$L^p(\mathbb{R}^n)$ 对偶等式的推广

2024年6月17日

1 $L^p(\mathbb{R}^n), p \in (1,\infty]$ 的对偶

讲到 $L^p(\mathbb{R}^n)$ 的对偶, 那就会提到如下等式.

Lemma 1.1 (Benedek and Panzone, The space L^p , with mixed norm, Theorem 2). 设 $p \in [1, \infty)$, $f \in \mathbb{R}^n$ 上的可测函数. 则

$$||f||_{L^p(\mathbb{R}^n)} = \max_{g \in L^{p'}(\mathbb{R}^n), ||g||_{L^{p'}(\mathbb{R}^n)} = 1} \int_{\mathbb{R}^n} f(x)g(x) dx.$$

Remark 1.2. 当 $||f||_{L^p(\mathbb{R}^n)} = \infty$ 时, 存在 g 使得 $\int_{\mathbb{R}^n} f(x)g(x) dx = \infty$ 是由 Brezis 书中结论保证的.

[H. Brezis, Functional Analysis, Exercise 4.7]: 设 $p \in [1, \infty)$, $f \in \mathbb{R}^n$ 上的可测函数. 若 $\forall g \in L^{p'}(\mathbb{R}^n)$, 有 $fg \in L^1(\mathbb{R}^n)$, 则 $f \in L^p(\mathbb{R}^n)$.

Lemma 1中可从两个角度来减弱 g 的范围. 第一种是减弱为简单函数, 另一种是减弱为 $C_c^\infty(\mathbb{R}^n)$. 感谢 xs 的建议, Stein 的结论跟 Theorem 1.4 有所不同, 有记录的必要.

Lemma 1.3 (E. M. Stein, Functional Analysis, Theorem 4.1 of Chapter 1). 设 $p \in [1, \infty)$, $f \in \mathbb{R}^n$ 上的可测函数. 则

$$||f||_{L^{p}(\mathbb{R}^{n})} = \sup_{g \text{ is simple}, ||g||_{L^{p'}(\mathbb{R}^{n})} = 1} \int_{\mathbb{R}^{n}} f(x)g(x) dx.$$
 (1)

Theorem 1.4. 设 $p \in [1, \infty)$, $f \in \mathbb{R}^n$ 上的可测函数. 则

$$||f||_{L^{p}(\mathbb{R}^{n})} = \sup_{g \in C_{c}^{\infty}(\mathbb{R}^{n}), ||g||_{L^{p'}(\mathbb{R}^{n})} = 1} \int_{\mathbb{R}^{n}} f(x)g(x) dx.$$
 (2)

1.1 实分析角度的证明

证明思路: $f \in L^p(\mathbb{R}^n)$ 时,该定理回到了经典情况,故只需证明 $||f||_p = \infty$ 时,右边也等于无穷. 即证右边小于无穷时, $f \in L^p(\mathbb{R}^n)$. 此时先证

$$\sup_{g\in L^{\infty}(\mathbb{R}^n), g\neq \S \xi \notin, \|g\|_{L^{p'}(\mathbb{R}^n)} = 1} \int_{\mathbb{R}^n} f(x)g(x)\,dx < \infty.$$

再取一列 g_n 使得 fg_n 逼近 $|f|^p$. 从而证得 $f \in L^p(\mathbb{R}^n)$.

首先定义卷积核. 对 $\forall x \in \mathbb{R}^n$,

$$\rho(x) := \begin{cases} \exp\left(\frac{1}{|x|^2 - 1}\right), & |x| < 1, \\ 0, & |x| \ge 1, \end{cases}$$

则 $\rho \in C_c^{\infty}(\mathbb{R}^n)$, $\operatorname{supp}(\rho) = \overline{B(0,1)}$ 且 $\rho \geq 0$. 对 $\forall k \in \mathbb{N}$ 和 $\forall x \in \mathbb{R}^n$, 令

$$\rho_k(x) := \frac{k^n}{\|\rho\|_{L^1(\mathbb{R}^n)}} \rho(kx) = \begin{cases} \frac{k^n}{\|\rho\|_{L^1(\mathbb{R}^n)}} \exp\left(\frac{1}{|kx|^2 - 1}\right), & |kx| < 1, \\ 0, & |kx| \ge 1, \end{cases}$$

 $\mathbb{M} \ \rho_k \in C_c^{\infty}(\mathbb{R}^n), \ \operatorname{supp}(\rho_k) = \overline{B(0, 1/k)}, \ \rho_k \ge 0 \ \mathbb{H} \ \|\rho_k\|_{L^1(\mathbb{R}^n)} = 1.$

Lemma 1.5. 设 $A \subset \mathbb{R}^n$ 为有界闭集, $A \subset \mathbb{R}^n$ 为闭集, 则 A + B 为闭集.

证明. 设 $\{x_k\}_{k\in\mathbb{N}}\subset A+B$ 在 \mathbb{R}^n 中收敛到 x_0 . 则存在 $\{y_k\}_{k\in\mathbb{N}}\subset A$ 和 $\{z_k\}_{k\in\mathbb{N}}\subset B$ 使得, 对 $\forall k\in\mathbb{N}$,

$$x_k = y_k + z_k.$$

由于 A 为有界闭集, 故可取 $\{y_{n_k}\}_{k\in\mathbb{N}}$ 为 $\{y_k\}_{k\in\mathbb{N}}$ 的收敛子列. 记 $y_0:=\lim_{k\to\infty}y_{n_k}$, 则 $y_0\in A$. 又由 B 是闭集知

$$\lim_{k \to \infty} z_{n_k} = \lim_{k \to \infty} x_{n_k} - \lim_{k \to \infty} y_{n_k} = x_0 - y_0 \in B.$$

故

$$x_0 = y_0 + (x_0 - y_0) \in A + B.$$

因此 A + B 是闭集.

Remark 1.6. 注意, 两闭集必须有其中之一是有界的, 否则结论不一定成立. 取

$$A := \left\{ k + \frac{1}{k} \right\}_{k \in \mathbb{N}}, \quad \text{and} \quad B := \mathbb{Z},$$

则

$$A + B = \left\{ k + \frac{1}{m} : \ k \in \mathbb{Z}, \ m \in \mathbb{N} \right\}$$

不是闭集.

有了这些准备工作, 现在可以开始证明 Theorem 1.4 了.

Proof of Theorem 1.4. 当 $f \in L^p(\mathbb{R}^n)$ 时, (2) 是经典的等式, 证明略.

断言, 若

$$\sup_{g \in C_c^{\infty}(\mathbb{R}^n), \|g\|_{L^{p'}(\mathbb{R}^n)} = 1} \int_{\mathbb{R}^n} f(x)g(x) dx =: M < \infty.$$

则 $f \in L^p(\mathbb{R}^n)$. 事实上, 当 $M < \infty$ 时, $f \in L^1_{loc}(\mathbb{R})$ 是自动的. 令 $g \in L^\infty(\mathbb{R}^n)$, 有紧支集且 $\|g\|_{L^{p'}(\mathbb{R}^n)} = 1$. 对 $\forall k \in \mathbb{N}$, 设 $g_k := \rho_k * g$, 则 $g_k \in C_c^\infty(\mathbb{R}^n)$, 从而

$$\int_{\mathbb{D}^n} f(x)g_k(x) \, dx \le M \|g_k\|_{L^{p'}(\mathbb{R}^n)}.$$

因为 $\lim_{k\to\infty} \|g_k - g\|_{L^1(\mathbb{R}^n)} = 0$,由 Riesz 定理知,存在子列 g_{n_k} 几乎处处收敛到 g. 又由 g_k 的定义知, $\|g_k\|_{L^\infty(\mathbb{R}^n)} \le \|g\|_{L^\infty(\mathbb{R}^n)}$ 且由引理 1.5 知,

$$\operatorname{supp}(g_k) = \operatorname{supp}(\rho_k * g) \subset \overline{\operatorname{supp}(\rho_k) + \operatorname{supp}(g)}$$
$$= \overline{\overline{B(0, 1/k)} + \operatorname{supp}(g)} = \overline{B(0, 1/k)} + \operatorname{supp}(g) \subset \overline{B(0, 1)} + \operatorname{supp}(g),$$

由此及 $f \in L^1_{loc}(\mathbb{R}^n)$ 知, 对 $\forall k \in \mathbb{N}$, 在几乎处处意义下

$$|fg_k| \leq ||g_k||_{L^{\infty}(\mathbb{R}^n)} |f\mathbf{1}_{\operatorname{supp}(g_k)}| \leq ||g||_{L^{\infty}(\mathbb{R}^n)} \left|f\mathbf{1}_{\overline{B(0,1)} + \operatorname{supp}(g)}\right| \in L^1(\mathbb{R}^n).$$

故由控制收敛定理

$$\int_{\mathbb{R}^n} f(x)g(x) dx = \int_{\mathbb{R}^n} \lim_{k \to \infty} f(x)g_{n_k}(x) dx$$
$$= \lim_{k \to \infty} \int_{\mathbb{R}^n} f(x)g_{n_k}(x) dx$$
$$\leq \lim_{k \to \infty} M \|g_{n_k}\|_{L^{p'}(\mathbb{R}^n)} = M.$$

从而

$$\sup_{g\in L^\infty(\mathbb{R}^n), g \neq \S \xi , \|g\|_{L^{p'}(\mathbb{R}^n)} = 1} \int_{\mathbb{R}^n} f(x) g(x) \, dx \leq M.$$

若 p=1. 对 $\forall k \in \mathbb{N}$, 令

$$g_k := \operatorname{sign}(f) \mathbf{1}_{B(0,k)},$$

则 $g_k \in L^{\infty}(\mathbb{R}^n)$, g_k 有紧支集且 $\|g_k\|_{L^{\infty}(\mathbb{R}^n)} = 1$, 从而

$$\int_{B(0,k)} |f(x)| dx = \int_{\mathbb{R}^n} f(x)g_k(x) dx \le M.$$

♦ k → ∞, 由 Levi 定理知

$$||f||_{L^1(\mathbb{R}^n)} \le M.$$

若 $p \in (1, \infty)$. 对 $\forall k \in \mathbb{N}$, 令

$$g_k := |f|^{p-1} \operatorname{sign}(f) \mathbf{1}_{\{|f| < k\}} \mathbf{1}_{B(0,k)},$$

则 $g_k \in L^{\infty}(\mathbb{R}^n)$ 且 g_k 有紧支集, 从而

$$\begin{split} \int_{B(0,k)\cap\{|f|< k\}} |f(x)|^p \, dx &= \int_{\mathbb{R}^n} f(x) g_k(x) \, dx \le M \|g\|_{L^{p'}(\mathbb{R}^n)} \\ &= M \left[\int_{B(0,k)\cap\{|f|< k\}} |f(x)|^p \, dx \right]^{1/p'}, \end{split}$$

故

$$\left[\int_{B(0,k) \cap \{|f| < k\}} |f(x)|^p \, dx \right]^{1/p} \le M.$$

令 $k \to \infty$, 由 Levi 定理知

$$||f||_{L^p(\mathbb{R}^n)} \le M.$$

综上, 断言成立.

因此, 当 $f \notin L^p(\mathbb{R}^n)$ 时,

$$\sup_{g \in C_c^{\infty}(\mathbb{R}^n), \|g\|_{L^{p'}(\mathbb{R}^n)} = 1} \int_{\mathbb{R}^n} f(x)g(x) \, dx = \infty$$

(2) 仍然成立. 至此 Theorem 1.4 证毕.

2 泛函角度的证明

Theorem 1.4 的第一种证明思路来源于 Brezis 书中 Corollary 4.24 的证明. 同样的思路在张恭庆的泛函分析中也有提到. 实际上直接利用此结论, 从泛函角度能快速证明 Theorem 1.4.

Theorem 2.1 (H. Brezis, Functional Analysis, Corollary 4.24). 设开集 $\Omega \subset \mathbb{R}^n$ 且 $f \in L^1_{loc}(\Omega)$ 满足对 $\forall g \in C^\infty_c(\Omega)$,

$$\int_{\Omega} f(x)g(x) \, dx = 0.$$

则 f 在 Ω 上几乎处处为 0.

证明. 为了方便, 只证 $\Omega=\mathbb{R}^n$ 时的情况. 令 $g\in L^\infty(\mathbb{R}^n)$ 且有紧支集. 对 $\forall k\in\mathbb{N}$, 设 $g_k:=\rho_k*g$, 则 $g_k\in C_c^\infty(\mathbb{R}^n)$, 从而

$$\int_{\mathbb{R}^n} f(x)g_k(x) \, dx = 0.$$

因为 $\lim_{k\to\infty} \|g_k - g\|_{L^1(\mathbb{R}^n)} = 0$,由 Riesz 定理知,存在子列 g_{n_k} 几乎处处收敛到 g. 又由 g_k 的定义知, $\|g_k\|_{L^\infty(\mathbb{R}^n)} \le \|g\|_{L^\infty(\mathbb{R}^n)}$ 且

$$\operatorname{supp}(g_k) = \operatorname{supp}(\rho_k * g) \subset \overline{\operatorname{supp}(\rho_k) + \operatorname{supp}(g)}$$
$$= \overline{\overline{B(0, 1/k)} + \operatorname{supp}(g)} = \overline{B(0, 1/k)} + \operatorname{supp}(g) \subset \overline{B(0, 1)} + \operatorname{supp}(g),$$

由此及 $f \in L^1_{loc}(\mathbb{R}^n)$ 知, 对 $\forall k \in \mathbb{N}$, 在几乎处处意义下

$$|fg_k| \leq \|g_k\|_{L^{\infty}(\mathbb{R}^n)}|f\mathbf{1}_{\operatorname{supp}(g_k)}| \leq \|g\|_{L^{\infty}(\mathbb{R}^n)}\left|f\mathbf{1}_{\overline{B(0,1)}+\operatorname{supp}(g)}\right| \in L^1(\mathbb{R}^n).$$

故由控制收敛定理

$$\int_{\mathbb{R}^n} f(x)g(x) dx = \int_{\mathbb{R}^n} \lim_{k \to \infty} f(x)g_{n_k}(x) dx$$
$$= \lim_{k \to \infty} \int_{\mathbb{R}^n} f(x)g_{n_k}(x) dx = 0.$$

对 $\forall k \in \mathbb{N}$, 令

$$g_k := \operatorname{sign}(f) \mathbf{1}_{B(0,k)},$$

则 $g_k \in L^{\infty}(\mathbb{R}^n)$ 且有紧支集, 从而

$$\int_{B(0,k)} |f(x)| \, dx = \int_{\mathbb{R}^n} f(x) g_k(x) \, dx = 0,$$

故对 a.e. $x \in B(0,k), f(x) = 0$. 再由 k 的任意性知, 对 a.e. $x \in \mathbb{R}^n, f(x) = 0$.

下面给出 Theorem 1.4 的另一种证明.

Proof of Theorem 1.4. 当 $f \in L^p(\mathbb{R}^n)$ 时, (2) 是经典的等式, 证明略.

若

$$\sup_{g \in C_c^\infty(\mathbb{R}^n), \|g\|_{L^{p'}(\mathbb{R}^n)} = 1} \int_{\mathbb{R}^n} f(x)g(x) \, dx =: M < \infty.$$

则可定义算子

$$T: C_c^{\infty}(\mathbb{R}^n) \to \mathbb{R}, \ g \mapsto \int_{\mathbb{R}^n} f(x)g(x) \, dx.$$

该算子是连续线性泛函, 从而可以沿拓为 $L^{p'}(\mathbb{R}^n)$ 上的连续泛函 \widetilde{T} . 对于 \widetilde{T} , 存在 $\widetilde{f}\in L^p(\mathbb{R}^n)$ 使得

$$\widetilde{T}(g) = \int_{\mathbb{R}^n} \widetilde{f}(x)g(x) dx, \quad \forall g \in L^{p'}(\mathbb{R}^n).$$

対 $\forall g \in C_c^{\infty}(\mathbb{R}^n),$

$$\int_{\mathbb{R}^n} f(x)g(x) \, dx = T(g) = \widetilde{T}(g) = \int_{\mathbb{R}^n} \widetilde{f}(x)g(x) \, dx,$$

即

$$\int_{\mathbb{R}^n} \left[f(x) - \tilde{f}(x) \right] g(x) \, dx = 0.$$

由此及 Theorem 2.1 知, f 和 \tilde{f} 几乎处处相等, 故 $f \in L^p(\mathbb{R}^n)$.

3 $L^1(\mathbb{R}^n)$ 的对偶

下面是 zcf 告诉我的一个结论.

Theorem 3.1. $(L^1(\mathbb{R}^n))' \subset L^{\infty}(\mathbb{R}^n)$.

4 Lemma 1的特殊情况

Lemma 4.1. 设 $p \in [1, \infty)$, $\frac{1}{p} + \frac{1}{p'} = 1$ 且 $f \in L^p(\mathbb{R}^n)$. 则存在 $g \in L^{p'}(\mathbb{R}^n)$ 满足 $\|g\|_{L^{p'}(\mathbb{R}^n)} = 1$ 使得

$$||f||_{L^p(\mathbb{R}^n)} = \int_{\mathbb{R}^n} f(x)g(x) \, dx.$$

证明. If $f \equiv 0$, then Lemma 4.1 is obviously true. Next, we will only consider the case where $f \not\equiv 0$.

Case 1) p=1. In this case, $p'=\infty$. Let $g:=\overline{\mathrm{sgn}(f(x))}$, where, for any $z\in\mathbb{C}$,

$$\operatorname{sgn}(z) := \begin{cases} z/|z| & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$

Then $||g||_{L^{\infty}(\mathbb{R}^n)} = 1$ and

$$\int_{\mathbb{R}^n} f(x)g(x) \, dx = \int_{\mathbb{R}^n} f(x) \, dx = \|f\|_{L^p(\mathbb{R}^n)}.$$

This finishes the proof of Lemma 4.1 in this case.

Case 2) $p \in (1, \infty)$. In this case, letting

$$g := \frac{|f(x)|^{p-1}\overline{\operatorname{sgn}(f(x))}}{\|f\|_{L^p(\mathbb{R}^n)}^{p-1}},$$

then

$$||g||_{L^{p'}(\mathbb{R}^n)} = \frac{1}{||f||_{L^p(\mathbb{R}^n)}^{p-1}} \left[\int_{\mathbb{R}^n} |f(x)|^{pp'-p'} dx \right]^{\frac{1}{p'}}$$
$$= \frac{1}{||f||_{L^p(\mathbb{R}^n)}^{p-1}} \left[\int_{\mathbb{R}^n} |f(x)|^p dx \right]^{\frac{1}{p} \frac{p}{p'}} = 1$$

and

$$\int_{\mathbb{R}^n} f(x)g(x) \, dx = \frac{1}{\|f\|_{L^p(\mathbb{R}^n)}^{p-1}} \int_{\mathbb{R}^n} |f(x)|^p \, dx = \|f\|_{L^p(\mathbb{R}^n)}.$$

This finishes the proof of Lemma 4.1 in this case and hence Lemma 4.1.