ISD1820P 8~20 秒单段语音电路

一、 主要特性

- 1. 自动节电,维持电流 0.5uA
- 2. 边沿/电平触发放音
- 3. 外接电阻调整录音时间(详见附表)
- 4. 3v 单电源工作

二、 封装形式

三、引脚描述

- 电源(VCC): 芯片内部的模拟和数字电路使用的不同电源总线在此引脚汇合,这样使得噪声最小。去耦合电容应尽量靠近芯片。
- 地线(VSSA, VSSD): 芯片内部的模拟和数字电路的不同地线汇合在这个引脚。
- 录音 (REC): 高电平有效,只要 REC 变高(不管芯片处在节电状态还是正在放音),芯片即开始录音。录音期间,REC 必须保持为高。REC 变低或内存录满后,录音周期结束,芯片自动写入一个信息结束标志(EOM),使以后的重放操作可以及时停止。然后芯片自动进入节电状态。

注: REC 的上升沿有 84 毫秒防颤, 防止按键误触发。

- 边沿触发放音(PLAYE): 此端出现上升沿时,芯片开始放音。放音持续到 EOM 标志或内存结束,芯片自动进入节电状态。放音后,可以释放 PLAYE。
- 电平触发放音(PLAYL): 此端从低变高时,芯片开始放音。持续至此端回到低电平或遇到 EOM 标志,或内存结束。放音结束后自动进入节电状态。
- 录音指示(/RECLED): 处于录音状态时,此端为低,可驱动 LED。此外,放音遇到 EOM 标志时,此端输出一个低电平脉冲。此脉冲可用来触发 PLAYE,实现循环放音。
- 话筒输入(MIC): 此端连至片内前置放大器。片内自动增益控制电路(AGC)控制前置放大器的增益。外接话筒应通过串联电容耦合到此端。耦合电容值和此端的10KΩ输入阻抗决定了芯片频带的低频截止点。
- 话筒参考(MIC REF): 此端是前置放大器的反向输入。当以差分形式连接话筒时,可减小噪声,提高共模抑制比。
- 自动增益控制(AGC): AGC 动态调整前置增益以补偿话筒输入电平的宽幅变化,使得录制变化很大的音量(从耳语到喧嚣声)时失真都能保持最小。通常 4.7uF 的电容器在多数场合下可获得满意的效果。
- 喇叭输出(SP+, SP-):输出端可直接驱动 8 Ω 以上的喇叭。单端使用必须在输出端和喇叭之间接耦合电容,而双端输出既不用电容又能将功率提高至 4 倍。SP+和 SP-之间通过内部的 50 K Ω 的电阻连接,不放音时为悬空状态。

振荡电阻(ROSC): 此端接振荡电阻至 VSS,由振荡电阻的阻值决定录放音的时间。 直通模式(FT): 此端允许接在 MIC 输入端的外部语音信号经过芯片内部的 AGC 电路、 滤波器和喇叭驱动器而直接到达喇叭输出端。平时 FT 端为低,要实现直通 功能,需将 FT 端接高电平,同时 REC、PLAYE 和 PLAYL 保持低。

四、录放音操作方式

按住 REC 录音按键不放即录音, RECLED 灯会亮起, 松开按键录音停止。放音有三种情况:

- 1、 沿触发放音,按 PE 键一下即将全段放音,除非断电或放音结束,否则不停止放音;
- 2、 电平触发放音,按住 PL 键时即放音,松开按键即停止;
- 3、 循环放音,置循环放音开关闭合,按动 PE 键即开始循环放音,只能断电才能停止。

在直通模式下,直通开关闭合,对话筒说话会从喇叭里扩音播放出来,构成喊话器功能,由于该模式下的话筒放大同时经过 AGC 自动增益调节和带通滤波器,其音质比通常的话筒放大器要好很多,而且不会出现喇叭过载的情况。

五、应用线路图

附表:

ROSC	录放时间	采样频率	典型带宽
80k Ω	8秒	8.0 KHZ	3.4 KHZ
100 kΩ	10 秒	6.4 KHZ	2.6 KHZ
120 kΩ	12 秒	5.3 KHZ	2.3 KHZ
160 kΩ	16 秒	4.0 KHZ	1.7 KHZ
200 kΩ	20 秒	3.2 KHZ	1.3 KHZ