EXAME PARA BOLSA PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA

A1	
A2	
А3	
A4	
A5	

C1	
C2	
C3	
C4	
C5	

$$f(x) = \begin{cases} x^2, & \text{se } x \text{ \'e racional,} \\ 0, & \text{caso contr\'ario.} \end{cases}$$

Mostre que f(x) é derivável em x = 0.

 $\fbox{\textbf{C3}}$ Ache uma curva orientada simples fechada C no plano xy tal que o valor da integral de linha

$$\int_C (y^3 - y)dx - 2x^3 dy$$

seja máximo.

- **C4** (a) Mostre que, se n > 3, então $2^n < n!$.
 - (b) Usando o item (a), mostre que 2 < e < 3, onde e é a constante de Euler.

Sugestão: utilize uma expansão em série de Taylor da função exponencial de base e. Neste caso, calcule o raio de convergência da série.

C5 Use a definição de integral por somas de Riemann para mostrar que a área de um triângulo retângulo é a metade do produto dos seus catetos. Forneça uma interpretação geométrica.

 $\boxed{\mathbf{A1}}$ Mostre que posto $(A^TA) = \operatorname{posto}(A)$.

 $\fbox{\textbf{A2}}$ Sejam $A,B:V\to V$ operadores lineares. Se AB=BA, prove que N(B) e Im(B) são subespaços invariantes por A.

- **A3** Seja $d_1d_2/d_3d_4/d_5d_6$ a data do seu nascimento no formato DD/MM/AA. Construa a matriz [T] (base canônica no domínio e no contra-domínio) de um operador linear T sobre o espaço vetorial \mathbb{R}^3 , munido do produto interno canônico, que satisfaça **todas** as condições abaixo:
 - 1. T não é diagonalizável.
 - $2.\ T$ não é injetora.
 - 3. $\lambda = d_6 + 1$ é autovalor de T.
 - 4. Os autoespaços de T são ortogonais.
 - 5. $(1,0,0) \in Im(T)$.

Justifique sua construção.

A4 Aponte o(s) erro(s) e corrija:

- (a) O vetor (1,1,1) gera o espaço linha da matriz $A=\begin{pmatrix}1&1&1\\2&2&2\\3&3&3\end{pmatrix}$. Portanto o espaço nulo de A é o \mathbb{R}^2 .
- (b) Seja $P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ a matriz cujas colunas são os autovetores de A associados aos autovalores -3 e 5, respectivamente. Se D = diag(-3, 5), então $A = PDP^T$.

A5 Classifique cada afirmação como verdadeira ou falsa. Justifique.

- (a) Se A é uma matriz $m \times n$ tal que o sistema Ax = b tem solução, qualquer que seja $b \in \mathbb{R}^m$, então existe C, matriz $n \times m$, tal que AC = I.
- (b) Sejam v^1 e v^2 dois vetores linearmente independentes em \mathbb{R}^n e seja $p \in \mathbb{R}^n$. Considere o plano $Q = \{p + t \, v^1 + u \, v^2 \mid t, \, u \in \mathbb{R}\}$. Se T é um operador linear injetor sobre \mathbb{R}^n , então T(Q), a imagem de Q por T, é um plano que contém p, paralelo a $T(v^1)$ e $T(v^2)$.
- (c) Se A e B, matrizes quadradas de ordem n, são semelhantes, então A e B têm os mesmos autovalores.
- (d) Seja A matriz 2×2 não nula, tal que $A^2 = 0$. Então $\det(cI A) = c^2$, para qualquer c real.