CLAIMS

- 1. Method for renewing a symmetric key in a communication network comprising a device of a first type (1) containing:
- a first symmetric key (K_C) for encrypting the data (CW) to be sent to a device of a second type connected to the network; and
- said first symmetric key (K_C) encrypted $(E2\{K_N\}(K_C))$ with a second symmetric network key (K_N) known only by at least one device of a second type connected to said network.

the method comprising the steps that consist, for the device of a first type, in:

- (a) generating a random number (D);
- (b) computing a new symmetric key (K'_C) as a function of the first symmetric key (K_C) and said random number (D);
- (c) encrypting the data to be transmitted (CW) with the new symmetric key (K'_C); and
 - (d) transmitting to a device of a second type (2), via said network:
 - the data encrypted with the new symmetric key (E3{K'_C}(CW));
 - the random number (D); and
 - said first symmetric key encrypted with the second symmetric network key (E2{K_N}(K_C)).
- 2. Method according to claim 1, wherein the function (f) used to compute the new symmetric key (K'_C) is a one-way derivation function.
 - 3. Method according to claim 2, wherein the function (f) is a hash or encryption function.
 - 4. Method according to one of the previous claims, also comprising the steps consisting, for the device of a second type (2) that receives data transmitted at step (d), in:
 - (e) decrypting, with the second symmetric network key (K_N) , the encryption $(E2\{K_N\}(K_C))$ of the first symmetric key (K_C) ;
 - (f) determining, based on the first symmetric key (K_C) obtained at step (e) and on said random number (D), the new symmetric key (K'_C); and

20

30

35

5

10

15

(g) decrypting the data received with the new symmetric key (K'_{C}) thus obtained.