Nama: Marchel Adias Pradana

NPM : 21081010084

Kelas: Riset Informatika C081

Resume Jurnal

Judul	:	Dynamic Structure Learning Through Graph Neural Network
		For Forecasting Soil Moisture In Precision Agriculture
Jenis Penelitian	:	Penelitian Eksperimental
		karena penelitian tersebut melakukan percobaan untuk
		mengembangkan model Graph Neural Network (GNN) yang
		digunakan untuk memprediksi kelembaban tanah. Model ini
		diuji dengan data nyata dari pertanian presisi. Penelitian ini
		bertujuan untuk mengevaluasi seberapa efektif metode baru ini
		dalam meningkatkan prediksi kelembaban tanah, yang
		merupakan faktor penting dalam mengelola irigasi dan optimasi
		pertanian.
Penulis	:	Anoushka Vyas¹, Sambaran Bandyopadhyay²
Publish	:	Proceedings of the Thirty-First International Joint Conference on
		Artificial Intelligence AI for Good. Pages 5185-5191.
		https://www.ijcai.org/proceedings/2022/720
Latar Belakang	:	Kelembaban tanah adalah komponen penting dalam pertanian
		presisi karena berpengaruh langsung pada pertumbuhan dan
		kualitas tanaman. Peramalan kelembaban tanah yang akurat
		sangat penting untuk penjadwalan irigasi dan optimalisasi
		penggunaan air. Pendekatan tradisional seringkali kurang
		mampu menangkap korelasi spasial dan temporal yang ada pada
		kelembaban tanah.
Tujuan	:	Penelitian ini bertujuan untuk mengembangkan model Dynamic
		Graph Learning and Refinement (DGLR) yang menggunakan
		Graph Neural Networks (GNN) untuk memprediksi kelembaban

		tanah secara lebih akurat dengan menangkap korelasi spasial dan
		temporal di berbagai lokasi pertanian.
Metodologi	:	1. Dynamic Graph Construction: Model awal dibentuk
		dengan graf yang merepresentasikan lokasi geografis dan
		atributnya, seperti suhu, kelembaban relatif, dan NDVI
		(Normalized Difference Vegetation Index). Node-node
		dalam graf dihubungkan berdasarkan jarak fisik antar
		lokasi dengan penambahan self-loop untuk setiap node.
		2. Graph Neural Network (GNN): Model GNN
		digunakan untuk mengupdate embedding setiap node
		berdasarkan graf yang dinamis. Setiap node memperoleh
		fitur yang diperbarui melalui mekanisme atensi, di mana
		bobot hubungan antar node dihitung dan digunakan
		untuk memperbarui fitur tersebut.
		3. Graph Structure Refinement and Regularization:
		Struktur graf diperbarui secara dinamis selama pelatihan
		menggunakan regularisasi berbasis kesamaan fitur dan
		target, serta jarak geografis. Regularisasi ini memastikan
		bahwa node-node dengan fitur atau target yang serupa
		cenderung terhubung lebih erat dalam graf.
		4. Joint Optimization and Training: Model dilatih secara
		end-to-end menggunakan fungsi loss yang
		menggabungkan berbagai komponen, termasuk loss
		untuk prediksi kelembaban tanah, closeness graf,
		smoothness fitur, dan smoothness target.
Dataset	:	https://github.com/AnoushkaVyas/DGLR
		Dataset menggunakan metode semi-supervised learning untuk
		melatih prediksi kelembaban tanah dari:
		1. Dataset Kelembaban Tanah dari dua wilayah: Spanyol
		dan Amerika Serikat.
		2. Dataset Spanyol mencakup fitur seperti NDVI,
		koefisien backscatter dari Sentinel 1 (VV/Vertical-
		Vertical dan VH/Vertical-Horizontal) yang diambil oleh

		satelit, dan data cuaca seperti suhu rata-rata, kelembaban
		relatif rata-rata, dan total curah hujan.
		3. Dataset Amerika Serikat mencakup data seperti suhu
		tanah dan kelembaban tanah dari jaringan SCAN.
		Penggunaan metode semi-supervised memungkinkan model
		untuk memanfaatkan baik data berlabel maupun tidak berlabel.
		Dengan demikian, model dapat menangani data yang hilang
		dengan lebih baik dan tetap memberikan prediksi yang akurat
		meskipun data kelembaban tanah tidak tersedia secara lengkap.
		Hal ini memberikan ketahanan dan efisiensi dalam penggunaan
		data, menjadikan model DGLR lebih adaptif terhadap kondisi
		dunia nyata.
Hasil	:	Model DGLR menunjukkan kinerja yang lebih baik
		dibandingkan baseline lainnya, terutama dalam hal menangani
		data yang hilang dan sensitivitas terhadap konstruksi graf awal.
		Model ini secara signifikan lebih baik dalam memprediksi
		kelembaban tanah dengan error lebih rendah dan korelasi lebih
		tinggi.
Kesimpulan	:	Penelitian ini berhasil menunjukkan bahwa model GNN yang
		dinamis dapat secara efektif memprediksi kelembaban tanah
		dengan akurasi yang tinggi, bahkan dalam kondisi di mana data
		yang hilang cukup banyak. DGLR menawarkan solusi yang
		lebih robust dan adaptif dibandingkan pendekatan lain yang ada.
		Jurnal ini sangat relevan dengan mata kuliah Pengenalan Pola
		karena mengaplikasikan konsep-konsep pengenalan pola
		menggunakan teknologi modern seperti GNN dan DGLR untuk
		memecahkan masalah nyata dalam pertanian presisi. Ini
		menunjukkan bagaimana teknik-teknik yang dipelajari dalam
		pengenalan pola dapat diterapkan untuk membuat prediksi yang
		lebih baik dan mengambil keputusan yang lebih informatif
		berdasarkan pola yang diidentifikasi dalam data.
Kelebihan	:	Dapat menangani data yang hilang dengan baik.

		2. Mampu memperbarui struktur graf secara dinamis
		selama pelatihan.
		3. Performa lebih baik dibandingkan metode lain dalam
		memprediksi kelembaban tanah.
Kekurangan	:	Komputasi yang kompleks dan memerlukan waktu
		pelatihan yang lama.
		2. Bergantung pada inisialisasi graf awal yang dapat
		mempengaruhi hasil akhir jika tidak diperbarui dengan
		baik.