기술소개자료

하향식 대면적 플라즈마 도움 화학 기상 증착 기술

Contents

- 1 기술개념 및 특징
- 2 사업화 대상기술 현황 및 역량
- 3 제품-기술상용화 유망성 (시장포지션)
- 4 적용분야(BI) 및 신규 사업분야(BM)
- 5 기술이전을 통한 매출확장 가능성
- 6 연구자 소개

Ⅰ 기술개념 및 특징 - 기술 개요

Ⅰ 기술개념 및 특징 - 사업화 추진 현황

핵심기술 기술형태 적용분야

• 온도구배를 통해 증발을 제어한 하향식 대면적 플라즈마 도움 화학 기상증착 장치

• 플라즈마 도움 화학 기상증착장치

- 디스플레이 산업
- 반도체 산업

적용제품

- 태양 전지
- 넓은 파장의 포토 다이오드
- LED 소자

기술완성도 (TRL)

- Level 5
- 시작품 단계

사업화 추진 현황

- (주)파인에바 기술 창업 (2014년 12월)
- 일자리진흥원 지원으로 상용화 연구 수행함

상용화 검토

- 시장분석/기술개발 수요처 파악
- 상용제품 개발을 위한 신뢰성 확보
- 시험평가 필요

시장관심도

• B2B : 키오스크 제작 업체, 반도체 센서, 플렉시블 디스플레이 업체, 등

기술연구 방향(수익화 모델)

TRL (Lv.7~9)	추가 IP 패키지 (Group1)	추가 IP 패키지 (Group3)	적극적 수익화 (Group2)	적극적 수익화 (Group3)	적극적 수익화 (Group1)
TRL (Lv.4~6)	х	추가 IP 패키지 (Group3)	추가 IP <mark>*</mark> 패키지 (Group2)	적극적 수익화 (Group2)	추가 IP 패키지 (Group1)
TRL (Lv.1~3)	x	X	X	X	Х
	기술대체/약 화	R&D	기술경쟁	초기시장 형성	시장성장/성 숙

	Group 1	Group 2 *	Group 3	
사업화 모델	기술자산 이전 및 라이선싱	기술자산 출자 및 지분확보를 통한 기술사업화	투자유치를 통한 IP 창업 및 JV(Joint Venture) 설립	
제품기술 확보	상용화 및 성숙기 단계	제품개발 및 시제품 단계	(기초)연구개발 및 (신제품) 응용기술개발 단계	
IP 특징	현재 상용화 제품특허들과 유사	현제품의 강화(개선) 또는 보강(신기능) 가능성이 있는 특허	신제품 또는 신규응용 제품 개발 가능성이 있는 특허	

■ 사업화 대상기술 현황 및 역량 - 7-Force (기회/위협, 강점/요인)

│ 제품-기술상용화 유망성 (시장포지션)

대면적의 균일한 박막 형성이 가능한 하향식 대면적 플라즈마 도움 화학 기상 증착 장치

Business Model

R&D Roadmap

화학기상증착장치 발전방향

제품-기술 상용화 추진 / 시장진입

디스플레이 기술 발전 전망

1 전방산업

- 다스플레이 산업
- 반도체 산업
- IoT 산업

→ 2 비즈니스 모델

• 대면적 디바이스 생산라인에 결합하여 활용

3 시장진입 채널

- [국내] 디스플레이/반도체 생산 업체와 네트워킹을 통한 제품 테스트 및 신뢰성 확보
- [해외] 해외 전시회 참여를 통한 수요처 발굴

4 유망기술 / 비즈니스 아이디어

• 차세대 디스플레이 시장 선점을 위한 제조공정 관련 원천기술 확보 및 품질 향상

▮ 적용분야(BI) 및 신규 사업분야(BM)

물질 증발 제어를 통해 균일한 박막 형성이 가능한 하향식 대면적 플라즈마 도움 화학 기상 증착 장치

기존 제품의 사업화 저해 요인

제품구현 시 차별적 요인

- 고가의 금속 유기 전구체 사용
- 불순물이 섞일 가능성이 높음
- 장치의 복잡함
- 대면적의 균일한 박막 형성 가능
- 신소재 합성시, 금속 유기 전구체 대신 순수 금속 소스를 증발시키므로 불순물 감소 및 조성 제어 용이 등의 효과가 있음

- 1 투명 디스플레이
- 주요 소비시장 : 자동차/로봇

- 2 조명
- 주요 소비시장 : LED

- 3 차세대 광소자
 - 주요 소비시장 : 광 트랜지스터/CIGS 박막 태양광 모듈

■ 기술이전을 통한 매출확장 가능성 - 국내외 기업동향 및 경쟁사 진단

국내외 PECVD 장비업체(CORIAL, WONIK IPS)

기존 출시된 유사제품과의 경쟁

제품 차별화 전략 추진 (자체 핵심기술 확보)

- 디스플레이/반도체 생산 업체와 네트워킹을 통한 제품 테스트 및 신뢰성 확보
- 차세대 디스플레이 시장 선점을 위한 제조공정 관련 원천기술 확보 및 특허 침해 대비

세계 반도체/디스플레이 증착장비(CVD) 시장 규모 추이 및 전망

매출액 창출

(백만 달러)	2013	2014	2015F	2016F	2017F	2018F	2013-2018년 연평균 성장률(%)
CVD	2,843	3,529	3,699	3,375	3,670	3,882	6.4
PECVD	1,153	1,459	1,523	1,387	1,523	1,613	6.9
LPCVD	310	426	414	367	399	419	6.2
ALD	606	788	903	903	990	1,047	11.6
APCVD	131	111	73	40	44	47	(18.6)
Tube CVD	644	744	787	678	714	757	3.3

※ 자료 : Gartner, 신한금융투자 추정

▮ 한국표준과학연구원 소개

- ✓ 국내 측정표준 대표기관으로 측정과학기술, 평가기술을 연구하는 정부출연기관
- ✓ 측정표준서비스 및 기술이전 등을 통해 2017년 아래와 같은 성과를 획득함

▮ 한국표준과학연구원 소개

- ✓ 국내외 박사급 인력을 수백명 보유하고 있으며, 학생연구진들이 활동함
- ✓ 정부출연기금 및 국가연구과제를 통해 연구를 활발하게 진행 중임

Human Resources Budget Unit: Persons Unit: US \$ 1 million **Total: 720 Total: 137** Post-Doc. Permanent Employees Others Contribution By Gov't 32 470 23 89 (303 with PhD) 17% Graduate Gov't Contract Students Research 18% 218 25 65%

▮ 연구자 소개 (김정형 박사 Ph.D)

소속

한국표준과학연구원 진공기술센터

전문분야

반도체 측정/공정 장비, 금속박막 증착 제조, OLED 박막제조

경력사항

2000.02 - 2018.03 한국표준과학연구원 책임연구원 1996.09 - 2000.02 삼성전자 반도체연구소 선임연구원

학력

1996.08 한국과학기술원 물리학, 박사 1992.02 한국과학기술원 물리학, 석사 1990.02 한국과학기술원 물리학, 학사

경청해주셔서 감사합니다.