Title

D. Zack Garza

January 3, 2020

Contents

L	. Appendix		1
	1.1	Undergraduate Analysis Review	1
	1.2	Big Counterexamples	2
		1.2.1 For Limits	2
		1.2.2 For Convergence	3
	1.3	Errata	4

1 Appendix

An alternative characterization of **uniform continuity**:

$$\|\tau_y f - f\|_u \to 0 \text{ as } y \to 0$$

Lemma: Measurability is not preserved by homeomorphisms.

Counterexample: there is a homeomorphism that takes that Cantor set (measure zero) to a fat Cantor set

1.1 Undergraduate Analysis Review

• Some inclusions on the real line:

Differentiable with a bounded derivative \subset Lipschitz continuous \subset absolutely continuous \subset uniformly continuous \subset continuous

Proofs: Mean Value Theorem, Triangle inequality, Definition of absolute continuity specialized to one interval, Definition of uniform continuity

- Bolzano-Weierstrass: Every bounded sequence has a convergent subsequence.
- Heine-Borel:

$$X \subseteq \mathbb{R}^n$$
 is compact $\iff X$ is closed and bounded.

- Baire Category Theorem: If X is a complete metric space, then
- For any sequence $\{U_k\}$ of open, dense sets, $\bigcap_k U_k$ is also dense.

- X is not a countable union of nowhere-dense sets
- Nested Interval Characterization of Completeness: \mathbb{R} being complete \implies for any sequence of intervals $\{I_n\}$ such that $I_{n+1} \subseteq I_n$, $\bigcap I_n \neq \emptyset$.
- Convergence Characterization of Completeness: \mathbb{R} being complete is equivalent to "absolutely convergent implies convergent" for sums of real numbers.
- Compacts subsets $K \subseteq \mathbb{R}^n$ are also sequentially compact, i.e. every sequence in K has a convergent subsequence.
- Urysohn's Lemma: For any two sets A, B in a metric space or compact Hausdorff space X, there is a function $f: X \to I$ such that f(A) = 0 and f(B) = 1.
- Continuous compactly supported functions are
 - Bounded almost everywhere
 - Uniformly bounded
 - Uniformly continuous

Proof:

- Uniform convergence allows commuting sums with integrals
- Closed subsets of compact sets are compact.
- Every compact subset of a Hausdorff space is closed
- Showing that a series converges: (Todo)

1.2 Big Counterexamples

1.2.1 For Limits

- ullet Differentiability \Longrightarrow continuity but not the converse:
 - The Weierstrass function is continuous but nowhere differentiable.
- f continuous does not imply f' is continuous: $f(x) = x^2 \sin(x)$.
- Limit of derivatives may not equal derivative of limit:

$$f(x) = \frac{\sin(nx)}{n^c}$$
 where $0 < c < 1$.

- Also shows that a sum of differentiable functions may not be differentiable.
- Limit of integrals may not equal integral of limit:

$$\sum \mathbb{1}\left[x=q_n\in\mathbb{Q}\right].$$

• A sequence of continuous functions converging to a discontinuous function:

$$f(x) = x^n \text{ on } [0, 1].$$

• The Thomae function (todo)

1.2.2 For Convergence

- Notions of convergence:
 - 1. Uniform
 - 2. Pointwise
 - 3. Almost everywhere
 - 4. In norm

Uniform \implies pointwise \implies almost everywhere.

See Section 17.3.

Almost everywhere convergence does not imply L^p convergence for any $1 \leq p \leq \infty$

See notes section 1

Sequences $f_k \stackrel{a.e.}{\to} f$ but $f_k \not\stackrel{L^p}{\to} f$:

• For $1 \le p < \infty$: The skateboard to infinity, $f_k = \chi_{[k,k+1]}$.

Then $f_k \stackrel{a.e.}{\rightarrow} 0$ but $||f_k||_p = 1$ for all k.

Converges pointwise and a.e., but not uniformly and not in norm.

• For $p = \infty$: The sliding boxes $f_k = k \cdot \chi_{[0,\frac{1}{k}]}$.

Then similarly $f_k \stackrel{a.e.}{\to} 0$, but $||f_k||_p = 1$ and $||f_k||_\infty = k \to \infty$

Converges a.e., but not uniformly, not pointwise, and not in norm.

The Converse to the DCT does not hold

 L^p boundedness does not imply a.e. boundedness.

I.e. it is not true that $\lim \int f_k = \int f$ implies that $\exists g \in L^p$ such that $f_k < g$ a.e. for every k.

3

Take

$$\bullet \ b_k = \sum_{j=1}^k \frac{1}{j} \to \infty$$

$$\bullet \ f_k = \chi_{[b_k,b_{k+1}]}$$

Then

$$\bullet \ f_k \stackrel{a.e.}{\to} f = 0,$$

$$\bullet \int f_k = \frac{1}{k} \to 0 \implies ||f_k||_p \to 0,$$

•
$$0 = \int f = \lim \int f_k = 0$$

• But
$$g > f_k \implies g > \|f_k\|_{\infty} = 1$$
 a.e. $\implies g \not\in L^p(\mathbb{R})$.

1.3 Errata

• Equicontinuity: If $\mathcal{F} \subset C(X)$ is a family of continuous functions on X, then \mathcal{F} equicontinuous at x iff

$$\forall \varepsilon > 0 \ \exists U \ni x \text{ such that } y \in U \implies |f(y)f(x)| < \varepsilon \quad \forall f \in \mathcal{F}.$$

- Arzela Ascoli 1: If \mathcal{F} is pointwise bounded and equicontinuous, then \mathcal{F} is totally bounded in the uniform metric and its closure $\overline{\mathcal{F}} \in C(X)$ in the space of continuous functions is compact.
- Arzela Ascoli 2: If $\{f_k\}$ is pointwise bounded and equicontinuous, then there exists a continuous f such that $f_k \stackrel{u}{\to} f$ on every compact set.

Example: Using Fatou to compute the limit of a sequence of integrals:

$$\lim_{n\to\infty}\int_0^\infty \frac{n^2}{1+n^2x^2}e^{-\frac{x^2}{n^3}}dx\stackrel{\mathrm{Fatou}}{\geq} \int_0^\infty \lim_{n\to\infty} \frac{n^2}{1+n^2x^2}e^{-\frac{x^2}{n^3}}dx\to \int\infty.$$

Note that MCT might work, but showing that this is non-decreasing in n is difficult.

Lemma:

$$f_k \stackrel{a.e.}{\to} f$$
, $||f_k||_p \le M \implies f \in L^p$ and $||f||_p \le M$.

Proof: Apply Fatou to $|f|^p$:

$$\int |f|^p = \int \liminf |f_k|^p \le \liminf \int |f_k|^p = M.$$

Lemma: If f is uniformly continuous, then

$$\|\tau_h f - f\|_p \stackrel{L^p}{\to} 0$$
 for all p .

Lemma: $\|\tau_h f - f\|_p \to 0$ for every p.

- i.e. "Continuity in L^1 " holds for all L^p .
- i.e. Translation operators are continuous.

Proof: Take $g_k \in C_c^0 \to f$, then g is uniformly continuous, so

$$\|\tau_h f - f\|_p \le \|\tau_h f - \tau_h g\|_p + \|\tau_h g - g\|_p + \|g - f\|_p \to 0.$$

Lemma: For $f \in L^p$, $g \in L^q$, f * g is uniformly continuous.

Proof: Use Young's inequality

$$\|\tau_h(f*g) - f*g\|_{\infty} = \|(\tau_h f - f)*g\|_{\infty} \le \|\tau_h f - f\|_p \|g\|_q \to 0.$$

Lemma: If $\int f\phi = 0$ for every $\phi \in C_c^0$, then f = 0 almost everywhere.

Proof: Let A be an interval, choose $\phi_k \to \chi_A$, then $\int f \chi_A = 0$ for all intervals. So this holds for any Borel set A. Then just take $A_1 = \{f > 0\}$ and $A_2 = \{f < 0\}$, then $\int_{\mathbb{R}} f = \int_{A_1} f + \int_{A_2} f = 0$.