

Generative Al and large-language models (LLMs)

FINE-TUNING, INSTRUCTION PROMPTS, AND PARAMETER EFFICIENT FINE-TUNING

Fine-tuning with instruction prompts

GenAl project lifecycle

GenAl project lifecycle

Fine-tuning an LLM with instruction prompts

In-context learning (ICL) - zero shot inference

In-context learning (ICL) - zero shot inference

In-context learning (ICL) - one/few shot inference

One-shot or Few-shot Inference

Limitations of in-context learning

```
Classify this review:
I loved this movie!
Sentiment: Positive
Classify this review:
I don't like this chair.
Sentiment: Negative
Classify this review:
This sofa is so ugly.
Sentiment: Negative
Classify this review:
Who would use this product?
Sentiment:
       Context Window
```

Even with multiple examples

- In-context learning may not work for smaller models
- Examples take up space in the context window

Instead, try fine-tuning the model

LLM fine-tuning at a high level

LLM pre-training

GB - TB - PB of unstructured textual data

LLM fine-tuning at a high level

LLM fine-tuning

GB - TB of labeled examples for a specific task or set of tasks

LLM fine-tuning at a high level

LLM fine-tuning

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Each prompt/completion pair includes a specific "instruction" to the LLM

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Full fine-tuning updates all parameters

Improved performance

Sample prompt instruction templates

Classification / sentiment analysis

```
jinja: "Given the following review:\n{{review_body}}\npredict the associated rating\
  \ from the following choices (1 being lowest and 5 being highest)\n- {{ answer_choices\
  \ | join('\\n- ') }} \n|||\n{{answer_choices[star_rating-1]}}"
```

Text generation

Text summarization

```
jinja: "Give a short sentence describing the following product review \n{{review_body}}\
\n|||\n{{review_headline}}"
```

Source: https://github.com/bigscience-workshop/promptsource/blob/main/promptsource/templates/amazon_polarity/templates.yaml

LLM fine-tuning

Prepared instruction dataset

Training splits

```
PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]
```

```
PROMPT[...], COMPLETION[...]

Validation
```

```
PROMPT[...], COMPLETION[...]
...
Test
```


LLM fine-tuning **LLM** completion: Classify this review: Model **Prepared instruction dataset** I loved this DVD! Sentiment: Neutral Pre-trained Label: LLM **Prompt:** Classify this review: I loved this DVD! Classify this review: I loved this DVD! Sentiment: Positive Sentiment:

LLM fine-tuning

Prepared instruction dataset

Training splits

```
PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]
```

```
PROMPT[...], COMPLETION[...]

Validation
```

validation_accuracy

```
PROMPT[...], COMPLETION[...]
...
Test
```


LLM fine-tuning

Prepared instruction dataset

Training splits

```
PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]
```

```
PROMPT[...], COMPLETION[...]

Validation
```

```
PROMPT[...], COMPLETION[...]
...
Test
```

test_accuracy

Fine-tuning on a single task

Fine-tuning on a single task

 Fine-tuning can significantly increase the performance of a model on a specific task...

Before fine-tuning

 Fine-tuning can significantly increase the performance of a model on a specific task...

After fine-tuning

...but can lead to reduction in ability on other tasks

Before fine-tuning

...but can lead to reduction in ability on other tasks

Prompt Model What is the name of the cat? Charlie the cat roamed the garden at night. The garden was positive.

How to avoid catastrophic forgetting

- First note that you might not have to!
- Fine-tune on multiple tasks at the same time
- Consider Parameter Efficient Fine-tuning (PEFT)

Multi-task, instruction fine-tuning

Multi-task, instruction fine-tuning

Multi-task, instruction fine-tuning

Instruction fine-tuning with FLAN

 FLAN models refer to a specific set of instructions used to perform instruction fine-tuning

"The metaphorical dessert to the main course of pretraining"

FLAN

Instruction fine-tuning with FLAN

 FLAN models refer to a specific set of instructions used to perform instruction fine-tuning

FLAN-T5: Fine-tuned version of pre-trained T5 model

• FLAN-T5 is a great, general purpose, instruct model

TO-SF

- Commonsense Reasoning,
- Question Generation,
- Closed-book QA,
- Adversarial QA,
- Extractive QA

• • •

55 Datasets 14 Categories 193 Tasks

Muffin

- Natural language inference,
- Code instruction gen,
- Code repair
- Dialog context generation,
- Summarization (SAMSum)

. .

69 Datasets 27 Categories 80 Tasks

CoT (reasoning)

- Arithmetic reasoning,
- Commonsense reasoning
- Explanation generation,
- Sentence composition,
- Implicit reasoning,

• •

9 Datasets1 Category9 Tasks

Natural Instructions

- Cause effect classification,
- Commonsense reasoning,
- Named Entity Recognition,
- Toxic Language Detection,
- Question answering

• •

372 Datasets 108 Categories 1554 Tasks

Source: Chung et al. 2022, "Scaling Instruction-Finetuned Language Models"

FLAN-T5: Fine-tuned version of pre-trained T5 model

FLAN-T5 is a great, general purpose, instruct model

TO-SF

- Commonsense Reasoning,
- Question Generation,
- Closed-book QA,
- Adversarial QA,
- Extractive QA

• • •

55 Datasets 14 Categories 193 Tasks

Muffin

- Natural language inference,
- Code instruction gen,
- Code repair
- Dialog context generation,
- Summarization (SAMSum)

. . .

69 Datasets 27 Categories 80 Tasks

CoT (reasoning)

- Arithmetic reasoning,
- Commonsense reasoning
- Explanation generation,
- Sentence composition,
- Implicit reasoning,

• •

9 Datasets1 Category9 Tasks

Natural Instructions

- Cause effect classification,
- Commonsense reasoning,
- Named Entity Recognition,
- Toxic Language Detection,
- Question answering

• • •

372 Datasets 108 Categories 1554 Tasks

Source: Chung et al. 2022, "Scaling Instruction-Finetuned Language Models"

SAMSum: A dialogue dataset

Sample prompt training dataset (samsum) to fine-tune FLAN-T5 from pretrained T5

Datasets: samsum	Tasks:	<u>_</u>	Summarization	Languages:	# English
dialogue (string)			summary (string)		
"Amanda: I baked cookies. Do you want some Amanda: I'll bring you tomorrow :-)"	"Amanda baked cookies and will bring Jerry some tomorrow."				
"Olivia: Who are you voting for in this election? Oliver: Liberals as always. Olivia: Me too!! Oliver: Great"			"Olivia and Olivier are voting for liberals in this election. "		
"Tim: Hi, what's up? Kim: Bad mood tbh, I was going to do lots of stuff but ended up procrastinating Tim: What did			"Kim may try the pomodoro technique recommended by Tim to get more stuff done."		
	700 to 0				

Source: https://github.com/google-research/FLAN/blob/2c79a31/flan/v2/templates.py#L3285

Sample FLAN-T5 prompt templates

```
"samsum": [
      ("{dialogue}\n\Briefly summarize that dialogue.", "{summary}"),
       ("Here is a dialogue:\n{dialogue}\n\nWrite a short summary!",
        "{summary}"),
      ("Dialogue:\n{dialogue}\n\nWhat is a summary of this dialogue?",
        "{summary}"),
       ("{dialogue}\n\nWhat was that dialogue about, in two sentences or less?",
        "{summary}"),
       ("Here is a dialogue:\n{dialogue}\n\nWhat were they talking about?",
        "{summary}"),
       ("Dialogue:\n{dialogue}\nWhat were the main points in that "
        "conversation?", "{summary}"),
      ("Dialogue:\n{dialogue}\nWhat was going on in that conversation?",
        "{summary}"),
```


Sample FLAN-T5 prompt templates

```
"samsum": [
      ("{dialogue}\h\Briefly summarize that dialogue.", "{summary}"),
       ("Here is a dialogue:\n{dialogue}\n\nWrite a short summary!",
        "{summary}"),
       ("Dialogue:\n{dialogue}\n\nWhat is a summary of this dialogue?",
        "{summary}"),
       ("{dialogue}\n\nWhat was that dialogue about, in two sentences or less?",
        "{summary}"),
       ("Here is a dialogue:\n{dialogue}\n\nWhat were they talking about?",
        "{summary}"),
       ("Dialogue:\n{dialogue}\nWhat were the main points in that "
        "conversation?", "{summary}"),
       ("Dialogue:\n{dialogue}\nWhat was going on in that conversation?",
        "{summary}"),
```


Improving FLAN-T5's summarization capabilities

Improving FLAN-T5's summarization capabilities

Goal: Summarize conversations to identify actions to take

Improving FLAN-T5's summarization capabilities

Further fine-tune FLAN-T5 with a domain-specific instruction dataset (dialogsum)

Example support-dialog summarization

Prompt (created from template)

```
Summarize the following conversation.
Tommy: Hello. My name is Tommy Sandals, I have a reservation.
Mike: May I see some identification, sir, please?
Tommy: Sure. Here you go.
Mike: Thank you so much. Have you got a credit card, Mr.
Sandals?
Tommy: I sure do.
Mike: Thank you, sir. You'll be in room 507, nonsmoking,
queen bed.
Tommy: That's great, thank you!
Mike: Enjoy your stay!
```

Source: https://huggingface.co/datasets/knkarthick/dialogsum/viewer/knkarthick--dialogsum/

Summary before fine-tuning FLAN-T5 with our dataset

Prompt (created from template)

Summarize the following conversation.

Tommy: Hello. My name is Tommy Sandals, I have a reservation.

Mike: May I see some

• • •

. . .

Tommy: That's great, thank

you!

Mike: Enjoy your stay!

Completion (Summary)

Tommy Sandals has a reservation for a room at the Venetian Hotel in Las Vegas.

Adequate completion, but does not match human baseline.

Human baseline summary:
Tommy Sandals has got a
reservation. Mike asks for his
identification and credit card
and helps his check-in.

Summary before fine-tuning FLAN-T5 with our dataset

Prompt (created from template)

Summarize the following conversation.

Tommy: Hello. My name is Tommy Sandals, I have a reservation.

Mike: May I see some

• • •

• • •

Tommy: That's great, thank

you!

Mike: Enjoy your stay!

Completion (Summary)

Tommy Sandals has a reservation for a room at the Venetian Hotel in Las Vegas.

Adequate completion, but does not match human baseline.

Human baseline summary:
Tommy Sandals has got a
reservation. Mike asks for his
identification and credit card
and helps his check-in.

Summary before fine-tuning FLAN-T5 with our dataset

Prompt (created from template)

Summarize the following conversation.

Tommy: Hello. My name is Tommy Sandals, I have a reservation.

Mike: May I see some

• • •

. . .

Tommy: That's great, thank

you!

Mike: Enjoy your stay!

Completion (Summary)

Tommy Sandals has a reservation for a room at the Venetian Hotel in Las Vegas.

Adequate completion, but does not match human baseline.

Human baseline summary:
Tommy Sandals has got a
reservation. Mike asks for his
identification and credit card
and helps his check-in.

Summary after fine-tuning FLAN-T5 with our dataset

Prompt (created from template)

Summarize the following conversation.

Tommy: Hello. My name is Tommy Sandals, I have a reservation.

Mike: May I see some

• • •

. . .

Tommy: That's great, thank

you!

Mike: Enjoy your stay!

Completion (Summary)

Tommy Sandals has a reservation and checks in showing his ID and credit card. Mike helps him to check in and approves his reservation.

Better summary, more-closely matches human baseline.

Fine-tuning with your own data

Model evaluation metrics

LLM Evaluation - Challenges

LLM Evaluation - Challenges

"Mike really loves drinking tea."

"Mike adores sipping tea."

"Mike does not drink coffee."

"Mike does drink coffee."

LLM Evaluation - Metrics

- Used for text summarization
- Compares a summary to one or more reference summaries
- Used for text translation
- Compares to human-generated translations

LLM Evaluation - Metrics - Terminology

Reference (human):

It is cold outside.

Generated output:

It is very cold outside.

ROUGE-1 =
$$\frac{\text{unigram matches}}{\text{unigrams in reference}} = \frac{4}{4} = 1.0$$

ROUGE-1 =
$$\frac{\text{unigram matches}}{\text{unigrams in output}} = \frac{4}{5} = 0.8$$

ROUGE-1 = 2
$$\frac{\text{precision x recall}}{\text{precision + recall}}$$
 = 2 $\frac{0.8}{1.8}$ = 0.89

Reference (human):

It is cold outside.

Generated output:

It is not cold outside.

ROUGE-1 =
$$\frac{\text{unigram matches}}{\text{unigrams in reference}} = \frac{4}{4} = 1.0$$

ROUGE-1 =
$$\frac{\text{unigram matches}}{\text{unigrams in output}} = \frac{4}{5} = 0.8$$

ROUGE-1 = 2
$$\frac{\text{precision x recall}}{\text{precision + recall}}$$
 = 2 $\frac{0.8}{1.8}$ = 0.89

Reference (human):

It is cold outside.

It is

is cold

cold outside

Generated output:

It is very cold outside.

It is

is very

very cold

cold outside

Reference (human):

It is cold outside.

It is

is cold

cold outside

Generated output:

It is very cold outside.

It is

is very

very cold

cold outside

ROUGE-2 bigram matches =
$$\frac{2}{\text{bigrams in reference}} = \frac{2}{3} = 0.67$$

ROUGE-2 = bigram matches =
$$\frac{2}{4}$$
 = 0.5 Precision:

ROUGE-2 = 2
$$\frac{\text{precision x recall}}{\text{precision + recall}}$$
 = $2\frac{0.335}{1.17}$ = 0.57

Reference (human):

It is cold outside.

Generated output:

It is very cold outside.

Longest common subsequence (LCS):

It is

cold outside

2

Reference (human):

It is cold outside.

Generated output:

It is very cold outside.

ROUGE-L Recall: =
$$\frac{LCS(Gen, Ref)}{unigrams in reference} = \frac{2}{4} = 0.5$$

ROUGE-L Precision: =
$$\frac{LCS(Gen, Ref)}{unigrams in output} = \frac{2}{5} = 0.4$$

ROUGE-L = 2
$$\frac{\text{precision x recall}}{\text{precision + recall}}$$
 = 2 $\frac{0.2}{0.9}$ = 0.44

Reference (human):

It is cold outside.

Generated output:

It is very cold outside.

LCS:

Longest common subsequence

ROUGE-L Recall: =
$$\frac{LCS(Gen, Ref)}{unigrams in reference} = \frac{2}{4} = 0.5$$

ROUGE-L Precision: =
$$\frac{LCS(Gen, Ref)}{unigrams in output} = \frac{2}{5} = 0.4$$

ROUGE-L = 2
$$\frac{\text{precision x recall}}{\text{precision + recall}}$$
 = 2 $\frac{0.2}{0.9}$ = 0.44

LLM Evaluation - Metrics - ROUGE hacking

Reference (human):

It is cold outside.

Generated output:

cold cold cold cold

LLM Evaluation - Metrics - ROUGE clipping

Reference (human):

It is cold outside.

Generated output:

cold cold cold cold

Modified precision =
$$\frac{\text{clip(unigram matches)}}{\text{unigrams in output}} = \frac{1}{4} = 0.25$$

Generated output:

outside cold it is

Modified =
$$\frac{\text{clip(unigram matches)}}{\text{unigrams in output}} =$$

LLM Evaluation - Metrics

- Used for text summarization
- Compares a summary to one or more reference summaries

- Used for text translation
- Compares to human-generated translations

LLM Evaluation - Metrics - BLEU

BLEU metric = Avg(precision across range of n-gram sizes)

Reference (human):

I am very happy to say that I am drinking a warm cup of tea.

Generated output:

I am very happy that I am drinking a cup of tea. - BLEU 0.495

I am very happy that I am drinking a warm cup of tea. - BLEU 0.730

I am very happy to say that I am drinking a warm tea. - BLEU 0.798

I am very happy to say that I am drinking a warm cup of tea. - BLEU 1.000

LLM Evaluation - Metrics

- Used for text summarization
- Compares a summary to one or more reference summaries
- Used for text translation
- Compares to human-generated translations

Benchmarks

Evaluation benchmarks

MMLU (Massive Multitask Language Understanding)

BIG-bench

GLUE

The tasks included in SuperGLUE benchmark:

Corpus	Train	Test	Task	Metrics	Domain			
	Single-Sentence Tasks							
CoLA	8.5k	1k	acceptability	Matthews corr.	misc.			
SST-2	67k	1.8k	sentiment	acc.	movie reviews			
Similarity and Paraphrase Tasks								
MRPC	3.7k	1.7k	paraphrase	acc./F1	news			
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.			
QQP	364k	391k	paraphrase	acc./F1	social QA questions			
	Inference Tasks							
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.			
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia			
RTE	2.5k	3k	NLI	acc.	news, Wikipedia			
WNLI	634	146	coreference/NLI	acc.	fiction books			

Source: Wang et al. 2018, "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding"

SuperGLUE

The tasks included in SuperGLUE benchmark:

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

Source: Wang et al. 2019, "SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems"

GLUE and SuperGLUE leaderboards

Disclaimer: metrics may not be up-to-date. Check https://gluebenchmark.com/leaderboard for the latest.

Benchmarks for massive models

2021

Source: Hendrycks, 2021. "Measuring Massive Multitask Language Understanding"

Benchmarks for massive models

Source: Hendrycks, 2021. "Measuring Massive Multitask Language Understanding"

Source: Suzgun et al. 2022. "Challenging BIG-Bench tasks and whether chain-of-thought can solve them"

Holistic Evaluation of Language Models (HELM)

Metrics:

- 1. Accuracy
- 2. Calibration
- 3. Robustness
- 4. Fairness
- 5. Bias
- 6. Toxicity
- /. Efficiency

Scenarios

NaturalQuestions (open) NaturalQuestions (closed) BoolQ NarrativeQA QuAC HellaSwag OpenBookQA TruthfulQA MMLU MS MARCO TREC **XSUM** CNN/DM **IMDB** CivilComments **RAFT**

J1-Jumbo	J1-Grande	J1-Large	Anthropic- LM	BLOOM	ТОрр	Cohere XL	Cohere Large	Cohere Medium	Cohere Small	GPT- NeoX
		V	~	~	V	~	V	V	V	
V	V	~	V	~	V	V	V	V	V	
V	V	V	V	V	~	V	V	V	V	
V	V	V	V	V	~	V	V	V	V	
V	V	V	V	V	~	V	~	V	V	
V	V	V	V	V	~	V	~	V	V	
V	V	V	V	V	~	V	V	V	V	
~	V	~	V	~	V	V	V	V	V	
V	V	V	V	V	~	V	~	V	V	
			V	V		V	V	V	V	
			V	V		V	~	V	V	
V	V	~	V	V	~	V	~	V	V	
V	V	~	V	V	~	V	V	V	V	
V	V	~	V	V	~	V	~	V	V	
V	V	~	V	V	V	V	~	~	V	
V	V	V	V	V	V	~	V	V	V	

Models

Holistic Evaluation of Language Models (HELM)

Disclaimer: metrics may not be up-to-date. Check https://crfm.stanford.edu/helm/latest for the latest.

Key takeaways

LLM fine-tuning process

LLM fine-tuning

Training dataset

Prompt:

Classify this review:
I loved this DVD!

Sentiment:

LLM completion:

LLM fine-tuning process

LLM fine-tuning

Training dataset

Prompt:

Classify this review:
I loved this DVD!

Sentiment:

LLM fine-tuning process

LLM fine-tuning **LLM** completion: Classify this review: Model **Prepared instruction dataset** I loved this DVD! Sentiment: Neutral Pre-trained Label: LLM **Prompt:** Classify this review: I loved this DVD! Classify this review: I loved this DVD! Sentiment: Positive Sentiment:

Parameterefficient Fine-tuning (PEFT)

Full fine-tuning of large LLMs is challenging

Parameter efficient fine-tuning (PEFT)

Small number of trainable layers

LLM with most layers frozen

Parameter efficient fine-tuning (PEFT)

New trainable layers

LLM with additional layers for PEFT

Less prone to catastrophic forgetting

Frozen Weights

Other components

Trainable weights

Full fine-tuning creates full copy of original LLM per task

PEFT fine-tuning saves space and is flexible

PEFT Trade-offs

Parameter Efficiency

Memory Efficiency

Training Speed

Model Performance

Inference Costs

PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

Source: Lialin et al. 2023, "Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning",

PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts

Prompt Tuning

Source: Lialin et al. 2023, "Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning",

Low-Rank Adaptation of Large Language Models (LoRA)

Embedding

Embedding

Inputs

1. Freeze most of the original LLM weights.

- 1. Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Steps to update model for inference

1. Matrix multiply the low rank matrices

$$B * A = B \times A$$

2. Add to original weights

- 1. Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Steps to update model for inference:

1. Matrix multiply the low rank matrices

$$B * A = B \times A$$

2. Add to original weights

Concrete example using base Transformer as reference

Use the base Transformer model presented by Vaswani et al. 2017:

- Transformer weights have dimensions $d \times k = 512 \times 64$
- So $512 \times 64 = 32,768$ trainable parameters

In LoRA with rank r = 8:

- A has dimensions $r \times k = 8 \times 64 = 512$ parameters
- B has dimension $d \times r = 512 \times 8 = 4,096$ trainable parameters
- 86% reduction in parameters to train!

- Train different rank decomposition matrices for different tasks
- 2. Update weights before inference

- Train different rank decomposition matrices for different tasks
- 2. Update weights before inference

- Train different rank decomposition matrices for different tasks
- 2. Update weights before inference

Sample ROUGE metrics for full vs. LoRA fine-tuning

Base model ROUGE

Full fine-tune ROUGE

Dialog summarization

FLAN-T5

Sample ROUGE metrics for full vs. LoRA fine-tuning

Choosing the LoRA rank

Rank r	val_loss	BLEU	NIST	METEOR	ROUGE_L	CIDEr
1	1.23	68.72	8.7215	0.4565	0.7052	2.4329
2	1.21	69.17	8.7413	0.4590	0.7052	2.4639
4	1.18	70.38	8.8439	0.4689	0.7186	2.5349
8	1 17	69.57	8.7457	0.4636	0.7196	2.5196
16	1.16	69.61	8.7483	0.4629	0.7177	2.4985
32	1.16	69.33	8.7736	0.4642	0.7105	2.5255
64	1.16	69.24	8.7174	0.4651	0.7180	2.5070
128	1.16	68.73	8.6718	0.4628	0.7127	2.5030
256	1.16	68.92	8.6982	0.4629	0.7128	2.5012
512	1.16	68.78	8.6857	0.4637	0.7128	2.5025
1024	1.17	69.37	8.7495	0.4659	0.7149	2.5090

- Effectiveness of higher rank
 appears to plateau
- Relationship between rank and dataset size needs more empirical data

Source: Hu et al. 2021, "LoRA: Low-Rank Adaptation of Large Language Models"

QLoRA: Quantized LoRA

- Introduces 4-bit NormalFloat (nf4) data type for 4-bit quantization
- Supports double-quantization to reduce memory ~0.4 bits per parameter (~3 GB for a 65B model)
- Unified GPU-CPU memory management reduces GPU memory usage
- LoRA adapters at every layer not just attention layers
- Minimizes accuracy trade-off

Optimizer
State
(32 bit)

Adapters
(16 bit)

Base
Model

16-bit Transformer

Adapters
16-bit Transformer

Adapters
4-bit Transformer

Paging Flow

Figure 1: Different finetuning methods and their memory requirements. QLoRA improves over LoRA by quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

LoRA

Full Finetuning

(No Adapters)

Source: Dettmers et al. 2023, "QLoRA: Efficient

Finetuning of Quantized LLMs"

QLoRA

Prompt tuning with soft prompts

Prompt tuning is **not** prompt engineering!

One-shot or Few-shot Inference

Prompt tuning adds trainable "soft prompt" to inputs

Soft prompts

Embeddings of each token exist at unique point in multi-dimensional space

Soft prompts

Full Fine-tuning vs prompt tuning

Weights of model updated during training

Full Fine-tuning vs prompt tuning

Weights of model updated during training

Millions to Billions of parameter updated

Weights of model frozen and soft prompt trained

10K - 100K of parameters updated

Prompt tuning for multiple tasks

Switch out soft prompt at inference time to change task!

Performance of prompt tuning

- Full Fine-tuning
- Multi-task Fine-tuning
- Prompt tuning
- Prompt engineering

Prompt tuning can be as effective as full Fine-tuning for larger models!

Source: Lester et al. 2021, "The Power of Scale for Parameter-Efficient Prompt Tuning"

Interpretability of soft prompts

Trained soft-prompt embedding does not correspond to a known token...

Interpretability of soft prompts

...but nearest neighbors form a semantic group with similar meanings.

PEFT methods summary

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts
Prompt Tuning

