Logic programming

Horn logic and resolution

Joey W. Coleman, Stefan Hallerstede

11 April 2014

Refutation

Refutation

(2)

Horn clauses

Logic programs are expressed in terms of *Horn clauses*:

$$g^1(s_1^1,\ldots,s_{m_1}^1)\wedge\ldots\wedge g^k(s_1^k,\ldots,s_{m_k}^k)\to h(t_1,\ldots,t_n)$$
 and

 These formulas are implicitly quantified over all free variables that occur in them.

$$\forall X,Y\bullet g^1(s^1_1,\ldots,s^1_{\mathfrak{m}_1}) \wedge \ldots \wedge g^k(s^k_1,\ldots,s^k_{\mathfrak{m}_k}) \to h(t_1,\ldots,t_n) \text{ (3)}$$
 and

$$\forall X \bullet h(t_1, \dots, t_n)$$

 $h(t_1,\ldots,t_n)$

where X are the variables occurring free in (2) and Y all variables occurring free in (1) different from X

• Formula (3) can be rewritten using the laws of predicate logic: $\forall X \bullet (\exists Y \bullet g^1(s_1^1, \ldots, s_m^1) \land \ldots \land g^k(s_1^k, \ldots, s_m^k)) \rightarrow h(t_1, \ldots, t_n)$

- Variables Y are therefore sometimes referred to as existential
- Formulas of the shape (1) are usually written: $h(t_1,...,t_n) \leftarrow g^1(s_1^1,...,s_m^1) \wedge ... \wedge g^k(s_1^k,...,s_m^k)$

Variants

- Because all clauses are implicitly quantified we can rename variables in a clause arbitrarily
- A clause with renamed variables is called a variant of that clause
- For example, $h(t_1,\ldots,t_n)\{Y=Z\} \text{ is a variant of } h(t_1,\ldots,t_n)$
- Variants permit to introduce fresh variables in each deduction step

Derivation

Let G be $\leftarrow A_1, ..., A_m, ..., A_k$ a query and C be $A \leftarrow B_1, ..., B_n$. Then G' is *derived* from G and C using θ if the following hold:

- A_m is an atom,
- the substitution θ is a *unifier* of A_m and A,
- G' is the query $\leftarrow (A_1, \dots, B_1, \dots, B_n, \dots, A_k)\theta$

(where θ is a unifier of atoms A and B if $A\theta = B\theta$.)

Remark.

If the list B_1, \ldots, B_n is empty, the atom A_m is simply removed. This may continue until we arrive at an empty clause denoted by \square .

Remark.

In fact, the substitution θ must be the most general one, that is, if σ also unifies $A_{\mathfrak{m}}$ and A,

then there is a substitution τ such that $\sigma = \theta \tau$.

Refutation

Refutation

Let P be a program and G a query. A *derivation* of $P \cup \{G\}$ consists of

- a (finite or infinite) sequence $G = G_0, G_1, G_2, ...$ of queries,
- a sequence C₁, C₂,... of variants of clauses of P and
- a sequence $\theta_1, \theta_2, \dots$ of unifiers

such that G_{i+1} is derived from G_i and C_{i+1} using θ_{i+1} .

A *refutation* of $P \cup \{G\}$ is a finite derivation of $P \cup \{G\}$ which has the empty clause \square as the last query in the derivation.

Unification

Algorithm for computing the unifier of two terms $\mathfrak u$ and $\mathfrak v$

```
Input: a pair of terms u \approx v
Output: a substitution \theta such that s\theta = t\theta (in solved form) or failure
\Theta := \{\mathfrak{u} \approx \mathfrak{v}\}
repeat
  select an arbitrary s \approx t from \Theta;
   if s = f(s_1, \ldots, s_n) then
      if t = X then replace s \approx t by t \approx s
      elsif t = f(t_1, ..., t_n) then replace s \approx t by s_1 \approx t_1, ..., s_n \approx t_n
      else return failure
   elsif s = X then
      if t = X then remove s \approx t
      elsif X occurs in t then return failure
      else replace all other occurrences of X in \Theta by t
until \Theta remains unchanged for any s \approx t from \Theta;
\theta := \{s = t \mid s \approx t \in \Theta\};
return θ
```

Unification example 1

Unify f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y))\approx f(g(Z),Z)\}$$

- $\rightarrow \{X \approx g(Z), g(Y) \approx Z\}$
- $\rightarrow \{X \approx g(Z), Z \approx g(Y)\}$
- $\to \{X\approx g(g(Y)), Z\approx g(Y)\}$
- \rightarrow Substitution {X = g(g(Y)), Z = g(Y)}

Unification example 2

Unify f(X, g(X), b) and f(a, g(Z), Z)

$$\{f(X, g(X), b) \approx f(a, g(Z), Z)\}$$

- $\to \{X \approx \alpha, g(X) \approx g(Z), b \approx Z\}$
- $\rightarrow \{X \approx a, a \approx Z, b \approx Z\}$
- $\rightarrow \{X \approx a, Z \approx a, b \approx Z\}$
- $\rightarrow \{X \approx a, Z \approx a, b \approx a\}$
- → failure

Unification example 3

Unify f(X, g(X)) and f(Z, Z)

$$\{f(X, g(X)) \approx f(Z, Z)\}$$

- $\rightarrow \{X \approx Z, g(X) \approx Z\}$
- $\rightarrow \{X \approx Z, g(Z) \approx Z\}$
- $\to \{X\approx Z, Z\approx g(Z)\}$
- → failure

Derivation example

Program:

```
\begin{array}{l} grandfather(X,Z) \leftarrow father(X,Y), parent(Y,Z).\\ parent(X,Y) \leftarrow father(X,Y).\\ parent(X,Y) \leftarrow mother(X,Y).\\ father(tom, eve).\\ mother(eve, tim). \end{array}
```

Query: \leftarrow grandfather(tom, X).

Refutation example

```
\leftarrow grandfather(tom, X).
    \label{eq:grandfather} \boxed{ \begin{aligned} & \text{grandfather}(X_0, Z_0) \leftarrow \text{father}(X_0, Y_0), \text{parent}(Y_0, Z_0). \\ & \text{father}(\text{tom}, Y_0), \text{parent}(Y_0, X). \end{aligned}}
\leftarrow parent(eve, X).
            parent(X_2, Y_2) \leftarrow mother(X_2, Y_2).
     mother(eve, X).
```

What are the unifiers?

Failed refutation example

```
\leftarrow \text{grandfather}(\text{tom}, X).
\text{grandfather}(X_0, Z_0) \leftarrow \text{father}(X_0, Y_0), \text{parent}(Y_0, Z_0).
\leftarrow \text{father}(\text{tom}, Y_0), \text{parent}(Y_0, X).
\text{father}(\text{tom}, \text{eve}).
\leftarrow \text{parent}(\text{eve}, X).
\text{parent}(X_2, Y_2) \leftarrow \text{father}(X_2, Y_2).
     \leftarrow grandfather(tom, X).
     grandfather(X, Z) \leftarrow father(X, Y), parent(Y, Z).
     parent(X, Y) \leftarrow father(X, Y).
     parent(X, Y) \leftarrow mother(X, Y).
                                                                                                          What are the unifiers?
     father(tom, eve).
     mother(eve, tim).
```

Refutation

Motivation

- When evaluating a logic program . . .
- ...some attempted refutations succeed, some fail.
- We want to find all succeeding refutations.
- (Actually, our real interest is in the unifiers that accompany them.)
- We have to analyse the search tree spanned . . .
- ...by the program and the query.
- Combining all refutations (failing and succeeding) . . .
- ... we get such a tree

Search tree for a logic program

```
\begin{array}{l} grandfather(X,Z) \leftarrow father(X,Y), parent(Y,Z).\\ parent(X,Y) \leftarrow father(X,Y).\\ parent(X,Y) \leftarrow mother(X,Y).\\ father(tom, eve).\\ mother(eve, tim).\\ \leftarrow grandfather(tom,X). \end{array}
```

```
\leftarrow grandfather(tom, X).
             \leftarrow father(tom, Y_0), parent(Y_0, X).
                        \leftarrow parent(eve, X).
\leftarrow father(eve, X).
                                                \leftarrow mother(eve, X).
```