Two prominent examples of penalty-based aggregation of circular data

Raúl Pérez-Fernández and Bernard De Baets

Departamento de Estadística, I.O. y D.M., Universidad de Oviedo KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium

20th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems Lisbon, Portugal, 22–26 July 2024

Índice

- Aggregation of circular data
- 2 Aggregation theory for circular data
- 3 Penalty-based (aggregation) of circular data
- 4 Conclusions

Index

- Aggregation of circular data
- 2 Aggregation theory for circular data
- 3 Penalty-based (aggregation) of circular data
- 4 Conclusions

A real-life example of aggregation of circular data

Coffee break = A (Start time, End time)

No arithmetic mean for circular data

Let $\mathcal{D} = [0, 2\pi[$ denote the set of circular data

The arithmetic mean is not well-defined on \mathcal{D} :

$$A\left(0, \frac{\pi}{6}, \frac{\pi}{2}\right) = \frac{0 + \frac{\pi}{6} + \frac{\pi}{2}}{3} = \frac{2\pi}{9}$$

$$A\left(2\pi, \frac{\pi}{6}, \frac{\pi}{2}\right) = \frac{2\pi + \frac{\pi}{6} + \frac{\pi}{2}}{3} = \frac{8\pi}{9}$$

Aggregation of circular data: The circular mean

The circular mean $\overline{\mathbf{x}}$ of a list of angles \mathbf{x} is defined as:

$$\overline{\mathbf{x}} = \begin{cases} \arctan(S/C) \,, & \text{if } C > 0 \,, \\ \arctan(S/C) + \pi \,, & \text{if } C < 0 \,, \\ \frac{\pi}{2} \,, & \text{if } C = 0 \text{ and } S > 0 \,, \\ -\frac{\pi}{2} \,, & \text{if } C = 0 \text{ and } S < 0 \,, \\ \text{undefined} \,, & \text{if } C = 0 = S \,, \end{cases}$$

where
$$C = \frac{1}{n} \sum_{i=1}^{n} \cos(x_i)$$
 and $S = \frac{1}{n} \sum_{i=1}^{n} \sin(x_i)$

$$\overline{\left(0,\frac{\pi}{6},\frac{\pi}{2}\right)} = \arctan\left(\frac{3}{2+\sqrt{3}}\right) \approx 0.677$$

6/23

Aggregation of circular data: The circular median

If n is odd, then the circular median $\tilde{\mathbf{x}}$ of a list of angles \mathbf{x} is defined as the angle in \mathbf{x} that:

- (i) $\lceil \frac{n}{2} \rceil$ of the angles in \mathbf{x} lie on the arc $[\tilde{\mathbf{x}}, \tilde{\mathbf{x}} + \pi[$
- (ii) the majority of the angles in ${\bf x}$ are closer to $\tilde{\bf x}$ than to $\tilde{\bf x}+\pi$

More involved definition if n is even

$$\left(0,\frac{\pi}{6},\frac{\pi}{2}\right) = \frac{\pi}{6}$$

Raúl Pérez-Fernández IPMU 2024

Index

- Aggregation of circular data
- 2 Aggregation theory for circular data
- 3 Penalty-based (aggregation) of circular data
- 4 Conclusions

Aggregation functions in theory and practice

Definition:

Consider a bounded poset $(P, \leq, \mathbf{0}, \mathbf{1})$ and $n \in \mathbb{N}$. A function $A : P^n \to P$ is called an n-ary **aggregation function** on (P, \leq) if

1 A satisfies the boundary conditions:

$$A(0,...,0) = 0$$
 and $A(1,...,1) = 1$

2 A is monotone increasing:

$$\mathbf{x} \leq \mathbf{y} \Rightarrow A(\mathbf{x}) \leq A(\mathbf{y})$$

Practice:

This definition is considered a **standard** and works out for real numbers, ordinal (linguistic) scales, intervals, etc.

Examples:

Arithmetic mean, weighted arithmetic means, OWAs, t-norms, t-conorms, uninorms, Choquet integrals, Sugeno integrals...

9/23

Problem: There is no order for circular data

Is
$$0 \le \frac{\pi}{6} \le \frac{\pi}{2}$$
? Is $2\pi \le \frac{\pi}{6} \le \frac{\pi}{2}$?

Unfortunately, there exists no order for circular data!

The set of circular data has an interesting structure

 $\frac{\pi}{6}$ is in between 0 and $\frac{\pi}{2}$

A natural betweenness relation on \mathcal{D} is defined as $(x, y, z) \in \mathcal{B}_{\mathcal{D}}$ if

$$\left(\sin(z-x)\cdot\sin(y-x)\geq 0\right)\wedge\left(\cos(z-x)\leq\cos(y-x)\right)\}$$

The set of circular data is a bounded beset $(\mathcal{D}, \mathcal{B}_{\mathcal{D}}, \mathcal{D})$ (in which all elements are bounds)

Aggregation functions on besets

Pérez-Fernández and De Baets, 2021

Definition:

Consider a bounded beset (X, B, S) and $n \in \mathbb{N}$. A function $A : X^n \to X$ is called an *n*-ary **aggregation function** on (X, B, S) if

1 A satisfies the boundary conditions:

$$A(o,\ldots,o)=o$$
 for any $o\in S$

A is betweenness-preserving:

$$(o, x_i, y_i) \in B$$
 for any $i \in \{1, \ldots, n\}$

implies

$$(o, A(x_1, \ldots, x_n), A(y_1, \ldots, y_n)) \in B$$

for any $o \in S$

Relation with classical aggregation

Theorem (Pérez-Fernández and De Baets, 2021)

Let $(X, \leq, 0, 1)$ be a bounded poset and $(X, B_{\leq}, \{0, 1\})$ be the bounded beset where B_{\leq} is induced by \leq . For a function $A: X^n \to X$, the following two conditions are equivalent:

- A is an aggregation function on $(X, \leq, 0, 1)$
- A is an aggregation function on $(X, B_{\leq}, \{0, 1\})$

Extension of classical aggregation theory

This definition has been used successfully for formalizing aggregation processes for rankings, compositional data, strings

Sadly, both examples do not fit the current understanding of an aggregation function

Proposition

Consider the bounded beset $(\mathcal{D}, \mathcal{B}_{\mathcal{D}}, \mathcal{D})$ and $n \in \mathbb{N}$. The circular mean $\bar{\cdot} : \mathcal{D}^n \to \mathcal{D}$ is not an aggregation function on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}}, \mathcal{D})$.

Proposition

Consider the bounded beset $(\mathcal{D}, \mathcal{B}_{\mathcal{D}}, \mathcal{D})$ and $n \in \mathbb{N}$. The circular median $\tilde{\cdot} : \mathcal{D}^n \to \mathcal{P}(\mathcal{D})$ is not an aggregation function on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}}, \mathcal{D})$.

Index

- Aggregation of circular data
- 2 Aggregation theory for circular data
- 3 Penalty-based (aggregation) of circular data
- 4 Conclusions

Framework of penalty-based aggregation

Yager, Rybalov, Beliakov, Calvo, Bustince, ...

Definition: Consider $n \in \mathbb{N}$ and $I = [a, b] \subseteq \mathbb{R}$. A function $P : I^{n+1} \to \mathbb{R}$ is called a **penalty function** if:

- **1** $P(y; \mathbf{x}) \geq 0$
- 2 $P(y; \mathbf{x}) = 0$ if and only if $\mathbf{x} = (y, \dots, y)$
- **3** for every \mathbf{x} , $P(\cdot; \mathbf{x})$ is quasi-convex and lower-semicontinuous The function $f: I^n \to I$ defined by

$$f(\mathbf{x}) = \frac{I(\mathbf{x}) + r(\mathbf{x})}{2},$$

where $[I(\mathbf{x}), r(\mathbf{x})]$ is the set of minimizers of $P(\cdot; \mathbf{x})$, is called the **penalty-based (aggregation) function** associated with P

Penalty-based aggregation on besets

Pérez-Fernández and De Baets, 2019

Definition: Consider $n \in \mathbb{N}$, a set X and a betweenness relation B on X^n . A function $P: X \times X^n \to \mathbb{R}^+$ is called a **penalty function** (compatible with B) if the following four properties hold:

- **1** $P(y; \mathbf{x}) \geq 0$, for any $y \in X$ and any $\mathbf{x} \in X^n$
- 2 $P(y; \mathbf{x}) = 0$ if and only if $\mathbf{x} = (y, \dots, y)$
- **3** The set of minimizers of $P(\cdot; \mathbf{x})$ is non-empty, for any $\mathbf{x} \in X^n$
- $P(y; \mathbf{x}) \leq P(y; \mathbf{x}')$, for any $y \in X$ and any $\mathbf{x}, \mathbf{x}' \in X^n$ such that $((y, \dots, y), \mathbf{x}, \mathbf{x}') \in B$

The function $f: X^n \to \mathcal{P}(X)$ defined by

$$f(\mathbf{x}) = \underset{y \in X}{\operatorname{arg min}} P(y; \mathbf{x}),$$

for any $x \in X^n$, is called the **penalty-based (aggregation) function** associated with P

The circular mean is a penalty-based function

Proposition

Consider $n \in \mathbb{N}$, \mathcal{D} and the betweenness relation $(B_{\mathcal{D}})^{(n)}$ on \mathcal{D}^n . The function $P_1 : \mathcal{D} \times \mathcal{D}^n \to \mathbb{R}^+$ defined as

$$P_1(y; \mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} (1 - \cos(x_i - y))$$

is a penalty function compatible with $(B_D)^{(n)}$ and the circular mean $\overline{\cdot}: \mathcal{D}^n \to \mathcal{D}$ is a penalty-based (aggregation) function associated with P_1 .

The circular median is a penalty-based function

Proposition

Consider $n \in \mathbb{N}$, \mathcal{D} and the betweenness relation $(B_{\mathcal{D}})^{(n)}$ on \mathcal{D}^n . The function $P_2 : \mathcal{D} \times \mathcal{D}^n \to \mathbb{R}^+$ defined as

$$P_2(y; \mathbf{x}) = \frac{1}{n} \sum_{i=1}^n (\pi - |\pi - |x_i - y||) = \frac{1}{n} \sum_{i=1}^n \min(x_i - y, 2\pi - x_i + y)$$

is a penalty function compatible with $(B_{\mathcal{D}})^{(n)}$ and the circular median $\tilde{\cdot}: \mathcal{D}^n \to \mathcal{P}(\mathcal{D})$ is a penalty-based (aggregation) function associated with P_2 .

Index

- Aggregation of circular data
- 2 Aggregation theory for circular data
- 3 Penalty-based (aggregation) of circular data
- 4 Conclusions

Conclusions

- It has been shown that the circular mean and the circular median can be accommodated within the framework of penalty-based data aggregation on besets
- Unfortunately, even though these two prominent functions for the aggregation of circular data satisfy the boundary conditions and are actually idempotent (as a result of property (P2) of a penalty function), it is shown that they are not aggregation functions on the bounded beset of circular data
- A future study subject is to explore weaker properties than monotonicity that could accommodate the circular mean and circular median

Funding

RPF received funding from grant PID2022-140585NB-I00 funded by MICIU/AEI/10.13039/501100011033 and "FEDER/UE".

BDB received funding from the Flemish Government under the "Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen" programme.

Two prominent examples of penalty-based aggregation of circular data

Raúl Pérez-Fernández and Bernard De Baets

Departamento de Estadística, I.O. y D.M., Universidad de Oviedo KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium

20th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems
Lisbon, Portugal, 22–26 July 2024