Zusammenfassung - Algorithmen für planare Graphen

Julian Shen

25. April 2023

1 Einführung

Definition: Graph ist ein Tupel G=(V,E) mit endliche Knotenmenge V und endliche Kantenmenge E

- Kante $e \in E$ hat Form e = uv mit $u, v \in V$.
- $uv = vu \rightarrow Graphen ungerichtet$
- e = uu ist erlaubt \rightarrow Schlinge
- Auch e = uv und e' = uv erlaubt mit $e \neq e' \rightarrow \mathbf{Mehrfachkante}$
- Einfacher Graph \iff ohne Schlingen und Mehrfachkanten
- Zusammenhängend \iff ein Weg zwischen je zwei Knoten

Definition: Eine **Zeichnung** von G = (V, E) bildet diesen so auf \mathbb{R}^2 ab, dass

- 1. Knoten Punkte in der Ebene sind, d.h. $V \subset \mathbb{R}^2$
- 2. Kante e=uv ist injektive, stetige Kurve von u nach v, d.h. $\gamma_e\colon [0,1]\to \mathbb{R}^2$ mit
 - $\gamma_e(0) = u$ und $\gamma_e(1) = v$
 - $\gamma_e(0) \notin V$ für alle 0 < t < 1
- Zeichnung heißt **kreuzungsfrei** bzw. **planar** wenn für je zwei Kanten e, e' und 0 < t, t' < 1 gilt: $\gamma_e(t) \neq \gamma_e(t')$
- Graph heißt **planar**, wenn er mindestens eine kreuzungsfreie Zeichnung besitzt

Definition: Für $n \in \mathbb{N}$ ist der vollständige Graph K_n

- $V(K_n) = \{v_1, \dots, v_n\}$
- $E(K_n) = \{v_i v_j \mid v_i, v_j \in V, i \neq j\}$

Lemma: Graph K_5 ist nicht planar

 $Beweis\colon \text{Betrachte}$ beliebige Zeichnung von K_5

- \bullet Betrachte v_1 und seine 4 ausgehenden Kanten
- \bullet O.B.d.A. Kanten kreuzungsfrei zu v_2,v_3,v_4,v_5 in zyklischer Reihenfolge um v_1
- Kanten v_1v_3, v_3v_5, v_5v_1 bilden geschlossene Kurve in \mathbb{R}^2 die v_2 und v_4 trennt $\Longrightarrow v_2v_4$ kann nicht kreuzungsfrei gezeichnet sein

Definition: Für $m, n \in \mathbb{N}$ ist der vollständig bipartite Graph $K_{m,n}$

- $V(K_{m,n}) = \{a_1, \dots, a_m\} \cup \{b_1, \dots, b_n\}$
- $E(K_{m,n}) = \{a_i b_j \mid i \in \{1, \dots, m\}, j \in \{1, \dots, n\}\}$

Lemma: Graph $K_{3,3}$ ist nicht planar

Beweis: Betrachte beliebige Zeichnung von $K_{3,3}$

• Kreis $a_1b_1a_2b_2a_3b_3$ im Graphen bildet eine geschlossene Kurve in \mathbb{R}^2

- Jede Kante von a_1b_2, a_2b_3, a_3b_1 liegt komplett innerhalb oder komplett außerhalb dieser Kurve
 - ⇒ mindestens zwei liegen auf der gleichen Seite
 - \implies diese zwei kreuzen sich

Definitionen: Für eine feste planare Zeichnung eines planaren Graphen definiere:

- Facetten: Zusammenhangskomponenten von \mathbb{R}^2 nach Entfernen aller Knoten und Kanten \implies Es gibt genau eine **äußere Facette** und mehrere **innere Facetten**
- Äußere Knoten sind die, die inzident zur äußeren Facette sind
- Innere Knoten sind die übrigen Knoten
- \bullet $\ddot{\mathbf{A}}\mathbf{u}\mathbf{\beta}\mathbf{ere}$ \mathbf{Kanten} sind die, die komplett im Rand der äußeren Facette liegen
- Innere Kanten sind die übrigen Kanten

n = 9 Knoten (5 äußere, 4 innere) m = 14 Kanten (8 äußere, 6 innere) f = 7 Facetten (1 äußere, 6 innere)

Satz von Euler: Sei G ein zusammenhängender Graph mit einer planaren Zeichnung mit n Knoten, m Kanten und f Facetten. Dann gilt

$$n - m + f = 2$$

Beweis: Beweise m - (f - 1) = n - 1, woraus die Behauptung folgt. Führe dafür eine Induktion nach f - 1, der Anzahl der inneren Facetten, durch.

- \bullet I.A.: f-1=0,d.h. keine innere Facette $\to G$ ist ein Baum, also kreisfrei und zusammenhängend $\to m=n-1$
- I.S.: $f-1 \ge 1$, d.h. min. eine innere Facette
 - Sei e eine Kante zwischen äußerer und innerer Facette $\to G' = G \setminus e$ ist zusammenhängend \to In G' gilt n' = n, m' = m 1, f' = f 1
 - Mit I.V. folgt: $m' (f' 1) = n' 1 \Leftrightarrow m 1 (f 1 1) = n 1 \Leftrightarrow m (f 1) = n 1$

Korollar aus Euler-Formel: Sei G ein planarer, einfacher Graph mit $n \geq 3$ Knoten, m Kanten, und kleinstem vorkommenden Knotengrad $\delta(G)$. Dann gilt

$$m \le 3n - 6$$
 und $\delta(G) \le 5$

Beweis: $m \leq 3n - 6$

- $\bullet\,$ O.B.d.A. G ist zusammenhängend
- Jede Facette ist berandet von min. 3 Kantenseiten

- $\bullet\,$ Jede Kantenseite in genau eine Facette
- Jede Kante hat genau 2 Seiten
- $\Rightarrow 3f \leq \# \text{Seiten-Facetten-Inzidenzen} = 2m$

$$\Rightarrow 3(2+m-n) = 3f \le 2m \Rightarrow m \le 3n-6$$