Dimensionality Reduction

Part II

PCA: Part V
$$\bar{z_1} = \frac{1}{N} \sum z_1 = \frac{1}{N} \sum w^1 \cdot x = w^1 \cdot \frac{1}{N} \sum x = w^1 \cdot \bar{x}$$

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \bar{z_1})^2$$

$$= \frac{1}{N} \sum_{x} (w^1 \cdot x - w^1 \cdot \bar{x})^2$$

$$= \frac{1}{N} \sum_{x} (w^1 \cdot (x - \bar{x}))^2$$

$$= \frac{1}{N} \sum_{x} (w^1)^T (x - \bar{x}) (x - \bar{x})^T w^1$$

$$= (w^1)^T \frac{1}{N} \sum_{x} (x - \bar{x}) (x - \bar{x})^T w^1$$

 $z_1 = w^1 \cdot x$

$$(a \cdot b)^2 = (a^T b)^2 = a^T b a^T b$$
$$= a^T b (a^T b)^T = a^T b b^T a$$

Find w^1 maximizing $(w^1)^T S w^1$ $||w^1||_2 = (w^1)^T w^1 = 1$

$$= (w^1)^T Cov(x) w^1 \qquad S = Cov(x)$$

PCA: Part VI

Find
$$w^1$$
 maximizing $(w^1)^T S w^1$ $(w^1)^T w^1 = 1$

$$S = Cov(x)$$
 Symmetric Positive-semidefinite (non-negative eigenvalues)

Using Lagrange multiplier

$$g(w^{1}) = (w^{1})^{T}Sw^{1} - \alpha((w^{1})^{T}w^{1} - 1)$$

$$\partial g(w^{1})/\partial w_{1}^{1} = 0$$

$$\partial g(w^{1})/\partial w_{2}^{2} = 0$$

$$\vdots$$

$$Sw^{1} - \alpha w^{1} = 0$$

$$Sw^{1} = \alpha w^{1} \quad w^{1} : \text{eigenvector}$$

$$(w^{1})^{T}Sw^{1} = \alpha(w^{1})^{T}w^{1}$$

$$= \alpha \quad \text{Choose the maximum one}$$

 w^1 is the eigenvector of the covariance matrix S

Corresponding to the largest eigenvalue

PCA: Part VII

Find
$$w^2$$
 maximizing $(w^2)^TSw^2$ $(w^2)^Tw^2=1$ $(w^2)^Tw^1=0$
$$g(w^2)=(w^2)^TSw^2-\alpha\big((w^2)^Tw^2-1\big)-\beta\big((w^2)^Tw^1-0\big)$$

$$\partial g(w^2)/\partial w_1^2=0$$

$$Sw^2-\alpha w^2-\beta w^1=0$$

$$0-\alpha 0-\beta 1=0$$

$$=\big((w^1)^TSw^2\big)^T=(w^2)^TS^Tw^1$$

$$=(w^2)^TSw^1=\lambda_1(w^2)^Tw^1=0$$

$$Sw^1=\lambda_1w^1$$
 $\beta=0$: $Sw^2-\alpha w^2=0$ $Sw^2=\alpha w^2$
$$w^2 \text{ is the eigenvector of the covariance matrix S}$$
 Corresponding to the 2^{nd} largest eigenvalue λ_2

PCA - Decorrelation

$$z = Wx$$

$$Cov(z) = D$$

Diagonal matrix

$$Cov(z) = \frac{1}{N} \sum_{z=0}^{N} (z - \bar{z})^{z} (z - \bar{z})^{T} = WSW^{T} \qquad S = Cov(x)$$

$$=WS[w^1 \quad \cdots \quad w^K] = W[Sw^1 \quad \cdots \quad Sw^K]$$

$$= W[\lambda_1 w^1 \quad \cdots \quad \lambda_K w^K] \quad = [\lambda_1 W w^1 \quad \cdots \quad \lambda_K W w^K]$$

$$= [\lambda_1 e_1 \quad \cdots \quad \lambda_K e_K] = D$$
 Diagonal matrix

PCA is not Linear Regression

Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., x_1 =size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

PCA – Another Point of View: Part I

Basic Component:

PCA - Another Point of View: Part II

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Reconstruction error:
$$\|(x - \bar{x}) - \hat{x}\|_2$$

Find $\{u^1, \dots, u^K\}$ minimizing the error

$$L = \min_{\{u^1, \dots, u^K\}} \sum \left\| (x - \bar{x}) - \left(\sum_{k=1}^{\infty} c_k u^k \right) \right\|_{2}$$

PCA:
$$z = Wx$$

$$\hat{\chi}$$

$$\begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_K \end{bmatrix} = \begin{bmatrix} (w_1)^T \\ (w_2)^T \\ \vdots \\ (w_{N-1})^T \end{bmatrix} x \begin{cases} \{w^1, w^2, \dots w^K\} \text{ (from PCA) is the component } \{u^1, u^2, \dots u^K\} \end{cases}$$

$$\text{minimizing L}$$

PCA – Another Point of View: Part III

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Error

PCA – Another Point of View: Part IV

K columns of U: a set of orthonormal eigen vectors corresponding to the K largest eigenvalues of XX^T

Choosing K (Number of Principal Components)

Typically, choose k to be smallest value so that

Average squared projection error

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$
 (1%)

"99% of variance is retained"

