Class 8: Breast Cancer Mini Project

Justin Lu (A16318305)

About

In today's lab we will work with fine needle aspiration (FNA) of a breast mass data from the University of Wisconsin

Data Import

```
# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis radius	_mean	texture_mean p	perimeter_mean	area_mean	n
842302	M	17.99	10.38	122.80	1001.0	0
842517	M	20.57	17.77	132.90	1326.0	0
84300903	M	19.69	21.25	130.00	1203.0	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.0)
843786	M	12.45	15.70	82.57	477.	1
	${\tt smoothness_mean}$	compa	ctness_mean con	ncavity_mean c	oncave.po:	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean fi	ractal_	_dimension_mean	radius_se te	xture_se]	perimeter_se
842302	0.2419		0.07871	1.0950	0.9053	8.589
842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445

84358402	0.1809		0.05883		0.7813	5.438
843786	0.2087		0.07613		0.8902	2.217
	area_se smoothne	_		•	_	
842302		006399	0.04904			0.01587
842517		005225	0.01308			0.01340
84300903		006150	0.04006			0.02058
84348301		009110	0.07458			0.01867
84358402		011490	0.02461			0.01885
843786		007510	0.03345			0.01137
	symmetry_se frac	_	_	_	ture_worst	
842302	0.03003	0.0	006193	25.38	17.33	
842517	0.01389	0.0	03532	24.99	23.41	
84300903	0.02250	0.0	04571	23.57	25.53	
84348301	0.05963	0.0	09208	14.91	26.50	
84358402	0.01756	0.0	05115	22.54	16.67	
843786	0.02165	0.0	05082	15.47	23.75	
	perimeter_worst	area_worst	smoothness	s_worst compa	ctness_wors	t
842302	184.60	2019.0		0.1622	0.665	6
842517	158.80	1956.0		0.1238	0.186	6
84300903	152.50	1709.0		0.1444	0.424	:5
84348301	98.87	567.7		0.2098	0.866	3
84358402	152.20	1575.0		0.1374	0.205	0
843786	103.40	741.6		0.1791	0.524	.9
	concavity_worst	concave.poi	.nts_worst	symmetry_wor	st	
842302	0.7119		0.2654	0.46	01	
842517	0.2416		0.1860	0.27	50	
84300903	0.4504		0.2430	0.36	13	
84348301	0.6869		0.2575	0.66	38	
84358402	0.4000		0.1625	0.23	64	
843786	0.5355		0.1741	0.39	85	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

Q. How many patients are in this dataset?

nrow(wisc.df)

[1] 569

```
table(wisc.df$diagnosis)
 В
      М
357 212
    Q3. How many variables/features in the data are suffixed with _mean?
  colnames(wisc.df)
 [1] "diagnosis"
                                "radius_mean"
 [3] "texture_mean"
                                "perimeter_mean"
                                "smoothness mean"
 [5] "area_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                "symmetry_mean"
[11] "fractal_dimension_mean"
                                "radius_se"
[13] "texture_se"
                                 "perimeter_se"
                                "smoothness_se"
[15] "area_se"
[17] "compactness_se"
                                "concavity_se"
[19] "concave.points_se"
                                "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                "perimeter_worst"
[25] "area_worst"
                                "smoothness_worst"
[27] "compactness_worst"
                                 "concavity_worst"
[29] "concave.points_worst"
                                "symmetry_worst"
[31] "fractal_dimension_worst"
  length(grep("mean", colnames(wisc.df)))
[1] 10
  grep("mean", colnames(wisc.df), value = 1)
 [1] "radius_mean"
                               "texture_mean"
                                                          "perimeter_mean"
 [4] "area_mean"
                               "smoothness_mean"
                                                          "compactness_mean"
 [7] "concavity_mean"
                               "concave.points_mean"
                                                          "symmetry_mean"
[10] "fractal_dimension_mean"
```

Q2. How many of the observations have a malignant diagnosis?

Initial Analysis

Before analysis, I want to take out the expert diagnosis column (a.k.a the answer) from our dataset.

```
# We can use -1 here to remove the first column
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)</pre>
```

[1] M M M M M M M Levels: B M

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean text	ure_mean	perimete	er_mean	area_mean	smoothr	ness_mean
842302	17.99	10.38		122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_mean	concavit	ty_mean o	concave.	points_mea	n symme	etry_mean
842302	0.27760		0.3001		0.1471	.0	0.2419
842517	0.07864		0.0869		0.0701	.7	0.1812
84300903	0.15990		0.1974		0.1279	90	0.2069
84348301	0.28390		0.2414		0.1052	20	0.2597
84358402	0.13280		0.1980		0.1043	30	0.1809
843786	0.17000		0.1578		0.0808	39	0.2087
	fractal_dimension	n_mean ra	adius_se	texture	e_se perime	eter_se	area_se
842302	0	.07871	1.0950	0.9	053	8.589	153.40
842517	0	.05667	0.5435	0.7	'339	3.398	74.08
84300903	0	.05999	0.7456	0.7	'869	4.585	94.03
84348301	0	.09744	0.4956	1.1	.560	3.445	27.23
84358402	0	.05883	0.7572	0.7	'813	5.438	94.44
843786	0	.07613	0.3345	0.8	3902	2.217	27.19
	smoothness_se co	mpactness	s_se cond	cavity_s	se concave.	points_	se
842302	0.006399	0.04	1904	0.0537	'3	0.015	87
842517	0.005225	0.01	L308	0.0186	30	0.013	340
84300903	0.006150	0.04	1006	0.0383	32	0.020)58
84348301	0.009110	0.07	7458	0.0566	51	0.018	867

84358402	0.011490	0.0246	0.0	05688	0.01885
843786	0.007510	0.0334	15 0.0	03672	0.01137
	symmetry_se frac	ctal_dimensi	ion_se rad	ius_worst	texture_worst
842302	0.03003	0.0	006193	25.38	17.33
842517	0.01389	0.0	003532	24.99	23.41
84300903	0.02250	0.0	004571	23.57	25.53
84348301	0.05963	0.0	009208	14.91	26.50
84358402	0.01756	0.0	005115	22.54	16.67
843786	0.02165	0.0	05082	15.47	23.75
	${\tt perimeter_worst}$	area_worst	smoothness	s_worst c	ompactness_worst
842302	184.60	2019.0		0.1622	0.6656
842517	158.80	1956.0		0.1238	0.1866
84300903	152.50	1709.0		0.1444	0.4245
84348301	98.87	567.7		0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	<pre>concavity_worst</pre>	concave.poi	-	•	_worst
842302	0.7119		0.2654		0.4601
842517	0.2416		0.1860		0.2750
84300903	0.4504		0.2430		0.3613
84348301	0.6869		0.2575		0.6638
84358402	0.4000		0.1625		0.2364
843786	0.5355		0.1741		0.3985
	fractal_dimension	_			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

Clustering

We can try a kmeans() clustering first

```
km <- kmeans (wisc.data, centers = 2)
table(km$cluster)</pre>
```

1 2

131 438

Cross-table

```
table(km$cluster, diagnosis)

diagnosis
    B M
1 1 130
```

Let's try hclust() - the key input required for hclust() is a distance matrix as produced by the dist() funciton.

```
hc <- hclust(dist(wisc.data))</pre>
```

I can make a tree-like figure

plot(hc)

2 356 82

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

##PCA

Do we need to scale the data?

We can look at the sd of each column (original variable)

```
round(apply(wisc.data,2,sd))
```

radius_mean	texture_mean	perimeter_mean
4	4	24
area_mean	${\tt smoothness_mean}$	compactness_mean
352	0	0
${\tt concavity_mean}$	concave.points_mean	symmetry_mean
0	0	0
$fractal_dimension_mean$	radius_se	texture_se
0	0	1
perimeter_se	area_se	${\tt smoothness_se}$
2	45	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	${\tt fractal_dimension_se}$	radius_worst
0	0	5
texture_worst	perimeter_worst	area_worst
6	34	569
${\tt smoothness_worst}$	${\tt compactness_worst}$	concavity_worst
0	0	0
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
0	0	0

Yes we need to scale. We will run prcomp() with scale = TRUE.

```
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                  PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427\ 0.6324\ 0.72636\ 0.79239\ 0.84734\ 0.88759\ 0.91010
                           PC8
                                   PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
```

```
PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649\ 0.98915\ 0.99113\ 0.99288\ 0.99453\ 0.99557\ 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2 plot)...

```
library (ggplot2)
res <- as.data.frame(wisc.pr$x)

ggplot(res) + aes(PC1, PC2, col = diagnosis) + geom_point()</pre>
```


##Combining Methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method = "ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

TO get my clustering result/membership vector, I need to "cut" the tree with the cutree() function

```
grps <- cutree(hc, k = 2)
```

Q. How many patients are in each cluster group?

```
table(grps)
```

grps

```
1 2
203 366
```

```
plot(res$PC1, res$PC2, col = grps)
```


Prediction

We can use our PCA result (model) to do predictions , that is take new unseen data and project it onto our new PC variables.

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
                                                                            PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                     0.8193031
           PC8
                      PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
                                                                        PC14
```

```
 \begin{smallmatrix} [1,] & -0.2307350 & 0.1029569 & -0.9272861 & 0.3411457 & 0.375921 & 0.1610764 & 1.187882 \end{smallmatrix} 
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                      PC16
                                   PC17
                                                PC18
                                                              PC19
                                                                          PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
                0.1448061 -0.40509706
[2,] 0.1299153
                                          0.06565549
                                                       0.25591230 -0.4289500
           PC21
                       PC22
                                   PC23
                                               PC24
                                                            PC25
                                                                          PC26
[1,]
      0.1228233 0.09358453 0.08347651
                                          0.1223396
                                                      0.02124121
                                                                   0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                           PC28
                                         PC29
                                                       PC30
[1,]
      0.220199544 -0.02946023 -0.015620933
                                               0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(res$PC1, res$PC2, col = grps)
  points(npc[,1], npc[,2], col = "blue", pch = 16, cex = 3)
  text(npc[,1], npc[,2], labels = c(1,2), col = "white")
```


Summary

Principle Component Analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.