Projet n°5

Segmentation de clients d'un site de e-commerce

OLIST

OPENCLASSROOMS

Sommaire

- Introduction
- Analyse exploratoire des données
 - o Création de nouvelles variables
 - Analyse univariée
 - o Analyse bivariée
- Clustering
 - o KMeans
 - o DBScan
 - o Clustering hiérarchique
- Maintenance
 - o Agrégation des données par période
 - o ARI Score
- Conclusion

Mission et objectifs

L'objectif de l'entreprise OLIST est d'optimiser ses campagnes de communication marketing.

Notre mission ici, est de segmenter les clients en fonction de certains critères (RFM).

PROCÉDURE:

- Récupération des données (SQL)
- Analyse exploratoire des données
- Clustering
- Maintenance

État des lieux

Après récupération, notre jeu de données est un fichier .csv, que l'on nommera data et dont les caractéristiques sont les suivantes :

Information	Valeur
Nombre de lignes	94721
Nombre de colonnes	8
Nombre de colonnes float	2
Nombre de colonnes object	4
Nombre de colonnes int	2

Table: Résumé descriptif de data

ANALYSE EXPLORATOIRE

DES DONNÉES

Description des données

- Chaque client est identidée par son **ID**
- Variables catégorielles
 - Ville
 - État
 - o Date
- Variables numériques
 - Code postal
 - o Montant
 - Nombre d'achats
 - Satisfaction
- Aucun doublon détecté dans le jeu de données data

Création d'une variable

- Modification du type de la variable date
- Création d'une variable timestamp
- Création de la variable recence

Notre variable recence est donc exprimée en jours, et est égale à 0 pour la date d'achat la plus récente.

Distributions (float)

Distributions (int)

Analyse multivariée

Nuage de points – Montant vs Récence

Nuage de points – Récence vs Nombre d'achats

Nuage de points – Montant vs Nombre d'achats

CLUSTERING N° 1 KMEANS

Feature Engeneering

• Création de la variable prix_moyen_achat

$$prix_moyen_achat = \frac{montant}{nb_achats}$$

• Création de la variable montant_satisfaction

```
{\tt montant\_satisfaction} = {\tt montant} \ \times \ {\tt satisfaction}
```

• Création de la variable frequence_achats

```
frequence\_achats = \frac{nb\_achats}{recence + 1}
```

Optimisation du clustering

Analyse intra-cluster univariée

Distribution de Montant

Distribution de Recence

Distribution de Nb achats

Montant

Recence

Nb achats

Analyse intra-cluster bivariée

Montant vs Nombre d'achats

Montant vs Récence

Récence vs Nombre d'achats

CLUSTERING N°2 DBSCAN

Preprocessing

- Le temps de calcul avec DBSCAN étant très long pour notre jeu de données, on ne l'effectuera que sur un échantillon de taille 5000
- Pour avoir une meilleure sélection du rayon de sélection des noyaux, on standardise les données
- Pour la recherche d'hyperparamètres, on recherchera uniquement le min samples n, et ϵ sera fixé à 0, 6.
- La recherche d'hyperparamètres sera effectué sur les données sans et avec satisfaction.

Optimisation des paramètres

Scores de silhouettes

Résultats des évaluations

5 7 74 0,265 6 7 77 0,266	Min Samples	Clusters	Noise	Score
6 7 77 0,266	5	7	74	0,265
	6	7	77	0,266
7 7 79 0,266	7	7	79	0,266
8 9 83 0,261	8	9	83	0,261
9 7 102 0,268	9	7	102	0,268
10 7 109 0,268	10	7	109	0,268
11 8 114 0,259	11	8	114	0,259
12 5 145 0,327	12	5	145	0,327
13 4 162 0,326	13	4	162	0,326
14 4 165 0,325	14	4	165	0,325
15 3 185 0,326	15	3	185	0,326

Analyse intra-cluster univariée

Analyse intra-cluster bivariée

Le groupe −1 représente le bruit.

CLUSTERING N° 3 CLUSTERING HIÉRARCHIQUE

Optimisation des paramètres

- De même que pour le DBSCAN, les recherches s'effectueront sur un échantillon aléatoires de 5000 individus.
- Affichage des dendrogrammes
- Évaluation du score de silhouette en fonction du nombre de clusters choisi
- Les évaluations se feront sans et avec la variable satisfaction

Dendrogramme - Sans satisfaction

Dendrogramme – Avec satisfaction

Évaluation du clustering

Scores de silhouette

Résultats des évaluations

Score-Normal	Score — Satis
0,817	0,817
0,417	0,378
0,450	0,448
0,360	0,449
0,361	0,335
0,365	0,340
0,367	0,350
0,344	0,329
0,345	0,330
0,349	0,322
0,345	0,297
	0,817 0,417 0,450 0,360 0,361 0,365 0,367 0,344 0,345 0,349

MAINTENANCE ET

ÉVOLUTION DU MODÈLE

Modèle optimal

Après les évaluations faites des différents types de segmentation, le modèle de clustering optimal est le KMeans.

➤ Nombre de clusters	6
>> Standardisation	OUI

On utilisera donc ce modèle pour en évaluer la maintenance

Procédure

- Reprise des données non groupées par client.
- Création d'une fonction qui prend en entrée :
 - Temps initial (en jours)
 - o Pas ou incrémentation (en semaine)
 - o Nombre de clusters
- On ne prend que les commandes passées avant le temps initial, on applique le clustering.
- On incrémente le temps initial du pas, puis on réapplique le clustering, jusqu'à arriver au temps maximal.
- À chaque incrémentation, on compare le clustering avec le clustering initial à l'aide de l'ARI Score

Temps initial: 6 mois et Pas: 2 semaines

Temps initial: 6 mois et Pas: 1 semaine

Résultat de l'évaluation

Après 2 semaines, l'ARI score descend en dessous de 0, 8.

On conclut de ces évaluations, qu'au bout de 2 semaines, le modèle de segmentation n'est plus à jour et doit être refait avec les données nouvelles.

Caractéristiques des groupes de clients

```
 \Rightarrow \text{ Groupe 1} \rightarrow \begin{cases} \text{Dépenses} - \text{Faibles (< 100)} \\ \text{Nombre d'achats} - \text{Faible ($\approx$ 1)} \\ \text{Récence} - \text{Élevée ($\approx$ 1 an)} \end{cases} 

ightharpoonup Groupe 2 
ightharpoonup Dépenses - Élevées (> 1500)
Nombre d'achats - Faible (pprox 1)
Récence - Moyenne (pprox 9 mois)
 > \text{Groupe 3} \rightarrow \begin{cases} \text{D\'epenses} - \text{Faibles} \ (< 100) \\ \text{Nombre d'achats} - \text{Faible} \ (\approx 1) \\ \text{R\'ecence} - \text{Faible} \ (\approx 5 \text{ mois}) \end{cases}
```

```
ightharpoonup Groupe 6 
ightharpoonup Dépenses — Plutôt élevées (pprox 600)
Nombre d'achats — Faible (pprox 1)
Récence — Moyenne (pprox 7 mois)
```

