Hands On Code Practice with ITensor

Table of Contents (click to jump to each hands-on):

- Quantum Circuit Gate Evolution / TEBD
- The DMRG ground-state-finding algorithm
- Functions as tensor networks function integration
- Tucker decomposition algorithms

Located in <u>codes/gate_evolution/</u> folder.

In this exercise, we will finish implementing a code for applying quantum gates to MPS using "TEBD"

The TEBD (Gate Evolution) Algorithm

Acting a <u>two-qubit gate</u> on a wavefunction in MPS form

Operate on two tensors:

destroy
MPS form
locally

Recover MPS form using truncated SVD:

Result:

same bond dimension, small loss of fidelity

Your task: implement the core steps of TEBD

To check your work

 run the check_fidelity.jl code which will compare the state made by your code to a (more expensive) full-state simulation

 print the bond dimension (size of new MPS index) to make sure it is not growing exponentially, though it will still grow

Further challenges:

- replace the randomly generated gates with gates of a specific quantum circuit
- put "swap gates" in between applications of local gates to implement long-range gates

Located in <u>codes/dmrg/</u> folder.

In this exercise, we will finish implementing a code for the DMRG algorithm

Specifically the two-site variant of DMRG

$$E = \frac{\langle \psi | \psi \rangle}{\langle \psi | \psi \rangle}$$

The DMRG Algorithm

DMRG algorithm

Assume we can write H as a tensor network

$$H =$$

The DMRG Algorithm

DMRG algorithm

DMRG finds its ground state (minimum-energy eigenvector) as an MPS tensor network

The DMRG Algorithm

DMRG algorithm

Energy is

Code includes a pre-written type called MPOCache

Calling Heache = position(Heache, H, psi, bond)
will build left and right environments around a
two-site bond=(j,j+1):

Code includes a pre-written type called MPOCache

Calling Heache = position(Heache, H, psi, bond)
will build left and right environments around a
two-site bond=(j,j+1):

Task 1: finish implementing the mult(Hcache,phi) function

What it should do:

and return $H\phi$

Task 2: SVD apart the two-site wavefunction to put back into the MPS

What you should do:

Task 3: further improvements to your DMRG code

- check that <u>energy</u> is correct
- use the <u>expect</u> function compute expect(psi, "Sz") and plot. What is going on at the boundaries?
- improve <u>printing</u> options
 - print the bond the code is on
 - print the MPS bond dimension after the SVD
 - allow changing the amount of printing through a keyword option
- collect data during DMRG run (e.g. local properties of MPS) and use Makie.jl package to <u>make a movie!</u>

Functions as Tensor Networks – Hands On

Located in codes/function_integration/ folder.

In this exercise, you will use the TCI algorithm (from a package) to learn a function into MPS form, then write code to compute the integral $\int_0^1 f(x) dx$

Target function: unnormalized Cauchy distribution area under curve is π

$$f(x) = \frac{c}{(x - \frac{1}{2})^2 + c^2}$$

$$\lim_{c \to 0} \int_0^1 dx \ f(x) = \pi$$

Once we have an MPS or "quantics tensor train" (QTT) version of the function

$$f(x) = \frac{c}{(x - \frac{1}{2})^2 + c^2}$$

$$f(x) \approx \frac{c}{(x - \frac{1}{2})^2 + c^2}$$

We can integrate it from [0,1) by attaching "summation vectors"

$$\int_0^1 f(x) \ dx \approx \int_0^1 \int_0^1 f(x) \ dx = \int_0^1 \int_0^$$

integral measure dx

We can integrate it from [0,1) by attaching "summation vectors"

$$\int_0^1 f(x) \ dx \approx \int_0^1 \int_0^1 f(x) \ dx = \int_0^1 f(x) \ dx = \int_0^1 \int_0^1 f(x) \ dx = \int_0^1 \int_0^1 f(x) \ dx = \int_0^1 f(x) \ dx$$

<u>Task</u>: implement the integrate function to compute the above integral of an MPS function approximation

Live example: Tucker decomposition

Goal: represent a tensor A as a product of a compressed core tensor c and unitary transformation matrices U

Tucker decomposition

This can easily be done by systematically computing the SVD of each mode of the tensor ${\cal A}$

$$i - A = jk \qquad \stackrel{\text{SVD}}{=} \qquad i - U^1 - R_i - C = jk$$

This transformation becomes an approximation when the SVD is truncated based on the singular values of the decomposition.

Tucker decomposition

Unfortunately, this method can be limited as it requires the SVD of relatively large and rectangular matrices.

$$j$$
— C — $R_i k$ $\stackrel{\mathsf{SVD}}{=}$ j — U^2 — $R_i k$

Fortunately, one can reduce the memory and computational intensity

by squaring original tensor

Smarter Tucker decomposition

Randomized Tucker decomposition

It should be possible to replace the squaring of A with randomized sampling.

HOOI optimization of tucker factors

There is no guarantee that the computed U matrices are the in fact the best set of Tucker transformations.

$$min_{C,\overrightarrow{U}}(\|A-C\times_{R_iR_jR_k}\overrightarrow{U}\|)$$

$$\overrightarrow{U} = [U^i, U^j, U^j, U^k] \qquad (U^p)^T U^p = I \in \mathbb{C}^{R_p \times R_p}$$

$$AU^{j}U^{k} \stackrel{SVD}{\approx} U_{R_{i}}^{i} \Sigma_{R_{i}} V_{R_{i}}^{T} = U_{R_{i}}^{i} C_{R_{i}}$$