EDL

Equations Differentielles Lineaires du premier ordre

MPSI 2

1 Generalites

Définition 1.0.1

Soit I un intervalle reel.

Soient a, b et c trois fonctions definies sur I a valeurs reelles ou complexes.

On suppose a b et c continues sur I

On appelle equation differentielle lineaire du premier ordre une relation du type:

$$\forall x \in I, \ a(x) y'(x) + b(x) y(x) = c(x)$$

Définition 1.0.2

- c est le second membre de l'equation differentielle.
- $\forall x \in I$, a(x)y'(x) + b(x)y(x) = 0 est le second membre de l'equation.

Définition 1.0.3

Soit J un sous-intervalle de I.

On appelle solution de l'equation differentielle toute application Φ telle que:

$$\Phi \colon J \longrightarrow \mathbb{K}$$

$$x \longmapsto \Phi(x)$$

Telle que :

- \bullet Φ soit derivable sur J
- $\forall x \in J$, $a(x)\Phi'(x) + b(x)\Phi(x) = c(x)$

Remarque: l'ensemble S_0 des solutions de l'EDHA sur I est stable par combinaison lineaire et non vide (y=0 est solution)

On dit alors que S_0 a une structure d'espace vectoriel

2 Etude de l'equation $\forall x \in I, \ y'(x) + \alpha y(x) = 0$

Pour α continue sur I.

Propriété 2.0.1

L'ensemble S_0 des solutions de l'ED $\forall x \in I, y'(x) + \alpha y(x) = 0$ est:

$$\mathcal{S}_0 = \{\lambda \times g, \ \lambda \in \mathbb{R}\}$$

avec $g(x) = exp\left(\int_{x_0}^x A(x)\right)$ et A(x) une primitive de α sur I

On etudie l'expression $y'(x) = -\alpha y(x)$, et on cherche une primitive de $-\alpha$. L'exponentielle de cette primitive est solution de l'expression (g(x)).

On cherche une fonction u telle que y = u g soit solution de l'expression precedente. Par calcul, on trouve: $\forall x \in I, \ u'(x) = 0$, donc u est constante sur I.

Ainsi, toutes les solutions de l'expression sont de la forme de la propriete.

Remarques:

- S_0 est un espace vectoriel sur \mathbb{K} de dimention 1, dont une base est donnee par g. On parle de droite affine.
- Il est possible de caracteriser la faction exponentielle par l'unique solution du systeme $\begin{cases} \forall x \in \mathbb{R}, \ y'(x) = y(x) \\ y(0) = 1 \end{cases}$
- Si y est solution de l'ED, de deux choses l'une:
 - -y est l'application nulle sur I.
 - -y ne s'annule jamais sur I

3 Cas general: $\forall x \in I, \ a(x)y'(x) + b(x)y(x) = c(x)$

3.1 Resolution de l'EDHA

a est continue sur I. Soit J un intervalle ou a ne s'annule pas. Alors:

$$\forall x \in J, \ q(x) y'(x) + b(x) y(x) = 0$$
$$\iff \forall x \in J, \ y'(x) + \frac{b(x)}{a(x)} y(x) = 0$$

D'apres la propriete precedente, l'ensemble des solutions est un espace vectriel de dimention 1.

Pour $x_0 \in J$, on note Z_0 l'application dfinie sur J par:

$$\forall x \in J, \ Z_0(x) = -exp\left(\int_{x_0}^x \frac{b(t)}{a(t)} dt\right)$$

 Z_0 est une solution de l'EDHA

3.2 Resolution de l'ED

Soit y_0 une solution particuliere de l'ED. Donc y_0 est derivable sur J et: $\forall x \in J, \ a(x) y_0'(x) + b(x) y_0(x) = c(x)$

y est solution de l'ED

$$\iff \forall x \in J, \ a(x) y'(x) + b(x) y(x) = c(x)$$

$$\iff \forall x \in J, \ a(x) \, y'(x) + b(x) \, y(x) = a(x) \, y'_0(x) + b(x) \, y_0(x)$$

$$\iff \forall x \in J, \ a(x)(y - y_0)(x) + b(x)(y - y_0)(x) = 0$$

$$\iff$$
 $(y - y_0)$ est solution de l'EDHA

$$\iff \exists \lambda \in \mathbb{K}, \ \forall x \in J, \ (y - y_0)(x) = \lambda Z_0(x)$$

$$\iff \exists \lambda \in \mathbb{K}, \ \forall x \in J, \ y(x) = y_0 + \lambda Z_0$$

On a demontre:

Propriété 3.2.1

• l'ensemble des solutions de l'ED a(x) y'(x) + b(x) y(x) = c(x) est : $S_J = \{y_0 + \lambda Z_0, \ \lambda \in \mathbb{K}\}$ avec $Z_0: J \longrightarrow \mathbb{K}$

$$x \longmapsto -exp\left(-\int_{x_0}^x \frac{b(t)}{a(t)} dt\right)$$

et y₀ solution particulière de l'ED

ullet \mathcal{S}_Jest un espace affine d'espace vectoriel sous-jacent l'ensemble des solutions de l'EDHA.

c'est un espace vectoriel de dimension 1, on parle de droite affine.

3.3 Determination d'une solution particuliere

Il existe deux fonctions y et u derivables sur J telles que:

$$\forall x \in J, \ y(x) = u(x) Z_0(x)$$

y est solution de l'ED
$$\iff \forall x \in J, \ u'(x) = \frac{c(x)}{a(x) Z_0(x)}$$

y est solution de l'ED $\iff \forall x \in J, \ u'(x) = \frac{c(x)}{a(x) Z_0(x)}$ On choisit une primitive u_0 de u' et $y_0 = u_0 Z_0$, les solutions de l'ED sont donc de la

$$y = y_0 + \lambda Z_0$$

3.4 Probleme de Cauchy

Soit I un intervalle reel et a; b, c trois applications continues sur I a valeurs dans \mathbb{K} . Soit l'ED: $\forall s \in I$, a(x)y'(x) + b(x)y(x) = c(x)

Soit $(x_0, y_0) \in I \times \mathbb{K}$.

Existe-t-il une solution $y: x \to \mathbb{K}$ satisfaisant $y(x_0) = y_0$?

Propriété 3.4.1

Si a ne s'annule pas sur I, alors il existe une unique solution $y: I \to \mathbb{K}$ telle que: $\begin{cases} \forall x \in I, \ a(x) \, y'(x) + b(x) \, y(x) = c(x) \\ y(x_0) = y_0 \end{cases}$

Remarques si $\mathbb{K} = \mathbb{R}$

- Si a ne s'annule pas sur I, il existe une unique **courbe solution** passant oar le pint de coordonnees (x_0, y_0)
- par application de cette propriete, deux courbes integrales ne se coupent jamais.

Determiner les solutions litterales de l'ED, et exprimer $y(x_0) = y_0$ en fonction des expressions precedentes. En deduire λ unique, donc y unique.