

ordinario-2020.pdf

Exámenes 2020

- 2° Geometría III
- Grado en Matemáticas
- Facultad de Ciencias Universidad de Granada

Tan lejos como nunca, tan cerca como siempre #QuédateEnCasa

CURSOS INTENSIVOS en JUNIO para todas las asignaturas de Ingeniería Informática

- 615 29 80 22
- 91 399 45 49
- - C/Andrés Mellado, 88 duplicado
- academia.maths
- www.mathsinformatica.com

academia@mathsinformática.com

Master BIM Management

60 Créditos ECTS

Formación Online Especializada

Clases Online Prácticas Becas

Jose María Girela Bim Manager.

Geometría III.

Examen ordinario final.

1. En coordenadas usuales del espacio euclíde
o \mathbb{R}^3 calcula un movimiento helicoidal respecto de la recta

$$\mathcal{R} = \{(x, y, z) \in \mathbb{R}^3 : x = 1, y = 2\},\$$

de ángulo $\theta = \pi/4$ y con vector de desplazamiento v = (0, 0, 2).

- 2. Razona si las siguientes afirmaciones son verdaderas o falsas:
 - a) Sean \mathcal{R}_1 , \mathcal{S}_1 dos rectas que se cruzan en \mathbb{R}^3 e igualmente \mathcal{R}_2 , \mathcal{S}_2 otro par de rectas que se cruzan en \mathbb{R}^3 . Entonces existe <u>una</u> isometría $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $f(\mathcal{R}_1) = \mathcal{R}_2$ y $f(\mathcal{S}_1) = \mathcal{S}_2$.
 - b) Sean $\mathcal{R}_1, \mathcal{S}_1$ dos rectas de \mathbb{R}^2 que forman un ángulo $\theta \in (0, \pi/2)$ y $\mathcal{R}_2, \mathcal{S}_2$ otro par de rectas formando el mismo ángulo. Entonces existen exactamente dos isometrías $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $f(\mathcal{R}_1) = \mathcal{R}_2$ y $f(\mathcal{S}_1) = \mathcal{S}_2$.
- 3. Clasifica desde un punto de vista euclídeo la cónica de \mathbb{R}^2 de ecuación

$$3x^2 - 2xy + 3y^2 - 2x + 6y + 1 = 0$$

y determina un sistema de referencia euclídeo en el que esta cónica tenga una expresión reducida.

4. En el plano proyectivo \mathbb{P}^2 consideremos las rectas

$$\mathcal{R} = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2 : x_0 + x_1 = 0\}, \quad \mathcal{S} = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2 : x_1 + x_2 = 0\}$$

y el punto $p_0 = (1:1:1)$.

Calcula la aplicación $f: \mathcal{R} \longrightarrow \mathcal{S}$ tal que a cada punto $p \in \mathcal{R}$ le hace corresponder el único punto de corte entre las rectas $p_0 + p$ y \mathcal{S} . ¿Es f una proyectividad de \mathcal{R} en \mathcal{S} ?

Granada, 10 de enero de 2020.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.