КАФЕДРА № 3

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

ассистент

должность, уч. степень, звание

М. Д. Рассыхаева инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 1

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЕМКОСТИ КОНДЕНСАТОРА

по курсу:

ФИЗИКА

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ гр. №

4326

подпись, дата

Г. С. Томчук инициалы, фамилия

ПРОТОКОЛ ИЗМЕРЕНИЙ

Лабораторная работа №1

Определение электроемкости конденсатора

Студент группы №

Преподаватель каф. № 3

Рассыхаева И.В.

Параметры приборов

Прибор	Тип	Предел измерений	Цена деления	Класс точности	Систематическая погрешность $\theta_{\chi} = \frac{KX_{\text{max}}}{100}$	
Вольтметр	433	20B	0,56	1,0	0,2 B	
Баллистический гальванометр	MB5	50	2	1,5	0, 45	

Результаты измерений

	<i>n</i> ₀ , дел. шк.	<i>n</i> ₁ , дел. шк.	<i>n</i> ₂ , дел. шк.	<i>n</i> ₃ , дел. шк.	n ₄ , дел. шк.	
	С ₀ =4700 пФ	- - C1	- -	-	C2 C1	
1.	40	12	27	8	33	
2.	41	13	26	8	39	
3.	38	13	28	9	38	
4.	40	13	26	8	39	
5.	30	17	2 4	4	38	
	$\overline{n}_0 = \frac{1}{5} \sum_{i=1}^{5} n_{0i} = 5 \frac{5}{5} 6$	$\overline{n}_1 = \frac{1}{5} \sum_{i=1}^{5} n_{1i} = 12_1 Q$	$\overline{n}_2 = \frac{1}{5} \sum_{i=1}^{5} n_{2i} = 26 $	$\overline{n}_3 = \frac{1}{5} \sum_{1}^{5} n_{3i} = \mathcal{L}$	$\overline{n}_4 = \frac{1}{5} \sum_{i=1}^{5} n_{4i} = 38$	

Дата «<u>в</u>» орверила 202<u>ч</u>г.

1. Цень работы: определими электроёмкость кондексотора с помощью большетического гальванометра.

2. Описание набораторной установки

Глюг Π^{1} — под титение к источнику пипиония; Π^{2} — пережет. Конденсаторов в решин зарядки и разрадки, Π^{3} — поперешенное подключение конденсать ров C_{0} , C_{1} , C_{2} , а пик же C_{3} и C_{4} (последовательно и поражельноко соединённые C_{1} и C_{2}); Π^{4} — бистрое депокоение рамки чань ванометра.

Павица 1-Парашерия приборов Typeger rycha Kuace потрешность Juan Spudop uzu. gluenus пиотности 0,2 B 1,0 Bosomnemp MB3 2013 0,5 B boundmen. 0,45 MB5 1,5 1 50 rarepartoriams

3. Passonue opopuglu
$$N_{cp.} = \frac{n_1 + n_2 + n_3 + ... + n_i}{N}, \qquad (1)$$

rge Nq - cpeg. zhour. onthohethur Ealluchier. raileba-houserpa, N - kol-bo azusepethici, h_i - zhorchur on - kionekus.

$$K = \frac{C_0 - \mathcal{U}}{n_0}$$
 (2)

186 К — постояння помованометра, Со — ёмкость конденияторя, U — конражение на виходе сет пинания, 100 — знач може оприонения .

$$C = \frac{C_0 \cdot h}{h_0}, \qquad (3)$$

18e С — ёнгоспи конденсатора, n_0 — зног. осан. Опинионения конденсатора сувестной ёнкоспи.

$$C = C_1 + C_2 , \qquad (4)$$

rge C - éverocne upu napais. caequience.

$$C = \frac{c_1 \cdot c_2}{c_1 + c_2} \tag{5}$$

re c - éreroque upre nouse. Cocquenemen.

$$C = \frac{\kappa_n}{u}, \qquad (6)$$

где С — ёмкости нешувестьюю попренеатора.

И. Результария азперений и вычислений

			Masurya 2				
	n _o	n.	n.	h s	n a		
	Co= 4200 ng	-1-	-1-	-1	C. 1-101		
1	40	12	27	8	33		
2	uL	13	26	8	3 5		
2	38	13	28	9	35		
u	40	13	26	8	33		
5	39	11	27	A.	33		
	T = 30.6	Tr. = 18, 4	M= 26.8	m= 8	TT4= 38,8		

U= 12 B, Co = 4700 np

That was						maa 3
K, nKu/gen	C1, n.sp	Cz, na	Csayer, ng	Coburne	Cuaza, ng	Cular, ng
1424,24	141,72	and the second second				

5. Thomseper formerement

$$\overline{Jlo} \text{ op-le (1)} : \text{ n op} = \frac{40 + 41 + 38 + 40 + 39}{5} = 38, 6$$

$$\overline{Jlo} \text{ op-le (2)} : \text{ K} = \frac{4100 \cdot 12}{38, 6} \approx 1424, 24 \text{ n Kyen}$$

$$\overline{Jlo} \text{ op-le (3)} : \text{ C}_{1} = \frac{4200 \cdot 12, 4}{38, 6} \approx 1471, 72 \text{ n op}$$

$$f_{10} ep_{-11}(6)$$
: $C_1 = \frac{1424,24 \cdot 12,4}{22} \approx 1431,31 nep_{-1}$

6. Волимение потрешностий

6.1. Cregrainere norperencon

Сред. програминая потрешности отдельного измерения:

$$\hat{S}_{no} = \sqrt{\frac{\sum_{i=1}^{N} (n_{ii} - n_{i} \varphi)^{2}}{N-1}} = \sqrt{\frac{(u_{0} - 38,6)^{2} + (41 - 38,6)^{2} + (41 - 38,6)^{2}}{N-1}}$$

$$\frac{1(38-39,6)^{2}+(40-39,6)^{2}+(29,-39,6)^{2}}{5-1}\approx 1,14,$$

Sn 1 \approx 0,88; Snz \approx 0,84; Sn3 \approx 0,71; Snu \approx 0,45. Cpeq. Whatparker. Orekenneuve:

$$Sn_0 cp = \frac{Sn_0}{JN} = \frac{1,19}{JS} \approx 0,51.$$

Sneep = 0,4; Sneep = 0,38; Snaep = 0,37; Sneep = 0,2.

6.2. Cumenanierecrue no ipleanochui.

$$\Theta_{n} = \frac{K \cdot n_{nux}}{100} = \frac{1.5 \cdot 50}{100} = 0.75.$$

$$\Theta_{C1} = C_{L} \left(\frac{\Theta_{n}}{n_{1}} + \frac{\Theta_{n}}{n_{0}}\right) = 1 u_{1} t_{1} t_{1} \left(\frac{0.15}{12.14} + \frac{0.15}{38.6}\right) \approx 116.85$$

$$\Theta_{C2} = 3280, 81 \left(\frac{6.15}{26.8} + \frac{9.15}{38.6}\right) \approx 148, 26 n_{1} t_{2}$$

$$\Theta_{C3} = 848.48 \left(\frac{0.15}{8} + \frac{0.15}{38.6}\right) \approx 107 n_{1} t_{2}$$

$$\Theta_{C3} = 4605, 05 \left(\frac{0.15}{38.8} + \frac{0.15}{38.6}\right) \approx 176, 23 n_{2}$$

$$\Theta_{C3} = \frac{0.15}{(9.1 + 9.1)^{2}} \cdot \frac{0.15}{(9.1$$

$$= \frac{140,26^{2}}{(116,89 + 148,26)^{2}} \cdot 116,89 + \frac{116,89^{2}}{(116,88 + 148,26)^{2}} \cdot 148,26 \approx$$

≈ 65,55 NP

 Θ_{CU} bur = $\Theta_{CL} + \Theta_{CZ} = 116,89 + 148,76 = 266,15 nP$. 6.3. Trackor horpeurpoints.

 $\Delta C = \frac{Co}{no} \cdot \Delta n_{o} + \frac{Co n_{o}}{n_{o}} \cdot \Delta n_{i}; \quad \Delta n = \Theta_{n} + k \delta_{n_{i}};$ $\Delta K = \frac{Co}{n_{o}} \cdot \Theta_{n} + \frac{Co n_{o}}{n_{o}^{2}} \cdot \Delta n_{o}.$

1) $\Delta N_0 = 0.45 + 5 \cdot 0.51 = 3.3$ $\Delta N_1 = 2.45$ $\Delta N_2 = 2.65$ $\Delta N_3 = 2.35$ $\Delta N_4 = 1.45$.

2) $\Delta C_1 = \frac{4700 \cdot 33}{38,6} \cdot 33 + \frac{4700 \cdot 124}{38,6^2} \cdot 275 \approx 493,81 \text{ ng}$ $\Delta C_2 \approx 604,52 \text{ ng}$ $\Delta C_3 \approx 448,01 \text{ ng}$ $\Delta C_4 \approx 585,44 \text{ ng}$

7. Buboga

· Опредени ёнкосты кондениторов с помощью бамистического чалевакометра:

$$C_1 = (1471, 12 \pm 483,84) \text{ nP}$$
 $C_2 = (3180, 81 \pm 604, 52) \text{ nP}$

Измерення с выгислення значения емпостией конденсопоров, гоед. померованельно и поучиленно, с учёным попрешностей совпадают, что подтворнедает справедивости теорения. Орорице.

• Onpegerus ransbanureengro nocuos negro ranbanonenga: $K = (1424,24 \pm 142,42) \frac{n Ki}{ges}$