1.

I. Cache lines = cache size/block size

2. 16 = 2^4

Associative mapping cache

28 bits	4bits
---------	-------

3. Cache lines = 2^15

Direct mapping cache

13 bits	15 bits	4 bits
---------	---------	--------

4. when cache is 8-way set associative, sets of cache = $2^15 / 8$

= 2^12 sets

5. Cache sets = 2^12

8- way set associative mapping

16 bits	12 bits	4 bits

6. 0x B1AC95F9 = 0b 1011000110101100100101111111001

Tag	Set	Word
1011000110101100	100101011111	1001

$$X = (A*B-C) + (A/C)$$

1. Stack based

PUSH A

PUSH B

MUL

PUSH C

SUB

PUSH A

PUSH C

DIV

ADD

POP X

2. Accumulator based

LOAD A

DIV C

STORE P

LOAD A

MUL B

SUB C

ADD P

STORE X

3. Memory-memory based

3 operands

DIV N, A, C

MUL L, A, B

SUB M, L, C

ADD X, M, N

2 operands

MOV P, A

DIV P, C

MOV R, A

MULR, B

SUB R, C

ADD R, P

4. Register-Register based

LOAD R1, A

LOAD R2, B

LOAD R3, C

DIV R4, R1, R3

MUL R5, R1, R2

SUB R5, R5, R3

ADD R4, R5, R4

STORE X, R4

3.

Α	Q	Q-1	M	Cycle
00000	01001	0	11010	Initial state
00110	01001	0	11010	First cycle
00011	00100	1	11010	
11101	00100	1	11010	Second cycle
11110	10010	0	11010	
11111	01001	0	11010	Third cycle
00101	01001	0	11010	Forth cycle
00010	10100	1	11010	
11100	10100	1	11010	Fifth cycle
11110	01010	0	11010	

Answer: 1111001010

reverse 2's compliment =- 54

[MAR] <- [PC] Transfer the address from the PC to MAR.

[MBR] <- [MBR] Read the memory into the MBR.

[IR] <- [MDR] Copy the instruction from the MBR to the instruction register.

[PC] <- [PC]+1 Program counter is incremented.

[MAR] <- IR (operand) Decode, then execute.

[MBR] <- [MAR] Reading the memory.

AC<- MBR Transfer to the Accumulator.

5.

1.

