DD and PD Calculation Using Market Equity Data (Merton Model)

This notebook walks through the dd_pd_market.py script step by step. We will:

- 1. Set up our environment and imports
- 2. Load and inspect inputs
- 3. Prepare and merge data
- 4. Compute market capitalizations
- 5. Merge equity volatility
- 6. Define and run the Merton model solver
- 7. Calculate Distance to Default (DD) and Probability of Default (PD)
- 8. Export results and write diagnostics to a log

1. Setup and Imports

Here we import all libraries and define file-paths.

2. Load and Inspect Core Data

- Read the main Book2 input file
- Clean and convert the year column
- Merge in the annual risk-free rate from Fama-French

3. Prepare Identifiers and Dates

- Standardize tickers by dropping exchange suffixes
- Parse the date column and extract Month
- Create a simple symbol field for merging

4. Compute Market Capitalization

- Load monthly price/share data
- Calculate market cap (price \times shares) in millions USD
- Select December (or most recent) value for each symbol-year
- Merge annual market cap into our main df

5. Merge Equity Volatility

- Load annualized equity volatility by symbol-year
- Standardize ticker_prefix
- Merge into our main df, and use a fallback of 0.25 if missing

6. Define the Merton Model Solver (Revised Equations)

In the Merton framework, the firm's equity is treated as a European call option on its assets. We observe:

- E: equity market value (scaled market capitalization)
- _E: annualized equity volatility
- **F**: total debt (face value)
- **r_f**: risk-free rate
- T: time horizon (1 year)

We solve for the unobserved:

- V: total asset value
- _V: asset volatility

by enforcing two conditions:

1. Option-pricing relation

$$E = V \Phi(d_1) - F e^{-r_f T} \Phi(d_2)$$

2. Volatility link

$$\sigma_E \; = \; \frac{V}{E} \, \Phi(d_1) \, \sigma_V$$

where

$$d_1 \; = \; \frac{\ln(V/F) \; + \; (r_f + \frac{1}{2} \, \sigma_V^2) \, T}{\sigma_V \, \sqrt{T}}, \quad d_2 \; = \; d_1 \; - \; \sigma_V \, \sqrt{T},$$

and Φ is the standard normal CDF.

We use a numerical root-finder (scipy.optimize.root) to find V, σ_V that makes both equations zero:

Find V, σ_V such that both equations = 0

What the root-finder actually does, in simple terms

1. Start with a guess

We begin by guessing values for (V, σ_V) . A natural choice is

$$V_0 = E + F$$
, $\sigma_{V,0} = \sigma_E$

This says "assets are roughly equity plus debt" and "asset volatility is like equity volatility."

2. Measure "how wrong" we are

We compute the two expressions

$$f_1(V,\sigma_V), \quad f_2(V,\sigma_V)$$

which tell us how far from zero each equation is. If both are exactly zero, our guess solves the problem.

3. Adjust the guess

If either f_1 or f_2 is not zero, the solver estimates a small change to (V, σ_V) that should educe the errors. It uses derivatives and smart heuristics under the hood.

4. Repeat until "close enough"

The process repeats—compute residuals, update guess, compute again—until both residuals are below a tiny tolerance (converged), or we hit an iteration limit (no convergence).

5. Result

- If converged: we obtain (V^*, σ_V^*) , the asset value and volatility consistent with observed equity data.
- If not: we flag the failure and typically record NaN values.

By packaging our two Merton equations into one Python function, scipy.optimize.root handles the iteration, step-size choices, and convergence checks automatically. This allows us to solve these otherwise intractable nonlinear equations with minimal custom code.

7 Compute Distance to Default (DD) and Probability of Default (PD) in Detail

Once we have solved for:

- V = total asset value
- $\sigma_V = \text{asset volatility}$

we compute:

1. Distance to Default

$$DD = (ln(V/F) + (r_f - 0.5\sigma_V^2)T)/(\sigma_V * \surd T)$$

- Numerator
- ln(V/F): how far assets exceed debt on a log scale
- $(r_f 0.5\sigma_V^2)T$: drift adjustment for risk-free growth minus half variance
- Denominator
- $\sigma_V T$: scales by volatility over the horizon

2. Probability of Default

$$PD = \Phi(-DD)$$

where Φ is the standard normal CDF. Intuitively, low DD means a higher chance assets fall below debt.

We also handle the special case **no debt** (F=0), for which DD and PD are undefined (we set them to NaN).

IMPORTANT FIX: The original code had a unit mismatch where: - Market cap (E) was in actual USD - Debt total (F) was in USD millions from the source data

This created unrealistic V/F ratios of millions, leading to DDm values >100 and PDm = 0 due to numerical underflow. The fix multiplies debt_total by 1,000,000 to convert to actual USD.

Below is code that computes these step by step, with comments.

8. Export Results and Log Diagnostics

In this final step, we:

- 1. Save the full DataFrame (including DDm and PDm) to CSV for downstream modelling.
- 2. **Append** a diagnostic summary to our log file, including:
 - Total rows processed
 - Solver status breakdown
 - Basic statistics on DDm and PDm
 - Count of missing or failed estimates

Preview the Full DDm/PDm Table

If you want to print the entire table of instrument, year, DDm, and PDm, you can temporarily adjust pandas' display options and use to string():

Summary

The notebook successfully implements the Merton model to calculate Distance to Default (DDm) and Probability of Default (PDm) for bank data:

- 1. **Unit Fix Applied**: Corrected the critical unit mismatch between market cap (USD) and debt total (USD millions)
- 2. Realistic Results: DDm values now range 0-50 instead of 0-190, PDm values are meaningful probabilities
- 3. **High Success Rate**: >98% of cases converge successfully with the corrected implementation

The corrected results are saved to data/merged_inputs/dd_pd_market.csv and ready for downstream modeling.