Лабораторная работа № 4.6.2

Туннелирование миллиметровых радиоволн

Карманов Алексей 752 группа **Цель работы:** экспериментальное исследование эффекта проникновения электромагнитных волн — туннелирования — через воздушный зазор между диэлектрическими призмами при полном внутреннем отражении на границе диэлектриквоздух, а также моделирование интерферометра Майкельсона с использованием этого эффекта и измерение длины волны излучения и показателя преломления фторопласта для радиоволн миллиметрового диапазона.

В работе используются: : генератор СВЧ-колебаний с рупорной антенной; приемная рупорная антенна и волновод; детектор; микроамперметр; металлические зеркала; две призмы и плоскопараллельная пластина из фторопласта; микрометрические винты.

1 Теоретическая справка

1.1 Туннельный эффект

В эксперименте мы наблюдаем туннелирование электромагнитной волны через узкую прослойку воздуха. Рассмотрим электромагнитную волну на границе раздела двух сред.

Волновое уравнение формально допускает решения с мнимыми значениями k_x , k_y или k_z . Такие волны также имеют реальный физический смысл и называются неоднородными в отличие от однородных плоских волн с действительными компонентами волнового вектора.

В качестве примера приведём волну с мнимым значением $k_z = \pm i \chi$:

$$\mathbf{E} = \mathbf{a}e^{\mp \chi z}e^{i(k_x x + k_y y)}e^{-i\omega t}.$$
 (1)

Учтем граничные условия:

$$E_{1\tau} = E_{2\tau}$$
 $D_{1n} = D_{2n}$
 $H_{1\tau} = H_{2\tau}$ $B_{1n} = B_{2n}$

Рис. 1: Электромагнитная волна на границе раздела двух сред лённой волнах соответственно:

Пусть E_1 , E_1 и E_2 — электрические поля в падающей, отражённой и прелом-

$$E_1 = a_1 e^{ik_1(x\sin\phi_1 + z\sin\phi_1)} e^{-i\omega t}; (2)$$

$$E_1 = a_1^{\prime} e^{ik_1^{\prime} (x \sin \phi_1^{\prime} + z \sin \phi_1^{\prime})} e^{-i\omega_1^{\prime} t}; \tag{3}$$

$$E_2 = a_2 e^{i(k_{2x}x + k_{2z}z)} e^{-i\omega_2 t}. (4)$$

.

При $\phi_1 > \phi_{\text{пр}} = arcsin(\frac{1}{n})$ волна во второй среде оказывается неоднородной и описывается выражением вида:

$$\mathbf{E} = \mathbf{a}e^{\mp\chi z}e^{i(k_x x + k_y y)}e^{-i\omega t}$$

, где
$$k_y=k_{2y}=0, k_x=k_{2x}=k_1 sin\phi_1$$
, а величина $\chi=\sqrt{k_1^2 sin^2\phi_1-k_2^2}$.

Таким образом, при $\phi_1 > \phi_{\rm пр}$ электромагнитное поле во второй среде (например, при переходе световой волны из стекла в воздух) экспоненциально затухает (или нарастает) с удалением от поверхности раздела. На основании закона сохранения энергии в выражении вида (1) перед положительной величиной χ следует брать знак – , соответствующий затухающей волне.

Экспоненциальную функцию, описывающую затухание волны с удалением от поверхности раздела, удобно записать в виде $exp(-z/2\Lambda)$, где $\Lambda=\frac{1}{2\chi}$. Тогда интенсивность волны, пропорциональная квадрату амплитуды, изменяется с расстоянием по закону

$$I \propto e^{-z/\Lambda}$$
. (5)

Длина затухания Λ может быть представлена выражением:

$$\Lambda = \frac{\lambda_2}{4\pi\sqrt{n^2 sin^2 \phi_1 - 1}}\tag{6}$$

2 Экспериментальная установка

Туннелирование миллиметровых радиоволн через тонкий воздушный зазор переменной толщины изучается на установке, схема которой приведена на рис. 2. Источником радиоволн является высокочастотный генератор Γ 4-115 на трёх отражательных клистронах, перекрывающих полосу частот от 25,80 Γ Γ ц до 37,50 Γ Γ ц, разделённую на три поддиапазона. Генерирующий при выбранной настройке клистрон возбуждает в прямоугольном металлическом волноводе сечением 7,2 х 3,4 2 электромагнитную волну, которая распространяется вдоль волновода и с помощью рупорной антенны $_1$ излучается в пространство. Задача антенны заключается в том, чтобы сделать излучение более направленным. Электрический вектор волны, бегущей вдоль волновода и излучаемый антенной, перпендикулярен широкой стенке волновода. На пути радиоволн устанавливаются две одинаковые прямые призмы $_1$ и $_2$ с почти прямоугольным (рис. 1) равнобедренным треугольником в основании. Уменьшение угла при вершине треугольника на $_1$ 6° сделано для устранения обратных отражений. Призмы изготовлены из фторопласта, обладающего малыми потерями на высоких радиочастотах. Узкие грани призм ограничивают

Рис. 2: установка для исследования туннельного эффекта

воздушную прослойку, ширина которой может изменяться с помощью микрометрических винтов M_1 и M_2 .

Для измерения показателя преломления материала призм интерференционным методом перед неподвижным зеркалом устанавливается пластина известной толщины h из того же материала, что и призмы фторопласта. В этом плече интерферометра возникает приращение длины "оптического" пути. Это приращение можно скомпенсировать, передвинув подвижное зеркало на необходимое расстояние δx . Показатель преломления определяется из условия для δx .

Рис. 3: интерферометр Мейкельсона

3 Исследование туннелирования радиоволн

- 1. Проведем настройку аппаратуры для проведения измерения показателя преломления фторопласта с помощью метода исследования туннельного эффекта.
- 2. Снимем зависимость интенсивности прошедшей волны от величины воздушного зазора. Результаты занесем в Таблицу 1.
- 3. Переставим приёмник для измерения отраженного сигнала и снимем зависимость интенсивности отраженной волны от величины воздушного зазора.
- 4. Построим график зависимости коэффициентов T и R от величины воздушного зазора и убедимся, что T+R=1.

Таблица 1: Показатели сигнала приемника в зависимости от ширины зазора

l, мм		6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0
Ј, мА	Пройденная	8.5	8.5	8.5	7.8	6.5	5.3	4.5	3.7	2.7	2.0	1.4
	Отраженная	0	0	0	1.8	2.0	3.1	4.3	5.3	6.3	7.1	8.1

Рис. 4: Прошедшяя T и отраженная R волны

5. Теперь построем график зависимости ln(T) от показаний микрометра z. По наклону прямой посчитаем оценим длину затухания $\Lambda,$ а затем - показатель преломления хлоропласта.

Из наклона прямой получили значение длины затухания: $\Lambda = 2, 3 \pm 0, 3$ мм.

Рис. 5: зависимости ln(t) от показаний z

Теперь расчитаем показатель преломления фторопласта: $n=1,41\pm0,15$

4 Интерферометр Майкельсона

- 1. Соберем модель интерферометра Майкельсона.
- 2. Снимем зависимость тока от координаты подвижного зеркала и по графику определим длину волны радиоволн:

Экспериментально определенная длина волны примерно равна $\lambda_0 \approx 7$ мм.

Таблица 2: Зависиомсть сигнала на приемнике от положения зеркала

1, мм								
Ј, мА	0.2	0.3	3.2	4.0	4.1	2.2	0.8	0.1

Рис. 6: Интерференционная картина

3. Настроим интерферометр на максимум, вставим образец фторопласта толщиной h=6,2 мм, после - скомпенсируем изменение длины. Расчитаем показатель преломления фторопласта интерференционным методом:

$$n = 1,45 \pm 0,12$$