OUTLINE FOR TOPOLOGICAL COMBINATORICS

The premise of this talk would be to discuss the some of the basics of topology and then eventually state (and prove, maybe¹) the Borsuk-Ulam Theorem and Brouwer's fixed point theorem. Following which, we present a variety of applications in combinatorics. Most of the material comes from [1].

1. Setup

2. Results in topology

Theorem 2.1 (Brower Fixed Point Theorem). Let $K \subseteq \mathbb{R}^n$ be convex and compact, and let $f: K \to K$ be continuous. Then, there exists $k \in K$ such that f(k) = k.

Theorem 2.2 (Borsuk-Ulam Theorem). Suppose $f: \mathbb{S}^n \to \mathbb{R}^n$ was continuous. Then, there is some $x \in \mathbb{S}^n$ such that f(x) = f(-x).

Theorem 2.3. For $n \geq 0$, the following statements are equivalent:

- (1) For every continuous mapping $f: \mathbb{S}^n \to \mathbb{R}^n$ there exists a point $\mathbf{x} \in \mathbb{S}^n$ with f(x) = f(-x).
- (2) For every antipodal mapping $f: \mathbb{S}^n \to \mathbb{R}^n$, there exists a point $\mathbf{x} \in \mathbb{S}^n$ satisfying $f(\mathbf{x}) = 0$.
- (3) There is no antipodal mapping $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$.
- (4) There is no continuous mapping f:

3. Results in Combinatorics

Theorem 3.1. Every (open) necklace with d kinds of jewels can be divided between two thieves using no more than d cuts.

Theorem 3.2. The game of Hex cannot end in a draw.

References

[1] Jiří Matoušek, Anders Björner, Günter M Ziegler, et al. *Using the Borsuk-Ulam theorem:* lectures on topological methods in combinatorics and geometry. Springer, 2003.

1

 $^{^1 \}mathrm{For}$ the sake of time, we might limit the discussion of Borsuk-Ulam to a proof sketch.