SHR Chapter 7

Binary Distillation

Introduction

- Dates back to I century AD
 - first used in a batch mode (distillate changes in time)
- Goal: separate "heavy key" (less volatile) from "light key" (more volatile) by exploiting $\alpha \neq 1$.
 - for $\alpha \gg 1$ or $\alpha \ll 1$, this can be done very effectively unless an azeotrope exists (where $\alpha = 1$).
 - then we recover the azeotrope and the light or heavy key, depending on which side the feed lies.
 - By 16th century, multiple stages were in use to improve separation.
- By 1976, distillation accounted for nearly 3% of the US energy consumption!
 - mostly in petroleum refineries
- Binary distillation is simplest & most well-understood.
 - we will limit our discussion to binary distillation
- Fird Law of Thermo typically low thermodynamic efficiency.

Design Considerations

- Operating pressure "knob I"
 - below ambient pressure requires vacuum operation
 - many things may influence choice of operating pressure
 - ▶ Thermo: azeotrope formation, α , etc.
 - ▶ Column operating temperature range (avoiding reactions, corrosion, etc.)
 - most analyses do not account for pressure variation through the column
- Operating temperature "knob 2"
 - Reboiler & Condenser:
 - ▶ Bottoms above ambient requires additional energy input to the reboiler
 - ▶ Distillate below ambient requires energy removal from the condenser.
 - Thermodynamics: critical points of fluids

Batch Distillation

- \mathcal{L} Conceptually, follows the T-x-y diagram.
- More rigorous analysis in SHR chapter 13

The McCabe-Thiele Graphical Method

1925 Continuous (staged) distillation

Nomenclature

Specifications	
F	total (molar) feed rate
z.	LK mole fraction in feed
P	Column operating pressure
X	LK mole fraction in distillate
х	LK mole fraction in bottoms
R/R	reflux ratio
	Feed phase condition
	VLE data (y/x plot)
	Type of condenser (partial/total)
	Type of reboiler (partial/total)

stages

Boilup

Partial

Bottoms

Light-key mole fraction =

Bottom

stage

Total condenser

- "Light Key" (LK) more volatile component
- "Heavy Key" (HK) less volatile component

Preliminaries

Rectifying section - like an absorber

- Feed & reboiler supply vapor
- Condenser supplies liquid

Stripping section - like a stripper

- Feed & condenser supply liquid
- Reboiler supplies vapor

overall mole balance: F = D + B

light-key mole balance: $Fz_F = x_D D + x_B B$

combine to eliminate B & solve for D: $D = F\left(\frac{z_F - x_B}{x_D - x_B}\right)$

Rectifying Section Operating Line

Overall mole balance: V = L + D

Light key mole balance: $Vy_{n+1} = Lx_n + Dx_D$

$$y_{n+1} = rac{L}{V} x_n + rac{D}{V} x_D$$
 relates light-key compositions in passing streams (streams on a stage are assumed to be in equilibrium)

If L and V are constant, then this is a straight line.

The "McCabe-Thiele Assumptions"

- Both components have equal and constant molar enthalpies of vaporization (latent heats).
- Sensible heat, $C_p\Delta T$, is negligible compared to latent heat.
- Column is insulated (no heat loss on each stage).
- Column pressure is constant (thermodynamics can be done at a single pressure).

Big assumptions, but allow for simple analysis, since L and V are constant under these assumptions.

$$\frac{L}{V} = \frac{L}{L+D} = \frac{L/D}{L/D+D/D} = \frac{R}{R+1} \qquad R \equiv \frac{L}{D} \quad \text{reflux ratio}$$

$$\frac{D}{V} = \frac{1}{R+1} \qquad \qquad y = \left(\frac{R}{R+1}\right)x + \left(\frac{1}{R+1}\right)x_D$$

Range of Reflux Ratios

$$y = \frac{L}{V}x + \frac{D}{V}x_D \qquad R = \frac{L}{D}$$

$$R = \frac{L}{D}$$

$$0 \leq \left(\frac{L}{V} = \frac{R}{R+1}\right) \leq 1 \quad \text{because} \quad 0 \leq R \leq \infty$$

- What happens at R = 0?
- What happens at $R = \infty$?

What is the minimum R that allows separation? (We will answer this question shortly)

Stripping Section Operating Line

Overall mole balance: $\overline{L} = \overline{V} + D$

Light key mole balance: $\overline{L}x_m = \overline{V}y_{m+1} + Bx_B$

McCabe-Thiele assumptions have been applied.

The feed stage material balance relates L and V to \overline{L} and \overline{V}

$$y_{m+1} = \frac{\overline{L}}{\overline{V}} x_m - \frac{B}{\overline{V}} x_B$$

relates light-key compositions in passing streams (streams on a stage are assumed to be in equilibrium)

$$y = \left(\frac{V_B + 1}{V_B}\right) x - \left(\frac{1}{V_B}\right) x_B$$

$$V_B \equiv \frac{\overline{V}}{B} \quad \begin{array}{c} \text{boilup} \\ \text{ratio} \end{array}$$

Partial reboiler

Feed Stage & the "q-Line"

subcooled liquid

$$q=1$$

partially vaporized

$$q = L_F/F$$

saturated vapor

 $\overline{L} = L$

$$q = 0$$

$$q = \frac{\overline{L} - L}{F} = 1 + \frac{\overline{V} - V}{F} \quad \text{liquid flow increase across feed} \\ \text{rate normalized by feed rate.}$$

$$q = \frac{h_F^{\text{sat. vapor}} - h_F}{h_F^{\text{sat. vapor}} - h_F^{\text{sat. liquid}}}$$

Operating lines & qline must intersect at a single point. \therefore cannot specify q, V_B and *R* independently.

More on the q-line

rectifying section:

stripping section:

$$y = \frac{L}{V}x + \frac{D}{V}x_D$$

$$y = \frac{\overline{L}}{\overline{V}}x - \frac{B}{\overline{V}}x_B$$

subtract

$$y\left(V - \overline{V}\right) = x\left(L - \overline{L}\right) + \underbrace{Dx_D + Bx_B}_{Fz_E}$$

$$y\left(\frac{V-\overline{V}}{F}\right) = \left(\frac{L-\overline{L}}{F}\right)x + z_{F}$$

$$y(1-q) = -qx + z_{F}$$

$$y = \left(\frac{q}{q-1}\right)x - \frac{z_{F}}{q-1}$$

Typically the feed condition is known (specifying q). Then we can choose V_B or R.

Note: specifying R implies V_B .

Feed Stage & Number of Stages

x

Locate feed stage nearest to the intersection of the operating lines & q-line as possible (just after the horizontal line on the staircase passes "P"

1.0

Partial Reboilers & Condensers

- Total Reboiler:
 - all liquid is turned back to vapor
- Partial reboiler:
 - bottoms product is liquid, boilup is vapor
 - This is another equilibrium stage!
 - very common...
- Total condenser:
 - all vapor is condensed back to liquid
- Partial condenser:
 - distillate is vapor, reflux is liquid
 - This is another equilibrium stage!

Limiting Cases: R_{\min} , N_{\min} .

"Total reflux"

- $R = \infty$, $V_B = \infty$.
- L = V, D = B = F = 0.
- $F = 0, N = N_{\min}$.
- y = x is operating line.
- No product...

"Minimum reflux"

• $N = \infty$.

$$(L/V)_{\min} = \frac{R_{\min}}{R_{\min} + 1}$$

$$R_{\min} = \frac{(L/V)_{\min}}{1 - (L/V)_{\min}}$$

$$(V_B)_{\min} = \left[\left(\overline{L}/\overline{V}\right)_{\max} - 1\right]^{-1}$$

THE UNIVERSITY
OF UTAH

higher operating costs

higher capital costs

Perfect Separation - Another "Limiting Case"

- Perfect separation: $x_B = 0$, $x_D = 1$.
- Pinch points form in each section of the column.
- Fractional value for minimum reflux ratio and boilup to achieve perfect separation.
- For find this:
 - Obtain *x-y* data from thermo.
 - Determine *q*-line
 - Determine slope of rectifying operating line = $R_{\min}/(R_{\min}+1)$.

For saturated liquid feed,
$$R_{\min} = \frac{1}{z_F(\alpha - 1)}$$

Example

We want to separate a mixture of n-heptane and n-octane using distillation at atmospheric pressure.

If the feed is 40 mole% n-heptane as a saturated vapor, determine the minimum reflux ratio and minimum number of stages required to obtain product streams with 95% and 5% n-heptane.

Known:

- $x_D = 0.95$
- $x_B = 0.05$
- $z_F = 0.4$, saturated vapor operating lines

Needed:

- *K*-values (equilibrium curve)
- *q*-line

