9 脉冲波形的变换与产生

- 9.1 单稳态触发器
- 9.2 施密特触发器
- 9.3 多谐振荡器
- 9.4 555定时器及其应用

施密特触发器

多谐振荡器

 \oplus

ch09 脉冲电路

教学基本要求

- 1、正确理解多谐振荡器、单稳态触发器、施密特触发器的电路组成及工作原理。
- 2、掌握多谐、单稳、施密特触发器MSI器件的逻辑功能及主要指标计算。
- 3、掌握555定时器的工作原理。(不考)
- 4、掌握由555定时器组成的多谐、单稳、施密特触 发器的电路、工作原理及外接参数及电路指标的计 算。(不考)

9.1单稳态触发器

- 9.1.1 用门电路组成的微分型单稳态触发器
- 9.1.2 集成单稳态触发器
- 9.1.3 单稳态触发器的应用

电容器充放电

开关在位置1时

当开关掷向位置3时,

设电容C上初始电压为零,电容将按指数规律充电,趋向电压 V_{CC} 值。电容充电的速率取决于RC乘积。

$$v_{C}(t) = V_{CC} (1 - e^{-t/RC})$$

$$v_{CC}(t) = V_{CC} (1 - e^{-t/RC})$$

电容将按逆时针方向经RC电路放电,并逐渐衰减为零。设电容放电时的初始电压为 $v_C(0)$,则电容放电电压

$$v_{\rm C}(t) = v_{\rm C}(0)e^{-t/RC}$$

9.1单稳态触发器

单稳态触发器的工作特点:

- ① 电路在没有触发信号作用时处于一种稳定状态。
- ② 在外来触发信号作用下, 电路由稳态翻转到暂稳态;
- ③ 由于电路中*RC*延时环节的作用,暂稳态不能长期保持, 经过一段时间后,电路会自动返回到稳态。暂稳态的 持续时间仅与*RC*参数值有关。

单稳态触发器的分类

按电路形式不同

一门电路组成的单稳态触发器

MSI集成单稳态触发器

、用555定时器组成的单稳态触发器

工作特点划分

不可重复触发单稳态触发器

可重复触发单稳态触发器

9.1.1 用CMOS门电路组成的微分型单稳态触发器

1. 电路

CMOS与非门构成的微分型 单稳态触发器

暂稳态为1

正脉冲触发

CMOS或非门构成的微分型 单稳态触发器

暂稳态为0

工作原理:

设定CMOS反相器的阈值电压 $V_{\text{TH}} \approx \frac{V_{DD}}{2}$

a)没有触发信号时, υ_I =0

电路处于一种稳态:

$$v_0 = 0$$
 $v_c = 0$

b) 外加触发信号

$$\upsilon_{d} \uparrow \longrightarrow \upsilon_{d} = V_{TH}$$

c) 电容充电, $\longrightarrow \upsilon_{I2} \longrightarrow \upsilon_{I2} = V_{TH}$ 产生如下正反馈过程:

3、主要参数的计算

$(1) 输出脉冲宽度t_{w}$ $t_{W} = RC \ln \frac{\upsilon_{C}(\infty) - \upsilon_{C}(0)}{\upsilon_{C}(\infty) - V_{TH}}$ $v_{C}(0^{+}) = 0; \ v_{C}(\infty) = V_{DD}$ $\tau = RC, \ V_{TH} = V_{DD}/2$

$$t_{w} = RC \ln \frac{V_{DD} - 0}{V_{DD} - V_{TH}}$$
$$= RC \ln 2$$

$$t_{\rm w} \approx 0.7RC$$

- (2) 恢复时间 $t_{\rm re}$ $t_{\rm re} \approx 3\tau {\rm d}$
- (3) 最高工作频率 f_{\max}

4. 讨论

a)在暂稳态结束($t=t_2$)瞬间,门 G_2 的输入电压 υ_{12} 达到 $V_{DD}+V_{TH}$,可能损坏 G_2 门,怎么办?

b)用TTL门电阻R的取值可以是任意的吗?

采用TTL与非门构成单稳电路时,电阻R要小于 $0.7k\Omega$ 。

9.1.2 集成单稳态触发器

没有被重复触发 不可重复触发 $oldsymbol{v}_{
m I}$ v_0 (a) 被重复触发 可重复触发 $\overline{v_{0}}$ (b)

1. 不可重复触发的集成单稳态触发器 74121

电路的连接: C: 外接电容

R: 外接电阻或采用内部电阻

(1)工作原理 电路的不可重复触发特性

在暂稳态期间即使有触发信号输入,但由于G₄门在此期间关闭, 不会被再次触发,电路属于不可重复触发单稳态触发器

输出脉冲宽度: $t_{\text{w}} \approx 0.7RC$

逻辑功能表

74121功能表

$\overline{A_1}$	A_2	В	Q	$\overline{oldsymbol{\mathcal{Q}}}$	
L	×	H	L	H	١
×	\boldsymbol{L}	H	L	H	
×	×	\boldsymbol{L}	L	H	1
H	H	×	L	H	
H		H	工	乀	2
	\boldsymbol{H}	H	T	元×	8
ţ	†	H	JL	AL.	
L	×	1	JI.X	T	
×	\boldsymbol{L}	K	AL	T	
					•

不可触发, 保持稳态不变

B 和A₁、A₂、中有一个或两个为高电平,输入端有一个或两个下降沿时电路被触发

 A_1 、 A_2 中有一个或两个为低电平,在B端输入上升沿时电路被触发

9.1.3 单稳态触发器的应用

2. 延时

4. 组成噪声消除电路

如用v_I作为下降沿触发的计数器触发脉冲,干扰加入,就会造成计数错误.

单稳触发器的输出脉宽应大于噪声宽度而小于信号脉宽,才可消除噪声。

9.2 施密特触发器

- 9.2.1 用门电路组成的施密特触发器
- 9.2.2 集成施密特触发器
- 9.2.3 施密特触发器的应用

9.2 施密特触发器

- 1、施密特触发器电压传输特性及工作特点:
- ① 施密特触发器属于电平触发器件,当输入信号达到某一定电压值时,输出电压会发生突变。
- ② 电路有两个阈值电压。 输入信号增加和减少时,电路的阈值电压分别是正向阈值电压(V_{T_+})和负阈值电压(V_{T_-})。

同相输出施密特触发器

反相输出施密特触发器

9.2.1 用门电路组成的施密特触发器

假定:

$$V_{\text{TH}} \approx \frac{V_{DD}}{2} \quad R_1 < R_2 \quad \upsilon_{\text{I}}$$
 为三角波

$$v_{11} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$$

- (1) $v_{\rm I}$ 上升 只要 $v_{\rm II}$ < $V_{\rm TH}$,则保持 $v_{\rm O}$ =0 $V_{\rm II}$
- (2)当 $v_{I1}=V_{TH}$,电路发生正反馈:

$$v_{\rm I} \uparrow -v_{\rm II} \uparrow -v_{\rm OI} \downarrow -v_{\rm O} \uparrow \rightarrow v_{\rm O} = V_{\rm OH}$$

正向阈值电压 (V_{T+}) : υ_I 值在增加过程中,使输出电压产生跳变时所对应 υ_I 的值。

$$\upsilon_{11} = \frac{R_2}{R_1 + R_2} \cdot \upsilon_1 + \frac{R_1}{R_1 + R_2} \cdot \upsilon_0$$

$$V_{\rm T+} = (1 + \frac{R_1}{R_2})V_{\rm TH}$$

$$v_{\rm I1} = V_{\rm TH} = \frac{R_2}{R_1 + R_2} V_{\rm T+1}$$

- (3) v_{II} >V_{TH}电路,维持 v_{O} 不变
- (4)当 $v_{\rm I}$ 下降, $v_{\rm II}$ 也下降 ,只要 $v_{\rm II}$ 〉 $V_{\rm TH}$,则保持 $v_{\rm o}$ = $V_{\rm OH}$

当
$$v_{\text{II}}=V_{\text{TH}}$$
,电路产生如下正反馈:
$$v_{\text{I}}\downarrow -v_{\text{OI}}\downarrow -v_{\text{O}}\downarrow$$
:
$$v_{\text{O}}=V_{\text{OL}}$$

$$\upsilon_{11} = \frac{R_2}{R_1 + R_2} \cdot \upsilon_1 + \frac{R_1}{R_1 + R_2} \cdot \upsilon_0$$

$$\upsilon_{11} \approx V_{\text{TH}} = \frac{R_2}{R_1 + R_2} V_{\text{T-}} + \frac{R_1}{R_1 + R_2} V_{\text{DD}}$$

$$V_{\text{T-}} = (1 - \frac{R_1}{R_2})V_{\text{TH}}$$

$$\Delta V_T = V_{T+} - V_{T-} \approx 2 \frac{R_1}{R_2} V_{TH} = \frac{R_1}{R_2} V_{DD}$$

8.2.2 集成施密特触发器

8.2.3 施密特触发器的应用

电路输出信号的频率与输入信号频率的关系?

如何改变电路输出信号的占空比?

2. 波形的整形

传输线上电容较大

传输线长,接收端的阻抗与传输线阻抗不匹配

合理选择回差电压,可消除干扰信号。

4. 幅度鉴别

- **v**I

 $oV_{\mathrm{T}}V_{\mathrm{T}+}$

9.3 多谐振荡器

- 9.3.1 门电路组成的多谐振荡器
- 9.3.2 用施密特触发器构成多谐振荡器
- 9.3.3 石英晶体多谐振荡器

9.3 多谐振荡器

概述

多谐振荡器的基本组成:

开关器件:产生高、低电平

反馈延迟环节(RC电路):利用RC电路的充放电特性实现

延时,输出电压经延时后,反馈到开关器件输入端,改变电路

的输出状态,以获得所脉冲波形输出。

9.3.1 门电路组成的多谐振荡器

1. 电路组成

 v_{o1} 与 v_{o} 反相,电容接在 v_{o} 与 v_{I} 之间:

 $.v_{o1}=1, v_{o}=0$ 时,电容充电, v_{I} 增加;

 $v_{o1} = 0, v_{o} = 1$ 时,电容放电, v_{I} 下降;

CMOS门组成的多谐振荡器

2. 工作原理

(1) 第一暂稳态(初态) 电容充电, 电路自动翻转到第二暂稳态

 $v_{O1}=0$ $v_{O2}=1$ 电路进入第二暂态 $v_{O1}=0$ $v_{O}=1$

2. 工作原理

 $v_{O1} = 1v_{O} = 0$ 电路返回第一暂稳态

3. 振荡周期的计算

$$T_1: \quad v_{\mathrm{I}}(0+) \approx 0; \quad v_{\mathrm{C}}(\infty) \approx V_{\mathrm{DD}} \quad \tau = RC, \quad t = t_2 - t_1$$

$$T_1 = RC \ln \frac{V_{\mathrm{DD}}}{V_{\mathrm{DD}} - V_{\mathrm{TH}}}$$

$$T_2$$
: $v_I(0+) \approx V_{DD}$; $v_C(\infty) \approx 0$ $\tau = RC$, $t = t_3 - t_2$

$$T_2 = RC \ln \frac{V_{\rm DD}}{V_{\rm TH}}$$
 $T = T_1 + T_2 = RC \ln \left[\frac{V_{\rm DD}^2}{(V_{\rm DD} - V_{\rm TH}) \cdot V_{\rm TH}} \right]$

T = RC1n4 \approx 1.4RC

由门电路组成的多谐振荡器的振荡周期T取决于R、C电路和 V_{TH} ,频率稳定性较差。

9.3.2 用施密特触发器构成多谐振荡器

9.3.3 石英晶体振荡器

1、石英晶体电路符号和选频特性

当 $f = f_0$ 时,

电抗X=0

阻抗特性

2、石英晶体振荡器

 R_1 和 R_2 : 使对应门工作在线性区

 C_1 : 耦合电容 C_2 : 抑制高次谐波

3、双相脉冲产生电路

9.4 555定时器及其应用

- 9.4.1 555定时器
- 9.4.2 用555定时器组成施密特触发器
- 9.4.3 用555定时器组成单稳态触发器
- 9.4.4 用555定时器组成多谐振荡器

9.4 555定时器及其应用

9.4.1 555定时器

555定时器是一种应用方便的中规模集成电路,广泛用于信号的产生、变换、控制与检测。

2、工作原理

输入			输出	
阈值输入	触发输入	复位(R _D)	输出	放电 管T
×	\times	0	0	导通
$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\mathrm{CC}}$	1	1	截止
$> \frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	1	0	导通
$<\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	1	不变	不变

3、555定时器功能表

	输入		输	出
阈值输入 (V _{II})	触发输入 (V _{I2})	复位(R _D)	输出 (V _a)	放电管 T
X	××.	0	0	导通
$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	1	截止
$>\frac{2}{3}V_{\rm CC}$	$\Rightarrow \frac{1}{3}V_{\text{CC}}$	1	0	导通
$<\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	1	不变	不变

9.4.2 用555定时器组成施密特触发器

施密特触发器的应用

①波形变换

电路的频率可变?占空比可变?

如何改变占空比? 回差电压减小,占空比如何变化?

② 波形产生电路(多谐振荡器 R ${}_{ullet}V_{ m CC}$ 8 555 0.01µF

8.4.3 用555定时器组成单稳态触发器

- ①没有触发信号时($v_i > \frac{1}{3} v_{cc}$)电路处于稳态,输出为0
- ②外加触发信号,电路转换到暂态,输出为1
- ③触发信号消除后,电容充电电路自动转换到稳态输出为0

4、)工作波形及输出脉宽的计算

电路是可重复触发的单稳?

如将5脚接电压V,电路的脉宽会改变吗?V增加,脉宽如何改变?减小?

555组成的单稳态的应用:

①脉冲宽度调制器

工作波形

9.4.4 用555定时器组成多谐振荡器

2、工作原理

- 1、)电路第一暂态,输出为1。电容充电,电路转换到第二暂态,输出为0
- 2、)电路第二暂稳态,电容放电,电路转换到第一暂态

3、工作波形与振荡频率计算

$$t_{\rm PL} = R_2 C \ln 2 \approx 0.7 R_2 C$$

$$t_{\text{pH}} = (R_1 + R_2)C1n2 \approx 0.7(R_1 + R_2)C$$

$$f = \frac{1}{t_{\rm PL} + t_{\rm PH}} \approx \frac{1.43}{(R_1 + 2R_2)C}$$

4、用555定时器组成占空比可的调多谐振荡器

$$t_{\rm pH} = R_{\rm A} C 1 \, \text{n} \, 2 \approx 0.7 R_{\rm A} C$$

$$t_{\rm PL} = R_{\rm B}C1$$
n $2 \approx 0.7 R_{\rm B}C$

$$f = \frac{1}{t_{\text{pH}} + t_{\text{pL}}} \approx \frac{1.43}{(R_{\text{A}} + R_{B})C}$$

$$q(\%) = \frac{R_{\rm A}}{R_{\rm A} + R_{\rm B}} \times 100\%$$

⟨⟨ | ⟩⟩ ←

A

单稳态触发器

施密特触发器

ch09 脉冲电路

多谐振荡器

开关器件

结构

延时环节

特点 🖯

两个暂稳态

应用 🖯

时钟源

