

VehID

Remington Greko, Spencer Hirsch, Thomas Johnson, Alexis Nagle

Faculty Advisor(s): Marius Silaghi, Dept. of Computer Science, Florida Institute of Technology

Goal

To improve public safety by utilizing machine learning to recognize vehicles based upon a variety of characteristics such as color, body type, make, and/or license plate.

Design

Neural Network Subsystem

- > Utilized pre-exisitng NN architectures
 - MiniVGG (Body and Color Classifications)
 - VoloV8 (Vehicle, Logo, PLate, and Character Detections)
- > Exports results to a JSON file for use in the

Motivation

- ➤ Aid in AMBER alerts, stolen vehicles, and criminal offenses, which tends to rely on pure human interaction to spot and report the specified vehicles.
- > Existing automation only identifies license plate numbers and is not beneficial when only other characteristics are available.

Database

- > Car database: Stores entries of vehicles detected by the NN subsystem.
 - Includes image path, color, body type, make, plate, camera ID, and timestamp.
- Query database: Contains user generated queries to search for full/partial matches
 - Includes query parameters and refresh period
 - Executes each query by searching for the defined characteristics at the user defined refresh period

Web Application

- > Allows for users to interact with the data contained within the databases.
- > User functionalities:
 - Create queries to search for desired vehicles
 - Filter queries and car entries to be displayed on their respective web pages
 - Edit and delete queries or car entries
 - View saved images for each car entry for manual verification

Implementation

- > Utilized various Python libraries
 - OpenCV
 - Tensorflow: Keras, MiniVGG model
 - Ultralytics: YoloV8 models
- > Web application tools
 - html, css, js
 - node

Evaluation Results

Limitations

- > Image Quality
- > Weather/Environmental Factors

Improvements

- > Further training and tuning on select models to improve individual performances.
- ➤ Implement web scraping to automatically populate the database with queries from sources such as AMBER alerts.
- > Incorporate into a network of existing cameras.