

INF 1771 – Inteligência Artificial

Aula 05 - Busca Local

Métodos de Busca

Busca Cega ou Exaustiva:

Não sabe qual o melhor nó da fronteira a ser expandido.
 Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Estima qual o melhor nó da fronteira a ser expandido com base em funções heurísticas.

Busca Local:

 Operam em um único estado e movem-se para a vizinhança deste estado.

Estratégias Clássicas de busca

- Busca sistemática
 - o um ou mais caminhos na memória
 - O Quando chega no objetivo, o caminho para ele constitui a solução do problema

Estratégias Clássicas de busca

- Busca sistemática
 - o um ou mais caminhos na memória
 - O Quando chega no objetivo, o caminho para ele constitui a solução do problema
 - ■ok para problemas pequenos
 - ■não-ok para problemas que requerem tempo exponencial para achar uma solução
 - o caminho para a meta pode ser irrelevante

Busca Local

- Adequadas para problemas de otimização
- Enumerar os estados é intratável
 algoritmos anteriores são muito caros
- •Não existe uma estratégia para encontrar a solução ótima de forma eficiente quando o problema possui instâncias de tamanho grande.

Problemas de Otimização

- Um exemplo: Problema de Roteamento de Veículos
- Entrada:
 - o *n* clientes com localização e demandas;
 - O Todas as distâncias;
 - O Frota homogênea de *m* veículos localizados no depósito central.
- Saída:
 - O Conjunto de Rotas de entrega (cada uma associada a um veículo) minimizando o custo total de viagem.
- NP-difícil

Problemas de Otimização

- Um exemplo: Problema de Roteamento de Veículos
- Soluções exatas continuam impraticáveis para a maioria dos problemas de interesse (≥ 200 clientes).
- Para um problema com n=100 clientes e um único veículo, o número de possíveis soluções é:

• número de átomos no universo : 1080

Exemplo – Problema de *Bin Packing*

- Dados: Número finito de *Bins* de capacidade c; Um Conjunto $V = \{1, ..., n\}$ de itens de peso $w_1, ..., w_n$;
- Alocar todos os itens minimizando o número de bins.

Exemplo – Problema de Bin Packing

- Dados: Número finito de Bins de capacidade c; Um Conjunto $V = \{1, ..., n\}$ de itens de peso $w_1, ..., w_n$;
- Alocar todos os itens minimizando o número de bins.

Exemplo – Problema de *Bin Packing*

- Aplicações:
 - Carregamento de caminhões com restrições de peso e capacidade;
 - Carregamento de containers;

Exemplo – TSP (Problema do Caixeiro Viajante)

- n cidades representando os clientes; distâncias entre as cidades.
- Percorrer as n cidades apenas uma vez e voltar a cidade de origem minimizando a distância total percorrida.

	A	В	С	D	E
A	0	5	8	9	7
B	5	0	6	5	5
С	00	6	0	2	3
О	Φ	Ю	2	0	4
Е	7	5	3	4	0

Exemplo - N rainhas

 Posicionar n rainhas em um tabuleiro nxn de modo que nenhum par de rainhas esteja se atacando.

f(x) = 5

f(x) = 2

f(x) = 0

Algoritmos de busca local

- Usam apenas um nó corrente
 - o representam um estado, com uma função de pontuação computável (f(x))
 - o a meta é encontrar o estado com a pontuação mais alta (baixa)

Algoritmos de busca local

- Usam apenas um nó corrente
 - o representam um estado, com uma função de pontuação computável (f(x))
 - o a meta é encontrar o estado com a pontuação mais alta (baixa)
 - O Se movem para a vizinhança desse nó
- Não necessariamente guardam o caminho da solução

Algoritmos de busca local

 Um grafo direcionado G=(V,A), onde cada nó em V representa uma solução e cada aresta (i,j) em A representa um vizinho j de i.

Vizinhança

 Considere um problema combinatório f(s*) = min { f(s): s ∈ S }
 S é o conjunto de soluções.

 Uma vizinhança N é uma aplicação, que associa, para cada elemento de S um subconjunto de soluções em S.

Vizinhança - exemplos

TSP

O trocar a posição de duas cidades em um tour

A-B-C-D-E

swap(A,D) D-B-C-A-E

N rainhas

O mover a rainha na posição mais conflitante mais a direita para uma posição diferente naquela coluna

Vizinhança - exemplos

Espaço de Busca

 Um grafo direcionado G=(V,A), onde cada nó em V representa uma solução e cada aresta (i,j) em A representa um vizinho de j de i.

Busca Local Genérica

```
function local-search (problem) returns um estado aceitável

current = make_node(problem.initial_state)
loop
if current.value possui um valor aceitável
    return current.state
neighbors = seleciona e avalia alguns vizinhos de current
neighbor = um vizinho de current em neighbors
current = neighbor
```

Busca Local Genérica

```
function local-search (problem) returns um estado aceitável

current = make_node(problem.initial_state)
loop
if current.value possui um valor aceitável
    return current.state
neighbors = seleciona e avalia alguns vizinhos de current
neighbor = um vizinho de current em neighbors
current = neighbor
```


Busca Local Genérica

```
function local-search (problem) returns um estado aceitável
current = make node(problem.initial state)
loop
    if current.value possui um valor aceitável
        return current.state
    neighbors = seleciona e avalja alguns vizinhos de current
    neighbor = um vizinho de current em neighbors
    current = neighbor
                                            Critério de
                                            parada:
                                            o que é
                                            aceitável?
```

Busca Local mais básica: Hill-climbing

```
function Hill-climbing (problem) returns um estado que é um máximo local

current = make_node(problem.initial_state)
loop
neighbor = um sucessor de current que tenha o maior valor de pontuação
if neighbor.value <= current.value
return current.state
```

current = neighbor

Busca Local mais básica: Hill-climbing

function Hill-climbing (problem) returns um estado que é um máximo local

```
current = make_node(problem.initial_state)
loop
    neighbor = um sucessor de current que tenha o maior valor de pontuação
    if neighbor.value <= current.value
        return current.state
    current = neighbor</pre>
```

Que vizinho

selecionar?

O melhor

Busca Local mais básica: Hill-climbing

```
function Hill-climbing (problem) returns um estado que é um máximo local
```

```
current = make_node(problem.initial_state)
loop
    neighbor = um sucessor de current que tenha o maior valor de pontuação
    if neighbor.value <= current.value
        return current.state
    current = neighbor</pre>
```

Critério de parada:
vizinho não é
melhor do que o
estado corrente

Busca Local

•Algoritmo:

O Heurística que iterativamente move de uma solução S para o melhor vizinho em N(s) até alcançar um máximo local/mínimo local.

```
S = S0; /* Initial Solution */
While not Terminated
    Explore( N(S) );
    If there is no better neighbor in N(s) Then Stop;
    S = Select( N(S) );
End While
Return Final solution found (local optima).
```

Busca Hill-climbing

•f(x): pares de rainhas se atacando

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	W	13	16	13	16
W	14	17	15		14	16	16
17		16	18	15		15	
18	14		15	15	14		16
14	14	13	17	12	14	12	18

Busca Hill-climbing básica é gulosa

Depois de 5 passos...

f(x) = 1

Hill Climbing

- É um **algoritmo guloso** escolhe sempre o primeiro melhor vizinho para progredir na busca.
- Essa abordagem pode ter bons resultados em alguns problemas. Sendo capaz de progredir rapidamente para a solução problema.
- Mas, sofre de sérios problemas:
 - Máximos locais
 - Platôs

Topologia do espaço de estados

Busca Hill climbing parado em máximos locais

Busca Hill climbing - platôs

Hill climbing: variações (e lições de vida)

Busca Hill-climbing: sideway moves

```
function Hill-climbing-sw (problem) returns um estado que é um máximo local

current = make_node(problem.initial_state)
loop
    neighbor = um sucessor de current que tenha o maior ou igual valor de
pontuação
    if neighbor.value < current.value
        return current.state
    current = neighbor
```

Busca Hill-climbing: sideway moves

function Hill-climbing-sw (problem) returns um estado que é um máximo local

```
current = make_node(problem.initial_state)
loop
    neighbor = um sucessor de current que tenha o maior ou igual valor de
pontuação
    if neighbor.value < current.value
        return current.state
    current = neighbor</pre>
```


Hill climbing

Se você ainda não atingiu o sucesso, tente de novo, mas repense suas escolhas

Random-restart hill climbing

 Estados iniciais diferentes vão "subir na encosta" por caminhos diferentes

Random-restart hill climbing

Ao ficar preso em um máximo local, reinicie a busca a partir de um ponto aleatório

Random-restart hill climbing

 Estados iniciais diferentes vão "subir na encosta" por caminhos diferentes

Random-restart hill climbing

Ao ficar preso em um máximo local, reinicie a
busca a partir de um ponto aleatório

Repita esse processo K vezes

Random-restart hill climbing

 Estados iniciais diferentes vão "subir na encosta" por caminhos diferentes

Random-restart hill climbing

Ao ficar preso em um máximo local, reinicie a busca a partir de um ponto aleatório Repita esse processo K vezes **Retorne o k-ésimo melhor máximo local**

Hill climbing: variações

Hill climbing: variações

Hill climbing estocástico

- Seleciona um vizinho de forma aleatória
 o e não necessariamente o melhor vizinho de todos
- Ainda exige uma melhora na pontuação

Hill climbing: variações

Hill climbing com primeira escolha

- Vizinhança é muito populosa
 o gasta tempo para enumerar
- Escolhe primeiro vizinho que melhora a pontuação (First-improvement)

Hill climbing com primeira escolha

- Vizinhança é muito populosa
 o gasta tempo para enumerar
- Escolhe primeiro vizinho que melhora a pontuação (First-improvement)
- First improvement X Best improvement

Hill climbing: variações

As vezes, para melhorar é preciso dar um passo para trás

Hill climbing com caminhadas aleatórias

- Com uma probabilidade p:
 - o escolha um vizinho qualquer
 - na maioria das implementações, não exige melhora na pontuação nesse passo
 - Movimento estocástico: random walk
- Caso contrário:
 - o escolha o vizinho com a maior pontuação
 - ^o Movimento guloso

Busca Hill climbing

- Hill climbing clássico
 - O nunca "desce a encosta"
 - nunca permite uma piora na pontuação do novo estado

0

- o preso em máximos locais
- Busca aleatória
 - O move para um sucessor escolhido aleatoriamente e uniformemente
 - ^o ineficiente

Busca Hill climbing

o completo, mas ineficiente

 Hill climbing clássico O nunca "desce a encosta" ■ nunca permite uma p ntuação do novo estado E se ^o incompleto combinarmos o preso ex as Busca alea estratégias? ss escolhido aleatoriamente e o move para um s uniformemente

Simulated Annealing, ideia geral

- 1. Escolha um estado inicial, s
- 2. Escolha aleatoriamente um estado *t*, a partir dos vizinhos de *s*
- 3. se f(t) for melhor do que f(s), então s = t senão, com uma probabilidade baixa, faça s = t
- 4. Vá para o passo 2 até cansar

Simulated Annealing, ideia geral

- 1. Escolha um estado inicial, s
- 2. Escolha aleatoriamente um estado *t*, a partir dos vizinhos de *s*
- 3. se f(t) for melhor do que f(s), então s = t senão, com uma probabilidade baixa, faça

Simulated Annealing

- Probabilidade de aceitar um movimento ruim
 - O varia de acordo com o quão ruim ele é
 - O diminui conforme o tempo passa

Controle do processo de "annealing"

 considere a mudança no desempenho da pontuação

 $\circ \Delta E = f(novoEstado) - f(estadoCorrente)$

- •se $\Delta E > 0$ o aceite o novo estado (subida)
- •se $\Delta E \le 0$, o novo estado deve passar em um teste

Controle do processo de "annealing"

 O teste usa uma probabilidade definida pela equação de Boltzman

$$ob = e^{\nabla E \setminus L}$$

- $\bullet \Delta E \longrightarrow -\infty$, $P \longrightarrow 0$
 - o se o movimento for muito ruim, probabilidade de aceitálo, diminui exponencialmente
- $\bullet T \rightarrow 0$, $P \rightarrow 0$
 - o conforme temperatura diminui, probabilidade de aceitar um movimento ruim, diminui exponencialmente
 - ■temperatura diminui com o número de passos

Simulated Annealing

```
Select an initial solution \omega \in \Omega
Select the temperature change counter k = 0
Select a temperature cooling schedule, t_k
Select an initial temperature T = t_0 \ge 0
Select a repetition schedule, M_k, that defines the number of iterations executed at
each temperature, t_k
Repeat
      Set repetition counter m = 0
      Repeat
           Generate a solution \omega' \in N(\omega)
           Calculate \Delta_{\omega,\omega'} = f(\omega') - f(\omega)
           If \Delta_{\omega,\omega'} \leq 0, then \omega \leftarrow \omega'
           If \Delta_{\omega,\omega'} > 0, then \omega \leftarrow \omega' with probability exp(-\Delta_{\omega,\omega'}/t_k)
          m \leftarrow m + 1
      Until m = M_k
      k \leftarrow k+1
Until stopping criterion is met
```

Pseudo-código: A.G. Nikolaev and S. H. Jacobson, Simulated annealing. in Handbook of Metaheuristics, 2nd Ed.

Simulated annealing - pros e contras

- + Pode chegar em um máximo global, se T diminui bem lentamente
- + Escapa de máximos locais

Simulated annealing - pros e contras

- + Pode chegar em um máximo global, se T diminui bem lentamente
- + Escapa de máximos locais
- dependente dos parâmetros
- saída pode ser completamente diferente em diferentes execuções

Simulated annealing

Ilustração do funcionamento do Algoritmo de Simulated Annealing procurando o máximo de uma função

Image GIF: Wikipedia