Homework 13: Metric Spaces

Assignments should be **stapled**. Problem 5 is optional.

- 1. §5.1, #5.6, 5.8.
- 2. §5.3, #5.25.
- 3. §6.1, #6.2.
- 4. (Linear Algebra) In this problem you will prove that the Euclidean metric d on \mathbb{R}^n is a metric. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, define $\mathbf{x} + \mathbf{y}$, $c\mathbf{x}$, and $\mathbf{x} \cdot \mathbf{y}$ to be the standard vector addition, scalar multiplication, and dot product respectively.
 - (a) Prove that $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z})$.
 - (b) Prove the Cauchy-Schwartz inequality: $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$. Hint: If $\mathbf{x}, \mathbf{y} \ne \mathbf{0}$, let $a = 1/||\mathbf{x}||$ and $b = 1/||\mathbf{y}||$, and use the fact that $||a\mathbf{x} \pm b\mathbf{y}||^2 \ge 0$.
 - (c) Prove that $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$. Hint: Compute $\|\mathbf{x} + \mathbf{y}\|^2$ and apply (b).
 - (d) Verify that d is a metric.
- 5. (Challenge) §5.3, #5.23.