

CS396: Security, Privacy & Society

Fall 2022

Lecture 3: Introduction

Instructor: Abrar Alrumayh

September 7, 2022

Outline

- In-class discussion with real-world examples
 - the Dyn DDOS attack

On October 21, 2016, a large-scale cyber was launched

- it affected globally the entire Internet but particularly hit U.S. east coast
- during most of the day, no one could access a long list of major Internet platforms and services, e.g., Netflix, CNN, Airbnb, PayPal, Zillow, ...
- this was a Distributed Denial-of-Service (DDoS) attack

- Distributed Denial-of-Service attack
 - DoS attack: attack against the availability of a system's core functionality
 - results in disruption of provided services

distributed: many machines contribute to the attack

DoS: A threat (mainly) against availability

Which main security property does a Denial-of-Service (DoS) attack attempt to defeat?

- availability; a user is denied access to authorized services or data
 - availability is concerned with preserving authorized access to assets
 - a DoS attack aims against this property; its name itself implies its main goal
- integrity & confidentiality; services or data are modified or accessed by an unauthorized user
 - elements of a DoS attack may include breaching the integrity or confidentiality of a system
 - but the end goal is disruption of a service or data flow; not the manipulation, fabrication or interception of data and services

Distributed Denial of Service (DDoS)

Botnets

Networks of machines running malicious code under remote control

massive: scale to million of bots

comprise main tool for DDoS attacks

stealth: remain undetected & difficult to trace

do little harm to the host machines

users won't likely remove malware

multiple-level attacker Vs. bots separation

resilient: have redundant components

 even if one master or C&C node is taken down, connectivity is maintained

Victim

- Dyn has been a major DNS provider
- DNS stands from Domain Name System
 - naming system for computers, serviced and other resources connected to the Internet
 - hierarchical, decentralized
- DNS services are crucial for any web connection
 - translation of domain names to IP addressed

The DNS service

The Domain Name Service (DNS) protocol

Resolving domain names to IP addresses

- when you type a URL in your Web browser, its IP address must be found
 - e.g., domain name "netflix.com" has IP address "52.22.118.132"
 - larger websites have multiple IP responses for redundancy to distributing load
- at the heart of Internet addressing is a protocol called DNS
 - a database translating Internet names to addresses

Recursive name resolution: hierarchical search

Search is performed recursively and hierarchically across different type of DNS resolvers

- application-level (e.g., Web browser), OS-level (e.g., stub resolver): locally managed
- recursive DNS servers: query other resolvers and cache recent results

Recursive name resolution: hierarchical search

Search is performed recursively and hierarchically across different type of DNS resolvers

- application-level (e.g., Web browser), OS-level (e.g., stub resolver): locally managed
- recursive DNS servers: query other resolvers and cache recent results
- root name servers: refer to appropriate TLD (top-level domain) server
- TLD servers: control TLD zones such as .com, .org, .net, etc.

Recursive name resolution: flexibility

Infrastructure allows for different configurations

- authoritative-only servers: answer queries on zones they are responsible for
 - fast resolution, no forwarding, no cache
- caching / forwarding DNS servers: answer queries on any public domain name
 - recursive search / request forwarding, caching for speed, first-hop resolvers
- master / slaves DNS servers: authoritative servers replicating DNS data of their domains
- public / private DNS servers: control access to protected resources within an organization

Recursive name resolution: benefits

Why DNS uses non-authoritative name servers (that is, recursive resolution)?

- for more scalability & locality
 - high query loads can saturate the response capacity of primary servers
 - secondary do not have to store large volumes of DNS entries
 - cached recently queried domain names speed up searches due to locality of queries
- for added security / locality / scalability alone not quite
 - e.g., non-authoritative name servers are untrusted and thus possibly compromised

The Dyn DDoS attack (continued)

Core idea of attack: Saturate Dyn's primary servers

Attack:

- from a compromised machine ask for domain names that do not exist
- query is forwarded to fewer primary Dyn servers, i.e., defeating benefits of distribution
- ask A LOT of such queries to bring down the Dyn DNS service!

Why botnets are often behind DoS attacks?

Use a botnet:

- To avoid effective countermeasures and increase attack traffic
 - if the high-volume attack traffic comes from few devices,
 they can be filtered out by blocking their connections to the Dyn servers
 - by employing a large botnet of millions of devices the attacker inflicts a larger, more devastating attack traffic against the victim Dyn servers

Create a botnet:

- compromise easy targets: IoT "thin" devices, e.g., printers, cameras, home routers, ...
- how? find a vulnerability on these devices...
- all such devices used an OS with a static, hard-wired, thus known, admin password...!

The Internet of Things (IoT)

Refers to Internet-connected everyday devices

- comprise a world of so-called smart devices
- examples:
 - smart appliances, such as refrigerators and dishwashers
 - smart home, such as thermostats and alarm systems
 - smart health, such as fitness monitors and insulin pumps
 - smart transportation, such as driverless cars
 - smart entertainment, such as video recorders
- potential downsides
 - loss of privacy
 - loss of control of data

- potential for subversion
- mistaken identification
- uncontrolled access

Smartphones

The control hub of the IoT – important target for malware

- 2013: 143,211 distinct new forms of malware against mobile devices
- 98% targeted Android devices, far in excess of its market share
 - Android: open approach
 - unlike its competitors, does not limit the software users are allowed to install
 - thus, an easier target
 - Apple: locked-down approach
 - in contrast, only allows apps from its app store to be installed on its smartphones
 - all apps go through an approval process, which includes some security review
 - once approved, apps are signed, using a certificate approach