NATIONAL UNIVERSITY OF SINGAPORE

EE2023 – SIGNALS AND SYSTEMS

(Semester I: 2019/2020)

Time Allowed: 2.5 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write only your student number. Do not write your name.
- 2. Students should write the answers for each question on a new page.
- 3. This paper contains **EIGHT** (8) questions and comprises **TWELVE** (12) printed pages.
- 4. Answer ALL questions in Section A and ANY THREE (3) questions in Section B.
- 5. This is a **CLOSED BOOK** examination. However you are allowed to bring one self-prepared A4-size help sheet to the examination hall.
- 6. Programmable and/or graphic calculators are not allowed.
- 7. Tables of formulas are provided on Pages 9 to 12.

SECTION A: Answer ALL questions in this section

- Q.1 Let X(f) be the Fourier transform of a signal x(t).
 - (a) If y(t) = 4x(-2(t-1)), express its Fourier transform, Y(f), in terms of X(f). (4 marks)
 - (b) If $X(f) = 2\text{rect}(f)\cos(\pi f)$, find the 3dB bandwidth and total energy of x(t). (6 marks)
- Q.2 The discrete-frequency magnitude and phase spectra for the periodic signal x(t) are shown in Figure Q.2.

Figure Q.2

What is the fundamental frequency and period of x(t)? (a)

(2 marks)

- Derive an expression for the complex exponential Fourier Series representation for x(t). (b) (6 marks)
- Determine the average power of x(t). (c)

(2 marks)

Q.3 The transfer function of a system is given by

$$G(s) = \frac{10s}{\left(s+10\right)^2}.$$

(a) Sketch the straight-line Bode magnitude and phase plots for G(s). The sketches should be adequately labeled. You need not draw the semilog_x grid lines.

(6 marks)

(b) As frequency decreases, the frequency response of G(s) tends to that of a certain system. Name this system.

(2 marks)

(c) As frequency increases, the frequency response of G(s) tends to that of a certain system. Name this system.

(2 marks)

Q.4 The input-out relationship of a dynamic system with input x(t) and output y(t) is governed by the differential equation:

$$\frac{d^2y(t)}{dt^2} + 12\frac{dy(t)}{dt} + 85y(t) = 200x(t)$$

(a) Derive the system transfer function $G(s) = \frac{Y(s)}{X(s)}$, where X(s) and Y(s) are the Laplace transforms of the input x(t) and output y(t), respectively.

(3 marks)

(b) Determine the undamped natural frequency, ω_n , the damping ratio, ζ , and the DC gain of the system.

(3 marks)

(c) The input signal, $x(t) = 2\cos(4t)$, is applied to the dynamic system. Determine the steady-state output signal, $y_{ss}(t)$.

(4 marks)

SECTION B: Answer 3 out of the 4 questions in this section

Q.5 The block diagram of a communication system is shown in Figure Q.5 where f_s is the sampling frequency used at the receiver front-end and H(f) is the frequency response of the lowpass filter.

Figure Q.5

Let X(f), Y(f) and $Y_s(f)$ be the spectra of x(t), y(t) and $y_s(t)$, respectively, where

$$X(f) = \left[\cos(\pi f) + 2\right] \times \operatorname{rect}\left(\frac{f}{2}\right).$$

The frequency response of the lowpass filter is

$$H(f) = A \operatorname{rect}\left(\frac{f}{2B}\right).$$

- Sketch X(f) and Y(f) with adequate labeling. (8 marks) (a)
- If $f_s = 6$ Hz, is it possible for the receiver to reproduce x(t) at its output? Explain your (b) answer with a sketch of $Y_s(f)$.

(5 marks)

What is the smallest value of f_s that will enable the receiver to reproduce x(t) at its output? In this case, find the values of the filter parameters A and B so that the receiver output is exactly equal to x(t).

(7 marks)

Q.6 The signal $x(t) = A \operatorname{tri}\left(\frac{t}{\alpha}\right) + B \operatorname{tri}\left(\frac{t}{\beta}\right)$ is shown in Figure Q.6.

(a) Find the values of A, B, α and β .

(4 marks)

(b) Determine the Fourier transform, X(f), of x(t).

(3 marks)

- (c) The signal y(t) = x(t-5) is a delayed version of x(t). Sketch the phase spectrum of y(t). (3 marks)
- (d) The periodic signal $x_p(t)$ can be obtained by replicating x(t) at a period of 6 seconds. Obtain an expression for $x_p(t)$ in terms of x(t) and the Dirac δ -function.

(2 marks)

(e) Determine the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$.

(4 marks)

(f) Determine the Fourier series coefficient, $X_{p,k}$, of the periodic signal $x_p(t)$.

(2 marks)

(g) Find an expression for the average power of $x_p(t)$.

(2 marks)

Q.7 The simplified model of a car suspension system shown in Figure Q.7(a) has a transfer function

$$G(s) = \frac{Y(s)}{X(s)} = K \frac{s + \alpha}{s^2 + 1.6\beta s + \beta^2}$$

where X(s) and Y(s) are, respectively, the Laplace transforms of the verticle displacements x(t) and y(t). The parameters K, α and β are positive constants.

Car Body y(t)

Figure Q.7(a)

Figure Q.7(b) shows the straightline Bode magnitude plot of G(s).

(a) Find the poles of G(s) in terms of β . Hence, determine whether the 2nd-order factor in G(s) is undamped, underdamped, critically damped or overdamped.

(5 marks)

(b) What are the values of K, α and β ?

(5 marks)

(c) Derive the impulse response of the suspension system.

(5 marks)

(d) Suppose the car is travelling on a path that has a kerb and the input to the suspension system may be modeled by x(t) = 0.4u(t). What will the steady-state value of y(t) be? (5 marks)

Q.8 Consider the circuit shown in Figure-Q.8, where L = 1/6 H, C = 1 F, R1 = 1/5 ohms and R2 = 5 ohms. Assume that switch S_1 was at position $\mathbb O$ and S_2 was open for a long time before t = 0. At t = 0, S_1 is thrown to position $\mathbb O$ while S_2 is closed.

- (a) Derive the transfer function $G(s) = \frac{V_c(s)}{V_i(s)}$ for the system for $t \ge 0$. (8 marks)
- (b) Derive the signal $v_c(t)$ for $t \ge 0$. (12 marks)

END OF QUESTIONS

This page is intentionally left blank to facilitate detachment of the formula sheets for easy reference.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)
Constant	K	$K\delta(f)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$
Sign (or Signum)	sgn(t)	$\frac{1}{j\pi f}$
Rectangle	$rect\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
Triangle	$\operatorname{tri}\!\left(\frac{t}{T}\right)$	$T\operatorname{sinc}^2(fT)$
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta } X \left(\frac{f}{\beta} \right)$
Duality	X(t)	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi f t_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$

Unilateral Laplace Transform: $X(s) = \int_{0^{-}}^{\infty} x(t) \exp(-st) dt$

LAPLACE TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(s)
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	1/s
Ramp	tu(t)	$1/s^2$
n th order Ramp	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
Damped Ramp	$t\exp(-\alpha t)u(t)$	$1/(s+\alpha)^2$
Exponential	$\exp(-\alpha t)u(t)$	$1/(s+\alpha)$
Cosine	$\cos(\omega_o t)u(t)$	$s/(s^2+\omega_o^2)$
Sine	$\sin(\omega_o t)u(t)$	$\omega_o/(s^2+\omega_o^2)$
Damped Cosine	$\exp(-\alpha t)\cos(\omega_o t)u(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_o^2}$
Damped Sine	$\exp(-\alpha t)\sin(\omega_o t)u(t)$	$\frac{\omega_o}{\left(s+\alpha\right)^2+\omega_o^2}$

LAPLACE TRANSFORM PROPERTIES		
	Time-domain	s-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(s) + \beta X_2(s)$
Time shifting	$x(t-t_o)u(t-t_o)$	$\exp(-st_o)X(s)$
Shifting in the s-domain	$\exp(s_o t)x(t)$	$X(s-s_o)$
Time scaling	$x(\alpha t)$	$\frac{1}{ \alpha }X\left(\frac{s}{\alpha}\right)$
Integration in the time-domain	$\int_{0^{-}}^{t} x(\zeta) d\zeta$	$\frac{1}{s}X(s)$
Differentiation in the time-domain	$\frac{dx(t)}{dt}$	$sX(s)-x(0^-)$
	$\frac{d^n x(t)}{dt^n}$	$s^{n}X(s) - \sum_{k=0}^{n-1} s^{n-1-k} \frac{d^{k}x(t)}{dt^{k}}\Big _{t=0}$
Differentiation in the s-domain	-tx(t)	$\frac{dX\left(s\right) }{ds}$
	$(-t)^n x(t)$	$\frac{d^n X(s)}{ds^n}$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$	$X_1(s)X_2(s)$
Initial value theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$	
Final value theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$	

System Type	Transfer Function (Standard Form)	Unit Impulse and Unit Step Responses	Remarks
1 st order system	$G(s) = \frac{K}{T} \cdot \frac{1}{s + 1/T}$	$y_{\delta}(t) = \frac{K}{T} \exp\left(-\frac{t}{T}\right) u(t)$ $y_{step}(t) = K \left[1 - \exp\left(-\frac{t}{T}\right)\right] u(t)$	T : Time-constant K : DC Gain Real Pole at $s = -\frac{1}{T}$
$2^{ ext{nd}}$ order system $(\zeta > 1)$ Overdamped	$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $= \frac{K_1}{s + p_1} + \frac{K_2}{s + p_2}$	$y_{\delta}(t) = \left[K_{1} \exp(-p_{1}t) + K_{2} \exp(-p_{2}t) \right] u(t)$ $y_{step}(t) = \left[K - \frac{K_{1}}{p_{1}} \exp(-p_{1}t) - \frac{K_{2}}{p_{2}} \exp(-p_{2}t) \right] u(t)$	$K : DC Gain$ $p_1 = \omega_n \zeta + \omega_n \sqrt{\zeta^2 - 1}$ $p_2 = \omega_n \zeta - \omega_n \sqrt{\zeta^2 - 1}$ $Real Distinct Poles at s = -p_1 and s = -p_2$
2^{nd} order system $(\zeta = 1)$ Critically damped	$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $= \frac{K\omega_n^2}{(s + \omega_n)^2}$	$y_{\delta}(t) = K\omega_n^2 t \exp(-\omega_n t) u(t)$ $y_{step}(t) = K \left[1 - \exp(-\omega_n t) - \omega_n t \exp(-\omega_n t) \right] u(t)$	K : DC Gain Real Repeated Poles at $s = -\omega_n$
$2^{nd} \text{ order system } \\ \left(0 < \zeta < 1\right) \\ \text{Underdamped}$	$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $= \frac{K(\sigma^2 + \omega_d^2)}{(s + \sigma)^2 + \omega_d^2}$	$y_{\delta}(t) = K \frac{\omega_n^2}{\omega_d} \exp(-\sigma t) \sin(\omega_d t) u(t)$ $y_{step}(t) = K \left[1 - \frac{\omega_n}{\omega_d} \exp(-\sigma t) \sin(\omega_d t + \phi) \right] u(t)$	K : DC Gain ω_n : Undamped Natural Frequency ζ : Damping Ratio ω_d : Damped Natural Frequency $\sigma = \zeta \omega_n \omega_d^2 = \omega_n^2 \left(1 - \zeta^2\right) \omega_n^2 = \sigma^2 + \omega_d^2 \tan(\phi) = \frac{\omega_d}{\sigma}$ Complex Conjugate Poles at $s = -\sigma \pm j\omega_d$
$2^{ ext{nd}}$ order system $\left(\zeta = 0 ight)$ Undamped	$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $= \frac{K\omega_n^2}{s^2 + \omega_n^2}$	$y_{\mathcal{S}}(t) = K\omega_n \sin(\omega_n t) u(t)$ $y_{step}(t) = K(1 - \cos\omega_n t) u(t)$	K : DC Gain ω_n : Undamped Natural Frequency Imaginary Conjugate Poles at $s = \pm j\omega_n$

$$\begin{array}{c}
2^{\text{nd}} \text{ order system RESONANCE} \\
\left(0 \le \zeta < 1/\sqrt{2}\right)
\end{array}$$

RESONANCE FREQUENCY:
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

RESONANCE PEAK:
$$M_r = |G(j\omega_r)| = \frac{K}{2\zeta\sqrt{1-\zeta^2}}$$

Trigonometric Identities		
$e^{j\theta} = \cos(\theta) + j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = 0.5\left(e^{j\theta} + e^{-j\theta}\right)$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = -0.5j(e^{j\theta} - e^{-j\theta}) \qquad \tan(\alpha) \pm \tan(\beta)$		
$\sin^2(\theta) + \cos^2(\theta) = 1$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = 0.5\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = 0.5[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$	
$\sin^2(\theta) = 0.5 [1 - \cos(2\theta)]$	$\sin(\alpha)\cos(\beta) = 0.5\left[\sin(\alpha - \beta) + \sin(\alpha + \beta)\right]$	
$\cos^2(\theta) = 0.5 [1 + \cos(2\theta)]$	$C\cos(\theta) - S\sin(\theta) = \sqrt{C^2 + S^2}\cos\left[\theta + \tan^{-1}\left(\frac{S}{C}\right)\right]$	

Complex Unit
$$(j) \rightarrow (j = \sqrt{-1} = e^{j\pi/2} = e^{j90^{\circ}}) \quad (-j = \frac{1}{j} = e^{-j\pi/2} = e^{-j90^{\circ}}) \quad (j^2 = -1)$$

Definitions of Basic Functions

Rectangle:

$$rect\left(\frac{t}{T}\right) = \begin{cases} 1; & -T/2 \le t < T/2 \\ 0; & elsewhere \end{cases}$$

Triangle:

$$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - |t|/T; & |t| \le T \\ 0; & |t| > T \end{cases}$$

Sine Cardinal:

$$\operatorname{sinc}\left(\frac{t}{T}\right) = \begin{cases} \frac{\sin\left(\pi t/T\right)}{\pi t/T}; & t \neq 0\\ 1; & t = 0 \end{cases}$$

Signum:

$$\operatorname{sgn}(t) = \begin{cases} 1; & t \ge 0 \\ -1; & t < 0 \end{cases}$$

Unit Impulse:

$$\delta(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Unit Step:

$$u(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$