COSC 290 Discrete Structures

Lecture 13: Proof by contradiction

Prof. Michael Hay Wednesday, Sep. 27, 2017

Colgate University

Proof by contradiction

Plan for today

- 1. Proof by contradiction
- 2. Exercises

Proof by contradiction

To prove that proposition φ is true,

you can assume φ is false (i.e, $\neg \varphi$ is true) and show that this assumption leads to a contradiction.

2

Procedure for proof by contradiction

Goal: prove that φ is true.

Process:

- Negate the proposition, resulting in ¬φ.
 (Note: you typically want to simplify this expression, pushing the negation down.)
- 2. Assume $\neg \varphi$ is true.
- 3. Show that this leads to a contradiction, i.e.,
 - Show that $\neg \varphi$ implies some ψ
 - Show that $\neg \varphi$ also implies $\neg \psi$
 - But $\psi \land \neg \psi \equiv \textit{False}$ (a contradiction)
- 4. Since $\neg \varphi \implies \mathit{False}$, we can conclude φ must be true.

Proof by Contradiction Template

- Claim: Write the theorem/claim to be proved, " φ is true."
- Proof by contradiction: "Assume the claim is false. In other words, [state negated form of of"]"
 It's critical that you (a) explicitly state this is a proof by a contradiction and (b) state the assumption that will lead to the
 - · Write main body of proof...

contradiction! Why?

- establish some it must be true.
- ... establish some $\neg \psi$ must also be true.
- "But [state ψ and ¬ψ] is a contradiction." Be sure to clearly identify the contradiction!
- Conclusion: "Therefore the original assumption that [restate $-\varphi$] is false, and we can conclude that [restate theorem]."

Truth table for contradiction

Exercise: Work in small groups to show that

$$(\neg p \implies False) \equiv p$$

Hint: recall that $p \implies q \equiv \neg p \lor q$.

р	q	$p \implies q$	$\neg p \lor q$
Т	Т	T	T
Т	F	F	F
F	Т	Т	T
F	F	T	T

Exercises

_

Poll: proof by contradiction 1

- · Claim: There is no integer that is both even and odd.
- Proof by contradiction: "Assume the claim is false. In other words, ... " what goes here?
- A) All integers are both odd and even.
- B) All integers are not odd or not even.
- C) There is an integer n that is both odd and even.
- D) There is an integer n that is neither odd nor even.
- E) None of above / More than one of above

Poll: proof by contradiction 1.5

- Claim: For any integer x, if x is odd, then x is not even.
- Proof by contradiction: "Assume the claim is false. In other words, ... " what goes here?
- A) For any integer, if x is not odd, then x is even.
- B) For any integer, x is not odd and x is even.
- C) There is an integer y that is both odd and even.
- D) There is an integer y that is neither odd nor even.
- E) None of above / More than one of above

Exercise: complete the proof

- · Claim: There is no integer that is both even and odd.
- Proof by contradiction: Assume the claim is false. In other words, suppose there exists an integer n that is both even and odd.
- · Work in small groups to find a contradiction!
- Useful tools:
 - . Z is the set of all integers
 - Even(x) := $\exists k \in \mathbb{Z} : n = 2k$
 - $Odd(x) := \exists \ell \in \mathbb{Z} : n = 2\ell + 1$
 - · Sum of two integers is an integer.
 - Algebra, logic.

Rational numbers

Recall: a rational number is a real number that can be expressed as the ratio of two integers.

$$Rational(y) := \exists n \in \mathbb{Z} : \exists d \in \mathbb{Z}^{\neq 0} : y = n/d$$

We will consider the following claim: if x^2 is irrational, then x is irrational.

Poll: from English to Predicate Logic

Consider the claim,

"If x2 is irrational, then x is irrational."

Formulate this claim in predicate logic:

- A) $\exists x \in \mathbb{R} : \neg Rational(x^2) \land \neg Rational(x)$
- B) $\exists x \in \mathbb{R} : \neg Rational(x^2) \implies \neg Rational(x)$
- C) $\forall x \in \mathbb{R} : \neg Rational(x^2) \land \neg Rational(x)$
- D) $\forall x \in \mathbb{R} : \neg Rational(x^2) \implies \neg Rational(x)$
- E) None of above / More than one of above $% \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} =\left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\}$

Poll: proof by contradiction 2

- · Claim: If x2 is irrational, then x is irrational.
- Proof by contradiction: "Assume the claim is false. In other words, ... " what goes here? be careful with negating an implication!
- A) There exists x where both x and x2 are rational.
- B) There exists x where both x and x^2 are irrational.
- C) There exists x where x is rational and x² is irrational.
- D) There exists x where x is irrational and x^2 is rational.
- E) None of above / More than one of above

.

11

Exercise: complete the proof

- · Claim: If x2 is irrational, then x is irrational.
- Proof by contradiction: Assume the claim is false. In other words, suppose there exists an x such that x is rational but x² is irrational.
- · Work in small groups to find a contradiction!
- · Useful tools:
 - · R is the set of all real numbers
 - * \mathbb{Z} is the set of all integers
 - Rational(y) := $\exists n \in \mathbb{Z} : \exists d \in \mathbb{Z}^{\neq 0} : y = n/d$
 - · Product of two integers is an integer.
 - Algebra, logic.

Contradiction vs. contrapositive

- · Claim: If x2 is irrational, then x is irrational.
- Proof by contradiction: Assume the claim is false. In other words, suppose there exists an x such that x is rational but x² is irrational. We will show this leads to a contradiction.
- **Proof by contrapositive:** Assume that x is rational. We will show that x^2 is rational.

2

Contradiction vs. contrapositive

- Contradiction can be used for any proposition φ . Contrapositive only applies to φ of the form $p \Longrightarrow q$.
- How do they compare when $\varphi := p \implies q$?
- Contrapositive: given ¬q, show ¬p.
- Contradiction: ??
- Let's look at $\neg(p \implies q)$ on the board.
- Contradiction: given ¬(p ⇒ q) ≡ ¬q ∧ p, show some contradiction.

For example, you could assume $\neg q \land p$ and show the contrapositive (i.e. $\neg q \implies \neg p$) and then you have a contradiction $p \land \neg p$.

When to use proof by contradiction?

There isn't an easy answer.

https://gowers.wordpress.com/2010/03/28/when-is-proof-by-contradiction-necessary/

Try other techniques first.

Sometimes useful when trying to prove a "negative": $\sqrt{2}$ is irrational (i.e., not rational).