Dec 3rd, 2015 Poster Session

Electron Transport in Crossed Graphene Nanoribbon Devices: 4-Terminal *ab initio* Simulations

<u>Pedro Brandimarte</u>^{1, 2}, Nick R. Papior³, Mads Engelund^{1, 2}, Aran Garcia-Lekue^{2, 4}, Thomas Frederiksen^{2, 4} and Daniel Sánchez-Portal^{1, 2}

Centro de Física de Materiales (CFM), Spain
Donostia International Physics Center (DIPC), Spain
Danmarks Tekniske Universitet (DTU) Nanotech, Denmark
IKERBASQUE, Basque Foundation for Science, Spain

Abstract

With the aim of exploring the potential of graphene in electronics, a lot of effort has been spent on the energy-gap engineering so to allow having an off state. Recently, it has been reported theoretically a current switching mechanism by voltage control in a graphene crossbar made by two 14-armchair nanoribbons (GNRs) rotated by 90°[1].

It has been also recently shown that different stacking in bilayer GNRs leads to significant changes on the electronic properties [2]. Therefore, in order to investigate the possibilities of using crossed GNRs as ON/OFF devices, we have studied the electronic and transport properties of those systems as function of their relative rotation angle and inter-layer distance.

Our calculations were performed with TranSIESTA code [3], which has been recently generalized, based on ref. [4], to consider $N \geqslant 1$ arbitrarily distributed electrodes at finite bias. We find that the transmission along each individual GNR and among them strongly depends on the stacking. For a 60° rotation angle, one finds an almost perfect match of the ribbons' honeycomb lattice in the crossing region, resulting in a strong scattering effect that also translates into an increased inter-layer transmission.

References:

- 1. K. M. Masum Habib and Roger K. Lake, Phys. Rev. B 86, 045418 (2012).
- 2. H. Santos et al, Phys. Rev. B 85, 245430 (2012).
- 3. Mads Brandbyge et al, Phys. Rev. B 65, 165401 (2002).
- 4. K. K. Saha et al, J. Chem. Phys. 131, 164105 (2009).

*FP7 FET-ICT PAMS-project (European Commission, contract 610446), MINECO (grant MAT2013-46593-C6-2-P) and Basque Dep. de Educación, UPV/EHU (grant IT-756-13).

Contact Info

Pedro Brandimarte

Centro de Física de Materiales CSIC-UPV/EHU

Address: Paseo de Manuel Lardizabal, 5, San Sebastián-Donostia, Gipuzkoa, 20018, Spain

Email: pedro brandimarte001@ehu.eus

Tel: +34 943 01 89 23