Consider the algorithms of MERGESORT and QUICKSORT.

```
QUICKSORT(A)
```

```
\begin{split} \text{if}\,|A| > 1 \text{ then} \\ & \text{pivot} \leftarrow A[i] \\ & \text{partition } A \text{ into multisets} \\ & L = \{\text{elements in } A < \text{ pivot}\} \\ & E = \{\text{elements in } A = \text{ pivot}\} \\ & G = \{\text{elements in } A > \text{ pivot}\} \\ & \text{QUICKSORT}(L) \\ & \text{QUICKSORT}(G) \\ & A \leftarrow L, E, G \end{split} fi
```

Let G(n) = "For all arrays A with n elements from a totally ordered domain, if QUICKSORT(A) is performed, . . . unchanged."

We proceed by induction.

Let $n \in \mathbb{N}$ be arbitrary.

Let A be an arbitrary array with n elements from a totally ordered domain.

Base Case

If n = 0 or n = 1, the test on line 1 fails and thus A is unchanged and vacuously sorted.

Inductive Step

Suppose G(n') is true for all $n' \in \mathbb{N}$ with n' < n.

The test on line 1 succeeds.

By partitioning, all elements in L are less than all elements in E, which are less than all elements in G. A multiset of elements in A is the union of the multiset of elements in L, E, G.

```
A[i] \in E, so |L| and |G| are less than |A|.
```

By the IH, after $\mathrm{QUICKSORT}(L)$ and $\mathrm{QUICKSORT}(G)$ are performed L and G are sorted in nondecreasing order and the multiset of elements in L and G are unchanged.

After the assignment on line 6, A is sorted in a non-decreasing order. All elements in L are therefore less than all elements in E, which in turn are less than all elements in G, and thu multiset of elements in A is unchanged. By generalisation, P(n).

By induction, for any $n \in \mathbb{N}.P(n)$.

1 Divide and Conquer Algorithms

- divide the problem into smaller parts, often of roughly equal size
- solve each part independently
- combine the solutions for the parts into a solution for the whole problem

1.1 Correctness of Iterative Algorithms

```
\begin{array}{c} z \leftarrow 0 \\ w \leftarrow y \\ \text{while } w \neq 0 \text{ do} \\ z \leftarrow z + x \\ w \leftarrow w - 1 \\ \text{od} \end{array}
```

What are the values of the variables immediately after iteration i of the loop? (w = y - i, z = ix)

Let P(i) ="if the loop is executed at least i times, then immediately after the iteration i we have w = y - i and z = ix".

Note that, by convention, when we talk about the 0th iteration, we are talking about the state immediately before the 1st iteration.

Lemma 1.1

Let $x, y \in \mathbb{Z}$. For all $i \in \mathbb{N}$, we have P(i).

Proof:

Let W_i and z_i denote the values of w and z immediately after iteration i.

Base Case

```
w_0 = y = y - 0 by line 2.

z_0 = 0 = 0 \cdot x by line 1,

so P(0) is true.
```

Inductive Hypothesis

Let $i \geq 0$ and assume P(i) is true.

Then $w_i = y - i$ and $z_i = ix$.

From lines 4 and 5, we have that $z_{i+1} = z_i + x$ and $w_{i+1} = w_i - 1$, which by inductive hypothesis means that $z_{i+1} = (i+1)x$ and $w_{i+1} = y - (i+1)$, and hence P(i+1) holds.

By induction, we have that $\forall i \in \mathbb{N}.P(i)$.

Corollary 1.2

If the algorithm runs and halts, then at the end z = xy.

Proof:

Suppose the loop halts immediately after the iteration i.

From the termination condition of the loop on line 3 we have that $W_i = 0$. By Lemma $1.1, w_i = y - i$ and $z_i = ix$, so i = y and $z_i = xy$.

A **loop invariant** is a predicate that is true each time a particular place in the loop is reached (often the beginning or end).

Lemma 1.3

z=x(y-w) is a loop invariant which is true at the beginning and end of every iterations.

Proof:

Initially, yrom lines 1 and 2 we can see that z = 0 and w = y, so x(y - w) = 0 = z.

Consider an arbitrary iteration of the loop.

Let w' and z' denote the values of w and z before the iterations. Let w'' and z'' denote their variable at the end of the iteration.

Suppose the claim holds at the beginning of the iteration so z' = x(y - w').

From lines 4 and 5,

w'' = w' - 1 and z'' = z' + x, so x(y - w'') = x(y - (w' - 1)) = x(y - w') + x = z' + x = z'', so the claim is true at the end of the iterations.

By induction, z = x(y - 0) is true after every iteration.