

## MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

| Name:  Umar Ahmed                                                                                              | Instructions:                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UB Person Number:  5 0 2 6 3 5 0 9  0 0 0 0 0 0 0 0  1 1 1 1 1 1 1 1 1  2 2 2 2 2 2 2  3 3 3 3 3 3 3 3 3 3 3 3 | <ul> <li>Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes.</li> <li>For full credit solve each problem fully, showing all relevant work.</li> </ul> |
| 1 2 3 4 5                                                                                                      | 6 7 TOTAL GRADE                                                                                                                                                                                              |
|                                                                                                                |                                                                                                                                                                                                              |



1. (20 points) Consider the following vectors in  $\mathbb{R}^3$ :

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that  $w \in \text{Span}(v_1, v_2, v_3)$ .
- b) Is the set  $\{v_1, v_2, v_3\}$  linearly independent? Justify your answer.

a) 
$$-2v_1 + 4v_2 - v_3 = \begin{bmatrix} -2 \\ 2 \\ 6 \end{bmatrix}$$

$$-2\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + 4\begin{bmatrix} -1 \\ -3 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ -16 \end{bmatrix}$$
?



2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute  $A^{-1}$ .

Compute 
$$x$$
:

$$\begin{vmatrix}
1 & -1 & 2 & | & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
-1 & 2 & | & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
-1 & 2 & | & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
-1 & 2 & | & 1 & | & 0 & 0 \\
0 & 2 & -1 & | & 0 & | & 0
\end{vmatrix}$$

$$\begin{vmatrix}
-1 & -1 & 2 & | & 1 & | & 0 & 0 \\
0 & 2 & -1 & | & -1 & | & 1
\end{vmatrix}$$

$$\begin{vmatrix}
-1 & -1 & 2 & | & 1 & | & 0 & 0 \\
0 & 1 & -1 & | & -1 & | & 1
\end{vmatrix}$$

$$\begin{vmatrix}
-1 & -1 & 2 & | & 1 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & |$$



3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

A=[1 -1 2]

Find a matrix C such that  $A^TC = B$  (where  $A^T$  is the transpose of A).



$$\begin{bmatrix} 1 & 16 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$



0 1 2 3 4 5 6 7 8 9 10



4. (20 points) Let  $T: \mathbb{R}^2 \to \mathbb{R}^3$  be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of  $\mathcal{T}$ .
- **b)** Find all vectors u satisfying  $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$ .



a) 
$$e_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 & -3 \end{bmatrix}$$

$$T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0 & -2 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$



5. (20 points) For each matrix A given below determine if the matrix transformation  $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$  given by  $T_A(\mathbf{v}) = A\mathbf{v}$  is one-to one or not. If  $T_A$  is not one-to-one, find two vectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  such that  $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$ .





- **6. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in  $\mathbb{R}^3$  such that  $w + u \in Span(u, v)$  then  $w \in Span(u, v)$ .



b) If u, v, w are vectors in  $\mathbb{R}^3$  such that the set  $\{u, v, w\}$  is linearly independent then the set  $\{u, v\}$  must be linearly independent.

True! U, V, W are 3 unique vectors, so even It only 2 of them were rather set, H would still be Imearly ? Independent





7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a  $2 \times 2$  matrix and u, v are vectors in  $\mathbb{R}^2$  such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False A single vector such as [o]

Is linearly independent. If A[o]:

Then it is linearly dependent.

OK, but this problem asks about

(in) dependence of two vectors.

b) If  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is a linear transformation and  $u, v, w \in \mathbb{R}^2$  are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

All 3 rectors are transformed by the same Tove transformation, so properties are not changed.

They are still scalar multiples.

They are still scalar multiples.