

Dynamics in Linear Panel Data

Advanced Microeconometrics

Anders Munk-Nielsen 2022

Plan

1. Intro

2. Dynamic Models

- 3. Sequential Exogeneity
- 4. GMM

5. Arellano-Bond

Intro

Where are we in the course?

Part	Topic	Parameterization non-linear	Estimation non-linear	Dimension dim(x)	Numerical optimization	M-estimation (Part III)	Outcome (y_i)	Panel (c_i)
1	OLS	÷	÷	low	÷	✓	R	✓
П	LASSO	÷	✓	high	✓	÷	R	÷
IV	Probit	√	√	low	√	√	{0,1}	÷
	Tobit	√	✓	low	√	√	[0;∞)	÷
	Logit	√	✓	low	✓	✓	$\{1, 2,, J\}$	÷
	Sample selection	√	√	low	√	√	\mathbb{R} and $\{0,1\}$	÷
	Simulated Likelihood	√	✓	low	✓	✓	Any	✓
	Quantile Regression	÷	√	(low)	√	√	R	÷
	Non-parametric	√	(√)	00	÷	÷	R	÷

The case for active labor market policies

Data shows that there is a *correlation* between low earnings and exposure to long spells of unemployment. Many countries have programmes to push unemployed into work. Randomly pick a side and argue with your neighbor:

- 1. ALPs prevent a self-reinforcing negative spiral (e.g. self-confidence, human capital, network, ...)
- 2. ALPs are wasteful due to selection (e.g. meaningless bureaucratic tasks for those unable to work)

Relate the discussion to the Dynamic FE model below.

$$y_{it} = \rho y_{it-1} + c_i + u_{it}, \quad t = 1, ..., T.$$

Discussion

Dynamic FE Model

$$y_{it} = \rho y_{it-1} + c_i + u_{it}, \quad t = 1, ..., T.$$

Discuss

What's observably different between

- 1. High σ_c and low ρ , ("unobserved heterogeneity")
- 2. High ρ , low σ_c ("true state dependence").

What is the role of unemployment insurance depending on which regime is true?

Myths and Facts

- First four moments of the cross-sectional income distribution over the life-cycle.
- Black = data, green = model used in nearly all macro models.

Source: Druedahl & Munk-Nielsen (2020)

New insights into old issues

Income growth is a lot more heavy-tailed than a log normal can produce.

Source: Guvenen 2016

Business cycle

Myth: countercyclical variance

Fact: procyclical skewness

Interpretation:

- Myth: in recessions, the (symmetric) income risk increases.
- Fact: in recessions, you risk a large drop and probably will not get a bonus.

Source: Guvenen 2016

Firm Profit Persistence

Figure 1: AR(1) Estimate: POLS

Firm Profit Persistence: FE

Figure 2: AR(1) Estimate: FE

Dynamic panel data models: when we introduce a lagged outcome, y_{it-1} , (AR(1)) we cannot use FE or FD.

- **Dynamic panel data models:** when we introduce a lagged outcome, y_{it-1} , (AR(1)) we cannot use FE or FD.
- Introduction to panel data GMM: how to instrument in panel data settings.

- **Dynamic panel data models:** when we introduce a lagged outcome, y_{it-1} , (AR(1)) we cannot use FE or FD.
- Introduction to panel data GMM: how to instrument in panel data settings.
- The Arellano-Bond Estimator: FD estimation of an AR(1) model with fixed effects using instruments.

- **Dynamic panel data models:** when we introduce a lagged outcome, y_{it-1} , (AR(1)) we cannot use FE or FD.
- Introduction to panel data GMM: how to instrument in panel data settings.
- The Arellano-Bond Estimator: FD estimation of an AR(1) model with fixed effects using instruments.
- Put differently, the plan is
 - 1. Why FD and FE don't work,
 - 2. Why we can rescue FD with IV,
 - 3. How we can do big brain IV.

Dynamic Models

Plan

In this section:

- 1. Including y_{it-1} as regressor causes strict exogeneity (SE) breakdown
- 2. FE requires SE
- 3. FD requires something slightly weaker
- 4. What about y_{i0} ? (initial conditions)

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

Dynamic RE Model

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it}\beta + c_i + u_{it}.$$

■ What's new? Lagged outcome variable, regressors are $\mathbf{z}_{it} = (y_{it-1}, \mathbf{x}_{it})$

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

- What's new? Lagged outcome variable, regressors are $\mathbf{z}_{it} = (y_{it-1}, \mathbf{x}_{it})$
- 100\$ question: does this invalidate the RE / FE models?

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

- What's new? Lagged outcome variable, regressors are $z_{it} = (y_{it-1}, x_{it})$
- 100\$ question: does this invalidate the RE / FE models?
- **RE:** if $E(c_i \mathbf{x}_{it}) \neq \mathbf{0}$, we cannot use RE or POLS.

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

- What's new? Lagged outcome variable, regressors are $\mathbf{z}_{it} = (y_{it-1}, \mathbf{x}_{it})$
- 100\$ question: does this invalidate the RE / FE models?
- **RE:** if $E(c_i \mathbf{x}_{it}) \neq \mathbf{0}$, we cannot use RE or POLS.
- Strict exogeneity: $E(u_{it}|\mathbf{Z}_i,c_i)=0 \Rightarrow FE/FD$ are consistent.
 - Generally, we assume $c_i \perp \!\!\! \perp u_{it}$, so $\mathsf{E}(u_{it}|\mathsf{Z}_i,c_i) = \mathsf{E}(u_{it}|\mathsf{Z}_i)$ (" \perp " signifies independence)

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

- What's new? Lagged outcome variable, regressors are
 z_{it} = (y_{it-1}, x_{it})
- 100\$ question: does this invalidate the RE / FE models?
- **RE**: if $E(c_i \mathbf{x}_{it}) \neq \mathbf{0}$, we cannot use RE or POLS.
- Strict exogeneity: $E(u_{it}|\mathbf{Z}_i,c_i)=0 \Rightarrow FE/FD$ are consistent.
 - Generally, we assume c_i ⊥ u_{it}, so E(u_{it}|Z_i, c_i) = E(u_{it}|Z_i)
 ("⊥" signifies independence)
- Problem: y_{it} is in z_{it+1}, and y_{it} is a function of u_{it}, so future regressors have information on the current outcome...
 - \blacksquare ... proved mathematically on next slide \to

Strict Exogeneity Breakdown

Dynamic panel data model

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

Define the "regressors" $\mathbf{z}_{it} \equiv (y_{it-1}, \mathbf{x}_{it})$.

■ **Proposition:** strict exogeneity (SE), $E(u_{it}|\mathbf{z}_{i1},...,\mathbf{z}_{iT}) = 0$, breaks down when y_{it-1} is a regressor.

Strict Exogeneity Breakdown

Dynamic panel data model

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}.$$

Define the "regressors" $\mathbf{z}_{it} \equiv (y_{it-1}, \mathbf{x}_{it})$.

- **Proposition:** strict exogeneity (SE), $E(u_{it}|\mathbf{z}_{i1},...,\mathbf{z}_{iT}) = 0$, breaks down when y_{it-1} is a regressor.
- Proof: Note that if SE holds, then in particular $E(u_{it}\mathbf{z}_{is}) = \mathbf{0}$ must hold for all (t, s).

Strict Exogeneity Breakdown

Dynamic panel data model

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}.$$

Define the "regressors" $\mathbf{z}_{it} \equiv (y_{it-1}, \mathbf{x}_{it})$.

- **Proposition:** strict exogeneity (SE), $E(u_{it}|\mathbf{z}_{i1},...,\mathbf{z}_{iT}) = 0$, breaks down when y_{it-1} is a regressor.
- **Proof:** Note that if SE holds, then in particular $E(u_{it}\mathbf{z}_{is}) = \mathbf{0}$ must hold for all (t, s).
- Consider s = t + 1. Then $\mathbf{z}_{it+1} = (y_{it}, \mathbf{x}_{it+1})$, so

$$E(u_{it}y_{it}) = E[\underline{u_{it}}(\rho y_{it-1} + \mathbf{x}_{it+1}\beta + c_i + \underline{u_{it}})]$$

=
$$E(u_{it}^2) = \sigma_u^2 > 0. \quad \blacksquare$$

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

Dynamic RE Model

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it}\beta + c_i + u_{it}.$$

Insight: Strict exogeneity is violated by construction with a lagged regressor.

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

- Insight: Strict exogeneity is violated by construction with a lagged regressor.
- Moreover: $E(y_{it-1}c_i) \neq 0$ (write out the equation for period t-1)
 - ⇒ unobserved effects induce spurious state dependence:
 - Intuitively: "Even with $\rho = 0$, y_{it} will be persistent due to c_i ."

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

- Insight: Strict exogeneity is violated by construction with a lagged regressor.
- Moreover: $E(y_{it-1}c_i) \neq 0$ (write out the equation for period t-1)
 - ⇒ unobserved effects induce spurious state dependence:
 - Intuitively: "Even with $\rho = 0$, y_{it} will be persistent due to c_i ."
- ⇒ POLS is inconsistent.

Feedback effects

Note: It doesn't have to be an AR(1) model; regressors can have dynamics.

Static model with feedback

$$\mathbf{y}_{it} = \mathbf{z}_{it}\boldsymbol{\beta} + \delta h_{it} + c_i + u_{it}$$

$$h_{it} = \mathbf{z}_{it}\boldsymbol{\xi} + \eta \mathbf{y}_{it-1} + r_{it}$$

Feedback effects

Note: It doesn't have to be an AR(1) model; regressors can have dynamics.

Static model with feedback

$$y_{it} = \mathbf{z}_{it}\beta + \delta h_{it} + c_i + u_{it}$$

$$h_{it} = \mathbf{z}_{it}\xi + \eta y_{it-1} + r_{it}$$

• Claim: Strict exogeneity is violated by h_{it} .

Feedback effects

Note: It doesn't have to be an AR(1) model; regressors can have dynamics.

Static model with feedback

$$y_{it} = \mathbf{z}_{it}\beta + \delta h_{it} + c_i + u_{it}$$

$$h_{it} = \mathbf{z}_{it}\xi + \eta y_{it-1} + r_{it}$$

- Claim: Strict exogeneity is violated by h_{it} .
- **Proof:** take h_{it+1} and u_{it} :

$$E(u_{it}h_{it+1}) = E[(\mathbf{z}_{it+1}\boldsymbol{\xi} + \eta y_{it} + r_{it+1})u_{it}]$$

$$= \dots + \eta \underbrace{E(u_{it}u_{it})}_{\neq 0} + \dots \blacksquare$$

Recall: Exogeneity Conditions for FE

Claim

FE requires $E(u_{it}|\mathbf{z}_i) = 0$ (strict exogeneity) for consistency.

• Why? The transformed error term, $\ddot{u}_{it} \equiv u_{it} - \overline{u}_i$, must be exogenous to transformed regressors, $\ddot{\mathbf{z}}_{it} \equiv \mathbf{z}_{it} - \overline{\mathbf{z}}_i$.

Recall: Exogeneity Conditions for FE

Claim

FE requires $E(u_{it}|\mathbf{z}_i) = 0$ (strict exogeneity) for consistency.

- Why? The transformed error term, $\ddot{u}_{it} \equiv u_{it} \overline{u}_i$, must be exogenous to transformed regressors, $\ddot{\mathbf{z}}_{it} \equiv \mathbf{z}_{it} \overline{\mathbf{z}}_i$.
- Writing out:

$$E(\ddot{\mathbf{z}}'_{it}\ddot{u}_{it}) = E\left[(\mathbf{z}_{it} - \overline{\mathbf{z}}_{i})'(u_{it} - \overline{u}_{i})\right]$$

$$= E(\mathbf{z}'_{it}u_{it}) + E(\overline{\mathbf{z}}'_{i}\overline{u}_{i}) - E(\overline{\mathbf{z}}'_{i}u_{it}) - E(\mathbf{z}'_{it}\overline{u}_{i}).$$

Recall: Exogeneity Conditions for FE

Claim

FE requires $E(u_{it}|\mathbf{z}_i) = 0$ (strict exogeneity) for consistency.

- Why? The transformed error term, $\ddot{u}_{it} \equiv u_{it} \overline{u}_i$, must be exogenous to transformed regressors, $\ddot{\mathbf{z}}_{it} \equiv \mathbf{z}_{it} \overline{\mathbf{z}}_i$.
- Writing out:

$$E(\ddot{\mathbf{z}}'_{it}\ddot{u}_{it}) = E\left[(\mathbf{z}_{it} - \overline{\mathbf{z}}_{i})'(u_{it} - \overline{u}_{i})\right]$$

$$= E(\mathbf{z}'_{it}u_{it}) + E(\overline{\mathbf{z}}'_{i}\overline{u}_{i}) - E(\overline{\mathbf{z}}'_{i}u_{it}) - E(\mathbf{z}'_{it}\overline{u}_{i}).$$

- Take e.g. $E(\overline{\mathbf{z}}_i'u_{it}) = T^{-1} \sum_{s=1}^T E(\mathbf{z}_{is}'u_{it}).$
 - Hence, if $E(u_{it}\mathbf{z}_{is}) \neq 0$ for some s, then $E(\overline{\mathbf{z}}_i'u_{it}) \neq 0$.

Claim

FD only requires $E(u_{it}|\mathbf{z}_{it+1},\mathbf{z}_{it},\mathbf{z}_{it-1}) = 0$ for consistency.

• Why? Same idea – transformed errors, Δz_{it} and Δu_{it} , must be uncorrelated.

Claim

FD only requires $E(u_{it}|\mathbf{z}_{it+1},\mathbf{z}_{it},\mathbf{z}_{it-1})=0$ for consistency.

- Why? Same idea transformed errors, Δz_{it} and Δu_{it} , must be uncorrelated.
- Writing out

$$E(\Delta z'_{it} \Delta u_{it}) = E(z'_{it} u_{it}) - E(z'_{it} u_{it-1}) - E(z'_{it-1} u_{it}) + E(z'_{it-1} u_{it-1}).$$

Claim

FD only requires $E(u_{it}|\mathbf{z}_{it+1},\mathbf{z}_{it},\mathbf{z}_{it-1})=0$ for consistency.

- Why? Same idea transformed errors, Δz_{it} and Δu_{it} , must be uncorrelated.
- Writing out

$$E(\Delta \mathbf{z}'_{it} \Delta u_{it}) = E(\mathbf{z}'_{it} u_{it}) - E(\mathbf{z}'_{it} u_{it-1}) - E(\mathbf{z}'_{it-1} u_{it}) + E(\mathbf{z}'_{it-1} u_{it-1}).$$

ullet \Rightarrow it is enough to have

$$\mathsf{E}(u_{it}|\mathbf{z}_{it+1},\mathbf{z}_{it},\mathbf{z}_{it-1})=0.$$

Claim

FD only requires $E(u_{it}|\mathbf{z}_{it+1},\mathbf{z}_{it},\mathbf{z}_{it-1})=0$ for consistency.

- Why? Same idea transformed errors, Δz_{it} and Δu_{it} , must be uncorrelated.
- Writing out

$$E(\Delta \mathbf{z}'_{it} \Delta u_{it}) = E(\mathbf{z}'_{it} u_{it}) - E(\mathbf{z}'_{it} u_{it-1}) - E(\mathbf{z}'_{it-1} u_{it}) + E(\mathbf{z}'_{it-1} u_{it-1}).$$

■ ⇒ it is enough to have

$$\mathsf{E}(u_{it}|\mathbf{z}_{it+1},\mathbf{z}_{it},\mathbf{z}_{it-1})=0.$$

• Contemporaneous exogeneity only implies $E(z_{it}u_{it}) = 0$ and $E(z_{it-1}u_{it-1}) = 0$.

AR(1) model

$$y_{it} = \rho y_{it-1} + c_i + u_{it}, \quad u_{it} \sim \mathsf{IID}(0, \sigma_u^2), c_i \sim \mathsf{IID}(0, \sigma_\alpha^2).$$

AR(1) model

$$y_{it} = \rho y_{it-1} + c_i + u_{it}, \quad u_{it} \sim \mathsf{IID}(0, \sigma_u^2), c_i \sim \mathsf{IID}(0, \sigma_\alpha^2).$$

• Transforming with FD, we get

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta u_{it}.$$

AR(1) model

$$y_{it} = \rho y_{it-1} + c_i + u_{it}, \quad u_{it} \sim \mathsf{IID}(0, \sigma_u^2), c_i \sim \mathsf{IID}(0, \sigma_\alpha^2).$$

• Transforming with FD, we get

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta u_{it}.$$

Check exogeneity:

$$E(\Delta y_{it-1}\Delta u_{it}) = E(y_{it-1}u_{it}) - E(y_{it-1}u_{it-1}) - E(y_{it-2}u_{it}) + E(y_{it-2}u_{it-1}).$$

■ Enough to show that $E(y_{it-1}u_{it-1}) \neq 0$ to show $E(\Delta y_{it-1}\Delta u_{it}) \neq 0$.

Claim

$$\mathsf{E}(y_{it-1}u_{it-1})\neq 0$$

Proof: note that

$$E(y_{it-1}u_{it-1}) = E[(\rho y_{it-2} + c_i + u_{it-1})u_{it-1}]$$

$$= \underbrace{E(\rho y_{it-2}u_{it-1})}_{=0} + \underbrace{E(c_iu_{it-1})}_{=0} + \underbrace{E(u_{it-1}^2)}_{=\sigma_u^2}$$

• where $E(c_i u_{it}) = 0$ for all t (by independence assumption)

Claim

$$\mathsf{E}(y_{it-1}u_{it-1})\neq 0$$

Proof: note that

$$E(y_{it-1}u_{it-1}) = E[(\rho y_{it-2} + c_i + u_{it-1})u_{it-1}]$$

$$= \underbrace{E(\rho y_{it-2}u_{it-1})}_{=0} + \underbrace{E(c_iu_{it-1})}_{=0} + \underbrace{E(u_{it-1}^2)}_{=\sigma_u^2}$$

- where $E(c_i u_{it}) = 0$ for all t (by independence assumption)
- In conclusion: $E(y_{it-1}u_{it-1}) = \sigma_u^2 > 0$.

Initial Condition

■ Continuing the recursion yields ¡+-¿consider the first term

$$E(\rho y_{it-2} u_{it-1}) = \rho E[(\rho y_{it-3} + c_i + u_{it-2}) u_{it-1}]$$

= $\rho^2 E(y_{it-3} u_{it-1}) = \dots = \rho^{t-1} E(y_{i1} u_{it-1}).$

Initial Condition

Continuing the recursion yields ¡+-¿consider the first term

$$E(\rho y_{it-2}u_{it-1}) = \rho E[(\rho y_{it-3} + c_i + u_{it-2})u_{it-1}]$$

= $\rho^2 E(y_{it-3}u_{it-1}) = \dots = \rho^{t-1} E(y_{i1}u_{it-1}).$

Challenge: What happens in the first period?

$$y_{i1} = \rho y_{i0} + x'_{i1}\beta + c_i + u_{i1}.$$

- What to assume about y_{i0}?
- We need $E(y_{i0}u_{it-1}) = 0$.
 - \bullet Although $\rho^{t-1} \to 0,$ so the problem becomes smaller if T is large.

Conclusion: Consistency

	Consistency of		
Assumption	FE	FD	AB
$E(u_{it} \mathbf{z}_i) = 0 \; (strict \; exogeneity)$	√	√	√
$E(u_{it} \mathbf{z}_{it}) = 0$ (contemporaneous exogeneity)	÷	÷	÷
$E(u_{it} \mathbf{z}_{it},\mathbf{z}_{it-1},,\mathbf{z}_{i1}) = 0$ (sequential exogeneity)	÷	÷	\checkmark
$E(u_{it} \mathbf{z}_{it-1},\mathbf{z}_{it},\mathbf{z}_{it+1})=0$	÷	\checkmark	\checkmark

- Here, \checkmark means "consistent" and \div means "inconsistent."
- Arellano Bond (AB): possible to recover consistency by using instruments...
 - A GMM estimator.

Assumption: Sequential Exogeneity

$$\mathsf{E}(\mathit{u}_{\mathit{it}}|\mathbf{z}_{\mathit{i1}},...,\mathbf{z}_{\mathit{it}})=\mathbf{0}.$$

 Note: Both the FE and FD estimators are still inconsistent under sequential exogeneity.

$$\mathsf{E}(u_{it}|\mathbf{z}_{i1},...,\mathbf{z}_{it})=\mathbf{0}.$$

- Note: Both the FE and FD estimators are still inconsistent under sequential exogeneity.
- **Def.: Weak dependence:** $\{(\mathbf{z}_{it}, u_{it})\}_{t=1}^{\infty}$ is weakly dependent if correlations die out.

$$\mathsf{E}(u_{it}|\mathbf{z}_{i1},...,\mathbf{z}_{it})=\mathbf{0}.$$

- Note: Both the FE and FD estimators are still inconsistent under sequential exogeneity.
- **Def.: Weak dependence:** $\{(\mathbf{z}_{it}, u_{it})\}_{t=1}^{\infty}$ is weakly dependent if correlations die out.
- **FE**: the inconsistency of FE is of order $O(T^{-1})$ as $T \to \infty$
 - That is, it dies out.

$$\mathsf{E}(u_{it}|\mathbf{z}_{i1},...,\mathbf{z}_{it})=\mathbf{0}.$$

- Note: Both the FE and FD estimators are still inconsistent under sequential exogeneity.
- **Def.: Weak dependence:** $\{(\mathbf{z}_{it}, u_{it})\}_{t=1}^{\infty}$ is weakly dependent if correlations die out.
- **FE**: the inconsistency of FE is of order $O(T^{-1})$ as $T \to \infty$
 - That is, it dies out.
- **FD**: the inconsistency of FD does not die out.

$$\mathsf{E}(u_{it}|\mathbf{z}_{i1},...,\mathbf{z}_{it})=\mathbf{0}.$$

- Note: Both the FE and FD estimators are still inconsistent under sequential exogeneity.
- **Def.: Weak dependence:** $\{(\mathbf{z}_{it}, u_{it})\}_{t=1}^{\infty}$ is weakly dependent if correlations die out.
- **FE:** the inconsistency of FE is of order $O(T^{-1})$ as $T \to \infty$
 - That is, it dies out.
- **FD**: the inconsistency of FD does not die out.
- However: In this course, we assume fixed T but $N \to \infty$, so we do not care much about this (apart from mathematical joy)

Simple IV Idea

- However: sequential exogeneity implies that \mathbf{z}_{it-k} for $k \geq 1$ may be useful as *instruments*...
 - Sequential exogeneity tells us that y_{it-2} is a *valid* instrument.
 - Relevance: An empirical question whether it has any explanatory power...

Simple IV Idea

- However: sequential exogeneity implies that z_{it-k} for k ≥ 1 may be useful as instruments...
 - Sequential exogeneity tells us that y_{it-2} is a valid instrument.
 - Relevance: An empirical question whether it has any explanatory power...
- IV idea: For the model

$$y_{it} = \rho y_{it-1} + c_i + u_{it},$$

estimate

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta u_{it},$$

and use y_{it-2} (or Δy_{it-2}) as an instrument for Δy_{it-1} .

⇒ see exercises.

Plan

Plan for this section:

- 1. Intro to linear GMM
- 2. Two step estimator
 - 2.1 Estimate with simple weight matrix
 - 2.2 Update weight-matrix and re-estimate
- 3. Test of over-identifying restrictions.
- 4. The Arellano-Bond Estimator

Panel GMM

Model:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}$$

Panel GMM

Model:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}$$

• Stacking over T gives

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i.$$

Model:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}$$

• Stacking over T gives

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i.$$

■ **Assume** we have access to a set of **instruments**, \mathbf{Z}_i ($T \times r$ with $r \geq K$), that are **exogenous**, i.e.

$$\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}.$$

These are our moment conditions.

Panel GMM

Model:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}$$

Stacking over T gives

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i.$$

■ Assume we have access to a set of instruments, \mathbf{Z}_i ($T \times r$ with $r \geq K$), that are exogenous, i.e.

$$\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}.$$

- These are our moment conditions.
- Example: Suppose K = r = 1. Then the moment conditions are $E(z_{it}u_{it}) = 0$ for t = 1, ..., T.

Panel GMM

Model:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}$$

Stacking over T gives

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i$$
.

■ Assume we have access to a set of instruments, \mathbf{Z}_i ($T \times r$ with $r \geq K$), that are exogenous, i.e.

$$\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}.$$

- These are our moment conditions.
- Example: Suppose K = r = 1. Then the moment conditions are $E(z_{it}u_{it}) = 0$ for t = 1, ..., T.
- **Idea:** Replace "E" with " $N^{-1}\sum_{i}$ " and \mathbf{u}_{i} with $\mathbf{y}_{i} \mathbf{X}_{i}\beta$, and choose β to minimize

$$\|\sum_{i=1}^N \mathbf{Z}_i(\mathbf{y}_i - \mathbf{X}_i\boldsymbol{\beta}) - \mathbf{0}_{r\times 1}\|_W$$

where $\|\mathbf{a}\|_{\mathbf{W}} \equiv \mathbf{a}' \mathbf{W} \mathbf{a}$.

GMM Estimator

$$\begin{split} \hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} &= \arg\min_{\boldsymbol{\beta}} \, Q_{N}(\boldsymbol{\beta}), \\ \text{where } Q_{N}(\boldsymbol{\beta}) &= \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}) \right]' \, \mathbf{W}_{N} \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}) \right]. \end{split}$$

- $W_N(r \times r)$ is a weighting matrix
 - **Default** (in practice): $W_N = I_{r \times r}$ (identity matrix).
 - Implication: affects efficiency but not consistency.

GMM Estimator

$$\begin{split} \hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} &= \arg\min_{\boldsymbol{\beta}} \, Q_{N}(\boldsymbol{\beta}), \\ \text{where } Q_{N}(\boldsymbol{\beta}) &= \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}) \right]' \, \mathbf{W}_{N} \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}) \right]. \end{split}$$

- $W_N(r \times r)$ is a weighting matrix
 - **Default** (in practice): $\mathbf{W}_N = \mathbf{I}_{r \times r}$ (identity matrix).
 - Implication: affects efficiency but not consistency.
- Note: OLS is min $\sum_{i} (\cdot)^2$; GMM is min $[\sum_{i} (\cdot)]^2$ (when $\mathbf{W}_N = \mathbf{I}_{r \times r})$

GMM Estimator

$$\begin{split} \hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} &= \arg\min_{\boldsymbol{\beta}} \, Q_{N}(\boldsymbol{\beta}), \\ \text{where } Q_{N}(\boldsymbol{\beta}) &= \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}) \right]' \, \mathbf{W}_{N} \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}) \right]. \end{split}$$

- $W_N(r \times r)$ is a weighting matrix
 - **Default** (in practice): $\mathbf{W}_N = \mathbf{I}_{r \times r}$ (identity matrix).
 - Implication: affects efficiency but not consistency.
- Note: OLS is min $\sum_{i}(\cdot)^2$; GMM is min $[\sum_{i}(\cdot)]^2$ (when $\mathbf{W}_N = \mathbf{I}_{r \times r}$)
- Argmin? the argument (input) that minimizes
 - Here: turns out to be solvable in closed form
 - Later: solve more general problems

Linear GMM

Panel GMM Estimator

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \arg\min_{\boldsymbol{\beta}} \left[\sum_{i=1}^{N} \mathbf{Z}_i(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta}) \right]' \mathbf{W}_N \left[\sum_{i=1}^{N} \mathbf{Z}_i(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta}) \right].$$

 Turns out that the linearity implies a closed form solution to the minimization problem.

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \arg\min_{\boldsymbol{\beta}} \left[\sum_{i=1}^{N} \mathbf{Z}_i(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta}) \right]' \mathbf{W}_N \left[\sum_{i=1}^{N} \mathbf{Z}_i(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta}) \right].$$

- Turns out that the linearity implies a closed form solution to the minimization problem.
- Example: if K = r = T = 1 and $\mathbf{W}_N = 1$

$$\min_{\beta} \left[\sum_{i=1}^{N} z_i (y_i - x_i \beta) \right]^2$$

$$\Rightarrow FOC : 2 \left[\sum_{i} z_{i} (y_{i} - x_{i} \hat{\beta}) \right] \left[\sum_{i} z_{i} (-x_{i}) \right] = 0$$

$$\Leftrightarrow \left(\sum_{i} z_{i} x_{i} \right) \left(\sum_{i} z_{i} x_{i} \right) \hat{\beta} = \left(\sum_{i} z_{i} x_{i} \right) \left(\sum_{i} z_{i} y_{i} \right)$$

$$\Leftrightarrow \hat{\beta} = \left[\left(\sum_{i} z_{i} x_{i} \right) \left(\sum_{i} z_{i} x_{i} \right) \right]^{-1} \left(\sum_{i} z_{i} x_{i} \right) \left(\sum_{i} z_{i} y_{i} \right).$$

Linear GMM

Linear Panel GMM Estimator

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \left[\left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{y}_{i} \right).$$

• In matrix form, with (X, X), (X, X), (X, X)

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = (\mathbf{X}'\mathbf{Z}\mathbf{W}_{N}\mathbf{Z}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Z}\mathbf{W}_{N}\mathbf{Z}'\mathbf{Y}).$$

1-step GMM (2SLS)

1-step GMM

Estimate $\hat{\boldsymbol{\beta}}_{PGMM}$ using $\mathbf{W}_N = (N^{-1} \sum_i \mathbf{Z}_i' \mathbf{Z}_i)^{-1}$.

- Motivation: Identical to running 2-stage least squares (2SLS):
 - 1. Regress \mathbf{X}_i on \mathbf{Z}_i , compute prediction $\hat{\mathbf{X}}_i = \hat{\gamma}\mathbf{Z}_i = (\sum_i \mathbf{Z}_i'\mathbf{Z}_i)^{-1} \left(\sum_i \mathbf{Z}_i'\mathbf{X}_i\right)\mathbf{Z}_i$,
 - 2. Regress \mathbf{y}_i on $\hat{\mathbf{X}}_i$.

1-step GMM (2SLS)

1-step GMM

Estimate $\hat{\boldsymbol{\beta}}_{PGMM}$ using $\mathbf{W}_{N} = (N^{-1} \sum_{i} \mathbf{Z}_{i}' \mathbf{Z}_{i})^{-1}$.

- Motivation: Identical to running 2-stage least squares (2SLS):
 - 1. Regress \mathbf{X}_i on \mathbf{Z}_i , compute prediction $\hat{\mathbf{X}}_i = \hat{\gamma}\mathbf{Z}_i = (\sum_i \mathbf{Z}_i'\mathbf{Z}_i)^{-1} (\sum_i \mathbf{Z}_i'\mathbf{X}_i) \mathbf{Z}_i$,
 - 2. Regress \mathbf{y}_i on $\hat{\mathbf{X}}_i$.
- Efficiency occurs when \mathbf{u}_i are IID (conditional on \mathbf{Z}_i), i.e. $\mathbf{u}_i | \mathbf{Z}_i \sim \text{IID}(\mathbf{0}, \sigma^2 \mathbf{I}_{T \times T})$.

1-step GMM (2SLS)

1-step GMM

Estimate $\hat{\boldsymbol{\beta}}_{PGMM}$ using $\mathbf{W}_{N} = (N^{-1} \sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i})^{-1}$.

- Motivation: Identical to running 2-stage least squares (2SLS):
 - 1. Regress \mathbf{X}_i on \mathbf{Z}_i , compute prediction $\hat{\mathbf{X}}_i = \hat{\gamma}\mathbf{Z}_i = (\sum_i \mathbf{Z}_i'\mathbf{Z}_i)^{-1} \left(\sum_i \mathbf{Z}_i'\mathbf{X}_i\right)\mathbf{Z}_i$,
 - 2. Regress \mathbf{y}_i on $\hat{\mathbf{X}}_i$.
- Efficiency occurs when \mathbf{u}_i are IID (conditional on \mathbf{Z}_i), i.e. $\mathbf{u}_i | \mathbf{Z}_i \sim \text{IID}(0, \sigma^2 \mathbf{I}_{T \times T})$.
- Fun linear algebra: Let P_Z ≡ Z(Z'Z)⁻¹Z' (projection matrix, idempotent and symmetric)
 - Then $\hat{\mathbf{X}}_i = \mathbf{P}_Z \mathbf{Z}_i$ and the estimator becomes

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \hat{\boldsymbol{\beta}}_{\mathsf{2SLS}} = (\mathbf{X}'\mathbf{P}_{\mathsf{Z}}\mathbf{X})^{-1}(\mathbf{X}'\mathbf{P}_{\mathsf{Z}}\mathbf{Y}).$$

1-step GMM (2SLS)

1-step GMM

Estimate $\hat{\boldsymbol{\beta}}_{PGMM}$ using $\mathbf{W}_{N} = (N^{-1} \sum_{i} \mathbf{Z}_{i}' \mathbf{Z}_{i})^{-1}$.

- Motivation: Identical to running 2-stage least squares (2SLS):
 - 1. Regress \mathbf{X}_i on \mathbf{Z}_i , compute prediction $\hat{\mathbf{X}}_i = \hat{\gamma}\mathbf{Z}_i = (\sum_i \mathbf{Z}_i'\mathbf{Z}_i)^{-1} \left(\sum_i \mathbf{Z}_i'\mathbf{X}_i\right)\mathbf{Z}_i$,
 - 2. Regress \mathbf{y}_i on $\hat{\mathbf{X}}_i$.
- Efficiency occurs when \mathbf{u}_i are IID (conditional on \mathbf{Z}_i), i.e. $\mathbf{u}_i | \mathbf{Z}_i \sim \text{IID}(0, \sigma^2 \mathbf{I}_{T \times T})$.
- Fun linear algebra: Let P_Z ≡ Z(Z'Z)⁻¹Z' (projection matrix, idempotent and symmetric)
 - Then $\hat{\mathbf{X}}_i = \mathbf{P}_Z \mathbf{Z}_i$ and the estimator becomes

$$\hat{\beta}_{\mathsf{PGMM}} = \hat{\beta}_{\mathsf{2SLS}} = (\mathbf{X}'\mathbf{P}_{\mathsf{Z}}\mathbf{X})^{-1}(\mathbf{X}'\mathbf{P}_{\mathsf{Z}}\mathbf{Y}).$$

• Note: if $Z_i = X_i$ (no instruments), then $P_Z X = X$ (predicting X with itself) and $X'P_Z = (P'_Z X) = X$, so it simplifies to OLS.

1-step GMM (2SLS)

1-step GMM

Estimate $\hat{\boldsymbol{\beta}}_{PGMM}$ using $\mathbf{W}_{N} = (N^{-1} \sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i})^{-1}$.

- Motivation: Identical to running 2-stage least squares (2SLS):
 - 1. Regress \mathbf{X}_i on \mathbf{Z}_i , compute prediction $\hat{\mathbf{X}}_i = \hat{\gamma}\mathbf{Z}_i = (\sum_i \mathbf{Z}_i'\mathbf{Z}_i)^{-1} \left(\sum_i \mathbf{Z}_i'\mathbf{X}_i\right)\mathbf{Z}_i$,
 - 2. Regress \mathbf{y}_i on $\hat{\mathbf{X}}_i$.
- Efficiency occurs when \mathbf{u}_i are IID (conditional on \mathbf{Z}_i), i.e. $\mathbf{u}_i | \mathbf{Z}_i \sim \text{IID}(\mathbf{0}, \sigma^2 \mathbf{I}_{T \times T})$.
- Fun linear algebra: Let P_Z ≡ Z(Z'Z)⁻¹Z' (projection matrix, idempotent and symmetric)
 - Then $\hat{\mathbf{X}}_i = \mathbf{P}_Z \mathbf{Z}_i$ and the estimator becomes

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \hat{\boldsymbol{\beta}}_{\mathsf{2SLS}} = (\mathbf{X}'\mathbf{P}_{Z}\mathbf{X})^{-1}(\mathbf{X}'\mathbf{P}_{Z}\mathbf{Y}).$$

- Note: if $Z_i = X_i$ (no instruments), then $P_Z X = X$ (predicting X with itself) and $X'P_Z = (P'_T X) = X$, so it simplifies to OLS.
- Problem: with NT > 100,000, P_Z takes more memory than is available on a typical laptop to store.

2-step GMM

2-step GMM

- 1. Obtain a consistent (but inefficient) estimate of β using $\hat{\beta}_{1\text{step}}$ and compute $\hat{\mathbf{u}}_i \equiv \mathbf{y}_i \mathbf{X}_i \beta$.
- 2. Compute the estimate

$$\begin{split} \hat{\boldsymbol{\beta}}_{\text{2step}} &= \left[\left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \hat{\mathbf{S}}^{-1} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \hat{\mathbf{S}}^{-1} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{y}_{i} \right). \end{split}$$
 where $\hat{\mathbf{S}} = N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i}' \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}' \mathbf{Z}_{i} \quad (r \times r).$

- Efficiency? It turns out that we minimize $V(\hat{\beta}_{PGMM})$ by setting $\mathbf{W}_N = \mathbf{S}^{-1}$.
 - Intuition: put less weight on imprecise instruments.

2-step GMM

- 1. Obtain a consistent (but inefficient) estimate of β using $\hat{\beta}_{1\text{step}}$ and compute $\hat{\mathbf{u}}_i \equiv \mathbf{y}_i \mathbf{X}_i \beta$.
- 2. Compute the estimate

$$\begin{split} \hat{\boldsymbol{\beta}}_{\text{2step}} &= \left[\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i} \right) \hat{\mathbf{S}}^{-1} \left(\sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i} \right) \hat{\mathbf{S}}^{-1} \left(\sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{y}_{i} \right). \end{split}$$
 where $\hat{\mathbf{S}} = N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\prime} \mathbf{Z}_{i} \quad (r \times r).$

- Efficiency? It turns out that we minimize $V(\hat{\beta}_{PGMM})$ by setting $\mathbf{W}_N = \mathbf{S}^{-1}$.
 - Intuition: put less weight on imprecise instruments.
 - However: it might be possible to improve on a 2-step procedure with an imprecise 1st stage...
 [not covered here]

2-step GMM

- 1. Obtain a consistent (but inefficient) estimate of β using $\hat{\beta}_{1\text{step}}$ and compute $\hat{\mathbf{u}}_i \equiv \mathbf{y}_i \mathbf{X}_i \beta$.
- 2. Compute the estimate

$$\begin{split} \hat{\boldsymbol{\beta}}_{2\mathsf{step}} &= \left[\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i} \right) \hat{\mathbf{S}}^{-1} \left(\sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i} \right) \hat{\mathbf{S}}^{-1} \left(\sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{y}_{i} \right). \end{split}$$
 where $\hat{\mathbf{S}} = N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\prime} \mathbf{Z}_{i} \quad (r \times r).$

- Efficiency? It turns out that we minimize $V(\hat{\beta}_{PGMM})$ by setting $\mathbf{W}_N = \mathbf{S}^{-1}$.
 - Intuition: put less weight on imprecise instruments.
 - However: it might be possible to improve on a 2-step procedure with an imprecise 1st stage...
 [not covered here]
- Hence: if $\hat{\mathbf{S}}$ is consistent for $\mathbf{S} \equiv \mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i\mathbf{u}_i'\mathbf{Z}_i)$, then using $\mathbf{W}_N = \hat{\mathbf{S}}^{-1}$ works best

• The PGMM estimator is defined as

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \left[\left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{y}_{i} \right).$$

• The PGMM estimator is defined as

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \left[\left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{y}_{i} \right).$$

• Recall our moment conditions, $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$.

The PGMM estimator is defined as

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \left[\left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{y}_{i} \right).$$

- Recall our moment conditions, $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$.
- CLT gives

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}\mathbf{Z}_{i}'\mathbf{u}_{i}\stackrel{d}{\rightarrow}\mathcal{N}(\mathbf{0},\mathbf{S}),$$

• where independence over i gives $S = E(Z'_i u_i u'_i Z_i)$

The PGMM estimator is defined as

$$\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}} = \left[\left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \mathbf{y}_{i} \right).$$

- Recall our moment conditions, $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$.
- CLT gives

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}\mathbf{Z}_{i}'\mathbf{u}_{i}\stackrel{d}{\rightarrow}\mathcal{N}(\mathbf{0},\mathbf{S}),$$

- where independence over i gives $S = E(Z'_iu_iu'_iZ_i)$
- Intuition for variance: let

$$\mathbf{C} \equiv \left[\left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \right]^{-1} \left(\sum_{i} \mathbf{X}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N}.$$

$$V(\hat{\boldsymbol{\beta}}_{PGMM}|\mathbf{X},\mathbf{Z}) = \mathbf{CSC}'.$$

Panel-robust PGMM Variance Estimator

$$\hat{\mathsf{V}}(\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}}) = N \left(\mathbf{X}' \mathbf{Z} \mathbf{W}_N \mathbf{Z}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W}_N \hat{\mathbf{S}} \mathbf{W}_N \mathbf{Z}' \mathbf{X} \left(\mathbf{X}' \mathbf{Z} \mathbf{W}_N \mathbf{Z}' \mathbf{X} \right)^{-1}$$

Panel-robust PGMM Variance Estimator

$$\hat{V}(\hat{\boldsymbol{\beta}}_{\text{PGMM}}) = N \left(\boldsymbol{X}' \boldsymbol{Z} \boldsymbol{W}_{N} \boldsymbol{Z}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Z} \boldsymbol{W}_{N} \hat{\boldsymbol{S}} \boldsymbol{W}_{N} \boldsymbol{Z}' \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{Z} \boldsymbol{W}_{N} \boldsymbol{Z}' \boldsymbol{X} \right)^{-1}$$

 $\begin{tabular}{ll} \bullet & \textbf{2-step GMM:} & \text{with } \mathbf{W}_N^{\text{opt}} = \mathbf{\hat{S}}^{-1} \equiv N^{-1} \sum_{i=1}^N \mathbf{Z}_i' \hat{\mathbf{u}}_i \hat{\mathbf{u}}_i' \mathbf{Z}_i, \text{ this simplifies} \\ & \hat{\mathbf{V}}(\hat{\boldsymbol{\beta}}_{\text{2SGMM}}) = N \left(\mathbf{X}' \mathbf{Z} \mathbf{W}_N^{\text{opt}} \mathbf{Z}' \mathbf{X} \right)^{-1}. \end{tabular}$

• Note: if $\hat{\mathbf{S}}$ is not normalized by N^{-1} , the N in front disappears.

Panel-robust PGMM Variance Estimator

$$\hat{V}(\hat{\boldsymbol{\beta}}_{\text{PGMM}}) = N \left(\boldsymbol{X}' \boldsymbol{Z} \boldsymbol{W}_{N} \boldsymbol{Z}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Z} \boldsymbol{W}_{N} \hat{\boldsymbol{S}} \boldsymbol{W}_{N} \boldsymbol{Z}' \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{Z} \boldsymbol{W}_{N} \boldsymbol{Z}' \boldsymbol{X} \right)^{-1}$$

 $\begin{tabular}{ll} \bullet & \textbf{2-step GMM:} \ \mbox{with} \ \begin{tabular}{ll} \begin{tabular}{ll} \mathbf{W}_N^{\rm opt} = \hat{\mathbf{S}}^{-1} \equiv N^{-1} \sum_{i=1}^N \mathbf{Z}_i' \hat{\mathbf{u}}_i \hat{\mathbf{u}}_i' \mathbf{Z}_i, \ \mbox{this simplifies} \\ \\ \hat{\mathbf{V}}(\hat{\boldsymbol{\beta}}_{\rm 2SGMM}) = N \left(\mathbf{X}' \mathbf{Z} \mathbf{W}_N^{\rm opt} \mathbf{Z}' \mathbf{X} \right)^{-1}. \end{array}$

- Note: if $\hat{\mathbf{S}}$ is not normalized by N^{-1} , the N in front disappears.
- Efficiency: 2-step GMM is optimal given $E(\mathbf{Z}'\mathbf{u}) = \mathbf{0}_{T \times 1}$.

Panel-robust PGMM Variance Estimator

$$\hat{\mathsf{V}}(\hat{\boldsymbol{\beta}}_{\mathsf{PGMM}}) = \mathit{N}\left(\mathbf{X}'\mathbf{Z}\mathbf{W}_{\mathit{N}}\mathbf{Z}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{Z}\mathbf{W}_{\mathit{N}}\hat{\mathbf{S}}\mathbf{W}_{\mathit{N}}\mathbf{Z}'\mathbf{X}\left(\mathbf{X}'\mathbf{Z}\mathbf{W}_{\mathit{N}}\mathbf{Z}'\mathbf{X}\right)^{-1}$$

■ 2-step GMM: with $\mathbf{W}_N^{\text{opt}} = \hat{\mathbf{S}}^{-1} \equiv N^{-1} \sum_{i=1}^N \mathbf{Z}_i' \hat{\mathbf{u}}_i \hat{\mathbf{u}}_i' \mathbf{Z}_i$, this simplifies

$$\hat{\mathbf{V}}(\hat{\boldsymbol{\beta}}_{\mathrm{2SGMM}}) = N \left(\mathbf{X}' \mathbf{Z} \mathbf{W}_N^{\mathrm{opt}} \mathbf{Z}' \mathbf{X} \right)^{-1}.$$

- Note: if $\hat{\mathbf{S}}$ is not normalized by N^{-1} , the N in front disappears.
- Efficiency: 2-step GMM is optimal given $E(\mathbf{Z}'\mathbf{u}) = \mathbf{0}_{T \times 1}$.
- More generally: we might have $E(u|\mathbf{Z}) = \mathbf{0}_{T \times 1}...$
 - ... this condition implies $\mathsf{E}(\mathsf{Z}'\mathsf{u})=\mathsf{0}$, but also $\mathsf{E}[\mathit{f}(\mathsf{Z})'\mathsf{u}]=\mathsf{0}$
 - I.e. u is uncorrelated with any function of Z.

• Question: can we test whether $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$ is satisfied?

- Question: can we test whether $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$ is satisfied?
- Just identified case: when r = K, we are able to set $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i = \mathbf{0}_{r \times 1}$ exactly.
 - I.e. we can make the instruments and the residual exactly uncorrelated.
 - (like how the OLS residual is uncorrelated with the residual by construction)

- Question: can we test whether $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$ is satisfied?
- Just identified case: when r = K, we are able to set $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i = \mathbf{0}_{r \times 1}$ exactly.
 - I.e. we can make the instruments and the residual exactly uncorrelated.
 - (like how the OLS residual is uncorrelated with the residual by construction)
- When r > K, we have r K instruments "too many."
 - We say that "we have r K overidentifying restrictions"

- Question: can we test whether $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$ is satisfied?
- Just identified case: when r = K, we are able to set $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i = \mathbf{0}_{r \times 1}$ exactly.
 - I.e. we can make the instruments and the residual exactly uncorrelated.
 - (like how the OLS residual is uncorrelated with the residual by construction)
- When r > K, we have r K instruments "too many."
 - We say that "we have r K overidentifying restrictions"
 - \Rightarrow we might be unable to make $\frac{1}{N} \sum_{i} \mathbf{Z}_{i}' \hat{\mathbf{u}}_{i}$ zero

- Question: can we test whether $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$ is satisfied?
- Just identified case: when r = K, we are able to set $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i = \mathbf{0}_{r \times 1}$ exactly.
 - I.e. we can make the instruments and the residual exactly uncorrelated.
 - (like how the OLS residual is uncorrelated with the residual by construction)
- When r > K, we have r K instruments "too many."
 - We say that "we have r K overidentifying restrictions"
 - \bullet \Rightarrow we might be unable to make $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i$ zero
- The null: \mathcal{H}_0 : $\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$, so all moments are valid.

- Question: can we test whether $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$ is satisfied?
- Just identified case: when r = K, we are able to set $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i = \mathbf{0}_{r \times 1}$ exactly.
 - I.e. we can make the instruments and the residual exactly uncorrelated.
 - (like how the OLS residual is uncorrelated with the residual by construction)
- When r > K, we have r K instruments "too many."
 - We say that "we have r K overidentifying restrictions"
 - \Rightarrow we might be unable to make $\frac{1}{N} \sum_{i} \mathbf{Z}_{i}' \hat{\mathbf{u}}_{i}$ zero
- The null: \mathcal{H}_0 : $\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$, so all moments are valid.
- Alternative: many things can cause $\mathsf{E}(\mathsf{Z}_i'\mathsf{u}_i) \neq \mathsf{0}_{r \times 1}$, including
 - Incorrect functional form,
 - Endogeneity for one or more of our instruments,
 - etc.

- Question: can we test whether $E(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$ is satisfied?
- Just identified case: when r = K, we are able to set $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i = \mathbf{0}_{r \times 1}$ exactly.
 - I.e. we can make the instruments and the residual exactly uncorrelated.
 - (like how the OLS residual is uncorrelated with the residual by construction)
- When r > K, we have r K instruments "too many."
 - We say that "we have r K overidentifying restrictions"
 - \bullet \Rightarrow we might be unable to make $\frac{1}{N} \sum_i \mathbf{Z}_i' \hat{\mathbf{u}}_i$ zero
- The null: \mathcal{H}_0 : $\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i) = \mathbf{0}_{r \times 1}$, so all moments are valid.
- Alternative: many things can cause $E(\mathbf{Z}_i'\mathbf{u}_i) \neq \mathbf{0}_{r \times 1}$, including
 - Incorrect functional form,
 - Endogeneity for one or more of our instruments,
 - etc.
- Intuition: if all moments are valid but some are not needed, the true β can satisfy them all... up to sampling noise.

Test of Overidentifying Restrictions

The Sargen Test of Overidentifying Restrictions

Under the null hypothesis, \mathcal{H}_0 : $\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i)=\mathbf{0}$, and for \mathbf{Z} satisfying the rank condition, the test statistic

$$\mathsf{OIR} \equiv \left(\textstyle\sum_{i} \mathbf{Z}_{i}' \hat{\mathbf{u}}_{i}\right)' \left(\mathcal{N} \hat{\mathbf{S}}\right)^{-1} \left(\textstyle\sum_{i} \mathbf{Z}_{i}' \hat{\mathbf{u}}_{i}\right)$$

satisfies that

$$\mathsf{OIR} \overset{d}{\to} \chi^2(r-K).$$

Test of Overidentifying Restrictions

The Sargen Test of Overidentifying Restrictions

Under the null hypothesis, \mathcal{H}_0 : $\mathsf{E}(\mathbf{Z}_i'\mathbf{u}_i)=\mathbf{0}$, and for \mathbf{Z} satisfying the rank condition, the test statistic

$$\mathsf{OIR} \equiv \left(\textstyle\sum_{i} \mathbf{Z}_{i}' \hat{\mathbf{u}}_{i}\right)' \left(\textit{N}\hat{\mathbf{S}}\right)^{-1} \left(\textstyle\sum_{i} \mathbf{Z}_{i}' \hat{\mathbf{u}}_{i}\right)$$

satisfies that

$$\mathsf{OIR} \overset{d}{\to} \chi^2(r-K).$$

- Robustness: $\hat{\mathbf{S}} = N^{-1} \sum_{i=1}^{N} \mathbf{Z}_i' \hat{\mathbf{u}}_i \hat{\mathbf{u}}_i' \mathbf{Z}_i$ is robust to
 - Heteroskedasticity,
 - Serial correlation of u_{it} over t (within a given i).

Arellano-Bond

Arellano Bond

Model

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

We assume that $u_{it} \sim \text{IID}(0, \sigma_u^2)$.

Arellano Bond

Model

$$y_{it} = \rho y_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + c_i + u_{it}.$$

We assume that $u_{it} \sim \text{IID}(0, \sigma_u^2)$.

- Motivation: we showed that strict exogeneity is invalidated by construction
- Goal: recover consistency for FD under sequential exogeneity
 - FE cannot be saved, strict exogeneity is required.
 - FD is salvageable.

FD Estimator

Model in First Differences

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta \mathbf{x}'_{ti} \boldsymbol{\beta} + \Delta u_{it}.$$

■ The problem: by construction, $\Delta y_{it-1} \equiv y_{it-1} + y_{it-2}$ is correlated with $\Delta u_{it} \equiv u_{it} - u_{it-1}$.

FD Estimator

Model in First Differences

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta \mathbf{x}'_{ti} \boldsymbol{\beta} + \Delta u_{it}.$$

- The problem: by construction, $\Delta y_{it-1} \equiv y_{it-1} + y_{it-2}$ is correlated with $\Delta u_{it} \equiv u_{it} u_{it-1}$.
- **Solution:** use y_{it-2} as an instrument in period it.
 - I.e. use $E(y_{it-2}\Delta u_{it})=0$ as an orthogonality condition.

FD Estimator

Model in First Differences

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta \mathbf{x}'_{ti} \boldsymbol{\beta} + \Delta u_{it}.$$

- The problem: by construction, $\Delta y_{it-1} \equiv y_{it-1} + y_{it-2}$ is correlated with $\Delta u_{it} \equiv u_{it} u_{it-1}$.
- **Solution:** use y_{it-2} as an instrument in period it.
 - I.e. use $E(y_{it-2}\Delta u_{it}) = 0$ as an orthogonality condition.
- Validity comes from the fact that u_{it} are IID and thus serially uncorrelated:

$$E(y_{it-2}\Delta u_{it}) = E[(\rho y_{it-3} + \mathbf{x}_{it-2}\beta + c_i + u_{it-2})(u_{it} - u_{it-1})]$$

= $\rho E(y_{it-3}\Delta u_{it}) = ... = \rho^{t-2-1} E(y_{i1}\Delta u_{it}) = 0$

since our data has no y_{i0}.

More Instruments for Δy_{it-1} ?

• So far: shown that $E(y_{it-2}\Delta u_{it}) = 0$ is valid.

More Instruments for Δy_{it-1} ?

- So far: shown that $E(y_{it-2}\Delta u_{it}) = 0$ is valid.
- Turns out: $E(y_{is}\Delta u_{it}) = 0$ for all $s \leq t 2$.
 - No instruments available for t = 1, 2.

More Instruments for Δy_{it-1} ?

- So far: shown that $E(y_{it-2}\Delta u_{it}) = 0$ is valid.
- Turns out: $E(y_{is}\Delta u_{it}) = 0$ for all $s \leq t 2$.
 - No instruments available for t = 1, 2.
- Telescoping list of instruments:

$$\mathbf{z}_{i3} = (y_{i1})
\mathbf{z}_{i4} = (y_{i1} \ y_{i2})
\mathbf{z}_{i5} = (y_{i1} \ y_{i2} \ y_{i3})
\mathbf{z}_{i6} = (y_{i1} \ y_{i2} \ y_{i3} \ y_{i4})
\vdots
\mathbf{z}_{iT} = (y_{i1} \ y_{i2} \ y_{i3} \ y_{i4} \ \cdots \ y_{iT-2})$$

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta \mathbf{x}_{it} \boldsymbol{\beta} + \Delta u_{it}.$$

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta \mathbf{x}_{it} \boldsymbol{\beta} + \Delta u_{it}.$$

- What about instruments relating to Δx_{it} ?
 - \Rightarrow depends on what we are willing to assume about x_{it} .

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta \mathbf{x}_{it} \boldsymbol{\beta} + \Delta u_{it}.$$

- What about instruments relating to Δx_{it} ?
 - \Rightarrow depends on what we are willing to assume about x_{it} .
- Strictly exogenous: if $E(u_{it}|\mathbf{x}_i) = 0$, we can use the full vector $\mathbf{x}_i \equiv (\mathbf{x}_{i1},...,\mathbf{x}_{iT})'$.

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta \mathbf{x}_{it} \boldsymbol{\beta} + \Delta u_{it}.$$

- What about instruments relating to Δx_{it} ?
 - \Rightarrow depends on what we are willing to assume about \mathbf{x}_{it} .
- Strictly exogenous: if $E(u_{it}|\mathbf{x}_i) = 0$, we can use the full vector $\mathbf{x}_i \equiv (\mathbf{x}_{i1},...,\mathbf{x}_{iT})'$.
- Sequentially exogenous (or predetermined): if only $E(u_{it}|\mathbf{x}_{i1},...,\mathbf{x}_{it})=0$, we can use only $(\mathbf{x}_{i1},...,\mathbf{x}_{it})$ as an instrument for $\Delta\mathbf{x}_{it}$.

Instruments for Δx_{it}

Example: Female Labor Supply and Fertility

$$y_{it} = \rho y_{it-1} + \beta_0 + \beta_1 k_{it} + \beta_2 f_{it} + c_i + u_{it},$$

where $y_{it} = 1\{\text{work in year }t\}$, $k_{it} = 1\{\text{kids aged }[2;6]\}$ and $f_{it} = 1\{\text{gives birth in year }t\}$.

Instruments for Δx_{it}

Example: Female Labor Supply and Fertility

$$y_{it} = \rho y_{it-1} + \beta_0 + \beta_1 k_{it} + \beta_2 f_{it} + c_i + u_{it},$$

where $y_{it} = \mathbf{1}\{\text{work in year }t\}$, $k_{it} = \mathbf{1}\{\text{kids aged }[2;6]\}$ and $f_{it} = \mathbf{1}\{\text{gives birth in year }t\}$.

- Fertility (fit) is likely
 - contemporaneously endogenous: $\mathsf{E}(f_{it}u_{it}) \neq 0$
 - correlated with individual effects: $E(f_{it}c_i) \neq 0$
- Kids (k_{it}) is likely
 - not strictly exogenous, since $u_{it} \curvearrowright f_{it+1} \curvearrowright k_{it+2}$
 - but a predetermined variable (assuming no child murdering!)
 - correlated with individual effects, $E(k_{it}c_i) \neq 0$.

Instruments for Δx_{it}

Example: Female Labor Supply and Fertility

$$y_{it} = \rho y_{it-1} + \beta_0 + \beta_1 k_{it} + \beta_2 f_{it} + c_i + u_{it},$$

where $y_{it} = 1\{\text{work in year }t\}$, $k_{it} = 1\{\text{kids aged }[2;6]\}$ and $f_{it} = 1\{\text{gives birth in year }t\}$.

- Fertility (fit) is likely
 - contemporaneously endogenous: $\mathsf{E}(f_{it}\,u_{it}) \neq 0$
 - correlated with individual effects: $E(f_{it}c_i) \neq 0$
 - solved by FD
- Kids (k_{it}) is likely
 - not strictly exogenous, since $u_{it} \curvearrowright f_{it+1} \curvearrowright k_{it+2}$
 - but a predetermined variable (assuming no child murdering!)
 - correlated with individual effects, $E(k_{it}c_i) \neq 0$.
 - solved by FD

Instruments for Δx_{it}

Example: Female Labor Supply and Fertility

$$y_{it} = \rho y_{it-1} + \beta_0 + \beta_1 k_{it} + \beta_2 f_{it} + c_i + u_{it},$$

where $y_{it} = 1\{\text{work in year }t\}$, $k_{it} = 1\{\text{kids aged }[2;6]\}$ and $f_{it} = 1\{\text{gives birth in year }t\}$.

- Fertility (fit) is likely
 - contemporaneously endogenous: $E(f_{it}u_{it}) \neq 0$
 - requires external instrument
 - correlated with individual effects: $E(f_{it}c_i) \neq 0$
 - solved by FD
- Kids (k_{it}) is likely
 - not strictly exogenous, since $u_{it} \curvearrowright f_{it+1} \curvearrowright k_{it+2}$
 - but a predetermined variable (assuming no child murdering!)
 - we can use $(k_{i1},...,k_{it-1})$ in period t
 - correlated with individual effects, $E(k_{it}c_i) \neq 0$.
 - solved by FD

Full instrument matrix

Full matrix when y_{it-1} is the only regressor

$$\mathbf{Z}_{i} = \begin{pmatrix} y_{i1} & 0 & 0 & 0 & 0 & 0 & \cdots & \cdots \\ 0 & y_{i1} & y_{i2} & 0 & 0 & 0 & \cdots & \cdots \\ 0 & 0 & 0 & y_{i1} & y_{i2} & y_{i3} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Full instrument matrix

• Full matrix when y_{it-1} is the only regressor

$$\mathbf{Z}_{i} = \begin{pmatrix} y_{i1} & 0 & 0 & 0 & 0 & 0 & \cdots & \cdots \\ 0 & y_{i1} & y_{i2} & 0 & 0 & 0 & \cdots & \cdots \\ 0 & 0 & 0 & y_{i1} & y_{i2} & y_{i3} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

With vector notation:

$$\mathbf{Z}_i = egin{pmatrix} \mathbf{z}_{i3} & \mathbf{0}_{1 imes2} & \mathbf{0}_{1 imes3} & \cdots & \mathbf{0}_{1 imes T-2} \ 0 & \mathbf{z}_{i4} & \mathbf{0}_{1 imes3} & \cdots & \mathbf{0}_{1 imes T-2} \ 0 & \mathbf{0}_{1 imes2} & \mathbf{z}_{i5} & \cdots & \mathbf{0}_{1 imes T-2} \ dots & dots & dots & dots & dots \ 0 & \mathbf{0}_{1 imes2} & \mathbf{0}_{1 imes3} & \cdots & \mathbf{z}_{iT} \end{pmatrix}.$$

• Note: the \mathbf{Z}_i has T-2 rows and $\sum_{t=3}^{T} (t-2)$ rows.

Arellano-Bond Estimator

Arellano-Bond Estimator

$$\hat{\boldsymbol{\beta}}_{AB} = \left[\left(\sum_{i} \tilde{\mathbf{X}}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \tilde{\mathbf{X}}_{i} \right) \right]^{-1} \left(\sum_{i} \tilde{\mathbf{X}}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \tilde{\mathbf{y}}_{i} \right).$$

where $\tilde{\mathbf{X}}_i$ is the $T-2\times K+1$ matrix with t'th row $(\Delta y_{it-1}, \Delta \mathbf{x}'_{it})$, and $\tilde{\mathbf{y}}_i$ is the $T-2\times 1$ vector with rows Δy_{it}

Arellano-Bond Estimator

Arellano-Bond Estimator

$$\hat{\boldsymbol{\beta}}_{AB} = \left[\left(\sum_{i} \tilde{\mathbf{X}}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \tilde{\mathbf{X}}_{i} \right) \right]^{-1} \left(\sum_{i} \tilde{\mathbf{X}}_{i}' \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i} \mathbf{Z}_{i}' \tilde{\mathbf{y}}_{i} \right).$$

- where $\tilde{\mathbf{X}}_i$ is the $T-2\times K+1$ matrix with t'th row $(\Delta y_{it-1}, \Delta \mathbf{x}'_{it})$, and $\tilde{\mathbf{y}}_i$ is the $T-2\times 1$ vector with rows Δy_{it}
- **Problem:** how to estimate the weighting Matrix?
 - 1. Initial guess: $\mathbf{W}_N = \left(N^{-1} \sum_i \mathbf{Z}_i' \mathbf{Z}_i\right)^{-1}$
 - 2. Optimal weight: should be an estimate of \mathbf{S}^{-1} , where $\mathbf{S} = \mathbf{E}(\mathbf{Z}_i'\mathbf{u}\mathbf{u}'\mathbf{Z})$.
 - Problem: to estimate S, we need "residuals", so we need parameters.
 - Solution: get a first-stage consistent but inefficient estimate, and use those in a second stage.

Two-stage estimation

Arellano-Bond Two-step Estimator

- 1. Compute $\hat{\boldsymbol{\beta}}_{AB}$ setting $\mathbf{W}_N = (N^{-1} \sum_i \mathbf{Z}_i' \mathbf{Z}_i)^{-1}$. (this is the 2SLS estimator)
- 2. Re-estimate $\hat{\boldsymbol{\beta}}_{AB}$ with $\mathbf{W}_{N} = \left(N^{-1}\sum_{i}\mathbf{Z}_{i}'\hat{\mathbf{u}}_{i}\hat{\mathbf{u}}_{i}'\mathbf{Z}_{i}\right)^{-1}$.
- Assuming that u_{it} are IID, the two-step estimator is asymptotically
 efficient.

Instrument relevance?

- Instruments in general have to satisfy
 - 1. Exogeneity: follows from model structure and the assumption that u_{it} is serially uncorrelated.
 - 2. Relevance: the instrument must predict

Instrument relevance?

- Instruments in general have to satisfy
 - 1. Exogeneity: follows from model structure and the assumption that u_{it} is serially uncorrelated.
 - 2. Relevance: the instrument must predict
- Relevance: can be a problem in many situations...
 - ... after all, we are hoping for the level of y_{it} to predict future changes, Δy_{it+2}

Instrument relevance?

- Instruments in general have to satisfy
 - 1. **Exogeneity**: follows from model structure and the assumption that u_{it} is serially uncorrelated.
 - 2. Relevance: the instrument must predict
- Relevance: can be a problem in many situations...
 - ... after all, we are hoping for the level of y_{it} to predict future changes, Δy_{it+2}
- However: relevant e.g. for the heterogeneous income profiles (HIP) model:

$$y_{it} = c_i + \beta_i t + p_{it} + u_{it}$$
$$p_{it} = p_{it-1} + \epsilon_{it},$$

where $(c_i, \beta_i)' \sim \mathcal{N}(\mathbf{0}, \Sigma)$, and ϵ_{it}, u_{it} are IID, and p_{it} is unobserved.

- Here, the level and changes in y_{it} become increasingly correlated over the life-cycle.
- See Druedahl & Munk-Nielsen (2018).

Levels and growth rates

