

Therapie angeborener thrombozytärer Erkrankungen

Interdisziplinäre S2k-Leitlinie der Ständigen Kommission Pädiatrie der Gesellschaft für Thrombose- und Hämostaseforschung

Langversion

AWMF Register-Nummer 086-004

ICD10-Code
Thrombozytopathie D69.1

In Kooperation mit der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF)

INHALTSVERZEICHNIS

I.	L	Leitlinieninformation	4
1		Mitglieder der Konsenusgruppe	4
		1.1. Leitlinienkoordinatoren/Ansprechpartner	
	1	1.2. Weitere beteiligte Leitlinienautoren/innen	
2	•	Beteiligte Fachgesellschaften	10
3	•	Methodische Begleitung	11
4		Andere Beteiligte	11
5	•	Leitliniendokumente	11
II.	L	Leitlinienverwendung	11
1		Geltungsbereich	11
2		Gültigkeitsdauer und Aktualisierung	12
III.		Leitlinienmethodik	12
1		Grundlagen	12
2		Empfehlungsgraduierung	12
3		Statements	13
4		Konsensusstärke und -findung	13
5	•	Zeitliche Abfolge der Leitlinienerstellung	13
1.	P	Problemstellung	16
2.	P	Patientenperspektive	16
3.	E	Einleitung	17
4.	В	Blutungsprophylaxe	17
4	.1	I. Allgemeine Maßnahmen	18
4	.2	2. Lokale Maßnahmen	19
4	.3	3. Antifibrinolytika	19
4	.4	1. Desmopressin (DDAVP)	21
4	.5	5. Rekombinanter Faktor VIIa (rFVIIa) und Thrombozytenkonzentrate (TK)	23
4	.6	5. Hormone	23
4	.7	7. Thrombopoetinrezeptor-Agonisten (TPO-RA)	24
	4	4.7.1. Anwendung von TPO-RA bei angeborenen thrombozytären Erkrankungen	25

	4.7.	1.1. MYH9-assozierte Erkrankungen	25
	4.7.	1.2. Wiskott-Aldrich-Syndrom (WAS)	25
	4.7.	1.3. Kongenitale amegakaryozytäre Thrombozytopenie (CAMT)	26
	4.7.	1.4. ANKRD26-bedingte Thrombozytopenie	26
	4.8.	Allogene Stammzelltransplantation	26
	4.9.	Gentherapie	26
	4.10.	Splenektomie	26
5	. Aku	te Blutung	28
	5.1.	Lokale Maßnahmen	28
	5.2.	Stufenplan	28
	5.3.	Thrombozytenkonzentrate (TK)	28
	5.3.	Herstellung und Eigenschaften	29
	5.3.	2. Transfusion	29
	5.3.	3. Wahl des Thrombozytenkonzentrates	29
	5.3.	4. Dosierung	29
	5.3.	5. Nebenwirkungen	30
	5.3.	6. Monitoring	30
	5.4.	Antifibrinolytika und Hormone	30
	5.5.	Rekombinanter Faktor VIIa (rFVIIa)	30
6	. Spe	zielle Blutungen und Blutungsrisiken	31
	6.1.	Epistaxis, Gingiva und Tonsillenblutung	31
	6.2.	Menorrhagie	31
	6.3.	Zahnärztliche Eingriffe	31
	6.4.	Chirurgische Eingriffe	31
	6.5.	Arznei-, Wirk-, und Inhaltsstoffe mit Einfluss auf die Thrombozytenfunktion	31
Α	bkürzu	ngsverzeichnis	36
T	abeller	nverzeichnis	38
A	bbildu	ngsverzeichnis	38
V	erzeich	nnis der Handlungsempfehlungen	38
E	rklärur	g über Interessenskonflikte	40
Li	teratu	r	47

I. Leitlinieninformation

1. Mitglieder der Konsenusgruppe

1.1. Leitlinienkoordinatoren/Ansprechpartner

Die hier genannten Koordinatoren haben maßgeblich an der Erstellung und Aktualisierung der Leitlinie beigetragen.

Inhaltliche Fachfragen zu den in der Leitlinie behandelten Themen sind zunächst ausschließlich an sie zu adressieren.

Tabelle 1: Federführende und koordinierende Leitlinienautoren (*), federführend TPO-RA (Kapitel 4.7.1) (**)

Werner Streif*	Ralf Knöfler*	Oliver Meyer**
Department für Kinder- und Jugendheilkunde; Anichstr. 35; A-6020; Innsbruck	Universitätsklinikum Dresden Klinik/Poliklinik für Kinder- und Jugendmedizin, Bereich Hämatologie, Onkologie; Fetscherstr. 74; 01307; Dresden	Charité Berlin; Zentrum für Transfusionsmedizin und Zelltherapie; Hindenburgdamm 30; 12203; Berlin
Werner.Streif@i-med.ac.at	Ralf.Knoefler@uniklinikum- dresden.de	oliver.meyer@charite.de

1.2. Weitere beteiligte Leitlinienautoren/innen

In den nachstehenden Tabellen werden die Leitlinienautoren der Erstfassung 2014 (Tabelle 2) und der Aktualisierung 2020 (Tabelle 3) gelistet.

Tabelle 2: Leitlinienautoren der Erstfassung 2014

Andres, Oliver	andres_o@ukw.de	Universitätsklinikum Würzburg, Kinderklinik und Poliklinik; Josef-Schneider- Straße 2; 97080; Würzburg
Bakchoul, Tamam	bakchoult@uni-greifswald.de	Institut für Immunologie und Transfusionsmedizin Abteilung Transfusionsmedizin Greifswald; Sauerbruchstr. 1; 17489; Greifswald

Bergmann, Frauke	Frauke.bergmann@amedes- group.com	Amedes MVZ wagnerstibbe für Laboratoriumsmedizin; Georgstr. 50; 30159; Hannover
Beutel, Karin	Karin.Beutel@klinikum- muenchen.de	Kinderklinik München Schwabing; Pädiatrische Hämatologie und Onkologie; Kölner Platz 1; 80804; München
Dittmer, Rita	r. dittmer@asklepios.com	Asklepios Gesundheitszentrum Labor Altona; Paul-Ehrlich-Straße 1; 22763; Hamburg
Gebhart, Johanna (geb. Haselböck)	johanna.gebhart@meduniwien.a c.at	Klinik für Innere Medizin I; Abteilung für Hämatologie und Hämostaseologie; Medizinische Universität Wien; Währinger Gürtel 18- 20; A-1090; Wien
Gehrisch, Siegmund	Siegmund.Gehrisch@uniklinikum- dresden.de	Institut für klinische Chemie und Laboratoriumsmedizin; Fetscherstr. 74; 01307; Dresden
Gottstein, Saskia	saskia.gottstein@vivantes.de	Klinik für Innere Medizin- Angiologie, Hämostaseologie, Vivantes-Klinikum im
		Friedrichshain; Landsberger Allee 49; 10249; Berlin
Halimeh, Susan	susan.halimeh@gzrr.de	· · · · · · · · · · · · · · · · · · ·
Halimeh, Susan Hassenpflug, Wolf	susan.halimeh@gzrr.de hassenpflug@uke.uni- hamburg.de; hassenpflug@uke.de	Allee 49; 10249; Berlin Gerinnungszentrum Rhein- Ruhr; Königstr. 13; 47051;
	hassenpflug@uke.uni- hamburg.de;	Allee 49; 10249; Berlin Gerinnungszentrum Rhein- Ruhr; Königstr. 13; 47051; Duisburg Universitätsklinikum Hamburg-Eppendorf Klinik und Poliklinik für Päd. Hämatologie und Onkologie; Martinistr. 52; 20246;
Hassenpflug, Wolf	hassenpflug@uke.uni- hamburg.de; hassenpflug@uke.de	Allee 49; 10249; Berlin Gerinnungszentrum Rhein- Ruhr; Königstr. 13; 47051; Duisburg Universitätsklinikum Hamburg-Eppendorf Klinik und Poliklinik für Päd. Hämatologie und Onkologie; Martinistr. 52; 20246; Hamburg Universitätsklinikum des Saarlandes Klinik für Päd. Onkologie und Hämatologie; Kirrberger Str.; Gebäude 9;

King, Stephanie	King.Stephanie@mh-hannover.de	Medizinische Hochschule Hannover; Pädiatrische Hämatologie, Hämostaseologie, Onkologie; Carl-Neuberg-Str. 1; 30625; Hannover
Kirchmaier, Carl M.	carl.kirchmaier@dkd- wiesbaden.de	Deutsche Klinik für Diagnostik Wiesbaden; Auklammallee 33; 65191; Wiesbaden
Krause, Manuela	manuela.krause@helios- kliniken.de	Sektion Innere Medizin I; Deutsche Klinik für Diagnostik Wiesbaden; Auklammallee 33; 65191; Wiesbaden
Kreuz, Wolfhart	info@hzrm.de	HZRM Hämophilie-Zentrum Rhein Main GmbH; Hessenring 13a; 64546; Mörfelden
Lösche, Wolfgang	wolfgang.loesche@med.uni- jena.de	Universitätsklinikum Jena Klinik für Anästhesiologie und Intensivtherapie Forschungszentrum Lobeda; Erlanger Allee 101; 07747; Jena
Mahnel, René	r.mahnel@gmx.de	Hämostaseologische Praxis und Labor zur Diagnostik und Therapie von Blutgerinnungsstörungen; Gartenstr. 134; 60596; Frankfurt/M.
Nimtz-Talaska, Antje	info@kinderrheuma-ffo.de	Ärztehaus Am Kleistpark 1; Am Kleistpark 1; 15230; Frankfurt/O.
Olivieri, Martin	martin.olivieri@med.uni- muenchen.de	Dr. von Haunersches Kinderspital; Zentrum für Hämostaseologie; Lindwurmstr. 4; 80337; München
Rott, Hannelore	Hannelore.Rott@gzrr.de	Gerinnungszentrum Rhein- Ruhr; Königstr. 53; 47051; Duisburg
Schambeck, Christian M.	christian.schambeck@haemostasi kum.de;	Hämostatikum München; Hadernstraße 10; 81375; München
Schedel, Angelika	angelika.schedel@medma.uni- heidelberg.de	Universitätsklinik Mannheim; Institut für Transfusionsmedizin und Immunologie; Friedrich-Ebert- Straße 107; 68167; Mannheim

Schilling, Freimut H.	f.schilling@klinikum-stuttgart.de	Klinikum Stuttgart- Olgahospital; Bismarckstraße 8; 70176; Stuttgart
Schmugge, Markus	markus.schmugge@kispi.uzh.ch	Leitung Hämatologie; Universitäts-Kinderspital Zürich; Steinwiesstr. 75; CH- 8032; Zürich
Schneppenheim, Reinhard	schneppenheim@uke.de	Universitätsklinikum Hamburg-Eppendorf Klinik und Poliklinik für Päd. Hämatologie und Onkologie; Martinistr. 52; 20246; Hamburg
Scholz, Ute	u.scholz@labor-leipzig.de	MVZ Labor Dr. Reising- Ackermann und Kollegen; Strümpellstrasse 40; 04289; Leipzig
Scholz, Thomas	thomas.scholz@dkd- wiesbaden.de	Deutsche Klinik für Diagnostik Wiesbaden; Aukammallee 33; 65191; Wiesbaden
Schulze, Harald	harald.schulze@charite.de; harald.schulze@uni- wuerzburg.de	LPMB, Charité - Berlin / Universität Würzburg; Forum 4, Augustenburger Platz 1; 13353; Berlin
Siegemund, Annelie	gerinnungssprechstunde@labor- leipzig.de	Labor Dr. Reising-Ackermann und Partner; Strümpellstr. 40; 04289; Leipzig
Strauß, Gabriele	gabriele.strauss@charite.de	Charité Campus Virchow; Augustenburgerplatz 1; 13353; Berlin
Sykora, Karl W.	Sykora.Karl-Walter@MH- Hannover.de	Medizinische Hochschule Hannover; Carl-Neuberg-Str. 1; 30625; Hannover
Wermes, Cornelia	cwe@werlhof-institut.de	Werlhofinstitut; Schillerstrasse 23; 30159; Hannover
Wiegering, Verena	Wiegering_v@ukw.de	Universitäts-Kinderklinik Würzburg; Josef-Schneider- Str. 2; 97080; Würzburg
Wieland, Ivonne	Wieland.lvonne@MH- Hannover.de	Medizinische Hochschule Hannover; Carl-Neuberg-Str. 1; 30625; Hannover
Zieger, Barbara	barbara.zieger@uniklinik- freiburg.de	Universitätsklinikum Freiburg Zentrum für Kinder- und Jugendmedizin; Mathildenstraße 1; 79106; Freiburg

Zotz, Rainer B.	zotz@hemo-stasis.de	Centrum für
		Blutgerinnungsstörungen und
		Transfusionsmedizin;
		Immermannstr. 65 A; 40210;
		Düsseldorf

Tabelle 3: Leitlinienautoren der Aktualisierung 2020

Althaus, Karina	karina.althaus@med.uni- tuebingen.de	Zentrum für Klinische Transfusionsmedizin; Otfried Müller-Straße 4/1; 72076; Tübingen
Ballmaier, Matthias	Ballmaier.Matthias@mh- hannover.de	Medizinische Hochschule Hannover; Carl-Neuberg-Str. 1; 30625; Hannover
Bergmann, Frauke	Frauke.bergmann@amedes- group.com	Amedes MVZ wagnerstibbe für Laboratoriumsmedizin; Georgstr. 50; 30159; Hannover
Beutel, Karin	karin.beutel@mri.tum.de	Kinderklinik München Schwabing; Städtisches Klinikum München GmbH und Klinikum München Rechts der Isar; TU München Kölner Platz 1; 80804; München
Cario, Holger	holger.cario@uniklinik-ulm.de	Klinik für Kinder- und Jugendmedizin; Universitätsklinikum Ulm; Eythstr. 24; 89075; Ulm
Dame, Christof	christof.dame@charite.de	Klinik für Neonatologie; Charité Berlin; Augustenburger Platz 1; 13353; Berlin
Eberl, Wolfgang	w.eberl@klinikum- braunschweig.de	Klinikum Braunschweig Kinderklinik; Holwedestr. 16; 38118; Braunschweig
Gebetsberger, Jennifer	jennifer.gebetsberger@i- med.ac.at	Department für Kinder- und Jugendheilkunde; Anichstr. 35; A-6020; Innsbruck
Gebhart, Johanna	johanna.gebhart@meduniwien. ac.at	Klinik für Innere Medizin I; Abteilung für Hämatologie und Hämostaseologie; Medizinische Universität Wien; Währinger Gürtel 18- 20; A-1090; Wien

Halimeh, Susan	susan.halimeh@gzrr.de	Gerinnungszentrum Rhein- Ruhr; Königstr. 13; 47051; Duisburg
Holzhauer, Susanne	susanne.holzhauer@charite.de	Charité Berlin; Pädiatrische Hämatologie/Onkologie; Augustenburger Platz 1; 13353; Berlin
Jurk, Kerstin	kerstin.jurk@unimedizin- mainz.de	Universitätsmedizin der Johannes Gutenberg- Universität Mainz; Langenbeckstr. 1; 55131; Mainz
Kehrel, Beate	kehrel@uni-muenster.de	Universitätsklinikum Münster; Experimentelle und klinische Hämostaseologie; Mendelstr. 11; 48149; Münster
Krause, Manuela	manuela.krause@helios- gesundheit.de	Deutsche Klinik für Diagnostik Helios Wiesbaden; Auklammallee 33; 65191; Wiesbaden
Krause, Michael	m.krause@labor-leipzig.de	MVZ Labor Leipzig; Strümpellstr. 40; 04289; Leipzig
Manukjan, Georgi	Manukjan_G@UKW.de	Universitätsklinikum Würzburg; Josef-Schneider- Str. 2; 97080; Würzburg
Olivieri, Martin	martin.olivieri@med.uni- muenchen.de	Dr. von Haunersches Kinderspital; Zentrum für Hämostaseologie; Lindwurmstr. 4; 80337; München
Schmugge, Markus	markus.schmugge@kispi.uzh.ch	Leitung Hämatologie; Universitäts-Kinderspital Zürich; Steinwiesstr. 75; CH- 8032; Zürich
Schulze, Harald	harald.schulze@uni- wuerzburg.de	Universitätsklinikum Würzburg; Josef-Schneider- Str. 2 Haus D15; 97080; Würzburg
Siegemund, Annelie	anneliesiegemund@web.de	MVZ Limbach Magdeburg; Halberstädler Str. 49; 39112; Magdeburg

Stockklausner, Clemens	clemens.stockklausner@klinikum- gap.de	Klinikum Garmisch- Partenkirchen; Kinder- & Jugendmedizin; Auenstr. 6; 82467; Garmisch- Partenkirchen
Strauss, Gabriele	gabriele.strauss@helios- gesundheit.de	Helios Klinikum Berlin-Buch; Kinder- & Jugendheilkunde; Schwanebecker Chaussee 50; 13125; Berlin
Wiegering, Verena	Wiegering_v@ukw.de	Universitäts-Kinderklinik Würzburg; Josef-Schneider- Str. 2; 97080; Würzburg
Zieger, Barbara	barbara.zieger@uniklinik- freiburg.de	Universitätsklinikum Freiburg; Zentrum für Kinder- und Jugendmedizin; Mathildenstraße 1; 79106; Freiburg

2. Beteiligte Fachgesellschaften

Der Entwurf der Leitlinie ist im Auftrag der Ständigen Kommission Pädiatrie der Gesellschaft für Thrombose- und Hämostaseforschung (GTH) erstellt worden. Zur Teilnahme eingeladen wurden Vertreter für die

- Deutsche Gesellschaft für Transfusionsmedizin (DGTI); Vertreter: Tamam Bakchoul
- Berufsverband der Deutschen Hämostaseologen (BDDH); Vertreter: Michael Krause; Stellvertreterin: Manuela Krause
- Deutsche Hämophiliegesellschaft (DHG); Vertreterin: Cornelia Wermes
- Deutsche Gesellschaft für Kinder- und Jugendmedizin (DGKJ); Vertreter: Ralf Knöfler
- Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH); Vertreter: Holger Cario
- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie (DGHO); Vertreterin: Frauke Bergmann
- Deutsche Gesellschaft für Innere Medizin (DGIM); Vertreter: Jürgen Floege
- Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI); Vertreter: Patrick Möhnle; Stellvertreter: Oliver Grottke
- Deutsche Gesellschaft für Neonatologie und P\u00e4diatrische Intensivmedizin (GNPI); Vertreter: Christof Dame
- Deutsche Schlaganfall Gesellschaft (DSG); Vertreter: Martin Olivieri
- Österreichische Gesellschaft für Kinder- und Jugendheilkunde (ÖGKJ); Vertreter: Werner Streif
- Österreichische Gesellschaft für Innere Medizin (ÖGIM); Vertreterin: Johanna Gebhart
- Österreichische Gesellschaft für Laboratoriumsmedizin und Klinische Chemie (ÖGLMKC); Vertreter: Florian Prüller

3. Methodische Begleitung

Die Methodische Begleitung erfolgte durch Frau Dr. S. Blödt bzw. durch Frau Dr. M. Nothacker, Berlin, seitens der Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften e. V. (AWMF).

4. Andere Beteiligte

Patientengruppen wurden formal nicht involviert, die Hauptautoren sind jedoch ärztliche Berater einer großen Patienten - Selbsthilfegruppe mit Gerinnungsstörungen. Für die nächste Aktualisierung dieser Leitlinie ist geplant, Patientenvertreter/-vertreterinnen direkt zu beteiligen.

5. Leitliniendokumente

Dieses Leitliniendokument wird als Langversion bezeichnet. Um den Umgang des Leitlinieninhalts für nicht medizinische Interessengruppen (Patienten, Laien) oder spezielle Situationen (Praxisalltag, Vorträge) zu erleichtern, liegt auch eine Kurzversion vor.

Nach den Vorgaben des AWMF-Regelwerks (Version 1.1) ist für die Erstellung dieser Leitlinie eine Interessenskonflikterklärung (AWMF-Formular zur Erklärung von Interessenkonflikten im Rahmen von Leitlinienvorhaben; Stand 23.05.2018) nötig. Diese wurde von allen Leitlinienautoren vollständig ausgefüllt und unterschrieben, dem AWMF zur Einsicht vorgelegt und bei der Interessenskonfliktbeauftragten J. Gebetsberger archiviert. Die Interessenkonflikte aller Mitwirkenden wurden im Zuge der zweiten Konsensuskonferenz (siehe Kapitel "Zeitliche Abfolge der Leitlinienerstellung", Seite 13) mit allen Beteiligten weitere abschließende Prüfung erfolgte zudem diskutiert. Interessenskonfliktbeauftragte J. Gebetsberger. Eine tabellarische Zusammenfassung der Interessenskonflikte aller Leitlinienautoren befindet sich im Anhang (auf Seite 40) der Leitlinie.

II. Leitlinienverwendung

1. Geltungsbereich

Die Leitlinie betrifft die Therapie angeborener thrombozytärer Erkrankungen bei Kindern, Jugendlichen und Erwachsenen.

Insbesondere die Entscheidungskriterien zu Auswahl und Einsatz geeigneter therapeutischer Maßnahmen in Abhängigkeit von der Art der Thrombozytenfunktionsstörung, assoziierter Thrombozytopenie, klinischer Situation, Alter und Geschlecht sind Gegenstand des Konsensus. Die Leitlinie richtet sich an Fachärzte/Fachärztinnen für Kinder- und Jugendmedizin, Innere Medizin, Transfusionsmedizin, Laboratoriumsmedizin, Anästhesie und Intensivmedizin und dient zur Information für alle in Kliniken und Praxen tätige Ärzte, die in die Versorgung von Patienten mit angeborenen thrombozytären Erkrankungen involviert sind.

2. Gültigkeitsdauer und Aktualisierung

Datum der letzten inhaltlichen Überarbeitung und Status

Die Leitlinie ist bis zur nächsten Aktualisierung oder längstens bis Ende 04/2025 gültig.

Aktualisierungsverfahren

Eine Überprüfung des Aktualisierungsbedarfs erfolgt kontinuierlich. Gegebenenfalls wird von der Leitliniengruppe ein Aktualisierungsverfahren vorzeitig eingeleitet. Bei weiterhin aktuellem Wissenstand kann ebenso die Dauer auf maximal 5 Jahre verlängert werden. Verantwortlich für die Aktualisierung der Leitlinie sind die Leitlinienkoordinatoren.

III. Leitlinienmethodik

1. Grundlagen

Die Methodik zur Erstellung dieser Leitlinie wird durch die Vergabe der Stufenklassifikation vorgegeben. Das AWMF-Regelwerk (Version 1.1) gibt entsprechende Regelungen vor. Es wird zwischen der niedrigsten Stufe (S1), der mittleren Stufe (S2) und der höchsten Stufe (S3) unterschieden. Die niedrigste Stufe definiert sich durch eine Zusammenstellung von Handlungsempfehlungen, welche durch eine nicht repräsentative Expertengruppe erstellt wird. Seit 2004 wird die Stufe S2 in die systematische Evidenzrecherche-basierte (S2e) und die strukturelle Konsens-basierte Unterstufe (S2k) untergliedert. In der höchsten Stufe S3 vereinigen sich beide Verfahren.

Diese Leitlinie entspricht der Stufe: S2k

Quelle: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF)- Ständige Kommission Leitlinien. AWMF-Regelwerk "Leitlinie". Version 1.1 von 2013.

https://www.awmf.org/leitlinien/awmf-regelwerk.html

2. Handlungsempfehlungen

Zur Vereinfachung und besseren Übersicht wurden Handlungsempfehlungen abgeleitet, welche sich in drei Abstufungen mit jeweils unterschiedlichen Stärken der sprachlichen Ausdrucksweise unterscheiden (siehe Tabelle 4).

Tabelle 4: Graduierung von Handlungsempfehlungen

Symbolik	Empfehlungsstärke	Ausdruck
ሰ ሰ / ሀሀ	Starke Empfehlung	Soll / Soll nicht
↑ / ↓	Einfache Empfehlung	Sollte / Sollte nicht

\Leftrightarrow	Offene Empfehlung	Kann / Kann nicht

Für die Wahl des Empfehlungsgrades wurden neben der Evidenzklasse der zugrundeliegenden Literatur die klinische Erfahrung der Autoren berücksichtigt.

3. Statements

Sollten fachliche Aussagen nicht als Handlungsempfehlung, sondern als einfache Darlegung Bestandteil dieser Leitlinie sein, werden diese als "Statement" bezeichnet.

4. Konsensusstärke und -findung

Im Rahmen einer strukturellen Konsensusfindung (S2k/S3-Niveau) stimmen die berechtigten Teilnehmer der einzelnen Sitzungen die ausformulierten Empfehlungen und Statements ab. Hierbei kann es zu signifikanten Änderungen von Formulierungen etc. kommen. Abschließend wird abhängig von der Anzahl der Teilnehmer eine Stärke des Konsensus ermittelt.

Tabelle 5: Einteilung zur Zustimmung der Konsensusbildung

Symbolik	Konsensusstärke	Prozentuale Übereinstimmung
+++	Starker Konsens	Zustimmung von > 95% der Teilnehmer
++	Konsens	Zustimmung von > 75-95% der Teilnehmer
+	Mehrheitliche Zustimmung	Zustimmung von > 50-75% der Teilnehmer
-	Kein Konsens	Zustimmung von < 50% der Teilnehmer

5. Zeitliche Abfolge der Leitlinienerstellung

Die ursprüngliche Leitlinienversion war bis 04/2019 gültig. Eine Aktualisierung wurde bei der AWMF am 25.04.2019 angemeldet. Im Zuge der Aktualisierung wurden insgesamt drei Konsensuskonferenzen durchgeführt. Eine fand am 10. Oktober 2018, im Beisein von Frau Dr. S. Blödt seitens der AWMF, in München statt. Im Zuge dieser Konferenz wurden etwaige Kapitelüberarbeitungen und Empfehlungen neu formuliert, besprochen und diskutiert. Das formale Konsenusfindungsverfahren fand an der zweiten Konsenuskonferenz am 9. September 2019 in Wiesbaden statt und wurde von Frau Dr. Monika Nothacker (AWMF) moderiert. Im Rahmen der Diskussion zu Beginn der Konferenz wurden die Interessenskonflikte aller Beteiligten diskutiert. Als Interessenkonflikte wurden direkte finanzielle Verbindungen im Sinne einer Berater- oder Gutachtertätigkeit für die Industrie mit thematischen Bezug festgelegt. Angesichts der protektiven Faktoren (neutrale Moderation, repräsentativer Kreis professioneller Stakeholder) wurden die vorhandenen Interessenkonflikte im Ausmaß als gering bewertet. Enthaltungen waren deshalb nicht erforderlich. Zudem wurden weitere Empfehlungen diskutiert und schließlich verabschiedet.

Die dritte Konsensuskonferenz fand am 20. Februar 2020 im Zuge der Jahrestagung der Gesellschaft für Thrombose und Hämostaseforschung (GTH) in Bremen statt. Die Konsensuskonferenzen wurden in Form eines nominalen Gruppenprozesses durchgeführt und der Ablauf der Konsensusfindung gestaltete sich wie folgt:

- 1. Präsentation der zu konzertierenden Inhalte mit Gelegenheit zu Rückfragen.
- 2. Stellungnahmen im Umlaufverfahren durch die Moderatorin.
- 3. Erfassung von begründeten Änderungsvorschlägen durch die Leitlinienkoordinatoren.
- 4. Abstimmung ggf. des Erstentwurfs und der Alternativen.
- 5. Falls kein Konsens erreicht wurde, Feststellung der Diskussionspunkte mit Debatte und Erarbeitung von Lösungsvorschlägen.
- 6. Endgültige Abstimmung.

Abschließend wurde allen Mitgliedern die Leitlinie und die Aktualisierung in ihrer finalen Form zur Beurteilung und Verabschiedung vorgelegt. Es gab keine weiteren Änderungsvorschläge und so wurde die aktualisierte Leitlinie in starkem Konsens (100%) konzertiert.

Tabelle 6: Teilnehmer der jeweiligen Konferenzen, die im Rahmen der Leitlinienaktualisierung stattgefunden haben.

Name	Konsensuskonferenz	Konsenuskonferenz	Konsenuskonferenz,
	München,	Wiesbaden,	Bremen, 20.02.2020
	10.10.2018	09.09.2019	,
Althaus, Karina	✓	✓	✓
Andres, Oliver	✓	✓	
Bakchoul, Tamam	✓	✓	✓
Ballmaier, Matthias	✓	✓	✓
Bergmann, Frauke	✓		✓
Beutel, Karin	✓		
Blödt, Susanne	✓		
Bugert, Peter			✓
Cario, Holger	✓	✓	
Dame, Christof	✓		✓
Eber, Stefan	✓		
Eberl, Wolfgang	✓		✓
Gebetsberger, Jennifer		✓	✓
Gebhart, Johanna			✓
Halimeh, Susan	✓		
Holzhauer, Susanne	✓		✓
Hütker, Sebastian	✓		✓
Jurk, Kerstin	✓	✓	✓
Knöfler, Ralf	✓	✓	✓
Krause, Manuela	✓	✓	✓
Krause, Michael	✓	✓	✓
Kurnik, Karin	✓		
Manjukan, Georgi	✓	✓	✓
Meyer, Oliver	✓	✓	✓

Nothacker, Monika		✓	
Olivieri, Martin	\checkmark	\checkmark	\checkmark
Prüller, Florian	\checkmark	✓	
Schmugge, Markus		✓	
Schulze, Harald	\checkmark	✓	✓
Siegemund, Annelie			✓
Sigl-Krätzig, Michael	\checkmark		
Stockklausner,		✓	
Clemens			
Strauß, Gabriele	✓	✓	
Streif, Werner	\checkmark	\checkmark	\checkmark
Tiebel, Oliver		✓	
Wermes, Cornelia	\checkmark	✓	✓
Wieland, Ivonne	✓	✓	✓
Zieger, Barbara	✓	✓	✓

1. Problemstellung

Angeborene thrombozytäre Erkrankungen stellen eine heterogene Gruppe von Erkrankungen dar, die als Teil eines Symptomenkomplexes ("Syndrom") oder auch isoliert als hämorrhagische Diathese auftreten. Die Erkrankungen sind häufig schwierig zu diagnostizieren, und es gelingt oft nicht, sie einem beschriebenen klassifizierten Krankheitsbild zuzuordnen [1, 2]. Angeborene Störungen der Thrombozytenfunktion, insbesondere ohne Erniedrigung der Thrombozytenzahlen unter 100 x 10⁹/l, bleiben häufig bis zum Eintritt von Blutungssymptomen unentdeckt. Klinische Folge einer thrombozytären Erkrankung ist in den meisten Fällen eine leichte bis moderate Blutungsneigung. Durch Kofaktoren, wie Medikamente, Operationen oder andere Herausforderungen der Hämostase, kann es zu einer klinisch relevanten Blutung kommen. Typische Symptome sind Epistaxis, Petechien, Hämatome, Schleimhautblutungen, perioperative Blutungen und Menorrhagien. Blutungen treten oft plötzlich und unvorhergesehen auf.

Zur Diagnosestellung empfiehlt sich eine Stufendiagnostik. Diesbezüglich ist auf die vorliegende Leitlinie AWMF Register-Nr. 086-003 zu verweisen. Eine Klassifizierung der zugrundeliegenden Störung kann für die Auswahl und den Einsatz prophylaktischer und therapeutischer Maßnahmen entscheidend sein.

Trotz der Heterogenität der angeborenen thrombozytären Erkrankungen sind die therapeutischen Möglichkeiten zur Blutungsprophylaxe und -behandlung begrenzt. Die richtige Auswahl und der korrekte Einsatz dieser Maßnahmen entscheiden wesentlich über Behandlungserfolg und mögliche Komplikationen.

2. Patientenperspektive

Die Leitlinie wurde zur Durchführung einer Blutungsprophylaxe und -behandlung angeborener thrombozytärer Erkrankungen entwickelt.

Ziele dieser Leitlinien sind:

- 1) Der Patient soll von der Behandlung profitieren.
- 2) Die Behandlung soll orts- und zeitnah möglich sein.
- 3) Die Behandlung soll nur so viele Eskalationsschritte, wie unbedingt notwendig, umfassen.
- 4) Dem Behandler sollen umfassende Informationen über rationale Behandlungsmethoden verfügbar gemacht werden.
- 5) Die Leitlinie soll die Erarbeitung lokaler SOPs erleichtern.

3. Einleitung

Angeborene thrombozytäre Erkrankungen sind eine komplexe Gruppe von Erkrankungen, die meistens mit einer milden bis moderaten Blutungsneigung einhergehen. Einige Erkrankungen, wie die Thrombasthenie Glanzmann und das Bernard-Soulier-Syndrom, können sich schon im Neugeborenenalter und im frühen Kindesalter mit einer spontanen Blutung manifestieren. Die Blutungsneigung bei angeborenen thrombozytären Erkrankungen ist zwar grundsätzlich schwer vorhersehbar, sie nimmt aber typischerweise nach der Pubertät ab. Bei Mädchen manifestiert sich eine vermehrte Blutungsneigung besonders häufig beim Eintritt der Menarche. Im Erwachsenenalter stehen Blutungen bei einer Herausforderung des Gerinnungssystems, wie invasiven Eingriffen, insbesondere Operationen und Traumata, als Manifestation der thrombozytären Erkrankung im Vordergrund.

Die vorliegende Leitlinie soll die Blutungsprophylaxe und -behandlung von angeborenen thrombozytären Erkrankungen erleichtern. Zur rationalen Behandlung ist eine grundlegende Beurteilung der vorliegenden Störung notwendig [2]. Es wird an dieser Stelle ausdrücklich auf die Leitlinie AWMF Register-Nr. 086-003 verwiesen. Es wurden einzelne Kapitel erarbeitet. Soweit sinnvoll und notwendig wird auf lokalisations-, alters- und geschlechtsspezifische Unterschiede hingewiesen.

Maßnahmen zur Blutungsprophylaxe und Behandlung der akuten Blutung werden gegliedert und bewertet dargestellt: Allgemeine Maßnahmen, lokale Maßnahmen, Medikamente, Hormone, Thrombozytentransfusion und weitere Maßnahmen. Zudem wird in einem gesonderten Kapitel auf spezielle Blutungen und Blutungsrisiken eingegangen.

Die Leitlinie ersetzt nicht die individuellen Behandlungsentscheidungen durch einen erfahrenen Arzt. Bei komplexen Krankheitsbildern ("Syndromen") müssen krankheitsspezifischen Probleme im Kontext betrachtet und die Behandlungsmaßnahmen modifiziert werden.

Die Leitlinie ist nicht geeignet für Patienten, die eine Thrombozytenfunktionmodifizierende/-hemmende Behandlung erhalten.

4. Blutungsprophylaxe

Eine Blutungsprophylaxe erfolgt vor allem vor invasiven Eingriffen bei Patienten mit bekannter Erkrankung. Auf Menorrhagie und andere Blutungslokalisationen wird im Kapitel 6

Spezielle Blutungen und Blutungsrisiken" eingegangen [3-6]. Zur kontinuierlichen Prophylaxe liegen keine Informationen vor.

4.1. Allgemeine Maßnahmen

Immunisierungen sollen bevorzugt subkutan und gemäß den aktuellen Impfempfehlungen erfolgen. Informationen dazu sind unter den jeweiligen Homepages des Österreichischen Bundesministeriums für Soziales, Gesundheit, Pflege und Konsumentenschutz (https://broschuerenservice.sozialministerium.at/Home/Download?publicationId=506) und des Robert Koch Instituts (RKI; https://www.rki.de) abrufbar.

Die Indikation zur Gabe nichtsteroidaler Antirheumatika (NSAR) und selektiver Serotonin-Wiederaufnahmehemmer (SSRI) soll streng gestellt werden. Auf Acetylsalicylsäure (ASS)haltige Medikamente soll verzichtet werden.

Die Patienten sollen zur sorgfältigen Zahn-/ Mundhygiene als Blutungsprophylaxe geschult und angehalten werden.

Bei elektiven Eingriffen soll ein interdisziplinärer Behandlungsplan erstellt werden. Zur Erhaltung oder Wiederherstellung der Hämostase ist ein konsequenter Ersatz von Blutverlusten und Korrektur einer Hämodilution mit dem Ziel der Stabilisierung des Hämoglobins auf mindestens 8–10 g/dl (5,0-6,2 mmol/l) anzustreben. Eine regelmäßige Überwachung des Blutbildes und des Eisenhaushalts soll erfolgen.

Patienten mit angeborenen thrombozytären Erkrankungen mit zu erwartendem Transfusionsbedarf, wie Thrombasthenie Glanzmann und Bernard-Soulier-Syndrom, sollten auf eine HLA Immunisierung getestet werden. Bei jedem Verdacht auf Refraktarität auf Thrombozytentransfusion ist die Suche nach HLA-Antikörpern sinnvoll. Das Risiko der Entwicklung von Thrombozytenantikörpern kann nur durch die Vermeidung häufiger Thrombozytentransfusionen reduziert werden [1].

Potentielle Stammzellspender sollten als Thrombozytenspender vermieden werden um das Immunisierungs-Risiko eines potentiellen Empfängers so niedrig wie möglich zu halten.

Alle Patienten sollen einen Notfallausweis mit Angaben zur Erkrankung, Behandlung, Empfehlungen zum Verzicht auf bestimmte Medikamente (in erster Linie ASS, NSAR und SSRI; siehe Tabelle 11), sowie den Kontaktdaten des betreuenden Zentrums zur Verfügung gestellt bekommen. Der Ausweis soll in regelmäßigen Abständen auf Aktualität der Angaben überprüft werden.

Handlungsempfehlungen 1: Allgemeine Maßnahmen

介介 NSAR und SSRI sollen nur nach strenger Indikation verabreicht werden.

> ASS soll vermieden werden.

1

- Zur Blutungsprophylaxe soll gute Zahn-/ Mundhygiene betrieben werden.
- Regelmäßige Kontrollen des Eisenhaushaltes sollen abhängig von der Blutungsneigung erfolgen.
- Jeder Patient soll einen Notfallausweis erhalten.

Eine HLA-Typisierung sollte bei schwerer Blutungsneigung erfolgen.

Potentielle Stammzellspender sollten als Thrombozytenspender vermieden werden.

4.2. Lokale Maßnahmen

Lokale Maßnahmen erfolgen unabhängig von der zugrundeliegenden thrombozytären Erkrankung [7, 8]. Dazu gehören lokale Kompression, Bissplatten nach zahnärztlichen bzw. kieferchirurgischen Maßnahmen und lokale Hämostyptika (Tabelle 7). Der blutstillende Effekt lokaler Hämostyptika hängt von vielen Faktoren ab und kann nicht sicher vorhergesagt werden.

Tabelle 7: Lokale Hämostyptika

Mechanische Barrieren/ Matrix, Kleber:

- Wachs
- Gelatine (porcin)
- Kollagen (bovin)
- Zellulose
- Synthetischer Kleber

Biologisch aktive Substanzen:

- Thrombin
 - human
 - rekombinant
 - bovin (NW: Koagulopathie; Thrombosen/ Embolien)
- Fibrinkleber
- Kombination humanes Fibrinogen/humanes Thrombin/Aprotinin/+ Fibrinolysehemmer

(NW: Übertragung von Pathogenen; Antikörperentwicklung; Thrombosen/ Embolie)

Handlungsempfehlungen 2: Lokale Maßnahmen

介介 Lokale Maßnahmen sollen, wenn immer möglich, angewendet werden.

4.3. Antifibrinolytika

Antifibrinolytika stellen eine wichtige Basismedikation zur Behandlung von Blutungen und zur Blutungsprophylaxe dar [9]. Sie sind besonders geeignet zur Behandlung von Epistaxis, Zahnfleischbluten und Menorrhagie [10]. Eine wirksame Blutstillung wurde bei Storage-Pool-Erkrankungen und dem Quebec-Syndrom beobachtet (siehe auch Kapitel 5.3 "Thrombozytenkonzentrate (TK)") [11].

Es wird ausdrücklich auch auf die Leitlinien der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde (AWMF Register-Nr. 017-024) und der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (AWMF Register-Nr. 015-063) verwiesen.

Tranexamsäure und Paraaminobenzoesäure hemmen die Aktivierung von Plasminogen zu Plasmin und damit die Fibrinolyse [12]. Ein allgemein anerkannter Labortest zur Beurteilung der Wirksamkeit von Antifibrinolytika existiert nicht.

Tranexamsäure kann sowohl lokal, peroral als auch intravenös eingesetzt werden. Paraaminobenzoesäure ist nur für die orale Gabe in Deutschland zugelassen. Tranexamsäure hat grundsätzlich eine hohe therapeutische Breite und kann mit allen anderen dargestellten Maßnahmen kombiniert werden (siehe Abbildung 2: Therapeutischer Stufenplan). Bei invasiven Eingriffen hat sich die präoperative perorale und intravenöse Gabe zur Blutungsprophylaxe und -behandlung bewährt [13]. Die erste Einnahme sollte oral bevorzugt am Abend vor dem OP-Tag (OP-Tag: 1,5-2-fache Dosis falls keine Gabe am Vorabend) oder alternativ intravenös am OP-Tag erfolgen. Die empfohlene Erhaltungsdosis bei

- oraler Gabe ist 15-25 mg/kg (Erwachsene 1,0-1,5 g) 3-4 x täglich;
- intravenöser Gabe 10-15 mg/kg (Erwachsene 0,5-1,0 g) 3 x täglich (siehe Tabelle 8).

Tabelle 8: Dosisempfehlungen für Tranexamsäure (TXA)

Patient	Tranexamsäure			
	Applikation	Bolus	Erhaltungsdosis	
Kinder	peroral	15-25 mg/kg am Vorabend oder 1,5-2 x Dosis am Tag des Eingriffs	15-25 mg/kg 3-4 x tgl.	
	intravenös	10-15 mg/kg am Tag des Eingriffs	10-15 mg/kg 3 x tgl.	
Jugendliche und Erwachsene ≥ 50kg	peroral	1,0-1,5 g am Vorabend oder 1,5-2 x Dosis am Tag des Eingriffs	1,0-1,5 g 3-4 x tgl.	
	intravenös	0,5-1,0 g am Tag des Eingriffs	0,5-1,0 g 3 x tgl.	

Daten zur kontinuierlichen Infusion von Tranexamsäure liegen vor allem aus dem kardiochirurgischen Bereich vor [14]. Es wird ein Bolus von 10 mg/kg, gefolgt von einer Dauerinfusion mit 1 mg/kg/h empfohlen [12].

Für Kinder (5-40 kg) werden zum Erlangen einer Zielkonzentration von 20 μg/ml andere Dosen angegeben (siehe Tabelle 9) [14].

Tabelle 9: Gewichtsabhängige Dosisempfehlung zur kontinuierlichen Infusion von Tranexamsäure (TXA)

Bolus	6,4 mg/kg
Erhaltungsdosis bei einem Körpergewicht von	
ab 5kg	3,1 mg/kg/h
≥10 kg	2,7 mg/kg/h
≥15 kg	2,5 mg/kg/h
≥20 kg	2,3 mg/kg/h
≥25 kg	2,2 mg/kg/h
≥30 kg	2,1 mg/kg/h
≥40 kg	2,0 mg/kg/h

Bei renaler Funktionsstörung ist eine Dosisreduktion nach den Herstellerangaben notwendig. Eine kritische Abwägung hat bei Patienten mit hohem Thromboserisiko und Epilepsie zu erfolgen. Die Therapiedauer sollte in Abhängigkeit vom Eingriff festgelegt werden. Gelegentlich wird von gastrointestinalen Nebenwirkungen wie Übelkeit, Erbrechen und Durchfall berichtet. Blutdruckabfall, Schwindel und Krämpfe können insbesondere bei zu rascher i.v. Gabe auftreten. Bei Langzeitbehandlungen sind temporäre Sehstörungen und extrem selten Störungen des Farbsehens beschrieben [9, 15].

<u>Mundspülungen:</u> Zur Prophylaxe und Behandlung von Blutungen im Mundschleimhautbereich sind Mundspülungen mit Tranexamsäure sinnvoll. Tranexamsäure kann in trinkbaren Flüssigkeiten verdünnt werden. Die Dosierung sollte z.B. 0,5% sein, d.h. 500 mg Tranexamsäure auf 100 ml Spüllösung. Die i.v. Lösung kann dafür verwendet werden. Bei anschließendem Verschlucken ist die Menge in die Gesamtdosis mit einzurechnen. Die Anwendung der Mundspülung soll alle sechs bis acht Stunden bis zum Abschluss der Wundheilung erfolgen.

Sonderfall: Blutungen des Urogenitaltrakts

Bei Nierenblutungen/Blutung der ableitenden Harnwege (Hämaturie) sollten Antifibrinolytika aufgrund der Gefahr der Bildung von abflussbehindernden Blutgerinnseln nicht oder nur unter konsequenter Beobachtung eingesetzt werden. Nierenblutungen können effektiv durch eine forcierte Diurese kontrolliert werden.

Handlungsempfehlungen 3: Antifibrinolytika

↑↑↑ ➤ Tranexamsäure soll als Basismedikation zur Blutungsprophylaxe und – behandlung verwendet werden.

- Tranexamsäure soll als Ergänzung mit allen anderen Maßnahmen kombiniert werden.
- Mundspülungen mit Tranexamsäure sollen bei Blutungen im Mundbereich angewendet werden.
- Tranexamsäure sollte bei Blutung der ableitenden Harnwege nur unter strenger Kontrolle angewendet werden.

4.4. Desmopressin (DDAVP)

Desmopressin (Desamino-1-Cystein-8-D-Argininvasopressin, DDAVP) kommt als prophylaktische und therapeutische Maßnahme bei vielen angeborenen thrombozytären Erkrankungen infrage [16, 17].

Desmopressin ist ein synthetischer Abkömmling des Vasopressins. Als selektiver Agonist am Argininvasopressinrezeptor-2 zeigt es einen antidiuretischen, aber keinen vasokonstriktorischen Effekt.

Desmopressin wirkt vor allem über einen Anstieg des Von-Willebrand-Faktors und des Gerinnungsfaktors VIII. Der hämostatische Effekt kann bei angeborenen Thrombozytopathien stark variieren. Bei einer nichtklassifizierten thrombozytären Erkrankung mit Verlängerung der Verschlusszeit am PFA 100®/200® kann eine Austestung mit diesem Gerät sinnvoll sein (siehe AWMF-Leitlinie Register-Nr. 086-003).

Bei Rezeptordefekten, wie der Thrombasthenie Glanzmann und dem Bernard-Soulier-Syndrom, ist Desmopressin in der Regel nicht wirksam. Beim Plättchentyp-Von-Willebrand-Syndrom (Pseudo-Von-Willebrand-Syndrom) kann Desmopressin zu einer spontanen Thrombozytenaggregation und Thrombozytopenie führen und soll deshalb nicht eingesetzt werden.

Desmopressin kann intravenös, intranasal oder subkutan verabreicht werden (Tabelle 10), wobei die Subkutanapplikation als Antihämorrhagikum in Deutschland nicht zugelassen ist. Desmopressin kann als Kurzinfusion oder intranasal angewendet werden. Bei operativen Eingriffen sollte die i.v. Gabe präferiert werden. Die intranasale Anwendung ist insbesondere bei Kleinkindern häufig unzuverlässig. Bei wiederholten Gaben ist mit einer raschen Tachyphylaxie der hämostatischen Wirkung zu rechnen. Die Kontrolle der Flüssigkeitszufuhr und der Serumelektrolytwerte (cave: Hyponatriämie) sowie die tägliche Gewichtsmessung sind insbesondere bei wiederholten Gaben wichtig.

Eine Kombination von Desmopressin mit Tranexamsäure kann sinnvoll sein, insbesondere bei lokaler Anwendung von Tranexamsäure [18].

Tabelle 10: Dosisempfehlung für die einmalige Desmopressin (DDAVP) Gabe

Patient		Desmopressin		
		Therapie		präoperative Prophylaxe
		intranasal	intravenös	intravenös
Lebensalter	≤ 12	150 μg (1 Sprühstoß)	$0.3 - 0.4 \mu g/kg$	60 min vor dem Eingriff
(Jahre)	> 12	300 μg (2 Sprühstöße)	über 30 min	0,3 – 0,4 μg/kg über 30
Körper-	≤ 50	150 μg (1 Sprühstoß)		min
Gewicht	> 50	300 μg (2 Sprühstöße)		
(kg)				

Häufige Nebenwirkungen sind das Auftreten von Flush und Kopfschmerzen. Aufgrund der antidiuretischen Wirkung von Desmopressin besteht das Risiko von Wasserretention, Hyponatriämie, Hirnödem und Krampfanfällen.

Bei Patienten mit Epilepsien, Nierenfunktionsstörungen, koronarer Herzkrankheit, Schwangeren und bei Kindern unter 3 Jahren ist die Gabe von Desmopressin grundsätzlich nicht empfohlen.

Sonderfall:

- Bei akuten Blutungen und Epistaxis sollen aufgrund des unsicheren Ansprechens intranasale Gaben vermieden werden.
- Bei Indikation zur Transfusion von Blutprodukten soll das Risiko der Flüssigkeitsretention mit Volumenüberladung durch die Gabe von Desmopression bedacht und diese Substanz nicht verabreicht werden.

Handlungsempfehlungen 4: Desmopressin (DDAVP)

- klassifizierten Erkrankungen verwendet werden.
- > DDAVP soll bevorzugt einmalig angewendet werden.
- Die Gefahr der Flüssigkeitsretention soll beachtet werden.

4.5. Rekombinanter Faktor VIIa (rFVIIa) und Thrombozytenkonzentrate (TK)

Rekombinanter FVIIa ist für die Behandlung von Blutungen bei Thrombasthenie Glanzmann mit Thrombozytenalloantikörpern und früherem oder aktuellem Refraktärzustand auf die Transfusion von Thrombozytenkonzentraten (TK) zugelassen (Deutschland, Österreich, Schweiz). Es kann auch eingesetzt werden, wenn ein TK kurzfristig nicht verfügbar ist (Deutschland, Österreich).

In der klinischen Praxis wird rFVIIa auch erfolgreich angewendet bei Thrombasthenie Glanzmann ohne Antikörper, Bernard-Soulier-Syndrom mit/ohne Antikörper, Storage-Pool-Erkrankungen, sowie bei anderen nicht klassifizierten angeborenen thrombozytären Erkrankungen [19]. Oftmals wird rFVIIa verwendet um TK-Transfusionen zu vermeiden [20]. Wenn durch allgemeine und lokale Maßnahmen keine Blutstillung zu erwarten ist oder erreicht werden kann, soll rFVIIa frühzeitig nach Beginn der Blutung eingesetzt werden [21]. Die empfohlene Dosis für die wiederholte Bolus-Applikation beträgt zwischen 80 bis 120 µg/kg KG rFVIIa [22]. Initial sollten mindestens drei repetitive Gaben in 2 Stunden-Abständen verabreicht werden. Eine Kombination mit Tranexamsäure ist zu empfehlen. In Einzelfällen wurden thromboembolische Komplikationen beschrieben [22]. Zu einer Anwendung von rFVIIa bei Patienten mit hohem Thromboserisiko wird daher nur eingeschränkt geraten.

Handlungsempfehlungen 5: Rekombinanter Faktor VIIa (rFVIIa) und Thrombozytenkonzentrate (TK)

介介

- Rekombinanter Faktor VIIa soll frühzeitig, in wiederholten Bolusgaben verabreicht werden.
- Rekombinanter Faktor VIIa soll mit Tranexamsäure kombiniert werden.

4.6. Hormone

Verstärkte Menstruationsblutungen sind ein typisches Symptom einer angeborenen thrombozytären Erkrankung. Blutungslokalisation ist in der Regel das stimulierte Endometrium [4]. Zum Erfassen und Abfragen einer verstärkten Blutung kann der "pictorial blood loss assessment chart" verwendet werden [23]. Zur Behandlung eignen sich Antifibrinolytika (siehe oben). Eine hormonelle Behandlung der akuten Blutung kann nach vorliegenden Konsensusleitlinien erfolgen [3]. Beachtet werden muss, dass in Deutschland und Österreich nur Ethinylestradiolkombinationspräparate und Medroxyprogesteron als Handelspräparate angeboten werden (AWMF Register-Nr. 015-015). Die Abklärung der Ursache einer verstärkten Menstruationsblutung und die Behandlung bei Mädchen/Jugendlichen und Frauen Hormonpräparaten mit angeborenen thrombozytären Erkrankungen (siehe Abbildung 1) sollen immer in enger Abstimmung mit erfahrenen Endokrinologen/Gynäkologen erfolgen.

Abbildung 1: Behandlung der Menorrhagie bei angeborenen thrombozytären Erkrankungen (modifiziert von James et al. 2011 [3]).

Handlungsempfehlungen 6: Hormone

Menorrhagien bei Mädchen und Frauen mit angeborenen thrombozytären Erkrankungen sollen von einem interdisziplinären Team von Endokrinologen/Gynäkologen und Hämostaseologen behandelt werden.

4.7. Thrombopoetinrezeptor-Agonisten (TPO-RA)

Thrombopoietinrezeptor-Agonisten (TPO-RA), auch Thrombopoetin (TPO)-Analoga genannt, binden an den Thrombopoietinrezeptor (TPO-R) und aktivieren damit den JAK-STAT Signalweg. Dies führt zu einer verstärkten Proliferation und Differenzierung von Megakaryozyten im Knochenmark und damit zu einem Anstieg der peripheren Thrombozytenzahl. Der Einsatz von TPO-RA kann im Einzelfall erwogen werden [24].

Eltrombopag ist ein "small molecule", welches oral verabreicht wird und selektiv an die transmembranöse Domäne des TPO-R bindet [25]. Da Eltrombopag nicht an die Zytokinbindende Domäne des TPO-R bindet, ist eine synergistische Wirkung von Thrombopoietin (TPO) und Eltrombopag denkbar [26]. Eltrombopag ist zur Behandlung von Kindern > 1 Jahr und Erwachsenen mit primärer, persistierender (> 6 Monate Erkrankungsdauer) Immunthrombozytopenie (ITP) zugelassen.

Romiplostim ist ein Fc-Peptid-Fusionprotein (Peptibody), das subkutan verabreicht wird und extrazellulär an die Zytokin-bindende Domäne des TPO-R bindet, und dadurch mit endogenem TPO um die Bindung am TPO-R konkurriert [27]. Romiplostim ist für die Behandlung von Patienten mit chronischer immun-(idiopathischer) thrombozytopenischer Purpura zugelassen.

Da manche Patienten nur auf eine Behandlung mit einer der beiden Substanzen ansprechen,

scheint die unterschiedliche Bindungsdomäne am TPO-R relevant zu sein.

Sowohl bei der Behandlung der Immunthrombozytopenie (ITP) mit Eltrombopag als auch mit Romiplostim wurde bei 5% bzw. 6,5% der Patienten das Auftreten thromboembolischer Komplikationen beschrieben [28, 29]. Diese Ereignisse traten mit unterschiedlichen Dosierungen und nach unterschiedlichen Behandlungszeiten auf. Ein Zusammenhang mit der Thrombozytenzahl der Patienten zum Zeitpunkt des Ereignisses war nicht erkennbar. Aktuell wird davon ausgegangen, dass die ITP per se mit einem erhöhten Thromboembolierisiko verbunden ist (siehe auch https://www.onkopedia.com/de/onkopedia/guidelines/immunthrombozytopenie-itp/), so dass die ursächliche Bedeutung der TPO-RA für das Auftreten thromboembolischer Komplikationen bei ITP-Patienten unklar ist.

Hinsichtlich weiterer unerwünschter Wirkungen der Substanzen wird auf die jeweiligen Fachinformationen in den jeweils aktuellen Versionen verwiesen.

4.7.1. Anwendung von TPO-RA bei angeborenen thrombozytären Erkrankungen

4.7.1.1. MYH9-assozierte Erkrankungen

Pecci et al. berichten über zwölf Patienten mit MYH9-assoziierten Thrombozytopenien (< 50 x 10⁹/L), die für drei Wochen mit Eltrombopag (Startdosis 50 mg/d) behandelt wurden. Bei insgesamt acht Patienten konnten Thrombozytenzahlen von ≥ 100 x 10⁹/L bzw. eine Verdreifachung des Ausgangswertes der Thrombozytenzahl erzielt werden. Bei drei Patienten wurde immerhin noch eine Verdopplung des Ausgangswertes erzielt und bei nur einem Patienten kam es zu keinem Anstieg der Thrombozyten. Als unerwünschte Wirkung wurden lediglich milde Kopfschmerzen beobachtet [30]. Zaninetti et al. haben 20 Patienten mit MYH9-assoziierter Thrombozytopenie beschrieben, bei denen es durch die Behandlung mit Eltrombopag (50-75 mg/d) zu einer Abnahme der Blutungsneigung kam [31, 32]. Über vier weitere Patienten mit MHY9-assoziierter Thrombozytopenie liegen Fallberichte einer erfolgreichen Behandlung mit Eltrombopag vor [33-35].

Romiplostim wurde bisher bei einem Patienten mit Fechtner-Syndrom [36] und einer Patientin mit einer neu charakterisierten Missense-Mutation (c.5507A>G) des MYH9-Gens beschrieben [37]. Die Romiplostim-Dosen lagen bei 10 μ g/kg/Woche bzw. bei 5 μ g/kg/Woche.

4.7.1.2. Wiskott-Aldrich-Syndrom (WAS)

Gerrits et al. haben acht Patienten mit Wiskott-Aldrich-Syndrom (WAS) beschrieben, die über eine Dauer zwischen 22 und 209 Wochen mit Eltrombopag (20-75 mg/d) behandelt wurden. Bei fünf Patienten konnte unter der Behandlung mit Eltrombopag ein Anstieg der Thrombozytenzahl auf über 50 x 10⁹/L bzw. eine Verdopplung des Ausgangswertes erreicht werden. Bei sechs der Patienten kam es zu einer Verbesserung der Blutungssymptomatik. Zwei Patienten wurden als Non-Responder eingestuft. Bei zwei Patienten wurde die Therapie wegen Ineffektivität abgebrochen. Einer dieser Patienten wurde dann erfolgreich mit Romiplostim behandelt. Bei keinem Patienten wurden schwerwiegende

Nebenwirkungen beobachtet [38]. Darüber hinaus wurde die Behandlung eines weiteren Patienten beschrieben [39]. Zaninetti et al. berichten in ihrer oben zitierten Studie von weiteren drei Patienten mit WAS, die von einer Behandlung mit Eltrombopag (50-75 mg/d) profitiert haben [32].

Kongenitale amegakaryozytäre Thrombozytopenie (CAMT) 4.7.1.3.

Bei einer seltenen Untergruppe der kongenitalen amegakaryozytären Thrombozytopenie (CAMT) liegt ein Thrombopoetin-Produktionsdefekt vor. Pecchi et al. beschrieben eine Familie mit dieser Form von CAMT (mit Mutationen im THPO-Gen), die von einer Behandlung mit Romipolstim (Startdosis 1 µg/kg/Woche) profitierte [40].

4.7.1.4. **ANKRD26-bedingte Thrombozytopenie**

Es wurde ein Patient beschrieben, bei dem diese, auch als Thrombozytopenie 2 bekannte hereditäre Thrombozytopenie, erfolgreich mit Eltrombopag (50 mg/d) behandelt wurde [41]. Darüber hinaus wurden neun Patienten im Rahmen der o.g. Studie von Zaninetti et. al mit Eltromopag behandelt [32]. Bei fünf Patienten verschwand die bestehende geringe Blutungssymptomatik vollständig, ein Patient war als Non-Responder zu bewerten.

Handlungsempfehlungen 7: Thrombopoetinrezeptor-Agonisten (TPO-RA)

 \Leftrightarrow ➤ Der Einsatz von Thrombopoetinrezeptor-Agonisten kann im Einzelfall erwogen werden.

4.8. Allogene Stammzelltransplantation

Die allogene Stammzelltransplantation ist eine Behandlungsoption bei wenigen ausgewählten Patienten mit nicht beherrschbarer Blutungsneigung oder schweren assoziierten Erkrankungen. Sie soll als primäre Therapieoption beim

• Wiskott-Aldrich-Syndrom (WAS) [42], bei dem der Immundefekt im Vordergrund steht,

und bei der

kongenitalen amegakaryozytären Thrombozytopenie (CAMT), bei der es sich um ein seltenes "bone marrow failure"-Syndrom handelt [43], geprüft werden.

4.9. Gentherapie

Die Gentherapie als Therapieoption von angeborenen thrombozytären Erkrankungen befindet sich im experimentellen Stadium und zeigte bislang keine Erfolge.

4.10. **Splenektomie**

Eine Splenektomie spielt bei angeborenen thrombozytären Erkrankungen keine therapeutische Rolle und soll daher nicht durchgeführt werden.

Handlungsempfehlungen 8: Splenektomie

5. Akute Blutung

5.1. Lokale Maßnahmen

Vgl. Blutungsprophylaxe (Kapitel 4).

5.2. Stufenplan

Für die rationale Behandlung der akuten Blutung wird ein Stufenschema empfohlen (Abbildung 2). Bei bekanntem Defekt orientiert sich die Behandlung nach den spezifischen Eigenschaften des Defekts.

Abbildung 2: Therapeutischer Stufenplan

5.3. Thrombozytenkonzentrate (TK)

Thrombozytentransfusionen werden zur Prophylaxe und Therapie von thrombozytär bedingten Blutungen eingesetzt. Die Indikationsstellung zur Thrombozytentransfusion ist abhängig von Thrombozytenzahl und -funktion, der Blutungssymptomatik und dem Blutungsrisiko, sowie der Grunderkrankung. Zudem sollte das Alter der Patienten berücksichtigt werden. Bei Frühgeborenen empfiehlt sich eine restriktive Transfusionsgrenze [44, 45]. Milde oder moderate Blutungen sollten insbesondere aufgrund Immunisierungsrisikos nicht mit TK behandelt werden.

Ferner gelten die Querschnitts-Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten (Hrsg.: Vorstand der Bundesärztekammer auf Empfehlung Wissenschaftlichen Beirats; 4. überarbeitete und aktualisierte Auflage 2014).

5.3.1. Herstellung und Eigenschaften

Thrombozytenkonzentrate können entweder aus Vollblut oder mittels Thrombozytapherese hergestellt werden. Das "Apherese-TK" enthält die maschinell gewonnenen Thrombozyten eines Einzelspenders. Das "Pool-TK" enthält die gepoolten Thrombozyten von 4 bis 6 Spendern. In beiden Konzentraten sind im Durchschnitt $2-4 \times 10^{11}$ Thrombozyten, die in ca. 300 ml Plasma oder Additivlösung (mit ca. 30% Restplasma) aufgeschwemmt sind. Eine geringe Menge an Erythrozyten und Leukozyten sind üblich.

5.3.2. Transfusion

Die Transfusion erfolgt über ein handelsübliches Transfusionsbesteck (170- bis 230-μm-Filter). Einmal geöffnete Beutelsysteme dürfen wegen der Gefahr einer bakteriellen Kontamination nicht mehr ins Lager zurückgenommen werden. Nach Transfusion werden ca. 60-70% der Thrombozyten im Blutkreislauf wiedergetroffen, der Rest reichert sich in der Milz an.

5.3.3. Wahl des Thrombozytenkonzentrates

Der Therapieeffekt von "Apherese-" und "Poolkonzentraten" ist vergleichbar.

Bei mangelndem Ansprechen auf das ΤK sollen HLA-Antikörper thrombozytenspezifische Antikörper zur optimalen Auswahl des Thrombozytenspenders bestimmt werden, um die Thrombozytentransfusion unter Berücksichtigung individuellen Antikörpermusters zu ermöglichen.

Bei der Auswahl des TKs muss beachtet werden, dass es bei Patienten mit abnormaler immunologischer Abwehr zu einer transfusionsinduzierten Graft-versus-Host-Krankheit (TA-GvHK) kommen kann, wenn der Spender homozygot für einen HLA-Haplotyp des Empfängers ist [46]. Dies ist wahrscheinlicher unter Blutsverwandten 1. und 2. Grades. In dieser Situation kann das Immunsystem des Empfängers die Zellen des Spenders nicht als fremd erkennen, dagegen erkennen die transfundierten Zellen den fremden HLA-Haplotyp in den Geweben des Empfängers und werden immunologisch stimuliert. Potentielle Stammzellspender sollten als Thrombozytenspender vermieden werden um das Immunisierungs-Risiko eines potentiellen Empfängers so niedrig wie möglich zu halten.

Bei unverwandten Spendern wird das Risiko, dass der Spender homozygot für einen Empfängerhaplotyp ist ("One-Way-HLA-Match"), auf 1:500 geschätzt [46]. Alle HLAausgewählten TKs, bei denen ein erhebliches Risiko für eine TA-GvHK besteht, müssen vor Transfusion bestrahlt werden.

Sonderfall: Patienten mit einer Thrombasthenie Glanzmann Typ I mit vollständigem Fehlen des Fibrinogenrezeptors (Integrin αIIbβ3 Glykoprotein IIb/IIIa CD41a) haben das höchste Risiko zur Entwicklung eines Thrombozyten-Isoantikörper. Die Transfusion von TKs sollte daher als Ultima Ratio betrachtet werden.

5.3.4. Dosierung

Eine therapeutische Einheit (2-4 x 10¹¹ Thrombozyten) für Erwachsene entspricht einer "Apherese-Spende" oder einem "Pool-TK" aus vier bis sechs Einzelspenden. Bei Kindern mit einem

- Körpergewicht ≤ 15 kg werden üblicherweise 10-20 ml TK pro kg transfundiert,
- Körpergewicht > 15 kg soll die Erwachsenenstandarddosis verabreicht werden.

5.3.5. Nebenwirkungen

Zu den Nebenwirkungen von TKs zählen Unverträglichkeitsreaktionen, wie z.B. urtikarielle Hautreaktionen, posttransfusionelle Purpura und andere anaphylaktoide Reaktionen. Zudem kann eine Immunisierung des Empfängers gegen thrombozytäre und nicht-thrombozytäre Antigene nicht ausgeschlossen werden. Bei der Anwendung von aus menschlichem Blut hergestellten Arzneimitteln ist die Übertragung von Infektionskrankheiten durch Übertragung von Erregern nicht völlig auszuschließen [47].

Bei Frühgeborenen wurde bei einem liberalen Transfusionsgrenzwert eine erhöhte Rate an bronchopulmonaler Dysplasie und eine höhere Mortalität als bei restriktivem Transfusionsgrenzwert beobachtet [44].

5.3.6. Monitoring

Bei einer akuten Blutung ist das Sistieren der Blutung die wichtigste Kontrolle des therapeutischen Effekts. Bei assoziierter Thrombozytopenie hilft die Beurteilung des Thrombozytenanstiegs. Bei der Thrombasthenie Glanzmann und dem Bernard-Soulier-Syndrom kann zur Ermittlung des Transfusionsbedarfs auch der entsprechende Nachweis von CD41/61 respektive CD42 positiven transfundierten Thrombozyten mittels Durchflusszytometrie zur Therapiekontrolle verwendet werden.

Sonderfall:

Beim Quebec-Syndrom kommt es zu einer Überexpression von Urokinase-Typ Plasminogenaktivator in den Thrombozyten mit konsekutivem proteolytischem Abbau mehrerer α-Granula-Proteine und Hyperfibrinolyse im Blutgerinnsel. Therapeutisch wird zur Blutungsprophylaxe und -stillung primär der Einsatz von Antifibrinolytika empfohlen [11].

Handlungsempfehlungen 9: Thrombozytenkonzentrate (TK)

介介

- > Thrombozytenkonzentrate sollen sparsam und nach strenger Indikation verabreicht werden.
- Häufige Transfusionen von Thrombozytenkonzentraten sollen vermieden werden.

5.4. Antifibrinolytika und Hormone

Vgl. Blutungsprophylaxe (Kapitel 4.3).

5.5. Rekombinanter Faktor VIIa (rFVIIa)

Bei Patienten mit bekannter schwerer Blutungsneigung ist die perioperative Gabe von rFVIIa oder eines Thrombozytenkonzentrates zu erwägen (siehe oben; Kapitel 4.5).

6. Spezielle Blutungen und Blutungsrisiken

6.1. Epistaxis, Gingiva und Tonsillenblutung

Als erste Maßnahmen soll eine lokale Blutstillung/ Tamponade erfolgen und TXA lokal/ systemisch angewendet werden. Bei Epistaxis können abschwellende Maßnahmen wie die Applikation naphazolinhaltiger Nasentropfen zumindest eine vorübergehende Blutstillung erleichtern. Aufgrund eines möglichen großen Blutverlustes ist ein strenges Monitoring angezeigt. Wenn innerhalb der 1. bis 2. Stunde keine Blutstillung erreicht werden kann, ist der frühzeitige und konsequente Einsatz von rFVIIa empfohlen. Wenn damit keine zufriedenstellende Blutstillung erreicht werden kann, ist zusätzlich die Gabe eines TKs (möglichst Apheresepräparat/ Monospender) empfohlen.

6.2. Menorrhagie

Vgl. Hormone (Kapitel 4.6), insbesondere Abbildung 1.

6.3. Zahnärztliche Eingriffe

Vgl. Lokale Maßnahmen (Kapitel 4.2) und Abbildung 2.

Aufgrund des Blutungsrisikos soll ein mandibulärer Nervenblock möglichst vermieden werden. Eine ausreichende Beobachtungszeit nach der Behandlung zur Früherkennung einer Nachblutung soll immer eingeplant werden.

6.4. Chirurgische Eingriffe

Vgl. Lokale Maßnahmen (Kapitel 4.2) und Abbildung 2.

6.5. Arznei-, Wirk-, und Inhaltsstoffe mit Einfluss auf die Thrombozytenfunktion

In der folgenden Tabelle werden Medikamente und Substanzen gelistet, die eine Hemmung der Blutgerinnung und/oder Thrombozytenaggregation bewirken [48-51]. In der Praxis muss insbesondere bei der Schmerz- und Antidepressiven-Therapie der Einfluss der eingesetzten Medikamente auf die Thrombozytenfunktion beachtet und monitorisiert werden. Aufgrund der Vielzahl von Medikamenten und Substanzen mit Wirkung auf die Thrombozytenfunktion kann die nachfolgende Tabelle nur Hinweise geben und kann keine Vollständigkeit garantieren.

Tabelle 11: Medikamente, Röntgenkontrastmittel und Nahrungsmittel, die die Thrombozytenfunktion beeinflussen können (adaptiert von Scharf et al. 2012 [50]).

Medikamentengruppe	Arznei-, Wirk- bzw. Inhaltsstoff	Potentieller Wirkungsmechanismus
Acetylsalicylsäure (ASS)		
	Acetylsalicylsäure	Irreversible Inaktivierung von Thrombozyten Cyclogenase-1 (COX-1)
Andere Nichtsteroidale	Antirheumatika (NSAR)	
	Meclofenaminsäure, Mefenaminsäure	Reversible Inhibierung von Thrombozyten COX-1
	Diclofenac	Reversible Inhibierung von Thrombozyten COX-1
	Ibuprofen, Indometacin, Naproxen	Reversible Inhibierung von Thrombozyten COX-1
	Tolmetin, Zomepirac	Reversible Inhibierung von Thrombozyten COX-1
	Piroxicam	Verlängerte aber reversible Inhibierung von Thrombozyten COX-1
	Diflunisal, Sulindac	Reversible Inhibierung von Thrombozyten COX-1
β- Lactam-Antibiotika		
Penicilline		Interaktion mit Thrombozytenrezeptoren und/oder Von-Willebrand-Faktor (VWF)
	Ampicillin, Carbenicillin, Mezlocillin, Penicillin G, Piperacillin, Ticarcillin	
	Apalcillin, Methicillin, Sulbenicillin	
	Azlocillin	
	Nafcillin	
Cephalosporine		Interaktion mit Komponenten der Thrombozytenmembran
	Cefalotin	
	Cefamandol	
	Cefoperazon	
	Cefotaxim	
	Ceftazidim	
	Cefixim	
	Latamoxef,	Inhibierung der TXA ₂ Bildung;
	Moxalactam	Wechselwirkung mit Vitamin-K
		abhängigen Gerinnungsfaktoren

Andere Antibiotika und	d Antimykotika	
	Nitrofurantoin	Inhibierung von Thrombozyten COX-1 (im Tiermodell)
	Miconazol	Inhibierung von Thrombozyten COX-1 (im Tiermodell)
	Flucytosin	
	Fluconazol	
Medikamente, die cAN	1P oder cGMP erhöhen	
cAMP Stimulatoren		
	Prostaglandin E ₁ (PGE ₁), Prostaglandin I ₂ (PGI ₂), und Analoga	
Phospodiesterase (PDE)-Hemmer	
	Dipyridamol	Inhibierung der Phospodiesterase und Adenosin- Aufnahme
	Cilostazol	Phospodiesterase-3-Hemmer
	Sildenafil	Phospodiesterase-5-Hemmer; Aktivierungsdefekt von Integrin αIIbβ3
	Coffeine, Theophyllin, Aminophyllin	
Herz-Kreislauf-Medikar	mente	
Nitrate		
	Nitroprussid,	Erhöhung von Stickoxiden und damit
	Nitroglycerin, Isosorbiddinitrat	Erhöhung von Thrombozyten cAMP und cGMP
Betablocker		
	Propranolol,	Unabhängig von der
	Nebivolol, Pindolol	Betarezeptoren blockade
	Metoprolol	
	Atenolol	Erhöhte Aktivierung von Integrin αIIbβ3
Calciumantagonisten		
	Verapamil, Nifedipin,	Inhibierung von Adrenalin an $lpha 2$ -
	Diltiazem	Adrenorezeptoren; Inhibierung der Thrombozytenantwort auf TXA ₂ und Serotonin
	Dihydropyridin,	Verminderte Thrombozytenaktivität
	Isradipin, Felodipin, Nicardipin	durch unbekannten Mechanismus
ACE-Hemmer		
	Captopril, Enalapril, Lisinopril, Rampiril	Herunterregulierung von αIIbβ3? NO-vermittelter Effekt?
Angiotensin-Rezeptor-	Blocker	
	Valsartan, Iosartan, Olmesartan	Herunterregulierung von αllbβ3? Interferenz mit TXA ₂ Rezeptor
Antiarrhytmika		

	Chinidin	Hemmung von α2-Adrenorezeptoren
Lipidsenker	Crimium	Terrinang von az Adrenorezeptoren
HMG-CoA-Reduktase-In	hibitoren (Statine)	
THING COA REGUREAGE III	Atorvastatin,	Änderung der Lipid-Zusammensetzung
	Cerivastatin,	der Thrombozyten Plasmamembran;
	Fluvastatin,	Inhibierung der Protein-Prenylierung und
	Lovastatin,	damit Inhibierung von GTP-bindenden
	Pitavastatin,	Proteinen?
	,	Proteinen:
	Pravastatin,	
	Rosuvastatin, Simvastatin	
Andere	Simvastatin	
Andere	Clafibrat Etafibrat	Änderung von Agenistenrezenteren?
Antikoogulanzian Eibrir	Clofibrat, Etofibrat	Änderung von Agonistenrezeptoren?
	nolytika, und Antifibrinol	ушка
Heparine	the Could be of the course	Buck and the transfer Consults of
	Unfraktioniertes	Durch verminderte Thrombin Generation?
	Heparin (UFH) und	Erhöhte Aktivierung von αIIbβ3?
	Niedermolekulares	A CONTRACTOR
	Heparin (LMWH)	Vermittelt über Antikörper gegen
		Heparin/PF4
Thrombolytika		
	Streptokinase,	Wahrscheinlich multifaktorieller
	Urokinase, t-PA	Mechanismus
Antifibrinolytika		
	E-Aminocapronsäure	Unklar
Plasmaexpander	_	
	Dextrane	Interaktion mit Bestandteilen der
		Thrombozyten-Membran
	Hydroxyethylstärke	
Antihistaminika		
	Chlorpheniramin,	
	Diphenhydramin,	
	Antazolin	
Röntgenkontrastmittel		
	Iopamidol,	
	Amitriptylin,	
	Nortriptylin	
	Amidotrizoesäure,	
	Meglumin-	
	Amidotrizoat,	
	Natrium-Amidotrizoat	
Psychopharmaka		
Trizyklische Antidepress		
	Imipramin, Amitritylin,	Unklar
	Nortriptylin,	
	Desipramin, Doxepin,	

	Mianserin	
Phenotiazine		
	Chlorpromazin,	Inhibierung von Calmodulin-abhängigen
	Promethazin,	Signalwegen?
	Trifluoperazin	
Serotonin-Wiederaufn	ahmehemmer (SSRI)	
	Fluoxetin, Paroxetin,	Wahrscheinlich multifaktorieller
	Sertralin,	Mechanismus
	Escitalopram,	
	Citalopram	
Chemotherapeutika		
	Mithramycin	
	Daunorubicin,	
	Carmustin	
	Tamoxifen	
	HD Chemotherapie	
	(Ciplasin,	
	Cyclophosphamid,	
	Melphalan)	
Anästhetika und Narko	otika	
	Benoxinat, Morphin,	
	Benzocain, Butacain,	
	Kokain, Heroin,	
	Lidocain,	
	Hydroxychloroquin,	
	Piperocain,	
	Proparacain, Procain,	
	Tetracain	
Phytopharmaka		
	Ginseng	
	Gingko biloba	
Nahrungsmittel, Gewü	rze, und Vitamine	
	Ingwer, Zwiebel,	
	Vitamin E	
	Kreuzkümmel,	
	Kurkuma, Nelken	
	Alkohol, Omega-3-	
	Fettsäuren	
	Chinesischer	
	schwarzer Baumpilz,	
	Knoblauch	