# ANOVA de estroncio en cinco cuerpos de agua

2025-09-22

### Descripción del problema

Un investigador midió la concentración de **estroncio** (mg/ml) en cinco cuerpos de agua, con **6 réplicas por sitio** (n = 6). Se desea evaluar si existen diferencias significativas entre las medias de los sitios mediante un **ANOVA de una vía**, seguido de comparaciones múltiples con **LSD** y **Tukey HSD**.

#### **Datos**

```
# Tabla de datos (n = 6 por sitio)
df <- data.frame(
  sitio = factor(rep(c("Grayson's Pond","Beaver Lake","Angler's Cove","Appletree Lake","Rock R
  estroncio = c(
    28.2,33.2,36.4,34.6,29.1,31.0,
    39.6,40.8,37.9,37.1,43.6,42.4,
    46.3,42.1,43.5,48.8,43.7,40.1,
    41.0,44.1,46.4,40.2,38.6,36.3,
    56.3,54.1,59.4,62.7,60.0,57.3
  )
)
# Paquetes que usaremos
req <- c("dplyr", "ggplot2", "emmeans", "multcomp", "multcompView", "broom", "knitr", "kableExtra")
to_install <- req[!sapply(req, requireNamespace, quietly = TRUE)]
if (length(to install)) install.packages(to install, repos = "https://cloud.r-project.org")
invisible(lapply(req, library, character.only = TRUE))
# Resumen de medias y desviaciones por sitio
tabla resumen <- df %>%
  group_by(sitio) %>%
  summarise(n = n(),
            media = mean(estroncio),
            sd = sd(estroncio)) %>%
```

```
arrange(desc(media))
knitr::kable(tabla_resumen, digits = 2, caption = "Resumen por sitio (n, media, sd)") %>%
kableExtra::kable_styling(full_width = FALSE)
```

Table 1: Resumen por sitio (n, media, sd)

| sitio          | n | media | sd   |
|----------------|---|-------|------|
| Rock River     | 6 | 58.30 | 3.04 |
| Angler's Cove  | 6 | 44.08 | 3.08 |
| Appletree Lake | 6 | 41.10 | 3.67 |
| Beaver Lake    | 6 | 40.23 | 2.53 |
| Grayson's Pond | 6 | 32.08 | 3.21 |

## Hipótesis

• Ho (nula): Las medias de concentración de estroncio son iguales en los cinco sitios:

```
$ _1 = _2 = _3 = _4 = _5 $.
```

• H1 (alternativa): Al menos una de las medias difiere.

## Visualización rápida

```
ggplot(df, aes(x = sitio, y = estroncio)) +
  geom_boxplot() +
  geom_jitter(width = 0.15, alpha = 0.6) +
  labs(x = "Sitio", y = "Estroncio (mg/ml)", title = "Distribución por sitio")
```

### Distribución por sitio



#### ANOVA de una vía

```
modelo <- aov(estroncio ~ sitio, data = df)
anova_tabla <- broom::tidy(modelo) # tabla en formato ordenado
knitr::kable(anova_tabla, digits = 4, caption = "Tabla ANOVA (aov)") %>%
kableExtra::kable_styling(full_width = FALSE)
```

Table 2: Tabla ANOVA (aov)

| term      | df | sumsq    | meansq   | statistic | p.value |
|-----------|----|----------|----------|-----------|---------|
| sitio     | 4  | 2193.442 | 548.3605 | 56.1546   | 0       |
| Residuals | 25 | 244.130  | 9.7652   | NA        | NA      |

**Decisión:** Si el **p-valor** del efecto de *sitio* es menor que 0.05, **se rechaza Ho** y hay evidencia de diferencias entre medias.

## Prueba LSD (=0.05)

La prueba LSD es equivalente a comparar medias con t sin corrección por multiplicidad.

```
emm <- emmeans(modelo, ~ sitio)

# 1) Comparaciones pareadas tipo LSD (sin ajuste)
pares_lsd <- pairs(emm, adjust = "none")
pares_lsd_tabla <- broom::tidy(pares_lsd)
knitr::kable(pares_lsd_tabla, digits = 4, caption = "Comparaciones pareadas (LSD, sin ajuste)"
kableExtra::kable_styling(full_width = FALSE)</pre>
```

Table 3: Comparaciones pareadas (LSD, sin ajuste)

| term  | contrast                        | null.value | estimate | std.error | df | statistic | p.value |
|-------|---------------------------------|------------|----------|-----------|----|-----------|---------|
| sitio | Angler's Cove - Appletree Lake  | 0          | 2.9833   | 1.8042    | 25 | 1.6536    | 0.1107  |
| sitio | Angler's Cove - Beaver Lake     | 0          | 3.8500   | 1.8042    | 25 | 2.1339    | 0.0428  |
| sitio | Angler's Cove - Grayson's Pond  | 0          | 12.0000  | 1.8042    | 25 | 6.6512    | 0.0000  |
| sitio | Angler's Cove - Rock River      | 0          | -14.2167 | 1.8042    | 25 | -7.8798   | 0.0000  |
| sitio | Appletree Lake - Beaver Lake    | 0          | 0.8667   | 1.8042    | 25 | 0.4804    | 0.6351  |
| sitio | Appletree Lake - Grayson's Pond | 0          | 9.0167   | 1.8042    | 25 | 4.9977    | 0.0000  |
| sitio | Appletree Lake - Rock River     | 0          | -17.2000 | 1.8042    | 25 | -9.5334   | 0.0000  |
| sitio | Beaver Lake - Grayson's Pond    | 0          | 8.1500   | 1.8042    | 25 | 4.5173    | 0.0001  |
| sitio | Beaver Lake - Rock River        | 0          | -18.0667 | 1.8042    | 25 | -10.0138  | 0.0000  |
| sitio | Grayson's Pond - Rock River     | 0          | -26.2167 | 1.8042    | 25 | -14.5311  | 0.0000  |

Table 4: Agrupamiento por letras (LSD, sin ajuste)

|   | Sitio          | Grupo (LSD) |
|---|----------------|-------------|
| 4 | Grayson's Pond | a           |
| 3 | Beaver Lake    | b           |
| 2 | Appletree Lake | bc          |
| 1 | Angler's Cove  | c           |
| 5 | Rock River     | d           |
|   |                |             |

```
# 3) Cálculo manual del valor LSD (balanceado: n = 6 por grupo)

an <- summary(modelo)[[1]]

MSE <- an["Residuals","Mean Sq"]

gl_error <- an["Residuals","Df"]

n <- 6

tcrit <- qt(0.975, gl_error) # alfa/2 = 0.025 (prueba bilateral)
```

Curso: Estadística en la investigación científica
Presenta: César Enrique Martínez Sánchez
Docente: Dr. Marco Aurelio González Tagle
LSD\_valor <- tcrit \* sqrt(2 \* MSE / n)

data.frame(MSE = MSE, gl\_error = gl\_error, t\_0.975 = tcrit, LSD = LSD\_valor) %>%
knitr::kable(digits = 4, caption = "LSD calculado manualmente") %>%
kableExtra::kable\_styling(full\_width = FALSE)

Table 5: LSD calculado manualmente

| MSE    | gl_error | t_0.975 | LSD    |
|--------|----------|---------|--------|
| 9.7652 | 25       | 2.0595  | 3.7158 |

### Prueba de Tukey HSD (= 0.05)

Tukey controla el error familiar (FWER) y es más conservador que LSD.

```
# Base R
tukey_base <- TukeyHSD(modelo)
tukey_df <- as.data.frame(tukey_base$sitio)
tukey_df$contraste <- rownames(tukey_df)
names(tukey_df) <- sub("^p adj$", "p.adj", names(tukey_df))
tukey_df <- tukey_df[, c("contraste","diff","lwr","upr","p.adj")]
knitr::kable(tukey_df, digits = 4, caption = "Tukey HSD (base R)") %>%
kableExtra::kable_styling(full_width = FALSE)
```

Table 6: Tukey HSD (base R)

|                               | contraste                     | diff     | lwr      | upr     | p.adj  |
|-------------------------------|-------------------------------|----------|----------|---------|--------|
| Appletree Lake-Angler's Cove  | Appletree Lake-Angler's Cove  | -2.9833  | -8.2820  | 2.3153  | 0.4791 |
| Beaver Lake-Angler's Cove     | Beaver Lake-Angler's Cove     | -3.8500  | -9.1486  | 1.4486  | 0.2376 |
| Grayson's Pond-Angler's Cove  | Grayson's Pond-Angler's Cove  | -12.0000 | -17.2986 | -6.7014 | 0.0000 |
| Rock River-Angler's Cove      | Rock River-Angler's Cove      | 14.2167  | 8.9180   | 19.5153 | 0.0000 |
| Beaver Lake-Appletree Lake    | Beaver Lake-Appletree Lake    | -0.8667  | -6.1653  | 4.4320  | 0.9885 |
| Grayson's Pond-Appletree Lake | Grayson's Pond-Appletree Lake | -9.0167  | -14.3153 | -3.7180 | 0.0003 |
| Rock River-Appletree Lake     | Rock River-Appletree Lake     | 17.2000  | 11.9014  | 22.4986 | 0.0000 |
| Grayson's Pond-Beaver Lake    | Grayson's Pond-Beaver Lake    | -8.1500  | -13.4486 | -2.8514 | 0.0011 |
| Rock River-Beaver Lake        | Rock River-Beaver Lake        | 18.0667  | 12.7680  | 23.3653 | 0.0000 |
| Rock River-Grayson's Pond     | Rock River-Grayson's Pond     | 26.2167  | 20.9180  | 31.5153 | 0.0000 |

```
# emmeans con ajuste Tukey
pares_tukey <- pairs(emm, adjust = "tukey")
pares_tukey_tabla <- broom::tidy(pares_tukey)
knitr::kable(pares_tukey_tabla, digits = 4, caption = "Comparaciones pareadas (ajuste Tukey)")</pre>
```

kableExtra::kable\_styling(full\_width = FALSE)

Table 7: Comparaciones pareadas (ajuste Tukey)

| term  | contrast                        | null.value | estimate | std.error | df | statistic | adj.p.value |
|-------|---------------------------------|------------|----------|-----------|----|-----------|-------------|
| sitio | Angler's Cove - Appletree Lake  | 0          | 2.9833   | 1.8042    | 25 | 1.6536    | 0.4791      |
| sitio | Angler's Cove - Beaver Lake     | 0          | 3.8500   | 1.8042    | 25 | 2.1339    | 0.2376      |
| sitio | Angler's Cove - Grayson's Pond  | 0          | 12.0000  | 1.8042    | 25 | 6.6512    | 0.0000      |
| sitio | Angler's Cove - Rock River      | 0          | -14.2167 | 1.8042    | 25 | -7.8798   | 0.0000      |
| sitio | Appletree Lake - Beaver Lake    | 0          | 0.8667   | 1.8042    | 25 | 0.4804    | 0.9885      |
| sitio | Appletree Lake - Grayson's Pond | 0          | 9.0167   | 1.8042    | 25 | 4.9977    | 0.0003      |
| sitio | Appletree Lake - Rock River     | 0          | -17.2000 | 1.8042    | 25 | -9.5334   | 0.0000      |
| sitio | Beaver Lake - Grayson's Pond    | 0          | 8.1500   | 1.8042    | 25 | 4.5173    | 0.0011      |
| sitio | Beaver Lake - Rock River        | 0          | -18.0667 | 1.8042    | 25 | -10.0138  | 0.0000      |
| sitio | Grayson's Pond - Rock River     | 0          | -26.2167 | 1.8042    | 25 | -14.5311  | 0.0000      |

Table 8: Agrupamiento por letras (Tukey)

|   | Sitio          | Grupo (Tukey) |
|---|----------------|---------------|
| 4 | Grayson's Pond | a             |
| 3 | Beaver Lake    | b             |
| 2 | Appletree Lake | b             |
| 1 | Angler's Cove  | b             |
| 5 | Rock River     | c             |

```
# Cálculo manual de HSD (Tukey) para balanceado
k <- nlevels(df$sitio)
qcrit <- qtukey(0.95, k, gl_error)
HSD_valor <- qcrit * sqrt(MSE / n)

data.frame(MSE = MSE, k = k, gl_error = gl_error, q_0.95 = qcrit, HSD = HSD_valor)
    knitr::kable(digits = 4, caption = "HSD (Tukey) calculado manualmente") %>%
    kableExtra::kable_styling(full_width = FALSE)
```

Table 9: HSD (Tukey) calculado manualmente

| MSE k gl_error | q <b>_0.9</b> 5 | HSD |
|----------------|-----------------|-----|
|----------------|-----------------|-----|

9.7652 5 25 4.1534 5.2986

### Interpretación

A partir de las tablas:

- 1. ¿Se rechaza Ho? Revisar el p-valor del ANOVA. Si \$p < 0.05\$, sí.
- 2. ¿Qué pares difieren? Comparar los resultados de *LSD* y de *Tukey*. Tukey suele marcar menos pares como significativos que LSD.
- 3. ¿Qué cuerpo presenta las concentraciones más altas y más bajas?

```
# 1) Ganador y mínimo
ganador <- tabla_resumen$sitio[which.max(tabla_resumen$media)]
minimo <- tabla_resumen$sitio[which.min(tabla_resumen$media)]
# 2) Pairs significativos segun Tukey (p.adj < 0.05)
sig tukey <- subset(tukey df, p.adj < 0.05)$contraste
# 3) Pairs significatives segun LSD (p < 0.05 sin ajuste)
sig_lsd <- subset(pares_lsd_tabla, p.value < 0.05)$contrast
cat(sprintf("- Sitio con **mayor** media: %s\n", ganador))
## - Sitio con **mayor** media: Rock River
cat(sprintf("- Sitio con **menor** media: %s\n\n", minimo))
## - Sitio con **menor** media: Grayson's Pond
cat("**Pares significativos según Tukey (p < 0.05):**\n")
## **Pares significativos según Tukey (p < 0.05):**
if (length(sig_tukey) == 0) cat("Ninguno\n") else print(sig_tukey)
## [1] "Grayson's Pond-Angler's Cove"
                                        "Rock River-Angler's Cove"
## [3] "Grayson's Pond-Appletree Lake" "Rock River-Appletree Lake"
## [5] "Grayson's Pond-Beaver Lake"
                                        "Rock River-Beaver Lake"
## [7] "Rock River-Grayson's Pond"
cat("\n**Pares significativos según LSD (p < 0.05, sin ajuste):**\n")</pre>
```

Curso: Estadística en la investigación científica Presenta: César Enrique Martínez Sánchez Docente: Dr. Marco Aurelio González Tagle

## \*\*Pares significativos según LSD (p < 0.05, sin ajuste):\*\*

### Comentario ambiental (breve)

- Diferencias elevadas y consistentes en un sitio pueden sugerir **influencia geológica local**, **descargas** o **procesos hidrológicos** distintos.
- Si un sitio como *Rock River* exhibe concentraciones significativamente mayores, podría requerir **monitoreo adicional** y evaluación de **posibles fuentes**.
- Sitios con medias similares (misma **letra** en Tukey) pueden considerarse **estadísticamente equivalentes** en concentración media.

### Apéndice: reproducibilidad

Para compilar este documento a PDF:

```
# Instala TinyTeX (solo la primera vez)
if (!tinytex::is_tinytex()) tinytex::install_tinytex()
# Renderiza a PDF (desde R o RStudio)
rmarkdown::render("tarea_anova.Rmd", output_format = "pdf_document")
```