グレ explorer . ブナ基底と代数多様体入門 (Ideals, Varieties, and Algorithms)

ashiato45 のメモ, 著者は D.Cox, J.Little, D.O'Shea

2015年6月22日

- 1 幾何,代数,アルゴリズム
- 2 グレブナ基底
- 3 消去理論
- 4 代数と幾何の対応
- 4.1 ヒルベルトの零点定理

問題 3:

(1)

$$f(x_1, x_2, \dots, x_n) = f(\widetilde{x}_1, \widetilde{x}_2 + a_2 \widetilde{x}_1, \dots, \widetilde{x}_n + a_n \widetilde{x}_1)$$

$$\tag{1}$$

$$= \left(\sum_{d=0}^{N} h_d\right) \left(\widetilde{x}_1, \widetilde{x}_2 + a_2 \widetilde{x}_1, \dots, \widetilde{x}_n + a_n \widetilde{x}_1\right) \tag{2}$$

$$=h_N(\widetilde{x}_1,\widetilde{x}_2+a_2\widetilde{x}_1,\ldots,\widetilde{x}_n+a_n\widetilde{x}_1)+(\exists \Xi)$$
(3)

$$= \left(\sum_{|\alpha|=N} c_{\alpha} x^{\alpha}\right) \left(\widetilde{x}_{1}, \widetilde{x}_{2} + a_{2}\widetilde{x}_{1}, \dots, \widetilde{x}_{n} + a_{n}\widetilde{x}_{1}\right) + (\exists \Xi)$$

$$\tag{4}$$

$$= \sum_{|\alpha|=N} c_{\alpha} \widetilde{x}_{1}^{\alpha_{1}} (\widetilde{x}_{2} + a_{2} \widetilde{x}_{1})^{\alpha_{2}} \dots (\widetilde{x}_{n} + a_{n} \widetilde{x}_{1})^{\alpha_{n}} + (\exists \Xi)$$

$$(5)$$

$$= \sum_{|\alpha|=N} c_{\alpha} \widetilde{x}_1^{\alpha_1} (a_2 \widetilde{x}_1)^{\alpha_2} \dots (a_n \widetilde{x}_1)^{\alpha_n} + (\exists \Xi)$$
(6)

$$= \widetilde{x}_1^N \sum_{|\alpha|=N} c_{\alpha} (1 \cdot a_2^{\alpha_2} \cdot \dots \cdot a_n^{\alpha_n}) + (\exists \Xi)$$
 (7)

$$=\widetilde{x}_1^N \sum_{|\alpha|=N} c_\alpha(1, a_2, \dots, a_n)^\alpha + (\exists \Xi)$$
(8)

$$=\widetilde{x}_1^N h_N(1, a_2, \dots, a_n) + (\vec{\mathbf{J}} \mathbf{\Xi}). \tag{9}$$

問題 4: 代数的閉体 K を考える。これが仮に有限体であり、 a_1,\ldots,a_n が K のすべての元であるとする。このとき、

$$(x-a_1)\dots(x-a_n)=1 (10)$$

という方程式を考える。左辺は a_{\bullet} のどれを入れても0 になるので、 a_{\bullet} はどれも根にならない。しかし、K は代数的閉体なのでこの根はK に属さなければならないが、先の考察よりこれは a_1,\ldots,a_n のどれでもない。

弱系の零点定理: $I\subset k[x_1,\ldots,x_n]$ は $\mathbf{V}(I)=\emptyset$ とする。このとき、I は全体になってしまう。証明する。まず 1 次元で考える。 PID なので $I=\langle f\rangle$ なる f がある。 $\deg f\geq 1$ のときには、代数的閉体で考えてるので解が出てしまって、

 $\mathbf{V}(I)$ は空でなくなるので矛盾。よって、 $\deg f=0$ となり、f は定数になる。よって、 $1\in I$ である。次に n 次元で考 える。 $I = \langle f_1, \ldots, f_s \rangle$ とする。変数変換

$$x_1 \mapsto \widetilde{x}_1, \quad x_i \mapsto \widetilde{x}_i + a_i \widetilde{x}_1$$
 (11)

をかけて、 f_1 の \widetilde{x}_1 についての最高次の係数は定数であるとしてよい。変数変換の性質より、f が解を持つ \iff \widetilde{f} が 解を持つので、 $\mathbf{V}(f)=\emptyset\iff \mathbf{V}(\widetilde{f})=\emptyset$ である。また、 $\widetilde{\bullet}$ が定数に影響しないので $1\in I\iff 1\in \widetilde{I}$ となる。

$$\mathbf{V}(\widetilde{I}_1) = \pi_1(\mathbf{V}(\widetilde{I})) \tag{12}$$

$$|f_1$$
 の \widetilde{x}_1 の係数は定数、拡張定理 $|$ (13)

$$=\pi_1(\emptyset) \tag{14}$$

$$f_1 \, \mathcal{O} \, \widetilde{x}_1 \, \mathcal{O}$$
係数は定数、拡張定理
$$= \pi_1(\emptyset)$$

$$(14)$$

$$\mathbf{V}(I) = \emptyset \, \mathcal{C} \, \mathbf{V}(I) = \emptyset \iff \mathbf{V}(\widetilde{I}) = \emptyset$$

$$(15)$$

$$=\emptyset. \tag{16}$$

帰納法の仮定より、 $\widetilde{I}_1=k[\widetilde{x}_2,\ldots,\widetilde{x}_n]$ である。よって、 $1\in\widetilde{I}_1\subset\widetilde{I}$ となる。 $1\in\widetilde{I}$ なので、 $(\widetilde{I}$ で定数は変化しな い。) $1 \in I$ である。よって、I は全体である。

ヒルベルトの零点定理

- 1. f は f_1, \ldots, f_s の共通零点 $\mathbf{V}(f_1, \ldots, f_s)$ で消えるとする。
- 2. $f^m = \sum_{i=1}^s A_i f_i$ なる A_i たちを探す。
- (a) $\widetilde{I} = \langle f_1, \dots, f_s, 1 yf \rangle \subset k[x_1, \dots, x_n, y]$ とする。
- (b) $\mathbf{V}(\widetilde{I}) = \emptyset$ となる。
 - i. どの $(a_1,\ldots,a_n,a_{n+1})\in k^{n+1}$ も $\mathbf{V}(\widetilde{I})$ に属さなければよい。
 - ${
 m ii.}$ 頭 n 個で作った点が f_1,\ldots,f_s のすべてで消えるとき、1-yf はこの点で消えない。yf がこの点で消 えるからである。
 - iii. そうでないとき、どこかで消えないときはその f_i をそのまま使えば消えない。
- (c) $1 \in \widetilde{I}$ が弱い零点定理からわかる。
- (d)

$$1 = \sum_{i=1}^{s} p_i(x_1, \dots, x_n, y) f_i + q(x_1, \dots, x_n, y) (1 - yf)$$
(17)

となるようにp,qがとれる。

(e) y = 1/f とする。

$$1 = \sum_{i=1}^{s} p_i(x_1, \dots, x_n, 1/f) f_i.$$
(18)

 $(f) f^m$ をたくさんかければ、上の 1/f が消えてのぞむ式が得られる。

逆のほうは「強い」ほうで言ってる。

多様体上の多項式関数と有理関数

- 1. $V = \mathbf{V}(I), V \neq \emptyset$
- 2. (V が既約のとき) $(I = \mathbf{I}(V)$ としてよい。)
 - (a) (l = 1 のとき)
 - i. $W_0 \subseteq V$
 - ii. $\exists : (a_1, \dots, a_n) \in V W_0$
 - iii. \exists : $f \in \mathbf{I}(W_0)$, $f(a_1, \ldots, a_n) \neq 0$
 - iv. (場合 1)

A. m, g_{\bullet} :

$$f = \sum_{i=0}^{m} g_i(x_2, \dots, x_n) x_i^i$$
 (19)

B. $W_1 = \mathbf{V}(I_1) \cap \mathbf{V}(g_0, \dots, g_m)$

C. $(c_2, \ldots, c_n) \in \mathbf{V}(I_1) - W_1$

D. $\exists : c_1 \in k, \ f(c_1, ..., c_n) \neq 0$

v. (場合 2)

A. $\exists (b_2, ..., b_n) \in \mathbf{V}(I_1) \exists b_1 \in k: (b_1, ..., b_n) \notin V$

B. $\exists h \in I: h(b_1, ..., b_n) \neq 0$

C. r, u_{\bullet} :

$$h = \sum_{i=0}^{r} u_i(x_2, \dots, x_n) x_1^i.$$
 (20)

D.「(4)~を示そう」

• $0 \le j \le r, N_j, v_{j0}, \dots, v_{j,r-1}$:

$$u_r^{N_j} f^j = q_j h + \underbrace{v_{j0}}_{\in k[x_2, \dots, x_n]} + v_{j1} x_1 + \dots + v_{j,r-1} x_1^{r-1}.$$
(21)

- K: k[V(I₁)] の分数体

$$^{\forall} 0 \le i \le r - 1: \sum_{j=0}^{r} \phi_j[v_{ji}] = [0]$$
 (22)

あるいは、

$$\sum_{j=0}^{r} \phi_j([v_{j0}], \dots, [v_{j,r-1}]) = ([0], \dots, [0]).$$
(23)

- とりなおし: $\phi_{\bullet} \in k[x_2,\ldots,x_n]/I_1$
- $\exists w_j \in k[x_2,\ldots,x_n]$: $\phi_j = [w_j]$. うち少なくとも 1 つは $w_j \notin I_1$
- $\bullet \ v_j = w_j u_r^{N_j}$

E. $g = u_r v_0$

F. $W_1 = \mathbf{V}(g) \cap \mathbf{V}(I_1)$

(b) *l* − 1 について:

- $3.\;(V\;$ は既約とはかぎらない)
- 4. \exists : $V_{\bullet}: V = V_1 \cup \ldots \cup V_m$. 既約
- $5. V_i'$: $\pi_l(V_i)$ のザリスキ閉包
- 6. $V_1' \not\subset V_i'$
- 7. W_1 : V_1 と \emptyset に定理を適用したもの。 $V_1' W_1 \subset \pi_l(V_1)$ 、 $W_1 \subsetneq V_1'$ 。
- 8. $W = W_1 \cup V_2' \cup \ldots \cup V_m'$
- 1. $W_1 = \mathbf{V}(I_l)$
- 2. Z_1 : 閉包定理。 $W_1 Z_1 \subset \pi_l(V)$ 、 $Z_1 \subsetneq W_1$
- 3. V_1 :

$$V_1 = V \cap \{(a_1, \dots, a_n) \in k^n; (a_{l+1}, \dots, a_n) \in Z_1\}$$
(24)

 $V_1 \subsetneq V$, $\pi_l(V) = (W_1 - Z_1) \cup \pi_l(V_1)$

- 4. W_2 : $\pi_l(V_1)$ のザリスキ閉包
- 5. Z_2 :閉包定理。 $W_2 Z_2 \subset \pi_l(V_1)$ 、 $Z_2 \subsetneq W_2$
- 6. V_2 :

$$V_2 = V_1 \cap \{(a_1, \dots, a_n) \in k^n; (a_{l+1}, \dots, a_n) \in Z_2\}$$
(25)

7. 3-4 を、できた V_{\bullet} が \emptyset になるまでくりかえす。

5.0.1 演習

- (1) (a) $a, b \notin I \cap k[x_{l+1}, ..., x_n]$ とする。
 - \bullet $a \notin I$ かつ $b \notin I$ のとき: I が素イデアルなので、 $ab \notin I$ となる。よって、 $ab \notin I_l$ となる。
 - $a \notin I$ かつ $b \notin k[x_{l+1},\ldots,x_n]$ のとき: b は x_1,\ldots,x_l の 1 文字以上を含まなければならない。よって、ab も同様で、 $ab \notin k[x_{l+1},\ldots,x_n]$ となる。よって、 $ab \notin I_l$ となる。
 - $a \notin k[x_{l+1}, \ldots, x_n]$ かつ $b \notin I$ のとき: 上と同様。
 - $a,b \notin k[x_{l+1},\ldots,x_n]$ のとき: 上と同様。
 - (b) ?案。 $\mathbf{V}(I_l)$ が既約でないとし、

$$\mathbf{V}(I_l) = \mathbf{V}(fg, h_1, h_2, \dots, h_s) \tag{26}$$

$$= \mathbf{V}(f, h_1, \dots, h_s) \cup \mathbf{V}(g, h_1, \dots, h_s)$$
(27)

であるとする。ただし、最後 2 つで $\mathbf{V}(I_l)$ を覆い、どちらかだけで全てを覆うということはない (既約でないから)。

 $\mathbf{V}(I_l)$ は $k[x_{l+1},\ldots,x_n]$ の subset だが、これを $k[x_1,\ldots,x_n]$ で捉えると、 $\mathbf{V}(I)$ よりも広い(?)。 したがて、

$$\mathbf{V}(I) = \mathbf{V}(F_1, \dots, F_s) \tag{28}$$

$$= \mathbf{V}(F_1, \dots, F_S) \cap \mathbf{V}(I_l) \tag{29}$$

$$= \underbrace{(\mathbf{V}(F_1, \dots, F_S) \cap \mathbf{V}(f, h_1, \dots, h_s))}_{A} \cup \underbrace{(\mathbf{V}(F_1, \dots, F_S) \cap V(g, h_1, \dots, h_s))}_{B}$$
(30)

- (2) 体でやって戻せばいいと思っていた。つまり、h を u_r でわって先頭の x_1 に関する係数を 1 にしておく。このとき、わったあとの係数の分母はすべて u_r のべきになる。これで $k(x_2,\ldots,x_n)$ 係数で割り算して、最後に u_r のべきを解消する。
- (3) (a) $x=(z,y)\in V_y$ とする。 $\pi_1(x)=y$ となる。 $(z,y)\in \mathbb{C}\times \{y\}$ はあきらか (実際はもっとせまい)。 $V_y\neq\emptyset$ とする $\pi_1(x)=y$ となる $x=(z,y)\in V$ が存在する。 $\pi_1(x)=y$ なので、y にうつる V の元として x が見つかったことになり、 $y\in\pi_1(V)$ である。逆に、 $y\in\pi_1(V)$ とする。 $\pi_1(x)=y$ となる $x\in V$ が存在 する。すると、 $x\in V_y$ である。よって、 $V_y\neq\emptyset$ である。
 - (b) 場合1は

すべての $(b_2,\dots,b_n)\in \mathbf{V}(I_1)$ とすべての $b_1\in k$ にたいして、 $(b_1,\dots,b_n)\in V$ となるときだった。 $\pi_1(V)\subset \mathbf{V}(I_1)$ は一般に成立するが、さらに部分解 $\mathbf{V}(I_1)$ から筒状に伸ばしたものが V であるというのがこの場合であるから、 $\pi_1(V)=\mathbf{V}(I_1)$ である。

 $V_y \subset \mathbb{C} \times \{y\}$ は一般に成立する。 $(z,y) \in \mathbb{C} \times \{y\}$ とする。 $y \in \pi_1(V) = \mathbf{V}(I_1)$ であり、 $z \in \mathbb{C}$ なので、 $(z,y) \in V$ である (場合 1)。さらに、 $\pi_1(z,y) = y$ なので、 $(z,y) \in V_y$ となる。

(c) 場合 2 は

ある $(b_2,\ldots,b_n)\in \mathbf{V}(I_1)$ と $b_1\in k$ に対して $(b_1,\ldots,b_n)\notin V$ となる場合だった。 $I=\mathbf{I}(V)$ としてあるので、(与えられた b_\bullet を使って) $h(b_1,\ldots,b_n)\neq 0$ となる多項式 $h\in I$ が

存在する。h を x_1 の多項式として、

$$h = \sum_{i=0}^{r} u_i(x_2, \dots, x_n) x_1^i$$
(31)

とあらわす。 $h(b_1,\dots,b_n)\neq 0$ より、ある i に対して $u_i(b_2,\dots,b_n)\neq 0$ となり、 $u_i\notin I_1$ となる *1 。もし、 $u_r\in I_1$ ならば $h-u_rx_1^r$ も (b_1,\dots,b_n) で消えない *2 から、 $h-u_rx_1^r$ で置き換えることができる。このおきかえを繰替えして (次数を下げて) $u_r\notin I_1$ と仮定してもよい。

 $\widetilde{W}=\mathbf{V}(u_r)$ とする。 まず、 $\pi_1(V)\not\subset\widetilde{W}$ をしらべる。 $u_r\notin I_1$ となるようにしておいたので、 $u_r(b_2,\dots,b_n)
eq 0$ である。 すると、

$$h(x_1, b_2, \dots, b_n) = \sum_{i=0}^r u_i(b_2, \dots, b_n) x_1^i$$
(32)

という x_1 についての方程式が得られる。代数学の基本定理より、これをみたす \widetilde{b}_1 が存在する。?

(4)

$$(\widetilde{\pi}_{l-1} \circ \pi_1)(x_1, \dots, x_n) = \widetilde{\pi}_{l-1}(x_2, \dots, x_n)$$
 (33)

$$= (x_{n-l+1}, \dots, x_n) \tag{34}$$

$$=\pi_l(x_1,\ldots,x_n). \tag{35}$$

(5) (a)

$$(V \subset V_1 \cup V_2) \iff (\mathbf{I}(V) \supset \mathbf{I}(V_1 \cup V_2)) \tag{36}$$

$$\iff (\mathbf{I}(V) \supset \mathbf{I}(V_1)\mathbf{I}(V_2))$$
 (37)

$$\iff ((\mathbf{I}(V) \supset \mathbf{I}(V_1)) \lor (\mathbf{I}(V) \supset \mathbf{I}(V_2))) \tag{38}$$

$$\iff ((V \subset V_1) \lor (V \subset V_2)). \tag{39}$$

(b) n=2 のときは示されている。n で成立するとする。n+1 のとき示す。

$$(V \subset V_1 \cup \ldots \cup V_{n+1}) \iff (V \subset (V_1 \cup \ldots \cup V_n) \cup V_{n+1}) \tag{40}$$

$$\iff ((V \subset (V_1 \cup \ldots \cup V_n)) \lor (V \subset V_{n+1})) \tag{41}$$

$$\iff ((V \subset V_1) \vee \ldots \vee (V \subset V_{n+1})). \tag{42}$$

(6)

(7) (a)

$$Z_1 = \mathbf{V}_{W_1}([\phi_1], \dots, [\phi_s]) \tag{43}$$

$$= \{ (x_1, \dots, x_{n-l}) \in W_1; \forall [\phi] \in \langle [\phi_1], \dots, [\phi_s] \rangle : [\phi](x_1, \dots, x_{n-l}) = 0 \}$$

$$(44)$$

$$= \{(x_1, \dots, x_{n-l}) \in W_1; \forall \phi \in \langle \phi_1, \dots, \phi_{n-l} \rangle : \phi(x_1, \dots, x_{n-l}) = 0\}.$$
(45)

よって、

$$\{(a_1, \dots, a_n) \in k^n; (a_{l+1}, \dots, a_n) \in Z_1\} = \{(a_1, \dots, a_n) \in k^n; \forall \phi \in \langle \phi_1, \dots, \phi_{n-l} \rangle : \phi(a_{l+1}, \dots, a_n) = 0\}$$

$$= \langle \phi_1, \dots, \phi_{n-l} \rangle. \tag{47}$$

これはアフィン多様体になっている。 V_1 はこれと V との交わりなので OK。

 $^{^{*1}}$ これは最高次の x_1^r の係数ではないかもしれない

 $^{^{*2}}$ 最高次をつぶして h を置き換える。このとき、消えないのは $(b_2,\ldots,b_n)\in \mathbf{V}(I_1)$ という仮定が条件 2 でかかっていたから。

(b)

$$(W_1 - Z_1) \cup \pi_l(V_1) = (W_1 - Z_1) \cup \pi_l(\{(a_1, \dots, a_n) \in k^n; (a_{l+1}, \dots, a_n) \in Z_1\} \cap V)$$

$$(48)$$

$$= (W_1 - Z_1) \cup (Z_1 \cap \pi_l(V)) \tag{49}$$

$$= ((W_1 - Z_1) \cup Z_1) \cap ((W_1 - Z_1) \cup \pi_l(V)) \tag{50}$$

$$= W_1 \cap ((W_1 - Z_1) \cup \pi_l(V)) \tag{51}$$

$$Z_1 \subsetneq W_1 \tag{52}$$

$$=W_1 \cap \pi_l(V) \tag{53}$$

$$W_1 - Z_1 \subset \pi_l(V)$$
(閉包定理) (54)

$$= \mathbf{V}(V_1) \cap \pi_l(V) \tag{55}$$

$$=\pi_l(V) \tag{56}$$

$$\pi_l(V)$$
 のほうがせまい . (57)

定理 1(閉包定理の後半) k を代数的閉体とし、 $V=\mathbf{V}(I)\subset k^n$ とする。 $V\neq\emptyset$ ならば、

$$\mathbf{V}(I_l) - W \subset \pi_l(V) \tag{58}$$

となるようなアフィン多様体 $W \subseteq \mathbf{V}(I_l)$ が存在する。

- 1. ???: l = 1 のときは済んでいる。
- 2. ???: l>1を考える。
- 3. $V=\mathbf{V}(I)$ としていたが、 $V=\mathbf{V}(\mathbf{I}(V))$ が成立しているので、 $I=\mathbf{I}(V)$ としてもよい。(「V を定義するどのイデアル I も同じ $\mathbf{V}(I_l)$ を与える。)
- 4. V が既約なとき:
 - (a) V は既約なので、 $I = \mathbf{I}(V)$ は素イデアル
 - (b) Fact: I が素イデアル $\Longrightarrow I_l$ は素イデアル。演習 1。

略証: $a,b \notin I \cap k[x_{l+1},\ldots,x_n]$ とする。あとは 4 通りにわける。I が素イデアルであることを使うパートと、a,b が x_1,\ldots,x_l を含んでしまうパートに分かれる。

(c) Fact: V が既約 \Longrightarrow $\mathbf{V}(I_l)$ は既約。

略証: (3) で $I=\mathbf{I}(V)$ とした。I は素イデアルなので (\mathbf{a}) 、 I_l も素イデアルであり (\mathbf{b}) 、代数的閉体上では素イデアルと既約多様体が対応するので* *3 、 $\mathbf{V}(I_l)$ は既約。

(d)「 $\mathbf{V}(I_l) - W \subset \pi_l(V)$ となる $W \subsetneq \mathbf{V}(I_l)$ が存在する」よりも強い、

任意の多様体 $W_0 \subseteq V$ にたいして、

$$\mathbf{V}(I_l) - W_l \subset \pi_l(V - W_0) \tag{59}$$

となる多様体 $W_l \subsetneq \mathbf{V}(I_l)$ が存在する

を示す。

- i. l = 1 のとき
- ii. $\exists a_{\bullet}$: $W_0 \neq V$ なので、 $(a_1,\ldots,a_n) \in V W_0$ なる点が存在する。
- iii. $\exists f \colon f \in \mathbf{I}(W_0)(W_0$ できえる) で、 $f(a_1,\ldots,a_n) \neq 0$ となる多項式が存在する。(なぜ?)
- iv. 場合 I: すべての $(b_2,\ldots,b_n)\in \mathbf{V}(I_l)$ とすべての $b_1\in k$ に対して $(b_1,\ldots,b_n)\in V$ となる場合:

^{*3} 4-5- $\operatorname{Prop}3$ 一般の体で、V が既約 \iff $\mathbf{I}(V)$ は素イデアル。

A. m, q_{\bullet} : f を x_1 について m 次であり、

$$f = \sum_{i=0}^{m} g_i(x_2, \dots, x_n) x_1^i$$
(60)

とかく。

- B. $\exists W_1: W_1 = \mathbf{V}(I_1) \cap \mathbf{V}(g_0, \dots, g_m)$ とする。(これが条件をみたす)
- C. Fact: $W_1 \subsetneq \mathbf{V}(I_1)$ である。 $(\subset$ はあきらか。) 実際 $(a_2,\ldots,a_n) \in \mathbf{V}(I_1) \setminus W_1$ である。なぜなら、 $f(a_1,\ldots,a_n) \neq 0$ なので (iii) 、 g_i のどれかは (a_2,\ldots,a_n) で非零である。よって、 $(a_2,\ldots,a_n) \notin W_1$ にはなっている。また、 $(a_1,\ldots,a_n) \in V$ なので (a_2,\ldots,a_n) はその部分解 $\mathbf{V}(I_1)$ になっている。
- D. $\forall c_{\bullet} : (c_2, \dots, c_n) \in \mathbf{V}(I_1) W_1$ とする。
- E. $(c_1,\ldots,c_n)\notin W_1=\mathbf{V}(I_1)\cap\mathbf{V}(g_0,g_m)$ なので、 g_0,\ldots,g_m のいずれかで消えない。
- F. よって、 $f(x_1,\ldots,c_2,\ldots,c_n)\in k[x_1]$ は非零な多項式。
- $G. \ \exists c_1 \colon k$ は無限体なので、 $f(c_1,\ldots,c_n) \neq 0$ となる $c_1 \notin k$ が存在する。
- H. f は W_0 で消えるようにとっていたので (iii)、f で消えないやつ $(c_1,\ldots,c_n)\notin W_0$ 。
- I. 場合 I の仮定の、ファイバーがちゃんとのびているというやつより、 $(c_1,\ldots,c_n)\in V$ 。
- J. $(c_1, \ldots, c_n) \in V W_0$ となる。(H,I)
- K. $(c_2,\ldots,c_n) \in \pi_1(V-W_0)$ となる。
- v. 場合 II: ある $(b_2,\ldots,b_n)\in \mathbf{V}(I_1)$ とある $b_1\in k$ に対して $(b_1,\ldots,b_n)\notin V$ となるとき。
 - A. $\exists h: (b_1,\ldots,b_n) \notin V$ なので、 $h(b_1,\ldots,b_n) \neq 0$ となる $h \in I$ が存在する。(なぜ?)
 - B. r, u_i : h を x_1 について整理する。

$$h = \sum_{i=0}^{r} u_i(x_2, \dots, x_n) x_1^i.$$
 (61)

- $\mathrm{C.}\ h(b_1,\ldots,b_n)
 eq 0$ なので、ある i について $u_i(b_2,\ldots,b_n)
 eq 0$ となり $((b_2,\ldots,b_n)
 otin \mathbf{V}(I_1)$ なので)、 $u_i
 otin I_1$ となる。
- D. $u_r \in I_1$ (最高次) ならば、 $h-u_rx_1^r$ も (b_1,\ldots,b_n) で消えないのでこれを置き換えて、最高次 $u_r \notin I_1$ となるようにできる。

$$v_i \in k[x_2, \ldots, x_n]$$
 \mathcal{C}

$$\sum_{i=0}^{r} v_i f^i \in I \text{ that } i \in I_1$$
 (62)

なるものが存在することを示す。

 \mathbf{E} .

F. q, v_{\bullet} : $0 \le j \le r$ にたいして、

$$u_r^{N_j} f^j = q_j h + v_{j0} + v_{j1} x_1 + \dots + v_{j,r-1} x_1^{r-1}.$$

$$(63)$$

とする。f を $k(x_2,\ldots,x_n)$ 係数で割り算して最後に払えばよい。

- G. $I_1 = \mathbf{I}(\mathbf{V}(I_1))$ だたので、 $k[x_2, \dots, x_n]/I_1 \simeq k[\mathbf{V}(I_1)]$ となる。
- $\mathrm{H.}$ K: $\mathbf{V}(I_1)$ は既約なので $(\mathrm{a,b})$ 、この環は整域で分数体 K が考えられる。
- I. K を元とする $(r+1) \times r$ 行列

$$\begin{pmatrix}
[v_{00}] & \dots & [v_{0,r-1}] \\
\vdots & & \vdots \\
[v_{r0}] & \dots & [v_{r,r-1}]
\end{pmatrix}$$
(64)

を作る。横に先の割り算の結果が並んで、縦には $1,f,\ldots,f^r$ となっている。

 $\mathrm{J.}\,\,\exists\phi_ullet:\,$ 行は $\,r+1\,$ 個あり、その行たちは $\,K^r\,$ に属しているので、線型従属であり、係数 $\,\phi_0,\ldots,\phi_r\,\in\,$ $K \mathcal{C}$

$$0 \le i \le r - 1 \implies \sum_{j=0}^{r} \phi_j[v_{ji}] = [0] \tag{65}$$

となるものがある。あるいは、

$$\sum_{j=0}^{r} \phi_j([v_{j0}], \dots, [v_{j,r-1}]) = ([0], \dots, [0]).$$
(66)

- K. ϕ_{\bullet} たちの分母を払って、 $\phi_{\bullet} \in k[x_2,\ldots,x_n]_1$ と思ってよい。
- L. w_{\bullet} : $\phi_j = [w_j]$ となる $w_j \in k[x_2, \ldots, x_n]$ が存在する。
- $\mathrm{M.}$ ϕ_{ullet} すべては 0 ではないのだから、 w_{ullet} の少なくとも 1 つは I_1 に入らない。
- N. Jを書き直せば、

$$\sum_{j=0}^{r} [w_j]([v_{j0}], \dots, [v_{j,r-1}]) = ([0], \dots, [0]).$$
(67)

O. 上は、

$$\sum_{j=0}^{r} w_j(v_{j0}, \dots, v_{j,r-1}) \in (I_1)^r$$
(68)

であり、

$$\forall i: \sum_{j=0}^{r} w_j v_{ji} \in I_1 \tag{69}$$

となっている。

P. 擬除算の式に w_j をかけて $\sum_{j=0}^r$ をとる。

$$\sum_{j=0}^{r} w_j (u_r^{N_j} f^j) \mod I = \sum_{j=0}^{r} w_j (q_j h + v_{j0} + v_{j1} x_1 + \dots + v_{j,r-1} x_1^{r-1}) \mod I$$
 (70)

$$= \sum_{j=0}^{r} w_j(q_j h) \mod I \tag{71}$$

$$\boxed{O, \sum w_j v_{ji} \in I_1} \\
= 0 \mod I \tag{72}$$

$$= 0 \mod I \tag{73}$$

$$A \text{ Lio.} h \in I$$
. (74)

よって、

$$\sum_{j=0}^{r} w_j(u_r^{N_j} f^j) \in I. \tag{75}$$

Q. v_{\bullet} : $v_j = w_j u_r^{N_j}$

 $\mathrm{R.}\ u_r
otin I_1$ であり (擬除算「分母」にするためだった。 D より。 D 、ある f に対し $w_j
otin I_1$ であるから (線型従属より。 ${
m M_{\circ}}$)、 I_1 が素イデアルであること (既約と仮定している。 ${
m a,b}$) より、 $v_j
otin I_1$ と なる。いまのところ、多項式として

$$\sum_{v_j f^j} \tag{76}$$

まで作った。うちどれか $v_i \notin I_1$ までわかっている。

S. $(1 = f^0$ の係数 $v_0 \notin I_1$ となるようにとりなおす。)

T. $\exists t: v_0, \ldots, v_{t-1} \in I_1$ かつ $v_t \notin I_1$ とする。

U.

$$f^t \sum_{j=t}^r v_t f^{j-t} \in I \tag{77}$$

を考える。 $f \notin I$ なので(iii。f は (a_1,\ldots,a_n) で消えず、この点は $V-W_0$ の元だった。) 、

$$\sum_{i=t}^{r} v_t f^{j-t} \in I. \tag{78}$$

これは定数の係数 v_t が $(T \ \mathsf{L} \ \mathsf{U})v_t \notin I_1$ となっている。

V. D おわり。 $v_i \in k[x_2,\ldots,x_n]$ で、 $\sum_{i=0}^r v_i f^i \in I$ かつ $v_0 \notin I_1$ となるものが存在する。

W. 次を示す:

$$\pi_1(V) \cap (k^{n-1} - \mathbf{V}(v_0)) \subset \pi_1(V - W_0).$$
 (79)

実際、 $\sum_{i=0}^r v_i f^i \in I$ なので、任意の $(c_1,\ldots,c_n) \in V$ に対して、

$$v_0(c_2, \dots, c_n) + f(c_1, \dots, c_n) \sum_{i=1}^r v_i(c_2, \dots, c_n) f(c_1, \dots, c_n)^{i-1} = 0$$
(80)

となる。したがって、 $v_0(c_2,\ldots,c_n)\neq 0$ ならば $f(c_1,\ldots,c_n)\neq 0$ となり $(ab=0\implies a=0 \lor b=0)$ 、(iii より、f は W_0 上消えるので) $(c_1,\ldots,c_n)\notin W_0$ である。(まず V をとって、そこから射影を考え、引き算の条件をならばにして示した。)

 $X.~g:~u_r\notin I_1(D$ より。最高次係数はこうしておいた。) であり、 $v_0\notin I_1(U$ より。定数の係数はこうしておいた) であり、 I_1 は素イデアルなので、 $g=u_rv_0$ とすると $g\notin I_1$ である。

Y. W_1 : $W_1 = \mathbf{V}(g) \cap \mathbf{V}(I_1)$ とする。

Z. X の $g \notin I_1$ より、 $W_1 \subsetneq \mathbf{V}(I_1)$ である。

AA 示したいのは、(d) の

$$\mathbf{V}(I_1) - W_1 \subset \pi_1(V - W_0)$$
 (81)

だった。 $(c_2,\ldots,c_n)\in \mathbf{V}(I_1)-W_1$ をとる。 $(c_2,\ldots,c_n)\notin W_1$ なので、「 u_r で消えるか v_0 消える」の否定で、 u_r,v_0 のどちらでも消えない。

AB $\exists f_{\bullet}$: $I = \langle f_1, \dots, f_s \rangle$ とする。

 $AC h \in I$ なので (A)、 $I = \langle h, f_1, \dots, f_s \rangle$ となる。

AD $\exists c_1$: 拡張定理と、h の先頭係数 $u_r(c_2,\dots,c_n)\neq 0$ であること (AA)、より、ある $c_1\in k$ で、 $(c_1,\dots,c_n)\in V$ となるものが存在する。

AE W の式 (の左側から自由にとって), $v_0(c_2,\dots,c_n)\neq 0$ より、 $(c_2,\dots,c_n)\in \pi_1(V-W_0)$ となり、AA、あるいは (\mathbf{d}) の式が示される。 $(\pi(I_1)-W_1$ から元をとると、それは自動的に $\mathbf{V}(I_1)-W_1$ に入り、AA の式が使える。)

vi. l=1 のときは示したので、l-1 で成立を仮定する。

vii. $\forall W_0$: $W_0 \subset \neq V$ を自由にとる。

viii. $\exists W_1$: l=1 のときは示したので適用する。

$$W_1 \subseteq \mathbf{V}(I_1)$$
かつ $\mathbf{V}(I_1) - W_1 \subset \pi_1(V - W_0)$ (82)

をみたすものがある。

ix. $I = l = (I_1)_{l-1}$ である。

x. $V(I_1)$ は既約である。(a,b,c)

xi. ∃W1: 帰納法の仮定を使う。

$$W_l \subseteq \mathbf{V}(I_l)$$
かつ $\mathbf{V}(I) - W_1 \subset \widetilde{\pi}_{l-1}(\mathbf{V}(I_1) - W_1)$ (83)

なるものが存在する。

 \mathbf{x} ii. ここで、 $\widetilde{\pi}_{l-1}$: $k^{n-1} \to k^{n-l}$ は射影であるが、 \mathbf{domain} が違ったので区別している。 $\pi_l = \widetilde{\pi}_{l-1} \circ \pi_1$ なので

$$\mathbf{V}(I_l) - W_l \subset \widetilde{\pi}_{l-1}(\mathbf{V}(I_1) - W_1) \subset \pi_l(V - W_0). \tag{84}$$

となる。

 $xiii.\ l$ 全体で示され、既約な多様体について、定理 1(の強いやつ) が成立する。

- 5. 既約でない(!!)場合に示す。
- 6. *V*•:

$$V = V_1 \cup \ldots \cup V_m \tag{85}$$

と分解する。 V_{ullet} は既約。

7. V'_{\bullet} : $\pi_l(V_{\bullet})$ のザリスキ閉包。 $V'_{\bullet} = \mathbf{V}(\mathbf{I}(\pi_l(V_{\bullet})))$ 。

$$\mathbf{V}(I_l) = V_1' \cup \ldots \cup V_m' \tag{86}$$

- 8. を示す。
 - (a) $V_1' \cup \ldots \cup V_m$ 7 は $\pi_l(V_1) \cup \ldots \cup \pi_l(V_m) = \pi_l(V)$ を含む多様体である。
 - (b) $\mathbf{V}(I_l)$ は $\pi_l(V)$ のザリスキ閉包なので (代数的閉体、閉包定理)

$$\mathbf{V}(I_l) \subset V_1' \cup \ldots \cup V_m'. \tag{87}$$

(c) 逆を示す。各i にたいし、

$$\pi_l(V_i) \subset \pi_l(V) \subset \mathbf{V}(I_l).$$
 (88)

(d) V_i' は $\pi_l(V_i)$ のザリスキ閉包なので、

$$V_i' \subset \mathbf{V}(I_l).$$
 (89)

(e)

$$V_1' \cup \dots V_m' \subset \mathbf{V}(I_l). \tag{90}$$

9. 4-4-定理3によれば、 $\mathbf{V}(I_l)$ は $\pi_l(V)$ のザリスキ閉包なので、(代数的閉体だし)

$$V_i' = (\pi_l(V_i)$$
のザリスキ閉包) = $\mathbf{V}(\mathbf{I}(V_i)_l)$. (91)

- $10.\ V_i$ は既約としておいたので $\mathbf{I}(V_i)$ は既約で、 $\mathbf{I}(V_i)_l$ も既約で、 V_i' も既約になる。よって、(7) の分解は既約分解である。
- 11. 他のものには含まれない V_{\bullet}' があるはずなので、それを番号をつけかえて V_1' が他のものに含まれないということにしておく。

すべての V'_{ullet} が等しいということはおこらない。なぜなら、すべてが等しいとしたら ${f V}(I_l)$ が既約ということになる。すると、 I_l は素イデアルになる。5 により、V は既約でないとしたのだから、I は素イデアルでなく、 I_l も素イデアルでない??

 $12.~W_1$: V_1 にいままでの「既約にたいする強い定理」を使って、定理の $W_0=\emptyset$ とすることで、

$$\mathbf{V}(\mathbf{I}(V_1)_l) - W_1 \subset \pi_l(V_1) \tag{92}$$

となる $W_1 \subsetneq V_1'$ が存在する。

13.9 と上より、

$$V_1' - W_1 \subset \pi_l(V_1). \tag{93}$$

14. $W \colon W = W_1 \cup V_2' \cup \ldots \cup V_m'$ とする。(これがみたす!)

15. $W\subset \mathbf{V}(I_l)$ となる。 $(W_1\subsetneq V_1'$ だし、 $\mathbf{V}(I_l)$ の分解がある。)

16.

$$\mathbf{V}(I_l) - W = (V_1' \cup \ldots \cup V_m') - (W_1 \cup V_2' \cup \ldots \cup V_m')$$
(94)

$$= V_1' - (W_1 \cup V_2' \cup \ldots \cup V_m') \tag{95}$$

$$\subset V_1' - W_1 \subset \pi_l(V_1) \subset \pi_l(V). \tag{96}$$

17. $W \neq \mathbf{V}(I_l)$ を示す。 $W = \mathbf{V}(I_l)$ とする。

(a)

$$W_1 \cup V_2' \cup \ldots \cup V_m' = \mathbf{V}(I_l) = V_1' \cup \ldots \cup V_m'. \tag{97}$$

(b)

$$V_1' \subset W_1 \cup V_2' \cup \ldots \cup V_m'. \tag{98}$$

(c) V_1' は既約なので、 W_1, V_2', \ldots, V_m' のどれかに含まれなければならない。矛盾。