YEARS OF LIFE LOST AND MULTISTATE MODELS FOR CANCER PATIENTS

Antoine Soetewey, Catherine Legrand, Michel Denuit and Geert Silversmit September 17, 2021

UCLouvain

Table of contents

1. Introduction

Context

Aims

- 2. Data
- 3. Methods

YLL

MSM

- 4. Results
- 5. Future research

Introduction

Context

- Mortgage loans usually come with an insurance that pays the balance of the loan if the insured dies (assurance solde restant $d\hat{u}$)
- Insurers often impose surcharges or refuse to cover the risk if the client has been diagnosed with cancer
- · Lots of progress in medicine in the past decades
 - \rightarrow prognosis of several cancer types improved
 - → establishment of right to be forgotten (= right not to declare a previous cancer if client survived some years after treatment's end)

Aims

- Estimate the number of years of life lost (YLL) due to cancer through the classical survival curves and a multistate model (MSM)
- Make the link between the two, which is rarely done in the literature
- Work in progress:
 - Use the 2 concepts to show how they can be used to re-think the access of cancer patients to insurance products, with a focus on financial contracts with finite horizon:
 - loan: small YLL ⇒ limited losses for insurers and market can absorb the extra mortality due to cancer
 - life annuity: due to their reduced lifetime, cancer patients may be eligible for reduced premiums when buying insurance products including benefits in case of survival
 - Apply it to other financial products thanks to its flexibility

Data

Cancer patients and general population

- Data from the Belgian Cancer Registry (BCR)
- Melanoma, thyroid and female breast cancers as illustrations (many cases before the age of 40 and relatively high survival rate)
- 140,241 cases in total
- · Diagnosed between 2004 and 2018, follow-up until 2020
- Belgian population life tables obtained from Statbel for mortality in the general population

- YLL quantifies the number of years of life a cohort of patients has lost due to a given disease (cancer in our case) compared to the general population
 - \rightarrow "How many years of life a patient is expected to lose due to his/her cancer?"
- Measured on a time metric (= easy to interpret) and cause of death is not needed (making it practical for population-based studies)
- Estimated as the difference between the area under the survival curves of the general population and the cohort of interest:

$$YLL_{C}(\tau) = \int_{0}^{\tau} S_{P}(t)dt - \int_{0}^{\tau} S_{C}(t)dt, \tag{1}$$

(up to time τ because our focus is on contracts with finite horizon)

- Classical survival analysis = 2-state model with an initial state ("healthy" or "active") and a final state ("dead")
- MSM can be seen as an extension; they are used to study the evolution of individuals between more than 2 states:

 Information for a MSM is typically summarized via the transition intensities, which quantifies the instantaneous risk of making a given transition depending on the state currently occupied:

$$\begin{split} \mu_{\mathbf{x}+\mathbf{t}}^{ai} &= \lim_{h \to 0} \frac{h p_{\mathbf{x}+\mathbf{t}}^{ai}}{h} \\ \mu_{\mathbf{x}+\mathbf{t}}^{ad} &= \lim_{h \to 0} \frac{h p_{\mathbf{x}+\mathbf{t}}^{ad}}{h} \\ \mu_{\mathbf{x}+\mathbf{t};z}^{id} &= \lim_{h \to 0} \frac{h p_{\mathbf{x}+\mathbf{t};z}^{id}}{h}, z < t \end{split}$$

Figure 1: μ^{ai} for women Figure 2: μ^{ad} for women

Figure 3: μ^{id} for men with melanoma cancer

 The first contribution is that we estimate YLL from a 3-state MSM:

We have thus

$$YLL = \bar{e}_x^{aa} - t$$

 Another contribution is to illustrate how they can adapt to different financial products by adding different weights (in development)

Gender	Cancer site	Age	ŶĹĹ ^{SC} (CI _{95%})	ŶĹĹ ^{MSM} (CI _{95%})
Men	Melanoma	20-34	1.24 (0.93; 1.55)	1.12 (0.93; 1.31)
		35-49	1.47 (1.26; 1.68)	1.20 (0.92; 1.48)
		50-69	1.74 (1.53; 1.95)	1.52 (1.31; 1.73)
	Thyroid	20-34	0.16 (0.00; 0.40)	0.17 (0.02; 0.32)
		35-49	0.61 (0.31; 0.91)	0.97 (0.93; 1.01)
		50-69	1.32 (0.94; 1.70)	1.89 (1.84; 1.94)
Women	Melanoma	20-34	0.40 (0.28; 0.51)	0.89 (0.82; 0.96)
		35-49	0.66 (0.55; 0.77)	0.44 (0.00; 0.88)
		50-69	0.98 (0.83; 1.13)	1.60 (1.46; 1.74)
	Thyroid	20-34	0.05 (0.00; 0.13)	0.09 (0.08; 0.10)
		35-49	0.14 (0.04; 0.24)	0.21 (0.97; 1.07)
		50-69	0.69 (0.50; 0.88)	0.97 (0.86; 1.08)
	Breast	20-34	2.17 (1.95; 2.40)	1.95 (1.92; 1.98)
		35-49	1.34 (1.28; 1.40)	0.93 (0.53; 1.33)
		50-69	1.48 (1.43; 1.53)	0.90 (0.67; 1.13)

Table 1: Number of life years lost due to cancer over a 15-year time window, estimated via survival curves; $\widehat{\text{YLL}}_{\mathcal{C}}^{SC}$, and via MSM; $\widehat{\text{YLL}}_{\mathcal{C}}^{MSM}$

- It is known that mortality risks associated with cancer decrease with time since diagnosis
- We also evaluate the impact of adding a waiting period, which can be linked to the length of the right to be forgotten

$$YLL_C^W = YLL_C(\tau) - YLL_C(i)$$

$$= \int_0^{\tau} S_P(t)dt - \int_0^{\tau} S_C(t)dt - \left[\int_0^i S_P(t)dt - \int_0^i S_C(t)dt\right]$$

$$= \int_i^{\tau} S_P(t)dt - \int_i^{\tau} S_C(t)dt$$

$$\forall i = 0, 1, ..., 15$$

Figure 4: Estimated number of years of life lost due to cancer $(\widehat{YLL_C^W})$ over a 15-year time window, with the inclusion of a waiting period of 0 to 15 years.

Future research

Future research

Next steps?

- 1. Apply the methodology to other financial products
- 2. Modelling complex non-linear relationships thanks to **splines** regression
 - Adaptive splines (A-splines) with automatic knots selection (Goepp et al., 2018)

Thank you! Questions?