(Cont'd) Changes of $Y_{12}(q, M_t)$ as M_t expands. For each t, we show the ratings for each new member of M_t , the values X_{12} for this new member, and Y_{12} for the collection M_t up to the inclusion of this new member.

						(m_t) if					Y ₁₂ ($q, M_t)$				
M_t	m_t	r_1	r_2	$r_1 - r_2$	$q \in m_t$	$q \not\in m_t$	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
M ₈₅	m_{85}	0.60	0.40	0.20	3.00	-2.00	1.18	1.02	0.69	-0.16	0.00	-0.29	0.39	0.84	1.27	0.06
M86	m_{86}	0.40	0.60	-0.20	-2.00	3.00	1.20	1.04	0.65	-0.18	0.04	-0.31	0.36	0.87	1.24	0.09
M ₈₇	m_{87}	0.80	0.20	0.60	1.33	-0.33	1.20	1.05	0.66	-0.18	0.03	-0.31	0.38	0.87	1.22	0.09
M ₈₈	m_{88}	0.80	0.20	0.60	1.33	-0.33	1.20	1.05	0.67	-0.18	0.03	-0.29	0.37	0.88	1.20	0.08
M ₈₉	m_{89}	0.40	0.60	-0.20	-2.00	3.00	1.16	1.07	0.70	-0.15	0.06	-0.31	0.34	0.85	1.22	0.06
M_{90}	m_{90}	0.40	0.60	-0.20	-2.00	3.00	1.18	1.09	0.67	-0.11	0.04	-0.33	0.37	0.87	1.18	0.04
M_{91}	m ₉₁	0.40	0.60	-0.20 0.20	-2.00 3.00	3.00 -2.00	1.15 1.12	1.11	$0.69 \\ 0.72$	-0.08 -0.10	0.02	-0.35 -0.37	0.40	$0.89 \\ 0.92$	1.15	0.02 -0.01
M ₉₂	m ₉₂	0.60	0.40	0.20	3.00	-2.00	1.08	$\frac{1.13}{1.15}$	0.69	-0.16	$0.05 \\ 0.03$	-0.33	$0.43 \\ 0.40$	0.94	$\frac{1.12}{1.14}$	-0.01
M ₉₃	m ₉₃	0.40	0.60	-0.20	-2.00	3.00	1.05	1.17	0.66	-0.08	0.06	-0.30	0.38	0.94	1.14	-0.05
M_{94} M_{95}	$m_{94} \\ m_{95}$	0.40	0.60	-0.20	-2.00	3.00	1.07	1.14	0.63	-0.05	0.04	-0.26	0.35	0.98	1.18	-0.07
M ₉₆	m ₉₆	0.40	0.60	-0.20	-2.00	3.00	1.04	1.16	0.66	-0.02	0.01	-0.28	0.33	0.95	1.19	-0.04
M ₉₇	m ₉₇	0.40	0.60	-0.20	-2.00	3.00	1.06	1.13	0.68	0.01	-0.01	-0.25	0.30	0.92	1.21	-0.06
M ₉₈	m ₉₈	0.40	0.60	-0.20	-2.00	3.00	1.08	1.09	0.70	-0.01	-0.03	-0.21	0.28	0.89	1.23	-0.03
M ₉₉	m ₉₉	0.40	0.60	-0.20	-2.00	3.00	1.10	1.11	0.73	0.02	-0.05	-0.23	0.26	0.86	1.20	0.00
$ M_{100} $	m_{100}	0.20	0.80	-0.60	-0.33	1.33	1.08	1.12	0.73	0.02	-0.05	-0.22	0.25	0.87	1.20	0.00
M_{101}	m_{101}	0.40	0.60	-0.20	-2.00	3.00	1.10	1.13	0.76	0.00	-0.07	-0.18	0.28	0.84	1.17	-0.02
M_{102}	m_{102}	0.20	0.80	-0.60	-0.33	1.33	1.10	1.14	0.76	0.01	-0.07	-0.19	0.27	0.83	1.17	-0.02
M_{103}	m_{103}	0.60	0.40	0.20	3.00	-2.00	1.12	1.15	0.73	0.04	-0.09	-0.15	0.25	0.80	1.19	-0.04
M_{104}	m_{104}	0.60	0.40	0.20	3.00	-2.00	1.14	1.17	0.71	0.07	-0.11	-0.17	0.23	0.82	1.16	-0.01
M_{105}	m_{105}	0.60	0.40	0.20 0.20	3.00	-2.00 -2.00	1.16	1.19	$0.73 \\ 0.70$	0.10	-0.13	-0.19	0.25	0.79	1.13	-0.03
M ₁₀₆	m ₁₀₆	0.60 0.40	0.40	-0.20	3.00 -2.00	3.00	1.18 1.19	1.21 1.18	0.70	$0.08 \\ 0.06$	-0.14 -0.11	-0.21 -0.18	$0.28 \\ 0.26$	$0.81 \\ 0.83$	$\frac{1.10}{1.07}$	0.00 -0.02
M_{107}	$m_{107} \\ m_{108}$	0.60	0.40	0.20	3.00	-2.00	1.16	1.19	0.75	0.04	-0.09	-0.19	0.24	0.85	1.04	0.01
$M_{108} M_{109}$	$m_{108} \\ m_{109}$	0.40	0.60	-0.20	-2.00	3.00	1.18	1.16	0.77	0.04	-0.10	-0.19	0.24	0.87	1.04	0.01
M ₁₁₀	m_{110}	0.40	0.60	-0.20	-2.00	3.00	1.20	1.14	0.79	0.09	-0.08	-0.23	0.20	0.89	0.98	0.02
M_{111}	m ₁₁₁	0.80	0.20	0.60	1.33	-0.33	1.20	1.14	0.79	0.09	-0.08	-0.21	0.19	0.88	0.99	0.01
M_{112}^{111}	m_{112}^{111}	0.60	0.40	0.20	3.00	-2.00	1.17	1.15	0.81	0.11	-0.09	-0.23	0.17	0.86	1.01	0.04
$ M_{113}$	m_{113}	0.40	0.60	-0.20	-2.00	3.00	1.14	1.17	0.83	0.09	-0.07	-0.24	0.15	0.88	0.98	0.07
M_{114}	m_{114}	0.40	0.60	-0.20	-2.00	3.00	1.16	1.19	0.81	0.08	-0.04	-0.22	0.13	0.89	0.95	0.05
M_{115}	m_{115}	0.60	0.40	0.20	3.00	-2.00	1.13	1.16	0.83	0.10	-0.01	-0.23	0.12	0.91	0.97	0.03
M_{116}	m_{116}	0.20	0.80	-0.60	-0.33	1.33	1.13	1.16	0.83	0.10	-0.02	-0.23	0.11	0.92	0.96	0.04
M_{117}	m_{117}	0.20	0.80	-0.60	-0.33	1.33	1.13	1.16	0.82	0.09	-0.01	-0.23	0.11	0.92	0.96	0.04
M_{118}	m ₁₁₈	0.40	0.60	-0.20	-2.00	3.00	1.15	1.14	0.84	0.12	-0.02	-0.21	0.09	0.94	0.94	0.02
M_{119}	m ₁₁₉	0.60	0.40	0.20 0.20	3.00 3.00	-2.00 -2.00	1.12 1.14	$\frac{1.11}{1.12}$	$0.86 \\ 0.87$	$0.14 \\ 0.13$	-0.04 -0.01	-0.22 -0.24	$0.07 \\ 0.10$	$0.95 \\ 0.93$	$0.95 \\ 0.93$	$0.05 \\ 0.03$
$M_{120} \\ M_{121}$	$m_{120} \\ m_{121}$	0.40	0.60	-0.20	-2.00	3.00	1.15	1.14	0.85	0.11	0.01	-0.25	0.12	0.91	0.95	0.01
M_{122}	$m_{121} \\ m_{122}$	0.40	0.60	-0.20	-2.00	3.00	1.13	1.11	0.87	0.11	-0.01	-0.26	0.12	0.92	0.96	0.04
M ₁₂₃	m ₁₂₃	0.20	0.80	-0.60	-0.33	1.33	1.13	1.12	0.86	0.13	-0.01	-0.27	0.10	0.93	0.97	0.05
M_{124}^{123}	m_{124}	0.60	0.40	0.20	3.00	-2.00	1.14	1.09	0.84	0.15	-0.02	-0.28	0.08	0.94	0.98	0.07
M_{125}^{124}	m ₁₂₅	0.60	0.40	0.20	3.00	-2.00	1.16	1.07	0.81	0.13	-0.04	-0.25	0.11	0.96	1.00	0.05
M_{126}	m_{126}	0.60	0.40	0.20	3.00	-2.00	1.13	1.08	0.79	0.16	-0.06	-0.27	0.13	0.98	1.02	0.04
M_{127}	m_{127}	0.40	0.60	-0.20	-2.00	3.00	1.11	1.06	0.81	0.18	-0.07	-0.24	0.11	0.99	1.03	0.02
M_{128}	m_{128}	0.40	0.60	-0.20	-2.00	3.00	1.09	1.07	0.83	0.16	-0.05	-0.22	0.10	0.97	1.05	0.01
M_{129}	m_{129}	0.40	0.60	-0.20	-2.00	3.00	1.06	1.09	0.84	0.18	-0.06	-0.23	0.12	0.95	1.06	-0.01
M_{130}	m_{130}	0.80	0.20	0.60	1.33	-0.33	1.06	1.09	0.85	0.19	-0.06	-0.23	0.12	0.95	1.05	-0.01
M_{131}	m ₁₃₁	0.60	0.40	0.20	3.00	-2.00	1.04	1.07	0.86	0.18	-0.04	-0.24	0.10	0.96	1.07	0.01
M ₁₃₂	m ₁₃₂	0.20	0.80	-0.60 0.20	-0.33 3.00	1.33 -2.00	1.04 1.02	$\frac{1.07}{1.08}$	$0.87 \\ 0.84$	$0.18 \\ 0.17$	-0.04 -0.06	-0.24 -0.26	$0.10 \\ 0.12$	$0.97 \\ 0.98$	$\frac{1.06}{1.07}$	$0.01 \\ 0.03$
M ₁₃₃	m ₁₃₃	0.40	0.40	-0.20	-2.00	3.00	1.02	1.06	0.84	0.17	-0.07	-0.23	0.12	0.98	1.07	0.03
$M_{134} \\ M_{135}$	$m_{134} \\ m_{135}$	0.40	0.60	-0.20	-2.00	3.00	1.01	1.07	0.84	0.14	-0.09	-0.23	0.14	0.97	1.10	0.00
M ₁₃₆	m ₁₃₆	0.20	0.80	-0.60	-0.33	1.33	1.01	1.06	0.84	0.13	-0.09	-0.20	0.16	0.98	1.10	0.00
M_{137}^{130}	m ₁₃₇	0.60	0.40	0.20	3.00	-2.00	1.03	1.04	0.82	0.15	-0.10	-0.21	0.18	0.99	1.11	-0.02
M ₁₃₈	m_{138}	0.40	0.60	-0.20	-2.00	3.00	1.04	1.06	0.80	0.14	-0.08	-0.19	0.16	0.97	1.13	-0.03
M ₁₃₉	m_{139}	0.40	0.60	-0.20	-2.00	3.00	1.06	1.07	0.82	0.16	-0.09	-0.17	0.15	0.95	1.11	-0.05
M_{140}	m_{140}	0.60	0.40	0.20	3.00	-2.00	1.07	1.08	0.80	0.14	-0.07	-0.18	0.17	0.93	1.12	-0.06
II M141	m_{141}	0.40	0.60	-0.20	-2.00	3.00	1.05	1.10	0.81	0.13	-0.05	-0.16	0.15	0.94	1.10	-0.07
M142	m_{142}	0.80	0.20	0.60	1.33	-0.33	1.05	1.09	0.82	0.12	-0.04	-0.16	0.15	0.95	1.10	-0.07
M142	m ₁₄₃	0.40	0.60	-0.20	-2.00	3.00	1.06	1.10	0.80	0.11	-0.05	-0.17	0.17	0.92	1.11	-0.05
M144	m ₁₄₄	0.60	0.40	0.20	3.00	-2.00	1.08	1.08	0.81	0.13	-0.03	-0.18	0.15	0.94	1.09	-0.07
M145	m ₁₄₅	0.80 0.40	0.20	0.60 -0.20	1.33 -2.00	-0.33 3.00	1.08 1.06	1.08 1.06	$0.82 \\ 0.83$	$0.13 \\ 0.11$	-0.03 -0.01	-0.18 -0.16	$0.15 \\ 0.14$	$0.93 \\ 0.94$	$\frac{1.09}{1.10}$	-0.06 -0.07
M ₁₄₆	m146	0.40	0.60	-0.20	-2.00	3.00	1.04	1.04	0.85	0.11	0.01	-0.17	0.14	0.94	1.12	-0.05
$M_{147} \\ M_{148}$	$m_{147} \\ m_{148}$	0.60	0.40	0.20	3.00	-2.00	1.04	1.04	0.86	0.10	-0.01	-0.17	0.12	0.97	1.10	-0.03
M_{149}	$m_{148} \\ m_{149}$	0.40	0.60	-0.20	-2.00	3.00	1.00	1.06	0.84	0.14	0.01	-0.20	0.09	0.99	1.11	-0.04
M ₁₅₀	m_{150}	0.40	0.60	-0.20	-2.00	3.00	1.01	1.08	0.86	0.12	0.00	-0.18	0.08	0.97	1.09	-0.02
M_{151}	m_{151}	0.20	0.80	-0.60	-0.33	1.33	1.01	1.08	0.85	0.13	0.00	-0.18	0.08	0.97	1.09	-0.02
M_{152}	m_{152}	0.60	0.40	0.20	3.00	-2.00	1.03	1.06	0.83	0.15	-0.01	-0.16	0.06	0.98	1.10	-0.04
$ M_{153} $	m ₁₅₃	0.40	0.60	-0.20	-2.00	3.00	1.01	1.07	0.81	0.14	0.00	-0.17	0.08	1.00	1.12	-0.05
M154	m_{154}	0.60	0.40	0.20	3.00	-2.00	1.02	1.08	0.82	0.15	0.02	-0.18	0.07	0.98	1.09	-0.06
$11 - M_1 = 155$	m_{155}	0.40	0.60	-0.20	-2.00	3.00	1.00	1.06	0.84	0.14	0.01	-0.19	0.09	0.99	1.11	-0.04
W156	m_{156}	0.60	0.40	0.20	3.00	-2.00	1.01	1.04	0.85	0.16	0.03	-0.20	0.07	0.97	1.12	-0.06
M_{157}	m_{157}	0.40	0.60	-0.20	-2.00	3.00	0.99	1.06	0.87	0.14	0.02	-0.22	0.09	0.95	1.13	-0.04
M ₁₅₈	m ₁₅₈	0.60 0.60	0.40 0.40	0.20 0.20	3.00 3.00	-2.00 -2.00	1.01 1.02	$\frac{1.04}{1.05}$	$0.88 \\ 0.89$	$0.16 \\ 0.18$	0.00 -0.01	-0.20 -0.18	$0.08 \\ 0.07$	$0.96 \\ 0.95$	1.11 1.09	-0.05 -0.06
M_{159}	m ₁₅₉	0.80	0.20	0.20	1.33	-0.33	1.02	1.05	0.89	0.18	-0.01	-0.18	0.07	0.95	1.09	-0.06
$M_{160} M_{161}$	$m_{160} \\ m_{161}$	0.40	0.60	-0.20	-2.00	3.00	1.02	1.03	0.90	0.19	-0.01	-0.19	0.05	0.93	1.11	-0.04
M_{162}^{161}	m_{162}	0.40	0.60	-0.20	-2.00	3.00	1.04	1.04	0.88	0.19	-0.03	-0.20	0.07	0.94	1.09	-0.02
M ₁₆₃	m ₁₆₃	0.40	0.60	-0.20	-2.00	3.00	1.06	1.06	0.89	0.21	-0.02	-0.21	0.06	0.92	1.07	-0.04
M_{164}^{163}	m_{164}	0.20	0.80	-0.60	-0.33	1.33	1.06	1.06	0.90	0.21	-0.02	-0.21	0.05	0.92	1.07	-0.03
M_{165}	m ₁₆₅	0.60	0.40	0.20	3.00	-2.00	1.07	1.07	0.91	0.19	0.00	-0.22	0.04	0.90	1.05	-0.01
M_{166}	m_{166}	0.40	0.60	-0.20	-2.00	3.00	1.05	1.08	0.92	0.18	-0.01	-0.20	0.06	0.91	1.03	-0.02
M_{167}	m_{167}	0.60	0.40	0.20	3.00	-2.00	1.06	1.06	0.93	0.20	-0.02	-0.21	0.05	0.89	1.04	0.00
M_{168}	m_{168}	0.80	0.20	0.60	1.33	-0.33	1.06	1.07	0.94	0.20	-0.03	-0.21	0.04	0.90	1.05	-0.01