PREFACE TO THE 2015 EDITION

In this preface, we start with an overview of developments in statistics since the first (1977) edition, then give separate overviews of Volumes I and II of the second edition.

In the last 40 some years statistics has changed enormously under the impact of several forces:

- (1) The generation of what were once unusual types of data such as images, trees (phylogenetic and other), and other types of combinatorial objects.
- (2) The generation of enormous amounts of data—terabytes (the equivalent of 10^{12} characters) for an astronomical survey over three years.
- (3) The possibility of implementing computations of a magnitude that would have once been unthinkable.

The underlying sources of these changes have been the exponential change in computing speed (Moore's "law") and the development of devices (computer controlled) using novel instruments and scientific techniques (e.g., NMR tomography, gene sequencing). These techniques often have a strong intrinsic computational component. Tomographic data are the result of mathematically based processing. Sequencing is done by applying computational algorithms to raw gel electrophoresis data.

As a consequence the emphasis of statistical theory has shifted away from small sample optimality results in a number of directions:

- (1) Methods for inference based on larger numbers of observations and minimal assumptions—asymptotic methods in non- and semiparametric models, models with "infinite" number of parameters.
- (2) The construction of models for time series, temporal spatial series, and other complex data structures using sophisticated probability modeling but again relying for analytical results on asymptotic approximation. Multiparameter models are the rule.
- (3) The use of methods of inference involving simulation as a key element such as the bootstrap and Markov Chain Monte Carlo.

- (4) The development of techniques not describable in "closed mathematical form" but rather through elaborate algorithms for which problems of existence of solutions are important and far from obvious.
- (5) The study of the interplay between numerical and statistical considerations. Despite advances in computing speed, some methods run quickly in real time. Others do not and some though theoretically attractive cannot be implemented in a human lifetime.
- (6) The study of the interplay between the number of observations and the number of parameters of a model and the beginnings of appropriate asymptotic theories.

There have been other important consequences such as the extensive development of graphical and other exploratory methods for which theoretical development and connection with mathematics have been minimal. These will not be dealt with in our work.

In this edition we pursue our philosophy of describing the basic concepts of mathematical statistics relating theory to practice.

Volume I

This volume presents the basic classical statistical concepts at the Ph.D. level without requiring measure theory. It gives careful proofs of the major results and indicates how the theory sheds light on the properties of practical methods. The topics include estimation, prediction, testing, confidence sets, Bayesian analysis and the more general approach of decision theory.

We include from the start in Chapter 1 non- and semiparametric models, then go to parameters and parametric models stressing the role of identifiability. From the beginning we stress function-valued parameters, such as the density, and function-valued statistics, such as the empirical distribution function. We also, from the start, include examples that are important in applications, such as regression experiments. There is extensive material on Bayesian models and analysis and extended discussion of prediction and k-parameter exponential families. These objects that are the building blocks of most modern models require concepts involving moments of random vectors and convexity that are given in Appendix B.

Chapter 2 deals with estimation and includes a detailed treatment of maximum likelihood estimates (MLEs), including a complete study of MLEs in canonical k-parameter exponential families. Other novel features of this chapter include a detailed analysis, including proofs of convergence, of a standard but slow algorithm (coordinate descent) for convex optimization, applied, in particular to computing MLEs in multiparameter exponential families. We also give an introduction to the EM algorithm, one of the main ingredients of most modern algorithms for inference. Chapters 3 and 4 are on the theory of testing and confidence regions, including some optimality theory for estimation as well and elementary robustness considerations.

Chapter 5 is devoted to basic asymptotic approximations with one dimensional parameter models as examples. It includes proofs of consistency and asymptotic normality and optimality of maximum likelihood procedures in inference and a section relating Bayesian and frequentist inference via the Bernstein–von Mises theorem.

Finally, Chapter 6 is devoted to inference in multivariate (multiparameter) models. Included are asymptotic normality and optimality of maximum likelihood estimates, inference in the general linear model, Wilks theorem on the asymptotic distribution of the likelihood ratio test, the Wald and Rao statistics and associated confidence regions, and some parallels to the optimality theory and comparisons of Bayes and frequentist procedures given in the one dimensional parameter case in Chapter 5. Chapter 6 also develops the asymptotic joint normality of estimates that are solutions to estimating equations and presents Huber's Sandwich formula for the asymptotic covariance matrix of such estimates. Generalized linear models, including binary logistic regression, are introduced as examples. Robustness from an asymptotic theory point of view appears also. This chapter uses multivariate calculus in an intrinsic way and can be viewed as an essential prerequisite for the more advanced topics of Volume II.

Volume I includes Appendix A on basic probability and a larger Appendix B, which includes more advanced topics from probability theory such as the multivariate Gaussian distribution, weak convergence in Euclidean spaces, and probability inequalities as well as more advanced topics in matrix theory and analysis. The latter include the principal axis and spectral theorems for Euclidean space and the elementary theory of convex functions on \mathbb{R}^d as well as an elementary introduction to Hilbert space theory. As in the first edition, we do not require measure theory but assume from the start that our models are what we call "regular." That is, we assume either a discrete probability whose support does not depend on the parameter set, or the absolutely continuous case with a density. Hilbert space theory is not needed, but for those who know this topic Appendix B points out interesting connections to prediction and linear regression analysis.

Appendix B is as self-contained as possible with proofs of most statements, problems, and references to the literature for proofs of the deepest results such as the spectral theorem. The reason for these additions are the changes in subject matter necessitated by the current areas of importance in the field.

For the first volume of the second edition we would like to add thanks to Jianging Fan, Michael Jordan, Jianhua Huang, Ying Qing Chen, and Carl Spruill and the many students who were guinea pigs in the basic theory course at Berkeley. We also thank Faye Yeager for typing, Michael Ostland and Simon Cawley for producing the graphs, Yoram Gat for proofreading that found not only typos but serious errors, and Prentice Hall for generous production support.

Volume II

Volume II of the second edition will be forthcoming in 2015. It presents what we think are some of the most important statistical concepts, methods, and tools developed since the first edition. Topics to be included are: asymptotic efficiency in semiparametric models, semiparametric maximum likelihood estimation, survival analysis including Cox regression, classification, methods of inference based on sieve models, model selection, Monte Carlo methods such as the bootstrap and Markov Chain Monte Carlo, nonparametric curve estimation, and machine learning including support vector machines and classification and regression trees (CART).

The basic asymptotic tools that will be developed or presented, in part in the text and, in part in appendices, are weak convergence for random processes, elementary empirical process theory, and the functional delta method.

With the tools and concepts developed in this second volume students will be ready for advanced research in modern statistics.

We thank Akichika Ozeki and Sören Künzel for pointing out errors and John Kimmel and CRC Press for production support. We also thank Dee Frana and especially Anne Chong who typed 90% of Volume II for word processing.

Last and most important we would like to thank our wives, Nancy Kramer Bickel and Joan H. Fujimura, and our families for support, encouragement, and active participation in an enterprise that at times seemed endless, appeared gratifyingly ended in 1976 but has, with the field, taken on a new life.

Peter J. Bickel bickel@stat.berkeley.edu Kjell Doksum doksum@stat.wisc.edu

CONTENTS

ix

Pŀ	REFA	СЕ ТО	THE 2015 EDITION	xxi
1	STA	TISTIC	CAL MODELS, GOALS, AND PERFORMANCE CRITERIA	1
	1.1	Data, l	Models, Parameters, and Statistics	1
		1.1.1	Data and Models	1
		1.1.2	Parametrizations and Parameters	6
		1.1.3	Statistics as Functions on the Sample Space	8
		1.1.4	Examples, Regression Models	9
	1.2	Bayes	ian Models	12
	1.3	The D	ecision Theoretic Framework	16
		1.3.1	Components of the Decision Theory Framework	17
		1.3.2	Comparison of Decision Procedures	24
		1.3.3	Bayes and Minimax Criteria	26
	1.4	Predic	tion	32
	1.5	Suffici	lency	41
	1.6	Expon	nential Families	49
		1.6.1	The One-Parameter Case	49
		1.6.2	The Multiparameter Case	53
		1.6.3	Building Exponential Families	56
		1.6.4	Properties of Exponential Families	58
		1.6.5	Conjugate Families of Prior Distributions	62
	1.7	Proble	ems and Complements	66
	1.8	Notes		95
	1.9	Refere	ences	96

4.1

4.2

4.3

4.4

Introduction

X Contents METHODS OF ESTIMATION 99 **Basic Heuristics of Estimation** 99 2.1.1 Minimum Contrast Estimates: Estimating Equations 99 2.1.2 The Plug-In and Extension Principles 102 2.2 Minimum Contrast Estimates and Estimating Equations 107 2.2.1 Least Squares and Weighted Least Squares 107 2.2.2 Maximum Likelihood 114 2.3 Maximum Likelihood in Multiparameter Exponential Families 121 2.4 Algorithmic Issues 127 2.41 The Method of Bisection 127 2.4.2 Coordinate Ascent 129 2.4.3 The Newton-Raphson Algorithm 131 2.4.4 The EM (Expectation/Maximization) Algorithm 133 2.5 **Problems and Complements** 138 2.6 Notes 158 2.7 References 159 MEASURES OF PERFORMANCE 161 161 3 1 Introduction 3.2 **Bayes Procedures** 161 3.3 Minimax Procedures 170 3.4 Unbiased Estimation and Risk Inequalities 176 3.4.1 Unbiased Estimation, Survey Sampling 176 3.4.2 The Information Inequality 179 Nondecision Theoretic Criteria 3.5 188 3.5.1 Computation 188 3.5.2 189 Interpretability 3.5.3 Robustness 190 3.6 **Problems and Complements** 197 3.7 Notes 210 3.8 References 211

213

213

223

227

233

Confidence Bounds, Intervals, and Regions

Choosing a Test Statistic: The Neyman-Pearson Lemma

Uniformly Most Powerful Tests and Monotone Likelihood Ratio Models

TESTING AND CONFIDENCE REGIONS

Contents

	4.5	The Duality Between Confidence Regions and Tests		241
	4.6	Uniformly Most Accurate Confidence Bounds		248
	4.7	.7 Frequentist and Bayesian Formulations		251
	4.8	Predict	ion Intervals	252
	4.9	Likelih	nood Ratio Procedures	255
4.9.1 Introduction		Introduction	255	
		4.9.2	Tests for the Mean of a Normal Distribution-Matched Pair Experiments	257
		4.9.3	Tests and Confidence Intervals for the Difference in Means of Two Normal Populations	261
		4.9.4	The Two-Sample Problem with Unequal Variances	264
		4.9.5	Likelihood Ratio Procedures for Bivariate Normal	
			Distributions	266
	4.10	Proble	ms and Complements	269
		Notes		295
	4.12 References		nces	295
5	ASY	мрто	TIC APPROXIMATIONS	297
	5.1	Introdu	action: The Meaning and Uses of Asymptotics	297
	5.2	Consis	tency	301
		5.2.1	Plug-In Estimates and MLEs in Exponential Family Models	301
		5.2.2	Consistency of Minimum Contrast Estimates	304
	5.3	First- a	and Higher-Order Asymptotics: The Delta Method with Applications	306
		5.3.1	The Delta Method for Moments	306
		5.3.2	The Delta Method for In Law Approximations	311
		5.3.3	Asymptotic Normality of the Maximum Likelihood Estimate in Exponential Families	322
	5.4	Asymp	ototic Theory in One Dimension	324
		5.4.1	Estimation: The Multinomial Case	324
		5.4.2	Asymptotic Normality of Minimum Contrast and M -Estimates	327
		5.4.3	Asymptotic Normality and Efficiency of the MLE	331
		5.4.4	Testing	332
		5.4.5	Confidence Bounds	336
	5.5	Asymptotic Behavior and Optimality of the Posterior Distribution		
	5.6	Proble	ms and Complements	345
	5.7	Notes		
5.8 References		Refere	nces	363

XII Contents

6	INFERENCE IN THE MULTIPARAMETER CASE			365
6.1 Inference for Gaussian Linear Models		365		
		6.1.1	The Classical Gaussian Linear Model	366
		6.1.2	Estimation	369
		6.1.3	Tests and Confidence Intervals	374
	6.2	Asymı	ototic Estimation Theory in p Dimensions	383
		6.2.1	Estimating Equations	384
		6.2.2	Asymptotic Normality and Efficiency of the MLE	386
		6.2.3		391
	6.3	Large	Sample Tests and Confidence Regions	392
		6.3.1	Asymptotic Approximation to the Distribution of the Likelihood Ratio Statistic	392
		6.3.2	Wald's and Rao's Large Sample Tests	398
	6.4	Large	Sample Methods for Discrete Data	400
		6.4.1	Goodness-of-Fit in a Multinomial Model. Pearson's χ^2 Test	401
		6.4.2	Goodness-of-Fit to Composite Multinomial Models. Contingency Tables	403
		6.4.3	Logistic Regression for Binary Responses	408
	6.5	Genera	alized Linear Models	411
	6.6	Robus	tness Properties and Semiparametric Models	417
	6.7		ms and Complements	422
	6.8	Notes	•	438
	6.9	Refere	nces	438
A	A RI	EVIEW	OF BASIC PROBABILITY THEORY	441
	A.1	The Ba	asic Model	441
	A.2	Eleme	ntary Properties of Probability Models	443
	A.3	Discre	te Probability Models	443
	A.4	Condi	tional Probability and Independence	444
	A.5	Compo	ound Experiments	446
	A.6	Berno	ulli and Multinomial Trials, Sampling With and Without Replacement	447
	A.7	Probab	pilities on Euclidean Space	448
	A.8	Rando	m Variables and Vectors: Transformations	451
	A.9	Indepe	endence of Random Variables and Vectors	453
	A.10	The Ex	spectation of a Random Variable	454
	A.11	Mome	nts	456
	A 12	Mome	nt and Cumulant Generating Functions	459

	ntents			AIII			
	۸ 12	C	Classical Disease and Constitution District	460			
			Classical Discrete and Continuous Distributions	460			
			s of Convergence of Random Variables and Limit Theorems	466			
			r Limit Theorems and Inequalities	468			
			n Process	472			
		Notes		474			
	A.18	Refere	nces	475			
В	ADDITIONAL TOPICS IN PROBABILITY AND ANALYSIS						
	B.1	Condit	tioning by a Random Variable or Vector	477			
		B.1.1	The Discrete Case	477			
		B.1.2	Conditional Expectation for Discrete Variables	479			
		B.1.3	Properties of Conditional Expected Values	480			
		B.1.4	Continuous Variables	482			
		B.1.5	Comments on the General Case	484			
	B.2	Distrib	oution Theory for Transformations of Random Vectors	485			
		B.2.1	The Basic Framework	485			
		B.2.2	The Gamma and Beta Distributions	488			
	B.3	Distrib	oution Theory for Samples from a Normal Population	491			
		B.3.1	The χ^2 , F , and t Distributions	491			
		B.3.2	Orthogonal Transformations	494			
	B.4	The Bi	ivariate Normal Distribution	497			
	B.5	Mome	ents of Random Vectors and Matrices	502			
		B.5.1	Basic Properties of Expectations	502			
		B.5.2	Properties of Variance	503			
	B.6	The M	Iultivariate Normal Distribution	506			
		B.6.1	Definition and Density	506			
		B.6.2	Basic Properties. Conditional Distributions	508			
	B.7	Conve	rgence for Random Vectors: O_P and o_P Notation	511			
	B.8	Multiv	variate Calculus	516			
	B.9	Conve	xity and Inequalities	518			
	B.10	Topics	in Matrix Theory and Elementary Hilbert Space Theory	519			
		B.10.1	Symmetric Matrices	519			
		B.10.2	2 Order on Symmetric Matrices	520			
		B.10.3	Elementary Hilbert Space Theory	521			
	B.11	Proble	ems and Complements	524			
	B.12	Notes		538			
	B.13	Refere	ences	539			

xiv

C	TABLES	541
	Table I The Standard Normal Distribution	542
	Table I' Auxilliary Table of the Standard Normal Distribution	543
	Table II t Distribution Critical Values	544
	Table III χ^2 Distribution Critical Values	545
	Table IV F Distribution Critical Values	546
INDEX		

Contents

VOLUME II CONTENTS

XV

I	INT	RODUCTION TO VOLUME II	1
	I.1	Tests of Goodness of Fit and the Brownian Bridge	5
	I.2	Testing Goodness of Fit to Parametric Hypotheses	5
	I.3	Regular Parameters. Minimum Distance Estimates	6
	I.4	Permutation Tests	8
	I.5	Estimation of Irregular Parameters	8
	I.6	Stein and Empirical Bayes Estimation	10
	I.7	Model Selection	11
	I.8	Problems and Complements	15
	I.9	Notes	20
7	TOO	OLS FOR ASYMPTOTIC ANALYSIS	21
	7.1	Weak Convergence in Function Spaces	21
		7.1.1 Stochastic Processes and Weak Convergence	21
		7.1.2 Maximal Inequalities	28
		7.1.3 Empirical Processes on Function Spaces	31
	7.2	The Delta Method in Infinite Dimensional Space	38
		7.2.1 Influence Funtions and the Gâteaux Derivative	38
		7.2.2 The Quantile Process	47
	7.3	Further Expansions	51
		7.3.1 The von Mises Expansion	51
		7.3.2 The Hoeffding/Analysis of Variance Expansion	54
	7.4	Problems and Complements	62
	7.5	Notes	71

xvi Volume II Contents

8	DIST	TRIBU'	TION-FREE, UNBIASED AND EQUIVARIANT PROCEDURES	72
	8.1	Introdu	action	72
	8.2	Similar	rity and Completeness	73
		8.2.1	Testing	73
		8.2.2	Testing Optimality Theory	83
		8.2.3	Estimation	86
	8.3	Invaria	nce, Equivariance and Minimax Procedures	91
		8.3.1	Group Models	91
		8.3.2	Group Models and Decision Theory	93
		8.3.3	Characterizing Invariant Tests	95
		8.3.4	Characterizing Equivariant Estimates	101
		8.3.5	Minimaxity for Tests: Application to Group Models	102
		8.3.6	Minimax Estimation, Admissibility, and Steinian Shrinkage	106
	8.4	Proble	ms and Complements	111
	8.5	Notes		122
9	INFI	ERENC	CE IN SEMIPARAMETRIC MODELS	123
	9.1	ESTIM	MATION IN SEMIPARAMETRIC MODELS	123
		9.1.1	Selected Examples	123
		9.1.2	Regularization. Modified Maximum Likelihood	131
		9.1.3	Other Modified and Approximate Likelihoods	140
		9.1.4	Sieves and Regularization	143
	9.2	Asymp	ototics. Consistency and Asymptotic Normality	149
		9.2.1	A General Consistency Criterion	149
		9.2.2	Asymptotics for Selected Models	151
	9.3	Efficie	ncy in Semiparametric Models	159
	9.4	Tests a	nd Empirical Process Theory	172
	9.5	Asymp	ototic Properties of Likelihoods. Contiguity	177
	9.6	Proble	ms and Complements	189
	9.7	Notes		205
10	MOI	NTE CA	ARLO METHODS	207
	10.1	The Na	ature of Monte Carlo Methods	207
	10.2	Three 1	Basic Monte Carlo Methods	210
		10.2.1	Simple Monte Carlo	211
			_	212
				213

Volume II Contents

	10.3	The Bo	potstrap	215
		10.3.1	Bootstrap Samples and Bias Corrections	216
		10.3.2	Bootstrap Variance and Confidence Bounds	220
		10.3.3	The General i.i.d. Nonparametric Bootstrap	222
		10.3.4	Asymptotic Theory for the Bootstrap	225
		10.3.5	Examples where Efron's Bootstrap Fails. The m out of n Bootstrap	s 230
	10.4	Marko	v Chain Monte Carlo	232
		10.4.1	The Basic MCMC Framework	232
		10.4.2	Metropolis Sampling Algorithms	233
		10.4.3	The Gibbs Samplers	237
		10.4.4	Speed of Convergence of MCMC	241
	10.5	Applic	ations of MCMC to Bayesian and Frequentist Inference	243
	10.6	Proble	ms and Complements	250
	10.7	Notes		256
11	NON	[PARA]	METRIC INFERENCE FOR FUNCTIONS OF ONE VARIABLI	E257
		Introdu		257
			lution Kernel Estimates on R	258
		11.2.1	Uniform Local Behavior of Kernel Density Estimates	261
			Global Behavior of Convolution Kernel Estimates	263
		11.2.3	Performance and Bandwidth Choice	264
		11.2.4	Discussion of convolution kernel estimates	265
	11.3	Minim	um Contrast Estimates: Reducing Boundary Bias	266
			rization and Nonlinear Density Estimates	272
		11.4.1	Regularization and Roughness Penalties	272
		11.4.2	Sieves. Machine Learning. Log Density Estimation	273
		11.4.3	Nearest Neighbour Density Estimates	276
	11.5	Confid	ence Regions	277
	11.6	Nonpa	rametric Regression for one Covariate	279
		11.6.1	Estimation Principles	279
		11.6.2	Asymptotic Bias and Variance Calculations	282
	11.7	Proble	ms and Complements	289
12	PRF	DICTI	ON AND MACHINE LEARNING	299
		Introdu		299
	12.1		Statistical Approaches to Modeling and Analyzing Multidimen-	
		12.1.1	sional data. Sieves	301

xvii

		12.1.2	Machine Learning Approaches	305
		12.1.3	Outline	307
	12.2	Classif	ication and Prediction	307
		12.2.1	Multivariate Density and Regression Estimation	307
		12.2.2	Bayes Rule and Nonparametric Classification	312
		12.2.3	Sieve Methods	314
		12.2.4	Machine Learning Approaches	316
	12.3	Asymp	ototics	324
		12.3.1	Optimal Prediction in Parametric Regression Models	326
		12.3.2	Optimal Rates of Convergence for Estimation and Prediction in Nonparametric Models	329
		12.3.3	The Gaussian White Noise (GWN) Model	338
		12.3.4	Minmax Bounds on IMSE for Subsets of the GWN Model	340
		12.3.5	Sparse Submodels	342
	12.4	Oracle	Inequalities	344
		12.4.1	Stein's Unbiased Risk Estimate	346
		12.4.2	Oracle Inequality for Shrinkage Estimators	347
		12.4.3	Oracle Inequality and Adaptive Minimax Rate for Truncated Esti-	
			mates	348
		12.4.4	An Oracle Inequality for Classification	350
	12.5	Perform	mance and Tuning via Cross Validation	353
		12.5.1	Cross Validation for Tuning Parameter Choice	354
		12.5.2	Cross Validation for Measuring Performance	358
	12.6	Model	Selection and Dimension Reduction	359
		12.6.1	A Bayesian Criterion for Model Selection	360
		12.6.2	Inference after Model Selection	364
		12.6.3	Dimension Reduction via Principal Component Analysis	366
	12.7	Topics	Untouched and Current Frontiers	367
	12.8	Proble	ms and Complements	371
D	APP	ENDIX	D. SUPPLEMENTS TO TEXT	385
	D.1	Probab	ility Results	385
	D.2	Supple	ments to Section 7.1	387
	D.3	Supple	ment to Section 7.2	390
	D.4	Supple	ment to Section 9.2.2	391
	D.5	Supple	ment to Section 10.4	392
	D.6	Supple	ment to Section 11.6	397

Vo	Volume II Contents		
	D.7. Symplement to Section 12.2.2	399	
	D.7 Supplement to Section 12.2.2		
	D.8 Problems and Complements	405	
E	SOLUTIONS FOR VOL. II	410	
R	423		
SI	438		

This page intentionally left blank