9/15/2015 - T. Ekholm, knot contact homology & topological recursion	•
- joint work (in progress) o/ L. Ng & M. Agazagic. Setup: $k = k_1 v k_m$ in S^3 . Let conormal of k in T^*S^3 Shape $\Delta_k = L_k \cap U^*S^3$.	
$\frac{\text{Cut } \vee \text{knot}}{\text{Li}} \approx \frac{\text{Pi}}{\text{Li}} \times i.$	
Constable tensition: 52 Constable tensition:	CR'
& "push Lik into over spece"	
es, it LK = s'aR?, pully do, it iff of zer section,	
herce suiver L syla gradec.	
$C_1(X)=0$, and Maslow class at L_{k} is O . So any hole one of W. on L_{k} is significant.	
Want: Court holomorphic corner with boundary on LK.	
$F = \frac{1}{g_s} \left(F_s + g_s F_a + g_{sp}^2 F_z + - \right)$	g.
They capty / Plank 2-7 (ane).	

$F_{j} = \sum_{k_{1}, -j, k_{m_{j}}, l} C_{k_{1}, -j, k_{m_{j}}, l} e^{kx_{1}} - e^{kx_{1}} Q^{l}$	
kin-kin l	
water houseless class of come is q	cloud 1 L
Could come of with $\chi = -j+1$.	your (Noth
e.g. (D)	
e.g. (6)	
$\int_{\mathbf{K}} (\mathbf{x}_{1/2}, \mathbf{x}_{m}) = \exp(\mathbf{F}) (*).$	
(Conj.) = colored HOMFLY & / paracets 9 = e 95 , N= # color	r,
(Conj.) = colored HOMFLY & ν / parameter $g = e^{9s}$, $N = \#$ ofor Physics greated path integrals. $Q = e^{Ng}$. (Depends on Withis conjecture	
Chen Somens / A-model duality + large N dulity,	
+ 0. giri - Vafa : CS(\$3) = count of hol. comosing	contell).
(Thex could may deput) on a front of the form	
One can compute the disk potential from knot contact homology.	
Enot contact homology associates	
A(AK) = Z[Hz (4x5, AK)] < Reed chards >	
Reds [1:1] = [[etxi et Pi Q] Ree 6 chard 7 not cannot, 6/c not honology down hype	
not carried, 6/c rel honology de dyre	O &
(d has degree -2)	1
diads beginny or	2
index = prex on per	
- Link is and	

الم

LK. An eract filling of Ax Endaces on arguentation.

8 2(a) = \(\sigma \)

8 0 \(\text{20} : \sigma \)

1 \(\text{bandary} . \)

Ly usmeradi 1 bandy ~> () Ideni fix for all disks a bounding socheins which gog b wings stor the start and So Count also dishes u/ in sertions "more post I subsee inside LK. the number of thes confinset P= 2 to local punctum to along are branch. no Essure one insortes to Essortes. + Stymety Holy sorthy & steered to continue like configurations of exchange insche actually; of Engotians. (so potential deads on potulator scheme!

K= k, v kz. Lx= Lx, v Lxz. Count anuli of bonday on Lk, bone on Lkz. (conj: by physicists: disc + anniles ques reconne competation for everythings! some evidence for forus lends. for quark augmentatives, dure opensed?

CH^{lin} $(k_1, k_2) = 0$, &

CH^{lin} $(k_2) =$ rk = 1 in deg. a b 2 rk = 0 in degree 0. PF: Lx CT*S' is now exact. induces au, mentione P,=0 & can deho a map (due to ey. Celichele-Latsder aryully) for clords to chain of paths ka -> kz. Lkz this map is an ismopher. k, 753 kz => CHla (Ak, Akz, uss Lu., Luz) More control path 11 (P(K, Kz)) but the recolliven en. 2 Max = (1-exi)s, +(2-exz)sz. so for generi local systems its actually acydic (!)

Next, lets try to count anoth.

Take a generá (x_1, x_2) . Take a generator of CHIA (K1), I have consider the module space (b secretly insert discs everywhere / Lands chass, ctr.) The boundary of this model space: (suppress anguenther) Is hot comes state at a w/ all nowhy, anywatethers $Z_c(e,e^p,e^q)$ (and (idehally 8 an augustatu) Ax, X, Q & the coul of anuli. (gen. for.) = EC, kz, e kix bexe of O. No- + do (+): top piece is part of & different Geord prace (ii): by lenna, deg O part & soro. The best of = 1. balls 6. so then to ==

(b/c honology is degree & is zoof) ==

Seens to agree u/ predictions.

In general, they to do some thing is wast case is the all topology in filting.

By this arguent can to more recursion I relate higher completely.

It put'l cross it so defenses covered all years in interess.

This type of stratue an exist outside least contact homology.