

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 59-057221
(43) Date of publication of application : 02. 04. 1984

(51) Int. Cl.

G02F 1/133
G02F 1/13
G09F 9/00

(21) Application number : 57-167554 (71) Applicant : ASAHI GLASS CO LTD

(22) Date of filing : 28. 09. 1982 (72) Inventor : SUGIMOTO YOSHIO
HATSUTORI MOTOZOU
SATE NOBORU

(54) PRODUCTION OF DISPLAY ELEMENT

(57) Abstract:

PURPOSE: To perform a hardening process for a sealant under reduced pressure by discharging quickly generated gas to the outside of a cell.

CONSTITUTION: A liquid crystal cell 14, a flexible partition wall film 18, and an upper mold 19 are disposed on a lower mold 16, and either of a lower space 24 and an upper space 25 is made reduceable in pressure. A valve 21 is closed and a valve 20 is opened to evacuate the inside of the space 24 by an evacuation pump 17 to maintain said space under -0.2W1kg/cm² reduced pressure. The gas such as oxygen, moisture or the like stuck on the electrode surface of the liquid crystal cell is thus discharged. The cell is then heated to 100W200° C or is irradiated with UV light to harden the sealant. If gas is generated from the sealant in this stage, the gas is also discharged to the outside of the cell without sticking on the electrode surface. The valve 20 is closed and the valve 21 are opened upon hardening of the seal to introduce dry air, gaseous N₂ or the like, then the pressure reduction in the lower space 24 is released to restore atm. pressure.

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A)

昭59—57221

⑫ Int. Cl.³
G 02 F 1/133
1/13
G 09 F 9/00

識別記号
109

序内整理番号
7348-2H
7448-2H
6731-5C

⑬ 公開 昭和59年(1984)4月2日
発明の数 1
審査請求 未請求

(全 5 頁)

⑭ 表示素子の製造法

⑮ 特 願 昭57—167554

⑯ 出 願 昭57(1982)9月28日

⑰ 発明者 杉本四士男

横浜市神奈川区栗田谷62

⑱ 発明者 服部基道

横浜市神奈川区大口仲町186

⑲ 発明者 作手昇

横浜市旭区鶴ヶ峰1—56—2

⑳ 出願人 堀硝子株式会社

東京都千代田区丸の内2丁目1

番2号

㉑ 代理人 兼理士 元橋賢治 外1名

明細書

1. 発明の名称 表示素子の製造方法

2. 特許請求の範囲

(1) 2枚の電極板を電極面が相対向する上にシール材を介して重ね合せてシール材を硬化して表示素子を製造する表示素子の製造方法において、シール材を硬化する工程を逆序下で行うことを特徴とする表示素子の製造方法。

3. 発明の詳細な説明

本発明は、表示素子の製造方法に関するものである。

表示素子としては、液晶表示素子、ニレクトロクロミック表示素子、電気泳動表示素子等があり、電極板をガラス、プラスチック等の基板に形成した電極板を電極面を相対向して配置し、電極板をシール材を介して重ね合せてシールし、内部に液晶等の電気光学的液体を注入したものがある。

これらの中でも液晶表示素子は、現在最もよく使用されている表示素子であり、例えば無:

図に示すように透明電極(4A)、(4B)を有する2枚の電極板(1)、(2)と、シール材(5)とから構成されており、内部には液晶(5)が注入されている。

このような液晶表示素子は、先々の電極板(1)、(2)を形成しておき、少なくとも一方の電極板にシール材を付与し、加圧してシール材を硬化させている。

第2図及び第3図は、この加圧シールをするための装置の断面説明図である。第2図において、(6)は圧着するためテーブルであり、(7A)、(7B)は力を均一に加えるための緩衝材であり、(8)は力を加えるためのニアーサリンダー等であり、(9A)、(9B)は加熱用のヒーターであり、(10)はニアーサリンダーの力をセル(11)に伝えるための型である。

又、第3図は、膜(12)を用いてセルを加圧するタイプの装置を示しており、(12)は圧力をセル(11)に伝えるための膜であり、型(13)との間に二種類体を注入してセルに圧力をかけるもの

であり、パイプを通じて板の上方の表示されていない正確気体源に接続されている。

この場合の下側のテーブル(6)は第2図と同じものであり、加熱用ヒーター(9B)を有し、上面に導管材(7B)が設けられている。又、この図には示されていないが、上の型(11)の上下位置を規定するための機構を設けても良い。

このような装置にかけられる液晶表示素子のセルは、一対の透明電極を設けた電極板をその少なくとも一方にシール材をスクリーン印刷等により印刷付与したものと電極面が相対向するように配置する。

この第2図又は第3図の例は、熱硬化型のシール材を用いた場合に使用される装置で、下側の型(6)上の導管材(7B)上にセル(11)を配し、エアシリンダー(B)により上側の型(10)を押し下せ加圧し、又は加圧気体により膜(12)を押し下け加圧し、ヒーター(9A)、(9E)により加熱してシール材を硬化させること。

又、常温硬化型のシール材では、加熱をせざ

次いで本発明の製造方法を好ましい装置に基づいて断面を参照して説明する。

第4図は、本発明に使用するシール材を硬化させるための好ましい装置の断面図である。

この装置内に配される表示素子のセル(14)は前述の液晶表示素子のセルをはじめニレクトロクロミック表示素子のセル、電気泳動表示素子のセル等2枚の電極板間に液状の表示物質例えば液晶、ビオロゲン溶液、又は表示補助物質、例えばWO₃膜を差消色させるための遮光素子リテュウムを溶解したプロピレンカーボネート溶液等がある。以下の説明では液晶表示素子のセルの例に基づいて説明する。

液晶表示素子のセルの2枚の電極板は、通常透明電極を形成したガラス、プラスチック等の透明基板であらが、一方を反射電極として不透明基板としたり、半導体基板としたり、導電性樹脂等に上設けた多層セルとすることもあり、又、電極も2層の電極とすることもあるが、この例では最も単純な一片の透明電極を一面に設けた

に常温で加压のみを行い、紫外線硬化型のシール材では加压して紫外線を照射して硬化を行う。

このような従来のシール材を硬化させるための装置を用いてシールすると、液漏を注入するセルの電極板表面に水、シール材から放出される気体等が凝結され、後に液漏を注入して封止し液漏表示素子とした場合に液漏に悪影響を生ぜしめ、寿命が低下する傾向があつた。

本発明は、かかる欠点を防止すべく左されたものであり、2枚の電極板を電極面が相対向するようシール材を介して重ね合せてシール材を硬化して表示素子を製造する表示素子の製造方法において、シール材を硬化する工程を圧縮方式において、シール材を硬化する工程を圧縮方式にて行うことを特徴とする表示素子の製造方法である。

本発明の製造方法に上れば、シール材の硬化工程を圧縮方式にて行うためシール材の硬化にともなつて発生する気体が速みやかにセル外に排出され、電極板に付着しにくいため表示素子の寿命が長くなる。

透明基板を示している。

この電極板を電極面が相対向するようにしてシールするものであり、電極板の少なくともいずれか一方には加熱硬化型、常温硬化型、紫外線硬化型等のシール材がスクリーン印刷等により付与されている。もちろん、このシール材中及び電極板間にセル間隙を規制するガラス粒子、アルミニナ粒子等のスペーサーを配することもあり、シール材はセル周辺のみならず表示面内に点状密しくは線状に付与しても良い。

特に、本発明においては、セルの表示面内に液漏を充填しない部分を面内シールにより形成する場合には有利である。これは車用の大型のセル等では表示面内であつても表示を行わない部分が多くありセル間隙を一定に保つため及び充填液漏量を減らすために表示面内にシール材により液漏が入らない閉空間を形成することが考えられている。このような閉空間を形成するに圧縮下でシールしようとすると加压してシール材が2枚の電極板と接した後で内部に閉じ込

められた空気が逃げられなくなるためその部分でのシール材が押しつぶされなく、セル間隙が広がつてしまふという問題点があり、色ムラ等の欠点を生じてしまうこととなる。

シール材は、印刷面はシール後のセル間隙に比して2倍以上にも廣くされており、加工により押しつぶされ、通常シール材中に進入されるガラス纖維、アルミニウム子等によるスペーサーに上つて規制される高さにまでその高さを被じるとともに巾方向へ折りり、2枚の電極板を密着させており、充分にシール材が押しつぶされない場合には、その部分でセルがよくらんでしまうこととなる。

しかも液晶セルではそのセル間隙は通常±1μ程度にまで制御されており、セル間隙の不均一は、色ムラ等の見にくさを増加する。

このような開空間を表示面内にシール材で形成したセルにおいても本発明の方法によれば減圧下でシールするため容易に押しつぶすことができ、セル間隙を一定に保つことができる。

より、途中にはバルブ(20)と減圧解除用のバルブ(21)が設けられ、型(19)も減圧ポンプとの間にバルブ(22)及び減圧解除用のバルブ(23)が設けられている。

即ち、下側の型(16)上に液晶セル(14)を配し、可撓性の隔壁膜(18)を配し、さらに上側の型(19)を配し、下側の型と隔壁膜による下側の空間(24)と、上側の型と隔壁膜による上側の空間(25)をいずれも減圧可能としている。又、この上側の型は、隔壁膜を下側の型の隔壁上面に押し付けている。

次いで操作を説明する。

液晶セルを載置し、隔壁膜(18)、型(19)を配して後、バルブ(21)を開じ、バルブ(20)を開けて減圧ポンプ(17)により排気して、下側の空間(24)を-0.2~-1kPaの減圧下におく。これにより液晶セルの電極面に付着していた酸素、水分等の気体も排出される。次いでヒーター(15)により160~200℃に加熱、又は紫外線照射より紫外線を照射してシール材を硬化させ

る。このような開空間を有するセルは、前述の如く車用のインストルメントパネルのような大型セルのみならず、針付デジタル時計のような小型セルにおいても針孔を形成する部分に面内シールを形成しておき、シール後に針孔を形成するようにして用いることもできる。

さらに、この電極板内面上に必要に応じてSiO₂、Al₂O₃、シリカミド等のオーバーコートを形成する。SiO₂、Al₂O₃等の耐熱蒸着をする。ラビングをする等の公知の配向処理を行つておく。

このような液晶セル(14)を加熱用ヒーター(15)を搭載した型(16)上に緩衝材(17)を介して載置する。この型(16)の上には可撓性及び伸張性を有する隔壁膜(18)と上側の型(19)を配する。この隔壁膜は、耐熱性のシリコンゴムシート、ガラス纖維入りのゴムシート等が用いられ、型(19)に接合されていても良いし、分離されていても良い。

この型(16)は、減圧ポンプ(17)と接続されて

る。このシール材の硬化時にシール材から気体が発生することがあるがこれも減圧下にあるためセル外に排出され、電極面に付着しない。

この際、必要に応じて上側の空間(25)内に加圧気体を導入する等して加圧力を強めることもできる。

又、上側の型(19)を用いなく、隔壁膜(18)と下側の型(16)のみで用いても良い。

また、加熱に時間がかかることが多い、液晶セルを載置する前に型を予熱しておくことが好ましい。

シールが硬化した後に、バルブ(20)を閉じ、バルブ(21)を開けて乾燥空気、N₂ガス等を導入して下側の空間(24)の減圧を解除して大気圧にもどす。

なお、バルブ(20)は、空間(24)が一定の減圧状態にたつた状態で閉じて減圧ポンプを停止しても良いし、減圧を維持若しくは断続しても良い。

又、第4回の温度を保証した場合、バルブ

(20)、(22)を閉じ、バルブ(21)、(25)を開じて減圧し、上側と下側の両方の空間(24)、(25)を減圧状態とした後、バルブ(22)を開じ、バルブ(25)を少し開いて上側の空間の減圧度を変えて液晶セルの加圧力が所定の値になるよう圧縮することができる。

この第4図のような隔壁膜(16)と型(16)を用いた装置を使用することにより、第2図の装置の上にセルの形状、大きさにより型(10)を変える必要がなく、かつ大きなセルでの大きな加圧力を発生させる機構及びそれを受けた支えを機構が不要であり減圧ポンプのみで良く、かつ均一に力を加えることも容易である。

又、第3図のような装置に比しても、加圧気体を用いなくてよいため機構が簡単で良い。

このようにして液晶セルを形成した後、液晶材料、例えばオーテック液晶、コレステリック液晶に必要な応じて2色性染料、光学活性物質等を添加したもの注入し、注入口を封止する。次いで必要に応じて偏光板、カラー偏光板、

反射板、カラーフィルター、光波長板、遮光板等を積層し、ノングレア処理、文字、数字、图形等の印刷等をして液晶表示素子とする。

実施例

ガラス基板上に透明電極を形成したものの裏面をラビング処理し、一方の基板に蒸着化粧のエボキシ樹脂をスクリーン印刷により印刷し、これを電極面が相対向するよう合せ、第4図の装置を用い、150℃に温度を上げた下部の型(16)の上に緩衝材(26)を介して設置した。

次いでその上に隔壁膜として1mm厚のシリコングムシートを設置し、型(16)に相当する押え棒で型(16)の隔壁上面に密着させ、バルブ(21)を開じ、バルブ(20)を開けて、空間(24)を0.6kg/cm²に減圧し10分間保持し、次いでバルブ(20)を開じ、バルブ(21)を開けてN₂ガスを導入して大気圧にもどし、隔壁膜を押え棒を取り除いて、液晶セルを取り出した。

この液晶セルのシール材の抜かりは極めて均一であり、セル間隙もまた一定に保たれ從来の一

加圧シール方法と同等のシール状態が得られた。

以上の例では液晶セルの場合、しかも單体の液晶セルの場合についてのみ説明したが、ニレクトロクロミックセル、電気泳動セル等にも応用でき、一对の電極板から複数個のセルを同時に形成し、板に切断して分離する通常の重複方式、5枚以上の電極板により2層以上の液晶層を形成する多層セルの製法にも使用でき、今後多くの応用が可能なものである。

各部の構成を説明

第1図は液晶表示素子の断面図。

第2図及び第3図は、従来のシール材蒸着化粧の加圧装置の断面図。

第4図は本発明のシール材蒸着化粧した加圧装置の断面図。

型 16, 19

減圧ポンプ 17

隔壁膜 18

バルブ 20, 21, 22, 23

