可靠性分析技术报告

一、代码结构概述

二、核心详解

1. 数据预处理

○ 输入格式: ['组数': [...], '周期': [...]}

。 关键操作:

1 | lifetimes = df['周期'].sort_values().values # 排序后的寿命数据

2. 描述性统计

指标	计算公式	说明
偏度	scipy.stats.skew	数据分布不对称性
峰度	scipy.stats.kurtosis	数据分布尖锐度

3. 非参数可靠性分析

○ 关键函数:

1 | hazard_rate = prob_failure / last_reliability # $\lambda(t)$ = f(t)/R(t-1)

2 median_rank = (i - 0.3)/(n + 0.4) # 中位秩估计

4. 威布尔分布拟合

○ 使用 reliability.Fit_Weibull_2P 进行最大似然估计

。 关键参数:

形状参数β: 控制失效模式 (β<1: 早期失效; β=1: 随机失效; β>1: 磨损失效)

■ 尺度参数a:特征寿命(63.2%失效时间)

本质

1. 直接拟合对象:

■ **原始失效时间数据** (如 lifetimes = [12, 10, 18,...])

■ 原理:通过极大似然估计或最小二乘法,直接拟合失效时间的概率分布。

2. 间接指标的关系:

所有其他指标(f(t)、F(t)、R(t)、λ(t))均可通过威布尔分布的参数(α, β) 派生计算: 概率密度函数(PDF)

$$f(t) = rac{eta}{lpha}igg(rac{t}{lpha}igg)^{eta-1}e^{-(t/lpha)^eta}$$

累积分布函数 (CDF)

$$F(t) = 1 - e^{-(t/lpha)^eta}$$

可靠度函数

$$R(t)=e^{-(t/lpha)^eta}$$

故障率函数

$$\lambda(t) = rac{eta}{lpha} igg(rac{t}{lpha}igg)^{eta-1}$$

参数说明:

■ α (alpha): 尺度参数 (特征寿命)

■ β (beta): 形状参数

■ β > 1: 耗损故障

■ *t*: 时间变量

5. 可视化系统

○ 六子图布局:

```
1 plt.subplot(3,2,1) # f(t)
2 plt.subplot(3,2,2) # λ(t)
3 plt.subplot(3,2,3) # F(t)
4 plt.subplot(3,2,4) # R(t)
5 plt.subplot(3,2,5) # 中位秩F(t)
6 plt.subplot(3,2,6) # 中位秩R(t)
```

三、关键公式与原理

1. 威布尔分布函数

○ 概率密度函数 (PDF):

$$f(t) = rac{eta}{lpha}igg(rac{t}{lpha}igg)^{eta-1}e^{-(t/lpha)^eta}$$

。 累积分布函数 (CDF):

$$F(t) = 1 - e^{-(t/lpha)^eta}$$

2. 中位秩估计 (Benard公式)

$$F(t_i) = \frac{i - 0.3}{n + 0.4}$$

。 修正小样本偏差, 比简单比例(i/n)更准确

3. 故障率函数

$$\lambda(t) = rac{f(t)}{R(t)} = rac{eta}{lpha} igg(rac{t}{lpha}igg)^{eta-1}$$

4. 威布尔概率图

。 坐标变换:

$$\ln[-\ln(1-F(t))] = \beta \ln(t) - \beta \ln(\alpha)$$

拟合线斜率=β, 截距=-βln(α)

四、典型输出结果

1. 描述性统计

统 计 量	样本量	平均寿命	中位寿命	最小寿命	最大寿命	标准差	偏度	峰度
值	20	15.65	15.5	10	20	2.83354	-0.0189053	-0.693811

○ **关键指标**: 涵盖了集中趋势(平均、中位)、离散程度(标准差、极差)和分布形态(偏度、 峰度)。

○ 数据解读:

- 偏度接近0,说明寿命分布基本对称;
- 负峰度表明数据分布较正态分布更平坦(低峰态)。

周 期 (t)	失 效 数 (d)	风 险 集 (n)	f(t)	F(t)	R(t)	λ(t)	中位秩 F(t)	中位秩 R(t)
0	10	1	0.05	0.05	0.95	0.05	0.0343137	0.965686
1	12	2	0.1	0.15	0.85	0.105263	0.0833333	0.916667
2	13	1	0.05	0.2	0.8	0.0588235	0.132353	0.867647
3	14	3	0.15	0.35	0.65	0.1875	0.181373	0.818627
4	15	3	0.15	0.5	0.5	0.230769	0.230392	0.769608
5	16	3	0.15	0.65	0.35	0.3	0.279412	0.720588
6	17	2	0.1	0.75	0.25	0.285714	0.328431	0.671569
7	18	1	0.05	0.8	0.2	0.2	0.377451	0.622549
8	19	1	0.05	0.85	0.15	0.25	0.426471	0.573529
9	20	3	0.15	1	0	1	0.47549	0.52451

数据解读:

○ 周期(t): 观测的时间点或区间。

• 失效数 (d): 在该周期内发生的失效事件数量。

○ 风险集 (n): 在该周期开始时尚未失效的样本数 (即"风险集"大小)。

○ f(t): 失效概率密度 (失效数 / 初始样本总数)。

○ **F(t)**: 累积失效概率

$$F(t) = \sum f(t)$$

○ R(t): 可靠度

$$R(t) = 1 - F(t)$$

∘ λ(t): 风险率

$$\lambda(t) = rac{f(t)}{R(t)}$$

○ **中位秩 F(t)**: 基于Bernard公式

中位秩
$$F(t) = rac{i - 0.3}{n + 0.4}$$

计算的累积失效概率中位秩估计。

○ 中位秩 R(t): 可靠度的中位秩估计

中位秩
$$R(t) = 1 -$$
中位秩 $F(t)$

2. 周期数据威布尔拟合结果

威布尔分布拟合结果: 形状参数β=6.37, 尺度参数α=16.81

1 形状参数β=6.37, 尺度参数α=16.81

3. 可视化效果

可靠性函数对比: 经验值(实线+标记) vs 威布尔拟合(虚线)

。 六子图对比:

。 周期数据威布尔概率图:

威布尔概率图: 观察数据点与理论直线的偏离

1 weibull_fit.plot() # 线性度越好,拟合越合理

○ **统计检验** (如K-S检验):

```
1 from scipy.stats import kstest
2 D, p = kstest(lifetimes, lambda x: 1 - np.exp(-(x/alpha)**beta))
3 print(f"K-S检验p值={p:.3f} (p>0.05接受威布尔假设)")
```

K-S检验p值=0.833 (p>0.05接受威布尔假设)

• 关键可靠性指标

	B10寿命(10%失效)	B50寿命(中位寿命)	特征寿命(α)	形状参数(β)
值	11.8095	15.8705	16.8098	6.37395

• **B10寿命**: 10%产品发生失效的时间 (11.8095)

$$t_{0.1} = lpha \cdot (-\ln(1-0.1))^{1/eta} = lpha \cdot (-\ln 0.9)^{1/eta}$$

• **Bso寿命**: 50%产品发生失效的时间 (中位寿命, 15.8705)

$$t_{0.5}=lpha\cdot(-\ln0.5)^{1/eta}=lpha\cdot(\ln2)^{1/eta}$$

特征寿命(α): 威布尔分布尺度参数 (63.2%失效概率对应的时间, 16.8098)

$$lpha=t\mid\mid F(t)=1-e^{-1}pprox 0.632$$
 时的寿命值

• 形状参数(β): 威布尔分布形状参数 (6.37395, β>1表示耗损型失效模式)

 β 通过威布尔概率图或最大似然估计求得

五、工程应用建议

1. 数据要求

○ 最小样本量: ≥5个失效数据

。 记录完整的失效时间

2. 结果解读

ο β>1: 磨损失效主导, 建议预防性维护

。 B10寿命: 10%产品失效时间, 关键维护节点

3. 注意事项

○ 中位秩适用于小样本 (n<20)

。 威布尔假设需通过概率图验证

六、扩展改进方向

蒙特卡洛仿真+Bootstrap重采样

蒙特卡洛仿真 (Monte Carlo Simulation) 是一种通过**随机抽样**和**统计计算**来模拟复杂系统或解决数学问题的计算方法。其核心思想是通过生成大量随机样本,利用概率统计原理获得问题的近似解。

- 基于拟合参数生成虚拟数据集
- 重复1000次得到参数分布

Bootstrap重采样1000次

结果对比表

指标	蒙特卡洛仿真 (90% CI)	Bootstrap (95% CI)	原始点估计
B10寿命	[10.36 13.51]	[10.38, 13.66]	11.81

指标	蒙特卡洛仿真 (90% CI)	Bootstrap (95% CI)	原始点估计
尺度参数α	[15.75, 17.79]	[15.46, 18.01]	16.81
形状参数β	[5.03, 9.19]	[5.22, 8.93]	6.37

=== 可靠性分析最终结果 ===

可靠性决策:

- 以Bootstrap的95%置信区间为准, B10寿命有95%概率在[10.38, 13.66]周期之间
- 建议预防性维护时间设为10.38周期(保守估计)

七、遇到的问题

1. **疑问**: 是否需要分别拟合F(t)、R(t)、λ(t)?

答案: X 不需要! 这些均从同一组(α,β)派生, 重复拟合会导致矛盾结果。

为什么不能直接拟合间接指标?

指标	直接拟合的问题
f(t)	概率密度是连续函数,离散经验值拟合会引入误差
F(t)	中位秩估计已是非参数近似,再拟合会叠加误差
λ(t)	故障率依赖前序R(t)计算,累积误差放大
R(t)	与F(t)完全共轭(R=1-F),无额外信息

2. 疑问: 中位秩F(t)能否用于拟合?

答案: 仅用于绘制概率图, 不能作为拟合输入(因其本身是估计值)。

3. 疑问: 样本少时能否拟合?

答案: n=20是可接受的最小样本量, 但需增加置信区间分析