	DRUKOWANYMI I (CZYTELNYMI LITER	AMI wpisać swoje na	azwisko i imię	Nr albumu	7.02.2025	A
1. Formułę zdaniową (p oraz \wedge .	$o \lor (\sim q \Rightarrow r)) \Rightarrow$	$(\sim r \lor p)$ zapisać	w postaci równ	noważnej, ko	rzystając tyll	ко z funktor	ów ∼
2. Dana jest wypowiedschemat tej wypowiedzi							tawić
3. Dane są zbiory A, E uzasadnić, że tak nie mu		równość $A \setminus (B \cup A)$	$\cup C) = (A \setminus B)$	$\cap (A \setminus C)$ al	bo za pomoc	ą kontrprzyl	kładu

^{4.} Dana jest funkcja $f: X \to Y$ oraz podzbiory A i B zbioru Y. Wykazać, że $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$. Przedstawić formalne uzasadnienie równości.

5. Indukcyjnie wykazać, że liczba $x_n = 10^{3n+1} + 3(-1)^n$ jest podzielna przez 13 dla każdej liczby $n \in \mathbb{N}$.	
6. Dany jest zbiór częściowo uporządkowany ($\mathcal{P}(\{1,2,3,4\}),\subseteq$), gdzie $\mathcal{P}(\{1,2,3,4\})$ jest zbiorem wszystkich podzbiorów zbioru $\{1,2,3,4\}$ i \subseteq jest relacją zawierania się zbiorów. (1) Niżej narysować diagram Hassego tego częściowego porządku i na nim zaznaczyć zbiór $B = \{\{1,2\},\{1,3\}\{1,2,4\},\{1,3,4\}\}\}$. (2) Dla zbioru B wyznaczyć (jeśli to możliwe) elementy:	
1. minimalne:	
2. maksymalne:	
3. najmniejsze:	
4. największe: 5. ograniczenia dolne:	
6. kresy dolne:	
7. ograniczenia górne:	
8. kresy górne:	
7. W zbiorze $\mathbb R$ określona jest relacja \sim , gdzie dla $a,b\in\mathbb R$ jest $a\sim b$ wtedy i tylko wtedy, gdy $a-b\in\mathbb Z$. (1) Formalnie wykazać, że \sim jest relacją równoważności w zbiorze $\mathbb R$. (2) Wyznaczyć klasę abstrakcji $[0]_{\sim}$. Uzasadnić swoją propozycję!	
	Г
8. Przez $A_n=\{0,1\}^{\{1,2,\dots,n\}}$ oznaczamy zbiór wszystkich zero-jedynkowych ciągów długości n . Wyznaczyć moce	
zbiorów A_n oraz zbioru $A = \bigcup_{n=1}^{\infty} A_n$ (czyli zbioru wszystkich skończonych ciągów zero-jedynkowych). Uzasadnić swoje	
stwierdzenia. $n=1$	