Calculus II

Assignment 10

20180717

Stud	dent ID :
	Solve the differential equation. $\frac{dy}{dx} = xe^{-y}$
(Find the solution of the differential equation that satisfies the given initial condition. $\frac{dy}{dx} = \frac{x}{y}, \ y(0) = -3$
	Find an equation of the curve that passes through the point $(0,1)$ and whose slope at (x,y) is xy .
	Solve the differential equation. $y' - y = e^x$
5. 9	Solve the initial value problem.

6. Use Euler's method with step size 0.5 to compute the approximate y-values y_1, y_2, y_3 , and y_4 of the solution of the initial-value problem $y' = y - 2x, \ y(1) = 0.$

Reading materials : Textbook (Calculus 6ed Stewart) Section $10.1 \sim 10.5,$ especially

— Section 10.1, Example 2.

Name: _

- Section 10.2, Example 3.
- Section 10.3, Example 1, 2, 3.

 $t^{3}\frac{dy}{dt} + 3t^{2}y = \cos t, \ y(\pi) = 0$

— Section 10.5, Example 1, 2, 3.

Or alternative Textbook (Calculus Early Transcendentals 6ed Stewart) Section 9.1 \sim 9.5, especially

- Section 9.1, Example 2.
- Section 9.2, Example 3.

- Section 9.3, Example 1, 2, 3.— Section 9.5, Example 1, 2, 3.