6

7

8

11

13

2

1

What is claimed is:

A pixel sensor for providing image sensing under radiation or space environment, comprising:

a headout circuit operating to convert optical image signals to electronic signals, where said readout circuit includes p-type transistors and an n-type photosensitive element; and

a first\reset circuit configured to provide a reset level for a pixel output, where said first reset circuit includes at least one p-type transistor,

where said readout circuit and said first reset circuit having said p-type transistors, and said n-type photosensitive element, provide radiation hardness without any radiation protective enclosure.

- 2. The pixel sensor of claim 1, wherein said p-type transistors are MOSFET p\type transistors.
- The pixel sensor Δf claim 1, wherein said n-type 1 photosensitive element is an h-type photodiode. 2
 - The pixel sensor of claim 3, wherein said n-type 4. photodiode is formed in a square layout design.

2

3

3

- 5. The pixel sensor of claim 3, wherein said n-type photodiode is formed in a circular layout design.
- 6. The pixel sensor of claim 1, further comprising:
 a p-type substrate on which said n-type photosensitive
 element is formed.
 - 7. The pixel sensor of claim 6, further comprising:
 a pair of p+ type guard rings formed on said p-type
 substrate, each of said pair of guard rings formed on either
 side of said n-type photosensitive element, said pair of
 guard rings connected to a ground voltage, and operating to
 substantially reduce a leakage current from said n-type
 photosensitive element.
 - 8. The pixel sensor of claim 6, further comprising:
 an n-type well provided adjacent to said p-type
 substrate, said n-type well connected to a supply voltage,
 and operating to prevent crosstalk between pixels.
- 9. The pixel sensor of claim 1, further comprising:
 a second reset circuit having a p-type MOSFET
 transistor coupled to an input of said first reset circuit,
 said second reset circuit allowing pixel-by-pixel reset
 operation.

- A radiation-hard CMOS image sensing device, 1 comprising: 2 a p-type substrate; 3 an n-type photodiode formed on said p-type substrate, where said n-type photodiode operates to convert an optical 5 signal to an electrical signal; a first reset circuit configured to provide a reset value for said electrical signal, said first reset circuit including a p-type MOSFET transistor; and 9 a readout circuit operating to buffer said electrical 10 signal, said readout circuit including a p-type MOSFET 11 transistor. 12
 - a pair of p+ type guard rings formed on said p-type substrate, each of said pair of guard rings formed on either

The device of claim 10, further comprising:

side of said n-type photodiode, said pair of guard rings

5 connected to a ground voltage, and operating to

substantially reduce a leakage current from said n-type

7 photodiode.

11.

2

3

5

1

2

12. The device of claim 11, further comprising:
an n-type well provided adjacent to said p-type
substrate, said n-type well connected to a supply voltage,
and operating to prevent crosstalk between pixels in the
CMOS image sensing device.

13. The device of claim 10, further comprising:

a second reset circuit having a p-type MOSFET

transistor coupled to an input of said first reset circuit,
said second reset circuit allowing pixel-by-pixel reset
operation.

9

10

14

15

16

17

18 .

19

20

	_
L	14. A CMOS image sensor system, comprising:
2	an array of active pixel sensors, each pixel sensor of
3	said array including:
Į	a pixel readout crcuit operating to convert
5	optical image signals to electronic signals, where said

optical image signals to electronic signals, where said pixel readout circuit includes p-type transistors and an n-type photosensitive element, and

a first reset circuit configured to provide a reset level for a pixel output, where said first reset circuit includes p-type transistors,

where said pixel readout circuit and said first
reset circuit having said p-type transistors and said
n-type photosensitive element provide radiation
hardness without any radiation protective enclosure;
a control circuit configured to provide timing and
control signals to enable read out of data stored in said
array of active pixel sensors; and

a column readout circuit operating to receive and process said data stored in said array of active pixel sensors.

- 1 15. The CMOS image sensor of claim 14, further comprising:
- a p-type substrate on which said n-type photosensitive element is formed.

5

1	16. The CMOS image sensor of claim 15, further
2	comprising:
3	a pair of p+ type guard rings formed on said p-type
4	substrate, each of said pair of guard rings formed on either
5	side of said n-type photosensitive element, said pair of

6 guard rings connected to a ground voltage, and operating to

A

- substantially reduce a leakage current from said n-type
- photosensitive element.
- 1 17. The CMOS image sensor of claim 15, further comprising:
 - an n-type well provided adjacent to said p-type substrate, said n-type well connected to a supply voltage, and operating to prevent crosstalk between pixels.
 - 18. The CMOS image sensor of claim 14, further comprising:
 - a second reset circuit having a p-type MOSFET transistor coupled to an input of said first reset circuit, said second reset circuit allowing pixel-by-pixel reset operation.