Лабораторная работа 7

Математическое моделирование

Ефремова Ангелина Романовна

Содержание

1	Цел	ь работы	5
2	Зада	ание	6
	2.1	Построить график распространения рекламы, математиче-	
		ская модель которой описывается следующим уравнением:	
		$\frac{dn}{dt} = (0.99 + 0.00012n(t))(N - n(t)). \dots \dots \dots \dots$	7
	2.2	Построить график распространения рекламы, математиче-	
		ская модель которой описывается следующим уравнением:	
		$\frac{dn}{dt} = (0.000067 + 0.38n(t))(N - n(t))$	7
	2.3	Построить график распространения рекламы, математиче-	
		ская модель которой описывается следующим уравнением:	
		$\frac{dn}{dt} = (0.6sin(4t) + 0.1cos(2t)n(t))(N - n(t))$	7
	2.4		
		рекламы будет иметь максимальное значение	7
	2.5	Ответить на вопросы к лабораторной работе	7
3	Выполнение лабораторной работы		8
	3.1	Теоретическая справка	8
	3.2	Начальные условия	10
		Составление систем дифференциальных уравнений и их решения	11
	3.4	Построение графиков решений	13
4	Отве	еты на вопросы	16
5	Выв	ОДЫ	19

List of Tables

List of Figures

3.1	График решения уравнения модели Мальтуса	9
3.2	График логистической кривой	10
3.3	Количество людей, знающих о товаре в начальный момент времени	10
3.4	Максимальное количество людей, которых может заинтересовать	
	товар	10
3.5	Длительность рекламной компании	10
3.6	Функции, отвечающие за платную рекламу для 4 случаев	11
3.7	Функции, отвечающие за сарафанное радио для 4 случаев	11
3.8	Уравнения, описывающие распространение рекламы	12
3.9	Решения ОДУ	12
3.10	Массив решений u1	12
3.11	Массив решений u2	12
3.12	Массив решений иЗ	13
3.13	Массив решений u4	13
3.14	Массив решений и 5	13
	График случая 1	13
3.16	График случая 2	14
3.17	Момент времени с максимальной скоростью	14
3.18	График случая 3	14
	График всех 3-х случаев	15
3.20	График без платной рекламы и сарафанного радио	15
4.1	График решения уравнения модели Мальтуса	17
4.2	График логистической кривой	18

1 Цель работы

Цель седьмой лабораторной работы - рассмотреть модель эффективности рекламы.

2 Задание

2.1 Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\frac{\mathrm{d}n}{\mathrm{d}t} = (0.99 + 0.00012n(t))(N - n(t)).$$

2.2 Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\frac{\mathrm{d}n}{\mathrm{d}t} = (0.000067 + 0.38n(t))(N - n(t))$$
 .

2.3 Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\frac{{\rm d}n}{{\rm d}t} = (0.6 sin(4t) + 0.1 cos(2t)n(t))(N-n(t))$$
 .

- 2.4 Определить в какой момент времени скорость распространения рекламы будет иметь максимальное значение.
- 2.5 Ответить на вопросы к лабораторной работе.

3 Выполнение лабораторной работы

3.1 Теоретическая справка

- 1. Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.
- 2. Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих
- 3. Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{\mathrm{d}n}{\mathrm{d}t}$ скорость изменения со временем числа потребителей, узнав-

ших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, $\mathbf{n}(t)$ - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением: $\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_1(t) + \alpha_2(t)n(t)(N-n(t))$

4. При $\alpha_1(t) \gg \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис. 3.1):

Figure 3.1: График решения уравнения модели Мальтуса

5. В обратном случае, при $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой (рис. 3.2):

Figure 3.2: График логистической кривой

3.2 Начальные условия

1. Зададим количество людей, знающих о товаре в начальный момент времени (x0) (рис. 3.3).

```
B [91]: x8 = 1
```

Figure 3.3: Количество людей, знающих о товаре в начальный момент времени

2. Зададим максимальное количество людей, которых может заинтересовать товар (N) (рис. 3.4).

Figure 3.4: Максимальное количество людей, которых может заинтересовать товар

3. Зададим длительность рекламной компании (t) (рис. 3.5).

Figure 3.5: Длительность рекламной компании

3.3 Составление систем дифференциальных уравнений и их решения

1. Напишем функции, отвечающие за платную рекламу для 1-го случая (platRek1), 2-го (platRek2) и 3-го (platRek3) и дополнительную для задания функцию platRek4 (puc. 3.6).

```
8 [289]: def platRek1(t):
    g = 0.99
    return g

def platRek2(t):
    g = 0.000067
    return g

def platRek3(t):
    g = 0.6*mp.sin(4*t)
    return g

def platRek4(t):
    g = 0.0006
    return g
```

Figure 3.6: Функции, отвечающие за платную рекламу для 4 случаев

2. Напишем функции, отвечающие за сарафанное радио для 1-го случая (sarafRad1), 2-го (sarafRad2) и 3-го (sarafRad3) и дополнительную для задания функцию sarafRad4 (рис. 3.7).

```
B [290]: def sarafRad1(t):
    v = 0.08012
    return v

def sarafRad2(t):
    v = 0.38
    return v

def sarafRad3(t):
    v = 0.1*rpp.cos(2*t)
    return v

def sarafRad4(t):
    v = 0.11
    return v
```

Figure 3.7: Функции, отвечающие за сарафанное радио для 4 случаев

3. Запишем уравнения, описывающие распространение рекламы для 1-го случая (raspRek1), 2-го случая (raspRek2) и 3-го случая (raspRek3). Также, напишем уравнения в случае, когда платная реклама равна нулю (raspRek4) и когда сарафанное радио равно нулю (raspRek5) (рис. 3.8).

```
8 [291]: def raspRek1(x, t):
    r1 = ( platRek1(t) + sarafRad1(t)*x )*( N - x )
    return rr1

def raspRek2(x, t):
    r2 = ( platRek2(t) + sarafRad2(t)*x )*( N - x )
    return rr2

def raspRek3(x, t):
    r73 = ( platRek3(t) + sarafRad3(t)*x )*( N - x )
    return rr3

def raspRek4(x, t):
    r74 = ( sarafRad4(t)*x )*( N - x )
    return rr3

def raspRek4(x, t):
    r6 = platRek4(t) *( N - x )
    return rr4
```

Figure 3.8: Уравнения, описывающие распространение рекламы

4. Посчитаем решения обыкновенных дифференциальных уравнений для уравнения распространения рекламы для 1-го случая raspRek1 (u1), 2-го случая raspRek2 (u2) и 3-го случая raspRek3 (u3). Также, посчитаем решения уравнения в случае, когда платная реклама равна нулю raspRek4 (u4) и когда сарафанное радио равно нулю raspRek5 (u5) (рис. 3.9).

```
B [292]: u1 = odeint(raspRek1, x8, t)
u2 = odeint(raspRek2, x8, t)
u3 = odeint(raspRek3, x8, t)
u4 = odeint(raspRek4, x8, t)
u5 = odeint(raspRek5, x8, t)
```

Figure 3.9: Решения ОДУ

5. Посмотрим массив решений u1 (рис. 3.10):

Figure 3.10: Массив решений u1

Посмотрим массив решений и2 (рис. 3.11):

Figure 3.11: Массив решений u2

Посмотрим массив решений и3 (рис. 3.12):

Figure 3.12: Массив решений и3

Посмотрим массив решений и4 (рис. 3.13):

Figure 3.13: Массив решений u4

Посмотрим массив решений u5 (рис. 3.14):

Figure 3.14: Массив решений u5

3.4 Построение графиков решений

1. Эти строки строят график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио для случая 1, то есть случая $\frac{\mathrm{d}n}{\mathrm{d}t} = (0.99 + 0.00012n(t))(N-n(t)) \text{ (рис. 3.15):}$

Figure 3.15: График случая 1

2. Эти строки строят график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио для случая 2, то есть случая $\frac{\mathrm{d}n}{\mathrm{d}t} = (0.000067 + 0.38n(t))(N-n(t)) \text{ (рис. 3.16):}$

Figure 3.16: График случая 2

3. Тут выводится момент времени с максимальной скоростью (рис. 3.17):

```
B [380]: t[np.argmax(u2[1:].reshape(1,1199)/t[1:]) + 1]
Out[380]: 0.03
```

Figure 3.17: Момент времени с максимальной скоростью

4. Эти строки строят график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио для случая 3, то есть случая $\frac{\mathrm{d}n}{\mathrm{d}t} = (0.6sin(4t) + 0.1cos(2t)n(t))(N-n(t)) \text{ (рис. 3.18):}$

```
| B | 301|: | plt.plot(t, u3, label='${dn}/{dt}=(0.6sin(4t)+0.1cos(2t)n(t))(N-n(t))$', color="salmon", linewidth=2) | plt.legen(bbox_to_anchor=(1.08, 1), loc='upper left', borderaxespad=0.) | plt.grid(axis="both") | plt.title('Cnyvan' 2 Ann ${dn}/{dt}=(0.6sin(4t)+0.1cos(2t)n(t))(N-n(t))$', color="brown") | Out[301]: Text(0.5, 1.0, 'Cnyvan' 2 Ann ${dn}/{dt}=(0.6sin(4t)+0.1cos(2t)n(t))(N-n(t))$') | Cnyvan' 2 Ann dnidt=(0.6sin(4t)+0.1cos(2t)n(t))(N-n(t)) | Out[301]: | Out[
```

Figure 3.18: График случая 3

5. Эти строки строят график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио для всех 3-х случаев (рис. 3.19):

Figure 3.19: График всех 3-х случаев

6. А эти строки - график, когда нет ни платной рекламы, ни сарафанного радио (рис. 3.20):

Figure 3.20: График без платной рекламы и сарафанного радио

4 Ответы на вопросы

1. $\frac{\partial N}{\partial t} = rN$, тут N - исходная численность населения, r - коэффициент пропорциональности (r=b-d, b - коэффициент рождаемости, d - коэффициент смертности), t - время.

Широко используется в популяционной экологии как первый принцип популяционной динамики, позволяет проследить динамику популяции на довольно большом промежутке времени Т, последовательно вычисляя численность популяции через каждый интервал времени dt. Изменения численности популяций растительного и животного мира нельзя описать простым законом Мальтуса, на динамику роста влияют многие взаимосвязанные причины - в частности, размножение каждого вида саморегулируется и видоизменяется так, чтобы этот вид сохранялся в процессе эволюции.

- 2. Исходные предположения для вывода уравнения при рассмотрении популяционной динамики выглядят следующим образом:
- скорость размножения популяции пропорциональна её текущей численности, при прочих равных условиях;
- скорость размножения популяции пропорциональна количеству доступных ресурсов, при прочих равных условиях. Таким образом, второй член уравнения отражает конкуренцию за ресурсы, которая ограничивает рост популяции.

Обозначая через P численность популяции (в экологии часто используется обозначение N), а время — t, модель можно свести к дифференциальному уравнению $\frac{\partial P}{\partial t}=rP(1-\frac{P}{K})$, тут r — скорость размножения, K — поддерживающая ёмкость среды.

Исходя из названия коэффициентов, в экологии часто различают две стратегии поведения видов:

r-стратегия предполагает бурное размножение и короткую продолжительность жизни особей;

К-стратегия — низкий темп размножения и долгую жизнь.

- 3. а1 интенсивность рекламной кампании, зависящая от затрат, а2 интенсивность рекламной кампании, зависящая от сарафанного радио.
- 4. Получается модель типа модели Мальтуса, решение которой имеет вид (рис. 4.1):

Figure 4.1: График решения уравнения модели Мальтуса

5. В обратном случае, получаем уравнение логистической кривой (рис. 4.2):

Figure 4.2: График логистической кривой

5 Выводы

В результате выполнения седьмой лабораторной работы, я рассмотрела модель эффективности рекламы.

В процессе выполнения лабораторной работы я научилась:

- строить графики распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{\mathrm{d}n}{\mathrm{d}t}=(0.99+0.00012n(t))(N-n(t)).$
- строить графики распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{\mathrm{d}n}{\mathrm{d}t}=(0.000067+0.38n(t))(N-n(t)).$
- строить графики распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{\mathrm{d}n}{\mathrm{d}t}=(0.6sin(4t)+0.1cos(2t)n(t))(N-n(t)).$
- определять в какой момент времени скорость распространения рекламы будет иметь максимальное значение.