Derivative-Free Method For Decentralized Distributed Non-Smooth Optimization

A. Beznosikov, E. Gorbunov, A. Gasnikov

Moscow Institute of Physics and Technology

2 December 2019

Content

- Problem
 - Original problem
 - Oracles
 - Smoothed problem
- 2 Main results
 - Algorithm
 - Convergence
- 3 Convex Optimization with Affine Constraints
 - Problem
 - Convergence
- 4 Decentralized Distributed Optimization
 - Problem
 - Convergence

Original problem

• Composite optimization problem

$$\Psi_0(x) = f(x) + g(x) \to \min_{x \in X}$$

- $X \subseteq \mathbb{R}^n$ is a compact and convex set with diameter D_X .
- Function g is convex and L-smooth on X,
- Function f is convex differentiable function on X with bounded gradient $(x \in X \text{ we have } \|\nabla f(x)\|_* \leq M)$.

Oracles

- Gradient $\nabla g(x)$ is available.
- \bullet For f we have only stochastic zeroth-order oracle

$$\tilde{f}(x) = f(x) + \Delta(x) + \xi(x)$$

where $\Delta(x)$ is the bounded noise of unknown nature

$$|\Delta(x)| \le \Delta$$

and $\xi(x)$ is a stochastic noise which satisfies

$$\mathbb{E}[\xi(x) \mid x] = 0, \quad \mathbb{E}[\xi^4(x) \mid x] \le B^4.$$

• Stochastic approximation of $\nabla f(x)$:

$$\tilde{f}'_r(x) = \frac{n}{2r}(\tilde{f}(x+re) - \tilde{f}(x-re))e$$

where u is a random vector uniformly distributed on the Euclidean sphere and r is smoothing parameter.

Smoothed problem

• Smoothed version of f(x)

$$F(x) = \mathbb{E}_e[f(x+re)]$$

Smoothed problem

$$\Psi(x) = F(x) + g(x) \to \min_{x \in X}$$

Algorithm

Algorithm 1 Zeroth-Order Sliding Algorithm (zoSA)

Input: Initial point $x_0 \in X$ and iteration limit N.

Let $\beta_k \in \mathbb{R}_{++}, \gamma_k \in \mathbb{R}_+$, and $T_k \in \mathbb{N}$, k = 1, 2, ..., be given and set $\bar{x}_0 = x_0$.

for
$$k = 1, 2, ..., N$$
 do

1. Set
$$\underline{x}_k = (1 - \gamma_k)\bar{x}_{k-1} + \gamma_k x_{k-1}$$
, and let $h_k(\cdot) \equiv l_g(\underline{x}_{k-1}, \cdot) = g(x) + \langle \nabla g(x), y - x \rangle$.

2. Set

$$(x_k, \tilde{x}_k) = PS(h_k, x_{k-1}, \beta_k, T_k);$$

3. Set
$$\bar{x}_k = (1 - \gamma_k)\bar{x}_{k-1} + \gamma_k \tilde{x}_k$$
.

end for

Output: \bar{x}_N .

Algorithm

Algorithm 2 The PS (prox-sliding) procedure

procedure
$$(x^+, \tilde{x}^+) = \operatorname{PS}(h, x, \beta, T)$$

Let the parameters $p_t \in \mathbb{R}_{++}$ and $\theta_t \in [0, 1]$, $t = 1, \ldots$, be given. Set $u_0 = \tilde{u}_0 = x$.
for $t = 1, 2, \ldots, T$ do
$$u_t = \arg\min_{u \in X} \left\{ h(u) + \langle \tilde{f}'_r(x), u \rangle + \beta V(x, u) + \beta p_t V(u_{t-1}, u) \right\},$$
 $\tilde{u}_t = (1 - \theta_t) \tilde{u}_{t-1} + \theta_t u_t.$
end for Set $x^+ = u_T$ and $\tilde{x}^+ = \tilde{u}_T$.
end procedure

Theorem Suppose $\{p_t\}$, $\{\theta_t\}$, $\{\beta_k\}$, $\{\gamma_k\}$, $\{T_k\}$ satisfy some conditions. Then

$$\mathbb{E}[\Psi(\overline{x}_N) - \Psi(x^*)] \le \frac{12LD_X^2}{N(N+1)} + \frac{n\Delta D_X p_*}{r} \quad \forall N \ge 1.$$

Corollary For all $N \geq 1$:

$$\mathbb{E}[\Psi_0(\overline{x}_N) - \Psi_0(x^*)] \le 2rM + \frac{12LD_X^2}{N(N+1)} + \frac{n\Delta D_X p_*}{r}$$

If

$$r = \Theta\left(\frac{\varepsilon}{M}\right), \Delta = O\left(\frac{\varepsilon^2}{nMD_X}\right), B = O\left(\frac{\varepsilon}{\sqrt{n}}\right)$$

then the number of evaluations for ∇g and \tilde{f}'_r to find a ε -solution can be bounded by

$$O\left(\sqrt{\frac{LD_X^2}{\varepsilon}}\right)$$

$$O\left(\sqrt{\frac{LD_X^2}{\varepsilon}} + \frac{D_X^2 p_*^2 n M^2(C_1^2 + 1)}{\varepsilon^2}\right).$$

Convergence: special cases

• Euclidean case, i.e. $\|\cdot\| = \|\cdot\|_2$. $p_* = C_1 = C_2 = 1$ and the number of \tilde{f}'_r oracle calls reduces to

$$O\left(\sqrt{\frac{LD_X^2}{\varepsilon}} + \frac{D_X^2 n M^2}{\varepsilon^2}\right)$$

• Case when $\|\cdot\| = \|\cdot\|_1$. $p_* = O(\ln(n)/n)$ and $C_1 = 1$, $C_2 = \sqrt{n}$. The number of $\tilde{f}'_r(x)$ computations:

$$O\left(\sqrt{\frac{LD_X^2}{\varepsilon}} + \frac{D_X^2 M^2 \ln n}{\varepsilon^2}\right).$$

When X is a probability simplex we have $D_X = 2$.

Convex Optimization with Affine Constraints

 $f(x) \to \min_{Ax=0, x \in X}$

where $A \succeq 0$ and $\operatorname{Ker} A \neq \{0\}$ and X is convex compact in \mathbb{R}^n with diameter D_X .

• Penalized problem

$$F(x) = f(x) + \frac{R_y^2}{\varepsilon} ||Ax||_2^2 \to \min_{x \in X},$$

where $\varepsilon > 0$ is some positive number.

zoSA Algorithm requires

$$O\left(\sqrt{\frac{\lambda_{\max}(A^{\top}A)R_y^2D_X^2}{\varepsilon^2}}\right)$$
 calculations of $A^{\top}Ax$

and

$$O\left(\sqrt{\frac{\lambda_{\max}(A^{\top}A)R_y^2D_X^2}{\varepsilon^2}} + \frac{nD_X^2M^2}{\varepsilon^2}\right) \text{ calculations of } \tilde{f}(x)$$

Decentralized Distributed Optimization

•

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x_i) \to \min_{\substack{x_1 = \dots = x_m \\ x_1, \dots, x_m \in X}},$$

where
$$x^{\top} = (x_1^{\top}, \dots, x_m^{\top})^{\top} \in \mathbb{R}^{nm}$$

• Equivalent problem

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x_i) \to \min_{\substack{\sqrt{W} x = 0, \\ x_1, \dots, x_m \in X}}.$$

$$W = \overline{W} \otimes I_n \qquad \overline{W}_{ij} = \begin{cases} -1, & \text{if } (i,j) \in E, \\ \deg(i), & \text{if } i = j, \\ 0 & \text{otherwise,} \end{cases}$$

zoSA Algorithm requires

$$O\left(\sqrt{\frac{\chi(W)M^2D_X^2}{\varepsilon^2}}\right)$$
 communication rounds

and

$$O\left(\sqrt{\frac{\chi(W)M^2D_X^2}{\varepsilon^2}} + \frac{nD_X^2M^2}{\varepsilon^2}\right) \text{ calculations of } \tilde{f}(x)$$