RSA accumulators

Verifiable Computation (VC)

server

data

Verification: \checkmark or \square

Correctness/completeness: $\Pr[\text{result} = f(\text{data}) \text{ and proof is honest and verification is } \checkmark] = 1$ Soundness/security: $\Pr[\text{result} \neq f(\text{data}) \text{ and verification is } \checkmark] \leq \frac{1}{2^{100}}$

Efficiency measures

Group and field

Group: under 1 operation •

- 1. Closure: For all a, b in G, the result of the operation, a b, is also in G
- 2. Associativity: For all a, b and c in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. Identity element: There exists an element e in G such that, for every element a in G, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique
- 4. Inverse element: For each a in G, there exists an element b in G, commonly denoted a-1 (or -a, if the operation is denoted "+"), such that $a \cdot b = b \cdot a = e$, where e is the identity element

Examples: integer with +

integer mod n with +

integer mod n with × that are relatively prime to n

Group and field

Group: under 1 operation •

- 1. Closure: For all a, b in G, the result of the operation, a b, is also in G
- 2. Associativity: For all a, b and c in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. Identity element: There exists an element e in G such that, for every element a in G, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique
- 4. Inverse element: For each a in G, there exists an element b in G, commonly denoted a-1 (or -a, if the operation is denoted "+"), such that $a \cdot b = b \cdot a = e$, where e is the identity element

Field: under 2 operations + and ×

- 1. F is an abelian group under + (abelian or commutative: $a \cdot b = b \cdot a$)
- 2. $F \{o\}$ (the set F without the additive identity o) is an abelian group under \times .

Examples: integer with + is not a field rational numbers, real numbers, complex numbers integer mode a prime p (finite field)

Generator

An element that generates all elements in the group by repeating the operation on itself (Cyclic group*)

Example: integer mod 4 with +

3 is a generator, 2 is not

Integer mod 7 with \times

$$Z_7^* = \{1,2,3,4,5,6\}$$

$$2^0 = 1$$
; $2^1 = 2$; $2^2 = 4$; $2^3 = 1$

$$3^{0}=1$$
; $3^{1}=3$; $3^{2}=2$; $3^{3}=6$; $3^{4}=4$; $3^{5}=5$; $3^{6}=1$

Discrete-log

 \mathbb{Z}_p^* has an alternative representation as the powers of g: $\{g, g^2, g^3, \dots, g^{p-1}\}$

Discrete-log: given $a \in Z_p^*$, find k s. t. $g^k = a$

Euler Phi function $\phi(n)$

Positive integers up to n that are relatively prime to n

$$\phi(p) = p - 1$$
 for prime p

 $\phi(N) = (p-1)(q-1)$ for composite number N = pq where p and q are prime numbers

$$a^x \mod n = a^{x \mod \phi(n)} \mod n$$

Diffie-Hellman

 χ y Z_p^* and generator g Alice **Bob** g^{x} g^{y} g^{xy}

Diffie-Hellman assumption: give Z_p^* , g, g^x , g^y , cannot compute g^{xy}

Diffie-Hellman problem is easier than discrete-log Diffie-Hellman assumption is stronger than discrete-log

RSA

Publick key: N, e

Enc(m, pk): $c = m^e \mod N$

Dec (c, sk): $m = c^d \mod N$

Alice

RSA assumption: given N,e, $c = m^e$, cannot find m

Pick random large primes p,q, publish N = pq

Compute $\phi(N) = (p-1)(q-1)$ RSA problem is easier than factoring

2. Compute $\phi(N) = (p-1)(q-1)$ 3. Pick random $e \in Z_{\phi(N)}^*$, publish e 4. Compute d as the inverse of e in $Z_{\phi(N)}^*$ RSA assumption is stronger than factoring assumption

 $e*d=1\ mod\ \phi(N)$

d is the private key

Ronald Rivest Adi Shamir Leonard Adleman

Whitfield Diffie Martin Hellman

Turing award 2002

Turing award 2015

Accumulator

server

RSA accumulators

- Public: N, generator *g*
- Private: p, q

- Elements must be primes
- Accumulate set $\{x_1, x_2, ... x_n\}$: digest = $g^{x_1 \cdot x_2 \cdot ... \cdot x_n} \mod N$
- Membership proof for x_i : $\pi_i = g^{x_1 \cdot \dots \cdot x_{i-1} \cdot x_{i+1} \cdot \dots \cdot x_n}$
- Verification: digest = π^{x_i}

Soundness/security

• Strong RSA assumption: given N and c in the group, cannot find m,e such that $c = m^e$ for 1<e<n

RSA assumption: given N,e, $c = m^e$, cannot find m

Strong RSA assumption \square RSA assumption \square factoring assumption

Complexity

- Local storage, size of accumulator: O(1)
- Setup: O(n)
- Prover time: O(1) with O(n) storage
- Proof size: O(1)
- Verification time: O(1)

Updates

- Update of the digest
 - Add new element x: new digest $\delta' = \delta^x$
 - Delete element x: using private key p,q, compute new digest $\delta' = \delta^{(x^{-1} \mod \phi(n))}$
- Update of the proof: for x_i , $\pi_i = g^{x_1 \cdot \dots \cdot x_{i-1} \cdot x_{i+1} \cdot \dots \cdot x_n}$
 - Add: with new element x, set $\pi'_i = \pi^x_i$
 - Delete: with deleted element x and the new digest δ'
 - Extended Euclidean algorithm: find $ax_i + bx = 1$
 - Set $\pi'_i = \pi^b_i \delta'^a$

Complexity

- Local storage, size of accumulator: O(1)
- Setup: O(n)
- Prover time: O(1) with O(n) storage
- Proof size: O(1)
- Verification time: O(1)

- Update: add O(1), delete O(1) with secret key; O(n) without secret key
- Update proof: add O(1), delete O(1) with new digest

Non-membership proofs

- x is not in the set, then x and $u = x_1 \cdot ... \cdot x_n$ are co-prime
- Extended Euclidean algorithm: find ax + bu = 1
- Proof $a, d = g^b$
- Verification: $\delta^a d^x = g$

Complexity

- Local storage, size of accumulator: O(1)
- Setup: O(n)
- Prover time: O(1) with O(n) storage
- Proof size: O(1)
- Verification time: O(1)

- Update: add O(1), delete O(1) with secret key; O(n) without secret key
- Update proof: add O(1), delete O(1) with new digest

Compare to Merkle tree

- Local storage: O(1)
- Setup: O(n)
- Prover time: O(1) vs $O(\log n)$
- Proof size: O(1) vs O(log n)
- Verification time: O(1) vs O(log n)

• Update: add O(1), delete O(1) with secret key; O(n) without secret key vs O(log n)

• Update proof: add O(1), delete O(1) with new digest vs O(log n) with the proof and the new digest