Extending Loglinear Models

Michael Friendly

Psych 6136

November 16, 2017

Visual overview: Models for frequency tables

- Related models: logistic regression, polytomous regression, log odds models, ...
- Goals: Connect all with visualization methods

2/6

verview

Visual overview

verview

Visual overview

Loglinear models: Perspectives

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA models, where *multiplicative* relations (under independence) are re-expressed in *additive* form as models for log(frequency).

$$\log m_{ii} = \mu + \lambda_i^A + \lambda_i^B \equiv [A][B] \equiv \sim A + B$$

- This expresses the model of independence for a two-way table (no A*B association, or $A \perp B$)
- The notations $[A][B] \equiv \sim A + B$ are shorthands
- Three-way tables: models [A][B][C] (mutual indep.), [AB][C] (joint indep.),
 [AB][AC] (cond. indep.), ... [ABC] (saturated)

Extended loglinear models

Loglinear models can be extended in a variety of ways:

- Models for ordinal factors allow a more parsimonious description of association
- Specialized models for square tables provide more nuanced hypotheses
- These ideas apply to higher-way tables
- Some of these extensions are more easily understood or used when loglinear models are re-cast in an equivalent, but simpler or more general form

Loglinear models: Perspectives

GLM approach

More generally, loglinear models are also generalized linear models (GLMs) for log(frequency), with a Poisson distribution for the cell counts.

$$\log \boldsymbol{m} = \boldsymbol{X}\boldsymbol{\beta}$$

- This looks just like the general linear ANOVA, regression model, but for log frequency
- This approach allows quantitative predictors and special ways of treating ordinal factors

Loglinear models: Perspectives

Logit models

When one table variable is a binary response, a logit model for that response is equivalent to a loglinear model.

$$\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$$

- $\log(m_{1jk}/m_{2jk})$ represents the log odds of response category 1 vs. 2
- The model formula includes only terms for the effects on A of variables B and C
- The equivalent loglinear model is [AB] [AC] [BC]
- The logit model assumes [BC] association, and [AB] $o eta_i^B$, [AC] $o eta_k^C$

5/62

Logit models

Logit models

For a *binary* response, each loglinear model is equivalent to a logit model (logistic regression, with categorical predictors)

Logit models

e.g., Admit ⊥ Gender | Dept (conditional independence ≡ [AD][DG])

$$\log m_{iik} = \mu + \lambda_i^A + \lambda_i^D + \lambda_k^G + \lambda_{ii}^{AD} + \lambda_{ik}^{DG}$$

So, for admitted (i = 1) and rejected (i = 2), we have:

$$\log m_{1jk} = \frac{\mu}{\mu} + \lambda_1^A + \frac{\lambda_j^D}{\lambda_j^D} + \frac{\lambda_k^G}{\lambda_k^A} + \lambda_{1j}^{AD} + \frac{\lambda_{jk}^{DG}}{\lambda_{jk}^A}$$
(1)

$$\log m_{2jk} = \frac{\mu}{\mu} + \lambda_2^A + \frac{\lambda_j^D}{\lambda_j^D} + \frac{\lambda_k^G}{\lambda_k^A} + \lambda_{2j}^{AD} + \frac{\lambda_{jk}^{DG}}{\lambda_{jk}^A}$$
 (2)

Thus, subtracting (1)-(2), terms not involving Admit will cancel:

$$L_{jk} = \log m_{1jk} - \log m_{2jk} = \log(m_{1jk}/m_{2jk}) = \log \text{ odds of admission}$$

 $= (\lambda_1^A - \lambda_2^A) + (\lambda_{1j}^{AD} - \lambda_{2j}^{AD})$
 $= \alpha + \beta_i^{\text{Dept}}$ (renaming terms)

where, α : overall log odds of admission; $\beta_j^{\rm Dept}$: effect on admissions of department

Logit models

Other loglinear models have similar, simpler forms as logit models, where only the relations of the response to the predictors appear in the equivalent logit model.

• Admit \perp Gender \perp Dept (mutual independence \equiv [A][D][G])

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G$$

$$\equiv L_{ik} = (\lambda_1^A - \lambda_2^A) = \alpha \quad \text{(constant log odds)}$$

Admit ⊥ Gender | Dept, except for Dept. A

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G + \lambda_{ij}^{AD} + \lambda_{jk}^{DG} + \delta_{(j=1)} \lambda_{ik}^{AG}$$

$$\equiv L_{jk} = \log(m_{1jk}/m_{2jk}) = \alpha + \beta_i^{\text{Dept}} + \delta_{(j=1)} \beta^{\text{Gender}}$$

where,

- β_i^{Dept} : effect on admissions for department j,
- $\delta_{(j=1)}\beta^{\text{Gender}}$: 1 df term for effect of gender in Dept. A.

Logit models Logit models

Logit models

- Each logit model for a binary response, C is \equiv a loglinear model
- The loglinear model must include the [AB] association of predictors
- When the response, C has m > 2 levels, models for generalized logits have equivalent loglinear form.

Table: Equivalent loglinear and logit models for a three-way table, with C as a binary response variable.

Loglinear model	Logit model	Logit formula
[AB][C]	α	C ~ 1
[AB][AC]	$\alpha + \beta_i^A$	C ~ A
[AB][BC]	$\alpha + \beta_i^B$	C ~ B
[AB][AC][BC]	$\alpha + \beta_i^A + \beta_i^B$	C ~ A + B
[ABC]	$\alpha + \beta_{i}^{A} + \beta_{j}^{B} + \beta_{ij}^{AB}$	C ~ A * B

Example: Berkeley data—loglinear approach

Loglinear approach, using MASS::loglm()

- Uses UCBAdmissions in table form
- Fit model of conditional independence of gender and admission given department, [AD][GD]

```
library (MASS)
berk.loglm1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
berk.loglm1
## Call:
## loglm(formula = ~Dept * (Gender + Admit), data = UCBAdmissions)
##
## Statistics:
                      X^2 df P(> X^2)
## Likelihood Ratio 21.736 6 0.0013520
## Pearson 19.938 6 0.0028402
```

9/62 10/62

Logit models Example

11/62

Logit models Example

Example: Berkeley data—GLM approach

GLM approach, using glm()

- Convert UCBAdmissions to a frequency data frame form
- The frequency Freq will be used as the response variable

```
berkeley <- as.data.frame(UCBAdmissions)
head(berkeley)
       Admit Gender Dept Freq
## 1 Admitted
              Male
                      A 512
                      A 313
## 2 Rejected Male
## 3 Admitted Female A 89
                      A 19
## 4 Rejected Female
                      В 353
## 5 Admitted
              Male
## 6 Rejected
              Male
                      В 207
```

Example: Berkeley data—GLM approach

GLM approach, using glm()

- Fit the same model of conditional independence, [AD][GD]
- This uses family="poisson" to give a model for log(Freq)

```
berk.glm1 <- glm(Freq ~ Dept * (Gender+Admit),
               data=berkeley, family="poisson")
library(vcdExtra)
LRstats (berk.glm1)
## Likelihood summary table:
   AIC BIC LR Chisq Df Pr(>Chisq)
## berk.glm1 217 238 21.7 6
                                  0.0014 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Logit models Example Logit models Example

15/62

Model: [AdmitDept][GenderDept]

Example: Berkeley data—logit approach

Logit approach, using glm()

- The equivalent logit model is $L_{ii} = \alpha + \beta_i^{\text{Dept}} + \beta_i^{\text{Gender}}$
- Fit this with glm() using Admit=="Admitted" as the response, and family=binomial
- Need to specify weights=Freq with the data in frequency form

13/62

Logit models

Plots for logit models

Logit models

Plots for logit models

Plots for logit models

- Logit models are easier to interpret because there are fewer parameters
- Easiest to interpret from plots of the fitted log odds
- Get these using the predict () method for the model

```
obs <- log(UCBAdmissions[1,,] / UCBAdmissions[2,,])</pre>
pred2 <- cbind(berkeley[,1:3], fit=predict(berk.logit2))</pre>
pred2 <- cbind(subset(pred2, Admit=="Admitted"), obs=as.vector(obs))</pre>
head (pred2)
        Admit Gender Dept
                             fit
## 1 Admitted Male
                      A 0.582 0.492
## 3 Admitted Female
                       A 0.682 1.544
## 5 Admitted Male
                      в 0.539 0.534
     Admitted Female
                      в 0.639 0.754
                        C - 0.681 - 0.536
## 9 Admitted Male
## 11 Admitted Female C -0.581 -0.660
```

Plots for logit models

- Large effects of Dept on admission
- Small effect of Gender (NS)
- Reason for lack of fit: Dept. A

14/62

A better model

Allow an association between Admit and Gender only in Dept. A

Loglinear form:

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_i^D + \lambda_k^G + \lambda_{ii}^{AD} + \lambda_{ik}^{DG} + I(j=1)\lambda_{ik}^{AG},$$

Equivalent logit form:

$$L_{ij} = \alpha + \beta_i^{\mathsf{Dept}} + I(j=1)\beta^{\mathsf{Gender}}$$

```
berkeley <- within (berkeley,
                   dept1AG <- (Dept=='A') * (Gender=='Female'))</pre>
berk.logit3 <- glm(Admit=="Admitted" ~ Dept + Gender + dept1AG,
                   data=berkeley, weights=Freq, family="binomial")
Anova (berk.logit3)
## Analysis of Deviance Table (Type II tests)
##
## Response: Admit == "Admitted"
           LR Chisq Df Pr(>Chisq)
                647
                          < 2e-16
## Dept
                             0.72
## Gender
                 0
                          2.7e-05 ***
                 18
                    1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Plots for logit models

- Large effects of Dept on admission
- No effect of Gender
- Perfect fit now in Dept. A

Ordinal variables Ordinal variables

17/62

19/62

Loglinear models for ordinal variables

Ordinal variables reveal themselves in different ways in exploratory plots:

- With correspondence analysis, one large dimension accounting for most of the association
- With mosaic plots, an opposite-corner pattern of residuals

Mental health data: Independence

Advantages of ordinal models

- More focused tests ⇒ more powerful tests
- \bullet Consume fewer df \implies can fit unsaturated models in between [A][B] and [AB]
- Fit fewer parameters \implies easier interpretation
- Fit fewer parameters (usually) \implies smaller standard errors

These are similar to reasons for using

- Cochran-Mantel-Haenzel (CMH) tests
- Testing linear or polynomial trends/contrasts in ANOVA

18/62

21/62

23/62

Models for ordered categories

Consider an $R \times C$ table having ordered categories

- In many cases, the *RC* association may be described more simply by assigning numeric scores to the row & column categories.
- For simplicity, we consider only integer scores, 1, 2, ... here
- These models are easily extended to stratified tables

R:C model	μ_{ij}^{RC}	df	Formula
Uniform association	$i \times j \times \gamma$	1	i:j
Row effects	$a_i \times j$	(I-1)	R:j
Col effects	$i \times b_i$	(J-1)	i:C
Row+Col eff	$ja_i + ib_i$	1 + J - 3	R:j + i:C
RC(1)	$\phi_i\psi_i\times\gamma$	I + J - 3	Mult(R, C)
Unstructured (R:C)	μ_{ij}^{RC}	(I-1)(J-1)	R:C

Linear x Linear Model (Uniform association)

- Assume linear ordering of both the row and column variables
- Assign scores (usually integers, 1, 2, ...)

$$a = \{a_i\}, a_1 < a_2 < \cdots a_l$$

$$\boldsymbol{b} = \{b_j\}, \quad b_1 \leq b_2 \leq \cdots b_J$$

• Then, the *linear-by-linear model* $(L \times L)$ model is:

$$\log(m_{ij}) = \mu + \lambda_i^{A} + \lambda_j^{B} + \gamma a_i b_j.$$

• The local odds ratios for adjacent 2×2 tables are:

$$\log(\theta_{ij}) = \gamma(a_{i+1} - a_i)(b_{j+1} - b_j) \implies \log(\theta_{ij}) = \gamma \text{ for integer scores}$$

Models

22/62

- Only one more parameter (γ) than the independence model
- Independence model: special case, $\gamma = 0$

Ordinal variables

Models

dinal variables Mod

Row effects and column effects models: R, C, R+C

• In the *row effects model* (R), the row variable, *A*, is treated as nominal, but *B* is assigned scores

$$\log(m_{ij}) = \mu + \lambda_i^{A} + \lambda_j^{B} + \alpha_i b_j \quad \ni \quad \sum_i \alpha_i = 0 \text{ or } \alpha_1 = 0$$

- In the analogous column effects model (C), the row variable, A, is assigned scores, but B is nominal
- The row plus column effects model (R+C), assigns scores to both the rows and column variables.

$$\log(m_{ij}) = \mu + \lambda_i^A + \lambda_j^B + (\alpha_i b_j + a_i \beta_j)$$

Models for ordered categories

Nesting relationships among association models for ordinal variables

Ordinal variables

Any pair connected by an arrow path can be tested by a LR test of the form $G^2(M_2|M_1)$

Ordinal variables Example Ordinal variables Example

Example: Mental impariment & SES

Data on mental health status of NYC youth in relation to parents' SES

```
(mental.tab <- xtabs(Freq ~ mental+ses, data=Mental))</pre>
## mental
               1
                    2
                        3
    Well
                   57
                       57 72
    Mild
               94
                   94 105 141
  Moderate 58
                   54
                           77
                       65
                               54
    Impaired 46
                   40
                       60
                           94
```

Test the independence model:

Example

Example: Mental impariment & SES

Mental health data: Independence

- The mosaic shows the classic opposite-corner pattern for ordered factors
- Standardized residuals (rstandard) have better statistical properties
- Cells are labeled with residual values

26/62

25/62

Ordinal variables

Fitting ordinal models

To fit ordinal models, use <u>as.numeric()</u> on a factor variable to assign integer scores (or other numeric scores)

Ordinal variables

```
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)</pre>
```

Then, add the appropriate $L \times L$, R, or C terms to the independence model:

```
linlin <- update(indep, . ~ . + Rscore:Cscore)
roweff <- update(indep, . ~ . + mental:Cscore)
coleff <- update(indep, . ~ . + Rscore:ses)</pre>
```

Comparing models

```
LRstats(indep, linlin, roweff, coleff, sortby="AIC")
## Likelihood summary table:
           AIC
                 BIC LR Chisq Df Pr(>Chisq)
## indep 209.6 220.2
                       47.42 15
                                  3.16e-05 ***
## coleff 179.0 195.5
                      6.83 10
                                     0.741
## roweff 174.4 188.6
                         6.28 12
                                     0.901
## linlin 174.1 185.8
                        9.90 14
                                     0.770
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Example

- All ordinal models are acceptable by LR tests
- The $L \times L$ model is judged the best by both AIC and BIC.
- This has only 1 more parameter than the independence model

27/62 28/62

Ordinal variables Example Ordinal variables Example

29/62

31/62

Comparing models

When overall tests are unclear, you can carry out tests of nested sets of models using anova (), giving tests of ΔG^2 .

For example the indep, linlin and roweff models are one nested set:

```
anova(indep, linlin, roweff, test="Chisq")
## Analysis of Deviance Table
## Model 1: Freq ~ mental + ses
## Model 2: Freq ~ mental + ses + Rscore:Cscore
## Model 3: Freq ~ mental + ses + mental:Cscore
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
           15
                    47.4
                     9.9 1
           14
                                37.5
                                        9e-10 ***
## 3
           12
                     6.3 2 3.6
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The $L \times L$ model is a signif. improvement; the R model is not.

Interpereting the $L \times L$ model

In the $L \times L$ model, the parameter γ is the constant local odds ratio:

```
# interpret linlin association parameter
coef(linlin)[["Rscore:Cscore"]]

## [1] 0.090687

exp(coef(linlin)[["Rscore:Cscore"]])

## [1] 1.0949
```

- $\hat{\gamma} = 0.0907 \implies \text{local odds ratio}, \ \hat{\theta}_{ii} = \exp(0.0907) = 1.095.$
- each step down the SES scale increases the odds of being classified one step poorer in mental health by 9.5%.

30/62

• a very simple interpretation of association!

RC models

Log-multiplicative (RC) models I

- The L × L, R, and C models are all simpler to interpret than the saturated model
- But, all depend on assigning fixed scores to the categories

RC models

• The row-and-column effects model (RC(1)) makes these parameters

$$\log(m_{ij}) = \mu + \lambda_i^A + \lambda_i^B + \gamma \alpha_i \beta_j \quad \text{or, } \lambda_{ij}^{AB} = \gamma \alpha_i \beta_j$$

where γ , α and β comprise additional parameters to be estimated beyond the independence model.

- γ here is \sim to γ in the $L \times L$ model
- The ordering and spacing of the categories is estimated from the data (as in CA)
- Requires some constraints to be identifiable: e.g., unweighted solution-

$$\sum_{i} \alpha_{i} = \sum_{j} \beta_{j} = 0$$

$$\sum_{i} \alpha_{i}^{2} = \sum_{j} \beta_{j}^{2} = 1$$

Log-multiplicative (RC) models II

• This generalizes to multiple bilinear terms, the RC(M) model

$$\lambda_{ij}^{AB} = \sum_{k=1}^{M} \gamma_k \; \alpha_{ik} \beta_{jk} \qquad M = \min(I-1, J-1)$$

• e.g., the RC(2) model has two bilinear terms (like a 2D CA solution)

$$\lambda_{ii}^{AB} = \gamma_1 \, \alpha_{i1} \beta_{j1} + \gamma_2 \, \alpha_{i2} \beta_{j2}$$

- RC models are not loglinear- contain multiplicative terms
 - Can't use glm()
 - The gnm () function in gnm fits a wide variety of such generalized nonlinear models
 - The rc() function in logmult uses gnm() and makes plotting easier.

RC models RC models

Generalized nonlinear models

The gnm package provides fully general ways to specify nonlinear GLMs

- Basic nonlinear functions: Exp(), Inv(), Mult()
- The RC(1) model: gnm (Freq ~A + B + Mult (A, B)
- The RC(2) model: gnm(Freq ~A + B + instances(Mult(A,B),2)
- Models for mobility tables—the UNIDIFF model

$$\log m_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\gamma_k)\delta_{ij}$$

the exponentiated multiplier is specified as Mult (Exp (C), A:B)

User-defined functions allow further extensions

Example: Mental impairment & SES

Fit the RC(1) and RC(2) models by adding terms using Mult () to the independence model

```
library (gnm)
indep <- qnm (Freq mental + ses,
             family = poisson, data = Mental, verbose=FALSE)
RC1 <- update(indep, . ~ . + Mult(mental, ses))</pre>
RC2 <- update(indep, . ~ . + instances(Mult(mental, ses),2))
```

Compare models:

```
vcdExtra::LRstats(indep, linlin, roweff, coleff, RC1, RC2)
## Likelihood summary table:
           AIC BIC LR Chisq Df Pr(>Chisq)
                        47.42 15
## indep 209.6 220.2
                                  3.16e-05 ***
## linlin 174.1 185.8
                         9.90 14
                                      0.770
                         6.28 12
                                      0.901
## roweff 174.4 188.6
## coleff 179.0 195.5
                         6.83 10
                                      0.741
## RC1
         179.7 198.6
                         3.57 8
                                      0.894
## RC2
         186.7 211.4
                         0.52 3
                                      0.914
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

33/62

RC models

Example

35/62

RC models

Visualizing

34/62

Comparing models

- Are estimated RC scores better than integer scores?
- If so, do we need more than one dimension?

```
anova(linlin, RC1, RC2, test="Chisq")
## Analysis of Deviance Table
##
## Model 1: Freq ~ mental + ses + Rscore:Cscore
## Model 2: Freq ~ mental + ses + Mult(mental, ses)
## Model 3: Freq \tilde{} mental + ses + Mult(mental, ses, inst = 1) + Mult(mental
       ses, inst = 2)
    Resid. Df Resid. Dev Df Deviance Pr (>Chi)
## 1
            14
                     9.90
## 2
             8
                     3.57 6
                                  6.32
                                           0.39
             3
                     0.52 5
```

Visualizing RC scores

- The RC(1) model can be interpreted visually using a dotplot of the scaled category scores together with error bars.
- This allows you to see where this model differs from the $L \times L$ model with integer spacing

Visualizing RC scores

- For the RC(2) model, plot the category scores for dim. 1 and 2
- The logmult package makes these plots much easier
- Also, provides bivariate confidence ellipses

Square tables

Square tables arise when the row and column variables have the same categories, often ordered

Visual acuity data

Hauser social mobility data

37/62

lodels

Square tables: Models

Square tables

In such cases, general association is a given, because of the diagonal cells. More interesting models concern associations in the off-diagonal cells

• Quasi-independence: ignore the diagonal cells

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_j^{B} + \delta_i I(i = j) .$$

This model adds one parameter, δ_i , for each diagonal cell, which fits those frequencies perfectly.

- **Symmetry**: $\pi_{ij} = \pi_{ji}$, but this implies marginal homogeneity, $\pi_{i+} = \sum_{i} \pi_{ij} = \sum_{i} \pi_{ji} = \pi_{+i}$ for all i.
- Quasi-symmetry:

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_i^B + \lambda_{ij} , \quad \lambda_{ij} = \lambda_{ji}$$

It can be shown that

symmetry = quasi-symmetry + marginal homogeneity

$$G^2(S) = G^2(QS) + G^2(MH)$$

Square tables: Models

For these models, the essential idea is to construct factor levels corresponding to the unique parameters representing association

Square tables

Models

$$\mathsf{Diag}_{4\times 4} = \left[\begin{array}{cccc} 1 & . & . & . \\ . & 2 & . & . \\ . & . & 3 & . \\ . & . & . & 4 \end{array} \right] \quad \mathsf{Symm}_{4\times 4} = \left[\begin{array}{ccccc} 11 & 12 & 13 & 14 \\ 12 & 22 & 23 & 24 \\ 13 & 23 & 33 & 34 \\ 14 & 24 & 34 & 44 \end{array} \right]$$

More general topological models allow any arbitrary pattern:

$$\mathsf{Topo}_{4\times 4} = \left[\begin{array}{ccccc} 2 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \\ 4 & 4 & 5 & 5 \\ 4 & 4 & 5 & 1 \end{array} \right]$$

43/62

Square tables: Using gnm

Some models for structured associations in square tables:

quasi-independence (ignore diagonals)

```
gnm(Freq ~ row + col + Diag(row, col), family=poisson)
```

• symmetry $(\lambda_{ii}^{RC} = \lambda_{ii}^{RC})$

```
gnm(Freq ~ Symm(row, col), family=poisson)
```

quasi-symmetry = quasi + symmetry

```
gnm(Freq ~ row + col + Symm(row, col), family=poisson)
```

• fully-specified "topological" association patterns

```
gnm(Freq ~ row + col + Topo(row, col, spec=RCmatrix), ...)
```

All of these are actually GLMs, but the gnm package provides convienence functions Diag, Symm, and Topo to facilitate model specification.

Example: Visual acuity

```
data("VisualAcuity", package="vcd")
women <- subset (VisualAcuity, gender=="female", select=-gender)</pre>
```


- The diagonal cells clearly dominate
- What associations remain, ignoring these?
- Is there evidence for quasi-symmetry?

42/62 41/62

Square tables

Square tables Example

Example: Visual acuity—fitting models

The QS model fits reasonably well, but none of the others do by likelihood-ratio tests or AIC or BIC.

Example: Visual acuity—visualizing model fit

More complex models More complex models

More complex models

- Extensions of these methods arise in a variety of contexts:
 - Panel surveys, where given attitude items are analyzed over time and space
 - Social mobility data, where occupational status of parents and children may admit subtly different models
 - Migration data, where geographical and political factors require some special treatment (e.g., mover-stayer models)
- These often involve:
 - ordinal variables: support for abortion, occumpational status
 - square tables: husbands/wives, fathers/sons, ...
 - strata or layers to control for other factors or analyze change over time or differences over geography

More complex models

 For example, the *log-multiplicative uniform difference* (UNIDIFF) model, for factors R, C, with layer variable L:

$$\log m_{ijk} = \mu + \lambda_i^R + \lambda_i^C + \lambda_k^L + \lambda_{ik}^{RL} + \lambda_{ik}^{CL} + \gamma_k \delta_{ij}^{RC}$$

- The term for the three-way association [RCL] pertains to how the [RC] association varies with layer (L)
- The UNIDIFF model says there is a multiplier γ_k for a common δ_{ij}^{RC} association
- Special cases: R, C, RC(1) models for the [RC] association;
- Special cases: homogeneous associations ($\gamma_k = 0$) for layers
- gnm () notation uses Exp (L), so layer effects are on a log scale.
- The logmult package provides a unidiff() function that makes this easier.

46/62

45/62

More complex models Example

More complex models

Models for stratified mobility tables

Baseline models:

- Perfect mobility: Freq ~ (R+C) *L
- Quasi-perfect mobility: Freq ~ (R+C) *L + Diag(R, C)

Layer models:

- Homogeneous: no layer effects– $\gamma_k = 0$
- Heterogeneous: e.g., $\mu^{\textit{RCL}}_{\textit{ijk}} = \exp(\gamma^{\textit{L}}_{\textit{k}})\,\delta^{\textit{RC}}_{\textit{ij}}$

Extended models: Baseline \oplus Layer model(R:C model)

	Layer model	
R:C model	Homogeneous	log multiplicative
Row effects	~.+ R:j	~.+ Mult(R:j, Exp(L))
Col effects	~.+ i:C	~.+ Mult(i:C, Exp(L))
Row+Col eff	~.+ R:j + i:C	~.+ Mult(R:j + i:C, Exp(L))
RC(1)	~.+ Mult(R, C)	~.+ Mult(R, C, Exp(L))
Full R:C	~.+ R:C	~.+ Mult(R:C, Exp(L)

Example: Social mobility in US, UK & Japan

Data from Yamaguchi (1987): Cross-national comparison of occupational mobility in the U.S., U.K. and Japan.

```
Yama.tab <- xtabs(Freq ~ Father + Son + Country, data=Yamaquchi87)
structable (Country+Son Father, Yama.tab[,,1:2])
                 UpNM LoNM UpM LoM Farm UpNM LoNM UpM LoM Farm
## Father
## UpNM
                 1275 364 274 272
                                      17
                                          474
                                                              11
## LoNM
                 1055 597 394 443
                                      31
                                          300
                                              218
                                                   171
                      587 1045 951
MqU ##
                                      47 438
                                               254
                                                    669
                                                        703
                 1043
                                                              16
## LoM
                 1159 791 1323 2046
                                     52
                                          601 388
                                                    932 1789
                                                              37
## Farm
                  666 496 1031 1632
                                     646
                                          76
```

Questions:

47/62

- Is occupational mobility the same for all countries?
- If not, how do they differ?
- Are there simple models that describe mobility?

See: demo("yamaguchi-xie", package="vcdExtra")

More complex models Example More complex models Example

First thought: try MCA

```
library(ca)
Yama.dft <- expand.dft (Yamaguchi87)
yama.mjca <- mjca(Yama.dft)</pre>
plot(yama.mjca, what=c("none", "all"))
```


- Dimensions seem to have reasonable interpretations
- Farm differs from others
- All sons seem to move up!
- But, how do dims relate to theories of social mobility?
- How to understand Country effects?

Yamaguchi data: Baseline models Minimal, null model asserts Father ⊥ Son | Country

```
yamaNull <- gnm(Freq ~ (Father + Son) * Country, data = Yamaguchi87,
    family = poisson)
mosaic(yamaNull, ~Country + Son + Father, condvars = "Country", ...)
```

[FC][SC] Null [FS] association (perfect mobility)

50/62 49/62

More complex models

Example

More complex models

Example

Yamaguchi data: Baseline models

But, for better theory \implies ignore diagonal cells

```
yamaDiag <- update(yamaNull, ~. + Diag(Father, Son):Country)</pre>
mosaic(yamaDiag, ~Country + Son + Father, condvars = "Country", ...)
```

[FC][SC] Quasi perfect mobility, +Diag(F,S)

Models for homogeneous association

gnm makes it easy to fit collections of models, with simple update () methods

```
Rscore <- as.numeric (Yamaquchi87$Father)
Cscore <- as.numeric(Yamaguchi87$Son)</pre>
yamaRo <- update(yamaDiag, ~ . + Father:Cscore)</pre>
yamaCo <- update(yamaDiag, ~ . + Rscore:Son)</pre>
yamaRpCo <- update(yamaDiag, ~ . + Father:Cscore + Rscore:Son)
yamaRCo <- update(yamaDiag, ~ . + Mult(Father, Son))</pre>
yamaFIo <- update(yamaDiag, ~ . + Father:Son)</pre>
```


More complex models Comparing models

Models for heterogeneous association

Can combine these with models allowing layer effects Log-multiplicative (UNIDIFF) models:

```
yamaRx <- update(yamaDiag, ~ . + Mult(Father:Cscore, Exp(Country)))</pre>
yamaCx <- update(yamaDiag, ~ . + Mult(Rscore:Son, Exp(Country)))</pre>
yamaRpCx <- update(yamaDiag,</pre>
                                ~ . + Mult (Father: Cscore +
                                            Rscore: Son, Exp(Country)))
yamaRCx <- update(yamaDiag, ~ . + Mult(Father, Son, Exp(Country)))</pre>
yamaFIx <- update(yamaDiag, ~ . + Mult(Father:Son, Exp(Country)))</pre>
```

GNM model methods:

- Summary methods: print (model), summary (model),...
- Extractor methods: coef (model), residuals (model),...

Visualization:

- Diagnostics: plot (model)
- Mosaics, etc: mosaic (model)

More complex models Comparing models

Yamaguchi data: Comparing models LRstats () and related methods facilitate model comparison

More complex models

```
BIC <- matrix(LRstats(models)$BIC[-(1:2)], 5, 2, byrow=TRUE)
```

Comparing models

- Homogeneous models all preferred by BIC
- (Xie preferred heterogeneous models)
- Little diffce among Col, Row+Col and RC(1) models
- R:C association ~ Row scores (Father's status)

Yamaguchi data: Comparing models

LRstats () and related methods facilitate model comparison

```
models <- glmlist(yamaNull, yamaDiag,
                  yamaRo, yamaRx, yamaCo, yamaCx, yamaRpCo,
                  yamaRpCx, yamaRCo, yamaRCx, yamaFIo, yamaFIx)
LRstats (models)
## Likelihood summary table:
            AIC BIC LR Chisq Df Pr(>Chisq)
## yamaNull 6168 6231
                          5592 48
## yamaDiag 1943 2040
                          1336 33
                                     < 2e-16 ***
## yamaRo
             771 877
                           156 29
                                     < 2e-16 ***
                           148 27
## yamaRx
             766 877
                                     < 2e-16 ***
             682 789
## vamaCo
                            68 29
                                     6.1e-05 ***
                            59 27
                 789
                                     0.00038 ***
  yamaCx
             677
## yamaRpCo 659 773
                            39 26
                                     0.05089 .
            658 776
                            33 24
## yamaRpCx
                                     0.10341
  yamaRCo
             658 772
                            38 26
                                     0.06423 .
                            32 24
  vamaRCx
             657 775
                                     0.12399
## yamaFIo
            665 788
                            36 22
                                     0.02878 *
            664 791
                            31 20
                                     0.05599 .
## yamaFIx
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

53/62

Yamaguchi data: Comparing models LRstats () and related methods facilitate model comparison

AIC <- matrix (LRstats (models) \$AIC[-(1:2)], 5, 2, byrow=TRUE)

- AIC prefers heterogeneous models
- Row+Col and RC(1) model fit best
- R:C association ~ Father's status estimates
- Model summary plots provide sensitive comparisons!

55/62

More complex models Comparing models Comparing models Comparing models

Yamaguchi data: Interpreting associations

unidiff() in logmult uses gnm(), but makes summaries and plotting easier

```
library(logmult)
yamaUni <- unidiff(Yama.tab)</pre>
```

```
yamaUni
## Call:
## unidiff(tab = Yama.tab)
## Layer coefficients:
##
    US
            UK Japan
## 1.000 1.206 0.931
##
## Layer intrinsic association coefficients:
   US
         UK Japan
## 0.412 0.600 0.357
##
## Full two-way interaction coefficients:
        Son
## Father UpNM
                   LoNM
                           UpM
                                    LoM
         1.0063 0.3024 -0.4399 -0.6048 -0.4394
```

Yamaguchi data: Interpreting associations

Plotting the "unidiff" object plots the layer coefficients

```
plot(yamaUni, cex=2, col="red", pch=16)
```


Father – Son occupational association is ordered *UK > US > Japan*

More complex models

57/62

59/62

Comparing models

58/62

More complex models

Comparing models

Yamaguchi data: Visualizing associations

The common association parameters, δ^{RC}_{ij} , are contained in the "unidiff" object

```
inter <- yamaUni$unidiff$interaction
inter.mat <- matrix(inter$Estimate, 5, 5,</pre>
                   dimnames=dimnames(Yama.tab)[1:2])
inter.mat
        Son
            MMqU
                    LoNM
                             UpM
                                     LoM
    UpNM 1.0063 0.3024 -0.4399 -0.6048 -0.439
    LONM 0.4644 0.5228 -0.2547 -0.3856 -0.512
   UpM
          0.0214 -0.0268 0.2557 -0.0972 -0.583
##
    LoM -0.2056 -0.1028 0.0891 0.2632 -0.650
    Farm -0.5320 -0.3026 0.0101 0.2592 2.075
```

Yamaguchi data: Visualizing associations

Plot these as a shaded-square plot using corrplot ()

```
library(corrplot)
corrplot(inter.mat, method="square", is.corr=FALSE, ...)
```


More complex models Comparing models Summary

Yamaguchi data: Visualizing associations

Plot these as a line plot using matplot ()

Summary

- Loglinear models, as originally formulated, were very general, but treated all table variables as unordered factors
 - The GLM perspective is more general still, allowing quantitative predictors and handling ordinal factors
 - The logit model perspective gives a simplified approach when one variable is a response
- Models for ordered factors give more powerful and focused tests
 - L × L, R, C and R+C models assign scores to the factors
 - RC(1), RC(2), ... models estimate the scores from the data
- Models for square tables provide ways of testing more subtle questions
 - quasi-independence: ignoring diagonals
 - symmetry and quasi-symmetry
 - theory-specific "topological" association patterns
- These methods can readily be combined to analyze complex tables

61/62 62/62