## King Saud University Collage of Computer and Information Science Computer Science Department

CSC 311 - Term 432

Quiz 1

Date: Tuesday February 8, 2022

**Duration:** 30 Minutes

Student Name:

Student ID: 4



Section:





Question 1 / /2 Points

Use the formal definition of  $\theta$  to prove that  $2n^3 - 7n + 1 \in \theta(n^3)$ . Provide appropriate  $c_1, c_2$ , and  $n_0$  constants. Show Gn3 = 2n3 - 7 n+1 > C2n3 all steps required.

prove big-0:

$$2 - \frac{1}{n^2} + \frac{1}{n^3} \leqslant C \qquad ignor - term$$

$$= 2 + \frac{1}{n^3} \leqslant C \qquad in (\leqslant)$$

prove m: 3n3-7nx175n3 3- 72+ 737, C

$$C_1 = 3$$
,  $C_2 = 3 - \frac{7}{4} + \frac{1}{18}$ ,  $n_0 = 3$ 

Use limits of rational functions to prove that  $(n) = 7n^2 + 3n \log n + 5n + 100 \in \theta(n^2)$ . Show all steps required.

اكبرطد n2+3 nlog n+5n+100 = lim = 7 109 n

constant

## King Saud University Collage of Computer and Information Science Computer Science Department

CSC 311 - Term 432

**Duration:** 30 Minutes

Date: Tuesday February 8, 2022

Quiz 1

For each blank, indicate whether  $A_i$  is in O or/and  $\Omega$  of  $B_i$ . More than one space per row can be valid. No explanation is required.

| requires                       |                                |          | 2(P)            |
|--------------------------------|--------------------------------|----------|-----------------|
| Note: $\ln n = \log_e n$ .     | The second section of          | A = O(B) | $A = \Omega(B)$ |
| A                              | В                              |          | uses /          |
|                                | n <sup>2</sup>                 | No       | 105             |
| $n^3$                          | 5000n(n+1)                     | No       | 305             |
| $0.0000001  n^3$               | カシャル カルカ カルティア                 | yes V    | SBX -01/        |
| log <sup>7</sup> n             | カチーライバ                         |          | yes,            |
|                                | $\log n$                       | 405      |                 |
| ln n                           | $\left(\frac{13}{12}\right)^n$ | No of    | yes -0,26       |
| $\left(\frac{12}{13}\right)^n$ | 1 (12)                         |          |                 |
|                                | log <sup>2</sup> n             | yest-    | oil yes         |
| $\sqrt{n}$                     | 4                              | 105      | INO             |
| log(n!)                        | $\log(n^n)$                    | yes      |                 |
| 108(                           |                                |          |                 |