Topic K: Presentation

Aligning Text to Sign Language Video

Hannah Bull, Triantafyllos Afouras, Gül Varol, Samuel Albanie, Liliane Momeni and Andrew Zisserman

Sébastien Meyer

January 16, 2023

Overview

- 1. The subtitle alignment task
- 2. Available packages
- 3. My modifications

1. The subtitle alignment task

- Problem statement: Aligning subtitles to sign language videos
 - **Providing similar tools to the Deaf community** (automatic subtitling, etc.) than for written languages
 - Increasing the size of available datasets for machine translation (and relative tasks)

Fig. 1: Subtitle alignment task. (from [3])

- Sign languages have their own speed and grammar so alignment can't be infered from audio
 - The ordering of subtitles might be different (see blue/red examples)
 - The duration of subtitles is different
 - The signing corresponds to a translation of the subtitles (not transcription)

2. Available packages

- [1] BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues (2021)
 - Trains a model to (1) find probable signing windows and (2) use mouthing cues to sharpen predictions
 - Publicly releases a dictionary of word annotations called M in the following

Fig. 2: Mouthing cues model. (from [1])

Stage 2: Keyword spotter locates precise 0.6 second window containing "happy" sign

- [2] Watch, read and lookup: learning to spot signs from multiple supervisors (2020)
 - Uses (1) sparsely annotated sequences, (2) subtitle text and (3) available sign language dictionary
 - Publicly releases a dictionary of word annotations called D in the following

2. Available packages

- [3] Aligning Subtitles in Sign Language Videos (2021)
 - Subtitle Aligner Transformer: predicting a range of frames where signing subtitles appear
 - **Pretraining on sign spotting** task with words from dictionaries (M, D, ...) and 1-second durations

Figure 2: **SAT model overview:** We input to our model (i) token embeddings of the subtitle text we wish to align, (ii) a sequence of video features extracted from a continuous sign language video segment and (iii) the shifted temporal boundaries of the audio-aligned subtitle, S_{prior} . Using these inputs, the model outputs a vector of values between 0 and 1 of length T. Its first and last values above a threshold τ delimit the predicted temporal boundaries for the query subtitle. The location of the subtitle with respect to the window is represented in dashed yellow.

Method	frame-acc	F1@.10	F1@.25	F1@.50
S_{audio} S_{audio}^{+}	44.67	45.82	30.51	12.57
	60.76	71.69	60.74	36.10
Sign-spotting heuristics	61.71	69.23	59.60	36.04
Bull et al. [9]	62.14	73.93	64.25	38.16
SAT (random subtitle)	65.52	70.30	60.36	40.04
SAT w/out DTW	65.81	74.32	64.69	41.27
SAT	68.72	77.80	69.29	48.15

Fig. 3: *SAT* architecture and results. (from [3])

- [4] Automatic dense annotation of large-vocabulary sign language videos (2022)
 - Improves word annotations M -> M* (new *Transpotter* architecture) and D -> D* (using *SAT*)
 - Creates new word annotations **P** (sign classification), **E** (re-spot existing signs) and **N** (score maps)

Forked repo

See code: https://github.com/sebastienmeyer2/subtitle_align

Minor fixes and test

- Enable training on **Windows**, **run test.sh** with available data and checkpoint
- Print sanity checks such as width of ground truth and prior subtitles

Method	frame-acc	F1@.10	F1@.25	F1@.50
$S_{audio} \\ S_{audio}^{+}$	40.27 62.33	46.80 73.01	33.88 64.28	14.33 44.75
SAT [32]	70.37	73.33	66.32	53.18
GitHub	70.89	74.08	66.78	53.22

Fig. 4: *SAT* results when trained on BOBSL (**M***, **D***) and from available GitHub package. (from [5])

Adding anchors / spottings priors to SAT architecture

- **Pretraining on 60 videos** (10 val videos) **for 40 epochs**: no use of anchors / spottings prior
- Training is done on 60 videos (10 val videos) for 40 epochs
- **Finetuning** is done on manually aligned train/val splits **for 50 epochs**
- Testing is done on manually aligned test split with Dynamic Time Warping post-processing

Adding anchors prior

- Adding corresponding probabilities from word annotations as anchors prior
 - Add the **probability** value **if** the **word belongs to the subtitle** text
 - Very sparse: 0.66% vs. 21.14% (ground-truth) of non-zero frames
 - Results are not better than the base model, however they are very similar

Model	frame-acc	F1@.10	F1@.25	F1@.50
Baseline	69.02	72.23	63.83	50.27
Anchors prior	69.46	70.51	62.36	49.58

Adding spottings prior

- Filling range span of spottings to create a spottings prior
 - Range of spottings for which words belong to the subtitle text are set to ones
 - Has large width: 33.46 vs. 26.43 (ground-truth) vs. 24.11 (audio) number of frames
 - Results are worse than the base model and worse than when using anchors prior

Model	frame-acc	F1@.10	F1@.25	F1@.50
Baseline	69.02	72.23	63.83	50.27
Spottings prior	68.82	68.99	60.61	47.35

Adding adjusted spottings prior

- Since the spottings prior is too wide, adjust its size to the one of audio prior
 - Select the median (robust to outliers) of spottings, and create a vector of ones of audio prior's width
 - However, it is **often empty**: 54.39% of spottings priors are empty vectors
 - The results are a bit better than without adjustment, however it is **still worse than the base model**

Model	frame-acc	F1@.10	F1@.25	F1@.50
Baseline	69.02	72.23	63.83	50.27
Adj. spot. prior	69.18	69.29	61.26	48.51

Adding adjusted spottings prior w. PEN

- In order to get more non-empty spottings priors, use word annotations P, E and N
 - Less often empty: 23.13% of spottings priors are empty vectors
 - With all these improvements, we get a better frame accuracy and similar F1-scores to the base model

Model	frame-acc	F1@.10	F1@.25	F1@.50
Baseline	69.02	72.23	63.83	50.27
Adj. spot. (PEN)	69.03	70.60	62.57	49.51

Concluding remarks (1/2)

Results and limitations

• We summarize our results in the following table, last row combines all our ideas

Model	frame-acc	F1@.10	F1@.25	F1@.50
Baseline	69.02	72.23	63.83	50.27
Anchors prior	69.46	70.51	62.36	49.58
Spottings prior	68.82	68.99	60.61	47.35
Adj. spot. prior	69.18	69.29	61.26	48.51
Baseline (PEN)	69.59	73.47	65.74	51.55
Anchors (PEN)	71.25	74.09	66.46	52.72
Adj. spot. (PEN)	70.43	73.48	65.46	52.05

- Increasing the number of spottings will improve the results (1 in 5 spottings priors are empty vectors)
- Limitation: we do not use these priors during pretraining, so it requires to train a new reprojection layer

Concluding remarks (2/2)

Some sample subtitles

Fig. 9: two examples of sign language alignment during testing for comparing the base *SAT* model with our *SAT-bis* model, either using anchors prior or spottings prior.

References

- [1] Samuel Albanie, Gül Varol, Liliane Momeni, Triantafyllos Afouras, Joon Son Chung, Neil Fox and Andrew Zisserman. *BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues.* (Available at: https://www.robots.ox.ac.uk/~vgg/research/bsl1k/)
- [2] Liliane Momeni, Gül Varol, Samuel Albanie, Triantafyllos Afouras and Andrew Zisserman. Watch, read and lookup: learning to spot signs from multiple supervisors. (Available at: https://www.robots.ox.ac.uk/~vgg/research/bsldict/)
- [3] Hannah Bull, Triantafyllos Afouras, Gül Varol, Samuel Albanie, Liliane Momeni and Andrew Zisserman. Aligning Subtitles in Sign Language Videos. (Available at: https://www.robots.ox.ac.uk/~vgg/research/bslalign/)
- [4] Liliane Momeni, Hannah Bull, K. R. Prajwal, Samuel Albanie, Gül Varol and Andrew Zisserman. Automatic dense annotation of large-vocabulary sign language videos. (Available at: https://www.robots.ox.ac.uk/~vgg/research/bsldensify/)
- [5] Samuel Albanie, Gül Varol, Liliane Momeni, Hannah Bull, Triantafyllos Afouras, Himel Chowdhury, Neil Fox, Bencie Woll, Rob Cooper, Andrew McParland and Andrew Zisserman. BBC-Oxford British Sign Language Dataset. (Available at: https://www.robots.ox.ac.uk/~vgg/data/bobsl/)