1.2 Mengen

Potenzmenge: $P(M) = \{X | X \subseteq M\}, |P(M)| = 2^{|M|}$

1.3 Abbildungen

f(z) heißt <u>Bild von z</u> unter f, $f^{-1}(z)$ heißt <u>Urbild von z</u>.

Eingeschränkte Abbildung: $f|_{x}$: $X' \rightarrow Y$ mit $f|_{x}$, $(x) = f(x) \forall x \in X'$

Eine Abb. f: X→Y heißt

- <u>injektiv</u> $\Leftrightarrow \forall x, x' \in X$, $x \neq x'$: $f(x) \neq f(x')$ (versch. El. haben versch. Bilder)
- $\underline{surjektiv}$ \Leftrightarrow f(X)=Y (jedes y∈Y hat mind. ein Urbild)
- <u>bijektiv</u> \Leftrightarrow inj. und surj. (jedes y \in Y hat genau ein Urbild) oder falls f⁻¹: Y \rightarrow X existiert mit f⁻¹(f(x))=x \forall x \in X. f⁻¹ ist dann eindeutig, bijektiv und heißt <u>inverse Abb.</u> zu f, (f⁻¹)⁻¹=f.

Für f: X→Y und g: Y'→Z mit Y⊆Y' heißt g°f: X→Z mit g°f(x)=g(f(x)) \forall x∈X <u>Komposition</u>. Falls f und g inj./surj./bij., so auch g°f inj./surj./bij.

 $h \circ (g \circ f) = (h \circ g) \circ f$ (assoziativ). id_x : $X \to X$ mit $id_x(x) = x \ \forall x \in X$ heißt <u>identische Abb.</u>, $f \circ id_x = id_x \circ f = f$. $f^{-1} \circ f = id_x$. Falls f und g bijektiv, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

1.4 Mächtigkeit von Mengen

Seien X und Y endliche Mengen. Es existiert f: $X \rightarrow Y$, so dass: f ist surjektiv $\Leftrightarrow |X| \ge |Y|$, f ist bijektiv $\Leftrightarrow |X| = |Y|$.

Unendliche Mengen sind **gleichmächtig**, wenn es eine bijektive Abb. zwischen den beiden gibt; **abzählbar** dann, wenn es eine bij. Abb. von $\mathbb N$ in die Menge gibt, sonst **überabzählbar** ($\mathbb N$, $\mathbb Z$ und $\mathbb Q$ abz., $\mathbb R$ überabz.).

1.5 Relationen

 $xRy \Leftrightarrow (x,y) \in R$, wobei $R \subseteq M \times M$. R ist

- $\underline{\mathbf{reflexiv}}$ ⇔ $\forall x \in M$: xRx
- symmetrisch $\Leftrightarrow \forall x,y \in M$: xRy \Rightarrow yRx
- antisymmetrisch $\Leftrightarrow \forall x, y \in M$: xRy \land yRx \Rightarrow x=y
- transitiv $\Leftrightarrow \forall x,y,z \in M$: xRy \land yRz \Rightarrow xRz

Eine ref., sym. und trans. Relation ~ heißt <u>Äquivalenzrelation</u>. Für $x \in X$ heißt $[x]_=\{y \in M \mid x \sim y\}$ <u>Äquivalenzklasse</u> von x, die Menge der Äquivalenzklassen ist eine <u>Partition</u> von M. Eine ref., antisym. und trans. Relation heißt <u>Halbordnung</u>. Für eine <u>totale Ordnung</u> gilt zudem $\forall x, y \in M$: $x \in X$ $y \in X$

2.1 Vollständige Induktion und Rekursion

 $\forall n \in \mathbb{N}$ sei A eine Aussage, dann gilt: A(1) \land ($\forall n \in \mathbb{N}$: A(n) \Rightarrow A(n+1)) \Rightarrow ($\forall n \in \mathbb{N}$: A(n)). (Kann auf $n \geq n_0$ und (A(n_0), ..., A(n)) \Rightarrow A(n+1) verallgemeinert werden.)

2.2 Modulare Arithmetik

 $a\neq 0$ ist <u>Teiler</u> von b (a|b), falls q existiert mit $b=a\cdot q$ $(a,b,q\in\mathbb{Z})$, 1 und b sind <u>triviale</u> <u>Teiler</u>. $a|b\Rightarrow a|b\cdot c$, $a|b\wedge b|c\Rightarrow a|c$, $a|b\wedge a|c\Rightarrow a|(s\cdot b+t\cdot c)$, $a|(b+c)\wedge a|b\Rightarrow a|c$, $a|b\Leftrightarrow a\cdot c|b\cdot c$ falls $c\neq 0$, $a|b\wedge b|a\Rightarrow a=\pm b$. Für $a,b\in\mathbb{Z}$, $b\neq 0$ gibt es $q,r\in\mathbb{Z}$ so dass $a=q\cdot b+r$ und $0\leq r<|b|$, q und r=a mod b sind eindeutig.

Dann heißt die größte nat. Zahl n mit n|a \land n|b ggT(a,b), a und b $teilerfremd \Leftrightarrow ggT(a,b) = 1, ggT(a,b)=ggT(b,a)=ggT(-a,b)=ggT(a,-b)=ggT(-a,-b)=ggT(a+m·b,b)=ggT(a mod b,b).$

Für $a,b \in \mathbb{N}$ und $a \ge b$ ist ggT(a,b): Berechne r=a mod b; ist r=0, dann ggT(a,b)=b (Stop); berechne $ggT(b, a \mod b)$.

a und b sind kongruent mod m (a \equiv b (mod m)), falls a mod m=b mod m.

```
(a+b) mod m = ((a \mod m) + (b \mod m)) \mod m
(a·b) mod m = ((a \mod m) \cdot (b \mod m)) \mod m
```

2.3 Gruppen, Ringe, Körper

Eine Verknüpfung ∘ auf M ist

- **kommutativ** ⇔ a∘b=b∘a
- <u>assoziativ</u> ⇔ ∀a,b,c∈M: (a∘b)∘c=a∘(b∘c)

Für einen Ring mit Eins $(R,+,\cdot)$ heißt $x \in R$ <u>Einheit</u>/invertierbar, falls ein $y \in R$ existiert mit $x \cdot y = y \cdot x = 1$. R^* enthält alle Einheiten in R, (R^*,\cdot) ist eine Gruppe, $x \in \mathbb{Z}_m$ ist Einheit $\Leftrightarrow ggT(x,m)=1$.

Für einen kom. Ring mit Eins $(R,+,\cdot)$ und eine Unbestimmte x ist ein Ausdruck der Form $a_{\theta}x^{\theta}+...+a_{n}x^{n}=\sum_{i=\theta}^{n}a_{i}x^{i}$ mit $n\in\mathbb{N}_{\theta}$ und $a_{i}\in\mathbb{R}$ ein **Polynom** über R. Falls $a_{i}=\theta$, **Grad(P)**=- ∞ , sonst $Grad(P)=\max_{i}\{a_{i}\neq\theta\}$. R[x] enthält alle Polynome über R.

2.4 Komplexe Zahlen

Man schreibt a=(a,0), i=(0,1) (<u>imaginäre Einheit</u> $i^2=-1$), $b \cdot i=(0,b)$, $a+b \cdot i=(a,b)$. Für $z=a+b \cdot i$ ist Re(z)=a <u>Realteil</u> und Im(z)=b <u>Imaginärteil</u>. <u>Betrag</u>: $|z|=\sqrt{a^2+b^2}$.

<u>Konjugiert-komplexe Zahl</u>: $\overline{z} = a - b \cdot i$. $\overline{z + w} = \overline{z} + \overline{w}$, $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$, $|z|^2 = z \cdot \overline{z}$, $z^{-1} = \overline{z}/|z|^2$, $z \neq 0$.

 $|z| \ge 0$, $|z| = 0 \Leftrightarrow z = 0$, $|z \cdot w| = |z| \cdot |w|$, $|z + w| \le |z| + |w|$.

Jedes $z \in \mathbb{C}$, $z \neq 0$ kann eindeutig dargestellt werden als $z = r \cdot (\cos \phi + i \cdot \sin \phi) = r \cdot e^{\phi i}$, $r \in \mathbb{R}_{\geq 0}$, $\phi \in [0,2\pi]$, r = |z| und ϕ der Winkel zwischen z und der reellen Achse.

 $cos\phi = \frac{Re(z)}{|z|}$, $sin\phi = \frac{Im(z)}{|z|}$, $e^{\pi i} = -1$, $z \cdot z' = r \cdot r' \cdot (cos(\phi + \phi') + i \cdot sin(\phi + \phi'))$

Für ein Polynom $f \in \mathbb{C}[x]$ gibt es $c_1,...,c_n \in \mathbb{C}$ so dass $f(x) = a \cdot (x - c_1) \cdot ... \cdot (x - c_n)$, $a \in \mathbb{C}$.

3.1 Lineare Gleichungssysteme und Matrizen

Ein lin. GS heißt <u>homogen</u>, wenn die letzte Spalte der erw. Koeff.-Mat. 0 ist, ein hom. GS hat immer die triviale Lösung 0.

<u>Elementare Zeilenumformungen</u> auf $\mathbb{K}^{m\times n}$ sind $V_{k,1}$: $\mathbb{K}^{m\times n} \to \mathbb{K}^{m\times n}$ und $A_{k,1}(c)$: $\mathbb{K}^{m\times n} \to \mathbb{K}^{m\times n}$ und $A_{k,1}(c)$: $\mathbb{K}^{m\times n} \to \mathbb{K}^{m\times n}$ für $c \neq 0$, diese sind darstellbar als <u>Elementarmatrizen</u>:

 El_{ij} wie E_n , aber (i,i)=(j,j)=0 und (i,j)=(j,i)=1.

 $El_{i}(\lambda)$ wie E_{n} , aber $(i,i)=\lambda$.

 $El_{ij}(\lambda)$ wie E_n , aber $(j,i)=\lambda$.

 $\mathsf{El}_{ij}^{-1}=\mathsf{El}_{ij}$, $\mathsf{El}_{i}(\lambda)^{-1}=\mathsf{El}_{i}(\lambda^{-1})$, $\mathsf{El}_{ij}(\lambda)^{-1}=\mathsf{El}_{ij}(-\lambda)$.

Für $A \in \mathbb{K}^{m \times n}$, $B, C \in \mathbb{K}^{n \times 1}$ gilt $A \cdot B = "Spalte mal Zeile" mit <math>A \cdot B \in \mathbb{K}^{m \times 1}$ und $A \cdot (B + C) = A \cdot B + A \cdot C$.

3.2 Vektorräume

In VR gilt $\forall v \in V \ \forall \alpha \in \mathbb{K}$: $0 \cdot v = 0$, $\alpha \cdot 0 = 0$, $\alpha \cdot v = 0 \Leftrightarrow \alpha = 0 \ V \ v = 0$, $(-\alpha) \cdot v = -(\alpha \cdot v)$.

Für $A \in \mathbb{K}^{m \times n}$ ist die Lösungsmenge $\{x \in \mathbb{K}^n | A \cdot x = 0\}$ des hom. LGS $A \cdot x = 0$ Teilraum von \mathbb{K}^n .

Für V \mathbb{K} -VR und $U_1, U_2 \leq V$ sind $U_1 \cap U_2$ und $U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$ Unterräume von V.

 $v \in V$ ist <u>Linearkombination</u> von $u_1, ..., u_n$, wenn $\exists \alpha_i \in \mathbb{K} : \alpha_1 u_1 + ... + \alpha_n u_n = v$.

Für M \subseteq V ist <M>= $\{v \in V \mid v \text{ ist Lin.komb. endlich vieler El. aus M} \text{ das } \underline{\text{Erzeugnis}} \text{ von M, } < \{\}>=\{0\}, <$ M>> \leq V. M ist $\underline{\text{linear unabhängig}}$, wenn $\forall v \in$ M: <M\ $\{v\}>\neq<$ M>> bzw. für jede endliche Teilmenge $\{v_1,...,v_n\}\subseteq$ M gilt: $\alpha_1v_1+...+\alpha_nv_n=0 \Rightarrow \alpha_i=0$.

M ist <u>Basis</u> von V, falls jedes $v \in V$ eindeutig als Lin.komb. aus M darstellbar ist, also falls $\langle M \rangle = V$ und M lin. unabh. {} ist Basis für {0}. Für eine Basis $B = \{b_1, ..., b_n\}$ und $v \in V$, $v \neq 0$ gibt es ein $b_i B$ s.d. $\{b_1, ..., b_{i-1}, v, b_{i+1}, ..., b_n\}$ auch Basis ist. n heißt <u>Dimension</u> von V,

jede Basis von V hat n Elemente (also B Basis \Leftrightarrow $|B|=\dim V$ und B lin. unabh.), dim $\{0\}=0$. Für eine geordnete Basis $(b_1,...,b_n)$ sind $x_1,...,x_n \in \mathbb{K}$ mit $v=x_1b_1+...+x_nb_n$ Koordinaten von v bzgl. der Basis B.

3.3 Lineare Abbildungen

Für \mathbb{K} -VR U,V heißt f: U \rightarrow V <u>linear</u>, falls $\forall u_1, u_2 \in \mathbb{U} \ \forall \lambda \in \mathbb{K}$:

- $f(u_1+u_2) = f(u_1)+f(u_2)$
- $f(\lambda \cdot u_1) = \lambda \cdot f(u_1)$

bzw. wenn $\exists A \in \mathbb{K}^{m \times n}$: $f(x) = A \cdot x$ (A mit den Spalten s_i).

U und V sind <u>isomorph</u>, wenn es einen <u>Isomorphismus</u> (bij. lin. Abbildung f: U \rightarrow V) gibt bzw. wenn dim U=dim V. Ist f Isomorphismus, so auch f⁻¹. Sind f(x)=A·x und g(x)=B·x linear, so auch g \circ f(x)=(B·A)·x.

Rang(A) ist die max. Anzahl lin. unabh. Spalten-/Zeilenvektoren in A:

 $Rang(A) = dim \langle s_1, ..., s_n \rangle$

 $\underline{\mathsf{Kern}(\mathsf{f})} = \{\mathsf{u} \in \mathsf{U} \mid \mathsf{f}(\mathsf{u}) = 0\} \qquad = \{\mathsf{x} \in \mathbb{K}^{\mathsf{n}} \mid \mathsf{A} \cdot \mathsf{x} = 0\} \leq \mathsf{U}$

 $\underline{Bild(f)} = \{v \in V | \exists u \in U: f(u) = v\} = \langle s_1, ..., s_n \rangle \leq V$

 $\dim Kern(f) + \dim Bild(f) = \dim U$

 $\dim Bild(f) = Rang(A)$

 $\dim Kern(f) = \dim U - Rang(A)$

Für quadratische Matrizen A∈K^{n×n} gilt:

- $f(x)=A \cdot x$ bij.
- ⇔ Spalten/Zeilen von A sind lin. unabh.
- ⇔ Rang(A)=n
- \Leftrightarrow $\exists A^{-1} \in \mathbb{K}^{n \times n}$: $A \cdot A^{-1} = A^{-1} \cdot A = E_n$, dann ist A invertierbar und A^{-1} die <u>inverse Matrix</u> von A. $(A^{-1})^{-1} = A$, $(A_1 \cdot A_2)^{-1} = A_1^{-1} \cdot A_2^{-1}$.

Berechnen von A^{-1} : $(A|E_n)$ in die Form $(E_n|A^{-1})$ bringen; falls nicht möglich, ist A nicht invertierbar. (Falls $A \cdot A^T = E_n$, A orthogonal und $A^{-1} = A^T$.)

3.4 Gleichungssysteme "aus Expertensicht"

Für $A \in \mathbb{K}^{m \times n}$, $b \in \mathbb{K}^m$ hat das LGS $A \cdot x = b$

- keine Lösung ⇔ Rang(A)<Rang(A|b) (b ist nicht aus A erzeugbar)
- eine Lösung \Leftrightarrow Rang(A)=n (Lösungen L_b =w+Kern(A), w∈ L_b)
- viele Lösungen ⇔ Rang(A)=Rang(A|b)<n (n-Rang(A) freie Variablen)

<u>Algebraische Strukturen</u>

Notation	Struktur	Bedingungen				
(M,∘)	<u>Halbgruppe</u>	∘ assoziativ				
	<u>Monoid</u>	Halbgruppe + ∃e∀x∈M: e∘x=x∘e=x				
	<u>Gruppe</u>	Monoid + $\forall x \exists x^{-1} \in M$: $x \circ x^{-1} = x^{-1} \circ x = e$				
	kom. Gruppe	Gruppe + ∘ kommutativ				
	<u>Untergruppe</u>	$M\subseteq M'$, $e_{(M', \circ)}\in M$, $\forall a,b\in M$: $a\circ b\in M$, $a^{-1}\in M$				
(R,+,·)	<u>Ring</u>	(R,+) kom. Gruppe, (R,·) Halbgruppe,				
		$\forall x,y,z \in R: x \cdot (y+z) = (x \cdot y) + (x \cdot z)$				
	Ring mit 1	Ring + (R,·) Monoid, $e_{(R,\cdot)} \neq e_{(R,+)}$				
	kom. Ring	Ring + ⋅ kommutativ				
	<u>Unterring</u>	R⊆R', (R,+) Untergruppe von (R',+),				
		$\forall x, y \in R: x \cdot y \in R$				
(₭,+,・)	<u>Körper</u>	Ring + jedes $x\neq 0$ hat ein $x^{-1}_{(\mathbb{K},\cdot)}$ oder				
		$(\mathbb{K},+)$ und $(\mathbb{K}\setminus\{0\},\cdot)$ kom. Gruppen,				
		Distributivität				
$(V, \oplus, \odot, (\mathbb{K}, +, \cdot)$	<u>K-Vektorraum</u>	(V,⊕) kom. Gruppe,				
		$\forall v, w \in V \ \forall \alpha, \beta \in \mathbb{K}: \ 1 \odot v = v,$				
		$(\alpha \cdot \beta) \odot v = \alpha \odot (\beta \odot v),$				
		$(\alpha+\beta) \odot v = \alpha \odot v \oplus \beta \odot v$,				
		$\alpha \odot (v \oplus w) = \alpha \odot v \oplus \alpha \odot w$				
	<u>Unterraum</u>	V \subseteq V', $\emptyset\in$ V, \forall V, $w\in$ V \forall $\alpha\in$ \mathbb{K} : $(\alpha\cdot$ V)+ $w\in$ V				

Beispiele für Strukturen

Menge	Struktur	Verknüpfungen				
R[x]	kom. Ring mit 1	+,· intuitiv				
\mathbb{Z}_{m}	kom. Ring mit 1	+ _m ,· _m (Modulo-Rechnen), m∈N, m≥2				
\mathbb{Z}_{p}	Körper	$+_{\scriptscriptstylem}$, $\cdot_{\scriptscriptstylem}$ (Modulo-Rechnen), m $\in\mathbb{N}$, m prim				
\mathbb{C} = \mathbb{R} × \mathbb{R}	Körper	(a,b) (a',b')=(a+a',b+b')				
		(a,b) ⊙ (a',b')=(a·a'-b·b',a·b'+a'·b)				
		$e_{\oplus} = (0,0), x^{-1}_{\oplus} = (-a,-b), e_{\odot} = (1,0), x^{-1}_{\odot} = (\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$				
$\mathbb{K}^{n imes n}$	Ring mit 1	+ ist Matrixadd., · ist Matrixmult.				
K ^{m×n}	K-Vektorraum	+ ist Matrixadd., · ist Skalarmult.				

	0°	30°	45°	60°	90°	120°	135°	150°	180°
sin	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	- 1
arc	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	<u>5π</u> 6	π

 $sin^2x+cos^2x=1$