FMI, Info, Anul I

Logică matematică și computațională

Model d	e examen
---------	----------

Nume:	
Prenume:	
Grupa:	

Indicaţii:

• În cazul exercițiilor cu forma normală prenex și forma normală Skolem, ipoteza este următoarea:

Fie \mathcal{L} un limbaj de ordinul întâi care conține:

- două simboluri de relații unare S, T și un simbol de relație binară R;
- un simbol de operație unară f și un simbol de operație binară g;
- trei simboluri de constante a, b, c.

Partea I. Probleme cu rezolvare clasică

(P1) [1 punct] Pentru orice Γ , $\Sigma \subseteq Form$, definim

$$\Gamma \vee \Sigma := \{ \varphi \vee \psi \mid \varphi \in \Gamma, \ \psi \in \Sigma \}.$$

Să se arate că, pentru orice Γ , $\Sigma \subseteq Form$,

$$Mod(\Gamma \vee \Sigma) = Mod(\Gamma) \cup Mod(\Sigma).$$

- (P2) [1 punct] Fie φ , $\psi \in Form$. Să se demonstreze sintactic, fără a se face apel la Teorema de completitudine tare, că $\{\varphi, \psi\} \vdash \varphi \land \psi$.
- (P3) [1 punct] Fie x o variabilă. Să se dea exemple de limbaj de ordinul I, \mathcal{L} , şi de formule φ , ψ ale lui \mathcal{L} astfel încât $\exists x \varphi \land \exists x \psi \not \vdash \exists x (\varphi \land \psi)$.
- (P4) [1 punct] Fie \mathcal{L}_{Graf} limbajul de ordinul I al grafurilor, precum și mulțimea de \mathcal{L}_{Graf} enunțuri $\Gamma := \{(IREFL), (SIM)\}$, definite precum în curs și seminar. Să se axiomatizeze clasa \mathcal{K}' a grafurilor în care orice două vârfuri sunt legate printr-un drum de lungime cel mult 2.

Partea II. Probleme de tip grilă

(P5) [1 răspuns corect] Fie următoarea mulțime de clauze:

$$S = \{ \{\neg v_1, \neg v_2, \neg v_4\}, \{\neg v_2, \neg v_3\}, \{v_1, \neg v_3\}, \{v_1, v_4\}, \{v_3\} \}$$

Aplicând algoritmul Davis-Putnam pentru intrarea S şi alegând succesiv $x_1 := v_1, x_2 := v_3$ $x_3 := v_2$ obtinem:

- \square A: $S_4 = \{\{v_2, \neg v_4\}\}.$
- \square B: $\mathcal{S}_4 = {\square}$.
- \square C: $\mathcal{T}_3^1 = \emptyset$.
- $\Box \text{ D: } \mathcal{S}_4 = \{ \{ \neg v_2, \neg v_4 \} \}.$ $\Box \text{ E: } \mathcal{T}_3^0 = \{ \{ v_4, \neg v_2, \neg v_4 \}, \{ \neg v_2 \}, \{ \neg v_2, \neg v_4 \} \}.$

(P6) [2 răspunsuri corecte] Fie următoarea mulțime de clauze:

$$S = \{\{v_1, v_2, \neg v_4\}, \{\neg v_2, \neg v_3\}, \{\neg v_1, \neg v_3\}, \{v_1, v_4\}, \{v_3\}\}$$

Care dintre următoarele afirmații sunt adevărate?

- \square A: \mathcal{S} este nesatisfiabilă.
- \square B: \mathcal{S} nu este nici nesatisfiabilă, nici satisfiabilă.
- \square C: $\{\neg v_1\}$ este rezolvent al două clauze din \mathcal{S} .
- \square D: \mathcal{S} este satisfiabilă.
- \square E: $\{v_4\}$ este rezolvent al două clauze din \mathcal{S} .
- (P7) [2 răspunsuri corecte] Fie următoarea formulă:

$$\varphi := ((v_0 \land v_3) \to v_1) \to v_2$$

Care dintre următoarele afirmații este adevărată?

- \square A: $v_0 \wedge v_3 \wedge \neg v_1 \wedge v_2$ este FNC şi FND a lui φ .
- \square B: $v_0 \lor (v_3 \land \neg v_1) \lor v_2$ este FND a lui φ .
- \square C: $(v_0 \wedge v_3 \wedge \neg v_1) \vee v_2$ este FND a lui φ .
- \square D: $v_0 \wedge (v_3 \vee v_2) \wedge (\neg v_1 \vee v_3)$ este FNC a lui φ .
- \square E: $(v_0 \lor v_2) \land (v_3 \lor v_2) \land (\neg v_1 \lor v_2)$ este FNC a lui φ .

(P8) [2 răspunsuri corecte] Fie \mathcal{L} un limbaj de ordinul I. Care dintre următoarele afirmații sunt adevărate pentru orice formule φ , ψ ale lui \mathcal{L} ?

- \square A: $\forall x(\varphi \lor \psi) \vDash \forall x\varphi \lor \forall x\psi$, pentru orice variabilă x.
- \square B: $\exists x(\varphi \to \psi) \vDash \varphi \to \forall x\psi$, pentru $x \notin FV(\varphi)$.
- \square C: $\forall x(\varphi \lor \psi) \vDash \exists x\varphi \lor \exists x\psi$, pentru orice variabilă x.
- \square D: $\forall x(\varphi \land \psi) \vDash \varphi \lor \forall x\psi$, pentru $x \notin FV(\varphi)$.

 \square E: $\forall x(\varphi \land \psi) \vDash \varphi \lor \forall x\psi$, pentru $x \notin FV(\varphi)$.

(P9) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} :

$$\varphi := \forall x S(x) \land \neg \exists y S(y)$$

Care dintre următoarele afirmații este adevărată?

- \square A: $\forall x \forall y (\neg S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square B: $\exists x \forall y (\neg S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square C: $\forall x \forall y (S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square D: $\exists x \exists y \neg (\neg S(x) \lor S(y))$ este o formă normală prenex pentru φ .
- \square E: $\exists x \exists y (S(x) \lor S(y))$ este o formă normală prenex pentru φ .

(P10) [1 răspuns corect] Considerăm următoarea formulă în limbajul logicii propoziționale:

$$\psi := (v_1 \to (v_2 \to v_3)) \to (v_3 \lor \neg v_2 \lor \neg v_1)$$

Care dintre următoarele afirmații este adevărată (pentru orice evaluare e)?

- \square A: Dacă $e(v_2) = 1$ și $e^+(\neg v_3) = 1$, atunci $e^+(v_3 \vee \neg v_2 \vee \neg v_1) = 0$.
- \square B: Dacă $e^+(v_1 \rightarrow (v_2 \rightarrow v_3)) = 1$, atunci $e(v_1) = e(v_2) = 0$ și $e(v_3) = 1$.
- \square C: Dacă $e(v_1) = e(v_2) = 1$, atunci $e^+(\psi) = 0$.
- \square D: Dacă $e^+(v_3 \vee \neg v_2 \vee \neg v_1) = 0$, atunci $e(v_2) = 1$ și $e(v_3) = 0$.
- \square E: $e^+(\psi) = 1$ numai dacă $e(v_1) = e(v_3) = 1$ și $e(v_2) = 0$.