

Partial FCC Test Report

(PART 24)

Report No.: RF180802C04-1

FCC ID: WIYT910

Test Model: LE910-NA1

Received Date: Aug. 02, 2018

Test Date: Aug. 20, 2018 ~ Aug. 21, 2018

Issued Date: Sep. 14, 2018

Applicant: CASTLES TECHNOLOGY CO., LTD.

Address: 6F, NO. 207-5, SEC. 3, BEIXIN RD., XINDIAN DISTRICT, NEW TAIPEI

CITY 23143, TAIWAN (R. O. C.)

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil, Kwei Shan Dist., Taoyuan City

33383, Taiwan (R.O.C)

Test Location (2): No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan,

R.O.C

FCC Registration /

427177 / TW0011

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	lease Control Record	3
1	Certificate of Conformity	4
2	Summary of Test Results	5
	Measurement Uncertainty Test Site and Instruments	
3	General Information	7
	3.1 General Description of EUT	8 9 . 10
4	Test Types and Results	11
	4.1 Output Power Measurement 4.1.1 Limits of Output Power Measurement 4.1.2 Test Procedures 4.1.3 Test Setup 4.1.4 Test Results 4.2 Radiated Emission Measurement 4.2.1 Limits of Radiated Emission Measurement 4.2.2 Test Procedure 4.2.3 Deviation from Test Standard 4.2.4 Test Setup 4.2.5 Test Results	11 11 .12 .13 .19 .19 .19
5	Pictures of Test Arrangements	45
Αŗ	pendix – Information on the Testing Laboratories	46

Release Control Record

Issue No.	Description	Date Issued
RF180802C04-1	Original Release	Sep. 14, 2018

1 Certificate of Conformity

Product: LTE module

Brand: Telit

Test Model: LE910-NA1

Sample Status: Identical Prototype

Applicant: CASTLES TECHNOLOGY CO., LTD.

Test Date: Aug. 20, 2018 ~ Aug. 21, 2018

Standards: FCC Part 24, Subpart E

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Gina Liu / Specialist

Dylan Chiou / Project Engineer

2 Summary of Test Results

	Applied Standard: FCC Part 24 & Part 2							
FCC Test Item		Result	Remarks					
2.1046 24.232	I Effective Isotropic Radiated Power I		Meet the requirement of limit.					
2.1047	Modulation Characteristics	N/A	Refer to Note					
2.1046 24.232(d)	Peak to Average Ratio		Refer to Note					
2.1055 24.235 Frequency Stability		N/A	Refer to Note					
2.1049 24.238(b)	()ccupied Bandwidth		Refer to Note					
24.238(b)	Band Edge Measurements	N/A	Refer to Note					
2.1051 Conducted Spurious Emissions		N/A	Refer to Note					
2.1053 24.238	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -18.30 dB at 13300.00 MHz.					

Note:

This report is a partial report. Therefore, only test item of Effective Isotropic Radiated Power and Radiated Spurious Emissions tests were performed for this report. Other testing data please refer to ATL report no.: 1506FR22-01 and 1506FR21-01 for module (Brand: Telit, Model: LE910-NA V2)

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Dodicted Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.0153 dB
Radiated Emissions up to 1 GHz	200 MHz ~ 1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
Radiated Effissions above 1 GHZ	18 GHz ~ 40 GHz	1.1508 dB

2.2 Test Site and Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY51210203	Mar. 16, 2018	Mar. 15, 2019
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Jan. 11, 2018	Jan. 10, 2019
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 06, 2017	Dec. 05, 2018
HORN Antenna ETS-Lindgren	3117	00143293	Dec. 13, 2017	Dec. 12, 2018
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 01, 2017	Nov. 30, 2018
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 16, 2018	Apr. 15, 2019
MXG Vector signal generator	N5182B	MY53050430	Oct. 24, 2017	Oct. 23, 2018
Preamplifier Agilent	310N	187226	Jun. 19, 2018	Jun. 18, 2019
Preamplifier Agilent	83017A	MY39501357	Jun. 19, 2018	Jun. 18, 2019
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RF C-SMS-100-SMS- 120+RFC-SMS-1 00-SMS-400)	Jun. 19, 2018	Jun. 18, 2019
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RF C-SMS-100-SMS- 24)	Jun. 19, 2018	Jun. 18, 2019
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Communications Tester-Wireless Agilent	8960 Series 10	MY53201073	Jun. 28, 2017	Jun. 27, 2019
Radio Communication Analyzer Anritsu	MT8820C	6201010284	Dec. 28, 2017	Dec. 27, 2018
Temperature & Humidity Chamber	GTH-120-40-CP-AR	MAA1306-019	Sep. 08, 2017	Sep. 07, 2018
DC Power Supply Topward	33010D	807748	Oct. 25, 2016	Oct. 24, 2018
Digital Multimeter Fluke	87-III	70360742	Jun. 29, 2018	Jun. 28, 2019

Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HsinTien Chamber 1.
- 3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The IC Site Registration No. is IC7450I-1.

3 General Information

3.1 General Description of EUT

Product	LTE module					
Brand	Telit					
Test Model	LE910-NA1					
Status of EUT	Identical Prototype					
Dawer Commby Dating	5.0 Vdc (adapter or host equipment)					
Power Supply Rating	3.7 Vdc (battery)					
Madulation Type	WCDMA	QPSK				
Modulation Type	LTE	QPSK, 16QAM				
	WCDMA	1852.4 ~ 1907.6 MHz				
	LTE Band 2 (Channel Bandwidth: 1.4 MHz)	1850.7 ~ 1909.3 MHz				
	LTE Band 2 (Channel Bandwidth: 3 MHz)	1851.5 ~ 1908.5 MHz				
Frequency Range	LTE Band 2 (Channel Bandwidth: 5 MHz)	1852.5 ~ 1907.5 MHz				
	LTE Band 2 (Channel Bandwidth: 10 MHz)	1855.0 ~ 1905.0 MHz				
	LTE Band 2 (Channel Bandwidth: 15 MHz)	1857.5 ~ 1902.5 MHz				
	LTE Band 2 (Channel Bandwidth: 20 MHz)	1860.0 ~ 1900.0 MHz				
	WCDMA	244.34 mW				
	LTE Band 2 (Channel Bandwidth: 1.4 MHz)	254.68 mW				
	LTE Band 2 (Channel Bandwidth: 3 MHz)	256.45 mW				
Max. EIRP Power	LTE Band 2 (Channel Bandwidth: 5 MHz)	258.23 mW				
	LTE Band 2 (Channel Bandwidth: 10 MHz)	260.02 mW				
	LTE Band 2 (Channel Bandwidth: 15 MHz)	262.42 mW				
	LTE Band 2 (Channel Bandwidth: 20 MHz) 264.24 mW					
Antenna Type	Dipole Antenna with 1.19 dBi gain					
Accessory Device	Refer to Note as below					
Data Cable Supplied	Refer to Note as below					

Note:

- 1. The EUT was installed in POS Terminal (Brand: CASTLES TECHNOLOGY, Model: VEGA3000).
- 2. The EUT contains following accessory devices.

Product	Brand	Model	Description
USB Cable	CHANG YANG ELECTRON CO., LTD.	CY-AS-HK0059	1 m

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Configuration of System under Test

<Radiated Emission Test>

<E.I.R.P. Test>

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Adapter	LUCENT	1A52-UB52A	N/A	N/A

No.	Signal Cable Description Of The Above Support Units
1.	N/A

Note

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item 1 was provided by client.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports.

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	EIRP	Radiated Emission
WCDMA	X-plane	Z-axis
LTE Band 2	Z-plane	Z-axis

WCDMA

EUT Configure Test Item Mode		Available Channel	Tested Channel	Mode
-	EIRP	9262 to 9538	9262, 9400, 9538	WCDMA
-	Radiated Emission below 1GHz	9262 to 9538	9538	WCDMA
-	Radiated Emission above 1GHz	9262 to 9538	9262, 9400, 9538	WCDMA

LTE Band 2

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
		18607 to 19193	18607, 18900, 19193	1.4 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		18615 to 19185	18615, 18900, 19185	3 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
_	EIRP	18625 to 19175	18625, 18900, 19175	5 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
_		18650 to 19150	18650, 18900, 19150	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		18675 to 19125	18675, 18900, 19125	15 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		18700 to 19100	18700, 18900, 19100	20 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
-	Radiated Emission below 1GHz	18700 to 19100	19100	20 MHz	QPSK	1 RB / 0 RB Offset
	Radiated	18607 to 19193	18607, 18900, 19193	1.4 MHz	QPSK	1 RB / 0 RB Offset
-	Emission	18625 to 19175	18625, 18900, 19175	5 MHz	QPSK	1 RB / 0 RB Offset
	above 1GHz	18700 to 19100	18700, 18900, 19100	20 MHz	QPSK	1 RB / 0 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
EIRP	26 deg. C, 58 % RH	3.7 Vdc	Harry Hsueh, Karl Lee
Radiated Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	Harry Hsueh, Karl Lee

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI/TIA/EIA-603-E 2016 ANSI 63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

Mobile / Portable station are limited to 2 watts e.i.r.p.

4.1.2 Test Procedures

EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1 MHz for GSM, GPRS & EDGE, 5 MHz for WCDMA and CDMA, and 10 MHz for LTE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G.
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power 2.15 dB.

Conducted Power Measurement:

The EUT was set up for the maximum power with GSM, GPRS, EDGE, WCDMA, CDMA, and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 Test Setup

EIRP / ERP Measurement:

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Conducted Power Measurement:

4.1.4 Test Results

Conducted Output Power (dBm)

Band		WCDMA II	
Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880.0	1907.6
RMC 12.2K	22.57	22.68	22.66
HSDPA Subtest-1	22.56	22.67	22.65
HSDPA Subtest-2	22.13	22.24	22.22
HSDPA Subtest-3	21.64	21.75	21.73
HSDPA Subtest-4	21.32	21.43	21.41
DC-HSDPA Subtest-1	22.52	22.63	22.61
DC-HSDPA Subtest-2	22.09	22.20	22.18
DC-HSDPA Subtest-3	21.60	21.71	21.69
DC-HSDPA Subtest-4	21.28	21.39	21.37
HSUPA Subtest-1	22.43	22.54	22.52
HSUPA Subtest-2	20.23	20.34	20.32
HSUPA Subtest-3	21.21	21.32	21.30
HSUPA Subtest-4	20.36	20.47	20.45
HSUPA Subtest-5	22.53	22.64	22.62

20M 160 BW Min	MCS Index QPSK 6QAM MCS Index	RB Size Char Frequence 1 1 1 1 50 50 50 100 1 1 1 1 1 50 50 60 100 RB Size Char Frequence 1 1 1	ey (MHz) 0 50 99 0 25 50 0 0 50 99 0 25 50 0 RB RB Offset	Low 18700 1860.0 22.80 22.52 22.30 21.91 21.62 21.53 21.41 22.07 21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	Mid 18900 1880.0 22.89 22.61 22.39 22.00 21.71 21.62 21.50 22.16 21.60 21.00 20.71 20.61 20.80 Mid	High 19100 1900.0 22.88 22.60 22.38 21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.70 20.60 20.79 High	3GPP MPR (dB) 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3GPP MPR	BW 15M	MCS Index QPSK	Chair Frequent 1 1 1 1 36 36 36 36 1 1 1 1 36 36 36 36 36 36 36 36 36 36 36 36 36		Low 18675 1857.5 22.80 22.52 22.30 21.91 21.63 21.41 22.07 21.87 21.51 20.91 20.62	Mid 18900 1880.0 22.89 22.61 22.39 22.00 21.71 21.62 21.50 22.16 21.96 21.00 20.71	High 19125 1902.5 22.88 22.60 22.38 21.99 21.70 21.61 21.45 22.15 21.95 21.59 20.99	3GPP MPR (dB) 0 0 1 1 1 1 1 1 1 2
20M 160 BW Min	QPSK 6QAM	1 1 1 50 50 50 50 50 50 50 50 50 50 50 50 50	nnel cy (MHz) 0 50 99 0 25 50 0 50 99 0 25 50 0 RB Offset nnel cy (MHz) 0	22.80 22.52 22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low	1880.0 22.89 22.61 22.39 22.00 21.71 21.62 21.50 22.16 21.60 21.00 20.71 20.61 20.80 Mid 18900	1900.0 22.88 22.60 22.38 21.99 21.70 21.61 21.49 22.15 21.95 20.99 20.70 20.60 20.79 High	(dB) 0 0 1 1 1 1 1 1 2 2 2 3GPP		Index QPSK	1 1 1 36 36 75 1 1 1 36 36 36 36 36 36 36 36 36 36	0 37 74 0 19 39 0 0 37 74 0	22.80 22.52 22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62	1880.0 22.89 22.61 22.39 22.00 21.71 21.62 21.50 22.16 21.96 21.60 21.00	1902.5 22.88 22.60 22.38 21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.99	(dB) 0 0 0 1 1 1 1 1 1 1 1
20M 160 BW Mn	6QAM MCS	1 1 1 50 50 50 100 1 1 1 1 50 50 50 50 100 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 50 99 0 25 50 0 50 99 0 25 50 0 0 89 0 0 25 50 99 0 0 89 0 0 7 89 99 99 99 99 99 99 99 99 99 99 99 99	22.80 22.52 22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low	22.89 22.61 22.39 22.02 21.71 21.62 21.50 22.16 21.96 21.00 20.71 20.61 20.80 Mid	22.88 22.60 22.38 21.90 21.70 21.61 21.49 22.15 21.59 20.99 20.70 20.60 20.79	0 0 0 1 1 1 1 1 1 1 2 2 2 2	15M		1 1 1 36 36 36 36 75 1 1 1 36 36 36 36 36 36 36 36 36 36 36 36 36	0 37 74 0 19 39 0 0 37 74 0	22.80 22.52 22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62	22.89 22.61 22.39 22.00 21.71 21.62 21.50 22.16 21.96 21.60 21.00	22.88 22.60 22.38 21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.99	0 0 0 1 1 1 1 1 1
20M 160 BW Mn	6QAM MCS	1 1 50 50 50 100 1 1 1 50 50 50 50 100 RB Size	50 99 0 25 50 0 0 50 99 0 25 50 0 RB Offset nnel	22.52 22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low	22.61 22.39 22.00 21.71 21.62 21.50 22.16 21.96 21.60 21.00 20.71 20.61 20.80 Mid	22.60 22.38 21.99 21.70 21.61 21.49 22.15 21.95 20.99 20.70 20.60 20.79	0 0 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 9 9	15M		1 1 36 36 36 75 1 1 1 36 36 36 36	37 74 0 19 39 0 0 37 74 0	22.52 22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62	22.61 22.39 22.00 21.71 21.62 21.50 22.16 21.96 21.60 21.00	22.60 22.38 21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.99	0 0 1 1 1 1 1 1
20M 160 BW Mn	6QAM MCS	1 50 50 50 100 1 1 1 50 50 50 100 RB Size	99 0 25 50 0 0 50 99 0 25 50 0 RB Offset mnel cy (MHz)	22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low	22.39 22.00 21.71 21.62 21.50 22.16 21.96 21.60 21.00 20.71 20.61 20.80 Mid	22.38 21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.99 20.70 20.60 20.79	0 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 9 9	15M		1 36 36 36 75 1 1 1 36 36 36	74 0 19 39 0 0 37 74 0	22.30 21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62	22.39 22.00 21.71 21.62 21.50 22.16 21.96 21.60 21.00	22.38 21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.99	0 1 1 1 1 1 1 1 1 1 1 1
20M 160 BW Mn	6QAM MCS	50 50 50 100 1 1 1 50 50 50 100 RB Size Char Frequence	0 25 50 0 0 50 99 0 25 50 0 RB Offset mnel	21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	22.00 21.71 21.62 21.50 22.16 21.60 21.00 20.71 20.61 20.80 Mid	21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.99 20.70 20.60 20.79	1 1 1 1 1 1 1 2 2 2 2 3 3 6 PP	15M		36 36 36 75 1 1 1 36 36 36	0 19 39 0 0 37 74 0	21.91 21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62	22.00 21.71 21.62 21.50 22.16 21.96 21.60 21.00	21.99 21.70 21.61 21.49 22.15 21.95 21.59 20.99	1 1 1 1 1 1
20M 160 BW Mn	6QAM MCS	50 50 100 1 1 1 50 50 50 100 RB Size Char Frequence	25 50 0 0 50 99 0 25 50 0 RB Offset	21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	21.71 21.62 21.50 22.16 21.96 21.60 21.00 20.71 20.61 20.80 Mid	21.70 21.61 21.49 22.15 21.59 20.99 20.70 20.60 20.79 High	1 1 1 1 1 1 2 2 2 2 2 3 3 6 PP	15M		36 36 75 1 1 1 36 36 36	19 39 0 0 37 74 0	21.62 21.53 21.41 22.07 21.87 21.51 20.91 20.62	21.71 21.62 21.50 22.16 21.96 21.60 21.00	21.70 21.61 21.49 22.15 21.95 21.59 20.99	1 1 1 1 1 1
BW Mine	MCS	50 100 1 1 1 50 50 50 100 RB Size Char Frequence	50 0 0 50 99 0 25 50 0 RB Offset	21.53 21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	21.62 21.50 22.16 21.96 21.60 21.00 20.71 20.61 20.80 Mid	21.61 21.49 22.15 21.95 21.59 20.99 20.70 20.60 20.79	1 1 1 1 1 2 2 2 2 2 3GPP	15M	16QAM	36 75 1 1 1 36 36 36	39 0 0 37 74 0	21.53 21.41 22.07 21.87 21.51 20.91 20.62	21.62 21.50 22.16 21.96 21.60 21.00	21.61 21.49 22.15 21.95 21.59 20.99	1 1 1 1 1 1
BW Mine	MCS	100 1 1 1 50 50 50 100 RB Size Char Frequence 1	0 0 50 99 0 25 50 0 RB Offset	21.41 22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	21.50 22.16 21.96 21.60 21.00 20.71 20.61 20.80 Mid	21.49 22.15 21.95 21.59 20.99 20.70 20.60 20.79	1 1 1 1 2 2 2 2 2	15M	16QAM	75 1 1 1 36 36 36	0 0 37 74 0	21.41 22.07 21.87 21.51 20.91 20.62	21.50 22.16 21.96 21.60 21.00	21.49 22.15 21.95 21.59 20.99	1 1 1 1
BW Mine	MCS	1 1 1 50 50 50 100 RB Size Char Frequence	0 50 99 0 25 50 0 RB Offset	22.07 21.87 21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	22.16 21.96 21.60 21.00 20.71 20.61 20.80 Mid	22.15 21.95 21.59 20.99 20.70 20.60 20.79	1 1 2 2 2 2 3GPP	15M	16QAM	1 1 1 36 36 36	0 37 74 0 19	22.07 21.87 21.51 20.91 20.62	22.16 21.96 21.60 21.00	22.15 21.95 21.59 20.99	1
BW Mine	MCS	1 1 50 50 50 100 RB Size Char Frequence	50 99 0 25 50 0 RB Offset onnel cy (MHz)	21.87 21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	21.96 21.60 21.00 20.71 20.61 20.80 Mid	21.95 21.59 20.99 20.70 20.60 20.79 High	1 1 2 2 2 2 3GPP		16QAM	1 1 36 36 36	37 74 0 19	21.87 21.51 20.91 20.62	21.96 21.60 21.00	21.95 21.59 20.99	1
BW Mine	MCS	1 50 50 50 100 RB Size Char Frequence	99 0 25 50 0 RB Offset nnel cy (MHz)	21.51 20.91 20.62 20.52 20.71 Low 18650 1855.0	21.60 21.00 20.71 20.61 20.80 Mid 18900	21.59 20.99 20.70 20.60 20.79 High	2 2 2 2 3GPP		16QAM	1 36 36 36	74 0 19	21.51 20.91 20.62	21.60 21.00	21.59 20.99	1
BW Mine	MCS	50 50 50 100 RB Size Char Frequence	0 25 50 0 RB Offset	20.91 20.62 20.52 20.71 Low 18650 1855.0	21.00 20.71 20.61 20.80 Mid 18900	20.99 20.70 20.60 20.79 High	2 2 2 2 3GPP		16QAM	36 36 36	0 19	20.91 20.62	21.00	20.99	
BW Mine	MCS	50 50 100 RB Size Char Frequence	25 50 0 RB Offset nnel cy (MHz)	20.62 20.52 20.71 Low 18650 1855.0	20.71 20.61 20.80 Mid 18900	20.70 20.60 20.79 High	2 2 2 3GPP		TOQAW	36 36	19	20.62			
QF 10M		50 100 RB Size Char Frequence	50 0 RB Offset nnel cy (MHz)	20.52 20.71 Low 18650 1855.0	20.61 20.80 Mid 18900	20.60 20.79 High	2 2 3GPP			36				20.70	2
QF 10M		100 RB Size Char Frequence 1	0 RB Offset nnel cy (MHz)	20.71 Low 18650 1855.0	20.80 Mid 18900	20.79 High	2 3GPP					20.52	20.61	20.60	2
QF		Char Frequence 1	RB Offset nnel cy (MHz)	Low 18650 1855.0	Mid 18900	High	3GPP			75	0	20.71	20.80	20.79	2
QF		Frequence 1 1	nnel cy (MHz)	1855.0		404EC	MPP			RB Size	RB	Low	Mid	High	3GPP
QF	ilidex	Frequence 1 1	0 (MHz)	1855.0				BW	MCS Index	Cha	Offset	18625	18900	19175	MPR
10M		1	0		1880.0	1905.0	(dB)		ilidex	Frequen		1852.5	1880.0	1907.5	(dB)
10M		1	-	22.75	22.84	22.83	0			1	0	22.72	22.81	22.80	0
10M				22.47	22.56	22.55	0			1	12	22.44	22.53	22.52	0
10M			49	22.25	22.34	22.33	0			1	24	22.22	22.31	22.30	0
10M	QPSK	25	0	21.86	21.95	21.94	1		QPSK	12	0	21.83	21.92	21.91	1
	α. σ. ι	25	12	21.57	21.66	21.65	1		α. σ. τ	12	6	21.54	21.63	21.62	1
		25	25	21.48	21.57	21.56	1			12	13	21.45	21.54	21.53	1
	4014	50	0	21.36	21.45	21.44	1	-14		25	0	21.33	21.42	21.41	1
160		1	0	22.02	22.11	22.10	5M		1	0	21.99	22.08	22.07	1	
160		1	24	21.82	21.91	21.90			1	12	21.79	21.88	21.87	1	
160		1	49	21.46	21.55	21.54	1	1 2	16QAM	1	24	21.43	21.52	21.51	1
	6QAM	25	0	20.86	20.95	20.94	2			12	0	20.83	20.92	20.91	2
		25	12	20.57	20.66	20.65	2			12	6	20.54	20.63	20.62	2
		25	25	20.47	20.56	20.55	2			12	13	20.44	20.53	20.52	2
		50	0	20.66	20.75	20.74	2			25	0	20.63	20.72	20.71	2
BW M	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
In	Index	Char		18615	18900	19185	(dB)	5,,	Index	Cha		18607	18900	19193	(dB)
		Frequenc		1851.5	1880.0	1908.5	` '			Frequen		1850.7	1880.0	1909.3	` '
		1	0	22.68	22.77	22.76	0			1	0	22.66	22.75	22.74	0
		1	7	22.40	22.49	22.48	0			1	2	22.38	22.47	22.46	0
0.	00014	1	14	22.18	22.27	22.26	0		00016	1	5	22.16	22.25	22.24	0
QF	QPSK	8	0	21.79	21.88	21.87	1		QPSK	3	0	22.57	22.71	22.69	0
		8	3 7	21.50	21.59	21.58	1			3	1	22.52	22.61	22.60	0
		8	0	21.41	21.50	21.49				3	<u>3</u>	22.43	22.52 22.39	22.51 22.38	0
3M		15			21.38	21.37	1	1.4M		6					1
		1	0	21.95	22.04	22.03	1			1	0	21.91	22.00	21.99	1
	40044	1	7 14	21.75 21.39	21.84 21.48	21.83	1			1	<u>2</u> 5	21.71	21.80 21.44	21.79	1
160		8	0	20.79	20.88	20.87	2		16QAM	3	0	21.83	21.44	21.43	1
100	60AM	8	3	20.79	20.59	20.58	2		IOQAW	3	1	21.54	21.63	21.62	1
	6QAM			20.40	20.39	20.38	2			3	3	21.44	21.53	21.52	1
	6QAM	8	7	20.70	20.43	20.40	2			6	0	20.41	20.36	20.40	2

EIRP Power (dBm)

	WCDMA											
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)					
	9262	1852.4	-14.38	38.19	23.81	240.44						
X	9400	1880.0	-14.82	38.70	23.88	244.34	Н					
	9538	1907.6	-15.50	39.35	23.85	242.66						
^	9262	1852.4	-18.66	38.48	19.82	95.94						
	9400	1880.0	-18.69	38.59	19.90	97.72	V					
	9538	1907.6	-18.99	38.87	19.88	97.27						

Note: EIRP (dBm) = Reading (dBm) + Correction Factor (dB)

			LTI	E Band 2							
		Ch	annel Bandw	ridth: 1.4 MHz	/ QPSK						
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	18607	1850.7	-20.73	44.70	23.97	249.46					
	18900	1880.0	-20.64	44.70	24.06	254.68	Н				
Z	19193	1909.3	-20.53	44.57	24.04	253.69					
	18607	1850.7	-24.31	44.27	19.96	99.08					
	18900	1880.0	-24.78	44.87	20.09	102.09	V				
	19193	1909.3	-24.54	44.61	20.07	101.70					
	Channel Bandwidth: 1.4 MHz / 16QAM										
	18607	1850.7	-21.74	44.70	22.96	197.70					
	18900	1880.0	-21.64	44.70	23.06	202.30	Н				
Z	19193	1909.3	-21.54	44.57	23.03	201.05					
	18607	1850.7	-25.32	44.27	18.95	78.52					
	18900	1880.0	-25.79	44.87	19.08	80.91	V				
	19193	1909.3	-25.55	44.61	19.06	80.59					

			LTE	E Band 2							
		С	hannel Bandv	width: 3 MHz /	QPSK						
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	18615	1851.5	-20.70	44.70	24.00	251.19					
	18900	1880.0	-20.61	44.70	24.09	256.45	Н				
Z	19185	1908.5	-20.49	44.57	24.08	256.04					
	18615	1851.5	-24.28	44.27	19.99	99.77					
	18900	1880.0	-24.75	44.87	20.12	102.80	V				
	19185	1908.5	-24.51	44.61	20.10	102.40					
	Channel Bandwidth: 3 MHz / 16QAM										
	18615	1851.5	-21.71	44.70	22.99	199.07					
	18900	1880.0	-21.62	44.70	23.08	203.24	Н				
Z	19185	1908.5	-21.50	44.57	23.07	202.91					
	18615	1851.5	-25.29	44.27	18.98	79.07					
	18900	1880.0	-25.75	44.87	19.12	81.66	V				
	19185	1908.5	-25.52	44.61	19.09	81.15					

Note: EIRP (dBm) = Reading (dBm) + Correction Factor (dB)

			LTE	E Band 2							
		С	hannel Band	width: 5 MHz /	QPSK						
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	18625	1852.5	-20.67	44.70	24.03	252.93					
	18900	1880.0	-20.58	44.70	24.12	258.23	Н				
Z	19175	1907.5	-20.46	44.57	24.11	257.81					
2	18625	1852.5	-24.24	44.27	20.03	100.69					
	18900	1880.0	-24.71	44.87	20.16	103.75	V				
	19175	1907.5	-24.48	44.61	20.13	103.11					
	Channel Bandwidth: 5 MHz / 16QAM										
	18625	1852.5	-21.69	44.70	23.01	199.99					
	18900	1880.0	-21.59	44.70	23.11	204.64	Н				
7	19175	1907.5	-21.47	44.57	23.10	204.31					
Z	18625	1852.5	-25.25	44.27	19.02	79.80					
	18900	1880.0	-25.72	44.87	19.15	82.22	V				
	19175	1907.5	-25.49	44.61	19.12	81.71					

			LTI	E Band 2							
		Ch	nannel Bandv	vidth: 10 MHz	/ QPSK						
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	18650	1855.0	-20.64	44.70	24.06	254.68					
	18900	1880.0	-20.55	44.70	24.15	260.02	Н				
Z	19150	1905.0	-20.43	44.57	24.14	259.60					
2	18650	1855.0	-24.21	44.27	20.06	101.39					
	18900	1880.0	-24.67	44.87	20.20	104.71	V				
	19150	1905.0	-24.45	44.61	20.16	103.82					
	Channel Bandwidth: 10 MHz / 16QAM										
	18650	1855.0	-21.66	44.70	23.04	201.37					
	18900	1880.0	-21.56	44.70	23.14	206.06	Н				
Z	19150	1905.0	-21.45	44.57	23.12	205.26					
	18650	1855.0	-25.23	44.27	19.04	80.17					
	18900	1880.0	-25.68	44.87	19.19	82.99	V				
	19150	1905.0	-25.45	44.61	19.16	82.47					

Note: EIRP (dBm) = Reading (dBm) + Correction Factor (dB)

			LTE	E Band 2							
		Cł	nannel Bandw	vidth: 15 MHz	/ QPSK						
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	18675	1857.5	-20.61	44.70	24.09	256.45					
	18900	1880.0	-20.51	44.70	24.19	262.42	Н				
Z	19125	1902.5	-20.40	44.57	24.17	261.40					
	18675	1857.5	-24.17	44.27	20.10	102.33					
	18900	1880.0	-24.64	44.87	20.23	105.44	V				
	19125	1902.5	-24.42	44.61	20.19	104.54					
	Channel Bandwidth: 15 MHz / 16QAM										
	18675	1857.5	-21.62	44.70	23.08	203.24					
	18900	1880.0	-21.52	44.70	23.18	207.97	Н				
Z	19125	1902.5	-21.42	44.57	23.15	206.68					
	18675	1857.5	-25.18	44.27	19.09	81.10					
	18900	1880.0	-25.64	44.87	19.23	83.75	V				
	19125	1902.5	-25.42	44.61	19.19	83.04					

			LTE	E Band 2							
		Cł	nannel Bandw	idth: 20 MHz	/ QPSK						
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	18700	1860.0	-20.57	44.70	24.13	258.82					
	18900	1880.0	-20.48	44.70	24.22	264.24	Н				
Z	19100	1900.0	-20.36	44.57	24.21	263.82					
	18700	1860.0	-24.13	44.27	20.14	103.28					
	18900	1880.0	-24.61	44.87	20.26	106.17	V				
	19100	1900.0	-24.38	44.61	20.23	105.51					
	Channel Bandwidth: 20 MHz / 16QAM										
	18700	1860.0	-21.58	44.70	23.12	205.12					
	18900	1880.0	-21.49	44.70	23.21	209.41	Н				
7	19100	1900.0	-21.37	44.57	23.20	209.07					
Z	18700	1860.0	-25.13	44.27	19.14	82.04					
	18900	1880.0	-25.62	44.87	19.25	84.14	V				
	19100	1900.0	-25.39	44.61	19.22	83.62					

4.2 Radiated Emission Measurement

4.2.1 Limits of Radiated Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit is equal to -13 dBm.

4.2.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power 2.15 dB.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz.

No deviation.

4.2.4 Test Setup

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.5 Test Results

WCDMA:

Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : Band II_Link_CH9262

Tested by: Karl Lee

Read Limit Over

Freq Level Line Limit Factor Remark

MHz dBm dBm dB dB

1 pp 3704.80 -50.88 -66.76 -13.00 -37.88 15.88 Peak

Site : 966 chamber 1

Condition: PART 22/24 Vertical Remark : Band II_Link_CH9262

Tested by: Karl Lee

Read Limit Over

Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3704.80 -50.28 -66.16 -13.00 -37.28 15.88 Peak

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : Band II_Link_CH9400

Tested by: Karl Lee

Read Limit Over

Freq Level Line Limit Factor Remark

MHz dBm dBm dB dB

1 pp 3760.00 -47.41 -63.55 -13.00 -34.41 16.14 Peak

Site : 966 chamber 1

Condition: PART 22/24 Vertical Remark : Band II_Link_CH9400

Tested by: Karl Lee

Read Limit Over

Freq Level Level Limit Factor Remark

MHz dBm dBm dBm dB dB dB

1 pp 3760.00 -50.47 -66.61 -13.00 -37.47 16.14 Peak

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : Band II_Link_CH9538

Tested by: Karl Lee

CSCCC	Dy. Kai	1 200					
			Read	Limit	0ver		
	Freq	Level	Level	Line	Limit	Factor	Remark
_							
	MHz	dBm	dBm	dBm	dB	dB	
1	90.48	-73.42	-62.75	-13.00	-60.42	-10.67	Peak
2	160.14	-59.14	-51.47	-13.00	-46.14	-7.67	Peak
3	261.66	-60.32	-54.71	-13.00	-47.32	-5.61	Peak
4	351.10	-59.31	-53.98	-13.00	-46.31	-5.33	Peak
5	608.00	-62.74	-63.08	-13.00	-49.74	0.34	Peak
6	761.30	-60.90	-60.36	-13.00	-47.90	-0.54	Peak
7	3815.20	-47.04	-63.45	-13.00	-34.04	16.41	Peak
8	5722.80	-44.55	-64.82	-13.00	-31.55	20.27	Peak
9 pp	7630.40	-40.04	-63.06	-13.00	-27.04	23.02	Peak

Site : 966 chamber 1 Condition: PART 22/24 Vertical Remark : Band II_Link_CH9538

Tested by: Karl Lee

	_			Limit			
	Freq	Level	Level	Line	Limit	Factor	Remark
-	MHz	dBm	dBm	dBm	dB	dB	
1	84.81	-68.49	-57.27	-13.00	-55.49	-11.22	Peak
2	153.39	-65.23	-57.37	-13.00	-52.23	-7.86	Peak
3	226.02	-69.05	-63.22	-13.00	-56.05	-5.83	Peak
4	425.30	-63.23	-59.92	-13.00	-50.23	-3.31	Peak
5	601.70	-61.22	-61.64	-13.00	-48.22	0.42	Peak
6	828.50	-64.84	-66.53	-13.00	-51.84	1.69	Peak
7 pp	3815.20	-48.13	-64.54	-13.00	-35.13	16.41	Peak

LTE Band 2

Channel Bandwidth: 1.4 MHz / QPSK

Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH18607

Tested by: Karl Lee

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3701.40 -48.63 -64.51 -13.00 -35.63 15.88 Peak 2 5552.10 -43.19 -63.53 -13.00 -30.19 20.34 Peak 3 pp 7402.80 -39.33 -61.61 -13.00 -26.33 22.28 Peak

Report Format Version: 6.1.1

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1 Condition: PART 22/24 Vertical Remark : LTE_Band 2_Link_CH18607

Tested by: Karl Lee

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dB dB

1 pp 3701.40 -50.90 -66.78 -13.00 -37.90 15.88 Peak

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH18900

Tested by: Karl Lee

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3760.00 -45.51 -61.65 -13.00 -32.51 16.14 Peak 2 5640.00 -42.52 -62.99 -13.00 -29.52 20.47 Peak 3 pp 7520.00 -39.78 -62.46 -13.00 -26.78 22.68 Peak

Site : 966 chamber 1 Condition: PART 22/24 Vertical

Remark : LTE_Band 2_Link_CH18900

Tested by: Karl Lee

Read Limit Over

Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB dB

1 pp 3760.00 -49.88 -66.02 -13.00 -36.88 16.14 Peak

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH19193

Tested by: Karl Lee

		Freq	Level	Read Level	Limit Line		Factor	Remark
	-	MHz	dBm	dBm	dBm	dB	dB	
1		3818.60	-46.86	-63.36	-13.00	-33.86	16.50	Peak
2		5727.90	-40.95	-61.29	-13.00	-27.95	20.34	Peak
3		7637.20	-38.39	-61.45	-13.00	-25.39	23.06	Peak
4		9546.50	-40.87	-66.91	-13.00	-27.87	26.04	Peak
5		11455.80	-41.24	-69.06	-13.00	-28.24	27.82	Peak
6	pp	13365.10	-32.03	-63.31	-13.00	-19.03	31.28	Peak

Report Format Version: 6.1.1

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1 Condition: PART 22/24 Vertical

Remark : LTE_Band 2_Link_CH19193

Tested by: Karl Lee

Read Limit Over

Freq Level Level Line Limit Factor Remark

MHz dBm dBm dB dB

1 pp 3818.60 -46.94 -63.44 -13.00 -33.94 16.50 Peak

Channel Bandwidth: 5 MHz / QPSK Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH18625

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3705.00 -50.10 -65.98 -13.00 -37.10 15.88 Peak 2 5557.50 -45.76 -66.10 -13.00 -32.76 20.34 Peak 3 pp 7410.00 -43.66 -65.94 -13.00 -30.66 22.28 Peak

Site : 966 chamber 1 Condition: PART 22/24 Vertical Remark : LTE_Band 2_Link_CH18625

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3705.00 -50.81 -66.69 -13.00 -37.81 15.88 Peak

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH18900

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3760.00 -51.09 -67.23 -13.00 -38.09 16.14 Peak 2 5640.00 -45.96 -66.43 -13.00 -32.96 20.47 Peak 3 pp 7520.00 -44.38 -67.06 -13.00 -31.38 22.68 Peak

Site : 966 chamber 1 Condition: PART 22/24 Vertical Remark : LTE_Band 2_Link_CH18900

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3760.00 -50.18 -66.32 -13.00 -37.18 16.14 Peak

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH19175

Tested by: Harry Hsueh

Freq	Level				Factor	Remark
MHz	dBm	dBm	dBm	dB	dB	
3815.00	-46.40	-62.81	-13.00	-33.40	16.41	Peak
5722.50	-39.06	-59.33	-13.00	-26.06	20.27	Peak
7630.00	-38.44	-61.46	-13.00	-25.44	23.02	Peak
9537.50	-41.34	-67.38	-13.00	-28.34	26.04	Peak
	MHz 3815.00 5722.50 7630.00 9537.50 11445.00	MHz dBm 3815.00 -46.40 5722.50 -39.06 7630.00 -38.44 9537.50 -41.34 11445.00 -40.94	Freq Level Level MHz dBm dBm 3815.00 -46.40 -62.81 5722.50 -39.06 -59.33 7630.00 -38.44 -61.46 9537.50 -41.34 -67.38 11445.00 -40.94 -68.76	Freq Level Level Line MHz dBm dBm dBm 3815.00 -46.40 -62.81 -13.00 5722.50 -39.06 -59.33 -13.00 7630.00 -38.44 -61.46 -13.00 9537.50 -41.34 -67.38 -13.00 11445.00 -40.94 -68.76 -13.00	MHz dBm dBm dBm dBm dB 3815.00 -46.40 -62.81 -13.00 -33.40 5722.50 -39.06 -59.33 -13.00 -26.06 7630.00 -38.44 -61.46 -13.00 -25.44 9537.50 -41.34 -67.38 -13.00 -28.34 11445.00 -40.94 -68.76 -13.00 -27.94	Freq Level Level Limit Factor

Site : 966 chamber 1 Condition: PART 22/24 Vertical Remark : LTE_Band 2_Link_CH19175

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3815.00 -46.80 -63.21 -13.00 -33.80 16.41 Peak

Channel Bandwidth: 20 MHz / QPSK Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH18700

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB dB

1 3720.00 -50.31 -66.28 -13.00 -37.31 15.97 Peak 2 5580.00 -44.96 -65.33 -13.00 -31.96 20.37 Peak 3 pp 7440.00 -42.67 -64.92 -13.00 -29.67 22.25 Peak

Site : 966 chamber 1 Condition: PART 22/24 Vertical Remark : LTE_Band 2_Link_CH18700

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3720.00 -49.87 -65.84 -13.00 -36.87 15.97 Peak

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH18900

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3760.00 -49.42 -65.56 -13.00 -36.42 16.14 Peak 2 5640.00 -44.54 -65.01 -13.00 -31.54 20.47 Peak 3 pp 7520.00 -43.77 -66.45 -13.00 -30.77 22.68 Peak

Site : 966 chamber 1 Condition: PART 22/24 Vertical

Remark : LTE_Band 2_Link_CH18900

Tested by: Harry Hsueh

Read Limit Over

Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3760.00 -50.29 -66.43 -13.00 -37.29 16.14 Peak

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 22/24 Horizontal Remark : LTE_Band 2_Link_CH19100

Tested by: Harry Hsueh

		,	. ,					
				Read	Limit	0ver		
		Freq	Level	Level	Line	Limit	Factor	Remark
	_							
		MHz	dBm	dBm	dBm	dB	dB	
								_
1		85.62	-75.20	-63.98	-13.00	-62.20	-11.22	Peak
2		158.79	-61.57	-53.87	-13.00	-48.57	-7.70	Peak
3		261.39	-60.26	-54.65	-13.00	-47.26	-5.61	Peak
4		343.40	-59.20	-53.74	-13.00	-46.20	-5.46	Peak
5		667.50	-61.95	-61.73	-13.00	-48.95	-0.22	Peak
6		784.40	-61.15	-62.14	-13.00	-48.15	0.99	Peak
7		3800.00	-49.41	-65.82	-13.00	-36.41	16.41	Peak
8		5700.00	-44.86	-65.07	-13.00	-31.86	20.21	Peak
9		7600.00	-42.88	-65.87	-13.00	-29.88	22.99	Peak
10		9500.00	-38.37	-64.39	-13.00	-25.37	26.02	Peak
11		11400.00	-40.66	-68.48	-13.00	-27.66	27.82	Peak
12	pp	13300.00	-31.30	-62.48	-13.00	-18.30	31.18	Peak

Site : 966 chamber 1 Condition: PART 22/24 Vertical Remark : LTE_Band 2_Link_CH19100

Tested by: Harry Hsueh

	Freq	Level		Limit Line		Factor	Remark
-	MHz	——dBm	——dBm	——dBm	dB	dB	
	МП	ubili	ubili	ubili	ub	ub	
1	84.54	-71.01	-59.68	-13.00	-58.01	-11.33	Peak
2	159.87	-67.58	-59.91	-13.00	-54.58	-7.67	Peak
3	262.47	-68.97	-63.35	-13.00	-55.97	-5.62	Peak
4	454.70	-62.12	-58.14	-13.00	-49.12	-3.98	Peak
5	593.30	-60.89	-61.04	-13.00	-47.89	0.15	Peak
6	806.10	-64.38	-66.32	-13.00	-51.38	1.94	Peak
7 pp	3800.00	-50.15	-66.56	-13.00	-37.15	16.41	Peak

5 Pictures of Test Arrangements							
Please refer to the attached file (Test Setup Photo).							
Please refer to the attached file (Test Setup Photo).							

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---