srijan:

Exploratory
Data Analysis
(EDA)

About Me

Mayank Kumar

Data Scientist - II @ Srijan Technologies

Experience Across
Machine Learning, Deep Learning,
MLOps, Cloud, Algorithms, Optimization

Things to cover

- 1. Introduction to EDA
- 2. Some important terminologies
- 3. Descriptive Statistics
- 4. Univariate Analysis
- 5. Bivariate Analysis
- 6. Dimensionality Reduction
- 7. Process of Bootstrapping a Machine Learning Project
- 8. Conclusion

Introduction to EDA

srijan:

What is Exploratory Data Analysis (EDA)?

- a. How to ensure we are ready to use machine learning algorithms in a project?
- b. How to choose the most suitable algorithms for our data set?
- c. Which features has more impact on business?

- An approach for summarizing, visualizing, and becoming familiar with the important characteristics of a data set.
- EDA is one big detour. There's no real structured way to do it. It's an iterative process.

srijan:

Where does Exploratory Data Analysis fits in?

Data Science Process

Introduction to EDA

srijan:

Exploratory Data Analysis is majorly performed using the following methods:

- Descriptive Statistics
- Univariate Analysis
- Bivariate Analysis
- Multivariate Analysis
- Dimensionality Reduction

srijan:

Variables / Columns / Features types

- Missing / Null values
 - In statistics, missing data, or missing values, occur when no data value is stored for the variable in an observation.
 - Missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data.
 - Missing values are generally represented by a null NaN values or some flags like -9999, etc
 - Output Description
 Output Description
 - Understanding the reasons why data are missing is important for handling the remaining data correctly.
 - Imputation can be done through domain knowledge,
 interpolation, machine learning models, descriptive statistics, etc
 - Example: Imputing missing values for gender using names title

srijan

Outliers

- In statistics, an outlier is a data point that differs significantly from other observations.
- An outlier can cause serious problems in statistical analyses.
- Outliers can occur by chance in any distribution, but they often indicate either measurement error or that the population has a heavy-tailed distribution.
- Best way to treat outliers is either to drop them or replace them using either
 - domain knowledge
 - descriptive statistics
 - clipping, etc

- Normal distribution
 - Have overlapping mean, median and mode
 - Symmetric around mean
 - Satisfies 68–95–99.7 rule

- Normalization
 - May refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment
 - In more simpler terms, it means to align distributions to a normal distribution.
 - Methods includes:
 - Z-Score
 - Power transform
 - Log Transform
 - Min-Max Scaling

- A summary statistic that quantitatively describes or summarizes features from a collection of information.
- Most commonly used measures are:
 - Mean
 - Mode
 - Median
 - Standard deviation
 - Variance
 - Skewness
 - Kurtosis

srijan:

Mean (avg) =
$$\frac{3+7+10+8+31+10+2}{7} = \frac{71}{7}$$

10.14

7 numbers

Median = 2, 3, 7, 8, 10, 10, 31

middle

Mode 3, 7, 10 8, 31, 10 2

Mean Vs Median Vs Mode

srijan

Some Real life examples of these stats:

Mean

- Example could be
 - Ratings in Play Store

Median

- Example could be
 - Calculating average income for a country, median is used

Mode

- Example could be
 - Most viewed videos on YouTube
 - Most popular hotels recommendation in a city based on views/bookings

srijan:

Variance

- The average of the squared differences from the Mean.
- To calculate the variance follow these steps:
 - Calculate the Mean (the simple average of the numbers)
 - Then for each number: subtract the Mean and square the result (the squared difference).
 - Then calculate the average of those squared differences.

Standard Deviation

- The Standard Deviation is a measure of how spread out numbers are.
- Its symbol is σ (the greek letter sigma)
- The formula is easy: it is the square root of the Variance.

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{X})^{2}}{n-1}$$

$$\sigma = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}}$$

srijan:

Some Real life examples of Variance and Standard Deviation

- Example could be
 - Customer survey analysis
 - A market researcher is analyzing the results of a recent customer survey.
 - He wants to have some measure of the reliability of the answers received in the survey in order to predict how a larger group of people might answer the same questions.
 - A low standard deviation shows that the answers are very projectable to a larger group of people.
 - A high standard deviation shows that the answers are not projectable to a larger group of people.
 - Outlier detection and removal
 - Data normalization using z-score

srijans

Skewness

- Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean
- A perfectly symmetrical data set will have a skewness of 0.
 Example: The normal distribution has a skewness of 0
- The skewness value can be positive, zero, negative, or undefined

$\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^3$	
$\left(\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2\right)^{3/2}$	10000000

Skewness

srijan:

Skewness

srijan

Some Real life examples of Skewness

- Example for
 - Skewness
 - Common examples for positive skewness include people's incomes; mileage on used cars for sale; house prices; number of accident claims by an insurance customer; number of children in a family.

srijan

Kurtosis

- Kurtosis tells us about the height and sharpness of the central peak, relative to that of a standard bell curve / normal distribution
- There are three types of kurtosis:
 - Mesokurtic: Distributions that are moderate in breadth and curves with a medium peaked height.
 - Leptokurtic: More values in the distribution tails and more values close to the mean
 - Platykurtic : Fewer values in the tails and fewer values close to the mean

$\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^4$		
$\frac{n \sum_{i=1}^{n} (x_i - \overline{x})^2}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^2}$	_ ;	3

Kurtosis

Kurtosis

srijan:

Some Real life examples of Kurtosis

- Example for
 - Kurtosis
 - Outlier detection
 - Deciding over proper sample size for Stock Returns

- "Uni" means one and "Variate" means variable
- It is the simplest form of analysis where single variable is analyzed
- Variable could be categorical or continuous
- Most commonly used methods includes:
 - Categorical variables
 - Count plot
 - Continuous variables
 - Histogram plot
 - Box plot

- Categorical variables
 - Count plot

- Continuous variables
 - Histogram plot

- Continuous variables
 - Box plot

- Continuous variables
 - Box plot

- "Bi" means two and "Variate" means variable
- Form of analysis where two variables are analyzed to determine relationship between each other
- Variable could be categorical or continuous
- Most commonly used methods includes:
 - Categorical variables
 - Stacked plot
 - Cross tables
 - Continuous variables
 - Pair plot

- Categorical variables
 - Stacked plot

- Categorical variables
 - Cross Tables

Color	black	blue	brown	gray	green	red	white
Car							
BMW	1	0	0	0	0	0	0
Ford	3	0	0	1	0	0	1
Honda	0	1	0	0	0	2	0
Toyota	0	0	0	0	1	1	0
Volvo	0	2	1	0	0	0	0

- Continuous variables
 - Pair plot

Dimensionality Reduction

- Transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.
- It is very difficult to visualize data in higher dimensions so reducing our space to 2D or 3D may allow us to plot and observe patterns more clearly
- Most commonly used techniques:
 - Low Variance Filter
 - Backward Feature Elimination

Dimensionality Reduction

srijan:

- Most commonly used techniques:
 - Low Variance Filter: Filtering out variables with low variance
 - Calculate the variance of each variable we are given.
 - Then drop the variables having low variance as compared to other variables in our dataset. Since variables with a low variance will not affect the target variable.

train.var()

 Item_Weight
 1.786956e+01

 Item_Visibility
 2.662335e-03

 Item_MRP
 3.878184e+03

 Outlet_Establishment_Year
 7.008637e+01

 Item_Outlet_Sales
 2.912141e+06

 dtype: float64

Dimensionality Reduction

- Most commonly used techniques:
 - Backward Feature Elimination :
 - We first take all the n variables present in our dataset and train the model using them
 - We then calculate the performance of the model and save it.
 - Now, we compute the performance of the model after eliminating each variable (n times), i.e., we drop one variable every time and train the model on the remaining n-1 variables
 - We identify the variable whose removal has produced the smallest (or no) change in the performance of the model, and then drop that variable
 - Repeat this process until no variable can be dropped

Process of Bootstrapping a Machine Learning Project

Source: Domino Data Lab

srijan:

Any Questions?

References/Credits

- https://towardsdatascience.com/a-gentle-introduction-to-exploratory-data-analysis-f11d843b818
 4
- https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
- https://www.statisticshowto.com/clustering/
- https://www.kaggle.com/residentmario/univariate-plotting-with-pandas
- <a href="https://medium.com/@purnasaigudikandula/exploratory-data-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-bivariate-analysis-beginner-univariate-bivariate-bivariate-analysis-beginner-univariate-bivariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-bivariate-analysis-beginner-univariate-bivariate-analysis-beginner-univariate-bivariate-bivariate-analysis-beginner-univariate-bivariate-
- https://adataanalyst.com/data-analysis-resources/visualise-categorical-variables-in-python/
- https://www.kaggle.com/residentmario/bivariate-plotting-with-pandas
- https://www.kaggle.com/etakla/exploring-the-dataset-bivariate-analysis
- https://dfrieds.com/data-visualizations/bar-plot-python-pandas.html
- https://www.spcforexcel.com/knowledge/basic-statistics/are-skewness-and-kurtosis-useful-statistics/statistics/statistics/are-skewness-and-kurtosis-useful-statistics/statistic
- https://help.gooddata.com/doc/en/reporting-and-dashboards/maql-analytical-query-language/maql-expression-reference/aggregation-functions/statistical-functions/predictive-statistical-use-cases/normality-testing-skewness-and-kurtosis

Thank You

