Equilíbrio Tampão

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

PROBLEMA 0.1

2I01

Uma solução tampão é 0,15 mol $\rm L^{-1}$ em $\rm HNO_2(aq)$ e 0,2 mol $\rm L^{-1}$ em $\rm NaNO_2(aq)$

Determine o pH da solução.

PROBLEMA 0.2

2102

Uma solução tampão é 0,04 mol L^{-1} em $NH_4Cl(aq)$ e 0,03 mol L^{-1} em $NH_3(aq)$

Determine o pH da solução.

PROBLEMA 0.3

2I03

Foram dissolvidos 0,02 mol de NaOH (s) em 300 mL de uma solução tampão que é 0,04 mol $\rm L^{-1}$ em acetato de sódio e 0,08 mol $\rm L^{-}$ em ácido acético.

Determine a variação de pH da solução.

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 0.4

2I04

Foram dissolvidos 0,01 mol de HCl (g) em 500 mL de uma solução tampão que é 0,04 mol L $^{-1}$ em acetato de sódio e 0,08 mol L $^{-1}$ em ácido acético.

Determine a variação de pH da solução.

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 0.5

2105

Assinale a alternativa com o sistema tamponante mais adequado para preparar um tampão com pH próximo de 5.

- A CH₃COOH/CH₃CO₂
- B HNO₂/NO₂
- C HClO₂/ClO₂⁻
- $D NH_4^+/NH_3^-$
- $H_2PO_4^-/HPO_4^{2-}$

Dados

- $pK_{a2}(H_3PO_4) = 7,21$
- $pK_a(CH_3COOH) = 4,75$
- $pK_a(HClO_2) = 2$
- $pK_a(HNO_2) = 3,37$
- $pK_b(NH_3) = 4,75$

PROBLEMA 0.6

2106

Assinale a alternativa com o sistema tamponante mais adequado para preparar um tampão com pH próximo de 10.

- A CH₃COOH/CH₃CO₂
- B HNO₂/NO₂
- $Archonormal{NH_4}^+/NH_3^-$
- D HClO₂/ClO₂
- $H_2PO_4^-/HPO_4^{2-}$

Dados

- $pK_{a2}(H_3PO_4) = 7,21$
- $pK_a(CH_3COOH) = 4,75$
- $pK_a(HNO_2) = 3,37$
- $pK_b(NH_3) = 4,75$
- $pK_b((CH_3)_3N) = 4,19$

PROBLEMA 0.7

2I07

Determine a razão entre as concentrações molares de íons acetato e de ácido acético necessária para tamponar uma solução em pH = 5, 3.

Dados

• $pK_a(CH_3COOH) = 4,75$

PROBLEMA 0.8

2I08

Determine a razão entre as concentrações molares de íons benzoato e de ácido benzóico necessária para tamponar uma solução em pH = 3, 5.

Dados

• $pK_a(C_6H_5COOH) = 4,19$

PROBLEMA 0.9

2109

Foram adicionados 20 mL de uma solução 0,15 mol $\rm L^{-1}$ de HCl (aq) a 25 mL de uma solução 0,11 m de NaOH (aq).

Determine o pH da solução resultante.

PROBLEMA 0.10

2I10

Foram adicionados 30 mL de uma solução 0,12 mol $\rm L^{-1}$ de HCl (aq) a 15 mL de uma solução 0,31 m de KOH (aq).

Determine o pH da solução resultante.

PROBLEMA 0.11

2I11

Considere a titulação de 25 mL de uma solução 0,01 mol L^{-1} de HClO (aq) com uma solução 0,02 mol L^{-1} de KOH (aq). **Determine** o pH no ponto estequiométrico.

Dados

• $K_a(HClO) = 3.0 \times 10^{-8}$

PROBLEMA 0.12

2I12

Considere a titulação de 25 mL de uma solução 0,02 mol L^{-1} de $NH_3(aq)$ com uma solução 0,015 mol L^{-1} de HCl(aq). **Determine** o pH no ponto estequiométrico.

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

PROBLEMA 0.13

2I13

Uma solução foi preparada pela mistura de $25\,\mathrm{mL}$ de uma solução $0,1\,\mathrm{mol}\,\mathrm{L}^{-1}$ de ácido fórmico com $5\,\mathrm{mL}$ de uma solução $0,15\,\mathrm{mol}\,\mathrm{L}^{-1}$ de NaOH.

Determine o pH da solução resultante.

Dados

• $K_a(HCOOH) = 1.8 \times 10^{-4}$

PROBLEMA 0.14

2I14

Uma solução foi preparada pela mistura de 25 mL de uma solução 0,1 mol $\rm L^{-1}$ de amônia com 10 mL de uma solução 0,15 mol $\rm L^{-1}$ de HCl

Determine o pH da solução resultante.

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

Gabarito

- **1.** 3,49
- **2.** 9,13
- **3.** 1,21
- **4.** -0.4
- 5. A
- 6. C
- **7.** 3,16
- **8.** 0,2
- **9.** 2,25
- **10.** 12,4
- **11.** 9,67
- **12.** 5,66
- **13.** 3,39
- **14.** 9,1