usefull

• ineg cauchy-bunyakovski-schwarz

$$|\langle u, v \rangle| \le ||u|| ||v||$$

- Weierstraß: continua pe compact ⇒ marginită și-și atinge marginile
- crit sylvester:
 - daca minorii principali sunt pozitivi at mat e pozitiv semidefinita
 - -daca minorii principali sunt $-,+,-,\cdots$ at mat e negativ semidefinita
- fcţ coercivă "grows rapidly" $\lim_{\|x\| \to \infty} f(x) = \infty$
 - $-\frac{1}{2}(x^2+y^2) \le -xy$
 - see this https://math.stackexchange.com/questions/1426897/

fct distanta:

- def $d(A, x) = \inf_{a \in A} ||a x||$
- $d(A, x) \iff x \in \overline{A}$
- $d_A(x) = d(A, x)$ lipschitz
- $\bullet \,$ daca Aînchisă $\exists \,\, a_x$
- daca A închisă și convexa $\implies a_x$ unic și caracterizat de $\langle x-a_x, u-a_x \rangle \leq 0, \quad \forall u \in A$

multimi convexe

- def: $\forall x, y \in C, [x, y] \subseteq C$
- usually

$$\operatorname{conv} A = \left\{ \sum_{i=1}^{?} \alpha_i x_i \middle| \sum \alpha_i = 1, \alpha_i > 0, x_i \in A \right\}$$

• Carathéodory:

$$\mathbb{R}^p \supseteq \text{conv} A = \left\{ \sum_{i=1}^{p+1} \alpha_i x_i \middle| \sum_{i=1}^{p} \alpha_i = 1, \alpha_i > 0, x_i \in A \right\}$$

ullet Hermite-Hadamard - dacă f convex:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{f(a) + f(b)}{2}$$

fct convexe

 \bullet def convexitate: f convexă pe $D \iff$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \forall x, y \in D, \ \forall \lambda \in [0, 1].$$

• ineg Jensen - good stuff

$$f\left(\sum \alpha_i x_i\right) \le \sum \alpha_i f(x_i), \ \sum \alpha_i = 1, \alpha_i > 0, x_i \in A$$

• ineg pantelor - pg15

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

- strict convexa $\iff f'$ strict crescatoare $\iff f'' > 0 \iff \text{def cu} \neq$
- pt mai multe variabile e:

$$\nabla^2 f(x)(y,y) > 0, \quad \forall x \in D, y \in \mathbb{R}^p$$

conuri pg 24

- def: $\forall k \in K, \lambda \ge 0, \quad \lambda k \in K$
- con convex: C + C = C
- înfăsurătoarea conică: con $A = [0, \infty)A := \{\alpha a \mid \alpha > 0, a \in A\}$
- polara $S^- = \{u \in \mathbb{R}^p \mid \langle u, x \rangle \leq 0, \forall x \in S\}$
- con inchis și convex $\implies C = (C^{-})^{-}$

vector tangent la o multime

• def: $u \in \mathbb{R}^p$ t
g la M în $\bar{x} \in \operatorname{cl} M \iff \exists (t_n) \xrightarrow{>0} 0$, și $u_n \to u$ a
î $\forall n$

$$\bar{x} + t_n u_n \in M$$

- conul tangent (închis): $T_M(\bar{x})$
- conul normal: $N_M(\bar{x}) := (T_M(\bar{x}))^-$

lema Farkas - pg 28

- avem $n \in \mathbb{N}$ fixat
- fie $(\varphi_i)_i \subset L(\mathbb{R}^p, \mathbb{R})$ și $\varphi \in L(\mathbb{R}^p, \mathbb{R})$ at:

$$\Big([\varphi_i(x) \leq 0] \implies \varphi(x) = 0\Big) \iff \exists (\alpha_i) \geq 0 \text{ aî } \varphi = \sum_i \alpha_i \varphi_i$$

• corolar: fie $(a_i)_i \subset \mathbb{R}^p$ și $a \in \mathbb{R}^p$ at:

$$\left(\forall x \in \mathbb{R}^p : \left[\langle a_i, x \rangle \le 0 \right] \implies \langle a, x \rangle = 0 \right) \iff \exists (\alpha_i) \ge 0 \text{ af } a = \sum_i \alpha_i a_i$$

acutual minimization problems:

- \bullet Weierstraß pg 38: continua pe compact \implies pb minimizarii si a maximizarii au sol globale
- Condiția necesara de ordinul I: \bar{x} sol locala și f diferentiabilă at $\nabla f(\bar{x})(u) \geq 0 \forall$, $u \in T_M(\bar{x})$
- Condiția necesara de ordinul II (D deschisă): \bar{x} min local și f diferentiabilă at $\nabla f(\bar{x}) = 0$ și $\nabla^2 f(\bar{x})$) pozitiv semidefinită
- pt fct convexe min local \iff min global \iff pct critic $(\nabla f(\bar{x})) = 0$)

Karush-Kuhn-Tucker

• pct fezabile:

$$M := \{ x \in U \mid g(x) \le 0, h(x) = 0 \}$$

• indici restrictii active:

$$A(\bar{x}) = \{ i \in 1..n \mid g_i(\bar{x}) = 0 \}$$

• other stuff:

$$G(\bar{x}) = \left\{ \sum_{i \in A(\bar{x})} \lambda_i \nabla g_i(\bar{x}) + \sum_{j=1}^m \mu_j \nabla h_j(\bar{x}) \mid \lambda_i \ge 0, \mu_j \in \mathbb{R} \right\} = D(\bar{x})^-$$

$$D(\bar{x}) = \left\{ u \in \mathbb{R}^p \mid \frac{\nabla g_i(\bar{x})(u) \le 0, \forall i \in A(\bar{x})}{\nabla h_j(\bar{x})(u) = 0, \forall j \in 1..m} \right\}$$

- thing: $T_M(\bar{x}) \subseteq D(\bar{x})$
- lagrangianul:

$$L(x, (\lambda, \mu)) := f(x) + \sum_{i=1}^{n} \lambda_i g_i(x) + \sum_{i=1}^{m} \mu_j h_j(x)$$

 \bar{x} sol problemei $\implies \exists \lambda_i \geq 0, \mu$ a
î $\nabla_x L(\bar{x}, (\lambda, \mu)) = 0$ și $\lambda_i g_i(\bar{x}) = 0$

mafs:

pct min/max global/local

- 1. cautam pct stationare $\nabla f = 0$
- 2. calculam $\nabla^2 f$ în pct stationare
- 3. daca nu mer'e verificăm semnul lui $f(x,y) f(x_A,y_A)$ și gasim niște șiruri > 0 și < 0

min/max cu restricții

- 1. existent solutiilor: $M = \{x \mid h(x) = 0, g(x) \le 0\}$
 - \bullet dacă M compact (închisă, mărginită) $\xrightarrow{\text{Weierstraß}} \exists$ sol
 - dacă M nemărginită, ne gândim dacă f coercivă $\left(\lim_{\|x\|\to\infty}f(x)=\infty\right)$ f coercivă $\implies \exists$ sol

2. verificare cond de calificare pt pct fezabil \bar{x} :

Guignard:
$$T_M(\bar{x})^- = D(\bar{x})^-$$

$$\uparrow$$

cvasiregularitate: $T_M(\bar{x}) = D(\bar{x})$

$$\uparrow$$

liniară independență: mulțimea $\{\nabla g_i(\bar{x})\mid i\in A(\bar{x})\}\cup \{\nabla h_j(\bar{x})\mid j\in i..m\}$ l.i.

$$\uparrow$$

Mangasarian-Fromovitz: $\{\nabla h_j(\bar{x}) \mid j \in i..m\}$ l.i. și $\exists u \in \mathbb{R}^p$ aî

$$\nabla h_i(\bar{x})(u) > 0 \text{ si } \nabla g_i(\bar{x})(u) < 0, \quad \forall i \in A(\bar{x})$$

 g_i, h_j afine - конец

Slater: h afină, f, g_i convexe și $\exists u \in \mathbb{R}^p$ aî

$$h(u) = 0$$
 și $g_i(u) < 0$, $\forall i \in 1..n$

3. conditii K-K-T: rezolvam sistemul:

$$\begin{cases} \nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x) + \sum_{j=1}^{m} \mu_j \nabla h_j(x) = 0, \\ h(u) = 0, \\ \lambda_i g_i(\bar{x}) = 0, \quad \forall i \in 1..n, \\ \lambda_i \ge 0. \end{cases}$$

algoritmi

 $\bullet \ f \ \text{contracție} \ \Longleftrightarrow \ |f'(x)| < \lambda, \quad \lambda \in (0,1) \ \Longleftrightarrow \ \|f(x) - f(y)\| \leq \lambda \|x - y\|, \quad \lambda \in (0,1)$

• f contracție $\implies f$ cont

• approximari cu th Banach:

$$-|x_{n} - \bar{x}| \le |x_{1} - x_{0}| \frac{\lambda^{n}}{1 - \lambda}$$

$$-|x_{n} - \bar{x}| \le |x_{n} - x_{n-1}| \frac{\lambda}{1 - \lambda}$$

$$-|x_{n} - x_{n+1}| \le \lambda^{n} |x_{1} - x_{0}|$$

• iter picard: $x_{n+1} = f(x_n)$

 \bullet Banach: contractie are pct fix unic care-i lim \forall iteratii Picard

 $\bullet\,$ banach convergent - pg 34

viteza convergenta:

 \bullet ordinul de convergență: qcel mai mare p
t care

$$\lim_{k \to \infty} \frac{\|x_{n+1} - \bar{x}\|}{\|x_n - \bar{x}\|^q} < \infty$$

4

• q = 1 - conv liniara

• q=2 - conv patratica

met newton

- $\bullet\,$ mer'e daca $f\in C^2$ și toate iteratiile au $f'(x_k)\neq 0$
- \bullet iteratie newton:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- converge la zerourile fct
- to solve linear equation we apply that to $\nabla L(x,(\lambda,\mu))$