Groepentheorie

St.1.1 a, b = Z. b > 0 Dan ∃! q, r = Z: 04 r b n a = qb+r Def13 $a, b \in \mathbb{Z}$ als $\exists q \in \mathbb{Z}$: a = qb, helt a delbour don b notatie $b \mid a$ $b | a | a | c \Rightarrow b | c$ bla blc > blatc, bla-c blo Apez 1 a VaeZ b | a 😂 | b | | a | b|a a = 0 => 1b| = |a| Def. 1.5 woon $a,b \in \mathbb{Z}$ is $ggd = \max\{z \in \mathbb{Z} : z \mid a, z \mid b \}$ of 1 about \emptyset is $var S \in \mathbb{Z}$ is $ggd(S) = \max\{z \in \mathbb{Z} : \forall s \in S : z \mid s \}$ of 1 about \emptyset is Def $a,b \in \mathbb{Z}$ better related priem, onderly orderly als goldt ggd(a,b) = 1(Euclidisch algoritme) voor bepaling ggd (a, b) weekt zo a, b E Z definieer ras r, re, als volgt (inductief): rn+1 = r, waar rn-1 = grn +r, g, r uniek beproald 20als in St. 1.1 als rN = 0, stop en ggd (a,b) = rN+1 hemma 18 $a,b \in \mathbb{Z}$, $b \neq 0$, a = qb + r (q,b,r) niet roodzakelyk als in 1.1)

Dan ggd(a,b) = ggd(b,r)St. 1.9 a, b $\in \mathbb{Z}$ en d = ggd(a,b). Dan $\exists n, y \in \mathbb{Z}$: na + yb = d1.9 (Uitgebreid Euchidisch algoritme) definier in 1.9 ook 20, 21, ...
en yo, y,, y2... door

90,91... Waar gn zdd $r_{n-1} = q_n r_n + r_{n+1}$ $x_0 = sgn(a) := \frac{a}{|a|}$ $y_0 = o$ $y_1 = sgn(b) := \frac{b}{|b|}$ $x_{n+1} = x_{n-1} - q_n x_n$ $y_{n+1} = y_{n-1} - q_n y_n$ ab $r_N = 0$, dan $x_{N-1}a + y_{N-1}b = d$ zevolg 1.11 $a,b \in \mathbb{Z}$, d = ggd(a,b), dan $\frac{1}{2}$ delers a en b $\frac{2}{3} \in \frac{1}{3}$ delers d $\frac{3}{3}$ Forolg 1.12 $a,b \in \mathbb{Z}$ ggd $(a,b) = 1 \iff \exists n,y \in \mathbb{Z} : na + yb = 1$ Gevoly 1.13 $a,b,c \in \mathbb{Z}$, ggd(a,b) = 1 Dan $a \mid bc \Rightarrow a \mid c$ Def peZ heet een niemgetal ab ? deles p? = \1,p? on p>1 St. 1.16 zij p niem, b, c e Z dan p|bc => p|b × p|c St. 1.17 meer algemeen : p|b,bz.bu, b,.bu e Z, dan Fizu: p|b; St.1.18 $\forall a \in \mathbb{Z}$, a > 0: $a = p, p_2 \cdot pt$, $t \ge 0$, p_i priem $\forall 1 \le i \le t$ en dit product is unlek op volgade van factoren na. Def prim, a e Z: ordp(a):= max {n e Zzo: p" | a } Cevolg i.ig ordp(ab) = ordp(a) + ordp(b), \(\forall a, b \in \mathbb{Z}, \(\rho\) pinem Geroly 1.20 $a,b \in \mathbb{Z}$, a,b>0: $b|a \Leftrightarrow \forall p \text{ priem} : ord_p(b) \leq ord_p(a)$ Gevolg 121 $a,b \in \mathbb{Z}$, a,b > 0: $ggd(a,b) = \prod_{p \text{ priem}} \text{Priem}$ Def 123 $a,b \in \mathbb{Z}$ $a \neq 0 \neq b$ $kgv(a,b) := min \{ x \in \mathbb{Z}_{\geq 0} : a \mid x, b \mid x \}$ maar ab $a = 0 \lor b = 0$, kgv(a,b) := 0St. 1.24 a, b e Z, a > 0, b > 0: kgv (a,b) = TT pmiem Pmax ford, (a), ord, (b) 3 ievolg 1.24 $a_1b_1d\in\mathbb{Z}$: a|d, $b|d \Rightarrow kgv(a,b)|d$ $a_1b_1d>0$

OPGAVEN - $|ggd(a,b)\cdot kgv(a,b)| = |ab| \forall a,b \in \mathbb{Z}$ ggd(a,b) = 1 $a|c|b|c \Rightarrow ab|c <math>\forall a,b,c \in \mathbb{Z}$ $c \cdot ggd(a,b) = ggd(ac,bc)$ $\forall a,b,c \in \mathbb{Z}_{>0}$

