Einführung in chemisches Rechnen

Größe	Symbol	Einheit
Temperatur	T	°C oder K
Länge	l	m
Zeit	t	S
Masse	m (X)	g
Volumen	V(X)	L, m ³
Dichte	D(X)	g/cm ³ , kg/L
Teilchenanzahl	$N\left(X\right)$	1 (keine Einheit)
Stoffmenge	n(X)	mol
Avogadro-Konst.	N_A	6,02 * 10 ²³ 1/mol
relative Atommasse	$m_r(X)$	$1 \text{ u} = 1,661 \ 10^{-24} \text{ g}$
molares Normvolumen	V_{mn}	22,4 l/mol
molare Masse	M(X)	g / mol
Druck	p	Pa (= 10^{-5} bar)
Energie	E	J (= 0,239 cal)
Stromstärke	Ι	A
Spannung	U	V
Widerstand	R	$\Omega (= A/V)$

	Präfix	Faktor
E	exa	10 18
P	peta	10^{15}
T	tera	10^{12}
G	giga	10 ⁹
M	mega	10^{6}
k	kilo	$10^{\ 3}$
h	hekto	10^{2}
d	dezi	10^{-1}
c	centi	10^{-2}
m	milli	10^{-3}
μ	mikro	10 ⁻⁶
n	nano	10 -9
p	piko	10 -12
f	femto	10 -15
a	atto	10 -18

Was ist die Stoffmenge:

Die Stoffmenge ist das "chemische Dutzend", d.h. es ist eine Sammeleinheit, in der die einzelnen Teichen gezählt werden. Jeweils $6.02*10^{23}$ werden zu einem "Mol" zusammengerechnet. 2 mol sind also 2 mol * $6.02*10^{23}$ 1/mol Teilchen, also $12.04*10^{23}$ Teilchen.

Was ist die molare Masse

Die molare Masse ist die Masse eines ganzen Mols $(6,02*10^{23})$ an Teilchen dieser Stoffart. Da ein Teilchen eine zu geringe Masse besitzt, gibt man gleich die Masse eines ganzen Mols an. Die Einheit ist dann "Gramm pro Mol" [g/mol]. Der Wert findet sich im Persiodensystem der Elemente (PSE) oben links am Elementsymbol.

wichtige Gleichung	"Was heißt das?"		
$\mathbf{m}(\mathbf{X}) = \mathbf{n}(\mathbf{X}) * \mathbf{M}(\mathbf{X})$	Die gesamte Masse (m) setzt sich zusammen aus den einzelnen		
	speziellen Masse (M) aller Teilchen (n).		
n(X) = m(X) / M(X)	Die Anzahl der Teilchen (n) berechnet man aus der Masse aller		
	Teilchen (m) geteilt durch die Masse eines einzelnen Teilchens (M).		
c(X) = n(X) / V(Lsg)	Die Konzentration (c) ist eine bestimmte Menge an Teilchen (n) in		
	einem bestimmten Volumen (V).		
$\mathbf{D}(\mathbf{X}) = \mathbf{m}(\mathbf{X}) / \mathbf{V}(\mathbf{X})$	Die Dichte eines Stoffes (D) beschreibt, wie "schwer" (m) der Stoff		
	pro einer bestimmten Abfüllmenge (V) ist.		
$N(X) = n(X) * N_A$	Die genaue Anzahl der Teilchen (N) lässt sich berechen, indem man		
	die Stoffmenge (n, das "chemische Dutzend") mit der		
	Umrechnungszahl (Avogadrokonstante) multipliziert.		
$\mathbf{V}\left(\mathbf{X}\right) = \mathbf{n}\left(\mathbf{X}\right) * \mathbf{V}_{\mathbf{mn}}$	Jeweils ein Mol an Teilchen nimmt bei Normbedingungen		
	(0 °C, 1023 mbar) immer ein bestimmtes Volumen von 22,4 Litern		
Normbedingungen: Druck: p = 1013 hPa = 1013 mbar	(22,4 L/mol = Vmn) ein, sodass man daraus anteilig das Volumen		
Temperatur: $T = 0 ^{\circ}C = 273,15 \text{K}$	berechnen kann, das eine bestimmte Stoffmenge (n) an Gasteilchen		
	einnimmt.		

Übungsaufgaben zum chemischen Rechnen

- 1) Wie groß ist molare Masse von Bor (Symbol "B", Ordnungszahl 5)?
- 2) Wie viele Natrium-Atome enthält ein Stück Natrium (Symbol "Na") mit der Masse 0,5234g ?

Welcher Stoffmenge entspricht diese Teilchenanzahl?

Zusatzfrage:

Alle Meere der Erde enthalten zusammen ca. 1370 000 000 000 000 000 000 (1,37 * 10²¹)Liter Wasser. Wenn wir unser Stück Natrium nun im Wasser aller Weltmeere zusammen auflösen könnten, wie viele Teilchen des Natrium würden wir in jedem Liter Wasser ungefähr wiederfinden?

- 3) Wie groß ist die molare Masse von Wasser (H2O)?
- 4) Wie groß ist die <u>molare Masse</u> des giftigen Fungizids Tributylzinn (TBT) mit der Summenformel Sn $(C_4 H_9)_3$?

Zusatzfrage:

TBT ist fruchtschädigend und macht Männer zeugungsunfähig. Es ist außerdem hoch giftig. Der Grenzwert für TBT in Trinkwasser beträgt daher nur 0,1 ng/L . Wie viele Moleküle TBT verschlucken Sie mit jedem Glas Wasser (0,2 L), das den Grenzwert einhält?

5) Schreiben Sie in die Kästen die entsprechenden allgemeinen Formeln um von den gegebenen Größen zu den gesuchten zu gelangen!

gegeben	Formel zur Umrechnung	gesucht
V (Lsg.), n (X)		c (X)
D (X), V (X)		m (X)
m (X), M (X)		n (X)
n (X)		N(X)

- 6) Sie geben für Ihr Nudelwasser 6g Kochsalz, NaCl, in einen Topf mit 2 Litern Wasser.
 - a) Wie hoch ist Ihre Konzentration an NaCl?
 - b) Wie hoch ist Ihre Konzentration an Ionen im Wasser?
- 7) Gegeben ist eine Natronlauge-Lösung (NaOH). Berechnen Sie die jeweils fehlende Größe in den Einzelaufgaben!

	c (NaOH)	n (NaOH)	V (NaOH)
a)	1 mol/l		0,021
b)	0,1 mol/l		0,31
c)	0,1 mol/l	0,003 mol	

	c (NaOH)	n (NaOH)	V (NaOH)
d)		0,05 mol	200 ml
e)		40 mmol	100 ml
f)	0,025 mol/l	2 mmol	

- 8) Gesucht ist immer die Stoffmenge des Stoffes.
 - a) D (CH₃CH₂OH) = 0.792 g/ml, V (CH₃CH₂OH) = 25 ml
 - b) m $(CH_2OH-CH_2OH) = 0.31 g$
 - c) D $(H_2SO_4-L\ddot{o}sung) = 1,2 \text{ g/cm}^3$, m $(H_2SO_4-L\ddot{o}sung) = 24 \text{ g}$, c $(H_2SO_4) = 5 \text{ mol/l}$
- 9) Sie wollen 1 Liter einer Natriumchlorid-Lösung herstellen mit der Konzentration 0,1 mol/l. Welche Masse an Natriumchlorid wiegen Sie ein?
- 10) Sie wollen einen halben Liter einer Calciumchlorid-Lösung herstellen mit der Konzentration 0,2 mol/l. Welche Masse an Calciumchlorid wiegen Sie ein?
- 11) 40 g Lithiumhydroxid sind in einem Liter Wasser gelöst. Von dieser Lösung benötigen Sie 1,8 ml, um 20 ml Schwefelsäure zu neutralisieren. Welche Konzentration besaß die Schwefelsäure?