Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithms and Data Structures, November 2018

Structure

Hashing

Recapitulation Treatment of hash collisions Open Addressing Summary

Priority Queue Introduction

- No hash function is good for all key sets!
 - This cannot work, because a big universe is mapped onto a small set: $|\mathbb{U}| > m$
- For random key sets also simple hash functions work, e.g.

$$\Rightarrow h(x) = x \mod m$$

- Then the random keys make sure that it is distributed evenly
- To find a good hash function for every key set, universal hashing is needed
 - Then however, for a fixed set of keys not every hash function is suitable, but only some

Rehashing:

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size
- If a pre-defined level is exceeded, then a rehash is performed

How to rehash?

- New hash table with a new random hash function
- Copy elements into the new table
 - Expensive but does not happen often
 - Therefore the average cost is low
 - Look at amortized analysis in the next lecture

Buckets as linked list:

- Each bucket is a linked list
- Colliding keys are inserted into the linked list of a bucket, either sorted or appended at the end

- \blacksquare Operations in O(1) are possible if a suitable table size and hash function is selected
- Worst case O(n), e.g. table size of 1
- Dynamic number of elements is possible

- For colliding keys we choose a new free entry
- Static, fixed number of elements
- The probe sequence determines for each key, in which sequence all hash table entries are searched for a free bucket
 - If an entry is already occupied, then iteratively the following entry is checked. If a free entry is found the element is inserted
 - If element is not found at the corresponding table entry, even if the entry is occupied, then probing has to be performed until the element or a free entry has been found

- h(s) Hash function for key s
- g(s,j) Probing function for key s with overflow positions

$$j \in \{0, ..., m-1\}$$
 e.g. $g(s,j)=j$

■ The **probe sequence** is calculated by

$$h(s,j) = (h(s) - g(s,j)) \mod m \in \{0,\ldots,m-1\}$$


```
def insert(s, value):
    i = 0
    while t[(h(s) - g(s, j)) \mod m] \setminus
              is not None:
         i += 1
    t[(h(s) - g(s, j)) \mod m] \setminus
         = (s, value)
```

```
def lookup(s):
    i = 0
    while t[(h(s) - g(s, j)) \mod m] \setminus
             is not None:
        if t[(h(s) - g(s, j)) \mod m][0] != s:
                          j += 1
        if t[(h(s) - g(s, j)) \mod m][0] == s:
             return t[(h(s) - g(s, j)) \mod m]
    return None
```


Figure: Linear probe sequence

- Check the element with lower index: g(s,j) := j \Rightarrow Hash function: $h(s,j) = (h(s) - j) \mod m$
- This leads to the following probe sequence

$$h(s), h(s) - 1, h(s) - 2, \dots, \underbrace{0, m - 1}_{\text{clipping}}, m - 2, \dots, h(s) + 1$$

Figure: Linear probe sequence

- Can result in primary clustering
- Dealing with a hash collision will result in a higher probability of hash collisions in close entries

- Keys: {12,53,5,15,2,19}
- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- \blacksquare t.insert(12, "A"), h(12,0) = 5

0	1	2	3	4	5	6
					12, A	

■ t.insert (53, "B"), h(53,0) = 4

Figure: Probe/Insertion sequence on a hash map

- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- t.insert (5, "C"), h(5,0) = 5, h(5,1) = 4, h(5,2) = 3

 \blacksquare t.insert(15, "D"), h(15,0) = 1

Figure: Probe/Insertion sequence on a hash map

- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- t.insert (2, "E"), h(2,0) = 2

■ t.insert(19, "F"),
$$h(19,0) = 5$$
, $h(19,1) = 4$,
 $h(19,2) = 3$, $h(19,3) = 2$, $h(19,4) = 1$, $h(19,5) = 0$
 19 , $F | 15$, $D | 2$, $E | 5$, $C | 53$, $B | 12$, $A |$

Figure: Probe/Insertion sequence on a hash map

■ Motivation: avoid local clustering

Figure: Squared probe sequence

This leads to the following probe sequence

$$h(s)$$
, $h(s) + 1$, $h(s) - 1$, $h(s) + 4$, $h(s) - 4$, $h(s) + 9$, $h(s) - 9$, ...

Squared probing:

$$g(s,j) := (-1)^j \left\lceil \frac{j}{2} \right\rceil^2$$

- If m is a prime number for which $m = 4 \cdot k + 3$ then the probe sequence is a permutation of the indices of the hash tables
- Alternatively: $h(s,j) := (h(s) c_1 \cdot j + c_2 \cdot j^2) \mod m$
- Problem of secondary clustering: No local clustering anymore, but keys with same hash value have similar probe sequence

Uniform Probing:

- Motivation: so far function g(s,j) uses only the step counter j for linear and squared probing
 - \Rightarrow The probe sequence is independent of the key s
- Uniform probing computes the sequence g(s,j) of permutations of all possible indices dependent on key s
- Advantage: prevents clustering because different keys with the same hash value do not produce the same probe sequence
- **Disadvantage:** hard to implement

Double Hashing:

Figure: double hashing probe sequence

- Motivation: consider key s in probe sequence
- Use two independent hash functions $h_1(s), h_2(s)$
- Hash function: $h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m$

Double Hashing:

- Hash function: $h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m$
- Probe sequence:

$$h_1(s), h_1(s) + h_2(s), h_1(s) + 2 \cdot h_2(s), h_1(s) + 3 \cdot h_2(s), \dots$$

- Works well in practical use
- This method is an approximation of uniform probing

$$h_1(s) = s \mod 7$$

 $h_2(s) = (s \mod 5) + 1$
 $h(s,j) = h_1(s) + j \cdot h_2(s) \mod 7$

Table: comparing both hash functions

S	10	19	31	22	14	16
$h_1(s)$	3	5	3	1	0	2
$h_2(s)$	1	5	2	3	5	2

■ The efficiency of double hashing is dependent on $h_1(s) \neq h_2(s)$

Figure: double hashing

Double hashing by Brent:

Motivation:

Because different keys have different probe sequences, the sequence of the insertions has impact on efficiency of a sucessful search

Figure: double hashing

- The key s_1 is inserted at position $p_1 = h(s_1, 0)$
- The hash function for s_2 also results in $p_2 = h(s_2, 0) = p_1$
- The locations $h(s_2,j)$, $j \in \{1,...,n\}$ are also occupied
- If we insert s_2 at position $h(s_2, n+1)$ the search will be inefficient

Figure: double hashing by Brent

- Reversed sequence of keys would have been better
- Brent's idea:
 - Test if location $h(s_1, 1)$ is free
 - If yes, move s_1 from $h(s_1,0)$ to $h(s_1,1)$ and insert s_2 at $h(s_2,0)$

Idea:

- Motivation: colliding elements are inserted in the hash table sorted.
- Therefore, in case of an unsuccessful search of elements in combination with linear probing or double hashing, aborting is possible earlier because single probing steps have a fixed length

Implementation:

- Compare both keys if a collision occurs
- Insert the smaller key at p_1
- Search a position based on the diversion order for the bigger key

- The key 12 is saved at position $p_1 = h(12,0)$
- We insert the key 5 into the hash map
- We assume h(5,0) results in location p_1
- Because 5 < 12 we insert the key 5 at position p_1
- For the key 12 we iterate through the sequence

$$h(12,1), h(12,2), h(12,3), \dots$$

Motivation:

Having similiar length of probe sequences for all elements.
 Total costs stay the same, but they are distributed evenly.
 Results in approximately similar search times for all elements

Implementation:

- If two keys s_1, s_2 collide $(p_1 = h(s_1, j_1) = h(s_2, j_2))$ we compare the length of the sequence $(j_1 \text{ or } j_2)$
- The key with the bigger search sequence is inserted at p₁. The other key is assigned to a new location based on the sequence

- The key 12 is saved at position $p_1 = h(12,7)$
- We insert the key 5 into the hash map
- We assume h(5,0) results in location p_1
- Because $j_1 < j_2$ (0 < 7) key 12 stays at position p_1
- For key 5 we iterate through the sequence

$$h(5,1), h(5,2), h(5,3), \ldots$$

Problem:

- The key s_1 is inserted at position p_1
- The key s_2 returns the same hash value, but is inserted at position p_2 because of the probing order
- If s_1 is removed, it is impossible to find s_2

Solution:

- Remove: elements are marked as removed, but not deleted
- Inserting: elements marked as removed will we overwritten

Save colliding elements as linked list

Open hashing: (static, number of elements fixed)

- Determine a probe sequence, permutation of all hash values
- Linear, quadratic probing:
 - Easy to implement
 - Raises the probability of collisions because probing order does not depend on the key

- Uniform probing, double hashing:
 - Different probing orders for different keys
 - Avoids clustering of elements

Improving efficiency: (Brent, Ordered Hashing)

- Improve search efficiency by sorting colliding insertions
 - Abortion of unsuccessfull search
 - Search sequence length balancing

Hashing:

Efficiency of dictionary operations:

Insert: O(1)...O(n)Search: O(1)...O(n)Remove: O(1)...O(n)

- Direct access oto all elements in a hash table
- Using a hash function to find the position (hash value) in the hash table
- Hash function, size of the hash table and strategy to avoid hash collisions all influence the efficiency of the data structure

Definition:

- A priority queue saves a set of elements
- Each element contains a key and a value like a map
- There is a total order (like <) defined on the keys

Definition:

■ The priority queue supports the following operations:

```
insert(key, value): inserts a new element into the queue
getMin(): returns the element with the smallest key
deleteMin(): removes the element with the smallest key
```

Sometimes additional operations are defined:

```
changeKey(item, key): changes the key of the element
remove(item): removes the element from the queue
```

Special features:

- Multiple elements with the same key
 - No problem and for many applications necessary
 - If there is more than one element with the smallest key
 getMin(): returns just one of the possible elements
 deleteMin(): deletes the element returned by getMin
- Argument of changeKey and remove operations
 - There is no **quick access** to an element in the queue
 - That is why insert and getMin return a reference (handle, accessor object)
 - changeKey and remove take this reference as argument
 - Therefore each element has to store its current position in the heap.

```
from queue import PriorityQueue
q = PriorityQueue()
e1 = (5, "A") # element with priority 5
q.put(e1); # insert element e1
# remove and return the lowest item
e2 = q.get()
```

Example 1:

■ Calculation of the sorted union of *k* sorted lists (multi-way merge or *k*-way merge)

$$L_1: \boxed{3} \ \boxed{5} \ \boxed{8} \ \boxed{12} \ \dots$$
 $L_3: \boxed{1} \ \boxed{10} \ \boxed{11} \ \boxed{24} \ \dots$
 $L_2: \boxed{4} \ \boxed{5} \ \boxed{6} \ \boxed{7} \ \dots$
 $\Rightarrow R: \boxed{1} \ \boxed{3} \ \boxed{4} \ \boxed{5} \ \boxed{5} \ \boxed{6} \ \boxed{7} \ \boxed{8} \ \boxed{10} \ \dots$

Figure: 3-way merge

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)
- Runtime: N = length of resulting list
 - Trivial: $\Theta(N \cdot k)$, minimum calculation $\Theta(k)$
 - Priority queue: $\Theta(N \cdot \log k)$, minimum calculation $\Theta(\log k)$

Example 2:

- For example Dijkstra's algorithm for computing the shortest path (following lecture)
- Among other applications it can be used for sorting

Idea:

- Save elements as tuples in a binary heap
- Summary from lecture 1 (*HeapSort*):
 - Nearly complete binary tree
 - Heap condition:

The key of each node \leq the keys of the children

Figure: heap with 11 nodes

Figure: min heap stored in array

Storing a binary heap:

- Number nodes from top to bottom and left to right starting with 0 and store entries in array
- Children of node i are the nodes 2i + 1 and 2i + 2
- Parent node of node *i* is floor((i-1)/2)

Inserting an element: insert(key, item)

- Append the element at the end of the array
- The heap condition may be violated, but only at the last index
- Repair heap condition ⇒ We will see later how to do this

Implementation

Returning the minimum: getMin()

- Else return the first element
- If the heap is empty return None

Removing the minimum: deleteMin()

- Deleting the element with the lowest key
- Swap the last element with the first element and shrink the heap by one
- The heap condition may be violated, but only at the first index
- Repair heap condition

Changing the key (priority): changeKey(item, key)

- The element (queue item) is given as argument
- Replace the key of the element
- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition

Changing the key (priority): changeKey(item, key)

- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition

Priority Queue

Implementation

Removing an element: remove(item)

- The element (queue item) is given as argument
- Replace the element with the last element and shrink the heap by one
- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition

Repairing after modifying operations:

- The heap condition can be violated after using insert, deleteMin, changeKey, remove, but only at one known position with index i
- Heap conditions can be violated in two directions:
 - Downwards: the key at index i is not ≤ than the value of its children
 - Upwards: the key at index i is not \geq than the value of its parent
- We need two repair methods: repairHeapUp, repairHeapDown

Implementation - Reparing the Heap

repairHeapDown:

- Sift the element until the heap condition is valid
 - Change node with child, which has the lower key of both children
 - If the heap condition is violated repeat for the child node

Figure: repairing the heap downwards

Implementation - Reparing the Heap

repairHeapDown:

- Sift the element until the heap condition is valid
 - Change node with child, which has the lower key of both children
 - If the heap condition is violated repeat for the child node

Figure: repairing the heap downwards

repairHeapUp:

- Change node with parent
- If the heap condition is violated repeat for parent node

Figure: repairing the heap upwards

repairHeapUp:

- Change node with parent
- If the heap condition is violated repeat for parent node

Figure: repairing the heap upwards

Index of a priority queue item:

- Attention: for changeKey and remove the item has to "know" where it is located in the heap
- Remember for repairHeapUp and repairHeapDown: update the index if moving an heap element

```
class PriorityQueueItem:
    """Provides a handle for a queue item.
    This handle can be used to remove or
    update the queue item.
    0.00
    def __init__(self, key, value, index):
        self.key = key
        self.value = value
```

self.index = index

- A full binary tree with n elements has a depth of $O(\log n)$
- The maximum distance from the root to a leaf can be O(log n) elements
- Repairing the heap upwards and downwards: We have only one path to traverse: O(log n)

Runtime for methods

- insert, deleteMin, changeKey, remove: we have to repair the heap: $O(\log n)$
- \blacksquare getMin: return the element at index 0: O(1)

- \blacksquare getMin, insert and decreaseKey in amortized time of O(1)
- \blacksquare deleteMin in amortized time $O(\log n)$

Practical experience:

- The binary heap is simpler: costs for managing the structure are low
- The difference is negligible if the number of elements is relatively small
- Example:
 - For $n = 2^{10} \approx 1,000$, the depth $\log_2 n$ is only 10
 - For $n = 2^{20} \approx 1,000,000$, the depth $\log_2 n$ is only 20

■ Course literature

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

■ Priority Queue - Implementations / API

- [Cpp] C++ priority_queue
 http:
 //www.sgi.com/tech/stl/priority_queue.html
- [Jav] Java PriorityQueue
 https://docs.oracle.com/javase/7/docs/api/
 java/util/PriorityQueue.html
- [Pyt] Python PriorityQueue
 https://docs.python.org/3/library/queue.
 html#queue.PriorityQueue