On substitution of commercial FE codes with an in-house solution for real-world problems:
A short review on the competition between ease-of-use and speed

Outline

Introduction & Motivation

User intervention of ABAQUS vs. in-house FE code 4C

Performance comparison ABAQUS vs. in-house FE code 4C

Further development of in-house FE code 4C

Conclusion

Introduction

Helmholtz Association (18 centers)

Helmholtz-Zentrum Hereon (15 Institutes, 1100 employees)

Hamburg

Branch of Hereon's Institutes of Metallic Biomaterials and Materials Physics at DESY

Hamburg

Climate Service Center Germany 6 (GERICS)

Main Location Seesthacht

Hereon Institutes of

- Carbon Cycles
- Coastal Environmental Chemistry
- Coastal Ocean Dynamics
- Coastal System Analysis and Modeling
- Hydrogen Technology
- Material and Process Design
- Materials Mechanics
- · Matarials Physic
- Material Systems Modeling
 Marghrane Research
- Metallic Biomaterials
- Photoelectrochemistry
- Surface Science

Kiel

Branch of Hereon's Institute of Metallic Biomaterialsat MOIN CC at UKSH

Berlin

Branch of Hereon's Institute of Active Polymers at BCRT

Teltow Site

Hereon Institute of Active Polymers

Garching bei München

Branch of Hereon's Institute of Materials Physics at FRM II

Motivation

Composite (targets on high stiffness, hardness, and strength) based on

- ceramic nanoparticles with very high volume content (>50%) in a crystalline arrangement
- surrounded by thin organic layer
- particle diameter ~20 nm
- organic layer thickness ~ 2 nm

Real material (scanning electron microscope)

FE model (geometry)

Simulation of a microstructural cell: FE models

	# Nodes	# Elements			Material 2 (organic layer)	
Small model (650k)	216,768	1,161,671 (tet4)	650,304	E = 163000 MPa	E = 13000 MPa	
Large model (17M)	5,851,079	4,215,573 (tet10)	17,553,237	v = 0.3	v = 0.48	

Transition phase from commercial FE solver to inhouse code 4C at Hereon

- Long-term experience with ABAQUS and UMAT (User Subroutines) implementations for material modeling
- Transition phase started towards in-house FE solver 4C
- Challenges/opportunities with in-house code (based on Trilinos solvers)
 - Just little knowledge about mathematical background of linear solvers of many co-workers (so far focus on material modeling)
 - How to use full potential of available linear solvers?
 - How to obtain good solver parameters for fast convergence?

Commerical code: ABAQUS

- Documentation of ABAQUS internal details sparse
 - Iterative linear solver using preconditioned Krylov method (CG)
 - Preconditioner is calculated only once at the beginning of each linear system solve ("PAMG")
 - Hybrid MPI & thread-based parallelization
- User intervention very limited: available options are
 - Relative tolerance of convergence (default 10⁻⁶)
 - Maximum number of linear solver iterations (default 500)

Usage of Trilinos within our in-house code 4C

In-house code 4C Solver options: GMRES, ILU

SOLVER Aztec MSR

AZSOLVE GMRES

AZTOL 1.0E-6

AZCONV AZ_r0

AZITER 500

AZSUB 50

AZPREC ILU

IFPACKGFILL 2

In-house code 4C Solver options: GMRES, AMG using Chebychev smoother

SOLVER	Aztec_MSR	ML AGG SIZE	27
AZCONV	AZ_r0	ML COARSEN	UC
AZITER	500	ML DAMPCOARSE	1
AZOMEGA	0	ML DAMPFINE	0.59
AZPOLY	5	ML DAMPMED	0.69
AZPREC	ML	ML MAXCOARSESIZE	1000
AZREUSE	5	ML MAXLEVEL	5
AZSOLVE	GMRES	ML PROLONG SMO	1.33
AZSUB	50	ML PROLONG THRES	0
AZTOL	1e-06	ML SMOOTHERCOARSE	KLU
		ML SMOOTHERFINE	CHEBYCHEV
		ML SMOOTHERMED	CHEBYCHEV
		ML_SMOTIMES	9 9 9 9 1

In-house code 4C Solver options: GMRES, AMG using SGS smoother

SOLVER	Aztec_MSR	ML AGG SIZE	27
AZCONV	AZ_r0	ML COARSEN	UC
AZITER	500	ML DAMPCOARSE	1
AZOMEGA	0	ML DAMPFINE	0.59
AZPOLY	5	ML DAMPMED	0.69
AZPREC	ML	ML MAXCOARSESIZE	1000
AZREUSE	5	ML MAXLEVEL	5
AZSOLVE	GMRES	ML PROLONG SMO	1.33
AZSUB	50	ML PROLONG THRES	0
AZTOL	1e-06	ML SMOOTHERCOARSE	KLU
		ML SMOOTHERFINE	SGS
		ML SMOOTHERMED	SGS
		ML_SMOTIMES	3 3 3 3 1

Wall clock timings in sec microstructural cell (small model 650k)

# CPUs	8	16	32	64	128
ABAQUS, direct, MPI	42 (1)	37 (1)	34 (1)	53 (1)	
ABAQUS, iterative, MPI	65 (2)	64 (2)	13 (2)	11 (2)	
4C, direct, MPI			1440	761	
4C, GMRES, ILU	33.2 (1)	20.1 (1)	13.1 (1)	8.3 (1)	10.4 (1)
4C, GMRES, AMG (Cheb.)	24.5 (1)	16.8 (1)	12.6 (1)	9.9 (1)	8.0 (1)
4C, GMRES, AMG (SGS)	16.3 (2)	18.0 (7)	28.0 (12)	4.6 (2)	2.0 (1)

In parentheses: number of Newton iterations necessary

Wall clock timings in sec microstructural cell (large model 17M)

# CPUs	32	64	128
ABAQUS, iterative, MPI	227 (2)	212 (2)	220 (2)
4C, GMRES, ILU	1417 (1)	706 (1)	331 (1)
4C, GMRES, AMG (Cheb.)	918 (1)	229 (2)	266 (1)
4C, GMRES, AMG (SGS)	*	71 (1)	336 (6)

In parentheses: number of Newton iterations necessary

ABAQUS' direct solver needs exhaustive time for such a large model (> 1 hour)

^{*}Some solver iterations did not converge, simulation aborted after >1 hour...

Possible extension of Trilinos usage in our in-house code 4C

Conclusion

- Transition from commercial FE solver to (Trilinos based) in-house FE solver leads to challenges in prescribing additional parameters especially for linear solver
- Choosing good parameters necessary to achieve at least same level of performance compared to commercial FE solver
- Extension of Trilinos usage in our in-house FE solver under consideration

