Pipelining with ilastik

Anna Kreshuk

Outline

- Introduction
 - Machine learning
 - ilastik workflows
- Headless ilastik
 - Native
 - Fiji and Knime
- Workflows with ilastik
- AOB

[Image: Gerlich Lab]

Cells vs background segmentation

[Image: Gerlich Lab]

[Image: Gerlich Lab]

[Image: Gerlich Lab]

[Image: Gerlich Lab]

[Image: Gerlich Lab]

Cells vs background segmentation

[Image: Gerlich Lab]

Machine learning: no more rules!

[Image: Gerlich Lab]

Find a separating surface in the multidimensional feature space

Find a separating surface in the multidimensional feature space

What does it separate?
User labels, aka training data

Find a separating surface in the multidimensional feature space

Images: Google neural network playground

Let's look at an example

ilastik

Interactive learning and segmentation toolkit

Developed since 2011

1000s of users, 100s of citations

Workflows for different bioimage analysis tasks

Random Forest in a nutshell

background: 2/3 foreground: 1/3

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?

Manuel Fernández-Delgado Eva Cernadas

MANUEL.FERNANDEZ.DELGADO@USC.ES EVA.CERNADAS@USC.ES

Senén Barro

SENEN.BARRO@USC.ES CITIUS: Centro de Investigación en Tecnoloxías da Información da USC

University of Santiago de Compostela

Campus Vida, 15872, Santiago de Compostela, Spain

Dinani Amorim

DINANIAMORIM@GMAIL.COM

Departamento de Tecnologia e Ciências Sociais- DTCS Universidade do Estado da Bahia

Av. Edgard Chastinet S/N - São Geraldo - Juazeiro-BA, CEP: 48.305-680, Brasil

Editor: Russ Greiner

Abstract

We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian, neural networks, support vector machines, decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and other ensembles, generalized linear models, nearestneighbors, partial least squares and principal component regression, logistic and multinomial regression, multiple adaptive regression splines and other methods), implemented in Weka, R (with and without the caret package), C and Matlab, including all the relevant classifiers available today. We use 121 data sets, which represent the whole UCI data base (excluding the large-scale problems) and other own real problems, in order to achieve significant conclusions about the classifier behavior, not dependent on the data set collection. The classifiers most likely to be the bests are the random forest (RF) versions, the best of which (implemented in R and accessed via caret) achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets. However, the dif-

Beyond pixels

Connect pixels of the same class into objects

Classify objects

Example...

Beyond objects

Pixels → objects → tracks

Headless mode

It is trained. Now what?

GUI - add more images to the batch processing applet

Headless interface

Run from the command line

```
$ cd ilastik-1.1.7-Linux
$ ./run_ilastik.sh --headless
```

```
$ ./ilastik-1.1.7-0SX.app/Contents/ilastik-release/run_ilastik.sh --headless
```

```
$ cd "\Program Files\ilastik-1.0"
$ .\ilastik.bat --headless
```

Arguments

- Project file the project you trained
- Files to process
 - Separate files: ./run_ilastik.sh --headless --project MyProject.ilp
 file1.png file2.png
 - Or stacks: ./run_ilastik.sh --headless --project MyProject.ilp
 "my big stack*.png"

Other options

Same as in the Export Image Options dialog

Exporting a sequence

ilastik project file (.ilp)

HDF5 file: read and edit with standard tools, such as h5py in Python

View with HDFView utility

Create new project files for headless benchmarking

Change labels or features and retrain headless with --retrain option

Examples in ilastik-1.3.0/ilastik-meta/ilastik/bin

Fiji

Knime

Workflows with ilastik

Object classification and Tracking

Pixel classification and Multicut

llastik → Fiji → ilastik

Pixel classification → watershed → object classification

Pixel classification → more features → pixel classification

Conclusions

- Machine learning is very powerful
- But it's not all you need

Conclusions

- Machine learning is very powerful
- But it's not all you need

Train interactively, apply anywhere

Thank you!

Download: <u>ilastik.org/download</u>

Development: github.com/ilastik

Contact: <u>team@ilastik.org</u>

