Lecture 6 – Chomsky Normal Form, Pumping lemma for context-free languages

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 5

- Grammars: general, context-sensitive, context-free, right-linear (regular) – Chomsky hierarchy
- The language of a grammar, derivation
- Right-linear grammars correspond to FA (and so do left/linear)
- Linear grammars are stronger
- Context-free grammars: parse tree and its yield
- (un)ambiguous grammars, inherently ambiguous languages

2.6 Chomsky Normal Form

Chomsky normal form

The Chomsky normal form (ChNF) of a context-free grammar:

- all rules of the form $A \to BC$ or $A \to a$ $(A, B, C \in V, a \in T)$
- no useless symbols

Theorem

For every context-free language L such that $L \setminus \{\epsilon\} \neq \emptyset$ there exists a grammar in ChNF that generates $L \setminus \{\epsilon\}$.

Applications:

- Test membership in L: the CYK algorithm (Sakai 1962)
- Prove the Pumping lemma for context-free languages

Converting to ChNF

Take any context-free grammar for L and simplify (in this order!):

- 1. eliminate ϵ -productions $A \to \epsilon$ [here we lose $\epsilon \in L$]
- 2. eliminate unit productions $A \rightarrow B$
- 3. eliminate useless symbols
 - 3a. unreachable [from the start symbol]
 3b. nongenerating [a word over terminals]

Now we have a reduced grammar. To get to ChNF, we further:

- 4. separate terminals from bodies
- 5. break up longer bodies

Step 1: Eliminate ϵ -productions

A variable $A \in V$ is nullable if $A \Rightarrow^* \epsilon$. An algorithm to find them:

basis: for every ϵ -production $A \to \epsilon$ mark A as nullable **induct:** if $B \to C_1 \dots C_k \in \mathcal{P}$ where all C_i are nullable, B is nullable

To eliminate ϵ -productions: 1. find nullable variables, 2. remove ϵ -productions, 3. process every production $A \to X_1 \dots X_k \in \mathcal{P}$:

- let $J \subseteq \{1, \dots, k\}$ be the positions of all nullable variables
- for every $J'\subseteq J$ create a copy of the production where X_j for $j\in J'$ are deleted, except if $J=\{1,\ldots,k\}$ require $J'\neq\emptyset$

Example:
$$\mathcal{P} = \{S \rightarrow AB, A \rightarrow aAB \mid \epsilon, B \rightarrow ABBA \mid \epsilon\}$$

 $S \rightarrow AB \mid A \mid B \mid A \rightarrow aAB \mid aA \mid aB \mid a$
 $B \rightarrow ABBA \mid ABA \mid ABB \mid BBA \mid AA \mid AB \mid BA \mid BB \mid A \mid B$

Step 2: Eliminate unit productions

Idea: for a unit production $A \rightarrow B$ copy rules for B with head A, but unit productions can be composed, we need transitive closure:

Unit pairs $\mathcal{U} \subseteq V \times V$ are defined as follows:

- $(A, B) \in \mathcal{U}$ for every unit production $A \to B \in \mathcal{P}$
- if $(A, B) \in \mathcal{U}$ and $(B, C) \in \mathcal{U}$, then $(A, C) \in \mathcal{U}$

To eliminate unit productions:

- 1. find all unit pairs $\mathcal U$
- 2. remove all unit productions
- 3. for every unit pair $(A, B) \in \mathcal{U}$ and production $B \to \beta \in \mathcal{P}$ add the production $A \to \beta$ to \mathcal{P}

Step 2: Eliminate unit productions – an example

$$E o T \mid E + T$$

 $F o I \mid (E)$
 $I o a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $T o F \mid T * F$
unit pairs:
 $(E, E), (E, F), (E, I), (E, T),$
 $(F, F), (F, I),$
 $(I, I),$
 $(T, F), (T, I), (T, T)$
the result:
 $E o E + T \mid T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $I o a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $F o (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $T o T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Step 3: Eliminate useless symbols

- $X \in V \cup T$ is a useful symbol (in G) if there exists a derivation of the form $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$ for some $w \in T^*$
- X is useless if it is not useful
- X is generating if $X \Rightarrow^* w$ for some $w \in T^*$
- X is reachable if $S \Rightarrow^* \alpha X \beta$ for some $\alpha, \beta \in (V \cup T)^*$

Observe:

- useful ⇔ generating and reachable
- useless ⇔ nongenerating or unreachable (we eliminate both)
- all terminals are generating

Step 3: Eliminate useless symbols – the algorithm

1. Find all generating symbols:

basis: mark all terminals $a \in T$ as generating

induct: for every production $A \to \beta$ where every symbol in the body β is generating, mark the head A as generating (incl. $A \to \epsilon$)

- 2. Remove all nongenerating symbols and rules containing them
- 3. Find all reachable symbols

basis: mark *S* as reachable

induct: for every production $A \to \beta$ where the head A is reachable mark every symbol in the body β as reachable

- 4. Remove all unreachable symbols and rules containing them
- The order is important! Eliminating nongenerating symbols can create new unreachable symbols, but not vice versa.
- **Example:** eliminate nongenerating *B*, then unreachable *A*

$$S o AB \mid a$$
 $S o a$ $A o b$ $S o a$

Steps 4 & 5: Separate terminals and break up long bodies

Step 4: Separate terminals from bodies

For every $a \in T$, introduce a new variable V_a and the rule $V_a \rightarrow a$.

For every rule $A \to \beta$ with $|\beta| \ge 2$, replace every terminal a by V_a .

Step 5: Break up longer bodies

Replace every rule $A \rightarrow B_1 \dots B_k$ with $k \ge 3$ with:

$$A \to B_1 C_1$$

$$C_1 \to B_2 C_2$$
.

$$C_{k-2} \to B_{k-1}B_k$$

where C_1, \ldots, C_{k-2} are new variables (only used for this purpose).

[Alternatively, instead of a chain use a binary tree.]

Conversion to Chomsky Normal Form

ChNF: only useful symbols and rules $A \rightarrow BC$ or $A \rightarrow a$

Theorem

For every context-free language L such that $L \setminus \{\epsilon\} \neq \emptyset$ there exists a grammar in ChNF that generates $L \setminus \{\epsilon\}$.

Proof.

Take a context-free grammar G for L. Modify it by applying steps 1, 2, 3a, 3b, 4, and 5, in order. Clearly, the result is in ChNF. After step 1 we get G' such that $L(G') = L(G) \setminus \{\epsilon\}$; the remaining steps produce equivalent grammars. Steps 2-5 don't add any ϵ -productions, 3-5 don't add unit productions, 3b-5 don't add nongenerating symbols, 4-5 don't add useless, etc.

Note: If we only apply 1, 2, 3a, and 3b, we get a reduced grammar: only useful symbols, no ϵ -productions, no unit productions.

Example

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

 $F \rightarrow I \mid (E)$

$$T \to F \mid T * F$$
$$E \to T \mid E + T$$

reduce + separate

$$A \rightarrow a$$
, $B \rightarrow b$, $Z \rightarrow 0$, $U \rightarrow 1$, $P \rightarrow +$, $M \rightarrow *$, $L \rightarrow (, R \rightarrow)$

break up longer bodies

2.7 Pumping lemma for context-free

languages

Pumping lemma for context-free languages

Theorem (Pumping Lemma for Context Free Languages)

Let $L \subseteq \Sigma^*$ be context-free. Then there exists $n \in \mathbb{N}$ s.t. for any $z \in L, |z| \ge n$ there are $u, v, w, x, y \in \Sigma^*$ s.t. z = uvwxy and:

(i)
$$|vwx| \le n$$
 (ii) $|vx| > 0$ (iii) $uv^i wx^i y \in L$ for all $i \ge 0$

Proof idea: Take a ChNF grammar for L. If $z \in L$ is long enough, a parse tree for z must contain a path from S to a leaf (terminal) of length |V|+1. Some nonterminal $N \in V$ repeats on this path giving two subtrees with root N: a larger one containing a smaller one. Replace the larger with a copy of the smaller (i=0) or the smaller with a copy of the larger (i=2).

What is long enough? If $|z| > 2^{k-1}$, then the depth of the tree is k+1. (All inner nodes not immediately above a leaf are binary!)

The proof in a picture

The proof

If $L=\emptyset$ and $L=\{\epsilon\}$ trivial, take n=1. Otherwise take a ChNF grammar for L. Set $n=2^{|V|-1}+1$. Let $z\in L$ with $|z|\geq n$.

A parse tree for z contains a path from S to a terminal t of length at least |V|+1. At least two of the last |V|+1 nonterminals on this path must be the same. Let A^1, A^2 be such a pair that is closest to t. Let T^1, T^2 be the subtrees rooted at A^1, A^2 .

The path from A^1 to t is the longest one in T^1 and has length at most (k+1). Thus $|vwx| \le n$.

There are two paths from A^1 (ChNF!): one leads to T^2 , the other to the rest, it must generate at least one letter (no ϵ -productions). Thus |vx|>0.

The proof cont'd

The word z = uvwxy is derived as follows:

- $A^2 \Rightarrow^* w$
- $A^1 \Rightarrow^* vA^2x \Rightarrow^* vwx$
- $S \Rightarrow^* uA^1y \Rightarrow^* uvA^2xy \Rightarrow^* uvwxy$

For i = 0: replace T^1 by T^2

$$S \Rightarrow^* uA^2y \Rightarrow^* uwy$$

For i = 2: replace T^2 by a copy of T^1

$$S \Rightarrow^* uA^1y \Rightarrow^* uvA^1xy \Rightarrow^* uvvA^2xxy \Rightarrow^* uvvwxxy$$

For $i \ge 3$ repeat the above.

Application: proving a laguage is not context-free

Example

The language $L = \{0^n 1^n 2^n \mid n \ge 0\}$ is not context-free.

Suppose for contradiction that it is. Let n be constant from the Pumping lemma. Choose $z=0^n1^n2^n\in L$. Clearly $|z|\geq n$.

The Pumping lemma gives us a split z = uvwxy satisfying (i)–(iii). Since $|vwx| \le n$, the pumped part vx contains at most two of the symbols 0, 1, 2. Pumping will violate equal number of symbols. \square

Example

The language $L = \{0^i 1^j 2^k \mid 0 \le i \le j \le k\}$ is not context-free.

Similar as above, also $z = 0^n 1^n 2^n$, at most two symbols pumped:

- if 0 or 1 are pumped, but 2 is not: pump up (i = 2)
- if 1 or 2 are pumped, but 0 is not: pump down (i = 0)

More examples

Example

 $L = \{0^{j}1^{k}2^{j}3^{k} \mid j, k \ge 0\}$ is not context-free.

Similar as before, choose $z=0^n1^n2^n3^n$, vx must contain some symbol. But from $|vwx| \le n$ we know that it can contain neither both 0 and 2, nor both 1 and 3. In any case, the equal number of symbols 0 and 2 or 1 and 3 is violated.

Example

 $L = \{ww \mid w \in \{0,1\}^*\}$ is not context-free.

Choose $z=0^n1^n0^n1^n$, then $|z|\geq n$. The pumped part can cover neither both blocks of 0s nor both blocks of 1s. Four cases to consider: vx contains a symbol from the 1st block of 0s, 1st block of 1s, 2nd 0s, 2nd 1s. In all cases we get a violation.

It is not a characterization

The Pumping lemma is again only an implication, not equivalence:

Example

 $L = \{a^i b^j c^k d^\ell | i = 0 \text{ or } j = k = \ell\}$ can be pumped. But it is not context-free.

 $i = 0: b^j c^k d^l$ can be pumped in any letter $i > 0: a^i b^n c^n d^n$ can be pumped in a^*

What to do in such cases?

- Ogden's lemma: generalize Pumping lemma, mark some of the letters, some marked symbol is pumped
- use closure properties of context-free languages

Summary of Lecture 6

- ullet Reducing a grammar: removing ϵ -productions, unit productions, useless symbols
- Chomsky Normal Form of a context-free grammar
- Pumping lemma for context-free languages, application: proving non-context-freeness