IOWA STATE UNIVERSITY

QUANTIFICATIONS OF THE TURBULENCE CHARACTERISTICS IN THE WAKE OF AN AIRFOIL BY USING A HOTWIRE ANEMOMETER PRE-LABORATORY

AER E 344 - Pre-Lab 07 - Quantifications of the Turbulence Characteristics in the Wake of an Airfoil by using a Hotwire Anemometer

SECTION 3 GROUP 3

MATTHEW MEHRTENS

JACK MENDOZA

KYLE OSTENDORF

GABRIEL PEDERSON

LUCAS TAVARES VASCONCELLOS

DREW TAYLOR

Professor

Hui Hu, PhD

College of Engineering

Aerospace Engineering

Aerodynamics and Propulsion Laboratory

AMES, MARCH 2024

Answers

1.1 Question 1

For a 10 Hz motor frequency, the velocity is 12.8 m/s. Per the lab manual, the transition occurs at a Reynolds number of 1×10^5 . Using the equation for Reynolds number, we can find the distance from the leading edge of a theoretical flat plate at which the turbulent transition occurs:

$$Re = \frac{\rho V_{\infty}^{2} L}{\mu}$$

$$x = \frac{Re \cdot \mu}{\rho V_{\infty}^{2}}$$

$$x = \frac{1 \times 10^{5} \cdot 1.8 \times 10^{-5} \,\text{N s/m}^{2}}{1.225 \,\text{kg/m}^{3} \cdot 12.8 \,\text{m/s}}$$

$$x = 11.5 \,\text{cm}$$
(1.1)

Once we have the transition point, we can use the two boundary layer equations to determine the thickness of the boundary layer as a function of the distance from the leading edge of the theoretical flat plate:

$$\frac{\delta}{x} = \frac{5.0}{\sqrt{Re_x}}$$
 for laminar flow (1.2)

$$\frac{\delta}{x} = \frac{5.0}{\sqrt{Re_x}} \quad \text{for laminar flow}$$

$$\frac{\delta}{x} = \frac{0.37}{Re_x^{\frac{1}{5}}} \quad \text{for turbulent flow}$$
(1.2)

Using the script attached to this pre-lab, we generated a graph of boundary layer thicknesses (see Figure 1.1).

We can use Figure 1.1 to determine the spacing of the measurements for a given distance from the leading edge of the airfoil. For example, if the probe is positioned 0.5 m from the leading edge of the airfoil, the boundary layer will be approximately 1.4 cm. For this boundary layer width, we should take measurements every 2 mm to

Figure 1.1: A plot of the boundary layer thickness, δ , as a function of the distance from the leading edge of a theoretical flat plate, x.

3 mm—starting approximately 6 mm below the airfoil and ending approximately 6 mm above the airfoil. This scale will vary depending on the x distance of the probe.

Since this lab is using an airfoil and not a flat plate, the wake may be much larger and a larger range should be used to capture the wake, especially for larger angles of attack.

1.2 PreLab07.m

```
% AER E 344 Pre-Lab 07
    % Section 3 Group 3
    clear, clc, close all;
3
4
   %% Given
5
    mu = 1.8e-5; \% [N*s/m^2]
   rho = 1.225; \% [kg/m<sup>3</sup>]
    V_inf = 12.8; % [m/s] <-- this is for 10 Hz
8
10
   c = 0.101; \% [m]
11
   Re_transition = 10^5; % []
12
13
   %% Calculations
14
    x_transition = Re_transition * mu / (rho * V_inf); % [m]
15
   x_laminar = 0 : 0.01 : x_transition; % [m]
   x_turbulent = x_transition : 0.01 : 1; % [m]
17
   Re_laminar = rho * V_inf * x_laminar / mu; % []
18
   Re_turbulent = rho * V_inf * x_turbulent / mu; % []
20
```

```
21 boundary_layer_laminar = 5.0 * x_laminar ./ sqrt(Re_laminar); % [m] <-- for laminar
    \hookrightarrow flow
<code>22 boundary_layer_turbulent = 0.37 \times x_turbulent ./ Re_turbulent.^(1 / 5); % <-- for</code></code>
    \hookrightarrow turbulent flow
24 %% Output
25 fprintf( ...
        "x_transition = %g cm\n", ...
26
        x_transition * 100);
27
28
29 figure;
30 plot(x_laminar, boundary_layer_laminar * 100);
31 hold on;
plot(x_turbulent, boundary_layer_turbulent * 100);
33 hold off;
34 title("Boundary Layer Thickness vs. Distance from LE");
35 xlabel("x [m]");
36 ylabel("\delta [cm]");
37 grid on;
saveas(gcf, "boundary_layer_thickness.svg");
```