AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: All Units	Free Response Question Stem Types	Date: April 29, 2020
	Algebraic	

BC1: Let *g* be the function defined by $g(x) = \frac{f(x)}{(2x)(2x-1)}$.

- (a) If the slope of the line tangent to the graph of g at $x=\frac{1}{4}$ is -12, find the slope of the line tangent to the graph of f at $x=\frac{1}{4}$.
- (**b**) When f(x) = 1, g can be written as $g(x) = \frac{1}{2x 1} \frac{1}{2x}$. For f(x) = 1, determine if $\sum_{n=1}^{\infty} a_n$ converges or diverges where $a_n = g(n)$.

(c) If the function g has a critical point at x = 1, find the x intercept the line tangent to f(x) at x = 1.

The problem has been restated.

BC1: Let *g* be the function defined by $g(x) = \frac{f(x)}{(2x)(2x-1)}$.

(d) Consider the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ where $a_n = f(n)$ and $b_n = g(n)$. If $\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \frac{11}{7}$ use the ratio test to determine if the series $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n a_n$ converges or diverges.

(e) If $\int g(x)dx = \frac{1}{2}ln|(2x)(2x-1)| + C$, find an expression for f(x).

- **BC2**: Let f be the piecewise defined function defined by $f(x) = \begin{cases} ax + b, & x < 0 \\ 4e^{-2x}, & x \ge 0 \end{cases}$ where a and b are constants.
- (a) Find the values for a and b such that f(x) is differentiable at x = 0.

(**b**) Let p be a function such that $f(x) = x^2 - \int_0^x p(t)dt$. Find any nonzero value(s) of x where p has a critical point.

(c) Let k(x) = f(f(x)) where a = b = 2. Find $k'(-\frac{1}{2})$.

The problem has been restated.

- **BC2**: Let f be the piecewise defined function defined by $f(x) = \begin{cases} ax + b, & x < 0 \\ 4e^{-2x}, & x \ge 0 \end{cases}$ where a and b are constants.
- (**d**) If $\lim_{x \to -1} \frac{f(x)}{1 x^2} = 3$, find the values of a and b.

(e) Let $h(x) = e^{f(x)}$. The 2nd degree Taylor polynomial for h(x) centered at x = -3 is given by $P_2(x) = 1 - 2(x+3) + 2(x+3)^2$. Find a and b.

BC3: Let *g* be the function defined by $g(x) = \frac{f(x)}{(2x)(2x-1)}$.

(a) Let $h(x) = \begin{cases} g(x), & x < \frac{1}{2} \\ 3e^{2x-1}, & x \ge \frac{1}{2} \end{cases}$. If h is continuous at $x = \frac{1}{2}$, write an equation of the line tangent to f(x) at $x = \frac{1}{2}$.

(b) If $\lim_{x\to 0} g(x) = -5$ and $f(x) = a\sin(\pi x) + b$, find a and b.

(c) Find $\int_{1}^{4} g(x)dx \text{ when } f(x) = 4x + 3.$

- **BC4**: Let f be the piecewise defined function defined by $f(x) = \begin{cases} ax + b, & x < 0 \\ 4e^{-2x}, & x \ge 0 \end{cases}$ where a and b are constants.
- (a) Let $g(x) = \frac{f(x)}{2x}$. Find g'(1).

(**b**) Let a = 2 and b = 0, find the average value of f(x) over the interval [-1, 1].

(c) Let a = b > 0, find the values of a and b such that $\int_{-1}^{0} f(x) dx = \int_{0}^{\infty} f(x) dx$.

(d) Let $a_n = f(n)$. Find $\sum_{n=0}^{\infty} a_n$.