Actionable Analytics and Dashboards

25 June 2022

Today's Session

- Uses of Analytics
- II. Business Improvement Opportunities
- III. Actionable Analytics
 - 1. Regression Analysis
 - 2. Logistic Regression
 - 3. Clustering
 - 4. Event Analysis
 - 5. Network Analysis
- IV. Dashboard Principles

3 uses for Analytics

Data-driven Benchmarking (Descriptive)

Data-Driven Prediction (Predictive)

Data-driven Recommendation (Prescriptive)

Waze App

How is the traffic? (Descriptive)

How long will my travel be?
(Predictive)

Which is the best route to my destination?
(Prescriptive)

Data and Analytics Scenarios

BUSINESS OBJECTIVE

What is business problem or fundamental market need do I need to solve?

MEASUREMENT

What KPIs (Key Performance Indicators) or measures will explain the success of these actions?

ANALYTICS

What analysis will be needed to define the marketing goal and create an outcome?

ACTIONS

What actions will be taken based on your analysis?

Data and Analytics Scenarios

BUSINESS OBJECTIVE

What is business problem or fundamental market need do I need to solve?

MEASUREMENT

What KPIs (Key Performance Indicators) or measures will explain the success of these actions?

ANALYTICS

What analysis will be needed to define the marketing goal and create an outcome?

ACTIONS

What actions will be taken based on your analysis?

Data and Analytics Scenarios

BUSINESS OBJECTIVE

How do we improve the services we provide to our constituents?

MEASUREMENT

Citizen satisfaction rating Service turnaround time (TAT) Sentiment Score

ANALYTICS

Social listening and analytics Citizen feedback survey Time-in-Motion Study Pareto Analysis of Complaints

ACTIONS

Process streamlining
Digitalization of services
Staff Incentivization

The essence of analytics:

What question are you asking?

Keys To Actionable Analytics

What is it?
What data do you need?
How do you visualize it?
What questions does it answer?

Actionable Analytics Asking Questions of your Data

Measuring magnitude and trend.

Measuring probability or likelihood.

Determining similarities and groupings.

Determining the items, events, or individuals that go together.

Understanding sequences of complex events.

Determining the connections between entities.

Linear Regression

$$y = \beta x + \alpha$$

dependent variable >

Simple Linear Regression Model

Multiple Linear Regression

$$y = \beta x + \alpha + \varepsilon$$

$$y = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + \alpha + \varepsilon$$

Linear Regression

Use-case: Understand the factors that affect the length of defendant's sentence from the International Crime Tribunal.

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.778601141					
R Square	0.606219737					
Adjusted R Square	0.590593536					
Standard Error	127.8313226					
Observations	132					

ANOVA

	df	SS	MS	F	Significance F
Regression	5	3169722.456	633944.4913	38.79508144	5.88441E-24
Residual	126	2058946.726	16340.84703		
Total	131	5228669.182			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	63.33614341	37.61999357	1.683576668	0.094739509	-11.1127179	137.7850047	-11.1127179	137.7850047
numGuil	14.23268286	2.573693834	5.530060596	1.76686E-07	9.139418423	19.3259473	9.139418423	19.3259473
mfTotal	-19.04232356	5.056890237	-3.765619317	0.000253715	-29.04976068	-9.034886444	-29.04976068	-9.034886444
afTotal	18.09961427	7.873504904	2.298800153	0.023163008	2.518179535	33.68104901	2.518179535	33.68104901
genocide	214.7432536	25.33288965	8.476855841	5.22716E-14	164.6102097	264.8762975	164.6102097	264.8762975
crimAg	112.2060653	30.62807359	3.663503843	0.000364992	51.59400807	172.8181225	51.59400807	172.8181225

Linear Regression

Use-case: Understand the factors that affect the length of defendant's sentence from the International Crime Tribunal.

Logistic Regression

$$y = \frac{1}{1 + e^{-(\beta x + \alpha)}}$$

Y – dependent variable

Multiple Logistic Regression

$$p = \frac{1}{1 + e^{-(\beta x + \alpha)}}$$

$$p = \frac{1}{1 + e^{-(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \alpha)}}$$

You can have more than one predictor variable (x1 - xn).

Logistic Regression

• Use-case: Credit scoring model to predict likelihood of bankruptcy.

Coefficients	Variables	Estimates	Odds Ratio	Interpretation
b0	Intercept	- 2.8850	Odds Kallo	merpretation
b1	STD_SALES	- 0.3367	0.7141	The odds of bankruptcy decreases by 29% for every one standard deviation increase in sales.
b2	STD_ROCE	- 1.3359	0.2629	The odds of bankruptcy decreases by 74% for every one standard deviation increase in profit before tax to capital employed.
b3	STD_FFTL	- 1.5883	0.2043	The odds of bankruptcy decreases by 80% for every one standard deviation increase in funds flow (earnings before interest, tax & depreciation) to total liabilities.
b4	STD_GEAR	2.7299	15.3311	The odds of bankruptcy increases by 1,433% for every one standard deviation increase in (current liabilities + long-term debt) to total assets.
b5	STD_CLTA	- 2.3730	0.0932	The odds of bankruptcy decreases by 91% for every one standard deviation increase in current liabilities to total assets.
b6	STD_CACL	- 2.6506	0.0706	The odds of bankruptcy decreases by 93% for every one standard deviation increase in current assets to current liabilities.
b7	STD_QACL	- 4.2539	0.0142	The odds of bankruptcy decreases by 99% for every one standard deviation increase in (current assets - stock) to current liabilities.
b8	STD_WCTA	3.1433	23.1799	The odds of bankruptcy increases by 2,318% for every one standard deviation increase in (current assets - current liabilities) to total assets.
b9	STD_AGE	- 0.3420	0.7104	The odds of bankruptcy decreases by 29% for every one standard deviation increase in number of years the company has been operating since incorporation date.
b10	CHAUD	2.5977	13.4335	The odds of bankruptcy increases by 1,243% if the company changed auditor in the previous 3 years.

Logistic Regression

• Use-case: Credit scoring model to predict likelihood of bankruptcy.

Optimal Cut-off:

p = 45.9% Approval Rate = 50% Bankruptcy Rate = 5.8%

Alternative Cut-off:

p = 82.5%
Approval Rate = 71%
Bankruptcy Rate = 25%

Count of Firm	% to '	Total	Bankrup	tcy Rate	Cum % by Decile				
Decile	Marginal	Cumulative	Marginal Cumulative		Non-Bankrupt	Bankrupt	Spread		
0	0%	0%	0.00%	0.00%	0%	0%	0%		
1	12%	12%	0.00%	0.00%	21%	0%	21%		
2	9%	21%	0.00%	0.00%	37%	0%	37%		
3	9%	29%	0.00%	0.00%	53%	0%	53%		
4	12%	41%	0.00%	0.00%	74%	0%	74%		
5	9%	50%	33.33%	5.88%	84%	7%	78%		
6	9%	59%	66.67%	15.00%	89%	20%	69%		
7	12%	71%	75.00%	25.00%	95%	40%	55%		
8	9%	79%	66.67%	29.63%	100%	53%	47%		
9	9%	88%	100.00%	36.67%	100%	73%	27%		
10	12%	100%	100.00%	44.12%	100%	100%	0%		
Grand Total			44.12%						

Clustering

• Determine the likely clusters or groupings within a population. Also helps determine membership in a group.

Clustering

	Easy Sell	Concerned	Supporter	Pragmatist	Complacent	Obligated	Skeptic
Percentage of Population	27%	22%	16%	5%	11%	28%	9%
Hesitancy	1%	2%	6%	9%	17%	25%	82%
Demographics	25-54yo, Married, Higher income, Highly Educated	25-54yo, Married, Mid income	25-44yo, Married, Male, Mid income	18-44yo, Female, Low income, Vocational	25-44yo, Married, Male, Mid income	25-44yo, Married, Highly educated	25-44yo, Married, Female, Mid income
Geographic	NCR+	VisMin	Provincial	NCR+	VisMin	LuzMin	VisMin
Reasons for getting vaccinated	Risk of COVIDProtect one's self and family	Risk of COVIDProtect one's self and familyTrusts experts	 Risk of COVID Protect one's self and family Vaccination process 	 Risk of COVID Protect one's self and family Less concerned about side effects 	 Protect one's self and family Less concerned about side effects 	Risk of COVIDProtect one's self and familyWork-related	
Reasons for avoiding vaccination	Lack of supplyVaccination process	Side effectsComorbiditiesVaccination process	Side effectsVaccine access	Lack of supplyVaccination process	 Does not believe COVID is a risk Vaccination process 	 Side effects Lack of trust in experts Vaccination process 	 Side effects Negative news Does not believe COVID is a risk Lack of trust in experts
Information and Media habits	Social Media	TV Social Media	DOH media Social media	DOH media	DOH media	TV	TV

Reference: https://www.undp.org/sites/g/files/zskgke326/files/migration/ph/FINAL---Vaccine-Acceptance-Report_Aug30_signed.pdf

Event Analysis

- Used to understand sequences of events – what comes before what.
- What were the actions that led to customer complaints?
- What is the next best product to offer a customer?
- What is the pattern of occurrences before our systems

break down?

Event Analysis

- Used to understand
 sequences of events –
 what comes before what.
- Sankey diagram graphic illustration of flows from one set of values to another as a series of paths, where width of each flow represents the quantity

Event Analysis

• **Use-case:** Understand what development causes and geographies are supported by various funders.

Association Analysis

- Detect relationships or associations between specific values of categorical variables in large data sets
 - Antecedent (IF): This is an item/group of items that are typically found in the Itemsets or Datasets.
 - Consequent (THEN): This comes along as an item with an Antecedent/group of Antecedents.

Association Analysis

• **Use-case:** Create microspecializations based on learners' preferred SPARTA courses to enroll in.

Itemsets	Specialization Names	/ Support				
itenisets	Specialization Names		Training	Гest	Z-stat	p-Value
'Data Management Fundamentals', 'Data Visualization						
Fundamentals', 'Essential Excel Skills for Data Preparation and	Data Analysis Non-Programming Specializatior	Support: 9	% of 1	0.26506	1.12369	0.261145
Analysis', 'Getting Grounded on Analytics'		all recor				
'Computing in Python', 'Data Visualization using Tableau and Python',		all recor	us	1		
'Statistical Analysis and Modeling using Excel', 'Statistical Analysis and	Statistical Programming Specialization	which con	tain ¹	0.253012	1.313265	0.189094
Modeling using SQL and Python'		the item	cot			
'Dashboards and Drill-Down Analytics', 'Data Management	· ·	the items	set			
Fundamentals', 'Data Visualization Fundamentals', 'Getting Grounded	Data Visualization Speicalization		0.330645	0.253012	1.195094	0.23205
on Analytics'						
'Computing in Python', 'Data Visualization Fundamentals', 'Data						
Visualization using Tableau and Python', 'Statistical Analysis and	Data Analysis Programming Specialization (Visu	alization Variant)	0.314516	0.253012	0.955883	0.339131
Modeling using Excel'						
'Computing in Python', 'Data Visualization using Tableau and Python',	Data Analysis Programming Specialization (Data	ahase Variant)	n 208387	0.253012	O 712/25	0 476196
'Design Thinking for Analytics', 'SQL for Business Users'	Data Analysis Programming Specialization (Data	abase variant,	0.230307	0.233012	0.712433	0.470130
'Data Management Fundamentals', 'Data Science and Analytics						
Project Management', 'Data Visualization Fundamentals', 'Getting	Analysis Project Lead Sepcialization (Data Viz V	ariant)	0.290323	0.253012	0.588957	0.55589
Grounded on Analytics'						

Network Analysis

- A social network consists of both nodes (vertices) and edges. Nodes represent the objects of interest, while the edges represent the connection between them.
- Network graph shows interconnection between a set of entities.

Network Analysis

- Use-cases:
 - Network-based diffusion analysis
 - Community detection
 - Influential detection

node

Network Analysis

Use-case: Detection of coordinated sharing of incriminating news / issues on Food and Drug Authority (FDA) by cigarette, heated tobacco products (HTPs), and vape groups and pages in Facebook.

Uses of Dashboards

Easily Present KPIs and Measurements

Top Level Summary at a glance

Leads to further analysis

Dashboarding Principles

What is the story?

Clean layout and design

Interactivity and automation

Which is better?

Clean Dashboard Design

What is a metric?

From a quantification to a metric.

What are Key Performance Indicators?

What are Key Performance Indicators?

What they are:

- Quantifiable/measurable and actionable
- Measure factors that are critical to the success of the organization
- Tied to business goals and targets
- Limited to 5-8 key metrics
- Applied consistently throughout the company

What they are not:

- Metrics that are vague or unclear
- "Nice-to-know's" or metrics that are not actionable
- Reports (e.g., top search engines, top keywords)
- · Exhaustive set of metrics
- Refutable

© Adobe

What are Key Performance Indicators?

Example of KPIs for Disaster Management

Natural Disaster Monitoring and Funding

- Number of early warning models developed
- Regular Space remote sensing
- •% increase in government funding
- •% increase in NGO's and direct public funding

Natural Disaster Risk Reduction

- Natural Disaster risk maps produced
- Number of vulnerable area identified
- Dissemination of Early Warnings
- •% of natural disaster risks prioritized.

Natural Disaster Preparedness

- •% area and building inspections
- Percentage increase in relief measures included
- Number of Damage assessment initiatives
- Number of Rehabilitation and reconstruction activities

Education and training

- Number of training sessions of safety management
- Psychological strength development training sessions
- Number of medicinal training programs conducted
- Number of on-field consultations provided

Dashboard Creation Process

- Highlight
- Trend
- Comparison
- Commentary
- Composition
- Interactivity

Example of a Finance Dashboard

Highlight

CORPORATE DASHBOARD REPORT

 Top level automatically draws attention to the story being discussed.

Trend

CORPORATE DASHBOARD REPORT

 Provide context by showing change over time.

Composition

CORPORATE DASHBOARD REPORT

For DVO, Revenue as at Jun-16 is PhP 9.2m, while Expense ends at PhP 6.0m, leading to Profit of PhP 3.2m.

 This could be finer summarizations (e.g. tables) or visualizations, that answer immediate questions arising from observations in the first 2 sections

Commentary

CORPORATE DASHBOARD REPORT

 Reinforce insight by verbalizing trend.

Interactivity

 Allow users to safely interact with data by providing controls.

THANK YOU!

E-mail: francesclaire.tayco@cirrolytix.com

Website: https://cirrolytix.com

LinkedIn: https://www.linkedin.com/in/claire-san-juan-tayco/

