Guida d'onda circolare R

$$\begin{bmatrix} e_{\varphi}(r,\varphi) \\ h_{r}(r,\varphi) \end{bmatrix} = \frac{1/r}{k_{0}^{2} - \beta^{2}} \begin{bmatrix} -\mathrm{j}\omega\mu_{0}r & -j\beta \\ j\beta r & \mathrm{j}\omega\varepsilon_{0} \end{bmatrix} \quad \begin{bmatrix} -\partial_{r}h_{z}(r,\varphi) \\ \partial_{\varphi}e_{z}(r,\varphi) \end{bmatrix}$$

$$\begin{bmatrix} e_r(r,\varphi) \\ h_{\varphi}(r,\varphi) \end{bmatrix} = \frac{1/r}{k_0^2 - \beta^2} \begin{bmatrix} -\mathrm{j}\omega\mu_0 & +j\beta r \\ -j\beta & \mathrm{j}\omega\varepsilon_0 r \end{bmatrix} \quad \begin{bmatrix} \partial_{\varphi}h_{\mathbf{z}}(r,\varphi) \\ -\partial_{r}e_{\mathbf{z}}(r,\varphi) \end{bmatrix}$$

$$h_{\mathbf{z}nm}(r,\varphi) = H \frac{\cos(n\varphi)}{\sin(n\varphi)} J_n(p'_{nm}r/R)$$
 p'_{nm} è lo zero (emmesimo) di J'_n

$$e_{\mathbf{z}n\mathbf{m}}(r,\varphi) = E \frac{\cos(n\varphi)}{\sin(n\varphi)} J_n(p_{nm}r/R)$$
 p_{nm} è lo zero (emmesimo) di J_n

Zeri delle funzioni di Bessel

n	p_{n1}	p_{n2}	p_{n3}	p_{n4}
0	3.832	7.016	10.174	13.324
1	1.841	5.331	8.536	11.706
2	3.054	6.706	9.970	13.170

n	p_{n1}	p_{n2}	p_{n3}	p_{n4}
0	2.405	5.520	8.654	11.792
1	3.832	7.016	10.174	13.324
2	5.135	8.417	11.620	14.796

Modi TE

$$k_{cnm} = p'_{nm}/R$$
 $f_{cnm}(GHz) = p'_{nm}/R \frac{1}{k_o(1GHz)}$

Modo fondamentale TE11

$${p'}_{11}$$
=1.841

Modi TM

$$k_{cnm} = p_{nm}/R$$
 $f_{cnm}(GHz) = p_{nm}/R \frac{1}{k_o(1GHz)}$

Modo TM di ordine più basso TM01

Banda monomodale guida circolare $f_{cTE11} - f_{cTM01}$

Applicazioni guide circolari che impiegano modi invarianti rispetto all'azimut (es TM01in WC o TEM in coax)

Giunto Rotante

