Why & How Does Few-Shot Learning Work?

Transformers as Learning Algorithms

Jörn Stöhler (MSc Student) Claude (Research Assistant)

University of Augsburg

What is Few-Shot Learning?

Live Demonstration

Demo in ChatGPT.com

- 1. Pattern completion: "The cat sat on the mat. The dog sat on the..."
- 2. Zero-shot fails, few-shot succeeds
- 3. Learning notation from examples

Key Question: Examples transform behavior – but how?

Quantifying the Effect

Benchmarks from GPT-3 Paper

Open: GPT-3 Paper (Brown et al. 2020)

papers/2005.14165_gpt3_language_models_few_shot.pdf

Show:

- ► Figure 1.2: Performance vs parameters
- ► Figure 3.1: Zero/one/few-shot visual
- ► Figure 3.8: LAMBADA (76.2% → 86.4%)

Model	Year	Zero-Shot	Few-Shot Gain
GPT-3	2020	\sim 50%	+10-20pp
GPT-4	2023	\sim 80%	+2-8pp
Current	2024	\sim 85%	+1-5pp

SuperGLUE Results

Few-Shot vs Fine-Tuning

Open: GPT-3 Paper - SuperGLUE

papers/2005.14165_gpt3_language_models_few_shot.pdf

Key Result:

- ► GPT-3 (32-shot): 71.8% (average)
- ► Fine-tuned BERT++: 69.8% (average)
- ► No gradient updates needed!

Transition: The effect is real. Now let's understand the mechanism.

Transformer Architecture

Information Flow

Tokens — Embeddings — Layer 1
$$\underbrace{a_0 \in \mathbb{R}^d}$$
 — Output $\underbrace{a_1 = f_1(a_0)}$

Attention(a) =
$$\sum_t \text{softmax}(Q_t K_t^T) \cdot V_t$$

Key Points:

- Residual stream: Information highway
- ► Each layer reads ALL previous tokens
- ► Autoregressive: One token at a time

The Key Discovery

Attention = Gradient Descent

Open: von Oswald et al. 2022

papers/2212.07677_transformers_gradient_descent.pdf

von Oswald et al. 2022 - Key Result

For linear self-attention on regression:

$$\mathsf{Output} = \mathsf{Input} + \eta \cdot \nabla_{\mathsf{w}} \mathcal{L}$$

Linear attention = exact gradient descent step

- ► Single layer = one gradient step (exact!)
- ► Multi-layer = preconditioned gradient descent
- ► Not approximation mathematically exact

What We've Found Inside

Mechanistic Interpretability

1. Pattern Completion

- ► Attention patterns copy previous tokens
- ▶ Demonstrated in GPT models
- ► Note: Anthropic details online only

2. Function Vectors

- ► Tasks encoded as activation directions
- ► Todd et al. 2024
- ► Can extract and compose task vectors

3. Multiple Capabilities

- Models encode many tasks simultaneously
- Context selects relevant circuits
- Examples activate specific pathways

Layer-Wise Processing

Information Flow Through Depth

Papers: Akyürek 2022 + Garg 2022

Akyürek et al. findings:

▶ 1 layer: Single gradient descent step

► 2-3 layers: Multiple GD steps

▶ 4+ layers: Ridge regression emerges

► Deep models: Approach closed-form solutions

Exact depth depends on task complexity

What Can Transformers Provably Do?

Mathematical Limits

What Papers Actually Prove:

- 1. Linear attention = GD von Oswald 2022
- 2. Can implement ridge Akyürek 2022
- 3. Learn linear functions Garg 2022
- 4. Hard attention is Turing complete Pérez 2019

Recent Result (2024):

- Prompting itself is Turing-complete
- ► Paper: Prompting is Turing-complete (2024)

Memory Bounds:

- $ightharpoonup \Theta(n)$ capacity for n examples
- ► Tian et al. 2024

Mesa-Optimization

Two Optimization Loops

Papers (both needed):

[1] Hubinger 2019 - Terminology

[2] von Oswald 2023 - Evidence

[3] Zheng 2024 - Emergence

	OUTER (Training)	INNER (Inference)
Optimizer	SGD on parameters $ heta$	Attention implements GD
Objective	Training loss	In-context loss
Updates	Weights	Activations
Time	Months	Single forward pass

Critical insight: Model learns HOW to learn, not just WHAT to predict

Emerges without design! Never explicitly trained for optimization

Mesa-Optimization Evidence

Internal Optimizer Discovery

Open: Uncovering Mesa-Optimization

papers/2309.05858_mesa_optimization.pdf

Two-stage process discovered:

1. Early layers: Preconditioning

2. Later layers: Optimization on preconditioned problem

Key findings:

- ightharpoonup Autoregressive training ightarrow internal optimizers
- Generalizes to unseen tasks
- ► Can extract the learned algorithm

Why Few-Shot Works

The Grad Student Analogy

Few-shot learning \approx Supervising grad students

- 1. Examples provide new information
 - ► Your specific notation
 - Not in training data
- 2. Computable format
 - ► Examples > descriptions
 - Model runs gradient descent on them
- 3. Disambiguate task
 - "Prove like Bourbaki, not Arnold"
- 4. Knowledge loading (push system)
 - Examples activate circuits
 - ▶ Weights → activations

Examples are training data for the internal optimizer!

Conclusion

The Key Insight

Few-shot learning works because transformers are computers that run learning algorithms

- ► Your examples are the **program**
- ► The forward pass is the **execution**
- ► The output is the result of **internal optimization**

This isn't metaphorical – it's mathematically proven

Questions?

15-minute Q&A - Note: Some claims span multiple papers

Appendix Topics Available:

- ► A1: Detailed mechanistic interpretability
- ► A2: Statistical learning theory connection
- ► A3: Test-time training advances
- ► A4: Prompt engineering theory
- ► A5: Failure modes and limitations

Key Papers (all in papers/ folder):

- ▶ von Oswald 2022 Gradient descent proof
- ▶ von Oswald 2023 Mesa-optimization
- ► Akyürek 2022 Algorithm identification
- ► Garg 2022 What transformers learn
- ► Hubinger 2019 Mesa terminology

A1: Mechanistic Interpretability Details

Circuit Discovery

Induction Heads:

- ▶ Previous token head + induction head
- ▶ Implements $[A][B] \dots [A] \rightarrow [B]$
- ► Anthropic (2023) web article

Sparse Autoencoders:

- Extract monosemantic features
- ► Reveals superposition
- ► Anthropic (2024) scaling study

Knowledge Circuits:

- ► Early: Query formation
- ► Middle: Knowledge retrieval
- ► Late: Answer formatting

A2: Statistical Learning Theory

Generalization Guarantees

Generalization Theory:

- ► Transformers satisfy PAC-learning bounds
- ► Algorithmic stability provides guarantees
- ► Li et al. 2023 (ICML proceedings)

Rademacher Complexity:

- ► Sequence-length independent bounds
- Explains why models don't overfit to examples
- Classical theory (VC dimension, Rademacher)

Statistical Optimality:

- ► Achieves minimax rates for regression
- ► 2024 paper

A3: Test-Time Training

Explicit Optimization at Inference

Paper: Test-Time Training (2025)

Idea: Gradient updates on context examples during inference

Benefits:

- ► Combines parametric + non-parametric learning
- Better sample complexity
- ► Provable improvements

Connection: Makes mesa-optimization explicit!

A4: Prompt Engineering Theory

Optimal Example Selection

Example Selection Theory:

- Coverage vs similarity tradeoff
- Order matters for performance
- Multiple papers on selection strategies

Order Effects:

- Entropy ordering works best
- ▶ 17-point improvement on compositional tasks
- Survey paper

OPRO (LLMs as Optimizers):

- ► Natural language optimization
- ▶ 50% improvement on reasoning
- ► Yang et al. 2023

A5: Failure Modes

When Few-Shot Doesn't Help

Limitations:

- 1. Context window constraints
 - ightharpoonup Memory: $\Theta(n)$ for n examples
- 2. Task misalignment
 - ► Mesa-objective ≠ your objective
- 3. Distribution shift
 - Examples not representative
- 4. Adversarial examples
 - Can hijack internal optimizer

When it fails:

- ► Novel capabilities not in training
- Contradictory examples
- ► Tasks requiring true reasoning (not pattern matching)

Additional Resources

For Further Reading

Core Papers:

- ► GPT-3 Original few-shot benchmarks
- ► GPT-4 Modern performance
- ► GPT-Fathom Model comparisons

Theory Papers:

- Universal approximation
- ► Turing completeness
- ► Transformers as statisticians

Practical Guides (web):

- ► PromptHub few-shot guide (see papers/*.md)
- ► Analytics Vidhya comparison (see papers/*.md)