### **CS575 Project 5**

#### Chiu-Chun, Chen

Email: chenchiu@oregonstate.edu

May 18, 2022

1. Tell what machine you ran this on

```
rabbit ~/cs575/project5 239$ lscpu
Architecture:
                       x86 64
                       32-bit, 64-bit
CPU op-mode(s):
Byte Order:
                       Little Endian
CPU(s):
                       32
On-line CPU(s) list:
                       0-31
Thread(s) per core:
                       2
Core(s) per socket:
                       8
                       2
Socket(s):
                       2
NUMA node(s):
Vendor ID:
                       GenuineIntel
CPU family:
Model:
                       63
Model name:
                       Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
Stepping:
CPU MHz:
                       1200.000
CPU max MHz:
                       3200.0000
CPU min MHz:
                       1200.0000
BogoMIPS:
                       4800.00
Virtualization:
                       VT-x
L1d cache:
                       32K
L1i cache:
                       32K
L2 cache:
                       256K
L3 cache:
                       20480K
NUMA node0 CPU(s):
                       0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
NUMA node1 CPU(s):
                       1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31
                       fpu vme de pse tsc msr pae mce cx8 apic sep
Flags:
lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology non
tpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_t
xpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms in
l1d
```

2. Show the table and the two graphs

|                  |         |           | 8 11 1 |                   |           |             |        |
|------------------|---------|-----------|--------|-------------------|-----------|-------------|--------|
| Number of Trials | 1024    | Blocksize | 8      | MegaTrials/Second | 7.1317    | Probability | 25.39% |
| Number of Trials | 4096    | Blocksize | 8      | MegaTrials/Second | 39.4696   | Probability | 21.80% |
| Number of Trials | 16384   | Blocksize | 8      | MegaTrials/Second | 118.1629  | Probability | 22.38% |
| Number of Trials | 65536   | Blocksize | 8      | MegaTrials/Second | 393.5434  | Probability | 22.69% |
| Number of Trials | 262144  | Blocksize | 8      | MegaTrials/Second | 822.7378  | Probability | 22.42% |
| Number of Trials | 1048576 | Blocksize | 8      | MegaTrials/Second | 985.5037  | Probability | 22.48% |
| Number of Trials | 2097152 | Blocksize | 8      | MegaTrials/Second | 1044.4983 | Probability | 22.51% |
| Number of Trials | 4194304 | Blocksize | 8      | MegaTrials/Second | 1081.0062 | Probability | 22.49% |
| Number of Trials | 1024    | Blocksize | 32     | MegaTrials/Second | 9.9379    | Probability | 22.36% |
| Number of Trials | 4096    | Blocksize | 32     | MegaTrials/Second | 36.4361   | Probability | 22.58% |
| Number of Trials | 16384   | Blocksize | 32     | MegaTrials/Second | 152.7446  | Probability | 22.20% |
| Number of Trials | 65536   | Blocksize | 32     | MegaTrials/Second | 450.2088  | Probability | 22.54% |
| Number of Trials | 262144  | Blocksize | 32     | MegaTrials/Second | 1511.718  | Probability | 22.48% |
| Number of Trials | 1048576 | Blocksize | 32     | MegaTrials/Second | 2554.014  | Probability | 22.52% |
| Number of Trials | 2097152 | Blocksize | 32     | MegaTrials/Second | 3243.7141 | Probability | 22.52% |
| Number of Trials | 4194304 | Blocksize | 32     | MegaTrials/Second | 3725.6473 | Probability | 22.54% |
| Number of Trials | 1024    | Blocksize | 128    | MegaTrials/Second | 8.1466    | Probability | 25.29% |
| Number of Trials | 4096    | Blocksize | 128    | MegaTrials/Second | 33.0579   | Probability | 22.71% |
| Number of Trials | 16384   | Blocksize | 128    | MegaTrials/Second | 204.3097  | Probability | 22.67% |
| Number of Trials | 65536   | Blocksize | 128    | MegaTrials/Second | 518.481   | Probability | 22.31% |
| Number of Trials | 262144  | Blocksize | 128    | MegaTrials/Second | 2124.4813 | Probability | 22.51% |
| Number of Trials | 1048576 | Blocksize | 128    | MegaTrials/Second | 3284.6834 | Probability | 22.46% |
| Number of Trials | 2097152 | Blocksize | 128    | MegaTrials/Second | 3069.3143 | Probability | 22.49% |
| Number of Trials | 4194304 | Blocksize | 128    | MegaTrials/Second | 6028.5164 | Probability | 22.52% |





# 3. What patterns are you seeing in the performance curves?

In the above figures, I am seeing a huge capacity on the performance. Even though there have been 4 million plus trials, the outcomes are continually growing. Nevertheless, the maximum performance of the program executing on the GPU (using rabbit) appears to be limited to 128 blocks. When the data size is large, the software performs better than when the data size is small.

## 4. Why do you think the patterns look this way?

The reason why I think the patterns look this way is because I'm working with a GPU, which can handle enormous data sets. With that, once the block size is appropriate for the data amount, more data usually means higher efficiency. In addition, for parallel computing, many data sets can be collected at the same time and stored in different blocks. The primary reason for this is that the number of trials and block sizes are both growing.

## 5. Why is a BLOCKSIZE of 8 so much worse than the others?

Because BLOCKSIZE 8 indicates that there are only 8 threads per block, and more threads per block means greater performance. Here, the lowest number of BLOCKSIZE is 8, so this is the reason why it is significantly lower than the others.

- 6. How do these performance results compare with what you got in Project #1? Why? Because this project (project#5) uses CUDA to compute some functions, the GPU permits a large number of threads to do our calculation, and GPU chips are specialized to handle streaming data, the performance is significantly better than project#1.
- 7. What does this mean for the proper use of GPU parallel computing? It signifies that GPU is capable of handling large amounts of data.