Pre-Processing

- Databases are typically not made to support analysis with a data mining algorithm
 - pre-processing of data is necessary
- Pre-processing techniques:
 - Data Cleaning: remove inconsistencies from the data
 - Feature Engineering: find the right features/attribute set
 - Feature Subset Selection: select appropriate feature subsets
 - Feature Transformation: bring attributes into a suitable form (e.g., discretization)
 - Feature Construction: construct derived features
 - Sampling:
 - select appropriate subsets of the data

Unsupervised vs. Supervised Pre-processing

- Unsupervised
 - do not use information about the learning task
 - only prior information (from knowledge about the data)
 - and information about the distribution of the training data
- Supervised
 - use information about the learning task
 - e.g.: look at relation of an attribute to class attribute

WARNING:

- pre-processing may only use information from training data!
 - compute pre-processing model from training data
 - apply the model to training and test data
 - otherwise information from test data may be captured in the preprocessing step → biased evaluation
- in particular: apply pre-processing to every fold in cross-validation

Feature Subset Selection

- Databases are typically not collected with data mining in mind
- Many features may be
 - irrelevant
 - uninteresting
 - redundant
- Removing them can
 - increase efficiency
 - improve accuracy
 - prevent overfitting
- Feature Subsect Selection techniques try to determine appropriate features automatically

Unsupervised FSS

- Using domain knowledge
 - some features may be known to be irrelevant, uninteresting or redundant
- Random Sampling
 - select a random sample of the feature
 - may be appropriate in the case of many weakly relevant features and/or in connection with ensemble methods

Supervised FSS

Filter approaches:

- compute some measure for estimating the ability to discriminate between classes
- typically measure feature weight and select the best n features
- problems
 - redundant features (correlated features will all have similar weights)
 - dependent features (some features may only be important in combination (e.g., XOR/parity problems).

Wrapper approaches

- search through the space of all possible feature subsets
- each search subset is tried with the learning algorithm

Supervised FSS: Filters

- foreach attribute A
 - W[A] = feature weight according to some measure of discrimination
 - e.g., decision tree splitting criteria (entropy/information gain, gini-index, ...)
- select the n features with highest W[A]

Basic idea:

- a good attribute should discriminate between the different classes
- use a measure of discrimination to determine which attributes to select

Disadvantage:

- quality of each attribute is measured in isolation
- some attributes may only be useful in combination with others

Basic idea:

- in a local neighborhood around an example R a good attribute A should
 - allow to discriminate R from all examples of different classes (the set of misses)
 - therefore the probability that the attribute has a different value for R and a miss M should be high
 - have the same value for all examples of the same class as R (the set of hits)
 - therefore the probability that the attribute has a different value for R and a hit H should be low
- \rightarrow try to estimate and maximize $W[A]=P(a_R\neq a_M)-P(a_R\neq a_H)$ where a_X is the value of attribute A in example X

RELIEF

(Kira & Rendell, ICML-92)

- set all attribute weights W[A] = 0.0
- for i = 1 to m (\leftarrow user-settable parameter)
 - select a random example R
 - find
 - *H*: nearest neighbor of same class (*near hit*)
 - *M*: nearest neigbor of different class (*near miss*)
 - for each attribute A

•
$$W[A] \leftarrow W[A] - \frac{d(A, H, R)}{m} + \frac{d(A, M, R)}{m}$$

where d(A,X,Y) is the distance in attribute A between examples X and Y (normalized to [0,1]-range).

FSS: Wrapper Approach

(John, Kohavi, Pfleger, ICML-94)

- Wrapper Approach:
 - try a feature subset with the learner
 - improve it by modifying the feature sets based on the result
 - repeat

The induction algorithm itself is used as a "black box" by the subset selection algorithm.

FSS: Wrapper Approach

- Forward selection:
 - 1. start with empty feature set *F*
 - 2. for each attribute A
 - a) $F = F \cup \{A\}$
 - b) Estimate Accuracy of Learning algorithm on F
 - c) $F = F \setminus \{A\}$
 - 3. $F = F \cup \{attribute with highest estimated accuracy\}$
 - 4. goto 2. unless estimated accuracy decreases significantly
- Backward elimination:
 - start with full feature set F
 - try to remove attributes
- Bi-directional search is also possible

Example: Forward Search

Properties

- Advantage:
 - find feature set that is tailored to learning algorithm
 - considers combinations of features, not only individual feature weights
 - can eliminate redundant features
 (picks only as many as the algorithm needs)

- Disadvantage:
 - very inefficient: many learning cycles necessary

Comparison Wrapper / Relief

Note: RelieveD is a version of Relief that uses all examples instead of a random sample

- on these datasets:
 - forward selection reduces attributes w/o error increase
- in general, it may also reduce error

Feature Transformation

- bring features into a usable form
- numerization
 - some algorithms can only use numeric data
 - nominal → binary
 - a nominal attribute with n values is converted into n binary attributes
 - binary → numeric
 - binary features may be viewed as special cases of numeric attributes with two values
- discretization
 - some algorithms can only use categorical data
 - transform numeric attributes into a number of (ordered) categorical values

Discretization

- Supervised vs. Unsupervised:
 - Unsupervised:
 - only look at the distribution of values of the attribute
 - Supervised:
 - also consider the relation of attribute values to class values
- Merging vs. Splitting:
 - Merging (bottom-up discretization):
 - Start with a set of intervals (e.g., each point is an interval) and successively combine neighboring intervals
 - Splitting (top-down discretization):
 - Start with a single interval and successively split the interval into sub-intervals

Unsupervised Discretization

• domain-dependent:

- suitable discretizations are often known
- age (0-18) →
 baby (0-3), child (3-6), school child (6-10), teenager (11-18)

equal-width:

- divide value range into a number of intervals with equal width
- age $(0,18) \rightarrow (0-3, 4-7, 8-11, 12-15, 16-18)$

equal-frequency:

- divide value range into a number of intervals so that (approximately)
 the same number of datapoints are in each interval
- e.g., N = 5: each interval will contain 20% of the training data
- good for non-uniform distributions (e.g., salary)

Supervised Discretization: Chi-Merge (Kerber, AAAI-92)

Basic Idea: merge neighboring intervals if the class information is independent of the interval an example belongs to

- initialization:
 - sort examples according to feature value
 - construct one interval for each value
- interval merging:
 - compute χ^2 value for each pair of adjacent intervals

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{c} \frac{(A_{ij} - E_{ij})^{2}}{E_{ij}} \qquad E_{ij} = N_{i} \frac{C_{j}}{N} \qquad N_{i} = \sum_{j=1}^{c} A_{ij} \quad C_{j} = \sum_{i=1}^{n_{intervals}} A_{ij}$$

 A_{ij} = number of examples in *i*-th interval that are of class *j*

17

 E_{ij} = expected number of examples in *i*-th interval that are of class *j* = examples in *i*-th interval $N_i \times$ fraction C/N of (all) examples of class

- = examples in *i*-th interval $N_i \times$ fraction C_j/N of (all) examples of class j
- merge those with lowest χ^2 value
- stop
 - when the χ^2 values of all pairs exceed a significance threshold

Supervised Discretization: Entropy-Split (Fayyad & Irani, IJCAI-93)

Basic Idea: grow a decision tree using a single numeric attribute and use the value ranges in the leaves as ordinal values

- initialization:
 - initialize intervals with a single interval covering all examples S
 - sort all examples according to the attribute value
 - initialize the set of possible split points
 - simple: all values
 - more efficient: only between class changes in sorted list
- interval splitting:
 - select split point with the minimum weighted entropy

$$T_{max} = arg \min_{T} \left(\frac{|S_{A < T}|}{|S|} Entropy(S_{A < T}) + \frac{|S_{A \ge T}|}{|S|} Entropy(S_{A \ge T}) \right)$$

- ullet recursively apply Entropy-Split to $S_{A < T_{max}}$ and $S_{A \ge T_{max}}$
- stop
 - when a given number of splits is achieved
 - or when splitting would yield too small intervals
 - or MDL-based stopping criterion (Fayyad & Irani, 1993)

Example

Temperature														
Play	Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No

Unsupervised Feature Construction

- based on domain knowledge
 - Example: Body Mass Index

$$BMI = \frac{weight(kg)}{height(m)^2}$$

- automatic
 - Examples:
 - kernel functions
 - may be viewed as feature construction modules
 - → support vector machines
 - principal components analysis
 - transforms an n-dimensional space into a lower-dimensional subspace w/o losing much information
 - GLEM:
 - uses an Apriori -like algorithms to compute all conjunctive combinations of basic features that occur at least n times
 - application to constructing evaluation functions for game Othello

Supervised Feature Construction

- use the class information to construct features that help to solve the classification problem
- Examples:
 - Wrapper approach
 - use rule or decision tree learning algorithm
 - observe frequently co-occurring features or feature values
 - encode them as separate features
 - Neural Network
 - nodes in hidden layers may be interpreted as constructed features

Scalability

- databases are often too big for machine learning algorithms
 - ML algorithms require frequent counting operations and multidimensional access to data
 - only feasible for data that can be held in main memory
- two strategies to make DM algorithms scalable
 - design algorithms that are explicitly targetted towards minimizing the number of database operations (e.g., Apriori)
 - use sampling to work on subsets of the data

Sampling

- Random Sampling
 - Select a random subset of the data
- Progressive Sampling
 - start with a small sample
 - increase sample size
 - arithmetic: increase sample size by fixed number of examples
 - geometric: multiply size with a fixed number (e.g., double size)
 - stop when convergence is detected
- Sequential sampling
 - rule out solution candidates based on significant differences

Windowing

Idea:

 focus the learner on the parts of the search space that are not yet correctly covered

Algorithm:

- 1. Initialize the window with a random subsample of the available data
- 2. Learn a theory from the current window
- 3. If the learned theory correctly classifies all examples (including those outside of the window), return the theory
- 4. Add some mis-classified examples to the window and goto 2.

Properties:

- may learn a good theory from a subset of the data
- problems with noisy data