Video Game Publisher Factor Model

Project Overview

A machine learning factor model analyzing video game publisher performance and its relationship to stock returns. The system aggregates game performance data to generate predictive features for publisher stock prediction.

Architecture

System Components

1. Data Collection Layer

- Interfaces with Gamalytic API
- Retrieves detailed game performance metrics
- · Handles API rate limiting and error recovery

2. Feature Engineering Pipeline

- · Processes raw game data into predictive features
- Generates metrics at both game and publisher levels
- · Implements sophisticated aggregation strategies

3. Parallel Processing Framework

- Multi-level parallelization architecture:
 - o Publisher-level: Concurrent game processing
 - o Game-level: Parallel similar game loading
 - Feature-level: Concurrent aggregate calculations
- Optimized for large-scale data processing

4. Triple Barrier Labeling System

- · Implements financial machine learning labeling approach
- · Creates classification labels for stock returns
- Supports dynamic barrier calculation

5. Persistence Infrastructure

- · Manages efficient data storage and retrieval
- Implements versioning through timestamps
- Enables rapid development iteration

Core Classes

Publisher Layer

- ParallelPublisher: Orchestrates publisher-level operations
- Manages game portfolio
- Handles feature aggregation

Game Layer

- Game: Encapsulates individual game data and operations
- Processes historical performance metrics
- Manages relationship with similar games

Similarity Analysis

- Genre/ParallelGenre : Processes genre-based similarity
- AudienceOverlap/ParallelAudienceOverlap: Handles player base similarity

Feature Framework

Key Categories

- 1. Game Engagement Metrics
 - o Player growth rates
 - Quality-adjusted engagement
 - Player retention metrics

2. Sentiment Metrics

- o Review score momentum
- o Sentiment divergence analysis
- Weighted sentiment indicators

3. Monetization Metrics

- Revenue efficiency
- Sales conversion rates
- Price-adjusted metrics

4. Lifecycle-Adjusted Metrics

- o Age-normalized performance
- Lifecycle stage indicators
- o Temporal adjustment factors

5. Stability Metrics

- Revenue consistency measures
- Player base stability
- o Performance volatility indicators

6. Leading Indicator Metrics

- Social momentum signals
- Wishlist trends
- o Forward-looking indicators

7. Value Metrics

- o Quality-price ratios
- Engagement efficiency
- Market position indicators

Recent Implementation: Persistence Layer

Motivation

The system's computational intensity and data volume necessitated an efficient persistence strategy to optimize development workflow and enable rapid iteration.

Key Features

- 1. Automatic Persistence
 - · Seamless data saving post-calculation
 - o Integrated with existing workflows
 - Transparent to system operations

2. Version Control

- Timestamp-based file naming
- Historical calculation preservation
- o Clear data lineage

3. Efficient Recovery

- Automatic latest version loading
- Fast data retrieval
- Robust error handling

4. Clean Integration

- · Maintains existing functionality
- Non-intrusive implementation
- Extensible design

Implementation Status

- ✓ Core persistence functionality
- ✓ Parallel processing integration
- ✓ Automatic data recovery✓ Version control system

This overview represents the current state of the factor model system, with a focus on recent persistence layer improvements that enable more efficient development and iteration.