Machine Learning Homework 1

Rob McCulloch
1/9/2019

Contents

1. Joint Distribution of Death Sentence, Victim Race, and Murderer Race

2

1. Joint Distribution of Death Sentence, Victim Race, and Murderer Race

Each outcome corresponds to a murder trial.

Let D=1 if the murderer gets the death sentence and 0 otherwise.

Let M=1 if the murderer is white and 0 otherwise.

Let V = 1 if the victim is white and 0 otherwise.

Let
$$p(M = 1) = .5$$
.

Let
$$p(V = 1 | M = 1) = .8$$
.

Let
$$p(V = 1 | M = 0) = .2$$
.

Let
$$p(D = 1 | M = 1, V = 1) = .6$$
.

Let
$$p(D = 1 | M = 1, V = 0) = .4$$
.

Let
$$p(D = 1 | M = 0, V = 1) = .6$$
.

Let
$$p(D = 1 | M = 0, V = 0) = .4$$
.

These probabilities define the joint distribution of (M, V, D)

- (a) Who is more likely to get the death sentence? That is, what are $p(D=1\,|\,M=1)$ and $p(D=1\,|\,M=0)$?
- (b) Find the joint distribution of (M, D) (give the two-way table).
- (c) Are M and D independent?

(d)	Find the joint distribution of (M,D) given $V=1$ (give the two-way table).
(e)	Given $V = 1$, are M and D independent?
(f)	Find the joint distribution of (M,D) given $V=0$ (give the two-way table).
(g)	Given $V = 0$, are M and D independent?
(h)	Are M and V independent?
(i)	Are D and V independent?
(j)	How is D related to M and V ? If correct for some population, what do these probabilities say about the impact of race on whether or not a murder is sentenced to death?