Линейни пространства.

Нека F е числово поле, а V е някакво непразно множество. Нека в V са въведени следните две операции: $\forall a,b \in V$ е съпоставен $a+b \in V$ (събиране); $\forall a \in V, \forall \lambda \in F$ е съпоставен $\lambda a \in V$ (умножение с число). Казваме, че V е линейно пространство над F, ако са изпълнени следните осем аксиоми:

- 1) a + b = b + a, $\forall a, b \in V$ (комутативност при събиране),
- 2) (a + b) + c = a + (b + c), $\forall a, b, c \in V$ (асоциативност при събиране),
- 3) \exists елемент $o \in V : a + o = o + a = a$, $\forall a \in V$ (нулев елемент),
- 4) $\forall a \in V \exists$ елемент -a : a + (-a) = (-a) + a = o (противоположен елемент),
- 5) 1.a = a, $\forall a \in V, 1 \in F$,
- 6) $(\lambda + \mu)a = \lambda a + \mu a$, $\forall a \in V, \lambda, \mu \in F$ (дистрибутивност относно множител от V),
- 7) $\lambda(a+b)=\lambda a+\lambda b, \quad \forall a,b\in V,\lambda\in F$ (дистрибутивност относно множител от F),
- 8) $\lambda(\mu a) = (\lambda \mu)a, \quad \forall a \in V, \lambda, \mu \in F.$

Елементите на V се наричат още *вектори*, а тези от F – *скалари*.

Примери:

- 1. Нека F е поле, а $m,n\in\mathbb{N}$. Тогава $F_{m\times n}$ множеството от всички $m\times n$ матрици с елементи от F, е линейно пространство над F. Наистина, по-рано видяхме, че за произволни $A,B\in F_{m\times n},\lambda\in F$, с дефинирани $A+B\in F_{m\times n}$ и $\lambda A\in F_{m\times n}$, са изпълнени аксиомите 1)—8).
- 2. Нека F е поле, а $n \in \mathbb{N}$. $F^n = \{(a_1, a_2, \ldots, a_n) | a_i \in F\}$ е множеството от всички наредени n-торки чила от F. За $a = (a_1, \ldots, a_n) \in F^n, b = (b_1, \ldots, b_n) \in F^n, \lambda \in F$ дефинираме: $a + b = (a_1 + b_1, \ldots, a_n + b_n); \quad \lambda a = (\lambda a_1, \ldots, \lambda a_n)$. Ясно е, че $a + b, \lambda a \in F^n$ и директно се проверява, че осемте аксиоми са изпълнени с нулев вектор $o = (0, \ldots, 0)$ и вектор

- $-a = (-a_1, \ldots, -a_n)$, който е противоположен на a. Така F^n е линейно пространство над F.
- 3. Нека F е поле. F[x] е множеството от всички полиноми с коефициенти от F. От познатите действия за събиране на полиноми и умножение на полином с число следва, че F[x] е линейно пространство над F. Това твърение остава в сила и ако разгледаме множеството $F^{n+1}[x]$ на всички полиноми със степен $\leq n$. Това се дължи на факта, че както умножението на полином с число, така и събирането на полиноми, водят до получаване на полином със степен не по-висока от тези на изходните.

Следствия от аксиомите:

- а) Нулевият вектор е единствен. Наистина, ако $o' \in V$ е такъв, че $a+o'=a, \forall a \in V$, то при a=o имаме o+o'=o. От аксиома 3) имаме, че a+o=a и при a=o' получаваме o'+o=o'. Но от аксиома 1) o+o'=o'+o, откъето слева, че o'=o.
- b) За всеки вектор $a \in V$ векторът -a е единствен. Това иректно слева от еинствеността на нулевия вектор.
- c) $0. = \forall a \in V$. Наистина, използвайки аксиомите получаваме:

$$a = 1.a = (1+0)a = 1.a + 0.a = a + 0.a.$$

Прибавяме -a към двете страни на уравнението и получаваме последователно

$$a - a = -a + (a + 0.a),$$

 $o = (-a + a) + 0.a,$
 $o = o + 0.a,$
 $o = 0.a.$

- d) $\lambda o = o, \forall \lambda \in F$. Следва от аксиома 8) при $\mu = 0$ и от следствие c).
- e) $(-1).a = -a, \quad \forall a \in V.$
- f) Ако $a,b\in V$, то $\exists !$ вектор $x\in V:a+x=b$. Това е векторът x=b+(-a), който означаваме с b-a и наричаме разлика на b и a.
- g) Ако $a \in V, \lambda \in F$, то $\lambda a = o \Leftrightarrow \lambda = 0$ или a = o. Наистина, ако $\lambda = 0$, това очевидно е вярно. Нека $\lambda \neq 0$. Умножаваме двете страни на

равентвото с $\frac{1}{\lambda}$ и последователно получаваме:

$$\frac{1}{\lambda}(\lambda.a) = \frac{1}{\lambda}.o,$$

$$\left(\frac{1}{\lambda}.\lambda\right)a = o,$$

$$1.a = o,$$

$$a = o.$$

Нека V е линейно пространство над F и $U\subseteq V, U\neq\varnothing$. U е nodnpocmpancmbo на линейното пространтво V, ако е изпълнено: $\forall a,b\in U\Rightarrow a+b\in U$ и $\forall a\in U, \forall\lambda\in F\Rightarrow\lambda a\in U$. (Еквивалентно е да искаме $\forall a,b\in U,\forall\lambda,\mu\in F\Rightarrow\lambda a+\mu b\in U$). Означаваме $U\leq V$ или U<V, в зависимост от това дали включването на U в V като негово подмножество е нестрого или строго. От дефиницията следва, че, ако $a\in U$, то $(-1)a=-a\in U$, а оттам и $o\in U$. Веднага е вижда, че подпространството U също е линейно пространство над F относно операциите в V. Тривиалните подпространства на V са $V\leq V$ и нулевото подпространство $\{o\}\leq V$. Ако $V_1\leq V$ и $V_2\leq V$, то $V_1\cap V_2\leq V$. По-общо, ако $V_i\leq V$ за $i\in I$, където I е някакво множество от индекси, то $\bigcap_{i\in I}V_i\leq V$.

Нека A е някаква система вектори в V или с други думи някакво подмножество $A\subseteq V$. С $\ell(A)$ означаваме сечението от всички подпространства на V, съдържащи A, т.е.

$$\ell(A) = \bigcap_{U \le V, U \supseteq A} U.$$

По този начин $\ell(A) \leq V, \ell(A) \supseteq A$ и $\ell(A)$ е най-малкото подпространство на V, съдържащо A, т.е. ако $U \leq V$ и $U \supseteq A$, то $U \supseteq \ell(A)$. $\ell(A)$ се нарича линейна обвивка на системата вектори A. Очевидно $\ell(A) = A \Leftrightarrow A \leq V$.

Ако $1 \leq k < \infty$, $a_1, a_2, \dots, a_k \in V$ и $\lambda_1, \lambda_2, \dots, \lambda_k \in F$, векторът $\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k \in V$ се нарича линейна комбинация на a_1, a_2, \dots, a_k .

Твърдение.

$$\ell(A) = \{\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k | k \in \mathbb{N}, a_i \in A, \lambda_i \in F\}$$

 $(T.e.\ линейната\ обвивка\ на\ A\ се\ състои\ от\ всевъзможните линейни комбинации на векотрите от <math>A.)$

Доказатеслство. Нека означим $M = \{\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k | k \in \mathbb{N}, a_i \in A, \lambda_i \in F\}$. Ще докажем поледователно, че $M \subseteq \ell(A)$ \underline{u} $\ell(A) \subseteq M$, откъдето твърдението ще бъде доказано. Първо, ако $a_1, \dots, a_k \in A \Rightarrow a_1, \dots, a_k \in \ell(A)$. Знаем, че $\ell(A) \leq V \Rightarrow \forall \lambda_1, \dots, \lambda_k \in F$ имаме, че $\lambda_1 a_1 + \dots + \lambda_k a_k \in \ell(A)$. Но това доказва, че всеки елемент от M приналежи на $\ell(A)$, т.е. $M \subseteq \ell(A)$. Второ, M е подпространство на V, защото за произволни $a, b \in M, \lambda, \mu \in F$ имаме: a може да се представи като $a = \lambda_1 a_1 + \dots + \lambda_k a_k$ за някакви вектори $a_i \in A$ и някакви скалари $\lambda_i \in F, i = 1, \dots, k$. Аналогично $b = \mu_1 b_1 + \dots + \mu_l b_l$ за $b_j \in M, \mu_j \in F, j = 1, \dots, l$. Сега, $\lambda a + \mu b = \lambda \lambda_1 a_1 + \dots + \lambda_k a_k + \mu \mu_1 b_1 + \dots + \mu \mu_l b_l$. По този начин $\lambda a + \mu b \in M$ и $M \leq V$. За всеки векотр $a \in A$ е в сила a = 1.a и следователно $M \supseteq A$. Но така $M \leq V$ и $M \supseteq A$. Следователно $M \supseteq \ell(A)$. С това всичко е доказано.

Нека $a_1, \ldots, a_k \in V$ е крайна система вектори. Казваме, че системата вектори е *линейно зависима*, ако съществуват числа $\lambda_1, \ldots \lambda_k \in F$, <u>не всички</u> равни на 0, такива че $\lambda_1 a_1 + \cdots + \lambda_k a_k = o$. Системата се нарича *линейно независима*, ако равенството $\lambda_1 a_1 + \cdots + \lambda_k a_k = o$ е възможно <u>само при</u> $\lambda_1 = \cdots = \lambda_k = 0$.

Примери:

- 1. В пространството F^n векторите $e_1(1,0,\ldots,0), e_2(0,1,\ldots,0),\ldots,e_n(0,0,\ldots,1)$ са линейно независими. Наистина, нека $\lambda_1,\lambda_2,\ldots,\lambda_n\in F$. Тогава $\lambda_1e_1+\lambda_2e_2+\ldots\lambda_ne_n=o$ означава, че $(\lambda_1,\lambda_2,\ldots,\lambda_n)=(0,0\ldots,0),$ т.е. $\lambda_1=\lambda_2=\ldots=\lambda_n=0.$
- 2. В пространството $F^{n+1}[x]$ векторите $1, x, x^2, \ldots, x^n$ образуват линейно независима система. Наистина, ако $\lambda_0, \lambda_1, \ldots, \lambda_n \in F$ са такива, че полиномът $\lambda_0 + \lambda_1 x + \cdots + \lambda_n x^n$ да се анулира за всяко $x \in F$, то следва, че този полином е тъждествено нулевият и $\lambda_0 = \lambda_1 = \cdots = \lambda_n = 0$.

Свойства:

- (i) Един вектор $a \in V$ е линейно зависим, точно тогава, когато a = o. Наистина, нека $\lambda \in F, \lambda \neq 0$ и $\lambda a = o$. Тогава от следствие g) от аксиомите следва, че a = o.
- (ii) Подсистема на линейно независима система също е линейно независима система. Нека a_1, a_2, \ldots, a_n е такава линейно независима система, а a_1, a_2, \ldots, a_s е нейна подсистема $(1 \le s \le n)$. Нека $\lambda_1, \lambda_2, \ldots, \lambda_s \in F$ са такива, че $\lambda_1 a_1 + \cdots + \lambda_s a_s = o$. Това също можем да запишем и като

 $\lambda_1 a_1 + \dots + \lambda_s a_s + 0.a_{s+1} + \dots + 0.a_n = o$. Тъй като отначало a_1, \dots, a_n бяха линейно независими, имаме че $\lambda_1 = \dots = \lambda_s = 0$, а оттук следва, че подсистемата a_1, \dots, a_s също е линейно независима.

- (ііі) Система вектори, съдържаща o или два вектора от вида $\lambda a, \mu a$ (където $a \in V, \lambda, \mu \in F$) е линейно зависима. Наистина, ако допуснем, че една линейно независима система съдържа нулевия вектор, се достига до противоречие със свойство (іі), т.к. o образува линейно зависима подсистема. За втория случай имаме, че $\mu(\lambda a) + (-\lambda)(\mu a) = o$. С други думи, векторите λa и μa образуват линейно зависима система и всяка система, която ги съдържа като подсистема ще бъде също линейно зависима.
- (iv) Една система вектори е линейно зависима тогава и само тогава, когато поне един от векторите в нея е линейна комбинация на останалите. Необходимост: нека векторите a_1, a_2, \ldots, a_n са линейно зависими. Тогава \exists числа $\lambda_1, \lambda_2, \ldots, \lambda_n \in F$ поне едно от които е различно от нула и такива, че $\lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_n a_n = o$. Без ограничение може да считаме, че $\lambda_1 \neq 0$. Тогава разделяме линейната комбинация на векторите на λ_1 и получаваме $a_1 + \frac{\lambda_2}{\lambda_1} a_2 + \cdots + \frac{\lambda_n}{\lambda_1} a_n = o$ или еквивалентно $a_1 = -\frac{\lambda_2}{\lambda_1} a_2 \cdots \frac{\lambda_n}{\lambda_1} a_n$. Така a_1 е линейна комбинация на останаите вектори.

Достатъчност: Нека без ограничение a_1 е линейна комбинация на останалите вектори, т.е. $a_1 = \mu_2 a_2 + \dots + \mu_n a_n$. Тогава $\underbrace{1}_{\neq 0} .a_1 - \mu_2 a_2 - \dots - \mu_n a_n = \underbrace{1}_{\neq 0} .a_1 - \mu_2 a_2 - \dots - \mu_n a_n = \underbrace{1}_{\neq 0} .a_1 - \mu_2 a_2 - \dots - \mu_n a_n = \underbrace{1}_{\neq 0} .a_1 - \underbrace{1}_{\neq$

- o. Това означава, че векторите a_1, a_2, \ldots, a_n са линейно зависими.
- (v) Нека $a_1,a_2,\ldots,a_n\in V$ са линейно независими вектори. Тогава ако $a\in V$ и $a\notin \ell(a_1,\ldots,a_n)$, то векторите a_1,a_2,\ldots,a_n,a също са линейно независими. Наистина, нека $\lambda_1,\lambda_2,\ldots,\lambda_n,\lambda\in F$ са такива, че $\lambda_1a_1+\lambda_2a_2+\cdots+\lambda_na_n+\lambda a=o$. Ако допуснем, че $\lambda\neq 0$, то получаваме $a=-\frac{\lambda_1}{\lambda}a_1-\cdots-\frac{\lambda_n}{\lambda}$, т.е. $a\in \ell(a_1,\ldots,a_n)$, което е противоречие. Следователно $\lambda=0$ и $\lambda_1a_1+\cdots+\lambda_na_n=o$. Но започнахме с това, че a_1,a_2,\ldots,a_n са линейно независими и следователно $\lambda_1=\lambda_2=\cdots=\lambda_n=0$. Оттук a_1,a_2,\ldots,a_n,a също са линейно независими.

Нека $A\subseteq V$ е система вектори (може и безкрайна). Казваме, че системата A е линейно независима, ако <u>всяка</u> крайна подсистема на A е линейно независима. Съответно, A е линейно зависима, ако <u>поне една</u> крайна подсистема на A е линейно зависима. Например в линейното простанство F[x] безкрайната система вектори $1, x, \ldots, x^n, \ldots$ е линейно независима.

Основна лема. $Heka\ a_1, \ldots, a_n \in V, b_1, \ldots, b_k \in V\ u\ b_1, \ldots, b_k \in \ell(a_1, \ldots, a_n).$ Ако $k > n,\ mo\ b_1, \ldots, b_k$ са линейно зависими вектори.

Доказателство. С индукция по n. Основа на индукцията: n=1и съответно $k\geq 2$. В такъв случай $b_1=\lambda_1a_1,\ldots,b_k=\lambda_ka_1$ за някакви скалари $\lambda_1,\ldots,\lambda_k\in F$. От свойство (iii) следва, че b_1,\ldots,b_k са линейно зависими. Индукционно предположение: нека $n\geq 2$ и твърдението е вярно за n-1. Индукционна стъпка: ще докажем, че твърдението е в сила и за n. Ако някой от векторите b_1,b_2,\ldots,b_k е нулевият вектор, то следствие (iii) дава, че b_1,\ldots,b_k са линейно зависима система. Нека сега $b_i\neq o, \forall i=1,2,\ldots,k$. Тогава имаме

$$b_{1} = \lambda_{11}a_{1} + \lambda_{21}a_{2} + \dots + \lambda_{n1}a_{n},$$

$$b_{2} = \lambda_{12}a_{1} + \lambda_{22}a_{2} + \dots + \lambda_{n2}a_{n},$$

$$\dots$$

$$b_{k} = \lambda_{1k}a_{1} + \lambda_{2k}a_{2} + \dots + \lambda_{nk}a_{n}$$

за някакви числа $\lambda_{ij} \in F$. Понеже $b_k \neq o$, то поне едно от числата $\lambda_{1k}, \lambda_{2k}, \ldots, \lambda_{nk}$ е различно от нула. Нека без ограничение $\lambda_{nk} \neq 0$. Умножаваме последвателно последното уравнение с $-\frac{\lambda_{ni}}{\lambda_{nk}}$ и го прибавяме към i-тото уравнение за $i=1,2,\ldots,k-1$. Така получаваме

$$b_{1} - \frac{\lambda_{n1}}{\lambda_{nk}} b_{k} = \mu_{11} a_{1} + \dots + \mu_{n-1,1} a_{n-1},$$

$$b_{2} - \frac{\lambda_{n2}}{\lambda_{nk}} b_{k} = \mu_{21} a_{1} + \dots + \mu_{n-1,2} a_{n-1},$$

$$\dots$$

$$b_{k-1} - \frac{\lambda_{n,k-1}}{\lambda_{nk}} b_{k} = \mu_{k-1,1} a_{1} + \dots + \mu_{n-1,k-1} a_{n-1}.$$

Означаваме $c_1=b_1-\frac{\lambda_{n1}}{\lambda_{nk}}b_k,\ldots,c_{k-1}=b_{k-1}-\frac{\lambda_{n,k-1}}{\lambda_{nk}}b_k$. Разглеждаме системите a_1,\ldots,a_{n-1} и c_1,\ldots,c_{k-1} . Очевидно $c_1,\ldots,c_{k-1}\in\ell(a_1,\ldots,a_{n-1})$ и от k>n следва, че k-1>n-1. Според индукционното предположение c_1,\ldots,c_{k-1} са линейно зависими. В такъв случай съществуват числа $\nu_1,\ldots,\nu_{k-1}\in F$ не всички равни на 0, такива че $\nu_1c_1+\cdots+\nu_{k-1}c_{k-1}=o$.

Следователно $\nu_1\left(b_1-\frac{\lambda_{n1}}{\lambda_{nk}}b_k\right)+\cdots+\nu_{k-1}\left(b_{k-1}-\frac{\lambda_{n,k-1}}{\lambda_{nk}}b_k\right)=o,$ откъдето след разкриване на скобите получаваме

$$\nu_1 b_1 + \dots + \nu_{k-1} b_{k-1} + *b_k = o,$$

където * е някакъв скалар от F. Но поне един от коефициентите в тази линейна комбинация е различен от нула и следователно векторите b_1, b_2, \ldots, b_k са линейно зависими. От принципа на математическата индукция следва, че лемата е доказана.