Beer Preferences for Thursday Night Football: A Blanced Incomplete Block Design Experiment

Matthew Murnane

Ethan Newcomb

Abstract

Introduction

Methods

Everything was randomized before starting the experiment. With simple R code and using a set.seed(530) we were able to get a correct BIBD set up.

Participants	I	II	III
1	С	В	D
2	В	\mathbf{C}	A
3	D	A	C
4	D	В	A

We then randomized the assignments of beer types to the letters and the order of participants, using the same set.seed(530). The table below is are treatment assignments and order assignments

trts	beers	rank	participants
A	Siera	1	Zach
В	Coors	2	Jon
C	Guinnes	3	Nolan
D	Pliny	4	Benni

The experiment was conducted inside of Matthew's room. Participants were blind folded before entry into the room, they were seated down and told the following:

You will be offered three beers during the experiment. You will drink a glass of water, then taste the beer. After tasting you will rate the beer on a scale from 1 to 10. 1 meaning "I never want to drink this again", 5 meaning "this is an okay beer, and 10 meaning "I want a whole glass of this beer right now". Half points are allowed.

Results

Table 3: Beer Ratings by Participant

Beers	Nolan	Jon	Beni	Zach	Row Means
Sierra(Pale_ale)	NA	5.5	7	2.5	5.00
Coors(Generic)	6	6	NA	6.5	6.17
Guinness(Dark)	5.5	3.5	4	NA	4.33
Pliny(IPA)	3	NA	8.5	2	4.50
Column Means	4.83	5	6.5	3.67	NA

Ratings Per Beer

Rating Per Subject

Table 4: ANOVA Table for Linear Model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
names	3	12.16667	4.055556	1.197212	0.4001761
beers	3	14.39583	4.798611	1.416564	0.3414684
Residuals	5	16.93750	3.387500	NA	NA

Conclusion

Appendix

Code Used

Libraries Used

```
library(tidyverse)
library(ggthemes)
library(tidyr)
library(knitr)
```

Data Code

```
# Data input
beers <- c("Sierra(Pale_ale)", "Coors(Generic)", "Guinness(Dark)", "Pliny(IPA)")</pre>
Nolan \leftarrow c(NA, 6, 5.5, 3)
Jon \leftarrow c(5.5, 6, 3.5, NA)
Benni \leftarrow c(7, NA, 4, 8.5)
Zach \leftarrow c(2.5, 6.5, NA, 2)
raw_data <- data.frame(beers, Nolan, Jon, Benni, Zach)</pre>
# Data Cleaning
pivoted_raw_data <- pivot_longer(raw_data,</pre>
                           cols=-beers,
                          names_to = "names",
                          values_to = "rating")
cleaned_data <- pivoted_raw_data %>%
  drop_na(rating)
#Table
col_means <- round(colMeans(raw_data[, -1], na.rm = TRUE), 2)</pre>
raw_data_with_col_means <- rbind(raw_data, c("Mean", col_means))</pre>
row_means <- round(apply(raw_data[, -1], 1, mean, na.rm = TRUE), 2)</pre>
raw_data_with_means <- cbind(raw_data_with_col_means, Row_Mean = c(row_means, NA))</pre>
```

```
raw_data_with_means %>%
  kable(
    caption = "Beer Ratings by Participant",
    col.names = c("Beers", "Nolan", "Jon", "Beni", "Zach", "Row Means"),
    align = "c"
)
```

Plots

Code for Plot 1 {.anchor #plot1}

```
cleaned_data %>%
 ggplot(aes(x = rating,
            y = beers))+
 geom_point(size = 2)+
 theme_few()+
 ggtitle("Ratings Per Beer")+
 ylab("Type of Beer")+
 xlab("Rating")
cleaned_data %>%
 ggplot(aes(x = rating,
            y = names))+
 geom_point(size = 2)+
 theme_few()+
 ggtitle("Rating Per Subject")+
 xlab("Subjects")+
 ylab("Rating")
```