

- Direccionamiento
- → Circuitos virtuales
- Conmutación de paquetes

- ◆ IPv4
 - → Subredes

Tanto A como B deben poseer un identificador o dirección que permita enviar paquetes entre ellos.

Las direcciones de capa de red utilizan un esquema de <u>direccionamiento</u> <u>jerárquico</u> que permita encontrar una ruta en forma eficiente.

WEBSITE

- Traslada segmentos de un host a otro
- En cada host se ejecutan los protocolos de nivel de red
- ◆ Cada host en el camino funciona como router: examina los encabezados IP y decide el camino a seguir

CONTENT

WEBSITE

- Posibles funciones en capa de red
 - Forwarding: mover paquetes de un "input" del router a un "output" del router
 - Routing: determinar la ruta que deben tomar los paquetes para llegar a destino
 - Establecer conexión (ATM, frame relay, X.25)
 - Antes de intercambiar datagramas, se establece un circuito virtual entre dos hosts

- ¿Qué servicios adicionales puede ofrecer un protocolo de red?
 - Conmutación de paquetes (datagramas)
 - Delivery garantizado
 - Delay mínimo garantizado
 - Flujo de datagramas (circuito virtual)
 - Entrega en orden
 - Bandwith mínimo
 - Ambos
 - Integridad de datos, encriptación, ...

Circuitos virtuales

RESOURCE

SEARVI

WEBSITE

- → Establecer la conexión antes de enviar datos
- Cada paquete lleva un identificador de CV
- ◆ Cada router en el camino mantiene el estado de cada CV
- Opcional: reservar recursos para un CV
 - Bandwith
 - Espacio en buffer

- Establecer la conexión antes de enviar datos
- Cada paquete lleva un identificador de CV
- Cada router en el camino mantiene el estado de cada CV
- Opcional: reservar recursos para un CV
 - Bandwidth
 - Espacio en buffer

CONTENT

- Cada paquete lleva su número de CV
- → ¿Qué sucede si un router recibe de distintas interfaces un mismo nº de CV?

Interface de entrada	CV#	Interface de salida	CV#
1	10	3	33
1	15	2	35
2	10	3	42

Circuitos virtuales: fases

WEBSITE

SEARVI

CONTENT

- Establecer la conexión: añadir una entrada a la tabla de ruteo, reservar recursos
- 2. Transferencia de paquetes
- 3. Cierre de la conexión

- Conmutación de paquetes
 - "Datagram networks"
 - No hay Ilamada previa
 - Routers: no hay estado sobre las «puntas»
 - Los paquetes se «forwardean» en base a dirección de destino

Funciones de un router

routing: determinar la ruta que van a tomar los paquetes de acuerdo a su destino

algoritmos de routing

forwarding: mover los paquetes del input a su correspondiente output

CONTENT

C.V. vs Conmutación de paquetes

WEBSITE

	Datagrama	Circuito virtual
Establecer conexión		Requerido
Direccionamiento	Id. De host origen y destino	Número de CV
Info de estado	No	Tabla de subdred con números de CV en cada router
Enrutamiento	Cada paquete una ruta independiente	Todos los paquetes del CV una misma ruta
¿Si falla un nodo?	Se pierden algunos paquetes	Todos los CV que pasan por el nodo finalizan
Control de congestión	Complejo	Simple
Complejidad	En la capa de transporte	En la capa de red

CONTENT

Protocolos de ruteo

(RIP, OSPF, BGP)

Alimentan la tabla de ruteo

Protocolo IP

- Convención de direcciones
- Formato de paquetes
- Manejo de paquetes

Protocolo ICMP

- Reporte de errores
- Avisos de enrutamiento

Protocolo ARP

Capa de enlace

Capa física

Direccionamiento IPv4 RESOURCE

CONTENT

SEARVIT

WEBSIT

Direccionamiento IPv4

SEARVI

- Asigna una dirección única a cada host en Internet.
- → Permite a cada host (computadora, impresora, router, etc.) en una red IP ser identificado unívocamente.
- → Cada dirección se forma con 32 bits (aprox. 3.700 millones de direcciones)
- → Se escriben como 4 números separados por puntos (200.1.230.50, 192.168.2.1, etc.)
- Cada nro IP consta de 2 partes:
 - Network ID
 - ♦ Host ID
- → Todos los host de una misma red comparten el Network ID

Direccionamiento IPv4
RESOURCE

CONTENT

SEARVIT

WEBSITE

Clases de direcciones IP

CONTENT

Direcciones IP reservadas

- ♦ Loopback: las comenzadas con 127 (ej. 127.0.0.1)
- ♦ Identificar la red: *host id* con todos ceros
- ♦ Broadcast: *host id* con todos unos
- Redes privadas (RFC 1918):
 - **→** 10.x.x.x
 - → 172.16.0.0 a 172.31.255.255
 - → 192.168.x.x
- → Link local (RFC 6890)
 - **→** 169.254.0.0/16

Direccionamiento IPv4

SEARVIT

WEBSITE

Clase IP	Rango	Máscara	Redes	Hosts en cada red
A	1.0.0.0 a 126.0.0.0	255.0.0.0	126	16,777,214
В	128.0.0.0 a 191.255.0.0	255.255.0.0	16,384	65,534
C	192.0.0.0 a 223.255.255.0	255.255.255.0	2,097,151	254

Dada una dirección IP se puede determinar la red a la cual pertenece y así "*rutear*" el paquete.

Tabla de ruteo "classful" C

SEARVIT

Network	Gateway	Interface	Metric
11.0.0.0			
13.0.0.0			
129.10.0.0			
129.11.0.0			
129.12.0.0			
210.34.45.0			
210.45.34.0			
0.0.0.0 (*)			

Paquete IPv4 (datagrama)

CONTENT

SEARYH

0 0 1 2 3	4 5 6 7	8 9 0 1 2 3 4 5	6 7 8	9 0 1 2 3 4	3 5 6 7 8 9 0 1
Vers	Hlen	ToS	Longitud total		
Identificación Flags Desplazamiento de fragmento					
T	ΓL	Protocolo	Header checksum		
Dirección origen					
Dirección destino					
Opciones Relleno					
Datos					

SEARYH Direccionamiento IP CO.NTENT Punta de vista del usuario

SEARVI Direccionamiento IP CO.NTENT WEBSITE 129.115.25.2 129.115.15.12

200.1.132.15

15.34.12.10

Routing table

Fragmentación y ensamblado NTENT

SEARVI

CONTENT

Cuando se diseñaron las clases de direcciones IP no se pensaba en un gran crecimiento en la cantidad de redes.

Las direcciones clase B se agotaban y para una organización una única dirección clase C podía ser insuficiente.

Bloques CIDR (1993)

Uno de los problemas era mantener las tablas de los routers. Se requería un nuevo esquema de asignación de direcciones, otorgando un rango de direcciones clase C pero identificada como una sola red (**superred**).

Se estableció el uso de una **máscara** en lugar de una clase para determinar la red de destino llamado CIDR (*Classless Inter-Domain Routing*).

Bloques CIDR

CONTENT

SEARVI

WEBSITE

CONTENT

192.16.0.0 = 11000000 00010000 000000<mark>00</mark> host

192.16.1.0 = 11000000 00010000 000000<mark>01</mark> host

192.16.2.0 = 11000000 00010000 000000<mark>10</mark> host

192.16.3.0 = 11000000 00010000 00000011 host

192.16.0.0/22

Dirección de red usando CIDR: 192.16.0.0/22

Máscara de red: 255.255.252.0

En cada router se almacena la dirección de red junto con la cantidad de bits que forman la máscara.

Ejemplo: 200.1.230.0/24

Ejercicio: Un ISP obtiene el rango de direcciones

192.100.0.0 a 192.100.7.255

Cant. de hosts: 2046 (192.100.0.0 y 192.100.7.255 no se usan)

Máscara: 255.255.248.0

Red: 192.100.0.0/21

Ejemplo: tabla de ruteo pc "hogareña"

WEBSITE

Destination	Gateway	Mask	Iface
0.0.0.0	192.168.1.1	0.0.0.0	eth0
192.168.1.0	*	255.255.255.0	eth0
192.168.1.15	*	255.255.255	lo
127.0.0.0	*	255.0.0.0	lo

SEARVIT

WEBSITE

Problema: Una organización con dirección clase B. No se puede administrar como una única red de 65,534 hosts.

Solución: Dividir la red internamente en redes más pequeñas. Cada subred tendrá una máscara de acuerdo a la cantidad de hosts que necesite.

CONTENT

Máscaras de subred

A los bits asignados a la red se le suman n bits asignados a los hosts y formar así 2^n subredes.

Ver RFC 1812: Requirements for IP Version 4 routers

Máscaras de subred (RFCs 1812 y 1878)

Ejercicio: Dada la red 192.100.32.0/24, se la quiere dividir en subredes de 12 hosts cada una.

Máscara: 255.255.250.240

Subred	Rango hosts	Broadcast
192.100.32.0	192.100.32.1 - 192.100.32.14	192.100.32.15
192.100.32.16	192.100.32.17 - 192.100.32.30	192.100.32.31
192.100.32.32	192.100.32.33 - 192.100.32.46	192.100.32.47
•••		

Cantidad de subredes: 16

13

SEARVI

Máscaras de subred

A cada subred del ejemplo anterior se la aisla físicamente con un router.

Cantidad de PCs en cada subred: 13

Cantidad de subredes de PCs:

VLSM (1995, RFCs 1860/1878)

WEBSITE

CONTENT

SEARVIT

La subred 172.16.14.0/24 se dividió en subredes más pequeñas con máscara (/27) y (/30).

Tabla de ruteo R3

SEARVIT

Destination	Gateway	Mask	Iface
172.16.14.141	*	255.255.255	lo
172.16.14.97	*	255.255.255	lo
172.16.14.96	*	255.255.255.224	en0
172.16.14.64	172.16.14.36	255.255.255.224	en1
172.16.14.32	172.16.14.132	255.255.255.224	en1
172.16.14.140	*	255.255.255.224	en1
127.0.0.0	*	255.0.0.0	lo
0.0.0.0	172.16.40.142	0.0.0.0	en1

Variante al escenario anteriorente

WEBSITE

CONTENT

SEARVIT

La subred 172.16.14.0/24 se dividió en subredes más pequeñas con máscara (/27) y (/30).

WEBSITE

VLSM: Cálculo de las direcciones y máscaras de red

♦Paso 1: Determinar la subred con la mayor cantidad de hosts (ejemplo: 250 hosts)

Dirección de red: 172.16.0.0/16

Dirección subred para 250 hosts: 172.16.0.0/24

Si necesito en total 3 redes de 250 hosts utilizo además:

 10101100.
 00010000.
 00000001.00000000
 172.16.1.0/24

 10101100.
 00010000.00000010.0000000
 172.16.2.0/24

¿ Cuántas subredes /24 puedo formar?

CO.NTENT

RESOURCE

WEBSITE

→ Paso 2: determinar el segundo nivel de subredes. Tomar una o varias subredes /24 y "abrirlas".

Subred 172.16.14.0/24
Binario 10101100.00010000.00001110.00000000

Generar redes /27

```
10101100. 00010000.00001110. 0000000 172.16.14.0/27 10101100. 00010000.00001110. 0100000 172.16.14.32/27 10101100. 00010000.00001110. 0100000 172.16.14.64/27 10101100. 00010000.00001110. 01100000 172.16.14.96/27
```

Tomamos la 172.16.14.128/27 para generar las /30

```
10101100. 00010000.00001110. 100 001 00 172.16.14.132/30 10101100. 00010000.00001110. 100 010 00 172.16.14.136/30 10101100. 00010000.00001110.
```

Motivos para crear subredes

Razones topológicas

- ✦ Hosts muy distantes
- ♦ Interconectar distintas capas físicas
- → Filtrar tráfico entre redes

Organización

- ♦ Simplificar la administración de la red
- → Mapear la estructura de la organización
- ♦ Aislar el tráfico

Clase IP	Rango	Máscara	Redes	Hosts en cada red
A	11.0.0.0 a 126.0.0.0	255.0.0.0	116	16,777,214
В	128.0.0.0 a 191.255.0.0	255.255.0.0	16,384	65,534
С	192.0.0.0 a 223.255.255.0	255.255.255.0	2,097,151	254

Cantidad de hosts: 3,552,542,234

