

Questions

3

1. The For the circuit below, determine

a) volt), too, cup is initially uncharged. (or the circuit was opened for a largetime before too)

() Initial condition at t=0

$$V_{c}(0) = V_{c}(0^{+}) = O[v] = V_{c}(0) \quad \text{the switch was opened}$$
(2) Final condition at t=00 (Stendy state)

⇒ Cap's two plates charging status > Equitibrium! > no current 1=0 > open circuite

D see polarity.

O Substitute D to C
$$2-2V_c-2\frac{d}{dt}V_c+V_c+\frac{d}{dt}V_c$$

Answer: (6) from (0) & (2)
$$V_{c}(0) = 0 = k_{1} + k_{2}) \Rightarrow k_{1} = \frac{2}{3}, k_{2} = \frac{2}{3}$$

$$V_{c}(0) = \frac{2}{3} = k_{1}$$

(1) $V_c(t) = \frac{2}{3} (1 - e^{-\frac{t}{2}})$ (V) for t > 0.

c) $v_c(t)$, t>0 if the capacitance is 0.25F

3. For the circuit shown, the switch moves from position A to position B at time t = 0. Find v(t), t>0.

for t (0, interal condition.

(3)

$$V(\forall) = 3x3 = 9 V.$$

(3)

For the circuit shown, the switch closes at time t = 0.

a) Write the differential equation governing i(t), t>0.

where VL(t)= L. f. T(t)

b) Determine initial (t = 0) and final $(t \to \infty)$ conditions on the current i(t). You may assume that no energy is stored in the inductor before t=0.

Off the switch was opened for a long time
$$\Rightarrow$$
 $i(0) = 0$ A. for too \bigcirc find when $t \to \infty$ $= i(\infty) \Rightarrow \text{an inductor} \Rightarrow \text{short}$
 $5 \quad \bigcirc 43 \quad 6 \quad \bigcirc (\infty) \Leftrightarrow 5 \quad \bigcirc 34 \quad \bigcirc 36 \quad \bigcirc (\infty)$
 $\Rightarrow \quad i(\infty) = 5 \times \frac{4}{4+6} = 2 \quad A \quad for \quad 1 \to \infty$

Answer:

c) Find i(t), t>0.

(a) Find (10), 50.

(b) Sol form:
$$\overline{i}(t) = k_1 + k_2 \cdot e^{-t/L}$$
.

(c) From (a). $|0| = \frac{1}{ct}\overline{i}(t) + 5\overline{i}(t)| \Rightarrow 2 = \int_{0}^{\infty} \frac{1}{ct}\overline{i}(t) + \overline{i}(t)|$

(d) Flow (a). $|0| = \frac{1}{ct}\overline{i}(t) + 5\overline{i}(t)| \Rightarrow 2 = \int_{0}^{\infty} \frac{1}{ct}\overline{i}(t) + \overline{i}(t)|$

(e) Flow (a). $|0| = \frac{1}{ct}\overline{i}(t) + 5\overline{i}(t)| \Rightarrow 2 = \int_{0}^{\infty} \frac{1}{ct}\overline{i}(t) + \overline{i}(t)|$

(f) Flow (a). $|0| = \frac{1}{ct}\overline{i}(t) + 5\overline{i}(t)| \Rightarrow 2 = \int_{0}^{\infty} \frac{1}{ct}\overline{i}(t) + \overline{i}(t)|$

(g) Plug in $\overline{i}(\infty)$, $\overline{i}(\infty)$, $\overline{i}(\infty)$ to (ii). $\overline{i}(\infty) \Rightarrow k_1 + k_2 \cdot e^{-t/L} = 2 \Rightarrow k_1 = 2$

Answer: $\overline{i}(\infty) \Rightarrow k_1 + k_2 \cdot e^{-t/L} = 0 \Rightarrow k_2 = -2$

(d): $\overline{i}(t) = 2(1 - e^{-5t})$
(A) for $t > 0$

5. For the circuit below, determine the differential equation relating $V_{out}(t)$ and $V_{in}(t)$.

$$\left(\frac{V_{\text{in}} - \frac{V_{\text{out}}}{2}}{6} = \frac{1}{12} \cdot \frac{d}{dt} \left(\frac{1}{2} V_{\text{out}}\right) + \frac{\left(\frac{1}{2} V_{\text{out}} - V_{\text{out}}\right)}{12}\right) \times \mathbb{R}$$

6)
$$2(V_{in} - \frac{V_{out}}{2}) = \frac{1}{2} \frac{1}{2} \frac{1}{2} V_{out} + \frac{1}{2} V_{out} - \frac{1}{2} \frac{1}{2} \frac{1}{2} V_{out} + \frac{1}{2} \frac{1}{2} \frac{1}{2} V_{out}$$

6. Determine the differential equations relating V_{out} and V_{in} for the circuit below.

3. Determine the differential equations relating Vout and Vin for the circuit below.

3 KCL wt V-

$$\frac{V_{\text{in}}-0}{5}=\overline{1}L \qquad \overline{1}L=\frac{V_{\text{in}}}{5}.$$

1 Redraw the feel-back loop.

8 KVL Dr ic Loop.

1 plug in 10 to 1