MATH 3332 Data Analytic Tools Homework 2

Due date: 19 October, 6pm, Monday

- 1. Let V be a vector space, and $\langle \cdot, \cdot \rangle$ be an inner product on V. Use the definition of inner product to prove the following.
 - (a) Prove that $\langle \mathbf{0}, \boldsymbol{x} \rangle = \langle \boldsymbol{x}, \mathbf{0} \rangle = 0$ for any $\boldsymbol{x} \in V$. Here $\mathbf{0}$ is the zero vector in V.
 - (b) Prove that the second condition

$$\langle \alpha \boldsymbol{x}_1 + \beta \boldsymbol{x}_2, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}_1, \boldsymbol{y} \rangle + \beta \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle, \quad \forall \, \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{y} \in V, \alpha, \beta \in \mathbb{R}$$

is equivalent to

$$\langle \boldsymbol{x}_1 + \boldsymbol{x}_2, \boldsymbol{y} \rangle = \langle \boldsymbol{x}_1, \boldsymbol{y} \rangle + \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle \quad \text{and} \quad \langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \qquad \forall \ \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}, \boldsymbol{y} \in V, \ \alpha \in \mathbb{R}.$$

2. Let V be a vector space with a norm $\|\cdot\|$ that satisfies the parallelogram identity

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2, \quad \forall x, y \in V.$$

Note that we don't have an inner product on V so far. For any $x, y \in V$, define

$$f(x, y) := \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

Obviously, for all $x, y \in V$, we have $f(x, x) \ge 0$ and f(x, y) = f(y, x). Also, f(x, x) = 0 if and only if x = 0.

- (a) Prove f(x + y, z) = f(x, z) + f(y, z) for all $x, y, z \in V$.
- (b) Prove $f(-\boldsymbol{x}, \boldsymbol{y}) = -f(\boldsymbol{x}, \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in V$.
- (c) Prove $(f(\boldsymbol{x}, \boldsymbol{y}))^2 \leq f(\boldsymbol{x}, \boldsymbol{x}) f(\boldsymbol{y}, \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in V$.
- (d) (Bonus question!) Prove that $f(\mathbf{x}, \mathbf{y})$ is an inner product on V whose induced norm is $\|\cdot\|$. (Hint: From Q1(b) and Q2(a), it suffices to prove $f(\alpha \mathbf{x}, \mathbf{y}) = \alpha f(\mathbf{x}, \mathbf{y})$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$. You first prove this identity for rational α , and then use limit and Q1(c) to show it for any real α .)

This question proved that the parallelogram identity is also a sufficient condition for a norm to be induced by an inner product. Combined with the parallelogram law on inner product spaces, we see that the parallelogram identity is a necessary and sufficient condition for a norm to be an induced by an inner product.

- 3. Consider an inner product space V with the induced norm. Let $X = \{x_1, \dots, x_N\} \subset V$ be a set of vectors in V with $||x_i|| = 1$ for all i. Given a vector $y \in V$ with ||y|| = 1, show that the following two things are the same:
 - finding the vector in X that has the smallest distance to y (i.e., solving $\min_{x \in X} ||x y||$)

- finding the vector in X that has the smallest angle to \boldsymbol{y} (i.e., solving $\min_{\boldsymbol{x} \in X} \arccos\langle \boldsymbol{x}, \boldsymbol{y} \rangle$)
- 4. Consider the polynomial kernel $K(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}^T \boldsymbol{y})^2$ for $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2$. Find an explicit feature map ϕ : $\mathbb{R}^2 \to \mathbb{R}^3$ satisfying $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle = K(\boldsymbol{x}, \boldsymbol{y})$, where the inner product the standard inner product in \mathbb{R}^3 .
- 5. (You don't need to do anything for this question.) A good Matlab code and demonstration of kernel K-means can be found at
 - http://www.dcs.gla.ac.uk/~srogers/firstcourseml/matlab/chapter6/kernelkmeans.html Read the code. Run the code in Matlab, if possible, to see how kernel K-means works for nonlinear data.