This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Verfahren zur Komprimierung und Dekomprimierung von Daten und Vorrichtung

Stand der Technik

5

10

15

20

25

30

35

Die Erfindung geht aus von einem Verfahren zur Komprimierung von Daten nach der Gattung des Hauptanspruchs. Mit dem Run-Length-Encoding-Verfahren (RLE-Verfahren) ist bereits ein Verfahren zur Komprimierung von Daten bekannt, bei dem kein Datenverlust auftritt. Dieses Verfahren wird z.B. bei sogenannten PCX-Dateien verwendet. Gegenstand des Verfahrens ist es, sich wiederholende Datenelemente zusammenzufassen und mit der Anzahl der Wiederholungen zu speichern. Sind die Datenelemente Bytes aus acht Bits, so erfolgt die Komprimierung in der Weise, daß Bytes, die sich nicht wiederholen, bis zu einem Wert von 63 unkomprimiert gespeichert werden, wobei die obersten beiden Bits den Wert 0 besitzen müssen. Bytes mit dem Wert zwischen 64 und 255, sowie Bytes zwischen 0 und 63, die sich wiederholen, werden kodiert in einem Datenelement aus zwei Bytes gespeichert. In dem ersten Byte sind in diesem Fall die obersten beiden Bits eins gesetzt. Die folgenden Bits geben den Wiederholungsfaktor für das zweite Byte an. Bei diesem Verfahren ist es nachteilig, daß sich für einzelne Bytes mit einem Wert zwischen 64 und 255 der Speicherplatzbedarf verdoppelt. In einem ungünstigen Fall kann durch die Komprimierung nach dem RLE-Verfahren somit der benötigte Speicherplatz nach der Komprimierung größer sein als vor der Komprimierung. Ferner ist für eine Datenkomprimierung noch der Lempel-Ziv Algorithmus bekannt, bei dem eine zu komprimierende Datenfolge auf Wiederholungen von Teilfolgen hin untersucht wird, sich wiederholende Elemente in einer

Codetabelle gespeichert werden und eine Ersetzung der

Teilfolgen durch ein zugewiesenes Codezeichen erfolgt. Zur Dekomprimierung muß eine Tabelle unbekannter Größe angelegt werden.

Vorteile der Erfindung

Das erfindungsgemäße Verfahren mit den Merkmalen des Hauptanspruchs hat dem gegenüber den Vorteil, daß die Information, ob ein Datenelement komprimiert oder unkomprimiert abgespeichert ist, in einem weiteren, zusätzlichen Datenelement gespeichert wird. Hierdurch ist es möglich, das erfindungsgemäße Komprimierverfahren für alle Datenelemente unabhängig von ihrem Wert anzuwenden, da in die einzelnen Datenelemente selbst keine zusätzliche Komprimierungsinformation aufgenommen werden muß. Ferner ist es von Vorteil, die Komprimierung von vorhergehenden und nachfolgenden Datenelementen abhängig zu gestalten, da hierdurch eine besonders effektive Komprimierung möglich ist.

20

25

30

35

5

10

15

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich. Besonders vorteilhaft ist es, daß mehrfach aufeinanderfolgende, gleiche Datenelemente gezählt und mit einem Wiederholungsfaktor in der erfindungsgemäßen Weise gespeichert werden. Der Wiederholungsfaktor kann dabei einen Maximalwert des Datenelements annehmen, da die Information, ob das Datenelement komprimiert oder unkomprimiert gespeichert ist, in einem anderen Datenelement gespeichert wird. Ferner ist es vorteilhaft, die komprimierten oder unkomprimierten Datenelemente in einem dafür vorgesehenen Speicherbereich und das Datenelement, in dem gespeichert ist, welche Datenelemente komprimiert oder unkomprimiert abgespeichert sind, in einem weiteren Speicherbereich

- 3 - BEST AVAILABLE COPY

abzulegen, da durch diese Speicherung ein effektiverer Zugriff auf die Datenelemente möglich ist. Ferner ist es von Vorteil, bei Folgen von Datenelementen, die eine vorgebbare Größe überschreiten, eine Speicherung in verschiedenen Datenpaketen vorzunehmen. Hierdurch können auch Grafiken, die sehr viel Speicherplatz benötigen, in Datenpakete zerlegt werden, deren Größe z.B. optimal an die Sektorengröße eines Datenträgers oder die Datenpaketgröße für die Übertragung über eine Schnittstelle oder über das Internet, z.B. per E-mail, angepaßt sind.

Besonders vorteilhaft ist es weiterhin, ein Verfahren zur Dekomprimierung der erfindungsgemäß komprimierten Datenelemente vorzusehen. Das Dekomprimierverfahren hat dabei den Vorteil, daß die in einem ersten Bereich abgelegten Datenelemente Informationen darüber enthalten, welche der in dem zweiten Bereich abgelegten Datenelemente komprimiert oder unkomprimiert abgelegt sind. Gegenüber dem Stand der Technik ist damit eine einfachere Bearbeitung der Daten möglich, da z.B. bei dem RLE-Verfahren für PCX-Dateien eine derartige Trennung nicht möglich ist und die Information, ob ein Datenelement komprimiert oder unkomprimiert abgelegt ist, direkt mit diesem Datenelement gespeichert wird.

25

5

10

15

20

Weiterhin ist es vorteilhaft, eine Dekomprimierung aus mehreren, miteinander verknüpften Datenpaketen vorzunehmen, da auf diese Weise die aus den Datenpaketen gewonnene Datenfolge eine beliebige Größe annehmen kann.

30

35

Es ist ferner vorteilhaft, das genannte Verfahren vorzugsweise zur Komprimierung bzw. Dekomprimierung von Bilddaten zu verwenden. Für eine Dekomprimierung ist es dabei vorteilhaft, eine Vorrichtung vorzusehen, die mit einer Recheneinheit und einer Anzeigevorrichtung verbunden

ist. Durch das schnelle und speicherplatzgünstige Dekomprimierverfahren ist es dabei möglich, die in einer Speichereinheit gespeicherten Informationen, wobei z.B. die Speichereinheit ein Teil der Recheneinheit ist, durch eine Dekomprimiereinheit auszulesen und mit Hilfe der Anzeigevorrichtung darzustellen. Eine besonders vorteilhafte Verwendung ist es dabei, die Dekomprimiervorrichtung für ein frei programmierbares Kombiinstrument in einem Kraftfahrzeug vorzusehen. Denn insbesondere für die Instrumentenanzeige in einem Kraftfahrzeug muß allein schon aus Gründen der Übersichtlichkeit eine grafische Darstellung mit möglichst einfacher Struktur gewählt werden. Durch diese einfache Struktur der anzuzeigenden Bilddaten sind Wiederholungen gleicher Bildelemente und damit auch Wiederholungen gleicher Datenelemente besonders häufig. Das erfindungsgemäße Komprimier- und Dekomprimierverfahren kann daher besonders effizient eingesetzt werden. Hierdurch können sowohl der Speicherplatzbedarf, als auch die dadurch hervorgerufenen Kosten für ein frei programmierbares Kombiinstrument gesenkt werden. Ferner werden für die Speicherung von Bildern in einem frei programmierbaren Kombiinstrument im allgemeinen relativ langsame Speicher verwendet. Bei hochkomprimierten Bildern wirkt sich die Speicherzugriffszeit jedoch deutlich weniger aus, als bei Bildern, die unkomprimiert abgespeichert sind. Komprimierte Bilder können folglich bei hinreichend hoher Rechenleistung bei einem langsamen Speicher schneller angezeigt werden als unkomprimierte Bilder, da für diese ein größerer Speicherbereich erforderlich ist.

30

35

5

10

15

20

25

Weiterhin ist es von Vorteil, daß als Grundelement ein einzelnes Bit gewählt wird, durch das festgelegt wird, ob ein Datenelement komprimiert oder unkomprimiert gespeichert ist. Hierdurch nimmt in der Worst-Case-Betrachtung pro unkomprimiertem Datenelement die Datenmenge nur um ein Bit

zu. Dagegen tritt bei dem im Stand der Technik genannten RLE-Verfahren für PCX-Dateien eine Zunahme der Datenmenge bei unkomprimiert gespeicherten Datenelementen um ein Byte, also um acht Bit, auf. Eine Zwischenspeicherung z.B. in Form einer Codetabelle, wie sie bei dem Lempel-Ziv-Algorithmus erforderlich ist, wird nicht benötigt. Für die Dekomprimierung sind zwei Register ausreichend: Ein erster Register für ein zu dekomprimierendes Datenelement und ein zweiter Register für das Datenelement, in dem abgelegt ist, ob das Datenelement in dem ersten Register komprimiert abgelegt ist. Ein darüber hinausgehender, flüchtiger Speicher ist nicht erforderlich.

15 Zeichnungen

5

10

20

25

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Struktur eines erfindungsgemäßen Datenpakets, Figur 2 eine erfindungsgemäße Ausführung eines Datenpaktes, Figur 3 eine erfindungsgemäße Vorrichtung zur Dekomprimierung mit einer angeschlossenen Anzeigevorrichtung und einer Recheneinheit, Figur 4 einen erfindungsgemäßen Verfahrensablauf zur Komprimierung einer Folge von Datenelementen, Figur 5 einen erfindungsgemäßen Verfahrensablauf zur Dekomprimierung eines Datenpakets.

Beschreibung des Ausführungsbeispiels

In Figur 1 ist ein Datenpaket 10 dargestellt, das in erfindungsgemäßer Weise komprimierte Daten enthält. Die Ausführung des Datenpakets in Figur 1 ist ein Beispiel für die Struktur eines gespeicherten Datenpaketes 10. Das Datenpaket 10 verfügt über einen ersten Bereich 11 und einen zweiten Bereich 12. Der zweite Bereich 12 besteht aus

mindestens einem Wort 13. Dabei besteht ein Wort 13 aus einem ersten Datenelement 14 und einem zweiten Datenelement 24. Für die Darstellung in der Figur 1 wurde ein Wort 13 mit zwei Datenelementen 14 und 24 in dem zweiten Bereich 12 hervorgehoben.

5

10

15

20

25

30

35

In dem Ausführungsbeispiel besteht auch der erste Bereich 11 aus einem Wort mit zwei Datenelementen. Die Datenelemente sind dabei in Grundelemente unterteilbar. In der Figur 1 ist ein Datenelement 20 in eine Vielzahl einzelner Grundelemente 15 aufgegliedert dargestellt. Ein Grundelement 15 ist in der Zeichnung durch eine gestrichelte Umrahmung hervorgehoben. Jedes Grundelement 15 der Datenelemente in dem ersten Bereich 11 ist eindeutig einem Wort 13 in dem zweiten Bereich 12 zugewiesen. In der Figur sind beispielhaft drei Zuweisungen 16, 17 und 18 zwischen Grundelementen im ersten Bereich 11 und Wörtern im zweiten Bereich 12 dargestellt. Anhand des hervorgehobenen Grundelements 15 und des hervorgehobenen Wortes 13 wird die Zuweisung erläutert: Je nach Wert des Grundelements 15 liegt das zugehörige Wort 13 komprimiert oder unkomprimiert vor. Liegt es unkomprimiert vor, so sind die beiden Datenelemente 14, 24 des zugehörigen Wortes 13 unkomprimierte Datenelemente einer ursprünglich zu komprimierenden Folge von Datenelementen. Liegt dagegen das Wort 13 komprimiert vor, so beinhaltet das zugehörige erste Datenelement 14 einen Wiederholungsfaktor dafür, wie oft nun das zweite Datenelement 24 bei einer Dekomprimierung, die eine Wiederherstellung der ursprünglichen Datenfolge zum Ziel hat, wiederholt werden soll.

Die Datenelemente in dem ersten Bereich 11 und dem zweiten Bereich 12 sind vorzugsweise gleichartig und haben die gleiche Größe. Dies ist jedoch nicht notwendigerweise erforderlich. So können z.B. die Datenelemente in dem zweiten Bereich eine anders geartete Aufteilung in

Grundelemente aufweisen, als sie in dem ersten Bereich 11 erfolgt.

5

10

15

20

25

30

35

In Figur 2 ist ein Datenpaket 100 dargestellt, das eine spezielle Realisierung des Datenpakets 10 aus Figur 1 darstellt. Das Datenpaket verfügt über einen ersten Bereich 110 und einen zweiten Bereich 120. Der erste Bereich 110 und der zweite Bereich 120 bestehen jeweils aus gleichartigen Wörtern, die alle wiederum aus jeweils zwei Datenelementen bestehen. Die zu einem Wort gehörenden Datenelemente sind in der Figur nebeneinander angeordnet. Jedes Datenelement besteht wiederum aus acht Bits. Jedes Bit kann entweder einen Wert "0" oder einen Wert "1" annehmen. Der erste Bereich 110 umfaßt in dem Ausführungsbeispiel genau ein Wort. Der zweite Bereich umfaßt 16 Worte, von denen aus Gründen der Übersichtlichkeit nicht alle in der Figur dargestellt sind. Die Bits in dem ersten Bereich 110 sind mit den Bezeichnungen K1 bis K16, die Bits in dem zweiten Bereich sind mit Bezeichnungen zwischen D101 bis D1616 angegeben, falls ihr Wert nicht explizit angegeben ist. Dabei beziehen sich die letzten beiden Stellen der Bezeichnungen D101 bis D1616 auf eine Zuordnung zu einem der Bits Kl bis Kl6. Der Wert dieser Bits kann beliebig entweder "1" oder "0" sein.

Ein erstes Grundelement 111 in dem ersten Bereich 110 mit einem zugehörigen ersten Wort 121 mit einem ersten Datenelement 1211 und einem zweiten Datenelement 1212 in dem zweiten Bereich 120 sind explizit angegeben. Ferner ist ein zweites Grundelement 112 in dem ersten Bereich mit einem zugehörigen zweiten Wort 122 aus dem zweiten Bereich 120 mit einem ersten Datenelement 1221 und einem zweiten Datenelement 1222 explizit angegeben.

Die einzelnen Bits eines Datenelementes, zum Beispiel des zweiten Datenelements 1222 können als einzelne Ziffern einer

Dualzahl interpretiert werden. So läßt sich offenbar jedem Datenelement eine ganze Zahl im Bereich von Null bis 255 zuordnen (255 = 28-1). Dem zweiten Datenelement 1222 läßt sich damit offenbar die Zahl 33 zuordnen. Ferner ist es möglich, zum Beispiel über den ASCII-Code, den ANSI-Code oder einen beliebigen anderen Code dieser Zahl wiederum ein Schrift- oder Bildschirmzeichen zuzuweisen.

In dem gewählten Ausführungsbeispiel hat nun das
Grundelement 111 in dem ersten Bereich 110 den Wert Null. In
dem gewählten Ausführungsbeispiel bedeutet dies, daß das
zugehörige Wort 121 als unkomprimiert aufzufassen ist. Dies
bedeutet, daß die Datenelemente 1211 und 1212 nicht
komprimiert sind. Bei der Wiederherstellung der Datenfolge
im Rahmen einer Dekomprimierung des Datenpaketes 100 wird an
dieser Stelle nun zunächst das Datenelement 1211 mit dem
Wert 1 bzw. 00000001 als Dualzahl der bis zu diesem
Zeitpunkt erstellten Datenfolge zugefügt. Anschließend wird
das Datenelement 1212 mit dem Wert 255 bzw. 11111111 als
Dualzahl der bisher erstellten Datenfolge zugefügt.

Das zweite Grundelement 112 hat in dem gewählten
Ausführungsbeispiel den Wert 1. Deshalb ist das zweite Wort
122 als komprimiert aufzufassen. In diesem Fall gibt das
zweite Datenelement 1222 den Wiederholungsfaktor für das
erste Datenelement 1221 vor. Da dem zweiten Datenelement
1222 der Wert 33 zugewiesen ist, bedeutet dies, daß das
erste Datenelement 1221 bei der Dekomprimierung der Daten 33
Mal an die bis zu diesem Zeitpunkt bereits erstellte
Teilfolge anzuhängen ist. Anschließend wird mit dem mit K6
bezeichneten Grundelement in dem ersten Bereich 110 und dem
zugehörigen, in der Zeichnung nicht dargestellten Wort
weiter verfahren, bis das Datenpaket vollständig bearbeitet
und die ursprüngliche Datenfolge wiederhergestellt ist.

5

10

15

20

25

30

Dabei ist es ebenfalls möglich, das erste Datenelement 1221 als Wiederholungsfaktor für das zweite Datenelement 1222 zu betrachten. Vor einer Komprimierung bzw. Dekomprimierung ist dies eindeutig festzulegen.

5

10

15

20

25

30

35

In der Figur 3 ist eine Vorrichtung zur Dekomprimierung 30, mit der das erfindungsgemäße Verfahren ausführbar ist, in Verbindung mit einer Recheneinheit 31, einem Speicher 34, einem Bildspeicher 32 und einer Anzeigeeinheit 33 dargestellt. Dieses gewählte Ausführungsbeispiel ist vorzugsweise in einem Kraftfahrzeug einsetzbar und dient insbesondere der Anzeige von Betriebsdaten des Fahrzeuges. Über die Recheneinheit 31 werden über nicht eingezeichnete Sensoren und Meßinstrumente zum Beispiel die Motordrehzahl, die Kühlwassertemperatur und/oder die Fahrzeuggeschwindigkeit ermittelt. Die Recheneinheit veranlaßt nun z.B. die Ausgabe eines Anzeigebildes eines Tachometers, das der von den Sensoren ermittelten Fahrzeuggeschwindigkeit entspricht. Die Ausgabe erfolgt dabei in der Weise, daß die Einheit zur Dekomprimierung 30 von der Recheneinheit 31 die Anweisung erhält, aus dem Speicher 34 das entsprechende Bild zu dekomprimieren und in den Bildspeicher 32 abzulegen. Der Bildspeicher 32 wird in vorgegebenen Zeitintervallen von der Anzeigeeinheit 33 abgefragt, wobei die in dem Bildspeicher 32 abgelegten Bilddaten in der Anzeigeeinheit 33 zur Anzeige kommen. Die Anzeige 33 ist dabei vorzugsweise eine Flüssigkristallanzeige, kann aber auch ein CRT (Cathod Ray Tube) oder ein FED (Field Emission Display) sein. Während der Bildspeicher 32 vorzugsweise ein flüchtiger Speicher ist, ist der Speicher 34 ein nichtflüchtiger Speicher, so zum Beispiel ein Halbleiterbaustein mit fest gespeicherten Daten bzw. ein magnetischer und/oder optischer Datenträger. Die Vorrichtung zur Dekomprimierung 30 ist vorzugsweise als ein Halbleiterbaustein oder als ein Teil eines

Halbleiterbausteins mit einem fest eingespeicherten Programm ausgeführt. Die Ausführung kann sowohl als ein Mikrokontroller als auch ein Mikroprozessor erfolgen.

5

10

15

20

25

30

35

In der Figur 4 ist ein erfindungsgemäßes Verfahren für ein Komprimieren der Daten aus einer Datenfolge dargestellt. In einem ersten Schritt 60 wird das Verfahren initialisiert und die Datenfolge für die Bearbeitung übergeben. Die Datenfolge liegt dabei in einer Form vor, bei der eine eindeutige Reihenfolge der Datenelemente vorgegeben ist. In einem anschließenden zweiten Verfahrensschritt 61 wird ein neuer, erster Bereich eines Datenpaketes initialisiert. Ferner wird als ein aktuelles Datenelement ein erstes Datenelement der Datenfolge festgelegt. Außerdem wird ein erstes Grundelement in dem ersten Bereich des neuen Datenpaketes als aktuelles Grundelement festgelegt. In einem nachfolgenden, ersten Entscheidungsschritt 62 wird überprüft, ob das Ende der Datenfolge erreicht ist. Ist das Ende der Datenfolge erreicht, so wird der mit einem y bezeichnete Verfahrenszweig mit einem Verfahrensschritt 63 weiterverfolgt. In dem Verfahrensschritt 63 wird den noch keinem Wert zugewiesenen Grundelementen in dem ersten Bereich der Wert 1 zugewiesen. In dem nachfolgenden Verfahrensschritt 64 wird den diesen Grundelementen zugehörigen Wörtern in dem ersten Datenelement, in dem der Wiederholungsfaktor für das zweite Datenelement gespeichert ist, der Wert Null und dem zweiten Datenelement der Wert 255 zugewiesen. In einem Abschlußschritt 65 wird das Verfahren beendet und das nunmehr erstellte Datenpaket 10 wird gespeichert. Die Zuweisung in dem Verfahrensschritt 64 ist derartig gewählt, daß die entsprechenden Datenelemente als komprimiert abgelegt gekennzeichnet werden und somit das Datenelement, das dem Wert 255 entspricht, Null Mal wiederholt wird. Bei der Dekomprimierung kann an dieser Stelle geprüft werden, ob das Datenpaket korrekt mit dieser

Speicherung abgeschlossen wurde, oder ob möglicherweise eine Beschädigung der Datei vorliegt. Anstelle des Wertes 255 kann auch ein beliebiger Wert für das zweite Datenelement gewählt werden, da dieses Datenelement bei der Dekomprimierung der Datenfolge nicht erscheint. So kann zum Beispiel in dem letzten Wort des letzten Datenpaketes einer komprimierten Datenfolge an dieser Stelle die Gesamtzahl der Datenpakete gespeichert sein, die das Bild ausmacht.

5

10

15

20

25

30

Ist in dem ersten Entscheidungsschritt 62 noch nicht das Ende der Datenfolge erreicht, so wird der mit n bezeichnete Verfahrenszweig weiterverfolgt. In einem nachfolgenden Verfahrensschritt 66 wird nun einem Kompressionszähler der Wert 1 zugewiesen. Der Kompressionszähler dient dazu, die Zahl zu erfassen, wie oft ein Element in der Datenfolge hintereinander wiederholt wird. In einem anschließenden, zweiten Entscheidungsschritt 67 wird überprüft, ob das aktuelle Datenelement gleich einem nächsten Datenelement in der Datenfolge ist. Ist dies der Fall, so wird in den Verfahrenszweig, der mit y bezeichnet ist, zu einem anschließenden, dritten Entscheidungsschritt 68 verzweigt. In dem dritten Entscheidungsschritt 68 wird überprüft, ob der Kompressionszähler kleiner als 255 ist. Ist dies der Fall, so wird der mit y bezeichnete Verfahrenszweig weiterverfolgt und in einem anschließenden, vierten Entscheidungsschritt 69 wird überprüft, ob das übernächste Datenelement in der Datenfolge das letzte Datenelement der Datenfolge ist. Ist dies nicht der Fall, so von dem vierten Entscheidungsschritt 69 aus in den mit n bezeichneten Verfahrenszweig mit einem Verfahrensschritt 70 übergegangen. In dem Verfahrensschritt 70 wird der Kompressionszähler um 1 erhöht. Ferner wird in einem anschließenden Verfahrensschritt 71 das nächste Datenelement der Datenfolge als aktuelles Datenelement festgelegt. Danach wird das

Verfahren mit dem zweiten Entscheidungsschritt 67 weitergeführt.

5

10

15

20

25

30

Ist in dem zweiten Entscheidungsschritt 67 das auf das aktuelle Datenelement in der Datenfolge folgende nächste Datenelement ungleich dem aktuellen Datenelement oder hat in dem dritten Entscheidungsschritt 68 der Kompressionszähler einen Wert von größer als 255, so wird das Verfahren mit einem fünften Entscheidungsschritt 72 fortgeführt. In dem fünften Entscheidungsschritt 72 wird überprüft, ob der Kompressionszähler einen Wert größer 1 hat. Ist dies der Fall, so wird in einem Verfahrensschritt 73 das aktuelle Grundelement in dem ersten Bereich des Datenpaketes mit dem Wert 1 belegt. In einem anschließenden Verfahrensschritt 74 wird in dem zu dem Grundelement gehörenden Wort in dem zweiten Bereich des Datenpaketes der Wert des Kompressionszählers in dem ersten Datenelement sowie in dem zweiten Datenelement des zugehörigen Wortes das aktuelle Datenelement aus der Datenfolge gespeichert. Danach wird zu einem sechsten Entscheidungsschritt 78 verzweigt. Hat der Kompressionszähler keinen Wert größer 1, so wird von dem fünften Entscheidungsschritt 72 das aktuelle Grundelement in einem Verfahrensschritt 75 mit dem Wert 0 gespeichert. In einem nächsten Verfahrensschritt 76 wird das aktuelle Datenelement der Datenfolge in dem ersten Datenelement des zu dem in dem Verfahrensschritt 75 gespeicherten Grundelementes gehörenden Wortes gespeichert. Das nächste Datenelement der Datenfolge wird in dem zweiten Datenelement des gleichen Wortes gespeichert. In einem anschließenden Verfahrensschritt 77 wird als aktuelles Datenelement das übernächste Datenelement gewählt. Anschließend wird ebenfalls zu dem sechsten Entscheidungsschritt 78 weiterverzweigt.

5

10

15

20

25

BEST AVAILABLE COPY

Der sechste Entscheidungsschritt 78 wird ebenfalls erreicht, wenn in dem vierten Entscheidungsschritt 69 festgestellt wird, daß das übernächste Datenelement ausgehend von dem aktuellen Datenelement das letzte in der Datenfolge ist. Vor Erreichen des Entscheidungsschritts 78 wird in diesem Fall ausgehend von dem vierten Entscheidungsschritt 69 zunächst in einem Verfahrensschritt 81 das aktuelle Grundelement in dem ersten Bereich des Datenpaketes auf den Wert 1 gesetzt. In einem an diesen Verfahrensschritt 81 anschließenden Verfahrensschritt 82 wird vor Erreichen des sechsten Entscheidungsschritts 78 in dem dazugehörigen Wort in dem ersten Datenelement der Wert 1 und in dem zweiten Datenelemente das zur Speicherung anstehende Datenelement der Datenfolge abgelegt. Anschließend wird ebenfalls zu dem sechsten Entscheidungsschritt 78 verzweigt, in dem überprüft wird, ob das Datenpaket nun vollständig gefüllt ist. Ist dies nicht der Fall, so wird der Verfahrenszweig n gewählt und es wird zu einem Verfahrensschritt 79 verzweigt, in dem als aktuelles Grundelement in dem ersten Bereich des Datenpaketes das nächste, auf das aktuelle Grundelement folgende Grundelement festgelegt. Anschließend wird zu dem Verfahrensschritt 66 verzweigt. Wird dagegen in dem sechsten Entscheidungsschritt 78 festgestellt, daß das Datenpaket vollständig gefüllt ist, wird der Verfahrenszweig y verfolgt und in einem Verfahrensschritt 80 wird das gesamte Datenpaket gespeichert. Anschließend wird zu dem Verfahrensschritt 61 verzweigt und ein nächstes Datenpaket gefüllt.

In der Figur 5 ist ein erfindungsgemäßes Verfahren zum Dekomprimieren eines Datenpaketes dargestellt. In einem ersten Verfahrensschritt 40 wird das Verfahren initialisiert und ein Datenpaket wird übergeben. In einem anschließenden, zweiten Verfahrensschritt 41 wird der erste Bereich des Datenpaketes in einem Speicher der Dekomprimiereinheit

5

1.0

15

20

25

30

35

BEST AVAILABLE COPY

kopiert bzw. es wird ein Verweis auf den ersten Bereich des Datenpaketes erstellt, das in dem Speicher 34 abgelegt ist. Ferner wird ein Indexzähler auf Null gesetzt. Jedem Wert des Indexzählers, der größer null ist, ist ein Datenelement in dem ersten Bereich des Datenpaketes zugeordnet. Das Grundelement, das dem jeweils vorliegenden Wert des Indexzählers entspricht, ist das jeweils aktuelle Datenelement. In einem nachfolgenden dritten Verfahrensschritt 42 wird der Indexzähler um 1 erhöht. In einem anschließenden Verfahrensschritt 43 wird das zu dem aktuellen Wert des Indexzählers gehörende Grundelement aus dem ersten Bereich des Datenpaketes sowie das zugehörige Wort, also die zwei Datenelemente des Wortes, in den Speicher kopiert, falls ein solches Grundelement bzw. Wort existiert, wobei der Speicher vorteilhafterweise der Dekomprimiervorrichtung 30 zugeordnet ist. In einem nachfolgenden ersten Entscheidungsschritt 44 wird überprüft, ob der Indexzähler die Maximalzahl an Grundelementen pro Datenelement überschritten hat. Ist dies der Fall, so wird in den mit y bezeichneten Verfahrenszweig zu einem zweiten Entscheidungsschritt 50 verzweigt. Hier wird überprüft, ob weitere Datenpakete vorhanden sind. Dies kann zum Beispiel durch einen an jedes Datenpaket angehängten Verweis auf ein folgendes Datenpaket für den Fall, daß ein solches Datenpaket vorhanden ist. Für den Fall, daß kein solches Datenpaket vorhanden ist, ist auch ein Verweis auf ein leeres Datenpaket möglich. Ist ein weiteres Datenpaket vorhanden, so wird zu dem zweiten Verfahrensschritt 41 zurückverzweigt (Verfahrenszweig y von dem zweiten Entscheidungsschritt 50 aus). Ist kein weiteres Datenpaket vorhanden, so wird von dem zweiten Entscheidungsschritt 50 aus in den mit n bezeichneten Verfahrenszweig zu einem Abschlußschritt 51 weiterverzweigt. Die Datenfolge ist somit komplett dekomprimiert und liegt in einem Zwischenspeicher vor. Stellt die Datenfolge ein komprimiertes Bild dar, so

ist dieser Zwischenspeicher der Bildspeicher 32 der Anzeigeeinheit 33.

Wird in dem ersten Entscheidungsschritt 44 festgestellt, daß 5 der Indexzähler die Maximalzahl an Grundelementen noch nicht überschritten hat, so wird von dort der mit n bezeichnete Verfahrenszweig zu einem dritten Entscheidungsschritt 45 weiterverfolgt. In diesem dritten Entscheidungsschritt 45 wird überprüft, welchen Wert das aktuelle Grundelement besitzt. Für den Fall, daß es den Wert Null hat, wird in den 10 mit n bezeichneten Verfahrenszweig zu einem Verfahrensschritt 46 weiterverzweigt. In diesem Verfahrensschritt 46 wird das erste Datenelement des zu dem aktuellen Grundelement gehörenden Wortes als ein Element der 15 ursprünglich komprimierten Folge aufgefaßt und einer bis zu diesem Zeitpunkt dekomprimierten Teilfolge hinzugefügt. Beziehen sich die Datenelemente auf Bilddaten, so wird damit das erste Datenelement des zu dem Grundelement gehörenden Wortes in den Bildspeicher 32 der Anzeigeeinheit kopiert. Im 20 Anschluß daran wird in einem Verfahrensschritt 47 eine Zuweisungsadresse für den Bildspeicher erhöht, so daß nachfolgende Datenelemente an einer nachfolgenden Stelle in den Bildspeicher eingeschrieben werden. In einem anschließenden Verfahrensschritt 48 wird das zweite 25 Datenelement des zu dem aktuellen Grundelement gehörenden Wortes in den Bildspeicher kopiert. Im Anschluß wird in einem Verfahrensschritt 49 ebenfalls wieder die Zuweisungsadresse für den Bildspeicher 32 erhöht. Im Anschluß daran wird das Verfahren mit dem zweiten 30 Verfahrensschritt 42 fortgeführt. Wird in dem dritten Entscheidungsschritt 45 festgestellt, daß das aktuelle Grundelement den Wert 1 aufweist, so wird in den mit y bezeichneten Verfahrenszweig zu einem Verfahrensschritt 52 verzweigt. In diesem Verfahrensschritt 52 wird einer 35 Zählvariablen der Wert des ersten Datenelementes des zu dem

aktuellen Grundelement gehörenden Wortes zugewiesen. In einem anschließenden vierten Entscheidungsschritt 53 wird überprüft, ob die Zählvariable den Wert Null aufweist. Weist die Zählvariable den Wert Null auf, so wird der mit y bezeichnete Verfahrenszweig weiterverfolgt und es wird ebenso wie nach dem Verfahrensschritt 49 das Verfahren mit dem dritten Verfahrensschritt 42 fortgeführt. Hat die Zählvariable einen Wert ungleich Null, so wird von dem vierten Entscheidungsschritt 53 der mit n bezeichnete Verfahrenszweig fortgeführt. In einem Verfahrensschritt 54 wird das zweite Datenelement des zu dem Grundelement gehörenden Wortes in den Bildspeicher kopiert. In einem anschließenden Verfahrensschritt 55 wird die Zuweisungsadresse des Bildspeichers 32 erhöht. In einem weiteren Verfahrensschritt 56 wird die Zählvariable um 1 erniedrigt. Danach wird das Verfahren mit dem vierten Entscheidungsschritt 53 fortgeführt.

5

10

15

5

10

15

20

25

Ansprüche

- 1. Verfahren zur Komprimierung einer Folge von
 Datenelementen, insbesondere von Bilddaten, wobei die
 Datenelemente in Abhängigkeit von der Korrelation mit in der
 Folge der Datenelemente vorhergehenden und nachfolgenden
 Datenelementen komprimiert oder unkomprimiert abgelegt
 werden, wobei mindestens ein weiteres Datenelement
 vorgesehen ist, in dem gespeichert wird, welche der
 gespeicherten Datenelemente komprimiert oder unkomprimiert
 abgespeichert werden.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Folge von Datenelementen in einer vorgebbaren Reihenfolge abgearbeitet wird, indem aufeinanderfolgende Elemente daraufhin überprüft werden, ob sie gleich sind.
 - 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Kompression der Datenelemente dadurch erfolgt, daß Datenelemente, die mehrfach aufeinanderfolgen, gezählt und mit einem Wiederholungsfaktor gespeichert werden.
- Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, daß die zumindest teilweise komprimierte Folge von Daten in mindestens einem Speicher (34) abgelegt wird.

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Datenelement, in dem gespeichert ist, welche Datenelemente komprimiert oder unkomprimiert abgespeichert sind, in einem ersten Speicherbereich (11, 110) abgelegt wird und daß die komprimierten oder unkomprimierten Datenelemente in einem zweiten Speicherbereich (12, 120) abgelegt werden.
- 6. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, daß bei Folgen von Datenelementen,
 die eine vorgebbare Anzahl von Datenelementen überschreiten,
 die Folge in mehreren Datenpaketen (10, 100) gespeichert
 wird, wobei jedes Datenpaket aus mindestens zwei
 Datenelementen besteht.

15

20

5

7. Verfahren zur Dekomprimierung einer Folge von
Datenelementen, insbesondere von Bilddaten, aus einem
Datenpaket (10, 100), das aus Datenelementen in einem ersten
(11, 110) und einem zweiten Bereich (12, 120) des
Datenpakets besteht, wobei die Folge von Datenelementen in
Abhängigkeit von den in dem ersten Bereich abgelegten
Datenelementen aus den in dem zweiten Bereich abgelegten
Datenelemente ohne oder mit einer Dekomprimierung erstellt
wird.

25

30

8. Verfahren zur Dekomprimierung nach Anspruch 7, dadurch gekennzeichnet, daß die Datenelemente in dem ersten Bereich aus Grundelementen (15) bestehen und die Daten- und Grundelemente in einer vorgegebenen Reihenfolge abgearbeitet werden, indem jedes Grundelement der in dem ersten Bereich gespeicherten Datenelemente jeweils zwei in dem zweiten Bereich gespeicherten Datenelementen zugewiesen wird (16,

17, 18), und falls ein Grundelement einen ersten Wert aufweist, keine Dekomprimierung der Datenelemente erfolgt, und falls das Grundelement einen zweiten Wert aufweist eine Dekomprimierung erfolgt.

5

10

15

20

- 9. Verfahren zur Dekomprimierung nach einem der Ansprüche 7-8, dadurch gekennzeichnet, daß in Abhängigkeit von dem in dem zweiten Bereich des Datenpakets (10, 100) vorliegenden Datenelementen und des nach der vorgegebenen Reihenfolge ersten, zu bearbeitenden Grundelements einer vorgegebenen Teilfolge, insbesondere einer leeren Teilfolge, Datenelemente hinzugefügt werden, und daß die somit erzeugte Teilfolge bei jedem weiteren, zu bearbeitenden Grundelement in Abhängigkeit von den in dem zweiten Bereich des Datenpakets vorliegenden Datenelementen erweitert wird, bis ein Abbruchkriterium erfüllt ist.
- 10. Verfahren zur Dekomprimierung nach Anspruch 9, dadurch gekennzeichnet, daß für den Fall, daß keine Dekomprimierung erfolgt, Datenelemente unverändert an die Teilfolge angefügt werden.
- 11. Verfahren zur Dekomprimierung nach einem der Ansprüche
 9-10, dadurch gekennzeichnet, daß eine Dekomprimierung

 derart erfolgt, daß ein erstes, vorgegebenes, dem

 Grundelement zugewiesenen Datenelement als ein

 Wiederholungsfaktor für ein zweites, vorgegebenes, dem

 Grundelement zugewiesenes Datenelement erfaßt und das zweite

 Datenelement entsprechend dem Wiederholungsfaktor an die

 Teilfolge angefügt wird.

12. Verfahren zur Dekomprimierung nach einem der Ansprüche 7-11, dadurch gekennzeichnet, daß eine Dekomprimierung einer Datenfolge aus mehreren, miteinander verknüpften und/oder aufeinanderfolgenden Datenpaketen erfolgt.

5

13. Vorrichtung zur Dekomprimierung nach einem der vorhergehenden Verfahrensansprüche 7-12, dadurch gekennzeichnet, daß die Vorrichtung mit einer Recheneinheit (31) und einer Anzeigevorrichtung (33) verbunden ist, und daß in Abhängigkeit von von der Recheneinheit (31) übermittelter Informationen zumindest teilweise komprimierte Folgen von Datenelementen dekomprimiert und die somit erzeugten Bilddaten an die Anzeigevorrichtung (33), vorzugsweise über einen Bildspeicher (32), übermittelbar sind

15

10

14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Vorrichtung zur Dekomprimierung Teil eines frei programmierbaren Kombiinstuments ist.

20

5

Zusammenfassung

Datenelementen und zu deren Dekomprimierung einer Folge von
das zur verlustfreien und speicherplatzsparenden
Komprimierung dient. Dabei werden die Datenelemente in
Abhängigkeit von der Korrelation mit in der Folge der
Datenelemente vorhergehenden und nachfolgenden
Datenelementen komprimiert oder unkomprimiert abgelegt.
Insbesondere wird das Verfahren für die Anzeige in einem
frei programmierbaren Kombiinstrument in einem Kraftfahrzeug
verwendet. Die zu komprimierenden Daten sind dabei
insbesondere Bilddaten.

Fig.3

