Introduction to Algorithms 6.046J/18.401J

LECTURE 14

Shortest Paths I

- Properties of shortest paths
- Dijkstra's algorithm
- Correctness
- Analysis
- Breadth-first search

Prof. Charles E. Leiserson

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

Shortest paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest-path weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all
$$u, v, x \in V$$
, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Proof.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths may not exist.

Introduction to Algorithms

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal.
- 3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

$$d[s] \leftarrow 0$$

for each $v \in V - \{s\}$
 $do d[v] \leftarrow \infty$
 $S \leftarrow \emptyset$
 $Q \leftarrow V$ $\triangleleft Q$ is a priority queue maintaining $V - S$

Introduction to Algorithms

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleleft Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
              do if d[v] > d[u] + w(u, v)
                       then d[v] \leftarrow d[u] + w(u, v)
```


Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleleft Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                           relaxation
             do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                    Implicit Decrease-Key
```


Graph with nonnegative edge weights:

S: {}

S: { *A* }

S: { *A*, *C* }

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Introduction to Algorithms

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

$$d[v] \le \delta(s, v)$$
 supposition
 $\le \delta(s, u) + \delta(u, v)$ triangle inequality
 $\le \delta(s, u) + w(u, v)$ sh. path \le specific path
 $\le d[u] + w(u, v)$ v is first violation

Contradiction.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part III (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$. But, $d[u] \le d[y]$ by our choice of u. Contradiction.

Analysis of Dijkstra

```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra


```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra

Analysis of Dijkstra

```
while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each v \in Adj[u]
do if d[v] > d[u] + w(u, v)
times
then d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

$$Time = \Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-KEY}})$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

 $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$

Total

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

$$Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total}$$

$$\text{array} \quad O(V) \qquad O(1) \qquad O(V^2)$$

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$
 $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}}$

Total

array
 $O(V) \quad O(1) \quad O(V^2)$

binary
heap
 $O(\lg V) \quad O(\lg V) \quad O(E \lg V)$

Fibonacci
 $O(\lg V) \quad O(1) \quad O(E + V \lg V)$

heap

amortized

amortized

worst case

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

```
Breadth-first search

while Q \neq \emptyset

do u \leftarrow \text{Dequeue}(Q)

for each v \in Adj[u]

do if d[v] = \infty

then d[v] \leftarrow d[u] + 1

Enqueue(Q, v)
```


Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

```
Breadth-first search
            while Q \neq \emptyset
                do u \leftarrow \text{Dequeue}(Q)
                    for each v \in Adj[u]
                         do if d[v] = \infty
                                 then d[v] \leftarrow d[u] + 1
                                       Enqueue(O, v)
```

Analysis: Time = O(V + E).

Q:

Q: a b d c e g i f h

Q: a b d c e g i f h

Correctness of BFS

```
while Q \neq \emptyset

do u \leftarrow \text{Dequeue}(Q)

for each v \in Adj[u]

do if d[v] = \infty

then d[v] \leftarrow d[u] + 1

Enqueue(Q, v)
```

Key idea:

The FIFO *Q* in breadth-first search mimics the priority queue *Q* in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1.