Tema 4

Error en estado estacionario

Javier Valls

Dpto. Ingeniería Electrónica

Contenidos

- 1. Introducción y objetivos
- 2. Error en estado estacionario y señales de test
- 3. Error en estado estacionario en sistemas con realimentación unitaria
- 4. Tipos de sistemas y especificaciones de error en estado estacionario
- 5. Error en el estado estacionario en sistemas con perturbaciones
- 6. Sistemas con realimentación no unitaria
- 7. Error en estado estacionario en sistemas discretos
- 8. Conclusiones
- 9. Bibliografía

1

Introducción y objetivos

Introducción

r Sistema y →

Las tres especificaciones fundamentales del sistema de control son:

- · La respuesta transitoria
- Estabilidad
- · Error en estado estacionario

¿Cómo se define y evalúa el error en estado estacionario? ¿Qué tipo de señales se usan para evaluarlo? ¿Cómo se puede evitar la presencia de este error?

Objetivos

Al finalizar este tema el alumno será capaz de

- identificar los tipos de señales que se utilizan para evaluar el error estacionario de los sistemas
- · calcular el error estacionario en sistemas continuos y discretos
- utilizar Matlab para obtener y representar el error en estado estacionario
- diferenciar los tipos de sistemas según el tipo de error en estado estacionario
- utilizar las constantes de error estacionario para especificar sistemas de control

señales de test

Error en estado estacionario y

Error en estado estacionario

Error en estado estacionario: diferencia entre la entrada al sistema y su respuesta cuando $t \to \infty$

Error a la salida del sistema:

$$e_{s}(t) = r(t) - c(t)$$

Error en estado estacionario ($e_s(\infty)$):

$$e_{s}(\infty) = \lim_{t \to \infty} e_{s}(t) = \lim_{s \to 0} s \cdot E_{s}(s)$$

4

Señales de test

El error en estado estacionario se debe especificar para un tipo de señal concreta

E Sistema de posicionamiento

La salida del sistema es una posición:

· debe seguir la posición indicada en la entrada

En estos sistemas estas señales tienen la siguiente interpretación:

- ullet Escalón o representa un cambio fijo en la posición
- $oldsymbol{\cdot}$ Rampa ightarrow cambio lineal en la posición, con velocidad constante
- ullet Parábola ullet un cambio de posición con aceleración constante

Señales de test

Señales de test del error en estado estacionario

Waveform	Name	Physical interpretation	Time function	Laplace transforn
r(t)	Step	Constant position	1	1
				s
r(t)	Ramp	Constant velocity	t	$\frac{1}{s^2}$
1				s^2
r(t)	Parabola	Constant acceleration	$\frac{1}{2}t^2$	$\frac{1}{s^3}$

Error en estado estacionario y señales de test

Error en estado estacionario ante un cambio de posición fija

Error en estado estacionario ante un cambio a velocidad constante

Error en estado estacionario en sistemas con realimentación

unitaria

Error en estado estacionario

Función de transferencia del sistema:

8

Error $e_s(\infty)$ en sistemas con realimentación unitaria (H(s)=1)

Función de transferencia del sistema:

$$T(s) = \frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$
Error a la salida del sistema:
$$E_s(s) = E(s) = R(s) - C(s)$$

$$E_s(s) = R(s)(1 - T(s))$$
Error en estado estacionario: $e_s(t)$ con $t \to \infty$

$$e_s(\infty) = \lim_{t \to \infty} e_s(t) = \lim_{s \to 0} s \cdot E_s(s) \longrightarrow e_s(\infty) = \lim_{s \to 0} s \cdot R(s) \cdot (1 - T(s))$$

$$e_s(\infty) = \lim_{s \to 0} s \cdot R(s) \cdot (1 - \frac{G(s)}{1 + G(s)}) \longrightarrow e_s(\infty) = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s)}$$

9

Error $e_s(\infty)$ con entrada escalón r(t) = u(t)

$$R(s) = \frac{1}{s}$$

Error a la salida del sistema:

$$e_{s}(\infty) = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{s \cdot (1/s)}{1 + G(s)} \longrightarrow e_{s}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

Para conseguir error nulo $(e_s(\infty)=0) \Longrightarrow \lim_{s\to 0} G(s)=\infty$

 \rightarrow G(s) debe tener al menos un polo en cero (un integrador)

$$G(s) = \frac{(s - z_1)(s - z_2) \dots}{s^n(s - p_1)(s - p_2) \dots} \text{ con } n \ge 1$$

Si
$$G(s)$$
 no contiene al menos un integrador: $\lim_{s\to 0} G(s) = \frac{z_1 z_2 \dots}{p_1 p_2 \dots} = K_p$
 $\to e_s(\infty) = \frac{1}{1+K_p} \leftarrow \text{error cte.} \to K_p$: cte. de posición

Error $e_s(\infty)$ con entrada escalón r(t) = u(t)

Error en estado estacionario ante un cambio de posición fija

Error $e_s(\infty)$ con entrada rampa r(t) = tu(t)

Entrada rampa:

$$R(s) = \frac{1}{s^2}$$

 $R(s) = \frac{1}{s^2} + E(s)$ G(s) C(s)

Error a la salida del sistema:

$$\underbrace{e_{s}(\infty)}_{s \to 0} = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{s \cdot (1/s^{2})}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

Para conseguir error nulo $(e_s(\infty)=0) \Longrightarrow \lim_{s\to 0} sG(s)=\infty$

 \rightarrow G(s) debe tener al menos 2 polos en cero (2 integradores)

$$G(s) = \frac{(s - z_1)(s - z_2) \dots}{s^n(s - p_1)(s - p_2) \dots} \text{ con } n \ge 2$$

Si
$$G(s)$$
 solo tiene un integrador: $\lim_{s\to 0} sG(s) = \frac{Z_1Z_2...}{p_1p_2...} = K_V$

$$\rightarrow e_s(\infty) = \frac{1}{K_v} \leftarrow \text{error cte.} \rightarrow K_v: \text{cte. de velocidad}$$

Si G(s) no tiene ningún integrador: $\lim_{s\to 0} sG(s) = 0 \to e_s(\infty) = \infty$

Error $e_s(\infty)$ con entrada rampa r(t) = tu(t)

Output 1: G(s) con al menos dos integradores

Output 2: G(s) con un integrador

Output 3: G(s) sin integrador

Error $e_s(\infty)$ con entrada parábola $r(t) = \frac{1}{2}t^2u(t)$

Entrada parábola:

$$R(s) = \frac{1}{s^3}$$

$$R(s) = \frac{1}{s^3} + E(s)$$

$$G(s)$$

$$C(s)$$

Error a la salida del sistema:

$$e_s(\infty) = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{s \cdot (1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$
Para conseguir error nulo $(e_s(\infty) = 0) \Longrightarrow \lim_{s \to 0} s^2 G(s) = \infty$

 \rightarrow G(s) debe tener al menos 3 polos en cero (3 integradores)

$$G(s) = \frac{(s - z_1)(s - z_2) \dots}{s^n(s - p_1)(s - p_2) \dots} \text{ con } n \ge 3$$

Si
$$G(s)$$
 solo tiene 2 integradores: $\lim_{s\to 0} s^2 G(s) = \frac{z_1 z_2 \dots}{p_1 p_2 \dots} = K_a$
 $\to e_s(\infty) = \frac{1}{K_a} \leftarrow \text{error cte.} \to K_a$: cte. de aceleración

Si
$$G(s)$$
 tiene uno o ningún integrador: $\lim_{s\to 0} s^2 G(s) = 0 \to e_s(\infty) = \infty$

estado estacionario

Tipos de sistemas y

especificaciones de error en

Constantes de error estacionario

Entrada rampa: r(t) = tu(t)

$$e_s(\infty) = e_{rampa}(\infty) = \frac{1}{K_v}$$
 $K_v = \lim_{s \to 0} sG(s)$ Constante de velocidad

Entrada parábola: $r(t) = \frac{1}{2}t^2u(t)$

$$e_s(\infty) = e_{parabola}(\infty) = \frac{1}{K_a}$$
 $K_a = \lim_{s \to 0} s^2 G(s)$ Constante de aceleración

C(s)

G(s)

Tipos de sistemas

Función de transf.
$$G(s) = \frac{C(s)}{E(s)}$$
:

$$G(s) = \frac{K(s - z_1)(s - z_2) \dots}{s^n(s - p_1)(s - p_2) \dots}$$

Tipo de sistema: depende de "n", número de integradores en G(s)

Input	Steady-state error formula	Type 0		Type 1		Type 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Erro
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, tu(t)	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_v = \text{Constant}$	$\frac{1}{K_{\nu}}$	$K_{\nu}=\infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$

Especificaciones del error en estado estacionario

Especificaciones de la respuesta transitoria:

• Factor de amortiguamiento ζ , tiempo de establecimiento T_s , tiempo de pico T_p y porcentaje de sobreimpulso %OS

Especificaciones de error en estado estacionario:

· Constantes de posición K_p , velocidad K_v y aceleración K_a

E Especificación: sistema con K_V =1000

¿Qué conclusiones extraemos?

- → Sistema de tipo 1 con un integrador en su función de transferencia
- → Se debe utilizar la señal rampa como señal de test
- \rightarrow El error estacionario ante una rampa es 1/ K_{ν}

Error en el estado estacionario en sistemas con perturbaciones

Error en el estado estacionario en sistema con perturbaciones

Perturbación:
$$D(s)$$
 $R(s)$
 $E(s)$
 $C(s) = G_1(s)G_2(s)E(s) + G_2(s)D(s)$
 $E(s) = R(s) - C(s)$
 $E(s) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G_1(s)G_2(s)} - \lim_{s \to 0} \frac{sG_2(s)D(s)}{1 + G_1(s)G_2(s)} = e_R(\infty) + e_D(\infty)$

$$e_R(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G_1(s)G_2(s)} \mid \leftarrow \text{Error debido a la entrada R}$$

$$e_{\mathbb{D}}(\infty) = -\lim_{s \to 0} \frac{sG_2(s)D(s)}{1 + G_1(s)G_2(s)} \leftarrow \text{Error debido a la perturbación D}$$

Error en el estado estacionario en sistema con perturbaciones

Perturbación:
$$D(s) = \frac{1}{s}$$

$$R(s) + E(s) + G_1(s)$$

$$G_1(s) + G_2(s)$$

$$G_2(s) + G_2(s)$$

$$e_D(\infty) = -\lim_{s \to 0} \frac{sG_2(s)D(s)}{1 + G_1(s)G_2(s)} = -\lim_{s \to 0} \frac{G_2(s)}{1 + G_1(s)G_2(s)} = -\lim_{s \to 0} \frac{1}{\frac{1}{G_2(s)} + G_1(s)}$$

$$e_D(\infty) = -\frac{1}{\lim_{s \to 0} \frac{1}{G_2(s)} + \lim_{s \to 0} G_1(s)}$$

Para reducir el error en estado estacionario debido a la perturbación:

- → Disminuir la ganancia en DC de G2
- → Aumentar la ganancia en DC de G1

Sistemas con realimentación no unitaria

Sistemas con realimentación no unitaria

Sistema sin realimentación unitaria

→ transformarlo a un sistema con realimentación unitaria

Error en estado estacionario en

sistemas discretos

Tipo de sistema en el dominio s y z

Sistema tipo n: n polos en 0

Polo:
$$p_s = 0$$

 $G(s) = \frac{(s-z_1)(s-z_2)...}{s^n(s-p_1)(s-p_2)...}$
con z_i y $p_i \neq 0$

n polos en 1

$$p_z = e^{p_s T} = e^{0T} \angle 0T = 1 \angle 0$$

 $G(z) = \frac{(z-z_1)(z-z_2)...}{(z-1)^n(z-p_1)(z-p_2)...}$
con z_i y $p_i \neq 1 \angle 0$

Error $e_s(\infty)$ en sistemas con realimentación unitaria (H(z)=1)

Función de transferencia del sistema:

Error $e_s(\infty)$ con entrada escalón r(n) = u(n)

Entrada escalón:

$$R(z) = \frac{1}{1 - z^{-1}}$$

$$R(z) = \frac{z}{z-1} + E(z)$$

$$R(z) = \frac{z}{z-1} + \underbrace{E(z)}_{C(z)}$$

Error a la salida del sistema:

$$e_{s}(\infty) = \lim_{z \to 1} \frac{(1 - z^{-1})R(z)}{1 + G(z)} = \lim_{z \to 1} \frac{(1 - z^{-1})\frac{1}{(1 - z^{-1})}}{1 + G(z)} \longrightarrow e_{s}(\infty) = \frac{1}{1 + \lim_{z \to 1} G(z)}$$

Para conseguir error nulo $(e_s(\infty)=0) \Longrightarrow \lim_{z\to 1} G(z)=\infty$

 \rightarrow G(z) debe tener al menos un polo en 1 (un integrador)

$$G(z) = \frac{(z - z_1)(z - z_2) \dots}{(z - 1)^n (z - p_1)(z - p_2) \dots} \text{ con } n \ge 1$$

Si G(z) no contiene al menos un integrador: $\lim_{z \to 1} G(z) = \frac{(1-z_1)(1-z_2)...}{(1-p_1)(1-p_2)...} = K_p$ $\to e_s(\infty) = \frac{1}{1+K_p} \leftarrow \text{error cte.} \to K_p$: cte. de posición

Error $e_s(\infty)$ con entrada escalón r(n) = u(n)

Error en estado estacionario ante un cambio de posición fija

Error $e_s(\infty)$ con entrada rampa r(n) = nu(n)

Entrada rampa:

$$R(z) = \frac{Tz^{-1}}{(1-z^{-1})^2}$$

$$R(z) = \frac{zT}{(z-1)^2} + E(z)$$

 $R(z) = \underbrace{\frac{zT}{(z-1)^2}}_{\text{$\mathbf{G}(\mathbf{z})$}} \underbrace{+}_{\text{$\mathbf{G}(\mathbf{z})$}} \underbrace{C(z)}_{\text{$\mathbf{G}(\mathbf{z})$}}$

Error a la salida del sistema:

$$\underbrace{e_s(\infty)} = \lim_{z \to 1} \frac{(1 - z^{-1})R(z)}{1 + G(z)} = \lim_{z \to 1} \frac{(1 - z^{-1})\frac{Tz^{-1}}{(1 - z^{-1})^2}}{1 + G(z)} = \lim_{z \to 1} \frac{T}{(z - 1) + (z - 1)G(z)} = \frac{T}{\lim_{z \to 1} (z - 1)G(z)}$$

Para conseguir error nulo $(e_s(\infty)=0) \Longrightarrow \lim_{z\to 1} (z-1)G(z)=\infty$

 \rightarrow G(z) debe tener al menos 2 polos en uno (dos integradores)

$$G(z) = \frac{(z - z_1)(z - z_2) \dots}{(z - 1)^n (z - p_1)(z - p_2) \dots} \text{ con } n \ge 2$$

Si G(z) solo tiene un integrador: $\lim_{z \to 1} (z-1)G(z) = \frac{(1-z_1)(1-z_2)...}{(1-p_1)(1-p_2)...} = T \cdot K_V$

$$\rightarrow e_s(\infty) = \frac{1}{K_v} \leftarrow \text{error cte.} \rightarrow K_v$$
: cte. de velocidad

Si G(z) no tiene ningún integrador: $\lim_{z\to 1}(z-1)G(z)=0 \to e_s(\infty)=\infty$

Error $e_s(\infty)$ con entrada rampa r(n) = nu(n)

Output 1: G(z) con al menos dos integradores

Output 2: G(z) con un integrador

Output 3: G(z) sin integrador

Error $e_s(\infty)$ con entrada parábola $r(n) = \frac{1}{2}n^2u(n)$

Entrada parábola:
$$R(z) = \frac{T^2 z^{-1} (1+z^{-1})}{2(1-z^{-1})^3} R(z) = \frac{T^2 z(z+1)}{2(z-1)^3}$$

$$R(z) = \frac{T^{2}z(z+1)}{2(z-1)^{3}} + E(z)$$
 G(z)

Error a la salida del sistema:

$$\underbrace{e_{s}(\infty)} = \lim_{z \to 1} \frac{(1-z^{-1})R(z)}{1+G(z)} = \lim_{z \to 1} \frac{(1-z^{-1})\frac{T^{2}z^{-1}(1+z^{-1})}{2(1-z^{-1})^{3}}}{1+G(z)} = \lim_{z \to 1} \frac{(1/2)T^{2}(z+1)}{(z-1)^{2}+(z-1)^{2}G(z)} = \underbrace{\lim_{z \to 1} (z-1)^{2}G(z)}_{z \to 1}$$

Para conseguir error nulo $(e_s(\infty)=0) \Longrightarrow \lim_{z\to 1} (z-1)^2 G(z) = \infty$

 \rightarrow G(z) debe tener al menos 3 polos en uno (tres integradores)

$$G(z) = \frac{(z - z_1)(z - z_2) \dots}{(z - 1)^n (z - p_1)(z - p_2) \dots} \text{ con } n \ge 3$$

Si G(z) solo tiene 2 integradores: $\lim_{z \to 1} (z-1)^2 G(z) = \frac{(1-z_1)(1-z_2)...}{(1-p_1)(1-p_2)...} = T^2 \cdot K_a$

$$\rightarrow e_s(\infty) = \frac{1}{K_a} \leftarrow \text{error cte.} \rightarrow K_a$$
: cte. de aceleración

Si G(z) tiene uno o ningún integrador: $\lim_{z\to 1}(z-1)^2G(z)=0 \to e_s(\infty)=\infty$

Constantes de error estacionario

Entrada rampa: r(n) = tu(n)

$$e_s(\infty) = e_{rampa}(\infty) = \frac{1}{K_v}$$
 $K_v = \frac{1}{T} \lim_{z \to 1} (z - 1)G(z)$ Constante de velocidad

Entrada parábola: $r(n) = 0.5n^2u(n)$

$$e_s(\infty) = e_{parbola}(\infty) = \frac{1}{K_a}$$

$$K_a = \frac{1}{T^2} \lim_{z \to 1} (z - 1)^2 G(z)$$
 Constante de aceleración

C(z)

Tipos de sistemas

Función de transf.
$$G(z) = \frac{C(z)}{E(z)}$$
:
$$G(z) = \frac{K(z-z_1)(z-z_2)\dots}{(z-1)^n(z-p_1)(z-p_2)\dots}$$

Tipo de sistema: depende de "n", número de integradores en G(z)

		Type 0		Type 1		Type 2	
Input	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Erro
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_v = \text{Constant}$	$\frac{1}{K_{\nu}}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$

Conclusiones

Conclusiones

En este tema:

- se ha presentado el método para evaluar el error en estado estacionario de los sistemas continuos y discretos y las señales que se requieren para su caracterización
- se ha analizado el error en estado estacionario de los sistemas con realimentación unitaria dependiendo del tipo de señal de test utilizada
- se ha presentado una clasificación de lo sistemas atendiendo al tipo de error en estado estacionario que producen
- se ha introducido cómo extender el análisis del error en estado estacionario a sistemas con realimentación no unitaria y con perturbaciones

Bibliografía

Referencias

- · Norman S. Nise, Control systems engineering, Wiley 2017
 - · Capítulo 7: secciones de la 7.1 a la 7.6
 - · Capítulo 13: sección 13.7
- M.S. Fadali A. Visioli, Digital Control Engineering Analysis and Design, Elsevier 2019
 - · Capítulo 3: sección 3.9