

Analyse Numérique Corrigé Série 20

1. ((\star), Questions a et b) Fonction d'itérations et convergence de la méthode de point fixe Supposons que l'on veut calculer les racines de l'équation $f(x) = x^2 - 5x + 6 = 0$ avec les méthodes de point fixe suivantes :

(1)
$$x_{k+1} = \frac{x_k^2 + 6}{5}$$
, (2) $x_{k+1} = \sqrt{5x_k - 6}$, (3) $x_{k+1} = \frac{x_k^2 - 6}{2x_k - 5}$.

(a) (0.25 points) Vérifier que les racines de f(x) sont points fixes des fonctions d'itérations $\Phi_1(x)$, $\Phi_2(x)$, $\Phi_3(x)$ relatives aux trois méthodes ci-dessus.

Sol: On trouve d'abord les fonctions d'itérations relatives aux trois méthodes :

$$\Phi_1(x) = \frac{x^2 + 6}{5}, \qquad \Phi_2(x) = \sqrt{5x - 6}, \qquad \Phi_3(x) = \frac{x^2 - 6}{2x - 5}.$$

Les racines de f(x) sont $\alpha_1 = 2$ et $\alpha_2 = 3$. On a bien que $\Phi_i(\alpha_j) = \alpha_j$ pour i = 1, 2, 3 et j = 1, 2.

(b) **(0.75 points)** Analyser la convergence de ces méthodes (convergente, pas convergente, taux de convergence).

Sol.: On peut calculer les dérivées des Φ_i :

$$\varPhi_1'(x) = \frac{2}{5}\,x, \qquad \varPhi_2'(x) = \frac{5}{2\sqrt{5x-6}}, \qquad \varPhi_3'(x) = \frac{2x^2-10x+12}{(2x-5)^2},$$

et les évaluer en les racines $\alpha_1=2$ et $\alpha_2=3$. On obtient :

i. On a

$$|\Phi_1'(2)| = \frac{4}{5} < 1, \quad et \quad |\Phi_1'(3)| = \frac{6}{5} > 1,$$

donc la méthode (1) converge linéairement vers $\alpha_1 = 2$ pour tout x_0 suffisamment proche de $\alpha_1 = 2$, mais elle ne converge pas vers $\alpha_2 = 3$.

ii. On a

$$|\varPhi_2'(2)| = \frac{5}{4} > 1, \quad et \quad |\varPhi_2'(3)| = \frac{5}{6} < 1,$$

donc la méthode (2) converge linéairement vers $\alpha_2 = 3$ pour tout x_0 suffisamment proche de $\alpha_2 = 3$, mais elle ne converge pas vers $\alpha_1 = 2$.

iii. On a

$$|\Phi_3'(2)| = 0$$
, et $|\Phi_3'(3)| = 0$,

et

$$|\Phi_3''(2)| = \left| \frac{2}{(2 \cdot 2 - 5)^3} \right| \neq 0, \quad \text{et} \quad |\Phi_3''(3)| = \left| \frac{2}{(2 \cdot 3 - 5)^3} \right| \neq 0,$$

donc la méthode (3) converge quadratiquement vers $\alpha_1 = 2$ pour tout x_0 suffisamment proche de $\alpha_1 = 2$, et converge quadratiquement vers $\alpha_2 = 3$ pour tout x_0 suffisamment proche de $\alpha_2 = 3$.

(c) Considérez le tableau suivant, qui collecte des valeurs de x_k calculées en MATLAB selon les méthodes de point fixe proposées ci-dessus :

itération	A	В	C	D	E
0	3.10000000000000000	3.10000000000000000	3.1000000000000000	2.10000000000000000	2.1000000000000000
1	3.082207001484488	3.1220000000000000	3.0083333333333334	2.0820000000000000	1.9875000000000000
2	3.067741026785416	3.1493768000000000	3.000068306010928	2.0669448000000000	1.999847560975610
3	3.055929504083346	3.183714845675648	3.0000000004665074	2.054452161249408	1.999999976769426
4	3.046251388250275	3.227208043715103	3.00000000000000001	2.044154736572473	2.0000000000000000
;	:	:	:	:	<u>:</u>
100	3.000000001115209	Inf	3	2.000000000023234	2

Associer chaque colonne à la fonction d'itération la plus raisonnable parmi les fonctions d'itérations $\Phi_1(x), \ \Phi_2(x), \ \Phi_3(x).$

Sol.: A avec $\Phi_2(x)$, B avec $\Phi_1(x)$, C avec $\Phi_3(x)$, D avec $\Phi_1(x)$, E avec $\Phi_3(x)$.

(d) La fonction d'itération $\Phi_3(x)$ n'a pas été choisie par hasard. Pourquoi la méthode (3) montre le taux de convergence que vous avez trouvé dans le point (b)? Comment est-ce qu'on peut construire $\Phi_3(x)$?

Sol.: La convergence de la méthode (3) est quadratique car il s'agit de la fonction d'itération de la méthode de Newton pour f(x):

$$\Phi_3(x) = x - \frac{f(x)}{f'(x)} = \dots = \frac{x^2 - 6}{2x - 5}.$$

(e) Considérer maintenant la fonction

$$g(x) = \frac{x}{\sqrt{1+x^2}}.$$

On veut calculer la racine de g(x) = 0 à l'aide de l'itération suivante :

$$x_{k+1} = -x_k^3.$$

- i. Quel est le taux de convergence de cette méthode? Pour quelles valeurs de x_0 la méthode converge? Comment est-ce qu'on peut trouver la fonction d'itération $\Phi(x) = -x^3$?
- ii. Qu'est-ce qui se passe pour $x_0 = \pm 1$? Et pour $x_0 = 2$? Vérifier directement.

Sol.:

i. Le point fixe de l'itération $x_{k+1} = -x_k^3$ est $x^* = 0$. La convergence de cette méthode est cubique, car (voir aussi l'exemple 7.9 dans les polycopiés)

$$\Phi'(0) = 0$$
, $\Phi''(0) = 0$, $\Phi'''(0) = -6 \neq 0$.

La méthode converge pour tout $x_0 \in (-1, +1)$ (on peut le vérifier directement). La fonction d'itération $\Phi(x) = -x^3$ est la fonction d'itération de la méthode de Newton appliquée à $g(x) = x/\sqrt{1+x^2}$.

- ii. Pour $x_0 = \pm 1$, la méthode montre un comportement oscillatoire entre -1 et +1. Pour $x_0 = 2$, la méthode diverge.
- 2. (**, Questions a et b)(Quelques exemples contre-intuitifs)
 - (a) **(0.50 points)** On pose $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$. Que valent les normes 2 de A et

B? En fonction de la condition initiale choisie, que peut-on dire de la convergence et de la divergence des suites définies par $x_{k+1} = Ax_k$ et $y_{k+1} = By_k$?

Sol.: La norme de A vaut exactement 1. De plus comme A est orthogonale, on a $||x_{k+1}|| = ||x_k||$. Donc $(x_k)_k$ ne converge que si $x_0 = 0$. Mais elle ne diverge jamais.

De son côté, la norme de B vaut 2. Pourtant la suite $(y_k)_k$ ne diverge pas pour autant. B est diagonalisable de valeurs propres 0 et -2. Si $y_0 \in E_0 = \text{Vect}\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right)$, alors $(y_k)_k$ converge vers 0 en une étape. Sinon, $(y_k)_k$ diverge.

(b) **(0.50 points)** On se donne la suite définie par $x_{k+1} = \sin(x_k)$, $x_0 \in]0, \pi/2]$. Montrer que pour tout $k, x_k \in [0, \pi/2]$. L'application sin est-elle contractante? Montrer que $(x_k)_k$ converge vers 0, le point fixe de sin sur $[0, \pi/2]$.

Sol.: Pour commencer, $\sin([0,\pi/2]) = [0,1]$, donc pour tout k, $x_k \in [0,\pi/2]$. Puis, en utilisant l'inégalité $\sin(x) \leq x$, on déduit que la suite $(x_k)_k$ est décroissante. Elle est minorée par 0 donc elle converge. Elle ne peut converger que vers un point fixe de $\sin \sup [0,\pi/2]$, donc vers 0.

En fait, on peut même montrer que $x_k \sim \sqrt{3/k}$. C'est donc une convergence très lente, bien loin du L^k donné par le théorème du point fixe!

- (c) On définit la suite arithmético-géométrique par $x_{k+1} = \frac{x_k + y_k}{2}$, $y_{k+1} = \sqrt{x_k y_k}$, $x_0 = a$, $y_0 = b$ avec $a \ge b > 0$.
 - i. Montrer que $x_k \geq y_k$ pour $k \geq 1$. En déduire que les suites sont adjacentes et qu'elles convergent vers une même limite notée m satisfaisant $x_k \geq m \geq y_k$.

Sol.: On remarque que $x_k > 0$ et $y_k > 0$ pour tout k, donc $2(x_{k+1} - y_{k+1}) = (\sqrt{x_k} - \sqrt{y_k})^2 \ge 0$, d'où $x_k \ge y_k$ pour $k \ge 1$. En utilisant cette inégalité dans les définitions des suites, on déduit que $b \le y_k \le y_{k+1} \le x_{k+1} \le x_k \le a$ pour $k \ge 1$. La suite $(x_k)_k$ est décroissante minorée donc elle converge vers x. De même la suite $(y_k)_k$ est croissante majorée donc elle converge vers y. Comme $x_{k+1} = \frac{x_k + y_k}{2}$, on doit avoir $x = \frac{x+y}{2}$, donc x = y. La propriété $x_k \ge m \ge y_k$ provient de la croissance de $(y_k)_k$ et de la décroissance de $(x_k)_k$.

ii. On pose $e_k=(x_k-m,y_k-m)$. Montrer que $\|e_k\|_1=x_k-y_k$ pour $k\geq 1$. En déduire que

$$||e_{k+1}||_1 \le \frac{1}{8m} ||e_k||_1^2.$$

Indication: On pourra prouver l'égalité $\frac{(x_k-y_k)^2}{4}=2(x_{k+1}-y_{k+1})x_{k+2}$.

Sol.: On a d'abord $||e_k||_1 = |x_k - m| + |y_k - m| = x_k - m + m - y_k = x_k - y_k$ car $x_k \ge y_k$ pour $k \ge 1$. Puis

$$2(x_{k+1} - y_{k+1})x_{k+2} = (x_{k+1} - y_{k+1})(x_{k+1} + y_{k+1})$$

$$= x_{k+1}^2 - y_{k+1}^2$$

$$= \left(\frac{x_k + y_k}{2}\right)^2 - x_k y_k$$

$$= \frac{(x_k - y_k)^2}{4}.$$

Il vient donc

$$\begin{aligned} \|e_{k+1}\|_1 &= x_{k+1} - y_{k+1} \\ &= \frac{(x_k - y_k)^2}{8x_{k+2}} \\ &= \frac{1}{8x_{k+2}} \|e_k\|_1^2 \\ &\leq \frac{1}{8m} \|e_k\|_1^2. \end{aligned}$$

iii. Donner une condition suffisante sur a et b pour avoir une inégalité du type $||e_k||_1 \le \alpha \beta^{2^k}$ avec $|\beta| < 1$.

Sol.: Pour k = 0, il suffit que $\alpha\beta \geq a - b$. On suppose le résultat vrai au rang k, alors

$$||e_{k+1}|| \le \frac{1}{8m} ||e_k||_1^2 \le \frac{1}{8b} \alpha^2 \beta^{2^{k+1}}.$$

Il faut donc que $\frac{1}{8b}\alpha^2 \leq \alpha$, c'est à dire $\alpha \leq 8b$. On pose $\alpha = 8b$, puis $\beta = \frac{a-b}{\alpha} = \frac{a-b}{8b}$. Il suffit que a < 9b, ainsi $0 \leq \beta < 1$.

iv. On pose la fonction

$$F(x,y) = \begin{pmatrix} \frac{x+y}{2} \\ \sqrt{xy} \end{pmatrix}.$$

Que vaut F'(m,m)? Que dire de l'estimation précédente de e_k ? Est-elle en accord avec le cours?

Sol.: On a

$$F'(x,y) = \frac{1}{2} \begin{pmatrix} 1 & 1\\ \sqrt{y/x} & \sqrt{x/y} \end{pmatrix},$$

donc

$$F'(m,m) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Au vue de l'estimation précédente, on s'attendait à avoir un point fixe superattractif avec F'(m,m)=0, mais ce n'est pas le cas. On peut donc converger quadratiquement même si la dérivée ne s'annule pas au point fixe.