Module 3, Lecture 8

Structure and Reactions of Organic Molecules

Introduction to reaction mechanisms Substitution and Elimination

James Crowley

jcrowley@chemistry.otago.ac.nz

Dr. Bill Hawkins bhawkins@chemistry.otago.ac.nz

References to Brown et al text shown in BLUE

53

Learning Objectives:

- to be able to identify what factors are required for a good leaving group
- to have an understanding of elimination reactions
- to be able to identify what factors are required fro a good leaving group
- to have an understanding of E1 elimination mechanism

Textbook: Chapter 27, sections 27.5-27.7, Brown

What determines whether a reaction goes via S_N1 or S_N2 ?

$$-\dot{C} + N\ddot{u} - -\dot{C} - Nu + X$$

Require **good** leaving group -departs in rate controlling step

S_N2 :

- Nu: binds as leaving group departs
- Strong Nu: can make up for poor leaving group

S_N1:

- Only change occurring in slow step is cleavage of C-X bond
- Good leaving group essential.

55

What determines whether a reaction goes via S_N1 or S_N2 ?

Relative rates of C-X cleavage

Longer, weaker bonds

X		Relative Rate
↓ I:⁻		150
	Br: [–]	50
	CI:-	1
	F: ⁻	2 x 10 ⁻²
	HO:-	5 x 10 ⁻⁸
RO:-		5 x 10 ⁻⁹

What determines whether a reaction goes via S_N1 or S_N2 ?

Relative rates of C-X cleavage

X	Relative Rate
l:-	150
Br:-	50
CI:-	1
F: ⁻	2 x 10 ⁻²
HO:-	5 x 10 ⁻⁸
RO:-	5 x 10 ⁻⁹

57

HO: and RO: can be converted into better leaving groups under strongly acidic conditions (protonation).

In (X), electrons in C-O bond is drawn closer to +ve charge O.

Example:

$$CH_3OH + NaBr \longrightarrow No reaction$$

 $CH_3OH + HBr \longrightarrow CH_3Br + H_2O$

- Weakened bond

59

Nucleophiles

 $S_N1:$

- Nu: not involved in slow step
- Carbocation reacts readily with any nucleophile

S_N2:

• Good nucleophile essential

Nucleophilicity: measure of affinity towards electrophilic C^{δ+}

-ve

neutral

Effect of Solvent on S_N Reactions

The biological medium for chemical reactions is generally H₂O.

H₂O is a *polar* solvent. Also, able to form H-bonds.

Effect of Solvent on S_N Reactions

 $S_N 1$: fastest in polar solvents, particularly those which H-bond.

First transition state stabilized by:

- polar effect at C
- H-bonding to L

63

Effect of Solvent on S_N Reactions

 S_N2 : Solvent can influence Nu: through H-bonding

Elimination Reactions (27.6)

$$-\overset{\mid}{C}-\overset{\mid}{C}-X + Nu: \overline{} \longrightarrow \qquad C=C + Nu-H + X^{-}$$

- · Common mechanisms, E1 and E2.
- Parallel those for S_N1 and S_N2.
- Elimination mechanism determined by base strength:
 - strong base E2;
 - weak base E1.

65

E1 Mechanism

$$H_3C-\overset{CH_3}{\overset{-}{C}-CI} \xrightarrow{H_2O/HO^-} H_3C-\overset{CH_3}{\overset{-}{C}=CH_2}$$

Experiments show: rate = k [C-Cl]

E1 Mechanism

1st Step (same as for S_N1) (rate determining step)

2nd Step A base (H₂O, most abundant) removes H⁺ to form C=C:

67

E1 Mechanism

Same rate determining step as S_N1 , thus same controlling factors:

- · Strong base not required
- · H-bonding solvents promote reaction
- E1 most common when leaving group is on 3° carbon
- E1 and S_N1 often co-occur.

for previous example:

- Ratio of E1 : $S_N 1$ controlled by relative rates of the 2 alternative fast steps.
- If leaving group is changed, overall rate changes but $E1:S_N1$ ratio unchanged.

69

E2 Mechanism

HO: +
$$CH_3CH_2Br$$
 \longrightarrow H H H_2O + Br :

Experiments show:

rate = k [CH₃CH₂Br] [HO⁻]

E2 Mechanism

Concerted bond breaking and bond formation

- Halide and base involved in single, rate determining step
- Like S_N2 Must have strong base e.g. HO:
- Possible for 1°, 2° and 3° compounds.

71

E2 Mechanism

S_N2 :

- Requires backside attack;

_

- Difficult if reaction centre crowded;
- Rate order is $1^{\circ} > 2^{\circ} > 3^{\circ}$.

E2:

- Easily accessible H⁺ is removed
- Little difference in ease of H⁺ removal for 1°, 2° and 3°

Questions

1. The rate of the following reaction is dependent on [alkyl bromide] and [OH⁻]. Draw an energy profile of the reaction and the transition state structure(s).

2. Account for the following reactions:

73

* Homework *

Chemistry – the central science 3rd Ed Brown et al.

Problems 27.40, 27.77

Answers on Blackboard