть  $X, Y \in \mathbb{C}$ ,  $u_n(X)$  и  $u_n(Y)$  лежат на границе  $M_n$ . Ломаной, соответствующей отрезку XY, назовем кратчайший участок границы  $M_n$  от  $u_n(X)$  до  $u_n(Y)$ . Если их несколько, выберем любой.

**Замечание 2.** Далее это определение будет использовано только для отрезков AB и CD.

**Теорема А** (С.Смирнов, 2001). Пусть D - некоторая фиксированная точка на стороне AC в треугольнике ABC. Тогда предел при  $n \to \infty$ , к которому стремится вероятность протекания между ломаными, соответствующим отрезкам AB и CD, равен величине  $\frac{CD}{AB}$ .



Рис. 1: Модель протекания воды

### Пути из красных отрезков

Для решения задачи нам будет удобно перейти от раскрасок к ломаным, обладающим некоторыми свойствами.

Целью этого перехода является формулировка и доказательство предложения 1. A сейчас опишем, как именно мы осуществим переход.

Определение 9. Для фиксированных A = 1,  $B = \tau$ ,  $C = \tau^2$ ,  $D \in \mathbb{C}$  и n-замощения будем называть конфигурацией c особенностями  $u_n(A)$ ,  $u_n(B)$ ,  $u_n(C)$ ,  $u_n(D)$  множество ребер такого графа, что его вершинами являются вершины шестиугольников  $M_n$  и все середины их ребер, а его ребра соединяют вершину шестиугольника c серединой ребра, исходящего из нее. При этом ребра, составляющие конфигурацию, устроены так, что степень вершин  $u_n(A)$ ,  $u_n(B)$ ,  $u_n(C)$ ,  $u_n(D)$  равна 1, а всех остальных - либо 0, либо 2.

**Замечание 3.** Каждая конфигурация с особенностями представляет собой объединение двух простых путей, соединяющих 4 особенные точки, и некоторого количества простых циклов.

Несложно понять, что все конфигурации разбиваются на три непересекающихся множества: в первом есть пути  $u_n(A)u_n(B)$  и  $u_n(C)u_n(D)$ ; во втором пути  $u_n(A)u_n(C)$  и  $u_n(B)u_n(D)$ ; в третьем  $u_n(A)u_n(D)$  и  $u_n(B)u_n(C)$ . Тогда осмысленным становится следующее определение.

Определение 10. Зафиксируем n, n-замощение u точки A, B, C, D на комплексной плоскости. Для них рассмотрим все конфигурации c особенностями в  $u_n(A)$ ,  $u_n(B)$ ,  $u_n(C)$ ,  $u_n(D)$ . Обозначим за  $P(u_n(D) \leftrightarrow u_n(A))$  долю конфигураций c особенностями  $u_n(A)$ ,  $u_n(B)$ ,  $u_n(C)$ ,  $u_n(D)$ , где точки  $u_n(A)$  и  $u_n(D)$  - концы одной ломаной. При этом доопределим  $P(u_n(A) \leftrightarrow u_n(A)) = 1$ .

Данные понятия формулировались для следующего предложения:

**Предложение 1.** Пусть дан  $M_n$  и точки  $u_n(A), u_n(B), u_n(C), u_n(D)$  на его границе. Тогда при фиксированном  $n: P(u_n(D) \leftrightarrow u_n(A))$  равняется вероятности протекания воды по шестиугольникам между ломаными  $u_n(A)u_n(B)$  и  $u_n(C)u_n(D)$ , соответствующим отрезкам AB и CD при данном n.

Доказательство. Для доказательства утверждения покажем равносильность наличия протекания между указанными ломанными и наличия красного пути между вершинами  $u_n(A)$  и  $u_n(D)$ . Сразу заметим: способ покраски ломаной в красный цвет на границе выбран так, что можно считать внешний граничный слой клеток окрашенным в синий цвет на границе с ломаными  $u_n(A)u_n(B)$  и  $u_n(C)u_n(D)$ , а на границе с ломаными  $u_n(B)u_n(C)$  и  $u_n(D)u_n(A)$ . При этом клетки вне M, одними из середин ребер которых являются  $u_n(A), u_n(B), u_n(C), u_n(D)$  окрашены в оба цвета одновременно.

- $\Rightarrow$  Пусть имеется протекание между ломаными  $u_n(A)u_n(B)$  и  $u_n(D)u_n(C)$ . Заметим, что данное протекание делит шестиугольники на две части. Тогда  $u_n(A)$  не может быть соединена ни с  $u_n(B)$ , ни с  $u_n(C)$ , так как они лежат по разные стороны от протекания, а через него ребра не проходят. Значит  $u_n(A)$  соединена с  $u_n(D)$ .
- $\Leftarrow$  Пусть имеется красный путь из  $u_n(A)$  в  $u_n(D)$ . Тогда ближайший слой клеток по разные стороны от этого пути цепочки из одноцветных шестиугольников, одна из которых будет синей, а другая желтой. Рассмотрим синюю: некоторые ее шестиугольники может быть окажутся за границей M. Это возможно только на границах  $u_n(A)u_n(B)$  и  $u_n(C)u_n(D)$ . Отбросим их, тогда получится, что у нас есть синий путь от ломаной  $u_n(A)u_n(B)$  до  $u_n(C)u_n(D)$ , что и требовалось.

# Наблюдаемая функция

**Определение 11.** Для n-замощения введем функцию на множестве середин всех сторон шестиугольников из  $M_n$ , включая  $u_n(A), u_n(B), u_n(C)$  ( $\tau$  определено в 1):

$$f_n(u_n(D)) \stackrel{def}{=} P(u_n(D) \leftrightarrow u_n(A)) + \tau P(u_n(D) \leftrightarrow u_n(B)) + \tau^2 P(u_n(D) \leftrightarrow u_n(C))$$

**Предложение 2.** Пусть z — общая вершина трех шестиугольников из  $M_n$ . Пусть p,q,r — середины их общих сторон, перечисленные в порядке против часовой стрелки. Тогда для функции  $f_n$  выполняется тождество треугольника:

$$(p-z)f_n(p) + (q-z)f_n(q) + (r-z)f_n(r) = 0.$$
(1)

Следующее предложение является более удобным следствием предыдущего.

**Предложение 3.** Рассмотрим цепочку из k шестиугольников из  $M_n$ , в которой соседние шестиугольники имеют общую сторону, и последний имеет общую сторону с первым. Обозначим через  $w_1, \ldots, w_k$  центры этих шестиугольников и положим  $w_{k+1} := w_1$ . Тогда если f(z) — любая функция, удовлетворяющая тождеству треугольника и определенная на множестве середин сторон шестиугольников n-замощения из  $M_n$ , то

$$\sum_{j=1}^{k} f\left(\frac{w_{j+1} + w_j}{2}\right) (w_{j+1} - w_j) = 0.$$
(2)

Доказательство предложения 3. Соединим  $w_j$  с  $w_{j+1}$ , получим цикл  $\psi$ . Рассмотрим все узлы шестиугольной решетки, которые расположены внутри цикла  $\psi$ . Напишем для каждого из этих узлов тождество треугольника. Сложим все полученные равенства. Тогда для любой середины Z отрезка AB находящейся строго внутри этого цикла, f(z) будет посчитано с коэффициентами z-a и z-b, то есть с коэффициентом 2z-a-b=0. Тогда в сумме останутся только вершины вида  $\frac{w_{j+1}+w_j}{2}$  с коэффициентами  $\frac{w_{j+1}+w_j}{2}-w$ , где w - тот узел, в котором посчитана эта середина. Домножим полученное равенство на  $2\sqrt{3}i$ . Тогда вектор  $\frac{w_{j+1}+w_j}{2}-w$  перейдет в вектор  $w_{j+1}-w_j$ . Мы получили равенство 2.

Замечание 4. Это дискретная переформулировка стандартного определения аналитичности.

### Ключевые утверждения

**Теорема 1.** Существует функция F(Z), заданная на всем треугольнике ABC, включая границу, и принимающая комплексные значения, такая что

$$\lim_{n \to \infty} \max_{Z \in ABC} |F(Z) - f_n(u_n(Z))| = 0.$$

Эта теорема не будет доказана в данной статье, больше о ней можно прочитать, например, здесь.

**Предложение 4.** Функция F(Z) из теоремы 1 непрерывна:

$$\lim_{n \to \infty} \max_{Z \in ABC} |F(Z) - F(u_n(Z))| = 0.$$
(3)

Доказательство. Для начала докажем следующий факт:

$$\lim_{n \to \infty} \max_{Z \in ABC} |F(u_n(Z)) - f_n(u_n(Z))| = 0$$

Зафиксируем  $\varepsilon_0 > 0$ . Тогда по определению функции  $F(Z): \exists n_0 \in \mathbb{N}: \forall n > n_0: \forall Z \in ABC: |F(Z) - f_n(u_n(Z))| < \varepsilon_0$ . Поскольку этот факт верен для любой точки Z и ближайшей к ней середине n-замощения  $u_n(Z)$ , то в частности можно выбрать в роли Z саму точку  $u_n(Z)$ .

Теперь докажем теорему. Зафиксируем  $\varepsilon_0 > 0$ . Тогда по определению функции F(Z) и вышедоказанному утверждению  $\exists n_0 \in \mathbb{N} : \forall n > n_0 : \forall Z \in ABC : |F(Z) - F(u_n(Z))| \leq |F(Z) - f_n(u_n(Z))| + |F(u_n(Z)) - f_n(u_n(Z))| \leq \frac{\varepsilon_0}{2} + \frac{\varepsilon_0}{2} = \varepsilon_0$ .

**Предложение 5.** Для любого правильного треугольника PQR, гомотетичного ABC и лежащего строго внутри ABC, и функции F(Z) из теоремы 1 выполнено:

$$\lim_{n \to \infty} \sum_{j=1}^{l_n} F\left(\frac{w_{j+1,n} + w_{j,n}}{2}\right) (w_{j+1,n} - w_{j,n}) = 0, \tag{4}$$

где  $w_{1,n}, w_{2,n}, \ldots, w_{l_n,n}$  — центры шестиугольников n-го замощения, пересекающих контур треугольника PQR, занумерованных в порядке обхода этого контура против часовой стрелки.

Доказательство теоремы 5. Докажем, что:

$$\forall \varepsilon > 0 \exists n_0 : \forall n > n_0 \left| \sum_{j=1}^{l_n} F\left(\frac{w_{j+1} + w_j}{2}\right) (w_{j+1} - w_j) \right| < \varepsilon$$

По определению функции F(z):

$$\forall \varepsilon > 0 \exists n_0 : \forall n > n_0 |F(Z) - f_n(u_n(Z))| < \varepsilon$$

Мы уже знаем, что по предложению 3:

$$\sum_{i=1}^{l_n} f_n\left(\frac{w_{j+1} + w_j}{2}\right) (w_{j+1} - w_j) = 0$$

Вычтем это из подмодульного выражения:

$$\left| \sum_{j=1}^{l_n} \left( F\left( \frac{w_{j+1} + w_j}{2} \right) - f_n\left( \frac{w_{j+1} + w_j}{2} \right) \right) (w_{j+1} - w_j) \right|$$

По неравенству треугольника мы можем оценить это сверху, как:

$$\sum_{i=1}^{l_n} \left| F\left(\frac{w_{j+1} + w_j}{2}\right) - f_n\left(\frac{w_{j+1} + w_j}{2}\right) \right| \left| (w_{j+1} - w_j) \right|$$

 $|w_{j+1}-w_j|=\frac{\sqrt{3}}{n}$ , поскольку сторона шестиугольников  $\frac{1}{n}$ . По выбору n мы получаем, что:

$$\left| F\left(\frac{w_{j+1} + w_j}{2}\right) - f_n\left(\frac{w_{j+1} + w_j}{2}\right) \right| < \varepsilon$$

Значит мы можем оценить нашу сумму сверху, как  $l_n \varepsilon \frac{\sqrt{3}}{n}$ . Заметим, что для любых двух соседних шестиугольников участок границы PQR находящийся внутри них  $\geq \frac{1}{n}$ . Пусть длина границы PQR - a. Тогда  $\frac{l_n}{2n} \leq a$ , иначе получилось бы, что граница PQR внутри шестиугольников больше длины границы PQR. А значит  $\frac{l_n}{n} \leq 2a$ , следовательно  $l_n \varepsilon \frac{\sqrt{3}}{n} \leq 2\sqrt{3}\varepsilon a$ , что бывает сколь угодно малым при правильном выборе  $\varepsilon$ .

Определение 12. Обозначим через [z;w] выпуклую оболочку векторов z u w, zде  $z,w \in \mathbb{C}$ , иначе говоря  $[z;w] \stackrel{def}{=} \{z + \lambda(w-z) | \forall \lambda \in [0,1] \}$ .

**Предложение 6.** Для любой точки D на границе треугольника ABC функция F(Z) из теоремы 1 удовлетворяет условию:

$$F(D) \in \begin{cases} [1; \tau^2] & npu \ D \in [A, \ C], \\ [\tau^2; \tau] & npu \ D \in [C, \ B], \\ [\tau; 1] & npu \ D \in [B, \ A]. \end{cases}$$

Доказательство. Пусть точка D лежит на отрезке [A,C]. Тогда из определения функции F(Z) имеем:

$$F(D) = \lim_{n \to \infty} f_n(D_n)$$

Поскольку D лежит на отрезке AC, то ближайшая к ней середина  $u_n(D)$  лежит на границе многоугольника  $M_n$ . Отсюда  $P(u_n(B) \leftrightarrow u_n(D)) = 0$ , так как если она не равна 0, то

существует расположение ломаных, соединяющих  $u_n(A)$  и  $u_n(C)$ ,  $u_n(B)$  и  $u_n(D)$ , но в таком случае они пересекаются  $\Rightarrow$  противоречие.

Тогда:  $\forall n \in \mathbb{N} : P(u_n(B) \leftrightarrow u_n(D) = 0 \Rightarrow \hat{f_n}(u_n(Z)) = P(u_n(D) \leftrightarrow u_n(A)) + \tau^2 P(u_n(D) \leftrightarrow u_n(C))$ 

Иными словами  $f_n(u_n(Z))$  представляется в виде выпуклой комбинации векторов 1 и  $\tau^2$ , и значит при всех n лежит на отрезке AC. Тогда и предел, поскольку он существует, лежит на этом отрезке. Тогда  $F(D) \in [AC]$ . Что и требовалось. Остальные случаи разбираются аналогично.

**Теорема 2.** Существует не более одной функции F(Z), заданной на всем треугольнике ABC, включая границу, принимающей комплексные значения и удовлетворяющей свойствам из предыдущих трех предложений.

Это утверждение является классическим результатом комплексного анализа и не будет доказано в этой статье.

**Лемма 1.** Тождественная функция F(Z) = Z удовлетворяет предложениям: 4, 5, 6.

Доказательство. По порядку докажем все три утверждения:

- 1. Тождественная функция непрерывна.
- 2. Покажем аналитичность:

$$\sum_{j=1}^{l_n} F\left(\frac{w_{j+1,n} + w_{j,n}}{2}\right) (w_{j+1,n} - w_{j,n}) = \sum_{j=1}^{l_n} \frac{1}{2} (w_{j+1,n} + w_{j,n}) (w_{j+1,n} - w_{j,n}) =$$

$$= \frac{1}{2} \sum_{j=1}^{l_n} (w_{j+1,n}^2 - w_{j,n}^2) = 0$$

Выражение обращается в нуль, поскольку каждое слагаемое в виде квадрата встречается с плюсом и минусом.

3. Граничное условие для тождественной функции верно в силу выбора расположения точек A,B,C.

### Доказательство Теоремы А

Мы ищем предел вероятности протекания воды между ломаными, соответствующими сторонам AB и CD при  $n \to \infty$ . Иными словами мы ищем предел некоторой последовательности. По предложению 1 члены этой последовательности совпадают с членами последовательности  $\{P(u_n(D) \leftrightarrow u_n(A))\}$ . Тогда нам достаточно найти  $\lim_{n\to\infty} P(u_n(D) \leftrightarrow u_n(A))$ 

Из леммы 1 и теоремы 2 мы получаем, что определенная в теореме 1 функция F(z) - тождественная функция. В частности, F(D) = D.

Тогда с одной стороны:

$$D = F(D) = \lim_{n \to \infty} f_n(u_n(D)) = \lim_{n \to \infty} \left( P(u_n(D) \leftrightarrow u_n(A)) + \tau^2 P(u_n(D) \leftrightarrow u_n(C)) \right)$$

Но, с другой стороны, точка D представима единственным образом в виде выпуклой комбинации 1 и  $\tau^2$ :

$$D = 1 * \frac{DC}{AC} + \tau^2 * \frac{AD}{AC} \Rightarrow \lim_{n \to \infty} P(u_n(D) \leftrightarrow u_n(A)) = \frac{DC}{AC}$$

Это в точности то, что мы хотели доказать!