

Create Motor Sim

Working steps

- 1. Create Motor Sim
- 2. Sending telemetry data from Motor device Sim to Azure loT Hub
- 3. Send data to Azure Stream Analytics
- 4. Sink event to Bl
- 5. Create data visualization in Microsoft Power Bl

Question

Is the motor run normally?

Is the motor speed right?

Is the motor need maintenance?

Application

Preventive maintenance

Motor's anatomy

Context

- The dataset comprises several sensor data collected from a permanent magnet synchronous motor (PMSM) deployed on a test bench.
- The PMSM represents a german OEM's prototype model.
- Test bench measurements were collected by the LEA department at Paderborn University. This dataset is mildly anonymized.

Content

- All recordings are sampled at 2 Hz.
- The dataset consists of multiple measurement sessions, which can be distinguished from each other by column "profile_id".
- A measurement session can be between one and six hours long.
- The motor is excited by hand-designed driving cycles denoting a reference motor speed and a reference torque.
- Currents in d/q-coordinates (columns "i_d" and i_q") and voltages in d/q-coordinates (columns "u_d" and "u_q") are a result of a

standard control strategy trying to follow the reference speed and torque.

- Columns "motor_speed" and "torque" are the resulting quantities achieved by that strategy, derived from set currents and voltages.
- Most driving cycles denote random walks in the speed-torque-plane
 in order to imitate real world driving cycles to a more accurate
 degree than constant excitations and ramp-ups and -downs would.

Motor's sensors data

a un la i a un t					4 = u = u = z	: 4				-+-+ ++	
ambient	coolant	u_d	u_q	motor_speed	torque	i_d	i_q	pm	stator_yoke	stator_tooth	stator_winding
-0.75214	-1.11845	0.32794	-1.29786	-1.2224282	-0.25018	1.02957	-0.24586	-2.52207	-1.8314217	-2.0661428	-2.0180326
-0.77126	-1.11702	0.32966	-1.29769	-1.2224293	-0.24913	1.02951	-0.24583	-2.52242	-1.8309687	-2.0648587	-2.0176313
-0.78289	-1.11668	0.33277	-1.30182	-1.2224278	-0.24943	1.02945	-0.24582	-2.52267	-1.8304	-2.064073	-2.0173435
-0.78094	-1.11676	0.3337	-1.30185	-1.2224301	-0.24864	1.03284	-0.24695	-2.52164	-1.8303328	-2.0631368	-2.0176322
-0.77404	-1.11678	0.33521	-1.30312	-1.2224286	-0.2487	1.03181	-0.24661	-2.5219	-1.8304977	-2.0627947	-2.0181448
-0.76294	-1.11695	0.3349	-1.30302	-1.2224286	-0.2482	1.03103	-0.24634	-2.5222	-1.8319309	-2.0625494	-2.017884
-0.74923	-1.11617	0.33501	-1.30208	-1.2224296	-0.24791	1.03049	-0.24616	-2.52254	-1.8330117	-2.0621152	-2.0172427
-0.73845	-1.11399	0.33626	-1.30515	-1.2224321	-0.24832	1.03011	-0.24603	-2.52284	-1.8321822	-2.0619526	-2.0172133
-0.73091	-1.11183	0.33491	-1.30379	-1.2224315	-0.24778	1.02985	-0.24598	-2.52281	-1.8315759	-2.062443	-2.0177386
-0.72713	-1.10949	0.33599	-1.30563	-1.2224314	-0.24829	1.02964	-0.24589	-2.52268	-1.8314383	-2.062317	-2.0181801
-0.72371	-1.10828	0.3354	-1.30456	-1.2224283	-0.24791	1.02951	-0.24583	-2.52263	-1.8314928	-2.0620575	-2.0176919
-0.71775	-1.10859	0.33443	-1.30434	-1.2224288	-0.24772	1.02939	-0.2458	-2.52264	-1.8318189	-2.0622487	-2.017435

Motor's parameters

- ambient: Ambient temperature as measured by a thermal sensor located closely to the stator.
- coolant: Coolant temperature. The motor is water cooled. Measurement is taken at outflow.
- u_d: Voltage d-component
- u_q: Voltage q-component
- motor_speed: Motor speed
- torque: Torque induced by current.
- i_d: Current d-component

- i_q: Current q-component
- pm: Permanent Magnet surface temperature representing the rotor temperature. This was measured with an infrared
- stator_yoke: Stator yoke temperature measured with a thermal sensor.
- stator_tooth: Stator tooth tempera7ture measured with a thermal sensor.
- stator_winding: Stator winding temperature measured with a thermal sensor.
- profile_id: Each measurement session has a unique ID. Make sure not to try to estimate from one session onto the other as they are

Get test dataset

- Create folder D:\MIB
- Download file pmsm_temperature_data_test.csv
- Save in D:\MIB

Open Visual Studio / Create C# Console App .NET Core / Name = motor

NuGet two packages

Add class Motor

```
public class Motor
 99
100
                 public float ambient { get; set; }
101
                 public float coolant { get; set; }
102
                 public float u_d { get; set; }
103
                 public float u_q { get; set; }
104
                 public float motor_speed { get; set; }
105
106
                 public float torque { get; set; }
                 public float i_d { get; set; }
107
                 public float i_q { get; set; }
108
                 public float pm { get; set; }
109
                 public float stator_yoke { get; set; }
110
                 public float stator_tooth { get; set; }
111
                 public float stator_winding { get; set; }
112
113
114
```


Add namespace

Add fields

```
private static List<string[]> dataset;

private static int counter = 0;

private static DeviceClient myDevice;

private readonly static string connectionString =

"HostName=loyiothub1.azure-devices.net;DeviceId=loy-iot-
```


Add method ReadCSV()

```
private static void ReadCSV()
37
38
                    using (var reader = new StreamReader(
39
                        @"g:\temp\pmsm_temperature_data_test.csv"))
40
41
                        dataset = new List<string[]>();
42
                        while (!reader.EndOfStream)
43
44
45
                            var line = reader.ReadLine();
46
                            var values = line.Split(',');
                            dataset.Add(values);
47
48
49
50
```


Add method GetData()

```
private static Motor GetData()
51
52
53
                   if (counter++ > 100) counter = 0; // dataset is 100
54
                   var v = dataset[counter]; // get array of one telen
55
                   if (v.Length < 12) return null; // telementy must ha</pre>
                   Motor myMotor = new Motor();
                   int i = 0; // array index
57
                   myMotor.ambient = float.Parse(v[i++]);
58
                   myMotor.coolant = float.Parse(v[i++]);
59
60
                   myMotor.u d = float.Parse(v[i++]);
                   myMotor.u_q = float.Parse(v[i++]);
61
                   myMotor.motor speed = float.Parse(v[i++]);
62
                   myMotor.torque = float.Parse(v[i++]);
63
                   myMotor.i d = float.Parse(v[i++]);
64
65
                   myMotor.i q = float.Parse(v[i++]);
                   myMotor.pm = float.Parse(v[i++]);
66
67
                   myMotor.stator yoke = float.Parse(v[i++]);
68
                   myMotor.stator tooth = float.Parse(v[i++]);
69
                   myMotor.stator winding = float.Parse(v[i++]);
70
                   return myMotor;
71
```


Add method SendD2C()

```
ൎ
                private static async void SendD2C()
72
73
                    var motor = GetData();
                    if (motor == null) return;
75
                    var telemetry = new
76
77
78
                        ambient = motor.ambient,
                        coolant = motor.coolant,
79
                        u d = motor.u d
80
                        u_q = motor.u_q
81
                        motor speed = motor.motor speed,
82
                        torque = motor.torque,
83
                        i d = motor.i d,
84
85
                        i_q = motor.i_q,
                        pm = motor.pm,
86
                        stator_yoke = motor.stator_yoke,
87
                        stator tooth = motor.stator tooth,
88
                        stator winding = motor.stator winding
89
                    };
                    var messageString = JsonConvert.SerializeObject(telemetry);
91
92
                    var message = new Message(Encoding.ASCII.GetBytes(messageString));
                    await myDevice.SendEventAsync(message); // Send the telemetry message
93
                    Console.WriteLine("{0} > Sending message: {1}", DateTime.Now, messageString);
94
95
```


Add code to Main

```
private static void Main(string[] args)
23
24
25
                   ReadCSV(); // read test dataset
26
                   // Connect to the IoT hub using the MQTT protocol
                   myDevice = DeviceClient.CreateFromConnectionString(
27
                        connectionString,
28
                       TransportType.Mqtt);
29
                   while (true)
30
31
32
                        Console.WriteLine("Press any key to send a message. Ctrl-C to exit.");
                       Console.ReadLine();
33
                        SendD2C();
34
35
36
```


Run and verify

```
Select D:\_Loy data 2019\_Jobs\20100 Teaching job\40800 MIB\...
                                                          ×
Press any key to send a message. Ctrl-C to exit.
"coolant":"1.4801905","u_d":"0.33094862","u_q":"-1.2458229","motor_s
peed":"-1.2224337","torque":"-0.25563973","i_d":"1.0291436","i_q":"-
0.24571528","pm":"0.4530373","stator_yoke":"1.2990731","stator_tooth
":"0.9963015","stator winding":"0.6344626"}
```


Monitor data in Device Explorer

Make sure data is right

```
10/10/2019 10:09:00 AM>
Device: [loy-iot-device-1], Data:[{
"ambient":"-0.016746586",
"coolant":"1.4801905",
"u_d":"0.33094862",
"u q":"-1.2458229",
"motor_speed":"-1.2224337",
"torque":"-0.25563973",
"i d":"1.0291436",
"i_q":"-0.24571528",
"pm":"0.4530373",
"stator_yoke":"1.2990731",
"stator_tooth":"0.9963015",
"stator_winding":"0.6344626"}]
```


What's next?

