CSC373 Worksheet 6 Solution

August 13, 2020

1. 1. Multiply objective function by - 1

Maximize

$$-2x_1 - 7x_2 - x_3$$

Subject to

$$x_1 - x_3 = 7$$
$$3x_1 + x_2 \ge 7$$

$$x_2 \ge 0$$

$$x_3 \le 0$$

2. Replace non-nonnegative constraints \boldsymbol{x}_1

Maximize

$$-2x_1' + 2x_1'' - 7x_2 - x_3$$

Subject to

$$x'_{1} - x''_{1} - x_{3} = 7$$

$$3x'_{1} - 3x''_{1} + x_{2} \ge 7$$

$$x'_{1}, x''_{1}, x_{2} \ge 0$$

$$x_3 \le 0$$

3. Replace non-nonnegative constraints x_3

Maximize

$$-2x_1' + 2x_1'' - 7x_2 - x_3' + x_3''$$

Subject to

$$x'_1 - x''_1 - x'_3 + x''_3 = 7$$
$$3x'_1 - 3x''_1 + x_2 \ge 7$$
$$x'_1, x''_1, x_2, x'_3, x''_3 \ge 0$$

4. Replace equality constraints with \geq and \leq

Maximize

$$-2x_1' + 2x_1'' - 7x_2 - x_3' + x_3''$$

Subject to

$$\begin{aligned} x_1' - x_1'' - x_3' + x_3'' &\leq 7 \\ x_1' - x_1'' - x_3' + x_3'' &\geq 7 \\ 3x_1' - 3x_1'' + x_2 &\geq 7 \\ x_1', x_1'', x_2, x_3', x_3'' &\geq 0 \end{aligned}$$

5. Correct greater-than-or-equal-to inequality constraints

Maximize

$$-2x_1' + 2x_1'' - 7x_2 - x_3' + x_3''$$

Subject to

$$x'_1 - x''_1 - x'_3 + x''_3 \le 7$$

$$-x'_1 + x''_1 + x'_3 - x''_3 \le -7$$

$$-3x'_1 + 3x''_1 - x_2 \le 7$$

$$x'_1, x''_1, x_2, x'_3, x''_3 \ge 0$$

Notes:

• Linear Programming

- Is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. [1]
- Is named to make it sound cool for government funding
 - * Like dynamic programming
- Applications
 - * Microeconomics (maximize profits, minimize costs)
 - * Company management

• Standard Form

- Is a form of linear programming
- Are about maximizing, not minimizing ^[2]
- All have a positivity constraint for each variable [2]
- All other constraints are all of the form "linear combination of variables \leq constant". $^{[2]}$

• Converting Linear Programming to Standard Form

- 1) The objective function might be a minimization rather than a maximization
 - Negate coefficients of the objective function

- 2) There might be variables without nonnegativity constraints
 - Replace each non-nonnegative variable x_i with x_i' and x_i''
 - Modify linear program

- 3) There might be **equality constraints**, which have an equal sign rather than a less-than-or-equal-to sign
 - Replace equality constraint $f(x_1, x_2, ..., x_n) = b$ with $f(x_1, x_2, ..., x_n) \le b$ and $f(x_1, x_2, ..., x_n) \ge b$

- 4) There might be **inequality constraints**, but instead of having a less-than-or-equal-to-sign
 - Multiply incorrect inequality constraints by -1

References:

- 1) Wikipedia, Linear Programming, link
- 2) Instituto de Mathematicas, Standard form for Linear Programs, link

2.

$$z = 2x_1 - 6x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -8 + 3x_1 - x_2$$

$$x_6 = -x_1 + 2x_2 + 2x_3$$

The basic variables are variables on the lhs (i.e B = 4, 5, 6), and the non-basic variables are the variables on the rhs of the expressions (i.e. N = 1, 2, 3).

Notes:

• Slack Form

- Is a form of linear programming
- Is for efficient solving of liner programming problem using simplex algorithm

• Converting Linear Programs into Slack Form

- 1) Start from the standard form of linear programming
- 2) Shift objective functions to right

3) Introduce slack variable x_i to lhs and move expressions $\sum_{j=1}^n a_{ij}x_j$ to rhs

4) Change inequalities in linear programming to equality

5) Use Variable z to denote objective function

6) Omit the nonnegativivty constraints

References:

- 1) Cambridge University, Linear Programming, link
- 3. Multiplying the first expression (under subject to) by 2, and summing the inequality constraints, we have

$$0 \le -6 \tag{1}$$

which is impossible.

Notes

- I noticed that infeasible solution has non-overlapping region
- Infeasible
 - A Linear Program is infeasible if there is no solution that satisfies all of the constraints
- 4. Let $x_1 = 3r$ and $x_2 = r$ where $r \ge 0$. Then the inequality constraints become

$$-2(3r) + (r) = -5r \le -1$$
$$-(3r) - 2(r) = -5r \le -2$$
$$3r, r > 0$$

and are valid.

Now, looking at the objective functions, with $x_1 = 3r$ and $x_2 = r$, it becomes

$$3r - r = 2r$$

which increases without bound.

Thus, there is no maximum, and the linear program is unbounded.

Notes

• I learned that to show an LP is unbounded, I first have to subtitute x_i with a common variable r (e.g. $x_1 = 3r$, $x_2 = r$), check inequality constraints, and then look at objective functions and see if I can get max/min.

• Unbounded

 A Linear Program is unbounded if it has some feasible solutions but does not have a finite optimal objective value

References:

1) CLRS Solutions, 29.1 Standard and slack forms, link

5. At worst case, the upper bound of variables and constraints in conversion to standard form is 2n and 2m.

Proof. Suppose a linear program has n variables and m constraints.

When converting to standard form, the areas that affect the number of constraints and variables are:

- 1. Variables without nonnegativity constraints
- 2. Existence of equality constraints

So, in worst case, all of the variables are not nonnegative, and all of the expressions have equality constraints.

Since addressing each of non-nonnegative constraints adds an additional variable, we can write there would be total of 2n variables at the end.

And since addressing each equality constraints result in 1 additional constraint, we can conclude there would be total of 2m constraints.

References:

- 1) CLRS Solutions, 29.1 Standard and slack forms, link
- 6. The following is an example of a linear program for which the feasible region is not bounded, but the optimal objective value is finite.

Minimum

$$x_1 - x_2$$

Subject to

$$-2x_1 + x_2 \le -1$$

$$-x_1 + 2x_2 \le 10$$

$$x_1, x_2 \ge 0$$

Proof. Let $x_1 = 2r$ and $x_2 = r$ where $r \ge 0$. Then, the inequality constraints become

$$-2(2r) + (r) = -3r \le -1 \tag{2}$$

$$-(2r) + 2(r) = 0 \le 10 \tag{3}$$

$$2r, r \ge 0 \tag{4}$$

which is valid.

Now, looking at the objective function, we have 2r - r = r.

Since we are looking for the minimum value and $r \ge 0$, we can write min(r) = 0 (if we are looking for the maximum, then r is ever-increasing and the linear program is unbounded).

Thus, the optimal objective value in this example is finite.

Notes:

• Feasible Region

- Is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints. [1]

References:

1) Wikipedia, Feasible region, link

7.

Maximize
$$\sum_{v \in V - \{s\}} d_v$$
 Subject To
$$d_v - d_u \le w(u,v) \text{ for each edge } (u,v) \in E$$

$$d_s = 0$$

Notes:

- I chose positive sign. But is there a symstematic approaches to determining signs in objective functions? What does positive x_i means? what about negative x_i ?
- Formulating Problems as Linear Program (Shortest Path)
 - Single-source shortest-path problem can be formulated as a linear program.
 - Goal is computing the weight of a shortest path from s to t.

maximize
$$d_t$$
 subject to
$$d_v \leq d_u + w(u,v) \quad \text{for each edge } (u,v) \in E$$

$$d_s = 0 \; .$$

Example:

$$\begin{array}{ll} \text{Maximize} & d_t \\ \text{Subject To} & d_t - d_s \leq 6 \\ d_t - d_x \leq -2 \\ d_x - d_t \leq 5 \\ d_x - d_y \leq -3 \\ d_x - d_z \leq 7 \\ d_y - d_t \leq 8 \\ d_y - d_s \leq 7 \\ d_z - d_t \leq -4 \\ d_z - d_y \leq 9 \\ d_s - d_z \leq 2 \\ d_s = 0 \end{array}$$

On continued calculation, the values of each variables should be $d_s=0,\ d_y=7,\ d_x=4,\ d_t=2,\ {\rm and}\ d_z=-2.$

References:

1) University of Missouri St. Louis, Linear Programming, link

8. Rough Works:

Goal: Find the feasible flow of minimum cost using linear program

Minimize
$$\sum$$
Subject To
$$d_t - d_s \le 6$$

$$d_t - d_x \le -2$$

$$d_x - d_t \le 5$$

$$d_x - d_y \le -3$$

$$d_x - d_z \le 7$$

$$d_y - d_t \le 8$$

$$d_y - d_s \le 7$$

$$d_z - d_t \le -4$$

$$d_z - d_y \le 9$$

$$d_s - d_z \le 2$$

$$d_s = 0$$

Notes:

• Minimum-cost Flow Problem

- Goal \rightarrow Finding the cheapest possible way of sending a certain amount of flow through a flow network [1]

- Applications
 - 1) Finding delivery route from factory to a warehouse [1]
- Multicommodity Flow Problem
 - **Goal** \rightarrow Finding whether a flow exists

minimize
$$\sum_{i=1}^k f_{iuv} \leq c(u,v) \quad \text{for each } u,v \in V \;,$$

$$\sum_{v \in V} f_{iuv} - \sum_{v \in V} f_{ivu} = 0 \qquad \text{for each } i = 1,2,\ldots,k \text{ and }$$
 for each $u \in V - \{s_i,t_i\} \;,$
$$\sum_{v \in V} f_{i,s_i,v} - \sum_{v \in V} f_{i,v,s_i} = d_i \qquad \text{for each } i = 1,2,\ldots,k \;,$$

$$f_{iuv} \geq 0 \qquad \text{for each } u,v \in V \text{ and }$$
 for each $i = 1,2,\ldots,k$.

- Is a network flow problem with multiple commodities (flow demands) between different source and sink nodes ^[2].
- Applications [3]
 - 1) Networks
 - * Communication Networks
 - * Computer Networks
 - * Railway networks
 - * Distribution Networks
 - 2) Arcs
 - * Transmission lines
 - * Highways, railways, tracks
 - 3) Flow
 - * Data messages
 - * Trains

References:

- 1) Wikipedia, Minimum-cost flow problem, link
- 2) Wikipedia, Multicommodity flow problem, link
- 3) MIT, Multicommodity flow problem, link