MATH 392 Problem Set 6

Sam D. Olson

Time Spent

Total: 7 hours

Book Exercises: $6\frac{1}{2}$ hours

R Coding: $\frac{1}{2}$ hours

Exercise from the book

9.1 #1

Q: Let X have the exponential distribution with parameter β . Suppose that we wish to test the hypotheses $H_0: \beta \geq 1$ versus $H_1: \beta < 1$. Consider the test procedure δ that rejects H_0 if $X \geq 1$.

(A)

Determine the power function of the test.

Let δ denote a test procedure, and define δ as follows:

 δ :{Reject H_0 when $X \geq 1$ }

Then for $\beta > 0$ we note the power function as follows:

$$\pi(\beta \mid \delta) = Pr(X \ge 1 \mid \beta) = e^{-\beta}$$

(B)

Compute the size of the test.

By the definition of size, we have:

$$size(\delta) = sup_{\beta > 1}\pi (\beta \mid \delta)$$

Note the power function from (A), $\pi(\beta \mid \delta) = e^{-\beta}$.

Note that $\pi(\beta \mid \delta)$ is a decreasing function of β . Thus, given the condition $\beta \geq 1$, the power function takes a maximum at $\beta = 1$, and we may say:

The size of the test is $\pi(\beta = 1 \mid \delta) = e^{-1} \approx 0.37$.

9.1 #2

Q: Suppose that $X_1, ..., X_n$ form a random sample from the uniform distribution on the interval $[0, \theta]$, and that the following hypotheses are to be tested:

 $H_0: \theta \geq 2$

 $H_1: \theta < 2$

Let $Y_n = max(X_1,...,X_n)$ and consider a test procedure such that the critical region contains all the outcomes for which $Y_n \leq 1.5$.

(A)

Determine the power function of the test.

Note, for $0 < y < \theta$, then $Pr(Y_n \le y) = \left(\frac{y}{\theta}\right)^n$.

Additionally note, if $y \ge \theta$, then $Pr(Y_n \le y) = 1$.

Thus, for the stated condition, if $\theta \leq 1.5$, then $\pi(\theta) = Pr(Y_n \leq 1.5) = 1$.

And if $\theta > 1.5$, then $\pi(\theta) = Pr(Y_n \le 1.5) = \left(\frac{1.5}{\theta}\right)^n$

(B)

Determine the size of the test.

The size of the test is given as follows: $size(\delta) = \alpha = sup_{\theta \ge 2} \pi(\theta) = sup_{\theta \ge 2} \left(\frac{1.5}{\theta}\right)^n = \left(\frac{1.5}{2}\right)^n = \left(\frac{3}{4}\right)^n$.

9.1 #14

Q: Let $X_1,...,X_n$ be i.i.d. with exponential distribution with parameter θ . Suppose that we wish to test the hypotheses:

 $H_0: \theta \geq \theta_0$

 $H_1: \theta < \theta_0$

Let $X = \sum_{i=1}^{n} X_i$. Let δ_c be the test that rejects H_0 if $X \geq c$.

(A)

Show that $\pi(\theta \mid \delta_c)$ is a decreasing function of θ

We take advantage of the location parameters, noting:

As $X_1, ..., X_n \sim Exp(\theta)$,

 $X \sim Gamma(n, \theta)$, and

 $Y = \theta X \sim Gamma(n, 1)$

Let us then note the c.d.f. of Y, G_n .

We then note the power function of δ_c as:

$$\pi (\theta \mid \delta_c) = Pr(X \ge c \mid \theta) = Pr(Y \ge c\theta \mid \theta) = 1 - G_n(c\theta)$$

Note that G_n is an increasing function of θ and $c\theta$ is an increasing function of θ , making $\pi\left(\theta \mid \delta_c\right) = 1 - G_n\left(c\theta\right)$ a decreasing function of θ .

(B)

Find c in order to make δ_c have size α_0 .

Note, to find c we set the above power function equal to the size, giving us:

$$\pi \left(\theta_0 \mid \delta_c\right) = 1 - G_n \left(c\theta_0\right) = \alpha_0$$

Taking the inverse c.d.f. allows us to solve for c, giving us:

$$1 - \alpha_0 = G_n \left(c\theta_0 \right)$$

$$G_n^{-1} \left(1 - \alpha_0 \right) = c\theta_0$$

$$c = \frac{G_n^{-1}(1-\alpha_0)}{\theta_0}$$

 (\mathbf{C})

Let $\theta_0 = 2$, n = 1, and $\alpha_0 = 0.1$. Find the precise form of the test δ_c and sketch its power function.

We have:

$$G_n(y) = 1 - e^{-y},$$

 $G_n^{-1} = -log(1 - p)$

Using our formulation of c from (B) gives us:

$$c = \frac{-log(0.1)}{2} \approx 1.15$$

We may then plot the relationship between θ and the power function, given below.

```
theta <- (0:6)

power <- rep(NA, 7)

for(i in 0:6) {
   power[i] <- exp((-1)* 1.15 * theta[i])
}

df <- data.frame(theta,power)

ggplot(df, aes(theta)) +
   geom_line(aes(y=power), colour="black") +
   geom_text(x=1.5, y=0.4, label="Power") +
   ggtitle("Power as a Function of Theta") +
   geom_text(x=2.5, y=0.145, label="Size") +
   geom_hline(yintercept=0.1, linetype="dashed", color = "red") +
   labs(y="Power", x = "Theta")</pre>
```

Power as a Function of Theta

9.2 #2

Q: Consider two p.d.f.'s $f_0(x)$ and $f_1(x)$ that are defined as follows:

$$f_0(x) = \begin{cases} 1 & for \ 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$

and

$$f_1(x) = \begin{cases} 2x \text{ for } 0 \le x \le 1\\ 0 \text{ otherwise} \end{cases}$$

Suppose that a single observation X is taken from a distribution for which the p.d.f. f(x) is either $f_0(x)$ or $f_1(x)$, and the following simple hypotheses are to be tested:

$$H_0: f(x) = f_0(x)$$

$$H_1: f(x) = f_0(x)$$

(A)

Describe a test procedure δ for which the value of $\alpha(\delta) + 2\beta(\delta)$ is a minimum.

Using Thm. 9.2.1 with a - 1, b = 2, we have:

$$\delta$$
 :{Do not reject H_0 if $\frac{f_1(x)}{f_0(x)} < \frac{a}{b} = \frac{1}{2}$ }

Note, as
$$\frac{f_1(x)}{f_0(x)} = 2x \rightarrow 2x < \frac{1}{2}$$

Thus we may say the procedure is: Do not reject H_0 if $x < \frac{1}{4}$, and likewise to reject H_0 if $x > \frac{1}{4}$.

(B)

Determine the minimum value of $\alpha(\delta) + 2\beta(\delta)$ attained by that procedure.

Note the following formulations:

$$\alpha(\delta) = Pr(RejectH_0 \mid f_0) = \int_{\frac{1}{4}}^{1} f_0(x)dx = \frac{3}{4}$$

$$\beta(\delta) = Pr(FailtoRejectH_0 \mid f_1) = \int_{0}^{\frac{1}{4}} 2x dx = \frac{1}{16}$$

Therefore, we have:

$$\alpha(\delta) + 2\beta(\delta) = \frac{3}{4} + 2\frac{1}{16} = \frac{7}{8}$$

9.2 #3

Q: Consider again the conditions of Exercise 2 (9.2.2), but suppose now that it is desired to find a test procedure for which the value of $3\alpha(\delta) + \beta(\delta)$ is a minimum.

(A)

Determine the procedure.

Using Thm. 9.2.1. with a = 3, b = 1, we have:

$$\delta$$
: {Do not reject H_0 if $\frac{f_1(x)}{f_0(x)} < \frac{a}{b} = 3 \rightarrow 2x < 3 \rightarrow x < \frac{3}{2}$ }

Since all values of X lie in the interval (0, 1), and since $x < \frac{3}{2}$, the optimal procedure is to not reject H_0 for every possible observed value, noting as $max(X) = 1 \rightarrow 2 \cdot max(X) = 2 < 3$.

(B)

Determine the minimum value of $3\alpha(\delta) + \beta(\delta)$ attained by the procedure.

Since we never reject H_0 under (\mathbf{A}) , we have:

 $\alpha(\delta) = 0, \beta(\delta) = 1$ and we thus have:

$$3\alpha(\delta) + \beta(\delta) = 0 + 1 = 1$$

9.2 #10

Q: Suppose that $X_1, ..., X_n$ form a random sample from the Poisson distribution with unknown mean λ . Let λ_0 and λ_1 be specified values such that $\lambda_1 > \lambda_0 > 0$, and suppose that it is desired to test the following simple hypotheses:

$$H_0: \lambda = \lambda_0$$

$$H_1: \lambda = \lambda_1$$

(A)

Show that the value of $\alpha(\delta) + \beta(\delta)$ is minimized by a test procedure which rejects H_0 when $\bar{X}_n > c$.

Applying Thm. 9.2.1 with a = b = 1, we know the optimal test procedure is to reject H_0 if $\frac{f_1(\bar{X})}{f_0(\bar{X})} > 1$.

Let
$$y = \sum_{i=1}^{n} x_i$$

We may note the joint p.f. of the data as:

$$f_n(\bar{X} \mid \lambda) = f_n(X_1 \mid \lambda)...f_n(X_n \mid \lambda) = \frac{e^{-\lambda}\lambda^{x_1}}{x_1!}...\frac{e^{-\lambda}\lambda^{x_n}}{x_n!} = \frac{e^{-n\lambda}\lambda^y}{\prod_{i=1}^n x_i!}$$

Thus we have:

$$f_0(\bar{X}) = \frac{e^{-n\lambda_0}\lambda_0^y}{\prod_{i=1}^n x_i!}$$

$$f_1(\bar{X}) = \frac{e^{-n\lambda_1}\lambda_1^y}{\prod\limits_{i=1}^n x_i!}$$

It then follows that:

$$\frac{f_1(\bar{X})}{f_0(\bar{X})} = e^{-n(\lambda_2 - \lambda_1)} \cdot \left(\frac{\lambda_2}{\lambda_1}\right)^y$$

Taking the log of this gives us:

$$\log \left(\frac{f_1(\bar{X})}{f_0(\bar{X})} \right) = ylog \left(\frac{\lambda_2}{\lambda_1} \right) - n \left(\lambda_1 - \lambda_0 \right)$$

Note by construction $\lambda_1 > \lambda_0$. Therefore, we know:

$$\frac{f_1(\bar{X})}{f_0(\bar{X})} > 1iff \frac{y}{n} > \frac{(\lambda_1 - \lambda_0)}{(log \lambda_1 - log \lambda_0)}$$

(B)

Find the value of c.

Note that $\bar{x}_n = \frac{y}{n}$.

Utilizing the above and the formulations from (A), we want a test procedure which rejects H_0 when $\bar{X}_n > c$, giving us: $log(c) = ylog\left(\frac{\lambda_2}{\lambda_1}\right) - n\left(\lambda_1 - \lambda_0\right)$

Giving us a value of c defined as:

$$c = \left(\frac{\lambda_2}{\lambda_1}\right)^y - \left(\lambda_1 - \lambda_0\right)^n$$

(C)

For $\lambda_{0} = \frac{1}{4}$, $\lambda_{1} = \frac{1}{2}$, and n = 20, determine the minimum value of $\alpha(\delta) + \beta(\delta)$ that can be attained.

If H_0 is true, then $Y = \sum_{i=1}^n X_i \sim Poisson(\lambda_0)$ with mean $n\lambda_0$

And if H_1 is true, then $Y = \sum_{i=1}^{n} X_i \sim Poisson(\lambda_1)$ with mean $n\lambda_1$

Noting the specified conditions, $\lambda_0 = \frac{1}{4}$, $\lambda_1 = \frac{1}{2}$, and n = 20, we have:

$$\frac{n(\lambda_1 - \lambda_0)}{(log\lambda_1 - log\lambda_0)} = \frac{20 \cdot 0.25}{log(0.50) - log(0.25)} \approx 7.21$$

We use this value in the following computations, which we are able to evaluate using Poisson distribution tables, but first we must path our tithe and say:

All Praise the Glorious Tables in the Back of the Book

With tithes out of the way, note to evaluate $\alpha(delta)$ we use a Poisson distribution with mean $5 = 20 \cdot 0.25$.

$$\alpha(\delta) = Pr(Y > 7.21 \mid H_0) = Pr(Y \ge 8 \mid H_0) \approx 0.13$$

Note: We go from 7.21 to 8 in the above formulation as the Poisson is a discrete distribution.

Similarly, to evaluate $\beta(delta)$ we use a Poisson distribution with mean $10 = 20 \cdot 0.50$.

$$\beta(\delta) = Pr(Y \le 7.21 \mid H_1) = Pr(Y \le 7 \mid H_1) \approx 0.22$$

Note: Similar to the prior formulation, we go from 7.21 to 7 in the above formulation as the Poisson is a discrete distribution.

Combining these together, we have:

 $\alpha(\delta) + \beta(\delta) = 0.13 + 0.22 = 0.35$ as the minimum value that can be attained.

Note: For 9.3.1 and 9.3.2, we need to show that as a parameter of interest increases (e.g. λ, σ^2), then y increases as well, where $y = \sum_{i=1}^{n} x_i$. This is sufficient to show the joint p.f. (or p.d.f.) of $X_1, ..., X_n$ has a monotone likelihood ratio in the specified statistic(s).

9.3 #1

Q: Suppose that $X_1, ..., X_n$ form a random sample from the Poisson distribution with unknown mean λ ($\lambda > 0$). Show that the joint p.f. of $X_1, ..., X_n$ has a monotone likelihood ratio in the statistic $\sum_{i=1}^n X_i$.

Let
$$y = \sum_{i=1}^{n} x_i$$

We may note the joint p.f. of the data as:

$$f_n(\bar{X} \mid \lambda) = f_n(X_1 \mid \lambda) ... f_n(X_n \mid \lambda) = \frac{e^{-\lambda} \lambda^{x_1}}{x_1!} ... \frac{e^{-\lambda} \lambda^{x_n}}{x_n!} = \frac{e^{-n\lambda} \lambda^y}{\prod_{i=1}^n x_i!}$$

Thus, for $0 < \lambda_1 < \lambda_2$, we have:

$$\frac{f_n(\bar{X}|\lambda_2)}{f_n(\bar{X}|\lambda_1)} = \frac{\prod\limits_{i=1}^{e^{-n\lambda_2}\lambda_2^y} \prod\limits_{i=1}^{x_i!} x_i!}{\prod\limits_{i=1}^{e^{-n\lambda_1}\lambda_1^y} \prod\limits_{i=1}^{x_i!} x_i!}$$

Noting the factorials of x_i cancel out, we then have:

$$\frac{f_n(\bar{X}|\lambda_2)}{f_n(\bar{X}|\lambda_1)} = e^{-n(\lambda_2 - \lambda_1)} \cdot \left(\frac{\lambda_2}{\lambda_1}\right)^y$$

Note, as $0 < \lambda_1 < \lambda_2$, this is an increasing function of y and we conclude the joint p.f. of $X_1, ..., X_n$ has a monotone likelihood ratio in the statistic $\sum_{i=1}^{n} X_i$.

9.3 #2

Q: Suppose that $X_1, ..., X_n$ form a random sample from the normal distribution with known mean μ and unknown variance σ^2 ($\sigma^2 > 0$). Show that the joint p.d.f. of $X_1, ..., X_n$ has a monotone likelihood ratio in the statistic $\sum_{i=1}^{n} (X_i - \mu)^2$.

Let
$$y = \sum_{i=1}^{n} (x_i - \mu)^2$$

We may then note the joint p.d.f. of the data as:

$$f_n(\bar{X} \mid \sigma^2) = f_n(X_1 \mid \sigma^2)...f_n(X_n \mid \sigma^2) = \frac{1}{\sqrt{(2\pi\sigma^2)}} \cdot e^{\frac{-x_1}{2\sigma^2}}...\frac{1}{\sqrt{(2\pi\sigma^2)}} \cdot e^{\frac{-x_n}{2\sigma^2}}$$

Simplifying this expression gives us:

$$f_n(\bar{X} \mid \sigma^2) = \frac{1}{\sqrt{(2\pi\sigma^2)^n}} \cdot e^{\frac{-y}{2\sigma^2}}$$

Thus, noting the condition $0 < \sigma_1^2 < \sigma_2^2$, we have:

$$\frac{f_n(\bar{X}|\sigma_2^2)}{f_n(\bar{X}|\sigma_1^2)} = \frac{\frac{1}{\sqrt{\left(2\pi\sigma_2^2\right)^n}} \cdot e^{\frac{-y}{2\sigma_2^2}}}{\frac{1}{\sqrt{\left(2\pi\sigma_1^2\right)^n}} \cdot e^{\frac{-y}{2\sigma_1^2}}}$$

Simplifying this expression then gives us:m

$$\frac{f_n(\bar{X}|\sigma_2^2)}{f_n(\bar{X}|\sigma_1^2)} = \left(\frac{\sigma_1}{\sigma_2}\right)^n \cdot e^{\frac{y}{2} \cdot \left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_2^2}\right)}$$

Noting the prior condition that $0 < \sigma_1^2 < \sigma_2^2 \to \frac{1}{\sigma_1^2} > \frac{1}{\sigma_2^2}$, and we may say the above $(\frac{f_n(\bar{X}|\sigma_2^2)}{f_n(\bar{X}|\sigma_1^2)})$ is an increasing function of y.

We may then conclude that the joint p.d.f. of $X_1, ..., X_n$ has a monotone likelihood ratio in the statistic $\sum_{i=1}^{n} (X_i - \mu)^2$.

9.3 # 13

Q: Suppose that four observations are taken at random from the normal distribution with unknown mean μ and known variance

Suppose also that the following hypotheses are to be tested:

 $H_0: \mu \ge 10$

 $H_1: \mu < 10$

(\mathbf{A})

Determine a UMP test at the level of significance $\alpha_0 = 0.1$

Note: Taking the prior Exercise, Exercise 9.3.12, as a given, we know a test which rejects H_0 when $\bar{X}_n \leq c$ will be a UMP test.

Thus, for a significance level $\alpha_0 = 0.1$, we want to choose a value of c that satisfies:

$$Pr(\bar{X}_n \le c \mid \mu = 10) = 0.1$$

As we have four observations, we have n=4. For $\mu=10$, let us note the variable z with the standard normal distribution, specifically:

$$z = 2(\bar{X}_n - 10)$$

Referencing the above probability formula, we thus have:

$$Pr(\bar{X}_n \le c \mid \mu = 10) = Pr(Z \le 2(c - 10)) = 0.1$$

As the standard normal distribution is a known distribution, we may take advantage of the known formulation, namely:

$$Pr(Z \le 2(c-10)) = 0.1 = Pr(Z \le -1.28)$$

Solving for c gives us:

$$2(c-10) = -1.28 \rightarrow c = \frac{18.72}{2} = 9.36$$

(B)

Determine the power of this test when $\mu = 9$.

Using a similar formulation to (A), we note:

 $z=2(\bar{X}_n-9)\ N(0,1)$ (the standard normal distribution). We then formulate the power of the test as follows, where Φ is the c.d.f. of the standard normal distribution:

$$Pr(\bar{X}_n \le 9.36 \mid \mu = 9) = Pr(Z \le 0.72) = \Phi(0.72) \approx 0.76$$

[1] 0.7636214

(C)

Determine the probability of not rejecting H_0 if $\mu = 11$.

Using a similar formulation to (A) and (A), we note:

$$z = 2(\bar{X}_n - 11) N(0, 1)$$
 (the standard normal distribution).

We then formulate the probability of rejecting H_0 as follows, where Φ is the c.d.f. of the standard normal distribution:

 $Pr(\bar{X}_n \leq 9.36 \mid \mu = 11) = Pr(Z \geq -3.28) = Pr(Z \leq 3.28) = \Phi(3.28) \approx 0.9995$ (More digits shown due to inappropriateness of rounding)

[1] 0.9994846