Министерство Науки и Высшего Образования Российской Федерации Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования

Национальный Исследовательский Ядерный Университет «МИФИ»

Институт Ядерной Физики и Технологий Кафедра Теплофизики

Пояснительная записка к курсовому проекту на тему:

«Инженерные расчеты и проектирование реактора ВВЭР-1000»

Студент:	Панин М.Д.	
Руководитель:	Маслов Ю.А.	
Руководитель со стороны 5 кафедры:	Волков Ю.Н.	

Москва 2022

Содержание

1.	Опи	сание конструкции реактора	3
2.	Тепл	юфизический расчет	4
	2.1.	Постановка задачи	4
	2.2.	Исходные данные для проведения расчетов	5
	2.3.	Выбор турбины	6
	2.4.	Расчет КПД термодинамического цикла	8
	2.5.	Расчет изменения теплового потока в наиболее нагруженном ка-	
		нале	10
	2.6.	Расчет распределения температуры теплоносителя по высоте	10
	2.7.	Расчет распределения температуры внешней стенки оболочки по	11
	2.0	Высоте	11
	2.8.	Расчет температуры топлива	15
	2.9.	Определение перепадов давления и необходимой мощности на-	4.0
	5.40	сосов на прокачку	16
	2.10.	Выводы из теплофизического расчета	18
3.	Ней	гронно-физический расчет	19
	3.1.	Постановка задачи	19
	3.2.	Описание инструмента ячеечного расчета	19
	3.3.	Модель ячейки	19
	3.4.	Расчет ячеек без выгорания	20
	3.5.	Расчет полиячеек без выгорания	21
	3.6.	Расчет длительности цикла и выгорания при частичных пере-	
		грузках	21
4.	Расч	ет биологической защиты	23
	4.1.	Постановка задачи	23
	4.2.	Построение расчетной модели биологической защиты	23
	4.3.	Расчет дозы нейтронов из активной зоны реактора	27
	4.4.	Расчет дозы нейтронов за защитой или минимального размера	
		слоя биологической защиты для нейтронов	29
	4.5.	Расчет дозы гамма-квантов из активной зоны	30
	4.6.	Расчет дозы гамма-квантов за защитой или минимального раз-	
		мера слоя биологической защиты для гамма-квантов	33
	4.7.	Заключение	35
Па	noue	и использорани и истонии ор	36

1. Описание конструкции реактора

ВВЭР-1000 конструктивно относится к классу гетерогенных корпусных реакторов. С точки зрения спектра нейтронов он является тепловым. В качестве теплоносителя и замедлителя используется легкая вода под давлением. В качестве топлива в реакторе используется низкообогащенным диоксид урана UO_2 . Общий вид реактора в сборке представлен на рисунке 1.1.

В верхней части реактора расположена герметично закрытая крышка с установленными на ней приводами механизмов и органов регулирования и защиты. Также крышка оснащена патрубками для вывода кабелей датчиков внутриреакторного контроля. Крепление к корпусу осуществляется с помощью шпилек.

Реактор имеет двухконтурную систему. Энергия, выделяющаяся в результате ценой реакции деления ядер урана, преобразуется в тепловую энергию теплоносителя первого контура. Далее нагретый теплоноситель поступает с помощью тепловых насосов в парогенераторы, где происходит отдача тепла воде второго контура. Образовавшийся в парогенераторах пар далее поступает в паротурбинную установку, приводящую в движение турбогенератор, который вырабатывает электроэнергию. После передачи энергии в парогенераторах вода первого контура поступает в реактор через нижний ряд напорных патрубков. Сплошная кольцевая перегородка между рядами нижних и верхних патрубков, дистанцирующая корпус реактора и его шахту, формирует движение потока теплоносителя вниз. Поэтому вода проходит вниз по кольцевому зазору между корпусом и внутрикорпусной шахтой, затем через перфорированное эллиптическое днище и опорные трубы шахты входит в топливные тепловыделяющие сборки. Из ТВС через перфорированную нижнюю плиту блока защитных труб (БЗТ) теплоноситель выходит в межтрубное пространство БЗТ, а затем через кольцевой зазор между шахтой и корпусом и четыре верхних выходных патрубка из реактора.

Рисунок 1.1. Общий вид реактора ВВЭР-1000 в сборе

- 1. верхний блок;
- 2. привод СУ3;
- 3. шпилька;
- 4. труба для загрузки образцов-свидетелей;
- 5. уплотнение;
- 6. корпус реактора;
- 7. блок защитных труб;
- 8. шахта;
- 9. выгородка активной зоны;
- 10. топливные сборки;
- 11. теплоизоляция реактора;
- 12. крышка реактора;
- 13. регулирующие стержни;
- 14. топливные стержни.

2. Теплофизический расчет

2.1. Постановка задачи

В данном разделе будут определены основные термодинамические и гидравлические параметры реакторной установки. Теплофизический расчет подразумевает следующий ряд задач:

- 1. Выбор турбины и разработка принципиальной теплосиловой схемы установки:
- 2. Рассчет КПД проектируемой установки;

- 3. Рассчет основных теплофизических характеристик, таких как мощность ТВС и твэла, расход и скорость теплоносителя, коэффициент теплоотдачи;
- 4. Построение распределения температур теплоносителя, оболочки и топлива по длинне для наиболее напряжённого канала;
- 5. Определение максимально возможных температур теплоносителя, оболочки и топлива;
- 6. Рассчёт перепадов давлений и мощности, необходимой на прокачку теплоносителя;
- 7. Рассчёт коэффициента запаса до кризиса теплообмена;

2.2. Исходные данные для проведения расчетов

Для проведения теплогидравлического расчета реакторной установки использовались следующие характеристики, представленные в Таблице 2.1.

Таблица 2.1: Исходные данные для проектируемого РУ ВВЭР-1000

Характеристика	Значение
Электрическая мощность реактора, МВт	1000
Температура теплоносителя на входе в АЗ $T_{ m BX}$, ° C	287
Температура теплоносителя на выходе АЗ $T_{\scriptscriptstyle m BMX}$, ${}^{\circ}C$	320
Температура питательной воды, , $^{\circ}C$	220
Температура свежего пара, $^{\circ}C$	274.6
Давление свежего пара	5.9
Температура пара после пароперегревателей, ${}^{\circ}C$	250
Давление в А3, МПа	15.7
Степень сухости пара после ЦВД и ЦНД, %	80
Количество петель РУ	4
Число ТВС N_{TBC} , шт	163
Число твэл в ТВС $N_{{}_{TВЭЛ}}$, шт	317
Коэффициент неравномерности по высоте АЗ	1.5
Коэффициент неравномерности по радиусу АЗ	1.25
Высота АЗ H_{AZ} , м	3.5
Диаметр твэл $d_{\scriptscriptstyle \mathrm{TB}}$, мм	9.1
Размер ТВС «под ключ» а, мм	234
Толщина чехла ТВС $\delta_{ ext{чехла}}$, мм	1.5
Диаметр центрального канала в ТВС $D_{ m ц.к}$, мм	10.3
Число направляющих каналов в ТВС $N_{\scriptscriptstyle ext{H.K.}}$, шт	12
Шаг решетки ТВС S_m , мм	12,75
Диаметр направляющего канала в ТВС $D_{\scriptscriptstyle m H.K}$, мм	12.6
Толщина оболочки твэл $\delta_{ ext{твэл}}$, мм	0.65
Толщина газового зазора в твэл $\delta_{\scriptscriptstyle \Gamma}$, мм	0.135
Диаметр топливной таблетки $d_{ ext{ton}}$, мм.	7.53
Диаметр отверстия топливной таблетки $d_{ ext{otb}}$, мм	1.3

2.3. Выбор турбины

В качестве турбины в расчетах будем использовать модель K-1000-60/1500-2. Её характеристики представлены в таблице 2.2

Таблица 2.2: Параметры турбины К-1000-60/1500-2

Параметр	Значение или Название
Прототип турбины	K-1000-60/1500
Температура питательной воды, $^{\circ}C$	220
Температура свежего пара, $^{\circ}C$	274.6
Давление свежего пара, $^{\circ}C$	5.9
Температура после промежуточного перегрева, ${}^{\circ}C$	250
Количество регенеративных подогревателей	7

Рисунок 2.1. Тепловая схема АЭС: 1 – ядерный реактор, 2 – главный циркуляционный насос, 3 – парогенератор, 4 – цилиндр высокого давления, 5 – сепаратор-пароперегреватель, 6 – цилиндры низкого давления, 7 – генератор, 8 – конденсатор, 9 – конденсационный электронасос, 10 – подогреватель низкого давления, 11 – охладитель, 12 – станция насосная, 13 – деаэратор, 14 – плунжерный электронасос, 15 – подогреватель высокого давления, 16 – конденсационный насос с гидротурбинным приводом

2.4. Расчет КПД термодинамического цикла

Рисунок 2.2. TS диаграмма турбинного цикла в реакторе ВВЭР-1000 : hbc — нагрев и испарение в парогенераторе; cd — расширение пара в ЦВД; de — пар отделяется от конденсата в сепараторе; ef — пар поступает в промежуточный пароперегреватель; fk — расширение пара в ЦНД; ka — конденсация в конденсаторе; ад — регенеративный подогрев в ПНД; gh — регенеративный подогрев в ПВД;

Таблица 2.3: Значения параметров TS-диаграммы

Точка	Р, МПа	T, °C	S, Дж/(кг · K)	h, кДж/кг
h	5.9	220	2516.4	942.9
b	5.9	274.6	3017.4	1208.1
С	5.9	274.6	5898.01	2785.6
d	0.98	179.189	5898.01	2462.7
е	0.98	179.189	6591.7	2776.4
f	0.98	250	6936.1	2943.61
k	0.004	28.7	6936.1	2099.5
k'	0.004	28.7	416.66	119.656
a	5.9	28.7	414.9	125.1
g	0.98	179.2	2130.2	758.9

Произведём расчет КПД для турбины К-1000-60/1500. Термический КПД без регенерации:

$$\eta_{t0} = 1 - \frac{T_k \cdot (s_f - s_a) \cdot x_d}{(h_c - h_g) + x_d \left((h_g - h_a) + (h_f - h_e) \right)} \tag{1}$$

$$\eta_{t0} = 1 - \frac{3.017 \cdot 10^2 \cdot \left(6.936 \cdot 10^3 - 4.149 \cdot 10^2\right) \cdot 8.445 \cdot 10^{-01}}{\left(2.786 \cdot 10^6 - 7.589 \cdot 10^5\right) + 8.445 \cdot 10^{-01} \left(\left(7.589 \cdot 10^5 - 1.250 \cdot 10^5\right) + \left(2.944 \cdot 10^6 - 2.776 \cdot 10^6\right)\right)} \tag{2}$$

$$\eta_{t0} = 3.854 \cdot 10^{-01} \tag{3}$$

Термический КПД с идеальной регенерацией:

$$\eta_{t\infty} = 1 - \frac{T_k \cdot (s_f - s_g) (s_c - s_h)}{(h_c - h_h) \cdot (s_e - s_g) + (h_f - h_e) \cdot (s_c - s_h)}$$
(4)

$$\eta_{t\infty} = 1 - \frac{3.017 \cdot 10^2 \cdot \left(6.936 \cdot 10^3 - 2.130 \cdot 10^3\right) \left(5.898 \cdot 10^3 - 2.516 \cdot 10^3\right)}{\left(2.786 \cdot 10^6\right) - 9.429 \cdot 10^5\right) \cdot \left(6.592 \cdot 10^3 - 2.130 \cdot 10^3\right) + \left(2.944 \cdot 10^6 - 2.776 \cdot 10^6\right) \cdot \left(5.898 \cdot 10^3 - 2.516 \cdot 10^3\right)} \tag{5}$$

$$\eta_{t\infty} = 4.420 \cdot 10^{-01} \tag{6}$$

Термический КПД с n=7 регенеративными отборами:

$$\eta_{tn} = \eta_{t0} + (\eta_{t\infty} - \eta_{t0}) \cdot \frac{n}{n+1} = 3.854 \cdot 10^{-01} + (4.420 \cdot 10^{-01} - 3.854 \cdot 10^{-01}) \cdot \frac{7}{8} = 4.349 \cdot 10^{-01}$$
(7)

Учитываем: $\eta^{\rm BH}=0.85$ — внутренний КПД турбины; $\eta_{\rm oc}=0.98$ — коэффициент использования тепла, учитывающий; потери тепла в окружающую среду в прочем энергооборудовании; $\eta_{\rm эr}=0.98$ — КПД электрогенератора; $\eta_{\rm мех}=0.97$ — КПД механический, Вычисляем КПД брутто АЭС как:

$$\eta_{\text{брутто}} = \eta^7 \cdot \eta^{\text{bh}} \cdot \eta_{\text{oc}} \cdot \eta_{\text{ff}} \cdot \eta_{\text{mex}} = 0.335 = 4.349 \cdot 10^{-01} \cdot 0.85 \cdot 0.98 \cdot 0.98 \cdot 0.97 = 3.444 \cdot 10^{-01} \cdot 0.85 \cdot 0.98 \cdot 0.$$

Тепловая мощность реактора при номинальной электрической мощности $Q_{\rm эл}=1000~{
m MBt}$ равна:

$$Q_{\mathrm{теп}} = rac{Q_{\mathrm{эл}}}{\eta_{\mathrm{брутго}}} = rac{1.000 \cdot 10^9}{3.444 \cdot 10^{-01}} = 2.904 \cdot 10^3 \mathrm{MBr}$$

2.5. Расчет изменения теплового потока в наиболее нагруженном канале

из условия

$$K_z = \frac{\pi H_{\rm a3}}{2 H_{\rm 9\varphi} \sin\left(\frac{\pi H_{\rm a3}}{2 H_{\rm 9\varphi}}\right)} = 1.5$$

находим эфективную добавку к высоте активной зоны. эффективная высота активной зоны будет равна $h_{\rm эф}=3.715$ м. максимальная величина теплового потока на один твэл:

$$q_{max} = \frac{Q_{\text{Ten}} K_r K_z}{N_{\text{TBO}} N_{\text{Ten}} H_{\text{22}}} = \frac{2.904 \cdot 10^9 \cdot 1.25 \cdot 1.5}{163 \cdot 317 \cdot 3.5} = 3.010 \cdot 10^2 \frac{\text{Bt}}{\text{cm}}$$
(8)

Зависимость величины теплового потока от высоты:

$$q(z) = q_{max} \cos \left(\frac{\pi \cdot z}{H_{\rm 9\varphi}} \right) = 3.010 \cdot 10^2 \cos \left(\frac{\pi \cdot z}{3.715} \right) \, \left[\frac{\rm Bt}{\rm cm} \right]$$

2.6. Расчет распределения температуры теплоносителя по высоте

Энтальпия входа $h_{\rm BX}=1.268\cdot 10^6$. Энтальпия выхода $h_{\rm BЫX}=1.452\cdot 10^6$. Расход теплоносителя через ТВС:

$$G_{\mathrm{TBC}} = \frac{Q_{\mathrm{teff}}}{(h_{\mathrm{bhx}} - h_{\mathrm{bx}}) N_{\mathrm{TBC}}} = \frac{2.904 \cdot 10^9}{(1.452 \cdot 10^6 - 1.268 \cdot 10^6) \cdot 163} = 9.685 \cdot 10^1 \; \frac{\mathrm{Kr}}{\mathrm{c}}$$

Расход теплоносителя через реактор:

$$G_{\rm peak} = \frac{Q_{\rm terr}}{(h_{\rm blx} - h_{\rm bx})} = \frac{2.904 \cdot 10^9}{(1.452 \cdot 10^6 - 1.268 \cdot 10^6)} = 1.579 \cdot 10^4 \; \frac{\rm KT}{\rm C}$$

Средняя теплоемкость воды:

$$C_p = \frac{h_{\text{вых}} - h_{\text{вх}}}{T_{\text{вых}} - T_{\text{вх}}} = C_p = \frac{1.452 \cdot 10^6 - 1.268 \cdot 10^6}{5.930 \cdot 10^2 - 5.600 \cdot 10^2} = 5.574 \cdot 10^3 \, \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$$

Распределение температуры теплоносителя по высоте реактора:

$$T(z) = T_{\rm BX} + \frac{N_{\rm TBC}N_{\rm TBЭЛ}q_{\rm max}H_{\rm 9\varphi}}{G_{\rm peak}C_p\pi} \left[\sin\left(\frac{\pi z}{H_{\rm 9\varphi}}\right) + \sin\left(\frac{\pi H_{\rm A3}}{2H_{\rm 9\varphi}}\right) \right]$$

Отсюда максимальная температура жидкости $T_{\rm TH}^{max}=328.54~^{\circ}C$. График изменения температуры теплоносителя по высоте представлен на 2.3

Рисунок 2.3. Изменение температуры теплоносителя по высоте

Максимальная температура теплоносителя определяется из температуры кипения теплоносителя при давлении в активной зоне. Температура насыщения воды при давлении $15.7~\mathrm{M\Pi a} - 345.8~^\circ C$. Отсюда следует что запас до кипения $\approx 17.26~^\circ C$.

2.7. Расчет распределения температуры внешней стенки оболочки по высоте

Площадь проходного сечения:

$$S_{\rm npox} = \sqrt{3}/2(a-2\cdot\delta_{\rm чехла})^2 - N_{\rm твэл}\frac{\pi d_{\rm тв}^2}{4} - N_{\rm н.к.}\frac{\pi D_{\rm н.к.}^2}{4} - \frac{D_{\rm ц.к}^2\pi}{4} \tag{9}$$

$$S_{\rm npox} = \sqrt{3}/2(2.340 \cdot 10^{-01} - 2 \cdot 0.0015)^2 - 3.170 \cdot 10^2 \frac{\pi (9.100 \cdot 10^{-03})^2}{4} - 1.200 \cdot 10^1 \frac{\pi (1.260 \cdot 10^{-02}))^2}{4} - \frac{(1.030 \cdot 10^{-02})^2 \pi}{4}$$

$$S_{\text{ndox}} = 2.402 \cdot 10^4 \text{mm}^2 \tag{11}$$

Периметр:

$$\Pi = (2(a - 2\delta_{\text{чехла}})\sqrt{3}) - N_{\text{твэл}} \pi d_{\text{тв}} + N_{\text{н.к}} \pi D_{\text{н.к}} + \pi D_{\text{ц.к}}$$
(12)

$$\Pi = (2(\cdot 2.340 \cdot 10^{-01} - 2 \cdot 1.500 \cdot 10^{-03}) \cdot \sqrt{3}) - 3.170 \cdot 10^{2} \cdot \pi \cdot 9.100 \cdot 10^{-03} + 1.200 \cdot 10^{1} \cdot \pi \cdot 1.260 \cdot 10^{-02} + \pi \cdot 1.030 \cdot 10^{-02})$$

$$\tag{13}$$

$$\Pi = 1.037 \cdot 10^4 \text{MM} \tag{14}$$

Гидравлический диаметр:

$$d_{\Gamma} = \frac{4S_{\rm npox}}{\Pi} = \frac{4 \cdot 2.402 \cdot 10^{-02}}{1.037 \cdot 10^{1}} = 9.263 \cdot 10^{-03} {\rm mm}$$

Определим коэффициент теплоотдачи в режиме турбулентного стационарного течения несжимаемой жидкости. Параметры теплоносителя при усредненной температуре $\overline{T}=303.5^{\circ}\mathrm{C}$:

- Динамическая вязкость $\mu = 8.721 \cdot 10^{-5} \Pi \mathbf{a} \cdot \mathbf{c}$
- Коэффициент теплопроводности $\lambda = 0.5536 rac{\mathrm{BT}}{\mathrm{M} \cdot K}$
- Число Прандтля Pr=0.8729

По формуле Б.С.Петухова, В.В. Кириллова (круглые трубы): Число Рейнолдса:

$$\mathrm{Re} = \frac{G_{\mathrm{peak}} \cdot d_{\mathrm{r}}}{N_{\mathrm{TRC}} \cdot S_{\mathrm{ppoy}} \cdot \mu} = 4.283 \cdot 10^{5}$$

Коэффициент гидравлического сопротивления:

$$\xi_{\text{\tiny TD}} = (1,82 \cdot \log(\text{Re}) - 1.64)^{-2} = 1.35 \cdot 10^{-02}$$

Расчитываем число Нуссельта:

$$\begin{split} \text{Nu} = & \frac{\frac{\xi}{8} \cdot \text{Re} \cdot \text{Pr}}{k + 12.7 \cdot \left(\text{Pr}^{\frac{2}{3}} - 1 \right) \cdot \sqrt{\frac{\xi}{8}}} = \\ = & \frac{\frac{1.349 \cdot 10^{-02}}{8} \cdot 4.283 \cdot 10^{5} \cdot 8.729 \cdot 10^{-01}}{1 + \frac{900}{4.283 \cdot 10^{5}} + 12.7 \cdot \left((8.729 \cdot 10^{-01})^{\frac{2}{3}} - 1 \right) \cdot \sqrt{\frac{1.349 \cdot 10^{-02}}{8}}} = 6.589 \cdot 10^{2} \end{split}$$

, где
$$k=1+\frac{900}{Re}$$

Коэффициент теплоотдачи:

$$\alpha_1 = \frac{Nu \cdot \lambda}{d_{\scriptscriptstyle \Gamma}} = \frac{6.589 \cdot 10^2 \cdot 5.536 \cdot 10^{-01}}{9.263 \cdot 10^{-03}} = 3.938 \cdot 10^4 \frac{\rm Bt}{\rm m^2 \cdot K}$$

По формуле Диттуса-Болтера:

$$Nu = 0.023Re^{0.8}Pr^{0.4} = 697.5$$

Коэффициент теплоотдачи:

$$\alpha_2 = \frac{Nu \cdot \lambda}{d_{\scriptscriptstyle \Gamma}} = \frac{6.975 \cdot 10^2 \cdot 5.536 \cdot 10^{-01}}{9.263 \cdot 10^{-03}} = 4.169 \cdot 10^4 \frac{\rm Bt}{\rm m^2 \cdot K}$$

По формула М.А. Михеева:

$$Nu = 0.021Re^{0.8}Pr^{0.43} = 634.28$$

Коэффициент теплоотдачи:

$$\alpha_3 = \frac{Nu \cdot \lambda}{d_{\rm r}} = \frac{6.343 \cdot 10^2 \cdot 5.536 \cdot 10^{-01}}{9.263 \cdot 10^{-03}} = 3.791 \cdot 10^4 \frac{\rm Bt}{\rm m^2 \cdot K}$$

Усредним коэффициент теплоотдачи:

$$\alpha = \frac{\alpha_1 + \alpha_2 + \alpha_3}{3} = 3.966 \cdot 10^4 \frac{\text{Bt}}{\text{m}^2 \cdot K}$$

Распределение температуры внешней стенки твэла по высоте реактора:

$$T_{\text{o6}}\left(z\right) = T_{\text{\tiny TH}}\left(z\right) + \frac{q_{\text{max}} \cdot \cos\left(\frac{\pi \cdot z}{H_{\ni \phi}}\right)}{\pi d_{\text{\tiny TR}} \, \alpha}$$

Распределение температуры внешней стенки твэла по высоте реактора представлено на 2.4

Рисунок 2.4. Изменение температуры стенки твэла по высоте

Из 2.4 видно, что максимальная температура $T_{
m o6}^{
m max}=341.6^{\circ}C$ стенки достигается в $Z_{
m max}=0.8$. Отсюда можно сделать вывод о том, что также отсутствует поверхностное кипения теплоносителя.

Общий график для распределений теплоносителя и оболочки представлены на 2.5

Рисунок 2.5. Изменение температуры стенки твэла и теплоносителя по высоте

2.8. Расчет температуры топлива

Произведём расчет термического сопротивления оболочки, газового зазора и топлива:

$$\begin{split} \sum R_i = & \frac{\ln \frac{d_{\text{\tiny TB}}}{d_{\text{\tiny TB}}-2\delta}}{2\pi\lambda_{\text{\tiny 06}}} + \frac{\ln \frac{d_{\text{\tiny TB}}-2\delta}{d_{\text{\tiny TOI}}}}{2\pi\lambda_{\text{\tiny F,3}}} + \frac{\frac{1}{2} - \frac{d_{\text{\tiny OTB}}^2}{d_{\text{\tiny TOI}}-d_{\text{\tiny OTB}}^2} \ln \frac{d_{\text{\tiny TOII}}}{d_{\text{\tiny OTB}}}}{2\pi\lambda_{\text{\tiny TOII}}} = = \\ = & \frac{\ln \frac{9.100 \cdot 10^{-03}}{9.100 \cdot 10^{-03} - 2 \cdot 6.500 \cdot 10^{-04}}}{2 \cdot \pi \cdot 2.010 \cdot 10^1} \\ + & \frac{\ln \frac{9.100 \cdot 10^{-03} - 2 \cdot 6.500 \cdot 10^{-04}}{7.530 \cdot 10^{-03}}}{2\pi \cdot 3.500 \cdot 10^{-01}} \\ + & \frac{0.5 - \frac{(1.300 \cdot 10^{-03})^2}{(7.530 \cdot 10^{-03})^2 - (1.300 \cdot 10^{-03})^2} \ln \frac{7.530 \cdot 10^{-03}}{1.300 \cdot 10^{-03}}}{2\pi \cdot 3.500} = \\ = & 3.752 \cdot 10^{-02} \frac{\text{M} \cdot K}{\text{BT}} \end{split}$$

где

- $\, \lambda_{\text{г.з.}} = 0.35 \, \frac{\text{Вт}}{\text{м-K}}$ теплопроводность газового слоя
- $\,\lambda_{\mathrm{of}} = 23\,rac{\mathrm{BT}}{\mathrm{M\cdot K}}$ теплопроводность оболочки
- $\lambda_{\text{топ}} = 3 \, \frac{\text{Вт}}{\text{м·K}}$ теплопроводность топлива

Распределение температур в топливе по высоте активной зоны:

$$T_{\text{\tiny TO\Pi}}\left(z\right) = T_{\text{\tiny CT}}(z) + \Sigma R_i \cdot q_{\text{\tiny max}} \cdot \cos\left(\frac{\pi \cdot z}{H_{\text{\tiny 3}\varphi}}\right)$$

График изменения температуры топлива по высоте представлен на 2.6

Рисунок 2.6. Изменение температуры топлива по высоте

Максимальная температура топлива $T_{\rm топ}=1559^{\circ}C$ при $Z_{\rm max}=0$ м. Максимально допустимая температура топлива при авариях определяется температурой плавления оксида урана и составляет с некоторым запасом $2600^{\circ}C$. Однако в условиях нормальной эксплуатации максимально допустимая температура топлива определяется сколонностью топлива к усиленному распуханию.

2.9. Определение перепадов давления и необходимой мощности насосов на прокачку

Для того чтобы определить мощность на прокачку теплоносителя через реактор, найде перепад давления в ТВС Гидравлическое сопротивление трения по формуле Дарси:

$$\Delta P_{\rm тp} = \xi_{\rm тp} \cdot \frac{H_{\rm as}}{d_{\rm r}} \cdot \frac{w^2}{2} \rho_{\rm cp} = 1.349 \cdot 10^{-02} \frac{3.500}{9.263 \cdot 10^{-03}} \cdot \frac{(5.629)^2}{2} \cdot 7.165 \cdot 10^2 = 5.785 \cdot 10^4 \rm \Pia$$
 где

• w, средняя скорость теплоносителя:

$$w = \frac{G_{\rm peak}}{\rho_{\rm cp} \cdot S_{\rm npox} \cdot N_{\rm TBC}} = \frac{1.579 \cdot 10^4}{7.165 \cdot 10^2 \cdot 2.402 \cdot 10^{-02} \cdot 1.630 \cdot 10^2} = 5.629 \ {\rm m/c} \end{magnetical}$$

• $\,
ho_{\mathrm{cp}} = 720 \, \mathrm{\Pi a}$ — средняя плотность среды

Потеря напора на ускорение:

$$\Delta P_{\text{yck}} = \left(\frac{G_{\text{peak}}}{N_{\text{TBC}} \cdot S_{\text{npox}}}\right)^2 \cdot \left(\frac{1}{\rho_{\text{BbIX}}} - \frac{1}{\rho_{\text{BX}}}\right) = \left(\frac{1.579 \cdot 10^4}{1.630 \cdot 10^2 \cdot 2.402 \cdot 10^{-02}}\right)^2 \cdot \left(\frac{1}{6.808 \cdot 10^2} - \frac{1}{7.521 \cdot 10^2}\right) = 2.265 \cdot 10^3 \text{ Ta}$$

, где $ho_{\text{вых}}=680.8~\frac{\text{кг}}{\text{м}^2},$ $ho_{\text{вх}}=752.1~\frac{\text{кг}}{\text{м}^2}.$ Нивелирный напор:

$$\Delta P_{\text{нив}} =
ho_{\text{cp}} \cdot g \cdot H_{\text{as}} = 7.165 \cdot 10^2 \cdot 9.807 \cdot 3.500 = 2.459 \cdot 10^4 \Pi \text{a}$$

Местное сопротивление:

$$\Delta P_{\text{\tiny MECT}} = \frac{\left(\frac{1.579 \cdot 10^4}{163 \cdot 2.402 \cdot 10^{-02}}\right)^2}{2} \cdot \left(\frac{2.6}{7.521 \cdot 10^2} + \frac{13 \cdot 0.45}{7.165 \cdot 10^2} + \frac{0.26}{6.808 \cdot 10^2}\right) = 9.761 \cdot 10^4 \Pi \text{a}$$

где $\xi_{\rm bx}=2.6$ — коэффициент сопротивления на входе в кассету; $\xi_{\rm bbx}=0.26$ — коэффициент сопротивления на выходе из кассеты, $\xi_{\rm pem}=0.45$ — коэффициент сопротивления при проходе через дистанцирующую решетку Общее сопротивление каналов:

$$\Delta P = \Delta P_{\mathrm{Tp}} + \Delta P_{\mathrm{yck}} + \Delta P_{\mathrm{нив}} \, + \Delta P_{\mathrm{мест}} \, = 1.823 \cdot 10^5 \mathrm{\Pi a}$$

Мощность, необходимая для прокачки теплоносителя через весь реактор:

$$N_{\mathrm{np}} = N_{\mathrm{TBC}} \frac{\Delta P \cdot G_{\mathrm{TBC}}}{\eta_{\mathrm{HaC}} \cdot \rho_{\mathrm{BX}}}$$

, где $\eta_{
m HAC}=0.8$ — КПД насоса

$$N_{\rm np} = 163 \cdot \frac{1.823 \cdot 10^5 \cdot 9.685 \cdot 10^1}{0.8 \cdot 7.521 \cdot 10^2} = 4.783 \cdot 10^6 {\rm Bt}$$

КПД реактора с учетом потерь на прокачку теплоносителя:

$$\eta' = \frac{Q_{\text{эл}} - N_{\text{пр}}}{Q_{\text{теп}}} = \frac{1.000 \cdot 10^9 - 4.783 \cdot 10^6}{2.904 \cdot 10^9} = 3.427 \cdot 10^{-01}$$

2.10. Выводы из теплофизического расчета

По итогам теплогидравлического расчета были определены основные термодинамические и теплогидравлические параметры РУ ВВЭР-1000. Были выполнены следующие поставленные задачи:

- 1. Произведен выбор турбины и определён её КПД равный 0.342 с учетом мощности, необходимой на прокачку теплоносителя.
- 2. Были найдены зависимости температуры оболочки и теплоносителя от высоты A3, было выяснено, что поверхностного кипения не наблюдается, и максимальная тепература оболочки твэла $341.6~^{\circ}C$ не превышает предельно допустимую.
- 3. Определена зависимость температуры топлива от высоты A3, максимальная температура топлива $1464^{\circ}C$ не превышает предельное значение $1900^{\circ}C$.

3. Нейтронно-физический расчет

3.1. Постановка задачи

В рамках данного этапа работы будет выполнены следующие задачи:

1. Ячеечный расчет для определения характеристик ТВС в приближении бесконечной решетки

Расчет ячеек без выгорания

Построение модели полиячеек и их расчет без выгорания

Расчет длительности цикла и выгорания при частичных перегрузках

2. Расчет энерговыделения и коэффициента неравномерности активной зоны в приближении гомогенизированных ячеек

3.2. Описание инструмента ячеечного расчета

Для расчета свойств ТВС использовались возможности программного комплекca GETERA-93.

Данная программа разрабатывалась для группового расчета полей нейтронов на основе метода вероятностей первых столкновений (ВПС) полей нейтронов в ячейках реакторов, содержащих элементы с различной геометрией.

3.3. Модель ячейки

Для проведения расчетов определим исходные характеристики ТВС РУ-ВВЭР- 1000

Таблица 3.1: Исходные данные для ТВС проектируемого РУ ВВЭР-1000

Характеристика	Значение
Форма ТВС	Шестигранная
Количество твэлов в ТВС	317
Топливо	UO_2
Обогащение топлива, %	4.7
Плотность топлива, г/см 3	9.015
Количество циклов перегрузки топлива	3
Состав оболочки	99% Zr + 1% Nb
Замедлитель	$\mathrm{H}_2\mathrm{O}$

3.4. Расчет ячеек без выгорания

Для расчета использовалась модель одномерной элементарной эквивалентной цилиндрической ячейки с радиусами 0.398, 0.455, 0.67 мм. Геометрия элементарной ячейки представлена на рисунке 3.1

Рисунок 3.1. Геометрия элементарной топливной ячейки. 1 — замедлитель, 2 — оболочка, 3 — топливо

Рассчитаем необходимые концентрации элементов входящих в состав ячейки

Таблица 3.2: Концентрации элементов

Элемент	Концентрация
Топливо	
U^{235}	$9.4518 \cdot 10^{-4}$
U^{238}	$1.9165 \cdot 10^{-2}$
0	$4.02 \cdot 10^{-2}$
Оболочка	
Zr	$4.25047 \cdot 10^{-2}$
Nb	$5.55308 \cdot 10^{-4}$
Замедлитель	
Н	$4.98456 \cdot 10^{-2}$
О	$2.49228 \cdot 10^{-2}$

Используя входные данные зададим расчетную ячейку с указанными в 3.2 составами и радиусами. Произведем расчет K_{∞} бесконечной решетки твс заданной модели с помощью команды : FIER заданной во входном файле расчета GETERA-93. Результрующее значение:

$$K_{\infty} = 1.38$$

3.5. Расчет полиячеек без выгорания

Перед дальнейшими расчетами выгорания необходимо усложнить модель активной зоны, представив ее бесконечной решеткой полиячеек. Такой подход позволит учесть ячейки с различной степенью выгорания в активной зоне для дальнейшего расчета при использовании частичиных перегрузок.

Разобьём ячейку на 3 фрагмента (в соответствии с заданным количество циклов выгорания), для которых предполагается применимым одномерное приближение. Связи между фрагментами зададим с помощью следующей матрицы перетечек записанной в переменную ALOUT расчетного файла:

$$\begin{pmatrix}
0.0 & 0.5 & 0.5 \\
0.5 & 0.0 & 0.5 \\
0.5 & 0.5 & 0.0
\end{pmatrix}$$

Повторный расчет заданой поличячейки дает аналогичный результат расчету элементарный ячейки без выгорания, из чего можно сделать вывод что модель полиячейки построена верно.

3.6. Расчет длительности цикла и выгорания при частичных перегрузках

Используя полиячеечную модель из предыдущего этапа воспроизведем трехцикловой процесс перегрузок топлива и подберем оптимальное время цикла выгорания при энерговыделении $q_v=110$. Оптимальным будет считать такое время цикла, по прошествии которого $K_\infty=1.03$, что эквивалентно $K_{\rm eff}=1.0$ для нашей модели.

Используя команду : corr переопределим составы, добавив концентрации свежего топлива во все фрагменты полиячеек последовательно.

Оптимальное время цикла по резльтатам расчета:

$$T_{
m цикла}=450$$
 суток

В таблице 3.3 представлены характеристики, полученные из расчета выгорания

Таблица 3.3: Концентрации элементов

Характеристика	Значение
K_{∞} в начале цикла	1.1667
Длина цикла, сут	450
Длина кампании, сут	1350
Выгорание, МВт · сут / кг	53.541
Годовой расход ТВС, 1 / год	42.2
Плутониевый вектор в конце кампании, %	
Pu^{38}	1.97
Pu^{39}	55.18
Pu^{40}	21.35
Pu^{41}	15.59
Pu^{42}	5.91
Содержание делящегося изотопа (Pu39 + Pu41) в	
отработавшем топливе, кг/тонна топлива	14.87
Содержание делящегося изотопа (U235)	
в отработавшем топливе, кг/тонна топлива	11.4
Загрузка делящихся нуклидов, кг/тонна топлива	47

4. Расчет биологической защиты

4.1. Постановка задачи

Необходимо рассчитать дозу облучения при стационарном режиме работы ЯЭУ ВВЭР-1000 за биологической защитой

4.2. Построение расчетной модели биологической защиты

Для формирования расчетной модели рассмотрим разомкнутую компоновку элементов и помещений ЯЭУ с РУ ВВЭР-1000. Такая компоновка предполагает разделения реакторного и машинного залов в разные здания, что позволяет локализовать возможную аварию и обеспечить большую безопасность.

Рисунок 4.1. Общая компоновка энергоблока с РУ ВВЭР-1000 разомкнутой компоновки (Южно-Украинская АЭС) [2]:

1 — реактор; 2 — машина для перегрузки топлива; 3 — подъемный кран реакторного отделения; 4 — компенсатор давления, 5 — барботер; 6 — деаэратор; 7 — гидроемкость, 8 — турбогенератор; 9 — подъемный кран машинного зала; 10 — регенеративные подогреватели; 11 — защитная оболочка; 12 — блочный щит управления;

Элементы компоновки вокруг реактора Рассмотрим основные элементы защиты, внешние по отношению к ВВЭР-1000 в сборе. Корпус реактора установливается в бетонную шахту (рис 4.2), которая играет роль основной опоры и крепления реактора с учетом сейсмических нагрузкок, а также биологической защиты от излучения со стороны АЗ. Между корпусом реактора и шахтой имеется кольцевой зазор, предназначенный для периодического контроля металла корпуса в связи с требованиями правил. Шахта резделена по высоте на два объема разделительным сильфоном:

- Верхний, снабжен гидрозатвором и соединяется с бассейном выдержки. При перегрузке верхний объем шахты вместе с бассейном заливается водой.
- Нижний, условно разделяемый фермой опорной на шахту зоны патрубков и шахту цилиндрической части корпуса. Соединяется проемом, снабженным герметичной дверью, с помещением для машины осмотра корпуса.

В помещении зоны патрубков биологическая защита выполнена из металлических коробов, заполненных специальным составом, в который входят серпентинитовая галя, кристаллический карбид бора, дробь чугунная литая. В районе активной зоны применяется «сухая» защита, которая представляет из себя слой серпентинитового бетона толщиной 720 мм и высотой 4,7 м, облицованного металлической оболочкой. Такой бетон обладает высокой радиационной стой-костью, что позволяет удовлетворить требования по нейтронной защите. [1]

Рисунок 4.2. Бетонная шахта реактора

Все оборудование первого контура заключено в цилиндрическую оболочку, в верхней части которой расположен грузоподъемный поворотный кран. Между реакторным и машинным залами располагается этажерка электротехнических устройств, где размещены также деаэраторы и различные лаборатории.

Корпус и внутрикорпусные элементы компоновки Корпус представляет собой вертикальный герметичный сосуд цилиндрической формы с эллиптическими днищем и крышкой с наружним диаметром 4535 мм, высотой 10.897 м и толщиной 192 мм в цилиндрической части и 210 мм в районе патрубков [1]. В качестве основного материала используется сталь сталь 15Х2НМФА. е. Вся внутренняя поверхность корпуса покрыта антикоррозионной наплавкой из нержавеющей стали толщиной не менее 8 мм. В местах соприкосновения корпуса с крышкой, шахтой, уплотнительными прокладками, в местах приварки кронштейнов, деталей крепления трубок КИП, на поверхности разделительного кольца выполнена наплавка толщиной не менее 15 мм. Внутрь реактора также устанавливается шахта, которая представляет собой цилиндрическую обечайку с фланцем и эллиптическим днищем, в котором закреплены 163 опорные трубы (стаканы) с шагом 236 мм, верхние части которых образуют опорную плиту для установки и дистанционирования кассет активной зоны. Материал шахты — сталь 08Х18Н10Т толщиной 55 мм.

Устройство твэла Твэл ядерного реактора ВВЭР-1000 представляет собой трубку, заполненную таблетками из двуокиси урана UO2 и герметично уплотненную концевыми деталями на сварке. Трубка твэла изготовлена из циркония, легированного 1 % ниобия. Наружный диаметр трубки твэла 9.1±0.05 мм, ее толщина 0.65±0.03 мм, а внутренний диаметр 7.72+0.08 мм. В эту трубку с зазором 0.19–0.32 мм на диаметр помещены таблетки двуокиси урана высотой (длиной) 20 мм и диаметром 7.57±0.04 мм. В середине этих таблеток имеются отверстия диаметром 1.5 мм, а края таблеток скруглены фасками. Общая длина столба этих таблеток в твэле составляет 3530 мм. Все размеры указаны для холодного состояния. Длина трубки твэла составляет 3800 мм, поэтому положение столба топливных таблеток в твэле зафиксировано разрезными втулками из нержавеющей стали и пружиной, не препятствующими тепловым перемещениям. Вид твэла приведён на рис. 4.3 [3]

Рисунок 4.3. Тепловыделяющий элемент: 1 — заглушка верхняя; 2 — оболочка; 3 — фиксатор; 4 — таблетка; 5 — заглушка нижняя

Преимущество циркония заключается в удачном сочетании ядерных и физических характеристик с механическими и коррозионными свойствами. Цирконий коррозионно стоек в большинстве сред, применяемых в качестве теплоносителей ядерных реакторов, и достаточно технологичен.

Естественная радиоактивность одной свежей ТВС составляет $1.8 \cdot 10^{10}$ Бк., гамма- излучение на поверхности около 0.2 бэр/ч.

Построение одномерной модели В качестве помещения постоянного пребывания персонала рассматривается блочный щит управления, расположенный в этажерке электроустройств (цифра 12 на рис. 2.5). Также в этажерке электроустройств размещаются распределительные устройства сетей электропитания двигателей электростанции, аккумуляторные батареи, трансформаторы и т. д. Для построения расчетной модели был определен ряд значимых элементов конструкции реакторной установки с точки зрения нейтронной защиты. От активной зоны рассматриваемое помещение отделено внутрикорпусными элементами, такими как оболочка твэла, внутрикорпусная шахта; корпусом, бетонной внешней шахтой, внешней бетонной оболочкой реактора и бетонной стеной машинного зала. Суммарный слой бетона складывается из 3 м основания гермо-

оболочки, 0.72 м сухой защиты шахты, 1.5 м шахты и 0.5 м стены машинного зала перед этажеркой. Основная доля нейтронного излучения в реакторе приходится на нейтроны теплового спектра. Для таких энергий хрошими поглотителями являются кадмий, графит, бетон. Присутствующее гамма-излучение для своего эффективного поглощения требует свинец и подобные высокоплотные материалы. Таким образом были выбран слои биологической защиты, представленные в таблице 4.1:

Таблица 4.1: Слои биологической защиты

Название	Материал	Размер, см	$\mid \Pi$ лотность, г/см 3
Внутрикорпусная шахта	сталь 08Х18Н10Т	5.5	7.9
Теплоноситель	$\mathrm{H_{2}O}$	26.3	0.71
Корпус	сталь 15Х2НМФА	19.25	7.8
Шахта + гермооболочка + стена	бетон	572	2.35

4.3. Расчет дозы нейтронов из активной зоны реактора

Таблица 4.2: Основные параметры для расчета

Параметр	Значение
Тепловая мощность реактора, МВт $W_{ m теп}$	$2.904 \cdot 10^3$
Средняя энергия, выделяющаяся в одной реакции деления, МэВ E_f	200
Средняя энергия нейтронов спектра деления, МэВ E_{nf}	2
Среднее число нейтронов деления на середину кампани, $ u_f$	2.42
Коэффициент размножения K_{∞}	1.03
Доля нейтронов спектра деления в спектре утечки γ	0.5
Среднее число гамма-квантов деления на середину кампании	7.51
Высота активной зоны $H_{\rm as}$, м	3.5
Радиус активной зоны $R_{\rm as}$, м	1.58

Число реакций деления в реакторе в единицу времени:

$$N_f = \frac{W_{\text{теп}}}{E_f} \tag{17}$$

$$N_f = \frac{2.90 \cdot 10^9}{2.00 \cdot 10^2 \cdot 1.60 \cdot 10^{-13}} = 9.06 \cdot 10^{19} \, \frac{\text{дел}}{\text{c}}$$

Число нейтронов, образующихся в реакторе в единцу времени:

$$N_n = N_f \cdot \nu_f \tag{18}$$

$$N_n = 9.06 \cdot 10^{19} \cdot 2.42 = 2.19 \cdot 10^{20}$$

Площадь полной поверхности акивной зоны

$$S_{\text{пов}} = S_{\text{бок}} + 2S_{\text{top}} \tag{19}$$

где

•
$$S_{\mathrm{бок}}=H_{\mathrm{a}\mathrm{3}}2\pi R_{\mathrm{a}\mathrm{3}}$$

•
$$S_{\text{top}} = \pi R_{\text{as}}^2$$

$$S_{\text{пов}} = 3.50 \cdot 2 \cdot \pi \cdot 1.58 + 2 \cdot \pi \cdot (1.58)^2 = 5.04 \cdot 10^1 \ \mathrm{m}^2$$

Поток нейтронов утечки из активной зоны:

$$\Phi = \frac{N_n(K_{\infty} - 1)}{S_{\text{TOR}}} \tag{20}$$

$$\Phi = \frac{2.19 \cdot 10^{20} (1.03-1)}{5.04 \cdot 10^1} = 1.30 \cdot 10^{17} \, \frac{\text{нейтрон}}{\text{c} \cdot \text{m}^2}$$

Поток нейтронов спектра деления в утечке из активной зоны:

$$\Phi_f = \Phi \cdot \gamma \tag{21}$$

$$\Phi_f = 1.30 \cdot 10^{17} \cdot 5.00 \cdot 10^{-01} = 6.52 \cdot 10^{16} \; \frac{\text{нейтрон}}{\text{c} \cdot \text{m}^2}$$

Мощность экивалентной дозы нейтронов перед защитой

$$D_{0n} = \Phi_f \cdot E_{nf} \cdot \overline{\mu_{\text{OH}}} \cdot K \tag{22}$$

где

- $\overline{\mu_{
 m 3H}}=\frac{1~{
 m M}^2}{100~{
 m kr}}$ массовый коэффициент поглощения энергии в биологической ткани, принимается равным отношению площади человека к его массе
- $K=10~\frac{{
 m 3B}}{{
 m \Gamma p}}$ коэффициент качества нейтронов спектра деления

$$D_{0n} = 6.52 \cdot 10^{16} \cdot 2.00 \cdot 1.60 \cdot 10^{-13} \cdot 1.00 \cdot 10^{-02} \cdot 1.00 \cdot 10^{1} = 2.09 \cdot 10^{3} \frac{3B}{C}$$

Результаты расчетов дозы нейтронов из активной зоны представлены в таблице **4.3**

Таблица 4.3: Результаты расчета дозы нейтронов

Параметр	Значение
N_f , дел	$9.06 \cdot 10^{19}$
N_n , нейтрон	$2.19 \cdot 10^{20}$
S_{nob} , m^2	50.4
$\Phi, rac{ ext{нейтрон}}{ ext{м}^2 \cdot ext{с}}$	$1.3 \cdot 10^{17}$
$\Phi_f, \frac{\text{нейтрон}}{\text{м}^2 \cdot \text{с}}$	$6.52 \cdot 10^{16}$
$D_{0n}, \frac{3\mathrm{B}}{\mathrm{C}}$	$2.09 \cdot 10^3$

4.4. Расчет дозы нейтронов за защитой или минимального размера слоя биологической защиты для нейтронов

Для расчета дозы нейтронов за защитой используется модель сечения выведения многослойной системы.

Сечение выведение для многослойной системы:

$$D = D_0 \exp\left(-\sum_{i} \Sigma_{\text{rem}}^{i} \cdot d_i\right) \tag{23}$$

Для текущей модели раскрывается как:

$$D = D_0 \exp\left(-\Sigma_{\rm rem}^{\rm H_2O} \cdot d_{\rm H_2O} - \Sigma_{\rm rem}^{\rm cr} \cdot d_{\rm cr} - \Sigma_{\rm rem}^{\rm \varkappa/6} \cdot d_{\rm \varkappa/6}\right) \tag{24}$$

где $\Sigma^{\rm H_2O}_{\rm rem}$ — сечение выведеня слоя воды, $\Sigma^{\rm cr}_{\rm rem}$ — сечение выведения слоя стали, $\Sigma^{\rm x/6}_{\rm rem}$ — сечение выведения слоя бетона, $d_{\rm H_2O}, d_{\rm cr}, d_{\rm x/6}$ — толщины слоев воды, стали и бетона

Таблица 4.4: Значения сечений выведений защиты и толщины различных слоев [3]

Слой защиты	d, см	$ ho, rac{\Gamma}{{ m CM}^3}$	$\mid \Sigma_{ m rem}$, cm $^{-1} \mid$
Вода	26.3	0.71	0.069
Сталь	24.75	7.9	0.166
Бетон	572	2.35	0.08

$$D_n = 2.09 \cdot 10^3 \exp \left(-6.90 \cdot 10^{-02} \cdot 2.63 \cdot 10^1 - 1.66 \cdot 10^{-01} \cdot 2.48 \cdot 10^1 - 8.00 \cdot 10^{-02} \cdot 5.70 \right)$$

Для учета 20% погрешности по дозе модели сечения выведения необходимо использовать поправочный коэффициент 1.2. Итоговая доза с учетом погрешности в 3в / нед:

$$D_{n,\mathrm{нед}} = 1.2 \cdot 7 \cdot 24 \cdot 60 \cdot 60 \cdot 7.490 \cdot 10^{-20} = 5.436 \cdot 10^{-14} \ \frac{\mathrm{3B}}{\mathrm{нед}}$$

4.5. Расчет дозы гамма-квантов из активной зоны

Для расчета гамма-квантов перед защитой применен приближенный алгоритм. Его идея — оценить поток гамма-квантов деления из активной зоны реактора в одномерной геометрии и внести поправку на утечку гамма-квантов от других их источников.

Число гамма-квантов, образующихся в реакторе в единицу времени:

$$I = N_f \cdot \nu_\gamma \cdot N_\gamma \tag{25}$$

где $N\gamma$ — доля гамма-квантов определенной энергии в реакции деления, для E=3 MэB $N_{\gamma,3{
m M}{
m 9B}}=0.2$, для E=5 MэB $N_{\gamma,5{
m M}{
m 9B}}=0.15$ Тогда число гамма-квантов в единицу времени для двух энергий:

$$\begin{split} I_{3\text{ M} \ni \text{B}} &= 9.064 \cdot 10^{19} \cdot 2.000 \cdot 10^{-01} \cdot 7.510 = 1.361 \cdot 10^{20} \, \frac{\text{KB}}{\text{C}} \\ I_{5\text{ M} \ni \text{B}} &= 9.064 \cdot 10^{19} \cdot 1.500 \cdot 10^{-01} \cdot 7.510 = 1.021 \cdot 10^{20} \, \frac{\text{KB}}{\text{C}} \end{split}$$

Рассмотрим перенос нерассеянных гамма-квантов в однородной пластине с внешним источником, перпендикулярным границам пластины. При этом потребуем выполнения следующих условий:

- 1. толщина пластины равна L средней ходе активной зоны $L=\frac{4V_{\rm as}}{S_{\rm nos}}$, где $V_{\rm as}$ объем активной зоны
- 2. линейный коэффициент ослабления пластины μ_{γ} вычисляется через коэффициенты ослабления элементарной ячейки реактора

$$\mu_{\gamma} = \mu_{U} \varepsilon_{U} + \mu_{\text{of}} \varepsilon_{\text{of}} + \mu_{\text{T/H}} \varepsilon_{\text{T/H}} + \mu_{\text{3am}} \varepsilon_{\text{3am}}$$
 (26)

где ε_i — объемные доли топлива, конструкционных материалов, теплоносителя и замедлителя в элементарной ячейке.

Таблица 4.5: Объемные доли материалов

Материал	Обьемная доля $arepsilon_i$
Топливо	0.166
Оболочка (Zr)	0.071
теплоноситель/замедлитель (вода)	0.733

Таблица 4.6: Линейные коэффициенты ослабления μ для гамма-квантов с энергией 3 и 5 МэВ

Материал	$\mid \mu_3, ext{cm}^{-1}$	$\mid \mu_5, cm^{-1} \mid$
Топливо	0.81	0.83
Оболочка (Zr)	0.237	0.221
теплоноситель/замедлитель (вода)	0.028	0.021

Таким образом полный линейный коэффициент ослабления для энергий E=3 MэB, 5 Мэв:

$$\begin{array}{l} \mu_{\gamma,3 \text{ M} \ni \text{B}} = 1.66 \cdot 10^{-1} \cdot 8.10 \cdot 10^{-1} + 7.10 \cdot 10^{-2} \cdot 2.37 \cdot 10^{-1} + 7.33 \cdot 10^{-1} \cdot 2.80 \cdot 10^{-2} \\ = 1.72 \cdot 10^{-1} \text{ cm}^{-1} \end{array}$$

$$\begin{array}{l} \mu_{\gamma,5~\mathrm{M} \ni \mathrm{B}} = 1.66 \cdot 10^{-1} \cdot 8.30 \cdot 10^{-1} + 7.10 \cdot 10^{-2} \cdot 2.21 \cdot 10^{-1} + 7.33 \cdot 10^{-1} \cdot 2.10 \cdot 10^{-2} \\ = 1.69 \cdot 10^{-1} ~\mathrm{cm}^{-1} \end{array}$$

Объем активной зоны:

$$V_{\rm a3} = \pi R_{\rm a3}^2 H_{\rm a3} = \pi \cdot 1.58^2 \cdot 3.5^2 = 27.45 {\rm m}^3$$

Толщина пластины:

$$L = \frac{4 \cdot 27.45}{5.04 \cdot 10^1} = 2.18$$
м $= 217.7$ см

Источник гамма-квантов, равномерно распределенный по объему пластины:

$$Q = \frac{I}{L} \tag{27}$$

$$\begin{split} Q_{3 \text{ M} \text{\tiny 3B}} &= \frac{1.361 \cdot 10^{20}}{2.177 \cdot 10^2} = 6.253 \cdot 10^{17} \frac{\text{KB}}{\text{C} \cdot \text{CM}} \\ Q_{5 \text{ M} \text{\tiny 3B}} &= \frac{1.021 \cdot 10^{20}}{2.177 \cdot 10^2} = 4.690 \cdot 10^{17} \frac{\text{KB}}{\text{C} \cdot \text{CM}} \end{split}$$

Число нерассеянных гамма-квантов через поверхность пластины

$$N = \frac{Q}{\mu_{\gamma}} \left(1 - \exp\left(-\mu_{\gamma}L\right) \right) \tag{28}$$

$$\begin{split} N_{3\text{ M} \ni \text{B}} &= \frac{6.25 \cdot 10^{17}}{1.72 \cdot 10^{-1}} \cdot \left(1 - \exp\left(-1.72 \cdot 10^{-1} \cdot 2.18 \cdot 10^{2}\right)\right) = 3.64 \cdot 10^{18} \frac{\text{KB}}{\text{C}} \\ N_{5\text{ M} \ni \text{B}} &= \frac{4.69 \cdot 10^{17}}{1.69 \cdot 10^{-1}} \cdot \left(1 - \exp\left(-1.69 \cdot 10^{-1} \cdot 2.18 \cdot 10^{2}\right)\right) = 2.78 \cdot 10^{18} \frac{\text{KB}}{\text{C}} \end{split}$$

Поток нерассеянных гамма-квантов деления из активной зоны:

$$\Phi_{\gamma} = \frac{N}{S_{\text{TOR}}} \tag{29}$$

$$\begin{split} &\Phi_{\gamma,3~\text{M} \ni \text{B}} = \frac{3.64 \cdot 10^{18}}{5.04 \cdot 10^{5}} = 7.22 \cdot 10^{12} \frac{\text{KB}}{\text{cm}^{2} \cdot \text{c}} \\ &\Phi_{\gamma,5~\text{M} \ni \text{B}} = \frac{2.78 \cdot 10^{18}}{5.04 \cdot 10^{5}} = 5.51 \cdot 10^{12} \frac{\text{KB}}{\text{cm}^{2} \cdot \text{c}} \end{split}$$

Полный поток гама-квантов из активной зоны с учетом поправочного коэффициента $\xi=2$:

$$\Phi_{\gamma}^{\text{full}} = \Phi_{\gamma} \xi \tag{30}$$

$$\begin{split} &\Phi^{\text{full}}_{\gamma,3~\text{M}\ni\text{B}} = 7.22 \cdot 10^{12} \cdot 2 = 1.44 \cdot 10^{13} \frac{\text{KB}}{\text{CM}^2 \cdot \text{C}} \\ &\Phi^{\text{full}}_{\gamma,5~\text{M}\ni\text{B}} = 5.51 \cdot 10^{12} \cdot 2 = 1.10 \cdot 10^{13} \frac{\text{KB}}{\text{CM}^2 \cdot \text{C}} \end{split}$$

Мощность эквивалентной дозы гамма-квантов перед защитой

$$D_{0\gamma} = \Phi_{\gamma}^{\text{full}} \cdot E \cdot \overline{\mu_{\text{OH}}} \cdot K \tag{31}$$

$$D_{0\gamma,3 \text{ M} \rightarrow \text{B}} = 1.44 \cdot 10^{13} \cdot 3 \cdot 1.60 \cdot 10^{-13} \cdot 100 \cdot 1 = 6.94 \cdot 10^{2} \frac{3\text{B}}{\text{C}}$$

$$D_{0\gamma,5 \text{ M} \rightarrow \text{B}} = 1.10 \cdot 10^{13} \cdot 5 \cdot 1.60 \cdot 10^{-13} \cdot 100 \cdot 1 = 8.82 \cdot 10^{2} \frac{3\text{B}}{\text{C}}$$

Результат расчета дозы гамма квантов из активной зоны для энергий 3, 5 МэВ представлены в таблицах 4.7, 4.8 соответственно.

Таблица 4.7: Результаты расчета дозы гамма-квантов энергии 3 МэВ

Параметр	Значение
I_3 , кв	$1.36 \cdot 10^{20}$
L, cm	217.7
Q_3 , кв / (см \cdot с)	$6.25 \cdot 10^{17}$
Φ_{γ} 3, $\frac{\text{KB}}{\text{CM}^2 \cdot \text{C}}$	$7.22 \cdot 10^{12}$
N_3 , кв / с	$3.64 \cdot 10^{18}$
$D_{0\gamma~3}$, Зв / с	694

Таблица 4.8: Результаты расчета дозы гамма-квантов энергии 5 МэВ

Параметр	Значение	
$I_5,$ кв	$1.02 \cdot 10^{20}$	
L, cm	217.7	
Q_5 , кв / (см \cdot с)	$4.69 \cdot 10^{17}$	
Φ_{γ} 5, $\frac{\text{KB}}{\text{CM}^2 \cdot \text{C}}$	$5.51 \cdot 10^{12}$	
N_5 , кв / с	$2.78 \cdot 10^{18}$	
$D_{0\gamma~5}$, Зв / с	882	

4.6. Расчет дозы гамма-квантов за защитой или минимального размера слоя биологической защиты для гамма-квантов

Для расчета дозы гамма-квантов за защитой или минимального размера слоя биологической защиты для гамма-квантов примиенена модель дозовых факторов накоплений. Эквивалентная дозы нерассеянных гамма-квантов:

$$D_{\gamma} = D_{0\gamma} \exp\left(-\sum_{i} \mu_{\gamma i} d_{i}\right) \tag{32}$$

где $\mu_{\gamma i}$ — линейный коэффициент ослабления і-го слоя, d_i — толщина і-го слоя

Таблица 4.9: Линейные коэффициенты ослабления μ для гамма-квантов с энергией 3 и 5 МэВ за активной зоной

$oxed{Maтериал \mid \mu_3, cm^{-1} \mid \mu_5, cm^{-1}}$				
Сталь	0.3	0.25		
Бетон	0.08	0.07		
Вода	0.028	0.021		

$$\begin{split} D_{\gamma, \text{Hepac}, 3 \text{ M} \ni \text{B}} &= 6.94 \cdot 10^2 \cdot \exp(-3.00 \cdot 10^{-1} \cdot 2.48 \cdot 10^1 - 8.00 \cdot 10^{-2} \cdot 5.72 \cdot 10^2 \\ &- 2.80 \cdot 10^{-2} \cdot 2.63 \cdot 10^1) = 2.65 \cdot 10^{-21} \, \frac{3\text{B}}{\text{c}} \\ D_{\gamma, \text{Hepac}, 5 \text{ M} \ni \text{B}} &= 8.82 \cdot 10^2 \cdot \exp(-2.50 \cdot 10^{-1} \cdot 2.48 \cdot 10^1 - 7.00 \cdot 10^{-2} \cdot 5.72 \cdot 10^2 \\ &- 2.10 \cdot 10^{-2} \cdot 2.63 \cdot 10^1) = 4.26 \cdot 10^{-18} \, \frac{3\text{B}}{\text{c}} \end{split}$$

Дозовый фактор, равный отношению эквивалентной дозы гамма-излучения для квантов всех энергий к эквивалентной дозе излучения нерасеянных гамма-квантов от одного источника

$$B_D = \frac{D_{\text{Hepac}} - D_{\text{pac}}}{D_{\text{Hepac}}} = 1 + \frac{D_{\text{pac}}}{D_{\text{Hepac}}}$$
(33)

Тогда полная доза гамма-квантов за защитой:

$$D_{\text{полн}} = B_D \cdot D_{\text{нерас}}$$
 (34)

Для нахождения фактора накоплени гомогенной среды можно применить формулу Тейлора:

$$B(\mu d) = A_1 \exp(-\alpha_1 \mu d) + (1 - A_1) \exp(-\alpha_2 \mu d) \tag{35}$$

По формуле Д.Л. Бродлера:

$$B_{\text{ret}} = B_N \left(\sum_{i}^{N} \mu_i d_i \right) + \sum_{n=1}^{N-1} \left[B_n \left(\sum_{i}^{n} \mu_i d_i \right) - B_{n+1} \left(\sum_{i}^{n} \mu_i d_i 3 \right) \right]$$
(36)

где $B_j\left(\sum_i^n \mu_i d_i\right)$ — фактор накопения, вычисляемые по формуле Тейлора. Тогла:

$$B_{\text{ret 3 M} \rightarrow \text{B}} = 92.3$$

 $B_{\text{ret 5 M} \rightarrow \text{B}} = 34.7$

Полная доза гамма-квантов за защитой:

$$\begin{split} D_{\gamma \; 3 \; \text{M} \ni \text{B}} &= 92.3 \cdot 2.65 \cdot 10^{-21} = 2.45 \cdot 10^{-19} \; \frac{\text{3}_{\text{B}}}{\text{c}} \\ D_{\gamma \; 5 \; \text{M} \ni \text{B}} &= 34.7 \cdot 4.26 \cdot 10^{-18} = 1.48 \cdot 10^{-16} \; \frac{\text{3}_{\text{B}}}{\text{c}} \end{split}$$

Мощность эквивалентной дозы, создаваемой гамма-квантами всех энергий за защитой в Зв / нед:

$$D_{\gamma} = 7 \cdot 24 \cdot 60 \cdot 60 \cdot (D_{\gamma \text{ 3 MэВ}} + D_{\gamma \text{ 5 MэВ}}) = 8.95 \cdot 10^{-11} \frac{\text{Зв}}{\text{нед}}$$

Суммарная мощность, создаваемая за защитой нейтронами и гамма-квантами с учетом погрешности метода фактора накопления:

$$D=1.15(D_n+D_\gamma)=1.15\cdot(5.44\cdot10^{-14}+8.95\cdot10^{-11})=1.03\cdot10^{-10}$$
 Зв/нед

4.7. Заключение

В работе проводился расчет биологической защиты, была проведена оценка мощностей эквивалентных доз нейтронов и гамма-квантов за защитой.

Оценка проводилась для нейтронных потоков методом сечения выведения для системы со слоями, а также для гамма-квантов с энергиями 3 и 5 МэВ методом дозовых факторов накопления.

По результату работы было получена суммарная мощность эквивалентной дозы нейтронов и гамма-квантов за защитой не превышает $1.03 \cdot 10^{-7} \frac{\text{м3в}}{\text{нед}}$. Получившаяся доза сильно меньше предельной поглощенной дозы для персонала АЭС, которая составляет $0.4 \frac{\text{м3в}}{\text{нед}}$, из чего можно сделать вывод, что рассматриваемое помещение БЩУ безопасно с точки зрения радиационной защиты

Перечень использованных источников

- 1. *Лескин С.*, *Шелегов А.*, *Слободчук В*. Физические особенности и конструкция реактора ВВЭР-1000: [учебное пособие для вузов]. М.: НИЯУ "МИФИ", 2011. ISBN 9785726214924.
- 2. *Монахов А*. Атомные электрические станции и их технологическое оборудование: Учеб. пособие для энерг. и энергостроит. техникумов. М.: Энергоатомиздат, 1986.
- 3. Физика и эксплуатационные режимы реактора ВВЭР-1000 / В. И. Белозеров [и др.]. М. : НИЯУ МИФИ, 2014. С. 159, 157, 167, 172.