ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2000 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. M là tập hợp các ma trận cấp n $(n \ge 1)$, thực, khả nghịch.

- 1. Chứng minh rằng M là nhóm đối với phép nhân ma trân.
- 2. $C \in M$ cố định. Chứng minh rằng ánh xạ $f: M \to M$, $f(A) = C^{-1}AC$ là một đồng cấu nhóm. Tìm $\operatorname{Im} f$, $\operatorname{Ker} f$ (hay chứng minh rằng f là đẳng cấu).
- 3. Chứng minh ràng ánh xạ $f_1:M\to\mathbb{R}^\star,\,f_1\left(A\right)=|A|$ là đồng cấu nhóm. Tìm $\operatorname{Im} f_1,\,\operatorname{Ker} f_1.$

Câu II. Chứng minh rằng \mathbb{C}^* là nhóm đối với phép nhân thông thường. Xét các ánh xạ $f: \mathbb{C}^* \to \mathbb{C}^*$, $f(\alpha) = \overline{\alpha}$, $g: \mathbb{C}^* \to \mathbb{C}^*$, $g(\alpha) = \|\alpha\|$ là đồng cấu nhóm, đơn cấu, toàn cấu hay không? Tìm Im f, Ker f.

Câu III. Chứng minh rằng các phép biến đổi trực giao trên không gian Euclid E làm thành một nhóm đối với phép nhân (phép hợp thành), ký hiệu G. Giả sử $g \in G$. Đặt ánh xạ $\varphi: G \to G$, $\varphi(f) = g^{-1}fg$. Chứng minh rằng φ là đẳng cấu nhóm.

Câu IV. $\mathbb{C}[x]$ là vành. Đặt ánh xạ

$$arphi:\mathbb{C}\left[x
ight]
ightarrow\mathbb{C}\left[x
ight], \ f\left(x
ight)
ightarrow\overline{f\left(x
ight)}$$

(được hiểu là $\overline{a}_0 + \overline{a}_1 x + \ldots + \overline{a}_n x^n$).

- 1. Chứng minh rằng φ là đồng cấu nhóm.
- 2. Chứng minh rằng $\mathbb{R}[x]$ là vành con mà không idean.

Câu V.

- 1. Chứng minh rằng các ma trận đối xứng cấp n lập thành nhóm aben đối với phép cộng, ký hiệu nhóm này là M.
- 2. Chứng minh rằng ánh xạ $f: M \to M$, f(A) = A' (chuyển vị của A) là đồng cấu nhóm. Tìm $\operatorname{Im} f$, $\operatorname{Ker} f$.
- 3. Chứng minh rằng tập M các ma trận đối xứng thực cấp n lập thành \mathbb{R} -không gian véc tơ (hay \mathbb{R} -không gian véc tơ con của không gian các ma trân vuông cấp n).
- 4. T là ma trận khả nghịch (không nhất thiết đối xứng). Chứng minh rằng ánh xạ $f: M \to M$, $f(A) = T^{-1}AT$ là đồng cấu (tức là ánh xạ tuyến tính).

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2000 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. Tìm hạng của hệ véc tơ $a_1, a_2, a_3 \in \mathbb{R}^3$ theo tham số a

$$a_1 = (1, a, 1),$$

 $a_2 = (1, 1, a),$
 $a_3 = (a, 1, 1).$

Tìm phần bù trực tiếp của $L=\{a_1,a_2,a_3\}$ khi a=-2 hoặc a=1.

Câu II. Biết $\mathbb{R}_5[x]$ là không gian các đa thức có bậc nhỏ hơn 5. Cho $f(x) = 1 + x^2 + x^3 + x^4$. Chứng minh rằng (1) và (2) là các cơ sở của nó

- 1. $\mathbf{1}, x, x^2, x^3, x^4$.
- 2. $f^{(4)}(x)$, $f^{(3)}(x)$, f''(x), f'(x), f(x).

Tìm ma trận chuyển cơ sở (1) sang (2). Tìm toạ độ của $f(x) = 34 + 33x + 16x^2 + 5x^3 + x^4$ trong cơ sở (2).

Câu III. Phép biến đổi tuyến tính f trên không gian phức có ma trận là

$$A = \left(egin{array}{ccc} 3 & 0 & 0 \ 1 & 0 & 1 \ 2 & -1 & 0 \end{array}
ight).$$

có chéo hoá được không? Có tồn tại phép biến đổi tuyến tính nghịch đảo f^{-1} ? Tìm véc tơ riêng và giá trị riêng của f^{-1} .

Câu IV. Chứng minh rằng tập hợp các ma trận thực có dạng

$$A=\left(egin{array}{cc} a & b \ 2b & a \end{array}
ight).$$

với $a, b \in \mathbb{R}$ lập thành vành con của vành $Mat(2, \mathbb{R})$, hỏi nó có là idean không?

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2001 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. Chứng minh rằng

- 1. Tập \mathbb{S}^1 các số phức có mô đun bằng $\mathbf{1}$ là một nhóm con của nhóm nhân các số phức khác $\mathbf{0}$.
- 2. Ánh xạ $f: \mathbb{R} \to \mathbb{S}^1$ cho bởi $f(x) = \cos(\pi x) + i\sin(\pi x)$ là một đồng cấu từ nhóm công các số thực \mathbb{R} vào \mathbb{S}^1 .

Câu II.

- 1. Chứng minh rằng mỗi không gian con \boldsymbol{L} của không gian véc tơ hữu hạn chiều \boldsymbol{V} đều có bù tuyến tính. Phần bù tuyến tính của \boldsymbol{L} có duy nhất không?
- 2. Tìm số chiều, một cơ sở và phần bù tuyến tính của không gian con của không gian \mathbb{R}^4 sinh bởi hệ véc tơ $\{u_1 = (1, -2, -1, 1), u_2 = (-1, 3, 0, 2), u_3 = (2, -5, -1, -1), u_4 = (2, -4, -2, 2)\}.$

Câu III. Xét ma trận thực

$$A=\left(egin{array}{ccc} a & d & 0 \ d & b & d \ 0 & -d & c \end{array}
ight).$$

- 1. Nếu φ là một phép biến đổi tuyến tính trong không gian \mathbb{R}^3 có ma trận đối với cơ sở chính tắc là A thì φ có chéo hoá được không? Vì sao?
- 2. Với $a=3,\ b=4,\ c=5$ và d=2 hãy tìm ma trận trực giao Q sao cho $B=Q^TAQ$ là ma trận đường chéo.

Câu IV. Phép biến đổi tuyến tính φ gọi là luỹ linh bậc p nếu p là một số nguyên dương sao cho $\varphi^{p-1} \neq 0$ và $\varphi^p = 0$. Giả sử φ là một phép biến đổi tuyến tính luỹ linh bậc p trong không gian véc tơ n-chiều V. Chứng minh rằng

1. Nếu x là một véc tơ sao cho $\varphi^{p-1}(x) \neq 0$ thì hệ véc tơ

$$\left\{ x,\varphi \left(x\right) ,\varphi ^{2}\left(x\right) ,...,\varphi ^{p-1}\left(x\right) \right\}$$

độc lập tuyến tính.

- $2. p \leq n.$
- 3. φ chỉ có một giá tri riệng $\lambda = 0$.
- 4. Nếu E A là ma trận của phép biến đổi φ đối với cơ sở nào đó thì ma trận A khả nghich (E là ma trân đơn vi).

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2001 MÔN THI CƠ BẨN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I.

- 1. Chứng minh rằng tập O(n) các ma trận trực giao cấp n là một nhóm đối với phép nhân ma trận.
- 2. Cho $Q \in O(n)$, xét ánh xạ $f: O(n) \to O(n)$ cho bởi $f(A) = Q^T A Q$ trong đó Q^T là chuyển vị của Q. Chứng minh rằng f là một đẳng cấu nhóm.

Câu II. Xét phép biến đổi tuyến tính $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ cho bởi

$$\varphi\left(x_{1},x_{2},x_{3}\right)=\left(x_{1}-3x_{2}+4x_{3},4x_{1}-7x_{2}+8x_{3},6x_{1}-7x_{2}+7x_{3}\right).$$

- 1. Tìm giá trị riêng, véc tơ riêng của φ .
- 2. Trong không gian véc tơ \mathbb{R}^3 có tồn tại hay không một cơ sở sao cho đối với cơ sở đó ma trân của φ có dang đường chéo.

Câu III. Trong không gian Euclid \mathbb{R}^4 xét không gian con L sinh bởi hệ véc tơ

$$\{(1,1,1,1),(1,2,2,-1),(1,0,0,3)\}.$$

- 1. Tìm cơ sở trực chuẩn của không gian con L và cơ sở trực chuẩn của phần bù trực giao L^{\perp} .
- 2. Giả sử x=(4,-1,-3,4). Tìm véc tơ $y\in L$ và véc tơ $z\in L^{\perp}$ sao cho x=y+z.

Câu IV.

- 1. Chứng minh rằng họ $\left\{1, x-a, (x-a)^2, ..., (x-a)^{n-1}\right\}$ với $a \in \mathbb{R}$ là một cơ sở của không gian $\mathbb{R}_n[x]$ các đa thức hệ số thực có bậc nhỏ hơn n.
- 2. Tìm toạ độ của $f(x) \in \mathbb{R}_n[x]$ đối với cơ sở đó.

Câu V.

- 1. Giả sử f_1 , f_2 là các dạng tuyến tính trên K-không gian véc tơ V. Chứng minh rằng ánh xạ $\varphi: V \times V \to K$ cho bởi $\varphi(x,y) = f_1(x) + f_2(y)$ là một dạng song tuyến tính trên V. Tìm điều kiện cần và đủ để φ là dạng song tuyến tính đối xứng.
- 2. Giả sử V là K-không gian véc tơ hữu hạn chiều. Chứng minh rằng dạng song tuyến tính φ có hạng bằng 1 khi và chỉ khi $\varphi \neq 0$ và có hai dạng tuyến tính f_1 , f_2 sao cho $\varphi(x,y) = f_1(x) + f_2(y)$ với mọi $x,y \in V$.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2002 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I.

- 1. Giả sử h là một đồng cấu vành từ vành K vào vành K', và A là vành con của vành G. Chứng minh rằng h(A) là một vành con của vành K'.
- 2. Trên tập các số nguyên Z xét hai phép toán xác đinh bởi

$$a \oplus b = a + b - 1$$

 $a \circ b = a + b - ab$.

Chứng minh rằng $(\mathbb{Z}, \oplus, \circ)$ là một vành giao hoán có đơn vi.

Câu II. Trong không gian véc tơ \mathbb{R}^3 xét phép biến đổi tuyến tính g xác đinh bởi

$$g(u) = (8x - y - 5z, -2x + 3y + z, 4x - y - z)$$
 với $u = (x, y, z)$.

- 1. Tìm các giá tri riêng và véc tơ riêng của g.
- 2. Tìm một cơ sở cả không gian \mathbb{R}^3 sao cho đối với cơ sở đó ma trận \boldsymbol{B} của phép biến đổi \boldsymbol{g} có các phần tử ở phía trên đường chéo chính bằng $\boldsymbol{0}$. Viết ma trận \boldsymbol{B} .

Câu III. Trong không gian véc tơ Euclide E xét hệ véc tơ $\{u_1,\ldots,u_n\}$, và ma trận

$$G = ((u_i, u_j))_{n \times n}$$
.

Chứng minh rằng hệ véc tơ $\{u_1,\ldots,u_n\}$ độc lập tuyến tính khi và chỉ khi $\det G\neq 0$.

Câu IV. Giả sử f là một dạng song tuyến tính hạng r trên K-không gian véc tơ V n-chiều. Xét các tập con

$$V_r = \left\{ y ext{ thuộc } V: f\left(x,y
ight) = 0 ext{ đối với mọi } x ext{ thuộc } V
ight\}, \ V_l = \left\{ y ext{ thuộc } V: f\left(y,x
ight) = 0 ext{ đối với mọi } x ext{ thuộc } V
ight\}.$$

Chứng minh rằng V_r , V_l là các không gian con và $\dim V_r = \dim V_l = n - r$.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2002 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I.

- 1. Giả sử h là một đồng cấu từ nhóm G vào nhóm G', và H là nhóm con của nhóm G. Chứng minh rằng h(H) là một nhóm con của nhóm G'.
- 2. Xét ánh xạ f từ nhóm tuyến tính tổng quát $GL(n,\mathbb{R})$ vào nhóm nhân \mathbb{R}^* các số thực khác 0 xác định bởi $f(A) = \det A$. Chứng minh rằng f là một toàn cấu. Xác định nhóm con f(O(n)), với O(n) là nhóm các ma trân trực giao.

Câu II.

1. Giả sử \boldsymbol{L} là một không gian con \boldsymbol{p} -chiều của không gian véc tơ Euclide \boldsymbol{E} \boldsymbol{n} -chiều. Chứng minh rằng tập

$$L^* = \{ x \in E : (x, y) = 0, \forall y \in L \},\$$

là một không gian con (n-p)-chiều và $E=L \bigoplus L^{\star}$.

2. Xét không gian con L của không gian véc tơ Euclide \mathbb{R}^4 sinh bởi hệ véc tơ $u_1 = (1,0,2,1)$, $u_2 = (2,1,2,3)$, $u_3 = (0,1,-2,1)$. Xác định một cơ sở trực chuẩn của không gian con L^* .

Câu III. Vết của ma trận A cấp n trên trường K là tổng các phần tử trên đường chéo chính, được ký hiệu là Tr(A). Chứng minh rằng

- 1. $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.
- 2. Vết của ma trận của một phép biến đổi tuyến tính không phụ thuộc vào việc chọn cơ sở của không gian.

Câu IV.

1. Hạng của ma trận $A=(a_{ij})_{m\times n}$ được ký hiệu là r(A). Chứng minh rằng

$$r(A+B) \leq r(A) + r(B)$$
.

2. Tính r(A) với $A = (\min\{i, j\})_{m \times n}$.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2003 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I.

- 1. Chứng minh rằng tích các đồng cấu vành là một đồng cấu vành.
- 2. Xét đồng cấu nhóm $f: G \to G'$. Chứng tỏ rằng nếu G là một nhóm giao hoán thì Im(f) cũng là một nhóm giao hoán. Cho một ví dụ chứng tỏ điều ngược lại nói chung không đúng.

Câu II.

1. Giả sử \boldsymbol{L} là không gian con của không gian véc tơ \mathbb{R}^3 sinh bởi hệ véc tơ

$$\{u_1 = (2,3,5), u_2 = (3,7,8), u_3 = (1,-6,1)\}.$$

Với giá tri nào của tham số a thì véc to u = (7, -1, a) thuộc không gian con L.

2. Chứng minh rằng trong không gian các hàm số thực liên tục C(a,b) hệ véc tơ $\{1,\cos x,\cos^2 x,...,\cos^n x\}$ độc lập tuyến tính.

Câu III. Xét ma trận thực đối xứng

$$A = \left(egin{array}{ccc} 3 & 2 & 0 \ 2 & 4 & -2 \ 0 & -2 & 5 \end{array}
ight).$$

Tìm ma trận trực giao Q sao cho Q^TAQ là ma trận đường chéo. Viết ma trận đường chéo đó.

Câu IV. Giả sử u là một véc tơ của không gian Euclid E.

- 1. Chứng minh rằng với mỗi véc tơ x thuộc E có thể biểu diễn duy nhất dưới dạng x = au + v trong đó véc tơ v trực giao với véc tơ u.
- 2. Cho $E = \mathbb{R}^4$, u = (2, -1, 0, 2), x = (1, 1, 1, -1). Tính a và v.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2003 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. Trong nhóm G xét ánh xạ $h: G \to G$ xác định bởi $h(a) = a^{-1}$, $\forall a \in G$. Chứng minh rằng ánh xạ h là một tự đẳng cấu khi và chỉ khi G là một nhóm Aben.

Câu II. Trong không gian véc tơ Euclide \mathbb{R}^4 xét không gian con L cho bởi hệ phương trình

$$\begin{cases} 2x_1 + x_2 + x_3 + 3x_4 = 0 \\ 3x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ x_1 + 2x_2 + 2x_3 - 9x_4 = 0 \end{cases}$$

- 1. Tìm số chiều và một cơ sở của phần bù trực giao L^{\star} của không gian con L.
- 2. Cho véc to x=(7,-4,-1,2). Tim véc to $y\in L, z\in L^*$ sao cho x=y+z.

Câu III. Xét ánh xa tuyến tính $g: \mathbb{R}^4 \to \mathbb{R}^3$ được cho bởi

$$g((x_1, x_2, x_3, x_4)) = (x_1 - 2x_2 + x_4, x_1 + x_3 - x_4, 2x_2 + x_3 - 2x_4).$$

- 1. Tim $\dim \operatorname{Ker} g$, $\dim \operatorname{Im} g$.
- 2. Với giá trị nào của tham số a thì véc tơ y=(-1,2,a) thuộc không gian con ${\rm Im}\, g$.

Câu IV. Giả sử f là một phép biến đổi tuyến tính luỹ linh bậc n (tức là $f^{n-1} \neq 0$, $f^n = 0$) trong K-không gian véc tơ V. Chứng minh rằng

- 1. Nếu $x \in V: f^k(x) \neq 0$ thì hệ véc tơ $\{x, f(x), \dots, f^k(x)\}$ độc lập tuyến tính.
- 2. $n \leq \dim V$.
- 3. Nếu $n=\dim V$ thì đa thức đặc trưng của phép biển đổi f có dạng $p(\lambda)=(-1)^n\lambda^n$.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2004 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. Giả sử (G, \circ) là một nhóm có hữu hạn phần tử, đơn vi e. Chứng minh rằng

- 1. Đối với mỗi phần tử $a \in G$ tồn tại số nguyên $k \ge 1$ sao cho $a^k = e$ (số nguyên dương nhỏ nhất có tính chất đó gọi là cấp của phần tử a).
- 2. Nếu a là phần tử cấp n thì $A = \{a, a^2, \dots, a^n\}$ là một nhóm con của nhóm (G, \circ) .

Câu II. Xét ma trân thực

$$A=\left(egin{array}{ccc} 1&a&b+c\ 1&b&a+c\ 1&c&a+b \end{array}
ight).$$

- 1. Chứng tỏ ma trận A không khả nghich.
- 2. Tính hạng của ma trận A theo giá tri của các tham số a, b, c.

Câu III. Phép biến đổi tuyến tính f trong không gian véc tơ \mathbb{R}^3 được cho bởi

$$f(x,y,z) = (4x - 5y + 2z, 5x - 7y + 3z, 6x - 9y + 4z).$$

- 1. Tìm các giá tri riêng, véc tơ riêng của f.
- 2. Phép biến đổi f có chéo hoá được không? Vì sao? Tìm một cơ sở của không gian \mathbb{R}^3 sao cho ma trận của f đối với cơ sở đó là ma trận tam giác.

Câu IV. Chứng minh rằng tập con khác rỗng L của không gian véc tơ \mathbb{R}^n là một khôn gian con khi và chỉ khi L là tập nghiệm của một hệ phương trình tuyến tính thuần nhất trên \mathbb{R} .

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2004 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

 $\hat{\mathbf{Cau}}$ I. Giả sử X là một vành. Chứng minh rằng

1. Đối với mỗi số nguyên $n \geq 0$, tập

$$nX = \left\{a = nx = \underbrace{x + x + ... + x}_{n \mid \text{fin}} : x \in X
ight\}$$

là một idean của vành X (với quy ước 0x = 0).

2. Các tập dạng $n\mathbb{Z}$ với n=0,1,2,... là tất cả các idean của vành số nguyên \mathbb{Z} .

Câu II.

1. Trong không gian \mathbb{R}^4 xét không gian con L sinh bởi hệ véc tơ

$$\{u_1 = (1, a, -1, -2), u_2 = (2, -1, a, 5), u_3 = (1, 10, -6, 1)\}.$$

Tính $\dim L$ theo tham số a.

2. Giả sử hệ véc tơ $\{u_1, u_2, ..., u_n\}$ là một cơ sở của K-không gian véc tơ V. Đặt $v_k = u_k + ... + u_n$ với k = 1, 2, ..., n. Chứng minh rằng hệ $\{v_1, v_2, ..., v_n\}$ là một cơ sở của không gian V.

Câu III. Phép biến đổi tuyến tính q trong không gian Euclid \mathbb{R}^3 được cho bởi

$$g((x_1, x_2, x_3)) = (x_1 - 3x_2 - x_3, -3x_1 + x_2 + x_3, -x_1 + x_2 + 5x_3).$$

- 1. Chứng tỏ rằng g là một phép biến đối đối xứng.
- 2. Tìm một cơ sở trực chuẩn của không gian véc tơ Euclid \mathbb{R}^3 là các véc tơ riêng của g.

Câu IV. Giả sử f là một dạng song tuyến tính hạng k trên K-không gian véc tơ \mathbb{K}^n . Xét các tập con

$$egin{aligned} V_r &= \left\{y \in \mathbb{K}^n : f\left(x,y
ight) = 0 ext{ dối với mọi } x \in \mathbb{K}^n
ight\}, \ V_l &= \left\{y \in \mathbb{K}^n : f\left(y,x
ight) = 0 ext{ dối với mọi } x \in \mathbb{K}^n
ight\}. \end{aligned}$$

Chứng minh rằng V_r , V_l là các không gian con và $\dim V_r = \dim V_l = n - k$.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2005 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. Trong nhóm G xét ánh xạ $f:G\to G$ cho bởi $f(x)=x^2$ với mọi $x\in G$.

- 1. Chứng minh rằng \boldsymbol{f} là một tự đồng cấu của nhóm \boldsymbol{G} khi và chỉ khi \boldsymbol{G} là nhóm aben.
- 2. Cho một ví dụ sao cho f là tự đẳng cấu và một ví dụ sao cho f là một từ đồng cấu những không phải là tự đẳng cấu.

Câu II. Xét ánh xạ tuyến tính $h: \mathbb{R}^4 \to \mathbb{R}^3$ xác đinh bởi: với $u=(x_1,x_2,x_3,x_4)$ thì

$$h\left(u\right) = \left(x_{1} + ax_{2} - x_{3} + 2x_{4}, 2x_{1} - x_{2} + ax_{3} + 5x_{4}, x_{1} + 10x_{2} - 6x_{3} + x_{4}\right)$$

- 1. Xác đinh $\dim \operatorname{Im} h$, $\dim \operatorname{Ker} h$ theo tham số a.
- 2. Với a = 3, với giá tri nào của b thì véc tơ u = (1, -2, b) thuộc $\operatorname{Im} h$.

Câu III. Xét ma trận thực

$$A = \left(egin{array}{ccc} 1 & 2 & 2 \ 2 & 1 & 2 \ 2 & 2 & 1 \end{array}
ight).$$

- 1. Tìm các giá tri riêng, véc tơ riêng của A.
- 2. Tìm ma trận trực giao Q sao cho $B = Q^T A Q$ là ma trận đường chéo. Viết ma trận B.

Câu IV.

- 1. Giả sử F là một không gian con của K-không gian véc tơ n-chiều V. Chứng minh rằng nếu $\dim F < n$ thì trong không gian V có cơ sở $\{u_1, u_2, ..., u_n\}$ sao cho $u_i \not\in F, i = 1, 2, ..., n$.
- 2. Chứng minh rằng đối với mỗi dạng tuyến tính φ trên không gian véc tơ Euclid hữu hạn chiều E tồn tại duy nhất một véc tơ $u^* \in E$ sao cho

$$arphi\left(x
ight)=\left(u^{\star}.x
ight)$$
 với mọi $x\in E.$

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2005 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. Xét đồng cấu vành $f: K \to K^{\star}$. Chứng minh rằng

- 1. Nếu A là một vành con của vành K thì f(A) là một vành con của K^* .
- 2. Nếu B là một idean của vành K' thì $f^{-1}(B)$ là một idean của vành K.

Câu II.

1. Xác định số chiều của không gian nghiệm N của hệ phương trình tuyến tính thuần nhất sau đây theo tham số a

$$x_1 + ax_2 - x_3 + 2x_4 = 0, \ 2x_1 - x_2 + ax_3 + 5x_4 = 0, \ x_1 + 10x_2 - 6x_3 + x_4 = 0.$$

2. Với a = 3, tìm cơ sở trực giao của phần bù trực giao N^* của N trong không gain véc tơ Euclid \mathbb{R}^4 .

Câu III. Xét ma trận thực

$$A = \left(egin{array}{ccc} 8 & -1 & -5 \ -2 & 3 & 1 \ 4 & -1 & -1 \end{array}
ight).$$

- 1. Tìm các giá tri riêng, véc tơ riêng của A.
- 2. Tìm một một ma trận tạm giác đồng dang với ma trận A.

Câu IV. Xét dạng toàn phương ω trên không gian véc tơ Euclid \mathbb{R}^n cho bởi

$$\omega\left(x
ight) = \sum_{i,j=1}^{n} a_{ij} x_{i} x_{j} \quad , \quad x = \left(x_{1}, x_{2}, ..., x_{n}
ight).$$

Chứng minh rằng

- 1. Nếu dạng ω xác định dương thì $a_{ii} > 0$ với mọi i = 1, 2, ..., n.
- 2. Đạng ω xác định dương khi và chỉ khi tồn tại ma trận khả nghịch S sao cho $(a_{ij})_{n\times n}=S^TS$.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2006 ĐỢT 1 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I.

- 1. Chứng minh rằng giao các idean của một vành là một idean.
- 2. Giả sử \boldsymbol{S} là tập con khác rỗng của vành \boldsymbol{K} giao hoán có đơn vị. Chứng minh rằng tập

$$(S) = \left\{ x = \sum_{i=1}^{n} a_i s_i : s_i \in S, a_i \in K, i = 1, 2, ..., n
ight\}$$

là idean nhỏ nhất chứa tập S.

Câu II. Xét phép biến đổi tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ cho bởi

$$f\left((x_{1},x_{2},x_{3})
ight)=\left(x_{1}+ax_{2}+x_{3},2x_{1}+ax_{2}+bx_{3},-x_{1}+\left(b-1
ight)x_{3}
ight)$$

- 1. Với giá trị nào của các tham số a, b thì f là một tự đẳng cấu.
- 2. Tim dim Im f, dim Ker f với a = b = 1.

Câu III. Xét ma trận đối xứng thực

$$A = \left(egin{array}{ccc} 1 & 2 & 2 \ 2 & 1 & 2 \ 2 & 2 & 1 \end{array}
ight).$$

- 1. Tìm các giá trị riêng, véc tơ riêng của A.
- 2. Dạng toàn phương ω trên không gian véc tơ Euclid \mathbb{R}^3 cho bởi

$$\omega\left(x
ight)=\left(egin{array}{ccccc} x_1 & x_2 & x_3 \end{array}
ight)A\left(egin{array}{cccccc} x_1 & x_2 & x_3 \end{array}
ight)^T &, & x=\left(egin{array}{ccccc} x_1 & x_2 & x_3 \end{array}
ight).$$

Tìm một cơ sở trực chuẩn của không gian \mathbb{R}^3 là cơ sở chính tắc của ω . Viết dạng chính tắc của ω tương ứng với cơ sở đó.

Câu IV. Giả sử E là không gian véc tơ Euclid n-chiều.

1. Chứng minh rằng nếu $\{u_1, u_2, ..., u_n\}$ là một cơ sở trực chuẩn của E thì mỗi véc tơ x thuộc E đều có thể biểu diễn dưới dang

$$x = \sum_{i=1}^{n} (x.u_i) u_i.$$

2. Giả sử L, M là các không gian con của E và $\dim L < \dim M$. Chưng minh rằng tồn tại véc tơ $u \in M$, $u \neq 0$ sao cho (u.y) = 0 với mọi $y \in L$.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2006 ĐỢT 2 MÔN THI CƠ BẢN: ĐẠI SỐ Thời gian làm bài: 180 phút

Câu I. Xét vành đa thức $\mathbb{R}[x]$ ẩn x hệ số thực. Chứng minh rằng

1. Đối với mỗi đa thức f(x) thuộc $\mathbb{R}[x]$ tập

$$f\left(x
ight)\mathbb{R}\left[x
ight]=\left\{ g\left(x
ight)=f\left(x
ight)h\left(x
ight):h\left(x
ight)\in\mathbb{R}\left[x
ight]
ight\}$$

là một idean của vành $\mathbb{R}[x]$.

2. Đối với mỗi idean $I \neq \{0\}$ của vành $\mathbb{R}[x]$ tồn tại duy nhất đa thức dạng chuẩn p(x) sao cho $I = p(x) \mathbb{R}[x]$.

Câu II. Trong không gian Euclid \mathbb{R}^4 xét hệ véc tơ

$$u_1 = (1, a, 2, 1)$$
 , $u_2 = (1, 1, b, 0)$, $u_3 = (1, b, 2, 1)$.

- 1. Với những giá trị nào của các tham số a, b thì hệ $\{u_1, u_2, u_3\}$ độc lập tuyến tính, phụ thuộc tuyến tính.
- 2. Tìm một cơ sở của phần bù trực giao L^{\star} của không gian con L sinh bởi hệ $\{u_1, u_2, u_3\}$ với a = b = 1.

Câu III. Xét phép biến đổi tuyến tính f trong không gian véc tơ \mathbb{R}^3 xác đinh bởi

$$f((x,y,z)) = (8x - y - 5z, -2x + 3y + z, 4x - y - z).$$

- 1. Tìm các giá tri riêng, véc tơ riêng của f, của f^n , n > 0.
- 2. Tìm một cơ sở của không gian \mathbb{R}^3 sao cho ma trận \boldsymbol{B} của \boldsymbol{f} đối với cơ sở đó là ma trận tam giác. Viết ma trận \boldsymbol{B} .

Câu IV. Xét dạng song tuyến tính g trên K-không gian véc tơ n-chiều V thoả mãn điều kiện g(x,x)= với mọi x thuộc V. Chứng minh rằng

- 1. g(x,y) = -g(y,x) với mọi x, y thuộc V.
- 2. Nếu g không suy biến thì mỗi véc tơ u thuộc V, $v \neq \{0\}$, luôn luôn tồn tại véc tơ v thuộc V sao cho g(u,v)=1.

ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2007 ĐỢT 1 MÔN THI CƠ BẢN: ĐẠI SỐ

Thời gian làm bài: 180 phút

Câu I. Phần tử a thuộc nhóm (G, \circ, e) gọi là có cấp hữu hạn p nếu p là số nguyên dương nhỏ nhất sao cho $a^p = e$. Giả sử G là một tập hợp hữu hạn có n phần tử. Chứng minh rằng

- 1. Mỗi phần tử a thuộc nhóm (G, \circ, e) đều có cấp hữu hạn.
- 2. Với mọi a, b thuộc nhóm (G, \circ, e) các phần tử $a \circ b$ và $b \circ a$ có cấp bằng nhau.

Câu II.

1. Xác định số chiều của không gian nghiệm N_0 của hệ phương trình tuyến tính thuần nhất sau đây theo tham số thực a

$$egin{aligned} x_1+ax_2-x_3+2x_4&=0,\ 2x_1-x_2+ax_3+5x_4&=0,\ x_1+10x_2-6x_3+x_4&=0. \end{aligned}$$

2. Cho a=3, tìm phần bù trực tiếp của N_0 trong không gian véc tơ \mathbb{R}^4 .

Câu III. Trong không gian véc tơ Euclid \mathbb{R}^3 xét phép biến đổi tuyến tính f cho bởi

$$f\left((x_1,x_2,x_3)
ight) = (3x_1+2x_2,2x_1+4x_2-2x_3,-2x_2+5x_3)$$
.

- 1. Chứng minh rằng f là phép biến đổi đối xứng.
- 2. Tìm cơ sở trực chuẩn của không gian véc tơ Eucild \mathbb{R}^3 là các véc tơ riêng của f và cho biết ma trận của f đối với cơ sở đó.

Câu IV. Xét dạng song tuyến tính không suy biến g trên K-không gian véc tơ n-chiều V. Giả sử rằng dạng song tuyến tính g_1 trên không gian véc tơ con r-chiều F cho bởi $g_1(x,y)=g(x,y)$ với mọi x,y thuộc F là một dạng không suy biến. Xét tập

$$F^{\star}=\left\{ x\in V:g\left(x,y\right) =0\text{ với mọi }y\in F\right\} .$$

Chứng minh rằng

- 1. F^* là một không gian con và $F^* \cap F = \{0\}$.
- 2. $V = F \oplus F^*$.