数字温湿度传感器 SHT 1x / SHT 7x

(请以英文为准,译文仅供参考)

SENSIRION

SHT7x

- _ 相对湿度和温度测量
- _ 兼有露点
- 全部校准,数字输出,
- _ 卓越的长期稳定性
- 无需额外部件
- _ 超低能耗
- _ 表面贴片或 4 引脚安装 完全互换
- _ 超小尺寸
- _ 自动休眠

SHT1x/SHT7x 产品概述

SHTxx 系列单芯片传感器是一款含有已校准数字信 号输出的温湿度复合传感器。它应用专利的工业 COMS 过程微加工技术(CMOSens®),确保产品 具有极高的可靠性与卓越的长期稳定性。传感器包括 一个电容式聚合体测湿元件和一个能隙式测温元件, 并与一个 14 位的 A/D 转换器以及串行接口电路在同 一芯片上实现无缝连接。因此,该产品具有品质卓 越、超快响应、抗干扰能力强、性价比极高等优点。

每个 SHTxx 传感器都在极为精确的湿度校验室中进 行校准。校准系数以程序的形式储存在 OTP 内存 中,传感器内部在检测信号的处理过程中要调用这些 校准系数。

两线制串行接口和内部基准电压, 使系统集成变得简 易快捷。超小的体积、极低的功耗,使其成为各类应 用甚至最为苛刻的应用场合的最佳选则。

产品提供表面贴片 LCC (无铅芯片)或 4 针单排引脚 封装。特殊封装形式可根据用户需求而提供。

应用领域

暖通空调 HVAC

测试及检测设备

汽车

数据记录器

_ 消费品

_ 自动控制

气象站

家电

湿度调节器

医疗

除湿器

订货信息

型号	测湿精度 [%RH]	测温精度 []在 25	封装
SHT 10	± 4.5	± 0.5	SMD (LCC)
SHT 11	± 3.0	± 0.4	SMD (LCC)
SHT 15	± 2.0	± 0.3	SMD (LCC)
SHT 71	± 3.0	± 0.4	4-pin 单排直插
SHT 75	± 1.8	± 0.3	4-pin 单排直插

框图

±1.8°F

%RH

传感器性能说明 1

参数	条件	Min.	Тур.	Max.	单位
湿度					
分辨率 (1)		0.5	0.03	0.03	%RH
		8	12	12(2)	Bit
重复性			±0.1		%RH
精度(1)	线性化		参见图	1	
不确定性					
互换性			可完	全互换	
非线性度	原始数据		±3		%RH
	线性化		<<1		%RH
量程范围		0		100	%RH
响应时间	1/e (63%) 25 , 1m/s 空气	6	8	10	S
迟滞			±1		%RH
长期稳定性	典型值		< 0.5		%RH/yr
温度					
分辨率 ②		0.04	0.01	0.01	°C
		0.07	0.02	0.02	°F
		12	14	14	Bit
重复性			±0.1		°C
			±0.2		°F
精度③		参见图 1			
量程范围		-40		123.8	°C
		-40		254.9	°F
响应时间	1/e (63%)	5		30	S

表 1 传感器性能说明

接口说明 2

图 2 典型应用电路

2.1 电源引脚

SHTxx 的供电电压为 2.4~5.5V。传感器上电后,要 等待 11ms 以越过 "休眠"状态。在此期间无需发送 任何指令。电源引脚(VDD, GND)之间可增加一个 100nF 的电容,用以去耦滤波。

2.2 串行接口 (两线双向)

SHTxx 的串行接口,在传感器信号的读取及电源损耗 方面,都做了优化处理;但与 I²C 接口不兼容,详情 参见 FAQ.

图 1 相对湿度、温度和露点的精度曲线

40

串行时钟输入 (SCK) 2.2.1

±0°C

SCK 用于微处理器与 SHTxx 之间的通讯同步。由于 接口包含了完全静态逻辑,因而不存在最小 SCK 频 率。

50 60

2.2.2 串行数据 (DATA)

DATA 三态门用于数据的读取。 DATA 在 SCK 时钟下 降沿之后改变状态,并仅在 SCK 时钟上升沿有效。 数据传输期间,在SCK时钟高电平时,DATA必须保 持稳定。为避免信号冲突,微处理器应驱动 DATA 在 低电平。需要一个外部的上拉电阻(例如:10k)将 信号提拉至高电平(参见图 2)。上拉电阻通常已包 含在微处理器的 I/O 电路中。详细的 IO 特性 ,参见表 5。

⁽¹⁾ 默认的测量精度为 14bit (温度) 和 12bit (湿度),通过状态寄存器可分别降至 12bit 和 8bit。(2) Bits 的有效数字是 11bit。 ③每支 SHTxx 传感器都在 25 (77°F)和 3.3V 条件下进行过标定并且完全符合精度指标。

2.2.3 发送命令

用一组 "启动传输"时序,来表示数据传输的初始化。它包括:当 SCK 时钟高电平时 DATA 翻转为低电平,紧接着 SCK 变为低电平,随后是在 SCK 时钟高电平时 DATA 翻转为高电平。

图 3 "启动传输" 时序

后续命令包含三个地址位(目前只支持"000"),和 五个命令位。SHTxx 会以下述方式表示已正确地接收 到指令:在第8个SCK时钟的下降沿之后,将DATA 下拉为低电平(ACK位)。在第9个SCK时钟的下降 沿之后,释放DATA(恢复高电平)。

命令	代码
预留	0000x
温度测量	00011
湿度测量	00101
读状态寄存器	00111
写状态寄存器	00110
预 留	0101x-1110x
软复位 ,复位接口、清空状态寄存	11110
器, , 即清空为默认值	
下一次命令前等待至少 11ms	

表 2 SHTxx 命令集

2.2.4 测量时序(RH 和 T)

发布一组测量命令('00000101'表示相对湿度 RH, '00000011'表示温度 T)后,控制器要等待测量结 束。这个过程需要大约 20/80/320ms,分别对应 8/12/14bit测量。确切的时间随内部晶振速度,最多可 能有-30%的变化。SHTxx通过下拉 DATA 至低电平并 进入空闲模式,表示测量的结束。控制器在再次触发 SCK 时钟前,必须等待这个"数据备妥"信号来读出 数据。检测数据可以先被存储,这样控制器可以继续执行其它任务在需要时再读出数据。

接着传输 2 个字节的测量数据和 1 个字节的 CRC 奇偶校验。uC 需要通过下拉 DATA 为低电平,以确认每个字节。所有的数据从 MSB 开始,右值有效(例如:对于 12bit 数据,从第 5 个 SCK 时钟起算作 MSB;而对于 8bit 数据,首字节则无意义)。

用 CRC 数据的确认位,表明通讯结束。如果不使用 CRC-8 校验,控制器可以在测量值 LSB 后,通过保持 确认位 ack 高电平,来中止通讯。

在测量和通讯结束后, SHTxx 自动转入休眠模式。

警告:为保证自身温升低于 0.1 ,SHTxx 的激活时间不要超过 10%(例如,对应 12bit 精度测量,每秒最多进行 2 次测量)。

2.2.5 通讯复位时序

如果与 SHTxx 通讯中断,下列信号时序可以复位串口:

当 DATA 保持高电平时,触发 SCK 时钟 9 次或更多。 在下一次指令前,发送一个"传输启动"时序。这些时序只复位串口,状态寄存器内容仍然保留。

图 4 通讯复位时序

2.2.6 CRC-8 校验

数字信号的整个传输过程由 8bit 校验来确保。任何错误数据将被检测到并清除。

详情可参阅应用说明"CRC-8 校验"。

图 5 RH 测量时序举例: "0000'1001' 0011'0001" = 2353 = 75.79 %RH (未包含温度补偿)

图 6 测量时序概览 (TS = 启动传输)

2.3 状态寄存器

SHTxx 的某些高级功能可以通过状态寄存器实现。下面的章节概括介绍了这些功能。

详情可参阅应用说明"状态寄存器"。

图 7 状态寄存器写

图 8 状态寄存器读

Bit	类型	说明	默认值	
7		预留	0	
6	R	电量不足 (低电压检测) '0'对应 Vdd > 2.47 '1'对应 Vdd < 2.47	Х	无默认值, 此位仅在测量 结束后更新
5		预留	0	
4		预留	0	
3		仅供测试, 不使用	0	
2	R/W	加热	0	关
1	R/W	不从 OTP 加载	0	加载
0	R/W	'1'= 8bit RH / 12bit T 分辨率 '0'=12bit RH / 14bit T 分辨率	0	12bit RH 14bit T

表 3 状态寄存器位

2.3.1 测量分辨率

默认的测量分辨率分别为 14bit(温度)、12bit(湿度),也可分别降至 12bit 和 8bit。通常在高速或超低功耗的应用中采用该功能。

2.3.2 电量不足

" 电量不足 " 功能可监测到 Vdd 电压低于 2.47V 的 状态。精度为 \pm 0.05V。

2.3.3 加热元件

芯片上集成了一个可通断的加热元件。接通后,可将 SHTxx 的温度提高大约 5-15 (9-27)。功耗增加 ~8mA @ 5V。

应用于:

- ¹⁾ 试样参数周期性抽检但非 100% 检测
- ② 由于传感器在 3.3V 校准,对于要求最高精度测量推荐采用 2.4-3.6V 供电
- ③ 每秒进行一次 8bit 精度的测量,不加载 OTP
- ④ 每秒进行一次 12bit 精度的测量

比较加热前后的温度和湿度值,可以综合验证两个传 感器元件的性能。

• 在高湿度 (>95 %RH) 环境中,加热传感器可防止 凝露,同时缩短其响应时间,提高测量精度。

警告:加热后较之加热前,SHTxx 将显示温度值略有升高、相对湿度值稍有降低。

2.4 电气特性(1)

VDD=5V , T = 25 , 除非特殊标注

参数	条件	Min.	Тур.	Max.	单位
供电 DC		2.4	5	5.5(2)	V
	测量		550		μΑ
供电电流	平均	2(3)	28(4)		μΑ
	休眠		0.3	1.5	μΑ
低电平输出电压	I _{CL} < 4mA	0		250	mV
高电平输出电压	Rp < 25k	90%		100%	Vdd
低电平输入电压	下降沿	0		20%	Vdd
高电平输入电压	上升沿	80%		100%	Vdd
焊盘上的输入电流				1	μΑ
 输出峰值电流	on			4	mA
柳山岬頂七川	三态门 (off)		10	20	μΑ

表 4 SHTxx DC 特性

	参数	条件	Min	Тур.	Ma	单位
F _{SCK}	SCK 频率	VDD > 4.5 V			10	MHz
FSCK	301	VDD < 4.5 V			1	MHz
TDEO	RFO DATA 下降时间	输出负载 5 pF	3.5	10	20	ns
		输出负载 100 pF	30	40	200	ns
T_{CLx}	SCK 高/低时间		100			ns
T۷	DATA 有效时			250		ns
Tsu	DATA 设定时		100			ns
T _{HO}	DATA 保持时间		0	10		ns
T _R /T _F	SCK 升/降时间			200		ns

表 5 SHTxx I/O 信号特性

3 输出转换为物理量

3.1 相对湿度

为了补偿湿度传感器的非线性以获取准确数据,建议使用如下公式1修正输出数值:

$$RH_{linear} = c_1 + c_2 \bullet SO_{RH} + c_3 \bullet SO_{RH}^2$$

SO _{RH}	C ₁	C ₂	C ₃
12 bit	-4	0.0405	-2.8 * 10-6
8 bit	-4	0.648	-7.2 * 10-4

表 6 湿度转换系数

简化的修正算法,可参阅应用说明"相对湿度与温度的非线性补偿"。

对高于 99%RH 的那些测量值则表示空气已经完全饱和 必须被处理成显示值均为 100%²RH。湿度传感器对电压基本上没有依赖性。

图 10 从 SORH 转换到相对湿度

3.1.1 湿度传感器相对湿度的温度补偿

实际测量温度与25 (~77)相差较大时, 应考虑湿度传感器的温度修正系数:

$$RH_{true} = (T_{\circ_C} - 25) \bullet (t_1 + t_2 \bullet SO_{RH}) + RH_{linear}$$

SO _{RH}	t ₁	t_2
12 bit	0.01	0.00008
8 bit	0.01	0.00128

表 7 温度补偿系数

相当于~0.12 %RH/ @ 50 %RH

3.2 温度

由能隙材料 PTAT (正比于绝对温度) 研发的温度 传感器具有极好的线性。可用如下公式将数字输 出转换为温度值:

Temperature = $d_1 + d_2 \bullet SO_T$

VDD	d ₁ []	d ₁ []	
5V	-40.00	-40.00	
4V	-39.75	-39.55	
3.5V ³	-39.66	-39.39	
3V ³	-39.60	-39.28	
2.5V ³	-39.55	-39.19	

SO _T	d ₂ []	d ₂
		[]
14bit	0.01	0.018
12bit	0.04	0.072

表 8 温度转换系数

在极端工作条件下测量温度时,可使用进一步的补偿算法以获取高精度。可参阅应用说明"相对湿度与温度的非线性补偿"。

3.3 露点

由于湿度与温度经由同一块芯片测量, SHTxx 系列产品可以同时实现高质量的露点测量。可参阅应用说明"露点计算"。

对于 3.5V: d1()_3.5V=39.60/d1()_3.5V=39.28 对于 3V: d1()_3V=39.50 /d1()_3V=39.10 对于 2.5V: d1()_2.5V=39.45/d1()_2.5V=39.01

¹ SORH 表示传感器的相对湿度输出数值 (大约范围在 90-3400)

² 如果传感器过度潮湿(传感器表面出现强冷凝)输出信号有时候会低于 100%RH, 甚至低于 0%RH。微小水滴蒸发后传感器性能就会完全恢复。传感器浸入水中或者产生冷凝不会受到损害。

³ SHTXX-V4 版传感器改进的温度系数 d1 赋值:

SENSIRION THE SENSOR COMPANY 盛世瑞思

4 应用信息

4.1 工作与贮存条件

图 11 建议的正常工作条件(绿色区域)

超出建议的工作范围可能导致高达 3%RH 的临时性漂移信号。返回正常工作条件后,传感器会缓慢地向校准状态恢复。要加速恢复进程可参阅 4.3 小节的"恢复处理"。在非正常工作条件下长时间使用会加速产品的老化过程。

4.2 暴露在化学物质中

电容式湿度传感器的聚合层会受到化学蒸汽的干扰,化学物质在聚合层中的扩散可能导致测量值漂移和灵敏度下降。在一个纯净的环境中,污染物质会缓慢地释放出去。下文所述的恢复处理将加速实现这一过程。高浓度的化学污染会导致传感聚合层的彻底损坏。

4.3 恢复处理

置于极限工作条件下或化学蒸汽中的传感器,通过如下处理程序,可使其恢复到校准时的状态。

在 80-90 (176-194) 和< 5%RH 的湿度条件下保持 24 小时(烘干); 随后

在 20-30 (70-90) 和>74%RH 的湿度条件下保持 48 小时以上。(重新水合)

4.4 温度影响

气体的相对湿度,在很大程度上依赖于温度。因此在测量湿度时,应尽可能保证湿度传感器在同一温度下工作。

如果与释放热量的电子元件共用一个印刷线路板,在安装时应尽可能将SHTxx远离电子元件,并安装在热源下方,同时保持外壳的良好通风。为降低热传导,SHT1x与印刷电路板其它部分的铜镀层应尽可能最小,并在两者之间留出一道缝隙(参见图 13)。

4.5 隔膜

采用隔膜可防止灰尘进入以保护传感器同时会减少化学蒸汽的浓度。为获得最佳的响应时间,隔膜后面的空气体积应减至最小。对于 SHT1X 封装系列,盛世瑞恩推荐使用 SF1 型过滤罩以达到最佳的 IP67 保护等级。

(1) 温度传感器通过了所有的测试,没有任何漂移。 亦 100%通过包装及电子测试。

4.6 光线

SHTxx 对光线不敏感。但长时间暴露在太阳光下或强烈的紫外线辐射中,会使外壳老化。

4.7 用于密封和安装的材质

许多材质吸收湿气并将充当缓冲器的角色,这会加大响应时间和迟滞。因此传感器周边的材质应谨慎选用。推荐使用的材料有:所有的金属,LCP,POM (Delrin), PTFE (Teflon), PE, PEEK, PP, PB, PPS, PSU, PVDF, PVF

用于密封和粘合的材质(保守推荐):推荐使用充满环氧树脂的方法进行电子元件的封装,或是硅树脂。这些材料释放的气体也有可能污染SHTxx(见4.2)。加工后应将传感器置于通风良好处,或在50 的环境中干燥24小时,以使其在封装前将污染气体释放。

4.8 配线注意事项与信号传输的完整性

使SCK和DATA信号线相互平行以及使它们相互靠近且距离超过10cm(如使用导线时),有可能导致信号串扰和通讯失败。解决方法是在两个信号线之间配置VDD和/或GND线。详情可参阅应用说明"ESD、latch-up和EMC"。

如使用导线,应在电源引脚(VDD,GND)之间 应跨接一个100nF的电容,用以去耦滤波。

4.9 产品资质

本品经过了广泛的各种环境条件的测试。 请联系 Sensirion 获取详细信息。

环 境	标 准	结
温度循环	JESD22-A104-B -40	符合本手册
	/ 125 , 1000cy	
高温高压蒸煮	JESD22-A110-B	+2 %RH 的可逆漂
	2.3bar 125 @5%RH	移
高温和湿度	JESD22-A101-B	+2 %RH 的可逆漂
	85 85%RH 1250h	移
盐雾试验	DIN-50021ss	符合本手册
冷凝空气	-	符合本手册
冷冻循环	-20 / +90 , 100cy	+2 %RH 的可逆漂
完全浸没	30min 驻留时间	移
各种汽车化学品	DIN 72300-5	符合本手册

表 9 品质测试 (摘录)

4.10 ESD (静电释放)

ESD静电释放符合MIL STD 883E标准method 3015 (人体模式±2KV)。电路闭锁测试依据JEDEC 17标准,满足强制电流在±100 mA,环境温度Tamb=80 条件下不闭锁。详情可参阅应用说明"ESD、latch-up、EMC"。

5 包装信息

5.1 SHT1x (表面安装)

Pin	名称	注释
1	GND	接地
2	DATA	串行数据,双向
3	SCK	串行时钟,输入
4	VDD	供电 2.4 - 5.5 VDC
	NC	剩余引脚请勿连接

表 10 SHT1x 引脚说明

5.1.1 包装类型

SHT1x 采用表面贴装LCC(无铅芯片载体)包装方式。液晶聚合物环氧包覆外壳,标准0.8 mm FR4衬底。不含铅、铬、汞(完全符合RoHS,WEEE标准要求)。尺寸:7.42×4.88×2.5 mm

重量:100毫克

SHT1x V3 版 生产日期用 3 位白色数字标识于传感器顶部,格式为"wwy". (SHT1x V4 版:以字母的形式标注生产该批次传感器的晶圆代码)

5.1.2 运输条件

SHT1x 置于 12mm 塑胶盘以 100 片或 400 片卷装。 (SHT10 仅以 2000 片包装)胶盘以条形码或可读标 签分别做标记。批号可直接追踪至生产、校准和测试 信息。

图 12 胶带结构和单片包装

5.1.3 焊接信息

可以使用标准的回流焊炉,操作详见"焊接程序"。

俯 视 图

侧 视 图

焊接后,必须将传感器置于>74%RH的环境下存放至少48小时,以保证聚合物的重新水合。

详情可参阅应用说明"焊接规程"。

5.1.4 安装举例

缝隙用以减少来自 PCB 的热传导

图 13 SHT1x PCB 安装举例

使用 SF1 型隔膜过滤罩可以达到 IP67 的保护等级。 使用外壳封装,可以保护内部不受环境影响,从而保证高精度的湿度测量。

图 14 SHT1x 安装举例

推荐的 PCB 封装

图 15 SHT1x 尺寸图和引脚尺寸 mm (inch)

5.2 SHT7x (4-pin 单排引脚)

Pin	名称	注释
1	SCK	串行时钟,输入
2	VDD	供电 2.4 - 5.5 V
3	GND	地
4	DATA	串行数据,双向

表 **11** SHT7x 引脚说明

5.2.1 包装类型1

SHT7x采用4针的单排引脚形式包装。液晶聚合物环氧包覆外壳,标准0.6 mm FR4衬底。不含铅、铬、汞(完全符合RoHS,WEEE标准要求)。传感器头部通过小桥接器实现与引脚的连接,以降低热传导及响应时间。传感器头部背面的镀金板与GND引脚相连。

在背面VDD与GND之间安装了一个100nF的电容。所有引脚均镀金处理,以防腐蚀。可焊接使用,也可与1.27 mm (0.05")的插槽匹配。

例如: Preci-dip / Mil-Max 851-93-004-20-001或 类似产品。

总重量:168 mg, 传感器重量:73 mg

SHT1x V3 版 生产日期用 3 位白色数字标识于传感器顶部,格式为"wwy".(**S**HT1x V4 版:批号)

5.2.2 运输条件

SHT7x 以 32mm 胶带卷装运输。每个直径为 13 英寸的标准胶盘可装 500 片。胶盘以条形码或可读标签做单独标记。

图 16 胶带结构和单片包装

5.2.3 焊接信息 ²

使用标准的波峰焊炉,在最高 250 的温度条件下不超过 30 秒。

手动焊接,在最高 350 的温度条件下接触时间须 少于 5 秒。

图 17 SHT7x 尺寸 mm (inch)

焊接后,将传感器在>74%RH的环境下存放至少24小时,以保证聚合物的重新水合。 详情可参阅应用说明"焊接规程"。

¹ 可根据特殊需求提供其它包装方式。

² 用于最高精度时不要焊接 SHT75。

6 版本

日期	版本	页数(s)	变更		
2002.02	初稿	1-9	首次发布		
2002.06	初稿		増加了 SHT7x 的内容		
2003.03	定稿 v2.0	1-9	重要调整,增加了应用部分说明及各种小改动		
	V2.01	1-9	打字稿,加入曲线标注		
2004.06	V2.02	1-9	改进了说明书,加入 SF1 信息,改进了某些用词		
2005.04	V2.03	1-2	加入 SHT10 信息		
2005.05	V2.04	1-9	修改公司信息		
2006.03	V2.05	1-9	修改免责条款		
2007.03	V3.0	1-9	数据表对 SHTXX-V4 和 SHTXX-V3 有效		
2007.08	V3.01	1-9	修改部分电器特性,修正测量时间		

最新版本及应用说明可从以下网页下载:

www.sensirion.com/en/download/humiditysensor/SHT11.htm

7 注意事项

7.1 警告,人身伤害

勿将本产品应用于安全保护装置或急停设备上,以及由于该产品故障可能导致人身伤害的任何其它应用中。不得应用本产品除非有特别的目的或有使用授权。在安装、处理、使用或维护该产品前要参考产品数据表及应用指南。如不遵从此建议,可能导致死亡和严重的人身伤害。由此产生的一切后果:包括

如果买方将要购买或使用Sensirion的产品而未获得任何应用许可及授权,买方将承担由此产生的人身伤害及死亡的所有赔偿,并且免除由此对Sensirion公司管理者和雇员以及附属子公司、代理商、分销商等可能产生的任何索赔要求,包括:各种成本费用、赔偿费用、律师费用等等。

7.2 ESD 静电释放的预防

由于元件的固有设计,导致其对静电的敏感性。为 防止静电导入的伤害或者降低产品性能,在应用本 产品时,请采取必要的防静电措施。

详情可参阅应用说明"ESD、latch-up、EMC"。

7.3 品质保证

SENSIRION对其产品的直接购买者提供为期12个月(1年)的质量保证。(自发货之日起计算)以SENSIRION出版的该产品的技术数据手册为准。在保质期内,产品被证实有缺陷,SENSIRION将提供免费的维修或更换,如果用户满足下述条件:该产品在发现缺陷14天内书面通知SENSIRION。该产品缺陷有助于发现SENSIRION的设计、材料、工艺上的不足。

该产品应由购买者付费寄回到SENSIRION 该产品应在保质期内

SENSIRION 只对那些应用在符合该产品技术条件的场合 而产生缺陷的产品负责。

SENSIRION 对其产品应用在那些特殊的应用场合不做任何的保证、担保或是书面陈述。

同时SENSIRION 对其产品应用到产品或是电路中的可靠性也不做任何承诺。

版权所有© 2007, SENSIRION.

CMOSens® 是 SENSIRION 的注册商标

瑞士盛世瑞恩中国代表处

大连北方测控工程有限公司

地址: 大连市高新区学子街 2 号 3-1-2

邮编 : 116023

电话 : +86 (0)411 39759001/2/3 传真 : +86 (0)411 39759055 E-mail : lei@dabeco.com.cn Website: http://www.humidity.cn Website: http://www.sensirion.com

5	₹	햅	什	理	蒶	•
_	•		1 \		101	