

安路科技 EF3 系列 FPGA 数据手册

DS600 (v1.6.4) 2020年2月

目 录

E] 录	I
1	简介	1
1	. 四기 ••••••	······
	1.1 EF3 器件系列特性	1
	1.2 EF3 器件介绍	2
2	EF3 架构介绍	3
	2.1 PFB 模块	4
	2.1.1 SLICE	5
	2.1.2 PFB 操作模式	6
	2.1.3 寄存器	7
	2.2 互连(Routing)	8
	2.3 嵌入式存储器模块 (ERAM)	8
	2.3.1 简介	8
	2.3.2 RAM 存储器模式	11
	2.4 时钟资源	20
	2.4.1 全局时钟	21
	2.4.2 输入输出时钟	22
	2.4.3 快速时钟	24
	2.5 锁相环 (PLL)	25
	2.5.1 简介	25
	2.5.2 动态相移	26
	2.5.3 时钟反馈模式	28
	2.6 数字信号处理 (DSP)	29
	2.6.1 体系结构	29

		2.6.2 操作模式	32
	2.7	输入输出逻辑单元(IOL)	33
		2.7.1 输入寄存器逻辑	34
		2.7.2 输出寄存器逻辑	37
	2.8	输入输出缓冲器(IOB)	41
		2.8.1 IOB 简介	41
		2.8.2 IO 分组	43
		2.8.3 高速 LVDS 接口	44
		2.8.4 兼容 5V 输入	45
	2.9	EF3 FPGA 配置说明	48
		2.9.1 配置模式	48
		2.9.2 配置流程	49
		2.9.3 MSPI 配置模式	51
		2.9.4 从动串行配置模式	51
		2.9.5 从动并行配置模式	52
		2.9.6 主动并行配置模式	53
		2.9.7 JTAG 配置模式	53
		2.9.8 IEEE 1149.1 边界扫描测试	54
		2.9.9 DUAL BOOT 功能	55
		2.9.10 MULT BOOT 功能	55
		2.9.11 FPGA I/O 引脚在配置阶段的设置	56
		2.9.12 FPGA I/O 引脚在配置阶段的状态	56
		2.9.13 DNA 安全功能	56
3	直	流交流特性	. 58
	3.1	直流电气特性	58
		3.1.1 最大绝对额定值	58

		3.1.2 推存基本操作条件	59
		3.1.3 基本供电要求	60
		3.1.4 单电源器件静态供电电流- B Devices ^{1,2}	60
		3.1.5 热插拔规格	60
		3.1.6 上电复位电压阈值	61
		3.1.7 I/O 管脚电容	61
		3.1.8 I/O 直流电气特性	61
		3.1.9 单端 I/O 直流电学特性	62
		3.1.10 差分 I/O 电学特性	63
	3.2	交流电气特性	64
		3.2.1 时钟性能	64
		3.2.2 嵌入数字信号处理模块(DSP)规格	64
		3.2.3 锁相环(PLL)规格	64
		3.2.4 存储器模块 (ERAM) 规格	65
		3.2.5 高速 I/O 接口性能	65
		3.2.6 配置模块	66
4	引	脚和封装	67
		引脚定义和规则	
		可解定义和规则	
		caBGA324 引脚信息	
		caBGA332 引脚信息	
		caBGA400 引脚信息:	
	4.6	封装信息	
		4.6.1 caBGA324 封装规格	
		4.6.2 caBGA332 封装规格	
		4.6.3 caBGA400 封装规格	84

5	订购信息	85
6	版本信息	87
免	· 上责声明	88

1 简介

1.1 EF3 器件系列特性

■ 灵活的逻辑结构

- 共 2 种器件, 规模从 4800 到 9280 LUTs
- 最大用户 IO 数量达 336.

■ 低功耗工艺

• 先进的 55nm 低功耗工艺

■ 内置 Flash

• 内置 8Mb flash, 无需外部配置器件

■ 支持分布式和嵌入式存储器

- 最大支持 74Kbits 分布存储器
- 最大支持 270Kbits 嵌入块存储器
- 内置嵌入式存储模块,多种组合模式, 可配置为真双口
- 专用 FIFO 控制逻辑

■ 可配置逻辑模块(PLBs)

- 优化的 LUT4/LUT5 组合设计
- 双端口分布式存储器
- 支持算数逻辑运算
- 快速进位链逻辑

■ 源同步输入/输出接口

 输入/输出单元包含 DDR 寄存器支持 DDRx1、DDRx2 模式

■ 高性能,灵活的输入/输出缓冲器

- 可配置支持以下单端标准
 - LVTTL, LVCMOS(3.3/2.5/1.8/1.5/1.2V)

- PCI

- 可配置支持以下差分标准
 - LVDS,Bus-LVDS,MLVDS,RSDS,

LVPECL

- 支持 True LVDS 输出, 所有 BANK 均 支持单端和差分输入
- 支持热插拔
- 可配置上拉/下拉模式
- 兼容 5V 输入
- 片内 100 欧姆差分电阻

■ 时钟资源

- 16 路全局时钟
- 每 BANK 2 路针对高速 I/O 接口设计的 IOCLK
- 优化全局时钟的快速时钟
- 多功能 PLLs 用于频率综合
- 支持7路时钟输出
- 一 分频系数 1 到 128
- 支持 5 路时钟输出级联
- 动态相位调节

■ 配置模式

- MSPI 模式
- 从模式串行 (SS)
- 从模式并行 x8 (SP)

- 主模式并行 x8 (MP)
- JTAG 模式 (IEEE-1532)

■ BSCAN

- 兼容 IEEE-1149.1
- 增强安全设计保护
 - 每个芯片拥有唯一的 64 位 DNA

■ 丰富封装形式

- caBGA324
- caBGA332
- caBGA400

表 1-1 EF3 FPGA 系列选型表

Carias	Device	ice LUTs	DEE	Dis-RAM	ERAM		DCD	DLI	Elook	MAX
Series			IS DFFS	(Kbs)	9K	Total(Kbits)	DSP	PLL	Flash	user IO
т.	EF3L40	4800	4800	38	15	135	8	2	8Mb	280
L	EF3L90	9280	9280	74	30	270	16	2	8Mb	336

表 1-2 EF3 FPGA 封装

Packages	EF3L40	EF3L90
caBGA324(15x15, 0.8mm pitch)	280/(35+105)	
caBGA332(17x17, 0.8mm pitch)	280/(34+106)	
caBGA400 (17x17, 0.8mm pitch)		336/(41+127)

注: 336/168 表示: 用户可用 IO 数 (用户可用 Ture LVDS 对+用户可用 Emulated LVDS 对)

DS600_1.6.4 www.anlogic.com 2

1.2 EF3 器件介绍

EF3 器件是安路科技的第三代 FPGA 产品,定位通信、工业控制和服务器市场,最多支持 336 个用 户 I/O,满足客户板级 IO 扩展应用需求。EF3 器件采用先进的 55nm 低功耗工艺,优化功耗与性能,并 可以通过低成本实现较高的功能。器件旨在用于大批量、成本敏感的应用,使系统设计师在降低成本的 同时又能够满足不断增长的带宽要求。

安路科技提供丰富的设计工具帮助用户有效地利用 EF3 平台实现复杂设计。业界领先的综合和布 局布线工具,为用户设计高质量产品提供有力保障。

DS600_1.6.4 www.anlogic.com **Confidential**

2 EF3 架构介绍

EF3 系列器件由查找表逻辑模块(PLB)阵列构成核心资源,输入输出缓冲器分布在四边。嵌入式块存储单元(ERAM9K)和数据信号处理模块(DSP)嵌在 PLB 中间。

图 2-1 EF3L90 器件简化框图

查找表逻辑模块分为两种,逻辑可编程模块(LSLICE)和存储逻辑可编程模块(MSLICE)。两种模块均支持逻辑、算数功能,不同的是MSLICE支持分布式RAM和ROM功能。逻辑可编程模块(LSLICE)和存储逻辑可编程模块(MSLICE)均经过设计优化,便于用户快速有效地实现复杂设计。

EF3 系列器件包含多列嵌入式存储器模块(ERAM),存储器模块规模为 9K,支持快速数据访问。每一个存储模块可独立配置为 1-18 位宽的单口或双口应用。

EF3 的输入输出缓冲器 (I/O Buffer) 支持单端和双端的多种电平标准。BANK0/2 的 I/O 支持 TRUE LVDS 发送。

EF3 系列内部嵌有 2 个多功能 PLL 模块,位于器件的左上角和右上角,有专用的时钟线连接到 PLL 输入。PLL 具有对时钟分频/倍频/移相等功能。

2.1 PFB 模块

可编程逻辑块(PLB)按照行/列规则排布成二维阵列,每个 PLB 包括可编程互连(Routing)和可编程功能块(Programmable Functional Block,PFB)。PFB 是 FPGA 的可编程功能核心。EF3 器件内部 PFB 可实现:逻辑,算术,分布式 RAM(distribute RAM),ROM 功能以及信号锁存。PFB 内部包含 4个 SLICE,编号 0~3。SLICE 0.1 为 MSLICE 类型,SLICE 2.3 为 LSLICE 类型。

图 2-1-1 可编程功能块(PFB)结构图

2.1.1 SLICE

EF3 PFB 内包含两种 SLICE: MSLICE 和 LSLICE。

a) MSLICE

MSLICE 包含 2 个 LUT4s 和两个寄存器以及 2 级进位链,MSLICE 额外可配置成基于 LUT 的分布式 RAM (distribute RAM) 功能。PFB 内的 SLICE 0,1 为 MSLICE 类型,可组合配置成为 16x4 的 RAM。MSLICE 内部逻辑可实现 LUT4s 间的连接,可以实现输入数大于 4 的函数,如 LUT5。两个 MSLICE 组合可实现 LUT6。

图 2-1-2 MSLICE 结构图

如图 2-1-2 所示, MSLICE 内部有两个 4 输入查找表 (LUT4), 并带有 RAM 写入译码器, 结合 PFB 内部的分布式 RAM 控制逻辑,每个 LUT4 可实现 16x1 bits RAM 存储器,2 个 MSLICE 配合一个 RAM 控制器实现 16x4 的双口 RAM。MSLICE 中每个 LUT4 结合内部进位逻辑以及进位输入(FCIM)可以实现 1 位全加器。一个 MSLICE 可实现 2 位加/减法,并实现快速进/借位输出(FCOM)。

DS600_1.6.4 www.anlogic.com 5

b) LSLICE

LSLICE 包含 2 个增强型 LUT5s 和两个寄存器以及 4 级进位链。PFB 内的 SLICE 2,3 为 LSLICE 类型。LSLICE 内部逻辑可实现:将一个 LUT5s 拆成 2 个 LUT4s;实现更多输入函数,如 LUT5, LUT6。两个 LSLICE 组合可实现 LUT7。

图 2-1-3 LSLICE 结构图

如图 2-1- 3 所示,LSLICE 内部有 4 个 4 输入查找表(LUT4),以及选择逻辑,可组合实现多种逻辑功能: 4 个 LUT4; 2 个 LUT4 + 1 个 LUT5; 2 个 LUT5; 一个 LUT6 等。每个增强型 LUT5 结合内部进位逻辑以及进位输入可以实现 2 位全加器。一个 LSLICE 可实现 4 位加/减法,并实现快速进/借位输出(FCOL)。

MSLICE 和 LSLICE 内部寄存器相同,可配置成 DFF 或者 LATCH。

2.1.2 PFB 操作模式

MSLICE 有 4 种操作模式:逻辑,算术,分布式 RAM 和 ROM。

LSLICE 有3种操作模式:逻辑,算术和ROM。

a) 逻辑模式

在逻辑模式中, MSLICE 中的 LUT4 配置成 4 输入组合逻辑查找表, 任意 4 输入函数都可以用这个

DS600_1.6.4 www.anlogic.com 6

查找表实现。LSLICE 中的增强型 LUT5 可配置成多种组合的逻辑查找表。SLICE 内的 LUT 还可以通过内部输出组合电路级联成更大的查找表。

LUT5	1 MSLICE	1/2 LSLICE
MUX4	1 MSLICE	1/2 LSLICE
LUT6	2 MSLICE	1 LSLICE
LUT7		2 LSLICE

表 2-1-1 常见逻辑实现表

b) 算术模式

算术模式会利用 SLICE 内部快速进位链实现快速、高效的算术功能,MSLICE 和 LSLICE 都支持算术模式。可支持的算术逻辑有:加法,减法,带控制选择的加/减法器,计数器,乘法器以及比较器。

PFB 内部共有两条进位链,分别连接纵向 MSLICE 和纵向 LSLICE。可级联纵向相邻的 PFB 实现 宽比特位算术逻辑。

c) 分布式 RAM 模式

MSLICE 可配置成此模式,两个 MSLICE: SLICE0 和 SLICE1 相结合可配置成 16x4 的简单双口 RAM (一口写/一口读)。

图 2-1- 4 Disram 同步写入异步读出时序图

d) ROM 模式

所有 SLICE 在 LUT 逻辑下可用作 ROM 模式,用户可以通过软件设置 ROM 初值。

2.1.3 寄存器

PFB 内每个 SLICE 包含 2 个可配置寄存器。可锁存 LUT 的输出或者来自互连的 MI 输入。寄存器配置选项:

DS600_1.6.4 www.anlogic.com 7

- 边沿触发的锁存器(DFF)或电平使能锁存器(LATCH)
- 同步或异步进行复位 0 或置位 1
- 是否带有 ClockEnable 使能
- CLK/CE/SR 带有上升沿/下降沿/0/1 选择

2.2 互连(Routing)

可编程互连实现 FPGA 内部各个功能块之间的信号传输。EF3 系列器件内部拥有丰富的互连资源,包括线间选通开关、线缓冲器以及信号走线。EF3 系列互连线全部带有缓冲器,从而实现高速信号传输和可靠的信号完整性。

图 2-2-1 EF3 互联架构

PFB 间信号通过水平通道和垂直通道传输。PFB 可以直接驱动水平/垂直通道。通道之间通过 channel RSB(routing switch box) 进行切换。通道上传输的信号通过 local RSB 进入 PFB。

2.3 嵌入式存储器模块(ERAM)

2.3.1 简介

ERAM9K 每块容量 9Kbits, 在芯片中按列排布, 分布在 PFB 的阵列中。

ERAM9K 可实现:

DS600_1.6.4 www.anlogic.com 8

- 単口 RAM/ROM
- 双口 RAM
- 简单双口 RAM(也称为伪双口)
- FIFO (ERAM9K 内嵌有硬件 FIFO 控制器)

ERAM9K 模块支持的功能特色有:

- 9216 (9K) bits / 每块
- A/B 口时钟独立
- 可单独配置 A/B 口数据位宽,真双口从 x1 到 x9,支持 x18 简单双口(一写一读)
- 9 或 18 位写操作时带有字节使能(Byte Enable)控制
- 输出锁存器可选择(支持1级流水线)
- 支持 RAM/ROM 模式下数据初始化(通过初始化文件在配置过程中对 ERAM9K 数据初始化)
- 支持多种写操作模式。可选择只写(Normal),先读后写(Read before Write),写穿通(Write through)三种模式。

表 2-3-1 ERAM 9K 特色

类别	特性				
容量	9K				
配置(原序 ** 位穿)	8192 x 1 4096 x 2 2048 x 4				
配置(深度 x 位宽)	1024 x 8 或 9 512 x 16 或 18				
奇偶位(Parity bits)	8+1 16+2				
字节使能(Byte enable)	有, 可选择				
输入地址/数据寄存器	有				
单口模式(Single-port mode)	支持				
简单双口模式(Simple dual-port mode)	支持				
真双口模式(True dual-port mode)	支持				
ROM 模式	支持				
FIFO 模式	支持				
数据输出寄存器	有,可选择				
独立数据输出寄存器使能	有				
Dood dyning symite	输出旧数据(read before write)				
Read-during-write	输出写数据(write through)				
工作前 RAM 初始化	支持				

■ 字节使能(Byte Enable)

ERAM9K 支持字节使能功能,可在写操作时对写入数据按字节屏蔽,被屏蔽的字节不会被写入RAM。字节使能(Byte Enable[1:0])信号分别对应写入数据的 datain[15:8]和 datain[7:0]。

■ 写操作时并行读操作(Read-during-Write)

EF3 系列的 ERAM9K 支持同端口的 read-during-write 。 read-during-write 是指在单口 RAM 或真双口 RAM 模式时,用户在写入数据的同时,读出同一地址的数据到输出端口。而默认非 rdw 选择,输出数据保持不变(No change)。

图 2-3-1No change 模式波形

RDW 模式下用户有两种选择: 读出旧数据(Read Before Write); 读出新数据即正要写入的数据(Write Through)。

图 2-3-2 Write Through 模式波形

图 2-3-3 Read Before Write 模式波形

EF3 ERAM 内部采用 8T-SRAM 真双口结构,当用户从 2 个口访问同一地址 SRAM 空间时会发生冲突,用户需要注意以下几点:

- 1、当访问同一地址空间时,若双口同时为读操作,双口可以完成正常读操作,SRAM 内容正常,不会被破坏。
- 2、当访问同一地址空间时,若一口为写、另一口为读操作,写口可以正常写入数据,读口读操作 失败,输出数据未知; SRAM 内容不会被破坏,为写口写入值。
- 3、当访问同一地址空间时,若一口为写、另一口同样为写操作,双口写操作同时失败,SRAM 器件内数据有损坏风险。

2.3.2 RAM 存储器模式

ERAM9K 按工作模式分为 RAM 存储器模式(包括 ROM)和 FIFO 模式。两种模式下 ERAM9K 用户端口名称和设置略有不同。

ERAM9K 在 RAM 模式下是 A/B 口独立的双口 RAM,支持多种模式同步 RAM 操作和 ROM 操作。

2.3.2.1 RAM 存储器模式下的端口信号

ERAM9K 的控制信号、时钟输入信号 A/B 口完全独立,输入控制信号有:

- 片选信号 (ChipSelect)
- 时钟使能(Clock Enable)
- 输入/输出寄存器复位控制信号(RST)
- 写/读操作(WE)

DS600_1.6.4 www.anlogic.com 11

- 数据输出寄存器锁存使能(OCE)
- 字节使能 (Byte Enable[1:0])。

表 2-3-2 控制逻辑信号表

操作	CLK	CS	ClockEnable	RST	WE
写操作	上升沿	1	1	0	1
读操作	上升沿	1	1	0	0
IDLE	X	1	0	0	X
Save power	X	0	0	0	X

ERAM9K 的端口如下表:

表 2-3-3 RAM 模式下的端口信号

A 端口名	方向	说明
dia[8:0]	输入	A端口数据输入,简单双口18位输入端口模式时作为低9位数据输入
- 11[12.0]	输入	A 端口地址输入, [12:4]作为 word 地址一直有效, [3:0]取决于 bit 模式。
addra[12:0]	111八	在 18 位模式时,addra[1:0]复用为字节使能信号 Byte Enable[1:0]。
doa[8:0]	输出	A端口数据输出,简单双口18位输出端口模式时作为低9位数据输出
11	输入	A 端口时钟输入,默认上升沿有效(可反向),简单双口 18 位模式时作为输入
clka	1111八	地址/数据端口时钟
rsta	输入	A 端口复位信号,默认高有效(可反向),可配置同步/异步复位
cea	输入	A 端口时钟有效控制信号,默认高有效(可反向)。
	输入	A 端口写入/读出操作控制, 1 为写入操作, 0 为读出操作; 18 位写入模式时固
wea	111八	定为 1。
[2.0]	输入	A 端口 3 位片选信号(可反向), csa[2:0]=3'b111 时 ERAM 被选中进行操作。3
csa[2:0]	111八	位信号可分别独立设置是否反向。
	输入	A 端口数据寄存器时钟使能,默认高有效(可反向)。只有当输出寄存器被使用
ocea		时(REGMODE_A= "OUTREG")才有效。
B端口名	方向	说明
dib[8:0]	输入	B端口数据输入,18位输入端口模式时作为高9位数据输入
addrb[12:0]	输入	B 端口地址输入, [12:4]作为 word 地址一直有效, [3:0]取决于 bit 模式
dob[8:0]	输出	B 端口数据输出, 18 位输出端口模式时作为高 9 位数据输入
-11-1-	kb 输入	B 端口时钟输入,默认上升沿有效(可反向),简单双口 18 位模式时作为输出
clkb		地址/数据端口时钟
rstb	输入	B 端口复位信号,默认高有效(可反向),可配置同步/异步复位
ceb	输入	B 端口时钟有效控制信号,默认高有效(可反向)。
1-	输入	B 端口写入/读出操作控制, 1 为写入操作, 0 为读出操作; 18 位读出模式时固
web	111八	定为 0。
aah[2,0]	<i>t</i> 会)	B 端口 3 位片选信号(可反向),csb[2:0]=3'b111 时 ERAM 被选中进行操作。3
csb[2:0]	输入	位信号可分别独立设置是否反向。
a a a b	松)	B 端口数据寄存器时钟使能,默认高有效(可反向)。只有当输出寄存器被使用
oceb	输入	时(REGMODE_B= "OUTREG")才有效。

DS600_1.6.4 www.anlogic.com 12

■ 多位片选信号逻辑说明:

ERAM9K 在 RAM 和 FIFO 模式下的 CS 由可反向的 3 位片选输入生成。其逻辑如下图所示(CSA, CSB 在 RAM 模式/CSW, CSR 在 FIFO 模式):

图 2-3-4 CS 逻辑控制

利用 3 位 CS 输入反向配置可不用额外逻辑就能实现地址译码,方便对 2~8 块 RAM 进行深度扩展。

■ 18 位模式时的字节使能(Byte Enable):

ERAM9K 支持字节使能功能,可在写操作时对写入数据按字节屏蔽,被屏蔽的字节不会被写入RAM。字节使能(Byte Enable[1:0])信号分别对应写入数据的 datain[15:8]和 datain[7:0]。例如,Byte Enable[1:0]==00,两字节都不会被写入;Byte Enable[1:0]==01,低位字节写入(dia)。在 18 位模式时,字节使能 Byte Enable[1:0]信号和端口 addra[1:0]复用。

■ 写操作时并行读操作(Read-during-Write)

EF3 系列的 ERAM9K 支持同端口的 read-during-write 。 read-during-write 是指在单口 RAM 或真双口 RAM 模式时,用户在写入数据的同时,同时读出同一地址的数据,输出到输出端口。而默认选择只写模式(Normal),输出数据保持不变。

RDW 模式下用户有两种选择:读出旧数据(Read Before Write);读出新数据(Write Through)。

2.3.2.2 RAM 存储器模式下的常见配置

a) 单口模式 (Single-Port Mode)

单口模式支持对非同时发生的对同一地址的读或写操作。ERAM9K内部有两套读写控制逻辑分别管理 A口和 B口,因此 ERAM9K可以支持实现两个单口模式的 RAM或 ROM。通常 ROM 也工作在此模式下。

ERAM9K 在单口模式下支持的位宽

- ▶ 8192 x 1 (独立的 A 口或 B 口实现)
- ► 4096 x 2 (独立的 A 口或 B 口实现)
- ▶ 2048 x 4 (独立的 A 口或 B 口实现)

DS600_1.6.4 www.anlogic.com 13

- ▶ 1024 x 8, 1024 x 9 (独立的 A 口或 B 口实现)
- ▶ 512 x 16, 512 x 18 (A □ B □联合实现)

图 2-3-5 利用 A 口实现的 9 位宽(及以下)单口 RAM

b) 简单双口模式(Simple Dual-Port Mode)

当用一块 ERAM9K 配置成 18 位写入或 18 位读出时,其不支持真双口模式,支持单口和简单双口模式。简单双口模式的配置连接如下。18 位模式时,A 端口控制信号作为写入控制信号,B 端口控制信号作为读出控制信号。18 位写入时,DIB[8:0]作为高 9 位数据输入,DIA[8:0] 作为低 9 位数据输入;18 位读出时,DOB[8:0]作为高 9 位数据输出,DOA[8:0] 作为低 9 位数据输出。

当用户使用 8/16 位宽时,禁止使用 DIA[9], DIB[9], DOA[9], DOB[9], 防止因为读写位宽不同造成的内部数据映射失配。

模式	ERAM9K RAM 端口	用户端口
	DIA[8:0]	wdata[8:0]
W=18 位	DIB[8:0]	wdata[17:9]
R=18 位	DOA[8:0]	rdata[8:0]
	DOB[8:0]	rdata[17:9]
W<=9 位	DIA[]	wdata[]
R=18 位	DOA[8:0]	rdata[8:0]
K=10 \(\frac{1}{1}\frac{1}{2}\).	DOB[8:0]	rdata[17:9]
W=18 位	DIA[8:0]	wdata[8:0]
R<=9 位	DIB[8:0]	wdata[17:9]
I \\−9 \ <u>1\</u>	DOB[]	rdata[]

表 2-3-4 9/18 位简单双口模式时数据端口连接关系

DS600_1.6.4 www.anlogic.com 14

图 2-3-6 简单双口 18 位写/18 位读端口连接

图 2-3-7 简单双口模式<=9 位写/18 位读端口连接

图 2-3-8 简单双口模式 18 位写/<=9 位读端口连接

ERAM9K 简单双口模式下支持 A 口/B 口不同位宽的混合端口宽度选择。

Dead Dead	Write Port								
Read Port	8Kx1	4Kx2	2Kx4	1Kx8	512x16	1Kx9	512x18		
8Kx1	√	√	√	√	√				
4Kx2	√	√	√	√	√				
2Kx4	√	√	√	√	√				
1Kx8	√	√	√	√	√				
512x16	√	√	√	√	√				
1Kx9						√	√		
512x18						√	√		

表 2-3-5 简单双口模式下支持的混合端口位宽配置

表 2-3-6 简单双口模式下支持的混合端口位宽配置

	端口 宽度	地址位 宽度	DOB[8]	DOA[8]	[8] 最低 4 位地址 addr[3:0]值对应的 WORD 内部数据位				Î.											
	18	9	()	0															
	9	10	1	0	1 0															
	4	11	X	X	3 2			1		0										
	2	12	X	X	7 6		5 4		1	\	3	(4	2]	l	()			
	1	13	X	X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
18/16 位																				
WORD 内			17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
部数据位																				

c) 真双口模式 (Ture Dual-Port Mode)

真双口模式支持 A 口/B 口的所有独立读写操作组合:两读,两写,一读和一写。

图 2-3-9 位宽<=9 位时 A/B 双口 RAM

DS600_1.6.4 www.anlogic.com 16

Read Port		Write Port								
Read Port	8Kx1	4Kx2	2Kx4	1Kx8	1Kx9					
8Kx1	√	√	√	√						
4Kx2	√	√	√	√						
2Kx4	√	√	√	√						
1Kx8	√	√	√	√						
1K _v 9					۸/					

表 2-3-7 真双口模式下支持的混合端口位宽配置

d) ROM 模式

ERAM9K 支持 ROM 模式。ROM 内容保存在初始化文件中,在芯片编程下载时写入 ERAM9K 中。 初始化值可以在 IP 生成时用 MIF 文件设置。ROM 输出可选择带寄存器或不带寄存器锁存。ROM 的读出操作和单口 RAM 的读操作时序相同。

2.3.2.3 FIFO 模式

ERAM9K 内部集成 FIFO 控制器,硬件支持同步/异步 FIFO 模式。FIFO 模式下 ERAM9K 位宽设置和简单双口 RAM 设置相同,最高可支持 18bit 输入和输出。

表 2-3-8 FIFO 模	式下的端口信号
----------------	---------

输入端口名	方向	说明
dia[8:0]	输入	FIFO 数据输入, 16/18 位输入端口模式时作为低 9 位数据输入
dib[8:0]	输入	只在 16/18 位输入端口模式时作为高 9 位数据输入,其他位宽不使用。
clkw	输入	FIFO 写端口时钟输入,默认上升沿有效(可反向)
rst	输入	FIFO 内部写指针/读指针复位信号(可反向)
we	输入	FIFO 写使能, 1 为写入操作, 0 无操作。
csw[2:0]	输入	FIFO 写端口 3 位片选信号(可反向),类似 RAM 模式。
输出端口名	方向	说明
doa[8:0]	输出	只在18位输出端口模式时作为低9位数据输出,其他位宽时不使用。
dob[8:0]	输出	<=9 位时作为数据输出,18 位输出端口模式时作为高9位数据输出。
clkr	输入	读端口时钟输入,默认上升沿有效(可反向)
rprst	输入	FIFO 读指针复位信号
re	输入	FIFO 读使能, 1 为读操作, 0 无操作。
csr[2:0]	输入	FIFO 读端口 3 位片选信号 (可反向), 类似 RAM 模式。
0.000	输入	doa 端口数据寄存器时钟使能,默认高有效(可反向)。只有 18 位输出端口模
ocea	柳八	式并且当输出寄存器被使用时(REGMODE_A= "OUTREG")才有效。
oceb	输入	dob 端口数据寄存器时钟使能,默认高有效(可反向)。只有当输出寄存器被使
oceb	捌八	用时(REGMODE_B= "OUTREG")才有效。
FIFO 标志名	方向	说明

DS600_1.6.4 www.anlogic.com 17

empty_flag	输出	FIFO 读空标志,和 clkr 同步。
aempty_flag	输出	FIFO 几乎读空标志,和 clkr 同步。相对读空提前量由 AE_POINT 参数决定。
full_flag	输出	FIFO 满标志,和 clkw 同步。FIFO 满容量由 FULL_POINTER 参数决定。
afull_flag	输出	FIFO 几乎满标志,和 clkw 同步。FIFO 几乎满容量由 AF_POINTER 参数决定。

表 2-3-9 FIFO 模式支持的混合端口位宽配置

Read Port	Write Port									
Keau Fort	8Kx1	4Kx2	2Kx4	1Kx8	512x16	1Kx9	512x18			
8Kx1	√	√	√	√	√					
4Kx2	√	√	√	√	√					
2Kx4	√	√	√	√	√					
1Kx8	√	√	√	√	√					
512x16	√	√	√	√	√					
1Kx9						√	√			
512x18						√	√			

图 2-3-10 18 位进/18 位出 FIFO 模式

图 2-3-11 <=9 位进/<=9 位出 FIFO 模式

www.anlogic.com

图 2-3-129 位进/18 位出 FIFO 模式

图 2-3-13 18 位进/9 位出 FIFO 模式

■ 空满标志属性的设置

FIFO 模式下用户可以通过软件设置 FIFO 空满标志属性。空标志(empty_flag),几乎空标志(almost_empty),满标志 (full_flag) ,几乎满标志(almost_full)。当内部计数器计数到标志值时会在FF/AF/EF/AE 相应端口输出高电平。

FIFO 属性名称	描述	设置范围
FF	Full flag	1 to Max
AF	Almost full	1 to Full-1
AE	Almost empty	1 to Full-1
EF	Empty setting	0

表 2-3- 10 FF/AF/EF/AE 属性设置

DS600_1.6.4 www.anlogic.com 19

■ FIFO 模式下常用配置

FIFO 模式的 csw/csr 和 RAM 模式中的 csa/csb 接口逻辑类似。当 FIFO 写满或读空时为了避免指针溢出,可以通过互连资源将满信号反向后接入 csw 端,空信号反向后接入 csr 端。反向逻辑可以利用 csw/csr 内部的反向与逻辑实现。

图 2-3-14 单个 ERAM9K FIFO 模式连接

图 2-3-15 两个 ERAM9K FIFO 级联模式连接

2.4 时钟资源

EF3 系列 FPGA 包含 3 种类型时钟资源,第一种是给核心逻辑、嵌入式存储器、IOL 和 DSP 使用的全局时钟(GCLK),第二种是支持高速输入/输出接口串并转换的输入输出时钟(IOCLK),第三种是支持时钟快速输入到 IOCLK 和 PLL 输入的快速时钟。

DS600_1.6.4 www.anlogic.com 20

2.4.1 全局时钟

EF3 系列全局时钟资源包含专用的时钟输入,缓冲器和布线网络。时钟资源提供 16 个低延迟、低偏斜、互联的全局时钟网络。全局时钟网络能够为 FPGA 各个模块提供统一的高性能、低抖动、低偏斜时钟源,同时全局时钟也可用于高扇出信号,时钟架构如图 2-4-1 所示。

图 2-4-1 全局时钟分布网络

在全局时钟传输路径上有一级动态时钟使能逻辑,可以实现无毛刺的时钟动态使能,用于从 PLL 输出、时钟管脚、内部分频器、内部逻辑反馈中选择一路作为全局时钟的驱动;从四个边共送进 32 路时钟资源,经过在传输路径上的延时平衡,分别送到位于芯片中间的 36:1 多路选择器,进而分别送到 4个象限驱动用户逻辑 DFF。

整个芯片以水平和垂直中间线划分为四个象限,每个象限有16路独立的全局时钟资源。

2.4.1.1 时钟切换模块(CSB)

每个 EF3 器件有 2 个全局时钟动态切换模块。时钟切换模块把所有 32 路全局时钟第一级多路选择器的输出作为输入。动态时钟切换器的设计允许将其配置成一个具有两个时钟输入的同步或异步无毛刺信号 2:1 多路复用器。

DS600_1.6.4 www.anlogic.com 21

图 2-4- 2 CSB 框图

图 2-4-3 CSB 时钟切换时序图

表 2-4- 1 DCS 操作模式

模 式		S	描述			
英 九	0	1	细 农			
BUFGMUX clki0 clki1		clki1	有毛刺时钟切换			

2.4.2 输入输出时钟

输入输出时钟 (IOCLK) 是可以在 EF3 器件中使用的一种时钟缓冲器。IOCLK 驱动 I/O 列内一个独立于全局时钟资源的专用时钟网。这样,BUFIO 就可以理想地适合源同步数据采集(传送/接收器时

钟分配)。IOCLK 可以由位于同一时钟区域的 clock capable I/O 驱动,也可以由 PLL 输出驱动。典型的 I/O 组中有两个 IOCLK。每个 IOCLK 可驱动同一区域/组中的一个 I/O 时钟网络。IOCLK 不能驱动逻辑资源(PLB、ERAM等),因为 IOCLK 时钟网络只能覆盖同一组或时钟区域内的 I/O 列。

图 2-4- 4 IOCLK 架构图

2.4.2.1 时钟分频器

EF3 器件在每个 I/O 组中都有两个时钟分频器。时钟分频器把输入时钟分频, 其输入来自于相同 I/O 组的输入输出时钟。输出分频系数可以是 1/2/4 中的任意一个。

图 2-4-5 时钟分频器

DS600_1.6.4 www.anlogic.com 23

图 2-4-6 时钟分频器时序图

2.4.3 快速时钟

快速时钟用以实现单时钟输入快速布线到多个 IOCLK 和 PLL 输入的应用,这使得客户实现时钟共享输入应用时更加灵活。

图 2-4-7 快速时钟架构图

DS600_1.6.4 www.anlogic.com 24

2.5 锁相环(PLL)

2.5.1 简介

EF3 系列 FPGA 内嵌 2 个多功能锁相环,可实现高性能时钟管理功能。可以实现时钟分频、倍频、占空比调整、输入和反馈时钟对准、多相位时钟输出等功能。

用户在使用中应关注 PLL 的 lock 信号是否为高,同时建议用户等待输入信号稳定后,再给锁相环进行复位以保证锁相环输出时钟信号的频率和相位。

PLL 参考时钟输入有:时钟网络输出、互连输出和内部振荡器输出。

PLL 反馈时钟输入有:时钟网络输出、内部寄存器时钟节点、互连输出、PLL 内部反馈时钟以及相移时钟 C0~C4。

PLL 输出 C5 和 C0 共用了一个来自 VCO 的相位选择器,输出细调相位必须相同。

PLL 输出 C6 和 C1 共用了一个来自 VCO 的相位选择器,输出细调相位必须相同。

图 2-5-1 EF3 PLL 架构图

PLL有专门的输出驱动芯片的专用时钟输出管脚,已获得更好的抖动性能。

图 2-5-2 EF3 C0 直接输出到时钟输出 IO 管脚(差分模式)

DS600_1.6.4 www.anlogic.com 25

表 2-5-1 EF3 PLL 特性表

Feature	EF3 PLL			
输入时钟频率范围	10-400 Mhz			
输出时钟频率范围	4-400 Mhz			
VCO 频率范围	300-1200 Mhz			
输出端口数	7 (C0~C4 相位完全独立)			
参考时钟分频系数(M)	1 to 128			
反馈时钟分频系数(N)	1 to 128			
输出时钟分频系数(C0-4)	1 to 128			
相移分辨率	45° (相对 VCO)			
输出端口可选相位偏移量(°)	0, 45, 90, 135, 180, 225, 270, 315			
用户动态相移控制	支持(+/-每单位 45 度相移, 相对 VCO)			
锁定状态输出	Lock			
专用时钟输出管脚	支持			
占空比调整	支持			

2.5.2 动态相移

EF3 系列 PLL 支持静态配置,即由用户通过软件设置生成码流,上电下载后不能更改。此外,EF3 系列 FPGA 支持动态相移功能。

静态配置参数包括:

- 参考/反馈时钟输入/输出选择
- 参考时钟分频系数(M)
- 反馈时钟分频系数(N)
- 输出时钟分频系数(C0-4)

动态相移特性允许对锁相环的每个独立输出相位进行动态调整,通过对给定的计数器递增或递减实时改变输出时钟相。每次移动相位为 1/8VCO 周期。表 2-5-2 列出了用于动态相移的控制信号。

表 2-5-2 动态相移控制信号

信号名称	描述	信号来源	信号目的地		
	要进行动态移相的时钟选择信				
PSCLKSEL[2:0]	号,从 C0-C4 中选出一路或者	PIB 或者 IO 引脚	PLL reconfiguration 电路		
	同时进行动态相位移动。				
PSDOWN	动态相移方向选择,1=向上,	PIB 或者 IO 引脚	PLL reconfiguration 电路		
PSDOWN	0=向下,PSCLK 的上升沿采样。	PIB 以有 IO 分脚 	PLL reconfiguration 电增		
PSSTEP	PSSTEP=1,使能动态相移	PIB 或者 IO 引脚	PLL reconfiguration 电路		

安路科技 EF3 系列 FPGA 数据手册

PSCLK	动态相移时钟	GCLK 或者 IO 引脚	PLL reconfiguration 电路
PSDONE	信号为高电平时,表明相位调整结束,PSCLK的上升沿采样。	PLL reconfiguration 电路	PIB 或者 IO 引脚

对于动态相移,每次能对一路输出进行相位调整或者对 C0-C4 五路时钟同时调整,由 PIB 的接口 PSCLKSEL[2:0]来选择 C[4:0]中的一路或全部输出执行动态相移,如下表所示。

 PSCLKSEL[2:0]
 PLL 输出选择

 000 (default)
 C[0]

 001
 C[1]

 010
 C[2]

 011
 C[3]

 100
 C[4]

 101
 C[4]-C[0](五路时钟同时调整)

表 2-5-3 动态相移输出选择

执行一次动态相移调整,必须遵循以下步骤:

- (1) 根据需要设置 PSDOWN 和 PSCLKSEL。
- (2) 打开相位调整,相位调整 PSSETP 至少需要四个 PSCLK 周期,每一个 PSSTEP 脉冲进行一次相位移动。
- (3) 关闭相位调整。
- (4) 等待 PSDONE 变为高电平。
- (5) 重复上述步骤 1-4, 可以进行多次动态相位调整。

PSCLKSEL[2:0],PSSTEP,PSDOWN 和 PSCLK 同步,必须由 PSCLK 同步过后送给 PLL。

图 2-5-3 PLL 动态相移

PSSTEP 信号在 PSCLK 的上升沿被锁存,如图 2-5-3 所示,PSSTEP 必须在至少四个 PSCLK 周期内保持高电平。在 PSCLK 采样到 PSSTEP 后再经过 2 个 PSCLK 的周期,PSDONE 信号变为低电平并保持 2 个 PSCLK 时钟周期。然后 PSDONE 由低变为高电平,必须再经过四个 PSCLK 周期以上才可以执行另一个动态相移操作。

每一次动态相移,动态相移使能信号 PSSTEP 必须至少维持四个 PSCLK 周期,同时 PSDONE 信号

DS600_1.6.4 www.anlogic.com 27

为高电平也至少维持 4 个 PSCLK 时钟周期,也就是完成一次动态相移操作至少需要 8 个 PSCLK 周期。

注意: 在动态相移过程中被调节时钟可能会产生 glitch。

2.5.3 时钟反馈模式

EF3 系列 PLL 支持 4 种反馈模式。每种模式都支持时钟分频/倍频和相移。

2.5.3.1 源同步模式(Source-Synchronous Mode)

图 2-5-4 源同步模式

如图 2-5- 4 源同步模式通过动态相移功能,调节时钟相位保证数据端口到 IOB 输入寄存器的延迟和时钟输入端口到 IOB 寄存器的延迟相等(数据和时钟输入端口模式相同情况下)。

2.5.3.2 无补偿模式(No Compensation Mode)

在无补偿模式, PLL 不对时钟网络延迟进行补偿, PLL 采用内部自反馈, 会提高 PLL 的抖动特性。

图 2-5-5 无补偿模式(相位不对齐)

2.5.3.3 普通模式

普通模式中,PLL 会补偿 GCLK 网络延迟,保证内部寄存器输入时钟相位和时钟管脚相位一致。

DS600_1.6.4 www.anlogic.com 28

图 2-5-6 普通模式

2.5.3.4 零延迟缓冲模式

零延迟缓冲模式,时钟输出管脚相位和 PLL 参考时钟输入管脚相位对齐。

图 2-5-7 零延迟缓冲模式

2.6 数字信号处理(DSP)

EF3 器件结合了片上资源与外部接口,这有助于提高性能、减少系统成本,以及降低数字信号处理 (DSP)系统的功耗。EF3 器件本身或者作为 DSP 器件的协处理器,都可用于提高 DSP 系统的性价比。

2.6.1 体系结构

嵌入式乘法器可以配置成一个 18×18 乘法器,或者配置成两个 9×9 乘法器。每个嵌入式乘法器均由以下几个单元组成:

- 乘法器级
- 输入与输出寄存器
- 输入与输出接口

DS600_1.6.4 www.anlogic.com 29

图 2-6-1 乘法器模块的体系结构

a) 输入寄存器

根据乘法器的操作模式,可以将每个乘法器输入信号连接到输入寄存器,或直接以 9bit 或 18 bit 的形式连接到内部乘法器。可以分别设置乘法器的每个输入是否使用输入寄存器。例如:将乘法器 mia 信号连接到输入寄存器,将 mib 信号直接连接到内部乘法器。

下列控制信号可用于嵌入式乘法器中的每一个输入寄存器:

- 时钟
- 时钟使能
- 同步/异步清零

同一个嵌入式乘法器中的所有输入与输出寄存器均由同一时钟信号驱动,时钟使能信号以及异步清零信号驱动可以独立配置。

b) 乘法器级

嵌入式乘法器模块的乘法器级支持 9x9 或者 18x18 乘法器,并支持这些配置之间的其它乘法器。根据乘法器的数据宽度或者操作模式,单一嵌入式乘法器能够同时执行一个或者两个乘法运算。

乘法器的每一个操作数都是一个唯一的有符号或者无符号数。signa 与 signb 信号控制乘法器的输入,并决定值是有符号的还是无符号的。如果 signa 信号为高电平,则 mia 操作数是一个有符号数值。 反之, mia 操作数便是一个无符号数值。

表 2-6-1 为乘法器符号表示给出了不同符号类型的操作数的乘积结果对应的符号类型。如果任何一个操作数为有符号数,则乘积的结果为有符号数。

DS600_1.6.4 www.anlogic.com 30

MIA		MIB		乘积	
signa	逻辑值	Signb	逻辑值	米依	
无符号	0	无符号	0	无符号	
无符号	0	有符号	1	有符号	
有符号	1	无符号	0	有符号	
有符号	1	有符号	1	有符号	

表 2-6-1 乘法器符号表示

每一个嵌入式乘法器模块只有一个 signa 信号和一个 signb 信号,用于控制模块输入数据的符号表示。如果嵌入式乘法器有两个 9 x9 乘法器,那么这两个乘法器的 mia 输入与 mib 输入将分别共享同一个 signa 信号和同一个 signb 信号。可以在运行时动态改变 signa 和 signb 信号,以修改输入操作数的符号表示。可以通过专用的输入寄存器发送 signa 以及 signb 。不管符号表示如何,乘法器都会支持全精度。

c) 输出寄存器

根据乘法器的操作模式,可以用 18 bit 或 36 bit 的形式来使用输出寄存器对嵌入式乘法器的输出进行寄存。下面的控制信号可用于嵌入式乘法器中的每一个输出寄存器:

- 时钟
- 时钟使能
- 步/异步清零

同一个嵌入式乘法器中的所有输入与输出寄存器均由同一时钟信号驱动,时钟使能信号以及异步清零信号驱动可以独立配置。

名称	方向	位宽	描述	
mia	输入	18	来自 PIB 的 dsp 操作数输入。具有寄存器输入模式	
acin	输入	18	来自前一级 dsp 的 acout 端口上的级联数据输入。具有寄存器输入模式	
acout	输出	18	连接到下一级 dsp 的 acin 端口上的级联数据输出	
mib	输入	18	来自 PIB 的 dsp 的另一操作数输入。具有寄存器输入模式	
bein	输入	18	来自前一级 dsp 的 bcout 的级联数据输入。具有寄存器输入模式	
bcout	输出	18	连接到下一级 dsp 的 bcin 端口上的级联数据输出	
cea	输入	1	输入寄存器时钟使能信号。当 cea 为高电平时,输入有效	
ceb	输入	1	输入寄存器的时钟使能信号。当 ceb 为高电平时,输入有效	
cepd	输入	1	输出寄存器的时钟使能信号。当 cepd 为高电平时,输出有效	
clk	输入	1	clk 是 dsp 的输入时钟,共同作用于内部所有的寄存器	
rsta_n	输入	1	输入寄存器的复位信号。输入为低电平时,寄存器的输出为"0"	
rstb_n	输入	1	输入寄存器的复位信号。输入为低电平时,寄存器的输出为"0"	
rstpd_n	输入	1	输出寄存器的复位信号。输入为低电平时,寄存器的输出为"0"	

表 2-6-2 乘法器端口说明

DS600_1.6.4 www.anlogic.com 31

	<i>t</i> ⇔)	1	第一级数据选择器的控制端。当 sourcea 为高电平时,MUX 的输出是 a,
sourcea	输入	1	当 sourcea 为低电平时,MUX 的输出是 acin
1	1 (1)		第一级数据选择器的控制端。当 sourceb 为高电平时,MUX 的输出是 b,
sourceb	输入	1	当 sourceb 为低电平时,MUX 的输出是 bcin
mpd	输出	36	dsp 的乘积数据输出

2.6.2 操作模式

根据不同的应用需要,可以选择如下两种的乘法器工作模式的一种:

- 一个 18×18 乘法器
- 两个9×9独立的乘法器

通过使用 EF3 器件的嵌入式乘法器,可以实现乘法加法器和乘法累加器功能,该功能的乘法器部分由嵌入式乘法器来实现,而加法器或者累加器功能则在逻辑单元中实现。

2.6.2.1 18 位乘法器

通过配置每一个嵌入式乘法器,来支持 10 到 18 位输入位宽的单一 18x18 乘法器。图 2-6-2 给出了配置后的嵌入式乘法器,以支持一个 18 位乘法器。

所有的 18 位乘法器输入数据与结果均被独立地发送至寄存器。乘法器输入数据可以是有符号整数、无符号整数,或者两者的组合。另外,也可以动态修改 signa 与 signb 信号,并且通过专用的输入寄存器发送这些信号。

图 2-6-218 位乘法器模式

2.6.2.2 9 位乘法器

通过配置每一个嵌入式乘法器,以支持最多 9 位输入位宽的两个 9x9 乘法器。图 2-6-3 给出了配置后的嵌入式乘法器,以支持两个 9 位乘法器。

所有的9位乘法器输入数据与结果均被独立地发送至寄存器。乘法器输入数据可以是有符号整数、

DS600_1.6.4 www.anlogic.com 32

无符号整数,或者两者的组合。同一嵌入式乘法器模块中的两个9 × 9乘法器共享同一个 signa 和 signb 信号。因此,用于驱动同一嵌入式乘法器的所有 mia 输入数据必须要有相同的符号表示。同样,用于驱动同一嵌入式乘法器的所有 mib 输入数据也必须要有相同的符号表示。

图 2-6-39 位乘法器模式

2.7 输入输出逻辑单元(IOL)

EF3 器件的 IOL 支持多种工作模式。本章节主要介绍如何配置 IOL 资源支持多种工作模式。与 IOB 类型相匹配, EF3 器件只有一种 IOL 类型,支持的工作模式如表 2-7-1 所示。

	模式	IOLE 增强型
	BYPASS	\checkmark
输入	SDR	√
	iDDRx1	√
	iDDRx2	√1
输出	BYPASS	\checkmark
	SDR	\checkmark
	oDDRx1	√
	oDDRx2	√2

表 2-7- 1 IOL 支持工作模式

注 1: EF3L40 BANK0/2 的所用 IO 和 BANK1/3/5 的差分 P 端支持 IDDRx2, EF3L90 BANK0/2 的所用

DS600_1.6.4 www.anlogic.com 33

IO (Y1、T6 除外) 和 BANK1/3/5 的差分 P 端均支持 IDDRx2。

注 2: EF3L40 BANK0/2 的所用 IO 支持 ODDRx2, EF3L90 BANK0/2 的所用 IO (Y1、R6、W1、T6 除外) 支持 ODDRx2。

2.7.1 输入寄存器逻辑

输入输出逻辑(IOL)中的输入寄存器用来处理高速接口,将其降低为内部核心逻辑可以处理的频率。输入寄存器中均包含可配置延时单元作为数据采样处理辅助。在此基本功能基础上增强了对通用双边沿数据(GDDR)的支持。

图 2-7-1 输入寄存器框图

2.7.1.1 普通输入模式

普通模式下的 IO 逻辑如图 2-7-2 所示,此模式下信号直接进入 FPGA 内部逻辑。

图 2-7-2 普通输入模式框图

2.7.1.2 SDR 输入模式

相比普通模式,如图 2-7-3 所示,SDR 模式使用了 IOL 寄存器,可有效地改善 IO 的时序性能。

图 2-7-3 SDR 输入模式框图

DS600_1.6.4 www.anlogic.com 34

2.7.1.3 DDR 输入模式

EF3 器件 IOL 中有专用的寄存器用以支持 iDDRx1 和 iDDRx2 模式。

■ iDDRx1 同沿输入模式

图 2-7- 4 iGDDR 同沿输入模式框图

在 iDDRx1 同沿模式, DFF5 和 DFF6 分别在下降沿和上升沿采样输入数据, DFF8 把 Q1 数据同步到时钟上升沿。由于 DFF8 的引入 Q1 数据相对于 Q0 要晚一个时钟周期, 时序如图 2-7-5 所示。

图 2-7- 5 iGDDR 同沿输入模式

■ iDDRx1 同沿 Pipelined 输入模式

图 2-7-6 iGDDR 同沿 Pipelined 输入模式框图

在 iDDRx1 同沿模式中 Q1 相对于 Q0 要晚一个时钟周期,为补偿该延时,引入 DFF10,如图 2-7-6 所示。时序如图 2-7-7 所示。

图 2-7-7 iGDDR 同沿 Pipelined 输入模式

DS600_1.6.4 www.anlogic.com 35

■ iDDRx2 输入模式

iDDRx2模式下,可以支持更高的 IO 速度。PAD 与 FPGA 内部逻辑速率比为 4:1。该模式下第一级采样 DFF 由 SCLK 触发,实现高速数据的采样和 1:2 的分离。第二级分离 DFF 由 FPGA 系统时钟 PCLK 触发,实现数据与内核逻辑的同频。PCLK 为 SCLK 速度的一半。

图 2-7-8 iDDRx2 输入模式

图 2-7-9 iDDRx2 输入模式时序

2.7.1.4 输入延时单元

每一个 IOL 逻辑单元内都包含一个可编程输入延时单元,加强对源同步功能的支持。支持静态控制延迟的方式。IOL 支持的可调范围如所示。

 IOL 类型
 可调整 Step
 平均步进精度
 最大延时

 IOL
 32
 35ps
 1.2ns

表 2-7- 2 输入延时调整范围

DS600_1.6.4 www.anlogic.com 36

2.7.2 输出寄存器逻辑

输入输出逻辑(IOL)中的输出寄存器用来处理内部核心逻辑到高速 I/O 接口的时序。图 2-7-10 给出了输出寄存器框图。

图 2-7-10 输出寄存器框图

2.7.2.1 普通输出模式

普通输出模式下的 IO 逻辑如图 2-7-11 所示,此模式下信号直接从 FGPA 内部逻辑输出到 PAD。

图 2-7-11 普通输出模式框图

2.7.2.2 SDR 输出模式

相比普通模式,如图 2-7-12 所示, SDR 模式使用了 IOL 寄存器,可有效地改善 IO 的时序性能。

图 2-7-12 SDR 输出模式框图

2.7.2.3 DDR 输出模式

EF3 器件 IOL 中有专用的寄存器用以支持 oDDRx1 和 oDDRx2 模式。

■ oDDRx1 输出模式

图 2-7-13 oDDRx1 输出模式框图

在 oDDRx1 模式,数据 DO0 和 DO1 被 SCLK 同沿采样进 DFF7 和 DFF8,并分别在上升沿和下降 沿输出到 oPAD,时序如图 2-7- 14 所示。

图 2-7- 14 oGDDR 输出模式

■ oDDRx2 输出模式

oDDRx2 模式下,可以支持更高的 IO 速度。PAD 与 FPGA 内部逻辑速率比为 4:1。该模式下第一部分 DFF 由 FPGA 系统时钟 PCLK 触发,实现数据的采样和 2:1 并串转换。第二部分 DFF 由高速 SCLK

DS600_1.6.4 www.anlogic.com 38

触发,实现数据高速串行输出。PCLK为 SCLK 速度的一半。

图 2-7- 15 oDDRx2 输出模式

图 2-7- 16 oDDRx2 输出模式时序

■ oDDRx2L 输出模式

与 oDDRx2 相比, oDDRx2L 模式直接使用内部 SCLK 的 2 分频作为 PCLK, 节省 1 个 CLK。数据输出比 oDDRx2 模式晚一个 SCLK 时钟周期。

DS600_1.6.4 www.anlogic.com 39

图 2-7- 17 oDDRx2L 输出模式

图 2-7- 18 oDDRx2L 输出模式时序

2.7.2.4 输出延时单元

每一个 IOLE 逻辑单元内都包含一个可编程输出延时单元,总共支持 4 级调节,每级延时 100ps。支持静态控制延迟的方式。

DS600_1.6.4 www.anlogic.com 40

2.8 输入输出缓冲器(IOB)

2.8.1 IOB 简介

EF3 具有可配置高性能 I/O 驱动器和接收器,可支持种类繁多的标准接口。功能包括输出强度和斜率的可编程控制。

EF3 的 IOB 均为增强型 IOBE,统称为 IOB,每个 IOB 包含输入、输出和三态驱动器。这些驱动器可以按照各种 I/O 标准配置。

IOB 支持电平标准:

- 单端 I/O 标准 (LVCMOS、LVTTL、PCI)
- 差分 I/O 标准(LVDS、RSDS、LVPECL、BLVDS、MLVDS)

IOB 支持上述电平标准的同时, IOB 支持以下配置项:

- 输出驱动能力调节
- 输出 Slew Rate 调节
- 弱上拉/下拉电阻选择配置
- PCI Clamp 使能
- Bus Hold 功能使能

需要注意的是:

- (1) IOB 管脚的驱动电流是可调的。
- (2) LVPECL 电平支持情况如下:

IOB 支持 LVPECL33 输入,如果对端器件是 2.5v,可以直接输入;如果对端器件是 3.3v,共模电压要往下拉 2v,建议使用外接匹配电阻网络,不要使用内部的电阻; IOB 管脚不支持 True LVPECL33 输出,只支持 LVPECL33_E 输出;

LVPECL 输入建议外接如下电路:

a) 直流耦合

图 2-8-1 LVPECL 直流耦合推荐外接电路

b) 交流耦合

图 2-8- 2 LVPECL 交流耦合推荐外接电路

表 2-8- 1 EF3 支持电气标准

Description	BANK0/2	BANK1/3/4/5
IO Duffer Tune	Single Ended	Single Ended
IO Buffer Type	and Differential	Single Ended
	LVTTL33	LVTTL33
	LVCMOS33	LVCMOS33
	LVCMOS25	LVCMOS25
Output Standards	LVCMOS18	LVCMOS18
Supported	LVCMOS15	LVCMOS15
	LVCMOS12	LVCMOS12
	PCI33	PCI33
	PCIX33	PCIX33
Inputs	All Single Ended	All Single Ended
Inputs	Differential	Differential

安路科技 EF3 系列 FPGA 数据手册

Closk Innuts	All Single Ended	All Single Ended
Clock Inputs	Differential	Differential
Taxa LVDC Oxtaxta	LVDS25 ¹	
True LVDS Outputs	LVDS33 ¹	
	LVDS25E	LVDS25E
Emulated LVDS Outputs	LVDS33E	LVDS33E
	LVPECL33E	LVPECL33E
Rdiff 100	Yes ²	
PCI Clamp	Yes	Yes

注 1: 只有具有真差分标识的引脚支持真差分输出

注 2: EF3L90 BANK2 的 Y1、R6、W1、T6 没有 100 欧片内差分电阻

图 2-8-3 基本 IOBE 框图

各 IOB 直接连接 IOL 组成输入输出逻辑对,该逻辑对包含输入和输出逻辑资源,可用于数据和 IOB 的三态控制。

2.8.2 IO 分组

EF3 器件有6个I/O组,每一个I/O组由对应的VCCIO供电。

图 2-8- 4 I/O 分组示意图

DS600_1.6.4 www.anlogic.com 43

2.8.3 高速 LVDS 接口

EF3 系列器件支持的差分标准见表 2-8-2

关小行体	接	收	发	送
差分标准	支持	内部电阻	支持	外部电阻
LVDS	YES	YES	YES	不需要
RSDS	YES	YES	YES	不需要
BLVDS	YES	YES	YES	YES
LVPECL	YES	YES/不要使用	YES	需要

表 2-8- 2 EF3 支持的差分标准

EF3L90&40 BANK0/2 的所有引脚(不包括 EF3L90 BANK2 的 Y1、R6、W1、T6)均有 100 欧差分输入电阻,需要注意的是,内部的 100 欧姆电阻是可以关闭的,可以使用外部电阻。同时,只有具有真差分标识的引脚为真差分,支持真差分输出。

True LVDS 与 Emulated LVDS 均可作为 LVDS25 标准输入。最大输入频率 400 MHz(800Mbps), 作为输出时, True LVDS 直接输出 LVDS 标准电平, 无需外部匹配电阻, 如下图所示。

图 2-8-5 True LVDS 输出

Emulated LVDS 作为输出时,采用 LVDS25E 标准,最大输出频率 166MHz,且要外接 3R 电阻网络对输出电压摆幅进行衰减以满足 LVDS 标准,如图 2-8-6 所示。可以通过改变电阻网络值来降低功耗或者改善噪声容限。

表 2-8-3 给出了 Emulated LVDS 推荐电阻值。

电 阻(欧姆)		信号幅	值(毫伏)
$\mathbf{R}_{\mathbf{S}}$	R_P	LVDSE25	LVDSE33
300	118	195	256
210	127	270	355
150	140	365	483
115	160	460	610

表 2-8-3 Emulated LVDS 推荐电阻值

注1:数据基于驱动能力设定为8mA,接收器的100欧端接电阻可以是片上电阻也可以是片外电阻。 当接收端信号幅值大于500mv时必须采用片外电阻。

DS600_1.6.4 www.anlogic.com 44

Confidential

图 2-8-6 Emulated LVDS 输出 3R 电阻网络

2.8.4 兼容 5V 输入

EF3 的 IOB 可以工作在 1.2-3.3V 电压范围,不能直接接收 5V 输入。如果 5V 电压信号通过 IOB 驱动到 EF3 器件的输入,需要外部串接电阻,同时在软件中打开 EF3 I/O 内部的 PCI 箝位二极管把输入端口接收到的电压降到器件安全范围内,如图 2-8-7 所示。设计完成后,应确认电路板 PAD 上的电压不超过 3.75V。,且 5V 信号不能在进入用户模式前接入,否则要外接二极管。

图 2-8-75V 输入驱动 EF3 器件

$V_{D}(V)$	$\mathbf{I}_{ ext{max}}$	Unit
0.0	0.92	uA
0.1	9.2	uA
0.2	20	uA
0.3	30.4	uA
0.4	43.3	uA
0.5	76.5	uA
0.6	0.15	mA
0.7	0.36	mA
0.8	2.85	mA
0.9	9.42	mA

表 2-8-4 PCI 箝位二极管的电流特性

为支持 5V 输入,建议 VCCIO 电压工作在 2.5-3.0V 范围, 否者 IO 电压会超过安全电压,长期使用

会降低器件寿命。

I/O 器件最大容限绝对电压为 VIMAX = 3.7V, 设置 VCCIO = 2.5V, 取分压后 IO 输入端接收到的电压 VI = 3.3V,则二极管上的压降为 VDIO = VI-VCCIO = 3.3-2.5 = 0.8V。IDIO @0.8V = 2.85mA, R = (5-3.3)V/2.85 mA = 596Ohm。

在输入端箝位通路分别串接不同阻值电阻,在 EF3 接收端测量波形如图 2-8-8、图 2-8-9 所示。 串接电阻 R=330 Ohm,上升时间为 7.8ns,下降时间为 12ns,见图 2-8-8。

图 2-8-85V 输入驱动 EF3 器件接收端波形 @R=330 Ohm

DS600_1.6.4 www.anlogic.com 46

串接电阻 R=600 Ohm, 上升时间为 12ns, 下降时间为 21ns。

图 2-8-95V 输入驱动 EF3 器件上升/下降沿 @R=600 Ohm

2.9 EF3 FPGA 配置说明

EF3 FPGA 內置 8Mbit spi flash。配置是通过往芯片內部装载配置数据来实现,支持內部和外部下载。 EF3 芯片有一部分引脚是专用配置引脚,另一部分是复用引脚,TD 软件提供复用引脚的配置功能,在 配置完成之后可以用做一般输入输出。

2.9.1 配置模式

EF3 支持 5 种配置方式,分别是从动串行,从动并行,主动并行,内部 SPI 模式和 JTAG 配置模式。 内部 SPI 模式支持 x1,x2,x4 位宽。配置模式由内部 feature 寄存器决定,默认为内部 SPI 模式 x1。具体 选择关系见表 2-9-1。

EF3 系列 FPGA 配置位流最大~2.8M bits,长度与 ERAM 初始化数据长度相关。

2.9.1.1 EF3 配置模式

配置 SS SP MP **MSPI JTAG** 从动串行 从动并行 主动并行 内部 SPI **JTAG** 配置引脚名 类型 Slave Slave Master **X2 X1 X4** Serial Parallel Parallel PROGRAMN 复用 IO **PROGRAMN INITN** 复用 IO **INITN** 复用 IO DONE **DONE SCLK** 复用 IO **SCLK CSN** 复用 IO **CSN** TMS TCK TMS TCK 复用 IO TDI TDO TDI TDO **JTAGEN** JTAGEN D[7:2]复用 IO D[7:2] D[7:2] 复用 IO D[1] D[1] D[1] -复用 IO D[0]/DIN DIN D[0]D[0]

表 2-9-1 EF3 配置模式及引脚

下面是 EF3 复用配置引脚:

- 配置时钟引脚(SCLK)
- 配置开始信号引脚(PROGRAMN)
- 配置完成引脚(DONE)
- 配置错误指示引脚(INITN)

DS600_1.6.4 www.anlogic.com 48

- 模式配置片选引脚(CSN)
- 配置级联数据输出脚(DOUT)
- 边界扫描相关引脚(TDI, TDO, TMS, TCK, JTAGEN)
- 配置数据输入引脚(D[7:0]), D[0]可以作为从模式下的 DIN

DONE/INITN 是带内部弱上拉的开漏输出。

PROGRAMN INITN DONE 等信号的复用可能会导致重新加载等问题,不建议作为输入。但是可以作为输出管脚使用。

2.9.2 配置流程

EF3 FPGA 芯片的整个配置过程可以分三个部分。首先,在芯片上电复位或者系统复位信号有效后进入复位,等待内部信号和电源稳定后,系统进入初始化阶段,装载 feature 寄存器值,内部配置信息清除,初始化完成后,FPGA 开始接受配置数据写入,写入完成后,FPGA 芯片启动阶段,如图 2-9-1 所示。

上电初始化过程

EF3 FPGA 芯片上电后,系统需要经过初始化过程才能进入配置下载状态。另外,用户如果需要重新对配置数据下载,拉低 PROGRAMN 后,系统进入初始化过程,初始化过程中,FPGA 装载 feature 寄存器,然后将清除内部所有配置点,复位内部寄寄存器。

配置数据写入

EF3 FPGA 初始化完成后, INITN 信号变为高电平, 此时用户配置数据可以写入 EF3 FPGA。

INITN 信号变为高的时候,FPGA 根据 feature 寄存器内容确定配置模式。JTAG 可以在任何模式中进入。

配置过程中, INITN 信号变低表示配置出错, 出错后可以选择重新加载。

启动阶段

EF3 FPGA 完成所有配置点和块 RAM 的数据写入之后,进入启动过程。EF3 FPGA 启动主要完成以下功能:

- a) 释放 DONE 信号。DONE 信号从低电平变为高电平表示 EF3 FPGA 顺利完成数据配置,反之则表示没有顺利完成配置。
 - b) 释放全局三态信号 GTS,全局三态信号 GTS 的释放,能够释放所有 I/O 管脚。
 - c) 释放全局复位/置位信号 GSR,允许所有的触发器改变状态。
 - d) 释放全局写使能信号 GWE,允许所有的 RAM 和触发器能够被写入。

DS600_1.6.4 www.anlogic.com 49

图 2-9-1 EF3 MSPI 配置流程

2.9.3 MSPI 配置模式

在 MSPI 模式下,EF3 通过内部 Flash 进行配置。该模式下配置时钟由内部振荡器产生,用户能够选择下载频率范围。芯片上电时设定为一个默认的低频率值,用户可以通过位流软件频率选项来更改频率,频率范围从 2.5MHz~24MHz。MSPI 支持 x1,x2,x4 位宽模式,可通过 Feature 寄存器设定。

内部 FLASH 数据写入可以使用安路 FPGA 下载器通过 JTAG 在线写入,批量生产时也可通过安路 离线下载器写入。

图 2-9-2 是 EF3 MSPI 配置方式连接图, PROGRAMN 信号控制复位 EF3 FPGA 配置, 其中 INITN 和 DONE 信号为带内部上拉的开漏输出信号, DONE 信号变高,表示配置成功,芯片开始工作。

图 2-9-2 EF3 MSPI 配置方式

2.9.4 从动串行配置模式

从动串行(SS)模式下,FPGA 可以通过 MCU 进行加载。 TD 软件可以生成 bin 文件用于 MCU 加载。

MCU 通过 SCLK、DIN 信号使用串行方式将数据写入 FPGA。EF3 FPGA 芯片在每个 SCLK 的上升沿接收数据,数据发送完成后,DONE 拉高表示配置完成,如果配置出错,会将 INITN 信号拉低

图 2-9-3 EF3 串行配置方式

图 2-9-4 EF3 串行配置模式时序图

表 2-9-2 从动串行时序规格表

符号	参 数	最 小	最 大	单 位
T_program_b	PROGRAM_B low pulse width	1	-	us
T_init_b	INIT_B low pulse width	-	35	ms
T_clk	CCLK period	33	-	ns
T_ch	CCLK high time	16.5	-	ns
T_cl	CCLK low time	16.5	-	ns
T_dsu	Data setup time	16.5	-	ns
T_dh	Data hold time	6	-	ns

1. FPGA 芯片在每个 SCLK 的上升沿接收数据,为保证时序,建议配置时,在下降沿发送数据

2.9.5 从动并行配置模式

从动并行配置适合通过 MCU 或者 CPU 等控制器使用。从动并行通过 8 位并行数据写入能够达到 较快的配置速度。

如图 2-9-5 所示,其中多个 CSN 信号可以选择多个配置芯片。

图 2-9-5 从动并行配置方式

从动并行配置模式时序如图 2-9-6 所示。开始的初始化过程和串行配置一致,初始化完成之后,在 片选 CSN 有效时,在时钟的上升沿配置数据写入。同样,配置完成后, DONE 信号会变高。

图 2-9-6 EF3 从动并行配置时序图

最大 符号 参数 最小 单位 T_program_b PROGRAM_B low pulse width 1 us T init b INIT B low pulse width 35 ms CCLK period T_clk 33 ns CCLK high time 16.5 T_ch ns CCLK low time T cl 16.5 ns T_dsu Data setup time 16.5 ns Data hold time T_dh ns

表 2-9-3 从动并行时序规格表

2.9.6 主动并行配置模式

主动并行配置和从动并行配置类似,差别在于 SCLK 时钟由 FPGA 提供。

2.9.7 JTAG 配置模式

EF3 FPGA 还可以通过 JTAG 方式进行配置。JTAG 方式配置是通过配置引脚(TDI,TDO,TMS,TCK, JTAGEN)进行的。在 INITN 信号变高后, JTAG 可以通过指令中断其他模式,进入 JTAG 配置模式。

TDI, TDO, TMS, TCK, JTAGEN 为复用 IO。当 TDI, TDO, TMS, TCK 配置为专用 IO 时, JTAGEN 可配置成用户 IO。当 TDI, TDO, TMS, TCK 配置成用户 IO 时, JTAGEN=1 可以将 TDI, TDO, TMS, TCK 强制变成专用 IO。

JTAG配合使用安路公司专用的 USB 下载线,配合 TD 软件进行,可以通过软件查看配置是否成功。

DS600_1.6.4 www.anlogic.com 53

^{1.} FPGA 芯片在每个 SCLK 的上升沿接收数据,为保证时序,建议配置时,在下降沿发送数据

JTAG 配置模式参考时序与时序规格如图 2-9-7 图 2-9-7 EF3 JTAG 时序图和表 2-9-4 所示。

图 2-9-7 EF3 JTAG 时序图

表 2-9- 4 EF3 JTAG 时序规格表

	-			
符号	参 数	最 小	最 大	单 位
t_{JCP}	TCK 周期	100	_	ns
$t_{\rm JCH}$	TCK 高电平时间	48	_	ns
$t_{\rm JCL}$	TCK 低电平时间	48	_	ns
$t_{ m JPSU_TDI}$	TDI 建立时间	6	_	ns
t _{JPSU_TMS}	TMS 建立时间	8	_	ns
t_{JPH}	JTAG 端口保持时间	10	_	ns
t _{JPCO}	JTAG 端口时钟到输出延时	_	16	ns
t _{JPZX}	JTAG 端口有效输出到高阻转换时间	_	16	ns
t _{JPXZ}	抓取寄存器建立时间	_	16	ns
$t_{ m JSSU}$	抓取寄存器保持时间	_	_	ns
$t_{ m JSH}$	更新寄存器建立时间	_	_	ns
t _{JSCO}	更新寄存器时钟到输出延时	_	_	ns
t _{JSZX}	更新寄存器高阻到有效输出	_	_	ns
t_{JSXZ}	更新寄存器有效输出到高阻	_	_	ns

备注: 非背景模式下通过 Jtag 烧写 flash 数据,tck 的频率要大于等于 100KHz

2.9.8 IEEE 1149.1 边界扫描测试

EF3 器件所有 IO 都集成边界扫描单元,可以通过标准 1149.1 TAP 控制器来访问和控制 IO,边界扫描指令可以在任何状态下访问 IO 单元(SAMPLE 指令只能在用户模式且为 INNPUT 或 INOUT 下使用)。

DS600_1.6.4 www.anlogic.com 54

2.9.9 DUAL BOOT 功能

EF3 在 MSPI 模式下支持 Dual Boot 功能。当 Primary 位流下载失败后,EF3 FPGA 自动跳转到地址 0x06000 去读取 golden 位流。图 2-9-8 所示为 Dual Boot 下内部 SPI Flash 的数据空间分配。

Dual	Dual boot flash map		
0x000000			
	Primary bitstream		
0x060000	Golden address		
•••••	Golden address		
0x061000			
	Golden bitstream		

图 2-9-8 EF3 Dual Boot SPI Flash 的数据空间分配

2.9.10 MULT BOOT 功能

MSPI 模式下,用户可以使用 TD 软件设置 Mult Boot 功能。当进入用户模式后,应用本身可以通过接口触发信号 mult_bootn=0,从指定的内部 SPI Flash 地址重新开始下载位流。由于 EF3 内部 flash 限制,建议只存放两套位流,第二个 bit 流存放在 0x060000 位置处。

Mult	Mult boot flash map						
0x000000							
	Primary bitstream						
0x060000							
	Mult boot bitstream						

图 2-9-9 EF3 Mult Boot SPI Flash 的数据空间分配

2.9.11 FPGA I/O 引脚在配置阶段的设置

在配置阶段,FPGA 的专用引脚有上拉/下拉电阻,用户 I/O 引脚在配置过程中有可选的上拉电阻。 HSWAPEN 控制位来决定用户 I/O 引脚上是否使能上拉电阻。

在 EF3 中, HSWAPEN 默认值为 0, 只能通过软件改写。

2.9.12 FPGA I/O 引脚在配置阶段的状态

(1) 非配置相关 IO

芯片上电完成后 feature 寄存器加载前,非配置相关 IO 处于弱上拉;

加载过程中,普通 IO 的状态受 HSWAPEN 控制,可以为弱上拉或者三态:

进入用户模式之后,用户使用的 IO 脚状态受代码控制,未使用的管脚为弱上拉状态

(2) 配置相关引脚跟配置设置相关 , 如表 2-9-5 所示

配置成功前 Pin 配置成功后 **HSWAPEN=0(enable) HSWAPEN=1(disable) PROGRAMN** 软件 ProgPin 设置 Pull-up to Vccio Pull-up to Vccio **INITN** Pull-up to Vccio Pull-up to Vccio 软件 InitPin 设置 **DONE** Pull-up to Vccio Pull-up to Vccio 软件 DonePin 设置 SCLK Pull-up to Vccio Pull-up to Vccio User I/O **CSN** Pull-down to Gnd Pull-down to Gnd User I/O TMS TCK TDO TDI 软件 JtagPin 设置 Pull-up to Vccio Pull-up to Vccio JTAGEN D[7:2] Pull-up to Vccio Pull-up to Vccio User I/O Pull-up to Vccio User I/O D[1] Pull-up to Vccio D[0]/DIN Pull-up to Vccio Pull-up to Vccio User I/O CSON/DOUT Pull-up to Vccio Pull-up to Vccio User I/O Others Pull-up to Vccio High-Z User I/O

表 2-9- 5 EF3 Configuration Pin Termination

2.9.13 DNA 安全功能

EF3 FPGA 在生产过程中为每块芯片提供一个唯一的 64 位 DNA 数据,这个数据不能被修改和擦除,用户可以利用 DNA 进行用户设计保护。TD 软件将提供 IP 接口,使用户读出 DNA 数据。如图 2-9-10、图 2-9-11 所示。Usr dna in 为移位数据输入,用于接口测试使用。

Dna clk 时钟频率范围 0~20MHz, dna shift 建议采用时钟下降沿送出,保证时序要求。

DS600_1.6.4 www.anlogic.com 56

图 2-9-11 EF3 DNA 时序图

3 直流交流特性

所有参数指最差的供电电压和结点温度。如无特殊说明,以下信息适用于:同一商业和工业级别规 定的交流和直流特性。所有参数均为电压对地时的值。

3.1 直流电气特性

3.1.1 最大绝对额定值

SYMBOL	参 数		最 小	最 大	单 位				
V_{CCAUX}	辅助	辅助电源		3.75	V				
V_{CCIO}	I/O驱动(I/O驱动供电电压		3.75	V				
$V_{\rm I}$	直流输入电压	增强型 IOBE	-0.5	3.75	V				
V _{ESDHBM}	人体模型静	电放电电压		±2000	V				
V _{ESDCDM}	机器模型静	电放电电压		±500	V				
T_{STG}	存储温度		-65	150	$^{\circ}$				
TJ	结点	温度	-40	125	${\mathbb C}$				

表 3-1-1 最大绝对额定值

超过以上最大绝对额定值可能会导致器件永久性损坏。这些值仅表示在该额定值下操作不会损坏器件,但不表示器件在此极限值下功能正常。器件的功能性操作或基于此的任何条件最大绝对额定值可能会造成器件永久损坏。器件长期在极值条件下运行,会严重的影响器件的可靠性。

输入 IO 在信号跳变过程中,可能会产生过冲或下冲,如图 3-1-1 所示,表 3-1-2 给出了 10 年使用寿命下允许的最大过冲、下冲的占比值。

图 3-1-1 输入信号过冲、下冲

DS600_1.6.4 www.anlogic.com 58

主っィ	2 10	年使用為	生会久州	-ፔፉክ	r的是士	- } \ \ \ \ \	下冲占比
収り	2 10	十区用人	サルボロ	こいノレロ	トロリ 取ノ	くじげい	ト/サロル

Parameter	Condition(V)	Under/Overshoot Duration as % of High Time	Unit
	-0.3	100	%
	-0.4	100	%
	-0.5	86	%
	-0.6	49	%
	-0.7	28	%
	-0.8	16	%
	-0.9	9.23	%
	-1	5.27	%
VI AC Input Voltage	-1.1	3	%
	3.7	100	%
	3.8	86	%
	3.9	49	%
	4	28	%
	4.1	16	%
	4.2	9.23	%
	4.3	5.27	%
	4.4	3	%

3.1.2 推荐基本操作条件

表 3-1-3 推荐基本操作条件 1

SYMBOL	参	数	最小	典型	最大	单 位
V_{CCAUX}	辅助	电源	2.375	2.5/3.3	3.63	V
	I/O供电电	压 @ 3.3V	3.135	3.3	3.465	V
	I/O 供电电	压 @ 2.5V	2.375	2.5	2.625	V
VCCIO ³	I/O供电电	压 @ 1.8V	1.71	1.8	1.89	V
	I/O供电电压 @ 1.5V		1.425	1.5	1.575	V
	I/O供电电压 @ 1.2V		1.14	1.2	1.26	V
$V_{\rm I}$	直流输入电压	增强型IOB	-0.5	_	3.6	V
Vo	输出	电压	0	_	V _{CCIO}	V
T_{J}	结点温度	商业	0	_	85	$^{\circ}\!\mathbb{C}$
1,	扫 点通及	工业	-40	_	100	$^{\circ}\!\mathbb{C}$
T_{RAMP}	电源缓变率		0.05	-	100	V/ms
I_{Diode}	PCI-clamp	二极管电流	_	_	10	mA

- 1. 器件工作时要求所有 I/O 的 VCCIO 必须连接好电源
- 2. 所有输入缓冲器由 VCCIO 供电

3.1.3 基本供电要求

电源域标识 基本供电要求3 备注 必须供电 **VCCAUX** >=2.5V $VCCIO0^1$ 如果使用 JTAG 下载,需要和下载器供电电压保持一致 >=1.5V可选择性供电, 无附加要求 2 VCCIO1 >=1.2V可选择性供电, 无附加要求2 VCCIO2 >=1.2V可选择性供电, 无附加要求 2 VCCIO3 >=1.2V可选择性供电, 无附加要求2 VCCIO4 >=1.2V 可选择性供电, 无附加要求 2 VCCIO5 >=1.2V

表 3-1- 4 EF3L90&40 最小供电要求

- 1. POR 上电检测,必须供电
- 2. 建议不用时也供电,避免潜在风险
- 3. 如果使用 LVDS,相应 bank 的供电电压应>=2.5V
- 4. EF3L90CG400 封装的芯片, Y2 脚作为输入时, 不得接入高于 VCCAUX 的电平

3.1.4 单电源器件静态供电电流- B Devices 1,2

SYMBOL 器件 单位 参数 典型 I/O 组电源, @Vccio=2.5V 所有器件 Ivccio <1.5 mΑ EF3L40 16 mA I_{VCCAUX} 辅助电源 EF3L90 16 mA

表 3-1-5 静态电源电流

- 1. 该表中的数值基于通用的推荐操作条件,室温下(TJ=25℃)使用典型器件测得。
- 2. 典型值为空白器件,没有输出电流负载,高阻抗状态下,并当所有上拉/下拉电阻器在 I/O 引脚禁止时,测量的所有 I/O 驱动的静态电源电流。

3.1.5 热插拔规格

表 3-1-6 热插拔规格

SYMBOL	参 数	最 大	单 位
I _{IOPIN(DC)}	DC电流,每个I/O	1	mA
I _{IOPIN(AC)}	AC电流, 每个I/O	81	mA

- 1. 信号上升时间等于或大于 10ns。
- 2. EF3L40CG332/CG324 的引脚均支持热插拔, EF3L90CG400 部分引脚不支持热插拔, EF3L90 不支持热插拔的具体引脚为 Y2,U4,U5,T5,R5,R7,P7,W3,Y3

DS600_1.6.4 www.anlogic.com 60

3.1.6 上电复位电压阈值

表 3-1-7 上电复位电压阈值

SYMBOL	参 数	最 小	典型	最大	单 位
V _{CCAUX_PORUP}	V _{CCAUX} 上电检测阈值	1.5	1.55	1.6	V
Vccio	Vccio上电检测	0.95	1.0	1.05	V
V _{CCAUX_PORDN}	VCCAUX掉电检测阈值	_	_	1.5	V

图 3-1-2 器件上电时序图

- 1. POR 监测 JTAG 端口所在的 VCCIO*电平
- 2. 对 VCCAUX、VCCIO*没有上电时序要求
- 3. 电源上电过程中(PhaseRAMP)所有的 IO 处于 3 态
- 4. TPOR 最大为 35ms, TPROG 同 TPOR, TCCLK 约 6.4us

3.1.7 I/O 管脚电容

表 3-1-8 EF3 器件管脚电容

SYMBOL	参 数	caBGA	单 位
C_{IOTB}	上下管脚输入电容	6	pF
C _{IOLR}	左右管脚输入电容	7	pF

3.1.8 I/O 直流电气特性

表 3-1-9 IOB 推荐基本操作条件

SYMBOL	参 数	条 件	最 小	典型	最大	单 位
$I_{\rm IL},I_{ m IH}$	输入漏电电流	$0 \leq V_I \leq V_{CCIO} - 0.5V$	-15		15	uA

DS600_1.6.4 www.anlogic.com 61

安路科技 EF3 系列 FPGA 数据手册

I_{IH}	输入漏电电流	V_{CCIO} -0.5 $V \le V_{\text{I}} \le V_{\text{IH_MAX}}$	_	_	150	uA
I_{PU}	I/O 弱上拉电流		35	ı	250	uA
I_{PD}	I/O 弱下拉电流		35		250	uA
I _{BHLS}	总线保持0维持电流		40	_	_	uA
I_{BHHS}	总线保持1维持电流		40	_	_	uA
$I_{ m BHLO}$	总线保持0改写电流	$0 \le V_I \le V_{CCIO}$	_	_	350	uA
Івнно	总线保持1改写电流	$0 \le V_I \le V_{CCIO}$	_	_	350	uA
V_{BHT}	总线保持触发电平	_	V _{IL_max}	_	$V_{\text{IH_min}}$	V

3.1.9 单端 I/O 直流电学特性

表 3-1- 10 EF3 器件 IOB 单端 I/O 标准规格

	_	· · · · · · · · · · · · · · · · · · ·	10 LI 3 HI IT			🖃 ,	_	_																	
标准	`	V _{IL} (V)	V_{IH}	(V)	Vol 最大	Von 最小	I_{OL}	I _{OH}																	
7/11年	最小	最大	最小	最大	(V)	(V)	(mA)	(mA)																	
							4	-4																	
Y Y MENTY OO							8	-8																	
LVTTL33 LVCMOS33	-0.3	0.8	2.0	Vccio+0.3	0.4	$V_{\rm CCIO}-0.4$	12	-12																	
L V CIVIOSSS							16	-16																	
							20	-20																	
				Vccio+0.3								4	-4												
LVCMOS25	-0.3	0.7	1.7		0.4	$V_{\rm CCIO} - 0.4$	8	-8																	
L V CIVIOS25	-0.3				0.4	V CC10 - 0.4	12	-12																	
							16	-16																	
							4	-4																	
LVCMOS18	-0.3	0.35*V _{CCIO}	0.65*V _{CCIO}	$0.65*V_{\text{CCIO}}$	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	0.65*V _{CCIO}	$0.65*V_{CCIO}$	Vccio+0.3	0.4	$V_{\rm CCIO}-0.4$	8	-8
							10	-10																	
LVCMOS15	-0.3	0.35*V _{CCIO}	0.65*V _{CCIO}	Vccio+0.3	0.4	V _{CCIO} – 0.4	4	-4																	
LVCMOSTS	-0.3	0.33 · V CCIO	0.03 . A CCIO	V CC10+0.3	0.4	v ccio – 0.4	8	-8																	
LVCMOS12	-0.3	0.35*V _{CCIO}	0.65*V _{CCIO}	Vccio+0.3	0.4	$V_{\rm CCIO}-0.4$	4	-4																	
PCI33	-0.3	0.3*V _{CCIO}	0. 5*V _{CCIO}	Vccio+0.3	0.1*V _{CCIO}	0.9*V _{CCIO}	1.5	-0.5																	
PCIX33	-0.3	0.35*V _{CCIO}	0. 5*V _{CCIO}	Vccio+0.3	0.1*V _{CCIO}	0.9*V _{CCIO}	1.5	-0.5																	

表 3-1- 11 Single-Ended Interfaces

INPUT	VCCIO (TYP.)							
STANDARD	3.3V	2.5 V	1.8V	1.5V	1.2V			
LVTTL33	√	√2	√2	√2	√2			
LVCMOS33	√	√2	√2	√2	√2			
LVCMOS25	√ 1	√	√ 2	√2	√2			
LVCMOS18		√ 1	√	√2	√2			

DS600_1.6.4 www.anlogic.com 62

安路科技 EF3 系列 FPGA 数据手册

LVCMOS15		√ 1	√	√2
LVCMOS12			$\sqrt{1}$	√

- 1. .Under-drive causes higher DC current when the IO is at logic high
- 2. 不能打开 PCI-clamp 和 OverDriven, 否则会产生漏电流

3.1.10 差分 I/O 电学特性

表 3-1- 12 EF3 LVDS 推荐操作条件

参 数	描 述	测试条件	最小	典 型	最大	单 位
V_{IP}, V_{IN}	输入电平	$V_{\text{CCIO}}=2.5$	0	1	2.4	V
V_{ID}	输入差分摆幅		150	350	800	mV
V_{ICM}	输入共模电压	$V_{\text{CCIO}}=2.5$	0.05	1	2.35	V
$I_{\rm IN}$	输入电流	上电过程	_		±15	uA
R_{T}	片内端接差分电阻		80	100	120	Ω
V_{OD}	标准差分输出摆幅	$ V_{OP}-V_{ON} ,R_T=100\;ohm$	150	250	350	mV
$\triangle V_{OD}$	差分输出摆幅变化				50	mV
V _{OCM}	输出共模电压	$(V_{OP} + V_{ON})/2, R_T = 100 \text{ ohm}$	0.6		1.4	V
ΔV_{OCM}	输出共模电压偏差				50	mV

1. 当差分输入摆幅大于 500mV 时,只能使用外接 100 欧差分匹配电阻

表 3-1-13 EF3 LVPECL33 推荐操作条件

参数	描述	测试条件	最小	典型	最大	单 位
V_{IP}, V_{IN}	输入电平		0		2.95	V
V_{ID}	输入差分摆幅		100	1	1600	mV
V_{ICM}	输入共模电压		0.3	_	2.9	V

1. LVPECL 接收不能使用芯片内部 100 欧电阻

3.2 交流电气特性

本章节提供 EF3 核心和周边模块的性能参数,时序参数及其典型值是常规的设计重要参数,也是器件的基本性能参数。这些参数反映了器件在最差条件下的实际性能。

3.2.1 时钟性能

表 3-2-1 推荐的最大时钟操作频率

器件	性能	单位
所有器件	440	Mhz

3.2.2 嵌入数字信号处理模块(DSP)规格

表 3-2-2 EF3 嵌入 DSP 规格

器 件	性能	单位
M9x9 (All register)	350	Mhz
M18x18 (All register)	350	Mhz

3.2.3 锁相环(PLL)规格

表 3-2-3 EF3 器件的 PLL 规格

参 数	描 述	最 小	典型	最大	单 位
f_{IN}	输入时钟频率	10		400	MHz
f_{PFD}	鉴频鉴相器(PFD)输入频率	10		400	MHz
f_{VCO}	锁相环内部振荡器频率范围	300		1200	MHz
f_{OUT}	输出时钟频率	_		600	MHz
	交流特性				
t _{IN_H}	输入时钟高电平时间(90% to 90%)	0.5		1	ns
$t_{\rm IN_L}$	输入时钟低电平时间(10% to 10%)	0.5		1	ns
f_{INDUTY}	输入时钟占空比	40		60	%
f_{RISE}	输入时钟上升沿斜率	1		3	V/ns
f_{FALL}	输入时钟下降沿斜率	1		3	V/ns
4 1	输入时钟抖动, $f_{PFD} \ge 20 MHz$	_		800	ps p-p
t _{INJITTER} ¹	输入时钟抖动,f _{PFD} < 20 MHz	_		0.02	UI
toutduty	输出占空比波动范围(用户设定值基础上波动)	-5	0	5	%
	输出时钟周期抖动(Period Jitter),			160	
	$f_{OUT} > 100MHz$, fvco>400Mhz			400 1200 600 ———————————————————————————————	ps p-p
t 2	输出时钟相邻周期抖动(Cycle-to-cycle Jitter),			200	n g n n
toutjitter ²	$f_{OUT} > 100MHz$, fvco>400Mhz			200	ps p-p
	输出时钟相位抖动(Phase Jitter),			180	ne n n
	$f_{OUT} > 100MHz$, fvco>400Mhz			100	ps p-p
t _{LOCK} ³	PLL 锁定时间	_	_	15	ms

DS600_1.6.4 www.anlogic.com 64

安路科技 EF3 系列 FPGA 数据手册

t_{DLOCK}	动态锁定时间(切换、重配置之后)	_	_	15	ms
t_{PLL_PS}	PLL 相移精度	_	_	±125	ps
t_{RST}	复位脉冲最小宽度	1	_	_	ns
t _{RSTREC}	复位恢复时间	1	_	_	ns
t _{CONFIGPLL}	PLL 相位动态配置时间	_	3.5	_	cycles
f _{SCANCLK}	SCANCLK 频率	_	_	100	MHz

- 1. 参考时钟允许的最大输入抖动。为得到低抖动的输出时钟,必须提供干净的参考时钟。PLL 不会滤掉低频输入噪声而是会跟上输入的低频噪声,PLL 会滤掉部分高频输入噪声。
- 2. 周期抖动通过对 PLL 输出采样 10,000 次测量得到。相邻周期间抖动采样 1000 次。相位抖动采样 2000 次。参考时钟抖动 30ps。
- 3. tLOCK之后,在输出端得到稳定时钟。

3.2.4 存储器模块(ERAM) 规格

表 3-2-4 EF3 存储器模块规格表

存储器	模式	性能	单 位
	FIFO 512 x 18	220	MHz
EDAMOV	单口 512 x 18	220	MHz
ERAM9K	简单双口 512 x 18	220	MHz
	真双口 1024 x 9	220	MHz

3.2.5 高速 I/O 接口性能

表 3-2-5 高速 I/O 接口性能表

输入/输出标准	描 述	最 大	单 位		
最大输入频率					
LVDS25	LVDS, VCCIO = 2.5V	400	MHz		
RSDS25	RSDS, $VCCIO = 2.5V$	400	MHz		
LVPECL33	LVPECL, VCCIO = 3.3V	400	MHz		
BLVDS25	BLVDS, VCCIO = 2.5V	300	MHz		
MLVDS25	MLVDS, VCCIO = 2.5V	300	MHz		
LVTTL33	LVTTL, VCCIO = 3.3V	166	MHz		
LVCMOS33	LVCMOS, VCCIO = 3.3V	166	MHz		
LVCMOS25	LVCMOS, VCCIO = 2.5V	166	MHz		
LVCMOS18	LVCMOS, VCCIO = 1.8V	166	MHz		
LVCMOS15	LVCMOS, VCCIO = 1.5V	166	MHz		
LVCMOS12	LVCMOS, VCCIO = 1.2V	120	MHz		
	最大输出频率				
LVDS25	LVDS, VCCIO = 2.5V	400	MHz		

DS600_1.6.4 www.anlogic.com 65

安路科技 EF3 系列 FPGA 数据手册

LVDS25E	LVDS, Emulated, VCCIO = 2.5V	166	MHz
RSDS25	RSDS, VCCIO = 2.5V	400	MHz
RSDS25E	RSDS, Emulated, VCCIO = 2.5V	166	MHz
LVPECL33E	LVPECL, Emulated, VCCIO = 3.3V	166	MHz
BLVDS25E	BLVDS, Emulated, VCCIO = 2.5V	166	MHz
MLVDS25E	MLVDS, Emulated, VCCIO = 2.5V	166	MHz
LVTTL33	LVTTL, VCCIO = 3.3V	166	MHz
LVCMOS33	LVCMOS, VCCIO = 3.3V	166	MHz
LVCMOS25	LVCMOS, VCCIO = 2.5V	166	MHz
LVCMOS18	LVCMOS, VCCIO = 1.8V	166	MHz
LVCMOS15	LVCMOS, VCCIO = 1.5V	166	MHz
LVCMOS12	LVCMOS, VCCIO = 1.2V	80	MHz

3.2.6 配置模块

表 3-2-6 EF3 器件配置模式时序规格表

下载模式	最 小	典 型	最 大	单 位
主模式串行 PROM (MS)	2.5	_	24	MHz
主模式串行 SPI (MSPI)	2.5	_	24	MHz
主模式并行 x8 (MP)	2.5	_	24	MHz
从模式串行 (SS)	_	_	30	MHz
从模式并行 x8 (SP)	_	_	30	MHz

4 引脚和封装

4.1 引脚定义和规则

表 4-1-1 引脚定义和规则

引脚名称	方向	描 述							
	普通 I/O								
#NHP	_	引脚不支持热拔插							
GND	_	电源地							
VCCIOx	_	I/O 组电源							
VCCAUX	_	辅助电源							
GND_PLLx	_	PLL 地							
		时钟引脚							
GCLKIOx	I/O	全局时钟专用输入引脚							
GPLLx_OUTx	I/O	PLL 专用输出引脚							
GPLLx_Ix_FDB I/O PLL 反馈时钟专用输入引脚									
GPLLx_Ix_REF	I/O	PLL 参考时钟专用输入引脚							
		JTAG 专用引脚							
TCK	输入	TCK 输入边界扫描时钟							
TDI	输入	边界扫描数据输入							
TDO	输出	边界扫描数据输出							
TMS	输入	边界扫描模式选择							
JTAGEN	输入	JTAG 使能							
		配置专用管脚							
CSN	输入	并行下载模式片选信号,低有效							
PROGRAMN	输入	全局复位输入,低有效							
CCLK	I/O	配置时钟专用输入引脚							
DONE	I/O	专用配置状态引脚,在配置完成后会输出高,源端开路							
INITN	I/O	专用配置状态引脚,输出高表示 FPGA 准备好配置,源端开路							

4.2 IO 命名规则

4.3 caBGA324 引脚信息

编号	BANK	引脚说明	编号	BANK	引脚说明
A3	0	IO_L1P_0	A12	0	IO_L20N_0
B4	0	IO_L1N_0	E9	0	IO_LE21P_0,GCLKIOL_2
D5	0	IO_LE2P_0,GPLL0_OUTP	D10	0	IO_LE21N_0,GCLKIOL_3
B5	0	IO_LE2N_0,GPLL0_OUTP	C10	0	IO_L22P_0
C3	0	IO_L3P_0	B11	0	IO_L22N_0
C4	0	IO_L3N_0	E10	0	IO_LE23P_0
D4	0	IO_LE4P_0	E11	0	IO_LE23N_0
E5	0	IO_LE4N_0	B12	0	IO_L24P_0
A2	0	IO_L5P_0	C11	0	IO_L24N_0
В3	0	IO_L5N_0	D11	0	IO_LE25P_0,JTAGEN
F7	0	IO_LE6P_0	D12	0	IO_LE25N_0,PROGRAMN
E6	0	IO_LE6N_0	A13	0	IO_L26P_0
A4	0	IO_L7P_0	A14	0	IO_L26N_0
A5	0	IO_L7N_0	C12	0	IO_L27P_0
C5	0	IO_LE8P_0	B13	0	IO_L27N_0
D6	0	IO_LE8N_0	E12	0	IO_LE28P_0
B6	0	IO_L9P_0	F12	0	IO_LE28N_0
A6	0	IO_L9N_0	A15	0	IO_L29P_0
C9	0	IO_LE10P_0	A16	0	IO_L29N_0
D9	0	IO_LE10N_0	D14	0	IO_LE30P_0
A7	0	IO_L11P_0	D15	0	IO_LE30N_0
В7	0	IO_L11N_0	F11	0	IO_LE31P_0
D7	0	IO_LE12P_0,TDO	C13	0	IO_LE31N_0
C6	0	IO_LE12N_0,TDI	B16	0	IO_L32P_0
B8	0	IO_L13P_0	A17	0	IO_L32N_0
A8	0	IO_L13N_0	B14	0	IO_L33P_0
E8	0	IO_LE14P_0	B15	0	IO_L33N_0
F8	0	IO_LE14N_0	D13	0	IO_LE34P_0,GPLL1_OUTP
D8	0	IO_LE15P_0	E13	0	IO_LE34N_0,GPLL1_OUTN
E7	0	IO_LE15N_0	C14	0	IO_L35P_0
C7	0	IO_LE16P_0,TCK	C15	0	IO_L35N_0
C8	0	IO_LE16N_0,TMS	C16	0	IO_LE36P_0,INITN
A10	0	IO_L17P_0	E14	0	IO_LE36N_0,DONE
B10	0	IO_L17N_0			
A9	0	IO_L18P_0,GCLKIOL_0			
В9	0	IO_L18N_0,GCLKIOL_1			
F9	0	IO_LE19P_0			
F10	0	IO_LE19N_0			
A11	0	IO_L20P_0			

编号	BANK	引脚说明	编号	BANK	引脚说明
B18	1	IO_TE1P_1,GPLL1IP_FDB	M18	1	IO_TE21N_1
C17	1	IO_TE1N_1,GPLL1IN_FDB	K14	1	IO_TE22P_1,D6
F14	1	IO_TE2P_1	J18	1	IO_TE22N_1,D7
D16	1	IO_TE2N_1	M17	1	IO_TE23P_1
E15	1	IO_TE3P_1,GPLL1IP_REF	N18	1	IO_TE23N_1
C18	1	IO_TE3N_1,GPLL1IN_REF	L17	1	IO_TE24P_1,D4
F15	1	IO_TE4P_1	M16	1	IO_TE24N_1,D5
D17	1	IO_TE4N_1	M15	1	IO_TE25P_1
G13	1	IO_TE5P_1	P18	1	IO_TE25N_1,USRCLK
G14	1	IO_TE5N_1	L15	1	IO_TE26P_1,CSN
H14	1	IO_TE6P_1	L13	1	IO_TE26N_1
F17	1	IO_TE6N_1	P17	1	IO_TE27P_1,SCLK
E17	1	IO_TE7P_1	N15	1	IO_TE27N_1
D18	1	IO_TE7N_1	L14	1	IO_TE28P_1,D2
G15	1	IO_TE8P_1	N17	1	IO_TE28N_1,D3
F16	1	IO_TE8N_1	M14	1	IO_TE29P_1,D0
J14	1	IO_TE9P_1	N16	1	IO_TE29N_1,D1
J12	1	IO_TE9N_1	P16	1	IO_TE30P_1
E18	1	IO_TE10P_1	T18	1	IO_TE30N_1
G17	1	IO_TE10N_1	R18	1	IO_TE31P_1
E16	1	IO_TE11P_1	M13	1	IO_TE31N_1
H13	1	IO_TE11N_1	R17	1	IO_TE32P_1
G16	1	IO_TE12P_1	N14	1	IO_TE32N_1
H15	1	IO_TE12N_1	R16	1	IO_TE33P_1
H16	1	IO_TE13P_1	T17	1	IO_TE33N_1
F18	1	IO_TE13N_1	P15	1	IO_TE34P_1
J13	1	IO_TE14P_1	U18	1	IO_TE34N_1
G18	1	IO_TE14N_1			
J15	1	IO_TE15P_1			
H17	1	IO_TE15N_1			
J16	1	IO_TE16P_1			
J17	1	IO_TE16N_1			
K18	1	IO_TE17P_1			
L16	1	IO_TE17N_1			
H18	1	IO_TE18P_1,GCLKIOT_0			
K15	1	IO_TE18N_1,GCLKIOT_1			
K12	1	IO_TE19P_1			
K13	1	IO_TE19N_1			
K16	1	IO_TE20P_1,GCLKIOT_2			
K17	1	IO_TE20N_1,GCLKIOT_3			
L18	1	IO_TE21P_1,CSON,DOUT			

编号	BANK	引脚说明	编号	BANK	引脚说明
U16	2	IO_R1P_2	N10	2	IO_RE21N_2
V17	2	IO_R1N_2	R9	2	IO_R22P_2
T15	2	IO_RE2P_2	P9	2	IO_R22N_2
T16	2	IO_RE2N_2	V7	2	IO_RE23P_2
P13	2	IO_R3P_2	U8	2	IO_RE23N_2
P14	2	IO_R3N_2	V5	2	IO_RE24P_2
U15	2	IO_RE4P_2	V6	2	IO_RE24N_2
V16	2	IO_RE4N_2	U7	2	IO_R25P_2
R13	2	IO_R5P_2	R8	2	IO_R25N_2
R15	2	IO_R5N_2	V3	2	IO_RE26P_2
T14	2	IO_RE6P_2	V4	2	IO_RE26N_2
N12	2	IO_RE6N_2	T7	2	IO_R27P_2
P12	2	IO_R7P_2	P8	2	IO_R27N_2
R14	2	IO_R7N_2	T5	2	IO_RE28P_2
U13	2	IO_RE8P_2	U5	2	IO_RE28N_2
V14	2	IO_RE8N_2	T6	2	IO_R29P_2
R12	2	IO_R9P_2	U6	2	IO_R29N_2
T13	2	IO_R9N_2	Т3	2	IO_RE30P_2
P11	2	IO_RE10P_2	U4	2	IO_RE30N_2
T12	2	IO_RE10N_2	N8	2	IO_R31P_2
N11	2	IO_RE11P_2	R7	2	IO_R31N_2
R11	2	IO_RE11N_2	V2	2	IO_RE32P_2
P10	2	IO_R12P_2	U3	2	IO_RE32N_2
T11	2	IO_R12N_2	P5	2	IO_R33P_2
U14	2	IO_RE13P_2	R6	2	IO_R33N_2
V15	2	IO_RE13N_2	R5	2	IO_RE34P_2
U12	2	IO_R14P_2	T4	2	IO_RE34N_2
V13	2	IO_R14N_2	R4	2	IO_R35P_2
V11	2	IO_RE15P_2	P6	2	IO_R35N_2
V12	2	IO_RE15N_2	N7	2	IO_RE36N_2
T10	2	IO_R16P_2	P7	2	IO_RE36P_2
R10	2	IO_R16N_2			
V10	2	IO_RE17P_2,GCLKIOR_2			
U11	2	IO_RE17N_2,GCLKIOR_3			
V8	2	IO_R18P_2			
U9	2	IO_R18N_2			
Т8	2	IO_RE19P_2,GCLKIOR_0			
Т9	2	IO_RE19N_2,GCLKIOR_1			
V9	2	IO_R20P_2			
U10	2	IO_R20N_2			
N9	2	IO_RE21P_2			

编号	BANK	引脚说明	编号	BANK	引脚说明
M5	3	IO_BE1P_3	J1	5	IO_BE1N_5
N3	3	IO_BE1N_3	H2	5	IO_BE2P_5
P4	3	IO_BE2P_3	H1	5	IO BE2N 5
R3	3	IO_BE2N_3	F1	5	IO_BE3P_5
R1	3	IO_BE3P_3	G6	5	IO_BE3N_5
P3	3	IO_BE3N_3	E2	5	IO_BE4P_5
N1	3	IO_BE4P_3	E1	5	IO_BE4N_5
N2	3	IO_BE4N_3	G2	5	IO_BE5P_5
M1	3	IO_BE5P_3	G1	5	IO_BE5N_5
L6	3	IO_BE5N_3	НЗ	5	IO_BE6P_5
P1	3	IO_BE6P_3,GCLKIOB_0	H4	5	IO_BE6N_5
M4	3	IO_BE6N_3,GCLKIOB_1	F2	5	IO_BE7P_5
M3	3	IO_BE7P_3	Н5	5	IO_BE7N_5
L5	3	IO_BE7N_3	G4	5	IO_BE8P_5,GCLKIOB_4
N4	3	IO_BE8P_3	G3	5	IO_BE8N_5,GCLKIOB_5
T1	3	IO_BE8N_3	F3	5	IO_BE9P_5
R2	3	IO_BE9P_3	D1	5	IO_BE9N_5
U1	3	IO_BE9N_3	D2	5	IO_BE10P_5,GPLL0IP_REF
T2	3	IO_BE10P_3	G5	5	IO_BE10N_5,GPLL0IN_REF
N5	3	IO_BE10N_3	E3	5	IO_BE11P_5
P2	3	IO_BE11P_3	F5	5	IO_BE11N_5
M6	3	IO_BE11N_3	E4	5	IO_BE12P_5,GPLL0IP_FDB
L4	3	IO_BE12P_3	F4	5	IO_BE12N_5,GPLL0IN_FDB
M2	3	IO_BE12N_3	B1	5	IO_BE13P_5
K6	4	IO_BE1P_4	C2	5	IO_BE13N_5
L3	4	IO_BE1N_4	D3	5	IO_BE14P_5
K1	4	IO_BE2P_4	C1	5	IO_BE14N_5
L1	4	IO_BE2N_4			
K7	4	IO_BE3P_4			
K5	4	IO_BE3N_4			
K4	4	IO_BE4P_4			
L2	4	IO_BE4N_4			
J3	4	IO_BE5P_4			
J7	4	IO_BE5N_4			
J4	4	IO_BE6P_4			
K3	4	IO_BE6N_4			
J2	4	IO_BE7P_4			
J5	4	IO_BE7N_4			
K2	4	IO_BE8P_4,GCLKIOB_2			
J6	4	IO_BE8N_4,GCLKIOB_3			
Н6	5	IO_BE1P_5			

编号	BANK	引脚说明	编号	BANK	引脚说明
G12	-	VCCAUX	V18	-	GND
H8	_	VCCAUX	F6	_	GND_PLL0
H9	_	VCCAUX	F13	_	GND_PLL1
H10	_	VCCAUX	113		
H11	_	VCCAUX			
L8	-	VCCAUX			
L9	_	VCCAUX			
L10	_	VCCAUX			
L11	-	VCCAUX			
M12	-	VCCAUX			
G8	0	VCCIO0			
G9	0	VCCIO0			
G10	0	VCCIO0			
G11	0	VCCIO0			
H12	1	VCCIO1			
J11	1	VCCIO1			
K11	1	VCCIO1			
L12	1	VCCIO1			
M8	2	VCCIO2			
M9	2	VCCIO2			
M10	2	VCCIO2			
M11	2	VCCIO2			
L7	3	VCCIO3			
M7	3	VCCIO3			
Ј8	4	VCCIO4			
K8	4	VCCIO4			
G7	5	VCCIO5			
H7	5	VCCIO5			
A1	-	GND			
A18	-	GND			
B2	-	GND			
B17	-	GND			
J9	-	GND			
J10	-	GND			
K9	-	GND			
K10	-	GND			
N6	-	GND			
N13	-	GND			
U2	-	GND			
U17	-	GND			
V1	-	GND			

4.4 caBGA332 引脚信息

编号	BANK	引脚说明	编号	BANK	引脚说明
C4	0	IO_L1P_0	A12	0	IO_LE20N_0,GCLKIOL_3_0
B4	0	IO_L1N_0	B12	0	IO_L21P_0
A2	0	IO_LE2P_0,GPLL0_OUTP	C12	0	IO_L21N_0
B2	0	IO_LE2N_0,GPLL0_OUTN	A13	0	IO_LE22P_0
A4	0	IO_L3P_0	B13	0	IO_LE22N_0
C5	0	IO_L3N_0	D12	0	IO_L23P_0
A3	0	IO_LE4P_0	D13	0	IO_L23N_0
В3	0	IO_LE4N_0	C13	0	IO_LE24P_0,JTAGEN
E7	0	IO_L5P_0	A14	0	IO_LE24N_0,PROGRAMN
D6	0	IO_L5N_0	B14	0	IO_L25P_0
E6	0	IO_LE6P_0	C14	0	IO_L25N_0
D5	0	IO_LE6N_0	A15	0	IO_L26P_0
В5	0	IO_L7P_0	B15	0	IO_L26N_0
A5	0	IO_L7N_0	C15	0	IO_LE27P_0
В6	0	IO_LE8P_0	A16	0	IO_LE27N_0
A6	0	IO_LE8N_0	E12	0	IO_L28P_0
C6	0	IO_L9P_0	D14	0	IO_L28N_0
D7	0	IO_L9N_0	E13	0	IO_LE29P_0
A7	0	IO_L10P_0	D15	0	IO_LE29N_0
В8	0	IO_L10N_0	E14	0	IO_LE30P_0
C7	0	IO_LE11P_0,TDO	E15	0	IO_LE30N_0
В7	0	IO_LE11N_0,TDI	B16	0	IO_L31P_0
D8	0	IO_L12P_0	C16	0	IO_L31N_0
E9	0	IO_L12N_0	D17	0	IO_L32P_0
E8	0	IO_LE13P_0	D16	0	IO_L32N_0
C8	0	IO_LE13N_0	A19	0	IO_LE33P_0,GPLL1_OUTP
D9	0	IO_LE14P_0	B18	0	IO_LE33N_0,GPLL1_OUTN
E10	0	IO_LE14N_0	A18	0	IO_L34P_0
A8	0	IO_LE15P_0,TCK	C17	0	IO_L34N_0
C9	0	IO_LE15N_0,TMS	A17	0	IO_LE35P_0,INITN
C10	0	IO_L16P_0	B17	0	IO_LE35N_0,DONE
B10	0	IO_L16N_0			
В9	0	IO_L17P_0,GCLKIOL_0_0			
A9	0	IO_L17N_0,GCLKIOL_1_0			
D10	0	IO_LE18P_0			
D11	0	IO_LE18N_0			
A11	0	IO_L19P_0			
B11	0	IO_L19N_0			
C11	0	IO_LE20P_0,GCLKIOL_2_0			

编号	BANK	引脚说明	编号	를 [BANK	引脚说明
D18	1	IO_TE1P_1,GPLL1IP_FDB	M1	8	1	IO_TE21N_1,D7
D19	1	IO_TE1N_1,GPLL1IN_FDB	N13	8	1	IO_TE22P_1
E17	1	IO_TE2P_1	P20)	1	IO_TE22N_1
F16	1	IO_TE2N_1	N20	0	1	IO_TE23P_1,D4
D20	1	IO_TE3P_1,GPLL1IP_REF	N19	9	1	IO_TE23N_1,D5
E18	1	IO_TE3N_1,GPLL1IN_REF	M1	7	1	IO_TE24P_1
F17	1	IO_TE4P_1	N1'	7	1	IO_TE24N_1,USRCLK
G16	1	IO_TE4N_1	W2	0	1	IO_TE25P_1,CSN
F18	1	IO_TE5P_1	V19	9	1	IO_TE25N_1
F19	1	IO_TE5N_1	M1	6	1	IO_TE26P_1,SCLK
G17	1	IO_TE6P_1	P17	7	1	IO_TE26N_1
H16	1	IO_TE6N_1	P19	9	1	IO_TE27P_1,D2
B20	1	IO_TE7P_1	P18	3	1	IO_TE27N_1,D3
B19	1	IO_TE7N_1	P16	5	1	IO_TE28P_1,D0
E19	1	IO_TE8P_1	R10	5	1	IO_TE28N_1,D1
E20	1	IO_TE8N_1	R20)	1	IO_TE29P_1
H17	1	IO_TE9P_1	R19	9	1	IO_TE29N_1
J16	1	IO_TE9N_1	U1	7	1	IO_TE30P_1
F20	1	IO_TE10P_1	T17	7	1	IO_TE30N_1
G18	1	IO_TE10N_1	N1	6	1	IO_TE31P_1
H18	1	IO_TE11P_1	R1′	7	1	IO_TE31N_1
H19	1	IO_TE11N_1	U20	0	1	IO_TE32P_1
J17	1	IO_TE12P_1	U19	9	1	IO_TE32N_1
K16	1	IO_TE12N_1	R18	8	1	IO_TE33P_1
G19	1	IO_TE13P_1	T20)	1	IO_TE33N_1
G20	1	IO_TE13N_1	V20	0	1	IO_TE34P_1
H20	1	IO_TE14P_1	U1	8	1	IO_TE34N_1
J18	1	IO_TE14N_1	T19	9	1	IO_TE35P_1
C20	1	IO_TE15P_1	T18	3	1	IO_TE35N_1
C19	1	IO_TE15N_1				
K18	1	IO_TE16P_1				
K19	1	IO_TE16N_1				
K17	1	IO_TE17P_1,GCLKIOT_0_1				
L17	1	IO_TE17N_1,GCLKIOT_1_1				
L20	1	IO_TE18P_1				
L19	1	IO_TE18N_1				
J19	1	IO_TE19P_1,GCLKIOT_2_1				
J20	1	IO_TE19N_1,GCLKIOT_3_1				
L18	1	IO_TE20P_1,CSON,DOUT				
M20	1	IO_TE20N_1				
M19	1	IO_TE21P_1,D6				

编号	BANK	引脚说明	编号	글	BANK	引脚说明
U16	2	IO_R1P_2	V10	0	2	IO_R21N_2
T15	2	IO_R1N_2	W8	3	2	IO_RE22P_2
U15	2	IO_RE2P_2	Y8	3	2	IO_RE22N_2
T14	2	IO_RE2N_2	Y7	,	2	IO_RE23P_2
W17	2	IO_R3P_2	V8	3	2	IO_RE23N_2
V17	2	IO_R3N_2	U8	3	2	IO_R24P_2
U14	2	IO_RE4P_2	U9)	2	IO_R24N_2
V15	2	IO_RE4N_2	U7	,	2	IO_RE25P_2
V13	2	IO_R5P_2	T9)	2	IO_RE25N_2
T13	2	IO_R5N_2	V7	7	2	IO_R26P_2
W18	2	IO_RE6P_2	W	7	2	IO_R26N_2
Y18	2	IO_RE6N_2	Y5	5	2	IO_RE27P_2
T12	2	IO_R7P_2	V6	5	2	IO_RE27N_2
U13	2	IO_R7N_2	We	5	2	IO_R28P_2
V16	2	IO_RE8P_2	Y6	5	2	IO_R28N_2
Y17	2	IO_RE8N_2	V5	5	2	IO_RE29P_2
W14	2	IO_RE9P_2	W5	5	2	IO_RE29N_2
V14	2	IO_RE9N_2	T6	•	2	IO_R30P_2
Y16	2	IO_RE10P_2	U5	5	2	IO_R30N_2
W16	2	IO_RE10N_2	W	1	2	IO_RE31P_2
W13	2	IO_R11P_2	Y4	ļ.	2	IO_RE31N_2
Y14	2	IO_R11N_2	U4	ļ.	2	IO_R32P_2
W19	2	IO_RE12P_2	T7	,	2	IO_R32N_2
Y19	2	IO_RE12N_2	V4	ļ.	2	IO_RE33P_2
Y15	2	IO_R13P_2	Y3	3	2	IO_RE33N_2
W15	2	IO_R13N_2	W3	3	2	IO_R34P_2
T11	2	IO_RE14P_2	Y2	2	2	IO_R34N_2
U12	2	IO_RE14N_2	U6	5	2	IO_RE35P_2
V12	2	IO_R15P_2	Т8	;	2	IO_RE35N_2
Y13	2	IO_R15N_2				
Y12	2	IO_RE16P_2,GCLKIOR_2_2				
W12	2	IO_RE16N_2,GCLKIOR_3_2				
W11	2	IO_R17P_2				
V11	2	IO_R17N_2				
V9	2	IO_RE18P_2,GCLKIOR_0_2				
W9	2	IO_RE18N_2,GCLKIOR_1_2				
U10	2	IO_R19P_2				
U11	2	IO_R19N_2				
W10	2	IO_RE20P_2				
Y10	2	IO_RE20N_2				
Y9	2	IO_R21P_2				

编号	BANK	引脚说明	编号	BANK	引脚说明
W2	3	IO_BE1P_3	J2	5	IO_BE1N_5
W1	3	IO_BE1N_3	G1	5	IO_BE2P_5
U2	3	IO_BE2P_3	Н3	5	IO_BE2N_5
U3	3	IO_BE2N_3	H2	5	IO_BE3P_5
V2	3	IO_BE3P_3	H1	5	IO_BE3N_5
V1	3	IO_BE3N_3	F2	5	IO_BE4P_5
P5	3	IO_BE4P_3	F1	5	IO_BE4N_5
R4	3	IO_BE4N_3	H4	5	IO_BE5P_5
R5	3	IO_BE5P_3	J4	5	IO_BE5N_5
T4	3	IO_BE5N_3	F5	5	IO_BE6P_5
R2	3	IO_BE6P_3,GCLKIOB_0_3	G5	5	IO_BE6N_5
R3	3	IO_BE6N_3,GCLKIOB_1_3	G4	5	IO_BE7P_5
Т3	3	IO_BE7P_3	J5	5	IO_BE7N_5
U1	3	IO_BE7N_3	F4	5	IO_BE8P_5
T1	3	IO_BE8P_3	H5	5	IO_BE8N_5
T2	3	IO_BE8N_3	G3	5	IO_BE9P_5,GCLKIOB_4_5
P3	3	IO_BE9P_3	G2	5	IO_BE9N_5,GCLKIOB_5_5
R1	3	IO_BE9N_3	D2	5	IO_BE10P_5
N5	3	IO_BE10P_3	D1	5	IO_BE10N_5
P4	3	IO_BE10N_3	E1	5	IO_BE11P_5,GPLL0IP_REF
P1	3	IO_BE11P_3	F3	5	IO_BE11N_5,GPLL0IN_REF
P2	3	IO_BE11N_3	E4	5	IO_BE12P_5
M5	3	IO_BE12P_3	D4	5	IO_BE12N_5
N4	3	IO_BE12N_3	E3	5	IO_BE13P_5,GPLL0IP_FDB
N2	4	IO_BE1P_4	E2	5	IO_BE13N_5,GPLL0IN_FDB
N3	4	IO_BE1N_4	D3	5	IO_BE14P_5
L1	4	IO_BE2P_4	C1	5	IO_BE14N_5
M4	4	IO_BE2N_4	C2	5	IO_BE15P_5
M3	4	IO_BE3P_4	B1	5	IO_BE15N_5
N1	4	IO_BE3N_4			
L2	4	IO_BE4P_4			
L3	4	IO_BE4N_4			
K2	4	IO_BE5P_4			
K1	4	IO_BE5N_4			
K4	4	IO_BE6P_4			
L4	4	IO_BE6N_4			
J1	4	IO_BE7P_4			
К3	4	IO_BE7N_4			
M1	4	IO_BE8P_4,GCLKIOB_2_4			
M2	4	IO_BE8N_4,GCLKIOB_3_4			
J3	5	IO_BE1P_5			

编号	BANK	引脚说明	编号	BANK	引脚说明
J10	-	VCCAUX	A20	-	GND
J11	-	VCCAUX	E11	-	GND
L12	-	VCCAUX	Н8	-	GND
L9	-	VCCAUX	H13	-	GND
M11	-	VCCAUX	J9	-	GND
M10	-	VCCAUX	J12	-	GND
K9	-	VCCAUX	K10	-	GND
K12	-	VCCAUX	K11	-	GND
H11	0	VCCIO0	K20	-	GND
Н9	0	VCCIO0	L5	-	GND
H12	0	VCCIO0	L10	-	GND
H10	0	VCCIO0	L11	-	GND
M13	1	VCCIO1	C3	-	GND,GND_PLLA0
L13	1	VCCIO1	C18	-	GND, GND_PLLA1
J13	1	VCCIO1			
K13	1	VCCIO1			
N12	2	VCCIO2			
N9	2	VCCIO2			
N10	2	VCCIO2			
N11	2	VCCIO2			
M8	3	VCCIO3			
L8	3	VCCIO3			
K5	4	VCCIO4			
K8	5	VCCIO5			
Ј8	5	VCCIO5			
Y1	-	GND			
Y11	-	GND			
Y20	-	GND			
M9	-	GND			
L16	-	GND			
N8	-	GND			
M12	-	GND			
T10	-	GND			
N13	-	GND			
V18	-	GND			
V3	-	GND			
A1	-	GND			
A10	-	GND			

4.5 caBGA400 引脚信息:

编号	BANK	引脚说明	编号	BANK	引脚说明
B1	0	IO_L1P_0	F10	0	IO_LE20N_0
A1	0	IO_L1N_0	B10	0	IO_L21P_0,GCLKIOL_0_0
G7	0	IO_LE2P_0,GPLL0_OUTP	A10	0	IO_L21N_0,GCLKIOL_1_0
F7	0	IO_LE2N_0,GPLL0_OUTN	D10	0	IO_LE22P_0
B2	0	IO_L3P_0	C10	0	IO_LE22N_0
A2	0	IO_L3N_0	A12	0	IO_L23P_0
E6	0	IO_LE4P_0	B12	0	IO_L23N_0
D5	0	IO_LE4N_0	C11	0	IO_LE24P_0,GCLKIOL_2_0
В3	0	IO_L5P_0	D11	0	IO_LE24N_0,GCLKIOL_3_0
A3	0	IO_L5N_0	A13	0	IO_L25P_0
D6	0	IO_LE6P_0	B13	0	IO_L25N_0
E7	0	IO_LE6N_0	D12	0	IO_LE26P_0
B4	0	IO_L7P_0	C12	0	IO_LE26N_0
A4	0	IO_L7N_0	A14	0	IO_L27P_0
G8	0	IO_LE8P_0	B14	0	IO_L27N_0
F8	0	IO_LE8N_0	C13	0	IO_LE28P_0,JTAGEN
B5	0	IO_L9P_0	D13	0	IO_LE28N_0,PROGRAMN
A5	0	IO_L9N_0	A15	0	IO_L29P_0
G9	0	IO_LE10P_0	B15	0	IO_L29N_0
F9	0	IO_LE10N_0	G11	0	IO_LE30P_0
B6	0	IO_L11P_0	F11	0	IO_LE30N_0
A6	0	IO_L11N_0	A16	0	IO_L31P_0
E8	0	IO_LE12P_0,TDO	B16	0	IO_L31N_0
C7	0	IO_LE12N_0,TDI	G12	0	IO_LE32P_0
В7	0	IO_L13P_0	F12	0	IO_LE32N_0
A7	0	IO_L13N_0	A17	0	IO_L33P_0
C6	0	IO_LE14P_0	B17	0	IO_L33N_0
D7	0	IO_LE14N_0	G13	0	IO_LE34P_0
В8	0	IO_L15P_0	F13	0	IO_LE34N_0
A8	0	IO_L15N_0	C15	0	IO_L35P_0
D8	0	IO_LE16P_0	C16	0	IO_L35N_0
C8	0	IO_LE16N_0	C14	0	IO_LE36P_0
B9	0	IO_L17P_0	D14	0	IO_LE36N_0
A9	0	IO_L17N_0	A18	0	IO_L37P_0
C9	0	IO_LE18P_0,TCK	B18	0	IO_L37N_0
D9	0	IO_LE18N_0,TMS	E14	0	IO_LE38P_0
B11	0	IO_L19P_0	D15	0	IO_LE38N_0
A11	0	IO_L19N_0	B19	0	IO_L39P_0
G10	0	IO_LE20P_0	A20	0	IO_L39N_0

_					41年12年13月11日本 安地 1月
G14	0	IO_LE40P_0,GPLL1_OUTP	H18	1	IO_TE19P_1
F14	0	IO_LE40N_0,GPLL1_OUTN	H19	1	IO_TE19N_1
E15	0	IO_L41P_0	J17	1	IO_TE20P_1
D16	0	IO_L41N_0	H20	1	IO_TE20N_1
C17	0	IO_LE42P_0,INITN	J19	1	IO_TE21P_1
A19	0	IO_LE42N_0,DONE	J20	1	IO_TE21N_1
D17	1	IO_TE1P_1,GPLL1IP_FDB	L19	1	IO_TE22P_1,GCLKIOT_2_1
C18	1	IO_TE1N_1,GPLL1IN_FDB	L20	1	IO_TE22N_1,GCLKIOT_3_1
F15	1	IO_TE2P_1	K17	1	IO_TE23P_1
G15	1	IO_TE2N_1	K18	1	IO_TE23N_1
C19	1	IO_TE3P_1,GPLL1IP_REF	L16	1	IO_TE24P_1
E17	1	IO_TE3N_1,GPLL1IN_REF	M18	1	IO_TE24N_1
F16	1	IO_TE4P_1	L14	1	IO_TE25P_1
D18	1	IO_TE4N_1	L15	1	IO_TE25N_1
H14	1	IO_TE5P_1	M20	1	IO_TE26P_1,CSON,DOUT
H15	1	IO_TE5N_1	M19	1	IO_TE26N_1
G16	1	IO_TE6P_1	M17	1	IO_TE27P_1,D6
F18	1	IO_TE6N_1	N20	1	IO_TE27N_1,D7
B20	1	IO_TE7P_1	M16	1	IO_TE28P_1
C20	1	IO_TE7N_1	N19	1	IO_TE28N_1
D19	1	IO_TE8P_1	P20	1	IO_TE29P_1,D4
F17	1	IO_TE8N_1	P19	1	IO_TE29N_1,D5
J14	1	IO_TE9P_1	N18	1	IO_TE30P_1
J15	1	IO_TE9N_1	N17	1	IO_TE30N_1,USRCLK
F19	1	IO_TE10P_1	N16	1	IO_TE31P_1,D2
F20	1	IO_TE10N_1	R19	1	IO_TE31N_1,D3
D20	1	IO_TE11P_1	T20	1	IO_TE32P_1
E19	1	IO_TE11N_1	T19	1	IO_TE32N_1
G17	1	IO_TE12P_1	M15	1	IO_TE33P_1,CSN
E20	1	IO_TE12N_1	M14	1	IO_TE33N_1
H16	1	IO_TE13P_1	P18	1	IO_TE34P_1,SCLK
G20	1	IO_TE13N_1	R20	1	IO_TE34N_1
G19	1	IO_TE14P_1	N15	1	IO_TE35P_1,D0
H17	1	IO_TE14N_1	N14	1	IO_TE35N_1,D1
J18	1	IO_TE15P_1	U20	1	IO_TE36P_1
J16	1	IO_TE15N_1	P17	1	IO_TE36N_1
K16	1	IO_TE16P_1	V20	1	IO_TE37P_1
L17	1	IO_TE16N_1	P16	1	IO_TE37N_1
K14	1	IO_TE17P_1	P15	1	IO_TE38P_1
K15	1	IO_TE17N_1	R16	1	IO_TE38N_1
K19	1	IO_TE18P_1,GCLKIOT_0_1	V19	1	IO_TE39P_1
K20	1	IO_TE18N_1,GCLKIOT_1_1	T17	1	IO_TE39N_1
		<u> </u>	1	1	1

T18	1	IO_TE40P_1	P11	2	IO_R19P_2
U19	1	IO_TE40N_1	R11	2	IO_R19N_2
U17	1	IO_TE41P_1	U11	2	IO_RE20P_2
V17	1	IO_TE41N_1	T10	2	IO_RE20N_2
R17	1	IO_TE42P_1	Y13	2	IO_R21P_2
U18	1	IO_TE42N_1	W13	2	IO_R21N_2
P7	2	IO_R1P_2,#NHP	W9	2	IO_RE22P_2,GCLKIOR_0_2
R7	2	IO_R1N_2,#NHP	Y9	2	IO_RE22N_2,GCLKIOR_1_2
W2	2	IO_RE2P_2	U12	2	IO_R23P_2
Y2	2	IO_RE2N_2,#NHP	T11	2	IO_R23N_2
P8	2	IO_R3P_2	Y12	2	IO_RE24P_2,GCLKIOR_2_2
R8	2	IO_R3N_2	W12	2	IO_RE24N_2,GCLKIOR_3_2
W3	2	IO_RE4P_2,#NHP	P12	2	IO_R25P_2
Y3	2	IO_RE4N_2,#NHP	R12	2	IO_R25N_2
T7	2	IO_R5P_2	Y14	2	IO_RE26P_2
Т8	2	IO_R5N_2	W14	2	IO_RE26N_2
W4	2	IO_RE6P_2	V12	2	IO_R27P_2
Y4	2	IO_RE6N_2	V13	2	IO_R27N_2
P9	2	IO_R7P_2	Y15	2	IO_RE28P_2
R9	2	IO_R7N_2	W15	2	IO_RE28N_2
W5	2	IO_RE8P_2	Y16	2	IO_R29P_2
Y5	2	IO_RE8N_2	W16	2	IO_R29N_2
W6	2	IO_R9P_2	Y17	2	IO_RE30P_2
Y6	2	IO_R9N_2	W17	2	IO_RE30N_2
V6	2	IO_RE10P_2	R6	2	IO_BE31P_2
U6	2	IO_RE10N_2	Т6	2	IO_BE31N_2
W8	2	IO_R11P_2	W1	2	IO_BE32P_2
Y8	2	IO_R11N_2	Y1	2	IO_BE32N_2
W7	2	IO_RE12P_2	T12	2	IO_R33P_2
Y7	2	IO_RE12N_2	T13	2	IO_R33N_2
V9	2	IO_R13P_2	V14	2	IO_RE34P_2
Т9	2	IO_R13N_2	U14	2	IO_RE34N_2
V8	2	IO_RE14P_2	Y18	2	IO_R35P_2
U9	2	IO_RE14N_2	W18	2	IO_R35N_2
P10	2	IO_R15P_2	Y19	2	IO_RE36P_2
R10	2	IO_R15N_2	W19	2	IO_RE36N_2
Y10	2	IO_RE16P_2	P13	2	IO_R37P_2
W10	2	IO_RE16N_2	R13	2	IO_R37N_2
Y11	2	IO_R17P_2	Y20	2	IO_RE38P_2
W11	2	IO_R17N_2	W20	2	IO_RE38N_2
U10	2	IO_RE18P_2	T16	2	IO_R39P_2
V10	2	IO_RE18N_2	R15	2	IO_R39N_2
	l	1		I	ı

	I			ı	
T14	2	IO_RE40P_2	L3	4	IO_BE5P_4
U15	2	IO_RE40N_2	L4	4	IO_BE5N_4
P14	2	IO_R41P_2	K2	4	IO_BE6P_4
R14	2	IO_R41N_2	K1	4	IO_BE6N_4
V15	2	IO_RE42P_2	M1	4	IO_BE7P_4
V16	2	IO_RE42N_2	M2	4	IO_BE7N_4
M6	3	IO_BE1P_3	L5	4	IO_BE8P_4
M7	3	IO_BE1N_3	M5	4	IO_BE8N_4
R1	3	IO_BE2P_3	L6	4	IO_BE9P_4
R2	3	IO_BE2N_3	L7	4	IO_BE9N_4
T1	3	IO_BE3P_3	M3	4	IO_BE10P_4
T2	3	IO_BE3N_3	M4	4	IO_BE10N_4
R3	3	IO_BE4P_3	N1	4	IO_BE11P_4
R4	3	IO_BE4N_3	N2	4	IO_BE11N_4
N3	3	IO_BE5P_3	P1	4	IO_BE12P_4
N4	3	IO_BE5N_3	P2	4	IO_BE12N_4
P3	3	IO_BE6P_3	F5	5	IO_BE1P_5
P4	3	IO_BE6N_3	G5	5	IO_BE1N_5
V1	3	IO_BE7P_3	F6	5	IO_BE2P_5
V2	3	IO_BE7N_3	G6	5	IO_BE2N_5
U1	3	IO_BE8P_3,GCLKIOB_0_3	C4	5	IO_BE3P_5
U2	3	IO_BE8N_3,GCLKIOB_1_3	СЗ	5	IO_BE3N_5
N5	3	IO_BE9P_3	C2	5	IO_BE4P_5,GPLL0IP_FDB
N6	3	IO_BE9N_3	C1	5	IO_BE4N_5,GPLL0IN_FDB
Т3	3	IO_BE10P_3	E4	5	IO_BE5P_5
T4	3	IO_BE10N_3	E3	5	IO_BE5N_5
P5	3	IO_BE11P_3	D2	5	IO_BE6P_5,GPLL0IP_REF
P6	3	IO_BE11N_3	D1	5	IO_BE6N_5,GPLL0IN_REF
V3	3	IO_BE12P_3	F4	5	IO_BE7P_5
V4	3	IO_BE12N_3	F3	5	IO_BE7N_5
U4	3	IO_BE13P_3,#NHP	E2	5	IO_BE8P_5,GCLKIOB_4_5
U5	3	IO_BE13N_3,#NHP	E1	5	IO_BE8N_5,GCLKIOB_5_5
T5	3	IO_BE14P_3,#NHP	F2	5	IO_BE9P_5
R5	3	IO BE14N 3,#NHP	F1	5	IO_BE9N_5
K6	4	IO_BE1P_4	G4	5	IO_BE10P_5
K7	4	IO_BE1N_4	G3	5	IO_BE10N_5
K5	4	IO_BE2P_4	Н6	5	IO_BE11P_5
K4	4	IO_BE2N_4	H7	5	IO_BE11N_5
J2	4	IO_BE3P_4	G2	5	IO_BE12P_5
J1	4	IO_BE3N_4	G1	5	IO_BE12N_5
L1	4	IO_BE4P_4,GCLKIOB_2_4	J6	5	IO_BE13P_5
L2	4	IO_BE4N_4,GCLKIOB_3_4	J5	5	IO_BE13N_5
	<u> </u>		1 22		

H3 5 IO_BE14P_5 E16 - GND_PLLA1 H4 5 IO_BE15P_5 C5 - GND J3 5 IO_BE15P_5 D3 - GND H2 5 IO_BE16P_5 D4 - GND H1 5 IO_BE16N_5 E10 - GND H12 - VCCAUX E11 - GND H13 - VCCAUX E12 - GND J10 - VCCAUX E13 - GND J11 - VCCAUX E18 - GND J11 - VCCAUX E18 - GND K12 - VCCAUX E18 - GND L12 - VCCAUX E19 - GND L12 - VCCAUX E10 - GND L12 - VCCAUX E18 - GND L12 - VCCAUX E19 - GND L12 - VCCAUX E10 - GND L12 - VCCAUX E10 - GND L12 - VCCAUX E10 - GND M10 - VCCAUX E10 - GND M10 - VCCAUX E10 - GND M10 - VCCAUX E10 - GND M11 - GND E10 - GND K8 4 VCCIO5 L10 - GND K8 4 VCCIO4 L18 - GND M8 3 VCCIO3 R18 - GND M10 2 VCCIO2 U13 - GND N10 2 VCCIO2 U13 - GND N11 2 VCCIO2 U13 - GND N12 2 VCCIO2 U13 - GND N13 1 VCCIO1 V18 - GND N14 0 VCCIO0 N7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 N7 - GND H12 D VCCIO0 N7 - GND H13 D VCCIO0 N7 - GND H14 D VCCIO0 N7 - GND H15 D VCCIO0 N7 - GND H16 D VCCIO0 N7 - GND H17 D VCCIO0 N7 - GND H18 D VCCIO0 N7 - GND H19 D VCCIO0 N7 - GND H10 D VCCIO0 N7 - GND H10 D VCCIO0 N7 - GND H11 D VCCIO1 N7 - GND H12 D VCCIO1 N7 -						
J4	Н3	5	IO_BE14P_5	E16	-	GND_PLLA1
D3	H4	5	IO_BE14N_5	E5	-	GND_PLLA0
H2 5 IO_BEI6P_5 H1 5 IO_BEI6N_5 H12 - VCCAUX H13 - VCCAUX H13 - VCCAUX H15 - GND H16 - GND H17 - GND H18 O VCCIOU H11 O VC	J4	5	IO_BE15P_5	C5	-	GND
H1	J3	5	IO_BE15N_5	D3	-	GND
H12	H2	5	IO_BE16P_5	D4	-	GND
H13	H1	5	IO_BE16N_5	E10	-	GND
Dito Vecaux Dito Vecaux Dito Vecaux Dito D	H12	-	VCCAUX	E11	-	GND
Signature Sign	H13	1	VCCAUX	E12	-	GND
B9	J10	1	VCCAUX	E13	-	GND
R12	J11	1	VCCAUX	E18	-	GND
L12	J 9	1	VCCAUX	E9	-	GND
L9	K12	ı	VCCAUX	G18	-	GND
M12	L12	ı	VCCAUX	Н5	-	GND
M10	L9	ı	VCCAUX	K10	-	GND
S	M12	1	VCCAUX	K11	-	GND
S	M10	ı	VCCAUX	К3	-	GND
K8 4 VCCIO4 L18 - GND K9 4 VCCIO3 M11 - GND M8 3 VCCIO3 M11 - GND N10 2 VCCIO2 T15 - GND N11 2 VCCIO2 U13 - GND N12 2 VCCIO2 U16 - GND N8 2 VCCIO2 U3 - GND N9 2 VCCIO2 U7 - GND J13 1 VCCIO1 U8 - GND K13 1 VCCIO1 V11 - GND V11 - GND V11 - GND V13 - GND V1 - GND V11 - GND V1 - GND V13 1 VCCIO1 V7 - GND N13 1 VCCIO1 V7 - GND N11 0 VCCIO0 N7 - GND N7 - GND N7 -	J7	5	VCCIO5	L10	-	GND
K9	J8	5	VCCIO5	L11	-	GND
M8 3 VCCIO3 M9 3 VCCIO2 N10 2 VCCIO2 N11 2 VCCIO2 N12 2 VCCIO2 N8 2 VCCIO2 N9 2 VCCIO2 U3 - GND U4 - GND V11 - GND V11 - GND V11 - GND V13 1 VCCIO1 V14 - GND V15 - GND V10 - GND V11 - GND V11 - GND V11	K8	4	VCCIO4	L18	-	GND
M9 3	K9	4	VCCIO4	L8	-	GND
N10 2	M8	3	VCCIO3	M11	-	GND
N11 2 VCCIO2 U13 - GND U16 - GND U16 - GND U3 - GND U3 - GND U3 - GND U3 - GND U7 - GND U8 - GND U8 - GND U16 - GND U7 - GND U8 - GND U8 - GND U16 - GND U8 - GND U8 - GND U16 - GND U17 - GND U17 - GND U18 - GND U19 -	M9	3	VCCIO3	R18	-	GND
N12 2 VCCIO2 U16 - GND N8 2 VCCIO2 U3 - GND N9 2 VCCIO2 U7 - GND J13 1 VCCIO1 U8 - GND K13 1 VCCIO1 V11 - GND L13 1 VCCIO1 V5 - GND N13 1 VCCIO1 V7 - GND N13 1 VCCIO0 N7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 N7 - GND H8 0 VCCIO0 N7 - GND	N10	2	VCCIO2	T15	-	GND
N8 2 VCCIO2 U3 - GND N9 2 VCCIO2 U7 - GND J13 1 VCCIO1 U8 - GND K13 1 VCCIO1 V11 - GND L13 1 VCCIO1 V5 - GND M13 1 VCCIO1 V7 - GND N13 1 VCCIO0 N7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 N7 - GND H8 0 VCCIO0	N11	2	VCCIO2	U13	-	GND
N9 2 VCCIO2 U7 - GND J13 1 VCCIO1 U8 - GND K13 1 VCCIO1 V11 - GND L13 1 VCCIO1 V5 - GND M13 1 VCCIO1 V7 - GND N13 1 VCCIO0 N7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 N7 - GND H8 0 VCCIO0	N12	2	VCCIO2	U16	-	GND
J13 1 VCCIO1 U8 - GND K13 1 VCCIO1 V11 - GND L13 1 VCCIO1 V18 - GND M13 1 VCCIO1 V7 - GND N13 1 VCCIO1 V7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 N7 - GND H8 0 VCCIO0 N7 - GND	N8	2	VCCIO2	U3	-	GND
K13	N9	2	VCCIO2	U7	-	GND
L13 1 VCCIO1 V18 - GND M13 1 VCCIO1 V5 - GND N13 1 VCCIO1 V7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 VCCIO0 OVCIO0 OVCIO0 H8 0 VCCIO0 VCCIO0 OVCIO0 OVCIO0 OVCIO0	J13	1	VCCIO1	U8	-	GND
M13 1 VCCIO1 V5 - GND N13 1 VCCIO1 V7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 VCCIO0 - GND H8 0 VCCIO0 - - GND	K13	1	VCCIO1	V11	-	GND
N13 1 VCCIO1 V7 - GND H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 VCCIO0 Image: Control of the control	L13	1	VCCIO1	V18	-	GND
H10 0 VCCIO0 N7 - GND H11 0 VCCIO0 H8 0 VCCIO0	M13	1	VCCIO1	V5	-	GND
H11 0 VCCIO0 H8 0 VCCIO0	N13	1	VCCIO1	V7	-	GND
H8 0 VCCIO0	H10	0	VCCIO0	N7	-	GND
	H11	0	VCCIO0			
	Н8	0	VCCIO0			
H9 U VCCIOU	Н9	0	VCCIO0			
J12 0 VCCIO0	J12	0	VCCIO0			

4.6 封装信息

4.6.1 caBGA324 封装规格

BOTTOM VIEW

SYMBOL	N	ILLIMETER	7	
	MIN	NOM	MAX	
Α	1.31	1.41	1.51	
A1	0.30	0.35	0.40	
A2	1.00	1.06	1.12	
A3	0	.70 BASI	С	
С	0.32	0.36	0.40	
D	14.90	15.00	15.10	
D1	1	3.60 BAS	SIC	
Ε	14.90	15.00	15.10	
E1	1	iiC		
е	0.80 BASIC			
b	0.40	0.45	0.50	
k	0	.475 REF		
000	0.15			
ccc	0.10			
ddd	0.12			
eee	0.15			
fff	0.08			

4.6.2 caBGA332 封装规格

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
Α	1.33	1.41	1.49
A1	0.30	0.35	0.40
A2	1.01	1.06	1.11
С	0.32	0.36	0.40
А3	0	.70 BASI	0
D	16.90	17.00	17.10
D1	1	5.20 BAS	SIC
Ε	16.90	17.00	17.10
E1	15	IC	
е	0.80 BASIC		
L	0	.675 REF	
Ь	0.40	0.45	0.50
aaa	0.15		
ccc	0.15		
ddd	0.15		
eee	0.15		
fff	0.08		

DS600_1.6.4 www.anlogic.com 83

4.6.3 caBGA400 封装规格

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
Α	1.33	1.41	1.49	
A1	0.30	0.35	0.40	
A2	1.01	1.06	1.11	
С	0.32	0.36	0.40	
A3	0	.70 BASI	2	
D	16.90	17.00	17.10	
D1	15.20 BASIC			
E	16.90	17.00	17.10	
E1	15.20 BASIC			
е	0	.80 BASI	0	
L	0	.675 REF	•	
b	0.40	0.45	0.50	
aaa	0.15			
ccc	0.15			
ddd	0.15			
eee	0.15			
fff	0.08			

DS600_1.6.4 www.anlogic.com 84

5 订购信息

表 5-1 器件号缩写

器件名称	类别	查找表容量	封装类型	电源类型
EF3	L	90	CG400	В

- 产品系列
 - ◆ EF3 EF3 系列
- 类别
 - ◆ L 逻辑器件
- 查找表容量
 - ♦ 40 4800 查找表
 - ♦ 90 9280 查找表
- 封装类型: <类型><#>
 - ♦ CG caBGA, substrate
 - ◆ # 引脚数(400 指 400 个引脚)
- 电源类型
 - ◆ B 单电源
 - ◆ EF3 器件电源类别均为单电源
- 温度等级
 - \Rightarrow I $\pm \psi$ (TJ = -40 100 °C)
 - 注: EF3 器件温度等级均为工业级

6 版本信息

日期	版本	修订记录		
2018/11/12	0.1	首次发布中文版		
2018/11/20	0.2	增加 ELFL90 不支持热插拔的引脚注释		
2018/11/22	0.3	修改器件号缩写 EF3->EF3,更新 caBGA332 引脚列表		
2018/11/23	0.4	在器件号缩写中添加单电源标识与描述		
2018/11/29	0.5	修改 PLL 架构图		
2018/12/05	0.6	修改 ERAM 性能指标描述方式		
2018/12/11	0.7	调整 SLICE 描述中部分语句位置,ehanced LUT5->增强型 LUT5		
2018/12/27	0.8	修改 caBGA400 封装 D15 与 F14 引脚标识		
2019/2/18	0.9	修改上电时序图,删除内核电压上电要求及相关描述		
2019/2/25	1.0	添加图 2-9- 7 EF3 JTAG 时序图和表 2-9- 4 EF3 JTAG 时序规格表		
2010/2/5		在表 2-7-1 IOL 支持工作模式中添加不支持 DDRx2 的引脚说明		
2019/3/6	1.1	在 2.8.3 节高速 LVDS 接口中添加具有 100 欧电阻的引脚说明		
2010/2/10	1.0	删除表 3-1-9 中关于施密特触发器的描述		
2019/3/18	1.2	添加表 3-1-4 最小供电要求		
		在 OSC 一节添加 OSC 精度注释说明		
		添加表 3-1- 13 EF3 LVPECL33 推荐操作条件与表 3-1- 12 差分输入摆幅大于		
2010/2/20	1.2	500mV 时只能使用外接电阻的注释说明		
2019/3/28	1.3	添加图 2-8-1 图 2-8-2 LVPECL 输入建议外接电路		
		修改表 3-2- 5 高速 I/O 接口性能表中 LVPECL 参数 VCCIO 3.0->3.3V		
		修改 CSB 时钟切换时序图 BUFGMUX sel 信号对应的时钟输出		
		嵌入式存储模块 BRAM、EMB 统一修改为 ERAM,并相应更新 ERAM 配图		
		更新 MSLICE 与 LSLICE 配图,图 2-1-2、图 2-1-3		
		更新图 2-4-1 全局时钟网络配图及其文字说明		
2019/4/26	1.4	修改图 2-9-4 EF3 串行配置模式时序图,添加表 2-9-2 从动串行时序规格表		
2019/4/20	1.4	修改图 2-9-6 EF3 从动并行配置时序图,添加表 2-9-3 从动并行时序规格表		
		更新表 3-2- 3 EF3 器件的 PLL 规格		
		更新表 3-2-6 EF3 器件配置模式时序规格表		
		OSC、AES 模块未完成完整测试,暂时删除		
2019/5/31	1.5	修改 BANK0 的最小供电要求为 1.5V		
		添加 BANK1/3/4/5 的 A、C 端口(差分对的 P 端)同样支持 iDDRx2 的说明		
		添加 EF3L40CG324 引脚列表与封装尺寸说明		
2019/8/16	1.6	添加不同 BANK 支持的电平标准图文描述		
		T_por 最大时间修改为 35ms		
		添加 10 年使用寿命下允许的最大过冲、下冲的占比值		

		VCCAUX_PORUP 阈值最小值 1.5V,典型值 1.55V,最大值 1.6V
		修改 VCCAUX_PORDN 最大值为 1.5V
		删除 LVDS 规格表中差分输出大摆幅数据
		彻底去除订购信息中的双电源描述
2019/9/23	1.6.1	修正 EF3L40CG324 引脚列表中 H15 标识错误,由"IO_TE12P_1"改
	1.6.1	为"IO_TE12N_1"
		删除从动配置时,INITN 信号结束到配置时钟给出的相对时间要求
2019/10/25	1.6.2	非背景模式下,通过 Jtag 烧写 flash 数据,tck 的频率要大于等于 100KHz
		在表 3-2-3 EF3 器件的 PLL 规格中加入 PLL 参考时钟规格要求
2019/12/30	1.6.3	删除从动配置时最大建立时间限制,添加最小保持时间要求
		EF3 系列 FPGA 配置器件内置,删除 SPI 接口相关说明
2020/2/2	1.6.4	修改 IO 管脚在上电完成后位流加载前的状态为弱上拉
		·

版权所有©2020 上海安路信息科技有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除安路科技在其产品的销售条款和条件中声明的责任之外,安路科技概不承担任何法律或非法律责任。安路科技对安路科技产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。安路科技对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,安路科技保留修改文档中任何内容的权利,恕不另行通知。安路科技不承诺对这些文档进行适时的更新。

DS600_1.6.4 www.anlogic.com 88