4. Übung zur Komplexen Analysis

- 1. Gegeben Sei die Funktion $\Delta(w,z):=\frac{|z-w|}{|\overline{w}z-1|}, w,z\in\mathbb{E}=\{z:|z|<1\}.$
 - (a) Zeigen Sie, dass für jedes $w \in \mathbb{E}$ die Abbildung $g_w(z) := \frac{z-w}{\overline{w}z-1}, z \in \mathbb{E}$, eine Involution ist, d.h. $g_w \circ g_w = \mathrm{id}$.
 - (b) Sei $f: \mathbb{E} \to \mathbb{E}$ holomorph. Zeigen Sie, dass $\Delta(f(w), f(z)) \leq \Delta(w, z)$ für alle $w, z \in \mathbb{E}$. Hinweis: Betrachten Sie die Funktion $h_w := g_{f(w)} \circ f \circ g_w$.
- 2. Entwickeln Sie $f(z) = \frac{1}{1+z^2}$ in Laurentreihen auf $\{|z| < 1\}$ und $\{|z| > 1\}$, jeweils um $z_0 = 0$, und auf $\{|z-i| > 2\}$ um $z_0 = i$.
- 3. Sei G ein Gebiet und f holomorph auf $G\setminus\{a\}$. Zeigen Sie, dass eine nicht hebbare isolierte Singularität a von f stets eine wesentliche Singularität von $e^{f(z)}$ ist.
 - Hinweis: Betrachten Sie für $g(z) = e^{f(z)}$ die sogenannte logarithmische Ableitung g'(z)/g(z). Zeigen Sie, dass wenn g eine Polstelle hat, dann hat die logarithmische Ableitungen einen Pol erster Ordnung. Daher führt die Beantwortung der Frage, ob eine Ableitung einen Pol erster Ordnung haben kann, zur Lösung.
- 4. Es sei f holomorph für $0 < |z| < r_0$. Für $0 < r < r_0$ setzen wir $M_r(f) := \max\{|f(z)| : |z| = r\}$. Man beweise:
 - (a) In 0 liegt genau dann eine hebbare Singularität von f, wenn $M_r(f)$ beschränkt bleibt bei $r \to 0$. In diesem Fall ist $M_r(f)$ eine streng monoton wachsende Funktion von r, sofern f nicht konstant ist; es gilt $\lim_{r\to 0} M_r(f) = |f(0)|$.
 - (b) In 0 liegt genau dann ein Pol von f, wenn $M_r(f) \to \infty$ bei $r \to 0$ und es ein $\ell \in \mathbb{N}$ gibt, für das $r^{\ell}M_r(f)$ beschränkt bleibt. Die Polordnung ist dann das minimale ℓ mit dieser Eigenschaft.
 - (c) In 0 liegt genau dann eine wesentliche Singularität von f, wenn $r^{\ell}M_r(f) \to \infty$ für alle $\ell \ge 0$ bei $r \to 0$.
- 5. Sei f holomorph auf $\{z : |z| > R\}$. Man sagt, dass f(z) bei ∞ eine hebbare Singularität, einen Pol bzw. eine wesentliche Singularität hat, wenn $f(\frac{1}{z})$ bei z = 0 eine solche Singularität hat. Zeigen Sie:
 - (i) Hat eine ganze Funktion bei ∞ eine hebbare Singularität, dann ist sie konstant.
 - (ii) Eine ganze Funktion hat bei ∞ einen Pol der Ordnung m genau dann, wenn sie ein Polynom m-ten Grades ist.
- 6. Bestimmen Sie alle ganzen Funktionen, welche injektiv sind.

- 7. Für geschlossene Wege $\gamma, \eta : [0,1] \to \mathbb{C}$ gibt es neben dem Homotopiebegriff, bei welchem stets die Endpunkte festgehalten werden (FEP-Homotopie, siehe VO), noch den Begriff der freien Homotopie: γ, η heißen frei homotop, wenn es eine stetige Abbildung $h : [0,1] \times [0,1] \to \mathbb{C}$ gibt, welche $h(0,\tau) = h(1,\tau)$ für alle $\tau \in [0,1]$ und $h(\cdot,0) = \gamma, h(\cdot,1) = \eta$ erfüllt.
 - (a) Geben Sie ein Beispiel einer freien Homotopie, welche keine FEP-Homotopie ist.
 - (b) Zeigen Sie: Ist $G \subseteq \mathbb{C}$ ein Gebiet und $\gamma : [0,1] \to G$ ein geschlossener Weg, dann ist γ genau dann FEP-nullhomotop, wenn γ frei-nullhomotop ist.
- 8. Sei $G \subset \mathbb{C}\setminus\{0\}$ ein einfach zusammenhängendes Gebiet. Man zeige, dass es eine holomorphe Funktion $f:G\to\mathbb{C}$ mit $e^{f(z)}=z$ für alle $z\in G$ gibt und dass dann $\{f+i\,2\pi k:k\in\mathbb{Z}\}$ die Menge aller holomorphen Funktionen auf G mit dieser Eigenschaft ist ("Zweige des Logarithmus" auf G).