Amendment Dated: May 4, 2009

Reply to Office Action of February 4, 2009

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the

application:
ъргонов.
(Currently Amended) An article of manufacture, comprising:
a program storage device having stored thereon program instructions executable by a
processing device to perform operations for estimating motion trials in video image sequences,
the operations comprising:
providing data points representing information from an image sequence; and
performing regression clustering using a K-Harmonic Means function to cluster the data
points and to provide motion information regarding the data points;
wherein the performing regression clustering includes:
selecting a number, K, of regression clusters[[, K,]] for data points from an image
sequence;
initializing regression functions for each of the K clusters to estimate [[the]]
centers of motion for the data points;
calculating [[the]] distances from each data point to each of the K regression
functions;
calculating a membership probability and a weighting factor for each data point
based on distances between the K regression functions and each data point;
applying regression elustering using a K-Harmonic Means function to recalculate
the K regression functions based at least on the membership probabilities;
comparing a changedetermining whether changes in membership
probabilitiesprobability and a change or changes in the K regression functions satisfy a
stopping criterion; function to a predetermined threshold; and
repeating calculating the distances, calculating the membership probability,
applying regression, and determining whether changes satisfy the stopping criterion if the
changes in membership probabilities or changes in the K regression functions do not
satisfy the stopping criterion; and

Amendment Dated: May 4, 2009

Reply to Office Action of February 4, 2009

using motion paths represented by the K regression functions <u>ifwhen</u> the changesehange in membership <u>probabilities or probability and changesehange</u> in the K regression functions satisfy the <u>stopping criterionfunction are less than a predetermined</u>

29 threshold.

- 2. (Original) The program storage device of claim 1, wherein the performing regression
- 2 clustering using the K-Harmonic Means function to cluster the data points and to provide motion
- 3 information regarding the data points further comprises providing motion vectors for the data
- 4 points.
- 1 3. (Original) The program storage device of claim 1, wherein the performing regression
- 2 clustering using the K-Harmonic Means function to cluster the data points and to provide motion
- 3 information regarding the data points further comprises providing at least one motion path for the
- 4 data points.
 - (Cancelled)
- 1 5. (Previously Presented) The program storage device of claim 1, wherein the initializing
- 2 regression functions for each of the K clusters further comprises randomly initializing regression
- 3 functions for each of the K clusters.
- 6. (Cancelled)
- 1 7. (Currently Amended) The program storage device of claim 1, wherein the program
- 2 instructions are executable to further calculate a weighting factor for each data point based on
- 3 distances between the K regression functions and each data point, wherein the weighting factor is
- 4 chosen to allow the K regression functions to be optimized with less sensitivity to initialization
- 5 of the K regression functions.

Amendment Dated: May 4, 2009

Reply to Office Action of February 4, 2009

- 1 8. (Previously Presented) The program storage device of claim 1 further comprising
- 2 extracting data according to a predetermined criteria to provide the data points.
 - 9. (Currently Amended) The program storage device of claim 8, wherein the extracting data
 - according to the predetermined criteria comprises portioning data according to color.
- 1 10. (Previously Presented) The program storage device of claim 1, wherein the program
- 2 instructions further include instructions for performing the operations comprising preparing each
- 3 of the data points as x-y-coordinate data points.
- 1 11. (Previously Presented) The program storage device of claim 1, wherein the program
- 2 instructions further include instructions for performing the operations comprising using the K
- 3 regression functions to render the image sequence with motion paths shown on a display.
- 1 12. (Currently Amended) The program storage device of claim 11, wherein the using the K
- 2 regression functions to render the image sequence further comprises overlaying the K regression
- 3 functions on the video images to show motion between the video imagesimage sequences.

3

4

5

6

7

8

9

10

11

12

13

Amendment Dated: May 4, 2009

Reply to Office Action of February 4, 2009

(Currently Amended) A system for estimating motion trials in video image sequences,
 comprising:

an image sequence retrieval module for retrieving a current image and a first reference image and providing data points representing information from the current image and the first reference image; and

a motion estimator, coupled to the image sequence retrieval module, for performing regression clustering using a K-Harmonic Means function to cluster the data points and to provide motion information regarding the data points;

wherein the motion estimator performs regression clustering by selecting a number, K, of regression clusters[[, K,]] for data points from an image sequence, initializing regression functions for each of the K clusters to estimate [[the]] centers of motion for the data points, calculating [[the]] distances from each data point to each of the K regression functions. calculating a membership probability and a weighting factor for each data point based on

- distances between the K regression functions and each data point, applying regression elustering
 using a K Harmonie Means function to recalculate the K regression functions based at least on
- the membership probabilities, comparing a change determining whether changes in membership
- 17 probability and a change-probabilities or changes in the K regression functions satisfy a stopping
- 18 <u>criterion</u>, repeating calculating the distances, calculating the membership probability, applying
- 19 regression, and determining whether changes satisfy the stopping criterion if the changes in
- 20 membership probabilities or changes in the K regression functions do not satisfy the stopping
- 21 <u>criterion, to a predetermined threshold</u> and using motion paths represented by the K regression
- 22 functions <u>if the changes</u> when the change-in membership probability and change <u>probabilities or</u>
- 23 <u>changes</u> in the K regression function satisfy the stopping criterion are less than a
- 24 predetermined threshold.
- (Original) The system of claim 13, wherein the motion information regarding the data
 points further comprises motion vectors for the data points.
- 1 15. (Original) The system of claim 13, wherein the motion information regarding the data 2 points further comprises at least one motion path for the data points.

Amendment Dated: May 4, 2009

Reply to Office Action of February 4, 2009

- 1 16. (Cancelled)
 - 17. (Currently Amended) The system of claim 13, wherein the motion estimator is to
- randomly initialize initializes regression functions for each of the K clusters.
- 1 18. (Cancelled)
- 1 19. (Currently Amended) The system of claim 13, wherein the motion estimator is to further
- 2 calculate a weighting factor for each data point based on distances between the K regression
- 3 <u>functions and each data point, wherein</u> the weighting factor is chosen to allow the K regression
- 4 functions to be optimized with less sensitivity to initialization of the K regression functions.
 - 20. (Currently Amended) The system of claim 13, wherein the motion estimator is to extract
- 2 extracts-data according to predetermined criteria.
- 1 21. (Currently Amended) The system of claim 20, wherein the motion estimator is to extract
- 2 extracts-data according to color.
- 1 22. (Currently Amended) The system of claim 13, wherein the image sequence retrieval
- 2 module is to prepare prepares each of the data points as x-y-coordinate data points.
- 1 23. (Previously Presented) The system of claim 13 further comprising a processor for using
- 2 the K regression functions to render the image sequence with motion paths shown on a display.
- 1 24. (Original) The system of claim 23, wherein the processor overlays the K regression
- 2 functions on the video images to show motion between the current image and the first reference
- 3 image.

Appl. No.: 10/802,428			
Amendment Dated: May 4, 2009 Reply to Office Action of February 4, 2009			
reply to office retion of residualy 1, 2009			
25. (Currently Amended) A method for estimating motion trials in video image sequen	ices.		
the method comprising:			
providing data points representing information from an image sequence; and			
performing, by a processor, regression clustering using a K-Harmonic Means funct	ion to		
cluster the data points and to provide motion information regarding the data points.			
wherein the performing regression clustering further-comprises:			
selecting a number, K, of regression clusters[[, K,]] for data points from an	image		
sequence;			
initializing regression functions for each of the K clusters to estimate	[[the]]		
centers of motion for the data points;			
calculating [[the]] distances from each data point to each of the K reg	ression		
functions;			
calculating a membership probability and a weighting factor-for each dat	a point		
based on distances between the K regression functions and each data point;			
applying regression elustering using a K-Harmonic Means function to reca	alculate		
the K regression functions based at least on the membership probabilities;			
determining whether changes comparing a change in mem	bership		
probabilitiesprobability and a change or changes in the K regression functions sa	atisfy a		
stopping criterion; functions to a predetermined threshold; and			
repeating calculating the distances, calculating the membership prob	ability,		

repeating calculating the distances, calculating the membership probability, applying regression, and determining whether changes satisfy the stopping criterion if the changes in membership probabilities or changes in the K regression functions do not satisfy the stopping criterion; and

using motion paths represented by the K regression functions <u>ifwhen</u> the <u>changesehange</u> in membership <u>probabilities orprobability and change changes</u> in the K regression functions <u>satisfy the stopping criterionare less than a predetermined threshold</u>.

(Cancelled)

3

4

5

6

7

8

9

10

11

12

13

14 15

16

Amendment Dated: May 4, 2009

Reply to Office Action of February 4, 2009

27. (Currently Amended) A system for estimating motion trials in video image sequences,
 comprisine:

means for retrieving a current image and a first reference image and providing data points representing information from the current image and the first reference image; and

means for performing regression clustering, coupled to the means for retrieving and providing, wherein the means for performing regression clustering uses a K-Harmonic Means function to cluster the data points and to provide motion information regarding the data points,

wherein the means for performing regression clustering further comprises means for

selecting a number, K, of regression clusters[[, K,]] for data points from an image sequence, means for initializing regression functions for each of the K clusters to estimate [[the]] centers of motion for the data points, means for calculating [[the]] distances from each data point to each of the K regression functions, means for calculating a membership probability and a weighting

factor for each data point based on distances between the K regression functions and each data

point, means for applying regression elustering using a K. Harmonic Means function to

recalculate the K regression functions <u>based at least on the membership probabilities</u>, means for comparing a change determining whether changes in membership probability and a change

17 <u>probabilities or changes in the K regression functions satisfy a stopping criterion, repeating</u>

18 calculating the distances, calculating the membership probability, applying regression, and

determining whether the changes satisfy the stopping criterion if tasks of the changes in
 membership probabilities or changes in the K regression functions do not satisfy the stopping

21 <u>criterion, to a predetermined threshold</u> and means for using motion paths represented by the K

22 regression functions if the changes when the change in membership probability and change

23 probabilities or changes in the K regression functions satisfy the stopping criterionare less than a

24 predetermined threshold.

1 28.-29. (Cancelled)