1.	Sustainable development has 3 main components. These are:
	Social, economic and environmental
	Environmental, economic and climate
	Life-cycle, economic and social
	O Past, present and future
2.	Life cycle assessment is a technique that allows us to:
	Evaluate the environmental impact of a product or activity from its production, through its life cycle and use
	Quantify the anticipated lifetime of a product or service
	Understand the rate of material recycling
	O Work out the break-even cost of a product

3.	Which of the following statements describes the present situation with regards to advanced biofuels best in your opinion?			
	0	Advanced biofuels can never truly replace fossil fuels, as they are (subtly) different in terms of chemistry.		
	0	Advanced biofuel producing systems/organisms have already been obtained to fully replace fossil fuels in future		
	•	Advanced biofuels that fully replace fossil fuels might be possible in future, but the present biochemical knowledge/biotechnological tool box is insufficient to be confident of this.		
	0	Advanced biofuels that fully replace fossil fuels might be possible in future, clear strategies and a molecular toolkit are in place to achieve this.		
4.	follo	ich of the owing statements describes biological alkene/alkane production best in your nion?		
	0	Alkenes or alkanes are not biologically produced, and their production requires development of completely novel enzymes.		
	0	Alkenes or alkanes are readily produced by various organisms, in sufficient levels to envisage economical production without need for further improvement		
	0	Alkenes or alkanes are produced by organisms, but in minor quantities, making economical production dependent on future improvements using biotechnology.		
	0	Alkenes or alkanes are only produced by organisms containing aldehyde decarbonylase, and future economically relevant production is dependent on improving that particular catalyst.		

5.	What are the main products of the ABE fermentation process?
	Acetone, butanol and ethanol
	O Propanone, butanone and ethanoic acid
	Acetic acid, butyl alcohol and ethyl alcohol
	Acetone, butane and ethane
6.	What is the name given to a membrane process in which the feed is a liquid mixture and the permeate is removed as a vapour?
	O Pertraction
	O Vapour permeation
	Pervaporation
	Nanofiltration
7.	Which of the following power sources is the best candidate for replacement by an enzymatic fuel cell, base on current technology? Is it:
	O Electric car battery
	O Laptop battery
	Mobile phone battery

8.	Which of the					
		owing components are still required in a HYBRID enzymatic fuel cell that s multicopper oxidases? Is it:				
	use	s municopper oxidases: 1s it.				
	O	Polymer electrolyte				
		membrane				
	0					
		Cathode catalyst				
	0					
		Strong acid				
Q ·	Wh	at are the				
		antages of using peptides for the design of hydrogels for biomedical				
		lications?				
	()	Fully chemically				
		defined and biocompatible				
	0	Polydispersed				
		and non-biodegradable				
	0	Animal derived				
10.	Wh	at is the key				
	pro	perty that makes peptide hydrogel injectable?				
	0	Can				
		be chemically crosslinked				
	•	Shear thinning				
	0	Gels				
		in the presence of body fluid				

11. Sca as:	ffolds are important physical substrates for cell attachment, proliferation and differentiation. They can be described
0	3D biocompatible and permanent porous structures
0	3D biocompatible and biodegradable solid structures
•	3D biocompatible and biodegradable porous structures
0	2D biocompatible and biodegradable porous structures
12. Add	litive nufacturing is a key technology for tissue engineering. It can be defined as:
0	Emerging technology that creates objects fusing materials layer-by-layer
0	Emerging technology that creates objects sintering materials layer-by-layer
0	Emerging technology that creates objects extruding materials layer-by-layer
0	Emerging technology that creates objects adding materials layer-by-layer