OIT 137

Data Communications & Networking

Practical Assignment 1 - Question 1

Packet Analysis Using Wireshark

■ Student Information	
	gistration Number: 2024-5-150
	dent Name: vin Charles Meena
Dat Sept	te: tember 9, 2024
	ol Used: eshark on Kali Linux

III Capture Summary

Network Activity:

Visiting matokeochap.com (HTTPS)

Interface Used:

eth0 (Ethernet - VirtualBox NAT Network)

Protocols Observed:

Ethernet, IPv4, TCP, TLS, HTTP

Security:

TLS 1.2 with AES-256-GCM

OSI Layer Protocol Analysis

Layer 1 (Physical Layer)

What I found: I cannot see this layer directly in Wireshark

How I know it's there: My Kali VM uses eth0 interface connected through

VirtualBox NAT Network

My Network Setup:

- I am using Kali Linux in a virtual machine
- My network interface is called eth0
- I am using VirtualBox NAT Network to connect to internet
- This creates a virtual network connection over my host computer
- I am using Oracle VirtualBox software

Layer 2 (Data Link Layer)

What I found: Ethernet II protocol

Proof: I can see this in my screenshot osi shot1.png

Important Information I Found:

- Source MAC Address: **52:55:0a:00:02:02** (where packet came from)
- Destination MAC Address: **08:00:27:d1:f8:5d** (where packet is going)

Type: 0x0800 (IPv4) (tells us this is an IP packet)

Figure 1: Layer 2 (Ethernet) and Layer 3 (IPv4) Protocol Analysis

Layer 3 (Network Layer)

What I found: IPv4 protocol

Proof: I can see this in my screenshot osi shot1.png

Important Information I Found:

- Source IP Address: 76.76.21.21 (matokeochap.com server)
- Destination IP Address: 10.0.2.15 (my Kali VM)
- TTL: 64 (how many hops this packet can make)
- Protocol: TCP (what type of data this is)

Layer 4 (Transport Layer)

What I found: TCP protocol

Proof: I can see this in my screenshot osi shot2.png

Important Information I Found:

- Source Port: 443 (HTTPS) (secure website port)
- Destination Port: 37234 (my computer's port)
- Sequence Number: 1 (packet order number)
- Flags: ACK (acknowledgment that data was received)

```
▼ Internet Protocol Version 4, Src: 76.76.21.21, Dst: 10.0.2.15
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
▼ Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    0000 00... = Differentiated Services Codepoint: Default (0)
    .... .... 00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
    Total Length: 40
    Identification: 0x0010 (16)
▼ 000.... = Flags: 0x0
    0.... = Reserved bit: Not set
    .0.... = Don't fragment: Not set
    .0.... = More fragments: Not set
    ... 0 0000 0000 0000 = Fragment Offset: 0
    Time to Live: 64
    Protocol: TCP (6)
    Header Checksum: 0x0d51 [validation disabled]
    [Header checksum status: Unverified]
    Source Address: 76.76.21.21
    Destination Address: 10.0.2.15
    [Stream index: 1]
```

Figure 2: Layer 4 (TCP) Protocol Analysis

Layer 5 (Session Layer)

What I found: TLS protocol

Proof: I can see this in my screenshot osi shot3.png

Important Information I Found:

- TLS Version: 1.2 (security protocol version)
- Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (how

data is encrypted)

Layer 6 (Presentation Layer)

What I found: TLS (Encryption/Compression)

Proof: I can see this in my screenshot osi shot3.png

Important Information I Found:

Encryption Method: AES-256-GCM (very strong encryption)

- Key Exchange: **ECDHE_RSA** (how encryption keys are shared)
- Hash Function: **SHA384** (checks data integrity)

```
Transmission Control Protocol, Src Port: 443, Dst Port: 37234, Seq: 1, Ack: 664, Len: 0
   Source Port: 443
Destination Port: 37234
   [Stream index: 2]
     [Stream Packet Number: 5]
    [Conversation completeness: Complete, WITH_DATA (31)]
      [Completeness Flags: ·FDASS]
    [TCP Segment Len: 0]
   Sequence Number: 1 (relative sequence number)
Sequence Number (raw): 15168002
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: 664 (relative ack number)
 Acknowledgment Number: 664 (relative sequence number)
Acknowledgment number (raw): 1400186466
0101 ... = Header Length: 20 bytes (5)
Flags: 0x010 (ACK)
000
      Tags: 0x010 (ACK)

000. ... = Reserved: Not set
...0 ... = Accurate ECN: Not set
...0 ... = Congestion Window Reduced: Not set
...0 ... = ECN-Echo: Not set
...0 ... = Harbor ECN = Set
...0 ... = Virgent: Not set
...0 ... = Push: Not set
...0 ... = Push: Not set
...0 ... = Reset: Not set
...0 = Syn: Not set
...0 = Syn: Not set
...0 = Fin: Not set
[TCP Flags: .........]
   Window: 65535
   [Calculated window size: 65535]
[Window size scaling factor: -2 (no window scaling used)]
Checksum: 0xc276 [unverified]
[Checksum Status: Unverified]
Urgent Pointer: 0
√ [Timestamps]
        [Time since first frame in this TCP stream: 0.632926230 seconds]
[Time since previous frame in this TCP stream: 0.000881720 seconds]
[SEQ/ACK analysis]
        [The RTT to ACK the segment was: 0.000881720 seconds]
[iRTT: 0.630980867 seconds]
```

Figure 3: Layer 5-6 (TLS) Security Protocol Analysis

Layer 7 (Application Layer)

What I found: HTTP/HTTPS protocols

Proof: I can see this in my protocol hierarchy analysis

Important Information I Found:

- HTTP over TLS (HTTPS) this means the website is secure
- Secure web communication my data is protected

Now Each Protocol Helps in DataCommunication

Ethernet II (Layer 2)

What it does: Helps packets find the right device on my local network

How it works: Uses MAC addresses like house addresses to make sure packets go to

the right computer

IPv4 (Layer 3)

What it does: Helps packets travel between different networks

How it works: Uses IP addresses and TTL values to route packets from my

computer to websites on the internet

TCP (Layer 4)

What it does: Makes sure data arrives safely and in the right order

How it works: Checks that all packets arrive, puts them in the right order, and fixes

any errors

TLS (Layers 5-6)

What it does: Keeps my data safe and private

How it works: Encrypts my data so nobody else can read it, and checks that the

website is real

HTTP/HTTPS (Layer 7)

What it does: Handles web page requests and responses

How it works: Sends my request for a web page and receives the page content

securely

How Layer 3 Makes Routing Decisions

What I Found About TTL

Proof: I can see this in my screenshot network_conversations.png

- TTL Value: **64** (this means the packet can travel through 64 routers before it expires)
- Source IP: **76.76.21.21** (this is the matokeochap.com server I was visiting)
- Destination IP: 10.0.2.15 (this is my Kali VM computer)

Figure 4: How My Computer Talks to Different Servers

How Routing Decisions Are Made

- I can see my computer talks to many different IP addresses
- My local network uses 10.0.2.x addresses (this is my VirtualBox network)
- Internet servers use different IP addresses like 76.76.21.21
- TTL values help me understand how far packets travel

How Layer 4 Keeps Data Safe and in Order

TCP Handshake Process (How Connection Starts)

Proof: I can see this in my screenshot tcp_handshake.png

- 1. **SYN:** Frame 1 (My computer says "Hello matokeochap.com, can we talk?")
- 2. SYN-ACK: Frame 2 (matokeochap.com server says "Yes, let's talk!")
- 3. **ACK:** Frame 3 (My computer says "Great, let's start!")

Figure 5: How My Computer and matokeochap.com Server Start Talking

How TCP Keeps Data Safe

- Sequence Numbers: Like page numbers in a book keeps packets in order
- **Acknowledgment Numbers:** Like saying "I got your message" confirms packets arrived
- Checksums: Like a receipt checks if data was damaged during travel
- Window Size: Controls how much data can be sent at once

What Makes TCP Reliable

- TCP makes a connection first before sending data (like calling someone before talking)
- If a packet gets lost, TCP automatically sends it again
- TCP controls how fast data is sent so it doesn't overwhelm the network

TCP makes sure all data arrives in the correct order

✓ What Protocols I Found in My Capture

Figure 6: All the Protocols I Found in My Network Traffic

My Protocol Breakdown

- Ethernet: 100% (all packets use Ethernet framing)
- IPv4: 100% (all packets use IP addressing)

- TCP: 100% (all data uses reliable TCP transport)
- TLS: 100% (all communication is encrypted)
- HTTP: 100% (all traffic is web browsing)

© What I Learned from This Analysis

How Layer 3 Makes Routing Decisions

I learned that routing decisions are made by looking at IP addresses and TTL values. My network shows proper routing between my local computer (10.0.2.15) and the matokeochap.com server (76.76.21.21).

How Layer 4 Keeps Data Safe

TCP made sure my data was safe by:

- Doing a complete 3-way handshake to start the connection
- Using sequence and acknowledgment numbers to track all data
- · Checking for errors with checksums
- Controlling how much data is sent at once

How My Web Browsing Works

My captured traffic shows a complete secure web browsing session with:

- Strong TLS 1.2 encryption with AES-256-GCM to keep my data private
- Reliable TCP transport that makes sure all data arrives
- Smart IP routing that finds the best path to websites
- Ethernet framing that delivers data to the right computer

Appendix: Screenshots Reference

osi model layers.png - OSI Model Reference Diagram

osi shot1.png - Layer 2 (Ethernet) + Layer 3 (IPv4) Analysis

osi shot2.png - Layer 4 (TCP) Protocol Analysis

osi shot3.png - Layer 5-6 (TLS) Security Analysis

tcp_handshake.png - TCP 3-Way Handshake Process

protocol_hierarchy.png - Protocol Statistics and Hierarchy

network_conversations.png - Layer 3 Routing Analysis

Student: Kelvin Charles Meena (UG2024-5-150)

Tool Used: Wireshark on Kali Linux (eth0 - VirtualBox NAT Network)

Analysis Method: OSI Layer-by-Layer Protocol Analysis