Ethan Hershman's All-NBA Player Prediction Model

1. Introduction

Overview

This project aims to predict All-NBA team selections based on player performance data. Using NBA statistics from the 2018-2024 seasons, we developed a machine learning model to identify which players are most likely to be selected to an All-NBA team. The final model also supports dynamic dashboards for player-specific analysis.

Motivation

Predicting All-NBA selections is a complex but fascinating problem with implications for analytics, contracts, awards, and team strategy. This model attempts to bridge performance metrics with award outcomes.

Scope

We focused on regular season data for six NBA seasons (2018-19 through 2023-24), excluding the current incomplete season (2024-25). The model includes key per-game stats, shooting efficiency, win percentage, and impact metrics.

2. Data Collection

Data Sources

- NBA Statistics: Scraped using the nba_api package
- All-NBA Selections: Manually entered for each season

Data Preprocessing

- Merged player statistics with award labels
- Cleaned and normalized data
- Handled missing values and edge cases (e.g., shortened COVID seasons)

```
all seasons data = []
for season in seasons:
  stats = leaquedashplayerstats.LeaqueDashPlayerStats(season=season)
  df['SEASON'] = season
  all seasons data.append(df)
  time.sleep(1)
all players df = pd.concat(all seasons data, ignore index=True)
all nba players = [
("2023-24", "Jayson Tatum"), etc.
all nba df = pd.DataFrame(all nba players, columns=["SEASON", "PLAYER"])
all nba df["ALL NBA"] = 1
all players df["PLAYER NAME CLEAN"] =
all players df["PLAYER NAME"].apply(unidecode)
all nba df["PLAYER CLEAN"] = all nba df["PLAYER"].apply(unidecode)
merged df = pd.merge(
  all players df,
  all nba df,
merged df["ALL NBA"] = merged df["ALL NBA"].fillna(0).astype(int)
merged df.drop(columns=["PLAYER", "PLAYER CLEAN", "PLAYER NAME CLEAN"],
```

3. Feature Engineering

Features Used

- Offensive Stats: PTS_PG, AST_PG, FG3M_PG, FTA_PG, PFD_PG
- Efficiency: TS_PCT, EFG_PCT, IMPACT_SCORE
- Minutes & Usage: MIN_PG, PLUS_MINUS_PG
- Winning Metrics: W_PCT, GP_PCT
- Milestones: DD2_PG, TD3_PG

New Features

- TS_PCT: True Shooting Percentage
- EFG_PCT: Effective Field Goal Percentage
- IMPACT_SCORE: Custom metric combining TS% and W_PCT
- GP_PCT: Games Played as % of season (enforced threshold of 65/82)

```
merged_df["TS_PCT"] = merged_df["PTS_PG"] / (2 * (merged_df["FGA_PG"] + 0.44 *
merged_df["FTA_PG"]))
merged_df["EFG_PCT"] = (merged_df["FGM_PG"] + 0.5 * merged_df["FG3M_PG"]) /
merged_df["FGA_PG"]
merged_df["GP_PCT"] = merged_df.apply(lambda row: row["GP"] /
season_lengths.get(row["SEASON"], 82), axis=1)
merged_df["IMPACT_SCORE"] = merged_df["PTS_PG"] * merged_df["TS_PCT"] +
merged_df["W_PCT"]
```

4. Model Building

Model

- Algorithm: RandomForestClassifier
- Strategy: Class balancing with class_weight='balanced'
- Split: 80/20 stratified train-test split
- Threshold: 0.25 for positive prediction; enforced GP_PCT >= 0.79

```
features = [
   "PTS_PG", "AST_PG", "STL_PG", "BLK_PG", "FG3M_PG", "FTA_PG", "PFD_PG",
   "PLUS_MINUS_PG", "MIN_PG", "DD2_PG", "TD3_PG", "W_PCT",
   "GP_PCT", "TS_PCT", "EFG_PCT", "IMPACT_SCORE"
]

model_df = merged_df.dropna(subset=features + ["ALL_NBA"])
gp_pct_threshold = 65/82
model_df = model_df[model_df["GP_PCT"] >= gp_pct_threshold]
model_df = model_df.reset_index(drop=True)
```

```
X = model_df[features]
y = model_df["ALL_NBA"]

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)

model = RandomForestClassifier(n_estimators=100, class_weight="balanced",
random_state=42)
model.fit(X_train, y_train)
gp_pct_test = model_df.loc[X_test.index, "GP_PCT"]
y_probs = model.predict_proba(X_test)[:, 1]
y_pred_custom = (y_probs >= 0.25).astype(int)
y_pred_custom[gp_pct_test < gp_pct_threshold] = 0</pre>
```

5. Model Evaluation

Classification Report

Classification Report:				
	precision	recall	f1-score	support
0	0.98	1.00	0.99	206
1	1.00	0.71	0.83	14
accuracy			0.98	220
macro avg	0.99	0.86	0.91	220
weighted avg	0.98	0.98	0.98	220

Confusion Matrix

```
Confusion Matrix:
[[206 0]
[ 4 10]]
```

6. Visualizations

Feature Importances

Top features: PFD_PG, IMPACT_SCORE, FTA_PG, MIN_PG, AST_PG

Graphs Included

Feature Importance Bar Chart

• Top 15 Candidates Predictor Chart

Misclassification Table

```
False Negatives (missed real All-NBA players):
           PLAYER_NAME
                        SEASON
                                   PTS_PG
                                                  GP_PCT IMPACT_SCORE PROB
     Russell Westbrook 2018-19 22.945205
                                                0.890244
166
                                                             12.100038 0.15
225
           Chris Paul 2019-20 17.600000
                                                0.972222
                                                            11.365809 0.05
414
           Chris Paul 2020-21 16.414286
                                                0.972222
                                                            10.536860 0.04
105
          Kemba Walker 2018-19 25.634146
                                                1.000000
                                                            14.791350 0.03
[4 rows x 7 columns]
False Positives (wrongly predicted as All-NBA):
Empty DataFrame
```

7. Interactive Dashboard

Power BI: Used for dynamic dashboarding and reporting

- Dashboard Features:
 - Player dropdown selector
 - Shooting percentage comparisons (FG%, FT%, TS%)
 - Win % with color-coded gauge
 - Headshot integration with performance cards
 - League-average comparisons

Screenshot Description

- Player: Shai Gilgeous-Alexander
- FG%, FT%, TS% shown with bars and values
- Gauged Win % as indicator of team success
- Picture and stats update per selection

8. Conclusion

Summary of Findings

- Scoring (PTS_PG), drawing fouls (PFD_PG), and efficiency (TS_PCT) were strong predictors
- Players with lower GP% were often snubbed, even if high performers
- Our model achieves high precision and recall while allowing interpretability

Challenges

- Missing/Incomplete data for some seasons
- Players with high stats but low games played caused false positives
- Position-based restrictions in past All-NBA voting (prior to 2023-24)

Future Work

- Incorporate injury reports, positional competition
- Add player role/type (guard/wing/big)
- Use deep learning or ensemble stacking
- Deploy a web app version of the dashboard

Appendix

Code Snippets

 All code used to clean data, train the model, and evaluate performance is available upon request.

Data Exports

- merged_df.csv: All processed player data
- top15_predictions_2024_25.csv: Current season predictions