MATH 4322 - Lecture 15 Tree Based Methods

Dr. Cathy Poliak, cpoliak@uh.edu

University of Houston

Tree Based Models

So far we have covered such parametric models as:

- Linear Regression
- Logistic Regression
- Linear Discriminant Analysis

and such resampling techniques as

- Cross-Validation
- Bootstrap

we are ready for another model class:

Tree-based models can be applied to **both** regression and classification problems.

Motivating example

Example. For *Hitters* data on baseball hitters, we'd like to predict baseball player's *Salary* based on

- Years # years he played in major leagues, and
- Hits # hits made in the previous year.

```
library(ISLR)
head(Hitters[,c("Salary","Years","Hits")])
```

	Salary	Years	Hits
-Andy Allanson	NA	1	66
-Alan Ashby	475.0	14	81
-Alvin Davis	480.0	3	130
-Andre Dawson	500.0	11	141
-Andres Galarraga	91.5	2	87
-Alfredo Griffin	750.0	11	169

1. From our models that we have previous talked about, which would be best to use in this example?

b) Logistic Regression

Classification

Clean the Data First

Notice we have missing values

```
library(ISLR)
summary(Hitters$Salary)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 67.5 190.0 425.0 535.9 750.0 2460.0 59
```

• We will clean this up and create a new data frame.

```
Hitters2 = na.omit(Hitters)
```

- In order to use the linear regression we have to assume
 - Linear relationship
 - ► Independence between observations
 - Normal distribution
 - ► Equal variance

Log of Salary

Testing and Training Data

We will split the data in half for training and testing.

```
set.seed(100)
sample = sample(1:nrow(Hitters2),nrow(Hitters2)/2)
train.hitters = Hitters2[sample,]
test.hitters = Hitters2[-sample,]
```

Linear Regression

We will use all of the variables initially as the inputs.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.1819	0.1746	23.9550	0.0000
Hits	0.0093	0.0039	2.3734	0.0192
HmRun	0.0054	0.0139	0.3874	0.6992
Runs	-0.0020	0.0061	-0.3197	0.7497
RBI	-0.0049	0.0062	-0.7845	0.4343
Walks	0.0065	0.0036	1.8158	0.0719
Years	0.1059	0.0121	8.7538	0.0000 =
PutOuts	0.0001	0.0002	0.4057	0.6857
Assists	0.0001	0.0006	0.2451	0.8068
Errors	-0.0065	0.0113	-0.5690	0.5704

Which variables appear to be significant for predicting salary?

Keeping on the Significant Variables

After using the step() function only Hits, Walks, and Years are significant.

lm.hitters = lm(log(Salary) ~ Hits + Walks + Years, data = train.hitters)

```
summary(lm.hitters)
Call:
lm(formula = log(Salary) ~ Hits + Walks + Years, data = train.hitters)
Residuals:
    Min
             10 Median
                                    Max
-1.25086 -0.45243 -0.00694 0.37243 2.51158
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.173483 0.158230 26.376 < 2e-16 ***
Hits
         0.006773 0.001375 4.926 2.56e-06 ***
Walks
        0.005860 0.002797 2.095 0.0381 *
Years
       0.106356 0.011169 9.522 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5801 on 127 degrees of freedom
Multiple R-squared: 0.5497. Adjusted R-squared: 0.5391
F-statistic: 51.69 on 3 and 127 DF, p-value: < 2.2e-16
=> log(salary) = 4.1735 + 0.0068* hits + 0.0059* Walks + 0.1064* Years
```

Are the Assumptions Met?

How Well are We Predicting?

- Remember that we desire to have a small MSE for both training and testing set.
- MSE from the training set

 pred.train = predict(lm.hitters)

 (mse.hitter.train = mean((log(train.hitters\$Salary) pred.train)^2))
 - [1] 0.3262283 **s**qrt(exp(mse.hitter.train))
 - [1] 1.177171 & training MSE
- MSE from the test set

```
pred.test = predict(lm.hitters, newdata = test.hitters)
(mse.hitter.test = mean((log(test.hitters$Salary) - pred.test)^2))
```

[1] 0.4696672
sqrt(exp(mse.hitter.test))

- [1] 1.264698
- This states that the estimates of the salary may be off by about \$1177.17 based on the training set and about \$1264.7 based on the test set.
- Can we do better?

10-Fold CV

```
library(boot)
glm.hitters = glm(log(Salary) ~ Hits + Walks + Years, data = Hitters2)
set.seed(2)
(cv.hitters = cv.glm(Hitters2,glmfit = glm.hitters, K =10)$delta[1])
[1] 0.4114788
```

[1] 1.228433

sqrt(exp(cv.hitters))

When we split the data 10 times, we get an average MSE of \$1228.43.

Use A Decision Tree Instead

After certain data pre-processing steps, such as:

- dropping observations with missing values
- applying log-transformation to response variable Salary

an example of a fitted decision tree looks as follows

Regression Trees: Hitters example

Explanation of the tree.

- Predictor space (range of values for *Years* and *Hits* variables) got segmented into 3 regions (terminal nodes):
 - $R_1 = (Years < 4.5)$
 - $R_2 = (Years \ge 4.5) \& (Hits < 117.5),$
 - $R_3 = (Years \ge 4.5) \& (Hits \ge 117.5)$

Regression Trees: Hitters example

Explanation of the tree.

- Predictor space (range of values for *Years* and *Hits* variables) got segmented into 3 regions (terminal nodes):
 - $R_1 = (Years < 4.5)$
 - $R_2 = (Years \ge 4.5) \& (Hits < 117.5),$
 - $R_3 = (Years \ge 4.5) \& (Hits \ge 117.5)$
- Salary prediction in region $R_i = (\text{mean Salary of all hitters} \in R_i)$:
 - Any hitter in R_1 (< 4.5 years of experience) is predicted to make $e^{5.11} \approx 165k$.
 - For hitters with over 4.5 years of experience:
 - if hitter \in R_2 (< 117.5 hits), he is projected to make $e^{6.00} \approx 403 \emph{k}$,
 - while for R_3 (≥ 117.5 hits) $e^{6.74} \approx 845k$

Regression Trees: General Idea

Decision trees for regression is also known as **regression trees**, are built via:

- Segmenting predictor space (\leftrightarrow set of all possible values for X_1, \ldots, X_p) into simple non-overlapping regions R_1, \ldots, R_J .
- For every observation falling into region R_j , the predicted response is the **mean response** of *all* training observations in R_j .

Back to *Hitters*: How do we segment?

How do we construct the regions R_1, \ldots, R_J ?

Regions are built via splitting range of a variable. E.g. range of Years is split at value 4.5 into (Years < 4.5) and (Years ≥ 4.5).

Results are boxes, or high-dimensional rectangles, for the sake of

- simplicity,
- ease of interpretation

How do we segment? Recursive binary splitting.

2. We need a partition R_1, \ldots, R_J that minimizes

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2,$$

It is computationally in-feasible to go through all possible partitions R_1, \ldots, R_J

Recursive binary splitting is an approach that's

- top-down (begins with a full region and then successively splits the predictor space)
- greedy (at each step the best split is made regardless of next steps)

Recursive Binary Splitting: Steps

Notation: $R(j, s) = \{X \mid X_j < s\}$ is the region of predictor space (X_1, \dots, X_p) where $X_j < s$ (j^{th} predictor is less than value s).

Steps of recursive binary splitting:

- 1. Start with full predictor space $R = \{(X_1, \dots, X_p)\}.$
- 2. For any j and s, we define the pair of half-planes

$$R_1(j,s) = \{X|X_j < s\}, \quad R_2(j,s) = \{X|X_j \ge s\},$$

3. We seek for values of j and s that minimize

$$RSS = \sum_{i: \ x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: \ x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

- 4. We repeat steps 2 and 3 trying to split the data further by minimizing the RSS, until a stopping criterion (e.g. "no region contains more than five observations") is reached .
- 5. We get a final set of regions R_1, \ldots, R_J , and later predict the **response** for a test observation from region R_j via the **mean** of training observations $\in R_j$, $j = 1, \ldots, J$.

Recursive Binary Splitting: Simulated Example

Example. Below is the output of recursive binary splitting applied to a simulated two-dimensional example with full predictor space $\{(X_1, X_2)\}$. With corresponding tree on right.

Recursive Binary Splitting: Simulated Example

Prediction **surface** corresponding to that tree is depicted below.

z-axis contains predicted response value for the respective region R_i .

Overfitting Issue: Tree Pruning

Recursive binary splitting usually results into large trees that

- produce good predictions on training data, but
- tends to overfit and perform poorly on test data.

A smaller tree with fewer splits (\leftrightarrow fewer regions R_1, \ldots, R_J) might

- lead to lower variance and better testing set performance,
- better interpretation,
- at the cost of a little extra bias.

Solution:

- 1. Grow a large tree T_0 , but then
- 2. Prune it back in order to obtain a subtree.

For step 2 our goal is to select a subtree that leads to the lowest **test** error rate (which could be estimated via cross-validation).

Overfitting Issue: Cost Complexity Pruning

In **cost complexity** pruning, instead of all possible subtrees, we consider a sequence of trees indexed by a tuning parameter $\alpha \geq 0$.

For each value of α there's a subtree $T \subset T_0$ that minimizes

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|,$$

where |T| - number of terminal nodes of tree T; R_m - region for m^{th} terminal node; \hat{y}_{R_m} - predicted response for R_m (mean of obs. $\in R_m$).

Tuning parameter α controls the trade-off between

- quality of fit the subtree T provides to training data (left part), and
- the complexity ($\leftrightarrow \#$ of terminal nodes) of subtree T.

As α increases, there's a penalty for trees with too many terminal nodes \implies quantity (1) tends to be minimized for a smaller subtree.

Decision Tree: Full Algorithm

Below are the steps of building a decision tree (ISLR, page 309):

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross validation to choose α . That is, divide the training observations into K folds. For each k = 1, ..., K;
 - (a) Repeat steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
- 4. Average the results for each value of α , and pick α to minimize the average error.
- 5. Return the subtree from Step 2 that corresponds to the chosen value of α .

Hitters example: Large tree

Example. We randomly divide *Hitters* data into 132 training and 131 testing observations, and build a large regression tree on 9 features:

R Code for Decision Trees

This introduces a new package called tree. Type in R and run the following to answer the following questions.

- 2. How many "nodes" did this produce?
 - (a) 10

b) 9

c) 4

- d) 3
- 3. Type and Run the following in R What is the predicted salary for a player that has between 3.5 and 4.5 *Years* and *RBI* greater than 43.5?
 - a) \$5.885
 - b) \$5,885

c) \$359.60

```
plot(tree.hitters)
text(tree.hitters)
```

Tree Summary

```
Regression tree:
tree(formula = log(Salary) ~ Hits + HmRun + Runs + RBI + Walks +
   Years + PutOuts + Assists + Errors, data = train.hitters)
Variables actually used in tree construction:
[1] "Years" "RBI" "PutOuts" "Hits" "Runs"
Number of terminal nodes: 10
Residual mean deviance: 0.1691 = 20.46 / 121
Distribution of residuals:
   Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.01600 -0.24880 -0.01925 0.00000 0.21450 1.72000
"Residual mean deviance" is the "Total residual deviance" divided by the "Number of
observations" - "Number of Terminal Nodes"
dim(train.hitters)
[1] 131 20
(tot.resid.dev = sum((log(train.hitters$Salary) - predict(tree.hitters))^2))
[1] 20.45564
tot.resid.dev/(nrow(train.hitters) - 10)
[1] 0.1690549 AMSド
```

Hitters example: Pruning

Then we perform pruning, and record training error, CV error & actual test set error for all resulting subtree sizes.

CV yields a subtree with |T| = 3 terminal nodes as the optimal one.

Pruning the Tree

We think that 10 regions are too many. We can do the following to see how many regions we need.

```
cv.hitters = cv.tree(tree.hitters)
plot(cv.hitters$size,cv.hitters$dev,type = "b")
```

Where there is an apparent "elbow" determines how many regions we need.

- 4. How many regions (nodes) do we need?
 - a) 11

b) 9

c)5

- d) 3
- 5. Type and Run the following in R. What is the predicted salary for a player that has played for less than 4.5 *Years*?
 - a) \$5.135
 - b) \$5,135

- c) \$169.86
- (d) \$169,864.30 & e5.135 * 1000

```
prune.hitters = prune.tree(tree.hitters,best = 3)
plot(prune.hitters)
text(prune.hitters)
```

How Well Are We Predicting?

- We can use the test set to determine the MSE of both trees.
- For the original tree with 10 regions we get.

```
yhat = predict(tree.hitters,newdata=test.hitters)
plot(yhat,log(test.hitters$Salary),xlab = "ln(Salary)")
abline(0,1)
```



```
(mse.tree = mean((yhat-log(test.hitters$Salary))^2))
```

[1] 0.4180251

For the pruned tree we get

```
yhat.prune = predict(prune.hitters,newdata = test.hitters)
plot(yhat.prune,log(test.hitters$Salary),xlab = "ln(Salary)")
abline(0,1)
```



```
(mse.prune = mean((yhat.prune - log(test.hitters$Salary))^2))
```

[1] 0.4242652

- Taking the square root and exponential, we get
 - ► For the larger tree this model leads to test predictions that are within around \$1232.46 of the true salary for a player.
 - ► For the pruned tree this model leads to test predictions that are within around \$1236.31 of the true salary for a player.

MSE Compared

1	Training Set	Test Set
:	:	:
Linear Regression	1.386	1.599
Regression Tree	1.169	1.519
Pruned Tree	1.343	1.528

