Statistical modelling in public health: SARS-CoV-2 – Analysis of Epidemiological Parameters

Dr. School seminar, Summer 2024

Lukas Richter

17.05.2024

Background

- First SARS-CoV-2 case reported end of February 2020
- Early pandemic (outbreak)
 - Urgent need to inform
 - Severity? (hospitalisation, case-fatality rate, mortality)
 - Speed of spread? (reproduction number, serial interval)
- Mid pandemic
 - Data imputation
 - changing variants
- Late pandemic
 - (unfamiliar) huge amounts of data/cases

Serial interval

Definition SI

The serial interval (SI) is the **time between disease onset** of successive cases in a chain of transmission.

Serial interval

Definition SI

The serial interval (SI) is the **time between disease onset** of successive cases in a chain of transmission.

- Empirical data from infector-infectee pairs
 - Source: cluster data
 - ► Epidemiologically very likely connection
 - ▶ Date of disease onset of both is known
- Fit gamma, lognormal, Weibull and exponential distribution

SI estimates

- Estimates from chinese data
 - ▶ Du et al.: SI 3.96 days, standard error 4.75 days (Du et al. (2020))
 - Nishiura et al.: SI 4.7 days, standard error 2.9 days (Nishiura, Linton, and Akhmetzhanov (2020))
- Two time periods
 - ▶ 23.02.2020 − 01.04.2020 (6 weeks)
 - ▶ 06.09.2020 − 17.05.2021 (8 months)
- Transmission pairs
 - 312 during first period
 - 250 during second period
- R-package fitdistrplus (Delignette-Muller and Dutang (2015))

SI estimates, 23.02.2020 – 01.04.2020 (Wild type period)

Table 1: Fitted parameters, mean, standard deviation, 95% confidence intervals and AIC.

distribution	parameter	value	mean	mean 95% CI	sd	sd 95% CI	AIC
gamma	lpha eta	2.88 0.65	4.46	4.16–4.76	2.63	2.37-2.90	1,413.3
Inorm	$\mu \ \sigma$	1.31 0.64	4.54	4.19–4.88	3.21	2.77–3.69	1,425.4
exp	λ	0.22	4.46	3.95-4.96	4.46	3.95-4.96	1,558.3
Weibull	$k \ \lambda$	1.80 5.03	4.47	4.17–4.77	2.57	2.32-2.79	1,421.0

SI estimates, 23.02.2020 – 01.04.2020 (graphical)

Figure 1: Empirical and fitted distributions of the serial interval of 312 Covid19 transmission pairs observed between 23.02.2020 and 01.04.2020, Austria. The gamma distribution which yields the best fit is highlighted with a thicker line.

SI estimates, 06.09.2020 – 17.05.2021 (Alpha period)

Figure 2: Empirical and fitted distributions of the serial interval of 250 Covid19 transmission pairs observed between 06.09.2020 and 17.05.2021, Austria. The lognormal distribution which yields the best fit is highlighted with a thicker line.

- Mean of Inorm:3.38 (95% CI: 3.12- 3.62)
- SD of Inorm:2.05 (95% CI: 1.74- 2.37)

Basic and effective reproduction number

Definition R_0

The basic reproduction number is the average number of secondary cases per infectious case in a population where **everyone is susceptible**.

Definition R_{eff}

The effective reproduction number is the average number of secondary cases per infectious case in a population made up of both **susceptible and non-susceptible** hosts.

Basic and effective reproduction number

Definition R_0

The basic reproduction number is the average number of secondary cases per infectious case in a population where **everyone is susceptible**.

Definition R_{eff}

The effective reproduction number is the average number of secondary cases per infectious case in a population made up of both **susceptible and non-susceptible** hosts.

- $R_{eff} > 1 \Rightarrow$ increasing number of cases.
- $R_{eff} = 1 \Rightarrow$ endemic transmission.
- $R_{eff} < 1 \Rightarrow$ decreasing number of cases.
- Implicitly includes effects of interventions.

R_{eff} , Cori Method (Cori et al. (2013))

- $y_t \sim Pois(\lambda_t)$, number of new cases at day t
- \bullet w_s , probability that a case generates another case s days after its infection
- s, generation time with density p(s; .)
- s ≈ SI
- For s = 1, ..., m, $w_s = \frac{p(s;.)}{\sum_{i=1}^m p(i;.)}$ and $\sum_{i=1}^m w_s = 1$
- R_{eff} is the mean number of cases generated by one infected
- Infected at time t-s contribute with a rate of $R_{eff} w_s$ to the number of cases at day t
- ullet cases at times $\{1,\ldots,t-s-1,t-s+1,\ldots,t-1\}$ also contribute to the number of cases at day t
- λ_t denotes the mean number of cases at day t, therefore $\lambda_t = R_{\it eff} \sum_{s=1}^t y_{t-s} w_s$

$R_{\rm eff}$, Cori Method cont.

- ullet Assumption: $R_{\it eff}$ for day t is constant over a period of au days, hence we write $R_{t, au}$
- Estimate $R_{t,\tau}$ using Bayesian inference

$$R_{t, au} \sim \mathsf{Gamma}\left(a + \sum_{i=t- au+1}^t y_i, rac{1}{rac{1}{b} + \sum_{i=t- au+1}^t \sum_{s=1}^i y_{i-s} w_s}
ight)$$

with a, b parameters of the prior gamma distribution

Mean

$$\hat{R}_{t,\tau} = \frac{a + \sum_{i=t-\tau+1}^{t} y_i}{\frac{1}{b} + \sum_{i=t-\tau+1}^{t} \sum_{s=1}^{i} y_{i-s} w_s}$$

- 95% CI calculated as the 2.5% and the 97.5% percentile of the Gamma distribution
- R-package EpiEstim

RKI Method

- Much simpler approach
- \bullet y_t , number of incident cases at day t
- ullet au, number of days included in the estimation of R_{eff} as above
- s, an integer denoting the generation time in full days
- RKI estimate of $R_{t,\tau}$ is calculated as

$$R_{t,\tau} = \frac{\sum_{i=t-\tau+1}^{t} y_t}{\sum_{i=t-\tau+1}^{t} y_{t-s}} = \frac{\bar{y}_t^{\tau}}{\bar{y}_{t-s}^{\tau}},$$

where $\bar{y}_t^{\tau} = \frac{1}{\tau} \sum_{i=t-\tau+1}^{t} y_i$ is the moving average of cases of τ days.

Comparison of methods

Figure 3: Comparison of the effective reproduction number $R_{t,\tau}$ for the Cori and RKI method for different values of τ .

12 / 25

Imputation of date of onset

- Date of onset is a key variable
- Is often unknown

Imputation of date of onset

- Date of onset is a key variable
- Is often unknown

Figure 4: Diagram of the typical chronological order of a case from symptom onset to reporting.

Imputation of date of onset

- Date of onset is a key variable
- Is often unknown

Figure 4: Diagram of the typical chronological order of a case from symptom onset to reporting.

- date of reporting (t_2) vs. date of onset (t_0)
- reporting delay: $t_{diff} := t_2 t_0$

Imputation of date of onset II

- $t_{diff} \sim \mathsf{Gamma}(\alpha, \beta), \ \alpha, \beta > 0.$
- PDF: $p(y; \mu, \sigma) = \frac{y^{\frac{1}{\sigma^2} 1} \exp\left(-\frac{y}{\sigma^2 \mu}\right)}{(\sigma^2 \mu)^{\frac{1}{\sigma^2}} \Gamma\left(\frac{1}{\sigma^2}\right)}$ with $\mu = \alpha/\beta$ and $\sigma = 1/\sqrt{\alpha}$
- gamlss-model (flexible generalized additive model for location, scale and shape) (Stasinopoulos and Rigby (2007)):

$$\eta_{k,cw} = \beta_{k,0} + \beta_{k,1} f(x_{cw}), \ k \in \{\mu, \sigma\}$$

- f(.), smoothing function (cubic splines)
- x_{cw} , calendar week

Results, 2020 week 9 to 22

Figure 5: Series of boxplots of the reporting delay t_{diff} by calendar week of cases with known date of report and date of disease onset of SARS-CoV-2, Austria, 2020 week 9 to week 22

- 16,878 cases
- 12,027 (71.3%) with reliable date of onset
- weekly mean t_{diff} ranged from 2.38 6.58

Table 2: Parameter estimates of the gamlss model for $\hat{\mu}_{\mathit{CW}}$ and $\hat{\sigma}_{\mathit{CW}}$

Parameter	Estimate	Std. Error	p
$\hat{\beta}_{\mu,0}$	1.474	0.023	$< 10^{-3}$
$\hat{eta}_{\mu,0} \ \hat{eta}_{\mu,1}$	0.042	0.004	$< 10^{-3}$
$\hat{\beta}_{\sigma,0}$	-0.519	0.018	$< 10^{-3}$
$\hat{eta}_{\sigma,1}$	0.044	0.003	$< 10^{-3}$

Epicurve and R_{eff} , 2020 week 9 to 22

imputed) versus epicurve by date of lab report of SARS-CoV-2, Austria, 24.02.2020 (week 9) to 01.05.2020 (week 18)

Figure 7: Effective reproduction number based on date Figure 6: Epicurve by date of disease onset (known and of disease onset (known and imputed, red) and based on date of lab report (blue) and based on different values of τ ($\tau = 13$ solid line, $\tau = 7$ days dashed line) of SARS-CoV-2 cases, Austria, 08.03.2020 (week 10) to 01.05.2020 (week 18)

Imputation of variant data

- December 2021 to January 2022: emergence of Omicron Variant (B.1.1.529)
- Has mutation at the 501th segment of the genome: N501Y variant
- We define
 - $x_{n501y} \in \{0, 1, NA\}$, a case has the N501Y mutation
 - $x_{omicron} \in \{0, 1, NA\}$, a case has the Omicron variant
- Two-stage imputation

Imputation of variant data

- December 2021 to January 2022: emergence of Omicron Variant (B.1.1.529)
- Has mutation at the 501th segment of the genome: N501Y variant
- We define
 - $x_{n501y} \in \{0, 1, NA\}$, a case has the N501Y mutation
 - $ightharpoonup x_{omicron} \in \{0, 1, NA\}$, a case has the Omicron variant
- Two-stage imputation

A case can enter one of four states:

- 2 $x_{n501y} = 0 \Rightarrow x_{omicron} = 0$

Modelling x_{n501y} and $x_{omicron}$

- $x_{n501y} \sim \text{Bernoulli}(r)$
- standardised binomial model using province, calendar week and day of week as explanatory variables:

$$logit(r) = \beta_0 + \beta_1 x_{cw} + \beta_2 x_{prov} + \beta_3 x_{dow} + \varepsilon$$

Modelling x_{n501y} and $x_{omicron}$

- $x_{n501y} \sim \text{Bernoulli}(r)$
- standardised binomial model using province, calendar week and day of week as explanatory variables:

$$logit(r) = \beta_0 + \beta_1 x_{cw} + \beta_2 x_{prov} + \beta_3 x_{dow} + \varepsilon$$

- From above: $x_{n501y} = 0 \Rightarrow x_{omicron} = 0$ and if $x_{n501y} = 1 \Rightarrow x_{omicron} \sim \mathsf{Bernoulli}(s)$
- Analogously

$$logit(s) = \gamma_0 + \gamma_1 x_{cw} + \gamma_2 x_{prov} + \gamma_3 x_{dow} + \varepsilon$$

Imputation of missing data

• Impute missing values of $\hat{x}_{omicron}$ where x_{n501y} is known by randomly imputing binary values based on:

$$P(\hat{x}_{omicron} = 1 | x_{n501y} = 1) = \hat{s},$$

 $P(\hat{x}_{omicron} = 0 | x_{n501y} = 1) = 1 - \hat{s},$
 $P(\hat{x}_{omicron} = 0 | x_{n501y} = 0) = 1 \text{ and}$
 $P(\hat{x}_{omicron} = 1 | x_{n501y} = 0) = 0.$

Imputation of missing data

• Impute missing values of $\hat{x}_{omicron}$ where x_{n501y} is known by randomly imputing binary values based on:

$$P(\hat{x}_{omicron} = 1 | x_{n501y} = 1) = \hat{s},$$

 $P(\hat{x}_{omicron} = 0 | x_{n501y} = 1) = 1 - \hat{s},$
 $P(\hat{x}_{omicron} = 0 | x_{n501y} = 0) = 1 \text{ and}$
 $P(\hat{x}_{omicron} = 1 | x_{n501y} = 0) = 0.$

• Randomly impute \hat{x}_{n501y} and $\hat{x}_{omicron}$ for cases with $x_{n501y} = NA$ and $x_{omicron} = NA$ based on:

$$P(\hat{x}_{omicron} = 0, \hat{x}_{n501y} = 0) = P(\hat{x}_{omicron} = 0 | \hat{x}_{n501y} = 0) P(\hat{x}_{n501y} = 0) = 1 - \hat{r},$$

$$P(\hat{x}_{omicron} = 0, \hat{x}_{n501y} = 1) = P(\hat{x}_{omicron} = 0 | \hat{x}_{n501y} = 1) P(\hat{x}_{n501y} = 1) = (1 - \hat{s})\hat{r},$$

$$P(\hat{x}_{omicron} = 1, \hat{x}_{n501y} = 1) = P(\hat{x}_{omicron} = 1 | \hat{x}_{n501y} = 1) P(\hat{x}_{n501y} = 1) = \hat{s}\hat{r}.$$

Summary of cases for variant imputation

Table 3: Summary of SARS-CoV-2 cases during the emergence of the Omicron variant, Austria, 22.11.2021 to 14.02.2022

	n	% of total cases
Total cases	1,253,256	100.0%
N501Y status and variant known	348,727	27.8%
N501Y status known and variant unknown	1,038	0.1%
N501Y and variant unknown	903,491	72.1%
Other variant known	68,786	5.5%
Omicron variant known	279,941	22.3%
Other variant imputed	154,364	12.3%
Omicron variant imputed	750,165	59.9%
cases with variant data imputed	904,529	72.2%

Model results

Table 4: Binomial model estimates for r (being N501Y) and s (being Omicron), 22.11.2021 to 14.02.2022

	Dependent variable:			
	r	s		
	(1)	(2)		
kw	1.269*** (0.006)	-0.016 (0.015)		
dow2	0.299*** (0.030)	0.197** (0.089)		
dow3	0.475*** (0.032)	0.008 (0.088)		
dow4	0.574*** (0.032)	0.179** (0.089)		
dow5	0.726*** (0.033)	0.212** (0.091)		
dow6	0.864*** (0.034)	0.473*** (0.107)		
dow7	0.994*** (0.033)	0.466*** (0.108)		
blKärnten	-0.493*** ^(0.062)	, ,		
blNiederösterreich	-0.337***(0.056)			
blOberösterreich	-0.491***(0.055)			
blSalzburg	0.839*** (0.059)			
blSteiermark	-0.112*(0.062)			
blTirol	0.181*** (0.057)			
blVorarlberg	-0.375***(0.065)			
blWien	0.302*** (0.053)			
Constant	-124.557** [*] (0.555)	6.602*** (1.479)		
Observations	347,181	281,511		
Log Likelihood	-48,455.860	-9.701.072		
Akaike Inf. Crit.	96,943.710	19,418.140		
Note:	*p<0.1; **	p<0.05; *** p<0.01		

 Very few (≤ 10) non-Omicron cases among N501Y cases for 4 of 9 provinces

- x_{prov} omitted from model for s
- Almost all variables are significant
 - Sample size effect?

Model results of a subset

Table 5: Subset: Binomial model estimates for r (being N501Y) and s (being Omicron), 22.11.2021 to 14.02.2022

	Dependent variable:			
	r	s		
	(1)	(2)		
kw	1.276*** (0.041)	-0.027 (0.097)		
dow2	0.224 (0.232)	-0.496(0.710)		
dow3	0.341 (0.232)	-0.881(0.681)		
dow4	0.029 (0.224)	0.627 (0.914)		
dow5	0.597** (0.238)	-0.624(0.693)		
dow6	0.666*** (0.245)	-0.903(0.713)		
dow7	1.127*** (0.254)	-0.468(0.772)		
blKärnten	-0.988**(0.442)			
blNiederösterreich	-0.528(0.410)			
blOberösterreich	-0.637(0.402)			
blSalzburg	0.497 (0.421)			
blSteiermark	0.122 (0.463)			
blTirol	-0.305(0.412)			
blVorarlberg	-0.802*(0.481)			
blWien	-0.037(0.389)			
Constant	-124.853*** (4.042)	8.266 (9.931)		
Observations	6,667	5,445		
Log Likelihood	-948.006	-213.260		
Akaike Inf. Crit.	1,928.012	442.519		
Note:	*p<0.1; **p<0.05; ***p<0.01			

- Random sample of 23,658 cases
- Much less significant variables
- Model estimates: full vs. subset?

Model estimates full (red) vs. 1000 samples, model of r

- Median of model estimates are similar to full dataset
- A single sample can yield extreme results
- Standard deviation correlates with sample size (not shown)

Figure 8: Boxplots of model estimates of r (being an N501Y case) based on 1,000 samples of size 23,658, 22.11.2021 to 14.02.2022. Results of the full dataset are shown as red lines.

Why impute this data?

Figure 9: Effective reproduction number based on date of lab diagnosis by (imputed) SARS-CoV-2 variant, Austria, 05.12.2021 to 14.02.2022

Wrap up

- Statistical methods play an important role during outbreaks/pandemics.
- We introduced methods to inform stakeholders and the public about key indicators (SI, R_{eff}).
- Impute missing data to analyse dynamics of new variants.

Other applications:

- Estimation of excess mortality
- Vaccine effectiveness
- Nowcasting and Forecasting

References

- Cori, Anne, Neil M. Ferguson, Christophe Fraser, and Simon Cauchemez. 2013. "A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics." *American Journal of Epidemiology* 178 (9): 1505–12. https://doi.org/10.1093/aie/kwt133.
- Delignette-Muller, Marie Laure, and Christophe Dutang. 2015. "Fitdistrplus: An R Package for Fitting Distributions." Journal of Statistical Software 64 (1): 1–34. https://doi.org/10.18637/jss.v064.i04.
- Du, Zhanwei, Xiaoke Xu, Ye Wu, Lin Wang, Benjamin J. Cowling, and Lauren Ancel Meyers. 2020. "Early Release Serial Interval of COVID-19 Among Publicly Reported Confirmed Cases Volume 26, Number 6—June 2020 Emerging Infectious Diseases Journal CDC." https://doi.org/10.3201/eid2606.200357.
- Nishiura, Hiroshi, Natalie M. Linton, and Andrei R. Akhmetzhanov. 2020. "Serial Interval of Novel Coronavirus (2019-nCoV) Infections." *medRxiv*, February, 2020.02.03.20019497. https://doi.org/10.1101/2020.02.03.20019497.
- Stasinopoulos, D. Mikis, and Robert A. Rigby. 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R." *Journal of Statistical Software* 23 (1): 1–46. https://doi.org/10.18637/jss.v023.i07.

Special Thanks to: Ernst Stadlober Team at AGES

Special Thanks to: Ernst Stadlober Team at AGES

Any questions?

Backup

Backup slides

PDFs of selected distributions

- gamma distribution: $p(x; \alpha, \beta) := \frac{x^{\alpha-1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)}, x > 0, \alpha > 0, \beta > 0.$
- lognormal distribution: $p(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x \mu)^2}{2\sigma^2}\right), x > 0, \sigma > 0$
- exponential distribution: $p(x; \lambda) = \lambda e^{-\lambda x}, x \ge 0, \lambda > 0.$
- Weibull distribution: $p(x; k, \lambda) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, x \ge 0, k > 0, \lambda > 0.$

SI estimates, 06.09.2020 – 17.05.2021 (Alpha variant period)

Table 6: Fitted parameters, mean, standard deviation, 95% confidence intervals and AIC.

distribution	parameter	value	mean	mean 95% CI	sd	sd 95% CI	AIC
gamma	$egin{array}{c} lpha \ eta \end{array}$	3.38 1.00	3.37	3.15-3.60	1.83	1.64-2.03	963.3
Inorm	$\mu \ \sigma$	1.06 0.56	3.38	3.12–3.62	2.05	1.74-2.37	954.2
exp	λ	0.30	3.37	2.97-3.74	3.37	2.97-3.74	1,109.2
Weibull	$k \lambda$	1.84 3.81	3.39	3.15-3.62	1.91	1.73-2.08	986.1

Reff, Cori Method, Bayesian inference I

• As prior for $R_{t,\tau}$ we choose a Gamma distribution and we get:

$$p(R_{t,\tau};a,b) = p(R_{t,\tau}) := \frac{R_{t,\tau}^{a-1} e^{-R_{t,\tau}/b}}{b^a \Gamma(a)}, R_{t,\tau} > 0, a > 0, b > 0$$
 (1)

The likelihood is given by

$$p(oldsymbol{y};R_{t, au}) = \prod_{i=t- au+1}^t (R_{t, au}d_i)^{y_i} \exp\left(-R_{t, au}d_i
ight) rac{1}{y_i!}$$

(2)

with $d_i := \sum_{s=1}^i y_{i-s} w_s$

R_{eff}, Cori Method, Bayesian inference II Posterior:

$$p(R_{t,\tau}; \mathbf{y}) = \frac{p(\mathbf{y}; R_{t,\tau}) p(R_{t,\tau})}{\int p(\mathbf{y}; R_{t,\tau}) p(R_{t,\tau}) dR_{t,\tau}}$$

• Plug (1) and (2) into (3) and reformulate the expression:

$$p(R_{t,\tau}; \mathbf{y}) = R_{t,\tau}^{a + \sum_{i=t-\tau+1}^t y_i - 1} \exp\left(-R_{t,\tau} \left(\frac{1}{b} + \sum_{i=t-\tau+1}^t d_i\right)\right) k(\mathbf{y}, t, a, b),$$
 with
$$k(\mathbf{y}, t, a, b) = \prod_{i=t-\tau+1}^t \frac{d_i^{y_i} c}{y_i! \, b^a \Gamma(a)}$$

• $\Rightarrow p(R_{t,\tau}; \mathbf{y})$ is proportional to

$$p(R_{t,\tau}; \boldsymbol{y}) \propto R_{t,\tau}^{a + \sum_{i=t-\tau+1}^t y_i - 1} \exp\left(-R_{t,\tau} \left(\frac{1}{b} + \sum_{i=t-\tau+1}^t d_i\right)\right) \frac{\frac{1}{b} + \sum_{i=t-\tau+1}^t d_i}{\Gamma(a + \sum_{i=t-\tau+1}^t y_i)}$$

(3)

Reff, Cori Method, Bayesian inference III

It follows that

$$R_{t,\tau} \sim \mathsf{Gamma}\left(a + \sum_{i=t-\tau+1}^t y_i, \frac{1}{\frac{1}{b} + \sum_{i=t-\tau+1}^t d_i}\right)$$
 (4)

ullet The estimate of R_{eff} at day t and based on au days is the mean of $R_{t, au}$ and is given as

$$\hat{R}_{t,\tau} = \frac{a + \sum_{i=t-\tau+1}^{t} y_i}{\frac{1}{b} + \sum_{i=t-\tau+1}^{t} d_i} \\
= \frac{a + \sum_{i=t-\tau+1}^{t} y_i}{\frac{1}{b} + \sum_{i=t-\tau+1}^{t} \sum_{s=1}^{i} y_{i-s} w_s}$$