

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

(Подпись, дата)

ФАКУЛЬТ	ЕТ Специальное машиностроение
КАФЕДРА	СМ1«Космические аппараты и ракеты-носители»
	Домашнее задание №1
	по курсу «Строительная механика летательных аппаратов»
	Вариант №13
Γ	руппа: СМ1-81
C	тудент: Новиков А.Р.
	(Подпись, дата)
Π	реподаватель: Печников В.П.

1 Условие задания

Рисунок 1.1 — Условие задания

2 Решение

В данном задании нагрузка симметрична относительно оси y. Выберем отсчет угла φ от этой оси. Также разобьем кольцо на 2 участка. Один участок содержит распределенную нагрузку q_0 и уравновешивающую силу t, другой — только уравновешивающую силу t.

Рисунок 2.1 — Расчетная схема

Уравновешивающую силу *t* будем искать в виде

$$t = A + B\cos\varphi + C\sin\varphi \tag{2.1}$$

Рассмотрим равновесие кольца вдоль оси y:

$$\Sigma F_y = 0 \tag{2.2}$$

$$\oint (A + B\cos\varphi + C\sin\varphi)\sin\varphi Rd\varphi - 2q_0R - 2\int_0^{\frac{\pi}{2}} q_0R\cos\varphi d\varphi = 0$$
(2.3)

Интегралы от выражений $A\sin\varphi$ и $B\cos\varphi\sin\varphi$ по замкнутому контуру дадут 0.

$$\int_0^{2\pi} C \sin^2 \varphi R d\varphi - 2q_0 R - 2q_0 R \int_0^{\frac{\pi}{2}} \cos \varphi d\varphi = 0$$
 (2.4)

$$CR \cdot \frac{1}{2} (\varphi - \sin 2\varphi)|_{\varphi=0}^{2\pi} - 2q_0 R - 2q_0 R \sin \varphi|_{\varphi=0}^{\frac{\pi}{2}} = 0$$
 (2.5)

$$\pi CR - 2q_0R - 2q_0R = 0 (2.6)$$

$$C = \frac{4q_0}{\pi} \tag{2.7}$$

Получим выражение для t:

$$t = \frac{4q_0}{\pi}\sin\varphi\tag{2.8}$$

Запишем общие выражения для уравнений равновесия:

$$\begin{cases} \frac{d^2Q}{d\varphi^2} + Q = R(t + \frac{dQ}{d\varphi}) \\ \frac{dM}{d\varphi} = R(Q + m) \\ N = -\frac{dQ}{d\varphi} + qR \end{cases}$$
 (2.9)

Запишем уравнения (2.9) для первого участка:

$$\begin{cases} \frac{d^2Q_1}{d\varphi^2} + Q_1 = \frac{4q_0}{\pi}R\sin\varphi \\ \frac{dM_1}{d\varphi} = RQ_1 \\ N_1 = -\frac{dQ_1}{d\varphi} + q_0R \end{cases}$$
 (2.10)

Для второго участка:

$$\begin{cases} \frac{d^2Q_2}{d\varphi^2} + Q_2 = \frac{4q_0}{\pi}R\sin\varphi \\ \frac{dM_2}{d\varphi} = RQ_2 \\ N_2 = -\frac{dQ_2}{d\varphi} \end{cases}$$
 (2.11)

Решим систему уравнений (2.10):

$$Q_1 = Q_{10} + Q_1^* = C_1 \cos \varphi + C_2 \sin \varphi - \frac{2q_0}{\pi} R\varphi \cos \varphi$$
 (2.12)

$$M_{1} = \int RQ_{1}d\varphi = R \int (C_{1}\cos\varphi + C_{2}\sin\varphi - \frac{2q_{0}}{\pi}R\varphi\cos\varphi)d\varphi =$$

$$= R(C_{1}\sin\varphi - C_{2}\cos\varphi - \frac{2q_{0}}{\pi}R(\varphi\sin\varphi + \cos\varphi)) + C_{3}$$
(2.13)

$$N_1 = C_1 \sin \varphi - C_2 \cos \varphi + \frac{2q_0}{\pi} R(\cos \varphi - \varphi \sin \varphi) + q_0 R$$
 (2.14)

и систему уравнений (2.11):

$$Q_{2} = Q_{20} + Q_{2}^{*} = C_{4} \cos \varphi + C_{5} \sin \varphi - \frac{2q_{0}}{\pi} R \varphi \cos \varphi$$
 (2.15)

$$M_{2} = \int RQ_{2}d\varphi = R \int (C_{4}\cos\varphi + C_{5}\sin\varphi - \frac{2q_{0}}{\pi}R\varphi\cos\varphi)d\varphi =$$

$$= R(C_{4}\sin\varphi - C_{5}\cos\varphi - \frac{2q_{0}}{\pi}R(\varphi\sin\varphi + \cos\varphi)) + C_{6}$$
(2.16)

$$N_2 = C_4 \sin \varphi - C_5 \cos \varphi + \frac{2q_0}{\pi} R(\cos \varphi - \varphi \sin \varphi)$$
 (2.17)

Воспользуемся свойством симметрии: при симметричной нагрузке кососимметричные факторы на оси симметрии равны нулю.

$$\varphi = 0: Q_1 = 0 \Longrightarrow C_1 = 0$$
 (2.18)

$$\varphi = \pi : Q_2 = 0 \tag{2.19}$$

$$-C_4 + 2q_0R = 0 \Longrightarrow C_4 = 2q_0R \tag{2.20}$$

Получим следующие выражения для силовых факторов:

$$\begin{cases} Q_1 = C_2 \sin \varphi - \frac{2q_0}{\pi} R \varphi \cos \varphi \\ M_1 = -C_2 R \cos \varphi - \frac{2q_0}{\pi} R^2 (\varphi \sin \varphi + \cos \varphi) + C_3 \\ N_1 = -C_2 \cos \varphi + \frac{2q_0}{\pi} R (\cos \varphi - \varphi \sin \varphi) + q_0 R \end{cases}$$
(2.21)

$$\begin{cases} Q_2 = C_5 \sin \varphi + 2q_0 R(\cos \varphi - \frac{1}{\pi} \varphi \cos \varphi) \\ M_2 = -C_5 R \cos \varphi + 2q_0 R^2 (\sin \varphi - \frac{1}{\pi} (\varphi \sin \varphi + \cos \varphi)) + C_6 \\ N_2 = -C_5 \cos \varphi + 2q_0 R (\sin \varphi + \frac{1}{\pi} (\cos \varphi - \varphi \sin \varphi)) \end{cases}$$
(2.22)

Рассмотрим стык 2-х участков:

Рисунок 2.2 — Стык 2-х участков

Запишем условия его равновесия:

$$Q_1 = Q_2 \tag{2.23}$$

$$M_1 = M_2 (2.24)$$

$$N_1 + q_0 R = N_2 (2.25)$$

Из уравнения (2.23) получим:

$$C_2 = C_5$$
 (2.26)

Из уравнения (2.24) получим:

$$-\frac{2q_0}{\pi}R^2 \cdot \frac{\pi}{2} + C_3 = 2q_0R^2\left(1 - \frac{1}{\pi} \cdot \frac{\pi}{2}\right)$$
 (2.27)

$$-q_0R^2 + C_3 = q_0R^2 + C_6 (2.28)$$

$$C_3 = C_6 + 2q_0R^2 (2.29)$$

Из уравнения (2.25) получим:

$$-\frac{2q_0}{\pi}R \cdot \frac{\pi}{2} + q_0R + q_0R = 2q_0R(1 - \frac{1}{\pi} \cdot \frac{\pi}{2})$$
 (2.30)

$$q_0 R \equiv q_0 R \tag{2.31}$$

Для нахождения констант интегрирования воспользуемся интегральными соотношениями:

1. $\oint Md\varphi = 0$

$$2\int_0^{\pi} Md\varphi = 0 \tag{2.32}$$

$$\int_0^{\frac{\pi}{2}} M_1 d\varphi + \int_{\frac{\pi}{2}}^{\pi} M_2 d\varphi = 0$$
 (2.33)

$$\int_{0}^{\frac{\pi}{2}} \left(-C_2 R \cos \varphi - \frac{2q_0}{\pi} R^2 (\varphi \sin \varphi + \cos \varphi) + C_3 \right) d\varphi +$$

$$+ \int_{\frac{\pi}{2}}^{\pi} \left(-C_5 R \cos \varphi + 2q_0 R^2 (\sin \varphi - \frac{1}{\pi} (\varphi \sin \varphi + \cos \varphi)) + C_6 \right) d\varphi = 0$$
(2.34)

$$(-C_{2}R\sin\varphi - \frac{2q_{0}}{\pi}R^{2}(2\sin\varphi - \varphi\cos\varphi) + C_{3}\varphi)|_{\varphi=0}^{\frac{\pi}{2}} + +(-C_{5}R\sin\varphi + 2q_{0}R^{2}(-\cos\varphi - \frac{1}{\pi}(2\sin\varphi - \varphi\cos\varphi)) + C_{6}\varphi)|_{\varphi=\frac{\pi}{2}}^{\pi} = 0$$
(2.35)

$$-C_2R - \frac{4q_0}{\pi}R^2 + C_3\frac{\pi}{2} + C_5R + 2q_0R^2 + \frac{2q_0}{\pi}R^2(-\pi + 2) + C_6\frac{\pi}{2} = 0$$
 (2.36)

$$-C_2R + C_3\frac{\pi}{2} + C_5R + C_6\frac{\pi}{2} = 0 (2.37)$$

$$C_3 \frac{\pi}{2} + C_6 \frac{\pi}{2} = 0 (2.38)$$

Откуда

$$C_3 + C_6 = 0 (2.39)$$

Из выражений (2.39) и (2.29) получим:

$$\begin{cases}
C_3 = q_0 R^2 \\
C_6 = -q_0 R^2
\end{cases}$$
(2.40)

Тогда уравнения (2.21) и (2.22) примут вид:

$$\begin{cases} Q_1 = C_2 \sin \varphi - \frac{2q_0}{\pi} R \varphi \cos \varphi \\ M_1 = -C_2 R \cos \varphi - \frac{2q_0}{\pi} R^2 (\varphi \sin \varphi + \cos \varphi) + q_0 R^2 \\ N_1 = -C_2 \cos \varphi + \frac{2q_0}{\pi} R (\cos \varphi - \varphi \sin \varphi) + q_0 R \end{cases}$$
(2.41)

$$\begin{cases} Q_2 = C_5 \sin \varphi + 2q_0 R(\cos \varphi - \frac{1}{\pi} \varphi \cos \varphi) \\ M_2 = -C_5 R \cos \varphi + 2q_0 R^2 (\sin \varphi - \frac{1}{\pi} (\varphi \sin \varphi + \cos \varphi)) - q_0 R^2 \\ N_2 = -C_5 \cos \varphi + 2q_0 R (\sin \varphi + \frac{1}{\pi} (\cos \varphi - \varphi \sin \varphi)) \end{cases}$$
(2.42)

2. $\oint M \cos \varphi d\varphi = 0$

$$\int_0^{\frac{\pi}{2}} M_1 \cos \varphi d\varphi + \int_{\frac{\pi}{2}}^{\pi} M_2 \cos \varphi d\varphi = 0$$
 (2.43)

$$\int_{0}^{\frac{\pi}{2}} \left(-C_{2}R\cos^{2}\varphi - \frac{2q_{0}}{\pi}R^{2}(\varphi\sin\varphi\cos\varphi + \cos^{2}\varphi) + q_{0}R^{2}\cos\varphi \right) d\varphi +
+ \int_{\frac{\pi}{2}}^{\pi} \left(-C_{5}R\cos^{2}\varphi + 2q_{0}R^{2}(\sin\varphi\cos\varphi - \frac{1}{\pi}(\varphi\sin\varphi\cos\varphi + \cos^{2}\varphi)) - q_{0}R^{2}\cos\varphi \right) d\varphi = 0$$
(2.44)

$$(-C_{2}R(\frac{\varphi}{2} + \frac{1}{4}\sin2\varphi) - \frac{2q_{0}}{\pi}R^{2}(-\frac{\varphi}{4}\cos2\varphi + \frac{1}{8}\sin2\varphi + \frac{\varphi}{2} + \frac{1}{4}\sin2\varphi) + q_{0}R^{2}\sin\varphi)\Big|_{\varphi=0}^{\frac{\pi}{2}} + (-C_{5}R(\frac{\varphi}{2} + \frac{1}{4}\sin2\varphi) + \frac{1}{4}\sin2\varphi) + \frac{1}{4}\sin2\varphi) + \frac{1}{4}\sin2\varphi) + \frac{1}{4}\sin2\varphi +$$

$$-C_2R \cdot \frac{\pi}{4} - \frac{2q_0}{\pi}R^2 \cdot (\frac{\pi}{8} + \frac{\pi}{4}) + q_0R^2 - C_5R\frac{\pi}{4} - q_0R^2 - \frac{2q_0}{\pi}R^2(-\frac{3\pi}{8} + \frac{\pi}{4}) + q_0R^2 = 0$$
 (2.46)

$$-C_2R\frac{\pi}{4} - \frac{3}{4}q_0R^2 + q_0R^2 - C_5R\frac{\pi}{4} + \frac{1}{4}q_0R^2 = 0$$
 (2.47)

$$(C_2 + C_5)R\frac{\pi}{4} = \frac{q_0R^2}{2} \tag{2.48}$$

$$C_2 + C_5 = \frac{2q_0R}{\pi} \tag{2.49}$$

$$C_2 = C_5 = \frac{q_0 R}{\pi} \tag{2.50}$$

Получим итоговые выражения для силовых факторов:

$$\begin{cases} Q_1 = \frac{q_0 R}{\pi} (\sin \varphi - 2\varphi \cos \varphi) \\ M_1 = q_0 R^2 (1 - \frac{3}{\pi} \cos \varphi - \frac{2}{\pi} \varphi \sin \varphi) \\ N_1 = q_0 R (1 - \frac{2}{\pi} \varphi \sin \varphi + \frac{1}{\pi} \cos \varphi) \end{cases}$$
(2.51)

$$\begin{cases} Q_2 = q_0 R(\frac{1}{\pi}\sin\varphi + 2\cos\varphi - \frac{2}{\pi}\varphi\cos\varphi) \\ M_2 = q_0 R^2(2\sin\varphi - \frac{3}{\pi}\cos\varphi - \frac{2}{\pi}\varphi\sin\varphi - 1) \\ N_2 = q_0 R(2\sin\varphi - \frac{2}{\pi}\varphi\sin\varphi + \frac{1}{\pi}\cos\varphi) \end{cases}$$
 (2.52)

Построим эпюры:

Рисунок 2.3 — Эпюра перерезывающей силы Q

Рисунок 2.4 — Эпюра изгибающего момента

Рисунок 2.5 — Эпюра нормальной силы