ОБ ОДНОЙ ТРЕХПАРАМЕТРИЧЕСКОЙ МОДЕЛИ ТЕСТИРОВАНИЯ

Как известно, тесты, состоящие из заданий, не отобранных по степени трудности в соответствии со стандартом распределения, определяют измеряемое качество (свойство) на ранговой шкале. Переход к более сильной интервальной шкале требует параметризации заданий по степени их трудности и отбора в соответствии с заданным стандартом распределения. В классической теории тестов под степенью трудности (в современной версии термина) понимается доля испытуемых q_j , не справившихся с заданием j. Поскольку эта доля зависит от состава выборки испытуемых, задания необходимо должны параметризироваться на репрезентативной выборке испытуемых. В условиях локального тестирования в силу малочисленности генеральной совокупности (например, студентов одного потока данного года обучения) репрезентативной выборкой является вся генеральная совокупность.

Вытекающие из классической теории тестов ограничения снимаются в современных моделях тестирования, например логистических моделях Раша, Бирнбаума и моделях совместной количественной оценки трудностей заданий и уровней подготовленности испытуемых.

В модели Раша и ее обобщениях вводится понятие вероятности P правильного выполнения i-м испытуемым j-го тестового задания, зависящей от параметров испытуемого и задания. Зависимость P от уровня измеряемого свойства испытуемого и уровня трудности задания называется функцией успеха. В однопараметрической логистической модели Раша данная вероятность определяется лишь разностью уровней развития свой-

ства испытуемого θ_i и уровня трудности задания β_j : $P = \frac{1}{1 + e^{-(\theta_i - \beta_j)}}$, что и

позволяет считать модель Раша однопараметрической (единственным параметром является выражение ($\theta_i - \beta_i$)).

В истории развития практически любой модели закономерно последующее усложнение ее путем увеличения количества параметров с целью улучшения степени приближения модели к действительности. При этом предыдущие параметры сохраняются, а изменение их значений в новой модели объясняется тем, что параметры прежней модели «вбирали» в себя функции отсутствующих (введенных лишь в новой модели) параметров и вследствие этого оказывались смещенными. При этом зачастую совершается методологическая ошибка следующего рода.

Все мыслимое множество параметров некой идеальной обобщенной модели (включающее в себя и еще не включенные в актуальную модель

параметры) можно разделить на группы параметров в зависимости от степени их влияния на выход модели (и, соответственно, на степень точности отображения моделью действительности). При поэтапном усложнении модели путем увеличения количества включаемых в нее параметров улучшение на каждом этапе наблюдается лишь при соблюдении порядка включения новых параметров, а именно – порядок включения новых параметров должен соответствовать степени влияния новых параметров на результат. Отсюда вытекает, что включение в модель лишь одного параметра из группы примерно равновесных параметров методологически неверно, а декларируемое улучшение точности модели иллюзорно. В настоящем докладе общий принцип иллюстрируется на примере перехода от однопараметрической модели Раша к двухпараметрической модели Бирнбаума. Модель Раша, безусловно, базируется на самом релевантном (наиболее весомом) параметре – разности сил испытуемого и задания. Поскольку еще в классической теории тестов было выяснено, что задания обладают различной дифференцирующей способностью, в двухпараметрическую модель Бирнбаума также оказалась включенной дифференцирующая способность задания. В соответствии с логистической моделью Бирнбаума вероятность

успеха испытуемого составляет
$$P = \frac{1}{1 + e^{-d_j (\theta_i - \beta_j)}}$$
, где d_j – дифференцирую-

щая способность задания. Однако в классической тестовой теории смысл введения понятия о дифференцирующей способности задания заключался в отбраковке заданий с низкой дифференцирующей способностью, т.е. заданий, плохо различающих сильных и слабых испытуемых.

Один из методов оценки дифференцирующей способности задания – определение коэффициента корреляции вектора задания с вектором суммы тестовых баллов по испытуемым. Отрицательное, нулевое или низкое значение этого коэффициента является индикатором необходимости удаления задания. Но в рамках классической же теории тестов можно убедиться в том, что степень корреляции вектора испытуемого с вектором суммы тестовых баллов по заданиям также варьирует в широких пределах, заходя в область отрицательных значений, что по аналогии требует введения параметра, условно могущего быть названным «дифференцирующей способностью испытуемого». Некоторым аналогом подобного параметра является известный т.н. «индекс настороженности», характеризующий правильность профиля испытуемого [3, с. 93]. В оборот «дифференцирующая способность испытуемого» введена не была по простой причине: исключение заданий с низкой дифференцирующей способностью из набора заданий в тестовой форме вполне законно и осуществляется в ходе «чистки теста» [1, с. 102–104]. О массовом исключении из выборки несостоятельных испытуемых вопрос никогда не ставился. В [1, с. 106] дается рекомендация исключать из матрицы тестовых результатов данные по наиболее несостоятельным испытуемым, при этом количество исключаемых испытуемых не должно превышать 5%, что конечно же не сравнимо по масштабу с количеством удаляемых при чистке теста заданий (до 50% и более от общего их количества). Удаление из классического теста части заданий не меняет основного параметра оставшихся заданий – степени их трудности. В модели Бирнбаума предполагается, что учет дифференцирующей способности заданий уточняет значения сил испытуемых и заданий, однако если окажется, что неучитываемый моделью фактор различной дифференцирующей способности испытуемых по степени влияния на результат (или вернее, по разбросу влияния на результат) сравним с аналогичным параметром по заданиям, подобное уточнение не имеет смысла, поскольку проходится лишь половина пути в нужном направлении.

Разрешение поставленного вопроса требует разработки трехпараметрической модели хотя бы в первом приближении. При разработке подобной модели мы исходили из следующих обстоятельств. Логистическая функция успеха не является единственно возможной. Одной из возможных является также нормальная огива, более прозрачно интерпретирующая параметры модели и по выходным результатам практически неотличимая от логистической функции. Нормальным аналогом логистической модели Бирнбаума является модель с функцией успеха $P = \Phi\left(d_j(\theta_i - \beta_j)\right)$, где θ_i и β_j — соответственно сила испытуемого и сила задания, а d_j — дифференцирующая способность задания. Φ — интегральная функция нормального

распределения. Форма записи
$$P = \Phi\left(\frac{\theta_i - \beta_j}{\frac{1}{d_j}}\right)$$
 позволяет интерпретировать

 $\frac{1}{d_j}$ как некое значение σ_j , имеющее размерность силы (испытуемого или

задания), а взаимоотношение между испытуемым и заданием рассматривать в рамках модели Гутмана (интерпретируемой здесь как частный случай модели Бирнбаума для заданий с бесконечной дифференцирующей способностью) при случайном изменении силы задания по нормальному закону распределения, характеризующемуся стандартным отклонением σ_j . Но ведь сила испытуемого также может испытывать случайные изменения, и охарактеризовать их можно значением стандартного отклонения силы σ_i . Изложенные обстоятельства были известны уже в классической теории тестирования, где измеренное значение тестового балла X полагалось равным сумме истинного тестового балла T и двух членов e_1 и e_2 , характеризующих соответственно ошибку за счет изменения состояния испытуемого и ошибку, связанную с недостаточным качеством теста: $X = T + e_1 + e_2 + \dots$ Многоточием обозначены другие возможные ошибки (подсказка, забывание, догадка и пр.). [1, с. 60]. Комплексный учет случайных изменений си-

лы как испытуемых, так и задания, позволяет сконструировать искомую трехпараметрическую модель. При независимости случайных изменений силы испытуемого и силы задания (это наиболее простой случай, с которого и необходимо начинать изучать возможностей предлагаемой модели) дисперсии (т.е. квадраты стандартных отклонений) случайных изменений сил складываются, и суммарное стандартное отклонение составит

$$\sigma_s = \sqrt{\left(\frac{1}{d_i}\right)^2 + \left(\frac{1}{d_j}\right)^2}$$
, откуда $d_s = \frac{1}{\sigma_s} = \frac{d_i d_j}{\sqrt{d_i^2 + d_j^2}}$, где за d_s обозначена ре-

зультирующая дифференцирующая способность задания и испытуемого. В предлагаемой трехпараметрической модели функция успеха имеет вид

$$P = \Phi\left(\frac{d_i d_j}{\sqrt{d_i^2 + d_j^2}}(\theta_i - \beta_j)\right)$$
. Возможна также и логистическая трехпара-

метрическая модель с функцией успеха
$$P = \frac{1}{1 + e^{-\frac{d_i d_j}{\sqrt{d_i^2 + d_j^2}}(\theta_i - \beta_j)}}$$
. Параметры

трехпараметрической функции находятся применением метода максимального правдоподобия путем проведения ряда итераций, при этом в качестве начального приближения целесообразно использовать значения θ_i и β_j , полученные исходя из решения системы уравнений для однопараметрической модели, а в качестве d_i и d_j – значения $\sqrt{2} \approx 1,41$, что дает

$$d_s = \frac{d_i d_j}{\sqrt{d_i^2 + d_j^2}} = 1$$
, т.е. значение, при котором модель Бирнбаума вырожда-

ется в модель Раша.

Модель исследовалась на результатах тестирования 46 испытуемых 44 заданиями итогового теста по немецкому языку как второму иностранному для студентов 4 курса факультета иностранных языков Новосибирского госпедуниверситета. В таблице 1 приведены рассчитанные значения силы испытуемых согласно модели Раша, модели Бирнбаума и предложенной трехпараметрической модели. Расчеты параметров модели Бирнбаума велись в двух вариантах: вариант 1 — традиционная модель Бирнбаума, где под d понимается дифференцирующая способность задания; вариант 2 — под d понимается дифференцирующая способность испытуемого. Для представления в таблице испытуемые ранжированы по убыванию их силы в рамках предложенной модели. Поскольку в качестве функции успеха принята нормальная огива, единицей измерения силы является не логит, как в логистической модели, а пробит — более крупная (в 1,7 раза) единица. Значения силы по всем четырем моделям получены на разных шкалах, в общем случае взаимно не центрированных и разномасштабных,

но связанных линейным преобразованием, что позволяет вычислять коэффициенты корреляции Пирсона между рядами величин.

Вычисленные значения сил испытуемых и заданий приведены к единой шкале путем линейного преобразования (с различными параметрами для каждой шкалы). Параметры линейного преобразования находятся исходя из условия равенства среднего значения сил нулю и единичного стандартного отклонения по выборке.

Таблица 1 Значения сил испытуемых в рамках рассматриваемых моделей

№ испытуе-	Модель Ра-	Модель Бирнбаума Предлагае		
МОГО	ша	Вариант 1	Вариант 2	мая модель
1	2	3	4	5
1	2,10	2,25	2,32	2,09
2	2,14	2,14	2,41	1,97
3	1,60	1,67	1,77	1,82
4	1,21	0,90	1,70	1,63
5	1,90	1,79	1,13	1,31
6	1,20	1,27	1,03	1,27
7	0,89	0,99	0,89	1,04
8	0,65	0,90	0,72	0,95
9	0,87	0,85	0,82	0,82
10	0,91	0,76	0,47	0,78
11	0,76	0,73	0,66	0,78
12	0,77	0,69	0,62	0,74
13	0,34	0,42	0,24	0,37
14	0,21	0,37	0,21	0,37
15	0,19	0,18	0,07	0,34
16	0,50	0,23	0,44	0,24
17	0,09	0,12	0,06	0,17
18	0,19	0,14	0,12	0,12
19	0,06	0,26	0,03	0,10
20	-0,07	0,18	-0,07	0,09
21	0,08	0,07	0,11	0,07
22	0,19	-0,01	0,14	0,06
23	0,19	-0,01	0,05	0,05
24	-0,07	-0,06	-0,08	-0,01
25	-0,04	-0,15	-0,05	-0,05
26	0,07	-0,06	-0,01	-0,06
27	-0,08	-0,01	-0,08	-0,17
28	-0,07	-0,24	-0,08	-0,17
29	-0,19	-0,14	-0,20	-0,27

Окончание табл. 1

1	2	3	4	5
30	-0,62	-0,44	-0,45	-0,29
31	-0,20	-0,56	-0,16	-0,29
32	-0,33	-0,31	-0,29	-0,32
33	-0,08	-0,12	-0,09	-0,33
34	-0,47	-0,63	-0,47	-0,56
35	-0,63	-0,79	-0,53	-0,64
36	-0,77	-0,77	-0,54	-0,75
37	-0,79	-0,78	-0,74	-0,79
38	-1,07	-0,74	-0,72	-0,82
39	-1,03	-0,81	-0,84	-0,97
40	-1,06	-1,24	-0,85	-1,04
41	-1,35	-1,11	-1,03	-1,10
42	-0,76	-0,35	-1,09	-1,18
43	-1,65	-1,49	-1,24	-1,31
44	-1,43	-1,44	-1,75	-1,46
45	-2,22	-2,19	-1,65	-1,74
46	-2,14	-2,47	-2,99	-2,82
r	0,975	0,975	0,987	_
Z	2,177	2,177	2,521	_

Анализ данных табл. 1 показывает, что значения сил испытуемых по разным моделям не совпадают, нет между ними также и линейной зависимости. Интерес представляет установление корреляции между рядами данных. В предпоследней строке табл. 1 приведены значения коэффициента корреляции Пирсона между значениями, рассчитанными по модели, представленной в соответствующем столбце, и по предлагаемой трехпараметрической модели (принятой за основу для сравнения, поскольку она является обобщением всех рассматриваемых моделей).

Анализ значений r выявляет следующее: если считать, что наиболее точные значения силы испытуемого дает предлагаемая модель, поскольку она является обобщением всех остальных рассматриваемых, модель Бирнбаума с определением дифференцирующей способности заданий и модель Раша дают одинаковые по степени точности значения (r составляет 0,975 для обоих моделей). Модель Бирнбаума с определением дифференцирующей способности испытуемых дает наиболее близкие к предлагаемой модели значения (r = 0,987).

Поскольку выборочные распределения коэффициентов корреляции считаются слишком сложными для практического использования, для определения значимости сделанных на основе значений r выводов осуществлен переход от r к введенной Фишером мере z, имеющей, в отличие от

r, нормальное распределение с математическим ожиданием $z=0.5\ln\frac{1+r}{1-r}$ и дисперсией $D_z=\frac{1}{n-3}$, где n – количество испытуемых в выборке

[4, т. 1, с. 61–62]. Вычисленные значения z приведены в последней строке табл. 1. Стандартное отклонение значений z составляет $\sigma_z = \sqrt{D_z} = \sqrt{\frac{1}{n-3}} = \sqrt{\frac{1}{46-3}} = 0,152$. Сравнение значений z со значением σ_z

позволяет сделать вывод, что разница между значениями r для моделей Раша и 1-го варианта модели Бирнбаума несущественна, а между значениями r для модели Раша и 2-го варианта модели Бирнбаума значима, впрочем лишь на 10%-м уровне значимости.

Так, разница между значениями z для модели Раша и 1-го варианта модели Бирнбаума составляет $\delta=0$, что при значении $\sigma_\delta=\sqrt{2}\sigma_z=0,216$ дает отношение $\frac{\delta}{\sigma_\delta}=0$. Для случая модели Раша и 2-го варианта модели

Бирнбаума
$$\delta = 2,521-1,177=0,344$$
, и $\frac{\delta}{\sigma_{\delta}} = \frac{0,344}{0,216} = 1,60$. 10%-граница для

 $\left(\frac{\delta}{\sigma_{\delta}}\right)$ примерно равна этому значению (1,64), и сделанный вывод на 10% уровне значимости подтверждается [2, с. 382].

В таблице 2 приведены рассчитанные значения силы заданий и их рангов согласно модели Раша, модели Бирнбаума и предложенной трехпараметрической модели. Задания расположены по возрастанию их силы согласно предложенной модели.

Таблица 2 Значения сил заданий в рамках рассматриваемых моделей

№ задания	Модель Ра-	Модель Бирнбаума		Предлагае-
	ша	Вариант 1	Вариант 2	мая модель
1	2	3	4	5
1	-1,21	-1,71	-0,95	-1,96
2	-0,29	-1,06	-0,20	-1,80
3	-2,00	-1,73	-2,11	-1,54
4	-1,02	-1,46	-1,11	-1,48
5	-0,69	-1,18	-0,64	-1,27
6	-1,39	-1,14	-1,25	-1,08
7	-0,79	-1,16	-0,71	-1,07
8	-0,80	-1,01	-0,77	-1,05
9	-1,55	-0,89	-1,21	-0,97

Окончание табл. 2

1	2	3	4	5
10	-0,56	-1,08	-0,59	-0,96
11	-0,98	-0,84	-0,77	-0,93
12	-1,08	-0,67	-0,93	-0,69
13	-1,18	-0,95	-0,94	-0,65
14	-0,91	-0,46	-0,80	-0,50
15	-0,57	-0,50	-0,61	-0,43
16	-0,66	-0,66	-0,59	-0,38
17	-0,22	-0,26	-0,11	-0,22
18	-0,36	-0,26	-0,31	-0,22
19	-0,22	-0,18	-0,38	-0,17
20	-0,06	-0,03	-0,24	-0,03
21	-0,09	-0,05	-0,16	0,00
22	-0,02	0,00	0,02	0,08
23	-0,02	0,09	-0,11	0,14
24	0,12	0,14	0,07	0,14
25	0,05	0,10	0,00	0,15
26	0,06	0,15	-0,02	0,15
27	0,20	0,22	0,00	0,22
28	0,49	0,31	0,29	0,29 0,34
29	0,42	0,22	0,32	0,34
30	0,12	0,36	0,03	0,36
31	0,31	0,46	0,17	0,45
32	0,73	0,48	0,51	0,47
33	0,57	0,37	0,49	0,48
34	0,82	0,60	0,74	0,66
35	0,23	0,61	0,22	0,70
36	0,90	0,82	0,72	0,77
37	0,40	0,79	0,24	0,86
38	1,49	1,14	1,35	1,07
39	0,53	1,08	0,31	1,22
40	1,21	1,32	1,09	1,35
41	2,07	1,89	2,20	1,65
42	1,06	1,59	0,95	1,80
43	2,48	2,12	2,76	1,86
44	2,45	2,42	3,02	2,18
r	0,911	0,986	0,886	_
z	1,532	2,485	1,402	_

Анализ данных табл. 2 позволяет сделать выводы, аналогичные сделанным согласно данным табл. 1, с закономерной взаимной заменой вариантов 1 и 2 модели Бирнбаума. Значения сил заданий, полученные согласно модели Бирнбаума (2-й вариант) и модели Раша, примерно равноценны. Наибольшее приближение сил заданий к рассчитанным по предлагаемой трехпараметрической модели дает 1-й вариант модели Бирнбаума. Подсчет значений z и $\sigma_z = 0.156$ подтверждает высказанное.

Все сказанное позволяет сделать следующие выводы:

Возможно создание трехпараметрической модели тестирования с использованием в качестве параметров: 1) разности сил испытуемого и задания; 2) дифференцирующей способности испытуемого; 3) дифференцирующей способности задания.

Модель Бирнбаума дает наиболее близкие в сравнении с предлагаемой моделью значения сил той стороны тестирования (испытуемых либо заданий), чью дифференцирующая способность входит в модель. Для стороны тестирования, чья дифференцирующая способность в модели не учитывается, улучшение точности определения силы не наблюдается.

Применение предлагаемой трехпараметрической модели с одновременным определением дифференцирующей способности и испытуемых, и заданий позволяет определить значения сил испытуемых и заданий с высокой точностью.

Задействованные размеры выборок (46 по испытуемым и 44 по заданиям) позволяют сделать осторожное заключение о значимости сделанных выводов. Вместе с тем окончательное суждение о применимости предложенной модели и ее свойствах в сравнении с традиционно используемыми моделями требует проведения многократных исследований на больших выборках.

Список литературы

- 1. Аванесов В.С. Основы научной организации педагогического контроля в высшей школе. М.: МИСиС, 1989.
 - 2. Варден Б.Л., ван дер. Математическая статистика. М.: ИЛ, 1960.
- 3. *Гулюкина Н.А.*, *Клишина С.В.* Педагогический тест: этапы и особенности конструирования и использования. Пособие для преподавателей. Новосибирск: Изд-во НГТУ, 2001.
- 4. Справочник по прикладной статистике. Под ред. Э. Ллойда, У. Ледермана. – В 2-х т. – М.: Финансы и статистика, 1989–1990.