

VU Machine Learning

Exercise 0: Dataset description

Rudolf Mayer (mayer@ifs.tuwien.ac.at)

Exercise "Dataset description"

- Select two datasets sets, one for classification, and one for regression, e.g. from
 - UCI ML Repository (http://www.ics.uci.edu/~mlearn/)
 - Open ML (https://www.openml.org/search?type=data)
 - Datasets should have different characteristics
 - number of samples small vs. large
 - number of dimensions low vs. high dimensional
 - missing values (i.e. some rows have no values for some attributes)
 - Choice of diverse data sets important for grading!

Exercise "Dataset description"

- Groups of 3 students (exact)
 - Register for a group on TUWEL
- Need to register your chosen datasets in TUWEL
 - Limitation of # of groups working on the same datasets
- You will re-use these datasets for the next exercises
 - (you may change them, but then you will have to repeat the dataset description for that exercise)

Exercise "Dataset description": Written Report

- Report should be ~2 pages
 - Make sure that the document contains information on the group members that contributed
- Explanation of choice for data sets
- Characteristics of data set
 - How many samples, how many attributes
 - What types of attributes (nominal, ordinal, interval, ...)
 - See slides of first lecture
 - Distribution/histograms of values in the input and target attributes
- Do not include code in written report
 - But include code & scripts in submission package (if you didn't use just a GUI tool)

Written Report: pointers on what to describe

- Target attribute
 - Distribution/range of values
 - Why is this important?
- Numeric values
 - Description on value ranges
 - Whether you need to treat these attributes in a pre-processing step
- Categorical data: which types? nominal, ordinal, ...
 - Why is that important?
- Other important aspects

Exercise "Dataset description": Software

- Rely on libraries, modules to load data, plot, visualise, etc.
 - You need to develop just the boilerplate code/scripts
- Tools:
 - Python / scikitlearn
 - WEKA (http://www.cs.waikato.ac.nz/ml/weka/)
 - easy to use (GUI), also powerful API
 - R (http://www.r-project.org/)
 - advanced & powerful software
 - if you know R already, or you want to learn it
 - Matlab
 - Rather not useful: GUIs (cannot easily reproduce / automate)
 - Rapid Miner
 - Very simplified GUI
 - Orange Data Mining: https://orange.biolab.si

Questions?