АСТРАДЬ

Содержание

1	Небесная механика														2										
	1.1	Движение по орбите.																							2

1 Небесная механика

1.1 Движение по орбите

Закон сохранения момента импульса — векторная сумма всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы:

$$\vec{r} \cdot m\vec{v} = const \tag{1}$$

Закон сохранения момента импульса справедлив как для эллипса, так и для гиперболы и параболы. Следствием закона сохранения момента импульса и закона сохранения энергиии является интеграл энергии (скорость в точке орбиты, удалённой на расстояние r от центрального тела, где M — масса центрального тела):

$$v = \sqrt{GM\left(\frac{2}{r} - \frac{1}{a}\right)} \tag{2}$$

При подстановке расстояний (r) апоцентра или перицентра интеграл энергии принимает следующий вид:

$$v_{a\phi} = \sqrt{\frac{GM}{a}} \sqrt{\frac{1-e}{1+e}} \tag{3}$$

$$v_{\rm nep} = \sqrt{\frac{GM}{a}} \sqrt{\frac{1+e}{1-e}} \tag{4}$$

При использовании уравнения эллипса в полярных координатах значение скорости можно определить по следующей формуле, где ν — истинная аномалия, p — фокальный параметр:

$$v = \sqrt{\frac{GM}{p} \cdot (1 + 2e\nu + e^2)} \tag{5}$$