Exercise 6.7. Verify Euler's Theorem for n = 15 and a = 4.

Solution. Because $\gcd(15,4)=1$, we may apply Euler's Theorem that $a^{\phi(n)}\equiv 1\pmod{n}$.

$$\phi(15) = \# \{x \in ([1, 15) \cap \mathbb{Z}) | \gcd(x, 15) = 1\}$$
$$= \# \{1, 2, 4, 7, 8, 11, 13, 14\}$$
$$= 8$$

and

$$4^{8} = 4^{2^{3}}$$

$$\equiv 1 \quad \text{as } 4^{2^{0}} \equiv 4 \implies 4^{2^{1}} \equiv 1 \implies 4^{2^{2}} \equiv 4 \implies 4^{2^{3}} \equiv 1$$

So Euler's Theorem holds for n = 15 and a = 4. \checkmark

Exercise 6.8. Use Fermat's Little Theorem to show that if p = 4n + 3 is prime, there is no solution to the equation $x^2 \equiv -1 \pmod{p}$.

Proof. Notice $x \in [(\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}]$ and $x^2 \equiv -1 \pmod p \implies x^4 \equiv 1 \pmod p$. If $x \equiv 1$ then $x^2 \equiv 1$ and $x^2 \equiv -1$, so $1 \equiv -1 \implies 2 \equiv 0 \implies p = 2 = 4n + 3$, which is a contradiction. So $x \not\equiv 1$ and $x^2 \not\equiv 1$,

Since |x|=4 and $x \in [(\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}]$, we have 4 divides |G|, where clearly |G|=p-1. So $4|p-1 \implies 4|(4n+3)-1 \implies 4|4n+2$ which is a contradiction. Therefore there is no $x \in [(\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}]$ such that $x^2 \equiv -1 \pmod{p}$.

Exercise 6.11. Let H be a sub-group of G and suppose that $g_1 \cdot g_2 \in G$. Prove that the following conditions are equivalent.

(a)
$$g_1 H = g_2 H$$
 (b) $H g_1^{-1} = H g_2^{-1}$ (c) $g_1 H \subseteq g_2 H$ (d) $g_2 \in$

(d) $g_2 \in g_1 H$ (e) $g_1^{-1} g_2 \in H$

Proof. (a) \iff (b):

$$g_{1}H = g_{2}H \iff g_{1} \sim_{H,L} g_{2}, \text{ as } [x]_{\sim_{H,L}} = xH$$

$$\iff g_{1}^{-1}g_{2} \in H \text{ by definition of } \sim_{H,L}$$

$$\iff g_{1}^{-1} \sim_{H,R} g_{2}^{-1} \text{ by definition of } \sim_{H,R}$$

$$\iff Hg_{1}^{-1} = Hg_{2}^{-1}, \text{ as } [x]_{\sim_{H,R}} = Hx$$

$$(1)$$

So
$$g_1 H = g_2 H \iff H g_1^{-1} = H g_2^{-1}$$
.

 $(\mathbf{a}) \implies (\mathbf{d})$:

$$g_1H = g_2H$$
 and $g_2 \in g_2H \implies g_2 \in g_1H$ \square

 $(\mathbf{c}) \iff (\mathbf{a})$:

$$g_1H \subseteq g_2H \iff g_1 \in g_2H \text{ by } (\mathbf{d})$$
 $\iff g_1 = g_2h \text{ for some } h \text{ in } H$
 $\iff g_2^{-1}g_1 \in H$
 $\iff g_1 \sim_{H,L} g_2 \text{ by definition of } \sim_{H,L} \text{ and fact that } \sim_{H,L} \text{ is symmetric}$
 $\iff g_1H = g_2H, \text{ as } [x]_{\sim_{H,R}} = Hx$

So
$$g_1H \subseteq g_2H \iff g_1H = g_2H$$
.

(a) \iff (c): I kind of think of this as the definition, through a proof is given in (1).

Exercise 6.17. Suppose that [G:H]=2. If a and b are not in H, show that $ab \in H$.

Proof. Clearly $id \in H$ as H is a sub-group. Let $H = \{h_1, \ldots, h_n, id\}$ such that $a, b \notin H$. Consider $aH = \{ah_1, \ldots, ah_n, a\}$. Since [G:H] = 2 we have that $aH = G \setminus H$ by theorem from class. Clearly $ab \notin aH$ as $ah_i \neq ab$ for any i by assumption that $b \notin H$. So $ab \notin G \setminus H \implies ab \in H$ (as ab must be in G because G is closed).

Exercise 6.20. Let H and K be sub-groups of a group G. Define a relation \sim on G by $a \sim b$ if there exists an $h \in H$ and a $k \in K$ such that hak = b. Show that this relation is an equivalence relation. The corresponding equivalence classes are **double co-sets**. Compute the double co-sets of $H = \{(1), (123), (132)\}$ in A_4 .

Proof.

Reflexive: As H and K are sub-groups, clearly $id \in H$ and $id \in K$. So let h = k = id. Then $id \cdot a \cdot id = a$, so \sim is reflexive. \checkmark Symmetric: Because they are sub-groups, H and K are closed under inverses. So

$$a \sim b \iff hak = b \iff ak = h^{-1}b$$
 by left multiplying by h^{-1} , as $h^{-1} \in H$ $\iff a = h^{-1}bk^{-1}$ by left multiplying by k^{-1} , as $k^{-1} \in k$ $\iff b \sim a$

So $a \sim b \iff b \sim a$, so \sim is symmetric. \checkmark

Transitive: $a \sim b$ and $b \sim c$ means there exists $h_1, h_2 \in H$ and $k_1, k_2 \in K$ such that $h_1 a k_1 = b$ and $h_2 b k_2 = c$. So

$$a \sim b$$
 and $b \sim c \iff h_1 a k_1 = b$ and $h_2 b k_2 = c$

$$\implies h_2 \left(h_1 a k_1 \right) k_2 = c \quad \text{by substitution}$$

$$\implies \left(h_2 h_1 \right) a \left(k_1 k_2 \right) = c \quad \text{by associativity in groups}$$

$$\iff a \sim c \quad \text{as } h_2 h_1 \in H \text{ and } k_1 k_2 \in H$$

So $a \sim b$ and $b \sim c \implies a \sim c$, so \sim is transitive. \checkmark

So \sim is an equivalence relation. So for $x \in G$,

$$[x] := \{ y \in G \text{ such that } x \sim y \}$$

$$= \{ y \in G \text{ such that } hxk = y \text{ for some } h \in H, k \in K \}$$

$$= \{ hxk \text{ for some } h \in H, k \in K \}$$

So the double co-sets of $H = \{(1), (123), (132)\}$ in A_4 are

$$H(1)H = \{h_1h_2|h_1, h_2 \in H\}$$

= \{(1), (123), (132)\}

and

H(234)H

- $= \{h_1(234)h_2|h_1, h_2 \in H\}$
- $=\{(234),(234)(123),(234)(132),(123)(234),(123)(234)(123),(123)(234)(132),(132)(234),(132)(234),(132)(234)(132),(132)(234$
- $= \{(234)(13)(24), (142), (12)(34), (243), (143), (134), (124), (14)(23)\} = A_4 \setminus H$

Exercise 9.2. Prove that \mathbb{C}^* is isomorphic to the sub-groups of $GL_2(\mathbb{R})$ consisting of matrices of the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

Proof. Let $\phi: \mathbb{C}^* \to \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2 + b^2 \neq 0 \right\}$ be given be $a + bi \mapsto \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$. Then ϕ forms a bijection between the sets \mathbb{C}^* and $\left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2 + b^2 \neq 0 \right\}$.

To show the group operations are conserved, I will show $\phi(a+bi)\cdot\phi(c+di)=\phi\left((a+bi)\times(c+di)\right)$ where \cdot is matrix multiplication and \times is complex multiplication. So

$$\begin{split} \phi\left(a+bi\right)\cdot\phi\left(c+di\right) &= \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \cdot \begin{bmatrix} c & d \\ -d & c \end{bmatrix} \quad \text{by definition of } \phi:\mathbb{C}^* \to \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2+b^2 \neq 0 \right\} \\ &= \begin{bmatrix} ac-bd & ad+bc \\ -\left(ad+bc\right) & ac-bd \end{bmatrix} \quad \text{by matrix multiplication} \\ &= \phi\left((ac-bd) + (ad+bc)i\right) \quad \text{by definition of } \phi:\mathbb{C}^* \to \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2+b^2 \neq 0 \right\} \\ &= \phi\left((a+bi) \times (c+di)\right) \end{split}$$

So
$$\phi(a+bi)\cdot\phi(c+di)=\phi\left((a+bi)\times(c+di)\right)$$
. So $(C^*,\times)\simeq\left(\left\{\left[\begin{smallmatrix} a&b\\-b&a\end{smallmatrix}\right]|a^2+b^2\neq0\right\},\cdot\right)$.

Exercise 9.12. Prove that S_4 is not isomorphic to D_{12} .

Proof. Although S_4 and D_{12} each have 24 elements, by Theorem 5.10, there exists $r \in D_{12}$ with |r| = 12, but no such element in S_4 as $|s| \le 4$ for all $s \in S_4$.