		_
	التاريخ	
	التوقيع	
	الأسم	\$
	التاريخ	
	التوقيع	
	الاسم	

١٥٧ ﴿ تابع ﴾ ث . ع . س / أول < Y > ٣- عودة الإلكترونات في الذرة المثارة إلى المستوى الأدني بعد انتهاء فترة العمر . ٤ ـ تساوى المفاعلة الحثية لملف مع المفاعلة السعوية لمكثف في دائرة الرنين . ٥ ـ توصيل الملف الابتدائي لمحول كهربي بمصدر متردد مع فتح دائرة الملف الثانوي . (ب) أولاً: اكتب العلاقة الرياضية المستخدمة لحساب كل مما يأتى: ١ ـ القيمة الفعالة لشدة التيار المتردد ٧- كثافة الفيض المغناطيسي عند نقطة بجوار سلك مستقيم يمر به تيار كهربي . ٣- قانون أوم لدائرة مغلقة . ثانياً: اذكر ثلاثة طرق لرفع كفاءة المحول الكهربي. (ج) في الدائرة الموضحة بالشكل المقابل وباستخدام قانونا كيرشوف (مع الالتزام باتجاهات التيار والمسار المحدد على الرسم) احسب كلاً من: $m V_{B2}$ القوة الدافعة الكهربية . $m V_{B2}$ $(V_{BA} = 5 \ V)$: علماً بأن I . I قيمة التيار السؤال الثالث: (أ) تخير الإجابة الصحيحة مما بين القوسين: ١ عند تطعيم بالورة سيليكون نقية بعنصر خماسي فإن البالورة تكون (موجبة الشحنة - سالبة الشحنة - متعادلة كهربياً) ٧ - النقاء الطيفي لأشعة الليزر يعني أن فوتوناتها لها (طول موجى واحد - أطوال موجية مختلفة - سرعة أكبر من سرعة الضوء) ٣- عند مرور تيار متردد في ملف حث عديم المقاومة فإن الطاقة تختزن داخل الملف

على شكل

في المقاومات

(مجال كهربي - مجال مغناطيسي - طاقة حرارية)

﴿ بِقِيةَ الْأُسِئِلَةِ فِي الصفحة الثالثة ﴾

٤ عند غلق المفتاح في الدائرة المقابلة فإن القدرة المستنفذة

٥ وحدة قياس كثافة الفيض المغناطيسي هي

 $(V.s / A - V.s / m - \Omega.C / m^2)$

(تزداد - تقل - تظل كما هي)

١٥٧ ث.ع.س/أول جمهورية مصر العربية وزارة التربية والتعليم امتحان شهادة إتمام الدراسة التاتوية العامة المصرية بجمهورية السودان لعام ٢٠١٦ < (نظام حدیث) / الدور الأول > الزمن: ثلاث ساعات الفيزياء

أجب عن أربعة أسئلة فقط مما يأتى: ﴿ الأسئلة في أربع صفحات › السوال الأول:

(أ) اذكر الفكرة العلمية التي بني عليها عمل كل مما يأتي:

١ الميكروسكوب الإلكتروني .

٢_ المحرك الكهربي .

٣- مصابيح الفلورسنت .

٤- التصوير ثلاثي الأبعاد .

٥ - البو ابات المنطقبة

(ب) أولاً: ما المقصود بكل مما يأتى ... ؟

١ ـ الدائرة المهتزة .

٧_ الطيف الخطي .

٣- كثافة الفيض المغناطيسي .

ثانياً: من الدائرة الكهربية الموضحة بالشكل أكمل الجدول الآتى:

قراءة الأميتر (أمبير)	قراءة الفولتميتر (فولت)	المفتاح K
		مفتو ح
		مغلق

(ج) سلك معدنى AB طوله m 0.25 m وضع داخل مجال مغناطيسي منتظم كثافة فيضه 7 0.4 T احسب كلاً من:

١ ـ ق . د . ك المستحثة المتولدة في السلك إذا تحرك عمو دياً على المجال بسر عة 2 m/s . ٢- القوة المغناطيسية المؤثرة على السلك إذا مر به تيار مستمر شدته A 0.5 A.

(أ) ماذا يحدث في كل من الحالات الآتية ... ؟

١ ـ تو صيل الو صلة الثنائية تو صيلاً أمامياً .

٢ استبدال الهدف في أنبوبة كولدج بآخر له عدد ذري أكبر .

< بقية الأسئلة في الصفحة الثانية >

المتاريخ	
التوقيع	
الأسم	ئة الفنية ،
التاريخ	على مسئولية اللج
التوقيع	رُوجِع ومطابق للأصل اليدوى ويطبع على مسئولية اللجنة الفنية ،
الاسم	رُوجع ومطابق للا
	التوقيع التاريخ الاسم التوقيع

			← ધ →		, أول	ع . س /	۱۵۷ ﴿ تابع ﴾ ث.
المقاومة في دائرة V 220 فمر	ع ملف حث مهمل . e قيمتها الفعالة						
	اتى للملف ، علماً ب						
,			بة التلوث	قياس نس	صلات لا	ا ا يأتى : نباه المود	السؤال الخامس: (أ) علل لكل مما ا- تستخدم أنا
	• .		•		_	_	٢_ أشعة الليز
الترددات العالية	دن . عديم المقاومة عند				المتردد ا	ة التيار ا	
) المتولدة	ستمرة . المستحثة العظمى				کهربی ر	لمحوّل الـــــــــــــــــــــــــــــــــــ	` ,
		ة التالية	ئات البياند	في العلاق	4 الميل أ		فى الد ثانياً : اذكر ه
X_{c} اذکر ما یساویه المیل فی العلاقات البیانیة التالیة X_{c} I_{max} V_{g} I_{eff}							
	شکل (۳)		\ /		(ىكل (١	
(حيث $I_{ m max}$ القيمة العظمى ، $I_{ m eff}$ القيمة الفعالة ، V فرق الجهد ، $R_{ m m}$ قيمة مضاعف الجهد ، f التردد ، $X_{ m c}$ المفاعلة السعوية لمكثف)							
الجهد ۱ اسرند Λ_c المعاطمة المتعوية المحلف) الجدول التالي يوضح العلاقة بين تغير عزم الازدواج الناتج من محرك كهربي وجيب							
الزاوية المحصورة بين العمودي على مستوى الملف وخطوط الفيض.							
ارسم العلاقةِ البيانية بحيث تكون ${\mathcal T}$ على المحور الرأسي و $\sin\Theta$ على المحور الأفقى							
							ومن الرسم
	T (N.m)	7.2	18	43.2	54	64.8	
	Sin O	0.1	0.25	0.6	0.75	0.9	
	 ١- أكبر عزم ازدواج يمكن الحصول عليه من الملف . 						

٢- كثافة الفيض المغناطيسي إذا علمت أن عزم ثنائي القطب المغناطيسي = 240 N.m/T

⟨⟩⟨⟩⟨⟩⟨⟩⟨⟩⟨⟩
⟨ lirate

۱۵۷ ﴿ تابع ﴾ ث . ع . س / أول ٢٥٠

(ب) أولاً: متى تكون القيم الآتية مساوية للصفر ... ؟

١ متوسط القوة الدافعة الكهربية المستحثة المتولدة في ملف يدور داخل مجال مغناطيسي .
 ٢ ق . د . ك المستحثة المتولدة في سلك يتحرك داخل مجال مغناطيسي .

٣ عزم الازدواج المؤثر على ملف يمر به تيار وموضوع داخل مجال مغناطيسى .

ثانياً: استنتج أن قيمة مجزئ التيار اللازم توصيله مع ملف الجلفانومتر لتحويله إلى أميتر

 $R_s = rac{I_{g-Rg}}{I-I_g}$: تتعين من العلاقة

- (جـ) استخدم فرق جهد قدره 600V بين الكاثود والأنود لميكروسكوب إلكتروني ، احسب كلاً من : ١- كمية تحرك الإلكترون المتحرر .
 - ٢_ الطول الموجى للإلكترون .
- $1.6 imes 10^{ ext{-}19}~\mathrm{C}$ وشحنة الإلكترون $\mathrm{C}=0.625 imes 10^{ ext{-}34}~\mathrm{Kg.m^2/s}$ وشحنة الإلكترون $\mathrm{C}=0.1 imes 10^{ ext{-}31}~\mathrm{Kg}$ وكتلة الإلكترون $\mathrm{C}=0.1 imes 10^{ ext{-}31}~\mathrm{Kg}$.

السؤال الرابع:

(أ) اذكر استخداماً واحداً لكل مما يأتى:

- **١ ــ** الأوميتر .
- ٢ أفران الحث.
- ٣_ دائرة الرنين
- ١- دانره انرئين .١- الهولوجرام .
- هـ الترانزستور n.p.n.

(ب) أولاً: قارن بين كل مما يأتى:

١- المقاومة الأومية والمفاعلة السعوية . (من حيث تحولات الطاقة في كل منهما)

٧- الأميتر ذو الملف المتحرك والأميتر الحرارى . (من حيث فكرة عمل كل منهما)

٣- مجموعة ليمان ومجموعة فوند . (من حيث منطقة الطيف التي يقع فيها كل منهما) ثانياً : الشكل التالي يبين مجموعة من البوابات المنطقية تكون دائرة إلكترونية .

من الشكل أكمل جدول التحقق ثم حول الخرج إلى رقم عشرى .

Ξ.			
	A	В	Out
	0	0	
	0	1	
	1	0	
	1	1	

ربقية الأسئلة في الصفحة الرابعة >

الدرجة العظمى (۳۰) الدرجة الصغرى (۳۰) عدد الصفحات (۰)

جمهورية مصر العربية وزارة التربية والتعليم امتحان شهادة إتمام الدراسة الثانوية العامة المصرية بجمهورية السودان لعام ٢٠١٦م (نظام حديث) نموذج إجابة [الفيزياء]

[101]

الدور / الأول

لكل سؤال (١٥ درجة) × ٤ أسئلة يجيب عنها الطالب = ٦٠ درجة

إجابة السؤال الأول (٥١ درجة)

- أ) (٥ درجات لكل فقرة درجة)
- ١- الطبيعة المزدوجة للإلكترون.
- ٢- عزم الازدواج المؤثر على ملف يمر به تيار كهربي وموضوع داخل مجال مغناطيسي .
 - ٣- الحث الذاتي .
 - ٤ تداخل الضوء .
 - ٥- الجبر الثنائي .

(**ب**

أولا: (٣درجات) لكل فقرة درجة

- ١- الدائرة المهتزة: هي دائرة يتم فيها تبادل الطاقة المختزنة في الملف على هيئة مجال
 مغناطيسي مع الطاقة المختزنة في المكثف على هيئة مجال كهربي.
- ٢- الطيف الخطى: هو الطيف الذي يتضمن توزيعا غير مستمر للترددات أو الأطوال الموجية.
 - ٣- كثافة الفيض المغناطيسي: تقدر بعدد خطوط الفيض التي تمر عموديا بوحدة المساحات .

ثانیا: (۳ درجات)

الدرجة	قراءة الأميتر	الدرجة	قراءة الفولتميتر	المفتاح K
درجة	0.5	نصف	2	مفتوح
درجة	0.6	نصف	2.4	مغلق

ج) (٤ درجات)

$$($$
درجة $)$ e . m . $f = 0.4 \times 0.25 \times 2 = 0.2 \text{ V}$

$$($$
درجة $)$ $F = B I L$

$$F = 0.4 \times 0.5 \times 0.25 = 0.05$$
 N

إجابة السؤال الثاني (٥١ درجة)

١- يزداد الجهد الحاجز ويمر تيار ضعيف جدا عبر الوصلة .

٢- يزداد تردد الطيف الخطى . أو يقل الطول الموجى للطيف الخطى .

٣- تبعث الذرة بفوتون واحد طاقته v=1 بالانبعاث التلقائي .

٤ - يمر بالدائرة تيار كبير وتكون معاوقة الدائرة أقل ما يمكن .

٥- لا يمر تيار في الملف الابتدائي .

ب)

أولا: (٣ درجات) لكل فقرة درجة

 $I_{\text{eff}} = I_{\text{max}} \sin \Theta$ القيمة الفعالة لشدة التيار المتردد - ا

 $\mathrm{B}=rac{\mu\,I}{2\pi\,d}$ حثافة الفيض المغناطيسي بجوار سلك - ۲

 $V_{B} = I \ (R + r)$ قانون أوم للدائرة المغلقة -٣

ثانيا: (٣ درجات) يختار الطالب ثلاث طرق فقط لكل طريقة درجة

١- يصنع القلب الحديدي من شرائح معدنية معزولة .

٢- تصنع الملفات من سلك من النحاس.

٣- يوضع الملف الابتدائي بداخل الملف الثانوي .

٤- يصنع القلب من الحديد المطاوع السليكوني.

ج) (٤ درجات)

نتتبع المسار رقم ١ من B الى A

$$0.8 \times 5 - V_{B2} + 0.8 \times 1 + 0.8 \times 4 + 5 = 0$$

$$(\, 2.5 \,)$$
 $(\, 2.2 + 0.8 \, + 3.2 \, + 5 \, = 0 \,)$

$$($$
نصف درجة $)$ $V_{B2} = 13 \text{ Volt}$

$$I=0.8-I_3$$
 B نتتبع المسار رقم ۲ بعد تطبيق كيرشوف الأول عند

$$(i - I_3 - 3.5 - I_3 - 3I_3 + 5 = 0)$$
 نصف درجة

$$I = 0.8 - 0.3 = 0.5 \text{ A}$$
 (درجة) $I_3 = 0.3$

إجابة السؤال الثالث (٥١ درجة)

.
$$\Omega$$
. C /m² -°

ب)

الجلفانومتر متصل مع المجزئ على التوازي

$$($$
 نصف درجة $)$

$$\left(\text{ نصف درجة} \right)$$
 $I_{g} R_{g} = I_{s} R_{s}$

$$($$
درجة $)$ $R_s = \frac{I_{g R_g}}{I_s}$

$$($$
 نصف درجة $)$ $R_s = \frac{I_{g R_g}}{I - I_g}$

$$($$
درجة $)$ $eV = \frac{1}{2} mv^2$

(نصف درجة)
$$1.6 \times 10^{-19} \times 600 = \frac{1}{2} \times 9.1 \times 10^{-31} \text{ v}^2$$

$$V = 14.525 \times 10^6 \text{ m/s}$$
 نصف درجة

(نصف درجة)
$$P_L = mv = 9.1 \times 10^{-31} \times 14.525 \times 10^6$$

$$(i = 1.32 \times 10^{-32} \text{ Kg.m/s})$$

$$\lambda = \frac{h}{P_r}$$
 نصف درجة)

$$\lambda = \frac{6.625 \times 10^{-34}}{1.32 \times 10^{-23}} = 5.02 \times 10^{-11} \,\mathrm{m}$$

إجابة السؤال الرابع (١٥ درجة)

- أ) (٥ درجات لكل فقرة درجة)
- ١ قياس قيمة مقاومة مجهولة .
 - ٢ صهر الفلزات .

ثانیا: (۳ درجات)

- ٣- دوائر الاستقبال اللاسلكي .
- ٤ تكوين صورة ثلاثية الأبعاد
- ٥- يستخدم كمكبر أو كمفتاح .

ب)

- أولا: (٣ درجات) لكل فقرة درجة
- ١- المقاومة الأومية تستنفذ فيها الطاقة على شكل حرارة . المفاعلة السعوية تختزن فيها الطاقة على شكل مجال كهربي .
- ٢- الأميتر ذو الملف المتحرك: التأثير المغناطيسي للتيار الكهربي.

الأميتر الحرارى: التأثير الحرارى للتيار الكهربي.

٣- مجموعة ليمان: تقع في منطقة الأشعة فوق البنفسجية.

مجموعة فوند: تقع في أقصى المنطقة تحت الحمراء.

A	В	Out
0	0	1
0	1	1
1	0	0
1	1	0

- ١ تكملة الجدول در جتان (لكل مكان خالى نصف درجة)
- ٢- التحويل الى رقم عشرى (نصف درجة للخطوات ونصف درجة للناتج)

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	الرقم العشرى $1 + 1 = 7$
	0 0 2 1	(٤ درجات)
(نصف درجة)	$Z = \frac{V}{I} = \frac{220}{4} = 55 \Omega$	المعاوقة الكلية للدائرة
(نصف درجة)	$R = \frac{P_W}{I^2} = \frac{704}{16} = 44 \Omega$	مقاومة المصباح
(درجة)	$Z = \sqrt{R^2 + X_L^2}$	
(نصف درجة)	$(55)^2 = (44)^2 + X_L^2$	
(نصف درجة)	$X_L = 33$	
(درجة)	$L = \frac{X_L}{2\pi f} = \frac{33}{2 \times \frac{22}{7} \times 42} = 0.125 \text{ H}$	

0 0 1 1

إجابة السؤال الخامس (١٥ درجة)

- أ) (٥ درجات لكل فقرة درجة)
- 1- لأنها تتميز بحساسيتها الشديدة للعوامل المحيطة بها مثل الضوء والحرارة والضغط والتلوث الذري والكيميائي.
- ٢- لأنها لا تفقد شدتها بزيادة المسافة التي تقطعها لكونها حزمة متوازية من الأشعة المترابطة .
 - ٣- لقدرتها على الحيود خلال البلورات .
- ٤- لأن المفاعلة الحثية تتناسب طرديا مع التردد وكلما زاد التردد زادت المفاعلة وقلت شدة التيار .
- ٥- لأن الفيض الناتج عن التيار المستمر ثابت الشدة فلا يحدث تغير في قطع الفيض في الملف الثانوي إلا لحظيا فقط.
 ب)
 - أولا: (٣ درجات) يختار ثلاث عوام فقط لكل عامل درجة
 - ١ عدد لفات الملف
 - ٢ كثافة الفيض المغناطيسي .
 - ٣- مساحة وجه الملف.
 - ٤ ـ التردد الزاوى .
 - ثانیا: (۳ درجات) لکل شکل درجة.
 - $\sqrt{2}$ -1
 - Ig -Y
 - $\frac{1}{2\pi C}$ Υ
 - ج) (٤ درجات) الرسم البياني درجة
 - ۱- أكبر عزم ازدواج = N.m (درجة)
 - (درجة) Slope = $\frac{21.6}{0.3}$ = 72
 - (درجة) $B = \frac{Slope}{m_d} = \frac{72}{240} = 0.3 \text{ T}$

(انتهى نموذج الإجابة)