

DET

Department of Electronics and Telecommunications

Introduzione ai Segnali ed ai Sistemi Elettronici

Sistemi Elettronici e Tecnologie

- Sistemi Elettrici ed Elettronici utilizzano entrambi fenomeni elettromagnetici a fini applicativi
- Nei sistemi elettrici: l'attenzione è rivolta al contenuto energetico
- Nei sistemi elettronici: l'attenzione è rivolta all'informazione

Sistemi Elettronici

- Applicazioni
 - Elaborazione delle informazioni e calcolo (scientifico, simulazione, contabilità...)
 - Entertainment (audio, video, multimedia...)
 - Telecomunicazioni (wireless, wired, broadcast (radio/TV), ...)
 - Intelligenza artificiale (riconoscimento di immagini, apprendimento,...)
 - Sistemi di controllo (robotica, automotive, automazione industriale...)
 - Bio-medicali (strumentazione medicale, dispositivi impiantabili...)
 - ... e molte altre dove sistemi elettronici (*embedded*) sono utilizzati in sistemi di altro tipo per controllarli, monitorarli e migliorarne le prestazioni
- Spesso singoli sistemi/apparati svolgono numerose funzioni (e.g. smartphone, tablet...)
- Diffusione sempre più pervasiva di sistemi micro-nano elettronici a bassissimo costo interconnessi tra loro → Internet of Things (IoT).

Informazione e Sistemi Elettronici

- Significato convenzionale attribuito ad una grandezza fisica variabile nel tempo in base ad una opportuna codifica.
 - Teoria dell'informazione (Shannon, 1930)
 - Segnale: grandezza fisica variabile a cui è associata informazione.
- In Elettronica, si considerano segnali elettrici: v(t), i(t)
- Un Sistema Elettronico è un qualsiasi apparato in grado di eseguire operazioni su segnali (ingressi) fornendo nuovi segnali (uscite).

Segnali in ingresso, Ingressi

Segnali in uscita, Uscite

Come associare informazione ad un segnale

- I segnali si differenziano per come l'informazione è ad essi associata in:
 - Segnali Analogici
 - Segnali Digitali (o Numerici)

Segnale Digitale

Segnale Analogico vs. Digitale

Il segnale analogico

- più vicino al mondo fisico (sensori, trasduttori)
- ha contenuto di informazione teoricamente infinito...
- ...ma il rumore aggiunto ad ogni elaborazione degrada parte dell'informazione in modo irreversibile, fino a corromperla completamente.

segnale analogico 'pulito' elevato rapporto segnale rumore (SNR)

segnale analogico degradato basso rapporto segnale rumore (SNR)

Segnale Analogico vs. Digitale

Il segnale digitale

- ha contenuto di informazione limitato (n campioni su due livelli $\rightarrow n$ bit)
- il rumore aggiunto ad ogni elaborazione, se non è tale da invertire lo stato logico, non degrada l'informazione, che può essere recuperata esattamente confrontando il segnale con la soglia (effetto rigenerativo)
- E' più semplice da elaborare (HW riconfigurabile e a basso costo)

Sistemi Elettronici

- Il corso di Sistemi Elettronici e Tecnologie è dedicato ai sistemi che elaborano segnali analogici (elettronica analogica)
- Si tratta tipicamente dei blocchi funzionali che elaborano (ricevono/trasmettono) segnali che comunicano «con il mondo fisico»

Sistemi Elettronici

Sistemi Elettronici: Smartphone

Schema a blocchi funzionale semplificato

Alimentazione E Batteria

Sistemi Elettronici: Smartphone

Processore

RF

Audio

Sensori

Memoria

Alimentazione

Sistemi Elettronici

- Un Sistema Elettronico è un qualsiasi apparato in grado di eseguire operazioni su segnali (ingressi) fornendo nuovi segnali (uscite).
- Può essere descritto in termini funzionali ...
 - Cosa fa? → Funzione
 - Quanta e quale energia richiede? → Alimentazione
 - Come interagisce con gli altri moduli? → Specifiche d'Interfaccia
- senza necessità di conoscere la struttura o il funzionamento interno (che cosa c'è dentro/come funziona) → come una funzione di libreria in un linguaggio di programmazione ad alto livello.

Sistemi Elettronici: Funzioni elementari

- Ma per comprendere il funzionamento o progettare un sistema elettronico è necessario conoscere la struttura interna
- Le funzioni di un sistema elettronico complesso si possono realizzare partendo da un numero relativamente ridotto di *funzioni elementari* (decomposizione funzionale) così com'è possibile sviluppare SW complesso a partire da poche istruzioni elementari.

In pratica, l'elettronica consiste nel saper progettare i circuiti che realizzano le funzioni elementari. Quali sono queste funzioni?

Sistemi Elettronici: Funzioni Analogiche senza memoria

- Amplificazione (moltipl. per una costante): y(t) = Ax(t)

Amplificatore

• Somma: $y(t) = x_1(t) + x_2(t)$

Sommatore

$$x_1(t) \longrightarrow y(t)$$

$$x_2(t)$$

Sistemi Elettronici: Funzioni Analogiche senza memoria

• Prodotto: $y(t) = k_p x_1(t) * x_2(t)$

Moltiplicatore o mixer

• Altre funzioni senza memoria (esponenziale, logaritmo,....): $y(t) = k_1 \exp[k_2 x(t)]$

Amplificatore non-lineare (esponenziale, logaritmico...)

$$x(t)$$
 $\exp(\cdot)$ $y(t)$

Sistemi Elettronici: Funzioni Analogiche con memoria

• Integrale definito nel tempo: $y(t) = \int_0^t k_i x(t')dt' + y(0)$

Integratore

• Derivata temporale: $y(t) = k_d \frac{dx}{dt}$

Derivatore

$$x(t)$$
 $\frac{d}{dt}$ $y(t)$

Sistemi Elettronici: Funzioni Analogiche con memoria

• Ritardo: $y(t) = x(t - \tau)$

(linea di) ritardo x(t) t y(t)

- Filtraggio: Y(f) = H(f)X(f)
 - La funzione di trasferimento H(f) può essere di tipo passa-basso, passa-banda passa-alto

- Ma che cosa c'è dentro/come funziona ciascun blocco elementare?
- Un sistema elettronico è un circuito elettrico, o meglio un N-porte
 - gli ingressi sono *tensioni* (definite rispetto ad un potenziale di riferimento comune detto 0V, GND o anche *massa*) o *correnti*.
 - le uscite si possono vedere come generatori di tensione o corrente non ideali.
 - valgono le leggi di Kirchoff (di V e I) e tutte le regole della <u>Teoria dei Circuiti</u>.

- Un sistema elettronico è un circuito elettrico.
 - Anche se il segnale di interesse ad una porta (ingresso o uscita) è una tensione (una corrente), alla stessa porta è definita anche una corrente (una tensione) che dipende da ciò che è collegato esternamente (condizioni di carico) e può influenzare il comportamento del circuito e/o di quanto è ad esso collegato.

- Un sistema elettronico è un circuito elettrico
 - per il suo funzionamento *richiede energia elettrica*, normalmente sotto forma di tensione continua tra due morsetti (valori tipici: 5V, 3.3V, 2.5V, 1.8V, 1V)

- Pre comprendere il flusso di progetto (dal "sistema" al "circuito") si analizzeranno principalmente i circuiti amplificatori
- I circuiti elettronici utilizzano componenti non ancora noti
 - dispositivi a semiconduttore, principalmente <u>transistori</u>
 - per poter comprendere il funzionamento di un sistema elettronico e le specifiche d'interfaccia, è necessario conoscere e saper analizzare i dispositivi a semiconduttore ed avere idea dei principi fisici su cui si basano

