Notas Análisis Matemático IV

Cristo Daniel Alvarado

2 de mayo de 2024

Índice general

3.	Seri	ies de Fourier	2
	3.1.	Series de Fourier de funciones en $\mathcal{L}_1^{2\pi}$	2
	3.2.	Series de Fourier de funciones en $\mathcal{L}_2^{2\pi}$	5
	3.3.	Series de Fourier de funciones de periodo $T>0$	7
	3.4.	Convergencia de series de Fourier de integrales indefinidas	8
	3.5.	Teorema fundamental para la convergencia puntual de series de Fourier en $\mathcal{L}_1^{2\pi}$	12
	3.6.	Núcleo de Dirichlet y teorema fundamental	15
	3.7.	Convergencia uniforme de una serie de Fourier	18
	3.8.	Convergencia en sentido de Cesáro de series de Fourier en $\mathcal{L}_1^{2\pi}$	21
		3.8.1. Núcleo de Fejér y el Teorema de Fejér	23
	3.9.	Convergencia c.t.p. en el sentido de Cesáro de series de Fourier en $\mathcal{L}_1^{2\pi}$	25

Capítulo 3

Series de Fourier

3.1. Series de Fourier de funciones en $\mathcal{L}_1^{2\pi}$

Definición 3.1.1

Se llama serie de Fourier trigonométrica a una serie de funciones de $\mathbb R$ en $\mathbb C$ de la forma

$$\sum_{k \in \mathbb{Z}} c_k e^{ikx} \tag{3.1}$$

donde $c_k \in \mathbb{C}$ para todo $k \in \mathbb{Z}$ son coeficientes constantes. Por definición, las **sumas parciales** de la serie son:

$$s_m(x) = \sum_{k=-m}^{m} c_k e^{ikx}, \forall m \in \mathbb{N}^*$$

Se dice que la serie **converge en un punto** x **a una suma** f(x), si

$$f(x) = \lim_{m \to \infty} s_m(x) = \lim_{m \to \infty} \sum_{k=-m}^{m} c_k e^{ikx}$$

En este caso,

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx} = \sum_{k = -\infty}^{\infty} c_k e^{ikx}$$

Usando la identidad $e^{ikx} = \cos kx + i \sin kx$, podemos reescribir s_m como

$$s_m(x) = c_0 + \sum_{k=1}^m (c_k + c_{-k}) \cos kx + i \sum_{k=1}^m (c_k - c_{-k}) \sin kx, \quad \forall m \in \mathbb{N}^*$$
 (3.2)

definamos

$$a_k = c_k + c_{-k}$$
 y $b_k = c_k - c_{-k}$, $\forall k \in \mathbb{Z}$ (3.3)

de la definición es claro que

$$a_{-k} = a_k$$
 y $b_{-k} = -b_k$, $\forall k \in \mathbb{Z}$

conociendo los coeficientes a_k y b_k se recobran los c_k mediante las fórmulas

$$c_k = \frac{a_k - ib_k}{2}, \quad \forall k \in \mathbb{Z} \setminus \{0\}$$
 (3.4)

y, $c_0 = \frac{a_0}{2}$. En términos de los a_k y b_k , las sumas 3.2 y 3.1 pueden ser reescritas como sigue:

$$s_m(x) = \frac{a_0}{2} + \sum_{k=1}^m a_k \cos kx + \sum_{k=1}^m b_k \sin kx, \quad \forall m \in \mathbb{N}^*$$
 (3.5)

y,

$$\sum_{k \in \mathbb{Z}} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + \sum_{k=1}^{\infty} b_k \sin kx$$

$$(3.6)$$

respectivamente.

Definición 3.1.2

Se dice que la serie trigonométrica es **real** si $s_m(x) \in \mathbb{R}$ para todo $m \in \mathbb{N}^*$ y para todo $x \in \mathbb{R}$. Se sigue de 3.2 que la serie es real si y sólo si $a_k, b_k \in \mathbb{R}$, para todo $k \in \mathbb{N}^*$.

Esta condición es equivalente a que

$$c_{-k} = \overline{c_k}, \quad \forall k \in \mathbb{Z}$$

Es válido preguntarnos ahora: ¿Qué relación hay entre f y los coeficientes c_k ?

Proposición 3.1.1

Considere una serie trigonométrica $\sum_{k\in\mathbb{Z}} c_k e^{ikx}$. Suponga que esta serie converge uniformemente en \mathbb{R} a alguna función f. Entonces, $f \in C^{2\pi}$ y

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx, \quad \forall n \in \mathbb{Z}$$

Demostración:

Se supone que $f(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$ uniformemente en \mathbb{R} . Como el límite uniforme de una sucesión de funciones continuas es continua, se tiene entonces que $f \in \mathcal{C}^{2\pi}$. Para un $n \in \mathbb{Z}$:

$$f(x)e^{-inx} = \sum_{k \in \mathbb{Z}} c_k e^{i(k-n)x}$$
 uniformemente en \mathbb{R} (3.7)

pues,

$$|f(x)e^{-inx} - s_m(x)e^{-inx}| = |f(x) - s_m(x)|, \quad \forall m \in \mathbb{N}^*$$

Se puede pues integrar término por término 3.7 en el compacto $[-\pi,\pi]$. Antes veamos que

$$\int_{-\pi}^{\pi} e^{i(n-k)x} dx = \begin{cases} 2\pi & \text{si} & n=k\\ 0 & \text{si} & n \neq k \end{cases}$$

por tanto,

$$\int_{-\pi}^{\pi} f(x)e^{-inx}dx = \sum_{k \in \mathbb{Z}} \int_{-\pi}^{\pi} e^{i(k-n)x}dx$$
$$= 2\pi c_n$$
$$\Rightarrow c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx$$

Este resultado sugiere la definición siguiente:

Definición 3.1.3

Para todo $f \in \mathcal{L}_{1}^{2\pi}(\mathbb{C})$ se define

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx, \quad \forall k \in \mathbb{Z}$$
(3.8)

en particular, $c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$. Los coeficientes c_k se llaman los coeficientes de Fourier trigonométricos de f y, la serie

$$\sum_{k \in \mathbb{Z}} c_k e^{ikx}$$

se llama serie de Fourier trigonométrica de f.

Observación 3.1.1

Los correspondientes coeficientes a_k y b_k son los siguientes:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

también,

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx \quad y \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$

para todo $k \in \mathbb{Z}$ (esto se obtiene usando la igualdad entre los c_k y a_k, b_k).

Observación 3.1.2

Para fines prácticos, conviene tener en cuenta lo siguiente. Si f es una función impar en $]-\pi,\pi[$, entonces

$$a_k = 0 \quad \forall k \in \mathbb{N}^*$$

y,

$$b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin kx, \quad \forall k \in \mathbb{N}$$

Si f es una función par en $]-\pi,\pi[$ se invierte el resultado, es decir

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos kx, \quad \forall k \in \mathbb{N}^*$$

у,

$$b_k = 0 \quad \forall k \in \mathbb{N}$$

Teorema 3.1.1

Las aplicaciones $f \mapsto \{c_k\}_{k \in \mathbb{Z}}$ y, $f \mapsto \{a_0, a_1, b_1, ...\}$ son aplicaciones lineales inyectivas de $L_1^{2\pi}$ en el espacio de sucesiones complejas y reales, respectivamente. En particular, si $f, g \in \mathcal{L}_1^{2\pi}$ tienen los mismos coeficientes de Fourier trigonométricos, entonces f = g c.t.p. en \mathbb{R} .

Demostración:

Por la forma en que se definen los coeficientes de Fourier de una función integrable, es claro que dichas aplicaciones son lineales.

Resta probar que su kernel es $\{0\}$. Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ tal que

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{inx}dx = 0, \quad \forall n \in \mathbb{Z}$$

dado que el sistema trigonométrico $\tau_{\mathbb{C}}$ es total en $\mathcal{L}_{1}^{2\pi}(\mathbb{C})$, necesariamente f=0 c.t.p. en \mathbb{R} .

Similarmente se prueba la otra afirmación.

Proposición 3.1.2

Sean $f, g \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ y $\{c_k\}_{k \in \mathbb{Z}}$ y $\{d_k\}_{k \in \mathbb{Z}}$ los coeficientes de Fourier trigonométricos de f y g, respectivamente. Entonces, los coeficientes de Fourier $\{\gamma_k\}$ de f * g son $\{2\pi c_k d_k\}_{k \in \mathbb{Z}}$.

Demostración:

Para todo $k \in \mathbb{Z}$ fijo se tiene lo siguiente:

$$\gamma_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f * g(x) e^{-ikx} dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikx} dx \int_{-\pi}^{\pi} f(y) g(x - y) dy$$

como la función $(x,y) \mapsto e^{-ikx} f(y) g(x-y)$ es integrable en $]-\pi,\pi[\times]-\pi,\pi[$ (pues la función es medible y su módulo es el mismo que el de $(x,y) \mapsto f(y) g(x-y)$, la cual es integrable por un teorema de convolución), se puede invertir del orden de integración:

$$\gamma_{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)dy \int_{-\pi}^{\pi} g(x-y)e^{-ikx}dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)dy \int_{-\pi-y}^{\pi-y} g(z)e^{-ik(z+y)}dz$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iky}dy \int_{-\pi-y}^{\pi-y} g(z)e^{-ikz}dz$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iky}dy \int_{-\pi}^{\pi} g(z)e^{-ikz}dz$$

$$= c_{k} \cdot (2\pi d_{k})$$

$$= 2\pi c_{k} d_{k}$$

pues, las funciones son periódicas. Se tieene entonces con lo anterior el resultado para todo $k \in \mathbb{Z}$.

3.2. Series de Fourier de funciones en $\mathcal{L}_2^{2\pi}$

Recuerde que las funciones

$$\varphi_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}, \quad \forall k \in \mathbb{Z}$$

constituyen un sistema ortonormal maximal en el espacio Hilbertiano $L_2^{2\pi}(\mathbb{C})$. En el sentido Hilbertiano; los coeficientes de Fourier de algún vector $f \in \mathcal{L}_2^{2\pi}(\mathbb{C})$ con respecto a dicho sistema ortonormal son los siguientes:

$$\hat{f}(x) = (f|\varphi_k)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx$$

$$= \sqrt{2\pi}c_k$$

luego,

$$\hat{f}(x)\varphi_k(x) = \sqrt{2\pi}c_k \frac{1}{\sqrt{2\pi}}e^{ikx}$$
$$= c_k e^{ikx}, \quad \forall k \in \mathbb{Z}$$

La serie de Fourier hilbertiana de f sería:

$$\sum_{k \in \mathbb{Z}} \hat{f}(x)\varphi_k(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$$

que corresponde a al serie de Fourier trigonométrica de f. También, las funciones

$$\frac{1}{\sqrt{2\pi}}$$
, $\eta_k(x) = \frac{1}{\sqrt{\pi}}\cos kx$, $\theta_k(x) = \frac{1}{\sqrt{\pi}}\sin kx$, $\forall k \in \mathbb{Z}$

forman otro sistema O.N. maximal en $L_2^{2\pi}(\mathbb{K})$. Los correspondientes coeficientes de Fourier de f con respecto a este sistema O.N. maximal serían:

$$\begin{cases} \left(f\middle|\frac{1}{\sqrt{2\pi}}\right) &= \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) dx \\ \left(f\middle|\eta_k\right) &= \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos kx dx \\ \left(f\middle|\theta_k\right) &= \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin kx dx \end{cases}$$

La serie de Fourier hilbertiana de f será:

$$\left(f\left|\frac{1}{\sqrt{2\pi}}\right) + \sum_{k=1}^{\infty} \left(f\left|\eta_k\right)\eta_k + \sum_{k=1}^{\infty} \left(f\left|\theta_k\right)\theta_k = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos kx + b_k \sin kx\right]\right)$$

Recuerde también que por el teorema de Riesz-Fischer que si $\{\vec{u}_{\alpha}\}_{\alpha\in\Omega}$ es un sistema O.N. maximal en un espacio hilbertiano H, entonces la aplicación $\vec{x}\mapsto\{\hat{x}(\alpha)\}$ es una isometría lineal de H en $l_2(\Omega)$. La isometría inversa es:

$$\varphi \mapsto \sum_{\alpha \in \Omega} \varphi(\alpha) \vec{u}_{\alpha}$$

Aplicacndo este resultado al primer caso se tiene que

Teorema 3.2.1

Las aplicaciones

$$f \mapsto \left\{ \sqrt{2\pi}c_k \right\}_{k \in \mathbb{Z}} \quad \text{y} \quad f \mapsto \left\{ \sqrt{2\pi}\frac{a_0}{2}, \sqrt{\pi}a_1, \sqrt{\pi}b_1 \right\}$$

son isometrías lineales de $L_2^{2\pi}$ sobre $l_2(\mathbb{Z})$ o $l_2(\mathbb{N})$, respectivamente. Se tienen las identidades siguientes de Parseval:

$$\sum_{k \in \mathbb{Z}} |c_k|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$
$$\frac{|a_0|^2}{2} + \sum_{k \in \mathbb{Z}} \left[|a_k|^2 + |b_k|^2 \right] = \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

Más generalmente, si $f, g \in \mathcal{L}_2^{2\pi}(\mathbb{K})$ con coeficientes de Fourier trigonométricos $\{c_k\}_{k \in \mathbb{Z}}$ y $\{d_k\}_{k \in \mathbb{Z}}$, entonces

$$\sum_{k \in \mathbb{Z}} c_k \overline{d_k} = \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$$

para los correspondientes coeficientes $\{a_k, b_k\}$ y $\{\alpha_k, \beta_k\}$ se tiene

$$\frac{a_0 \overline{\alpha_k}}{2} + \sum_{k \in \mathbb{Z}} \left[a_k \overline{\alpha_k} + b_k \overline{\beta_k} \right] = \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$$

Además, f es igual al promedio cuadrádtico de su serie de Fourier:

$$\lim_{m \to \infty} \mathcal{N}_2 \left(f - s_m \right) = 0$$

Demostración:

Es inmediata de las observaciones hechas anteriormente y del teorema de Riesz-Fischer, junto con las identidades de Parserval.

Observación 3.2.1

Se tiene lo siguiente:

1. La suprayectividad de $f \mapsto \left\{ \sqrt{2\pi} c_k \right\}_{k \in \mathbb{Z}}$ de $L_2^{2\pi}(\mathbb{C})$ sobre $l_2(\mathbb{Z})$ es consecuencia del teorema de Riesz-Fischer, es decir, de la completez de $L_2^{2\pi}$. Dice que dada una sucesión arbitraria $\{c_k\}_{k \in \mathbb{Z}}$ en $l_2(\mathbb{Z})$ existe una función $f \in \mathcal{L}_2^{2\pi}$ única salvo equivalencias cuyos coeficientes de Fourier son la sucesión dada.

Este resultado fue históricamente un éxito para la integral de Lebesgue.

2. Carleson demostró en 1966 que para cada $f \in \mathcal{L}_2^{2\pi}$ la serie de Fourier de f converge a f c.t.p. en \mathbb{R} . Sin embargo, para funciones en $\mathcal{L}_1^{2\pi}$ ésta no será la misma historia.

3.3. Series de Fourier de funciones de periodo T > 0

Sea $f \in \mathcal{L}_1^T$. Defina

$$g(y) = f\left(\frac{T}{2\pi}y\right), \quad \forall y \in \mathbb{R}$$

entonces, $g \in \mathcal{L}_1^{2\pi}$. Por definición, los coeficientes de Fourier de f van a ser los de g, estos son

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(y) e^{iky} dy$$

Por el cambio de variable $y = \frac{2\pi}{T}x$, podemos reescribirlos de la siguiente forma:

$$c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{i\frac{2\pi k}{T}x} dx$$

en particular, $c_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) dx$. Los correspondientes a_k y b_k son

$$a_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) dx$$

$$a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos\left(\frac{2\pi k}{T}x\right) dx$$

$$b_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin\left(\frac{2\pi k}{T}x\right) dx$$

Las series de Fourier trigonométricas correspondientes son

$$\sum_{k \in \mathbb{Z}} c_k e^{i\frac{2\pi k}{T}x} = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{2\pi k}{T}x\right) + b_k \sin\left(\frac{2\pi k}{T}x\right) \right]$$

Sea ahora $f \in \mathcal{L}_2^T$. Los coeficientes de Fourier de f con respecto al sistema O.N. maximal formado por

$$\varphi_k(x) = \frac{1}{\sqrt{T}} e^{i\frac{2\pi k}{T}x}, \quad \forall k \in \mathbb{Z}$$

son

$$(f|\varphi_k) = \sqrt{T}c_k \quad \forall k \in \mathbb{Z}$$

si se usa el sistema O.N. maximal formado por

$$\frac{1}{\sqrt{T}}$$
, $\eta_k(x) = \sqrt{\frac{2}{T}}\cos\left(\frac{2\pi k}{T}x\right)$, $\theta_k(x) = \sqrt{\frac{2}{T}}\sin\left(\frac{2\pi k}{T}x\right)$, $\forall k \in \mathbb{N}$

se obtienen

$$\left(f \middle| \frac{1}{\sqrt{T}}\right) = \sqrt{T} \frac{a_0}{2}$$
$$\left(f \middle| \eta_k\right) = \sqrt{\frac{T}{2}} a_k$$
$$\left(f \middle| \theta_k\right) = \sqrt{\frac{T}{2}} b_k$$

para todo $k \in \mathbb{N}$. Las series de Fourier correspondientes serían

$$\sum_{k \in \mathbb{Z}} (f|\varphi_k) \varphi_k = \sum_{k \in \mathbb{Z}} e^{i\frac{2\pi k}{T}x} = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{2\pi k}{T}x\right) + b_k \sin\left(\frac{2\pi k}{T}x\right) \right]$$

Se tienen las identidades de Parserval

$$\sum_{k \in \mathbb{Z}} |c_k|^2 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2$$

$$\frac{|a_0|^2}{2} + \sum_{k=1}^{\infty} \left[|a_k|^2 + |b_k|^2 \right] = \frac{T}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)| dx$$

$$\sum_{k \in \mathbb{Z}} c_k \overline{d_k} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \overline{g(x)} dx$$

$$\frac{a_0 \overline{\alpha_0}}{2} + \sum_{k=1}^{\infty} \left[a_k \overline{\alpha_k} + b_k \overline{\beta_k} \right] = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \overline{g(x)} dx$$

por lo cual, en lo sucesivo se trabajará únicamente con funciones de periodo 2π (la traducción al periodo T>0 es un ejercicio).

3.4. Convergencia de series de Fourier de integrales indefinidas

Observación 3.4.1

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{K})$. Considere la integral indefinida $F : \mathbb{R} \to \mathbb{K}$ dada como sigue

$$F(x) = c + \int_0^x f(t)dt, \quad \forall x \in \mathbb{R}$$

(en otras palabras F es absolutamente continua y f es su derivada c.t.p. en \mathbb{R}). Se sabe que F es continua en \mathbb{R} . Una condición necesaria y suficiente para que también F sea periódica es la

siguiente:

$$F(x - 2\pi) - F(x) = \int_{x}^{x+2\pi} f(t)dt$$
$$= \int_{-\pi}^{\pi} f(t)dt$$
$$= 0$$

por tanto, $F \in \mathcal{C}^{2\pi}$ si y sólo si $\int_{-\pi}^{\pi} f(t)dt = 0$.

Teorema 3.4.1

Sea $f \in \mathcal{L}_2^{2\pi}(\mathbb{K})$ tal que $\int_{-\pi}^{\pi} f(t)dt = 0$ y sea $F : \mathbb{R} \to \mathbb{K}$ la integral indefinida de f dada por:

$$F(x) = c + \int_0^x f(t)dt, \quad \forall x \in \mathbb{R}$$

donde $c \in \mathbb{K}$. Entonces, $F \in \mathcal{C}^{2\pi}(\mathbb{K})$ y la serie de Fourier de F converge a F uniformemente en \mathbb{R} .

Demostración:

Ya se sabe que $F \in \mathcal{C}^{2\pi}(\mathbb{K})$. Sean $\{c_k\}_{k\in\mathbb{Z}}$ y $\{c_k'\}_{k\in\mathbb{Z}}$ los coeficientes de Fourier de F y f, respectivamente. Note que

$$c_0' = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt = 0$$

Integrando por partes se tiene que

$$c'_{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx$$

$$= \frac{1}{2\pi} \left[F(x)e^{-ikx} \Big|_{-\pi}^{\pi} + ik \int_{-\pi}^{\pi} F(x)e^{-ikx}dx \right]$$

$$= \frac{ik}{2\pi} \int_{-\pi}^{\pi} F(x)e^{-ikx}dx$$

$$= ikc_{k}, \quad \forall k \in \mathbb{Z} \setminus \{0\}$$

Por tanto, en particular se tiene que

$$|c_k| = \frac{|c'_k|}{|k|}, \quad \forall k \in \mathbb{Z} \setminus \{0\}$$

Se tiene

$$|c_k| = \frac{|c'_k|}{|k|}$$

$$\leq \frac{1}{2} \cdot \left[|c'_k|^2 + \frac{1}{k^2} \right], \quad \forall k \in \mathbb{Z} \setminus \{0\}$$

como $f \in \mathcal{L}_2^{2\pi}(\mathbb{K})$, entonces $\{|c_k'|\}_{k \in \mathbb{Z}} \in l_2(\mathbb{Z})$ de donde $\sum_{k \in \mathbb{Z}} |c_k|^2 < \infty$. Se sigue de la ecuación anterior que la serie $\sum_{k \in \mathbb{Z}} c_k$ es absolutamente convergente en \mathbb{K} . Ya que

$$\sum_{k \in \mathbb{Z}} \left| c_k e^{ikx} \right| \le \sum_{k \in \mathbb{Z}} \left| c_k' \right|$$

se sigue del critero M de Weierestrass que la serie de Fourier de F converge absoluta y uniformemente en \mathbb{R} . Resta probar que la suma de esta serie es F. Sea

$$G(x) = \sum_{k \in \mathbb{Z}}$$
 uniformemente en \mathbb{R}

Entonces, $G \in \mathcal{C}^{2\pi}(\mathbb{K})$. Además,

$$G(x)e^{-inx} = \sum_{k\in\mathbb{Z}} c_k e^{i(k-n)x}$$
 uniformemente en \mathbb{R}

Se puede pues integrar término por término en $[-\pi, \pi]$. Resulta:

$$\int_{-\pi}^{\pi} G(x)e^{-inx}dx = \sum_{k \in \mathbb{Z}} c_k \int_{-\pi}^{\pi} e^{i(k-n)x}dx = 2\pi c_n$$

por tanto, F y G tienen los mismos coeficientes de Fourier. Se sabe entonces que F = G c.t.p. en \mathbb{R} siendo ambas continuas, necesariamente F = G en \mathbb{R} .

Corolario 3.4.1

Si $F : \mathbb{R} \to \mathbb{K}$ es una función de clase C^1 periódica de periodo 2π , entonces la serie de Fourier de F converge a F uniformemente en \mathbb{R} .

Demostración:

Por el teorema fundamental del cálculo, podemos escribir

$$F(x) = F(0) + \int_0^x f(t)dt, \quad \forall x \in \mathbb{R}$$

donde f(x) = F'(x) para todo $x \in \mathbb{R}$ es una función continua. Por el teorema anterior, el resultado estará probado si se muestra que f es periódica de periodo 2π .

Ya que $F(x) = F(x + 2\pi)$, entonces del teorema fundamental

$$\int_{x}^{x+2\pi} f(t)dt = 0, \quad \forall x \in \mathbb{R}$$

en particular, $\int_{-\pi}^{\pi} f(t)dt = 0$. Para todo a < b se tiene lo siguiente:

$$\int_{a}^{b} f(x+2\pi)dx = \int_{a+2\pi}^{b+2\pi} f(t)dt$$

$$= \int_{a+2\pi}^{a} f(t)dt + \int_{a}^{b} f(t)dt + \int_{b}^{b+2\pi} f(t)dt$$

$$= \int_{a}^{b} f(t)dt$$

$$\Rightarrow \int_{a}^{b} \left[f(x+2\pi) - f(x) \right] dx = 0, \quad \forall a, b \in \mathbb{R}, a < b$$

Por el lema de los promedios, se sigue que $f(x+2\pi)-f(x)=0$ para casi toda $x\in\mathbb{R}$. Siendo ambas funciones continuas, se sigue que

$$f(x+2\pi) = f(x), \quad \forall x \in \mathbb{R}$$

por tanto f es periódica de periodo 2π .

Observación 3.4.2

Como $c_k = \frac{c'_k}{ik}$ para todo $k \in \mathbb{Z} \setminus \{0\}$, el término $c_k e^{ikx}$ de la serie de Fourier de F es una primitiva del térmio $c'_k e^{ikx}$ de la serie de Fourier de f. En este caso c_0 juega el papel de constante de integración.

Al considerar los coeficientes a_k , b_k y a'_k , b'_k resulta lo siguiente:

$$a_k - ib_k = \frac{a'_k - ib'_k}{ik}, \quad \forall k \in \mathbb{Z} \setminus \{0\}$$

cambiando a k por -k:

$$a_k + ib_k = \frac{a'_k + ib'_k}{ik}, \quad \forall k \in \mathbb{Z} \setminus \{0\}$$

resulta de estos sistemas de ecuaciones que

$$a_k = -\frac{b_k'}{k}$$
 y $b_k = \frac{a_k'}{k}$

para todo $k \in \mathbb{N}$. Así pues, $a_k \cos kx$ es una primitiva de $b'_k \sin kx$ y que $b_k \sin kx$ es una primitiva de $a_k \cos kx$.

Se verá más adelante que la conclusión del teorema anterior es válida si $f \in \mathcal{L}_1^{2\pi}(\mathbb{K})$.

Ejemplo 3.4.1

Sea $n \in \mathbb{N}^*$. Considere las funciones $f, g : \mathbb{R} \to \mathbb{R}$ las funciones siguiente:

$$f(x) = \cos nx$$
 y $g(x) = \sin nx$, $\forall x \in \mathbb{R}$

Claramente f y g son funciones de clase C^1 en \mathbb{R} periódicas de periodo 2π . Por el último corolario las series de Fourier de f y g convergen a f y g respectivamente, uniformemente en \mathbb{R} . Los correspondientes coeficientes de Fourier de f y g serían:

$$\frac{a_0}{2} \sum_{k=1}^{\infty} \left[a_k \cos kx + b_k \sin kx \right]$$

como f es par, entonces $b_k = 0$ para todo $k \in \mathbb{N}$. Además,

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nx \cos kx dx$$
$$= \frac{1}{\pi} \left(\cos nx | \cos kx \right)$$
$$= \begin{cases} 0 & \text{si } k \neq n \\ 1 & \text{si } k = n \end{cases}$$

por tanto, $f(x) = \cos nx = \frac{a_0}{2} + \sum_{k=1}^{\infty} \cos kx = \cos nx$. Similarmente se prueba que $g(x) = \sin nx$ es su desarrollo en serie de Fourier.

Ejemplo 3.4.2

Considere la función $F: \mathbb{R} \to \mathbb{R}$ dada como sigue

$$F(x) = \operatorname{sen}^3 x, \quad \forall x \in \mathbb{R}$$

F es de clase C^1 y periódica de periodo 2π . Por el corolario, la serie de Fourier de F converge a F uniformemente en \mathbb{R} . Como F es impar, $a_k = 0$ para todo $k \in \mathbb{N}^*$.

Se tiene que

$$b_{1} = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^{3} x \sin x dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^{4} x dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1 - \cos 2x}{2} \right)^{2} x dx$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} 1 - \cos 2x + \cos^{2} 2x x dx$$

$$= \frac{1}{4\pi} \left[2\pi - (2|\cos 2x) + \int_{-\pi}^{\pi} \cos^{2} 2x dx \right]$$

$$= \frac{1}{2} + \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{1 + \cos 4x}{2} dx$$

$$= \frac{1}{2} + \frac{1}{8\pi} \left[2\pi + (1|\cos 4x) \right]$$

$$= \frac{3}{4}$$

en general

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^{3} x \sin kx dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^{2} x \sin x \sin kx dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1 - \cos 2x}{2} \sin x \sin x \sin kx dx$$

$$= \frac{1}{2\pi} \left(\sin x \Big| \sin kx \right) - \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos 2x \sin x \sin kx dx$$

$$= -\frac{1}{4\pi} \int_{-\pi}^{\pi} \left[\cos(k - 1)x + \cos(k + 1)x \right] \cos 2x dx$$

$$= \frac{1}{2\pi} \left(\cos(k + 1)x \Big| \cos 2x \right) - \frac{1}{4} \left(\frac{\cos(k - 1)x}{\sqrt{\pi}} \Big| \frac{\cos 2x}{\sqrt{\pi}} \right)$$

$$= \begin{cases} 0 & \text{si} \quad k = 2, 4, 5, \dots \\ -\frac{1}{4} & \text{si} \end{cases} \qquad k = 3$$

luego, $F(x) = \frac{3}{4} \operatorname{sen} x - \frac{1}{4} \operatorname{sen} 3x$ para todo $x \in \mathbb{R}$.

Ejemplo 3.4.3

¿Qué pasa con la función $x \mapsto |\sin x|$ y su serie de Fourier?

3.5. Teorema fundamental para la convergencia puntual de series de Fourier en $\mathcal{L}_1^{2\pi}$

Teorema 3.5.1 (Teorema de Riemman-Lebesgue)

Sean $a, b \in \mathbb{R}$ con a < b. Si $f \in \mathcal{L}_1(]a, b[, \mathbb{K})$, entonces

$$\lim_{\lambda \in \mathbb{R}, |\lambda| \to \infty} \int_a^b f(x)e^{i\lambda x} dx = 0$$

Demostración:

Se harán varias cosas:

1. Suponga que $f = \chi_I$ con $I \subseteq]a, b[$ es un intervalo de extremos $\alpha \leq \beta$. Luego,

$$\int_{a}^{b} f(x)e^{i\lambda x}dx = \int_{\alpha}^{\beta} e^{i\lambda x}dx$$
$$= \frac{1}{i\lambda} \left(e^{i\lambda\beta} - e^{i\lambda\alpha} \right)$$
$$\Rightarrow \left| \int_{a}^{b} f(x)e^{i\lambda x}dx \right| \le \frac{2}{|\lambda|}$$

donde el lado de la derecha tiende a cero conforme $|\lambda| \to \infty$. Por tanto,

$$\lim_{\lambda \in \mathbb{R}, |\lambda| \to \infty} \int_{a}^{b} f(x)e^{i\lambda x} dx = 0$$

por linealidad el resultado es válido si f es una función escalonada en el abierto]a,b[.

2. Suponga que $f \in \mathcal{L}_1^(]a, b[, \mathbb{K})$ y sea $\varepsilon > 0$. Se sabe que existe $\varphi \in \mathcal{E}(]a, b[, \mathbb{K})$ tal que

$$\mathcal{N}_1\left(f-\varphi\right)<\frac{\varepsilon}{2}$$

También existe R > 0 tal que

$$\lambda \in \mathbb{R}, |\lambda| > R \Rightarrow \left| \int_a^b \varphi(x) e^{i\lambda x} dx \right| < \frac{\varepsilon}{2}$$

entonces, si $\lambda \in \mathbb{R}$ y $|\lambda| > R$, se tiene que

$$\left| \int_{a}^{b} f(x)e^{i\lambda x} dx \right| \leq \left| \int_{a}^{b} \left[f(x) - \varphi(x) \right] e^{i\lambda x} dx \right| + \left| \int_{a}^{b} \varphi(x)e^{i\lambda x} dx \right|$$

$$< \int_{a}^{b} \left| f(x) - \varphi(x) \right| dx + \frac{\varepsilon}{2}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

lo que termina la prueba.

Observación 3.5.1

Se tiene lo siguiente:

1. Si $f:]a, b[\to \mathbb{C}$ es integrable en un conjunto medible $B \subseteq]a, b[$, entonces

$$\lim_{\lambda \in \mathbb{R}, |\lambda| \to \infty} \int_{B} f(x)e^{i\lambda x} dx = 0$$

pues, $f\chi_B$ es integrable en]a,b[.

2. Si $f \in \mathcal{L}_1(]a, b[, \mathbb{C})$ al escribir $e^{i\lambda x} = \cos \lambda x + i \sin \lambda x$ el Teorema de Riemman-Lebesgue implica que

$$\lim_{\lambda \in \mathbb{R}, |\lambda| \to \infty} \int_{B} f(x) \cos \lambda x dx = 0$$

У

$$\lim_{\lambda \in \mathbb{R}, |\lambda| \to \infty} \int_{B} f(x) \sin \lambda x dx = 0$$

3. Recuerde que si $f \in \mathcal{L}_{1}^{2\pi}(\mathbb{C})$, se definió:

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{inx}dx, \quad \forall n \in \mathbb{Z}$$

Por el Teorema de Riemman-Lebesgue

$$\lim_{n \to \infty} c_n = 0$$

además,

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = 0$$

Se denota por $c_0(\mathbb{Z})$ al espacio vectorial de todas las sucesiones $\{c_n\}_{n\in\mathbb{Z}}$ tal que

$$\lim_{|n| \to \infty} c_n = 0$$

 $c_0(\mathbb{Z})$ es un subespacio de Banach $(l_{\infty}(\mathbb{Z}), \mathcal{N}_{\infty}(\cdot))$. Se demuestra que $c_0(\mathbb{Z})$ es un subespacio cerrado de $(l_{\infty}(\mathbb{Z}), \mathcal{N}_{\infty}(\cdot))$, luego $(c_0(\mathbb{Z}), \mathcal{N}_{\infty}(\cdot))$ también es de Banach.

Por cierdo, $(l_{\infty}(\mathbb{Z}), \mathcal{N}_{\infty}(\cdot)) \equiv (\mathcal{B}(\mathbb{Z}, \mathbb{C}), \mathcal{N}_{\infty}(\cdot))$. De hecho, $(c_0(\mathbb{Z}), \mathcal{N}_{\infty}(\cdot))$ es un álgebra de Banach con el producto:

$$\{c_n\}_{n\in\mathbb{Z}}\cdot\{d_n\}_{n\in\mathbb{Z}}=\{c_n\cdot d_n\}_{n\in\mathbb{Z}}$$

Proposición 3.5.1

La aplicación $f \mapsto \{c_k\}_{k \in \mathbb{Z}}$ es una aplicación lineal continua inyectiva de $L_1^{2\pi}(\mathbb{C})$ en $c_0(\mathbb{Z})$.

Demostración:

Ya se sabe que dicha aplicación es lineal e inyectiva. Veamos que

$$|c_{k}| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{ikx} dx \right|$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| dx$$

$$= \frac{1}{2\pi} \mathcal{N}_{1}(f), \quad \forall k \in \mathbb{Z}$$

$$\Rightarrow \mathcal{N}_{\infty} \left(\left\{ c_{k} \right\}_{k \in \mathbb{Z}} \right) \leq \frac{1}{2\pi} \mathcal{N}_{1}(f)$$

Por tanto, esta aplicación lineal es continua y de norma menor o igual a $\frac{1}{2\pi}$.

Observación 3.5.2

En los ejercicios se verá que dicha aplicación lineal no es suprayectiva (a diferencia del caso en $L_2^{2\pi}$).

3.6. Núcleo de Dirichlet y teorema fundamental

Para determinar la posible convergencia puntual de una serie de Fourier se debe analizar la sucesión de sumas parciales en un punto $x \in \mathbb{R}$. Recuerde que

$$s_m(x) = \sum_{k=-m}^{m} c_k e^{ikx}, \quad \forall m \in \mathbb{N}^*$$

Sustituyendo $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int}dt$, se obtiene que

$$s_m(x) = \frac{1}{2\pi} \sum_{k=-m}^m \int_{-\pi}^{\pi} f(t)e^{ik(x-t)}dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \left[\sum_{k=-m}^m e^{ik(x-t)} \right] dt, \quad \forall m \in \mathbb{N}^*$$

Entonces,

$$s_m(x) = f * D_m(x) \quad \forall m \in \mathbb{N}^*$$

donde

$$D_m(x) = \frac{1}{2\pi} \sum_{k=-m}^{m} e^{ikx}$$

es el llamado Núcleo de Dirichlet.

Una expresión alternativa para este núcleo es

$$D_m(x) = \frac{1}{2\pi} \sum_{k=-m}^{m} e^{ikx} = \frac{1}{2\pi} \left[1 + \sum_{k=1}^{m} \left(e^{ikx} + e^{-ikx} \right) \right] = \frac{1}{2\pi} \left[2\Re \left(\sum_{k=1}^{m} e^{ikx} \right) - 1 \right]$$

para todo $m \in \mathbb{N}^*$. Tenemos además que,

$$\sum_{k=1}^{m} e^{ikx} = \frac{1 - e^{i(m+1)x}}{1 - e^{ix}}$$

$$= \frac{e^{-i\frac{x}{2}} - e^{i(m+\frac{1}{2})x}}{e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}}$$

$$= \frac{e^{-i\frac{x}{2}} - e^{i(m+\frac{1}{2})x}}{-2i \operatorname{sen} \frac{x}{2}}$$

$$= \frac{\cos \frac{x}{2} - \cos \left(m + \frac{1}{2}\right)x}{-2i \operatorname{sen} \frac{x}{2}} + i \frac{-\operatorname{sen} \frac{x}{2} - \operatorname{sen} \left(m + \frac{1}{2}\right)x}{-2i \operatorname{sen} \frac{x}{2}}$$

así pues,

$$\Re\left(\sum_{k=1}^{m} e^{ikx}\right) = \frac{1}{2} \left[\frac{\operatorname{sen}\frac{x}{2} + \operatorname{sen}\left(m + \frac{1}{2}\right)x}{\operatorname{sen}\frac{x}{2}} \right]$$
$$= \frac{1}{2} \left[1 + \frac{\operatorname{sen}\left(m + \frac{1}{2}\right)x}{\operatorname{sen}\frac{x}{2}} \right]$$

sustituyendo en el núcleo de Dirichlet se sigue que

$$D_m(x) = \frac{1}{2\pi} \cdot \frac{\operatorname{sen}\left(m + \frac{1}{2}\right)x}{\operatorname{sen}\frac{x}{2}}$$

si x no es múltiplo entero de 2π . En caso contrario obtenemos que

$$D_m(x) = \frac{2m+1}{2\pi}$$

Note además que por definición de $D_m(x)$:

$$1 = \int_{-\pi}^{\pi} D_m(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin\left(m + \frac{1}{2}\right) x}{\sin\frac{x}{2}} dx$$

Teorema 3.6.1 (Teorema fundamental para la convergencia puntual de una serie de Fourier)

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ y fijemos $x \in \mathbb{R}$. Para que la serie de Fourier de f converja en x a una suma s(x) (finita), es necesario y suficiente que para algún $0 < \delta < \pi$ se cumpla alguna de las dos condiciones siguientes:

1.
$$\lim_{m\to\infty} \int_{-\delta}^{\delta} \frac{f(x+t)-s(x)}{t} \operatorname{sen}\left(m+\frac{1}{2}\right) t dt = 0.$$

2.
$$\lim_{m\to\infty} \int_0^{\delta} \frac{f(x+t)+f(x-t)-2s(x)}{t} \operatorname{sen}\left(m+\frac{1}{2}\right) t dt = 0.$$

Demostración:

Probaremos que las integrales (1) y (2) son equivalentes (es decir que son la misma integral). En efecto,

$$\int_{-\delta}^{\delta} \frac{f(x+t) - s(x)}{t} \operatorname{sen}\left(m + \frac{1}{2}\right) t dt = \int_{-\delta}^{0} \frac{f(x+t) - s(x)}{t} \operatorname{sen}\left(m + \frac{1}{2}\right) t dt$$

$$+ \int_{0}^{\delta} \frac{f(x+t) - s(x)}{t} \operatorname{sen}\left(m + \frac{1}{2}\right) t dt$$

$$= \int_{0}^{\delta} \frac{f(x-u) - s(x)}{-u} \operatorname{sen}\left(m + \frac{1}{2}\right) (-u) du$$

$$+ \int_{0}^{\delta} \frac{f(x+t) - s(x)}{t} \operatorname{sen}\left(m + \frac{1}{2}\right) t dt$$

$$= \int_{0}^{\delta} \frac{f(x+t) + f(x-t) - 2s(x)}{t} \operatorname{sen}\left(m + \frac{1}{2}\right) t dt$$

Para la demostración, recordemos que

$$s_m(x) = f * D_m(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-u) \frac{\sin\left(m + \frac{1}{2}\right)u}{\sin\frac{u}{2}} du = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+u) \frac{\sin\left(m + \frac{1}{2}\right)u}{\sin\frac{u}{2}} du$$

además,

$$s(x) = s(x) \int_{-\pi}^{\pi} D_m(u) du = \int_{-\pi}^{\pi} s(x) \frac{\operatorname{sen}\left(m + \frac{1}{2}\right) u}{\operatorname{sen}\frac{u}{2}} du$$

por ende,

$$s_m(x) - s(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(x+t) - s(x)}{\operatorname{sen} \frac{t}{2}} \operatorname{sen} \left(m + \frac{1}{2}\right) t du$$

Sea $0 < \delta < \pi$, sentonces

$$s_m(x) - s(x) = \frac{1}{2\pi} \left[\int_{-\delta}^{\delta} \frac{f(x+t) - s(x)}{\operatorname{sen} \frac{t}{2}} \operatorname{sen} \left(m + \frac{1}{2} \right) t dt + \int_{\delta \le |t| < \pi} \frac{f(x+t) - s(x)}{\operatorname{sen} \frac{t}{2}} \operatorname{sen} \left(m + \frac{1}{2} \right) t dt \right]$$

Como $t \mapsto \frac{f(x+t)-s(x)}{\sec\frac{t}{2}}$ es integrable en $\delta \le |t| < \pi$, por el teorema de Riemman-Lebesgue la segunda integral tiende a cero conforme $m \to \infty$. Por lo tanto,

$$\lim_{m \to \infty} [s_m(x) - s(x)] = 0 \iff \lim_{m \to \infty} \int_{-\delta}^{\delta} \frac{f(x+t) - s(x)}{2 \operatorname{sen} \frac{t}{2}} \operatorname{sen} \left(m + \frac{1}{2}\right) t dt = 0$$

Veamos que

$$\int_{-\delta}^{\delta} \frac{f(x+t) - s(x)}{2 \operatorname{sen} \frac{t}{2}} \operatorname{sen} \left(m + \frac{1}{2} \right) t dt = \int_{-\delta}^{\delta} \frac{f(x+t) - s(x)}{t} \operatorname{sen} \left(m + \frac{1}{2} \right) t dt + \int_{-\delta}^{-\delta} \left(f(x+t) - s(x) \right) \left[\frac{1}{2 \operatorname{sen} \frac{t}{2}} - \frac{1}{t} \right] \operatorname{sen} \left(m + \frac{1}{2} \right) t dt$$

Pero,

$$\frac{1}{2 \operatorname{sen} \frac{t}{2}} - \frac{1}{t} = \frac{t - 2 \operatorname{sen} \frac{t}{2}}{2t \operatorname{sen} \frac{t}{2}}$$

$$\overset{t \to 0}{=} \frac{t - 2\left(\frac{t}{2} - \frac{t^3}{48} + O(t^3)\right)}{2t(\frac{t}{2} - O(t))}$$

$$\overset{t \to 0}{=} \frac{\frac{t^3}{48} + O(t^3)}{t^2 + 2tO(t)}$$

$$\overset{t \to 0}{=} \frac{\frac{t^3}{48} + O(t^3)}{t^2 + O(t^2)}$$

$$\overset{t \to 0}{=} \frac{t^3\left(\frac{1}{48} + \frac{O(t^3)}{t^2}\right)}{t^2(1 + \frac{O(t^2)}{t^2})}$$

$$\overset{t \to 0}{=} \frac{t\left(\frac{1}{48} + \frac{O(t^3)}{t^2}\right)}{1 + \frac{O(t^2)}{t^2}}$$

$$\overset{t \to 0}{=} 0$$

Si a la función $t\mapsto \frac{1}{2\sin\frac{t}{2}}-\frac{1}{t}$ se le asigna el valor 0 en 0, se hace continua en $[-\delta,\delta]$. Así pues,

$$t \mapsto (f(x+t) - s(x)) \left[\frac{1}{2 \operatorname{sen} \frac{t}{2}} - \frac{1}{t} \right]$$

es integrable en $[-\delta, \delta]$. Por Riemman-Lebesgue la segunda integral tiende a 0 cuando $m \to \infty$. Por tanto se concluye que

$$\lim_{m\to\infty}\int_{-\delta}^{\delta}\frac{f(x+t)-s(x)}{2\sin\frac{t}{2}}\sin\left(m+\frac{1}{2}\right)tdt=0\iff \lim_{m\to\infty}\int_{-\delta}^{\delta}\frac{f(x+t)-s(x)}{t}\sin\left(m+\frac{1}{2}\right)tdt=0$$

por la observación hecha anteriormente, esto es equivalente a

$$\lim_{m \to \infty} s_m(x) = s(x) \iff \lim_{m \to \infty} \int_{-\delta}^{\delta} \frac{f(x+t) - s(x)}{t} \operatorname{sen}\left(m + \frac{1}{2}\right) t dt = 0, \text{ para algún } 0 < \delta < \pi$$

Observación 3.6.1

Por el teorema anterior, la convergencia de la serie de Fourier de f en un punto x y la eventual suma de esta serie de Fourier dependen solamente del comportamiento de f en alguna vecindad arbitrariamente pequeña de x. A esto se le llama **el principio de localización de Riemman**.

Esto es sorprendente, pues los coeficientes de Fourier de la función f dependen de los valores de f en todo el intervalo $[-\pi, \pi[$.

Teorema 3.6.2 (Criterio de Dini para la convergencia puntual de una serie de Fourier) Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$. Para que la serie de Fourier de f converga en un punto $x \in \mathbb{R}$ a una suma s(x) es necesario y suficiente que para algún $0 < \delta < \pi$ la función siguiente sea integrable:

$$t \mapsto \frac{f(x+t) + f(x-t) - 2s(x)}{t}$$

sea integrable en $]0, \delta[$.

Demostración:

 \Rightarrow): La condición $\int_{-\delta}^{\delta} \left| \frac{f(x+t)-s(x)}{t} \right| dt < \infty$ implica la convergencia puntual de la serie de Fourier. En efecto,

$$\int_{-\delta}^{0} \left| \frac{f(x+t) - s(x)}{t} \right| dt + \int_{0}^{\delta} \left| \frac{f(x+t) - s(x)}{t} \right| dt = \int_{-\delta}^{\delta} \left| \frac{f(x+t) - s(x)}{t} \right| dt < \infty$$

$$\Rightarrow \int_{0}^{\delta} \left| \frac{f(x-u) - s(x)}{u} \right| du + \int_{0}^{\delta} \left| \frac{f(x+t) - s(x)}{t} \right| dt = \int_{-\delta}^{\delta} \left| \frac{f(x+t) - s(x)}{t} \right| dt < \infty$$

$$\Rightarrow \int_{0}^{\delta} \left| \frac{f(x+t) + f(x-t) - 2s(x)}{t} \right| dt \le \int_{-\delta}^{\delta} \left| \frac{f(x+t) - s(x)}{t} \right| dt < \infty$$

⇐): Es inmediato del teorema de Riemman-Lebesgue y del teorema anterior.

Corolario 3.6.1

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$. Si en un punto $x \in \mathbb{R}$ existen la derivda por la derecha $f'_d(x)$ y por la izquierda $f'_i(x)$, entonces la serie de Fourier de f converge en x a f(x).

Demostración:

Como existen las derivadas por la derecha e izquierda, para $\varepsilon = 1 > 0$ existe $\delta > 0$ tal que

$$0 < t < \delta \Rightarrow \begin{cases} |f(x+t) - s(x)| & \le t |f'_d(x) + 1| \\ |f(x-t) - s(x)| & \le t |f'_i(x) + 1| \end{cases}$$

así pues, $0 < t < \delta$ implica que

$$\left| \frac{f(x+t) + f(x-t) - 2f(x)}{t} \right| \le |f'_d(x)| + |f'_i(x)| + 2$$

por tanto, $t\mapsto \frac{f(x+t)+f(x-t)-2f(x)}{t}$ es integrable en $]0,\delta[.$

3.7. Convergencia uniforme de una serie de Fourier

Observación 3.7.1

Recordemos que un conjunto relativamente compacto en un espacio métrico (X, d) es aquel tal que su cerradura es compacta. Equivalentemente, es totalmente acotado.

Lema 3.7.1 (Versión Uniforme del Teorema de Riemman-Lebesgue)

Si \mathcal{F} es un conjunto relativamente compacto en $L_1^{2\pi}(\mathbb{C})$, entonces para todo $\varepsilon > 0$ existe N > 0 tal que

$$\lambda \in \mathbb{R}, |\lambda| \ge N \Rightarrow \sup_{f \in \mathcal{F}} \left| \int_{-\pi}^{\pi} f(x) e^{i\lambda x} dx \right| < \varepsilon$$

Demostración:

Como \mathcal{F} es relativamente compacto, entonces \mathcal{F} es totalmente acotado (ya que su cerradura por definición es compacta). Luego, dado $\varepsilon > 0$ existe una familia finita de elementos de \mathcal{F} , digamos $f_1, ..., f_r \in \mathcal{F}$ tales que las bolas abiertas $B(f_1, \frac{\varepsilon}{2}), ..., B(f_r, \frac{\varepsilon}{2})$ recubren a \mathcal{F} . Por Riemman-Lebesgue, existe N > 0 tal que

$$\lambda \in \mathbb{R}, |\lambda| \ge N \Rightarrow \left| \int_{-\pi}^{\pi} f_k(x) e^{i\lambda x} dx \right| < \frac{\varepsilon}{2}, \quad \forall k \in [1, r]$$

Sea $f \in \mathcal{F}$ arbitario. Existe $k \in [1, r]$ tal que $f \in B(f_k, \frac{\varepsilon}{2})$, esto es

$$\mathcal{N}_1\left(f-f_k\right)<\frac{\varepsilon}{2}$$

Si $\lambda \in \mathbb{R}$ es tal que $|\lambda| > N$, se tiene que

$$\left| \int_{-\pi}^{\pi} f(x)e^{i\lambda x} dx \right| \leq \left| \int_{-\pi}^{\pi} \left[f(x) - f_k(x) \right] e^{i\lambda x} dx \right| + \left| \int_{-\pi}^{\pi} f_k(x)e^{i\lambda x} dx \right|$$

$$< \mathcal{N}_1 \left(f - f_k \right) + \frac{\varepsilon}{2}$$

$$< \varepsilon$$

lo que termina la prueba.

Lema 3.7.2

Sean $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ y $E \subseteq [-\pi, \pi]$. Se supone:

- 1. f es acotada en E.
- 2. Para todo $\varepsilon > 0$ existe $0 < \delta < \pi$ tal que

$$\sup_{x \in E} \int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \varepsilon$$

Defina para cada $x \in E$,

$$\varphi_x(t) = \frac{f(x+t) - f(x)}{t}, \quad \forall t \in [-\pi, \pi] \setminus \{0\}$$

y extiéndase por periodicidad a todo \mathbb{R} . Si $h \in \mathcal{L}^{2\pi}_{\infty}(\mathbb{C})$, entonces la familia de funciones $\{h\varphi_x\}_{x\in E}$ es relativamente compacta en $L^{2\pi}_1(\mathbb{C})$.

Demostración:

Probaremos que la cerradura de este conjunto es secuencialmente compacto (luego compacto). Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión en E. Hay que probar que $\{h\varphi_{x_n}\}_{n=1}^{\infty}$ contiene una subsucesión convergente en promedio.

Como $E \subseteq [-\pi,\pi]$, entonces $\{x_n\}_{n=1}^{\infty}$ contiene una subsucesión que converge a algún punto de $[-\pi,\pi]$, digamos $\{x_{\alpha(n)}\}_{n=1}^{\infty}$. Ahora, $\{f(x_{\alpha(n)})\}_{n=1}^{\infty}$ es una sucesión acotada en \mathbb{C} , luego posee una subsucesión $\{f(x_{\beta\circ\alpha(n)})\}_{n=1}^{\infty}$ convergente. Para simplificar la notación, se puede suponer que la sucesión $\{x_n\}_{n=1}^{\infty}$ original y la sucesión de valores $\{f(x_n)\}_{n=1}^{\infty}$ son convergentes (en particular, de Cauchy).

Sea M>0 tal que $|h|\leq M$ c.t.p. en \mathbb{R} . Sea $\varepsilon<0$ y $0<\delta<\pi$ como en el enunciado. Se afirma que $\{h\varphi_{x_n}\}$ es de Cauchy en $L_1^{2\pi}$. En efecto, veamos que si $n,m\in\mathbb{N}$:

$$\mathcal{N}_{1} (h\varphi_{x_{n}} - h\varphi_{x_{m}}) = \int_{-\pi}^{\pi} |h(t)| \left| \frac{f(x_{n} + t) - f(x_{n}) - f(x_{m} + t) + f(x_{m})}{t} \right| dt$$

$$\leq M \int_{-\delta}^{\delta} \left| \frac{f(x_{n} + t) - f(x_{n}) - f(x_{m} + t) + f(x_{m})}{t} \right| dt$$

$$+ M |f(x_{n}) - f(x_{m})| \int_{\delta \leq |t| \leq \pi} \frac{dt}{|t|} + M \int_{\delta \leq |t| \leq \pi} \left| \frac{f(x_{n} + t) - f(x_{n} + t)}{t} \right| dt$$

Por la hipótesis, la primera integral a la derecha es $< 2M\varepsilon$. Como $\{f(x_n)\}$ es de Cauchy, existe $n_0 \in \mathbb{N}$ tal que

$$n, m \ge n_0 \Rightarrow M |f(x_n) - f(x_m)| \int_{\delta \le |t| < \pi} \frac{dt}{|t|} < M\varepsilon$$

Y, la tercera integral a la derecha es menor o igual a

$$\frac{M}{\delta} \int_{-\pi}^{\pi} |f(x_n + t) - f(x_m + t)| dt$$

(mayorando a $t \mapsto \frac{1}{|t|}$). Ahora, ya que la función $y \mapsto f_y$ es uniformemente continua de \mathbb{R} en $L_1^{2\pi}(\mathbb{C})$, existe $\eta > 0$ tal que

$$|x_n - x_m| < \eta \Rightarrow \frac{M}{\delta} \int_{-\pi}^{\pi} |f(x_n + t) - f(x_m + t)| dt < \delta \cdot \varepsilon$$

Por ser la sucesión $\{x_n\}$ de Cauchy, existe $N \geq n_0$ tal que

$$n, m \ge N \Rightarrow |x_n - x_m| < \eta \Rightarrow \int_{-\pi}^{\pi} |f(x_n + t) - f(x_m + t)| dt < M\varepsilon$$

Por tanto, $n, m \geq N$ implica que

$$\mathcal{N}_1 \left(h \varphi_{x_n} - h \varphi_{x_m} \right) \le 4M\varepsilon$$

así, $\{h\varphi_{x_n}\}$ es de Cauchy en $L_1^{2\pi}(\mathbb{C})$, luego convergente.

Teorema 3.7.1 (Criterio de Dini para la convergencia uniforme de una serie de Fourier)

Sean $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ y $E \subseteq [-\pi, \pi]$. Se supone que f es acotada en E y que para todo $\varepsilon > 0$ existe $0 < \delta < \pi$ tal que

$$\sup_{x \in E} \int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \varepsilon$$

Entonces, la serie de Fourier de f converge a f uniformemente en E.

Demostración:

Sea $x \in E$. Se tiene que

$$|s_m(x) - f(x)| = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x+t) - f(x)}{2 \operatorname{sen} \frac{t}{2}} \operatorname{sen} \left(m + \frac{1}{2}\right) t dt$$

Hay que probar que

$$\lim_{m\to\infty}\int_{-\pi}^{\pi}\frac{f(x+t)-f(x)}{2\sin\frac{t}{2}}\sin\left(m+\frac{1}{2}\right)tdt=0 \text{ uniformemente con respecto a } x\in E$$

Se tiene

$$\int_{-\pi}^{\pi} \frac{f(x+t) - f(x)}{2 \operatorname{sen} \frac{t}{2}} \operatorname{sen} \left(m + \frac{1}{2} \right) t dt = \int_{-\pi}^{\pi} \frac{f(x+t) - f(x)}{t} \operatorname{sen} \left(m + \frac{1}{2} \right) t dt + \int_{-\pi}^{\pi} \frac{f(x+t) - f(x)}{t} \left[\frac{t}{2 \operatorname{sen} \frac{t}{2}} - 1 \right] \operatorname{sen} \left(m + \frac{1}{2} \right) t dt$$

para $t \in [-\pi, \pi[$ se define

$$h(t) = \begin{cases} \frac{t}{2 \operatorname{sen} \frac{t}{2}} - 1 & \text{si} \quad t \neq 0\\ 0 & \text{si} \quad t = 0 \end{cases}$$

se verifica rápidamente que h es continua en $[-\pi,\pi[$, luego acotada. Además, para cada $x\in E$ se define

 $\varphi_x(t) = \frac{f(x+t) - f(x)}{t}, \quad \forall t \in [-\pi, \pi[$

Por el último lema, $\{\varphi_x\}_{x\in E}$ y $\{h\varphi_x\}_{x\in E}$ son relativamente compactas en $L_1^{2\pi}(\mathbb{C})$. Por la versión uniforme del teorema de Riemman-Lebesgue, entonces las dos integrales de arriba tienden a cero cuando $m\to\infty$ uniformemente con respecto a $x\in E$.

Observación 3.7.2

Veamos como se aplica el primer lema de la sección en la demostración de este teorema. La primera familia es relativamente compacta tomando h=1 y la segunda tomando a la h dada, siendo ambas acotadas (por ser continuas en un compacto y ser extendidas por periodicidad a todo \mathbb{R}).

Observación 3.7.3

Usando la convergencia de series no se puede reconstruir en general una función $f \in \mathcal{L}_1^{2\pi}$ conociendo su serie de Fourier, de hecho, Kolmogorov demostró que existen funciones en $\mathcal{L}_1^{2\pi}$ cuyas series de Fourier divergen en todo punto. También existen funciones en $\mathcal{C}^{2\pi}$ cuyas series de Fourier divergen en algunos puntos.

La situación se arregla considerando un modo de convergencia distinto: la convergencia en el sentido de Cesáro.

3.8. Convergencia en sentido de Cesáro de series de Fourier en $\mathcal{L}_1^{2\pi}$

Lema 3.8.1

Si $\{a_n\}_{n=1}^{\infty}$ es una sucesión en un espacio normado $(E, \|\cdot\|)$ converge a un límite $l \in E$ y

$$b_n = \frac{a_1 + \dots + a_n}{n}, \quad \forall n \in \mathbb{N}$$

entonces,

$$\lim_{n\to\infty} b_n = l$$

Demostración:

Veamos que si $n \in \mathbb{N}$:

$$||b_n - l|| = \frac{1}{n} ||\sum_{k=1}^n a_k - l||$$

$$\leq \frac{1}{n} \sum_{k=1}^n ||a_k - l||$$

dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \Rightarrow ||a_n - l|| < \frac{\varepsilon}{2}$$

Entonces,

$$n > n_0 \Rightarrow ||b_n - l|| \le \frac{1}{n} \left(\sum_{k=1}^{n_0} ||a_k - l|| \right) + \frac{1}{n} \sum_{k=n_0+1}^{n} ||a_k - l||$$

$$\le \frac{1}{n} \left(\sum_{k=1}^{n_0} ||a_k - l|| \right) + \frac{n - n_0}{n} \cdot \frac{\varepsilon}{2}$$

$$< \frac{1}{n} \left(\sum_{k=1}^{n_0} ||a_k - l|| \right) + \frac{\varepsilon}{2}$$

Además, existe $n_1 \in \mathbb{N}$ con $n_1 > n_0$ tal que

$$n \ge n_1 \Rightarrow \frac{1}{n} \left(\sum_{k=1}^{n_0} \|a_k - l\| \right) < \frac{\varepsilon}{2}$$

luego, $n \ge n_1$ implica que $||b_n - l|| < \varepsilon$.

Definición 3.8.1

Sea $\sum_{n=1}^{\infty} u_n$ una serie en un espacio normado. Defina

$$s_n = \sum_{k=1}^n u_k \quad \mathbf{y} \quad \sigma_n = \frac{1}{n} \sum_{k=1}^n u_k$$

Si $\lim_{n\to\infty} \sigma_n = s$, se dice que la sucesión **converge en el sentido de Cesáro**.

Por el lema, si la serie converge en el sentido usual a s, entonces la serie converge en el sentido de Cesáro. La recíproca no es cierta en general (basta con observar lo que sucede con $\{(-1)^n\}_{n=1}^{\infty}$).

En casos favorables la recíproca es cierta (más adelante se verá uno de esos casos).

Sea $\{s_m\}_{m=1}^{\infty}$ la sucesión de sumas parciales de una serie de Fourier, se define

$$\sigma_n(x) = \frac{1}{n} [s_0(x) + \dots + s_{n-1}(x)], \quad \forall n \in \mathbb{N}^*$$

con lo que decir que la serie de Fourier de una función f converge en un punto $x \in \mathbb{R}$ en el sentido de Cesáro a una suma s(x) es decir que

$$\lim_{n \to \infty} \sigma_n(x) = s(x)$$

3.8.1. Núcleo de Fejér y el Teorema de Fejér

Es posible calcular explícitamente usando la fórmula

$$s_m(x) = \frac{a_0}{2} + \sum_{k=1}^{m} [a_k \cos kx + b_k \sin kx]$$

Resulta

$$\sigma_m(x) = \frac{1}{n} \left[n \frac{a_0}{2} + \sum_{m=1}^{n-1} \sum_{k=1}^m \left[a_k \cos kx + b_k \sin kx \right] \right]$$

$$= \frac{1}{n} \left[n \frac{a_0}{2} + (n-1) + (n-1)(a_1 \cos x + b_1 \sin x) + \dots + (n-k)(a_k \cos kx + b_k \sin kx) + \dots + (a_{n-1} \cos(n-1)x + b_{n-1} \sin(n-1)x) \right]$$

o sea,

$$\sigma_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right) \left[a_k \cos kx + b_k \sin kx\right]$$

Alternativamente, $\sigma_n(x)$ se puede calcular como sigue:

$$\sigma_n(x) = \frac{1}{n} \left[\sum_{k=0}^{n-1} s_k(x) \right] = \frac{1}{n} \sum_{m=0}^{n-1} f * D_m(x)$$

donde D_m es el núcleo de Dirichlet. Entonces,

$$\sigma_n(x) = f * k_n(x)$$

donde

$$k_n = \frac{1}{n} \sum_{m=0}^{n-1} D_m$$

el cual es llamado el **núcleo de Fejér**.

Se tiene

$$k_n(x) = \frac{1}{n} \sum_{m=0}^{n-1} D_m(x)$$

$$= \frac{1}{n} \sum_{m=0}^{n-1} \frac{\sin\left(m + \frac{1}{2}\right) x}{\sin\frac{x}{2}}$$

$$= \frac{1}{n \sin\frac{x}{2}} \sum_{m=0}^{n-1} \sin\left(m + \frac{1}{2}\right) x$$

donde

$$\sum_{m=0}^{n-1} e^{imx} = \frac{1 - e^{inx}}{1 - e^{ix}}$$

$$= \frac{1 - e^{inx}}{e^{i\frac{x}{2}}(e^{-i\frac{x}{2}} - e^{i\frac{x}{2}})}$$

$$\Rightarrow \sum_{m=0}^{n-1} e^{imx} = i\frac{1 - e^{inx}}{2\sin\frac{x}{2}}$$

igualando los coeficientes de i:

$$\sum_{m=0}^{n-1} \operatorname{sen}\left(m + \frac{1}{2}\right) x = \frac{1 - \cos nx}{2 \operatorname{sen} \frac{x}{2}}$$

$$= \frac{2 \operatorname{sen}^2 n \frac{x}{2}}{2 \operatorname{sen} \frac{x}{2}}$$

$$= \frac{\operatorname{sen}^2 n \frac{x}{2}}{\operatorname{sen} \frac{x}{2}}$$

$$\therefore k_n(x) = \frac{1}{2\pi n} \cdot \frac{\operatorname{sen}^2 n \frac{x}{2}}{\operatorname{sen}^2 \frac{x}{2}}$$

si x no es múltiplo entero de 2π . Para tales x, se tiene que $k_n(x) = \frac{n}{2\pi}$.

Proposición 3.8.1

 $\{k_n\}_{n=1}^{\infty}$ es una sucesión de Dirac fuerte en $\mathcal{L}_1^{2\pi}$.

Demostración:

Claramente $k_n \geq 0$ para todo $n \in \mathbb{N}^*$. Además,

$$k_n = \frac{1}{n} \left(D_0 + \dots + D_{n-1} \right)$$

У

$$\int_{-\pi}^{\pi} D_m = 1 \Rightarrow \int_{-\pi}^{\pi} k_n = 1$$

Si $0 < \delta < \pi$, entonces

$$\sup_{\delta \le x < \pi} k_n(x) \le \frac{1}{2\pi n} \cdot \frac{1}{\operatorname{sen}^2 \frac{\delta}{2}} \xrightarrow[n \to \infty]{} 0$$

Teorema 3.8.1 (Teorema de Féjer)

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$.

- 1. Si $1 \le p < \infty$ y $f \in \mathcal{L}_p^{2\pi}(\mathbb{C})$ entonces, la serie de Fourier de f converge en el sentido de Cesáro a f en p-promedio.
- 2. Si en un punto $x \in \mathbb{R}$ existen $f(x^*)$ y $f(x^-)$ (siendo ambos finitos) entonces la serie de Fourier de f converge en el sentido de Cesáro en el punto x a

$$\frac{f(x^+) + f(x^-)}{2}$$

en particular, si f es continua en ese punto la serie de Fourier de f converge en el punto x a f(x) en el sentido de Cesáro.

- 3. Si f es continua en $J \subseteq \mathbb{R}$ abierto, entonces la serie de Fourier de f converge en el sentido de Cesáro a f uniformemente en todo compacto $C \subseteq J$.
- 4. Si f es continua periódica, entonces la serie de Fourier de f converge en el sentido de Cesáro a f uniformemente en \mathbb{R} .

Demostración:

Es inmediata de la definición del núcleo de Fejér k_n .

3.9. Convergencia c.t.p. en el sentido de Cesáro de series de Fourier en $\mathcal{L}_1^{2\pi}$

Definición 3.9.1

Sea $f \in \mathcal{L}_1^{loc}(\mathbb{R}, \mathbb{C})$ localmente integrable en \mathbb{R} . Se dice que un punto $x \in \mathbb{R}$ es un **punto de** Lebesgue de f si

$$\lim_{h \to 0} \frac{1}{h} \int_0^h |f(x+t) - f(x)| \, dt = 0$$

el conjunto de puntos de Lebesgue de una función f se llama **conjunto de Lebesgue de** f.

Ejemplo 3.9.1

Si f es continua en $x \in \mathbb{R}$, entonces x es un punto de Lebesgue.

Más adelante se demostrará que si f es localmente integrable en \mathbb{R} , entonces el complemento del conjunto de Lebesgue de f es despreciable. Osea que casi todo punto de \mathbb{R} es de Lebesgue. Por el momento no se probará este resultado.

Observación 3.9.1

Se tiene siempre lo siguiente:

$$\frac{2}{\pi}x \le \sin x \le x, \quad \forall x \in \left[0, \frac{\pi}{2}\right]$$

por la concávidad de $x \mapsto \sin x$.

Teorema 3.9.1 (Teorema de Féjer-Lebesgue)

Si $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$, entonces en todo punto de Lebesgue x de f (es decir, c.t.p. en \mathbb{R}) la serie de Fourier de f converge en el sentido de Cesáro a f(x).

Demostración:

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ y $x \in \mathbb{R}$ un punto de Lebesgue de f. Por el cambio de variable t = -u se tiene que

$$\frac{1}{h} \int_0^h |f(x-t) - f(x)| \, dt = \frac{1}{-h} \int_0^{-h} |f(x+t) - f(x)| \, dt$$

Por tanto, también se cumple que

$$\lim_{h \to 0} \frac{1}{h} \int_0^h |f(x - t) - f(x)| \, dt = 0$$

Usando la paridad de k_n y el cambio de variable t = -u,

$$\sigma_n(x) = f * k_n(x)$$

$$= \int_{-\pi}^{\pi} f(x - t) k_n(t) dt$$

$$= \int_{-\pi}^{0} f(x - t) k_n(t) dt + \int_{0}^{\pi} f(x - t) k_n(t) dt$$

$$= \int_{0}^{-\pi} [f(x + t) + f(x - t)] k_n(t) dt$$

también, por l
 aparidad de k_n , $\int_0^\pi k_n(t)dt = \frac{1}{2}$, luego

$$f(x) = \int_0^{\pi} 2f(x)k_n(t)dt$$

$$\therefore \sigma_n(x) - f(x) = \int_0^{\pi} g_x(t)k_n(t)dt$$

donde

$$g_x(t) = f(x+t) + f(x-t) - 2f(x)$$

Se tiene

$$\left| \int_0^h |g_x(t)| \, dt \right| \le \left| \int_0^h |f(x+t) - f(x)| \, dt \right| + \left| \int_0^h |f(x-t) - f(x)| \, dt \right|$$

por ser x un punto de Lebesgue de f, existe $0<\delta<\pi$ tal que

$$0 < h < \delta \Rightarrow \int_0^h |g_x(t)| dt < h\varepsilon$$