PROBLEMAS DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA

1er curso de Grado en Ingeniería Informática – Curso 22/23
1er curso del Doble grado en Informática y Matemáticas – Curso 22/23

TEMA 5: Transistores

- 1.- En el circuito de la figura:
 - a) Calcular el punto de trabajo del transistor, siendo:

$$\begin{split} V_{CC} &= 5 \text{ V} \\ V_{BB} &= 1 \text{ V} \\ R_C &= 1 \text{ k}\Omega \\ R_B &= 10 \text{ k}\Omega \\ V_{BE,\gamma} &= 0.7 \text{ V} \\ V_{CE,sat} &= 0.2 \text{ V} \end{split}$$

 $\beta = 100$

- b) Calcular la resistencia de colector mínima que pase el transistor a saturación.
- c) Con $R_C = 1 \text{ k}\Omega$, ¿qué valores de R_B pasan el transistor a saturación?
- **2.-** En el circuito de la figura, $V_{CC} = 10 \text{ V}$:
 - a) Si se emplea un transistor con β = 99, y las resistencias dadas son R_C = 2.7 k Ω y R_F = 180 k Ω , hallar los valores de V_{CE} e I_C . Tomar $V_{BE,\gamma}$ = 0.7 V.
 - b) Repetir (a) con $\beta = 199$.
 - c) Suponiendo que $\beta = 5$, determinar los valores de las resistencias R_C y R_F para que $V_{CE} = 2.5$ V e $I_C = 1$ mA.

- 3.- La figura muestra un circuito de autopolarización para un transistor.
 - a) Determinar el punto de trabajo del dispositivo cuando:

$$\begin{split} &V_{CC} = 12 \ V, \\ &R_1 = 120 \ k\Omega, &R_2 = 24 \ k\Omega, \\ &R_C = 2.4 \ k\Omega, &R_E = 680 \ \Omega, \\ &V_{BE,\gamma} = 0.7 \ V, &\beta = 100 \end{split}$$

b) Determinar el punto de trabajo del dispositivo cuando:

$$\begin{split} &V_{CC} = 15 \ V, \\ &R_1 = 100 \ k\Omega, &R_2 = 50 \ k\Omega, \\ &R_C = 5 \ k\Omega, &R_E = 3 \ k\Omega, \\ &V_{BE,\gamma} = 0.7 \ V, &\beta = 100 \end{split}$$

c) Determinar R_1 , R_2 y R_E para que el punto de funcionamiento del transistor sea tal que $V_{CE} = 6$ V e $I_C = 2$ mA, al tiempo que se verifica la relación de corrientes: $I_{R1}/I_B = 30$,y suponiendo que:

$$\begin{split} V_{CC} &= 15 \text{ V}, & R_C &= 3 \text{ k}\Omega, \\ V_{BE,\gamma} &= 0.7 \text{ V}, & \beta &= 50 \end{split}$$

4.- Determinar R_1 y R_C para que la intensidad de colector y la tensión entre colector y emisor en el punto de reposo valgan respectivamente $I_{CO} = 2$ mA y $V_{CEO} = 10$ V.

Suponer $V_{BE,\gamma}=0.7~V~y~que~se~verifica~el~criterio~de~estabilidad~de~la~polarización frente a variaciones de la temperatura [<math>R_B << (\beta+1)~R_E$]. Suponer: $\beta >> 1$. 18 V Rc 18 KΩ 1.2 KΩ

5.- Determinar el punto de trabajo (I_C , I_B , V_{CE}) de los dos transistores suponiendo que la ganancia en corriente es la misma para ambos (β = 100), V_{BE} = 0.7 V en activa o saturación y V_{CE} = 0.2 V en saturación.

6.- Sabiendo que los dos transistores del circuito de la figura están ensaturación, determinar la corriente de base del transistor T1 ($V_{BE,\gamma}=0.7~V; V_{CE,sat}=0.2~V$).

- 7.- En el siguiente circuito:
 - *a)* Encontrar el valor mínimo de la tensión V_{BB} para que el transistor T2 pase de corte a conducción.
 - b) Para $V_{BB} = 3$ V encontrar el valor mínimo que debe tomar R_2 para que el transistor T_2 se encuentre saturado.

$$\begin{split} \underline{Datos} \colon & V_{CC} = 5 \ V; \\ & R_1 = R_E = 1 \ k\Omega; \ R_B = 10 \ k\Omega; \\ & V_{BE,\gamma} = 0.7 \ V; \\ & V_{CE,sat} = 0.2 \ V; \\ & \beta = 19 \end{split}$$

8.- Suponiendo un transistor de unión típico de silicio, deducir las expresiones de V_E para los distintos rangos de V_{CC} ($V_{CC} \ge 0$) en los que el transistor se encuentra en los estados de corte o conducción posibles. Indicar expresamente dichos rangos y el estado correspondiente del transistor.

Suponer conocidos los valores de V_{CC} , R_B y R_E , y las aproximaciones lineales para el transistor: $V_{BE,conducción} \approx V_{BE,\gamma}$, $V_{CE,saturación} \approx V_{CE,sat}$ y $\beta \equiv$ ganancia de corriente en activa (emisor común).

- **9.-** <u>Demostrar</u> que el circuito de la figura se comporta, entre los nodos a y b, como una fuente de corriente constante, siempre y cuando el transistor esté en la región activa.
 - a) ¿Qué relación existe entre la corriente en la resistencia R_L y la tensión de entrada v_i?
 - b) ¿Entre qué valores puede variar R_L para que el transistor funcione en activa?

Suponiendo que $V_i = 5 V$, y que:

$$\begin{split} R &= 10 \; k\Omega, & V_{CC} &= 15 \; V, \\ V_{BE,\gamma} &= 0.7 \; V, & \beta &= 100, \end{split} \label{eq:VCC}$$

calcular dicho intervalo de valores de R_L.

10.- Deducir la función lógica que realiza cada uno de los circuitos con transistor MOSFET siguientes:

a) V_{DD} $V_{1} \longrightarrow V_{2} \longrightarrow V_{0}$ $V_{1} \longrightarrow V_{2} \longrightarrow V_{0}$ $V_{1} \longrightarrow V_{2} \longrightarrow V_{0}$ $V_{2} \longrightarrow V_{3}$ $V_{2} \longrightarrow V_{4}$

SOLUCIONES DE LOS PROBLEMAS

Grado en Ingeniería Informática y Doble grado en Informática y Matemáticas

TEMA 5: Transistores

1.- a)
$$I_B = 30 \mu A$$
; $V_{BE} = 0.7 \text{ V}$; $I_C = 3 \text{ mA}$; $V_{CE} = 2 \text{ V}$

b)
$$R_C = 1600 \Omega$$

c)
$$R_B = 6250 \Omega$$

2.- a)
$$V_{CE} = 4.42 \text{ V}$$
; $I_{C} = 2.05 \text{ mA}$

b)
$$V_{CE} = 3.025 \text{ V}; I_C = 2.57 \text{ mA}$$

c)
$$R_C = 6250 \Omega$$
; $R_F = 9 k\Omega$

3.- a)
$$I_B = 14.7 \mu A$$
; $V_{BE} = 0.7 \text{ V}$; $I_C = 1.47 \text{ mA}$; $V_{CE} = 7.46 \text{ V}$

b)
$$I_B = 12.8 \mu A$$
; $V_{BE} = 0.7 \text{ V}$; $I_C = 1.28 \text{ mA}$; $V_{CE} = 4.72 \text{ V}$

c)
$$R_1 = 9.42 \text{ k}\Omega$$
; $R_2 = 3.20 \text{ k}\Omega$; $R_E = 1.47 \text{ k}\Omega$

4.-
$$R_1 = 86.5 \text{ k}\Omega$$
; $R_C = 2.8 \text{ k}\Omega$

5.-
$$T_1$$
: $I_B = 8.5 \mu A$; $I_C = 0.85 \text{ mA}$; $V_{CE} = 0.72 \text{ V}$

$$T_2$$
: $I_B = 0.86 \text{ mA}$; $I_C = 49 \text{ mA}$; $V_{CE} = 0.2 \text{ V}$

6.-
$$I_{B1} = 1.48 \text{ mA}$$

7.- a)
$$V_{BB} = 2.45 \text{ V}$$

b)
$$R_2 = 683 \Omega$$

8.-
$$v_E = 0$$
 , $si V_{CC} < V_{BE,\gamma}$ (Corte)

$$v_E = R_E (1+\beta) \frac{V_{CC} - V_{BE,\gamma}}{R_B + (1+\beta)R_E}$$
, $si V_{CC} > V_{BE,\gamma}$ (Activa)

9.- a)
$$I_C = \beta \frac{v_i - V_{BE,\gamma}}{R}$$

b)
$$R_L < 344 \Omega$$

c)
$$Vo = /V1 + V1 \cdot /V2 \cdot /V3$$