Chapter 13: Concurrency Control

Hector Garcia-Molina

Concurrency Control

Example:

T1: Read(A)

 $A \leftarrow A+100$

Write(A)

Read(B)

 $B \leftarrow B+100$

Write(B)

Constraint: A=B

T2: Read(A)

 $A \leftarrow A \times 2$

Write(A)

Read(B)

 $B \leftarrow B \times 2$

Write(B)

Schedule A		Α	В
		25	25
T1	T2		
Read(A); $A \leftarrow A+100$		125	
Write(A);			
Read(B); B \leftarrow B+100;			125
Write(B);			
	Read(A); $A \leftarrow A \times 2$	250	
	Write(A);		
	Read(B);B \leftarrow B \times 2;		250
	Write(B);	250	250
	\		

CS 245 Notes 09 4

Schedule B	Α	В
	25	25
T1 T2 Read(A); $A \leftarrow Write(A)$; Read(B); $B \leftarrow Write(B)$; Read(A); $A \leftarrow A+100$	·	50
Write(A); Read(B); B \leftarrow B+100;		150
Write(B);	150	150

CS 245

Notes 09

5

Schedule C		Α	В
		25	25
T1 Read(A); A ← A+100 Write(A);	T2	125	
••••••••••••••••••••••••••••••••••••••	Read(A);A \leftarrow A×2; Write(A);	250	
Read(B); B \leftarrow B+100; Write(B);			125
	Read(B);B \leftarrow B×2; Write(B);	250	250 250

CS 245

Notes 09

6

Schedule D		Α	В
		25	25
T1	T2	125	
Read(A); $A \leftarrow A+100$ Write(A);		123	
	Read(A);A \leftarrow A×2; Write(A);	250	
	Read(B);B \leftarrow B \times 2;		50
D 1/D) D D 100	Write(B);		150
Read(B); B \leftarrow B+100; Write(B);		250	150

CS 245

Notes 09

7

Same as Schedule D but with new T2'

	but with fiew 12			
Schedule E		Α		В
		2!	5	25
T1	T2'			
Read(A); $A \leftarrow A+10$	0	12	25	
Write(A);				
	Read(A);	$A \leftarrow A \times 1; 12$	25	
	Write(A);			
	Read(B);I	B ← B×1;		25
	Write(B);	•		

Read(B); B
$$\leftarrow$$
 B+100; 125 Write(B); 125

- Want schedules that are "good", regardless of
 - initial state and
 - transaction semantics
- Only look at order of read and writes

Example:

$$Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2$$
(B)

Example:

$$Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$$

$$Sc'=r_1(A)w_1(A)$$

 $r_1(B)w_1(B)r_2(A)w_2(A)r_2(B)w_2(B)$

However, for Sd:

 $Sd=r_1(A)w_1(A)r_2(A)w_2(A) r_2(B)w_2(B)r_1(B)w_1(B)$

 as a matter of fact,
 T₂ must precede T₁
 in any equivalent schedule,
 i.e., T₂ → T₁

- $T_2 \rightarrow T_1$
- Also, $T_1 \rightarrow T_2$

Returning to Sc Sc=r₁(A)w₁(A)r₂(A)w₂(A)r₁(B)w₁(B)r₂(B)w₂(B) $T_1 \rightarrow T_2$ $T_1 \rightarrow T_2$

• no cycles \Rightarrow Sc is "equivalent" to a serial schedule (in this case T₁,T₂)

Concepts

Transaction: sequence of r_i(x), w_i(x) actions

Schedule: represents chronological order in which actions are executed

Serial schedule: no interleaving of actions or transactions

What about concurrent actions?

So net effect is either

- \bullet S=...r₁(x)...w₂(b)... or
- \bullet S=...w₂(B)...r₁(x)...

What about conflicting, concurrent actions on same object?

- Assume equivalent to either r₁(A) w₂(A)
 or w₂(A) r₁(A)
- ⇒ low level synchronization mechanism
- Assumption called "atomic actions"

Definition

S₁, S₂ are <u>conflict equivalent</u> schedules if S₁ can be transformed into S₂ by a series of swaps on non-conflicting actions.

Definition

A schedule is <u>conflict serializable</u> if it is conflict equivalent to some serial schedule.

Precedence graph P(S) (S is schedule)

Nodes: transactions in S

Arcs: $Ti \rightarrow Tj$ whenever

- p_i(A), q_j(A) are actions in S
- $p_i(A) <_S q_j(A)$
- at least one of p_i, q_j is a write

Exercise:

What is P(S) for S = w₃(A) w₂(C) r₁(A) w₁(B) r₁(C) w₂(A) r₄(A) w₄(D)

◆ Is S serializable?

Another Exercise:

What is P(S) for $S = w_1(A) r_2(A) r_3(A) w_4(A)$?

Lemma

 S_1 , S_2 conflict equivalent $\Rightarrow P(S_1)=P(S_2)$ <u>Proof:</u>

Assume $P(S_1) \neq P(S_2)$

 $\Rightarrow \exists T_i: T_i \rightarrow T_j \text{ in } S_1 \text{ and not in } S_2$

$$\Rightarrow S_1 = ...p_i(A)... q_j(A)... \qquad p_i, q_j$$

$$S_2 = ...q_j(A)...p_i(A)... \qquad conflict$$

 \Rightarrow S₁, S₂ not conflict equivalent

Note: $P(S_1)=P(S_2) \not\Rightarrow S_1$, S_2 conflict equivalent

Counter example:

$$S_1=w_1(A) r_2(A) w_2(B) r_1(B)$$

$$S_2=r_2(A) w_1(A) r_1(B) w_2(B)$$

CS 245

Theorem

 $P(S_1)$ acyclic \iff S_1 conflict serializable (\Leftarrow) Assume S_1 is conflict serializable

- $\Rightarrow \exists S_s: S_s, S_1 \text{ conflict equivalent}$
- $\Rightarrow P(S_s) = P(S_1)$
- \Rightarrow P(S₁) acyclic since P(S_s) is acyclic

Theorem

 $P(S_1)$ acyclic \iff S_1 conflict serializable

 (\Rightarrow) Assume P(S₁) is acyclic Transform S₁ as follows:

(2) Move all T₁ actions to the front

$$S_1 =p_1(A)....p_1(A)....$$

$$\leftarrow$$

- (3) we now have $S1 = \langle T1 \text{ actions } \rangle \langle ... \text{ rest } ... \rangle$
- (4) repeat above steps to serialize rest!

How to enforce serializable schedules?

Option 1: run system, recording P(S); at end of day, check for P(S) cycles and declare if execution was good

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from occurring

A locking protocol

Two new actions:

lock (exclusive): li (A)

unlock: ui (A)

Rule #1: Well-formed transactions

Ti: ... li(A) ... pi(A) ... ui(A) ...

Rule #2 Legal scheduler

$$S = \dots I_i(A) \dots u_i(A) \dots no I_j(A)$$

Exercise:

What schedules are legal? What transactions are well-formed? $S1 = I_1(A)I_1(B)r_1(A)w_1(B)I_2(B)u_1(A)u_1(B)$ $r_2(B)w_2(B)u_2(B)l_3(B)r_3(B)u_3(B)$ $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$ $I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)$ $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$ $|_{CS}|_{245}$ | 2(B)r2(B)w2(B)u2(B)|3(B)r3(B)u3(B)

Exercise:

```
What schedules are legal?
  What transactions are well-formed?
  S1 = I_1(A)I_1(B)r_1(A)w_1(B)I_2(B)u_1(A)u_1(B)
   r_2(B)w_2(B)u_2(B)l_3(B)r_3(B)u_3(B)
  S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)
   I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)
  S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)
   I_2(B)r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)
```

Schedule F

T1	T2
I ₁ (A);Read(A)	
A←A+100;Write(A);u ₁ (A)	
	l ₂ (A);Read(A)
	A←Ax2;Write(A);u ₂ (A)
	l ₂ (B);Read(B)
	B←Bx2;Write(B);u ₂ (B)
I ₁ (B);Read(B)	
B←B+100;Write(B);u ₁ (B)	

Schedule F

Rule #3 Two phase locking (2PL)

for transactions

Schedule G

T1 T2

l1(A);Read(A)

A-A+100;Write(A)

l1(B); u1(A)

l2(A);Read(A)

A-Ax2;Write(A); 2(B)

Schedule G

T1

 $I_1(A);Read(A)$

 $A \leftarrow A + 100; Write(A)$

I₁(B); u₁(A)

Read(B);B ← B+100

Write(B); u₁(B)

Τ2

l₂(A);Read(A)

A ← Ax2; Write(A);

delayed

CS 245

Schedule G

T1

 $I_1(A);Read(A)$

 $A \leftarrow A + 100; Write(A)$

I₁(B); u₁(A)

Read(B); $B \leftarrow B+100$

Write(B); u₁(B)

T2

I₂(A);Read(A)

A←Ax2;Write(A);

 $I_2(B)$; $u_2(A)$; Read(B)

 $B \leftarrow Bx2;Write(B);u_2(B);$

delayed

Schedule H (T2 reversed)

T1

I1(A); Read(A)

A A+100; Write(A)

I2(B); Read(B)

B Bx2; Write(B)

(A)

(B)

(B)

(B)

(B)

(B)

41

- Assume deadlocked transactions are rolled back
 - They have no effect
 - They do not appear in schedule

Next step:

Show that rules #1,2,3 \Rightarrow conflictserializable schedules

43

Conflict rules for li(A), ui(A):

- ◆l_i(A), l_j(A) conflict
- ◆l_i(A), u_j(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

```
Theorem Rules #1,2,3 \Rightarrow conflict (2PL) serializable schedule
```

To help in proof:

<u>Definition</u> Shrink(Ti) = SH(Ti) =

first unlock action of Ti

Lemma

$$Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$$

Proof of lemma:

 $Ti \rightarrow Tj$ means that

$$S = ... p_i(A) ... q_j(A) ...; p,q conflict$$

By rules 1,2:

$$S = \dots p_i(A) \dots u_i(A) \dots |_j(A) \dots q_j(A) \dots$$
By rule 3: SH(Ti) SH(Tj)

So, $SH(Ti) <_{S} SH(Tj)$

Theorem Rules #1,2,3
$$\Rightarrow$$
 conflict (2PL) serializable schedule

Proof:

(1) Assume P(S) has cycle

$$T_1 \rightarrow T_2 \rightarrow \dots T_n \rightarrow T_1$$

- (2) By lemma: $SH(T_1) < SH(T_2) < ... < SH(T_1)$
- (3) Impossible, so P(S) acyclic
- $(4) \Rightarrow S$ is conflict serializable

- Beyond this simple 2PL protocol, it is all a matter of improving performance and allowing more concurrency....
 - Shared locks
 - Multiple granularity
 - Inserts, deletes and phantoms
 - Other types of C.C. mechanisms

Shared locks

So far:

$$S = ...I_1(A) r_1(A) u_1(A) ... I_2(A) r_2(A) u_2(A) ...$$

Do not conflict

Instead:

$$S = ... ls_1(A) r_1(A) ls_2(A) r_2(A) us_1(A) us_2(A)$$

Lock actions

I-t_i(A): lock A in t mode (t is S or X)

u-t_i(A): unlock t mode (t is S or X)

Shorthand:

u_i(A): unlock whatever modes

T_i has locked A

Rule #1 Well formed transactions

$$T_i = ... I-S_1(A) ... r_1(A) ... u_1(A) ...$$

 $T_i = ... I-X_1(A) ... w_1(A) ... u_1(A) ...$

What about transactions that read and write same object?

Option 1: Request exclusive lock $T_i = ...l-X_1(A) ... r_1(A) ... w_1(A) ... u(A) ...$

Option 2: Upgrade

 What about transactions that read and write same object?

(E.g., need to read, but don't know if will write...)

$$T_i = ... I - S_1(A) ... r_1(A) ... I - X_1(A) ... w_1(A) ... u(A)...$$

-Think of

- Get 2nd lock on A, or
- Drop S, get X lock

Rule #2 Legal scheduler

$$S = \dots I - S_i(A) \xrightarrow{\dots} u_i(A) \dots$$

no
$$I-X_j(A)$$

$$S = \dots I-X_i(A)-\dots u_i(A)\dots$$

A way to summarize Rule #2

Compatibility matrix

Comp

	S	X
S	true	false
X	false	false

Rule # 3 2PL transactions

No change except for upgrades:

- (I) If upgrade gets more locks (e.g., $S \rightarrow \{S, X\}$) then no change!
- (II) If upgrade releases read (shared) lock (e.g., $S \rightarrow X$)
 - can be allowed in growing phase

Theorem Rules 1,2,3 \Rightarrow Conf.serializable for S/X locks schedules

Proof: similar to X locks case

Detail:

I-t_i(A), I-r_j(A) do not conflict if comp(t,r) I-t_i(A), u-r_j(A) do not conflict if comp(t,r)

Lock types beyond S/X

Examples:

- (1) increment lock
- (2) update lock

Example (1): increment lock

- ◆Atomic increment action: IN_i(A) {Read(A); A ← A+k; Write(A)}
- ◆IN_i(A), IN_j(A) do not conflict!

Comp

	S	X	I
S			
X			
Ι			

Comp

	S	X	I
S	Т	F	F
X	F	F	F
Ι	F	F	Т

Update locks

A common deadlock problem with upgrades:

T2 T1 $I-S_1(A)$ $I-S_2(A)$ --- Deadlock ---

Solution

If Ti wants to read A and knows it may later want to write A, it requests update lock (not shared)

New request

-> symmetric table?

Note: object A may be locked in different modes at the same time...

$$S_1=...I-S_1(A)...I-S_2(A)...I-U_3(A)...$$
 $I-S_4(A)...?$ $I-U_4(A)...?$

 To grant a lock in mode t, mode t must be compatible with all currently held locks on object

How does locking work in practice?

Every system is different

(E.g., may not even provide CONFLICT-SERIALIZABLE schedules)

But here is one (simplified) way ...

Sample Locking System:

- (1) Don't trust transactions to request/release locks
- (2) Hold all locks until transaction commits

time

69

Lock table Conceptually

But use hash table:

If object not found in hash table, it is unlocked

Lock info for A - example

What are the objects we lock?

Relation A

Relation B

Tuple A

Tuple B

Tuple C

Disk block

Α

Disk block

В

DB

DB

DB

- Locking works in any case, but should we choose <u>small</u> or <u>large objects?</u>
- If we lock <u>large</u> objects (e.g., Relations)
 - Need few locks
 - Low concurrency
- If we lock small objects (e.g., tuples, fields)
 - Need more locks
 - More concurrency

We can have it both ways!!

Ask any janitor to give you the solution...

Multiple granularity

Multiple granularity

Comp			Re	ques	stor	
		Т	Т	Т	Т	F
	IS	Т	Т	F	F	F
Holder	IX	Т	F	Т	F	F
	S	Т	F	F	F	F
•	SIX	F	F	F	F	F
	X					

Parent locked in	Child can be locked in
IS IX	
S	
SIX	
X	

Parent locked	in

Child can be locked by same transaction in

IS	IS, S
IX	IS, S, IX, X, SIX
S	[S, IS] not necessary
SIX	X, IX, [SIX]
X	none

Rules

- (1) Follow multiple granularity comp function
- (2) Lock root of tree first, any mode
- (3) Node Q can be locked by Ti in S or IS only if parent(Q) locked by Ti in IX or IS
- (4) Node Q can be locked by Ti in X,SIX,IX only if parent(Q) locked by Ti in IX,SIX
- (5) Ti is two-phase
- (6) Ti can unlock node Q only if none of Q's children are locked by Ti

Can T2 access object f2.2 in X mode? What locks will T2 get?

Can T2 access object f2.2 in X mode? What locks will T2 get?

Can T2 access object f3.1 in X mode? What locks will T2 get?

Can T2 access object f2.2 in S mode? What locks will T2 get?

Can T2 access object f2.2 in X mode? What locks will T2 get?

Insert + delete operations

Modifications to locking rules:

- Get exclusive lock on A before deleting A
- (2) At insert A operation by Ti, Ti is given exclusive lock on A

Still have a problem: **Phantoms**

Example: relation R (E#,name,...)

constraint: E# is key

use tuple locking

R		E#	Name	
	01	55	Smith	
	02	75	Jones	

T₁: Insert <04,Kerry,...> into R

T2: Insert <04,Bush,...> into R

T ₁	T ₂
S1(01)	S2(01)
S ₁ (0 ₂)	S2(02)
Check Constraint	Check Constraint
: Insert o ₃ [04,Kerry,]	= = =
o4[04,Bush,]	Insert

CS 245

Solution

Use multiple granularity tree

Before insert of node Q, lock parent(Q) inX mode

R1

Back to example

T1: Insert<04,Kerry>

X1(R)

Check constraint Insert<04,Kerry> U(R)

T2: Insert<04,Bush>

X₂(R) Check constraint Oops! e# = 04 already in R!

Instead of using R, can use index on R:

This approach can be generalized to multiple indexes...

Next:

- Tree-based concurrency control
- Validation concurrency control

Example

 all objects accessed through root, T₁ lock following pointers B T₁ lock T₁ lock D F E

> can we release A lock if we no longer need A??

Idea: traverse like "Monkey Bars"

Why does this work?

 Assume all T_i start at root; exclusive lock

 \bullet T_i \rightarrow T_j \Rightarrow T_i locks root before T_j

 Actually works if we don't always start at root

Rules: tree protocol (exclusive locks)

- (1) First lock by Ti may be on any item
- (2) After that, item Q can be locked by Ti only if parent(Q) locked by Ti
- (3) Items may be unlocked at any time
- (4) After Ti unlocks Q, it cannot relock Q

 Tree-like protocols are used typically for B-tree concurrency control

E.g., during insert, do not release parent lock, until you are certain child does not have to split

Tree Protocol with Shared Locks

Rules for shared & exclusive locks?

Tree Protocol with Shared Locks

Rules for shared & exclusive locks?

Tree Protocol with Shared Locks

- Need more restrictive protocol
- Will this work??
 - Once T₁ locks one object in X mode, all further locks down the tree must be in X mode

Validation

Transactions have 3 phases:

- (1) <u>Read</u>
 - all DB values read
 - writes to temporary storage
 - no locking
- (2) Validate
 - check if schedule so far is serializable
- (3) Write
 - if validate ok, write to DB

Key idea

- Make validation atomic
- ◆If T₁, T₂, T₃, ... is validation order, then resulting schedule will be conflict equivalent to S_s = T₁ T₂ T₃...

- To implement validation, system keeps two sets:
- FIN = transactions that have finished phase 3 (and are all done)
- ◆ VAL = transactions that have successfully finished phase 2 (validation)

Example of what validation must prevent:

RS(T₂)={B}
$$RS(T_3)={A,B} \neq \phi$$

WS(T₂)={B,D} WS(T₃)={C}

Example of what validation must prevent:

RS(T₂)={B}
$$\cap$$
 RS(T₃)={A,B} \neq ϕ WS(T₂)={B,D} WS(T₃)={C}

Another thing validation must prevent:

$$RS(T_2) = \{A\} \qquad RS(T_3) = \{A,B\}$$

$$WS(T_2) = \{D,E\} \qquad WS(T_3) = \{C,D\}$$

$$T_2 \qquad T_3$$

$$validated \qquad validated$$

$$T_2 \qquad finish \qquad T_2 \qquad time$$

$$BAD: W3(D) W2(D)$$

Another thing validation must prevent:

Validation rules for Tj:

```
(1) When T<sub>i</sub> starts phase 1:
       ignore(T_j) \leftarrow FIN
(2) at T<sub>j</sub> Validation:
               if check (T<sub>j</sub>) then
                       [VAL \leftarrow VAL \cup \{T_j\};
                         do write phase;
                         FIN \leftarrow FIN \cup \{T_j\}
```

Check (T_j):

For $T_i \in VAL$ - IGNORE (T_j) DO

IF [WS(T_i) \cap RS(T_j) \neq \emptyset OR $T_i \notin FIN$] THEN RETURN false;

RETURN true;

Is this check too restrictive?

Improving Check(T_i)

```
For Ti \in VAL - IGNORE (Tj) DO

IF [WS(Ti) \cap RS(Tj) \neq \emptyset OR

Ti \notin FIN AND WS(Ti) \cap WS(Tj) \neq \emptyset)

THEN RETURN false;

RETURN true;
```

△ start⊕ validate☆ finish

Validation (also called optimistic concurrency control) is useful in some cases:

- Conflicts rare
- System resources plentiful
- Have real time constraints

<u>Summary</u>

Have studied C.C. mechanisms used in practice

- 2 PL
- Multiple granularity
- Tree (index) protocols
- Validation