Contents

Ĺ	5.1 Weak Induction	1
	5.2 Strong Induction 2.1 Example	1
1	5.1 Weak Induction	

2 5.2 Strong Induction

2.1 Example

Prove that any positive integer can be written as a sum of 2^k , where k's are distinct.

Proof:

1. Basis step:

$$1 = 2^0, 2 = 2^1, 3 = 2^0 + 2^1$$

2. Inductive step:

We assume that k can be written as a sum of distinct powers of 2.

Where $1 \le k \le n$, we want to show that n+1 is a sum of distinct powers of 1.

Consider the following cases

- (a) $n = \sum 2^r$, where r is some distinct positive integers. Then $n+1 = 1 + \sum 2^r = 2^0 + \sum 2^r$ is a sum of distinct powers of 2.
- (b) $n=1+\sum 2^s$, where s is some distinct positive integers. Then $n+1=1+\sum 2^s+1=2+\sum 2^s=2\left(1+\sum 2^{s-1}\right)$. Since $n\geq 1$, $\frac{n+1}{2}=1+\sum 2^{s-1}$, then $\frac{n+1}{2}$ is a sum of distinct powers of 2.