Examen SAI seria 15, sem. I, 5.06.2021 ¹

(ii) Există $f \in \mathbb{Z}[X]$ astfel încât (f) = I?

Numele şi prenumele Grupa **Problema 1.** Pe mulțimea \mathbb{N} definim relația " \sim " astfel: $a \sim b \Leftrightarrow \text{ există } m, n \in \mathbb{N}^* \text{ astfel încât } a \mid b^m \text{ și } b \mid a^n.$ Arătați că: (i) $a \sim b$ dacă și numai dacă a și b au aceiași divizori primi. (3 pct.) (ii) \sim este o relație de echivalență pe \mathbb{N} . (4 pct.) Determinați un sistem complet de reprezentanți pentru relația de echivalență ~. (2 pct.) Problema 2. (i) Determinați elementele de ordin 10 din $\mathbb{Z}_{12} \times \mathbb{Z}_{15}$. (6 pct.) (ii) Determinați $\hat{k} \in \mathbb{Z}_{20}$ astfel încât $\widehat{17}^{-8} \cdot \hat{k} \cdot \widehat{7}^{2021} = \widehat{3}^{-9}$. (3 pct.) **Problema 3.** Se consideră permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \in S_6.$ (i) Descompuneți σ în produs de cicli disjuncți și în produs de transpoziții. (2+2 pct.)(ii) Aflați signatura lui σ , ordinul lui σ și calculați σ^{2021} . (1+1+1 pct.)(iii) Calculați numărul elementelor de ordin 3 din S_6 . (2 pct.) **Problema 4.** Fie $I = (3, X^3 - X^2 + 2X + 1)$ ideal în $\mathbb{Z}[X]$. (i) Dați exemplu de un polinom din $\mathbb{Z}[X]$ care nu aparține lui I. (2 pct.)

(3 pct.)

⁽iii) Să se arate că inelele factor $\frac{\mathbb{Z}[X]}{I}$ şi $\frac{\mathbb{Z}_3[X]}{(X^3+\hat{2}X^2-X+\hat{1})}$ sunt izomorfe. Este $\frac{\mathbb{Z}[X]}{I}$ corp? (2+2 pct.)

¹Toate subiectele sunt obligatorii. Toate răspunsurile trebuie justificate. Timp de lucru $2\frac{1}{2}$ ore. Succes!