$11n_{96} (K11n_{96})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -49163590906u^{11} + 107218013353u^{10} + \dots + 21229569666128b + 7549955391253, \\ &- 3432579931219u^{11} + 9265624647069u^{10} + \dots + 891641925977376a + 779226085539559, \\ u^{12} - 18u^{10} - 3u^9 + 95u^8 + 104u^7 + 172u^6 - 39u^5 - 97u^4 - 126u^3 + 90u^2 + 56u + 21 \rangle \\ I_2^u &= \langle u^4 + 2u^3 + b, \ 2u^4 + 4u^3 + u^2 + a + 3u, \ u^5 + 3u^4 + 3u^3 + 3u^2 + 2u + 1 \rangle \\ I_3^u &= \langle -2a^3 - a^2 + b - 5a + 3, \ a^4 + 2a^2 - 3a + 1, \ u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4.92 \times 10^{10} u^{11} + 1.07 \times 10^{11} u^{10} + \dots + 2.12 \times 10^{13} b + 7.55 \times 10^{12}, \ -3.43 \times 10^{12} u^{11} + 9.27 \times 10^{12} u^{10} + \dots + 8.92 \times 10^{14} a + 7.79 \times 10^{14}, \ u^{12} - 18 u^{10} + \dots + 56 u + 21 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.00384973u^{11} - 0.0103916u^{10} + \dots + 0.0171393u - 0.873923 \\ 0.00231581u^{11} - 0.00505041u^{10} + \dots + 0.944426u - 0.355634 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.00153392u^{11} - 0.00534123u^{10} + \dots - 0.927287u - 0.518289 \\ 0.00231581u^{11} - 0.00505041u^{10} + \dots + 0.944426u - 0.355634 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00463890u^{11} + 0.00727890u^{10} + \dots - 0.777940u + 1.33085 \\ -0.00697735u^{11} + 0.00595506u^{10} + \dots - 0.776534u + 0.0957645 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00463890u^{11} + 0.00727890u^{10} + \dots - 0.777940u + 1.33085 \\ -0.00382620u^{11} + 0.00729647u^{10} + \dots - 0.466333u + 0.248621 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0229677u^{11} + 0.00971661u^{10} + \dots - 4.00235u - 0.352817 \\ -0.00186562u^{11} - 0.00155113u^{10} + \dots + 0.277243u - 0.308445 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.00384973u^{11} + 0.0103916u^{10} + \dots - 0.0171393u + 0.873923 \\ 0.00382620u^{11} - 0.00729647u^{10} + \dots + 0.466333u - 0.248621 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.00384973u^{11} + 0.0103916u^{10} + \dots + 0.466333u - 0.248621 \\ 0.00382620u^{11} - 0.00729647u^{10} + \dots + 0.466333u - 0.248621 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.00384973u^{11} + 0.0103916u^{10} + \dots + 0.466333u - 0.248621 \\ 0.00382620u^{11} - 0.00729647u^{10} + \dots + 0.466333u - 0.248621 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_5	$u^{12} - 18u^{10} + \dots - 56u + 21$	
c_2	$u^{12} + 36u^{11} + \dots - 644u + 441$	
c_3	$u^{12} + 43u^{10} + \dots - 242u + 713$	
c_4	$u^{12} - 3u^{11} + 4u^{10} - u^9 + u^8 - 6u^7 + 8u^6 + u^5 - 5u^4 - u^3 + 4u^2 - 3u$	+1
<i>c</i> ₆	$u^{12} + 2u^{11} + \dots + 211u + 199$	
c ₇	$u^{12} + 4u^{11} + \dots - 56u + 48$	
c_8, c_{11}	$u^{12} + 2u^{11} + \dots - 2u + 1$	
<i>c</i> 9	$u^{12} + 9u^{11} + \dots + 32u + 8$	
c_{10}	$u^{12} - u^{11} + \dots - u + 1$	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{12} - 36y^{11} + \dots + 644y + 441$
c_2	$y^{12} - 268y^{11} + \dots + 15582980y + 194481$
c_3	$y^{12} + 86y^{11} + \dots - 2050686y + 508369$
c_4	$y^{12} - y^{11} + \dots - y + 1$
c_6	$y^{12} - 50y^{11} + \dots - 181433y + 39601$
c ₇	$y^{12} + 14y^{11} + \dots + 19136y + 2304$
c_8,c_{11}	$y^{12} + 30y^{11} + \dots - 34y + 1$
<i>c</i> 9	$y^{12} - 5y^{11} + \dots - 160y + 64$
c_{10}	$y^{12} - 31y^{11} + \dots + 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.695715 + 0.738682I		
a = 0.84389 - 1.18718I	0.40587 + 4.64089I	1.41872 - 4.81790I
b = -0.353721 - 0.071932I		
u = -0.695715 - 0.738682I		
a = 0.84389 + 1.18718I	0.40587 - 4.64089I	1.41872 + 4.81790I
b = -0.353721 + 0.071932I		
u = 0.778147 + 0.299444I		
a = -0.811194 - 0.475700I	-1.39285 - 0.48352I	-6.04456 + 0.14475I
b = 0.333912 - 0.014682I		
u = 0.778147 - 0.299444I		
a = -0.811194 + 0.475700I	-1.39285 + 0.48352I	-6.04456 - 0.14475I
b = 0.333912 + 0.014682I		
u = -0.182826 + 1.285270I		
a = 0.012072 + 0.419952I	-4.09909 - 2.92553I	-6.51732 + 0.13616I
b = -0.18796 + 1.60199I		
u = -0.182826 - 1.285270I		
a = 0.012072 - 0.419952I	-4.09909 + 2.92553I	-6.51732 - 0.13616I
b = -0.18796 - 1.60199I		
u = -0.246048 + 0.302553I		
a = -0.835828 - 0.015119I	1.34063 - 0.78648I	4.38906 + 1.25430I
b = -0.578983 + 0.267705I		
u = -0.246048 - 0.302553I		
a = -0.835828 + 0.015119I	1.34063 + 0.78648I	4.38906 - 1.25430I
b = -0.578983 - 0.267705I		
u = -3.01586 + 0.46060I		
a = -0.161563 + 0.704724I	18.0497 + 1.3274I	-3.03771 + 0.06650I
b = 0.81768 + 2.58567I		
u = -3.01586 - 0.46060I		
a = -0.161563 - 0.704724I	18.0497 - 1.3274I	-3.03771 - 0.06650I
b = 0.81768 - 2.58567I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 3.36230 + 0.99651I		
a = -0.214046 - 0.589764I	17.7719 - 9.0470I	-3.20819 + 3.73893I
b = 0.96907 - 2.80816I		
u = 3.36230 - 0.99651I		
a = -0.214046 + 0.589764I	17.7719 + 9.0470I	-3.20819 - 3.73893I
b = 0.96907 + 2.80816I		

 $II. \\ I_2^u = \langle u^4 + 2u^3 + b, \ 2u^4 + 4u^3 + u^2 + a + 3u, \ u^5 + 3u^4 + 3u^3 + 3u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{4} - 4u^{3} - u^{2} - 3u \\ -u^{4} - 2u^{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} - 2u^{3} - u^{2} - 3u \\ -u^{4} - 2u^{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} - 3u^{3} - 2u^{2} - u - 1 \\ u^{4} + 3u^{3} + 3u^{2} + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} - 3u^{3} - 2u^{2} - u - 1 \\ u^{3} + 2u^{2} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + 2u^{2} + u + 2 \\ u^{4} + 3u^{3} + 4u^{2} + 2u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{4} + 4u^{3} + u^{2} + 3u \\ -u^{3} - 2u^{2} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{4} + 4u^{3} + u^{2} + 3u \\ -u^{3} - 2u^{2} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-10u^4 25u^3 19u^2 24u 15$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^5 + 3u^4 + 3u^3 + 3u^2 + 2u + 1$
c_2	$u^5 + 3u^4 - 5u^3 + 3u^2 - 2u + 1$
<i>c</i> ₃	$u^5 - u^4 - 2u^3 + 9u^2 - 17u + 11$
C ₄	$u^5 - 2u^4 + 2u^3 + u^2 - 2u + 1$
<i>C</i> ₅	$u^5 - 3u^4 + 3u^3 - 3u^2 + 2u - 1$
	$u^5 + 3u^4 - 5u^3 - 8u^2 + 9u + 11$
	$u^5 + u^4 - 2u^3 + 3u^2 + 7u + 13$
<i>c</i> ₈	$u^5 - u^4 + 3u^3 - 3u^2 + 2u - 1$
c_9	$u^5 - u^3 + u^2 + u - 1$
c_{10}	$u^5 + u^4 - u^3 - u^2 + 1$
c_{11}	$u^5 + u^4 + 3u^3 + 3u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^5 - 3y^4 - 5y^3 - 3y^2 - 2y - 1$
c_2	$y^5 - 19y^4 + 3y^3 + 5y^2 - 2y - 1$
c_3	$y^5 - 5y^4 - 12y^3 + 9y^2 + 91y - 121$
c_4	$y^5 + 4y^3 - 5y^2 + 2y - 1$
c_6	$y^5 - 19y^4 + 91y^3 - 220y^2 + 257y - 121$
c ₇	$y^5 - 5y^4 + 12y^3 - 63y^2 - 29y - 169$
c_8, c_{11}	$y^5 + 5y^4 + 7y^3 + y^2 - 2y - 1$
<i>c</i> 9	$y^5 - 2y^4 + 3y^3 - 3y^2 + 3y - 1$
c_{10}	$y^5 - 3y^4 + 3y^3 - 3y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.128506 + 0.862169I		
a = 0.520756 + 0.228796I	-3.58220 + 3.70382I	-1.95503 - 6.72693I
b = 0.08973 + 1.51845I		
u = 0.128506 - 0.862169I		
a = 0.520756 - 0.228796I	-3.58220 - 3.70382I	-1.95503 + 6.72693I
b = 0.08973 - 1.51845I		
u = -0.586994 + 0.535944I		
a = 1.27460 - 2.43458I	-0.27969 + 5.17259I	-5.66442 - 10.18801I
b = -0.214528 - 0.727972I		
u = -0.586994 - 0.535944I		
a = 1.27460 + 2.43458I	-0.27969 - 5.17259I	-5.66442 + 10.18801I
b = -0.214528 + 0.727972I		
u = -2.08302		
a = 0.409288	-5.43570	-9.76110
b = -0.750397		

III.
$$I_3^u = \langle -2a^3 - a^2 + b - 5a + 3, \ a^4 + 2a^2 - 3a + 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ 2a^{3} + a^{2} + 5a - 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2a^{3} - a^{2} - 4a + 3 \\ 2a^{3} + a^{2} + 5a - 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{3} + a^{2} + 3a - 1 \\ 2a^{3} + a^{2} + 5a - 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a^{3} + a^{2} + 3a - 1 \\ a^{3} + 2a - 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2a^{3} - a^{2} - 4a + 3 \\ 2a^{3} + a^{2} + 5a - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a \\ -a^{3} - 2a + 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5a^3 a^2 11a + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_5	$(u+1)^4$
c_3, c_4	$u^4 - 2u^3 + 2u^2 - u + 1$
c_6,c_{11}	$(u^2 - u + 1)^2$
	u^4
c ₈	$(u^2+u+1)^2$
c_9, c_{10}	$u^4 - u^3 - u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4	$y^4 + 2y^2 + 3y + 1$
c_6, c_8, c_{11}	$(y^2+y+1)^2$
	y^4
c_9, c_{10}	$y^4 - 3y^3 + 5y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.570696 + 0.107280I	-1.64493 + 2.02988I	-1.42268 - 1.82047I
b = 0.500000 + 0.866025I		
u = 1.00000		
a = 0.570696 - 0.107280I	-1.64493 - 2.02988I	-1.42268 + 1.82047I
b = 0.500000 - 0.866025I		
u = 1.00000		
a = -0.57070 + 1.62477I	-1.64493 + 2.02988I	-7.07732 - 2.50966I
b = 0.500000 + 0.866025I		
u = 1.00000		
a = -0.57070 - 1.62477I	-1.64493 - 2.02988I	-7.07732 + 2.50966I
b = 0.500000 - 0.866025I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^5+3u^4+\cdots+2u+1)(u^{12}-18u^{10}+\cdots-56u+21)$
c_2	$(u+1)^4(u^5+3u^4-5u^3+3u^2-2u+1)$ $\cdot (u^{12}+36u^{11}+\cdots-644u+441)$
c_3	$(u^4 - 2u^3 + 2u^2 - u + 1)(u^5 - u^4 - 2u^3 + 9u^2 - 17u + 11)$ $\cdot (u^{12} + 43u^{10} + \dots - 242u + 713)$
c_4	$(u^{4} - 2u^{3} + 2u^{2} - u + 1)(u^{5} - 2u^{4} + 2u^{3} + u^{2} - 2u + 1)$ $\cdot (u^{12} - 3u^{11} + 4u^{10} - u^{9} + u^{8} - 6u^{7} + 8u^{6} + u^{5} - 5u^{4} - u^{3} + 4u^{2} - 3u + 1)$
c_5	$((u+1)^4)(u^5 - 3u^4 + \dots + 2u - 1)(u^{12} - 18u^{10} + \dots - 56u + 21)$
c_6	$(u^{2} - u + 1)^{2}(u^{5} + 3u^{4} - 5u^{3} - 8u^{2} + 9u + 11)$ $\cdot (u^{12} + 2u^{11} + \dots + 211u + 199)$
c_7	$u^{4}(u^{5} + u^{4} + \dots + 7u + 13)(u^{12} + 4u^{11} + \dots - 56u + 48)$
c ₈	$((u^{2}+u+1)^{2})(u^{5}-u^{4}+\cdots+2u-1)(u^{12}+2u^{11}+\cdots-2u+1)$
<i>c</i> ₉	$(u^4 - u^3 - u^2 + u + 1)(u^5 - u^3 + u^2 + u - 1)(u^{12} + 9u^{11} + \dots + 32u + 8)$
c_{10}	$(u^4 - u^3 - u^2 + u + 1)(u^5 + u^4 - u^3 - u^2 + 1)(u^{12} - u^{11} + \dots - u + 1)$
c_{11}	$((u^{2}-u+1)^{2})(u^{5}+u^{4}+\cdots+2u+1)(u^{12}+2u^{11}+\cdots-2u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y-1)^4(y^5 - 3y^4 - 5y^3 - 3y^2 - 2y - 1)$ $\cdot (y^{12} - 36y^{11} + \dots + 644y + 441)$
c_2	$(y-1)^4(y^5 - 19y^4 + 3y^3 + 5y^2 - 2y - 1)$ $\cdot (y^{12} - 268y^{11} + \dots + 15582980y + 194481)$
c_3	$(y^4 + 2y^2 + 3y + 1)(y^5 - 5y^4 - 12y^3 + 9y^2 + 91y - 121)$ $\cdot (y^{12} + 86y^{11} + \dots - 2050686y + 508369)$
c_4	$(y^4 + 2y^2 + 3y + 1)(y^5 + 4y^3 + \dots + 2y - 1)(y^{12} - y^{11} + \dots - y + 1)$
c_6	$(y^{2} + y + 1)^{2}(y^{5} - 19y^{4} + 91y^{3} - 220y^{2} + 257y - 121)$ $\cdot (y^{12} - 50y^{11} + \dots - 181433y + 39601)$
c_7	$y^{4}(y^{5} - 5y^{4} + 12y^{3} - 63y^{2} - 29y - 169)$ $\cdot (y^{12} + 14y^{11} + \dots + 19136y + 2304)$
c_8, c_{11}	$(y^{2} + y + 1)^{2}(y^{5} + 5y^{4} + 7y^{3} + y^{2} - 2y - 1)$ $\cdot (y^{12} + 30y^{11} + \dots - 34y + 1)$
c_9	$(y^4 - 3y^3 + 5y^2 - 3y + 1)(y^5 - 2y^4 + 3y^3 - 3y^2 + 3y - 1)$ $\cdot (y^{12} - 5y^{11} + \dots - 160y + 64)$
c_{10}	$(y^4 - 3y^3 + 5y^2 - 3y + 1)(y^5 - 3y^4 + 3y^3 - 3y^2 + 2y - 1)$ $\cdot (y^{12} - 31y^{11} + \dots + 5y + 1)$