Lista nr 2 z matematyki dyskretnej

- 1. Wykaż, że wśród n+1 różnych liczb naturalnych wybranych spośród 2n kolejnych liczb naturalnych (począwszy od 1) istnieje przynajmniej jedna para liczb, z których jedna liczba dzieli drugą liczbę.
- 2. Na kartce w kratkę zaznaczono 5 punktów kratowych (czyli punktów o obu współrzędnych całkowitoliczbowych). Wykaż, że środek odcinka łączącego pewne dwa spośród tych punktów jest także punktem kratowym.
- 3. Dany jest ciąg liczb naturalnych a_1, a_2, \ldots, a_n . Pokaż, że istnieją takie i oraz $j, i \leq j$, że suma $a_i + a_{i+1} + \ldots + a_j$ jest podzielna przez n.
- 4. Wykaż, że dla każdej liczby naturalnej n istnieje liczba podzielna przez n, której zapis dziesiętny złożony jest tylko z zer i jedynek.
- 5. Dla $k \ge 1$ wykaż tożsamość absorbcyjną:

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}.$$

Czy potrafisz udowodnić ja kombinatorycznie?

6. Podaj interpretację następującej tożsamości w terminach zbiorów:

$$\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{m-k}{n-k}$$

7. Wykaż prawdziwość tożsamości Cauchy'ego:

$$\binom{m+n}{r} = \sum_{i=0}^{r} \binom{m}{i} \binom{n}{r-i}.$$

Czy potrafisz udowodnić ją kombinatorycznie?

8. Udowodnij przez indukcję, że dla każdego naturalnego n zachodzi:

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}.$$

- 9. Pokaż, że liczba przedstawień liczby naturalnej n w postaci sumy k liczb naturalnych (różnych od zera) wynosi $\binom{n-1}{k-1}$, jeśli przedstawienia różniące się kolejnością składników uważamy za różne. Ile jest przedstawień liczby n w postaci sumy dowolnej ilości liczb naturalnych?
- 10. W każde pole szachownicy $n \times n$ wpisujemy jedną z liczb: -1,0,1. Następnie dodajemy do siebie liczby stojące w tej samej kolumnie, w tym samym wierszu i na tej samej przekątnej. Udowodnij, że wśród otrzymanych sum co najmniej dwie są równe.
- 11. (2p) Oblicz liczbę funkcji niemalejących postaci $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}.$
- 12. (2p) Udowodnij, że $\sum_{k=0}^{n} \binom{n}{k}^2$ równa się liczbie dróg, po których wieża może przejść z lewego dolnego rogu do prawego górnego rogu szachownicy $(n+1) \times (n+1)$ poruszając się wyłącznie do góry lub na prawo. Czy potrafisz zwinąć tę sumę?
- 13. Na okręgu zapisujemy w dowolnej kolejności liczby naturalne od 1 do 10. Pokaż, że zawsze znajdą się trzy sąsiednie, których suma wynosi przynajmniej 18.

Katarzyna Paluch