Facultad de Informática	Departamento de Arquitectura de Computadores y Automátic	
Examen de Fundamento	s de Computadores	13 de junio de 2011

Apellidos	
Nombre	D.N.I

- 1) Dados los siguientes números: A=-28 (en decimal) y B=+3C (en hexadecimal).
 - a) Exprese los dos números con el mismo número de bits en representación en complemento a dos.
 - b) Efectúe las siguientes operaciones (operando en complemento a 2) indicando el valor decimal que se produce cuando no haya desbordamiento: A+B, A-B.

(1,5 puntos)

- 2) Un sistema combinacional tiene una entrada X, que es un dígito BCD. La salida Z vale 1 si el número es mayor que 1 y múltiplo de 3.
 - a) Obtenga la tabla de verdad.
 - b) Diseñe el sistema usando un multiplexor de 4 a 1 e inversores.

(1,5 puntos)

3) Implemente un sistema secuencial que genere cíclicamente la secuencia 1,2,3,6,7 usando un contador módulo 8 como el que se describe en la figura y el menor número de puertas lógicas.

Borrar	Cargar	Contar	Q(t+1)
0	-	-	0
1	1	-	E(t)
1	0	1	Q(t)+1
1	0	0	Q(t)

(1 punto)

4) Un sistema secuencial síncrono tiene una entrada serie X y una salida de un bit Z. La salida vale 1 cuando detecta el tercer 0 consecutivo en la entrada. Desde el momento en que detecta el 000 la salida vale 1 durante dos ciclos de reloj, independientemente del valor de la entrada durante esos dos ciclos. Después se pasa al estado inicial.

Se pide:

- a) Especifique el sistema mediante un diagrama de estados como máquina de Moore
- b) Implemente el sistema usando un descodificador, puertas y biestables D.

(2 puntos)