

Conception de bases de données multimédias

Plan du cours

- Difficultés associées à la représentation d'objets MM (6.1)
- Modélisation conceptuelle (UML-ERD) (6.2)
- Transformation du modèle conceptuel en un modèle logique relationnel (6.2.1)

Difficultés en modélisation multimédia

- Temps
- Durée
- Synchronisation

- Nombre et variété des dimensions caractérisant un objet MM
 - dimension spatiale
 - dimension temporelle
 - dimension hiérarchique
 - dimensions du contenu
 - dimensions des objets (régions)
 - dimensions des relations entre ces objets
 - dimension technique : métadonnées acquises automatiquement lors de la capture de l'objet MM
 - une vidéo incorpore toutes ces dimensions

- Dimension temporelle
 - ordre temporel : l'ordre entre les images d'une vidéo est essentiel
 - gestion des intervalles de temps
 - pouvoir comparer des séquences entre elles : se chevauchent-elles, l'une est-elle incluse dans l'autre, l'une se produit-elle après l'autre ?
 - gestion de la notion de durée
 - synchronisation (vidéo) : bande sonore et images

- Dimension spatiale
 - gestion d'un système de coordonnées à 2 ou 3 dimensions
 - gestion de volumes, surfaces, lignes et points
 - nécessite des opérateurs de comparaison particuliers (comparaison d'objets selon leur position)
 - points : l'un est-il à droite/à gauche/au-dessus/audessous de l'autre ?
 - surfaces: l'une est-elle contenue dans l'autre, chevauche-t-elle l'autre;
 - ...

- Dimension hiérarchique
 - vidéo = séquence de clips
 - clip = séquence de scènes
 - scène = séquence de prises de vue
 - livre = séquence de chapitres
 - chapitre = séquence de sections
 - section = séquence de paragraphes
 - paragraphe = séquence de phrases
 - phrase = séquence de termes (unités syntaxiques)

- Incorporer des vidéos/bandes sonores/ images/textes à un modèle de données
 - BD classiques (info de gestion)
 - le problème se pose également lors de l'incorporation de données préexistantes à un système
 - mais ensuite, les données sont généralement acquises pour s'intégrer au système ... pour un certain temps
 - car les besoins d'affaires évoluent
 - un objet MM est créé pour lui-même, et non dans le but d'être incorporé à une BDMM; il n'y a donc pas de notion de besoins qui évoluent de la même manière

Plan du cours

- Difficultés associées à la représentation d'objets MM (6.1)
- Modélisation conceptuelle (UML-ERD) (6.2)
- Transformation du modèle conceptuel en un modèle logique relationnel (6.2.1)
- Définition de types de données utilisateur TDU (6.3)
- Manipulation de TDU (6.3.1)
- Introduction aux types Oracle InterMedia

Analyse : modèle conceptuel de données

- Modèle conceptuel de données
 - représentation graphique abstraite des informations à placer dans la BD
 - indépendante de la technologie utilisée pour l'implémentation
- Sans modélisation conceptuelle c'est le chaos d'une conception hasardeuse!

UML et Oracle Designer

- UML indépendant des implémentations
- Utilisé dans les standards internationaux comme MPEG
- Notation pour représenter l'analyse et la conception de systèmes informatiques dans leur ensemble
 - les données en sont l'une des composantes
 - issue du monde de l'OO (Orienté-Objet)
 - idéal pour conception en OO
 - mais permet de modéliser n'importe quel type de BD
- Oracle Designer
 - Notation particulière au fournisseur
 - Notation mixte de ERD et OO
 - Supporté par des outils de conception et génération automatisée
 - Très répandu dans le marché actuel

Conception 00 et ERD

- L'industrie n'en est pas au BD-OO
- Les modèles commerciaux actuels n'appliquent pas la notion BD-OO
- Les difficultés avec les BD-OO ont considérablement ralenti le déploiement
- Actuellement c'est le relationnel-objet (RO) qui a le marché!

UML

Conceptuel UML: notions de base

Relationnel-Objet

- représentation d'une entité
 - du monde extérieur (un utilisateur)
 - ou de l'environnement informatique (un menu)
- un objet a
 - une identité, distincte et permanente, représenté par un OID unique à travers la BD
 - un état, représenté par des propriétés, changeantes avec le temps
 - des comportements (impliquant un changement d'état) et des opérations associées

Conceptuel UML: notions de base

- Type/classe : ensemble des attributs et opérations caractérisant le comportement d'un groupe d'objets
- Attribut/propriété
 - simple/composé : nom / adresse
 - mono/multivalué : nom / téléphones
 - de base/dérivé : date de naissance / âge
 - l'âge peut être déterminé par une opération impliquant la date de naissance et la date du jour

Notion d'objet et de classe

- Objet (instance d'une classe)
 - significatif pour le domaine d'application
 - caractérisé par
 - identité
 - état
 - comportement
- Attribut (variable membre, variable d'instance)
 - contenant pour une valeur
 - représente son état

Conceptuel UML: notions de base

- Un objet est représenté par un rectangle
 - La partie supérieure contient le nom de l'objet qui doit être souligné
 - Le centre est la liste des attributs, leurs types et leurs valeurs

Conceptuel UML: notions de base

- Un objet a un état déterminé par les valeurs de ses attributs
- L'état peut être modifié par un programme en modifiant les valeurs de ses attributs

Représentation d'un objet en UML

Fig 6.4

7902:Employee

Name : String = Ford

Salary: Integer = 1756

Start_date : Integer = '03-May-1999'

Picture: Blob = '7902.jpeg'

Classe UML

- Une classe est une abstraction qui représente les caractéristiques communes à un ensemble d'objets
 - Attributs
 - Associations
 - Opérations

Représentation d'une classe en UML

Fig 6.5

Employee

Name: String

Salary: Integer

Start_date : Integer

Picture: Blob

changeSalary changeName

Exemple: classes et objets

CLASSE

attributs

opérations

Objet : CLASSE

attributs

Vidéo

titre date sujet

durée

segmenter compresser

11231 : Vidéo

titre: Bugs Bunny

sujet : Carrot Cake

durée : 4min:20sec

Identifiant d'objet (OID, object identifier)

- Mécanisme d'identification
 - pas deux objets avec le même OID
- Implicite
 - non visible (n'est pas représenté explicitement dans le diagramme)
 - réalisation traitée à l'instanciation
- Mécanisme de référence

Pas besoin d'identificateur explicite!

Par opposition au relationnel

OID =154396

: Prêt

datePrêt : date = 10/10/2000

OID = 204395

: Prêt

datePrêt : date = 10/10/2000

Identifiant naturel (ou *clé* «*key*») pour une classe

- Ensemble minimal d'attributs qui identifie chacun des objets de manière unique {}
 - ~ clé candidate du relationnel
- Représentation par une contrainte UML (contrainte de l'attribut)

Membre

{UNIQUE:idMembre, UNIQUE:nom, prénom} idMembre nom prénom téléphone Ici deux objets membre ne peuvent pas avoir les mêmes valeurs pour l'attribut

Syntaxe générale pour la spécification des attributs en UML

- [visibilité] nom [multiplicité] [: type] [= valeurInitiale]
 [{propriétés}]
 - *visibilité* peut être :
 - + publique
 - # protégé
 - privé
 - nom de l'attribut
 - multiplicité ([1..1] par défaut)
 - ✓ téléphone[1..2]: String
 - ✓ adresse [0..1]: String
 - ✓ auteurs [1..*]: String

Syntaxe pour attributs (suite)

- [visibilité] nom [multiplicité] [: type] [= valeurInitiale]
 [{propriétés}]
 - type :
 - OCL (Object Constraint Language)
 - Boolean, Integer, Real, String, enum{ valeur1,..., valeurn}
 - types de la plate-forme visée
 - type non pré-défini
 - classe stéréotypée « datatype»

Notion de lien et d'association binaire

Agrégation

Une association entre un tout et ses parties = agrégation

Classes associatives

 Association plusieurs à plusieurs (fig 6.7)

Incorrect si plusieurs notes pour un *Etudiant* et un *Cours*

Cette situation existe en tout temps dans les relations + à +.

Suite de l'exemple

• Si il y a plusieurs notes pour un *Étudiant* et un *Cours*

Lien d'héritage

ERD

Conceptuel Entité-Associations: notions de base

Entité

- Quelque chose de significatif pour l'entreprise pour lequel des données doivent exister
 - Même concept qu'un objet
 - Possède des instances
 - Possède des attributs
 - Possède des relations
 - Ne possède pas de OID; doit avoir un identifiant
 - Outils Designer qui génère la BD pour vous !

Représentation d'un entité avec Oracle Designer

Représentation d'un relation avec Oracle (fig 6.1)

Un vidéo possède 1 ou plusieurs Clip(s)

Lire les relations

Un vidéo possède 0 ou 1 clip

Un clip appartient à 1 et 1 seul vidéo

D'autres exemples de relations ERD

Plusieurs à Plusieurs

En réalité, il s'agit de deux relations

Plan du cours

- Difficultés associées à la représentation d'objets MM (6.1)
- Modélisation Conceptuelle (UML-ERD) (6.2)
- Transformation du modèle conceptuel en un modèle logique relationnel (6.2.1)
- Définition de types de données utilisateur TDU (6.3)
- Manipulation de TDU (6.3.1)
- Introduction aux types Oracle InterMedia

Le modèle logique

- Transformation "mécanique" du schéma conceptuel en un schéma logique
- Ici schéma logique relationnel Oracle
- Assure la compatibilité de l'analyse conceptuelle avec le modèle physique de BD retenu
- En relationnel, colonnes uniquement simples et monovaluées

Le schéma logique : règles de normalisation

- Transformation des classes en tables
- Transformation des associations N:N (création d'entité d'intersection)
- Transformation des associations 1:N (ajout clé étrangère côté N)
- Transformation des hiérarchies

- Transformation des classes en tables
 - Choix des clés primaires : invariantes, sans structure interne ni signification externe, de petite taille

Projets

Id_projet

Nom_projet

Statut

Périodes

Id_période

Date_début

Date_fin

Statut

Employés

Id_employe

No_employe

Matricule

Nom_employe

Prénom

Code_usager

Taux horaire base

- Transformation des classes en tables (suite)
 - Choix des clés primaires : invariantes, sans structure interne ni signification externe, de petite taille
 - Transformation des attributs structurés monovalués en plusieurs champs :
 - adresse -> rue, ville, province, code_postal

- Transformation des classes en tables (suite)
 - Transformation des attributs multivalués en tables auxiliaires avec ajout d'une clé étrangère vers la table principale : table des téléphones

Transformation des associations N:N

• Éliminer les attributs d'association

Transformation des associations 1:N

Transformation des associations 1:N

Traduction des hiérarchies : trois approches

- 1. <u>Délégation</u>: une table par classe
- 2. <u>Fusion</u>: fusion du parent et des enfants; une seule grande table
- 3. <u>Concaténation</u>: duplication des colonnes du parent dans chaque enfant; la table parent est éliminée

1. <u>Délégation</u> : une table par classe

- Attribut discriminant optionnel
- Jointures obligatoires

2. <u>Fusion</u>: une seule grande table

Personne

{Clé primaire: noPersonne}

noPersonne : Integer

nom : String prénom : String

ville: String

catégoriePersonne : Char

noEmployé : Integer

salaire : Decimal

codePermanent: Integer

programme : Integer

Attribut discriminant obligatoire

3. <u>Concaténation</u>: une table par enfant

Employé

{Clé primaire: noEmployé}

noEmployé: Integer

nom : String prénom : String ville : String salaire : Decimal

Étudiant

{Clé primaire: codePermanent}

codePermanent: Integer

nom : String prénom : String ville : String

programme: Integer