

Ngôn ngữ lập trình C++

BÀI TẬP LẬP TRÌNH CƠ BẢN VÀ NÂNG CAO

A. Phần cơ bản

🔆. Chọn số trên đỉnh lục giác – HexaGonNum.Cpp

Cho hình lục giác có 6 số được ghi tại 6 đỉnh của lục giác (hình vẽ).

Hãy chọn hai số ở vị trí hai đỉnh đối diện sao cho có tổng lớn nhất.

Dữ liệu: Nhập 6 số a, b, c, d, e, f.

Kết quả: Đưa ra tổng của 2 số ở vị trí 2 đỉnh đối xứng có giá trị lớn nhất.

Ví dụ:

Input	Output	Hình minh họa
123459	12	9 3

🔾 . Robot nhảy trên đường thẳng – JumpInLine.Cpp

Có một đường thẳng được chia vạch khoảng cách. Vạch 0, vạch 1, vạch 2,,

Có một con robot đang đứng tại vạch 0. Robot sẽ nhảy N bước, bước nhảy thứ i, robot nhảy thêm được i vạch (i = 1, 2, 3, ..., N).

Yêu cầu: Sau N bước nhảy, robot sẽ đến vạch nào trên đường thẳng.

Dữ liệu nhập số nguyên dương $N (N \le 1000)$.

Kết quả đưa ra vạch mà robot sẽ đến sau *N* bước nhảy.

Ví dụ:

Input	Output
3	6

23☆.

🔀 Robot nhảy trên đường tròn – JumpInCircle.Cpp

Cho đường tròn có chia thành M+1 vạch, bắt đầu từ vạch 0, kết thúc từ vạch M theo chiều kim đồng hồ (hình vẽ với M=9).

Robot sẽ nhảy N bước, bước nhảy thứ i, robot nhảy thêm được i vạch (i=1,2,3,..,N) theo chiều kim đồng hồ.

Yêu cầu: Sau *N* bước nhảy, robot sẽ đến vạch nào trên đường tròn.

Dữ liệu nhập hai số nguyên dương N và M ($N \le 1000, M \le 1000000$).

Kết quả đưa ra vạch mà robot sẽ đến sau N bước nhảy.

Ví dụ:

Input	Output	Giải thích
4 9	0	Lần nhảy 1: đến vạch 1
		Lần nhảy 2: đến vạch 3
		Lần nhảy 3: đến vạch 6
		Lần nhảy 4: đến vạch 0

<mark>- 4☆.</mark> Chọn ba số - Select3Num.Cpp

Cho dãy số nguyên $A_1, A_2, ..., A_N$. Hãy chọn 3 số hạng không ở vị trí kề nhau trong dãy sao cho tổng 3 số được chon là lớn nhất.

Nhập $N (6 \le N \le 100)$. Dữ liệu:

Nhập *N* số nguyên $A_1, A_2, ..., A_N (|A_i| \le 10000)$.

Kết quả: Đưa ra tổng 3 số chọn được.

Ví dụ:

Input	Output	Giải thích
6	20	Chọn 3 số hạng có giá trị: 9,
9 8 <mark>7</mark> 0 0 <mark>4</mark>		7, 4.

A.Phần Nâng cao

1☼. Chọn ô trên đường chéo (1)

Cho bảng số gồm N dòng và M cột. Các dòng được đánh số từ 1 đến N (từ trên xuống dưới), các cột được đánh số từ 1 đến M (từ trái sang phải). Ô ở dòng i cột j, ta kí hiệu là ô (i,j) và có ghi số nguyên Aii.

Yêu cầu: Tìm ba ô nằm trên đường chéo: (i, j); (i+1, j+1), (i+2, j+2) sao cho tổng ba số ghi trên 3 ô này có giá trị lớn nhất.

Dữ liệu cho trong file **Diagon1.Inp** gồm:

- Dòng đầu ghi hai số nguyên dương N và M ($3 \le N$, $M \le 1000$).
- N dòng sau, mỗi dòng ghi M số nguyên thuộc tập [-1000; 1000].

Kết quả ghi ra file **Diagon1.Out** là tổng lớn nhất của 3 ô tìm được.

Ví dụ:

Diagon1.Inp	Diagon1.Out
4 5	11
1 2 3 4 5	
1 <mark>1</mark> 1 1 1	
99 <mark>9</mark> 11	
00000	

<mark>2♥.</mark> Chon ô trên đường chéo (2)

Cho bảng số gồm N dòng và M cột. Các dòng được đánh số từ 1 đến N (từ trên xuống dưới), các cột được đánh số từ 1 đến M (từ trái sang phải). Ô ở dòng i cột j, ta kí hiệu là ô (i, j) và có ghi số nguyên Aii.

Yêu cầu: Tìm ba ô nằm trên đường chéo: (i,j), (i+u,j+u), (i+v,j+v) sao cho tổng ba số ghi trên 3 ô này có giá trị lớn nhất $(1 \le u < v)$.

Dữ liệu cho trong file Diagon2.Inp gồm:

- Dòng đầu ghi hai số nguyên dương N và M ($3 \le N$, $M \le 1000$).
- N dòng sau, mỗi dòng ghi M số nguyên thuộc tập [-1000; 1000].

Kết quả ghi ra file **Diagon2.Out** là tổng lớn nhất của 3 ô tìm được.

Ví dụ:

Diagon2.Inp	Diagon2.Out
4 5	11
12345	
10111	
99 <mark>9</mark> 11	
00010	

💢. Chọn ô trên đường chéo (3)

Cho bảng số gồm N dòng và M cột. Các dòng được đánh số từ 1 đến N (từ trên xuống dưới), các cột được đánh số từ 1 đến M (từ trái sang phải). Ô ở dòng i cột j, ta kí hiệu là ô (i, j) và có ghi số nguyên A_{ij} .

Yêu cầu: Tìm 6 ô nằm trên đường chéo:

$$(i,j),(i+1,j+1),(i+2,j+2);$$

(u, v), (u + 1, v - 1), (u + 2, v - 2) sao cho tổng 6 số ghi trên 6 ô này có giá trị lớn nhất.

Dữ liệu cho trong file Diagon3.Inp gồm:

- Dòng đầu ghi hai số nguyên dương N và M ($3 \le N$, $M \le 1000$).
- N dòng sau, mỗi dòng ghi M số nguyên thuộc tập [-1000; 1000].

Kết quả ghi ra file **Diagon3.Out** là tổng lớn nhất của 6 ô tìm được (chú ý là 6 ô phân biệt). *Ví dụ*:

Diagon3.Inp	Diagon3.Out
4 5	25
1 2 3 <mark>4</mark> 5	
1 <mark>1</mark> 1 1	
9 <mark>9</mark> 911	
00000	

<mark>√4☆.</mark> Bộ ba chênh lệch

Cho dãy số nguyên A gồm N số nguyên A_1 , A_2 , ..., A_N . Tìm số các bộ 3 chỉ số (i, j, k) sao cho:

- $1 \le i < j < k \le N$;
- $Max(A_i, A_j, A_k) Min(A_i, A_j, A_k) \leq 2$.

Dữ liệu cho trong file **Tuple3.Inp** gồm:

• Dòng đầu ghi số nguyên dương *N*.

Design and Analysis of Algorithms

• Dòng thứ 2 ghi N số nguyên A_1 , A_2 , ..., A_N .

Kết quả ghi ra file **Tuple3.Out** là số các chỉ số i thỏa mãn điều kiện trên.

Ví dụ:

Tuple3.Inp	Tuple3.Out	Giải thích
5	1	Chọn A[2], A[3], A[4]
36759		

Giới hạn:

- $1 \le A_i \le 10^6$;
- Có 50% số test ứng với $N \le 1000$;
- Có 50% số test ứng với $N \le 2 \times 10^5$.