Алгебраическая система

Операция на множестве А

- Рассмотрим декартово произведение n- множеств $A_1 \, {}^{\mathsf{x}} \! A_2 \, {}^{\mathsf{x}} \dots \, {}^{\mathsf{x}} \! A_n$. Если все эти множества равны одному $A_1 = A_2 = \dots = A_n = A$, то декартово произведение $A_1 \, {}^{\mathsf{x}} \! A_2 \, {}^{\mathsf{x}} \dots \, {}^{\mathsf{x}} \! A_n$ называется ∂ екартовой n-степенью множества A и обозначается A^n . Если n=0, то по определению считаем $A^0 = \mathcal{O}$;
- ▶ Отображение $f: A^n \to A$ называется n-местной *операцией* на A.
- Если n=0, то по определению 0-местная функция это выделенный элемент A, т.е. константа.

Алгебраическая система

- Множество, с заданными на нем отношениями и операциями, называется *алгебраической системой*.
- **Б**олее строгое определение

$$m = \langle A; P_1^{i_1}, ..., P_n^{i_n}; f_1^{j_1}, ..., f_m^{j_m} \rangle$$

- A основное множество.
- $P_1...P_n$ символы, задающие отношение на множестве A.
- $i_1...i_n$ числа, указывающие местности этих отношений.
- $f_1...f_m$ функциональные символы, задающие операции на А.
- $j_1...j_m$ числа, указывающие местности операций.
- Если заранее очевидны местности операций и отношений, то их не пишут.
- Пример: частично упорядоченное множество <A; ≤> это алгебраическая система с единственным двухместным отношением частичного порядка.

Булева алгебра

- ▶ Алгебраическая система $\langle A; \cup, \cap, \rangle$, где A множество,
- \cup^2 , \cap^2 , $-^1$ функциональные символы, называется булевой алгеброй, если для любых $a,b,c\in A$ выполняются следующие равенства:
 - 1) $a \cup b = b \cup a$ (коммутативность);
 - 2) $(a \cup b) \cup c = a \cup (b \cup c)$ (ассоциативность);
 - 3) $a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$ (дистрибутивность);
 - 4) $a \cup b = \overline{a} \cap \overline{b}$ (закон де Моргана);
 - 5) $a \cup a = a$ (идемпотентность);
 - 6) $(a \cap \overline{a}) \cup b = b$ (закон поглощения);
 - 7) $\overline{\overline{a}} = a$ (двойное дополнение).

Tеорема. Пусть a, b произвольные элементы булевой алгебры, тогда

- 1) $a \cap b = b \cap a$
- 2) $(a \cap b) \cap c = a \cap (b \cap c)$
- 3) $a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$
- 4 $\overline{a \cap b} = \overline{a} \cup \overline{b}$
- *5) a*∩a <u>=</u>a
- 6) $(a \cup a) \cap b = b$

Доказательство. Докажем первое утверждение. Применим сначала закон двойного дополнения $a \cap b = \overline{a} \cap \overline{b}$, затем де Моргана $\overline{a} \cap \overline{b} = \overline{a} \cup \overline{b}$, затем закон коммутативности $\overline{a} \cup \overline{b} = \overline{b} \cup \overline{a}$, затем снова закон де Моргана $\overline{b} \cup \overline{a} = \overline{b} \cap \overline{a}$, и в заключении опять закон двойного дополнения $\overline{b} \cap \overline{a} = b \cap a$. Получим коммутативность для операции \cap . Остальные утверждения доказываются аналогичным образом.

$$\overline{a \cap b} = \overline{a \cap b} = \overline{a \cup b} = \overline{a \cup b}$$

$$(a \cup \overline{a}) \cap b = (\overline{a} \cup \overline{a}) \cap b = (\overline{a} \cap \overline{a}) \cap \overline{b} = (\overline{a} \cap \overline{a}) \cup \overline{b} = \overline{b} = b$$

Теорема. о возможности определения 0 и 1 в булевой алгебре. Для любых $a, c \in A$ верно $a \cup a = c \cup c$ и $a \cap a = c \cap c$.

Запишем закон поглощения $(a \cup a) \cap b = b$. Поскольку b произвольный элемент, то вместо b можно написать $c \cup c$, тогда

- $(a \cup \overline{a}) \cap (c \cup c) = (c \cup \overline{c}).$
- ightharpoonup С другой стороны, $(a \cup \overline{a}) \cap (c \cup \overline{c}) = (c \cup \overline{c}) \cap (a \cup \overline{a}) = a \cup \overline{a}$.
- \triangleright Следовательно, $c \cup c = a \cup a$.
- Aналогичным образом доказывается $a \cap \bar{a} = c \cap \bar{c}$.
- ▶ Поскольку значения выражения $a \cup a$ не зависит от элемента a, то его можно обозначить каким-то символом, например, $I(e\partial u h u u e u)$.
- Вначения $a \cap a$ также не зависит от a, его мы обозначим 0.
- Несложно доказать, что $1 \cap a = a$, $1 \cup a = 1$, $0 \cup a = a$, $0 \cap a = 0$.

Примеры булевых алгебр:

- 1) Рассмотренная нами алгебра множеств.
- 2) Алгебра логики.
- 3) Алгебра релейно-контактных схем.
 - 1. Основное множество-это множество сигналов.
 - 2. Операции соответственно задаются такими устройствами как дизъюнктер, конъюнктер, инвертор.

Пример булевой алгебры

- ightharpoonup Пусть даны множества $A_{1,\dots,}A_n$. С помощью операций объединения, пересечения и дополнения образовываются из $A_{1,\dots,}A_n$ всевозможные новые множества. Совокупность всех этих множеств обозначим через $C(A_1,\dots,A_n)$.
- ▶ Очевидно $C(A_{I,...,}A_n)$ и замкнуто относительно операций \cap , \cup , $\overline{}$. Очевидно, алгебраическая система $N=< C(A_{I,...,}A_n)$; \cap , \cup , $\overline{}>$ является булевой алгеброй.
- **Б**улева алгебра N также называется алгеброй множеств, порожденной множествами $A_{I,\dots,}A_n$. Множества $A_{I,\dots,}A_n$ называются образующими или порождающими множествами.

Изоморфизм булевых алгебр

Определение: Пусть даны две булевы алгебры $M = \langle A, \land, \cup, = \rangle$ и $N = \langle B, \land, \cup, = \rangle$, говорят, что эти алгебры изоморфны, если существует такая биекция f множества A на множество B, что

- $1) f(a \cap b) = f(a) \cap f(b)$
- \triangleright 2) $f(a \cup b) = f(a) \cup f(b)$

В математике, как правило, изоморфные объекты не различаются, поскольку их структурные свойства одинаковы.

Теорема. Стоуна (без доказательства). Каждая булева алгебра изоморфна некоторой алгебре множеств.

Из теоремы Стоуна следует, что изучая свойства алгебры множеств, мы изучаем структурные свойства любой другой булевой алгебры.