(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年11 月17 日 (17.11.2005)

PCT

(10) 国際公開番号 WO 2005/109561 A1

(51) 国際特許分類⁷: H01M 10/40

(21) 国際出願番号: PCT/JP2005/008146

(22) 国際出願日: 2005 年4 月28 日 (28.04.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2004-140889 2004 年5 月11 日 (11.05.2004) J

(71) 出願人 (米国を除く全ての指定国について): 旭電化工業株式会社 (ASAHI DENKA CO., LTD.) [JP/JP]; 〒 1160012 東京都荒川区東尾久7丁目2番35号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 深谷 淳 (FUKAYA, Atsushi) [JP/JP]; 〒4488661 愛知県刈谷市昭和町 1 丁目 1 番地 株式会社デンソー内 Aichi (JP). 宇佐美 恭平 (USAMI, Kyohei) [JP/JP]; 〒4488661 愛知県刈谷市昭和町 1 丁目 1 番地 株式会社デンソー内 Aichi (JP). 粟野直実 (AWANO, Naomi) [JP/JP]; 〒4488661 愛知県刈谷市昭和町 1 丁目 1 番地株式会社デンソー内 Aichi (JP). 立川裕之 (TACHIKAWA, Hiroyuki) [JP/JP]; 〒1160012東京都荒川区東尾久7 丁目 2 番 3 5 号 旭電化工業株式会社内 Tokyo (JP). 滝 敬之 (TAKI, Takayuki) [JP/JP];

〒1160012 東京都荒川区東尾久7丁目2番35号 旭電化工業株式会社内 Tokyo (JP).

- (74) 代理人: 羽鳥修 (HATORI, Osamu); 〒1070052 東京都 港区赤坂一丁目8番6号赤坂HKNビル6階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

─ 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: NONAQUEOUS ELECTROLYTE COMPOSITION AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY USING SUCH COMPOSITION

(54) 発明の名称: 非水電解液組成物及び該組成物を用いた非水電解液二次電池

(57) Abstract: Disclosed is a nonaqueous electrolyte composition obtained by dissolving an electrolyte salt in an organic solvent. This nonaqueous electrolyte composition is characterized in that the organic solvent is a mixed organic solvent containing 20-35 volume% of ethylene carbonate (a), 35-45 volume% of ethyl methyl carbonate (b), 15-35 volume% of dimethyl carbonate (c) and 3-15 volume% of diethyl carbonate or propylene carbonate (d). With this nonaqueous electrolyte composition, there can be obtained a nonaqueous electrolyte secondary battery having excellent low-temperature characteristics as well as excellent storage characteristics or cycle characteristics.

(57)要約: 本発明の非水電解液組成物は、有機溶媒に電解質塩を溶解させてなる非水電解液組成物において、該有 |機溶媒が、エチレンカーボネート(a)20~35体積%、エチルメチルカーボネート(b)35~45体積%、 |ジメチルカーボネート(c)15~35体積%、及びジエチルカーボネート又はプロピレンカーボネート(d) |3~15体積%を含有してなる混合有機溶媒であることを特徴とするものであり、低温特性に優れ、保存特性ある | いはサイクル特性に優れた非水電解液二次電池を提供し得るものである。

5/109

WO 2005/109561 1 PCT/JP2005/008146

明細書

非水電解液組成物及び該組成物を用いた非水電解液二次電池技術分野

[0001] 本発明は、非水電解液組成物及び該非水電解液組成物を用いた非水電解液二次電池に関し、詳しくは、有機溶媒に電解質塩を溶解させてなる非水電解液組成物において、該有機溶媒が、エチレンカーボネート(a)20~35体積%、エチルメチルカーボネート(b)35~45体積%、ジメチルカーボネート(c)15~35体積%、及びジエチルカーボネート又はプロピレンカーボネート(d)3~15体積%を含有してなる混合有機溶媒である非水電解液組成物、及び、該非水電解液組成物を用いることによりサイクル後の室温及び低温における電池特性に優れた非水電解液二次電池に関するものである。

背景技術

- [0002] 近年、リチウム金属又はリチウム合金あるいはリチウムイオンを吸蔵・脱離し得る物質を負極活物質とする非水電解液二次電池は、エネルギー密度が大きく、自己放電が少ない等の特徴を有することから注目されている。しかし、上記非水電解液二次電池においては、高電圧となるため正負両極において電解液が分解されやすく、保存安定性に劣る、長いサイクル寿命を確保することが困難である等の欠点があった。
- [0003] このため、保存特性あるいはサイクル特性に優れた非水電解液を開発することが非水電解液二次電池を実用化する上で最も重要な課題となっていた。上記非水電解液は、溶質である電解質を有機溶媒に溶解したもので、この溶媒に要求される特性としては、誘電率が大きいこと、溶質である電解質を多量に溶解できること、粘度が低いこと、低温特性に優れていること、酸化還元に対して安定で分解しないこと、揮発性が低く使用に当たって安全性が大きいこと等が挙げられる。
- [0004] 従来、非水電解液二次電池に用いられる溶媒としては、1,2-ジメトキシエタンや1,3-ジオキソラン等の低沸点溶媒が用いられていたが、これらの低沸点溶媒は、誘電率が小さいばかりでなく、単独で使用した場合には負極の材料であるリチウムが溶媒と反応して電解液中に溶出して保存特性が低下したり、反応により生成した酸化リ

チウム被膜のイオン導電性が良くないために電池内部の抵抗が増大し、高率放電特性が悪化するという欠点があった。

- [0005] このため、非水電解液二次電池に用いられる溶媒としては、エチレンカーボネート、 プロピレンカーボネート等の誘電率の大きい環状炭酸エステルと、1,2ージメトキシ エタンやテトラヒドロフラン等の低沸点溶媒との混合溶媒が用いられている。この種の 溶媒は、環状炭酸エステルとリチウムが反応して負極表面にイオン導電性に優れる 炭酸リチウム被膜を形成するとともに、低沸点の溶媒を用いることによって電解液の 粘度を低下させることを目的とするものであり、これによって電解液のイオン導電性の 低下を防止し、また、高率放電特性を改良しようとするものである。
- [0006] しかしながら、1,2-ジメトキシエタン、テトラヒドロフラン等の低沸点溶媒は、その酸化還元電位が低いために高電位の正極との接触界面において分解しやすく、また、高温下に長時間保存すると負極表面に形成された炭酸リチウム被膜を徐々に分解し、絶縁性の酸化リチウム被膜に変化させてしまうため、初期の高率放電特性はある程度改良できるものの、保存後の高率放電特性については充分に満足しえるものではなかった。
- [0007] このため、電解液溶媒に関する改良が強く求められており、例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5及び特許文献6には、エチレンカーボネート、プロピレンカーボネート、1,2ーブチレンカーボネート、ビニレンカーボネート、ジスチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート化合物との混合溶媒を用いることが提案されている。
- [0008] また、特許文献7には、ジメチルカーボネート及びジエチルカーボネートの混合物 を、触媒を用いて強制的にエステル交換することにより、ジメチルカーボネート、ジエ チルカーボネート及びエチルメチルカーボネートの3つのカーボネートを平衡状態で 含有する混合物を作成し、これにエチレンカーボネートを加えた電解液の組成が提案されている。
- [0009] 特許文献1:特開平6-84542号公報 特許文献2:特開2003-323915号公報

特許文献3:特許第3157209号公報

特許文献4:特許第3311104号公報

特許文献5:特許第3428750号公報

特許文献6:特開2000-67914号公報

特許文献7:特開2002-117898号公報

[0010] 1,2-ジメトキシエタン、テトラヒドロフラン等に代えて鎖状のカーボネート化合物を 用いることによって、初期及び保存後の高率放電特性はある程度は改善されるもの の、低温特性に十分優れた電解液は得られていなかった。

発明の開示

発明が解決しようとする課題

- [0011] 解決しようとする問題点は、上述したように、良好な低温特性を発揮する電解液は、 これまで得られなかったということである。
- [0012] 従って、本発明の目的は、低温特性に優れた電解液組成物を用いることにより、保存特性あるいはサイクル特性に優れた非水電解液二次電池を提供することにある。 課題を解決するための手段
- [0013] 本発明者等は、かかる現状に鑑み種々の検討を重ねた結果、特定のカーボネート 化合物を特定の割合で用いることにより、サイクルを重ねた場合にも良好な低温特性 を維持する非水電解液組成物が得られることを知見した。
- [0014] 本発明は、上記知見に基づきなされたもので、有機溶媒に電解質塩を溶解させてなる非水電解液組成物において、該有機溶媒が、エチレンカーボネート(a)20~35体積%、エチルメチルカーボネート(b)35~45体積%、ジメチルカーボネート(c)15~35体積%、及びジエチルカーボネート又はプロピレンカーボネート(d)3~15体積%を含有してなる混合有機溶媒であることを特徴とする非水電解液組成物を提供するものである。

また、本発明は、非水電解液、正極及び負極を有する非水電解液二次電池において、該非水電解液として、上記非水電解液組成物を用いたことを特徴とする非水電解液二次電池を提供するものである。

図面の簡単な説明

[0015] [図1]本発明の非水電解液二次電池としてのリチウム二次電池(円筒型)の内部構造 を断面として示す斜視図である。

[図2]本発明の非水二次電池としてのリチウム二次電池の基本構成を示す概略図である。

発明を実施するための最良の形態

- [0016] 以下、本発明の非水電解液組成物及び該非水電解液組成物を用いた本発明の非 水電解液二次電池について、その好ましい実施形態に基き詳細に説明する。
- [0017] 本発明の非水電解液組成物は、有機溶媒に電解質塩を溶解させてなる非水電解液組成物において、該有機溶媒が、エチレンカーボネート(a)20~35体積%、エチルメチルカーボネート(b)35~45体積%、ジメチルカーボネート(c)15~35体積%、及びジエチルカーボネート又はプロピレンカーボネート(d)3~15体積%を含有してなる混合有機溶媒であることを特徴とする。本発明の非水電解液組成物は、(a)~(d)の4成分のみからなるものでもよく、必要に応じて、さらに他の環状カーボネート化合物、他の鎖状カーボネート化合物、その他の有機溶媒を含有してもよい。
- [0018] 本発明の非水電解液組成物に用いる上記有機溶媒の組成としては、エチレンカーボネート(a) 25~35体積%、エチルメチルカーボネート(b) 35~45体積%、ジメチルカーボネート(c) 18~32体積%、及びジエチルカーボネート又はプロピレンカーボネート(d) 3~10体積%の組成が、低温での性能を十分に確保できるため好ましい。
- [0019] 上記有機溶媒の好ましい組成の第一具体例としては、エチレンカーボネート(a)30 体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)20体積%及びジエチルカーボネート(d)10体積%の組成が挙げられ、この組成の有機溶媒を用いると低温での性能を十分に確保できるため好ましい。
- [0020] 上記有機溶媒の好ましい組成の第二具体例としては、エチレンカーボネート(a)25 体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)30体積%及びジエチルカーボネート(d)5体積%の組成が挙げられ、この組成の有機溶媒を用いると低温での性能を十分に確保できるため好ましい。

- [0021] 上記有機溶媒の好ましい組成の第三具体例としては、エチレンカーボネート(a)25 体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)25体積%及びジエチルカーボネート(d)10体積%の組成が挙げられ、この組成の有機溶媒を用いると低温での性能を十分に確保できるため好ましい。
- [0022] 上記有機溶媒の好ましい組成の第四具体例としては、エチレンカーボネート(a)25 体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)30体積%及びプロピレンカーボネート(d)5体積%の組成が挙げられ、この組成の有機溶媒を用いると低温での性能を十分に確保をできるため好ましい。
- [0023] 本発明の非水電解液組成物に用いることができる上記の他の環状カーボネート化合物としては、ビニレンカーボネート、1,2ーブチレンカーボネート、2ーメチルー1,2ーブチレンカーボネート、1,1ージメチルエチレンカーボネート、2ーメチルー1,3ープロピレンカーボネート、3ーメチルー1,3ープロピレンカーボネート等が挙げられる。また、上記の他の鎖状カーボネート化合物としては、エチルーnーブチルカーボネート、メチルーtーブチルーカーボネート、ジーiープロピルカーボネート、tーブチルーiープロピルカーボネート等が挙げられ、さらに、鎖状カーボネート化合物に分類されているアルキレンビスカーボネート化合物である1,2ービス(メトキシカルボニルオキシ)エタン、1,2ービス(エトキシカルボニルオキシ)エタン及び1,2ービス(エトキシカルボニルオキシ)プロパン等も挙げられる。
- [0024] また、上記のその他の有機溶媒としては、γ ーブチロラクトン、γ ーバレロラクトン等 の環状エステル化合物、スルホラン、スルホレン、テトラメチルスルホラン、ジフェニル スルホン、ジメチルスルホン、ジメチルスルホキシド等のスルホン又はスルホキシド化 合物、Nーメチルピロリドン、ジメチルフォルムアミド、ジメチルアセトアミド等のアマイド 化合物等が挙げられる。
- [0025] さらに、上記のその他の有機溶媒として、低粘度で低温での電解液の性能を高くすることができる鎖状又は環状エーテル化合物を用いてもよく、かかる鎖状又は環状エーテル化合物としては、テトラヒドロフラン、ジオキソラン、ジオキサン等が挙げられる。さらに、上記のその他の有機溶媒として、鎖状エステル化合物を用いることもでき、かかる鎖状エステル化合物としては、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチ

ル、酢酸プロピル、酢酸第二ブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等が挙げられる。その他、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体を用いることもできる。

- [0026] また、上記のその他の有機溶媒として、鎖状エーテルに分類されるグリコールジエーテル化合物を用いてもよい。かかるグリコールジエーテル化合物としては、エチレングリコールビス(トリフルオロエチル)エーテル、iープロピレングリコール(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの化合物は、末端基がフッ素原子で置換されているために、電極界面において界面活性剤様の作用を発揮して、非水電解液組成物の電極への親和性を高めることができ、初期の電池内部抵抗の低減やリチウムイオンの移動性を高めることができる。
- [0027] 本発明に係る(a)~(d)成分の合計含有量は、全有機溶媒中、好ましくは70~10 0体積%、特に好ましくは90~100体積%であり、さらに必要に応じて配合される(a) ~(d)成分以外の有機溶媒の配合量は、全有機溶媒中0~30体積%であるのが、 電解液の誘電率及び低温での性能を十分に確保できるため好ましい。
- [0028] 本発明の非水電解液組成物には、一層優れたサイクル特性を付与する上で、さらに下記一般式(1)で表されるケイ素化合物及び下記一般式(2)で表されるケイ素化合物の中から選ばれる少なくとも1種を含有させてもよい。

WO 2005/109561 7 PCT/JP2005/008146

[0029] [化1]

$$R_{2} \xrightarrow{\stackrel{\scriptstyle R_{1}}{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }}{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }}{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }}{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel}}{\stackrel{\scriptstyle }{\stackrel}}{\stackrel{\scriptstyle }{\stackrel}}{\stackrel}}}}}}}R_{5}$$

(式中、 $R_1 \sim R_6$ は各々独立にアルキル基、アルコキシ基、アルケニル基、アルケニル基、アルキニル基、アルキニルオキシ基、アリール基又はアリールオキシ基を示し、これらの基は鎖中にエーテル結合を有していても良い。nは0~5を示し、nが1~5の時、Xは直接結合、酸素原子、アルキレン基、アルキレンジオキシ基、アルケニレン基、アルケニレンジオキシ基、アルキニレン基、アルキニレンジオキシ基、アリーレン基又はアリーレンジオキシ基を示す。但し、 $R_1 \sim R_6$ 及びXの少なくとも1つは不飽和結合含有基を示す。)

[0030] [化2]

$$R_{7} = \begin{cases} R_{8} \\ S_{1} \\ R_{q} \end{cases}$$
 (2)

(式中、 R_7 は炭素原子数 $2\sim1$ 0 のアルケニル基を示し、 R_8 及び R_9 は各々独立に炭素原子数 $1\sim1$ 0 のアルキル基、炭素原子数 $1\sim1$ 0 のアルコキシ基、炭素原子数 $2\sim1$ 0 のアルケニル基又はハロゲンを示し、Xはハロゲンを示す。)

[0031] 上記一般式(1)において、R₁~R₆で表されるアルキル基及びアルコキシ基の好ましい例としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、イソオクチル、2-エチルヘキシル、ノニル、デシル、ウンデシル、ドデシル等の炭素原子数1~12のアルキル基及びこれらの基から誘導されるアルコキシ基が挙げられ、アルケニル基及びアルケニルオキシ基の好ましい例としては、ビニル、アリル、1-プロペニル、イソプロペニル、2-ブテニル、1、3-ブタジエニル、2-ペンテニル、2-オクテニル等の炭素原子数2~8のアルケニル基及びこれらの基から誘導されるアルケニルオキシ基が挙げられ、アルキニル基及びアルキニルオキシ基の好ましい例としては、エチニル、2-プロピニル、1、1-ジメチル-2-プロピニル等の炭素原子数2~8のアルキニル基及びこれらの基から誘導されるアルキニル基及びこれらの基から誘導されるアルキニルオキシ基が挙げられ、アリール基及びアリールオ

キシ基の好ましい例としては、フェニル、トリル、キシリル、第三ブチルフェニル等の炭素原子数6~12のアリール基及びこれらの基から誘導されるアリールオキシ基が挙げられる。また、Xで表されるアルキレン基及びアルキレンジオキシ基の好ましい例としては、メチレン、エチレン、トリメチレン、2,2ージメチルトリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン等の炭素原子数1~8のアルキレン基及びこれらの基から誘導されるアルキレンジオキシ基が挙げられ、アルケニレン基及びアルケニレンジオキシ基の好ましい例としては、ビニレン、プロペニレン、イソプロペニレン、ブテニレン、ペンテニレン等の炭素原子数2~8のアルケニレン基及びこれらの基から誘導されるアルケニレンジオキシ基が挙げられ、アルキニレン基及びアルキニレンジオキシ基の好ましい例としては、エチニレン、プロピニレン、ブチニレン、ペンチニレン、1,1,4,4ーテトラメチルブテニレン等の炭素原子数2~8のアルキニレン基及びアルトニレンを表びこれらの基から誘導されるアルキニレンジオキシ基が挙げられ、アリーレン基及びアリーレンジオキシ基の好ましい例としては、フェニレン、メチルフェニレン、ジメチルフェニレン、第三ブチルフェニレン等の炭素原子数6~12のアリーレン基及びこれらの基から誘導されるアリーレンジオキシ基が挙げられる。

[0032] 上記一般式(1)で表されるケイ素化合物の具体例としては、以下の化合物No. 1 ~No. 7が挙げられる。但し、本発明は以下の例示により何ら制限されるものではない。

[0033] [化3]

化合物No. 1

[0034] [化4]

化合物No. 2

[0035] [化5]

化合物No. 3

[0036] [化6]

化合物No. 4

$$\begin{array}{c} CH_3 \\ CH_3 \longrightarrow \begin{array}{c} CH_3 \\ S \text{ i} \longrightarrow CH \Longrightarrow CH_2 \\ CH \Longrightarrow CH_2 \end{array}$$

[0037] [化7]

化合物No. 5

[0038] [化8]

$$\mathbf{CH_3} - \mathbf{CH_3} \\ \mathbf{CH_3} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{CH_2}$$

WO 2005/109561 10 PCT/JP2005/008146

[0039] [化9]

化合物No.7

$$C_2H_50$$
 — S_1 — O — CH_2 — CH — CH_2 — CH

- [0040] 上記一般式(1)で表される不飽和結合を有するケイ素化合物は、既知の化合物であり、その合成方法は特に限定されるものではないが、例えば、化合物No. 1は、水素含有ケイ素化合物及び水酸基含有ケイ素化合物の脱水素カップリング反応により得ることができる。
- [0041] また、上記一般式(2)において、R~R。で表されるアルケニル基としては、ビニル、アリル、1ープロペニル、イソプロペニル、2ーブテニル、1,3ーブタジエニル、2ーペンテニル、2ーオクテニル等が挙げられる。また、R。及びR。で表されるアルキル基、アルコキシ基及びアルケニル基としては、メチル、エチル、プロピル、ブチル、第二ブチル、第酸ブチル、ペンチル、ヘキシル、ヘプチル、オクチル2ーエチルーヘキシル、ノニル、デシル等のアルキル基、これらのアルキル基から誘導されるアルコキシ基、及びこれらのアルキル基に対応するアルケニル基が挙げられる。また、Y、R。及びR。で表されるハロゲンとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
- [0042] 上記一般式(2)で表されるケイ素化合物の具体例としては、以下の化合物No. 8 ~No. 13が挙げられる。ただし、本発明は以下の例示により何ら制限されるものではない。

[0043] [化10]

$$CH_2 = CH - Si - F$$

$$CH_3$$

$$CH_3$$

[0044] [化11]

化合物No. 9

$$CH2=CH-Si-F$$

$$CH=CH2$$

[0045] [化12]

[0046] [化13]

化合物No. 11

$$CH_2 = CH - Si - F$$
 CH_3

[0047] [化14]

$$CH_2 = CH - Si - F$$

$$OCH_3$$

$$OCH_3$$

[0048] [化15]

$$CH_2 = CH - Si - Cl$$

$$CH_3$$

$$CH_3$$

- [0049] 上記ケイ素化合物が効果を発現する機構は明らかではないが、サイクル初期に電極界面において重合若しくは反応することにより、低温時においても高いリチウムイオン導伝性を維持した被膜を形成するためと考えられる。また、この効果を発現するためには、全有機溶媒100質量部に対して、0.05~5質量部の添加量で上記ケイ素化合物を含有させることが望ましく、0.1~3質量部がより望ましい。0.05質量部未満ではその効果がほとんど認められず、また、5質量部を超えて含有させても効果はそれ以上発現しなくなるので無駄であるばかりでなく、却って電解液の特性に悪影響を及ぼすことがあるので好ましくない。
- [0050] 本発明の非水電解液組成物には、上記一般式(1)で表されるケイ素化合物及び上記一般式(2)で表されるケイ素化合物の中から選ばれる1種を単独で含有させてもよく、また、これらのケイ素化合物の中から選ばれる2種以上を組み合わせて含有させてもよく、さらに、有機錫化合物又は有機ゲルマニウム化合物等を組み合わせて含有させてもよい。
- [0051] また、本発明の非水電解液組成物には、難燃性を付与するために、難燃剤として、ハロゲン系、リン系、その他の難燃剤を適宜添加することが出来る。リン系難燃剤としては、トリメチルホスフェート、トリエチルホスフェート等のリン酸エステル類、ポリリン酸メラミン塩、ポリリン酸アンモニウム塩、ポリリン酸エチレンジアミン塩、ポリリン酸ヘキサメチレンジアミン塩、ポリリン酸ピペラジン塩等が挙げられる。
- [0052] 上記リン系難燃剤等の難燃剤の使用量は、非水電解液組成物を構成する全有機溶媒100質量部に対して5~100質量部が好ましく、10~50質量部が特に好ましい。 5質量部未満では十分な難燃化効果が得られない。
- [0053] また、本発明の非水電解液組成物における電解質塩としては、従来公知の電解質

塩を用いることができ、例えば、LiPF。LiBF、LiAsF。LiCF。SO、LiN(CF。SO2) LiC(CF。SO2)、LiSbF。LiSiF。LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、NaClO4、NaBF4、NaI等が挙げられ、これらの中でも、無機塩であるLiPF。LiBF4、LiAsF6及びLiClO4、並びに有機塩であるLiCF。SO3、LiN(CF。SO2)2及びLiC(CF。SO2)3、及びこれらの誘導体からなる群より選ばれる一種又は二種以上の塩の組合せが電気特性に優れるので好ましい。

- [0054] 上記電解質塩は、非水電解液組成物中の濃度が、0.1~3.0モル/リットル、特に0.5~2.0モル/リットルとなるように、前記有機溶媒に溶解することが好ましい。 非水電解液組成物中の上記電解質塩の濃度が0.1モル/リットルより小さいと充分 な電流密度を得られないことがあり、3.0モル/リットルより大きいと電解液の安定性 を損なう恐れがある。
- [0055] 本発明の非水電解液二次電池は、非水電解液として、本発明の非水電解液組成物を用いたものである。本発明の非水電解液二次電池で用いられる正極、負極及びセパレーターは、特に制限されるものではなく、従来、非水電解液二次電池に用いられている種々の材料をそのまま使用することができる。
- [0056] 本発明の非水電解液二次電池に用いられる電極材料としては、正極及び負極がある。

上記正極としては、正極活物質と結着剤と導電材とをスラリー化したものを集電体に塗布し、乾燥してシート状にしたものを使用することができる。該正極活物質としては、 TiS_2 、 TiS_3 、 MoS_3 、 FeS_2 、 $Li_{(1-x)}$ MnO_2 、 $Li_{(1-x)}$ MnO_2 、 $Li_{(1-x)}$ CoO_2 、 $Li_{(1-x)}$ NiO_2 、 LiV_2O_3 、 V_2O_5 等が挙げられる。なお、該正極活物質の例示におけるXは0~1の数を示す。これら正極活物質のうち、リチウムと遷移金属の複合酸化物が好ましく、その具体例としては、 $LiCoO_2$ 、 $LiNiO_2$ 、 $LiMnO_2$ 、 $LiMnO_2$ 、 LiV_2O_3 等が挙げられる。正極活物質の結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、Zy素ゴム等が挙げられるが、これらに限定されるものではない。

[0057] 上記正極の導電材としては、黒鉛の微粒子、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等が使用されるが、これらに限定さ

WO 2005/109561 14 PCT/JP2005/008146

れるものではない。スラリー化に用いられる溶媒としては、通常は上記結着剤を溶解する有機溶剤が使用され、具体例としては、Nーメチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、NーNージメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が挙げられるが、これらに限定されるものではない。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化する場合もある

- [0058] 上記負極としては、通常、負極活物質と結着剤とを溶媒でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。該負極活物質としては、リチウム、リチウム合金、スズ化合物等の無機化合物、炭素質材料、導電性ポリマー等が挙げられるが、特に、安全性の高いリチウムイオンを吸蔵、放出できる炭素質材料が好ましい。この炭素質材料は、特に限定されるものではないが、黒鉛、石油系コークス、石炭系コークス、石油系ピッチの炭化物、石炭系ピッチの炭化物、フェノール樹脂・結晶セルロース等の樹脂の炭化物等及びこれらを一部炭化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維、PAN系炭素繊維等が挙げられる。また、負極に用いる上記結着剤及び上記溶媒としては、それぞれ、上記正極に用いることができる結着剤及び溶媒として例示したものを用いることができる。
- [0059] 負極の集電体には、通常、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用され、正極の集電体には、通常、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
- [0060] 本発明の非水電解液二次電池では、正極と負極との間にセパレータを用いるが、該セパレータとしては、非水電解液二次電池に通常用いられる高分子化合物の微多孔フィルムを特に限定なく使用することができ、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物や

WO 2005/109561 15 PCT/JP2005/008146

その誘導体、これらの共重合体や混合物からなるフィルム等が挙げられる。また、これらのフィルムは、単独で用いてもよいし、複数のフィルムを重ね合わせた複層フィルムとして用いてもよい。さらに、これらのフィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらの微多孔フィルムの中でも、本発明の非水電解液二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンが好ましく用いられる。

- [0061] セパレータとして用いられる上記フィルムは、非水電解液がしみ込んでイオンが透過し易いように、微多孔化がなされている。この微多孔化の方法としては、上記高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、該溶剤を抽出除去して多孔化する「相分離法」、溶融した上記高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、さらに延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられる高分子フィルムによって適宜選択される。
- [0062] 本発明の非水電解液組成物、上記電極材料及び上記セパレータには、より安全性を向上する目的で、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、ヒンダードアミン化合物を添加してもよい。
- [0063] 上記フェノール系酸化防止剤としては、例えば、1,6~ヘキサメチレンビス[(3-第三ブチルー5-メチルー4-ヒドロキシフェニル)プロピオン酸アミド]、4,4'-チオビス(6-第三ブチルーm-クレゾール)、4,4'-ブチリデンビス(6-第三ブチルーm-クレゾール)、1,1,3-トリス(2-メチルー4-ヒドロキシー5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチルー3-ヒドロキシー4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチルー4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチルー4-ヒドロキシベンジル)ー2,4,6-トリメチルベンゼン、テトラキス[3-(3,5-ジ第三ブチルー4-ヒドロキシフェニル)プロピオン酸メチル]メタン、チオジエチレングリコールビス[(3,5-ジ第三ブチルー4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサメチレンビス[(3,5-ジ第三ブチルー4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサメチレンビス[(3,5-ジ第三ブチルー4-ヒドロキシフェニル)プロピオネート]、ビス[3,3ービス(4-ヒドロキシー3-第三ブチルフェニル)ブチリックアシッド]グリコールエステル、ビス[2-

第三ブチルー4ーメチルー6ー(2ーヒドロキシー3ー第三ブチルー5ーメチルベンジル)フェニル]テレフタレート、1、3、5ートリス[(3、5ージ第三ブチルー4ーヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、3、9ービス[1、1ージメチルー2ー{(3ー第三ブチルー4ーヒドロキシー5ーメチルフェニル)プロピオニルオキシ}エチル]ー2、4、8、10ーテトラオキサスピロ[5、5]ウンデカン、トリエチレングリコールビス[(3ー第三ブチルー4ーヒドロキシー5ーメチルフェニル)プロピオネート]等が挙げられる。

[0064] 上記リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス[2 - 第三ブチルー4-(3-第三ブチルー4-ヒドロキシー5-メチルフェニルチオ)-5 ーメチルフェニル]ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイ ト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファ イト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチ ルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチ ルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニ ル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリト ールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テ トラ(トリデシル) -4, 4'-n-ブチリデンビス(2-第三ブチル-5-メチルフェノー -5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフ ェニル)ビフェニレンジホスホナイト、9, 10-ジハイドロ-9-オキサー10-ホスファ フェナンスレン-10-オキサイド、2,2'-メチレンビス(4,6-第三ブチルフェニル) -2-エチルヘキシルホスファイト、2,2'-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2, 2'-エチリデンビス(4, 6-ジ第三ブチルフェニル) フルオロホスファイト、トリス(2-[(2, 4, 8, 10-テトラキス第三ブチルジベンゾ[d, f][1, 3, 2]ジオキサホスフェピンー6ーイル)オキシ]エチル)アミン、2ーエチルー2 ーブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等 が挙げられる。

[0065] 上記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、

チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類及びペンタエリスリトールテトラ(β-アルキルメルカプトプロピオン酸エステル類が挙げられる。

[0066] 上記ヒンダードアミン化合物としては、例えば、2,2,6,6-テトラメチルー4ーピペ リジルステアレート、1, 2, 2, 6, 6ーペンタメチルー4ーピペリジルステアレート、2, 2 , 6, 6ーテトラメチルー4ーピペリジルベンゾエート、ビス(2, 2, 6, 6ーテトラメチルー 4-ピペリジル)セバケート、ビス(1, 2, 2, 6, 6-テトラメチル-4-ピペリジル)セバ ケート、ビス(1ーオクトキシー2, 2, 6, 6ーテトラメチルー4ーピペリジル)セバケート、 テトラキス(2, 2, 6, 6ーテトラメチルー4ーピペリジル)ー1, 2, 3, 4ーブタンテトラカ ルボキシレート、テトラキス(1, 2, 2, 6, 6 - @Vayチル-4 - @Viジル) - 1, 2, 3,4ーブタンテトラカルボキシレート、ビス(2,2,6,6ーテトラメチルー4ーピペリジル) •ジ(トリデシル) -1, 2, 3, 4 – ブタンテトラカルボキシレート、ビス(1, 2, 2, 6, 6 – ペンタメチルー4ーピペリジル)・ジ(トリデシル)ー1,2,3,4ーブタンテトラカルボキ シレート、ビス(1, 2, 2, 4, 4ーペンタメチルー4ーピペリジル)ー2ーブチルー2ー(3 , 5-ジ第三ブチル-4-ヒトロキシベンジル)マロネート、1-(2-ヒトロキシエチル) -2, 2, 6, 6 - テトラメチル -4 - ピペリジノール / コハク酸ジエチル 重縮合物、1, 6 -ビス(2, 2, 6, 6-テトラメチル-4-ピペリジルアミノ)へキサン/2, 4-ジクロロ -6ーモルホリノーsートリアジン重縮合物、1,6ービス(2,2,6,6ーテトラメチルー4 ーピペリジルアミノ)へキサン/2,4-ジクロロー6-第三オクチルアミノーsートリアジ ン重縮合物、1, 5, 8, 12ーテトラキス〔2, 4ービス(NーブチルーNー(2, 2, 6, 6ー テトラメチルー4ーピペリジル)アミノ)-s-トリアジン-6-イル]-1, 5, 8, 12-テト ラアザドデカン、1, 5, 8, 12ーテトラキス〔2, 4ービス(NーブチルーNー(1, 2, 2, 6 , 6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1, 5, 8-12-テトラアザドデカン、1, 6, 11-トリス[2, 4-ビス[N-ブチル-N-(2, 2, 6, 6ーテトラメチルー4ーピペリジル)アミノ)ーsートリアジンー6ーイル]アミノウンデカン、 ーピペリジル)アミノ)-s-トリアジン-6-イル]アミノウンデカン等が挙げられる。

[0067] 上記構成からなる本発明の非水電解液二次電池は、その形状には特に制限を受

けず、偏平型(ボタン型)、円筒型、角型等、種々の形状の電池とすることができる。 本発明の非水電解液二次電池の代表例としては、リチウム又はリチウム合金あるいは リチウムイオンを吸蔵・脱離し得る物質を負極活物質とするリチウム二次電池等が挙 げられるが、これに限定されず、本発明の効果を損なわない範囲において適宜その 構成を変更したものも採用することができる。図1は、円筒型電池とした本発明の非 水電解液二次電池の例の内部構造を断面として示す斜視図であり、図2は、本発明 の非水電解液組成物を用いた非水電解液二次電池の基本構成を示す概略図であ る。

[0068] 図2に示す非水電解液二次電池10であるリチウム二次電池は、少なくともリチウム、リチウム合金又はリチウムイオンを吸蔵・脱離し得る物質を活物質として構成される負極1、負極集電体2、正極端子7及び負極端子8から構成されている。尚、図2中、3は正極、4は正極集電体、5は電解液、6はセパレーターである。また、図1に示す円筒型電池10において、1'は負極板、1"は負極リード、3'は正極板、3"は正極リード、6はセパレーター、7は正極端子、8は不極端子、11はケース、12は絶縁板、13はガスケット、14は安全弁、15はPTC素子である。また、該リチウム二次電池には、必要に応じて、非水電解二次電池に通常用いられる上記以外の構成材料を使用することが出来る。

実施例

- [0069] 以下に、実施例をもって本発明を更に詳細に説明する。但し、本発明は以下の実施例によって制限を受けるものではない。
- [0070] 〔実施例1及び比較例1〕 以下の手順でリチウム二次電池を作製した。
- [0071] (正極の作製)

正極活物質LiNiO₂85重量部、導電剤としてアセチレンブラック10重量部、及び結着剤としてポリフッ化ビニリデン(PVDF)5重量部を混合して、正極材料とした。この正極材料をNーメチルー2ーピロリドン(NMP)に分散させ、スラリーとした。このスラリーをアルミニウム製の正極集電体両面に塗布し、乾燥後、プレス成型して、正極板とした。その後、この正極板を所定の大きさにカットし、電流取り出し用のリードタブ溶接

部となる部分の電極合剤を掻き取ることでシート状正極を作製した。

[0072] (負極の作製)

炭素材料粉末92.5重量部にPVDF7.5重量部を混合して、負極材料とした。この 負極材料をNMPに分散させてスラリーとした。このスラリーを銅製の負極集電体両面 に塗布し、乾燥後、プレス成型して、負極板とした。その後、この負極板は、所定の大 きさにカットし、電流取り出し用のリードタブ溶接部となる部分の電極合剤を掻き取る ことでシート状負極を作製した。

[0073] (非水電解液の調製)

表1及び2に示す配合(体積%)の混合有機溶媒に、LiPFを1.5モル/リットルの 濃度で溶解して非水電解液とした。尚、表1及び2中、ECはエチレンカーボネート、 EMCはエチルメチルカーボネート、DMCはジメチルカーボネート、DECはジエチ ルカーボネート、PCはプロピレンカーボネートを示す。

[0074] (リチウム二次電池の組み立て)

以上で得られたシート状正極及びシート状負極を、厚さ25 µ mの微孔ポリエチレン製フィルムを介した状態で巻回させて、巻回型電極体を形成した。得られた巻回型電極体をケースの内部に挿入し、ケース内に保持した。このとき、シート状正極及びシート状負極のリードタブ溶接部に一端が溶接された集電リードは、ケースの正極端子あるいは負極端子に接合した。その後、非水電解液を、巻回型電極体が保持されたケース内に注入し、ケースを密閉、封止した。以上の手順により、φ18mm、軸方向の長さ65mmの円筒型リチウム二次電池を製作した。

[0075] 作製したリチウム二次電池の特性(初期出力、500サイクル後出力及び500サイクル後放電容量維持率)を、以下の測定方法により測定した。これらの測定は、20℃及び-30℃それぞれにおいて行った。それらの結果を表1及び2に示す。但し、初期出力は、比較例1-1における測定値を100として示した。

[0076] (初期出力測定方法)

まず、室温にて充電を一定電流で行い、電池の充電状態SOC(State of Charge)を60%に調整した。そして、電池の作動電圧範囲を4.1Vから3Vの範囲とし、電池の放電電流を変化させ、それぞれ10秒間の放電を行い、10秒目の電流一電圧線

を求め、下限電圧の3Vとなる電流値に下限電圧3Vを掛けて出力特性の値を算出した。

[0077] (500サイクル後出力測定方法)

リチウム二次電池を、雰囲気温度60℃の恒温槽内に入れ、充電電流2.2mA/c m²で4.1Vまで定電流充電し、放電電流2.2mA/cm²で3Vまで定電流放電を行うサイクルを500回繰り返して行った。このリチウム二次電池について、上記(初期出力測定方法)に従って、出力特性の値を算出した。

[0078] (500サイクル後放電容量維持率測定方法)

まず、充電電流 0.25mA/cm^2 で4.1 Vまで定電流定電圧充電し、放電電流 0.33mA/cm^2 で3.0 Vまで定電流放電を行った。次に、充電電流 1.1mA/cm^2 で4.1 Vまで定電流定電圧充電、放電電流 1.1mA/cm^2 で3.0 Vまで定電流放電を 4m^2 で4.1 Vまで定電流定電圧充電、放電電流 0.33mA/cm^2 で3.0 Vまで定電流放電し、 0.33mA/cm^2 で $0.3 \text{3$

リチウム二次電池を、雰囲気温度60℃の恒温槽内に入れ、充電電流2.2mA/c m^2 で4.1Vまで定電流充電し、放電電流2.2mA/c m^2 で3Vまで定電流放電を行うサイクルを500回繰り返して行った。その後、雰囲気温度を測定温度(20℃又は-30℃)にし、充電電流1.1mA/c m^2 で4.1Vまで定電流定電圧充電、放電電流0.33mA/c m^2 で3.0Vまで定電流放電し、このときの放電容量と電池初期容量との比を500サイクル後放電容量維持率(%)とした。

[0079] [表1]

						実 が	包 例			
			1.1	1-2	1-3	1-4	1-5	1.6	1.7	1-8
	(環状) E C	- ボネ-ト)	30	25	25	25	30	30	25	25
配	(鎖状カーボネート) EMC		40	40	40	40	40	40	40	
	(鎖状) DMC	- ボネ-ト) こ	20	30	25	30	25	20	20	20
合	(鎖状) DEC	- 赤* ネ-ト) こ	10	5	10	_	5	5	15	15 10
	(5 員現 P C	浸カ-ホ゜ネ-ト)	_	_		5	.	5	_	5
		初期出力	98.9	99.2	97.9	99.5	98.5	98.8	100.0	98.9
測	20℃	500 サイクル後出力	88.0	88.0	86.5	86.7	87.8	88.1	25 40 20 15 - 100.0 9 88.0 8 80.5 8 112.7 1: 101.8 10	88.1
定		500 サイクル後放電 容量維持率(%)	80.2	80.3	79.9	80.5	80.1	80.1		80.0
結		初期出力	113.0	112.8	114.2	111.0	115.2	112.7	112.7	113.2
果	-30℃	500 サイクル後出力	102.0	102.1	103.5	105.2	101.9	101.9	40 4 20 2 15 1 - 40 100.0 98 88.0 88 80.5 80 112.7 11 101.8 10	101.5
		500 サイクル後放電 容量維持率(%)	92.5	92.7	90.7	91.2	91.0	91.1	91.5	91.2

[0080] [表2]

				H 1 11	比	較	例			
			1-1	1-2	1-3	1-4	1-5	1-6	1.7	
	(環状) E C	– ホ ゙ ネート)	30	10	30	30	30	_	25	
配	(鎖状 ⁾ EM(ーホ [*] ネート) こ	20	45	32	35	_	45	40	
	(鎖状カ DM (ーホ゛ネート) こ	40	10	28	14	45	40	35	
合	(鎖状) DE(ー ホ゛ネート) こ	10	35	10	21	25	15	_	
	(5 員B P C	景カーホ゛ネート)		_	_	_			_	
		初期出力	100.0	98.2	98.3	98.1	98.5	99.1	99.7	
	20 ℃	500 サイクル後出力	79.0	83.4	77.8	76.2	75.3		75.9	
定		500 サイクル後放電 容量維持率(%)	72.9	77.2	76.7	74.2	73.2	73.1	25 40 35 - - 99.7 75.9 69.9	
結		初期出力	100.0	103.5	99.1	98.9	102.5	100.1	101.3	
果	−30°C	500 サイクル後出力	91.9	92.1	93.3	92.7	85.0	85.0	85.2	
		500 サイクル後放電 容量維持率(%)	88.7	89.1	88.3	88.6	86.5	86.0	87.0	

[0081] 〔実施例2及び比較例2〕

非水電解液の調製を以下のようにして行った以外は、実施例1と同様にして、リチウム二次電池を作製し、該リチウム二次電池の特性を測定した。それらの結果を表3及び4に示す。但し、初期出力は、比較例1-1における測定値を100として示した。(非水電解液の調製)

表3及び4に示す配合(体積%)の混合有機溶媒100質量部に対して表3及び表4に示す量(質量部)の添加試料化合物を配合したものに、LiPFを1.5モル/リットルの濃度で溶解して非水電解液とした。

[0082] [表3]

			実 施 例							
			2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8
	(環状カーボ [*] ネート) E C (鎖状カーボ [*] ネート) E M C		30	30	30	30	25	25	25	25
混合有機溶媒配			40	40	40	40	40	40	40	40
機溶	(鎖状か DMC	-ボネート) ;	20	20	20	20	30	30	30	30
双配 合	DEC		10	10	10	10	5	5	5	5
	(5員環 PC	ૄ カーホ゛ネート)	_		_	_		_		_
添	化合物 1	No.1	0.4	_	_	_	0.4	_	_	_
加試料	化合物 N	Vo.3	_	0.4	_	-	_	0.4		
化合物	化合物 1	No.10	_		0.4	-	_	_	0.4	-
物	化合物 N	公合物 No.13		_		0.4	_		_	0.4
		初期出力	100.0	101.0	100.0	99.9	100.8	101.2	100.5	100.2
測	20 ℃	500 サイクル後出力	92.1	93.0	94.8	94.2	92.0	93.0	94.8	94.3
定		500 サイクル後放電 容量維持率(%)	83.9	85.1	84.3	84.9	83.8	84.0	84.7	85.0
結		初期出力	134.3	134.6	135.2	134.9	134.1	134.4	135.0	134.7
果	-30℃	500 サイクル後出力	120.0	120.5	124.1	123.0	120.1	120.6	124.0	123.2
		500 サイクル後放電 容量維持率(%)	96.3	96.1	97.0	96.9	97.1	96.5	96.7	96.0

[0083] [表4]

			実 施 例						比較例		
			2-9	2-10	2-11	2-12	2-13	2-14	2-15	2-16	1-1
	(環状カーホ [*] ネート) E C (鎖状カーホ [*] ネート) E M C		25	25	25	25	25	25	25	25	30
混合有			40	40	40	40	40	40	40	40	20
混合有機溶媒配	(鎖状カーボネート) DMC		25	25	25	25	30	30	30	30	40
媒 配合	(鎖状) DE	カーホ゛ネート) C	10	10	10	10			_	_	10
	(5員! PC	環カーホ゛ネート)	_	. —	_	_	5	5	5	5	_
添	化合物	No.1	0.4	_	_	-	0.4			_	_
加試	化合物	No.3	_	0.4	_	_	-	0.4	_	_	1
料化合	化合物	化合物 No.10		_	0.4	_	_	_	0.4	_	_
物	化合物 No.13				_	0.4		_	_	0.4	
		初期出力	99.7	99.9	99.8	99.6	100.9	101.5	100.7	100.5	100.0
) No.	20 ℃	500 サイクル後出力	90.5	91.8	93.0	93.7	90.2	91.6	93.1	93.0	76.0
測定		500 サイクル後放電 容量維持率(%)	84.6	85.0	83.8	84.0	84.9	85.1	83.9	84.7	72.9
結		初期出力	135.0	135.3	135.8	134.5	132.1	133.0	134.6	133.3	100.0
果	−30℃	500 サイクル後出力	121.5	122.1	125.4	123.9	123.0	123.2	125.6	124.8	85.0
		500 サイクル後放電 容量維持率(%)	96.5	96.3	96.7	97.0	96.4	97.1	96.9	95.9	87.7

[0084] 上記の表1~表4の結果から明らかなように、本発明の特定の環状カーボネート化合物を含有した実施例の非水電解液は、サイクル後の室温及び低温における電池特性が優れており、特に低温における電池特性が優れていることが確認できた。これに比較して、比較例の非水電解液を使用した場合は、サイクル後の低温特性に問題があることが確認された。

産業上の利用可能性

[0085] 本発明によれば、特定のカーボネート化合物を特定の割合で含有することを特徴と する非水電解液組成物を用いることで、サイクル後の室温及び低温における電気特 性に優れた非水電解液二次電池を提供できる。

請求の範囲

- [1] 有機溶媒に電解質塩を溶解させてなる非水電解液組成物において、該有機溶媒が、エチレンカーボネート(a)20~35体積%、エチルメチルカーボネート(b)35~4 5体積%、ジメチルカーボネート(c)15~35体積%、及びジエチルカーボネート又はプロピレンカーボネート(d)3~15体積%を含有してなる混合有機溶媒であることを特徴とする非水電解液組成物。
- [2] 上記有機溶媒が、エチレンカーボネート(a)25~35体積%、エチルメチルカーボネート(b)35~45体積%、ジメチルカーボネート(c)18~32体積%、及びジエチルカーボネート又はプロピレンカーボネート(d)3~10体積%を含有してなる混合有機溶媒である請求の範囲第1項記載の非水電解液組成物。
- [3] 上記有機溶媒が、エチレンカーボネート(a)30体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)20体積%及びジエチルカーボネート(d)10 体積%より成る混合有機溶媒である請求の範囲第1又は2項記載の非水電解液組成物。
- [4] 上記有機溶媒が、エチレンカーボネート(a)25体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)30体積%及びジエチルカーボネート(d)5体積%より成る混合有機溶媒である請求の範囲第1又は2項記載の非水電解液組成物
- [5] 上記有機溶媒が、エチレンカーボネート(a)25体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)25体積%及びジエチルカーボネート(d)10 体積%より成る混合有機溶媒である請求の範囲第1又は2項記載の非水電解液組成物。
- [6] 上記有機溶媒が、エチレンカーボネート(a)25体積%、エチルメチルカーボネート(b)40体積%、ジメチルカーボネート(c)30体積%及びプロピレンカーボネート(d)5 体積%より成る混合有機溶媒である請求の範囲第1又は2項記載の非水電解液組成物。
- 上記電解質塩が、LiPF。、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(CF3SO2)2 及びLiC(CF3SO2)3 並びにLiCF3SO3の誘導体、LiN(CF3SO2)2の誘導体及びLi

 $C(CF_{3}SO_{2})$ の誘導体の中から選ばれる少なくとも1種である請求の範囲第1,2又 は3項記載の非水電解液組成物。

PCT/JP2005/008146

- 上記電解質塩が、LiPF。、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(CF3SO2)22 [8] 及びLiC(CF₃SO₂)₃並びにLiCF₃SO₃の誘導体、LiN(CF₃SO₂)₂の誘導体及びLi C(CF₃SO₂) の誘導体の中から選ばれる少なくとも1種である請求の範囲第1、2又 は4項記載の非水電解液組成物。
- 上記電解質塩が、LiPF。、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(CF3SO2)2 [9] 及びLiC(CF¸SO¸)¸並びにLiCF¸SO¸の誘導体、LiN(CF¸SO¸)¸の誘導体及びLi $C(CF_3SO_2)$ の誘導体の中から選ばれる少なくとも1種である請求の範囲第1、2又 は5項記載の非水電解液組成物。
- 上記電解質塩が、LiPF 、LiBF 、LiClO 、LiAsF 、LiCF SO 、LiN(CF SO) $_2$ と [10] 及びLiC(CF₃SO₂)₃並びにLiCF₃SO₃の誘導体、LiN(CF₃SO₂)₂の誘導体及びLi C(CF、SO) の誘導体の中から選ばれる少なくとも1種である請求の範囲第1、2又 は6項記載の非水電解液組成物。
- $\lceil 11 \rceil$ さらに下記一般式(1)で表されるケイ素化合物及び下記一般式(2)で表されるケイ 素化合物の中から選ばれる少なくとも1種を含有する請求の範囲第1、2、3又は7項 記載の非水電解液組成物。

[化1]

WO 2005/109561

(式中、R,~R。は各々独立にアルキル基、アルコキシ基、アルケニル基、アル ケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基又はアリール オキシ基を示し、これらの基は鎖中にエーテル結合を有していても良い。 n は 0 ~5を示し、nが1~5の時、Xは直接結合、酸素原子、アルキレン基、アルキ レンジオキシ基、アルケニレン基、アルケニレンジオキシ基、アルキニレン基、 アルキニレンジオキシ基、アリーレン基又はアリーレンジオキシ基を示す。但し、 R₁~R₆及びXの少なくとも1つは不飽和結合含有基を示す。)

[化2]

$$\begin{array}{c}
R_{7} - I_{8} \\
R_{q}
\end{array}$$
(2)

(式中、 R_7 は炭素原子数 $2\sim1$ 0 のアルケニル基を示し、 R_8 及び R_9 は各々独立に炭素原子数 $1\sim1$ 0 のアルキル基、炭素原子数 $1\sim1$ 0 のアルケニル基又はハロゲンを示し、X はハロゲンを示す。)

- [12] さらに上記一般式(1)で表されるケイ素化合物及び上記一般式(2)で表されるケイ素化合物の中から選ばれる少なくとも1種を含有する請求の範囲第1、2、4又は8項記載の非水電解液組成物。
- [13] さらに上記一般式(1)で表されるケイ素化合物及び上記一般式(2)で表されるケイ素化合物の中から選ばれる少なくとも1種を含有する請求の範囲第1、2、5又は9項記載の非水電解液組成物。
- [14] さらに上記一般式(1)で表されるケイ素化合物及び上記一般式(2)で表されるケイ素化合物の中から選ばれる少なくとも1種を含有する請求の範囲第1、2、6又は10項記載の非水電解液組成物。
- [15] 非水電解液と正極と負極とを有する非水電解液二次電池において、該非水電解液 として、請求の範囲第1、2、3、7又は11項記載の非水電解液組成物を用いたことを 特徴とする非水電解液二次電池。
- [16] 非水電解液と正極と負極とを有する非水電解液二次電池において、該非水電解液 として、請求の範囲第1、2、4、8又は12項記載の非水電解液組成物を用いたことを 特徴とする非水電解液二次電池。
- [17] 非水電解液と正極と負極とを有する非水電解液二次電池において、該非水電解液 として、請求の範囲第1、2、5、9又は13項記載の非水電解液組成物を用いたことを 特徴とする非水電解液二次電池。
- [18] 非水電解液と正極と負極とを有する非水電解液二次電池において、該非水電解液 として、請求の範囲第1、2、6、10又は14項記載の非水電解液組成物を用いたこと を特徴とする非水電解液二次電池。

WO 2005/109561 PCT/JP2005/008146

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/JP:	2005/008146					
	CATION OF SUBJECT MATTER H01M10/40							
According to Inte	ernational Patent Classification (IPC) or to both nationa	l classification and IPC						
	nentation searched (classification system followed by cla H01M10/40	ssification symbols)						
Jitsuyo Kokai Ji	itsuyo Shinan Koho 1971-2005 To	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2005 1994-2005					
Electronic data b	ase consulted during the international search (name of d	lata base and, where practicable, search t	erms used)					
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.					
X Y A	JP 2000-067914 A (WILSON GRE. 03 March, 2003 (03.03.03), Claims 15 to 17; Par. Nos. [0 [0045] & US 6153338 A & US & EP 980108 A1		1-5,7-10, 15-18 11-14 6					
X Y	JP 2003-163032 A (Samsung SD Kaisha), 06 June, 2003 (06.06.03), Par. Nos. [0036] to [0038], [& US 2003-113634 A1 & KR		1,2,7-10 11-14					
× Further do	cuments are listed in the continuation of Box C.	See patent family annex.						
"A" document d to be of part "E" earlier applie filing date "L" document w cited to esta special reaso "O" document re "P" document pt the priority of	gories of cited documents: efining the general state of the art which is not considered icular relevance cation or patent but published on or after the international which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other on (as specified) eferring to an oral disclosure, use, exhibition or other means sublished prior to the international filing date but later than date claimed	"T" later document published after the indate and not in conflict with the applithe principle or theory underlying the "X" document of particular relevance; the considered novel or cannot be consistent when the document is taken alon "Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the "&" document member of the same patent." Date of mailing of the international search.	cation but cited to understand invention claimed invention cannot be idered to involve an inventive e claimed invention cannot be step when the document is h documents, such combination he art family					
02 Augi	ust, 2005 (02.08.05)	23 August, 2005 (2						
	ng address of the ISA/ se Patent Office	Authorized officer						
Facsimile No.		Telephone No.						

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/008146

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2002-134169 A (Denso Corp.), 10 May, 2002 (10.05.02), Claim 1; Par. Nos. [0005], [0013] to [0038], [0112] & US 2002-76619 A1 & EP 1202373 A2	11-14
Y	JP 2004-39510 A (Denso Corp.), 05 February, 2004 (05.02.04), Claim 1; Par. Nos. [0004], [0011] to [0024], [0069] & US 2004-7688 A1 & EP 1383187 A2	11-14

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.⁷ H01M10/40

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ H01M10/40

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

,, ,, ,, ,		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	TD 2000 067014 4 (1) 1889 1871 187 1871 1871	1 5 7 10
	JP 2000-067914 A(ウィルソン ク レイトハ ッチ リミテット)	1-5, 7-10,
	2003. 03. 03,	15-18
Y	【請求項 15】~【請求項 17】,【0027】,【0043】~【0045】	11-14
A	&US 6153338 A &US 2003-124434 A1 &EP 980108 A1	6
X	JP 2003-163032 A(三星エスディアイ株式会社)	1, 2, 7–10
	2003. 06. 06,	
Y	$[0036] \sim [0038]$, $[0043]$	11-14
	&US 2003-113634 A1 &KR 2003-23290 A	
Y	$2003.06.06,$ [0036] \sim [0038], [0043]	

▼ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 02.08.2005 国際調査報告の発送日 23.8.2005 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 x 9351 事実都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3477

	当 院嗣 全 牧吉	国际出腺番号 PCI/ JP2	000/008140
C (続き).	関連すると認められる文献		
引用文献の カテゴリー *	引用文献名 及び一部の箇所が関連するときん	は、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2002-134169 A(株式会社デンソー) 2002.05.10, 【請求項1】,【0005】,【0013】~【0038 &US 2002-76619 A1 &EP 1202373 A2	8], [0112]	1114
Y	JP 2004-39510 A(株式会社デンソー) 2004.02.05, 【請求項1】,【0004】,【0011】~【0024 &US 2004-7688 A1 &EP 1383187 A2	4], [0069]	11-14
		,	