Beyond Descriptive Stats

```
In [63]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
          from pandasql import sqldf
         pysqldf = lambda q: sqldf(q, globals())
          %store -r athlete_events
          %store -r summer games
          %store -r winter_games
          %store -r female
          %store -r male
In [64]: #Calculating the ratios for Men vs Women
          # Total Ratio
         total_ratio = pysqldf('''SELECT Sex,
                                           COUNT(*) Total_Count,
                                           COUNT(*) * 100.00 / SUM(COUNT(*)) OVER () AS ratio
                                           FROM athlete_events
                                           GROUP BY sex ''')
          #Summer games ratio
          summer_ratio = pysqldf('''SELECT Sex,
                                           COUNT(*) Total_Count,
                                           COUNT(*) * 100.00 / SUM(COUNT(*)) OVER () AS ratio
                                           FROM summer_games
                                           GROUP BY sex''')
          #Winter games ratio
         winter_ratio = pysqldf('''SELECT Sex,
                                           COUNT(*) Total_Count,
                                           COUNT(*) * 100.00 / SUM(COUNT(*)) OVER () AS ratio
                                           FROM winter_games
                                           GROUP BY sex'
In [65]: total_ratio.head()
            Sex Total_Count
                               ratio
Out[65]:
                     74522 27 487127
                    196594 72.512873
In [66]: summer_ratio.head()
            Sex Total_Count
                               ratio
                     59443 26 709713
                    163109 73.290287
In [67]: winter_ratio.head()
Out[67]:
            Sex Total_Count
                               ratio
                     15079 31.049749
                     33485 68.950251
             M
         #Calculating the total average for Men and Women
In [68]:
          total_averages = pysqldf('''SELECT Sex,
                                              AVG(Weight) Average Weight,
                                              AVG(Height) Average_Height,
                                              AVG(Age) Average_Age
                                      FROM athlete_events
                                      GROUP BY Sex ''')
          #Calculating the Summer average for Men and Women
          summer averages = pysqldf('''SELECT Sex,
                                              AVG(Weight) Average Weight,
                                              AVG(Height) Average_Height,
                                              AVG(Age) Average Age
                                       FROM summer games
                                      GROUP BY Sex''')
          #Calculating the Winter average for Men and Women
         winter_averages = pysqldf('''SELECT Sex,
                                              AVG(Weight) Average_Weight,
                                              AVG(Height) Average Height,
                                              AVG(Age) Average Age
```

FROM winter_games

```
In [69]: total_averages.head()
Out[69]:
             Sex Average_Weight Average_Height Average_Age
           0
               F
                        60.021252
                                      167.839740
                                                    23.732881
                        75.743677
                                      178.858463
                                                    26.277562
In [70]: summer_averages.head()
Out[70]:
             Sex Average_Weight Average_Height Average_Age
                                      168.169025
                                                    23.660997
                        60.087644
                                      178.901874
                        75.604195
                                                    26.443944
           1 M
In [71]: winter_averages.head()
           Sex Average_Weight Average_Height Average_Age
Out[71]:
               F
                        59.755156
                                      166.528250
                                                    24.014398
              M
                       76.357058
                                      178.668699
                                                    25.504261
           1
In [72]: #Total view of each year showing Participants and the number of medals awarded
           pysqldf('''SELECT Year,
                               COUNT(*) Participants,
                               SUM(CASE WHEN Medal IS NOT NULL THEN 1 ELSE 0 END) AS Total Medals,
                               SUM(CASE WHEN Medal = 'Gold' THEN 1 ELSE 0 END) AS Gold_Medals,
                               SUM(CASE WHEN Medal = 'Silver' THEN 1 ELSE 0 END) AS Silver_Medals,
SUM(CASE WHEN Medal = 'Bronze' THEN 1 ELSE 0 END) AS Bronze_Medals
                       FROM athlete_events
                       GROUP BY Year''')
```

GROUP BY Sex''')

	Year	Participants	Total_Medals	Gold_Medals	Silver_Medals	Bronze_Medals
0	1896	380	143	62	43	38
1	1900	1936	604	201	228	175
2	1904	1301	486	173	163	150
3	1906	1733	458	157	156	145
4	1908	3101	831	294	281	256
5	1912	4040	941	326	315	300
6	1920	4292	1308	493	448	367
7	1924	5693	962	332	319	311
8	1928	5574	823	275	267	281
9	1932	3321	739	261	246	232
10	1936	7401	1025	348	347	330
11	1948	7480	987	330	332	325
12	1952	9358	1033	351	335	347
13	1956	6434	1043	353	342	348
14	1960	9235	1058	359	342	357
15	1964	9480	1215	408	406	401
16	1968	10479	1256	425	410	421
17	1972	11959	1414	474	455	485
18	1976	10502	1531	508	505	518
19	1980	8937	1602	529	531	542
20	1984	11588	1698	571	551	576
21	1988	14676	1845	607	601	637
22	1992	16413	2030	663	657	710
23	1994	3160	331	110	109	112
24	1996	13780	1842	608	605	629
25	1998	3605	440	145	145	150
26	2000	13821	2004	663	661	680
27	2002	4109	478	162	157	159
28	2004	13443	2001	664	660	677
29	2006	4382	526	176	175	175
30	2008	13602	2048	671	667	710
31	2010	4402	520	174	175	171
32	2012	12920	1941	632	630	679
33	2014	4891	597	202	197	198

2016

Out[72]:

Out[74]:

	Year	Total_Medals	Gold_Medals	Silver_Medals	Bronze_Medals
0	1896	37.631579	16.315789	11.315789	10.000000
	1900	31.198347	10.382231	11.776860	9.039256
2	1904	37.355880	13.297463	12.528824	11.529593
3	1906	26.428159	9.059435	9.001731	8.366994
4	1908	26.797807	9.480813	9.061593	8.255401
5	1912	23.292079	8.069307	7.797030	7.425743
6	1920	30.475303	11.486486	10.438024	8.550792
7	1924	16.897945	5.831723	5.603373	5.462849
8	1928	14.764980	4.933620	4.790097	5.041263
9	1932	22.252334	7.859079	7.407407	6.985848
10	1936	13.849480	4.702067	4.688556	4.458857
11	1948	13.195187	4.411765	4.438503	4.344920
12	1952	11.038683	3.750801	3.579825	3.708057
13	1956	16.210755	5.486478	5.315511	5.408766
14	1960	11.456416	3.887385	3.703303	3.865728
15	1964	12.816456	4.303797	4.282700	4.229958
16	1968	11.985877	4.055731	3.912587	4.017559
17	1972	11.823731	3.963542	3.804666	4.055523
18	1976	14.578176	4.837174	4.808608	4.932394
19	1980	17.925478	5.919212	5.941591	6.064675
20	1984	14.653089	4.927511	4.754919	4.970659
21	1988	12.571545	4.136004	4.095121	4.340420
22	1992	12.368245	4.039481	4.002925	4.325839
23	1994	10.474684	3.481013	3.449367	3.544304
24	1996	13.367199	4.412192	4.390421	4.564586
25	1998	12.205270	4.022191	4.022191	4.160888
26	2000	14.499674	4.797048	4.782577	4.920049
27	2002	11.633001	3.942565	3.820881	3.869555
28	2004	14.885070	4.939374	4.909618	5.036078
29	2006	12.003651	4.016431	3.993610	3.993610
30	2008	15.056609	4.933098	4.903691	5.219821
31	2010	11.812812	3.952749	3.975466	3.884598
32	2012	15.023220	4.891641	4.876161	5.255418
33	2014	12.206093	4.130035	4.027806	4.048252
34	2016	14.779369	4.858270	4.785213	5.135885

In [75]: summer_games.head()

ID Name Sex Age Height Weight Team NOC Games Year Season City Event Medal Out[75]: Sport Basketball 1992 A Dijiang M 24.0 180.0 80.0 China CHN 1992 Summer 0 1 Barcelona Basketball Men's None Summer Basketball Judo 2012 Men's Extra-2 A Lamusi M 23.0 170.0 60.0 China CHN 2012 Summer London Judo Summer Lightweight Football Gunnar 1920 M 24.0 DEN 3 NaN NaN Denmark 1920 Summer Antwerpen Football Men's None Nielsen Aaby Summer Football Tug-Of-Edgar Tug-Of-1900 War Men's 3 4 Lindenau M 34.0 NaN NaN Denmark/Sweden DEN 1900 Summer Paris Gold Summer Tug-Of-War War Aabye Cornelia "Cor" Athletics Netherlands NED Summer 1932 Los 4 8 Aalten (-Athletics F 18.0 168.0 1932 Summer Women's NaN None Angeles

Strannood)

100 metres

In [78]: summer_ratio_medals

Out[78]:

		Year	Total_Medals	Gold_Medals	Silver_Medals	Bronze_Medals
	0	1896	37.631579	16.315789	11.315789	10.000000
	1	1900	31.198347	10.382231	11.776860	9.039256
	2	1904	37.355880	13.297463	12.528824	11.529593
	3	1906	26.428159	9.059435	9.001731	8.366994
	4	1908	26.797807	9.480813	9.061593	8.255401
	5	1912	23.292079	8.069307	7.797030	7.425743
	6	1920	30.475303	11.486486	10.438024	8.550792
	7	1924	15.899102	5.293331	5.369769	5.236002
	8	1928	14.703526	4.907853	4.787660	5.008013
	9	1932	21.791849	7.713035	7.207814	6.871000
•	10	1936	14.094682	4.795573	4.764832	4.534276
1	11	1948	13.302108	4.512100	4.434036	4.355972
•	12	1952	10.846433	3.700121	3.518742	3.627570
1	13	1956	17.417593	5.890384	5.714843	5.812366
•	14	1960	11.220594	3.805887	3.621136	3.793571
1	15	1964	13.360166	4.505323	4.401454	4.453389
1	16	1968	12.307871	4.180252	3.959013	4.168607
1	17	1972	11.791537	3.920807	3.804348	4.066382
•	18	1976	15.276010	5.068858	5.022567	5.184585
1	19	1980	19.246280	6.355166	6.369072	6.522041
2	20	1984	15.612439	5.257034	5.045483	5.309922
2	21	1988	13.142810	4.320013	4.261859	4.560937
2	22	1992	13.192571	4.307621	4.230562	4.654389
2	23	1996	13.367199	4.412192	4.390421	4.564586
2	24	2000	14.499674	4.797048	4.782577	4.920049
2	25	2004	14.885070	4.939374	4.909618	5.036078
2	26	2008	15.056609	4.933098	4.903691	5.219821
2	27	2012	15.023220	4.891641	4.876161	5.255418
2	28	2016	14.779369	4.858270	4.785213	5.135885

```
Year Total_Medals Gold_Medals Silver_Medals Bronze_Medals
Out[79]:
           0 1924
                       28 260870
                                     11 956522
                                                     8.260870
                                                                    8 043478
           1 1928
                       15.292096
                                      5.154639
                                                     4.810997
                                                                    5.326460
                       26.136364
                                      9.090909
                                                     9.090909
                                                                    7.954545
           2 1932
              1936
                        12.067039
                                      4.022346
                                                     4.134078
                                                                    3.910615
                       12.558140
                                      3.813953
                                                     4.465116
                                                                    4.279070
              1948
```

1936

4 1948

In [83]:

In [84]:

895

1075

summer_medals_count_new

108

135

summer_medals_count_new = summer_medals_count[7:]

36

41

As you can see here the winter Olympic games did not start until 1924 whereas the summer games started on 1896. I will have to create a new dataframe with them both commencing at the same time to help figure out and determine any correlation.

```
summer_medals_count = pysqldf('''SELECT Year,
In [80]:
                                                  COUNT(*) Participants,
                                                  SUM(CASE WHEN Medal IS NOT NULL THEN 1 ELSE 0 END) AS Total Medals,
                                                  SUM(CASE WHEN Medal = 'Gold' THEN 1 ELSE 0 END) AS Gold Medals,
                                                  SUM(CASE WHEN Medal = 'Silver' THEN 1 ELSE 0 END) AS Silver Medals,
                                                  SUM(CASE WHEN Medal = 'Bronze' THEN 1 ELSE 0 END) AS Bronze Medals
                                           FROM summer games
                                           GROUP BY Year''')
          winter medals count = pysqldf('''SELECT Year,
                                                  COUNT(*) Participants,
                                                  SUM(CASE WHEN Medal IS NOT NULL THEN 1 ELSE 0 END) AS Total_Medals,
                                                  SUM(CASE WHEN Medal = 'Gold' THEN 1 ELSE 0 END) AS Gold Medals,
                                                  SUM(CASE WHEN Medal = 'Silver' THEN 1 ELSE 0 END) AS Silver Medals,
                                                  SUM(CASE WHEN Medal = 'Bronze' THEN 1 ELSE 0 END) AS Bronze_Medals
                                           FROM winter games
                                           GROUP BY Year''')
In [81]: summer medals count.head()
            Year Participants Total_Medals Gold_Medals Silver_Medals Bronze_Medals
Out[81]:
          0 1896
                        380
                                    143
                                                 62
                                                             43
                                                                           38
          1 1900
                       1936
                                    604
                                                201
                                                            228
                                                                          175
                       1301
          2 1904
                                    486
                                                173
                                                             163
                                                                          150
          3 1906
                       1733
                                    458
                                                157
                                                             156
                                                                          145
          4 1908
                       3101
                                    831
                                                294
                                                            281
                                                                          256
In [82]:
         winter medals count.head()
Out[82]:
            Year Participants Total_Medals Gold_Medals Silver_Medals Bronze_Medals
          0 1924
                        460
                                    130
                                                             38
          1 1928
                        582
                                                                           31
                                     89
                                                 30
                                                             28
          2 1932
                        352
                                     92
                                                 32
                                                             32
                                                                           28
```

48

35

46

Out[84]:		Year	Participants	Total_Medals	Gold_Medals	Silver_Medals	Bronze_Medals
	7	1924	5233	832	277	281	274
	8	1928	4992	734	245	239	250
	9	1932	2969	647	229	214	204
	10	1936	6506	917	312	310	295
	11	1948	6405	852	289	284	279
	12	1952	8270	897	306	291	300
	13	1956	5127	893	302	293	298
	14	1960	8119	911	309	294	308
	15	1964	7702	1029	347	339	343
	16	1968	8588	1057	359	340	358
	17	1972	10304	1215	404	392	419
	18	1976	8641	1320	438	434	448
	19	1980	7191	1384	457	458	469
	20	1984	9454	1476	497	477	502
	21	1988	12037	1582	520	513	549
	22	1992	12977	1712	559	549	604
	23	1996	13780	1842	608	605	629
	24	2000	13821	2004	663	661	680
	25	2004	13443	2001	664	660	677
	26	2008	13602	2048	671	667	710
	27	2012	12920	1941	632	630	679
	28	2016	13688	2023	665	655	703

Standard Deviation for Winter Olympics Medals = 152.56899942903493

```
In [85]: x = winter_medals_count.Total_Medals
    y = summer_medals_count_new.Total_Medals
    cor = np.corrcoef(x, y)
In [86]: print(cor)
```

```
[[1. 0.94141801]
[0.94141801 1. ]]
```

The Pearon correlation coefficient between the total number of medals in the winter and summer olympics from 1924 to 2016, is 0.94, which is highly positive. Therefore, the performance of a country in winter olympics is highly correlated to that in summer olympics

```
In [87]: std_medal_counts_summer_olympics = np.std(y)
    std_medal_counts_winter_olympics = np.std(x)

In [88]: print("Standard Deviation for Summer Olympics Medals =",std_medal_counts_summer_olympics)
    print("Standard Deviation for Winter Olympics Medals =",std_medal_counts_winter_olympics)

Standard Deviation for Summer Olympics Medals = 475.323015441357
```

From 1924 to 2016, as the standard deviation in the summer olympics is about 3 times that in the winter olympics, country performance by year change more in Summer Olympics.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js