MATRIX COMPUTATIONS: HOMEWORK 2

Andre Theo, Dejean Maxime, Doat Damien, Nouidei Safiya

October 2024

1 Exercise A: Krylov subspaces

(A1)

As assumed in the assignement, $K_{r+1}(A,b) \subseteq K_r(A,b)$. If we can prove that we also have $K_{r+1}(A,b) \supseteq K_r(A,b)$, it means that we proved that $K_{r+1}(A,b) = K_r(A,b)$. Since, by definition of the krylov subspaces as $span\{b,Ab,...,A^rb\}$, all elements of $K_r(A,b)$ are in $K_{r+1}(A,b)$, we know that, indeed, $K_{r+1}(A,b) \supseteq K_r(A,b)$. And thus, we have proved the equality between the two spaces. We then need to show that, for $s \ge r$, $K_s(A,b) = K_r(A,b)$. It can be done with a proof by induction. Indeed, since the equality holds for all r, it means that $K_{r+2}(A,b) = K_{r+1}(A,b) = K_r(A,b)$ etc. This means that for all i such that $s-r \le i$, $K_{r+i}(A,b) = K_{r+i}(A,b) = K_{r+i}(A,b) = K_{r+i}(A,b)$. This shows that $K_s(A,b) = K_r(A,b)$.

(A2)

Let's prove that $dim(K_r(A,b)) = r$ by induction. Since $dim(K_n(A,b)) = s$ and $r \leq s$, it means that, at each iteration i so that $i \leq r$, the dimension of $dim(K_i(A,b)) = i$. Indeed, no combination will already be in the span since r is smaller than s. We thus have:

- i = 1: $K_i(A, b) = \{b\}$ and $dim(K_i(A, b)) = 1$
- i = 2: $K_i(A, b) = \{b, Ab\}$ and $dim(K_i(A, b)) = 2$
- . . .
- i = r: $K_i(A, b) = K_r(A, b)$ and $dim(K_i(A, b)) = r$

2 Exercise B: Arnoldi's iteration

(B1)

We want to show that R_s has non-zero elements on its diagonal. First, since $K_s(A,b) = [b,Ab,\ldots,A^{s-1}b]$, it consists of s linearly independent columns. Thus, $K_s(A,b)$ has full column rank, so $rank(K_s(A,b)) = s$. In any QR decomposition M = QR where $M \in R^{m \times s}$ and M has full column rank, R is invertible. Therefore, R is nonsingular, meaning all its diagonal elements are non-zero. Finally, in our case, since $K_s(A,b)$ has full column rank, R_s is invertible and hence has non-zero elements on its diagonal. Thus, we conclude that R_s has non-zero elements on its diagonal otherwise $dim(K_s(A,b)) \neq s$.

(B2)

The goal is to show that for each $1 \le r \le s - 1$,

$$AQ_s[1:r]R_s[1:r,1:r] = Q_s[1:r']R_s[1:r',2:r'],$$

where r' = r + 1. Let's do it step by step :

1. Krylov Subspace Properties:

The Krylov subspace $K_r(A, b)$ is defined as:

$$K_r(A, b) = span\{b, Ab, A^2b, \dots, A^{r-1}b\}.$$

By construction, applying A to $K_r(A, b)$ generates $K_{r+1}(A, b)$:

$$K_{r+1}(A, b) = span\{b, Ab, A^2b, \dots, A^rb\}.$$

Therefore, $K_{r+1}(A, b)$ extends $K_r(A, b)$ by including the new vector $A^r b$, making it a shifted version of $K_r(A, b)$ with an additional dimension.

2. QR Decomposition of $K_r(A, b)$:

Given the QR decomposition of $K_s(A, b)$, we have:

$$K_s(A,b) = Q_s R_s$$

where $Q_s \in \mathbb{R}^{n \times s}$ is an orthonormal basis for $K_s(A, b)$ and $R_s \in \mathbb{R}^{s \times s}$ is upper-triangular. The submatrices $Q_s[1:r]$ and $R_s[1:r,1:r]$ provide a basis and the associated coefficients for the subspace $K_r(A, b)$.

3. Applying A to $Q_s[1:r]R_s[1:r,1:r]$:

When we apply A to $Q_s[1:r]R_s[1:r,1:r]$, we obtain a matrix that spans the extended subspace $K_{r+1}(A,b)$. This new subspace can be represented by:

$$AQ_s[1:r]R_s[1:r,1:r] = Q_s[1:r']R_s[1:r',2:r'],$$

where r' = r + 1.

- (B3)
- (B4)
- (B5)
- **(B6)**
- (B7)

3	Exercise C: GMRES for linear system solution approximation
(C1)	
(C2	2)
(C3	3)
(C4	1)
(C5)	
4	Exercise D: Arnoldi's method for eigenvalue approximation
(D1)	
5	Exercise E: Implementation