Provos Algébricos

Demonstre que $\overline{A \cap B} = \overline{A} \cap \overline{E}$

$$\overline{A} \cap B = \{x \in U : x \notin A \cap B\}$$

$$\{x \in U : \neg(x \in A \cap B\}\}$$

$$\{x \in U : \}$$

$$\{x \in U : \}$$

$$\{x \in U : x \notin A \lor x \notin B\}$$

$$\{x \in U : x \in \overline{A} \lor x \in \overline{B}\}$$

$$\{x \in U : x \in \overline{A} \lor x \in \overline{B}\}$$

$$\{x \in U : x \in \overline{A} \lor x \in \overline{B}\}$$

$$\{x \in U : x \in \overline{A} \lor x \in \overline{B}\}$$

PIV (13)

Α	В	AnB	ANB	Ă	B	ĀuB	AnB 4> AnB	Tantológia
1	1	1	0	0	0	٥	V	0
1	0	0	0	0	1	1	V	
0	1	0	0	1	0	1	\bigvee	
0	0	0	1	1	1	1	\bigvee	

Aprenente uma provo Algébrica de que
$$\overline{AU(B\cap C)} = \overline{A} \cap (\overline{B} \cap \overline{C})$$
 PIV(8)
 $= \overline{A} \cap (\overline{B} \cup \overline{C})$ PIV(8)
 $= (\overline{B} \cup \overline{C}) \cap \overline{A}$ PIV(2)
 $= (\overline{C} \cup \overline{B}) \cap \overline{A}$ PIV(2)

Aprenente uma prova Algébrica de que
$$(A-B)-(=A \cap (\overline{B} \cap \overline{C})$$

 $=(A-B) \cap \overline{C}$ PIV(16)
 $=(A \cap B) \cap \overline{C}$ PIV(16)
 $=A \cap (\overline{B} \cap \overline{C})$ PIV(1)

Apresente uma provio Algebrica de que
$$A - (B - C) = A \cap (\overline{B} \cup C)$$

$$A - (B \cap \overline{C}) \quad PIV (16)$$

$$A \cap (\overline{B} \cup \overline{C}) \quad PIV (18)$$

 $A \cap (\overline{B} \cup C)$ PIV(7)

PIV = Propudade Intuitinsamente Validas

7.
$$A = A \cap U$$
 $P(V(4))$
 $A \cap (B \cup \overline{B})$ $P(V(10))$
 $(A \cap B) \cup (A \cap \overline{B})$ $P(V(6))$

$$2. A - B = A \cap \overline{B} \quad P(V(16))$$

$$\subseteq A \qquad P(V(13))$$

3.
$$(A-B) \cap B = (A \cap \overline{B}) \cap B$$
 PIV(16)
 $= A \cap (\overline{B} \cap B)$ PIV(7)
 $= A \cap \emptyset$ PIV(70)
 $= \emptyset$ PIV(5)