

Deep Learning: Comprehensive End-to-End Notes

These notes are designed for rigorous, in-depth learning—whether you are a student, researcher, or industry practitioner. All mathematical concepts, code samples, and real-world insights are broken down in detail, with both TensorFlow and PyTorch for practical relevance.

1. Introduction to Neural Networks and Perceptrons

What is a Neural Network?

- Inspired by biology: Mimics the way neurons work in the brain.
- Layers of nodes: Each "neuron" processes input and passes output to the next layer.

Perceptron: The Simplest Neural Unit

Mathematical Equation:

$$y = f(\mathbf{w}^T \mathbf{x} + b)$$

- x: Input vector
- w: Weights
- \circ b: Bias
- f: Activation function
- Key Points:
 - o Linear classifier.
 - Can only separate linearly separable data.

PyTorch Example

```
import torch
from torch import nn

class Perceptron(nn.Module):
    def __init__(self, input_dim):
        super(Perceptron, self).__init__()
        self.fc = nn.Linear(input_dim, 1)

def forward(self, x):
    return torch.sigmoid(self.fc(x))
```

TensorFlow Example

```
import tensorflow as tf

model = tf.keras.Sequential([
    tf.keras.layers.Dense(1, activation='sigmoid', input_shape=(input_dim,))
])
```

Limitation:

• Single-layer perceptrons cannot model complex patterns. Need *deep* (multi-layer) networks.

2. Activation Functions

Activation functions introduce non-linearity. Common types:

Function	Equation	Pros	Cons
Sigmoid	$f(x)=rac{1}{1+e^{-x}}$	Smooth, bounded	Vanishing gradients
Tanh	f(x)= anh(x)	Zero-centered	Vanishing gradients
ReLU	$f(x) = \max(0,x)$	Simple, efficient	Dying ReLU
Leaky ReLU	$f(x) = \max(0.01x,x)$	Fixes Dying ReLU	Still not 100% robust
Softmax	$f(x_i) = rac{e^{x_i}}{\sum e^{x_j}}$	Multiclass probability	

Visual Explanation

- Sigmoid compresses input between 0 and 1—good for probabilities.
- Tanh squashes values between -1 and 1.
- ReLU outputs 0 for negatives, x for positives—speeds up training.

3. Forward and Backward Propagation

Forward Propagation

- Compute output of each neuron layer by layer.
- · Pass through activation functions.

Backward Propagation (Backprop)

- Calculates gradients using chain rule.
- Updates weights to minimize loss.

$$rac{\partial L}{\partial w} = rac{\partial L}{\partial a} imes rac{\partial a}{\partial z} imes rac{\partial z}{\partial w}$$

- L: Loss
- a: Activation
- z: Weighted sum

PyTorch Snippet

```
# Forward
y_pred = model(X)
loss = criterion(y_pred, y_true)
# Backward
loss.backward()  # Computes gradients
optimizer.step()  # Updates weights
```

TensorFlow Snippet

```
with tf.GradientTape() as tape:
    y_pred = model(X)
    loss = loss_fn(y_true, y_pred)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
```

4. Loss Functions

Common Choices

Mean Squared Error (MSE):

$$L=rac{1}{N}\sum (y_i-\hat{y}_i)^2$$

- o Regression.
- Binary Cross Entropy:

$$L = -[y\log(\hat{y}) + (1-y)\log(1-\hat{y})]$$

- Binary classification.
- Categorical Cross Entropy:

$$L = -\sum y_i \log(\hat{y}_i)$$

Multi-class classification.

5. Optimization Algorithms

- SGD (Stochastic Gradient Descent):
 - Updates weights in small steps for each batch.
- Momentum:
 - Adds moving average of past gradients. Smoother updates.
- RMSProp:

- o Adaptive learning rates—scales updates.
- Adam (Adaptive Moment Estimation):
 - Combines RMSProp + momentum.

PyTorch Optimizer

```
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```

TensorFlow Optimizer

```
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
```

6. Regularization Techniques

- L2 Regularization: Adds penalty for large weights.
- **Dropout:** Randomly drops connections during training to prevent co-adaptation.
- Early Stopping: Monitors validation loss, stops training when overfitting is detected.

PyTorch Example

```
nn.Dropout(p=0.5)
```

TensorFlow Example

```
tf.keras.layers.Dropout(0.5)
```

7. Model Evaluation

• Accuracy: Fraction of correct predictions.

• **Precision:** \$ TP / (TP + FP) \$

• Recall: \$ TP / (TP + FN) \$

• Confusion Matrix: Summarizes TP, FP, FN, TN.

PyTorch Evaluation

```
from sklearn.metrics import accuracy_score, confusion_matrix
# y_pred, y_true: needed
accuracy_score(y_true, y_pred)
confusion_matrix(y_true, y_pred)
```

TensorFlow Evaluation

```
tf.keras.metrics.Accuracy()
# Use model.evaluate() for overall metrics on dataset
```

8. Overfitting and Underfitting

- Overfitting: Model memorizes training data, poor on unseen data.
 - o Symptoms: High train accuracy, low validation accuracy.
- **Underfitting:** Model is too simple, poor accuracy everywhere.
 - o Symptoms: Low train & validation accuracy.

Mitigation Techniques: Regularization, more data, data augmentation, architecture changes.

9. Hyperparameter Tuning

- Adjust learning rate, batch size, optimizer, number of layers, and hidden units.
- Grid search and random search are common strategies.

PyTorch Example (Manual)

```
for lr in [0.1, 0.01, 0.001]:
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# train & evaluate...
```

TensorFlow KerasTuner

```
import keras_tuner as kt
# Define model-building function, then:
tuner = kt.Hyperband(build_model, objective='val_accuracy', max_epochs=10)
```

10. Advanced Architectures

Convolutional Neural Networks (CNNs)

- Used for image and spatial data.
- Convolution Layer: Extracts features using learnable filters.
- Pooling Layer: Reduces spatial size (max/avg pooling).

TensorFlow Example

```
tf.keras.layers.Conv2D(32, (3, 3), activation='relu')
tf.keras.layers.MaxPooling2D((2, 2))
```

PyTorch Example

```
nn.Conv2d(3, 32, kernel_size=3, stride=1)
nn.MaxPool2d(2, 2)
```

Recurrent Neural Networks (RNNs), LSTMs, and GRUs

- RNNs: Handle sequential data. Prone to vanishing/exploding gradients.
- LSTMs (Long Short-Term Memory): Gates control information flow, solve vanishing gradient.
- **GRUs (Gated Recurrent Units):** Simpler than LSTMs, similar performance.

TensorFlow Example

```
tf.keras.layers.LSTM(128)
tf.keras.layers.GRU(128)
```

PyTorch Example

```
nn.LSTM(input_size, hidden_size)
nn.GRU(input_size, hidden_size)
```

11. Transfer Learning

- Use pre-trained models (e.g., ResNet, BERT) for your tasks.
- Fine-tune last few layers for your dataset.

PyTorch Example

```
from torchvision import models
model = models.resnet50(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
# Replace last layer for your task
```

TensorFlow Example

```
base_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False)
base_model.trainable = False
```

12. Attention and Transformers

- Attention: Lets the model focus on relevant parts of input sequences (key for NLP).
- Transformers: Stack of attention + feedforward layers.
- Positional Encoding: Augments sequences so transformer can use order information.

Multi-Head Attention

Multiple attention layers run in parallel, then concatenate outputs.

TensorFlow Example

```
tf.keras.layers.MultiHeadAttention(num_heads=4, key_dim=64)
```

PyTorch Example

```
nn.MultiheadAttention(embed_dim=256, num_heads=4)
```

13. Using Pre-trained Models

- **ResNet:** For image recognition.
- **BERT, GPT:** For NLP tasks.

Example - PyTorch (ResNet)

```
from torchvision import models
model = models.resnet18(pretrained=True)
```

Example - TensorFlow (BERT)

```
import tensorflow_hub as hub
embed = hub.KerasLayer("https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1")
```

14. Model Deployment

With Flask (PyTorch or TensorFlow)

• Build a REST API to serve predictions.

Example (Flask)

```
from flask import Flask, request, jsonify
app = Flask(__name__)

@app.route('/predict', methods=['POST'])
def predict():
    data = request.get_json()
    # preprocess & predict...
    return jsonify({'prediction': result})
```

TensorFlow Serving

- Production-grade serving of TensorFlow models
- Run as Docker container, accepts REST/gRPC

TorchServe (PyTorch)

• Serves PyTorch models, scalable RESTful APIs

15. Model Compression and Quantization

- Reduce model size, inference time.
- Quantization: Use int8 instead of float32.
- **Pruning:** Remove insignificant weights.

TensorFlow Quantization Example

```
converter = tf.lite.TFLiteConverter.from_saved_model('model_path')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()
```

PyTorch Quantization Example

```
import torch.quantization
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
torch.quantization.prepare(model, inplace=True)
torch.quantization.convert(model, inplace=True)
```

16. ONNX and Model Interoperability

 ONNX: Open format to facilitate transfer between PyTorch, TensorFlow, and other frameworks.

Export PyTorch Model to ONNX

```
torch.onnx.export(model, dummy_input, "model.onnx")
```

Load in TensorFlow

• Use onnx-tf or other converters.

Practical Applications

Image Classification

- Use CNN architectures (ResNet, VGG).
- Dataset: CIFAR-10, ImageNet.
- Tasks: Cat vs. dog detection, handwritten digit recognition.

Object Detection and Segmentation

- Models: YOLO, Mask R-CNN.
- Applications: Autonomous driving, surveillance, medical diagnosis.

Time Series Forecasting

- Model: RNN, LSTM, GRU.
- Applications: Stock price prediction, demand forecasting.

NLP Tasks

- Sentiment Analysis: Classify sentiment using BERT, LSTM.
- Summarization: Sequence-to-sequence with attention/transformers.
- Translation: Encoder-decoder, transformer models.

Fraud Detection

- Tabular models, deep Autoencoders, graph neural networks.
- Use anomaly detection and pattern recognition.

Medical Imaging

- · Leverage CNNs, transfer learning.
- Detect tumors, classify X-rays/MRIs.

Best Practices, Common Pitfalls & Debugging

• Best Practices:

- Normalize/standardize your data.
- Use validation sets to tune hyperparameters and avoid overfitting.
- Visualize loss and accuracy curves to debug learning.
- Leverage GPU acceleration (TensorFlow: tf.device('GPU'), PyTorch: .cuda()).

Common Pitfalls:

- Exploding/vanishing gradients (solutions: batch norm, better activation functions, LSTM/GRU for sequences).
- o Overfitting due to excessive model complexity (more data, regularization).
- Data leakage—ensure train/test separation.

• Debugging Training Issues:

- Loss not decreasing: Check data input, learning rate, model architecture.
- Exploding gradients: Clip gradients; use LSTM/GRU for long sequences.
- Vanishing gradients: Use ReLU, batch normalization, residual connections.

For further exploration, regularly review the latest papers and open-source code repositories, and experiment on datasets using both TensorFlow and PyTorch to build a well-rounded intuition as both a developer and researcher.