Hash Tables

DSA, Fall 2022

Dynamic Set ADT

```
type Set
type Cell
NewSet:

ightarrow *Set
Search: (*Set, int) \rightarrow *Cell
Insert: (*Set, *Cell) \rightarrow ()
Delete: (*Set, *Cell) \rightarrow ()
Minimum:
          *Set \rightarrow *Cell
Maximum:
          *Set 
ightarrow *Cell
```

Asymptotic running times

	Balanced Binary Search Tree	Balanced Binary Search Tree (with min / max)
Search	Θ(log ₂ n)	Θ(log ₂ n)
Insert	Θ(log ₂ n)	Θ(log ₂ n)
Delete	Θ(log ₂ n)	Θ(log ₂ n)
Minimum	Θ(log ₂ n)	Θ(1)
Maximum	Θ(log ₂ n)	Θ(1)

Asymptotic running times

	Balanced Binary Search Tree	Balanced Binary Search Tree (with min / max)
Search	Θ(log ₂ n)	Θ(log ₂ n)
Insert	Θ(log ₂ n)	Θ(log ₂ n)
Delete	Θ(log ₂ n)	Θ(log ₂ n)
Minimum	Θ(log ₂ n)	Θ(1)
Maximum	Θ(log ₂ n)	Θ(1)

Constant-time Search and Insert operations?

Can we make Search and Insert constant-time?

We'd need to know exactly where in the structure an element goes

we can't afford to look for it

One solution:

Compute the "position" of an element in the structure from the element itself

Constant-time Search and Insert operations?

Intuition:

- suppose elements are integers {0, ..., N-1}
- allocate an array of size N
- store element E at position E in the array
- look for element E at position E in the array

What about when elements are not integers {0, ..., N-1}?

Hash functions

A hash function is a function from some domain D to {0, ..., N-1} for some N

- D is usually taken to be integers
- deterministic if h(E₁) ≠ h(E₂) then E₁ ≠ E₂

Prototypical hash function

$$h(E) = E \mod N$$

Hash functions for non-integers: convert element to an integer then apply a hash function

Hash functions

A hash function is a function from some domain D to {0, ..., N-1} for some N

- D is usually taken to be integers
- deterministic if h(E₁) ≠ h(E₂) then E₁ ≠ E₂

Prototypical hash function

$$h(E) = E \mod N$$

Hash functions for non-integers: convert element to an integer to

Terminology:

Element E hashes to its hash value h(E)

Simple Uniform Hashing

Not all hash functions are created equal

A "good" hash function should spread hash values around {0, ..., N-1} equally

A hash function has the simple uniform hashing property if every element is equally likely to has to any of the N positions

$$\sum_{E : h(E)=i} P(E) = 1/N$$
 for $j \in \{0, ..., N-1\}$ $P(E) = probability of element E$

Hash tables

A hash table (of size N) is:

- an array T of size N
- a hash function h from values to {0,, ..., N-1}

Intuition:

- to insert element E, put it at T[h(E)]
- to search for element E, look at T[h(E)]

The Pigeonhole Principle

if you have M > N elements, then there must exist E₁ ≠ E₂ with h(E₁) = h(E₂)

Hash tables

A hash table (of size N) is:

- an array T of size N
- a hash function h from values to {0,, ..., N-1}

Intuition:

- to insert element E, put it at T[h(E)]
- to search for element E, look at T[h(E)]

The Pigeonhole Principle

if you have M > N elements, then there must exist E₁ ≠ E₂ with h(E₁) = h(E₂)

This is a collision

Resolving collisions

Different ways to handle collisions in a hash table

Lead to different flavors of hash tables

Hash tables with chaining:

- each cell is a linked list of values
- unlimited capacity

Hash tables with open addressing:

- if a cell is already taken, go to a "backup" cell
- no pointers, but can fill up

Hash tables with chaining

Each cell of the array is a linked list of elements that hash to the same hash value

Operations

To insert element E:

- compute h(E)
- add E at the front of the linked list at T[h(E)]

To search for element E:

- compute h(E)
- look for E in the linked list at T[h(E)]

Running time

m = number of elements stored in the table

Load $\alpha = m / N$

Insertion:

- worst-case: Θ(1)

Search:

- worst-case: Θ(m)
- average case: $\Theta(1 + \alpha)$ assuming simple uniform hashing

Hash table with open addressing

Elements are stored directly in the table

If a cell is occupied, deterministically go through (probe) a sequence of "backup cells" finding the first free one ⇒ probing sequence

Various ways of computing a probing sequence:

- linear probing
- quadratic probing
- double hashing

Hash function with probing

h: U x
$$\{0, 1, ..., N-1\} \rightarrow \{0, 1, ..., N-1\}$$

h(E, 0), h(E, 1), h(E, 2), ..., h(E, N-1)

Linear probing — given a hash function h':

$$h(E, i) = (h'(E) + i) \mod N$$

should be a permutation of {0, 1, ..., N-1}

Quadratic probing — given a hash function h':

$$h(E, i) = (h'(E) + c_1 i + c_2 i^2) \mod N$$

Double hashing — given two hash functions h₁ and h₂:

$$h(E, i) = (h_1(E) + i h_2(E)) \mod N$$

Operations

To insert element E:

- for i = 0, 1, 2, ..., N-1, find first free T[h(E, i)] and store E at position h(E, i)

To search for element E:

- for i = 0, 1, 2, ..., N-1, search for E in T[h(E, i)]
- abort when you find an empty cell

When α gets close to 1:

- allocate a larger table (increase N) and rehash elements in table

Running time

Open addressing means α = m / N < 1

Insert:

- worst-case: Θ(m)
- average case: $\Theta(1 / (1 \alpha))$ assuming simple uniform hashing

Search:

- worst-case: Θ(m)
- average case: $\Theta(1/\alpha \ln 1/(1-\alpha))$ assuming simple uniform hashing

Running time

Open addressing means α = m / N < 1

Insert:

- worst-case: Θ(m)
- average case: Θ(1 / (1

50% full hash table E[# probes] < 1.4

90% full hash table E[# probes] < 2.6

Search:

- worst-case: Θ(m)
- average case: $\Theta(1/\alpha \ln 1/(1-\alpha))$ assuming simple uniform hashing