Table of Contents

ın	troauc	tion	1
I	The	e Interview	6
1	Getti	ng Ready	7
2	Strategies For A Great Interview		12
3	Cond	ucting An Interview	19
4	Probl	lem Solving	23
II	Pro	blems	42
5	Primi	itive Types	43
	5.1	Computing the parity of a word	43
	5.2	Swap bits	45
	5.3	Reverse bits	47
	5.4	Find a closest integer with the same weight	47
	5.5	Compute $x \times y$ without arithmetical operators	49
	5.6	Compute x/y	50
	5.7	Compute x^y	51
	5.8	Reverse digits	52
	5.9	Check if a decimal integer is a palindrome	53
	5.10	Generate uniform random numbers	54
	5.11	Rectangle intersection	55
6	Array	78	57
	6.1	The Dutch national flag problem	57
	6.2	Increment an arbitrary-precision integer	61

	6.3	Multiply two arbitrary-precision integers	62
	6.4	Advancing through an array	63
	6.5	Delete a key from an array	64
	6.6	Delete duplicates from a sorted array	65
	6.7	Buy and sell a stock once	66
	6.8	Buy and sell a stock twice	67
	6.9	Enumerate all primes to <i>n</i>	68
	6.10	Permute the elements of an array	70
	6.11	Compute the next permutation	73
	6.12	Sample offline data	75
	6.13	Sample online data	76
	6.14	Compute a random permutation	78
	6.15	Compute a random subset	79
	6.16	Generate nonuniform random numbers	81
	6.17	The Sudoku checker problem	83
	6.18	Compute the spiral ordering of a 2D array	85
	6.19	Rotate a 2D array	88
	6.20	Compute rows in Pascal's Triangle	89
7	String	75	91
	7.1	Interconvert strings and integers	91
	7.2	Base conversion	93
	7.3	Compute the spreadsheet column encoding	94
	7.4	Replace and remove	95
	7.5	Test palindromicity	96
	7.6	Reverse all the words in a sentence	97
	7.7	Compute all mnemonics for a phone number	98
	7.8	The look-and-say problem	100
	7.9	Convert from Roman to decimal	101
	7.10	Compute all valid IP addresses	102
	7.11	Write a string sinusoidally	104
	7.12	Implement run-length encoding	105
	7.13	Implement the UNIX tail command	106
	7.14	Find the first occurrence of a substring	107
8	Linke	d Lists	109
	8.1	Merge two sorted lists	110
	8.2	Reverse a singly linked list	111
	8.3	Reverse a single sublist	112
	8.4	Test for cyclicity	113
	8.5	Test for overlapping lists—lists are cycle-free	115
	8.6	Test for overlapping lists—lists may have cycles	116
	8.7	Delete a node from a singly linked list	118
	8.8	Remove the <i>k</i> th last element from a list	119
	8.9	Remove duplicates from a sorted list	120

	8.10	Implement cyclic right shift for singly linked lists	121	
	8.11	Implement even-odd merge	122	
	8.12	Test whether a singly linked list is palindromic	123	
	8.13	Implement list pivoting	124	
	8.14	Add list-based integers	125	
9	Stacks	s and Queues	127	
	9.1	Implement a stack with max API	127	
	9.2	Evaluate RPN expressions	130	
	9.3	Test a string over "{,},(,),[,]" for well-formedness	132	
	9.4	Normalize pathnames	133	
	9.5	BST keys in sort order	134	
	9.6	Search a postings list	135	
	9.7	Compute buildings with a sunset view	136	
	9.8	Sort a stack	138	
	9.9	Compute binary tree nodes in order of increasing depth	139	
	9.10	Implement a circular queue	141	
	9.11	Implement a queue using stacks	142	
	9.12	Implement a queue with max API	143	
10	Binar	y Trees	146	
	10.1	Test if a binary tree is balanced	148	
	10.2	Test if a binary tree is symmetric	150	
	10.3	Compute the lowest common ancestor in a binary tree	151	
	10.4	Compute the LCA when nodes have parent pointers	152	
	10.5	Sum the root-to-leaf paths in a binary tree	153	
	10.6	Find a root to leaf path with specified sum	155	
	10.7	Compute the <i>k</i> th node in an inorder traversal	156	
	10.8	Compute the successor	157	
	10.9	Implement an inorder traversal with $O(1)$ space	158	
	10.10	Reconstruct a binary tree from traversal data	159	
	10.11	Reconstruct a binary tree from a preorder traversal with markers .	162	
	10.12	Form a linked list from the leaves of a binary tree	163	
	10.13	Compute the exterior of a binary tree	163	
	10.14	Compute the right sibling tree	165	
	10.15	Implement locking in a binary tree	167	
11	Heaps 169			
	11.1	Merge sorted files	170	
	11.2	Sort an increasing-decreasing array	172	
	11.3	Sort an almost-sorted array	173	
	11.4	Compute the <i>k</i> closest stars	174	
	11.5	Compute the median of online data	176	
	11.6	Compute the k largest elements in a max-heap	178	
	11.7	Implement a stack API using a heap	179	

12	Search	ning	181
	12.1	Search a sorted array for first occurrence of k	183
	12.2	Search a sorted array for the first element greater than $k \dots \dots$	184
	12.3	Search a sorted array for entry equal to its index	186
	12.4	Search a cyclically sorted array	186
	12.5	Compute the integer square root	188
	12.6	Compute the real square root	189
	12.7	Search in a 2D sorted array	191
	12.8	Find the min and max simultaneously	193
	12.9	Find the <i>k</i> th largest element	194
	12.10	Compute the optimum mailbox placement	196
	12.11	Find the missing IP address	197
	12.12	Find the duplicate and missing elements	199
	** 1	m 11	•
13	Hash		202
	13.1	Partition into anagrams	203
	13.2	Test for palindromic permutations	204
	13.3	Is an anonymous letter constructible?	205
	13.4	Implement an ISBN cache	207
	13.5	Compute the LCA, optimizing for close ancestors	209
	13.6	Compute the k most frequent queries	210
	13.7	Find the nearest repeated entries in an array	211
	13.8	Find the smallest subarray covering all values	212
	13.9	Find smallest subarray sequentially covering all values	216
	13.10	Find the longest subarray with distinct entries	218
	13.11	Find the length of a longest contained range	220
	13.12	Compute the average of the top three scores	221
	13.13	Compute all string decompositions	223
	13.14	Find a highest affinity pair	224
	13.15	Test the Collatz conjecture	226
	13.16	Implement a hash function for chess	228
14	Sortin	σ	230
	14.1	Compute the intersection of two sorted arrays	231
	14.2	Implement mergesort in-place	233
	14.3	Count the frequencies of characters in a sentence	234
	14.4	Find unique elements	235
	14.5	Render a calendar	236
	14.6	Sets of disjoint intervals	238
	14.7	Compute the union of intervals	240
	14.8	Partitioning and sorting an array with many repeated entries	242
	14.9	Team photo day—1	245
	14.10	Implement a fast sorting algorithm for lists	247
	14.11	Compute a salary threshold	248
	1 1.11	Compare a baiary ancomora	410

15	Binar	y Search Trees	250
	15.1	Test if a binary tree satisfies the BST property	250
	15.2	Find the first occurrence of a key in a BST	253
	15.3	Find the first key larger than a given value in a BST	255
	15.4	Find the k largest elements in a BST	256
	15.5	Compute the LCA in a BST	257
	15.6	Reconstruct a BST from traversal data	258
	15.7	Find the closest entries in three sorted arrays	261
	15.8	Enumerate numbers of the form $a + b\sqrt{2}$	263
	15.9	The most visited pages problem	266
	15.10	Build a minimum height BST from a sorted array	268
	15.11	Insertion and deletion in a BST	269
	15.12	Test if three BST nodes are totally ordered	272
	15.13	The range lookup problem	273
	15.14	Add credits	275
	15.15	Count the number of entries in an interval	277
16	Recur	sion	279
	16.1	The Tower of Hanoi problem	279
	16.2	Generate all nonattacking placements of <i>n</i> -Queens	282
	16.3	Generate permutations	284
	16.4	Generate the power set	286
	16.5	Generate all subsets of size $k \dots \dots \dots \dots$	288
	16.6	Generate strings of matched parens	289
	16.7	Generate palindromic decompositions	290
	16.8	Generate binary trees	292
	16.9	Implement a Sudoku solver	293
	16.10	Compute a Gray code	295
	16.11	Compute the diameter of a tree	297
17	Dyna	mic Programming	300
	17.1	Count the number of score combinations	302
	17.2	Compute the Levenshtein distance	304
	17.3	Count the number of ways to traverse a 2D array	307
	17.4	Plan a fishing trip	309
	17.5	Search for a sequence in a 2D array	310
	17.6	The knapsack problem	312
	17.7	Divide the spoils fairly	313
	17.8	The bedbathandbeyond.com problem	315
	17.9	Find the minimum weight path in a triangle	317
	17.10	Pick up coins for maximum gain	318
	17.11	Count the number of moves to climb stairs	320
	17.12	Compute the probability of a Republican majority	321
	17.13	The pretty printing problem	323
	17.14	Find the longest nondecreasing subsequence	324

18	Greed	ly Algorithms and Invariants	327	
	18.1	Implement Huffman coding	328	
	18.2	Compute an optimum assignment of tasks	331	
	18.3	Implement a schedule which minimizes waiting time	333	
	18.4	The interval covering problem	334	
	18.5	The 3-sum problem	338	
	18.6	Find the majority element	339	
	18.7	The gasup problem	340	
	18.8	Compute the maximum water trapped by a pair of vertical lines	342	
	18.9	Compute the largest rectangle under the skyline	344	
19	Grapl	Graphs 34		
	19.1	Identify the celebrity	348	
	19.2	Search a maze	349	
	19.3	Paint a Boolean matrix	352	
	19.4	Compute enclosed regions	354	
	19.5	Degrees of connectedness—1	356	
	19.6	Clone a graph	358	
	19.7	Making wired connections	359	
	19.8	Transform one string to another	361	
	19.9	The shortest straight-line program for x^n	362	
	19.10	Team photo day—2	365	
	19.11	Compute a shortest path with fewest edges	366	
20	Parall	el Computing	369	
	20.1	Implement caching for a multithreaded dictionary	370	
	20.2	Analyze two unsynchronized interleaved threads	372	
	20.3	Implement synchronization for two interleaving threads	373	
	20.4	Implement a thread pool	375	
	20.5	Implement asynchronous callbacks	376	
	20.6	Implement a Timer class	377	
	20.7	The readers-writers problem	378	
	20.8	The readers-writers problem with write preference	380	
	20.9	Test the Collatz conjecture in parallel	380	
	20.10	Design TeraSort and PetaSort	382	
	20.11	Implement distributed throttling	383	
21	Desig	n Problems	384	
	21.1	Design a spell checker	386	
	21.2	Design a solution to the stemming problem	386	
	21.3	Plagiarism detector	387	
	21.4	Pair users by attributes	388	
	21.5	Design a system for detecting copyright infringement	389	
	21.6	Design TeX	390	
	21.7	Design a search engine	391	
		0		

	21.8	Implement PageRank	392
	21.9	Design a scalable priority system	393
	21.10	Create photomosaics	394
	21.11	Implement Mileage Run	394
	21.12	Implement Connexus	396
	21.13	Design an online advertising system	396
	21.14	Design a recommendation system	397
	21.15	Design an optimized way of distributing large files	398
	21.16	Design the World Wide Web	399
	21.17	Estimate the hardware cost of a photo sharing app	400
22	Hono	rs Class	401
22	22.1		402
	22.1	Compute the greatest common divisor	402
	22.2	Find the first missing positive entry ••	403
	22.3	Buy and sell a stock <i>k</i> times	404
		Compute the maximum product of all entries but one	405
	22.5	Compute the longest contiguous increasing subarray	
	22.6	Rotate an array •	409
	22.7	Identify positions attacked by rooks	411
	22.8	Justify text 💇	413
	22.9	Reverse sublists <i>k</i> at a time ••	415
	22.10	Implement list zipping •	416
	22.11	Copy a postings list 💿	417
	22.12	Compute the median of a sorted circular linked list	418
	22.13	Compute the longest substring with matching parens	419
	22.14	Compute the maximum of a sliding window	420
	22.15	Implement preorder and postorder traversals without recursion	423
	22.16	Compute fair bonuses 💿	426
	22.17	Find k elements closest to the median	428
	22.18	Search a sorted array of unknown length 🔮	430
	22.19	Search in two sorted arrays	431
		Find the k th largest element—large n , small k	433
		Find an element that appears only once	434
		Find the line through the most points	435
		Find the shortest unique prefix	438
		Compute the smallest nonconstructible change	440
	22.25	Find the most visited pages in a window 💿	441
	22.26	Convert a sorted doubly linked list into a BST 🍑	442
	22.27	Convert a BST to a sorted doubly linked list 💿	444
	22.28	Merge two BSTs 💿	446
	22.29	Test if a binary tree is an almost BST 💿	447
	22.30	The view from above	449
	22.31	Searching a min-first BST 💿	453
	22.32	Implement regular expression matching	454

	22.33	Synthesize an expression	457
	22.34	Count inversions	460
	22.35	Draw the skyline 🔮	462
	22.36	Find the two closest points •	466
	22.37	Measure with defective jugs 💿	469
	22.38	Compute the maximum subarray sum in a circular array	471
	22.39	Determine the critical height	473
	22.40	Voltage selection in a logic circuit 🔮	475
	22.41	Find the maximum 2D subarray •	476
	22.42	Trapping water •	480
	22.43	Load balancing •	481
	22.44	Search for a pair-sum in an abs-sorted array	483
	22.45	The heavy hitter problem	486
	22.46	Find the longest subarray whose sum $\leq k$ \odot	488
	22.47	Degrees of connectedness—2 🚭	490
	22.48	Compute a minimum delay schedule, unlimited resources 💿	491
	22.49	Road network	492
	22.50	Test if arbitrage is possible	494
	22.51	The readers-writers problem with fairness	496
	22.52	Implement a producer-consumer queue	496
III	Not	ation, Language, and Index	497
No	tation		498
Jav	a		500
	_		
23	Java	TI . V.D.(500
	23.1	The JVM	502
	23.2	throw vs. throws	503
	23.3	final, finally, and finalizer	503
	23.4	equals() vs. ==	504
	23.5	equals() and hashCode()	504
	23.6	List, ArrayList, and LinkedList	504
	23.7	String vs. StringBuilder	505
	23.8	Autoboxing	506
	23.9	Static initialization	507
Inc	lex of T	Terms	508