# Inteligência Artificial

Agentes Inteligentes Parte 2

**Prof. Jefferson Morais** 

- O agente racional é aquele que faz tudo certo
  - Ex.: toda entrada da tabela é preenchida de forma correta
- Mas o que significa fazer tudo certo?
  - O agente gera uma sequências de ações de acordo com as percepções que recebe
  - As sequências de ações fazem com que o ambiente passe por uma sequência de estados
  - Se a sequência for **desejável**, o agente teve bom desempenho
  - "Desejável" → capturada por uma medida de desempenho
- Não há uma medida de desempenho fixa para todas as tarefas e agentes
- Um projetista é o responsável por desenvolver uma adequada às circunstâncias

- Exemplo de medidas de desempenho no mundo do aspirador de pó
  - Maximizar a quantidade de sujeira aspirada em 8hs
  - Minimizar a quantidade de eletricidade consumida e ruído gerado

#### Armadilhas óbvias

- Fazer o trabalho tedioso de limpeza o tempo todo
- Limpar energicamente e fazer longas pausas

#### Questões filosóficas

- Uma vida aventureira, cheia de altos e baixos, ou uma existência segura, porém monótona?
- Uma economia em que todos vivam em pobreza moderada ou aquela em que alguns vivem em plena riqueza enquanto outros são muito pobres?

- A racionalidade depende de quatro fatores
  - · A medida de desempenho que define o critério de sucesso
  - O conhecimento prévio que o agente tem do ambiente
  - As ações que o agente pode executar
  - A sequência de percepções do agente até o momento
  - Definição de um agente racional
    - "Para cada sequência de percepções possível, um agente racional deve selecionar uma ação que venha a maximizar sua medida de desempenho, dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente."

- No mundo do aspirador de pó
  - Ele limpa um quadrado se ele estiver sujo e passa para o outro quadrado se o primeiro não estiver sujo
  - Esse é um agente racional? Precisamos, primeiramente, responder:
    - O que é a medida de desempenho?
    - O que se conhece sobre o ambiente?
    - Quais são os atuadores que o agente tem? (relação com ações)
    - Quais são os sensores? (relação com percepções)



- Supondo as respostas
  - . Medida de desempenho: 1 ponto para cada quadrado limpo
  - Ambiente: conhecida a priori (dois compartimentos)
  - Ações: esquerda, direita e aspirar
  - Percepções: percebe sua posição e se contém sujeira
- Sob essas circunstâncias, o agente é de fato racional



- Em circunstâncias diferentes, o mesmo agente seria irracional
  - Se os dois compartimentos estiverem limpos: o agente oscila desnecessariamente de um lado para outro
  - Se a medida de desempenho incluir penalidades para cada movimento à esquerda e à direita
    - Solução: não fazer nada se A e B estiverem limpos
  - Mas se os quadrados puderem ficar sujos novamente?
    - Solução: o agente deve ocasionalmente verificar e voltar a limpálos

### Onisciência, Aprendizado e Autonomia

- Agente onisciente: sabe o resultado real de suas ações e pode agir de acordo com ele (onisciência é impossível na realidade).
  Ex.:
  - Estou caminhando na Avenida Presidente Vargas
  - . Vejo um amigo do outro lado da rua
  - Não existe tráfego e não tenho outro compromisso
  - Racionalmente, começo a atravessar a rua
  - Uma porta do compartimento de carga se solta de um avião a 10.000 metros de altura e, antes de chegar ao outro lado da rua, sou atingido!
  - Foi irracional atravessar a rua?

### Onisciência, Aprendizado e Autonomia

- O exemplo mostra que racionalidade ≠ perfeição
  - A racionalidade maximiza o desempenho esperado, enquanto a perfeição maximiza o desempenho real
  - A racionalidade não exige onisciência (depende das percepções)
- O agente racional poderá aprender a partir do que ele percebe
  - A configuração inicial do agente pode refletir algum conhecimento prévio do ambiente, mas, à medida que o agente ganha experiência, isso pode ser modificado e ampliado
- Um agente racional deve ser autônomo. Ele deve aprender o que puder para compensar um conhecimento prévio parcial ou incorreto
  - Sem autonomia: quando baseia-se apenas no conhecimento anterior de seu projetista e não em suas próprias percepções

- Ambiente de tarefa
  - É essencialmente o problema para o qual o agente racional é a solução
- Agruparemos o ambiente de tarefa sob os seguintes itens
  - Medida de desempenho
  - Ambiente
  - Atuadores
  - Sensores
- PEAS (Performance, Environment, Actuators, Sensors)

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa (PEAS)
- Exemplo do táxi automatizado

| Tipo de agente       | Medida de<br>desempenho                                                      | Ambiente                                                           | Atuadores                                                 | Sensores                                                                                       |
|----------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Motorista<br>de táxi | Viagem segura,<br>rápida, dentro da<br>lei, confortável,<br>maximizar lucros | Estradas, outros<br>tipos de<br>tráfego,<br>pedestres,<br>clientes | Direção,<br>acelerador,<br>freio, sinal,<br>buzina, visor | Câmeras, sonar,<br>velocímetro, GPS,<br>hodômetro, acelerômetro,<br>sensores do motor, teclado |

| Tipo de<br>agente                                  | Medida de<br>desempenho                            | Ambiente                                            | Atuadores                                                                | Sensores                                                                        |  |
|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Sistema de<br>diagnóstico<br>médico                | Paciente<br>saudável,<br>minimizar<br>custos       | Paciente,<br>hospital,<br>equipe                    | Exibir perguntas,<br>testes, diagnósticos,<br>tratamentos,<br>indicações | Entrada pelo teclado<br>para sintomas,<br>descobertas, respostas<br>do paciente |  |
| Sistema de<br>análise de<br>imagens de<br>satélite | Definição<br>correta da<br>categoria da<br>imagem  | Link de<br>transmissão<br>de satélite em<br>órbita  | Exibir a<br>categorização da<br>cena                                     | Arrays de pixels em cores                                                       |  |
| Robô de<br>seleção de<br>peças                     | Porcentagem<br>de peças em<br>bandejas<br>corretas | Correia<br>transportadora<br>com peças;<br>bandejas | Braço e mão<br>articulados                                               | Câmera, sensores angulares articulados                                          |  |
| Controlador<br>de refinaria                        | Maximizar<br>pureza,<br>rendimento,<br>segurança   | Refinaria,<br>operadores                            | Válvulas, bombas,<br>aquecedores,<br>mostradores                         | Sensores de temperatura,<br>pressão, produtos<br>químicos                       |  |
| Instrutor de inglês interativo                     | Maximizar<br>nota de aluno<br>em teste             | Conjunto de alunos, ambiente de testes              | Exibir exercícios,<br>sugestões, correções                               | Entrada pelo teclado                                                            |  |

Inteligência Artificial Prof. Jefferson Morais

- Os ambientes de tarefas podem ser divididos em categorias
  - Completamente observável vs parcialmente observável
  - Agente único vs multiagente
  - Determinístico vs estocástico
  - Episódico vs sequencial
  - Estático vs dinâmico
  - Discreto vs contínuo
  - Conhecido vs desconhecido

#### Completamente observável

- Os sensores permitem acesso ao estado completo do ambiente
- Detectam todos os aspectos relevantes para a decisão da ação

#### Parcialmente observável

- Sensores imprecisos ou ruídos, ou porque parte do estado estão ausentes nos dados do sensor
- Ex.: um agente aspirador de pó com apenas um sensor de sujeira local não sabe se há sujeira em outros quadrados
- Se o agente n\u00e3o tiver sensor, o ambiente ser\u00e1 inobserv\u00e1vel

- Ambiente de agente único: apenas um agente atua no ambiente
  - Ex.: jogo de palavras cruzadas → agente único
- Ambiente multiagente: um conjunto agentes atua no ambiente
  - Ex.: jogo de xadrez → dois agentes
  - Tipos de multiagente
    - Ambiente multiagente competitivo
      - Ex.: jogo de xadrez, o agente A está tentando maximizar sua medida de desempenho que, pelas regras do xadrez, minimiza a medida de desempenho do agente B
    - Ambiente multiagente cooperativo
      - Ex.: no ambiente de direção de um táxi, evitar colisões maximiza a medida de desempenho de todos os agentes

- Agente determinístico: o próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada, caso contrário, ele é estocástico
- Em um ambiente completamente observável e determinístico não haverá incertezas
- Já em um ambiente parcialmente observável, ele poderá parecer estocástico
- Ex.: o motorista de táxi é estocástico (não se pode prever o comportamento do tráfego com exatidão; estouro de pneus e falha no motor)

- Episódico: o agente recebe uma percepção e em seguida executa uma única ação (não depende do passado e não afeta o futuro)
  - Ex.: localização de peças defeituosas em uma linha de montagem baseia cada decisão na peça atual, independente das decisões anteriores. A decisão atual não afeta o fato da próxima peça estar ou não com defeito
- Sequencial: a decisão atual poderia afetar todas as decisões futuras
  - Ex.: jogar xadrez e dirigir um táxi são sequencias

- Estático: o ambiente não se altera enquanto o agente decide
- Dinâmico: o ambiente se altera enquanto um agente está deliberando
- Se o próprio ambiente não mudar com a passagem do tempo, mas o nível de desempenho do agente se alterar, diremos que o ambiente é semidinâmico
- Ex.:
  - O jogo de palavras cruzadas é estático
  - Dirigir um táxi é dinâmico
  - O jogo de xadrez com tempo é semidinâmico

 A distinção entre discreto e contínuo aplica-se ao estado do ambiente, ao modo como o tempo é tratado, e ainda às percepções e ações do agente

#### • Ex.:

- Um ambiente de jogo de xadrez tem um número finito de estados distintos (excluindo o relógio). O xadrez também tem um conjunto discreto de percepções e ações
- Dirigir um táxi é um problema de estado e tempo contínuos: velocidade, posição do táxi e dos outros veículos, ângulo de rotação do volante, etc.

- Conhecido vs Desconhecido: Essa distinção não se refere ao ambiente em si, mas ao estado de conhecimento do agente sobre as "leis da física" no meio ambiente (pode não ser considerada uma propriedade)
- Ambiente conhecido: são fornecidas as saídas para todas as ações
- Ambiente desconhecido: o agente terá de aprender como funciona, a fim de tomar boas decisões
- Ex.:
  - Ambiente conhecido e parcialmente observável: jogos de cartas solitários, eu conheço as regras, mas sou incapaz de ver as cartas que ainda não foram viradas
  - Ambiente desconhecido e totalmente observável: novo videogame, a tela pode mostrar o estado inteiro do jogo, mas eu ainda não sei o que os botões fazem até experimentá-los

- O caso mais difícil é
  - Parcialmente observável
  - Multiagente
  - Estocástico
  - Sequencial
  - Dinâmico
  - Contínuo
  - Desconhecido
- Dirigir um táxi é difícil em todos esses sentidos

 Muitas das respostas na tabela dependem da forma como o ambiente de tarefa é definido

| Ambiente de<br>tarefa                                               | Observável                     | Agentes        | Determinístico                   | Episódico                | Estático         | Discreto             |
|---------------------------------------------------------------------|--------------------------------|----------------|----------------------------------|--------------------------|------------------|----------------------|
| Jogo de<br>palavras<br>cruzadas<br>Xadrez com um<br>relógio         | Completamente<br>Completamente | Único<br>Multi | Determinístico<br>Determinístico | Sequencial<br>Sequencial |                  | Discreto<br>Discreto |
| Pôquer<br>Gamão                                                     | Parcialmente<br>Completamente  | Multi<br>Multi | Estocástico<br>Estocástico       | Sequencial<br>Sequencial |                  | Discreto<br>Discreto |
| Direção de táxi<br>Diagnóstico<br>médico                            | Parcialmente<br>Parcialmente   | Multi<br>Único | Estocástico<br>Estocástico       | Sequencial<br>Sequencial |                  |                      |
| Análise de<br>imagens<br>Robô de<br>seleção de<br>peças             | Completamente<br>Parcialmente  | Único<br>Único | Determinístico<br>Estocástico    | Episódico<br>Episódico   | Semi<br>Dinâmico | Contínuo<br>Contínuo |
| Controlador de<br>refinaria<br>Instrutor<br>interativo de<br>inglês | Parcialmente<br>Parcialmente   | Único<br>Multi | Estocástico<br>Estocástico       | Sequencial<br>Sequencial |                  |                      |

Próxima Aula:

A estrutura de Agentes e Agentes com aprendizagem