Tuning Hyperparameters

Alexander Brenning

Department of Geography, Friedrich Schiller University Jena

Geo 408B

Hyperparameters

- The classifier C_L is conditional on the learning sample, L!
- A classification technique is a procedure used for constructing \mathcal{C}_L from a learning sample L:

$$C:L\to C_L$$

- Parametric techniques: C_L is derived by estimating coefficients β_1, \dots, β_p from the learning sample
- Non-parametric techniques: Often algorithmic, cannot be written as a simple mathematical formula, or do not involve parameters
- Classifiers may also depend on hyperparameters that control their general behaviour:
 - E.g. in k-NN: $\theta = k$

Examples of Hyperparameters in Different Classification Techniques

• k-Nearest-Neighbour Classification: $k \in \{1,2,3,4,...\}$

• Which other hyperparameters are you aware of?

Examples of Hyperparameters in Different Classification Techniques

• k-Nearest-Neighbour Classification: $k \in \{1,2,3,4,...\}$

Which other hyperparameters are you aware of?

- What characteristics do these hyperparameters have?
- What might happen if you picked a hyperparameter outside its domain?

Dependence of SVM Predictions on Hyperparameters (1)

Dependence of SVM Predictions on Hyperparameters (2)

Dealing with Hyperparameters

What strategies for dealing with hyperparameters are you familiar with?

• We consider the performance measure to be a function of the hyperparameters, e.g.:

 $auroc(\theta)$

• How can we find the/an optimal value of θ ?

Grid search

- Simplest, perhaps most widely used
- Discretize the hyperparameter domain using a grid
- E.g. 10 grid points in each direction \rightarrow 1000 estimates of performance required

Random search

- Specify a maximum number of iterations (e.g. 50) and/or a convergence criterion
- More efficient when dealing with multiple / many hyperparameters, some of which are redundant
- Inhomogeneous coverage of hyperparameter space, i.e. large gaps possible
- Not recommended when using only one hyperparameter

- Model-based optimization
 - Uses e.g. kriging to interpolate the performance function in hyperparameter space
- Simulated annealing

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

All the previously mentioned methods are implemented in R package mlr.

Gradient-descent methods

- Based on numerically calculating the first derivative of the objective function, and following the direction of the steepest gradient until reaching an optimum
- Only works for numeric hyperparameters and a performance function that is differentiable with respect to the hyperparameters ("smooth")
- May get stuck in local optima
- Problem: Hyperparameter tuning is often a non-smooth, non-convex problem (i.e. non-differentiable, with local minima)

What Have We Learned

- Hyperparameters can be critical in determining a model's performance, especially in the case of flexible machine-learning techniques.
- Default values implemented in software may be OK, but they may also be completely inadequate for a particular classification task.
- Built-in optimizers (e.g. pruning in rpart) may be using performance measures that are irrelevant for our problem at hand.
- Hyperparameter tuning is computationally expensive (e.g. 1000-fold increase in computing time).
- If not done properly, hyperparameter tuning may lead to reporting overoptimistic performance estimates.
 - Always tune hyperparameters within an inner cross-validation.