אינפי 1 - פתרון גיליון תרגילים מספר 4

-ש סדרה עולה. יש להוכיח ש- $b_{\scriptscriptstyle n}$ ועדת ש- סדרה סדרה מוכיח - סדרה מוכיח ש- .1

שני הביטויים שקולים . $a_{\scriptscriptstyle n+1} \leq \frac{a_{\scriptscriptstyle n} + b_{\scriptscriptstyle n}}{2}, \quad b_{\scriptscriptstyle n+1} \geq \sqrt{a_{\scriptscriptstyle n} b_{\scriptscriptstyle n}} \quad$ כלומר, ש $a_{\scriptscriptstyle n+1} \leq a_{\scriptscriptstyle n}, \quad b_{\scriptscriptstyle n+1} \geq b_{\scriptscriptstyle n}$

 $.\,a_{_{1}}=4,\,b_{_{1}}=\frac{1}{2}$, נוכיח באינדוקציה: הבדיקה נובעת מהנתון, $a_{_{n}}\geq b_{_{n}}$ ל-

 $:a_{n+1}\geq b_{n+1}$ - כעת נניח שי. $a_n\geq b_n$ - כעת נניח שי. מאי שיוויון הממוצעים מאי

$$a_{n+1} = \frac{a_n + b_n}{2} \ge \sqrt{a_n b_n} = b_{n+1}$$

-ט מראים . $a_n \geq b_1$ עולה ולכן b_n -שו $a_n \geq b_n$ -הראינו ש- הראינו מלמטה: חסומה a_n -שומה מלמעלה באופן דומה. b_n

נובע שלשתי הסדרות של גבולות ושימוש . $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b$ נסמן גבולו. נסמן של גבולות ושימוש

. ולכן הגבולות שווים $a=\dfrac{a+b}{2}$ - בהגדרה הרקורסיבית של אחת מהסדרות ($a_{\scriptscriptstyle n}$) נובע ש

.2 אמתקיים m>n>N כך שלכל א קיים ε מתקיים להראות מספיק מספיק מספיק 2

 $\left|\sum_{k=n+1}^{m}a_{k}\right|<\varepsilon$

$$\begin{split} \left|\sum_{k=n+1}^{m} a_k\right| &= \left|\frac{1}{(2n+1)(2n+3)} + \ldots + \frac{1}{(2m-1)(2m+1)}\right| \leq \\ &\frac{1}{(2n+1)^2} + \ldots + \frac{1}{(2m-1)^2} \leq \frac{1}{n(n+1)} + \ldots + \frac{1}{m(m-1)} = \\ &\left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \ldots + \left(\frac{1}{m-1} - \frac{1}{m}\right) = \frac{1}{n} - \frac{1}{m} < \frac{1}{n} \\ &: N = \left[\frac{1}{\varepsilon}\right] + 1 \text{ The proof of the pr$$

. הסדרה ניתנת לפישוט לצורה $a_n = \begin{cases} 2 & n \pmod{4} = 0 \\ 0 & n \pmod{4} \neq 0 \end{cases}$. lim sup $(a_n) = 2$, lim inf $(a_n) = 0$ - 1 2,0

 $\lim \inf(-a_n) = -\lim \sup(a_n)$ -ש א. צריך להוכיח ש- .4

. $\lim_{k\to\infty}a_{n_k}=a$, כלומר, , $a=\limsup(a_n)$. תת הסדרה המממשת מחור. . תהא . $a=\limsup(a_n)$

. lim inf($-a_n$) אענה: $-a_{n_k}$: טענה

. lim inf($-a_n$) = $\lim_{k\to\infty} -a_{n_k} = -\lim_{k\to\infty} a_{n_k} = -\limsup(a_n)$ אם הטענה נכונה, אז מתקיים

היא תת - a_{n_k} - היות ו- . lim inf $(-a_n)$ את מממשת שר - a_{n_k} - שלילה ש- . - $c=\lim\inf(-a_n)$. lim inf $(-a_n)<\lim_{k\to\infty}(-a_{n_k})=-a$, מדרה של - a_n . ווm inf $(-a_n)$

אבל $\lim_{l \to \infty} a_{j_l} = c$ ולכן , $\lim_{l \to \infty} -a_{j_l} = -c$ אז -c אז אבל . $\lim_{l \to \infty} a_{j_l} = -c$ תהא תהסדרה שמממשת את הסדרה שממשת את . $a = \limsup(a_n)$ שרירה ביחס לכך ש- . a < c

ב. צריך להראות ש- $\liminf(a_n+b_n) \geq \liminf\inf(a_n) + \liminf\inf(b_n)$. תרגיל והה למעט כיוון האי sup - ב. ביון והחלפת ה- והחלפת ה- נעשה בתירגולים ולכן לא נוכיח אותו כאן.

. lim inf(a_n+b_n) \leq lim sup(a_n) + lim inf(b_n) - עריך להוכיח ש אי ובי נובע ש- מסעיפים אי ובי נובע ש

 $\lim \inf(a_n + b_n) - \lim \sup(a_n) = \lim \inf(a_n + b_n) + \lim \inf(-a_n) \le$ $\le \lim \inf(a_n + b_n - a_n) = \lim \inf(b_n)$

סופי של מקבלת מספר, לא ערכים (כלומר, לא מקבלת מספר סופי של .5 היא סדרה בעלת מספר (כלומר, לא מקבלת מספר סופי של .5 ערכים בלבד).

 $.\,|\,a_{_n}-a\,|<\varepsilon\,$ יש כך ש- $\varepsilon>0$ קיים שלכל . $a\in[\liminf\,a_{_n},\limsup a_{_n}]$ תהא נניח בשלילה שקיים $\varepsilon>0$ כך שלכל שלכל בת מתקיים $\varepsilon>0$ כך שלכל ציים נייח בשלילה שקיים בשלילה שלכל שלכל אוניח בשלילה שקיים בשלילה שקיים בערבות בשלילה שקיים בערבות שלילה שקיים בערבות בערב

היות ו- ∞ מאברי הסדרה נמצאים בקטע היות ווm inf a_n היות היות ווm inf a_n היות הסדרה באברי הסדרה ב- (lim inf $a_n-(a-\varepsilon-\liminf a_n),a-\varepsilon)$ מאברי הסדרה ב- ($a+\varepsilon$, lim sup $a_n+(a+\varepsilon-\limsup a_n)$) מספר סופי של איברים של איברים של a_n ולכן לכל a_n טבעי אפשר למצוא a_n כך ש-

$$a_n \in (\liminf a_n - (a - \varepsilon - \liminf a_n), a - \varepsilon)$$

ו- $|a_{n+1}-a_n|>\varepsilon$ אזי $a_{n+1}\in(a+\varepsilon,\limsup a_n+(a+\varepsilon-\limsup a_n))$ בסתירה לנתון על ... התכנסות סדרת ההפרשים

 $x
eq a \in A$ הנמצאת בסביבת של $\varepsilon > 0$ קיימת נקודה $x \neq a \in A$ הנמצאת נקודה $\varepsilon > 0$ קיימות אינסוף על פי הנתון, לכל $\varepsilon > 0$ היא נקודת הצטברות של $\varepsilon > 0$ ולכן לכל $\varepsilon > 0$ של $\varepsilon > 0$ של היכות לכל $\varepsilon > 0$ של היכות ל- $\varepsilon > 0$ שונות מ- $\varepsilon = \alpha$ ונמצאות בסביבה בגודל $\varepsilon = \alpha$ של האלה, השונה גם מ- $\varepsilon = \alpha$ ונסמנה ב- $\varepsilon = \alpha$.

$$.\mid x_{n}-x\mid \varepsilon /2$$
 , $n>N$ כך שלכל מכך קיים $\varepsilon >0$ לכל לכל $\lim_{n\rightarrow \infty}x_{n}=x$

 $|x-a_n|=|x-x_n+x_n-a_n|\leq |x-x_n|+|x_n-a_n|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\quad\text{i.i.}\quad N\quad\text{i.i.}\quad n\quad\text{$

 $n\in N$ מתקיים $n\in N$ מתקיים a יש להוכיח לגבי a שאינו רציונלי. נבחר סדרת רציונליים a אז לכל a מתקיים: $a^{\alpha}\geq b^{\alpha}$ מתקיים: $a^{r_n}>b^{r_n}$ מתקיים: $a^{\alpha}>b^{\alpha}$ אזי $a^{\alpha}>b^{\alpha}$ כלומר, a=b סתירה. לכן $a^{\alpha}>b^{\alpha}$ אזי $a^{\alpha}=b^{\alpha}$ כלומר, a=b