Deep Learning para análise de imagens médicas: das decisões aos resultados

Me. Felipe André Zeiser

Felipe André Zeiser

- Doutorando e Mestre em Computação Aplicada pela Unisinos
 - Deep Learning
 - Imagens Médicas
 - Câncer de Mama
 - Covid
- Bacharel em Engenharia da Computação pela Unoesc Chapecó
- Intercâmbio em Engenharia Informática na FCT da NOVA de Lisboa

Agenda

- Definição de Deep Learning
- Contextualização do Problema
- Busca e Preparação de dados
- DeepBatch Model
- Decisões de Implementação
- Resultados

- As estruturas se inspiram no comportamento do cérebro humano;
- Processamento n\u00e3o linear, organizado em camadas;
- Transformar os dados em representações;

- As estruturas se inspiram no comportamento do cérebro humano;
- Processamento n\u00e3o linear, organizado em camadas;
- Transformar os dados em representações;

Contextualização do Problema

- O padrão ouro para o diagnóstico do câncer de mama é a análise histológica;
- Uma amostra do tecido suspeito é coletada;
- Passa por um processo de preparação;
- E depois é seccionado e corado Hematoxylin e Eosin (H&E).

Contextualização do Problema

- O patologista está sujeito a altas cargas de trabalho;
- Pequenas diferenças no tecido em slides histopatológicos;
- Com a digitalização é possível compartilhar os casos em forma de Whole-Slide Image (WSI);
- A literatura atual ainda possui algumas limitações, como análise de secções de WSI, escassez de datasets, ou classificam apenas as WSI.

Questão de Pesquisa

Um modelo inteligente baseado em deep learning é capaz de detectar e fornecer um diagnóstico interpretável de câncer de mama para patologistas em Whole-Slide Image com precisão comparável ao padrão ouro?

Ferramentas Úteis

Dataset Search

Papers With Code

ResearchGate

https://github.com/awesomedata/awesome-public-datasets

https://datadryad.org/

https://datasetsearch.research.google.com/

https://www.kaggle.com/

https://paperswithcode.com/

https://www.researchgate.net/

https://www.cancerimagingarchive.net/

https://registry.opendata.aws/

https://www.visualdata.io/

https://lionbridge.ai/datasets/

Seleção dos Dados

Dataset	WSI	Number of images	Lesions types	Patients	Annotation type	
BACH (B)	Yes	40	normal, benign, in situ carcinoma, invasive carcinoma	40 pixel-wise		
BreCaHAD	No	162	mitosis, apoptosis, tumor nuclei, non-tumor nuclei, tubule, and non-tubule	-	pixel-wise	
BREAKHIS	No	7,909	adenosis, fibroadenoma, phyllodes tumor, tubular adenona, carcinoma, lobular carcinoma, mucinous carcinoma and papillary carcinoma.		82	
BIOIMAGING 2015	No	269	normal, benign,in situ carcinoma and invasive carcinoma	200		
CAMELYON17	Yes	1000	Normal and metastases	-	2	
HASHI	Yes	596	invasive carcinoma	596	pixel-wise	
TCGA	Yes		ductal and lobular neoplasms, epithelial neoplasms, complex epithelial neoplasms, adenomas and adenocarcinomas, cystic and mucinous neoplasms, squamous cell neoplasms, fibroepithelial neoplasms, adnexal and skin appendage, basal cell neoplasms,mature b-cell lymphomas	3.816	patient level, clinical data, outcomes, genetic expressions, and others	
UCSB Breast Cancer Cell	No	58	normal and malignant		pixel-wise	

Seleção dos Dados

Module	Dataset	WSI	Number images	of	Annotation type
	HASHI	No	195		pixel-wise
ROI Detection	BACH (B)	Yes	10		pixel-wise
	TCGA	Yes	195		-
Cell Segmentation	BACH (B)	Yes	10		pixel-wise

Фолериальнующей.

Me spending four weeks training a model to 99.9% accuracy and then getting 10% on the test set

• O que é relevante identificar?

• O que é relevante identificar?

Figure 2: Seismic sections 190, 290, 390, and 490 from the Netherlands Offshore F3 Block project. On left side the real seismic section and on the right the corresponding annotated seismic section adapted from StData-12.

• O que é relevante identificar?

Como posso fazer isso?

A Tool Kit for Natural Language Processing

DeepBatch Model

O DeepBatch combina duas U-Nets para identificação de ROI e segmentação de estruturas à nível celular precisa, permitindo assim a identificação e classificação de células de câncer de mama.

Arquitetura

ROI Detection Module

Figure 52 – Tile sampling process for the ROI Detection module. Each rectangular region is a 256×256 pixels image generated and used in the training and validation steps as a basis for data augmentation.

ROI Detection Module

Convolutional architecture for ROI Detection Module

learning rate 0.0001 batch size of 16 padding same Adam for the optimizer loss function binary cross-entropy.

Sampling Module

Sampling process from low to high magnification regions.

Cell Segmentation Module

Figure 54 – Tile sampling process for the Cell Segmentation module. (A) Tissue section at $40 \times$ magnification. (B) Segmentation produced by the ROI Detection Module. (C) Segmented tissue with tiles of 256×256 pixels.

Cell Segmentation Module

Convolutional architecture for the Cell Segmentation

learning rate 0.0001 batch size of 8 padding same Adam for the optimizer loss function (0.5 * Categorical cross-entropy) + 0.5 * (Dice-Index)

Mas como chego nessas arquiteturas?

Mas como chego nessas arquiteturas?

- Olhar para o objetivo da tarefa, por exemplo, se você for desafiado a desenvolver um sistema que identifica se uma pessoa está usando ou não uma mascara, existe a necessidade de delimitar a região na imagem com a presença desta máscara?
- Buscar em sites, como paperswithcode.com, redes que façam tarefas parecidas. Pode acelerar o processo de desenvolvimento da rede e ainda servir como ponto de partida com transfer learning;
- No nosso caso, a U-Net é uma rede frequentemente utilizada em imagens médicas para segmentação semântica.

Mas como chego nessas decisões?

Semantic Segmentation on PASCAL VOC 2012 test

- Partir de valores utilizados usualmente;
- Tentativa e erro;
- Olhando para os resultados das loss functions ou funções de perda que mensuram a qualidade da previsão.

Overfitting:

- Generalização;
- Aumento de dados;
- Diminuir o tamanho da rede;
- Dropout;
- Regularização entre as camadas.

Underfitting:

- Mais treino;
- Complexidade maior;
- Reduzir a quantidade de regularização;
- Remover algumas camadas de dropout;
- Dados mais representativos;
- Geralmente, mais dados não vão auxiliar neste caso.

Problem Type	Output Type	Final Activation Function	Loss Function
Regression	Numerical value	Linear	Mean Squared Error (MSE)
Classification	Binary outcome	Sigmoid	Binary Cross Entropy
Classification	Single label, multiple classes	Softmax	Cross Entropy
Classification	Multiple labels, multiple classes	Sigmoid	Binary Cross Entropy

Regressão linear

Classificação binária

Classificação multi-classe

(Sums to 1)

Classificação multi-classe com várias saídas

Classificação multi-classe

(Sums to 1)

Classificação multi-classe com várias saídas

Color	Red	Yellow	Green
Red			
Red	1	0	0
Yellow	1	0	0
Green	0	1	0
Yellow	0	0	1

Comparative Analysis of the Influence of Color Spaces on WSI Segmentation

- As cores presentes no WSI transmitem uma grande quantidade de informações e desempenham um papel fundamental no diagnóstico;
- Avaliamos o comportamento do ResNet50-Unet para espaços de quatro cores (RGB; HSV; YcrCb e LAB);
- Todos os modelos foram treinados por 50 épocas para o dataset BACH.

Model	Dice Index	Pixel accu.	Benign	In situ	Invasive	Background
RGB	0.6923	84.67%	78.22%	82.63%	76.64%	91.49%
HSV	0.7085	83.85%	80.95%	72.73%	89.83 %	90.51%
YCrCb	0.6881	84.85%	71.56%	74.17%	81.84%	93.70 %
LAB	0.6979	83.80%	73.45%	75.03%	80.81%	91.75%

Comparative Analysis of the Influence of Color Spaces on WSI Segmentation

BACH case A01 with the segmentation provided by the base and the results for the CNNs: (A) RGB; (B) HSV; (C) YCrCb; (D) LAB.

ROI Detection Module

Table 16 – Results for the performance metrics in the test set for the ROI Detection Module.

		Sensitivity	Specificity	F1-Score	AUC
93.43%	91.27%	90.77%	94.03%	84.17%	0.93

BACH case A03.

ROI Detection Module

Table 16 – Results for the performance metrics in the test set for the ROI Detection Module.

		Sensitivity	Specificity	F1-Score	AUC
93.43%	91.27%	90.77%	94.03%	84.17%	0.93

TCGA case TCGA-A2-A0CZ.

Cell Segmentation Module

Table 17 - Results for the performance metrics in the test set for the Cell Segmentation Modul

		Sensitivity		F1-Score	AUC
88.23%	96.10%	71.83%	96.19%	82.94%	0.86

Figure 65 – Heat map for case A01 from BACH.

BACH case A01.

2000

width (pixels)

58

Cell Segmentation Module

Table 17 – Results for the performance metrics in the test set for the Cell Segmentation Modul

			Specificity		
88.23%	96.10%	71.83%	96.19%	82.94%	0.86

Figure 66 – Heat map for case A03 from BACH.

width (pixels)

BACH case A03.

Cell Segmentation Module

Figure 67 – Heat map for a suspected region in the BACH case A03. Region in H&E Heat map for benign regions height (pixels) 400 Heat map for in situ regions Heat map for invasive regions 100 height (pixels) 400 500

width (pixels)

100

width (pixels)

59

Discussão

Table 18 – Comparison of the DeepBatch model with the related works. *Acc* is the Accuracy, *Sen* is the Sensitivity, *Spe* is Specificity, *F1* is the F1-Score, and *AUC* is the area under the ROC

Study	Goal	Dataset	IoU	Acc	Sen	Spe	F1	AUC
Guo et al. (2019)	Pixel-level segmentation in normal and metastases in WSI with a 1:8 downsampling	Camelyon16	80.69	121	-	-	-	0.96
Roy et al. (2019)	Classification of histopathology images into normal, benign, in situ and invasive carcinoma	BACH (A)		87.00	90.00	91.48	89.85	-
Gecer et al. (2018)	Classification of WSI into non- proliferative or proliferative changes, atypical ductal hyperplasia, ductal carcinoma in situ, and invasive carcinoma	Private	ī	55.00	2	-		2
Cruz-Roa et al. (2018)	Pixel-level segmentation in normal and invasive carcinoma in WSI with a 1:32 downsampling	HASHI	76.00	-	87.00	92.00	-	0.90
Han et al. (2017)	Classification of histopathology images into adenosis, fibroadenoma, phyllodes tumor, tubular adenoma, ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma	BreakHis		94.70		-		-
Bejnordi et al. (2017b)	Classification of WSIs into normal/benign, ductal carcinoma in-situ, and invasive ductal carcinoma	Private	ž	81.30		-	-	-
Spanhol et al. (2016a)	Classification of histopathology images into benign, and malignant		-		-	-	-	-
DeepBatch model	Pixel-level segmentation of WSI in four classes: background/normal, benign, carcinoma in situ, and invasive carcinoma.	HASHI, and	88.23	96.10	71.83	96.19	82.94	0.86

Conclusão

- A metodologia é baseada no fluxo de trabalho do patologista;
- Oferecemos segmentação refinada no nível de pixel em WSI em ampliações de 40X;
- Vários conjuntos de dados reduzem a possibilidade de polarização durante o treinamento.

Trabalhos Futuros

- Uso de uma ResNet-50 pré-treinado em outros conjuntos de dados, como um classificador de patch;
- Uso de WSI em diferentes espaços de cores juntos na CNN;
- Analisar como as informações históricas, genéticas ou outras relacionadas ao paciente podem contribuir para o desempenho do modelo;
- Estudar a combinação de imagens de imunohistoquímica para diagnóstico;
- Uso de RNN para descrever o que os CNNs estão considerando;
- Métodos de estudo aplicados à análise de imagens de satélite;
- Analise a aceitabilidade do modelo na rotina do patologista.

OBRIGADO!

- felipezeiser@edu.unisinos.br
- github.com/felipezeiser
- in www.linkedin.com/in/felipezeiser

Perguntas?