LECTURE 10:INFLUENCE MAXIMIZATION IN NETWORKS

How to Create Big Cascades?

- □ Blogs Information epidemics:
 - Which are the influential blogs?
 - Which blogs create big cascades?
 - □ Where should we advertise?

Which node shall we target?

Viral Marketing?

□ We are more influenced by our friends than strangers

- □ 68% of consumers consult friends and family before purchasing home electronics
- □50% do research online before purchasing electronics

Viral Marketing

Probabilistic Contagion

- □ Independent Cascade Model
 - \square Directed finite G = (V, E)
 - Say nodes with this behavior are "active"
 - lacksquare Each edge (v,w) has a probability p_{vw}
 - ${\color{red} extbf{ iny I}}$ If node v is active, it gets $\underline{\text{one}}$ chance to
 - make w active, with probability p_{vw}
 - Each edge fires at most once
- □ Does scheduling matter? No
 - u, v both active, doesn't matter which fires first
 - But the time moves in discrete steps

Independent Cascade Model

- □ Initially some nodes S are active
- lacksquare Each edge (v,w) has probability (weight) p_{vw}

- □ When node v becomes active:
- Activations spread through the network

Most Influential Set of Nodes

Most Influential Set

HOW HARD IS INFLUENCE **MAXIMIZATION?**

Most Influential Subset of Nodes

□ Most influential set of k nodes: set S on k nodes producing largest expected cascade size f(S) if activated □ The optimization problem: $\max_{S} f(S)$ □ How hard is this problem? □ NP-COMPLETE! ■ Show that finding most influential set is at least as hard as a vertex cover

Background: Vertex Cover

Influence Maximization is NP-hard

Summary so Far

□ Bad news:

- □ Influence maximization is NP-complete
- □ Next, good news:
 - There exists an approximation algorithm!
- □ Consider the Hill Climbing algorithm to find S:
 - - Influence set of each node $u: X_u = \{v_1, v_2, \dots\}$
 - \blacksquare If we activate u, nodes $\{v_1, v_2, \dots\}$ will eventually get active
 - \blacksquare **Algorithm:** At each iteration i take the node u that gives best marginal gain: $\max f(S_{i-1} \cup \{u\})$

 S_i ... Initially active set $f(S_i)$... Size of the union of X_u , $u \in S_i$

(Greedy) Hill Climbing

Algorithm:

- □ Start with $S_0 = \{\}$
- \square For $i = 1 \dots k$
 - \blacksquare Take node u that $\max f(S_{i-1} \cup \{u\})$
 - \blacksquare Let $S_{i} _ S_{i-1} \cup \{u\}$

Example:

- \square Eval. $f(\{a\}), ..., f(\{e\})$, pick max of them
- Eval. $f(\{a,b\}), ..., f(\{a,e\})$, pick max
- \square Eval. f(a,b,c), ..., $f(\{a,b,e\})$, pick max

Approximation Guarantee

Hill climbing produces a solution S

where: $f(S) \ge (1-1/e)*OPT$ (f(S)>0.63*OPT)

[Nemhauser, Fisher, Wolsey '78, Kempe, Kleinberg, Tardos '03]

- \Box Claim holds for functions $f(\cdot)$ with 2 properties:
 - ☐ f is monotone: (activating more nodes doesn't hurt) if $S \subset T$ then $f(S) \leq f(T)$ and $f(\{\})=0$
 - fis submodular: (activating each additional node helps less) adding an element to a set gives less improvement than adding it to one of its subsets: $\forall S \subseteq T$

$$\underbrace{f(S \cup \{u\}) - f(S)}_{\text{Gain of adding a node to a small set}} \ge \underbrace{f(T \cup \{u\}) - f(T)}_{\text{Gain of adding a node to a large set}}$$

Submodularity—Diminishing returns

□ Diminishing returns:

Solution Quality

We just proved:

□ Hill climbing finds solution S which

 $f(S) \ge (1-1/e)*OPT$ i.e., $f(S) \ge 0.63*OPT$

□ This is a data independent bound

- □ This is a worst case bound
- □ No matter what is the input data (influence sets), we know that the Hill-Climbing won't never do worse than 0.63*OPT

Evaluating f(S)?

□ How to evaluate f(S)?

- Still an open question of how to compute efficiently
- But: Very good estimates by simulation
 - □ Repeating the diffusion process often enough (polynomial in n; $1/\epsilon$)
 - Achieve $(1 \pm \varepsilon)$ -approximation to f(S)
 - □ Generalization of Nemhauser-Wolsey proof: Greedy algorithm is now a $(1-1/e-\varepsilon')$ -approximation

Experiment Data

- □ A collaboration network: co-authorships in papers of the arXiv high-energy physics theory:
 - □ 10,748 nodes
 - □ 53,000 edges
- □ Independent Cascade Model:
 - □ Case 1: Uniform probabilities p on each edge
 - **Case 2:** Edge from v to ω has probability $1/\deg(ω)$ of activating ω.

Experiment Settings

- □ Simulate the process 10,000 times for each targeted set
 - Every time re-choosing edge outcomes randomly
 - □ Compare with other 3 common heuristics
 - □ Degree centrality,
 - □ Distance centrality
 - □ Random nodes

Independent Cascade Model

Independent Cascade Model

