Embedded Software Essentials

Development Kits and Documentation

C1 M1 V8

Silicon Manufacturers

Microcontroller chips are a type of

Integrated Circuit (IC) --or--

Application-Specific Integrated Circuit (ASIC)

Silicon Manufacturers

Microcontroller chips are a type of

Integrated Circuit (IC) --or--

Application-Specific Integrated Circuit (ASIC)

MSP432p401r ARM Cortex-M4 ASIC²

ARM Cortex-M0+

ARM Cortex-M0+ is Inside the NXP MKL25Z Chip

MKL25Z128 Integrated Circuit¹

ARM Cortex-M0+

ARM Cortex-M0+ is Inside the NXP MKL25Z Chip

MKL25Z128 Integrated Circuit¹

Some Important Features

- Word Size
- Number of registers
- Flash/RAM sizes
- Branch Prediction Support
- Instruction/Data Cache Support
- Floating Point Arithmetic Support
- DMA Support

Questions to Ask

How much memory will I need for my application?

How fast does the application need to run?

What kind of mathematical support do I need?

Selector Guide

 Full Processor Family for KL2x Devices

• Each device varies slightly in a sub-family

			Men	nory									ı	Fea	ture	es				√ Package							
	Part Number															년 년				FM	FT	DA	LH	LK	ш	MP	МС
Sub- Family		Part Number	CPU (MHz)	Flash (KB)	SRAM (KB)	DMA	Low-Power UART	UART	ISO7 816-3	SPI	ည့	TSI	l ₂ S	Flex 10	RTC	12-bit DAC	16-bit ADC w/DP C	12-bit ADC	Total I/Os	Other	32 OFN (5 x 5, 0.5 mm)	48 QFN (7 × 7, 0.5 mm)	36X FBGA (3.5 x 3.5, 0.5 mm)	64 LQFP (10 x 10, 0.5 mm)	80 LOFP (12 x 12, 0.5 mm)	100 LQFP (14 x 14, 0.5 mm)	64 MAPBGA (5 x 5, 0.5 mm)
KL24	MKL24Z32xxx4	48 MHz	32	4	1	1	2		2	2				1			1	23~66	USB 2.0 FS OTG/ Host/Device	√	J	1	√				
KLZ4	MKL24Z64xxx4	48 MHz	64	8	1	1	2		2	2				1			1	23~66	USB 2.0 FS OTG/ Host/Device	1	1	1	1				
	MKL25Z32xxx4	48 MHz	32	4	1	1	2		2	2	1			1	1	1		23~66	USB 2.0 FS OTG/ Host/Device	J	J	J	1				
KL25	MKL25Z64xxx4	48 MHz	64	8	1	1	2		2	2	1			1	1	1		23~66	USB 2.0 FS OTG/ Host/Device	J	1	1	1				
	MKL25Z128xxx4	48 MHz	128	16	1	1	2		2	2	1			1	1	1		23~66	USB 2.0 FS OTG/ Host/Device	J	1	1	1				
	MKL26Z32xxx4	48 MHz	32	4	1	1	2		2	2	1	1		1	1	1		23~50	USB 2.0 FS OTG/ Host/Device	J	1	1					
KL26	MKL26Z64xxx4	48 MHz	64	8	1	1	2		2	2	1	1		1	1	1		23~50	USB 2.0 FS OTG/ Host/Device	J	1	1					
KLZU	MKL26Z128xxx4	48 MHz	128	16	1	1	2		2	2	1	1		1	1	1		23~80	USB 2.0 FS OTG/ Host/Device	J	1	1		J		J	1
	MKL26Z256xxx4	48 MHz	256	32	1	1	2		2	2	1	1		1	1	1		50~80	USB 2.0 FS OTG/ Host/Device			1		J		J	1
	MKL27Z128xxx4	48 MHz	128	32	1	2	1	1	2x 16b	2		1	1	1	1	J		23~50	USB 2.0 FS Device, with crystal-less USB	J	J	1					√
KL27	MKL27Z256xxx4	48 MHz	256	32	1	2	1	1	2x 16b	2		1	1	1	1	1		23~50	USB 2.0 FS Device, with crystal-less USB	J	J	J					J
	MKL27Z32xxx4	48 MHz	32	8	J	2	1	1	2x 16b	2			1	1		J		23~50	Crystal-less USB, Device Only, Low Power Keep Alive	*	*	1	1			*	
	MKL27Z64xxx4	48 MHz	64	16	1	2	1	1	2x 16b	2			1	1		1		23~50	Crystal-less USB, Device Only, Low Power Keep Alive	*	*	1	1			*	

Product Brief

Concise overview of a product

Talks about use cases

Gives more detailed feature specifications

Nice on the eyes

MSP432™ microcontrollers: Bringing high performance to low-power applications

Rapidly prototype ARM® Cortex®-M4 and Cortex-M0+ processor

Freescale Freedom Development Platform

Overview

The Freescale Freedom development platform is a small, low-power, cost-effective evaluation and development system for quick application prototyping and demonstration of Kindels ACT travilles.

Each platform offers an easy-to-use mass-storage device mode flash programmer, virtual serial port and classic programming and run-control capabilities.

It's easy to get started. Simply choose your preferred Freescale Freedom developments bankware select compatible software connect with the community and on

Example Freescale Freedom Development Platform FRDM-KL25Z

Features

- Cost-effective (starting at \$12.95)
- Small size (approximately 3.25° × 2°), fits within a mint tin

("shields")

- Arduino[®] footprint-compatible with support for a rich set of third-party expansion boards
- Kinetis MCUs based on ARM technology
- Easy access to the MCU VC pins
- Integrated open-standard serial and debug adapter (OpenSDA) with support for several industrystandard debug interfaces
- Capacitive touch slider a color LED
- Flexible power supply options coin cell battery, external source

 An Informative Dense Read

- Contains detailed Technical Specifications
 - Electrical
 - Timing
 - Environmental
 - Physical Package

An Informative yet dense read

- Contains detailed
 Technical Specifications
 - Electrical
 - Timing
 - Environmental
 - Physical Package

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} - 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

An Informative yet dense read

- Contains detailed
 Technical Specifications
 - Electrical
 - Timing
 - Environmental
 - Physical Package

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 0)

An Informative yet dense read

- Contains detailed Technical Specifications
 - Electrical
 - Timing
 - Environmental
 - Physical Package

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
T _J	Die junction temperature	- 40	125	°C
TA	Ambient temperature	- 40	105	°C

2.4.2 Thermal attributes

Table 16. Thermal attributes

Board type	Symbol	Description	80 LQFP	64 LQFP	48 QFN	32 QFN	Unit	Notes
Single-layer (1S)	R _{BJA}	Thermal resistance, junction to ambient (natural convection)	70	71	84	92	°C/W	1
Four-layer (2s2p)	R _{BJA}	Thermal resistance, junction to ambient (natural convection)	53	52	28	33	°C/W	
Single-layer (1S)	R _{вума}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	59	69	75	°C/W	
Four-layer (2s2p)	R _{еума}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	46	22	27	°C/W	
_	R _{eJB}	Thermal resistance, junction to board	34	34	10	12	°C/W	2
_	R _{BJC}	Thermal resistance, junction to case	15	20	2.0	1.8	°C/W	3
_	Ψ"т	Thermal characterization parameter, junction to package top outside center (natural convection)	0.6	5	5.0	8	°C/W	4

An Informative yet dense read

- Contains detailed
 Technical Specifications
 - Electrical
 - Timing
 - Environment
 - Physical Package

Figure 19. KL25 80-pin LQFP pinout diagram

Family Technical Reference Manuals

Configuration details

Operation descriptions

 Used to write Bare-Metal Firmware

11.2.2 Modes of operation

11.2.2.1 Run mode

In Run mode, the PORT operates normally.

11.2.2.2 Wait mode

In Wait mode, PORT continues to operate normally and may be configured to exit the Low-Power mode if an enabled interrupt is detected. DMA requests are still generated during the Wait mode, but do not cause an exit from the Low-Power mode.

11.2.2.3 Stop mode

In Stop mode, the PORT can be configured to exit the Low-Power mode via an asynchronous wakeup signal if an enabled interrupt is detected.

11.2.2.4 Debug mode

In Debug mode, PORT operates normally.

Address: Base address + 0h offset + (4d x i), where i=0d to 31d

^{*} Notes:

x = Undefined at reset.

Chip Errata

Integrated Circuits are not perfect

Error descriptions

 Provides corrective information or workaround to issue

Errata ID	Errata Title
3863	ADC: In 16-bit differential mode, ADC may result in a conversion error when positive input is near upper rail reference voltage
5751	FTFx: Launching the Read 1's Section command (RD1SEC) on an entire flash block results in access error (ACCER).
6070	I2C: Repeat start cannot be generated if the I2Cx_F[MULT] field is set to a non-zero value
5746	PIT: When using the PIT to trigger DMA transfers using cycle steal mode, two data transfers per request are generated
5666	PMC: Maximum current consumption in VLPR, VLPW, VLPS, LLS and VLLS modes may be higher than data sheet specification.
5667	PMC: When used as an input to ADC or CMP modules, the PMC bandgap 1-V voltage reference is not available in VLPx, LLS, or VLLSx modes
5472	SMC: Mode transition VLPR->VLLS0(POR disabled)->RUN, will cause POR & LVD.
5745	SPI1: Back to back DMA data transfers are not possible if the core:bus frequency ratio is greater than 4:1
5490	SPI1: DMA data transfers at the maximum baud rate can result in corrupted data
5515	TSI: The end of scan flag is not automatically cleared when continuously scanning
5744	UART0: Receiver wakeup control bit cannot be set immediately after a wakeup event
5563	UART0: When the Receiver Wake Up control bit is set, an IDLE condition is not detected correctly
5753	UART1 / UART2: When the Receiver Wake Up control bit is set, an IDLE condition is not detected correctly
5928	USBOTG: USBx_USBTRC0[USBRESET] bit does not operate as expected in all cases

Development Kits

• FRDM-KL25Z from NXP

 ARM Cortex-M0+ Processor

- Supplemental Hardware
 - Capacitive Touch Slide
 - RGB LED
 - Accelerometer

Development Kits

nRF24L01+ Wireless Module

- Nordic Chipset in QFN Package
 - Hard to solder
- Requires specific PCB layout

On-board Programmer/Debugger Support

Target Processor KL25z

University of Colorado Boulder

OpenSDA (Open Standard Serial Debug Adapter)

K20DX128

KL25z On-board Development support

OpenSDA (Open Standard Serial Debug Adapter)

On-board Programmer/Debugger Support

