Machine Learning For Human Learning

Using machine learning algorithms to determine the best measure of student success in Virginia

Driving purpose

Machine learning

How can we leverage machine learning to predict success in Virginia high schools?

Best factors

Which factors are the most correlated with academic success?

Success metric

Which metric is the best for predicting academic success: graduation rate or standardized test scores?

Demographics

The data

Economic

Factors

Q

Testing

Kaggle – Virginia Department of Education

Teachers

- School year 2021-2022
- 19 files

Student

Behaviors

• 119 columns

Virginia public schools

- 285 high schools
- 35 features

Pivoting data

Sch Div

Arcadia High Accomack County Public Schools

Black, not of Hispanic origin Hispanic 36.97234352 31.58661

White, not of Hispanic origin

Non-Hispanic, two or more races

29.54876274 1.16448 0.727802038

Models

Used as a baseline model to determine correlation between features to predict labels

Random Forest

More complex model to help make predictions in the event of non-linear and more complex relationships

Support Vector Regression

Used to identify complex and non-linear relationships, using the kernel trick and handling outliers

Graduation Rates

Linear regression

Root mean squared error

Train: 3.88 Test: 3.11

Random forest

Root mean squared error

Train: 4.31 Test: 3.05

Optimization

Grid search CV

Best parameters

max_depth: 10 min_samples_leaf: 1 min_samples_split: 2 n_estimators: 300

Support vector regression

Root mean squared error

Train: 3.92 Test: 3.07

Optimization

Grid search CV

Best parameters

C: 100 epsilon: 0.01 gamma: 0.01 kernel: rbf

Standardized Test Scores

Linear regression

Root mean squared error

Train: 6.78

Test: 6.96

Random forest

Root mean squared error

Train: 7.68 Test: 6.67

Optimization

Grid search CV

Best parameters

max_depth: None, min_samples_leaf: 4 min_samples_split: 2 n_estimators: 100

Support vector regression

Root mean squared error

Train: 7.39 Test: 6.64

Optimization

Grid search CV

Best parameters

C: 100 epsilon: 0.01 gamma: 0.01 kernel: rbf

Ensemble Learning

Results

Results

Teachers_Bachelors_Degree_Percentage

Race_Black_Not_Of_Hispanic_Origin_Percentage

Homeless_No_Total_Count

Foster_Care_No_Total_Count

Disabled_No_Total_Count

Findings

٧

- Our models performed better on graduation rate
- The most important features should guide how we improve our school systems
 - Support teachers pursuing higher education
 - Provide more resources to underprivileged groups
- Help provide students with targeted resources to be successful

Encourage more studies like oursConsider more

next?

 Consider more experimental studies rather than correlation

Translate results to real change in school systems

References

Data

https://www.kaggle.com/datasets/zsetash/virginia-public-schools?resource=download

Images

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.istockphoto.com%2Fphotos%2Fhigh-school-gradua tion&psig=AOvVaw1FeCwof0Bu6mXezgrg6xKG&ust=1731956589183000&source=images&cd=vfe&opi=89978449& ved=0CBEQjRxqFwoTCLD18JuH5IkDFQAAAAAAAAAAAAAAAE

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.istockphoto.com%2Fphotos%2Fstandardized-testin g&psig=AOvVaw0YEyAN_KAcUOlHVJ_TqdrT&ust=1731956860918000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCJD2-p-I5IkDFQAAAAAAAAAAAAAA

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.virginia.gov%2Fagencies%2Fdepartment-of-education%2F&psig=AOvVaw2Z-z704YBedYWNOxwKMVCh&ust=1732043495964000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCPC6-fzK5okDFQAAAAAAAAAAAAAAAAA

This work has been a part of the "Machine Learning for Virginia" project at the University of Virginia.