CLAIMS

We claim:

1	1. A process for making a biocompatible biodegradable fleece, the process			
2	comprising:			
3	a. providing a solution comprising a crosslinkable synthetic macromer, the synthetic			
4	macromer comprising a polymeric hydrophilic region surrounded by two or more regions each			
5	comprising one or more moieties forming a biodegradable region and a crosslinkable moiety;			
6	b. freezing the solution in a desired shape;			
7	c. vacuum-drying the solution; and			
8	d. crosslinking the crosslinkable macromer			
9	to produce the fleece.			
1	2. The process of claim 1 wherein the vacuum-drying step is performed			
2	before the crosslinking step.			
1	The process of claim 1 wherein the vacuum-drying step is performed after			
2	the crosslinking step.			
1	4. The process of claim 1 wherein the macromer solution further comprises			
2	at least one of a polymerization-causing material and a biologically active agent.			
1	5. The process of claim 4 wherein the biologically active agent is selected			
2	from the group consisting of antibiotics, growth regulating molecules, hemostatic agents,			

1

- 3 antibodies, antigens, transfection vectors, expression vectors, anesthetics, and anti-arrhythmic
- 4 agents.
- 1 6. The process of claim 1, wherein the crosslinking is performed by the use
- 2 of at least one of ionizing radiation, non-ionizing radiation, heat, addition of initiators, and
- 3 addition of crosslinking chemicals or ions.
 - 7. The process of claim 1, wherein the crosslinking is performed by a free radical polymerization reaction.
- 1 8. The process of claim 1 further comprising a rinsing of the crosslinked 2 macromer.
 - 9. The process of claim 8 further comprising the step of shredding the crosslinked macromer after rinsing.
- 1 10. The process of claim 1 further comprising the step of shredding the crosslinked macromer to form fleece particulates.
- 1 11. The process of claim 1 further comprising the step of shredding the crosslinked macromer after at least one of the freezing step and the vacuum-drying step.
- 1 12. The process of claim 1 wherein a supporting material is incorporated into 2 the fleece.

of claim 10.

	1		13.	The process of claim 12 where the incorporation of the supporting		
	2	material occurs during the freezing step.				
	1		14.	A biocompatible biodegradable fleece particulate produced by the process		
	2	of claim 10.				
	1		15.	The process of claim 10, further comprising the wetting of the fleece		
Tanat' tanat'	2	particulates with an aqueous solution.				
than than anti-	1		16.	The process of claim 15 further comprising the adding of at least one of a		
the theat	2	cell, a polyn	nerizati	on-causing material, and a biologically active agent to the wetted fleece		
That sand	3	particulates.				
un terret in in in	1		17.	A biocompatible biodegradable fleece produced by the process of claim 1.		
ř.	1		18.	A biocompatible biodegradable fleece particulate produced by the process		

- 1 19. A biocompatible biodegradable fleece particulate produced by the process 2 of claim 16.
- 20. A biocompatible biodegradable fleece, wherein the fleece comprises crosslinked synthetic macromers, at least one of the synthetic macromers comprising a polymeric hydrophilic region surrounded by two or more regions each comprising one or more moieties forming a biodegradable region and a crosslinked moiety, and wherein the fleece is macroporous.

2

1	21.	The fleece of claim 20, further comprised of at least one of a cell, a			
2	polymerization-caus	ing material and a biologically active agent.			
1	22.	The fleece of claim 20 which is in the form of fleece particulates.			
1	23.	The fleece of claim 21 which is in the form of fleece particulates.			
1	24.	The fleece of claim 20, comprising a diacrylated polyethylene oxide			
2	comprising biodegradable linkages selected from the group consisting of monomers and				
3	oligomers of carbon	nates and hydroxyacids.			
1 2	25. polymerization-cau	The fleece of claim 24, further comprised of at least one of a cell, a sing material, and a biologically active agent.			
1	26.	The fleece of claim 24 which is in the form of fleece particulates.			
1	27.	The fleece of claim 25 which is in the form of fleece particulates.			
1	28.	The fleece of claim 20, wherein the fleece has at least two regions of			
2	differing compositi	on.			
1	29.	The fleece of claim 1, wherein the crosslinkable macromer is water			
2	soluble.				

30.

before the freezing step.

The fleece of claim 1, wherein bubbles are incorporated into the solution

- 1 31. A slurry comprising the biocompatible fleece particulates of claim 19 and 2 an aqueous solution.
- 1 32. The slurry of claim 31, wherein the aqueous solution comprises at least one of a cell, a polymerization-causing material, and a biologically active agent.
- 1 33. A slurry comprising the biocompatible fleece particulates of claim 23 and 2 an aqueous solution.
 - 34. The slurry of claim 33, wherein the aqueous solution comprises at least one of a cell, a polymerization-causing material and a biologically active agent.
- 1 35. A slurry comprising the biocompatible fleece particulates of claim 27 and 2 an aqueous solution.
- 1 36. The slurry of claim 35, wherein the aqueous solution comprises at least one of a cell, a polymerization-causing material, and a biologically active agent.
- 1 37. The method of treating a wound or defect by applying to the wound or defect the slurry of claim 31.
- 1 38. The method of treating a wound or defect by applying to the wound or defect the slurry of claim 33.
- 1 39. The method of treating a wound or defect by applying to the wound or defect the slurry of claim 35.

2

1

2

3

- 1 40. The method of claim 38 wherein the slurry comprises living cells.
- 1 41. The method of claim 40 wherein the defect is a chondral defect, and the living cells are chondrocytes.
 - 42. The method of claim 41 further comprising applying a primer solution to the outer edges of the chondral defect, and applying a sealant to the primed area of the defect to seal the slurry to the defect.
 - 43. The method of claim 42, wherein the sealant is applied as a biodegradable, polymerizable macromer, and the macromer is subsequently polymerized.
 - 44. The method of claim 41 further comprising the step of applying a primer solution to the outer edges of the chondral defect, applying a sealant to the primed area of the defect to cover the chondral defect with the sealant, and then applying the slurry between the sealant and the defect.
- 1 45. The method of claim 44, wherein the sealant is applied as a biodegradable, 2 polymerizable macromer, and the macromer is subsequently polymerized.
- 1 46. The method of claim 43, wherein the polymerization is performed by use 2 of at least one of ionizing radiation, non-ionizing radiation, heat, addition of initiators, and 3 addition of crosslinking chemicals or ions.

1

- 1 47. The method of claim 38 where the treatment comprises at least one of 2 hemostasis, protection from the atmosphere, protection from drying, and delivering a cell or 3 biologically active agent to the wound.
- 1 48. The use of the biocompatible biodegradable fleece of claim 20 for drug 2 delivery.
 - 49. The use of the biocompatible biodegradable fleece of claim 20 to prevent tissue adhesions.
 - 50. The use of the biocompatible biodegradable fleece of claim 20 to culture cells and the subsequent implantation of the fleece with the cells to a defect.
 - 51. The use of the biocompatible biodegradable fleece of claim 20 to provide a substrate for tissue engineering.
- The method of treating a wound or defect by applying to the wound or defect a slurry comprising an aqueous solution and biocompatible fleece particulates of claim 27, which comprises cells selected from the group consisting of chondrocytes, cardiomyocytes, and stem cells.
- The method of claim 52, wherein the stem cells are mesenchymal stem cells.

- 1 54. A slurry comprising an aqueous solution and biocompatible fleece
- 2 particulates of claim 27, which comprises cells selected from the group consisting of
- 3 chondrocytes, cardiomyocytes, and stem cells.