Regression Analysis of Used Car Prices

Tancredi Bosi

Alma Mater Studiorum Bologna

November 15, 2024

Outline

- Problem Definition
- 2 Dataset
- 3 Data Visualization
- Data Preprocessing
- Model Selection
- 6 Model Results
- Results Conclusions

Problem Definition

- Predicting the price of used cars based on various features
- Data sourced from Kaggle competition

Figure: Kaggle competition image

Dataset Overview

- Dataset details:
 - 188,533 rows, 12 features, and 1 target column (price)
 - Numerical features: id, model_year, milage
 - Categorical features: brand, model, fuel_type, engine, transmission, ext_col, int_col, accident, clean_title

Figure: Dataset info

Data Exploration

Figure: Head of the dataset

We can already see that:

- "id" column can be dropped as it refers only to the index of the car.
- "brand" and "model" columns seem to have a lot of different unique values.
- "engine" column has useful and different information abridged in one string.
- "ext_col" and "int_col" columns are the colors of the cars and they
 may be not so useful.

Data Visualization

Price distribution by brand:

Data Visualization

• Average price by model year:

Data Preprocessing

Remove outliers

- Extract vehicle_age as vehicle_age = 2024 model_year
- Extract HP, engine_size and cylinders from engine
- Extract speed and transmission_type from transmission
- Extract luxury_brand from brand and model_category from model, to reduce the unique values in the two columns

Data Preprocessing

- Fill missing values with 'Unknown' or 0
- Remove id, ext_col, model and int_col columns
- Scale milage, vehicle_age, HP and engine_size with RobustScaler()
- Enconde:
 - accident in 0/1
 - speed in numerical values
 - transmission_type in 0/1
 - clean_title in 0/1
 - fuel_type, luxury_brand and model_category with One-Hot Encoding

The final features for each sample are:

```
['milage', 'accident', 'clean_title', 'price', 'vehicle_age', 'HP', 'engine_size', 'cylinders']
['speed', 'transmission_type', 'luxury_brand_1', 'luxury_brand_2', 'fuel_type_1', 'fuel_type_2']
['fuel_type_3', 'fuel_type_4', 'model_category_Luxury', 'model_category_Other', 'model_category_Sport']
```

Model Selection

- Dataset division: 80% training set, 20% test set.
- Measures in output: Train-RMSE, Test-RMSE
- Models considered:
 - Ridge Regressor (least squares with I2 regularization)
 - Random Forest Regressor with standard hyperparameters
 - Support Vector Regressor
 - Random Forest Regressor with Grid Seach
 - MLP Regressor
 - AdaBoost Regressor with Decision Tree
 - AdaBoost Regressor with Random Forest Regressor

Ridge Regressor

Ridge() performance:

Train RMSE: 19192

Test RMSE: 18877

Default Random Forest Regressor

RandomForestRegressor() performance:

Train RMSE: 8134

Test RMSE: 17625

Grid Search Random Forest Regressor

RandomForestRegressor(n_estimators=100, max_depth= 12, min_samples_split= 14, min_samples_leaf= 3) performance:

 Train RMSF: 15129 Test RMSE: 16518

AdaBoost Regressor - DT

AdaBoostRegressor() performance:

Train RMSE: 19941Test RMSE: 19990

AdaBoost Regressor - RF

AdaBoostRegressor(estimator=RandomForestRegressor()) (with grid-search hyperparameters) performance:

Train RMSE: 14432Test RMSE: 16710

MLP Regressor

MLPRegressor(hidden_layer_sizes=(128, 256, 512, 256, 128), max_iter=1000, learning_rate='adaptive') performance:

Train RMSE: 14572Test RMSE: 17955

Results Conclusions

Here the models for a comparison:

Model	Train RMSE	Test RMSE
Ridge Regressor	19192	18877
Random Forest Regressor	8134	17625
Random Forest Regressor GS	15129	16518
Ada Boost Regressor DT	19941	19990
Ada Boost Regressor RF	14432	16710
MLP Regressor	14572	17955

Table: Model performance comparison