

Lecture #6(b): Frequency Response I: Frequency Response, SSS, and Bode Diagrams: Examples

ECE 20200: Linear Circuit Analysis II Steve Naumov (Instructor) Lecture #6(b): Frequency Response I: Frequency Response, SSS, and Bode Diagrams: Examples

Frequency Response and Sinusoidal Steady State

### Example #1: 1st Order System Functions, SSS Response

- Consider the relaxed linear first order network having a sinusoidal excitation voltage of  $v_q(t)$  for  $t \ge 0$ . Compute the following:
  - ullet Voltage gain transfer function  $H_V(s) = V_o(s)/V_g(s)$
  - Voltage gain frequency response function  $H_V(j\omega) = V_o(j\omega)/V_g(j\omega)$
  - ightharpoonup Voltage gain frequency response magnitude function  $|H_V(j\omega)|$
  - Voltage gain frequency response phase function  $\angle H_V(j\omega)$
  - lacktriangleright Sinusoidal steady state voltage response  $v_{o,sss}(t)$  when

$$v_g(t) = 2\cos(100t - 30^\circ) u(t) V$$

$$v_g(t) = 4\sqrt{2}\cos(1kt + 45^\circ)u(t)V$$

$$v_g(t) = 6\cos(10kt + 10^\circ) u(t)V$$

$$v_g(t) = 10u(t)V$$



lacktriangle Compute the voltage gain transfer function  $H_V(s) = V_o(s)/V_g(s)$ 

$$H_V(s) = \frac{V_o(s)}{V_g(s)} = \frac{\frac{1M}{s}}{\frac{1M}{s} + 1k} = \frac{1M}{1M + (1k)s} \rightarrow \boxed{H_V(s) = \frac{1k}{s + 1k}}$$

- Compute the voltage gain frequency response  $m{H_V}(j\omega) = m{V_o}(j\omega)/m{V_g}(j\omega)$ 
  - Method #1: Compute  $H_V(j\omega)$  by  $H_V(s)|_{s=j\omega}$

$$H_V(s)\Big|_{s=j\omega} = \left(\frac{V_o(s)}{V_g(s)}\right)\Big|_{s=j\omega} = \left(\frac{1k}{s+1k}\right)\Big|_{s=j\omega}$$

$$\left| \boldsymbol{H}_{\boldsymbol{V}}(j\omega) = \frac{\boldsymbol{V}_{\boldsymbol{o}}(j\omega)}{\boldsymbol{V}_{\boldsymbol{g}}(j\omega)} = \frac{1k}{j\omega + 1k} \right|$$

Method #2: Compute  $H_V(j\omega)$  directly in  $j\omega$  domain

$$H_V(j\omega) = \frac{\frac{1M}{j\omega}}{\frac{1M}{j\omega} + 1k} = \frac{1k}{j\omega + 1k}$$

*s*-domain



 $j\omega$ -domain



Compute the magnitude  $|H_V(j\omega)|$  of the voltage gain transfer function  $H_V(j\omega)$ 

$$|\mathbf{H}_{V}(j\omega)| = \left| \frac{\mathbf{V}_{o}(j\omega)}{\mathbf{V}_{g}(j\omega)} \right| = \frac{|\mathbf{V}_{o}(j\omega)|}{|\mathbf{V}_{g}(j\omega)|}$$
$$|\mathbf{H}_{V}(j\omega)| = \frac{|1k|}{|j\omega + 1k|} = \frac{1k}{\sqrt{\omega^{2} + 1M}}$$

Compute  $\angle H_V(j\omega)$ , the phase angle of the voltage gain transfer function  $H_V(j\omega)$ 

$$\begin{split} \angle \boldsymbol{H}_{\boldsymbol{V}}(j\omega) &= \angle \frac{\boldsymbol{V}_{\boldsymbol{o}}(j\omega)}{\boldsymbol{V}_{\boldsymbol{g}}(j\omega)} \\ \angle \boldsymbol{H}_{\boldsymbol{V}}(j\omega) &= \angle \boldsymbol{V}_{\boldsymbol{o}}(j\omega) - \angle \boldsymbol{V}_{\boldsymbol{g}}(j\omega) = 0 - tan^{-1} \left(\frac{\omega}{1\mathrm{k}}\right) \\ \angle \boldsymbol{H}_{\boldsymbol{V}}(j\omega) &= -tan^{-1} \left(\frac{\omega}{1\mathrm{k}}\right) \end{split}$$

#### *s*-domain



#### In MATLAB

```
>> num = 1000;
>> den = [1,1000];
>> [Hjw, omega] = freqs(num, den);
>> mag = abs(Hjw);
\rightarrow phase = angle(Hjw)*(180/pi);
>> subplot(2, 1, 1);
>> plot(omega, mag);
>> xlabel('Frequency (rad/s)');
>> ylabel('Magnitude');
>> grid on;
>> subplot(2, 1, 2);
>> plot(omega, phase);
>> xlabel('Frequency (rad/s)');
>> ylabel('Phase (degrees)');
>> grid on;
```

$$H_V(s) = \frac{1k}{s + 1k}$$



Compute  $v_{o,sss}(t)$  when  $v_g(t) = 2\cos(100t - 30^\circ) u(t) V$ 

$$\begin{aligned} v_{o,SSS}(t) &= 2|\pmb{H}_{\pmb{V}}(j\omega)|\cos\big(100t - 30^\circ + \angle \pmb{H}_{\pmb{V}}(j\omega)\big)u(t) \\ v_{o,SSS}(t) &= 2|\pmb{H}_{\pmb{V}}(j100)|\cos\big(100t - 30^\circ + \angle \pmb{H}_{\pmb{V}}(j100)\big)u(t) \end{aligned}$$

$$v_{o,sss}(t) = 2\frac{10}{\sqrt{101}}\cos(100t - 30^{\circ} - tan^{-1}(1/10))u(t)$$

$$v_{o,sss}(t) \approx 1.99 \cos(100t - 35.71^{\circ})u(t)$$

Compute  $v_{o,sss}(t)$  when  $v_g(t) = 4\sqrt{2}\cos(1\mathrm{k}t + 45^\circ)\,u(t)\mathrm{V}$ 

$$v_{o,sss}(t) = 4\sqrt{2}|\mathbf{H}_{V}(j\omega)|\cos(1kt + 45^{\circ} + \angle \mathbf{H}_{V}(j\omega))u(t)$$

$$v_{o,sss}(t) = 4\sqrt{2}|\mathbf{H}_{V}(j1k)|\cos(1kt + 45^{\circ} + \angle \mathbf{H}_{V}(j1k))u(t)$$

$$v_{o,sss}(t) = 4\sqrt{2}\frac{1}{\sqrt{2}}\cos(1kt + 45^{\circ} - tan^{-1}(1))u(t)$$

$$v_{o,sss}(t) = 4\cos(1kt)u(t)$$



Compute  $v_{o,sss}(t)$  when  $v_{g}(t) = 6\cos(10kt + 10^{\circ})u(t)V$ 

$$\begin{aligned} v_{o,SSS}(t) &= 6|\boldsymbol{H}_{\boldsymbol{V}}(j\omega)|\cos\bigl(10\mathrm{k}t + 10^\circ + \angle\boldsymbol{H}_{\boldsymbol{V}}(j\omega)\bigr)u(t) \\ v_{o,SSS}(t) &= 6|\boldsymbol{H}_{\boldsymbol{V}}(j10\mathrm{k})|\cos\bigl(10\mathrm{k}t + 10^\circ + \angle\boldsymbol{H}_{\boldsymbol{V}}(j10\mathrm{k})\bigr)u(t) \end{aligned}$$

$$v_{o,sss}(t) = 6\frac{1}{\sqrt{101}}\cos(10kt + 10^{\circ} - tan^{-1}(10))u(t)$$

$$v_{o,sss}(t) \approx 0.597 \cos(10k - 74.29^{\circ})u(t)$$

Compute  $v_{o,sss}(t)$  when  $v_{g}(t) = 10u(t)V$ 

$$v_{o,sss}(t) = 10|\mathbf{H}_{\mathbf{V}}(j\omega)|\cos(0t + 0^{\circ} + \angle \mathbf{H}_{\mathbf{V}}(j\omega))u(t)$$

$$v_{o,sss}(t) = 10|\mathbf{H}_{\mathbf{V}}(j0)|\cos(0t + 0^{\circ} + \angle \mathbf{H}_{\mathbf{V}}(j0))u(t)$$

$$v_{o,sss}(t) = 10 \frac{1000}{1000} \cos(0t + 0^{\circ} - tan^{-1}(0))u(t)$$

$$v_{o,SSS}(t) = 10u(t)V$$



#### Example #2: 2<sup>nd</sup> Order System Functions, SSS Response

 A current gain transfer function for a second order network is known to have the form

$$H_I(s) = \frac{I_o(s)}{I_{in}(s)} = \frac{s^2}{s^2 + s + 100}$$

Compute the following:

- Current gain frequency response function  $H_I(j\omega)$
- $|H_I(j\omega)|$  and  $\angle H_I(j\omega)$
- Sinusoidal steady state current response  $i_{o,sss}(t)$  when  $i_{in}(t) = [1 + 2\cos(10t + 45^{\circ}) 10\sin(15t 30^{\circ})]u(t)$ A

• Compute the current gain frequency response function  $H_I(j\omega)$ 

$$H_{I}(j\omega) = \frac{I_{o}(j\omega)}{I_{in}(j\omega)} = \frac{(j\omega)^{2}}{(j\omega)^{2} + (j\omega) + 100} = \frac{-\omega^{2}}{-\omega^{2} + j\omega + 100}$$

$$H_{I}(j\omega) = \frac{-\omega^{2}}{[100 - \omega^{2}] + j\omega}$$

• Compute  $|H_I(j\omega)|$  and  $\angle H_I(j\omega)$ 

$$|H_{I}(j\omega)| = \frac{|I_{o}(j\omega)|}{|I_{in}(j\omega)|} = \frac{|-\omega^{2}|}{|[100 - \omega^{2}] + j\omega|} = \frac{\omega^{2}}{\sqrt{[100 - \omega^{2}]^{2} + \omega^{2}}}$$

$$|H_I(j\omega)| = \frac{\omega^2}{\sqrt{[100 - \omega^2]^2 + \omega^2}}$$

$$\angle H_{I}(j\omega) = \angle I_{o}(j\omega) - \angle I_{in}(j\omega)$$

$$\angle H_I(j\omega) = \pm 180^{\circ} - \tan^{-1}\left(\frac{\omega}{100 - \omega^2}\right)$$

#### In MATLAB

```
>>  num = [1,0,0];
>> den = [1,1,100];
>> [Hjw, omega] = freqs(num, den);
>> mag = abs(Hjw);
\rightarrow phase = angle(Hjw)*(180/pi);
>> subplot(2,1,1);
>> plot(omega, mag);
>> xlabel('Frequency (rad/s)');
>> ylabel('Magnitude');
>> grid on;
>> xlim([0,25]);
>> subplot(2,1,2);
>> plot(omega, phase);
>> xlabel('Frequency (rad/s)');
>> ylabel('Phase (degrees)');
>> grid on;
>> xlim([0,25]);
```

$$H_I(s) = \frac{s^2}{s^2 + s + 100}$$



- Compute the sinusoidal steady state current response  $i_{o,sss}(t)$  when  $i_{in}(t) = [1 + 2\cos(10t + 45^{\circ}) 10\sin(15t 30^{\circ})]u(t)A$ 
  - Since the system is assumed to be linear, we can employ superposition

$$\begin{split} i_{o,SSS}(t) &= i_{o,SSS}^{(1)}(t) + i_{o,SSS}^{(2)}(t) - i_{o,SSS}^{(3)}(t) \\ i_{o,SSS}^{(1)}(t) &= 1 |H_I(j0)| |\cos(0t + 0^\circ + \angle H_I(j0)) u(t) \text{ A} \\ i_{o,SSS}^{(1)}(t) &= 1(0)\cos(0t + 0^\circ + 180^\circ) u(t) \Rightarrow \boxed{i_{o,SSS}^{(1)}(t) = 0\text{A}} \\ i_{o,SSS}^{(2)}(t) &= 2 |H_I(j10)| |\cos(10t + 45^\circ + \angle H_I(j10)) u(t) \text{ A} \\ i_{o,SSS}^{(2)}(t) &= 2(10)\cos(10t + 45^\circ + 90^\circ) u(t) \\ \boxed{i_{o,SSS}^{(2)}(t) = 20\cos(10t + 135^\circ) u(t) \text{ A}} \end{split}$$

- Compute the sinusoidal steady state current response  $i_{o,sss}(t)$  when  $i_{in}(t) = [1 + 2\cos(10t + 45^{\circ}) 10\sin(15t 30^{\circ})]u(t)A$ 
  - Since the system is assumed to be linear, we can employ superposition

$$i_{o,SSS}(t) = i_{o,SSS}^{(1)}(t) + i_{o,SSS}^{(2)}(t) - i_{o,SSS}^{(3)}(t)$$

$$i_{o,sss}^{(3)}(t) = 10|\mathbf{H}_{I}(j15)||\sin(15t - 30^{\circ} + \angle \mathbf{H}_{I}(j15))u(t) \text{ A}$$

$$i_{o,sss}^{(3)}(t) = 10\frac{45}{\sqrt{634}}\sin(15t - 30^{\circ} + \tan^{-}(3/25))u(t)$$

$$i_{o,sss}^{(3)}(t) = \frac{225\sqrt{634}}{317}\sin(15t - 30^\circ + \tan^-(3/25))u(t)$$

$$i_{o,sss}^{(3)}(t) \approx 17.9 \sin(15t - 23.16^{\circ}) u(t)$$

- Compute the sinusoidal steady state current response  $i_{o,sss}(t)$  when  $i_{in}(t) = [1 + 2\cos(10t + 45^{\circ}) 10\sin(15t 30^{\circ})]u(t)A$ 
  - The complete SSS response  $i_{o.sss}(t)$  is therefore

$$i_{o,SSS}(t) = i_{o,SSS}^{(1)}(t) + i_{o,SSS}^{(2)}(t) - i_{o,SSS}^{(3)}(t)$$

$$i_{o,SSS}(t) = 0u(t)A + 20\cos(10t + 135^{\circ})u(t) A$$

$$-17.9\sin(15t - 23.16^{\circ})u(t)$$

Lecture #6(b): Frequency Response I: Frequency Response, SSS, and Bode Diagrams: Examples

The Decibel Scale and Interpreting Bode Diagrams

## Example #1: Converting dB's to Magnitude

- Calculate the current gain frequency response magnitude  $|H_I(j\omega_0)|$  for the following current gain frequency response decibel magnitudes  $|H_I(j\omega_0)|_{dB}$ 
  - $|H_I(j10)|_{dB} = 0.2 \text{ dB}$
  - $|H_I(j100)|_{dB} = 26 \text{ dB}$
  - $|H_I(j1)|_{dB} = -46 \text{ dB}$

#### Solution

 $|H_{I}(j10)|_{dB} = 0.2 \text{ dB}$   $20 \log_{10}(|H_{I}(j10)|) = |H_{I}(j10)|_{dB} = 0.2 \text{ dB}$   $\log_{10}(|H_{I}(j10)|) = 0.01 = 10^{-2}$   $|H_{I}(j10)| = 10^{0.01}$   $|H_{I}(j10)| = 1.023 \text{ A/A}$ 

## Example #1: Converting dB's to Magnitude

- Calculate the current gain frequency response magnitude  $|H_I(j\omega_0)|$  for the following current gain frequency response decibel magnitudes  $|H_I(j\omega_0)|_{dB}$
- Solution (cont'd)
  - ►  $|H_I(j100)|_{dB} = 26 \text{dB}$   $20 \log_{10}(|H_I(j100)|) = |H_I(j100)|_{dB} = 26 \text{ dB}$   $\log_{10}(|H_I(j100)|) = 13/10 = 1.3$  $|H_I(j100)| = 10^{13/10} = 10^{1.3} \rightarrow |H_I(j100)| = 19.95 \text{ A/A}$
  - $|H_{I}(j1)|_{dB} = -46 \text{ dB}$   $20 \log_{10}(|H_{I}(j1)|) = |H_{I}(j1)|_{dB} = -46 \text{ dB}$   $\log_{10}(|H_{I}(j1)|) = -23/10 = -2.3$   $|H_{I}(j1)| = 10^{-23/10} = 10^{-2.3} \rightarrow |H_{I}(j1)| = +5 \text{ mA/A}$

### Example #2: Interpreting Exact Bode Diagrams

Consider the Bode diagram depicting a current gain frequency response function  $M(j\omega) = I_o(j\omega)/I_i(j\omega)$ . Use the diagram to approximately compute the sinusoidal steady state (SSS) current response  $i_{o,sss}(t)$  given  $i_i(t) = 20\cos(2t + 30^\circ)u(t)$  A.



## Example #2: Interpreting Exact Bode Diagrams (Solution)

Compute the SSS current  $i_{o,sss}(t)$  given  $i_i(t) = 20cos(2t + 30^\circ)u(t)$  A.

$$i_{o,sss}(t) = 20 |\mathbf{M}(j2)| cos(2t + 30^{\circ} + \angle \mathbf{M}(j2)) u(t)$$
  
 $i_{o,sss}(t) = 20(0.631) cos(2t + 30^{\circ} - 20^{\circ}) u(t)$ 

$$i_{o,sss}(t) = 12.62cos(2t + 10^{\circ})u(t)$$

$$20log_{10}(|\mathbf{M}(j2)|) = |\mathbf{M}(j2)|_{dB}$$
  
 $20log_{10}(|\mathbf{M}(j2)|) = -4dB$ 





Lecture #6(b): Frequency Response I: Frequency Response, SSS, and Bode Diagrams: Examples

Sketching Bode Diagrams: Real Poles/Zeros

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{200s}{s^2 + 12s + 20} = \frac{200s}{(s+2)(s+10)}$$

- Solution
  - **Step #1**: Identify the poles and zeros of G(s)

Zeros: 
$$z_1=0+j0$$
 Poles:  $p_1=-2 \rightarrow |p_1|=2$   $\rightarrow |z_1|=0$   $p_2=-10 \rightarrow |p_2|=10$  Step #2: Represent  $G(s)$  in standard Bode form

$$G(s) = \left(\frac{200}{(2)(10)}\right) \frac{s}{(s/2+1)(s/10+1)} \to G(s) = 10 \frac{s}{(s/2+1)(s/10+1)}$$

**Step #3**: Find frequency response function  $G(j\omega)$  in standard Bode form

$$G(j\omega) = 10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}$$

$$G(j\omega) = 10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}$$

#### Solution cont'd

Step #4(a): Compute expression for Decibel magnitude of  $G(j\omega)$ 

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} \left( |10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}| \right)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} (|10j\omega|) - 20 \log_{10} (|(j\omega/2 + 1)(j\omega/10 + 1)|)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} (|10|) + 20 \log_{10} (|j\omega|)$$

$$-20 \log_{10} (|j\omega/2 + 1|) - 20 \log_{10} (|j\omega/10 + 1|)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 dB + 20 \log_{10} (\omega) - 20 \log_{10} (|j\omega/2 + 1|)$$

$$-20 \log_{10} (|j\omega/10 + 1|)$$

Step #4(b): Find expression for phase angle of  $G(j\omega)$ 

$$\angle \mathbf{G}(j\omega) = \angle \left(10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}\right)$$

$$\angle \mathbf{G}(j\omega) = \angle (10j\omega) - \angle [(j\omega/2 + 1)(j\omega/10 + 1)]$$

$$\angle \mathbf{G}(j\omega) = \angle (10) + \angle (j\omega) - \angle (j\omega/2 + 1) - \angle (j\omega/10 + 1)$$

$$\angle \mathbf{G}(j\omega) = 90^{\circ} - \angle (j\omega/2 + 1) - \angle (j\omega/10 + 1)$$

$$G(j\omega) = 10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}$$

#### Solution cont'd

Step #5(a): Note the contributions of each term of  $|G(j\omega)|_{dB}$ 

Term:  $|10|_{dB}$  Effects:  $\forall \omega$  Slope: 0dB/dec Value: +20dB

Term:  $|j\omega|_{dB}$  Effects:  $\forall \omega$  Slope: 20dB/dec Value @  $\omega=1$ : 0dB

Term:  $-|j\omega/2 + 1|_{dB}$  Effects:  $\omega > 2$  Slope: -20dB/dec Value: N/A

Term:  $-|j\omega/10 + 1|_{dB}$  Effects:  $\omega > 10$  Slope: -20dB/dec Value: N/A

**Step #5(b)**: Create table to help sketch  $|G(j\omega)|_{dB}$ 

| Magnitude<br>Terms     | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                     |                      |                         |  |  |
|------------------------|----------------------------------------------|-------------------------|---------------------|----------------------|-------------------------|--|--|
|                        | Value at $\omega = 0.1$                      | Slope at $\omega > 0.1$ | Slope at $\omega>2$ | Slope at $\omega>10$ | Slope at $\omega > 100$ |  |  |
| $ 10 _{dB}$            | +20dB                                        | 0dB/dec                 | <b>0</b> dB/dec     | <b>0</b> dB/dec      | 0dB/dec                 |  |  |
| $ j\omega _{dB}$       | <b>-20</b> dB                                | 20dB/dec                | 20dB/dec            | 20dB/dec             | 20dB/dec                |  |  |
| $- j\omega/2+1 _{dB}$  | <b>0</b> dB                                  | 0dB/dec                 | -20dB/dec           | -20dB/dec            | -20dB/dec               |  |  |
| $- j\omega/10+1 _{dB}$ | <b>0</b> dB                                  | 0dB/dec                 | <b>0</b> dB/dec     | -20dB/dec            | -20dB/dec               |  |  |
| Total                  | <b>0</b> dB                                  | 20dB/dec                | <b>0</b> dB/dec     | <b>−20</b> dB/dec    | - <b>20</b> dB/dec      |  |  |

$$G(j\omega) = 10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}$$

#### Solution cont'd

Step #5(c): Sketch approximate Decibel magnitude  $|G(j\omega)|_{dB}$ 



$$G(j\omega) = 10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}$$

#### Solution cont'd

▶ Step #6(a): Note contribution of each term of  $\angle G(j\omega)$ 

Term:  $\angle 10$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $0^{\circ}$ 

Term:  $\angle j\omega$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $90^{\circ}$ 

Term:  $-\angle(j\omega/2+1)$  Effects:  $\omega \in [0.2, 20]$  Slope:  $-45^{\circ}/\text{dec}$  Final Value:  $-90^{\circ}$ 

Term: $-\angle(j\omega/10+1)$  Effects:  $\omega \in [1,100]$  Slope:  $-45^{\circ}/\text{dec}$  Final Value:  $-90^{\circ}$ 

▶ Step #6(b): Create table to help sketch  $\angle G(j\omega)$ 

| Phase<br>Terms          | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                       |                        |                          |                          |  |
|-------------------------|----------------------------------------------|-------------------------|-----------------------|------------------------|--------------------------|--------------------------|--|
|                         | Value at $\omega = 0.02$                     | Slope at $\omega > 0.2$ | Slope at $\omega > 1$ | Slope at $\omega > 20$ | Slope at $\omega > 10^2$ | Value at $\omega = 10^3$ |  |
| ∠10                     | 0°                                           | 0°/dec                  | <b>0</b> °/dec        | 0°/dec                 | 0°/dec                   | 0°                       |  |
| ∠jω                     | 90°                                          | 0°/dec                  | 0°/dec                | 0°/dec                 | 0°/dec                   | 90°                      |  |
| $-\angle(j\omega/2+1)$  | 0°                                           | -45°/dec                | -45°/dec              | 0°/dec                 | 0°/dec                   | -90°                     |  |
| $-\angle(j\omega/10+1)$ | 0°                                           | 0°/dec                  | -45°/dec              | -45°/dec               | 0°/dec                   | -90°                     |  |
| Total                   | 90°                                          | - <b>45</b> °/dec       | - <b>90</b> °/dec     | - <b>45</b> °/dec      | <b>0</b> °/dec           | -90°                     |  |

$$G(j\omega) = 10 \frac{j\omega}{(j\omega/2 + 1)(j\omega/10 + 1)}$$

- Solution cont'd
  - Step #6(c): Sketch approximate phase angle  $\angle G(j\omega)$



$$G(s) = \frac{200s}{s^2 + 12s + 20}$$

#### Solution cont'd

▶ Step #7: Plot exact Bode diagram in MATLAB with code below

```
% num - numerator polynomial: 200s + 0
% den – denominator polynomial: s^2 + 12s + 20
num = [200 0];
den = [1 12 20];
% sys_fun - system object specified according to
            its system (transfer) function tf()
sys_fun = tf(num, den);
% bode() - generates Bode plot (mag, phase) of the freq.
           response function obtained according to the
           system function represented by system object
           object sys_fun
bode(sys_fun);
```

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{5(s+2)}{s^2 + 10s} = \frac{5(s+2)}{s(s+10)}$$

- Solution
  - **Step #1**: Identify the poles and zeros of G(s)

Zeros: 
$$|z_1| = -2 \rightarrow |z_1| = 2$$
 Poles:  $p_1 = 0 \rightarrow |p_1| = 0$   $p_2 = -10 \rightarrow |p_2| = 10$ 

**Step #2**: Represent G(s) in standard Bode form

$$G(s) = \left(\frac{5(2)}{10}\right) \frac{s/2 + 1}{s(s/10 + 1)} \rightarrow G(s) = \frac{s/2 + 1}{s(s/10 + 1)}$$

**Step #3**: Find frequency response function  $G(j\omega)$  in standard Bode form

$$G(j\omega) = 1 \frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}$$

$$G(j\omega) = \frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}$$

- Solution cont'd
  - Step #4(a): Compute expression for Decibel magnitude of  $G(j\omega)$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} \left( |\frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}| \right)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} (|j\omega/2 + 1|) - 20 \log_{10} (|(j\omega)(j\omega/10 + 1)|)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} (|j\omega/2 + 1|) - 20 \log_{10} (|j\omega|)$$

$$-20 \log_{10} (|j\omega/10 + 1|)$$

**Step #4(b)**: Find expression for phase angle of  $G(j\omega)$ 

$$\angle \mathbf{G}(j\omega) = \angle \left(\frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}\right)$$

$$\angle \mathbf{G}(j\omega) = \angle (j\omega/2 + 1) - \angle [(j\omega)(j\omega/10 + 1)]$$

$$\angle \mathbf{G}(j\omega) = \angle (j\omega/2 + 1) - \angle (j\omega) - \angle (j\omega/10 + 1)$$

$$\angle \mathbf{G}(j\omega) = -90^{\circ} + \angle (j\omega/2 + 1) - \angle (j\omega/10 + 1)$$

$$G(j\omega) = \frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}$$

#### Solution cont'd

Step #5(a): Note contribution of each term of  $|G(j\omega)|_{dB}$ 

Term:  $|1|_{dB}$  Effects:  $\forall \omega$  Slope: 0dB/dec Value: 0dB

Term:  $-|j\omega|_{dB}$  Effects:  $\forall \omega$  Slope: -20 dB/dec Value @  $\omega = 1$ : 0 dB

Term:  $|j\omega/2 + 1|_{dB}$  Effects:  $\omega > 2$  Slope: 20dB/dec Value: N/A

Term:  $-|j\omega/10 + 1|_{dB}$  Effects:  $\omega > 10$  Slope: -20dB/dec Value: N/A

Step #5(b): Create table to help sketch  $|G(j\omega)|_{dB}$ 

| Magnitude<br>Terms     | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                       |                       |                        |                         |  |
|------------------------|----------------------------------------------|-------------------------|-----------------------|-----------------------|------------------------|-------------------------|--|
|                        | Value at $\omega = 0.1$                      | Slope at $\omega > 0.1$ | Slope at $\omega > 1$ | Slope at $\omega > 2$ | Slope at $\omega > 10$ | Slope at $\omega > 100$ |  |
| $ 1 _{dB}$             | <b>0</b> dB                                  | 0dB/dec                 | <b>0</b> dB/dec       | 0dB/dec               | 0dB/dec                | <b>0</b> dB/dec         |  |
| $- j\omega _{dB}$      | <b>20</b> dB                                 | -20dB/dec               | -20dB/dec             | -20dB/dec             | -20dB/dec              | -20dB/dec               |  |
| $ j\omega/2+1 _{dB}$   | <b>0</b> dB                                  | 0dB/dec                 | 0dB/dec               | 20dB/dec              | 20dB/dec               | 20dB/dec                |  |
| $- j\omega/10+1 _{dB}$ | <b>0</b> dB                                  | 0dB/dec                 | 0dB/dec               | 0dB/dec               | -20dB/dec              | -20dB/dec               |  |
| Total                  | <b>20</b> dB                                 | - <b>20</b> dB/dec      | - <b>20</b> dB/dec    | <b>0</b> dB/dec       | - <b>20</b> dB/dec     | <b>−20</b> dB/dec       |  |

$$G(j\omega) = \frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}$$

#### Solution cont'd

Step #5(c): Sketch approximate Decibel magnitude  $|G(j\omega)|_{dB}$   $|G(j\omega)|_{dB}$ 



$$G(j\omega) = \frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}$$

#### Solution cont'd

▶ Step #6(a): Note contribution of each term of  $\angle G(j\omega)$ 

Term:  $\angle 1$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $0^{\circ}$ 

Term:  $-\angle j\omega$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $-90^{\circ}$ 

Term:  $\angle(j\omega/2+1)$  Effects:  $\omega \in [0.2, 20]$  Slope:  $45^{\circ}/\text{dec}$  Final Value:  $90^{\circ}$ 

Term:  $-\angle(j\omega/10 + 1)$  Effects:  $\omega \in [1, 100]$  Slope:  $-45^{\circ}/\text{dec}$  Final Value:  $-90^{\circ}$ 

▶ Step #6(b): Create table to help sketch  $\angle G(j\omega)$ 

|                         | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                     |                        |                          |                          |  |
|-------------------------|----------------------------------------------|-------------------------|---------------------|------------------------|--------------------------|--------------------------|--|
| Phase Terms             | Value at $\omega = 0.02$                     | Slope at $\omega > 0.2$ | Slope at $\omega>1$ | Slope at $\omega > 20$ | Slope at $\omega > 10^2$ | Value at $\omega > 10^3$ |  |
| ∠1                      | 0°                                           | 0°/dec                  | 0°/dec              | 0°/dec                 | 0°/dec                   | 0°                       |  |
| $-\angle j\omega$       | -90°                                         | 0°/dec                  | 0°/dec              | 0°/dec                 | 0°/dec                   | -90°                     |  |
| $\angle(j\omega/2+1)$   | 0°                                           | 45°/dec                 | 45°/dec             | 0°/dec                 | 0°/dec                   | 90°                      |  |
| $-\angle(j\omega/10+1)$ | 0°                                           | 0°/dec                  | -45°/dec            | -45°/dec               | 0°/dec                   | -90°                     |  |
| Total                   | -90°                                         | 45°/dec                 | <b>0</b> °/dec      | - <b>45</b> °/dec      | <b>0</b> °/dec           | -90°                     |  |

$$G(j\omega) = \frac{j\omega/2 + 1}{(j\omega)(j\omega/10 + 1)}$$

#### Solution cont'd

▶ Step #6(c): Sketch approximate phase angle  $\angle G(j\omega)$ 



$$G(s) = \frac{5(s+2)}{s^2+10s}$$

#### Solution cont'd

▶ Step #7: Plot exact Bode diagram in MATLAB with code below

```
% num - numerator polynomial: 5s + 10
% den – denominator polynomial: s^2 + 10s
num = [5 10];
den = [1 \ 10 \ 0];
% sys_fun - system object specified according to
            its system (transfer) function tf()
sys_fun = tf(num, den);
% bode() - generates Bode plot (mag, phase) of the freq.
           response function obtained according to the
           system function represented by system object
           object sys_fun
bode(sys_fun);
```

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{s+10}{s(s^2+10s+25)} = \frac{s+10}{s(s+5)^2}$$

- Solution
  - **Step #1**: Identify the poles and zeros of G(s) in standard Bode form

Zeros: 
$$|z_1| = -10 \rightarrow |z_1| = 10$$
 Poles:  $p_1 = 0 \rightarrow |p_1| = 0$ 

Zeros:  $|z_1| = -10 \rightarrow \boxed{|z_1| = 10}$  Poles:  $p_1 = 0 \rightarrow \boxed{|p_1| = 0}$  Poles:  $p_{2,3} = -5 \rightarrow \boxed{|p_{2,3}| = 5}$  Poles:  $p_{2,3} = -5 \rightarrow \boxed{|p_{2,3}| = 5}$ 

$$G(s) = \left(\frac{10}{(1)(5)(5)}\right) \frac{s/10 + 1}{s(s/5 + 1)^2} \to G(s) = 0.4 \frac{s/10 + 1}{s(s/5 + 1)^2}$$

Step #3: Find frequency response function  $G(j\omega)$  in standard Bode form

$$G(j\omega) = 0.4 \frac{j\omega/10 + 1}{(j\omega)(j\omega/5 + 1)^2}$$

$$G(j\omega) = 0.4 \frac{j\omega/10 + 1}{(j\omega)(j\omega/5 + 1)^2}$$

#### Solution cont'd

Step #4(a): Compute expression for Decibel magnitude of  $G(j\omega)$ 

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} \left( |0.4 \frac{j\omega/10 + 1}{(j\omega)(j\omega/5 + 1)^2}| \right)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} (|0.4(j\omega/10 + 1)|) - 20 \log_{10} (|(j\omega)(j\omega/5 + 1)^2|)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} (|0.4|) + 20 \log_{10} (|j\omega/10 + 1|) - 20 \log_{10} (|j\omega|)$$

$$-40 \log_{10}(|j\omega/5 + 1|)$$

$$|\mathbf{G}(j\omega)|_{dB} = -8 dB + 20 \log_{10}(|j\omega/10 + 1|) - 20 \log_{10}(|j\omega|)$$

$$-40 \log_{10}(|j\omega/5 + 1|)$$

Step #4(b): Find expression for phase angle of  $G(j\omega)$ 

$$\angle \mathbf{G}(j\omega) = \angle \left(0.4[j\omega/10 + 1]/[(j\omega)(j\omega/5 + 1)^2]\right)$$

$$\angle G(j\omega) = \angle [(0.4)(j\omega/10 + 1)] - \angle [(j\omega)(j\omega/5 + 1)^2]$$

$$\angle \mathbf{G}(j\omega) = \angle(0.4) + \angle(j\omega/10 + 1) - \angle(j\omega) - 2\angle(j\omega/5 + 1)$$

$$\angle \mathbf{G}(j\omega) = -90^{\circ} + \angle(j\omega/10 + 1) - 2\angle(j\omega/5 + 1)$$

$$G(j\omega) = 0.4 \frac{j\omega/10 + 1}{(j\omega)(j\omega/5 + 1)^2}$$

#### Solution cont'd

Step #5(a): Note contribution of each term of  $|G(j\omega)|_{dB}$ 

Term:  $|0.4|_{dB}$  Effects:  $\forall \omega$  Slope: 0 dB/dec Value: -8 dB

Term:  $-|j\omega|_{dB}$  Effects:  $\forall \omega$  Slope: -20 dB/dec Value @  $\omega = 1:0 \text{dB}$ 

Term:  $-2|j\omega/5 + 1|_{dB}$  Effects:  $\omega > 5$  Slope: -40dB/dec Value: N/A

Term:  $|j\omega/10 + 1|_{dB}$  Effects:  $\omega > 10$  Slope: 20dB/dec Value: N/A

Step #5(b): Create table to help sketch  $|G(j\omega)|_{dB}$ 

| Magnitude<br>Terms     | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                       |                        |                         |  |  |  |  |
|------------------------|----------------------------------------------|-------------------------|-----------------------|------------------------|-------------------------|--|--|--|--|
|                        | Value at $\omega = 0.1$                      | Slope at $\omega > 0.1$ | Slope at $\omega > 5$ | Slope at $\omega > 10$ | Slope at $\omega > 100$ |  |  |  |  |
| $ 0.4 _{dB}$           | <b>-8</b> dB                                 | 0dB/dec                 | 0dB/dec               | 0dB/dec                | 0dB/dec                 |  |  |  |  |
| $- j\omega _{dB}$      | <b>20</b> dB                                 | -20dB/dec               | -20dB/dec             | -20dB/dec              | -20dB/dec               |  |  |  |  |
| $-2 j\omega/5+1 _{dB}$ | <b>0</b> dB                                  | 0dB/dec                 | -40dB/dec             | -40dB/dec              | -40dB/dec               |  |  |  |  |
| $ j\omega/10+1 _{dB}$  | <b>0</b> dB                                  | 0dB/dec                 | 0dB/dec               | 20dB/dec               | 20dB/dec                |  |  |  |  |
| Total                  | <b>12</b> dB                                 | - <b>20</b> dB/dec      | <b>−60</b> dB/dec     | - <b>40</b> dB/dec     | <b>−40</b> dB/dec       |  |  |  |  |

$$G(j\omega) = 0.4 \frac{j\omega/10 + 1}{(j\omega)(j\omega/5 + 1)^2}$$

### Solution cont'd

Step #5(c): Sketch approximate Decibel magnitude  $|G(j\omega)|_{dB}$ 



$$G(j\omega) = 0.4 \frac{j\omega/10 + 1}{(j\omega)(j\omega/5 + 1)^2}$$

#### Solution cont'd

▶ Step #6(a): Note contribution of each term of  $\angle G(j\omega)$ 

Term:  $\angle 0.4$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $0^{\circ}$ 

Term:  $-\angle j\omega$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $-90^{\circ}$ 

Term:  $-2\angle(j\omega/5+1)$  Effects:  $\omega \in [0.5, 50]$  Slope:  $-90^{\circ}/\text{dec}$  Final Value:  $-180^{\circ}$ 

Term:  $\angle(j\omega/10+1)$  Effects:  $\omega \in [1,100]$  Slope:  $45^{\circ}/\text{dec}$  Final Value:  $90^{\circ}$ 

▶ Step #6(b): Create table to help sketch  $\angle G(j\omega)$ 

|                         | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                       |                        |                          |                          |  |  |  |  |
|-------------------------|----------------------------------------------|-------------------------|-----------------------|------------------------|--------------------------|--------------------------|--|--|--|--|
| Phase Terms             | Value at $\omega = 0.05$                     | Slope at $\omega > 0.5$ | Slope at $\omega > 1$ | Slope at $\omega > 50$ | Slope at $\omega > 10^2$ | Value at $\omega = 10^3$ |  |  |  |  |
| ∠0.4                    | 0°                                           | 0°/dec                  | 0°/dec                | 0°/dec                 | 0°/dec                   | 0°                       |  |  |  |  |
| $-\angle j\omega$       | -90°                                         | 0°/dec                  | 0°/dec                | 0°/dec                 | 0°/dec                   | -90°                     |  |  |  |  |
| $-2\angle(j\omega/5+1)$ | 0°                                           | -90°/dec                | -90°/dec              | 0°/dec                 | 0°/dec                   | -180°                    |  |  |  |  |
| $\angle(j\omega/10+1)$  | 0°                                           | 0°/dec                  | 45°/dec               | 45°/dec                | 0°/dec                   | 90°                      |  |  |  |  |
| Total                   | -90°                                         | - <b>90</b> °/dec       | - <b>45</b> °/dec     | <b>45</b> °/dec        | <b>0</b> °/dec           | -180°                    |  |  |  |  |

$$G(j\omega) = 0.4 \frac{j\omega/10 + 1}{(j\omega)(j\omega/5 + 1)^2}$$

### Solution cont'd

Step #6(c): Sketch approximate phase angle  $\angle G(j\omega)$   $\angle G(j\omega)$  (°)



$$G(s) = \frac{s+10}{s(s^2+10s+25)}$$

#### Solution cont'd

▶ Step #7: Plot exact Bode diagram in MATLAB with code below

```
% num - numerator polynomial: s + 10
% den – denominator polynomial: s^3 + 10s^2 + 25s + 0
num = [1 \ 10];
den = [1 10 25 0];
% sys_fun - system object specified according to
            its system (transfer) function tf()
sys_fun = tf(num, den);
% bode() - generates Bode plot (mag, phase) of the freq.
          response function obtained according to the
           system function represented by system object
           object sys_fun
bode(sys_fun);
```

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{(s+10)(s+100)^2}{10s^2(s+10^3)}$$

- Solution
  - **Step #1**: Identify the poles and zeros of G(s)

Zeros: 
$$|z_1| = -10 \rightarrow \boxed{|z_1| = 10}$$
 Poles:  $p_{1,2} = 0 \rightarrow \boxed{|p_{1,2}| = 0}$   $|z_{2,3}| = -100 \rightarrow \boxed{|z_{2,3}| = 10^2}$   $p_3 = -1k \rightarrow \boxed{|p_3| = 10^3}$ 

**Step #2**: Represent G(s) in standard Bode form

$$G(s) = \left(\frac{(10^1)(10^2)(10^2)}{(10)(10^3)}\right) \frac{\left(\frac{s}{10} + 1\right)\left(\frac{s}{10^2} + 1\right)^2}{s^2\left(\frac{s}{10^3} + 1\right)} \to G(s) = 10 \frac{\left(\frac{s}{10} + 1\right)\left(\frac{s}{10^2} + 1\right)^2}{s^2\left(\frac{s}{10^3} + 1\right)}$$

lacktriangle Step #3: Find frequency response function  $m{G}(j\omega)$  in standard Bode form

$$G(j\omega) = 10 \frac{(j\omega/10 + 1)(j\omega/10^2 + 1)^2}{(j\omega)^2(j\omega/10^3 + 1)}$$

$$G(j\omega) = 10 \frac{(j\omega/10 + 1)(j\omega/10^2 + 1)^2}{(j\omega)^2(j\omega/10^3 + 1)}$$

#### Solution cont'd

Step #4(a): Compute expression for Decibel magnitude of  $G(j\omega)$ 

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} \left( |10 \frac{(j\omega/10 + 1)(j\omega/10^2 + 1)^2}{(j\omega)^2(j\omega/10^3 + 1)}| \right)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20 \log_{10} (|10|) + 20 \log_{10} (|j\omega/10 + 1|) + 40 \log_{10} (|j\omega/10^2 + 1|)$$

$$-40 \log_{10} (|j\omega|) - 20 \log_{10} (|j\omega/10^3 + 1|)$$

$$|\mathbf{G}(j\omega)|_{dB} = 20dB + 20\log_{10}(|j\omega/10 + 1|) + 40\log_{10}(|j\omega/10^2 + 1|) -40\log_{10}(|j\omega|) - 20\log_{10}(|j\omega/10^3 + 1|)$$

Step #4(b): Find expression for phase angle of  $G(j\omega)$ 

$$\angle \mathbf{G}(j\omega) = \angle \left(10 \frac{(j\omega/10 + 1)(j\omega/10^2 + 1)^2}{(j\omega)^2(j\omega/10^3 + 1)}\right)$$

$$\angle \mathbf{G}(j\omega) = \angle(10) + \angle(j\omega/10 + 1) + 2\angle(j\omega/10^2 + 1) - 2\angle(j\omega) - \angle(j\omega/10^3 + 1)$$

$$\angle \mathbf{G}(j\omega) = -180^\circ + \angle(j\omega/10 + 1) + 2\angle(j\omega/10^2 + 1) - \angle(j\omega/10^3 + 1)$$

$$G(j\omega) = 10 \frac{(j\omega/10 + 1)(j\omega/10^2 + 1)^2}{(j\omega)^2(j\omega/10^3 + 1)}$$

#### Solution cont'd

Step #5(a): Note contribution of each term of  $|G(j\omega)|_{dB}$ 

Term:  $|10|_{dB}$  Effects:  $\forall \omega$  Slope: 0 dB/dec Value: 20 dB

Term:  $-2|j\omega|_{dB}$  Effects:  $\forall \omega$  Slope: -40 dB/dec Value @  $\omega = 1:0 \text{dB}$ 

Term:  $|j\omega/10 + 1|_{dB}$  Effects:  $\omega > 10$  Slope: 20dB/dec Value: N/A

Term:  $2|j\omega/10^2 + 1|_{dR}$  Effects:  $\omega > 10^2$  Slope: 40dB/dec Value: N/A

Term:  $-|j\omega/10^3 + 1|_{dB}$  Effects:  $\omega > 10^3$  Slope: -20dB/dec Value: N/A

Step #5(b): Create table to help sketch  $|G(j\omega)|_{dB}$ 

| Magnitude<br>Terms               | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                        |                          |                          |                          |  |  |  |
|----------------------------------|----------------------------------------------|-------------------------|------------------------|--------------------------|--------------------------|--------------------------|--|--|--|
|                                  | Value at $\omega = 0.1$                      | Slope at $\omega > 0.1$ | Slope at $\omega > 10$ | Slope at $\omega > 10^2$ | Slope at $\omega > 10^3$ | Slope at $\omega > 10^4$ |  |  |  |
| $ 10 _{dB}$                      | <b>20</b> dB                                 | <b>0</b> dB/dec         | <b>0</b> dB/dec        | <b>0</b> dB/dec          | <b>0</b> dB/dec          | 0dB/dec                  |  |  |  |
| $-2 j\omega _{dB}$               | <b>40</b> dB                                 | -40dB/dec               | -40dB/dec              | -40dB/dec                | -40dB/dec                | -40dB/dec                |  |  |  |
| $ j\omega/10+1 _{dB}$            | <b>0</b> dB                                  | <b>0</b> dB/dec         | 20dB/dec               | 20dB/dec                 | 20dB/dec                 | 20dB/dec                 |  |  |  |
| $2 j\omega/10^2+1 _{dB}$         | <b>0</b> dB                                  | 0dB/dec                 | 0dB/dec                | 40dB/dec                 | 40dB/dec                 | 40dB/dec                 |  |  |  |
| $-\big j\omega/10^3+1\big _{dB}$ | 0dB                                          | 0dB/dec                 | 0dB/dec                | 0dB/dec                  | -20dB/dec                | -20dB/dec                |  |  |  |
| Total                            | <b>60</b> dB                                 | − <b>40</b> dB/dec      | -20dB/dec              | 20dB/dec                 | <b>0</b> dB/dec          | <b>0</b> dB/dec          |  |  |  |

$$G(j\omega) = 10 \frac{(j\omega/10 + 1)(j\omega/100 + 1)^2}{(j\omega)^2(j\omega/1k + 1)}$$

#### Solution cont'd

Step #5(c): Sketch approximate Decibel magnitude  $|G(j\omega)|_{dB}$ 



$$G(j\omega) = 10 \frac{(j\omega/10 + 1)(j\omega/100 + 1)^2}{(j\omega)^2(j\omega/10^3 + 1)}$$

#### Solution cont'd

Step #6(a): Note contribution of each term of  $\angle G(j\omega)$ 

Term:  $\angle 10$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $0^{\circ}$ 

Term:  $-2\angle j\omega$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $-180^{\circ}$ 

Term:  $\angle(j\omega/10+1)$  Effects:  $\omega \in [1,10^2]$  Slope:  $45^\circ/\text{dec}$  Final Value:  $90^\circ$ 

Term:  $2\angle(j\omega/10^2+1)$  Effects:  $\omega \in [10,10^3]$  Slope:  $90^\circ/\text{dec}$  Final Value:  $180^\circ$ 

Term:  $-\angle(j\omega/10^3 + 1)$  Effects:  $\omega \in [10^2, 10^4]$  Slope:  $-45^\circ/\text{dec}$  Final Value:  $-90^\circ$ 

► Step #6(b): Create table to help sketch  $\angle G(j\omega)$ 

| Phase<br>Terms            |                         | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                        |                          |                          |                          |                        |  |  |  |
|---------------------------|-------------------------|----------------------------------------------|------------------------|--------------------------|--------------------------|--------------------------|------------------------|--|--|--|
|                           | Value at $\omega = 0.1$ | Slope at $\omega>1$                          | Slope at $\omega > 10$ | Slope at $\omega > 10^2$ | Slope at $\omega > 10^3$ | Slope at $\omega > 10^4$ | Value at $\omega=10^5$ |  |  |  |
| ∠10                       | 0°                      | 0°/dec                                       | 0°/dec                 | 0°/dec                   | 0°/dec                   | 0°/dec                   | 0°                     |  |  |  |
| <i>–</i> 2∠ <i>j</i> ω    | -180°                   | 0°/dec                                       | 0°/dec                 | 0°/dec                   | 0°/dec                   | 0°/dec                   | -180°                  |  |  |  |
| $\angle(j\omega/10+1)$    | 0°                      | 45°/dec                                      | 45°/dec                | 0°/dec                   | 0°/dec                   | 0°/dec                   | 90°                    |  |  |  |
| $2\angle(j\omega/10^2+1)$ | 0°                      | 0°/dec                                       | 90°/dec                | 90°/dec                  | 0°/dec                   | 0°/dec                   | 180°                   |  |  |  |
| $-\angle(j\omega/10^3+1)$ | 0°                      | 0°/dec                                       | 0°/dec                 | -45°/dec                 | -45°/dec                 | 0°/dec                   | -90°                   |  |  |  |
| Total                     | -180°                   | 45°/dec                                      | <b>135</b> °/dec       | 45°/dec                  | <b>−45</b> °/dec         | <b>0</b> °/dec           | <b>0</b> °             |  |  |  |

$$G(j\omega) = 10 \frac{(j\omega/10 + 1)(j\omega/100 + 1)^2}{(j\omega)^2(j\omega/1k + 1)}$$

### Solution cont'd

► Step #6(c): Sketch of  $\angle G(j\omega)$  (°)



$$G(s) = \frac{(s+10)(s+100)^2}{10s^2(s+10^3)}$$

#### Solution cont'd

▶ Step #7: Plot exact Bode diagram in MATLAB with code below

```
% construct numerator and denominator polynomials
n1 = [1,10]; n2 = [1,100];
num = conv(conv(n2,n2),n1);
d1 = 10*[1,0,0]; d2 = [1, 1e3];
den = conv(d1,d2);
% sys_fun - system object specified according to
           its system (transfer) function tf()
sys_fun = tf(num, den);
% bode() - generates Bode plot (mag, phase) of the freq.
     response function obtained according to the
          system function represented by system object
        object sys_fun
bode(sys_fun);
```

Lecture #6(b): Frequency Response I: Frequency Response, SSS, and Bode Diagrams: Examples

Sketching Bode Diagrams: Complex Poles/Zeros

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{10^7 s^2}{(s+10)^2 (s^2 + 20s + 10^4)}$$

- Solution cont'd
  - **Step #1(a)**: Identify real poles and zeros of G(s)

$$|z_{1,2}| = 0$$
 
$$|p_{1,2}| = 10$$

Step #1(b): Identify the undamped natural frequency  $\omega_n$  and damping ratio  $\zeta$  of complex poles and zeros of G(s)

$$\omega_n = \sqrt{10^4} = 100 \qquad 2\zeta \omega_n = 20 \rightarrow \boxed{\zeta = 20/(2\omega_n) = 0.1}$$

Peaking occurs since  $\zeta < 1/\sqrt{2}$ 

**Step #2**: Represent G(s) in standard Bode form

$$G(s) = \left(\frac{10^7}{(10)^2(10^4)}\right) \frac{s^2}{(s/10+1)^2[(s/100)^2 + (20/10^4)s + 1]}$$

$$G(s) = 10 \frac{s^2}{(s/10 + 1)^2 [(s/100)^2 + (20/10^4)s + 1]}$$

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{10^7 s^2}{(s+10)^2 (s^2 + 20s + 10^4)}$$

- Solution cont'd
  - **Step #3**: Find the frequency response function  $G(j\omega)$  of G(s)

$$G(j\omega) = 10 \frac{(j\omega)^2}{(j\omega/10 + 1)^2 [(j\omega/100)^2 + j(20/10^4)\omega + 1]}$$

**Step #4(a)**: Compute expression for Decibel magnitude of  $G(j\omega)$ 

$$|\mathbf{G}(j\omega)|_{dB} = 20\log_{10}(|10|) + 40\log_{10}(|j\omega|) - 40\log_{10}(|j\omega/10 + 1|)$$
$$-20\log_{10}(|(j\omega/100)^2 + j(20/10^4)\omega + 1|)$$

**Step #4(b)**: Compute expression for phase angle of  $G(j\omega)$ 

$$\angle \mathbf{G}(j\omega) = \angle(10) + 2\angle(j\omega) - 2\angle(j\omega/10 + 1) - \angle[(j\omega/100)^2 + j(20/10^4)\omega + 1]$$

mple #1 
$$G(j\omega) = 10 \frac{(j\omega)^2}{\left(\frac{j\omega}{10} + 1\right)^2 \left[\left(\frac{j\omega}{100}\right)^2 + j\left(\frac{20}{10^4}\right)\omega + 1\right]}$$

#### Solution cont'd

Step #5(a): Note contribution of each term of  $|G(j\omega)|_{dB}$ 

Slope: 0dB/dec Value: 20dB Term:  $|10|_{dR}$ Effects:  $\forall \omega$ 

Term:  $2|j\omega|_{dB}$ Effects:  $\forall \omega$ **Slope**: 40dB/dec Value @  $\omega = 1:0$ dB

Term:  $-2|j\omega/10 + 1|_{dR}$ Effects:  $\omega > 10$  Slope: -40 dB/dec Value: N/A

Term:  $-\left|\left(\frac{j\omega}{100}\right)^2 + j\left(\frac{20}{10^4}\right)\omega + 1\right|_{dB}$  Effects:  $\omega > 10^2$  Slope: -40dB/dec Value at @  $\omega = 10^2$ : 14dB

Step #5(b): Create table to help sketch  $|G(j\omega)|_{dB}$ 

|                                                  | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                        |                          |                          |  |  |  |
|--------------------------------------------------|----------------------------------------------|-------------------------|------------------------|--------------------------|--------------------------|--|--|--|
| Magnitude Terms                                  | Value at $\omega = 0.1$                      | Slope at $\omega > 0.1$ | Slope at $\omega > 10$ | Slope at $\omega > 10^2$ | Slope at $\omega > 10^3$ |  |  |  |
| $ 10 _{dB}$                                      | <b>20</b> dB                                 | 0dB/dec                 | 0dB/dec                | 0dB/dec                  | 0dB/dec                  |  |  |  |
| $2 j\omega _{dB}$                                | <b>-40</b> dB                                | 40dB/dec                | 40dB/dec               | 40dB/dec                 | 40dB/dec                 |  |  |  |
| $-2 j\omega/10+1 _{dB}$                          | <b>0</b> dB                                  | 0dB/dec                 | -40dB/dec              | -40dB/dec                | -40dB/dec                |  |  |  |
| $- (j\omega/100)^2 + j(20/10^4)\omega + 1 _{dB}$ | <b>0</b> dB                                  | <b>0</b> dB/dec         | <b>0</b> dB/dec        | -40dB/dec                | -40dB/dec                |  |  |  |
| Total                                            | <b>−20</b> dB                                | 40dB/dec                | <b>0</b> dB/dec        | <b>−40</b> dB/dec        | <b>−40</b> dB/dec        |  |  |  |

$$G(j\omega) = 10 \frac{(j\omega)^2}{\left(\frac{j\omega}{10} + 1\right)^2 \left[\left(\frac{j\omega}{100}\right)^2 + j\left(\frac{20}{10^4}\right)\omega + 1\right]}$$

#### Solution cont'd

Step #5(c): Sketch approximate Decibel magnitude  $|G(j\omega)|_{dB}$ 



$$G(j\omega) = 10 \frac{(j\omega)^2}{\left(\frac{j\omega}{10} + 1\right)^2 \left[\left(\frac{j\omega}{100}\right)^2 + j\left(\frac{20}{10^4}\right)\omega + 1\right]}$$

#### Solution cont'd

▶ Step #6(a): Note contribution of each term of  $\angle G(j\omega)$ 

Term:  $\angle 10$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $0^{\circ}$ 

Term:  $2 \angle j\omega$  Effects:  $\forall \omega$  Slope:  $0^{\circ}/\text{dec}$  Value:  $180^{\circ}$ 

Term:  $-2 \angle (j\omega/10 + 1)$  Effects:  $\omega \in [1, 10^2]$  Slope:  $-90^\circ/\text{dec}$  Final Value:  $-180^\circ$ 

Term:  $-\angle \left[ \left( j\omega/10^2 \right)^2 + j(20/10^4)\omega + 1 \right]$ 

Effects:  $\omega \in [10^{-\zeta}10^2, 10^{\zeta}10^2] \approx [80, 126]$  Slope:  $(-90/\zeta)^{\circ}/\text{dec} = -900^{\circ}/\text{dec}$ 

Final Value: −180°

Step #6(b): Create table to help sketch  $\angle G(i\omega)$ 

| Step no(b). ereate table to 1                     | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                     |                        |                          |                         |                        |  |
|---------------------------------------------------|----------------------------------------------|---------------------|------------------------|--------------------------|-------------------------|------------------------|--|
| Phase Terms                                       | Value at $\omega = 0.1$                      | Slope at $\omega>1$ | Slope at $\omega > 80$ | Slope at $\omega > 10^2$ | Slope at $\omega > 126$ | Value at $\omega=10^3$ |  |
| ∠10                                               | 0°                                           | 0°/dec              | 0°/dec                 | 0°/dec                   | 0°/dec                  | 0°                     |  |
| 2 <i>∠j</i> ω                                     | 180°                                         | 0°/dec              | 0°/dec                 | 0°/dec                   | 0°/dec                  | 180°                   |  |
| $-2\angle(j\omega/10+1)$                          | 0°                                           | −90°/dec            | <b>-90°</b> /dec       | 0°/dec                   | 0°/dec                  | -180°                  |  |
| $-\angle[(j\omega/100)^2 + j(20/10^4)\omega + 1]$ | 0°                                           | 0°/dec              | -900°/dec              | -900°/dec                | 0°/dec                  | -180°                  |  |
| Total                                             | 180°                                         | <b>−90</b> °/dec    | - <b>990</b> °/dec     | - <b>900</b> °/dec       | − <b>0</b> °/dec        | -180°                  |  |

$$G(j\omega) = 10 \frac{(j\omega)^2}{\left(\frac{j\omega}{10} + 1\right)^2 \left[\left(\frac{j\omega}{100}\right)^2 + j\left(\frac{20}{10^4}\right)\omega + 1\right]}$$

### Solution cont'd

► Step #6(c): Sketch of  $\angle G(j\omega)$  (°)



$$G(s) = \frac{10^7 s^2}{(s+10)^2 (s^2 + 20s + 10^4)}$$

#### Solution cont'd

▶ Step #7: Plot exact Bode diagram in MATLAB with code below

```
% construct numerator and denominator polynomials
num = 1e7*[1 0 0];
                                 %numerator polynomial
                                   %1st denominator factor
den1 = [1 \ 10];
den2 = [1 20 1e4];
                             %2nd denominator factor
den = conv( conv(den1,den1), den2); %den is product of factors
% sys_fun - system object specified according to
           its system (transfer) function tf()
sys_fun = tf(num, den);
% bode() - generates Bode plot (mag, phase) of the freq.
          response function obtained according to the
          system function represented by system object
          object sys_fun
bode(sys_fun);
```

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{-10^6(s^2 + 4s + 100)}{s^2(s + 10^3)^2}$$

- Solution cont'd
  - **Step #1(a)**: Identify real poles and zeros of G(s)

$$|p_{1,2}| = 0$$
  $|p_{3,4}| = 10^3$ 

Step #1(b): Identify the undamped natural frequency  $\omega_n$  and damping ratio  $\zeta$  of complex poles and zeros of G(s)

$$\omega_n = \sqrt{10^2} = 10 \qquad 2\zeta \omega_n = 4 \rightarrow \boxed{\zeta = 4/(2\omega_n) = 0.2}$$

Peaking occurs since  $\zeta < 1/\sqrt{2}$ 

**Step #2**: Represent G(s) in standard Bode form

$$G(s) = \left(\frac{(-10^6)(10^2)}{(10^3)(10^3)}\right) \frac{(s/10)^2 + (4/10^2)s + 1}{s^2(s/10^3 + 1)^2}$$

$$G(s) = -10^{2} \frac{(s/10)^{2} + (4/10^{2})s + 1}{s^{2}(s/10^{3} + 1)^{2}}$$

Sketch an approximate Bode diagram of the system function below.

$$G(s) = \frac{-10^6(s^2 + 4s + 100)}{s^2(s + 10^3)^2}$$

- Solution cont'd
  - **Step #3**: Find the frequency response function  $G(j\omega)$  of G(s)

$$G(j\omega) = -10^2 \frac{(j\omega/10)^2 + j(4/10^2)\omega + 1}{(j\omega)^2 (j\omega/10^3 + 1)^2}$$

**Step #4(a)**: Compute expression for Decibel magnitude of  $G(j\omega)$ 

$$|\mathbf{G}(j\omega)|_{dB} = 20\log_{10}(|-10^2|) + 20\log_{10}(|(j\omega/10)^2 + j(20/10^2)\omega + 1|)$$
$$-40\log_{10}(|j\omega|) - 40\log_{10}(|j\omega/10^3 + 1|)$$

**Step #4(b)**: Compute expression for phase angle of  $G(j\omega)$ 

$$\angle \mathbf{G}(j\omega) = \angle (-10^2) + \angle [(j\omega/10)^2 + j(4/10^2)\omega + 1] -2\angle (j\omega) - 2\angle (j\omega/10^3 + 1)$$

$$G(j\omega) = -10^2 \frac{(j\omega/10)^2 + j(4/10^2)\omega + 1}{(j\omega)^2 (j\omega/10^3 + 1)^2}$$

#### Solution cont'd

Step #5(a): Note contribution of each term of  $|G(j\omega)|_{dR}$ 

Term:  $|-10^2|_{dR}$ 

Effects:  $\forall \omega$ 

Slope: 0dB/dec

Value: 40dB

Term:  $-2|j\omega|_{dR}$ 

Effects:  $\forall \omega$ 

Slope:  $-40 \, \text{dB/dec}$  Value @  $\omega = 1:0 \, \text{dB}$ 

Term:  $\left| \left( \frac{j\omega}{10} \right)^2 + j \left( \frac{4}{10^2} \right) \omega + 1 \right|_{dR}$ 

Effects:  $\omega > 10$  Slope: 40dB/dec Value at @  $\omega = 10$ : -8dB

Term:  $-2|j\omega/10^3 + 1|_{dR}$ 

Effects:  $\omega > 10^3$  Slope:  $-40 \, \text{dB/dec}$  Value: N/A

**Step #5(b)**: Create table to help sketch  $|G(j\omega)|_{dR}$ 

| Magnitudo                                                                            | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                         |                        |                          |                          |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|------------------------|--------------------------|--------------------------|--|--|--|
| Magnitude<br>Terms                                                                   | Value at $\omega = 0.1$                      | Slope at $\omega > 0.1$ | Slope at $\omega > 10$ | Slope at $\omega > 10^3$ | Slope at $\omega > 10^4$ |  |  |  |
| $\left -10^2\right _{dB}$                                                            | <b>40</b> dB                                 | <b>0</b> dB/dec         | <b>0</b> dB/dec        | <b>0</b> dB/dec          | <b>0</b> dB/dec          |  |  |  |
| $-2 j\omega _{dB}$                                                                   | <b>40</b> dB                                 | -40dB/dec               | -40dB/dec              | -40dB/dec                | −40dB/dec                |  |  |  |
| $\left  \left  (j\omega/10)^2 + j\left(4/10^2\right)\omega + 1 \right _{dB} \right $ | <b>0</b> dB                                  | <b>0</b> dB/dec         | 40dB/dec               | 40dB/dec                 | 40dB/dec                 |  |  |  |
| $-2\big j\omega/10^3+1\big _{dB}$                                                    | <b>0</b> dB                                  | <b>0</b> dB/dec         | <b>0</b> dB/dec        | -40dB/dec                | -40dB/dec                |  |  |  |
| Total                                                                                | <b>80</b> dB                                 | -40dB/dec               | <b>0</b> dB/dec        | <b>−40</b> dB/dec        | <b>−40</b> dB/dec        |  |  |  |

$$G(j\omega) = -10^2 \frac{(j\omega/10)^2 + j(4/10^2)\omega + 1}{(j\omega)^2 (j\omega/10^3 + 1)^2}$$

#### Solution cont'd

Step #5(c): Sketch approximate Decibel magnitude  $|G(j\omega)|_{dB}$ 



$$G(j\omega) = -10^{2} \frac{(j\omega/10)^{2} + j(4/10^{2})\omega + 1}{(j\omega)^{2}(j\omega/10^{3} + 1)^{2}}$$

#### Solution cont'd

Step #6(a): Note contribution of each term of  $\angle G(j\omega)$ 

Term:  $\angle - 10^2$ 

Effects:  $\forall \omega$ 

Slope: 0°/dec

Value: +180°

Term:  $-2 \angle j\omega$ 

Effects:  $\forall \omega$ 

Slope: 0°/dec

Value:  $-180^{\circ}$ 

Term:  $\angle [(j\omega/10)^2 + j(4/10^2)\omega + 1]$  Effects:  $\omega \in [10^{-\zeta}10, 10^{\zeta}10] \approx [6, 16]$ 

Slope:  $(90/\zeta)^{\circ}/\text{dec} = 450^{\circ}/\text{dec}$  Final Value:  $180^{\circ}$ 

Term:  $-2 \angle (j\omega/10^3 + 1)$  Effects:  $\omega \in [10^2, 10^4]$  Slope:  $-90^\circ/\text{dec}$  Final Value:  $-180^\circ$ 

Step #6(b): Create table to help sketch  $\angle G(j\omega)$ 

|                                                  | Radian Frequency $oldsymbol{\omega}$ (rad/s) |                       |                        |                          |                          |                        |  |  |
|--------------------------------------------------|----------------------------------------------|-----------------------|------------------------|--------------------------|--------------------------|------------------------|--|--|
| Phase Terms                                      | Value at $\omega = 0.1$                      | Slope at $\omega > 6$ | Slope at $\omega > 16$ | Slope at $\omega > 10^2$ | Slope at $\omega > 10^4$ | Value at $\omega=10^5$ |  |  |
| $\angle -10^2$                                   | ±180°                                        | 0°/dec                | 0°/dec                 | 0°/dec                   | 0°/dec                   | ±180°                  |  |  |
| <b>–</b> 2∠ <i>j</i> ω                           | -180°                                        | 0°/dec                | 0°/dec                 | 0°/dec                   | 0°/dec                   | -180°                  |  |  |
| $\angle[(j\omega/100)^2 + j(20/10^4)\omega + 1]$ | 0°                                           | <b>450°</b> /dec      | 0°/dec                 | 0°/dec                   | 0°/dec                   | +180°                  |  |  |
| $-2\angle(j\omega/10^3+1)$                       | 0°                                           | 0°/dec                | 0°/dec                 | -90°/dec                 | 0°/dec                   | -180°                  |  |  |
| Total                                            | <b>0</b> °                                   | <b>450</b> °/dec      | <b>0</b> °/dec         | - <b>90</b> °/dec        | <b>0</b> °/dec           | <b>0</b> °             |  |  |

$$G(j\omega) = -10^2 \frac{(j\omega/10)^2 + j(4/10^2)\omega + 1}{(j\omega)^2 (j\omega/10^3 + 1)^2}$$

#### Solution cont'd

► Step #6(c): Sketch of  $\angle G(j\omega)$  (°)



$$G(s) = \frac{-10^6(s^2 + 4s + 100)}{s^2(s + 10^3)^2}$$

#### Solution cont'd

▶ Step #7: Plot exact Bode diagram in MATLAB with code below

```
% construct numerator and denominator polynomials
                           %numerator polynomial
num = -1*1e6*[1 4 100];
                           %1st denominator factor
den1 = [1 \ 0 \ 0];
                            %2nd denominator factor
den2 = [1 1e3];
den = conv(den1, conv(den2,den2)); %den is product of factors
% sys_fun - system object specified according to
           its system (transfer) function tf()
sys_fun = tf(num, den);
% bode() - generates Bode plot (mag, phase) of the freq.
          response function obtained according to the
          system function represented by system object
        object sys_fun
bode(sys_fun);
```

Lecture #6(b): Frequency Response I: Frequency Response, SSS, and Bode Diagrams: Examples

Frequency Response Functions from Bode Sketches

What is the frequency response function  $G(j\omega)$  associated with the asymptotic approximate Bode diagram below. You may assume the poles and zeros are all real. Express  $G(j\omega)$  in standard normalized Bode form.



# Example #1 (Solution)

- What is  $G(j\omega)$  associated with the asymptotic approximate Bode diagram.
  - Determine poles and zeros  $|z_1| = 5$   $|p_1| = 10$ ,  $|p_{2,3}| = 100$
  - Express  $G(j\omega)$  in Bode form to within a constant  $K_0$

$$G(j\omega) = \frac{K_0(j\omega/5 + 1)}{(j\omega/10 + 1)(j\omega/10^2 + 1)^2}$$



- Compute constant  $K_0$  knowning  $|\mathbf{G}(j1)|_{dB} = 40dB$ 
  - At  $\omega=1$ , the only term in  $|\mathbf{G}(j\omega)|_{dB}$  that is "on" is  $|K_0|_{dB}$ . Therefore,  $|\mathbf{G}(j1)|_{dB}=40dB=|K_0|_{dB}$   $|K_0|_{dB}=40dB \to \log_{10}(|K_0|)=2$   $|K_0|=10^2 \to \overline{K_0=\pm 100}$

What is the frequency response function  $G(j\omega)$  associated with the asymptotic approximate Bode diagram below. You may assume the poles and zeros are all real. Express  $G(j\omega)$  in standard normalized Bode form.



# Example #2 (Solution)

- What is  $G(j\omega)$  associated with the asymptotic approximate Bode diagram.
  - Determine poles and zeros  $|z_1| = 0$  $|p_1| = 1, |p_2| = 5, |p_3| = 20$
  - $\blacktriangleright$  Express  $G(j\omega)$  in Bode form to within a constant  $K_0$

$$G(j\omega) = \frac{K_0 j\omega}{(j\omega + 1)(j\omega/5 + 1)(j\omega/20 + 1)}$$





At  $\omega=0.1$ , the terms in  $|G(j\omega)|_{dB}$  that are "on" are  $|K_0|_{dB}$  and  $|j\omega|_{dB}$ .

$$|G(j0.1)|_{dB} = 20dB = |K_0|_{dB} + |j0.1|_{dB}$$
  
 $|K_0|_{dB} = 20dB - 20\log_{10}(0.1) = 40dB \rightarrow |K_0|_{dB} = 40dB$   
 $\log_{10}(|K_0|) = 2 \rightarrow |K_0| = 10^2 \rightarrow \overline{|K_0| = \pm 100|}$ 

 $lack |G|_{\mathrm{dB}}$ 

40dB

0dB

+20 dB/dec

-20dB/dec

-40dB/dec

20

10

What is the frequency response function  $G(j\omega)$  associated with the asymptotic approximate Bode diagram below. Express  $G(j\omega)$  in standard normalized Bode form.



# Example #3 (Solution)

- What is  $G(j\omega)$  associated with the asymptotic approximate Bode diagram.
  - Determine real poles and zeros

$$|z_1| = 1$$
  $|p_1| = 0$ 

- Determine  $\omega_n$  and  $\zeta$  of any complex conjugate poles and zeros
  - Pair of complex conjugate poles

$$\omega_n = 12$$
  $\zeta = 1/6$ 

Express  $G(j\omega)$  in Bode form to within a constant  $K_0$ 

$$G(j\omega) = \frac{K_0(j\omega + 1)}{(j\omega)[(j\omega/\omega_n)^2 + j\omega(2\zeta/\omega_n) + 1]}$$

$$G(j\omega) = \frac{K_0(j\omega + 1)}{(j\omega)[(j\omega/12)^2 + j\omega(2(1/6)/12) + 1]}$$



# Example #3 (Solution)

- What is  $G(j\omega)$  associated with the approximate Bode diagram.
  - Compute constant  $K_0$ knowning  $|\mathbf{G}(j0.2)|_{dB} = 0 \text{dB}$ 
    - At  $\omega=0.2$ , the terms in  $|\mathbf{G}(j\omega)|_{dB}$  that are "on" are  $|K_0|_{dB}$  and  $-|j\omega|_{dB}$ .
    - ▶ Therefore,

$$|G(j0.2)|_{dB} = 0dB = |K_0|_{dB} - |j0.2|_{dB}$$

$$|K_0|_{dB} = 0dB + 20\log_{10}(0.2)$$

$$|K_0|_{dB} = 20\log_{10}(0.2)$$

$$\log_{10}(|K_0|) = \log_{10}(0.2)$$

$$|K_0| = 10^{\log_{10}(0.2)} = 0.2$$

$$G(j\omega) = 0$$

