

Also, P2-regularization can be viewed as Weight Decay for non-linear case (we use GD) θ(k+1) = Θ(k) - ε Vo Remp (Θ(k)) - ε. L Θ(k) weight decay part In application, Weight Decay \ \frac{1}{2-regularization} Perspective [aplacian prior on w] b) Pi - regularization (non-smooth but convex) Toy example: (LASSO (linear) regression) $\begin{cases} \Omega(\omega) = \|\omega\|_1 \\ \text{Remp}(\omega) = \frac{1}{2} \|X\omega - Y\|_2^2 \end{cases} \Rightarrow [\text{No closed-form sol}^2]$ Example: P1 U.S. P2 regularization $Remp(\theta) = \frac{1}{2} \sum_{i=1}^{m} \lambda_i (0_i - 0_i^*)^2 \rightarrow without reg$ convex + differentiable (smooth) 1. 12-norm: Remp (0) = 1 2 1 xi (0; -0;)2 + 1 2 x 2 0; 2 $\frac{\partial \operatorname{Remp}}{\partial \Theta} = \lambda_i (\Theta_i - \Theta_i^*) + \alpha \Theta_i$ $\hat{\partial}^{R_2} \in \text{argmin } \hat{R} \in \mathcal{A}$ $\hat{\partial}^{R_2} = 0$ $\hat{\partial}^{R_2} = 0$ $\Rightarrow \hat{\theta}_{i}^{R} = \frac{\lambda_{i}}{\lambda_{i} + \lambda} \theta_{i}^{*}$ 2. 11-norm [Remp (0) = \frac{1}{2} \sum_{i=1}^{m} \lambda_i (\theta_i - \theta_i^*)^2 + \delta \sum_{i=1}^{m} |\theta_i| \text{ |\theta_i|}

$$\hat{O}^{\dagger} \in \text{arg min } \widehat{\mathbb{R}} \text{ emp } (O) \qquad (\text{highly non-trivial})$$

$$\Theta \qquad O \in \widehat{\mathcal{I}} \text{ Remp } (\widehat{O}^{\dagger}) \qquad (\text{highly non-trivial})$$

$$\Theta \qquad O \in (\widehat{O}^{\dagger}_{1} - \widehat{O}^{\dagger}_{1}) + \widehat{\mathcal{I}} \text{ or } \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad O \in (\widehat{O}^{\dagger}_{1} - \widehat{O}^{\dagger}_{1}) + \widehat{\mathcal{I}} \text{ or } \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad \widehat{O}^{\dagger}_{1} \in (\widehat{O}^{\dagger}_{1} - \widehat{O}^{\dagger}_{1}) + \widehat{\mathcal{I}} \text{ or } \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad \widehat{O}^{\dagger}_{1} = \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1})$$

$$= \begin{cases} \widehat{O}^{\dagger}_{1} - \widehat{\mathcal{I}} \\ \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1}) \end{cases}$$

$$\Theta \qquad \widehat{O}^{\dagger}_{1} = \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1})$$

$$= \begin{cases} \widehat{O}^{\dagger}_{1} - \widehat{\mathcal{I}} \\ \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1}) \end{cases}$$

$$\Theta \qquad \widehat{O}^{\dagger}_{1} = \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad \widehat{O}^{\dagger}_{1} + \widehat{\mathcal{I}} \text{ or } \widehat{\mathcal{I}} \text{ lill}_{1}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad \widehat{O} \qquad \widehat{O}^{\dagger}_{1} + \widehat{\mathcal{I}} \text{ lill}_{2}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad \widehat{O} \qquad \widehat{O}^{\dagger}_{1} + \widehat{\mathcal{I}} \text{ lill}_{2}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad \widehat{O} \qquad \widehat{O}^{\dagger}_{1} + \widehat{\mathcal{I}} \text{ lill}_{2}(\widehat{O}^{\dagger}_{1})$$

$$\Theta \qquad \widehat{O} \qquad \widehat{O}$$

@ Regularization on NN

-> we seldon regularize on bias term b

-> we may choose different strength of regularization for each layer

di → i-th layer

3) Early Stopping for NN -> under certain assumption, it is equivalent to 12-reg!

Implicit regularization require validation set !!

Normally, we use validation set to monitor the time point to stop!

Variant 1, record the optimal epoch number Stop criterion retrain Variantz: continue training with full dataset after early stop record optimal loss function value (training) stop criterion [E.g.] Early Stop for Linear Reg $\operatorname{Remp}(\theta) = \frac{1}{2} \lambda (\theta - \theta^*)^2 \implies \overline{\operatorname{Remp}}(\theta) = \lambda (\theta - \theta^*)$ (onsider GD: OKH = OK - EX (OK-0*) = (- EX) OK + EX P* => 0 km= (1-Ex) 1c+1 00 + [1-(1-Ex) KM] 0* $\Rightarrow \text{Stop at iteration 1: } \hat{\theta} = \theta_2 = \left(\left| -(\lambda)^2 \right| \theta_0 + \left| \left| -(\lambda)^2 \right| \right| \theta^*$ (variant) \rightarrow L2-regularization: $\widehat{R}(\theta) = \frac{1}{2} \times (\theta - \theta^*)^2 + \frac{1}{2} \times (\theta - \theta_0)^2$ VR(0) = λ(0-0*) + α(0-0.) =0 $\Rightarrow \widetilde{Q} = \frac{\alpha}{\alpha + \lambda} O_0 + \left(1 - \frac{\alpha}{\alpha + \lambda} \right) Q^*$ Note regularization strength early (2 regularization)

Stop equivalent [2 regularization]

UR model

manual regularization strength

2) Another approach => Pabel Snroothing
3 Adding Noise to Weight