<u>Dashboard</u> / My courses / <u>Grado</u> / <u>Ingeniería en Petróleos</u> / <u>Cursos 2023</u> / <u>Mecánica Aplicada-Mecanica y Mecanismos-2023</u>

/ <u>UNIDAD 2: ARBOLES Y EJES - CINEMATICA DEL CUERPO RIGIDO</u> / <u>2 Trabajo practico MR CINEMATICA CUERPO RIGIDO 2023 Parte-B</u>

Started on	Thursday, 21 September 2023, 11:37 AM
State	Finished
Completed on	Thursday, 21 September 2023, 2:14 PM
Time taken	2 hours 37 mins
Marks	6.00/6.00
Grade	10.00 out of 10.00 (100 %)
Feedback	CUESTIONARIO APROBADO PARA ACCEDER AL EXAMEN PARCIAL (sujeto a revisión de procedimientos de cálculo)
Information	

Cinemática del Cuerpo Rígido- Aceleración de Coriolis

El sistema de coordenadas x-y está fijo al cuerpo con respecto a la barra. El ángulo θ (en radianes) está dado como una función del tiempo por $\theta = (0,16\ t)\ rad$. La coordenada x del collarín A (en pies) está dada en función del tiempo por $x = (1,2+0,018\ t^2)\ m$.

Question 1
Correct
Mark 1.00 out of 1.00

Determinar la velocidad del collarín en t = 5 s respecto a un marco de referencia no giratorio con su origen en B. Escriba el valor DE LA **MAGNITUD DE LA VELOCIDAD** en el campo inferior, y seleccione la unidad adecuada.

Answer:	0.32	~	m/s
---------	------	---	-----

Question 2	
Correct	
Mark 1.00 out of 1.00	

Determinar la aceleración del collarín en t = 5 s respecto a un marco de referencia no giratorio con su origen en B.

Escriba el valor DE LA **MAGNITUD DE LA ACELERACIÓN** en el campo inferior, y seleccione la unidad adecuada.

Answer:	0.0579	~	m/s^2
		_	,

Information

Cinemática del Cuerpo Rígido- Aceleración de Coriolis

La pluma telescópica de la grúa gira con la velocidad y aceleración angulares que se muestran en la figura. Al mismo tiempo, la pluma se extiende con una velocidad constante de **0,5 pie/s**, medida con respecto a sí misma.

Question 3	
Correct	
Mark 1.00 out of 1.00	

Calcular la magnitud de la velocidad del **punto B** en este instante.

Escriba el valor en el campo inferior, y seleccione la unidad adecuada.

Question 4 Correct						
Mark 1.00 out	of 1.00					
Calcular l	a magnitud de la acele	eración del punto B en	n este instante			
Escriba el	valor en el campo inf	erior, y seleccione la u	nidad adecuada.			
Г				7		
Answer:	0.189	~	m/s^2			
Information						

Cinemática del Cuerpo Rígido- Aceleración de Coriolis

El agua sale del impulsor de la bomba centrífuga con una velocidad de **25 m/s** y una aceleración de **30 m/s²**, ambas medidas con respecto al impulsor a lo largo de la línea del aspa **AB**. El impulsor gira a una velocidad angular constante de **15 rad/s**.

Calcular la magnitud de la **velocidad** de una partícula de agua en **A** cuando sale del impulsor en el instante que se muestra. Escriba el valor en el campo inferior, y seleccione la unidad adecuada.

estion 6		
rrect		
ark 1.00 out of 1.00		
Calcular la magnitud	de la aceleración de una partícula de agua en A cuando sale del impulsor en el instante que se mue	estra.
Escriba el valor en el o	campo inferior, y seleccione la unidad adecuada.	
Answer: 692.4	✓ m/s^2	
estion 7		
mplete		
t graded		
Escanear /fotografiar	los procedimientos de calculo del los ítems anteriores, incluyendo las tablas y o gráficas utilizadas	con las
Escanear /fotografiar	los procedimientos de calculo del los ítems anteriores, incluyendo las tablas y o gráficas utilizadas nes de procesos para extrar los parámetros; y agregarlo como archivo pdf .	con las
Escanear /fotografiar		con las
Escanear /fotografiar	nes de procesos para extrar los parámetros; y agregarlo como archivo pdf .	con las
Escanear /fotografiar respectivas indicacion	nes de procesos para extrar los parámetros; y agregarlo como archivo pdf .	con las
Escanear /fotografiar respectivas indicacion	nes de procesos para extrar los parámetros; y agregarlo como archivo pdf . <u>LIS.pdf</u>	con las
Escanear /fotografiar respectivas indicacion	nes de procesos para extrar los parámetros; y agregarlo como archivo pdf .	con las
Escanear /fotografiar respectivas indicacion	nes de procesos para extrar los parámetros; y agregarlo como archivo pdf . <u>LIS.pdf</u>	con las