Análise Complexa e Equações Diferenciais

Problemas propostos para as aulas práticas

Semana 10 e 11 - 23 de Novembro a 4 de Dezembro de 2020

1. Determine a solução geral de $\mathbf{x}' = \mathbf{A}\mathbf{x}$ com,

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$$

b)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

c)
$$\mathbf{A} = \begin{bmatrix} 1 & -4 \\ 1 & -4 \end{bmatrix}$$

2. Seja

$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Resolva o problema de valor inicial $\mathbf{x}' = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

3. Seja

$$\mathbf{A} = \left[\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right]$$

Resolva o problema de valor inicial $\mathbf{x}' = \mathbf{A}\mathbf{x}, \ \mathbf{x}(2) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

4. Seja

$$\mathbf{A} = \left[\begin{array}{ccc} 5 & -1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 4 \end{array} \right]$$

Determine $e^{\mathbf{A}t}$ e resolva o problema de valor inicial $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

1

5. Determine a solução geral do seguinte sistema de equações diferenciais:

$$\begin{cases} x' = 3x - y + 1 \\ y' = 2x + y + 2 \end{cases}$$

Sugestão: Determine primeiro uma solução particular constante.

6. Considere a seguinte matriz:

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

- (a) Calcule $e^{\mathbf{A}t}$.
- (b) Determine a solução do problema de valor inicial

$$\begin{cases} \dot{\mathbf{y}} = \mathbf{A}\mathbf{y} + \mathbf{h}(\mathbf{t}) \\ \mathbf{y}(1) = (1, 1, 1)^T \end{cases}$$

onde
$$\mathbf{h}(\mathbf{t}) = (0, 2e^t, e^t)^T$$
.

7. Considere o seguinte problema de valor inicial

$$\begin{cases} \mathbf{y}' = A\mathbf{y} + \mathbf{b}(t) \\ \mathbf{y}(0) = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T \end{cases}$$

onde

$$\mathbf{A} = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 3 & -2 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b}(t) = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

- (i) Determine a solução geral da equação homogénea.
- (ii) Sendo $\mathbf{y}(t) = [y_1(t) \ y_2(t) \ y_3(t) \ y_4(t)]^T$ a solução do problema não homogéneo, determine $y_2(3)$.
- 8. (i) Determine a solução do sistema linear

$$\begin{cases} x' = x - y \\ y' = 2x - y \end{cases}$$

que satisfaz a condição inicial x(0) = y(0) + 1 = 1.

(ii) Considerando agora o sistema

$$\begin{cases} x' = x - y \\ y' = 2x - y \\ z' = y - (\sin t)z \end{cases}$$

utilize a alínea anterior para determinar a solução que verifica a condição inicial x(0) = y(0) + 1 = z(0) = 1.

2