My first triumph in Mathematics

Miliyon T., Addis Ababa University

September 7, 2014

y first triumph in mathematics was Steiner triple problem. While I was in AAU, my professor Dr. Yirgalem introduce me the problem. She thought it was "open". It took me a day to solve it. But I doubted that it might have been solved already. So, I searched on the internet. My instinct was correct. It has been solved by Kirkman.¹

1 Definition

Definition 1.1 (Graph). A Graph is a non empty set of vertices and edges. It is often denoted

$$G = (V, E)$$
 or (V_G, E_G) or $(V(G), E(G))$

Figure 1: A Graph

Definition 1.2 (Vertex). A point; an element of the first constituent set of a graph.

Definition 1.3 (Degree (of a vertex)). Given a vertex v, the number deg(v) of instances of v as an endpoint; that is, the number of proper edges incident on v plus twice the number of loops at v.

Definition 1.4 (Order). Given a graph G, the cardinality $|V_G|$ of the vertex set. It is denoted by |G|.

Definition 1.5 (Link). An edge with two distinct end point.

Example 1.6. The edge e_1 in (**Figure** 1) is a link.

Definition 1.7 (Loop). An edge joining a vertex to itself.

Example 1.8. The edge e_5 in (**Figure** 1) is a loop.

Definition 1.9 (Multi-edge). A set of at least two edges, all of which have the same endpoints.

Definition 1.10 (Simple Graph). A graph with no loops or multi-edge.

Figure 2: A Simple Graph

 $^{^1{\}rm The}$ British mathematician Thomas Kirkman (1806 - 1895) solved the problem in his 1847 paper.

Definition 1.11 (Edge). A line, either joining one vertex to another or joining a vertex to itself; an element of the second constituent set of a graph.

Definition 1.12 (Size). Given a graph G, the cardinality $|E_G|$ of the edge set. It is denoted by ||G||.

Definition 1.13 (Subgraph). Given a graph G, a graph H whose vertices and edges are all in G.

Definition 1.14 (Walk). An alternating sequence $v_0, e_1, v_1, ..., e_r, v_r$ of vertices and edges where consecutive edges are adjacent, so that each edge e_i joins vertices v_{i1} and v_i .

Definition 1.15 (Trial). A walk in which no edge occurs more than once.

Definition 1.16 (Path). A *trail* in which all of its vertices are different, except that the initial and final vertices may be the same.

Definition 1.17 (Cycle). A closed *path* of positive length.

Definition 1.18. The simple graph K_n with n vertices in which every pair of vertices is adjacent.

Figure 3: Complete graph

Definition 1.19 (Decomposition). A decomposition od a graph G is a family \mathcal{F} of edge-disjoint subgraph of G such that

$$\bigcup_{F \subset \mathcal{F}} E(F) = E(G)$$

Definition 1.20 (Cyclic Decomposition). If every subgraph of \mathcal{F} is a cycle, then the decomposition is called cyclic decomposition.

2 Basic Results

Theorem 2.1. (Handshaking lemma) For any graph G

$$\sum_{v \in V(G)} deg(v) = 2||G|| \tag{1}$$

Proof. When summing the degrees of the vertices of a graph G, we count each edge of G twice, once for each of the two vertices incident with the edge. \Box

Corollary 2.2. The number of odd vertices (Vertices of odd degree) in a graph is even

Proof. Let G be any graph. Partition the vertex set V(G) into two

O – the set of all odd vertices

E – the set of all odd vertices

Then we have

$$\sum_{v \in V(G)} deg(v) = \sum_{v \in O} deg(v) + \underbrace{\sum_{v \in E} deg(v)}_{even}$$
 (2)

Now, suppose the number of odd vertices in G is odd. Hence the sum

$$\sum_{v \in O} deg(v) \text{ is odd.}$$

Consequently, the sum

$$\sum_{v \in V(G)} deg(v) \text{ becomes odd.}$$

That is a contradiction to Handshaking lemma. Therefore the number of odd vertices in any graph G must be even.

Corollary 2.3. The size of a complete graph of order $n(K_n)$ is

$$\binom{n}{2} = \frac{n(n-1)}{2} \tag{3}$$

3 Triumph

Lemma 3.1. K_n can be decomposed into cycles of m iff $||K_n||$ is a multiple of m.

Proof.
$$\Box$$

Theorem 3.2. If K_n decomposes into K_3 (Cycles of order 3), then either n = 6q + 1 or n = 6q + 3 for some integer q.

References

- [1] [Adrian Bondy & Murty] Graph Theory, 2007.
- [2] [Gary Chartrand] Introductory Graph Theory.
- [3] [Charles & Jeffrey] Handbook of combinatorial design.