Кодирование категориальных признаков

Кантонистова Е.О.

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_m$.

Пример: еда может быть горькой, сладкой, солёной или кислой (4 возможных значения признака).

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_m$.

Пример: еда может быть *горькой, сладкой, солёной или кислой* (4 возможных значения признака).

• Заменим категориальный признак на m бинарных признаков: $b_i(x) = [f_j(x) = C_i]$ (индикатор события).

Тогда One-Hot кодировка для нашего примера будет следующей:

горький =
$$(1,0,0,0)$$
, сладкий = $(0,1,0,0)$, солёный = $(0,0,1,0)$, кислый = $(0,0,0,1)$.

СЧЁТЧИКИ

Счётчик (mean target encoding) — это вероятность получить значение целевой переменной для данного значения категориального признака.

СЧЁТЧИКИ (ПРИМЕР)

	feature	target
0	Moscow	0
1	Moscow	1
2	Moscow	1
3	Moscow	0
4	Moscow	0
5	Tver	1
6	Tver	1
7	Tver	1
8	Tver	0
9	Klin	0
10	Klin	0
11	Tver	1

СЧЁТЧИКИ (ПРИМЕР)

	feature	target
0	Moscow	0
1	Moscow	1
2	Moscow	1
3	Moscow	0
4	Moscow	0
5	Tver	1
6	Tver	1
7	Tver	1
8	Tver	0
9	Klin	0
10	Klin	0
11	Tver	1

	feature	feature_mean	target
0	Moscow	0.4	0
1	Moscow	0.4	1
2	Moscow	0.4	1
3	Moscow	0.4	0
4	Moscow	0.4	0
5	Tver	0.8	1
6	Tver	0.8	1
7	Tver	0.8	1
8	Tver	0.8	0
9	Klin	0.0	0
10	Klin	0.0	0
11	Tver	0.8	1

ъ СЧЁТЧИКИ: ПРИМЕР

city	target	0	1	2
Moscow	1	1/4	1/2	1/4
London	0	1/2	0	1/2
London	2	1/2	0	1/2
Kiev	1	1/2	1/2	0
Moscow	1	1/4	1/2	1/4
Moscow	0	1/4	1/2	1/4
Kiev	0	1/2	1/2	0
Moscow	2	1/4	1/2	1/4

СЧЁТЧИКИ В ЗАДАЧЕ БИНАРНОЙ КЛАССИФИКАЦИИ

В случае бинарной классификации счётчики можно задать формулой:

$$Likelihood = \frac{Goods}{Goods + Bads} = mean(target),$$

где Goods – число единиц в столбце target,

Bads – число нулей в столбце target.

СЧЁТЧИКИ (ОБЩАЯ ФОРМУЛА)

- Пусть целевая переменная y принимает значения от 1 до K.
- Закодируем категориальную переменную f(x) следующим способом:

$$counts(u, X) = \sum_{(x,y)\in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y) \in X} [f(x) = u][y = k], k = 1, ..., K$$

Тогда кодировка:

$$mean_target_k(x, X) = \frac{successes_k(f(x), X)}{counts(f(x), X)} \approx p(y = k|f(x))$$

СЧЁТЧИКИ (ОБЩАЯ ФОРМУЛА)

$$counts(u, X) = \sum_{(x,y)\in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y) \in X} [f(x) = u][y = k], k = 1, ..., K$$

Тогда кодировка:

$$mean_target_k(x, X) = \frac{successes_k(f(x), X)}{counts(f(x), X)}$$

Недостаток? Когда такой способ кодирования переобучит наш алгоритм?

СЧЁТЧИКИ (ОБЩАЯ ФОРМУЛА)

$$counts(u, X) = \sum_{(x,y)\in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y) \in X} [f(x) = u][y = k], k = 1, ..., K$$

Тогда кодировка:

$$mean_target_k(x, X) = \frac{successes_k(f(x), X)}{counts(f(x), X)}$$

Недостаток? Когда такой способ кодирования переобучит наш алгоритм?

Ответ: если в данных много редких категорий.

СЧЁТЧИКИ: ОПАСНОСТЬ ПЕРЕОБУЧЕНИЯ

Вычисляя счётчики, мы закладываем в признаки информацию о целевой переменной и, тем самым, переобучаемся!

РЕШЕНИЕ 1: СГЛАЖИВАНИЕ

Используем счётчики (mean target encoding) со сглаживанием:

$$\frac{mean(target) \cdot n_{rows} + global\ mean \cdot \alpha}{n_{rows} + \alpha}$$

 n_{rows} - количество строк в категории,

lpha – параметр регуляризации.

РЕШЕНИЕ 2: TRAIN-TEST SPLIT

• Можно вычислять счётчики так:

city	target	
Moscow	1	
London	0	Вычисляем счетчики по - этой части
London	2	Storr Addir.
Kiev	1	
Moscow	1	
Moscow	0	Кодируем признак вычисленными счётчиками
Kiev	0	и обучаемся по этой части
Moscow	2	

РЕШЕНИЕ 2*: КРОСС-ВАЛИДАЦИЯ

Более продвинутый способ (по кросс-валидации):

1) Разбиваем выборку

на m частей X_1, \dots, X_m

2) На каждой части X_i

значения признаков

вычисляются по

оставшимся частям:

$$x \in X_i \Rightarrow g_k(x) = g_k(x, X \setminus X_i)$$

РЕШЕНИЕ 3: EXPANDING MEAN-CXEMA

Суть схемы заключается в том, чтобы пройти по отсортированному в определенном порядке датасету и для подсчета счетчика для строки m использовать строки от 0 до m-1.

Running mean calculation.

Numbers are assigned randomly to each observation. Only 1-4 are used to find encoding for 5

БОРЬБА С ПЕРЕОБУЧЕНИЕМ В СЧЁТЧИКАХ

- Вычисление счётчиков по кросс-валидации
- Сглаживание
- Добавление случайных шумов
- Expanding mean

ХЭШИРОВАНИЕ ПРИЗНАКОВ

- Если у категориального признака слишком много значений, скажем, миллион, то после применения onehot кодировки мы получим миллион новых столбцов. С такой огромной матрицей тяжело работать.
- Хэширование развивает идею one-hot кодирования, но позволяет получать любое заранее заданное число новых числовых столбцов после кодировки.

АЛГОРИТМ ХЭШИРОВАНИЯ

- Т) Для каждого значения признака вычисляем значение некоторой функции хэш-функции (hash)
- 2) Задаем hash_bucket_size итоговое количество различных значений категориального признака.
- 3) Берем остаток: hash % hash_bucket_size тем самым кодируем каждое значение признака числом от 0 до hash_bucket_size-1.
- 4) Дальше к полученным числам применяем ОНЕ.

ЧТО ДЕЛАЕТ ХЭШ-ФУНКЦИЯ

<u>Идея:</u> хэш-функция группирует значения категориального признака:

- часто встречающиеся значения признака формируют отдельные группы
- редко встречающиеся значения попадают в одну группу при группировке

ХЭШИРОВАНИЕ ПРИЗНАКОВ: ПРИМЕР

ХЭШИРОВАНИЕ

- Хэширование это способ кодирования категориальных данных, принимающих множество различных значений, показывающий хорошие результаты на практике.
- Хэширование позволяет закодировать любое значение категориального признака (в том числе то, которого не было в тренировочной выборке).

Статья про хэширование:

https://arxiv.org/abs/1509.05472

ЧТО ПОЧИТАТЬ ПРО КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ

- Лекция Жени Соколова
- Блог Александра Дьяконова
- Кусочек статьи с Хабра про хеширование