Lecture 7 Return Predictability

Lars A. Lochstoer
UCLA Anderson School of Management

Winter 2019

Outline

- Stock Market Predictability
 - Forecasting regressions
 - ► The Dividend-Yield
 - Cross-equation Restrictions (the Present-Value restriction)

2 References

Appendix: Background on Optimal Forecasting

Stock return predictability

- Let R_{t+1} denote the simple return on the aggregate market, e.g. the CRSP-VW index.
- Let D_t denote aggregate dividends and $d_t = \log(D_t)$.
- The ratio D_t/P_t is called the **dividend yield** while P_t/D_t is called the **price-to-dividend** ratio

Stock return predictability

• A forecasting regression is a regression of an outcome at time t + j (with j > 0) using an predictor variable known at time t:

$$y_{t+j} = \alpha + \beta x_t + \varepsilon_{t+j}$$
, for $t = 1, ..., T$

Table: Return Predictability

Regression	slope	t-stat	HAC t-stat	R^2
$R_{t+1} = a + b(D/P)_t + \varepsilon_{t+1}$	3.498	[2.309]	[2.395]	0.062
$R_{t+1} - R_t^f = a + b(D/P)_t + \varepsilon_{t+1}$	3.933	[2.621]	[2.726]	0.078
$r_{t+1} = a_r + b_r (dp)_t + \varepsilon_{t+1}^r$	0.105	[1.989]	[2.075]	0.047
$\Delta d_{t+1} = a_d + b_d (dp)_t + \varepsilon_{t+1}^d$	0.008	0.203	0.185	0.001

Notes: Annual Data. Sample 1927-2009. R_{t+1} is the real return on the CRSP-VW index. r_{t+1} denotes logs of the real return. R_{t+1}^f denotes the return on the real risk-free.

Interpretation

- an increase in the dividend yield of 1 percentage point in deviation from its mean increases the expected real return by 3.49 percentage points (per annum).
- note: when returns are regressed on lagged persistent variables such as the dividend/yield, the disturbances are correlated with the regressor's innovation; this tends to create an upward bias in the case of dividend-yield regressions and is called **Stambaugh bias**; see Stambaugh (1999).
- Stambaugh bias implies that OLS coefficients are estimated to be too high.

Relation between Regressions

 note that the log dividend/yield in deviation from its mean is (to a first-order Taylor expansion) given by:

$$dp_t = D_t/P_t / (D/P)$$

where D/P is the (unconditional) average dividend/price ratio

• so we can state the return regression :

$$r_{t+1} = a_r + b_r \times dp_t + u_{t+1}$$

as follows:

$$r_{t+1} = a_r + b_r \times D_t / P_t / (D/P) + u_{t+1}$$

- the average dividend yield D/P is .035
- so the implied coefficient for the regression with the dividend yield is

$$\frac{b_r}{D/P} = .105/.035 = 3.00$$

Dividend Yield

Dividend Yield on CRSP-VW (AMEX-NASDAQ-NYSE). Annual data. 1926-2009.

Real Returns

Real Returns on CRSP-VW (AMEX-NASDAQ-NYSE). Annual data. 1926-2009.

Dividend Growth

Dividend Growth on CRSP-VW (AMEX-NASDAQ-NYSE). Annual data. 1926-2009.

Structural Break in 1991

- Lettau and Van Nieuwerburgh (2007) find a structural break in log dividend yield in 1991.
- defined adjusted dividend yield:

$$\begin{aligned}
\widetilde{dp}_t &= dp_t - \overline{dp}_1 \\
\widetilde{dp}_t &= dp_t - \overline{dp}_2
\end{aligned}$$

where \overline{dp}_1 denotes the mean in the first sample 1926-1991 and \overline{dp}_2 denotes the mean in the second sample 1992-2009.

Log Dividend Yield

Demeaned log Dividend Yield \widetilde{dp}_t on CRSP-VW (AMEX-NASDAQ-NYSE) with break in 1991. Annual data. 1926-2009.

Return Predictability

Table: Return Predictability

Regression	slope	t-stat	HC t-stat	R ²
$r_{t+1} = a_r + b_r (\widetilde{dp})_t + \varepsilon_{t+1}$	0.267	[3.118]	[3.667]	0.107
$\Delta d_{t+1} = a_d + b_d (\widetilde{dp})_t + \varepsilon_{t+1}$	0.039	[0.624]	[0.736]	0.004

Notes: Annual Data. Sample 1927-2009. R_{t+1} is the real return on the CRSP-VW index. R_{t+1} denotes logs of the real return. R_{t+1}^f denotes the return on the real risk-free.

Longer Horizons

 we run the following regression of k period holding returns on the dividend yield:

$$\sum_{i=1}^k r_{t+i} = a_r + b_r^k (dp)_t + \varepsilon_{t+k}$$

- as you increase the horizon k, the slope coefficients b_r^k increase and the R^2 increase
- ullet Note: in this case, you should account for autocorrelation of residuals up to and including k-1 observations apart mechanically induced by the overlap
 - ▶ The next couple of slides shows how to do this using HAC standard errors

HAC robust standard errors

- If OLS residuals exihibit heteroskedasticity and/or autocorrelation (and, potentially, non-normality), OLS is still consistent
 - ▶ But, not efficient
 - Maximum likelihood is the efficient method in large samples
 - OLS is maximum likelihood only when errors are i.i.d. normally distributed

- If we still choose OLS (as a linear regression is pretty robust and parsimonious), we need to adjust the standard errors
 - ► HAC (heteroskedasticity and autocorrelation adjusted) standard errors

HAC robust standard errors: theory

 Please refer back to the "Note on Asymptotic Standard Errors" I posted earlier (which have already read)

• Recall, for the case of Asymptotic OLS

$$y_t = x_t \beta + \varepsilon_t, \quad ext{for } t = 1, ..., T$$
 $\hat{eta}_T - eta \overset{asymptotically}{ o} N\left(0, rac{1}{T} E\left[x_t x_t'\right]^{-1} S E\left[x_t x_t'\right]^{-1}
ight)$ $S = \sum_{j=-\infty}^{\infty} E\left[x_t x_{t-j}' \varepsilon_t \varepsilon_{t-j}\right]$

and $\hat{\beta}_T$ is the estimate of β in a sample of length T

where

HAC robust standard errors: theory

 \bullet If the residuals are correlated across q leads and lags and zero thereafter

$$corr\left(arepsilon_{t},arepsilon_{t-j}
ight)\left\{egin{array}{ll}
eq 0 & ext{for } |j| \leq q \\
eq 0 & ext{for } |j| > q \end{array}
ight.$$

we have

$$S = \sum_{j=-q}^{q} E\left[x_{t}x'_{t-j}\varepsilon_{t}\varepsilon_{t-j}\right]$$

These are called Hansen-Hodrick standard errors (see next slide)

Hansen-Hodrick standard errors

Define:

$$R_{T}(v; \beta) = \frac{1}{T} \sum_{t=1+v}^{T} x_{t} x'_{t-v} \varepsilon_{t} \varepsilon_{t-v}$$

where the estimate of the spectral density matrix is

$$\hat{S}_{T} = R_{T}\left(0; \hat{\beta}_{T}\right) + \sum_{v=1}^{q} \left[R_{T}\left(v; \hat{\beta}_{T}\right) + R_{T}\left(v; \hat{\beta}_{T}\right)'\right]$$

The estimate of the covariance matrix is then

Est. Asy. Var
$$(\hat{\beta}_T) = T (X_T'X_T)^{-1} \hat{S}_T (X_T'X_T)^{-1}$$

where capital x_t , X_t , is a $T \times K$ matrix with t'th row equal to x_t

Newey-West standard errors

Newey and West (1987) solve an issue for the Hansen-Hodrick standard errors

- ullet The estimated variance covariance matrix of \hat{eta} can be non-positive definite
- I.e., not invertible, "negative variance"
- To ensure a positive-definite covariance matrix, downweight estimated autocorrelations more the farther from the 0'th lag:

$$\hat{S}_{T} = R_{T}\left(0; \hat{\beta}_{T}\right) + \sum_{v=1}^{q} \frac{q+1-v}{q+1} \left[R_{T}\left(v; \hat{\beta}_{T}\right) + R_{T}\left(v; \hat{\beta}_{T}\right)'\right]$$

The Newey-West covariance matrix is then

Est. Asy. Var
$$(\hat{\beta}) = T (X_T' X_T)^{-1} \hat{S}_T (X_T' X_T)^{-1}$$

- ullet For Newey-West (NW) standard errors, should use (k-1) imes 1.5 or so due to the downweighting in the NW procedure
- Note that NW with 0 lags overlap is the same as White standard errors

Long-Horizon Return Predictability with Dividend Yield

Table: Return Predictability

Horizon	1	2	3	4	5
slope	0.105	0.199	0.250	0.282	0.323
OLS NW	[1.989] [2.036]	[2.692] [2.399]	[2.976] [2.578]	[3.046] [2.573]	[3.232] [2.600]
R^2	0.047	0.083	0.101	0.106	0.119

Notes: Annual Data. Sample 1927-2009. Forecasting regression of $\sum_{i=1}^{k} r_{t+i}$ on the log dividend yield.

 $\sum_{i=1}^{k} r_{t+i}$ denotes the sum of k years of logs of the real return.

Longer Horizons

• we run the following regression of *k* period holding returns on the dividend yield:

$$\sum_{i=1}^{k} r_{t+i} = a_r + b_r^k (\widetilde{dp})_t + \varepsilon_{t+k}$$

- as you increase the horizon k, the slope coefficients b_r^k increase and the R^2 increase
- Consider the 5 year horizon (next slide) where $\hat{b}_r^5 = 0.826$. An increase in the dividend yield of 1 percentage point in deviation from its mean increases the expected real return by 23.71 percentage points (=.826/.035) or 4.74 percentage points (per annum).

Long-Horizon Return Predictability with Adj. Div. Yield

Table: Return Predictability

Horizon	1	2	3	4	5
slope	0.267	0.478	0.661	0.750	0.826
OLS NW	[3.137] [3.480]	[4.075] [3.960]	[5.179] [4.977]	[5.578] [4.559]	[5.892] [4.157]
R^2	0.107	0.170	0.251	0.283	0.308

Notes: Annual Data. Sample 1927-2009. Forecasting regression of $\sum_{i=1}^{k} r_{t+i}$ on the adjusted log dividend yield. $\sum_{i=1}^{k} r_{t+i}$ denotes the sum of k years of logs of the real return.

5-year return Forecast

5-year log return forecast using Adjusted log Dividend Yield on CRSP-VW (AMEX-NASDAQ-NYSE). Annual data. 1926-2009.

Longer Horizons

• the R^2 in the regression of k period holding returns on the dividend yield is given by:

$$R^{2}(k) = \frac{V[E_{t}[r_{t+1}] + \ldots + E_{t}[r_{t+k}]]}{V[r_{t+1} + r_{t+2} + \ldots + r_{t+k}]}$$

- this grows at rate k initially because
 - realized returns are negatively autocorrelated
 - predicted returns are positively autocorrelated

Linearizing the returns

consider the return on an asset:

$$R_{t+1} \equiv \frac{P_{t+1} + D_{t+1}}{P_t} = \frac{\frac{D_{t+1}}{D_t} (1 + PD_{t+1})}{PD_t}.$$

pd_t denotes the log price-dividend ratio

$$pd_t = p_t - d_t = \log\left(\frac{P_t}{D_t}\right)$$
,

where price is measured at the end of the period and the dividend flow is over the same period.

also: note that

$$dp_t = -pd_t$$

Log-Linearizing returns

 Campbell and Shiller (1989) log-linearization of the return equation around the (unconditional) mean log price/dividend ratio delivers the following expression for log returns:

$$r_{t+1} = \Delta d_{t+1} + \rho p d_{t+1} + k - p d_t$$
,

with linearization coefficients ρ and k that depend on the mean of the log price/dividend ratio \overline{pd} :

$$ho = rac{e^{pd}}{e^{\overline{pd}} + 1} < 1 \quad ext{(the k coefficient not important)}$$

• this expression is an approximation of an identity. It must hold!

The log of the price/dividend ratio

$$pd_t = \Delta d_{t+1} + \rho pd_{t+1} + k - r_{t+1}$$

- iterating forward on the linearized return equation
- imposing a no-bubble condition:

$$\lim_{j\to\infty}\rho^{j}pd_{t+j}=0$$

expression for the log price/dividend ratio:

$$\textit{pd}_t = \textit{constant} + \sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j} - \sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}$$

Price/Dividend Ratios

Price/dividend ratios can only move if they predict returns or cash flows:

$$pd_t = \textit{constant} + \overbrace{E_t \left[\sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j} \right]}^{\textit{cash flow}} - \overbrace{E_t \left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j} \right]}^{\textit{discount rate}}$$

ullet a high price-to-dividend ratio pd_t implies that dividends are expected to increase or future returns (discount rates) are expected to decline

Campbell-Shiller Decomposition

The pd equation (without expectations) implies that the variance of the price/dividend ratio equals:

$$\begin{split} V[\boldsymbol{\rho}\boldsymbol{d}_t] &= V\left[\sum_{j=1}^{\infty}\rho^{j-1}\Delta\boldsymbol{d}_{t+j}\right] + V\left[\sum_{j=1}^{\infty}\rho^{j-1}\boldsymbol{r}_{t+j}\right] - 2\mathsf{cov}\left(\sum_{j=1}^{\infty}\rho^{j-1}\boldsymbol{r}_{t+j},\sum_{j=1}^{\infty}\rho^{j-1}\Delta\boldsymbol{d}_{t+j}\right) \\ &= \mathsf{cov}\left(\sum_{j=1}^{\infty}\rho^{j-1}\Delta\boldsymbol{d}_{t+j} - \sum_{j=1}^{\infty}\rho^{j-1}\boldsymbol{r}_{t+j},\sum_{j=1}^{\infty}\rho^{j-1}\Delta\boldsymbol{d}_{t+j}\right) - \mathsf{cov}\left(\sum_{j=1}^{\infty}\rho^{j-1}\Delta\boldsymbol{d}_{t+j} - \sum_{j=1}^{\infty}\rho^{j-1}\boldsymbol{r}_{t+j},\sum_{j=1}^{\infty}\rho^{j-1}\boldsymbol{r}_{t+j}\right) \\ &= \mathsf{cov}\left(\boldsymbol{\rho}\boldsymbol{d}_t,\sum_{j=1}^{\infty}\rho^{j-1}\Delta\boldsymbol{d}_{t+j}\right) - \mathsf{cov}\left(\boldsymbol{\rho}\boldsymbol{d}_t,\sum_{j=1}^{\infty}\rho^{j-1}\boldsymbol{r}_{t+j}\right) \end{split}$$

- Campbell and Shiller: the price/dividend ratio has to predict future (long-run) returns and/or dividends if it moves around!
 - the evidence that it predicts returns seems stronger than the evidence that it predicts cash flows

Variance Decomposition

The variance decomposition of the log price/dividend ratio is the difference between two regression slope coefficients:

$$1 = \frac{\operatorname{cov}\left(\rho d_t, \sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j}\right)}{V[\rho d_t]} - \frac{\operatorname{cov}\left(\rho d_t, \sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}\right)}{V[\rho d_t]}$$

 Is the variance of the pd-ratio driven by variation in expected cash flows or expected returns (i.e., discount rates)?

Price/Dividend Ratios

Price/dividend ratios predict future returns.

So do the term spread, the default spread and T-bill rates.

The R^2 increase with the forecasting horizon.

Variance Decomposition

• Recall that $dp_t = -pd_t$. Thus., the dp_t equation (without expectations) implies that the slope coefficients in a regression of discounted returns and dividend growth on dp_t satisfy the following restriction:

$$\begin{array}{ll} 1 & = & \displaystyle -\frac{\operatorname{Cov}\left(dp_t, \sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j}\right)}{V(dp_t)} + \frac{\operatorname{Cov}\left(dp_t, \sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}\right)}{V(dp_t)} \\ & = & \displaystyle -\beta_d + \beta_r \end{array}$$

where β_d and β_r are implicitly defined in the above.

Vector autoregressions (VAR)

consider 1st order restricted VAR:

$$egin{array}{lcl} r_{t+1} & = & a_{r} + b_{r} d p_{t} + \epsilon^{r}_{t+1} \ \Delta d_{t+1} & = & a_{d} + b_{d} d p_{t} + \epsilon^{d}_{t+1} \ d_{t+1} - p_{t+1} & = & a_{dp} + \phi d p_{t} + \epsilon^{dp}_{t+1} \end{array}$$

remember we log-linearized an identity to get:

$$r_{t+1} = \Delta d_{t+1} + \rho p d_{t+1} + \kappa_0 - p d_t.$$

with

$$\rho = \frac{e^{\overline{\rho d}}}{1 + e^{\overline{\rho d}}}$$

 this implies that there exists a deterministic relationship between these variables.

Cross-equation restrictions

take expectations:

$$E_t[r_{t+1}] = E_t[\Delta d_{t+1}] + \rho E_t[pd_{t+1}] + \kappa_0 - pd_t.$$

• go back to the 1st order VAR:

$$E_t[r_{t+1}] = a_r + b_r dp_t$$

$$E_t[\Delta d_{t+1}] = a_d + b_d dp_t$$

$$E_t[d_{t+1} - p_{t+1}] = a_{dp} + \phi dp_t$$

• this implies that:

$$a_r + b_r dp_t = a_d + b_d dp_t - \rho(a_{dp} + \phi dp_t) + \kappa_0 - p d_t$$

Cross-equation restrictions

$$\begin{array}{rcl} r_{t+1} & = & a_t + b_t dp_t + \varepsilon_{t+1}^r \\ \Delta d_{t+1} & = & a_d + b_d dp_t + \varepsilon_{t+1}^d \\ dp_{t+1} & = & a_{dp} + \phi dp_t + \varepsilon_{t+1}^{dp} \end{array}$$

• ⇒ the coefficients in these three equations must obey:

$$b_r = b_d + 1 - \phi \rho$$

or equivalently that the following is true:

$$\frac{b_r}{1-\rho\phi}-\frac{b_d}{1-\rho\phi}=1$$

- the first term is the slope coefficient in the regression of the discount rate component on the dp-ratio
- the second term is the slope coefficient in the regression of the cash flow component on the dp-ratio
- we show this on the next slide

Slope coefficient background math

Consider two hypothetical regressions:

• the cash flow component on the *dp*-ratio:

$$\sum_{j=1}^{\infty} \rho^{j-1} E_t \left[\Delta d_{t+j} \right] = \alpha_d + \beta_d dp_t + \varepsilon_t$$

Substitute in for future dividend growth using the VAR specification (note error term equals zero always):

$$\sum_{j=1}^{\infty} \rho^{j-1} \left(a_d + b_d E_t \left[d p_{t+j-1} \right] \right) = c + \sum_{j=1}^{\infty} \rho^{j-1} b_d \phi^{j-1} d p_t = c + \frac{b_d}{1 - \rho \phi} d p_t.$$

Thus, $\beta_d = \frac{cov\left(dp_t, \sum_{j=1}^\infty \rho^{j-1}\Delta d_{t+j}\right)}{V[dp_t]} = \frac{b_d}{1-\rho\phi}$ (and c is a constant term).

4 the discount rate component on the dp-ratio:

$$\sum_{j=1}^{\infty} \rho^{j-1} E_t \left[r_{t+j} \right] = \alpha_r + \beta_r dp_t + \varepsilon_t$$

Similar math as above yields $\beta_r = \frac{cov\left(dp_t, \sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}\right)}{V[dp_t]} = \frac{b_r}{1-\rho\phi}$.

Cross-Equation Restrictions

Table: Cross-Equation Restrictions

	estimate	standard error	implied
b_r	0.105	[0.050]	0.114
b_d	0.007	[0.041]	-0.0017
ϕ	0.925	[0.056]	0.935

Notes: Annual Data. Sample 1927-2009. R_{t+1} is the real return on the CRSP-VW index. R_{t+1} denotes logs of the real return. R_{t+1}^f denotes the return on the real risk-free. ρ is .9650. The column calculates each coefficient based on the other two coefficients and the identity $b_r = 1 - \rho \phi + b_d$.

Variance Decomposition

 slope coefficients in predictability regressions represent fractions of variance due to discount rates and cash flows:

$$\frac{b_r}{1-\rho\phi}-\frac{b_d}{1-\rho\phi}=1$$

where we have assumed AR(1) for dividend yield with coefficient ϕ , b_r is slope coefficient in return regression, b_d is slope coefficient in dividend growth regression

• plugging in our estimates:

$$\frac{b_r}{1 - \rho \phi} = \frac{0.105}{1 - .9650 \times .925} = .97$$

- ullet discount rates account for 97 % of the variance of the log price/dividend ratio
 - Thus: the market valuation ratio moves around mostly because discount rates (expected returns) vary over time!

Cross-Equation Restrictions with Adjusted Dividend Yield

Table: Cross-Equation Restrictions

	estimate	standard error	implied
b_r	0.267	0.072	0.297
b_d	0.039	0.053	0.008
φ	0.768	0.768	0.800

Notes: Annual Data. Sample 1927-2008. R_{t+1} is the real return on the CRSP-VW index. R_{t+1} denotes logs of the real return. R_{t+1}^f denotes the return on the real risk-free. ρ is .965. The "implied" column calculates each coefficient based on the other two coefficients and the identity $b_r = 1 - \rho \phi + b_d$. This table uses the adjusted dividend yield \widehat{dp} .

Variance Decomposition

- suppose we use the adjusted dividend yield instead
- go back to variance decomposition:

$$\frac{b_r}{1-\rho\phi} - \frac{b_d}{1-\rho\phi} = 1$$

where we have assumed AR(1) for dividend yield with coefficient ϕ , b_r is slope coefficient in return regression, b_d is slope coefficient in dividend growth regression

• plugging in our estimates:

$$\frac{b_r}{1 - \rho \phi} = \frac{0.267}{1 - .965 \times .768} = 1.0314$$

 discount rates account for 103 % of the variance of the log price/dividend ratio

The dog that did not bark

• if you believe $b_r = 0$, then you cannot believe $b_d = 0$

$$0 = b_d + 1 - \phi \rho$$

unless you think $\phi =
ho^{-1} > 1$

• so you need to explain the lack of evidence for dividend growth predictability, see Cochrane (2008)

The dog that did not bark

• Inspector Gregory:

'Is there any other point to which you would wish to draw my attention?'

Sherlock Holmes:

'To the curious incident of the dog in the night-time.'

'The dog did nothing in the night time.'

'That was the curious incident.'

(From "The Adventure of Silver Blaze" by Sir Arthur Conan Doyle.)

The Origins of Return Predictability

- different scenarios
 - 1 dividend/price ratio is persistent: some predictability
 - $\star \ \rho = .9647$
 - \star $\dot{\phi} = .90$
 - * return regression slope coefficients

$$b_r = 1 - \rho \phi = .139$$

close to .097

- 2 no persistence in dividend price ratio: too much predictability
 - $\star \ \rho = .9647$
 - $\star \phi = 0$
 - ★ return regression slope coefficients

$$b_r = 1$$

unit root in dividend price ratio: no predictability

$$b_r \approx 0$$

Predictability of Returns

Return forecastability follows from the fact that dividends are not forecastable and that the dividend/price ratio is highly but not completely persistent.

Conclusion

- quite some evidence of stock return predictability
- other variables also predict stock returns (like the price/earnings ratio, risk-free rate, the yield spread etc.)
- evidence of predictability is much weaker in out-of-sample; see, Goyal and Welch (2008)

References

Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997). The Econometrics of Financial Markets. Princeton, NJ: Princeton University Press.

Campbell, J. Y. and R. J. Shiller (1989). The dividend-price ratio and expectations of future dividends and discount factors. The Review of Financial Studies 1(3), 195-228.

Cochrane, J. H. (2008). The dog that did not bark: A defense of return predictability. The Review of Financial Studies 21(4), 1533-1575.

Diebold, F. X. (2015). Forecasting. Department of Economics, University of Pennsylvania. http://www.ssc.upenn.edu/fdiebold/Textbooks.html.

Lettau, M. and S. Van Nieuwerburgh (2008). Reconciling the return predictability evidence. The Review of Financial Studies 21(4), 1607-1652.

Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial Economics 54(3), 375-421.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies 21(4), 1455-1508.

Appendix

Campbell and Shiller (1989) approximation

$$\begin{aligned} \text{Let } p_t &= \log(P_t) \text{ and } d_t = \log(D_t). \\ r_{t+1} &= & \log(1+R_{t+1}) = \log(\frac{P_{t+1}+D_{t+1}}{P_t}) = \log(P_{t+1}+D_{t+1}) - \log(P_t) \\ &= & \log(P_{t+1}+D_{t+1}) - p_{t+1} + p_{t+1} - p_t \\ &= & \log(\frac{P_{t+1}+D_{t+1}}{P_{t+1}}) + p_{t+1} - p_t \\ &= & \log(1+\exp(d_{t+1}-p_{t+1})) + p_{t+1} - p_t \end{aligned}$$

- Let $f(x) = \log(1 + \exp(x))$ be the function we need to approximate, i.e. $f(d_{t+1} p_{t+1}) = \log(1 + \exp(d_{t+1} p_{t+1}))$.
- ullet We want to take a first-order Taylor series expansion around the unconditional mean $ar{dp}$.

Campbell and Shiller (1989) approximation

The first-order Taylor series expansion around $ar{d}p$ is

$$f(d_{t+1} - p_{t+1}) \approx \log(1 + \exp(\bar{dp})) + \frac{\exp(\bar{dp})}{1 + \exp(\bar{dp})} (d_{t+1} - p_{t+1} - \bar{dp})$$

Plug this expression in to the equation for r_{t+1} above

$$\begin{split} r_{t+1} & \approx & \log(1 + \exp(\bar{dp})) + \frac{\exp(\bar{dp})}{1 + \exp(\bar{dp})} (d_{t+1} - p_{t+1} - \bar{dp}) + p_{t+1} - p_t \\ & = & \log(1 + \exp(\bar{dp})) - \frac{\exp(\bar{dp})}{1 + \exp(\bar{dp})} \bar{dp} + \frac{1}{1 + \exp(\bar{dp})} p_{t+1} \\ & + \frac{\exp(\bar{dp})}{1 + \exp(\bar{dp})} d_{t+1} - p_t \end{split}$$

This gives us the expression

$$r_{t+1} \approx \kappa + \rho p_{t+1} + (1-\rho)d_{t+1} - p_t$$

where $ho=rac{1}{1+\exp(ar{dp})}$ and $\kappa=\log(1+\exp(ar{dp}))-rac{\exp(ar{dp})}{1+\exp(ar{dp})}ar{dp}.$

Appendix: Forecasting

Forecasting

ullet suppose we want to forecast the value of Y_{t+1} based on a set of predictor variables $old X_t$

Example

If we want to use the last m values of Y_t , then

$$\mathbf{X}_{t} = (Y_{t}, Y_{t-1}, Y_{t-2}, \dots, Y_{t-m+1})$$

- let $Y_{t+1}^* = g(\mathbf{X}_t)$ denote any forecast function of \mathbf{X}_t consisting of all the variables observed up until time t
- Which function $g(\mathbf{X}_t)$ of the observed data should we choose?

Loss functions

- to evaluate different forecast functions $g(\mathbf{X}_t)$, we need a systematic way to define what 'best' means.
- a loss function $L(Y_{t+1}, Y_{t+1}^*)$ describes how we feel about missing our target Y_{t+1} if we choose our forecast to be $Y_{t+1}^* = g(\mathbf{X}_t)$.

Examples:

squared error loss:

$$L(Y_{t+1}, Y_{t+1}^*) = (Y_{t+1} - Y_{t+1}^*)^2$$

absolute deviation loss:

$$L(Y_{t+1}, Y_{t+1}^*) = |Y_{t+1} - Y_{t+1}^*|$$

Optimal forecasts

The **optimal forecast** is the function $Y_{t+1}^* = g(\mathbf{X}_t)$ that minimizes the expected loss

$$\underset{Y_{t+1}^*}{\textit{argmin}} \ E[L(Y_{t+1},Y_{t+1}^*)|\mathbf{X}_t]$$

- minimizing expected loss is analogous to maximizing expected utility
- the field of decision theory studies optimal decision making under uncertainty.

MSE forecasts

Consider the squared error loss function:

$$L(Y_{t+1}, Y_{t+1}^*) = (Y_{t+1} - Y_{t+1}^*)^2$$

The forecast that minimizes the mean squared error

$$\underset{Y_{t+1}^*}{\textit{argmin}} \ E[(Y_{t+1} - Y_{t+1}^*)^2 | \mathbf{X}_t]$$

is the **conditional expectation** of Y_{t+1} given by

$$Y_{t+1}^* = g(\mathbf{X}_t) = E[Y_{t+1}|\mathbf{X}_t]$$

• if our loss-function is SE, the conditional expectation is optimal

Forecasting

 mean squared error (MSE) is the default choice and is often implicitly assumed.

• There is a large literature in econometrics and statistics on optimal forecasting. Unfortunately, I am only scratching the surface.

• See the (free) book on forecasting: Diebold (2015)

Linear Forecasting

- ullet suppose we do not commit to a particular process for Y_t
- suppose we want to forecast the value of Y_{t+1} based on a set of variables \mathbf{X}_t but we only use linear forecasts $\mathbf{X}_t \alpha$

Definition

The linear projection of Y_{t+1} on \mathbf{X}_t is defined by finding a vector $\boldsymbol{\alpha}$ such that the forecast error is uncorrelated with \mathbf{X}_t :

$$E[\mathbf{X}_t'(Y_{t+1} - \mathbf{X}_t \boldsymbol{\alpha})] = 0$$

Forecasting

The linear forecast $g(\mathbf{X}_t) = \mathbf{X}_t \pmb{\alpha}$ that minimizes the mean squared error

$$\mathop{\mathit{argmin}}_{\pmb{\alpha}} \ E[(Y_{t+1} - \mathbf{X}_t \pmb{\alpha})^2 | \mathbf{X}_t]$$

is the linear projection of Y_t on X_t .

hence, the best linear forecast satisfies:

$$E[\mathbf{X}_t'(Y_{t+1}-\mathbf{X}_t\boldsymbol{\alpha})]=0$$

• in other words, the linear projection coefficient satisfies:

$$E(\mathbf{X}_t'Y_{t+1}) = E(\mathbf{X}_t'\mathbf{X}_t)\boldsymbol{\alpha}$$

hence, the projection coefficient is:

$$\alpha = E(\mathbf{X}_t'\mathbf{X}_t)^{-1}E(\mathbf{X}_t'Y_{t+1})$$

Linear Projection and OLS

• consider the linear regression model:

$$y_{t+1} = \mathbf{x}_t \beta + u_{t+1}$$

• the sample sum of squared residuals:

$$\sum_{t=1}^{T} \left(y_{t+1} - \mathbf{x}_t \hat{\boldsymbol{\beta}} \right)^2$$

• the value of $\hat{\beta}$ that minimizes the SSR is the OLS estimate:

$$\hat{eta} = \left[\sum_{t=1}^T \mathbf{x}_t' \mathbf{x}_t
ight]^{-1} \left[\sum_{t=1}^T \mathbf{x}_t' y_{t+1}
ight]$$

Linear Projection and OLS

 OLS regression coefficients yield consistent estimates of the linear projection coefficients

sound basis for OLS regressions when forecasting

Comparison with OLS

• recall our OLS estimator of β :

$$\hat{eta} = \left[\sum_{t=1}^{T} \mathbf{x}_t' \mathbf{x}_t
ight]^{-1} \left[\sum_{t=1}^{T} \mathbf{x}_t y_{t+1}
ight]$$

 hence, the OLS estimator uses sample moments, while the linear projection uses population moments

if $\{\mathbf{X}_t, Y_t\}$ are covariance-stationary, then the sample moments will converge to the population moments and the OLS estimator $\hat{\beta}$ will converge to α as $T \to \infty$

- sound basis for forecasting under very mild conditions!!
- Note that this does not mean OLS is efficient (maximum likelihood is; GLS)