

On Reconfiguration Graph of Independent Sets under Token Sliding

David Avis Duc A. Hoang

Graduate School of Informatics, Kyoto University arXiv: 2203.16861

AFSA 2022 First General Meeting

May 28, 2022

TS-Reconfiguration Graph of Independent Sets

Given G = (V, E) and a positive integer k.

- Each vertex of *G* contains at most *one unlabeled* token.
- *Token Sliding* (TS) involves moving a token from one vertex to one of its *unoccupied adjacent* vertices.

We consider $\mathsf{TS}_k(G)$ and $\mathsf{TS}(G)$.

- Nodes:
 - $\mathsf{TS}_k(G)$: independent sets of G of *size* k.
 - TS(G): independent sets of G of *arbitrary size*.
- **Edges:** defined under *Token Sliding*.

Figure: $TS_2(P_4)$

$\mathsf{TS}_k(G)$ From Algorithmic Viewpoint (Very Well-Studied)

Figure: Computational complexity of *Reachability between two given nodes* in $TS_k(G)$ and other related reconfiguration graphs for different input graphs G © Nishimura [Nishimura 2018]

900

$\mathsf{TS}_k(G)$ From Graph-Theoretic Viewpoint (This Poster)

We consider two main questions

- (Q1) Is G a TS_k -reconfiguration graph $(k \ge 2)$, i.e., does there exist a graph H such that $G \simeq TS_k(H)$?
- **(Q2)** If G satisfies some property \mathcal{P} , does $\mathsf{TS}(G)/\mathsf{TS}_k(G)$ also satisfy \mathcal{P} , and vice versa?

Our Results [Avis and Hoang 2022]

- We answered (Q1) for different graphs G, including complete graphs, paths, cycles, complete bipartite graphs, and connected split graphs.
- We answered (Q2) for different properties \mathcal{P} , including s-partite, planar, (non-)acyclic, Eulerian, and the clique's size.

References

Nishimura, N. (2018). "Introduction to Reconfiguration". In: *Algorithms* 11.4, p. 52. DOI: 10.3390/a11040052.