代数学第六次作业

1 课堂练习

1. 设 $V \stackrel{T}{\to} V$, V 为域 k 上有限生成模, 一组基为 e_1, \dots, e_n , 那么 $(V, T) \in k[x]$ -Mod,

$$V[x] = \left\{ \sum_{i \ge 0} v_i x^i \mid v_i \in V \right\} \simeq V \otimes_k k[x]$$

为自由 k[x]-模, 于是有

$$0 \to V[x] \stackrel{\phi_T = xI - A}{\longrightarrow} V[x] \stackrel{\pi}{\longrightarrow} V \to 0,$$
$$vx^i \mapsto T^i(v).$$

习题:验证正合性.

2. R 为 PID, M 为 \mathfrak{p} -准素模. 对任意 $x \in M$, 证明 $\mathrm{ann}(x) = \mathfrak{p}^n$.

2 课本习题

- 1. 设 $G = \prod_{p} \mathbb{Z}/p\mathbb{Z}$, 其中 p 取遍所有素数.
 - (a) 证明: $G_{tor} = \bigoplus_{p} \mathbb{Z}/p\mathbb{Z}$
 - (b) 证明: G/G_{tor} 可除.
 - (c) 证明: $\operatorname{Hom}(\mathbb{Q}, G) = 0$ 但是 $\operatorname{Hom}(\mathbb{Q}, G/G_{tor}) \neq 0$, 由此证明 G/G_{tor} 不是 G 的直和项.
- 2. R 是 PID. p 为 R 素元, M 为 R 的扭模. 证明: 若 $p \in \text{ann}(m)$ 对某个 $0 \neq m \in M$ 成立, 则 $\text{ann}(M) \subseteq (p)$.