Project ID - #CC69855 Project Title - Exploratory Data Analysis (EDA) on Iris Dataset Internship Domain - Data Science Intern Project Level - Entry Level Assigned By-CodeClause Internship

Conduct exploratory data analysis on the famous Iris dataset to understand its characteristics and relationships between features.

```
In [64]: import pandas as pd
In [65]: import seaborn as sns
In [66]: import matplotlib.pyplot as plt
In [67]: df = pd.read_csv("iris_csv.csv")
```

Print top 5 rows in the dataset

In [68]: df.head()

Out [68]:

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [69]: df.shape
```

Out[69]: (150, 5)

Summary of the dataset

In [70]: df.describe()

Out [70]:

	sepallength	sepalwidth	petallength	petalwidth
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [71]: | df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype		
0	sepallength	150 non-null	float64		
1	sepalwidth	150 non-null	float64		
2	petallength	150 non-null	float64		
3	petalwidth	150 non-null	float64		
4	class	150 non-null	object		
d+v p q q d					

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

Checking Missing Values

In [72]: | df.isnull().sum()

Out[72]: sepallength 0 sepalwidth 0 petallength 0 petalwidth 0 class dtype: int64

Checking Duplicates

```
In [73]: data = df.drop_duplicates(subset ="class",)
data
```

Out [73]:

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
50	7.0	3.2	4.7	1.4	Iris-versicolor
100	6.3	3.3	6.0	2.5	Iris-virginica

Data Visualization

```
In [74]: sns.countplot(x='class', data=df, )
plt.show()
```


Comparing Sepal Length and Sepal Width

In [75]: sns.scatterplot(x='sepallength', y='sepalwidth',hue='class', data=df,
 plt.legend(bbox_to_anchor=(1, 1), loc=2)
 plt.show()

Comparing Petal Length and Petal Width

In [76]: sns.scatterplot(x='petallength', y='petalwidth',hue='class', data=df,
 plt.legend(bbox_to_anchor=(1, 1), loc=2)
 plt.show()

Histograms

```
In [77]: fig, axes = plt.subplots(2, 2, figsize=(10,10))
    axes[0,0].set_title("Sepal Length")
    axes[0,0].hist(df['sepallength'], bins=7)

axes[0,1].set_title("Sepal Width")
    axes[0,1].hist(df['sepalwidth'], bins=5);

axes[1,0].set_title("Petal Length")
    axes[1,0].hist(df['petallength'], bins=6);

axes[1,1].set_title("Petal Width")
    axes[1,1].hist(df['petalwidth'], bins=6);
```


Correlation

In [78]: data.corr(method='pearson', numeric_only=True)

Out[78]:

	sepallength	sepalwidth	petallength	petalwidth
sepallength	1.000000	-0.999226	0.795795	0.643817
sepalwidth	-0.999226	1.000000	-0.818999	-0.673417
petallength	0.795795	-0.818999	1.000000	0.975713
petalwidth	0.643817	-0.673417	0.975713	1.000000

Handling Outliers

In [79]: sns.boxplot(x='sepalwidth', data=df)

Out[79]: <Axes: xlabel='sepalwidth'>

