CHAPTER 2 Reminders on modes in optical waveguides (example of the slab waveguide)

Dominique PAGNOUX

Slab waveguide

 n_{ext}

- \rightarrow slab waveguide \rightarrow 3 layers of transparent dielectric materials with indices : n_0 , n_1 , et n_2
- \succ constitution: substrate (index n_2), confinement waveguide (index n_1), superstrate (indice n_0).
- > guiding conditions: $n_1 > n_2$ et $n_1 > n_0$ (if $n_0 = n_2$: symmetrical waveguide)

In practical case, we often have: $n_0 = n_{ext} = 1$ (air)

For an optical fiber: $n_0 = n_2$

Guiding principle of light (1)

- guiding if: > réfraction at interface (1) (input face)
 - > total reflections at interfaces 2 , en 3

totale reflection if : $i > i_l = Arc \sin(n_2/n_1)$

if $i=i_1$, $u=u_{max}$ with $\sin u_{max}=$ numerical aperture(NA)

$$NA = \frac{\sqrt{n_1^2 - n_2^2}}{n_{ext}}$$

Guiding principle of light (2)

Warning: at the reflection points 2 and 3, the field does not cancel!

 $-2\varphi (\varphi > 0)$

Modes of a slab waveguide (1)

condition of existence of a mode :
$$\beta_t.2h-2\varphi_{10}-2\varphi_{12}=2m\pi$$

 $-2\phi_{10}$ and $\text{-}2\phi_{12}$: Goos-Hänchen phase shifts at interfaces n₁/n₀ and n₁/n₂ respectively

Modes of a slab waveguide (2)

$$\beta_t = k \cos i$$

One mode can exist if: $\beta_t.2h-2\varphi_{10}-2\varphi_{12}=2m\pi$

thus :
$$\cos i = (m\pi + \varphi_{10} + \varphi_{12}) \frac{1}{k_0 n_1 h}$$
 given h, $\varphi_{10} = f(i)$, $\varphi_{12} = g(i)$

For each value of m \rightarrow one value of i \rightarrow one interference pattern \rightarrow one transverse mode

angles i are discretised

The guiding condition
$$i > i_l$$
 must be verified :
$$i > i_l \Rightarrow \cos i_l = \frac{\sqrt{n_1^2 - n_2^2}}{n_1} > \cos i = \left(m\pi + \varphi_{10} + \varphi_{12}\right) \frac{1}{k_0 n_1 h}$$

$$\Leftrightarrow m < \frac{1}{\pi} (k_0.h.NA - \varphi_{10} - \varphi_{12})$$
 \rightarrow the number of guided modes is limited

Modes of a slab waveguide (3)

$$m < \frac{1}{\pi} (k_0.h.NA - \varphi_{10} - \varphi_{12})$$

$$k_0 = \frac{2\pi}{\lambda_0}$$

 $V = k_0 \cdot h \cdot NA$

V= normalised spatial frequency of the guide, at λ_0

Remarks

- → the number of guided modes increases if V increases, i.e. :
 - **→** if h /
 - → if NA
 - \rightarrow if, for a given waveguide, λ
- \rightarrow if $h < \frac{\varphi_{10} + \varphi_{12}}{k_0.NA} = h_{\text{lim}}$ then m < 0 no guided mode
- → if 0 < m < 1 : only one guided mode (fundamental mode) → single mode regime

structure of the modes → EM approach : case of TE modes of a slab waveguide

Maxwell equations

Electric field, in harmonic regime, in a waveguide:

$$\vec{\mathcal{E}}(x, y, z) = \Re e \left[\vec{E}(x, y) . e^{j(\omega t - \beta z)} \right] \text{ (V/m)}$$

$$\vec{E}(x, y) = \begin{vmatrix} E_x(x, y).\overrightarrow{ex} \\ E_y(x, y).\overrightarrow{ey} \\ E_z(x, y).\overrightarrow{ez} \end{vmatrix}$$

 $\overrightarrow{E}(x,y)$: one mode of the guide

β= axial propagation constant (along z)

Associated magnetic field:

$$\overrightarrow{\mathcal{H}}(x,y,z) = \Re e \left[\overrightarrow{H}(x,y) . e^{j(\omega t - \beta z)} \right]$$
 (A/m)

Maxwell equations, in a linear, isotropic homogeneous medium with no electric charge nor current densities:

$$curl\overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$
 with $\overrightarrow{B} = \mu \overrightarrow{H}$ $\mu = \mu_0 = 4\pi \ 10^{-7} \text{ H/m}$ (1)

1)
$$curl \overrightarrow{U} = \nabla \wedge \overrightarrow{U}$$

$$curl \overrightarrow{H} = \varepsilon \frac{\partial \overrightarrow{E}}{\partial t} \text{ with } \varepsilon = \varepsilon_0 \varepsilon_r \text{ et } \varepsilon_0 = \frac{1}{36\pi} 10^{-9} \text{ F/m}$$
 (2)

$$(\vec{U} \text{ being any vector})$$

one starts from Maxwell equations

- > harmonic form of the fields $\Rightarrow \frac{\partial(X)}{\partial t} = j\omega X$ and $\frac{\partial(X)}{\partial z} = -j\beta X$

- slab waveguide supposed to have translation symmetry along y (infinite extension in this direction)
 - → components of the fields independent of y → $\frac{\mathcal{O}(X)}{\partial y} = 0$
- > seak of TE modes \rightarrow E₇ = 0

In these conditions, (1) and (2) lead to:

$$\overrightarrow{E}(x,y) = \overrightarrow{E}(x) \begin{vmatrix} E_x = 0 \\ E_y \neq 0 \\ E_z = 0 \end{vmatrix} \text{ et } \overrightarrow{H}(x,y) = \overrightarrow{H}(x) \begin{vmatrix} H_x = \frac{-\beta}{\omega\mu_0} E_y \\ H_y = 0 \\ H_z = \frac{j}{\omega\mu_0} \frac{\partial E_y}{\partial x} \end{vmatrix}$$

$$\vec{\mathcal{E}}(x, y, z) = E_{y}(x) \cdot e^{j(\omega t - \beta z)} \cdot \vec{e}_{y}$$

structure of the modes → EM approach : case of TE modes of the slab waveguide

Expression of the fields:

From (1) and (2) → propagation equation (= or Helmotz equation) :

$$\Delta \vec{\mathcal{E}} + k_0^2 (n_i^2) \vec{\mathcal{E}} = \vec{0}$$
 (3)

with Δ vectorial laplacian :

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Using (3) the expression of

$$\frac{\partial^2 E_y}{\partial x^2} + \left(k_0^2 n_i^2 - \beta^2\right) E_y = 0 \tag{4}$$

$$\overrightarrow{k_i} = n_i \overrightarrow{k_0}$$

$$\beta_{ti}^2 = k_0^2 n_i^2 - \beta^2$$

 β_{ti} = <u>transverse</u> propagation constant

one can write $\beta = k_0.n_e$

with n_e the effective index of the mode

$$\beta_{ti}^2 = k_0^2 (n_i^2 - n_e^2)$$

structure of the modes → EM approach : case of TE modes of the slab waveguide

Expression of the fields:

solution of
$$\frac{\partial^2 E_y}{\partial x^2} + \beta_{ti}^2 E_y = 0$$
 with $\beta_{ti}^2 = k_0^2 (n_i^2 - n_e^2)$:

$$m{F}_y = A_i.e^{-\gamma_i x} + B_i.e^{+\gamma_i x}$$
 and $\gamma_i = j \beta_{ti} \Longrightarrow \beta_{ti}^2 = -\gamma_i^2$

 \rightarrow if γ_i real (avec $B_i = 0$) \rightarrow decreasing exponential solution (media n_0 et n_2)

$$E_v = A_i \cdot e^{-\gamma_i x}$$
 then $\beta_{ti}^2 < 0 \rightarrow n_0 < n_e$ and $n_2 < n_e$

 \rightarrow if γ_i pure imaginary \rightarrow sinusoidal solution (medium n_1)

$$E_v = C.\cos(\beta_{ti}x + \Phi)$$
 then $\beta_{ti}^2 > 0 \rightarrow n_1 > n_e$

 \rightarrow guiding condition: max $(n_0, n_2) < n_e < n_1$

if $n_e < n_0$ and/or $n_e < n_2$: non guided superstrate and/or substrate modes

structure of the modes → EM approach : case of TE modes of the slab waveguide

field distribution of $E_{\underline{y}}$ along x:

dispersion relationship

for a given mode, in a given waveguide : for each λ (or ν , or ω ...) \rightarrow an associated value of β (or n_e)

curves $\beta = f(\omega)$ or $n_e = f(\omega)$ or $\omega = f(\beta)$ or $\beta = f(V)...$

= DISPERSION CURVES of the mode

for obtaining the dispersion relationship of a mode

→ one must write the <u>continuity conditions</u> of the tangential components of the fields and of their derivatives at the interfaces

dispersion relationship

for a given mode, in a given waveguide: for each λ (or ν , or ω ...) \rightarrow an associated value of β (or n_{ϵ})

curves $\beta = f(\omega)$ or $n_e = f(\omega)$ or $\omega = f(\beta)$ or $\beta = f(V)...$

= DISPERSION CURVES of the mode

for obtaining the dispersion relationship of a mode

→ one must write the continuity conditions of the tangential components of the fields and of their derivatives at the interfaces

In the example of TE modes of the considered infinite slab waveguide, one must write:

$$E_y(x=0)\Big|_{\text{in the substrate}} = E_y(x=0)\Big|_{\text{in the waveguide}}$$
 $E_y(x=h)\Big|_{\text{in the waveguide}} = E_y(x=h)\Big|_{\text{in the superstrate}}$

$$E_y(x=h)\Big|_{\text{in the waveguide}} = E_y(x=h)\Big|_{\text{in the superstrate}}$$

$$\frac{\partial E_y}{\partial x}$$
(x=0) $\Big|_{\text{in the substrate}} = \frac{\partial E_y}{\partial x}$ (x=0) $\Big|_{\text{in the waveguide}}$

$$\frac{\partial E_{y}}{\partial x}(x=0)\bigg|_{\text{in the substrate}} = \frac{\partial E_{y}}{\partial x}(x=0)\bigg|_{\text{in the waveguide}} \frac{\partial E_{y}}{\partial x}(x=h)\bigg|_{\text{in the waveguide}} = \frac{\partial E_{y}}{\partial x}(x=h)\bigg|_{\text{in the superstrate}}$$

ightharpoonup This leads to : $eta_{
m r}.h=arphi_{
m 10}+arphi_{
m 12}+m\pi$

$$\beta_t = k_0 \sqrt{n_1^2 - n_e^2}$$

$$\beta_t = k_0 \sqrt{n_1^2 - n_e^2}$$
 $\varphi_{10} = \text{Atan} \sqrt{\frac{n_e^2 - n_0^2}{n_1^2 - n_e^2}}$ $\varphi_{12} = \text{Atan} \sqrt{\frac{n_e^2 - n_2^2}{n_1^2 - n_e^2}}$

$$\varphi_{12} = Atan \sqrt{\frac{n_e^2 - n_2^2}{n_1^2 - n_e^2}}$$

numerical resolution \rightarrow $n_e=f(\lambda)$ or $\beta=f(\omega)$ or ...

phase velocity vφ

propagation velocity of a WAVE FRONT, in the z direction

$$AB = \lambda$$

$$v_{\varphi} = \frac{z_{AD}}{T}$$

with:
$$\cos \alpha = \frac{\lambda}{z_{AD}} = \sin i = \frac{\beta}{k} \implies z_{AD} = \frac{\lambda k}{\beta} = \frac{2\pi}{\beta}$$

$$T = \frac{2\pi}{\alpha}$$

Group velocity v_g

propagation velocity of a WAVE PACKET, in the z direction (velocity of energy)

the peak of the pulse propagates at the speed:

$$v_g = \frac{z}{t}$$

at the peak of the pulse \rightarrow all the chromatic components are in phase $\rightarrow \omega t - \beta z = cte \ \forall \omega$

$$\frac{d}{d\omega}(\omega t - \beta z) = 0 \implies \omega \frac{dt}{d\omega} + t \frac{d\omega}{d\omega} - \left(\beta \frac{dz}{d\omega} + z \frac{d\beta}{d\omega}\right) = 0$$

$$\Rightarrow t - z \frac{d\beta}{d\omega} = 0 \Leftrightarrow \frac{d\omega}{d\beta} = \frac{z}{t} = v_g$$

$$v_g = \frac{d\omega}{d\beta} = \frac{c}{N_g}$$

 N_g : group index

calculation of N_{α} versus the wavelength λ_0 (in the vacuum)

$$\frac{1}{v_g} = \frac{N_g}{c} = \frac{d\beta}{d\omega} = \frac{d}{d\omega} (k_0 n_e)$$

$$= \frac{dk_0}{d\omega} \cdot n_e + k_0 \frac{dn_e}{d\omega} \quad \text{avec } k_0 = \frac{\omega}{c}$$

$$= \frac{1}{c} \cdot n_e + \frac{2\pi}{\lambda_0} \frac{dn_e}{d\lambda_0} \frac{d\lambda_0}{d\omega} \quad (1)$$

with
$$\omega = \frac{2\pi . c}{\lambda_0}$$
, one obtains: $\frac{d\lambda_0}{d\omega} = -\frac{\lambda_0^2}{2\pi . c}$ and (1) becomes $\frac{N_g}{c} = \frac{n_e}{c} - \frac{\lambda_0}{c} \frac{dn_e}{d\lambda_0}$

$$\mathbf{N}_{\mathbf{g}} = n_{e} - \lambda_{0} \frac{dn_{e}}{d\lambda_{0}}$$

Approximative comparison between \textbf{v}_{ϕ} and \textbf{v}_{g} versus modes orders

$$\Rightarrow v_{\varphi} \approx \frac{z_{AD}}{T} = \frac{AB/\cos\alpha}{\lambda_0/c}$$
$$= \frac{(\lambda_0/n_1)/\cos\alpha}{\lambda_0/c} = \frac{c}{n_1.\sin i}$$

$$\Rightarrow v_g \approx \frac{z_{AE}}{T} = \frac{(\lambda_0 / n_1) \cdot \sin i}{\lambda_0 / c} = \frac{c}{n_1} \cdot \sin i$$

$$\rightarrow v_{\varphi}.v_{g} \approx \left(\frac{c}{n_{1}}\right)^{2} = v^{2} = \text{cte}$$

$$v_g = \frac{c}{N_g} \approx \frac{c}{n_1} \cdot \sin i < \frac{c}{n_1} < v_\varphi = \frac{c}{n_e} \approx \frac{c}{n_1 \cdot \sin i} \implies N_g > n_1 > n_e$$

$$N_g > n_e \implies \frac{dn_e}{d\lambda} < 0$$

$$\rightarrow N_g > n_e \Rightarrow \frac{dn_e}{d\lambda} < 0$$

$$\rightarrow$$
 if i / (very inclined light ray = low order modes) => v_{ϕ} et v_{g}

dispersion curves $\omega = f(\beta)$: comparison with the case of a metallic waveguide

other representations of dispersion curves for a dielectric waveguide

dispersion curves of TE_m modes of a slab waveguide

case of TM modes

Previous calculations can be conducted as well for TM modes (H₂=0)

- → calculation of components E₇ and H₇
- → continuity conditions for tangential components

$$ightharpoonup$$
 dispersion equation : $\beta_t.h = \varphi_{10} + \varphi_{12} + m\pi$

$$\beta_t = k_0 \sqrt{n_1^2 - n_e^2}$$

$$\varphi_{10} = Atan \left(\frac{n_1}{n_0}\right)^2 \sqrt{\frac{n_e^2 - n_0^2}{n_1^2 - n_0^2}}$$

$$\beta_{t} = k_{0} \sqrt{n_{1}^{2} - n_{e}^{2}} \qquad \qquad \varphi_{10} = \operatorname{Atan}\left(\frac{n_{1}}{n_{0}}\right)^{2} \sqrt{\frac{n_{e}^{2} - n_{0}^{2}}{n_{1}^{2} - n_{e}^{2}}} \qquad \qquad \varphi_{12} = \operatorname{Atan}\left(\frac{n_{1}}{n_{2}}\right)^{2} \sqrt{\frac{n_{e}^{2} - n_{2}^{2}}{n_{1}^{2} - n_{e}^{2}}}$$

→ effective index of the TM_m mode different from that of the TE_m mode

BUT if $n_0 \rightarrow n_1$ and if $n_2 \rightarrow n_1$ then $\phi_{10}(TE) \rightarrow \phi_{10}(TM)$ and $\phi_{12}(TE) \rightarrow \phi_{12}(TM)$

- → very similar dispersion curves
- → quasi degenerated modes

case of modes of rectangular dielectric waveguides (non infinite in the y direction)

... not addressed in this course

End of chapter 2

