

IT Security

Chapter 6: Secure Software Engineering Part 1

- Process model
- ▶ Analysis of safety requirements
- Security architecture and design
- Security analysis tools

What do we want to learn?

- How do we get security into the software engineering process?
- What should we consider regarding security before implementation?
- What are the design principles for security?
- How can I verify security in my IT-System?

Why Secure Software Engineering?

Insecure software can cause nasty surprises

The phases of Secure Software Engineering

The requirements and concept phase

A process model for security analysis

Step 2 in the process model: specify the protection requirements

- Identify critical information objects
 - Evaluation regarding security objectives (CIA)
 - What is the damage if security objectives are violated?
- Evaluate the protection requirements of the use cases
 - Which use cases cause high damage if security objectives are violated?
 - Also consider technical use cases (e.g., certificate management, system administration, authorization assignment).
- Assign roles and rights in the system
 - Which users/roles are there?
 - Who is allowed to do what?
 - Establish access control principles ("need to know", "segregation of duties", ...)
- Identify and analyze threats
 - Threat Modeling
 - Risk analysis

A modell for Threat Analysis

- Microsoft Threat Model: STRIDE
 - Spoofing
 - Users should not be able to become any other user or assume the attributes of another user
 - Tampering
 - Data tampering involves the malicious modification of persistent data and data over networks.
 - Repudiation
 - Users may dispute transactions if there is insufficient auditing or recordkeeping of their activity

https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)

Microsoft Threat Model: STRIDE

- Information Disclosure
 - The exposure of information to individuals who are not supposed to have access to it
- Denial of Service
 - Deny service to valid users—for example, by making a Web server temporarily unavailable or unusable
- **Elevation of Privilege**
 - An unprivileged user gains privileged access and thereby has sufficient access to compromise or destroy the entire system

Microsoft Threat Modeling

There are five major threat modelling steps

- defining security requirements
- creating an application diagram
- identifying threats
- mitigating threats
- validating that threats have been mitigated

Quelle: https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

Microsoft Thread Modeling Tool https://aka.ms/threatmodelingtool

- Alternative approaches to threat analysis
 - Misuse cases
 - Attack trees
 - Threat catalogs

Weitere Informationen in: Matthias Rohr: Sicherheit von Webanwendungen in der Praxis, Springer Vieweg, 2018 (E-Book)

Threat Modeling Process

https://cheatsheetseries.owasp.org/cheatsheets/Threat Modeling Cheat Sheet.html

- Decompose and model the system
 - Create an application diagram (processes, data store, actors)
 - Describe data flow (data in transit and at rest)
 - Define trust boundaries
- Identify Threats
 - Define all possible threats
 - Identify attack vectors, attack trees and misuse cases
 - Map threat agents to application entry points
 - Define the impact and probability for each threat
 - → Risk Analysis
- Determine Countermeasures and mitigation
 - Identify risk owner (responsible for mitigation)
 - Build risk treatment strategy (Reduce, Transfer, Avoid, Accept)

Sample Model from modeling tool OWASP Threat Dragon

https://owasp.org/www-project-threat-dragon/

Example for Threat Modeling with STRIDE: Identify threats and assign type and mitigations

Threat	Type	Mitigation
Unauthorized request to DB	1	All queries to be authenticated
DB Credential Theft	I	Use FW to restrict access to DB to only background Worker IP
Message Tampering in Message queue	Т	Sign all messages
Fake massages in queue	S	Implement authentication on queue
Generate malicious messages that Background Worker cannot process	D	Validate content of messages before processing, reject messages with invalid content, log the rejection, do not log the malicious content
Brute forcing of Web Application Login	E	Slowdown login attempt after unsuccessful login, 2FA for admin accounts
Sniffing of Web requests	I	Https Encryption of all requests
SQL injection	Т	Input validation
Undocumented change of Web App Config	R	Auditing all changes in Web App Config, access control to Web App Config

- A comprehensive risk/threat analysis is costly and time-consuming
 - often the customer/client is not ready for it
 - → Perform a pragmatic risk analysis
- Focus on the most important risks
- Focus on data criticality and interfaces
- Risks must be assessed by the responsible parties (ISO, DPO, product owner, management)
- Establish transparency about the assessment of risks
 - Review by ISO/DPO

Risk analysis for Logging

We consider logging in a cloud application as an example

- Security Goals
 - The root cause of incidents or faulty platform or application behavior can be adequately analyzed and identified.
 - Required log data and analysis tools are available and correspond to the actual state of the system at the relevant time.
 - The technical logs are secured from unauthorized access and manipulation.

Risks at Logging

- R-1: Missing log data. An incident cannot be sufficiently analyzed because relevant log information for the required period of time has not been collected, e.g. due to a misconfiguration/failure of the log stack or according infrastructure components.
- **R-2: Loss of log data.** Log information gets lost, e.g. due to a failure of the log storage.
 - **R-3: Manipulation of logs.** The root cause of an incident can be hidden or obscured by modification or deletion of log data.
 - R-4: No access to log data. Relevant log data cannot be viewed when required due to blocked access, e.g. missing credentials
 - R-5: Disclosure of sensitive log information. Information written to log files can give valuable guidance to an attacker or expose sensitive user data
 - **R-6: Violation of deletion obligation.** To store log files longer than the allowed retention period violates compliance (e.g. GDPR)

- **♦** Availability
 - **Integrity**
- **♦** Availability
- **Confidentiality**
- **Compliance**

Risk-Control-Matrix for Logging

System	Risk	Risk name	Mitigating measures
Component			
Logging	R-1	Missing log data	 all logs are collected and stored in a central managed log stack log configuration is maintained by DevOps experts regular review of all critical assets for their correctness and currency mechanism to ensure that all required logs are captured (e.g. via documented search in logging system, configuration rule/policy)
Logging	R-2	Loss of log data	 - backup of log data by AWS - storage of log data provided by AWS in a managed ELK stack - retention of 30 days - independent monitoring of logging software with alerting in case of failure
Logging	R-3	Manipulation of logs	 log data secured by AWS access control via IAM measures for integrity audit the access to log data
Logging	R-4	No access to log data	- availability is provided by AWS
Logging	R-5	Disclosure of sensitive log information	 isolation of application log data (separate storage and access control for different applications/tenants) role-based access control to logs encryption of data at rest, decryption key only available to application owner transport of log data is secured with minimum TLS 1.2
Logging Brof Dr. Boison Hill		Violation of deletion obligation	- complete deletion of log data immediately after end of retention period - there are no local copies / snapshots of log data (enforced by policy) - deletion process according to GDPR and security needs

The result of the security analysis is a Security Concept

Protection Requirements

- information objects
- use cases
- roles and rights

Threats

- misuse cases
- attacker analysis
- attack vectors

Measures

- security requirements
- protective measures

(Security) Architecture

- components
- security association/boundaries
- secure channels