Exercise Beer Production ARIMA - Solution

There is evidence of existence of seasonal unit root so seasonal difference -- > D=1

There is no evidence of existence of unit root so d=0. SO we need to seasonal difference (only this and not first difference).

If in first (not needed in this case) and seasonally differenced data (needed in this case) there is a peak in the seasonal lag in the PACF then the P=1. If there is a second peak in the 2*seasonal lag then P=2.

If in first (not needed in this case) and seasonally differenced data (needed in this case) there is a peak in the seasonal lag in the ACF then the Q=1. If there is a second peak in the 2*seasonal lag then Q=2.

Nothing of the above two is valid so P=0, Q=0 and also D=1 and d=0.

Chapter 7. The Box-Jenkins methodology for ARIM.			
15 / Md	Chapter 1. The		
-	ACF	PACF	
AR(1)	Exponential decay: on positive side if $\phi_1 > 0$ and alternating in sign starting on negative side if $\phi_1 < 0$.	Spike at lag 1, then cuts off to zero: spike positive if $\phi_1 > 0$, negative if $\phi_1 < 0$.	
	Exponential decay or damped sine-wave. The exact pattern depends on the signs and sizes of ϕ_1, \ldots, ϕ_p .	Spikes at lags 1 to p, then cuts off to zero.	
	Spike at lag 1 then cuts off to zero: spike positive if $\theta_1 < 0$, negative if $\theta_1 > 0$.	Exponential decay: on negative side if $\theta_1 > 0$ and alternating in sign starting on positive side if $\theta_1 < 0$.	
	Spikes at lags 1 to q, then cuts off to zero. -2: Expected patterns in the ACF and 1	Exponential decay or damped sine-wave. The exact pattern depends on the signs and sizes of	

Nothing of the above eight is valid so p=0, q=0

So our model is ARIMA (0,0,0) (0,1,0)