Cyclic Quadrilaterals

Dennis Chen

GVT

§ 1	Theory		
§ 2	Examples		

§ 3 Problems

Minimum is [TBD \nearrow]. Problems with the \heartsuit symbol are required.

[3] Problem 1 (AIME II 2011/10) A circle with center O has radius 25. Chord \overline{AB} of length 30 and chord \overline{CD} of length 14 intersect at point P. The distance between the midpoints of the two chords is 12. The quantity OP^2 can be represented as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find the remainder where m+n is divided by 1000.

[4] Problem 2 (NIMO January 2013/8) Let AXYZB be a convex pentagon inscribed in a semicircle with diameter AB. Suppose that AZ - AX = 6, BX - BZ = 9, AY = 12, and BY = 5. Find the greatest integer not exceeding the perimeter of quadrilateral OXYZ, where O is the midpoint of AB.

[6] Problem 3 (AMC 12A 2017/24) Quadrilateral ABCD is inscribed in circle O and has sides AB = 3, BC = 2, CD = 6, and DA = 8. Let X and Y be points on \overline{BD} such that

$$\frac{DX}{BD} = \frac{1}{4}$$
 and $\frac{BY}{BD} = \frac{11}{36}$.

Let E be the intersection of intersection of line AX and the line through Y parallel to \overline{AD} . Let F be the intersection of line CX and the line through E parallel to \overline{AC} . Let G be the point on circle O other than C that lies on line CX. What is $XF \cdot XG$?

