Data statistics for query optimization

Views: maintenance and use

Lecture 6 2ID35, Spring 2015

George Fletcher

Faculteit Wiskunde & Informatica Technische Universiteit Eindhoven

8 May 2015

The life of a query

Where we've been

query evaluation

physical processing of relational operators

The life of a query: evaluation

Where we're headed

query optimization

- logical optimization
- physical optimization

Where we're headed

query optimization

- logical optimization
- physical optimization
 - today: cost estimation using data statistics

- A plan is a tree of physical operators
 - i.e., operators which access and manipulate physical data

- A plan is a tree of physical operators
 - i.e., operators which access and manipulate physical data
- physical plan indicates
 - algorithm for each node
 - the way stored data is obtained (i.e., access paths)
 - the way in which data is passed between nodes
 - the order in which nodes are performed

- two parts to estimating the cost of a plan
 - for each node, estimate the cost of performing the operation
 - for each node, estimate the result size, and any properties it might have (e.g., sorted)

- two parts to estimating the cost of a plan
 - for each node, estimate the cost of performing the operation
 - for each node, estimate the result size, and any properties it might have (e.g., sorted)
- the overall estimate is obtained by combining these local estimates
 - note, however, that errors in estimates propagate exponentially ...

- two parts to estimating the cost of a plan
 - for each node, estimate the cost of performing the operation
 - for each node, estimate the result size, and any properties it might have (e.g., sorted)
- the overall estimate is obtained by combining these local estimates
 - note, however, that errors in estimates propagate exponentially ...
- keep in mind:
 - cost estimates are truly approximations
 - goal is really to just avoid the worst plans

reduction factor:

▶ the fraction of tuples which satisfy a condition
C is called the reduction factor of C

reduction factor:

- ▶ the fraction of tuples which satisfy a condition
 C is called the reduction factor of C
- ▶ collectively, the reduction factor of $C_1 \wedge \cdots \wedge C_m$ is $rf_1 \times \cdots \times rf_m$ (assuming statistical independence)

```
SELECT A1, ..., Ak
FROM R1, ..., Rn
WHERE C1 AND ... AND Cm
```

```
SELECT A1, ..., Ak
FROM R1, ..., Rn
WHERE C1 AND ... AND Cm
```

max size:

$$T_{R_1} \times \cdots \times T_{R_n}$$

```
SELECT A1, ..., Ak
FROM R1, ..., Rn
WHERE C1 AND ... AND Cm
```

max size:

$$T_{R_1} \times \cdots \times T_{R_n}$$

estimate of actual size:

$$(rf_1 \times \cdots \times rf_m) \times (T_{R_1} \times \cdots \times T_{R_n})$$

for each RA implementation, we discussed cost

- for each RA implementation, we discussed cost
- the parameters to cost were
 - input relation size (pages and/or tuples), and
 - available buffer space

- for each RA implementation, we discussed cost
- the parameters to cost were
 - input relation size (pages and/or tuples), and
 - available buffer space
- let's consider "quick-and-dirty" heuristics for estimating result size (under the assumption of uniform distribution of values)

For projection, actually computable

For projection, actually computable

• reduction factor is $\frac{\text{new tuple size}}{\text{old tuple size}}$

For projection, actually computable

- ightharpoonup reduction factor is $\frac{\text{new tuple size}}{\text{old tuple size}}$
- impacts the number of pages in output

selection

▶ let V(R, A) denote the number of distinct values appearing in attribute A of relation R

selection

- let V(R, A) denote the number of distinct values appearing in attribute A of relation R
 - by default, we choose V(R, A) = 10
 - some systems keep actual counts
 - if there is an index on R.A, then V(R,A) is equal to the number of keys

selection

- ▶ let V(R, A) denote the number of distinct values appearing in attribute A of relation R
 - by default, we choose V(R, A) = 10
 - some systems keep actual counts
 - if there is an index on R.A, then V(R,A) is equal to the number of keys
- then, the size estimate of $\sigma_{A=c}(R)$ is

$$\frac{1}{V(R,A)}T_R$$

For the size estimate of $\sigma_{A>c}(R)$

▶ if A is not an arithmetic type, then

$$\frac{1}{3}T_R$$

For the size estimate of $\sigma_{A>c}(R)$

▶ if A is not an arithmetic type, then

$$\frac{1}{3}T_R$$

else

$$\frac{highVal(A) - c}{highVal(A) - lowVal(A)} T_R$$

• for the size estimate of $\sigma_{A\neq c}(R)$

 T_R

• for the size estimate of $\sigma_{A\neq c}(R)$

 T_R

• for the size estimate of $\sigma_{C_1 \vee C_2}(R)$

$$\min \{T_r, size(\sigma_{C_1}(R)) + size(\sigma_{C_2}(R))\}$$

• for the size estimate of $\sigma_{A\neq c}(R)$

$$T_R$$

• for the size estimate of $\sigma_{C_1 \vee C_2}(R)$

$$\min \{T_r, size(\sigma_{C_1}(R)) + size(\sigma_{C_2}(R))\}$$

• for the size estimate of $\sigma_{C_1 \wedge C_2}(R)$

$$rf_{C_1} \times rf_{C_2} \times T_r$$

Result size estimation: ∪

$$|R \cup S| \approx \frac{(T_R + T_S) + \max\{T_R, T_S\}}{2}$$

Result size estimation: ∪

$$|R \cup S| \approx \frac{(T_R + T_S) + \max\{T_R, T_S\}}{2}$$

$$= \frac{(2 \times \text{larger}) + \text{smaller}}{2}$$

Result size estimation: ∪

$$|R \cup S| \approx \frac{(T_R + T_S) + \max\{T_R, T_S\}}{2}$$

$$= \frac{(2 \times \text{larger}) + \text{smaller}}{2}$$

$$= \text{larger} + \frac{\text{smaller}}{2}$$

Result size estimation: ∩

For intersection $R \cap S$, the minimum result size is 0, and the max size is min{ T_R, T_S }.

Result size estimation: ∩

For intersection $R \cap S$, the minimum result size is 0, and the max size is min $\{T_R, T_S\}$. Hence,

$$|R \cap S| \approx \frac{0 + \min\{T_R, T_S\}}{2}$$

Result size estimation: ∩

For intersection $R \cap S$, the minimum result size is 0, and the max size is min $\{T_R, T_S\}$. Hence,

$$|R \cap S| \approx \frac{0 + \min\{T_R, T_S\}}{2}$$

$$= \frac{\text{smaller}}{2}$$

Result size estimation: —

For difference R - S, the minimum result size is $T_R - T_S$, and the max size is T_R .

Result size estimation: —

For difference R-S, the minimum result size is T_R-T_S , and the max size is T_R . Hence,

$$|R-S| \approx \frac{T_R + (T_R - T_S)}{2}$$

Result size estimation: —

For difference R-S, the minimum result size is T_R-T_S , and the max size is T_R . Hence,

$$|R - S| \approx \frac{T_R + (T_R - T_S)}{2}$$

$$= T_R - \frac{1}{2}T_S$$

Result size estimation: M

For natural join $R \bowtie S$ on attribute Y:

$$|R \bowtie S| \approx \min \left\{ T_R \frac{T_S}{V(S,Y)}, T_S \frac{T_R}{V(R,Y)} \right\}$$

Result size estimation: M

For natural join $R \bowtie S$ on attribute Y:

$$|R \bowtie S| \approx \min \left\{ T_R \frac{T_S}{V(S,Y)}, T_S \frac{T_R}{V(R,Y)} \right\}$$

since,

- if V(R, Y) = V(S, Y), then each tuple of R joins with approximately $\frac{T_S}{V(S, Y)}$ tuples of R
 - ▶ and, each tuple of S joins with approximately $\frac{T_R}{V(R,Y)}$ tuples of S

Result size estimation: M

For natural join $R \bowtie S$ on attribute Y:

$$|R \bowtie S| \approx \min \left\{ T_R \frac{T_S}{V(S,Y)}, T_S \frac{T_R}{V(R,Y)} \right\}$$

since,

- if V(R, Y) = V(S, Y), then each tuple of R joins with approximately $\frac{T_S}{V(S, Y)}$ tuples of R
 - and, each tuple of S joins with approximately $\frac{T_R}{V(R,Y)}$ tuples of S
- and if not, then we minimize the contribution of dangling tuples

Result size estimation: assumptions made

We have made a few assumptions in these estimates:

Result size estimation: assumptions made

We have made a few assumptions in these estimates:

- values across columns are not correlated
 - this assumption is hard to lift (active area of research)

Result size estimation: assumptions made

We have made a few assumptions in these estimates:

- values across columns are not correlated
 - this assumption is hard to lift (active area of research)
- values in a single column are uniformly distributed
 - this assumption can be lifted with better statistics

Histograms: simple data structures for more refined computation of reduction factors

Histograms: simple data structures for more refined computation of reduction factors

Provides approximation of value distribution of an attribute in a relation instance

- small: typically fit on one disk page
- accurate: typically, less than 5% error

Histograms: simple data structures for more refined computation of reduction factors

Provides approximation of value distribution of an attribute in a relation instance

- small: typically fit on one disk page
- accurate: typically, less than 5% error

two basic types:

- equi-width
- equi-depth

Equi-width, on column A

- divide range of values appearing in A into equal sized sub-ranges
- compute and store total number of tuples falling into each of these "buckets"

Equi-width, on column A

- divide range of values appearing in A into equal sized sub-ranges
- compute and store total number of tuples falling into each of these "buckets"
- ▶ to estimate the output cardinality of a range query on A, find starting bucket, and scan forward until ending bucket is identified
- sum number of tuples seen, assuming uniform distribution of values within buckets

Equi-depth, on column A

divide range of values appearing in A into sub-ranges, such that each bucket contains the same number of tuples

Equi-depth, on column A

- divide range of values appearing in A into sub-ranges, such that each bucket contains the same number of tuples
- use the same algorithm to approximate the number of tuples falling in a range query over A

Example. Consider a "Sales" attribute with the following actual value distribution:

Number of tuples	Sales value
10	0.5 mil
10	1 mil
10	2 mil
5	5 mil
5	7 mil
5	15 mil
2	40 mil
1	50 mil
1	70 mil
1	100 mil

Suppose we have enough space to store histograms with five buckets

Suppose we have enough space to store histograms with five buckets

equi-width		equi-depth	
value range	tuple count	value range	tuple count
0-20	45	0-0.5	10
20-40	2	0.5-1	10
40-60	1	1-2	10
60-80	1	2-7	10
80-100	1	7-100	10

Suppose we have enough space to store histograms with five buckets

equi-width		equi-depth	
value range	tuple count	value range	tuple count
0-20	45	0-0.5	10
20-40	2	0.5-1	10
40-60	1	1-2	10
60-80	1	2-7	10
80-100	1	7-100	10

The selectivity estimate of "sales ≤ 10 million" for equi-width is $\frac{23}{50} = 46\%$ and for equi-depth is

$$\frac{40}{50} = 80\%$$

Suppose we have enough space to store histograms with five buckets

equi-width		equi-depth	
value range	tuple count	value range	tuple count
0-20	45	0-0.5	10
20-40	2	0.5-1	10
40-60	1	1-2	10
60-80	1	2-7	10
80-100	1	7-100	10

The selectivity estimate of "sales ≤ 10 million" for equi-width is $\frac{23}{50} = 46\%$ and for equi-depth is $\frac{40}{50} = 80\%$ which is the actual selectivity!

Suppose we have enough space to store histograms with five buckets

	equi-depth	
tuple count	value range	tuple count
45	0-0.5	10
2	0.5-1	10
1	1-2	10
1	2-7	10
1	7-100	10
		tuple count value range 45 0-0.5 2 0.5-1 1 1-2 1 2-7

The selectivity estimate of "sales \leq 5 million" for equi-width is $\frac{12}{50} = 24\%$ and for equi-depth is

$$\frac{35}{50} = 70\%$$

Suppose we have enough space to store histograms with five buckets

equi-width		equi-depth	
value range	tuple count	value range	tuple count
0-20	45	0-0.5	10
20-40	2	0.5-1	10
40-60	1	1-2	10
60-80	1	2-7	10
80-100	1	7-100	10

The selectivity estimate of "sales \leq 5 million" for equi-width is $\frac{12}{50} = 24\%$ and for equi-depth is $\frac{35}{50} = 70\%$ which is again the actual selectivity!

Equi-depth:

- more accurate than equi-width, since buckets with frequently occurring values correspond to smaller ranges, hence giving finer approximations
- effective, simple approach to selectivity estimation, and hence quite common

Exercise. Consider a "Friends" attribute with the following actual value distribution:

Friends value	Number of tuples
0	1
1	3
2	6
3	10
4	3
5	2
6	2
7	2
8	1

Construct equi-depth and equi-width histograms over this attribute, using three buckets. What estimates do they give for the count of tuples with "friends > 4"?

Wrap up

 Cost estimation, towards choosing a good physical plan

Wrap up

- Cost estimation, towards choosing a good physical plan
- ► After the break
 - Answering queries using views

Views

Where we've been

cost estimation using data statistics

Where we're headed

query optimization:

- logical optimization
- physical optimization

Where we're headed

query optimization:

- logical optimization
- physical optimization
- next: the creation, maintenance, and use of "views"

Views

Virtual/derived relations, providing alternative logical schemata

Views

Virtual/derived relations, providing alternative logical schemata

Often desirable to provide

- security
- efficiency
- logical data independence

Data independence

Views

We've already studied a few special cases:

Histograms/statistics as views

We've already studied a few special cases:

- Histograms/statistics as views
- Indexes as (family of) views

Indexes as views

Indexes as views

predicate(r) vs. predicate(r')

We've already studied a few special cases:

- Histograms/statistics as views
- Indexes as (family of) views
 - trees as hierarchical histograms: annotate nodes with actual or approximate counts of items in subtrees

We've already studied a few special cases:

- Histograms/statistics as views
- Indexes as (family of) views
 - trees as hierarchical histograms: annotate nodes with actual or approximate counts of items in subtrees
- GMAPs

In SQL, views are created with the CREATE VIEW statement

▶ CREATE VIEW view_name AS expression

In SQL, views are created with the CREATE VIEW statement

- CREATE VIEW view_name AS expression
 - for example CREATE VIEW mng_view AS SELECT name, address, phone FROM emp WHERE title='manager'

Basic issues with views:

Basic issues with views:

- creation and implementation
- maintenance under updates
- answering queries using views: query containment

Updating views

 I_B

"Base" instance I_B and view v

"Base" instance I_B and view v

► We'd like to allow users to treat the view instance I_V just like any other (base) relation.

- We'd like to allow users to treat the view instance I_V just like any other (base) relation.
- in particular, it would be nice to support both queries and updates on I_V

Given update δ_V on view instance I_V , find appropriate update δ_B on the base data I_B

Given update δ_V on view instance I_V , find appropriate update δ_B on the base data I_B

Unfortunately, not all views are directly updateable

► INSERT INTO mng_view VALUES (Fred, Eindhoven, 1234567)

Unfortunately, not all views are directly updateable

- ► INSERT INTO mng_view VALUES (Fred, Eindhoven, 1234567)
- how to update the EMP table, if it has a salary field? What should Fred's salary be?

Another example

Suppose we have base table edge(x, y), defining a directed graph, and the view

$$hop(x, y) = edge \bowtie edge$$

(i.e., paths of length 2)

Another example

Suppose we have base table edge(x, y), defining a directed graph, and the view

$$hop(x, y) = edge \bowtie edge$$

(i.e., paths of length 2)

How should we handle an insert on *hop*? How should we materialize this in *edge*?

this is an active research topic!

 Can couple all view definitions with an appropriate "update policy", using some formalism (e.g., so-called lenses)

this is an active research topic!

- Can couple all view definitions with an appropriate "update policy", using some formalism (e.g., so-called lenses)
- ► DBA can build trigger on view, to enforce "reasonable" behavior

this is an active research topic!

- Can couple all view definitions with an appropriate "update policy", using some formalism (e.g., so-called lenses)
- ▶ DBA can build trigger on view, to enforce "reasonable" behavior

```
CREATE TRIGGER mng_trigger
INSTEAD OF INSERT ON mng_view
BEGIN
INSERT INTO emp VALUES
(NEW.name, NEW.address, NEW.phone,
'manager', $0);
END;
```

Can proceed with simple restrictions

Can proceed with simple restrictions

A view is updateable if

FROM clause has only one relation,

Can proceed with simple restrictions

A view is updateable if

- FROM clause has only one relation,
- SELECT clause contains only attributes (no expressions, etc.),

Can proceed with simple restrictions

A view is updateable if

- FROM clause has only one relation,
- SELECT clause contains only attributes (no expressions, etc.),
- any attribute not listed in SELECT can be set to NULL, and

Can proceed with simple restrictions

A view is updateable if

- FROM clause has only one relation,
- SELECT clause contains only attributes (no expressions, etc.),
- any attribute not listed in SELECT can be set to NULL, and
- no GROUP BY or HAVING clauses.

Implementing views

Implementing views

Two alternatives for view implementation

virtual views: unfold any use of views in a query

expression parse tree, using views V_1 and V_2

expression parse tree, with V_1 and V_2 replaced with their definitions

For example

 $\sigma_{address=Eindhoven}(MngView)$

For example

$$\sigma_{address=Eindhoven}(MngView)$$

becomes

$$\sigma_{address=Eindhoven}(\pi_{address,name,phone}(\sigma_{title=Manager}(Emp)))$$

Two alternatives for implementation

virtual views: unfold any use of views in a query

Two alternatives for implementation

- virtual views: unfold any use of views in a query
- materialization

precompute and store view results

- precompute and store view results
- more efficient for frequently used and/or expensive views
 - ex: the ATM view of your bank account

- precompute and store view results
- more efficient for frequently used and/or expensive views
 - ex: the ATM view of your bank account
 - ex: view which denormalizes (i.e., incurs costly joins)

Apps

query optimization

- query optimization
- data warehousing
 - integration of data
 - OLAP

- query optimization
- data warehousing
 - integration of data
 - OLAP
- data replication/archiving

- query optimization
- data warehousing
 - integration of data
 - OLAP
- data replication/archiving
- data visualization

- query optimization
- data warehousing
 - integration of data
 - OLAP
- data replication/archiving
- data visualization
- caching in networked devices

- query optimization
- data warehousing
 - integration of data
 - OLAP
- data replication/archiving
- data visualization
- caching in networked devices
- **....**

Maintaining materialized views

Issue: we must keep the view up-to-date, as base data evolves ...

View maintenance

Given update δ_B on base instance I_B , find appropriate update δ_V on materialized view I_V

View maintenance

Given update δ_B on base instance I_B , find appropriate update δ_V on materialized view I_V

- ▶ incremental vs. complete
- immediate vs. deferred

manual code

- manual code
- triggers on base relations

- manual code
- triggers on base relations

```
CREATE TRIGGER mng_update
INSERT ON emp
BEGIN
   INSERT INTO mng_view VALUES
        (NEW.name, NEW.address, NEW.phone);
END;
```

The Counting Algorithm for incremental maintenance

The Counting Algorithm for incremental maintenance

- keep track of the number of derivations of a tuple in the view
 - essentially, this is the number of duplicates of the tuple in bag-evaluation of the view query

The Counting Algorithm for incremental maintenance

- keep track of the number of derivations of a tuple in the view
 - essentially, this is the number of duplicates of the tuple in bag-evaluation of the view query
- calculate update differential δ_V for the view
 - e.g., for view $V = R \bowtie S$, and update δ_R^+ on R, we have $\delta_V = \delta_R^+ \bowtie S$, and

$$V' = V \cup \delta_V$$

The Counting Algorithm for incremental maintenance

- keep track of the number of derivations of a tuple in the view
 - essentially, this is the number of duplicates of the tuple in bag-evaluation of the view query
- calculate update differential δ_V for the view
 - e.g., for view $V = R \bowtie S$, and update δ_R^+ on R, we have $\delta_V = \delta_R^+ \bowtie S$, and

$$V' = V \cup \delta_V$$

 rules for other algebra operators given in our textbook

The Counting Algorithm

• example: for $edge = \{(a, b), (b, c), (b, e), (a, d), (d, c)\},$ we have $hop = \{(a, c), (a, e)\}$

- example: for $edge = \{(a, b), (b, c), (b, e), (a, d), (d, c)\},$ we have $hop = \{(a, c), (a, e)\}$
 - how many ways is hop(a, c) derivable?

- example: for $edge = \{(a, b), (b, c), (b, e), (a, d), (d, c)\}, \text{ we have } hop = \{(a, c), (a, e)\}$
 - how many ways is hop(a, c) derivable?
 - ▶ how many ways is hop(a, e) derivable?

- example: for $edge = \{(a, b), (b, c), (b, e), (a, d), (d, c)\},$ we have $hop = \{(a, c), (a, e)\}$
 - how many ways is hop(a, c) derivable?
 - how many ways is hop(a, e) derivable?
 - now, suppose $\delta_{edge}^- = \{(a, b)\}.$
 - then, $\delta_{hop}^- = \{(a, c), (a, e)\}.$

- example: for $edge = \{(a, b), (b, c), (b, e), (a, d), (d, c)\},$ we have $hop = \{(a, c), (a, e)\}$
 - how many ways is hop(a, c) derivable?
 - how many ways is hop(a, e) derivable?
 - now, suppose $\delta_{edge}^- = \{(a, b)\}.$
 - then, $\delta_{hop}^- = \{(a, c), (a, e)\}.$
- we know that after the update, $hop = \{(a, c)\}$.
- ▶ how to incrementally apply δ_{hop} to get the correct hop?

- example: for $edge = \{(a, b), (b, c), (b, e), (a, d), (d, c)\},$ we have $hop = \{(a, c), (a, e)\}$
 - how many ways is hop(a, c) derivable?
 - how many ways is hop(a, e) derivable?
 - now, suppose $\delta_{edge}^- = \{(a, b)\}.$
 - then, $\delta_{hop}^- = \{(a, c), (a, e)\}.$
- we know that after the update, $hop = \{(a, c)\}$.
- ▶ how to incrementally apply δ_{hop} to get the correct hop?
- check the counts of the elements of the view!

- keep track of the number of derivations of a tuple in the view
- ightharpoonup calculate update differential δ_V for the view

- keep track of the number of derivations of a tuple in the view
- \triangleright calculate update differential δ_V for the view
- for insertions (i.e., δ^+), increment counts; for deletions (i.e., δ^-), decrement counts
- if the count of a tuple goes to zero, remove it from the view

- keep track of the number of derivations of a tuple in the view
- ightharpoonup calculate update differential δ_V for the view
- for insertions (i.e., δ⁺), increment counts; for deletions (i.e., δ⁻), decrement counts
- if the count of a tuple goes to zero, remove it from the view

```
in our example hop = \{(a, c) : 2, (a, e) : 1\}, and \delta_{hop}(hop) = \{(a, c) : 1\}
```

Using views

When is a view useful for a given query?

When is a view useful for a given query?

▶ more generally, given two queries Q_1 and Q_2 , is it the case that $Q_1(I) \subseteq Q_2(I)$, for any database instance I?

When is a view useful for a given query?

- ▶ more generally, given two queries Q_1 and Q_2 , is it the case that $Q_1(I) \subseteq Q_2(I)$, for any database instance I?
- ▶ in this case we say Q_1 is contained in Q_2 , denoted $Q_1 \subseteq Q_2$

When is a view useful for a given query?

- ▶ more generally, given two queries Q_1 and Q_2 , is it the case that $Q_1(I) \subseteq Q_2(I)$, for any database instance I?
- ▶ in this case we say Q_1 is contained in Q_2 , denoted $Q_1 \subseteq Q_2$
- if $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$, then we say Q_1 and Q_2 are equivalent

recall the hop view, which we now write as

$$hop(x, y) \leftarrow edge(x, z), edge(z, y)$$

in familiar datalog notation

recall the hop view, which we now write as

$$hop(x, y) \leftarrow edge(x, z), edge(z, y)$$

in familiar datalog notation

next, consider

$$hop'(v, w) \leftarrow edge(v, u), edge(u, w), edge(w, w)$$

recall the hop view, which we now write as

$$hop(x, y) \leftarrow edge(x, z), edge(z, y)$$

in familiar datalog notation

next, consider

$$hop'(v, w) \leftarrow edge(v, u), edge(u, w), edge(w, w)$$

- ▶ is it the case that $hop \subseteq hop'$?
- ▶ is it the case that $hop' \subseteq hop$?

recall the hop view, which we now write as

$$hop(x, y) \leftarrow edge(x, z), edge(z, y)$$

in familiar datalog notation

next, consider

$$hop'(v, w) \leftarrow edge(v, u), edge(u, w), edge(w, w)$$

- ▶ is it the case that $hop \subseteq hop'$?
- ▶ is it the case that $hop' \subseteq hop$?
- how can we prove this?
 - we will restrict our discussion now to conjunctive queries (containment is undecidable for FO ...)

Homomorphisms

- ▶ a mapping from the variables of Q_2 to the variables of Q_1 , such that
 - the head of Q_2 becomes the head of Q_1
 - ightharpoonup each subgoal of Q_2 becomes some subgoal of Q_1

Homomorphisms

- ▶ a mapping from the variables of Q_2 to the variables of Q_1 , such that
 - the head of Q_2 becomes the head of Q_1
 - ightharpoonup each subgoal of Q_2 becomes some subgoal of Q_1
- it isn't necessary for every subgoal of Q_1 to be mapped onto

for example, the homomorphism φ defined as

$$x \rightarrow v,$$
 $y \rightarrow w,$
 $z \rightarrow u$

for example, the homomorphism φ defined as

$$x \rightarrow v,$$
 $y \rightarrow w,$
 $z \rightarrow u$

maps

$$hop(x, y) \leftarrow edge(x, z), edge(z, y)$$

onto

$$hop'(v, w) \leftarrow edge(v, u), edge(u, w), edge(w, w)$$

Theorem

 $Q_1 \subseteq Q_2$ if and only if there exists a homomorphism from Q_2 to Q_1

Theorem

 $Q_1 \subseteq Q_2$ if and only if there exists a homomorphism from Q_2 to Q_1

proof: (if) Let $\varphi: Q_2 \to Q_1$ be a homomorphism, and let I be a database. Every tuple $t \in Q_1(I)$ is produced by some substitution ψ_t on the variables of Q_1 that make all of $Q_1's$ subgoals true in I. Then $\psi_t \circ \varphi$ is a substitution for variables of Q_2 such that $t \in Q_2(I)$. Hence, $Q_1 \subseteq Q_2$.

Theorem

 $Q_1 \subseteq Q_2$ if and only if there exists a homomorphism from Q_2 to Q_1

proof, continued: **(only if)** Create a fresh unique atom for each variable of Q_1 , and let I_{Q_1} be the database instance consisting of all the subgoals of Q_1 , with the chosen atoms substituted for variables. Now, note that $Q_1(I_{Q_1})$ contains the "atom-head" t of Q_1 . Since $Q_1 \subseteq Q_2$, it must also be that $t \in Q_2(I_{Q_1})$.

Theorem

 $Q_1 \subseteq Q_2$ if and only if there exists a homomorphism from Q_2 to Q_1

proof, continued: Let ψ_t be the substitution of constants from I_{Q_1} for the variables of Q_2 that makes each subgoal of Q_2 a tuple of the instance I_{Q_1} and yields t as the head; and, let φ be the substitution that maps constants of I_{Q_1} to their unique corresponding variable of Q_1 . Then $\varphi \circ \psi_t$ is a homomorphism from Q_2 to Q_1 .

unfortunately, checking containment for conjunctive queries is an NP-complete problem

unfortunately, checking containment for conjunctive queries is an NP-complete problem

1. given a mapping m from Q_2 to Q_1 , we can check if m is indeed a homomorphism in polynomial time

unfortunately, checking containment for conjunctive queries is an NP-complete problem

- 1. given a mapping m from Q_2 to Q_1 , we can check if m is indeed a homomorphism in polynomial time
- 2. Let G = (V, E) be a graph and k be an integer. Consider, for set C of k new distinct variables,

$$Q_2 = out() \leftarrow \bigwedge_{(u,v) \in E} E(u,v)$$

$$Q_1 = out() \leftarrow \bigwedge_{u,v \in C, u \neq v} E(u,v)$$

Then $Q_1 \subseteq Q_2$ iff G has a k-coloring.

Fortunately, queries are often quite small, especially with respect to the size of data

Furthermore, checking query containment for acyclic conjunctive queries is *tractable* (i.e., computable in polynomial time). More on this in a later lecture ...

Exercise: answering queries with views

Consider the following conjunctive query.

$$Q : result(A) \leftarrow r(A, B), r(A, C), s(B, D, E), s(B, F, F)$$

Minimize Q. In other words, give a query Q' that (i) has the smallest possible body and (ii) is equivalent to Q. Demonstrate that your query satisfies both of these properties.

Wrap Up

Wrap up

- Cost estimation, towards choosing a good physical plan
- the construction, maintenance, and use of views

Wrap up

- Cost estimation, towards choosing a good physical plan
- the construction, maintenance, and use of views
- Next time
 - putting everything together for query optimization

Wrap up

- Cost estimation, towards choosing a good physical plan
- the construction, maintenance, and use of views
- Next time
 - putting everything together for query optimization
- Reminder: team project report due by Wednesday 13 May

Credits

Ullman 1999