Chapter 3, Section 5

James Lee

April 30, 2025

1. Let X be a projective scheme over a field k, and let \mathscr{F} be a coherent sheaf on X. We define the Euler characteristic of \mathscr{F} by

$$\chi(\mathscr{F}) = \sum (-1)^i \dim_k H^i(X, \mathscr{F}).$$

If

$$0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$$

is a short exact sequence of coherent sheaves on X, show that $\chi(\mathscr{F}) = \chi(\mathscr{F}') + \chi(\mathscr{F}'')$.

- **2.** (a) Let X be a projective scheme over a field k, let $\mathscr{O}_X(1)$ be a very ample invertible sheaf on X over k, and let \mathscr{F} be a coherent sheaf on X. Show that there is a polynomial $P(z) \in \mathbb{Q}[z]$, such that $\chi(\mathscr{F}(n)) = P(n)$ for all $n \in \mathbb{Z}$. We call P the Hilbert polynomial of \mathscr{F} with respect to the sheaf $\mathscr{O}_X(1)$.
 - (b) Now let $X = \mathbb{P}_k^r$, and let $M = \Gamma_*(\mathscr{F})$, considered as a graded $S = k[x_0, \dots, x_r]$ -module. Use (5.2) to show that the Hilbert polynomial of \mathscr{F} just defined is the same as the Hilbert polynomial of M defined in (I, §7).
- **3.** Arithmetic Genus. Let X be a projective scheme of dimension r over a field k. We define the arithmetic genus p_a of X by

$$p_a(X) = (-1)^r (\chi(\mathscr{O}_X) - 1).$$

Note that it depends only on X, not on any projective embedding.

(a) If X is integral, and k algebraically closed, show that $H^0(X, \mathcal{O}_X) \cong k$, so that

$$p_a(X) = \sum_{i=0}^{r-1} (-1)^i \dim_k H^{r-i}(X, \mathcal{O}_X).$$

In particular, if X is a curve, we have

$$p_a(X) = \dim_k H^1(X, \mathcal{O}_X).$$

- (b) If X is a closed subvariety of \mathbb{P}_k^r , show that this $p_a(X)$ coincides with the one defined in (I, Ex. 7.2), which apparently depended on the projective embedding.
- (c) if X is a nonsingular projective curve over an algebraically closed field k_1 show that $p_a(X)$ is in fact a birational invariant. Conclude that a nonsingular plane curve of degree $d \geq 3$ is not rational. (This gives another proof of (II, 8.20.3) where we used the geometric genus.)
- **4.** Recall from (II, Ex. 6.10) the definition of the Grothendieck group K(X) of a noetherian scheme X.
 - (a) Let X be a projective scheme over a field k, and let $\mathcal{O}_X(1)$ be a very ample invertible sheaf on X. Show that there is a (unique) additive homomorphism

$$P:K(X)\to\mathbb{Q}[z]$$

such that for each coherent sheaf \mathscr{F} on X, $P(\gamma(\mathscr{F}))$ is the Hilbert polynomial of \mathscr{F} (Ex. 5.2).

- (b) Now let $X = \mathbb{P}_k^r$. For each $i = 0, \dots, r$, let L_i be a linear space of dimension i in X. Then show that
 - (1) K(X) is the free Abelian group generated by $\{\gamma(\mathscr{O}_{K_i}) \mid i=0,\ldots,r\}$, and
 - (2) the map $P: K(X) \to \mathbb{Q}[z]$ is injective.

- **5.** Let k be a field, let $X = \mathbb{P}_k^r$, and let Y be a closed subscheme of dimension $q \geq 1$, which is a complete intersection (II, Ex. 8.4). Then:
 - (a) for all $n \in \mathbb{Z}$, the natural map

$$H^0(X, \mathscr{O}_X(n)) \to H^0(Y, \mathscr{O}_Y(n))$$

is surjective. (This gives a generalization and another proof of (II, Ex. 8.4c), where we assumed Y was normal.)

- (b) Y is connected;
- (c) $H^i(Y, \mathcal{O}_Y(n)) = 0$ for 0 < i < q and all $n \in \mathbb{Z}$;
- (d) $p_a(Y) = \dim_k H^q(Y, \mathcal{O}_Y)$.
- **6.** Curves on a Nonsingular Quadric Surface. Let Q be the nonsingular quadric surface xy = zw in $X = \mathbb{P}^3_k$ over a field k. We will consider locally principal closed subschemes Y of Q. These correspond to Cartier divisors on Q by (II, 6.17.1). On the other hand, we know that $\operatorname{Pic} Q \cong \mathbb{Z} \oplus \mathbb{Z}$, so we can talk about the type(a, b) of Y (II, 6.16) and (II, 6.6.1). Let us denote the invertible sheaf $\mathcal{L}(Y)$ by $\mathscr{O}_Q(a, b)$. Thus for any $n \in \mathbb{Z}$, $\mathscr{O}_Q(n) = \mathscr{O}_Q(n, n)$.
 - (a) Use the special cases (q,0) and (0,q), with q>0, when Y is a disjoint union of q lines \mathbb{P}^1 in Q, to show:
 - (1) if $|a-b| \le 1$, then $H^1(Q, \mathcal{O}_Q(a,b)) = 0$;
 - (2) if a, b < 0, then $H^1(Q, \mathcal{O}_Q(a, b)) = 0$;
 - (3) if $a \leq -2$, then $H^1(Q, \mathcal{O}_Q(a, 0)) \neq 0$.
 - (b) Now use these results to show:
 - (1) if Y is a locally principal closed subscheme of type (a, b) with a, b > 0, the Y is connected;
 - (2) now assume k is algebraically closed. Then for any a, b > 0, there exists an irreducible nonsingular curve Y of type (a, b). Use (II, 7.6.2) and (II, 8.18).
 - (3) an irreducible nonsingular curve Y of type (a, b), a, b > 0 on Q is projectively normal (II, Ex. 5.14) if and only if $|a b| \le 1$. In particular, this gives lots of examples of nonsingular, but not projectively normal curves in \mathbb{P}^3 . The simplest is the one of type (1,3), which is just the rational quartic curve (I, Ex. 3.18).
 - (c) If Y is a locally principal subscheme of type (a, b) in Q, show that $p_a(Y) = ab a b + 1 = (a 1)(b 1)$.
- 7. Let X (respectively, Y) be proper schemes over a noetherian ring A. We denote by \mathcal{L} an invertible sheaf.
 - (a) If \mathscr{L} is ample on X, and Y is any closed subscheme of X, then $i^*\mathscr{L}$ is ample on Y, where $i:Y\to X$ is the inclusion.
 - (b) \mathscr{L} is ample on X if and only if $\mathscr{L}_{\text{red}} = \mathscr{L} \otimes \mathscr{O}_{X_{\text{red}}}$ is ample on X.
 - (c) Suppose X is reduced. Then $\mathscr L$ is ample on X if and only if $\mathscr L\otimes\mathscr O_{X_i}$ is ample on X_i , for each irreducible component X_i of X.
 - (d) Let $f: X \to Y$ be a finite surjective morphism, and let $\mathscr L$ be an invertible sheaf on Y. Then $\mathscr L$ is ample on Y if and only if $f^*\mathscr L$ is ample on X.
- 8. Prove that every one-dimensional proper scheme X over an algebraically closed field k is projective.
 - (a) If X is irreducible and nonsingular, then X is projective by (II, 6.7).
 - (b) If X is integral, let \tilde{X} be its normalization (II, Ex. 3.8). Show that \tilde{X} is complete and nonsingular, hence projective by (a). Let $f: \tilde{X} \to X$ be the projection. Let \mathscr{L} be a very ample invertible sheaf on \tilde{X} . Show there is an effective divisor $D = \sum P_i$ on \tilde{X} with $\mathscr{L}(D) \cong \mathscr{L}$, and such that $f(P_i)$ is a nonsingular point of X, for each i. Conclude that there is an invertible sheaf \mathscr{L}_0 on X with $f^*\mathscr{L}_0 \cong \mathscr{L}$. Then use (Ex. 5.7d), (II, 7.6) and (II, 5.16.1) to show that X is projective.
 - (c) If X is reduced, but not necessarily irreducible, let X_1, \ldots, X_r be the irreducible components of X. Use (Ex. 4.5) to show Pic $X \to \bigoplus$ Pic X_i is surjective. Then use (Ex. 5.7c) to show X is projective.
 - (d) Finally, if X is any one-dimensional proper scheme over k, use (2.7) and (Ex. 4.6) to show that Pic $X \to \text{Pic } X_{\text{red}}$ is surjective. Then use (Ex. 5.7b) to show X is projective.

9. A Nonprojective scheme. We show the result of (Ex. 5.8) is false in dimension 2. Let k be an algebraically closed field of characteristic 0, and let $X = \mathbb{P}^2_k$. Let ω be the sheaf of differential 2-forms (II, §8). Define an infinitesimal extension X' of X by ω by giving the element $\xi \in H^1(X, \omega \otimes \mathscr{T})$ defined as follows (Ex. 4.10). Let x_0, x_1, x_2 be the homogenous coordinates of X, let U_0, U_2, U_2 be the standard open covering, and let $\xi_{ij} = (x_j/x_i)d(x_i/x_j)$. This gives a Čech 1-cocycle with values in Ω^1_X , and since dim X = 2, we have $\omega \otimes \mathscr{T} \cong \Omega^1$ (II, Ex. 5.16b). Now use the exact sequence

$$\cdots \to H^1(X,\omega) \to \operatorname{Pic} X' \to \operatorname{Pic} X \xrightarrow{\delta} H^2(X,\omega) \to \cdots$$

of (Ex. 4.6) and show δ is injective. We have $\omega \cong \mathscr{O}_X(-3)$ by (II, 8.20.1), so $H^2(X,\omega) \cong k$. Since char k=0, you need only show that $\delta(\mathscr{O}(1)) \neq 0$, which can be done by calculating in Čech cohomology. Since $H^1(X,\omega) = 0$, we see that Pic X' = 0. In particular, X' has no ample invertible sheaves, so it is not projective.

Note. In fact, this result can be generalized to show that for any nonsingular projective surface X over an algebraically closed field k of characteristic 0, there is an infinitesimal extension X' of X by ω , such that X' is not projective over k. Indeed, let D be an ample divisor on X. Then D determines an element $c_1(D) \in H^1(X, \Omega^1)$ which we use to define X', as above. Then for any divisor E on X one can show that $\delta(\mathscr{L}(E)) = (D.E)$, where (D.E) is the intersection number (Chapter V), considered as an element of k. Hence, if E is ample, $\delta(\mathscr{L}(E)) \neq 0$. Therefore, X' has no ample divisors.

On the other hand, over a field of characteristic p > 0, a proper scheme X is projective if and only if X_{red} is!

10. Let X be a projective scheme over a noetherian ring A, and let $\mathscr{F}^1 \to \mathscr{F}^2 \to \cdots \to \mathscr{F}^r$ be an exact sequence of coherent sheaves on X. Show that there is an integer n_0 , such that for all $n \ge n_0$, the sequence of global sections

$$\Gamma(X, \mathscr{F}^1(n)) \to \Gamma(X, \mathscr{F}^2(n)) \to \cdots \to \Gamma(X, \mathscr{F}^r(n))$$

is exact.