Strongly Connected Components

Md. Asif Haider (1805112) K.M Fahim Shahriyar (1805113)

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

August 27, 2022

Strong Connectivity

Strongly Connected Graph

A graph G(V,E) is called Strongly Connected Graph if every pair of nodes is ${\bf mutually\ reachable}$

Strong Connectivity

Strongly Connected Graph

A graph G(V,E) is called Strongly Connected Graph if every pair of nodes is ${\bf mutually\ reachable}$

Remark

Strong Connectivity is the property of **Directed Graph**

Example of Strong Connectivity

Figure: Strongly Connected Graph

Example of Strong Connectivity

Figure: Strongly Connected Graph

In this graph every nodes are mutually reachable

Example of Strong Connectivity(Contd.)

Figure: Not Strongly Connected Graph

Example of Strong Connectivity(Contd.)

Figure: Not Strongly Connected Graph

In this graph from B only C is reachable. A is not reachable

Strongly Connected Component

Strongly Connected Components

Strongly Connected Components of a directed graph are the subgraphs which are **individually strongly connected**

Example of Strongly Connected Components

Figure: A Directed Graph

Given Graph

Given Graph

Given Graph

Strongly Connected Components of a Directed Graph

Given Graph

So finally the Strongly Connected Components are : $\{A,B,C,D\},\{E,F,G\},\{H\}$

Finding Strongly Connected Components

 How to decompose a directed graph into strongly connected components?

Finding Strongly Connected Components

Given Graph

- How to decompose a directed graph into strongly connected components?
- The idea is to use Depth First Search, but in a tricky way!

• **Step 1**: DFS and Topological Sort on the given graph

10 / 13

Simulation: Kosaraju's Algorithm

• Step 1: DFS and Topological Sort on the given graph

Simulation: Kosaraju's Algorithm

• Step 1: DFS and Topological Sort on the given graph

• **Step 2:** Reverse the edges and repeat DFS from topologically sorted nodes

Stack | B | H |

Strongly Connected Components

Stack | B

Strongly Connected Components

Stack

Applications

• Directed Acyclic Subgraph Formation

Applications

- Directed Acyclic Subgraph Formation
- Social Connectivity Network Analysis

Applications

- Directed Acyclic Subgraph Formation
- Social Connectivity Network Analysis
- Map Processing and Vehicle Routing

Thank You

Any Questions?

