

# Computação Gráfica

Rasterização de Linhas

Professor: Luciano Ferreira Silva, Dr.





# **Definições**

Modelos Matemáticos

Modelagem

(reconhecimento de padrões)

Análise

Síntese (*rendering*) **Imagens** 







# Pipeline de Visualização





# Representação Vetorial x Matricial

- Normalmente, gráficos são definidos através de primitivas geométricas como pontos, segmentos de retas, polígonos, etc;
  - ✓ Representação vetorial;
- Dispositivos gráficos podem ser pensados como matrizes de pixels (rasters);
  - ✓ Representação matricial;







# Considerações Gerais

- Rasterização é um processo de amostragem
  - ✓ Domínio contínuo → discreto
  - ✓ Problemas de *aliasing* são esperados
- Cada primitiva pode gerar um grande número de pixels
  - ✓ Rapidez é essencial
- Em geral, rasterização é feita por hardware
- Técnicas de anti-aliasing podem ser empregadas, usualmente extraindo um custo em termos de desempenho



# Geração de Primitivas

# Geração de linhas:

- ✓ Utilização de dispositivos matriciais, com pontos discretos;
- ✓ Processo: rasterização;
- ✓ Não há problemas para linhas horizontais, verticais ou com inclinação de 45°;
- ✓ Problema básico: qual o pixel ideal para uma linha desejada (?);
- ✓ Soluções melhores para dispositivos com maior resolução.



# Rasterização

# Linhas (segmentos de reta):

✓ Em CG linhas são representadas por extremos

$$P_1(x_1, y_1) \leftarrow \rightarrow P_2(x_2, y_2)$$

- ✓ Métodos/Algoritmos para rasterização:
  - Analítico
  - DDA (Analisador Diferencial Digital)
  - Bresenham



- Método mais simples e intuitivo
- Dados os extremos  $P_1(x_1, y_1)$   $P_2(x_2, y_2)$  de uma linha:
  - 1. Descubra a equação da reta (y = m x + b);

• 
$$m = (y_2 - y_1) / (x_2 - x_1)$$

• 
$$b = y_1 - m.x_1$$

- 2. Varie x de x1 a x2 de 01 em 01 unidade;
- 3. Obtenha o y discreto correspondente por meio de arredondamento



**Dados**  $P_1(x_1, y_1)$   $P_2(x_2, y_2)$  temos o algoritmo:

| % reta vertical<br>X1 = X2 Sim |                         |
|--------------------------------|-------------------------|
| m = (Y2 - Y1)/(X2 - X1)        | para Y de Y1 até Y2     |
| b = Y2 - m*X2                  | liga_pixel(X1, Y, Cor); |
| para X de X1 até X2            |                         |
| Y = m*X + b                    |                         |
| liga_pixel(X, Y, Cor)          |                         |
|                                |                         |



Suponha a linha definida pelos pontos: P<sub>1</sub>(0,0) P<sub>2</sub>(5,2)

Pergunta Chave: Quais pixel são ligados?



Processando...

$$m = (2 - 0)/(5 - 0) = 0.4$$
  
 $b = 0 - 0.4 * 0 = 0$ 

Processando... 
$$(y = 0.4 * x)$$

Para...

$$x = 0 \Rightarrow y = 0.0 \Rightarrow Pixel (0, 0)$$

$$x = 1 \Rightarrow y = 0.4 \Rightarrow Pixel (1, 0)$$

$$x = 2 \Rightarrow y = 0.8 \Rightarrow Pixel (2, 1)$$

$$x = 3 \Rightarrow y = 1.2 \Rightarrow Pixel (3, 1)$$

$$x = 4 \Rightarrow y = 1.6 \Rightarrow Pixel (4, 2)$$

 $x = 5 \rightarrow y = 2.0 \rightarrow Pixel(5, 2)$ 



Problema grave: P<sub>1</sub>(0,0)

P<sub>2</sub>(2,5)

Para...

Pergunta Chave: Quais pixel são ligados?



m = (5 - 0)/(2 - 0) = 2.5

b = 0 - 0.4 \* 0 = 0

Processando...

 $x = 0 \rightarrow y = 0.0 \rightarrow Pixel(0, 0)$  $x = 1 \rightarrow y = 2.5 \rightarrow Pixel(1, 3)$ 

Processando... (y = 2.5 \* x)

$$x = 2 \rightarrow y = 4.0 \rightarrow Pixel(2, 4)$$

Esse resultado é bom para você?



#### Outros problemas:

- ✓ Operações com ponto flutuante, no entanto, pixel são inteiros;
- ✓ Muitos cálculos no processo eficiência computacional (?)
- ✓ Escolha do pixel não é um fator considerado na elaboração da solução;
  - Pode ser qualquer um das redondezas do número obtido nas contas efetuadas;



- **DDA: Analisador Diferencial Digital;**
- Melhora os resultados do analítico;
- Técnica baseada no cálculo de Δy e de Δx.

$$m = \Delta y / \Delta x \rightarrow \Delta y = m \cdot \Delta x$$

$$\Delta y = m \cdot \Delta x$$

e

$$\Delta x = \Delta y / m$$

- Qual é a ideia então?
  - ✓ Se  $\Delta x > \Delta y$  (0° <  $\theta$  < 45°): incrementa-se  $\Delta x$  em uma unidade e calcula-se os sucessivos valores para y:

$$\Delta y = m \cdot \Delta x \rightarrow y_k - y_{k-1} = m \cdot 1 \rightarrow y_k = y_{k-1} + m$$

✓ Se  $\Delta x < \Delta y$  (45° <  $\theta < 90^{\circ}$ ): incrementa-se  $\Delta y$  em uma unidade e calcula-se os sucessivos valores para x:

$$\Delta x = \Delta y / m \rightarrow x_k - x_{k-1} = 1 / m \rightarrow x_k = x_{k-1} + 1 / m$$



• Dados  $P_1(x_1, y_1)$   $P_2(x_2, y_2)$  temos o algoritmo:





#### • Problema grave: $P_1(0,0)$ $P_2(2,5)$

Pergunta Chave: Quais pixel são ligados?



Processando...

$$\Delta x = 2 - 0 = 2$$
$$\Delta y = 5 - 0 = 5$$

Processando...

$$(\Delta x < \Delta y \rightarrow varia y e calcula x)$$

$$Inc = \Delta x / \Delta y = 2 / 5 = 0.4$$

Para...

$$y = 0 \rightarrow x = 0.0 \rightarrow Pixel(0, 0)$$
  
 $y = 1 \rightarrow x = 0.0 + 0.4 = 0.4 \rightarrow Pixel(0, 1)$   
 $y = 2 \rightarrow x = 0.4 + 0.4 = 0.8 \rightarrow Pixel(1, 2)$ 

$$y = 3 \rightarrow x = 0.8 + 0.4 = 1.2 \rightarrow Pixel(1, 3)$$

$$y = 4 \Rightarrow x = 1.2 + 0.4 = 1.6 \Rightarrow Pixel(2, 4)$$

$$y = 5 \Rightarrow x = 1.6 + 0.4 = 2.0 \Rightarrow Pixel(2, 5)$$



- Algoritmo simples;
- Resolve o problema de descontinuidade do Analítico;
- Ainda com vários problemas:
  - ✓ Utiliza aritmética de ponto-flutuante;
  - ✓ Sujeito a erros de arredondamento;
  - ✓ Pode ser lento em grande escala.



# Ideia básica:

- ✓ Em vez de computar o valor do próximo y em ponto flutuante, decidir se o próximo pixel vai ter coordenadas (x + 1, y) ou (x + 1, y + 1)
  - Considerando a reta no primeiro octante, a priori;
- ✓ Decisão requer que se avalie se a linha passa acima ou abaixo do ponto médio  $(x + 1, y + \frac{1}{2})$ ;



#### Considere a inclinação 0 < m ≤ 1;</li>

- ✓ Ou seja, ela é crescente e  $\Delta x \ge \Delta y$ ;
- ✓ Logo se o pixel  $(x_i, y_i)$  está sobre a linha → o pixel mais próximo a linha será  $(x_i + 1, y_i)$  ou  $(x_i + 1, y_i + 1)$ ;



$$y = m \cdot x + b$$



# Linhas: Algoritmo de Bresenham





#### Processo de decisão:

- ✓ Se  $(d_1 d_2) < 0$  → selecionar  $y_i$
- ✓ Se  $(d_1 d_2) \ge 0$  → selecionar  $y_i + 1$  Onde:



$$(d_{1} - d_{2}) = (y - y_{i}) - (y_{i} + 1 - y)$$

$$= 2.y - 2.y_{i} - 1$$

$$= 2.\overline{m.(x_{i}+1)} + bJ - 2.y_{i} - 1$$

$$= 2.m.(x_{i}+1) + 2.b - 2.y_{i} - 1$$

$$= 2.m. x_{i} + 2.m + 2.b - 2.y_{i} - 1$$

$$= (2.\Delta y. x_{i})/\Delta x + (2.\Delta y)/\Delta x + 2.b - 2.y_{i} - 1$$



# Parâmetro de decisão:

✓ Perceba, como estamos no primeiro octante  $\Delta x > 0$ 

• 
$$x_2 > x_1 \rightarrow x_2 - x_1 > 0 \rightarrow \Delta x > 0$$

- Assim, se  $(\mathbf{d_1} \mathbf{d_2}) < 0 \rightarrow \text{selectionar } \mathbf{y_i}$
- Então, se  $p_i = \Delta x$ .  $(d_1 d_2) < 0 \rightarrow selecionar y_i$
- Se  $(\mathbf{d_1} \mathbf{d_2}) \ge 0 \Rightarrow$  selectionar  $y_i + 1$
- Então, se  $p_i = \Delta x$ .  $(\mathbf{d_1} \mathbf{d_2}) \ge 0 \Rightarrow$  selecionar  $y_i + 1$



# Parâmetro de decisão:

Sendo:

$$d_1 - d_2 = (2.\Delta y \cdot x_i)/\Delta x + (2.\Delta y)/\Delta x + 2.b - 2.y_i - 1$$

E considerando:  $\mathbf{p_i} = \Delta x \cdot (\mathbf{d_1} - \mathbf{d_2})$ 

Então:

$$p_i = 2.\Delta y \cdot x_i + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta x \cdot y_i - \Delta x$$



# Parâmetro de decisão

- ✓ Ele norteará todas as nossas escolhas;
- ✓ Estratégia agora:
  - Vamos descobrir o primeiro  $p_i \rightarrow p_0$
  - Vamos encontrar uma maneira de calcular os próximos  $p_i(s)$ ...  $\rightarrow p_{i+1}$



# Descobrindo p<sub>0</sub>:

$$p_i = 2.\Delta y \cdot x_i + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta x \cdot y_i - \Delta x$$

Então:

$$p_0 = 2.\Delta y \cdot x_0 + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta x \cdot y_0 - \Delta x$$

Perceba 
$$y_0 = (\Delta y / \Delta x) \cdot x_0 + b$$

Substituindo temos:

$$p_0 = 2.\Delta y \cdot x_0 + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta x \cdot [(\Delta y/\Delta x) \cdot x_0 + b] - \Delta x$$



# Descobrindo p<sub>0</sub>:

$$p_0 = 2.\Delta y \cdot x_0 + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta x \cdot [(\Delta y/\Delta x) \cdot x_0 + b] - \Delta x$$

Expandindo:

$$p_0 = 2.\Delta y \cdot x_0 + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta y \cdot x_0 - 2.\Delta x \cdot b - \Delta x$$

Simplificando:

$$p_0 = 2\Delta y - \Delta x$$



# - Obtendo $p_{i+1}$ a partir de $p_i$ :

$$p_{i} = 2.\Delta y \cdot x_{i} + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta x \cdot y_{i} - \Delta x$$

$$P_{i+1} = 2.\Delta y \cdot x_{i+1} + 2.\Delta y + 2.\Delta x \cdot b - 2.\Delta x \cdot y_{i+1} - \Delta x$$

$$-p_{i} = -2.\Delta y \cdot x_{i} - 2.\Delta y - 2.\Delta x \cdot b + 2.\Delta x \cdot y_{i} + \Delta x$$

Logo:

$$p_{i+1}-p_i = 2.\Delta y \cdot (x_{i+1}-x_i) - 2.\Delta x \cdot (y_{i+1}-y_i)$$

Como 
$$x_{i+1} = x_i + 1 \rightarrow x_{i+1} - x_i = 1$$
. Portanto:  

$$p_{i+1} = p_i + 2 \cdot \Delta y - 2 \cdot \Delta x \cdot (y_{i+1} - y_i)$$



# Parâmetro de decisão incremental:

$$p_{i+1} = p_i + 2.\Delta y - 2.\Delta x.(y_{i+1} - y_i)$$

Se 
$$p_i < 0 \rightarrow$$
 selecionar  $y_i \rightarrow y_{i+1} = y_i \rightarrow y_{i+1} - y_i = 0$ 

$$p_{i+1} = p_i + 2.\Delta y$$

Se 
$$p_i \ge 0 \rightarrow$$
 selecionar  $y_i + 1 \rightarrow y_{i+1} = y_i + 1 \rightarrow y_{i+1} - y_i = 1$   
$$p_{i+1} = p_i + 2\Delta y - 2\Delta x$$

$$\mathbf{p_{i+1}} = \mathbf{p_i} + 2(\Delta \mathbf{y} - \Delta \mathbf{x})$$



$$\Delta x = x_2 - x_1 \qquad ; \qquad \Delta y = y_2 - y_1 \qquad ; \qquad y = y_1$$

$$Parâmetro = p = 2. \ \Delta y - \Delta x$$

$$para x de x_1 até x_2 faça:$$

$$liga pixel (x, y, cor)$$

$$p \ge 0$$

$$Sim$$

$$Não$$

$$y = y+1$$

$$p = p + 2.(\Delta y - \Delta x)$$

$$p = p + 2.\Delta y$$



#### ALGORITMO BRES\_INT (x1, y1, x2, y2)

1. 
$$dy = y2 - y1$$
;  $dx = x2 - x1$ ;  $y = y1$ ;

$$2. p = 2dy - dx;$$

3. 
$$FOR(x = x1 \ TO \ x2)$$

4. 
$$WritePixel(x, y);$$

5. **IF** 
$$(p \ge 0)$$
 {

6. 
$$y = y + 1$$
;

7. 
$$p = p - 2(dy - dx);$$

8. 
$$ELSE \{ p = p + 2dy; \}$$





# **Bresenham - Outros Octantes**





# Extensão para os demais octantes

- Se  $x_2 < x_1$ 
  - ✓ Trocar  $P_1$  com  $P_2$
- Se  $y_2 < y_1$ 
  - $\checkmark y_1 \leftarrow -y_1$
  - $\checkmark y_2 \leftarrow -y_2$
  - ✓ Pintar pixel (x, -y)
- Se  $|y_2 y_1| > |x_2 x_1|$ 
  - ✓ Repetir o algoritmo trocando "y" com "x"



#### Principais vantagens:

- ✓ Método bastante veloz;
- ✓ Utiliza somente aritmética inteira;
- ✓ Usa um incremento unitário;
- ✓ Evita operações caras em pontos flutuantes: multiplicação e divisão;
- ✓ As multiplicações que ele realiza são por 2 (deslocamento de bit):

Ex.: 3: 11 24:11000

6: 110 48:110000

12:1100 ......



#### Principais vantagens:

- ✓ Evita operações de arredondamente;
- ✓ Aproveita a coerência espacial: similaridade de valores referentes a pixel vizinhos;
  - Escolha entre dois valores de pixel vizinhos;





- Linhas de comprimentos diferentes podem ter o mesmo número de pixels;
- Ambas as linhas têm
   5 pixels, mas a linha diagonal é maior (fator √2);
- Linhas diagonais aparentam mais apagadas do que linhas horizontais e verticais





- Ajusta as intensidade de pixels ao longo de uma reta;





# Exemplo:

✓ Considerar a linha como um retângulo de largura 1 pixel;

✓ Acender cada pixel com intensidade proporcional à área

encoberta;





# Alternativa mais barata;

- ✓ Aproxima percentual de área coberta pela distância do centro do pixel parcialmente coberto à linha central da área retangular;
- Aumenta o tempo de cálculo do algoritmo de geração de linhas, mas produz um resultado melhor;



# Para compensar esse problema:

- ✓ Ajustar a intensidade de uma linha em função de sua inclinação;
- ✓ Maior intensidade para |m| = 1;
- ✓ Menor intensidade para m = 0 e  $m = \infty$



#### Primeiro Trabalho

### Neste trabalho você deve (INDIVIDUALMENTE):

- 1. Desenvolver um programa que permita desenhar retas por meio dos algoritmos: **Analítico**, **DDA** e **Bresenham**.
- 2. Construir um relatório que descreva a construção e os resultados de maneira comparativa.
- 3. Apresentar o programa desenvolvido e entregar o relatório digital na sala do professor;
  - Obviamente você será arguido nesse momento.



#### Primeiro Trabalho

#### OBSERVAÇÕES:

- ✓ Objetivo do trabalho é que você veja os algoritmos trabalhando e os compare, desse modo, implemente de forma que isso aconteça;
- ✓ Trabalhos entregues sem defesa não serão aceitos (receberão nota zero (0)).
  - Dessa forma, NÃO adianta apenas fazer o trabalho e enviar por e-mail;
  - Muita atenção: não sou uma PJ ou PF precisando de software de rasterização, com isso em mente apresente com o intuito de:
    - Provar que você entende os algoritmos;
    - Provar que você realmente é o autor do programa.



#### Primeiro Trabalho

#### OBSERVAÇÕES (Cont...):

- ✓ Trabalhos entregues sem o relatório serão avaliados em cinquenta porcento (50%) da nota;
- ✓ Trabalhos entregues após a data final estabelecida não serão aceitos, a não ser com a apresentação de atestado médico ou declaração de serviço militar;

#### DICAS:

- 1. Escolha a linguagem de programação que você mais domina e que você entende que **não** será um fator limitante no desenvolvimento do trabalho;
- 2. Comece a desenvolver o trabalho hoje e não deixe para apresentar no último dia.



# Dúvidas

UFRR - Departamento de Ciência da Computação Computação Gráfica - Prof. Dr. Luciano F. Silva

