

Theoretische Informatik Komplexitätstheorie

Technische Hochschule Rosenheim SS 2019

Prof. Dr. J. Schmidt

Inhalt

- Einführung Zeit- und Speicherkomplexität
- Ordnung der Komplexität, O-Notation
- Optimierung am Beispiel Teile und Herrsche
- Komplexitätsklassen P, NP
- NP-Vollständigkeit
- NP-schwere Probleme
- weitere Problemklassen

Einführung

- bisher betrachtet: Berechenbarkeit
 - ist ein Problem prinzipiell mit Computern lösbar existiert ein Algorithmus?
- jetzt: mit welchem Aufwand ist ein berechenbares Problem lösbar, insbesondere
 - Zeitkomplexität
 - Speicherkomplexität
- es geht also nicht mehr nur um Effektivität, sondern um Effizienz
- im Folgenden: Zeitkomplexität
 - Speicherkomplexität wird mit ähnlichen Methoden betrachtet
 - ist aber für die Praxis oft weniger wichtig

- nur ein Teil der berechenbaren Probleme ist handhabbar
 - die anderen rechnen für praktische Fragestellungen zu lange oder benötigen zu viel Speicher

(Lauf)Zeitkomplexität

- eines Algorithmus
 - Anzahl der Rechenschritte, die er zur Lösung des Problems benötigt.
- eines Problems
 - Laufzeitkomplexität, die ein optimaler Algorithmus zur Lösung benötigt.

Zeitkomplexität – Varianten

- Worst-case Laufzeit
 - wie lange braucht der Algorithmus maximal (bei "schlechtesten" Eingabedaten)
 - meist: Laufzeit = worst-case Laufzeit
- Average-case Laufzeit
 - erwartete Laufzeit bei einer gegebenen üblichen Verteilung der Daten ("durchschnittliche Laufzeit")
- Best-case Laufzeit
 - wie lange braucht der Algorithmus mindestens (bei optimalen Eingabedaten)
- Beispiel: verkettete Liste mit 20 Namen, suche darin einen Namen

 - ♣ Average-Case: Name in der Mitte der Liste → 10 Schritte
 - Best-Case: erster Name → 1 Schritt

ORDNUNG DER KOMPLEXITÄT

- ➤ Abhängigkeit von der Größe der Eingangsdaten → Parameter n
 - wie verhält sich der Algorithmus, wenn die Anzahl der Eingabedaten sich erhöht
- "Weglassen" von "unwichtigen" Konstanten"
 - konstante Faktoren wie verwendeter Rechner, eingesetzte Programmiersprache und deren Implementierung oder Taktfrequenz der CPU
 - Komplexitätsangabe soll nur vom Algorithmus abhängen, nicht von tatsächlich verwendeter Hardware
- Untersuchung einer oberen Schranke ("asymptotische Laufzeitkomplexität")
 - Ergebnis soll, multipliziert mit einem rechnerabhängigen konstanten Faktor, stets ÜBER der tatsächlichen Laufzeitfunktion liegen, wenn die Anzahl der Eingabewerte einmal einen bestimmten Wert überschritten haben

O-Notation Definition

- $O(f(n)) = \{g: \mathbb{N} \to \mathbb{N} | \exists m > 0, c > 0 \text{ mit} \}$ $\forall n \ge m: |g(n)| \le c \cdot |f(n)| \}$
- ightharpoonup d.h. O(f(n)) ist die Menge aller Funktionen g(n),
 - \bullet für die es die beiden Konstanten m, c gibt,
 - \bullet so dass für alle $n \ge m$ gilt, dass $|g(n)| \le c \cdot |f(n)|$
- \triangleright oder anders: g(n) wächst höchstens so schnell wie f(n)
- dies gilt asymptotisch, also f
 ür n → ∞
- \triangleright übliche Schreibweise: g(n) = O(f(n))
 - also z.B. $g(n) = O(n^2)$
 - eigentlich nicht korrekt, es sollte "∈" verwendet werden
 - \Rightarrow = ist hier nicht symmetrisch: es gilt zwar $O(n) = O(n^2)$ aber nicht $O(n^2) = O(n)$

$$\rightarrow$$
 f(n) = 50n + 3

$$+$$
 f(n) = O(n)

$$+ c = 51, m = 3$$

$$\rightarrow$$
 f(n) = 2n² – 50n + 3

$$+ f(n) = O(n^2)$$

$$|2n^2 - 50n + 3| \le 2n^2 + |50n| + 3 \le 2n^2 + 50n^2 + 3n^2 = 55n^2 = |55n^2|$$

$$+$$
 also $|2n^2 - 50n + 3| \le 55 |n^2|$

und damit c = 55, m = 1

Fazit:

- es ist nur der am schnellsten wachsende Term relevant
- alle langsamer wachsenden Terme und konstante Faktoren werden weggelassen

O-Notation - Beispiele

$$f(n) = \ln n - 3n + 2n^3$$

 $f(n) = O(n^3)$

$$f(n) = 3 \ln n$$
 $f(n) = O(\ln n)$

- \rightarrow f(n) = In n^c
 - ♣ In n^c = c In n
 - + f(n) = O(ln n)

→ konstanter Faktor

- \rightarrow f(n) = 3 log₂ n
 - $+ \log_2 n = \ln n / \ln 2$
 - + f(n) = O(ln n)

→ konstanter Faktor

- Fazit:
 - Basis eines Logarithmus ist irrelevant
 - konstante Exponenten unter dem Logarithmus sind irrelevant

- $f(n) = \log n 3n + 2n^3 + 2^n$ $f(n) = O(2^n)$
- $f(n) = log n 3n + 2n^3 + 10^n$ $f(n) = O(10^n)$
- $f(n) = log n 3n + 2n^3 + 2^n + 10^n$ $f(n) = O(10^n)$
- Fazit:
 - Änderung der Basis einer Exponentialfunktion ist relevant

O-Notation - Beispiele

$$f(n) = 50n + 3$$
 $f(n) = O(2^n)$

$$f(n) = 2n^2 - 50n + 3$$

$$f(n) = O(2^n)$$

$$f(n) = \ln n - 3n + 2n^3$$

$$f(n) = O(2^n)$$

$$f(n) = 3 \ln n$$
 $f(n) = O(2^n)$

- Fazit:
 - obige Aussagen sind richtig, aber nicht sehr hilfreich
 - gesucht ist i.a. eine enge obere Schranke

- eingeführt von Paul Bachmann 1894
- benannt nach Edmund Landau (1877 1938)
- weitere Symbole zusätzlich zu O-Notation
- \triangleright insbesondere noch interessant: Ω , Θ

g = O(f)	g wächst höchstens so stark wie f (obere Schranke)	$ g(n) \le c \cdot f(n) $
$g = \Omega(f)$	g wächst mindestens so stark wie f (untere Schranke)	$ g(n) \ge c \cdot f(n) $
$g = \Theta(f)$	g wächst genauso stark wie f	$c_0 \cdot g(n) \le f(n) \le c_1 \cdot g(n) $

Typische Komplexitätsordnungen

15

Bezeichnung	Komplexität	Wertung	Beispiele
Konstante Komplexität	O(1)	optimal, selten	Hashing
Logarithmische Komplexität	O(log <i>n</i>)	sehr günstig	Binäre Suche in sortierter Liste
Lineare Komplexität	O(n)	günstig	Lineare Suche in unsortierter Liste
Leicht überlineare Komplexität	$O(n \log n)$	noch gut	gute Sortierverfahren, z.B. Mergesort, Quicksort (im Durchschnitt); FFT
Quadratische Komplexität	O(n ²)	ungünstig	schlechte Sortierverfahren, z.B. Bubblesort Quicksort (worst case)
Kubische Komplexität	$O(n^3)$	ungünstig	Matrix-Multiplikation
Exponentielle Komplexität	O(<i>a</i> ⁿ)	katastrophal	Travelling-Salesman (geschickt implementiert)
Faktorielle Komplexität	O(n!)	noch schlimmer	Travelling-Salesman (brute-force)

Anmerkung a^n wächst schneller als **jedes** Polynom n^k für jedes a > 1

Beispiele für die O-Notation

n	O(n)	$O(n^2)$	O(2 ⁿ)
1	1 μsec	1 μsec	2 μsec
10	10 μsec	100 μsec	~ 1 msec
100	100 μsec	10 msec	~ 4 * 10 ¹⁶ Jahre
1000	1 msec	1 sec	~ 8 * 10 ²⁸⁸ Jahre

Achtung: die O-Notation gilt nur asymptotisch für n → ∞

n	$O(100 \ n) = O(n)$	$O(0.1 n^2) = O(n^2)$	$O(0.0001 \ 2^n) = O(\ 2^n)$
1	100 μsec	0.1 μsec	0.0002 µsec
10	1 msec	10 μsec	~ 0.1 µsec
100	10 msec	1 msec	~ 4 * 10 ¹² Jahre
1000	100 msec	100 msec	~ 8 * 10 ²⁸⁴ Jahre

Funktionswachstum - Beispiele

Funktionswachstum – Beispiele

Komplexitätsordnung – typische Art der Problemlösung

Bezeichnung	Komplexität	Typischer Aufbau des Algorithmus
Konstante Komplexität	O(1)	die meisten Anweisungen werden nur einmal oder ein paar Mal ausgeführt
Logarithmische Komplexität	O(log <i>n</i>)	Lösen eines Problems durch Umwandlung in ein kleineres, dabei Verringerung der Laufzeit um einen konstanten Anteil
Lineare Komplexität	O(n)	optimaler Fall für einen Algorithmus, der <i>n</i> Eingabedaten verarbeiten muss – jedes Element muss genau einmal (oder konstant oft) angefasst werden
Leicht überlineare Komplexität	$O(n \log n)$	Lösen eines Problems durch Aufteilen in kleinere Probleme, die unabhängig voneinander gelöst und dann kombiniert werden
Quadratische Komplexität	O(n ²)	typisch für Probleme, bei denen alle n Elemente paarweise verarbeitet werden müssen (2 verschachtelte for-Schleifen). Nur für relativ kleine Probleme verwendbar
Kubische Komplexität	O(n ³)	3 verschachtelte for-Schleifen. Nur für kleine Probleme verwendbar
Exponentielle Komplexität	O(<i>a</i> ⁿ)	typisch für brute-force Lösungen, z.B. durchprobieren aller möglichen Varianten. Nur wenige Algorithmen dieser Komplexität sind praktisch einsetzbar

Bestimmung der Laufzeitkomplexität

Einfach Anweisungen:

$$x = x * a;$$
 O(1)

Bestimmung der Laufzeitkomplexität

For-Schleifen (wobei B ein Block mit konstanter Laufzeit sei)

```
for (int i = 0; i < n; i++)
                                                                   O(n)
   В;
 for (int i = 0; i < n; i++)
   for (int j = 0; j < n; j++)
                                                                  O(n^2)
     B;
for (int i = 0; i < n; i++)
   for (int j = 0; j < i; j++)
                                                                   O(n^2)
     В;
```

Bestimmung der Laufzeitkomplexität (2)

22

Binäre Suche:

```
while(i<n)
{
    n /= 2;
    i += 1;
}</pre>
O(log n)
```

Rekursion

```
int fac(int n)
{
   if (n == 0)
      return 1;
   else
      return n * fac(n-1);
}

int doSomething(int a, int b)
{    // Vorauss.: a < b
    if (a == b)
      return 0;
    else
      return (doSomething(a+1, b) - doSomething(a, b-1));
}</pre>
O(2<sup>n</sup>)
```

Rekursion

- betrachtet werden im Folgenden typische Varianten der Rekursion
- \triangleright es werden unabhängig von einem konkreten Algorithmus Formeln zur Berechnung der Komplexität K_n angegeben
- \triangleright es gilt jeweils K_0 = 0
- Variante 1
 - Schleife über Eingabedaten
 - in jedem Schritt wird ein Element entfernt

$$K_n = K_{n-1} + n$$

 $K_n = O(n^2 / 2)$

Rekursion

24

Variante 2

- Eingabedaten werden in jedem Schritt halbiert
- Aufwand innerhalb eines Schritts ist konstant

$$K_n = K_{n/2} + 1$$
$$K_n = O(\log n)$$

Variante 3

- Eingabedaten werden in jedem Schritt halbiert
- innerhalb eines Schritts muss jedes Element betrachtet werden

$$K_n = K_{n/2} + n$$
$$K_n = O(2n)$$

Rekursion

25

Variante 4

- Eingabedaten werden in zwei Hälften geteilt
- Aufwand innerhalb eines Schritts ist konstant

$$K_n = 2K_{n/2} + 1$$

 $K_n = O(2n)$

Variante 5

- Eingabedaten werden in zwei Hälften geteilt
- alle Daten müssen vor/zwischen/nach der Halbierung betrachtet werden
- typisch für viele "Teile und Herrsche" ("Divide-and-Conquer")
 Algorithmen

$$K_n = 2K_{n/2} + n$$
$$K_n = O(n \log n)$$

Rechenregeln zur O-Notation

Seien c und a_i Konstanten.

- ightharpoonup c = O(1)
- $ightharpoonup c \cdot f(n) = O(f(n))$
- ightharpoonup O(f(n)) + O(f(n)) = O(f(n))
- \triangleright O(O(f(n))) = O(f(n))
- $> g(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + ... + a_0 = O(n^k)$
- $ightharpoonup O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$
- $ightharpoonup O(f(n)) + O(g(n)) = O(\max\{f(n), g(n)\})$

Beweise ergeben sich direkt aus der Definition.

Anwendung zur Analyse

- Berechnung der Gesamtkomplexität eines Algorithmus
- einfache Anweisungen sind O(1)
- > Berechnung **Sequenzen** alg1; alg2; alg3; O(alg1) + O(alg2) + O(alg3) ^{un}O(max{alg1, alg2, alg3})
- n-malige **Iteration** in Schleife mit Rumpf O(alg) O(n * alg)
- IF-THEN alg 1 ELSE alg2 O(max{alg1, alg2})

OPTIMIERUNG AM BEISPIEL TEILE UND HERRSCHE

Ziel der Optimierung

- finden eines besseren Algorithmus
 - d.h., mit besserer Zeitkomplexität
- sehr abhängig vom Algorithmus
- früher oft: Ersetzen von Multiplikationen durch Additionen
 - da Multiplikation um ein Vielfaches langsamer war
 - heute mit Vorsicht zu genießen, CPU-Architekturabhängig

Beispiel: Polynomauswertung

- Verfahren zur Auswertung von Polynomen f(x) an Stelle b
- $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$
- Komplexität "normales" Verfahren zur Berechnung von f(b):
 - Berechnung der Potenzen x², ..., xⁿ:

$$+ 2 + 3 + 4 + ... + n = n (n + 1) / 2 - 1 Multiplikationen: O(n2/2)$$

- n Multiplikationen mit Koeffizienten a_i
- n Additionen
- + ergibt: n (n + 1) / 2 1 + 2n = O(n²/2 + 2n)
- mit Wiederverwendung bereits berechneter Potenzen
 - in jedem Schritt nur eine zusätzliche Multiplikation, gesamt: n 1
 - ergibt 2n 1 Multiplikationen und n Additionen
 - + 3n 1 = O(3n)

Beispiel: Polynomauswertung

Horner-Schema

- geschickte Klammerung des Polynoms
- $f(x) = a_0 + x (a_1 + x (a_2 + x (a_3 + ... + x (a_{n-1} + a_n x)...)$

Komplexität

- n Multiplikationen
- n Additionen
- O(2n)

Teile und Herrsche

- Teile und Herrsche (Divide and Conquer):
 - Zerlegung eines Problems in sich nicht überlappende Teilprobleme
 - Zusammensetzen der Einzellösungen zur Gesamtlösung
- > Oft:
 - Teilen von Wertebereichen in zwei Intervalle
 - getrennte Verarbeitung
- Rekursion durch mehrmaliges Hintereinanderausführen
- Beispiele
 - Quicksort, Mergesort
 - Karatsuba Verfahren zur Multiplikation langer Zahlen
 - schnelle Fourier-Transformation (FFT)

Teile und Herrsche

Aufwand zur Zerlegung eines Problems der Größe n in a Teilprobleme der Größe n/b:

$$T(n) = a T(n/b) + \Theta(n^k)$$
 für $a \ge 1, b, n > 1$
 $T(1) = 1$

- \triangleright $\Theta(n^k)$: Aufwand zum Zerlegen und Zusammensetzen
- \succ T(n) kann wie folgt abgeschätzt werden:

$$T(n) = \begin{cases} \Theta(n^k) & \text{für } a < b^k \\ \Theta(n^k \log n) & \text{für } a = b^k \\ \Theta(n^{\log_b a}) & \text{für } a > b^k \end{cases}$$

Teile und Herrsche – Beispiele

$$T(n) = a \ T(n/b) + \Theta(n^k)$$

$$T(n) = \begin{cases} \Theta(n^k) & \text{für } a < b^k \\ \Theta(n^k \log n) & \text{für } a = b^k \\ \Theta(n^{\log_b a}) & \text{für } a > b^k \end{cases}$$

$$T(n) = 2 T(n/2) + O(n) \longrightarrow O(n \log n)$$

$$T(n) = 2 T(n/2) + O(n^2) \longrightarrow O(n^2)$$

$$T(n) = 8 T(n/3) + O(n^2) \longrightarrow O(n^2)$$

$$T(n) = 9 T(n/3) + O(n^2) \longrightarrow O(n^2 \log n)$$

$$T(n) = 10 T(n/3) + O(n^2) \rightarrow O(n^{\log_3 10}) = O(n^{2,09})$$

- Multiplikation von zwei Zahlen nach Schulmethode
- Beispiel:

- Komplexität
 - ⊕ O(n²) entspricht Größe der Tabelle
 - n: Anzahl der Dezimalstellen einer Zahl

- nach Karatsuba und Ofman (1962)
- Idee: Zerlegung der Zahlen A und B in zwei Teile:

A:	a ₁	a_2
B:	b ₁	b ₂

- Teilung erfolgt in der Mitte bei n/2 Stellen
- $A = a_1 10^{n/2} + a_2$ und $B = b_1 10^{n/2} + b_2$
- Produkt:

AB =
$$(a_1 10^{n/2} + a_2) (b_1 10^{n/2} + b_2)$$

= $a_1 b_1 10^n + (a_1 b_2 + a_2 b_1) 10^{n/2} + a_2 b_2$

- 4 n/2-stellige Multiplikationen
- # Kombination der Ergebnisse:
 - Shift um n/2 bzw. n Stellen
 - Addition
- **Komplexität:** T(n) = 4 T(n/2) + O(n)

Komplexität:

$$T(n) = 4 T(n/2) + O(n)$$

Ergebnis: $4 > 2 \rightarrow \text{Fall } 3$ $\log_2 4 = 2$ $T(n) = O(n^2)$

$$T(n) = \begin{cases} \Theta(n^k) & \text{für } a < b^k \\ \Theta(n^k \log n) & \text{für } a = b^k \\ \Theta(n^{\log_b a}) & \text{für } a > b^k \end{cases}$$

das ist nicht besser als vorher ...

weitere Umformung:

AB =
$$(a_1 10^{n/2} + a_2) (b_1 10^{n/2} + b_2)$$

= $a_1 b_1 10^n + (a_1 b_2 + a_2 b_1) 10^{n/2} + a_2 b_2$
= $a_1 b_1 10^n + ((a_1 + a_2)(b_1 + b_2) - a_1 b_1 - a_2 b_2) 10^{n/2} + a_2 b_2$

- 3 n/2-stellige Multiplikationen (an Stelle von 4)
- # Kombination der Ergebnisse:
 - Shift um n/2 bzw. n Stellen
 - Addition
- > Komplexität: T(n) = 3 T(n/2) + O(n)
- ► Ergebnis: $3 > 2 \rightarrow \text{Fall } 3$ $\log_2 3 = 1,585$ $T(n) = O(n^{1,585})$
- das ist besser als vorher!

$$T(n) = egin{cases} \Theta(n^k) & ext{für } a < b^k \\ \Theta(n^k \log n) & ext{für } a = b^k \\ \Theta(n^{\log_b a}) & ext{für } a > b^k \end{cases}$$

Karatsuba Verfahren – Anmerkungen

- das gilt natürlich für beliebige Zahlensysteme
 - also auch für Basis 2 statt 10
- Es geht noch schneller
 - hat in der Praxis aber keine große Auswirkung
 - Schönhage-Strassen (1971): O(n log n log log n)
 - Fürer (2007): O(n ld n 2^{O(ld* n)})
 - mit ld* n = das kleinste i, für das bei i-maligem Hintereinanderschalten von ld (log zur Basis 2) gilt:
 ld ld ... ld n ≤ 1
 - Beispiele:
 - $Id^{*} 2 = 1$, $Id^{*} 4 = 2$, $Id^{*} 16 = 3$, $Id^{*} 65536 = 4$
 - Veröffentlichung: https://www.math.uni-muenster.de/u/cl/WS2007-8/mult.pdf
 - Covanov und Thomé (2016): O(n ld n 2^{2ld* n})
 - Veröffentlichung: https://arxiv.org/abs/1502.02800
 - Harvey and van der Hoeven (2018):
 O(n ld n 2^{2ld* n}) ist eine untere Schranke für die Komplexität
 - Veröffentlichung: https://arxiv.org/abs/1802.07932

KOMPLEXITÄTSKLASSEN P – NP

Einführung

Existenz eines Algorithmus zur Lösung eines Problems ist keine Garantie dafür, dass das Problem in der Praxis gelöst werden kann

Fragen:

- welche Komplexitätsordnungen kann man noch akzeptieren?
- wie spezifiziert man die Klasse der praktisch handhabbaren Probleme?

Einführung

42

Problemgröße, die in 1 Stunde bewältigt werden kann

Komplexität	heute	mit 100mal schnellerem Computer	mit 1000mal schnellerem Computer
n	N_1	100 N ₁	1000 N ₁
n²	N_2	10 N ₂	32 N ₂
n^3	N_3	4,6 N ₃	10 N ₃
<i>n</i> ⁵	N_4	2,5 N ₄	4 N ₄
2^n	N_5	N_5 + 6,6	N ₅ + 10
3^n	N_6	$N_6 + 4,2$	$N_6 + 6.3$

Beobachtung: Bei exponentieller Komplexität bringt ein schnellerer

Rechner praktisch nichts!

- Ein Problem heißt effizient lösbar, wenn es einen Algorithmus mit Zeitkomplexität O(p(n)) gibt
 - p(n) ist ein Polynom beliebigen Grades
- ein solcher Algorithmus hat polynomielle Laufzeit
- die Klasse P umfasst alle Algorithmen, die durch eine deterministische TM in polynomieller Zeit gelöst werden können

Die Klasse NP

- die Klasse NP umfasst alle Algorithmen, die durch eine nichtdeterministische TM in polynomieller Zeit gelöst werden können
 - NP steht für Nichtdeterministisch Polynomiell
- → offensichtlich gilt: P ⊆ NP
 - jede deterministische TM ist auch eine nichtdeterministische TM, die keine Wahl bei Zustandsübergängen/Bewegungen hat
 - eine nichtdeterministische TM kann aber in polynomieller Zeit
 - eine exponentielle Anzahl an Lösungen "erraten"
 - und diese parallel überprüfen
- NP umfasst alle effizient prüfbaren Probleme
 - die nichtdeterministische TM "rät" in polynomieller Zeit die Lösung
 - dieses kann dann in polynomieller Zeit von einer deterministischen TM auf Korrektheit geprüft werden

Beispiel

- Primfaktorisierung
 - gegeben: natürliche Zahl
 - gesucht: Zerlegung in Primfaktoren
 - Zerlegen ist aufwändig: Was sind die Primfaktoren von 8633?
 - Prüfen ist einfach
 - Faktoren: 89 * 97 = 8633
 - Anmerkung: Ob Primfaktorisierung wirklich schwierig ist, ist ein offenes Problem...

Beispiel

- Erfüllbarkeitsproblem der Aussagenlogik
 - gegeben: logischer Ausdruck
 - gesucht: für welche Variablenwerte ist der Ausdruck "wahr"
 - \bullet Suchen ist aufwändig: $(\neg x_1 \lor x_2) \land x_3 \land (x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$
 - \bullet Prüfen ist einfach: $x_1 = 0, x_2 = 1, x_3 = 1$
 - Anmerkung: dieses Problem ist nachweislich schwierig...

P = NP?

- die wichtigste Frage der theoretischen Informatik: Ist P = NP?
 - sind die zwei Problemklassen vielleicht gar nicht verschieden?
 - dieses Problem ist seit den 1970er Jahren offen und bisher ungelöst
 - es wurde 2000 in die Liste der Millenium-Probleme aufgenommen
 - enthält 7 ungelöste Probleme der Mathematik (mittlerweile noch 6)
 - auf die Lösung ist ein Preisgeld von 1 Million US-Dollar ausgesetzt http://www.claymath.org/millennium/P vs NP/
- Praktische Bedeutung
 - es gibt sehr viele Probleme
 - von denen man leicht zeigen kann, dass sie in NP liegen
 - für die aber bisher kein polynomieller Algorithmus bekannt ist
 - es könnte sein, dass man einfach noch keinen gefunden hat (P = NP)
 - oder es gibt keinen (P ≠ NP)
- Vermutung: P ≠ NP

Annahme: P ≠ NP

NP-schwere Probleme

- Polynomiale Reduktion
 - \bullet Ein Problem A heißt **polynomial reduzierbar** auf B, wenn es einen Algorithmus mit polynomieller Komplexität gibt, der A in B umformt: $x \in A \iff f(x) \in B$
 - schreibweise: A ≤_p B
 - damit ergibt sich insbesondere:
 - \bullet wenn A \leq_p B und B \in P (oder B \in NP)
 - → dann ist auch A ∈ P (bzw. A ∈ NP)
- Ein Problem X heißt NP-schwer (oder NP-hart), wenn es mindestens so schwierig ist wie jedes Problem in NP
 - d.h., für alle Probleme L ∈ NP gilt: L ≤_p X
- Ein Problem X heißt NP-vollständig, wenn es NP-schwer ist und in NP liegt

Annahme: P ≠ NP

NP-Vollständigkeit

- NP-vollständig
 - NP-schwere Probleme, die vollständig in NP liegen
 - die schwierigsten Probleme der Klasse NP
- Ist auch nur ein einziges NP-vollständiges Problem in P, dann gilt P = NP
 - alle Probleme in NP können dann ja polynomial darauf reduziert werden
 - ein Nachweis der NP-Vollständigkeit für ein Problem ist damit praktisch gleichbedeutend damit, dass es (wahrscheinlich) keine effizienten Algorithmen für dieses Problem gibt
- wenn man ein erstes NP-vollständiges Problem A hat, kann man die NP-Vollständigkeit anderer Probleme durch polynomiale Reduktion auf A zeigen

SAT

- gibt es überhaupt NP-vollständige Probleme?
- Ja: Das Erfüllbarkeitstheorem der Aussagenlogik SAT
 - das erste Problem, von dem NP-Vollständigkeit nachgewiesen wurde
 - Beweis 1971 von S. Cook
 - "The Complexity of Theorem Proving Procedures"
 - 1982 erhielt er dafür den Turing-Award
 - gegeben: Aussagenlogische Formel F
 - gesucht: ist F erfüllbar? Also: Gibt es eine
 - Variablenbelegung aus {0, 1}, so dass
 - F den Wert 1 annimmt?
- Beweis besteht aus zwei Teilen
 - SAT ∈ NP (nicht so schwierig)
 - Prinzip: NTM "errät" Lösung und prüft die Korrektheit (in polynomieller Zeit)
 - SAT ist NP-schwer (schon schwieriger...)
 - Details siehe Literatur

SAT

- jedes Problem in NP ist auf SAT reduzierbar
- deterministische Algorithmen zur Berechnung von SAT haben exponentielle Komplexität 2^{O(n)}
 - typische Lösung: alle Variablenbelegungen durchprobieren
- damit ergibt sich eine obere Abschätzung der Komplexität für alle Probleme in NP durch 2^{p(n)}
 - p(n) ist ein Polynom
- Anmerkung:
 - betrachtet werden Entscheidungsprobleme
 - also Fragen nach "Gibt es …?"
 - das Finden der tatsächlichen Lösung kann noch schwieriger sein

Konsequenzen aus NP-Vollständigkeit von SAT

- es sind mehrere tausend NP-vollständige Probleme bekannt
 - diese sind oft auf den ersten Blick sehr verschieden
 - # eine Auswahl findet man z.B. hier:
 http://en.wikipedia.org/wiki/List_of_NP-complete_problems
- findet man für irgendeines davon einen Algorithmus mit polynomieller Laufzeit, dann
 - hat man automatisch für alle Probleme in NP einen solchen
 - gezeigt, dass P = NP gilt
- > und:

Karps NP-vollständige Probleme

3-SAT

56

starke Einschränkung von SAT

gegeben: Aussagenlogische Formel F in

konjunktiver Normalform (KNF) mit

höchstens 3 Variablen pro Term

gesucht: ist F erfüllbar? Also: Gibt es eine

Variablenbelegung aus {0, 1}, so dass F den Wert 1 annimmt?

es kann gezeigt werden: SAT ≤_p 3-SAT

3-SAT ist NP-vollständig

Anmerkungen:

- jede Formel kann in KNF umgeformt werden
- diese erfordert allerdings exponentiellen Aufwand
- gefordert ist durch die polynomielle Reduktion aber keine exakte Äquivalenz
- sondern lediglich: wenn F erfüllbar, dann ist auch die umgeformte Formel F' erfüllbar (und umgekehrt)
- alle k-SAT Probleme mit k ≥ 3 sind NP-vollständig
- 2-SAT dagegen liegt in P

Kann man eine Landkarte mit k Farben so einfärben, dass benachbarte Länder immer verschiedenfarbig sind?

Legend

- 1) Persia (Iran)
- 2) British Mandate of Palestine
- 3) Cyprus (British Crown Colony)
- 4) Rhodes and Dodecanese (Italy)
- 5) Crete (Greece)
- 6) East Prussia
- 7) Free City of Danzig
- 8) Aland Islands (Finland)

- 9) Gotland (Sweden)
- 10) Albania
- 11) Istria (Italy)
- 12) Sicily (Italy)
- 13) Sardinia (Italy)
- 14) Corsica (France)
- 15) Switzerland
- 16) Liechtenstein
- 17) Luxembourg
- 18) Netherlands
- 19) Belgium
- 20) Balearic Islands (Spain)
- 21) Andorra
- 22) Northern Ireland (United Kingdom)
- 23) Gibraltar (British Crown Colony)
- 24) Spanish Morocco (Spain)

[Hum]

- entspricht dem Problem der Graphfärbung
 - wobei die Knoten zu f\u00e4rben sind
 - und die Kanten die Nachbarschaft definieren

- allgemeine Graphen
 - k-Färbbarkeit für k ≥ 3 ist NP-vollständig
 - 2-Färbbarkeit dagegen liegt in P
- planare Graphen
 - 2-Färbbarkeit ist in P
 - 3-Färbbarkeit ist NP-vollständig
 - 4-Färbbarkeit hat konstante Laufzeit!

4-Farben Problem

- 4-Farben genügen immer, um einen planaren Graphen (Landkarte) einzufärben
- Vermutung bestand seit 1852
- eines der ersten Probleme, das mit Hilfe eine Computersystems bewiesen wurde (1976)
- ein formaler Beweis mit Hilfe eines Theorembeweisers folgte 2004

[4FP2]

4-Farben Problem

Färbung mit 5 Farben

es genügen aber 4

[4FP3]

Graphfärbung

- außer dem Färben von Landkarten noch viele weitere Anwendungen
- Ablaufplanung
 - Prozessplanung in Betriebssystemen
 - Zuweisung von Flugzeugen zu Flügen
 - Zuweisung von Bandbreite an Radio-/Fernsehsender, Mobilfunkbetreiber, ...
- Compilerbau
 - welche Variablenwerte werden in Registern gehalten?
- Erstellen von Stundenplänen
- Sudoku
 - spezieller Graph, 81 Knoten, 9 Farben

Problem des Handlungsreisenden

- TSP: Travelling Salesman Problem
 - gegeben: n Städte, sowie die Entfernungen (km, Zeit, Kosten …)
 dazwischen
 - Frage: Welche Städtefolge ist die kürzeste Rundreise?
 - alle Städte sollen genau einmal enthalten sein
 - bzw. als Entscheidungsproblem: Gibt es eine Rundreise mit Länge kleiner einer gegebenen Konstanten k?
- entspricht Hamilton Kreisen in Graphen
 - jede Stadt ist ein Knoten
 - jede Verbindung zwischen Städten ist eine Kante
 - die Entfernung entspricht einem Kantengewicht
 - Hamilton Kreis hat genau so viele Kanten wie Knoten

TSP

- TSP (Entscheidungsproblem) ist NP-vollständig
 - die Zeitkomplexität der naiven Lösung beträgt sogar O(n!)
 - gute Algorithmen verringern dies auf O(2ⁿ)
- TSP (tatsächliche Lösung) ist NP-schwer
- wie aufwändig ist O(n!)?
 - angenommen, man braucht für 10 Städte 1 Sekunde
 - dann braucht man für 20 Städte 670 442 572 800 Sekunden
 - das sind 21259 Jahre

- Rundreise durch die 15 größten Städte Deutschlands
- es gibt 14! / 2 verschiedene Wege
 - 4 14! / 2 = 43 589 145 600
- die unten gezeigte ist die kürzeste Rundreise

[TSP]

- Rundreise durch 15112 deutsche Städte (2001)
 - Verwendung von 110 Prozessoren
 - äquivalente Rechenzeit (500MHz Alpha CPU): 22,6 Jahre
- Rundreise durch 24978 schwedische Städte (2004)
 - + Länge: 72500 km
 - Linux-Cluster mit 96 Intel Xeon 2,8GHz CPUs (dual core)
 - # äquivalente Rechenzeit (2,8GHz dual core Xeon): 84,8 Jahre
- Layout von elektronischen Schaltungen
 - # 85900 Knoten (2005/06) der bisherige Rekord für TSP
 - äquivalente Rechenzeit (2,4GHz AMD Opteron): 136 Jahre

Fazit

68

alle NP-vollständigen Probleme sind

- in polynomialer Zeit aufeinander reduzierbar
- also tatsächlich nur verschiedene Varianten ein und desselben
 Problems so verschieden sie auch aussehen mögen

WEITERE PROBLEMKLASSEN

NP-schwere Probleme außerhalb von NP

Nachweis, dass Probleme in NP liegen gelingt hier nicht

diese sind also noch schwieriger als NPvollständige Probleme

- Beispiele:
 - Wortproblem für Typ-1 Sprachen
 - Inäquivalenz für reguläre Ausdrücke
 - und damit: reguläre Grammatiken bzw.
 nichtdeterministische endliche Automaten
 - Äquivalenz von deterministischen endlichen Automaten ist in P
 - Umformung nicht-det. → det. erfordert Konstruktion der Potenzmenge
 - und hat damit exponentielle Komplexität

co-NP

- co-NP: Menge der Entscheidungsprobleme, deren Komplemente in NP enthalten ist
- Beispiel:
 - "Ist eine Zahl prim?" ist in NP
 - "Ist eine Zahl nicht prim (= zusammengesetzt)?" ist in co-NP
- Vermutung: NP ≠ co-NP
 - sollte man für ein NP-vollständiges Problem nachweisen können, dass es sowohl in NP als auch in co-NP liegt gilt: NP = co-NP
 - bisher hat man keines gefunden, daher die Vermutung
- Im Fall P = NP gilt NP = co-NP
 - da P bzgl. Komplementbildung abgeschlossen ist: P = co-P
- Primzahltest ist übrigens in NP und co-NP
 - ein starkes Indiz dafür, dass ein Problem nicht NP-vollständig ist
 - tatsächlich ist Primzahltest in P

EXPTIME

- Menge aller Entscheidungsprobleme, die von einer deterministischen TM in der Zeit O(2^{p(n)}) gelöst werden können
 - p(n) ist ein Polynom
- es gibt EXPTIME-vollständige Probleme, z.B.
 - modifiziertes Halteproblem: Hält eine det. TM nach höchstens k Schritten?
 - Stellungsanalyse für generalisiertes Schach, Dame, Go (beliebig viele Spielfiguren auf beliebig großem Feld)
- NEXPTIME
 - entsprechend für nichtdeterministische TM
- Anmerkungen
 - wenn P = NP, dann EXPTIME = NEXPTIME
 - es gilt: P
 EXPTIME und NP
 NEXPTIME

PSPACE und NPSPACE

PSPACE

 Menge aller Entscheidungsprobleme, die von einer deterministischen TM mit polynomiellen Speicher gelöst werden können

NPSPACE

- entsprechend für nichtdeterministische TM
- ➤ Offensichtlich: P ⊆ PSPACE und NP ⊆ NPSPACE
 - eine TM kann mit einer polynomiellen Anzahl an Bewegungen (Zeit)
 höchstens polynomiell viele Zeichen auf das Band schreiben
- Tatsächlich kann man nachweisen: PSPACE = NPSPACE
- es gibt PSPACE-vollständige Probleme, z.B.
 - Wortproblem für Typ-1 Sprachen
 - Erfüllbarkeit boolescher Formeln mit Quantoren (∀, ∃)

EXPSPACE und NEXPSPACE

EXPSPACE

- Menge aller Entscheidungsprobleme, die von einer deterministischen
 TM mit O(2^{p(n)}) Speicher gelöst werden können
 - p(n) ist ein Polynom
- NEXPSPACE
 - entsprechend für nichtdeterministische TM
- Es gilt
 - EXPSPACE = NEXPSPACE
 - PSPACE ⊊ EXPSPACE
 - EXPTIME ⊆ EXPSPACE (vermutlich: EXPTIME ⊊ EXPSPACE)
- es gibt EXPSPACE-vollständige Probleme, z.B.
 - definieren zwei gegebene reguläre Ausdrücke verschiedene Sprachen?

Komplexitätsklassen – Überblick

Es gibt noch mehr davon...

- für probabilistische Algorithmen
- unterhalb von P
- für Quantencomputer
- zur Betrachtung der Berechnung einer Lösung an Stelle des Entscheidungsproblems

Zusammenfassung

- O-Notation
 - gilt asymptotisch
- Komplexitätsordnung
 - typische Trennung zwischen polynomieller und exponentieller Komplexität
 - in der Praxis wird es bereits ab ca. O(n⁴) schwierig
- Komplexitätsklassen
 - P: Entscheidungsprobleme, die durch det. TM in polynomieller Zeit gelöst werden können
 - \bullet NP: wie P für nichtdet. TM \rightarrow entspricht O(2^{p(n)}) für det. Algorithmen
- NP-Vollständigkeit
 - Probleme, die vollständig in NP liegen
 - ob P = NP ist eines der großen ungelösten Probleme der Informatik
 - ◆ Vermutung: P ≠ NP
 - es gibt sehr viele NP-vollständige Probleme mit praktischer Relevanz

Quellen

79

Die Folien entstanden auf Basis folgender Literatur

- H. Ernst, J. Schmidt und G. Beneken: Grundkurs Informatik. Springer Vieweg, 6. Aufl., 2016.
- Hopcroft, J.E., Motwani, R. und Ullmann, J.D.: Einführung in die Automatentheorie, formalen Sprachen und Komplexitätstheorie.
 Pearson Studium (2002)
- Schöning, U.: Theoretische Informatik kurz gefasst. Spektrum Akad. Verlag (2008)
- Sedgewick, R.: Algorithmen in C++, Addison-Wesley (1992)

Quellenangaben Bilder

[Hum] Wikimedia.org, Autor: Jan Humpolík

http://commons.wikimedia.org/wiki/File:EUROPE 1919-1929 POLITICAL 01.png

Lizenz: [1]

[Gra] Wikimedia.org, Autor: Inductiveload

http://commons.wikimedia.org/wiki/File:Four Colour Planar Graph.svg

Lizenz: [1]

[Pet] Wikimedia.org, Autor: Jan Humpolík

http://commons.wikimedia.org/wiki/File:Petersen graph 3-coloring.svg

Lizenz: Public Domain

[4FP1] Wikimedia.org, Autor: Germo

http://commons.wikimedia.org/wiki/File:Fourcolorsmap.svg

Lizenz: [1]

[4FP2] Wikimedia.org, Autor: Inductiveload

http://commons.wikimedia.org/wiki/File:Four Colour Map Example.svg

Lizenz: [1]

[4FP3] Wikimedia.org, Autor: Dmharvey

http://commons.wikimedia.org/wiki/File:4CT_Non-Counterexample_1.svg http://commons.wikimedia.org/wiki/File:4CT_Non-Counterexample_2.svg

Lizenz: Public Domain

[TSP] Wikimedia.org, Autor: MrMonstar / CIA

http://commons.wikimedia.org/wiki/File:TSP Deutschland 3.png

Lizenz: Public Domain

[1] Attribution-ShareAlike 3.0 Unported

http://creativecommons.org/licenses/by-sa/3.0/deed.en