Noțiuni de combinatorică

Principiul fundamental de numărare: fie $m, n \in \mathbb{N}^*$; din $a_1, ..., a_m$ obiecte distincte și din $b_1, ..., b_n$ obiecte distincte se pot alege $m \cdot n$ de perechi (a_i, b_j) $i \in \{1, ..., m\}, j \in \{1, ..., n\}$

Permutări de $n: n \in \mathbb{N}$

din $a_1, ..., a_n$ obiecte distincte date se aleg n obiecte $(a_{i_1}, ..., a_{i_n})$ distincte, la care ordinea contează

 P_n = "numărul de permutări de n obiecte" = n!

Prin convenție, 0! = 1.

Permutări cu repetiții: Considerăm n obiecte, care sunt împărțite în k grupuri $(n, k \in \mathbb{N}^*, k \leq n)$. Primul grup are n_1 obiecte identice, al 2-lea grup are n_2 obiecte identice,..., al k-lea grup are n_k obiecte identice $(n_1, \ldots, n_k \in \mathbb{N}, n_1 + \ldots + n_k = n)$. Două obiecte alese arbitrar sunt distincte dacă și numai dacă provin din grupuri diferite. Numărul de permutări ale acestor n obiecte este

$$\frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_k!}.$$

Aranjamente de n luate câte k: fie $k \in \mathbb{N}, n \in \mathbb{N}^*, n \geq k$; din $a_1, ..., a_n$ objecte distincte date se aleg k objecte $(a_{i_1}, ..., a_{i_k})$ distincte, la care ordinea contează

 A_n^k = "numărul de aranjamente de n obiecte luate câte k"

$$= n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}.$$

Numărul de funcții de la mulțimea $\{a_1,...,a_k\}$ la mulțimea $\{b_1,...,b_n\}$ este n^k $(k,n\in\mathbb{N}^*)$. Observație: În n^k moduri se pot alege din n obiecte $b_1,...,b_n$ distincte date, k obiecte $(b_{j_1},...,b_{j_k})$, nu neapărat distincte (un obiect poate fi ales de mai multe ori), la care ordinea contează.

Combinări de n luate câte k: fie $k \in \mathbb{N}, n \in \mathbb{N}^*, n \geq k$ din n objecte $a_1, ..., a_n$ distincte date, se aleg k objecte distincte $\{a_{i_1}, ..., a_{i_k}\}$, la care ordinea nu contează

 C_n^k = "numărul de combinări de n elemente luate câte k" = $\frac{n!}{k!(n-k)!}$.

Combinări cu repetiții de n luate câte k ($n \in \mathbb{N}^*, k \in \mathbb{N}$): din n obiecte $a_1, ..., a_n$ distincte date se aleg k obiecte $a_{j_1}, ..., a_{j_k}$, nu neapărat distincte (un obiect poate fi ales de mai multe ori), la care ordinea nu contează. Numărul lor este

$$C_{n+k-1}^k = \frac{(n+k-1)!}{k!(n-1)!}.$$

Definiția clasică a probabilității: într-un experiment în care cazurile posibile, finite la număr, au aceleași șanse de a se realiza, probabilitatea unui eveniment E este

 $P(E) = \frac{\text{numărul cazurilor favorabile lui } E}{\text{numărul cazurilor posibile}}.$