

Team Presentation

Daniel Otero Gómez

Mauricio Toro

Juan Camilo Ramirez

Introduction | Business Context

Implemented Models

Results

Further Work

Mathematical Background

References

In developing countries, municipal waste is mostly composed of SDW

55-88% Households

10-30% Comercial Centers

Eliminating

human

extensive labor

Waste Classification System

Improves and automatizes the waste segmentation process

by...

Speeding the process

Allowing...

to give wastes proper treatment and prevent environmental damages

General Objective

Merge 3 Worklines

Images

Recyclable Organic

403 Cardboard

Textiles

Recyclable Inorganic

Tetra Pak Containers

Glass

Non-Recyclable

Sanitary

Electronics

Convolutional Neural Network

Random Flip

Random Rotation

Random Translation

Random Contrast

Resizing

Google's Efficient Net B0

Simpler Architecture

Outstanding Results

Parameter Comparison

Model Comparison

10-Fold CV

Logistic Regression

SVM

KNN

Train-Validation-Test Split

CNN

TL Feature Extraction

TL Fine-Tuning

Note: Trained for 50 epochs max. and used EarlyStopping with patience of 10 to

Convolutional Neural Network

TL Feature Extraction

TL Fine Tuning

Results

Confusion Matrix

AUC Score:

0.838

AUC Score:

0.988

Past Results

Best AUC Scores

Experiments and Code

https://tensorboard.dev/experiment/iJBN0O4wQ8q DdMjKfQUdrA/#scalars& smoothingWeight=0.706

https://github.com/daoterog/Solid Domesti c Waste Image Classification

Future Work

Tackle the Multi-Class Problem

Integrate the different worklines together

Implementation of functioning web platform

Include other types of learning (e.i. self supervised learning)

Models

Convolutions in Neural Networks:

$$n_{out} = \left\lfloor \frac{n_{in} + 2p - k}{s} \right\rfloor + 1$$

$$j_{out} = j_{in} * s$$

$$r_{out} = r_{in} + (k - 1) * j_{in}$$

$$start_{out} = start_{in} + \left(\frac{k - 1}{2} - p\right) * j_{in}$$

Transfer Learning:

$$Domain = \{x, P(X)\}$$
$$Task = \{\gamma, P(Y|X)\}$$

Mathematical Background

Models

Logistic Regression:

$$P = \frac{e^{a+bX}}{1+e^{a+bX}}$$

K Nearest Neighbors (KNN):

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

Mathematical Background

Models

Support Vector Machines:

$$f(x_{test}) = \sum_{i} (\alpha_i L_i(\mathbf{x}^{\dagger} x_{test}) + b)$$

References

- Aguilar-Virgen, Quetzalli, Vega, Carolina, Taboada-Gonz´alez, Paul, & Aguilar, Xochitl. 2010.
 Potential Recovery of Domestic Solid Waste Disposed of in A Landfill. Revista de Ingeniería, 11, 16–27.
- Andesco. 2020. El 78% de los hogares colombianos no recicla. Andesco. Accessed: 2021-02-05.
- Google Al Blog. 2019. EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling. Google Al Blog. Accesed: 2021-09-27.
- Liu, Peng, Choo, Kim-Kwang Raymond, Wang, Lizhe, & Huang, Fang. 2017. SVM or deep learning? A comparative study on remote sensing image classification. Soft Computing, 21 (12).
- Zhihong, Chen, Hebin, Zou, Yan, Wang, Yanbo, Wang, & Binyan, Liang. 2018. Multi-task DetectionSystem for Garbage Sorting Base on High-order Fusion of Convolutional Feature HierarchicalRepresentation. 5426–5430
- Sakr, George, Mokbel, Maria, Darwich, Ahmad, Khneisser, Mia, & Hadi, Ali. 2016 (11). Comparing Deep Learning And Support Vector Machines for Autonomous Waste Sorting.
- Semana, Revista. 2020. As cambiar´a el reciclaje en Colombia tras entrada en vigencia de una norma. Revista Semana. Accessed: 2021-02-05.
- Sunarti, Sunarti, Tjakraatmadja, J.H., Ghazali, Achmad, & Rahardyan, B. 2020. Increasing resident participation in waste management through intrinsic factors cultivation. 12.
- Wolf, Thomas, Sanh, Victor, Chaumond, Julien, & Delangue, Clement. 2019. Transfertransfo:A transfer learning approach for neural network based conversational agents.arXiv preprintarXiv:1901.08149.

THANK YOU!

