(자연과학)

주체104(2015)년 제61권 제5호

Vol. 61 No. 5 JUCHE104(2015).

제곱불변연산자들이 합이 D-거꿀에 대한 연구

리효일, 명금철

론문에서는 일반화된 거꿀리론에서 중요하게 제기되는 힐베르트공간에서 사영연산자의 합의 D-거꿀의 표시식을 연구하였다.

선행연구[1]에서는 사영연산자 P와 Q의 합과 차의 D-거꿀을 구하는 문제를 제기하였으며 PQ=QP=0인 경우에 결과를 얻었다.

P 와 Q에 대한 제한이 없이 P, Q, P^{D} , Q^{D} 의 함수로서 $(P+Q)^{\mathrm{D}}$ 을 일반적으로 표시하는 문제는 대단히 어려우며 아직까지 미해명문제로 남아있다.[2]

선행연구[3]에서는 조건 PQP=0, PQP=P, PQP=PQ를 만족시키는 경우에 P와 Q의 합과 차의 D-거꿀을 구하였으며 선행연구[4]에서는 복소수체우에서 제곱같기행렬의 특수한 결합인 aP+bQ-cPQ에 대하여 D-거꿀의 표시식을 얻었다.

선행연구[5]에서는 힐베르트공간에서 정의된 유계선형연산자가 두제곱불변성을 만족시킬 때 우와 같은 세가지 조건밑에서 aP+bQ+cPQ+dQP의 D-거꿀가능성과 그 표시식을 구하였다.

론문에서는 우와 같은 세가지 조건밑에서 우의 결과들을 일반화하여

$$aP + bQ + cPQ + dQP + eQPQ$$

의 D-거꿀가능성과 그 표시식을 연구하였다.

보조정리 1[6] $A \in B(X)$, $B \in B(Y)$, $C \in B(Y, X)$ 라고 하자.

이때
$$A$$
 와 B 가 D -거꿀가능하면 $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$, $N = \begin{pmatrix} B & 0 \\ C & A \end{pmatrix}$ 도 D -거꿀가능하며

$$M^{\mathrm{D}} = \begin{pmatrix} A^{\mathrm{D}} & X \\ 0 & B^{\mathrm{D}} \end{pmatrix}, \ N^{\mathrm{D}} = \begin{pmatrix} B^{\mathrm{D}} & 0 \\ X & A^{\mathrm{D}} \end{pmatrix}$$
와 같이 표시된다. 여기서

$$X = (A^{\rm D})^2 \left[\sum_{i=0}^{\infty} (A^{\rm D})^i CB^i \right] (I - BB^{\rm D}) + (I - AA^{\rm D}) \left[\sum_{i=0}^{\infty} A^i C(B^{\rm D})^i \right] (B^{\rm D})^2 - A^{\rm D} CB^{\rm D}.$$

보조정리 2[6] $A \in B(X)$, $B \in B(Y)$, $C \in B(Y, X)$ 라고 하자.

만일
$$A$$
가 거꿀가능하고 $B^k=0$ 이면 $M=\begin{pmatrix}A&0\\C&B\end{pmatrix}$ 는 $D-$ 거꿀가능하고 $M^D=\begin{pmatrix}A^{-1}&0\\C&b\end{pmatrix}$

와 같이 표시된다. 여기서 $X = \sum_{i=0}^{k-1} B^{k-1-i} CA^{i-k-1}$ 이다.

보조정리 3 $A, B \in B(H)$ 라고 하면 다음의 조건들은 동등하다.

- i) $R(B) \subseteq R(A)$
- ii) B = AC를 만족시키는 $C \in B(H)$ 가 존재한다.

정리 1 P, Q는 제곱불변연산자이고 $a, b, c, d, e \in \mathbb{C}, ab \neq 0$ 이라고 하자.

PQP = 0일 때 aP + bQ + cPQ + dQP + eQPQ는 D- 거꿀을 가지며 다음과 같이 표시된다.

$$(aP + bQ + cPQ + dQP + eQPQ)^{D} = P/a + Q/b - (1/a + 1/b + c/(ab))PQ -$$

 $-(1/a + 1/b + d/(ab))QP + (1/a + 2/b + c/(ab) + d/(ab) - e/b^2 + cd/(ab^2))QPQ$

증명 일반성을 잃지 않고 P, Q를 직교연산자라고 할수 있다.

보조정리 3으로부터 조건 PQP = 0은 $R(QP) \subseteq N(P) \land R(QP) \subseteq R(Q)$ 로 된다.

 $Q(\overline{R(QP)} \oplus R(P)) \subseteq \overline{R(QP)}$ 이 므로 공간 $H \leftarrow H = \overline{R(QP)} \oplus R(P) \oplus (R(QP)^{\perp} \ominus R(P))$ 로 분

리된다는것을 알수 있다. 따라서 P와 Q를 $P=\begin{pmatrix}0&0&0\\0&I&0\\0&0&0\end{pmatrix}$, $Q=\begin{pmatrix}I&Q_{12}&Q_{13}\\0&0&Q_{23}\\0&0&Q_{33}\end{pmatrix}$ 과 같이 표시

할수 있다. 여기서 $\overline{R(OP)}$ 는 R(OP)의 폐포를 나타낸다.

그런데 $Q^2 = Q$ 이므로 $Q_{33}^2 = Q_{33}$ 이고 $R(QP)^{\perp} = R(Q_{33}) \oplus R(Q_{33})^{\perp} \oplus R(P)$ 이므로 P 와 Q는 공간분해 $H = \overline{R(QP)} \oplus R(P) \oplus R(Q_{33}) \oplus R(Q_{33})^{\perp}$ 밑에서 다음과 같이 표시된다.

Q의 제곱같기성으로부터 $Q'_{23}Q''_{33} = Q''_{23}$, $Q_{12}Q'_{23} + Q'_{13} = 0$, $Q_{12}Q''_{23} + Q'_{13}Q''_{33} = 0$ 이므로

$$aP + bQ + cPQ + dQP + eQPQ = \begin{pmatrix} bI & (b+d)Q_{12} & bQ_{13}' + eQ_{13}Q_{23}' & bQ_{13}'' + eQ_{12}Q_{23}'' \\ 0 & aI & (b+c)Q_{23}' & (b+c)Q_{23}'' \\ 0 & 0 & bI & bQ_{33}'' \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

 $a, b \neq 0$ 이므로 $\overline{R(QP)} \oplus R(P) \oplus R(Q_{33})$ 우에서 블로크행렬은 가역이다.

그러므로 블로크행렬 $\begin{pmatrix} bI & (b+d)Q_{12} & bQ_{13}' + eQ_{12}Q_{23}' \\ 0 & aI & (b+c)Q_{23}' \\ 0 & 0 & bI \end{pmatrix}$ 의 거꿀행렬은 다음과 같다.

$$\begin{pmatrix} I/b & -(b+d)/(ab) & -[(b+c)(b+c)+ab-ae]/(ab^{2}) \cdot Q'_{13} \\ 0 & I/a & -(b+c)/(ab) \cdot Q'_{23} \\ 0 & 0 & I/b \end{pmatrix}$$

$$\begin{pmatrix} I/b & -(b+d)/(ab) & -[(b+c)(b+c)+ab-ae]/(ab^2) \cdot Q_{13}' \\ 0 & I/a & -(b+c)/(ab) \cdot Q_{23}' \\ 0 & 0 & I/b \end{pmatrix}^2 \begin{pmatrix} bQ_{13}'' + eQ_{12}Q_{23}'' \\ (b+c)Q_{23}'' \\ bQ_{33}'' \end{pmatrix} =$$

$$= \begin{pmatrix} Q_{13}''/b - [(b+c)(b+d) + ae)/(ab^2) + 2/b]Q_{13}'Q_{33}'' \\ -(b+c)/(ab) \cdot Q_{23}'' \\ Q_{33}''/b \end{pmatrix}$$

보조정리 1에서 B=0이라고 놓으면

$$(aP + bQ + cPQ + dQP + eQPQ)^{D} = P/a + Q/b - [1/a + 1/b + c/(ab)]PQ - -[1/a + 1/b + d/(ab)]QP + [1/a + 2/b + c/(ab) + d/(ab) - e/b^{2} + cd/(ab^{2})]QPQ$$

가 성립되므로 정리가 증명된다.(증명끝)

정리 2 P, Q 를 제곱불변연산자라고 하면 a, b, c, d, $e \in C$, $ab \neq 0$, PQP = P 일 때 aP + bQ + cPQ + dQP + eQPQ 는 D - 거꿀을 가지며 다음과 같이 표시된다.

i) $a+b+c+d+e \neq 0$

$$(aP + bQ + cPQ + dQP + eQPQ)^{D} = \frac{(a+c)(a+d)}{(a+b+c+d+e)^{3}}P + \frac{Q}{b} + \frac{(b+c+e)(a+c)}{(a+b+c+d+e)^{3}}PQ + \frac{(a+d)(b+d+e)}{(a+b+c+d+e)^{3}}QP + \left[\frac{(b+c+e)(b+d+e)}{(a+b+c+d+e)^{3}} - \frac{1}{b}\right]QPQ$$

ii) a+b+c+d+e=0, $(aP+bQ+cPQ+dQP+eQPQ)^{D}=(Q-QPQ)/b$

정리 3 P,Q를 제곱불변연산자라고 하면 $a,b,c,d,e\in C,ab\neq 0,PQP=PQ$ 일 때 aP+bQ+cPQ+dQP+eQPQ는 D-거꿀을 가지며 다음과 같이 표시된다.

i) $a+b+c+d+e \neq 0$

$$(aP + bQ + cPQ + dQP + eQPQ)^{D} = \frac{1}{a}P + \frac{1}{b}Q + \left[\frac{1}{a+b+c+d+e} - \frac{b+d+e}{(a+b+c+d+e)^{2}} - \frac{1}{a}\right]PQ - \frac{a+b+d}{ab}QP + \left[\frac{b+d+e}{(a+b+c+d+e)^{2}} + \frac{b+d}{ab}\right]QPQ$$

ii) a+b+c+d+e=0

 $(aP + bQ + cPQ + dQP + eQPQ)^{D} = P/a + Q/b - PQ/a - (1/a + 1/b + d/(ab))QP + (b+d)/(ab) \cdot QPQ$ 증명 PQP = PQ 일 때 공간분해 $H = R(P) \oplus R(P)^{\perp}$ 밑에서 P와 Q는 다음과 같다.

$$P = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} Q_1 & 0 \\ Q_2 & Q_3 \end{pmatrix}$$

Q의 제곱같기성으로부터 $Q_1^2 = Q_1$, $Q_3^2 = Q_3$, $Q_3Q_2 = 0$, $Q_2Q_1 + Q_3^2 = Q_2$ 이다.

공간분해 $H=R(Q_1)^\perp\oplus R(Q_1)\oplus R(Q_3^*)\oplus R(Q_3^*)^\perp$ 에 관하여 P와 Q는

과 같이 표시할수 있다. 여기서 $Q_{24}Q_{11} + Q_{31}Q_{21} = Q_{23}$ 이다.

i) $a+b+c+d+e\neq 0$ 인 경우 다음의 식이 성립된다.

$$aP + bQ + cPQ + dQP + eQPQ = \begin{pmatrix} aI & 0 & 0 & 0 \\ (b+c+d+e)Q_{11} & (a+b+c+d+e)I & 0 & 0 \\ (b+d)Q_{21} & 0 & bI & 0 \\ (b+d)Q_{23} + eQ_{24}Q_{11} & (b+d+e)Q_{24} & bQ_{31} & 0 \end{pmatrix}$$

$$ab \neq 0 \land a + b + c + d + e \neq 0$$
이므로 부분행렬
$$\begin{pmatrix} aI & 0 & 0 \\ (b + c + d + e)Q_{11} & (a + b + c + d + e)I & 0 \\ (b + d)Q_{21} & 0 & bI \end{pmatrix}$$
의
거꿀행렬은
$$\begin{pmatrix} I/a & 0 & 0 \\ -(b + c + d + e)/[a(a + b + c + d + e)] \cdot Q_{11} & I/(a + b + c + d + e) & 0 \\ -(b + d)/(ab) \cdot Q_{21} & 0 & I/b \end{pmatrix}$$
이다.
보조정리 2로부터 다음의 실이 성립되다

$$(aP + bQ + cPQ + dQP + eQPQ)^{D} =$$

$$= \begin{pmatrix} I/a & 0 & 0 & 0 \\ -(b+c+d+e)/(a(a+b+c+d+e)) \cdot Q_{11} & I/(a+b+c+d+e) & 0 & 0 \\ -(b+d)/(ab) \cdot Q_{21} & 0 & I/b & 0 \\ X & (b+d+e)/(a+b+c+d+e)^2 \cdot Q_{24} & Q_{31}/b & 0 \end{pmatrix}$$

여기서
$$X = -\frac{b+d}{ab}Q_{23} + \left[\frac{b+d}{ab} + \frac{b+d+e}{(a+b+c+d+e)^2}\right]Q_{24}Q_{11}$$
이다.

$$(aP + bQ + cPQ + dQP + eQPQ)^{D} = \frac{1}{a}P + \frac{1}{b}Q + \left[\frac{1}{a+b+c+d+e} - \frac{b+d+e}{(a+b+c+d+e)^{2}} - \frac{1}{a}\right]PQ - \frac{1}{a}P + \frac{1}{b}Q + \left[\frac{1}{a+b+c+d+e} - \frac{b+d+e}{(a+b+c+d+e)^{2}} - \frac{1}{a}\right]PQ - \frac{1}{a}P + \frac{1}{b}Q + \left[\frac{1}{a+b+c+d+e} - \frac{1}{a} + \frac{1}{b}Q + \frac{1}{a}\right]PQ - \frac{1}{a}P + \frac{1}{b}Q + \frac{1}{a}P + \frac{1}{b}Q + \frac{1}{a}P + \frac{1}{b}Q + \frac{1}{a}P + \frac{1}$$

$$-(a+b+d)/(ab)\cdot QP + [(b+d+e)/(a+b+c+d+e)^2 + (b+d)/(ab)]QPQ$$

ii)
$$a+b+c+d+e=0$$
인 경우에도 마찬가지로 증명된다.(증명끝)

참 고 문 헌

- [1] M. P. Drazin; American Mathematical Monthly, 65, 506, 1958.
- [2] R. E. Hartwig et al.; Linear Algebra and Its Applications, 322, 207, 2001.
- [3] C. Deng; Linear Algebra and Its Applications, 433, 476, 2010.
- [4] S. F. Zhang et al.; Linear Algebra and Its Applications, 436, 3132, 2012.
- [5] T. Xie et al.; European Journal of Pure and Applied Mathematics, 5, 480, 2012.
- [6] D. S. Djordjivic et al.; Czechoslovak Mathematical Journal, 126, 671, 2001.

주체104(2015)년 1월 5일 원고접수

On the Drazin Inverses of Sum of Power Idempotent Operators

Ri Hvo Il, Myong Kum Chol

We investigated the Drazin inverse and the representation of aP + bO + cPO + dOP + eOPO

$$aP + bQ + cPQ + dQP + eQPQ$$

under the condition of POP = 0, POP = P, POP = PO in the case that P and O are idempotents defined in Hilbert space.

Key word: power idempotent operator