Alkalmazott fizikai módszerek laboratórium III.: Folyadékszcintillációs Spektroszkópia - Ellenőrző kérdések

Pál Balázs*

*Eötvös Loránd Tudományegyetem

2019. október 8.

1	$\Lambda / \Gamma \Lambda$	CVAR	VER	7.I.O

١.	M	AGYAR VERZIÓ
	1.	Q: Miért használunk folyadékszcintillációs detektort a triton bomlásának detektálásához?
		A:
	2.	Q: Milyen folyamat elnevezése a "szcintilláció"?
		\mathbf{A} :
	3.	Q: Mit tartalmaz egy folyadékszcintillációs detektor?
		A: Folyadékot.
	4.	$\mathbf{Q} \colon \mathbf{Mi} \ \mathrm{az} \ \mathrm{a} \ \mathrm{fényhozam}^1$ és hogyan változik az elnyelődés 2 jelenségének hatására?
		\mathbf{A} :
	5.	Q: Milyen bomlás jellemzi a radiokarbont és a tríciumot?
		\mathbf{A} :
	6.	Q: Hogyan keletkezett a radiokarbon és a trícium a Földön?
		\mathbf{A} :
	7.	Q: Miért folytonos a β -spektrum?
		\mathbf{A} :
	8.	Q: What is the spectrum of the amplitude of the electric pulses during a triton measurement?
		\mathbf{A} :
	9.	Q: How can the scintillation light be quenched?
		\mathbf{A} :
	10.	Q: How can we determine the efficiency of a triton measurement from the measured value of the quench?
		\mathbf{A} :
	11.	Q: Why is the amplitude of the electric signal proportional to the energy deposited in the vial?
		\mathbf{A} :
	12.	Q: What are the operating purposes of the cocktail ingredients?
		\mathbf{A} :
	13.	Q: How does the photomultiplier work?
		\mathbf{A} :
	14	O: How can we discriminate the triton counts from the radiocarbon counts?

A:

 $^{^1\}mathrm{Angol}$ szaknyelvben "light output" $^2\mathrm{Angol}$ szaknyelvben "quenching"

2. ENGLISH VERSION

1. Q: Why do we use liquid scintillator for detecting the decay of triton³?

A: The triton is a β -decaying nuclei, which decay's products' mean free path is simply way too short to reach a regular encapsulated detector from a separated source. Using a liquid scintillator allows us to use liquid samples, which are directly mixed with the scintillation-capable fluid. In this case, the decaying particles are right next to the scintillating particles, thus making it possible to detect decays with lower energies and shorter mean free paths.

2. Q: What process is called scintillation?

A: The scintillation is the process when the scintillator material emits visible or UV photons just after one radioactive decay.

3. Q: What does a liquid scintillator contain?

A: It literally just contains such a liquid, which capable of scintillation. Then, this scintillation is amplified by a photomultiplier tube and converted to electrical pulses, which are finally detected by a multi-channel analyzer and it creates an energy-histogram of these detected events.

4. Q: What is the light output and how does it change in case of quenching?

Α

5. Q: How do the radiocarbon and the triton decay?

A: By β^- -decay: in their nuclei a neutron decays into a proton, emitting an electron (e^-) and an electron antineutrino $(\tilde{\nu}_e)$. In terms of equations we can describe them as follows for the ${}^3\text{H}$:

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \tilde{\nu}_{e}$$
 (1)

And for the 14 C:

$$^{14}\text{C} \rightarrow ^{14}\text{Ne} + e^- + \tilde{\nu}_e$$
 (2)

6. Q: How do the radiocarbon and the triton is created in our planet?

A: They're both created in the upper atmosphere by cosmic neutrons hitting ¹⁴N isotopes. If a neutron hits an ¹⁴N nuclei, it can either hit out a proton, and build into the place of it, or it can pull a proton and a neutron out with itself. In the first case the following reaction will take place:

$$^{14}N + n^0 \rightarrow ^{14}C + p^+$$
 (3)

While in the second case, the cosmic neutron will form a tritium nuclei with the swept away proton and neutron from the ¹⁴N nuclei. In the formalism of chemical equations:

$$^{14}N + n^0 \rightarrow ^{12}C + ^3H$$
 (4)

7. Q: Why is the beta-spectrum continuous?

A: The main difference of β -decay from other decays, that at the β -decay, there are two particles emitted instead of one: one β -particle and a corresponding neutrino or anti-neutrino. However the total released energy is discrete, it is continuously split between the two emitted particles. Due to the very low mass of the neutrino, only the β -particles energy could be effectively detected, which spectrum thus indeed will be continuous.

8. Q: What is the spectrum of the amplitude of the electric pulses during a triton measurement?

A:

9. Q: How can the scintillation light be quenched?

A:

10. Q: How can we determine the efficiency of a triton measurement from the measured value of the quench?

Α:

11. Q: Why is the amplitude of the electric signal proportional to the energy deposited in the vial?

Α

12. Q: What are the operating purposes of the cocktail ingredients?

 $^{^3}$ Another name for tritium

 $^{^4\}beta$ -particle

A:

13. Q: How does the photomultiplier work?

Α

14. Q: How can we discriminate the triton counts from the radiocarbon counts?

A