Integrals

| Indefinite integrals

Description	Equations
Indefinite integral (antiderivative)	$egin{aligned} F(x) &= \int f(x) \; dx \ F'(x) &= f(x) \end{aligned}$
Antiderivative as a family of functions (Plus C !)	If F is an antiderivative of f , C is a constant, then the most general antiderivative is $F(x)+C$

| Table of indefinite integrals

- , ,	Antiderivative ${\cal F}(x)$	Function $f(x)$	Antiderivative ${\cal F}(x)$
x^n	$\frac{x^{n+1}}{n+1} + C$	$\frac{1}{x}$	$\ln \lvert x \rvert + C$
	$e^x + C$	b^x	$\frac{b^x}{\ln b} + C$
$\sin x$	$-\cos x + C$	$\cos x$	$\sin x + C$
$\sec^2 x$	$\tan x + C$	csc^2x	$-\cot x + C$
$\sec x \tan x$	$\sec x + C$	$\csc x \cot x$	$-\csc x + C$
$\frac{1}{x^2+a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right) + C$	$\frac{1}{\sqrt{a^2-x^2}}$	$rcsin\left(rac{x}{a} ight)+C$

| Definite integrals as Riemann sums

Description	Equations
Area	$A = \lim_{n o \infty} R_n = \lim_{n o \infty} \sum_{i=1}^n f(x_i) \Delta x$
Definite integral	$\int_a^b f(x) \; dx = \lim_{n o \infty} \sum_{i=1}^n f(x_i^*) \Delta x$
Operational definition of definite integral as Riemann sum	$egin{aligned} \int_a^b f(x) \; dx &= \lim_{n o \infty} \sum_{i=1}^n f(x_i) \Delta x \ \Delta x &= rac{b-a}{n} \ x_i &= a + i \Delta x \end{aligned}$
Sums of powers of positive integers	$egin{array}{l} \sum\limits_{i=1}^{n}i=rac{n(n+1)}{2}\ \sum\limits_{i=1}^{n}i^2=rac{n(n+1)(2n+1)}{6}\ \sum\limits_{i=1}^{n}i^3=\left[rac{n(n+1)}{2} ight]^2 \end{array}$
Properties of summation	$\sum\limits_{i=1}^{n}c=nc$

Description	Equations
	$\sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i \ \sum_{i=1}^n (a_i \pm b_i) = \sum_{i=1}^n a_i \pm \sum_{i=1}^n b_i$

| Properties of definite integrals

Description	Equations
Reversing the bounds changes the sign of definite integrals	$\int_a^b f(x) \ dx = - \int_b^a f(x) \ dx$
Definite integral is zero if upper and lower bounds are the same	$\int_a^a f(x) \ dx = 0$
Definite integrals of constant	$\int_a^b c \ dx = c(b-a)$
Addition and subtraction of definite integrals	$egin{aligned} &\int_a^b [f(x)\pm g(x)]\; dx \ &= \int_a^b f(x)\; dx \pm \int_a^b g(x)\; dx \end{aligned}$
Constant multiple of definite integrals	$\int_a^b cf(x) \; dx = c \int_a^b f(x) \; dx$
Comparison properties of definite integrals	If $f(x) \geq 0$ for $x \in [a,b]$, then $\int_a^b f(x) \ dx \geq 0$
Comparison properties of definite integrals	If $f(x) \geq g(x)$ for $x \in [a,b]$, then $\int_a^b f(x) \ dx \geq \int_a^b g(x) \ dx$
Comparison properties of definite integrals	If $m \leq f(x) \leq M$ for $x \in [a,b]$, then $m(b-a) \leq \int_a^b f(x) \ dx \leq M(b-a)$

| Fundamental theorem of calculus

Description	Equations
Fundamental theorem of calculus I $(f \text{ is continuous on } [a,b])$	$g(x) = \int_a^x f(t) \ dt$ $g'(x) = f(x)$
Fundamental theorem of calculus II $(f \text{ is continuous on } [a,b])$	$\int_a^b f(x) \ dx = F(b) - F(a)$ where F is any antiderivative of f
Net change theorem The integral of a rate of change is the net change	$\int_a^b F'(x) \ dx = F(b) - F(a)$

| Substitution rule

Description	Equations
Substitution rule (u-substitution) $u\equiv g(x)$	$\int f(g(x))g'(x)\ dx = \int f(u)\ du$
Substitution rule for definite integrals $u\equiv g(x)$	$\int_a^b f(g(x))g'(x)\ dx = \int_{g(a)}^{g(b)} f(u)\ du$
Integrals of even functions	$\int_{-a}^a f(x) \ dx = 2 \int_0^a f(x) \ dx$

Description	Equations
Integrals of odd functions	$\int_{-a}^a f(x) \ dx = 0$

Techniques of Integration

| Integration by parts

Description	Equations
Integration by parts	$\int f(x)g'(x) \ dx \ = f(x)g(x) - \int g(x)f'(x) \ dx$
Integration by parts	$\int u \; dv = uv - \int v \; du$
Integration by parts for definite integrals	$\int_a^b fg' \ dx = [fg]_a^b - \int_a^b f'g \ dx$

| Approximating integrals

Description	Equations
Midpoint rule	$egin{aligned} \int_a^b f(x) \ dx &pprox \sum\limits_{i=1}^n f(ar{x}_i) \Delta x \ \Delta x &= rac{b-a}{n} \ ar{x}_i &= rac{1}{2} (x_{i-1} + x_i) \end{aligned}$
Error bound for midpoint rule	$ E_M \leq \frac{K(b-a)^3}{24n^2}$
Trapezoidal rule	$egin{aligned} \int_a^b f(x) \ dx &pprox rac{1}{2} \Delta x [f(x_0) + 2 f(x_1) + \ldots + \ 2 f(x_{n-1}) + f(x_n)] \ \Delta x &= rac{b-a}{n} \ x_i &= a + i \Delta x \end{aligned}$
Error bound for trapezoidal rule	$ E_T \leq \frac{K(b-a)^3}{12n^2}$
Simpson's rule	$\int_a^b f(x)\ dx pprox rac{1}{3}\Delta x [f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+\ldots+2f(x_{n-2})+4f(x_{n-1})+f(x_n)] \ \Delta x = rac{b-a}{n}$, n is even
Error bound for Simpson's rule	$ E_S \leq \frac{K(b-a)^5}{180n^4}$

| Trigonometric integrals

Description	Equations
Integral of odd power of cosine $(u=\sin x)$	$\int \sin^m(x) \cos^{2k+1}(x) \ dx \ = \int \sin^m(x) [\cos^2(x)]^k \ dx \ = \int \sin^m(x) [1 - \sin^2(x)]^k \ dx$
Integral of odd power of sine $(u=\cos x)$	$\int \sin^{2k+1}(x) \cos^n(x) \ dx = \int [\sin^2(x)]^k \cos^n(x) \sin(x) \ dx = \int [1 - \cos^2(x)]^k \cos^n(x) \sin(x) \ dx$
Integral of even power of sine and cosine use trig identities	$egin{aligned} \sin^2(x) &= rac{1}{2}(1-\cos(2x)) \ \cos^2(x) &= rac{1}{2}(1+\cos(2x)) \ \sin(x)\cos(x) &= rac{1}{2}\sin(2x) \end{aligned}$

Description	Equations
Integral of even power of secant $(u= an x)$	$\int an^m(x) \sec^{2k}(x) \ dx \ = \int an^m(x) [\sec^2(x)]^{k-1} \sec^2(x) \ dx \ = \int an^m(x) [1 + an^2(x)]^{k-1} \sec^2(x) \ dx$
Integral of odd power of tangent $(u=\sec x)$	$egin{aligned} &\int tan^{2k+1}(x)\sec^n(x)\ dx \ &= \int [an^2(x)]^k \sec^{n-1}(x)\sec(x)\tan(x)\ dx \ &= \int [\sec^2(x)-1]^k \sec^{n-1}(x)\sec(x)\tan(x)\ dx \end{aligned}$
Trig identity for solving $\int \sin(mx)\cos(nx)\ dx$	$\sin A\cos B=rac{1}{2}[\sin(A-B)+\sin(A+B)]$
Trig identity for solving $\int \sin(mx) \sin(nx) \ dx$	$\sin A \sin B = rac{1}{2}[\cos(A-B)-\cos(A+B)]$
Trig identity for solving $\int \cos(mx) \cos(nx) \ dx$	$\cos A \cos B = \frac{1}{2} [\cos(A-B) + \cos(A+B)]$

| Trigonometric substitution

Expression	Substitution	Trigonometric Identity
$\sqrt{a^2-x^2}$	$x=a\sin heta$	$1-\sin^2\theta=\cos^2\theta$
$\sqrt{a^2+x^2}$	$x=a\tan\theta$	$1+\tan^2\theta=\sec^2\theta$
$\sqrt{x^2-a^2}$	$x=a\sec\theta$	$\sec^2\theta - 1 = \tan^2\theta$

| Improper integrals

Description	Equations
Improper integrals with single one-side infinite intervals	$\int_a^\infty f(x) \ dx = \lim_{t o\infty} \int_a^t f(x) \ dx \ \int_{-\infty}^b f(x) \ dx = \lim_{t o-\infty} \int_t^b f(x) \ dx$
Improper integrals with single two-side infinite intervals	$\int_{-\infty}^{\infty} f(x) \ dx \ = \int_{-\infty}^{a} f(x) \ dx + \int_{a}^{\infty} f(x) \ dx$
Convergence and divergence of improper integrals of power functions	$\int_{1}^{\infty} rac{1}{x^{p}} dx$ convergent if $p>1$ divergent if $p\leq 1$
Improper integrals with discontinuous integrand on one side	$\int_a^b f(x) \ dx = \lim_{t o b^-} \int_a^t f(x) \ dx \ \int_a^b f(x) \ dx = \lim_{t o a^+} \int_t^b f(x) \ dx$
Improper integrals with discontinuous integrand in the middle \boldsymbol{c}	$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$
Comparison theorem $(f(x) \geq g(x) \geq 0, x \geq a)$	(a) If $\int_a^\infty f(x)\ dx$ is convergent, then $\int_a^\infty g(x)\ dx$ is convergent. (b) If $\int_a^\infty g(x)\ dx$ is divergent, then $\int_a^\infty f(x)\ dx$ is divergent.

Applications of Integration

Description	Equations
Areas between curves	$A=\int_a^b [f(x)-g(x)]\; dx$
Volume by method of disks and washers	$V=\int_a^b A(x)\; dx$
Volume by method of cylindrical shells (rotating about y-axis)	$V=\int_a^b 2\pi x f(x) \; dx$
Average value of a function	$ar{f} = rac{1}{b-a} \int_a^b f(x) \ dx$
The mean value theorem of integrals	If f is continuous on $[a,b]$, then there exists $c\in [a,b]$ such that $f(c)=ar f=rac{1}{b-a}\int_a^b f(x)\ dx,$ $\int_a^b f(x)\ dx=f(c)(b-a)$
Arc length formula	$L=\int_a^b \sqrt{1+[f'(x)]^2}\ dx$
Arc length function	$s(x)=\int_a^x \sqrt{1+[f'(t)]^2}\ dt$
Surface area of surface of resolution about x-axis	$S=\int_a^b 2\pi f(x)\sqrt{1+[f'(x)]^2}\ dx$