Estruturas de Dados Algoritmo de Dijkstra

Universidade Estadual Vale do Acaraú – UVA

Paulo Regis Menezes Sousa paulo_regis@uvanet.br

O Algoritmo de Dijkstra, foi criado pelo cientista da computação holandês
 Edsger Wybe Dijkstra em 1956 e publicado em 1959.

Figura 1: Edsger W. Dijkstra

O algoritmo de Dijkstra resolve o problema do caminho mínimo em um grafo dirigido ponderado G=(V,E) para o caso no qual todos os pesos de arestas são não negativos.

Figura 2: Grafo dirigido ponderado.

Α	В	С	D	E	F

Inicialização

F

Inf

Inf

Relaxamento das arestas

А	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf

Fechamento do vértice

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	2	3	8	Inf
		vértice	âncias ¡ es adjac atualiza	centes	

Se as distâncias atuais são menores, atualize elas somando a distância percorrida até o momento

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	6

А	В	O	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	7+6

Α	В	O	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
U	ס		10	101	IIII
0	5	7	8	13	Inf
				-10	
0	5	7	8	13	13

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	1	13

Α	В	С	D	E	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	8+1	13

Α	В	C	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	9	13

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	9	13

Α	В	С	D	E	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	9	13
0	5	7	8	9	13
	0 0 0 0	0 Inf 0 5 0 5 0 5 0 5	0 Inf Inf 0 5 Inf 0 5 7 0 5 7	0 Inf Inf Inf 0 5 Inf 10 0 5 7 8 0 5 7 8	0 Inf Inf Inf Inf 0 5 Inf 10 Inf 0 5 7 8 13 0 5 7 8 9

Α	В	С	D	E	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	9	13
0	5	7	8	9	13=13

Α	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	9	13
0	5	7	8	9	13

А	В	С	D	Е	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	9	13
0	5	7	8	9	13

Α	В	С	D	E	F
0	Inf	Inf	Inf	Inf	Inf
0	5	Inf	10	Inf	Inf
0	5	7	8	13	Inf
0	5	7	8	13	13
0	5	7	8	9	13
0	5	7	8	9	13
0	5	7	8	9	13

```
void dijkstra(Graph *g, void *start) {
       PriorityQueue *openVertices; // Fila de prioridade mínima
       Vertex *v:
       Edge
               *e:
       openVertices = init(g, start);
       while (!PriorityQueue_isEmpty(openVertices)) {
            v = PriorityQueue_extractMin(openVertices);
            e = v - > first:
10
            while (e) {
11
                relax(e):
12
                e = e - > next:
13
14
15
16
```

 Em um mapa de rotas de trânsito cada cruzamento pode ser mapeado como um vértice e cada rua uma aresta.

Figura 3: Modelagem de um mapa de trânsito como um grafo.

Figura 4: Rotas entre dois pontos com melhor tempo.

Exercício

Crie uma representação do grafo na figura ao lado. Implemente a função void dijkstra(...) que calcula a menor distância entre um vértice e os demais e mostre qual o menor caminho entre os vértices 1 e 12.

