European Patent Office

Office européen des brevets

(11) EP 0 877 512 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 11.11.1998 Bulletin 1998/46 (51) Int Ci.6: H04L 12/56

- (21) Application number: 98303427.3
- (22) Date of filing: 01.05.1998
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 05.05.1997 US 851368
- (71) Applicant: NOKIA MOBILE PHONES LTD. 02150 Espeo (FI)
- (72) Inventors:
- Honkasalo, Zhi-Chun
 Vantaa, 01660s 76021 (Fi)

- Liimatainen, Pasi 36110 Ruutana (FI)
- Kapadia, Sona
 San Diego, California 92131 (US)
- Noneman, John
 Valley Centre, California 92082 (US)
- (74) Representative: Jeffery, Kendra Louise et al Nokia Mobile Phones, Patent Department, St. Georges Court, St. Georges Road Camberley, Surrey GU15 3QZ (GB)
- (54) A method for scheduling packet data transmission
- (57) In a packet data transmission and reception the system a media access control (MAC) message is 📆 🕏 broadcast by a base station to a plurality of mobile stations The MAC message contains packet data transmission scheduling information which allows the base station to preemptively control mobile station access to traffic channels in order to maximize the efficiency of packet data transmissions and allow scheduling consideration including priority access, quality of service and among the maximum bytes per transfer. The MAC message consists of a control frame structure which comprises grant to scheduling parameters including MAC IDs fields, activ-ly because ity tields, and a field representing the number of free traftic channels in a cell. These parameters enable multiple (1) is 21 45 mobile stations to share, in a time multiplexed fashion, based mobile communication systems. 🐒 🕝 🖽 நிறு சு விணுந்தின் 建瓦尔斯基丁 网络建筑设施

P 0 877 512 A

Printed by Jouve, 75001 PARIS (FR)

Description

This invention relates to cellular telephone network data transmission, specifically to a method of scheduling packet data transmission for a connection-less packet service.

Packet data communication is known in cellular telephone systems, as is evidenced by, for example, commonly assigned U.S. Patent No.: 5,257,257, issued October 26, 1993, entitled "Method of Controlling the Operation of a Packet Switched CDMA Communication Network for Controlling the Operation of Transmitters and Receivers", by X.H. Chen and J. Oksman.

One further example is defined in TIA/EIA/IS-657, Packet Data Service Option for Wideband Spread Spectrum Cellular System. IS-657 is used along with TIA/EIA/ IS-95A, Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System, and, TIA/EIA/IS-99 Data Services Option Standard for Wideband Spread Spectrum Digital Cellular System. The current IS-657 based packet data scheme for code division multiple access (CDMA) does not allow the traffic channel to be shared between more than one user. The IS-657 scheme is based on a makeand-break of multiple traffic channel connections during the life of a packet data session. In the worst case, a packet may suffer a call set-up delay which can range from tens of milliseconds to a few seconds. Also, it is possible for a mobile station (MS) to transmit idle (eighth rate) frames for a user defined time if there are no packets to send. This results in wasted bandwidth, especially in high-speed data systems, because the traffic channel capacity is reserved for this user and cannot be utilized by any other user. Thus, an access scheme that allows two or more users to share traffic channels, and allows the network to control the packet delay is needed.

In connection-less packet data transmission in mobile communication systems, discrete packets are transmitted on a packet-basis, that is, no dedicated end-to-end connection is set up. Sharing of traffic channels in connection-less packet data transmission has generally been supported via random access or random reservation media access control (MAC) protocols. Under these MAC protocols, multiple mobile stations compete for traffic channels in order to receive packet data service from a base station (BS). The number of available traffic channels for packet service withlina cell is defined by the BS.

Random reservation protocols are generally believed to offer high channel utilization. However, in a CD-MA based system that is approaching the system's maximum capacity, random access attempts are more likely to be unsuccessful due to higher interference levels. Thus, as a cell approaches its maximum capacity of available traffic channels, multiple MSs compete for fewer and fewer available traffic channels. This normally leads to even further access attempts by the MSs. Often, the random attempts themselves increase the com-

munications load in the cell and reduce traffic channel capacity.

It is a first advantage of this invention to provide an efficient method for transmitting packet data over a cellular communication network that mitigates the foregoing and other problems.

Another advantage of this invention is to maintain scheduled traffic channel sharing among multiple packet data users who are attached to a cell of a mobile communication network.

Another advantage of this invention is to provide the base station of a cellular communication network with control over which mobile station(s) may attempt access to the system during a specified period of time.

Another advantage of this invention is to provide the base station of a cellular communication network the ability to preemptively control priority and duration of mobile station access by employing a scheduling method which considers one or more parameters including priority access service, quality of service, and a maximum number of bytes per transmission.

The foregoing and other problems are mitigated and the performance of this invention is realized by methods and apparatus in accordance with embodiments of this invention. More particularly, this invention is directed to solving the problem of inefficient packet data transmission in CDMA based mobile communication systems.

Scheduled packet access, as taught by this invention, leads to more stable load conditions, offers higher channel utilization, and enables determination and control of a maximum delay in packet data transmission experienced by users. According to the teachings of this invention, the BS divides access to the traffic channel (s) allocated for packet data services into time slots. The right to access a given traffic channel for a specific time slot is referred to as a packet token, hereinafter simply a token. One or more token(s) are allocated to the MSs from time slot to time slot, in a pre-defined manner. The token allocation schedule is determined at the BS, which may employ a variety of schemes to determine how the token is assigned. This pre-defined, scheduled token allocation is distinguishable over conventional random access and random reservation protocols. Token allocation, as taught by this invention, is accomplished by granting transmission access to an available traffic channel to each packet data MS in the cell according to specific, scheduled time intervals. This scheduled approach allows the BS to preemptively control traffic channel access among packet data MSs. Random access protocols, on the other hand, allow access to an available traffic channel as a packet data MS requests it. Thus, the conventional random protocols employ a first-come-first-serve method of traffic channel access assignment.

Allocating the right to access an available traffic channel may not always result in a transmission from the packet data MS. If, at the end of a time slot, the BS

a valid transmission from the MS(s) the token(s), either because the MS nd or an access preamble did not reach illy, then the BS allocates the token to the cell. In this way, the MSs share the annels in a time-multiplexed fashion, Jules and controls the allocation of the at all times. This technique eliminates sociated with conventional MS random to gain a traffic channel for transmitting

on preferably employs a technique in smits at least one dedicated MAC chanrard link. When transmitting the MAC ges to a specific MS the BS may use a 15 onic senal number (ESN) of the MS as 3k, and when broadcasting MAC channel MSs within a cell the BS preferably uses ode mask. The MAC channel messages data traffic channel information and staon the allocation of the token(s) to packet in the cell. The MAC channel messages reflect the latest token usage. By decod-MAC channel message a MS evaluates oken(s) for the next time slot, and is able an it should next be allocated the token The MS holding a token may attempt to iffic channel if it has data to send. The MS es its own private long code for reverse link as the BS expects a preamble signal from rently holding a token. Every packet traffic a pre-defined Walsh code associated on ink to which the MS listens to determine ccess was successful. After an access acent is received from the BS, the MS termi- 35 amble and starts to transmit its packet da-.nt, the MS may negotiate the traffic channel n the BS. The initial traffic channel data rate ed by a Service Option and may be as low ined low speed data service; such as 9.6

ccupied, the traffic channel is preferably alnat MS until the end of the packet. The maxa MS is allowed to occupy a channel is prethe network, so that the BS can predict worst nel usage. The BS may employ various techensure efficient channel usage. For example, jning a token, the BS may define a maximum bytes that a MS may transmit. If this maxiper of bytes per transmission is exceeded, the e option to terminate a packet transmission by transmission stop bit on the associated fortraffic channel. If the transmission is stopped, linquishes the token at the next time slot and e pool of MSs awaiting the next available tolarly, if the transmission of packet data coma MS yields the token at the next time slot. chniques for monitoring transmissions may be

based on equal sharing between MSs, or allow for different priorities of transmission which depend on the quality of service selected.

In accordance with the present invention, the BS allows the MS to turn off its receiver and save power during the periods when the MS does not hold the token. If the MS does shut down its processing between tokens the BS informs the MS, before the MS shuts down, when it should start its processing again, i.e. when the MS will be allocated the token again. This notification by the BS before the MS shuts down is possible as the token is assigned in advance. Thus, a "dynamic slotted mode" operation is provided, the operation being dynamic in that the position of the slot need not be the same in every cycle. The slot position is a function of how many active MSs are on the channel, and on how much data each MS can transmit. Additionally, the number of slots is a function of the number of available channels at the BS.

The BS may transmit packets destined for a MS, if 20° any, or fill data, on the forward link at the same time that the MS is allocated a token and is transmitting packets on the reverse link. This allows the BS to send power control information to the MS.

According to a first aspect of the present invention, there is provided a method for transmitting packet data from a plurality of mobile stations to a base station, comprising the steps of:

broadcasting media access control (MAC) information from the base station to the plurality of mobile stations; 🚟 -

receiving the broadcast MAC information at the plurality of mobile stations; and

for a mobile station specified in the MAC information, transmitting packet data to the base station at a time specified by the MAC information.

at a transfer ... According to a second aspect of the present invention, there is provided a cellular communication system, comprising:

a plurality of base stations, each base station having an associated cell;

a plurality of mobile stations located within said cells:

means in each said base station for broadcasting media access control (MAC) information from said base station to mobile stations located within the base station's cell;

each of said mobile stations comprising a receiver for receiving said broadcast MAC information; and

each of said mobile stations further comprising a

55

25

40

controller, responsive to said broadcast MAC information, for transmitting packet data from said mobile station to said base station at a time specified by the received MAC information.

According to a third aspect of the present invention, there is provided a method of scheduling the wireless transmission of packet data between a mobile station and a base station, comprising the steps of:

assigning an identification to and an activity status for each packet data service mobile station within a cell:

setting the activity status of the packet data service mobile station for queuing the mobile station for packet data transmission;

scheduling packet data transmission times for multiple queued mobile stations;

activating with a media access control (MAC) message a queued mobile station by assigning, with the identification, a right to transmit packet data;

updating the activity status and activation scheduling information in a next MAC message;

broadcasting with a MAC message a packet data transmission scheduling sequence which comprises the updated activity status and activation information to each active packet data service mobile station

decoding in each active packet data service mobile station the broadcast activity status and activation information to determine the scheduling sequence;

predicting a time period when the mobile station has permission to transmit packet data by evaluating the decoded activity status and activation information: and

transmitting packet data during the predicted time period according to the broadcast scheduling sequence.

According to a fourth aspect of the present invention, there is provided a method of scheduling transmission of channel packet data between a packet data source and a packet data sink in a wireless transmission/reception system, comprising the steps of:

establishing time slots for transmitting packet data by dividing access to traffic channels allocated for packet data communication into discrete time periods: establishing an identification number (MAC ID) for packet data sources to be used for packet data transmission;

associating an activity field with each MAC ID;

using a MAC control frame structure to convey packet data transmission scheduling information from the packet data sink to queued packet data sources, wherein the scheduling information includes activity fields, a Next MAC ID field which specifies a packet data source having a MAC ID to be given traffic channel access in a next time slot, and a count of a number of free traffic channels available at the packet data sink;

activating a queued data source by assigning the Next MAC ID field the value of the data source's MAC ID, thus granting a right to transmit packet data in the next time slot;

updating the activity field of the activated data source and decreasing the count of the number of free traffic channels;

broadcasting the MAC control frame structure to all packet data sources;

predicting at the packet data source the time slot when a given packet data source can transmit packet data by evaluating the MAC control frame structure; and

transmitting the packet data according to the access/transmission scheduling sequence defined within the MAC control frame.

According to a fifth aspect of the present invention, there is provided a method for conserving power in a mobile station, comprising the steps of:

broadcasting media access control (MAC) information from a base station to a plurality of mobile stations;

receiving the broadcast MAC information at the plurality of mobile stations;

for a mobile station specified in the MAC information, transmitting packet data to the base station at a time specified by the MAC information; and

simultaneously receiving packet data from the base station, as the mobile station is transmitting packet data to the base station.

According to a sixth aspect of the present invention, there is provided a method for transmitting packet data

from a mobile station, comprising the steps of: . . .

transmitting media access control (MAC) information from a plurality of base stations to the mobile station:

receiving the MAC information from the plurality of base stations at the mobile station; and

executing a virtual soft handoff with the mobile station by selecting a base station from the plurality of base stations transmitting MAC information to the mobile station according to at least one signal reception condition and, for a time interval specified by the MAC information of the selected base station, transmitting packet data from the mobile station only to the selected base station.

According to a seventh aspect of the present invention, there is provided a method for transmitting packet 20 data from a mobile station to two or more base stations, comprising the steps of:

transmitting media access control (MAC) information from the two or more base stations to the mobile 25 station:

receiving the MAC information from the two or more base stations at the mobile station;

AND THE PARTY OF T and the second of the second selecting a base station from the two or more base stations transmitting MAC information to the mobile . Fig. 5 is a state flow diagram, according to the into the property of the station; and 🚲 📆 🚎 😅

के अभिने का स्थापित के एक ए जा है । अस्ति के स्थाप के प्राप्त है । of the selected base station, transmitting packet data from the mobile station to the selected base station. 深意更大地,在大人的人,不管理论。

tion, there is provided a cellular communication system, personal communicator, that is suitable for practicing ti si ngalgai adak tan kit si

an associated cell; र राज्य वर्ष राज्य । अक्टन्स्ट्रिस स

100 a mobile station capable of transitioning from a first

Lange Markey Com means in each of said two of more base stations for 50 transmitting media access control (MAC) information to said mobile station;

Acres programmes are as processor in taken give said mobile station comprising a receiver for receivfor selecting one of said base stations; and

william management of the street community and

responsive to said MAC information, for transmitting packet data from said mobile station to said selected base station for a period of time specified by said MAC information received from said selected base station.

The above set forth and other features of the invention are made more apparent in the ensuing Detailed Description of the Invention when read in conjunction with the attached Drawings, wherein:

Fig. 1 is a block diagram of a cellular terminal that is suitable for practicing this invention;

Fig. 2 depicts the terminal of Fig. 1 in communication with a CDMA cellular network;

Fig. 3A is a pictorial representation of a media access control (MAC) channel frame structure employed, in accordance with the invention, by the BS to broadcast packet data traffic channel information and token allocation information to each MS;

Fig. 3B is a pictorial representation of the Forward Link BS MAC Transmissions in relation to the Reverse Link MS Transmission Time Slots;

Fig. 4 is a logic flow diagram, according to the invention, for a MS to predict its next allocation of a token;

- . vention, for MS packet operation; and

for a time interval specified by the MAC information 35 : Fig. 6 is a state flow diagram, according to the invention, for BS packet operation.

ان في الحجارات Reference is first made to Figs. 1 and 2 for illustrating a wireless user terminal or mobile station (MS) 10, According to an eighth aspect of the present inven- 40 such as but not limited to a cellular radiotelephone or a comprising: இது நடித்த நடித்த நடித்த நடித்த நடித்த நடித்த நடித்த this invention. The MS 10 includes an antenna 12 for -transmitting signals to and for receiving signals from a two or more base stations, each base station having base site or base station (BS) 30. The BS 30 is a part of a cellular network 32 that includes a mobile switching .. center (MSC) 34, and a plurality of additional BSs, such as BS 30' Each BS, for example BS 30, services an cell to a second cell; and the second cell; and the second cell within the network 32 and is assumed to include a plurality of receivers 30a and transmitters 30b, some of which can be allocated for packet data services. The MSC 34 provides a connection to landline trunks when the mobile station 10 is involved in a call. It is assumed for the purposes of this invention that the network 32 supports packet data service. For example, the neting said transmitted MAC information and means 55, work 32 may be coupled to a packet data network 36 such as the internet, and/or to a LAN or WAN.

:: : The mobile station includes a modulator (MOD)

a controller 18 that provides signals to nals from the transmitter 14 and receivby. These signals include signalling inordance with the air interface standard ecellular system, and also user speech erated data. The air interface standard this invention to include a capability to

ently preferred embodiment of this invenior 14A, transmitter 14, receiver 16, and SA are adapted to operate with a code ∋ access (CDMA) system, such as one 35A. The teaching of this invention is not, ed for use with only this type of system, iployed with a number of different types aving different modulation and access , such as time division, multiple access ms.

stood that the controller 18 also includes quired for implementing the audio and logthe mobile station. By example, the conbe comprised of a digital signal processor roprocessor device, and various analog to ters, digital to analog converters, and other ts. The control and signal processing funcnobile station are allocated between these ording to their respective capabilities.

pile station 10 may be capable of voice s also, and thus can include a user intersed of a conventional earphone or speaker ::30 ntional microphone 19, a display 20, and a evice, typically a keypad 22, all of which are ne controller 18. The keypad 22 includes the I numeric (0-9) and related keys (#,*) 22a, ys 22b used for operating the mobile station 35 other keys 22b may include by example, a his various menu scrolling and soft keys, and a he mobile station 10 may also include a batowering the various circuits that are required and the mobile station.

ıld be realized that in other embodiments the tion 10 may function only as a data terminal

plurality of constants and variables that are 55 g information of one or more MSs 10. ... the controller 18 during the operation of the moof various cellular system parameters and the value. BS 30 to the MSs 10 for purposes of media access con-

number assignment module (NAM). An operating program for controlling the operation of controller 18 is also stored in the memory 24 (typically in a ROM device). The memory 24 may also store packet data prior to transmission or after reception. The memory 24 includes routines for implementing the methods described below in relation to Figs. 4, 5 and 6.

Packet data service options provide a mechanism of establishing and maintaining traffic channels for packet data service. A packet data service option is negotiated during call origination or at a later time during a call. The details of establishing packet data service can be found in, by example, IS-95A, IS-657, and IS-99.

In accordance with this invention, the call origination messages are modified from the definitions in the above mentioned standards to include a MAC channel frame structure as shown in Fig. 3A. The MAC channel frame structure is broadcast by the BS 30 to all MSs 10 within the cell at regular intervals of time, referred to as a MAC transmission period. The BS 30 divides access to the traffic channel(s) allocated for packet data services according to time slots. A time slot is defined as the time period required for a MS to transmit all or some of its packet data. A time slot is limited to the maximum transmission time set by the BS 30. Time slots may be of unequal duration, as each time slot's duration can be defined by the amount of packet data a MS 10 is transmitting, up to a maximum transmission time. Additionally, one or more MAC transmission periods may elapse within a time slot, however, each time slot has a duration that is a whole multiple of the duration of the MAC transmission period. The relationship between time slots and MAC transmission periods is illustrated in Fig. 3B. In essence, the time slot represents a given period of time in which a MS 10 has the right to access a traffic channel. The MS 10 that is allocated this access right is allocated a token. The MAC channel frame structure contains various fields that are used by the BS 30 to schedule traffic channel access, i.e. token allocation. As is shown in Fig. 3B, a portion of an assigned time slot may be unused n gan natara by a MS 10.

The MAC channel frame structure includes a pluone of transmitting or receiving packet data. Traility of one bit wide fields, 1 to n. These fields are ree station 10 which functions as a data terminal sease ferred to as "activity" fields. Each activity field defines le a data port 28 which is coupled to the con- 345 the status of a corresponding MS 10, and may have a As a data terminal, certain of the user interface value of either zero ("0") or one ("1"). A field value of nts described above may not be included. It is agree indicates that the corresponding MS 10 has not so be appreciated that in some embodiments show been assigned to a traffic channel by the BS 30. A field e station 10 may not be mobile at all, but may walve value of one indicates that either the MS has been asted at a fixed location (for example, as a com- v 50 , signed to receiver hardware in the BS 30, or that the f a wireless facsimile machine in an office enthe cell. In the preferred embodiment the activity field is mobile station 10 also includes various memo- state a one bit wide field, however, a field width of more than wn collectively as the memory 24, wherein are sections bit may be used for conveying the activity status

ion. For example, the memory 24 may store the temporary identification number that is assigned by the

hese temporary identification numbers are reto as MAC IDs. The BS 30 allocates a different 1D, and hence a different corresponding activity o each MS 10 within the cell. A MAC ID is valid BS 30 that assigns it, and multiple BSs 30 may assign different MAC IDs to the MS 10 in order to ent virtual "soft handoff". Thus, each packet may be divia a different BS 30, but never via more than one r one packet, depending on the signal condition to/ that BS. The virtual soft handoff is preferably moassisted and is based on the pilot signal condition by the MS 10, in the similar manner as in conven-I soft handoff procedures.

according to the embodiments of this invention, the al soft handoff procedure differs from conventional nandoff procedures. In conventional soft handoff edures, the traffic channel is handoff from a first BS second BS. In accordance with this invention, the. ille station's monitoring of the MAC channel is handom the MAC channel of the first BS 30 to the indedent MAC channel of the second BS 30'. In other is, the MS 10 is first receiving MAC information from MAC channel of the first BS 30. At some point, the 10 will be receiving the MAC channel of the first BS as well as the MAC channel of the second BS 30'. :ause token allocation and scheduling information is ntained within the MAC information the MS may re-/e a token from either BS 30 or 30' and transmit to : BS during the virtual soft handoff process. Once a est* quality channel (e.g. lowest bit error rate or frame for rate) and transmits the packet data to the associ-

ers can be reused within the sub-groups of different thannels. 474 to \$25.50 to \$2.50 \$2.50 \$3.

MAC IDs are preferably allocated by the BSs 30 which the MS 10 receives the strongest pilot signal. This invention assumes that the interworking function (IWF) 55 C is "YES". that has been established with a fixed packet data network, e.g. internet, resides in the mobile network, not at the first BS where the MS sets up the virtual connection.

That is, the IWF in the MSC 34 is connected to two or more BSs.

The MAC channel frame structure also includes a Next MAC ID field. This field is an n-bit wide field, where n represents a number of bits which can accommodate the maximum allowable width of the MAC ID field. The Next MAC ID field indicates which MS(s) 10 are allowed to transmit data during the next time slot, i.e. who will have the next token. The Next MAC ID field is sent in each MAC frame message. As a result, if any MSs 10 miss one or more MAC frames they are enabled to quickly determine the access token rotation.

Lastly, the MAC channel frame structure includes a #Free Channels field. This field is an m-bit wide field, where m represents a number of bits which can accommodate an integer that indicates the maximum number of traffic channels within a BS that are allocated for packet data transmission. The value of the #Free Channels field indicates the number of currently available traffic channels in the BS 30 in a given time slot.

In accordance with this invention, and referring to Figs. 3A and 4, a MS 10 evaluates the fields within the MAC channel frame structure and predicts when it will be allocated a token. A MS 10 accomplishes this prediction in the following manner. First, at Block A, an initialization step for a counting process is performed. This initialization step evaluates the MAC channel frame structure and locates, within the MAC channel frame, - the activity field that corresponds to the MS 10 whose en is received it is held until transmission is complet-: 30 MAC ID is equal to the value of the Next MAC ID field. For example, a token received from the first BS 30 Additionally, the initialization step sets to a value of zero es not give the MS 10 the right to transmit to the sec- a variable which represents the result of the counting 3 BS 30'. Additionally, there may be an occurrence process. The counting process is performed at Blocks en a token is simultaneously offered by both BSs, 30 B through D inclusive. Within the process a predicting 1 30', servicing the MS 10. In this event, the MS 10 35 MS 10 counts, in a cyclic manner, activity fields within elerably accepts the token that is allocated by the the MAC control frame structure with values of zero. At Block B, the counting process starts at the Next MAC ID's activity field position and, moving from left to right, ed BS 30 or 30 When the pilot signal of the first BS retrieves the next activity field in the MAC control frame) drops below a predetermined level the MS 10 drops 40 whose value is zero. At Block C, this retrieved activity e MAC channel of the first BS 30 and monitors only field is evaluated to determine whether it corresponds e MAC channel of the second BS 30'-After the MS 10 to the MAC ID of the predicting MS 10. If this retrieved ops the first BS 30; the first BS 30 is free to reassign activity field corresponds to the MAC ID of the predicting te MAC ID it previously assigned to the MS 10, the action of MS 10 then the counting process is complete, and the Because every packet MS 10 has its own MAC ID 45 prediction algorithm continues at Block E. However, if he total number of required MAC IDs could become exessively large for a large cell. Therefore packet users and predicting MS, then the variable which represents the nay be divided into MAC sub-groups, and MAC ID num- recounting result is incremented by one at Block D. Note, the accounting process begins after retrieval of the activity field which corresponds to the Next MAC ID, this activity field is excluded from the count. The during a "virtual call set-up" procedure. The BS 30 that counting process will cycle through Blocks B, C, and D performs the virtual connection is preferably the BS from was until the activity field corresponding to the predicting MS 10 is encountered, i.e. the condition evaluated in Block

After the counting process has completed, the preexpediction procedure continues, at Blocks E and F, by per au_Rst forming a calculation which uses the current value of the Channels field and the counting variable defined For purposes of illustration, if the predicting MS signs the result of the counting process to a variation, and assuming the current #Free Channels field gned to a variable "M", the calculation at Blocks F is represented by the following formula:

$$y = INT(x/M) + 1$$
 (1)

current slot number is j, then the (j + y)th slot is the sting MS's turn to have the token. Also, this implies the predicting MS's position is within M - 1 zero of the MS corresponding to the Next MAC ID, then an will be allocated to the predicting MS in the next necause a traffic channel will be available.

n the minimum form, the prediction of token usage by valid for the next time slot. That is, the BS 30 may te the token allocation information every time slot. Induce the MS's 10 receiving activity, the BS 30 may use to update the token allocation information differso that the calculation from Equation (1) is valid ne next x time slots, or a time period referred to as per-frame. Consequently, the MS 10 does not have exceed the MAC message in every time slot in order to miss its turn for transmission. The super-frame period is controlled by the BS 30.

In accordance with this invention, and referring to 5, packet MS operation is as follows. Whenever a 10 with packet data service mode activated enters cell, or when a MS 10 in the cell activates packet a mode, the BS 30 assigns a MAC ID number, and s a corresponding activity field, to the MS 10. This signment, referred to as virtual call set-up, is shown 3lock A. At Block B, the MS 10 stores the temporary 35 AC ID in the memory 24.

Once the MAC ID and activity field are assigned, MS 10 decodes the broadcast MAC messages sent m the BS 30. This decoding, shown at Block C and continues until the MS 10 determines that it was alcated the token by the BS 30. Allocation of the token nables the MS 10 to transmit its packet data. However, Block E, the MS 10 must first determine whether it as packet data to send. If the MS 10 does not have acket data to send it continues to decode MAC mes- 45 ages and the BS 30 will allocate the token to the next IS 10 in the subsequent time slot. If the MS 10 does ave data to transmit then it begins a transmission procss as shown in Blocks F through I. First, at Block F, the AS 10 transmits a preamble message on the reverse ink to the BS 30. If the BS 30 receives the preamble it eplies with an acknowledgment. If the acknowledgment s received then the MS 10, as shown in Blocks G and H, transmits its packet data. The transmission continues intil all MS 10 packet data is sent, or a maximum ...55 number of bytes to transmit is surpassed, or a predetermined time-out period is exceeded, shown in Block H and I. If the maximum number of bytes to transfer is en-

countered or the time-out period is exceeded, transmission may be stopped and the transmitting MS 10 returned to the decoding step, Block C, described above. However, if packet data transmission is successful the packet data call is terminated, the transmission process is complete, and the token is allocated by the BS 30 in the subsequent time slot to the next MS 10 in the cell.

In accordance with the present invention, the BS 30 allows the MS 10 to turn off its receiver and save power during the periods when the MS is not allocated the token. If the MS 10 does shut down its processing between tokens, the BS 30 informs the MS 10, before the MS 10 shuts down, when it should start its processing again, Le. when the MS 10 will be allocated the token again. This notification by the BS 30 before the MS 10 shuts down is possible as the token is assigned in advance. Thus, a "dynamic slotted mode" operation is provided, the operation being dynamic in that the position of the slot need not be the same in every cycle. The slot position is a function of how many active MSs 10 are on the channel, and on how much data each MS 10 can transmit. Additionally, the number of slots is a function of the number of available channels at the BS 30.

The BS 30 may transmit packets destined for a MS 25 = 10, if any, or fill data, on the forward link at the same time that the MS 10 is allocated a token and is transmitting packets on the reverse link. This allows the BS 30 to send power control information to the MS 10.

In accordance with this invention, and referring to Fig. 6, packet BS 30 operation is as follows. Note, Fig. 6 assumes that the BS 30 has divided traffic channel access into the discrete time periods referred to above as time slots. Thus, BS 30 operation, as shown in Fig. 6, begins when a MS 10 activates packet data mode. At Block A, the BS 30 assigns a MAC ID number and activity field to the MS 10 with packet data mode active, this assignment is referred to as virtual call set-up. In virtual call set-up, the BS 30 initially assigns the activity field corresponding to the MS 10 a value of one. On the subsequent MAC frame, shown at Block B, the BS 30 sets this activity field value to zero, which indicates that the MS 10 of the newly assigned MAC ID is in the queue for access to a traffic channel. Whenever a MS 10 with packet data service mode active leaves the cell, or deactivates the packet data mode, the BS 30 release the MAC ID number from the MS 10 and, in the subsequent MAC message, the BS 30 sets the corresponding activity field of the released MAC ID to one, thus dequeuing the MS 10 from traffic channel access.

At Block C, the BS 30 evaluates the queue of MSs 10 awaiting a token. If no MSs are waiting, the scheduling process is complete. However, if one or more MSs remain queued for access, the BS determines a scheduling sequence. At Block D, a scheduling algorithm is employed which considers one or more parameters including, for example, prioritized access, service quality factors, and a maximum number of bytes to transmit by each MS 10. Once a schedule is determined which en-

sures efficient packet data transmission the BS 10 updates the MAC control structure frame to reflect the schedule.

The BS 30 performs this updating, shown at Block E, as follows. A change in token scheduling status begins when the BS 30 cycles the value assigned to the Next MAC ID field to identify the MAC ID of the MS 10 that is to be allocated the token in the next time slot. Once this MS 10 is allocated the traffic channel and begins transmission of its packet data the BS 30 updates the MS's corresponding activity field to a value of one, decreases the value of the #Free Channels field by a value of one, and reassigns the value of the Next MAC ID field to identify the MS 10 that is to transmit its packet data in the next time slot

This cyclic assignment can be further demonstrated by considering the MAC control frame structure fields in both an inactive and active state. In the inactive state, when there are no packet data MSs 10 within a cell, all activity fields of the MAC control structure frame are a value of one, the Next MAC ID field has a value of zero, and the #Free Channels field has a value equal to the maximum number of receivers 304 in the BS 30 that are allocated for packet services. In the rictive state, after the BS 30 has assigned a unique MAC ID to each packet mode MS 10 in a cell, the MAC control frame activity fields corresponding to the assigned MAC IDs without a token are a value of zero, the Next MAC ID field is a value which corresponds to the MAC ID of the MS 10 F that is scheduled to be allocated a token in the next time 30 slot, and the #Free Channels field is a value which represents the number of receivers 30% in the BS 30 that support packet service, less the number of channels occupied by MSs 10 that currently are allocated the token or tokens. Note, the BS 30 decreases the value of the $^{\prime}$ #Free Channels field by one whenever a MS 10 suc- : : cessfully acquires a traffic channel and starts to transmit packet data. Likewise, the BS 30 increases the value of the #Free Channels field by one when the traffic channel is released at the end of packet transmission. Thus, the transmission schedule is defined by the values of the MAC control frame structure fields (5.1) April 420 a

At Block F, the BS 30 broadcasts the MAC control frame structure to each MS 10 within the cell. As discussed above, when broadcasting MAC channel messages to all MSs 10 within a cell the BS 30 preferably uses a public long code mask, and when transmitting the MAC channel messages to a specific MS 10 the BS 30 may use a permuted electronic serial number (ESN) of the MS 10 as a long code mask.

The MS 10 decodes the MAC message and evaluates the MAC control frame fields to determine the traffic channel access schedule. To ensure preemptive control of channel access the BS 30 monitors, at Block G, the transmissions of the MS 10 that is allocated the token. For example, at Block H, if the maximum number of bytes per transmission is exceeded the BS 30 may force the termination of the MS 10 transmission and return the

MS to the queue for token assignment. If the MS 10 transmission completes, as shown in Block I, the BS 30 reallocates the token in the next time slot. This reallocation process is accomplished by looping back to the above evaluation of MSs awaiting packet data transmission permission, Blocks C through I. If transmission is not complete, the BS 30 may rebroadcast the MAC message and continue to monitor the MS's transmission. This scheduling process continues until there are no packet data MSs queued for transmission, i.e. all MS packet data transmissions are complete.

It should be realized that a plurality of MSs 10 could each be allocated a token, giving the mobiles the right to access respective available traffic channels in the BS 30, in a given time slot. By example, if there are n available traffic channels, upto n mobile stations can be granted the token to transmit during a next time slot.

While the invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that changes in form and details may be made therein without departing from the scope and spirit of the invention.

Claims

 A method for transmitting packet data from a plurality of mobile stations to a base station, comprising the steps of:

> broadcasting media access control (MAC) information from the base station to the plurality of mobile stations;

> receiving the broadcast MAC information at the plurality of mobile stations; and

for a mobile station specified in the MAC information, transmitting packet data to the base station at a time specified by the MAC information.

- A method as in claim 1, wherein a set of the mobile stations transmit their respective packet data over a same traffic channel at different times, as specified by the MAC information.
- A method as claimed in claim 1 or 2, wherein the
 step of broadcasting uses a dedicated MAC channel.
- 4. A method as claimed in any of claims 1 to 3, wherein the base station transmits packet data destined for the mobile station on a forward link at the same time the mobile station transmits packet data on the reverse link.

- 5. A method as claimed in any of claims 1 to 4, wherein the MAC information comprises a MAC control frame structure for conveying packet data transmission scheduling information, the MAC control frame structure including a plurality of activity fields, one activity field for each active packet data mobile station within a cell, a Next MAC ID field which specifies the identification of a mobile station to be given traffic channel access in a next time slot, and a #Free Channels field which specifies a number of available traffic channels for packet data service at the base station.
- 6. A method as in claim 5, wherein the identification of the mobile station is by a temporary number (MAC ID) that is assigned to the mobile station by the base station.
- A method as claimed in any of claims 1 to 6, wherein transmissions of packet data from the mobile station to the base station are preemptively controlled and scheduled by the base station.
- 8. A method as claimed in any of claims 1 to 7, wherein the base station transmits MAC information to a specific mobile station using a permuted electronic serial number (ESN) of the mobile station as a long code mask, and broadcasts MAC information to all mobile stations within a cell using a public long code mask.
- 9. A method as claimed in any of claims 1 to 8, wherein transmissions between the base station and mobile stations employ spreading codes, a unique spreading code to identify transmissions to each mobile station individually, and a public spreading code to identify a broadcast to all mobile stations.
- 10. A method as claimed in any of claims 1 to 9, wherein a base station of an original cell and a base station of a new cell both receive a transmission from a mobile station during a transition period from the original cell to the new cell.
- 11. A cellular communication system, comprising: ::

a plurality of base stations, each base station having an associated cell;

a plurality of mobile stations located within said 50 cells:

means in each said base station for broadcasting media access control (MAC) information from said base station to mobile stations located within the base station's cell;

each of said mobile stations comprising a re-

ceiver for receiving said broadcast MAC information; and

each of said mobile stations further comprising a controller, responsive to said broadcast MAC information, for transmitting packet data from said mobile station to said base station at a time specified by the received MAC information.

- 12. A system as in claim 11, wherein a set of said mobile stations transmit their respective packet data over a same traffic channel at different times, as specified by said MAC information.
- 15 13. A system as claimed claim 11 or 12, wherein said means for broadcasting uses a dedicated MAC channel.
 - 14. A system as claimed in any one of claims 11 to 13, wherein said receiver receives a dedicated MAC channel using a predefined spreading code.
 - 15. A system as claimed in any one of claims 11 to 14, wherein said base station transmits packet data destined for said mobile station on a forward link at the same time said mobile station transmits packet data on the reverse link.
 - wherein said MAC information comprises a MAC control frame structure for conveying packet data transmission scheduling information, said MAC control frame structure including a plurality of activity fields, one activity field for each active packet data mobile station within said cell, a Next MAC ID field which specifies said identification of said mobile station to be given traffic channel access in a next time slot, and a #Free Channels field which specifies a number of available traffic channels for packet data service at said base station.
 - 17. A system as claimed in any one of claims 11 to 16, wherein transmissions of packet data from said mobile station to said base station are preemptively controlled and scheduled by said base station.
 - 18. A system as claimed in any one of claims 11 to 17, wherein said base station transmits MAC information to a specific mobile station using a permuted electronic serial number (ESN) of said mobile station as a long code mask, and broadcasts MAC information to all mobile stations within a cell using a public long code mask.
 - 19. A system as claimed in any one of claims 11 to 18, wherein transmissions between said base station and said mobile stations employ spreading codes, a unique spreading code to identify transmissions

to each mobile station individually, and a public spreading code to identify a broadcast to all mobile stations.

- 20. A system as claimed in any one of claims 11 to 19, wherein said base station of an original cell and said base station of a new cell temporarily receives a transmission from said mobile station during a transition period from the original cell to a new cell.
- 21. A method of scheduling the wireless transmission of packet data between a mobile station and a base station, comprising the steps of:

assigning an identification to and an activity status for each packet data service mobile station within a cell;

setting the activity status of the packet data service mobile station for queuing the mobile station for packet data transmission;

scheduling packet data transmission times for multiple queued mobile stations;

activating with a media access control (MAC) message a queued mobile station by assigning, with the identification, a right to transmit packet data:

updating the activity status and activation scheduling information in a next MAC message;

broadcasting with a MAC message a packet data transmission scheduling sequence which comprises the updated activity status and activation information to each active packet data service mobile station.

decoding in each active packet data service mobile station the broadcast activity status and activation information to determine the scheduling sequence;

predicting a time period when the mobile station has permission to transmit packet data by evaluating the decoded activity status and activation information, and

transmitting packet data during the predicted time period according to the broadcast scheduling sequence.

22. A method as set forth in claim 21, wherein the step of scheduling is performed after evaluating one or more parameters including prioritized access, service quality considerations, and maximum number of bytes to transmit. 😭

23. A method as set forth in claim 21 or 22, wherein the base station identifies the mobile station with a temporary number (MAC ID), the MAC ID is valid for the base station that assigns it and multiple base stations may assign different MAC IDs to the mobile station.

- 24. A method as set forth in claim 23, wherein a plurality of mobile stations are identified as a sub-group, each sub-group reusing MAC IDs assigned by a base station to mobile stations within a different sub-group.
 - 25. A method of scheduling transmission of channel packet data between a packet data source and a packet data sink in a wireless transmission/reception system, comprising the steps of:

establishing time slots for transmitting packet data by dividing access to traffic channels allocated for packet data communication into discrete time periods;

establishing an identification number (MAC ID) for packet data sources to be used for packet data transmission;

associating an activity field with each MAC ID,

using a MAC control frame structure to convey packet data transmission scheduling information from the packet data sink to queued packet data sources, wherein the scheduling information includes activity fields, a Next MAC ID field which specifies a packet data source having a MAC ID to be given traffic channel access in a next time slot, and a count of a number of free traffic channels available at the packet data sink:

activating a queued data source by assigning the Next MAC ID field the value of the data source's MAC ID, thus granting a right to transmit packet data in the next time slot;

updating the activity field of the activated data source and decreasing the count of the number of free traffic channels;

broadcasting the MAC control frame structure to all packet data sources;

predicting at the packet data source the time slot when a given packet data source can transmit packet data by evaluating the MAC control frame structure; and tting the packet data according to the transmission scheduling sequence dethin the MAC control frame.

as set forth in claim 25, wherein the base modically updates the information conne MAC control frame structure.

as set forth in claim 25 or 26, wherein the edicting when a given packet data source 10 tive further comprises the steps of:

ed bits in the activity fields of the MAC contrame structure from left to right starting. 15 n. but excluding the position of the Next C ID to the MAC ID position of the given sket data source.

rieving the #Free Channels held from the 20

viding the count of zero valued activity fields om the position of the Next MAC ID to the position of the given picket data source by the 25 Free Channels hold and

adding the integer quotient from the division performed in the step above and the number one, this value plus the current slot number repeating the time slot in which the predicting packet data source is to transmit packet data.

nethod as set forth in any one of claims 25 to 27, erein the steps of transmitting occur over a code 35 ission multiple access (CDMA) packet data chan-

FIG. 1

						٠.	
		FREE CHANNELS	•	٠.			•
	٤.	اب.					
		₩.					
		≶					
	. ,]	4		•			
		1	*		•	ī. ·	
		O_{i}					, •
٠			·		• •	-	
		141	· ·	175.4			
		12	-	. 1			
				٠.		÷	
		\ \ \ \ \					
	• •	. #					
			11 = 1 ×			· ·	•
			,				
		LEXT MAC ID					
		101	•			47-	
		-	وساوية كالمؤلمات يادان	*** **		•	
	.7-		_		•	•	-
		V					
•		🔀	*-			• •	
•			-				٠.
, .					•		
	•			۸.	∽		_
•		🔰	١ ٠	L 11	, , , , , , , , , , , , , , , , , , ,		2
		_		0.1 = ACTIVITY FIELD 1 0.2 = ACTIVITY FIELD 2	0		FIELD
	0	12.2		7,7	7	المستقد سريدة المداد المادة عداد	77
, .	,	C	*	田田	\mathbb{H}		إيا
٠.		1 Carlo		. II.	L	计编制	لز
<u></u>					Z		<u></u> _
				\rightarrow \subset			$\widehat{}$
		•		E 7	7		=
				35		\$ 1	5
·			18 Sec. 1	いいい	C 7 100		\overline{C}
, i . i . e		1	\ <u>}</u>	02	4	12.	\mathcal{Z}^{\sharp}
, : . · · ·		10		A			`
	والمراجعة والمراجعة	19.30	[<u>.</u> []	$\mathbb{I}_{\mathbf{n}} \cap \mathbb{I}_{\mathbf{n}}$			1
		2		H	h		-
		150		101 = 10	W :		<u></u>
		i Irani	リス				0
.*				AC II		• • •	7
: . ·	11.54	1		CS CS	((S)
		1.72	上海東北	2 Y	イ製		4
	THE SECTION			33	3	*	3.
	, ,					157	
		C					
		7	f. T.		23.5	1.	
		")					y
1	$i_{p} \sim 10$	(1,2)	<u> </u>	10			٠
							: .
`		∵ پ					
•	175 m.				· · · .		- :
	5.		•		•		
			; ;	1,			
			:				

PACKET DATA FROM m'th MS MAC ID m's TRANSMISSION C TRANSMISSION PERO TIME SLOT M PACKET DATA FROM SECONO NG FREE CHANNELS MAC ID 2's TRANSMISSION TIME SLOT 2 NEXT LIAC ED FREE CHUNES 11/2131 ... IN NEXT LIAC E MAC ID 1'S TRANSMISSION PACKET DATA FROM FIRST MS FORWARD LINK REVERSE LINK

FIG. 4 CURRENT MAC CONTROL FRAME : 1 NEXT MAC ID # FREE - INITIALIZATION LOCATE NEXT MAC
 ID = ACTIVITY FIELD
 SET COUNT TO "Ø" RETRIEVE NEXT "Ø" VALUE ACTIVITY FIELD INCREMENT ... THIS PREDICTING COUNTER ≥ BIT ? CALCULATE COUNTER/# FREE INTEGER 🛝 QUOTIENT END

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 877 512 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 22.11.2000 Bulletin 2000/47

(51) Int Cl.7: H04L 12/56

- (43) Date of publication A2: 11.11.1998 Bulletin 1998/46
- (21) Application number: 98303427.3
- (22) Date of filing: 01.05.1998 .

- (30) Priority: 05.05.1997 US 851368
- (71) Applicant: NOKIA MOBILE PHONES LTD. 02150 Espoo (FI)
- (72) Inventors:
 - Honkasalo, Zhi-Chun
 Vantaa, 01660s 76021 (FI)

- Liimatainen, Pasi 36110 Ruutana (FI)
- Kapadia, Sona
 San Diego, California 92131 (US)
- Noneman, John
 Valley Centre, California 92082 (US)
- (74) Representative: Slingsby, Philip Roy et al Page White & Farrer 54 Doughty Street London WC1N 2LS (GB)
- (54) A method for scheduling packet data transmission
- (57) In a packet data transmission and reception system a media access control (MAC) message is broadcast by a base station to a plurality of mobile stations. The MAC message contains packet data transmission scheduling information which allows the base station to preemptively control mobile station access to traffic channels in order to maximize the efficiency of packet data transmissions and allow scheduling consideration including priority access, quality of service and maximum bytes per transfer. The MAC message consists of a control frame structure which comprises scheduling parameters including MAC IDs fields, activity fields, and a field representing the number of free traffic channels in a cell. These parameters enable multiple mobile stations to share, in a time multiplexed fashion. traffic channels for packet data transmission on CDMA based mobile communication systems.

EUROPEAN SEARCH REPORT

Application Number
EP 98 30 3427

	DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant	CLASSIFICATION OF THE
ategory	Citation of document with indication, where appropriate, cf relevant passages	to claim	APPLICATION (Int.CL5)
	EP 0 529 269 A (INTERNATIONAL BUSINESS MACHINES COORPORATION; IBM) 3 March 1993 (1993-03-03)	11-13, 17,21,	H04L12/56
-	* column 5, line 28 - column 8, line 18 *	22,25,26	
 (US 4 491 947 A (FRANK AMALIE J)	1-3,7,	
	1 January 1985 (1985-01-01)	11-13, 17,21, 22,25	The state of the s
	* column 9, line 64 - column 10, line 26 *		
A	WALKE B ET AL: "WIRELESS ATM: AIR INTERFACE AND NETWORK PROTOCOLS OF THE MOBILE BROADBAND SYSTEM"	1-3,7, 11-13, 17,21,	
. •	IEEE PERSONAL COMMUNICATIONS, US, IEEE	22,25	
	vol. 3, no. 4, 1 August 1996 (1996-08-01), pages 50-56, XPO00623675 ISSN: 1070-9916		×
	* page 52, right-hand column, line 20 - page 53, right-hand column, line 2 *		TECHNICAL FIELDS SEARCHED (IMLCI.5)
	- Constant		H04L H040
		1294	
4		7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Faresque Faresque	
		1-500 (1) (1) 16 (8 Mag	・ 大阪ビー ・ 大変管院 等 - 100
		7 1.000 1 10 0.000	
		1 4 5 6 1	
	The present search report has been drawn up for all claims	433-7-4 7-55-8-0	
	Place of search Date of completion of the scench		Example
	THE HAGUE 3 October 2000	· Ne	inmiller, J
Y:0	CATEGORY OF CITED DOCUMENTS Articularly relevant if taken alone articularly relevant if combined with another actionary relevant if combined with another comment of the same category L: document cite	document, but pu gate	ublished on, or on

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 30 3427

This arries lists the patent family members retating to the patent documents cited in the above-mentioned European search report.

The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way table for these particulars which are merely given for the purpose of information.

03-10-2000

03-10-2000

-. ·

1 - 4 - 4 - 4 - 4

	Patent document cred in search report		Publication date	Patent tamily member(s)	Publication date
	EP 0529	9269 A	03-03-1993	US .5241542 A DE 69228156 D DE 69228156 T JP 2047961 C JP 5207020 A	31-08-1993 25-02-1999 05-08-1999 25-04-1996 13-08-1993
green men er er er flester. Green er		1047	01-01-1985	JP 7083362 B	06 - 09-1995
		1347			
*** ***					
	,				
*		 *** * . (.			
THE STREET			ing in Alaba sa sa lagga sa		and the second s
		÷.			
		energia. September 1964 - September 1964 - September 1964 - September 1964			
	9				and the state of t
	1				
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
· ** * * * * * * * * * * * * * * * * *		•_ •			and the second s
		uju (* 1841) L			a Sampania a marina

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.