

TEAM PRESENTATION

System Goals

- 1. The drones should fly to sites to deliver needed medical supplies.
- 2. The flight patterns should be optimized to serve the sites as quickly as possible.
- 3. The drones need to fly safely.
- 4. The system should be able receive calls for help
- 5. The system should have an admin gui

Use Case: Request Assistance

The user uses the Med Fleet Application (MFA) to request an Emergency Medical Product

- 1. User opens Med Fleet App
- 2. User Request Assistance
- 3. User gets a response from server

Use Case: Delivery of Medical Packages

The Drone flies to GPS coordinates sent from the flight control and delivers medical packages.

- 1. Mission Control sends Flight control new instructions for a drone.
- 2. Flight control updates the flight path for the drone and sends that information to the drone
- 3. The Drone flies to the requested site

Use Case: Med-Fleet Monitor

Administrator is able to monitor the drone(s) at any point in the mission

- 1. Admin opens the console.
- 2. The GUI is updated to show the currently locations of drones and sites needing assistance.

Use Case: Drones rerouted to speed up delivery to all sites

When new requests for supplies arrive the system needs to recalculate the flight paths to accommodate the new drop sites

- 1. New Requests for help come into the system
- 2. In order for the system to accommodate the new requests and to make the flight paths as efficient as possible, Mission Control recalculates the missions
- 3. The new missions are forwarded to the drones

Use Case: Drone Changes altitude to avoid hitting another drone

Drones' flight paths are too close to be safe. Drone altitude is changed in order to ensure safety

- 1. Two or more drones paths may collide
- 2. To avoid this the flight control system changes the altitude of drones.

Summarized FMECA

- Problem: Drones can hit passenger aircrafts
 - Potential Effects:
 - Cause of an emergency landing / accident
 - Serious Injury/Death
 - Possible Arrest
 - Potential Causes:
 - No way to detect other aircrafts
 - Flying above a safe altitude
 - Recommended Actions
 - Maintain Compliance w/ FAA Regulations
 - Ensure area is not a public flight path
 - Enable manual override mode
- RPN 10 (SEV 10, OCC 1, DET 1)

Summarized FMECA

- Problem: Drones can crash into each other
 - Potential Effects:
 - Damage/Destruction of Drones
 - Possible Injury to self or others
 - Potential Causes:
 - Low/Empty Battery
 - Logic Error
 - Mathematical Miscalculation
 - Recommended Actions
 - Pre-Programmed RTL command
 - Adjust altitude if near other drone
 - Enable manual override mode
- RPN 105 (SEV 7, OCC 3, DET 5)

Summarized FMECA

- Problem: Drone is attacked by an eagle
 - Potential Effects:
 - Drone is lost or destroyed
 - Eagle is injured
 - Potential Causes:
 - No way to detect predatory birds
 - Eagle mistakes drone for prey
 - Drone is flying in a wildlife habitat
 - Recommended Actions
 - Fly drone at a higher altitude when in wildlife
 - Fly drone at a faster speed so not easily attacked
 - Enable manual override mode
- RPN 10 (SEV 10, OCC 1, DET 1)

Deployment Diagram

GUI

Login Page

Home Page

Drone View

About

SE 491 Med Fleet

Med-Fleet Monitor Home | Drone View | About | Logout

About

Mobile View

Project Glossary (Truncated)

- Return To Launch (RTL): A GPS feature that when enabled, returns the aircraft to the "home" position where it took off.
- <u>Electronic Speed Control (ESC)</u>: The ESC is used to convert signal from Flight controller or radio receiver, and apply the right current to the electric motors.
- <u>Flight Controller:</u> The brain of your multirotor. System used to keep track of alerts, and schedule drones.
- Radio Control (RC): A device used to control remote controlled vehicles.
- Radio Frequency (RF): Common frequency bands RC hobby use are 5.8gHz, 2.4gHz, 1.2gHz,
 433mHz, 900mHz Not all bands are available in all countries, and some require a HAM (Amateur Radio Operator) license.
- Revolutions per minute (RPM): the number of times a motor shaft rotates a full cycle in 60 seconds.

FIN