Elements of Topology Exam (June 2018) Solutions

No1. (a) (i) Def. A point be X is adherent point for a set A if each neighborhood of b intersects A. [bookwork] (ii) Proof.

= let $x \in A$ and u be an open neighborhood of x. by contradiction: assume that $U \cap A = \emptyset$, then $A \subset X \setminus U$. Since XIII is closed, we conclude that $A \subset XIII$ and, consequently, $x \in XIII$, thereby contradicting the assumption that $x \in XIII$, thereby contradicting the assumption that $x \in XIII$, thereby contradicting the assumption that $x \in XIII$. Thus, $x \in XIII$ are each neighborhood $x \in XIII$.

[5] $W \cap A \neq \emptyset$, let (by contradiction) $x \notin A$, i.e. $x \in X \setminus A$.

Since XIA is open, XIA can be treated as a neighborhood of se so that, by hypothesis, (XIA) \(A \neq \), which is

a contradiction with the fact that $A \subset \overline{A}$. Thus, $x \in A$. [bookwork]

(iii) The closure of A = (0,1) is A itself because every subset of a discrete topological space is closed. [2] [standard problem]

Describe the closure of: (6)

> $A = \left\{ x^2 + y^2 < 1 \right\}$ open disc (i)

[2]

 $\overline{A} = \left\{ x^2 + y^2 \le 1 \right\}$

 $A \neq \overline{A} \Rightarrow A$ is not closed

(i)

 $A = \{ x \leq 0, y \leq 0 \}$

 $\overline{A} = A$ and, therefore, A is closed

(iii)

 $A = \left\{ x + y = 1, x > 0 \right\}$

[2]

[2]

 $\overline{A} = A \cup \{(0,1)\}$

 $A \neq A \Rightarrow A \text{ is not closed}$

(iv)

 $A = \{ (x,y) = (m,n), \text{ where } m,n \in \mathbb{Z}$

[2]

 $\overline{A} = A$ and therefore, A is closed

[Standard]
question

[21

(a) Def. X is a Hausdorff topological space, if for [3] cany two distinct points $x,y \in X$ there exist neighborhoods U(x) and V(y) which are disjoint, i.e., $U(x) \cap V(y) = \emptyset$.

Let X = R with the trivial topology T = Lø, R3. [2] X is not Hausdorff, because for any two points De, $y \in \mathbb{R}$ the neighborhoods U(x) and V(y) coincide with \mathbb{R} and $U(x) \cap V(y) = \mathbb{R} \neq \emptyset$.

(b) A compact subset of a Hausdorff topological space is closed.

Proof. Y = X be a compact subset.

By contradiction, assume that y is a limit point of Y, but y & Y. For any point xeY and y we can find disjoint neighborhoods u(x) and $V_{\infty}(y)$. Obviously, the neighborhoods V(x), $x \in Y$, all together form an open covering of Y. Since Y is compact we may choose a finite subcover v(x), v(x), v(x) so that $Y = \mathcal{U}(x_1) \mathcal{U} \mathcal{U}(x_2) \mathcal{U} \dots \mathcal{U}(x_n)$. Consider the corresponding neighborhoods

Vzq(y),..., Vzcre(y) and take the intersection $V(y) = V_{x_1}(y) \cap V_{x_2}(y) \cap ... \cap V_{x_n}(y)$. Obviously, V(y) is an open neighborhood which is disjoint with each of U(xi) and, [5] therefore, we have $V(y) \cap (\mathcal{U}(x_i) \cup ... \cup \mathcal{U}(x_m)) = \emptyset$ Hence $V(y) \cap Y = \emptyset$ since Y is covered by $U(x_1),...,U(x_n)$ Thus, we have found a neighborhood of y which contains no points of Y. This contradicts the fact that y is a limit point of Y. Conclusion. Y contains all of its limit points and, therefore, is closed.

E standard question] partially unseen] (c) Compact or not?

(i) R with the topology $\tau = \{ \emptyset, R, (a, +\infty), a \in \mathbb{R} \}$

Indeed the cover $ll_n = (-n, +\infty)$, $n \in \mathbb{N}$ does not admit any finite subcover. is not compact.

11-1, neMy is not compact. This set is not closed (1 is a limit point, but 1 \$ 1-1, nEM) [2]

{ 302+y2+2=13 is not compact, because this set is not bounded (lii)

{ $x^4 + sin^4y = 1$ }. This set is not bounded because it contains the points $(1, 2\pi i k) \longrightarrow as k \longrightarrow \infty$ Not compact [2] (iv)

 $\{(\alpha,y)\in\mathbb{R}^2\mid \infty\in[0,1],y\in[0,1]\}$ is compact, because bounded and closed [2] (V)

0 ° 7 ×		()
No3_	11 X and Y be topological spaces.	
(a)	A map f: X -> Y is called continuous if [bo	nokwork]
[3] for every	Let X and Y be topological spaces. A map $f: X \to Y$ is called continuous if [bo ry open subset B=Y its preimage $f^{-1}(B)$ is open in X.	a
(b)		us kwark]
1	1 Y Be continuous out / a continuous	
La compa	cory: exsume that f(X) = Y is disconnected. Then	
there our	rary: eassume that $f(X) \subset Y$ is disconnected. Then early: eassume that $f(X) \subset Y$ is disconnected. Then a open sets $A,B \subset Y$ such that $A \cap f(X) \neq \emptyset$, $B \cap f(X) \neq \emptyset$ $A \cap B = \emptyset$, $A \cap f(X) \neq \emptyset$, $B \cap f(X) \neq \emptyset$ $A \cap B = \emptyset$. Then are both of open, as f is a	6.
1 (X) C	f (A) and f (B). They are both of open, as f is a	ontinuou.
Consider	f (A) and f (B). I be the factor partition of X	
Obviously	ohon disjoint non-empty subsets. Thus, X is disconnected.	
This con	$f'(A)$ and $f'(B)$. The freen partition of X open disjoint non-empty subsets. Thus, X is disconnected. Fradiction process the statement. $Y = \mathbb{R}$ standard, $f: X \to Y$, $f(x)$	$=\mathcal{X}$.
(c)		()
[2] (i)	X is not connected, (-0,0) ULO,+00) = 12 13 a flow subsets	, ,
[2] (ii)	Y is connected (Theorem 6, Lecture 9)	N)
[2] (iii)	I is continuous, as X is assorbed (1) is open in X	as
- ()	I is not a homeomorphism, X is discrete, here	
	as firs not continuous. (03 is that open in X, but (03) is that open in X.	
Indeed.	$f(0) = (f^{-1})^{-1}(0) = f(0)$ is not open in Y .	
[Z] (v)	No, because X is assumed the Connected news is a topological p	roperty)
[2] (1)	The only continuous map g: Y -> X is constant, R.g.,	,

Manifold or not?

Dey + y - De -1 = 0 (y-1)(x+1)=0

No. This set is not a manifold because the point (-1,1) does not have any neighborhood homeomorphic to

a ball BK. Indead, any punctured neighborhood of this point has at least 4 commeded components, whereas

BK & pt.3 is either connected (if k>1) or has 2 components (if k=1)

(ii) $\cosh x + \cosh y = 10$

We use the implicit function theorem

[standard auestion]

f (xy) = cosh xc + coshy $df = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial f}\right) = \left(\sinh xe, \sinh y\right)$

if df = 0 then $\sinh x = \sinh y = 0$ and x = y = 0;

but the point (0,0) does not belong to this level of f:

cosh 0 + cosh 0 = 1+1=2+11

Thus, this set is a manifold of dimension 1.

 $X = \{x = 0, y \geq 0\}$

[unseen]

vertical ray

X is not a manifold, because the point $(0,0) \in X$ does not have any neighborhood homeomorphic to B^k .

Classification theorem

Any closed connected surface is homeomorphic to the sphere 53, or to the sphere with a finite number of handles added 52+k.h, or [5]

to the sphere with a finite number of Möbius strips added 52+ m. M.

[bookwork]

M is obtained from the fundamental polygon

[standard question]

First we compute the Euler characteristic:

$$\chi = F - E + V = 1 - 4 + 1 = -2$$

number of faces F = 1

number of edges E = 4 i.e. A.B.C.D number of vertices V = 1 (as all vertices of the polygon have to be identified)

M is not oriented because the word contains combination _B ... B.

Thus, M is a non-orientable surface with $\gamma = -2$,

i.e. M = S + 4.M

(Sphere with 4 Mölius strips)