Birkhoff algebra and Tits algebra

Swapneel Mahajan

http://www.math.iitb.ac.in/~swapneel

1 Birkhoff algebra and Tits algebra

1.1 Birkhoff algebra

Recall the set of flats $\Pi[A]$.

Since it is a lattice under the partial order of inclusion, it carries a monoid structure given by the join operation.

Let $\Pi[\mathcal{A}]$ denote its linearization over a field \mathbb{k} , with canonical basis H.

It is a commutative k-algebra:

$$H_X \cdot H_Y := H_{X \vee Y}$$
.

We call this the Birkhoff algebra.

1.2 Tits algebra

Recall the set of faces $\Sigma[A]$.

It carries the structure of a monoid under the Tits product. This is the Tits monoid.

Let $\Sigma[\mathcal{A}]$ denote its linearization over a field \mathbb{k} , with canonical basis H. It is an algebra:

$$H_F \cdot H_G := H_{FG}$$
.

We call this the Tits algebra.

Let

(1)
$$s: \Sigma[A] \twoheadrightarrow \Pi[A]$$

be the linearization of the support map.

This is a surjective morphism of algebras, that is,

(2)
$$s(x \cdot y) = s(x) \cdot s(y).$$

1.3 Left module of chambers

Let $\Gamma[\mathcal{A}]$ denote the linearization of the set of chambers $\Gamma[\mathcal{A}]$ over a field \Bbbk , with canonical basis H.

It is a two-sided ideal in the Tits algebra.

In particular, it is a left module over the Tits algebra:

$$H_F \cdot H_C := H_{FC}$$
.

We call this the left module of chambers.

1.4 Examples of finite-dimensional algebras

Fix a field k. Let A be a finite-dimensional algebra over k. Some examples to bear in mind are:

- \bullet \mathbb{k}^n ,
- $\mathbb{k}[x]/(x^n)$,
- algebra of square matrices of size n,
- incidence algebra of a finite poset P. This class of algebras includes the algebra of upper-triangular matrices of size n.

Let M be a finite-dimensional (left or right) module over A. Some examples to bear in mind are:

- A as a left and right module over itself.
- left module of column vectors (and right module of row vectors) over the algebra of square matrices.
- (left and right) incidence module of the incidence algebra of a poset P.

1.5 Modules and representations

Let M be a finite-dimensional left module over A. That is, M is a finite-dimensional vector space over \Bbbk equipped with a bilinear map

$$A \times M \to M, \qquad (a, m) \mapsto am,$$

such that a(bm)=(ab)m and 1m=m for all $a,b\in A$ and $m\in M$.

Any $w \in A$ gives rise to a linear operator

$$\Psi_M(w): M \to M, \qquad m \mapsto wm$$

defined by left multiplication by w.

This gives rise to an algebra homomorphism

$$\Psi_M:A\to \operatorname{End}_{\Bbbk}(M).$$

The latter is the algebra of endomorphisms of M, where the product is composition:

$$(fg)(m) = f(g(m)).$$

We say that Ψ_M is the representation of A associated to the module M.

Similarly, a right $A{\operatorname{-module}}\ M$ is defined by a bilinear map

$$M \times A \to M, \qquad (m, a) \mapsto ma,$$

In this case, we let $\Psi_M(w)$ denote right multiplication by w. The resulting map Ψ_M is an algebra antimorphism.

Standard terms of linear algebra apply to $\Psi_M(w)$.

For instance, we say that the operator $\Psi_M(w)$ is diagonalizable if M can be expressed as a direct sum of subspaces such that $\Psi_M(w)$ acts on each subspace by multiplication by a scalar.

The scalars are the eigenvalues of $\Psi_M(w)$ and the subspaces the eigenspaces.

For a left module M, let wM denote the image of the linear operator $\Psi_M(w)$.

In other words, wM consists of all elements of the form wm, as m varies over elements of M.

For a right module M, we denote the image by Mw.

1.6 Faithful and simple modules

A left A-module M is faithful if the representation Ψ_M is injective.

The annihilator $\operatorname{ann}(M)$ of a left A-module M is the kernel of Ψ_M :

$$\operatorname{ann}(M) := \{ a \in A \mid am = 0 \text{ for all } m \in M \}.$$

Thus, M is faithful iff ann(M) = 0.

Similar considerations apply to right A-modules.

A (left or right) module over A is simple if it is nonzero and has no proper submodules.

Any one-dimensional A-module M is simple.

1.7 Characters

Let A be a finite-dimensional k-algebra.

The character of a (left or right) A-module M is the linear functional

(3)
$$\chi_M:A\to \mathbb{k}, \qquad \chi_M(w)=\mathrm{Tr}(\Psi_M(w)),$$

where ${
m Tr}(\Psi_M(w))$ denotes trace of the linear operator $\Psi_M(w).$

A linear functional on A is called a character of A if it is the character of some A-module M.

Isomorphic modules have equal characters, but non-isomorphic modules may give rise to the same character.

A multiplicative character of A is an algebra homomorphism

$$\chi:A\to \mathbb{k}.$$

Lemma 1. If M is a one-dimensional A-module M, then χ_M is multiplicative. Conversely, given a multiplicative character χ , there exists a one-dimensional module M, unique up to isomorphism, such that $\chi_M = \chi$.

Proof. If M is one-dimensional, then $\mathrm{Tr}:\mathrm{End}_{\Bbbk}(M)\to \Bbbk$ is an isomorphism of algebras, so χ_M is an algebra morphism. For the converse, $M\cong \Bbbk$ with $am=\chi(a)m$.

For any A-module M,

$$\chi_M(1) = (\dim_{\mathbb{K}} M) \cdot 1,$$

where on the right 1 denotes the unit element of the ground field k. It follows that if k is of characteristic 0,

 $\chi_M(1)=1\iff \dim_{\Bbbk}M=1\iff \chi_M$ is a multiplicative character.

1.8 Endomorphism algebra of chambers

Recall from Section 1.5 that a left module M over an algebra A gives rise to an algebra homomorphism from A to the endomorphism algebra of M.

The Tits algebra $\Sigma[\mathcal{A}]$ acts on the left module of chambers $\Gamma[\mathcal{A}].$

This gives rise to an algebra homomorphism

(4)
$$\Sigma[A] \to \operatorname{End}_{\mathbb{k}}(\Gamma[A]),$$

the latter being the algebra of endomorphisms of $\Gamma[\mathcal{A}]$.

Let $\mathcal A$ be the arrangement of rank one with chambers C and $\overline C$. Identifying the endomorphism algebra of chambers with 2 by 2 matrices, the map (4) is given by

(5)
$$\alpha \operatorname{H}_O + \beta \operatorname{H}_C + \gamma \operatorname{H}_{\overline{C}} \mapsto \begin{pmatrix} \alpha + \beta & \beta \\ \gamma & \alpha + \gamma \end{pmatrix}$$
.

Observe directly that this map is injective. Its image consists of those matrices whose column sums are equal.

The matrix in (5) has eigenvalues α and $\alpha + \beta + \gamma$ with eigenvectors $\mathrm{H}_C - \mathrm{H}_{\overline{C}}$ and $\beta \, \mathrm{H}_C + \gamma \, \mathrm{H}_{\overline{C}}$, respectively. One can deduce from here that $\Gamma[\mathcal{A}]$ has a unique one-dimensional submodule, namely, the subspace spanned by $\mathrm{H}_C - \mathrm{H}_{\overline{C}}$. In particular, $\Gamma[\mathcal{A}]$ does not decompose as a direct sum of simple modules.

Following (3), taking trace of the matrix in (5), we see that the character of $\Gamma[\mathcal{A}]$ is the linear functional (6)

$$\chi_{\Gamma[\mathcal{A}]}: \Sigma[\mathcal{A}] \to \mathbb{k}, \qquad \alpha \, \mathrm{H}_O + \beta \, \mathrm{H}_C + \gamma \, \mathrm{H}_{\overline{C}} \mapsto 2\alpha + \beta + \gamma.$$

1.9 Complete systems of primitive orthogonal idempotents

Let A be a finite-dimensional algebra.

An element $e \in A$ is an idempotent if $e^2 = e$.

Idempotents e and f are orthogonal if ef=fe=0. In this case, e+f is also an idempotent.

Note that for any idempotent e, 1-e is also an idempotent and it is orthogonal to e.

A nonzero idempotent e is primitive if it cannot be written as a sum of two orthogonal nonzero idempotents.

Lemma 2. Every nonzero idempotent of A can be expressed as a sum of mutually orthogonal primitive idempotents.

Proof. Let *e* be the given idempotent.

If e is primitive, then we are done.

If not, then write e=f+g, with both f and g nonzero orthogonal idempotents.

If f (or g) is not primitive, then write it as a sum of two orthogonal nonzero idempotents.

Continue this procedure.

If at some stage we have $e=e_1+\cdots+e_k$, then $eA=e_1A\oplus\cdots\oplus e_kA$, with each $e_iA\neq 0$.

So by finite-dimensionality of A, this procedure must terminate.

Applying this result to the unit element 1, we deduce that there exists a family of mutually orthogonal primitive idempotents which sum up to 1.

Any such family is called a complete system of primitive orthogonal idempotents of A.

Complete refers to the fact that the idempotents sum up to 1.

Thus:

Proposition 1. Any finite-dimensional algebra has a complete system of primitive orthogonal idempotents.

Let $e \in A$ be an idempotent.

Let M be a left A-module.

The linear operator $\Psi_M(e)$ is diagonalizable.

Its eigenvalues are 1 and 0 with eigenspaces eM and (1-e)M, respectively.

Its trace is the dimension of eM. Thus,

(7)
$$\chi_M(e) = \text{Tr}(\Psi_M(e)) = \dim eM.$$

Example. Consider the algebra of square matrices of size n. It acts on the left on \mathbb{k}^n , with an n-tuple written as a column vector. This is a faithful module. An idempotent is the same as a pair of complementary subspaces of \mathbb{k}^n , say (U,V). It acts by 0 on U and by 1 on V. A nonzero idempotent is primitive precisely when V is one-dimensional. (If not, then it can be decomposed by breaking V.)

In particular: A matrix with exactly one diagonal entry equal to 1 and all remaining entries 0, is a primitive idempotent. Further, these matrices are orthogonal and their sum is the identity matrix, so they form a complete system of primitive orthogonal idempotents. This is illustrated below for n=3.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Any other complete system is obtained by conjugating this system by an invertible matrix.

1.10 Nilpotents

An element $a \in A$ is nilpotent if there exists an integer $k \geq 1$ such that $a^k = 0$.

For any nilpotent element $a \in A$ and left A-module M,

(8)
$$\chi_M(a) = \text{Tr}(\Psi_M(a)) = 0.$$

This is because the trace of any nilpotent matrix is 0.

Note that there is only one element in $\cal A$ which is both idempotent and nilpotent, namely, $\cal 0$.

2 Split-semisimple commutative algebras

2.1 Split-semisimple commutative algebras

A commutative k-algebra A is split-semisimple if it is isomorphic as an algebra to a product of copies of k, that is, $A \cong k^n$ for some n.

For $1 \leq i \leq n$, let e_i denote the element of A which corresponds to $(0, \ldots, 1, \ldots, 0) \in \mathbb{k}^n$ which is 1 in the i-th coordinate and zero elsewhere.

Observe that $f \in A$ is an idempotent iff f is a sum of some of the e_i .

In particular, the e_i are the only primitive idempotents of A.

These elements constitute a complete system of primitive orthogonal idempotents of A, and this system is unique.

The only algebra automorphisms of A are those obtained by permuting the e_i .

A split-semisimple commutative algebra does not contain any nonzero nilpotent elements. So an algebra such as $\mathbb{k}[x]/(x^n)$ for n>1 cannot be split-semisimple.

2.2 Modules

Suppose A is a split-semisimple commutative algebra, and M is an A-module.

Then each $e_i M$ is a submodule of M, and further

$$(9) M = \bigoplus_{i=1}^{m} e_i M.$$

An element $z \in A$ acts on $e_i M$ by scalar multiplication by the coefficient of e_i in z.

Note that each $e_i A$ is one-dimensional.

For each $1 \leq i \leq n$, put

(10)
$$\eta_i(M) := \chi_M(e_i) = \dim e_i M.$$

The second equality can be seen directly, or as an instance of (7).

Some important consequences of the above discussion are given below.

Theorem 1. A split-semisimple commutative algebra A of dimension n has n distinct simple modules (up to isomorphism).

They are one-dimensional.

For $1 \leq i \leq n$, the i-th simple module is given by e_iA , or equivalently, by the multiplicative character

$$\chi_i: A \to \mathbb{k}, \qquad z \mapsto \langle z, e_i \rangle,$$

where $\langle z, e_i \rangle$ denotes the coefficient of e_i in z.

Theorem 2. Let A be a split-semisimple commutative algebra. Each A-module M is a direct sum of simple modules with the multiplicity of the i-th simple module being $\eta_i(M)$. In particular, M is faithful iff $\eta_i(M)>0$ for each i.

By definition of χ_i ,

$$z = \sum_{i} \chi_i(z) e_i.$$

Thus, for any $z \in A$,

(11)
$$\chi_{M}(z) = \sum_{i=1}^{n} \chi_{i}(z) \, \eta_{i}(M).$$

Theorem 3. Let A be a split-semisimple commutative algebra.

For any element $w \in A$, the linear operator $\Psi_M(w)$ is diagonalizable.

Writing $w = \sum_i \lambda_i e_i$, the operator $\Psi_M(w)$ has eigenvalues λ_i and the eigenspace of λ_i is $e_i M$.

In particular, the multiplicity of λ_i is $\eta_i(M)$.

It is possible that e_iM is 0 for some i in which case the eigenvalue λ_i does not occur.

It may also happen that the λ_i are not distinct. In that case, the eigenspaces are obtained by lumping together the corresponding e_iM . For instance, if $w=e_i$, then the eigenvalues are 1 and 0. The eigenspace for 1 is e_iM and the eigenspace for 0 is the sum of the remaining e_jM .

Proposition 2. The characters of a split-semisimple commutative algebra A of dimension n correspond to families $(\eta_i)_{1 \leq i \leq n}$ of nonnegative integers, with the multiplicative ones corresponding to those families in which exactly one η_i is 1 and the rest are 0.

The character χ and the family (η_i) relate by $\chi(e_i)=\eta_i$. Note that the character determines the module M (up to isomorphism), with η_i being the number of times the i-th simple module occurs in M.

3 Algebra of a finite lattice

3.1 Algebra of a lattice

Let P be a finite lattice with minimum element \bot and maximum element \top .

Let k denote the linearization of P over the field k.

This is a commutative k-algebra with product induced from the join operation in P.

Letting H denote the canonical basis,

$$(12) H_x \cdot H_y := H_{x \vee y}.$$

3.2 Q-basis and split-semisimplicity

Define the Q-basis of $\Bbbk P$ by

$$\mathbf{H}_x = \sum_{y:\,y \geq x} \mathbf{Q}_y \qquad \text{or equivalently} \qquad \mathbf{Q}_x = \sum_{y:\,y \geq x} \mu(x,y)\,\mathbf{H}_y.$$

Here μ refers to the Möbius function of the lattice P. In particular,

(14)
$$\mathrm{H}_{\perp} = \sum_{y} \mathrm{Q}_{y}.$$

Theorem 4. The linearization of a finite lattice is a split-semisimple commutative algebra.

The unique complete system of primitive orthogonal idempotents is given by the Q-basis. In other words,

(15)
$$Q_x \cdot Q_y = \begin{cases} Q_x & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. An easy way to establish (15) is to assume it and deduce (12) from it.

The required calculation is shown below.

$$\mathbf{H}_{x} \cdot \mathbf{H}_{y} = \left(\sum_{z: z \geq x} \mathbf{Q}_{z}\right) \cdot \left(\sum_{w: w \geq y} \mathbf{Q}_{w}\right)$$

$$= \sum_{u: u \geq x \vee y} \mathbf{Q}_{u}$$

$$= \mathbf{H}_{x \vee y}.$$

Also from (13) and (15), we obtain

(16)
$$\mathsf{H}_y \cdot \mathsf{Q}_x = \begin{cases} \mathsf{Q}_x & \text{if } x \geq y, \\ 0 & \text{otherwise.} \end{cases}$$

In particular,

$$\mathbf{H}_y \cdot \mathbf{Q}_{\perp} = 0 \text{ for } y > \perp.$$

3.3 Linear functionals

Suppose $f: \Bbbk P \to \Bbbk$ is a linear map.

Then define (set-theoretic) maps $\xi, \eta: P \to \mathbb{k}$ as follows.

For each $x \in P$, let

(17)
$$\xi_x = f(\mathbf{H}_x)$$
 and $\eta_x = f(\mathbf{Q}_x)$.

We deduce from (13) that

(18)
$$\xi_x = \sum_{y: y \geq x} \eta_y$$
 and $\eta_x = \sum_{y: y \geq x} \mu(x, y) \, \xi_y.$

Further, linearizing ξ in the H-basis or η in the Q-basis recovers f.

Thus among f, ξ and η , knowing any one determines the remaining two.

Some interesting choices for ξ and η are given below.

Example. For $x \in P$, put

$$\xi_x = egin{cases} 1 & \text{if } x = \top, \\ 0 & \text{otherwise} \end{cases}$$
 and $\eta_x = \mu_P(x, \top).$

In general, η will take both positive and negative values.

Example. Let M be a finite-dimensional module over kP.

For each element $x \in P$, define (20)

$$\xi_x(M) := \dim(\mathbf{H}_x M)$$
 and $\eta_x(M) := \dim(\mathbf{Q}_x M)$.

These scalars are always nonnegative integers, since they are dimensions of spaces.

Recall from (7) that for any idempotent operator, the dimension of its image is its trace.

Since ${\rm H}_x$ and ${\rm Q}_x$ are idempotents, the linear functional f associated to $\xi_x(M)$ (or to $\eta_x(M)$) is the character χ_M of M.

3.4 Simple modules and diagonalizability

Let $\eta_x(M)$ be as in (20).

Theorem 5. The algebra kP has |P| distinct simple modules (up to isomorphism).

They are one-dimensional.

The simple module corresponding to $x \in P$ is defined by the multiplicative character

$$\chi_x : \mathbb{k}P \to \mathbb{k}, \qquad \sum_y b^y \, \mathbb{Q}_y \mapsto b^x.$$

On the H-basis, the multiplicative character is given by

$$\chi_x : \mathbb{k}P \to \mathbb{k}, \qquad \sum_y a^y \, \mathbb{H}_y \mapsto \sum_{y: y \le x} a^y.$$

Proof. The claim about the simple modules and the character formula on the Q-basis follows from Theorems 1 and 4. The formula on the H-basis can then be deduced as follows.

$$\sum_y a^y \, \mathrm{H}_y \mapsto \sum_y a^y \sum_{z:\, z \geq y} \mathrm{Q}_z \mapsto \sum_z \left(\sum_{y:\, y \leq z} a^y \right) \mathrm{Q}_z \mapsto \sum_{y:\, y \leq x} a^y.$$

_

Theorem 6. Any module M over the algebra k is a direct sum of simple modules with $\eta_x(M)$ being the multiplicity of the simple module corresponding to $x \in P$.

In particular, M is faithful iff $\eta_x(M)>0$ for each $x\in P$.

Proof. This follows from Theorems 2 and 4.

Theorem 7. Let M be a module over kP.

For $\alpha = \sum_x a^x \, \mathrm{H}_x$, the linear operator $\Psi_M(\alpha)$ is diagonalizable.

It has an eigenvalue

(21)
$$\lambda_x(\alpha) = \sum_{y: y \le x} a^y$$

for each $x \in P$, with multiplicity $\eta_x(M)$.

Proof. This follows from Theorems 3 and 4 and the H-basis formula in Theorem 5.

4 Birkhoff algebra

We return to the Birkhoff algebra $\Pi[A]$.

4.1 Q-basis and split-semisimplicity

Define the Q-basis of $\Pi[\mathcal{A}]$ by

$$\mathtt{H}_{X} = \sum_{Y:\,Y \geq X} \mathtt{Q}_{Y} \qquad \text{or equivalently} \qquad \mathtt{Q}_{X} = \sum_{Y:\,Y \geq X} \mu(X,Y)\,\mathtt{H}_{Y}.$$

In particular, the unit element is

(23)
$$\mathrm{H}_{\perp} = \sum_{\mathrm{Y}} \mathrm{Q}_{\mathrm{Y}}.$$

Specializing Theorem 4, we obtain:

Theorem 8. The Birkhoff algebra is a split-semisimple commutative algebra.

Its dimension equals the number of flats in A.

The unique complete system of primitive orthogonal idempotents is given by the Q-basis:

(24)
$$\mathsf{Q}_{\mathrm{X}} \cdot \mathsf{Q}_{\mathrm{Y}} = \begin{cases} \mathsf{Q}_{\mathrm{X}} & \textit{if } \mathrm{X} = \mathrm{Y}, \\ 0 & \textit{otherwise}. \end{cases}$$

By (16), we have:

(25)
$$\mathtt{H}_{Y} \boldsymbol{\cdot} \mathtt{Q}_{X} = \begin{cases} \mathtt{Q}_{X} & \text{if } X \geq Y, \\ 0 & \text{otherwise.} \end{cases}$$

From now on, whenever convenient, we will abbreviate $\Pi[\mathcal{A}]$ to Π .

4.2 Rank-one

Let ${\cal A}$ be the arrangement of rank one.

It has two flats, namely, the minimum flat \bot and the maximum flat \top .

The Q-basis elements are given by

$$Q_{\perp} = H_{\perp} - H_{\top}, \qquad Q_{\top} = H_{\top}.$$

One can readily check that they define a complete system.

4.3 Linear functionals

Let (ξ_X) and (η_X) be two families of scalars indexed by flats which are related by

(26)

$$\dot{\xi}_X = \sum_{Y:\,Y \geq X} \eta_Y \quad \text{and} \quad \eta_X = \sum_{Y:\,Y \geq X} \mu(X,Y)\,\xi_Y.$$

They correspond to the linear functional $f:\Pi \to \Bbbk$ by

(27)
$$\xi_{\mathrm{X}} = f(\mathtt{H}_{\mathrm{X}})$$
 and $\eta_{\mathrm{X}} = f(\mathtt{Q}_{\mathrm{X}}).$

See (17) and (18).

Some choices for these families are given below.

Example. For each flat X, put

(28)
$$\xi_{X} = \begin{cases} 1 & \text{if } X = \top, \\ 0 & \text{otherwise} \end{cases} \text{ and } \eta_{X} = \mu(\mathcal{A}_{X}).$$

This choice is a specialization of (19).

Example. Let h be a finite-dimensional module over Π . For each flat X, put

(29)

$$\xi_{\mathbf{X}}(\mathbf{h}) := \dim(\mathbf{H}_{\mathbf{X}} \cdot \mathbf{h}) \quad \text{and} \quad \eta_{\mathbf{X}}(\mathbf{h}) := \dim(\mathbf{Q}_{\mathbf{X}} \cdot \mathbf{h}).$$

This choice is a specialization of (20).

Example. For each flat X, put

(30)
$$\xi_{\mathrm{X}} = c_{\mathrm{X}} \quad \text{and} \quad \eta_{\mathrm{X}} = |\mu(\mathcal{A}_{\mathrm{X}})|,$$

where c_X is the number of chambers in A_X . That this is a valid choice is equivalent to the Zaslavsky formula.

4.4 Simple modules and diagonalizability

Let $\eta_X(h)$ be as in (29).

Theorem 9. The Birkhoff algebra Π has one simple module (up to isomorphism) for each flat X.

It is one-dimensional and defined by the multiplicative character

$$\chi_{\mathbf{X}}: \Pi \to \mathbb{k}, \qquad \sum_{\mathbf{Y}} w^{\mathbf{Y}} \mathbf{H}_{\mathbf{Y}} \mapsto \sum_{\mathbf{Y}: \mathbf{Y} \leq \mathbf{X}} w^{\mathbf{Y}}.$$

Proof. This is a special case of Theorem 5.

Theorem 10. Any finite-dimensional module h is a direct sum of simple modules with $\eta_X(h)$ being the multiplicity of the simple module corresponding to the flat X.

Proof. This is a special case of Theorem 6.

Theorem 11. Let h be a finite-dimensional module over the Birkhoff algebra.

For $w = \sum_{\mathbf{X}} w^{\mathbf{X}} \mathbf{H}_{\mathbf{X}}$, the linear operator $\Psi_{\mathsf{h}}(w)$ is diagonalizable.

It has an eigenvalue

(31)
$$\lambda_{\mathbf{X}}(w) = \sum_{\mathbf{Y}: \, \mathbf{Y} \leq \mathbf{X}} w^{\mathbf{Y}}$$

for each X, with multiplicity $\eta_X(\mathsf{h})$.

Proof. This is a special case of Theorem 7.

5 Elementary algebras

5.1 Radical of an algebra

Let A be an algebra.

An ideal N of A is nilpotent if there exists an integer $k \geq 1$ such that $N^k = 0$.

The smallest k for which this happens is the nilpotency index of N.

In other words: N has nilpotency index k iff the product of any k elements in N is zero, and there exist k-1 elements whose product is nonzero.

The sum of all nilpotent ideals of A is again a nilpotent ideal. This ideal is defined to be the radical of A.

In other words, the radical of A is the largest nilpotent ideal of A.

We denote it by rad(A).

It is contained in the set of all nilpotent elements of A.

Notation 12. For any ideal I of A, we have the quotient map $A \twoheadrightarrow A/I$. Whenever such a map is under discussion, for $z \in A$, we will write \bar{z} for its image in A/I.

Proposition 3. Suppose N is a nilpotent ideal of an algebra A such that A/N is a split-semisimple commutative algebra.

Then $N=\mathrm{rad}(A)$ and it consists precisely of the nilpotent elements of A.

Proof. Since N is nilpotent, it is contained in $\mathrm{rad}(A)$, which in turn is contained in the set of all nilpotent elements.

Suppose $z \in A$ is nilpotent.

Then, so is its image $\bar{z} \in A/N$.

However, since A/N is a split-semisimple commutative algebra, it has no nonzero nilpotent elements.

Hence, $\bar{z}=0$, and $z\in N$.

Thus N consists precisely of the nilpotent elements of A, and equals $\mathrm{rad}(A)$.

5.2 Elementary algebras

An algebra A is elementary if the quotient $A/\operatorname{rad}(A)$ is a split-semisimple commutative algebra.

Let us denote this quotient by \bar{A} .

We assume that \bar{A} has dimension n and denote its primitive idempotents by e_1, \ldots, e_n .

Also following standard notation, for $z\in A$, we write \bar{z} for its image in \bar{A} .

5.3 Radical of the Tits algebra

Let N denote the kernel of the support map (1). We set out to prove that

$$N = rad(\Sigma[A]),$$

the radical of the Tits algebra.

Since the support map is an algebra homomorphism, N is an ideal of the Tits algebra.

Let $z = \sum_F x^F \mathbf{H}_F$ be any element of $\Sigma[\mathcal{A}]$. Then observe that

(32)
$$z \in \mathbb{N} \iff \sum_{F: s(F) = X} x^F = 0 \text{ for all flats } X.$$

In particular, for this to occur, $\boldsymbol{x}^O=0$.

Note that for any faces F and G with the same support, $\mathbf{H}_F - \mathbf{H}_G$ belongs to \mathbb{N} , and elements of this form linearly span \mathbb{N} .

An element of the Tits algebra is homogeneous if it is a linear combination of faces with the same support.

For any such element x, let us denote this common support by $\mathbf{s}(x)$.

By convention, $\mathbf{s}(0) = \top$, the maximmum flat.

Note that an arbitrary element of the Tits algebra can be written as a linear combination of homogeneous elements.

The product of homogeneous elements is again homogeneous.

Further, $\mathbf{s}(x), \mathbf{s}(y) \leq \mathbf{s}(x \cdot y)$ for any homogeneous elements x and y.

Lemma 3. If $x \in \mathbb{N}$ is homogeneous and F is a face such that $\mathbf{s}(x) \leq \mathbf{s}(F)$, then $\mathbb{H}_F \cdot x = 0$.

More generally, if x and y are homogeneous, $x \in \mathbb{N}$ and $\mathbf{s}(x) \leq \mathbf{s}(y)$, then $y \cdot x = 0$.

Proof. The second statement follows from the first.

To prove the first: Write $x = \sum_{K: \, \mathbf{s}(K) = \mathbf{X}} a^K \mathbf{H}_K$, where $\mathbf{X} = \mathbf{s}(x)$.

By hypothesis, FK = F for all K of support X.

Thus,

$$\mathbf{H}_{F} \cdot x = \sum_{K: \mathbf{s}(K) = \mathbf{X}} a^K \mathbf{H}_{F} \cdot \mathbf{H}_{K} = \left(\sum_{K: \mathbf{s}(K) = \mathbf{X}} a^K\right) \mathbf{H}_{F} = 0,$$

by (<mark>32</mark>). □

Lemma 4. For any nonnegative integer k, the ideal \mathbb{N}^k only contains elements which are linear combinations of faces of rank at least k.

Proof. Consider $x_1 \cdot x_2 \cdot \ldots \cdot x_k \in \mathbb{N}^k$, where each x_i is a homogeneous element of \mathbb{N} . Then

$$\perp \leq \mathbf{s}(x_1) \leq \mathbf{s}(x_1 \cdot x_2) \leq \cdots \leq \mathbf{s}(x_1 \cdot \ldots \cdot x_k).$$

If equality holds in any place, say

$$\mathbf{s}(x_1 \cdot \ldots \cdot x_{i-1}) = \mathbf{s}(x_1 \cdot \ldots \cdot x_i)$$
, then $\mathbf{s}(x_i) \leq \mathbf{s}(x_1 \cdot \ldots \cdot x_{i-1})$, and hence $x_1 \cdot \ldots \cdot x_i = 0$ by Lemma 3.

Thus we may assume

$$\perp < \mathbf{s}(x_1) < \mathbf{s}(x_1 \cdot x_2) < \dots < \mathbf{s}(x_1 \cdot \dots \cdot x_k)$$

from which we deduce that $x_1 \cdot x_2 \cdot \ldots \cdot x_k$ is a linear combination of faces of rank at least k.

As a consequence:

Proposition 4. The ideal N is nilpotent.

Proposition 5. The Tits algebra is elementary.

Its split-semisimple quotient is the Birkhoff algebra, with the support map as the quotient map.

In particular, the radical of the Tits algebra is the kernel of the support map: $\operatorname{rad}(\Sigma[\mathcal{A}]) = N$ and it consists precisely of the nilpotent elements of the Tits algebra.

Proof. Apply Proposition 3 to the nilpotent ideal N, and use Theorem 8. All claims follow. □

5.4 Simple modules over an elementary algebra

Theorem 13. Let A be elementary.

Then A has n distinct simple modules (up to isomorphism). They are one-dimensional.

For $1 \leq i \leq n$, the i-th simple module is defined by the multiplicative character

$$\chi_i: A \to \mathbb{k}, \qquad z \mapsto \langle \bar{z}, e_i \rangle.$$

In fact, there is a correspondence between simple modules over A and over \bar{A} .

Proof. Let M be a simple A-module.

Then JM is a submodule of M, where $J=\mathrm{rad}(A)$.

By simplicity of M, this submodule is either M or 0.

The nilpotency of J forces JM = 0.

So the action of A factors through the quotient map $A \to \bar{A}$, and M is a simple \bar{A} -module.

Conversely, any simple \bar{A} -module is a simple A-module.

So there is a correspondence between simple modules over A and over \bar{A} .

Now apply Theorem 1.

By definition of χ_i ,

$$\bar{z} = \sum_{i} \chi_i(z) e_i.$$

It follows that $z \in \operatorname{rad}(A)$ iff $\chi_i(z) = 0$ for all i.

5.5 Simple modules over the Tits algebra

Theorem 14. The simple modules over $\Sigma[A]$ are one-dimensional and indexed by flats.

Let χ_X denote the multiplicative character corresponding to the flat X. It is specified by

(34)
$$s(z) = \sum_{X} \chi_{X}(z) Q_{X}.$$

On a H-basis element, it is given by

(35)
$$\chi_{\mathbf{X}}(\mathbf{H}_F) = \begin{cases} 1 & \text{if } \mathbf{s}(F) \leq \mathbf{X}, \\ 0 & \text{otherwise.} \end{cases}$$

Equivalently, for $w = \sum_F w^F \mathtt{H}_F$,

(36)
$$\chi_{\mathbf{X}}(w) = \sum_{F: \mathbf{s}(F) \leq \mathbf{X}} w^F.$$

Proof. Apply Theorem 13. This yields the first two statements. In particular, $\chi_X(H_F)$ is the coefficient of Q_X in $H_{s(F)}$. Now use (22) to first get (35) and then (36).

In particular, the multiplicative characters for the minimum and maximum flats are given by

$$\chi_{\perp}(\mathtt{H}_F) = \begin{cases} 1 & \text{if } F = O, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad \chi_{\top}(\mathtt{H}_F) = 1 \text{ for all } F.$$

5.6 Modules

Let M be a (left or right) module over an elementary algebra A.

As a consequence of (8), the character of M factors through the quotient map $A \to \bar{A}$ yielding the commutative diagram

We continue to denote the induced linear functional on \bar{A} by $\chi_M.$

For $1 \leq i \leq n$, put

(38)
$$\eta_i(M) := \chi_M(e_i).$$

Observe that for any $w \in A$,

(39)
$$\chi_M(w) = \sum_{i=1}^n \chi_i(w) \, \eta_i(M).$$

Let $0=M_0\lessdot M_1\lessdot\cdots\lessdot M_k=M$ be any composition series of M.

This is a filtration of M in which M_{j-1} is a maximal proper submodule of M_j .

Then each M_j/M_{j-1} , called a composition factor, is a simple module and hence one-dimensional by Theorem 13.

The associated graded module of the filtration, namely,

$$\bar{M} := \bigoplus_{j=1}^k M_j / M_{j-1}$$

is both an A-module and an \overline{A} -module.

Thus, for $w \in A$, the operators $\Psi_{\bar{M}}(w)$ and $\Psi_{\bar{M}}(\bar{w})$ coincide.

Further, we claim that the eigenvalues (and hence trace) of the operator $\Psi_M(w)$ coincide with those of the operator $\Psi_{\bar{M}}(\bar{w})$.

To see this, pick a basis of M by first picking a nonzero element from M_1 , followed by an element of M_2 which is not in M_1 , and so on. This basis does not depend on w. It induces a basis of \bar{M} . In these bases, $\Psi_{\bar{M}}(\bar{w})$ is a diagonal matrix, while $\Psi_{M}(w)$ is an upper triangular matrix whose diagonal part agrees with $\Psi_{\bar{M}}(\bar{w})$. This proves the claim.

In particular, the induced functional χ_M on \bar{A} is the character $\chi_{\bar{M}}$ of the module \bar{M} .

Example. Let A be the algebra of upper triangular matrices of size n. It is elementary. The radical is the ideal of strictly upper triangular matrices. Elements of the quotient \bar{A} can be identified with diagonal matrices.

Let M be the left A-module of column vectors. For $0 \leq i \leq n$, let M_i denote the submodule consisting of vectors whose last n-i entries are zero. This defines a composition series of M. Let \overline{M} denote its associated graded module. The action of any upper triangular matrix on \overline{M} is via its diagonal part.

Some consequences of the above discussion are stated below.

Theorem 15. Let A be elementary and M be an A-module.

Then in any composition series of M, the number of times the simple module associated to χ_i appears as a composition factor is $\eta_i(M)$.

Proof. We have $\eta_i(M)=\chi_M(e_i)=\chi_{\bar{M}}(e_i).$ Now use Theorem 2.

Theorem 16. Let A be elementary and M be an A-module.

Then all elements of A are simultaneously triangularizable on M .

For $w \in A$, the eigenvalues of the linear operator $\Psi_M(w)$ are $\chi_i(w)$, and the multiplicity of $\chi_i(w)$ is $\eta_i(M)$.

Proof. For the second part, we can use Theorem 3 since $\Psi_M(w)$ and $\Psi_{\bar{M}}(\bar{w})$ have the same eigenvalues. \square

It is interesting that all eigenvalues of $\Psi_M(w)$ belong to the ground field \Bbbk .

The number $\eta_i(M)$ which is the multiplicity of $\chi_i(w)$ only depends on i and not on w. We call it the generic multiplicity associated to the index i.

It is possible that $\eta_i(M)$ is 0 for some i in which case the eigenvalue $\chi_i(w)$ does not occur.

It may also happen that $i \neq j$ but $\chi_i(w) = \chi_j(w) = \lambda$ (say). In this case, the multiplicity of λ will be the sum of $\eta_i(M)$ over those i for which $\chi_i(w) = \lambda$.

Note very carefully that Theorem 16 makes no claim about the diagonalizability of $\Psi_M(w)$.

Proposition 6. For an elementary algebra A, there is a correspondence between (multiplicative) characters of A and (multiplicative) characters of \bar{A} .

Thus, a character of A corresponds to a family $(\eta_i)_{1 \leq i \leq n}$ of nonnegative integers.

It is multiplicative if exactly one η_i is 1 and the rest are 0.

Proof. For the second part, we can use Proposition 2. \Box

Proposition 7. Let A be elementary and M be an A-module. Let $\hat{e}_1,\ldots,\hat{e}_n$ be a complete system of primitive orthogonal idempotents of A such that \hat{e}_i lifts e_i . Then

$$M = \bigoplus_{i} \hat{e}_{i} M$$

and

$$\dim \hat{e}_i M = \eta_i(M).$$

Proof. The decomposition is clear. For the formula:

$$\dim \hat{e}_i M = \chi_M(\hat{e}_i) = \chi_M(e_i) = \eta_i(M).$$

We used (7) and (38).

Note very carefully that Proposition 7 does not claim that the $\hat{e}_i M$ are submodules of M.

5.7 Modules over the Tits algebra

Let h be a finite-dimensional left module over the Tits algebra, and Ψ_{h} the associated representation.

For any element w of the Tits algebra, $\Psi_{\rm h}(w)$ denotes the linear operator on h given by multiplication by w, and w • h denotes its image. Thus,

$$\Psi_{\mathsf{h}}(w) : \mathsf{h} \to \mathsf{h}, \qquad \Psi_{\mathsf{h}}(w)(h) := w \cdot h.$$

Following (3), the character of h is the linear functional

$$\chi_{\mathsf{h}}: \Sigma \to \mathbb{k}, \qquad \chi_{\mathsf{h}}(w) = \mathrm{Tr}(\Psi_{\mathsf{h}}(w)),$$

where Tr denotes trace.

Recall from Proposition 5 that the Tits algebra is elementary.

We now apply the general discussion in Section 5.6 to the module h.

The character $\chi_{\rm h}$ factors through the support map yielding the commutative diagram

The induced linear functional on Π is also denoted $\chi_{\rm h}$.

Following (27), for each flat X, put

$$(40) \quad \xi_{\mathrm{X}}(\mathsf{h}) = \chi_{\mathsf{h}}(\mathtt{H}_{\mathrm{X}}) \qquad \text{and} \qquad \eta_{\mathrm{X}}(\mathsf{h}) = \chi_{\mathsf{h}}(\mathtt{Q}_{\mathrm{X}}).$$

Thus,

$$\xi_X(\mathsf{h}) = \sum_{Y:\,Y \geq X} \eta_Y(\mathsf{h}) \quad \text{or equivalently} \quad \eta_X(\mathsf{h}) = \sum_{Y:\,Y \geq X} \mu(X,Y)\,\xi_Y(\mathsf{h}).$$

The integer $\eta_X(h)$ agrees with (38).

It is the number of times the simple module associated to $\chi_{
m X}$ appears as a composition factor in a composition series of h.

By (39), for $w \in \Sigma$,

(42)
$$\chi_{\mathsf{h}}(w) = \sum_{\mathsf{X}} \chi_{\mathsf{X}}(w) \, \eta_{\mathsf{X}}(\mathsf{h}).$$

Recall from (7) that the trace of an idempotent operator is the dimension of its image.

Applying this to the idempotent H_F , we get

(43)
$$\xi_{\mathbf{X}}(\mathsf{h}) = \dim(\mathsf{H}_F \cdot \mathsf{h}),$$

where F is any face with support X.

The fact that this number does not depend on the particular choice of F can also be seen directly:

Lemma 5. Let F and G be faces of the same support. For a left module h, there is an isomorphism

$$\mathtt{H}_F \cdot \mathsf{h} \stackrel{\cong}{\longrightarrow} \mathtt{H}_G \cdot \mathsf{h}$$

given by multiplication by H_G , with inverse given by multiplication by H_F .

Proof. This follows from the property
$$FGF=FG$$
 and $FG=F$ and $GF=G\iff \mathrm{s}(F)=\mathrm{s}(G)$. \qed

Similarly, we have

(44)
$$\eta_{\mathbf{X}}(\mathsf{h}) = \dim(\mathsf{Q}_F \cdot \mathsf{h})$$

for any idempotent Q_F which lifts Q_X . Such idempotents will be constructed later.

If the action of Σ on h factors through the support map, then h becomes a module over Π , and $\xi_X(h)$ and $\eta_X(h)$ coincide with (29).

Example. For the left module of chambers Γ ,

(45)
$$\xi_{\mathbf{X}}(\Gamma) = c_{\mathbf{X}} \text{ and } \eta_{\mathbf{X}}(\Gamma) = |\mu(\mathcal{A}_{\mathbf{X}})|,$$

where $c_{\rm X}$ is the number of chambers in $\mathcal{A}_{\rm X}$.

This can be understood as follows.

The space $H_F \cdot \Gamma$ has a basis consisting of all chambers greater than F, so its dimension is c_F .

This yields the formula for $\xi_X(\Gamma)$.

The formula for $\eta_X(\Gamma)$ then follows from (30) (in view of (26) and (41)).

The character of the left module of chambers Γ is given by

(46)
$$\chi_{\Gamma}(w) = \sum_{\mathbf{X}} \chi_{\mathbf{X}}(w) |\mu(\mathcal{A}_{\mathbf{X}})|.$$

This follows from (42) and (45).

Recall that a linear functional on Σ is called a character of Σ if it is the character of some Σ -module h.

Multiplicative characters are those which arise from one-dimensional modules.

Proposition 8. The characters of the Tits algebra correspond to families (η_X) of nonnegative integers indexed by flats, with the multiplicative ones corresponding to those families in which exactly one η_X is 1 and the rest are 0.

Proof. This follows from Proposition 6.

5.8 Eigenvalues and multiplicities

Theorem 16 gives the eigenvalues and multiplicities of the action of any element of an elementary algebra on a module.

Applying it to the Tits algebra and using (36), we obtain:

Theorem 17. Let h be a finite-dimensional (left or right) module over the Tits algebra Σ .

Then all elements of Σ are simultaneously triangularizable on h.

For $w = \sum_F w^F \mathbf{H}_F$, the linear operator $\Psi_{\mathsf{h}}(w)$ has an eigenvalue

(47)
$$\lambda_{\mathbf{X}}(w) := \chi_{\mathbf{X}}(w) = \sum_{F: \, \mathbf{s}(F) \leq \mathbf{X}} w^F$$

for each $X \in \Pi$, with multiplicity $\eta_X(h)$ given by (40).

5.9 Bidigare-Hanlon-Rockmore

By specializing Theorem 17 to the left module of chambers $h = \Gamma$ and using formula (45), we obtain:

Theorem 18. For $w=\sum_F w^F \mathtt{H}_F$, the linear operator $\Psi_\Gamma(w)$ has an eigenvalue $\lambda_{\mathrm{X}}(w)$ defined by (47) for each $\mathrm{X} \in \Pi$, with multiplicity $|\mu(\mathcal{A}_{\mathrm{X}})|$.

This is the Bidigare-Hanlon-Rockmore theorem, or BHR for short.

Note very carefully that this result makes no claim about the diagonalizability of $\Psi_{\Gamma}(w)$.

Example. Let \mathcal{A} be the rank-one arrangement with chambers C and \overline{C} . It has two flats, namely, \bot and \top .

Let $w=\alpha\,{\rm H}_O+\beta\,{\rm H}_C+\gamma\,{\rm H}_{\overline C}.$ By BHR, the eigenvalues of $\Psi_\Gamma(w)$ are

$$\lambda_{\perp}(w) = \alpha$$
 and $\lambda_{\top}(w) = \alpha + \beta + \gamma$,

and both have multiplicity one. This is consistent with the explicit calculations done earlier.

Let k denote the submodule of Γ spanned by $\mathrm{H}_C - \mathrm{H}_{\overline{C}}$. Then $0 < \mathrm{k} < \Gamma$ is a composition series of Γ . The eigenvalue λ_\perp corresponds to the composition factor k , while λ_{\top} corresponds to the composition factor Γ/k . The calculation for the latter goes as follows.

$$(\alpha \operatorname{H}_{C} + \beta \operatorname{H}_{C} + \gamma \operatorname{H}_{\overline{C}}) \cdot \operatorname{H}_{C} = \alpha \operatorname{H}_{C} + \beta \operatorname{H}_{C} + \gamma \operatorname{H}_{\overline{C}} = (\alpha + \beta + \gamma) \operatorname{H}_{C}$$
 since H_{C} and $\operatorname{H}_{\overline{C}}$ represent the same element of Γ/k .

6 Primitive part of a left module

For a left Σ -module h, the primitive part of h is the subspace defined by

$$\mathcal{P}(\mathsf{h}) = \bigcap_{F>O} \ker(\Psi_\mathsf{h}(\mathsf{H}_F) : \mathsf{h} \to \mathsf{h}).$$

In other words,

$$z \in \mathcal{P}(h) \iff H_F \cdot z = 0 \text{ for all } F > O.$$

7 Over and under a flat. Cartesian product

We briefly discuss how the Tits algebra behaves under passage to arrangements over and under a flat, and with respect to cartesian product of arrangements.

7.1 Over a flat

For faces ${\cal F}$ and ${\cal G}$ with the same support, there is an algebra isomorphism

(48)
$$\beta_{G,F}: \Sigma[\mathcal{A}_F] \to \Sigma[\mathcal{A}_G], \quad \mathbb{H}_{K/F} \mapsto \mathbb{H}_{GK/G}.$$

Its inverse is $\beta_{F,G}$.

Similarly, for any face with support \boldsymbol{X} , there are canonical inverse algebra isomorphisms

(49)

$$eta_{\mathrm{X},F}: \Sigma[\mathcal{A}_F] o \Sigma[\mathcal{A}_{\mathrm{X}}] \qquad ext{and} \qquad eta_{F,\mathrm{X}}: \Sigma[\mathcal{A}_{\mathrm{X}}] o \Sigma[\mathcal{A}_F].$$

Identities such as

$$\beta_{{\rm X},F}=\beta_{{\rm X},G}\beta_{G,F}$$
 and $\beta_{G,F}=\beta_{G,{\rm X}}\beta_{{\rm X},F}$

always hold.

For any face H of A, the map

(50)
$$\Delta_H : \Sigma[A] \to \Sigma[A_H], \quad H_F \mapsto H_{HF/H}$$

is an algebra homomorphism.

For faces ${\cal F}$ and ${\cal G}$ with the same support, the diagram

(51)
$$\Sigma[\mathcal{A}] \xrightarrow{\Delta_{G}} \Sigma[\mathcal{A}]$$

$$\Sigma[\mathcal{A}_{F}] \xrightarrow{\beta_{G,F}} \Sigma[\mathcal{A}_{G}]$$

commutes.

For faces $F \leq G$, the diagram

(52)
$$\Sigma[\mathcal{A}] \xrightarrow{\Delta_{G}} \Sigma[\mathcal{A}]$$

$$\Sigma[\mathcal{A}_{F}] \xrightarrow{\Delta_{G/F}} \Sigma[\mathcal{A}_{G}]$$

commutes, where $\Delta_{G/F}(\mathtt{H}_{K/F})=\mathtt{H}_{GK/G}.$

Let

(53)
$$\mu_F : \Sigma[A_F] \to \Sigma[A], \quad H_{K/F} \mapsto H_K.$$

This is a section of the map (50), that is, $\Delta_F \mu_F = \mathrm{id}$. Composing in the other direction yields

(54)
$$\mu_F \Delta_F(x) = H_F \cdot x.$$

Note that μ_F preserves products, that is,

 $\mu_F(x \cdot y) = \mu_F(x) \cdot \mu_F(y)$, but it does not preserve the identity, so it is not an algebra homomorphism.

7.2 Under a flat

For any flat X, the linear map

(55)

$$\Sigma[\mathcal{A}] \to \Sigma[\mathcal{A}^{X}], \qquad \sum_{F} x^{F} H_{F} \mapsto \sum_{F: s(F) \leq X} x^{F} H_{F}$$

is an algebra homomorphism.

7.3 Cartesian product

For any arrangements \mathcal{A} and \mathcal{A}' , there is an algebra isomorphism

(56)

$$\Sigma[\mathcal{A} \times \mathcal{A}'] o \Sigma[\mathcal{A}] \otimes \Sigma[\mathcal{A}'], \qquad \mathtt{H}_{(F,F')} \mapsto \mathtt{H}_F \otimes \mathtt{H}_{F'}.$$

Similarly, there is an isomorphism

(57)

$$\Gamma[\mathcal{A} \times \mathcal{A}'] \to \Gamma[\mathcal{A}] \otimes \Gamma[\mathcal{A}'], \qquad \mathtt{H}_{(C,C')} \mapsto \mathtt{H}_{C} \otimes \mathtt{H}_{C'}.$$

8 The Wedderburn theorem for semisimple algebras

8.1 Semisimple algebras

Let A be a \Bbbk -algebra.

We say A is semisimple if $\mathrm{rad}(A)=0$, that is, if 0 is the only nilpotent ideal in A.

The Wedderburn structure theorem says the following.

Theorem 19. A k-algebra is semisimple iff it is isomorphic to a product of matrix algebras over division k-algebras.

Recall that a division k-algebra is a nonzero k-algebra in which every nonzero element is invertible.

If the division k-algebras involved are all k, then we say that the semisimple algebra is split.

In other words, A is split-semisimple iff it is isomorphic to a product of matrix algebras over k.

Corollary 1. A semisimple algebra is commutative iff it is isomorphic to a product of fields which are finite extensions of \mathbb{k} .

Similarly, a split-semisimple algebra is commutative iff it is isomorphic to a product of copies of k.

The latter notion was elaborated in Section 2.

8.2 The Schur lemma

Lemma 6. Let A be a k-algebra. Let $f: M \to N$ be a nonzero map of left A-modules. Then:

- 1. If M is simple, then f is injective.
- 2. If N is simple, then f is surjective.

Proof. Since f is nonzero, $\ker(f) \neq M$ and $\operatorname{im}(f) \neq 0$.

Hence, M simple implies $\ker(f)=0$, and N simple implies $\operatorname{im}(f)=N$. $\hfill\Box$

This is called the Schur lemma.

Corollary 2. Let A be a k-algebra, and M and N be simple left A-modules.

Then either $M\cong N$ (as left A-modules) or $\operatorname{Hom}_A(M,N)=0$.

8.3 Semisimple modules

Let M be a left A-module.

We say M is semisimple if any of the following equivalent conditions hold.

- ullet Every submodule of M is a direct summand of M (that is, has a complementary submodule).
- $\bullet \ M$ is the direct sum of a family of simple modules.
- M is the sum of a family of simple modules.

8.4 Radical of a module

For a left A-module M, the radical of M is the intersection of all maximal submodules of M. We denote it by $\mathrm{rad}(M)$. It is also given by

(58)
$$\operatorname{rad}(M) = \operatorname{rad}(A)M.$$

Also,

(59)
$$\operatorname{rad}(M) = 0 \iff M \text{ is semisimple.}$$

We omit the proofs.

Observe that A is semisimple iff A is a semisimple as a left module over itself.

8.5 Sketch of proof

We give a sketch of the forward implication of Theorem 19.

Suppose A is a semisimple algebra.

View A as a left module over itself.

Write

(60)
$$A = (M_{11} \oplus \cdots \oplus M_{1n_1}) \oplus (M_{21} \oplus \cdots \oplus M_{2n_2})$$

$$\oplus \cdots \oplus (M_{m_1} \oplus \cdots \oplus M_{m_{n_m}}),$$

where each M_{ij} is a simple left A-module, and they have been grouped together according to their isomorphism class.

The equality in (60) is as objects in the category of left A-modules.

Now loop on both sides to get an equality of k-algebras.

The loop object on the lhs is $A^{\mathrm{o}p}$, the opposite algebra of A.

The loop object on the rhs is a product of m matrix algebras over division k-algebras of size n_1, \ldots, n_m . This can be deduced from the Schur lemma.

This completes the argument.

8.6 Examples

- \mathbb{k}^n . This is split-semisimple. There are n matrix algebras over \mathbb{k} each of size 1.
- Algebra of square matrices. This is split-semisimple.
 There is one matrix algebra.
- ullet ${\Bbb C}$ as a two-dimensional algebra over ${\Bbb R}$. This is semisimple but not split. There is one matrix algebra of size 1 over the division algebra ${\Bbb C}$.

In general, for any algebra A, $A/\operatorname{rad}(A)$ is semisimple.

As a first step towards understanding A, we try to understand where $A/\operatorname{rad}(A)$ fits in Theorem 19.

Subsequent steps involve lifting idempotents from $A/\operatorname{rad}(A)$ to A, understanding complete systems of A, etc.

We did some of this for the Tits algebra (which we recall is an elementary algebra).

8.7 Group algebras

Let \Bbbk be any field.

Theorem 20. Let G be a finite group. The group algebra $\Bbbk G$ is semisimple iff the characteristic of \Bbbk does not divide the order of G.

This is called the Maschke theorem.

Proof. We explain only the backward implication. Suppose the characteristic of \mathbb{k} does not divide the order of G.

Let M be any submodule of $\Bbbk G$. We need to produce a complementary submodule N, that is $M\oplus N=\Bbbk G$.

For this, we pick any idempotent linear operator p on kG whose image is M. Define another operator e on kG by

$$e(x) = \frac{1}{|G|} \sum_{g \in G} g^{-1} \cdot p(g \cdot x)$$

for $x \in \mathbb{k}G$. We think of e as the average of p over G.

One can check that e is an idempotent operator on $\Bbbk G$ whose image is M, and moreover, it is a map of $\Bbbk G$ -modules.

Now put
$$N = \ker(e)$$
.

9 Exercises

- 1. Show that the sum of two multiplicative characters of an algebra ${\cal A}$ may not be multiplicative.
- 2. What is the character of the algebra \mathbb{k}^n viewed as a module over itself? Is it multiplicative?
- 3. Show that there are no nonzero nilpotent ideals in the algebra of square matrices of size n (for n fixed). Deduce that the radical of this algebra is the zero ideal.
- 4. What is the radical of the algebra $\mathbb{k}[x]/(x^n)$ (for n fixed)?
- 5. Show that for the algebra of square matrices of size n, the left module of column vectors is a simple module of dimension n.

10 Problems

- 1. Show that all arrangements of 3 lines in the plane (passing through the origin) are gisomorphic.
- 2. For any face F, describe the left ideal generated by F in the Tits monoid $\Sigma[\mathcal{A}]$. Show that it is two-sided, and in particular, contains the star of F. Say explicitly what happens when F is the central face and when F is a chamber.
- 3. Prove or disprove. For any faces F, G and H, $G \leq H \implies GF \leq HF$.
- 4. Compute all idempotents in the Tits algebra of the rank-one arrangement.
- 5. Show that the algebra of upper triangular n by n matrices for $n \geq 3$ cannot be isomorphic to the Tits algebra of any arrangement.

11 Problems

- 1. For each flat X, let $\xi_{\rm X}=c_{\rm X}^2$, where $c_{\rm X}$ is the number of chambers in $\mathcal{A}_{\rm X}$. Define $\eta_{\rm X}$ via (26). Are the $\eta_{\rm X}$ nonnegative?
- 2. An element z of the Tits algebra is a special Zie element iff z is an idempotent and $s(z) = \mathbb{Q}_{\perp}$. Verify this statement directly for the rank-one arrangement.
- List all special Zie families of the rank-one arrangement.
 Compute the corresponding Eulerian families and check that we indeed get all of them.
- 4. Let u be a homogeneous section with associated Eulerian family E and Q-basis. Fix a specific Q-basis element, say Q_F . Give an example of a homogeneous section \mathbf{u}' whose associated Eulerian family \mathbf{E}' satisfies $Q_F = \mathbf{E}'_{\mathrm{s}(F)}$.
- 5. Check that for any faces F and G,

$$\Delta_G \mu_F = \mu_{GF/G} \beta_{GF,FG} \Delta_{FG/F}.$$

We call this the bimonoid axiom for faces. It links the Tits algebras of A, A_F , A_G , A_{FG} and A_{FG} .

12 Reading assignment

Read at least one/two sections from any part of the notes b.pdf (including the appendices), and give a writeup on it.

Your writeup could include

- a brief summary of what you understood,
- a list of things you did not understand properly,
- overall suggestions for improving the exposition,
- additional questions/insights that you have,
- thoughts on the exercises listed,
- suggestions to improve some picture or draw more pictures,
- pointing out typos,

and so on.