تـــمرين:

الجزء الأول:

 $g(x) = x^3 - 3x - 3$ الدالة المعرفة على \mathbb{R} بـ : g

 $\lim_{x\to +\infty} g(x)$ اگسب $\lim_{x\to -\infty} g(x)$ او

 \mathbb{R} و أدرس إشارتها ثم شكل جدول تغيرات الدالة g'(x) على g

 $\alpha \in \left[2; \frac{5}{2}\right]$: بين أن المعادلة g(x) = 0 تقبل حلا وحيدا α بحيث و 3.

 \mathbb{R} على g(x) على على g(x) على 4.

الجزء الثاني:

 $f(x) = \frac{2x^3+3}{x^2-1} + 1:$ ب $]-\infty; -1[\ \cup\]-1; 1[\ \cup\]1; +\infty[$ نعتبر الدالة f المعرفة على f المعرفة على الدالة f في المستوي المنسوب الى معلم متعامد ومتجانس f التمثيل البياني للدالة f في المستوي المنسوب الى معلم متعامد ومتجانس

1 • 1. أحسب النهايات عند أطراف مجموعة التعريف فسر النتائج بيانيا

 $f'(x) = \frac{2xg(x)}{(x^2-1)^2} : \mathbb{R} - \{-1; 1\}$ من أجل كل x من أجل كل 2.

. عين دون حساب $\lim_{x o lpha} rac{f(x) - f(lpha)}{x - lpha}$ عين دون حساب

f استنتج اشارة f'(x) مثم شكل جدول تغيرات الدالة 3.

f(lpha) بين أن f(lpha)=3lpha+1 ثم استنتج حصرا للعدد 4.

5. بين أن المستقيم (Δ) الذي معادلته y=2x+1 مستقيم مقارب للمنحني (C_f) . ثم أدرس الوضعية النسبية للمنحني (C_f) بالنسبة للمستقيم (Δ) .

. $(7 < f(\alpha) < 8,5)$ فاخذ (C_f) و (۵) .6

. f(x)=m+1 عدد حلول المعادلة m عدم الوسيط الحقيقي m

بالتوفيق والنجاح