Math 435 08/29/2025 Notes

August 29, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Definition 1. $Y \subseteq X$ is open if for all $x \in Y$, there exists some r > 0 such that $B(x; r) \subseteq Y$.

Proposition 1. An open ball is an open set.

Proof. Fix a metric space X, a point $a \in X$, and some radius r > 0. We want to show that B(a;r) is open in X. Let $x \in B(a;r)$. Then d(x,a) < r, by definition. Define $\epsilon = r - d(x,a)$. Then we claim $B(x;\epsilon) \subseteq B(a;r)$. Given $y \in B(x;\epsilon)$, $d(y,x) < \epsilon$. Then,

$$d(y,a) \le d(y,x) + d(x,a) < \epsilon + d(x,a) = (r - d(x,a)) + d(x,a) = r. \tag{1}$$

So,

$$d(y,a) < r. (2)$$

Hence, $y \in B(a; r)$, which proves our claim that $B(x; \epsilon) \subseteq B(a; r)$.

Figure 1: Reference for Proposition 1

Proposition 2. Let (X,d) be a metric space. Let \mathscr{U} denote the collection of open subsets of X. Then

- 1. $\emptyset, X \in \mathscr{U}$.
- 2. Arbitrary unions of elements of \mathcal{U} belong to \mathcal{U} .
- 3. Finite intersections of elements of \mathcal{U} belong to \mathcal{U} .

We call \mathcal{U} a topological space.

Proof. (1) is vacuously open. Given $x \in X$, $B(x;r) \subseteq X$ by definition. (2) If $\{U_i\}_{i \in I} \subseteq \mathcal{U}$, let $x \in \bigcup_{i \in I} U_i$. By definition, $x \in U_j$ for some $j \in I$. Since U_j is open, there exists r > 0 such that $B(x;r) \subseteq U_j$. Well, if $x \in B(x;r) \subseteq U_j$, then $B(x;r) \subseteq \bigcup_{i \in I} U_i$. Since x is arbitrary, $\bigcup_{i \in I} U_i$ is open. (3) proof is the last problem on Homework 2.

Example 1. Why only finite intersections? In \mathbb{R} , consider $B(0,1) \supset B(0,\frac{1}{2}) \supset B(0,\frac{1}{3}) \supset \dots$

$$\bigcap_{n=1}^{\infty} B(0; \frac{1}{n}) = \{0\}. \tag{3}$$

Notably $\{0\}$ is a closed set in \mathbb{R} . Thus, in sets with LUB property, we need explicitly finitely many intersections.

Proposition 3. Every open set is a union of open balls.

Proof. Let U be open. Given $x \in U$, there exists $r_x > 0$ with $B(x; r_x) \subseteq U$. Hence, $U = \bigcup_{x \in U} B(x; r_x)$, omitting the trivial set containment proof. For visual reference, consider the open cover of an open set.

Definition 2. Let (X,d) be a metric space. Given $x \in X$, a neighborhood (nbhd) of x is any open set containing x.

Definition 3. A function $f:(X,d_x) \to (Y,d_y)$ is continuous at $x_0 \in X$ if $\forall \epsilon > 0$ there exists $\delta > 0$ such that $d_x(x_0,x) < \delta$ implies that $0 < d_y(f(x_0),f(x)) < \epsilon$.

Proposition 4. A function $f:(X,d_x)\to (Y,d_y)$ is continuous if for any $U\stackrel{\circ}{\subset} Y$, its fiber, $f^{-1}(U)$, is open in X. Rather, $f^{-1}(U)\stackrel{\circ}{\subset} X$.