

6.2

CONTENIDO

ANÁLISIS GRÁFICO DE FUNCIONES EXPONENCIALES ANÁLISIS GRÁFICO DE FUNCIONES LOGARÍTMICAS

APLICACIONES
DE FUNCIONES
EXPONENCIALES
Y
LOGARÍTMICAS

6.2

1

LOGRO

AL TERMINAR LA CLASE EL ALUMNO SERÁ CAPAZ DE:

ESBOZAR LAS GRÁFICAS DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS ANALIZAR
GRAFICAMENTE LAS
CARACTERÍSTICAS
DE LAS FUNCIONES
EXPONENCIALES Y
LOGARÍTMICAS

APLICAR LAS FUNCIONES EXPONENCIALES Y LOGARÍTMICAS EN PROBLEMAS DE CONTEXTO REAL

En la figura adjunta la regla de la función f es $f(x) = 1,5^x$

La ecuación de su asíntota es _____

Dom f =______ Ran f =______

Monotonía:

En la figura adjunta la regla de la función g es $g(x) = \log_{1.5} x$

La ecuación de su asíntota es _____

Dom g =______ Ran g =______

Monotonía:

Coordenadas del punto P:

GRÁFICAS DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

GRÁFICAS DE FUNCIONES EXPONENCIALES

Esboce la gráfica de la función: $f(x) = 2^x - 3$

Aplicando las técnicas de graficación:

Paso 1: _____

Paso 2:

_	-1	
	0	
	1	
	2	
	3	

ASÍNTOTA _____

INTERSECCIÓN _____ CON EJE Y (x=0)

INTERSECCIÓN ——	
CON EJE X	
(n - 0)	

(y=0)

DOMINIO _____

RANGO ____

GRÁFICAS DE FUNCIONES EXPONENCIALES

Esboce la gráfica de la función $f(x) = e^{x-2} - 3$

ASÍNTOTA _____

DOMINIO _____

RANGO ______

INTERSECCIÓN _____ CON EJE Y (x=0)

INTERSECCIÓN _____ CON EJE X (y=0)

x	f(x)
-1	
0	
1	
2	
4	

EJERCICIO

Esboce la gráfica de la función

$$f(x) = -2^{x+1} + 5$$

¿Qué piensas aplicar, técnicas de graficación o tabulación?

ASÍNTOTA_____

DOMINIO _____

RANGO _____

INTERSECCIÓN _____ CON EJE Y (x=0)

INTERSECCIÓN _____ CON EJE X

(y=0)

GRÁFICAS DE FUNCIONES LOGARÍTMICAS

Esboce la gráfica de la función $f(x) = \log_2(x+4)$

Aplicando las técnicas de graficación:

Paso 1: _____

Paso 2:

x	$f(x) = \log_2 x$
0,5	
1	
2	
4	

DOMINIO _____

RANGO _____ INTERSECCIÓ _____ N CON EJE Y (x=0)

GRÁFICAS DE FUNCIONES LOGARÍTMICAS

Esboce la gráfica de la función $f(x) = \ln(3 - x)$

ASÍNTOTA _____

DOMINIO _____

RANGO ____

INTERSECCIÓN _____ CON EJE Y(x = 0)

INTERSECCIÓN _____ CON EJE X(y = 0) **Tabulación**

x	f(x)
-1	
0	
1	
2	

		,1°	, i i i i
		2	
		1	
-5	-4 -3	-2 -1	2 3
		-1-	
		-2	
		4	
		-5-	

EPE

EJERCICIO

Esboce la gráfica de la función

$$f(x) = 4 - \log_3(x+3)$$

¿Qué piensas aplicar, técnicas de graficación o tabulación?

ASÍNTOTA _____

DOMINIO _____

RANGO_____

INTERSECCIÓN CON EJE Y ______ (x = 0)

INTERSECCIÓN
CON EJE X ______
(y = 0)

x	$f(x) = 4 - \log_3(x+3)$
-2	
-1	
0	
1	
2	
3	

CONTROL DE APRENDIZAJE

- P1) La función $f(x) = 4 + e^{x+3}$ determine la verdad o falsedad de cada alternativa
 - A) Su dominio es R
- B) Tiene asíntota horizontal y = 4
- C) Su rango es R
- D) Es creciente en todo su dominio
- P2) Si al graficar la función g cuya regla es $g(x) = 2 \ln(x+5)$ se utiliza las técnicas de graficación, entonces los pasos a seguir son:

Paso 2: _____

Paso 3:_____

Paso 4: _____

6.2

APLICACIONES DE FUNCIÓN EXPONENCIAL Y FUNCIÓN LOGARITMO

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

EJEMPLO

En la figura adjunta se muestra la gráfica de la función $f(x) = A + B \log_2(-x + C)$.

Halle la regla de correspondencia de f.

6.2

EPE

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

EJERCICIO

Con los datos del problema anterior halle $f^{-1}(x)$, dominio, rango y esboce su

gráfica. $f(x) = -1 + \log_2(-x + 4)$

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

EJEMPLO

En una olla a presión se hierve agua y se empieza a enfriar de acuerdo con la Ley de enfriamiento de Newton, de modo que la temperatura en el tiempo está dada por: $T(t) = 30 + 60e^{-0.0673t}$ donde t se mide en minutos y T en °C.

- a. ¿Cuál es la temperatura inicial del agua?
- b. ¿Cuál es la temperatura del agua a los 22 minutos?
- c. ¿Después de cuánto tiempo la temperatura del agua será de 40 °C?
- d. Trace la gráfica de T, escriba la ecuación de la asíntota y diga qué representa a largo plazo.

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

a. ¿Cuál es la temperatura inicial del agua?

- t: Tiempo desde que empieza a enfriar el agua en minutos
- T: Temperatura del agua en un determinado tiempo t en °C

$$T(\mathbf{0}) = \underline{\hspace{1cm}}$$

b. ¿Cuál es la temperatura del agua a los 22 minutos?

$$T(22) = \underline{\qquad} \Rightarrow T(22) = \underline{\qquad}$$

La temperatura del agua a los 22 minutos es

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

c. ¿Después de cuánto tiempo la temperatura del agua será de 40 °C?

 $T(t) = 30 + 60e^{-0.0673t}$ donde t se mide en minutos y T se mide en °C.

$$t = ?$$

$$T(t) = 40$$

t = _____

La temperatura del agua será de 40 °C después de _____minutos aprox.

6.2

EPE

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

EJEMPLO

d. Trace la gráfica de $\,T\,$, escriba la ecuación de la asíntota

y diga qué representa a largo plazo.

$$T(t) = 30 + 60e^{-0.0673t}$$
 donde t se

mide en minutos y T se mide en °C. De los ítems anteriores tenemos los siguientes puntos (t;T)

Como se trata de una función exponencial:

La asíntota representa a largo plazo la temperatura del agua cuando se enfría y tiende a 30°C.

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

EJERCICIO

La ley del olvido (Hermann Ebbinghaus) establece que si una tarea se aprende en un inicio a un nivel de desempeño $P_{\rm o}$, entonces, después de cierto intervalo de tiempo t por efecto del olvido, el nivel del desempeño esperado P cumple con la siguiente expresión:

tal que

$$\log P = \log P_o - k \log(t+1)$$

k= constante que depende del tipo de tarea

t = número de meses que han transcurrido desde un momento de referencia.

- a) Exprese P en términos de Po; k y t, sin logaritmos.
- b) Si la nota de un estudiante en una prueba de matemática fue de 16, qué nota se espera (considerando que k=0,2) pueda obtener el mismo estudiante si rinde la misma prueba dentro de un año.

6.2

EPI

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

La ley del olvido (Hermann Ebbinghaus)

$$\log P = \log P_o - k \log(t+1)$$

 P_0 = nota inicial en una prueba de matemática

t = número de meses que han transcurrido desde un momento de referencia

P = nota esperada en una prueba de matemática

k = constante que depende del tipo de tarea

a) Exprese P en términos de P0; k y t, sin logaritmos.

b) Si la nota de un estudiante en una prueba de matemática fue de 16, qué nota se espera (considerando que k=0,2) pueda obtener el mismo estudiante si rinde la misma prueba dentro de un año.

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

Un medicamento se elimina del cuerpo a través de la orina. La dosis inicial es de 10 mg y la cantidad que queda en el cuerpo disminuye el 80 % cada hora.

a) Escriba una ecuación en la forma $C(t) = a(b)^t$, donde C es la cantidad de medicamento en el cuerpo al cabo de t horas.

6.2

EPE

APLICACIONES DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

Para que el fármaco haga efecto en el cuerpo, debe haber por lo menos 2,6 mg del mismo, determine cuánto tiempo debe pasar para que esto ocurra. $C(t) = 10(0.2)^t$

TONTROL DE APRENDIZAJE

- P1) Una sustancia se desintegra de acuerdo a la función $Q(t) = 100(2)^{-\frac{t}{5}}$, donde Q (en gramos) es la cantidad presente de sustancia al cabo de t años. ¿ Cuál será la cantidad presente al cabo de 15 años ?
- **A) 12,5 gramos**
- B) 3,125 gramos
- **C) 10,5 gramos**
- **D) 8,25 gramos**
- P2) Una colonia de bacterias crece de acuerdo a la siguiente función $N(t)=100e^{0.045t}$, donde N se mide en gramos y t se mide en días. ¿Qué tiempo le tomará alcanzar 140 gramos?
 - A) 5 días
- B) 6 días
- C) 7,5 días
- D) 8 días

GRAFICAR
FUNCIONES
EXPONENCIALES Y
LOGARÍTMICAS EN
SU FORMA
GENERAL

ANALIZAR LAS GRÁFICAS DE LAS FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

RESOLVER PROBLEMAS
DE CONTEXTO REAL
UTILIZANDO LAS
FUNCIONES
LOGARÍTMICAS Y
EXPONENCIALES

BIBLIOGRAFÍA

STEWART, James (2012).

PRECÁLCULO: MATEMÁTICAS PARA EL CÁLCULO.

Sexta edición. México, D.F. Cengage Learning.

F. exponencial, F. logaritmo, Ecuaciones

exponencial y logaritmo: Pág. 302 - 356

6.2

EPE

ACTIVIDADES DE LA SEMANA 6

Control 4 , segunda sesión de clases

ASESORÍA 5, clase programada con el AAD

CONTROL DE RECUPERACIÓN 4, se evalúa en la asesoría 5

EVALUACIÓN VIRTUAL 2

CONSULTAS

ACTIVIDAD 2

PRÁCTICA CALIFICADA 2

