## Section 6.1: Maximum Likelihood Estimation (MLE)

- 1. A strategic gambler believes they have identified a faulty slot machine which pays out significantly more money than the other slot machines. She and her friends watch the machine 24 hours a day for 7 days and observed the slot machine paid out the \$1,000,000 jackpot prize 10 times during the week. How can she figure out whether the machine is faulty or whether the number of jackpot prizes are within reason?
  - (a) Collect data: They decide to compare the performance of the suspect slot machine to other slot machines. They pick a random sample of 4 other slot machines and record how many jackpot prizes each machine pays over a one week time frame:

$$x_1 = 1$$
,  $x_2 = 3$ ,  $x_3 = 4$ ,  $x_4 = 8$ 

(b) What model best fits the data?

Poisson Distribution

(c) Determine the value of the parameter(s) of the model: Given the observed data, what are the most likely values of the parameters?

The likelihood function  $L(\theta) = L(\theta \mid x_1, x_2, \dots x_n)$  gives the likelihood of the parameter  $\theta$  given the observed data. A **maximum likelihood estimate**,  $\hat{\theta}_{\text{MLE}}$ , is a value of  $\theta$  that maximizes the likelihood function.

MLE is a process for finding the best parameter(s) for a model based on a given dataset.

2. Find the value of  $\lambda$  that maximizes the likelihood function from question 1.



## Deriving the Likelihood Function

Let  $f(x;\theta)$  denote the pdf of a random variable X with associated parameter  $\theta$ . Suppose  $X_1, X_2, \ldots, X_n$  are random samples from this distribution, and  $x_1, x_2, \ldots, x_n$  are the corresponding observed values.

$$L(\theta \mid x_1, x_2, \dots, x_n) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta) = \prod_{i=1}^n f(x_i; \theta).$$

- 3. For the following random samples, find the likelihood function:
  - (a)  $(x_1, x_2, x_3, x_4) = (1, 3, 3, 2)$  comes from  $X \sim \text{Binom}(3, p)$ .

(b)  $x_1, x_2, x_3, \ldots, x_n$  come from  $X \sim \text{Exp}(\lambda)$ .

# Maximizing the Likelihood Function

4. Find the MLE for p when  $(x_1, x_2, x_3, x_4) = (1, 3, 3, 2)$  comes from  $X \sim \text{Binom}(3, p)$ .



Steps for finding MLE,  $\hat{\theta}_{\text{MLE}}$ :

1. Find a formula the likelihood function.

$$L(\theta \mid x_1, x_2, \dots, x_n) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

- 2. Maximize the likelihood function.
  - (a) Take the derivative of L with respect to  $\theta$
  - (b) Find critical points of L where  $\frac{dL}{d\theta}=0$  (or is undefined).
  - (c) Evaluate L at each critical point and identify the MLE.

5. Find the MLE for  $\lambda$  when  $x_1, x_2, x_3, \ldots, x_n$  comes from  $X \sim \text{Exp}(\lambda)$ .

The value of  $\theta$  that maximizes the **log-likelihood function**  $y = \ln \left( L(\theta \mid x_1, x_2, \dots, x_n) \right)$  will also the value that maximizes  $L(\theta \mid x_1, x_2, \dots, x_n)$ .

### Practice

6. Suppose a random variable with  $X_1 = 5$ ,  $X_2 = 9$ ,  $X_3 = 9$ , and  $X_4 = 10$  is drawn from a distribution with pdf

$$f(x; \theta) = \frac{\theta}{2\sqrt{x}}e^{-\theta\sqrt{x}}, \quad \text{where } x > 0.$$

Find an MLE for  $\theta$ .



#### **Summary of Results**

So far we have observed:

$$\begin{array}{c|c} \text{Distribution} & \hat{\theta}_{\text{MLE}} \\ \hline \text{Binomial} & \hat{p}_{\text{MLE}} = \hat{p} \\ \hline \text{Exponential} & \hat{\lambda}_{\text{MLE}} = \frac{1}{\bar{x}} \\ \end{array}$$

**Theorem 4.** Let  $x_1, x_2, x_3, \ldots, x_n$  be a random sample from  $N(\mu, \sigma)$ . The maximum likelihood estimates of  $\mu$  and  $\theta$  are

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$
 and  $\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ .

- MLE's give reasonable estimates that make sense!
- MLE's are often good estimators since they satisfy several nice properties
  - Consistency: As we get more data (sample size goes to infinity), the estimator becomes more and more accurate and converges to the actual value of  $\theta$ .
  - Normality: As we get more data, the MLE's converge to a normal distribution.
  - Efficiency: They have the smallest possible variance for a consistent estimator.
- The downside is finding MLE's are not always easy (or possible).