dt_training.head(10)

```
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
import sys
# modify "customized_path_to_homework", path of folder in drive, where you uploaded your homework
customized path to homework = "/content/drive/MyDrive/Colab Notebooks/assignment 3/dataset"
sys.path.append(customized_path_to_homework)
import os, sys
import pandas as pd
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import datetime
sys.path.insert(0,'../')
%load_ext autoreload
%autoreload 2
# import warnings filter
# import warnings filter
from warnings import simplefilter
# ignore all future warnings
simplefilter(action='ignore', category=FutureWarning)
     The autoreload extension is already loaded. To reload it, use:
       %reload_ext autoreload
dt_training = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/assignment_3/dataset/adult.data')
# sneak peak in the data
dt_training.head(1)
                                                                     Adm-clerical Not-in-family White Male 2174 0 40 United-States
        39
                 State-gov 77516 Bachelors 13
                                                    Never-married
      0 50 Self-emp-not-inc 83311
                                   Bachelors 13 Married-civ-spouse Exec-managerial
                                                                                         Husband
                                                                                                  White Male
                                                                                                                  0 0 13
                                                                                                                              United-States <=50
dt training.columns = ['age','workclass','fnlwgt','education','education-num','marital-status','occupation','relationship','race','sex','capi
dt_training.head(1)
                                                  education-
                                                                                                                            capital-
                                                                                                                                         capita
                 workclass fnlwgt education
                                                              marital-status
                                                                                  occupation relationship
         age
                                                                                                           race
                                                                                                                   sex
                                                         num
                                                                                                                                gain
                                                                                                                                             10
               Self-emp-not-
                                                                   Married-civ-
                                                                                       Exec-
                                                                                                                                   0
      0
         50
                             83311
                                     Bachelors
                                                          13
                                                                                                  Husband White Male
                        inc
                                                                      spouse
                                                                                  managerial
dt_test = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/assignment_3/dataset/adult.test',header=None, skiprows=[0])
# sneak peak in the data
dt_test.head(3)
          0
                    1
                           2
                                        3
                                           4
                                                             5
                                                                              6
                                                                                        7
                                                                                               8
                                                                                                     9
                                                                                                       10 11 12
                                                                                                                            13
                                                                                                                                    14
      0 25
               Private
                      226802
                                     11th
                                           7
                                                  Never-married Machine-op-inspct Own-child
                                                                                           Black
                                                                                                 Male
                                                                                                        0
                                                                                                            0
                                                                                                              40
                                                                                                                   United-States
                                                                                                                                <=50K.
      1 38
                       89814
                                  HS-grad
                                           9 Married-civ-spouse
                                                                  Farming-fishing
                                                                                  Husband White
                                                                                                        0
                                                                                                            0
                                                                                                               50 United-States
                                                                                                                                <=50K.
               Private
                                                                                                 Male
      2 28 Local-gov 336951 Assoc-acdm 12 Married-civ-spouse
                                                                   Protective-serv
                                                                                  Husband White
                                                                                                 Male
                                                                                                        0
                                                                                                            0
                                                                                                               40 United-States
                                                                                                                                 >50K.
dt_test.columns = ['age','workclass','fnlwgt','education','education-num','marital-status','occupation','relationship','race','sex','capital-
dt_training.replace([np.inf, -np.inf], np.nan,inplace=True)
dt_test.replace([np.inf, -np.inf], np.nan,inplace=True)
dt_training.shape
```

	age	workclass	fnlwgt	education	education- num	marital-status	occupation	relationship	race	sex	capital- gain	сар:
0	50	Self-emp-not- inc	83311	Bachelors	13	Married-civ- spouse	Exec- manageria l	Husband	White	Male	0	
1	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
2	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
3	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	
4	37	Private	284582	Masters	14	Married-civ- spouse	Exec- manageria l	Wife	White	Female	0	
5	49	Private	160187	9th	5	Married-spouse- absent	Other-service	Not-in-family	Black	Female	0	
6	52	Self-emp-not- inc	209642	HS-grad	9	Married-civ- spouse	Exec- manageria l	Husband	White	Male	0	
7	31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	
8	42	Private	159449	Bachelors	13	Married-civ- spouse	Exec- manageria l	Husband	White	Male	5178	
9	37	Private	280464	Some- college	10	Married-civ- spouse	Exec- manageria l	Husband	Black	Male	0	

dt_test.shape
dt_test.head(10)

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capi1
0	25	Private	226802	11th	7	Never-married	Machine-op- inspct	Own-child	Black	Male	0	
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming-fishing	Husband	White	Male	0	
2	28	Local-gov	336951	Assoc-acdm	12	Married-civ- spouse	Protective-serv	Husband	White	Male	0	
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine-op- inspct	Husband	Black	Male	7688	
4	18	?	103497	Some- college	10	Never-married	?	Own-child	White	Female	0	
5	34	Private	198693	10th	6	Never-married	Other-service	Not-in-family	White	Male	0	
6	29	?	227026	HS-grad	9	Never-married	?	Unmarried	Black	Male	0	
7	63	Self-emp-not- inc	104626	Prof-school	15	Married-civ- spouse	Prof-specialty	Husband	White	Male	3103	
8	24	Private	369667	Some- college	10	Never-married	Other-service	Unmarried	White	Female	0	
9	55	Private	104996	7th-8th	4	Married-civ- spouse	Craft-repair	Husband	White	Male	0	

categorical_variables = [var for var in dt_training.columns if dt_training[var].dtype=='0']
print(categorical_variables)

```
['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'class']
dt_training[categorical_variables].isnull().sum()
     workclass
     education
                       0
     marital-status
                       0
     occupation
                       0
     relationship
                       0
     race
                       0
                       0
     native-country
                       0
     class
                       0
     dtype: int64
dt_training.workclass.value_counts()
                          22696
      Private
      Self-emp-not-inc
                          2541
      Local-gov
                           2093
                           1836
      State-gov
                           1297
      Self-emp-inc
                           1116
      Federal-gov
                            960
      Without-pay
                            14
      Never-worked
     Name: workclass, dtype: int64
dt_training['workclass'].replace('?', np.NaN, inplace=True)
dt_test['workclass'].replace('?', np.NaN, inplace=True)
dt_training['occupation'].replace('?', np.NaN, inplace=True)
dt_test['occupation'].replace('?', np.NaN, inplace=True)
dt_training['native-country'].replace('?', np.NaN, inplace=True)
dt_test['native-country'].replace('?', np.NaN, inplace=True)
dt_training['class'].replace('<=50K', '<=50K.', inplace=True)</pre>
dt_training['class'].replace('>50K', '>50K.', inplace=True)
numerical = [var for var in dt_training.columns if dt_training[var].dtype!='0']
dt_training[numerical].isnull().sum()
     age
     fnlwgt
                       0
     education-num
                       0
     capital-gain
                       0
     capital-loss
                       0
     hours-per-week
                       0
     dtype: int64
#Initializing X_train,y_train,X_test,y_test
X_train= dt_training.drop(['class'], axis=1)
y_train = dt_training['class']
X_test = dt_test.drop(['class'], axis=1)
y_test = dt_test['class']
X train.head()
```

```
education-
                                                                                                                                 capital-
                  workclass fnlwgt education
                                                                marital-status
                                                                                     occupation relationship race
         age
                                                                                                                        sex
                                                                                                                                     gain
                                                          num
                Self-emp-not-
                                                                    Married-civ-
         50
                              83311
                                                                                                      Husband White
                                      Bachelors
                                                           13
                                                                                 Exec-managerial
                                                                                                                        Male
                                                                                                                                        0
                         inc
                                                                        spouse
                                                                                       Handlers-
         38
                     Private 215646
                                       HS-grad
                                                            9
                                                                                                   Not-in-family White
                                                                                                                       Male
                                                                                                                                        0
      1
                                                                       Divorced
                                                                                        dognore
X_train.shape, X_test.shape
     ((32560, 14), (16281, 14))
                                                                    Married-civ-
                     D.1 -1- 000400
#Replacing NA with frequent values
for df2 in [X_train, X_test]:
 df2['workclass'].fillna(X_train['workclass'].mode()[0], inplace=True)
  df2['occupation'].fillna(X_train['occupation'].mode()[0], inplace=True)
 df2['native-country'].fillna(X_train['native-country'].mode()[0], inplace=True)
X_test.isnull().sum()
                       0
     age
     workclass
                       a
     fnlwgt
                       0
     education
                       0
     education-num
                       0
     marital-status
                       a
     occupation
                       0
     relationship
                       0
     race
                       0
     sex
                       0
     capital-gain
                       0
     capital-loss
     hours-per-week
                       0
     native-country
     dtype: int64
pip install scikit-learn
     Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)
     Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.23.5)
     Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.3)
     Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.3.2)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.2.0)
from sklearn.preprocessing import LabelEncoder
categorical_variables = [var for var in X_train.columns if X_train[var].dtype=='0']
print(categorical variables)
     ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']
# Encode categorical features as a one-hot numeric array using LabelEncoder.
labelencoder = LabelEncoder()
X_train["workclass"]= labelencoder.fit_transform(X_train["workclass"])
X_train["education"]= labelencoder.fit_transform(X_train["education"])
X train["marital-status"]= labelencoder.fit transform(X train["marital-status"])
X_train["occupation"]= labelencoder.fit_transform(X_train["occupation"])
X_train["relationship"]= labelencoder.fit_transform(X_train["relationship"])
X train["race"] = labelencoder.fit transform(X train["race"])
X_train["sex"] = labelencoder.fit_transform(X_train["sex"])
X_train["native-country"]= labelencoder.fit_transform(X_train["native-country"])
X_test["workclass"]= labelencoder.fit_transform(X_test["workclass"])
X_test["education"]= labelencoder.fit_transform(X_test["education"])
X_test["marital-status"]= labelencoder.fit_transform(X_test["marital-status"])
X_test["occupation"]= labelencoder.fit_transform(X_test["occupation"])
X_test["relationship"] = labelencoder.fit_transform(X_test["relationship"])
X_test["race"]= labelencoder.fit_transform(X_test["race"])
X_test["sex"]= labelencoder.fit_transform(X_test["sex"])
X_test["native-country"]= labelencoder.fit_transform(X_test["native-country"])
X_train
```

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss
0	50	6	83311	9	13	2	4	0	4	1	0	0
1	38	4	215646	11	9	0	6	1	4	1	0	0
2	53	4	234721	1	7	2	6	0	2	1	0	0
3	28	4	338409	9	13	2	10	5	2	0	0	0
4	37	4	284582	12	14	2	4	5	4	0	0	0
32555	27	4	257302	7	12	2	13	5	4	0	0	0
32556	40	4	154374	11	9	2	7	0	4	1	0	0
32557	58	4	151910	11	9	6	1	4	4	0	0	0
32558	22	4	201490	11	9	4	1	3	4	1	0	0
32559	52	5	287927	11	9	2	4	5	4	0	15024	0
est												

X_test

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss
0	25	4	226802	1	7	4	7	3	2	1	0	0
1	38	4	89814	11	9	2	5	0	4	1	0	0
2	28	2	336951	7	12	2	11	0	4	1	0	0
3	44	4	160323	15	10	2	7	0	2	1	7688	0
4	18	0	103497	15	10	4	0	3	4	0	0	0
16276	39	4	215419	9	13	0	10	1	4	0	0	0
16277	64	0	321403	11	9	6	0	2	2	1	0	0
16278	38	4	374983	9	13	2	10	0	4	1	0	0
16279	44	4	83891	9	13	0	1	3	1	1	5455	0
16280	35	5	182148	9	13	2	4	0	4	1	0	0

16281 rows × 14 columns

```
y_train
            <=50K
            <=50K
    1
    2
            <=50K
            <=50K
            <=50K
    32555
            <=50K
    32556
            >50K
    32557
            <=50K
    32558
            <=50K
    32559
             >50K
    Name: class, Length: 32560, dtype: object
#normalizing the features
cols = dt_training.columns.drop('class')
from sklearn.preprocessing import RobustScaler
scaler = RobustScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
    dtype='object')
```

```
X_train = pd.DataFrame(X_train, columns=[cols])
X_test = pd.DataFrame(X_test, columns=[cols])
```

X_train.head()

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss	
0	0.65	2.0	-0.797262	-0.666667	1.000000	0.0	-0.428571	-0.333333	0.0	0.0	0.0	0.0	
1	0.05	0.0	0.312717	0.000000	-0.333333	-1.0	-0.142857	0.000000	0.0	0.0	0.0	0.0	
2	0.80	0.0	0.472711	-3.333333	-1.000000	0.0	-0.142857	-0.333333	-2.0	0.0	0.0	0.0	
3	-0.45	0.0	1.342409	-0.666667	1.000000	0.0	0.428571	1.333333	-2.0	-1.0	0.0	0.0	
4	0.00	0.0	0.890927	0.333333	1.333333	0.0	-0.428571	1.333333	0.0	-1.0	0.0	0.0	

Exploratory Data Analysis

```
import matplotlib.pylab as plt
import seaborn as sns
dt_training_data1= dt_training.dropna(axis=0)
pd.crosstab(dt_training_data1['occupation'], dt_training_data1['class'], margins=True)
```

class	<=50K	>50K	A11	
occupation				ılı
?	1652	191	1843	
Adm-clerical	3262	507	3769	
Armed-Forces	8	1	9	
Craft-repair	3170	929	4099	
Exec-managerial	2098	1968	4066	
Farming-fishing	879	115	994	
Handlers-cleaners	1284	86	1370	
Machine-op-inspct	1752	250	2002	
Other-service	3158	137	3295	
Priv-house-serv	148	1	149	
Prof-specialty	2281	1859	4140	
Protective-serv	438	211	649	
Sales	2667	983	3650	
Tech-support	645	283	928	
Transport-moving	1277	320	1597	
All	24719	7841	32560	

Generated Cross tab comparision between Income and Occupation. The highest number of people getting more than 50K are from Exec_managerial position. The highest number of people getting less than 50K are from craft-repair position.

```
variable = ["age","fnlwgt","capital-gain","capital-loss","hours-per-week"]
corr = dt_training_data1[variable].corr()# plot the heatmap
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, annot=True, cmap=None)
```

<Axes: >

Generated correlation between various numerical features using heatmap. The highest positive correlation is between age and hours_per_week. The highest negative correlation is betweeen age and fnlwgt

sns.countplot(x='workclass', hue='class', data=dt_training_data1)

<Axes: xlabel='workclass', ylabel='count'>

Created a countplot with workclass. Private class are high in numbers

 $\label{training_data1['age'].plot(kind='hist', bins=20, figsize=(12,6), facecolor='steelblue', zorder=2, rwidth=0.9)} \\$

Histogram is generated on age features. People with ages between 30-35 are considered more compared to other ages.

Countplot is created for race. White people are considered more in the dataset

pd.crosstab(dt_training_data1['education'], dt_training_data1['class'], margins=True)

class	<=50K	>50K	All	=
education				ıl.
10th	871	62	933	
11th	1115	60	1175	
12th	400	33	433	
1st-4th	162	6	168	
5th-6th	317	16	333	
7th-8th	606	40	646	
9th	487	27	514	
Assoc-acdm	802	265	1067	
Assoc-voc	1021	361	1382	
Bachelors	3133	2221	5354	
Doctorate	107	306	413	
HS-grad	8826	1675	10501	
Masters	764	959	1723	
Preschool	51	0	51	
Prof-school	153	423	576	
Some-college	5904	1387	7291	
All	24719	7841	32560	

Cross tab is created between Education and the Income. People who did prof-school has more 50k Income percentage compared to other Education

dt_training_data1['class'].value_counts().plot(kind="pie", autopct="%.2f")
plt.show()

Percentage of Income considered is given in a pie chart. People with <=50K is considered more with people >50K

Income_greater_50K = dt_training_data1[dt_training_data1["class"] == " >50K"]
sns.scatterplot(x=Income_greater_50K["age"], y=Income_greater_50K["hours-per-week"], hue=Income_greater_50K['sex'])

Scatterplot is considered between Age and hours_per_week for people earning more than 50k. The plot is dense beween the age 30-40 and between hours_per week 40-60. As per the plot, male is getting more than 50k compared to female

Machine Learning Models

Gaussian Naive Bayes classifier

train a Gaussian Naive Bayes classifier on the training set from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score from sklearn.metrics import classification_report

```
10/12/23. 10:31 PM
```

```
# instantiate the model
gnb = GaussianNB()
#5-fold cross validation
scores = cross_val_score(gnb, X_train, y_train, cv = 5, scoring='accuracy')
print('5 Cross validation score of GaussianNB model:{}'.format(scores))
print(" ")
# fit the model
gnb.fit(X_train, y_train)
print(" ")
y_pred1 = gnb.predict(X_train)
print(" ")
y_pred = gnb.predict(X_test)
print('Model accuracy score of GaussianNB model: {0:0.4f}'. format(accuracy_score(y_test, y_pred)))
print('Training accuracy score of GaussianNB model: {0:0.4f}'. format(accuracy_score(y_train, y_pred1)))
print('The Classification Report of GaussianNB model\n\n'+(classification_report(y_test, y_pred)))
     /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell
       and should_run_async(code)
     5 Cross validation score of GaussianNB model:[0.79867936 0.79576167 0.80113636 0.79422604 0.80558968]
     Model accuracy score of GaussianNB model: 0.0000
     Training accuracy score of GaussianNB model: 0.7990
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-
       warn prf(average, modifier, msg start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-def
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-def
       _warn_prf(average, modifier, msg_start, len(result))
     The Classification Report of GaussianNB model
                   precision
                                recall f1-score
                                                    support
            <=50K
                        0.00
                                  0.00
                                             0.00
                                                        0.0
           <=50K.
                        0.00
                                  0.00
                                             0.00
                                                    12435.0
             >50K
                        0.00
                                   0.00
                                             0.00
                                                        0.0
                                                     3846.0
            >50K.
                        0.00
                                  0.00
                                             0.00
                                             0.00
                                                    16281.0
         accuracy
                        0.00
                                   0.00
                                             0.00
                                                    16281.0
        macro avg
                                                    16281.0
     weighted avg
                        0.00
                                   9.99
                                             9.99
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-def
       _warn_prf(average, modifier, msg_start, len(result))
# train a DecisionTreeClassifier on the training set
from sklearn.tree import DecisionTreeClassifier
# instantiate the model
clf = DecisionTreeClassifier()
#5-fold cross validation
scores = cross_val_score(clf, X_train, y_train, cv = 5, scoring='accuracy')
print('5 Cross validation score of DecisionTreeClassifier model:{}'.format(scores))
# fit the model
clf.fit(X_train, y_train)
y_pred1 = clf.predict(X_train)
y_pred = clf.predict(X_test)
print('Model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, y_pred)))
print('Training accuracy score: {0:0.4f}'. format(accuracy_score(y_train, y_pred1)))
print('The \ Classification \ Report \ of \ DecisionTreeClassification \ model \verb|\n\n'+classification_report(y_test, \ y_pred)|)
```

```
ATTOZEN IMPOLETIO, DOOCSELAPZ, ZIAPO IMPOLEMANTING. FYDLIVEIMPOLENOOK, IINGSPEC() NOC TOUNG, TAITING DACK EO TINGMOUNTE()
     <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module()
                                                        _AltairImportHook.find_spec() not found; falling back to find_module()
     <freen importlib. bootstrap>:914: ImportWarning:
     <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning:
                                                        _AltairImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module()
     <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module()
5 Cross validation score of DecisionTreeClassifier model:[0.80773956 0.8022113 0.80666462 0.81342138 0.80605037]
     Model accuracy score: 0.0000
     Training accuracy score: 1.0000
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are i
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-
       warn prf(average, modifier, msg start, len(result))
     The Classification Report of DecisionTreeClassification model
                   precision
                                recall f1-score
                                                    support
            <=50K
                        0.00
                                   0.00
                                             0.00
                                                        0.0
           <=50K.
                        0.00
                                   0.00
                                             0.00
                                                    12435.0
             >50K
                        0.00
                                   0.00
                                             0.00
                                                        0.0
            >50K.
                        0.00
                                   0.00
                                             0.00
                                                     3846.0
                                             0.00
                                                    16281.0
         accuracy
                        0.00
                                   0.00
                                             0.00
                                                    16281.0
        macro avg
                        0.00
                                   0.00
                                             0.00
                                                    16281.0
     weighted avg
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/ classification.py:1344: UndefinedMetricWarning: Precision and F-score are i
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are i
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-«
       _warn_prf(average, modifier, msg_start, len(result))
# train a LogisticRegression on the training set
from sklearn.linear_model import LogisticRegression
# instantiate the model
lr= LogisticRegression( solver='lbfgs',max_iter = 700)
#5-fold cross validation
scores = cross_val_score(lr, X_train, y_train, cv = 5, scoring='accuracy')
print('5 Cross validation score of Logistic Regression model:{}'.format(scores))
# fit the model
lr.fit(X_train, y_train)
y_pred1 = lr.predict(X_train)
y_pred = lr.predict(X_test)
print('Model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, y_pred)))
print('Training accuracy score: {0:0.4f}'. format(accuracy_score(y_train, y_pred1)))
print('The Classification Report of Logistic Regression model\n\n'+classification_report(y_test, y_pred))
     /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell
       and should run async(code)
     5 Cross validation score of Logistic Regression model:[0.82463145 0.82340295 0.82708845 0.82555283 0.82662776]
     Model accuracy score: 0.0000
     Training accuracy score: 0.8255
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-
       _warn_prf(average, modifier, msg_start, len(result))
```

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-def _warn_prf(average, modifier, msg_start, len(result))
The Classification Report of Logistic Regression model

		precision	recall	f1-score	support
<=5	50K	0.00	0.00	0.00	0.0
<=50	ЭК.	0.00	0.00	0.00	12435.0
>5	50K	0.00	0.00	0.00	0.0
>50	ÐΚ.	0.00	0.00	0.00	3846.0
accura	асу			0.00	16281.0
macro a	avg	0.00	0.00	0.00	16281.0
weighted a	avg	0.00	0.00	0.00	16281.0

```
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-def _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-def _warn_prf(average, modifier, msg_start, len(result))
```

We can find that the DecisionTreeClassifier overfits as the training accuracy is 1.000. In order to tackle this, we can change the max_depth..

The LogicalRegression performs well compared to other ml models as it has more accuracy score. Decision Tree outperforms other ml models if we set max_depth to 5 as it avoids overfitting. Gaussian NB considers all features to be conditionally independent and thats the reason for its underperformance