SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT: Evans, Mark J.

 Matis, Louis A.

 Mueller, Eileen Elliott

 Nye, Steven H.

 Rollins, Scott

 Rother, Russell P.

 Springhorn, Jeremy P.

 Squinto, Stephen P.

 Thomas, Thomas C.
- (ii) TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR THE TREATMENT

Wilkins, James A.

- OF INFLAMMATORY DISEASES
- (iii) NUMBER OF SEQUENCES: 26
- (iv) CORRESPONDENCE ADDRESS:
- (A) ADDRESSEE: Seth A. Fidel
- (B) STREET: 25 Science Park (Alexion)
- (C) CITY: New Haven
- (D) STATE: Connecticut
- (E) COUNTRY: USA
- (F) ZIP: 06511
- (v) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: 3.5 inch, 1.4Mb storage
- (B) COMPUTER: Macintosh Cetris 610
- (C) OPERATING SYSTEM: System 7
- (D) SOFTWARE: WordPerfect 3.0
- (vi) CURRENT APPLICATION DATA:
- (A) APPLICATION NUMBER: 08/487, 285
- (B) FILING DATE: June 7, 1995
 - (vii) PRIOR APPLICATION DATA:
- (A) APPLICATION NUMBER: US 08/236,208
- (B) FILING DATE: 02-MAY-1994

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Seth A. Fidel.
- (B) REGISTRATION NUMBER: 38,449
- (C) REFERENCE/DOCKET NUMBER: ALX-152.1 CIP
- (ix) TELECOMMUNICATION INFORMATION:
- (A) TELEPHONE: (203)776-1790
- (B) TELEFAX: (203)772-3655

```
(2)
     INFORMATION FOR SEQ ID NO:1:
          SEQUENCE CHARACTERISTICS:
               LENGTH: 21 amino acids
          (A)
           (B)
               TYPE: Amino Acid
               STRANDEDNESS: Single
           (C)
           (D)
               TOPOLOGY: Linear
     (ii) MOLECULE TYPE
               DESCRIPTION: KSSKC peptide
           (A)
     (iii)
           HYPOTHETICAL: No
           ANTI-SENSE: No
     (iv)
      SEQUENCE DESCRIPTION: SEQ ID NO:1:
(xi)
Val Ile Asp His Gln Gly Thr Lys Ser Ser
                  5
                                      10
Lys Cys Val Arg Gln Lys Val Glu Gly Ser Ser
                 15
       INFORMATION FOR SEQ ID NO:2:
(2)
    (i)
            SEQUENCE CHARACTERISTICS:
                        1676 Amino Acids
        (A)
               LENGTH:
               TYPE: Amino Acid
        (B)
        (C)
               STRANDEDNESS: Single
        (D)
               TOPOLOGY: Linear
   (ii) MOLECULE TYPE
          DESCRIPTION: Pro-C5 Polytpeptide
   (A)
    (iii)
            HYPOTHETICAL: No
    (iv)
            ANTIISENSE:
                         No
    (vi)
            ORIGINAL SOURCE:
               ORGANISM: Homo sapiens
        (A)
            PUBLICATION INFORMATION:
    (x)
               AUTHORS:
                          Haviland, D.L.
        (A)
                          Haviland, J.C.
                          Fleischer, D.T.
                          Hunt, A.
                          Wetsel, R.A.
        (B)
               TITLE:
                       Complete cDNA Sequence of Human
                       Complement Pro-C5
        (C)
               JOURNAL: Journal of Immunology
               VOLUME: 146
        (D)
                       362-368
        (F)
               PAGES:
```

(G)

DATE: 1991

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gly Leu Leu Gly Ile Leu Cys Phe Leu
-15 -10

Ile Phe Leu Gly Lys Thr Trp Gly Gln Glu Gln Thr Tyr Val
-5 -1 5

Ile Ser Ala Pro Lys Ile Phe Arg Val Gly Ala Ser Glu Asn 10 15 20

Ile Val Ile Gln Val Tyr Gly Tyr Thr Glu Ala Phe Asp Ala 25 30

Thr Ile Ser Ile Lys Ser Tyr Pro Asp Lys Lys Phe Ser Tyr 35 40 45

Ser Ser Gly His Val His Leu Ser Ser Glu Asn Lys Phe Gln 50 55 60

Asn Ser Ala Ile Leu Thr Ile Gln Pro Lys Gln Leu Pro Gly 65 70 75

Gly Gln Asn Pro Val Ser Tyr Val Tyr Leu Glu Val Val Ser 80 85 90

Lys His Phe Ser Lys Ser Lys Arg Met Pro Ile Thr Tyr Asp

Asn Gly Phe Leu Phe Ile His Thr Asp Lys Pro Val Tyr Thr 105 110 115

Pro Asp Gln Ser Val Lys Val Arg Val Tyr Ser Leu Asn Asp 120 125 130

Asp Leu Lys Pro Ala Lys Arg Glu Thr Val Leu Thr Phe Ile 135 140 145

Asp Pro Glu Gly Ser Glu Val Asp Met Val Glu Glu Ile Asp 150 155 160

His Ile Gly Ile Ile Ser Phe Pro Asp Phe Lys Ile Pro Ser 165 170

Asn Pro Arg Tyr Gly Met Trp Thr Ile Lys Ala Lys Tyr Lys 175 180 185

Glu Asp Phe Ser Thr Thr Gly Thr Ala Tyr Phe Glu Val Lys 190 195 200

Glu Tyr Val Leu Pro His Phe Ser Val Ser Ile Glu Pro Glu

		205					210					215	
Tyr	Asn	Phe	Ile 220	Gly	Tyr	Lys	Asn	Phe 225	Lys	Asn	Phe	Glu	11e 230
Thr	Ile	Lys	Ala	Arg 235	Tyr	Phe	Tyr	Asn	Lys 240	Val	Val	Thr	Glu
Ala 245	Asp	Val	Tyr	Ile	Thr 250	Phe	Gly	Ile	Arg	Glu 255	Asp	Leu	Lys
Asp	Asp 260	Gln	Lys	Glu	Met	Met 265	Gln	Thr	Ala	Met	Gln 270	Asn	Thr
Met	Leu	Ile 275	Asn	Gly	Ile	Ala	Gln 280	Val	Thr	Phe	Asp	Ser 285	Glu
Thr	Ala	Val	Lys 290	Glu	Leu	Ser	Tyr	Туг 295	Ser	Leu	Glu	Asp	Leu 300
Asn	Asn	Lys	Tyr	Leu 305	Tyr	Ile	Ala	Val	Thr 310	Val	Ile	Glu	Ser
Thr 315	Gly	Gly	Phe	Ser	Glu 320	Glu	Ala	Glu	Ile	Pro 325	Gly	Ile	Lys
Tyr	Val 330	Leu	Ser	Pro	Tyr	Lys 335	Leu	Asn	Leu	Val	Ala 340	Thr	Pro
Leu	Phe	Leu 345	Lys	Pro	Gly	Ile	Pro 350	Tyr	Pro	Ile	Lys	Val 355	Gln
Val	Lys	Asp	Ser 360	Leu	Asp	Gln	Leu	Val 365	Gly	Gly	Val	Pro	Val 370
Ile	Leu	Asn	Ala	Gln 375	Thr	Ile	Asp	Val	Asn 380	Gln	Glu	Thr	Ser
Asp 385	Leu	Asp	Pro	Ser	Lys 390	Ser	Val	Thr	Arg	Val 395	Asp	Asp	Glγ
Val	Ala 400	Ser	Phe	Val	Leu	Asn 405	Leu	Pro	Ser	Gly	Val 410	Thr	Val
Leu	Glu	Phe 415	Asn	Val	Lys	Thr	Asp 420	Ala	Pro	Asp	Leu	Pro 425	Glu
Glu	Asn	Gln	Ala 430	Arg	Glu	Gly	Tyr	Arg 435	Ala	Ile	Ala	Tyr	Ser 440
Ser	Leu	Ser	Gln	Ser	Tyr	Leu	Tyr	Ile	Asp	Trp	Thr	Asp	Asr

His Lys Ala Leu Leu Val Gly Glu His Leu Asn Ile Ile Val Thr Pro Lys Ser Pro Tyr Ile Asp Lys Ile Thr His Tyr Asn Tyr Leu Ile Leu Ser Lys Gly Lys Ile Ile His Phe Gly Thr Arg Glu Lys Phe Ser Asp Ala Ser Tyr Gln Ser Ile Asn Ile Pro Val Thr Gln Asn Met Val Pro Ser Ser Arg Leu Leu Val Tyr Tyr Ile Val Thr Gly Glu Gln Thr Ala Glu Leu Val Ser Asp Ser Val Trp Leu Asn Ile Glu Glu Lys Cys Gly Asn Gln Leu Gln Val His Leu Ser Pro Asp Ala Asp Ala Tyr Ser Pro Gly Gln Thr Val Ser Leu Asn Met Ala Thr Gly Met Asp Ser Trp Val Ala Leu Ala Ala Val Asp Ser Ala Val Tyr Gly Val Gln Arg Gly Ala Lys Lys Pro Leu Glu Arg Val Phe Gln Phe Leu Glu Lys Ser Asp Leu Gly Cys Gly Ala Gly Gly Leu

Asn Asn Ala Asn Val Phe His Leu Ala Gly Leu Thr Phe Leu 635

Thr Asn Ala Asn Ala Asp Asp Ser Gln Glu Asn Asp Glu Pro 640

Cys Lys Glu Ile Leu Arg Pro Arg Arg Thr Leu Gln Lys Lys 655

Ile Glu Glu Ile Ala Ala Lys Tyr Lys His Ser Val Val Lys 665 675

Lys Cys Cys Tyr Asp Gly Ala Cys Val Asn Asn Asp Glu Thr

Cys Glu Gln Arg Ala Ala Arg Ile Ser Leu Gly Pro Arg Cys Ile Lys Ala Phe Thr Glu Cys Cys Val Val Ala Ser Gln Leu Arq Ala Asn Ile Ser His Lys Asp Met Gln Leu Gly Arg Leu His Met Lys Thr Leu Leu Pro Val Ser Lys Pro Glu Ile Arg Ser Tyr Phe Pro Glu Ser Trp Leu Trp Glu Val His Leu Val Pro Arg Arg Lys Gln Leu Gln Phe Ala Leu Pro Asp Ser Leu Thr Thr Trp Glu Ile Gln Gly Ile Gly Ile Ser Asn Thr Gly Ile Cys Val Ala Asp Thr Val Lys Ala Lys Val Phe Lys Asp Val Phe Leu Glu Met Asn Ile Pro Tyr Ser Val Val Arg Gly Glu Gln Ile Gln Leu Lys Gly Thr Val Tyr Asn Tyr Arg Thr Ser Gly Met Gln Phe Cys Val Lys Met Ser Ala Val Glu Gly Ile Cys Thr Ser Glu Ser Pro Val Ile Asp His Gln Gly Thr Lys Ser Ser Lys Cys Val Arg Gln Lys Val Glu Gly Ser Ser Ser His Leu Val Thr Phe Thr Val Leu Pro Leu Glu Ile Gly Leu His Asn Ile Asn Phe Ser Leu Glu Thr Trp Phe Gly Lys Glu Ile Leu Val Lys Thr Leu Arg Val Val Pro Glu Gly Val

Lys Arg Glu Ser Tyr Ser Gly Val Thr Leu Asp Pro Arg Gly 920 925 930

Ile Tyr Gly Thr Ile Ser Arg Arg Lys Glu Phe Pro Tyr Arg 935 940

Ile Pro Leu Asp Leu Val Pro Lys Thr Glu Ile Lys Arg Ile 945 950 955

Leu Ser Val Lys Gly Leu Leu Val Gly Glu Ile Leu Ser Ala 960 965 970

Val Leu Ser Gln Glu Gly Ile Asn Ile Leu Thr His Leu Pro 975 980 985

Lys Gly Ser Ala Glu Ala Glu Leu Met Ser Val Val Pro Val 990 995 1000

Phe Tyr Val Phe His Tyr Leu Glu Thr Gly Asn His Trp Asn 1005 1010

Ile Phe His Ser Asp Pro Leu Ile Glu Lys Gln Lys Leu Lys 1015 1020 1025

Lys Lys Leu Lys Glu Gly Met Leu Ser Ile Met Ser Tyr Arg 1030 1035 1040

Asn Ala Asp Tyr Ser Tyr Ser Val Trp Lys Gly Gly Ser Ala 1045 1050 1055

Ser Thr Trp Leu Thr Ala Phe Ala Leu Arg Val Leu Gly Gln 1060 1065 1070

Val Asn Lys Tyr Val Glu Gln Asn Gln Asn Ser Ile Cys Asn 1075 1080

Ser Leu Leu Trp Leu Val Glu Asn Tyr Gln Leu Asp Asn Gly 1085 1090 1095

Ser Phe Lys Glu Asn Ser Gln Tyr Gln Pro Ile Lys Leu Gln 1100 1105 1110

Gly Thr Leu Pro Val Glu Ala Arg Glu Asn Ser Leu Tyr Leu 1115 1120 1125

Thr Ala Phe Thr Val Ile Gly Ile Arg Lys Ala Phe Asp Ile 1130 1135 1140

Cys Pro Leu Val Lys Ile Asp Thr Ala Leu Ile Lys Ala Asp 1145 1150

- Asn Phe Leu Leu Glu Asn Thr Leu Pro Ala Gln Ser Thr Phe 1155 1160 1165
- Thr Leu Ala Ile Ser Ala Tyr Ala Leu Ser Leu Gly Asp Lys 1170 1175 1180
- Thr His Pro Gln Phe Arg Ser Ile Val Ser Ala Leu Lys Arg 1185 1190 1195
- Glu Ala Leu Val Lys Gly Asn Pro Pro Ile Tyr Arg Phe Trp 1200 1205 1210
- Lys Asp Asn Leu Gln His Lys Asp Ser Ser Val Pro Asn Thr 1215 1220
- Gly Thr Ala Arg Met Val Glu Thr Thr Ala Tyr Ala Leu Leu 1225 1230 1235
- Thr Ser Leu Asn Leu Lys Asp Ile Asn Tyr Val Asn Pro Val 1240 1245 1250
- Ile Lys Trp Leu Ser Glu Glu Gln Arg Tyr Gly Gly Phe 1255 1260 1265
- Tyr Ser Thr Gln Asp Thr Ile Asn Ala Ile Glu Gly Leu Thr 1270 1275 1280
- Glu Tyr Ser Leu Leu Val Lys Gln Leu Arg Leu Ser Met Asp 1285 1290
- Ile Asp Val Ser Tyr Lys His Lys Gly Ala Leu His Asn Tyr 1295 1300 1305
- Lys Met Thr Asp Lys Asn Phe Leu Gly Arg Pro Val Glu Val 1310 1315 1320
- Leu Leu Asn Asp Asp Leu Ile Val Ser Thr Gly Phe Gly Ser 1325 1330 1335
- Gly Leu Ala Thr Val His Val Thr Thr Val Val His Lys Thr 1340 1345 1350
- Ser Thr Ser Glu Glu Val Cys Ser Phe Tyr Leu Lys Ile Asp 1355 1360
- Thr Gln Asp Ile Glu Ala Ser His Tyr Arg Gly Tyr Gly Asn 1365 1370 1375
- Ser Asp Tyr Lys Arg Ile Val Ala Cys Ala Ser Tyr Lys Pro 1380 1385 1390

- Ser Arg Glu Glu Ser Ser Ser Gly Ser Ser His Ala Val Met 1395 1400 1405
- Asp Ile Ser Leu Pro Thr Gly Ile Ser Ala Asn Glu Glu Asp 1410 1415 1420
- Leu Lys Ala Leu Val Glu Gly Val Asp Gln Leu Phe Thr Asp 1425 1430
- Tyr Gln Ile Lys Asp Gly His Val Ile Leu Gln Leu Asn Ser 1435 1440 1445
- Ile Pro Ser Ser Asp Phe Leu Cys Val Arg Phe Arg Ile Phe 1450 1455 1460
- Glu Leu Phe Glu Val Gly Phe Leu Ser Pro Ala Thr Phe Thr 1465 1470 1475
- Val Tyr Glu Tyr His Arg Pro Asp Lys Gln Cys Thr Met Phe 1480 1485 1490
- Tyr Ser Thr Ser Asn Ile Lys Ile Gln Lys Val Cys Glu Gly 1495 1500
- Ala Ala Cys Lys Cys Val Glu Ala Asp Cys Gly Gln Met Gln 1505 1510 1515
- Glu Glu Leu Asp Leu Thr Ile Ser Ala Glu Thr Arg Lys Gln 1520 1525 1530
- Thr Ala Cys Lys Pro Glu Ile Ala Tyr Ala Tyr Lys Val Ser 1535 1540 1545
- Ile Thr Ser Ile Thr Val Glu Asn Val Phe Val Lys Tyr Lys 1550 1555 1560
- Ala Thr Leu Leu Asp Ile Tyr Lys Thr Gly Glu Ala Val Ala 1565 1570
- Glu Lys Asp Ser Glu Ile Thr Phe Ile Lys Lys Val Thr Cys 1575 1580 1585
- Thr Asn Ala Glu Leu Val Lys Gly Arg Gln Tyr Leu Ile Met 1590 1595 1600
- Gly Lys Glu Ala Leu Gln Ile Lys Tyr Asn Phe Ser Phe Arg 1605 1610 1615
- Tyr Ile Tyr Pro Leu Asp Ser Leu Thr Trp Ile Glu Tyr Trp
 1620 1625 1630

Pro Arg Asp Thr Thr Cys Ser Ser Cys Gln Ala Phe Leu Ala 1635 1640

Asn Leu Asp Glu Phe Ala Glu Asp Ile Phe Leu Asn Gly Cys 1645 1650 1655

(2)	II	FORMATION FOR SEQ ID NO:3:
	(i)	SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 4059 base pairs
		(B) TYPE: Nucleic Acid
		(C) STRANDEDNESS: Double
		(D) TOPOLOGY: Circular
	(ii)	MOLECULE TYPE: Other nucleic acid
		(A) DESCRIPTION: Apex-1 Eukaryotic
		Expression Vector

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ACGCGTTGAC	ATTGATTATT	GACTAGTTAT	TAATAGTAAT	CAATTACGGG	50
GTCATTAGTT	CATAGCCCAT	ATATGGAGTT	CCGCGTTACA	TAACTTACGG	100
TAAATGGCCC	CGCCTGGCTG	ACCGCCCAAC	GACCCCCGCC	CATTGACGTC	150
AATAATGACG	TATGTTCCCA	TAGTAACGCC	AATAGGGACT	TTCCATTGAC	200
GTCAATGGGT	GGACTATTTA	CGGTAAACTG	CCCACTTGGC	AGTACATCAA	250
GTGTATCATA	TGCCAAGTAC	GCCCCTATT	GACGTCAATG	ACGGTAAATG	300
GCCCGCCTGG	CATTATGCCC	AGTACATGAC	CTTATGGGAC	TTTCCTACTT	350
GGCAGTACAT	CTACGTATTA	GTCATCGCTA	TTACCATGGT	GATGCGGTTT	400
TGGCAGTACA	TCAATGGGCG	TGGATAGCGG	TTTGACTCAC	GGGGATTTCC	450
AAGTCTCCAC	CCCATTGACG	TCAATGGGAG	TTTGTTTTGG	CACCAAAATC	500
AACGGGACTT	TCCAAAATGT	CGTAACAACT	CCGCCCCATT	GACGCAAATG	550
GGCGGTAGGC	GTGTACGGTG	GGAGGTCTAT	ATAAGCAGAG	CTCGTTTAGT	600
GAACCGTCAG	AATTCTGTTG	GGCTCGCGGT	TGATTACAAA	CTCTTCGCGG	650
TCTTTCCAGT	ACTCTTGGAT	CGGAAACCCG	TCGGCCTCCG	AACGGTACTC	700
CGCCACCGAG	GGACCTGAGC	GAGTCCGCAT	CGACCGGATC	GGAAAACCTC	750
TCGACTGTTG	GGGTGAGTAC	TCCCTCTCAA	AAGCGGGCAT	GACTTCTGCG	800

CTAAGATTGT	CAGTTTCCAA	AAACGAGGAG	GATTTGATAT	TCACCTGGCC	850
CGCGGTGATG	CCTTTGAGGG	TGGCCGCGTC	CATCTGGTCA	GAAAAGACAA	900
TCTTTTTGTT	GTCAAGCTTG	AGGTGTGGCA	GGCTTGAGAT	CTGGCCATAC	950
ACTTGAGTGA	CAATGACATC	CACTTTGCCT	TTCTCTCCAC	AGGTGTCCAC	1000
TCCCAGGTCC	AACTGCAGGT	CGACCGGCTT	GGTACCGAGC	TCGGATCCAC	1050
TAGTAACGGC	CGCCAGTGTG	CTGGAATTCT	GCAGATATCC	ATCACACTGG	1100
CGGCCGCTCG	AGCATGCATC	TAGAACTTGT	TTATTGCAGC	TTATAATGGT	1150
TACAAATAAA	GCAATAGCAT	CACAAATTTC	ACAAATAAAG	CATTTTTTC	1200
ACTGCATTCT	AGTTGTGGTT	TGTCCAAACT	CATCAATGTA	TCTTATCATG	1250
TCTGGATCGA	TCCCGCCATG	GTATCAACGC	CATATTTCTA	TTTACAGTAG	1300
GGACCTCTTC	GTTGTGTAGG	TACCGCTGTA	TTCCTAGGGA	AATAGTAGAG	1350
GCACCTTGAA	CTGTCTGCAT	CAGCCATATA	GCCCCCGCTG	TTCGACTTAC	1400
AAACACAGGC	ACAGTACTGA	CAAACCCATA	CACCTCCTCT	GAAATACCCA	1450
TAGTTGCTAG	GGCTGTCTCC	GAACTCATTA	CACCCTCCAA	AGTCAGAGCT	1500
GTAATTTCGC	CATCAAGGGC	AGCGAGGGCT	TCTCCAGATA	AAATAGCTTC	1550
TGCCGAGAGT	CCCGTAAGGG	TAGACACTTC	AGCTAATCCC	TCGATGAGGT	1600
CTACTAGAAT	AGTCAGTGCG	GCTCCCATTT	TGAAAATTCA	CTTACTTGAT	1650
CAGCTTCAGA	AGATGGCGGA	GGGCCTCCAA	CACAGTAATT	TTCCTCCCGA	1700
CTCTTAAAAT	AGAAAATGTC	AAGTCAGTTA	AGCAGGAAGT	GGACTAACTG	1750
ACGCAGCTGG	CCGTGCGACA	TCCTCTTTTA	ATTAGTTGCT	AGGCAACGCC	1800
CTCCAGAGGG	CGTGTGGTTT	TGCAAGAGGA	AGCAAAAGCC	TCTCCACCCA	1850
GGCCTAGAAT	GTTTCCACCC	AATCATTACT	ATGACAACAG	CTGTTTTTTT	1900
TAGTATTAAG	CAGAGGCCGG	GGACCCCTGG	GCCCGCTTAC	TCTGGAGAAA	1950
AAGAAGAGAG	GCATTGTAGA	GGCTTCCAGA	GGCAACTTGT	CAAAACAGGA	2000
CTGCTTCTAT	TTCTGTCACA	CTGTCTGGCC	CTGTCACAAG	GTCCAGCACC	2050

TCCATACCCC	CTTTAATAAG	CAGTTTGGGA	ACGGGTGCGG	GTCTTACTCC	2100
GCCCATCCCG	CCCCTAACTC	CGCCCAGTTC	CGCCCATTCT	CCGCCCCATG	2150
GCTGACTAAT	TTTTTTTATT	TATGCAGAGG	CCGAGGCCGC	CTCGGCCTCT	2200
GAGCTATTCC	AGAAGTAGTG	AGGAGGCTTT	TTTGGAGGCC	TAGGCTTTTG	2250
CAAAAAGGAG	CTCCCAGCAA	AAGGCCAGGA	ACCGTAAAAA	GGCCGCGTTG	2300
CTGGCGTTTT	TCCATAGGCT	CCGCCCCCT	GACGAGCATC	ACAAAAATCG	2350
ACGCTCAAGT CGTTTCCCCC		GAAACCCGAC CTCGTGCGCT	AGGACTATAA CTCCTGTTCC	AGATACCAGG GACCCTGCCG	2400 2450
CTTACCGGAT	ACCTGTCCGC	CTTTCTCCCT	TCGGGAAGCG	TGGCGCTTTC	2500
TCAATGCTCA	CGCTGTAGGT	ATCTCAGTTC	GGTGTAGGTC	GTTCGCTCCA	2550
AGCTGGGCTG	TGTGCACGAA	CCCCCGTTC	AGCCCGACCG	CTGCGCCTTA	2600
TCCGGTAACT	ATCGTCTTGA	GTCCAACCCG	GTAAGACACG	ACTTATCGCC	2650
ACTGGCAGCA	GCCACTGGTA	ACAGGATTAG	CAGAGCGAGG	TATGTAGGCG	2700
GTGCTACAGA	GTTCTTGAAG	TGGTGGCCTA	ACTACGGCTA	CACTAGAAGG	2750
ACAGTATTTG	GTATCTGCGC	TCTGCTGAAG	CCAGTTACCT	TCGGAAAAAG	2800
AGTTGGTAGC	TCTTGATCCG	GCAAACAAAC	CACCGCTGGT	AGCGGTGGTT	2850
TTTTTGTTTG	CAAGCAGCAG	ATTACGCGCA	GAAAAAAAGG	ATCTCAAGAA	2900
GATCCTTTGA	TCTTTTCTAC	GGGGTCTGAC	GCTCAGTGGA	ACGAAAACTC	2950
ACGTTAAGGG	ATTTTGGTCA	TGAGATTATC	AAAAAGGATC	TTCACCTAGA	3000
TCCTTTTAAA	TTAAAAATGA	AGTTTTAAAT	CAATCTAAAG	TATATATGAG	3050
TAAACTTGGT	CTGACAGTTA	CCAATGCTTA	ATCAGTGAGG	CACCTATCTC	3100
AGCGATCTGT	CTATTTCGTT	CATCCATAGT	TGCCTGACTC	CCCGTCGTGT	3150
AGATAACTAC	GATACGGGAG	GGCTTACCAT	CTGGCCCCAG	TGCTGCAATG	3200
ATACCGCGAG	ACCCACGCTC	ACCGGCTCCA	GATTTATCAG	CAATAAACCA	3250
GCCAGCCGGA	AGGGCCGAGC	GCAGAAGTGG	TCCTGCAACT	TTATCCGCCT	3300
CCATCCAGTC	TATTAATTGT	TGCCGGGAAG	CTAGAGTAAG	TAGTTCGCCA	3350

GTTAATAGTT	TGCGCAACGT	TGTTGCCATT	GCTACAGGCA	TCGTGGTGTC	3400
ACGCTCGTCG	TTTGGTATGG	CTTCATTCAG	CTCCGGTTCC	CAACGATCAA	3450
GGCGAGTTAC	ATGATCCCCC	ATGTTGTGCA	AAAAAGCGGT	TAGCTCCTTC	3500
GGTCCTCCGA	TCGTTGTCAG	AAGTAAGTTG	GCCGCAGTGT	TATCACTCAT	3550
GGTTATGGCA	GCACTGCATA	ATTCTCTTAC	TGTCATGCCA	TCCGTAAGAT	3600
GCTTTTCTGT	GACTGGTGAG	TACTCAACCA	AGTCATTCTG	AGAATAGTGT	3650
ATGCGGCGAC	CGAGTTGCTC	TTGCCCGGCG	TCAATACGGG	ATAATACCGC	3700
GCCACATAGC	AGAACTTTAA	AAGTGCTCAT	CATTGGAAAA	CGTTCTTCGG	3750
GGCGAAAACT	CTCAAGGATC	TTACCGCTGT	TGAGATCCAG	TTCGATGTAA	3800
CCCACTCGTG	CACCCAACTG	ATCTTCAGCA	TCTTTTACTT	TCACCAGCGT	3850
TTCTGGGTGA	GCAAAAACAG	GAAGGCAAAA	TGCCGCAAAA	AAGGGAATAA	3900
GGGCGACACG	GAAATGTTGA	ATACTCATAC	TCTTCCTTTT	TCAATATTAT	3950
TGAAGCATTT	ATCAGGGTTA	TTGTCTCATG	AGCGGATACA	TATTTGAATG	4000
TATTTAGAAA	AATAAACAAA	TAGGGGTTCC	GCGCACATTT	CCCCGAAAAG	4050
TGCCACCTG					4059

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8540 base pairs
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Circular
- (ii) MOLECULE TYPE: Other nucleic acid
 - (A) DESCRIPTION: Apex-3P Eukaryotic Expression Vector

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTGACCAATA CAAAACAAAA GCGCCCCTCG TACCAGCGAA GAAGGGGCAG 50
AGATGCCGTA GTCAGGTTTA GTTCGTCCGG CGGCGGGGA TCTGTATGGT 100
GCACTCTCAG TACAATCTGC TCTGATGCCG CATAGTTAAG CCAGTATCTG 150

CTCCCTGCTT	GTGTGTTGGA	GGTCGCTGAG	TAGTGCGCGA	GCAAAATTTA	200
AGCTACAACA	AGGCAAGGCT	TGACCGACAA	TTGCATGAAG	AATCTGCTTA	250
GGGTTAGGCG	TTTTGCGCTG	CTTCGCGATG	TACGGGCCAG	ATATACGCGT	300
TGACATTGAT	TATTGACTAG	TTATTAATAG	TAATCAATTA	CGGGGTCATT	350
AGTTCATAGC	CCATATATGG	AGTTCCGCGT	TACATAACTT	ACGGTAAATG	400
GCCCGCCTGG	CTGACCGCCC	AACGACCCCC	GCCCATTGAC	GTCAATAATG	450
ACGTATGTTC	CCATAGTAAC	GCCAATAGGG	ACTTTCCATT	GACGTCAATG	500
GGTGGACTAT	TTACGGTAAA	CTGCCCACTT	GGCAGTACAT	CAAGTGTATC	550
ATATGCCAAG	TACGCCCCCT	ATTGACGTCA	ATGACGGTAA	ATGGCCCGCC	600
TGGCATTATG	CCCAGTACAT	GACCTTATGG	GACTTTCCTA	CTTGGCAGTA	650
CATCTACGTA	TTAGTCATCG	CTATTACCAT	GGTGATGCGG	TTTTGGCAGT	700
ACATCAATGG	GCGTGGATAG	CGGTTTGACT	CACGGGGATT	TCCAAGTCTC	750
CACCCCATTG	ACGTCAATGG	GAGTTTGTTT	TGGCACCAAA	ATCAACGGGA	800
CTTTCCAAAA	TGTCGTAACA	ACTCCGCCCC	ATTGACGCAA	ATGGGCGGTA	850
GGCGTGTACG	GTGGGAGGTC	TATATAAGCA	GAGCTCGTTT	AGTGAACCGT	900
CAGAATTCTG	TTGGGCTCGC	GGTTGATTAC	AAACTCTTCG	CGGTCTTTCC	950
AGTACTCTTG	GATCGGAAAC	CCGTCGGCCT	CCGAACGGTA	CTCCGCCACC	1000
GAGGGACCTG	AGCGAGTCCG	CATCGACCGG	ATCGGAAAAC	CTCTCGACTG	1050
TTGGGGTGAG	TACTCCCTCT	CAAAAGCGGG	CATGACTTCT	GCGCTAAGAT	1100
TGTCAGTTTC	CAAAAACGAG	GAGGATTTGA	TATTCACCTG	GCCCGCGGTG	1150
ATGCCTTTGA	GGGTGGCCGC	GTCCATCTGG	TCAGAAAAGA	CAATCTTTTT	1200
GTTGTCAAGC	TTGAGGTGTG	GCAGGCTTGA	GATCTGGCCA	TACACTTGAG	1250
TGACAATGAC	ATCCACTTTG	CCTTTCTCTC	CACAGGTGTC	CACTCCCAGG	1300
TCCAACTGCA	GGTCGACCGG	CTTGGTACCG	AGCTCGGATC	CTCTAGAGTC	1350
GACCTGCAGG	CATGCAAGCT	TGGCACTGGC	CGTCGTTTTA	CAACGTCGTG	1400
ACTGGGAAAA	CCCTGGCGTT	ACCCAACTTA	ATCGCCTTGC	AGCACATCCC	1450

CCTTTCGCCA	GCTGGCGTAA	TAGCGAAGAG	GCCCGCACCG	ATCCAGACAT	1500
GATAAGATAC	ATTGATGAGT	TTGGACAAAC	CACAACTAGA	ATGCAGTGAA	1550
AAAAATGCTT	TATTTGTGAA	ATTTGTGATG	CTATTGCTTT	ATTTGTAACC	1600
ATTATAAGCT	GCAATAAACA	AGTTAACAAC	AACAATTGCA	TTCATTTTAT	1650
GTTTCAGGTT	CAGGGGGAGG	TGTGGGAGGT	TTTTTAAAGC	AAGTAAAACC	1700
TCTACAAATG	TGGTATGGCT	GATTATGATC	CCCAGGAAGC	TCCTCTGTGT	1750
CCTCATAAAC	CCTAACCTCC	TCTACTTGAG	AGGACATTCC	AATCATAGGC	1800
TGCCCATCCA	CCCTCTGTGT	CCTCCTGTTA	ATTAGGTCAC	TTAACAAAAA	1850
GGAAATTGGG	TAGGGGTTTT	TCACAGACCG	CTTTCTAAGG	GTAATTTTAA	1900
AATATCTGGG	AAGTCCCTTC	CACTGCTGTG	TTCCAGAAGT	GTTGGTAAAC	1950
AGCCCACAAA	TGTCAACAGC	AGAAACATAC	AAGCTGTCAG	CTTTGCACAA	2000
GGGCCCAACA	CCCTGCTCAT	CAAGAAGCAC	TGTGGTTGCT	GTGTTAGTAA	2050
TGTGCAAAAC	AGGAGGCACA	TTTTCCCCAC	CTGTGTAGGT	TCCAAAATAT	2100
CTAGTGTTTT	CATTTTTACT	TGGATCAGGA	ACCCAGCACT	CCACTGGATA	2150
AGCATTATCC	TTATCCAAAA	CAGCCTTGTG	GTCAGTGTTC	ATCTGCTGAC	2200
TGTCAACTGT	AGCATTTTTT	GGGGTTACAG	TTTGAGCAGG	ATATTTGGTC	2250
CTGTAGTTTG	CTAACACACC	CTGCAGCTCC	AAAGGTTCCC	CACCAACAGC	2300
AAAAAAATGA	AAATTTGACC	CTTGAATGGG	TTTTCCAGCA	CCATTTTCAT	2350
GAGTTTTTTG	TGTCCCTGAA	TGCAAGTTTA	ACATAGCAGT	TACCCCAATA	2400
ACCTCAGTTT	TAACAGTAAC	AGCTTCCCAC	ATCAAAATAT	TTCCACAGGT	2450
TAAGTCCTCA	TTTGTAGAAT	TCGCCAGCAC	AGTGGTCGAC	CCTGTGGATG	2500
TGTGTCACTT	AGGGTGTGGA	AAGTCCCCAG	GCTCCCCAGC	AGGCAGAAGT	2550
ATGCAAAGCA	TGCATCTCAA	TTAGTCAGCA	ACCAGGTGTG	GAAAGTCCCC	2600
AGGCTCCCCA	GCAGGCAGAA	GTATGCAAAG	CATGCATCTC	AATTAGTCAG	2650
CAACCATAGT	CCCGCCCCTA	ACTCCGCCCA	TCCCGCCCCT	AACTCCGCCC	2700

AGTTCCGCCC	ATTCTCCGCC	CCATGGCTGA	CTAATTTTTT	TTATTTATGC	2750
AGAGGCCGAG	GCCGCCTCGG	CCTCTGAGCT	ATTCCAGAAG	TAGTGAGGAG	2800
GCTTTTTTGG	AGGCCTAGGC	TTTTGCAAAA	GCTTACCATG	ACCGAGTACA	2850
AGCCCACGGT	GCGCCTCGCC	ACCCGCGACG	ACGTCCCCCG	GGCCGTACGC	2900
ACCCTCGCCG	CCGCGTTCGC	CGACTACCCC	GCCACGCGCC	ACACCGTCGA	2950
CCCGGACCGC	CACATCGAGC	GGGTCACCGA	GCTGCAAGAA	CTCTTCCTCA	3000
CGCGCGTCGG	GCTCGACATC	GGCAAGGTGT	GGGTCGCGGA	CGACGGCGCC	3050
GCGGTGGCGG	TCTGGACCAC	GCCGGAGAGC	GTCGAAGCGG	GGGCGGTGTT	3100
CGCCGAGATC	GGCCCGCGCA	TGGCCGAGTT	GAGCGGTTCC	CGGCTGGCCG	3150
CGCAGCAACA	GATGGAAGGC	CTCCTGGCGC	CGCACCGGCC	CAAGGAGCCC	3200
GCGTGGTTCC	TGGCCACCGT	CGGCGTCTCG	CCCGACCACC	AGGGCAAGGG	3250
TCTGGGCAGC	GCCGTCGTGC	TCCCCGGAGT	GGAGGCGGCC	GAGCGCGCCG	3300
GGGTGCCCGC	CTTCCTGGAG	ACCTCCGCGC	CCCGCAACCT	CCCCTTCTAC	3350
GAGCGGCTCG	GCTTCACCGT	CACCGCCGAC	GTCGAGTGCC	CGAAGGACCG	3400
CGCGACCTGG	TGCATGACCC	GCAAGCCCGG	TGCCTGACGC	CCGCCCCACG	3450
ACCCGCAGCG	CCCGACCGAA	AGGAGCGCAC	GACCCCATGC	ATCGATAAAA	3500
TAAAAGATTT	TATTTAGTCT	CCAGAAAAAG	GGGGGAATGA	AAGACCCCAC	3550
CTGTAGGTTT	GGCAAGCTAG	AACTTGTTTA	TTGCAGCTTA	TAATGGTTAC	3600
AAATAAAGCA	ATAGCATCAC	AAATTTCACA	AATAAAGCAT	TTTTTTCACT	3650
GCATTCTAGT	TGTGGTTTGT	CCAAACTCAT	CAATGTATCT	TATCATGTCT	3700
GGATCGATCC	CGCCATGGTA	TCAACGCCAT	ATTTCTATTT	ACAGTAGGGA	3750
CCTCTTCGTT	GTGTAGGTAC	CCCGGGTTCG	AAATCGAATT	CGCCAATGAC	3800
AAGACGCTGG	GCGGGGTTTG	TGTCATCATA	GAACTAAAGA	CATGCAAATA	3850
TATTTCTTCC	GGGGACACCG	CCAGCAAACG	CGAGCAACGG	GCCACGGGGA	3900
TGAAGCAGCC	CGGCGGCACC	TCGCTAACGG	ATTCACCACT	CCAAGAATTG	3950
GAGCCAATCA	ATTCTTGCGG	AGAACTGTGA	ATGCGCAAAC	CAACCCTTGG	4000

CAGAACATAT	CCATCGCGTC	CGCCATCTCC	AGCAGCCGCA	CGCGGCGCAT	4050
CTCGGGGCCG	ACGCGCTGGG	CTACGTCTTG	CTGGCGTTCG	CGACGCGAGG	4100
CTGGATGGCC	TTCCCCATTA	TGATTCTTCT	CGCTTCCGGC	GGCATCGGGA	4150
TGCCCGCGTT	GCAGGCCATG	CTGTCCAGGC	AGGTAGATGA	CGACCATCAG	4200
GGACAGCTTC	AAGGATCGCT	CGCGGCTCTT	ACCAGCGCCA	GCAAAAGGCC	4250
AGGAACCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC	4300
CCCTGACGAG	CATCACAAAA	ATCGACGCTC	AAGTCAGAGG	TGGCGAAACC	4350
CGACAGGACT	ATAAAGATAC	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	4400
CGCTCTCCTG	TTCCGACCCT	GCCGCTTACC	GGATACCTGT	CCGCCTTTCT	4450
CCCTTCGGGA	AGCGTGGCGC	TTTCTCATAG	CTCACGCTGT	AGGTATCTCA	4500
GTTCGGTGTA	GGTCGTTCGC	TCCAAGCTGG	GCTGTGTGCA	CGAACCCCCC	4550
GTTCAGCCCG	ACCGCTGCGC	CTTATCCGGT	AACTATCGTC	TTGAGTCCAA	4600
CCCGGTAAGA	CACGACTTAT	CGCCACTGGC	AGCAGCCACT	GGTAACAGGA	4650
TTAGCAGAGC	GAGGTATGTA	GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	4700
CCTAACTACG	GCTACACTAG	AAGGACAGTA	TTTGGTATCT	GCGCTCTGCT	4750
GAAGCCAGTT	ACCTTCGGAA	AAAGAGTTGG	TAGCTCTTGA	TCCGGCAAAC	4800
AAACCACCGC	TGGTAGCGGT	GGTTTTTTTG	TTTGCAAGCA	GCAGATTACG	4850
CGCAGAAAAA	AAGGATCTCA	AGAAGATCCT	TTGATCTTTT	CTACGGGGTC	4900
TGACGCTCAG	TGGAACGAAA	ACTCACGTTA	AGGGATTTTG	GTCATGAGAT	4950
TATCAAAAAG	GATCTTCACC	TAGATCCTTT	TAAATTAAAA	ATGAAGTTTT	5000
AAATCAATCT	AAAGTATATA	TGAGTAAACT	TGGTCTGACA	GTTACCAATG	5050
CTTAATCAGT	GAGGCACCTA	TCTCAGCGAT	CTGTCTATTT	CGTTCATCCA	5100
TAGTTGCCTG	ACTCCCCGTC	GTGTAGATAA	CTACGATACG	GGAGGGCTTA	5150
CCATCTGGCC	CCAGTGCTGC	AATGATACCG	CGAGACCCAC	GCTCACCGGC	5200
TCCAGATTTA	TCAGCAATAA	ACCAGCCAGC	CGGAAGGGCC	GAGCGCAGAA	5250

GTGGTCCTGC	AACTTTATCC	GCCTCCATCC	AGTCTATTAA	TTGTTGCCGG	5300
GAAGCTAGAG	TAAGTAGTTC	GCCAGTTAAT	AGTTTGCGCA	ACGTTGTTGC	5350
CATTGCTGCA	GGCATCGTGG	TGTCACGCTC	GTCGTTTGGT	ATGGCTTCAT	5400
TCAGCTCCGG	TTCCCAACGA	TCAAGGCGAG	TTACATGATC	CCCCATGTTG	5450
TGCAAAAAAG	CGGTTAGCTC	CTTCGGTCCT	CCGATCGTTG	TCAGAAGTAA	5500
GTTGGCCGCA	GTGTTATCAC	TCATGGTTAT	GGCAGCACTG	CATAATTCTC	5550
TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	CTGTGACTGG	TGAGTACTCA	5600
ACCAAGTCAT	TCTGAGAATA	GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	5650
GGCGTCAACA	CGGGATAATA	CCGCGCCACA	TAGCAGAACT	TTAAAAGTGC	5700
TCATCATTGG	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	5750
CTGTTGAGAT	CCAGTTCGAT	GTAACCCACT	CGTGCACCCA	ACTGATCTTC	5800
AGCATCTTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	ACAGGAAGGC	5850
AAAATGCCGC	AAAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	5900
ATACTCTTCC	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	5950
CATGAGCGGA	TACATATTTG	AATGTATTTA	GAAAAATAAA	CAAATAGGGG	6000
TTCCGCGCAC	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCTA	AGAAACCATT	6050
ATTATCATGA	CATTAACCTA	TAAAAATAGG	CGTATCACGA	GGCCCTTTCG	6100
TCTTCAAGAA	TTCTCATGTT	TGACAGCTTA	TCGTAGACAT	CATGCGTGCT	6150
GTTGGTGTAT	TTCTGGCCAT	CTGTCTTGTC	ACCATTTTCG	TCCTCCCAAC	6200
ATGGGGCAAT	TGGGCATACC	CATGTTGTCA	CGTCACTCAG	CTCCGCGCTC	6250
AACACCTTCT	CGCGTTGGAA	AACATTAGCG	ACATTTACCT	GGTGAGCAAT	6300
CAGACATGCG	ACGGCTTTAG	CCTGGCCTCC	TTAAATTCAC	CTAAGAATGG	6350
GAGCAACCAG	CAGGAAAAGG	ACAAGCAGCG	AAAATTCACG	CCCCCTTGGG	6400
AGGTGGCGGC	ATATGCAAAG	GATAGCACTC	CCACTCTACT	ACTGGGTATC	6450
ATATGCTGAC	TGTATATGCA	TGAGGATAGC	ATATGCTACC	CGGATACAGA	6500
TTAGGATAGC	ATATACTACC	CAGATATAGA	TTAGGATAGC	ATATGCTACC	6550

CAGATATAGA	TTAGGATAGC	CTATGCTACC	CAGATATAAA	TTAGGATAGC	6600
ATATACTACC	CAGATATAGA	TTAGGATAGC	ATATGCTACC	CAGATATAGA	6650
TTAGGATAGC	CTATGCTACC	CAGATATAGA	TTAGGATAGC	ATATGCTACC	6700
CAGATATAGA	TTAGGATAGC	ATATGCTATC	CAGATATTTG	GGTAGTATAT	6750
GCTACCCAGA	TATAAATTAG	GATAGCATAT	ACTACCCTAA	TCTCTATTAG	6800
GATAGCATAT	GCTACCCGGA	TACAGATTAG	GATAGCATAT	ACTACCCAGA	6850
TATAGATTAG	GATAGCATAT	GCTACCCAGA	TATAGATTAG	GATAGCCTAT	6900
GCTACCCAGA	TATAAATTAG	GATAGCATAT	ACTACCCAGA	TATAGATTAG	6950
GATAGCATAT	GCTACCCAGA	TATAGATTAG	GATAGCCTAT	GCTACCCAGA	7000
TATAGATTAG	GATAGCATAT	GCTATCCAGA	TATTTGGGTA	GTATATGCTA	7050
CCCATGGCAA	CATTAGCCCA	CCGTGCTCTC	AGCGACCTCG	TGAATATGAG	7100
GACCAACAAC	CCTGTGCTTG	GCGCTCAGGC	GCAAGTGTGT	GTAATTTGTC	7150
CTCCAGATCG	CAGCAATCGC	GCCCCTATCT	TGGCCCGCCC	ACCTACTTAT	7200
GCAGGTATTC	CCCGGGGTGC	CATTAGTGGT	TTTGTGGGCA	AGTGGTTTGA	7250
CCGCAGTGGT	TAGCGGGGTT	ACAATCAGCC	AAGTTATTAC	ACCCTTATTT	7300
TACAGTCCAA	AACCGCAGGG	CGGCGTGTGG	GGGCTGACGC	GTGCCCCCAC	7350
TCCACAATTT	CAAAAAAAAG	AGTGGCCACT	TGTCTTTGTT	TATGGGCCCC	7400
ATTGGCGTGG	AGCCCCGTTT	AATTTTCGGG	GGTGTTAGAG	ACAACCAGTG	7450
GAGTCCGCTG	CTGTCGGCGT	CCACTCTCTT	TCCCCTTGTT	ACAAATAGAG	7500
TGTAACAACA	TGGTTCACCT	GTCTTGGTCC	CTGCCTGGGA	CACATCTTAA	7550
TAACCCCAGT	ATCATATTGC	ACTAGGATTA	TGTGTTGCCC	ATAGCCATAA	7600
ATTCGTGTGA	GATGGACATC	CAGTCTTTAC	GGCTTGTCCC	CACCCCATGG	7650
ATTTCTATTG	TTAAAGATAT	TCAGAATGTT	TCATTCCTAC	ACTAGTATTT	7700
ATTGCCCAAG	GGGTTTGTGA	GGGTTATATT	GGTGTCATAG	CACAATGCCA	7750
CCACTGAACC	CCCCGTCCAA	ATTTTATTCT	GGGGGCGTCA	CCTGAAACCT	7800

TGTTTTCGAG CACCTCACAT ACACCTTACT GTTCACAACT CAGCAGTTAT 7850 TCTATTAGCT AAACGAAGGA GAATGAAGAA GCAGGCGAAG ATTCAGGAGA 7900 GTTCACTGCC CGCTCCTTGA TCTTCAGCCA CTGCCCTTGT GACTAAAATG 7950 GTTCACTACC CTCGTGGAAT CCTGACCCCA TGTAAATAAA ACCGTGACAG 8000 CTCATGGGGT GGGAGATATC GCTGTTCCTT AGGACCCTTT TACTAACCCT 8050 AATTCGATAG CATATGCTTC CCGTTGGGTA ACATATGCTA TTGAATTAGG 8100 GTTAGTCTGG ATAGTATATA CTACTACCCG GGAAGCATAT GCTACCCGTT 8150 TAGGGTTAAC AAGGGGGCCT TATAAACACT ATTGCTAATG CCCTCTTGAG 8200 GGTCCGCTTA TCGGTAGCTA CACAGGCCCC TCTGATTGAC GTTGGTGTAG 8250 CCTCCCGTAG TCTTCCTGGG CCCCTGGGAG GTACATGTCC CCCAGCATTG 8300 GTGTAAGAGC TTCAGCCAAG AGTTACACAT AAAGGCAATG TTGTGTTGCA 8350 GTCCACAGAC TGCAAAGTCT GCTCCAGGAT GAAAGCCACT CAGTGTTGGC 8400 AAATGTGCAC ATCCATTTAT AAGGATGTCA ACTACAGTCA GAGAACCCCT 8450 TTGTGTTTGG TCCCCCCCG TGTCACATGT GGAACAGGGC CCAGTTGGCA 8500 AGTTGTACCA ACCAACTGAA GGGATTACAT GCACTGCCCC 8540

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 bases
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Other nucleic acid
 - (A) DESCRIPTION: Oligonucleotide primer UDEC690
 - (iii) HYPOTHETICAL: No
 - (iv) ANTI-SENSE: No
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

(2)	(i) (ii	(E (C (I	SEQ (A) (B) (C) (C) (D) (M) (M)	UENC LE TY ST TC OLECU DE YPOTH	CE CHENGTHE PRANT PRANT PPOLO JLE TESCRI HETIO	HARAC H: 3 Nuc DEDNI DGY: TYPE: LPTIC CAL:	CTERI 30 ba cleic ESS: Lir : Ot ON:	STIC ases C Aci Sir near ther	CS: .d ngle nucl	.eic :leot	acid cide	l prime	r U	DEC395
(xi)	SE	EQUEN	ICE I	DESCF	RIPTI	ON:	SEÇ) ID	NO:6	5:				
CCCA	AGCI	TA (CTGGA	ATGGT	rg go	GAAGA	ATGG	Ą				30		
(2)	(i)	INFO (1 (1 (0 (1 i)	SE(A) 3) C) O) M(QUENC LE T'S S'I T'O DLECU	CE CHENGTHE PRESENTED POLOTICE TO THE POLOTICE TO TH	HARAC H: Nuc DEDNI DGY: TYPE	CTERI 747 k Cleic ESS: lir : Ot	ISTIC Dase Dou Dou near ther	CS: pair id ible nucl	cs Leic CFV	acid (muri	l .ne)		
(xi)	SI	EQUE	NCE I	DESCE	RIPTI	ION:	SEÇ	Q ID	NO:7	7:				
		GAC Asp								30				
		CTG Leu								60				
		ATC Ile								90				
		GGT Gly								120				
		GGA Gly								150				
		GCA Ala								180				

	AGG Arg					210
	TAT Tyr					240
	GAC Asp					270
	GTG Val					300
	GGG Gly					330
	GGT Gly					360
	GGC Gly					390
	TCT Ser				CCT Pro 140	420
	TCA Ser					450
	TAC Tyr					480
	ATA Ile					510
	TGG Trp					540
	TCT Ser					570

				185				•	190		
	GAC Asp									600	
	TCC Ser									630	
	CTG Leu									660	
	TGT Cys									690	
	AAC Asn									720	
	ACC Thr							TGA		747	
(2)	(i)) (<i>1</i> (1	SE(A) 3)	OMEUÇ LI T	CE CI ENGTI YPE:	HARAG H: Nuc	CTER 747 l clei	NO:8 ISTIC case C Ac:	CS: pai: id	rs	
	(i	(I i)	O) M(T(DLECU	OPOLO	OGY: TYPE	li:	near ther	nuc		acid (humanized)
(xi)) SI	EQUE	NCE I	DESCI	RIPT	ION:	SE	Q ID	NO:8	3:	
	GCC Ala									30	
	TCC Ser									60	
	ACC Thr									90	

		GGC Gly								120
		GGG Gly								150
		GCG Ala								180
		CGC Arg								210
		TTC Phe								240
		GAA Glu								270
		GTT Val								300
		GGT Gly								330
		GGT Gly								360
		GGT Gly								390
		TCC Ser								420
		TCA Ser								450
AGC Ser	GGC Gly	TAT Tyr	ATT Ile	TTT Phe 155	TCT Ser	AAT Asn	TAT Tyr	TGG Trp	ATT Ile 160	480

TGG Trp					510
GAA Glu					540
GGT Gly					570
GAC Asp					600
ACT Thr					630
CTG Leu					660
TGC Cys					690
AAT Asn					720
ACC Thr				TGA	747

```
(2)
        INFORMATION FOR SEQ ID NO:9:
             SEQUENCE CHARACTERISTICS:
     (i)
                  LENGTH:
                           726 base pairs
          (A)
          (B)
                  TYPE: Nucleic Acid
          (C)
                  STRANDEDNESS: Double
                  TOPOLOGY:
                             linear
          (D)
     (ii)
              MOLECULE TYPE: Other nucleic acid
                  DESCRIPTION:5G1.1M1 VL HuK (chimeric light
          (A)
chain)
(xi)
      SEQUENCE DESCRIPTION:
                             SEQ ID NO:9:
ATG GGA ATC CAA GGA GGG TCT GTC CTG TTC 30
Met Gly Ile Gln Gly Gly Ser Val Leu Phe
-25
                    -20
GGG CTG CTC GTC CTG GCT GTC TTC TGC 60
Gly Leu Leu Val Leu Ala Val Phe Cys
-15
                    -10
CAT TCA GGT CAT AGC CTG CAG GAC ATC CAG 90
His Ser Gly His Ser Leu Gln Asp Ile Gln
-5
                     1
                                      5
ATG ACT CAG TCT CCA GCT TCA CTG TCT GCA 120
Met Thr Gln Ser Pro Ala Ser Leu Ser Ala
                 10
TCT GTG GGA GAA ACT GTC ACC ATC ACA TGT 150
Ser Val Gly Glu Thr Val Thr Ile Thr Cys
                 20
GGA GCA AGT GAG AAT ATT TAC GGT GCT TTA 180
Gly Ala Ser Glu Asn Ile Tyr Gly Ala Leu
                 30
                                      35
AAT TGG TAT CAG CGG AAA CAG GGA AAA TCT 210
Asn Trp Tyr Gln Arg Lys Gln Gly Lys Ser
                 40
CCT CAG CTC CTG ATC TAT GGT GCA ACC AAC 240
Pro Gln Leu Leu Ile Tyr Gly Ala Thr Asn
                 50
                                      55
TTG GCA GAT GGC ATG TCA TCG AGG TTC AGT 270
Leu Ala Asp Gly Met Ser Ser Arg Phe Ser
                 60
                                      65
GGC AGT GGA TCT GGT AGA CAG TAT TAT CTC 300
Gly Ser Gly Ser Gly Arg Gln Tyr Tyr Leu
                                      75
```

	AGT Ser				330
	TAT Tyr				360
_	 CTC Leu				390
	CTG Leu				420
	TTC Phe				450
	AAA Lys				480
	CTG Leu				510
	GTA Val				540
	TCG Ser				570
	 CAG Gln	 	 	 	 600
	AGC Ser				630
	TAC Tyr				660
	GTC Val				690

CCC GTC ACA AAG AGC TTC AAC AGG GGA GAG 720 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu 210 215
TGT TAG 726 Cys
(2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 750 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION:5G1.1M1 VH +HuG1 (chimeric Fd)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
ATG AAA TGG AGC TGG GTT ATT CTC TTC CTC 30 Met Lys Trp Ser Trp Val Ile Leu Phe Leu -15 -10
CTG TCA GTA ACT GCA GGT GTC CAC TCC CAG 60 Leu Ser Val Thr Ala Gly Val His Ser Gln -5 1
GTT CAG CTG CAG CAG TCT GGA GCT GAG CTG 90 Val Gln Leu Gln Gln Ser Gly Ala Glu Leu 5
ATG AAG CCT GGG GCC TCA GTG AAG ATG TCC 120 Met Lys Pro Gly Ala Ser Val Lys Met Ser 15 20
TGC AAG GCT ACT GGC TAC ATA TTC AGT AAC 150 Cys Lys Ala Thr Gly Tyr Ile Phe Ser Asn 25 30
TAC TGG ATA CAG TGG ATA AAG CAG AGG CCT 180 Tyr Trp Ile Gln Trp Ile Lys Gln Arg Pro 35 40
GGA CAT GGC CTT GAG TGG ATT GGT GAG ATT 210 Gly His Gly Leu Glu Trp Ile Gly Glu Ile 45 50

		GGA Gly								240
		TTC Phe								270
		ACA Thr								300
		AGC Ser								330
		TAT Tyr								360
		AGC Ser								390
		GCA Ala								420
		TCC Ser								450
		GCG Ala								480
		ACA Thr								510
		TAC Tyr								540
		AAC Asn								570
GTG Val	CAC His	ACC Thr	TTC Phe 175	CCG Pro	GCT Ala	GTC Val	CTA Leu	CAG Gln 180	TCC Ser	600

126

TCA GGA CTC TAC TCC CTC AGC AGC GTG GTG 630 Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 190 185 ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG 660 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 195 ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC 690 Thr Tyr Ile Cys Asn Val Asn His Lys Pro 205 AGC AAC ACC AAG GTG GAC AAG AAA GTT GAG 720 Ser Asn Thr Lys Val Asp Lys Lys Val Glu 215 220 CCC AAA TCT TGT GAC AAA ACT CAC ACA TAA 750 Pro Lys Ser Cys Asp Lys Thr His Thr 225 (2) INFORMATION FOR SEQ ID NO:11: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 750 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Double (D) TOPOLOGY: linear MOLECULE TYPE: Other nucleic acid (ii) DESCRIPTION: 5G1.1 VH + IGHRL (Humanized Fd) (A) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: ATG AAG TGG AGC TGG GTT ATT CTC TTC CTC 30 Met Lys Trp Ser Trp Val Ile Leu Phe Leu -15-10 CTG TCA GTA ACT GCC GGC GTC CAC TCC CAA 60 Leu Ser Val Thr Ala Gly Val His Ser Gln GTC CAA CTG GTG CAA TCC GGC GCC GAG GTC 90 Val Gln Leu Val Gln Ser Gly Ala Glu Val AAG AAG CCA GGG GCC TCA GTC AAA GTG TCC 120 Lys Lys Pro Gly Ala Ser Val Lys Val Ser 15

	GCT Ala				150
	ATT Ile				180
	GGC Gly				210
	GGC Gly				240
	TTC Phe				270
	ACT Thr				300
	TCC Ser				330
	TAT Tyr				360
	AGC Ser				390
	CAA Gln				420
	TCC Ser				450
	GCG Ala				480
	ACA Thr				510

AAG GAC Lys Asp		CCC GAA Pro Glu					
TCG TGG Ser Trp							
GTG CAC Val His							
TCA GGA Ser Gly		TCC CTC Ser Leu					
ACC GTG Thr Val		AGC AGC Ser Ser					
		AAC GTG Asn Val					
		GTG GAC Val Asp					
		GAC AAA Asp Lys			A 750		
(2) (i)	(A) (B) (C) (D)	OLECULE	HARACTER H: 750 Nuclei DEDNESS: OGY: li TYPE: O	ISTICS: base pa c Acid Doubl near ther nu	airs .e acleic acid	(Humanized	Fd)
(xi) SE	EQUENCE	DESCRIPT	ION: SE	Q ID NO):12:		
		TGG GTT Trp Val -15			eu		

CTG Leu	TCA Ser	GTA Val	ACT Thr	GCC Ala -5	GGC Gly	GTC Val	CAC His	TCC Ser	CAA Gln 1	60
		CTG Leu							GTC Val	90
		CCA Pro							TCC Ser	120
		GCT Ala							AAT Asn	150
		ATT Ile							CCC Pro	180
		GGC Gly							ATC Ile	210
		GGC Gly							ACC Thr	240
		TTT Phe							ACG Thr	270
		ACT Thr							ATG Met	300
		TCC Ser							ACG Thr	330
		TAT Tyr							TTT Phe	360
		AGC Ser							GTT Val	390
		CAA Gln							TCG Ser	420

AGC Ser	GCC Ala	TCC Ser	ACC Thr 125	AAG Lys	GGC Gly	CCA Pro	TCG Ser	GTC Val 130	TTC Phe	450
		GCG Ala								480
		ACA Thr								510
AAG Lys	GAC Asp	TAC Tyr	TTC Phe 155	CCC Pro	GAA Glu	CCG Pro	GTG Val	ACG Thr 160	GTG Val	540
		AAC Asn								570
		ACC Thr								600
		CTC Leu								630
		CCC Pro								660
		ATC Ile								690
		ACC Thr								720
		TCT Ser							TAA	750

(2)	(i)	(<i>E</i> (E (C (I	SEÇ A) B) C) O) MO	UENC LE TY ST TO LECU	E CHENGTHE PRANT PRANT POLO JLE T	HARAC H: 7 Nuc DEDNE DGY: TYPE:	CTERI 726 k cleic ESS: lir ON:50	STIC base Aci Dou near ther 31.1	CS: pair d uble nucl VL +	eic ao KLV56 l ligh	ıin)
(xi)	SI	EQUEN	ICE I	DESCF	RIPTI	ON:	SEÇ	Q ID	NO:1	.3:	
		ATC Ile								30	
		CTG Leu								60	
		GGT Gly								90	
		CAG Gln								120	
		GGC Gly								150	
		AGC Ser								180	
		TAT Tyr								210	
		CTT Leu								240	
		GAT Asp								270	

	GGC Gly				300
	AGC Ser				330
	TAT Tyr				360
	TTG Leu				390
	ATA Ile				420
	TTC Phe				450
	AAA Lys				480
	CTG Leu				510
	GTA Val				540
-	TCG Ser				570
	CAG Gln				600
	AGC Ser				630
	TAC Tyr				660

TGC GAA GTC ACC CAT CAG GGC CTG AGC TCG 690 Cys Glu Val Thr His Gln Gly Leu Ser Ser 200 205	
CCC GTC ACA AAG AGC TTC AAC AGG GGA GAG 720 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu 210 215	
TGT TAG 726 Cys	
(2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 726 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION:5G1.1 VL +KLV56B (Humanized light chair	in)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
ATG GGA ATC CAA GGA GGG TCT GTC CTG TTC 30 Met Gly Ile Gln Gly Gly Ser Val Leu Phe -25 -20	
GGG CTG CTC GTC CTG GCT GTC TTC TGC 60 Gly Leu Leu Val Leu Ala Val Phe Cys -15 -10	
CAT TCA GGT CAT AGC CTG CAG GAT ATC CAG 90 His Ser Gly His Ser Leu Gln Asp Ile Gln -5	
ATG ACC CAG TCC CCG TCC TCC CTG TCC GCC 120 Met Thr Gln Ser Pro Ser Ser Leu Ser Ala 10 15	
TCT GTG GGC GAT AGG GTC ACC ATC ACC TGC 150 Ser Val Gly Asp Arg Val Thr Ile Thr Cys	
20 25	

		CAA Gln				210
		CTG Leu				240
		GGA Gly				270
		TCC Ser				300
		AGT Ser			TTC Phe 85	330
		TAC Tyr				360
		ACT Thr				390
		AAA Lys				420
		ATC Ile				450
CAG Gln	 	TCT Ser	 	 	 	480
		AAT Asn				510
		CAG Gln				540
		GGT Gly				570

ACA GAG CAG G Thr Glu Gln A		Asp Ser Thr T	
AGC CTC AGC A Ser Leu Ser S		Thr Leu Ser L	
GCA GAC TAC G Ala Asp Tyr G		Lys Val Tyr A	
TGC GAA GTC A		Gly Leu Ser S	
CCC GTC ACA A		Asn Arg Gly G	
TGT TAG Cys			726
(i) (A) (B) (C) (D) (ii)) LENGTH:) TYPE:) STRANDE) TOPOLOG MOLECULE TY	ARACTERISTICS 1 711 base r 1 Nucleic Acid 2 DNESS: Douk 3 SY: linear 3 PTION:5G1.1	S: pairs d ple nucleic acid
(xi) SEQUENC	CE DESCRIPTIO	ON: SEQ ID N	NO:15:
ATG GAC ATG A			
GGG CTC CTG (Gly Leu Leu I			
AGA TGT GAT A Arg Cys Asp 1			

		CTG Leu								120
		ATC Ile								150
		GGC Gly								180
		GGG Gly								210
		GCG Ala								240
		CGC Arg								270
		TTC Phe								300
CAG Gln	CCT Pro 80	GAA Glu	GAC Asp	TTC Phe	GCT Ala	ACG Thr 85	TAT Tyr	TAC Tyr	TGT Cys	330
		GTT Val								360
		GGT Gly								390
ACT Thr	GTG Val 110	GCT Ala	GCA Ala	CCA Pro	TCT Ser	GTC Val 115	TTC Phe	ATC Ile	TTC Phe	420
		TCT Ser								450
		TCT Ser								480

	TAT Tyr 140									510
	GTG Val 150									540
	CAG Gln 160									570
	GAC Asp 170									600
	ACG Thr 180									630
	AAA Lys 190									660
	GGC Gly 200									690
	AAC Asn 210					TAG				711
(2)	(i)) (1 (6 (1 L)	A) 3) 5)	QUENC LI TY ST TC OLECU	CE CHENGTH (PE: TRANI (POLO JLE T	HARAC H: 7 Nuc DEDNI DGY: TYPE:	CTERI 750 l Cleid ESS: lir : Ot	STIC base Dou near ther G1.1	CS: pair id uble nucl VH +	eic acid I IGHRLD
(xi)) SI	EQUE1	ICE I	DESCI	RIPT	ON:	SEÇ	O ID	NO:1	L6:
	AAG Lys									30

	GTA Val					60
	CTG Leu					90
	CCA Pro					120
	GCT Ala					150
	ATT Ile					180
	GGC Gly					210
	GGC Gly					240
	TTC Phe					270
	ACT Thr					300
	TCC Ser					330
	TAT Tyr				TTT Phe	360
	AGC Ser					390

TGG Trp	GGT Gly	CAA Gln	GGA Gly 115	ACC Thr	CTG Leu	GTC Val	ACT Thr	GTC Val 120	TCG Ser	420
		TCC Ser								450
		GCG Ala								480
		ACA Thr								510
		TAC Tyr								540
		AAC Asn								570
		ACC Thr								600
		CTC Leu								630
		CCC Pro								
		ATC Ile								690
		ACC Thr								720
		TCT Ser							ТАА	750

(2)	(i) (ii	(<i>P</i> (E (C (I	SEQ A) B) C) O)	UENC LE TY ST TO LECU	E CHENGTH PE: RANI POLO	Nuc DEDNE DGY: TYPE:	TERI 147 k leic ESS: lir Ot	STIC Dase Dou Dou near Ther	CS: pair id uble nucl scFv	eic ac DO12	
(xi)	SE	EQUEN	ICE I	DESCF	RIPTI	ON:	SEÇ	Q ID	NO:1	.7:	
	GCC Ala								CCG Pro 10	30	
	TCC Ser								AGG Arg 20	60	
	ACC Thr								AAC Asn 30	90	
	TAT Tyr								CAG Gln 40	120	
	CCT Pro								ATT Ile 50	150	
	GGT Gly								GTC Val 60	180	
	TCT Ser								GGA Gly 70	210	
	GAT Asp								CTG Leu 80	240	
	CCT Pro								TGT Cys 90	270	

	GTT Val				300
	GGT Gly				330
	GGT Gly				360
	GGT Gly				390
	TCC Ser				420
	TCA Ser				450
	TAT Tyr				480
	GTG Val				510
	TGG Trp				540
	AGC Ser				570
	CGT Arg				600
	AGT Ser				
	CGA Arg				660

		GCG Ala							AGC Ser 230	690		
		TGG Trp							CAA Gln 240	720		
		CTG Leu						TGA		747		
(2)	(i)	(I (C (I i)	SE(A) 3) C) O) M(QUENC LI T' S' TO DLECT	CE CHENGTHE PRESENTED POLICE TO THE POLICE T	HARAC H: S Nuc DEDNI DGY: TYPE:	CTERI 5248 cleid ESS: Ciu Ciu	ISTIC base Ac Dor rcula ther pET	CS: e pai id uble ar nucl	leic ac 505/NI	cid pression vec	tor
(2	xi)	SEQU	JENCI	E DE	SCRII	OIT?	1 : 5	SEQ	ID NO	0:18:		
T	GGCG2	AATGO	G GA	CGCG	CCCT	GTA	GCGG	CGC .	ATTA	AGCGCG	GCGGGTGTGG	50
T	GGTT	ACGC	G CAC	GCGT(GACC	GCT	ACAC'	rtg (CCAG	CGCCCT	AGCGCCCGCT	100
C	CTTT(CGCT	r TC	rtcc	CTTC	CTT	CTC	GCC .	ACGT:	rcgccg	GCTTTCCCCG	150
T	CAAG	CTCT	A AA	rcgg(GGGC	TCC	CTTT	AGG (GTTC	CGATTT	AGTGCTTTAC	200
G	GCAC	CTCG	A CC	CCAA	AAAA	CTT	GATT	AGG	GTGA	rggttc	ACGTAGTGGG	250
C	CATC	GCCC'	r GA	raga(CGGT	TTT	rcgc	CCT	TTGAG	CGTTGG	AGTCCACGTT	300
C'	TTTA	ATAG	r ggz	ACTC'	TTGT	TCC	AAAC	TGG .	AACA	ACACTC	AACCCTATCT	350
C	GGTC'	TATT(C TT	rtga'	TTTA	TAAG	GGGA'	rrr '	TGCC	GATTTC	GGCCTATTGG	400
\mathbf{T}'	ГААА)TAAA	G AG	CTGA'	TTTA	ACA	'AAAA	rtt .	AACG(CGAATT	TTAACAAAAT	450
A'	TAA(CGTT	r ac	AATT'	TCAG	GTG	GCAC'	TTT	TCGG	GGAAAT	GTGCGCGGAA	500
C	CCCT	ATTT(G TT	ratt'	TTTC	TAA	ATAC	ATT	CAAA	TATGTA	TCCGCTCATG	550
A	GACA	ATAA	C CC	TGAT:	TAAA	GCT	rcaa'	TAA '	TATT	GAAAAA	GGAAGAGTAT	600

GAGTATTCAA	CATTTCCGTG	TCGCCCTTAT	TCCCTTTTTT	GCGGCATTTT	650
GCCTTCCTGT	TTTTGCTCAC	CCAGAAACGC	TGGTGAAAGT	AAAAGATGCT	700
GAAGATCAGT	TGGGTGCACG	AGTGGGTTAC	ATCGAACTGG	ATCTCAACAG	750
CGGTAAGATC	CTTGAGAGTT	TTCGCCCCGA	AGAACGTTTT	CCAATGATGA	800
GCACTTTTAA	AGTTCTGCTA	TGTGGCGCGG	TATTATCCCG	TATTGACGCC	850
GGGCAAGAGC	AACTCGGTCG	CCGCATACAC	TATTCTCAGA	ATGACTTGGT	900
TGAGTACTCA	CCAGTCACAG	AAAAGCATCT	TACGGATGGC	ATGACAGTAA	950
GAGAATTATG	CAGTGCTGCC	ATAACCATGA	GTGATAACAC	TGCGGCCAAC	1000
TTACTTCTGA	CAACGATCGG	AGGACCGAAG	GAGCTAACCG	CTTTTTTGCA	1050
CAACATGGGG	GATCATGTAA	CTCGCCTTGA	TCGTTGGGAA	CCGGAGCTGA	1100
ATGAAGCCAT	ACCAAACGAC	GAGCGTGACA	CCACGATGCC	TGCAGCAATG	1150
GCAACAACGT	TGCGCAAACT	ATTAACTGGC	GAACTACTTA	CTCTAGCTTC	1200
CCGGCAACAA	TTAATAGACT	GGATGGAGGC	GGATAAAGTT	GCAGGACCAC	1250
TTCTGCGCTC	GGCCCTTCCG	GCTGGCTGGT	TTATTGCTGA	TAAATCTGGA	1300
GCCGGTGAGC	GTGGGTCTCG	CGGTATCATT	GCAGCACTGG	GGCCAGATGG	1350
TAAGCCCTCC	CGTATCGTAG	TTATCTACAC	GACGGGGAGT	CAGGCAACTA	1400
TGGATGAACG	AAATAGACAG	ATCGCTGAGA	TAGGTGCCTC	ACTGATTAAG	1450
CATTGGTAAC	TGTCAGACCA	AGTTTACTCA	TATATACTTT	AGATTGATTT	1500
AAAACTTCAT	TTTTAATTTA	AAAGGATCTA	GGTGAAGATC	CTTTTTGATA	1550
ATCTCATGAC	CAAAATCCCT	TAACGTGAGT	TTTCGTTCCA	CTGAGCGTCA	1600
GACCCCGTAG	AAAAGATCAA	AGGATCTTCT	TGAGATCCTT	TTTTTCTGCG	1650
CGTAATCTGC	TGCTTGCAAA	CAAAAAAACC	ACCGCTACCA	GCGGTGGTTT	1700
GTTTGCCGGA	TCAAGAGCTA	CCAACTCTTT	TTCCGAAGGT	AACTGGCTTC	1750
AGCAGAGCGC	AGATACCAAA	TACTGTCCTT	CTAGTGTAGC	CGTAGTTAGG	1800
CCACCACTTC	AAGAACTCTG	TAGCACCGCC	TACATACCTC	GCTCTGCTAA	1850
TCCTGTTACC	AGTGGCTGCT	GCCAGTGGCG	ATAAGTCGTG	TCTTACCGGG	1900

TTGGACTCAA	GACGATAGTT	ACCGGATAAG	GCGCAGCGGT	CGGGCTGAAC	1950
GGGGGTTCG	TGCACACAGC	CCAGCTTGGA	GCGAACGACC	TACACCGAAC	2000
TGAGATACCT	ACAGCGTGAG	CTATGAGAAA	GCGCCACGCT	TCCCGAAGGG	2050
AGAAAGGCGG	ACAGGTATCC	GGTAAGCGGC	AGGGTCGGAA	CAGGAGAGCG	2100
CACGAGGGAG	CTTCCAGGGG	GAAACGCCTG	GTATCTTTAT	AGTCCTGTCG	2150
GGTTTCGCCA	CCTCTGACTT	GAGCGTCGAT	TTTTGTGATG	CTCGTCAGGG	2200
GGGCGGAGCC	TATGGAAAAA	CGCCAGCAAC	GCGGCCTTTT	TACGGTTCCT	2250
GGCCTTTTGC	TGGCCTTTTG	CTCACATGTT	CTTTCCTGCG	TTATCCCCTG	2300
ATTCTGTGGA	TAACCGTATT	ACCGCCTTTG	AGTGAGCTGA	TACCGCTCGC	2350
CGCAGCCGAA	CGACCGAGCG	CAGCGAGTCA	GTGAGCGAGG	AAGCGGAAGA	2400
GCGCCTGATG	CGGTATTTTC	TCCTTACGCA	TCTGTGCGGT	ATTTCACACC	2450
GCATATATGG	TGCACTCTCA	GTACAATCTG	CTCTGATGCC	GCATAGTTAA	2500
GCCAGTATAC	ACTCCGCTAT	CGCTACGTGA	CTGGGTCATG	GCTGCGCCCC	2550
GACACCCGCC	AACACCCGCT	GACGCGCCCT	GACGGGCTTG	TCTGCTCCCG	2600
GCATCCGCTT	ACAGACAAGC	TGTGACCGTC	TCCGGGAGCT	GCATGTGTCA	2650
GAGGTTTTCA	CCGTCATCAC	CGAAACGCGC	GAGGCAGCTG	CGGTAAAGCT	2700
CATCAGCGTG	GTCGTGAAGC	GATTCACAGA	TGTCTGCCTG	TTCATCCGCG	2750
TCCAGCTCGT	TGAGTTTCTC	CAGAAGCGTT	AATGTCTGGC	TTCTGATAAA	2800
GCGGGCCATG	TTAAGGGCGG	TTTTTTCCTG	TTTGGTCACT	GATGCCTCCG	2850
TGTAAGGGGG	ATTTCTGTTC	ATGGGGGTAA	TGATACCGAT	GAAACGAGAG	2900
AGGATGCTCA	CGATACGGGT	TACTGATGAT	GAACATGCCC	GGTTACTGGA	2950
ACGTTGTGAG	GGTAAACAAC	TGGCGGTATG	GATGCGGCGG	GACCAGAGAA	3000
AAATCACTCA	GGGTCAATGC	CAGCGCTTCG	TTAATACAGA	TGTAGGTGTT	3050
CCACAGGGTA	GCCAGCAGCA	TCCTGCGATG	CAGATCCGGA	ACATAATGGT	3100
GCAGGGCGCT	GACTTCCGCG	TTTCCAGACT	TTACGAAACA	CGGAAACCGA	3150

AGACCATTCA	TGTTGTTGCT	CAGGTCGCAG	ACGTTTTGCA	GCAGCAGTCG	3200
CTTCACGTTC	GCTCGCGTAT	CGGTGATTCA	TTCTGCTAAC	CAGTAAGGCA	3250
ACCCCGCCAG	CCTAGCCGGG	TCCTCAACGA	CAGGAGCACG	ATCATGCGCA	3300
CCCGTGGGGC	CGCCATGCCG	GCGATAATGG	CCTGCTTCTC	GCCGAAACGT	3350
TTGGTGGCGG	GACCAGTGAC	GAAGGCTTGA	GCGAGGGCGT	GCAAGATTCC	3400
GAATACCGCA	AGCGACAGGC	CGATCATCGT	CGCGCTCCAG	CGAAAGCGGT	3450
CCTCGCCGAA	AATGACCCAG	AGCGCTGCCG	GCACCTGTCC	TACGAGTTGC	3500
ATGATAAAGA	AGACAGTCAT	AAGTGCGGCG	ACGATAGTCA	TGCCCCGCGC	3550
CCACCGGAAG	GAGCTGACTG	GGTTGAAGGC	TCTCAAGGGC	ATCGGTCGAG	3600
ATCCCGGTGC	CTAATGAGTG	AGCTAACTTA	CATTAATTGC	GTTGCGCTCA	3650
CTGCCCGCTT	TCCAGTCGGG	AAACCTGTCG	TGCCAGCTGC	ATTAATGAAT	3700
CGGCCAACGC	GCGGGGAGAG	GCGGTTTGCG	TATTGGGCGC	CAGGGTGGTT	3,750
TTTCTTTTCA	CCAGTGAGAC	GGGCAACAGC	TGATTGCCCT	TCACCGCCTG	3800
GCCCTGAGAG	AGTTGCAGCA	AGCGGTCCAC	GCTGGTTTGC	CCCAGCAGGC	3850
GAAAATCCTG	TTTGATGGTG	GTTAACGGCG	GGATATAACA	TGAGCTGTCT	3900
TCGGTATCGT	CGTATCCCAC	TACCGAGATA	TCCGCACCAA	CGCGCAGCCC	3950
GGACTCGGTA	ATGGCGCGCA	TTGCGCCCAG	CGCCATCTGA	TCGTTGGCAA	4000
CCAGCATCGC	AGTGGGAACG	ATGCCCTCAT	TCAGCATTTG	CATGGTTTGT	4050
TGAAAACCGG	ACATGGCACT	CCAGTCGCCT	TCCCGTTCCG	CTATCGGCTG	4100
AATTTGATTG	CGAGTGAGAT	ATTTATGCCA	GCCAGCCAGA	CGCAGACGCG	4150
CCGAGACAGA	ACTTAATGGG	CCCGCTAACA	GCGCGATTTG	CTGGTGACCC	4200
AATGCGACCA	GATGCTCCAC	GCCCAGTCGC	GTACCGTCTT	CATGGGAGAA	4250
AATAATACTG	TTGATGGGTG	TCTGGTCAGA	GACATCAAGA	AATAACGCCG	4300
GAACATTAGT	GCAGGCAGCT	TCCACAGCAA	TGGCATCCTG	GTCATCCAGC	4350
GGATAGTTAA	TGATCAGCCC	ACTGACGCGT	TGCGCGAGAA	GATTGTGCAC	4400
CGCCGCTTTA	CAGGCTTCGA	CGCCGCTTCG	TTCTACCATC	GACACCACCA	4450

CGCTGGCACC	CAGTTGATCG	GCGCGAGATT	TAATCGCCGC	GACAATTTGC	4500
GACGGCGCGT	GCAGGGCCAG	ACTGGAGGTG	GCAACGCCAA	TCAGCAACGA	4550
CTGTTTGCCC	GCCAGTTGTT	GTGCCACGCG	GTTGGGAATG	TAATTCAGCT	4600
CCGCCATCGC	CGCTTCCACT	TTTTCCCGCG	TTTTCGCAGA	AACGTGGCTG	4650
GCCTGGTTCA	CCACGCGGGA	AACGGTCTGA	TAAGAGACAC	CGGCATACTC	4700
TGCGACATCG	TATAACGTTA	CTGGTTTCAC	ATTCACCACC	CTGAATTGAC	4750
TCTCTTCCGG	GCGCTATCAT	GCCATACCGC	GAAAGGTTTT	GCGCCATTCG	4800
ATGGTGTCCG	GGATCTCGAC	GCTCTCCCTT	ATGCGACTCC	TGCATTAGGA	4850
AGCAGCCCAG	TAGTAGGTTG	AGGCCGTTGA	GCACCGCCGC	CGCAAGGAAT	4900
GGTGCATGCG	GTACCAGCTG	TTGACAATTA	ATCATCCGGC	TCGTATAATA	4950
GTACTGTGTG	GAATTGTGAG	CGCTCACAAT	TCCACACATC	TAGAAATAAT	5000
TTTGTTTAAC	TTTAAGAAGG	AGATATACCA	TGGAGATCTG	GATCCATCGA	5050
TGAATTCGAG	CTCCGTCGAC	AAGCTTGCGG	CCGCACTCGA	GCACCACCAC	5100
CACCACCACT	GAGATCCGGC	TGCTAACAAA	GCCCGAAAGG	AAGCTGAGTT	5150
GGCTGCTGCC	ACCGCTGAGC	AATAACTAGC	ATAACCCCTT	GGGGCCTCTA	5200
AACGGGTCTT	GAGGGGTTTT	TTGCTGAAAG	GAGGAACTAT	ATCCGGAT	5248

(2)	(i) (ii	(A (E (C	SEQ	UENC LE TY SI TC OLECU	E CH INGTH IPE: IRANI IPOLO ILE I	IARAC I: 7 Nuc DEDNE DGY:	TERI 83 k leic SSS: lir Ot		CS: pair d able nucl	eic acid V (His Tagged)
(xi)	SE	EQUEN	ICE I	ESCF	RIPTI	ON:	SEÇ) ID	NO:1	.9:
		AAT Asn								30
		TTG Leu								60
		ATA Ile								90
		AGT Ser								120
		CAG Gln								150
		CTC Leu								180
		GGG Gly								210
		TCT Ser								240
		CCT Pro								270
		TAC Tyr								300

	ACG Thr				330
	AAA Lys				360
	GGG Gly				390
	AAG Lys				420
	AAG Lys				450
	GCA Ala				480
	TAT Tyr				510
	AAG Lys				540
	AGT Ser				570
	ACT Thr				600
	GAC Asp				630
	ATG Met				660

149

```
ACA GCC TTG TAT TTC TGT GTA AGA GAG ACT 690
Thr Ala Leu Tyr Phe Cys Val Arg Glu Thr
                225
TAT TAC TAC GGG ATT AGT CCC GTC TTC GAT 720
Tyr Tyr Tyr Gly Ile Ser Pro Val Phe Asp
                235
GTC TGG GGC ACA GGG ACC ACG GTC ACC GTC 750
Val Trp Gly Thr Gly Thr Thr Val Thr Val
                245
TCC TCA CTC GAG CAC CAC CAC CAC CAC CAC 780
Ser Ser Leu Glu His His His His His
                                     260
                255
                                         783
TGA
        INFORMATION FOR SEQ ID NO:20:
(2)
             SEQUENCE CHARACTERISTICS:
     (i)
                  LENGTH:
                           747 base pairs
          (A)
                  TYPE: Nucleic Acid
          (B)
                  STRANDEDNESS: Double
          (C)
                  TOPOLOGY:
                            linear
          (D)
              MOLECULE TYPE: Other nucleic acid
     (ii)
                  DESCRIPTION: 5G1.1 scFv C012 (humanized)
           (A)
      SEQUENCE DESCRIPTION:
                              SEQ ID NO:20:
ATG GCC GAT ATC CAG ATG ACC CAG TCC CCG 30
Met Ala Asp Ile Gln Met Thr Gln Ser Pro
                                      10
 1
                  5
TCC TCC CTG TCC GCC TCT GTG GGC GAT AGG 60
Ser Ser Leu Ser Ala Ser Val Gly Asp Arg
                  15
GTC ACC ATC ACC TGC GGC GCC AGC GAA AAC 90
Val Thr Ile Thr Cys Gly Ala Ser Glu Asn
                  25
ATC TAT GGC GCG CTG AAC TGG TAT CAA CAG 120
Ile Tyr Gly Ala Leu Asn Trp Tyr Gln Gln
                  35
AAA CCC GGG AAA GCT CCG AAG CTT CTG ATT 150
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
```

		GCG Ala								180
		CGC Arg								210
ACG Thr	GAT Asp	TTC Phe	ACT Thr	CTG Leu 75	ACC Thr	ATC Ile	AGC Ser	AGT Ser	CTG Leu 80	240
		GAA Glu								270
		GTT Val								300
		GGT Gly								330
		GGT Gly								360
		GGT Gly								390
		TCC Ser								420
		TCA Ser								450
		TAT Tyr								480
		GTG Val								510

CTG Leu	GAA Glu	TGG Trp	ATG Met	GGT Gly 175	GAG Glu	ATC Ile	TTA Leu	CCG Pro	GGC Gly 180	540
	GGT Gly									570
	GAC Asp									600
TCG Ser	ACT Thr	AGT Ser	ACA Thr	GTA Val 205	TAC Tyr	ATG Met	GAG Glu	CTC Leu	TCC Ser 210	630
	CTG Leu									660
	TGC Cys									690
	AAT Asn									720
	ACC Thr							TGA		747

(2)	(i) (ii	(A (E (C (I	SEQ () () () () ()	TY ST TC LECU	E CHENGTH PE: PRAND POLO JLE T	IARACI: 7 Nuc DEDNE DGY: TYPE:	TERI 47 b leic SS: lin Ot	STIC ase Aci Dou near ther	S: pair d ble nucl scFv	eic acid DO12B nnized scFv)	
(xi)	SE	EQUEN	ICE I	DESCF	RIPTI	ON:	SEÇ) ID	NO:2	21:	
				CAG Gln 5						30	
				GCC Ala 15						60	
				TGC Cys 25						90	
				CTG Leu 35						120	
				GCT Ala 45						150	
				AAC Asn 55						180	
				TCT Ser 65						210	
				CTG Leu 75						240	
				TTC Phe 85						270	

CAG Gln	AAC Asn	GTT Val	TTA Leu	AAT Asn 95	ACT Thr	CCG Pro	TTG Leu	ACT Thr	TTC Phe 100	300
		GGT Gly								330
		GGT Gly								360
		GGT Gly								390
		TCC Ser								420
		TCA Ser							GCT Ala 150	450
		TAT Tyr								480
		GTG Val								510
		TGG Trp								540
		AGC Ser		_						570
CAG Gln	GGC Gly	CGT Arg	GTT Val	ACT Thr 195	ATG Met	ACG Thr	CGT Arg	GAC Asp	ACT Thr 200	600
		AGT Ser								630
		CGA Arg								660

TAT Tyr	TGC Cys	GCG Ala	CGT Arg	TAT Tyr 225	TTT Phe	TTT Phe	GGT Gly	TCT Ser	AGC Ser 230	690
CCG Pro	AAT Asn	TGG Trp	TAT Tyr	TTT Phe 235	GAT Asp	GTT Val	TGG Trp	GGT Gly	CAA Gln 240	720
	ACC Thr							TGA		747
(2)	(i)	(<i>I</i> (E (C (I	SE(A) B) C) O) M(QUENC LI T' S' T(OLECT	CE CHENGTHE PRESENTE OF CLEAR PROBLEM TO THE CHENT		TERI 747 l cleid ESS: lin : Of	ISTIC case Dou near ther G1.1	CS: pain id uble nucl scFv	cs leic acid v DO12C anized scFv)
(xi)) SI	EQUEI	NCE I	DESCI	RIPT	ION:	SE	Q ID	NO:2	22:
	GCC Ala									30
	TCC Ser									60
	ACC Thr		Thr	Cys	Gly		Ser	Glu	Asn	90
	TAT Tyr									120
	CCT Pro									150
	GGT Gly									180

		CGC Arg								210
		TTC Phe								240
CAG Gln	CCT Pro	GAA Glu	GAC Asp	TTC Phe 85	GCT Ala	ACG Thr	TAT Tyr	TAC Tyr	TGT Cys 90	270
CAG Gln	AAC Asn	GTT Val	TTA Leu	AAT Asn 95	ACT Thr	CCG Pro	TTG Leu	ACT Thr	TTC Phe 100	300
GGA Gly	CAG Gln	GGT Gly	ACC Thr	AAG Lys 105	GTG Val	GAA Glu	ATA Ile	AAA Lys	CGT Arg 110	330
		GGT Gly								360
		GGT Gly								390
		TCC Ser								420
GGG Gly	GCC Ala	TCA Ser	GTC Val	AAA Lys 145	GTG Val	TCC Ser	TGT Cys	AAA Lys	GCT Ala 150	450
		ТАТ Туг								480
CAA Gln	TGG Trp	GTG Val	CGT Arg	CAG Gln 165	GCC Ala	CCC Pro	GGG Gly	CAG Gln	GGC Gly 170	510
		TGG Trp								540

TCT Ser	GGT Gly	AGC Ser	ACC Thr	GAA Glu 185	TAT Tyr	GCC Ala	CAA Gln	AAA Lys	TTC Phe 190	570
CAG Gln	GGC Gly	CGT Arg	GTT Val	ACT Thr 195	ATG Met	ACG Thr	CGT Arg	GAC Asp	ACT Thr 200	600
TCG Ser	ACT Thr	AGT Ser	ACA Thr	GTA Val 205	TAC Tyr	ATG Met	GAG Glu	CTC Leu	TCC Ser 210	630
AGC Ser	CTG Leu	CGA Arg	TCG Ser	GAG Glu 215	GAC Asp	ACG Thr	GCC Ala	GTC Val	TAT Tyr 220	660
TAT Tyr	TGC Cys	GCG Ala	CGT Arg	TAT Tyr 225	TTT Phe	TTT Phe	GGT Gly	TCT Ser	AGC Ser 230	690
CCG Pro	AAT Asn	TGG Trp	TAT Tyr	TTT Phe 235	GAT Asp	GTT Val	TGG Trp	GGT Gly	CAA Gln 240	720
	ACC Thr							TGA		747
(2)	(i) (1 (1 (1 i)	A) B) C) D) M	QUEN(L: T' S' T(OLEC	CE C ENGT: YPE: TRAN: OPOL ULE	HARA H: Nu DEDN OGY: TYPE	CTER 747 clei ESS: li : O	ISTI base c Ac Do near ther	CS: pair id uble nuc scF	rs leic acid v DO12D anized scFv)
(xi) S	EQUE	NCE :	DESC	RIPT	ION:	SE	Q ID	NO:	23:
	GCC Ala									
	TCC Ser									60

	ACC Thr									90
	TAT Tyr									120
	CCT Pro									150
	GGT Gly									180
	TCT Ser									210
ACG Thr	GAT Asp	TTC Phe	ACT Thr	CTG Leu 75	ACC Thr	ATC Ile	AGC Ser	AGT Ser	CTG Leu 80	240
CAG Gln	CCT Pro	GAA Glu	GAC Asp	TTC Phe 85	GCT Ala	ACG Thr	TAT Tyr	TAC Tyr	TGT Cys 90	270
	AAC Asn									300
	CAG Gln									330
	GGC Gly									360
	GGT Gly									390
	CAA Gln									420

	GCC Ala								GCT Ala 150	450
	GGC Gly								ATT Ile 160	480
CAA Gln	TGG Trp	GTG Val	CGT Arg	CAG Gln 165	GCC Ala	CCC Pro	GGG Gly	CAG Gln	GGC Gly 170	510
CTG Leu	GAA Glu	TGG Trp	ATG Met	GGT Gly 175	GAG Glu	ATC Ile	TTA Leu	CCG Pro	GGC Gly 180	540
	GGT Gly								TTC Phe 190	570
	GGC Gly								ACT Thr 200	600
	ACT Thr								TCC Ser 210	630
	CTG Leu								TAT Tyr 220	660
	TGC Cys								AGC Ser 230	690
	AAT Asn								CAA Gln 240	720
	ACC Thr							TGA		747

(2)	(i)	(A (E (C (I	SEQ () () () () () ()	UENC LE TY ST TC OLECU	E CH INGTH IPE: IRAND IPOLO ILE I	IARAC I: 7 Nuc DEDNE DGY:	TERI 47 k leic ISS: lin	STIC base Aci Dou bear ther	CS: pair .d .ble nucl	eic acid CO13 (humanized)
(xi)	SE	EQUEN	ICE I	DESCF	RIPTI	ON:	SEÇ) ID	NO:2	24:
		GAT Asp								30
		CTG Leu								60
		ATC Ile								90
		GGC Gly		CTG					CAG	120
		GGG Gly								150
		GCG Ala								180
Pro	Ser	CGC Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	
		TTC Phe								240
		GAA Glu								270
		GTT Val								300

GGA Gly	CAG Gln	GGT Gly	ACC Thr	AAG Lys 105	GTG Val	GAA Glu	ATA Ile	AAA Lys	CGT Arg 110	330
		GGT Gly								360
		GGT Gly								390
		TCC Ser								420
		TCA Ser								450
		TAT Tyr								480
		GTG Val								510
		TGG Trp								540
		AGC Ser								570
		CGT Arg								600
TCG Ser	ACT Thr	AGT Ser	ACA Thr	GTA Val 205	TAC Tyr	ATG Met	GAG Glu	CTC Leu	TCC Ser 210	630
		CGA Arg								660
		GCG Ala								690

CCG AAT TGG TAT TTT GAT GTT TGG GGT CAA 720 Pro Asn Trp Tyr Phe Asp Val Trp Gly Gln 235 GGA ACC CTG GTC ACT GTC TCG AGC TGA 747 Gly Thr Leu Val Thr Val Ser Ser 245 INFORMATION FOR SEQ ID NO:25: (2) SEQUENCE CHARACTERISTICS: (i)LENGTH: 747 base pairs (A) TYPE: Nucleic Acid (B) (C) STRANDEDNESS: Double TOPOLOGY: linear (D) MOLECULE TYPE: Other nucleic acid (ii) DESCRIPTION:5G1.1 scFv C014 (humanized) SEQ ID NO:25: SEQUENCE DESCRIPTION: (xi) ATG GCC GAT ATC CAG ATG ACC CAG TCC CCG 30 Met Ala Asp Ile Gln Met Thr Gln Ser Pro TCC TCC CTG TCC GCC TCT GTG GGC GAT AGG 60 Ser Ser Leu Ser Ala Ser Val Gly Asp Arg 15 GTC ACC ATC ACC TGC GGC GCC AGC GAA AAC 90 Val Thr Ile Thr Cys Gly Ala Ser Glu Asn 25 ATC TAT GGC GCG CTG AAC TGG TAT CAA CAG 120

Ile Tyr Gly Ala Leu Asn Trp Tyr Gln Gln

AAA CCC GGG AAA GCT CCG AAG CTT CTG ATT 150

Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile

45

TAC GGT GCG ACG AGC CTG CAG TCT GGA GTC 180

Tyr Gly Ala Thr Ser Leu Gln Ser Gly Val

55

CCT TCT CGC TTC TCT GGA TCC GGC TCC GGA 210

Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly

65

70

ACG Thr	GAT Asp	TTC Phe	ACT Thr	CTG Leu 75	ACC Thr	ATC Ile	AGC Ser	AGT Ser	CTG Leu 80	240
CAG Gln	CCT Pro	GAA Glu	GAC Asp	TTC Phe 85	GCT Ala	ACG Thr	TAT Tyr	TAC Tyr	TGT Cys 90	270
CAG Gln	AAC Asn	GTT Val	TTA Leu	AAT Asn 95	ACT Thr	CCG Pro	TTG Leu	ACT Thr	TTC Phe 100	300
GGA Gly	CAG Gln	GGT Gly	ACC Thr	AAG Lys 105	GTG Val	GAA Glu	ATA Ile	AAA Lys	CGT Arg 110	330
ACT Thr	GGC Gly	GGT Gly	GGT Gly	GGT Gly 115	TCT Ser	GGT Gly	GGC Gly	GGT Gly	GGA Gly 120	360
			GGC Gly							390
			GGC Gly							420
			GTC Val							450
			ATT Ile							480
			CGT Arg							510
CTG Leu	GAA Glu	TGG Trp	ATG Met	GGT Gly 175	GAG Glu	ATC Ile	TTA Leu	CCG Pro	GGC Gly 180	540
			ACC Thr							570
			GTT Val							600

ACT Thr		Tyr			630
CTG Leu		Asp			660
TGC Cys					690
AAT Asn					720
ACC Thr				TGA	747

(2) INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: LENGTH: 747 base pairs (A) Nucleic Acid (B) TYPE: STRANDEDNESS: Double (C) (D) TOPOLOGY: linear MOLECULE TYPE: Other nucleic acid (ii) DESCRIPTION:5G1.1 scFv C015 (humanized) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: ATG GCC GAT ATC CAG ATG ACC CAG TCC CCG 30 Met Ala Asp Ile Gln Met Thr Gln Ser Pro 5 TCC TCC CTG TCC GCC TCT GTG GGC GAT AGG 60 Ser Ser Leu Ser Ala Ser Val Gly Asp Arg 20 15 GTC ACC ATC ACC TGC CGT GCT AGC GAA AAC 90 Val Thr Ile Thr Cys Arg Ala Ser Glu Asn 25 30 ATC TAT GGC GCG CTG AAC TGG TAT CAA CAG 120

Ile Tyr Gly Ala Leu Asn Trp Tyr Gln Gln 35 40

		GGG Gly								150
TAC Tyr	GGT Gly	GCG Ala	ACG Thr	AGC Ser 55	CTG Leu	CAG Gln	TCT Ser	GGA Gly	GTC Val 60	180
		CGC Arg								210
		TTC Phe								240
CAG Gln	CCT Pro	GAA Glu	GAC Asp	TTC Phe 85	GCT Ala	ACG Thr	TAT Tyr	TAC Tyr	TGT Cys 90	270
		GTT Val								300
		GGT Gly								330
		GGT Gly								360
		GGT Gly								390
		TCC Ser								420
		TCA Ser								450
		TAT Tyr								480
		GTG Val								510

GAA Glu					GGC Gly 180	540
GGT Gly					TTT Phe 190	570
GAC Asp					ACT Thr 200	600
ACT Thr					TCC Ser 210	630
CTG Leu					TAT Tyr 220	660
TGC Cys					AGC Ser 230	690
AAT Asn					CAA Gln 240	720
ACC Thr				TGA		747

and.