Une approche en géométrie réelle pour périodes de Kontsevich-Zagier

Juan VIU-Sos

Institut Fourier (U. Grenoble-Alpes)

13 janvier, 2017

Contents

- Périodes de Kontsevich-Zagier
 - Qu'est-ce qu'une période ?
 - Problèmes ouverts et conjectures
- 2 Une réduction semi-canonique
 - Une reduction semi-canonique pour périodes
 - Compactification de domaines
 - Résolution des pôles
 - Sommes de Riemann
 - Un exemple : π
- Quelques applications et approches géométriques
 - Degré de périodes et complexité
 - Problèmes géométriques à la Kontsevich-Zagier
- 4 Conclusions et perspectives

- Soit X une variété lisse et Y une subvar. fermée de X, définies sur Q. Cohomologies
 - de Betti : $H_{\mathsf{B}}^{\bullet}(X, Y; \mathbb{Q})$
 - algébrique de de Rham: $H_{dR}^{\bullet}(X, Y; \mathbb{Q})$

- Soit X une variété lisse et Y une subvar. fermée de X, définies sur \mathbb{Q} . Cohomologies

 - de Betti : $H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q})$ algébrique de de Rham: $H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q})$
- "Pairing" par intégration :

$$\begin{array}{ccc} H^{\bullet}_{\mathrm{B}}(X,Y;\mathbb{Q}) \times H^{\bullet}_{\mathrm{dR}}(X,Y;\mathbb{Q}) & \longrightarrow & \mathbb{C} \\ & (\gamma,\omega) & \longmapsto & \int_{\gamma^*} \omega \end{array}$$

- Soit X une variété lisse et Y une subvar. fermée de X, définies sur Q. Cohomologies
 - de Betti : $H_{\mathsf{B}}^{\bullet}(X,Y;\mathbb{Q})$ • algébrique de de Rham: $H_{\mathsf{dP}}^{\bullet}(X,Y;\mathbb{Q})$
- "Pairing" par intégration :

$$\begin{array}{ccc} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \times H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) & \longrightarrow & \mathbb{C} \\ (\gamma,\omega) & \longmapsto & \int_{\gamma^*} \omega \end{array}$$

ullet En tensorissant par $\mathbb{C} \leadsto \mathsf{l}'$ isomorphisme de comparaison

$$\mathsf{comp}_{\mathsf{B},\mathsf{dR}}: H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) \otimes \mathbb{C} \xrightarrow{\cong} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \otimes \mathbb{C}$$

représenté en utilisant Q-bases par la matrice des périodes

$$\Pi = \left(\int_{\gamma_i^*} \omega_j\right)_{i,i=1,\ldots,s}.$$

- Soit X une variété lisse et Y une subvar. fermée de X, définies sur Q. Cohomologies
 - de Betti : $H_{\mathsf{B}}^{\bullet}(X,Y;\mathbb{Q})$
 - algébrique de de Rham: $H^{\bullet}_{dR}(X, Y; \mathbb{Q})$
- "Pairing" par intégration :

$$\begin{array}{ccc} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \times H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) & \longrightarrow & \mathbb{C} \\ (\gamma,\omega) & \longmapsto & \int_{\gamma^*} \omega \end{array}$$

ullet En tensorissant par $\mathbb{C} \leadsto \mathsf{l}'$ isomorphisme de comparaison

$$\mathsf{comp}_{\mathsf{B},\mathsf{dR}}: H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) \otimes \mathbb{C} \stackrel{\cong}{\longrightarrow} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \otimes \mathbb{C}$$

représenté en utilisant Q-bases par la matrice des périodes

$$\Pi = \left(\int_{\gamma_i^*} \omega_j\right)_{i \ i=1} \quad .$$

• QUESTION: Est-ce que l'isomorphisme de comparaison est induit par $H^{\bullet}_{dR}(X,Y;\mathbb{Q}) \stackrel{\simeq}{\longrightarrow} H^{\bullet}_{B}(X,Y;\mathbb{Q})$?

$$\bullet \text{ Non! Si } X=\mathbb{A}^1_{\mathbb{Q}}\setminus\{0\}=\operatorname{Spec}\mathbb{Q}[t,t^{-1}], \ Y=\emptyset \text{ et } \gamma=S^1\subset\mathbb{C}^*\colon$$

$$H_{\mathsf{B}}^{\bullet}(\mathbb{C}^*; \mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{\mathsf{dR}}^{\bullet}(X; \mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

mais
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \notin \mathbb{Q}$$
.

- QUESTION: Est-ce que l'isomorphisme de comparaison est induit par $H_{\Phi R}^{\bullet}(X,Y;\mathbb{Q}) \stackrel{\simeq}{\longrightarrow} H_{\Phi}^{\bullet}(X,Y;\mathbb{Q})$?
 - Non! Si $X=\mathbb{A}^1_\mathbb{O}\setminus\{0\}=\operatorname{Spec}\mathbb{Q}[t,t^{-1}],\ Y=\emptyset$ et $\gamma=S^1\subset\mathbb{C}^*$:

$$H_{\mathsf{B}}^{\bullet}(\mathbb{C}^*; \mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{\mathsf{dR}}^{\bullet}(X; \mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

mais
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \not\in \mathbb{Q}$$
.

3

Obstruction "transcendante", invariante de la paire (X, Y)!

• QUESTION: Est-ce que l'isomorphisme de comparaison est induit par $H^{\bullet}_{\bullet}(X,Y;\mathbb{Q}) \xrightarrow{\simeq} H^{\bullet}_{\bullet}(X,Y;\mathbb{Q})$?

• Non! Si
$$X=\mathbb{A}^1_\mathbb{Q}\setminus\{0\}=\operatorname{Spec}\mathbb{Q}[t,t^{-1}],\ Y=\emptyset \ \operatorname{et}\ \gamma=S^1\subset\mathbb{C}^*$$
:

$$H_{\mathsf{B}}^{\bullet}(\mathbb{C}^*;\mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{\mathsf{dR}}^{\bullet}(X;\mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

mais
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \not\in \mathbb{Q}$$
.

ζ

Obstruction "transcendante", invariante de la paire (X, Y)!

• QUESTION: Quels sont les relations algébriques entre périodes de (X, Y) ?

- QUESTION: Est-ce que l'isomorphisme de comparaison est induit par $H^{\bullet}_{\bullet}(X,Y;\mathbb{Q}) \xrightarrow{\simeq} H^{\bullet}_{\bullet}(X,Y;\mathbb{Q})$?
 - Non! Si $X = \mathbb{A}^1_{\mathbb{Q}} \setminus \{0\} = \operatorname{Spec} \mathbb{Q}[t, t^{-1}], Y = \emptyset \text{ et } \gamma = S^1 \subset \mathbb{C}^*$:

$$H_{\mathsf{B}}^{\bullet}(\mathbb{C}^*; \mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{\mathsf{dR}}^{\bullet}(X; \mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

mais
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \not\in \mathbb{Q}$$
.

ζ

Obstruction "transcendante", invariante de la paire (X, Y)!

• QUESTION: Quels sont les relations algébriques entre périodes de (X, Y) ?

Conjecture (Grothendieck '66)

"Toute relation polynomiale entre périodes de X proviens de relations entre cycles algébriques de X."

- QUESTION: Est-ce que l'isomorphisme de comparaison est induit par $H^{\bullet}_{\bullet}(X,Y;\mathbb{Q}) \xrightarrow{\simeq} H^{\bullet}_{\bullet}(X,Y;\mathbb{Q})$?
 - Non! Si $X = \mathbb{A}^1_{\mathbb{O}} \setminus \{0\} = \operatorname{Spec} \mathbb{Q}[t, t^{-1}], Y = \emptyset \text{ et } \gamma = S^1 \subset \mathbb{C}^*$:

$$H_{\mathsf{B}}^{\bullet}(\mathbb{C}^*; \mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{\mathsf{dR}}^{\bullet}(X; \mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

mais
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \not\in \mathbb{Q}$$
.

ζ

Obstruction "transcendante", invariante de la paire (X, Y)!

• QUESTION: Quels sont les relations algébriques entre périodes de (X, Y) ?

Conjecture (Grothendieck '66)

"Toute relation polynomiale entre périodes de X proviens de relations entre cycles algébriques de X."

M. Kontsevich and D. Zagier. Periods, *Mathematics unlimited–2001 and beyond*, 2001.

Soit \mathbb{R}_{alg} le corps des nombres algébriques R'eELS.

M. Kontsevich and D. Zagier. Periods, *Mathematics unlimited*–2001 and beyond, 2001.

Soit \mathbb{R}_{alg} le corps des nombres algébriques $R \acute{E} ELS$.

Définitior

Une période de Kontsevich-Zagier (ou période effective) est tout $p \in \mathbb{C}$ tel que $\Re(p)$ et $\Im(p)$ sont des valeurs d'intégrales absolument convergentes de la forme

$$\mathcal{I}(S, P/Q) = \int_{S} \frac{P(x_1, \dots, x_d)}{Q(x_1, \dots, x_d)} \cdot dx_1 \wedge \dots \wedge dx_d$$

où $S \subset \mathbb{R}^d$ est un ensemble $\mathbb{R}_{\mathsf{alg}}$ -semi-algébrique et $P/Q \in \mathbb{R}_{\mathsf{alg}}(x_1, \dots, x_d)$.

M. Kontsevich and D. Zagier. Periods, *Mathematics unlimited–2001 and beyond*, 2001.

Soit \mathbb{R}_{alg} le corps des nombres algébriques $R \acute{\mathrm{E}} \mathrm{ELS}.$

Définition

Une période de Kontsevich-Zagier (ou période effective) est tout $p \in \mathbb{C}$ tel que $\Re(p)$ et $\Im(p)$ sont des valeurs d'intégrales absolument convergentes de la forme

$$\mathcal{I}(S, P/Q) = \int_{S} \frac{P(x_1, \dots, x_d)}{Q(x_1, \dots, x_d)} \cdot dx_1 \wedge \dots \wedge dx_d$$

où $S \subset \mathbb{R}^d$ est un ensemble $\mathbb{R}_{\mathsf{alg}}$ -semi-algébrique et $P/Q \in \mathbb{R}_{\mathsf{alg}}(\mathsf{x}_1,\ldots,\mathsf{x}_d)$.

 $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}} \equiv$ ensemble de périodes de Kontsevich-Zagier et $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}^{\mathbb{R}} = \mathcal{P}_{\scriptscriptstyle \mathrm{KZ}} \cap \mathbb{R}$.

M. Kontsevich and D. Zagier. Periods, *Mathematics unlimited*–2001 and beyond, 2001.

Soit \mathbb{R}_{alg} le corps des nombres algébriques $R \acute{E} ELS$.

Définition

Une période de Kontsevich-Zagier (ou période effective) est tout $p \in \mathbb{C}$ tel que $\Re(p)$ et $\Im(p)$ sont des valeurs d'intégrales absolument convergentes de la forme

$$\mathcal{I}(S, P/Q) = \int_{S} \frac{P(x_1, \dots, x_d)}{Q(x_1, \dots, x_d)} \cdot dx_1 \wedge \dots \wedge dx_d$$

où $S \subset \mathbb{R}^d$ est un ensemble $\mathbb{R}_{\mathsf{alg}}$ -semi-algébrique et $P/Q \in \mathbb{R}_{\mathsf{alg}}(\mathsf{x}_1,\ldots,\mathsf{x}_d)$.

 $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}} \equiv$ ensemble de périodes de Kontsevich-Zagier et $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}^{\mathbb{R}} = \mathcal{P}_{\scriptscriptstyle \mathrm{KZ}} \cap \mathbb{R}$.

- **1** Nombres algébriques : $\alpha = \int_0^\alpha \mathrm{d} x$, $\forall \alpha \in \mathbb{R}_{\text{alg}}$.
- Comme premier nombre transcendant

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, dx dy = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx$$

- **1** Nombres algébriques : $\alpha = \int_0^\alpha \mathrm{d} x$, $\forall \alpha \in \mathbb{R}_{\text{alg}}$.
- Comme premier nombre transcendant

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, dx dy = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx$$

① Logarithmes de nombres algébriques : si $lpha \in \mathbb{R}_{\mathsf{alg}}$ tel que lpha > 1

$$\log(\alpha) = \int_{1}^{\alpha} \frac{\mathrm{d}t}{t} = \int_{\substack{1 < x < \alpha \\ 0 < xy < 1}} 1 \, \mathrm{d}x \mathrm{d}y$$

- $\textbf{0} \ \ \text{Nombres algébriques}: \ \alpha = \int_0^\alpha \mathrm{d}x \text{, } \forall \alpha \in \mathbb{R}_{\text{alg}}.$
- Comme premier nombre transcendant

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, dx dy = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx$$

lacktriangle Logarithmes de nombres algébriques : si $lpha\in\mathbb{R}_{\mathsf{alg}}$ tel que lpha>1,

$$\log(\alpha) = \int_{1}^{\alpha} \frac{\mathrm{d}t}{t} = \int_{\substack{1 < x < \alpha \\ 0 < xy < 1}} 1 \, \mathrm{d}x \mathrm{d}y$$

③ Valeurs poly-zêtas, intégrales elliptiques, $\Gamma(p/q)^q$, intégrales de Feynman,...

- $\textbf{ 0} \ \, \mathsf{Nombres \ alg\'ebriques} : \ \, \alpha = \int_0^\alpha \mathrm{d} x, \ \, \forall \alpha \in \mathbb{R}_{\mathsf{alg}}.$
- Comme premier nombre transcendant

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, dx dy = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx$$

 $\textbf{ 0} \ \ \mathsf{Logarithmes} \ \mathsf{de} \ \mathsf{nombres} \ \mathsf{alg\'ebriques} : \mathsf{si} \ \alpha \in \mathbb{R}_{\mathsf{alg}} \ \mathsf{tel} \ \mathsf{que} \ \alpha > \mathsf{1}, \\$

$$\log(\alpha) = \int_{1}^{\alpha} \frac{\mathrm{d}t}{t} = \int_{\substack{1 < x < \alpha \\ 0 < xy < 1}} 1 \, \mathrm{d}x \mathrm{d}y$$

• Valeurs poly-zêtas, intégrales elliptiques, $\Gamma(p/q)^q$, intégrales de Feynman,...

Théorème

 \mathcal{P}_{KZ} est une $\overline{\mathbb{Q}}$ -algèbre dénombrable.

Théorème

 $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$ est une $\overline{\mathbb{Q}}$ -algèbre dénombrable.

Conjecturalement: e, $1/\pi$ ou nombres de Liouville ne sont pas dans \mathcal{P}_{KZ} .

Théorème

 $\mathcal{P}_{\scriptscriptstyle KZ}$ est une $\overline{\mathbb{Q}}\text{-algèbre}$ dénombrable.

Conjecturalement: e, $1/\pi$ ou nombres de Liouville ne sont pas dans $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}.$

Yoshinaga('08):
$$\mathcal{P}^{\mathbb{R}}_{\text{KZ}} \subset \mathbb{R}_{(\text{Elem})} \leadsto \text{construction de } \alpha \not\in \mathbb{R}_{(\text{Elem})}$$
.

Théorème

 $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$ est une $\overline{\mathbb{Q}}$ -algèbre dénombrable.

Conjecturalement: e, $1/\pi$ ou nombres de Liouville ne sont pas dans $\mathcal{P}_{\text{\tiny KZ}}.$

Yoshinaga('08): $\mathcal{P}_{\text{kz}}^{\mathbb{R}} \subset \mathbb{R}_{(\text{Elem})} \leadsto \text{construction de } \alpha \notin \mathbb{R}_{(\text{Elem})}$.

Conjecture (de périodes de Konsevich-Zagier)

Si une période réelle admet deux représentations intégrales, alors on peut passer d'une formulation à l'autre en utilisant uniquement trois opérations (appelés KZ-règles) :

Conjecture (de périodes de Konsevich-Zagier)

Si une période réelle admet deux représentations intégrales, alors on peut passer d'une formulation à l'autre en utilisant uniquement trois opérations (appelés KZ-règles) :

$$\bullet \int_{S_1 \sqcup S_2} \omega = \int_{S_1} \omega + \int_{S_2} \omega \quad \text{ et } \quad \int_S \omega_1 + \omega_2 = \int_S \omega_1 + \int_S \omega_2$$

Conjecture (de périodes de Konsevich-Zagier)

Si une période réelle admet deux représentations intégrales, alors on peut passer d'une formulation à l'autre en utilisant uniquement trois opérations (appelés KZ-règles):

•
$$\int_{S_1 \sqcup S_2} \omega = \int_{S_1} \omega + \int_{S_2} \omega$$
 et $\int_{S} \omega_1 + \omega_2 = \int_{S} \omega_1 + \int_{S} \omega_2$

$$\bullet \int_{S} \omega = \int_{h^{-1}S} h^* \omega$$

Conjecture (de périodes de Konsevich-Zagier)

Si une période réelle admet deux représentations intégrales, alors on peut passer d'une formulation à l'autre en utilisant uniquement trois opérations (appelés KZ-règles):

$$\bullet \int_{S_1 \sqcup S_2} \omega = \int_{S_1} \omega + \int_{S_2} \omega \quad \text{ et } \quad \int_{S} \omega_1 + \omega_2 = \int_{S} \omega_1 + \int_{S} \omega_2$$

$$\bullet \int_{S} \omega = \int_{h^{-1}S} h^* \omega$$

•
$$\int_{S} d\omega = \int_{\partial S} \omega$$
 (formule de Stokes)

En plus, ces opérations doivent respecter la classe des objets précédentes.

Conjecture (de périodes de Konsevich-Zagier)

Si une période réelle admet deux représentations intégrales, alors on peut passer d'une formulation à l'autre en utilisant uniquement trois opérations (appelés KZ-règles) :

$$\bullet \int_{S_1 \sqcup S_2} \omega = \int_{S_1} \omega + \int_{S_2} \omega \quad \text{ et } \quad \int_{S} \omega_1 + \omega_2 = \int_{S} \omega_1 + \int_{S} \omega_2$$

$$\bullet \int_{S} \omega = \int_{h^{-1}S} h^* \omega$$

•
$$\int_{S} d\omega = \int_{\partial S} \omega$$
 (formule de Stokes)

En plus, ces opérations doivent respecter la classe des objets précédentes.

Problème (Algorithme d'égalité

Trouver un algorithme qui nous permets de prouver si deux périodes sont égales ou non.

Conjecture (de périodes de Konsevich-Zagier)

Si une période réelle admet deux représentations intégrales, alors on peut passer d'une formulation à l'autre en utilisant uniquement trois opérations (appelés KZ-règles) :

$$\bullet \int_{S_1 \sqcup S_2} \omega = \int_{S_1} \omega + \int_{S_2} \omega \quad \text{ et } \quad \int_{S} \omega_1 + \omega_2 = \int_{S} \omega_1 + \int_{S} \omega_2$$

$$\bullet \int_{S} \omega = \int_{h^{-1}S} h^* \omega$$

•
$$\int_{S} d\omega = \int_{\partial S} \omega$$
 (formule de Stokes)

En plus, ces opérations doivent respecter la classe des objets précédentes.

Problème (Algorithme d'égalité)

Trouver un algorithme qui nous permets de prouver si deux périodes sont égales ou non.

ne reduction semi-canonique pour période: ompactification de domaines ssolution des pôles ommes de Riemann o exemple : #

Une reduction semi-canonique pour périodes

"A semi-canonical reduction for periods of Kontsevich-Zagier.", arXiv:1509.01097. (soumis)

$$\int_{S} \frac{P(x)}{Q(x)} \, \mathrm{d}x$$

$$\int_{S} \frac{P(x)}{Q(x)} \, \mathrm{d}x$$

$$\int_{K} 1 \, \mathrm{d}x$$

$$\int_{S} \frac{P(x)}{Q(x)} \, \mathrm{d}x$$

$$\int_{K} 1 \, \mathrm{d}x$$

Toute la complexité sur le DOMAINE

Approche géométrie : une stratégie

Approche géométrie : une stratégie

Notre résultat principaux :

Théorème (Réduction semi-canonique)

Soit $p \in \mathcal{P}_{\text{KZ}}$ une période réelle non nulle exprimée par une forme intégrale $\mathcal{I}(S,P/Q)$ dans \mathbb{R}^d . Alors, il existe un algorithme effectif respectant les règles-KZ et tel que $\mathcal{I}(S,P/Q)$ peut être exprimée comme

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

où $K \subset \mathbb{R}^{d+1}$ est un semi-algébrique compacte.

Notre résultat principaux :

Théorème (Réduction semi-canonique)

Soit $p \in \mathcal{P}_{\text{KZ}}$ une période réelle non nulle exprimée par une forme intégrale $\mathcal{I}(S,P/Q)$ dans \mathbb{R}^d . Alors, il existe un algorithme effectif respectant les règles-KZ et tel que $\mathcal{I}(S,P/Q)$ peut être exprimée comme

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

où $K \subset \mathbb{R}^{d+1}$ est un semi-algébrique compacte.

Approche géométrique : compactification de domaines

Approche géométrique : compactification de domaines

Approche géométrique : compactification de domaines

Une reduction semi-canonique pour périodes Compactification de domaines Résolution des pôles Sommes de Riemann

Compactification

Définissons la clôture projective d'un semi-algébrique $S \subset \mathbb{R}^d$ étant la clôture topologique de l'inclusion $S \hookrightarrow \mathbb{P}^d_{\mathbb{R}}$.

Théorème

L'espace $\mathbb{P}^d_{\mathbb{R}}$ peut-être construit comme le recollement de C_1,\ldots,C_{d+1} hypercubes unité affines, recollant par des faces opposées, et tel que la clôture de Zariski de $\bigcup_{i,j=0}^d (C_i \cap C_j)$ est l'arrangement d'hyperplans

$$\mathcal{A} = \{x_i^2 - x_j^2 = 0 \mid 0 \le i < j \le d\} \subset \mathbb{P}^d_{\mathbb{R}}$$

 $\leadsto S \longrightarrow K_1 \sqcup \ldots \sqcup K_{d+1}$ semi-algébriques compactes affines (avec intersections de mesure nulle).

Une reduction semi-canonique pour périodes Compactification de domaines Résolution des pôles Sommes de Riemann

Compactification

Définissons la clôture projective d'un semi-algébrique $S \subset \mathbb{R}^d$ étant la clôture topologique de l'inclusion $S \hookrightarrow \mathbb{P}^d_{\mathbb{R}}$.

Théorème

L'espace $\mathbb{P}^d_{\mathbb{R}}$ peut-être construit comme le recollement de C_1,\ldots,C_{d+1} hypercubes unité affines, recollant par des faces opposées, et tel que la clôture de Zariski de $\bigcup_{i,j=0}^d (C_i \cap C_j)$ est l'arrangement d'hyperplans

$$\mathcal{A} = \{x_i^2 - x_j^2 = 0 \mid 0 \le i < j \le d\} \subset \mathbb{P}^d_{\mathbb{R}}$$

 $\leadsto S \longrightarrow K_1 \sqcup \ldots \sqcup K_{d+1}$ semi-algébriques compactes affines (avec intersections de mesure nulle).

Approche géométrique : résolution des pôles

Approche géométrique : résolution des pôles

Une intégrale $\int_K \omega$ sur K semi-algébrique compacte est absolument convergente sii \exists suite finie d'éclatements $\pi=\pi_r\circ\cdots\circ\pi_1:W\to\mathbb{R}^d$ sur des centres lisses où :

- W est une sous-var. fermée de $\mathbb{R}^d \times \mathbb{P}^m_{\mathbb{R}}$ avec $\dim W = d$.
- π est birationnel et propre.
- Le lieu de pôles de $\pi^*\omega$ est disjoint à la transformée stricte \widetilde{K} .
- » il suffit de considérer la résolution des singularités plongée de

$$X = \partial_z S \cup Z(\omega) \cup P(\omega).$$

Une intégrale $\int_K \omega$ sur K semi-algébrique compacte est absolument convergente sii \exists suite finie d'éclatements $\pi=\pi_r\circ\cdots\circ\pi_1:W\to\mathbb{R}^d$ sur des centres lisses où :

- W est une sous-var. fermée de $\mathbb{R}^d \times \mathbb{P}^m_\mathbb{R}$ avec $\dim W = d$.
- π est birationnel et propre.
- Le lieu de pôles de $\pi^*\omega$ est disjoint à la transformée stricte \widetilde{K} .
- vil suffit de considérer la résolution des singularités plongée de

$$X = \partial_z S \cup Z(\omega) \cup P(\omega).$$

 \rightsquigarrow en utilisant la décomposition par hypercubes de $\mathbb{P}^m_{\mathbb{R}}$:

$$\widetilde{K} \longrightarrow \widetilde{K}_1 \sqcup \ldots \sqcup \widetilde{K}_n$$
 semi-algébriques compactes affines.

Une intégrale $\int_K \omega$ sur K semi-algébrique compacte est absolument convergente sii \exists suite finie d'éclatements $\pi=\pi_r\circ\cdots\circ\pi_1:W\to\mathbb{R}^d$ sur des centres lisses où :

- W est une sous-var. fermée de $\mathbb{R}^d \times \mathbb{P}^m_\mathbb{R}$ avec $\dim W = d$.
- \bullet π est birationnel et propre.
- Le lieu de pôles de $\pi^*\omega$ est disjoint à la transformée stricte \widetilde{K} .
- vil suffit de considérer la résolution des singularités plongée de

$$X = \partial_z S \cup Z(\omega) \cup P(\omega).$$

 \leadsto en utilisant la décomposition par hypercubes de $\mathbb{P}^m_{\mathbb{R}}$:

$$\widetilde{K} \longrightarrow \widetilde{K}_1 \sqcup \ldots \sqcup \widetilde{K}_n$$
 semi-algébriques compactes affines.

 La désingularisation de Hironaka est algorithmique effective en car. 0 (Villamayor, 89).

Une intégrale $\int_K \omega$ sur K semi-algébrique compacte est absolument convergente sii \exists suite finie d'éclatements $\pi=\pi_r\circ\cdots\circ\pi_1:W\to\mathbb{R}^d$ sur des centres lisses où :

- W est une sous-var. fermée de $\mathbb{R}^d \times \mathbb{P}^m_\mathbb{R}$ avec $\dim W = d$.
- π est birationnel et propre.
- Le lieu de pôles de $\pi^*\omega$ est disjoint à la transformée stricte \widetilde{K} .
- vil suffit de considérer la résolution des singularités plongée de

$$X = \partial_z S \cup Z(\omega) \cup P(\omega).$$

 \leadsto en utilisant la décomposition par hypercubes de $\mathbb{P}^m_{\mathbb{R}}$:

$$\widetilde{K} \longrightarrow \widetilde{K}_1 \sqcup \ldots \sqcup \widetilde{K}_n$$
 semi-algébriques compactes affines.

 La désingularisation de Hironaka est algorithmique effective en car. 0 (Villamayor, 89).

Une reduction semi-canonique pour période Compactification de domaines Résolution des pôles Sommes de Riemann

Une reduction semi-canonique pour période Compactification de domaines Résolution des pôles Sommes de Riemann

Une reduction semi-canonique pour périodes Compactification de domaines Résolution des pôles Sommes de Riemann

Une reduction semi-canonique pour période Compactification de domaines Résolution des pôles Sommes de Riemann

Somme d'intégrales bien définies sur des compactes \leadsto prenons les volumes sous l'intégrand :

Corollaire

Toute période non-nulle $p = \mathcal{I}(S, P/Q)$ peut être exprimé comme

$$p = \text{vol}_{d+1}(K_1) - \text{vol}_{d+1}(K_2),$$

où K_1, K_2 sont des \mathbb{R}_{alg} -semi-algébriques compactes de dim (d+1), obtenues algorithmiquement à partir de (S, P/Q) en respectant les règles-KZ.

Une reduction semi-canonique pour période Compactification de domaines Résolution des pôles Sommes de Riemann

Somme d'intégrales bien définies sur des compactes \leadsto prenons les volumes sous l'intégrand :

Corollaire

Toute période non-nulle $p = \mathcal{I}(S, P/Q)$ peut être exprimé comme

$$p = \text{vol}_{d+1}(K_1) - \text{vol}_{d+1}(K_2),$$

où K_1 , K_2 sont des \mathbb{R}_{alg} -semi-algébriques compactes de dim (d+1), obtenues algorithmiquement à partir de (S,P/Q) en respectant les règles-KZ.

Approche géométrique : sommes de Riemann

compatification projective
$$\int_{S} \frac{P(x)}{Q(x)} \, \mathrm{d}x$$

$$\sum_{i} \int_{K_{i}} \frac{P_{i}(x)}{Q_{i}(x)} \, \mathrm{d}x$$

$$\int_{S} \int_{K_{i,j}} \frac{P_{i,j}(x)}{Q_{i,j}(x)} \, \mathrm{d}x$$
 • algorithmique • respectant les régles-KZ en prennant volumes sous la surface intégrale
$$\int_{K_{\perp}} 1 \, \mathrm{d}x - \int_{K_{-}} 1 \, \mathrm{d}x$$

Approche géométrique : sommes de Riemann

Soient K_+ et K_- deux semi-algébriques compactes de dim d tels que $0 < \text{vol}_d(K_-) < \text{vol}_d(K_+)$.

Proposition

$$\operatorname{vol}_d(K) = \operatorname{vol}_d(K_+) - \operatorname{vol}_d(K_-)$$

Soient K_+ et K_- deux semi-algébriques compactes de dim d tels que $0 < \text{vol}_d(K_-) < \text{vol}_d(K_+)$.

Proposition

$$\operatorname{\mathsf{vol}}_d(K) = \operatorname{\mathsf{vol}}_d(K_+) - \operatorname{\mathsf{vol}}_d(K_-)$$

Soient K_+ et K_- deux semi-algébriques compactes de dim d tels que $0 < \text{vol}_d(K_-) < \text{vol}_d(K_+)$.

Proposition

$$\operatorname{vol}_d(K) = \operatorname{vol}_d(K_+) - \operatorname{vol}_d(K_-)$$

Soient K_+ et K_- deux semi-algébriques compactes de dim d tels que $0 < \text{vol}_d(K_-) < \text{vol}_d(K_+)$.

Proposition

$$\operatorname{vol}_d(K) = \operatorname{vol}_d(K_+) - \operatorname{vol}_d(K_-)$$

Soient K_+ et K_- deux semi-algébriques compactes de dim d tels que $0 < \text{vol}_d(K_-) < \text{vol}_d(K_+)$.

Proposition

$$\operatorname{vol}_d(K) = \operatorname{vol}_d(K_+) - \operatorname{vol}_d(K_-)$$

Soient K_+ et K_- deux semi-algébriques compactes de dim d tels que $0 < \text{vol}_d(K_-) < \text{vol}_d(K_+)$.

Proposition

$$\operatorname{vol}_d(K) = \operatorname{vol}_d(K_+) - \operatorname{vol}_d(K_-)$$

Inner cubes = 136

Outer cubes = 80

Soient K_+ et K_- deux semi-algébriques compactes de dim d tels que $0 < \text{vol}_d(K_-) < \text{vol}_d(K_+)$.

Proposition

$$\operatorname{vol}_d(K) = \operatorname{vol}_d(K_+) - \operatorname{vol}_d(K_-)$$

Un exemple : π

$$\frac{\pi}{4} = \int_1^\infty \frac{1}{1+x^2} \mathrm{d}x = \int_D \mathrm{d}x \mathrm{d}y$$

avec $D = \{x > 1, 0 < y(1 + x^2) < 1\} \subset \mathbb{R}^2$.

 $\mathsf{Par}\ \mathit{U}_{\mathsf{z}} = \{[\mathit{x} : \mathit{y} : \mathit{z}] \mid \mathit{z} \neq \mathsf{0}\} \hookrightarrow \mathbb{P}^{2}_{\mathbb{R}} \leadsto \mathsf{un}\ \mathsf{diff\'{e}omorphisme}\ \varphi\ \mathsf{de}\ \mathbb{R}^{2} \setminus \mathit{L}$

$$D_1 = \varphi^{-1}D = \left\{ 0 < x_1 < 1, \ 0 < y_1, \ 0 < x_1^3 - y_1(1 + x_1^2) \right\},$$

Une reduction semi-canonique pour période Compactification de domaines Résolution des pôles Sommes de Riemann Un exemple : π

Un exemple : π

$$\frac{\pi}{4} = \int_1^\infty \frac{1}{1+x^2} \mathrm{d}x = \int_D \mathrm{d}x \mathrm{d}y$$

avec $D = \{x > 1, 0 < y(1 + x^2) < 1\} \subset \mathbb{R}^2$.

 $\mathsf{Par}\ \mathit{U}_z = \{[x:y:z] \mid z \neq 0\} \hookrightarrow \mathbb{P}^2_{\mathbb{R}} \leadsto \mathsf{un}\ \mathsf{diff\'eomorphisme}\ \varphi\ \mathsf{de}\ \mathbb{R}^2 \setminus \mathit{L}$

$$D_1 = \varphi^{-1}D = \left\{ 0 < x_1 < 1, \ 0 < y_1, \ 0 < x_1^3 - y_1(1 + x_1^2) \right\},$$

Une reduction semi-canonique pour période Compactification de domaines Résolution des pôles Sommes de Riemann Un exemple : π

$$\mathcal{I}(D,1) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_1} \frac{\mathrm{d}x_1 \mathrm{d}y_1}{x_1^3}.$$

⇒ le jacobien nous donne un pôle d'ordre trois à l'origine.

Une reduction semi-canonique pour période Compactification de domaines Résolution des pôles Sommes de Riemann Un exemple : π

$$\mathcal{I}\left(D,1\right) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_{1}} \frac{\mathrm{d}x_{1} \mathrm{d}y_{1}}{x_{1}^{3}}.$$

⇒ le jacobien nous donne un pôle d'ordre trois à l'origine.

L'ordre du pôle descend par la suite d'éclatements :

Une reduction semi-canonique pour périodes Compactification de domaines Résolution des pôles Sommes de Riemann Un exemple : π

$$\mathcal{I}\left(D,1\right) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_{1}} \frac{\mathrm{d}x_{1} \mathrm{d}y_{1}}{x_{1}^{3}}.$$

⇒ le jacobien nous donne un pôle d'ordre trois à l'origine.

L'ordre du pôle descend par la suite d'éclatements :

Une reduction semi-canonique pour périodes Compactification de domaines Résolution des pôles Sommes de Riemann Un exemple : π

$$\mathcal{I}(D,1) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_{1}} \frac{\mathrm{d}x_{1} \mathrm{d}y_{1}}{x_{1}^{3}}.$$

⇒ le jacobien nous donne un pôle d'ordre trois à l'origine.

L'ordre du pôle descend par la suite d'éclatements :

QUELQUES APPLICATIONS: Complexité de périodes et problèmes géométriques reliés

"On the equality of periods of Kontsevich-Zagier.", avec Jacky $\operatorname{Cresson}$, preprint.

J. Wan, DEGREES OF PERIODS, Preprint, 2011.

Définition-Théorème

La degré d'une période réelle $p \in \mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$:

 $deg(p) = min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ s.alg. compact tel que } |p| = vol_d(K)\},$

Cela induit une filtration de la Q-algèbre de périodes

J. Wan, Degrees of Periods, Preprint, 2011.

Définition-Théorème

La degré d'une période réelle p $\in \mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$:

 $deg(p) = min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ s.alg. compact tel que } |p| = vol_d(K)\},$

Cela induit une filtration de la $\overline{\mathbb{Q}}$ -algèbre de périodes.

Proprieté (Critère géométrique de transcendance de périodes)

 $p \in \overline{\mathbb{Q}}^{\times}$ si et seulement si $\deg(p) = 1$.

J. Wan, Degrees of Periods, Preprint, 2011.

Définition-Théorème

La degré d'une période réelle $p \in \mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$:

 $deg(p) = min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ s.alg. compact tel que } |p| = vol_d(K)\},$

Cela induit une filtration de la $\overline{\mathbb{Q}}$ -algèbre de périodes.

Proprieté (Critère géométrique de transcendance de périodes)

 $p \in \overline{\mathbb{Q}}^{\times}$ si et seulement si $\deg(p) = 1$.

EN GÉNÉRALE : très difficile de calculer

$$\pi^2 = \operatorname{vol}_3\left(\left\{\begin{array}{c} x^2 + y^2 \le 1 \\ 0 \le z((x^2 + y^2)^2 + 1) \le 4 \end{array}\right\}\right) \Longrightarrow 2 \le \deg(\pi^2) \le 3.$$

J. Wan, DEGREES OF PERIODS, Preprint, 2011.

Définition-Théorème

La degré d'une période réelle $p \in \mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$:

 $deg(p) = min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ s.alg. compact tel que } |p| = vol_d(K)\},$

Cela induit une filtration de la $\overline{\mathbb{Q}}$ -algèbre de périodes.

Proprieté (Critère géométrique de transcendance de périodes)

 $p \in \overline{\mathbb{Q}}^{\times}$ si et seulement si $\deg(p) = 1$.

EN GÉNÉRALE : très difficile de calculer !

$$\pi^2 = \operatorname{vol}_3\left(\left\{\begin{array}{c} x^2 + y^2 \le 1 \\ 0 \le z((x^2 + y^2)^2 + 1) \le 4 \end{array}\right\}\right) \Longrightarrow 2 \le \deg(\pi^2) \le 3.$$

Définition

La Complexité d'un semi-algébrique $S\subset\mathbb{R}^d$ est la triplet (d,r,c), où (r,c) est la plus petite tuple (en ordre lexicographique) telle qu'il existe une représentation

$$S = \bigcup_{i=1}^{s} \bigcap_{i=1}^{r_i} \{f_{i,j} *_{i,j} 0\}$$

vérifiant:

- Le nb de conditions $P(R) = \sum r_i = r$.
- La degré maximal des polynômes $C(R) = \sup_{\substack{i=1,\ldots,s\\j=1,\ldots,r_i}} \deg f_{i,j} = c$.

Définition

La complexité géométrique de $p \in \mathcal{P}_{\text{KZ}}^{\mathbb{R}}$ est le triplet minimal $(d, r, c) \in \mathbb{N}$ par rapport à l'ordre lexicographique tel qu'il existe un semi-algébrique compact K de complexité (d, r, c) vérifiant $|p| = \text{vol}_d(S)$.

Proposition

La complexité géométrique minimal qui peut être atteint par une période transcendante est (2,1,2).

Définition

La complexité géométrique de $p \in \mathcal{P}_{\mathrm{KZ}}^{\mathbb{R}}$ est le triplet minimal $(d,r,c) \in \mathbb{N}$ par rapport à l'ordre lexicographique tel qu'il existe un semi-algébrique compact K de complexité (d,r,c) vérifiant $|p| = \mathrm{vol}_d(S)$.

Proposition

La complexité géométrique minimal qui peut être atteint par une période transcendante est (2,1,2).

$$\rightsquigarrow \pi = \text{vol}_2(\{x^2 + y^2 - 1 \le 0\})$$

Définition

La complexité géométrique de $p \in \mathcal{P}_{KZ}^{\mathbb{R}}$ est le triplet minimal $(d, r, c) \in \mathbb{N}$ par rapport à l'ordre lexicographique tel qu'il existe un semi-algébrique compact K de complexité (d, r, c) vérifiant $|p| = \operatorname{vol}_d(S)$.

Proposition

La complexité géométrique minimal qui peut être atteint par une période transcendante est (2,1,2).

$$\rightsquigarrow \pi = \text{vol}_2(\{x^2 + y^2 - 1 \le 0\})$$

Problème (Un problème géométrique à la Kontsevich-Zagier pour périodes

Soient K_1, K_2 semi-algébriques compacts dans \mathbb{R}^d tels que $\operatorname{vol}_d(K_1) = \operatorname{vol}_d(K_2)$. Peut-on transformer K_1 dans K_2 uniquement en utilisant les opérations géométriques suivantes :

- découpage semi-algebraic,
- applications algébriques préservant le volume,
- relations du type $K \times [0,1]^r \sim K$?

Problème (Un problème géométrique à la Kontsevich-Zagier pour périodes)

Soient K_1, K_2 semi-algébriques compacts dans \mathbb{R}^d tels que $\operatorname{vol}_d(K_1) = \operatorname{vol}_d(K_2)$. Peut-on transformer K_1 dans K_2 uniquement en utilisant les opérations géométriques suivantes :

- découpage semi-algebraic,
- applications algébriques préservant le volume,
- relations du type $K \times [0,1]^r \sim K$?

Contraintes

Ensembles, découpages et transformations doivent respecter la $\mathbb{R}_{ ext{alg}}$ -rationalité

Problème (Un problème géométrique à la Kontsevich-Zagier pour périodes)

Soient K_1, K_2 semi-algébriques compacts dans \mathbb{R}^d tels que $\operatorname{vol}_d(K_1) = \operatorname{vol}_d(K_2)$. Peut-on transformer K_1 dans K_2 uniquement en utilisant les opérations géométriques suivantes :

- découpage semi-algebraic,
- applications algébriques préservant le volume,
- relations du type $K \times [0,1]^r \sim K$?

Contraintes

Ensembles, découpages et transformations doivent respecter la \mathbb{R}_{alg} -rationalité

Un réponse affirmative à ce problème géométrique implique la conjecture des périodes de Kontsevich-Zagier.

Problème (Un problème géométrique à la Kontsevich-Zagier pour périodes)

Soient K_1, K_2 semi-algébriques compacts dans \mathbb{R}^d tels que $\operatorname{vol}_d(K_1) = \operatorname{vol}_d(K_2)$. Peut-on transformer K_1 dans K_2 uniquement en utilisant les opérations géométriques suivantes :

- découpage semi-algebraic,
- applications algébriques préservant le volume,
- relations du type $K \times [0,1]^r \sim K$?

Contraintes

Ensembles, découpages et transformations doivent respecter la $\mathbb{R}_{ ext{alg}}$ -rationalité

Un réponse affirmative à ce problème géométrique implique la conjecture des périodes de Kontsevich-Zagier.

Approche géométrique : une réduction PL

Approche géométrique : une réduction PL

Problème (Polyèdres rationnels : 3ème problème de Hilbert généralisé)

- découpage de polyèdres rationnels,
- et transformations algébriques par morceaux préservant le volume ?
- Quelques résultats connus et obstructions:
 - Vraie si $\omega_1=\omega_2=\mathrm{d}\mathbf{x}^d$ (Henriques-Pak, 2004) par décomposition en morceaux convexes.

Problème (Polyèdres rationnels : 3ème problème de Hilbert généralisé)

- découpage de polyèdres rationnels,
- et transformations algébriques par morceaux préservant le volume ?
- Quelques résultats connus et obstructions:
 - Vraie si $\omega_1=\omega_2=\mathrm{d}\mathbf{x}^d$ (Henriques-Pak, 2004) par décomposition en morceaux convexes.
 - Preuve basée sur le théorème de Moser non explicite sur applications préservant le volume en variétés différentielles.

Problème (Polyèdres rationnels : 3ème problème de Hilbert généralisé)

- découpage de polyèdres rationnels,
- et transformations algébriques par morceaux préservant le volume ?
- Quelques résultats connus et obstructions:
 - Vraie si $\omega_1 = \omega_2 = \mathrm{d}\mathbf{x}^d$ (Henriques-Pak, 2004) par décomposition en morceaux convexes.
 - Preuve basée sur le théorème de Moser non explicite sur applications préservant le volume en variétés différentielles.
- Une possible stratégie pour la conjecture des périodes de Kontsevich-Zagier: généraliser les résultats de Henriques et Pak.

Problème (Polyèdres rationnels : 3ème problème de Hilbert généralisé)

- découpage de polyèdres rationnels,
- et transformations algébriques par morceaux préservant le volume ?
- Quelques résultats connus et obstructions:
 - Vraie si $\omega_1 = \omega_2 = \mathrm{d}\mathbf{x}^d$ (Henriques-Pak, 2004) par décomposition en morceaux convexes.
 - Preuve basée sur le théorème de Moser non explicite sur applications préservant le volume en variétés différentielles.
- UNE POSSIBLE STRATÉGIE POUR LA CONJECTURE DES PÉRIODES DE KONTSEVICH-ZAGIER: généraliser les résultats de Henriques et Pak.

Périodes de Kontsevich-Zagier Une réduction semi-canonique Quelques applications et approches géométriques Conclusions et perspectives

PERSPECTIVES AND CONTINUATION

• Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).

- Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).
- Compléter la notion de complexité géométrique avec une complexité arithmétique.

- Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).
- Compléter la notion de complexité géométrique avec une complexité arithmétique.
- Étude des périodes de degré 2.

- Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).
- Compléter la notion de complexité géométrique avec une complexité arithmétique.
- Étude des périodes de degré 2.
- Une THÉORIE D'APPROXIMATION basé en approximations géométriques de volumes.

- Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).
- Compléter la notion de complexité géométrique avec une complexité arithmétique.
- Étude des périodes de degré 2.
- Une THÉORIE D'APPROXIMATION basé en approximations géométriques de volumes.
- Implémentation de la réduction semi-canonique en Sage/Singular.

- Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).
- Compléter la notion de complexité géométrique avec une complexité arithmétique.
- Étude des périodes de degré 2.
- Une THÉORIE D'APPROXIMATION basé en approximations géométriques de volumes.
- Implémentation de la réduction semi-canonique en Sage/Singular.
- Étude combinatoire de périodes par le polyèdre de Newton.

- Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).
- Compléter la notion de complexité géométrique avec une complexité arithmétique.
- Étude des périodes de degré 2.
- Une THÉORIE D'APPROXIMATION basé en approximations géométriques de volumes.
- Implémentation de la réduction semi-canonique en Sage/Singular.
- Étude combinatoire de périodes par le polyèdre de Newton.
- Une approche géométrique analogue pour périodes exponentielles.

- Étude sur la décidabilité du problème de *0-reconnaissance* pour périodes de Kontsevich-Zagier (travaux avec M. Yoshinaga).
- Compléter la notion de complexité géométrique avec une complexité arithmétique.
- Étude des périodes de degré 2.
- Une THÉORIE D'APPROXIMATION basé en approximations géométriques de volumes.
- Implémentation de la réduction semi-canonique en Sage/Singular.
- Étude combinatoire de périodes par le polyèdre de Newton.
- Une approche géométrique analogue pour périodes exponentielles.

