Wyższa Szkoła Informatyki Stosowanej i Zarządzania w Warszawie Jacek Hojczak

Sprawozdanie do projektu z Metaheurystyk Zadanie 4C

Optymalizacja: Funkcji Schaffera F7 Metoda: Symulowane Wyważania Operator: Mutacja o rozkładzie normalnym Kodownie osobnika: tablica liczb rzeczywistych

Wstęp.

Celem projektu było przeanalizowania i dostrojenie parametrów algorytmu symulowanego wyważania w zadaniu minimalizacji funkcji Schaffera F7.

W tym celu został napisany program w języku Java implementujący algorytm symulacji wyważania. Program poza samym algorytmem posiada funkcjonalość zapisywania wyników pośrednich i summarycznych w plikach ".csv". Ponad to program umożliwia konfiguracje parametrów algorytmu.

Opis programu.

Program został napisany w języku *Java*, do kompilacji wymagane jest narzędie *maven*. Aby skompilować program należy go rospakować do katalogu poczym z tego katalogu uruchomić komęde z po przez polecenie:

mvn clean install

Uruchomić programu można za pomocą polecenia:

java -jar target/meh-jar-with-dependencies.jar src/main/resources/p1.properties

target/meh-jar-with-dependencies.jar – scieżka do programu wykonywalnego src/main/resources/p1.properties – scieżka do pliku konfiguracyjnego

Program posiada plik konfiguracyjny w którym znajdują się parametry dla algorytmu wyważania oraz parametry programu.

```
# lilość powtórzeń całego algorytmu.
simulation.count=10

# ilość mutacji w stałej temperaturze.
max.iteration.per.temperature=50

# maksymalna ilość zmian temperatury
# ( warunek stopu z jak parametr "temperature.end")
max.iteration=2000

# ilość wymiarów w jakiej optymalizowana jest funkcja
dimensions=1

# jeśli ten parametr jest większy niż parametr dimensions to program wykona symulacje
# tyle razy ile wynosi róznica.
# przykład: dimensions=1;dimensions.end=5;
# program wykona symulacje dla zadania jedno wymiarowego,
```

```
# dwu wymiarowego, trzy wymiarowego, cztero i pięcio wymiarowego,
dimensions.end=1
# Zasięg mutacji. Losowana jest liczba -1,1 z rozkładu normalnego i
# monożana przez ten parametr.
mutations.range=10
# Schemat chłodzenia: geometryczny, liniowy, logarytminczny, other1
# parametr cooling.alpha brany pod uwagę tylko przy schemacie
# geometrycznym,liniowym
cooling=geometryczny
# Prarametr alpha używany w schematach chłodzenia geometrycznym i
# linowym
cooling.alpha=0.8
# jeśli ten parametr jest ustawiony na "true" to program wykona symuacje dla
# wszczystkich dostępnych schematów chłodzenia. Jeśli "false" tylko dla tego
# schematu który jest wpisan w parametrze "cooling".
cooling.all=false
# temperatura z której zaczyna alogrytm.
temperature.start=1000
# temperatura przy której osiągnięciu algorytm się zatrzymuje.
# ( warunek stopu z jak parametr "max.iteration")
temperature.end=0.5
# prefix z jakim będą generowane pliki z wynikami
result.file=result
# parametr K oznaczjący stałą Boltzmanna.
K = 0.1
```

Architektura porogramu.

Głównymi elementami programu są 3 klasy: Solution:

> reprezentujący znalezionego rozwiązanie wspórzędne przechowywane są w tablicy typu double wartość funkcji przechowywana jest w pojedyńczym polu typu double.

Algorytm:

klasa implementująca algorytm symulowanego wyżarzania oraz funkcje służące do zbierania danych podczas wykonywania algorytmu i funkcje służące do zapisywania wyników w plikach ".csv"

CollingFactory:

klasa tworząca schematy chłodzania wykorzystywane w algorytmie

Założenia doświadczeń.

Doświadczenia były przeprowadzane w seriach po 10 przebiegów pełnego algorytmu wyważania dla jednego zestawu parametrów.

Doświadczalnie wybrano temperaturę starową na 1000 jednostek a warunek stopu na bliskiej zeru tzn. 0.5. Okazło się jednak że przy schemacie chłodzenia Logarytmicznym warunek stop *temperatura* < 0.5 wymagał bardzo dułgiego czasu do zakończenia działania dla tego dodano drugi warunek stop ograniczający iloiść zmian temperatur do 2000.

Przy tak dobranych parametrach startowych przystąpiono do analizy 3 parametrów algorytmu. Wszystkie 3 parametry były strojone dla zadania 2 wymiarowego.

K – stała boltzmana od której zależy prawdopodobieństwo z jaką może zostać przyjęty gorszy wyniki niż obecny

cooling - scheamt schładzania zostały wybrane 4:

opis wykresów: oś pionowa – temepratura, oś pozioma – indeks zmiany temperatury

• geometryczny:

lograrytmiczny:

• liniowy:

o rozkładzie:

mutations.range - zasięg mutacji o rozkładzie normalnym.

Strojenie parametrów K i mutation.range były wykonywane dla każdego z shematów chłodzenia.

Dodatkowo został przeprowadzony eksperyment sprawdzający jak poszczególne z wybranych schematów chłodzenia zachowują się przy zwiększaniu wymiarów zadania.

Wyniki

Strojenie parametru K (stała boltzmana)

K = 1 dla każdego z schematów schładzania:

Gemotryczny

id	_	best-x2	best-value	worst-x1	worst-x2	worst-value
0	2,468	7,318	2,837	100	91,888	23,307
1	-1,883	5,898	2,651	-92,238	99,731	23,309
2	-4,215	2,623	2,341	-100	-92,043	23,309
3	4,318	-4,957	3,409	100	-91,997	23,309
4	9,897	-6,29	3,48	-100	92,006	23,309
5	-0,251	4,017	2,02	100	-92,172	23,303
6	1,688	0,908	1,595	-100	92,063	,
7	1,12	0,041	1,695	-92,053	-100	23,308
8	-0,846	-2,263	1,557	100	92,032	23,309
9	0,463	-0,727	1,833	-97,418	-94,941	23,299

Liniowy

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	5,007	-0,153	2,262	92,763	100	23,187
1	1,452	0,193	1,549	100	-91,509	23,261
2	1,323	2,654	2,422	100	92,109	23,306
3	0,823	4,038	2,332	-67,725	-100	21,952
4	-1,613	-1,04	1,607	100	91,26	23,199
5	2,909	2,716	2,003	91,839	-100	23,304
6	-1,079	-2,129	1,598	100	-93,696	22,72
7	-1,149	3,911	2,143	-100	-93,22	23,001
8	-0,342	-1,792	1,384	100	91,89	23,307
9	1,858	-2,534	1,775	-100	69,868	21,051

Logarytmiczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,273	-1,384	1,217	-92,003	100	23,309
1	-0,185	-0,734	0,894	-91,998	100	23,309
2	-0,518	-0,117	0,732	91,998	-100	23,309
3	-0,665	0,812	1,074	-100	-92,002	23,309
4	-0,157	-0,308	0,681	-91,993	100	23,309
5	0,496	-0,273	1,019	-100	-91,996	23,309
6	-0,148	0,011	0,454	100	91,996	23,309
7	0,755	-0,051	0,895	92	-100	23,309
8	0,723	-0,073	0,892	-91,995	-100	23,309
9	0,29	-0,184	0,703	-100	91,996	23,309

Other1

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,318	0,995	1,05	-91,843	-100	23,305
1	0,011	0,062	0,306	-100	-91,821	23,303
2	0,015	-0,25	0,521	91,794	-100	23,301
3	-0,309	-0,706	0,978	91,669	100	23,287
4	-0,774	0,096	1,051	-100	-92,001	23,309
5	-0,077	-0,134	0,401	-92,211	100	23,299
6	0,365	-0,124	0,752	100	91,863	23,306
7	0,916	-0,329	1,241	100	91,78	23,3
8	-0,01	0,24	0,497	92,291	100	23,291
9	-0,297	0,224	0,632	-91,899	100	23,307

Zestawienie średnich i odchylenia standardowego dla wyników najelpszych i najgorszych osiągniętych w ciągu 10 przebiegów algorymu.

	meanBest	standardVariationBest	meanWorst	standardVariationWorst
Geometrynczy	2,342	0,688	23,307	0,003
Liniowy	1,908	0,352	22,829	0,714
Logarytmiczny	0,856	0,21	23,309	0
Other1	0,743	0,304	23,301	0,007

K = 0.5 dla każdego z schematów schładzania:

Geometryczny

	, 02,					
id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,735	0,019	0,867	100	-68,422	21,816
1	0,044	0,134	0,554	92,38	-100	23,278
2	-0,016	-0,214	0,771	100	92,805	23,174
3	-1,003	0,159	1,019	82,826	88,357	21,847
4	0,125	0,722	0,873	91,979	100	23,309
5	-0,05	0,234	0,499	-91,035	-100	23,121
6	-0,498	-0,446	1,394	-100	92,186	23,302
7	-0,686	0,753	1,016	-91,766	100	23,299
8	-0,192	-0,144	0,496	91,997	100	23,309
9	0,185	0,676	1,066	100	-91,779	23,3

Liniowy

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,098	-0,051	0,484	93,191	17,84	19,138
1	0,32	-0,196	0,655	-91,45	78,559	21,96
2	-0,034	-0,17	0,578	-25,382	67,069	16,214
3	-1,015	-0,171	1,015	46,294	-81,907	19,395
4	-0,5	-0,106	0,764	100	-36,118	20,538
5	-0,045	-0,026	0,304	70,148	-8,374	13,753
6	0,065	0,045	0,546	-5,32	-47,689	13,833
7	-0,151	-0,334	0,608	93,207	-19,001	18,9
8	0,082	-0,472	1,062	-24,96	68,589	16,965
9	0,697	-0,25	0,862	54,671	-93,128	19,843

Logarytminczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,022	-0,019	0,201	66,714	-99,838	21,805
1	0,05	0,006	0,34	-92,017	100	23,309
2	0,043	-0,155	0,411	-88,224	-82,842	21,885
3	-0,076	-0,065	0,325	-83,22	67,112	20,654
4	0,1	-0,005	0,322	86,561	-84,285	21,945
5	0,083	-0,034	0,385	95,049	-100	21,482
6	-0,058	-0,074	0,326	67,618	99,942	21,962
7	-0,016	-0,062	0,343	-67,179	100	21,949
8	0,014	-0,047	0,362	67,541	100	21,962
9	0,096	0,024	0,317	-98,816	69,307	21,96

Other1

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,118	0,098	0,406	-91,941	-100	23,309
1	0,056	0,016	0,244	92,014	-100	23,309
2	-0,022	0,053	0,24	-100	-92,047	23,309
3	-0,08	0,061	0,325	100	92,099	23,307
4	-0,152	-0,018	0,405	-91,973	100	23,309
5	0,021	-0,027	0,204	-91,941	100	23,309
6	-0,028	0,045	0,28	-98,867	93,15	23,308
7	0,025	-0,09	0,337	-91,926	-100	23,308
8	-0,048	0,027	0,258	91,989	-100	23,309
9	0,018	0,032	0,278	91,892	100	23,307

estawienie średnich i odchylenia standardowego dla wyników najelpszych i najgorszych osiągniętych w ciągu 10 przebiegów algorymu.

	meanBest	standardVariationBest	meanWorst	standardVariationWorst
Geometrynczy	0,856	0,272	22,975	0,575
Liniowy	0,688	0,226	18,054	2,631
Logarytmiczny	0,333	0,053	21,891	0,611
Other1	0,298	0,066	23,308	0,001

K = 0.5 dla każdego z schematów schładzania:

Geometryczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,096	0,011	0,313	-97,152	-94,957	23,309
1	0,061	-0,071	0,327	-92,024	-100	23,309
2	0,024	0,049	0,258	92,639	-99,385	23,309
3	-0,047	-0,082	0,325	93,836	-98,238	23,309
4	0,017	0,027	0,18	92,016	-100	23,309
5	-0,001	0,016	0,13	92,016	-100	23,309
6	0,115	0,11	0,399	91,961	100	23,309
7	0,028	-0,02	0,206	-91,883	-100	23,307
8	-0,092	0,029	0,314	100	-91,964	23,309
9	-0,05	0,082	0,314	98,804	93,294	23,309

Liniowy

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,489	-0,169	0,738	100	-66,785	21,888
1	0,158	-0,096	0,779	-97,038	95,768	23,215
2	-0,05	-1,009	1,032	-93,988	-4,638	19,399
3	0,051	-1,363	1,216	-100	-33,224	19,526
4	-0,036	-0,217	0,691	91,648	20,901	19,373
5	-0,142	0,102	0,594	-100	-38,253	20,617
6	-0,038	-0,525	0,726	100	-66,584	21,838
7	-0,228	0,24	0,841	-99,554	37,183	20,509
8	-0,295	-0,215	0,605	100	-93,56	22,81
9	-0,135	0,226	0,669	-90,853	-25,31	19,408

Logarytmiczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,22	-0,269	0,667	92,466	99,541	23,309
1	-0,039	-0,094	0,336	-91,995	100	23,309
2	0,012	0,048	0,363	-100	91,983	23,309
3	-0,048	-0,229	0,526	100	-92,007	23,309
4	-0,098	0,034	0,368	-91,994	100	23,309
5	0,235	0,075	0,5	91,982	100	23,309
6	-0,243	-0,019	0,494	97,873	-94,26	23,309
7	0,079	0,225	0,501	100	92,006	23,309
8	-0,028	0,227	0,577	-100	91,993	23,309
9	0,124	-0,206	0,495	-97,819	-94,312	23,309

Other1

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,096	0,011	0,313	-97,152	-94,957	23,309
1	0,061	-0,071	0,327	-92,024	-100	23,309
2	0,024	0,049	0,258	92,639	-99,385	23,309
3	-0,047	-0,082	0,325	93,836	-98,238	23,309
4	0,017	0,027	0,18	92,016	-100	23,309
5	-0,001	0,016	0,13	92,016	-100	23,309
6	0,115	0,11	0,399	91,961	100	23,309
7	0,028	-0,02	0,206	-91,883	-100	23,307
8	-0,092	0,029	0,314	100	-91,964	23,309
9	-0,05	0,082	0,314	98,804	93,294	23,309

Zestawienie średnich i odchylenia standardowego dla wyników najelpszych i najgorszych osiągniętych w ciągu 10 przebiegów algorymu.

	meanBest	standardVariat	meanWorst	standardVariationWorst
Geometrynczy	0,277	0,078	23,309	0,001
Liniowy	0,789	0,186	20,858	1,406
Logarytmiczny	0,483	0,097	23,309	0
Other1	0,277	0,078	23,309	0,001

Strojenie parametru zasięgu mutacji mutation.range=1

Geometryczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-32,167	-94,996	10,015	-99,024	-92,066	23,109
1	-69,579	89,564	10,65	-96,085	96,064	23,309
2	-99,452	-54,508	10,65	-92,555	-53,242	20,663
3	-5,554	-3,194	2,67	-17,911	-44,51	13,834
4	-79,018	81,353	10,65	-94,469	97,712	23,309
5	-76,545	44,282	9,408	-98,263	94,044	23,301
6	-97,01	83,405	11,312	-98,296	93,919	23,307
7	-62,106	27,424	8,24	-81,92	46,67	19,41
8	-87,002	72,783	10,651	-87,011	83,527	21,962
9	-32,693	-49,467	7,708	-88,96	-82,237	21,827

Liniowy

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	29,772	33,012	6,67	35,996	42,366	14,739
1	-100	53,496	10,65	-97,379	49,543	17,538
2	-97,564	-57,821	10,65	-95,823	-53,968	15,879
3	-16,747	34,445	6,19	-14,996	38,701	12,826
4	-29,78	-41,903	7,171	-35,469	-41,36	14,138
5	-62,193	78,613	10,013	-65,091	84,257	20,605
6	-100	-79,795	11,312	-100	-91,603	23,278
7	-48,576	-73,758	9,399	-49,312	-79,198	18,816
8	-97,326	83,036	11,312	-100	86,966	18,844
9	-21,849	-38,731	6,669	-17,954	-43,131	11,963

Logarytminczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,001	0,016	0,129	-39,542	38,094	14,706
1	-99,439	-80,494	11,312	-95,97	-75,816	20,605
2	100	100	14,426	98,581	95,598	22,405
3	-74,184	-47,922	9,399	-79,846	-47,48	18,229
4	-89,478	69,683	10,65	-91,707	56,834	19,969
5	-38,945	-55,59	8,24	-22,415	-78,651	17,254
6	-79,796	-100	11,312	-94,704	-92,692	18,823
7	-0,006	0,004	0,09	-51,102	-20,941	14,863
8	-41,227	-30,707	7,171	80,178	20,02	18,152
9	-79,163	81,211	10,65	-96,855	45,417	20,642

Other1

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-4,101	-16,345	4,105	-93,706	-10,037	19,412
1	-28,123	0,112	5,323	-96,175	46,486	20,663
2	1,045	-0,193	1,151	-5,207	72,51	17,047
3	-65,119	19,15	8,24	-95,115	97,043	23,309
4	-0,001	0,006	0,132	-97,614	-43,296	20,663
5	0,106	0,017	0,436	31,324	87,873	18,809
6	-31,526	-10,439	6,022	-38,113	-99,74	20,663
7	-30,151	-32,904	6,709	-97,307	-95,543	23,201
8	9,272	6,877	3,454	56,492	90,601	20,663
9	10,86	3,835	3,486	91,017	55,837	20,663

Zestawienie średnich i odchylenia standardowego dla wyników najelpszych i najgorszych osiągniętych w ciągu 10 przebiegów algorymu.

	meanBest	standardVariationBest	meanWorst	standardVariationWorst
Geometrynczy	9,195	2,437	21,403	2,823
Liniowy	9,004	1,986	16,863	3,414
Logarytmiczny	8,338	4,51	18,565	2,364
Other1	3,906	2,596	20,509	1,769

mutation.range=8

Geometryczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,992	-0,364	1,114	-90	80,877	21,893
1	0,21	0,453	0,855	-92,188	-100	23,301
2	-0,44	0,29	0,726	-91,728	100	23,295
3	0,213	0,125	0,501	-71,28	-98,979	21,072
4	-0,159	-0,002	0,399	93,438	-99,92	22,932
5	0,658	0,283	0,944	91,784	-100	23,3
6	-0,721	-0,179	0,862	-92,411	99,73	23,306
7	-0,47	0,149	0,912	91,854	-100	23,305
8	0,101	0,38	0,855	-100	-91,522	23,264
9	0,165	-1,836	1,36	-92,127	100	23,306

Liniowy

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,041	0,147	0,412	-4,21	94,04	19,404
1	0,206	-0,115	0,515	-68,665	100	21,732
2	-0,098	0,069	0,671	3,643	-40,898	12,707
3	-0,143	0,191	0,501	-57,23	-23,266	13,163
4	-0,094	0,118	0,422	63,371	36,365	16,92
5	-0,283	-0,431	0,741	-30,656	-75,693	17,052
6	-0,014	-0,057	0,243	-57,314	42,185	15,102
7	-0,062	0,047	0,549	93,793	-7,494	19,397
8	-0,239	0,038	0,493	-30,999	-100	18,261
9	-0,541	-0,068	0,806	0,76	90,623	12,771

Logarytminczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,005	-0,103	0,359	100	65,528	21,376
1	0,015	-0,006	0,128	67,481	100	21,962
2	0,099	-0,018	0,324	-97,947	-69,336	21,761
3	-0,033	0,056	0,348	100	66,559	21,831
4	-0,036	-0,042	0,248	-35,446	-100	20,386
5	0,022	0,021	0,19	-100	37,049	20,651
6	-0,017	-0,092	0,33	-76,952	92,891	21,962
7	-0,025	0,022	0,189	50,072	-94,197	20,657
8	-0,009	-0,029	0,184	77,886	-90,088	20,772
9	0,023	0,029	0,273	-85,993	-36,531	18,974

Other1

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,043	-0,084	0,323	-99,744	-92,18	23,308
1	0,136	0,079	0,397	-100	-92,017	23,309
2	-0,001	0,094	0,323	100	-92,093	23,307
3	0,057	0,004	0,241	-100	-91,998	23,309
4	-0,029	-0,014	0,179	92,595	99,492	23,309
5	-0,026	-0,015	0,193	-92,095	-100	23,307
6	0,012	-0,061	0,292	100	92,002	23,309
7	0,093	0,041	0,334	-100	-91,925	23,308
8	0,071	0,065	0,314	100	-91,957	23,309
9	-0,015	-0,021	0,273	-96,8	95,332	23,309

Zestawienie średnich i odchylenia standardowego dla wyników najelpszych i najgorszych osiągniętych w ciągu 10 przebiegów algorymu.

	meanBest	standardVariat	meanWorst	standardVariat
Geometrynczy	0,853	0,261	22,897	0,739
Liniowy	0,535	0,158	16,651	2,982
Logarytmiczny	0,257	0,077	21,033	0,896
Other1	0,287	0,064	23,308	0,001

mutation.range=50

Geometryczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	1,606	6,187	2,631	91,94	100	23,309
1	0,391	6,423	2,759	100	91,919	23,308
2	0,085	-0,098	0,699	-92,033	100	23,309
3	0,758	0,05	0,905	91,973	-100	23,309
4	2,096	1,024	1,827	100	92,12	23,306
5	6,384	0,189	2,619	-91,194	-100	23,178
6	0,387	-3,932	2,038	-96,408	-95,908	23,304
7	-7,319	2,997	2,94	-92,312	-99,806	23,307
8	-3,116	0,289	1,77	91,923	-100	23,308
9	-1,55	-1,757	1,77	-92,011	-100	23,309

Liniowy

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,681	-1,634	1,632	-100	-68,113	21,895
1	-0,328	-0,177	0,637	-100	67,751	21,949
2	-1,192	0,691	1,185	67,06	-100	21,936
3	-0,253	0,025	0,555	96,722	-96,412	23,098
4	1,269	0,757	1,668	92,643	100	23,222
5	-1,644	0,82	1,365	90,435	-100	22,816
6	2,221	-0,359	2,4	-100	-92,092	23,307
7	1,166	0,923	1,755	-100	-67,875	21,936
8	-0,594	-1,752	1,36	100	-66,395	21,78
9	0,611	0,84	1,032	93,672	100	22,737

Logarytminczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,243	-0,443	0,797	-100	91,989	23,309
1	0,045	0,389	0,828	91,969	100	23,309
2	-0,053	0,238	0,494	100	-92	23,309
3	0,202	0,436	1,05	92,009	100	23,309
4	-0,543	0,17	1,061	-91,989	-100	23,309
5	-0,066	0,341	0,666	92,008	100	23,309
6	-0,384	-0,076	0,831	-100	92,003	23,309
7	0,518	-0,003	0,736	100	91,997	23,309
8	-0,003	-0,515	0,744	-100	91,986	23,309
9	0,049	-0,133	0,548	91,994	-100	23,309

Other1

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,339	0,649	0,875	-100	92,023	23,309
1	-0,317	0,467	1,001	100	-91,993	23,309
2	-0,279	0,212	0,644	92,004	-100	23,309
3	0,244	-0,019	0,495	100	91,999	23,309
4	-0,419	0,327	0,734	-98,493	93,579	23,309
5	0,457	0,229	0,763	100	-92,009	23,309
6	0,161	0,011	0,409	-100	-91,969	23,309
7	0,116	0,367	0,752	-91,995	-100	23,309
8	0,147	0,205	0,533	100	91,998	23,309
9	-0,534	-0,079	0,77	100	-91,97	23,309

Zestawienie średnich i odchylenia standardowego dla wyników najelpszych i najgorszych osiągniętych w ciągu 10 przebiegów algorymu.

	meanBest	standardVariat	meanWorst	standardVariat
Geometrynczy	1,996	0,726	23,295	0,039
Liniowy	1,359	0,521	22,468	0,592
Logarytmiczny	0,775	0,176	23,309	0
Other1	0,698	0,171	23,309	0

mutation.range=100

Geometryczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
C	-2,534	-5,598	2,795	-92,025	100	23,309
1	-0,178	-0,685	1,007	100	-92,098	23,307
2	-2,862	0,98	2,058	-100	92,005	23,309
3	3,356	2,127	2,008	91,799	100	23,301
4	-0,309	1,353	1,179	-100	-92,05	23,309
5	-4,085	-2,873	2,281	92,064	100	23,308
6	-9,423	2,65	3,531	92,042	100	23,309
7	3,043	7	3,039	-92,109	-100	23,306
8	1,283	0,607	1,25	-91,946	-100	23,309
g	-0,814	2,228	1,645	-91,966	100	23,309

Liniowy

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,524	5,098	2,365	-100	-91,642	23,284
1	-4,4	4,442	2,535	-100	-90,854	23,044
2	1,513	-1,104	1,395	92,035	100	23,309
3	2,756	3,103	2,488	100	91,742	23,296
4	1,734	-0,043	1,899	100	91,529	23,265
5	1,931	-2,36	1,943	-100	92,792	23,178
6	4,027	0,396	2,059	92,385	-100	23,278
7	3,32	-5,634	3,22	92,768	100	23,186
8	-6,4	-4,286	2,869	-92,143	100	23,305
9	-3,902	-0,356	2,121	-100	92,472	23,262

Logarytminczny

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	-0,179	-0,317	0,604	-91,989	100	23,309
1	-0,221	-0,326	0,865	-100	-92	23,309
2	-0,46	-0,217	0,776	-91,981	100	23,309
3	-0,118	-0,151	0,862	-100	-92,011	23,309
4	-1,375	0,005	1,189	91,995	-100	23,309
5	-0,38	-0,076	0,773	100	-92,02	23,309
6	-0,379	-0,045	0,706	100	91,994	23,309
7	0,756	-0,07	0,903	100	-92	23,309
8	0,169	0,114	0,876	100	-91,993	23,309
9	0,458	-0,955	1,13	-91,992	-100	23,309

Other1

id	best-x1	best-x2	best-value	worst-x1	worst-x2	worst-value
0	0,294	0,216	0,604	100	91,995	23,309
1	0,76	0,072	0,924	-91,967	-100	23,309
2	-0,583	0,463	0,863	100	91,981	23,309
3	-0,814	0,625	1,013	91,995	100	23,309
4	0,509	-0,134	0,726	92,067	100	23,308
5	1,047	0,169	1,137	91,99	100	23,309
6	-0,27	-0,514	1,204	-100	-91,981	23,309
7	0,46	-0,573	0,868	92,004	100	23,309
8	0,461	0,534	1,031	-100	91,989	23,309
9	-0,77	-0,656	1,028	-91,994	-100	23,309

Zestawienie średnich i odchylenia standardowego dla wyników najelpszych i najgorszych osiągniętych w ciągu 10 przebiegów algorymu.

	meanBest	standardVariat	meanWorst	standardVariat
Geometrynczy	2,079	0,802	23,308	0,002
Liniowy	2,289	0,496	23,241	0,079
Logarytmiczny	0,868	0,169	23,309	0
Other1	0,94	0,173	23,309	0

Analiza wyników

	Średnie z najlepszych wyników						
	Dla strojenia parametru K			Strojenie parametru zasięgu Mutacji			
Schematy chłodzenia	K=1	K=0.5	K=0.1	M=1	M=8	M=50	M=100
Geometryczny	2,342	0,856	0,277	9,195	1,996	2,079	0,853
Liniowy	1,908	0,688	0,789	9,004	1,359	2,289	0,535
Lograrytmiczny	0,333	0,333	0,483	8,338	0,775	0,868	0,257
Other	0,298	0,298	0,277	3,906	0,698	0,94	0,287

W trakcie dostrajania parametru K można zauważyć że skrajna wartość tego parametru nie wpływa korzystnie na na osiągane najlepsze wyniki. Najlepiej sprawdza się wartość wyposierodkowane np. 0.5.

Przy doborze zasięgu mutacji okazała się wartość umożliwającą osiągnięcie każdego puntku z dozwolonej przestrzeni. Oczywiście przy rozkładzie normalnym operatora mutacji punktu najbardziej odległe są najmnie prawdopodbne ale dzięki umożliwieniu pojedyńczej mutacji wylosowniu każdego punktu z przestrzeni zwiększamy szanse algorytmu na wyjście z minum lokalnego funkcji.

Z doświadczeń wynika również że dającym najlepsze wyniki schematem chłodzenia jest schemat logarytminczyn. Wadą tego schematu jest znaczne wydułżenie czasu pracy algorytmu z uwagi że naturalnym warunkiem stopu algorytmu symulowanego wyważania jest temperatura bliska zeru a funkcja logarytmiczna badzo zwalnia w okolicach zera.

Dodatkowe doświadzcznie związane z zachowaniem algorytmu zależnie wymiarowości zadania w stosunku do użytego scheamtu szchładzania przedstawia poniższy wykres.

Jak widać najbardziej wrażliwy na zwiększanie wymiarowści zadania jest schemat geometryczny. Podobną wrażliwościa wykazują schemat liniowy i logarytmiczny natomiast najlepszą odpornością