

ESC201: Introduction to Electronics Module 6: Digital Circuits

Dr. Shubham Sahay,
Associate Professor,
Department of Electrical Engineering,
IIT Kanpur

Representing Positive and Negative Numbers

Extra bit needed to carry sign information "MSB" is often the sing bit

Sign bit = 0 represents non-negative nos.

Sign bit = 1 represents negative numbers

decimal	Signed Magnit	<mark>ude</mark>
0	0000	
1	0001	
2	0010	
3	0011	n n magnitude l l l
4	0100	ıgnit
5	0101	me
6	0110	
7	0111	7
-0	1000	
-1	1001	
-2	1010	_
-3	1011	itud
-4	1100	magnitude
-5	1101	_ E
-6	1110	
-7	1111	

Arithmetic with 2's Complement

- The negative of a number A is represented by its 2's complement
 - Negative of the negative of the number is the number itself
- To evaluate **A B**, one can following the following algorithm
 - Find -B by taking 2' complement of B
 - Then **A B** = **A** + (-**B**) = **A** + (2's complement of **B**)

Example

Adding or subtracting numbers with addition operation alone

To get a negative number, 2's complement of positive number is taken

The Boolean Algebra

In the Boolean world, a variable can take just two values {0,1}

Positive Logic:

Negative Logic will be the inverse of the above, i.e., 0 being True and 1 being False

All interactions of Boolean variables can be represented by a combination of:

In the examples above, y \rightarrow response variable and x_1 and $x_2 \rightarrow$ independent variables

More About Basic Operations

AND: $y = x_1 . x_2$

y is 1 if and only if both x_1 and x_2 are 1, otherwise 0

OR:
$$y = x_1 + x_2$$

y is 1 if either x_1 or x_2 is 1. y is 0 if and only if both x_1 and x_2 are 0, otherwise 1

NOT:
$$y = x$$

y is the inverse of x
If y is 0, x is 1; and If y is 1, x is 0

Truth Table

X ₁	X_2	у
0	0	0
0	1	0
1	0	0
1	1	1

Some Basic Postulates

P1: $x + 0 = x$	P1: $x \cdot 1 = x$
commutativity P2: $x + y = y + x$	P2: $x \cdot y = y \cdot x$
distributivity P3: $x.(y+z) = x.y+x.z$	P3: $x+y.z = (x+y).(x+z)$ (please take note)
P4: $x + \bar{x} = 1$	P4: $x \cdot \bar{x} = 0$

Some Basic Theorem

T1: $x + x = x$	T1: $x \cdot x = x$
T2: $x + 1 = 1$	T2: $x \cdot 0 = 0$
T3: $\overline{(x)} = x$	
T4: $x + (y+z) = (x+y)+z$	T4: $x \cdot (y.z) = (x.y).z$
(DeMorgan's theorem)	(DeMorgan's theorem)
T5: $\overline{(x+y)} = \overline{x} \cdot \overline{y}$	T5: $(x.y) = x + y$
T6: $x+x.y = x$	T6: $x.(x+y) = x$

Proving Theorems

P1:
$$x + 0 = x$$

$$P2: \quad x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + x = 1$$

Prove T1:
$$x + x = x$$

 $x + x = (x+x)$. 1 (P1)
 $= (x+x)$. $(x+x)$ (P4)
 $= x + x$. $(P3)$
 $= x + 0$ (P4)

= x (P1)

P1:
$$x \cdot 1 = x$$

$$P2: x . y = y . x$$

P3:
$$x+y.z = (x+y).(x+z)$$

$$P4: x \cdot x = 0$$

Prove T1:
$$x \cdot x = x$$

$$x \cdot x = x \cdot x + 0 \text{ (P1)}$$

$$= x.x + x.x \quad (P4)$$

$$= x \cdot (x+x)$$
 (P3)

$$= x . 1 (P4)$$

$$= x (P1)$$

Proving More Theorems

P1:
$$x + 0 = x$$

P1:
$$x \cdot 1 = x$$

$$P2: \quad x + y = y + x$$

P2:
$$x \cdot y = y \cdot x$$

P3:
$$x.(y+z) = x.y+x.z$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x + \bar{x} = 1$$

P4:
$$x \cdot \bar{x} = 0$$

Prove :
$$x + 1 = 1$$

$$x + x . y = x$$
 $= x . 1 + x . y$
 $= x . (1 + y)$
 $= x . 1$
 $= x$

$$+ x \cdot y = x$$

$$x + x \cdot y = x + y$$

$$= (x + \bar{x}). (x + y)$$

$$= 1. (x + y)$$

$$= x + y$$

$$= (x+x)+ x$$
$$= x + x$$

x + 1 = x + (x + x)

$$=1$$

Exercise

De Morgan's theorem

$$\overline{(x_1 + x_2 + x_3 + ...)} = \overline{x_1} . \overline{x_2} . \overline{x_3} ...$$

$$\overline{(x_1. x_2. x_3)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$
(B)

$$\overline{(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots)} = (\overline{\mathbf{x}_1} + \overline{\mathbf{x}_2} + \overline{\mathbf{x}_3} + \dots) \quad (B)$$

Prove this for both (A) and (B). You have to prove both forms P4 hold.

Start with only two variables x_1 and x_2 , then extend.

Simplification of Boolean Expressions

De Morgan's Theorem $\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} . \overline{x_2} . \overline{x_3} .$ $\overline{(x_1. x_2. x_3.....)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$

$$(\overline{x_1}.x_2 + \overline{x_2}.x_3) = ?$$

$$= (x_1 + \overline{x_2}) \cdot (x_2 + \overline{x_3})$$

$$= x_1 \cdot x_2 + x_1 \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3}$$

Design Flow

Representation of a Digital System

Description in words

y = 1 when x_1 is 0 and x_2 is 1

Truth Table

Indicates when response y is 'true'

X ₁	X_2	У
0	0	0
0	1	1
1	0	0
1	1	0

Boolean expression

$$y = \overline{x_1} \cdot x_2$$

Boolean Function from Truth Tables

Example

Example

Example

When more than one combination is 'true' combine them with OR operation

$$y = \overline{x_1} \cdot \overline{x_2} + x_1 \cdot x_2$$

Both True and False Can be Useful

Instead of writing expressions as sum of terms that make **y equal to 1**, we can also write expressions using terms that make **y equal to 0**

Expression Derived From False Terms

Example

SoP Form With Min Terms for Two Inputs

A min term is a product (AND) that contains all the variables used in a function

The function is the sum (OR) of min terms for which output function is 'True'

MSB X	LSB Y	min term
0	0	<u>x</u> . y m0
0	1	x. <u>y</u> m1
1	0	x.y m2 x.y m3
1	1	l _{x.y m3}

Example

$$f_2 = \sum (0, 2, 3) = ?$$
 $f_2 = \overline{x}.\overline{y} + x.\overline{y} + x.y$

Min Terms for Three Inputs

$$f_2 = \sum (1, 4, 7) = ?$$

$$f_2 = \sum (1, 4, 7) = ?$$
 $f_2 = \overline{x} \cdot \overline{y} \cdot z + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot z$