



Center for Automotive Research and Sustainable Mobility

# Lab Module #2

**ECMS** 



## Course schedule

| Mon | Tue | Wed | Thu | Fri | Sat | Sun |       |
|-----|-----|-----|-----|-----|-----|-----|-------|
| 24  | 25  | 26  | 27  | 28  | I   | 2   |       |
| 3   | 4   | 5   | 6   | 7   | 8   | 9   | ų ,   |
| 10  | 11  | 12  | 13  | 14  | 15  | 16  | March |
| 17  | 18  | 19  | 20  | 21  | 22  | 23  |       |
| 24  | 25  | 26  | 27  | 28  | 29  | 30  |       |
| 31  | I   | 2   | 3   | 4   | 5   | 6   |       |
| 7   | 8   | 9   | 10  | 11  | 12  | 13  | April |
| 14  | 15  | 16  | 17  | 18  | 19  | 20  | ΑF    |
| 21  | 22  | 23  | 24  | 25  | 26  | 27  |       |
| 28  | 29  | 30  | I   | 2   | 3   | 4   |       |
| 5   | 6   | 7   | 8   | 9   | 10  | 11  | Мау   |
| 12  | 13  | 14  | 15  | 16  | 17  | 18  | Σ     |
| 19  | 20  |     | 22  | 23  | 24  | 25  |       |
| 26  | 27  | 28  | 29  | 30  | 31  | I   |       |
| 2   | 3   | 4   | 5   | 6   | 7   | 8   | June  |
| 9   | 10  | 11  | 12  |     | 14  | 15  |       |



### Class hours

### **M**onday

11:30 - 14:30, Room 04AM

### **Thursday**

Class A: 10:00 - 11:30, Room 02AM

Class B: 11:30 - 13:00, Room 02AM

Tuesday, April 29th

To be confirmed

### Contacts

### Lectures & lead instructor

Ezio Spessa ezio.spessa@polito.it

### Lab Class A

Teacher: Federico Miretti federico.miretti@polito.it

#### Lab Class B

Teacher: Trentalessandro Costantino trentalessandro.costantino@polito.it



## Simulation framework







## Simulation framework

## Minimal simulation code:

```
vehicleData \leftarrow load vehicleData v_{\mathrm{veh}}, a_{\mathrm{veh}} \leftarrow load cycleData for k from 1 to N \omega_{\mathrm{eng}}(k), T_{\mathrm{eng}}(k) \leftarrow \mathrm{ecmsControl}(...) \sigma(k+1), \dot{m}_{\mathrm{f}}(k) \leftarrow \mathrm{hevModel}\big(\sigma(k), \big[\omega_{\mathrm{eng}}(k), T_{\mathrm{eng}}(k)\big], \big[v_{\mathrm{veh}}(k), a_{\mathrm{veh}}(k)\big], \mathrm{hevData}\big) end for
```



# ECMS principle

### **Basic ECMS controller**

For all t in  $[t_0, t_{\mathrm{f}}]$ , select the  $\gamma$  and  $\tau_{\mathrm{eng}}$  that minimize:



# ECMS principle

### **Basic ECMS controller**

For all t in  $[t_0, t_{\mathrm{f}}]$ , select the  $\gamma$  and  $\tau_{\mathrm{eng}}$  that minimize:

$$\dot{m}_{\rm f,eq} = \dot{m}_{\rm f}(\omega_{\rm eng}, T_{\rm eng}) + s \cdot \frac{E_{\rm b}}{Q_{\rm LHV}} \cdot \dot{\sigma}(\omega_{\rm eng}, T_{\rm eng})$$

### Equivalence factor

### Notation

- Costate is a term that is borrowed from optimal control theory.
- Equivalence factor is a more specific term used in the context of the ECMS.

Sometimes, the terms are used interchangeably.



# ECMS principle

### **Basic ECMS controller**

For all t in  $[t_0, t_{\mathrm{f}}]$ , select the  $\gamma$  and  $\tau_{\mathrm{eng}}$  that minimize:

$$\dot{m}_{\rm f,eq} = \dot{m}_{\rm f}(\omega_{\rm eng}, T_{\rm eng}) + s \cdot \frac{E_{\rm b}}{Q_{\rm LHV}} \cdot \dot{\sigma}(\omega_{\rm eng}, T_{\rm eng})$$

i.e.

$$(\omega_{\text{eng}}, T_{\text{eng}})$$

$$= \underset{\gamma, \alpha_{\text{eng}}}{\operatorname{argmin}} \left\{ \dot{m}_{\text{f}}(\omega_{\text{eng}}, T_{\text{eng}}) + s \cdot \frac{E_{\text{b}}}{Q_{\text{LHV}}} \cdot \dot{\sigma}(\omega_{\text{eng}}, T_{\text{eng}}) \right\}$$

### **Notation**

- Costate is a term that is borrowed from optimal control theory.
- Equivalence factor is a more specific term used in the context of the ECMS.

Sometimes, the terms are used interchangeably.



# ECMS: equivalence factor



## **Equivalence factor**

We will use a constant equivalence factor.

We will calibrate the equivalence factor to enforce:

$$\sigma_f = \sigma_0$$

by developing a bisection algorithm.

# Lab assignment

## 1. Design the ECMS controller



# 2. Calibrate the equivalence factor with a bisection algo





### **Basic ECMS controller**

We are at a fixed time t.

Select the  $\omega_{\rm eng}$  and  $T_{\rm eng}$  that minimize:

$$\dot{m}_{\rm f,eq} = \dot{m}_{\rm f}(\omega_{\rm eng}, T_{\rm eng}) + s \cdot \frac{E_{\rm b}}{Q_{\rm LHV}} \cdot \dot{\sigma}(\omega_{\rm eng}, T_{\rm eng})$$

i.e.

$$(\omega_{\text{eng}}, T_{\text{eng}}) = \underset{\gamma, \alpha_{\text{eng}}}{\operatorname{argmin}} \{\dot{m}_{\text{f,eq}}(\gamma, \alpha_{\text{eng}})\}$$

## Equivalence factor:

At this stage, assume s is known and given to the ECMS controller as input. Use a random guess. Do not worry about charge sustenance.



### **Basic ECMS controller**

We are at a fixed time t.

Select the  $\omega_{\rm eng}$  and  $T_{\rm eng}$  that minimize:

$$\dot{m}_{\rm f,eq} = \dot{m}_{\rm f}(\omega_{\rm eng}, T_{\rm eng}) + s \cdot \frac{E_{\rm b}}{Q_{\rm LHV}} \cdot \dot{\sigma}(\omega_{\rm eng}, T_{\rm eng})$$

i.e.

$$(\omega_{\text{eng}}, T_{\text{eng}}) = \underset{\gamma, \alpha_{\text{eng}}}{\operatorname{argmin}} \{\dot{m}_{\text{f,eq}}(\gamma, \alpha_{\text{eng}})\}$$

## Algorithm outline:

- 1. Evaluate  $\dot{m}_{\rm f,eq}$  for all possible  $\omega_{\rm eng}$ ,  $T_{\rm eng}$  combinations.
- 2. Exclude the unfeasible combinations.
- 3. Select the combination that minimizes  $\dot{m}_{
  m f,eq}$ .

You must create a set of possible  $\omega_{\rm eng}$ ,  $T_{\rm eng}$  values.



 $\omega_{\rm eng, \, set} \leftarrow$  create the set of possible  $\omega_{\rm eng}$  values

 $T_{\text{eng, set}} \leftarrow \text{create a set of possible } T_{\text{eng}} \text{ values}$ 

for all 
$$(\omega_{\text{eng}}, T_{\text{eng}})$$
 in  $(\omega_{\text{eng, set}}, T_{\text{eng, set}})$   
 $\sigma_{k+1}, \dot{m}_{\text{f}} \leftarrow \text{hevModel}(\sigma_k, [\omega_{\text{eng}}, T_{\text{eng}}], [v_{\text{veh},k}, a_{\text{veh},k}])$ 

### End

$$\dot{m}_{\mathrm{f,eq}} \leftarrow \dot{m}_{\mathrm{f}} + s \cdot \frac{E_{\mathrm{b}}}{Q_{\mathrm{LHV}}} \cdot \dot{\sigma}$$

$$\omega_{\text{eng}}^*$$
,  $T_{\text{eng}}^* \leftarrow \underset{\omega_{\text{eng}}, T_{\text{eng}}}{\operatorname{argmin}} \dot{m}_{\text{f,eq}}$ 

return  $\omega_{\rm eng}^*$ ,  $T_{\rm eng}^*$ 

## Algorithm outline:

- 1. Evaluate  $\dot{m}_{\rm f,eq}$  for all possible  $\omega_{\rm eng}$ ,  $T_{\rm eng}$  combinations.
- Exclude the unfeasible combinations.
- 3. Select the combination that minimizes  $\dot{m}_{\rm f,eq}$ .

You must create a set of possible  $\omega_{\rm eng}$ ,  $T_{\rm eng}$  values.





## Tips and thinking points

- 1. You must create a set of possible  $\omega_{\rm eng}$  and  $T_{\rm eng}$  values. You may find linspace or ndgrid useful.
- 2. When evaluating  $\dot{m}_{\rm f,eq}$ , be careful with the units of measurement.
- 3. How do you store  $\dot{m}_{\rm f,eq}(\omega_{\rm eng}, T_{\rm eng})$  in practice?
- 4. Select the combination that minimizes  $\dot{m}_{\rm f,eq}$ : you will find it useful to read the docs for the min function.
- 5. You must exclude (penalize?) the unfeasible combinations.
- 6. You may (or may not) find it useful to read the docs for the ind2sub function.



 $\omega_{\text{eng, set}} \leftarrow \text{create the set of possible } \omega_{\text{eng}} \text{ values}$   $T_{\text{eng, set}} \leftarrow \text{create a set of possible } T_{\text{eng}} \text{ values}$ 

$$\begin{aligned} & \text{for all } (\omega_{\text{eng}}, T_{\text{eng}}) \text{ in } (\omega_{\text{eng, set}}, T_{\text{eng, set}}) \\ & \sigma_{k+1}, \dot{m}_{\text{f}} \leftarrow \text{hevModel} (\sigma_{k}, [\omega_{\text{eng}}, T_{\text{eng}}], [v_{\text{veh},k}, a_{\text{veh},k}]) \end{aligned}$$

End

$$\dot{m}_{\mathrm{f,eq}} \leftarrow \dot{m}_{\mathrm{f}} + s \cdot \frac{E_{\mathrm{b}}}{Q_{\mathrm{LHV}}} \cdot \dot{\sigma}$$

$$\omega_{\mathrm{eng}}^{*}, T_{\mathrm{eng}}^{*} \leftarrow \operatorname{argmin} \ \dot{m}_{\mathrm{f,eq}}$$

 $\omega_{\rm eng}$ ,  $T_{\rm eng}$ 

return  $\omega_{\rm eng}^*$ ,  $T_{\rm eng}^*$ 

## Storing $\dot{m}_{\rm f,eq}$

- You can store  $\sigma_{k+1}$  in a matrix where rows correspond to different values of  $\omega_{\rm eng}$  and columns correspond to  $T_{\rm eng}$ .
- The same goes for  $\dot{m}_{
  m f}$  .
- As a result of the sum,  $\dot{m}_{\rm f,eq}$  will have the same shape and structure.



 $\omega_{\text{eng, set}} \leftarrow \text{create the set of possible } \omega_{\text{eng}} \text{ values}$ 

 $T_{\text{eng, set}} \leftarrow \text{create a set of possible } T_{\text{eng}} \text{ values}$ 

for all 
$$(\omega_{\text{eng}}, T_{\text{eng}})$$
 in  $(\omega_{\text{eng, set}}, T_{\text{eng, set}})$   
 $\sigma_{k+1}, \dot{m}_{\text{f}} \leftarrow \text{hevModel}(\sigma_{k}, [\omega_{\text{eng}}, T_{\text{eng}}], [v_{\text{veh},k}, a_{\text{veh},k}])$ 

End

$$\dot{m}_{\mathrm{f,eq}} \leftarrow \dot{m}_{\mathrm{f}} + s \cdot \frac{E_{\mathrm{b}}}{Q_{\mathrm{LHV}}} \cdot \dot{\sigma}$$

$$\omega_{\text{eng}}^*$$
,  $T_{\text{eng}}^* \leftarrow \underset{\omega_{\text{eng}}, T_{\text{eng}}}{\operatorname{argmin}} \dot{m}_{\text{f,eq}}$ 

return  $\omega_{\rm eng}^*$ ,  $T_{\rm eng}^*$ 

## Finding $\omega_{\rm eng}^*$ , $T_{\rm eng}^*$

- Use the min function and return the second output.
- Note that you always get a linear index.



 $\omega_{\text{eng, set}} \leftarrow \text{create the set of possible } \omega_{\text{eng}} \text{ values}$ 

 $T_{\text{eng, set}} \leftarrow \text{create a set of possible } T_{\text{eng}} \text{ values}$ 

for all 
$$(\omega_{\text{eng}}, T_{\text{eng}})$$
 in  $(\omega_{\text{eng, set}}, T_{\text{eng, set}})$   
 $\sigma_{k+1}, \dot{m}_{\text{f}} \leftarrow \text{hevModel}(\sigma_k, [\omega_{\text{eng}}, T_{\text{eng}}], [v_{\text{veh},k}, a_{\text{veh},k}])$ 

End

$$\dot{m}_{\mathrm{f,eq}} \leftarrow \dot{m}_{\mathrm{f}} + s \cdot \frac{E_{\mathrm{b}}}{Q_{\mathrm{LHV}}} \cdot \dot{\sigma}$$
 $\omega_{\mathrm{eng}}^{*}$ ,  $T_{\mathrm{eng}}^{*} \leftarrow \operatorname*{argmin}_{\omega_{\mathrm{eng}}, T_{\mathrm{eng}}} \dot{m}_{\mathrm{f,eq}}$ 
 $\mathrm{return} \ \omega_{\mathrm{eng}}^{*}$ ,  $T_{\mathrm{eng}}^{*}$ 

| $\dot{m}_{ m f,eq}$ | $T_{ m eng,set}$ |       |       |  |  |  |
|---------------------|------------------|-------|-------|--|--|--|
| set                 | (1,1)            | (2,1) | (1,3) |  |  |  |
| $\omega_{ m eng,s}$ | (2,1)            | (2,2) | (2,3) |  |  |  |
| 3                   | (3,1)            | (3,2) | (3,3) |  |  |  |

## Finding $\omega_{\rm eng}^*$ , $T_{\rm eng}^*$

- Use the min function and return the second output.
- Note that you always get a linear index.







## Finding $\omega_{\rm eng}^*$ , $T_{\rm eng}^*$

- Use the min function and return the second output.
- Note that you always get a linear index.
- If needed, you can use ind2sub to get row and column subscript from a linear index. (Note: this is not necessarily the most timeefficient option.)



 $\omega_{\text{eng, set}} \leftarrow \text{create the set of possible } \omega_{\text{eng}} \text{ values}$ 

 $T_{\text{eng, set}} \leftarrow \text{create a set of possible } T_{\text{eng}} \text{ values}$ 

for all 
$$(\omega_{\text{eng}}, T_{\text{eng}})$$
 in  $(\omega_{\text{eng, set}}, T_{\text{eng, set}})$   
 $\sigma_{k+1}, \dot{m}_{\text{f}}, \text{unfeas} \leftarrow \text{hevModel}(\sigma_{k}, [\omega_{\text{eng}}, T_{\text{eng}}], [v_{\text{veh},k}, a_{\text{veh},k}])$ 

End

$$\dot{m}_{\rm f,eq} \leftarrow \dot{m}_{\rm f} + s \cdot \frac{E_{\rm b}}{Q_{\rm LHV}} \cdot \dot{\sigma}$$

 $\dot{m}_{\rm f,eq}({\rm unfeas} == {\rm True}) \leftarrow \dot{m}_{\rm f,eq}({\rm unfeas} == {\rm True}) + {\rm penalty}$ 

$$\omega_{\text{eng}}^*$$
,  $T_{\text{eng}}^* \leftarrow \underset{\omega_{\text{eng}}, T_{\text{eng}}}{\operatorname{argmin}} \dot{m}_{\text{f,eq}}$ 

return  $\omega_{\rm eng}^*$ ,  $T_{\rm eng}^*$ 

## Excluding unfeasible controls

- You have to make sure you exclude unfeasible controls!
- Add a high penalty to  $\dot{m}_{\rm f,eq}$  for the  $(\omega_{\rm eng}, T_{\rm eng})$  combinations for which unfeas is true.

