

Árvore B+ Estruturas de Dados

Bruno Prado

Departamento de Computação / UFS

- ▶ O que é uma árvore B+?
 - É uma variação da árvore B
 - Os nós internos armazenam somente as chaves e referências para outros nós (indexação)
 - Uma lista encadeada é construída com os nós folha que armazenam as referências para os dados

- ▶ Árvore B+ de ordem k
 - Nó interno

- ▶ Árvore B+ de ordem k
 - Nós folha

► Árvore B+ de ordem 3

- Definição da estrutura
 - Nós internos

- Definição da estrutura
 - Nó folha

- Implementação em C
 - Estrutura e ponteiros

```
// Padrão de tipos por tamanho
tinclude <stdint.h>
// Estrutura de nó
typedef struct no {
    // Vetor de chaves
    uint32_t* C;
    // Vetor de filhos
    struct no** P;
    // Quantidade utilizada
uint32_t n;
} no;
```

- Operações básicas
 - Busca
 - Exata
 - Intervalo
 - ▶ Inserção
 - ▶ Remoção

- Operação de busca exata
 - Parâmetro de chave: 13
 - A busca tem início pela raiz da árvore, checando as chaves do nó e acessando as subárvores

- Operação de busca exata
 - Parâmetro de chave: 13
 - A busca tem início pela raiz da árvore, checando as chaves do nó e acessando as subárvores

- Operação de busca exata
 - Parâmetro de chave: 13
 - A busca tem início pela raiz da árvore, checando as chaves do nó e acessando as subárvores

- Operação de busca exata
 - Parâmetro de chave: 13
 - A referência do nó encontrado é retornada

- Operação de busca por intervalo
 - Parâmetros de chave: 4 e 11
 - A busca tem início pela raiz da árvore, checando as chaves do nó e acessando as subárvores

- Operação de busca por intervalo
 - ▶ Parâmetros de chave: 4 e 11
 - A busca tem início pela raiz da árvore, checando as chaves do nó e acessando as subárvores

- Operação de busca por intervalo
 - Parâmetros de chave: 4 e 11
 - A busca tem início pela raiz da árvore, checando as chaves do nó e acessando as subárvores

- Operação de busca por intervalo
 - Parâmetros de chave: 4 e 11
 - A busca tem início pela raiz da árvore, checando as chaves do nó e acessando as subárvores

- Operação de busca por intervalo
 - ▶ Parâmetros de chave: 4 e 11
 - As referências dos nós no intervalo são retornadas

- Operação de busca por intervalo
 - ▶ Parâmetros de chave: 4 e 11
 - As referências dos nós no intervalo são retornadas

- Operação de busca por intervalo
 - ▶ Parâmetros de chave: 4 e 11
 - As referências dos nós no intervalo são retornadas

- Operação de busca por intervalo
 - ▶ Parâmetros de chave: 4 e 11
 - As referências dos nós no intervalo são retornadas

- Busca por intervalo
 - Retorna nós no intervalo de chaves

```
// Procedimento de busca por intervalo
nos* busca_intervalo(no* x, uint32_t a, uint32_t b) {
    uint32_t ini = min(a, b), fim = max(a, b);
    nos* r = criar_nos();
    no* f = busca_folha(x, ini, fim);
    while(f != NULL && f->C[0] <= fim) {
        adicionar_no(r, f);
        f = f->P[k];
    }
    return r;
}
```

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de inserção
 - Parâmetro de chave: 19

- Operação de remoção
 - Parâmetro de chave: 21
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 21
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 21
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 21
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 21
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 21
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 21
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 29
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 29
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 29
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 29
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 29
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 29
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 29
 - ► Caso 1: nó interno com filho $n > \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 19
 - ► Caso 2: nó interno com filhos $n = \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 19
 - ► Caso 2: nó interno com filhos $n = \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 19
 - ► Caso 2: nó interno com filhos $n = \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 19
 - ► Caso 2: nó interno com filhos $n = \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 19
 - ► Caso 2: nó interno com filhos $n = \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 19
 - ► Caso 2: nó interno com filhos $n = \frac{k}{2}$

- Operação de remoção
 - Parâmetro de chave: 19
 - ► Caso 2: nó interno com filhos $n = \frac{k}{2}$

- Análise de complexidade
 - ▶ Com ordem k, no pior caso, as operações percorrem a altura $h = log_k n$ da árvore com n nós, entretanto, na busca por intervalo, o pior caso é O(n), uma vez que o intervalo pode conter todos os nós da árvore
 - ► Espaço: Θ(n)
 - ► Tempo: $Ω(log_k n)$ e O(n)

Exemplo

- Construa uma árvore B+ de ordem 3
 - Insira os elementos com chaves 13, 2, 34, 11, 7, 43 e 9
 - Realize a remoção dos elementos de chave 7 e 9
 - Compare as diferenças entres as árvores B e B+

- A empresa de tecnologia Poxim Tech está desenvolvendo um banco de dados distribuído para arquivos baseado em blockchain e árvore B+
 - Os arquivos possuem nomes + extensão com até 30 caracteres, compostos exclusivamente por letras
 - A codificação do código hash é feita em hexadecimal de 128 bits com caracteres maiúsculos, sendo utilizado como chave para buscas
 - Operações disponíveis:
 - ► INSERT nome tamanho hash
 - SELECT hash
 - ▶ **SELECT RANGE** hash1 hash2

- Formato de arquivo de entrada
 - [#Ordem da árvore]
 - [#Quantidade de arquivos(n)]
 - ► [Nome₁] [Tamanho₁] [Hash₁]

 - ► [Nome_n] [Tamanho_n] [Hash_n]
 - ► [#Número de operações(m)]
 - ▶ [Operação₁]

 - ▶ [Operação_m]

Formato de arquivo de entrada

```
3
5
5
10
SELECT_1123456789 ABCDEF0123456789 ABCDEF0
11
12
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
1.3
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
```

- Formato de arquivo de saída
 - Conteúdo armazenado pelo nó da árvore