

Stacked-target Charged Particle Excitation Functions

Low(er) Energy – LBNL

- Emerging medical radionuclides
 - 51 Mn (t_{1/2} = 46 min, 97% β⁺) shortlived PET tracer for metabolic studies
 - Best option for clinical imaging, needs in-house production
 - 52g Mn (t_{1/2} = 5.6 d, 29% β⁺) longlived PET tracer for neuron tracking, immune studies
 - Long half-life, unfavorable gammas make this best-suited to pre-clinical imaging
 - Easy distribution
 - 52mMn short-lived PET tracer for metabolic studies
 - Difficult to produce, must be done in-house
 - Interesting lens to study behavior of excited states in p_{3/2} / f_{7/2} nuclei

	^{52g} Mn	^{52m} Mn	⁵¹ Mn
Half Life	5.6 d	21 m	46 m
β+ Branch	29%	97%	97%
β+ Avg. Energy	242 keV	1172 keV	973 keV
Gammas	744, 935, 1434,	1434	749

5.591 D

0.0

52Mn₂₇

377.7 21.1 M 8:98.25 % 5, IT: 1.75 % 5

377.7

Stacked-target Charged Particle Excitation Functions

^{nat}Fe(p,x)^{51,52}Mn – Novel PET imaging

^{nat}Fe(p,x)^{51,52}Mn – Novel PET imaging

- 55 MeV: +5.25% Al density
- 25 MeV: +6.69% silicone density

natFe(p,x)51,52Mn - Novel PET imaging

Measurements of 34 crosssections for natFe(p,x), natCu(p,x), and natCu(p,x)

7

^{nat}Fe(p,x)^{51,52}Mn – Novel PET imaging

As Targetry Fabrication

Attempt 1 = Fail

Too much distance Too much As₂O₃ in old stock Adhesive breaks down above 400°C

Result was films of As₂O₃ on receiver and intermediate on sight glass. However near source was nice film of pure As

Success!!! (as of 4:54 AM...)

Back to Berkeley...

- Two deposition methods on 10um titanium foil:
 - As_2O_3 (12.5 g/L) in 7M HCl, @ 130 mA
 - As₂O₃ (0.2M) in 1:2 molar choline chloride : ethylene glycol deep eutectic solvent, @ 46 mA

Teflon anode guide

Platinum rod anode

Plating solution, in glass tube

Teflon o-ring

Backing foil

Brass cathode

Stainless base

+ support

 t_0

~6 mg/cm² 2.5 h @ 130 mA

~0.5 mg/cm² 15 m @ 30 mA

Next steps

- Characterization of all As targets
- Continue fabricating electroplated As targets
 - Pending new WPC approval
 - Need relevant group members to take some more training
- Start development of pressed-powder As targets
 - As, As₂O₃, Cu₃As, FeAs, Zn₃As₂...

