Redes Neurais Artificiais com C#

Murillo da Silveira Grübler

Em quais problemas as Redes Neurais atuam?

Revista Preferida		A favor das privatizações	Definição
Veja	Danilo Gentili	Sim	Coxinha
Carta Capital	Gregorio Duvivier	Não	Petralha

- Verificar se uma pessoa pode receber um empréstimo, analisando o histórico;
- Prever a duração da estadia de um paciente admitido em um hospital;
- Diagnosticar doenças;

O que é uma Rede Neural Artificial?

Uma Rede Neural Artificial (RNA) pode ser definida, segundo Basheer e Hajmeer (2000), como uma estrutura complexa densamente interligada por elementos de processamento simples (neurônio), adaptativos que possuem a capacidade de realizar operações como cálculos em paralelo, para processamento de dados e representação de conhecimento.

O que é uma Rede Neural Artificial?

- A RNA possui uma série de equações matemáticas que simulam o processo biológico de aprendizado e memorização e pode ser desenvolvido utilizando diferentes algoritmos de treinamento (TU, 1996);
- A RNA é uma abstração da rede neural biológica, servindo de modelo para o aprendizado de máquinas e resoluções de problemas complexos (Rojas, 1996);

Neurônio biológico

O sistema nervoso possui arquiteturas globais das mais diversas complexidades. Todavia, todos são compostos de módulos de base semelhantes, chamados de células neurais ou neurônios, desempenhando funções diferentes (ROJAS, 1996).

Relação entre o neurônio biológico e artificial

 A relação entre as redes é que ambas possuem axônio, dendrito e comunicam-se por sinapses (BASHEER; HAJMEER, 2000)

RNA Multilayer Perceptron

$$v_j = \sum_{i=0}^m w_i y_i + b$$

Função de Ativação

- Sigmóide Logística
 - Saída entre [0, 1]

$$y_j = \frac{1}{1 + e^{-v_j}}$$

- Tangente Hiperbólica
 - Saída entre [-1, +1]

$$\phi(x) = \tanh(x)$$

- Softmax
 - Saída entre [0, 1] e a soma de todos é igual a 1

$$\phi_i = \frac{e^{z_i}}{\sum\limits_{j \in group} e^{z_j}}$$

Treinamento

- Backpropagation;
- Algoritmo Genético;
- Particle Swarm Optimization

Backpropagation

- O algoritmo realiza o ajuste dos pesos da rede para minimizar as diferenças entre a saída atual e a saída desejada;
- É uma técnica rápida que necessita apenas da taxa de aprendizagem e o momentum.
- O backpropagation é um método baseado no gradiente descendente, o que significa que este algoritmo não garante encontrar um mínimo global e pode estagnar em soluções de mínimos locais, onde ficaria preso indefinidamente;

Backpropagation

Backpropagation

Diagrama de Classe

Classe MultilayerPerceptron

void Training(double[,] inputs, double[] outputs)

-> Backpropagation

```
public void Training(double[,] inputs, double[] outputs)
    long iteration = 0;
    double error:
    do
        int numberTrain = inputs.Length / inputs.GetLength(1);
        for (int i = 0; i < numberTrain; i++)</pre>
            double tagert = outputs[i];
            double[] inputTest = new double[inputs.GetLength(1)];
            for (int j = 0; j < inputs.GetLength(1); j++)
                inputTest[j] = inputs[i, j];
            double output = Run(inputTest).FirstOrDefault(k => k > 0);
            Backpropagation(inputTest, output, tagert);
            double delta = tagert - output;
            error += Math.Pow(delta, 2);
            System.Diagnostics.Debug.WriteLine(Math.Round((output * 100) / tagert, 2) + "%");
        iteration++:
    } while (error >= error);
    System.Diagnostics.Debug.WriteLine("Quantidade de iterações: " + iteration);
```

double[] Run(double[] inputs) -> Feedforward

```
public double[] Run(double[] inputs)
{
    foreach (Layer layer in Layers)
        inputs = CalculateLayer(layer, inputs);
    return inputs;
}
```


Overfitting

Overfitting é o termo, em aprendizagem de máquina, utilizado quando o modelo estatístico se ajusta ao conjunto de dados/amostra.

Underfitting Underfitting Just right! overfitting

- Email: msgrubler@gmail.com
- Twitter: omsgrubler
- Github: https://github.com/Murillo

Referências

- BASHEER, I. A.; HAJMEER, M. Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, [S.I.], v. 43, n. 1, p. 3-31, 2000.
- TU, J. V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology, [S.I.], v. 49, n. 11, p. 1225-1231, 1996.
- ROJAS, R. Neural Networks: A Systematic Introduction. 1. ed. [S.I.]: Springer, 1996.
- TISSOT, Hegler C.; CAMARGO, Luiz C.; POZO, A. T. Treinamento de redes neurais feedforward: comparativo dos algoritmos backpropagation e differential evolution. In: **Brazilian Conference on Intelligent Systems**. 2012.
- MONTANA, David J.; DAVIS, Lawrence. Training Feedforward Neural Networks Using Genetic Algorithms. In: **IJCAI**. 1989. p. 762-767.