Clase 26

La sesión anterior enunciamos y demostramos el siguiente teorema:

Corolario 1 (Teorema del Valor Intermedio) Sean $f : [a, b] \longrightarrow \mathbb{R}$ una función $y \ d, e \in [a, b]$, con d < e. Si f es continua en [a, b], entonces f toma cualquier valor entre f(d) y f(e).

En esta sesión continuaremos estudiando las consecuencias de la continuidad de una función en un intervalo cerrado.

Una función continua en un intervalo cerrado alcanza su valor máximo y su valor mínimo

Teorema 2 Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función. Si f es continua en [a,b], entonces f es acotada superiormente en [a,b].

Demostración. Consideremos el conjunto

$$A = \{x \in [a, b] \mid f \text{ es acotada superiormente en } [a, x]\}.$$

Note que $A \neq \emptyset$, pues $a \in A$, además, como $A \subseteq [a,b]$, se tiene que A es acotado superiormente. Sea $\alpha = \sup A$. Dado que $\lim_{x \to a^+} f(x) = f(a)$, existe $\delta > 0$ tal que $[a,a+\delta) \subseteq [a,b]$ y f es acotada superiormente en $[a,a+\delta)$. Así, si consideramos $x \in (a,a+\delta)$, se tiene que $x \in A$ y por lo tanto $a < x \le \alpha$. Lo anterior muestra que $a < \alpha$.

Veamos que $\alpha = b$, para ello supondremos que no es así, es decir, supondremos que $a < \alpha < b$. Como f es continua en α , existe $\delta > 0$ tal que $(\alpha - \delta, \alpha + \delta) \subseteq [a, b]$ y f es acotada superiormente en $(\alpha - \delta, \alpha + \delta)$. Ahora, por ser $\alpha = \sup A$, se tiene que existe $x_0 \in A$ tal que $\alpha - \delta < x_0 < \alpha$. Se sique que f es acotada en $[a, x_0]$. Por otro lado, si $x_1 \in (\alpha, \alpha + \delta)$, entonces f es acotada en $[x_0, x_1]$, de donde f es acotada en $[a, x_1]$. Por lo que $x_1 \in A$, pero note que esto es una contradicción pues $\alpha < x_1$. Por lo tanto $\alpha = b$.

Hasta ahora sabemos que f es acotada superiormente en [a,x] para toda x < b, falta ver que f es acotada superiormente en [a,b]. Como $\lim_{x\to b^-} f(x) = f(b)$, existe $\delta > 0$ tal que $(b-\delta,b] \subseteq [a,b]$ y f es acotada en $(b-\delta,b]$. Luego, si consideramos $x' \in (b-\delta,b]$, se tiene que f es acotada superiormente en [a,x'] y acotada superiormente en [x',b], de donde f es acotada superiormente en [a,b].

Corolario 3 Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función. Si f es continua en [a,b], entonces f es acotada inferiormente en [a,b].

Demostración. Consideremos la función $g:[a,b] \to \mathbb{R}$ dada por g(x)=-f(x). Como f es continua en [a,b], se tiene que g es continua en [a,b]. Luego, por el teorema anterior, g es acotada superiormente, es decir, existe $N \in \mathbb{R}$ tal que $g(x) \leq N$ para todo $x \in [a,b]$. Se sigue que

$$f(x) \ge -N$$
,

para todo $x \in [a, b]$, es decir, f es acotada inferiormente.

Corolario 4 (Una función continua en un intervalo cerrado es acotada) $Sea f : [a, b] \longrightarrow \mathbb{R}$ una función. Si f es continua en [a, b], entonces f es acotada en [a, b].

Figura 1: Una función f continua en [a,b] es acotada en dicho intervalo, es decir, existe $M \in \mathbb{R}$ tal que $|f(x)| \leq M$.

Demostración. Por el Teorema 2 y el Corolario 3, existen $m, N \in \mathbb{R}$, respectivamente, tales que $m \le f(x) \le N$, para toda $x \in [a, b]$. Ahora, si $M = \max\{|m|, |N|\}$, entonces

$$|f(x)| \leq M$$

para toda $x \in [a, b]$.

Teorema 5 (Una función continua en un intervalo cerrado alcanza su valor máximo) Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función. Si f es continua en [a,b], entonces existe $y \in [a,b]$ tal que $f(x) \leq f(y)$, para todo $x \in [a,b]$.

Demostración. Por el Corolario 4, el conjunto

$$A = \{ f(x) \mid x \in [a, b] \}$$

es acotado, además es no vacío. Sea $\alpha = \sup A$. Se tiene que $f(x) \leq \alpha$ para todo $x \in [a,b]$. Mostraremos que existe $y \in [a,b]$ tal que $f(y) = \alpha$. Supongamos que esto no ocurre, es decir, supongamos que $\alpha \neq f(x)$ para todo $x \in [a,b]$. De esta manera, la función $g:[a,b] \longrightarrow \mathbb{R}$ dada por

$$g(x) = \frac{1}{\alpha - f(x)},$$

está bien definida, más aún, g es continua en [a,b]. Ahora, por ser α el supremo del conjunto A, para cada $\varepsilon > 0$ existe $x_{\varepsilon} \in [a,b]$ tal que $\alpha - \varepsilon < f(x_{\varepsilon}) < \alpha$. Se sigue que para cada $\varepsilon > 0$, existe $x_{\varepsilon} \in [a,b]$ tal que

$$g(x_{\varepsilon}) = \frac{1}{\alpha - f(x_{\varepsilon})} > \frac{1}{\varepsilon}.$$

Lo anterior muestra que g no es acotada en [a, b], lo que contradice el Corolario 4. Por lo tanto, existe $y \in [a, b]$ tal que $\alpha = f(y)$. Luego,

$$f(x) \le f(y),$$

para todo $x \in [a, b]$.

Corolario 6 (Una función continua en un intervalo cerrado alcanza su valor mínimo) Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función. Si f es continua en [a,b], entonces existe $y \in [a,b]$ tal que $f(y) \leq f(x)$, para todo $x \in [a,b]$.

Demostración. Consideremos la función $g:[a,b] \longrightarrow \mathbb{R}$ dada por g(x)=-f(x). Como f es continua en [a,b], se tiene que g es continua en [a,b]. Luego, por el teorema anterior, existe $y \in [a,b]$ tal que $g(x) \leq g(y)$ para todo $x \in [a,b]$. Se sigue que

$$f(y) \le f(x),$$

para todo $x \in [a, b]$.

Figura 2: Una función f continua en [a,b] alcanza su valor máximo y su valor mínimo, es decir, existen $y_m, y_M \in [a,b]$ tales que $f(y_m) \leq f(x) \leq f(y_M)$, para todo $x \in [a,b]$.