$$d^{2}u = \frac{\partial^{2}u}{\partial x^{2}}(dx)^{2} + 2\frac{\partial^{2}u}{\partial x\partial y}dxdy + \frac{\partial^{2}u}{\partial y^{2}}(dy)^{2}.$$

Найдем частные производные второго порядка. Производные вычисляются как производные от произведения.

$$\frac{\partial u}{\partial x} = e^{x+y} + (x+y)e^{x+y} = (x+y+1)e^{x+y},$$

$$\frac{\partial^2 u}{\partial x^2} = e^{x+y} + (x+y+1)e^{x+y} = (x+y+2)e^{x+y}.$$

Поскольку переменные x и y входят в аналитическое выражение функции симметрично, то частные производные по переменной y можно получить, заменяя в $\frac{\partial^2 u}{\partial x^2}$ x на y, а y – на x, т.е. $\frac{\partial^2 u}{\partial y^2} = (x+y+2)e^{x+y}$.

Смешанную производную найдем дифференцируя $\frac{\partial u}{\partial x}$ по y

$$\frac{\partial^2 u}{\partial y \partial x} = e^{x+y} + (x+y+1)e^{x+y} = (x+y+2)e^{x+y}.$$

Подставим найденные производные в формулу для d^2u и получим $d^2u = (x+y+2)e^{x+y}(dx)^2 + 2(x+y+2)e^{x+y}dxdy + (x+y+2)e^{x+y}(dy)^2$ или после вынесения за скобку

$$d^{2}u = (x + y + 2)e^{x+y}((dx)^{2} + 2dxdy + (dy)^{2}).$$

Omsem.
$$d^2u = (x + y + 2)e^{x+y}((dx)^2 + 2dxdy + (dy)^2)$$
.

Задание 12. Написать уравнение касательной плоскости и нормали к поверхности $z - \frac{1}{2} \operatorname{arctg} \frac{y}{x} = 0$ в точке $M_0(1,1,2)$.

Решение.

Если поверхность задана неявно $F(x,y,z)=0^{(5)}$, то уравнение касательной плоскости, проходящей через точку M_0 , имеет вид $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$, где $A=F_x'(x_0,y_0,z_0)$, $B=F_y'(x_0,y_0,z_0)$, $C=F_z'(x_0,y_0,z_0)$.

Найдем частные производные от функции F(x, y, z) по каждой переменной, используя правила дифференцирования.

$$F'_{x} = -\frac{1}{2\left(1 + \left(\frac{y}{x}\right)^{2}\right)} \cdot \left(-\frac{y}{x^{2}}\right) = \frac{y}{2\left(x^{2} + y^{2}\right)}, \ A = F'_{x}(1,1,2) = \frac{1}{4},$$

$$F'_{y} = -\frac{1}{2\left(1 + \left(\frac{y}{x}\right)^{2}\right)} \cdot \frac{1}{x} = -\frac{x}{2\left(x^{2} + y^{2}\right)}, \ B = F'_{y}(1,1,2) = -\frac{1}{4},$$

$$F'_{z} = 1, \ C = F'_{z}(1,1,2) = 1.$$

Подставляем в уравнение плоскости $\frac{1}{4}(x-1)-\frac{1}{4}(y-1)+(z-2)=0$ и после преобразований получаем x-y+4z-8=0.

В качестве направляющего вектора для нормали можно взять вектор $\vec{S} = (1, -1, 4)$. Тогда каноническое уравнение прямой проходящей через точку $M_0(1,1,2)$ принимает вид $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-2}{4}$.

Ответ. Касательная плоскость x-y+4z-8=0 и нормаль к поверхности $\frac{x-1}{1}=\frac{y-1}{-1}=\frac{z-2}{4}$.

 $3 adaние 13. \ Исследовать функцию двух переменных <math>z = 3x^2 - x^3 + 3y^2 + 4y$ на экстремум.

Решение.

Запишем необходимое условие экстремума функции двух переменных z = z(x, y)

$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases}$$
для данной функции
$$\begin{cases} \frac{\partial z}{\partial x} = 6x - 3x^2 = 3x(2 - x) = 0 \\ \frac{\partial z}{\partial y} = 6y + 4 = 2(3y + 2) = 0 \end{cases}$$

Решение системы уравнений дает две стационарные точки (точки подозрительные на экстремум) $M_1(0,-\frac{2}{3}), M_2(2,-\frac{2}{3}).$

Найдем частные производные второго порядка

$$\frac{\partial^2 z}{\partial x^2} = 6 - 6x, \frac{\partial^2 z}{\partial x \partial y} = 0, \frac{\partial^2 z}{\partial y^2} = 6$$
 и вычислим их значения в точках M_1 и M_2 :
$$A_1 = \frac{\partial^2 z}{\partial x^2} (M_1) = 6; B_1 = \frac{\partial^2 z}{\partial x \partial y} (M_1) = 0, C_1 = \frac{\partial^2 z}{\partial y^2} (M_1) = 6.$$

$$A_2 = \frac{\partial^2 z}{\partial x^2} (M_2) = 6 - 6 \cdot 2 = -6; \ B_2 = \frac{\partial^2 z}{\partial x \partial y} (M_2) = 0, \ C_2 = \frac{\partial^2 z}{\partial y^2} (M_2) = 6.$$

⁽⁵⁾ В случае явного задания функции z = f(x, y), переносим z в правую часть равенства и получаем, что $A = f'_x(x_0, y_0)$, $B = f'_y(x_0, y_0)$, C = -1.

Достаточные условия экстремума функции z = z(x, y) в стационарной точке M имеют вид: пусть $\Delta = AC - B^2$, где $A = \frac{\partial^2 z}{\partial x^2}(M)$; $B = \frac{\partial^2 z}{\partial x \partial y}(M)$, $C = \frac{\partial^2 z}{\partial v^2} (M)$. Тогда

- 1. если $\Delta > 0$, то в точке M экстремум функции, причем, если A>0 (или C>0 при A=0), то функция имеет минимум, а если A < 0 (или C < 0 при A = 0), то функция имеет максимум;
- 2. если $\Delta < 0$, то в точке M экстремума нет;
- 3. если $\Delta = 0$, то требуется дополнительное исследование.

Вычислив значение Δ , получим в точке M_1 $\Delta = 36 > 0$ и поскольку $A_1 = 6 > 0$ имеем минимум, а в точке M_2 $\Delta = -36 < 0$, поэтому экстремума

Ответ.
$$z(M_1) = z(0; -\frac{2}{3}) = -\frac{4}{3}$$
 — минимум функции $z(x, y)$.

Задание 14. Найти наибольшее и наименьшее значение функции $z = x^2 + y^2 - xy - x - y$ в области $0 \le x \le 3$, $0 \le x + y \le 3$.

Решение.

Стационарные точки функции определяются из системы

$$\begin{cases} \frac{\partial z}{\partial x} = 2x - y - 1 = 0\\ \frac{\partial z}{\partial y} = 2y - x - 1 = 0 \end{cases}$$
. Решая систему, находим точку $M(1;1)$, которая

находится внутри области (Рисунок 4). Значение функции в этой точке равно z(M)=-1.

Рисунок 4

Далее исследуем поведение функции на границах области, которая в

нашем случае является прямоугольным треугольником. м случае дами OA имеет уравнение x=0 при этом $y \in [0,3]$. На этой 1. Граница OA имеет уравнение x=0 при этом $y \in [0,3]$. части границы $z = y^2 - y$ — функция одной переменной. Так как z'=2y-1=0 при y=0,5, то наименьшее и наибольшее значения функции z=2y могут быть в точке $M_1(0;0,5)$, а также в граничных точках $M_2(0;0)$ и $M_3(0;3)$. Вычислим значения функции во всех этих точках: $z(M_1) = -0,25$, $z(M_2)=0, z(M_3)=6.$

y = 0 при $x \in [0,3]$. На этой части 2. Граница *OB* имеет уравнение y = 0 при $x \in [0,3]$. границы $z = x^2 - x$. Так как z' = 2x - 1 = 0 при x = 0, 5, то наименьшее и наибольшее значения функции могут быть в точке $M_4(0,5;0)$, а также в граничных точках $M_2(0;0)$ и $M_5(3;0)$. Вычислим значения функции в точках: $z(M_4) = -0.25$, $z(M_5) = 6$.

3. Граница AB имеет уравнение y=3-x при $x\in[0,3]$. На этой части границы $z = x^2 + (3-x)^2 - x(3-x) - x - (3-x)$ или после преобразования $z = 3x^2 - 9x + 6$. Так как z' = 6x - 9 = 0 при x = 1, 5, то наименьшее и наибольшее значения могут быть в точке $M_6(1,5;1,5)$ и в граничных точках $M_3(0;3)$ и $M_5(3;0)$. Вычислим $z(M_6) = -0,75$.

функции значение наибольшее Следовательно, $z_{\text{наиб}} = z(0;3) = z(3;0) = 6$, а наименьшее $z_{\text{наим}} = z(1;1) = -1$.

Ответ.
$$z_{\text{наиб}} = z(0;3) = z(3;0) = 6$$
, $z_{\text{наим}} = z(1;1) = -1$.

Задание 15. Исследовать функцию z = 10 - 5x - 7y на экстремум при условии $x^2 + y^2 = 16$.

Решение.

Будем решать задачу методом Лагранжа. Для этого составим функцию Лагранжа $L(x,y,\lambda)=10-5x-7y+\lambda(x^2+y^2-16)$.

Найдем стационарные точки этой функции, решив систему

$$\begin{cases} \frac{\partial L}{\partial x} = 0 \\ \frac{\partial L}{\partial y} = 0 \end{cases}$$
 в нашем случае
$$\begin{cases} -5 + 2x\lambda = 0 \\ -7 + 2y\lambda = 0 \end{cases}$$
. Выразив из первого и вто-
$$\begin{cases} \frac{\partial L}{\partial \lambda} = 0 \end{cases}$$

рого уравнения х и у, подставим их в третье уравнение. Найдем два зна-

чения множителя Лагранжа $\lambda_1 = \frac{\sqrt{74}}{8}$ и $\lambda_2 = -\frac{\sqrt{74}}{8}$ и соответствующие им стационарные точки $M_1\left(\frac{20}{\sqrt{74}};\frac{28}{\sqrt{74}};\frac{\sqrt{74}}{8}\right)$ и $M_2\left(-\frac{20}{\sqrt{74}};-\frac{28}{\sqrt{74}};-\frac{\sqrt{74}}{8}\right)$.

Определим наличие условного экстремума в соответствии с достаточными условиями. Составим определитель

$$\Delta = \begin{vmatrix} 0 & \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\ \frac{\partial z}{\partial x} & \frac{\partial^2 L}{\partial x^2} & \frac{\partial^2 L}{\partial y \partial x} \\ \frac{\partial z}{\partial y} & \frac{\partial^2 L}{\partial y \partial x} & \frac{\partial^2 L}{\partial y^2} \end{vmatrix}$$
. В нашем случае он имеет вид
$$\Delta = \begin{vmatrix} 0 & -5 & -7 \\ -5 & 2\lambda & 0 \\ -7 & 0 & 2\lambda \end{vmatrix} = -98\lambda - 50\lambda = -148\lambda$$
.

Так как при $\lambda_1 = \frac{\sqrt{74}}{8}$ определитель $\Delta = -148\lambda = -148 \cdot \frac{\sqrt{74}}{8} = -\frac{37\sqrt{74}}{2} < 0$, точка $N_1\left(\frac{20}{\sqrt{74}};\frac{28}{\sqrt{74}}\right)$ является точкой условного минимума. А при $\lambda_2=-\frac{\sqrt{74}}{8}$ определитель $\Delta = -148\lambda = -148 \cdot \left(-\frac{\sqrt{74}}{8}\right) = \frac{37\sqrt{74}}{2} > 0$, точка $N_2\left(-\frac{20}{\sqrt{74}}; -\frac{28}{\sqrt{74}}\right)$ является точкой условного максимума.

Ответ. $N_1\left(\frac{20}{\sqrt{74}};\frac{28}{\sqrt{74}}\right)$ — точка условного минимума, $N_2\left(-\frac{20}{\sqrt{74}};-\frac{28}{\sqrt{74}}\right)$ -точка условного максимума.

ЗАДАЧИ ДЛЯ ТИПОВЫХ РАСЧЕТОВ

Задание 10.

Вычислить все частные производные второго порядка для данной функции.

10.1
$$u = z \sin(xy) + \frac{xy}{1-z}$$
 10.2 $u = \frac{xz}{y+2\sqrt{z}} - \ln(xy-z^2)$ 10.3 $u = e^{x^2y-z^3} + \frac{1}{5}x^5y^6z^7$ 10.4 $u = \sin^2(xy-z) + \frac{z-\sqrt{x}}{2y}$ 10.5 $u = x^{y^3} + x^6y^7z^8$ 10.6 $u = \cos^2(zxy) + z^{xy}$ 10.7 $u = (\cos yx)^z - \frac{z^2}{x-y}$ 10.8 $u = 2^{xy} - \sin\left(\frac{\sqrt{x-y}}{z}\right)$ 10.9 $u = xe^{xy} - \cos(x+y-z)$ 10.10 $u = \cos^2(\sqrt{x}-yz) - x^{yz}$ 10.11 $u = (\sin yz)^{x^2} - \frac{\sqrt{y-x}}{1-z}$ 10.12 $u = \frac{1}{2}\sin^2(1-xzy) + \frac{x}{y-3z}$

$$10.13 \quad u = \ln(xy - z^{2}) + \frac{1}{2}\sqrt{x - \sqrt{y - \sqrt{z}}}$$

$$10.15 \quad u = tg\left(\frac{x}{y + z}\right) + \sqrt{x^{2} - yz}$$

$$10.17 \quad u = \frac{xy}{y - 2z^{2}} - \sin(xy - z^{2})$$

$$10.19 \quad u = (\sin x)^{yz} + xy\sqrt{z}$$

$$10.21 \quad u = \ln(x + y^{2} + z) + z^{4}x^{3}y^{3}$$

$$10.23 \quad u = x^{yz} + y^{xy} + z^{xy}$$

$$10.25 \quad u = \cos^{2}(xyz) - \frac{1}{5}\frac{z}{x - y}$$

$$10.26 \quad u = x^{y} \cos(yz^{2}) - \frac{\sqrt{x - 2z}}{\sqrt{x}}$$

$$10.27 \quad u = z^{x'} + \sqrt{x - \sqrt{y - \sqrt{z}}}$$

$$10.28 \quad u = z^{2} \sin\left(\frac{y}{x}\right) - \sqrt[3]{1 - xy}$$

$$10.29 \quad u = \sin^{2}(x + yz) + 2^{x}3^{y}4^{z}$$

$$10.30 \quad u = \frac{x - y^{2}}{3\sqrt{z}} - \cos^{2}\left(\frac{x}{y}\right)$$

Задание 11.

Вычислить дифференциал второго порядка d^2u для данной функции.

11.1
$$u = (x + y)e^{x+y}$$

11.2 $u = (y - x)e^{\frac{y}{x}}$
11.3 $u = \frac{y}{x} + x^4 \sqrt{y}$
11.5 $u = (x + 2y)e^{x-y}$
11.6 $u = \cos^2(x - 2y)$
11.7 $u = \frac{1}{3}\sin^2(xy)$
11.8 $u = e^{x^2 + y^2}$
11.9 $u = e^{2x-3y}(x-4y)$
11.10 $u = \frac{x}{x-y}$
11.11 $u = y\ln(x+y)$
11.12 $u = (x-y)e^{x^2 + 3y}$
11.13 $u = (2x+y)\cos(xy)$
11.14 $u = \frac{y^2}{3x}$
11.15 $u = 3xy\sin(x-y)$
11.16 $u = \cos(x-y)x$
11.17 $u = \cos\left(\frac{y}{x}\right)(x^2 - y^2)$
11.18 $u = \frac{5x}{y^3}$
11.19 $u = \frac{2x}{y-1}$
11.20 $u = \sin^2(x-2y)$
11.21 $u = (x-y)e^{\frac{x}{y}}$
11.22 $u = e^{x-y}x$

11.23
$$u = \sin\left(\frac{x}{y}\right)(x^2 + y^2)$$
 11.24 $u = (x - 2y)\sin(xy)$
11.25 $u = (x + y)e^{\frac{2y}{x}}$ 11.26 $u = x^2e^{xy}$
11.27 $u = xy^6 - \cos(x^4y^3)$ 11.28 $u = \frac{y}{y - x}$
11.29 $u = \sin^2(3x + y)$ 11.30 $u = (y - x)e^{x + 7y^2}$

Задание 12.

12.21 $\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})=1$,

12.23 $2^{\frac{z}{z}} + 2^{\frac{y}{z}} = 8$, $M_0(2;2;1)$

 $M_0(1;1;1)$

точке M_0 .

Написать уравнение касательной плоскости и нормали к данной поверхности в
$$M_0$$
.

12.1 $z - \frac{1}{2} \operatorname{arctg} \frac{y}{x} = 0$, $z = e^{\frac{z}{y}} + e^{\frac{z}{z}} - y$, $M_0(0;1;1)$

12.3 $z = y \cdot \operatorname{tg} \frac{x}{3}$, $M_0\left(\frac{3\pi}{4};3;3\right)$

12.4 $x^2 + y^2 - z^2 = -1$, $M_0(2;2;3)$

12.5 $z = \sin x \cdot \cos y$, 12.6 $z = \operatorname{arctg} \frac{x}{y}$, $M_0\left(1;1;\frac{\pi}{4}\right)$

12.7 $z = e^x \cdot \cos y$, $M_0\left(1;\pi;-e\right)$

12.8 $z^2 + 4y + x^2 = 0$, $M_0\left(0;1;-4\right)$

12.9 $z = \sqrt[3]{4xz - y^2 + 4}$, 12.10 $x^2 + y^2 + z^2 = 3$, $M_0\left(1;1;1\right)$

12.11 $z = y + \ln \frac{x}{y}$, $M_0\left(1;1;1\right)$

12.12 $x^2 + y^2 + z^2 = 169$, $M_0\left(3;4;12\right)$

12.13 $z = \operatorname{arctg} \frac{y}{x}$, $M_0\left(1;1;\frac{\pi}{4}\right)$

12.14 $z = x \cdot \operatorname{tg} \frac{y}{x}$, $M_0\left(1;\frac{\pi}{4};1\right)$

12.15 $z = \ln(x^2 + y^2)$, $M_0\left(1;0;0\right)$

12.16 $z = x^2 - 2xy + y^2 - x + 2y$, $M_0\left(1;1;1\right)$

12.17 $x(y+z)(xy-z) = -8$, $M_0\left(2;1;3\right)$

12.20 $2x^2 + y^2 - z^2 + xy - yz + 2zx = 2$,

12.25
$$z-2x+\ln\frac{y}{x}+1=0$$
, $M_0(1;1;1)$
12.26 $x^2+2y^2+3z^2+2xy+xz+4yz=6$, $M_0(1;0;1)$
12.28 $x^2+y^2+z^2-xy=1$, $M_0(1;1;0)$
12.29 $z=1+x^2+y^2$, $M_0(1;1;3)$
12.30 $x^2+y^2-z^2+3xy+3yz-2xz=4$, $M_0(1;1;3)$

тую функцию двух переменных на экстремум. задание 13.

Исследовать данную функцию до г > 0		13.2	$z=y^2+x^2-xy+2x-y$
13.1	$z=e^{x^2-y}(5-2x+y), y>0,$	13.4	$z = e^{x-2y}(2x+y^2)$
13.3	$x = xv^2(1-x-y)$	13.6	$z=y^2+3x^2+y-x$
13.5	$-3x^2-x^3+3y^2+4y$	13.8	$z = 2x^2 - x + (y+1)^2$
13.7	$x = x^3 + 3xy^2 - 15x - 12y$	13.10	$z = x^2 y (2 - x + y)$
13.9	$z = 2x^3 - xy^2 + 5x^2 + y^2$	13.12	$z = 2x^4 + y^4 - x^2 - 2y^2$
13.1	$1 z = (2x^2 + y^2)e^{-(x^2 + y^2)}$	13.14	$z = x^4 + y^4 - x^2 - 2xy - y^2$
13.1	$z = x^3 + 8y^3 - 6xy + 1$	13.16	$z = x^2 + xy + y^2 - 3x - 6y$
13.1		13.18	$z = e^{2x+3y}(8x^2 - 6xy + 3y^2)$
13.1	$7 z = x^3 + y^2 - 3xy$	13.20	$z = x^2 + y^2 + (x + y - 2)^2$
13.1		13.22	$z = 3x^2 - 2x\sqrt{y} + y - 8x + 8$
13.2		13.24	$z = xy \ln(x^2 + y^2)$
13.2	$3 z = 3y^2 + (2x - 1)^2$		
13.2	$5 z = e^{x+2y}(x^2 - xy + 2y^2)$	13.26	$z=y^3-(x-4)^2$
13.2	$7 z = x^3 + y^3 - 6xy$	13.28	$z = 2x^3 - xy^2 + 5x^2 + y^2$
13.2		13.30	$z = yx^2 \left(1 + x + y\right)$

Задание 14.

Найти наибольшее и наименьшее значение функции двух переменных в заданной области.

14.1
$$z=x^3+y^3-9xy+27$$
, $0 \le x \le 4$, $0 \le y \le 4$ 14.3 $z=x^2+3y^2+x-y$, $x \ge 0$, $y \ge 0$, $x+y \le 1$ 14.4 $z=x-x^2+y^2$, $x^2+y^2 \le 9$ 14.5 $z=x^2+y^2-12x+16y$, $x^2+y^2 \le 25$ 14.6 $z=5x-3y$, $y \ge x$, $y \ge -x$, $y \le 4$ 14.7 $z=x^2+y^2+xy$, $|x|+|y| \le 1$ 14.8 $z=2x^2+y^2+y$, $|x|+|y| \le 1$ 14.8 $z=2x^2+y^2+y$, $|x|+|y| \le 1$ 14.9 $z=4x^2+y^2-2y$, $|x| \le 1$, $0 \le y-x \le 1$, $0 \le x \le 1$, $0 \le y \le 1$

 $M_0(1;0;0)$

 $M_0(1;0;1)$

 $M_0(1;1;0)$

12.22 x(x-y)+y(x-z)+z(x+y)-2=0,

12.24 $x^2 + y^2 + xy - yz + z^2 + xz = 3$,

14.11	z = xy - x - y, $x \ge 0, y \ge 0, x + y \le 3$	14.12	z=4-3x+2y,
14.13	z = 3x + 4y - 2, $ x \le 1, 0 \le y - x \le 1, 0 \le x + y \le 1$	14.14	$z = 2x^2 + 4x^2$
14.15	$z = 2x^{2} - y^{2},$ $x^{2} + y^{2} \le 16$		$z = x^2 - 2x + x^2$
14.17	$z = y^2 - x^2, x^2 + y^2 \le 9$	14.18	z=xy,
14.19	$z = x^2 + y^2 - 3xy$, $ x + y \le 1$	14.20	$x^{2} + y^{2} \le 1$ $z = x^{3} + y^{3} - 3xy$,
14.21	$z = x^{2} - xy + y^{2} - 4x$, $x \ge 0$, $y \ge 0$, $2x + 3y - 12 \le 0$		$z = x^2 + 3y^2 + x - y$
14.23	$z = x^2 - y^2$, $ x + y \le 2$		$z = x^2y(4-x-y), x \ge 0$
14.25	$z = x^{2} + y^{2} + 5xy$, $x \ge 0$, $y \ge 0$, $0 \le x + y \le 3$		z = xy + x + y
14.27	$z = 2y + x,$ $y \ge x^2, y - 2x \le 3$	14.28	-x + y - 3xy.
14.29	$z = y^{2} - 2x^{2},$ $x^{2} + y^{2} \ge 1, x^{2} + y^{2} \le 100$	14.30	$0 \le x \le 2, -1 \le y \le 2$ $z = x^2 + 2xy - 4x + 8y,$
	. ,, ,,		$0 \le x \le 1, 0 \le y \le 2$

Задание 15.

Исследовать данную функцию на условный экстремум методом множителей Лагранжа.

15.1
$$z = 1 - x^2 - y^2$$
 при условии $(x-1)^2 + (y-1)^2 = 1$ при условии $x^2 + y^2 = 1$ 15.3 $z = x^2 + y^2 - xy + 1$ при условии $y = x^2 - 1$ 15.4 $z = \frac{1}{x} + \frac{1}{y}$ при условии $x + y = 6$ 15.5 $z = \frac{1}{x} + \frac{1}{y}$ при условии $x + y = 6$ 15.6 $z = xy$ при условии $x + y = 2$ 15.7 $z = x - y$ при условии $x^2 + y^2 = 1$ 15.8 $z = 6 - 4x - 3y$ при условии $x^2 + y^2 = 1$ 15.9 $z = xy^2$ при условии $x + 2y = 4$ 15.10 $z = x^2 + y^2 - 12x + 16y$ при условии $x^2 + y^2 = 25$ 15.11 $z = \frac{x - y - 4}{\sqrt{2}}$ при условии $x^2 + y^2 = 5$ при условии $x^2 + y^2 = 5$ при условии $x^2 + y^2 = 5$

15.13
$$z = xy$$
 при условии $x + y = 1$ 15.16 $z = xy^2$ при условии $x^2 - 8y^2 = 8$ 15.17 $z = x^2 + y^2$ при условии $\frac{x}{2} + \frac{y}{3} = 1$ 15.18 $z = x + 2y$ при условии $x^2 + y^2 = 1$ 15.20 $z = x + y$ при условии $x^2 + y^2 = 1$ 15.21 $z = \frac{1}{x} + \frac{1}{y}$ при условии $x^2 + y^2 = 1$ 15.22 $z = x^2 + xy + y^2$ при условии $x^2 + y^2 = 1$ 15.23 $z = x^2 + y^2 - xy + x + y - 4$ при условии $x + y + 3 = 0$ 15.25 $z = 1 - 4x - 8y$ при условии $x^2 - 8y^2 = 8$ 15.27 $z = xy$ при условии $x^2 - 8y^2 = 8$ 15.28 $z = x^2 - y^2$ при условии $x^2 + y^2 = 1$ 15.26 $z = x^2 - y^2$ при условии $x^2 + y^2 = 1$ 15.27 $z = xy$ при условии $x^2 + y^2 = 1$ 15.28 $z = x^2 - y^2$ при условии $x^2 + y^2 = 1$ 15.29 $z = 10 - 5x - 7y$ при условии $x^2 + y^2 = 1$ 15.30 $z = x^2 + 2xy - 10$ при условии $y = x^2 - 4$

Вопросы для самопроверки

- Что называется частной производной функции нескольких аргументов по одному из аргументов?
- 2. Что такое смешанные частные производные?
- 3. Что называется полным дифференциалом функции двух аргументов?
- 4. Можно ли утверждать, что функция двух аргументов, имеющая в данной точке частные производные по обоим аргументам, непрерывна в этой точке?
- На чем основано применение полного дифференциала в приближенных вычислениях?
- 6. Что такое локальный максимум (минимум) функции двух переменных?
- 7. Если $f'_x(x_0, y_0) = 0$, то можно ли утверждать, что (x_0, y_0) точка экстремума для f(x, y)?
- 8. Что такое критическая (стационарная) точка для функции двух переменных?
- 9. В чем заключается достаточное условие экстремума для функции двух переменных?
- 10. Что такое условный экстремум функции двух переменных?

Таблица эквивалентных бесконечно малых

$$\sin x \sim x \operatorname{npu} x \to 0$$

$$\tan x \sim x \operatorname{npu} x \to 0$$

$$\arctan x \sim x \operatorname{npu} x \to 0$$

$$\arctan x \sim x \operatorname{npu} x \to 0$$

$$1 - \cos x \sim \frac{x^2}{2} \operatorname{npu} x \to 0$$

$$e^x - 1 \sim x \operatorname{npu} x \to 0$$

$$a^x - 1 \sim x \cdot \ln a \operatorname{npu} x \to 0$$

$$\ln(1+x) \sim x \operatorname{npu} x \to 0$$

$$\log_a (1+x) \sim x \cdot \log_a e \operatorname{npu} x \to 0$$

$$(1+x)^k - 1 \sim k \cdot x \operatorname{npu} x \to 0, \text{ B частности } \sqrt{1+x} - 1 \sim \frac{x}{2} \operatorname{npu} x \to 0$$

Правила дифференцирования

$$(cy)' = cy'$$

$$(y_1 + y_2)' = y_1' + y_2'$$

$$(y_1 \cdot y_2)' = y_1' \cdot y_2 + y_1 \cdot y_2'$$

$$(\frac{y_1}{y_2})' = \frac{y_1' \cdot y_2 - y_1 \cdot y_2'}{y_2^2}$$

Таблица производных
$$(x'')' = nx^{n-1}, \text{ в частности } (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

$$(a^x)' = a^x \ln a, \text{ в частности } (e^x)' = e^x$$

$$(\log_a x)' = \frac{1}{x \ln a}, \text{ в частности } (\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

$$(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1-x^2}}$$

$$(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(\operatorname{arcctg} x)' = \frac{1}{1+x^2}$$

$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$