Aula 2a – Fundamentos da imagem digital

Prof. João Fernando Mari joaof.mari@ufv.br

O olho humano

O olho humano

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Câmera fotográfica - lentes

Câmera fotográfica - lentes

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

5

Câmera fotográfica - diafragma

Câmera fotográfica - obturador

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

A imagem digital

Imagem de intensidades (níveis de cinza):

Imagem colorida (RGB):

78			231
56			218
36	91	200	214
92	149	176	174
70	133	161	155
49	124	158	150
75	80	81	83
52	58	57	57
28	33	17	21
51	59	69	85
30	36	38	58
3	3	4	11

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Imagens coloridas - RGB

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Aquisição de imagens

Aquisição de imagens

f(x, y)	i(x) = i(x)	(y) X	r(X,	y)
(/) .	, ,)	(/	

<i>i(x, y)</i>	(em lux ou lúmen/m²)	
900	Dia ensolarado	
100	Dia nublado	
10	Escritório	
0,001	Noite clara	
r(x, y)		
0.93	Neve	

<i>r(x, y)</i>	
0,93	Neve
0,80	Parede branca
0,65	Aço inoxidável
0,01	Veludo preto

MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

11

Aquisição de imagens

Conversor A/D

Amplificador

Sensores CCD e padrão de Bayer

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

13

Amostragem

$$I_D = \frac{1}{\Delta^2} \int_{l\Delta}^{(l+1)\Delta} \int_{c\Delta}^{(c+1)\Delta} I_c(\rho, \chi) \delta \rho \delta \chi$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

A imagem digital

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Amostragem

Imagem em níveis de cinza continua

Amostragem da imagem em níveis de cinza

Imagem em níveis de cinza discreta (amostrada)

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

17

Efeitos da resolução espacial

1,7 pol

300 ppi – 512 x 512

1,7 pol. a 150 ppi – 256 x 256

1,7 pol. a ~38 ppi – 64 x 64

1,7 pol. a 75 ppi – 128 x 128

1,7 pol. a 19 ppi – 32 x 32

Efeitos da resolução espacial

1,7 pol. 512 x 512 pixels 300 ppi

0,85 pol. 256 x 256 pixels 300 ppi

0,43 pol. 128 x 128 pixels 300 ppi

0,21 pol. 64 x 64 pixels 300 ppi

0,11 pol. 32 x 32 pixels 300 ppi

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

19

Resolução de intensidade

Efeitos da resolução de intensidades

4 bits. 2⁴ = 16 níveis de cinza

3 bits. 23 = 8 níveis de cinza

2 bits. $2^2 = 4$ níveis de cinza

1 bit. 2¹ = 2 níveis de cinza

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

O espaço de cores RGB

Referencias

MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.

Disponível para download no site do autor (Exclusivo para uso pessoal)

http://dainf.ct.utfpr.edu.br/~hvieir/pub.html

Seção 2.1

GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.

Disponível na Biblioteca Virtual da Pearson.

Seções: 2.1, 2.2, 2.3 e 2.4

Alan Peters. Lectures on Image Processing. Vanderbilt University, 2019.

https://archive.org/details/Lectures on Image Processing

J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.

http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf Seção 2

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

2.

Referencias

As imagens usadas nos slides estão disponíveis na biblioteca scikit-image

https://scikit-image.org/docs/dev/api/skimage.data.html

Referencias e material complementar

Felipe Arruda. Vídeo explica como funciona o sensor CCD das câmeras digitais. Tecmundo, 2012.

https://www.tecmundo.com.br/fotografia-e-design/23626-video-explica-como-funciona-o-sensor-ccd-das-cameras-digitais.htm

Bill Hammack. **CCD:** The heart of a digital camera (how a charge-coupled device works). YouTube. Canal: engineerguy.

https://www.youtube.com/watch?v=wsdmt0De8Hw&feature=youtu.be

Raymond Siri. CMOS Animation Sequence. Vimeo

https://vimeo.com/103279734

Raymond Siri. **CCD Animation Sequence**. Vimeo

https://vimeo.com/103279733

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

.

Referencias e material complementar

Rafael Helerbrock. Quais são os limites da visão humana? Mundo Educação

https://mundoeducacao.uol.com.br/fisica/quais-sao-os-limites-visao-humana.htm

Francie Diep. **Humans Can Only Distinguish Between About 30 Shades Of Gray**. Popular Science, 2015.

https://www.popsci.com/humans-can-only-distinguish-between-about-30-shades-gray/

Luciana Galastri. Humanos conseguem distinguir apenas 30 tons de cinza. Galileu, 2015.

https://revistagalileu.globo.com/Ciencia/noticia/2015/02/humanos-conseguem-distinguirapenas-30-tons-de-cinza.html

