

Features

- Operation from 3.0V to 40V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.6A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference

■ General Description

The AP34063 Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series is specifically designed for incorporating in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

■ Pin Connections

■ Ordering Information

■ Maximum Ratings

Para	Symbol	Value	Unit	
Power Supply Voltage		V _{CC}	40	V
Comparator Input Voltage	Range	V_{IR}	-0.3 ~ +40	V
Switch Collector Voltage		$V_{C(switch)}$	40	V
Switch Emitter Voltage(VP	_{in} 1 = 40V)	V _{E(switch)}	40	V
Switch Collector to Emitte	r Voltage	V _{CE(switch)}	40	V
Driver Collector Voltage		V _{C(driver)}	40	V
Driver Collector Current (N	Note 1)	I _{C(driver)}	100	mA
Switch Current		I _{SW}	1.6	Α
Power Dissipation and	Dissipation and PDIP: T _A = 25°C		1.25	W
Thermal Characteristics	Thermal Resistance	θ_{JA}	100	°C/W
	SOP: T _A = 25°C		600	mW
Thermal Resistance		$R_{\theta JA}$	160	°C/W
Operating Junction Temperature		T _J	+150	°C
Operating Ambient Temper	T _A	0 ~ +70	°C	
Storage Temperature Rar	T _{stg}	-65 ~ +150	°C	

Notes: 1.Maximum package power dissipation limits must be observed.

■ Electrical Characteristics (V_{CC} = 5.0V, unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit		
OSCILLATOR							
Frequency(V_{Pin} 5 =0V, C_T =1.0nF, T_A =25°C)	f _{osc}	24	33	42	kHz		
Charge Current(V _{CC} =5.0V to 40V, T _A =25°C)	I _{chg}	24	30	42	μ A		
Discharge Current(V _{CC} =5.0V to 40V, T _A =25°C)	I _{dischg}	140	200	260	μ A		
Discharge to Charge Current Ratio(Pin 7 to V _{CC} , T _A =25°C)	I _{dischg} / I _{chg}	5.2	6.5	7.5	-		
Current Limit Sense Voltage($I_{chg} = I_{dischg}, T_A = 25^{\circ}C$)	V _{ipk(sense)}	300	400	450	mV		
OUTPUT SWITCH (Note 3)							
Saturation Voltage, Darlington Connection	V _{CE(sat)}	_	1.0	1.3	V		
(I _{SW} =1.0A, Pins 1,8 connected)	▼ CE(sat)		1.0	1.0			
Saturation Voltage, Darlington Connection VCE(sat)		_	0.45	0.7	V		
(I_{SW} =1.0A, ID = 50mA, Forced $\beta \approx 20$)	= 50mA, Forced $\beta \approx 20$)		0.10	0.7	·		
DC Current Gain(I_{SW} =1.0A, V_{CE} =5.0V, T_A =25°C)	h _{FE}	50	75	-	-		
Collector Off-State Current (V _{CE} =40V)	I _{C(off)}	-	0.01	100	μ A		
COMPARATOR							
Threshold Voltage	V_{th}				V		
T _A = 25°C		1.225	1.25	1.275			
$T = 0^{\circ}C \sim 75^{\circ}C$		1.21	-	1.29			
Threshold Voltage Line Regulation(V _{CC} =3.0V to 40V)	Reg _{line}	-	1.4	6.0	mV		
TOTAL DEVICE							
Supply Current(V_{CC} =5.0V to 40V, C_T =1.0nF, Pin 7 = V_{CC} ,	I _{CC}	-	-	3.5	mΑ		
V _{Pin 5} > V _{th} Pin 2 = Gnd, remaining pins open)							

^{2.}ESD data available upon request.

Note: 3.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

4.If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤300mA) and high driver currents (≥30mA), it may take up to 2.0 µs for it to come out of saturation.? This condition will shorten the off time at frequencies ≥ 30kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

Forced ${\mathfrak L}$ of output switch : $\frac{I_C \text{ output}}{I_C \text{ driver - 7.0mA}^*} \ge 10$

*The 100Ω resistor in the emitter of the driver device requires about 7.0mA before the output switch conducts.

■ Representative Schematic Diagram

Figure 2. Reference Voltage versus Temp. 1.26 Reference Voltage (V) 1.24 10 20

Figure 3. Current Limit Sense Voltage versus Temperature 440 Current Sense Voltage (mV) 420 400 380 360 340

Temperature (°C)

30

50 60 70

Temperature (°C)

320

10 20

■ Application Circuit

(1) Step-Up Converter

Test	Conditions	Results	
Line Regulation	V_{in} =9V to 12V, I_O =200mA	$20mV = \pm 0.035\%$	
Load Regulation	V_{in} =12V, I_O =50mA to 200mA	$15\text{mV} = \pm 0.035\%$	
Output Ripple	V _{in} =12V, I _O =200mA	500mV _{PP}	
Efficiency	V _{in} =12V, I _O =200mA	80%	

(2) Step-Down Converter

Test	Conditions	Results
Line Regulation	V_{in} =12V to 24V, I_O =500mA	$20mV = \pm 0.2\%$
Load Regulation	V_{in} =24V, I_O =50mA to 500mA	$5mV = \pm 0.05\%$
Output Ripple	$V_{in} = 24V, I_{O} = 500mA$	160mV _{PP}
Efficiency	V _{in} =24V, I _O =500mA	82%

(3) Voltage Inverting Converter

Test	Conditions	Results
Line Regulation	V _{in} =4.5V to 6.0V, I _O =100mA	$20mV = \pm 0.08\%$
Load Regulation	V_{in} =5.0V, I_{O} =20mA to 100mA	$30mV = \pm 0.12\%$
Output Ripple	V _{in} =5.0V, I _O =100mA	500mV _{PP}
Efficiency	V _{in} =5.0V, I _O =100mA	60%

■ Marking Information

■ Package Dimension

(1) PDIP-8L

Symbol	Dimens	Dimensions in millimeters			Dimensions in inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	ı	-	5.33	ı	-	0.210	
A1	0.38	-	ı	0.015	-	-	
A2	3.1	3.30	3.5	0.122	0.130	0.138	
В	0.36	0.46	0.56	0.014	0.018	0.022	
B1	1.4	1.52	1.65	0.055	0.060	0.065	
B2	0.81	0.99	1.14	0.032	0.039	0.045	
С	0.20	0.25	0.36	0.008	0.010	0.014	
D	9.02	9.27	9.53	0.355	0.365	0.375	
Е	7.62	7.94	8.26	0.300	0.313	0.325	
E1	6.15	6.35	6.55	0.242	0.250	0.258	
е	-	2.54	-	-	0.100	-	
L	2.92	3.3	3.81	0.115	0.130	0.150	
eB	8.38	8.89	9.40	0.330	0.350	0.370	
S	0.71	0.84	0.97	0.028	0.033	0.038	

(2) SOP-8L

Symbol	Dimensions In Millimeters			Dimensions In Inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	1.40	1.60	1.75	0.055	0.063	0.069
A1	0.10	-	0.25	0.040	-	0.100
A2	1.30	1.45	1.50	0.051	0.057	0.059
В	0.33	0.41	0.51	0.013	0.016	0.020
С	0.19	0.20	0.25	0.0075	0.008	0.010
D	4.80	5.05	5.30	0.189	0.199	0.209
E	3.70	3.90	4.10	0.146	0.154	0.161
е	-	1.27	-	-	0.050	-
Н	5.79	5.99	6.20	0.228	0.236	0.244
L	0.38	0.71	1.27	0.015	0.028	0.050
У	-	-	0.10	-	-	0.004
θ	0°	-	8 ⁰	0°	-	8°

■ Design Formula Table

Calculation	Step-Up Step-Down		Voltage-Inverting		
+ /+	$V_{out} + V_F - V_{in(min)}$	v _{out} +v _F	Iv _{out} I+v _F		
t _{on} /t _{off}	V _{in(min)} - V _{sat}	V _{in(min)} -V _{sat} - V _{out}	V _{in} -v _{sat}		
$(t_{on} + t_{off})$	1/f	1/f	1/f		
	t _{on} +t _{off}	t _{on} +t _{off}	t _{on} +t _{off}		
t_{off}	t _{on} +1	+1	+1		
	t _{off}	t _{off}	t _{off}		
t_{on}	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$		
C_T	4.0×10 ⁻⁵ t _{on}	4.0×10 ⁻⁵ t _{on}	4.0×10 ⁻⁵ t _{on}		
I _{pk} (switch)	$2I_{out(max)}$ (t_{on} / t_{off} +1)	2I _{out(max)}	$2I_{out(max)}$ (t_{on} / t_{off} +1)		
R_{sc}	$0.3/I_{pk(switch)}$	$0.3/I_{pk(switch)}$	$0.3/I_{pk(switch)}$		
	$(V_{in(min)} - V_{sat})$	$(V_{in(min)} - V_{sat} - V_{out})$	$(V_{in(min)} - V_{sat})$		
L _(min)	I _{pk(switch)} t _{on(max)}	$\frac{1_{\text{pk(switch)}}}{I_{\text{pk(switch)}}} t_{\text{on(max)}}$	$I_{pk(switch)}$ $t_{on(max)}$		
	9——I _{out} t _{on}	$I_{pk(switch)} (t_{off} + t_{on})$	9———		
Co	$V_{ripple(pp)}$	8V _{ripple(pp)}	$V_{\text{ripple(pp)}}$		

The following power supply characteristics must be chosen:

V_{in} -Nominal input voltage.

V_{out} -Desired output voltage, |V_{out}|=1.25(1+R2/R1)

I_{out} -Desired output current.

f_{min} -Minimum desired output switching frequency at the selected values of V_{in} and I_o.

V_{ripple(pp)} -Desired peak-to-peak output ripple voltage, In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

 V_{sat} = Saturation voltage of the output switch. V_{F} = Forward voltage drop of the output rectifier.