Linear Algebra

[KOMS120301] - 2023/2024

15.1 - Diagonalization

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 15 (December 2023)

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of diagonalization on square matrix, and why diagonalization is useful in Linear Algebra;
- 2. analyze the characteristic of matrix that is diagonalizable;
- 3. perform diagonalization on square matrix (if possible).

Part 1: Diagonalization

Can you recall the definition of **diagonal matrix**?

Definition of diagonalization

Matrix diagonalization is the process of taking a square matrix and converting it into a diagonal matrix that shares the same fundamental properties of the underlying matrix.

Definition

Let A and P be an $n \times n$ matrix, such that P is invertible. Diagonalization of A is a process of transforming:

$$A \rightarrow P^{-1}AP$$

A square matrix A is said to be diagonalizable if there exists an invertible matrix P s.t. $P^{-1}AP$ is a diagonal matrix. In this case, the matrix P is said to diagonalize A.

Motivation of the usefulness of diagonalization (1)

Why do we need such a basis?

 \rightarrow Roughly speaking, if we have the diagonal form, **many properties** can be studied more easily.

We will see later what properties of a matrix that are preserved by diagonalization.

Definition

A similarity invariant is any property that is preserved by a similarity transformation.

Motivation of the usefulness of diagonalization (2)

Example (Determinant is a similarity invariant) Matrix A and $P^{-1}AP$ satisfy:

$$\det(A) = \det(P^{-1}AP)$$

Proof:

$$det(P^{-1}AP) = det(P^{-1}) det(A) det(P)$$
$$= \frac{1}{det(P)} det(A) det(P)$$
$$= det(A)$$

Can you propose another property that is a similarity invariant?

Try to check the following properties:

- size of matrix
- invers
- rank
- nullity
- trace
- characteristic polynomial
- eigenvalues

Similarity invariant

Table 1. Similarity invariant

Fig/similarity.png

Motivating question

How to find a basis for \mathbb{R}^n consisting of eigenvectors of a matrix A of size $n \times n$?

Similar matrices

Let A and B be square matrices. Then we say that A similar to B if there is an invertible matrix P s.t. $B = P^{-1}AP$.

Lemma

If A similar to B, then B is similar to A.

Proof:

Since $B = P^{-1}AP$, then $PBP^{-1} = A$.

Define $Q = P^{-1}$. Then Q is a diagonal matrix, and:

$$Q^{-1}BQ = PBP^{-1} = A$$

Determining if a matrix is diagonalizable & finding a matrix P that performs the diagonalization

Theorem (1)

If A is an $n \times n$ matrix, the following statements are equivalent.

- 1. A is diagonalizable.
- 2. A has n linearly independent eigenvectors.

Theorem (2)

- 1. If $\lambda_1, \lambda_2, ..., \lambda_k$ are distinct eigenvalues of a matrix A, and if $v_1, v_2, ..., v_k$ are corresponding eigenvectors, then $\{v_1, v_2, ..., v_k\}$ is a linearly independent set.
- 2. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

What do Theorems 1 & 2 say about matrices that are diagonalizable, and the matrix that performs diagonalization?

- Theorem 1 \rightarrow need to find *n* linearly independent eigenvectors to diagonalize a matrix *A*.
- Theorem 2 → such vectors might be the egienvectors of A (if there are n different eigenvectors).

What do Theorems 1 & 2 say about matrices that are diagonalizable, and the matrix that performs diagonalization?

- Theorem 1 \rightarrow need to find *n* linearly independent eigenvectors to diagonalize a matrix *A*.
- Theorem 2 → such vectors might be the egienvectors of A (if there are n different eigenvectors).
- \Rightarrow An $(n \times n)$ matrix A is **diagonalizable** if A has n different eigenvalues.
- \Rightarrow Now, how to diagonalize A?

An algorithm to diagonalize a matrix

A Procedure for Diagonalizing an $n \times n$ Matrix

- Step 1. Determine first whether the matrix is actually diagonalizable by searching for n linearly independent eigenvectors. One way to do this is to find a basis for each eigenspace and count the total number of vectors obtained. If there is a total of n vectors, then the matrix is diagonalizable, and if the total is less than n, then it is not.
- Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix $P = [\mathbf{p}_1 \quad \mathbf{p}_2 \quad \cdots \quad \mathbf{p}_n]$ whose column vectors are the *n* basis vectors you obtained in Step 1.
- Step 3. $P^{-1}AP$ will be a diagonal matrix whose successive diagonal entries are the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ that correspond to the successive columns of P.

Example 1: Finding matrix P that diagonalizes matrix A

We want to find a matrix P that diagonalizes matrix

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Solution:

- 1. Since A is of size 3×3 , first check whether A has 3 different eigenvalues.
- 2. If yes, find the bases $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ for the eigenspace of A.
- 3. Create matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]$.
- 4. Check that $P^{-1}AP = D$ where D is a diagonal matrix with diagonal entries are eigenvalues of A.

Example 1 (cont.)

1. You should obtain the following characteristic equation of A:

$$(\lambda - 1)(\lambda - 2)^2 = 0$$

2. Find the bases of the eigenspace:

$$\lambda = 2 \rightarrow \mathbf{p}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \text{ and } \mathbf{p}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \lambda_2 \rightarrow \mathbf{p}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

3. The matrix that diagonalizes A is

$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

We verify that:

$$P^{-1}AP = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D$$

Example 2: A matrix that is not diagonalizable

Show that the matrix:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$
 is not diagonalizable.

Example 2: A matrix that is not diagonalizable

Show that the matrix:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$
 is not diagonalizable.

Solution:

The characteristic polynomial of A is:

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ -1 & \lambda - 2 & 0 \\ 3 & -5 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2)^2$$

The distinct eigenvalues are: $\lambda_1 = 1$ and $\lambda_2 = 2$.

We will find the bases for the eigenspace of A.

Example 2 (cont.)

For $\lambda = 1$

Solve:

$$(\lambda I - A)\mathbf{x} = \mathbf{0} \iff \begin{bmatrix} 1 - 1 & 0 & 0 \\ -1 & 1 - 2 & 0 \\ 3 & -5 & 1 - 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & 0 \\ 3 & -5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We can derive linear systems:

$$\begin{cases} -x_1 - x_2 = 0 \\ 3x_1 - 5x_2 - x_3 = 0 \end{cases}$$

This gives:
$$x_1 = t$$
, $x_2 = -t$, $x_3 = 8t$, or base: $\begin{bmatrix} 1 \\ -1 \\ 8 \end{bmatrix}$.

Example 2 (cont.)

For $\lambda = 2$

Solve:

$$(\lambda I - A)\mathbf{x} = \mathbf{0} \iff \begin{bmatrix} 2 - 1 & 0 & 0 \\ -1 & 2 - 2 & 0 \\ 3 & -5 & 2 - 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 3 & -5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We can derive linear systems:

$$\begin{cases} x_1 = 0 \\ -x_1 = 0 \\ 3x_1 - 5x_2 = 0 \end{cases}$$

This gives:
$$x_1 = 0$$
, $x_2 = 0$, $x_3 = t$ with $t \in \mathbb{R} \setminus \{0\}$, or base: $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Example 2 (cont.)

Hence, the bases of eigenspace of matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$ is

$$\left\{ \begin{bmatrix} 1\\-1\\8 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

Since the size of matrix A is 3×3 , and there are only two basis vectors, then A is not diagonalizable.

Exercises

Are the following matrices diagonalizable?

1.
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

2. The triangular matrix:
$$B = \begin{bmatrix} -1 & 2 & 4 & 0 \\ 0 & 3 & 1 & 7 \\ 0 & 0 & 5 & 8 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

So...what can you conclude of eigenvectors and eigenvalues?

Eigenvectors represent...

Eigenvalues represent...

Part 2: Applications of eigenvector

Applications of eigenvector

- https://www.quora.com/
 Why-are-eigenvectors-and-eigenvalues-important
- https://vitalflux.com/ why-when-use-eigenvalue-eigenvector/