Pneumonia Detection Capstone Project — Workflow

Introduction

In this project, an end-to-end machine learning pipeline was developed to detect pneumonia from chest X-ray images. The goal was to achieve accurate, explainable, and practical results to support healthcare professionals in early detection.

Workflow

Dataset Preparation

- Started with chest X-ray dataset in DICOM (.dcm) format + labels CSV.
- Converted .dcm to .png for easier handling.
- Created a balanced subset (equal Normal & Pneumonia samples) to save space & time.

Exploratory Data Analysis (EDA)

- Checked class distribution (Normal vs Pneumonia).
- Visualized random X-rays.
- Confirmed dataset imbalance and solved using balanced subset.

Preprocessing

- Normalized pixel values (0–255 \rightarrow 0–1).
- Resized images to 224×224.
- Converted grayscale images to 3-channel (needed for pretrained CNNs).

Model Training

- Used ResNet-18 pretrained on ImageNet.
- Replaced final layer with binary classifier (Normal / Pneumonia).
- Optimizer: Adam, Learning Rate: 1e-4.
- Trained on small balanced dataset (quick demo).

Evaluation

- Generated Classification Report (Precision, Recall, F1-score, Accuracy).
- Verified performance on validation subset.

Inference & Visualization

- Loaded saved model weights.
- Predicted on single X-ray images.
- Added Green box + label for Normal, Red box + label for Pneumonia for easy visualization.

Deployment Demo

• Created a Streamlit app → upload X-ray → get prediction & visualization.

This workflow demonstrates the full ML pipeline: data \rightarrow preprocessing \rightarrow training \rightarrow evaluation \rightarrow inference \rightarrow demo.

Conclusion

This project highlighted the importance of balanced data, careful preprocessing, and interpretable results. It showcases the value of AI in healthcare and its ability to support critical decision-making.