

Instituto Federal de Brasília Campus Taguatinga Curso Ciência da Computação

GUILHERME PEREIRA PAIVA GUILHERME APARECIDO C. AGUIAR

Cálculo Numérico: Lista de Implementação

Exercício 1

Função $f_1(x)$

	Dados Iniciais	\overline{X}	$f_1(\overline{x})$	Erro	Número de Iterações
Bissecção	Α= 0 Β= 2π	3,141592	0,000	0	10000
Falsa Posição	Α= 0 Β= 2π	3,141592	0,000	0	10000
Ponto Fixo	X inicial = 3	3,143006	9,990828e-07	0.000449	188
Newton	X inicial = 2	3,141591	4,288791e-13	2.948172e-7	21
Secante	A= 0 B=1	3,141593	7,669420e-13	3.942325e-7	28

Análise $f_1(x)$:

O método da Bissecção apesar de ter o x aproximado igual a raiz, não converge pois o gráfico não corta o eixo y, não satisfazendo assim a condição necessária (f(a)*f(b)<0) para a convergência.

No método falsa posição, a reta gerada pela média ponderada tem intersecção no eixo x fora dos pontos a e b, logo, a aproximação assume um valor fora do intervalo.

A aproximação igual a raiz se deve pois ambos métodos fazem uma média do intervalo, o que coincide com a raiz.

Função $f_2(x)$

	Dados Iniciais	\overline{X}	$f_2(\overline{x})$	Erro	Número de Iterações
Bissecção	A= 0 B= 3	1,5	20,25	0,333333	10000
Falsa Posição	A= 0 B= 3	2,4	18,250169	0,166666	10000
Ponto Fixo	-	-	-	-	-
Newton	X inicial = 1,6	2,0	7,598188e-11	3,094299e- 07	19
Secante	A= 0,5 B=1	2,000001	4,631743e-10	7,639769e-07	68

Análise $f_2(x)$:

O método da bissecção não convergiu para a raiz pois não há ponto em que f(x)<0, desta forma não satisfazendo a condição f(a)*f(b)<0, necessária para que o método funcione.

No método da falsa posição, a reta gerada pela média ponderada entre os valores do intervalo, devido a disposição do gráfico da função, não satisfaz uma aproximação precisa da raiz.

Função $f_3(x)$

	Dados Iniciais	\overline{X}	$f_3(\overline{x})$	Erro	Número de Iterações
Bissecção	A= 0 B= 3	0,641183	5,551115e-17	7,583022e-06	22
Falsa Posição	A= 0.3 B= 2	0,633166	-5,007797e-08	0,003990	10000
Ponto Fixo	X inicial = 3	0,648070	9,873921e-07	0,010628	468
Newton	X inicial = 3	0,641188	0,0	1,383564e-06	34
Secante	A= 0 B=0,5	0,641183	-1,110223e-16	7,326250e-06	40

Análise $f_3(x)$:

Apesar do método da falsa posição ter atingido o número máximo de iterações, ela converge para o ponto (porém por motivos de desempenho computacional, só foi testado até 10000), essa convergência "lenta" é dada por conta das retas geradas a partir da média ponderada entre os pontos desta função.

Função $f_4(x)$

	Dados Iniciais	\overline{X}	$f_4(\overline{x})$	Erro	Número de Iterações
Bissecção	A= 2,2 B= 3,8	3	0,038565	0,047197	10000
Falsa Posição	A= 2,2 B= 3,8	3,113201	0,001601	0,009113	10000
Ponto Fixo	X inicial = 3	3,140885	9,998203e-07	0,000225	6192
Newton	X inicial = 2	3,141592	7,762699e-13	1,983086e-07	20
Secante	A= 2 B=3	3,141591	3,954493e-12	4,475904e-07	25

Análise $f_4(x)$:

Os métodos intervalares falharam devido a ausência de pontos tal que $f(a)*f(b) \le 0$

Função $f_5(x)$

1 411346 (15(11)						
	Dados Iniciais	$\overline{\chi}$	$f_4(\overline{x})$	Erro	Número de Iterações	
Bissecção	A= 1 B= 3	1,439999	-1,300959e-07	2,914005e-32	21	
Falsa Posição	A=1 B= 2	1,539593	9,798249e-06	0,0646879	10000	
Ponto Fixo	X inicial = 1	1,380526	-7,440759e-07	0,043080	7	
Newton	X inicial = 1	1,439996	-3,436449e-28	2,232854	53	
Secante	A= 2 B=3	1,440005	5,435357e-27	3,878657e-06	77	

Análise $f_5(x)$:

O método da falsa posição não converge pois a média ponderada não possui uma aproximação precisa para esta função.

Gráfico produzido através do algoritmo erro_pfixo.py.

Funções de iteração:

$$g_1(x) = \sqrt{\ln(e^{4x} + e^{x^2 + 4}) - \ln(x) - 4}$$

$$g_2(x) = 1 + \frac{1}{e^{(x-2)^2}}$$

$$g_3(x) = (-\ln(x-1) + 4x - 4)^{\frac{1}{2}}$$

***Obs:** Algumas funções foram reorganizadas para implementação por causa de erros de overflow.

Análise: De acordo com o teorema do ponto fixo, o método tem convergência linear representado por

$$g'(x^*) = \frac{x_{n+1} - \xi}{x_n - \xi}$$
 , em que X_n é uma sequência que converge para ξ .

A função $g_2(x)$ tem maior convergência, que é dada pela derivada da função.

Exercício 3

Gráfico produzido através do algoritmo erro_bissec.py.

Análise do Gráfico:

O erro relativo para cada iteração é dado por $|\frac{\overline{X_i} - x}{\overline{X_i}}|$. Como usamos o método da bissecção, garantimos que o \overline{x} é qualquer ponto dentro do intervalo selecionado. Podemos representar o tamanho dos intervalos como $xk = \frac{a+b}{2^k}$, e como $\lim_{k \to 0} xk = 0$, temos que

 $\left|\frac{\overline{x_i}-x}{\overline{x_i}}\right|$ também tende a zero de acordo com o tamanho do intervalo.