Casamento de Cadeias

Estrutura de Dados II (BCC203) Prof. Guilherme Tavares de Assis

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM

Introdução

- Cadeia de caracteres: sequência de elementos denominados caracteres.
 - Os caracteres são escolhidos de um conjunto denominado alfabeto. Por exemplo, em uma cadeia de *bits*, o alfabeto é {0, 1}.
- O problema de casamento de cadeias (casamento de padrão) consiste em encontrar todas as ocorrências de um determinado padrão em um texto.
- Alguns exemplos de aplicação são:
 - edição de texto;
 - recuperação de informação;
 - estudo de sequências de DNA em biologia computacional.

Introdução

- Formalização do problema:
 - Texto: cadeia T[0..n-1] de tamanho n.
 - Padrão: cadeia P[0..m-1] de tamanho $m \le n$.
 - Os elementos de P e T são escolhidos de um alfabeto finito Σ de tamanho c.
 - Exemplos: $\Sigma = \{0, 1\}$ ou $\Sigma = \{a, b, ..., z\}$.
 - Casamento de cadeias: dadas as cadeias P (comprimento m) e T (comprimento n), onde $m \le n$, deseja-se saber as ocorrências de P em T.

Estrutura de Dados

```
#define MAXTAMTEXTO 1000

#define MAXTAMPADRAO 10

#define MAXCHAR 256

#define NUMMAXERROS 10

typedef char TipoTexto[MAXTAMTEXTO];

typedef char TipoPadrao[MAXTAMPADRAO];
```

Categorias de Algoritmos

- *P* e *T* não são pré-processados:
 - Padrão e texto não são conhecidos a priori.
 - Algoritmo sequencial, on-line e de tempo-real.
 - \blacksquare Complexidade de tempo: O(mn).
 - \blacksquare Complexidade de espaço: O(1).
- *P* pré-processado:
 - Padrão conhecido a priori, permitindo seu pré-processamento.
 - Algoritmo sequencial.
 - \blacksquare Complexidade de tempo: O(n).
 - Complexidade de espaço: O(m + c).
 - Exemplo de aplicação: programas para edição de textos.

Categorias de Algoritmos

- *P* e *T* são pré-processados:
 - Padrão e texto são conhecidos a priori.
 - Algoritmo constrói índice para o texto.
 - É interessante construir um índice quando a base de dados é grande e semi-estática (atualizações em intervalos regulares).
 - Tempo para geração do índice pode ser tão grande quanto O(n) ou $O(n \log n)$, mas é compensado por muitas operações de pesquisa no texto.
 - Alguns tipos de índices são:
 - arquivos invertidos;
 - árvores TRIE e árvores PATRICIA;
 - arranjos de sufixos.
 - Complexidade de tempo: $O(\log n)$.
 - \blacksquare Complexidade de espaço: O(n).

- Um arquivo invertido é composto por vocabulário e ocorrências.
 - O vocabulário é o conjunto das palavras distintas no texto.
 - Para cada palavra distinta, uma lista de posições onde ela ocorre no texto é armazenada; o conjunto das listas é chamado de ocorrências.

- O vocabulário ocupa pouco espaço em relação às ocorrências.
- A previsão sobre o crescimento do tamanho do vocabulário é definida pela lei de *Heaps*.
 - O vocabulário de um texto em linguagem natural contendo n palavras tem tamanho $V = Kn^{\beta} = O(n^{\beta})$, onde K e β dependem das características de cada texto.
 - K geralmente assume valores entre 10 e 100, e β é uma constante entre 0 e 1 (na prática entre 0,4 e 0,6).
 - Na prática, o vocabulário cresce com o tamanho do texto, em uma proporção perto de sua raiz quadrada.
- As ocorrências ocupam bem mais espaço.
 - O espaço necessário é O(n) já que cada palavra é referenciada uma vez na lista de ocorrências.
 - Na prática, o espaço fica entre 30% e 40% do tamanho do texto.

- A pesquisa é realizada em três passos:
 - Pesquisa no vocabulário: palavras da consulta são isoladas e pesquisadas no vocabulário.
 - Recuperação das ocorrências: as listas de ocorrências das palavras encontradas no vocabulário são recuperadas.
 - Manipulação das ocorrências: as listas de ocorrências são processadas para tratar frases, proximidade e/ou operações lógicas.
- Como a pesquisa em um arquivo invertido sempre começa pelo vocabulário, é interessante mantê-lo em um arquivo separado.
 - Geralmente, esse arquivo cabe na memória principal.

- A pesquisa por palavras simples pode ser realizada usando qualquer estrutura de dados que torne a pesquisa eficiente, como *hashing*, *árvore TRIE* ou *árvore B*.
 - As duas primeiras têm custo O(m), onde m é o tamanho da consulta (independentemente do tamanho do texto).
 - A última possui custo $O(\log n)$; guardar as palavras na ordem lexicográfica é barato em termos de espaço e competitivo em desempenho.
- A pesquisa por frases usando índices é mais difícil.
 - Cada palavra da frase deve ser pesquisada separadamente, no intuito de recuperar suas listas de ocorrências.
 - A seguir, as listas devem ser percorridas de forma sincronizada no intuito de encontrar as ocorrências nas quais todas as palavras aparecem em sequência.

Arquivo Invertido: Exemplo

- Texto: "Texto tem palavras. Palavras exercem fascínio."
- Arquivo invertido usando uma árvore *TRIE*:

O vocabulário lido do texto é colocado em uma árvore *TRIE*, armazenando uma lista de ocorrências para cada palavra.

Arquivo Invertido: Exemplo

- Cada nova palavra lida do texto é pesquisada na *TRIE*.
 - Se a pesquisa não tiver sucesso, a palavra é inserida na árvore e uma lista de ocorrências é inicializada com a posição de tal nova palavra no texto.
 - Caso contrário, uma vez que a palavra já se encontra na árvore, a nova posição é inserida ao final da lista de ocorrências da mesma.

Casamento Exato

- O problema de casamento exato de cadeias consiste em encontrar as ocorrências exatas de um padrão em um texto.
- Os algoritmos podem ser categorizados em relação à forma como o padrão é pesquisado no texto:
 - leitura dos caracteres do texto *T* um a um, no intuito de identificar uma ocorrência possível do padrão *P*.
 - Exs.: algoritmos força bruta e Shift-And.
 - pesquisa do padrão *P* em uma janela que desliza ao longo do texto *T*, procurando por um sufixo da janela (texto *T*) que casa com um sufixo de *P*, mediante comparações realizadas da direita para a esquerda.
 - Exs.: algoritmos Boyer-Moore, Boyer-Moore-Horspool e Boyer-Moore-Horspool-Sunday.

Algoritmo Força Bruta

- O algoritmo força bruta é o algoritmo mais simples para casamento exato de cadeias.
 - A idéia consiste em tentar casar qualquer subcadeia de comprimento *m* no texto com o padrão desejado.

Algoritmo Força Bruta

- Pior caso: $C_n = m \times n$.
 - \blacksquare Ex.: P = aab e T =aaaaaaaaaaa.
- Caso esperado: $\overline{C_n} = \frac{c}{c-1} \left(1 \frac{1}{c^m}\right) \left(n m + 1\right) + O(1)$
 - O caso esperado é bem melhor do que o pior caso.
- Para conhecimento, em experimento realizado por Baeza-Yates (1992) com texto randômico e alfabeto de tamanho c = 4, o número esperado de comparações por caractere do texto foi aproximadamente 1,3.

- O algoritmo clássico Boyer-Moore (BM) surgiu em 1977.
- Funcionamento:
 - O BM pesquisa o padrão *P* em uma janela que desliza ao longo do texto *T*.
 - Para cada posição desta janela, o algoritmo pesquisa por um sufixo da mesma que casa com um sufixo de *P*, com comparações realizadas no sentido da direita para a esquerda.
 - Se não ocorrer uma desigualdade, uma ocorrência de *P* em *T* foi localizada.
 - Caso contrário, o algoritmo calcula um deslocamento que a janela deve ser deslizada para a direita antes que uma nova tentativa de casamento se inicie.
 - O BM propõe duas heurísticas para calcular o deslocamento: ocorrência e casamento.

- A heurística ocorrência alinha o caractere no texto que causou a colisão com o 1º caractere no padrão, a esquerda do ponto de colisão, que casa com ele.
- \blacksquare Ex.: P = {cacbac}, T = {aabcaccacbac}.

Colisão existente entre "b" do padrão e "c" do texto; logo, o padrão deve ser deslocado para a direita até encontrar o 1° caractere do padrão que casa com "c".

- A heurística casamento faz com que, ao mover o padrão para a direita, a janela em questão casa com o pedaço do texto anteriormente casado.
- \blacksquare Ex.: P = {cacbac}, T = {aabcaccacbac}.

Colisão existente entre "b" do padrão e "c" do texto; logo, a janela deve ser deslocada para a direita até casar com o pedaço do texto anteriormente casado (no caso "ac").

- O algoritmo BM decide qual das duas heurísticas deve seguir, escolhendo aquela que provoca o maior deslocamento do padrão.
 - Esta escolha implica em realizar comparações para cada colisão que ocorrer, penalizando o desempenho do algoritmo com relação a tempo de processamento.
 - Ao longo dos anos, várias propostas de simplificação surgiram, sendo que os melhores resultados foram obtidos por aquelas que consideraram apenas a heurística ocorrência.

Algoritmo Boyer-Moore-Horspool

- Em 1980, Horspool apresentou uma simplificação no algoritmo BM, que o tornou mais rápido, ficando conhecido como algoritmo Boyer-Moore-Horspool (BMH).
 - Pela extrema simplicidade de implementação e comprovada eficiência, o BMH deve ser escolhido em aplicações de uso geral que necessitam realizar casamento exato de cadeias.

■ Simplificação:

- Parte da observação de que qualquer caractere já lido do texto a partir do último deslocamento pode ser usado para endereçar uma tabela de deslocamentos.
- Horspool propôs deslocar a janela de acordo com o valor da tabela de deslocamento relativo ao caractere no texto correspondente ao último caractere do padrão.

Algoritmo Boyer-Moore-Horspool

- Para definir a tabela de deslocamentos, faz-se:
 - O valor inicial do deslocamento para todos os caracteres do texto é igual a *m*.
 - Em seguida, para os m-1 primeiros caracteres do padrão P, os valores do deslocamento são calculados pela regra:

$$d[x] = min\{j \text{ tal que } (j = m) \mid (1 \le j < m \& P[m-j] = x)\}$$

- \blacksquare Ex.: Para o padrão $P = \{\text{teste}\}$, os valores da tabela são:
 - d["t"] = 1, d["e"] = 3, d["s"] = 2;
 - d[x] = 5 (valor de m) para todo caractere x do texto que não faça parte do padrão.

Algoritmo Boyer-Moore-Horspool

```
void BMH(TipoTexto T, long n, TipoPadrao P, long m)
{ long i, j, k, d[MAXCHAR + 1];
                                                           Pré-processamento para
  for (j = 0; j \le MAXCHAR; j++) d[j] = m;
                                                             se obter a tabela de
                                                               deslocamentos
  for (i = 1; i < m; i++) d[P[i-1]] = m - i;
  i = m:
  while (i \le n) /*--Pesquisa---*/
                                              Pesquisa por um sufixo do
                                              texto (janela) que casa com
    \{ k = i; 
                                                 um sufixo do padrão
      i = m;
      while (T[k-1] == P[j-1] \&\& j > 0) \{ k--; j--; \}
       if (j == 0)
       printf(" Casamento na posicao: %3Id\n", k + 1);
       i += d[T[i –1]];
                                   Deslocamento da janela de acordo com o valor da
                                  tabela de deslocamentos relativo ao caractere que está
                                   na i-ésima-1 posição do texto, ou seja, a posição do
                                       último caractere do padrão P (Horspool).
```

Algoritmo Boyer-Moore-Horspool-Sunday

■ Em 1990, Sunday apresentou uma simplificação importante para o algoritmo BMH, ficando conhecido como algoritmo Boyer-Moore-Horspool-Sunday (BMH).

■ Simplificação:

- Corresponde a uma variante do algoritmo BMH.
- Sunday propôs deslocar a janela de acordo com o valor da tabela de deslocamento relativo ao caractere no texto correspondente ao caractere após o último caractere do padrão.

Algoritmo Boyer-Moore-Horspool-Sunday

- Para definir a tabela de deslocamentos, faz-se:
 - O valor inicial do deslocamento para todos os caracteres do texto é igual a *m*+1.
 - Em seguida, para os m primeiros caracteres do padrão P, os valores do deslocamento são calculados pela regra:

$$d[x] = min\{j \text{ tal que } (j = m+1) \mid (1 \le j \le m \& P[m+1-j] = x)\}$$

- \blacksquare Ex.: Para o padrão $P = \{\text{teste}\}$, os valores da tabela são:
 - d["t"] = 2, d["e"] = 1, d["s"] = 3;
 - d[x] = 6 (valor de m+1) para todo caractere x do texto que não faça parte do padrão.

Algoritmo Boyer-Moore-Horspool-Sunday

```
void BMHS(TipoTexto T, long n, TipoPadrao P, long m)
{ long i, j, k, d[MAXCHAR + 1];
                                                               Pré-processamento para
  for (j = 0; j \le MAXCHAR; j++) d[j] = m + 1;
                                                                 se obter a tabela de
                                                                  deslocamentos
  for (j = 1; j \le m; j++) d[P[j-1]] = m-j+1:
  i = m:
  while (i <= n) /*-- Pesquisa --*/
                                               Pesquisa por um sufixo do
                                               texto (janela) que casa com
    \{ k = i :
                                                 um sufixo do padrão
       i = m;
       while (T[k-1] == P[j-1] \&\& j > 0) \{ k--; j--; \}
       if (j == 0)
       printf(" Casamento na posicao: %3Id\n", k + 1);
       i += d[T[i]]; -
                                    Deslocamento da janela de acordo com o valor da
                                  tabela de deslocamentos relativo ao caractere que está
                                     na i-ésima posição do texto, ou seja, a posição
                                   seguinte ao último caractere do padrão P (Sunday).
```

- Um autômato é um modelo de computação muito simples.
- Um autômato finito é definido pela tupla (Q, I, F, Σ, T) , onde:
 - Q é um conjunto finito de estados;
 - I é o estado inicial ($I \in Q$);

- Autômato finito não-determinista:
 - Ocorre quando a função T possibilita a associação de um estado q e um caractere α para mais de um estado do autômato (ou seja, $T(q, \alpha) = \{q_1, q_2, \dots, q_k\}$ para k > 1), ou quando existe alguma transição rotulada por ε .

No exemplo, a partir do estado 0, por meio do caractere de transição **a**, é possível atingir os estados 2 e 3.

- Autômato finito determinista:
 - Ocorre quando a função T permite a associação de um estado q e um caractere α para apenas um estado do autômato (ou seja, $T(q, \alpha) = \{q_1\}$).

Para cada caractere de transição, todos os estados levam a um único estado.

- Uma cadeia é reconhecida pelo autômato (Q, I, F, Σ, T) se o mesmo rotula um caminho, que vai do estado inicial até um estado final, compreendendo a cadeia em questão.
- A linguagem reconhecida por um autômato é o conjunto de cadeias que o autômato é capaz de reconhecer.
 - Por exemplo, a linguagem reconhecida pelo autômato abaixo é o conjunto formado pelas cadeias {a} e {abc}.

- Transições vazias são transições rotuladas com a cadeia vazia ε, chamadas de transições-ε em autômatos não-deterministas.
 - Não há necessidade de se ler um caractere do alfabeto para se caminhar por meio de uma transição vazia.
 - As transições vazias simplificam a construção do autômato.
 - Sempre existe um autômato equivalente que reconhece a mesma linguagem sem transições vazias.

- Se uma cadeia \mathbf{x} rotula um caminho de I até um estado q, então o estado q é considerado ativo depois de ler \mathbf{x} .
 - Um autômato finito determinista possui, no máximo, um estado ativo em um determinado instante.
 - Um autômato finito não-determinista pode ter vários estados ativos em um determinado instante.
 - Casamento aproximado de cadeias pode ser resolvido por meio de autômatos finitos não-deterministas.

- Autômatos acíclicos são aqueles cujas transições não formam ciclos.
- Autômatos cíclicos são aqueles que formam ciclos.
 - Autômatos finitos cíclicos, deterministas ou não-deterministas, são úteis para casamento de expressões regulares.
 - A linguagem reconhecida por um autômato cíclico pode ser infinita. Por exemplo, o autômato a direita reconhece {ba}, {bba}, {bbba}, {bbbba}, ...

- O autômato reconhece $P = \{aabc\}$.
- A pesquisa de P sobre um texto T com alfabeto $\Sigma = \{a, b, c\}$ pode ser vista como a simulação do autômato na pesquisa de P sobre T.
 - No início, o estado ativo é o estado inicial 0.
 - Para cada caractere lido do texto, a aresta correspondente a partir do estado ativo é seguida, ativando o estado destino.
 - Se o estado 3 estiver ativo e um caractere **c** é lido, o estado final se torna ativo, resultando em um casamento de {aabc} com o texto.
- Como cada caractere do texto é lido uma vez, a complexidade de tempo é O(n). A complexidade de espaço é (m+1) para vértices e $(|\Sigma| \times m)$ para arestas.

Algoritmo Shift-And Exato

- O algoritmo *Shift-And* usa o conceito de paralelismo de *bit*.
 - Técnica que tira proveito do paralelismo das operações sobre *bits* dentro de uma palavra de computador, sendo possível empacotar muitos valores em uma única palavra e atualizar todos eles em uma única operação.
 - Uma sequência de bits ($b_1 ... b_c$) é chamada de máscara de bits de comprimento c, e é armazenada em alguma posição de uma palavra w do computador.
- Algumas operações sobre os *bits* de uma palavra são:
 - Repetição de *bits*: exponenciação (ex.: $01^3 = 0111$);
 - "l": operador lógico or;
 - "&": operador lógico and;
 - ">>": operador que move os *bits* para a direita e entra com zeros à esquerda (ex.: b_1 b_2 ... b_{c-1} b_c >> $2 = 00b_1$... b_{c-2}).

Algoritmo Shift-And Exato

- O algoritmo *Shift-And* mantém o conjunto de todos os prefixos do padrão *P* que casam com o texto já lido.
 - Este conjunto é representado por uma máscara de bits $R = (b_1 \ b_2 \dots b_m)$.
 - O algoritmo utiliza o paralelismo de *bit* para atualizar tal máscara de *bits* a cada caractere lido do texto.
- O algoritmo *Shift-And* corresponde à simulação de um autômato não-determinista que pesquisa pelo padrão P no texto T.
 - Ex.: Autômato que reconhece os prefixos de P = {teste}

Algoritmo Shift-And Exato

- O valor 1 é colocado na *j*-ésima posição de R = $(b_1 b_2 ... b_m)$ se e somente se $(p_1 ... p_j)$ é um sufixo de $(t_1 ... t_i)$, onde *i* corresponde à posição corrente no texto.
 - Nesse caso, a *j*-ésima posição de R é dita estar ativa.
 - lacksquare b_m ativo significa um casamento exato do padrão.
- R' (novo valor da máscara R) é calculado na leitura do próximo caractere t_{i+1} do texto.
 - A posição j + 1 em R' ficará ativa se e somente se a posição j estava ativa em R, ou seja, $(p_1 \dots p_j)$ é sufixo de $(t_1 \dots t_i)$, e t_{i+1} casa com p_{j+1} .
 - Com o uso de paralelismo de bit, é possível computar a nova máscara com custo O(1).

- Pré-processamento do algoritmo:
 - Construção de uma tabela M para armazenar uma máscara de *bits* $(b_1 \ b_2 \ ... \ b_m)$ para cada caractere do padrão P.
 - Por exemplo, as máscaras de bits para os caracteres presentes em P = {teste} são:

	1	2	3	4	5
M[t]	1	0	0	1	0
M[e]	0	1	0	0	1
M[s]	0	0	1	0	0

A máscara em M[t] é 10010, pois o caractere t aparece nas posições 1 e 4 do padrão P.

Algoritmo:

- A máscara de *bits* R é inicializada como $R = 0^{m}$.
- Para cada novo caractere t_{i+1} lido do texto, o valor da máscara R' é atualizado pela expressão:

$$R' = ((R >> 1) \mid 10^{m-1}) \& M[T[i]].$$

- A operação (R >> 1) desloca as posições para a direita no passo i+1 para manter as posições de P que eram sufixos no passo i.
- A operação ((R >> 1) | 10^{m-1}) retrata o fato de que a cadeia vazia ε é também marcada como um sufixo do padrão, permitindo um casamento em qq posição corrente do texto.
- Para se manter apenas as posições que t_{i+1} casa com p_{j+1} , é realizada a conjunção (operador &) entre ((R >> 1) | 10^{m-1}) e a máscara M relativa ao caractere lido do texto.

- Exemplo de funcionamento do algoritmo:
 - Pesquisa do padrão $P = \{\text{teste}\}\ \text{no texto } T = \{\text{os testes ...}\}.$

Texto	(R	2>>	- 1)	10^{m}	n-1			R'			
0	1	0	0	0	0	0	0	0	0	0	
s	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	
t	1	0	0	0	0	1	0	0	0	0	
е	1	1	0	0	0	0	1	0	0	0	
s	1	0	1	0	0	0	0	1	0	0	
t	1	0	0	1	0	1	0	0	1	0	Casamento
е	1	1	0	0	1	0	1	0	0	1<	exato
s	1	0	1	0	0	0	0	1	0	0	
	1	0	0	1	0	0	0	0	0	0	

```
Shift-And (P = p_1 p_2 \cdots p_m, T = t_1 t_2 \cdots t_n)
{ /*—Préprocessamento—*/
  for (c \in \Sigma) M[c] = 0^m;
  for (j = 1; j \le m; j++) M[p_i] = M[p_i] | 0^{j-1}10^{m-j};
  /*-- Pesquisa--*/
  R = 0^m;
  for (i = 1; i \le n; i++)
    \{R = ((R >> 1 | 10^{m-1}) \& M[T[i]]);
      if ( R \& 0^{m-1}1 \neq 0^m) 'Casamento na posicao i - m + 1';
```

■ Análise: O custo do algoritmo *Shift-And* é O(n), desde que as operações sobre os *bits* possam ser realizadas em O(1) e o padrão caiba em umas poucas palavras do computador.

- O problema de casamento aproximado de cadeias consiste em encontrar as ocorrências aproximadas de um padrão no texto.
 - Logo, deve tratar operações de inserção, substituição e retirada de caracteres do padrão.
- No exemplo abaixo, aparecem três ocorrências aproximadas do padrão {teste}:
 - 1) Inserção: espaço inserido entre o 3º e 4º caracteres do padrão.
 - 2) Substituição: último caractere do padrão substituído pelo a.
 - 3) Retirada: primeiro caractere do padrão retirado.

- Distância de edição entre duas cadeias $P \in P'$, denotada por ed(P, P'), é o menor número de operações necessárias para converter $P \in P'$ ou vice-versa.
 - Por exemplo, *ed*(teste, estende) = 4: valor obtido por meio da retirada do primeiro **t** de *P* e a inserção dos caracteres **nde** ao final de *P*.
- Formalmente, o problema do casamento aproximado de cadeias é o de encontrar todas as ocorrências de P' no texto T tal que $ed(P, P') \le k$, onde k representa o número limite de operações de inserção, substituição e retirada de caracteres necessárias para transformar o padrão P em uma cadeia P'.

- O casamento aproximado só faz sentido para 0 < k < m pois, para k = m, toda subcadeia de comprimento m pode ser convertida em P por meio da substituição de m caracteres.
 - = k = 0 corresponde ao casamento exato de cadeias.
- Uma medida da fração do padrão que pode ser alterada é dada pelo nível de erro α = k/m.
 - Em geral, α < 1/2 para a maioria dos casos.
- A pesquisa com casamento aproximado é modelado por autômatos não-deterministas.
 - Os algoritmos usam paralelismo de bit.

Autômato que reconhece $P = \{\text{teste}\}$, permitindo uma inserção:

- Uma aresta horizontal representa um casamento de caractere, avançando-se no texto T e no padrão P.
- Uma aresta vertical insere um caractere no padrão P, avançando-se no texto T mas não no padrão P.

Autômato que reconhece $P = \{\text{teste}\}$, permitindo uma substituição:

- Uma aresta horizontal representa um casamento de caractere, avançando-se no texto T e no padrão P.
- Uma aresta diagonal substitui um caractere no padrão P, avançando-se no texto T e no padrão P.

Autômato que reconhece $P = \{\text{teste}\}$, permitindo uma retirada:

- Uma aresta horizontal representa um casamento de caractere, avançando-se no texto *T* e no padrão *P*.
- Uma aresta diagonal tracejada retira um caractere no padrão *P*, avançando-se no padrão *P* mas não no texto *T* (transição vazia).

- O autômato reconhece $P = \{\text{teste}\}$ para k = 2.
 - Linha 1: casamento exato (k = 0).
 - Linha 2: casamento aproximado permitindo um erro (k = 1).
 - Linha 3: casamento aproximado permitindo dois erros (k = 2).

- O algoritmo *Shift-And* aproximado simula um autômato não-determinista, utilizando paralelismo de *bit*.
- O algoritmo empacota cada linha j ($0 < j \le k$) do autômato não-determinista em uma palavra Rj diferente do computador.
 - Para cada novo caractere lido do texto, todas as transições do autômato são simuladas usando operações entre as *k*+1 máscaras de *bits*: R₀ (casamento exato), R₁ (um erro), R₂ (dois erros), ..., R_k (*k* erros).

Algoritmo:

- A máscara R_0 (casamento exato) é inicializada como $R_0 = 0^m$.
- Para $0 < j \le k$, Rj é inicializada como R $j = 1^{j}0^{m-j}$.
- Considerando M a tabela do algoritmo *Shift-And* para casamento exato, para cada novo caractere t_{i+1} lido do texto, as máscaras são atualizadas pelas expressões:
 - $R'_0 = ((R_0 >> 1) \mid 10^{m-1}) \& M[T[i]]$
 - Para $0 < j \le k$, $R'_{j} = ((R_{j} >> 1) & M[T[i]]) | R_{j-1} | (R_{j-1} >> 1) | (R'_{j-1} >> 1) | 10^{m-1}$
- Considerando o autômato, a fórmula para R'expressa as arestas:
 - horizontais, indicando casamento de um caractere;
 - verticais, indicando inserção (R_{j-1}) ;
 - diagonais cheias, indicando substituição ($R_{i-1} >> 1$);
 - diagonais tracejadas, indicando retirada ($R'_{i-1} >> 1$).

- Exemplo de funcionamento do algoritmo:
 - Pesquisa do padrão $P = \{\text{teste}\}\$ no texto $T = \{\text{os testes testam}\}\$.
 - Possibilidade de um erro de inserção (k = 1).
- Expressões para atualização das máscaras de bits:
 - \blacksquare R'₀ = ((R₀ >> 1) | 10^{m-1}) & M[T[i]]
 - \blacksquare R'₁ = ((R₁ >> 1) & M[T[i]]) | R₀ | 10^{m-1}

Texto	(1	₹₀ :	$>> 1) 10^{m-1}$ R'_0									R_1	>:	> 1				R'_1			
0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
s	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
t	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
е	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	1	0	0	0	
s	1	0	1	0	0	0	0	1	0	0	0	1	1	0	0	1	1	1	0	0	
t	1	0	0	1	0	1	0	0	1	0	0	1	1	1	0	1	0	1	1	0	Casamento
е	1	1	0	0	1	0	1	0	0	1	0	1	0	1	1	1	1	0	1	1	exato
s	1	0	1	0	0	0	0	1	0	0	0	1	1	0	1	1	1	1	0	1-	Casamento
	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0	1	0	0	aproximado
t	1	0	0	0	0	1	0	0	0	0	0	1	0	1	0	1	0	0	1	0	
е	1	1	0	0	0	0	1	0	0	0	0	1	0	0	1	1	1	0	0	1-	Casamento
s	1	0	1	0	0	0	0	1	0	0	0	1	1	0	0	1	1	1	0	0	aproximado
t	1	0	0	1	0	1	0	0	1	0	0	1	1	1	0	1	0	1	1	0	
a	1	1	0	0	1	0	0	0	0	0	0	1	0	1	1	1	0	0	1	0	
m	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	

- Exemplo de funcionamento do algoritmo:
 - Pesquisa do padrão $P = \{\text{teste}\}\ \text{no texto } T = \{\text{os testes testam}\}.$
 - Possibilidade de um erro de inserção, um erro de substituição e um erro de retirada (k = 1).
- Expressões para atualização das máscaras de bits:
 - \blacksquare R'₀ = ((R₀ >> 1) | 10^{m-1}) & M[T[i]]
 - \blacksquare R'₁ = ((R₁ >> 1) & M[T[i]]) | R₀ | (R₀ >> 1) | (R'₀ >> 1) | 10^{m-1}

Texto	(I	₹0 :	>>	· 1)	$ 10^{m-1} $			R'_0			,	R_1	>:	> 1				R'_1			
0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
s	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	
t	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	1	0	0	0	
е	1	1	0	0	0	0	1	0	0	0	0	1	1	0	0	1	1	1	0	0	Casamento
s	1	0	1	0	0	0	0	1	0	0	0	1	1	1	0	1	1	1	1	0	aproximado R
t	1	0	0	1	0	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1	Casamento
е	1	1	0	0	1	0	1	0	0	1	0	1	1	1	1	1	1	1	1	1	exato
s	1	0	1	0	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1-	Casamento
	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	1	0	aproximado I
t	1	0	0	0	0	1	0	0	0	0	0	1	0	1	1	1	1	0	1	0	Casamento
е	1	1	0	0	0	0	1	0	0	0	0	1	1	0	1	1	1	1	0	1-	aproximado I
s	1	0	1	0	0	0	0	1	0	0	0	1	1	1	0	1	1	1	1	0	Casamento
t	1	0	0	1	0	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1-	aproximado R
a	1	1	0	0	1	0	0	0	0	0	0	1	1	1	1	1	1	0	1	1-	Casamento
m	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0	0	aproximado S

```
void Shift-And-Aproximado (P = p_1 p_2 \dots p_m, T = t_1 t_2 \dots t_n, k)
{ /*-- Préprocessamento--*/
  for (c \in \Sigma) M[c] = 0^m;
  for (j = 1; j \le m; j++) M[p_j] = M[p_j] | 0^{j-1}10^{m-j};
  /*-- Pesquisa--*/
  for (j = 0; j \le k; j++) R_i = 1^j 0^{m-j};
  for (i = 1; i <= n; i++)
    { Rant = R_0:
       Rnovo = ((Rant >> 1) | 10^{m-1}) \& M[T[i]];
      R_0 = \text{Rnovo}:
      for (i = 1; i \le k; i++)
         { Rnovo = ((R_j >> 1 \& M[T[i]]) | Rant | ((Rant | Rnovo) >> 1));}
           Rant = R_i;
           R_i = \text{Rnovo} \mid 10^{m-1};
       if (\text{Rnovo } \& 0^{m-1}1 \neq 0^m) 'Casamento na posicao i';
```

```
void ShiftAndAproximado(TipoTexto T, long n, TipoPadrao P, long m, long k)
{ long Masc[MAXCHAR], i, j, Ri, Rant, Rnovo;
 long R[NUMMAXERROS + 1];
 for (i = 0: i < MAXCHAR: i++) Masc[i] = 0:
 for (i = 1; i \le m; i++) { Masc[P[i-1] + 127] |= 1 \le (m-i); }
 R[0] = 0: Ri = 1 << (m - 1):
 for (i = 1; i \le k; i++) R[j] = (1 << (m-j)) | R[j-1];
 for (i = 0; i < n; i++)
   \{ Rant = R[0];
     Rnovo = ((((unsigned long)Rant) >> 1) | Ri) & Masc[T[i] + 127];
     R[0] = Rnovo;
     for (i = 1: i \le k: i++)
        { Rnovo = ((((unsigned long)R[i]) >> 1) & Masc[T[i] + 127])
                  | Rant | (((unsigned long)(Rant | Rnovo)) >> 1);
         Rant = R[i]; R[i] = Rnovo | Ri;
      if ((Rnovo & 1) != 0) printf(" Casamento na posicao %12ld \n", i + 1);
```