SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

1.	Beryllium, Magnesium & Calcium are group a) Write the general outer configuration o	
	b)Each of these elements reacts with car	bon to form a carbide.
	Write equation for the reaction betwee water.	n each carbide with (04½ marks)
2.	Aluminium and phosphorus form compounds states of ${}^{\dagger}3$.	s in the oxidation
	a) Briefly explain in terms of electronic co aluminium conducts electricity while all	
	of phosphosphorus do not.	(03 marks)

)Write equations for the reaction between eac aqueous sodium hydroxide solution.			(@01½ mar	
a). Complete (i) ⁹ ₄ Be +	the following nu	uclear reaction	ns below.	(@01 ma
(ii) ¹⁹ ₉ F +	$+$ $\frac{1}{0}n$		+	⁴ ₂ He
in to 0.012 for 0.0160	25mg of Bismuth 9mg Bismuth-21	n-210.Calcula		10mg
in to 0.012	25mg of Bismuth 9mg Bismuth-21	n-210.Calcula 4 to change in	n to 0.00	10mg (03 ma
for 0.0160	25mg of Bismuth 9mg Bismuth-214 10.	n-210.Calcula 4 to change in	n to 0.00	10mg (03 ma
in to 0.012 for 0.0160	25mg of Bismuth 9mg Bismuth-214 10.	n-210.Calcula 4 to change in	n to 0.00	10mg (03 ma
in to 0.012 for 0.0160	25mg of Bismuth 9mg Bismuth-214 10.	n-210.Calcula 4 to change in	n to 0.00	10mg (03 ma
in to 0.012 for 0.0160	25mg of Bismuth 9mg Bismuth-214 10.	n-210.Calcula 4 to change in	n to 0.00	10mg (03 ma

4. (a) Draw the structure and name the shape of the following anions. (03 marks)

Ions/Anions	Structure	Name of shape
SO ₃ ²⁻		
5O ₄ ²⁻		
S ₂ O ₃ ²⁻		
J ₂ U ₃		

b) Name the reagent(s) that can be used to distinguish between SO_3^{2-} and SO_4^{2-} ions. State what would be observed.

(02 marks)

Reagent(s):

Observation(s)):	
5. Complete the fo	llowing equations and give th	ne IUPAC names of
the main organic	products.	(@01 mark)
a). CH ₃ CH=C(CH	$H_3O^+/Warm$	
Name of organic pr	oduct:	
b). CH ₃ C≡CH ■	Br ₂ /H ₂ O	
Name of organic pr	oduct:	
c). CH ₃	CrO ₂ Cl ₂ →	
Name of organic p	roduct:	
d).	HBr ····	

6. P	henol was added to bromine water.	
a:)(i) State what was observed.	(01 mark)
	(ii) Write equation for the reaction.	(0½ mark)
 b	Name the reagent that can be used to disting phenol and cyclohexanol. State what is observe is treated with each compound. Reagent(s):	
	Observation(s):	
c)	Write equation showing how phenol can be pre benzene diazonium chloride.	······································
		•••••••••••••••••••••••••••••••••••••••

7.(a)	State Graham's law of gaseous diffusion.	(01 mark)
b)	Nickel forms a carbonyl, [Ni(CO) _n]. Deduce t carbon monoxide gas diffuses 2.46times fas	
	carbonyl compound.	(03 marks)
		······································
		······································
-)		(001 m ank)
c) (i)	State the: Oxidation state of nickel in the compound.	(@0½ mark)
(ii)	Coordination number of nickel in the compou	nd.
	e what would be observed and write an equat	
	following compounds and the reagent commonly	· . .
	tifying organic compounds. Rutral iron (TTT) chloride and phenol	(@02 marks)

Observation(s):
Equation:
Sodium nitrite in presence of concentrated hydrochloric acid and ethylmethylamine. Observation(s):
Equation:
Fehling's solution and ethanal. Observation(s):
Equation:

	••••••
	•••••
	•••••
	•••••
[V. A water = 1 960C/mal/ka]	
IRF 4 Water = 1.00 C/Moi/Kai	
[K _f 4 water = 1.86°C/mol/kg]	
	••••••
	••••••

b)Compound,Z was dissolved in water to form a pink s and divided in to two portions. State what would be and write equation for the reaction that took place (i)To the first portion, Acidified potassium mangane solution was added.	e observed when:
Observation(s):	
Equation:	
(ii) To the first portion, concentrated nitric acid ar (IV) oxide was added & the mixture was boiled.Observation(s):	
	•••••••••••
Equation:	••••••

SECTION B-54 MARKS

ATTEMPT ANY SIX QUESTIONS IN THIS SECTION.

- 10. Compound, F contains 62.1% carbon, 10.3% hydrogen and the rest being oxygen.
 - a) Calculate the empirical formula of compound, F. (03 marks)

pressure of $1.01 \times 10^5 \text{Nm}^2$. If the vapour at the same temperature is $9.5 \times 10^4 \text{Nm}^2$	pressure of water
o)Compound,F steam distills at a temperatur	re 98°C and

•	olution.			(03 m
••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••••••	•
••••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	
				••••••
				••••••
				•••••
				••••••
		•	omposes accord	•
			O _(g) + O _{2(g)} ∆ tmospheric pres	
the origin	al carbon diox	kide gas rem	nained undissoci	ated.
Calculate t	the equilibrium	constant,K	_p for the react	rion. (05 m
				(00 111

••••••		••••••
		•••••••••••
State and exp	ain the effect of:	
• •	the pressure to 2atmospheres o	
equilibrium	concentration of oxygen gas.	(02 mar
		•••••••••••
		••••••
(ii) Carryina ou	t the decomposition at a lower	temperature (
• • • •	f the equilibrium constant, K _P .	•
The value o		

a) Wri	te the name and formula of any one or	e from which
Alumin	ium can be extracted.	(01 ma
b) (i).l	Describe how the ore is purified.	(04 mai
••••		
		
••••		
····		
		•••••

	(04 mg
••••••	
•••••	
nmonia	
mmonia	gas.
mmonia) Write	gas.

	(01½ marks)
c)	The percentage of ammonia in the equilibrium mixture of
	gases was found to be 15% at 600°C. Calculate the
	equilibrium constant (K_c) for the reaction at $600^{\circ}C$.
	(04 marks)
d)	State what would happen to the equilibrium position of the reaction in a (i) above when hydrogen chloride gas is added
d)	State what would happen to the equilibrium position of the

a) Explain what meant by the following	terms. (@02 marks)
) Lattice energy	· ·
	•••••••••••••••••••••••••••••••••••••••
i) Standard heat of formation of a subs	stance.
*h	
•	•
•	• •
	are of race removines
•	ormation of phosphorus
trichloride.	(02 marks)
	· · · · · · · · · · · · · · · · · · ·
) · · · · · · · · · · · · · · · · · · ·	Explain what meant by the following Lattice energy i) Standard heat of formation of a substandard heat of formation of phosphorus atomization of chlorine and phosphorus respectively. (i) Draw a Born-Haber cycle for the formation of the standard heat of the following atomization of chlorine and phosphorus respectively.

(ii)	Use your cycle to calculate the P-CI bond energ	/ .	
		(02	marks)
		••••••	••••••
		• • • • • • • • •	•••••••
		•••••	
		••••••	•••••••
		•••••	
(iii)	Calculate the standard heat of formation of et standard heat of combustion of graphite, hydro ethane are ⁻ 403, ⁻ 285 & ⁻ 1,395kJ/mol respective	gen	
		•	marks)
		• • • • • • • • • • • • • • • • • • • •	••••••
		••••••	•••••
		•••••	
		•••••	
			•••••

	(04 ma
(ii)Give a reason for the difference in the hydrides in a (i) above.	n reactivity shown by (01 m

18

are given in the table below.

Hydrides	HF	HCI	HBr	HI
Bond length (A°)	0.86	1.28	1.42	1.60

(ii) Explain your answer in b (i) above. (03 marks	hydrides.			(01 mark
Write equations to show how the following conversions can be effected.	(ii) Explain your ans	wer in b (i) ab	ove.	(03 marks
Write equations to show how the following conversions can be effected.				
Write equations to show how the following conversions can be effected.				
effected.				
effected.				
	•	now how the fo	llowing conver	sions can be
	effected.		•	
	effected. a)Methylbenzoate	from	benzene.	(03 mark
	effected. a)Methylbenzoate	from	benzene.	(03 mark
	effected. a)Methylbenzoate	from	benzene.	(03 mark
	effected. a)Methylbenzoate	from	benzene.	(03 mark

b)z-nyaroxypropan			•	
			•••••••••••••••••••••••••••••••••••••••	•••••••••••
••••••	••••••••••	••••••••••••	•	••••••••••••
	•••••		••••••	•••••••••••
	•	•	•	••••••••
	•••••		••••••	••••••
	••••••		••••••	
	•••••		•••••	•••••
c)1-phenylethanol	from	phenol.		(03 mark
•		•		••••••
	•	•	•	••••••••
••••••	••••••		••••••	•••••••••••••••••••••••••••••••••••••••
	•••••		•••••	•••••
•••••	•••••			•••••
	•••••••••••	•••••••••••	••••••••••••	•••••••••••••••••••••••••••••••••••••••
	•••••			••••••••••
(a) Define the ter	m osmotic	pressure.		(01 ma
(a) Define the ter	m osmotic	pressure.		(01 ma
(a) Define the ter	m osmotic	pressure.		(01 ma

(b) Explain why determination of molar mass of polymer, osmotic pressure is preferred than boiling point elevation	ſ
method. (01	mark)
	•••••
	•••••
	•••••
(a) The Compatie processes of various concentrations of so	l V

(c) The Osmotic pressure of various concentrations of solute X in methylbenzene at $25^{\circ}C$ are given in the table below.

Concentration (g/dm³)	1.0	2.0	3.0	4.0	5.0	6.0
Osmotic	23	37	53	75	92	109
pressure (Nm ⁻²)						

(i)Plot a graph of osmotic pressure against concentration.
(03 marks)

(ii) Use the graph to determine the molecular mass of X.[Universal gas constant, R = 8.314J/K/mol] (04 marks)						
•••••					 	
•••••					 	

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																	4.0 Ho 2
6.9 Li 3	9.0 Be	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F	20.2 Ne 10
23.0 Na 11	24.3 Mg 12		27.0 28.1 31.0 32.1 Al Si P S 13 14 15 16										35.4 Cl 17				
39.1 K 19	40.1 Ca 20	45.0 Sc 21			52.0 Cr 24	1		58.9 Co 27			65.7 Zn 30		72.6 Ge 32	74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89	Ac														7 3 26 11 13
-			139 La 57		141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	The state of the s		162 Dy 66	165 Ho 67		169 Tm 69	173 Yb 70	175 Lu 71
		P a	227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95			251 Cf 98	Es	Fm	Md	No	260 Lw 103

♥ ===END===

WELCOME TO SENIOR SIX, YEAR 2022
This is the last page of the printed paper, Page 24