Seminar 1

- (1) i) ANB SAUB
 - ii) ANB & AUB
 - iii). |AUB| = 1A|+1B|
 - iv) |A×B| = |A| · |B|
 - v). |An = |A|n, n >1, An = Ax... XA n times
 - i) ANB GA } => ANB GAUB
 - ii). Dava alegem A = B-alunci ANB = AUB
 - iii) Alegen A=B=> |AUB|=[A] => |A| <21A|
 - v). Fix $\rho(n) A$ Vez: n=1=1 $|A^{1}|=|A|^{1} \angle = 1$ |A|=|A|

Dem $p(\xi)$ $|A^{\xi}| = |A|^{\xi}$ (adve)

The sa dem ca: P(E+1): |A E+1| = |A| E+1 V

2 th. It vive n 21 si orie multime de n caji, > FALS toti aii din + au acelasi culoare.

Dem It n=1 -> X

Pt n + n+1

File H cu |H| = n+1

Fix h & H. Atumi | H | {h} | = n , deci tale din H \ { d} au occlere culoare

File hI & h & H

14 1 { h'} | an accessi culoare

H \{h\} monocrom
H \{h\} monocrom

- (3) i) reflective isometrice, transitive ARB 2=1 ANB $\neq \emptyset$ (1,1), (2,2), (3,3) (1,2), (2,1), (2,3), (3,2)
 - ii) reflexive. simetria, transitiva (a eb <=> a = b+1sau

 ($x,y \in \mathbb{R} \times Py <=> x-y \neq 0$) x = b-1) x = b+1 x
 - iii) refl, signetrica, transcitiva
- (4) Fix 6 un gruf en n≥2. Atunci 6 are al putin 2 moduri au acelasi grad.

 P(m). Doca graful are m muchii; atunci 3 2 noduri au acelasi grad.

 P(0): nu avem muchii => al putin 2 moduri au acelasi grad (toate)

 P(m) → (P(m+1))

 Presupernem P(m) adevarat

Fite 6 graf , $n \ge 2$ · Rigeonhole Brinciple $PP \ deg(G) = \{0, 1, ..., n-1\}$ deg(v) = n-1 = modul n este legat de toale nodürule |=> x0 deg(w) = 0