MP* KERICHEN 2021-2022

DS n^o3

Il sera, dans la notation, tenu compte de la présentation et de la qualité de la rédaction. Les résultats devront obligatoirement être soulignés ou encadrés à la règle, le texte et les formules ponctuées, un minimum de 80% des s du pluriel et de 70% des accents est requis.

Pénalités :

- Moins de 80% des s du pluriel ou moins de 70% des accents : -3 points,
- Formules mathématiques non ponctuées : -1 point,
- Recours à des abréviations (tt, qqs, fc., ens...) : -2 points.

L'usage de la calculatrice est interdite.

Les élèves traiteront un et un seul des trois sujets suivants.

Le sujet 1 s'adresse à la majorité des étudiants.

Le sujet 2 est destiné aux étudiants ayant éprouvé des difficultés lors des premiers devoirs surveillés.

Le sujet 3 à ceux des étudiants qui visent l'X ou les ÉNS.

Réduction de sous-algèbres de $\mathcal{L}(E)$

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et E est un \mathbb{K} -espace vectoriel de dimension $n \geq 1$.

On note $\mathcal{L}(E)$ le \mathbb{K} -espace vectoriel des endomorphismes de E et $\mathcal{M}_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées à n lignes et n colonnes et à coefficients dans \mathbb{K} .

On note $Mat_{\mathcal{B}}(u)$ la matrice, dans la base \mathcal{B} de E, de l'endomorphisme u de $\mathcal{L}(E)$.

La matrice transposée de toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est notée M^T .

On dit qu'un sous-ensemble \mathcal{A} de $\mathcal{L}(E)$ est une sous-algèbre de $\mathcal{L}(E)$ si \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$, stable pour la composition, c'est-à-dire que $u \circ v$ appartient à \mathcal{A} quels que soient les éléments u et v de \mathcal{A} . (Remarquer qu'on ne demande pas que Id_E appartienne à \mathcal{A}).

On dit qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est commutative si pour tous u et v dans \mathcal{A} , $u \circ v = v \circ u$.

Une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est dite diagonalisable (respectivement trigonalisable) s'il existe une base \mathcal{B} de E telle que $Mat_{\mathcal{B}}(u)$ soit diagonale (respectivement triangulaire supérieure) pour tout u de \mathcal{A} .

On dit qu'une partie \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ si \mathcal{A} est un sous-espace vectoriel stable pour le produit matriciel. Elle est dite commutative si, pour toutes matrices A et B de \mathcal{A} , AB = BA. Une sous-algèbre \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable (respectivement trigonalisable) s'il existe $P \in GL_n(\mathbb{K})$ telle que pour toute matrice M de \mathcal{A} , $P^{-1}MP$ soit diagonale (respectivement triangulaire supérieure).

Si \mathcal{B} est une base de E, l'application $Mat_{\mathcal{B}}: \mathcal{L}(E) \to \mathcal{M}_n(\mathbb{K})$ est une bijection qui envoie une sous-algèbre (respectivement commutative, diagonalisable, trigonalisable) de $\mathcal{L}(E)$ sur une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ (respectivement commutative, diagonalisable, trigonalisable).

Un sous-espace vectoriel F de E est strict si F est différent de E.

On désigne par $S_n(\mathbb{K})$ (respectivement $A_n(\mathbb{K})$) l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{K})$ (respectivement antisymétriques). On désigne par $T_n(\mathbb{K})$ (respectivement $T_n^+(\mathbb{K})$) le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices triangulaires supérieures (respectivement des matrices triangulaires supérieures à coefficients diagonaux nuls).

I. Exemples de sous-algèbres

I.A - Exemples de sous-algèbres de $\mathcal{M}_n(\mathbb{K})$

- 1. Les sous-ensembles $T_n(\mathbb{K})$ et $T_n^+(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
- 2. Les sous-ensembles $S_2(\mathbb{K})$ et $A_2(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_2(\mathbb{K})$?
- 3. On suppose $n \geq 3$. Les sous-ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?

I.B - Exemples de sous-algèbres de $\mathcal{L}(E)$

Soit F un sous-espace vectoriel de E de dimension p et \mathcal{A}_F l'ensemble des endomorphismes de E qui stabilisent F, c'est-à-dire $\mathcal{A}_F = \{u \in \mathcal{L}(E) | u(F) \subset F\}$.

- 4. Montrer que \mathcal{A}_F est une sous-algèbre de $\mathcal{L}(E)$.
- 5. Montrer que dim $A_F = n^2 pn + p^2$.

 On pourra considérer une base de E dans laquelle la matrice de tout élément de A_F est triangulaire par blocs.
- 6. Déterminer $\max_{1 \le p \le n-1} (n^2 pn + p^2)$.

I.C - Exemples de sous-algèbres de $\mathcal{M}_2(\mathbb{K})$ diagonalisables et non diagonalisables

Soit $\Gamma(\mathbb{K})$ le sous-ensemble de $\mathcal{M}_2(\mathbb{K})$ constitué des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où $(a,b) \in \mathbb{K}^2$.

- 7. Montrer que $\Gamma(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_2(\mathbb{K})$.
- 8. Montrer que $\Gamma(\mathbb{R})$ n'est pas une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{R})$.
- 9. Montrer que $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est diagonalisable sur \mathbb{C} . En déduire que $\Gamma(\mathbb{C})$ est une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{C})$.

II. Une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$

Dans cette partie, on suppose $n \geq 2$.

Pour tout $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$, on pose

$$J(a_0, \dots, a_{n-1}) = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \dots & a_2 \\ \vdots & \vdots & & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}.$$

Ainsi, le coefficient d'indice(i, j) de $J(a_0, \ldots, a_{n-1})$ est a_{i-j} si $i \geq j$ et a_{i-j+n} si i < j.

Soit \mathcal{A} l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ de la forme $J(a_0,\ldots,a_{n-1})$ où $(a_0,\ldots,a_{n-1})\in\mathbb{R}^n$.

Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice canoniquement associée à l'endomorphisme $\varphi \in \mathcal{L}(\mathbb{R}^n)$ défini par $\varphi : e_j \mapsto e_{j+1}$ si $j \in \{1, \ldots, n-1\}$ et $\varphi(e_n) = e_1$, où (e_1, \ldots, e_n) est la base canonique de \mathbb{R}^n .

II.A - Calcul des puissances de J

- 10. Préciser les matrices J et J^2 . (on pourra distinguer les cas n=2 et $n\geq 2$).
- 11. Préciser les matrices J^n et J^k pour $2 \le k \le n-1$.
- 12. Quel est le lien entre la matrice $J(a_0, \ldots, a_{n-1})$ et les J^k , où $0 \le k \le n-1$?

II.B - Une base de \mathcal{A}

- 13. Montrer que $(I_n, J, J^2, \dots, J^{n-1})$ est une base de A.
- 14. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M commute avec J si et seulement si M commute avec tout élément de A.
- 15. Montrer que \mathcal{A} est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$.

II.C - Diagonalisation de J

- 16. Déterminer le polynôme caractéristique de J.
- 17. Montrer que J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.
- 18. La matrice J est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?
- 19. Déterminer les valeurs propres complexes de J est les espaces propres associés.

II.D - Diagonalisation de \mathcal{A}

- 20. Le sous-ensemble \mathcal{A} est-il une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$?
- 21. Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que, pour toute matrice $A \in \mathcal{A}$, la matrice $P^{-1}AP$ est diagonale.

Soit
$$(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$$
. On note $Q \in \mathbb{R}[X]$ le polynôme $\sum_{k=0}^{n-1} a_k X^k$.

22. Quelles sont les valeurs propres complexes de la matrice $J(a_0, \ldots, a_{n-1})$?

III. Sous-algèbres strictes de $\mathcal{M}_n(\mathbb{R})$ de dimension maximale

On se propose de montrer dans cette partie que la dimension maximale d'une sous-algèbre stricte de $\mathcal{M}_n(\mathbb{R})$ est égale à $n^2 - n + 1$.

Dans toute cette partie, \mathcal{A} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ strictement incluse dans $\mathcal{M}_n(\mathbb{R})$ et on note d sa dimension. On a donc $d < n^2$.

III.A - Un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$

La trace de toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est notée $\operatorname{tr}(M)$.

23. Montrer que l'application définie sur $\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ par $(A, B) \mapsto \langle A, B \rangle = \operatorname{tr}(A^T B)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

On désigne A^{\perp} l'orthogonal de \mathcal{A} dans $\mathcal{M}_n(\mathbb{R})$ et on note r sa dimension.

24. Quelle relation a-t-on entre d et r?

Jusqu'à la fin de cette partie III, on fixe une base (A_1, \ldots, A_r) de \mathcal{A}^{\perp} .

- 25. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M appartient à \mathcal{A} si et seulement si, pour tout $i \in [1, r], \langle A_i, M \rangle = 0$.
- 26. Montrer que pour toute matrice $N \in \mathcal{A}$ et tout $i \in [1, r]$, on a $N^T A_i \in \mathcal{A}^{\perp}$.

III.B - Conclusion

Soit $\mathcal{A}^T = \{M^T | M \in \mathcal{A}\}.$

27. Montrer que \mathcal{A}^T est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ de même dimension que \mathcal{A} .

On note $\mathcal{M}_{n,1}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices colonnes à n lignes et à coefficients réels. On rappelle qu'à toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est associé canoniquement l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ défini par $X \mapsto MX$.

- 28. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et soit $F = \text{Vect}(A_1 X, \dots, A_r X)$. Montrer que F est stable par les endomorphismes de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associés aux éléments de \mathcal{A}^T .
- 29. Montrer que $d \le n^2 n + 1$ et conclure.

IV. Réduction d'une algèbre nilpotente de $\mathcal{M}_n(\mathbb{C})$

Soit E un \mathbb{C} -espace vectoriel de dimension finie $n \geq 1$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$ constituée d'endomorphismes nilpotents. On admet dans cette partie le théorème ci-dessous, qui sera démontré dans la partie V.

Théorème de Burnside

Soit E un \mathbb{C} -espace vectoriel de dimension $n \geq 2$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$. Si les seuls sous-espaces vectoriels de E stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E, alors $\mathcal{A} = \mathcal{L}(E)$.

On se propose de démontrer par récurrence forte sur $n \in \mathbb{N}^*$ que si tous les éléments de \mathcal{A} sont nilpotents, alors \mathcal{A} est trigonalisable.

30. Montrer que le résultat est vrai si n = 1.

On suppose désormais que n > 2 et que le résultat est vrai pour tout entier naturel d < n - 1.

31. Montrer qu'il existe un sous-espace vectoriel V de E distinct de E et $\{0\}$ stable par tous les éléments de A.

On fixe dans la suite un tel sous-espace vectoriel et on note r sa dimension. Soit aussi s = n - r.

32. Montrer qu'il existe une base \mathcal{B} de E telle que pour tout $u \in \mathcal{A}$,

$$Mat_{\mathcal{B}}(u) = \begin{pmatrix} A(u) & B(u) \\ 0 & D(u) \end{pmatrix}$$

où $A(u) \in \mathcal{M}_r(\mathbb{C}), B(u) \in \mathcal{M}_{r,s}(\mathbb{C}) \text{ et } D(u) \in \mathcal{M}_s(u).$

- 33. Montrer que $\{A(u)|u\in\mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_r(\mathbb{C})$ constituée de matrices nilpotentes et que $\{D(u)|u\in\mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_s(\mathbb{C})$ constituée de matrices nilpotentes.
- 34. Montrer que \mathcal{A} est trigonalisable.
- 35. Montrer qu'il existe une base de E dans laquelle les matrices des éléments de \mathcal{A} appartiennent à $T_n^+(\mathbb{C})$.

V. Le théorème de Burnside

On se propose de démontrer dans cette partie le théorème de Burnside énoncé dans la partie IV.

On fixe un \mathbb{C} -espace vectoriel E de dimension $n \geq 2$.

On dira qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est irréductible si les seuls sous-espaces vectoriels stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E.

Soit \mathcal{A} une sous-algèbre irréductible de $\mathcal{L}(E)$. Il s'agit donc de montrer que $\mathcal{A} = \mathcal{L}(E)$.

V.A - Recherche d'un élément de rang 1

- 36. Soient x et y deux éléments de E, x étant non nul. Montrer qu'il existe $u \in \mathcal{A}$ tel que u(x) = y. On pourra considérer dans E le sous-espace vectoriel $\{u(x)|u\in\mathcal{A}\}$.
- 37. Soit $v \in \mathcal{A}$ de rang supérieur ou égal à 2. Montrer qu'il existe $u \in \mathcal{A}$ et $\lambda \in \mathbb{C}$ tel que :

$$0 < \operatorname{rg}(v \circ u \circ v - \lambda v) < \operatorname{rg}(v).$$

Considérer x et y dans E tels que la famille (v(x), v(y)) soit libre, justifier l'existence de $u \in \mathcal{A}$ tel que $u \circ v(x) = y$ et considérer l'endomorphisme induit par $v \circ u$ sur $\operatorname{Im}(v)$.

38. En déduire l'existence d'un élément de rang 1 dans \mathcal{A} .

V.B - Conclusion

Soit $u_0 \in \mathcal{A}$ de rang 1. On peut donc choisir une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ de E telle que $(\varepsilon_2, \dots, \varepsilon_n)$ soit une base de $\ker u_0$.

- 39. Montrer qu'il existe $u_1, \ldots, u_n \in \mathcal{A}$ de rang 1 tels que $u_i(\varepsilon_1) = \varepsilon_i$ pour tout $i \in [1, n]$.
- 40. Conclure

Sujet 2

EXERCICE I (CCP 2020)

Dans cet exercice, il est inutile de reproduire tous les calculs sur la copie.

On considère la matrice $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

- **Q.1.** Déterminer une matrice D diagonale réelle et une matrice $P \in GL_3(\mathbb{R})$ telles que $A = PDP^{-1}$.
- **Q2.** Déterminer une matrice B de $\mathcal{M}_3(\mathbb{R})$, que l'on explicitera, vérifiant $B^2=A$
- Q3. Déterminer, pour tout entier naturel non nul n, les 9 coefficients de la matrice A^n en utilisant la matrice de passage P
- **Q4.** Soient λ et μ des valeurs propres distinctes de A et Q le polynôme $(X \lambda)(X \mu)$. Vérifier que $Q(A) = 0_n$.

Déduire, à l'aide d'une division euclidienne du polynôme X^n par Q, la matrice A^n comme une combinaison linéaire des matrices A et I_n .

EXERCICE II (CCP 2020)

On considère l'espace vectoriel normé $\mathcal{M}_n(\mathbb{R})$ On note $\mathrm{GL}_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$. On pourra utiliser librement dans cet exercice que l'application déterminant est continue sur $\mathcal{M}_n(\mathbb{R})$.

- **Q5.** L'ensemble $GL_n(\mathbb{R})$ est-il fermé dans $\mathcal{M}_n(\mathbb{R})$?
- **Q6.** Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$
- **Q7.** Soit M un élément de $\mathcal{M}_n(\mathbb{R})$, justifier l'existence d'un réel $\rho > 0$ tel que :

$$\forall \lambda \in]0, \rho[, M - \lambda I_n \in GL_n(\mathbb{R}).$$

Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$

Q8. Application:

Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, démontrer que les matrices AB et BA ont le même polynôme caractéristique.

Q9. Démontrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

PROBLÈME (CCP 2019)

Notations et définitions

- soient $n \in \mathbb{N}^*$ et $(p,q) \in (\mathbb{N}^*)^2$;
- $\mathbb{R}[X]$ désigne l'ensemble des polynômes à coefficients dans \mathbb{R} ; si $P \in \mathbb{R}[X]$, on notera encore P la fonction polynomiale associée;
- $M_p(\mathbb{R})$ et $M_p(\mathbb{C})$ désignent respectivement les ensembles des matrices carrées de taille p à coefficients dans \mathbb{R} et dans \mathbb{C} , et $M_{p,q}(\mathbb{R})$ et $M_{p,q}(\mathbb{C})$ désignent respectivement les ensembles des matrices à p lignes et q colonnes à coefficients dans \mathbb{R} et dans \mathbb{C} ;
- on note I_p la matrice identité de $\mathrm{M}_p(\mathbb{C})$ et 0_p la matrice de $\mathrm{M}_p(\mathbb{C})$ ne comportant que des 0;
- on note χ_A le polynôme caractéristique d'une matrice $A \in \mathrm{M}_p(\mathbb{C})$, c'est-à-dire le polynôme $\det(XI_p A)$;
- étant donnée une matrice $M \in \mathrm{M}_p(\mathbb{C})$, on note $\mathrm{Sp}(M)$ l'ensemble des valeurs propres complexes de M.

Objectifs

Dans la **partie I**, on détermine les valeurs propres d'une matrice tridiagonale symétrique réelle particulière. On utilise les résultats démontrés dans la **partie I** pour résoudre, dans la **partie II**, un système différentiel.

Partie I – Éléments propres d'une matrice

I.1 – Localisation des valeurs propres.

On considère une matrice $A=((a_{i,j}))_{1\leq i,j\leq n}\in \mathrm{M}_n(\mathbb{C})$. Soient une valeur propre $\lambda\in\mathbb{C}$ de A et un vecteur propre associé

5

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{C})}\}.$$

1. Montrer que pour tout $i \in [1, n]$, on a : $\lambda x_i = \sum_{j=1}^n a_{i,j} x_j$.

2. Soit $i_0 \in [1, n]$ tel que $|x_{i_0}| = \max_{j \in [1, n]} |x_j|$. Montrer que : $|\lambda| \leqslant \sum_{i=1}^n |a_{i_0, j}|$.

En déduire que :

$$|\lambda| \leqslant \max_{i \in [1,n]} \left\{ \sum_{j=1}^{n} |a_{i,j}| \right\}.$$

Soient α et β deux nombres réels. On considère la matrice $A_n(\alpha, \beta) \in M_n(\mathbb{R})$ définie par :

$$A_n(\alpha,\beta) = \begin{pmatrix} \alpha & \beta & 0 & \cdots & 0 \\ \beta & \alpha & \beta & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \beta & \alpha & \beta \\ 0 & \cdots & 0 & \beta & \alpha \end{pmatrix}.$$

- 3. Justifier que les valeurs propres de $A_n(\alpha, \beta)$ sont réelles.
- 4. Soit $\lambda \in \mathbb{R}$ une valeur propre de $A_n(\alpha, \beta)$. Montrer que :

$$|\lambda| \leqslant |\alpha| + 2|\beta|.$$

I.2 – Calcul des valeurs propres de $A_n(\alpha, \beta)$.

- 1. En utilisant la question 4, montrer que pour toute valeur propre λ de $A_n(0,1)$, il existe $\theta \in [0,\pi]$ tel que $\lambda = 2\cos(\theta)$. On note U_n le polynôme $\chi_{A_n(0,1)}(2X)$.
- 2. Établir, pour $n \geqslant 3$, une relation entre $\chi_{A_n(0,1)}$, $\chi_{A_{n-1}(0,1)}$ et $\chi_{A_{n-2}(0,1)}$. En déduire, pour $n \geqslant 3$, une relation entre U_n , U_{n-1} et U_{n-2} .
- 3. Montrer par récurrence sur n que pour tout $\theta \in]0,\pi[$:

$$U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin(\theta)}.$$

4. Déduire de la question précédente que l'ensemble des valeurs propres de $A_n(0,1)$ est $\left\{2\cos\left(\frac{j\pi}{n+1}\right); j\in [\![1,n]\!]\right\}$. Déterminer la multiplicité des valeurs propres et la dimension des sous-espaces propres associés.

Considérons $j \in [1, n]$ et posons $\theta_j = \frac{j\pi}{n+1}$.

1. Montrer que pour tout vecteur propre $x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}\in \mathrm{M}_{n,1}(\mathbb{R})$ de $A_n(0,1)$ associé à la valeur propre $2\cos(\theta_j)$, on a :

$$\left\{ \begin{array}{rcl} -2\cos(\theta_j)x_1+x_2 & = & 0, \\ \forall k \in [\![2,n-1]\!], \ x_{k-1}-2\cos(\theta_j)x_k+x_{k+1} & = & 0, \\ x_{n-1}-2\cos(\theta_j)x_n & = & 0. \end{array} \right.$$

Soit E l'ensemble des suites réelles $(u_k)_{k\in\mathbb{N}}$ vérifiant la relation de récurrence :

$$\forall k \in \mathbb{N}^*, \quad u_{k-1} - 2\cos(\theta_j)u_k + u_{k+1} = 0.$$

- 2. Montrer que E est un espace vectoriel sur $\mathbb R$ dont on précisera la dimension.
- 3. Déterminer l'ensemble des suites $(u_k)_{k\in\mathbb{N}}\in E$ telles que $u_0=u_{n+1}=0$.
- 4. En déduire l'espace propre de $A_n(0,1)$ associé à la valeur propre $2\cos(\theta_i)$.
- 5. En déduire, pour tout $(\alpha, \beta) \in \mathbb{R}^2$, l'ensemble des valeurs propres de $A_n(\alpha, \beta)$ et les espaces propres associés. On distinguera le cas $\beta \neq 0$ du cas $\beta = 0$.

Partie II – Système différentiel

II.1 – Matrices par blocs

On considère A, B, C et D des matrices de $M_n(\mathbb{C})$ telles que C et D commutent.

1. Calculer $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & 0_n \\ -C & I_n \end{pmatrix}$.

L'objectif des trois prochaines questions est de démontrer la relation :

$$\det\begin{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \end{pmatrix} = \det(AD - BC). \tag{1}$$

- 2. Montrer l'égalité (1) dans le cas où D est inversible.
- 3. On ne suppose plus D inversible. Montrer qu'il existe $p_0 \in \mathbb{N}^*$ tel que pour tout $p \geqslant p_0$, la matrice $D + \frac{1}{p}I_n$ soit inversible.
- 4. En déduire que l'égalité (1) est également vraie dans le cas où D n'est pas inversible.

Considérons une matrice $M \in M_n(\mathbb{C})$ et formons la matrice :

$$N = \begin{pmatrix} 0_n & I_n \\ M & 0_n \end{pmatrix}.$$

- 1. Montrer que $\operatorname{Sp}(N) = \{ \mu \in \mathbb{C}; \mu^2 \in \operatorname{Sp}(M) \}.$
- 2. Soient $\mu \in \operatorname{Sp}(N)$ et $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \operatorname{M}_{n,1}(\mathbb{C})$ un vecteur propre de M associé à la valeur propre μ^2 . Montrer que le vecteur $\begin{pmatrix} x \\ ux \end{pmatrix} \in \operatorname{M}_{2n,1}(\mathbb{C})$ est vecteur propre de N associé à la valeur propre μ .
- 3. Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et inversible.

II.2 – Application à un système différentiel dans le cas où n=2

On considère le système différentiel :

$$\begin{cases} x_1'' = -2x_1 + x_2, \\ x_2'' = x_1 - 2x_2. \end{cases}$$
 (2)

1. Déterminer $(\alpha, \beta) \in \mathbb{R}^2$ tel que le système (2) soit équivalent au système différentiel du premier ordre X' = BX, où

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_1' \\ x_2' \end{pmatrix} \text{ et } B = \begin{pmatrix} 0_2 & I_2 \\ A_2(\alpha, \beta) & 0_2 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

Que déduit-on du théorème de Cauchy quant à la structure de l'ensemble des solutions de ce système?

2. En utilisant la question 1, déterminer les valeurs propres de B et en déduire que B est diagonalisable. On considère la matrice :

$$D = \begin{pmatrix} -i\sqrt{3} & 0 & 0 & 0 \\ 0 & i\sqrt{3} & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \end{pmatrix}.$$

- 3. En utilisant la question 2, déterminer une matrice inversible $P \in M_4(\mathbb{C})$ dont la première ligne ne comporte que des 1 et telle que $B = PDP^{-1}$.
- 4. Déterminer l'ensemble des solutions du système différentiel Y' = DY, avec $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$.
- 5. Déterminer la solution du système différentiel (2) avec conditions initiales $(x_1(0), x_2(0), x_1'(0), x_2'(0)) = (1, 0, 0, 0)$.