I.E.S. LAS FUENTEZUELAS

DESARROLLO DE APLICACIONES MULTIPLATAFORMA (I)

Sistemas Informáticos

Práctica 8. Operaciones varias II

Arjonilla Bermúdez Francisco

1 – Contesta a las siguientes preguntas, razonando las respuestas:

- ¿Cuántos bits necesitamos para representar el numero 54_{10} ? Necesitamos 6 bits, porque con 5 solo podemos representar hasta 31_{10} según la formula \rightarrow (2^5 -1) y con 6 llegamos hasta $63_{10} \rightarrow$ (2^6 -1).
- ¿Cuántos bits necesitamos para representar el numero 301₁₀?
 Necesitamos 9 bits → (2⁶ -1 = 511).
- ¿Se puede representar el numero 1024₁₀ con 10 bits? No, con 10 bits solo podemos representar hasta $1023_{10} \rightarrow (2^{10} - 1)$
- ¿Cuántos bits necesitamos para representar el numero 67₁0?
 Necesitamos 7 bits → (2⁷ -1 = 123).
- ¿Se puede representar el número 64₁0 con 6 bits?
 No, con 6 bits solo podemos representar hasta 63₁0 → (2⁶-1)
- ¿Cuántos bits necesitamos para representar el numero 128₁0? Necesitamos 8 bits → (28 -1 = 256).

2 – Realizar las siguientes operaciones en binario, mostrando claramente el procedimiento usado:

- Sumar las siguientes cantidades
 - a) 11011101,110110 + 1101011,0011 = 101001001,00010
 - b) 111011,0111 + 011,10110101 = 1111111,00100101

- Resta las siguientes cantidades
 - a) 10101101,11011 1110011 = 111010,11011
 - b) 110101,0111 101,11101 = 101111,10001

Multiplica las siguientes cantidades

- a) 0101101,1101 * 11111 = 10110001100,0011
- b) 111011,011 * 01,101 = 1100000,011111

Divide las siguientes cantidades

- a) 010110111,11101 / 10011 = 1001,10101
- b) 111011,01 / 101,101101 = 1010,011

3 – Rellena las tablas de verdad de los siguientes circuitos para los valores de entrada dados:

TABLA DE VERDAD										
Α	0	1	0	1	0	1	1	0	1	
В	0	0	0	1	0	0	1	0	1	
С	0	0	1	0	1	1	1	1	1	
D	0	0	0	0	1	0	0	1	1	
Е	1	0	1	0	1	0	0	1	0	
F	0	0	1	0	1	1	1	1	1	
R	0	0	1	0	1	0	0	1	0	

b

TABLA DE VERDAD										
Α	0	1	0	1	0	1	1	0	1	
В	0	0	0	1	0	0	1	0	1	
С	0	0	1	0	1	1	1	1	1	
D	0	0	0	0	1	0	0	1	1	
Е	1	1	1	0	1	1	0	1	0	
F	0	0	0	0	1	0	0	1	1	
R	1	1	1	0	0	1	0	0	1	

4 – Dibuja el circuito lógico siguiente D or ((A or (not B)) and C)

5 – Dadas las siguientes expresiones lógicas expresarlas mediante su circuito correspondiente:

a)
$$F = \overline{A}B + AC + \overline{D}$$

b) $F = A + \overline{B} + \overline{D}$

b)
$$F = A + \overline{B} + \overline{D}$$

c)
$$F = A + BC$$

a)

b)

c)

6 – Dadas las siguientes expresiones lógicas expresarlas mediante su circuito correspondiente:

a)
$$F = \overline{A}C + AB$$

a)
$$F = \overline{A}C + AB$$

b) $F = A\overline{C} + CD + \overline{B}C$

a)

b)

7 – Dadas las siguientes expresiones lógicas expresarlas mediante su circuito correspondiente:

a)
$$F = \overline{B}\overline{C} + A\overline{B}\overline{D}$$

a)
$$F = \overline{B}\overline{C} + A\overline{B}\overline{D}$$

b) $F = (B + \overline{D}).(\overline{A} + \overline{C})$
c) $F = C \oplus D$

$$C) F = C \oplus D$$

a)

b)

c) A * Not (B) + Not (A) * B

