Engenharia de Software

Natália Schots

Agenda

- Apresentações
- Estrutura das Aulas
- Critérios de Avaliação
- Visão Geral da Disciplina

Quem sou eu? (1/2)

Formação Acadêmica

- Doutorado em andamento (COPPE/UFRJ)
 - Área: Engenharia de Software/Qualidade de Software Melhoria de Processos de Software/Análise de Desempenho de Processos
- Mestrado concluído em 2010 (COPPE/UFRJ)
 - Área: Engenharia de Software/Qualidade de Software Melhoria de Processos de Software/Análise de Causas Raiz de Problemas
- Graduação em Ciência da Computação em 2007 (UFJF – Juiz de Fora/MG)

Quem sou eu? (2/2)

Formação Profissional

- Implementadora e Avaliadora MR-MPS para software
- Implementadora e Avaliadora MR-MPS para serviços
- Professora substituta na UERJ (2013-2014)
 - Disciplina: Gestão de TI
- Início na Rural: 2014.2
 - Disciplinas: Gerência de Projetos e Fundamentos de Sistemas

Quem são vocês? (1/2)

- Se apresentem:
 - Nome
 - Fez/faz estágio?
 - Fez/faz Iniciação Científica?
 - Quais disciplinas mais gostou até agora?

Quem são vocês? (2/2)

- Em uma folha, escrevam:
 - A. Nível de domínio com leitura no idioma inglês: fluente (1), bom(2), razoável (3), pouco (4), nenhum (5)
 - B. Nível de conhecimento nos seguintes tópicos: trabalho com isto (1), possuo conhecimento teórico (2), já li a respeito (3), já ouvi falar (4), nunca ouvi falar (5)
 - i. UML *Unified Modeling Language*
 - ii. CMMI-DEV Capability Maturity Model Integration for Development
 - iii. MR-MPS Modelo de Referência de Melhoria de Processos de Software
 - iv. Métricas de software
 - v. Gerência de configuração
 - vi. Testes de software
 - C. Temas que gostaria que fossem tratados

Estrutura das Aulas (1/3)

 As aulas serão ministradas a partir de slides que serão posteriormente disponibilizados no Moodle

- Não gostaria que fosse um monólogo
 - Portanto, interrompam sempre que tiverem alguma dúvida ou um complemento/exemplo relacionado ao tópico apresentado
 - Compartilhem suas ideias com todos!

Estrutura das Aulas (2/3)

- Além dos slides, sempre que possível, estudaremos artigos relacionados ao tópico apresentado
 - Leitura prévia e discussão em sala de aula
- Horário das aulas
 - Terça-feira: 10h às 12h
 - Sexta-feira: 8h30 às 10h

Estrutura das Aulas (3/3)

- Nossa comunicação oficial será realizada via Moodle
 - Disponibilização dos slides
 - Envio de trabalho
 - Alteração de planejamentos

- Eventualmente, em caso de imprevistos, a comunicação será via e-mail
 - nataliach.lessa@gmail.com
 - Fiquem atentos!

Visão Geral da Ementa (1/2)

- Processos de desenvolvimento de software
 - Ciclos de vida
 - Grupos de processos
 - Melhoria de processos
- Gerência de configuração
- Métricas de software
 - Dificuldades
 - Técnicas

Visão Geral da Ementa (2/2)

- Qualidade de software
 - Qualidade do processo x qualidade do produto
 - Padrões de qualidade

- Testes de software
 - Fundamentos
 - Técnicas

Critérios de Avaliação (1/2)

- Média será composta por:
 - 1 prova individual (P)
 - 2 trabalhos em grupo, nota individual (T1 e T2)
 - T1: Trabalho em sala, paralelo às aulas teóricas
 - T2: Trabalho com elaboração e apresentação de slides
 - Nota de participação individual (N):
 - Participação nos demais trabalhos solicitados
 - Frequência às aulas

$$M\acute{e}dia = \frac{P + T1 + T2 + N}{4}$$

Critérios de Avaliação (2/2)

- Prova Optativa
 - A média final será composta pela média obtida anteriormente e a nota da prova optativa (PO)

$$M\'{e}dia\ Final = \frac{M\'{e}dia\ Anterior + PO}{2}$$

- Se Média Final ≥ 5,0 = APROVADO
- Se Média Final < 5,0 = REPROVADO</p>

Presença em aula (1/2)

- A contabilização das presenças será realizada por meio de uma lista de presença
 - SEMPRE assine a lista
- Para estabelecer a nota de participação
 - 60% < x < 75% de presença
 - Nota de participação = y 1
 - < 60% de presença
 - Nota de participação = 0

Presença em aula (2/2)

- Ausências justificáveis
 - Problemas de saúde (somente com atestado)
 - Falecimento de familiar (necessário comprovar)

- Reposição de prova
 - Não haverá segunda chamada
 - Quem perder a prova deverá fazer a prova final

Cronograma Inicial

- Não haverá aulas:
 - 03/abril: feriado Sexta-feira santa
 - 21 e 24/abril: feriado Tiradentes e recesso
 - 01/maio: feriado Dia do Trabalho
 - 05/junho: recesso
- Prova
 - 02/junho
- Apresentações trabalho T2
 - 14 e 17/julho
- Prova Optativa
 - 21/julho

Esta disciplina

– O que vocês entendem por "Engenharia de Software"?

– Qual a expectativa de vocês?

O que é Engenharia de Software?

 "Engenharia de Software é a aplicação de uma abordagem sistemática, disciplinada e quantificável ao desenvolvimento, operação e manutenção de software" - IEEE Std 610.12 (1990)

Por que Engenharia de Software? (1/2)

(Fonte: http://rapidoerasteiro.files.wordpress.com/2008/05/projeto_software.jpg)

necessitava

pagou

Por que Engenharia de Software? (2/2)

- Além de saber programar, é necessário saber:
 - O que programar
 - Como programar
 - Se o que foi programado está certo?
 - ...
- É necessário conhecer o processo de desenvolvimento e seus produtos, saber medi-los e melhorá-los continuamente

Complexidade dos softwares (1/3)

- Cenário 1: Agenda pessoal
 - Objetivo: Guardar o nome e o aniversário de até 50 pessoas
 - Quanto custa para fazer?
 - Quanto tempo vai levar para ficar pronto?
 - Qual a consequência no caso de defeito?

Complexidade dos softwares (2/3)

- Cenário 2: Boeing 777
 - Objetivo: Controlar todo o hardware do Boeing 777
 - Quanto custa para fazer?
 - Quanto tempo vai levar para ficar pronto?
 - Qual a consequência no caso de defeito?

Complexidade dos softwares (3/3)

Tamanho

- Mais de 4 milhões de linhas de código
- Linguagem dominante (>99%): Ada
- Documentação
 - De 100 a 10.000 páginas por subsistema
 - Total de 79 subsistemas integrados
- Duração
 - 4,5 anos de desenvolvimento
- Ampla utilização de Engenharia de Software
- Em operação desde 1995
 - Zero acidentes graves até 2006

Engenharia ou arte? (1/3)

- Parte arte, parte engenharia...
 - Se o cantor/ator/pintor errar, a audiência fica chateada
 - Se o engenheiro civil errar o prédio pode cair
 - Se o médico errar o paciente pode morrer

 Se o desenvolvedor de software errar, o que pode acontecer?

Engenharia ou arte? (2/3)

- Caso real 1: Therac-25
 - Máquina de radioterapia controlada por computador
 - Problema:
 - Doses indevidas de radiação emitidas

– Causas:

- Interface com usuário inapropriada
- Documentação deficiente
- Software reutilizado sem ser adaptado para o novo hardware
- Software de sensores de falha com defeito
- Consequências
 - Ao menos 5 mortes entre 1985 e 1987

Engenharia ou arte? (3/3)

- Caso real 2: Ariane 5
 - Foguete lançador de satélites
 - Problema:
 - O foguete se autodestruiu após o lançamento

- Software reutilizado sem ser adaptado para o novo hardware
- Ausência de testes em solo deste software
- Consequências
 - Prejuízo de mais de US\$ 370.000.000,00 em 1996

Obrigada!