飞凌嵌入式 OK6410开发板硬件手册

手册版本	更新概要
V2.0	V2版本第一版。
V2. 1	1. 根据新版本的原理图, 更正本手册原理图部分。
	2. 添加芯片、接口的照片。
	3. 添加芯片引脚排列说明。
	4. 添加使用开发板时的注意事项。
	5. 添加晶振说明。
	6. 添加电源芯片的说明。

一. OK6410开发板简介

随着微电子技术的快速发展,ARM处理器经历了包括ARM7、ARM9在内的多个发展历程,而ARM11的成熟应用必将为嵌入式的发展带来新的活力,使更高端的产品应用成为可能。

与ARM9的5级流水线相比,ARM11拥有一条具有独立的load-store和算术流水的8级流水线,在同样工艺下,ARM11处理器的性能与ARM9相比大约提高了40%。ARM11执行ARMv6架构的指令,ARMv6指令包含了针对媒体处理的单指令流多数据流(SIMD)扩展,采用特殊的设计,以改善视频处理性能。为了能够进行快速浮点运算,ARM11增加了向量浮点单元。所有这些结构上的提高,都是ARM9处理器不可比拟的。

ARM11为便携式和无线应用,提供了从未有过的高超性能,并且使我们主要关心的成本和功耗减到最小。ARM11的微架构保证了系统性能可以从基本的350-500MHz范围扩展到最终的1GHz以上。其微架构的高效率表现,允许开发者根据不同的应用来调节时钟频率和电源电压,从而在性能和功耗之间达到最佳的折衷。例如,一个基于ARM11的微架构的处理器在1.2V工作电压下,使用0.13um工艺实现,其功率将不会超过0.4mW/MHz。

ARM11微处理器是一种高性能、低功耗的'准64位'微处理器!对于目前大多数嵌入式应用,一个真正的64位处理器仍然被认为是不必要的,其巨大的功耗和面积让人难以接受。对此,ARM11选择了一个折中的方案,以较小的代价,部分实现了一个64位微架构。ARM11只在处理器整数单位和高速缓存之间,以及在整数单位和协处理器之间实现了64位数据总线。这些64位数据道路允许处理器在一个时钟周期中同时获取两条指令,还允许在一个时钟周期执行多个数据读写指令。这使得ARM11在执行很多特定序列的代码时能够达到非常高的性能,特别是那些允许数据搬移与数据处理并行处理的代码序列。

S3C6410是由三星公司推出的一款低功耗、高性价比的RSIC处理器,它基于ARM11内核(ARM1176JZF-S),可广泛应用于移动电话和通用处理等领域;S3C6410为2.5G和3G通信服务提供了优化的硬件性能,内置强大的硬件加速器:包括运动视频处理、音频处理、2D加速、显示处理和缩放等;集成了一个MFC(Multi-Format video Codec)支持MPEG4 /H.263/H.264编解码和VC1的解码,能够提供实时的视频会议以及NRSC和PAL制式的TV输出;除此之外,该处理器内置一个采用最先进技术的3D加速器,支持0penGL ES 1.1/2.0和D3DMAPI,能实现4M triangles/s的3D加速;同时,S3C6410包含了优化的外部存储器接口,该接口能满足在高端通信服务中的数据带宽要求。由于以上突出的性能表现,著名的苹果公司手机IPHONE就是基于S3C6410处理器。

OK6410开发板基于三星公司最新的ARM11处理器S3C6410,拥有强大的内部资源和视频处理能力,可稳定运行在667MHz主频以上,支持Mobile DDR和多种NAND Flash。OK6410开发板上集成了多种高端接口,如复合视频信号、摄像头、USB、SD卡、液晶屏、以太网,并配备温度传感器和红外接收头等。这些接口可作为应用参考帮助用户实现高端产品级设计。

0K6410开发板采用'核心板+底板'结构,核心板尺寸规格为'5CM×6CM',底板尺寸为'10.5CM×14CM',核心板与底板之间采用4组高质量进口连接器(镍金工艺,接触好、抗氧化),共计320个引脚(80×4),方便客户进行二次开发,进行各种形式的扩展应用。

0K6410开发板的设计严格按照CE、CCC等国内外电子产品认证标准,充分考虑高速信号的完整性等电磁兼容措施,确保0K6410开发板在严酷电磁环境下的可靠运行。

OK6410的软件系统目前支持WinCE 6.0、LINUX2.6.28、Android2.1以及uC/OS-II,提供标准板级支持包(BSP)并开放源码,其中包含了所有接口的驱动程序,客户可以直接加载使用。另外,该板可连接飞凌公司与之相配套使用的串口扩展板、WIFI模块、摄像头模块等。

二. OK6410开发板硬件资源

核心板一6层PCB设计,性能稳定,经过强电磁环境考验

- Samsung S3C6410处理器, ARM1176JZF-S内核, 主频533MHz/667MHz;
- 128M字节Mobile DDR内存;
- 1G字节NAND Flash (MLC);
- 12MHz、48MHz、27MHz、32.768KHz时钟源;
- 支持5V电压供电;

主板—4层板设计

- 一个复位按键,采用专用芯片进行复位,稳定可靠
- 采用8位拨码开关设置系统启动方式
- 共4个串口,包括1个五线RS 232电平串口(DB9母座)和3个三线TTL电平 串口(20pin 2.0mm间距插头座)
- 1个100M网口,采用DM9000AE,带连接和传输指示灯
- 1个USB HOST插口,支持USB1.1协议,可插鼠标、U盘等
- 1个USB Slave接口,支持USB2.0协议,使用mini-USB插座,可与PC连接
- 1个高速SD卡座。可以实现SD Memory功能和SDIO功能
- 1个无线网卡(WIFI),该接口可复用为SD卡接口
- 3个3.5MM标准立体声音频插座。其中包括1个音频输出插座,可与耳机连接;1个话筒输入插座;1个线路输入插座
- 触摸板接口支持4线电阻式触摸板; LCD接口支持3.5寸、4.3寸、5.6寸、5.7寸、7寸、8寸、10寸等TFT LCD, 另外独家支持10寸LVDS液晶屏
- 1路CVBS输出接口(PAL / NTSC)
- 1个CMOS摄像头接口,支持ITU-RBT601/656 8位模式,使用10*2插针连接器
- 内部实时钟,带有后备锂电池座,断电后系统时间不丢失
- 1个JTAG接口,使用10×2插针连接器
- 1个单线数字式温度传感器(DS18B20)(选配器件)
- 1个红外接收头
- 4个LED
- 1个蜂鸣器
- 3个'10×2'插针扩展口。其中,一个扩展口包括1路GND、1路DA、8路AD、10路IO、1路SPI;另一个扩展口用来扩展8×8矩阵键盘;第三个扩展口可连接3个TTL电平串口和6路IO(注:3个串口中,包括1个五线串口和2个三线串口)

三. 0K6410启动模式介绍

S3C6410处理器支持NAND FLASH、NOR FLASH和 SD卡等多种启动方式,通过系统上电时配置引脚的不同状态来确定相应的启动方式。

OK6410开发板通过配置拨码开关SW2选择启动方式,如下图所示:

SW2引脚号	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1
引脚定义	SELNAND	OM4	OM3	OM2	OM1	GPN15	GPN14	GPN13
Nandflash 启动	1	0	0	1	1	X	X	X
SD卡启动	X	1	1	1	1	0	0	0

注: (1) SW2开关ON时为"1"; OFF时为"0","X"为高电平或者低电平

(2) OK6410开发板出厂默认设置为NAND FLASH启动方式

启动模式相关设计原理图如下:

'0M0'信号为S3C6410芯片时钟源选择信号,当'0M0'信号为"0"时选择'XT1p11':当'0M0'信号为"1"时选择'EXTCLK'。这里,0K6410开发板使用'XT1p11',所以'0M0'直接下拉接地。

'SELNAND'信号用来选择系统FLASH存储器类型,当选择NAND FLASH时必须为高电平'1',选择ONENAND存储器时为低电平'0',0K6410开发板使用NAND FLASH存储器,所以这里直接上接为高。

'EINT13-EINT15'为IROM启动方式设备选择引脚,当使用IROM启动方式时,S3C6410处理器首先运行片内ROM固化程序,读取EINT15、EINT14、EINT13三个端口引脚状态,再根据本配置的不同状态,从而选择不同的设备启动。OM1-OM4信号为S3C6410处理器启动方式配置引脚。

四. 0K6410主要硬件设计说明

1. NAND FLASH

最新0K6410开发板配置1G Bytes NAND FLASH,型号为K9G8G08U0A(另有SLC结构256M字节的K9F2G08U0M供用户选择),片选信号使用CSn2。NAND FLASH存储器主要用于存放内核代码、应用程序、文件系统和数据资料。

为方便扩展容量,0K6410设计支持双片选架构的NAND FLASH芯片,片选信号使用CSn2和CSn3,客户可以根据需求定制选用128M-2GB空间大小的NAND FLASH,具体设计参见设计原理图。

注: 0K6410开发板使用NAND FLASH存储器,当使用NAND FLASH 启动时,S3C6410处理器同时配置了CSn2、CSn3为NAND FLASH存储器片选信号,因此在这种情况下CSn3不可以连接NAND FLASH以外的总线设备。

NAND FLASH设计原理图:

下面两个图中,第一张图是K9G8G08U0A芯片的照片,第二张图是引脚分布。左上角的第一个引脚是芯片的第一脚。K9G8G08U0A位于核心板。

2. DDR存储器

OK6410开发板配置128M Bytes Mobile DDR存储器,使用两片Samsung K4X51163PC芯片,DDR数据传输总线频率可达266MHz

芯片采用小尺寸BGA封装,PCB板布线充分考虑反射、串扰以及信号等长等电磁兼容设计规则,确保0K6410开发板系统可靠运行。

Mobile DDR设计原理图:

下面两个图中,第一张图是KSX51163PG芯片的照片,第二张图是俯视引脚分布。KSX51163PG位于核心板。

< Bottom View*1 >

< Top View*2 >

60Ball(6x9) FBGA						
	1	2	3	7	8	9
Α	Vss	DQ15	Vssq	VDDQ	DQ0	VDD
В	VDDQ	DQ13	DQ14	DQ1	DQ2	Vssq
С	Vssq	DQ11	DQ12	DQ3	DQ4	VDDQ
D	VDDQ	DQ9	DQ10	DQ5	DQ6	Vssq
Е	Vssq	UDQS	DQ8	DQ7	LDQS	VDDQ
F	Vss	UDM	N.C.	N.C.	LDM	VDD
G	CKE	CK	CK	WE	CAS	RAS
Н	A9	A11	A12	CS	BA0	BA1
J	A6	A7	A8	A10/AP	A0	A1
K	Vss	A4	A5	A2	А3	VDD

3. UART接口

OK6410开发板设计有4路串口,包括1个五线RS-232电平串口(DB9母座)和3个三线TTL电平串口(20pin 2.0mm间距插头座),为了方便特殊需求的用户,这款产品额外开发了专门配套的串口接线板。

其中UARTO默认为调试串口,可以直接与PC机相连,从而查看系统调试信息。

串口0设计原理图:

下面两个图中,第一张图是MAX202E芯片的照片,第二张图是俯视引脚分布。MAX202E位于开发板底板。

下面的图是COMO的DB9母座。COMO的DB9母座位于开发板底板。在COMO的原理图中,这个母座的名字是RS232 9。

图中可以清除的看到1-9的数字标号。

以下是母座与MAX202E的连接表

母座标号 1 2 3 4 5 6 7 8 9 电器连接 GND RXD TXD DTR GND DSR RTS CTS RI

4. USB HOST接口

OK6410开发板USB HOST接口,支持USB1.1协议,采用卧插式USB母口(A型插座);可连接U盘、USB移动硬盘、USB鼠标、USB键盘等设备。

USB HOST 设计原理图:

USB HOST接口采用USB母口(A型插座)。USB HOST触点和功能表如下。

触点	1	2	3	4
功能	VBUS	D-	D+	接地

5.USB OTG接口

USB OTG接口支持2.0协议,采用Mini USB A/B型号接口(U9),最高运行速度可达480Mbps.

系统开发时,可以使用USB OTG接口进行程序下载。 USB OTG设计原理图:

USB OTG接口采用miniUSB公口(B型插头)。USB OTG触点和功能表如下。

触点	1	2	3	4	5
功能	VBUS	D-	D+	ID	接地

6. JTAG接口

OK6410开发板JTAG接口使用10X2插针接口(CN2)。

S3C6410处理器设计JTAG接口用来访问ARM11内核或片内设备,可通过SBGSEL信号进行配置选择,具体配置如下:

- DBGSEL信号为高电平时, JTAG接口连接处理器外设。
- DBGSEL信号为低电平时,JTAG连接访问ARM11内核,进行代码调试。 OK6410开发板的DBGSEL信号可以通过J9跳线来选择。 JTAG设计原理图:

下面图中,是JTAG接口的俯视照片,PCB丝印层三角指向的引脚为JTAG接口第一个引脚,所有引脚可根据原理图来查看连接方式。JTAG接口位于开发板底板。

7. RTC电路

开发板上配置了一个'CR1220'型号的钮扣电池,在系统掉电时为RTC(实时时钟)供电。

RTC设计原理图如下:

原理图中BATTERY是电池。

下图为纽扣电池和纽扣电池座。纽扣电池和纽扣电池座位于开发板底板。

8. SD CARDO卡座

OK6410开发板集成一个SD卡座(CON2),使用四线SD卡接口,支持SDMemory规格2.0协议和SDIO规格1.0协议。作为SDMemory可以支持8GSD存储卡。

此端口可以作为系统启动设备,方便用户批量生产和软件升级。 SD CARD卡座设计原理图:

下图为SD卡座。SD卡座位于开发板底板。

9. WIFI接口

OK6410开发板可连接WIFI模块,该接口与SDCARD1卡座使用同一路信号。可以通过连接开发板配套的WIFI模块,来实现WIFI上网等功能;除此之外,用户也可以使用该接口扩展SD卡座,实现双SD卡的功能。

WIFI接口原理图如下:

下图为SD1座。PCB丝印层三角指向的引脚为SD1接口第一个引脚,所有引脚可根据原理图来查看连接方式。SD1座位于开发板底板。

10. LCD液晶屏和触摸屏接口

OK6410开发板可支持3.5寸、4.3寸、5.6寸、7寸、8寸、10寸等TFT液晶屏。

液晶屏、触摸屏接口原理图如下:

下图为LCD座,属于40pin下接FPC座(0.5mm间距)。LCD座位于开发板底板。

11. TV OUT接口

OK6410开发板集成一种TV OUT视频输出(S3C6410处理器支持),采用2Pin标准TV接口。

TVOUT设计原理图:

下图为TV接口。TV接口位于开发板底板。

12. 音频接口

OK6410开发板音频功能使用S3C6410处理器的AC97总线。外接WM9714音频芯片,实现集成音频输出、Line in输入和Mic输入功能。

音频输出和MIC输入以及LINE IN均采用标准音频插座。

(1) 下面是WM9714芯片和音频线路输入的原理图:

下图为WM9714芯片。PCB丝印层三角指向的引脚为WM9714第一个引脚,所有引脚可根据原理图来查看连接方式。WM9714位于开发板底板。

下图为音频线路输入座的俯视图。音频线路输入座位于开发板底板。在WM9717原理图中标记为J14。

(2) 下图是mic座原理图:

下图为MIC输入座的俯视图。音频线路输入座位于开发板底板。在原理图中标记为J7。这个输入座可以用来接麦克风。

(3) 下面是speaker座原理图:

下图是speaker座的图片,可以接耳机。speaker座位于开发板底板。在原理图中标记为J6。

13.100M网口

0K6410开发板上集成一个100M以太网接口,通过DM9000AE芯片来扩展。

在开发过程中,以太网接口可以用来连接PC机下载WINCE镜像;在Linux的系统开发时,可以用来挂载NFS网络文件系统。使用时,需通过交叉网线直接连接PC机,也可以使用直连网线连接交换机或路由器。

DM9000AE中断信号使用S3C6410处理器中断 'EINT7'信号。 网口插座采用RJ45插座,内置变压器。

DM9000AE设计原理图如下:

下面两个图为DM9000AE芯片的照片和I/0分布,左下角为芯片第一脚。 开发板使用DM9000AE的16位模式,另有八位模式的说明,用户可在DM9000AE datesheet中查找。DM9000AE位于开发板底板。

RJ45插座设计原理图如下:

14. CMOS摄像头接口

S3C6410处理器摄像头支持ITU-BT 601/656 8位模式,最大可以实现4096 X 4096像素点。

OK6410开发板上引出了摄像头接口,采用10X20插针方式(CAM),可直接使用飞凌配套的摄像头模块。该接口除了CAMERA信号外,还增加了IIC信号,用来配置摄像头相关参数;另外增加了一个GPIO信号(GPP14),主要应用于CAMERA的上电控制,协助系统实现电源管理。

CMOS摄像头接口设计原理图:

下图为CAM座的俯视图。PCB丝印层三角指向的引脚为CAM接口第一个引脚,所有引脚可根据原理图来查看连接方式。CAM座位于开发板底板。这个CAM座可以用来接飞凌的CMOS摄像头。

15. 复位按键

OK6410开发板系统复位按键使用6X6mm轻触开关,复位芯片选择MAX811t(在核心板上),专业复位芯片可保证系统的稳定可靠。

(1) 复位按键设计原理图如下:

下图为RESET键的俯视图。RESET键位于开发板底板。按下此键可以重启开发板。

(2) 复位芯片MAX811设计原理图如下:

下面两个图为MAX811芯片的照片和I/0分布,左上角为芯片第一脚。 MAX811位于核心板。

16. 温度传感器&红外接收头

OK6410开发板采用DS18B20(选配)高精度温度传感器,以及HS0038B一体化红外接收器(温度传感器是选配器件);

相关设计原理图如下:

(1)下面两个图为DS18B20(选配)的俯视图和I/0分布,左边为芯片第一脚。DS18B20焊接接口位于开发板底板。

(2)下面两个图为HS0038B的俯视图和I/0分布,左边为芯片第一脚。HS0038B位于开发板底板。这款红外接收器有三个引脚,从图中方向看,从左到右依次是OUT、GND、VCC。

17. 用户IO扩展接口

用户IO扩展口采用10X2插针,包含有路AD输入,一路DA输出 ,一路spi总线,一路GND,其余为普通IO口。

10扩展口设计原理图如下:

下图为用户I/0座的俯视图。PCB丝印层三角指向的引脚为用户I/0座第一个引脚,所有引脚可根据原理图来查看连接方式。用户I/0座位于开发板底板。用户I/0为客户提供了更好的扩展接口。

五. 晶振和电源的说明

0K6410提供了晶振源和电源管理单元,为了便于大家归纳和学习,特总结为一章。

(一) 晶振源 0K6410提供了六个晶振源。

核心板有四路晶振源,均为无源晶振:

1、主时钟, 12MHZ

2、Graphics时钟信号 27HZ,用于显示模块,如 MFC LCD TV模块提供时钟信号

3、USB时钟, 48MHZ, 用于 USB SD卡 SDIO提供时钟信号

4、RTC时钟, 32.768KHZ, 用于实时时钟模块提供时钟信号。详情请参考RTC部分。

底板有两路晶振源:

1. 24.576MHz晶振。给WM9714供给MCLKA。再由WM9713于内部供给AC97 CLK:24.576MHz。该晶振是有源晶振。

2. 25M晶振。提供DM9000AE的晶振源。该晶振是无源晶振。

与客户共成长

(二)电源管理单元 如下是S3C6410 I/0 工作电压和功能说明。

The table below shows I/O types and descriptions.

Input (I)/Output (O) Type	Descriptions		
dih(vddivh), si(vssipvh)	Vdd/Vss for internal logic with internal pad power ring		
dich(vddicvh)	Vdd for only internal logic		
dth(vddtvh), sth(vsstvh)	1.8~3.3V Vdd/Vss for external logic		
dtm(vddtvm)	1.8~2.5V Vdd for external logic		
dtlh(vddtvlh),	1.2V Vdd/Vss for external and internal logic		
stlh(vsstvlh)	1.2V Vuurvss tot externat and internat logic		
drtc(vddrtcvh)	1.8~3.0V Vdd for RTC power		
dih_u(vddivh_usb)	Vdd for usb phy core		
si_u(vssipvh_usb)	Vss for usb phy core		
hag(pvhbsudtartg)	1.8V~3.3V Wide Range Bi-directional Buffer with Schmitt Trigger Input, Controllable Pull-up/down Resistor and A type Output driver		
hag_a (pvhbsudtag_alv)	1.8V~3.3V Wide Range Bi-directional Alive Buffer with Schmitt Trigger Input, Controllable Pull-up/down Resistor and A type Output driver		
hbg(pvhbsudtbrtg)	1.8V~3.3V Wide Range Bi-directional Buffer with Schmitt Trigger Input, Controllable Pull-up/down Resistor and B type Output driver		
hb_c(pvhbsudtbrt_ckds)	1.8V~3.3V Wide Range Bi-directional Buffer with clock driver input for pulse clock or small amplitude clock, Schmitt Trigger Input, Controllable Pull-up/down Resistor and B type Output driver		
mbg(pvmbsudtbrtg)	1.8V~2.5V Wide Range Bi-directional Buffer with Schmitt Trigger Input, Controllable Pull-up/down Resistor and B type Output driver		
sca(pvhsosca)	1.8V~3.3V wide range oscillator for RTC Interface		
scb(pvhsoscbrt)	1.8V~3.3V wide range oscillator for Wide Frequency		
usb1(usb6002x1)	USB 1.1 pad		
hr(pvhbr)	1.8V~3.3V wide range analog bi-direction path-through PAD with 3 different paths which have no resistor, 50ohm or 100ohm resistor		
htr(pvhtbr)	1.8V~3.3V wide range analog tolerant bi-direction path-through PAD with 3 different paths which have no resistor, 50ohm or 100ohm resistor		
htr00(pvhtbr00_efuse)	1.8V~3.3V wide range analog bi-direction path-through PAD without resistor for efuse memory		
r_h(pvbr_h)	1.2V bi-direction path-through PAD with 3 different paths which have no resistor, 50ohm or 100ohm resistor		

由上表可以看出CPU不只是需要一种供电源。0K6410提供了多路电源管理单元。0K6410核心板每一路电源输入由电源芯片单独供电,更稳定更安全。

1. S3C6410 ARM核心部分供电

Signal Description Voltage VDDARM Internal power for ARM1176 core and cache 1.2

2. S3C6410 ALIVE供电

Signal Description Voltage
VDDALIVE Internal power for alive block 1.2

VDD Alive Powr 1.2V

与客户共成长

3. S3C6410 VDD 内部供电

Signal Description Voltage
VDDINT Internal power for logic 1.2

VDD INT Power 1.3V Internal block

4. S3C6410 Mobile DDR供电

Signal Description Voltage
VDDM1 IO power for Memory Port 1 1.8

Mobile DDR Power 1.8v

5. S3C6410 PLL供电 PLL供电部分为MPLL、APLL、EPLL同时供电。

Signal Description Voltage
VDDPLL Power for PLL core 1.2

PLL Power 1.2V

6. S3C6410 OTG供电

Signal Description Voltage VDDOTG Power for USB OTG PHY 3.3

USB OTG POWER 3.3v

7. S3C6410 OTGI 供电

Signal Description Voltage
VDDOTGI Internal power for USB OTG PHY 1.2

USB OTGI Power 1.2V

六. 开发板在使用时的注意事项

如果对开发板不熟悉或者不了解电子产品的一些基础操作,建议从网络上找一些资料来学习。在这里我们简单说一下在学习和操作开发板的过程中的注意事项。

1. 开发板的接口的热插拔。开发板上有多种接口,有些是支持热插拔的,比如: USB HOST、USB OTG、音频输入输出、网卡座、SD卡;有些是不支持热插拔的: LCD、串口、VGA、摄像头模块接口、WIFI接口、GPS接口、TV OUT等。所以要注意这些接口的使用方法,防止误操作引起开发板人为损坏。

2. 核心板和底板的接插件。飞凌采用的接插件在前面已经介绍过了,这 里说明一下插拔的操作。当然,这个也是不支持带电热插拔的。在开发板断电 后,释放身上的的静电,然后用力均匀的把核心板右手撬起。在安装接插件的 时候,同样需要开发板断电、释放身上的静电,按照对应的方向连接起来。

待续。

七.0K6410开发板尺寸图

1. 核心板尺寸图如下:

2. 核心板PIN脚定义:

Pin	定义	Pin	定义
1	GND	2	GND
3	ADDR6	4	ADDR8
5	ADDR5	6	ADDR10
7	ADDR1	8	ADDR11
9	ADDR2	10	ADDR13
11	ADDR3	12	WEN
13	ADDR0	14	ADDR16
15	AC97_RSTN	16	DATA15
17	AC97_SDI	18	DATA13
19	AC97_SDO	20	BEN0
21	GPE1	22	DATA8
23	GPE3	24	GND
25	GPE4	25	MMC0_DATA1
27	RXD3	28	MMC0_CMD
29	MMC0_DATA3	30	SPICS0
31	RXD0	32	RXD2
33	RTSN1	34	AC97_BITCLK
35	GND	36	AC97_SYNC
37	CTSN0	38	SPIMOSI1
39	CAMYDATA6	40	CLKOUT
41	CAMYDATA3	42	GND
43	CAMYDATA4	44	CTSN1
45	CAMRSTN	46	MMC1_DATA5
47	PWM_TOUT1	48	MMC0_DATA2
49	CAMPCLK	50	GPB4
51	CAMCLK	52	MMC1_DATA1
53	GND	54	SPICS1
55	CAMYDATA1	56	MMC1_DATA4
57	MMC1_CMD	58	MMC1_DATA2
59	MMC0_CDN	60	MMC0_CLK
61	MMC0_DATA0	62	SPIMOSI0
63	SPIMISO1	64	SPIMISO1
65	TXD2	66	I2CSCL0
67	TXD3	68	RTSN0
69	TXD1	70	TXD0
71	CAMYDATA7	72	CAMYDATA5
73	CAMYDATA2	74	CAMYDATA0
75	CAMVSYNC	76	CAMHREF
77	GND	78	GND
79	GND	80	GND

与客户共成长

Pin	定义	Pin	定义
1	MMC0_WPN	2	GND
3	MMC1_DATA6	4	GND
5	I2CSDA0	6	RXD1
7	SPICLK0	8	KP_ROW6
9	EINT20	10	KP_ROW1
11	GPK5	12	KP_ROW3
13	GPK4	14	KP_ROW7
15	GPK1	16	USBDP
17	GND	18	USBDN
19	GPK3	20	KP_ROW2
21	EINT17	22	MMC1-WPN
23	KP_COL4	24	GND
25	EINT19	26	XM1_CKE1
27	GPM4	28	KP_ROW4
29	GPK0	30	KP_ROW5
31	GPK2	32	KP_ROW0
33	EINT16	34	GPK7
35	GND	36	GPK6
37	EINT18	38	KP_COL5
39	NLED4	40	GPM5
41	KP_COL0	42	GND
43	VCLK	44	KP_COL1
45	KP_COL2	46	NLED3
47	NLED1	48	KP_COL7
49	NLED2	50	KP_COL6
51	VD22	52	VSYNC
53	GND	54	KP_COL3
55	VD14	56	VD18
57	IRQ_LAN	58	GND
59	EINT10	60	VD23
61	KEYINT6	62	VD10
63	KEYINT4	64	VD5
65	VD6	66	VD9
67	GND	68	VD11
69	SELNAND	70	VD16
71	XNRSTOUT	72	GND
73	GND	74	GND
75	GND	76	GND
77	GND	78	GND
79	GND	80	GND

Pin	定义	Pin	定义
1	GND	2	GND
3	VDEN	4	HSYNC
5	VD21	6	VD20
7	VD15	8	VD19
9	VD13	10	VD17
11	VD4	12	VD7
13	VD0	14	VD2
15	EINT13	16	EINT15
17	EINT9	18	EINT11
19	KEYINT3	20	KEYINT5
21	NBATF	22	KEYINT1
23	VDD_RTC	24	VD12
25	RTCK	26	OM4
27	VD1	28	PWRRGTON
29	TMS	30	OM0
31	VD8	32	OM2
33	EINT14	34	DBGSEL
35	TDI	36	OTGID
37	TDO	38	OTGDP
39	GND	40	OTGDM
41	GND	42	GND
43	VD3	44	EINT12
45	GND	46	TRSTN
47	TCK	48	GND
49	KEYINT2	50	GND
51	OM1	52	DAC_OUT0
53	GND	54	OM3
55	GPP14	56	MMC1_CDN
57	GPP13	58	GND
59	GPP9	60	GPP11
61	GPP8	62	GPP12
63	GPQ5	64	GPQ4
65	BRESET	66	ADDR17
67	KEY_RST	68	CSN4
69	CSN1	70	WAITN
71	ADDR19	72	GPO5
73	DATA12	74	CSN0
75	DAC_OUT1	76	VDD5V
77	VBUS	78	VDD5V
79	VBUS	80	VDD5V

J4 Pin	定义	Pin	定义
1	TSYP	2	TSXM
3	TSYM	4	TSXP
5	GND	6	GND
7	GND	8	GND
9	CSN2	10	FWEN
11	FREN	12	FALE
13	RNB	14	FCLE
15	ADCIN3	16	GND
17	GND	18	ADCIN2
19	ADCIN1	20	ADCIN0
21	GPP10	22	GPQ6
23	GPP0	24	GND
25	ADDR18	26	GPQ3
27	GPO4	28	CSN3
29	GPQ2	30	DATA10
31	DATA9	32	DATA11
33	OEN	34	GPP1
35	GND	36	DATA14
37	ADDR12	38	ADDR14
39	BEN0	40	ADDR15
41	ADDR9	42	GND
43	CSN5	44	ADDR7
45	ADDR4	46	MMC1_CLK
47	MMC1_DATA7	48	GPE2
49	GPE0	50	MMC1_DATA0
51	SPICLK1	52	MMC1_DATA3
53	DATA2	54	DATA0
55	DATA3	56	DATA1
57	DATA6	58	GND
59	DATA7	60	DATA5
61	GND	62	DATA4
63	GND	64	GND
65	VDD_IO	66	VDD_IO
67	VDD_IO	68	VDD_IO
69	VDD_IO	70	VDD_IO
71	VDD_IO	72	VDD_IO
73	VDD_IO	74	VDD_IO
75	VDD_IO	76	VDD_IO
77	GND	78	GND
79	GND	80	GND