In [1]:

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

In [2]:

df=pd.read_csv("https://raw.githubusercontent.com/dsrscientist/dataset4/mai
n/medical_cost_insurance.csv")

In [4]:

df

Out[4]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

df.head()

In [5]:

Out[5]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [6]:
df.tail()

Out[6]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

```
In [7]:
df.shape
                                                                        Out[7]:
(1338, 7)
                                                                        In [8]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column Non-Null Count Dtype
              _____
 0
              1338 non-null int64
    age
              1338 non-null object
 1
    sex
             1338 non-null float64
 2
   bmi
   children 1338 non-null int64
 4 smoker 1338 non-null object
   region 1338 non-null object
 5
    charges 1338 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
                                                                        In [9]:
df.isnull().sum()
                                                                        Out[9]:
age
            0
sex
            0
bmi
            0
children
          0
smoker
            0
region
            0
charges
dtype: int64
                                                                       In [10]:
df.describe()
                                                                       Out[10]:
             age
                        bmi
                               children
                                            charges
count | 1338.000000 | 1338.000000 | 1338.000000 | 1338.000000
mean 39.207025
                 30.663397
                            1.094918
                                       13270.422265
 std 14.049960
                 6.098187
                            1.205493
                                       12110.011237
                                       1121.873900
 min | 18.000000
                 15.960000
                            0.000000
 25% | 27.000000
                 26.296250
                            0.000000
                                       4740.287150
 50% 39.000000
                 30.400000
                            1.000000
                                       9382.033000
 75% 51.000000
                 34.693750
                            2.000000
                                       16639.912515
 max | 64.000000
                 53.130000
                            5.000000
                                       63770.428010
                                                                        In [11]:
#checking unique value for Categorical data
df["sex"].unique()
                                                                       Out[11]:
```

array(['female', 'male'], dtype=object)

```
In [12]:
df["sex"] = df["sex"].map({"female":0,"male":1})
                                                                               In [13]:
df.head()
                                                                              Out[13]:
            bmi children smoker
                                    region
                                                charges
  age sex
          27.900 0
0 19 0
                                 southwest 16884.92400
                         yes
1 18 1
          33.770 1
                                 southeast | 1725.55230
                         no
2 28 1
          33.000 3
                                 southeast | 4449.46200
                         no
3 33 1
          22.705 0
                                 northwest 21984.47061
                         no
4 32 1
          28.880 0
                                 northwest | 3866.85520
                         no
                                                                               In [14]:
df["smoker"] = df["smoker"].map({"yes":1,"no":0})
                                                                               In [15]:
df.head()
                                                                              Out[15]:
            bmi children smoker
                                    region
                                                charges
  age sex
          27.900 0
0 19 0
                          1
                                 southwest 16884.92400
1 18 1
          33.770 1
                                 southeast | 1725.55230
                         0
2 28
          33.000 3
                          0
     1
                                 southeast | 4449.46200
3 33
                                 northwest 21984.47061
          22.705 0
                         0
4 32 1
                         0
                                 northwest 3866.85520
          28.880 0
                                                                               In [16]:
df["region"].unique()
                                                                              Out[16]:
array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)
                                                                               In [17]:
df["region"]=df["region"].map({"southwest":1, "southeast":2, "northwest":3, "n
ortheast":4})
                                                                               In [18]:
df.head()
                                                                              Out[18]:
            bmi children smoker region
  age sex
                                             charges
0 19 0
          27.900 0
                          1
                                        16884.92400
1 18
                                 2
          33.770 1
                         0
                                        1725.55230
2 28
                                 2
     1
          33.000 3
                          0
                                        4449.46200
3 33
          22.705 0
                         0
                                 3
                                        21984.47061
4 32 1
          28.880 0
                         0
                                 3
                                        3866.85520
                                                                               In [19]:
df.columns
                                                                              Out[19]:
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'],
dtype='object')
                                                                               In [21]:
X=df.drop(["charges"],axis=1)
                                                                               In [22]:
```

y=df["charges"]

```
In [23]:
У
                                                                        Out[23]:
0
       16884.92400
1
        1725.55230
2
         4449.46200
3
        21984.47061
         3866.85520
      10600.54830
1333
1334
        2205.98080
1335
        1629.83350
1336
        2007.94500
1337
       29141.36030
Name: charges, Length: 1338, dtype: float64
                                                                         In [24]:
#train test split
from sklearn.model selection import train test split
                                                                         In [29]:
X train, X test, y train, y test=train test split(X, y, test size=0.2, random sta
te=42)
                                                                          In []:
                                                                         In [27]:
from sklearn.linear model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
                                                                         In [32]:
lr=LinearRegression()
lr.fit(X train, y train)
svm=SVR()
svm.fit(X_train,y_train)
rf=RandomForestRegressor()
rf.fit(X train,y train)
gr=GradientBoostingRegressor()
gr.fit(X train, y train)
                                                                        Out[32]:
GradientBoostingRegressor()
                                                                         In [33]:
#prediction
y pred1=lr.predict(X test)
y pred2=svm.predict(X test)
y pred3=rf.predict(X test)
y pred4=gr.predict(X test)
                                                                         In [36]:
df1=pd.DataFrame({"Actual":y_test,"Lr":y_pred1,"svm":y_pred2,'rf':y_pred3,"
gr":y_pred4})
                                                                         In [37]:
df1
```

<u> </u>		
()111		
Out	57	•

	Actual	Lr	svm	rf	gr
764	9095.06825	8924.407244	9548.261584	11439.923610	11001.128629
887	5272.17580	7116.295018	9492.515425	5414.810675	5840.174656
890	29330.98315	36909.013521	9648.758701	28347.848156	28001.980112
1293	9301.89355	9507.874691	9555.044136	10330.994254	9745.291602
259	33750.29180	27013.350008	9420.421978	34560.282466	33639.100981
109	47055.53210	39116.968669	9648.902852	46843.755068	45431.423211
575	12222.89830	11814.555568	9625.431547	12783.760343	12465.025294
535	6067.12675	7638.107736	9504.168517	6337.923312	6974.336525
543	63770.42801	40959.081722	9605.004594	46785.988248	47862.047791
846	9872.70100	12258.228529	9590.987268	9742.272343	10289.655388

268 rows × 5 columns

```
#Comparing actual vs prediction
import matplotlib.pyplot as plt
```

plt.subplot(221)

plt.plot(df1["Actual"],label="Actual")

plt.plot(df1["Lr"],label="Lr")

plt.legend()

<matplotlib.legend.Legend at 0x222db477250>


```
plt.subplot(221)
plt.plot(df1["Actual"].iloc[0:11],label="Actual")
plt.plot(df1["Lr"].iloc[0:11],label="Lr")
plt.legend()
```

<matplotlib.legend.Legend at 0x222db3e3be0>

In [38]:

In [40]:

Out[40]:

In [41]:

Out[41]:

```
30000 - Actual Lr
10000 - 250 500 750 1000 1250
```

```
In [44]:
plt.subplot(221)
plt.plot(df1["Actual"].iloc[0:11],label="Actual")
plt.plot(df1["Lr"].iloc[0:11],label="Lr")
plt.legend()
plt.subplot(222)
plt.plot(df1["Actual"].iloc[0:11],label="Actual")
plt.plot(df1["svm"].iloc[0:11],label="SVM")
plt.legend()
plt.subplot(223)
plt.plot(df1["Actual"].iloc[0:11],label="Actual")
plt.plot(df1["rf"].iloc[0:11],label="RF")
plt.legend()
plt.subplot(224)
plt.plot(df1["Actual"].iloc[0:11],label="Actual")
plt.plot(df1["gr"].iloc[0:11],label="GR")
plt.tight_layout()
plt.legend()
                                                                      Out[44]:
<matplotlib.legend.Legend at 0x222db9f79d0>
```



```
"smoker":1,
"region":2}
```

df2=pd.DataFrame(data,index=[0])
df2

					_	
n	age 40		bmi 40.3	Children 4	smoker 1	region 2
#c	harq w_p	ges red= (new	pred	liction k predict(d	pasis pr	
gr		adie	entBo	ostingRe	egresson	c ()
Gr	adi	entE	Boost	ingRegre	essor()	
im	port	t jo	blib)		
jo	blik	o.du	ımp(g	r,'model	_joblik	_gr ')
['	mode	el_j	obli	.b_gr']		
				load("mo	odel jok	olib gı
				(df2)	3	
				361888])		
аг	Lay	([12	.140.	301000])		

In []:

In []: