Hossein Sharifi-Noghabi

Machine learning researcher/Bioinformatics researcher/ Data scientist

Contact: (778) 885-4633 / hsharifi@sfu.ca/ https://www.linkedin.com/in/hossein-sharifi-noghabi-b6953b5b/ https://github.com/hosseinshn

Technical skills

Programming languages: Python, C Data science: Tensorflow, Pytorch, Keras, Matlab, R Desktop and OS: Microsoft office, Latex, Photoshop, Windows, Ubuntu Networking: CCNA, Network+ Spoken languages: Farsi, English Work experience Research Intern, GenomeDx Biosciences (Research collaboration) Sep 2017-Present ☐ Developed skills on deep unsupervised learning proposed a novel method in Tensorflow to predict metastasis in prostate cancer using Autoencoders and transfer learning on unlabelled and labelled genomic data and improved the performance (AUC) of the state-of-the-art signatures for metastatic prostate cancer ☐ Developed skills to analyze data via R such as survival analysis and visualization □ Obtained experience to collaborate with researchers from different domains ☐ Supervisors: Dr. Elai Davicioni, Nicholas Erho, and Dr. Yang Liu (Seagle) Research Assistant, Vancouver Prostate Centre (Full time) Mar 2017-Present ☐ Member of Laboratory for Advanced Genome Analysis directed by Prof. C. Collins ☐ Obtained basic understanding of cancer biology-particularly prostate cancer ☐ Presented a project on metastasis at 12th annual Robert Sullivan Research Day ☐ Participated in numerous research projects and grants as one of the bioinformaticians ☐ Volunteered in Raymond James Father's Day Walk Run for community services Research Assistant, Simon Fraser University (Full time) Sep 2016-Present ☐ Member of Database and Data Mining Lab directed by Prof. Martin Ester Developed skills on deep unsupervised learning such as different Autoencoders, deep multi-task learning, and deep transfer learning Developed skills on implementing in Python-particularly deep learning frameworks Designed and developed a novel method in Pytorch to predict drug response using multi-omics profiles. This method is an end-to-end multi-view deep neural networks consisting of a triplet loss and a classification loss. It improved the performance (AUC) of the state-of-the-art single- and multi-omics methods for drug response prediction. Research Assistant, Ferdowsi University of Mashhad (Full time) Sep 2012- Feb 2015 Designed and implemented a project in Matlab on feature selection for genomic data using a novel information theoretic method based on correntropy for cancer classification

Selected course/personal projects during Ph.D.

Auton	natic chemical compounds design via Autoencoders	using SMILES representation.	
	representation is rich enough to generate these molec		
	Used SMILES representations of existing chemical coon them	mpounds and trained the Autoencoder	
_	personal projects on Convolutional Neural Networ I and GRU)	ks and Recurrent Neural Networks	
	Vision: Applied convolutional networks to visual deter	ction and recognition tasks	
	Vision: Used neural style transfer to generate new arts		
	NLP: Applied RNN models to synthesize Shakespeare'		
	NLP: Applied sequence models to speech recognition	and music synthesis	
Selec	ted publications		
	H. Sharifi-Noghabi , O. Zolotareva, C. C. Collins, M. Ester. (2019), "MOLI: Multi-Omics Late Integration with deep neural networks for drug response prediction" under review		
	H. Sharifi-Noghabi , Y. Liu, N. Erho, R. Shrestha, M. Alshalalfa, E. Davicioni, C. Collins, M. Ester. (2018), "Deep Genomic Signature for early metastasis prediction in prostate cancer" under review. (Also accepted for oral presentation at JSM 2018-Vancouver)		
_	based on the union of fitness and design spaces information for Differential Evolution", Soft computing (21) 6555–6562		
	M. Mohammadi, H. Sharifi-Noghabi , H. Rajabi Mash stable gene selection via Maximum-Minimum Corr		
Educa	83-87. (joint first authorship) ation		
Ph.D	in Computer Science (GPA: A+)	Sep 2016-Present	
Simon	Fraser University, Burnaby, BC, Canada.	-	
	Supervisors: Prof. Martin Ester and Prof. Colin Collins		
	Courses: Machine Learning (grade: A), Bioinformati Analysis of Algorithms (grade: A), Big data genomics Deep learning—A 5-course specialization by deeplear	cs algorithms (grade: A), Design and for personalized medicine (grade: A+),	
<u> </u>	Computing Science Graduate Fellowship (\$6500 and \$ Teaching Assistant for Introduction to computer prog	57400)	
M.Sc.	in Artificial Intelligence (GPA: 17.05/20)	Sep 2012-Feb 2015	
	wsi University of Mashhad, Iran.		
	Admitted as exceptional talents student without entra	nce exam and with tuition remission	
B.E. i	n Information Technology (GPA: 17.92/20)	Sep 2008-July 2012	
Sadjad	University of Technology, Mashhad, Iran. Ranked 1st among 67 students of Information Techno	logy	