SINGAPORE POLYTECHNIC 2022/2023 SEMESTER ONE MID-SEMESTER TEST

Common Infocomm Technology Programme (CITP)
Diploma in Applied AI & Analytics (DAAA)
Diploma in Infocomm Security Management (DISM)
Diploma in Information Technology (DIT)

MS0105 – Mathematics

Time allowed: 1 hour 40 minutes

Instructions to Candidates

- The SP examination rules are to be complied with.
 Any candidate who cheats or attempts to cheat will face disciplinary action.
- 2. This paper consists of 4 printed pages (including the cover page).

 There are 4 questions (100 marks in total), and you are to answer all the questions.
- 3. Unless otherwise stated, all **non-exact** decimal answers should be rounded to **at least two** decimal places.
- 4. Except for sketches, graphs and diagrams, no solutions are to be written in pencil. Failure to comply may result in loss of marks.

Formula Sheet: Transformation Matrices

1. Reflection	· · · · · · · · · · · · · · · · · · ·	3. Shearing	
a. about the y-axis	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	a. in the x-direction	$\begin{bmatrix} 1 & s_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
b. about the x-axis	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	b. in the y-direction	$ \begin{bmatrix} 1 & 0 & 0 \\ s_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
c. about the line $y = x$	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	4. Rotation about the origin	$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$
2. Scaling relative to the origin	$\begin{bmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$	5. Translation	$\begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix}$

1. Given the following matrices:

$$\mathbf{A} = \begin{bmatrix} 2 & 10 & 2a - 3b \\ 5a & -3 & a + b + c \\ 7 & 5 & 8 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 6 & 1 \\ -1 & 4 \\ 3 & -2 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 4 & -1 & 2 \\ -3 & 1 & 0 \\ -2 & 5 & 8 \end{bmatrix}$$
$$\mathbf{D} = \begin{bmatrix} 3 & -5 \\ -2 & 7 \end{bmatrix} \qquad \mathbf{E} = \begin{bmatrix} -3 & 1 \\ 2 & 5 \end{bmatrix}$$

(a) If A is a symmetric matrix, find the values of a, b and c.

(5 marks)

(b) Find matrix \mathbf{X} such that $4\mathbf{X}^T + 5\mathbf{D} = 3\mathbf{E}$.

(5 marks)

- (c) Evaluate the following wherever possible.

 State the reason(s) clearly if the expressions cannot be evaluated.
 - (i) **BD**
 - (ii) $(\mathbf{E}\mathbf{B}^T\mathbf{C})^2$

(6 marks)

- (d) (i) Evaluate $E^2 2E 9I$, where I is the 2×2 identity matrix.
 - (ii) The expression $\mathbf{E}^2 2\mathbf{E} 9\mathbf{I}$ can be expressed as $(\mathbf{E} + 3\mathbf{I})(\mathbf{E} + p\mathbf{I}) + q\mathbf{I}$, where p and q are constants to be determined. Find the values of p and q.
 - (iii) Hence, find $(\mathbf{E} + 3\mathbf{I})^{-1}$.

(14 marks)

.2. Let the universal set $U = \{x \in \mathbb{N} \mid x \le 12\}$ and define the following sets within U:

$$A = \left\{ x \in \mathbb{Z} \,\middle|\, 3 \le x \le 7 \right\}$$

$$B = \left\{ \frac{x}{3} \mid x \in U \right\}$$

 $C = \left\{ x \mid x^2 + 1 \text{ is a multiple of 5} \right\}$

(a) Rewrite sets U, A, B and C by listing.

(5 marks)

(b) Find |A|, $\overline{A} \cap B$ and C-A.

(5 marks)

(c) Draw a Venn diagram showing the above sets U, A, B and C, indicating all the elements clearly.

(5 marks)

(d) Another set D is defined within U, as follows:

$$D = \left\{ x \mid \frac{x}{y} \notin \mathbb{Z}, y \in (A \cap (B \cup C)) \right\}$$

Rewrite set D by listing. Show your working clearly.

(5 marks)

Show your working clearly for this question. No marks will be awarded if the steps involved are not shown.

(a) Convert 1685.9₁₀ to its binary and hexadecimal representations. Express your answers in exact form, showing the recursion clearly for the fractional part, if any.

(12 marks)

(b) Convert 0.110010₂ to its decimal representation exactly.

Express your answer as an exact fraction.

(Hint: For
$$0 < x < 1$$
, we have $1 + x + x^2 + ... = \frac{1}{1 - x}$.)

(8 marks)

. Let the universal set $U = \{x \in \mathbb{N} \mid x \le 12\}$ and define the following sets within U:

$$A = \left\{ x \in \mathbb{Z} \middle| 3 \le x \le 7 \right\}$$

$$B = \left\{ \frac{x}{3} \mid x \in U \right\}$$

 $C = \left\{ x \mid x^2 + 1 \text{ is a multiple of 5} \right\}$

(a) Rewrite sets U, A, B and C by listing.

(5 marks)

(b) Find |A|, $\overline{A} \cap B$ and C - A.

(5 marks)

(c) Draw a Venn diagram showing the above sets U, A, B and C, indicating all the elements clearly.

(5 marks)

(d) Another set D is defined within U, as follows:

$$D = \left\{ x \mid \frac{x}{y} \notin \mathbb{Z}, y \in (A \cap (B \cup C)) \right\}$$

Rewrite set D by listing. Show your working clearly.

(5 marks)

Show your working clearly for this question. No marks will be awarded if the steps

(a) Convert 1685.9₁₀ to its binary and hexadecimal representations. Express your answers in exact form, showing the recursion clearly for the fractional part, if any.

(12 marks)

(b) Convert 0.110010₂ to its decimal representation exactly.

Express your answer as an exact fraction.

(Hint: For
$$0 < x < 1$$
, we have $1 + x + x^2 + ... = \frac{1}{1 - x}$.)

(8 marks)

Á.

Solve this question using homogeneous coordinates.

(a) Triangle P with vertices (1,0), (-3,1) and (4,2) undergoes the following sequence of transformations:

T₁: rotation 180° about the origin, followed by

 T_2 : shearing in the x-direction by a factor of 1, followed by

T₃: translation 1 unit to the left and 2 units upwards.

- (i) Write down the transformation matrices T_1 , T_2 and T_3 .
- (ii) Compute the composite matrix C for the above sequence of transformations.
- (iii) Find P', the image matrix of triangle P after undergoing the above sequence of transformations.
- (iv) Write down the inverse transformation matrices T_1^{-1} , T_2^{-1} and T_3^{-1} .
- (v) Compute the composite matrix C^{-1} that transforms P' back to P.

(20 marks)

(b) In the diagram below, rhombus ABCD is transformed to A'B'C'D' after undergoing a sequence of **three** simple transformations.

- (i) Describe, in words, the three transformations that will transform rhombus ABCD to A'B'C'D', and write down the corresponding transformation matrices.
- (ii) Hence, derive the composite matrix T for the above sequence of transformations and verify that T successfully transforms rhombus ABCD to A'B'C'D'.

(10 marks)

**** END OF PAPER ****