IMPARTIAL GAMES

- Normal-Game
- Same moves
 - Identity of the player does no matter
 - There are no positions type L o R

Binary Expansion

- Representation of n as sum of distinct powers of two
 - o 45 = 32+13 = 32+8+5 = 32+8+4+1

Type of Positions

 Let a be a non-negative integer and let *a denote a Nim position of a single pile of a stones

Apply Binary Expansion

 A position *a1+...+*ak is balanced if, for every power of two, the total number of subpiles of that sizes is even

Balancing a Position

 $\underline{\mathsf{KEY}} \to \mathsf{Take}\ 2^\mathsf{m}$ the largest power of 2 which odd number of subpiles

- Balanced position → Type P
- Unbalanced position → Type N

The Nim-Sum of nonnegative integers
 a1⊕...⊕ak is a non-negative integer b s.t. if 2^j
 appears in the binary expansion of b ↔
 2^j appears an odd numer of time in the
 expansion a1,...,ak.

$$13\oplus19\oplus10=(8+4+1)\oplus(16+2+1)\oplus(8+2)==$$

$$4+16=20$$

 If b = a1⊕...⊕ak, then *a1+...+*ak = b, and b is called Nimber.

The Sprague-Grundy Theorem

- For normal-play games, a position $\underline{\alpha} = \{\beta 1,...,\beta k \mid \gamma 1,...,\gamma m\}$ (Louise | Richard)
 - o Redundant notation for impartial games.
- For S = {a1,...,an} of non-negative integers, we define Minimal EXclued values (MEX) of S as the smallest integer b which is not in S (i.e. {0,1,2,5.8} is 3)
- The MEX Principle \rightarrow Let $\alpha = \{\alpha 1,...,\alpha k\}$ be a position in an impartial game and let $\alpha i \equiv *ai$, $1 \le i \le k$, then, $\alpha \equiv b$, where b is the MEX of the set $\{\alpha 1,...,\alpha k\}$
- The Sprague-Grundy Theorem \rightarrow Every position in an impartial game is equivalent to a nimber.
- We define a <u>winning move</u> in an impartial game to be any move to a position of type P.
 Note that winning moves only exists from positions of type N
 - o In Nim, balancing always provides a winning move.

MEX Principle Examples

Example 3.14 (Chop). Here we work out the nimber equivalents for some small positions in Chop.

Example 3.15 (Chomp). Here we work out the nimber equivalents for some small positions in Chomp.

NIM Code in Python

GitHub Code

- 1. Ask for players name
- 2. Use random number generator to generate between 2 to 5 piles and to generate between 1 to 8 stones in each pile.
- 3. Display the board in the following fashion: (Note: O is the letter capital O)

Pile 1 : 0 0 0 Pile 2 : 0

...

- 4. Ask player 1 for the move the pile number and the number of stones to remove. You need to make sure that if a user enters something invalid, whether the pile or stone number, you ask for input again until valid input is entered. Also, the program is to give a suggestion to player 1 as to the number of stones to remove and from which pile in order to win the game.
- 5. Repeat step 4
- 6. Repeat step 5 for player 2.
- 7. When the game terminates, you need to proclaim the winner.
- 8. You should ask, if the players want to play the game again; if so, repeat steps 1-9