

UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CÁTEDRA DE MATEMÁTICAS PARA LA ADMINISTRACIÓN Y COMPUTACIÓN

Asignatura: Matemática para Computación I

Código: 03068

Material Complementario Capítulo 4

Proposiciones

Determine si cada una de las siguientes expresiones corresponde o no a una proposición y en caso que lo sea escriba el valor de verdad de la expresión.

- 1. 2+5=9
- 2. Para algún entero positivo n, $19340 = n \cdot 17$.
- 3. Cómprame un chocolate.
- 4. ¿Donde vives?
- 5. Costa Rica es un país de América.

Solución: Una proposición es una afirmación declarativa que es falsa o verdadera pero no ambas, por lo que:

- 1. 2+5=9, **si** es una proposición y además es **falsa**, puesto que $2+5\neq 9$.
- 2. Para algún entero positivo n, $19340 = n \cdot 17$, **si** es una proposición y además es **falsa** puesto que $19340 \div 17$ no es un número entero.
- 3. Cómprame un chocolate, no corresponde a una proposición.
- 4. ¿Donde vives?, **no** corresponde a una proposición.
- 5. Costa Rica es un país de América, **si** es una proposición y además es **verdadera**, puesto que Costa Rica si es un país de América.

Proposiciones y operaciones lógicas

1. Considere las siguientes proposiciones

p: Luis hace la tarea

q: Luis es buen estudiante

Utilizando esas proposiciones, escriba cada una de los siguientes enunciados (con forma simbólica) en palabras

- (a) $\neg p$
- (b) $p \vee \neg q$
- (c) $p \wedge q$
- (d) $p \vee q$
- (e) $\neg p \wedge \neg q$

Solución: Recuerde los símbolos

Símbolo	Se lee
Λ	у
V	О
一一	es falso que o no

- .
- (a) $\neg p$: Luis no hace la tarea.
- (b) $\neg p \lor q$: Luis no hace la tarea o es buen estudiante.
- (c) $p \wedge q$: Luis hace la tarea y es buen estudiante.
- (d) $p \lor q$. Luis hace la tarea o es buen estudiante.
- (e) $\neg p \land \neg q$. Luis no hace la tarea y no es buen estudiante.

2. Considere las siguientes proposiciones

r: Hace calor

p: Hoy es lunes

q: No está lloviendo

Utilizando esas proposiciones escriba cada una de los siguientes enunciados (con forma simbólica) en palabras

- (a) $\neg r$
- (b) ¬q
- (c) $p \wedge q$
- (d) $p \wedge \neg q$
- (e) $\neg p \land (q \lor r)$
- (f) $\neg (p \lor q)$

Solución: utilizando la lectura de los símbolos mostrada en el ejercicio uno y la tabla de 4.1 del libro de texto, tenemos:

- (a) $\neg r$: no hace calor.
- (b) $\neg q$: está lloviendo.
- (c) $p \wedge q$: hoy es lunes y no está lloviendo.
- (d) $p \wedge \neg q$: hoy es lunes y está lloviendo.
- (e) $\neg p \land (q \lor r)$ hoy no es lunes y no está lloviendo u hoy no es lunes y hace calor.
- (f) $\neg (p \lor q)$: hoy no es lunes y está lloviendo.

3.	Considere las siguientes proposiciones para representar de forma simbólica los enunciados que se le proponen
	p: Hace frío
	q: Está Iloviendo
	(a) Está lloviendo y hace frío

- (a) Está lloviendo y hace frío
- (b) No está Iloviendo
- (c) Hace frío pero no está lloviendo
- (d) No hace frío y no está lloviendo

Solución: utilizando los símbolos mostrados en el ejercicio uno, tenemos:

- (a) Está lloviendo y hace frío: $q \wedge p$
- (b) No está lloviendo: $\neg q$
- (c) Hace frío pero no está lloviendo: $p \wedge \neg q$
- (d) No hace frío y no está lloviendo: $\neg p \wedge \neg q$

4. Considere las proposiciones

p: Luisa estudia

q: Jorge estudia

r: Luisa va al cine

s: Jorge va al cine

t: Jorge invita a Luisa a ir al cine

Utilice los enunciados anteriores para representar de forma simbólica las siguientes expresiones:

- (a) Luisa o Jorge estudian.
- (b) Jorge invita a Luisa a ir al cine, entonces Luisa no estudia.
- (c) Si Jorge y Luisa van al cine entonces ni Jorge ni Luisa estudian.
- (d) Jorge estudia si y sólo si no va al cine.
- (e) Si Jorge no invita a Luisa a ir al cine, entonces Luisa estudia.

Solución: Recuerde los símbolos

Símbolo	Se lee
Λ	у
V	О
_ ¬	es falso que o no
\longrightarrow	entonces
\longleftrightarrow	si y sólo si

- (a) Luisa o Jorge estudian: $p \lor q$
- (b) Jorge invita a Luisa a ir al cine, entonces Luisa no estudia: $t \longrightarrow \neg p$
- (c) Si Jorge y Luisa van al cine entonces ni Jorge ni Luisa estudian: $s \wedge r \longrightarrow \neg q \wedge \neg p$
- (d) Jorge estudia si y sólo si no va al cine: $q \longleftrightarrow \neg s$
- (e) Si Jorge no invita a Luisa a ir al cine, entonces Luisa estudia: $\neg t \longrightarrow p$

Proposiciones y tablas de verdad

Para resolver los siguientes ejercicios recuerde las siguientes tablas

p	q	$p \wedge q$
٧	٧	V
٧	F	F
F	٧	F
F	F	F

	p	q	$p \lor q$
	٧	٧	V
	٧	F	V
	F	٧	V
	F	F	F
٠,			

p	$\neg p$
V	F
F	V

p	q	$p \longrightarrow q$
٧	٧	V
٧	F	F
F	٧	V
F	F	V

p	q	$p \longleftrightarrow q$
V	٧	V
V	F	F
F	٧	F
F	F	V

1. Dadas las proposiciones p y q realice la tabla de verdad de la siguiente expresión

$$\neg (p \lor q) \lor (p \land q)$$

Solución: Se realiza la tabla de verdad para la expresión dada

p	q	$p \lor q$	$\neg (p \lor q)$	$p \wedge q$	$\neg (p \lor q) \lor (p \land q)$
٧	٧	V	F	V	V
٧	F	V	F	F	F
F	٧	V	F	F	F
F	F	F	V	F	V

2. Dadas las proposiciones p y q realice la tabla de verdad de la siguiente expresión

$$(p \land \neg q) \longrightarrow (p \lor q)$$

Solución: Se realiza la tabla de verdad para la expresión dada

p	q	$\neg q$	$p \wedge \neg q$	$p \lor q$	$(p \land \neg q) \longrightarrow (p \lor q)$
V	V	F	F	V	V
V	F	V	V	V	V
F	V	F	F	V	V
F	F	V	F	F	V

3. Dadas las proposiciones p y q realice la tabla de verdad de la siguiente expresión

$$(p \wedge r) \longleftrightarrow \neg q$$

Solución: Se realiza la tabla de verdad para la expresión dada

p	q	r	$p \wedge r$	$\neg q$	$(p \wedge r) \longleftrightarrow \neg q$
٧	٧	٧	V	F	F
V	٧	F	F	F	V
V	F	V	V	V	V
V	F	F	F	V	F
F	٧	V	F	F	V
F	V	F	F	F	V
F	F	V	F	V	F
F	F	F	F	V	F

4.	Considerando la proposición p falsa, la proposición q verdadera y la proposición r fals	a determine
	si cada una de las siguientes expresiones es falsa o verdadera.	

- (a) $p \vee q$
- (b) $\neg p \lor r$
- (c) $\neg p \wedge \neg q$
- (d) $\neg p \longrightarrow \neg q$
- (e) $p \longleftrightarrow r$
- (f) $(p \lor r) \longrightarrow \neg q$

Solución:

(a) $p \lor q$, recuerde que falso o verdadero es **verdadero**

р	q	p∨q	
F	٧	V	

.

(b) $\neg p \lor r$, recuerde que no falso = verdadero, además verdadero o falsa es **verdadero**

р	¬р	r	$\neg p \lor r$
F	V	F	V

.

(c) $\neg p \wedge \neg q$, es falso

р	q	¬р	$\neg q$	¬ p∧¬ q
F	V	V	F	F

.

(d) $\neg p \longrightarrow \neg q$, es falso

р	q	¬р	¬q	$\neg p \longrightarrow \neg q$
F	V	V	F	F

.

(e) $p \longleftrightarrow r$, es verdadero

р	r	$p \longleftrightarrow r$
F	F	V

.

(f) $(p \lor r) \longrightarrow \neg q$, es **verdadero**

р	r	$p \lor r$	$\neg r$	$\mid (p \lor r) \longrightarrow \neg q \mid$
F	F	F	V	V

- 5. Sean p y q dos proposiciones tales que el valor de verdad de la expresión $p \wedge q$ es **verdadero**. Determine el valor de verdad de cada una de las siguientes expresiones:
 - (a) La proposición p
 - (b) $p \longrightarrow q$
 - (c) $p \vee q$
 - (d) $\neg p \longrightarrow \neg q$
 - (e) $\neg (p \longrightarrow \neg q)$

Solución:

(a) La proposición p, es **verdadero**. Observe la tabla de verdad de $p \wedge q$

p	q	$p \wedge q$
V	٧	V
V	F	F
F	٧	F
F	F	F

Según la tabla $p \wedge q$ es **verdadera** si y sólo si tanto la preposición p como la proposición q son **ambas verdaderas**, por lo que el valor de verdad de p es **verdadero**

(b) $p \longrightarrow q$, es **verdadero.** Partiendo del punto anterior donde se determinó que tanto p como q son ambas verdaderas, observe la tabla de verdad para $p \longrightarrow q$

p	q	$p \longrightarrow q$
V	٧	V

(c) $p \lor q$, **verdadero**. Partiendo de que la proposición p y la proposición q son ambas verdaderas, observe la tabla de verdad para $p \lor q$

p	q	$p \lor q$
V	٧	V

(d) $\neg p \longrightarrow \neg q$, es **verdadero.** Partiendo de que la proposición p y la proposición q son ambas verdaderas, observe la tabla de verdad para $\neg p \longrightarrow \neg q$

p	q	$\neg p$	$\neg q$	$ eg p \longrightarrow eg q$
٧	٧	F	F	V

(e) $\neg(p\longrightarrow \neg q)$, es **verdadero**. Partiendo de que la proposición p y la proposición q son ambas verdaderas, observe la tabla de verdad para $\neg(p\longrightarrow \neg q)$

p	q	$\neg q$	$p \longrightarrow \neg q$	$\neg (p \longrightarrow \neg q)$
٧	٧	F	F	V

6. Dadas las proposiciones p y q determine si la siguiente expresión es una tautología o una contradicción

$$p\vee (p\longrightarrow q)$$

Solución: Se realiza la tabla de verdad para la expresión dada

p	q	$p \longrightarrow q$	$p \lor (p \longrightarrow q)$
V	V	V	V
V	F	F	V
F	V	V	V
F	F	V	V

Por lo tanto como se obtuvo verdadero en todas las filas de la expresión final, se tiene que la expresión $p \lor (p \longrightarrow q)$ es una **tautología**.

7. Dadas las proposiciones p y q determine si la siguiente expresión es una tautología o una contradicción

$$\neg(p\vee(p\longrightarrow q))$$

Solución: Se realiza la tabla de verdad para la expresión dada

p	q	$p \longrightarrow q$	$p \lor (p \longrightarrow q)$	$\neg(p\vee(p\longrightarrow q))$
V	V	V	V	F
V	F	F	V	F
F	٧	V	V	F
F	F	V	V	F

Por lo tanto como se obtuvo falso en todas las filas de la expresión final, se tiene que la expresión $\neg(p \lor (p \longrightarrow q))$ es una **contradicción**.

8. Dadas las proposiciones p y q determine si la siguiente expresión es una tautología o una contradicción

$$(p \longleftrightarrow q) \land (p \land \neg q)$$

Solución: Se realiza la tabla de verdad para la expresión dada

	p	q	$p \longleftrightarrow q$	$\neg q$	$(p \wedge \neg q)$	$(p \longleftrightarrow q) \land (p \land \neg q)$
	٧	٧	V	F	F	F
	٧	F	F	V	V	F
Ì	F	٧	F	F	F	F
	F	F	V	V	F	F

Por lo tanto como se obtuvo falso en todas las filas de la expresión final, se tiene que la expresión $(p \longleftrightarrow q) \land (p \land \neg q)$ es una **contradicción.**

9. Dadas las proposiciones p y q pruebe que las siguientes expresiones son logicamente equivalentes, es decir:

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Solución: Se realiza la tabla de verdad para la expresión $\neg(p \lor q)$

p	q	$p \lor q$	$\neg (p \lor q)$
V	V	V	F
V	F	V	F
F	V	V	F
F	F	F	V

Ahora se realiza la tabla de verdad para la expresión $\neg p \wedge \neg q$

p	q	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
V	٧	F	F	F
V	F	F	V	F
F	٧	V	F	F
F	F	V	V	V

Por lo que se concluye que $\neg(p \lor q) \equiv \neg p \land \neg q$ dado que tienen los mismos valores de verdad en sus respectivas tablas.

10. Dadas las proposiciones p, q y r pruebe que las siguientes expresiones son lógicamente equivalentes, es decir:

$$(p \vee q) \vee r \equiv p \vee (q \vee r)$$

Solución: Se realiza la tabla de verdad para la expresión $(p \lor q) \lor r$

				/
p	q	r	$p \lor q$	$(p \lor q) \lor r$
V	٧	٧	V	V
V	٧	F	V	V
V	F	٧	V	V
V	F	F	V	V
F	٧	٧	V	V
F	٧	F	V	V
F	F	٧	F	V
F	F	F	F	F

Ahora se realiza la tabla de verdad para la expresión $p \lor (q \lor r)$

p	q	r	$q \lor r$	$p \lor (q \lor r)$
V	٧	V	V	V
V	٧	F	V	V
V	F	٧	V	V
V	F	F	F	V
F	٧	٧	V	V
F	٧	F	V	V
F	F	٧	V	V
F	F	F	F	F

Por lo que se concluye que $(p \lor q) \lor r \equiv p \lor (q \lor r)$ dado que tienen los mismos valores de verdad en sus respectivas tablas.

Proposiciones condicionales

- 1. Escriba cada una de las siguientes proposiciones como una proposición condicional
 - (a) Ana pasará el examen de matemáticas si estudia duro.
 - (b) El programa es legible sólo si está bien estructurado
 - (c) Para ir al concierto se deben pagar \$ 100.
 - (d) Para matricular el curso de algoritmos es necesario aprobar el de computación I.
 - (e) Si él trabaja ganará dinero

Solución: recuerde que si p y q son proposiciones, la proposición condicional es la proposición si p entonces q, que se denota por $p \longrightarrow q$, por lo que el condicional de de las expresiones dadas son:

- (a) Si Ana estudia duro, entonces pasará el examen de matemáticas.
- (b) Si el programa está bien estructurado, entonces es legible.
- (c) Si se pagan \$ 100, entonces se puede ir al concierto.
- (d) Si se aprueba el curso de computación I, entonces se puede matricular el curso de algoritmos.
- (e) Si él gana dinero, entonces él trabaja.
- Escriba la recíproca de cada una de las proposiciones del ejercicio 1.

Solución: recuerde que la recíproca de $p \longrightarrow q$ es $q \longrightarrow p$, por lo que la recíproca de las expresiones dadas son:

- (a) Si Ana pasó el examen de matemáticas, entonces estudió duro.
- (b) Si el programa es legible, entonces está bien estructurado.
- (c) Si puede ir al concierto, entonces pagó \$ 100.
- (d) Si pudo matricular el curso de algoritmos, entonces aprobó el computación I.
- (e) Si él trabaja, entonces gana dinero.

3. Escriba la contrapositiva de cada una de las proposiciones del **ejercicio 1**.

Solución: recuerde que la contrapositiva de $p \longrightarrow q$ es $\neg q \longrightarrow \neg p$, por lo que la contrapositiva de las expresiones dadas son:

- (a) Si Ana no pasó el examen de matemáticas, entonces no estudió duro.
- (b) Si el programa no es legible, entonces no está bien estructurado.
- (c) Si no puede ir al concierto, entonces no pagó \$ 100.
- (d) Si no pudo matricular el curso de algoritmos, entonces no aprobó el computación I.
- (e) Si él no trabaja, entonces no gana dinero.
- 4. Escriba la inversa de cada una de las proposiciones del ejercicio 1.

Solución: recuerde que la inversa de $p \longrightarrow q$ es $\neg p \longrightarrow \neg q$, por lo que la inversa de las expresiones dadas son:

- (a) Si Ana no estudia duro, entonces no pasará el examen de matemáticas.
- (b) Si el programa no está bien estructurado, entonces no es legible.
- (c) Si no se pagan \$ 100, entonces no se puede ir al concierto.
- (d) Si no se aprueba el curso de computación I, entonces no se puede matricular el curso de algoritmos.
- (e) Si él no gana dinero, entonces no trabaja.

Argumentos

1. Determine la validez del siguiente argumento

$$p \longrightarrow \neg q, \neg q \vdash q$$

Solución: Recuerde la definición de argumentos válidos para la solución de los siguientes ejercicios, la cual dice:

Un argumento $P_1, P_2, ..., P_n \vdash Q$ es válido si, Q es verdadero **siempre** que todas las premisas $P_1, P_2, ..., P_n$ son verdaderas.

Para el caso de este ejercicio las premisas y ${\cal Q}$ son

$$P_1 = p \longrightarrow \neg q$$

$$P_2 = \neg q$$

$$Q = q$$

Realizamos la tabla de verdad y revisamos si se cumple la definición para que el argumento sea válido, o en caso contrario será una falacia

p	q	$\neg q$	$p \longrightarrow \neg q$	q
V	٧	F	F	٧
V	F	V	V	F
F	٧	F	V	V
F	F	V	V	F

Después de analizar la tabla de verdad anterior se nota que el argumento es una **falacia**, dado que en la segunda y cuarta línea las dos premisas son verdaderas pero Q es falso.

$$p \longrightarrow q, q \longrightarrow p \vdash p \longleftrightarrow q$$

Solución: Para el caso de este ejercicio las premisas y Q son

$$P_1 = p \longrightarrow q$$

$$P_2 = q \longrightarrow p$$

$$Q = p \longleftrightarrow q$$

Realizamos la tabla de verdad y revisamos si se cumple la definición para que el argumento sea válido, o en caso contrario será una falacia

p	q	$p \longrightarrow q$	$q \longrightarrow p$	$p \longleftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	٧	V	F	F
F	F	V	V	V

Después de analizar la tabla de verdad anterior se nota que el argumento es valido, dado que si las dos premisas son verdaderas se tiene que Q es verdadero.

$$p \longrightarrow q, \neg p \vdash \neg q$$

Solución: Para el caso de este ejercicio las premisas y Q son

$$P_1 = p \longrightarrow q$$

$$P_2 = \neg p$$

$$Q = \neg q$$

Realizamos la tabla de verdad y revisamos si se cumple la definición para que el argumento sea válido, o en caso contrario será una falacia

p	q	$p \longrightarrow q$	$\neg p$	$\neg q$
V	V	V	F	F
V	F	F	F	V
F	٧	V	V	F
F	F	V	V	V

Después de analizar la tabla de verdad anterior se nota que el argumento es una **falacia**, dado que en la tercera línea las dos premisas son verdaderas pero Q es falso.

Solución: Primero se debe traducir el argumento a su forma simbólica, para esto considere

$$p$$
: Ilueve

Por lo que las premisas y Q son:

$$P_1=p\longrightarrow q$$
 Si llueve, José se enferma $P_2=\lnot p$ No llovió $Q=\lnot q$ José no se enfermó

Entonces la forma simbólica del argumento es

$$p \longrightarrow q, \neg p \vdash \neg q$$

Este caso es el ejercicio tres, donde se determinó que el argumento es una falacia.

Solución: Primero se debe traducir el argumento a su forma simbólica, para esto considere

$$p$$
: estudio

$$q$$
: apruebo matemáticas

Por lo que las premisas y Q son:

$$P_1=p\longrightarrow q$$
 Si estudio, apruebo matemáticas $P_2=\lnot q$ No aprobé matemáticas $Q=\lnot p$ No estudié

Entonces la forma simbólica del argumento es

$$p \longrightarrow q, \neg q \vdash \neg p$$

Realizamos la tabla de verdad y revisamos si se cumple la definición para que el argumento sea válido, o en caso contrario será una falacia

p	q	$p \longrightarrow q$	$\neg q$	$\neg p$
V	٧	V	F	F
V	F	F	٧	F
F	٧	V	F	V
F	F	V	V	V

Después de analizar la tabla de verdad anterior se nota que el argumento es valido, dado que si las dos premisas son verdaderas se tiene que Q es verdadero.

Cuantificadores y Proposiciones condicionales

1. Represente simbólicamente las siguientes proposiciones, utilizando cuantificadores.

- (a) Para todo número real x existe un número real y tal que x < y
- (b) Existe un número natural n tal que su cuadrado es menor que 2.
- (c) Para todo número real x se tiene que $x^2 \geq 0$
- (d) Existe un número entero n tal que n-3=-5.
- (e) No existe un número real tal que $x^2=-1\,$

Solución: Para representar de forma smbólica cada una de las expresiones dadas es importante recordar los símbolos utilizados, por eso observe el siguiente cuadro

Símbolo	Se lee
A	Para todo
3	Existe
∄	No existe

Por lo que la representación solicitada es

- (a) $(\forall x \in \mathbb{R})(\exists x \in \mathbb{R}), (x < y).$
- (b) $\exists n \in \mathbb{N}, n^2 < 2$.
- (c) $\forall x \in \mathbb{R}, x^2 \geq 0$.
- (d) $\exists n \in \mathbb{Z}, n-3 = -5.$
- (e) $\nexists x \in \mathbb{R}, x^2 = -1 \equiv \forall x \in \mathbb{R}, x^2 \neq -1$

- 2. Dado el conjunto $A = \{2, 4, 6, 8, 10\}$, determine el valor de verdad de cada una de las siguientes expresiones:
 - (a) $(\forall x \in A)(x+2 > 4)$
 - (b) $(\forall x \in A)(x 2 \le 8)$
 - (c) $(\exists x \in A)(x+2=4)$
 - (d) $(\exists x \in A)(x^2 = 100)$
 - (e) $(\nexists x \in A)(\sqrt{x} = 2)$
 - (f) $(\forall x \in A)(x \text{ es primo})$
 - (g) $(\exists x \in A)(x \text{ es par})$
 - (h) $(\forall x \in A)(|x| = x)$

Solución: Para determinar el valor de verdad de cada una de las expresiones dadas considere los símbolos de la tabla en el ejercicio uno, por lo que

- (a) $(\forall x \in A)(x+2>4)$, es **falso**. La expresión dice: para todo x en A, x+2 es mayor que 4, lo cual es falso porque para x=2 se tiene que 2+2=4 que no es mayor que 4.
- (b) $(\forall x \in A)(x-2 \le 8)$, es **verdadero**. La expresión dice: para todo x en A, x-2 es menor o igual que 8, lo cual es cierto dado que $2-2=0 \le 8$, $4-2=2 \le 8$, $6-2=4 \le 8$, $8-2=6 \le 8$ y 10-2=8.
- (c) $(\exists x \in A)(x+2=4)$, es **verdadero**. La expresión dice: existe un x en A tal que x+2=4 ese número es x=2.
- (d) $(\exists x \in A)(x^2 = 100)$, es **verdadero**. La expresión dice: existe un x en A tal que $x^2 = 100$ ese número es x = 10.
- (e) $(\nexists x \in A)(\sqrt{x} = 2)$, es **falso**. La expresión dice: **no** existe un x en A tal que $\sqrt{x} = 2$ es falsa porque si existe, corresponde a x = 4.
- (f) $(\forall x \in A), x$ es primo, es **falso**. La expresión dice: para todo x en A se tiene que x es un número primo, lo cual se contradice con el ejemplo x = 10.
- (g) $(\exists x \in A), x$ es par, es **verdadero**. La expresión dice: existe un x en A tal que x es par, lo cual es cierto porque cualquier número de A es par.
- (h) $(\forall x \in A), |x| = x$, es **verdadero**. La expresión dice: para todo x en A el valor absoluto de x es x, lo cual se puede confirmar aplicando la definición de la función factorial.

3. Considere el conjunto de los números reales \mathbb{R} como el conjunto universo, determine el valor de verdad de cada una de las siguientes expresiones:

(a)
$$(\forall x \in \mathbb{R})(x^2 \ge 0)$$

(b)
$$(\forall x \in \mathbb{R})(x^2 - 1 > 0)$$

(c)
$$(\exists x \in \mathbb{R})(x+2=5)$$

(d)
$$(\exists x \in \mathbb{R}) \left(\frac{x}{2} = 3\right)$$

Solución: igual que en el ejercicio anterior tenga presente los símbolos para todo y existe.

- (a) $(\forall x \in \mathbb{R})(x^2 \ge 0)$, es **verdadero**. La expresión dice: para todo número real x, x^2 es mayor o igual que 0, lo cual es verdadero porque cualquier número real elevado al cuadrado siempre será o cero o mayor.
- (b) $(\forall x \in \mathbb{R})(x^2-1>0)$, es **falso**. La expresión dice: para todo número real x, x^2-1 es mayor que 0, lo cual es falso porque por ejemplo para x=1 se tiene que $1^2-1=0$ que no es mayor que 0.
- (c) $(\exists x \in \mathbb{R})(x+2=5)$, es **verdadero**. La expresión dice: existe un número real x, tal que x+2=5, lo cual es verdadero haciendo x=5-2=3, el número es x=3
- (d) $(\exists x \in \mathbb{R}) \left(\frac{x}{2} = 3\right)$, es **verdadero**. La expresión dice: existe un número real x, tal que $\frac{x}{2} = 3$, lo cual es verdadero haciendo $x = 3 \cdot 2 = 6$, el número es x = 6

Nota: observe que en el caso del ejercicio c y d, existe un número real que cumple la condición, pero no sería cierta si el cuantificador es un "para todo," dado que solo existe uno.

- 4. Considere el conjunto $A = \{2, 3, 5\}$ como el conjunto universo para el cual se definen las siguientes proposiciones, determine el valor de verdad de cada una de ellas:
 - (a) $\exists x \ \forall y, x 3 < y$
 - (b) $\forall x \exists y, x + y \leq 7$
 - (c) $\exists x \ \forall y, y+2=x$
 - (d) $\forall x \exists y, x < y$

Solución:

- (a) $\exists x \ \forall y, x-3 < y$, es **verdadero**. La expresión dice: existe un x para todo y talque x-3 < y, lo cual es verdadero, basta ver x=2 hace verdadera la expresión ya que 2-3=-1<2, 2-3=-1<3 y finalmente 2-3=-1<5.
- (b) $\forall x \; \exists y, x+y \leq 7$, es **verdadero**. La expresión dice: para todo x existe un y talque x+y es mayor o igual a 7, basta con tomar a y=2 para que la expresión sea verdadera, observe $2+2=4\leq 7, \; 3+2=5\leq 7$ y finalmente 5+2=7.
- (c) $\exists x \ \forall y, y+2=x$, es **falsa**. La expresión dice: existe un x para todo y talque y+2=x basta con tomar como contra ejemplo y=5 y observar que 5+2=7 y 7 no es parte del conjunto A.
- (d) $\forall x \; \exists y, x < y$, es **falsa**. La expresión dice: para todo x existe un y talque x es menor que y, basta con tomar como contra ejemplo x=5 y observar que 5 no es menor que ningún elemento del conjunto A.

- 5. Considere las siguientes proposiciones sobre un conjunto cualquiera, escriba de forma simbólica la negación de cada una de ellas.
 - (a) $\exists x \ \forall y, x = 2y$
 - (b) $\forall x \; \exists y, p(x,y)$
 - (c) $\exists x \ \forall y, x+y > 2$

Solución: para realizar las negaciones correctamente debe considerar las siguientes equivalencias

$$\neg \forall x, p(x) \equiv \exists x, \neg p(x)$$

$$\neg \exists x, p(x) \equiv \forall x, \neg p(x)$$

Por lo que las negaciones solicitadas corresponden a

(a)
$$\neg(\exists x \, \forall y, x = 2y) \equiv \forall x \, \exists y, x \neq 2y$$

(b)
$$\neg(\forall x \exists y, p(x, y)) \equiv \exists x \forall y, \neg p(x, y)$$

(c)
$$\neg(\exists x \, \forall y, x+y>2) \equiv \forall x \, \exists y, x+y\leq 2$$

- 6. Escriba la negación de las siguientes proposiciones.
 - (a) Todos los estudiantes de computación son hombres.
 - (b) Algunos estudiantes tienen 30 años o más de edad.
 - (c) A todas las personas les gusta el chocolate

Solución: para realizar las negaciones se pueden usar varias expresiones por ejemplo:

- (a) Algún estudiante de computación es mujer.
- (b) Hay estudiantes menores de 30 años de edad.
- (c) hay personas a las cuales no les gusta el chocolate

Referencias Bibliográficas

Johnsonbaugh, R. (2005). Matemáticas discretas. Chicago. Pearson Educación.

Lipschutz, S. & Lars, M. (2017). *Matemáticas para computación I.* México D.F. McGraw-Hill Education.

Murillo M. (2010). *Introducción a la matemática discreta*. Costa Rica. Editorial Tecnológica de Costa Rica.