Stellar classification

- **Dataset**: Sloan Digital Sky Survey DR17, 100 000 observations, 17 feature columns, 3 classes
- **Business Case**: Suppose a team of astrophysicists needs a model to classify celestial objects reliably. Given the high cost associated with further research on classified objects, maximizing the **precision** of the classification model is paramount.
- Metrics: weighted precision, accuracy

Authors: Igor Kołodziej, Kamil Eliaszuk

A look at the data

- **obj_ID**: Object Identifier
- alpha: Right Ascension angle (at J2000 epoch)
- delta: Declination angle (at J2000 epoch)
- u: Ultraviolet filter
- g: Green filter
- r: Red filter
- i: Near Infrared filter
- z: Infrared filter
- run_ID: Run Number
- rereun_ID: Rerun Number
- cam_col: Camera column
- field_ID: Field number
- **spec_obj_ID:** Unique ID for optical spectroscopic objects
- class: Object class (galaxy, star, or quasar)
- redshift: Redshift value
- plate: Plate ID
- MJD: Modified Julian Date
- fiber_ID: Fiber ID

A look at the data

Key feature: redshift (proportional to the distance from the earth)

PCA: high explainability with a low number of component

Data preparation

- No missing data
- Only continuous features
- Target class encoding
- Feature standarization
- Feature selection

Random forest feature importance

Data preparation

Logistic regression with regularization

We reject variables of the type ID, date, or variables that are strongly correlated with each other.

We only leave 4 features: u, g, z and redshift.

The model practically does not lose accuracy, but it is much simpler and easier to explain.

Hyperparameter tuning – Bayesian optimalization

Best models of different types (weighted precision):

Random forest: 0.977

• SVM: 0.970

XGBoost: 0.974

Regresja logistyczna: 0.959

Stacking: 0.977 – high score but not higher than RF

0 – galaxy, 1 – quasar, 2 - star

0 – galaxy, 1 – quasar, 2 - star

Imbalanced learning techniques comparison (imbalanced-learn package) – unsatisfying results

		mean	std
random_forest	do_nothing	0.973679	0.000815
	oversample	0.973405	0.001216
	undersample	0.971543	0.001455
	smote	0.971480	0.000916
	smoteenn	0.967144	0.001128
svm	do_nothing	0.962068	0.001721
	smote	0.958986	0.001918
	oversample	0.958556	0.001907
	smoteenn	0.954595	0.002268
	undersample	0.954555	0.001966
logistic_regression	oversample	0.951581	0.001154
	smote	0.951375	0.001259
	do_nothing	0.951261	0.001098
	undersample	0.950328	0.001353
	smoteenn	0.949855	0.001419

```
epoch 0
           loss: 0.31288
                          val 0 accuracy: 0.96056
                                                     0:00:03s
epoch 1
           loss: 0.13329
                          val 0 accuracy: 0.90372
                                                     0:00:06s
                          val_0_accuracy: 0.97056
epoch 2
           loss: 0.12309
                                                     0:00:09s
epoch 3
           loss: 0.11595
                          val 0 accuracy: 0.76022
                                                     0:00:11s
                          val_0_accuracy: 0.94956
epoch 4
           loss: 0.10824
                                                     0:00:14s
                          val 0 accuracy: 0.96817
epoch 5
           loss: 0.10618 |
                                                     0:00:17s
                          val_0_accuracy: 0.96278
epoch 6
           loss: 0.10475
                                                     0:00:20s
          loss: 0.10461
                          val 0 accuracy: 0.90133
epoch 7
                                                     0:00:22s
                          val 0 accuracy: 0.75961
epoch 8
           loss: 0.10476
                                                     0:00:25s
                          val 0 accuracy: 0.76022
epoch 9
           loss: 0.1039
                                                     0:00:28s
                          val 0 accuracy: 0.7645
          loss: 0.10058
epoch 10
                                                     0:00:31s
                          val 0 accuracy: 0.88044
                                                     0:00:33s
          loss: 0.10163
epoch 12 | loss: 0.10296 | val 0 accuracy: 0.96994
                                                     0:00:36s
Early stopping occurred at epoch 12 with best epoch = 2 and best val 0 accuracy = 0.97056
Successfully saved model at ../models/tabnet raw.zip
TabNet precision score: 0.970419110083432
```

Neural networks: scores comparable to the simpler models

Metric: weighted precision

Model validation

Final model choice:

Random forest with hyperparameters:

n_estimators: 259, max_depth: 13, criterion: entropy, max_features: log2, class_weight: None

The behavior and results of the selected model have been verified by an independent validation team.

Weighted precision score: 0.9783142407171592					
	precision	recall	f1-score	support	
0	0.98	0.99	0.98	5945	
1	0.97	0.92	0.95	1896	
2	0.99	1.00	1.00	2159	
accuracy			0.98	10000	
macro avg	0.98	0.97	0.97	10000	
weighted avg	0.98	0.98	0.98	10000	

Model validation

Model explainability

Star

Galaxy

Quasar

Model explainability

Star

Galaxy

Quasar

Model explainability

Mean abs shap

Mean abs shap for the predicted class

Final result

We managed to create a model that is:

- simple
- explainable
- highly precise

This model can efficiently and reliably classify celestial bodies, thereby supporting the work of astrophysicists.

