Formula sheet

Pipelining

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction

Speedup = $\frac{\text{Pipeline depth}}{1 + \text{Pipeline stall cycles per instruction}}$

(can be used with ideal/balanced pipelining conditions)

Power and Performance

Energy_{workload} = average power x execution time for the workload

$$Energy_{dynamic} \propto 1/2 \times Capacitive load \times Voltage^2$$

 $Power_{dynamic} \propto 1/2 \times Capacitive load \times Voltage^2 \times Frequency switched$

$$Power_{static} \propto Current_{static} \times Voltage$$

Memory hierarchy

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle time

Memory stall cycles = Number of misses
$$\times$$
 Miss penalty
= IC $\times \frac{\text{Misses}}{\text{Instruction}} \times \text{Miss penalty}$

=
$$IC \times \frac{Memory\ accesses}{Instruction} \times Miss\ rate \times Miss\ penalty$$

$$\frac{Misses}{Instruction} = \frac{Miss\ rate \times Memory\ accesses}{Instruction\ count} = Miss\ rate \times \frac{Memory\ accesses}{Instruction}$$

Average memory access time = Hit time + Miss rate \times Miss penalty

Average memory access time = Hit time_{L1} + Miss rate_{L1}
$$\times$$
 (Hit time_{L2} + Miss rate_{L2} \times Miss penalty_{L2})

Average memory stalls per instruction = Misses per instruction_{L1} × Hit time_{L2} + Misses per instruction_{L2} × Miss penalty_{L2}