微电子器件实验 模型参数测量

范云潜, 学号: 18373486, 搭档: 徐靖涵, 教师: 彭守仲

微电子学院 184111 班

日期: 2020年11月21日

1 实验目的

对双极型晶体管以及场效应管进行模型参数测量,获得其跨导,长度调制系数等关键参数。

2 实验所用设备及器件

主要设备有: 电压源,任意波形发生器,示波器,手持式万用表,台式万用表,相关线缆等,主要器件有晶体管 C9018 与 K656。

3 实验基本原理及步骤

3.1 基本原理

在前序课程中,我们了解到,晶体管的放大特性体现在小信号上,也就是在静态工作点附近变化的电学信号上,而这些信号的约束条件是由电学关系的微分提供的,比较关键的是跨导和沟道调制系数。接下来,我们将在小信号模型上对这些约束关系进行推导。

3.1.1 双极型晶体管小信号等效电路

原始电路如图1,小信号电路如图2。

对小信号模型进行约束:

$$(v_{be} - v_i)/R_i + i_b + \frac{v_{be}}{R_B} = 0$$
$$\beta i_b (R_c//R_2) = -v_o$$
$$i_b r_\pi = v_{be}$$
$$v_o = v_{ce}$$

解得:

$$r_{\pi} = v_{be}/(-\frac{v_{be}}{R_B} - \frac{v_{be} - v_i}{R_i})$$

图 1: 双极型晶体管测量电路

图 2: 双极型晶体管测量电路等效小信号电路

$$\beta = \frac{-v_{ce}}{R_c / / R_2 (-\frac{v_{be}}{R_B} - \frac{v_{be} - v_i}{R_i})}$$

$$A_v = \frac{v_o}{v_i} = -\frac{\beta (R_c / / R_2)}{r_\pi + R_i + r_\pi R_i / R_B}$$

$$g_m = \frac{i_c}{v_i} = \beta \frac{(-\frac{v_{be}}{R_B} - \frac{v_{be} - v_i}{R_i})}{v_i}$$

3.1.2 场效应管小信号等效电路

原始电路如**图3**,小信号电路如**图4**。 对小信号模型进行约束:

$$-v_{ds1} = g_m v_{gs1} (r_{ds}//R_D//R_{L1})$$
$$-v_{ds2} = g_m v_{gs2} (r_{ds}//R_D//R_{L2})$$

做比:

图 3: 场效应管测量电路

图 4: 场效应双极型晶体管测量电路等效小信号电路

$$\frac{v_{ds1}}{v_{ds2}} = \frac{v_{gs1}}{v_{gs2}} \frac{R_D//R_{L1}}{R_D//R_{L2}} \frac{r_{ds} + R_D//R_{L2}}{r_{ds} + R_D//R_{L1}}$$

进行数据带入:

$$\begin{split} \frac{v_{ds1}}{v_{ds2}} &= \frac{v_{gs1}}{v_{gs2}} \frac{k_1}{k_2} \frac{r_{ds} + k_2}{r_{ds} + k_1} \\ r_{ds} &= \frac{1 - A_1/A_2}{\frac{A_1k_2}{A_2k_1} - 1} \end{split}, \text{ where } A = \frac{v_{ds}}{v_{gs}} \end{split}$$

带入得到

$$g_m = -\frac{A_1}{r_{ds}//R_D//R_{L1}}$$

$$\lambda = \frac{1}{I_D r_{ds}}$$

3.2 基本步骤

3.3 实验一

- 1. 按照实验电路图1搭建电路
- 2. 调节 $E_C=15V$, 调节 E_B 使得 $I_B=60\mu A$
- 3. 调节任意波形发生器,使之输出 1kHz, 7.5V 的电压 v_b
- 4. 通过示波器测量小信号电压 v_{be} 和 v_{ce} 的 RMS

3.4 实验二

首先进行直流工作点的寻找:

- 1. 按照图 5 搭建电路
- 2. 调节 E_G 到 4.5V 左右,调节 E_D 到 30V 左右
- 3. 绘制关于 E_G 的电流变化,确保工作在恒流区

图 5: 场效应管直流工作点测试电路

之后进行实验电路搭建:

- 1. 按照实验电路图 3 搭建电路
- 2. 保持上一步骤的直流工作点,调节任意波形发生器,使之输出 1kHz,0.1V 的电压 v_g
- 3. 将 R_L 分别改为 $1k\Omega, 6.8k\Omega$,记录小信号 v_{gs} 和 v_{ds} 的 RMS

4 实验数据记录

原始数据请见这里。

4.1 实验一

测量数据以及计算结果如表1。

表 1: 双极型晶体管特性测量

IB	EC	EB	VCE	vbe	vce	rb	
6.01E-05	15	6.7	0.26	1.40E-02	1.51E-01	100000	
r1	r2	rc	beta	gm	rp	av	
100000	100	1000	9.42E+01	0.1186	7.94E+02	0.0854	

4.2 实验二

通过绘制转移图如 **图 6** ,确定 $E_G=4.5V$ 时,晶体管工作在饱和区,测量数据以及计算结果如 **表 2** 。

表 2: 场效应管特性测量

EG	ED	VGS	VDS	ID	RD	RL	RG	vgs	vds	rds	gm	lamb
4.5	30	0.807	6.82	0.0234	1k	1k	6.8k	0.0294	2.32	4594	0.175	0.0093
4.5	30	0.807	6.82	0.0234	1k	6.8k	6.8k	0.0294	3.77			

5 实验结果分析

由于电压是实验者在小信号电路中唯一可以测量的量,因此需要将各种特性和电压建立关系,进一步进行求解。

6 总结与思考

Q1: 双极型三极管的直流电阻 R_{BE} 和 R_{CE} 如何变化?

A1:直流条件下根据数据观察可得, I_C 越大, V_{CE} 越小,那么 R_{CE} 越小; V_{BE} 几乎不随 I_C 变化,那么 R_{BE} 也是变小的。

Q2:如何测量双极型晶体管小信号模型中的电阻 r_{ce} ? 根据之前测量的输出特性曲线计算 r_{ce} 的大小。

如果在本次实验基础上进行修改,只需要更换 R_2 阻值重新测量,联立即可。根据之前的数据 1 , $r_{ce}=v_{ce}/i_o\approx 16k\Omega$ 。

Q3: MOS 管的直流电阻 R_{GS} 和 R_{DS} 如何变化?

 I_D 越大, V_{DS} 越小,那么 R_{DS} 越小;由于栅极无电流通过,因此电阻不变,恒为开路。

Q4: R_L 阻值变化后,低频跨导 g_m 是否变化? 为什么?

不变,由于跨导可以看作直流特性的导数,而 R_L 不影响直流特性。

6

¹第八周实验的放大区数据