UNIVERSIDADE PRESBITERIANA MACKENZIE

Integrantes:

Bruno Zovaro Nascimento - 10424880 Douglas Novaes Dias - 14023666 Milan Mirco Moraes Mazur - 10363757 Paulo Cesar Masson Junior - 10416023

PROJETO APLICADO II

SUBCONJUNTO DE PREVISÃO DE IDADE

São Paulo 2024

SUMÁRIO – Aplicando Conhecimento – Aula 3

- 1 Bibliotecas usadas para o método analítico
- 2 Exibindo os datasets
- 3 Gráficos obtidos
- 4 Resultados e Acurácia
- 5 Esboço Storytelling
- 6 Base de Dados/ Repositório do Github
- 7 Cronograma de Atividades

1. Bibliotecas usadas para o método analítico

Primeiro importamos as bibliotecas utilizadas para este Notebook.

```
from ucimlrepo import fetch_ucirepo
from IPython.display import display
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.multioutput import MultiOutputClassifier
from sklearn.linear_model import LinearRegression
from sklearn.multioutput import MultiOutputRegressor
from sklearn.multioutput import MultiOutputRegressor
from sklearn.metrics import accuracy_score
from matplotlib import pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import seaborn as sns
```

2. Exibindo os datasets

Datasets e os dados neles presentes.

```
Exbindo os datasets puro

# fetch dataset
national, health_sund_nutrition_health_survey_2013_2014_nhanes_age_prediction_subset - fetch_ucirepo(id=857)

# data (as pandas dataframes)

# cantional_health_and_nutrition_health_survey_2013_2014_nhanes_age_prediction_subset data_features

# v = national_health_and_nutrition_health_survey_2013_2014_nhanes_age_prediction_subset.data_tage

# unriable_alth_and_nutrition_health_survey_2013_2014_nhanes_age_prediction_subset.etadata)

# unriable_alth_mealth_and_nutrition_health_survey_2013_2014_nhanes_age_prediction_subset.wariables)

# unriable_alth_mealth_and_nutrition_health_survey_2013_2014_nhanes_age_prediction_subset.variables)

# unriable_alth_mealth_and_nutrition_he
```

3. Gráficos obtidos

Gráfico de dispersão:

Gráfico Pair Plot:


```
# Usar one-hot encoding para colunas categóricas
df encoded = pd.get dummies(df health, drop first=False)
   # Calcular a matriz de correlação correlation_matrix = df_encoded.corr()
   print(correlation_matrix)
                                                   sexo exerciciosSemanais \
                                      idade
                        1.000000 -0.008806 -0.012962
                       -0.008806 1.000000 0.006398
sexo
                       -0.012962 0.006398 1.000000
                                                                     0.151076
exerciciosSemanais
                       -0.019701 0.025973 0.151076
                                                                     1.000000
                                                                     -0.042935
nivelGlicose
                       -0.004147 0.229624 -0.132342
                                                                     -0.007849
                       0.014102 0.049970 -0.032769
                                                                     -0.002599
diabetico
                       0.006036 0.318044 0.017406
nivelInsulinaSangue -0.040028 -0.091879 -0.016660
                                                                     0.010011
faixaEtaria_Adult -0.018257 -0.684490 0.002767
faixaEtaria_Senior 0.018257 0.684490 -0.002767
                                                                     -0.094789
                                                                     0.094789
                       imc nivelGlicose diabetico
-0.061343 -0.004147 0.014102
                                                                 LBXGLT \
                                                   0.014102 0.006036
sexo
                        0.063873
                                       -0.132342
                                                   -0.032769
                                                               0.017406
exerciciosSemanais
                      -0.042935
                                                               0.060413
                                       -0.007849
                                                   -0.002599
                        0.208330
                                        1.000000
                                                   -0.004427
                                       -0.004427
diabetico
                       0.047133
                                                    1.000000 0.009796
                                                    0.009796
                                                               1.000000
nivelInsulinaSangue
faixaEtaria_Adult
                       0.004147
                                       -0.116462
                                                   -0.026399 -0.243113
                                       0.116462
                      -0.004147
faixaEtaria Senior
                                                   0.026399 0.243113
LBXGLT
                                   0.243113
nivelInsulinaSangue
                                   -0.064159
faixaEtaria_Adult
faixaEtaria_Senior
```

Mapa de calor da correlação:

Outliers:

```
# Outliers
   print(df_health.columns)
   print('Coluna com mais correlação com Senior x Adult = LBXGLT:')
   quantis_coluna=df_health['LBXGLT'].quantile([0.25, 0.5, 0.75])
   print(quantis_coluna)
   resumo_coluna=df_health['LBXGLT'].describe()
   print(resumo coluna)
dtype='object')
Coluna com mais correlação com Senior x Adult = LBXGLT:
0.25
       87.0
0.50
      105.0
0.75
      130.0
Name: LBXGLT, dtype: float64
count
       2278.000000
        114.978929
mean
         47.061239
std
min
         40.000000
25%
         87.000000
50%
        105.000000
75%
        130.000000
        604.000000
max
Name: LBXGLT, dtype: float64
```

Regressão Logística:

```
scaler = MinMaxScaler()
      scaler.fit(X)
      X=scaler.transform(X)
      X_train, X_test, y_train, y_test=train_test_split(X, y, stratify=y, test_size=0.3, random_state=123)
301
       # Logistic regression com grid search:
      base_estimator = LogisticRegression(max_iter=1000, solver='liblinear', class_weight='balanced')
      param_grid = {
           'C': [0.01, 0.1, 1, 10, 100], # Regularização
                                         # Tipos de penalidade
      clf = GridSearchCV(base_estimator, param_grid, cv=5, scoring='accuracy')
      clf.fit(X_train, y_train)
                                         (1) (?)
                  GridSearchCV
     best_estimator_: LogisticRegression
             ▶ LogisticRegression ②
```

4. Resultados e Acurácia

```
print("Melhores parâmetros:", clf.best_params_)
   print("Acurácia no conjunto de teste:", clf.score(X_test, y_test))
   print(clf.best_estimator_)
   print('\nDetailed classification report:\n')
   y_pred=clf.predict(X_test)
   print(classification_report(y_test, y_pred, zero_division=0))
Melhores parâmetros: {'C': 0.01, 'penalty': 'l1'}
Acurácia no conjunto de teste: 0.8406432748538012
LogisticRegression(C=0.01, class_weight='balanced', max_iter=1000, penalty='l1',
                   solver='liblinear')
Detailed classification report:
              precision
                           recall f1-score
                                              support
       Adult
                   0.84
                             1.00
                                       0.91
                                                  575
      Senior
                   0.00
                             0.00
                                       0.00
                                                  109
    accuracy
                                       0.84
                                                  684
   macro avg
                   0.42
                             0.50
                                       0.46
                                                  684
weighted avg
                   0.71
                             0.84
                                       0.77
                                                  684
```

Matriz de confusão (acuracidade):

Conjunto de teste F1-score:

```
# Exibindo os melhores parâmetros e o Fi-score no conjunto de teste
print("Relhores parâmetros com base no Fi-score:", clf_fi.best_params_)
print("Fi-score no conjunto de teste:", clf_fi.score(X_test, y_test))
print(clf_fi.best_estimator_)

# Previsões
y_pred_fi = clf_fi.predict(X_test)

# Cálculo da acurácia
acuracia = accuracy_score(y_test, y_pred_fi)
print("Acurácia no conjunto de teste:", acuracia)

# Relatório de classificação detalhado
print('Nobetailed classification report(x)-in)
print(classification_report(y_test, y_pred_fi, zero_division=0))
# Relatório de classificação detalhado
report = classificação de classificação em formato de tabela
print('Nobetailed classificação em formato de tabela
prin
```

```
Melhores parâmetros com base no F1-score: {'C': 0.01, 'penalty': 'l1'}
F1-score no conjunto de teste: 0.7678631978410415
LogisticRegression(C=0.01, class_weight='balanced', max_iter=1000, penalty='l1', solver='liblinear')

Acurácia no conjunto de teste: 0.8406432748538012
Detailed classification report:
               precision recall f1-score support
                                         0.91
       Adult
                    0.84
                             1.00
      Senior
                    0.00
                              0.00
                                         0.00
                                                     109
    accuracy
                                         0.84
                                                    684
                              0.50
   macro avg
                   0.42
                                         0.46
                                                     684
weighted avg
                   0.71
                              0.84
                                         0.77
                                                     684
Detailed classification report:
Classe
           Precisão Recall
                                  F1-score Suporte
Adult
           0.84
                       1.00
                                  0.91
                                               575.0
Senior
           0.00
                       0.00
                                   0.00
                                               109.0
Média
           0.42
                       0.50
                                   0.46
```


Random forest:

```
# random forest:

rf - Random forest:

random forest:

rf - Random forest:

random forest:

rf - Random forest:

r
```

```
Melhores parâmetros com base no F1-score: {'max_depth': 30, 'min_samples_split': 5, 'n_estimators': 200}
F1-score no conjunto de teste: 0.8079068365675973
             precision recall f1-score support
      Adult
                  0.86
                                     0.91
     Senior
                  0.47
                           0.20
                                     0.84
                                               684
   accuracy
  macro avg
                  0.67
                                               684
weighted avg
                  0.80
                           0.84
                                               684
                                     0.81
Acurácia no conjunto de teste: 0.8362573099415205
Detailed classification report:
Classe
          Precisão Recall
                               F1-score
                                        Suporte
          0.86
Adult
                               0.91
Senior
          9.47
                                          109.0
                    0.20
                               0.28
Média
          0.67
                    0.58
                               0.59
Acurácia 0.84
```


			_		
	precision	recall	f1-score	support	
Adult	0.87	0.93	0.90	575	
Senior	0.43	0.28	0.34	109	
accupacy			0.83	684	
accuracy					
macro avg	0.65	0.61	0.62	684	
weighted avg	0.80	0.83	0.81	684	

5. Esboço do storytelling

Este projeto analisa um dataset de saúde, buscando prever a idade dos participantes com base em variáveis como hábitos alimentares e condições de saúde. Conseguimos analisar e correlacionar diversas variáveis de acordo com cada participante, tendo uma visão precisa da correlação com a idade. Além das tabelas, os gráficos nos permitirão ter uma visão mais concisa do que obtivemos com a análise.

Os resultados revelam não apenas a precisão das previsões, mas também insights sobre como variáveis específicas se relacionam com a idade.

6. Base de Dados/ Repositório do Github

Links das bases de dados:

https://archive.ics.uci.edu/dataset/887/national+health+and+nutrition+health+survey+ 2013-2014+(nhanes)+age+prediction+subset

Link para acesso ao GitHub:

https://github.com/pcmassonjr/ProjetoAplicado2

7. Cronograma de Atividades

