UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS EISICAS V MATEMATICAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ECUACIONES DIFERENCIALES ORDINARIAS (MAT. 521218)

PRACTICA $N^{\circ}6$ (Aplicaciones mecánicas: Primera Parte).

Problema 1. Una masa de 3 kg está unida a un resorte con rigidez k = 48N/m. La masa se desplaza 1/2m a la izquierda del punto de equilibrio y recibe una velocidad de 2m/s hacia la derecha. La fuerza de amortiguamiento es despreciale. Determine la ecuación de movimiento de la masa junto con su amplitud, periodo y frecuencia. ¿Cuánto tiempo después de su liberación pasa la masa por su posición de equilibrio?.

Problema 2. Una masa de 2kg está unida a un resorte con rigidez k = 50N/m. La masa se desplaza 1/4m a la izquierda del punto de equilibrio y recibe una velocidad de 1m/s hacia la izquierda. Desprecie el amortiguamineto y determine la ecuación de movimiento de la masa junto con su amplitud, periodo y frecuencia. ¿Cuánto tiempo después de su liberación pasa la masa por su posición de equilibrio (*)

Problema 3. El movimiento de un sistema masa-resorte con amortiguamiento está descrito por

$$y''(t) + by'(t) + 16y(t) = 0,$$

$$y(0) = 1, \quad y'(0) = 0.$$

Determine la ecuación de movimiento y bosqueje su gráfica para b = 0 y b = 6. (*)

Problema 4. Una masa de 1/8kg está unida a un resorte con rigidez 16N/m. La constante de amortiguamiento para el sistema es 2N-s/m. Si la masa se mueve 3/4m a la izquierda del punto de equilibrio y recibe una velocidad inicial de 2m/s hacia la izquierda, determine la ecuación de movimiento de la masa junto con su factor de amortiguamiento, cuasiperiodo y cuasifrecuencia. (*)

Problema 5. Una masa de 20kg está unida a un resorte con rigidez 200N/m. La constante de amortiguamiento para el sistema es 140N - s/m. Si la msa se jala 25cm a la derecha del punto de equilibrio y recibe una velocidad inicial de 1m/2 hacia la izquierda, ¿cuándo regresa por primera vez a su posición de equilibrio?.

Problema 6. El movimiento de un sistema masa-resorte con amortiguamiento está descrito por

$$y''(t) + 4y'(t) + ky(t) = 0,$$

$$y(0) = 1, y'(0) = 0.$$

Determine la ecuación de movimiento y bosqueje su gráfica para k = 2, 4, y6.

Problema 7. Una masa de 20kg está unida a un resorte con rigidez 200N/m. La constante de amortiguamiento para el sistema es $\sqrt{[8]5}N - s/m$. Si la masa se jala 10cm a la derecha del punto de equilibrio y recibe una velocidad inicial de 2M/s hacia la derecha, ¿cuál es su máximo desplazamiento con respecto del equilibrio?. (*)

Problema 8. Una masa de 1/4kg está unida a un resorte con rigides 8N/m. La constante de amortiguamiento para el sistema es 2N - s/m. Si la masa se empuja 50cm a la izquierda del punto de equilibrio y recibe una velocidad inicial de 2m/s hacia la izquierda, ¿cuál es su máximo desplazamiento con respecto del equilibrio?.

Problema 9. Para el sisterma subamortiguado del ejemplo 3, muestre que los instantes en que la curva solución en (33) toca a las curvas exponenciales $\pm \sqrt{7/12}e^{-2t}$ no son los mismos valores de t para los que la función y(t) alcanza sus extremos relativos. (*)

Nota: El ejemplo citado se refiere a el PVI: y''(t)+4y'(t)+16y(t)=0; y(0)=-1/2, y'(0)=-1. cuya solución es:

$$y(t) = \sqrt{7/12}e^{-2t}sen(2\sqrt{3t} + \phi).$$

Entonces el problema se trata de ver que si $y(t) = \sqrt{7/12}e^{-2t}$, para un tiempo que llamo t_0 , entonces debe ser que los extremos relativos de y(t) no deben obtenerse para ese t_0 .

Problema 10. Para una sistema subamortiguado, verifique que cuando $b \to 0$, el fecto de amortiguamiento tiende a la constante A y que la cuasisfrecuencia tiene de la frecuencia natural $\sqrt{k/m}/(2\pi)$. (*)

(*) Problemas a resolver en clases de Práctica con el Prof. Ayudante.

JMS/CMG/jms. 17/10/07.