Regelungstechnik Zusammenfassung	Nyquist	.(
Joel von Rotz / 🞧 Quelldateien	Prozess 1	. 1
	Modellierung	
Inhaltsverzeichnis	_ Identifikation	
Kurzfassung	3 Regelung 1	2
Linear Algebra	3 Sensitivitätsfunktionen	.2
Determinante	3 'Gang of Four'	.2
Inverse Matrix	Anforderungen	.2
Signal & System	3 Stabilität	.2
Endwertsatz	3 Stationäre Genauigkeit	.2
Anfangswertsatz	Schnelligkeit	3
Z-Transformation	Dämpfung	3
Transformationen	3 Eigenschaften	3
Laplace	3 Robustheit	3
Z-Transformation	Dynamik	3
Euler Approximation	4 Modularität	3
	Genauigkeit	3
Systeme	Herauserforderungen	.4
Grundlegende Systeme	Steuerung	.4
Regler System	4 P-Regler	.4
Geschlossenes System	4 PI-Regler	.4
Offenes System	PD-Regler	.4
Vorsteuerung	Filter D-Anteil	.4
Minimalphasiges System	4 PID-Regler	.4
Führungsverhalten	Proportional k_p	5
Bleibende Fehler bei langsam oder nicht ändernden	Integral k_i, T_i	. 5
	5 Differential k_d, T_d	5
Regelgrössen	Auslegung anhand 1	5
Merkmale	5 Modelle geringer Ordnung	5
ivici kililaic	Bodediagramm	. 5
Darstellungsarten	6 Einstellregeln im Zeitbereich	.6
Blockdiagrammalgebra	6 Einstellregeln im Frequenzbereich 1	.6
Verkettung	Stellgrössen-Sättigung	.6
Parallel	6 Windup	.6
Rückkopplung	6 Anti-Windup	.6
Regel von Mason	6	
Zustandraumdarstellung	6 Loop Shaping 1	7
Autonomes, zeitinvariantes System	Tag & Lead Kompensatoren	. 7
Allgemeine Systeme	7 Lead $(a < b)$. 7
Lineares Zustandsraummodell	The representation 7 Lag $(a > b)$. 7
Übertragungsfunktion	Grenzen des Loop-Shapings	.7
Dynamik	7 Diskretisierung 1	8
- 3	7 Entwurf Regler	
	7 1) kontinuierlicher Prozess	
	7 2) zeitdiskreter Regler	
	Relation z & s Ebene	
	8	,
9	8 Unstetiger Regler 1	
	8 Ohne Hysterese	
9	8 Mit Hysterese	
Hurwitz-Kriterium	8 Zustandsraum	٦.

HSLU T&A

Struktur	20
Steuerungen	20
Vorfilter	20
Vorsteuerung	21
Störgrössenaufschaltung	21
Kombination	21
MATLAB	21
Vektoren	21
Plotting	22
XY-Graph	22
	22
XYY-Graph	22
	22
PID-Regler pidstd	
Bode-Diagramm bode	22
Nyquist-Diagramm nyquist	23
Sprungantwort step	23
Impulsantwort impulse	23
Pol-Nullstellen-Diagramm pzmap	23
Margin margin(tf)	24
Zustandsraumdarstellung ss()	24
Reglersimulator Sisotool(tf())	24
Weitere Befehle	24
minreal	24
🖹 Anleitungen / Vorgehen	24
Modellierung dynamischer Systeme	24
Stabilitätsbestimmung	24
Parameter Identifikation	24
Linearität & Zeitinvarianzen	25
LTI-Systeme	25
Zeitinvarianz	25
Linearität	25
Linearisierung	25
Zustandsraumdarstellung	25
Differentialgleichung	26
Übertragungselemente	26
Elementare Glieder	26
Elementare Funktionen	26
Polüberschuss n_{pe}	26
Bezeichnete Glieder	27
P-Glied7	27
I-Glied	27
PT1-Glied	27
PT2-Glied PT2-Glied	27
IT-Glied	27
DT1-Glied	28
Anderes Zeug	28
Glossar	28

Vorgehen MEP

- Zuerst lösen, was man kann und nicht zu lange Zeit verlieren
- 10 Minuten pro Aufgabe
 - Gewisse Aufgaben brauchen mehr als 10 Minuten, andere weniger

Regelungstechnik

- Aufgaben sind meist einfacher als man denkt
 - Es gibt verschiedene Lösungsansätze
 - Annahmen treffen oder fragen, falls man unsicher ist
- Wenn Zeit übrig, Lösung validieren

When your mom finds out the reason you've been running out of tissues is because of you crying each time your 3 hours controller simulation gives you an unstable response

IS YOUR CHILD TEXTING ABOUT

Control theory?

lol - lots of loops
wtf - why the feedback
np- nyquist plot
omg - oh my gain
bdsm - better derive stability margins
idfc - important, don't forget
controllability

 \rightarrow Project Pigeon

Kurzfassung

Linear Algebra

Determinante

 $2 \times 2\text{-Matrix}$

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

 3×3 -Matrix

$$\det(A) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \frac{aei}{bfg} + \frac{bfg}{cdh} - \frac{ceg}{ceg} - \frac{bdi}{afh}$$

Inverse Matrix

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$

2 × 2-Matrix

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

 3×3 -Matrix

$$A^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{\det A} \cdot \begin{bmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{bmatrix}$$

Signal & System

■ Gültigkeit End- & Anfangswertsatz

End- & Anfangswertsatz gilt nur bei stabilen Systemen.

Endwertsatz

Laplace

$$\lim_{t\to\infty} x(t) = \lim_{s\to 0} s \cdot X(s)$$

falls $\lim_{t\to\infty} x(t)$ existiert

Z-Transformation

$$\lim_{k \to \infty} x[k] = \lim_{z \to 1} (z - 1)X(z)$$

falls X(z) nur Pole mit |z| < 1 oder bei z = 1

Anfangswertsatz

Laplace

$$x(0^+) = \lim_{s \to \infty} s \cdot X(s)$$

falls $x(0^+)$ existiert

Z-Transformation

$$x[0] = \lim_{z \to \infty} X(z)$$

Transformationen

Laplace

Signal $u(t)$	○ —• <i>U</i> (<i>s</i>)
$\delta(t)$	1
t	$\frac{1}{s^2}$
sin(at)	$\frac{a}{s^2+a^2}$
$e^{-\alpha t}\sin(at)$	$\frac{a}{(s+a)^2+\alpha^2}$

Signal $u(t)$	○ —• <i>U</i> (<i>s</i>)
$\sigma(t)$	$\frac{1}{s}$
$e^{\alpha t}$	$\frac{1}{s-\alpha}$
$\cos(at)$	$\frac{s}{s^2+a^2}$
$e^{-\alpha t}\cos(at)$	$\frac{s+\alpha}{(s+a)^2+\alpha^2}$

Z-Transformation

Signal $u[k]$	$\smile - U(z)$
$\delta[k]$	1
$\sigma[k]$	$\frac{z}{z-1}$
k	$\frac{z}{(z-1)^2}$

Signal $u[k]$	$\smile - U(z)$
$\delta[k-m]$	z^{-m}
a^k	$\frac{z}{z-a}$
$\frac{1}{k!}$	$e^{1/z}$

Euler Approximation

$$x(t+h) \approx x(t) + h\frac{dx}{dt} = x(t) + h \cdot f(x(t), u(t))$$
$$x[k+1] \approx x[k] + h \cdot f(x[k], u[k])$$

Systeme -

Grundlegende Systeme

Regler System

r : Führungsgrösse (Soll-Wert)

e: Regelfehler

u: Stell-/Steuergrösse

y : Regelgrösse (Ist-Wert)

v : Störgrösse

Geschlossenes System

Offenes System

Vorsteuerung

Mit einer Vorsteuerung kann die Regelungszeit gekürzt werden (kleinerer Fehler zum Auskorrigieren).

Minimalphasiges System

Liegen keine Pole oder Nullstellen in der rechten Halbebene, so spricht man von **minimalphasigen Systeme**. Amplituden- und Phasengang stehen in einer direkten Beziehung zueinander. Es gilt **nur bei minimalphasigen Systemen**:

$$\angle G \approx \frac{\pi}{2} \cdot \frac{d \log |G|}{d \log \omega}$$

Pro 20dB Steigung oder Abfall beträgt die Phasenverschiebung +90°, respektive -90°.

Führungsverhalten

$$G_{yr} = T = \frac{PC}{1 + PC}$$
 und $G_{ur} = CS = \frac{C}{1 + PC}$

Merkmale

Das Führungsverhalten verfügt über vier Merkmale, welche für jedes System betrachtet soll:

- Stabilität
- Statischer Fehler / stationäre Genauigkeit
- Überschwingen
- Schnelles Erreichen des stationären Wertes

Gutes Führungsverhalten

Instabilität

Statischer Fehler / stationäre Ungenauigkeit

Überschwingen

Langsames Erreichen des neuen stationären Wertes

Bleibende Fehler bei langsam oder nicht ändernden Regelgrössen

Der bleibende Fehler bei sich langsam oder nicht ändernden Führungssgrössen ergibt sich anhand des Verlaufs der Übertragungsfunktion bei tiefen Frequenzen.

$$G_{yr} \approx 1 - e_0 - e_1 \cdot s - e_2 \cdot s^2 - \cdots$$

$$e = e_0 \cdot r + e_1 \cdot \dot{r} + e_2 \cdot \ddot{r} + \cdots$$

Тур	r	e
Sprung	s_0	$e_0 s_0$
Rampe	v_0t	$e_0v_0t + e_1v_0$
Parabal	$a_2 + 2$	$a_2 a_2 t^2 + a_1 2 a_2 t + a_2 2 a_3$

i Stationärer Fehler

Bei Rampe: $e_0 = 0$ Bei Parabel $e_0 = e_1 = 0$

Störverhalten

$$G_{er}(s) = \frac{E(s)}{R(s)}$$

Merkmale

Das Störverhlaten verfügt ebenfalls über vier Merkmale, welche für jedes System betrachtet soll:

- Stabilität
- Statischer Fehler / stationäre Genauigkeit
- Überschwingen
- Schnelles Erreichen des stationären Wertes.

Gutes Störverhalten

rot: Sollwert

Instabilität

Stationärer Fehler / Ungenauigkeit

Überschwingen

Langsames Erreichen des stationären Wertes

Darstellungsarten

Blockdiagrammalgebra

Verkettung

$$y = G_2(G_1 \cdot u) = (G_1G_2) \cdot u$$

Parallel

$$y = G_1 \cdot u + G_1 \cdot u = (G_1 + G_2) \cdot u$$

Rückkopplung

$$y = G \cdot e = G(r - y)$$

$$(1 + G) \cdot y = G \cdot r$$

$$y = \underbrace{\frac{G}{1 + G}}_{G_{yr}} \cdot r$$

Regel von Mason

$$G_{ij} = \frac{\sum_{k} P_k \cdot \Delta_k}{\Delta}$$

 $P_k = Vorwärtspfad k$

 $\Delta = 1 - \Sigma$ aller Loops

 $+\Sigma$ aller Produkte 2er Loops, die sich nicht berühren

 $-\Sigma$ aller Produkte 3er Loops, die sich nicht berühren

 $+ \cdots$

 $\Delta_k = 1 - \Sigma$ aller Loops, die P_k nicht berühren

 $+ \Sigma$ aller Produkte 2er Loops, die P_k & sich nicht berühren

 $-\Sigma$ aller Produkte 3er Loops, die P_k & sich nicht berühren

 $+ \cdots$

Beispiel

$$P_1 = ABCD$$
 $\Delta_1 = 1 - 0$ $P_2 = ABD$ $\Delta_2 = 1 - 0$

$$\Delta = 1 - (-BCF + CDE + ((-B)(-D)(CEF))$$

$$G_{uy} = \frac{ABD(1+C)}{1+BCF-CDE-BCDEF}$$

Zustandraumdarstellung

Die Zustandsraumdarstellung erlaubt ein Einblick in das Verhalten eines dynamischen Systems. Anhand eines Zeitdiagrammes und Phasenporträit kann das System visualisiert werden. Man gibt Startkonditionen an und kann über das Phasenporträit den zeitlichen Verlauf verfolgen.

Autonomes, zeitinvariantes System

$$\frac{dx}{dt} = f(x) \xrightarrow{X}$$

$$\frac{dx}{dt} = f(x)$$

Autonome Systeme berücksichtigen äusserliche Beeinflussungen nicht und sind ausschliesslich vom Anfangszustand abhängig.

Allgemeine Systeme

$$\frac{dx}{dt} = f(x, u) \qquad y = h(x, u)$$

Lineares Zustandsraummodell

Viele der Systeme können an ein zeitinvariantes und lineares System (LTI-System) angenähert werden.

$$\frac{dx}{dt} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \mathbf{A}x + \mathbf{B}u \qquad y = \mathbf{C}x + \mathbf{D}u$$

A: beschreibt DynamikB: beschreibt SteuereinflussC: beschreibt MessungD: beschreibt Durchgriff

Übertragungsfunktion

Wird als Eingangssignal *u*

$$u = \cos(\omega t) = \frac{1}{2}(e^{+j\omega t} + e^{-j\omega t})$$

gegeben, ergibt sich folgendes Ausgangssignal

$$y(t) = \underbrace{Ce^{At}(x(0) - (sI - A)^{-1}B)}_{\text{transient } y_t} + \underbrace{\underbrace{(C(sI - A)^{-1}B + D)}_{\text{Station\"{a}r } y_s} e^{st}}_{\text{Station\"{a}r } y_s}$$

i Hinweis

Ist A stabil, so geht der transiente Anteil y_t asymptotisch gegen Null. Der stationäre Anteil bleibt übrig und entspricht der Übertragungsfunktion.

Dynamik

Lösen von Differential Gleichungen

Lösung einer Differentialgleichung

$$x(t_0) = x_0$$
 $\frac{dx(t)}{dt} = F(x(t))$

Gleichgewichtslage

Eine Gleichgewichtslage ist ein Zustand in dem das System stabil ist. Dies ist auch bekannt als *stationäres* Verhalten und weist keine Veränderungen auf mit der Zeit.

 x_e ist eine Gleichgewichtslage des dynamischen Systems $\frac{dx}{dt} = F(x)$ falls:

$$F(x_e) = 0 \to \frac{dx}{dt} \bigg|_{x_e} = 0$$

Testfunktion Sprungantwort

Anhand folgender Funktion kann die Sprungantwort eines Systems angegeben werden.

$$y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

Die Antwort setzt aus einem zeitabhängigen und einem konstanten Teil zusammen.

$$y(t) = \underbrace{CA^{-1}e^{At}B}_{\text{zeitabhängig}} \underbrace{-CA^{-1}B + D}_{\text{konstant}} \qquad t > 0$$

Das System strebt gegen Wert wenn A <u>asymptotisch stabil</u> ist \rightarrow der *zeitabhängige* Teil strebt, falls A asymptotisch stabil ist, der Gleichtgewichtslage x=0 zu. Der *konstante* Teil entspricht dem Wert bei $\omega \rightarrow 0$ und damit der *Gleichspannungsverstärkung*.

Stabilität —

Allgemein

Die Stabilität ist in drei Zustände eingeteilt.

- stabil, falls alle Zustände in der Nähe der Gleichgewichtslage
 x_e zu Lösungen führen.
- **asymptotisch stabil**, falls alle Zustände in der Nähe von x_e nach langer Zeit $(t \to \infty)$ in x_e enden.
- instabil, falls der Zustand nie eine Gleichgewichtslage erreicht.

Stabilität ist im Allgemeinen eine *lokale* Eigenschaft innerhalb eines Bereiches des Zustandsraums!

i Beispiel

Ein Pendel, welches die gesamte Rotationsachse (360°, rundherum) ausnützen kann, hat zwei Gleichgewichtslagen:

- **stabile** Position oben
- asymptotische stabile Positionen, welche immer nach unten verlaufen.

Linearer Systeme

Polstellen eines linearen Systems ($\frac{dx}{dt} = Ax \& x(0) = x_0$) können mit dem *charakteristischen Polynoms* berechnet werden.

charakteristisches Polynom

Die Nullstellen von λ werden mit der Dynamik-Matrix A berechnet. Diese entsprechen dem Nennerpolynom $C(sI-A)^{-1}$

$$\lambda(A) := \{ s \in \mathbb{C} : \det(sI - A) = 0 \}$$

Gültigkeit

Stabilität linearer Systeme ist <u>nur von</u> A <u>abhängig</u>, nicht vom Anfangswert x_0 . Dies gilt Global! Ebenfalls sind stabile lineare Systeme **global** gültig.

Linearisierung

lst das linearisiterte System asymptotisch stabil, so ist das nichtlineare System in der **Umgebung der Gleichgewichtslage** ebenfalls asymptotisch stabil.

Hurwitz-Kriterium

GESCHLOSSENER KREIS VERWENDEN!

$$G_{yr} = \frac{PC}{1 + PC} = \frac{n_P \cdot n_C}{d_P \cdot d_C + n_P \cdot n_C}$$
$$C = \frac{n_C}{d_C} \qquad P = \frac{n_P}{d_P}$$

n_C: Zähler (numerator) des Reglers C
 d_C: Nenner (divider) des Reglers C
 n_P: Zähler (numerator) des Prozess P
 d_P: Nenner (divider) des Prozess P

$$\lambda = d_P \cdot d_C + n_P \cdot n_C$$

Hurwitz-Kriterium

Die Polstellen-Gleichung $\lambda(s)$ mit $a_0>0$ hat dann, und nur dann, ausschliesslich Lösungen mit negativen reellen Teilen, falls alle *Nordwestlichen* Unterdeterminanten der Hurwitz-Matrix positiv sind:

 $\det H_n > 0$

$$\lambda(s) = a_0 \cdot s^n + a_1 \cdot s^{n-1} + \dots + a_{n-1} \cdot s + a_n$$

$$H = \begin{bmatrix} a_1 & a_3 & a_5 & a_7 & \cdots \\ a_0 & a_2 & a_4 & a_6 & \cdots \\ 0 & a_1 & a_3 & a_5 & \cdots \\ 0 & a_0 & a_2 & a_4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Tipp

- Bei n ≤ 2 genügt die Bedingung, dass alle Koeffizienten positiv sein müssen.
- det $H_n = a_n \cdot \det H_{n-1}$ Wird nicht immer verwendet (nur bei letzter Determinante n).
- Fehlt ein Koeffizient oder ist dieser negativ, so ist die Bedingung nicht erfüllt

$$s^3 + 2s^2 + 10 \rightarrow \text{instabil}$$
, da $0 \cdot s$

Was mit Hurwitz nicht möglich ist

Das Hurwitz-Kriterium beschreibt keine *Robustheit* der Stabilität und erlangt keine Einsicht, wie der Regler $C = \frac{n_c}{d_c}$ gewählt werden sollte.

Beispiel

$$\lambda = 8s^4 + 2s^3 + s^2 + 3s + 2 = a_0s^4 + a_1s^3 + \dots + a_4$$

$$H = \begin{bmatrix} 2 & 3 & 0 \\ 8 & 1 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$

$$\det H_1 = 2 > 0 \quad \checkmark$$

$$\det H_2 = 2 - 24 = -22 > 0 \quad \times$$

Nyquist

Wenn L(s) = -1, so kann eine stationäre Schwingung eingestellt werden!

$$B = -P(s)C(s) \cdot A \quad \Rightarrow \quad \underline{P(s)C(s)} = -1$$

Allgemein – Variante Winkeländerung

$$\Delta \phi = a \frac{\pi}{2} + r \pi = a \cdot 90^{\circ} + r \cdot 180^{\circ}$$

a : Anzahl Pole auf der Im-Achse

r : Anzahl Pole rechts der Im-Achse

Nur bei $\Delta \phi \geq 0^{\circ}$ ist der *geschlossene* Kreis **stabil**.

I Offen stabile Systeme

Systeme, welche offen stabil sind, müssen der Bedinung $\Delta \phi = 0$ genügen.

Das Kriterium ist ebenfalls anwendbar, wenn die Ortskurve experimentell ermittelt wurde.

i Totzeit

Die Bedingung gilt auch für Systeme mit Totzeit

Allgemein – Variante Umläufe

Das System G_{yr} ist stabil wenn P = U

P: Anzahl instabiler Polstellen von L(s)

U: Anzahl Umläufe der Nyquist-Kurve $L(j\omega)$ mit $\omega \in [-\infty, \infty]$

 \hookrightarrow : um den Punkt (-1,0) im Gegenuhrzeigersinn

Beispiel

$$L(s) = \frac{9(s+2)(s+4)}{(s-2)(s+3)(s-4)}$$

$\rightarrow P = U = 2$: stabil

$$\rightarrow P = 2, U = 1 : instabil$$

Einfach - Variante Links liegen

Für Systeme mit maximal zwei instabilen Polen im Ursprung (aber keinen weiteren instabilen Polen) genügt die Bedingung, dass der Punkt (-1,0) links liegen gelassen wird, wenn entlang der Ortskurve $\omega:0\to\infty$ verfahren wird.

Einfach - Variante Umläufe

Das System G_{yr} ist stabil, wenn die Nyquist Kurve $L(j\omega)$ mit $\omega \in [0,\infty]$ den Punkt (-1,0) **nicht** umläuft.

Stabilitätsreserve / Robustheit

Phasenreserve φ_m

Eintritt in den Einheitskreis → gain crossover

$$\omega_{gc}$$
: $|L(j\omega_{gc})| = 1$

Abstand zu -1 wird mit Phasenreserve φ_m ausgedrückt

$$\varphi_m = 180^\circ + \angle L(j\omega_{gc})$$

→ kann im Bodediagramm abgelesen werden

Amplitudenreserve g_m

Überschreiten der negativen Re-Achse o phase crossover

$$\omega_{pc}$$
: $\angle L(j\omega_{gc}) = -180^{\circ}$

Abstand zu -1 wird durch die Amplitudenreserve g_m ausgedrückt.

$$g_m = \frac{1}{|L(j\omega_{pc})|}$$

Wird die Achse nicht überschritten, so ist $g_m o \infty$

→ kann im Bodediagramm abgelesen werden

Stabilitätsreserve s_m

Kleinester Abstand zum Punkt -1

Der Wert kann von der Ortskurve abgelesen werden oder entspricht dem Maximum der Sensitivitätsfunktion S.

$$\omega_{ms} = \underset{\omega}{\operatorname{argmax}} |S(j\omega)| \qquad s_m = \frac{1}{|S(j\omega_{ms})|} = \frac{1}{g_{ms}}$$

i Praxiswerte

Folgende Werte dienen als *Boilerplate* für die Reglerauslegung

$$\varphi_m \approx 30^\circ - 60^\circ$$
 $g_m \approx 2 - 5$
 $s_m \approx 0.5 - 0.8$
 $\omega_{gc} \approx \frac{1}{\tau} : \tau$ von Sprungantwort

Prozess

Modellierung

Vereinfachung

Modelle repräsentieren immer eine Vereinfachung des eigentlichen Systems und fokusiert daher immer auf ein Teil des Systems.

Beispiel: Die Modellierung des Tempomats konzentriert sich mehr auf die Geschwindigkeit des Fahrzeugs als auf die Auswirkungen eines Atombombeneinschlags auf das Fahrzeug.

Identifikation

...welche Klasse – Ausgehend von einem LTI-System sind der Grad von Zähler- und Nennerpolynom festzulegen. Zudem sidn allfällige Totzeiten zu berücksichtigen.

 \dots welche Eingangssignale — Das zu testende System muss hinreichend mit einem Signal angeregt werden \to Diracstösse, Sprungfunktionen, Rampen und harmonische Funktionen

...was meint 'gleichwertig' – Da Ein- & Ausgangsgrössen beobachtet werden, kann y des zu testenden Systems und \hat{y} des zu vergleichenden Modell verglichen werden. Mit dem resultierenden Fehler $\epsilon = y - \hat{y}$ können Grenzen festgelegt werden.

 $\underline{\dots}$ wie kann ein Modell gefunden werden – Trial & Error mit Sprungantwort und Bodediagramm.

Methode der kleinsten Quadrate

Mit dieser Methode können Parameter anhand Messwerten bestummen werden.

$$\underbrace{y[k] + a_1 y[k-1] + a_2 y[k-2] + \dots + a_n y[k-n]}_{A(z^{-1})y} = \underbrace{b_1 u[k-1] + \dots + b_n u[k-n]}_{B(z^{-1})u}$$

$$\beta^T = \begin{pmatrix} a_1 & a_2 & \cdots & a_n & b_1 & b_2 & \cdots & b_n \end{pmatrix}$$

$$\epsilon = A(z^{-1})y - B(z^{-1})u = \underbrace{y}_{Gemessen} - \underbrace{\Phi\beta}_{Modell}$$

$$y = \begin{pmatrix} y[n+1] \\ y[n+2] \\ \vdots \\ y[n+N] \end{pmatrix}$$

$$\Phi = \begin{pmatrix} -y[n] & -y[n-1] & \cdots & -y[1] & u[n] & u[n-1] & \cdots & u[1] \\ -y[n+1] & -y[n] & \cdots & -y[2] & u[n+1] & u[n] & \cdots & u[2] \\ \vdots & & \vdots & \vdots & & \vdots \\ -y[N+n-1] & -y[N+n-2] & \cdots & -y[N] & u[N+n-1] & u[N+n-2] & \cdots & u[N] \end{pmatrix}$$

$$\hat{\beta} = (\Phi^T \Phi)^{-1} \Phi^T y$$

Regelung -

Feedback Control

Ziel eines Reglers ist die Angleichung einer Regelgrösse y an eine Führungsgrösse r, sodass idealerweise y = r.

Merkmale einer Regelung

Folgende Merkmale **muss** eine Regelung aufweisen, ansonsten ist es keine Regelung.

- 1. Erfassung (Messen) der Regelgrösse
- 2. Vergleich von Regel- und Führungsgrösse
- 3. Geschlossener Wirkungskreis

Sensitivitätsfunktionen

'Gang of Four'

Das Verhalten der Regelung kann durch die folgenden vier Sensitivitätsfunktionen beschrieben werden.

Sensitivity Function

$$G_{er} = S = \frac{1}{1 + PC}$$

i Bedeutung

Sensitivitäts-Übergangsfrequenz ω_{sc} kennzeichnet den Übergang von Dämpfung zur Verstärkung

 $|S(j\omega)| < 1$ Dämpfung $|S(j\omega)| > 1$ Verstärkung

Load Sensitivity Function

$$G_{yv} = PS = \frac{P}{1 + PC}$$

Complementary Sensitivity Function

$$G_{yr} = T = \frac{PC}{1 + PC} \quad (\stackrel{!}{=} \underline{1})$$

Noise Sensitivity Function

$$G_{ur} = CS = \frac{C}{1 + PC}$$

Anforderungen

Stabilität

- binäres Kriterium und zwingend zu erfüllen
- Für lineare Systeme gilt dies global, egal welcher AP
- Die Stabilität kann anhand des Polnullstellendiagramms beurteilt und mit Hurwitz & Nyquist untersucht werden

Stationäre Genauigkeit

- Beschreibt bleibender Fehler, nach Abklingung der transienten Vorgänge
- Gutes Mass ist stationärer Regelfehler e

$$e = \frac{1}{1 + PC}r + \frac{-P}{1 + PC}v + \frac{-1}{1 + PC}w$$

$$e_{stationr} = \frac{1}{1 + PC} \bigg|_{s=0} \cdot r_0 + \frac{-P}{1 + PC} \bigg|_{s=0} \cdot v_0 + \frac{-1}{1 + PC} \bigg|_{s=0} \cdot w_0$$

Schnelligkeit

 Für Charakterisierung des dynamischen Verhaltens wird Gesamtregelkreis betrachtet in Bezug auf Führungsgrösse

$$y = \frac{PC}{1 + PC}r$$

• Als Kriterium dient die Grenzfrequenz $\omega_g \to$ Beschreibt ab wann das Verhalten deutlich degradiert $(\omega_g < \omega)$

$$\omega_q$$
: $|L(s)|_{s=j\omega_q} \approx 1$

Dämpfung

- Unterdrückung von schwingenden Signalteilen, welche Anzeichen von Instabilität sind
- ullet Gutes Mass ist die Phasenlage im Bereich von ω_q

Eigenschaften

Robustheit

Robustheit bezeichnet die Fähigkeit eines Systems, Veränderungen ohne Anpassung seiner anfänglich stabilen Struktur standzuhalten.

Robustheit gegenüber Unsicherheit \rightarrow Standhaltung gegenüber Störungen

Dynamik

Die *Dynamik* eines Systems kann durch eine Regelung beeinflusst und verändert werden.

- Instabile Systeme \rightarrow stabil
- Träges System → schnell
- Abdriftende System → konstant.

Abhängigkeit

Viele Systemeigenschaften sind $\underline{\text{nicht}}$ unabhängig voneinander. Sie unterliegen von Natur $\overline{\text{aus}}$ bestimmten Beschränkungen

ullet Stabiles Flugverhalten o keine hohe Manövrierbarkeit ${\color{red} !!}$ Regelungen können helfen, diese Abhängigkeiten teilweise aufzuheben!

Safety Critical

Werden instabile Systeme mittels Regelung stabilisiert, so wird die Regelung kritisch für die Sicherheit des Systems.

Modularität

In einem modularen System sind die einzelnen Module möglichst unabhängig voneinander \to Module können einfach ersetzt oder erweitert werden.

 Wohldefinierte Ein-/Ausgänge, Beziehungen dazwischen → Verhalten unabhängig von äusseren Umständen → ebenfalls Ziel von Regler

Mittels Regelulng lassen sich Komponenten unabhängiger und damit zusammengesetzte Systeme Modularer machen.

Genauigkeit

Mit Regelung können unerwünschte Störeinflüsse ausgeglichen werden \rightarrow Verbessert Genauigkeit und Auflösung (z.B. bei Sensoren).

i Anwendungen

Ein Konzept einer hohen Genauigkeit ist, mittels Regelung wird ein bestimmten und wohldefinierten Arbeitspunkt ausgeregelt und dabei aufgewendete Stellgrösse als Messgrösse des Sensors interpretiert dies.

Beispiel: Seismographgen, sehr präzise Waagen

Herauserforderungen

Regelungen bringen viele Vorteile, aber auch einige Nachteile:

Gefahr der Instabilität – Auch geregelte Systeme haben einen Kipppunkt, wo die Mitkopplung dominant wird und zur Instabilität führt. Ziel einer Regelung ist das System unter allen Umständen stabil zu halten (nicht nur unter Normalbedingung sondern auch unter allen Störeinflüssen \rightarrow anspruchsvoll).

Beispiel: Mikrophonverstärkung bei Beschallungsanlage zu weit aufgedreht → pfeifen

Messfehler – Jede Regelgrösse wird messtechnisch verfasst \rightarrow verbundene Messfehler gehen in Systemverhalten ein (betrifft statische Fehler, dynamische Fehler, wie Rauschen)

Komplexität – Die Implementation eines Regelsystems bei hoher Komplexität wird anspruchsvoller und mit entsprechendem Aufwand verbunden.

Steuerung

Feedforward Control

P-Regler

$$C(s) = k_p$$
 $u = k_p \cdot e$

Achtung

e = 0 ist mit einem P-Regler nicht möglich. Unter Annahme eines stabilen Regelkreises:

$$G_{er} = \frac{1}{1 + P \cdot C} = \frac{1}{1 + P \cdot k_0}$$

entsteht ein bleibender Fehler von:

$$G_{er}(0) = \frac{1}{1 + P(0) \cdot C(0)} = \frac{1}{1 + P(0) \cdot k_p}$$

Dies kann mit einer Vorsteuerung korrigiert werden, was aber Störeinflüsse nicht ausschliesst:

$$u(t) = k_p \cdot e(t) + u_{ff} = k_p \cdot e(t) + \frac{r}{P(0)}$$

Besser ist ein Pl-Regler

PI-Regler

$$C_{PI} = k_p \cdot \left(1 + \frac{1}{T_i s}\right)$$
 $u = k_i \cdot \int_0^t e(\tau) d\tau$

PD-Regler

$$C_{PD} = k_p \cdot (1 + T_d \cdot s)$$
 $u = k_d \frac{de}{dt}$

Filter D-Anteil

Hochfrequente Änderungen (z.B. Sprungantworten) führt zu hohem D-Anteil → Erweiterung TP-Filter

Für tiefe Frequenzen ($|s| \ll \frac{1}{T_d}$) wird $G_{ue} \approx k_p T_d s$ und hohe Frequenzen wird $G_{ue} \approx k_p$ (limitiert durch k_p)

$$C_D(s) = k_p \frac{T_d \cdot s}{1 + s \cdot T_d} = \underbrace{\frac{\sum_{b=Anteil} C_{b} - Anteil}{\sum_{b=1}^{D-Anteil} C_{b}}}_{\text{Filter}}$$

PID-Regler

$$C(s) = k_p \left(1 + \frac{1}{T_i \cdot s} + T_d \cdot s \right) = k_p \cdot \frac{(1 + sT_1)(1 + sT_2)}{T_i \cdot s}$$
$$= \underbrace{k_p \cdot e}_{P} + \underbrace{\frac{k_p}{T_i} \int_0^t e(\tau)d\tau}_{I} + \underbrace{k_p \cdot T_d \frac{de}{dt}}_{D}$$

 k_p : Reglerverstärkung $T_i = {}^{k_p}/k_i$: Nachstellzeit $T_d = {}^{k_d}/k_o$: Vorhaltzeit

Wichtig

Diese Beschreibung ist nur eine <u>idealisierte</u> Repräsentation, welche für das Verständnis des System hilfreich ist. Im <u>praktischen Einsatz</u> sind Modifikationen notwendig.

Proportional k_p

P-Anteil verstärkt den Regelfehler e um die $Proportionalverstärkung <math>k_p$.

$$C(s) = k_p$$
 $u = k_p \cdot e$

Proportionalband

$$u = \begin{cases} u_{max} & \text{falls } e \ge e_{max} \\ k_p \cdot e & \text{falls } e_{min} < e < e_{max} \\ u_{min} & \text{falls } e \ge e_{min} \end{cases}$$

mit

$$e_{min} = \frac{u_{min}}{k_p}$$
 $e_{max} = \frac{u_{max}}{k_p}$

Integral k_i , T_i

Mit dem I-Anteil werden vergangene Fehler mitberechnet \to stationäre Fehler des P-Anteils wird korrigiert.

Die Stellgrösse wird dadurch solange geregelt, bis der Regelfehler e=0 wird.

Differential k_d , T_d

Der D-Anteil reagiert auf zukünftige Fehler, indem die Steigung mit einem Verstärkungsfaktor k_d verstärkt wird.

Auslegung anhand...

... Modelle geringer Ordnung

Approximation 0-er Ordnung

Für einen statischen Prozess K = P(0) und einen I-Regler wird $L = PC = K \cdot \frac{k_i}{c}$:

$$G_{yr} = \frac{K \cdot k_i}{s + K \cdot k_i} = \frac{1}{1 + s \cdot T_{cl}}$$

$$k_i = \frac{1}{T_{cl} \cdot K} = \frac{1}{T_{cl} \cdot P(0)}$$

mittlere Verzögerungszeit

Die Auslegung bedingt, dass der Prozess gut durch eine Konstante beschrieben werden kann. Ein vernünftiges Kriterium dafür ist die Bedingung:

$$T_{cl} > T_{ar}$$
 $T_{ar} = -\frac{P'(0)}{P(0)}$

 T_{ar} : mittlere Verzögerungszeit

 T_{cl} : Zeitkonstante des geschlossenen Kreises

 T_{ar} beschreibt die Zeit, bis die Sprungantwort des Systems sich gesetzt hat.

Approximation 1-ter Ordnung

Näherung erster Ordnung kann folgendes Modell gewählt werden.

$$P \approx P(0) + P'(0)s \approx \frac{P(0)}{1 + sT_{ar}}$$

... Bodediagramm

Diese Auslegung wird mit dem offenen Regelkreis gemacht.

$$C(s) = k_i \frac{(1+s T_1)(1+s T_2)}{s} = k_p \frac{(1+s T_i)(1+s T_d)}{s \cdot T_i}$$

Zielgrössen: Durchtrittsfrequenz ω_{gc} , die Phasenreserve φ_m und allenfalls Amplitudenreserve g_m .

... Einstellregeln im Zeitbereich

Ziegler-Nichols-Tabelle (via Sprungantwort)

Тур	k_p	T_i	T_d
Р	1/a	-	_
PΙ	0.9/a	$3 \cdot \tau$	-
PID	1.2/a	$2 \cdot \tau$	$0.5 \cdot \tau$

... Einstellregeln im Frequenzbereich

Verstärkung k erhöhen, bis sich eine anhaltende Schwingung einstellt. Regelparameter anhand kritischer Verstärkung k_c & Periodendauer T_c ermitteln.

Ziegler-Nichols-Tabelle (via Kritische Verstärkung)

Тур	k_p	T_i	T_d
Р	0.5 · <i>k_c</i>	_	_
PΙ	$0.4 \cdot k_c$	$0.8 \cdot T_c$	_
PID	$0.6 \cdot k_c$	$0.5 \cdot T_c$	$0.125 \cdot T_{c}$

Stellgrössen-Sättigung

Sättigungseffekt

Arbeitet der Regelkreis in der Sättigung, so ist dieser faktisch unterbrochen – das System arbeitet als offener Kreis, solange der Aktor im gesättigtem Zustand ist.

Windup

Bei Sättigung baut Fehler den I-Anteil auf. Muss nach Erholung abgebaut werden.

Anti-Windup

Exzessiver Anteil wird mit einem invertierten Vorzeichen an den Integrator zurückgeführt und somit der Windup klein gehalten ightarrowkürzere Erholzeit nach Stellgrössensättigung

 $k_t \approx 10 k_i$

Loop Shaping

$\begin{array}{ll} \text{Verlauf von } |L| \\ & \omega < \omega_{gc} \\ & \omega \approx \omega_{gc} \\ & \omega > \omega_{gc} \\ & \omega > \omega_{gc} \end{array} \begin{array}{ll} \text{m\"{o}glichst gross} \\ \text{m\"{o}glichst flach} \\ \text{m\"{o}glichst klein} \end{array}$

Lag & Lead Kompensatoren

$$C(s) = k \cdot \prod_{i} \left(\frac{s + a_i}{s + b_i} \right)$$

Mit $a_i > 0$, $b_i > 0$, k > 0

i PI-Regler & D-Anteil

PI Regler $\rightarrow b = 0$ D-Anteil mit Beschränkung $\rightarrow a = 0$

Lead (a < b)

Verstärkung bei hohen Frequenzen + Phasenanhebung (max 90° pro Ordnung)

Lag (a > b)

Verstärkung bei tiefen Frequenzen + Phasensenkung (max –90° pro Ordnung)

Grenzen des Loop-Shapings

Der Beeinflussing des Systemverhalten durch Regelung sind bestimmte Grenzen gesetzt. Verhalten kann nicht uniform verbessert werden.

Bode's Integral

Ist der geschlossene Regelkreis mit L stabil und geht sL(s) für $s \to \infty$ gegen null, dann ist

$$\int_0^\infty \log|S(j\omega)| \ d\omega = \pi \sum p_k$$

wobei p_k die Pole in der <u>rechten</u> Halbebene sind. Ist L an sich stabil, so gilt

Alle Verbesserungen werden mit Verschlechterungen komplementiert.

Diskretisierung

Entwurf Regler

Digitalrechner arbeiten zeitdiskret \leftrightarrow Prozesse sind von zeitkontinuierlicher Natur

1) kontinuierlicher Prozess

kontinuierlicher Regler s wird entworfen und dann diskretisiert.

$$z=e^{sh}pprox 1+sh$$
 Euler/Vorwärtsdifferenz¹ $z=e^{sh}pprox rac{1}{1-sh}$ Rücksdifferenz² $z=e^{sh}pprox rac{1+s^{h}/2}{1-s^{h}/2}$ Trapezregel/Tustin

- 1. zu optimistisch
- 2. zu pessimistisch

$$\widetilde{s} = \frac{z-1}{h}$$
 Euler/Vorwärtsdifferenz $z = \frac{z-1}{zh}$ Rücksdifferenz $z = \frac{2}{h} \cdot \frac{z-1}{z+1}$ Trapezregel/Tustin

Stabilität

Die <u>Stabilitätsaussage bezieht</u> sich auf die <u>transformierte</u> <u>Funktion</u>, *nicht aber zwingend* auch für den geschlossenen Regelkreis

2) zeitdiskreter Regler

 $u[k] = \sigma[k] \circ - \frac{z}{z-1}$ an, so ist $u(t) = \sigma(t) \circ - \frac{1}{s}$, ebenfalls ein Einheitssprung. Damit wird

$$Y(s) = P_c(s) \cdot U(s) = P_c(s) \cdot \frac{1}{s}$$

$$y(t) = \mathcal{L}^{-1} \{ P_c(s) \cdot \frac{1}{s} \}$$

$$\mathcal{Z} \{ y[k] \} = \mathcal{Z} \{ y(t)_{t=kh} \} = \mathcal{Z} \{ \mathcal{L}^{-1} \{ P_c(s) \cdot \frac{1}{s} \}_{t=kh} \}$$
und letztendlich
$$P_d(z) = \frac{\mathcal{Z} \{ y[k] \}}{\mathcal{Z} \{ u[k] \}} = (1 - z^{-1}) \mathcal{Z} \{ \mathcal{L}^{-1} \{ P_c(s) \cdot \frac{1}{s} \}_{t=kh} \} .$$

- **1.** Sprungantwort des Systems $G_c(s)$ bestimmen.
- **2.** Korrespondierende \mathcal{Z} -Transformierte der Sprungantwort bei Abtastung mit Intervall h ermitteln.
- 3. Division der resultierenden \mathcal{Z} -Transformierten durch die \mathcal{Z} -Transformierte des Einheitssprungs.

Relation z & s Ebene

Ortskurve mit Umschalter

Unstetiger Regler

$$N(a) = M_1(a)e^{j\varphi_1(a)} = \frac{4b}{a\pi}e^{j0} = \frac{4b}{a\pi}$$

a : Amplitude des harmonischen Eingangssignals

b : Amplitude Rechtecksignal Ausgang

N(a): Beschreibungsfunktion

Entsprechend für den Schnittpunkt auf der Ortskurve gilt $-\frac{1}{N(a)}=-\frac{\partial\pi}{4b}!$

! Anhaltende Schwingung

Die Bedingung für eine anhaltende Schwingung lautet in erster Näherung:

$$N(a) \cdot L(j\omega) = 1$$

Mit Hysterese

Ohne Hysterese

Ortskurve mit Hysterese

Zugehörige Fourierreihe lautet

$$y(t) = \frac{4b}{\pi} \left(\sin(\omega t - \alpha) + \frac{1}{3} \sin(3\omega t - 3\alpha) + \frac{1}{3} \sin(5\omega t - 5\alpha) + \cdots \right)$$

und deren erste Harmonische

$$y_1(t) = \frac{4b}{\pi}\sin(\omega - \alpha)$$
 mit $\sin(\alpha) = \frac{c}{a}$

Unter der Vorraussetzung dass a>c ist, ergibt sich die Beschreibungsfunktion $N(\cdot)$ zu

$$N(a) = M_1(a)e^{j\varphi_1(a)} = \frac{4b}{a\pi}e^{j\alpha} = \frac{4b}{a\pi}(\cos(\alpha) - j\sin(\alpha))$$

c : Schaltpunkte für die Hysterese

lpha : Phasenverschiebung

Es folgt mit $\sin(\alpha) = c/a$; $\cos(\alpha) = \sqrt{1^2 - \sin(\alpha)^2}$

$$N(a) = \frac{4b}{a\pi} \left(\sqrt{1 - \frac{c^2}{a^2}} - j\frac{c}{a} \right)$$

Mit Kehrwert

$$\frac{1}{N(a)} = \frac{\pi\sqrt{a^2 - c^2}}{4b} + j\frac{\pi c}{4b}$$

Zustandsraum

Nur kleine Info: anhand dem Zustandsraum können die "Regelumschaltungen" ermittelt werden. Folgend ist ein Phasenporträit, welches das Ziel in zwei Schritten erreicht.

Phasenporträt

Struktur

Λ

🛕 Steuerung & Stabilität

Steuerungen nehmen im Allgemeinen keinen Einfluss auf die Stablität des Regelkreises \rightarrow Solange **keine Grössen aus dem Regelkreis** Einfluss nehmen!

Steuerungen

Vorfilter

$$G_{yr} = F \cdot \frac{PC}{1 + PC}$$

Mit dem idealen Ziel $G_{yr} = 1$ ergibt sich

$$F \stackrel{!}{=} \frac{1 + PC}{PC} = 1 + (PC)^{-1}$$

Oft aber ist dies theoretisch möglich, **aber** die Realisation wird nicht realisierbar sein.

- <u>nicht kausal</u> Totzeiten $e^{-\tau s} \rightarrow \text{Vorhersage (Nicht Realisierbar) } e^{\tau s}$
- **instabil** Inverse Funktionen, welche instabil werden $L^{-1} = \frac{\underline{s+2}}{\underline{s-1}}$

Pol-/ Nullstellenkürzung

Eine Kürzung, und damit Egalisierung, von Polen durch entsprechende Nullstellen ist nur dann zulässig, wenn diese stabil und hinreichend schnell sind. Ansonsten resultieren Signale welche entweder exponentiell anwachsen oder nur sehr langsam abklingen.

Approximation

Als Lösung können stabile, kausale Approximationen $P^{\dagger}(s) =$ $P(0)^{-1}$ verwendet werden, welche die relevanten Eigenschaften hinreichend wiedergibt.

$$P = \frac{1}{1+sT}e^{-\tau s} \qquad P^{\dagger} = \frac{1+sT}{1+sT/N}$$

$$P = \frac{s-1}{s+2} \qquad P^{\dagger} = \frac{s+2}{s+1}$$

Vorsteuerung

$$G_{yr} = \frac{P(CF_r) + F_u}{1 + PC} = \underbrace{F_r}_{\text{Sollverhalten}} + \underbrace{\frac{PF_u - F_r}{1 + PC}}_{\text{Dollverhalten}}$$

$$F_r \stackrel{!}{=} PF_u \qquad F_u = P^{-1}F_r$$

Anforderungen F_r

Damit $F_u = P^{-1}F_r$ realisierbar ist, gelten folgende Kriterien:

- 1. zeitliche Verzögerung von F_r muss **mindestens so gross** wie von P sein (\rightsquigarrow Kausalität)
- 2. F_r & P müssen die gleichen Nullstellen in der rechten Halbebene (→ Stabilität)
- 3. Polüberschuss von $\overline{F_r}$ mindestens so gross wie von P(→ keine reine Differentiation)

Störgrössenaufschaltung

$$G_{yv} = \frac{P_2 \cdot (1 + P_1 F_v)}{1 + PC} = P_2 \underbrace{(1 + P_1 F_v)}_{\text{Steuerung}} \cdot \underbrace{\frac{1}{1 + PC}}_{\text{Regelung}}$$

$$1 + P_1 F_v \stackrel{!}{=} 0 \qquad F_v = -P_1^{-1}$$

Kombination

Mit allen Strukturen zusammen, ergibt sich folgender Regelkreis.

MATLAB -

Vektoren

Vektoren werden mit [. . .] deklariert. Elemente werden Spaltenweise mit einem Leerschlag ' ' oder Komma , eingeteilt und mit einem Semikolon; Reihenweise geteilt.

i Grösse size

Mit size kann die Grösse einer Variable ermittelt werden. size gibt als Resultat ein 1x2 Vektor zurück ([Rows Columns])

[1] oder einfach 1

Die size-Funktion gibt auch bei einzelnen Werte eine Grösse aus, nämlich [1 1]

b = [1 2 3] % Linienvektor

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

c = [2;3;4] % Spaltenvektor

Mit *Slicing* kann ein Teil einer Matrix **kopiert** werden und einer anderen Variable zugewiesen werden.

```
<matrix>(<rowStart>:<rowEnd>,<colStart>:<colEnd>)
```

Plotting

i Figure-Separierung

Mit figure(n) können mehrere Plot-Befehle in eigene Figuren geladen werden.

XY-Graph

```
figure(1);
t = 0:0.5:10;
y = sin(t);

plot(t,y);
xlim([-0.5 10.5]);
ylim([-1.1 1.1]);
```


XYY-Graph

Mit yyaxis kann die Y-Achse beim selben Plot mit left & right gewechselt werden.

```
figure(1);
t = 0:0.5:10;

yyaxis left;
plot(t, sin(t));
xlim([-0.5 10.5]);
ylim([-1.1 1.1]);

yyaxis right;
```


Transferfunktion tf(...)

Mit dem Befehl tf(...) kann eine Transferfunktion deklariert werden mit Zähler- und Nenner-Zeilenvektoren.

```
sys = tf(numerator,denominator);
```

Die Transferfunktion kann in anderen Funktion wiederverwendet werden, wie zum Beispiel step oder bode. Folgende Beispiele sind mit der sys-Transferfunktion (folgende Gleichung) gemacht.

$$G_{\rm sys}(s) = \frac{4}{s^2 + s + 10}$$

```
sys = tf(4,[1 2 10]);
```

PID-Regler pidstd

Bode-Diagramm bode

```
bode(sys,{0.1,100}); % or bode(sys);
% grid on; to enable Grid in Plot
```


Nyquist-Diagramm nyquist

```
nyquist(sys)
```


Impulsantwort impulse

Mit impulse(. . .) kann die Impulsantwort der Transferfunktion ausgegeben werden.

```
impulse(sys);
```


Sprungantwort step

Mit step(. . .) kann eine Transferfunktion mit der Sprungfunktion σ verwendet werden. Damit

```
step(sys);
```

Pol-Nullstellen-Diagramm pzmap

```
pzmap(sys);
ylim([-4 4]); xlim([-1.2 0]);
```


MATLAB Zauber

Damit die Pol- und Nullstellen erkennbar sind, muss eventuell mit den Darstellungsgrenzen gespielt werden.

Margin margin(tf)

Mit dem Befehl margin(tf) kann das Bode-Diagramm

Zustandsraumdarstellung ss()

Mit ss(. . .) können vier Matrizen A, B, C, D zu einer Zustandsraumdarstellung zusammengeführt werden.

```
A = [0 \ 1; -5 \ -2];
B = [0;3];
C = [0 \ 1];
D = 0;
Ts = 0.25;
sys = ss(A,B,C,D,Ts);
```

Es kann ebenfalls bode, nyquist, step, etc. angewendet werden, da die ZRD eine andere Darstellung der Übertragungsfunktion ist.

Reglersimulator Sisotool(tf(...))

Mit sisotool kann ein Regler C basierend auf einem Prozess P ausgelegt werdne.

```
P = tf(...);
sisotool(P); % Der Prozess wird angegeben
```

Weitere Befehle

minreal

Kürzt doppelte Nullstellen heraus algebraisch -> reduzieren auf Minimalform

Anleitungen / Vorgehen

Modellierung dynamischer Systeme

- 1. Festlegung der Systemgrenzen sowie der Ein-/ Ausgangsgrös-
- 2. Identifikation der relevanten Energiespeicher und der zugehörigen 'Füllstandsgrössen'.
- 3. Formulierung der Bilanzgleichungen für die Energiespeicher.

$$\frac{d}{dt}$$
Füllstand = \sum Zufluss – \sum Abfluss

- 4. Formulierung der Ausgleichsströme zwischen den einzelnen Energiespeichern.
- 5. Identifikation der Systemparameter anhand von Spezifikationen oder Experimenten.
- 6. Validierung des Modells durch Experimente. Je nach Resultat Iteration des Verfahrens.

Stabilitätsbestimmung

- 1. Offener Kreis bilden L = PC
- 2. Nyquist/Ortskurve zeichenen nyquist(L)
- 3. Bodediagramm zeichnen margin(L), bode(L)
- 4. Stabilitätsbedingung anhand Nyguist-Kriterium prüfen

Parameter Identifikation

1. Hypothese über die Modellstruktur (Naturgesetze oder Black Box). Beispiel

$$G(s) = \frac{Y(s)}{U(s)} = \frac{bs}{s^2 + a_1 s + a_2}$$

- 2. Gute Anregung (Impuls, Sprung, Rampe,...) auswählen und Experiment durchführen
- 3. Messdaten y(k) speichern
- 4. Mit (u(k), y(k)) die Parameter (b, a_1, a_2) bestimmen
- 5. Modell & Parameter validieren (wenn nicht gut, zurück zu Punkt 1 mit neuem Modell)

Linearität & Zeitinvarianzen

LTI-Systeme

Anforderung

Alle Kriterien Zeitinvarianz, Verstärkungs und Überlagerungsprinzip müssen für LTI-System gelten.

Zustands-, Ein- oder Ausgangsgrössen in nichtlinearen Operationen (\cdot ², sin, ln...) in Differenzialgleichung deuten auf ein **nicht lineares** System.

$$y = e^{-t} \cdot \dot{u} + 1$$
 \rightarrow zeitvariant
 $y = \int_0^t u(\tau)d\tau$ \rightarrow zeitinvariant
 $y = \dot{u} + 1$ \rightarrow zeitinvariant
 $y = \ddot{y} - \underline{u} \cdot \dot{y}$ \rightarrow nicht linear
 $y = \sqrt{u^2 + 1}$ \rightarrow nicht linear
 $y = 2 \cdot u + 4$ \rightarrow linear

Zeitinvarianz

System ist zeitinvariant, falls dessen Wirkungsweise $\underline{\text{nicht}}$ von der Zeit t abhängig ist. Das heisst, das System

$$y(t) = H\{x(t)\}$$

liefert auf ein Signal x(t) mit einer Verzögerung a>0 ebenfalls ein verzögertes Ausgangssignal

$$y(t+a) = H\{x(t+a)\}$$

Linearität

Ein System ist *linear*, falls das Verstärkungs- <u>und</u> Überlagerungsprinzip gelten.

Überlagerungsprinzip

Wenn $y_1(t)$ die Antwort auf $u_1(t)$ ist und $y_2(t)$ die Antwort auf $u_2(t)$ ist, so ist $y_1(t) + y_2(t)$ die Antwort auf $u_1(t) + u_2(t)$.

Verstärkungsprinzip

Wenn y(t) die Antwort auf u(t) ist, $\alpha \cdot y(t)$ ist die Antwort auf $\alpha \cdot u(t)$.

Linearisierung

Zustandsraumdarstellung

Ein nicht-lineares System:

$$\frac{dx}{dt} = f(x, u) \qquad y = h(x, u)$$

kann an einem Arbeitspunkt linearisiert werden. Anhand eines Arbeitspunktes wird die Tangente mit folgender Gleichung berechnet.

$$f(x, u) \approx f(x_e, u_e) + \frac{\partial f}{\partial x} \Big|_{(x_e, u_e)} \cdot (x - x_e) + \frac{\partial f}{\partial u} \Big|_{(x_e, u_e)} \cdot (u - u_e)$$

Das nicht-lineare System kann als Zustandsraum-Darstellung linearisiert werden. Folgende Gleichungen

$$A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \quad B = \frac{\partial f}{\partial u}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial u} \end{bmatrix}$$

Regelungstechnik HSLU T&A

$$C = \frac{\partial h}{\partial x}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} \end{bmatrix} \quad D = \frac{\partial h}{\partial u}\Big|_{(x_e, u_e)}$$

ergeben die Linearisierung.

$$\frac{dz}{dt} = Az + Bv \qquad w = Cz + Dv$$

mit $z = x - x_e$, $v = u - u_e$ und $w = y - y_e$ mit $y_e = h(x_e, u_e)$.

Differentialgleichung

$$F(y^{(n)}, \dots, \dot{y}, y, u^{(m)}, \dots, \dot{u}, u) = 0 \quad \text{mit } m \le n$$

$$\frac{\partial F}{\partial y^{(n)}}\bigg|_{(y_e, u_e)} z^{(n)} + \dots + \frac{\partial F}{\partial \dot{y}}\bigg|_{(y_e, u_e)} \dot{z} + \frac{\partial F}{\partial y}\bigg|_{(y_e, u_e)} z + \frac{\partial F}{\partial u^{(m)}}\bigg|_{(y_e, u_e)} v^{(m)} + \dots + \frac{\partial F}{\partial \dot{u}}\bigg|_{(y_e, u_e)} \dot{v} + \frac{\partial F}{\partial u}\bigg|_{(y_e, u_e)} v = 0$$

mit $z = y - y_e \& v = u - u_e$.

Vorgehen

Beispiel mit Differentialgleichung

$$M \cdot \frac{d^2h}{dt^2} + \alpha \frac{dh}{dt} + k \cdot h^3 = M \cdot g - k \cdot h^3$$

1. Alle Elemente auf eine Seite bringen und Differentialgleichung gleich 0 setzen $f(\cdots) = F(\cdots) = 0$

$$\underbrace{M \cdot \frac{d^2h}{dt^2} + \alpha \frac{dh}{dt} + k \cdot h^3 - M \cdot g}_{F(y^{(n)}, \dots, y, u^{(m)}, \dots, u)} = 0$$

$$\rightarrow$$
 $f(\ddot{h}, \dot{h}, h) = 0$

2. Gleichgewichtslage bestimmen, Änderungsraten $= 0 \rightarrow$

$$\overline{h} = h_0 = \sqrt[3]{\frac{M \cdot g}{k}}$$

3. Deltagrössendefinieren $\overline{h}^{\;(n>0)}=0$

$$\Delta h = h - \overline{h}$$

$$\Delta \dot{h} = \dot{h} - \dot{\overline{h}} = \dot{h}$$

$$\Delta \ddot{h} = \ddot{h} - \ddot{\overline{h}} = \ddot{h}$$

4. Linearisierung machen (Ableiten, dann Gleichgewichtslage

$$\frac{\partial f}{\partial \ddot{h}}\Big|_{h=\overline{h}} \cdot \Delta \ddot{h} + \frac{\partial f}{\partial \dot{h}}\Big|_{h=\overline{h}} \cdot \Delta \dot{h} + \frac{\partial f}{\partial h}\Big|_{h=\overline{h}} \cdot \Delta h = 0$$

5. linearisierte Differentialgleichung aufbauen

$$M\Delta \ddot{h} + \alpha \Delta \dot{h} + 3k\overline{h}^2 = 0$$

Übertragungselemente –

Elementare Glieder

$$G(s) = \frac{b_0 \cdot s^m + b_1 \cdot s^{m-1} + \dots + b_m}{s^n + a_1 \cdot s^{n-1} + \dots + a_n}$$
$$= b_0 \cdot \frac{(s + z_1)(s + z_2) \cdots (s + z_n)}{(s + p_1)(s + p_2) \cdots (s + p_n)}$$

m: Nullstellen $z_{1...m}$ n: Polstellen $p_{1...m}$

Elementare Funktionen

Werden für die Beschreibung beliebiger LTI-Systeme verwendet. Mit Parametern k, a, ζ , ω_0 , $\tau \in \mathbb{R}$

Тур	System	Übertragungsfunktion
Integrator	$\dot{y} = u$	$\frac{1}{s}$
Differentiator	$y = \dot{u}$	s
Erste Ordung	$\dot{y} + ay = u$	$\frac{1}{s+a}$
Doppelintegrator	$\ddot{y} = u$	$\frac{1}{s^2}$
Gedämpfter Oszillator	$\ddot{y} + 2\zeta\omega_0\dot{y} + \omega_0^2y = u$	$\frac{1}{s^2+2\zeta\omega_0s+\omega_0^2}$
Zustandsdarstellung	$\dot{x} = Ax + Bu , y = Cx + Du$	$C(sI - A)^{-1}B + D$
PID Regler	$y = k_p u + k_d \dot{u} + k_i \int u$	$k_p + k_d s + \frac{k_i}{s}$
Totzeit	$y(t) = u(t - \tau)$	$e^{-\tau s} = \lim_{n \to \infty} \frac{1}{(1 + s\frac{\tau}{n})^n}$

G(s) = k: konstanter Faktor

G(s) = kG(s) = s + a: einfache reelle Nullstelle

 $G(s) = s^2 + 2\zeta\omega_0 s + \omega_o^2 \text{ : konj. komplexe Nullstellen } (\zeta \leq 1)$ $G(s) = \frac{1}{s+a} \qquad \text{: einfacher relier Pol}$ $G(s) = \frac{1}{s^2 + 2\zeta\omega_0 s + \omega_o^2} \qquad \text{: konj. komplexe Pole } (\zeta \leq 1)$ $G(s) = e^{-s\tau} \qquad \text{: Totzeitglied } \tau > 0$

: Totzeitglied $\tau > 0$

Die zugehörigen Nullstellen

$$\lambda = \begin{cases} -a & \text{einfach reell} \\ -\zeta\omega_0 \pm \omega_0 \sqrt{\zeta^2 - 1} & \text{konj. komplex} \end{cases}$$

Polüberschuss npe

Der Polüberschuss oder relativer Grad beschreibt die Differenz zwischen der Pol- und Nullstellen-Ordnung.

$$n_{pe} = n - m$$

 $n_{pe} \ge 0$ proper/gebrochenrational $n_{pe} > 0$ strictly proper/echt gebrochenrational

$$y = \begin{cases} \not \exists & \text{falls} \quad n_{pe} \leq -2 \quad \text{bsp} \quad s^2 \\ \delta(t)e^{st} + \dots & \text{falls} \quad n_{pe} = -1 \quad s \\ \sigma(t)e^{st} + \dots & \text{falls} \quad n_{pe} = 0 \quad 1 \\ t \cdot \sigma(t)e^{st} + \dots & \text{falls} \quad n_{pe} = 1 \quad \frac{1}{s^2} \\ \delta(t)e^{st} + \dots & \text{falls} \quad n_{pe} = n \geq 2 \quad \frac{1}{s^2} \end{cases}$$

Bezeichnete Glieder

P-Glied7

I-Glied

G(s) = k konstanter Faktor

 $G(s)=\frac{1}{s}$

PT2-Glied

$$G(s) = \frac{K \cdot \omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

Sprungantwort & $d = \zeta$

Integrator

PT1-Glied

$$G(s) = \frac{K}{1 + \tau s}$$

IT-Glied

$$G(s) = \frac{K}{s(1+\tau s)}$$

Sprungantwort

Sprungantwort

DT1-Glied

$$G(s) = \frac{s}{1 + sT}$$
 Gefilterter Differentiator

Anderes Zeug -

Betrag von Zeitverzögerungen sind immer =1, da die Phase keine Rolle spielt.

$$|PC| = 1 \Rightarrow |k \cdot e^{-0.2s} \frac{10}{s}|$$

Glossar

- SISO Single Input Single Output
- MIMO Multiple Input Multiple Output