

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

_		
a	m	e:

Vincent Zheng

UB Person Number:

5	0	2	5	8	5	3	9
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(a) (b) (c) (c) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	0 1 9 3 4 5 6 7 8 9	0 1 2 3 4 6 6 7 8 9	0 1 2 3 4 5 6 7 9	0 1 2 3 4 6 6 7 8 9	①①②③④④⑥⑦③⑨	

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2, 3, -1 \\ 1, -1, 1 \\ 2, -2, 1 \end{bmatrix}$$

3. (10 points) Let
$$A$$
 be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

1 +2=1

Find a matrix C such that
$$A^TC = B$$
 (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -1 \end{bmatrix} A^T = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} X_{3 = 2}^{1 \times 12} X_{3 = 22}^{1 \times 12}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

A)
$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$

this vector.

a) Find the standard matrix of
$$T$$
.

b) Find all vectors \mathbf{u} satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$\mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_1 - 3\mathbf{x}_2 \end{bmatrix}$$

$$\mathbf{x}_1 \times \mathbf{x}_2 \\ \mathbf{x}_1 \times \mathbf{x}_2 \end{bmatrix} \mathbf{x}_3$$

$$\mathbf{x}_4 \times \mathbf{x}_2 \times \mathbf{x}_4 \times \mathbf{x}_2 = \mathbf{x}_4 \times \mathbf{x}_4 \times \mathbf{x}_2 = \mathbf{x}_4 \times \mathbf{x}_4 \times \mathbf{x}_4 \times \mathbf{x}_4 \times \mathbf{x}_4 = \mathbf{x}_4 \times \mathbf$$

Where did this come from?

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

4-2

This is V pone to me hecuse there is a privat in every Topan col,

$$\mathbf{b)} \ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

1 10 0 73 = Pr 0 2 4 0 1 2 1 1 2 0 1 1 2 0

110012000

This isn't one to. V One case there isn't a proof in every col.

 $V_{i} = \begin{bmatrix} \frac{2}{2} \\ i \end{bmatrix}$ $V_{2} \begin{bmatrix} \frac{4}{4} \\ 2 \end{bmatrix}$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

[1] [0] [0] : [0] This is face bease with we o doe, nlt men utv=0?

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in $\mathrm{Span}(v, w)$ then T(u) must be in $\mathrm{Span}(T(v), T(w))$.

