```
In [59]: import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

In [61]: df.head(6)

Out[61]:

	q1	q2	q3	dq1	dq2	dq3	I1	12	13
t									
0.00	-0.000007	2.4958	-1.1345	-7.882100e- 21	-4.940656e- 321	3.913100e- 29	-0.081623	-0.40812	-C
0.01	-0.000007	2.4958	-1.1345	-2.258200e- 21	-4.940656e- 321	2.626200e- 31	-0.037411	-0.37241	-C
0.02	-0.000007	2.4958	-1.1345	-6.469800e- 22	-4.940656e- 321	1.762500e- 33	-0.066319	-0.40302	-C
0.03	-0.000007	2.4958	-1.1345	-1.853600e- 22	-4.940656e- 321	1.182800e- 35	-0.068020	-0.43703	-C
0.04	-0.000007	2.4958	-1.1345	-5.310600e- 23	-4.940656e- 321	-5.270900e- 03	-0.052715	-0.40472	-C
0.05	-0.000007	2.4958	-1.1345	-1.521500e- 23	-4.940656e- 321	3.252600e- 04	-0.088425	-0.42342	-C

```
In [62]: y = df['I2']
    t = df.index
    plt.plot(t, y, 'o')
    plt.xlabel('t')
    plt.ylabel('I2')
```

Out[62]: <matplotlib.text.Text at 0x1196da2e8>


```
In [63]: ytrain = np.array(df['I2'])
xtrain = np.array(df[['q2','dq2','eps21', 'eps22', 'eps31', 'eps32', 'eps32',
```

```
In [64]: from sklearn import linear_model

#Creat linear regression object
regr = linear_model.LinearRegression()
```

```
In [65]: regr.fit(xtrain, ytrain)
```

Out[65]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normaliz e=False)

```
In [66]: y_tr_pred = regr.predict(xtrain)
    plt.plot(t, ytrain, 'o')
    plt.plot(t, y_tr_pred, 'o')
    plt.grid()
    plt.legend(['Actural', 'Predicted'])
    plt.xlabel('t')
    plt.ylabel('I2')
```

Out[66]: <matplotlib.text.Text at 0x119ebbc88>

In [67]: RSS_train = np.mean((y_tr_pred-ytrain)**2)/(np.std(ytrain)**2)
print("Normalized RSS = {0:f}".format(RSS_train))

Normalized RSS = 0.095833

Out[68]: <matplotlib.text.Text at 0x11979ea20>


```
In [69]: RSS_test = np.mean((y_test_pred-y_test)**2)/(np.std(y_test)**2)
    print("Normalized RSS of test data = {0:f}".format(RSS_test))
```

Normalized RSS of test data = 0.126780

In []: