

Lenguajes

Contenido

- Lenguaje
- Operaciones entre lenguajes
 - Unión o alternativa
 - Concatenación
 - Potencia de un lenguaje
 - Cierre o clausura positiva
 - Cierre u operación estrella (cerradura de Kleene)
 - Reflexión de lenguajes
- Ejercicios: Lenguajes

Lenguaje

- Un lenguaje es un conjunto de palabras (cadenas) de un determinado alfabeto Σ .
- Formalmente: Se llama lenguaje sobre un alfabeto a todo subconjunto del lenguaje universal de Σ .

$$L \subseteq \Sigma^*$$

Lenguaje

En particular, el conjunto vacío Φ es un subconjunto de Σ* y se llama por ello lenguaje vacío. Este lenguaje no debe confundirse con el que tiene como único elemento la palabra vacía {λ}, que también es un subconjunto (diferente) de Σ*. Para distinguirlos, hay que fijarse en su carnalidad (número de símbolos).

$$C(\Phi)=0$$

 $C(\{\lambda\})=1$

Lenguaje

- Obsérvese que tanto Φ como $\{\lambda\}$ son lenguajes sobre cualquier alfabeto.
- Por otra parte, un alfabeto puede considerarse también como uno de los lenguajes generados por él mismo: el que contiene todas las palabras de una sola letra (un solo símbolo).

Operaciones entre lenguajes

1. Unión o alternativa: Sean dos lenguajes definidos sobre el mismo alfabeto, $L1 \subseteq \Sigma^*$, $L2 \subseteq \Sigma^*$ se denomina unión de los dos lenguajes $L1 \cup L2$ al conjunto formado por las cadenas que pertenezcan indistintamente a uno u otro de los dos lenguajes.

La unión de lenguajes tiene las siguientes propiedades:

i. <u>Operación cerrada</u>: la unión de dos lenguajes sobre el mismo alfabeto es también un lenguaje sobre dicho alfabeto.

ii. Propiedad asociativa: $(L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)$.

iii. Existencia de un elemento neutro: cualquiera que sea el lenguaje L, el lenguaje vacío Φ cumple que $\Phi \cup L = L \cup \Phi = L$

La unión de lenguajes tiene las siguientes propiedades:

- iv. Propiedad conmutativa: cualesquiera que sean $L_1y L_2$, se verifica que $L_1U L_2 = L_2U L_1$.
- v. <u>Propiedad idempotente</u>: cualquiera que sea L, se verifica que LU L = L.

2. Concatenación: Sean dos lenguajes definidos sobre el mismo alfabeto $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Sigma^*$, se denomina concatenación de los dos lenguajes $L_1 \cap L_2$ (L_1L_2) al conjunto de todas las cadenas formadas concatenando una palabra del primer lenguaje con una del segundo.

- La definición anterior sólo es valida si L_1 y L_2 contienen al menos un elemento. Para la concatenación de L con el lenguaje vacío Φ se tiene que: $\Phi L = L \Phi = \Phi$

- En general AB != BA.Ejemplo
- Si Σ = {a, b, c}, A = {a, ab, ac}, B = {b, b²},
 entonces
- AB = $\{ab, ab^2, ab^2, ab^3, acb, acb^2\}.$
- BA = {ba, bab, bac, b^2a , b^2ab , b^2ac }

- La concatenación de lenguajes tiene las siguientes propiedades:
 - i. <u>Operación cerrada</u>: la concatenación de dos lenguajes sobre el mismo alfabeto es también un lenguaje sobre el mismo alfabeto.
 - ii. Propiedad asociativa: $(L_1 L_2)L_3 = L_1(L_2L_3)$.
 - iii. Existencia de un elemento neutro: cualquiera que sea el lenguaje L, el lenguaje de la palabra vacía cumple que: {λ}L=L{λ}=L

3. Potencia de un lenguaje: Desde el punto de vista estricto esta no es una nueva operación, sino un caso particular de la anterior, Se denomina potencia i-ésima de un lenguaje a la operación que consiste en concatenarlo consigo mismo i-veces.

- Definiremos también:
 - L1=L
 - $L^{i+1}=L^iL=L^i$ (i > 0)
 - $L^{i}L^{j}=L^{i+j}(i, j > 0)$
 - $L^0=\{\lambda\}$

4. Cierre o clausura positiva: La operación de cierre positivo de un lenguaje L es otro lenguaje L⁺ obtenido uniendo el lenguaje L con todas sus potencias posibles, excepto L⁰.

$$L^{+} = \{L\} \cup \{LL\} \cup \{LLL\} ... = \bigcup_{n=1}^{\infty} L^{n}$$

- Ninguna clausura positiva contiene la palabra vacía, a menos que dicha palabra este en L.
- Puesto que el alfabeto Σ es también un lenguaje sobre Σ, puede aplicársele esta operación.

$$\Sigma += \Sigma^* - \{\lambda\}$$

5. Cierre u operación estrella (cerradura de Kleene): La operación cierre de un lenguaje L es otro L* obtenido uniendo el lenguaje L con todas sus potencias posibles, incluso L⁰.

$$L^* = \{\lambda\} \cup \{L\} \cup \{LL\} \cup \{LLL\} \dots = \bigcup_{n=0}^{\infty} L^n$$

Puesto que el alfabeto Σ es también un lenguaje sobre
 Σ, puede aplicársele esta operación.

Son evidentes las siguientes identidades:

$$- L^* = L^+ \cup \{\lambda\}$$

$$- L^+ = L L^* = L^* L$$

6. Reflexión de lenguajes: Sea L un lenguaje cualquiera. Se llama lenguaje reflejo o inverso de L, y se representa con L⁻¹: {x⁻¹ | x ∈ L }

L⁻¹ es el lenguaje que contiene todas las palabras inversas de L.

Ejercicios: Lenguajes

1. Sea:

$$\Sigma_1 = \{a,b,c,d,...,z\}$$

- L_1 ={anita, lava, la, tina}
- $L_2 = \{ hola, mundo \}$
- L₃={uno, dos, tres, cuatro, cinco}
- Obtener:
 - $(L_1 \cup L_2) L_3$
 - $(L_1 L_2) \cup L_3$
 - L_1^2
 - L₂+
 - L₂*
 - L_2^{-1}

2. Sea:

- $\Sigma_1 = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,F\}$
- $L_1 = \{001AF, 10FFAA, 109012, 667800\}$
- $-L_2 = \{00,10,12,45,66,77\}$
- $L_3 = \{1,0,3,5,6,F,A,B,C\}$
- Obtener:
 - $(L_1 \cup L_2) L_3$
 - $(L_1 L_2) \cup L_3$
 - L₁²
 - L₂+
 - $L_2^{-1} \cup (L_1 \cup L_3)$
 - L₂-1