ACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA CTGCTGCCGCCGCGGGGGCCCAAGAAGCCGACGCCTGCCACCGGTGCCGGGGGCT GGTGGACAAGTTTAACCAGGGGATGGTGGACACCGCAAAGAAGAACTTTGGCGGCGGGAACA CGGCTTGGGAGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTCGCCTGCTGGAGATC GCACCTGGAGGCCTGGTGGCTGCAGCTGAAGAGCGAATATCCTGACTTATTCGAGTGGTTTT GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCGACTGTCTCGCATGC CAGGGCGGATCCCAGAGGCCCTGCAGCGGGAATGGCCACTGCAGCGGAGATGGGAGCAGACA ACGGCTACTTCAGCTCGCTCCGGAACGAGCCCACAGCATCTGCACAGCCTGTGACGAGTCC *TGCAAGACGTGCTCGGGCCTGACCAACAGAGACTGCGGCGAGTGTGAAGTGGGCTGGGTGCT GACGAGGCGCCTGTGTGGATGTGGACGAGTGTGCGGCCGAGCCGCCTCCCTGCAGCGCTG #CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTGTG GCTGCACAGGGGAAGGCCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCGAGGGAGCA *CGGACAGTGTGCAGATGTGGACGAGTGCTCACTAGCAGAAAAAACCTGTGTGAGGAAAAACG *GAAGATGCCTGTGTGCCGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCCGACACAGCT GCCCTCCCGCGAAGACCTGTAATGTGCCGGACTTACCCTTTAAATTATTCAGAAGGATCTCC ©GTGGAAAATGTGGCCCTGAGGATGCCGTCTCCTGCAGTGGACAGCGGCGGGGAGAGGCTGC CTGCTCTCTAACGGTTGATTCTCATTTGTCCCTTAAACAGCTGCATTTCTTGGTTGTTCTTA AACAGACTTGTATATTTTGATACAGTTCTTTGTAATAAAATTGACCATTGTAGGTAATCAGG AGGAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGGACTCTAGAGTCGACCTGCAGAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCA TCACAAATTTCACAAATAAAGCATTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTC ATCAATGTATCTTATCATGTCTGGATCGGGAATTAATTCGGCGCAGCACCATGGCCTGAAAT AACCTCTGAAAGAGGAACTTGGTTAGGTACCTTCTGAGGCGGAAAGAACCAGCTGTGGAATG TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGCAGAAGTATGCAAGCATGC ATCTCAATTAGTCAGCAACCCAGTTTT

```
><subunit 1 of 1, 353 aa, 0 stop
><MW: 38192, pI: 4.53, NX(S/T): 2
```

MRLPRRAALGLLPLLLLPPAPEAAKKPTPCHRCRGLVDKFNQGMVDTAKKNFGGGNTAWEEKTLSKYESSEIRL LEILEGLCESSDFECNOMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKVCCSPGTYGPDCLACQGGSQRPCSG $\tt NGHCSGDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLRNETHSICTACDESCKTCSGLTNRDCGECEVGWVLDEIGHT. The transfer of the compact of the compac$ ${\tt GACVDVDECAAEPPPCSAAQFCKNANGSYTCEECDSSCVGCTGEGPGNCKECISGYAREHGQCADVDECSLAEKT}$ CVRKNENCYNTPGSYVCVCPDGFEETEDACVPPAEAEATEGESPTOLPSREDL

Signal peptide:

amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.

amino acids 149-153 and 155-159

CAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343 and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristoylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and 313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

CAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTC GACCTCGACCCACGCCTCCGCCAGGCCGGGAGGCGACGCCCCAGCCGTCTAAACGGGAACA GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGCGCCCCAGGTTGCGTAGGTGCG GCACGAGGAGTTTTCCCGGCAGCGAGGAGGTCCTGAGCAGCATGCCCGGAGGAGCGCCTTC CGGGCCGCCGCAGGAGGAGCCTGTACCTATGGATCGATGCTCACCAGGCAAGAGTACTCA TAGGATTTGAAGAAGATATCCTGATTGTTTCAGAGGGGAAAATGGCACCTTTTACACATGAT TTCAGAAAAGCGCAACAGAGAATGCCAGCTATTCCTGTCAATATCCATTCCATGAATTTTAC $\tt CTGGCAAGCTGCAGGGCAGGAATACTTCTATGAATTCCTGTCCTTGCGCTCCCTGGATA$ AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGGAACAGTGCCTCACAAGGCA TCAGTTGTTCAAGTTGGTTTCCCATGTCTTGGAAAACAGGATGGGGTGGCAGCATTTGAAGT GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCCAAACACCTCAAAATGCTATCT TCTTTAAAACATGTCAACAAGCTGAGTGCCCAGGCGGGTGCCGAAATGGAGGCTTTTTGTAAT GAAAGACGCATCTGCGAGTGTCCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTTG TACCCCACGATGTATGAATGGTGGACTTTGTGTGACTCCTGGTTTCTGCATCTGCCATCCCACCTG GATTCTATGGAGTGAACTGTGACAAAGCAAACTGCTCAACCACCTGCTTTAATGGAGGGACC TGTTTCTACCCTGGAAAATGTATTTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAG CAAATGCCCACAACCCTGTCGAAATGGAGGTAAATGCATTGGTAAAAGCAAATGTAAGTGTT ©CAAAGGTTACCAGGGAGACCTCTGTTCAAAGCCTGTCTGCGAGCCTGGCTGTGGTGCACAT GGAACCTGCCATGAACCCAACAAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA TAAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGGCGCCCCAGCTCAGGCAGC ACA CGCCTTCA CTTA A A A AGGCCGAGGAGCGGCGCGCATCCA CCTGA A TCCA A TTA CA TCTGG #GAACTCCGACATCTGAAACGTTTTAAGTTACACCAAGTTCATAGCCTTTGTTAACCTTTCA #GTGTTGAATGTTCAAATAATGTTCATTACACTTAAGAATACTGGCCTGAATTTTATTAGCT *FCATTATAAATCACTGAGCTGATATTTACTCTTCCTTTTAAGTTTTCTAAGTACGTCTGTAG CATGATGGTATAGATTTTCTTGTTTCAGTGCTTTTGGGACAGATTTTATATTATGTCAATTGA #CAGGTTAAAATTTTCAGTGTGTAGTTGGCAGATATTTTCAAAATTACAATGCATTTATGGT GTCTGGGGGCAGGGGAACATCAGAAAGGTTAAATTGGGCAAAAATGCGTAAGTCACAAGAAT ${
m TTGGATGGTGCAGTTAATGTTGAAGTTACAGCATTTCAGATTTTATTGTCAGATATTTAGAT$ GTTTGTTACATTTTTAAAAATTGCTCTTAATTTTTAAACTCTCAATACAATATATTTTGACC AACAATATAATATTCTAAACACAATGAAATAGGGAATATAATGTATGAACTTTTTGCAT TGGCTTGAAGCAATATAATATTGTAAACAAAACACAGCTCTTACCTAATAAACATTTTAT AAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGC CGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(s/T): 2</pre>
```

MARRSAFPAAALWLWSILLCLLALRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNGGFCNERRICECPDGFHGPHCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST
TCFNGGTCFYPGKCICPPGLEGEQCEISKCPQPCRNGGKCIGKSKCKCSKGYQGDLCSKPVC
EPGCGAHGTCHEFNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAEERRDP
PESNYIW

```
Signal peptide:

amino acids 1-28

Miglycosylation site.

amino acids 88-92, 245-249

Casein kinase II phosphorylation site.

amino acids 319-323

Tyrosine kinase phosphorylation site.

amino acids 370-378
```

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop). amino acids 285-293

N-myristoylation sites.

EGF-like domain cysteine pattern signature. amino acids 198-210, 230-242, 262-274, 294-306, 326-338

 $\verb|CCCCAGCCCACACCTTCACCAGGGCCCAGGAGCCACCATGTGGCGATGTCCACTGGGGCTAC| \\$ TGCTGTTGCTGCCGCTGGCCACTTGGCTCTGGGTGCCCAGCAGGGTCGTGGGCGCCGG GAGCTAGCACCGGGTCTGCACCTGCGGGGCATCCGGGACGCGGGAGGCCGGTACTGCCAGGA GCAGGACCTGTGCCGCGGCCGTGCCGACGACTGTGCCCTGCCCTACCTGGGCGCCCATCT GTTACTGTGACCTCTTCTGCAACCGCACGGTCTCCGACTGCCCTGACTTCTGGGACTTC TGCCTCGGCGTGCCACCCCCTTTTCCCCCGATCCAAGGATGTATGCATGGAGGTCGTATCTA TCCAGTCTTGGGAACGTACTGGGACAACTGTAACCGTTGCACCTGCCAGGAGAACAGGCAGT GAACCACAGCGCCTTCTGGGGCATGACCCTGGATGAGGGCATTCGCTACCGCCTGGGCACCA TCCGCCCATCTTCCTCGGTCATGAACATGCATGAAATTTATACAGTGCTGAACCCAGGGGAG GTGCTTCCCACAGCCTTCGAGGCCTCTGAGAAGTGGCCCAACCTGATTCATGAGCCTCTTGA CCAAGGCAACTGTGCAGGCTCCTGGGCCTTCTCCACAGCAGCTGTGGCATCCGATCGTGTCT CAATCCATTCTCTGGGACACATGACGCCTGTCCTGTCGCCCCAGAACCTGCTGTCTTGTGAC ACCCACCAGCAGCAGGGCTGCCGCGGTGGGCGTCTCGATGGTGCCTGGTGGTTCCTGCGTCG $\tt CTGCGCCCCCTGTATGATGCACAGCCGAGCCATGGGTCGGGGCAAGCGCCAGGCCACTGCCAGGCCCAGGCAAGGCC$ **CACTGCCCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCT** GGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCA TGGAGGTGCATGAGGACTTCTTCCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGC ETTGGGAGGCCAGAGATACCGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG ÄGAGGAGACGCTGCCAGATGGAAGGACGCTCAAATACTGGACTGCGGCCAACTCCTGGGGCC AGCTTCGTGCTGGGCCTCTGGGGCCGCGTGGGCATGGAGGACATGGGTCATCACTGAGGCTG CGGGCACCACGCGGGTCCGGCCTGGGATCCAGGCTAAGGGCCGGCGGAAGAGGCCCCAATG GGGCGGTGACCCCAGCCTCGCCCGACAGAGCCCGGGGCGCAGGCGGGGCGCCAGGGCGCTAAT CCGGCGCGGTTCCGCTGACGCAGCGCCCCGCCTGGGAGCCGCGGGCAGGCGAGACTGGCG GAGCCCCAGACCTCCCAGTGGGGACGGGCCAGGCCTGGCCTGGGAAGAGCACAGCTGCAG ATCCCAGGCCTCTGGCGCCCCCACTCAAGACTACCAAAGCCAGGACACCTCAAGTCTCCAGC PTGCCCAGGTTGGAGTGCAGTGGCCCATCAGGGCTCACTGTAACCTCCGACTCCTGGGTTCA AGTGACCCTCCCACCTCAGCCTCTCAAGTAGCTGGGACTACAGGTGCACCACCACCCGC TAATTTTTGTATTTTTGTAAAGAGGGGGGTCTCACTGTGTTGCCCAGGCTGGTTTCGAACT $\verb|CCTGGGCTCAAGCGGTCCACCTGCCTCCCAAAGTGCTGGGATTGCAGGCATGAGCC| \\$ TAAAACCAAAGTATTGATAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223

><subunit 1 of 1, 164 aa, 1 stop

><MW: 18359, pI: 7.45, NX(S/T): 1

MWRCPLGLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQDLCCRGRADDC ALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPPIQGCMHGGRIYPVLGTYWDNCNR CTCQENRQWHGGSRHDQSHQPGQLWLAGWEPQRLLGHDPG

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,

170

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230, 269-275, 378-384, 442-448

11

Amidation site.

amino acids 26-30, 318-322

13

Eukaryotic thiol (cysteine) proteases histidine active site. amino acids 398-409

AGGCTCCTTGGCCCTTTTTCCACAGCAAGCTTNTGCNATCCCGATTCGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCTGTCCTTTNGCCCCAGAACCTGCTGTTCTTTGTACACCCAC
CAGCAGCAGGGCTGCCGCNTGGGCGTCCGATGGTGCCTGGTGGTTCCTGCGCCCGGGG
GNTGGTGTCTGACCACTGCTACCCCTTCTCGGGCCGTGAACGAGGACGAGGCTGGCCCTGCGC
CCCCTGTATGATGCACAGCCGAGCCATGGGTCGGGCAAGCGCCAGGCCACTGCCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCTCGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCATGGAGG
TGCATGAGGAGCTTCTTCCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGCCTTGGG
AGGCCAGAGAGAATACCGCCGGCATGGGACCCACTCAG

GCTGCTTGCCCTGTTGATGGCAGGCTTGGCCCTGCAGCCAGGCACTGCCCTGCTGTGCTACT CCTGCAAAGCCCAGGTGAGCAACGAGGACTGCCTGCAGGTGGAGAACTGCACCCAGCTGGGG GAGCAGTGCTGGACCGCGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG ${\tt CAGCTTGAACTGCGTGG} \underline{{\tt ATG}} {\tt ACTCACAGGACTACTACGTGGGCAAGAAGAACATCACGTGCT}$ GTGACACCGACTTGTGCAACGCCAGCGGGGCCCATGCCCTGCAGCCGGCTGCCGCCATCCTT GCGCTGCTCCCTGCACTCGGCCTGCTCTGGGGGACCCGGCCAGCTATAGGCTCTGGGGGG CCCCGCTGCAGCCCACACTGGGTGTGGTGCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG CTGCACCCCTGTCCCCACCCTGACCCTCCCATGGCCCTCTCCAGGACTCCCACCCGGCAGA TCAGCTCTAGTGACACAGATCCGCCTGCAGATGGCCCCTCCAACCCTCTCTGCTGCTGTTTC CATGGCCCAGCATTCTCCACCCTTAACCCTGTGCTCAGGCACCTCTTCCCCCAGGAAGCCTT CCCTGCCCACCCCATCTATGACTTGAGCCAGGTCTGGTCCGTGGTGTCCCCCGCACCCAGCA GGGGACAGGCACTCAGGAGGGCCCAGTAAAGGCTGAGATGAAGTGGACTGAGTAGAACTGGA GGACAAGAGTCGACGTGAGTTCCTGGGAGTCTCCAGAGATGGGGCCTGGAGGCCTGGAGGAA GGGGCCAGGCCTCACATTCGTGGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCTT AATAAACACCTGTTGGATAAGCCAAAAAAA

MTHRTTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSGDPASYRLWGAPLQPT LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHPDPPMALSRTPTRQISSSDT DPPADGPSNPLCCCFHGPAFSTLNPVLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRGOALRRAQ

```
Signal peptide:
amino acids 1-47

N-glycosylation site.
amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.
amino acids 22-26, 76-80

"""
N-myristoylation site.
amino acids 56-60

"""
Amidation site.
amino acids 70-74
```

į.

GCTTACAGCTGCTGATTCTCTGCTGTCAAACTCAGTACGTGAGGGACCAGGGCGCCATGACC GACCAGCTGAGCAGGCGGCAGATCCGCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA CGTGCAGGTCACCGCGCATCTCCGCCACCGCCGAGGACGGCAACAAGTTTGCCAAGC ${\tt TCATAGTGGAGACGGACACGTTTGGCAGCCGGGTTCGCATCAAAGGGGGCTGAGAGTGAGAAG}$ TACATCTGTATGAACAAGAGGGGCAAGCTCATCGGGAAGCCCAGCGGGAAGAGCAAAGACTG GCTGGTTCATGGCCTTCACGCGGCAGGGCGCCCGCCAGGCTTCCCGCAGCCGCCAGAAC $\tt CAGCGCGAGGCCCACTTCATCAAGCGCCTCTACCAAGGCCAGCTGCCCTTCCCCAACCACGC$ $\tt GGCGGCCCCAGCCCTCACG\underline{TAG}{\tt TCTGGGAGGCAGGGGGGGCAGCAGCCCCTGGGCCGCCTCCC}$.CACCCCTTTCCCTTCTTAATCCAAGGACTGGGCTGGGGTGGCGGGAGGGGAGCCAGATCCCC *GAGGGAGGACCCTGAGGGCCGCGAAGCATCCGAGCCCCAGCTGGGAAGGGGCAGGCCGGTG ©CCCAGGGGCGGCTGGCACAGTGCCCCCTTCCCGGACGGGTGGCAGGCCCTGGAGAGGAACT GAGTGTCACCCTGATCTCAGGCCACCAGCCTCTGCCGGCCTCCCAGCCGGGCTCCTGAAGCC **@GCTGAAAGGTCAGCGACTGAAGGCCTTGCAGACAACCGTCTGGAGGTGGCTGTCCTCAAAA** #CTGCTTCTCGGATCTCCCTCAGTCTGCCCCCAGCCCCCAAACTCCTCCTGGCTAGACTGTA AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCCACCCCCAACTCCCAGCCC CGGAATAAAACCATTTTCCTGC

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLE NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF VGSAPTRRTKRTRRPOPLT

```
Signal peptide:
amino acids 1-22
N-glycosylation site.
amino acids 9-13, 126-130
GAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 60-64
casein kinase II phosphorylation site.
amino acids 65-69
Tyrosine kinase phosphorylation site.
amino acids 39-48, 89-97
N-myristoylation site.
amino acids 69-75, 188-194
Amidation site.
amino acids 58-62
HBGF/FGF family signature.
amino acids 103-128
```

ACTTGCCATCACCTGTTGCCAGTGTGGAAAAATTCTCCCTGTTGAATTTTTTGCACATGGAG GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTTAC CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCATCCAGT TTCCGTACTTCAGAAATGGGCCTACAGACCACAAAGTGGCCCAGCCATGGGGCTTTTTTCCT GAAGTCTTGGCTTATCATTTCCCTGGGGCTCTACTCACAGGTGTCCAAACTCCTGGCCTGCC CTAGTGTGTGCCGCTGCGACAGGAACTTTGTCTACTGTAATGAGCGAAGCTTGACCTCAGTG CCTCTTGGGATCCCGGAGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAATAATGC TGGATTTCCTGCAGAACTGCACAATGTACAGTCGGTGCACACGGTCTACCTGTATGGCAACC AACTGGACGAATTCCCCATGAACCTTCCCAAGAATGTCAGAGTTCTCCATTTGCAGGAAAAC AATATTCAGACCATTTCACGGGCTGCTCTTGCCCAGCTCTTGAAGCTTGAAGAGCTGCACCT GGATGACAACTCCATATCCACAGTGGGGGTGGAAGACGGGGCCTTCCGGGAGGCTATTAGCC TCAAATTGTTTTTTTTTTTTTAAGAATCACCTGAGCAGTGTGCCTGTTGGGCTTCCTGTGGAC TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTCATATCCGACATGGCCTTCCAGAA TCTCACGAGCTTGGAGCGTCTTATTGTGGACGGGAACCTCCTGACCAACAAGGGTATCGCCG AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTTCAATTGTACGTAATTCGCTGTCC CACCCTCCTCCCGATCTCCCAGGTACGCATCTGATCAGGCTCTATTTGCAGGACAACCAGAT AACCACATTCCTTTGACAGCCTTCTCAAATCTGCGTAAGCTGGAACGGCTGGATATATCCA \$CAACCAACTGCGGATGCTGACTCAAGGGGTTTTTGATAATCTCTCCAACCTGAAGCAGCTC ACTGCTCGGAATAACCCTTGGTTTTGTGACTGCAGTATTAAATGGGTCACAGAATGGCTCAA ATATATCCCTTCATCTCTCAACGTGCGGGGTTTCATGTGCCAAGGTCCTGAACAAGTCCGGG GGTGGCCGTCAGGGAATTAAATATGAATCTTTTGTCCTGTCCCACCACGACCCCCGGCCTG GCTCTCTTCACCCCAGCCCCAAGTACAGCTTCTCCGACCACTCAGCCTCCCACCCTCTCTAT TCCAAACCCTAGCAGAAGCTACACGCCTCCAACTCCTACCACATCGAAACTTCCCACGATTC #TGACTGGGATGGCAGAGAAGAGTGACCCCACCTATTTCTGAACGGATCCAGCTCTCTATC CAAACTCACATGGGTGAAAATGGGCCACAGTTTAGTAGGGGGCATCGTTCAGGAGCGCATAG **TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT TGTTTAGTGCCACTGGATGCTTTTAACTACCGCGCGCTAGAAGACACCATTTGTTCAGAGGC CACCACCCATGCCTCCTATCTGAACAACGCCAGCAACACAGCGTCCAGCCATGAGCAGACGA **EGTCCCACAGCATGGGCTCCCCCTTTCTGCTGGCGGGCTTGATCGGGGGCGCGGTGATATTT** GTGCTGGTGGTCTTGCTCAGCGTCTTTTGCTGGCATATGCACAAAAAGGGGCGCTACACCTC AGGACAACTCCATCCTGGAGATGACAGAAACCAGTTTTCAGATCGTCTCCTTAAATAACGAT CACAGACTGCCATATCCCCAACAACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC ACTGCCATACGTGACAGCCAGAGGCCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA CACACTCGTGTGCACATAAAGACACGCAGATTACATTTGATAAATGTTACACAGATGCAT TTGTGCATTTGAATACTCTGTAATTTATACGGTGTACTATATAATGGGATTTAAAAAAAGTG CTATCTTTTCTATTTCAAGTTAATTACAAACAGTTTTGTAACTCTTTGCTTTTTAAATCTT

MGLQTTKWPSHGAFFLKSWLIISLGLYSQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIP
EGVTVLYLHNNQINNAGFPAELHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHCBNNIQTI
SRAALAQLLKLEELHLDDNSISTVGVEDGAFREAISLKLLFLSKNHLLSSVPVGLPVDLQELR
VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGFFSHLTKLKEFSIVRNSLSHPPPD
LPGTHLIRLYLQDNQLMHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLSNLKQLTARNN
PWFCDCSIKWVTEWLKYIPSSLNVRGFMCGSPEQVRGMAVRELNMNLLSCFTTTFGLPLFTP
APSTASPTTQPPTLSIPNPSRSYTPPTPTTSKLPTIPDWDGRERVTPPISRIQLSHFYNDISIGVSTRICLVPL
DAFNYRAVEDTICSEATHASYLNNGSNTASSHEQTTSHSMGSPFLLAGLIGGAVIFVLVVL
LSVFCWHMHKKGRYTSQKWXNRGRKKDDYCEAGTKKDNSILEMTETSFQIVSLNNDQLLKG
DFRLQPIYTPNGGINYTDCHIPNNMYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

mino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655 Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300, \$22-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

ACTTGGAGCAAGCGGCGGCGGCGGAGACAGAGGCAGAGGCAGAAGCTGGGGCTCCGTCCTCCCCACGAGCG ATCCCCGAGGAGACCCGCGCCCTCGGCGAGGCGAAGACCCGACGAAGACCCGGGTGGCTGCCCCTGCC GCTTTCTGCTGATCCTCGGACAGATCGTCCTCCTCCCTGCCGAGGCCAGGGAGCGTCACGTGGGAGGTCCATCT CTAGGGGCAGACGCTCGGACCCGCAGACGGCCCTTCTGGAGAGTTCCTGTGAGAACAAGCGGGCAGACC TGGTTTCATCATGACAGCTCTCGCAGTGTCAACACCCATGACTATGCAAAGGTCAAGGAGTTCATCGTGGACA TCTTGCAATTCTTGGACATTGGTCCTGATGTCACCCGAGTGGGCCTGCTCCAATATGGCAGCACTGTCAAGAATG AGTTCTCCCTCAAGACCTTCAAGAGGAAGTCCGAGGTGGAGCGTGCTGTCAAGAGGATGCGGCATCTGTCCACGG GCACCATGACTGGCCTGGCCATCCAGTATGCCCTGAACATCGCATTCTCAGAAGCAGGGGGGCCCGGCCCCTGA GGGAGAATGTGCCACGGGTCATAATGATCGTGACAGATGGGAGACCTCAGGACTCCGTGGCCGAGGTGGCTGCTA AGGCACGGGACACGGCATCCTAATCTTTGCCATTGGTGTGGGCCAGGTAGACTTCAACACCTTGAAGTCCATTG GGAGTGAGCCCCATGAGGACCATGTCTTCCTTGTGGCCAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTTCC AGAAGAAGTTGTGCACGCCCACATGTGCAGCACCCTGGAGCATAACTGTGCCCACTTCTGCATCAACATCCCTGGCTCATACGTCTGCAGGTGCAAACAAGGCTACATTCTCAACTCGGATCAGACGACTTGCAGAATCCAGGATCTGT GTGCCATGGAGGACCACAACTGTGAGCAGCTCTGTGTGAATGTGCCGGGCTCCTTCGTCTGCCAGTGCTACAGTG GCTACGCCTGGCTGAGGATGGGAAGAGTGTGTGGCTGTGGACTACTGTGCCTCAGAAAACCACGGATGTGAAC ATGAGTGTGTAAATGCTGATGGCTCCTACCTTTGCCAGTGCCATGAAGGATTTGCTCTTAACCCAGATGAAAAAA $\tt CGTGCACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCGTCAACATGGAGGAGAGCT$ ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGCAAAACCTGCAGCCGAGTGGACCACTGTGCAC AGCAGGACCATGGCTGTGAGCAGCTGTGTCTGAACACGGAGGATTCCTTCGTCTGCCAGTGCTCAGAAGGCTTCC #GTGTCAACATGGACAGATCCTTTGCCTGTCAGTGTCCTGAGGGACACGTGCTCCGCAGCGATGGGAAGACGTGTG **CAAAATTGGACTCTTGTGCTCTGGGGGACCACGGTTGTGAACATTCGTGTGAAGCAGTGAAGATTCGTTTGTGT CCAGTGCTTTGAAGGTTATATACTCCGTGAAGATGGAAAAACCTGCAGAAGGAAAGATGTCTGCCAAGCTATAG *ACCATGGCTGTGAACACATTTGTGTGAACAGTGACGACTCATACACGTGCGAGTGCTTGGAGGGATTCCGGCTCG TGAGGATGGGAAACGCTGCCGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCGAACACATTTGTGTTA ÄTAATGGGAATTCCTACATCTGCAAATGCTCAGAGGGATTTGTTCTAGCTGAGGACGGAAGACGGTGCAAGAAAT GCACTGAAGGCCCAATTGACCTGGTCTTTGTGATCGATGGATCCAAGAGTCTTGGAGAAGAGAATTTTGAGGTCG ÁTTCCACACAGGTCCACACAGAGTTCACTCTGAGAAACTTCAACTCAGCCAAAGACATGAAAAAAGCCGTGGCCC ACATGAAATACATGGGAAAGGGCTCTATGACTGGGCTGGCCCTGAAACACATGTTTGAGAGAAGTTTTACCCAAG ATGAGATAAGTGAAAAACTCAAGAAAGGCATCTGTGAAGCTCTAGAAGACTCCGATGGAAGACAGGACTCTCCAG EAGGGGAACTGCCAAAAACGGTCCAACAGCCAACAGAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT *CTGTTCTAATTTTGCAGTGCAACACAGATATCTGTTTGAAGAAGACAATCTTTTACGGTCTACACAAAAGCTTT CCCATTCAACAAAACCTTCAGGAAGCCCTTTGGAAGAAAAACACGATCAATGCAAATGTGAAAACCTTATAATGT TCCAGAACCTTGCAAACGAAGAAGTAAGAAAATTAACACAGCGCTTAGAAGAAATGACACAGAGAATGGAAGCCC ${\tt TGGAAAATCGCCTGAGATACAGA} {\tt TGAA} {\tt AGATTAGAAATCGCGACACATTTGTAGTCATTGTATCACGGATTACAAT$ GAACGCAGTGCAGAGCCCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGTGAAGTAAAACAATCAGTACTGA GAAACCTGGTTTGCCACAGAACAAAGACAAGAAGTATACACTAACTTGTATAAATTTATCTAGGAAAAAAATCCT TCAGAATTCTAAGATGAATTTACCAGGTGAGAATGAATAAGCTATGCAAGGTATTTTGTAATATACTGTGGACAC AACTTGCTTCTGCCTCATCCTGCCTTAGTGTGCAATCTCATTTGACTATACGATAAAGTTTTGCACAGTCTTACTT $\tt CTGTAGAACACTGGCCATAGGAAATGCTGTTTTTTTGTACTGGACTTTACCTTGATATATGTATATGGATGTATG$ CATAAAATCATAGGACATATGTACTTGTGGAACAAGTTGGATTTTTTATACAATATTAAAATTCACCACTTCAG

MEKMLAGCFLLILGQIVLLPAEARERSRGRSISRGRHARTHPQTALLESSCENKRADLVFII
DSSRSVNTHDYAKVKBFIVDILQFLDIGPDVTRVGLLQYGSTVKNBFSLKTFKRRSEVBRAK
KRMRHLSTTMTGLAIQYALNIAFSEAEGARPLERNVPRVINITVTDGRPQDSVABEVAAKARD
TGILIFAIGVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHN
CAHFCINIPGSYVCRCKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNVPGSFVCQCYSGYL
ALBEGKRCVAVDYCAS SHNHGCEHECVNADGSYLCQCHSEGFALNPDEKTCTRINYCALNKFGC
EHECVNMEESYYCRCHRGYTLDPNGKTCSRVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLI
NEDLKTCSRVDYCLLSDHGCEYSCVNMORSFACQCPEGHVLRSDGKTCAKLDSCALGDHGCI
BCCVNSEDSFVCQCFEGYYILREDGKTCRKDVCQAIDHGEHICVNSDDSYTCECLEGFFLA
EDGKRCRRKDVCKSTHHGCEHICVNNGNSYICKCSEGFVLAEDGRRCKKCTEGPIDLVFVID
GSKSLGENFEVVKQFVTGIIDSLTISPKAARVGLLQVSTGVHTEFTLRNFNSAKDMKKAVAN
GITMYAVGVGKALEEBLQEIASEPTNKHLFYAEDFSTMDBISEKLKKGICEALEDSDGRQDS
PAGELPKTVQQPTESEPVTINIQDLLSCSNFAVQHRYLFEEDNLLRSTQKLSHSTKPSGSPL

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

CAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,

401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,

781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500, 639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464, 540-546, 581-587

GGAGCCGCCTGGGTGTCAGCGGCTCGGCTCCCGCCACGCTCCGGCCGTCGCCAGCCTCG CATGATTTCCCTCCGGGGCCCCTGGTGACCAACTTGCTGCGGTTTTTGTTCCTGGGGCTGA GTGCCCTCGCGCCCCCTCGCGGCCCAGCTGCAACTGCACTTGCCCGCCAACCGGTTGCAG GCGGTGGAGGGAAGTGGTGCTTCCAGCGTGGTACACCTTGCACGGGGAGGTGTCTTC AGGTGTTGTCCTACATCAATGGGGTCACAACAAGCAAACCTGGAGTATCCTTGGTCTACTCC ATGCCCTCCCGGAACCTGTCCCTGCGGCTGGAGGCTCTCCAGGAGAAGACTCTGGCCCCTA CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGCAAATCTAGGGGCCCACAGCATCAAAACCT TAGAACTCAATGTACTGGTTCCTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCCAT GTGGGGCAAACGTGACCCTGAGCTGCCAGTCTCCAAGGAGTAAGCCCGCTGTCCAATACCA _GTGGGATCGGCAGCTTCCATCCTTCCAGACTTTCTTTGCACCAGCATTAGATGTCATCCGTG GGTCTTTAAGCCTCACCAACCTTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCCAC ÄATGAGGTGGGCACTGCCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCCTGGAGCTGC ATTGCTCCCCGGACCCTGCCCTGGCCCAAGAGCTCAGACACAATCTCCAAGAATGGGACCCT *TTCCTCTGTCACCTCCGCACGAGCCCTCCGGCCACCCCATGGCCCTCCCAGGCCTGGTGCAT GGGGCCCACCCTCAACCAATATCCCCCATCCCTGGTGGGGTTTCTTCCTCTGGCTTGAGCCG CATGGGTGCTGTGCCTGTGATGGTGCCTGCCCAGAGTCAAGCTGGCTCTCTGGTATGATGAC AGAGGCCTGAGTCATGGGAAAGAGTCACACTCCTGACCCTTAGTACTCTGCCCCCACCTCTC TTTACTGTGGGAAAACCATCTCAGTAAGACCTAAGTGTCCCAGGAGACAGAAGGAGAAGAGGA AGTGGATCTGGAATTGGGAGGAGCCTCCACCCACCCCTGACTCCTTATGAAGCCAGCTG CTGAAATTAGCTACTCACCAAGAGTGAGGGGCAGAGACTTCCAGTCACTGAGTCTCCCAGGCCCCCTTGATCTGTACCCCACCCTATCTAACACCACCCTTGGCTCCCACTCCAGCTCCCTGT ATTGATATAACCTGTCAGGCTGGCTTGGTTAGGTTTTACTGGGGCAGAGGATAGGGAATCTC TGTTTGTATGAAAAA

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWYTLHGEVSS SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEKDSGPY SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQ WDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGPGAA VVAGAVVGTLVGLGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLPWPKSSDTISKNGTL SSVTSARALRPPHGPPRGALTPTPSLSSQALPSPRLPTTDGAHPQPISPIPGGVSSSGLSR MGAVPVMVPAOSOAGSIV

```
Signal peptide:
```

amino acids 1-29

Transmembrane domain:

amino acids 245-267

G

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

mino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262, 262-268, 308-314, 363-369, 364-370

ini.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

TTGAATTGTTCCTATACTCAAAATTGCACCAAGACACCTTGTCTCCCAAATGCAAAATGTGA AATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTTCAGGAAATGGTGTCACAA TTTGTGAAGATGATAATGAATGTGGAAATTTAACTCAGTCCTGTGGCGAAAATGCTAATTGC ACTAACACAGAAGGAAGTTATTATTGTATGTGTGTACCTGGCTTCAGATCCAGCAGTAACCA AGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAACTGCCATT TAGATAATGTCTGTATAGCTGCAAATATTAATAAAACTTTAACAAAAATCAGATCCATAAAA GAACCTGTGGCTTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTTCACCAACAGA TATAATTACATATATAGAAATATTAGCTGAATCATCTTCATTACTAGGTTACAAGAACAACA AATTTTGTTCAAAGGGATACATTTGTAGTTTGGGACAAGTTATCTGTGAATCATAGGAGAAC ACATCTTACAAAACTCATGCACACTGTTGAACAAGCTACTTTAAGGATATCCCAGAGCTTCC AAAAGACCACAGAGTTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTTCTTTTTTGAT TCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGCAGTTGCATTTTTATATTATA ${\tt AGAGTATTGGTCCTTTGCTTTCATCATCTGACAACTTCTTATTGAAACCTCAAAATTATGAT}$ AATTCTGAAGAGGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC ACCCACATTATATGAACTTGAAAAAATAACATTTACATTAAGTCATCGAAAGGTCACAGATA GGTATAGGAGTCTATGTGCATTTTGGAATTACTCACCTGATACCATGAATGGCAGCTGGTCT \P CAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCT (GACACATTTTGCAATTTTGATGTCCTCTGGTCCTTCCATTGGTATTAAAGATTATAATATTC TTACAAGGATCACTCAACTAGGAATAATTATTTCACTGATTTGTCTTGCCATATGCATTTTT ACCTTCTGGTTCTTCAGTGAAATTCAAAGCACCAGGACAACAATTCACAAAAATCTTTGCTG .TAGCCTATTTCTTGCTGAACTTGTTTTTCTTGTTGGGATCAATACAAATACTAATAAGCTCT TCTGTTCAATCATTGCCGGACTGCTACACTACTTCTTTTTAGCTGCTTTTTGCATGGATGTGC ATTGAAGGCATACATCTCTATCTCATTGTTGTGGGTGTCATCTACAACAAGGGATTTTTGCA IÇAAGAATTTTTATATCTTTGGCTATCTAAGCCCAGCCGTGGTAGTTGGATTTTCGGCAGCAC FGGAGTTTTATAGGACCAGCATGCCTAATCATTCTTGTTAATCTCTTGGCTTTTGGAGTCAT MAAGGTCTTGTGCAAGAGGAGCCCTCGCTCTTCTGTTCCTTCTCGGCACCACCTGGATCTTT GGGGTTCTCCATGTTGTGCACGCATCAGTGGTTACAGCTTACCTCTTCACAGTCAGCAATGC TTTCCAGGGGATGTTCATTTTTTATTCCTGTGTGTTTTATCTAGAAAGATTCAAGAAGAT $\tt ATTACAGATTGTTCAAAAATGTCCCCTGTTGTTTTGGATGTTTAAGG\underline{TAA} ACATAGAGAATG$ GTGGATAATTACAACTGCACAAAAATAAAAATTCCAAGCTGTGGATGACCAATGTATAAAAA TGACTCATCAAATTATCCAATTATTAACTACTAGACAAAAAGTATTTTAAATCAGTTTTTCT GTTTATGCTATAGGAACTGTAGATAATAAGGTAAAATTATGTATCATATAGATATACTATGT $\tt TTTTCTATGTGAAATAGTTCTGTCAAAAATAGTATTGCAGATATTTGGAAAGTAATTGGTTT$ TGTCCTGAAGGAAACCACTGGCTTGATATTTCTGTGACTCGTGTTGCCTTTGAAACTAGTCC $\verb|CCTACCACCTCGGTAATGAGCTCCATTACAGAAAGTGGAACATAAGAGAATGAAGGGGCAGA| \\$ TAGCTGAGAAATTGTTGACATAAAATAAAGAATTGAAGAAACACATTTTACCATTTTGTGAA ${ t TTGTTCTGAACTTAAATGTCCACTAAAACAACTTAGACTTCTGTTTGCTAAATCTGTTTCTT$

MKRLPLLVVFSTLLNCSYTQNCTKTFCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNEC GNLTQSCGENANCTNTEGSYYCMCVPGFRSSSNQDRFITNDGTVCIENVMANCHLDNVCIAS NINKTLITKIRSIKEPVALLQEVYRNSVTDLSPTDIITYIEILAESSSLGYKNNTISAKDTL SNSTLTEFVKTVNNFVQRDTFVVWDKLSVNHRRTHLTKLMHTVEQATLRISQSFQKTTEFDT NSTDIALKVFFFDSYMKHHPHMMMDGDYINIFPKKRAAYDSNGNVAVAFLYYKSIGPLLS SSDNFLLKPQNTVDNSEBERVISSVISVBNSNPPTLVFLLEKITFTLSHRKVTDRYRSLCAF WNYSPDTMNGSWSSEGCELTYSNETHTSCRCNHLTHFAILMSGPSIGIKDYNLITRITQLG IIISLICLAICIFTFWFFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCSIIAGL LHYFFLAAFAWMCIEGHLYLIVVGVIYMKGFLHKNFYIFGYLSPAVVVGFSAALGYRYYGT TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCFENITRSCARGA LALLFLLGTTWIFGVLFVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNV

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636,

N-glycosylation site.

mino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181, 188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

 $\dot{G}_{\mu\nu}^{AMP}$ and cGMP-dependent protein kinase phosphorylation site. $\dot{G}_{\mu\nu}^{AMP}$ amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154, 155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329, 346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394, 434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGCCG GGTGTGAGTGGGTGTGTGCGGGGGGGGGGGGGGGTGATGCAATCCCGATAAGAAATGCTCGGG TGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCCGGAG $\tt CCGCCGCGCCGTCAGAGCAGGAGCGTCCAGGATCTAGGGCCACGACCATCCCAACCC$ GGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCGCCCAGCCTCCCGCACCCCCATCGCCGG AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGTGGTGGTCCACGTATGG ATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGCCCCCTCGCCTTCTCGGACGCGGGGCC CCACGTGCACTACGGCTGGGGCGACCCCATCCGCCTGCGGCACCTGTACACCTCCGGCCCCC ACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGGCGTCGTGGACTGCGCGCGGGGC CAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGG CGTGCACAGCGTGCGGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGT ACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGA TCCGAGAAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAA CAGAGGCTTTCTTCCACTCTCATTTCCTGCCCATGCTGCCCATGGTCCCAGAGGAGCCTG AGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATG \P ACCCATTTGGGCTTGTCACCGGACTGGAGGCCGTGAGGAGTCCCAGCTTTGAGAAG TAACT #BAGACCATGCCCGGGCCTCTTCACTGCTGCCAGGGGCTGTGGTACCTGCAGCGTGGGGGACG TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTTAGCTTTAGGAAGAACATCTAGAA #GTTGTACATATTCAGAGTTTTCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGAT CATAACATTGTAAGCCTGTAGCTTGCCCAGCTGCTGCCTGGGCCCCCATTCTGCTCCCTCGA **GTTGCTGGACAAGCTGCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAAC $_{
m I}$ TCACTTCCTTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTC ICCCAGGAGCAGCCAGAAGACAGGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTA *AAACAGCAGGTAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGG **G**CTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC **€TGAGGCCAGTTCTGTCATGGATGCTGTCCTGAGAATAACTTGCTGTCCCGGTGTCACCTGC** #TCCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT ©CCAGGCCCCCCACCTTATGTCAACCTGCACTTCTTGTTCAAAAATCAGGAAAAGAAAAGAT \P TGAAGACCCCAAGTCTTGTCAATAACTTGCTGTGTGGAAGCAGCGGGGGAAGACCTAGAAC TTTTGTATATTAAAATGGAGTTTGTTTGT

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRI RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE EIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

```
N-myristoylation site.
```

amino acids 15-21, 54-60, 66-72, 201-207

112

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

113

CCCAGAAGTTCAAGGGCCCCCGGCCTCCTGCGCTCCTGCCGCCGGGACCCTCGACCTCCTCA $\tt CTGCTGCGCTACCTGGTGGTCGCCCTGGGCTATCATAAGGCCTATGGGTTTTCTGCCCCAAAGGCCTATGGGTTTTCTGCCCCAAAGGCCTATGGGTTTTCTGCCCCAAAGGCCTATGGGTTTTCTGCCCCAAAGGCCTATGGGTTTTCTGCCCCAAAGGCCTATGGGTTTTCTGCCCCAAAGGCCTATGGGTTTTCTGCCCCCCAAAGGCCTATGGGGTTTTCTGCCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTTCTGCCCCCAAAGGCCTATGCAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCCCCCAAAGGCCTATGGGTTTTTCTGCCCCCAAAGGCCTATGGGTTTTTCTGCCCCCAAAGGCCTATGGGTTTTCTGCTGCTGTTTTCTGCCCCCAAAGGCCTATGGGTTTTTCTGCCCCCAAAGGCCTATGGTTTTCTGCCCCCAAAGGCCTATGGTTTTTCTGCCCCCAAAGGCCTATGGTTTTTCTGCCCCCCAAAAGGCCTATGGTTTTCTGCCCCCCAAAGGCCTATGGTTTTTCTGCCCCCCAAAGGCCTATGCTAAGGCCAAAGGCCTAAGGCCTAAGGCCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCAAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCTAAGGCCCTAAGGCCCCAAGGCCTAAGGCCCTAAGGCCCTAAGGCCCTAAGG$ AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTTAGCCTGCAAAACCCCCAA AGAAGACTGTTTCCTCCAGATTAGAGTGGAAGAAACTGGGTCGGAGTGTCTCCTTTGTCTAC TATCAACAGACTCTTCAAGGTGATTTTAAAAATCGAGCTGAGATGATAGATTTCAATATCCG GATCAAAAATGTGACAAGAAGTGATGCGGGGAAATATCGTTGTGAAGTTAGTGCCCCATCTG AGCAAGGCCAAAACCTGGAAGAGGATACAGTCACTCTGGAAGTATTAGTGGCTCCAGCAGTT CCATCATGTGAAGTACCCTCTTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA CAAAGAAGGGAATCCAGCTCCTGAATACACATGGTTTAAGGATGGCATCCGTTTGCTAGAAA ATCCCAGACTTGGCTCCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAACT CTGCAATTTAATACTGTTTCCAAACTGGACACTGGAGAATATTCCTGTGAAGCCCGCAATTC TGTTGGATATCGCAGGTGTCCTGGGAAACGAATGCAAGTAGATGATCTCAACATAAGTGGCA $\overline{\hat{T}}$ CATAGCAGCCGTAGTAGTTGTGGCCTTAGTGATTTCCGTTTGTGGCCTTGGTGTATGCTAT GCTCAGAGGAAAGGCTACTTTTCAAAAGAAACCTCCTTCCAGAAGAGTAATTCTTCATCTAA AGCCACGACAATGAGTGAAAATGTGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGAAGG **∮**CGCGGCGGCGGATCACGAGGTCAGGAGTTC**TAG**ACCAGTCTGGCCAATATGGTGAAACCC CATCTCTACTAAAATACAAAAATTAGCTGGGCATGTGGCATGTGCCTGCAGTTCCAGCTGC #TGGGAGACAGGAGATCACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC

MARRSRHRLLLLLRYLVVALGYHKAYGFSAPKDQQVVTAVEYQEAILACKTPKKTVSSRLE WKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQGQNLEED TVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKDGIRLLENPRLGSQST NSSYTMNTKTGTLQFNTVSKLDTGEYSCEARNSVGYRRCPGKRMQVDDLNISGIIAAVVVVA LVISVCGLGVCYAQRKGYFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKAAAGGSRGQEF

Signal peptide:

amino acids 226-230

```
Transmembrane domain:
amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

tamino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.
```

GACATCGGAGGTGGGCTAGCACTGAAACTGCTTTTCAAGACGAGGAAGAGGAGAAAAGAG AAAGAAGAGGAAGATGTTGGGCAACATTTATTTAACATGCTCCACAGCCCGGACCCTGGCAT CATGCTGCTATTCCTGCAAATACTGAAGAAGCATGGGATTTAAATATTTTACTTCTAAATAA ATGAATTACTCAATCTCCTATGACCATCTATACATACTCCACCTTCAAAAAGTACATCAATA TTATATCATTAAGGAAATAGTAACCTTCTCTCTCTCCCAATATGCATGACATTTTTGGACAATG CAATTGTGGCACTGGCACTTATTTCAGTGAAGAAAACTTTGTGGTTCTATGGCATTCATCA ${\tt TGGAATCCTTAAGGGCCCATTACATTTCTGAAGAAGAAGCTAAG{\tt ATGAAGGACATGCCACT}}$ CCGAATTCATGTGCTACTTGGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAAG TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTTGGTTTACACCCAGATCCATTTAT AGCTAACACACAGATTCTTCTCCTACAGACTAACAATATTGCAAAAATTGAATACTCCACAG ACTTTCCAGTAAACCTTACTGGCCTGGATTTATCTCAAAACAATTTATCTTCAGTCACCAAT ACTGCCTGAAAAATGTCTGTCCGAACTGAGCAACTTACAAGAACTCTATATTAATCACAACT AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTTGATGCTCTTCCAAATCTAGAGAT #CTGATGATTGGGGAAAATCCAATTATCAGAATCAAAGACATGAACTTTAAGCCTCTTATCA ATCTTCGCAGCCTGGTTATAGCTGGTATAAACCTCACAGAAATACCAGATAACGCCTTGGTT GACTGGAAAACTTAGAAAGCATCTCTTTTTACGATAACAGGCTTATTAAAGTACCCCATGT **GAGCTGATTTCCATCGATAGTCTTGCTGTGGATAACCTGCCAGATTTAAGAAAAATAGAAGC** #ACTAACAACCCTAGATTGTCTTACATTCACCCCAATGCATTTTTCAGACTCCCCAAGCTGG AATCACTCATGCTGAACAGCAATGCTCTCAGTGCCCTGTACCATGGTACCATTGAGTCTCTG CCAAACCTCAAGGAAATCAGCATACACAGTAACCCCATCAGGTGTGACTGTGTCATCCGTTG GATGAACATGAACAAAACCAACATTCGATTCATGGAGCCAGATTCACTGTTTTGCGTGGACC CACCTGAATTCCAAGGTCAGAATGTTCGGCAAGTGCATTTCAGGGACATGATGGAAATTTGT TTCCTTTCACTGTAGAGCTACTGCAGAACCACAGCCTGAAATCTACTGGATAACACCTTCTG GTCAAAAACTCTTGCCTAATACCCTGACAGACAAGTTCTATGTCCATTCTGAGGGAACACTA TGGCGCTGACTTGAAGTCTGTTATGATCAAAGTGGATCTTTTCCACAAGATAACAATG GCTCTTTGAATATTAAAATAAGAGATATTCAGGCCAATTCAGTTTTTGGTGTCCTGGAAAGCA AGTTCTAAAATTCTCAAATCTAGTGTTAAATGGACAGCCTTTGTCAAGACTGAAAATTCTCA TGCTGCGCAAAGTGCTCGAATACCATCTGATGTCAAGGTATATAATCTTACTCATCTGAATC CATCAACTGAGTATAAAATTTGTATTGATATTCCCACCATCTATCAGAAAAACAGAAAAAAA TGTGTAAATGTCACCACCAAAGGTTTGCACCCTGATCAAAAAGAGTATGAAAAGAATAATAC ${\tt CACAACACTTATGGCCTGTCTTGGAGGCCTTCTGGGGATTATTGGTGTGATATGTCTTATCA}$ AAACCAACCTTTGCATTAGGTGAGCTTTATCCTCCTCTGATAAATCTCTGGGAAGCAGGAAA ${\tt AGAAAAAGTACATCACTGAAAGTAAAAGCAACTGTTATAGGTTTACCAACAAATATGTCC} {\bf T}$ **AA**AAACCACCAAGGAAACCTACTCCAAAAATGAAC

MKUMPLRIHVILIGLAITTIVQAVDKKVDCPRLCTCEIRPWFTPRSIYMEASTVDCNDLGLLT FPARLPANTQILLLQTNNIAKIEYSTDFPVNLTGLDLSQNNLSSVTNINVKKMPQLLSVYLE ENKLTELPEKCLSELSNLQELYINHNILSTISPGAFIGLHNLIRLHLINSNRLQMINSKWFDA LPNLEILMIGENPIIRIKDMNFKPLINLRSLVIAGINLTEIPDNALVGLENLESISFYDNRL IKVPHVALQKVVNLKFLDLNKNPINRIRRGDFSNMLHLKELGINNMPBLISIDSLAVDNLPD LRKIEARINNPRLSYIPMAFFRLPKLESLMLNSNALSALYHTISSLPMLKEISHENPIRC DCVIRWNNMNKTNIRFMEPDSLFCVDPPEFQGQNVRQVHFRDMMEICLPLIAPESFPSNLNV EAGSYVSFHCRATAEPQPBIYWITPSGQKLLPNTLIDKFYVHSBGTLDINGVTPKEGGLYTC LATNLVGADLKSVMIKVGOSFPQDNNGSLNIK KEDIQANSVLVSWKASSKILKSSVKWTAFV KTENSHAAQSARIPSDVKVYNLTHLNPSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE YEKNNTTTLMACLGGLLGIIGVICLISCLSPEMNCDGGHSYVRNYLQKPTFALGELYPPLIN LWRBGKRKSTSIKVKATTUGLPTNMS

Signal sequence:

amino acids 1-22

```
Transmembrane domain:
```

amino acids 633-650

1

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583,

608-612, 624-628, 625-629

14

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443, 491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

GCCCGGGACTGCCCAAGCTGCCCAAGCAAGAAAAATAATGAAGAGACACATGTGTTAG CTGCAGCCTTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTTAC CACGCTTGTTGGAGTAGATGAGGAATGGGCTCGTGATTATGCTGACATTCCAGCATGAATCT GGTAGACCTGTGGTTAACCCGTTCCCTCCCATGTGTCTCCTCCTACAAAGTTTTGTTCTTA TGATACTGTGCTTTCATTCTGCCAGTATGTGTCCCAAGGGCTGTCTTTGTTCTTCCTCTGGGGGTTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTTCCTCCTGA AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCCAATGAAATTTTTAAGG ACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAAATGGCATTGAGTTTATCGATGAGCAT GCCTTCAAAGGAGTAGCTGAAACCTTGCAGACTCTGGACTTGTCCGACAATCGGATTCAAAG TGTGCACAAAAATGCCTTCAATAACCTGAAGGCCCAGGCCCAGAATTGCCAACAACCCCTGGC ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCAC AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCCTCAATGCTGC CAACGACGCTGACCTTTGTAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA *#GTTTGGCTGGTTCACTATGGTGATCTCATATGTGGTATATTATGTGAGGCAAAATCAGGAG TAAATAATTTGAGTTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTTCTGAGT 10

MNLVDLWLTRSLSMCLLLQSFVLMILCFHSASMCPKGCLCSSSGGLNVTCSNANLKEIPRDL
PPETVLLYLDSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDLSDNR
IQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPFL
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

```
Signal sequence:
amino acids 1-33

Transmembrane domain:
amino acids 205-220

N-glycosylation site.
amino acids 47-51, 94-98

AMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 199-203

Casein kinase II phosphorylation site.
amino acids 162-166, 175-179

N-myristoylation site.
amino acids 37-43, 45-51, 110-116
```

GGCGTGAGGAGCATGCCCAGCCCCTCCTGGCCTGCTGGCAGCCCATCCTCCTGCTGGTGCT GGGCTCAGTGCTGTCAGGCTCGGCCACGGGCTGCCCGCTGCGAGTGCTCCGCCCAGG ACCGCGCTGTGCCACCGCAAGTGCTTTGTGGCAGTCCCCGAGGGCATCCCCACCGAG ACGCGCCTGCTGGACCTAGGCAAGAACCGCATCAAAACGCTCAACCAGGACGACTTCGCCAG CCTTCAACACCTCTTCAACCTCCGGACGCTGGGTCTCCGCAGCAACCGCCTGAAGCTCATC CCGCTAGGCGTCTTCACTGGCCTCAGCAACCTGACCAAGCAGGACATCAGCGAGAACAAGAT CGTTATCCTACTGGACTACATGTTTCAGGACCTGTACAACCTCAAGTCACTGGAGGTTGGCG ACAATGACCTCGTCTACATCTCTCACCGCGCCTTCAGCGGCCTCAACAGCCTGGAGCAGCTG ACGCTGGAGAAATGCAACCTGACCTCCATCCCACCGAGGCGCTGTCCCACCTGCACGGCCT CATCGTCCTGAGGCTCCGGCACCTCAACATCCATCCGGGACTACTCCTTCAAGAGGC TGTACCGACTCAAGGTCTTGGAGATCTCCCACTGGCCCTACTTGGACACCATGACACCCAAC TGCCTCTACGGCCTCAACCTGACGTCCCTGTCCATCACACTGCAATCTGACCGCTGTGCC CTACCTGGCCGTCCGCCACCTAGTCTATCTCCGCTTCCTCAACCTCTCCTACAACCCCATCA GCACCATTGAGGGCTCCATGTTGCATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGGC GGGCAGCTGGCCGTGGTGGAGCCCTATGCCTTCCGCGGCCTCAACTACCTGCGCGTGCTCAA TGTCTCTGGCAACCAGCTGACCACACTGGAGGAATCAGTCTTCCACTCGGTGGGCAACCTGG ÄGACACTCATCCTGGACTCCAACCCGCTGGCCTGCGACTGTCGGCTCCTGTGGGTGTTCCGG CGCCGCTGGCGGCTCAACTTCAACCGGCAGCAGCCCACGTGCGCCACGCCCGAGTTTGTCCA GGGCAAGGAGTTCAAGGACTTCCCTGATGTGCTACTGCCCAACTACTTCACCTGCCGCCG CCGCATCCGGGACCGCAAGGCCCAGCAGGTGTTTGTGGACGAGGGCCACACGGTGCAGTTT &TGTGCCGGGCCGATGGCGACCCGCCGCCCATCCTCTGGCTCTCACCCCGAAAGCACCT GGTCTCAGCCAAGAGCAATGGGCGGCTCACAGTCTTCCCTGATGGCACGCTGGAGGTGCGCT ACGCCCAGGTACAGGACAACGGCACGTACCTGTGCATCGCGGCCAACGCGGGGGGGCAACGAC TCCATGCCCGCCCACCTGCATGTGCGCAGCTACTCGCCCGACTGGCCCCATCAGCCCAACAA SACCTTCGCTTTCATCTCCAACCAGCCGGCGAGGGGAGAGGCCAACAGCACCGCGCCACTG TGCCTTTCCCCTTCGACATCAAGACCCTCATCATCGCCACCACCATGGGCTTCATCTCTTTC CTGGGCGTCGTCCTTCTGCCTGGTGCTGCTGTTTCTCTGGAGCCGGGGCAAGGGCAACACAAAGCACAACATCGAGATCGAGTATGTGCCCCGAAAGTCGGACGCAGGCATCAGCTCCGCCG GGCGGCCGGGCAGGGGAAGGGGCCTGGTCGCCACCTGCTCACTCTCCAGTCCTTCCCACCTC CCAGCCTCACCACCTGCCCTTCTACCAGGACCTCAGAAGCCCAGACCTGGGGACCCCA ATAATTCAATAAAAAGTTACGAACTTTCTCTGTAACTTGGGTTTCAATAATTATGGATTTT

MQVSKRMLAGGVRSMPSPLLACWOPILLLVLGSVLSGSATGCPPRCECSAODRAVLCHRKCF
VAVPEGI PTETRILDLGKRRI KTILNQDEPAS PPILEBLEILENIVSAVEPGAFNULPILETL
GLRSNRLKLIPLGVFTGLSNLTKQDISENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRA
FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLKHLMINAIRDYSFKRLYRLKVLEISH
MYYLDYMTPNCLYGGLNTSLSITHCNLTAYPYLAVRHLVYLIRFLNLSYNDISTIESGMHEL
LRLQBIQLVGGQLAVVEPYAFRGLNYLRVLNVSGNQLTTLEESVFHSVGNLETLILDSNPLA
CDCRLLWVFRRWRINFNRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRAFIRDRKAQQV
FVDBGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLEVRYAQVQDNGTYL
CIAANAGGNDSMPAHLHVRSYSPDMFHQPNKTFAFISNQPGEGBANSTRATVPFPFDIKTLI
LATTMGFISFLGVVLIFCJVLILENGSGKGNTKHNISIERVYPRKSDAGISSADAPKKFMKMM

Signal sequence:

amino acids 1-41

Transmembrane domain:

```
maino acids 556-578
```

N-glycosylation site.

maino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345,

194

Casein kinase II phosphorylation site.

```
amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353,
```

J

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

```
amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143, 262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611
```

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

ATCGTAGTCCACCCCTCCCCATCCCCAGCCCCGGGGATTCAGGCTCGCCAGCCCCAGCC AGGGAGCCGCCGGGAAGCGCGATGGGGGCCCCAGCCGCCTCGCTCCTGCTCCTGCTCCTGC ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTGCTCAAGTGCCAAGTGAAAGATCA CGAGGACTCATCCCTGCAATGGTCTAACCCTGCTCAGCAGACTCTCTACTTTGGGGAGAAGA GAGCCCTTCGAGATAATCGAATTCAGCTGGTTACCTCTACGCCCCACGAGCTCAGCATCAGC ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTTCACTATGCCTGT GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAAGCCCATCATCACTGGTT ATAAATCTTCATTACGGGAAAAAGACACACCCCCTAAACTGTCAGTCTTCTGGGAGCAAG ACAGGAAGATCCCAATGGTAAAACCTTCACTGTCAGCAGCTCGGTGACATTCCAGGTTACCC *GGGAGGATGATGGGGCGAGCATCGTGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGAC #AGATCCACCTCTCAACGCATTGAAGTTTTATACACACCAACTGCGATGATTAGGCCAGACCC TCCCCATCCTCGTGAGGGCCAGAAGCTGTTGCTACACTGTGAGGGTCGCGGCAATCCAGTCC ECCAGCAGTACCTATGGGAGAAGGAGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGT GCCCTGATCTTCCCTTTCCTCAACAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCAG CAACATGGGCAGCTACAAGGCCTACTACACCCTCAATGTTAATGACCCCAGTCCGGTGCCCT CCTCCTCCAGCACCTACCACGCCATCATCGCTGGGATCGTGGCTTTCATTGTCTTCCTGCTG TGAGGCAAAAGGCTCCGACGATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCG GCAGTCAGGAGGGGACGACAAGAAGGAATATTTCATCTAGAGGCGCCTGCCCACTTCCTGC GCCCCCAGGGGCCCTGTGGGGACTGCTGGGGCCGTCACCAACCCGGACTTGTACAGAGCAA TTGCCCTCAGCCCTTTCCGTGGCTTCTCTGCATTTGGGTTATTATTATTTTTGTAACAATCC CAAATCAAATCTGTCTCCAGGCTGGAGAGGCAGGGCCCTGGGGTGAGAAAAGCAAAAAACA AACAAAAAACA

MGAPAASLLLLLLLFACCWAPGGANLSQDDSQPWTSDETVVAGGTVVLKCQVKDHEDSSLQW SNPAQQTLYFGEKRALRDNRIQLVTSTPHELSISISNVALADEGEYTCSIFTMPVRTAKSLV TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGK TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKGTYLTHEAKGSDD APDADTAIINAEGGQSGGDDKKEYFI

```
Signal sequence:
```

amino acids 1-20

```
Transmembrane domain:
```

```
amino acids 331-352
```

150

N-glycosylation site.

amino acids 25-29, 290-294

1

Casein kinase II phosphorylation site.

mino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304, 306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 7-18

GGGGGTTAGGGAAGGAATCCACCCCCACCCCCAAACCCTTTTCTTCTCCTTTCCTGG $\tt CTTCGGACATTGGAGCACTAAATGAACTTGAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG$ ${\tt TTACTTTGTGATGAGATCGGGGATGAATTGCTCGCTTTAAAA} \underline{{\tt ATG}} {\tt CTGCTTTGGATTCTGTT}$ GCTGGAGACGTCTCTTTGTTTTGCCGCTGGAAACGTTACAGGGGACGTTTGCAAAGAGAAGA TCTGTTCCTGCAATGAGATAGAAGGGGACCTACACGTAGACTGTGAAAAAAAGGGCTTCACA CCTCACTCGACTTTTCCCTAATGAGTTCGCTAACTTTTATAATGCGGTTAGTTTGCACATGG AAAACAATGGCTTGCATGAAATCGTTCCGGGGGCTTTTCTGGGGCTGCAGCTGGTGAAAAGG CTGCACATCAACAACAACAAGATCAAGTCTTTTCGAAAGCAGACTTTTCTGGGGCTGGACGA TCTGGAATATCTCCAGGCTGATTTTAATTTATTACGAGATATAGACCCGGGGGCCTTCCAGG ACTTGAACAAGCTGGAGGTGCTCATTTTAAATGACAATCTCATCAGCACCCTACCTGCCAAC GTGTTCCAGTATGTGCCCATCACCCACCTCGACCTCCGGGGTAACAGGCTGAAAACGCTGCC CTATGAGGAGGTCTTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCCTT GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCCAAGAATGCC CTGATCGGCCGAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC CACCGAACAGGACTTGTGTCCTTTGAAAAACCGAGTGGATTCTAGTCTCCCGGCGCCCCCTG CCCAAGAGAGACCTTTGCTCCTGGACCCCTGCCAACTCCTTTCAAGACAAATGGGCAAGAG GATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT CAAAATCAGACCCACAGCAGCGATAGCGACGGTAGCTCCAGGAACAAACCCTTAGCTAACA GTTTACCCTGCCCTGGGGGCTGCAGCTGCGACCACATCCCAGGGTCGGGTTTAAAGATGAAC TGCAACAACAGGAACGTGAGCAGCTTGGCTGATTTGAAGCCCAAGCTCTCTAACGTGCAGGA GCTTTTCCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTTTGTGGATTACAAGA ACCTCATTCTGTTGGATCTGGGCAACAATAACATCGCTACTGTAGAGAACAACACTTTCAAG AACCTTTTGGACCTCAGGTGGCTATACATGGATAGCAATTACCTGGACACGCTGTCCCGGGA GAAATTCGCGGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA TCCTCCCGGGCACTTTCAATGCCATGCCCAAACTGAGGATCCTCATTCTCAACAACAACCTG *CTGAGGTCCCTGCCTGTGGACGTGTTCGCTGGGGTCTCGCTCTAAACTCAGCCTGCACAA CAATTACTTCATGTACCTCCCGGTGGCAGGGGTGCTGGACCAGTTAACCTCCATCATCCAGA #AGACCTCCACGGAAACCCCTGGGAGTGCTCCTGCACAATTGTGCCTTTCAAGCAGTGGGCA _GAACGCTTGGGTTCCGAAGTGCTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACTTCTT ${ t TAGAAAGGATTTCATGCTCCTCTCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT}$ CGCCCACGTTAACTTCGCACAGTAAAAACAGCACTGGGTTGGCGGAGACCGGGACGCACTCC AACTCCTACCTAGACACCAGCAGGGTGTCCATCTCGGTGTTGGTCCCGGGACTGCTGCTGGT GTTTGTCACCTCCGCCTTCACCGTGGTGGGCATGCTCGTGTTTATCCTGAGGAACCGAAAGC GACTCTTCCTACTGGCACAATGGGCCTTACAACGCAGATGGGGCCCCACAGAGTGTATGACTG ${\tt CCATCAGCCTGGATGGGCATAAGTAGATAAATAACTGTGAGCTCGCACAACCGAAAGGGCCT}$ GACCCCTTACTTAGCTCCCTCCTTGAAACAAAGAGCAGACTGTGGAGAGCTGGGAGAGCGCA GCCAGCTCGCTCTTTGCTGAGAGCCCCTTTTGACAGAAAGCCCAGCACGACCCTGCTGGAAG AACTGACAGTGCCCTCGCCCTCGGCCCCGGGGCCTGTGGGGTTGGATGCCGCGGTTCTATAC ATATATACATATATCCACATCTATATAGAGAGATAGATATCTATTTTTCCCCTGTGGATTAG CCCCGTGATGGCTCCCTGTTGGCTACGCAGGGATGGGCAGTTGCACGAAGGCATGAATGTAT TGTAAATAAGTAACTTTGACTTCTGAC

MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQFYH
LFHENSLTRLFPNEFANFYNAVSLHMENNGLHEIVPGAFLGLQLVKRLHINNNKIKSFKKQ
TFLGLDDLEFYLQADFNLLRDIDPGAFQDLMKLEVLILNDNLISTLPANVFQYVPITHLDLRG
NRLKTLPYEEVLEQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPNALIGRVVCEAPTRLQ
GKDLNETTEQDLCPLKNRVDSSLFAPPAQEETFAPGIPFTPFKTNGGEDHATPGSAPNGGTK
IPGWNGIKIRPTAAIATGSSRNKPLANSLPCPGGCSCHIPGSGLKMNCNNRVSSLADLKP
KLSNVQELFLRDNKIHSIRKSHFVDYKNLILLDLGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYNAIQLILFGTFNAMPKIRILILNNNLLRSLPVDVFAGYSL
SKLSLHNNYFMYLPVAGVLDQLTSIQIDLHGFPWGSGSTIVPFKQWAERLGSEVLMSDLKC
ETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHSNSYLDTSRVSISVL
VPGLLLVFVTSAFTVVCMLVFILRNRKRSKRRDANSSASEINSLQTVCDSSYWHNGPYNADG
AHRVYPCGSHSLSD

Signal sequence:

amino acids 1-15

```
Transmembrane domain:
```

amino acids 618-638

N-glycosylation site.

13

maino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577, . 608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349, 354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

AGTCGACTGCGTCCCCTGTACCCGGCGCCCAGCTGTGTTCCTGACCCCAGAATAACTCAGGGC TGCACCGGGCCTGGCAGCGCTCCGCACACATTTCCTGTCGCGGCCTAAGGGAAACTGTTGGC AAGGGAGGGGAACCGGGTTGGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCCAGACAC ACCACGCTACCATGAAGCGGCAGGCGGCCGAGGAGGCCTGCATCCTGCGAGGTGGGGCGCTC AGCACCGTGCGGGCGCCGAGCTGCGCGCTGTGCTCGCGCTCCTGCGGGCAGGCCCAGG GCCCGGAGGGGGCTCCAAAGACCTGCTGTTCTGGGTCGCACTGGAGCGCAGGCGTTCCCACT GCACCCTGGAGAACGAGCCTTTGCGGGGTTTCTCCTGGCTGTCCTCCGACCCCGGCGGTCTC GAAAGCGACACGCTGCAGTGGGTGGAGGAGCCCCAACGCTCCTGCACCGCGCGGAGATGCGC GGTACTCCAGGCCACCGGTGGGGTCGAGCCCGCAGGCTGGAAGGAGATGCGATGCCACCTGC GCGCCAACGGCTACCTGTGCAAGTACCAGTTTGAGGTCTTGTGTCCTGCGCCGCGCCCCGGG GCCGCCTCTAACTTGAGCTATCGCGCGCCCTTCCAGCTGCACAGCGCCGCTCTGGACTTCAG TCCACCTGGGACCGAGGTGAGTGCGCTCTGCCGGGGACAGCTCCCGATCTCAGTTACTTGCA TCGCGGACGAAATCGGCGCTCGCTGGGACAAACTCTCGGGCGATGTGTTGTGTCCCTGCCCC GGGAGGTACCTCCGTGCTGGCAAATGCGCAGAGCTCCCTAACTGCCTAGACGACTTGGGAGG CTTTGCCTGCGAATGTGCTACGGGCTTCGAGCTGGGGAAGGACGGCCGCTCTTGTGTGACCA CAACCAGCCCCGTGCCGCAGAGAACATGGCCAATCAGGGTCGACGAGAAGCTGGGAGAGAC ACCACTTGTCCCTGAACAAGACAATTCAGTAACATCTATTCCTGAGATTCCTCGATGGGGAT ACAGAGCACGATGTCTACCCTTCAAATGTCCCTTCAAGCCGAGTCAAAGGCCACTATCACC CATCAGGGAGCGTGATTTCCAAGTTTAATTCTACGACTTCCTCTGCCACTCCTCAGGCTTT €GACTCCTCCTCCGCGTGGTCTTCATATTTGTGAGCACAGCAGTAGTAGTGTTGGTGATCT $ar{ t T}$ GACCATGACAGTACTGGGGCTTGTCAAGCTCTGCTTTCACGAAAGCCCCTCTTCCCAGCCA AGGAAGGAGTCTATGGGCCCGCCGGGCCTGGAGAGTGATCCTGAGCCCGCTGCTTTGGGCTC ¿CAGAGGGTGCCTTGCTGGCGGAGTCCCCTCTTGGCTCTAGTGATGCA<u>TAG</u>GGAAACAGGGGA CATGGGCACTCCTGTGAACAGTTTTTCACTTTTGATGAAACGGGGGAACCAAGAGGAACTTAC TTGTGTAACTGACAATTTCTGCAGAAATCCCCCTTCCTCTAAATTCCCTTTACTCCACTGAG GAGCTAAATCAGAACTGCACACTCCTTCCCTGATGATAGAGGAAGTGGAAGTGCCTTTAGGA TGGTGATACTGGGGGACCGGGTAGTGCTGGGGGAGAGATATTTTCTTATGTTTATTCGGAGAA TTTGGAGAAGTGATTGAACTTTTCAAGACATTGGAAACAAATAGAACACAATATAATTTACA ATTGGTTCGAAATCCCAGGGAAAAAAATAAAAATAAAAAATTAAAGGATTGTTGAT

MRPAFALCLLWQALWPGPGGGHPTADRAGCSASGACYSLHHATMKRQAAEBACILRGGALS
TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRRSHCTLENEPLRGFSWLSSDPGGLE
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCPAPRPGA
ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADBIGARWDKLSGDVLCPCPG
RYLRAGKCABLPNCLDDLGGFACCCATGFELGKOGRSCYTSGEQQPPLGGTGGVPRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITP
SGSVISKFNSTTSSATPQAFDSSAVVVIFIFVSTAVVVLVILITTVLGLVKLCFHBSPSSQPR
KESMGPPGLESDPEPAALGSSSAHCTNNGVKVGDCDLRGRBGALLAESFLGSSD

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

1

Glycosaminoglycan attachment site.

amino acids 289-293

14

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157, 185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469, 477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

CGGACGCGTGGGATTCAGCAGTGGCCTGTGGCTGCCAGAGCAGCTCCTCAGGGGAAACTAAG GCGCCGGTGTGAGCCAGCGCTGCCAGTGTGAGCGGCGGTGTGAGCGCGGTGCGGA GGGGCGCAACGCCTGGGCGCCACTCTGCCTGCTGCTGCTGCCGCCACCCAGCTCTCGCGG TATTGGCAGTGAAGGTTTTCCTGGAGTGTACCCTCCAAATAGCAAATGTACTTGGAAAATCA CAGTTCCCGAAGGAAAAGTAGTCGTTCTCAATTTCCGATTCATAGACCTCGAGAGTGACAAC $\tt CTGTGCCGCTATGACTTTGTGGATGTGTACAATGGCCATGCCAATGGCCAGCGCATTGGCCATTGGCCGCATTGGCCATTGGCCGCATTGGCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCCATTGGCATTGGCATTGGCCATTGGCATTGGCATTGGCATTGGCATTGGCATTGGCATTGGCATTGGCATTGGCCATTGGCATTGGCATTGGCATTGCATTGGCCATTGGCATTGGCATTGGCATTGGCCATTGGCATTGGCATTGGCATTGGCATTGGCCA$ CTTCTGTGGCACTTTCCGGCCTGGAGCCCTTGTGTCCAGTGGCAACAAGATGATGGTGCAGA TGATTTCTGATGCCAACACAGCTGGCAATGGCTTCATGGCCATGTTCTCCGCTGCTGAACCA AACGAAAGAGGGGATCAGTATTGTGGAGGACTCCTTGACAGACCTTCCGGCTCTTTTAAAAC CAAAGAATCAGCTTATAGAATTAAAGTTTGAGAAGTTTGATGTGGAGCGAGATAACTACTGC CGATATGATTATGTGGCTGTTTTAATGGCGGGGAAGTCAACGATGCTAGAAGAATTGGAAA GTATTGTGGTGATAGTCCACCTGCGCCAATTGTGTCTGAGAGAAATGAACTTCTTATTCAGT ${f TTTTATCAGACTTAAGTTTAACTGCAGATGGGTTTATTGGTCACTACATATTCAGGCCAAAA$. AAACTGCCTACAACTACAGAACAGCCTGTCACCACCACATTCCCTGTAACCACGGGTTTAAA CTTCAAGTGACTTTGTATTAGCCGGCACTGTTATCACAACCATCACTCGCGATGGGAGTTTG CACGCCACAGTCTCGATCATCAACATCTACAAAGAGGGAAATTTGGCGATTCAGCAGGCGGG CAAGAACATGAGTGCCAGGCTGACTGTCGTCTGCAAGCAGTGCCCTCTCCTCAGAAGAGGTC #AAATTACATTATTATGGGCCAAGTAGGTGAAGATGGGCGAGGCAAAATCATGCCAAACAGC TTTATCATGATGTTCAAGACCAAGAATCAGAAGCTCCTGGATGCCTTAAAAAATAAGCAATG ${f TTAA}$ CAGTGAACTGTGTCCATTTAAGCTGTATTCTGCCATTGCCTTTGAAAGATCTATGTTC TCTCAGTAGAAAAAAAATACTTATAAAATTACATATTCTGAAAGAGGATTCCGAAAGATGG GACTGGTTGACTCTTCACATGATGGAGGTATGAGGCCTCCGAGATAGCTGAGGGAAGTTCTT <u>TGCCTGCTGTCAGAGGAGCAGCTATCTGATTGGAAACCTGCCGACTTAGTGCGGTGATAGGA</u> ATTTTAGAATTGAGTTGTGAAGATGTCAAAAAAAGATTTTAGAAGTGCAATATTTATAGT GTTATTTGTTTCACCTTCAAGCCTTTGCCCTGAGGTGTTACAATCTTGTCTTGCGTTTTCTA

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDRDYPAGVTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGDSPPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTTEQPVTTTFPVTTGLKPTVALCQQKCRRTGTLEGN
YCSSDFVLAGTVITTITRDGSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMGQVGEDGRGKIMPNSFIMMFKTKNQKLLDALKNKQC

```
Signal sequence:
amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

M-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295, 305-311, 309-315, 320-326, 330-336
```

Cell attachment sequence. amino acids 149-152

CCTTCTCCGTGGCCTACGAGGGTCCCCAGCCTGGGTAAAGATGGCCCCATGGCCCCCGAAGG GCCTAGTCCCAGCTGTGCTCTGGGGCCTCAGCCTCTTCCTCAACCTCCCAGGACCTATCTGG CCGGGGACTGGTTGACAGCTTTAACAAGGGCCTGGAGAGACCATCCGGGACAACTTTGGAGGTGGAAACACTGCCTGGGAGGAAGAGAATTTGTCCAAATACAAAGACAGTGAGACCCGCCTG GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTTCGAGTGCCACCGCCTGCTGGAGCT GAGTGAGGAGCTGGTGGAGAGCTGGTTTTCACAAGCAGCAGGAGGCCCCGGACCTCTTCC AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCCGCAGGCACCTTCGGGCCCTCCTGC CTTCCCTGTCCTGGGGGAACAGAGGCCCTGCGGTGGCTACGGGCAGTGTGAAGGAGAAGG GACACGAGGGGCAGCGGCACTGTGACTGCCAAGCCGGCTACGGGGTGAGGCCTGTGGCC #TTTGGCCCCTGTGCCCGATGCTCAGGACCTGAGGAATCAAACTGTTTGCAATGCAAGAAGGG TTGGGCCCTGCATCACCTCAAGTGTGTAGACATTGATGAGTGTGGCACAGAGGGAGCCAACT ##TGGAGCTGACCAATTCTGCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG GCCTGCCTAGGCTGCATGGGGGCAGGCCAGGTCGCTGTAAGAAGTGTAGCCCTGGCTATCA GCAGGTGGGCTCCAAGTGTCTCGATGTGGATGAGTGTGAGACAGAGGTGTGTCCGGGAGAGA *ACAAGCAGTGTGAAAACACCGAGGGCGGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAG *ATGGAAGGCATCTGTGTGAAGGAGCAGATCCCAGAGTCAGCAGGCTTCTTCTCAGAGATGAC AGAAGACGAGTTGGTGGTGCTGCAGCAGATGTTCTTTGGCATCATCATCTGTGCACTGGCCA CGCTGCTGCTAAGGGCGACTTGGTGTTCACCGCCATCTTCATTGGGGCTGTGGCGGCCATG ACTGGCTACTGGTTGTCAGAGCGCAGTGACCGTGTGCTGGAGGGCCTTCATCAAGGGCAGATA ATCGCGGCCACCACCTGTAGGACCTCCTCCCACCCACGCTGCCCCCAGAGCTTGGGCTGCCC TCCTGCTGGACACTCAGGACAGCTTGGTTTATTTTTGAGAGTTGGGGTAAGCACCCCTACCTG CCTTACAGAGCAGCCCAGGTACCCAGGCCCGGCCAGACAAGGCCCCTGGGGTAAAAAGTAGC CCTGAAGGTGGATACCATGAGCTCTTCACCTGGCGGGGACTGGCAGGCTTCACAATGTGTGA ATTTCAAAAGTTTTTCCTTAATGGTGGCTGCTAGAGCTTTGGCCCCTGCTTAGGATTAGGTG GTCCTCACAGGGGTGGGGCCATCACAGCTCCCTCCTGCCAGCTGCATGCTGCCAGTTCCTGT

MAPMPKGLVPAVLWGLSLFI.NLPGPIWLQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGLER
TIRDNFGGGNTAWEEBALSKYKDSFTRIVEVLEGVCSKSDFECHRLLELSEELVESWWFIKL
QBAPDLFGWLCSDSLKLCCPAGTFGPSCLPCPGGTERPCGGYGQCGEGGTRGGSGHCDCQAG
YGGEACGQCGLGYFEAERNASHLVCSACFGPCARCSGPEESNCLQCKKGWALHHLKCVDIDE
CGTBGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKKCSPGYQQVGSKCLDVDECE
TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAAKGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIKGR

```
Signal sequence:
amino acids 1-29
```

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

CAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-263

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179, 177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289, 326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

TGAGACCCTCCTGCAGCCTTCTCAAGGGACAGCCCCACTCTGCCTCTTGCTCCTCCAGGGCA $\tt GCACC{\color{red}{\textbf{ATG}}} CAGCCCTGTGGCTCTGCTGGGCACTCTGGGTGTTGCCCCTGGCCAGCCCCGGG$ GCCGCCCTGACCGGGGAGCAGCTCCTGGGCAGCTGCTGCGGCAGCTCCAAAGAGGT ACGTGGCCCTGCTGCAGCGCAGCCACGGGGACCGCTCCCGCGGAAAGAGGTTCAGCCAGAGC TTCCGAGAGGTGGCCGGCAGGTTCCTGGCGTTGGAGGCCAGCACACCTGCTGGTGTTCGG CATGGAGCAGCGGCTGCCGCCCAACAGCGAGCTGGTGCAGGCCGTGCTGCGGCTCTTCCAGG AGCCGGTCCCCAAGGCCGCGCTGCACAGGCACGGCCGCTGTCCCCGCGCAGCCCCCGCGCC CTCCAGGCTGGTCCACGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA ACTTCTGGCAGCAGCTGAGCCGGCCCGGCAGCCGCTGCTACAGGTGTCGGTGCAGAGG GAGCATCTGGGCCCGCTGGCGTCCGGCGCCCACAAGCTGGTCCGCTTTGCCTCGCAGGGGGC GCCAGCCGGGCTTGGGGAGCCCCAGCTGGAGCTGCACACCCTGGACCTTGGGGACTATGGAG **CTCAGGGCGACTGTGACCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG ATGTACATTGACCTGCAGGGGATGAAGTGGGCCGAGAACTGGGTGCTGGAGCCCCCGGGCTT CCTGGCTTATGAGTGTGTGGGCACCTGCCGGCAGCCCCGGAGGCCCTGGCCTTCAAGTGGC _ATCAAGGAGGGAGGCAGGACCAGGCCCAGGTGGTCAGCCTGCCCAACATGAGGGTGCAGAA GTGCAGCTGTGCCTCGGATGGTGCGCTCGTGCCAAGGAGGCTCCAGCCATAGGCGCCTAGTG TAGCCATCGAGGGACTTGACTTGTGTGTGTTTCTGAAGTGTTCGAGGGTACCAGGAGAGCTG ##GCGATGACTGAACTGCTGATGGACAAATGCTCTGTGCTCTCTAGTGAGCCCTGAATTTGCTT CCTCTGACAAGTTACCTCACCTAATTTTTGCTTCTCAGGAATGAGAATCTTTGGCCACTGGA GTGGAGATACTGTAACCTGAGGGCAGAAAGCCCANTGTGTCATTGTTTACTTGTCCTGTCAC TGGATCTGGGCTAAAGTCCTCCACCACCACTCTGGACCTAAGACCTGGGGTTAAGTGTGGGT TGTGCATCCCCAATCCAGATAATAAAGACTTTGTAAAACATGAATAAAACACATTTTATTCT ΔΑΑΔ

MQPLWLCWALWVLPLASPGAALTGEQLLGSLLRQLQLKEVPTLDRADMEELVIPTHVRAQYV
ALLQRSHGDRSRGKRFSQSFREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP
VPKAALHRHGRLSPRSARARVTVEWLRVRDDGSNRTSLIDSRLVSVHESGWKAFDVTEAVNF
WQQLSRPRQPLLLQVSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ
GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF
LGPRQCIASETDSLPMIVSIKEGGRTRPQVVSLPNMRVQKCSCASDGALVPRRLOP

```
Signal sequence:
amino acids 1-18

N-glycosylation site.
amino acids 158-162

CAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 76-80

Casein kinase II phosphorylation site.
amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.
amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.
amino acids 74-78
```

TGF-beta family signature. amino acids 282-298

GTCTGTTCCCAGGAGTCCTTCGGCGGCTGTTGTGTCAGTGGCCTGATCGCGATGGGGACAAA GGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTTCATATTGGCGATCCTGTTGTGCTCCCTGG CATTGGGCAGTGTTACAGTGCACTCTTCTGAACCTGAAGTCAGAATTCCTGAGAATAATCCT GTGAAGTTGTCCTGTGCCTACTCGGGCTTTTCTTCTCCCCGTGTGGAGTTGGAAGTTTGACCA AGGAGA CACCACCAGACTCGTTTGCTATAATAACAAGATCACAGCTTCCTATGAGGACCGGG TGACCTTCTTGCCAACTGGTATCACCTTCAAGTCCGTGACACGGGAAGACACTGGGACATAC ${\tt ACTTGTATGGTCTCTGAGGAAGGCGGCAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT}$ GCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCTCTGCCACCATTGGGAACCGGG CAGTGCTGACATGCTCAGAACAAGATGGTTCCCCACCTTCTGAATACACCTGGTTCAAAGAT GGGATAGTGATGCCTACGAATCCCAAAAGCACCCGTGCCTTCAGCAACTCTTCCTATGTCCT GAATCCCACAACAGGAGAGCTGGTCTTTGATCCCCTGTCAGCCTCTGATACTGGAGAATACA GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTTCAAATGCTGTGCGCATGGAAGCT GTGGAGCGGAATGTGGGGGTCATCGTGGCAGCCGTCCTTGTAACCCTGATTCTCCTGGGAAT CTTCGAGTAAGAAGGTGATTTACAGCCAGCCTAGTGCCCGAAGTGAAGGAGAATTCAAACAG ACCTCGTCATTCCTGGTG<u>TGA</u>GCCTGGTCGGCTCACCGCCTATCATCTGCATTTGCCTTACT CAGGTGCTACCGGACTCTGGCCCCTGATGTCTGTAGTTTCACAGGATGCCTTATTTGTCTTC TACACCCCACAGGGCCCCCTACTTCTTCGGATGTGTTTTTAATAATGTCAGCTATGTGCCCC &ATCCTCCTTCATGCCCTCCCTCCCTTTCCTACCACTGCTGAGTGGCCTGGAACTTGTTTAAA GTGTTTATTCCCCATTTCTTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC PTTCTAAGTAGACAGCAAAAATGGCGGGGTCGCAGGAATCTGCACTCAACTGCCCACCTGGC TGGCAGGGATCTTTGAATAGGTATCTTGAGCTTGGTTCTGGGCTCTTTCCTTGTGTACTGAC GACCAGGGCCAGCTGTTCTAGAGCGGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTTGG TGATGACACTGGGGTCCTTCCATCTCTGGGGCCCACTCTCTTCTGTCTTCCCATGGGAAGTG GGAAAATGGGAGCTCTTGTTGTGGAGAGCATAGTAAATTTTCAGAGAACTTGAAGCCAAAAG GATTTAAAACCGCTGCTCTAAAGAAAAGAAAACTGGAGGCTGGGCGCAGTGGCTCACGCCTG TAATCCCAGAGGCTGAGGCAGGCGGATCACCTGAGGTCGGGAGTTCGGGATCAGCCTGACCA ACATGGAGAAACCCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTC

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRVEW
KFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYTWFKDGIVMPTNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

lamino acids 185-189

10

CAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

143

Casein kinase II phosphorylation site.

mino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158,

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

CAGCGCGTGGCCGCCGCTGTGGGGACAGCATGAGCGGCGGTTGGATGGCGCAGGTTGGA GCGTGCCGAACAGGGCTCTGGGCCTGCCGCTGCTGCTCCTCCGCCTCGGACTAGGCCT GGAGGCCGCCGCGCCTTTCCACCCCGACCTCTGCCCAGGCCGCAGGCCCCAGCTCAG GCTCGTGCCCACCACCAGTTCCAGTGCCGCACCAGTGGCTTATGCGTGCCCCTCACCTGG CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGTGCAGGATTGAGCC GTGACTGCTCTGGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCCTGGCCTAGCA GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCCA CCCAGACTGTCCCGACTCCAGCGACGACGTCGGCTGTGGAACCAATGAGATCCTCCCGGAAG GGGATGCCACAACCATGGGGCCCCTGTGACCCTGGAGAGTGTCACCTCTCTCAGGAATGCC ACAACCATGGGGCCCCTGTGACCCTGGAGAGTGTCCCCTCTGTCGGGAATGCCACATCCTC CTCTGCCGGAGACCAGTCTGGAAGCCCAACTGCCTATGGGGTTATTGCAGCTGCTGCGGTGC TCAGTGCAAGCCTGGTCACCGCCACCCTCCTCTTTTGTCCTGGCTCCGAGCCCAGGAGCGC CTCCGCCCACTGGGGTTACTGGTGGCCATGAAGGAGTCCCTGCTGCTGTCAGAACAGAAGAC CTCGCTGCCCTGAGGACAAGCACTTGCCACCACCGTCACTCAGCCCTGGGCGTAGCCGGACA GGAGGAGAGCAGTGATGCGGATGGGTACCCGGGCACACCAGCCCTCAGAGACCTGAGTTCTT CTGGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAACTGGCCCTGGAGATTGAGGGTCCC TGGACACTCCCTATGGAGATCCGGGGAGCTAGGATGGGGAACCTGCCACAGCCAGAACTGAG LGGGCTGGCCCCAGGCAGCTCCCAGGGGGTAGAACGGCCCTGTGCTTAAGACACTCCCTGCTG CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

il id.

MSGGWMAQVGAWRTGALGLALLLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR TSGLCVPLTWRCDRDLDCSDGSDEEECRIEPCTQKGQCPPPPGLPCPCTGVSDCSGGTDKKL RNCSRLACLAGELRCTLSDDCIPLTWRCDGHPDCPDSSDELGCGTNEILPEGDATTMGPPVT LESVTSLRNATTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTATLL LLSWLRAOERLRPLGLLVAMKESLILLSEOKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

6

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

Q.

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218,

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

CCACGCGTCCGCTCGCTCGCCCGCAGCGCGCGCAGAGATCGCGCACAGATGCGG CTCTTGCAAGCTGGATGCCCTCTGTGGATGAAAGATGTATCATGGAATGAACCCGAGCAATG GAGATGGATTTCTAGAGCAGCAGCAGCAGCAGCAGCAGCCTCAGTCCCCCCAGAGACTCTTG CGATGACCTTCAAGTGTGTGCTGACCCCGGCATTCCCGAGAATGGCTTCAGGACCCCCAGCG GAGGGGTTTTCTTTGAAGGCTCTGTAGCCCGATTTCACTGCCAAGACGGATTCAAGCTGAAG GGCGCTACAAAGAGACTCTGTTTGAAGCATTTTAATGGAACCCTAGGCTGGATCCCAAGTGA TAATTCCATCTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTCATA ACAAGACATATAGACATGGAGAGAAGCTAATCATCACTTGTCATGAAGGATTCAAGATCCGG TACCCCGACCTACACAATATGGTTTCATTATGTCGCGATGATGGAACGTGGAATAATCTGCC ∉@ATCTGTCAAGGCTGCCTGAGACCTCTAGCCTCTTCTAATGGCTATGTAAACATCTCTGAGC CCAGACCTCCTTCCCGGTGGGGACTGTGATCTCCTATCGCTGCTTTCCCGGATTTAAACTT GATGGGTCTGCGTATCTTGAGTGCTTACAAAACCTTATCTGGTCGTCCAGCCCACCCCGGTG CCTTGCTCTGGAAGCCCAAGTCTGTCCACTACCTCCAATGGTGAGTCACGGAGATTTCGTCT ©CCACCCGCGCCTTGTGAGCGCTACAACCACGGAACTGTGGTGGAGTTTTACTGCGATCCT GGCTACAGCCTCACCAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTTCCTTC #TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCCAGCACCCATGAGACCCTCCTGA CCACGTGGAAGATTGTGGCGTTCACGGCAACCAGTGTGCTGCTGGTGCTGCTGCTCGTCATC #PTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCCACTTTCCCCCCAGGGGGCCTCCCCGGAG TTCCAGCAGTGACCCTGACTTTGTGGTGGTAGACGGCGTGCCCGTCATGCTCCCGTCCTATG ACGAAGCTGTGAGTGCCGTTGAGTGCCTTAGGCCCCGGGTACATGGCCTCTGTGGGCCAG GGCTGCCCCTTACCCGTGGACGACCAGAGCCCCCCAGCATACCCCGGCTCAGGGGACACGGA CACAGGCCCAGGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTTCTGAGCTGCTCCAAA GTTGTTCCTAAGAAACTGATTGATTAAAAAATTTCCCAAAGTGTCCTGAAGTGTCTCTTCAA ATACATGTTGATCTGTGGAGTTGATTCCTTTCCTTCTTTTGGTTTTAGACAAATGTAAACAA AGCTCTGATCCTTAAAATTGCTATGCTGATAGAGTGGTGAGGGCTGGAAGCTTGATCAAGTC CTGTTTCTTCTTGACACAGACTGATTAAAAATTAAAAGNAAAAAA

MYHGMNPSNGDGFLEQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGGVFFEGSVARFHCQDGFKLKGATKRLCLKHFNGTLGWIPSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTTWKIVAFTATSVLLVILLVILARMFQTKFKAHFPPRGPPRSSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDS
VSGSSELLOSLYSPPRCOESTHPASDNPDIIASTAEEVASTSPGIHHAHWVLFLRN

```
Signal sequence:
```

amino acids 1-41

Transmembrane domain:

amino acids 325-344

10

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

1.4

Casein kinase II phosphorylation site.

mino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366, 1364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424, 478-484

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 394-405

CCCACGCGTCCGCTCCGCCCCCCCCCCCCCCTCCGTGCGTCCGTCGGTGGCCTAGAGA TGCTGCTGCCGCGGTTGCAGTTGTCGCGCACGCCTCTGCCCGCCAGCCCGCTCCACCGCCGT AGCGCCCGAGTGTCGGGGGGCGCACCCGAGTCGGGCCATGAGGCCGGGAACCGCGCTACAGG CCGTGCTGCTGCCGCTGCTGCTGGGGCCTGCGGGCCGCGACGGGTCGCCTGCTGAGTGCC TAAAGTCATTTACTTCCATGATACTTCTCGAAGACTGAACTTTGAGGAAGCCAAAGAAGCCT GCAGGAGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA AAGTTCATTGAAAACCTCTTGCCATCTGATGGTGACTTCTGGATTGGGCTCAGGAGGCGTGA GGAGAAACAAGCAATAGCACAGCCTGCCAGGACCTTTATGCTTGGACTGATGGCAGCATAT CACAATTTAGGAACTGGTATGTGGATGAGCCGTCCTGCGGCAGCGAGGTCTGCGTGGTCATG TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCCCCTACATGTTCCAGTGGAATGATGA SCGGTGCAACATGAAGAACAATTTCATTTGCAAATATTCTGATGAGAAACCAGCAGTTCCTT ETAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAAACACAG *GAAGAAGATGCCAAAAAAACATTTAAAGAAAGTAGAGAAGCTGCCTTGAATCTGGCCTACAT CTAATCCCCAGCATTCCCCTTCTCCTCCTCCTTGTGGTCACCACAGTTGTATGTTGGGTTT EGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCCTAGCACAAAGAAGCAACACACCATC TGGCCCTCTCCTCACCAGGGAAACAGCCCGGACCTAGAGGTCTACAATGTCATAAGAAAACA **AAGCGAAGCTGACTTAGCTGAGACCCGGCCAGACCTGAAGAATATTTCATTCCGAGTGTGTT CGGGAGAAGCCACTCCCGATGACATGTCTTGTGACTATGACAACATGGCTGTGAACCCATCA GAAAGTGGGTTTGTGACTCTGGTGAGCGTGGAGAGTGGATTTGTGACCAATGACATTTATGA ĞTTCTCCCCAGACCAAATGGGGAGGAGTAAGGAGTCTGGATGGGTGGAAAATGAAATATATG GTTATTAGGACATATAAAAAACTGAAACTGACAACAATGGAAAAGAAATGATAAGCAAAAATC $\tt CTCTTATTTCTATAAGGAAAATACACAGAAGGTCTATGAACAAGCTTAGATCAGGTCCTGT$ GGATGAGCATGTGGTCCCCACGACCTCCTGTTGGACCCCCACGTTTTGGCTGTATCCTTTAT CCCAGCCAGTCATCCAGCTCGACCTTATGAGAAGGTACCTTGCCCAGGTCTGGCACATAGTAGAGTCTCAATAAATGTCACTTGGTTGGTTGTATCTAACTTTTAAGGGACAGAGCTTTACCTG GCAGTGATAAAGATGGGCTGTGGAGCTTGGAAAACCACCTCTGTTTTCCTTGCTCTATACAG CAGCACATATTATCATACAGACAGAAAATCCAGAATCTTTTCAAAGCCCACATATGGTAGCACAG GTTGGCCTGTGCATCGGCAATTCTCATATCTGTTTTTTTCAAAGAATAAAATCAAATAAAGA GCAGGAAAAAAAAA

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLDLRGGQPVCRGGTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPSDGDFWIGLRRREEKQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNNFICKY
SDEKPAVPSREAEGEETELTTPVLPEETQEEDAKKTFKESREAALNLAYILIPSIPLLLLLV
VTTVVCWVWICRKKKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSESGFVTLVSVESGFVTNDIYEFSPDQMGRSKES
GWVENEIYGY

```
Signal sequence:
```

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

CAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226, 299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

ATCCGCAGGTTCCCGCGGACTTGGGGGCCCCCCTGAGCCCCGGCGCCCGCAGAAGACTTGT $\tt GTTTGCCTCCTGCAGCCTCAACCCGGAGGGCCAGCGAGGGCCTACCACC \textbf{ATG} ATCACTGGTGT$ AGCGGCGGGTGGCCCTGGCCGAGCTGCAGGAGGCCGATGGCCAGTGTCCGGTCGACCGCAGC CTGCTGAAGTTGAAAATGGTGCAGGTCGTGTTTCGACACGGGGCTCGGAGTCCTCTCAAGCC GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCCAAACTC AGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATATTCTCCTTACGACTCT CAATACCATGAGACCACCCTGAAGGGGGGCATGTTTGCTGGGCAGCTGACCAAGGTGGGCAT GCAGCAAATGTTTGCCTTGGGAGAGAGACTGAGGAAGACTATGTGGAAGACATTCCCTTTC TTTCACCAACCTTCAACCCACAGGAGGTCTTTATTCGTTCCACTAACATTTTTCGGAATCTG CACACTGATGAAGCAGATTCAGAAGTCTTGTATCCCAACTACCAAAGCTGCTGGAGCCTGA AAAAAGGTGAAGGACAGGATGGGCATTGACAGTAGTGATAAAGTGGACTTCTTCATCCTCCT GACAACGTGGCTGCCGAGCAGGCACACCTCCCAAGCTGCCCCATGCTGAAGAGATTTG CACGGATGATCGAACAGAGCTGTGGACACATCCTTGTACATACTGCCCAAGGAAGACAGG GAAAGTCTTCAGATGGCAGTAGGCCCATTCCTCCACATCCTAGAGAGCAACCTGCTGAAAGC CATGGACTCTGCCACTGCCCCCGACAAGATCAGAAAGCTGTATCTCTATGCGGCTCATGATG *#TGACCTTCATACCGCTCTTAATGACCCTGGGGATTTTTGACCACAAATGGCCACCGTTTGCT GTTGACCTGACCATGGAACTTTACCAGCACCTGGAATCTAAGGAGTGGTTTGTGCAGCTCTA TTACCACGGGAAGGAGCAGGTGCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGT TCTTGAATGCCATGTCAGTTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA ACTCAGGTGATGGAAGTTGGAAATGAAGAGTAACTGATTTATAAAAGCAGGATGTGTTGATT TTAAAATAAAGTGCCTTTATACAATG

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNPQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFLHILES
NLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEW
FVOLYYHGKEOVPRGCPDGLCPLDMFLNAMSVYTLSPEKYHALCSOTOVMEVGNEE

```
Signal sequence:
```

amino acids 1-23

GAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

 $\tt CTCCTCTTAACATACTTGCAGCTAAAACTAAATATTGCTGCTTGGGGACCTCCTTCTAGCCT$ TAAATTTCAGCTCATCACCTTCACCTTGGTCATGGCTCTGCTATTCTCCTTGATCCTT $\tt GCCATTTGCACCAGACCTGGATTCCTAGCGTCTCCATCTGGAGTGCGGCTGGTGGGGGGGCCT$ CCACCGCTGTGAAGGCCGGCTGGAGGTGGAACAGAAAGGCCAGTGGGGCACCGTGTGTGATG ACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGGAGCTGGGCTGTGGAGCTGCCAGC GGAACCCCTAGTGGTATTTTGTATGAGCCACCAGCAGAAAAAGAGCAAAAGGTCCTCATCCA ATCAGTCAGTTGCACAGGAACAGAAGATACATTGGCTCAGTGTGAGCAAGAAGAAGTTTATG ATTGTTCACATGATGAGATGCTGGGGCATCGTGTGAGAACCCAGAGAGCTCTTTCTCCCCA GCACCAGACCAGTGGTATACCGTGTGCCAGACAGGCTGGAGCCTCCGGGCCGCAAAGGTGG TGTGCCGGCAGCTGGGATGTGGGAGGGCTGTACTGACTCAAAAACGCTGCAACAAGCATGCC *TATGGCCGAAAACCCATCTGGCTGAGCCAGATGTCATGCTCAGGACGAGAAGCAACCCTTCA GGATTGCCCTTCTGGGCCTTGGGGGAAGAACACCTGCAACCATGATGAAGACACGTGGGTCG ATGTGAAGATCCCTTTGACTTGAGACTAGTAGGAGGAGACAACCTCTGCTCTGGGCGACTG GAGGTGCTGCACAAGGGCGTATGGGGCTCTGTCTGTGATGACAACTGGGGAGAAAAGGAGGA AATGCTATGGCCCTGGGGTTGGCCGCATCTGGCTGGATAATGTTCGTTGCTCAGGGGAGGAG TGTGGCTGTCATCTGCTCAGTGTAGGTGGGCATCATCTAATCTGTTGAGTGCCTGAATAGAA *GAAAAACACAGAAGAAGGGAGCATTTACTGTCTACATGACTGCATGGGATGAACACTGATCT TCTTCTGCCCTTGGACTGGGACTTATACTTGGTGCCCCTGATTCTCAGGCCTTCAGAGTTGG ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTTGGAACTACATCA $\tt CCACCTTTCCTATGTCTCCACATTGCACACAGCAGATTCCCAGCCTCCATAATTGTGTGTAT$ CACCATTTGTCCTGTTTCTCTGAAGAACTCTGACAAAATACAGATTTTGGTACTGAAAGAGA TTCTAGAGGAACGGAATTTTAAGGATAAATTTTCTGAATTGGTTATGGGGTTTCTGAAATTG TATGTGTTCAAA

MALLFSLILAICTRPGFLASPSGVRLVGGLHRCEGRVEVEQKGQWGTVCDDGWDIKDVAVLC
RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC
ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLGCGRAVL
TQKRCNKHAYGRKPIWLSQMSCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG
GDNLCSGRLEVLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIWL
DNVRCSGEEQSLEOCOHRFWGFHDCTHOEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

maino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238, 267-271, 294-298, 316-320, 336-340

N-myristoylation site.

maino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143, 180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

amino acids 29-67, 249-287

Speract receptor repeated domain signature.

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGAC CCACGCGTCCGCGGACGCGTGGGCGGACGCGTGGGCCGCTACCAGGAAGAGTCTGCCGAAG GTGAAGGCCATGGACTTCATCACCTCCACAGCCATCCTGCCCTGCTGTTCGGCTGCCTGGG CGTCTTCGGCCTCTTCCGGCTGCTGCAGTGGGTGCGCGGGAAGGCCTACCTGCGGAATGCTG TGCTGCTGATCACAGGCGCCACCTCAGGGCTGGGCAAAGAATGTGCAAAAGTCTTCTATGCT GCGGGTGCTAAACTGGTGCTCTGTGGCCGGAATGGTGGGGCCCTAGAAGAGCTCATCAGAGA ACTTACCCCTTCTCATCCCACCAAGCTGCAGACACACACCCTTACTTGCTGACCTTCGACC TCACAGACTCTGGGGCCATAGTTGCAGCAGCAGCTGAGATCCTGCAGTGCTTTTGGCTATGTC GACATACTTGTCAACAATGCTGGGATCAGCTACCGTGGTACCATCATGGACACCACAGTGGA TGTGGACAAGAGGGTCATGGAGACAAACTACTTTGGCCCCAGTTGCTCTAACGAAAGCACTCC TGCCCTCCATGATCAAGAGGGCAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG *CTGTCTGCGTGCCGAGATGGAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA \mathbb{I}_{Γ} ACCACCACAGCCCAGGGCCGAAGCCCTGTGGAGGTGGCCCAGGATGTTCTTGCTGCTGTGTGGG CTCTGGCTCCTGGGCTCTTCTTCAGCCTCATGGCCTCCAGGGCCAGAAAAGAGCGGAAATCC **AAGAACTCCTAGTACTCTGACCAGCCAGGGCCAGGGCAGAGAAGCAGCACTCTTAGGCTTGC TTACTCTACAAGGGACAGTTGCATTTGTTGAGACTTTAATGGAGATTTGTCTCACAAGTGGG AAAGACTGAAGAAACACATCTCGTGCAGATCTGCTGGCAGAGGACAATCAAAAACGACAACA AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTAC

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVVITGATSGLGKECAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDSGAIVAAAAEILQCFGYVDIL
VNNAGISYRGTIMDTTVDVDKRVMETNYFGPVALTKALLPSMIKRRQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AOGRSPVEVAODVLAAVGKKKKDVILADLLPSLAVYLRTLAPGLFFSLMASRARKERKSKNS

```
Signal sequence:
amino acids 1-21
Transmembrane domain:
amino acids 104-120, 278-292
N-glycosylation site.
amino acids 228-232
Glycosaminoglycan attachment site.
amino acids 47-51
Casein kinase II phosphorylation site.
amino acids 135-139, 139-143, 253-257
Tyrosine kinase phosphorylation site.
amino acids 145-153, 146-153
N-myristoylation site.
amino acids 44-50, 105-111, 238-244, 242-248, 291-297
Amidation site.
amino acids 265-269
Prokaryotic membrane lipoprotein lipid attachment site.
```

amino acids 6-17

CCCACGCGTCCGCTGGTGTTAGATCGAGCAACCCTCTAAAAGCAGTTTAGAGTGGTAAAAAA AAAAAAAACACACCAAACGCTCGCAGCCACAAAAGGGATGAAATTTCTTCTGGACATCCTC GAGGAGAAATCAGTCACCGGCGAAATCGTGCTGATTACAGGAGCTGGGCATGGAATTGGGA CATGGACTGGAGGAAACAGCTGCCAAATGCAAGGGACTGGGTGCCAAGGTTCATACCTTTGT GGTAGACTGCAGCAACCGAGAAGATATTTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG CAAGATCCTCAGATTGAAAAGACTTTTGAAGTTAATGTACTTGCACATTTCTGGACTACAAA GGCATTTCTTCCTGCAATGACGAAGAATAACCATGGCCATATTGTCACTGTGGCTTCGGCAG TTTCATAAAACTTTGACAGATGAACTGGCTGCCTTACAAATAACTGGAGTCAAAACAACATG *TCTGTGTCCTAATTTCGTAAACACTGGCTTCATCAAAAATCCAAGTACAAGTTTGGGACCCA CCTGGCAGTTTTAAAACGAAAAATCAGTGTTAAGTTTGATGCAGTTATTGGATATAAAATGA AAGCGCAATAAGCACCTAGTTTTCTGAAAACTGATTTACCAGGTTTAGGTTGATGTCATCTA ATAGTGCCAGAATTTTAATGTTTGAACTTCTGTTTTTTCTAATTATCCCCATTTCTTCAATA *TCATTTTTGAGGCTTTGGCAGTCTTCATTTACTACCACTTGTTCTTTAGCCAAAAGCTGATT ACATATGATATAAACAGAGAAATACCTTTAGAGGTGACTTTAAGGAAAATGAAGAAAAAGAA *CCAAAATGACTTTATTAAAATAATTTCCAAGATTATTTGTGGCTCACCTGAAGGCTTTGCAA TGAAGGACTATATCTAGTGGTATTTCACAATGAATATCATGAACTCTCAATGGGTAGGTTTC ATCCTACCCATTGCCACTCTGTTTCCTGAGAGATACCTCACATTCCAATGCCAAACATTTCT GCACAGGGAAGCTAGAGGTGGATACACGTGTTGCAAGTATAAAAGCATCACTGGGATTTAAG

MKFLLDILLLPLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKKVKAEIGDVSILVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVPFLLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

·O

P. C. Sale

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

CCCACGCGTCCGCGGACGCGTGGGTCGACTAGTTCTAGATCGCGAGCGGCCGCCGCGGGCTC TTTCGCTGGTCCTGTTGATGCCTGGCCCCTGTGATGGGCTGTTTCGCTCCCTATACAGAAGT GTTTCCATGCCACCTAAGGGAGACTCAGGACAGCCATTATTTCTCACCCCTTACATTGAAGC TGGGAAGATCCAAAAAGGAAGAGAATTGAGTTTGGTCGGCCCTTTCCCAGGACTGAACATGA AGAGTTATGCCGGCTTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTTCTTCTGGTTC AGGTTCATCCATGTTTGGACTCTTTGTGGAACATGGGCCTTATGTTGTCACAAGTAACATGA CCTTGCGTGACAGAGCTTCCCCTGGACCACACGCTCTCCATGCTTTACATTGACAATCCA GTGGGCACAGGCTTCAGTTTTACTGATGATACCCACGGATATGCAGTCAATGAGGACGATGT AGCACGGGATTTATACAGTGCACTAATTCAGTTTTTCCAGATATTTCCTGAATATAAAAATA ATCCATTCCCTCAACCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGA TGGATATTCTGATCCCGAATCAATTATAGGGGGGCTATGCAGAATTCCTGTACCAAATTGGCT TGTTGGATGAGAAGCAAAAAAGTACTTCCAGAAGCAGTGCCATGAATGCATAGAACACATC AGGAAGCAGAACTGGTTTGAGGCCTTTGAAATACTGGATAAACTACTAGATGGCGACTTAAC AAGTGATCCTTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTTTGCGGT I □ GCACGGAACCTGAGGATCAGCTTTACTATGTGAAATTTTTGTCACTCCCAGAGGTGAGACA éGCCATCCACGTGGGGAATCAGACTTTTAATGATGGAACTATAGTTGAAAAGTACTTGCGAGA * AGATACAGTACAGTCAGTTAAGCCATGGTTAACTGAAATCATGAATAATTATAAGGTTCTGA TCTACAATGGCCAACTGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTTGATGGGC MATGGACTGGAAAGGATCCCAGGAATA CAAGAAGGCAGAAAAAAAAGTTTGGAAGATCTTTAA TATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGACTTCCATCAGGTAATTATTC GAGGTGGAGGACATATTTTACCCTATGACCAGCCTCTGAGAGCTTTTGACATGATTAATCGA TTCATTTATGGAAAAGGATGGGATCCTTATGTTGGA<u>TAA</u>ACTACCTTCCCAAAAGAGAACAT CAGAGGTTTTCATTGCTGAAAAGAAAATCGTAAAAACAGAAAATGTCATAGGAATAAAAAAA TTATCTTTTCATATCTGCAAGATTTTTTTCATCAATAAAAATTATCCTTGAAACAAGTGAGC TTTTGTTTTTGGGGGGAGATGTTTACTACAAAATTAACATGAGTACATGAGTAAGAATTACA TTATTTAACTTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAGATGTATAAATGA AATTTTAGGGTCTTGAATAGGAAGTTTTAATTTCTTCTAAGAGTAAGTGAAAAGTGCAGTTG TAACAAACAAAGCTGTAACATCTTTTTCTGCCAATAACAGAAGTTTGGCATGCCGTGAAGGT TAGTTTTGGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAATTCTTTGAAATA AAAATATTATATAAAAAGTAAAAAAAAAA

MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPKGDSGQPLFLTPYIBAGKIQKGRELSL
VGPPPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH
GPYVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQF
FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGDGYSDPESIIGG
YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGDLTSDPSYFQNVTG
CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVEKYLREDTVQSVKPWLT
EIMNNYKVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEKKVWKIFKSDSEVAGYIRQ
AGDFHOVIIRGGGHILPYDDDLRAFDMINBETYGKGMDYYG

```
AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG
 Signal sequence:
 amino acids 1-22
N-glycosylation site.
amino acids 81-85, 132-136, 307-311, 346-350
125
10
Casein kinase II phosphorylation site.
amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
B53-357, 424-428
Tyrosine kinase phosphorylation site.
amino acids 423-432
N-myristoylation site.
amino acids 22-28, 110-116, 156-162, 232-238
Serine carboxypeptidases, serine active site.
amino acids 200-208
Crystallins beta and gamma 'Greek key' motif signature.
amino acids 375-391
```

 $\tt CGAGGGCTTTTCCGGCTCCGGAATGGCACATGTGGGGAATCCCAGTCTTGTTGGCTACAACAT$ ${\tt TTTTCCCTTACAAGATTCTAACAGCTGTTCTAACAGCTAGTGATCAGGGGTTCTTCTT}$ $\tt CTGGGGGGGGGCCTGCCTAACAAGCTTTCAAAAAAACAGGAGCGACTTCCACTGGGCTGGGAT$ ${\tt TAGAGATGCTTTGTAAAATAAAATTTTAAAAAAAAGCAAGTATTTATAGCATAAAGGCTAGA}$ GACCAAAATAGATAACAGGATTCCCTGAACATTCCTAAGAGGGAGAAAGTATGTTAAAAATA AGGCCAGCCTCTTTGCTCCTCCCGGAAATTATTTTTGGTCTGACCACTCTGCCTTGTGTTTT CCTCACCGCCCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGGCCCTGGAGGTGG $\tt ATGCCTCAGTTCAGCACCTTCCACTCTGAGAATCGTGACTGGACCTTCAACCACTTGACCGT$ CCACCAAGGGACGGGGCCGTCTATGTGGGGGCCATCAACCGGGTCTATAAGCTGACAGGCA □ ACCTGACCATCCAGGTGGCTCATAAGACAGGGCCAGAAGAGGACAACAAGTCTCGTTACCCG ©CCCCTCATCGTGCAGCCCTGCAGCGAAGTGCTCACCCTCACCAACAATGTCAACAAGCTGCT ⁴☐CATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGGAGCCTCTACCAGGGGGTCTGCA AGCTGCTGCGGCTGGATGACCTCTTCATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC #CTGTCCAGTGTCAACAAGACGGGCACCATGTACGGGGTGATTGTGCGCTCTGAGGGTGAGGA #TGGCAAGCTCTTCATCGGCACGGCTGTGGATGGGAAGCAGGATTACTTCCCGACCCTGTCCA $\mathbb{F}_{\mathsf{GCCGGAAGCTGCCCCGAGACCCTGAGTCCTCAGCCATGCTCGACTATGAGCTACACAGCGAT}$ #TTTGTCTCCTCTCATCAAGATCCCTTCAGACACCCTGGCCCTGGTCTCCCACTTTGACAT $\tt CTTCTACATCTACGGCTTTGCTAGTGGGGGCTTTGTCTACTTTCTCACTGTCCAGCCCGAGA$ CCCCTGAGGGTGTGGCCATCAACTCCGCTGGAGACCTCTTCTACACCTCACGCATCGTGCGG **CTCTGCAAGGATGACCCCAAGTTCCACTCATACGTGTCCCTGCCCTTCGGCTGCACCCGGGC *CGGGGTGGAATACCGCCTCCTGCAGGCTGCTTACCTGGCCAAGCCTGGGGACTCACTGGCCC *AGGCCTTCAATATCACCAGCCAGGACGATGTACTCTTTGCCATCTTCTCCAAAGGGCAGAAG CAGTATCACCACCCGCCCGATGACTCTGCCCTGTGTGCCTTCCCTATCCGGGCCATCAACTT #GCAGATCAAGGAGCGCCTGCAGTCCTGCTACCAGGGCGAGGGCAACCTGGAGCTCAACTGGC ${\tt CAGCAGGGACCGCATGACCTCTGTGGCCTCCTACGTTTACAACGGCTACAGCGTGGTTTTTG}$ ATTCACCTCCTCAGCAAAGAGTCCCTCTTGGAAGGTAGCTATTGGTGGAGATTTAACTATAG $\texttt{GCAACTTTATTTCTTGGGGAACAAAGG} \underline{\textbf{TGA}} \\ \texttt{AATGGGGGAGGTAAGAAGGGGTTAATTTTGTG}$ ACTTAGCTTCTAGCTACTTCCTCCAGCCATCAGTCATTGGGTATGTAAGGAATGCAAGCGTA TTTCAATATTTCCCAAACTTTAAGAAAAAACTTTAAGAAGGTACATCTGCAAAAGCAAA

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLLSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRV
YKLTGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLIIDYSENRLLACGSL
YQGVCKLLRLDDLFILVEPSHKKEHYLSSVNKTGTMYGVIVRSEGEDGKLFIGTAVDGKQDY
FPTLSSRKLPRDPESSAMLDYELHSDFVSSLIKIPSDTLALVSHFDIFYIYGFASGGFVYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSLAQAFNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEGN
LELNWLLGKDVQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFVGTKSGKLKKVRVYEFRCSNAIHLLSKESLLEGSYWWFFNYRQLYFLGEOR

```
Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387, 384-388, 471-475, 481-485, 530-534

N-myristoylation site.
```

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

CGTGGAGCCTCCGGCGGAGGCCGGCACGCTGGGACTCCTGCTGCTGGTCGTCTTGGGCTTCCTGGTGCTCC GCAGGCTGGACTGGAGCACCCTGGTCCCTCTGCGGCTCCGCCATCGACAGCTGGGGCTGCAGGCCAAGGGCTGGA AGCCAGAAAGAGGCAAATTTGACTTCTCTGGGAACCTGGACCTGGAGGCCTTCGTCCTGATGGCCGCAGAGATCG GGCTGTGGGTGATTCTGCGTCCAGGCCCCTACATCTGCAGTGAGATGGACCTCGGGGGCTTGCCCAGCTGGCTAC GTTCCTATAATAAAGACCCCGCATACATGCCCTACGTCAAGAAGGCACTGGAGGACCGTGGCATTGTGGAACTGC TCCTGACTTCAGACAACAAGGATGGGCTGAGCAAGGGGGATTGTCCAGGGAGTCTTGGCCACCATCAACTTGCAGT ${\tt ACTGGACGGGGTGTTTGACTCGTGGGGAGGCCCTCACAATATCTTGGATTCTTCTGAGGTTTTGAAAACCGTGT}$ ${\tt CTGCCATTGTGGACGCCGGCTCCTCCATCAACCTCTACATGTTCCACGGAGGCACCAACTTTGGCTTCATGAATG}$ ${\tt TGGGGGAGCCAATCAAGTCTGAAAAGCCCATCAACATGGAGAACCTGCCAGTCAATGGGGGAAATGGACAGTCCT}$ TGTTTGTGAACACAGTATCCATAGGATTCTTGGACTACAAGACAACGAAGATTGCTGTCCCCCTGATCCAGGGTT ACACCGTGCTGAGGATCTTGGTGGAGAATCGTGGGCGAGTCAACTATGGGGAGAATATTGATGACCAGCGCAAAG GCTTAATTGGAAATCTCTATCTGAATGATTCACCCCTGAAAAACTTCAGAATCTATAGCCTGGATATGAAGAAGA GCTTCTTCAGAGGTTCGGCCTGGACAAATGGNGTTCCCTCCCAGAAACACCCCACATTACCTGGTTTCTTCTTGG GTAGCTTGTCCATCAGCTCCACGCCTTGTGACACCTTTCTGAAGCTGGAGGGCTGGGAGAAGGGGGTTGTATTCA TCAATGGCCAGAACCTTGGACGTTACTGGAACATTGGACCCCAGAAGACGCTTTACCTCCCAGGTCCCTGGTTGA #GCAGCGGAATCAACCAGGTCATCGTTTTTGAGGAGACGATGGCGGGCCCTGCATTACAGTTCACGGAAACCCCCC ACCTGGGCAGGAACCAGTACATTAAG<u>TGA</u>GCGGTGGCACCCCCTCCTGCTGGTGCCAGTGGGAGACTGCCGCCTC CTCTTGACCTGAAGCCTGGTGGCTGCTGCCCCACCCCTCACTGCAAAAGCATCTCCTTAAGTAGCAACCTCAGGG ACTGGGGGCTACAGTCTGCCCCTGTCTCAGCTCAAAACCCTAAGCCTGCAGGGAAAGGTGGGATGGCTCTGGGCC TGGCTTTGTTGATGATGGCTTTCCTACAGCCCTGCTCTTGTGCCGAGGCTGTCGGGCTGTCTCTAGGGTGGGAGC AGCTAATCAGATCGCCCAGCCTTTGGCCCTCAGAAAAAGTGCTGAAACGTGCCCTTGCACCGGACGTCACAGCCC TGCGAGCATCTGCTGGACTCAGGCGTGCTCTTTGCTGGTTCCTGGGAGGCTTGGCCACATCCCTCATGGCCCCAT TTTATCCCCGAAATCCTGGGTGTGTCACCAGTGTAGAGGGTGGGGAAGGGGTGTCTCACCTGAGCTGACTTTGTT _TCCCTTCCCACTCGCTGCTTCCCACAGGGTGACAGGCTGGGCTGGAGAAACAGAAATCCTCACCCTGCGTCTTCC CAAGTTAGCAGGTGTCTCTGGTGTTCAGTGAGGAGGACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCA CATCCAGGGAGGAGGACAGAAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCC *AGGGAGGAGGACAGAAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCCAGGGA GGAGGACAGAAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCCAGGGAGGAGG ACAGAAGGCCCAGCTCAGTGGCCCCGCTCCCCACCCCCACGCCCGAACAGCAGGGGCAGAGCAGCCCTCCTTC GAAGTGTGTCCAAGTCCGCATTTGAGCCTTGTTCTGGGGCCCCAGCCCAACACCTGGCTTGGGCTCACTGTCCTGA GTTGCAGTAAAGCTATAACCTTGAATCACAA

MTTWSLRRRPARTLGLLLLVVLGFLVLRRLDWSTLVPLRLRHRQLGLQAKGWNFMLEDSTFW
IFGGSIHYFRVPREYWRDRLLKMKACGLNTLTTYVPWNLHEPERGKFDFSGNLDLEAFVLMA
AEIGLWVILRPGPYICSEMDLGGLPSWLLQDPGMRLRTTYKGFTEAVDLYFDHLMSRVVPLQ
YKRGGPIIAVQVENEYGSYNKDPAYMPYVKKALEDRGIVELLLTSDNKDGLSKGIVQGVLAT
INLQSTHELQLLTTFLFNVQGTQFKMVMEYWTGWFDSWGGPHNILDSSEVLKTVSAIVDAGS
SINLYMFHGGTNFGFMNGAMHFHDYKSDVTSYDYDAVLTEAGDYTAKYMKLRDFFGSISGIP
LPPPPDLLPKMPYEPLTPVLIYLSLWDALKYLGEPIKSEKPINMENLPVNGGNGQSFGYILYE
TSITSSGILSGHVHDRGQVFVNTVSIGFLDYKTTKIAVPLIQGYTVLRILVENGRVNYGEN
DDQRKGLIGNLYLNDSPLKNFRIYSLDMKKSFFQRFGLDKWSSLPETPTLPAFFIGSLSIS
STPCDTFLKLEGWEKGVVFINGQNLGRYWNIGPQKTLYLPGPWLSSGINQVIVFEETMAGPA
LQFTETPHLGRNQYIK

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

Mamino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315,

GGGACGCGGACTGAGAGGCTCCGGGCTAGCTAGGTGTAGGGGTGGACGGGTCCCAGGACC $\tt CTGGTGAGGGTTCTCTACTTGGCCTTCGGTGGGGGTCAAGACGCAGGCACCTACGCCAAAGG$ GGAGCAAAGCCGGGCTCGGCCCGAGGCCCCCAGGACCTCCATCTCCCAATGTTGGAGGAATC CGACACGTGACGGTCTGTCCGCCGTCTCAGACTAGAGGAGCGCTGTAAACGCCATGGCTCCC AAGAAGCTGTCCTGCTTCCTTCCTGCTGCTGCCGCTCAGCCTGACGCTACTGCTGCCCCA GGCAGACACTCGGTCGTTCGTAGTGGATAGGGGTCATGACCGGTTTCTCCTAGACGGGCCC CGTTCCGCTATGTGTCTGGCAGCCTGCACTACTTTCGGGTACCGCGGGTGCTTTGGGCCGAC CGGCTTTTGAAGATGCGATGGAGCGGCCTCAACGCCATACAGTTTTATGTGCCCTGGAACTA CCACGAGCCACAGCCTGGGGTCTATAACTTTAATGGCAGCCGGGACCTCATTGCCTTTCTGA ATGAGGCAGCTCTAGCGAACCTGTTGGTCATACTGAGACCAGGACCTTACATCTGTGCAGAG TGGGAGATGGGGGGTCTCCCATCCTGGTTGCTTCGAAAACCTGAAATTCATCTAAGAACCTC AGATCCAGACTTCCTTGCCGCAGTGGACTCCTGGTTCAAGGTCTTGCTGCCCAAGATATATC TACAGAGCCTGTGACTTCAGCTACATGAGGCACTTGGCTGGGCTCTTCCGTGCACTGCTAGG GACTCTATACCACTGTAGATTTTGGCCCAGCTGACAACATGACCAAAATCTTTACCCTGCTT 17 CTGGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAAGGACTAGAGAACATGC TCAAGTTGGGAGCCAGTGTGAACATGTACATGTTCCATGGAGGTACCAACTTTGGATATTGG I AATGGTGCCGATAAGAAGGGACGCTTCCTTCCGATTACTACCAGCTATGACTATGATGCACC ## TATATCTGAAGCAGGGGACCCCACACCTAAGCTTTTTGCTCTTCGAGATGTCATCAGCAAGT IN TCCAGGAAGTTCCTTTGGGACCTTTACCTCCCCGAGCCCCAAGATGATGCTTGGACCTGTG I ACTCTGCACCTGGTTGGGCATTTACTGGCTTTCCTAGACTTGCTTTGCCCCCGTGGGCCCAT II TCATTCAATCTTGCCAATGACCTTTGAGGCTGTCAAGCAGGACCATGGCTTCATGTTGTACC ##GAACCTATATGACCCATACCATTTTTGAGCCAACACCATTCTGGGTGCCAAATAATGGAGTC CATGACCGTGCCTATGTGATGGTGGATGGGGTGTTCCAGGGTGTTGTGGAGCGAAATATGAG AGACAAACTATTTTGACGGGAAACTGGGGTCCAAACTGGATATCTTGGTGGAGAACATGG GGAGGCTCAGCTTTGGGTCTAACAGCAGTGACTTCAAGGGCCTGTTGAAGCCACCAATTCTG SGGCAAACAATCCTTACCCAGTGGATGATGTTCCCTCTGAAAATTGATAACCTTGTGAAGTG #GTGGTTTCCCCTCCAGTTGCCAAAATGGCCATATCCTCAAGCTCCTTCTGGCCCCACATTCT ACTCCAAAACATTTCCAATTTTAGGCTCAGTTGGGGACACATTTCTATATCTACCTGGATGG LACCAAGGCCAAGTCTGGATCAATGGGTTTAACTTGGGCCGGTACTGGACAAAGCAGGGGCC ACAACAGACCCTCTACGTGCCAAGATTCCTGCTGTTTCCTAGGGGAGCCCTCAACAAAATTA CATTGCTGGAACTAGAAGATGTACCTCTCCAGCCCCAAGTCCAATTTTTTGGATAAGCCTATC CTCAATAGCACTAGTACTTTGCACAGGACACATATCAATTCCCTTTCAGCTGATACACTGAG TGCCTCTGAACCAATGGAGTTAAGTGGGCACTGAAAGGTAGGCCGGGCATGGTGGCTCATGC CTGTAATCCCAGCACTTTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAGGACTTCAAGA CCAGCCTGGCCAACATGGTGAAACCCCGTCTCCACTAAAAATACAAAAATTAGCCGGGCGTG ATGGTGGGCACCTCTAATCCCAGCTACTTGGGAGGCTGAGGGCAGGAGAATTGCTTGAATCC AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACTCCAGCCTGGCTGACAGTGA

GACACTCCATCTCAAAAAAAAAAAAA

MAPKKLSCLRSLLLPLSLTLLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFINEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVENE
YGSYRACDFSYMRHLAGLFRALLGEKILLFTTDGPEGLKCGSLRGLYTTVDFGPADNMTKIF
TLLRKYEPHGPLVNSEYYTGWLDYWGQNHSTRSVSAVTKGLENMLKLGASVNMYMFHGGTNF
GYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVISKFQEVPLGPLPPPSPKMML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMTHTIFEPTPFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRLSFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVKWWFPLQLPKWPYPQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTKQGPQQTLYVPRFLLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLGASEPMELSGH

```
Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554, 603-607, 644-648

Tyrosine kinase phosphorylation site.
```

N-myristoylation site.

amino acids 191-198

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233, 231-237, 274-280, 296-300, 307-313, 447-453, 484-490

GCTTTGAACACGTCTGCAAGCCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTTGAGTGC ${\tt ACCCACAAT}$ ${\tt ATG}$ ${\tt GCTTACATGTTGAAAAAGCTTCTCATCAGTTACATATCCATTATTTGTGT}$ TTATGGCTTTATCTGCCTCTACACTCTCTTCTGGTTATTCAGGATACCTTTGAAGGAATATT $\tt CTTTCGAAAAAGTCAGAGAGAGAGAGCAGTTTTAGTGACATTCCAGATGTCAAAAACGATTTT$ GCGTTCCTTCTTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTTTGGTGTGTT CTTGTCAGAAGTTAGTGAAAATAAACTTAGGGAAATTAGTTTGAACCATGAGTGGACATTTG AAAAACTCAGGCAGCACATTTCACGCAACGCCCAGGACAAGCAGGAGTTGCATCTGTTCATG $\tt CTGTCGGGGGTGCCCGATGCTGTTTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAACTT$ AATTCCAGAAGCTAAAATTCCTGCTAAGATTTCTCAAATGACCTAACCTCCAAGAGCTCCACC TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTTTAGCTTTCTTCGCGATCACTTGAGA CTTCGAGAGTTGTACTTAATAGGCAATTTGAACTCTGAAAACAATAAGATGATAGGACTTG AATCTCTCCGAGAGTTGCGGCACCTTAAGATTCTCCACGTGAAGAGCAATTTGACCAAAGTT ${ t TAAACTCTTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACTCCAGA$ $^{\uparrow\downarrow\downarrow}$ TTAAAGTCCAATAACATTCGCACAATTGAGGAAATCATCAGTTTCCAGCATTTAAAACGACT AAAACTTGGAGTCACTTTATTTCTCTAACAACAAGCTCGAATCCTTACCAGTGGCAGTATTT AGTTTACAGAAACTCAGATGCTTAGATGTGAGCTACAACAACATTTCAATGATTCCAATAGA AATAGGATTGCTTCAGAACCTGCAGCATTTGCATATCACTGGGAACAAAGTGGACATTCTGC $\tt CTTGGACCGCCTGCCAGCCCAGCTGGGCCAGTGTCGGATGCTCAAGAAAAGCGGGCTTGTTG$ TGGAAGATCACCTTTTTGATACCCTGCCACTCGAAGTCAAAGAGGCATTGAATCAAGACATA AATATTCCCTTTGCAAATGGGATT**TA<u>A</u>ACTAAGATAATATATGCACAGTGATGTGCAGGAA**C AACTTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTTTAGGAGTAG ATACATCTTTTAAAATAAAACAGAGAGGGTGCATAGAAGGCTGATAGAAGACATAACTGAAT GCTGCCGCTACTGAATGTTTACAAATTGCTTGCCTGCTAAAGTAAATGATTAAATTGACATT

TTCTTACTAAAAAAAAAAAAAAAAAA

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRFGVFLSEVSENKLREISLNHEWTFEKLRQHISRNAQDKQELHLFMLSG
VPDAVFDLTDLDVLKLELIPEAKIPAKISQMTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPAWVYLLKNLRELYLIGNLNSENNKMIGLESLRELRHLKILHVKSNLTKVPSN
ITDVAPHLTKLVIHNDGTKLLVLNSLKKMMNVAELELQNCELERIPHAIFSLSNLQELDLKS
NNIRTIEEIISFQHLKRLTCLKLWHNKIVTIPPSITHVKNLESLYFSNNKLESLPVAVFSLQ
KLRCLDVSYNNISMIPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCLDRLPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

```
Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

CAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 326-330

Casein kinase II phosphorylation site.

amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398
```

ATCGCTGGTGGTATCCTGGCGGCCTTGCTCCTGCTGATAGTTGTCGTGCTCTTTACTTCAAAATACACAAC GCGCTAAAAGCTGCAAAGGAACCTGAAGCTGTGGCTGTAAAAAATCACAACCCAGACAAGGTGTGGTGGGCCAAG AACAGCCAGGCCAAAACCATTGCCACGGAGTCTTGTCCTGCCCTGCAGTGCTGTGAAGGATATAGAATGTGTGCC GCAGAGCCCTGAAGACTTCAATGATGTCAATGAGGCCACCTGTTTGTGATGTGCAGGCACAGAAGAAAGGCACAG $\tt CTCCCCATCAGTTTCATGGAAAATAACTCAGTGCCTGCTGGGAACCAGCTGCTGGAGATCCCTACAGAGAGCTTC$ CACTGGGGGCAACCCTTCCAGGAAGGAGTTGGGGAAGAGAACCCTCACTGTGGGGAATGCTGATAAACCAGTCA ${\tt AGTGAGAACTGCACCTGGACAATAGAAAGACCAGAAAACAAAAGCATCAGAATTATCTTTTCCTATGTCCAGCTT}$ ${\tt CAAGTCTGCAGTAAAAACGACTATGTTCCTGTATTTGAATCATCATCCAGTACATTGACGTTTCAAATAGTTACT}$ $\tt GGCGGTTACCTGGATACCTTGGAAGGATCCTTCACCAGCCCCAATTACCCAAAGCCGCATCCTGAGCTGGCTTAT$ ##TGTGTGTGCACATACAAGTGGAGAAAGATTACAAGATAAAACTAAACTTCAAAGAGATTTTCCTAGAAATAGAC AAACAGTGCAAATTTGATTTTCTTGCCATCTATGATGGCCCCTCCACCACTCTGGCCTGATTGGACAAGTCTGT GGCCGTGTGACTCCCACCTTCGAATCGTCATCAAACTCTCTGACTGTCGTGTTGTCTACAGATTATGCCAATTCT TACCGGGGATTTTCTGCTTCCTACACCTCAATTTATGCAGAAAACATCAACACTACATCTTTAACTTGCTCTTCT GACAGGATGAGAGTTATTATAAGCAAATCCTACCTAGAGGCTTTTAACTCTAATGGGAATAACTTGCAACTAAAA I.JGACCCAACTTGCAGACCAAAATTATCAAATGTTGTGGAATTTTCTGTCCCTCTTAATGGATGTGGTACAATCAGA #LAAGGTAGAAGATCAGTCAATTACTTACACCAATATAATCACCTTTTCTGCATCCTCAACTTCTGAAGTGATCACC CGTCAGAAACAACTCCAGATTATTGTGAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATACATAACA GAAGATGATGTAATACAAAGTCAAAATGCACTGGGCAAATATAACACCAGCATGGCTCTTTTTGAATCCAATTCA ${\tt TTTGAAAAGACTATACTTGAATCACCATATTATGTGGATTTGAACCAAACTCTTTTTTGTTCAAGTTAGTCTGCAC$ ACCTCAGATCCAAATTTGGTGGTGTTTCTTGATACCTGTAGAGCCTCTCCCACCTCTGACTTTGCATCTCCAACC TACGACCTAATCAAGAGTGGATGTAGTCGAGATGAAACTTGTAAGGTGTATCCCTTATTTGGACACTATGGGAGA #TTCCAGTTTAATGCCTTTAAATTCTTGAGAAGTATGAGCTCTGTGTATCTGCAGTGTAAAGTTTTGATATGTGAT AGCAGTGACCACCAGTCTCGCTGCAATCAAGGTTGTGTCTCCAGAAGCAAACGAGACATTTCTTCATATAAATGG _AAAACAGATTCCATCATAGGACCCATTCGTCTGAAAAGGGATCGAAGTGCAAGTGGCAATTCAGGATTTCAGCAT GAAACACATGCGGAAGAAACTCCAAACCAGCCTTTCAACAGTGTGCATCTGTTTTCCTTCATGGTTCTAGCTCTG AATGTGGTGACTGTAGCGACAATCACAGTGAGGCATTTTGTAAATCAACGGGCAGACTACAAATACCAGAAGCTG **CAGAACTAT<u>TAA</u>CTAACAGGTCCAACCCTAAGTGAGACATGTTTCTCCAGGATGCCAAAGGAAATGCTACCTCGT GGCTACACATATTATGAATAAATGAGGAAGGGCCTGAAAGTGACACACAGGCCTGCATGTAAAAAAA

MELVRRLMPLTLLILSCLAELTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIFSYVQLDPDGSCESENIKVFDGTSSNGFLLGQVCSKNDYVPVFESSSSTIT
FQIVTDSARIQRTVFVFYFFFSPNISIPNCGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDFLAIYDGPSINSGLIGQVCGRVTPTFESSSNLTVVLS
TDYANSYRGFSASYTSIYAEMINTTSLTCSSDRMRVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIITFSASTSEVITRQKQLQIIVKCEMGHNSIV
VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTSDFASPTYDLIKSGCSRDETCKYYFLFGHYGRFQFNAFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVSRSKRDISSYKWKTDSIIGPIRLKRDRSASGNSGFQHETHA
EETFNQPFNSVHLFSFMVLALNVVTVATITVRHFVNORADVKYOKLONY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374,

Casein kinase II phosphorylation site.

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 7-18

TGCTGCCGCCGCCGCCTGCCCACAGCGCCACGCGCTTCGACCCCACCTGGGAGTCC $\tt CTGGACGCCGGCGTGGTTTGACCAGGCCAAGTTCGGCATCTTCATCCACTG$ GGGAGTGTTTTCCGTGCCCAGCTTCGGTAGCGAGTGGTTCTGGTGGTATTGGCAAAAGGAAA AGATACCGAAGTATGTGGAATTTATGAAAGATAATTACCCTCCTAGTTTCAAATATGAAGAT $\tt CTCTGGTGCCAAATACATTGTCTTAACTTCCAAACATCATGAAGGCTTTACCTTGTGGGGGT$ CAGAATATTCGTGGAACTGGAATGCCATAGATGAGGGGCCCAAGAGGGACATTGTCAAGGAA CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCGTTTTTGGACTGTACTATTCCCTTTTTGA ATGGTTTCATCCGCTCTTCCTTGAGGATGAATCCAGTTCATTCCATAAGCGGCAATTTCCAG TTTCTAAGACATTGCCAGAGCTCTATGAGTTAGTGAACAACTATCAGCCTGAGGTTCTGTGG ${\tt TCGGATGGTGACGGAGGAGCACCGGATCAATACTGGAACAGCACAGGCTTCTTGGCCTGGTT}$ ATATAATGAAAGCCCAGTTCGGGGCACAGTAGTCACCAATGATCGTTGGGGAGCTGGTAGCA TCTGTAAGCATGGTGGCTTCTATACCTGCAGTGATCGTTATAACCCAGGACATCTTTTGCCA CATAAATGGGAAAACTGCATGACAATAGACAAACTGTCCTGGGGCTATAGGAGGGAAGCTGG AATCTCTGACTATCTTACAATTGAAGAATTGGTGAAGCAACTTGTAGAGACAGTTTCATGTG GAGGAAATCTTTTGATGAATATTGGGCCCACACTAGATGGCACCATTTCTGTAGTTTTTGAG GAGCGACTGAGGCAAGTGGGGTCCTGGCTAAAAGTCAATGGAGAAGCTATTTATGAAACCTA TACCTGGCGATCCCAGAATGACACTGTCACCCCAGATGTGTGGTACACATCCAAGCCTAAAG AAAAATTAGTCTATGCCATTTTTCTTAAATGGCCCACATCAGGACAGCTGTTCCTTGGCCAT CCCAAAGCTATTCTGGGGGCAACAGAGGTGAAACTACTGGGCCATGGACAGCCACTTAACTG GATTTCTTTGGAGCAAAATGGCATTATGGTAGAACTGCCACAGCTAACCATTCATCAGATGC CGTGTAAATGGGGCTGGGCTCTAGCCCTAACTAATGTGATC**TAA**AGTGCAGCAGAGTGGCTG ^{*}ATGCTGCAAGTTATGTCTAAGGCTAGGAACTATCAGGTGTCTATAATTGTAGCACATGGAGA ${f A}{f A}{f G}{f C}{f A}{f T}{f C}{f A}{f C}{f C}{f C}{f T}{f T}{f C}{f C}{f C}{f T}{f T}{f T}{f C}{f C}{f C}{f T}{f T}{f T}{f C}{f C}{f C}{f T}{f T}$ AATTTTTCTTAAATTACCCATGTAACCATTTTAACTCTCCAGTGCACTTTGCCATTAAAGTC TCTTCACATTGATTTGTTTCCATGTGTGACTCAGAGGTGAGAATTTTTTCACATTATAGTAG CAAGGAATTGGTGGTATTATGGACCGAACTGAAAATTTTATGTTGAAGCCATATCCCCCATG $ar{A}$ TTATATAGTTATGCATCACTTAATATGGGGATATTTTCTGGGAAATGCATTGCTAGTCAAT TTTTTTTTTGTGCCAACATCATAGAGTGTATTTACAAAATCCTAGATGGCATAGCCTACTACA CACCTAATGTGTATGGTATAGACTGTTGCTCCTAGGCTACAGACATATACAGCATGTTACTG AATACTGTAGGCAATAGTAACAGTGGTATTTGTATATCGAAACATATGGAAACATAGGAGAAG GTACAGTAAAAATACTGTAAAATAAATGGTGCACCTGTATAGGGCACTTACCACGAATGGAG $\tt CTTACAGGACTGGAAGTTGCTCTGGGTGAGTCAGTGAATGTGAAGGCCTAGGACATTA$ $\tt GTTTTTCTTCAATTATAAATTAACATAAGTGTACTGTAACTTTACAAACGTTTTAATT$ ${\tt TTTAAAACCTTTTTGGCTCTTTTGTAATAACACTTAGCTTAAAACATAAACTCATTGTGCAA}$ ATGTAA

MRPQELPRLAFPLLLLLLLLPPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIHWG
VFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQVGSWLKVNGEAIYETYT
WRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPOLTIHOMPCKWGWALALTNVI

```
Signal sequence:
 amino acids 1-28
N-glycosylation site.
amino acids 171-175, 239-243, 377-381
1:1
10
Casein kinase II phosphorylation site.
amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319.
375-375
Tyrosine kinase phosphorylation site.
_amino acids 361-369, 389-397
N-myristoylation site.
 amino acids 143-149, 178-184, 255-261, 272-278, 428-434
Leucine zipper pattern.
 amino acids 410-432
Alpha-L-fucosidase putative active site.
 amino acids 283-295
```

TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATC ${\tt TGAGGTGTTTCCCTGGCTCTGAAGGGGTAGGCACG} {\tt ATGGCCAGGTGCTTCAGCCTGGTGTTG}$ TTCCATCCAGGTGTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGC AGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAG GACCAAGTTGAAACAGCCTTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGA TCCTGATTTGGAAGGTTCCAGTGAGCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGAT ACTTGGACTAACTCGTGCATTCCAGAAATTATCACCACCAAAGATCCCATATTCAACACTCA AACTGCAACACAAACAACAGAATTTATTGTCAGTGACAGTACCTACTCGGTGGCATCCCCTT ACTCTACAATACCTGCCCCTACTACTACTCCTCCTGCTCCAGCTTCCACTTCTATTCCACGG AGAAAAAATTGATTTGTGTCACAGAAGTTTTTATGGAAACTAGCACCATGTCTACAGAAAC TGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTTGGAGGTGTCC CGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAATGAGGAATCAAAGA AAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGCGATGCCTGGAA TTACCCTGCCCCAGCTGGGGAAATCAAAAGGGCCAAAGAACCAAAGAAGAAGAAGTCCACCCTT GGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAATGC CCTTCTCCTTATTGTAACCCTGTCTGGATCCTATCCTCCTACCTCCAAAGCTTCCCACGGCC TTTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAA GGACCTAAAACATCTCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGG TGGGTTGAAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGAC _CCTTTCTTCAGCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTA AGAGCAAAAGAATGGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAG ACCTAATCTCTGTAAAGCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACT ${f ar G}$ TCAGCAGGGACTGTAAACACAGACAGGGTCAAAGTGTTTTCTCTGAACACATTGAGTTGGA ATCACTGTTTAGAACACACACACTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCT AGGAAATATACTTTTACAAGTAACAAAAATAAAAACTCTTATAAATTTCTATTTTTATCTGA $^{\circ}$ GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTTGTTTAAAAAGTAATAAAATTCA ACAAACATTTGCTGAATAGCTACTATATGTCAAGTGCTGTGCAAGGTATTACACTCTGTAAT TGAATATTATTCCTCAAAAAATTGCACATAGTAGAACGCTATCTGGGAAGCTATTTTTTTCA GTTTTGATATTTCTAGCTTATCTACTTCCAAACTAATTTTTATTTTTTGCTGAGACTAATCTT ATTCATTTCTCTAATATGGCAACCATTATAACCTTAATTTATTATTAACATACCTAAGAAG TACATTGTTACCTCTATATACCAAAGCACATTTTAAAAGTGCCATTAACAAATGTATCACTA GCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTTGTGACAAAAATTAA AGCATTTAGAAAACTT

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR LLGLSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQF AAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPP APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFF GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSP SKTTVRCLEAEV

```
Signal sequence:
```

amino acids 1-16

Transmembrane domain:

mamino acids 235-254

10

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

ACTGGAGAGAGTGGAGATCCTGATGTTTCTCAGTGCCATTGTGATGATGAAGAACCGCAGA TCCATCACTGTGGAGCAACATATAGGCAACATTTTCATGTTTAGTAAAGTGGCCAACACAAT TCTTTTCTTCCGCTTGGATATTCGCATGGGCCTACTTTACATCACACTCTGCATAGTGTTCC TGATGACGTGCAAACCCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA ACCATTGATGAGGAACTAGAACGGGACAAGAGGGTCACTTGGATTGTGGAGTTCTTTGCCAA ${\tt TTGGTCTAATGACTGCCAATCATTTGCCCCTATCTATGCTGACCTCTCCCTTAAATACAACT}$ GTACAGGGCTAAATTTTGGGAAGGTGGATGTTGGACGCTATACTGATGTTAGTACGCGGTAC AAAGTGAGCACATCACCCTCACCAAGCAACTCCCTACCCTGATCCTGTTCCAAGGTGGCAA ☐ GGAGGCAATGCGGCGGCCACAGATTGACAAGAAAGGACGGGCTGTCTCATGGACCTTCTCTG AGGAGAATGTGATCCGAGAATTTAACTTAAATGAGCTATACCAGCGGGCCAAGAAACTATCA AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTTCAACCCCCACCACAGTGTCAGA TGGGGAAAACAAGAAGGATAAA**TAA**GATCCTCACTTTGGCAGTGCTTCCTCTCTCTCAATT ${\mathbb F}$ CCAGGCTCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTTNATTNATGTTTTCCCTTTGG $\tt CTGNGACTGGNTGGGGCAGCATGCAGCTTCTGATTTTAAAGAGGGCATCTAGGGAATTGTCAGGAATTGTCAGGGAATTGTCAGGAATTGTCAGGAATTGTCAGGGAATTGTCAGGGAATTGTCAGGGAATTGTCAGGAATTGTCAGGAATTGTCAGGAATTGTCAGGAATGTAGAATGTCAGGAATGTAGAATG$ TCATAGGACGGAGGGGAAATGGTTTCCCTCCAAGCTTGGGTCAGTGTGTTAACTGCTTATC $^{[d]}$ AGCTATTCAGACATCTCCATGGTTTCTCCATGAAACTCTGTGGTTTCATCATTCCTTCTTAG TTGACCTGCACAGCTTGGTTAGACCTAGATTTAACCCTAAGGTAAGATGCTGGGGTATAGAA $\tt CGCTAAGAATTTTCCCCCAAGGACTCTTGCTTCCTTAAGCCCTTCTGGCTTCGTTTATGGTC$ TTCATTAAAAGTATAAGCCTAACTTTGTCGCTAGTCCTAAGGAGAAACCTTTAACCACAAAG TTTTTATCATTGAAGACAATATTGAACAACCCCCTATTTTGTGGGGATTGAGAAGGGGTGAA TAGAGGCTTGAGACTTTCCTTTGTGTGGTAGGACTTGGAGGAGAAATCCCCTGGACTTTCAC TAACCCTCTGACATACTCCCCACACCCAGTTGATGGCTTTCCGTAATAAAAAGATTGGGATT

TCCTTTTG

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPLCHGLPTQREDGNPCDFD WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFL MTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE ENVIREFNLNELYQRAKKLSKAGDNIPEEQPVASTPTTVSDGENKKDK

```
Signal sequence:
amino acids 1-48

Transmembrane domain:
amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

Camp- and cGMP-dependent protein kinase phosphorylation site.
amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.
amino acids 188-194, 225-231
```

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

GGACAGCTCGCGGCCCCCGAGAGCTCTAGCCGTCGAGGAGCTGCCTGGGGACGTTTGCCCTG $\tt TTGCTCCTGCCCGGCTCCTACGGACTGCCCTTCTACAACGGCTTCTACTACTACTACAACAG$ CGCCAACGACCAGAACCTAGGCAACGGTCATGGCAAAGACCTCCTTAATGGAGTGAAGCTGG TGGTGGAGACACCCGAGGAGACCCTGTTCACCTACCAAGGGGCCAGTGTGATCCTGCCCTGC CGCTACCGCTACGAGCCGGCCCTGGTCTCCCCGCGGCGTGTGCGTGTCAAATGGTGGAAGCT GTCGGAGAACGGGCCCCAGAGAAGGACGTGCTGGTGGCCATCGGGCTGAGGCACCGCTCCT TTGGGGACTACCAAGGCCGCGTGCACCTGCGGCAGGACAAGAGCATGACGTCTCGCTGGAG ATCCAGGATCTGCGGCTGGAGGACTATGGGCGTTACCGCTGTGAGGTCATTGACGGGCTGGA GGATGAAAGCGGTCTGGTGGAGCTGGAGCTGCGGGGTGTGGTCTTTCCTTACCAGTCCCCCA ACGGGCGCTACCAGTTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCGGTG GTGGCCTCCTTTGAGCAGCTCTTCCGGGCCTGGGAGGGGGCCTGGACTGGTGCAACGCGGG *CTGGCTGCAGGATGCTACGGTGCAGTACCCCATCATGTTGCCCCGGCAGCCCTGCGGTGGCC *GTATTCTGCTTCGCTACTGCCCTCAAGGGGCGGTGTACTACCTGGAGCACCCTGAGAAGCT GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATCGCCAAGGTGGGAC GGCAGCGTCCGCTACCCTGTGGTTCACCCGCATCCTAACTGTGGGCCCCCAGAGCCTGGGGT CCGAAGCTTTGGCTTCCCCGACCCGCAGAGCCGCTTGTACGGTGTTTACTGCTACCGCCAGC CGTTTTCCCTTGTGGGTTGGAGCCATTTTAACTGTTTTTATACTTCTCAATTTAAATTTTCT ${\bf TTAAACATTTTTTACTATTTTTTGTAAAGCAAACAGAACCCAATGCCTCCCTTTGCTCCTG}$ GATGCCCCACTCCAGGAATCATGCTTGCTCCCCTGGGCCATTTGCGGTTTTGTGGGCTTCTG GAGGGTTCCCCGCCATCCAGGCTGGTCTCCCTTAAGGAGGTTGGTGCCCAGAGTGGGC CAGCCTGGGGGAAGAAGAGGGCCTCGGGGGCCTCCGGAGCTGGGCTTTGGGCCTCTCCTGCC CACCTCTACTTCTCTGTGAAGCCGCTGACCCCAGTCTGCCCACTGAGGGGCTAGGGCTGGAA TCCCCTCTCGGTTCCAAAGAATCTGTTTTGTTGTCATTTGTTTTCTCCTGTTTCCCTGTGTGG GGAGGGCCCTCAGGTGTGTACTTTGGACAATAAATGGTGCTATGACTGCCTTCCGCCAA

MGLLLLVPLLLLPGSYGLPFYNGFYYSNSANDQNLGNGHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWWKLSENGAPEKDVLVAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVELELRGVVFPYQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEEGLDWCNAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSYGPR
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

```
Signal sequence:
```

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

-

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

TTCTGTTGCTACTGAGGCACGGGGCCCAGGGGGAAGCCATCCCCAGACGCAGGCCCTCATGGC CTTCCAGTACGACCATGAGGCTTTCCTGGGACGGGAAGTGGCCAAGGAATTCGACCAACTCA GGCGACGGCTGGGTGTCGCTGGCCGAGCTTCGCGCGTGGATCGCGCACACGCAGCAGCGGCA CATACGGGACTCGGTGAGCGCGGGCCTGGGACACGTACGACACGGACCGCGACGGGCGTGTGG GTTGGGAGGAGCTGCGCAACGCCACCTATGGCCACTACGCGCCCGGTGAAGAATTTCATGAC GTGGAGGATGCAGAGACCTACAAAAAGATGCTGGCTCGGGACGAGCGGCGTTTCCGGGTGGC CGACCAGGATGGGACTCGATGGCCACTCGAGAGGAGCTGACAGCCTTCCTGCACCCCGAGG AGTTCCCTCACATGCGGGACATCGTGATTGCTGAAACCCTGGAGGACCTGGACAGAAACAAA ${}_{{}_{1}{}_{2}}{\rm GATGGCTATGTCCAGGTGGAGGAGTACATCGCGGATCTGTACTCAGCCGAGCCTGGGGAGGA}$ *GGAGCCGGCGTGGGTGCAGACGGAGAGGCAGCAGTTCCGGGACTTCCGGGATCTGAACAAGG ATGGGCACCTGGATGGGAGTGAGGTGGGCCACTGGGTGCTGCCCCTGCCCAGGACCAGCCC MCTGGTGGAAGCCAACCACCTGCTGCACGAGAGCGACACGGACAAGGATGGGCGGCTGAGCAA AGCGGAAATCCTGGGTAATTGGAACATGTTTGTGGGCAGTCAGGCCACCAACTATGGCGAGG \mathbb{H}^{1} ACCTGACCCGGCACCACGATGAGCTG \mathbf{TGA} GCACCGCGCACCTGCCACAGCCTCAGAGGCCCG GCAGATGCAGTCCCAGGCATCCTCCTGCCCCTGGGCTCTCAGGGACCCCCTGGGTCGGCTTC #TGTCCCTGTCACACCCCAACCCCAGGGAGGGCTGTCATAGTCCCAGAGGATAAGCAATAC CTATTTCTGACTGAGTCTCCCAGCCCAGACCCAGGGACCCTTGGCCCCAAGCTCAGCTCTAA GAACCGCCCAACCCCTCCAGCTCCAAATCTGAGCCTCCACCACATAGACTGAAACTCCCCT GGCCCCAGCCCTCTCCTGCCTGGCCTGGCCTGGGACACCTCCTCTCTGCCAGGAGGCAATAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

MMWRPSVLLLLLLLRHGAQGKPSPDAGPHGQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFPQLTPEESQARLGRIVDRMDRAGDGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDRDGRVGWEELRNATYGHYAPGEEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVIAETLEDLDRNKDGYVQVEEYIADLYSAEPGEEEPAWVQTERQQ
FRDFRDLNKDGHLDGSEVGHWVLPPAQDQPLVEANHLLHESDTDKDGRLSKAEILGNWNMFV
GSQATNYGEDLTRHHDEL

```
signal sequence:
amino acids 1-20

N-glycosylation site.
amino acids 140-144

Casein kinase II phosphorylation site.
amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293, 291-295, 298-302

N-myristoylation site.
amino acids 263-269, 311-317
```

amino acids 325-330

GGGGCCTTGCCTTCCGCACTCGGGCGCAGCCGGGTGGATCTCGAGCAGGTGCGGAGCCCCGG GCGGCGGCGCGGGTGCGAGGGATCCCTGACGCCTCTGTCCCTGTTTCTTTGTCGCTCCCAG CCTGTCTGTCGTCGTTTTGGCGCCCCCGCCTCCCCGCGGTGCGGGGTTGCACACCGATCCTG GGCTTCGCTCGATTTGCCGCCGAGGCGCCTCCCAGACCTAGAGGGGCGCTGGCCTGGAGCAG GAGGAGGTGACGCGGGGGCCTCCCGCACCCTGGCCTTGCCCGCATTCTCCCTCTCTCCCAG $\tt GTGTGAGCAGCCTATCAGTCACC\underline{ATG}TCCGCAGCCTGGATCCCGGCTCTCGGCCTCGGTGTG$ TGTCTGCTGCTGCCGGGGCCCGCGGGCAGCGAGCGGCTCCCATTGCTATCACATG TTTTACCAGAGGCTTGGACATCAGGAAAGAGAAAGCAGATGTCCTCTGCCCAGGGGGCTGCC CTCTTGAGGAATTCTCTGTGTATGGGAACATAGTATATGCTTCTGTATCGAGCATATGTGGG GCTGCTGTCCACAGGGGAGTAATCAGCAACTCAGGGGGACCTGTACGAGTCTATAGCCTACC TGGTCGAGAAAACTATTCCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTTCTAGAT GGTCTGCTTCTTTCACAGTAACTAAAGGCAAAAGTAGTACACAGGAGGCCACAGGACAAGCA GTGTCCACAGCACACCCAACAGGTAAACGACTAAAGAAAACACCCGAGAAGAAAACTGG GCCGATTTAATTTACAGAAGAATTTTGTTGGAAAAGTGGCTCTAATGTTGGGAATTGGAACA GAAGGACCACATGTGGGCCTTGTTCAAGCCAGTGAACATCCCAAAATAGAATTTTACTTGAA AAACTTTACATCAGCCAAAGATGTTTTGTTTGCCATAAAGGAAGTAGGTTTCAGAGGGGGTA ATTCCAATACAGGAAAAGCCTTGAAGCATACTGCTCAGAAATTCTTCACGGTAGATGCTGGA GTAAGAAAAGGGATCCCCAAAGTGGTGGTGGTATTTATTGATGGTTGGCCTTCTGATGACAT CGAGGAAGCAGGCATTGTGGCCAGAGAGTTTGGTGTCAATGTATTTATAGTTTCTGTGGCCA CGGAATAATGGCTTCTTCTCTTACCACATGCCCAACTGGTTTGGCACCACAAAATACGTAAA GCCTCTGGTACAGAAGCTGTGCACTCATGAACAAATGATGTGCAGCAAGACCTGTTATAACT CAGTGAACATTGCCTTTCTAATTGATGGCTCCAGCAGTGTTGGAGATAGCAATTTCCGCCTC ATGCTTGAATTTGTTTCCAACATAGCCAAGACTTTTGAAATCTCGGACATTGGTGCCAAGAT AGCTGCTGTACAGTTTACTTATGATCAGCGCACGGAGTTCAGTTTCACTGACTATAGCACCA AAGAGAATGTCCTAGCTGTCATCAGAAACATCCGCTATATGAGTGGTGGAACAGCTACTGGT GATGCCATTTCCTTCACTGTTAGAAATGTGTTTGGCCCTATAAGGGAGAGCCCCAACAAGAA CTTCCTAGTAATTGTCACAGATGGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTG CACATGATGCAGGAATCACTATCTTCTCTGTTGGTGTGGCCTTGGGCACCTCTGGATGACCTG AAAGATATGGCTTCTAAACCGAAGGAGTCTCACGCTTTCTTCACAAGAGAGTTCACAGGATT AGAACCAATTGTTTCTGATGTCATCAGAGGCATTTGTAGAGATTTCTTAGAATCCCAGCAAT <u>AA</u>TGGTAACATTTTGACAACTGAAAGAAAAGTACAAGGGGATCCAGTGTGTAAATTGTATT CTCATAATACTGAAATGCTTTAGCATACTAGAATCAGATACAAAACTATTAAGTATGTCAAC AGCCATTTAGGCAAATAAGCACTCCTTTAAAGCCGCTGCCTTCTGGTTACAATTTACAGTGT ACTTTGTTAAAAACACTGCTGAGGCTTCATAATCATGGCTCTTAGAAACTCAGGAAAGAGGA GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAAA

MSAAWIPALGLGVCLLLLPGPAGSEGAAPIAITCFTRGLDIRKEKADVLCPGGCPLEEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIGQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLKNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSDDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLAVI
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

```
Signal sequence:
    amino acids 1-24
    N-glycosylation site.
    amino acids 100-104, 221-225
    Casein kinase II phosphorylation site.
    amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424, 425-429, 478-482, 528-532
    N-myristoylation site.
    amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211, 239-245, 240-246, 261-267, 403-409, 442-448, 443-449
```

Amidation site.

amino acids 145-149

GGCGGCCTCCCGGCGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCG $\tt GGGCGGCTGCGGGCGCAGAGCGGAGATGCAGCGGCTTGGGGCCACCCTGCTGTGCCTGC$ TGCTGGCGGCGGTCCCACGGCCCCGCGCCCCGCTCCGACGCGACCTCGGCTCCAGTC AAGCCCGGCCCGGCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGA GGTTGAGGAACTGATGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGG ${\tt CAGAAGAAGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTAT}$ TCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTG TGGGAGACGAAGAAGGAGCAGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCCAGC TGGCCACCAGGGGCAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGGCTG TGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGCACACCCCTGCCCGTGGAGGGCGA GCTTTGCCATGACCCCGCCAGCCGGCTTCTGGACCTCATCACCTGGGAGCTAGAGCCTGATG GAGCCTTGGACCGATGCCCTTGTGCCAGTGGCCTCCTCTGCCAGCCCACAGCCACAGCCTG GTGTATGTGTGCAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGGGAGATCCTGCTGCC CAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGG AGGACCTGGAGAGAGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTGCCGCCGCT GCACTGCTGGGAGGGGAAGAGATT**TAG**ATCTGGACCAGGCTGTGGGTAGATGTGCAATAGAA ATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTACA TCTTCTTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGC TGCAGGAGCAGTTTGCCACCCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAG ACAGCCGTTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGG AGTCTCCCTCTGATTGGTTTTGGGGAAATGTGGAGAGAGTGCCCTGCTTTGCAAACATCAA CCTGGCAAAAATGCAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTG TGCCTTCAGCTGTTGCAGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCC AGCAGTGTTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTC . CCTCTCTCAGCACAGCCTGGGGAGGGGGTCATTGTTCTCCTCGTCCATCAGGGATCTCAGAG GCTCAGAGACTGCAAGCTGCTTGCCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCAT CTGGTTGTGACTCTAAGCTCAGTGCTCTCTCCACTACCCCACACCCAGCCTTGGTGCCACCAA AAGTGCTCCCCAAAAGGAAGGAGAATGGGATTTTTCTTGAGGCATGCACATCTGGAATTAAG GTCAAACTAATTCTCACATCCCTCTAAAAGTAAACTACTGTTAGGAACAGCAGTGTTCTCAC AGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGATATTGACACTGTCCCTCTTTGGCAGT TGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCATACAGGTTAACCTGCAGAAACA GTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGCAAAATCACTTAGCAGCAAC TGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGTGAAACATGGTT GTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATGTTTTCAGGTGTCA TGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTTTAAAGTTGCACATGATTGTA TAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAAATCAAGC

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCG
DQLCVWGHCTKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEV
GSFMEEVRQELEDLERSLTEEMALGEPAAAAAALLGGEEI

```
Signal sequence:
amino acids 1-19

N-glycosylation site.
amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.
amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 2327-331

N-myristoylation site.
amino acids 202-208, 217-223
```

amino acids 140-144

CACACATACACCTTCCTCTCCTCACTGAAGACTCACAGTCACTCTGTGAGCAGGTCATAGAAAAGGACAC TAAAGCCTTAAGGACAGGCCTGGCCATTACCTCTGCAGCTCCTTTTGGCTTGTTGAGTCAAAAAACATGGGAGGG TTCGAGACCAGCCTGGCCAACATGGAGAAACCCCCATCTCTACTAAAAATACAAAAATTAGCCAGGAGTGGTGGC AGGTGCCTGTAATCCCAGCTACTCAGGTGGCTGAGCCAGGAGAATCGCTTGAATCCAGGAGGCGGAGGATGCAGT GGGGTAGATACTGCTTCTCTGCAACCTCCTTAACTCTGCATCCTCTTCTTCCAGGGCTGCCCCTGATGGGGCCTG GTGTAGAATGACTGCCCTGGGAGGGTGGTTCCTTGGGCCCTGGCAGGGTTGCTGACCCTTACCCTGCAAAACACA GTGTGCCTGCCAGATCCGGCCCTGGTATACGCCCCGCTCGTCCTACCGCGAGGCTACCACTGTGGACTGCAATGA CCTATTCCTGACGCAGTCCCCCGGCACTCCCCGCAGGCACACAGACCCTGCTCCTGCAGAGCAACAGCATTGT CCGTGTGGACCAGAGTGAGCTGGCCTACCTGGCCAATCTCACAGAGCTGGACCTGTCCCAGAACAGCTTTTCGGA TGCCCGAGACTGTGATTTCCATGCCCTGCCCCAGCTGCTGAGCCTGCACCTAGAGGAGAACCAGCTGACCCGGCT GGAGGACCACAGCTTTGCAGGGCTGGCCAGCCTACAGGAACTCTATCTCAACCACAACCAGCTCTACCGCATCGC CCCCAGGGCCTTTTCTGGCCTCAGCAACTTGCTGCGGCTGCACCTCAACTCCAACCTCCTGAGGGCCATTGACAG CCGCTGGTTTGAAATGCTGCCCAACTTGGAGATACTCATGATTGGCGGCAACAAGGTAGATGCCATCCTGGACAT GAACTTCCGGCCCCTGGCCAACCTGCGTAGCCTGGTGCTAGCAGGCATGAACCTGCGGGAGATCTCCGACTATGC CCTGGAGGGGCTGCAAAGCCTGGAGAGCCTCTCCTTCTATGACAACCAGCTGGCCCGGGTGCCCAGGCGGGCACT ***GGAACAGGTGCCCGGGCTCAAGTTCCTAGACCTCAACAAGAACCCGCTCCAGCGGGTAGGGCCGGGGGACTTTGC GAACCTCCCGAGCTGACCAAGCTGGACATCACCAATAACCCACGGCTGTCCTTCATCCACCCCCGCGCCTTCCA CCACCTGCCCCAGATGGAGACCCTCATGCTCAACAACAACGCTCTCAGTGCCTTGCACCAGCAGCAGACGGTGGAGTC $\tt CCTGCCCAACCTGCAGGAGGTAGGTCTCCACGGCAACCCCATCCGCTGTGACTGTGTCATCCGCTGGGCCAATGC$ CACGGGCACCCGTGTCCGCTTCATCGAGCCGCAATCCACCCTGTGTGCGGAGCCTCCGGACCTCCAGCGCCTCCC #GGTCCGTGAGGTGCCCTTCCGGGAGATGACGGACCACTGTTTGCCCCTCATCTCCCCACGAGGCTTCCCCCCAAG ##CCTCCAGGTAGCCAGTGGAGAGAGCATGGTGCTGCATTGCCGGGCACTGGCCGAACCCGAACCCGAGATCTACTG GGAGCTGCGGAGGGTGACAGCAGAAGAGGGCAGGGCTATACACCTGTGTGGCCCAGAACCTGGTGGGGGCTGACAC GTTGGCTTGTGTATGGGCCAGGACCAAAGAGGCCACTTCTTGCCACAGAGCCTTAGGGGATCGTCCTGGGCTCAT TGCCATCCTGGCTCTCGCTGTCCTTCTCGGCAGCTGGGCTAGCGGCCCACCTTGGCACAGGCCAACCCAGGAA GGGTGTGGGGGGGGGGCCTCTCCCTCCAGCCTGGGCTTTCTGGGGCTGGAGTGCCCCTTCTGTCCGGGTTGT GTCTGCTCCCTCGTCCTGCCCTGGAATCCAGGGAGGAAGCTGCCCAGATCCTCAGAAGGGGAGACACTGTTGCC ACCATTGTCTCAAAATTCTTGAAGCTCAGCCTGTTCTCAGCAGTAGAGAAATCACTAGGACTACTTTTTACCAAA AGAGAAGCAGTCTGGGCCAGATGCCCTGCCAGGAAAGGGACATGGACCCACGTGCTTGAGGCCTGGCAGCTGGGC $\tt CCTCTGCTGCCATTCTGAGGAACATCTCCAAGGAACAGGAGGGACTTTGGCTAGAGCCTCCTGCCTCCCCATCTT$ CTCTCTGCCCAGAGGCTCCTGGCCTGGCTTGCCTGTCCCCTACCTGTGTCCCCGGGCTGCACCCCTTCCTCTTC CGCCTCATCTCAGCAGCCTGGGCTCGGCATTCCGAAGCTGACTTTCTATAGGCAATTTTGTACCTTTGTGGAGAA AAAA

MRLUVAPLILAWVAGATATVPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDCNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDLSQNSFSDARDCDFHALPQLLSLH.
EENQLTRLEDHSFAGLASLQELYILNINQLYRIAPRAFSGLSNLIRLHLINSNLIRATDSRWFE
MLPNLEILMIGGNKVDAILDMNFRPLANLRSLVLAGMNLREISDYALEGLQSLESLSFYDNQ
LARVPRRALEQVPGLKFLDLDKNPLQRVGPGDFANMLHLKELGLANNMEELVSIDKFALVNLI
ELTKLDITINPPRLSFIHPRAFHHLPQMETLMINNNALSALHQQTVESIPNLQEVGLHGNPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ
VASGESMVLHCRALAEPEPEITYWVTPAGLRLTPAHAGRRYRVYPEGTLELRRVTAEEAGLYT
CVAQNLVGADTKTVSVVUGRALLQPEDRESGGLERVQETHPYHILLSWYPPPNTYSTNLTW
SSASSLRGQGATALARLPRGTHSYNITRLLQATEYWACLQVAFADAHTQLACVWARTKEATS
CHRALGDRPGLIAILALAVLLLAAGLAAHLGTGQPRKGVGGRRPLPPAWAFWGWSAPSVRVV
SAPLVLPWNPGRKLPRSSEGETLLEPPLSONS

Signal sequence:

amino acids 1-18

```
Transmembrane domain:

Camino acids 629-648

N-glycosylation site.

Camino acids 94-98, 381-385, 555-559, 583-587

CAMP- and cGMP-dependent protein kinase phosphorylation site.

Tamino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146, 243-247, 313-317, 488-492, 700-704
```

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

GCAAGCCAAGGCGCTGTTTGAGAAGGTGAAGAAGTTCCGGACCCATGTGGAGGAGGGGGGACATTGTGTACCGCCT CATCAAGTTCGACGTGGACTGCACCGTGGACATTGAGAGCCTGACGGGCTACCGCACCTACCGCTGTGCCCACCC CCTGGCCACACTCTTCAAGATCCTGGCGTCCTTCTACATCAGCCTAGTCATCTTCTACGGCCTCATCTGCATCTA CACACTGTGGTGGATGCTACGGCGCTCCCTCAAGAAGTACTCGTTTGAGTCGATCCGTGAGGAGAGCAGCTACAG CGACATCCCCGACGTCAAGAACGACTTCGCCTTCATGCTGCACCTCATTGACCAATACGACCCGCTCTACTCCAA GCGCTTCGCCGTCTTCCTGTCGGAGGTGAGTGAGAACAAGCTGCGGCAGCTGAACCTCAACAACGAGTGGACGCT GGACAAGCTCCGGCAGCGGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTTCATGCTCAGTGGCAT CAGCATTGCCCAGCTCACGGGCCTCAAGGAGCTGTGGCTCTACCACACAGCGGCCAAGATTGAAGCGCCTGCGCT GGCCTTCCTGCGCGAGAACCTGCGGGCGCTGCACATCAAGTTCACCGACATCAAGGAGATCCCGCTGTGGATCTA AGATGTGGGCGTGCACCTGCAGAAGCTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCCTCAACAGCCTCAA GAAGATGGCGAACCTGACTGGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCCACTCCATCTTCAGCCT CCACAACCTGCAGGAGATTGACCTCAAGGACAACAACCTCAAGACCATCGAGGAGATCATCAGCTTCCAGCACCT GCACCGCCTCACCTGCCTTAAGCTGTGGTACAACCACATCGCCTACATCCCCATCCAGATCGGCAACCTCACCAA CTACCTGGACCTCAGCCACAACAACCTGACCTTCCTCCCTGCCGACATCGGCCTCCTGCAGAACCTCCAGAACCT AGCCATCACGGCCAACCGGATCGAGACGCTCCCTCCGGAGCTCTTCCAGTGCCGGAAGCTGCGGGCCCTGCACCT i_GGGCAACAACGTGCTGCAGTCACTGCCCTCCAGGGTGGCGAGCTGACCAACCTGACGCAGATCGAGCTGCGGGG CAACCGGCTGGAGTGCCTGCCTGTGGAGCTGGGCGAGTGCCCACTGCTCAAGCGCAGCGGCTTGGTGGTGGAGGA GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGCC<u>TGA</u>GCGAG GCCGGCCCAGCAGCAGCAGCAGGACCGCTGCCCAGTCCTCAGGCCCGGAGGGGCAGGCCTAGCTTCTCCCAG **AACTCCCGGACAGCCAGGACAGCCTCGCGGCTGGGCAGGAGCCTGGGGCCGCTTGTGAGTCAGGCCAGAGCGAGA GGACAGTATCTGTGGGGCTGGCCCCTTTTCTCCCTCTGAGACTCACGTCCCCCAGGGCAAGTGCTTGTGGAGGAG #AGCAAGTCTCAAGAGCGCAGTATTTGGATAATCAGGGTCTCCTCCCTGGAGGCCAGCTCTGCCCCAGGGGCTGAG AGATAACTTATACATTCCCAAGAAAGTTCAGCCCAGATGGAAGGTGTTCAGGGAAAGGTGGGCTGCCTTTTCCCC CCATGGGACGGTCACCCAGCAGTGCCGGGCTGGGCTCTGCGGTGCGGTCCACGGGAGAGCAGGCCTCCAGCTGGA I AAAAGACACTAACGGCCAGTGAGTTGGAGTCTCAGGGCAGGTGGCAGTTTCCCTTGAGCAAAGCAGCCAGACGT TGAACTGTGTTTCCCTGGGCGCAGGGTGCAGGGTGTCTTCCGGATCTGGTGTGACCTTGGTCCAGGAGTT **ATGTGTCTTGGCAGGCACTCATTTCTGTGGCTGTCGGCCAGAGGGAATGTTCTGGAGCTGCCAAGGAGGAGGAG CCAGTGCCACCGCTGCCTCCGCTGCTTCCATCAGCCCTGTCGCCACCTGGTCCTTCATGAAGAGCACACACTTA GAGGCTGGTCGGGAATGGGGAGGTCGCCCTGGGAGGGCAGGCGTTGCTTCCAAGCCGGTTCCCGTCCCTGGCGC $\tt CTGGAGTGCACAGCCCAGTCGGCACCTGGTGGCTGGAAGCCAACCTGCTTTAGATCACTCGGGTCCCCACCTT$ AGAAGGGTCCCCGCCTTAGATCAATCACGTGGACACTAAGGCACGTTTTAGAGTCTCTTGTCTTAATGATTATGT CCTCTGACAACCATGAAGCAAAAATCCGTTACATGTGGGTCTGAACTTGTAGACTCGGTCACAGTATCAAATAAA ATCTATAACAGAAAAAAAAAAAAAAAA

MRQTIIKVIKFILIICYTVYYVHNIKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI
SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK
RFAVFLSEVSENKLRQLNLNNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFDLVELEV
LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFTDIKEIPLWI
YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSI
NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHSIFSLHNLQEIDLKDNNLKTIEEIISFQ
HLHRLTCLKLWYNHIAYIPIQIGNLTNLERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT
FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHLGNNVLQSLPSRVGELTNLTQIE
LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEOA

```
Transmembrane domain:
```

```
maino acids 51-75 (type II)

N-glycosylation site.

mino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368, 398-402, 493-497
```

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGCAGCTGCGCACTGCGGCGCTCTCCCGT CCCGCGGTGGTTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACT GGCCCACAGAGGAGGCCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATG TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCAT GTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGC CCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTT GTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGA CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAG AATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGC ATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGT TGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGT □ ACAGCATGTCTCTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTA CTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAT GATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCA CGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGC GCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACA **TGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATC AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTG ACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTC ${\tt TACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGAT}$ ${\tt GATGAGACTGGTGACTCAGCAAGAA} \underline{{\tt TAG}} {\tt GATGGATGGGGCTGGAGATGAGCTGGTTTGGCCT}$ TGGGGCACAGAGCTGAGGCCGCTGAAGCTGTAGGAAGCGCCATTCTTCCCTGTATCT AACTGGGGCTGTGATCAAGAAGGTTCTGACCAGCTTCTGCAGAGGATAAAATCATTGTCTCT GGAGGCAATTTGGAAATTATTTCTGCTTCTTAAAAAAACCTAAGATTTTTTAAAAAATTGAT TTGTTTTGATCAAAATAAAGGATGATAATAGATATTAA

MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSC KNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSY VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR GTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYRE ATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALS QLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL IVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP SDQGDMALKMMRLVTQQE

```
Signal sequence:
amino acids 1-25

N-glycosylation site.

CAMP- and cGMP-dependent protein kinase phosphorylation site.

Mamino acids 101-105

Casein kinase II phosphorylation site.

Amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175, 187-193, 195-201, 331-337, 332-338, 360-366
```

GGCCGCGGAGAGGAGGCCATGGGCGCGCGCGCGCGCGCTGCTGCTGCTGCTGCTGCT GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCGGCGCCGTTATCAGGACCATGCGGCCGA CGGGTCATCACGTCGCGCATCGTGGGTGGAGAGGACGCCGAACTCGGGCGTTGGCCGTGGCA GGGGAGCCTGCGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG CACTCACGGCGCGCACTGCTTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGTGGATG TTACTTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTG CCTTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG AGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATAAACA ACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGAGACATG _GTTTGTGCTGGCAACGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGTGGACCCTT GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGAGTGGGCTGTG GTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAGTGGATCCAGAAG CTGATGGCCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGGCCACTACTCTTTTTCCCTCT #TCTCTGGGCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGCCCATGCAGCCTGGGGC CACTGCCAAGTCAGGCCCTGGTTCTCTTCTGTCTTGTTTGGTAATAAACACATTCCAGTTGA

Total Medical

MGARGALLLALLLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPWQGSLRLW
DSHVCGVSLLSHRWALTAAHCFETYSDLSDPSGWMVQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWGVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

```
Signal sequence:
amino acids 1-18

N-glycosylation site.
amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.
amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.
amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245, 259-265, 269-275

Amidation site.
amino acids 33-37
```

Serine proteases, trypsin family, histidine active site.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

amino acids 78-84

CTTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCCGGAGCCCGACCAGCGGAGGACGC CTCTCCTCAATACGGAAAATACCTGACCCTAGAGAATGTGGCTGATCTGGTGAGGCCATCCC CACTGACCCTCCACACGGTGCAAAAATGGCTCTTGGCAGCCGGAGCCCAGAAGTGCCATTCT GTGATCACACAGGACTTTCTGACTTGCTGGCTGAGCATCCGACAAGCAGAGCTGCTCCC TGGGGCTGAGTTTCATCACTATGTGGGAGGACCTACGGAAACCCATGTTGTAAGGTCCCCAC ATCCCTACCAGCTTCCACAGGCCTTGGCCCCCCATGTGGACTTTGTGGGGGGGACTGCACCGT TTTCCCCCAACATCATCCCTGAGGCAACGTCCTGAGCCGCAGGTGACAGGGACTGTAGGCCT GCATCTGGGGGTAACCCCCTCTGTGATCCGTAAGCGATACAACTTGACCTCACAAGACGTGG GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCCAGTTCCTGGAGCAGTATTTCCATGAC TCAGACCTGGCTCAGTTCATGCGCCTCTTCGGTGGCAACTTTGCACATCAGGCATCAGTAGC $\tt CCGTGTGGTTGGACACAGGGCCGGGCCGGGCCGGGATTGAGGCCAGTCTAGATGTGCAGT$ ACCTGATGAGTGCTGCCAACATCTCCACCTGGGTCTACAGTAGCCCTGGCCGGCATGAG GGACAGGAGCCCTTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGCGCCTACATCCAGCGGGTCA *ACACTGAGCTCATGAAGGCTGCCGCTCGGGGTCTCACCCTGCTCTTCGCCTCAGGTGACAGT [√]GGGGCCGGGTGTTGGTCTGTCTCTGGAAGACACCAGTTCCGCCCTACCTTCCCTGCCTCCAG [™]CCCCTATGTCACCACAGTGGGAGGCACATCCTTCCAGGAACCTTTCCTCATCACAAATGAAA TTGTTGACTATATCAGTGGTGGTGGCTTCAGCAATGTGTTCCCACGGCCTTCATACCAGGAG GAAGCTGTAACGAAGTTCCTGAGCTCTAGCCCCCACCTGCCACCATCCAGTTACTTCAATGC CAGTGGCCGTGCCTACCCAGATGTGGCTGCACTTTCTGATGGCTACTGGGTGGTCAGCAACA GAGTGCCCATTCCATGGGTGTCCGGAACCTCGGCCTCTACTCCAGTGTTTTGGGGGGGATCCTA *TCCTTGATCAATGAGCACAGGATCCTTAGTGGCCGCCCCCCTCTTGGCTTTCTCAACCCAAG GCTCTACCAGCAGCATGGGGCAGGTCTCTTTGATGTAACCCGTGGCTGCCATGAGTCCTGTC *TGGGGAACACCAACTTCCCAGCTTTGC**TGA**AGACTCTACTCAACCCCTGACCCTTTCCTATC AGGAGAGATGGCTTGTCCCCTGCCCTGAAGCTGGCAGTTCAGTCCCTTATTCTGCCCTGTTG GAAGCCCTGCTGAACCCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCTAACCCTGAAA $^{\circ}$ TGCTGTGAGTTGACTTGACTCCCAACCCTACCATGCTCCATCATACTCAGGTCTCCCTACT ATCTCATCTTTTCTCTTTTCAATCAGGCTTTTCCAAAGGGTTGTATACAGACTCTGTGCACTA TTTCACTTGATATTCATTCCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTTACTCT TTCCTACCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTTCTCAATCTTTGCTTTATG GCCTTTCCATCATAGTTGCCCACTCCCTCTCTTACTTAGCTTCCAGGTCTTAACTTCTCTG ACTACTCTTGTCTTCCTCTCTCATCAATTTCTGCTTCTTCATGGAATGCTGACCTTCATTGC TCCATTTGTAGATTTTTGCTCTTCTCAGTTTACTCATTGTCCCCTGGAACAAATCACTGACA TGTAAAAAA

MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGWVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVADLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVGGLHRFPPTSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGRHEGQEPFLQWLML
LSNESALPHVHTVSYGDDEDSLSSAYIQRVNTELMKAAARGLTLLFASGDSGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWGTPTSQLC

```
Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529
```

N-myristoylation site.

```
amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225, 248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488, 521-527, 533-539, 549-555
```

GCCGCGCGCTCTCTCCCGGCGCCCACACCTGTCTGAGCGGCGCAGCGAGCCGCGGCCCGGGC TTCTTCTGCTCTGTGCTGTTGGGCAAGTGAGCCCTTACAGTGCCCCCTGGAAACCCACTTG GCCTGCATACCGCCTCCCTGTCGTCTTGCCCCAGTCTACCCTCAATTTAGCCAAGCCAGACT TTGGAGCCGAAGCCAAATTAGAAGTATCTTCTTCATGTGGACCCCAGTGTCATAAGGGAACT CCACTGCCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG ACCGAGACTCAGGGTCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTTATGGCTATGACAGC AGGTTCAGCATTTTTGGGAAGGACTTCCTGCTCAACTACCCCTTTCTCAACATCAGTGAAGTT ATCCACGGGCTGCACCGGCACCCTGGTGGCAGAGAGCATGTCCTCACAGCTGCCCACTGCA TACACGATGGAAAAACCTATGTGAAAGGAACCCAGAAGCTTCGAGTGGGCTTCCTAAAGCCC _AAGTTTAAAGATGGTGGTCGAGGGGCCAACGACTCCACTTCAGCCATGCCCGAGCAGATGAA *ATTTCAGTGGATCCGGGTGAAACGCACCCATGTGCCCAAGGGTTGGATCAAGGGCAATGCCA ATGACATCGGCATGGATTATGATTATGCCCTCCTGGAACTCAAAAAGCCCCCACAAGAGAAAA TTATGAAGATTGGGGTGAGCCCTCCTGCTAAGCAGCTGCCAGGGGGGAGAATTCACTTCTC TGGTTATGACAATGACCGACCAGGCAATTTGGTGTATCGCTTCTGTGACGTCAAAGACGAGA **CCTATGACTTGCTCTACCAGCAATGCGATGCCCAGCCAGGGGCCAGCGGGTCTGGGGTCTAT #GTGAGGATGTGGAAGAGACAGCAGCAGAAGTGGGAGCGAAAAATTATTGGCATTTTTTCAGG GCACCAGTGGGTGGACATGAATGGTTCCCCACAGGATTTCAACGTGGCTGTCAGAATCACTC *IGACACAGTGTTCCCTCCTGGCAGCAATTAAGGGTCTTCATGTTCTTATTTTAGGAGAGGCC CTTATAATCTTTTACCTATTTCTTACAATTGCAAGATGACTGGCTTTACTATTTGAAAACTG GTTTGTGTATCATATCATATCATTTAAGCAGTTTGAAGGCATACTTTTGCATAGAAATAA AAAAAATACTGATTTGGGGCAATGAGGAATATTTGACAATTAAGTTAATCTTCACGTTTTTG CAAACTTTGATTTTATTTCATCTGAACTTGTTTCAAAGATTTATATTAAATATTTGGCATA CAAGAGATATGAAAAAAAAAAAAAAAA

MAGIPGLLFLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLPQSTLNLAKPDFGAEAKLEVS
SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRDSGSSGKS
RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVLTAAHCIHDGKTYVKG
TQKLRVGFLKPKFKDGGRGANDSTSAMPEQMKFQWIRVKRTHVPKGWIKGNANDIGMDYDYA
LLELKKPHKRKFMKIGVSPPAKQLPGGRIHFSGYDNDRPGNLVYRFCDVKDETYDLLYQQCD
AQPGASGSGVYVRMWKRQQQKWERKIIGIFSGHQWVDMNGSPQDFNVAVRITPLKYAQICYW
IKGNYLDCREG

Signal sequence:

amino acids 171-177

```
amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Samino acids 93-97, 207-211

Casein kinase II phosphorylation site.

Casein kinase II phosphorylation site.

Casein kinase II phosphorylation site.

Amyristoylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

Amyristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.
```

 $\tt GCATCGCCCTGGGTCTCTCGAGCCTGCTGCCTGCTCCCCCGCCCCACCAGCC \textbf{ATG}GTGGTTT$ CTGGAGCGCCCCAGCCCTGGGTGGGGGCTGTCTCGGCACCTTCACCTCCCTGCTGCTGCTG GCGTCGACAGCCATCCTCAATGCGGCCAGGATACCTGTTCCCCCAGCCTGTGGGAAGCCCCA GCAGCTGAACCGGGTTGTGGGCGGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA GCATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTCTGCTCACCAGCCGCTGGGTGATC ACTGCTGCCCACTGTTTCAAGGACAACCTGAACAACCATACCTGTTCTCTGTGCTGCTGGG CCCACCCTGTGTATTCCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCGTCTCGAG CGCTCCATACAGTTCTCAGAGCGGGTCCTGCCCATCTGCCTACCTGATGCCTCTATCCACCT CCCACCCTCAGACCCTGCAGAAGCTGAAGGTTCCTATCATCGACTCGGAAGTCTGCAGCCAT #CTGTACTGGCGGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTGTGTGCCGGCTACTT GGAGGGGAGCGGATGCTTGTCTGGGCGACTCCGGGGGCCCCCTCATGTGCCAGGTGGACG #GCGCCTGGCTGCCGGCATCATCAGCTGGGGCGAGGGCTGTGCCGAGCGCAACAGGCCC GGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGGTGGAGAAGATCGTGCAAGGGGTGCA #GCTCCGCGGCCCCTCAGGGGGTGGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGGCCG [™]CCGCGCGCTCC**TAG**GGCGCAGCGGGACGCGGGCTCGGATCTGAAAGGCGGCCAGATCCACA #TCTGGATCTGGATCTGCGGCGGCCTCGGGCGGTTTCCCCCGCCGTAAATAGGCTCATCTACC SGCCTCAGGCCCCCTCCAAGGCATCAGGCCCCGCCCAACGGCCTCATGTCCCCGCCCCAC GACTTCCGGCCCCGCCCCGGGCCCCAGCGCTTTTGTGTATATAAATGTTAATGATTTTTAT CTCCAAAAAAAAAA

```
></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
 ><subunit 1 of 1, 317 aa, 1 stop
 ><MW: 33732, pI: 7.90, NX(S/T): 1
 {\tt MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARIPVPPACGKPQQLNRVVGGEDSTDSEWP}
 WIVSIOKNGTHHCAGSLLTSRWVITAAHCFKDNLNKPYLFSVLLGAWOLGNPGSRSQKVGVA
 WVEPHPVYSWKEGACADIALVRLERSIOFSERVLPICLPDASIHLPPNTHCWISGWGSIODG
 VPLPHPOTLOKLKVPIIDSEVCSHLYWRGAGOGPITEDMLCAGYLEGERDACLGDSGGPLMC
 OVDGAWLLAGIISWGEGCAERNRPGVYISLSAHRSWVEKIVOGVOLRGRAOGGGALRAPSOG
 SGAAARS
 Signal sequence:
mamino acids 1-32
453
N-glycosylation site.
amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960
Glycosaminoglycan attachment site.
Lamino acids 826-830
```

[4] [2] [2]Casein kinase II phosphorylation site.

```
amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268, 314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653, 671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962, 1013-1017, 1019-1023, 1021-1025
```

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

```
amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534, 612-618, 623-629, 714-720, 873-879
```

GACGGCTGGCCACCATGCACGGCTCCTGCAGTTTCCTGATGCTTCTGCTGCCGCTACTGCTA $\tt CTGCTGGTGGCCACCACAGGCCCCGTTGGAGCCCTCACAGATGAGGAGAAACGTTTGATGGT$ GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTGCACATGA GATGGGACGAGGGCTGCCCCTTCGCCAAGGCCTACGCACGGCAGTGCGTGTGGGGCCAC AACAAGGAGCGCGGCGCGCGAGAATCTGTTCGCCATCACAGACGAGGGCATGGACGT GCCGCTGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACCTCAGCGCCGCCACCT GGCTGTGGTTCCCACTTCTGTGAGAAGCTCCAGGGTGTTGAGGAGACCAACATCGAATTACT GGTGTGCAACTATGAGCCTCCGGGGAACGTGAAGGGGAAACGGCCCTACCAGGAGGGGACTC CGTGCTCCCAATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC CCGGAAGATGCTCAGGATTTGCCTTACCTGGTAACTGAGGCCCCATCCTTCCGGGCGACTGA ${}_{1,2}$ AGCATCAGACTCTAGGAAAATGGGTACTCCTTCTTCCCTAGCAACGGGGATTCCGGCTTTCT CCAACTTCCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCCACCTTGCGTAAC AACTGAGGTCCCTTCCATTTTGGCAGCTCACAGCCTGCCCTCCTTGGATGAGGAGCCAGTTA [II]AAAGTGCCCTCTAGGAGCCCAGAGAACTCTCTGGACCCCAAGATGTCCCTGACAGGGGCAAG GGAACTCCTACCCCATGCCCAGGAGGAGGCTGAGGCTGAGGTTGCCTCCTTCCAGTG AGGTCTTGGCCTCAGTTTTTCCAGCCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC CACACGGGGCACACCTCCTCCAAGTCCCTGCCCAATTCCCCAATACCTCTGCCACCGCTAA TGCCACGGGTGGGCGTGCCCTGGCTCTGCAGTCGTCCTTGCCAGGTGCAGAGGGCCCTGACA AGCCTAGCGTTGTGTCAGGGCTGAACTCGGGCCCTGGTCATGTGTGGGGCCCTCTCCTGGGA TGAAGAGGTCAGCTGTCCTCTGTCATCTTCCCCACCCTGTCCCCAGCCCCTAAACAAGATA ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGCTCAGGAGGCCGCCTGAGGACTGCACACC GGGCCCACACCTCTCCTGCCCCTCCTCCTGAGTCCTGGGGGTGGGAGGATTTGAGGGAGCT CACTGCCTACCTGGGCCTGGGGCTGTCTGCCCACACAGCATGTGCGCTCTCCCTGAGTGCCTG TGTAGCTGGGGATTGCGAGTTCCTAGGGGCAGATGAAGGCCCCACTGGAGTGGGGTTC TTTGAGTGGGGGAGGCAGGGAAGGAAGTAACTCCTGACTCTCCAATAAAAACCT

GTCCAACCTGTGAAA

MHGSCSFLMILLIPLILLIVATTGPVGALITDEEKRLMVELHNILYRAQVSPTASDMILHMRWDEE LAAPAKAYARQCVWGHNKERGRRGENLFAITDEGMDVPLAMEEWHHEREHYNLSAATCSPG MCGHYTQVVWAKTERIGCGSHFCEKLQGVBETNIELLVCNYEPPGNVKGKPFYQEGTPCSQC PSGYHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSKKMGTPSSLATGIPAFLVTEV SGSLATKALPAVETQAPTSLATKDPSMATEAPPCVTTEVPSILAAHSLPSLDEBYTPFKS THVPIPKSADKVTDKTKVPSRSPENSLDPKMSLTGARELLPHAQEEAEAEAELPPSSEVLAS VFFAQDKPGELQATLDHTGHTSSKSLPNFFNTSATANATGGRALALQSSLPGAEGPDKPSVV SGLMSGPGHVWGPLLGLILLIPPLVLAGIF

```
Signal sequence:
```

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

jamino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

=amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237, 250-256

Toda 1

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

GTAACTGAAGTCAGGCTTTTCATTTGGGAAGCCCCCTCAACAGAATTCGGTCATCTCCCAAGTTATGGTGGACGT ACTTCTGTTGTTCTCCCTCTGCTTTTTCACATTAGCAGACCGGACTTAAGTCACAACAGATTATCTTTCAT CAAGGCAAGTTCCATGAGCCACCTTCAAAGCCTTCGAGAAGTGAACTGAACAACAATGAATTGGAGACCATTCC AAATCTGGGACCAGTCTCGGCAAATATTACACTTCTCTCTTGGCTGGAAACAGGATTGTTGAAATACTCCCTGA ACATCTGAAAGAGTTTCAGTCCCTTGAAACTTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAACTGCATT TCCAGCCCTACAGCTCAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACCTGGGTATTTTGACAA GCCCCAACTGCAACATCTCGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCTTGG GCAGGAACTTCATCTCAGCCAAAATGCCATCAACAGGATCAGCCCTGATGCCTGGGAGTTCTGCCAGAAGCTCAG TGAGCTGGACCTAACTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCCTTGGCCTAAGCTTACTAAATAC ACTGCACATTGGGAACAACAGAGTCAGCTACATTGCTGATTGTGCCTTCCGGGGGCTTTCCAGTTTAAAGACTTT GGATCTGAAGAACAATGAAATTTCCTGGACTATTGAAGACATGAATGGTGCTTTCTCTGGGCTTGACAAACTGAG TCTAGACCTGAGTGACAACGCAATCATGTCTTTACAAGGCAATGCATTTTCACAAATGAAGAAACTGCAACAATT TCAGAGCTTTGTAAATGCCAGTTGTGCCCATCCTCAGCTGCTAAAAGGAAGAAGCATTTTTGCTGTTAGCCCAGA TGGCTTTGTGTGTGATGATTTTCCCAAACCCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTC CAATTTGAGTTTCATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCCAATGACTTTTGCTTGGAAAAAAGACAATGA *ACTACTGCATGATGCTGAAATGGAAAATTATGCACACCTCCGGGCCCAAGGTGGCGAGGTGATGGAGTATACCAC CATCCTTCGGCTGCGCGAGGTGGAATTTGCCAGTGAGGGGAAATATCAGTGTGTCATCTCCAATCACTTTGGTTC ATCCTACTCTGTCAAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCACCAAGACCCCCATGGATCTCACCAT CCGAGCTGGGGCCATGGCACGCTTGGAGTGTGCTGCTGTGGGGCACCCAGCCCCCCAGATAGCCTGGCAGAAGGA GGATGTGAAGATAGAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGC #ÄACTCTGACTGTCCTAGAAACACCATCATTTTTGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAAACAGC #CGTCCTACAGTGCATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGTGGT *AACCGAGAGGCACTTTTTTGCAGCAGGCAATCAGCTTCTGATTATTGTGGACTCAGATGTCAGTGATGCTGGGAA ATACACATGTGAGATGTCTAACACCCTTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCCACTCCAAC .CTGCGACTCCCCTCAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGC CGTGGTTTGCTGTGGGGGGCACGTCACTCGTGTGGGTGGTCATCATATACCACACAAGGCGGAGGAATGAAGA **TTGCAGCATTACCAACACAGATGAGACCAACTTGCCAGCAGATATTCCTAGTTATTTGTCATCTCAGGGAACGTT AGCTGACAGGCAGGATGGGTACGTGTCTTCAGAAAGTGGAAGCCACCACCAGTTTGTCACATCTTCAGGTGCTGG ATTTTTCTTACCACAACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGTGGAAGCTGC CACAGATCTGTTCCTTTGTCCGTTTTTTGGGATCCACAGGCCCTATGTATTTGAAGGGAAATGTGTATGGCTCAGA TCCTTTTGAAACATATCATACAGGTTGCAGTCCTGACCCAAGAACAGTTTTAATGGACCACTATGAGCCCAGTTA L-CATAAAGAAAAAGGAGTGCTACCCATGTTCTCATCCTTCAGAAGAATCCTGCGAACGGAGCTTCAGTAATATATC GTGGCCTTCACATGTGAGGAAGCTACTTAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAAATCTGTG TCTAAACAAGTCCTCTTTAGATTTTAGTGCAAATCCAGAGCCAGCGTCGGTTGCCTCGAGTAATTCTTTCATGGG TACCTTTGGAAAAGCTCTCAGGAGACCTCACCTAGATGCCTATTCAAGCTTTTGGACAGCCATCAGATTGTCAGCC AGATTTCAGGAAGAAATCACATTTGTACCTTTAAACAGACTTTAGAAAACTACAGGACTCCAAATTTTCAGTC GAACCAAAATTACAAAAAGTTATGAAAATTTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTTAAACTA TTTTTTAACTTTGTTTTATGCAAAAAGTATCTTACGTAAATTAATGATATAATCATGATTATTTTATGTATTT TTATAATGCCAGATTTCTTTTATGGAAAATGAGTTACTAAAGCATTTTAAATAATACCTGCCTTGTACCATTTT TTAAATAGAAGTTACTTCATTATATTTTGCACATTATATTTAATAAAATGTGTCAATTTGAA

MVDVLLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLOSLREVKLNNNELETIPNLGPVSAN ITLLSLAGNRIVEILPEHLKEFOSLETLDLSSNNISELOTAFPALQLKYLYLNSNRVTSMEP GYFDNLANTLLVLKLNRNRISAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKM ORNGVTKLMDGAFWGLSNMEILOLDHNNLTEITKGWLYGLLMLOELHLSONAINRISPDAWE FCOKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRGLSSLKTLDLKNNE ISWTIEDMNGAFSGLDKLRRLILOGNRIRSITKKAFTGLDALEHLDLSDNAIMSLOGNAFSO MKKLQQLHLNTSSLLCDCQLKWLPQWVAENNFQSFVNASCAHPQLLKGRSIFAVSPDGFVCD DFPKPOITVOPETOSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAOG GEVMEYTTILRLREVEFASEGKYOCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGA MARLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQN SAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKLNWTKDDSPLVVTER HFFAAGNOLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPOMTAPSLDDDG WATVGVVIIAVVCCVVGTSLVWVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLAD RQDGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGP MYLKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKECYPCSHPSEESCERSFSNISW PSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA YSSFGOPSDCOPRAFYLKAHSSPDLDSGSEEDGKERTDFOEENHICTFKOTLENYRTPNFOS YDLDT

```
Signal sequence:
```

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

mamino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459,

¹628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,

314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,

671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,

1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534, 612-618, 623-629, 714-720, 873-879

GAAGCTTTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA CCACCCCAAAAAAAAGGATGATTGGAAATGAAGAACCGAGGATTCACAAAGAAAAAGTATGTTCATTTTTCTC TATAAAGGAGAAAGTTGAGCCAAGGAGATATTTTTGGAATGAAAGTTTGGGGCTTTTTTTAGTAAAGTAAAGAACT TTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCAGTTGGATTTTTCTTCATCAACCTCCTTTTTTTAAAT TTTTATTCCTTTTGGTATCAAGATCATGCGTTTTCTCTTGTTCTTAACCACCTGGATTTCCATCTGGATGTTGCT GTGATCAGTCTGAAATACAACTGTTTGAATTCCAGAAGGACCAACACCAGATAAATTATGAATGTTGAACAAGAT GACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTTAACAGGGCCCTATTTGACCCCCTGCTTGTGGTGCT ${\tt CCAGTTCAGCAAGGTGATTTGTGTTCGGAAAAACCTGCGTGAGGTTCCGGATGGCATCTCCACCAACACGGCT}$ GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTTCAAGCACTTGAGGCACTTGGAAATCCT ACAGTTGAGTAGGAACCATATCAGAACCATTGAAATTGGGGCTTTCAATGGTCTGGCGAACCTCAACACTCTGGA ${\tt ACTCTTTGACAATCGTCTTACTACCATCCCGAATGGAGCTTTTGTATACTTGTCTAAACTGAAGGAGCTCTGGTT}$ $\tt GCGAAACAACCCCATTGAAAGCATCCCTTCTTATGCTTTTAACAGAATTCCTTCTTTGCGCCGACTAGACTTAGG$ GGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTTGAAGGTCTGTCCAACTTGAGGTATTTGAACCTTGC CATGTGCAACCTTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAGCTGGATCTTTCTGGGAATCA TTTATCTGCCATCAGGCCTGGCTCTTTCCAGGGTTTGATGCACCTTCAAAAACTGTGGATGATACAGTCCCAGAT TCAAGTGATTGAACGGAATGCCTTTGACAACCTTCAGTCACTAGTGGAGATCAACCTGGCACACAATAATCTAAC ATTACTGCCTCATGACCTCTTCACTCCCTTGCATCATCTAGAGCGGATACATTTACATCACAACCCTTGGAACTG TAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTCGAACACAGCTTGTTGTGCCCGGTG I TAACACTCCTCCCAATCTAAAGGGGAGGTACATTGGAGAGCTCGACCAGAATTACTTCACATGCTATGCTCCGGT | GATTGTGGAGCCCCTGCAGACCTCAATGTCACTGAAGGCATGGCAGCTGAGCTGAAATGTCGGGCCTCCACATC CCTGACATCTGTATCTTGGATTACTCCAAATGGAACAGTCATGACACATGGGGCGTACAAAGTGCGGATAGCTGT GCTCAGTGATGGTACGTTAAATTTCACAAATGTAACTGTGCAAGATACAGGCATGTACACATGTATGGTGAGTAA TTCCGTTGGGAATACTACTGCTTCAGCCACCCTGAATGTTACTGCAGCAACCACTACTCCTTTCTCTTACTTTTC AACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACGGACCACAGATAACAATGTGGGTCCCACTCC AGTGGTCGACTGGGAGACCACCAATGTGACCACCTCTCTCACACCACAGAGCACAAGGTCGACAGAGAAAACCTT CACCATCCCAGTGACTGATATAAACAGTGGGATCCCAGGAATTGATGAGGTCATGAAGACTACCAAAATCATCAT FGGGTGTTTTGTGGCCATCACACTCATGGCTGCAGTGATGCTGGTCATTTTCTACAAGATGAGGAAGCAGCACCA TCGGCAAAACCATCACGCCCCAACAAGGACTGTTGAAATTATTAATGTGGATGATGAGATTACGGGAGACACAC CATGGAAAGCCACCTGCCCATGCCTGCTATCGAGCATGAGCACCTAAATCACTATAACTCATACAAATCTCCCTT *CAACCACACAACAACAGTTAACACAATAAATTCAATACACAGTTCAGTGCATGAACCGTTATTGATCCGAATGAA #GACAGTTTATTAAAAATGACACAAATGACTGGGCTAAATCTACTGTTTCAAAAAAGTGTCTTTACAAAAAAACAA AAAAGAAAAGAAATTTATTAAAAAATTCTATTGTGATCTAAAGCAGACAAAAA

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS YISEGAFEGLSNLRYLNLAMCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLBRIHLHHNPWNCNCDIL WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNVTEGMAAE LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGN TTASATLNVTAATTTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRQHHRQN HHAPTRTVEIINVDDEITGDTPMESHLPMPAIEHEHLNHYNSYKSPFNHTTTVNTINSIHSS VHEPLLIRMNSKDNVQETQI

```
Signal sequence:

amino acids 1-44

Transmembrane domain:

Mamino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438, 442-446, 488-492, 606-610

CAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 183-187

Casein kinase II phosphorylation site. amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243, 391-397, 422-428, 433-439, 531-537
```

GAGCGCCCATGCCCACTACCTGCCGCTGCCTCGGGGACCTGCTGGACTGCAGTCGTAAGCGGCTAGCGCGTCTT ATGAGCCACCTTCAAAGCCTTCGAGAAGTGAAACTGAACAACAATGAATTGGAGACCATTCCAAATCTGGGACCA GTCTCGGCAAATATTACACTTCTCTCTTGGCTGGAAACAGGATTGTTGAAATACTCCCTGAACATCTGAAAGAG CATCTCGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCTTGGTGCTCTGAAGTCT $\tt CTCAGCCAAAATGCCATCAACAGGATCAGCCCTGATGCCTGGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCTA$ ACTTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCCTTGGCCTAAGCTTACTAAATACACTGCACATTGGG AACAACAGGTCAGCTACATTGCTGATTGTGCCTTCCGGGGGCTTTCCAGTTTAAAGACTTTGGATCTGAAGAAC AATGAAATTTCCTGGACTATTGAAGACATGAATGGTGCTTTCTCTGGGCTTGACAAACTGAGGCGACTGATACTC ${\tt CAAGGAAATCGGATCCGTTCTATTACTAAAAAAGCCTTCACTGGTTTGGATGCATTGGAGCATCTAGACCTGAGT}$ ${\tt GACAACGCAATCATGTCTTTACAAGGCAATGCATTTTCACAAATGAAGAAACTGCAACAATTGCATTTAAATACA}$ AATGCCAGTTGTGCCCATCCTCAGCTGCTAAAAGGAAGAAGCATTTTTGCTGTTAGCCCAGATGGCTTTGTGTGT GATGATTTTCCCAAACCCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTCCAATTTGAGTTTC ${\tt GCTGAAATGGAAAATTATGCACACCTCCGGGCCCAAGGTGGCGAGGTGATGGAGTATACCACCATCCTTCGGCTG}$ $\tt CGCGAGGTGGAATTTGCCAGTGAGGGGAAATATCAGTGTGTCATCTCCAATCACTTTGGTTCATCCTACTCTGTC$ AAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCACCAAGACCCCCATGGATCTCACCATCCGAGCTGGGGCC ATGGCACGCTTGGAGTGTGCTGCTGTGGGGCACCCAGCCCCCAGATAGCCTGGCAGAAGGATGGGGGCACAGAC TTCCCAGCTGCACGGGAGAGACGCATGCATGTGATGCCCGAGGATGACGTGTTCTTTATCGTGGATGTGAAGATA GAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGCAACTCTGACTGTC TTTTTTGCAGCAGCAATCAGCTTCTGATTATTGTGGACTCAGATGTCAGTGATGCTGGGAAATACACATGTGAG ATGTCTAACACCCTTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCCACTCCAACCTGCGACTCCCCT $[\pm]$ CAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGCCGTGGTTTGCTGT GTGGTGGGCACGTCACTCGTGTGGGTGGTCATCATATACCACACAAGGCGGAGGAATGAAGATTGCAGCATTACC AACACAGATGAGACCAACTTGCCAGCAGATATTCCTAGTTATTTGTCATCTCAGGGAACGTTAGCTGACAGGCAG GATGGGTACGTGTCTTCAGAAAGTGGAAGCCACCACCAGTTTGTCACATCTTCAGGTGCTGGATTTTTCTTACCA CAACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGTGGAAGCTGCCACAGATCTGTTC $\tt CTTTGTCCGTTTTTGGGATCCACAGGCCCTATGTATTTGAAGGGAAATGTGTATGGCTCAGATCCTTTTGAAACA$ TATCATACAGGTTGCAGTCCTGACCCAAGAACAGTTTTAATGGACCACTATGAGCCCAGTTACATAAAGAAAAAG GAGTGCTACCCATGTTCTCATCCTTCAGAAGAATCCTGCGAACGGAGCTTCAGTAATATATCGTGGCCTTCACAT GTGAGGAAGCTACTTAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAAATCTGTGTCTAAACAAGTCC ${\tt TCTTTAGATTTAGTGCAAATCCAGAGCCAGCGTCGGTTGCCTCGAGTAATTCTTTCATGGGTACCTTTGGAAAA}$ GAAAATCACATTTGTACCTTTAAACAGACTTTAGAAAACTACAGGACTCCAAATTTTCAGTCTTATGACTTGGAC AAAAAGTTATGAAAATTTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTTAAACTATTTTTTAACTTTG

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGOPSGVAAERPCPTTCRCLGDLLDCSR KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLOSLREVKLNNNELETIPNLGPVSANIT LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY FDNLANTLLVLKLNRNRISAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKMQR NGVTKLMDGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWEFC OKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRGLSSLKTLDLKNNEIS WTIEDMNGAFSGLDKLRRLILOGNRIRSITKKAFTGLDALEHLDLSDNAIMSLOGNAFSOMK $\verb|KLQQLHLNTSSLLCDCQLKWLPQWVAENNFQSFVNASCAHPQLLKGRSIFAVSPDGFVCDDF|\\$ PKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAOGGE VMEYTTILRLREVEFASEGKYOCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGAMA RLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAONSA GSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKLNWTKDDSPLVVTERHF ${\tt FAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPQMTAPSLDDDGWA}$ TVGVVIIAVVCCVVGTSLVWVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRO ${\tt DGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGPMY}$ LKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKECYPCSHPSEESCERSFSNISWPS HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS SFGQPSDCQPRAFYLKAHSSPDLDSGSEEDGKERTDFOEENHICTFKQTLENYRTPNFOSYDLDT Signal sequence: amino acids 1-27

```
Transmembrane domain:
 Mamino acids 808-828
 N-glycosylation site.
 # amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519,
 M 688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020
Glycosaminoglycan attachment site.
amino acids 886-890
 Casein kinase II phosphorylation site.
amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378,
383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735,
799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022,
1073-1077, 1079-1083, 1081-1085
   Tyrosine kinase phosphorylation site.
   amino acids 667-675
  N-myristoylation site.
   amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433,
   513-519, 588-594, 672-678, 683-687, 774-780, 933-939
  Leucine zipper pattern.
```

amino acids 58-80, 65-87

CAAAACTTGCGTCGCGGAGAGCCCCAGCTTGACTTGAATGGAAGGAGCCCGAGCCCGCGGAGCCCAGCTGAGAC CTGCTCCACGAGGCGCCACTGGTGTGAACCGGGAGAGCCCCTGGGTGGTCCCGTCCCCTATCCCTCCTTTATATA GAAACCTTCCACACTGGGAAGGCAGCGGCGAGGCAGGAGGGCTCATGGTGAGCAAGGAGGCCGGCTGATCTGCAG $\tt TGCTCCTGCTGCTGCCGCCACAGCTGCACCTGGGACCTGTGCTTGCCGTGAGGGCCCCAGGATTTGGCCGAACTGGCCGGAACTGGCAACTGGCCGGAACTGGCAACTGGCCGGAACTGGCCGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCCGGAACTGGCAACTGGCCGGAACTGGCAACTGGAACTGGCCGGAACTGGCAACTGGCAACTGGCAACTGGAACTGGCAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGGAACTGAACAACTGAACT$ GTGGCGGCCACAGCCTGAGCCCCGAAGAGAACGAATTTGCGGAGGAGGAGCCGGTGCTGGTACTGAGCCCTGAGG AGCCCGGCCTGGCCCAGCCGCCGCTCAGCTGCCCCCGAGACTGTGCCTGTTCCCAGGAGGGCGTCGTGGACTGTG TGGAAAAGATCTACCCTGAGGAGCTCTCCCGGCTGCACCGGCTGGAGACACTGAACCTGCAAAACAACCGCCTGA TGACCTTGCCACCCCGCTTCCTGCCAAACGCCCTGATCAGTGTGGACTTTGCTGCCAACTATCTCACCAAGATCT ATGGGCTCACCTTTGGCCAGAAGCCAAACTTGAGGTCTGTGTACCTGCACAACAACAAGCTGGCAGACGCCGGGC TGCCGGACAACATGTTCAACGGCTCCAGCAACGTCGAGGTCCTCATCCTGTCCAGCAACTTCCTGCGCCACGTGC CCAAGCACCTGCCGCCTGCCCTGTACAAGCTGCACCTCAAGAACAAGCTGGAGAAGATCCCCCCGGGGGCCT CGCGCAGCCTGGTGCTGCACTTGGAGAAGAACGCCATCCGGAGCGTGGACGCGAATGTGCTGACCCCCATCC GCACCCTCATGATCCTGCACAACCAGATCACAGGCATTGGCCGCGAAGACTTTGCCACCACCTACTTCCTGGAGG ###GCTCGCTGGACCTGTCGGGCAACCGGCTGCACACGCTGCCACCTGGGCTGCCTCGAAATGTCCATGTGCTGAAGG I_CCAGCAACCGACTGCGCAGCCGAGCCCTGGGCCCCCGTGCCTGGGTGGACCTCGCCCATCTGCAGCTGCTGGACA TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGGCTCCCCGAGTCACTTGAGTACCTGTACCTGCAGAACAACA AGATTAGTGCGGTGCCCGCCAATGCCTTCGACTCCACGCCCAACCTCAAGGGGATCTTTCTCAGGTTTAACAAGC TGGCTGTGGGCTCCGTGGTGGACAGTGCCTTCCGGAGGCTGAAGCACCTGCAGGTCTTGGACATTGAAGGCAACT ${\tt AGGAAGAGAACAAGA} \underline{{\tt TAG}} {\tt TGACAAGGTGATGCAGATGTGACCTAGGATGATGGACCGCCGGACTCTTTTCTGC}$ ##AGCACACGCCTGTGTGCTGAGCCCCCACTCTGCCGTGCTCACACAGACACACCCCAGCTGCACACATGAGGCA TCCCACATGACACGGCTGACACAGTCTCATATCCCCACCCCTTCCCACGCGTGTCCCACGGCCAGACACATGC GGAACTCACAAAAGCTGGCTTTTATTCCTTTCCCATCCTATGGGGACAGGAGCCTTCAGGACTGCTGGCC

MEGEEAEQPAWFHQPWRPGASDSAPPAGTMAQSRVLLLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPEENEFAEEEPVLVLSPEEFGPGPAAVSCPRDCACSQEGVVDCGGIDLREFPGDLP
EHTHHLSLQNNQLEKTYPEELSRLHRLETINLQNNRLTSRGLPEKAFEHLTNLNYLYLANNK
LTLAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNV
EVLILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSVDANVLTPIRSLEYLLLHSN
QLREQGIHPLAFGGLKRLHTVHLYNNALERVPSGLPRRVRTLMILHNQITGIGREDFATTYF
LEELNLSYNRITSPQVHRDAFRKLRLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNELAALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLKGIFLRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKD
RGALGKBKBEBEBEBEBER

```
Signal sequence:

amino acids 1-48

N-glycosylation site.

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341, 477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493, 535-557
```

GGGAGGGGCTCCGGGCGCGCGCAGCAGACCTGCTCCGGCCGCGCCTCGCCGCTGTCCTCCGGGAGCGGCAG ${\tt CAACCTGTTCCTCGCGCGCCACTGCGCCCCAGGACCCGCTGCCCAAC} \underline{{\tt ATG}}{\tt GATTTTCTCCTGGCGCTGGT}$ GCTGGTATCCTCGCTCTACCTGCAGGCGGCCGCCGAGTTCGACGGGAGGTGGCCCAGGCAAATAGTGTCATCGAT TGGCCTATGTCGTTATGGTGGGAGGATTGACTGCTGCTGGGGCTGGGCTCGCCAGTCTTGGGGACAGTGTCAGCC TGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCATCCTGGTTATGCTGG AAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAAGCACAGGTGCATGAACACTTA CGGCAGCTACAAGTGCTACTGTCTCAACGGATATATGCTCATGCCGGATGGTTCCTGCTCAAGTGCCCTGACCTG CTCCATGGCAAACTGTCAGTATGGCTGTGATGTTGTTAAAGGACAAATACGGTGCCAGTGCCCATCCCTGGCCT GCACCTGGCTCCTGATGGGAGGACCTGTGTAGATGTTGATGATGTGCTACAGGAAGAGCCTCCTGCCCTAGATT TAGGCAATGTGTCAACACTTTTGGGAGCTACATCTGCAAGTGTCATAAAGGCTTCGATCTCATGTATATTGGAGG AGTTATGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGAAA TAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTATCATTACCAA CCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCAACCACCGGACTGACAACTATAGC ACCAGCTGCCAGTACACCTCCAGGAGGGATTACAGTTGACAACAGGGTACAGACACCCTCAGAAACCCAGAGG GGGAAAAGCTGCACGCTTGGTGCTACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCA GGGAAGAAATGGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGAATCACA ¹ AAGA<u>TGA</u>TTAAAGGGTTGGAAAAAAGATCTATGATGGAAAATTAAAGGAACTGGGATTATTGAGCCTGGAGAAG ##TTCTCCATATGCACTAAGAATAGAACAAGAGGAAACTGGCTTAGACTAGAGTATAAGGGAAGCATTTCTTGGCAGG TAAAAATTTGTCTATTTAAGATGGTTAAAGATGTTCTTACCCAAGGAAAAGTAACAAATTATAGAATTTCCCAAA AGATGTTTTGATCCTACTAGTAGTATGCAGTGAAAATCTTTAGAACTAAATAATTTGGACAAGGCTTAATTTAGG CATTTCCCTCTTGACCTCCTAATGGAGAGGGATTGAAAGGGGAAGAGCCCACCAAATGCTGAGCTCACTGAAATA AGATATTTTAGTATCTCAGTAATGTCCTAGTGTGGCGGTGGTTTTCAATGTTTCTTCATGGTAAAGGTATAAGCC ATTTTCATCGGGTGCATTCTCTCTGCTTCGTGTGACAAGTTATCTTGGCTGCTGAGAAAGAGTGCCCTGCCCC ACACCGGCAGACCTTTCCTTCACCTCATCAGTATGATTCAGTTTCTCTTATCAATTGGACTCTCCCAGGTTCCAC AGAACAGTAATATTTTTTGAACAATAGGTACAATAGAAGGTCTTCTGTCATTTAACCTGGTAAAGGCAGGGCTGG AGGGGGAAAATAAATCATTAAGCCTTTGAGTAACGGCAGAATATATGGCTGTAGATCCATTTTTAATGGTTCATT TGATACATTGCACTAAACTGATGGAAGAAGTTATCCAAAGTACTGTATAACATCTTGTTTATTATTTAATGTTTT

MDFLLALVLVSSLYLQAAAEFDGRWPRQIVSSIGLCRYGGRIDCCWGWAROSWGQCQPVCQP
RCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPD
GSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLHLAPDGRTCVDVDECATGRASCPRFRQC
VNTFGSYICKCHKGFDLMYIGGKYQCHDIDECSLGQYQCSSFARCYNVRGSYKCKCKEGYQG
DGLTCVYIPKVMIEPSGPIHVPKGNGTILKGDTGNNIWIPDVGSTWWPPKTPYIPPITIRFP
TSKPTTRFTPKPFPIPPPPPPPPPPPPTERTPIPPFTPFRPTTGLTTAPAASTPPGITVDN
RVQTDPQKPRGDVFSVLVHSCNFDHGLCGWIREKDNDLHWEPIRDPAGGQYLTVSAAKAPGG
KAARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHGWRQTQI
TLRGADIKSESOR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242, 421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

CTTCTTTGAAAAGGATTATCACCTGATCAGGTTCTCTCTGCATTTGCCCCTTTAGATTGTGA CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTTGAGAGACCCCA CACAATGCCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTTCCTGACTTGGAATACC AACACAAGTTCACCATGATGCCACCCAATGCATCTCTGCTTATCAACCCACTGCAGTTCCCT GATGAAGGCAATTACATCGTGAAGGTCAACATTCAGGGAAATGGAACTCTATCTGCCAGTCA GAAGATACAAGTCACGGTTGATGATCCTGTCACAAAGCCAGTGGTGCAGATTCATCCTCCCT TCCCCAAAACAATACCCTTCATATTGCTCCAGTAACCAAGGAAGACATTGGGAATTACAGCT GCCTGGTGAGGAACCCTGTCAGTGAAATGGAAAGTGATATCATTATGCCCATCATATATTAT GGACCTTATGGACTTCAAGTGAATTCTGATAAAGGGCTAAAAGTAGGGGAAGTGTTTACTGT TGACCTTGGAGAGGCCATCCTATTTGATTGTTCTGCTGATTCTCATCCCCCCAACACCTACT CCTGGATTAGGAGGACTGACAATACTACATATATCATTAAGCATGGGCCTCGCTTAGAAGTT CGGCAGGCAAGATGAAACTCATTTCACAGTTATCATCACTTCCGTAGGACTGGAGAAGCTTG **CACAGAAAGGAAAATCATTGTCACCTTTAGCAAGTATAACTGGAATATCACTATTTTTGATT ATATCCATGTGTCTTCTCTTCCTATGGAAAAATATCAACCCTACAAAGTTATAAAACAGAA ACTAGAAGGCAGGCCAGAAACAGAATACAGGAAAGCTCAAACATTTTCAGGCCATGAAGATG CTCTGGATGACTTCGGAATATGAATTTGTTGCTTTTCCAGATGTTTCTGGTGTTTCCAGG MATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTGTATCGGGGCAAGATTTGCACAGTACAGT GTATGAAGTTATTCAGCACATCCCTGCCCAGCAGCAAGACCATCCAGAGTGAACTTTCATGG GCTAAACAGTACATTCGAGTGAAATTCTGAAGAAACATTTTAAGGAAAAACAGTGGAAAAGT **ATATTAATCTGGAATCAGTGAAGAAACCAGGACCAACACCTCTTACTCATTATTCCTTTACA TGCAGAATAGAGGCATTTATGCAAATTGAACTGCAGGTTTTTCAGCATATACACAATGTCTT GTGCAACAGAAAAACATGTTGGGGAAATATTCCTCAGTGGAGAGTCGTTCTCATGCTGACGG *GGAGAACGAAAGTGACAGGGGTTTCCTCATAAGTTTTGTATGAAATATCTCTACAAACCTCA *ATTAGTTCTACTCTACACTTTCACTATCATCAACACTGAGACTATCCTGTCTCACCTACAAA FGTGGAAACTTTACATTGTTCGATTTTTCAGCAGACTTTGTTTATTAAATTTTTATTAGTG TAAGAATGCTAAATTTATGTTTCAATTTTATTTCCAAATTTCTATCTTGTTATTTGTACAA AGTAGTATTTTGAGAAGACTTGTGAACACTTAAGGAAATGACTATTAAAGTCTTATTTTTA

MWLKVFTTFLSFATGACSGLKVTVPSHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGTLSASQ
KIQVTVDDPVTKPVVQIHPPSGAVEYVGNMTLTCHVEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNSDKGLKVGEVFTV
DLGBAILFDCSADSHPPNTYSWIRRTDNTTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPSRSVPASDCVSGQDLHSTV
YEVIOHIPAQQODHPE

Signal sequence:

amino acids 1-18

```
Fransmembrane domain:
```

125

N-glycosylation site.

```
mino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208, 276-280, 308-312
```

10

€asein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237, 239-245

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 7-18

GCAAGCGGCGAAATGCCCCTCCGGGAGTCTTGCAGTTCCCCTGGCAGTCCTGGTGCTGTT GCTTTGGGGTGCTCCCTGGACGCACGGGCGGGGGGGAGCAACGTTCGCGTCATCACGGACGAGA ACTGGAGAGA ACTGCTGGA AGGAGA CTGGA TGA TAGA ATTTTA TGCCCCGTGGTGCCCCTGCT TGTCAAAATCTTCAACCGGAATGGGAAAGTTTTGCTGAATGGGGAGAAGATCTTGAGGTTAA TATTGCGAAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTTATCATAACTGCTC TTCCTACTATTATCATTGTAAAGATGGTGAATTTAGGCGCTATCAGGGTCCAAGGACTAAG AAGGACTTCATAAACTTTATAAGTGATAAAGAGTGGAAGAGTATTGAGCCCGTTTCATCATG TCAGGACGTGCCATAACTACTTTATTGAAGACCTTGGATTGCCAGTGTGGGGATCATATACT GTTTTTGCTTTAGCAACTCTGTTTTCCGGACTGTTATTAGGACTCTGTATGATATTTGTGGC AGATTGCCTTTGTCCTTCAAAAAGGCGCAGACCACAGCCATACCCATACCCTTCAAAAAAAT TATTATCAGAATCTGCACAACCTTTGAAAAAAGTGGAGGAGGAACAAGAGGCGGATGAAGAA GATGTTTCAGAAGAAGCTGAAAGTAAAGAAGGAACAAAGACTTTCCACAGAATGC CATAAGACAACGCTCTCTGGGTCCATCATTGGCCACAGATAAATCCTAGTTAAATTTTATAG AACTGTGACTTTTTTGAATATTGCAGGGTTCAGTCTAGATTGTCATTAAATTGAAGAGTCTA CATTCAGAACATAAAAGCACTAGGTATACAAGTTTGAAATATGATTTAAGCACAGTATGATG #GTTTAAATAGTTCTCTAATTTTTGAAAAATCGTGCCAAGCAATAAGATTTATGTATATTTGT INTAATAATAACCTATTTCAAGTCTGAGTTTTGAAAATTTACATTTCCCAAGTATTGCATTAT *TGAGGTATTTAAGAAGATTATTTTAGAGAAAAATATTTCTCATTTGATATAATTTTTCTCTG TTTCACTGTGTGAAAAAAAGAAGATATTTCCCATAAATGGGAAGTTTGCCCATTGTCTCAAG AAATGTGTATTTCAGTGACAATTTCGTGGTCTTTTTAGAGGTATATTCCAAAATTTCCTTGT *TGGTAATACAGGATATGCTACTGATTTAGGAAGTTTTTAAGTTCATGGTATTCTCTTGATTC CAAATTGGATGATAATTTCTTGGAAACATTTTTTATGTTTTAGTAAACAGTATTTTTTTGTT ##GTTTCAAACTGAAGTTTACTGAGAGATCCATCAAATTGAACAATCTGTTGTAATTTAAAATT TTGGCCACTTTTTCAGATTTTACATCATTCTTGCTGAACTTCAACTTGAAATTGTTTTTTT **TTTCTTTTTGGATGTGAAGGTGAACATTCCTGATTTTTGTCTGATGTGAAAAAGCCTTGGTA #TTTTACATTTGAAAATTCAAAGAAGCTTAATATAAAAGTTTGCATTCTACTCAGGAAAAAG **CATCTTCTTGTATATGTCTTAAATGTATTTTTGTCCTCATATACAGAAAGTTCTTAATTGAT #TTTACAGTCTGTAATGCTTGATGTTTTAAAATAACATTTTTATATTTTTTTAAAAGACAA ACTTCATATTATCCTGTGTTCTTTCCTGACTGGTAATATTGTGTGGGGATTTCACAGGTAAAA GTCAGTAGGATGGAACATTTTAGTGTATTTTTACTCCTTAAAGAGCTAGAATACATAGTTTT CACCTTAAAAGAAGGGGGAAAATCATAAATACAATGAATCAACTGACCATTACGTAGTAGAC AATTTCTGTAATGTCCCCTTCTTTCTAGGCTCTGTTGCTGTGAATCCATTAGATTTACAG TATCGTAATATACAAGTTTTCTTTAAAGCCCTCTCCTTTAGAATTTAAAATATTGTACCATT AAAGAGTTTGGATGTGAACTTGTGATGCCTTAGAAAAATATCCTAAGCACAAAATAAACCT

MAPSGSLAVPLAVLVLLLWGAPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI NFISDKEWKSIEPVSSWFGPGSVLMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL ATLFSGLLLGLCMIFVADCLCPSKRRRPQPYPYPSKKLLSESAQPLKKVEEEQEADEEDVSE EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

```
Signal sequence:
amino acids 1-26

Transmembrane domain:
amino acids 182-201

Casein kinase II phosphorylation site.
amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tryrosine kinase phosphorylation site.
amino acids 107-115

N-myristoylation site.
amino acids 20-26, 192-198

Amidation site.
```

amino acids 25-29

GCGAGTGTCCAGCTGCGGAGACCCGTGATAATTCGTTAACTAATTCAACAAACGGGACCCTT CTGTGTGCCAGAAACCGCAAGCAGTTGCTAACCCAGTGGGACAGGCGGATTGGAAGAGCGGG AAGGTCCTGGCCCAGAGCAGTGTGACACTTCCCTCTGTGACCATGAAACTCTGGGTGTCTGC ATTGCTGATGGCCTGGTTTGGTGTCCTGAGCTGTGCAGGCCGAATTCTTCACCTCTATTG GGCACATGACTGACTTATGCAGAGAAAGAGCTGGTGCAGTCTCTGAAAGAGTACATC CTTGTGGAGGAAGCCAAGCTTTCCAAGATTAAGAGCTGGGCCAACAAATGGAAGCCTTGAC TAGCAAGTCAGCTGATGCTGAGGGCTACCTGGCTCACCCTGTGAATGCCTACAAACTGG TGAAGCGGCTAAACACAGACTGGCCTGCGCTGGAGGACCTTGTCCTGCAGGACTCAGCTGCA GGTTTTATCGCCAACCTCTCTGTGCAGCGGCAGTTCTTCCCCACTGATGAGGACGAGATAGG AGCTGCCAAAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTTCCA GAGGGGAACTTCCAGGAACCAAGTACCAGGCAATGCTGAGTGTGGATGACTGCTTTGGGATG AAAGCAGCTTGATGCCGGGGAGGAGGCCACCACAACCAAGTCACAGGTGCTGGACTACCTCA GCTATGCTGTCTTCCAGTTGGGTGATCTGCACCGTGCCCTGGAGCTCACCCGCCGCCTGCTC TCCCTTGACCCAAGCCACGAACGAGCTGGAGGGAATCTGCGGTACTTTGAGCAGTTATTGGA GGAAGAGAGAAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCCAGAAGGCA TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGCGATGTTTACGAGAGCCTCTGTCGTGGG *GAGGGTGTCAAACTGACACCCCGTAGACAGAAGAGGCTTTTCTGTAGGTACCACCATGGCAA #CAGGGCCCCACAGCTGCTCATTGCCCCCTTCAAAGAGGAGGACGAGTGGGACAGCCCGCACA ##FCGTCAGGTACTACGATGTCATGTCTGATGAGGAAATCGAGAGGATCAAGGAGATCGCAAAA LCCGGGTTTCCAAAAGCTCCTGGCTAGAGGAAGATGATGACCCTGTTGTGGCCCGAGTAAATC **GTCGGATGCAGCATATCACAGGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT #TATGGAGTGGGAGGACAGTATGAACCGCACTTCGACTTCTCTAGGCGACCTTTTGACAGCGG LCCTCAAAACAGAGGGGAATAGGTTAGCGACGTTTCTTAACTACATGAGTGATGTAGAAGCTG GTGGTGCCACCGTCTTCCCTGATCTGGGGGCTGCAATTTGGCCTAAGAAGGGTACAGCTGTG #FGTGCTTGTGGGCTGCAAGTGGGTCTCCAATAAGTGGTTCCATGAACGAGGACAGGAGTTCT FTGAGACCTTGTGGATCAACAGAAGTTGACTGACATCCTTTTCTGTCCTTCCCCCTTCCTGGTC CTTCAGCCCATGTCAACGTGACAGACACCTTTGTATGTTCCTTTGTATGTTCCTATCAGGCT GATTTTTGGAGAAATGAATGTTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT #GTGACTGAAGTCCCAGCCCTTCCATTCAGCCTGTGCCATCCCTGGCCCCAAGGCTAGGATCA AAGTGGCTGCAGCAGAGTTAGCTGTCTAGCGCCCTAGCAAGGTGCCTTTGTACCTCAGGTGTT

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLISKIKSWA NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAGFIANLSVQRGFF TDEDEIGAAKALMRLQDTYRLDPGTISRGELPGTKYQAMLSVDDCFGMGRSAYNEGDYYHTV LWMEQVLKQLDAGEEATTTKSQVLDYLSYAVFQLGDLHRALELTRRLLSLDPSHERAGGNLR YFEQLLEEEREKTLITNQTEABLATPEGIYERFUVDYLBERDVYSELCRGEGVKLTPRRQKRLF CRYHHGNRAPQLLIAPFKEEDEWDSPHIVRYYDVMSDEEIERIKEIAKPKLARATVRDPKTG VLTVASYRVSKSSWLEEDDDPVVARVNRRMQHITGLTVKTAELLQVANYGVGGQYEPHFPFS RRPFDSGLKTEGNRLATFLHXYMSDVEAGGATVFPDLGAAIWPKKGTAVFWYNLLRSGEGDYR TRHAACPVLVGCKWVSNKWPHERGQEFLRPCGSTEVD

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

maino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270,

346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

mamino acids 71-80, 489-496

N-myristoylation site.

#amino acids 14-20, 131-137, 171-177, 446-452

Prokarvotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

AGACAGGACAATCTTCTTGGGGATGCTGGTCCTGGAAGCCAGCGGGCCTTGCTCTTTTGGCCTCATTGACCC ATGAAGACTTCAAACCCCGGATTGTCCCCTACTACAGGGACCCCAACAAGCCCTACAAGAAGGTGCTCAGGACTC GGTACATCCAGACAGAGCTGGGCTCCCGTGAGCGGTTGCTGGTGGCTGTCCTGACCTCCCGAGCTACACTGTCCA CTTTGGCCGTGGCTGTGAACCGTACGGTGCCCCATCACTTCCCTCGGTTACTCTACTTCACTGGGCAGCGGGGG GCCACCTTCACACACACTTTGGGGCCGACTACGACTGGTTCTTCATCATGCAGGATGACACATATGTGCAGGCCC CCCGCCTGCCAGCCCTTGCTGCCCACCTCAGCATCAACCAAGACCTGTACTTAGGCCGGGCAGAGGAGTTCATTG GCGCAGGCGAGCCCGGTACTGTCATGGGGGCTTTGGCTACCTGTTGTCACGGAGTCTCCTGCTTCGTCTGC ACTCTCTGGGCGTCGGCTGTGTCTCACAGCACCAGGGGCAGCAGTATCGCTCATTTGAACTGGCCAAAAATAGGG ACCCTGAGAAGGAAGGGAGCTCGGCTTTCCTGAGTGCCTTCGCCGTGCACCCTGTCTCCGAAGGTACCCTCATGT ACCGGCTCCACAAACGCTTCAGCGCTCTGGAGTTGGAGCGGGCTTACAGTGAAATAGAACAACTGCAGGCTCAGA CACCACACTCTCGCTTTGAGGTGCTGGGCTGGGACTACTTCACAGAGCACACCCTTCTCCTGTGCAGATGGGG CTCCCAAGTGCCCACTACAGGGGGGCTAGCAGGGGGGGACGTGGGTGATGCGTTGGAGACTGCCCTGGAGCAGCTCA ATCGGCGCTATCAGCCCCGCCTGCGCTTCCAGAAGCAGCGCTCCAACGGCTATCGGCGCTTCGACCCAGCAC GGGGCATGGAGTACACCCTGGACCTGCTGTTGGAATGTGTGACACAGCGTGGGCACCGGCGGGCCCTGGCTCGCA **DAGCTGGTGCCACTCCTGGTGGCTGAAGCTGCTGCAGCCCCGGCTTTCCTCGAGGCGTTTGCAGCCAATGTCC I_FGGAGCCACGAGAACATGCATTGCTCACCCTGTTGCTGGTCTACGGGCCACGAGAAGGTGGCCGTGGAGCTCCAG *ACCCATTTCTTGGGGTGAAGGCTGCAGCAGCGGGGTTAGAGCGACGGTACCCTGGGACGACGCTGGCCTCG CTGTGCGAGCAGAGGCCCCTTCCCAGGTGCGACTCATGGACGTGGTCTCGAAGAAGCACCCTGTGGACACTCTCT TCTTCCTTACCACCGTGTGGACAAGGCCTGGGCCCGAAGTCCTCAACCGCTGTCGCATGAATGCCATCTCTGGCT GGCAGGCCTTCTTTCCAGTCCATTTCCAGGAGTTCAATCCTGCCCTGTCACCACAGAGATCACCCCCAGGGCCCC $\tt CGGGGGCTGGCCCTGCCCCTCCCTGTGTGCTGACCCCTCCCGGGGGGCTCCTATAGGGGGGAGATTTG$ ACCGCCAGCCTCTGCGGAGGCTGCTTCTACAACGCTGACTACCTGCGGCCCGAGCCCGGCTGGCAGGTGAAC ACCTCTTTCGGGCCGTAGAGCCAGGGCTGGTGCAGAAGTTCTCCCTGCGAGACTGCAGCCCACGGCTCAGTGAAG ACTCTACCACCGCTGCCGCCTCAGCAACCTGGAGGGGCTAGGGGGCCCGTGCCCAGCTGGCTATGGCTCTCTTTG $^{\uparrow}$ AGCAGGAGCAGGCCAATAGCACTTAGCCCGCCTGGGGGCCCTAACCTCATTACCTTTCCTTTGTCTGCCTCAGCC CCAGGAAGGCAAGGCAAGATGGTGGACAGATAGAGAATTGTTGCTGTATTTTTTAAATATGAAAATGTTATTAA I-ACATGTCTTCTGCC

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD
QSDEDFKPRIVPYRDPDKPYKKVLRTRYIQTELGSRERLLVAVLTSRATLSTLAVAVNRTV
AHHPPRLLYFTGQRGARAPAGMQVVSHGDERPAMLMSETJRHLHTHEGADZOMFFIMQDDTY
VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLSRSLLLRLRPHLDGCRG
DILSARPDEWLGRCLIDSLGVGCVSQHQGQQVRSFELAKNRDPEKEGSSAFLSAFAVHPVSE
GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPEGEAGLSWPVGLPAPFTPHSRFEV
LGWDYFTEQHTFSCADGAPKCPLQGASRADVGDALETALEQLNRRYQFRLRFQKQRLLMGYR
RFDPARGMEYTLDLLLECVTQRGHRRALARRVSLLRPLSRVBILPMPYVTEATRVQLVLPLL
VAEAAAAPAFLEAFAANVLEPREHALLTLLLVYGPREGGRGAPDPPLGVKAAAAELERRYPG
TRLÄWLAVRAEAPSQVRLMDVVSKKHPVDTLFFLTTVWTRPGFEVLMRCRMNAISGWQAFFP
VHFQEFNPALSPQRSPGPPPGAGPPPPSPPGADFSRGAFIGGRFDRQASAEGCFYNADYLAA
RARLAGELAGQEEEEALEGLEVMDVFLRFSGLHLFRAVEPGLVQKFSLRCCSPRLSEELYHR
CRLSNLEGLGGRAOLAMALFFGCOANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

lamino acids 121-125, 342-346

CAMP- and cGMP-dependent protein kinase phosphorylation site.

Mamino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,

399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,

558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

CGGAGTGCGCCAACGTGAGAGGAAACCCGTGCGCGCTGCGCTTTCCTGTCCCCAAGCC GTTCTAGACGCGGGAAAAATGCTTTCTGAAAGCAGCTCCTTTTTGAAGGGTGTGATGCTTGG AAGCATTTTCTGTGCTTTGATCACTATGCTAGGACACATTAGGATTGGTCATGGAAATAGAA TGCACCACCATGAGCATCACCTACAAGCTCCTAACAAGAAGATATCTTGAAAATTTCA GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTTCGAGTATACTGTATTATCCTTGTAAAACC CAAAGATGTGAGTCTTTGGGCTGCAGTAAAGGAGACTTGGACCAAACACTGTGACAAAGCAG AGTTCTTCAGTTCTGAAAATGTTAAAGTGTTTGAGTCAATTAATATGGACACAAATGACATG TGGTTAATGATGAGAAAAGCTTACAAATACGCCTTTGATAAGTATAGAGACCAATACAACTG GTTCTTCCTTGCACGCCCCACTACGTTTGCTATCATTGAAAACCTAAAGTATTTTTTGTTAA AAAAGGATCCATCACAGCCTTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTTCT -CAATATCCCAGAAAAGTGTCCTGAACAGGGAGGGATGATTTGGAAGATATCTGAAGATAAAC AGCTAGCAGTTTGCCTGAAATATGCTGGAGTATTTGCAGAAAATGCAGAAGATGCTGATGGA AAAGATGTATTTAATACCAAATCTGTTGGGCTTTCTATTAAAGAGGCAATGACTTATCACCC *ATCAGATGCATGTGATGATGTATGGGGTATACCGCCTTAGGGCATTTTGGGCATATTTTCAAT GATGCATTGGTTTTCTTACCTCCAAATGGTTCTGACAATGACTGAGAAGTGGTAGAAAAGCG TGAATATGATCTTTGTATAGGACGTGTGTTGTCATTATTTGTAGTAGTAACTACATATCCAA TACAGCTGTATGTTTCTTTTTCTTTTCTAATTTGGTGGCACTGGTATAACCACACATTAAAG #CAGTAGTACATTTTTAAATGAGGGTGGTTTTTTTTTTTAAAACACATGAACATTGTAAATG GTGATAAATTCTAAATTATGAACATTAGAAATCTGTGGGGCCACATATTTTTTGCTGATTGGTT AAAAAATTTTAACAGGTCTTTAGCGTTCTAAGATATGCAAATGATATCTCTAGTTGTGAATT TGTGATTAAAGTAAAACTTTTAGCTGTGTGTTCCCTTTACTTCTAATACTGATTTATGTTCT AAGCCTCCCAAGTTCCAATGGATTTGCCTTCTCAAAATGTACAACTAAGCAACTAAAGAAA ATTAAAGTGAAAGTTGAAAAAT

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAEFFSSENVKVFESINMDTNDMWLMMRK AYKYAFDKYRDQYNWFFLARPTTFAIIENLKYFLLKKDPSQPFYLGHTIKSGDLEYVGMEGG IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL PPNGSDND

```
Signal sequence:
```

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

CAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

mamino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389, 299-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550, 558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

CTGAAACACAATGCACAGAGAGAGGATGCTTCTCTCTCCCAAATGTTCTTATGGACTGTTGCT $\tt GGGATCCCCATCCTATTTCTCAGTGCCTGTTTCATCACCAGATGTGTTGTGACATTTCGCAT$ CTTTCAAACCTGTGATGAGAAAAAGTTTCAGCTACCTGAGAATTTCACAGAGCTCTCCTGCT ACAATTATGGATCAGGTTCAGTCAAGAATTGTTGTCCATTGAACTGGGAATATTTTCAATCC AGCTGCTACTTCTTTTCTACTGACACCATTTCCTGGGCGTTAAGTTTAAAGAACTGCTCAGC CATGGGGGCTCACCTGGTGGTTATCAACTCACAGGAGGAGCAGGAATTCCTTTCCTACAAGA AACCTAAAATGAGAGGGTTTTTTTTTTGGACTGTCAGACCAGGTTGTCGAGGGTCAGTGGCAA TGGGTGGACGCACACCTTTGACAAAGTCTCTGAGCTTCTGGGATGTAGGGGAGCCCAACAA CATAGCTACCCTGGAGGACTGTGCCACCATGAGAGACTCTTCAAACCCAAGGCAAAATTGGA ATGATGTAACCTGTTTCCTCAATTATTTTCGGATTTGTGAAATGGTAGGAATAAATCCTTTG ***AACAAAGGAAAATCTCTT**TAA**GAACAGAAGGCACAACTCAAATGTGTAAAGAAGGAAGAGCA AGAACATGGCCACACCCACCCACACGAGAAATTTGTGCGCTGAACTTCAAAGGACTTC AAAAA

13

MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN FTELSCYNYGSGSVKNCCPLNWEYFQSSCYFFSTDTISWALSLKNCSAMGAHLVVINSQEEQ EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPNNIATLEDCATMRDSS NPRONWNDVTCFLNYFRICEWVGINPLNKGKSL

```
Signal sequence:
amino acids 1-42

N-glycosylation site.
amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.
amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.
Famino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.
amino acids 27-38
```

 $\tt GGGACTACAAGCCGCGCGCGCGCTGCCGCTCAGCCAACCCTCGAC{\color{red} ATG}{\color{blue} GCGCTGAGGCGGCCACCGCGAC{\color{blue} ACCCTCGAC{\color{blue} ATG}{\color{blue} ATG}{\color{blue} GCGCTGAGGCGGCCACCGCGAC{\color{blue} ACCCTCGAC{\color{blue} ATG}{\color{blue} ACCTCGAC{\color{blue} ATG}{\color{blue} ACCTCGAC{\color{blue} ATG}{\color{blue} ACCTCGAC{\color{blue} ATG}{\color{blue} ACCTCGAC{\color{blue} ATG}{\color{blue} ACCTCGAC{\color{blue} AC$ TCCGGCTCTGCGCTGCCTGACTTCTTCCTGCTGCTTTTTCAGGGGCTGCCTGATAGGGGCTGTAAATC TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTTGAAAGTGTGGAACTGTCTTGCATCATTACGGATTCGC ${\tt ACTCAGCCCTTTATCGCTGTGAGGTCGTTGCTCGAAATGACCGCAAGGAAATTGATGAGATTGTGATCGAGTTAA}$ ACTGCCAGGAGAGTGAGGGCCACCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCACTGCCCACGGATT TCACGTTGGGCATCTGCTGTGCATACAGACGTGGCTACTTCATCAACAATAAACAGGATGGAGAAAGTTACAAGA GTGATCTTAAAGAGTTTGCTCACGTAAACGCCCGTGCTGGGCCCTGTGAAGCCAGCATGTTCACCACTGGTCGTT ${f T}{f G}{f A}{f T}{f G}{f A}{f A}{f$ GTAAATTGGTTGCTGGAAGAGGGATCTTGCCTGAGGAACCCTGCTTGTCCAACAGGGTGTCAGGATTTAAGGAAA ACCTTCGTCTTAGGCTAAGTCTGAAATGGTACTGAAATATGCTTTTCTATGGGTCTTGTTTATTTTATAAAATTT TACATCTAAATTTTTGCTAAGGATGTATTTTGATTATTGAAAAGAAAATTTCTATTTAAACTGTAAATATATTGT **CATACAATGTTAAATAACCTATTTTTTAAAAAAGTTCAACTTAAGGTAGAAGTTCCAAGCTACTAGTGTTAAAT FGGAAAATATCAATAATTAAGAGTATTTTACCCAAGGAATCCTCTCATGGAAGTTTACTGTGATGTTCCTTTTCT CACACAAGTTTTAGCCTTTTTCACAAGGGAACTCATACTGTTCTACACATCAGACCATAGTTGCTTAGGAAACCTT TAAAAATTCCAGTTAAGCAATGTTGAAATCAGTTTGCATCTCTTCAAAAGAAACCTCTCAGGTTAGCTTTGAACT CCAGTCAGCTCCTGGGGTTGCGCCAGGCGCCCCCGCTCTAGCTCACTGTTGCCTCGCTGTCTGCCAGGAGGCCCT TCTCAGGTGGGCACTGCAGGACACTGGTGTCTTCCATGTAGCGTCCCAGCTTTGGGCTCCTGTAACAGACCTCT HGGAGTGGCGCCAGTCCAGCCTTTTAAAGAACGTCAGGTGGAGCAGCCAGGTGAAAGGCCTGGCGGGGAGGAAAG TGAAACGCCTGAATCAAAAGCAGTTTTCTAATTTTGACTTTAAATTTTTCATCCGCCGGAGACACTGCTCCCATT \Box FGTGGGGGGACATTAGCAACATCACTCAGAAGCCTGTGTTCTTCAAGAGCAGGTGTTCTCAGCCTCACATGCCCT GCCGTGCTGGACTCAGGACTGAAGTGCTGTAAAGCAAGGAGCTGCTGAGAAGGAGCACTCCACTGTGTGCCTGGA TCTTGGTTGTCATAGTGATAGGGTAGCCTTATTGCCCCCTCTTCTTATACCCTAAAACCTTCTACACTAGTGCCA TGGGAACCAGGTCTGAAAAAGTAGAGAGAGTGAAAGTAGAGTCTGGGAAGTAGCTGCCTATAACTGAGACTAGA $\tt CGGAAAAGGAATACTCGTGTATTTTAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCT$ CTCATTTATAAAAGCTTCAAAAAAACCCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624

><subunit 1 of 1, 310 aa, 1 stop

><MW: 35020, pI: 7.90, NX(S/T): 3

MALRRPPRLRLCARLPDFFLLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSD PRIEWKKIQDEQTTYVFFDNKIQGDLAGRABILGKTSLKIWNVTRRDSALYRCEVVARNDRK EIDEIVIELTVQVKPVTPVCRVPKAVPVGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA NPRFRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEBQEMEVYDLNIGGIIGG VLVVLAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRHKSSFVI

Important features of the protein:

Signal peptide:

amino acids 1-30

10

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267