

Titel der Ausarbeitung bzw. des Themas

Proseminar-Ausarbeitung von

thomas

An der Fakultät für Informatik Institut für Visualisierung und Datenanalyse, Lehrstuhl für Computergrafik

7. Mai 2018

Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Zielsetzung der Arbeit	1
	1.2	Gliederung der Arbeit	1
2	Grui	ndlagen	3
	2.1	Tactile Geräte	3
	2.2	Genetischer Algorithmus	3
		2.2.1 Evolution in der Biologie	4
		2.2.2 Selektion	4
		2.2.3 Variation	4
		2.2.4 Gendrift	5
		2.2.5 Allgeimeiner Vorgang eines Evolutionären Algorithmus	5
	2.3	Verwandte Arbeiten	6
		2.3.1 Taptic Engine	6
		2.3.2 Personalisierte Vibration	6
		2.3.3 Personalisierte Smartwatch	7
		2.3.4 Fazit	7
3	Ana	lyse	9
	3.1	Anforderungen	9
	3.2	Existierende Lösungsansätze	10
	3.3	Weiterer Abschnitt	10
	3.4	Zusammenfassung	11
4	Entv	wurf	13
	4.1	Programm Ablauf	13
	4.2	Ausführung des Programms	13
	4.3	Evolutionaerer Algorithmus	15
	4.4		15
		4.4.1 Signal	15
			16
		4.4.3 Bewertung des Algorithmus	17
		4.4.4 Erzeugung der nächsten Generation	18
			18
		4.4.4.2 Rekombination	18
		4.4.4.3 Mutation	18
			18
	4.5		19
	4.6		19
	4.7		19

iv Inhaltsverzeichnis

5	Implementierung		21
	5.1 Signal		21
	5.2 Muster		21
	5.3 Evolutionärer Algorithmus		21
6	Evolutionärer Algorithmus		23
	6.1 DNA		23
	6.2 Population		23
	6.3 Generationen		23
	6.4 Mutation		23
	6.5 Studiendesign		23
7	Studiendesign		25
	7.0.1 Studiendesign		25
8	Evaluierung		27
	8.1 Abschnitt 1		27
	8.2 Abschnitt 2		27
	8.3 Zusammenfassung		27
9	Zusammenfassung und Ausblick		29
10	Zusammenfassung und Ausblick		31
Lit	eraturverzeichnis		33

1. Einleitung

Hinweis: In die Einleitung gehört die Motivation und Einleitung in die Problemstellung. Die Problemstellung kann in der Analyse noch detaillierter beschrieben werden.

1.1 Zielsetzung der Arbeit

Was ist die Aufgabe der Arbeit? ...

Mit dieser Bachelorarbeit verfolge ich das Ziel personalisierte Vibrationssignale zu erstellen. Hierbei werden drei verschiedene Vibrationssignale für einen Nutzer so angepasst, dass die Werte speziell für den Benutzer bestimmt werden. Zur Bestimmung der eines Vibrationssignals wird ein Evolutionärer Algorithmus verwendet. Nachdem der Evolutionäre Algorithmus passende Wert gefunden hat, wird überprüft, wie gut die personalisierten Vibrationssignale im vergleich zu vorgegebenen Werten erkannt werden.

//Die Aufgabe besteht darin, für ein Individuum mit einem Programm drei verschiedene Vibrationssignale für Ihn so anzupassen, dass die Werte von Ihm besser erkannt werden als vorgegebene Werte. Dabei wird zur Bestimmung eines Vibrationssignals ein Evolutionärer Algorithmus verwendet. Nachdem dieser passende Wert gefunden worden ist, wird überprüft, wie gut im Vergleich zu Vorgegebenen Werten die Daten erkannt werden.

Somit wollte ich herausfinden, ob es möglich ist für jedes Individuum eine eigene passende Länge und Stärke von Vibrationssignalen zu erstellen, so dass die Kombination der Signale noch erkannt werden.

Die Hypothese die ich mit dieser Bachelorarbeit beantworten möchte ist, ob man mittels personalisierten Vibrationen eine Folge von Vibrationen besser unterscheiden als vorgegebene Vibrationen. Um dies beantworten zu können verwende ich Wearable zur Darstellung der Vibrationssignale und einen Genetischen Algorithmus um die personalisierten Vibrationen zu ermitteln.

1.2 Gliederung der Arbeit

Was enthalten die weiteren Kapitel? ...

Im Verlauf dieser Bachelorarbeit erläutere ich erst allgemein, was die einzelnen Bestandteile des Evolutionären Algorithmus sind und wie ich den an mein Problem angepasst habe.

1. Einleitung

Sowie das Problem ansatzweise heutzutage umgesetzt wurde und wie ich an das Problem heranging und wie ich es Implementiert haben.

// auskommentieren In meiner Bachelorarbeit werde ich erst einmal erläutern, was aktuell in den Smartphones und in der Forschung benutzt wird. Im Folgenden werde ich erläutern, was ein Genetischer Algorithmus ist und wie ich diesen nutze genutzt habe.

2. Grundlagen

Die Grundlagen müssen soweit beschrieben werden, dass ein Leser das Problem und die Problemlösung versteht.Um nicht zuviel zu beschreiben, kann man das auch erst gegen Ende der Arbeit schreiben.

Bla fasel...

2.1 Tactile Geräte

Bla fasel...

Ein Taktiles Gerät ist ein Gerät, dass Informationen an einen Menschen mitteilen möchte, dies geschieht durch die Wahrnehmung der Haut. Ein Taktiles Gerät ist ein Gerät, dass Informationen durch die Wahrnehmung des Menschen mittels Körperkontakt darstellet.

[?]

Tatile Geräte werden heutzutage öfter verwendet, als man es eigentlich wahrnimmt. Ein einfaches Beispiel ist das Handy. Eine Person hat sein eigenes Handy in der Hosentasche. Bei einer eingehenden Nachricht, muss der Benutzer mitgeteilt werden, dass eine Nachricht empfangen wurde. Dies geschieht normalerweise mit dem Klingelton. Wenn man jetzt beschäftigt ist und nicht durch ein lautes klingeln gestört werden möchte, dann stellt man den Ton ab. Um dennoch darauf Aufmerksam zu machen, dass eine Nachricht eingetroffen ist, nutzt man die Vibration des Handys.

Das Handy ist nur eins von vielen Beispielen, was man über den Alltag noch für Taktile Geräte verwendet.

//Man nutzt Vibrationen um darauf aufmerksam zu machen, dass trotz abgeschaltetem Klingelton, eine Nachricht empfangen wurde.

//Falls eine Person das Handy in der Hosentasche haben sollte und eine eingehende Nachricht empfangen wurde, will das Handy dem Benutzer das mitteilen. Dies passiert im Normalfall durch einen Klingelton. Um als Taktiles Gerät definiert zu werden, muss es dem Benutzer per Körperkontakt mitteilen, dass eine Nachricht eingegangen ist. Das geschieht nicht durch den Klingelton sondern durch Vibration.

2.2 Genetischer Algorithmus

Bla fasel...

4 2. Grundlagen

Man versteht unter dem Begriff der Evalutionären Algorithmen (EA) eine Ansammlung von Techniken und Methoden die für Optimierungsprobleme eine näherungsweise eine Lösung findet. [?]

// Die Evalutionären Algorithmen sind stochastische Optimierungsverfahren. Mithilfe eines Evolutionären Algorithmus (EA) findet man nicht die beste Lösung für ein Problem, jedoch findet man eine gute Lösung, die der eigentlichen Lösung recht nahe kommt. Man hat sich bei dem EA an der Biologischen Evolution von Darwin inspirieren lassen. [?]

2.2.1 Evolution in der Biologie

Im 19. Jahrhundert hat sich Darwin mit der Gedanken über die Evolution von Lebewesen über mehrere Generationen gemacht. Dabei kam hat er auf das Prinzip "Survival of the fittest. Mit dem Prinzip hat Charles Darwin die Entstehung neuer Arten beschrieben. Dabei haben die Arten überlebt, die sich am besten für die Umgebung angepasst haben. Die die sich an die neue Situation nicht angepasst hatten sind nach ein paar Generationen zur Minderheit geworden. [?]

In der Biologie ist jeder lebende Organismus ein **Individuum**. Jedes Individuum besitzt Erbinformationen in der Form von Chromosomen. Die Erbinformationen werden auch **Gene** oder **DNA** genannt. Eine Gruppe von Individuen wird als **Population** bezeichnet.

Beim EA hat man sich das Verhalten in der Biologie angeschaut und versucht zu übernehmen. [?]

2.2.2 Selektion

Eine **Selektion** ist eine Auswahl von Individuen einer Population. Durch Kombination der Gene der ausgewählten Individuen, werden neue Individuen für die nächste Generation erzeugt. Diese Kombination wird **Rekombination** genannt. Dabei gibt es verschiedene Selektionsstrategien. Man versucht die Individuen zu finden, die eine bestmöglichste Lösung für ein Problem liefern. [?]

2.2.3 Variation

Für eine Population sollte man zu Beginn eine große Variation von Individuen mit unterschiedlichen Genen besitzen. Nehme man anhand einem Beispiel an, dass man mithilfe einer Evolution eine neue Art von Süßigkeiten entwickeln möchte. Dabei sollten die Form und Farbe neu bestimmt werden. Wenn man jetzt eine Start-Population von Induviduen habe, die alle die gleichen Gene besessen würde, so würde man anhand zwei Selektierten Individuen keine Änderung der nächesten Generation erkennen, da die Nachkommen auch alle die gleichen Gene besitzen würden, falls keine Mutation auftreten würde. Damit dieses Verhalten nicht auftritt, versucht man zu Beginn eine große Variation an Individuen zu erzeugen und diese als Anfangs Population für einen Evolutionären Algorithmus zu nutzen. Mittels Rekombination und Mutation wird dabei ein neues Individuum für die nächste Generation erzeugt, dass andere Gene vorweist. Mittels der Rekombination werden verschiedene Gene bei der Fortpflantzung der nächsten Generation vermischt und somit neue Gene für erzeugt. Die Mutation ist eine Veränderung der Gene eines Individuums, die meistens durch Umwelteinflüsse ausgelöst werden. [?]

//Durch Rekombination und Mutation der DNA der Individuen erhält man eine Variation. //Die Rekombination und Mutation erzeugt lediglich ein neues Individuum aus der DNA der zuvor selektierten Individuen.

//Um die nächsten Generationen zu bilden wird eine Rekombination und Mutation auf die DNA der Selektierten Induviduen ausgeführt. Die Variation der DNA spielt eine wichtige

Rolle, denn die ist für die nachfolgende Rekombination und Mutation entscheident für die nächsten Generationen. Um bei der Selektion unterschiedliche Individuen ausgewählt werden können, benötigt man zunächst eine Variation

2.2.4 Gendrift

Unter **Gendrift** versteht man eine zufällige Veränderung der Genhäufigkeit in einer Population, innerhalb einer Evolution. Ein Gendrift tritt bei kleineren Populationen häufiger auf. [?]

2.2.5 Allgeimeiner Vorgang eines Evolutionären Algorithmus

Der EA besitzt im allgemeinen immer die gleichen Komponenten. Diese Komponenten werden im folgenden erläutert. Dieses Wissen stammt aus den folgenden Quellen [?, ?, ?]

Initialisierung

In der Initialisierung erzeugt man sich eine Population von Individuen, die eine zahlreiche Variation von Genen besitzen. Für die Anfangs-Population nimmt man in der Praxis zufällige Individuen oder auch die besten bekanntesten Lösungskandidaten.

Bewertung der Individuen

Bevor man eine Evolution für eine Population erzeugen kann, benötigt man zuvor Attribute anhand derer man die nächste Generation berechnet. Diese Attribute nennt man den **Fitnesswert**. Der Fitnesswert muss für jedes Individuum der Population bestimmt werden. Der Fitnesswert wird anhand mithilfe einer Fitnessfunktion berechnet.

//Bevor man eine neue Population für die nächste Generation berechnen kann, muss man zuerst mithilfe einer Fitnessfunktion jedes Induvidiuum einen Fitnesswert bestimmen.

Selektion

Bei der Selektion wählt man die Individuen jeweils Individuen aus einer Population aus. Dabei werden die Individuen bevorzugt, die einen hohen Fitnesswert aufweisen. Diese selektierten Individuen werden als Eltern für die Rekombination ausgewählt.

Rekombination

Die Eltern aus der Selektion werden in diesem Schritt einen Nachfahren für die nächste Generation erzeugen. Dabei werden die jeweiligen Gene der Eltern Kombiniert und an die nächste Generation vererbt. Die Kombinationsmöglichkeiten hängen davon ab, wie die Gene repräsentiert sind. Die neuen Individuen werden in die Population für die nächste Generation hinzugefügt.

//Die Gene der ausgewählten Eltern werden miteinander kombiniert und bilden die Gene des neuen Induvidiuum für die Population der nächsten Generation. Hier gibt es verschiedene Kombinationsmöglichkeiten, die angewendet werden können.

Mutation

Es besteht eine Chance, dass die Gene der Individuen der neuen Generation sich mutieren können.

6 2. Grundlagen

Wiederholung durch neuer Generation

Man führt die Rekombination so oft aus, bis man die gleiche Anzahl an Individuen für die neue Population hat, wie die Anzahl vorherige Population gewesen ist. Der Vorgang der Bewertung, Selektion, Rekombination und Mutation muss für jede neue Generation durchgeführt werden. Die neu erzeugte Population wird als Eingabe für die neue Generation verwendet. Dabei wird der Algorithmus so lange ausgeführt bis eine hinreichende Abbruchbedingung erreicht worden ist. Das dabei erzeugte Ergebnis ist eine näherungsweise Lösung für das Problem.

//Man fährt den Schritt so oft aus, bis man wieder die gleiche große an Individuen für die nächste Generation Der Vorgang der Selektion, Rekombination und Mutation wird so oft ausgeführt, bis man eine neue Population hat, die genauso groß ist, wie die Anfangapopulation. Nachdem die neue Population erzeugt wurde, wird diese durch die Anfangspopulation ersetzt und man führt den Algorithmus erneut aus. Dies geschieht so lange, bis man eine hinreichende Lösung für das Problem hat.

2.3 Verwandte Arbeiten

Hier kommt "Related Work" rein. Eine Literaturrecherche sollte so vollständig wie möglich sein, relevante Ansätze müssen beschrieben werden und es sollte deutlich gemacht werden, wo diese Ansätze Defizite aufweisen oder nicht anwendbar sind, z.B. weil sie von anderen Umgebungen oder Voraussetzungen ausgehen.

Bla fasel...

Da heutzutage beinahe jedes Gerät ein Vibtarionsmotor verbaut hat, sei es das Handy, die Smartwatches oder Fitnessarmbänder (uvm.), werde ich im folgenden noch auf einige aktuelle Technologien und deren Umsetzung der personalisierten Vibtationsmuster zu sprechen kommen.

2.3.1 Taptic Engine

Die Taptic Engine ist eine von der Firma Apple eine eigen entwickeltes Vibrationsmotor, dass heutzutage in nahezu allen Apple Produkten vertreten ist. Das erste Gerät was die Taptic Engine bekommen hatte, war die Apple Watch. Der Name bildet sich aus dem Wort "Taktilünd "Haptisch". Trotz des neu erfinden einer mechanischen Rückmeldung bietet Apple keine Personalisierung, wie lange eine Rückmeldung erfolgen soll, für die Apple Watch an. Die Einstellungsmöglichkeiten an der Apple Watch ist lediglich die Stärke der Vibration. Diese ist in 3 Stärkestufen unterteilt. Dabei kann man aber nicht wirklich von einer Personalisierung sprechen.

(BILD)

2.3.2 Personalisierte Vibration

(BILD)

Der Hersteller Apple hat auch bei dem iPhone eine Möglichkeit geboten eigene Vibrationsmuster zu erstellen, jedoch mit Einschränkungen. Wenn man in die jeweilige Einstellung der iPhones gelangt, erscheint das folgende Bild. Beim drücken auf das Display wird an der Stelle eine Vibration erzeugt. Man hat 10 Sekunden um ein eigenes Muster zu erzeugen, indem man wiederholt auf den Bildschirm drückt. An der Stelle, an der man den Bildschirm berührt hat, erscheint visuell um der Position ein Kreis. Die erzeugten Vibrationen werden in einer Leiste visuell angezeigt. Man kann sich beliebig viele Vibrationsmuster speichern, die bis zu 10 Sekunden lang sind. [?]

Die Einschränkung die man hier nennen muss ist, dass man die Vibrationsmuster nur für Systeminterne Funktionen benutzen kann. Dies bedeutet, dass man die Funktionen für Klingeltöne, Nachrichtentöne, Erinnerungshinweise, Kalenderhinweise (o.ä.) hinzufügen kann. Für eine andere Anwendung, die nicht im Betriebsystem integriert ist, ist das nicht möglich. Somit können Benachrichtigungen von anderen Entwicklern keine eigene Vibrationsmuster zuweisen. Somit kann man bei Benachrichtigungen von anderen Entwicklern nicht anhand der Vibrationen des iPhones unterscheiden.

2.3.3 Personalisierte Smartwatch

Das Gerät, dass es nach meiner Recherche am besten gelöst hat, ist eine Smartwatch von einem kleinen StartUp namens Martian. Das Startup hat eine Uhr hergestellt, mit der man mittels einer App auf dem Smartphone die Vibrationsmuster selbst anpassen kann. Die App unterstützt eine große Anzahl an Applications, von anderen Herstellern, die Benachrichtigungen senden. Ein Vibrationsmuster für die Uhr kann man aus mit zu 4 Signalen auf der Uhr darstellen lassen. Die Signale sind als Lang, Kurz und Pause festgelegt. Somit kann man mittels der Vibration der Uhr herausfinden, welche App gerade eine Benachrichtigung auf mein Handy gesendet hat. Die Länge und Stärke eines Signals ist schon im Vorfeld festgelegt.

2.3.4 Fazit

Bei sehr vielen Herstellern ist es aktuell noch gar nicht möglich eigene Vibrationsmuster zu erstellen. Bei Android Geräten ist es aktuell so, dass man nur aus einer Menge von wenigen Vordefinierten Vibrationsmustern sich nur eines auswählen kann. Einige haben dieses Problem erkannt und eine eigene App entwickelt und in den Store gestellt.

(BILD)

3. Analyse

In diesem Kapitel sollten zunächst das zu lösende Problem sowie die Anforderungen und die Randbedingungen einer Lösung beschrieben werden (also nochmal eine präzisierte Aufgabenstellung).

Dann folgt Üblicherweise ein Überblick über bereits existierende Lösungen bzw. Ansätze, die meistens andere Voraussetzungen bzw. Randbedingungen annehmen.

Bla fasel...

3.1 Anforderungen

Anforderungen und Randbedingungen ...

Die Aufgabenstellung bestand darin, herauszufinden, ob ein personalisiertes Vibrationsmuster besser als ein vordefiniertes Vibrationsmuster erkannt wird. Um dies zu lösen musste man sich im Vorfeld ein paar Gedanken über die Repräsenatation eines Signals, die Dekodierung und über die Übertragung machen. Im Folgenden werden diese Entscheidungsfindungen beschrieben.

Die Übertragung

Zu aller erst hat man sich das vorgegebene Armband genauer inspiziert. Dabei konnte man das Armband über eine Serielle Schnittstelle sowie über Bluetooth Low Energie (LE) nutzen. Bei der Nutzung der Seriellen Schnittstelle hatte man zwar den Vorteil, dass man sich nicht mittels Bluetooth auseinander setzen müsse, jedoch ist man an einem Kabel über den PC verbunden gewesen, was zur Einschränkung der Bewegungsfreiheit ... hat. Um genau diesen Nachteil nicht zu haben hat man sich für Bluetooth LE entschieden. Dabei gab es auch einige Nachteile, die man beheben musste. Die Kommunikation mittels Bluetooth LE hatte eine maximale Datenäbertragung von 20 Bytes. Diese wurden jeweils in zwei Bytes Blöcke unterteilt.

Anhand der Begrenzung der Datenübertragung hat man sich eine geeignete Dekodierung des Signals überlegen müssen.

...Dabei musste man sich definieren wie ein Signal aufgebaut gewesen ist. Dabei musste für ein Signal eine Datenstruktur erstellt werden.

Dekodierung eines Signals.

3. Analyse

Evolutionärer Algorithmus musste erstellt werden mit allen komponenten, Population Fitness funktion, usw

Kommunikation mit dem Armband musste aufgebaut werden.

Es sollte eine Studie ausgeführt werden um das System zu testen

Dabei sollte eine Grafische Oberfläche erstellt werden, damit der Benutzer selbst eine Eingabe in den PC machen konnte um nächste Signale abspielen zu können.

Es sollten die Daten ausgewertet werden.

3.2 Existierende Lösungsansätze

Hier kommt eine ausführliche Diskussion von "Related Work".

Bla fasel...

3.3 Weiterer Abschnitt

Bla fasel...hat auch schon [?] gesagt und [?, ?, ?] sollte man mal gelesen haben. Abbildung 3.1 auf S. 10 sollte man sich mal anschauen.

Blindtext Blindt

Abbildungen sollten möglichst als EPS (Encapsulated Postscript) bzw. PDF eingebunden werden. Zur Erzeugung sauberer EPS-Dateien empfiehlt sich das Tool ps2eps zur Nachbearbeitung von Postscript-Dateien. Mit epstopdf kann dann eine PDF-Datei zum Einbinden erzeugt werden.

Abbildung 3.1: Testabbildung

Blindtext Blindt

Blindtext Blindt

Blindtext Blindt

3.4 Zusammenfassung

Am Ende sollten ggf. die wichtigsten Ergebnisse nochmal in $\it einem$ kurzen Absatz zusammengefasst werden.

4. Entwurf

In diesem Kapitel erfolgt die ausführliche Beschreibung des eigenen Lösungsansatzes. Dabei sollten Lösungsalternativen diskutiert und Entwurfsentscheidungen dargelegt werden.

Bla fasel...

4.1 Programm Ablauf

Bla fasel...

4.2 Ausführung des Programms

Zu Beginn musste man sich über alles einen Überblick schaffen. Das heißt, dass man sich alle Bestandteile einzeln betrachten musste bevor man alles zusammen setzen konnte. Es gibt drei / vier große Bestandteile die ich mir überlegen musste.

Zualler erst musste man sich mit dem Armband beschäftigen, um herauzufinden, was es alles konnte. Man konnte die Zeit, die das Armband vibrieren sollte festlegen, sowie auch die Stärke, wie Stark das Armband vibrieren sollte. Man musst darauf achten, dass man die 20 Bytes, die man lediglich mit Bluethooth übertragen konnte nicht überschreitet.

Als nächstes habe ich mir erst einmal äberlegt, wie ich die Daten repräsentieren sollte. Ich habe mir überlegt, dass ich eine Datenstruktur erstellen müsste um das Signal anschließend über BLE an das Armband zu übertragen. Aber wie sehen Signale aus? Zuerst habe ich mir überlegt, was ist die Maximale und Minimale Länge, die ich übertragen werde. Dabei habe ich mich für einen Minimalen Wert von 100 Millisekunden (ms) und eine Maximale Länge von 1024 ms entschieden. Da man das Armabnd auch in verschiedenen Vibrationsstärken abspielen konnte, habe ich herausgefunden, manche Vibrationsstärken gar keine Vibration abspielten, weil so wenig Stromübertragen wurde, dass die Vibrationsmotoren gar nicht erst angesteuert wurden. Dabei haben sich die Grenzen hierbei von 0x07FF bis 0xFFFF behandelt. Um jedoch merkbare unterschiede der Vibrationsstärke zu bestimmen habe ich mir die Grenzen in 5 Bereiche aufgeteilt. Somit hatte ich zwei Variablen, die ich für meine Darstellung von einem Signal entscheidend war.

Da ich jetzt Signale mit einer Länge von 100 ms bis 1024 ms hatte musste ich mir überlegen, wie viele Signaltpyen ich hier erzeugen würde. Der Morsecode beispielsweise bestand aus 3 Teilen ein Kurzes Signal, ein Langes Signal und einer Pause. Dabei wollte ich jetzt nicht

14 4. Entwurf

den Morsecode nehmen und habe mich für eine eigene Definition entschieden. Dabei habe ich gesagt dass es drei Signaltypen gibt. Diese drei Signaltypen sind Kurz, Mittel und Lang, auf die ich gleich noch einmal zu sprechen komme.

Vorher will ich auf den Evolutionären Algorithmus zu sprechen kommen. Beim Evolutionären Algorithmus musste man sich zu beginn eine Anfangspopulation erstellen. Also in meinem Fall wäre die Anfangspopulation eine Menge von Signalen die eine Variation aufweisen sollte. Wie sollte eine solche Population aussehen? Hier ist mir der Gedanken gekommen, man sollte die Signaltypen in Grenzen aufteilen, das bedeutet, dass man beispielsweise von 100 bis 300 ms Kurz, von 400 bis 700 ms Mittel und von 800 bis 1024 ms Lang definieren sollte. Am Anfang habe ich dies auch gemacht, dass die Grenzen fest von mir vorgegeben waren, jedoch hat man festgestellt, dass die Nutzer nicht genau diese Grenzen als Kurz, Mittel und Lang empfunden haben. Das heißt man musste sich vor dem Evolutionären Algorithmus überlegen, wie die Nutzer die Signalgrenzen selbst bestimmten. (Nähere Information im Kapitel Implementierung)

Nach der Bestimmung der Signaltypen, hat man sich erneut an den Evolutionären Algorithmus gewagt. Das bedeutete, man musste eine Anfangspopulation bestimmen. Dabei hat man N Individuen für jeden Signaltypen innerhalb seiner Grenzen erzeugt. Zuerst komplett zufällig innerhalb der Grenzen, dabei kam man zu dem Ergebnis, dass die Grenzen nur in seltenen fällen drinnen waren. D.h. dass man nie den vollständigen Intervall den man vorher bestimmt hat in der Anfangspopulation vertreten war. Deshalb habe man von den N Individuen zwei Individuen erzeugt, die genau die beiden Grenzen repräsentiert haben.

Nach der Erzeugung der Anfangspopulation sollten die Signale vom Benutzer alle bewertet werden. Dabei hatte man den Gedanken, dass man den Benutzer die Signale mehrmals abspielt und ihn jedes mal abfragt, was für ein Signal er erkannt hat und anhand der Häufigkeit, die er das Signal als den Signaltypen erkannt hat wie das Programm es für Ihn im Vorfeld bestimmt hatte, einen Fittnesswert bestimme. Jedoch müssten diese 3*N Signale mehrmals abgespielt werden, um eine Häufigkeit zu erhalten. Wenn man hier für die Population jedes Individuum fünf mal abspielen wärde, wäre man bei 15*N. Bei einem N von 10 Signalen pro Signaltyp wären dass dann 150 Bewertungen die der Nutzer pro Population machen müsste um nur eine Generation zu bewerten. Wenn man nur vier Generationen bestimmen wollte, so wäre man bei 450 Bewertungen nur um einen personalisierten Wert zu erhalten. Das wäre für einen normalen Benutzer nicht zumutbar, dass er so viel Zeit in Anspruch nehmen würde um so viele Signale zu bewerten.

Daher musste eine alternative her. Die Alternative ist gewesen, man spiele dem Benutzer jedes Individuum nur einmal ab und stellt Ihn dazu drei Fragen, die wie in einem SUS Fragebogen gestellt wird, mit einer Skala von sehr gut bis sehr schlecht. [BILD EINFÜ-GEN] Anhand der Fragen habe ich einen Fitnesswert bestimmt. Die weitere Beschreibung des Algorithmus wird in der Implementierung beschrieben.

Mit jeder Generation ist man davon ausgegangen, dass die Grenzen der Signaltypen kleiner wurde und zu dem Wert, dass dem Nutzer am besten gefallen würde hinkonvergieren würde. Würde man dies weitertreiben, bis die jeweiligen Signaltypen gegen eine Zahl konvergieren, würde man noch ein paar mehr Itterationen machen müssen, was unter Bedacht, dass der Benutzer nicht so lange die Signale bewerten würde nach vier Itterationen aufgehört. Nachdem der Algorithmus also nach der vierten Generation die Population erzeugt hat, wurde von allen Individuen das Minumin und Maximum der jeweiligen Signaltypen bestimmt worden. Anhand der Minima und Maxima wurde für jeden Signaltypen der Mittelwert bestimmt.

Somit hat man nach dem Algorithmus einen personalisierten Kurz, Mittel und Lang Wert.

Im dritten Schritt musste man herausfinden, wie die Signale im Vergleich zu Vorgegebenen Werten erkannt werden. Dabei hat man verschiedene Folgen von Signalen vordefiniert, die der Benutzer erkennen sollte. Dabei habe man zuerst drei Signal-Folgen (aka Muster) abgespielt, anschließend vierer Muster und zu letzt fünfer Muster. Es wurde abwechselnd ein zufälliges genetisches Muster und ein generisches Muster abgespielt.

4.3 Evolutionaerer Algorithmus

4.4 Evolutionärer Algorithmus

4.4.1 Signal

Ein Signal bildet eine Vibration ab. Als man sich die Einstellungsmöglichkeiten einer Vibration des Wearable genauer angeguckt hat, hat man festgestellt, dass man die Länge und die Stärke einer Vibration einstellen kann. Das hat zur Folge, dass diese zwei Faktoren als die Attribute eines Signales benutzt wurden um eine Vibration zu repräsentieren.

Man stellt sich jetzt die Frage, Wie lang sollen die Vibrationen denn jetzt sein?

Um diese Frage zu beantworten, guckt man sich anhand an dem Paper [?] die benutzten Vibrationslängen an. Da wurden die Grenzen zwischen 100 und 1000ms für eine Vibration benutzt. Diese Werte hat man so übernommen. Das bedeutet, ein Signal hat eine minimale Länge von 100ms und eine maximale Länge von 1000 ms.

Anhand der Hypothese der Bachelorarbeit wolle man wissen, wie gut sich personalisierte Vibrationen im Vergleich zu generischen Vibrationen verbessern. Diese Frage lässt sich wie folgt beantworten. Erstens musste man sich überlegen, wie man personalisierte Vibrationen mittels dem EA für einen Probanden bestimmen will. Außerdem sollte man herausfinden was für Signale noch gut voneinander unterscheidbar sind, die die Grenzen von 100ms bis 1000ms besitzen. Man habe sich auf drei Typen von Signalen festgelegt, die als Kurz, Mittel und Lang definiert sind. Dadurch wolle man wissen, ob ein Signal als Kurz, Mittel oder Lang empfunden wurde.

Die jeweiligen Typen definieren innerhalb der Grenzen von 100ms und 1000ms ein Intervall, die sich voneinander nicht überschneiden kann. Abgesehen davon ist der niedrigste Messwert von einem Langen Signal allgemein größer als der höchste Messwert von einem Mittleren Signal. Wiederum ist die kleinste Intensität von einem Mittleren Signal in der Regel größer als die größte Internsität von einem Kurzen Signal. Als Beispiel habe man für Kurz die Intervallgrenzen 100ms und 300ms, für Mittel habe man dann die Intervallgrenzen von 400ms bis 600ms und für Lang habe man die Intervallgrenzen von 700ms bis 1000ms. Allerdings wurde es darauf geachtet, dass die Grenzen nicht aufeinander liegen, sondern einen Abstand zwischen den Grenzen existiert. Bei der Stärke einer Vibration wurde man an der Darstellbarkeit des Wearable gebunden. Nachdem man herausgefunden hat, dass man nur die Bereiche von 0x7FFF bis 0xFFFF als merkbare Vibrationsstärken besitzt, hat man sich diese Bereiche in 5 Stufen eingeteilt. Daraus folgt dass man sich für den späteren Verlauf fünf Zustände definiert.

Signalstärke	Namen	Zustandsnamen
0x7FFF	Very Weak	q_{VWeak}
0x9FFF	Weak	q_{Weak}
OxBFFF	OK	q_{OK}
OxDFFF	Strong	q_{Strong}
OxFFFF	Very Strong	$q_{VStrong}$

16 4. Entwurf

Tabelle 4.1: My caption

Signallänge (in ms)	100	200	300	400	500	600	700	800	900	1000
Erkannten Signaltyp	Kurz	Kurz	Kurz	Mittel	Mittel	Mittel	Lang	Lang	Lang	Lang

Tabelle 4.2: My caption

Signallänge (in ms)	100	200	300	400	500	600	700	800	900	1000
Erkannten Signaltyp	Kurz	Kurz	Mittel	Mittel	Lang	Mittel	Lang	Lang	Lang	Lang

4.4.2 Eingabe für den Algorithmus

Als Eingabe für den Algorithmus benötigt man eine Population von Individuen. Die Individuen sind in diesem Fall Signale. Nicht jede Person empfindet ein vorgegebenes Kurzes Signal gleich wie eine andere Person, somit musste man zuvor den Benutzer befragen, was er als Kurz, Mittel und Lang empfindet. Zuerst habe man alle Signale abgespielt, damit der Proband wusste, was Ihn erwartet. Nachdem alle Signale abgespielt wurden, wurde jedes Signal einzeln abgespielt und der Proband hatte die Aufgabe das abgespielte Signal der Kategorie Kurz, Mittel oder Lang zuzuordnen. Jedem Probanden wurde insgesamt 10 Signale mit der gleichen Vibrationsstärke abgespielt, die Signalelänge ist dabei gleich verteilt. Dabei wurden alle 10 Signale in einer zufälligen Reihenfolge abgespielt.

Nach der Eingabe des Probanden erhält man beispielsweise folgende Bewertung. Diese Eingabe ist ideal, da alle Signaltypen direkt hintereinander vorliegen, so würde man hier ein die Grenzen sofort aus der Tabelle entnehmen können. Diese belaufen sich für Kurz zwischen 100 und 300 ms, für Mittel zwischen 400ms und 600ms und für Lang zwischen 700 und 1000ms.

Falls die Eingabe jedoch nicht so Ideal sein sollte, wie in dem Beispiel gerade eben, mussten ein paar Vorkehrungen getroffen werden. Um einige Sonderfälle auszuschließen, hat man überprüft, ob das Signal mit der Länge von 100ms ein Kurzes Signal ist und das Signal mit der Länge von 1000ms ein Langes Signal ist, sowie man annimmt, dass mindestens jeder Signaltyp mindesten zwei mal ausgewählt wurde. Sollte dies nicht der Fall sein, so würde man den Benutzer dazu bitten, die zehn Signale erneut zu bewerten.

Man beginnt damit die neuen Intervallgrenzen zu bestimmen. Diese wurden anhand des Beispiels exemplarisch in der Tabelle bestimmt, dabei ist jede Spalte eine Itteration.

Bei einer kleinen Abweichung von zwei nebeneinanderliegen von zwei Werten ist dies noch akzeptabel, bei größeren Abweichungen, hat man Benutzer noch einmal darum gebeten erneut zu bewerten. Im Verlauf der Studie musste man nur bei einer Minderheit von Probanden ein weiteres mal darum bitten, die Signale neu zu bewerten. Denn es ist oft schon so gewesen, dass die Probanden es wie im Idealfall zugeordnet hatten.

Tabelle 4.3: My caption

Itterationen	1.	2.	3.	4.	5.	6.	7.	8.	10.
$Kurz_{Min}$	100	100	100	100	100	100	100	100	100
$Kurz_{Max}$	100	200	200	200	200	200	200	200	200
$Mittel_{Min}$	100	200	300	300	300	300	300	300	300
$Mittel_{Max}$	100	200	300	400	400	600	600	600	600
$Lang_{Min}$	100	200	300	400	500	600	700	700	700
$Lang_{Max}$	100	200	300	400	500	600	700	800	1000

Tabelle 4.4: My caption

Antwort sehr schlecht schlecht ok gut sehr gut

Wertigkeit -2 -1 0 +1 +2

Nachdem man jetzt die Grenzen für einen Probanden bestimmt hat, kann man endlich die Startpopulation des Algorithmus erzeugen. Bei der Startpopulation hat man für jeden Signaltypen zehn Signale. Die zehn Signale beinhalten zwei Signale, die das Minimum und Maximum des jeweiligen Signaltypen repräsentieren. Die restlichen acht Signale erhalten eine zufällige Länge innerhalb des Intervalls. Die Stärke eines Signal wird zufällig für jedes Signal zufällig zugewiesen. Man besitzt somit für die Startpopulation dreißig Signale, die jeweils in zehn Kurze, Mittlere und Lange Signale unterteilt sind.

4.4.3 Bewertung des Algorithmus

Jedes Individuum der Startpopulation muss für die Fortsetzung des nächsten Schritts vom Algorithmus bewertet werden. Um diese Bewertung zu erhalten hätte man aus einigen Alternativen wählen können wobei ich hier ein weiteres erläutern werde und wieso man dieses nicht gewählt hat.

Zuerst könnte man hergehen und jedes Signal aus der Population dem Probanden abspielen und fragen was für ein Signaltyp er erkannt hat, wie man es bei den ersten zehn Signalen gemacht hat um die Grenzen der Signaltypen zu bestimmen.

Der erste Ansatz wäre man würde genau dies tun, dabei würde man die Anzahl der richtigen Zuweisungen und Abweichungen zählen um eine geeigneten Fitnesswert zu bestimmen. Ferner würde das bedeuten, dass für eine Population ein Individuum mehrmals abgespielt werden müsse um eine Bewertung des einzelnen Individuums zu erhalten. Bei einer Annahme von fünf Bewertungen pro Individuum, um nur eine Population damit bewerten zu können, müsste der Proband eine Anzahl von 150 Signalen bewerten, damit der Algorithmus eine Generation bestimmen kann. Dies würde bedeuten, dass wenn man vier Generationen bestimmen wollen würde, man auf eine Anzahl von 600 Bewertungen alleine für die Bestimmung des personalisierten Wertes mithilfe dem EA.

Aufgrund der Tatsache, dass Probanden nicht so lange an einer freiwilligen Studie teilnehmen wollen, habe man sich für einen anderen Ansatz entschieden. Man muss akzeptieren, dass man über mehrere Generationen hinweg die komplette Population bewerten muss. Das heißt, dass man pro Generation 30 Signale abspielen muss. Um eine Generation zu bestimmen habe man sich Gedanken darüber gemacht, wie man so ein Signal bewerten soll. Dabei ist man zu dem Entschluss gekommen, dass man man den Benutzer zuerst fragt, was für ein Signaltyp er erkannt habe. Weiterhin habe man Ihn zwei Fragen wie in einem Fragebogen (Likert-Skala) gefragt, wie gut er das Signal erkannt wurde und wie man die Stärke des Signals empfunden hat.

Wie oben schon erwähnt, für die Anfangspopulation hat jedes Individuum eine zufällige Stärke zugewiesen. Dabei entspricht die Stärke einem Zustand aus dem Zustandsdiagramm Y. Anhand der Bewertung verändert sich der aktuelle Zustand der Stärke eines aktuellen Individuums um bis zu zwei Zustände. Dabei ist die Wertigkeit der Antwort der Frage in der Tabelle XX beschrieben. Dabei bedeutet +2, dass der aktuelle Zustand zwei mal +1 im Zustandsdiagramm XW ausführt.

Die Antwort was für ein Signal erkannt wurde zeigt, was für ein Signal der Proband erkannt hat. Dies ist für die Bewertung der Studie hilfreich. Die letzte Frage die der Benutzer zu beantworten hat, wie er das Signal erkannt hat, hat die Wertigkeit wie in Tabelle XA definiert. Diese Antwort auf die Frage, ist der entscheidende Wert, der den Fitnesswert repräsentiert.

18 4. Entwurf

Tabelle 4.5: My caption

Antwort sehr schlecht schlecht ok gut sehr gut

Wertigkeit 1 2 3 4 5

4.4.4 Erzeugung der nächsten Generation

Im Anschluss nach der Bewertung erfolgt die Bestimmung der nächsten Generation. Dies erfolgt mit der Selektion, Rekombination und Mutation der Gene.

4.4.4.1 Selektion

Für die Selektion wird für jeden Signaltyp ein neuer Pool erzeugt. Im Anschluss daran werden die drei Maxima für jeden Signaltypen von allen Fitnesswerten bestimmt. Anhand der Formel (FitnesswerteinesIndividuums/MaximumdeszugehörigenSignaltypens) * 100 lässt sich die Häufigkeit bestimmen, wie oft ein Individuum in den Pool hinzugefügt wird. Als Beispiel hat man ein Maximum von 5 und einen Fitnesswert von 2, daraus ergibt sich 40, das heißt, es wird 40 mal das jeweilige Individuum in den Pool hinzufügt wird. Dabei wird jedes Individuum in das Pool hinzugefügt, welchem Signaltyp es angehört.

Nach der Erzeugung der Pools wird eine Rekombination durch zwei zufällig ausgewählte Individuen ausgeführt.

4.4.4.2 Rekombination

In der Rekombination wurden die zwei zufällig ausgewählten Individuen als Eltern definiert. Die gefundenen Eltern erzeugen ein neues Individuum, dass in die Population der nächsten Generation hinzugefügt wird.

Dieser Vorgang wurde wie folgt für das Problem angepasst. Man hat die zwei Gene, die Stärke und die Länge eines Signals.

Zuerst beginnen wir mit der Länge des Signals. Es wird die Länge des ersten Elternteils und die Länge des zweiten Elternteils genommen und ein Mittelwert von beiden Werten gebildet. Der Mittelwert ist die Länge des neuen Individuums. Für die Stärke des neuen Individuums wird ebenfalls der Mittelwert von beiden Elternteilen gebildet und abgerundet.

Aus jedem der drei erzeugten Pools werden zehn neue Individuen für die nächste Generation erzeugt, so dass man wieder auf eine Gesamtzahl von 30 Individuen für eine Population kommt.

4.4.4.3 Mutation

Es besteht eine Chance von 5% dass sich ein Individuum mutieren kann. Das bedeutet in diesem Fall, dass sich lediglich die Länge zufällig verändern kann.

4.4.4.4 Abbruchkriterium

Man wiederholt für jede Generation wie im (BILD) dargestellten Zyklus, bis man eine ausreichende Lösung erhält.

Das Abbruchkriterium ist erreicht, wenn die vierte Generation erzeugt worden ist. Um hier die Stellung zu der Entscheidung von vier Generationen zu nehmen, ist es so, dass man versucht habe die Anzahl der Vibrationen für einen Probanden niedrig zu belassen. Im Vergleich zum ersten Ansatz, in der man 600 Vibrationen für vier Generationen hat, habe

4.5. Muster 19

man für die aktuell benutze Lösung bei 30 Individuen pro Population, für 4 Generationen, 120 Vibrationen.

Nach dem man die letzte Population vom Algorithmus erhält, bestimmt man für jeden Signaltypen das Minimum und Maximum von der Stärke und der Länge von allen Signalen. Anhand derer man den Mittelwert bestimmt und schließlich den personalisierten Wert für den Probanden erhält.

4.5 Muster

Ein Muster ist eine Folge von mehreren Signalen die hintereinander abgespielt werden.

Damit man schließlich die Hypothese der Bachelorarbeit beantworten kann, muss man zuvor die generische Vibrationen mit genetische Vibrationen vergleichen. Man habe im Vorfeld 15 Muster eine Signallänge von drei, vier und fünf, dass macht in der Summe 45 Muster. Man habe diese 45 Muster zwei mal erzeugt, jedoch einmal mit den Kurz, Mittel und Lang Werten und die dazugehörige Stärke, die man nach dem Algorithmus bestimmt hat und einmal fest Vorgegebene Werte von Kurz, Mittel und Lang sowie die Stärke Strong. Bei den Vordefinierten Werten hat man sich wieder anhand dem Paper [?] für einen Kurz Wert von 200ms, einen Mittel Wert von 400ms und einem Lang Wert von 800ms orientiert.

Dabei habe man den Probanden in der Studie dabei gefragt, was für Signale er in welcher Reihenfolge erkannt habe. Diese Daten wurden in der Evaluierung ausgewertet.

4.6 Notizen

Beim Entwurf, ok so wurde der Evolutionäre Algorithmus aufgebaut.

Im Studiendesign würde der Ablauf und die Durchführung aufgeschrieben. Im Studiendesign sah die GUI so aus.

Im Entwurf kannst du schreiben, dass die GUI so und so funktioniert und die Benutzerführung ist so, da kann man noch ein schönes Diagramm zu machen zum Benutzerfluss (also ein Benutzerflussdiagramm)

Oder im Studiendesign kann man das endgültige Benutzerflussdiagramm hinzufügen und Sagen ok wir hatten eine GUI denn das ist ja 1 zu 1 mein Studien design, so wie sich mein Nutzer in der GUI durchgeklickt, ist wie ich die Studie designed habe. Daher passt es super ins Studiendesign hinein, das klassische, ich hab das mit so und so vielen Leuten gemacht, so viele waren männlich, so viele weiblich, alter, durchschnitt Standardabweichung, hab das an drei verschiedenen orten gemacht, Probanden waren bekannte freunde und über mailing listen sample of convenience. Das Prozedere ging so, die Leute sind gekommen, ich hab es ihnen erklärt, die haben das Armband angelegt, habe denen das erst einmal alleine abgespielt, die haben das Armband angelegt, haben am ende noch eine email hinterlassen um am Gewinnspiel teilzunehmen,

Und dann der Teil mit der Evaluierung, also das mit den Ergebnissen.

Tortendiagramm ist nicht schön, so und so viele bezeichnen sich als als musikalisch, Prozentzahlen reichen Bla fasel...

4.7 Zusammenfassung

Am Ende sollten ggf. die wichtigsten Ergebnisse nochmal in einem kurzen Absatz zusammengefasst werden.

5. Implementierung

Bla fasel...

5.1 Signal

Bla fasel...

Das Signal ist ein wichtiger Bestandteil meines Programm. Ein Signal beinhaltet die Signallänge, die in Millisekunden gespeichert wird, und eine Signalstärke, die in 5 Stärkestufen eingeteilt ist.

Ich habe meinen Evolutionären Algorithmus so angepasst, dass bei mir ein Induviduum ein Signal ist. Ich habe dem Benutzer das Signal mit dem Wearable abspielen lassen und im Anschluss Fragen beantworten lassen. Er sollte bewerten wie gut er das Signal erkannt hat. Die Bewertung vom Benutzer war entscheidend um nach der kompletten Bewertung der Population

5.2 Muster

Bla fasel...

5.3 Evolutionärer Algorithmus

Bla fasel...

6. Evolutionärer Algorithmus

- 6.1 DNA
- 6.2 Population
- 6.3 Generationen
- 6.4 Mutation
- 6.5 Studiendesign

Bla fasel...

7. Studiendesign

7.0.1 Studiendesign

TODO Benutzerflussdiagramm

Im folgenden Benutzerflussdiagramm hat man sich orientiert um die Studie zu entwerfen. (Sample of convenience) Über Mailinglisten und Bekanntenkreis haben sich 32 Probanden bereiterklärt an der Studie teilzunehmen. Dabei waren 72 Prozent Männer und 28 Prozent Frauen. Das Alter der Probanden war von 12 bis 54 Jahren vertreten und das Durchschnittsalter war 22 Jahre. Die Studie hat zwischen 30 Minuten und einer Stunde gedauert. Die Studien wurden an drei verschiedenen Orten durchgeführt, im TECO in Karlsruhe, in einem Seminarraum an der Hochschule Darmstadt und in einem Arbeitszimmer in Meschede.

Für jeden teilgenommenen Probanden ist der gleiche Ablauf durchgeführt. Vor der Studie wurde ein Termin mit dem Probanden vereinbart. Nachdem der Proband zur abgemachten Zeit am vorgegebenen Ort angekommen ist, wurde Ihm erklärt wofür die Studie ist, was man mit der Studie herausfinden will und welche Erwartungen man an den Probanden hat. Nachdem der Proband alles verstanden hat und die Einverständniserklärung verstanden und unterschrieben hat, wurde Ihm das Armband angezogen.

Für die Studie hat man ein Programm mit einer Grafischen Oberfläche (GUI) entworfen, mit der es möglich war die ganze Studie durchzufüren. Dabei wurden dem Probanden ein paar Personalien abgefragt, wie das Alter, das Geschlecht, ob sich die Person als Musikalisch empfindet, ob man Computerspiele spielen wärde, ob man schon einmal eine Smartwatch benutzt habe und ob die Person schon mal ein Tactiles Gerät benutzt habe. Falls vom Probanden Fragen während der Studie Fragen aufgekommen sind wurden diese sofort beantwortet.

Nach der Aufnahme der Personalien, wurde dem Benutzer erklärt, was Ihn als nächstes erwartet und von Ihm verlangt wird. Man hat dem Nutzer im ersten Schritt 10 Signale abgespielt, um Ihn ein Gefühl für Signale zu geben. Im Anschluss wurde dem Probanden jedes Signal erneut einmalig abgespielt. Dabei sollte er das Signal zu drei jeweiligen Kategorien zuordnen. Diese Kategorien waren ob es ein Kurzes, Mittleres oder Langes Signal für Ihn gewesen ist. Dieser Schritt war dafür notwendig um für den Benutzer die Grenzen für die jeweilige Kategorien Kurz, Mittel und Lang zu bestimmen. Diese Grenzen sind für die Initialisierung des Algorithmus notwendig gewesen.

26 7. Studiendesign

Als die 10 Signale bewertet wurden, wurde der Benutzer darüber aufgeklärt, was Ihm als nächsten Schritt erwartet. Es wurde Ihm ein anhand seiner Eingaben ein zufälliges Signal abgespielt, dass er bewerten sollte (BILD). Anhand der drei Fragen wurde das Signal bewertet. Um eine Itteration komplett zu bewerten wurde dieser Vorgang 30 mal wiederholt. Im Anschluss wurde gefragt wie der Benutzer sich derzeit fühlt (BILD). Anhand einer komplett bewerteten Itteration wurde dem Benutzer neue Werte berechnet. Es wurden insgesamt vier Itterationen durchgeführt um einen möglichst genauen Wert für den Benutzer zu bestimmen.

Im letzten Schritt wurde dem Benutzer aufgeklärt, dass ab dem Zeitpunkt nur noch Folgen von Signalen, die man ab jetzt Muster nennt, abgespielt werden. Die Probanden sollten angeben in welcher Reihenfolge was für Signaltypen abgespielt wurden. Es wurde für alle Probanden im Vorfeld alle Muster definiert, damit jeder die gleichen Muster abgespielt bekommt. Es gab zwei Arten von Muster, die generischen Muster und die genetischen Muster. Der einzige Unterschied zwischen den beiden Arten waren die Werte, die die Signale in einem Muster zugewiesen wurden. Das bedeutet es wurden zwei mal das selbe Muster abgespielt mit lediglich anderen Werten. Die Genetischen Muster hatten die Werte, die nach dem Algorithmus erzeugt wurden übernommen, wobei die generischen Muster einen vordefinierten Wert zugewiesen bekommen hat. Der generische Wert ist für jeden Probanden gleich gewesen. Dabei gab es Muster mit drei, vier und fünf Signalen. Nacheinander wurde dem Nutzer zuerst alle Muster mit drei Signalen. Dabei wurde das genetische Muster abwechselnd zum generischen Muster abgespielt.

Nachdem alle Muster von dem Probanden bewertet wurden, haben Sie Ihre e-Mail noch angegeben um an einer automatischen Verlosung von zwei Gutscheinen teilzunehmen. Bei Interesse wurde Ihnen Ihre Werte gezeigt und erklärt, was genau im Hintergrund passiert worden ist. Während der ganzen Studie standen dem Probanden ausreichend Süßigkeiten zur Verfügung, bei denen Sie sich frei bedienen konnten.

8. Evaluierung

Hier kommt der Nachweis, dass das in Kapitel 4 entworfene Konzept auch funktioniert. Leistungsmessungen einer Implementierung werden auch immer gerne gesehen.

Bla fasel...

8.1 Abschnitt 1

Bla fasel...

8.2 Abschnitt 2

Bla fasel...

8.3 Zusammenfassung

Am Ende sollten ggf. die wichtigsten Ergebnisse nochmal in $\it einem$ kurzen Absatz zusammengefasst werden.

9. Zusammenfassung und Ausblick

Bla fasel...

(Keine Untergliederung mehr!)

10. Zusammenfassung und Ausblick

Bla fasel...

(Keine Untergliederung mehr!)

Literaturverzeichnis

Erklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe. Die Arbeit wurde in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt und von dieser als Teil einer Prüfungsleistung angenommen.

Karlsruhe, den 7. Mai 2018

(thomas)