1 Behaviour of analytic functions near fixed points

1.1 Behaviour near parabolic fixed points

A point p is called a parabolic fixed point of f if f(p) = p and $f'(p) = e^{2\pi it}$, where t is a rational number.

Theorem 1.1.1 (The Petal Theorem). Suppose that an analytic map f has the form:

$$f(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1})$$

near the origin. Then for sufficiently small t,

- 1. f maps each $\Pi_k(t)$ into itself;
- 2. $f^{\circ n}(z) \to 0$ uniformly on each petal;
- 3. $\arg(f^{\circ n}(z)) \to 2k\pi/p$ locally uniformly on each petal;
- 4. |f(z)| < |z| on a neighbourhood of the axis of each petal;
- 5. $f:\Pi_k(t)\to\Pi_k(t)$ is conjugate to a translation.

Proof. For $0 < r_0 < 1$, define the sector S_0 ,

$$S_0 = \{ re^{i\theta} : 0 < r < r_0, |\theta| < \pi/p \}$$

and the region W,

$$W = \{re^{i\theta} : r > \frac{1}{r_0^p}, |\theta| > \pi\}.$$

It is clear that the map $\sigma: z \mapsto \frac{1}{z^p}$ is a biholomorphism of S_0 onto W with $\sigma^{-1}: W \to S_0$ given by $\sigma^{-1}(w) = 1/w^{\frac{1}{p}}$. The branch of p-th root that we select determines which

1 Behaviour of analytic functions near fixed points

sector of width $2\pi/p$, the inverse map maps to (the other sectors being $S_k = \{0 < r < r_0, |\theta - 2k\pi/p| < \pi/p\}$.

Now, the conjugate map of f on W is given by,

$$g(w) = \sigma f \sigma^{-1}(w) = f(w^{-\frac{1}{p}})^{-p}.$$

This just replaces the action of f on S by g on W, and we have the following commutative diagram

???