

 $\underline{\sf Home}$ > Chemistry > Inorganic > Bonding > Graphite, diamond and BN

Graphite, diamond and BN

Part A Graphite and diamond	^
Which statement(s) concerning the lattice structures of graphite and diamond are correct?	
1 The shortest carbon-carbon bond occurs in diamond.	
f 2 The $C-C-C$ bond angle between nearest neighbours is smaller in diamond than in graphite.	
3 All bonds in diamond are of the same strength but those in graphite are not.	
1, 2 and 3 are correct	
1 and 2 only are correct	
2 and 3 only are correct	
1 only is correct	

Part B Boron nitride

Which properties is this compound likely to have?

- 1 It can act as a lubricant.
- 2 It has a high melting point.
- 3 It is very hard.

Figure 1: The diagram shows the structure of boron nitride which is similar to that of graphite.

1, 2 and 3 are correct
1 and 2 only are correct
2 and 3 only are correct
1 only is correct
3 only is correct

Part A adapted with permission from UCLES A-Level Chemistry November 1996, Paper 3, Question 36; Part B adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 35

Home > Unknown page

Page not found

We're sorry, page not found: /questions/bonding_types_in_solids

Home > Unknown page

Page not found

We're sorry, page not found: /questions/structure_and_bonding_of_solid

<u>Home</u> > Chemistry > Inorganic > Bonding > Boron nitride

Boron nitride

A boron atom has one fewer electron than a carbon atom, and a nitrogen atom has one more. Some BN compounds are known which are isoelectronic with C-C compounds. One form of boron nitride, a colourless electrical insulator, has a planar hexagonal layered structure of alternating boron and nitrogen atoms as shown below.

Figure 1: Boron Nitride structure

Part A	Isoelectronic	
Isc	electronic is when two species have the same number of [A] and the same electronic [B].	
Fill	in the blanks for A and B .	
A:		
В.		
B:		
Part B	Bonding within layers	•
Su	ggest the type of bonding which is present within the layers.	
Ou	ggest the type of boliding which is present within the layers.	
Part C	Bonding between layers	•
Su	ggest the type of interaction between the layers.	
Dowt D		•
Part D	Use of boron nitride	
Su	ggest a possible use in which this compound would behave similarly to the corresponding carbon	
COI	mpound.	
Part E	Boron nitride under high pressure	•
1.00		
	nen heated under high pressure this form of boron nitride is converted into another form which is an cremely hard solid.	
	ggest the carbon allotrope this type of structure will be similar to.	
Gu	ggest the salbon anotrope this type of structure will be similar to.	
apted with	permission from OCSEB, A-Level Chemistry, June 1995, Paper 3/4, Question 3	

 $\underline{\mathsf{Home}}\,\, \boldsymbol{\succ}\,\, \mathsf{Chemistry}\,\, \boldsymbol{\succ}\,\, \mathsf{Inorganic}\,\, \boldsymbol{\succ}\,\, \mathsf{Bonding}\,\, \boldsymbol{\succ}\,\, \mathsf{Copper}\, \mathsf{and}\, \mathsf{graphite}$

Copper and graphite

Part	A Conductivity of copper
	Which of the following statements explains why copper conducts electricity when a potential difference is applied?
	The crystal lattice breaks down.
	Bonding electrons in the crystal lattice move.
	The bonding becomes covalent
	Copper(II) ions move to the cathode.
	Electrons combine with copper(II) ions.
Part	B Graphite as lubricant
	Graphite can be used as a lubricant; diamond cannot. This is because graphite has
	delocalised electrons.
	Van der Waals' forces between the layers of atoms.
	mobile ions.
	a hexagonal arrangement of atoms in the layers.
	a hexagonal arrangement of atoms in the layers. covalent bonds between atoms in the layers.

Part A adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 7; Part B adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 4, Question 18

 $\underline{\mathsf{Home}}$ > Chemistry > Inorganic > Bonding > Silicon

Silicon

t A	Structure of silicon
W	hat type of structure and bonding would you expect for the element silicon its solid state?
	pure covalent
	metallic
	ionic
	opolar covalent
rt B	Manufacture of silicon
	re silicon is required for microchips. It can be manufactured by heating silicon tetrachloride with zinc to
	oduce zinc(II) chloride as a byproduct.
	onstruct a balanced equation for this reaction, using the lowest integer stoichiometric coefficients. State mbols are not required.
Зу	mbolo are not required.
art C	Mass of pure silicon
Α	sample of silicon tetrachloride contained 10% , by mass, of unreactive material as impurity.
	alculate the mass of pure silicon that could be obtained by heating $8.50\mathrm{g}$ of the impure tetrachloride with
	excess of zinc.

Adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 2, Question 4

 $\underline{\mathsf{Home}}\,\, \boldsymbol{\succ}\,\, \mathsf{Chemistry}\,\, \boldsymbol{\succ}\,\, \mathsf{Inorganic}\,\, \boldsymbol{\succ}\,\, \mathsf{Bonding}\,\, \boldsymbol{\succ}\,\, \mathsf{Diamond}\,\, \mathsf{and}\,\, \mathsf{graphite}$

Adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 17

Diamond and graphite

Which structural feature is common to both diamond and graphite?	
delocalised electrons	
each carbon atom bonded to four others	
covalent bonds between carbon atoms	
van der Waals forces	
a carbon-carbon bond length equal to that in ethane	

 $\underline{\mathsf{Home}}$ > Chemistry > Inorganic > Bonding > Lattices and molecules

Lattices and molecules

1610

Part A	Discrete molecules			^
W	hich element exists as discrete sm	all molecules in the solid state?		
	sodium			
	aluminium			
	iodine			
	carbon			
Part B	Non-ionic giant lattice			~
W	hich set of properties could apply t	o a non-ionic compound which has a giant	lattice?	
	physical state at room temperature	electrical conductivity of the molten	melting point/°C	

	physical state at room temperature	electrical conductivity of the molten compound	melting point/ °C
A	liquid	does not conduct	-114
В	liquid	does not conduct	melts over a temperature range
С	solid	conducts well	808

С	solid	conducts well	
D	solid	does not conduct	
	A		
	В		
	c		
	D		

Part A adapted with permission from UCLES, A-Level Chemistry, November 1997, Paper 3, Question 5; Part B adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 7

 $\underline{\sf Home}\,\, \blacktriangleright \,\, \mathsf{Chemistry}\,\, \blacktriangleright \,\, \mathsf{Inorganic}\,\, \blacktriangleright \,\, \mathsf{Bonding}\,\, \blacktriangleright \,\, \mathsf{Graphite}\,\, \mathsf{and}\,\, \mathsf{molecular}\,\, \mathsf{oxides}\,\,$

Graphite and molecular oxides

Part A Graphite lattice	^
In the graphite lattice, what is the number of nearest neighbours for each carbon atom?	
○ 3	
<u> </u>	
<u> </u>	
<u> </u>	
Part B Molecular or giant structure	~
Which one of the following oxides has a molecular structure as distinct from a giant structure?	
\bigcirc SO ₂	
○ MgO	
\bigcirc SiO $_2$	
$igcup ext{Al}_2 ext{O}_3$	
\bigcirc Na ₂ O	

Part A adapted with permission from UCLES, A-Level Chemistry, June 1989, Paper 3, Question 6; Part B adapted with permission from UCLES, A-Level Chemistry, June 1989, Paper 3, Question 14

 $\underline{\mathsf{Home}}$ > Chemistry > Inorganic > Bonding > Metals and delocalised electrons

Metals and delocalised electrons

Part A Group 2 metals
The Group 2 metals have higher melting points than Group 1 metals.
Which factors could contribute towards the higher melting points?
 1 There are smaller interatomic distances in the metallic lattices of the Group 2 metals. 2 Two valence electrons are available from each Group 2 metal atom for bonding the atom into the metallic lattice.
3 Group 2 metals have the higher first ionisation energies. 1, 2 and 3 are correct
1 and 2 only are correct
2 and 3 only are correct
1 only is correct
Part B Delocalised electrons
Which of the following systems contain delocalised electrons?
1 cyclohexane 2 graphite 3 sodium
1, 2 and 3 are correct
1 and 2 only are correct
2 and 3 only are correct
1 only is correct
3 only is correct