16.9. PROBLEMS 607

- The (real) vector space $\mathfrak{su}(2)$ of 2×2 Hermitian matrices with zero trace.
- The group homomorphism $r : \mathbf{SU}(2) \to \mathbf{SO}(3); \text{ Ker } (r) = \{+I, -I\}.$
- The matrix representation R_q of the rotation r_q induced by a unit quaternion q.
- Surjectivity of the homomorphism $r: SU(2) \to SO(3)$.
- The exponential map $\exp: \mathfrak{su}(2) \to \mathbf{SU}(2)$.
- Surjectivity of the exponential map $\exp: \mathfrak{su}(2) \to \mathbf{SU}(2)$.
- Finding a logarithm of a quaternion.
- Quaternion interpolation.
- Shoemake's slerp interpolation formula.
- Sections $s : \mathbf{SO}(3) \to \mathbf{SU}(2)$ of $r : \mathbf{SU}(2) \to \mathbf{SO}(3)$.

16.9 Problems

Problem 16.1. Verify the quaternion identities

$$i^2 = j^2 = k^2 = ijk = -1,$$

 $ij = -ji = k,$
 $jk = -kj = i,$
 $ki = -ik = j.$

Problem 16.2. Check that for every quaternion $X = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$, we have

$$XX^* = X^*X = (a^2 + b^2 + c^2 + d^2)\mathbf{1}.$$

Conclude that if $X \neq 0$, then X is invertible and its inverse is given by

$$X^{-1} = (a^2 + b^2 + c^2 + d^2)^{-1}X^*.$$

Problem 16.3. Given any two quaternions $X = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ and $Y = a'\mathbf{1} + b'\mathbf{i} + c'\mathbf{j} + d'\mathbf{k}$, prove that

$$XY = (aa' - bb' - cc' - dd')\mathbf{1} + (ab' + ba' + cd' - dc')\mathbf{i} + (ac' + ca' + db' - bd')\mathbf{j} + (ad' + da' + bc' - cb')\mathbf{k}.$$

Also prove that if X = [a, U] and Y = [a', U'], the quaternion product XY can be expressed as

$$XY = [aa' - U \cdot U', aU' + a'U + U \times U'].$$