

Unit 4 Unsupervised Learning (2

<u>Course</u> > <u>weeks</u>)

> Lecture 13. Clustering 1 >

7. The K-Means Algorithm: The Big

Picture

Audit Access Expires May 11, 2020

You lose all access to this course, including your progress, on May 11, 2020.

7. The K-Means Algorithm: The Big Picture

The K-Means Algorithm: The Big Picture

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

The K-Means Algorithm: Step-by-Step

2/2 points (graded)

In the above lecture, given a set of feature vectors

$$S_n = \left\{x^{(i)}|i=1,\ldots,n
ight\}$$

and the number of clusters K, we saw that we can use the K-Means algorithm to find reasonably good cluster assignments C_1,\ldots,C_K and the representatives of each of the K clusters z_1,\ldots,z_K . The algorithm was given like the following:

- 1. Randomly select z_1,\ldots,z_K
- 2. Iterate

1. Given z_1, \dots, z_K , assign each data point $x^{(i)}$ to the closest z_j , so that

$$\operatorname{Cost}\left(z_{1}, \ldots z_{K}
ight) = \sum_{i=1}^{n} \min_{j=1,...,K}\left\|x^{(i)} - z_{j}
ight\|^{2}$$

2. Given C_1,\ldots,C_K find the best representatives z_1,\ldots,z_K , i.e. find z_1,\ldots,z_K such that

$$z_j = \operatorname{argmin}_z \sum_{i \in C_j} \left\| x^{(i)} - z
ight\|^2.$$

1. The following figure depicts an example of one of the steps of K-means algorithm:

Which is it?

2. The following figure depicts an example of one of the steps of K-means algorithm:

Which step is it?

Solution:

Step 2.1 assigns each points to the best cluster, while step 2.2 selects out the representative of each cluster. Note that step 1 is random initialization of cluster assignments.

© All Rights Reserved