MATH 7211 Homework 6

Andrea Bourque

May 9, 2023

1 Problem 14.2 From Lecture Notes

Show that a field extension E/F is normal iff for any extension K/E and any $\sigma \in \operatorname{Aut}(K/F)$, we have $\sigma(E) \subseteq E$.

Proof. (\rightarrow) Let $\alpha \in E$. Then the irreducible polynomial $m_{\alpha,F}(x) \in F[x]$ has a root in E, and thus it splits in E, by definition of normality. But given $\sigma \in \operatorname{Aut}(K/F)$, we know that $\sigma(\alpha)$ is a root of $m_{\alpha,F}(x)$, since the polynomial's coefficients are fixed by α . Since E contains all the roots of $m_{\alpha,F}(x)$, and $\sigma(\alpha)$ is a root, we must have $\sigma(\alpha) \in E$. Since α is an arbitrary element of E, we must have $\sigma(E) \subseteq E$.

 (\leftarrow) Let $p(x) \in F[x]$ be irreducible with a root $\alpha \in E$. Considering p(x) as an element of E[x], let $K \supseteq E$ be the splitting field of p(x) over E. In particular, K is also a splitting field of p(x) over F; we have just chosen it to contain E. Now, E clearly contains $F(\alpha)$. For any other root $\beta \in K$ of p(x), the proof of Theorem 27 in Chapter 13 of Dummit and Foote shows that there is an automorphism σ of K/F which maps α to β . Since $\alpha \in E$ and $\sigma(E) \subseteq E$, we have $\beta \in E$. Since β is an arbitrary root of p(x), it follows that E contains all roots of p(x), meaning that E/F is normal.

2 Problem 14.3 From Lecture Notes

Let K/F be a field extension, let H be a subgroup of $G := \operatorname{Aut}(K/F)$, let $E = K^H$ (or $\operatorname{Inv}(H)$), and let $\sigma \in G$. Show that $K^{\sigma H \sigma^{-1}} = \sigma(E)$.

Proof. Let $\tau \in H$ and let $x \in E$. We have $(\sigma \tau \sigma^{-1})(\sigma(x)) = \sigma(\tau(x))$. Since $E = K^H$ and $\tau \in H$, we have $\tau(x) = x$. Thus $(\sigma \tau \sigma^{-1})(\sigma(x)) = \sigma(x)$, so $\sigma \tau \sigma^{-1}$ fixes $\sigma(x)$. Since τ and x are arbitrary, $\sigma H \sigma^{-1}$ fixes $\sigma(E)$, so $\sigma(E) \subseteq K^{\sigma H \sigma^{-1}}$.

Conversely, let $x \in K^{\sigma H \sigma^{-1}}$ and let $\tau \in H$. Then $x = (\sigma \tau \sigma^{-1})(x)$, so $\sigma^{-1}(x) = \tau(\sigma^{-1}(x))$. Thus $\sigma^{-1}(x)$ is fixed by τ . Since τ is arbitrary, $\sigma^{-1}(x)$ is fixed by H. In particular, $\sigma^{-1}(x) \in K^H = E$. Then $x \in \sigma(E)$. Since x is arbitrary, $K^{\sigma H \sigma^{-1}} \subseteq \sigma(E)$ as desired. \square

3 Problem 14.3.5

Exhibit an explicit isomorphism between the splitting fields F_1 , F_2 of $x^3 - x + 1$ and $x^3 - x - 1$ over \mathbb{F}_3 .

Proof. As is noted in my solution of Problem 14.3.8, the splitting field of these polynomials is given by adjoining a single root; i.e. they are isomorphic to $\mathbb{F}_3[x]/(x^3-x+1)$ and $\mathbb{F}_3[x]/(x^3-x-1)$ respectively. Recall that for a ring R and ideals I,J, a homomorphism $R\to R$ which restricts to a function $I\to J$ determines a unique ring homomorphism $R/I\to R/J$ "compatible" (there is a commuting square) with the quotient maps $R\to R/I$ and $R\to R/J$. Therefore, it suffices to give an automorphism of $\mathbb{F}_3[x]$ which restricts to a bijection of ideals $(x^3-x+1)\to (x^3-x-1)$. For this, we give the map $x\mapsto -x$. This is certainly an automorphism of $\mathbb{F}_3[x]$ (it is its own inverse), and $x^3-x+1\mapsto -x^3+x+1=-(x^3-x-1)$, so the ideal (x^3-x+1) is mapped bijectively to the ideal (x^3-x-1) . Thus we have an isomorphism $\mathbb{F}_3[x]/(x^3-x+1)\to \mathbb{F}_3[x]/(x^3-x-1)$ defined by sending $x+(x^3-x+1)$ to $-x+(x^3-x-1)$.

4 Problem 14.3.8

Determine the splitting field of $x^p - x - a$ over \mathbb{F}_p , where $a \neq 0$ is an element of \mathbb{F}_p . Show explicitly that the Galois group of the extension is cyclic.

Proof. Let $f(x) = x^p - x - a$. For any $b \in \mathbb{F}_p$, we have $f(b) = b^p - b - a = -a \neq 0$, since elements of \mathbb{F}_p satisfy $x^p = x$. Thus f(x) has no linear factors in $\mathbb{F}_p[x]$. If α, β are two roots of f(x) in a splitting field, then

$$(\alpha - \beta)^p - (\alpha - \beta)$$

$$= (\alpha^p - \alpha) - (\beta^p - \beta)$$

$$= (\alpha^p - \alpha - a) - (\beta^p - \beta - a) = f(\alpha) - f(\beta) = 0.$$

We know that the roots of $x^p - x$ in \mathbb{F}_p are exactly the elements of \mathbb{F}_p , so this shows that two roots of f(x) differ by an element of \mathbb{F}_p . Conversely, if $f(\alpha) = 0$ and $b \in \mathbb{F}_p$, then $\alpha + b$ is a root:

$$f(\alpha + b) = (\alpha + b)^p - (\alpha + b) - a$$
$$= \alpha^p + b^p - \alpha - b - a$$
$$= (\alpha^p - \alpha - a) + (b^p - b)$$
$$= f(\alpha) - 0 = 0.$$

It follows that for a fixed root α of f(x), the other roots are given by $\alpha+1,\ldots,\alpha+p-1$. Then the splitting field of f(x) is $\mathbb{F}_p(\alpha)$. We would like to show that f(x) is irreducible, so that $F_p(\alpha) = F_p[x]/(f(x))$ and any two roots of f(x) are Galois conjugates. Suppose that none of the other roots are conjugate to α . Then the minimal polynomial of α over \mathbb{F}_p is $x-\alpha$; in other words, $\alpha \in \mathbb{F}_p$. But this is a contradiction, as we showed that elements of \mathbb{F}_p are not roots of f(x). Thus α is conjugate to some $\alpha+b$ for non-zero $b\in \mathbb{F}_p$. Then there is an automorphism of $\mathbb{F}_p(b)$ sending α to $\alpha+b$. Applying this automorphism b^{-1} times gives an automorphism $\alpha \mapsto \alpha+1$, and applying this automorphism c times gives an automorphism c to c for any c for any c for any c for any c such a function of c has degree c, whence it equals c for c is irreducible. As mentioned above, we now know that $\mathbb{F}_p[x]/(f(x))$ is the splitting field of c over \mathbb{F}_p .

Now let $F = \mathbb{F}_p[x]/(x^p - x - a)$ Note that since $[F : \mathbb{F}_p] = \deg f(x) = p$, the field F is the (up to isomorphism) finite field of order p^p . Also, F/\mathbb{F}_p is Galois, since f(x) is separable (the roots were shown to be distinct).

We have already seen that $m \in \{0, 1, ..., p-1\}$, there is always an automorphism of F/\mathbb{F}_p which sends α to $\alpha+m$. By counting the values of m, we see that this gives p automorphisms. But as $[F:\mathbb{F}_p]=p$, these are all of the automorphisms. Furthermore, the automorphism $\alpha \mapsto \alpha+m$ is given by σ^m where $\sigma:\alpha\mapsto\alpha+1$, so σ generates the Galois group, and we are done.

5 Problem 14.3.10

Prove that n divides $\varphi(p^n-1)$.

Proof. A note before the proof: The usage of p certainly indicates that it should be prime, but I found two solutions to this exercise which do not require p to be prime. I will of course assume p > 1, since $\varphi(0)$ is not defined. Furthermore, the problem statement is trivial for n = 1, so I will assume n > 1 as well.

Recall the Fermat-Euler theorem, which states that if $\gcd(a,m)=1$, then $a^{\varphi(m)}\equiv 1 \mod m$. Certainly $\gcd(p,p^n-1)=1$ by the Euclidean algorithm, so $p^{\varphi(p^n-1)}\equiv 1 \mod p^n-1$. It is certainly true that $p^n=1+p^n-1\equiv 1 \mod p^n-1$. Furthermore, for 0< m< n, we have $0< p^m-1< p^n-1$, so it is impossible for $p^m\equiv 1 \mod p^n-1$ to hold. It follows that $n\leq \varphi(p^n-1)$. For convenience, write $m=\varphi(p^n-1)$. Then $0=1-1\equiv p^m-p^n=p^n(p^{m-n}-1)\equiv p^{m-n}-1 \mod p^n-1$. If m-n< n, then we must have m-n=0, since we observed that no integer strictly between 0 and n satisfies this congruence. If $m-n\geq n$, then we can do the same analysis to show that $p^{m-2n}\equiv 1 \mod p^n-1$, and we can repeat our casework on m-2n; either m=2n or $m-2n\geq n$. Since m is finite, this process will eventually terminate, so we will find that m=kn for some integer k, as desired.

An alternative proof, following the hint in the textbook, is sketched as follows: $\varphi(p^n-1) = |\operatorname{Aut}(\mathbb{Z}/(p^n-1)\mathbb{Z})|$, and multiplication by p is an order n element of $\operatorname{Aut}(\mathbb{Z}/(p^n-1)\mathbb{Z})$, so Lagrange's theorem concludes the proof.