__

内容小结

1. 泰勒公式

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$

$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中余项

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} = o((x - x_0)^n)$$

$$(\xi \pm x_0 \pm x \ge |\exists |)$$

$\exists x_0 = 0$ 时为表克劳林公式.

0

2. 常用函数的麦克劳林公式

$$e^x$$
, $\ln(1+x)$, $\sin x$, $\cos x$, $(1+x)^{\alpha}$

3. 泰勒公式的应用

(1) 近似计算

(2) 利用多项式逼近函数,例如 $\sin x$

求极限,证明不等式等。 (3) 其他应用

(4) 高阶导数

例5, 设函数f(x)满足 $\lim_{x\to\infty} f(x) = C, \lim_{x\to\infty} f'''(x) = 0,$

 $\widetilde{\mathbb{H}} \, \mathbb{H} : \lim_{x \to \infty} f'(x) = 0, \lim_{x \to \infty} f''(x) = 0.$

证明: 用泰勒公式

$$f(x+1) = f(x) + f'(x) + \frac{f''(x)}{2!} + \frac{f'''(\xi_1)}{3!},$$
$$f(x-1) = f(x) - f'(x) + \frac{f''(x)}{2!} - \frac{f'''(\xi_2)}{3!},$$

两式分别相加减,得

$$f''(x) = f(x+1) + f(x-1) - 2f(x) + \frac{1}{6}f'''(\xi_1) - \frac{1}{6}f'''(\xi_2)$$

$$f'(x) = \frac{1}{2}(f(x+1) - f(x-1)) - \frac{1}{6}f'''(\xi_1) - \frac{1}{6}f'''(\xi_2)$$

$$\lim_{x \to \infty} f''(x) = C + C - 2C + 0 = 0, \lim_{x \to \infty} f'(x) = \frac{1}{2}(C - C) = 0.$$

设函数 f(x)在[0,1] 上具有三阶连续导数

目 f(0)=1, f(1)=2, $f'(\frac{1}{2})=0$, 证明(0,1)内至少存在

一点 ξ, 使 | f "(ξ) | ≥ 24.

 $\mathbf{1} = f(0) = f(\frac{1}{2}) + \frac{f''(\frac{1}{2})}{2!} (-\frac{1}{2})^2 + \frac{f'''(\frac{1}{2})}{3!} (-\frac{1}{2})^3 + \frac{f'''(\frac{1}{2})}{3!} (-\frac{1}{2})^3$

 $2 = f(1) = f(\frac{1}{2}) + \frac{f''(\frac{1}{2})}{2!} \cdot \frac{f'''(\frac{1}{2})}{3!} \cdot \frac{f'''(\frac{1}{2})}{3!} \cdot \frac{(\frac{1}{2})}{3!} \cdot \frac{(\frac{1}{2})}{(\frac{1}{2})^3} \cdot \frac{(f_1 \in (0, \frac{1}{2}))}{(f_2 \in (\frac{1}{2}, 1))}$

下式减上式,得

$$1 = \frac{1}{48} \left[f'''(\zeta_2) - f'''(\zeta_1) \right] \le \frac{1}{48} \left[|f'''(\zeta_2)| + |f'''(\zeta_1)| \right]$$

$$\Rightarrow |f'''(\xi)| = \max(|f'''(\zeta_2)|, |f'''(\zeta_1)|)$$

$$\le \frac{1}{24} |f'''(\xi)| \quad (0 < \xi < 1)$$

第四章

E

雅

由线的凸。 福德尼 為學

製

一、函数单调性的判定法

一、单调性的判别法

在[a, b]上单调增加; (2)如果在(a, b)内f'(x) < 0, 导.(1) 如果在(a,b)内f'(x) > 0,那末函数 y = f(x)定理 设函数 y = f(x)在 [a,b]上连续,在 (a,b)内可 那末函数 y = f(x)在[a,b]上单调减少.

一、 函数单调性的判定法

定理 1. 设函数 f(x) 在开区间 I 内可导,若 f'(x) > 0

(f'(x) < 0), 则 f(x)在 I 内严格单调递增 (递减).

证: 无妨设 f'(x) > 0, $x \in I$, 任取 $x_1, x_2 \in I$ $(x_1 < x_2)$

由拉格朗日中值定理得

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) > 0$$

 $\xi \in (x_1, x_2) \subset I$

故 $f(x_1) < f(x_2)$. 这说明 f(x) 在 I 内严格单调递增

江北

例1. 确定函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间.

解:
$$f'(x) = 6x^2 - 18x + 12 = 6(x-1)(x-2)$$

令
$$f'(x) = 0$$
, 得 $x = 1, x = 2$

$$x$$
 $(-\infty,1)$ 1 $(1,2)$ 2 $(2,+\infty)$
 $f'(x)$ + 0 - 0 +
 $f(x)$ \tag{2}

f(x)的严格**单调增**区间为 $(-\infty,1),(2,+\infty);$

f(x)的严格**单调减**区间为 (1, 2).

说明:

1) 单调区间的分界点除驻点外,也可是导数不存在的点

例如,
$$y = \sqrt[3]{x^2}$$
, $x \in (-\infty, +\infty)$ $y = \sqrt[3]{x^2}$ $y = \sqrt[3]{x^2}$ $y' = \sqrt[3]{x^2}$ $y' = \sqrt[3]{x^2}$ $y' = \sqrt[3]{x^2}$ $y' = \sqrt[3]{x^2}$

2) 如果函数在某驻点两边导数同号,

则不改变函数的单调性.

例如, $y = x^3, x \in (-\infty, +\infty)$ $y' = 3x^2$ $y'|_{x=0} = 0$

2) 说明 定理1的反过来不成立。若f(x)的导数只在 有限多个点处为0, 其余各处都大于0, 也可得到 f(x)严格单调递增。

类似定理1的证明,可得如下定理1

3) **定理1,**设 f(x)在区间1内可导,则

$$f'(x) > 0 \Leftrightarrow f(x)$$
単調增

 $f'(x) \le 0 \Leftrightarrow f(x)$ 単调减

例2. 证明
$$0 < x < \frac{\pi}{2}$$
 时, 成立不等式 $\frac{\sin x}{x} > \frac{2}{\pi}$.

**$$\vec{u}$$
:** $\Leftrightarrow f(x) = \frac{\sin x}{x} - \frac{2}{x},$

则
$$f(x)$$
 在 $(0, \frac{\pi}{2}]$ 上连续, 在 $(0, \frac{\pi}{2})$ 上可导, 目

$$f'(x) = \frac{x \cdot \cos x - \sin x}{x^2} = \frac{\cos x}{x^2} (x - \tan x) < 0$$

洪

因此 f(x)在 $(0,\frac{\pi}{2})$ 内单调递减,

 $\tan x$

又
$$f(x)$$
在 $\frac{\pi}{2}$ 处右连续,因此 $f(x) \ge f(\frac{\pi}{2}) = 0$

从而

$$\frac{\sin x}{x} \ge \frac{2}{\pi}, \quad x \in (0, \frac{\pi}{2}]$$

* 证明
$$x - \tan x < 0$$

$$\Leftrightarrow \varphi(x) = x - \tan x, \text{MI}$$

$$\varphi'(x) = 1 - \sec^2 x$$

$$= -\tan^2 x < 0, \quad x \in (0, \frac{\pi}{2})$$

$$\therefore \varphi(x)$$
在 $(0,\frac{\pi}{2})$ 上递减,从而

$$\varphi(x) < \varphi(0) = 0$$

関
$$x - \tan x < 0$$
, $x \in (0, \frac{\pi}{2})$

~

内容小结

1. 可导函数单调性判别

$$f'(x) > 0, x \in I$$
 ——> $f(x)$ 在 I 上严格单调递增 $f'(x) < 0, x \in I$ ——> $f(x)$ 在 I 上严格单调递减

14

思考与练习

1. 设在[0,1] 上 f''(x) > 0, 则 f'(0), f'(1), f(1) - f(0)

或 f(0) - f(1) 的大小顺序是(B)

(A) f'(1) > f'(0) > f(1) - f(0)

(B) f'(1) > f(1) - f(0) > f'(0)

(C) f(1) - f(0) > f'(1) > f'(0)

(D) f'(1) > f(0) - f(1) > f'(0)

提示: 利用 f'(x) 严格单调增加,及

$$f(1) - f(0) = f'(\xi) \ (0 < \xi < 1)$$

例7. 证明 $f(x) = (1 + \frac{1}{x})^x$ 在 $(0, +\infty)$ 上单调增加.

H: $\ln f(x) = x \ln(1 + \frac{1}{x})$

 $= x \left[\ln(1+x) - \ln x \right]$

 $f'(x) = (1 + \frac{1}{x})^x \left[\ln(1+x) - \ln x - \frac{1}{1+x} \right]$

令 $F(t) = \ln t$,在[x, x + 1]上利用拉氏中值定理,得

 $\ln(1+x) - \ln x = \frac{1}{\xi} > \frac{1}{1+x} \quad (0 < x < \xi < x+1)$

故当 x > 0 时, f'(x) > 0, 从而 f(x)在 $(0, + \infty)$ 上单调增.

例10. 证明
$$\ln(1+x) > \frac{\arctan x}{1+x}$$
 $(x>0)$.

证: 设 $\varphi(x) = (1+x)\ln(1+x) - \arctan x$, 则 $\varphi(0) = 0$

$$\varphi'(x) = 1 + \ln(1+x) - \frac{1}{1+x^2} > 0$$
 $(x > 0)$

故 x > 0 时, $\rho(x)$ 单调增加,从而 $\rho(x) > \rho(0) = 0$

同
$$\ln(1+x) > \frac{\arctan x}{1+x}$$
 (x>0)

(0 < x < 1) 时, 如何设辅助 **思考:** 证明 $\sqrt{\frac{1-x}{1+x}} < \frac{\ln(1+x)}{\arcsin x}$

函数更好?

提示: $\phi(x) = (1+x)\ln(1+x) - \sqrt{1-x^2}$ arcsin x

10、设a > e, 求证 $a \ln(a+x) < (a+x) \ln a (x>0)$,

证法1: 考察函数 $f(x) = a \ln(a+x) - (a+x) \ln a$, $f'(x) = \frac{a}{a+x} - \ln a$, \leftrightarrow

$$f''(x) = -\frac{a}{(a+x)^2} < 0 \Rightarrow f'(x) \downarrow$$
, \leftarrow

$$f'(x) < f'(0) = 1 - \ln a < 0 \Rightarrow f(x) \downarrow \Rightarrow f(x) < f(0) = 0$$

$$\Rightarrow a \ln(a+x) < (a+x) \ln a \in$$

证法2: 考察函数 $f(t) = \frac{\ln t}{t}$ (t > a), $f'(t) = \frac{1 - \ln t}{t^2} < 0 \Rightarrow f(t) \downarrow$, \leftrightarrow

$$\Rightarrow x > 0$$
 时 $f(a+x) < f(a)$, 即 $\frac{\ln(a+x)}{a+x} < \frac{\ln a}{a}$,此即所证不等式。

设
$$b > a > 0$$
, 求证 $\ln \frac{b}{a} > \frac{2(b-a)}{b+a}$ 。

证: 构造函数 $f(x) = (a+x)(\ln x - \ln a) - 2(x-a)$ (x>a), 则 \in

$$f'(x) = \ln x - \ln a + \frac{a+x}{x} - 2$$
, $f''(x) = \frac{1}{x} - \frac{a}{x^2} = \frac{x-a}{x^2} > 0 \Rightarrow f'(x) \uparrow \leftarrow$

$$\Rightarrow x > a \, \mathbb{H}, \ f'(x) > f'(a) = 0 \Rightarrow f(x)^{\uparrow} \in$$

$$\Rightarrow b > a$$
时, $f(b) > f(a) = 0$ \leftarrow

$$\Rightarrow$$
(a+b)(lnb-lna)-2(b-a)>0, 此即所证不等式。 \leftarrow

12、证明当
$$x > 1$$
时, $0 < \ln x + \frac{4}{x+1} - 2 < \frac{1}{12}(x-1)^3$ 。 $4 < x < 1$

证: 考察函数
$$f(x) = \ln x + \frac{4}{x+1} - 2$$
, $\therefore f'(x) = \frac{1}{x} - \frac{4}{(x+1)^2} = \frac{(x-1)^2}{x(x+1)^2} > 0$

 $:: f(x)^{\uparrow}, 当 x > 1$ 时, f(x) > f(1) = 0。故得第一个不等式。 ←

又构造函数
$$g(x) = \ln x + \frac{4}{x+1} - 2 - \frac{1}{12} (x-1)^3$$
,则←
$$(x-1)^2 \qquad 1 \qquad , \qquad , \qquad 1$$

$$g'(x) = \frac{(x-1)^2}{x(x+1)^2} - \frac{1}{4}(x-1)^2 = (x-1)^2 \left[\frac{1}{x(x+1)^2} - \frac{1}{4} \right] < 0$$

 $:: g(x) \lor$,当x > 1时,g(x) < g(1) = 0。故得第二个不等式。↩

17、证明: 当 $0 < x < \pi$ 时,有 $\sin \frac{x}{2} > \frac{x}{\pi}$ 。 \leftarrow

证法 1: 设 $f(x) = \sin\frac{x}{2} - \frac{x}{\pi}$, 则 $f'(x) = \frac{1}{2}\cos\frac{x}{2} - \frac{1}{\pi}$, $f''(x) = -\frac{1}{4}\sin\frac{x}{2} < 0$, 故

知f(x)在 $(0,\pi)$ 上↓。因f(0)= $f(\pi)$ =0,由Rolle定理,存在 ξ \in $(0,\pi),使得$

 $f(\xi)=0$ 。故在 $(0,\xi)$ 上 $f(x)>f'(\xi)=0$,从而得f(x)个;在 (ξ,π) 上

 $f(x) < f(\xi) = 0$, 从而得f(x) 。因比,当 $x \in (0,\xi]$ 时,f(x) > f(0) = 0;当

 $x \in (\xi, \pi)$ 时, $f(x) > f(\pi) = 0$ 。 牧 $x \in (0, \pi)$ 时,总有 f(x) > 0,即 $\sin \frac{x}{2} > \frac{x}{\pi}$ 。 +

17、证明: 当 $0 < x < \pi$ 时,有 $\sin \frac{x}{2} > \frac{x}{\pi}$ 。

证法 2: 设
$$f(x) = \frac{\sin\frac{x}{2}}{x}$$
, 则 $f'(x) = \frac{\frac{1}{2}x\cos\frac{x}{2} - \sin\frac{x}{2}}{x^2} = \frac{\cos\frac{x}{2}(\frac{x}{2} - \tan\frac{x}{2})}{x^2}$ 。 再令

$$g(x) = \frac{x}{2} - \tan\frac{x}{2}$$
, 则 $g'(x) = \frac{1}{2} - \frac{1}{2} \sec^2 \frac{x}{2} = -\frac{1}{2} \tan^2 \frac{x}{2} < 0$, 故知 $g(x)$ 在 $(0, \pi)$ 上 \downarrow 。

于是,在
$$(0,\pi)$$
上 $g(x)$ < $g(0)$ = 0 。因此, $f'(x)$ = $\frac{\cos\frac{x}{2}}{x^2}$ · $g(x)$ < 0 ,从而得 $f(x)$ \downarrow 。

故当
$$0 < x < \pi$$
时, $f(x) > f(\pi)$,即 $\frac{x}{x} > \frac{\sin \frac{\pi}{2}}{x} = \frac{1}{\pi}$,此即所证不等式, \leftrightarrow

6 施笃兹(stolz)定理.

设 1)
$$y_{n+1} > y_n$$
 ,(n=1, 2, …), 2) $\lim_{n\to\infty} y_n = +\infty$

3)
$$\lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a$$
, My $\lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a$

注2: $(\frac{0}{0}$ 型stolz定理)

设对一切充分大的n, {b_n} 严格递减, 且

 $\lim_{n\to\infty}\frac{a_n}{b_n}$

14) 设
$$\lim_{n\to\infty} a_n = a$$
, 证明 $\lim_{n\to\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \frac{a}{2}$

证明: 因 $x_n = n^2 \to \infty$, 故利用Stolz公式,

$$\lim_{n\to\infty} \frac{\mathcal{Y}_{n+1} - \mathcal{Y}_n}{x_{n+1} - x_n} = \lim_{n\to\infty} \frac{\mathcal{Y}_n}{x_n}$$

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \lim_{n \to \infty} \frac{(n+1)a_{n+1}}{(n+1)^2 - n^2}$$

$$= \lim_{n\to\infty} \frac{n+1}{2n+1} \lim_{n\to\infty} a_{n+1} = \frac{a}{2}$$