Michael Faraday (1791-1867)

1831

https://www.alamyimages.fr

Expérience: détermination d'inductance

$$L = \frac{\mu_0 N^2 S}{l}$$

Fonction de Transfert

$$\underline{H}(\omega) = \underline{\frac{U_s}{U_e}} = \frac{1}{1+j\frac{L}{R}\omega}$$
$$|\underline{H}(\omega)|^2 = \frac{1}{1+\frac{L^2}{R^2}\omega^2}$$

Applications

Freinage par induction

Roue de Barlow (1822)

Alternateur (Centrale, dynamo...)

Léon Foucault (1819-1868)

Peter Barlow (1776-1862)

Applications

https://www.youtube.com/watch?v=nIFSZfKTUKA

Transformateur

$$\frac{U_2}{U_1} = \frac{N_2}{N_1}$$

- Transformateur d'isolement
- Transport d'électricité

Le microphone

Equations mécanique et électrique

- (E) $vB2\pi aN = Ri + L\frac{di}{dt} + \frac{q}{C}$
- (M) $m\ddot{z} = -\alpha\dot{z} kz i2\pi aNB$

Bilan énergétique

(M)
$$\frac{d}{dt}(\frac{1}{2}m\dot{z}^2 + \frac{1}{2}kz^2) = -\alpha\dot{z}^2 - iv2\pi aNB$$

(E)
$$\frac{d}{dt}(\frac{1}{2}Li^2 + \frac{1}{2C}q^2) = -Ri^2 + ivB2\pi aN$$

(E)+(M)
$$\frac{d}{dt}(E_{bob} + E_{Capa} + E_c + E_k) = -Ri^2 + -\alpha \dot{z}^2$$

Inductance Mutuelle

