Simulation einer Multikapillarsäule Einführungsvortrag Diplomarbeit

Elisabeth Böhmer

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl 11

23. April 2015

Betreuer: Prof. Dr. Sven Rahmann Prof. Dr. Jörg Rahnenführer

- 1 Einleitung
- 2 Gaschromatographie
- Modell
- 4 Ergebnisse und Ausblick

Worum geht es?

Einleitung

"Multikapillarsäule"

"Simulation"

Worum geht es?

- "Multikapillarsäule", MCC (engl. Multi Capillary Column)
- Trennsäule in der Gaschromatographie
- "Simulation"

Worum geht es?

- "Multikapillarsäule", MCC (engl. Multi Capillary Column)
 - Trennsäule in der Gaschromatographie
- "Simulation"
 - Keine physikalische Simulation der Moleküle

Worum geht es?

Einleitung

- "Multikapillarsäule", MCC (engl. Multi Capillary Column)
 - Trennsäule in der Gaschromatographie
- "Simulation"
 - Keine physikalische Simulation der Moleküle
 - Keine Interpolation vorhandender Messungen

Worum geht es?

Einleitung

- "Multikapillarsäule", MCC (engl. Multi Capillary Column)
 - Trennsäule in der Gaschromatographie
- "Simulation"
 - Keine physikalische Simulation der Moleküle
 - Keine Interpolation vorhandender Messungen
 - sondern: Modell für chromatographischen Prozess

Allgemeines zur Chromatographie

• Verfahren zur Auftrennung von Stoffgemischen

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase

Allgemeines zur Chromatographie

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase
- Varianten:
 - Flüssigchromatographie
 - Gaschromatographie

Allgemeines zur Chromatographie

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase
- Varianten:
 - Flüssigchromatographie
 - Gaschromatographie
 - Gepackte Säulen
 - Kapillarsäulen

Gaschromatographie in Kapillarsäulen

Eine MCC besteht aus ca. 1000 Kapillaren mit je

- $20 80 \, \mu m$ Durchmesser
- Stationäre Phase ist Flüssigkeitsfilm, ca. $0.1 0.8 \, \mu \text{m}$ dick
- ightarrow MCC etwa $2-6\,\mathrm{mm}$ dick und $20\,\mathrm{cm}$ lang

Querschnitt einer MCC 1

¹http://yas.yanaco.co.jp/products/import-gc-ims.html

Prinzip der Gaschromatographie

mobile Phase Analyt

stationäre Phase

mobile Phase Analyt

Einleitung

stationäre Phase

Prinzip der Gaschromatographie

Prinzip der Gaschromatographie

mobile Phase Analyt

stationäre Phase

Lösung

stationäre Phase

Prinzip der Gaschromatographie

mobile Phase Analyt

stationäre Phase

Prinzip der Gaschromatographie

mobile Phase Analyt

stationäre Phase

Adsorption

mobile Phase Analyt

stationäre Phase

- Detektion der austretenden Substanzen.
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks

- Detektion der austretenden Substanzen.
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks
- Alternativ: Weitere Analyse durch zum Beispiel
 - Massenspektrometrie (MS)
 - Ionen-Mobilitäts-Spektrometrie (IMS)

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen.
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks
- Alternativ: Weitere Analyse durch zum Beispiel
 - Massenspektrometrie (MS)
 - Ionen-Mobilitäts-Spektrometrie (IMS)
- → Vorliegende Datensätze aus MCC-IMS-Kopplung

Charakteristika der Peaks

Peak charakterisiert durch:

Lage des Maximums

Charakteristika der Peaks

Peak charakterisiert durch:

- Lage des Maximums
- Form
 - Idealfall: Gaußkurve
 - Abweichung: Fronting, Tailing

Charakteristika der Peaks

Peak charakterisiert durch:

- Lage des Maximums
- Form
 - Idealfall: Gaußkurve
 - Abweichung: Fronting, Tailing
- Breite
 - Breite auf halber Maximalhöhe
 - Bei Tailing/Fronting: getrennte Werte für rechts und links des Maximums

Peakdatengewinnung

Einleitung

Ziel

Gesucht:

 Entsprechung von Peakcharakteristika zu Simulationsparametern

Gesucht:

• Entsprechung von Peakcharakteristika zu Simulationsparametern

Vorgehensweise:

Start mit einfachem Modell

Ziel

Gesucht:

• Entsprechung von Peakcharakteristika zu Simulationsparametern

- Start mit einfachem Modell
- 2 Simulation mit verschiedenen Parametern

Ziel

Gesucht:

 Entsprechung von Peakcharakteristika zu Simulationsparametern

- Start mit einfachem Modell
- 2 Simulation mit verschiedenen Parametern
- 3 Überprüfung, ob Referenzpeaks angenähert werden können

Gesucht:

 Entsprechung von Peakcharakteristika zu Simulationsparametern

- Start mit einfachem Modell
- 2 Simulation mit verschiedenen Parametern
- 3 Überprüfung, ob Referenzpeaks angenähert werden können
- 4 Verfeinerung/Erweiterung des Modells

Gesucht:

 Entsprechung von Peakcharakteristika zu Simulationsparametern

- Start mit einfachem Modell
- Simulation mit verschiedenen Parametern
- 3 Überprüfung, ob Referenzpeaks angenähert werden können
- 4 Verfeinerung/Erweiterung des Modells
- 5 Wiederholung von 2-4 bis ausreichend angenähert

Modell

•000

Prinzip:

Einleitung

Modell:

Modell

Prinzip:

Einleitung

2 Phasen: stationär und mobil

Modell:

ullet 2 Zustände: s und m

Prinzip:

- 2 Phasen: stationär und mobil
- Wechsel dazwischen, bzw. Verweilen in der Phase

Modell

Modell:

- 2 Zustände: s und m
- Wechselwahrscheinlichkeiten
 - ightharpoonup s
 igh
 - $ightharpoonup s
 ightharpoonup s
 ightharpoonup m: 1-p_s$
 - $ightharpoonup m : p_m$
 - $ightharpoonup m o s: 1-p_m$

0000

Graphische Darstellung des Modells

Simulationseckdaten

- Länge festgelegt auf 200 000 Einheiten
 - ▶ 1 Einheit = $1 \, \mu m$
- 1000 10000 Teilchen
 - ► Ergibt bei graphischer Ausgabe gut erkennbare Peaks

Modell

Simulation "step-by-step"

- Jeder Zeitschritt wird simuliert
- Jeweils Ort und Zustand jedes Teilchens festhalten

Modell

Simulationsarten

Simulation "step-by-step"

- Jeder Zeitschritt wird simuliert
- Jeweils Ort und Zustand jedes Teilchens festhalten

Simulation "by-event"

- Zu Beginn für jedes Teilchen Zeitpunkt des nächsten Phasenwechsels bestimmen
- Nur zu relevanten Zeitpunkten entsprechende Teilchen simulieren

Simulationsarten

Simulation "step-by-step"

- Jeder Zeitschritt wird simuliert
- Jeweils Ort und Zustand jedes Teilchens festhalten

Simulation "by-event"

- Zu Beginn für jedes Teilchen Zeitpunkt des nächsten Phasenwechsels bestimmen
- Nur zu relevanten Zeitpunkten entsprechende Teilchen simulieren
 - ▶ Bei hohen Wahrscheinlichkeiten kürzere Laufzeit

- Modell zur Beschreibung einer Folge zufälliger Operationen
 - ► Zustände und Übergänge
 - Emissionen
 - Werte

- Modell zur Beschreibung einer Folge zufälliger Operationen
 - Zustände und Übergänge
 - Emissionen
 - Werte
- Automat ist zu jedem Zeitpunkt mit bestimmter Wahrscheinlichkeit in jedem Zustand

- Modell zur Beschreibung einer Folge zufälliger Operationen
 - Zustände und Übergänge
 - Emissionen
 - Werte
- Automat ist zu jedem Zeitpunkt mit bestimmter Wahrscheinlichkeit in jedem Zustand
- Jede mögliche Emission findet mit bestimmter Wahrscheinlichkeit statt

- Modell zur Beschreibung einer Folge zufälliger Operationen
 - Zustände und Übergänge
 - Emissionen
 - Werte
- Automat ist zu jedem Zeitpunkt mit bestimmter Wahrscheinlichkeit in jedem Zustand
- Jede mögliche Emission findet mit bestimmter Wahrscheinlichkeit statt
- Werte aus den Emissionen und einer Operation berechnet

Definition (Probabilistischer Arithmetischer Automat)

Ein Probabilistischer Arithmetischer Automat (PAA) ist ein Tupel $\mathcal{P} = (\mathcal{Q}, q_0, T, \mathcal{E}, (e_q)_{q \in \mathcal{Q}}, \mathcal{V}, v_0, (\theta_q)_{q \in \mathcal{Q}})$ mit:

Modell 000

Modell 000

$$\mathcal{P} = (\mathcal{Q}, q_0, T, \mathcal{E}, (e_q)_{q \in \mathcal{Q}}, \mathcal{V}, v_0, (\theta_q)_{q \in \mathcal{Q}})$$

 \mathcal{Q} endliche Menge von Zuständen; $q_0 \in \mathcal{Q}$ Startzustand

PAA für das 2-Parameter Modell

Modell 000

$$\mathcal{P} = (\mathcal{Q}, q_0, T, \mathcal{E}, (e_q)_{q \in \mathcal{Q}}, \mathcal{V}, v_0, (\theta_q)_{q \in \mathcal{Q}})$$

 $T: \mathcal{Q} \times \mathcal{Q} \rightarrow [0,1]$ Übergangsfunktion mit $\sum_{q' \in \mathcal{Q}} T(q,q') = 1$ d.h. $(T(q,q'))_{q,q'\in\mathcal{Q}}$ ist stochastische Matrix

PAA für das 2-Parameter Modell

Modell 000

$$\mathcal{P} = (\mathcal{Q}, q_0, T, \mathcal{E}, (e_a)_{a \in \mathcal{Q}}, \mathcal{V}, v_0, (\theta_a)_{a \in \mathcal{Q}})$$

 ${\cal E}$ endliche Menge von Emissionen

$$\mathcal{P} = (\mathcal{Q}, q_0, T, \mathcal{E}, (e_q)_{q \in \mathcal{Q}}, \mathcal{V}, v_0, (\theta_q)_{q \in \mathcal{Q}})$$

 $e_q:\mathcal{E} \to [0,1]$ Wahrscheinlichkeitsverteilung der Emissionen für jeden Zustand

$$\mathcal{P} = (\mathcal{Q}, q_0, T, \mathcal{E}, (e_q)_{q \in \mathcal{Q}}, \mathcal{V}, v_0, (\theta_q)_{q \in \mathcal{Q}})$$

 ${\cal V}$ Menge von Werten; v_0 Startwert

$$\mathcal{P} = (\mathcal{Q}, q_0, T, \mathcal{E}, (e_q)_{q \in \mathcal{Q}}, \mathcal{V}, v_0, (\theta_q)_{q \in \mathcal{Q}})$$

 $\theta_q: \mathcal{V} imes \mathcal{E} o \mathcal{V}$ Operation für jeden Zustand

Simulationsergebnisse

Einleitung

Zeit

150

100

50

200

250

- Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten
 - ► Es existieren Referenzpeaks knapp unterhalb dieser Breite

- Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten
 - ► Es existieren Referenzpeaks knapp unterhalb dieser Breite
- Peaks nur als Gaußkurven, kein Tailing
 - Eigentlich "perfekt", aber nicht realistisch

Weitere mögliche Modelle

Einleitung

• Bisher keine Unterscheidung zwischen Adsorption und Lösung

Weitere mögliche Modelle

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- Weiterer stationärer Zustand
 - ► Keine Übergänge zwischen den stationären Zuständen

Weitere mögliche Modelle

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- Weiterer stationärer Zustand
 - ► Keine Übergänge zwischen den stationären Zuständen

Neuer Zustand als Zwischenzustand

- Prinzip der Gaschromatographie
 - Wechsel zwischen zwei Phasen
 - ► Peakbeschreibungen

- Prinzip der Gaschromatographie
 - Wechsel zwischen zwei Phasen
 - Peakbeschreibungen
- 2-Parameter Modell
 - Simulation dieses Modells

- Prinzip der Gaschromatographie
 - Wechsel zwischen zwei Phasen
 - Peakbeschreibungen
- 2-Parameter Modell
 - ► Simulation dieses Modells
- PAA

- Prinzip der Gaschromatographie
 - ► Wechsel zwischen zwei Phasen
 - Peakbeschreibungen
- 2-Parameter Modell
 - Simulation dieses Modells
- PAA
- weiteres Modell nötig
 - Mehrere Erweiterungen denkbar

- Prinzip der Gaschromatographie
 - ► Wechsel zwischen zwei Phasen
 - Peakbeschreibungen
- 2-Parameter Modell
 - Simulation dieses Modells
- PAA
- weiteres Modell nötig
 - Mehrere Erweiterungen denkbar
- Entsprechung Simulationsparameter zu Peakcharakteristika