Central DMA Specification

1. 功能介绍

该模块完成数据在不同地址空间的直接 copy。配置寄存器采用 APB 接口,数据传输采用 AXI 接口。具体功能如下:

- > source/destination 起始地址只需要 byte 对齐 (无需 32bit 对齐); 且 source/destination 起始地址在一个 32bit 内的 byte 位置可以任意(比如 source 从 0xc001001 开始, destination 从 0xf080003 开始)。
- ▶ 支持 2D (二维矩形框[y, x]) 数据的 copy, 要求 source/destination 的二维矩形框的低维 (x-dir) byte 长度必须一致;
- ➤ 二维矩形框[y, x]的低维,即 x-dir, byte 长度取值范围: [4, 65536];
- ▶ 二维矩形框[y, x]的高维,即 y-dir,取值范围: [1,65536];
- ➤ 二维矩形框[y, x]的低维,即 x-dir,每完成一行数据,距离一行有效数据可以有 [0~65535] byte 的间隔; source/destination 的间隔距离可以任意;
- ▶ 支持 command linked list, SW 一次配置可以完成多块数据的 copy (一次最多 255 块);

该模块通过 APB slave 接口来配置内部寄存器;通过 AXI master 接口来完成数据的 read/write 操作。

为了提高 AXI bus 的利用率,使用了如下 AXI 总线的特性:

- Read/Write channel 并发操作;
- > Read command outstanding;
- User ARID, can support read data out-of-order;

本设计综合考虑了 AXI 总线 data 传输时的总线等待 (wait cycle),即 AXI 总线数据传输效率与 Central DMA 内部 buffer 深度的平衡,折衷选择了适合的内部 buffer 深度。

设计框图如下图所示:

内部模块结构如下:

2. IO 功能定义

Name	Direction	Bits	Description
clk	I	T	时钟输入。
rstn	I		异步复位输入,低有效。
intr	0	1	中断输出,high level active。
axi_ms_inf	1/0	NA	标准的 AXI master 接口(32bits, maximal burst length is 16)。
apb_inf	1/0	NA	标准的 APB salve 接口。

AXI 接口时序: 见 AMBA 标准协议: 《AMBA™ AXI Protocal》, v1.0; APB 接口时序: 见 AMBA 标准协议: 《AMBA™ 3 APB Protocal》, v1.0;

注: AMBA 协议是 ARM 公司定义的总线协议。

3. 寄存器定义

3. 奇仔器定义					
ad			acc		
1.	bit	name		description	
dr			ess		
00	31:0	sar	r/w	DMA source begin byte address。如果 DMA command list 有效,反应的是当前 DMA command	
04	31:0	dar	r/w	的 SAR。 DMA destination begin byte address。如果 DMA command list 有效,反应的是当前 DMA command 的 DAR。	
08	15:0	trans_xsize	r/w	一个 DMA burst,每次在 x-dir 连续访问的 byte 数目。如果 DMA command list 有效,反应的是当 前 DMA command 的信息。	
	31:16	NA	r	Reserved.	
0C	15:0	trans_ysize	r/w	一个 DMA burst, 在 y-dir 访问的数目。如果 DMA command list 有效,反应的是当前 DMA command 的信息。	
	31:16	NA	r	Reserved。	
10	15:0	sa_ystep	r/w	一个 DMA burst,在每次 x-dir 访问结束后,sar 地址跳跃的 byte 数目。如果 DMA command list 有效,反应的是当前 DMA command 的信息。	
	31:16	da_ystep		一个 DMA burst,在每次 x-dir 访问结束后,dar 地址跳跃的 byte 数目。如果 DMA command list 有效,反应的是当前 DMA command 的信息。	
14	31:0	llr	r/w	下一个 DMA burst cmd 存放的地址,必须是 32bit 对齐的地址。如果地址是 0x00000000,则 DMA 结束。如果 DMA command list 有效, 0x00 ~ 0x14 寄存器反应的是当前 DMA command 的信息。	
	0	intr	r/w	DMA 结束后, HW 置 1; SW 写 0 清除。	
18	1	busy	7	1: DMA 正在工作,不能配置 DMA 的寄存器 (dma_halt 除外);也不能修改 DMA command link list 的内容。	
	7: 2	NA	r	Reserved。	
	15:8	cmd_num	'r	当前 DMA controller 正在处理的 DMA cmd 位置。	
	31:16	NA	r	Reserved。	
	0	intr_en	r/w	1: DMA cmd list 执行完毕后,允许中断产生。	
1C	3: 1	NA	r	Reserved.	
	4	dma_halt	r/w	1: 暂定 AXI bus 接口的数据传输。	

	7:5	NA	r	Reserved。
	8	bf	r/w	AXI transfer 中的 bufferable flag。
	9	cf	r/w	AXI transfer 中的 cacheable flag。
	31:10	NA	r	Reserved。
20	0	dma_sof	r/w	写 1, 启动一个 DMA 传输。HW 自动清 0。
	31:1	NA	r	Reserved.
24	31:0	NA	r	Reserved.
28	31:0	NA	r	Reserved.
2C	15:0	version_id	r	0x5310。
	31:16	NA	r	Reserved.

4. DMA 功能说明

4.1. 2D 数据 copy 说明

一个 2D DMA 的数据 copy 示意图如下:

其中:

- a) 如果 sa_ystep == 0, da_ytsep != 0,则可以把一个连续的数据块拆分成一个 x-dir 不连续的 2D 矩形数据块;
- b) 如果 sa_ystep != 0, da_ytsep == 0,则可以把一个 x-dir 不连续的 2D 矩形数据块,拼接成一个连续的数据块;

4.2. Command Linked List 说明

- a) 第一个 2D DMA command 放在 Central DMA 的内部寄存器中;
- b) 第一个 2D DMA command 的 llr_0 指向下一个 2D DMA command 在内存的起始地址;
- c) 第二个 2D DMA command 的 llr_1 指向下一个 2D DMA command 在内存的起始地址;
- d) ...
- e) 最后一个 2D DMA command 的 llr_n 必须为 0x00,表示这组 2D DMA comamnd 结束;

注: 一个最多配置 255 个 2D DMA comamnd。

