COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 8A: Webservices and fork-join

queues Add WeChat powcoder

COMP9334

This lecture

- Web services
 - What is it?
 - Performance analysis
- Fork-join queue
 - Markov chainsignment Project Exam Help
 - MVA

https://powcoder.com

Add WeChat powcoder

Web access versus Web services

(a) Web

(b) Composite web service for travel

Web service performance issues

- Metrics
 - Response time
 - Throughput
 - Availability
- Performance Agnalysis methodect Exam Help
 - Operational analysis
 - Markov chain https://powcoder.com

Add WeChat powcoder

Web service flow graph

V_a,V_h,V_c: Relative Visit Ratio

Figure 2. Web service flow graph. Arrows link the travel site to other Web services. The labels on the links indicate the average number of times a Web service is invoked per request to the travel site.

Every request to the travel site generates on average V_a requests to the Airline web service etc.

T1,2021

COMP9334

 X_{TA} = Throughput of travel site

 X_a = Throughput of airline Web service

$$X_a \geq V_a \times X_{TA}$$

Similarly,

$$X_a \geq V_a \times X_{TA} \qquad \text{web service} \\ X_h \geq V_h \times X_{TA} \qquad \text{xc = Throughput of car} \\ X_c \geq V_c \stackrel{\text{Assignment Project Exam Help}}{X_{TA}}$$

Can you find an upper bound on the throughput of the travel site

$$X_{TA} \leq 1$$

T1,2021

Example:

```
Xa = 20 requests/s

Xh = 15 requests/s

Xc = 10 requests/s

Va = 4, Vh = 2 VG = 1

Assignment Project Exam Help
```

$$X_{TA} \leq \min \begin{cases} 20 & 15 & 10 \\ 4 & 4 & 2 & 1 \end{cases} \text{ requests/s}$$

The airline web service is the bottleneck of the travel web site.

More complex web service graphs

Figure 3. A more complex Web services flow graph. Web service A uses Web services B and C; B uses D and E; and C uses E and F.

What is the bound on throughput of web service A?

T1,2021 COMP9334

Bound on the throughput of web service A is:

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Response time analysis

- The bottleneck analysis only gives an upper bound on the throughput
- Can we find the response time?
 - Markov chain
 - Approximates Mighment Project Exam Help
- We begin with a metivating example
 Add WeChat powcoder

A simple web service scenario (1)

- A composite web service uses two web services
- Sequence of events
 - 1. Composite web service receives a user request
 - 2. Composite web service sends Request 1 and Request 2
 - 3. The web services reply *independently*
 - That is, Reply 1 and Reply 2 may arrive at different times
 - 4. After the composite web service receives **both** replies, it responds to the user

A simple web service scenario (2)

- Recall the definition of response time
- Response time of Web Service 1
 - = Time at which composite web service receives Reply 1 *minus*Time at which composite web service sends Request 1
- Similarly for Web Service 2.

A simple web service scenario (3)

- Assuming that:
 - Web service 1 has a response time distribution of
 - 0.2s with probability 0.5
 - 0.3s with probability 0.5
 - Web service 2 has a response time distribution of
 - 0.2s with probability 0.5
 - 0.3s with probability 0.5
- What is the average time that the composite web service has to wait until both replies are returned?

A simple web service scenario (4)

Add WeChat powcoder

- What if the service time distribution is:
 - Web service 1 has a response time distribution of
 - 0.2s with probability 0.5
 - 0.3s with probability 0.5
 - Web service 2 has a response time distribution of
 - 0.2s with probability 0.5
 - 0.5s with probability 0.5
- What is the average time that the composite web service has to wait until both replies are returned?

Analysis scenario

- Lesson learnt: Slow web services can become the bottleneck for composite web service
- We consider Composite Web Services (illustration next slide)
 Assignment Project Exam Help
 - With parallel invocation of N services
 - Web services 1 through N-1 have a mean service time of S (exponentially distributed) Chat powcoder.
 - Web service N has a mean service time of gxS (exponentially distributed)
 - The next service step can only be completed after all these N steps have been completed.

Note that if α < 1, then server N is slower than the other (N-1) servers.

Figure 1. A composite Web service. After an initialization step S_0 , N Web services are invoked in parallel. Service N takes longer than the others, and the final step S_f can only be carried out after all N services have completed.

Fork-join system

- The type of system described earlier is known as fork-join system
 - Fork is referring to the parallel invocation
 - All services must complete at the joining point before the next service can start Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

You've seen parallel processing before:

M/M/m queue Fork-join queue Assignment Project Exam Help https://powcoder.com Add WeChatpowcoder join

What is the difference between these two queueing networks?

- We want to understand how α affects the response time of the composite web services
- Let $T(\alpha)$ = response time as a function of α

What is T(1)?

- In this case, all constituent web services have the same response time distribution
- If all mean response times are exponentially distributed with mean S

Assignment Project Exam Help
$$\begin{array}{c} 1 & 1 \\ 1 & 1 \\ T(1) = (1 \text{ https://ppwcoder.com} + \frac{1}{N}) S \\ \underline{Add WeChat powcoder} \\ = H_N \end{array}$$

$$H_N = N$$
-th harmonic number

(We will explain how this is obtained later.)

How about $T(\alpha)$ for $\alpha > 1$?

$$\alpha$$
 < 1 or $\frac{1}{\alpha}$ > 1

- We use Markov chain.
- States (i,j,k)
 - i (i = 0,...,N-1) is the number of web services still running in fast Web services
 - j (j = 0,1) isathe number of preper vices rupping on the slow Web service
 - k (k = 1,2,..,N) ishthesnumber of wheb. services yet to complete

Define $\mu = \frac{1}{s}$

Add WeChat powcoder

T1,2021 **COMP9334** 22

$$T(g) = \frac{S}{\left(N - 1 + \alpha\right)P(N)}$$

$$T(\alpha)$$

where

$$P(N) = \left[1 \frac{N}{N} - \frac{1}{N} - \frac{1}{N} \right]^{-1}$$

$$\text{https://powcoder.com}$$

$$V = \alpha \sum_{j=1}^{N-1} \frac{1}{j} \sum_{i=j}^{N-1} F(i), \quad \text{Note: When } \alpha = 1,$$

$$T(\alpha) = H_{N} S$$

$$F(i) = \prod_{j=1}^{N-i-1} \frac{N-j}{N-j-1+\alpha}$$

How $T(\alpha)/S$ varies with α ?

Other examples of fork-join QNs

 Disk array, e.g. RAID (= Redundant Array of Independent Disks)

T1,2021 COMP9334

Fork-join in disk array

Fork-join queueing networks

- Exact results are hard to come by
- Approximate solution methods are used

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

A Queueing network with a fork-join subsystem

Approximate MVA for fork-join queueing networks

- For MVA with fork-join, the basic unit is a subsystem
 - A subsystem can be either a serial subsystem (= a device) or parallel one
 - A serial subsystem is a special case of parallel subsystem
 - In comparison, the basic unit for MVA before is a device Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Arrival Theorem for Parallel Subsystems (1)

- Consider a parallel subsystem with k parallel service centres
- The average time each job requires at each service centre is S (exponentially distributed)

Arrival Theorem for Parallel Subsystems (2)

When there are n-1 jobs in the whole QN, the average number of jobs in the subsystem is z. When there're n jobs in the system

Waiting time = $S \times z$; Service time = $S \times H_k$

$$\Rightarrow$$
 Response time = $S \times (H_k + z)_-$

T1,2021

COMP9334

Note that if k = 1, the subsystem is serial and is identical to a device in MVA analysis that we have seen before.

Response time =
$$S \times (H_1 + z)$$
Assignment Project Exam Help

https://poweoder(cbm+ z)

Add WeChat:powcoder = 1)

This is the same arrival theorem that we've seen before.

Notation:

I = Number of subsystems in the QN $S_i = \text{Avg. service time of a station in subsystem } i$ $k_i = \# \text{ paraflesignment Project Exambles by stem } i$ $R_i(n) = \text{Response time at subsystem } i$ Add WeChat powcoder when there're n jobs in the QN $\bar{n}_i(n) = \text{Avg.} \# \text{ of jobs at subsystem } i$ when there're n jobs in the QN

T1,2021 COMP9334 34

 $V_i = \text{Visit ratio of subsystem } i$

MVA for fork-join systems:

Mean # jobs in each subsystem

$$\bar{n}_i(n-1)$$

(n-1) jobs in system

n jobs in system

$$R_i(n)$$
 Assignment Hoject Exam (Melp 1))

Mean response timehofpsachowbodetemm

$$R_i(n)$$

$$X_0(n) = \frac{\operatorname{Add} \operatorname{WeChat} \operatorname{powcoder}}{R_0(n)} = \frac{\sum_{i=1}^{I} V_i R_i(n)}$$

Throughput of the system

$$X_0(n)$$

$$\bar{n}_i(n) = V_i \times X_0(n) \times R_i(n)$$

Mean # jobs in each subsystem

$$\bar{n}_i(n)$$

Example

- A system consists of a processor and 2 disk arrays
- Disk arrays operate under synchronous workload
 - Transactions are blocked until I/O are completed

As	Service demand signment Project	# parallel Exam Help systems
Processor	Ohttps://powcode	rlcom
Disk array 1	0.02 Add WeChat po	2 weoder
Disk array 2	0.03	3

What is the system response time when there are 50 transactions? How many transactions can the system have if the system response time should not exceed 1s?

Exercise

- The MVA algorithm on p.35 assumes that you have both visit ratios V_i and mean service time S_i available
- You may recall that service demand D_i = V_i * S_i
- Now, let us assume that you are only given the service demands D_i Ashigtris, evolution of the service V_i and S_i . How can you modify the MVA algorithm on p.35 so that it can work with knowing service demands only?

Add WeChat powcoder

References (1)

Web services

- D. Mensace et al. Static and Dynamic Processor Scheduling Disciplines in Heterogeneous Parallel Architectures," *Journal of Parallel and Distributed Computing*, Vol. 28 (1), July 1995, pp. 1-18.
- D. Mensace, "QoS Issues in Web Services," *IEEE Internet Computing*, November/Dependent Project Exam Help
- D. Mensace, "Response Time Analysis of Composite Web Services," IEEE Internet Computings: Japuny (Foligiery 2004, Vol. 8, No. 1
- D. Mensace, "Composing Web Services: A QoS View," D. Menasce, IEEE Internet Computing, Add 8 We Chatop to accorder
- These papers can be downloaded from the course website (use your CSE password)
 - We didn't cover the last paper but it's well worth a read.
- Derivation of Markov chain on pp. 22-24 is further explained in the file forkjoin_mc.pdf

References (2)

- Fork-join MVA
 - Menasce et al., "Performance by desing". Section 15.6.
- Addition references outside the scope of this course
 - Tutorial on RAID http://www.slcentral.com/articles/01/1/raid/

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder