BLG335E-#1 Quicksort Report

1) Quicksoit worst case
$$\Rightarrow T(n) = T(0) + T(n-1) + \Theta(n)$$

= $\Theta(1) + T(n-1) + \Theta(n)$
= $T(n-1) + \Theta(n)$
| owest one,
 $C(n) \Rightarrow \Theta(2k) = \Theta(n^2) = \Theta(n^2)$ $\Theta(n) = Con$

$$\begin{array}{ccc}
cn & \Theta\left(\frac{1}{2}k\right) = \Theta(n^2) & = \Theta(n^2) \\
T(0) & C(n-2) & \Theta(1) \\
\hline
\Theta(1) & O(1)
\end{array}$$

$$\Theta(n^2) = O(n^2) \quad \text{for worst} \\ \text{case}$$

Quicksoit best case
$$\rightarrow T(n) = 2T(n/2) + \Theta(n)$$

Always divide half $\frac{\log^2}{n} = n$ $\Theta(n \cdot \log n)$ for kest ease.

$$T(n-1) + T(0) + T(0)$$

$$\begin{aligned} & \left[T(n-1) + T(0) + O(n)\right] + n-1:0 \\ & = \sum_{k=0}^{n-1} X_k \left(T(k) + T(n-k-1) + O(n)\right) \\ & = \sum_{k=0}^{n-1} X_k \left(T(k) + O(n)\right)$$

2 devam) $E[T(n)] = \frac{2}{n} \int_{k=2}^{n-1} E[T(k)] + \Theta(n)$ $<\frac{2}{n}\sum_{k=2}^{n}ak|gk+O(n)$ $= \frac{2a}{n} \left(\frac{1}{2} n^2 | g n - \frac{1}{8} n^2 \right) + O(n)$ Randomized Quicksort > O (n.logn) $= \alpha n | g n - \left(\frac{an}{4} - \Theta(n) \right)$ if an/4 dominates

(an/9)

(an/9) 3) It can't be seen from the chart easily but and so on when nincerase $\frac{T_R(Ik)}{T_R(IOk)}$ they both merge to each other if this case contine to happen. To (SE) To (306) chart is at the end. 4) For deterministic quicksoit sorted tweets was the worst tweets couldn't be caldlasted. It was O(n2) case. 100k and Im tweets couldn't be caldlasted. It was O(n2) However randomited quicksoft has O(n.logn). It sorted twet performance was really same with unborted duta It's doort at the end. If I would chose randomized in each case because I assume that sorted or unsurted we don't have any information about the array. 5) Dual pivot \Rightarrow Best case $T(n)=3T(n/3)+\Theta(n)$ master theorem $n^{\log_3^3}=n \Rightarrow \Theta(n.\log_n)$ (Vorstcase $\Rightarrow T(n)=T(s)+T(n-2)+T(1)+G(n)$ $=(O(n^2))=\frac{O(n^2)+12}{O(n^2)}$ k=3Asimptomatic bounds are same but dual pivot is ussually parter because of memory reaching is slower than processing.

_		time					
	deterministic	1	2	3	4	5	average
	1k	18	19	20	19	23	19,8
N.	10k	250	235	250	235	234	240,8
N	100k	3452	3467	3468	3484	3468	3467,8
	1m	42027	41902	42037	41850	41990	41961,2

	_		time					
		randomized	1	2	3	4	5	average
I	N.	1k	30	29	30	31	32	30,4
		10k	250	250	265	262	270	259,4
	N	100k	3843	3795	3811	3837	3840	3825,2
		1m	43178	43948	43240	43396	43248	43402

	1k	10k	100k	1m	
deterministic	19,8	240,8	3467,8	41961,2	
randomized	30,4	259,4	3825,2	43402	
r/d	1,535354	1,077243	1,103062	1,034336	

_		time					
	deterministic	1	2	3	4	5	average
	1k	771	763	771	773	778	771,2
N	10k	79395					79395
	100k	NA	NA	NA	NA	NA	NA
	1m	NA	NA	NA	NA	NA	NA

	1k	10k	100k	1m
deterministic	771	79395	NA	NA
randomized	20	267	3346	46973
r/d	0,02594	0,003363	NA	NA

				time					
		randomized	1	2	3	4	5	average	
		1k	20	19	20	18	23	20	
	N	10k	267					267	
		100k	3346					3346	
		1m	46973					46973	

