

Departamento de Matemáticas 1º Bachillerato

Final 1^a evaluación

Nombre:	Fecha:				
Tiempo: 50 minutos	Tipo: 1				

Esta prueba tiene 11 ejercicios. La puntuación máxima es de 15. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	11	Total
Puntos:	1	2	1	2	1	1	2	1	1	2	1	15

1. Dados los siguientes conjuntos A, B y C, represéntalos en la recta real. A continuación, calcula $A \cup B$, $A \cap B$ y $(A \cup B) \cap C$, y expresa los resultados en forma de Intervalos. Indica además, si existe, el máximo y el mínimo de cada uno de los conjuntos resultado.

(a)
$$A = \{x \in \mathbb{R} | -4 \le x \land x \le 0\},\ B = (-\infty, -1) \cup (1, \infty) y$$

 $C = \{x \in \mathbb{R} | |x - 2| \le 3\}$

Solución:
$$C = [-1, 5]$$
 $A \cup B = (-\infty, 0] \cup (1, \infty)$ $A \cap B = [-4, -1)$ $(A \cup B) \cap C = [-1, 0] \cup (1, 5]$

2. Calcular:

(a)
$$\frac{16 \cdot \sqrt[3]{4}(\sqrt{2})^3}{\sqrt{2\sqrt[3]{4}}}$$
 (1 punto)

Solución: $32\sqrt[3]{2}$

(b)
$$\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} - \frac{3}{2\sqrt{6}}$$
 (1 punto)

Solución: $\frac{-7\sqrt{3}+3\sqrt{2}}{2\left(2\sqrt{3}+3\sqrt{2}\right)}$

- 3. Resuelve mediante expresiones algebraicas:
 - (a) Halla tres números naturales e impares consecutivos sabiendo que (1 punto) su producto menos su suma vale 6.

Solución:
$$6x - (2x - 1)(2x + 1)(2x + 3) + 9 = 0 \rightarrow \{1\}$$

4. Resuelve:

(1 punto)

(a)
$$\frac{7-x}{x+4} - \frac{3}{x-5} = \frac{26x-25}{x^2-x-20} + \frac{1}{3}$$

Solución: $\left[-\frac{23}{2}, -1\right]$

(b)
$$\sqrt{x+5} - \sqrt{x-1} = 2$$
 (1 punto)

Solución: $\left[\frac{5}{4}\right]$

5. Resolver:

(a)
$$\begin{cases} 2^x + 2^y = 24\\ 2^x \cdot 2^y = 128 \end{cases}$$
 (1 punto)

Solución: $[\{x:3, y:4\}, \{x:4, y:3\}]$

6. Resolver:

(a)
$$\log_3(3x-1) - \log_3(x+1) = 2$$
 (1 punto)

Solución: $\left[-\frac{5}{3}\right]$

7. Discute el tipo de sistema y resuelve si es posible:

(a)
$$\begin{cases} x + 2y - 3z = 9 \\ 4x - 2y = 12 \\ 4x + 3y - 6z = 24 \end{cases}$$
 (1 punto)

Solución: $\begin{bmatrix} 2 & 1 & -3 & 9 \\ 0 & 5 & -3 & 21 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$

(b)
$$\begin{cases} 2x - y + z = 6\\ 2x + 2y - 4z = 2\\ x - 2y + 3z = 0 \end{cases}$$
 (1 punto)

Solución: $\begin{bmatrix} -1 & 2 & 1 & 6 \\ 0 & 6 & -2 & 14 \\ 0 & 0 & 0 & -5 \end{bmatrix} \rightarrow$

8. Usando la definición y las propiedades de los números combinatorios, resolver las ecuaciones:

(a)
$$\binom{17}{x} = \binom{17}{x+1}$$
 (1 punto)

Solución: {8}

- 9. Calcula el valor de m para que:
 - (a) $P(x) = 9x^2 mx + \frac{1}{4}$ no tenga ninguna raíz real

(1 punto)

Solución: $\left[9, -m, \frac{1}{4}\right] \rightarrow -3 < m \land m < 3$

- 10. Resuelve:
 - (a) $\frac{x^3 5x^2 + 2x + 8}{x^2 + 1} < 0$

(1 punto)

Solución: $(-\infty, -1) \cup (2, 4)$

(b) $\frac{3x-2}{x-1} - \frac{3x+2}{x+1} \ge \frac{2x-1}{x^2-1}$

(1 punto)

Solución: $(-\infty, -1) \cup (1, \infty)$

11. Calcula expresando el resultado en forma de fracción algebraica irreducible:

(a) $\frac{2+\frac{1}{x}}{2+\frac{1}{1+\frac{1}{x}}}$

(1 punto)

Solución: $\frac{2x^2+3x+1}{3x^2+2x}$