Deep Learning Adventures + San Diego Machine Learning

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

By Aurélien Géron

TIME TO COMPLETE:

TOPICS:

24h 18m

Machine Learning

PUBLISHED BY:

O'Reilly Media, Inc.

PUBLICATION DATE: September 2019

PRINT LENGTH: 848 pages

Chapter	Title	
1	The Machine Learning Landscape	
2	End-to-End Machine Learning Project	
3	Classification	
4	Training Models	
5	Support Vector Machines	Chapter 12 : Custom Models
6	Decision Trees	and Training with TensorFlow
7	Ensemble Learning and Random Forests	Discussion led by George Zoto
8	Dimensionality Reduction	_
9a	Unsupervised Learning Techniques: Clustering	
9b	Unsupervised Learning Techniques: Gaussian Mixtures	
10	Introduction to Artificial Neural Networks with Keras	
11	Training Deep Neural Networks	
12	Custom Models and Training with TensorFlow	
13	Loading and Preprocessing Data with TensorFlow	
14	Deep Computer Vision Using Convolutional Neural Networks	
15	Processing Sequences Using RNNs and CNNs	
16	Natural Language Processing with RNNs and Attention	
17	Representation Learning and Generative Learning Using Autoencoders and GANs	
18	Reinforcement Learning	
19	Training and Deploying TensorFlow Models at Scale	

TensorFlow Ecosystem

What is TensorFlow

- TensorFlow is a powerful library for numerical computation, particularly well suited and fine-tuned for large-scale Machine Learning
- Its core is very similar to NumPy, but with GPU support.
- It supports distributed computing (across multiple devices and servers).
- It includes a kind of just-in-time (JIT) compiler that allows it to optimize computations for speed and memory usage. It works by extracting the computation graph from a Python function, then optimizing it, and finally running it efficiently
- Computation graphs can be exported to a portable format, so you can train a TensorFlow model in one environment (e.g., using Python on Linux) and run it in another (e.g., using Java on an Android device).
- It implements autodiff to minimize all sorts of loss functions.

Figure 12-1. TensorFlow's Python API

TensorFlow's Python API and Architecture

Figure 12-2. TensorFlow's architecture

Figure 12-3. Custom model example: an arbitrary model with a custom ResidualBlock layer containing a skip connection

Figure 12-4. How TensorFlow generates graphs using AutoGraph and tracing

Useful Resources

- Notebook Custom Models and Training with TensorFlow
- My edited notebook from above
- Module tf
- What makes TPUs fine-tuned for deep learning?
- TensorFlow ecosystem
- TensorFlow Extended (TFX)
- TensorFlow Model Garden
- Models & datasets
- A list of TensorFlow experiments, libraries, and projects
- Papers with code
- TensorFlow on Github
- Huber Loss
- Wide & Deep Learning for Recommender Systems
- Resource #1 on tracing
- Resource #2 on tracing

Deep Learning Adventures + San Diego Machine Learning

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

By Aurélien Géron

TIME TO COMPLETE:

TOPICS:

24h 18m

Machine Learning

PUBLISHED BY:

O'Reilly Media, Inc.

PUBLICATION DATE: September 2019

PRINT LENGTH: 848 pages

Chapter	Title	
1	The Machine Learning Landscape	
2	End-to-End Machine Learning Project	
3	Classification	
4	Training Models	
5	Support Vector Machines	Chapter 12 : Custom Models
6	Decision Trees	and Training with TensorFlow
7	Ensemble Learning and Random Forests	Discussion led by George Zoto
8	Dimensionality Reduction	_
9a	Unsupervised Learning Techniques: Clustering	
9b	Unsupervised Learning Techniques: Gaussian Mixtures	
10	Introduction to Artificial Neural Networks with Keras	
11	Training Deep Neural Networks	
12	Custom Models and Training with TensorFlow	
13	Loading and Preprocessing Data with TensorFlow	
14	Deep Computer Vision Using Convolutional Neural Networks	
15	Processing Sequences Using RNNs and CNNs	
16	Natural Language Processing with RNNs and Attention	
17	Representation Learning and Generative Learning Using Autoencoders and GANs	
18	Reinforcement Learning	
19	Training and Deploying TensorFlow Models at Scale	