Московский государственный технический университет им. Н.Э. Баумана

Кафедра «Системы обработки информации и управления»

Лабораторная работа №6 по курсу «Методы машинного обучения»

«Ансамбли моделей машинного обучения»

Выполнил:

Ильин В.С. Группа ИУ5-22М

Описание задания

Цель лабораторной работы: изучение ансамблей моделей машинного обучения.

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

- Ход выполнения лабораторной работы

Выбор датасета

total count = data.shape[0]

num cols = []

В качестве набора данных мы будем использовать набор данных по состоянию ходьбы человека - https://www.kaggle.com/vmalyi/run-or-walk. Датасет состоит из 88588 наборов значений взятых с акселерометра и гироскопа. Данные собирались на устройство iPhone 5с, который был закреплен на запястье человека(левое и правое). Информация о данных бралась каждые 10 секунд. Задача определения активности по электронным устройствам является актуальной для легкоатлетов.

```
from google.colab import drive, files
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, ca

from google.colab import files
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
os.listdir()
data = pd.read_csv('drive/My Drive/mmo_datasets/row_dataset.csv', sep=",").
```

```
for col in data.columns:

# Количество пустых значений

temp_null_count = data[data[col].isnull()].shape[0]

dt = str(data[col].dtype)

if temp_null_count>0:

    num_cols.append(col)

    temp_perc = round((temp_null_count / total_count) * 100.0, 2)

    print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'

        .format(col, dt, temp_null_count, temp_perc))

data_cleared = data

uniquevalues = np.unique(data_cleared['activity'].values)

uniquevalues

□→ array([0, 1])
```

▼ train_test_split

```
data_cleared = data_cleared.drop('date', axis=1)
data_cleared = data_cleared.drop('time', axis=1)
data_cleared = data_cleared.drop('username', axis=1)

target = data_cleared['activity']
data_cleared = data_cleared.drop('activity', axis=1)
data_cleared.head(10)
```

₽		wrist	acceleration_x	acceleration_y	acceleration_z	gyro_x	gyro_y	дy
	0	0	0.2650	-0.7814	-0.0076	-0.0590	0.0325	-2.
	1	0	0.6722	-1.1233	-0.2344	-0.1757	0.0208	0.
	2	0	0.4399	-1.4817	0.0722	-0.9105	0.1063	-2.
	3	0	0.3031	-0.8125	0.0888	0.1199	-0.4099	-2.
	4	0	0.4814	-0.9312	0.0359	0.0527	0.4379	2.
	5	0	0.4044	-0.8056	-0.0956	0.6925	-0.2179	2.
	6	0	0.6320	-1.1290	-0.2982	0.0548	-0.1896	0.
	7	0	0.6670	-1.3503	-0.0880	-0.8094	-0.7938	-1.
	8	0	0.2704	-0.8633	0.1293	-0.4173	-0.1904	-2.
	9	0	0.4690	-1.0740	0.0219	0.0388	1.1491	1.

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(
    data_cleared,
    target,
    test_size=0.2,
    random_state=1
)
```

▼ Обучение

```
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score, recall_score, fl_score
```

▼ Случайный лес

▼ Алгоритм AdaBoost

```
# n_estimators = 50 (default)
abc = AdaBoostClassifier().fit(X_train, Y_train)
predicted_abc = abc.predict(X_test)

accuracy_score(Y_test, predicted_abc)

□→ 0.9724009481882832
```

```
balanced_accuracy_score(Y_test, predicted_abc)

☐→ 0.9725393364473991

(precision_score(Y_test, predicted_abc, average='weighted'), recall_score(Y_test, predicted_abc, average='weighted'))

☐→ (0.9725063440640301, 0.9724009481882832)

f1_score(Y_test, predicted_abc, average='weighted')

☐→ 0.9724036841979047
```

Из двух представленных ансамблевых моделей с параметрами по умолчанию с задачей классификации на выбранном датасете лучше справляется модель "Случайный лес".

▼ Подбор гиперпараметров

▼ Случайный лес

```
rfc n range = np.array(range(5,100,5))
rfc_tuned_parameters = [{'n_estimators': rfc_n_range}]
rfc_tuned_parameters
[{'n estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65]
             90, 95])}]
import warnings
from sklearn.model selection import GridSearchCV
warnings.filterwarnings('ignore')
gs rfc = GridSearchCV(RandomForestClassifier(), rfc_tuned_parameters, cv=5,
                     scoring='accuracy')
gs_rfc.fit(X_train, Y_train)
    GridSearchCV(cv=5, error score='raise-deprecating',
           estimator=RandomForestClassifier(bootstrap=True, class weight=None,
                max depth=None, max features='auto', max leaf nodes=None,
                min impurity decrease=0.0, min impurity split=None,
                min_samples_leaf=1, min_samples_split=2,
                min weight fraction leaf=0.0, n estimators='warn', n jobs=None,
                oob score=False, random state=None, verbose=0,
                warm start=False),
           fit_params=None, iid='warn', n_jobs=None,
           param grid=[{'n estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40,
           90, 95])}],
           pre dispatch='2*n jobs', refit=True, return train score='warn',
           scoring='accuracy', verbose=0)
gs rfc.best params
「→ {'n estimators': 80}
```

```
plt.plot(rfc n range, gs rfc.cv results ['mean test score'])
```

[< matplotlib.lines.Line2D at 0x7f810e68e4e0 >]

▼ Алгоритм AdaBoost

```
abc_n_range = np.array(range(5,100,5))
abc_tuned_parameters = [{'n_estimators': abc_n_range}]
abc tuned parameters
    [{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65
             90, 95])}]
gs_abc = GridSearchCV(AdaBoostClassifier(), abc_tuned_parameters, cv=5,
                     scoring='accuracy')
gs abc.fit(X_train, Y_train)
GridSearchCV(cv=5, error_score='raise-deprecating',
           estimator=AdaBoostClassifier(algorithm='SAMME.R', base estimator=Non
               learning rate=1.0, n estimators=50, random state=None),
           fit_params=None, iid='warn', n_jobs=None,
           param_grid=[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40,
           90, 95])}],
           pre dispatch='2*n jobs', refit=True, return train score='warn',
           scoring='accuracy', verbose=0)
gs abc.best params
「→ {'n estimators': 95}
plt.plot(abc n range, gs abc.cv results ['mean test score'])
\Box
```

```
[<matplotlib.lines.Line2D at 0x7f810be1f320>]
0.975
0.970
```

Сравнение моделей после подбора гиперпараметров

```
Cnyuaŭhbiŭ nec

rfc_optimized = RandomForestClassifier(n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc.best_params_['n_estimators=gs_rfc
```

▼ Алгоритм AdaBoost

0.555

```
abc_optimized = RandomForestClassifier(n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_params_['n_estimators=gs_abc.best_param
```

C→ 0.9915904428152091

Подбор гиперпараметра n_estimators для моделей "Случайный лес" и "Алгоритм AdaBoost" позволил увеличить точность классификации.