Ejercicio No. 9

Crecimiento Económico 2016-2017 Profesor: Félix Jiménez

1. Sitúese en el modelo de Diamond. Dada la siguiente función de utilidad de un individuo representativo:

$$U = \ln(c_{1t}) + \frac{1}{1+\rho} \ln(c_{2t+1})$$

La función de producción en su forma intensiva es: $y_t = k_t^{\alpha}$

- a. Determine la restricción presupuestaria intertemporal del individuo que vive dos períodos. Plantee el problema del consumidor y derive la condición de equilibrio. Finalmente encuentre la ecuación de Euler, y las funciones de consumo y ahorro de los jóvenes.
- b. Encuentre la ecuación que describe la relación k_{t+1} y k_t . Utilice la función de producción y la función del ahorro.
- c. Encuentre el capital de la REAGLA DE ORO, que maximiza el consumo per cápita agregado. Recuerde que no hay depreciación (δ =0). Compare los valores de k* y k_{RO}.
- 2. Supongamos una economía descrita por el modelo de generaciones de Diamond con una función de utilidad de un individuo representativo:

$$U = \ln(c_{1t}) + \frac{1}{1+\rho} \ln(c_{2t+1})$$

y la función de producción en su forma intensiva igual a $y_t = k_t^{\alpha}$. Halle la velocidad de convergencia como el cambio en k_{t+1} por unidad de cambio en k_t y muestre que es igual a α . Recuerde que la ecuación de k_{t+1} en la economía con las características descritas es:

$$k_{t+1} = \frac{1}{(2+\rho)(1+n)} w_t$$

3. Modelo de Diamond. Suponga que la población crece a la tasa n y que la función de utilidad es igual a:

$$U = \ln(c_{1t}) + \ln(c_{2t+1})$$

En una función de utilidad con $\theta=1$ y con una tasa de preferencia $\rho=0$.

La función de producción en su forma intensiva es: $y_t = k_t^{\alpha}$

- a. Determine la restricción presupuestaria intertemporal del individuo que vive dos períodos. Plantee el problema del consumidor y derive la condición de equilibrio. Finalmente encuentre la ecuación de Euler, y las funciones de consumo y ahorro de los jóvenes.
- b. Encuentre la ecuación que describe la relación k_{t+1} y k_t. Utilice la función de producción y la función del ahorro. Encuentre el capital del Estado estacionario y compárelo con el capital de la Regla de Oro.
- 4. Modelo de Diamond con transferencias. Si hay ineficiencia dinámica se puede reducir el stock de capital, con transferencias desde los jóvenes a los viejos. Esto reduce el stock de capital.
 - a. Encuentre las ecuaciones del consumo y del ahorro.
 - b. Encuentre la ecuación que describe la relación k_{t+1} y k_t . Utilice la función de producción y la función del ahorro.
- 5. En una economía descrita por el modelo de Diamond, la población crece a la tasa n y que la función de utilidad es igual a:

$$U = \ln(c_{1t}) + \ln(c_{2t+1})$$

1

En una función de utilidad con $\theta=1$ y con una tasa de preferencia $\rho=0$.

La función de producción en su forma intensiva es: $y_t = k_t^{\alpha}$

- a. Determine la restricción presupuestaria intertemporal del individuo que vive dos períodos. Plantee el problema del consumidor y derive la condición de equilibrio. Finalmente encuentre la ecuación de Euler, y las funciones de consumo y ahorro de los jóvenes. Además suponga que el gobierno cobra impuestos a los jóvenes por un monto T y que distribuye γT a una cuenta de capitalización que gana un interés cuando el individuo es viejo y $(1-\gamma)T$ es utilizado para pagar pensiones de retiro de los viejos Los individuos reciben un beneficio igual a $(1+n)(1-\gamma)T$
- b. Obtenga la ecuación que relaciona k_{t+1} con k_t . Comente la solución de equilibrio con el equilibrio de la regla de Oro