MS&E 125: Intro to Applied Statistics Feature Engineering

Professor Udell

Management Science and Engineering Stanford

May 7, 2023

Announcements

Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, ...

Linear models

To fit a linear model (= linear in parameters β)

- ightharpoonup pick a transformation $\phi: \mathcal{X} \to \mathbf{R}^p$
- **Proof** predict y using a linear function of $\phi(x)$

$$h(x) = \phi(x)^{T} \beta = \sum_{i=1}^{p} \beta_{i}(\phi(x))_{i}$$

▶ we want $h(x_i) \approx y_i$ for every i = 1, ..., n

Feature engineering

How to pick $\phi: \mathcal{X} \to \mathbf{R}^d$?

- **>** so response y will depend linearly on $\phi(x)$
- \triangleright so p is not too big

Feature engineering

How to pick $\phi: \mathcal{X} \to \mathbf{R}^d$?

- \blacktriangleright so response y will depend linearly on $\phi(x)$
- ▶ so *d* is not too big

if you think this looks like a hack: you're right

Feature engineering

examples:

- adding offset
- standardizing features
- polynomial fits
- products of features
- autoregressive models
- transforming Booleans
- transforming ordinals
- transforming nominals
- transforming images
- transforming text
- handling missing values
- concatenating data
- all of the above

https://xkcd.com/2048/

Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, ...

Adding offset

$$\mathcal{X} = \mathbf{R}^{d-1}$$

- ▶ let $\phi(x) = (x, 1)$
- $ightharpoonup now h(x) = w^T \phi(x) = w^T_{1:d-1} x + w_d$

Fitting a polynomial

$$\triangleright \mathcal{X} = \mathbf{R}$$

► let

$$\phi(x) = (1, x, x^2, x^3, \dots, x^{d-1})$$

be the vector of all monomials in x of degree < d

$$\blacktriangleright$$
 now $h(x) = w^T \phi(x) = w_1 + w_2 x + w_3 x^2 + \cdots + w_d x^{d-1}$

Demo: crime

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb

Model evaluation

how should we measure how good a model is?

- ► (root) mean squared error (RMSE)
- mean absolute error (MAE)
- ightharpoonup coefficient of determination (R^2)

Mean square error

mean square error is minimized by the least squares estimator

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

equal to the sum of the residuals squared

Root mean square error

root mean square error is the square root of the mean square error

$$\hat{\sigma}^2 = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

(the residual standard error is similar, but normalizes by the residual degrees of freedom n-p-1 instead of n)

Mean absolute error

mean absolute error is the mean of the absolute value of the residuals

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

often makes more sense than RMSE when we care about quality of the predictions

(e.g., if we will pay a linear penalty for being wrong)

Coefficient of determination

coefficient of determination $R^{@} \in [0,1]$ is the fraction of the variance in the data that is explained by the model

$$R^2 = 1 - rac{\sum_i = 1^n (y_i - \hat{y}_i)^2}{\sum_i = 1^n (y_i - ar{y})^2} = 1 - rac{\mathsf{MSE}}{\mathsf{Var}(y)} = 1 - rac{\mathsf{SSR}}{\mathsf{SST}}$$

lingo:

- SSR is the sum of squares of the residuals
- SST is the total sum of squares

for a model with an intercept, R^2 is the square correlation between the predicted and true values of y

$$R^2 = [\rho(y, \hat{y})]^2$$

IMHE and the cubic fit

https://www.washingtonpost.com/politics/2020/05/05/white-houses-self-serving-approach-estimating-deadliness-

Fitting a multivariate polynomial

- $\mathcal{X} = \mathbb{R}^2$
- ▶ pick a maximum degree k
- ► let

$$\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3, \dots, x_2^k)$$

be the vector of all monomials in x_1 and x_2 of degree $\leq k$

▶ now $h(x) = w^T \phi(x)$ can fit any polynomial of degree $\leq k$ in \mathcal{X}

Fitting a multivariate polynomial

- $\mathcal{X} = \mathbb{R}^2$
- ▶ pick a maximum degree k
- ► let

$$\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3, \dots, x_2^k)$$

be the vector of all monomials in x_1 and x_2 of degree $\leq k$

▶ now $h(x) = w^T \phi(x)$ can fit any polynomial of degree $\leq k$ in \mathcal{X}

and similarly for $\mathcal{X} = \mathbf{R}^d \dots$

Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, ...

Notation: boolean indicator function

define

$$\mathbb{1}(\mathsf{statement}) = \begin{cases} 1 & \mathsf{statement} \text{ is true} \\ 0 & \mathsf{statement} \text{ is false} \end{cases}$$

examples:

- ightharpoonup 1(1<0)=0
- ightharpoonup 1(17 = 17) = 1

Boolean variables

- $ightharpoonup \mathcal{X} = \{\mathsf{true}, \mathsf{false}\}$
- $\blacktriangleright \text{ let } \phi(x) = \mathbb{1}(x)$

Boolean expressions

- $\mathcal{X} = \{\text{true}, \text{false}\}^2 = \{(\text{true}, \text{true}), (\text{true}, \text{false}), (\text{false}, \text{true}), (\text{false}, \text{false})\}.$
- let $\phi(x) = [1(x_1), 1(x_2), 1(x_1 \text{ and } x_2), 1(x_1 \text{ or } x_2)]$
- equivalent: polynomials in $[\mathbb{1}(x_1), \mathbb{1}(x_2)]$ span the same space
- encodes logical expressions!

Nominal values: one-hot encoding

- ▶ nominal data: *e.g.*, $\mathcal{X} = \{\text{apple}, \text{orange}, \text{banana}\}$
- ► let

$$\phi(x) = [\mathbb{1}(x = \mathsf{apple}), \mathbb{1}(x = \mathsf{orange}), \mathbb{1}(x = \mathsf{banana})]$$

called one-hot encoding: only one element is non-zero

Nominal values: one-hot encoding

- ightharpoonup nominal data: e.g., $\mathcal{X} = \{\text{apple, orange, banana}\}$
- ► let

$$\phi(x) = [\mathbb{1}(x = \mathsf{apple}), \mathbb{1}(x = \mathsf{orange}), \mathbb{1}(x = \mathsf{banana})]$$

called one-hot encoding: only one element is non-zero

extension: sets

Demo: crime

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb

- **problem:** too many nominal categories
- **solution:**

- **problem:** too many nominal categories
- solution:
 - ightharpoonup cluster the categories by some known ontology (eg, "squamous cell carcinoma" ightharpoonup "cancer")

- **problem:** too many nominal categories
- solution:
 - cluster the categories by some known ontology (eg, "squamous cell carcinoma" \rightarrow "cancer")
 - ▶ lump the least common categories into a single category: "Other"

- **problem:** too many nominal categories
- solution:
 - cluster the categories by some known ontology (eg, "squamous cell carcinoma" \rightarrow "cancer")
 - lump the least common categories into a single category: "Other"
 - feature hashing

- **problem:** too many nominal categories
- solution:
 - cluster the categories by some known ontology (eg, "squamous cell carcinoma" \rightarrow "cancer")
 - lump the least common categories into a single category: "Other"
 - feature hashing
 - ▶ ... be creative!

Nominal values: look up features!

why not use other information known about each item?

- $\triangleright \mathcal{X} = \{\text{apple}, \text{orange}, \text{banana}\}$
 - price, calories, weight, ...
- $ightharpoonup \mathcal{X} = \mathsf{zip} \; \mathsf{code}$
 - average income, temperature in July, walk score, % residential, . . .
- **>** ...

database lingo: join tables on nominal value

- ▶ ordinal data: e.g.,
 X = {Stage I, Stage II, Stage III, Stage IV}
- ► let

$$\phi(x) = \begin{cases} 1, & x = \mathsf{Stage} \ \mathsf{I} \\ 2, & x = \mathsf{Stage} \ \mathsf{II} \\ 3, & x = \mathsf{Stage} \ \mathsf{III} \\ 4, & x = \mathsf{Stage} \ \mathsf{IV} \end{cases}$$

default encoding

- $\succ \mathcal{X} = \{ \text{Stage II}, \text{Stage III}, \text{Stage IV} \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

- $\succ \mathcal{X} = \{ \text{Stage II}, \text{Stage III}, \text{Stage IV} \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

Q: What is w? b?

- $\succ \mathcal{X} = \{ \text{Stage II}, \text{Stage III}, \text{Stage IV} \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A.
$$b = 6$$
, $w = -2$

B.
$$b = 2$$
, $w = 0$

C.
$$b = 6$$
, $w = 2$

D.
$$b = 0$$
, $w = -2$

Ordinal values: real encoding

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: b = 6, w = -2.

Ordinal values: real encoding

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: b = 6, w = -2.

Q: How long does the model predict a persion with Stage IV cancer will survive?

Ordinal values: real encoding

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: b = 6, w = -2.

Q: How long does the model predict a persion with Stage IV cancer will survive?

- A. 6 years
- B. 2 years
- C. 0 years
- D. -2 years

- ▶ ordinal data: e.g.,
 X = {Stage I, Stage II, Stage III, Stage IV}
- ► let

$$\phi(x) = [\mathbb{1}(x \geq \mathsf{Stage}\;\mathsf{II}), \mathbb{1}(x \geq \mathsf{Stage}\;\mathsf{III}), \mathbb{1}(x \geq \mathsf{Stage}\;\mathsf{IV})]$$

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [1(x \ge \mathsf{Stage} \; \mathsf{II}), 1(x \ge \mathsf{Stage} \; \mathsf{III}), 1(x \ge \mathsf{Stage} \; \mathsf{IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

- $\blacktriangleright \ \mathcal{X} = \{ \mathsf{Stage} \ \mathsf{II}, \mathsf{Stage} \ \mathsf{III}, \mathsf{Stage} \ \mathsf{IV} \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [1(x \ge \text{Stage II}), 1(x \ge \text{Stage III}), 1(x \ge \text{Stage IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\triangleright \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [\mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{II}), \mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{III}), \mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A: b = 4, $w_1 = -2$, w_2 and w_3 not determined

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\triangleright \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [1(x \ge \text{Stage II}), 1(x \ge \text{Stage III}), 1(x \ge \text{Stage IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A: b = 4, $w_1 = -2$, w_2 and w_3 not determined

Q: How long does the model predict a persion with Stage IV cancer will survive?

- $\succ \mathcal{X} = \{ \text{Stage II}, \text{Stage III}, \text{Stage IV} \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [1(x \ge \text{Stage II}), 1(x \ge \text{Stage III}), 1(x \ge \text{Stage IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A: b = 4, $w_1 = -2$, w_2 and w_3 not determined

Q: How long does the model predict a persion with Stage IV cancer will survive?

A: can't say without more information

Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, ...

handling missing values:

remove rows/columns with missing entries

- remove rows/columns with missing entries
- ▶ (for time series) back-fill with most recent observed value

- remove rows/columns with missing entries
- ▶ (for time series) back-fill with most recent observed value
- impute with mean, median, or mode

- remove rows/columns with missing entries
- ▶ (for time series) back-fill with most recent observed value
- impute with mean, median, or mode
- fancier imputation methods (covered later in this class): matrix completion, copula models, deep learning, . . .

- remove rows/columns with missing entries
- ▶ (for time series) back-fill with most recent observed value
- impute with mean, median, or mode
- fancier imputation methods (covered later in this class): matrix completion, copula models, deep learning, . . .
- add new feature: Boolean indicator 1(data is missing)
 - can detect if missingness is informative
 - can complement imputation method
 - can use different indicators for different kinds of missingness (refused, missing, illegible response, . . .)

Poll

In an ambulance dataset (data taken by instruments on board an ambulance), we want to predict if the patient died. The variable "heart rate" is sometimes missing. Is missingness

- A. informative?
- B. uninformative?

Poll

In a weather dataset, the batteries in the instruments occasionally run out before the experimenter can replace them, leaving missing data for eg temperature, humidity, or barometric pressure. Is missingness

- A. informative?
- B. uninformative?

Talk to your neighbor

Can you think of a dataset in which missing values would be

- ▶ informative?
- uninformative?

Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, ...

Nonlinear transformations

sometimes data is easy to predict with a simple but **non**linear relation, e.g.

$$\log(y) = x^T \beta$$

can transform x or (even more important) y

Nonlinear transformations

sometimes data is easy to predict with a simple but **non**linear relation, e.g.

$$\log(y) = x^T \beta$$

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

- ▶ y is positive and heavy-tailed? try $y \leftarrow \log(y)$
- residuals $r = y x_i^T \beta$ are skewed (not normal)
 - check with quantile-quantile plot

Nonlinear transformations

sometimes data is easy to predict with a simple but **non**linear relation, e.g.

$$\log(y) = x^T \beta$$

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

- ▶ y is positive and heavy-tailed? try $y \leftarrow \log(y)$
- residuals $r = y x_i^T \beta$ are skewed (not normal)
 - check with quantile-quantile plot

useful nonlinear transforms:

▶ log, exp, quantile, . . .

more systematic ways to handle nonlinearities: copula models, deep learning

Log transform

 \mathbf{Q} : what happens if x increases by 1 in the model

$$\log(y) = \beta_0 + \beta_1 x,$$

Log transform

Q: what happens if *x* increases by 1 in the model

$$\log(y) = \beta_0 + \beta_1 x,$$

A: $\log(y)$ increases by β_1 , so y increases by $\exp(\beta_1)$

$$\log(y) = \beta_0 + \beta_1 x \implies y = \exp(\beta_0 + \beta_1 x)$$

$$\log(y') = \beta_0 + \beta_1 (x+1) \implies y' = \exp(\beta_0 + \beta_1 (x+1)) = \exp(\beta_0 + \beta_1 (x+1))$$

A convenient approximation

- ▶ for small x, $\exp(x) \approx 1 + x$,
- e.g., $\exp(0.01) \approx 1.01$
- ▶ if x increases by 1%, then y increases by factor of $\exp(\beta_1/100)$
- ▶ so if x increases by 1%, then y increases by factor of $\approx \beta_1/100 = \beta_1\%$

Log transformations of covariates

if we instead log transform x, \hat{y} increases by $\beta_1/100$ for each 1% increase in x.

• e.g., if $\beta_1 = 3$, \hat{y} increases by 3/100=0.03 units for every 1% increase in x.

if we instead log transform both x and y, \hat{y} increases by $\beta_1\%$ for each 1% increase in x.

• e.g., if $\beta_1 = 3$, \hat{y} increases by 3% for every 1% increase in x.

log transformation results in **multiplicative** increases (rather than **additive**)

Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, ...

Location

can be given as

- ► latitude, longitude
- ▶ zip code
- neighborhood, county, state, country

can be transformed between these!

Location

can be given as

- ► latitude, longitude
- zip code
- neighborhood, county, state, country

can be transformed between these!

which makes sense for your problem?

- does nearness matter?
- ▶ are there sharp boundaries?
- are other properties of the location (eg, mean house price or crime rate) more important?

Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, ...

Text

```
\mathcal{X} = \text{sentences}, \text{ documents}, \text{ tweets}, \dots
```

- **bag of words** model (one-hot encoding):
 - ightharpoonup pick set of words $\{w_1, \ldots, w_d\}$
 - $\phi(x) = [\mathbb{1}(x \text{ contains } w_1), \dots, \mathbb{1}(x \text{ contains } w_d)]$
 - ignores order of words in sentence

Text

```
\mathcal{X}= sentences, documents, tweets, . . .
```

- **bag of words** model (one-hot encoding):
 - \triangleright pick set of words $\{w_1, \ldots, w_d\}$
 - $\phi(x) = [\mathbb{1}(x \text{ contains } w_1), \dots, \mathbb{1}(x \text{ contains } w_d)]$
 - ignores order of words in sentence
- pre-trained neural networks:
 - sentiment analysis: https://medium.com/@b.terryjack/ nlp-pre-trained-sentiment-analysis-1eb52a9d742c
 - Universal Sentence Encoder (USE) embedding: https:

```
//colab.research.google.com/github/tensorflow/
hub/blob/master/examples/colab/semantic_
similarity_with_tf_hub_universal_encoder.ipynb
```

▶ lots of others: https://modelzoo.co/

Neural networks: whirlwind primer

$$NN(x) = \sigma(W_1\sigma(W_2\ldots\sigma(W_\ell x))))$$

- \triangleright σ is a nonlinearity applied elementwise to a vector, e.g.
 - $ightharpoonup \text{ReLU: } \sigma(x) = \max(x,0)$
 - ightharpoonup sigmoid: $\sigma(x) = \log(1 + \exp(x))$
- ▶ each W is a matrix
- trained on very large datasets, e.g., Wikipedia, YouTube

Deep Neural Network

Why not use deep learning?

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

towards a solution: https://arxiv.org/abs/1907.10597

Review

- \blacktriangleright linear models are linear in the **parameters** β
- can fit many different models by picking feature mapping $\phi: \mathcal{X} \to \mathbf{R}^d$