que es una parábola en el plano xz. De forma similar, si P_2 denota el plano yz, definido por x=0, entonces la sección

$$P_2 \cap \text{gráfica } f = \{(x, y, z) \mid x = 0, z = y^2\}$$

es una parábola en el plano yz (véase la Figura 2.1.8). Suele ser conveniente calcular al menos una sección para complementar la información dada por los conjuntos de nivel.

Figura 2.1.8 Dos secciones de la gráfica de $f(x, y) = x^2 + y^2$.

Ejemplo 4

La gráfica de la función cuadrática

$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 - y^2$$

es un *paraboloide hiperbólico*, o *silla de montar*, centrado en el origen. Dibujar su gráfica.

Solución

Para visualizar esta superficie, en primer lugar, dibujamos las curvas de nivel. Para determinar las curvas de nivel, resolvemos la ecuación $x^2-y^2=c$. Consideramos los valores $c=0,\pm 1,\pm 4$. Para c=0, tenemos $y^2=x^2$, o $y=\pm x$, por lo que este conjunto de nivel consta de dos rectas que pasan por el origen. Para c=1, la curva de nivel es $x^2-y^2=1$, o $y=\pm \sqrt{x^2-1}$, que es una hipérbola que cruza verticalmente el eje x en los puntos $(\pm 1,0)$ (véase la Figura 2.1.9). De forma similar, para c=4, la curva de nivel está definida por $y=\pm \sqrt{x^2-4}$, que es la hipérbola que cruza verticalmente el eje x en los puntos $(\pm 2,0)$. Para c=-1, obtenemos la curva $x^2-y^2=-1$ —es decir, $x=\pm \sqrt{y^2-1}$ —la hipérbola que cruza horizontalmente el eje y en los puntos $(0,\pm 1)$. Y para c=-4, se obtiene la hipérbola que pasa por $(0,\pm 2)$. Estas curvas de nivel se muestran en la Figura 2.1.9. Dado que solo a partir de estos datos no es fácil visualizar la gráfica de f, vamos calcular dos secciones como en el ejemplo anterior. Para la sección en el plano xz, tenemos

$$P_1 \cap \text{gráfica } f = \{(x, y, z) \mid y = 0, z = x^2\},\$$