Developing Transparent Methods for Identifying Sexism in Social Media: Combining Explainability with Human Rationalizations

Young Complexity Researchers Utrecht (YCRU) Meeting

Hadi Mohammadi Anastasia Giachanou Ayoub Bagheri

Department of Methodology and Statistics, Utrecht University, The Netherlands.

November 28, 2024

Research Methodology

PHASE 1

In this study, we propose a novel methodology that consists of explainability and rationalization. This approach is structured into two parts with various phases.

PHASE 2

PHASE 3

Tasks Overview & Dataset

- Explainable Detection of Online Sexism (EDOS) dataset.
- 20,000 labeled posts from Gab and Reddit:
 - Subtask A: binary classifier for categorizing posts as sexist or non-sexist.
 - Subtask B: four-class for sexist posts.
 - Subtask C: 11-class for more specific labels of sexism .

Exploratory Data Analysis (EDA)

- Distribution of each Class.
- Text Distribution of each Class.
- Text Length Distribution.
- Top 3 Grams in Sexist Content.

Data Augmentation Techniques

- Synonym augmentation
- Word swapping, insertion, substitution, deletion
- Introducing spelling variations
- Back translation techniques: English j-¿ Dutch
- Paraphrasing by free generative AI models (such as GPT-2)

Cross-Validation Data Preparation

- Utilize StratifiedKFold
- Address class imbalance:
 - RandomOverSampler
 - SMOTE
- Compute class weights for balanced training.

Cross Validation

Ensemble Model Design

- Build and fine-tune sequence classification BERT model using:
 - bert-base-multilingual-cased
 - xlm-roberta-base
 - distilbert-base-multilingual-cased.
- CNN structure with a Conv1D and a Classification layer.
- Adding Explainablity with SHAP and Human ranking.

Integration of Human Rationalization

- Combines SHAP insights with human analysis.
- Re-ranking of tokens based on their impact on sexism classification.
- Use of a 0 to 1 scale to blend human judgment with algorithmic insights.
- Pre and post-human rationalization comparison:

Model Training & Optimization

- ullet Used Adam Optimizer with a learning rate of $3 imes 10^{-5}$
- Incorporated a 200-step warm-up and early stopping to prevent overfitting.
- Mixed precision training for efficiency.
- Tokenization limited to 512 tokens.
- Hyperparameters determined by random search and Keras Tuner.
- Learning rate followed a cosine decay schedule.

Experimentation & Results

- Accurate non-sexist classification in both scenarios.
- Detected subtle sexism effectively with human rationalization.
- Model closely mirrors human logic in detecting sexism.

Evaluation on Test Data

- Evaluated on tasks A, B, and C before and after human rationalizations.
- After rationalization, all tasks showed a decline in performance metrics.
- Task-specific sensitivity to human rationalizations observed.

heatmap (1).pdf

Thank You!

Thank you for your attention!

For further questions or details, please contact:

h.mohammadi@uu.nl

https://hadimohammadi.info/

