MIA – Medical Image Modalities

Medical Imaging

- □ Definition:
 - The technique and process used to **create images** of the **human body** (or parts and fuction thereof) for **clinical purposes**.
- As part of biological imaging, it incorporates:
 - Radiology
 - Nuclear medicine
 - Endoscopy
 - Thermography
 - Microscopy
 - Data as maps representation

Medical Imaging: classification

According to the energy of the radiation source

Medical Imaging: classification

According to the energy of the radiation source

Medical Imaging: classification

According to the location of the radiation source

Medical Imaging: examples

□ Examples of medical images

Medical Imaging: modalities

- Modalities:
 - X-Ray Imaging and Computed Tomography
 - Magnetic Resonance Imaging
 - Ultrasonic Imaging
 - Others (SPECT, ...)
- General Image Characteristics:
 - Spatial Resolution
 - Signal-to-Noise Ratio
 - Contrast-to-Noise Ratio
 - Image Filtering
 - The Receiver Operating Curve

- □ Systems:
 - □ Chest X-rays, mammography
 - Dental X-rays
 - Fluoroscopy, angiography

- □ Properties:
 - High resolution
 - Low dose
 - Broad coverage
 - Short exposure time

□ How it works:

- Projection imaging is the acquisition of a 2D image of patient's 3D anatomy
- Is a transmission imaging procedure
- The optical density at any location corresponds to the attenuation characteristics of the patient at that location

$$I(x, y) = I_0 e^{-d(x, y)\mu(x, y)}$$

Air	Blood	Muscle	Bone
0	0.178	0.180	0.48

 How it works: projection imaging is the acquisition of a 2D image of patient's 3D anatomy

X-ray shadow cast by an object

Strength of shadow depends on composition and thickness

Scattering

Scattering

□ Examples: full body

□ Examples: torax

□ Examples: dental

Examples: bone information and injuries

□ Examples: mammography

CT Image of plane through liver and stomach

Projection image from CT scans

- □ How it works:
 - Only 1 plane is illuminated
 - Source-object motion provides added information
 - □ Currently most X-ray CT scanners have an X-ray source with a fan beam geometry and a 360° ring of X-ray detectors (~1000)

☐ How it works:

□ How it works:

First generation CT scanner Single detector Rotate Translate - rotate acquisition - Translates across patient - Rotates around patient · Very slow - minutes per slice Translate

□ How it works:

Second generation CT scanner Narrow fan beam (10°) Rotate Multiple detectors Multiple angle acquisition at each position - Larger angle rotate - Translate still required Slow - 20s per slice Translate

☐ How it works:

Third generation CT scanner · Fan beam Rotate Multiple (500 - 1000) rotating detectors Rotation only - no translation required Much faster as fast as 0.5 s per rotation Most common modern scanner design

☐ How it works:

Fourth generation CT scanners Fan beam Rotate Static detectors all round gantry Only tube rotates Avoids ring artefact problems of 3rd generation scanners

☐ How it works:

