Problem 1-

Problem 2.

(a)
$$P(C) = \sum P(A)$$
. $\sum P(B|A)$. $P(C|B)$ Case 1

$$P(C=T)= P(A=T).[P(B=T|A=T).P(C=T|B=T)$$

$$] = 0.4[0.3 \cdot 0.9 + 0.7 \cdot 0.4] + 0.6[0.8 \cdot 0.9 + 0.2 \cdot 0.4]$$

$$=0.4 \cdot 0.55 + 0.6 \cdot 0.8$$

$$=0.22+0.48 => P(C=T) = 0.7$$

And
$$P(C=F) = 1 - P(C=T) = 1 - 0.7 = 0.3$$

(b)
$$P(C | A=T) = \sum P(B | A=T).P(C | B)$$

For C=T

$$P(C=T|A=T)=P(B=T|A=T)P(C=T|B=T)+P(B=F|A=T)P(C=T|B=F)$$

$$=0.3 \cdot 0.9 + 0.7 \cdot 0.4 = 0.55$$

(C)
$$P(C=T|A=T,B=T) = P(C=T|B=T) = 0.9$$

$$P(C=F | A=T,B=T)=1-P(C=T | B=T)=0.1$$

Problem 3

The plate notation for Bayesian Logistic Regression can be represented as follows:

Y1 ~ Bernoulli(invLogit(X1
$$\beta$$
)) Y2 ~ Bernoulli(invLogit(X2 β)) ... YN ~ Bernoulli(invLogit(XN β)) β ~ Normal(μ , Σ).

Each box represents a set of variables or data points. The X boxes represent the input vectors. The Y boxes represent the binary outcomes. The arrows from X to Y indicate that each outcome Y n depends on its corresponding input vector X n through the parameter vector β . The prior distribution of the parameter vector β is represented outside the boxes. In this case, it follows a normal distribution with mean μ and covariance matrix Σ .

Variable	All Factors	Participates	New Factor After *	New Factor After +
А	P(A),P(B A),P(D), P(C B,D),P(E C)	P(A),P(B A)	f1(A,B)	t1(B)
В	t1(B),P(D), P(C B,D),P(E C)	t1(B),P(C B,D)	f2(B,C,D)	t2(C,D)
D	P(D),P(E C),t2(C,D)	P(D),t2(C,D)	f3(C,D)	t3(C)
С	P(E C),t3(C)	P(E C),t3(C)	f4(E,C)	t4(E)
Normalize	t4(E)		•	