In [4]:

```
#importing the required libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
```

In [5]:

```
data=pd.read_csv('cpdata.csv')
print(data.head(10))
```

```
humidity
                                      rainfall label
   temperature
                                ph
    20.879744 82.002744 6.502985
0
                                    202.935536 rice
    21.770462 80.319644
1
                          7.038096
                                    226.655537
                                                rice
2
    23.004459
               82.320763
                         7.840207
                                    263.964248
                                               rice
3
    26.491096
               80.158363 6.980401
                                    242.864034
                                               rice
               81.604873
                                               rice
4
    20.130175
                          7.628473
                                    262.717340
5
    23.058049
               83.370118
                          7.073454
                                    251.055000
                                                rice
6
    22.708838 82.639414 5.700806
                                    271.324860 rice
7
    20.277744 82.894086
                          5.718627
                                    241.974195
                                               rice
8
    24.515881
                          6.685346
                                    230.446236
               83.535216
                                                rice
9
    23.223974 83.033227
                          6.336254
                                    221.209196
                                                rice
```

In [6]:

```
# Get the count of rows and columns data.shape
```

Out[6]:

(3100, 5)

In [7]:

data.dtypes

Out[7]:

temperature float64 humidity float64 rainfall float64 label object dtype: object

In [8]:

```
data.describe()
```

Out[8]:

	temperature	humidity	ph	rainfall
count	3100.000000	3100.000000	3100.000000	3100.000000
mean	27.108466	66.005312	6.368913	110.213031
std	7.566308	24.007713	0.809477	64.048562
min	8.825675	10.034048	3.504752	20.211267
25%	22.810495	55.244920	5.895343	64.909095
50%	26.102848	68.980529	6.342518	97.057093
75%	29.365644	84.446524	6.841616	141.210784
max	54.986760	99.981876	9.935091	397.315380

In [9]:

```
data['label'].unique()
```

Out[9]:

In [10]:

Out[10]:

	temperature	humidity	ph	rainfall	label
0	20.879744	82.002744	6.502985	202.935536	0
1	21.770462	80.319644	7.038096	226.655537	0
2	23.004459	82.320763	7.840207	263.964248	0
3	26.491096	80.158363	6.980401	242.864034	0
4	20.130175	81.604873	7.628473	262.717340	0
5	23.058049	83.370118	7.073454	251.055000	0
6	22.708838	82.639414	5.700806	271.324860	0
7	20.277744	82.894086	5.718627	241.974195	0
8	24.515881	83.535216	6.685346	230.446236	0
9	23.223974	83.033227	6.336254	221.209196	0

In [11]:

```
# Split the data into independent 'X' and dependent 'y'.
X=data.iloc[:, 0:4].values
y=data.iloc[: ,4].values
```

In [12]:

```
#Dividing the data into training and test set
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
```

In [196]:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

In [13]:

```
#Importing Logistic Regression
from sklearn.linear_model import LogisticRegression
clf=LogisticRegression()
```

```
In [14]:
```

```
#Fitting the classifier into training set
clf.fit(X_train,y_train)
pred=clf.predict(X_test)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.p
y:762: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear model.html#logistic-re
gression)
  n_iter_i = _check_optimize_result(
In [15]:
from sklearn.metrics import accuracy score
# Finding the accuracy of the model
a=accuracy_score(y_test,pred)
print("The accuracy of this model is: ", a*100)
The accuracy of this model is: 58.602150537634415
In [17]:
import sklearn.externals
import joblib
joblib.dump(clf, "crop_prediction.pkl")
Out[17]:
['crop prediction.pkl']
In [16]:
ran data = [20,82,6,202]
ran_data_arr = np.array(ran_data)
ran_data_num = ran_data_arr.reshape(1,-1)
pred_single_row = clf.predict(ran_data_num)
print(pred single row)
[0]
In [ ]:
```