

Introducing VPN Solutions

What Is a VPN?

Virtual: Information within a private network is transported over a public network.

Private: The traffic is encrypted to keep the data confidential.

Benefits of VPN

VPN Models

VPN services can be offered based on two major models:

Overlay VPNs, in which the service provider provides virtual pointto-point links between customer sites

 Peer-to-peer VPNs, in which the service provider participates in the customer routing

VPN Taxonomy

IPsec VPN Deployment

- Internet Protocol Security (IPsec) is a network protocol suite that authenticates and encrypts the packets of data sent over a network.
- Site-to-site VPNs
 - Fully meshed (static)
 - Hub (static) and spoke (dynamic)
 - Fully meshed on demand (dynamic)
 - DMVPN
- Remote-access VPNs
 - Cisco Easy VPN
 - WebVPN (Cisco IOS SSL VPN)

Site-to-Site VPNs

Site-to-site VPN: extension of classic WAN

Fully Meshed VPNs

 There are static public addresses between peers.

 Local LAN addresses can be private or public.

Hub-and-Spoke VPNs

 Static public address needed at the hub only.

 Spoke addresses can be dynamically applied using DHCP.

Dynamic IP Addresses

Dynamic Multipoint VPNs (DMVPN)

Remote-Access VPNs

Remote-access VPN: evolution of dial-in networks and ISDN

Cisco Easy VPN

Cisco Unity is the common VPN language between Cisco devices.

Cisco IOS WebVPN

- Integrated security and routing
- Clientless and full network SSL VPN access

Generic Routing Encapsulation

OSI Layer 3 tunneling protocol:

- Uses IP for transport
- Uses an additional header to support any other OSI Layer 3 protocol as payload (e.g., IP, IPX, AppleTalk)

Default GRE Characteristics

- 24-byte overhead by default (20-byte IP header and 4-byte GRE header)
- Tunneling of arbitrary OSI Layer 3 payload is the primary goal of GRE
- Stateless (no flow control mechanisms)
- No security (no confidentiality, data authentication, or integrity assurance)

GRE Configuration Example

- GRE tunnel is up and protocol up if:
 - Tunnel source and destination are configured
 - Tunnel destination is in routing table
 - GRE keepalives are received (if used)
- GRE is the default tunnel mode.

#