19660_Mahmud_Omer

Week4_Hw2

- 1. Classification on Colab using MNIST dataset Process Study the course material of this chapter. Run all the cells described in the notebook Chapter 3 Classification on Colab and try to understand the code alng the way. Adding notebooks to your portfolio
 - Machine Learning
 - Supervised Learning
 - Classification on Colab using MNIST dataset

Run the code on Colab

- References
 - o Get Start with Colab

First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20.

```
# Python ≥3.5 is required
import sys
assert sys.version_info >= (3, 5)
# Is this notebook running on Colab or Kaggle?
IS_COLAB = "google.colab" in sys.modules
IS_KAGGLE = "kaggle_secrets" in sys.modules
# Scikit-Learn ≥0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"
# Common imports
import numpy as np
import os
# to make this notebook's output stable across runs
np.random.seed(42)
# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "classification"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
   path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format=fig_extension, dpi=resolution)
```

MNIST

Warning: since Scikit-Learn 0.24, fetch_openml() returns a Pandas DataFrame by default. To avoid this and keep the same code as in the book, we use as_frame=False.

```
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
mnist.keys()
     dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details', 'url'])
X, y = mnist["data"], mnist["target"]
X.shape
     (70000, 784)
y.shape
     (70000,)
28 * 28
     784
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
some\_digit = X[0]
some_digit_image = some_digit.reshape(28, 28)
plt.imshow(some_digit_image, cmap=mpl.cm.binary)
plt.axis("off")
save_fig("some_digit_plot")
plt.show()
     Saving figure some_digit_plot
```



```
y[0]
     '5'
y = y.astype(np.uint8)
def plot_digit(data):
   image = data.reshape(28, 28)
    plt.imshow(image, cmap = mpl.cm.binary,
               interpolation="nearest")
   plt.axis("off")
# EXTRA
def plot_digits(instances, images_per_row=10, **options):
    size = 28
    images_per_row = min(len(instances), images_per_row)
    # This is equivalent to n_rows = ceil(len(instances) / images_per_row):
   n_rows = (len(instances) - 1) // images_per_row + 1
   \mbox{\tt\#} Append empty images to fill the end of the grid, if needed:
   n_empty = n_rows * images_per_row - len(instances)
   padded_instances = np.concatenate([instances, np.zeros((n_empty, size * size))], axis=0)
    # Reshape the array so it's organized as a grid containing 28×28 images:
```

```
53437340

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

1362743

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

1362744

136274

136274

136274

136274

136274

136274

136274

1362744

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136274

136
```

```
y[0]
5

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
```

Training a Binary Classifier

```
y_train_5 = (y_train == 5)
y_test_5 = (y_test == 5)
```

Note: some hyperparameters will have a different defaut value in future versions of Scikit-Learn, such as max_iter and tol. To be future-proof, we explicitly set these hyperparameters to their future default values. For simplicity, this is not shown in the book.

```
from sklearn.linear_model import SGDClassifier
```

```
sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=42)
sgd_clf_fit(xifier(random_state=42))
sgd_clf.predict([some_digit])
    array([ True])

from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
    array([0.95035, 0.96035, 0.9604])
```

Performance Measures

▼ Measuring Accuracy Using Cross-Validation

```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
skfolds = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
   clone_clf = clone(sgd_clf)
   X_train_folds = X_train[train_index]
   y_train_folds = y_train_5[train_index]
   X_test_fold = X_train[test_index]
   y_test_fold = y_train_5[test_index]
   clone_clf.fit(X_train_folds, y_train_folds)
   y_pred = clone_clf.predict(X_test_fold)
   n_correct = sum(y_pred == y_test_fold)
   print(n_correct / len(y_pred))
    0.9669
    0.91625
    0.96785
```

Note: shuffle=True was omitted by mistake in previous releases of the book.

```
from sklearn.base import BaseEstimator
class Never5Classifier(BaseEstimator):
    def fit(self, X, y=None):
        pass
    def predict(self, X):
        return np.zeros((len(X), 1), dtype=bool)

never_5_clf = Never5Classifier()
cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy")
    array([0.91125, 0.90855, 0.90915])
```

Warning: this output (and many others in this notebook and other notebooks) may differ slightly from those in the book. Don't worry, that's okay! There are several reasons for this:

- first, Scikit-Learn and other libraries evolve, and algorithms get tweaked a bit, which may change the exact result you get. If you use the latest Scikit-Learn version (and in general, you really should), you probably won't be using the exact same version I used when I wrote the book or this notebook, hence the difference. I try to keep this notebook reasonably up to date, but I can't change the numbers on the pages in your copy of the book.
- second, many training algorithms are stochastic, meaning they rely on randomness. In principle, it's possible to get consistent outputs from a random number generator by setting the seed from which it generates the pseudo-random numbers (which is why you will see random_state=42 or np.random.seed(42) pretty often). However, sometimes this does not suffice due to the other factors listed here.
- third, if the training algorithm runs across multiple threads (as do some algorithms implemented in C) or across multiple processes (e.g., when using the n_jobs argument), then the precise order in which operations will run is not always guaranteed, and thus the exact result may vary slightly.

• lastly, other things may prevent perfect reproducibility, such as Python dicts and sets whose order is not guaranteed to be stable across sessions, or the order of files in a directory which is also not guaranteed.

Confusion Matrix

▼ Precision and Recall

▼ Precision/Recall Trade-off

```
y_some_digit_pred
    array([ True])
threshold = 8000
y_some_digit_pred = (y_scores > threshold)
y_some_digit_pred
    array([False])
y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
                             method="decision_function")
from sklearn.metrics import precision_recall_curve
precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
   plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2)
   plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
   plt.legend(loc="center right", fontsize=16) # Not shown in the book
   plt.xlabel("Threshold", fontsize=16)
                                                # Not shown
   plt.grid(True)
                                                # Not shown
   plt.axis([-50000, 50000, 0, 1])
                                                # Not shown
recall_90_precision = recalls[np.argmax(precisions >= 0.90)]
threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)]
plt.figure(figsize=(8, 4))
                                                                                             # Not shown
plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.plot([threshold_90_precision, threshold_90_precision], [0., 0.9], "r:")
                                                                                             # Not shown
plt.plot([-50000, threshold_90_precision], [0.9, 0.9], "r:")
plt.plot([-50000, threshold_90_precision], [recall_90_precision, recall_90_precision], "r:")# Not shown
plt.plot([threshold_90_precision], [0.9], "ro")
                                                                                             # Not shown
plt.plot([threshold_90_precision], [recall_90_precision], "ro")
                                                                                             # Not shown
save_fig("precision_recall_vs_threshold_plot")
                                                                                             # Not shown
plt.show()
     Saving figure precision_recall_vs_threshold_plot
     0.8
     0.6
                                                               Precision
                                                               Recall
     0.4
     0.2
     0.0
            -40000
                         -20000
                                        0
                                                   20000
                                                                40000
(y_train_pred == (y_scores > 0)).all()
    True
def plot_precision_vs_recall(precisions, recalls):
   plt.plot(recalls, precisions, "b-", linewidth=2)
   plt.xlabel("Recall", fontsize=16)
   plt.ylabel("Precision", fontsize=16)
   plt.axis([0, 1, 0, 1])
   plt.grid(True)
plt.figure(figsize=(8, 6))
plot_precision_vs_recall(precisions, recalls)
```

plt.plot([recall_90_precision, recall_90_precision], [0., 0.9], "r:")

plt.plot([0.0, recall_90_precision], [0.9, 0.9], "r:")

plt.plot([recall_90_precision], [0.9], "ro")

```
save_fig("precision_vs_recall_plot")
plt.show()
```


▼ The ROC Curve

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
def plot_roc_curve(fpr, tpr, label=None):
   plt.plot(fpr, tpr, linewidth=2, label=label)
   plt.plot([0, 1], [0, 1], 'k--') # dashed diagonal
   plt.axis([0, 1, 0, 1])
                                                              # Not shown in the book
   plt.xlabel('False Positive Rate (Fall-Out)', fontsize=16) # Not shown
   plt.ylabel('True Positive Rate (Recall)', fontsize=16)
                                                              # Not shown
   plt.grid(True)
                                                              # Not shown
plt.figure(figsize=(8, 6))
                                                              # Not shown
plot_roc_curve(fpr, tpr)
fpr_90 = fpr[np.argmax(tpr >= recall_90_precision)]
                                                              # Not shown
plt.plot([fpr_90, fpr_90], [0., recall_90_precision], "r:")
                                                             # Not shown
plt.plot([0.0, fpr_90], [recall_90_precision, recall_90_precision], "r:")
                                                                           # Not shown
plt.plot([fpr_90], [recall_90_precision], "ro")
                                                              # Not shown
save_fig("roc_curve_plot")
                                                              # Not shown
plt.show()
```


from sklearn.metrics import roc_auc_score

roc_auc_score(y_train_5, y_scores)

0.9604938554008616

Note: we set n estimators=100 to be future-proof since this will be the default value in Scikit-Learn 0.22.

```
from sklearn.ensemble import RandomForestClassifier
forest_clf = RandomForestClassifier(n_estimators=100, random_state=42)
y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3,
                                    method="predict_proba")
y_scores_forest = y_probas_forest[:, 1] # score = proba of positive class
fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5,y_scores_forest)
recall_for_forest = tpr_forest[np.argmax(fpr_forest >= fpr_90)]
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, "b:", linewidth=2, label="SGD")
plot_roc_curve(fpr_forest, tpr_forest, "Random Forest")
plt.plot([fpr_90, fpr_90], [0., recall_90_precision], "r:")
plt.plot([0.0, fpr_90], [recall_90_precision, recall_90_precision], "r:")
plt.plot([fpr_90], [recall_90_precision], "ro")
plt.plot([fpr_90, fpr_90], [0., recall_for_forest], "r:")
plt.plot([fpr_90], [recall_for_forest], "ro")
plt.grid(True)
plt.legend(loc="lower right", fontsize=16)
save_fig("roc_curve_comparison_plot")
plt.show()
```

Multiclass Classification

```
n n 🛂
from sklearn.svm import SVC
svm_clf = SVC(gamma="auto", random_state=42)
svm_clf.fit(X_train[:1000], y_train[:1000]) # y_train, not y_train_5
svm_clf.predict([some_digit])
     array([5], dtype=uint8)
some_digit_scores = svm_clf.decision_function([some_digit])
some_digit_scores
     array([[ 2.81585438, 7.09167958, 3.82972099, 0.79365551, 5.8885703
              9.29718395, 1.79862509, 8.10392157, -0.228207 , 4.83753243]])
np.argmax(some_digit_scores)
     5
svm_clf.classes_
     array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
svm_clf.classes_[5]
from sklearn.multiclass import OneVsRestClassifier
ovr_clf = OneVsRestClassifier(SVC(gamma="auto", random_state=42))
ovr_clf.fit(X_train[:1000], y_train[:1000])
ovr_clf.predict([some_digit])
     array([5], dtype=uint8)
len(ovr_clf.estimators_)
     10
sgd_clf.fit(X_train, y_train)
sgd_clf.predict([some_digit])
     array([3], dtype=uint8)
sgd_clf.decision_function([some_digit])
     array([[-31893.03095419, -34419.69069632, -9530.63950739, 1823.73154031, -22320.14822878, -1385.80478895,
              -26188.91070951, -16147.51323997, -4604.35491274,
             -12050.767298 ]])
```

Warning: the following two cells may take close to 30 minutes to run, or more depending on your hardware.

```
cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")
    array([0.87365, 0.85835, 0.8689 ])

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train.astype(np.float64))
cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy")
    array([0.8983, 0.891 , 0.9018])
```

▼ Error Analysis

```
y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
conf_mx = confusion_matrix(y_train, y_train_pred)
conf_mx
    array([[5577,
                     0,
                          22,
                                 5,
                                       8,
                                            43,
                                                  36,
                                                         6,
                                                             225,
                                                                     1],
                          37,
                                                         7,
                                                             212,
              0, 6400,
                                                                    10],
                                24,
                                       4,
                                            44,
                                                  4,
              27,
                                                                    11],
                    27, 5220,
                                92,
                                      73,
                                            27,
                                                  67,
                                                        36,
                                                             378,
              22,
                    17, 117, 5227,
                                       2,
                                           203,
                                                  27,
                                                        40,
                                                             403,
                                                                    73],
              12,
                                9, 5182,
                                                        27, 347,
                                                                   164],
                    14,
                         41,
                                           12,
                                                  34,
                                                  75,
                              168,
              27,
                    15,
                          30,
                                      53, 4444,
                                                        14, 535,
                                                                    60],
              30,
                    15,
                          42,
                                      44,
                                           97, 5552,
                                                         3, 131,
                                                                     1],
                                30,
                                      49,
                                           12,
                                                  3, 5684, 195,
                                                                   210],
              21,
                    10,
                          51,
                          48,
              17,
                    63,
                                86,
                                                  25,
                                                                   44],
                                      3, 126,
                                                       10, 5429,
              25,
                    18,
                          30,
                                64,
                                    118,
                                            36,
                                                   1, 179, 371, 5107]])
# since sklearn 0.22, you can use sklearn.metrics.plot_confusion_matrix()
def plot_confusion_matrix(matrix):
    """If you prefer color and a colorbar"""
   fig = plt.figure(figsize=(8,8))
   ax = fig.add_subplot(111)
   cax = ax.matshow(matrix)
   fig.colorbar(cax)
plt.matshow(conf_mx, cmap=plt.cm.gray)
save_fig("confusion_matrix_plot", tight_layout=False)
plt.show()
     Saving figure confusion_matrix_plot
        0
                   4
              2
                         6
                               8
     0 -
```

```
row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums

np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
save_fig("confusion_matrix_errors_plot", tight_layout=False)
plt.show()
```

0

2

```
cl_a, cl_b = 3, 5
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]
plt.figure(figsize=(8,8))
plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5)
plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5)
plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)
save_fig("error_analysis_digits_plot")
plt.show()
```

Saving figure confusion_matrix_errors_plot

4 6

Saving figure error_analysis_digits_plot

→ Multilabel Classification

```
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= 7)
y_train_odd = (y_train % 2 == 1)
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

    KNeighborsClassifier()

knn_clf.predict([some_digit])
    array([[False, True]])
```

Warning: the following cell may take a very long time (possibly hours depending on your hardware).

```
y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3)
f1_score(y_multilabel, y_train_knn_pred, average="macro")
```

0.976410265560605

Multioutput Classification

```
noise = np.random.randint(0, 100, (len(X_train), 784))
X_train_mod = X_train + noise
noise = np.random.randint(0, 100, (len(X_test), 784))
X_test_mod = X_test + noise
y_train_mod = X_train
y_test_mod = X_test

some_index = 0
plt.subplot(121); plot_digit(X_test_mod[some_index])
plt.subplot(122); plot_digit(y_test_mod[some_index])
save_fig("noisy_digit_example_plot")
plt.show()
```

Saving figure noisy_digit_example_plot


```
knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[some_index]])
plot_digit(clean_digit)
save_fig("cleaned_digit_example_plot")
```

Saving figure cleaned_digit_example_plot

Extra material

▼ Dummy (ie. random) classifier

```
from sklearn.dummy import DummyClassifier
dmy_clf = DummyClassifier(strategy="prior")
y_probas_dmy = cross_val_predict(dmy_clf, X_train, y_train_5, cv=3, method="predict_proba")
y_scores_dmy = y_probas_dmy[:, 1]

fprr, tprr, thresholdsr = roc_curve(y_train_5, y_scores_dmy)
plot_roc_curve(fprr, tprr)
```


KNN classifier

```
from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier(weights='distance', n_neighbors=4)
knn_clf.fit(X_train, y_train)
    KNeighborsClassifier(n_neighbors=4, weights='distance')

y_knn_pred = knn_clf.predict(X_test)

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_knn_pred)
    0.9714

from scipy.ndimage.interpolation import shift
def shift_digit(digit_array, dx, dy, new=0):
    return shift(digit_array.reshape(28, 28), [dy, dx], cval=new).reshape(784)

plot_digit(shift_digit(some_digit, 5, 1, new=100))
```



```
X_train_expanded = [X_train]
y_train_expanded = [y_train]
for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)):
    shifted_images = np.apply_along_axis(shift_digit, axis=1, arr=X_train, dx=dx, dy=dy)
    X_train_expanded.append(shifted_images)
    y_train_expanded.append(y_train)

X_train_expanded = np.concatenate(X_train_expanded)
y_train_expanded = np.concatenate(y_train_expanded)
X_train_expanded.shape, y_train_expanded.shape
    ((300000, 784), (300000,))

knn_clf.fit(X_train_expanded, y_train_expanded)
    KNeighborsClassifier(n_neighbors=4, weights='distance')

y_knn_expanded_pred = knn_clf.predict(X_test)

accuracy_score(y_test, y_knn_expanded_pred)
```

```
0.9763
```


Exercise solutions

▼ 1. An MNIST Classifier With Over 97% Accuracy

Warning: the next cell may take close to 16 hours to run, or more depending on your hardware.

```
from sklearn.model_selection import GridSearchCV
param_grid = [{'weights': ["uniform", "distance"], 'n_neighbors': [3, 4, 5]}]
knn_clf = KNeighborsClassifier()
grid_search = GridSearchCV(knn_clf, param_grid, cv=5, verbose=3)
grid_search.fit(X_train, y_train)
    Fitting 5 folds for each of 6 candidates, totalling 30 fits
    [CV] n_neighbors=3, weights=uniform .....
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [CV] ..... n_neighbors=3, weights=uniform, score=0.972, total=168.0min
    [CV] n_neighbors=3, weights=uniform ......
    [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 168.0min remaining:
    [CV] ..... n_neighbors=3, weights=uniform, score=0.971, total=12.3min
    [CV] n_neighbors=3, weights=uniform .....
    [Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 180.3min remaining:
    [CV] ..... n_neighbors=3, weights=uniform, score=0.969, total=11.9min
    [CV] n_neighbors=3, weights=uniform .....
    [CV] ..... n_neighbors=3, weights=uniform, score=0.969, total=12.5min
    [CV] n_neighbors=3, weights=uniform ......
    [CV] ..... n_neighbors=3, weights=uniform, score=0.970, total=12.7min
    [CV] n_neighbors=3, weights=distance .....
    [CV] ..... n_neighbors=3, weights=distance, score=0.972, total=12.5min
    [CV] n_neighbors=3, weights=distance .....
    [CV] ..... n_neighbors=3, weights=distance, score=0.972, total=12.8min
    [CV] n_neighbors=3, weights=distance ......
    [CV] ..... n_neighbors=3, weights=distance, score=0.970, total=12.6min
    [CV] n_neighbors=3, weights=distance .....
    [CV] ..... n_neighbors=3, weights=distance, score=0.970, total=12.9min
    [CV] n_neighbors=3, weights=distance ......
    [CV] ..... n_neighbors=3, weights=distance, score=0.971, total=11.3min
    [CV] n_neighbors=4, weights=uniform .....
    [CV] ..... n_neighbors=4, weights=uniform, score=0.969, total=11.0min
    [CV] n_neighbors=4, weights=uniform .....
    [CV] ..... n_neighbors=4, weights=uniform, score=0.968, total=11.0min
    [CV] n_neighbors=4, weights=uniform .....
    [CV] ..... n_neighbors=4, weights=uniform, score=0.968, total=11.0min
    [CV] n_neighbors=4, weights=uniform .....
    [CV] ..... n_neighbors=4, weights=uniform, score=0.967, total=11.0min
    [CV] n_neighbors=4, weights=uniform .....
    [CV] ..... n_neighbors=4, weights=uniform, score=0.970, total=11.0min
    [CV] n_neighbors=4, weights=distance .....
    [CV] ..... n_neighbors=4, weights=distance, score=0.973, total=11.0min
```

```
[CV] n_neighbors=4, weights=distance .....
    [CV] ..... n_neighbors=4, weights=distance, score=0.972, total=11.0min
    [CV] n_neighbors=4, weights=distance ......
    [CV] ..... n_neighbors=4, weights=distance, score=0.970, total=11.0min
    [CV] n_neighbors=4, weights=distance ......
    [CV] ..... n_neighbors=4, weights=distance, score=0.971, total=11.0min
    [CV] n_neighbors=4, weights=distance .....
    [CV] ..... n_neighbors=4, weights=distance, score=0.972, total=11.3min
    [CV] n_neighbors=5, weights=uniform .....
    [CV] ..... n_neighbors=5, weights=uniform, score=0.970, total=10.9min
    [CV] n_neighbors=5, weights=uniform ......
    [CV] ..... n_neighbors=5, weights=uniform, score=0.970, total=11.0min
    [CV] n_neighbors=5, weights=uniform .....
    [CV] ..... n_neighbors=5, weights=uniform, score=0.969, total=11.0min
    [CV] n_neighbors=5, weights=uniform .....
    [CV] ..... n_neighbors=5, weights=uniform, score=0.968, total=11.1min
    [CV] n_neighbors=5, weights=uniform .....
    [CV] ..... n_neighbors=5, weights=uniform, score=0.969, total=11.0min
    [CV] n_neighbors=5, weights=distance ......
    [CV] ..... n_neighbors=5, weights=distance, score=0.970, total=93.6min
    [CV] n_neighbors=5, weights=distance .....
    [CV] ..... n_neighbors=5, weights=distance, score=0.971, total=11.0min
grid_search.best_params_
    {'n_neighbors': 4, 'weights': 'distance'}
grid_search.best_score_
    0.9716166666666666
from sklearn.metrics import accuracy_score
y_pred = grid_search.predict(X_test)
accuracy_score(y_test, y_pred)
    0.9714
```

2. Data Augmentation

```
from scipy.ndimage.interpolation import shift
def shift_image(image, dx, dy):
   image = image.reshape((28, 28))
    shifted_image = shift(image, [dy, dx], cval=0, mode="constant")
   return shifted_image.reshape([-1])
image = X_train[1000]
shifted_image_down = shift_image(image, 0, 5)
shifted_image_left = shift_image(image, -5, 0)
plt.figure(figsize=(12,3))
plt.subplot(131)
plt.title("Original", fontsize=14)
plt.imshow(image.reshape(28, 28), interpolation="nearest", cmap="Greys")
plt.subplot(132)
plt.title("Shifted down", fontsize=14)
plt.imshow(shifted_image_down.reshape(28, 28), interpolation="nearest", cmap="Greys")
plt.subplot(133)
plt.title("Shifted left", fontsize=14)
plt.imshow(shifted_image_left.reshape(28, 28), interpolation="nearest", cmap="Greys")
plt.show()
```

```
Original
                                    Shifted down
                                                              Shifted left
X_train_augmented = [image for image in X_train]
y_train_augmented = [label for label in y_train]
for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)):
    for image, label in zip(X_train, y_train):
        X_train_augmented.append(shift_image(image, dx, dy))
        y_train_augmented.append(label)
X_train_augmented = np.array(X_train_augmented)
y_train_augmented = np.array(y_train_augmented)
shuffle_idx = np.random.permutation(len(X_train_augmented))
X_train_augmented = X_train_augmented[shuffle_idx]
y_train_augmented = y_train_augmented[shuffle_idx]
knn_clf = KNeighborsClassifier(**grid_search.best_params_)
knn_clf.fit(X_train_augmented, y_train_augmented)
     KNeighborsClassifier(n neighbors=4, weights='distance')
Warning: the following cell may take close to an hour to run, depending on your hardware.
```

```
y_pred = knn_clf.predict(X_test)
accuracy_score(y_test, y_pred)
     0.9763
```

By simply augmenting the data, we got a 0.5% accuracy boost.:)

3. Tackle the Titanic dataset

The goal is to predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and so on.

Let's fetch the data and load it:

```
import os
import urllib.request
TITANIC_PATH = os.path.join("datasets", "titanic")
DOWNLOAD_URL = "https://raw.githubusercontent.com/ageron/handson-ml2/master/datasets/titanic/"
def fetch_titanic_data(url=DOWNLOAD_URL, path=TITANIC_PATH):
   if not os.path.isdir(path):
       os.makedirs(path)
   for filename in ("train.csv", "test.csv"):
        filepath = os.path.join(path, filename)
        if not os.path.isfile(filepath):
            print("Downloading", filename)
           urllib.request.urlretrieve(url + filename, filepath)
fetch_titanic_data()
import pandas as pd
def load_titanic_data(filename, titanic_path=TITANIC_PATH):
   csv_path = os.path.join(titanic_path, filename)
   return pd.read_csv(csv_path)
train_data = load_titanic_data("train.csv")
test_data = load_titanic_data("test.csv")
```

The data is already split into a training set and a test set. However, the test data does *not* contain the labels: your goal is to train the best model you can using the training data, then make your predictions on the test data and upload them to Kaggle to see your final score.

Let's take a peek at the top few rows of the training set:

train_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parc
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	
				Cumings, Mrs. John				
4								-

The attributes have the following meaning:

- · PassengerId: a unique identifier for each passenger
- Survived: that's the target, 0 means the passenger did not survive, while 1 means he/she survived.
- · Pclass: passenger class.
- Name, Sex, Age: self-explanatory
- SibSp: how many siblings & spouses of the passenger aboard the Titanic.
- Parch: how many children & parents of the passenger aboard the Titanic.
- · Ticket: ticket id
- · Fare: price paid (in pounds)
- · Cabin: passenger's cabin number
- · Embarked: where the passenger embarked the Titanic

Let's explicitly set the PassengerId column as the index column:

```
train_data = train_data.set_index("PassengerId")
test_data = test_data.set_index("PassengerId")
```

Let's get more info to see how much data is missing:

train data.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 891 entries, 1 to 891
Data columns (total 11 columns):
# Column Non-Null Count Dtype
0 Survived 891 non-null
                             int64
             891 non-null
                             int64
   Pclass
    Name
              891 non-null
                             object
3 Sex
             891 non-null
                             object
4 Age
             714 non-null
                             float64
    SibSp
              891 non-null
                             int64
6 Parch
              891 non-null
                             int64
              891 non-null
    Ticket
                             object
8
   Fare
              891 non-null
                             float64
    Cabin
              204 non-null
                             object
10 Embarked 889 non-null
                             object
dtypes: float64(2), int64(4), object(5)
memory usage: 83.5+ KB
```

```
train_data[train_data["Sex"]=="female"]["Age"].median()
```

27.0

Okay, the **Age**, **Cabin** and **Embarked** attributes are sometimes null (less than 891 non-null), especially the **Cabin** (77% are null). We will ignore the **Cabin** for now and focus on the rest. The **Age** attribute has about 19% null values, so we will need to decide what to do with them. Replacing

null values with the median age seems reasonable. We could be a bit smarter by predicting the age based on the other columns (for example, the median age is 37 in 1st class, 29 in 2nd class and 24 in 3rd class), but we'll keep things simple and just use the overall median age.

The **Name** and **Ticket** attributes may have some value, but they will be a bit tricky to convert into useful numbers that a model can consume. So for now, we will ignore them.

Let's take a look at the numerical attributes:

train_data.describe()

	Survived	Pclass	Age	SibSp	Parch	
count	891.000000	891.000000	714.000000	891.000000	891.000000	891
mean	0.383838	2.308642	29.699113	0.523008	0.381594	32
std	0.486592	0.836071	14.526507	1.102743	0.806057	49
min	0.000000	1.000000	0.416700	0.000000	0.000000	0
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14
4						•

- Yikes, only 38% Survived! 🔞 That's close enough to 40%, so accuracy will be a reasonable metric to evaluate our model.
- The mean Fare was £32.20, which does not seem so expensive (but it was probably a lot of money back then).
- The mean Age was less than 30 years old.

Let's check that the target is indeed 0 or 1:

```
train_data["Survived"].value_counts()
     0     549
     1     342
     Name: Survived, dtype: int64
```

Now let's take a quick look at all the categorical attributes:

```
train_data["Pclass"].value_counts()
          216
     1
          184
     Name: Pclass, dtype: int64
train_data["Sex"].value_counts()
               577
     male
     female
               314
     Name: Sex, dtype: int64
train_data["Embarked"].value_counts()
     S
          644
          168
     \mathbf{C}
           77
     Name: Embarked, dtype: int64
```

The Embarked attribute tells us where the passenger embarked: C=Cherbourg, Q=Queenstown, S=Southampton.

Now let's build our preprocessing pipelines, starting with the pipeline for numerical attributes:

```
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
```

```
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([
       ("imputer", SimpleImputer(strategy="median")),
       ("scaler", StandardScaler())
Now we can build the pipeline for the categorical attributes:
from sklearn.preprocessing import OneHotEncoder
cat_pipeline = Pipeline([
       ("imputer", SimpleImputer(strategy="most_frequent")),
       ("cat_encoder", OneHotEncoder(sparse=False)),
Finally, let's join the numerical and categorical pipelines:
from sklearn.compose import ColumnTransformer
num_attribs = ["Age", "SibSp", "Parch", "Fare"]
cat_attribs = ["Pclass", "Sex", "Embarked"]
preprocess_pipeline = ColumnTransformer([
       ("num", num_pipeline, num_attribs),
       ("cat", cat_pipeline, cat_attribs),
Cool! Now we have a nice preprocessing pipeline that takes the raw data and outputs numerical input features that we can feed to any Machine
Learning model we want.
X_train = preprocess_pipeline.fit_transform(
   train_data[num_attribs + cat_attribs])
X train
    , 1.
                                    ],
            [ 0.6638609 , 0.43279337, -0.47367361, ..., 1.
                       , 0.
                                    ],
            [-0.25833664, -0.4745452 , -0.47367361, ..., 0.
             0.
                      , 1.
                                    ],
            [-0.10463705, 0.43279337, 2.00893337, ..., 0.
             0.
                       , 1.
                                    ],
            [-0.25833664, -0.4745452, -0.47367361, ..., 1.
                       , 0.
                                   ],
            [ 0.20276213, -0.4745452 , -0.47367361, ..., 0.
             1.
                       , 0.
                                    ]])
Let's not forget to get the labels:
y_train = train_data["Survived"]
We are now ready to train a classifier. Let's start with a RandomForestClassifier:
from sklearn.ensemble import RandomForestClassifier
forest_clf = RandomForestClassifier(n_estimators=100, random_state=42)
forest_clf.fit(X_train, y_train)
    RandomForestClassifier(random_state=42)
Great, our model is trained, let's use it to make predictions on the test set:
X_test = preprocess_pipeline.transform(test_data[num_attribs + cat_attribs])
```

y_pred = forest_clf.predict(X_test)

And now we could just build a CSV file with these predictions (respecting the format excepted by Kaggle), then upload it and hope for the best. But wait! We can do better than hope. Why don't we use cross-validation to have an idea of how good our model is?

```
from sklearn.model_selection import cross_val_score
forest_scores = cross_val_score(forest_clf, X_train, y_train, cv=10)
forest_scores.mean()
    0.8137578027465668
```

Okay, not too bad! Looking at the <u>leaderboard</u> for the Titanic competition on Kaggle, you can see that our score is in the top 2%, woohoo! Some Kagglers reached 100% accuracy, but since you can easily find the <u>list of victims</u> of the Titanic, it seems likely that there was little Machine Learning involved in their performance!

Let's try an SVC:

```
from sklearn.svm import SVC

svm_clf = SVC(gamma="auto")
svm_scores = cross_val_score(svm_clf, X_train, y_train, cv=10)
svm_scores.mean()

0.8249313358302123
```

Great! This model looks better.

But instead of just looking at the mean accuracy across the 10 cross-validation folds, let's plot all 10 scores for each model, along with a box plot highlighting the lower and upper quartiles, and "whiskers" showing the extent of the scores (thanks to Nevin Yilmaz for suggesting this visualization). Note that the <code>boxplot()</code> function detects outliers (called "fliers") and does not include them within the whiskers. Specifically, if the lower quartile is Q_1 and the upper quartile is Q_3 , then the interquartile range $IQR = Q_3 - Q_1$ (this is the box's height), and any score lower than $Q_1 - 1.5 \times IQR$ is a flier, and so is any score greater than $Q_3 + 1.5 \times IQR$.

```
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 4))
plt.plot([1]*10, svm_scores, ".")
plt.plot([2]*10, forest_scores, ".")
plt.boxplot([svm_scores, forest_scores], labels=("SVM","Random Forest"))
plt.ylabel("Accuracy", fontsize=14)
plt.show()
```


The random forest classifier got a very high score on one of the 10 folds, but overall it had a lower mean score, as well as a bigger spread, so it looks like the SVM classifier is more likely to generalize well.

To improve this result further, you could:

- · Compare many more models and tune hyperparameters using cross validation and grid search,
- Do more feature engineering, for example:
 - Try to convert numerical attributes to categorical attributes: for example, different age groups had very different survival rates (see below), so it may help to create an age bucket category and use it instead of the age. Similarly, it may be useful to have a special

category for people traveling alone since only 30% of them survived (see below).

- Replace SibSp and Parch with their sum.
- Try to identify parts of names that correlate well with the Survived attribute.
- Use the Cabin column, for example take its first letter and treat it as a categorical attribute.

```
train_data["AgeBucket"] = train_data["Age"] // 15 * 15
train_data[["AgeBucket", "Survived"]].groupby(['AgeBucket']).mean()
```

Survived

AgeBucket		
0.0	0.576923	
15.0	0.362745	
30.0	0.423256	
45.0	0.404494	
60.0	0.240000	

train_data["RelativesOnboard"] = train_data["SibSp"] + train_data["Parch"]
train_data[["RelativesOnboard", "Survived"]].groupby(['RelativesOnboard']).mean()

Survived

RelativesOnboard				
0	0.303538			
1	0.552795			
2	0.578431			
3	0.724138			
4	0.200000			
5	0.136364			
6	0.333333			
-	0 000000			

4. Spam classifier

First, let's fetch the data:

```
import os
import tarfile
import urllib.request
DOWNLOAD_ROOT = "http://spamassassin.apache.org/old/publiccorpus/"
HAM_URL = DOWNLOAD_ROOT + "20030228_easy_ham.tar.bz2"
SPAM URL = DOWNLOAD_ROOT + "20030228_spam.tar.bz2"
SPAM_PATH = os.path.join("datasets", "spam")
def fetch_spam_data(ham_url=HAM_URL, spam_url=SPAM_URL, spam_path=SPAM_PATH):
   if not os.path.isdir(spam_path):
       os.makedirs(spam_path)
    for filename, url in (("ham.tar.bz2", ham_url), ("spam.tar.bz2", spam_url)):
       path = os.path.join(spam_path, filename)
       if not os.path.isfile(path):
           urllib.request.urlretrieve(url, path)
       tar_bz2_file = tarfile.open(path)
       tar_bz2_file.extractall(path=spam_path)
       tar_bz2_file.close()
fetch_spam_data()
```

Next, let's load all the emails:

```
HAM DIR = os.path.join(SPAM PATH, "easy ham")
SPAM_DIR = os.path.join(SPAM_PATH, "spam")
ham_filenames = [name for name in sorted(os.listdir(HAM_DIR)) if len(name) > 20]
spam_filenames = [name for name in sorted(os.listdir(SPAM_DIR)) if len(name) > 20]
len(ham_filenames)
     2500
len(spam_filenames)
     500
We can use Python's email module to parse these emails (this handles headers, encoding, and so on):
import email
import email.policy
def load_email(is_spam, filename, spam_path=SPAM_PATH):
   directory = "spam" if is_spam else "easy_ham"
   with open(os.path.join(spam_path, directory, filename), "rb") as f:
        return email.parser.BytesParser(policy=email.policy.default).parse(f)
ham emails = [load email(is spam=False, filename=name) for name in ham filenames]
spam_emails = [load_email(is_spam=True, filename=name) for name in spam_filenames]
Let's look at one example of ham and one example of spam, to get a feel of what the data looks like:
print(ham_emails[1].get_content().strip())
     Martin A posted:
     Tassos Papadopoulos, the Greek sculptor behind the plan, judged that the
     limestone of Mount Kerdylio, 70 miles east of Salonika and not far from the
     Mount Athos monastic community, was ideal for the patriotic sculpture.
     As well as Alexander's granite features, 240 ft high and 170 ft wide, a
     museum, a restored amphitheatre and car park for admiring crowds are
     planned
    So is this mountain limestone or granite?
    If it's limestone, it'll weather pretty fast.
     ------ Yahoo! Groups Sponsor ----->
    4 DVDs Free +s&p Join Now
    http://us.click.yahoo.com/pt6YBB/NXiEAA/mG3HAA/7gSolB/TM
    To unsubscribe from this group, send an email to:
     forteana-unsubscribe@egroups.com
    Your use of Yahoo! Groups is subject to <a href="http://docs.yahoo.com/info/terms/">http://docs.yahoo.com/info/terms/</a>
print(spam_emails[6].get_content().strip())
    Help wanted. We are a 14 year old fortune 500 company, that is
     growing at a tremendous rate. We are looking for individuals who
     want to work from home.
    This is an opportunity to make an excellent income. No experience
    is required. We will train you.
    So if you are looking to be employed from home with a career that has
    vast opportunities, then go:
    http://www.basetel.com/wealthnow
    We are looking for energetic and self motivated people. If that is you
     than click on the link and fill out the form, and one of our
```

employement specialist will contact you.

To be removed from our link simple go to:

http://www.basetel.com/remove.html

```
4139v0LW7-758DoDY1425FRhM1-764SMFc8513fCsL140
```

Some emails are actually multipart, with images and attachments (which can have their own attachments). Let's look at the various types of structures we have:

```
def get email structure(email):
    if isinstance(email, str):
        return email
   payload = email.get_payload()
    if isinstance(payload, list):
        return "multipart({})".format(", ".join([
            get_email_structure(sub_email)
            for sub_email in payload
        ]))
    else:
        return email.get_content_type()
from collections import Counter
def structures_counter(emails):
    structures = Counter()
    for email in emails:
        structure = get_email_structure(email)
        structures[structure] += 1
    return structures
structures_counter(ham_emails).most_common()
     [('text/plain', 2408),
      ('multipart(text/plain, application/pgp-signature)', 66),
      ('multipart(text/plain, text/html)', 8),
      ('multipart(text/plain, text/plain)', 4),
      ('multipart(text/plain)', 3),
      ('multipart(text/plain, application/octet-stream)', 2),
      ('multipart(text/plain, text/enriched)', 1),
      ('multipart(text/plain, application/ms-tnef, text/plain)', 1),
      ('multipart(multipart(text/plain, text/plain, text/plain), application/pgp-signature)',
       1).
      ('multipart(text/plain, video/mng)', 1),
      ('multipart(text/plain, multipart(text/plain))', 1),
      ('multipart(text/plain, application/x-pkcs7-signature)', 1),
      ('multipart(text/plain, multipart(text/plain, text/plain), text/rfc822-headers)',
       1),
      ('multipart(text/plain, multipart(text/plain, text/plain), multipart(multipart(text/plain, application/x-pkcs7-signature)))',
      ('multipart(text/plain, application/x-java-applet)', 1)]
structures_counter(spam_emails).most_common()
     [('text/plain', 218),
      ('text/html', 183),
      ('multipart(text/plain, text/html)', 45),
      ('multipart(text/html)', 20),
('multipart(text/plain)', 19),
      ('multipart(multipart(text/html))', 5),
      ('multipart(text/plain, image/jpeg)', 3),
      ('multipart(text/html, application/octet-stream)', 2),
('multipart(text/plain, application/octet-stream)', 1),
      ('multipart(text/html, text/plain)', 1),
      ('multipart(multipart(text/html), application/octet-stream, image/jpeg)', 1),
      ('multipart(multipart(text/plain, text/html), image/gif)', 1),
      ('multipart/alternative', 1)]
```

It seems that the ham emails are more often plain text, while spam has quite a lot of HTML. Moreover, quite a few ham emails are signed using PGP, while no spam is. In short, it seems that the email structure is useful information to have.

Now let's take a look at the email headers:

import re

```
for header, value in spam emails[0].items():
    print(header,":",value)
     Return-Path : <12a1mailbot1@web.de>
     Delivered-To: <a href="mailto:zzzz@localhost.spamassassin.taint.org">zzzz@localhost.spamassassin.taint.org</a>
     Received : from localhost (localhost [127.0.0.1])
                                                                     by phobos.labs.spamassassin.taint.org (Postfix) with ESMTP id 136B943C32
     Received : from mail.webnote.net [193.120.211.219]
                                                                     by localhost with POP3 (fetchmail-5.9.0)
                                                                                                                           for zzzz@localhost (single-drop)
     Received : from dd_it7 ([210.97.77.167])
                                                           by webnote.net (8.9.3/8.9.3) with ESMTP id NAA04623
                                                                                                                           for <zzzz@spamassassin.taint.org</pre>
     From : <u>12a1mailbot1@web.de</u>
     Received: from r-smtp.korea.com - 203.122.2.197 by dd_it7 with Microsoft SMTPSVC(5.5.1775.675.6);
                                                                                                                            Sat, 24 Aug 2002 09:42:10 +0900
     To : <a href="mailto:dcek1a1@netsgo.com">dcek1a1@netsgo.com</a>
     Subject : Life Insurance - Why Pay More?
     Date: Wed, 21 Aug 2002 20:31:57 -1600
     {\sf MIME-Version}: 1.0
     Message-ID : <0103c1042001882DD_IT7@dd_it7>
     Content-Type : text/html; charset="iso-8859-1"
     {\tt Content-Transfer-Encoding: quoted-printable}
```

There's probably a lot of useful information in there, such as the sender's email address (12a1mailbot1@web.de looks fishy), but we will just focus on the Subject header:

```
spam_emails[0]["Subject"]
    'Life Insurance - Why Pay More?'
```

Okay, before we learn too much about the data, let's not forget to split it into a training set and a test set:

```
import numpy as np
from sklearn.model_selection import train_test_split

X = np.array(ham_emails + spam_emails, dtype=object)
y = np.array([0] * len(ham_emails) + [1] * len(spam_emails))

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Okay, let's start writing the preprocessing functions. First, we will need a function to convert HTML to plain text. Arguably the best way to do this would be to use the great BeautifulSoup library, but I would like to avoid adding another dependency to this project, so let's hack a quick & dirty solution using regular expressions (at the risk of univolong radiańcé destroying all enlightenment). The following function first drops the head section, then converts all <a> tags to the word HYPERLINK, then it gets rid of all HTML tags, leaving only the plain text. For readability, it also replaces multiple newlines with single newlines, and finally it unescapes html entities (such as > or):

```
from html import unescape
def html_to_plain_text(html):
    text = re.sub('<head.*?>.*?</head>', '', html, flags=re.M | re.S | re.I)
   text = re.sub('<a\s.*?>', ' HYPERLINK ', text, flags=re.M | re.S | re.I)
text = re.sub('<.*?>', '', text, flags=re.M | re.S)
    text = re.sub(r'(\s*\n)+', '\n', text, flags=re.M | re.S)
    return unescape(text)
Let's see if it works. This is HTML spam:
html_spam_emails = [email for email in X_train[y_train==1]
                    if get_email_structure(email) == "text/html"]
sample_html_spam = html_spam_emails[7]
print(sample_html_spam.get_content().strip()[:1000], "...")
     <html><HEAD><TITLE></TITLE></META http-equiv="Content-Type" content="text/html; charset=windows-1252"><STYLE>A:link {TEX-DECORATION: none
     <BODY text="#000000" vLink="#0033ff" link="#0033ff" bgColor="#CCCC99"><TABLE borderColor="#660000" cellSpacing="0" cellPadding="0" borde</pre>
     <font size="6" face="Arial, Helvetica, sans-serif" color="#660000">
     <b>OTC</b></font></TD></TR><TR><TD height="2" bgcolor="#6a694f">
     <font size="5" face="Times New Roman, Times, serif" color="#FFFFFF">
     <b>&nbsp;Newsletter</b></font></TD><TD height="2" bgcolor="#6a694f"><div align="right"><font color="#FFFFFF">
     <b>Discover Tomorrow's Winners&nbsp;</b></font></div></TD></TR><TD height="25" colspan="2" bgcolor="#CCCC99">
```

And this is the resulting plain text:

Great! Now let's write a function that takes an email as input and returns its content as plain text, whatever its format is:

```
def email_to_text(email):
   html = None
   for part in email.walk():
       ctype = part.get_content_type()
       if not ctype in ("text/plain", "text/html"):
           continue
       try:
           content = part.get_content()
        except: # in case of encoding issues
           content = str(part.get_payload())
        if ctype == "text/plain":
           return content
        else:
           html = content
   if html:
        return html_to_plain_text(html)
print(email_to_text(sample_html_spam)[:100], "...")
    OTC
     Newsletter
    Discover Tomorrow's Winners
    For Immediate Release
    Cal-Bay (Stock Symbol: CBYI)
    Wat ...
```

\$ pip3 install nltk

Let's throw in some stemming! For this to work, you need to install the Natural Language Toolkit (NLTK). It's as simple as running the following command (don't forget to activate your virtualenv first; if you don't have one, you will likely need administrator rights, or use the --user option):

```
try:
    import nltk

stemmer = nltk.PorterStemmer()
    for word in ("Computations", "Computation", "Computing", "Computed", "Compute", "Compulsive"):
        print(word, "=>", stemmer.stem(word))

except ImportError:
    print("Error: stemming requires the NLTK module.")
    stemmer = None

    Computations => comput
    Computation => comput
    Computed => comput
    Computed => comput
    Compute => compute
    Comp
```

We will also need a way to replace URLs with the word "URL". For this, we could use hard core <u>regular expressions</u> but we will just use the <u>urlextract</u> library. You can install it with the following command (don't forget to activate your virtualenv first; if you don't have one, you will likely need administrator rights, or use the --user option):

```
$ pip3 install urlextract

# if running this notebook on Colab or Kaggle, we just pip install urlextract
if IS_COLAB or IS_KAGGLE:
    %pip install -q -U urlextract
```

Note: inside a Jupyter notebook, always use %pip instead of !pip, as !pip may install the library inside the wrong environment, while %pip makes sure it's installed inside the currently running environment.

```
import urlextract # may require an Internet connection to download root domain names

url_extractor = urlextract.URLExtract()
print(url_extractor.find_urls("Will it detect github.com and https://youtu.be/7Pq-S557XQU?t=3m32s"))
except ImportError:
   print("Error: replacing URLs requires the urlextract module.")
   url_extractor = None

['github.com', 'https://youtu.be/7Pq-S557XQU?t=3m32s']
```

We are ready to put all this together into a transformer that we will use to convert emails to word counters. Note that we split sentences into words using Python's split() method, which uses whitespaces for word boundaries. This works for many written languages, but not all. For example, Chinese and Japanese scripts generally don't use spaces between words, and Vietnamese often uses spaces even between syllables. It's okay in this exercise, because the dataset is (mostly) in English.

```
from sklearn.base import BaseEstimator, TransformerMixin
class EmailToWordCounterTransformer(BaseEstimator, TransformerMixin):
   def __init__(self, strip_headers=True, lower_case=True, remove_punctuation=True,
                 replace_urls=True, replace_numbers=True, stemming=True):
        self.strip headers = strip_headers
       self.lower_case = lower_case
        self.remove_punctuation = remove_punctuation
       self.replace_urls = replace_urls
        self.replace_numbers = replace_numbers
       self.stemming = stemming
   def fit(self, X, y=None):
       return self
   def transform(self, X, y=None):
       X_transformed = []
        for email in X:
           text = email_to_text(email) or ""
           if self.lower_case:
               text = text.lower()
            if self.replace_urls and url_extractor is not None:
               urls = list(set(url_extractor.find_urls(text)))
               urls.sort(key=lambda url: len(url), reverse=True)
                for url in urls:
                   text = text.replace(url, " URL ")
            if self.replace_numbers:
                text = re.sub(r'\d+(?:\d*)?(?:[eE][+-]?\d+)?', 'NUMBER', text)
            if self.remove_punctuation:
                text = re.sub(r'\W+', ' ', text, flags=re.M)
           word_counts = Counter(text.split())
            if self.stemming and stemmer is not None:
                stemmed_word_counts = Counter()
                for word, count in word_counts.items():
                    stemmed_word = stemmer.stem(word)
                    stemmed_word_counts[stemmed_word] += count
                word_counts = stemmed_word_counts
           X transformed.append(word counts)
        return np.array(X_transformed)
Let's try this transformer on a few emails:
X_{few} = X_{train}[:3]
```

X_few_wordcounts = EmailToWordCounterTransformer().fit_transform(X_few)

X_few_wordcounts

This looks about right!

Now we have the word counts, and we need to convert them to vectors. For this, we will build another transformer whose fit() method will build the vocabulary (an ordered list of the most common words) and whose transform() method will use the vocabulary to convert word counts to vectors. The output is a sparse matrix.

```
from scipy.sparse import csr_matrix
class WordCounterToVectorTransformer(BaseEstimator, TransformerMixin):
   def __init__(self, vocabulary_size=1000):
       self.vocabulary_size = vocabulary_size
   def fit(self, X, y=None):
       total_count = Counter()
       for word_count in X:
           for word, count in word_count.items():
               total_count[word] += min(count, 10)
       most_common = total_count.most_common()[:self.vocabulary_size]
       self.vocabulary_ = {word: index + 1 for index, (word, count) in enumerate(most_common)}
       return self
   def transform(self, X, y=None):
       rows = []
       cols = []
       data = []
       for row, word_count in enumerate(X):
           for word, count in word_count.items():
               rows.append(row)
               cols.append(self.vocabulary_.get(word, 0))
               data.append(count)
       return csr_matrix((data, (rows, cols)), shape=(len(X), self.vocabulary_size + 1))
vocab_transformer = WordCounterToVectorTransformer(vocabulary_size=10)
X few vectors = vocab transformer.fit transform(X few wordcounts)
X_few_vectors
     <3x11 sparse matrix of type '<class 'numpy.longlong'>'
            with 20 stored elements in Compressed Sparse Row format>
X_few_vectors.toarray()
    [99, 11, 9, 8, 3, 1, 3, 1, 3, 2,
                                                   3],
                                                   0]], dtype=int64)
                0, 1, 2, 3, 4, 1, 2,
                                           0,
```

What does this matrix mean? Well, the 99 in the second row, first column, means that the second email contains 99 words that are not part of the vocabulary. The 11 next to it means that the first word in the vocabulary is present 11 times in this email. The 9 next to it means that the second word is present 9 times, and so on. You can look at the vocabulary to know which words we are talking about. The first word is "the", the second word is "of", etc.

```
'url': 5,
'all': 6,
'in': 7,
'christian': 8,
'on': 9,
'by': 10}
```

We are now ready to train our first spam classifier! Let's transform the whole dataset:

```
from sklearn.pipeline import Pipeline

preprocess_pipeline = Pipeline([
    ("email_to_wordcount", EmailToWordCounterTransformer()),
    ("wordcount_to_vector", WordCounterToVectorTransformer()),
])

X_train_transformed = preprocess_pipeline.fit_transform(X_train)
```

Note: to be future-proof, we set solver="lbfgs" since this will be the default value in Scikit-Learn 0.22.

Over 98.5%, not bad for a first try!:) However, remember that we are using the "easy" dataset. You can try with the harder datasets, the results won't be so amazing. You would have to try multiple models, select the best ones and fine-tune them using cross-validation, and so on.

But you get the picture, so let's stop now, and just print out the precision/recall we get on the test set:

```
from sklearn.metrics import precision_score, recall_score

X_test_transformed = preprocess_pipeline.transform(X_test)

log_clf = LogisticRegression(solver="lbfgs", max_iter=1000, random_state=42)

log_clf.fit(X_train_transformed, y_train)

y_pred = log_clf.predict(X_test_transformed)

print("Precision: {:.2f}%".format(100 * precision_score(y_test, y_pred)))

print("Recall: {:.2f}%".format(100 * recall_score(y_test, y_pred)))

Precision: 95.88%

Recall: 97.89%
```

GitHub Link:

https://github.com/momer22/Machine-Learning---Supervised-Learning---Classification-on-Colab-using-MNIST-dataset

X