Lecture 6: Basic Artificial Neural Networks

Shenghua Gao

neuron

10/19/2023

M

Mathematical model of a neuron

input features $\underbrace{1}_{x_1} \underbrace{w_{\text{e}ights}}_{x_2}$ sum non-linearity output $\underbrace{x_2}_{x_M}$

4

10/19/2023

Capacity of single neuron

- Binary classification
 - \square A neuron estimates $P(y=1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$
 - □ Its decision boundary is linear, determined by its weights

Capacity of neural network

- Universal approximation
 - ☐ Theorem (Hornik, 1991)

A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.

- The result applies for sigmoid, tanh and many other hidden layer activation functions
- Caveat: good result but not useful in practice
 - How many hidden units?
 - How to find the parameters by a learning algorithm?

7

м

General neural network

Multi-layer neural network

Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second hidden layer and 1 output unit

- Naming conventions; a N-layer neural network:
 - N − 1 layers of hidden units
 - One output layer

7

Multilayer networks

network: sequence of parallelized weighted sums and non-linearities

DEFINE
$$\mathbf{x}^{(0)} \equiv \mathbf{x}$$
, $\mathbf{x}^{(1)} \equiv \mathbf{h}$, etc.

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)\mathsf{T}}\mathbf{x}^{(0)}$$
 $\mathbf{s}^{(2)} = \mathbf{W}^{(2)\mathsf{T}}\mathbf{x}^{(1)}$ $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)})$ $\mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$

1

Multilayer networks

10

- Each hidden neuron is an output of a perceptron
- So you will have

$$\begin{bmatrix} h_1^1 \\ h_2^1 \\ \dots \\ h_n^1 \end{bmatrix} = \begin{bmatrix} w_{11}^1 & w_{12}^1 & \dots & w_{1n}^1 \\ w_{21}^1 & w_{22}^1 & \dots & w_{2n}^1 \\ \vdots & \vdots & \ddots & \vdots \\ w_{m1}^1 & w_{m2}^1 & \dots & w_{mn}^1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Interpreting the Hidden Layer

- Each hidden neuron is responsible for certain features.
- Given an object, the network identifies the most likely features.

12

Interpreting the Hidden Layer

10/19/2023

Other network connectivity

sequential connectivity: information must flow through the entire sequence to reach the output

information may not be able to propagate easily make shorter paths to output

residual & highway connections

Deep residual learning for image recognition, He et al., 2016 Highway networks, Srivastava et al., 2015 dense (concatenated)
connections

Densely connected convolutional networks, Huang et al., 2017

Multiclass linear classifiers

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

The winer-takes-all (WTA) prediction: one-hot encoding of its

predicted label
$$y = 1 \Leftrightarrow y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $y = 2 \Leftrightarrow y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $y = 3 \Leftrightarrow y = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

v

Probabilistic outputs

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

Scores are also termed as logits or unnormalized log probabilities of the classes

Example: Logistic Regression

Learning loss: negative log likelihood

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s} = f(x_i;W) \end{aligned}$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

Logistic Regression

Learning loss: example

10/19/2023 **18**

Logistic Regression

Learning loss: questions

10/19/2023

Logistic Regression

Learning loss: questions

10/19/2023 **20**

Learning with regularization

- Constraints on hypothesis space
 - Similar to Linear Regression

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Model should be "simple", so it works on test data

Learning with regularization

Regularization terms

In common use:

L2 regularization $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ Max norm regularization (might see later)

- Priors on the weights
 - □ Bayesian: integrating out weights
 - Empirical: computing MAP estimate of W

Optimization: gradient descent

Stochastic gradient descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

10/19/2023 **23**

Optimization: gradient descent

Stochastic gradient descent

- the objective does not always decrease for each step
- comparing to GD, SGD needs more steps, but each step is cheaper
- mini-batch, say pick up 100 samples and do average, may accelerate the convergence

Modern MLP as Implicit Representation

Generative Query Networks [Eslami et al. 2018]

[Flynn et al., 2016; Zhou et al., 2018b; Mildenhall et al. 2019]

RenderNet [Nguyen-Phuoc et al. 2018]

Voxel Grids + CNN decoder

Multiplane Images (MPIs)

DeepVoxels [Sitzmann et al. 2019]

Neural Volumes [Lombardi et al. 2019]

Voxel Grids + Ray Marching

10/19/2023 **25**