

Storage Elements

Basic Computational Model:

- So far we have discussed *combinational components*, i.e. the output is a function only of the current inputs
 - How do we "store" the values of variables for later use?

Sequential Components:

- In <u>sequential components</u>, the output is a function of the current inputs AND the <u>current state</u> of the circuit
- The <u>current state</u> is a function of a sequence of inputs over multiple time steps, starting from a known state.
 - The state is stored in storage elements: (e.g. Latches, Flip-Flops, Registers, Memory)

Set/Reset Latch (S/R)

Gate-Level Implementation:

Truth Table:

	S	R	Q_{t}	$Q_{t+1} Q'_{t+1}$
Keep{	0	0	0	0 1
	0	0	1	1 0
Reset{	0	1	0	0 1
Resett	0	1	1	0 1
Set{	1	0	0	1 0
200(1	0	1	1 0
Illegal{	1	1	0	? ?
	1	1	1	? ?

Notice that for the first time we allow "feedback" between the combinational gates

Gated S/R Latch

Gate-Level Implementation:

EE1202 Lecture #5 © A. Khoobroo, N. Dodge, Y. Makris

Truth Table if E=1:

	S	R	Q_t	Q_{t+1}	Q'_{t+1}
Keep	0	0	0	0	1
Keep	0	0	1	1	0
Reset	0	1	0	0	1
Resett	0	1	1	0	1
Set{	, 1	0	0	1	0
	1	0	1	1	0
Illegal{	, 1	1	0	?	?
megai	1	1	1	?	?

Truth Table if E=0:

IF
$$Q_t=1$$
,
 $Q_{t+1} = 1$ and $Q'_{t+1} = 0$
IF $Q_t=0$,
 $Q_{t+1} = 0$ and $Q'_{t+1} = 1_3$

D-Latch

Avoiding the "illegal combinations":

Force S and R to be always different

Introducing the "Clock"

Asynchronous vs. Synchronous Design:

- Signals may take different paths in the design and arrive at any arbitrary time and order
- The Latches that we examined will respond immediately to any signal change at their inputs, so the result may depend on the time and order of signal arrival
 - This makes our circuit unpredictable How do we synchronize the computation?

Clock:

A periodic signal that imposes a synchronization point

D Flip-Flop Master/Slave

Basic Idea:

Connect two latches in series, the "Master" and the "Slave". Use a clock signal to enable the Slave and the inverse of the clock signal to enable the Master. The Master stores the result while the clock is 0 and then passes it to the Slave when the clock is 1.

D Flip- Flop with Enable

Operation:

Sy	ym	bo]	! :

Е	Function	Comment
0	$Q_{t+1} = Q_t$	Keep Previous Value
1	$Q_{t+1}=In_t$	Load Input Data

Implementation:

Note: The MUX Passes the In to the D when E=1 and the Q to the D when E=0

D Flip- Flop with Enable and Clear

Operation:

СЕ	Function	Comment
0 0	$Q_{t+1} = Q_t$	Keep Previous Value
0 1	$Q_{t+1}=In_t$	Load Input Data
1 0	$Q_{t+1}=0$	Clear to 0
1 1	$Q_{t+1}=0$	Clear to 0

Implementation:

8-Bit Register with Enable and Clear

Note: The same Enable E and Clear C signals are used to drive all D Flip-Flops so that they all Clear, Load from the inputs I[7:0], or Keep the previous Values Q[7:0]

(The clock signals are not shown for clarity of the figure)

Register-Based Circuit

Block Diagram:

Operation:

- Initialize the Register to "00000000" by C=1 and sending a clock pulse
- Take the current value of the Register, Q[7:0], increment it by "1" and store it back into the Register by C=0. F=1, and sending a

the Register by C=0, E=1, and sending a clock pulse

It's a counter!!!

• Overflow asserted when counter "wraps around"

Building an increment by "1" Circuit

<u>Simple Idea – Use an Adder:</u>

Hardware Reduction:

$$s_i = x_i \oplus y_i \oplus c_i \text{ but } x_i = 0, \text{ so } s_i = 0 \oplus y_i \oplus c_i => \mathbf{s_i} = \mathbf{y_i} \oplus \mathbf{c_i}$$

$$c_{i+1} = x_i \cdot y_i + c_i \cdot (x_i \oplus y_i) \text{ but } x_i = 0, \text{ so } c_{i+1} = 0 \cdot y_i + c_i \cdot (0 \oplus y_i) => \mathbf{c_{i+1}} = \mathbf{c_i} \cdot \mathbf{y_i}$$

Special Case:
$$s_0 = c_{in} \oplus y_0 => s_0 = 1 \oplus y_0 => s_0 = y_0'$$

and $c_1 = c_{in} \cdot y_0 => c_1 = 1 \cdot y_0 => c_1 = y_0$

Reduced Hardware Implementation

Full Adder Reduces to Half Adder:

8-Bit increment Circuit

8-Bit Counter with Load, Count and Reset

Operation:

Reset	Count	Load	Operation
0	0	0	Keep Previous
0	0	1	Load from IN
0	1	0	Count Up by 1
0	1	1	Load from IN
1	0	0	Reset to 0
1	0	1	Reset to 0
1	1	0	Reset to 0
1	1	1	Reset to 0

Symbol:

8-Bit Counter with Load, Count and Reset

Block Diagram:

AC RL and RC Circuits

- When a sinusoidal AC voltage is applied to an RL or RC circuit, the relationship between voltage and current is altered.
- The voltage and current still have the same frequency and cosine-wave shape, but voltage and current no longer rise and fall together.
- To solve for currents in AC RL/RC circuits, we need some additional mathematical tools:
 - Using the complex plane in problem solutions.
 - Using transforms to solve for AC sinusoidal currents.

Imaginary Numbers

- Solutions to science and engineering problems often involve $\sqrt{-1}$.
- Scientists define $i = -\sqrt{-1}$.
- As we EE's use *i* for AC current, we define $j = +\sqrt{-1}$.
- Thus technically, j = -i, but that does not affect the math.
- Solutions that involve *j* are said to use "imaginary numbers."
- Imaginary numbers can be envisioned as existing with real numbers in a two-dimensional plane called the "Complex Plane."

Complex Plane

- In the complex plane, imaginary numbers lie on the y-axis, real numbers on the x-axis, and complex numbers (mixed real and imaginary) lie off-axis.
- For example, 4 is on the +x axis, -8 is on the -x axis, j6 is on the +y axis, and -j14 is on the -y axis.
- Complex numbers like 6+*j*4, or -12 –*j*3 lie off-axis, the first in the first quadrant, and the second in the third quadrant.

Transformation

- Transforms move a problem from the real-world domain, where it is hard to solve, to an alternate domain where the solution is easier.
- Sinusoidal AC problems involving R-L-C circuits are hard to solve in the "real" time domain but easier to solve in the ω -domain.

The ω Domain

- In the time domain, *RLC* circuit problems must be solved using calculus.
- However, by transforming them to the ω domain (a <u>radian</u> frequency domain, $\omega = 2\pi f$), the problems become <u>algebra</u> problems.
- A catch: We need transforms to get the problem to the ω domain, and inverse transforms to get the solutions back to the time domain!

Euler's formula

- You should remember Euler's formula from trigonometry (if not, get out your old trig textbook and review):
- The alternate expression for $e^{\pm jx}$ is a <u>complex number</u>. The real part is $\cos x$ and the imaginary part is $\pm j\sin x$.
- We can say that $\cos x = \text{Re}\{e^{\pm jx}\}$ and $\pm j\sin x = \text{Im}\{e^{\pm jx}\}$, where Re = "real part" and Im = "imaginary part."
- We usually express AC voltage as a <u>cosine function</u>. That is, an AC voltage v(t) and be expressed as $v(t) = V_p \cos \omega t$, where V_p is the peak AC voltage.
- Therefore we can say that $v(t) = V_p \cos \omega t = V_p \operatorname{Re}\{e^{\pm j\omega t}\}$. This relation is important in developing inverse transforms.

Frequency Domain Transformation

Element	Time Domain	ω Domain Transform
AC Voltage	$V_p \cos \omega t$	V_{p}
Resistance	R	Ŕ
Inductance	L	$j\omega L$
Capacitance	C	1/jωC

- The time-domain, sinusoidal AC voltage is normally represented as a cosine function, as shown above.
- *R*, *L* and *C* are in Ohms, Henrys and Farads.
- Skipping some long derivations (which you will get in EE 3301), transforms for the ω domain are shown above.
- Notice that the AC voltage ω -transform has no frequency information. However, frequency information is carried in the L and C transforms.

Frequency Domain Transformation

Element	Time Domain	ω Domain Transform
AC Voltage	$V_p \cos \omega t$	V_p
Resistance	R	R
Inductance	$oldsymbol{L}$	$j\omega L$
Capacitance	\boldsymbol{C}	1/jωC

- Because we are studying constant-frequency sinusoidal AC circuits, the ω -domain transforms are <u>constants</u>.
- This is a considerable advantage over the time-domain situation, where *t* varies constantly (which is why solving for sinusoidal currents in the time domain is a calculus problem).
- Two other items:
 - In the ω -domain, the units of R, $j\omega L$, and $1/j\omega C$ are Ohms.
 - In the ω -domain, Ohm's Law and Kirchoff's voltage and current laws still hold.