Interpolation et Approximation

par Léo Peyronnet

Novembre 2022

Compte rendu du TP consistant à programmer et comparer certaines méthodes d'interpolation et d'approximation.

1 Rappel des méthodes

1.1 Méthodes d'interpolations

L'interpolation est une opération mathématique visant à déterminer une fonction passant par des points donnés du plan. Plus précisément, soient $x_1, ..., x_n$ des réels distincts, $y_1, ..., y_n$ des réels, $n \in \mathbb{N}^*$. Alors l'interpolation consiste à déterminer une fonction telle que $\forall i \in [1, n], f(x_i) = y_i$; ce qui correspond à passer par l'ensemble des points d'interpolations (x_i, y_i) .

Les méthodes détaillés ci-dessous interpolent des fonctions polynomiales de degré au plus n-1.

1.1.1 Méthode de Lagrange

La méthode de Lagrange se base sur le principe de superposition, c'est à dire que les points d'interpolation vont être traités un par un.

Soit $L_1,...,L_n \in \mathbb{R}_{(n-1)}[X]$ tels que $\forall a,b \in [1,n], L_a(x_b) = 1$ si a = b, 0 sinon, alors le polynôme $P_{(n-1)}$ est exprimé sous la forme :

$$P_{(n-1)}(x) = \sum_{i=0}^{(n-1)} y_i L_i(x)$$

avec $L_i(x)$:

$$L_i(x) = \prod_{j=0, j \neq i}^{(n-1)} \frac{x - x_j}{x_i - x_j}$$

1.1.2 Méthode de Neville

2 Présentation des programmes

2.1 lagrange()

```
float lagrange(float * X, float * Y, float xentree, int taille) {
    float result = 0;
    for (int i = 0; i < taille; i + +) {
        float Li = 1;
        for (int j = 0; j < taille; j + +) {
            if (j!=i) {
                Li *= (xentree - X[j]) / (X[i] - X[j]);
            }
        }
        result += Y[i] * Li;
}
return result;
}</pre>
```

- 3 Observations sur les jeux d'essais
- 4 Conclusion