Sri Lanka Institute of Information Technology

<u>Data Warehouse and Business Intelligence – Assignment 1 Submission</u>

Name: Andrew Asher

Reg-No: IT20220624

Batch: Year 03 Semester 01

Contents

1.	Data	set selection	3		
2.	Prep	aration of data source	4		
3.	Solution Architecture7				
4.	Data	warehouse design and development	8		
	i.	Design	8		
	ii.	Assumptions	9		
	iii.	Slowly changing dimensions	9		
5.	ETL	Development	10		
	i.	Data Extraction & Load into Staging tables			
	ii.	Data Profiling	13		
	iii.	Data Transformation and Loading	14		

1.DATA SET SELECTION

Data Set Name: AmExpert 2019 - Predicting Coupon Redemption

Provided by: kaggle.com

Source link: https://www.kaggle.com/bharath901/amexpert-2019

About Dataset:

The selected data source is a collection of transactional data.

Discount marketing and coupon usage are very widely used promotional techniques to attract new customers and to retain & reinforce loyalty of existing customers. The measurement of a consumer's propensity towards coupon usage and the prediction of the redemption behavior are crucial parameters in assessing the effectiveness of a marketing campaign.

ABC is an established Brick & Mortar retailer that frequently conducts marketing campaigns for its diverse product range. ABC's promotions are shared across various channels including email, notifications, etc. A number of these campaigns include coupon discounts that are offered for a specific product/range of products. The retailer would like the ability to predict whether customers redeem the coupons received across channels, which will enable the retailer's marketing team to accurately design coupon construct, and develop more precise and targeted marketing strategies.

Dataset contains five csv files with information about customers, Train, Items, Campaign and Transaction. Modifications were done accordingly to the data set derived from the source This data set reflects combinations between customer transactions and promotion campaigns.

- train.csv: Train data containing the coupons offered to the given customers under the campaigns
- campaign_data.csv: Campaign information for each of the campaign
- customer_demographics.csv: Customer demographic information for some customers
- customertransactiondata.csv: Transaction data for all customers for duration of campaigns in the train data
- item_data.csv: Item information for each item sold by the retailer

2.PREPARATION OF DATA SOURCE

All the data sources are provided in csv format by the web site. In preparation of data sources, some changes have done for the source format (some columns were added, separated into a another table) of the given files as converting into text files and importing csv files into a source database.

Final State of Preparation of the source data formats before Transforming data =>

- category.txt
- AmExpert_SourceDB (Source Database) Tables: -
 - dbo.Campaign
 - dbo.Item
 - dbo.Train
 - dbo.Transaction
 - dbo.CustomerDetails

ER-Diagram

- > The above diagram shows the connection between the entities in the data set.
- > Assumptions:
 - The particular transaction includes only a single item .
 - One summary report(train) summarizes many customer transactions.
 - There can be many campaign data sets in a single summary report.
 - One customer can have many transactions.

Description of the data set

Source Type	Table Name	Include			
Category.txt	Category				
		Column	Data type	Description	
		CategoryID	int	Category key	
		Name	nvarchar(50)	Category name	
		ModifiedDate	datetime	Modification date of	
				category	
AmExpert_SourceDB	Campaign				
		Column	Data type	Description	
		CampaignID	int	Campaign key	
		CampaignTpe	nvarchar(1)	Anonymized Campaign	
				Type (X/Y)	
		StartDate	datetime	Campaign Start date	
		EndDate	datetime	Campaign end Date	
	Item				
			Data type	Description	
			int	Unique id for item	
		Brand int		Unique id for item brand	
		BrandType nvarchar(50)		Brand Type	
		G . TD	• .	(local/Established)	
		CategoryID int		Item CategoryID	
	Train				
		Column	Data type	Description	
		TrainID	Int	Unique id for coupon	
		C : ID	T .	customer impression	
		CampaignID Int CouponID Int RedemptionStatus Int		Unique id for a discount	
				campaign Unique id for a discount	
				coupon	
				target) (0-Coupon not	
				redeemed,	
				1 - Coupon redeemed)	
				1 coupon reacement)	

Transactio	on		
	Column	Data type	Description
	TransactionID	int	Unique id for transaction
	CustomerID	int	Unique id for a customer
	ItemID	int	Unique id for an item
	TrainID	int	Unique id for an train
	Date	datetime	Date of Transaction
	Quantity	int	Quantity of item bought
	SellingPrice	money	Sales value of the
		-	transaction
	OtherDiscount	money	Discount from other
		-	sources such as
			manufacturer
			coupon/loyalty card
	CouponDiscount	money	Discount availed from
			retailer coupon
Customer			
	Column	Data type	Description
	CustomerID	int	Unique id for a customer
	Name	nvarchar(20)	Customer name
	Gender	nvarchar(1)	Gender of customer
	AgeRange	nvarchar(50)	Age range of customer
			family in years
	MaritalStatus	nvarchar(50)	Married/Single
	City	nvarchar(50)	City name
	Phone	nvarchar(25)	Contact number
	Rented	int	0 - not rented
			accommodation, 1 - rented
			accommodation
	FamilySize	int	Number of family members
	NoOfChild	int	Number of children in the
			family
	IncomeBracket	int	Label Encoded Income
			Bracket (Higher income
			corresponds to higher
			number)

3.SOLUTION ARCHITECTURE

Figure 2: High-level BI Solution Architecture

As the figure 2 shows for the ETL processing, initially

AmExpert_SourceDB: Source Database,

category.txt: Text file,

used for the data extraction to the Staging Destination.

4.DATA WARE HOUSE DESIGN & DEVELOPMENT

i. Design

The AmExpert_DW (ware house) is designed according to the given below snowflake schema with one fact table (dbo.FactTransaction) and six dimension tables including Date dimension.

Figure 3: Snowflake schema

Hierarchies

- DimCategory is applied as a hierarchical dimension of DimItem table.
- DimCampaign is applied as a hierarchical dimension of DimTrain table.

• Calculation

- Total payment is calculated in dbo.FactTransaction.Total

(([SellingPrice]-([OtherDiscount]+[CouponDiscount]))*[Quantity])

ii. Assumptions

- dbo.DimDate is added to the Data Warehouse for better performance.
- dbo.Transaction is used in creating the fact table.
- The transactions per customer was considered as the grain when designing.

iii. Slowly changing dimensions

• Customer Details were considered as a slowly changing dimension

Dimension table	Attributes
DimCustomerDeails	MaritalStatus (changing attribute)
	PhoneNumber (changing attribute)
	AgeRange (Hostorical)
	City (Hostorical)

5.ETL DEVELOPMENT

- i. Data Extraction & Load into Staging tables
 - Data Extraction is done by using the provided data sources mentioned above in Visual Studio 2015 (Data Tool) development environment. The text file and the source database were used here.
 - Initially, OLE DB SOURCE (for source database) or FLAT FILE SOURCE (for flat files txt) is used to extract data for the Staging criteria. In this step developer is able to select the columns what would be included in the Staging from available data columns. As the next step of Staging, OLE DB DESTINATION has applied here to storing data in the Staging tables of AmExpert_Staging.

Campaign data is extracted from the Campaign table in the source database and inserted to the CampaignStaging table

Item data is
extracted from
the Item table in
the source
database and
inserted to the
ItemStaging table

Train data is
extracted from
the Train table in
the source
database and
inserted to the
TrainStaging table

Category data is
extracted from
the category table
in the text file and
inserted to the
CategoryStaging
table

transaction data is extracted from the Transaction table in the source database and inserted to the TransactionStaging table

Customer data is extracted from the Customer Details table in the source database and inserted to the CustomerStaging table

The Control Flow of 'Extract Data and Load into Staging' Step can illustrate as the give figure.

Staging Tables created and values inserted

ii. Data Profiling

Data Profiling provides the means of analyzing large amount of data using different kind of processes. In this step, null values, repeated values and quality of the data is checked.

- Every staging table is profiled and saved in a selected location.
- As the figure shows, after the Staging step doing this task shows the things what the developer has to consider about the data which are stored in staging table and the developer is able to identify the issues with staging data by data profiling (such as null values).
- The given figure illustrated the complete part of Data Profiling relevant to the Staging.

iii. Data Transformation and Loading

• Data Transformation is developed according to the dimensional modeling designed above.

In this step, the Dimension Tables created in AmExpert_DW are loaded with the data of relevant staging tables.

- Category data is loaded to the DimCategory
- ➤ UpdateDimCategory procedure is used to check whether the data inserted or not.

```
SQLQuery5.sql - DE...GQ1VL\krushi (61)) 💠 🗙 SQLQuery4.sql - DE...GQ1VL\krushi (59)
    USE [AmExpert_DW]
    /***** Object: StoredProcedure [dbo].[UpdateDimCategory] Script Dat
    SET ANSI_NULLS ON
    SET QUOTED_IDENTIFIER ON
   □ ALTER PROCEDURE [dbo].[UpdateDimCategory]
    @CategoryID int,
    @Name nvarchar(20)
    @ModifiedDate datetime
  BEGIN
  if not exists (select CategorySK
    from dbo.DimCategory
    where CategoryAlternateID = @CategoryID)
   BEGIN
   insert into dbo.DimCategory
    (CategoryAlternateID, Name, SrcModifiedDate, InsertDate, ModifiedDate)
    values
     (@CategoryID, @Name, @ModifiedDate, GETDATE(), GETDATE())
    END:

—if exists (select CategorySK)

    from dbo.DimCategory
    where CategoryAlternateID = @CategoryID)
   ⊟BEGIN
    update dbo.DimCategory
    set Name = @Name,
    SrcModifiedDate = @ModifiedDate,
    ModifiedDate = GETDATE()
    where CategoryAlternateID = @CategoryID
    END:
```


- ➤ UpdateDimItem procedure is used to check whether the data inserted or not.
- > Sort and merge transformation tasks are used.
- ➤ Item data sorted according to the category ID , and category data extracted from the category dimensional table and sorted according to the category ID and merged by Mergr Join component.
- Item data is loaded to the DimItem table.

- ➤ Campaign data is loaded to the DimCampaign table.
- > UpdateDimCampaign procedure is used to check whether the data inserted or not.

- ➤ LookUp transformation task is used.
- > Train data is loaded to the DimTrain table.
- > UpdateDimTrain procedure is used to check whether the data inserted or not.

Loading Slowly Changing Dimension

- DimCustomerDetails is the slowly changing dimension in this dimensional modeling.
- In order to load data to Dimension table, the slowly changing dimensions (historical) have two specific columns as StartDate & EndDate to ensure that the data is valid at the moment.
- slowly changing dimension wizard let the developer to select the Dimension table, Business keys of the dimension and what would be the slowly changing attributes.

- ➤ Initially data cleansing is done in order to remove null values from the data source table.
- ➤ Based on data profiling result, null values from gender column, and marital status column were removed.
- As mentioned earlier under assumptions, customer details were considered as slowly changing details.
- The below mentioned columns were set as changing attributes:
 - 1. Marital status (changing)
 - 2. Phone number (changing)
 - 3. Age range (historical)
 - 4. City (historical)

After extracting data from the Customer staging table, it was sorted according to the customer id and as it was identified as a slowly changing dimension, it was connected as shown above and loaded data to the Customer dimension table.

Load data to Fact table

- The final step of Transformation & Loading is load data to fact table. According to the dimensional model, TransactionStaging table is used to insert values into DimTransaction table.
- FactTransaction table has one date key which are related to Date Dimension as TransactionDateKey.
- After loading to all the dimensions, lastly data was loaded to the fact table. The below steps were followed:
- 1. Data extracted from the customer transaction staging
- 2. Join operation is done for the date using look up.
- 3. Join operation is done for the customer using look up.
- 4. Join operation is done for the train using look up.
- 5. Join operation is done for the Item using look up.
- 6. insert and modified date were derived.
- 7. Fact details loaded to the DimTransaction table.

Fact details were added to the FactTransaction table.