NOVEMBER 2022

50434/SM3AE

Time: Three hours

Maximum: 75 marks

 $PART A - (10 \times 2 = 20 \text{ marks})$

Answer any TEN questions.

- Use Bernoulli's formula to evaluate $\int x^3 e^{2x} \, dx$. பெர்னோலி வாய்பாட்டை பயன்படுத்தி மதிப்பிடுக: $\int x^3 e^{2x} \, dx$.
- Write the Fourier coefficients for the function f(x) defined in the interval $0 \le x \le 2\pi$. $0 \le x \le 2\pi$ என்ற இடைவெளியில் வரையறுக்கப்பட்ட சார்பு f(x)-க்கு பூரியர் கெழுக்களை எழுதுக.
- 3. Form a partial differential equation by elimination arbitrary function from $z=e^y f(x+y)$. எதேச்சை சார்பை நீக்கி பகுதி வகைக்கெழு சமன்பாட்டை அமைக்கவும் : $z=e^y f(x+y)$.
- 4. Solve pq + p + q = 0. § $\dot{r}: pq + p + q = 0$.

- E Find $L[\cos 4t \, \cos 2t]$. $L[\cos 4t \, \cos 2t]$ ஐ காண்க.
- G Find $L^{-1} \left[\frac{s}{s^2 + 9} \right]$. $L^{-1} \left[\frac{s}{s^2 + 9} \right]$ ஐ காண்க.
- f Find the divergence of $x^2i+y^2j+z^2k$. $x^2i+y^2j+z^2k$ ன் பாய்வை காண்க.
- 8. Show that $\nabla \times \vec{r} = \vec{0}$ where $\vec{r} = xi + yj + zk$. $\vec{r} = xi + yj + zk$ எனில் $\nabla \times \vec{r} = \vec{0}$ எனக்காட்டு.
- State Green's theorem. கிரீனின் தேற்றத்தை எழுதுக.
- 10. Use Gauss divergence theorem to show that $\iint_S \vec{r} \cdot \hat{n} \, dS = 108 \, \pi \,, \text{ where } S \text{ is the surface of the sphere } x^2 + y^2 + z^2 = 9 \,.$ காஸின் பாய்வுத் தேற்றத்தைப் பயன்படுத்தி $\iint_S \vec{r} \cdot \hat{n} \, dS = 108 \, \pi \quad \text{ எனக்காட்டு.} \quad \text{இங்கு} \quad S \quad \text{ என்பது}$ $x^2 + y^2 + z^2 = 9 \quad$ என்ற கோளத்தின் மேற்பரப்பு.

fud x +ord

Use reduction formula to evaluate $\int\limits_0^{\pi/2}\cos^3x\,dx$. சுருக்கல் வாய்பாட்டைப் பயன்படுத்தி மதிப்பிடுக $\int\limits_0^{\pi/2}\cos^3x\,dx$.

Define : Solenoidal vector. பாய்வற்ற வெக்டர் - வரையறு.

PART B $-(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

Find a reduction formula for $\int_0^{\pi/2} \sin^n x \, dx$ (n - positive integer). $\pi/2$ $\int_0^{\pi/2} \sin^n x \, dx$ சுருக்கல் வாய்பாட்டை காண்க. (இங்கு n மிகை முழு எண்).

Solve: $(D^2 - 4D + 13)y = e^{2x}\cos 3x$. § $\dot{\pi}$: $(D^2 - 4D + 13)y = e^{2x}\cos 3x$.

Find
$$L^{-1} \left[\frac{1}{s(s+1)(s+2)} \right]$$
.
$$L^{-1} \left[\frac{1}{s(s+1)(s+2)} \right] \ \text{as some s.}$$

If \vec{A} and \vec{B} are vector point functions, show that $\nabla \cdot (\vec{A} \times \vec{B}) = (\nabla \times \vec{A}) \cdot \vec{B} - (\nabla \times \vec{B}) \cdot \vec{A}$

எனில் $abla.(ec{A} imes ec{B}) = (
abla imes ec{A}). \, ec{B} - (
abla imes ec{B}). \, ec{A} \,$ எனக்காட்டு. $ar{A}$ மற்றும் $ar{B}$ என்பன வெக்டர் புள்ளிவழி ϵ

If $\vec{F} = (2x+y)i + (3y-x)j$, and C is the arc of the cubical parabola $y = x^3$ from (1, 1) to (2, 8), then show that $\int_C \vec{F} \cdot d\vec{r} = 90$.

$$\vec{F}.d\vec{r} = 90$$

எனக்காட்டு.

劉克

$$ec{F}=(2x+y)i+(3y-x)j,$$
 மற்றும் C என்பது $ig(1,\,1ig)$,

(2, 8)பரவளையம் $y=x^3$. ஆகிய புள்ளிகளை இணைக்கும் முப்படி

Solve: $\sqrt{p} + \sqrt{q} = x$.

姜市: $\sqrt{p} + \sqrt{q} = x$

Determine the constant 'a' so $\vec{F} = (x+3y)i + (y-2z)j + (x+\alpha z)k$ is solenoidal. எனில் 'a' -ன் மதிப்பைக் காண்க. $\vec{F} = (x+3y)i + (y-2z)j + (x+\alpha z)h$ that the vector

டுகுகும்பாப

 $PART C - (3 \times 10 = 30 \text{ marks})$

Answer any THREE questions.

20. Find a Fourier series for the function $f(x) = e^x$ in $(-\pi,\pi)$.

> $(-\,\pi,\,\pi)$ என்ற இடைவெளியில் $f(x)=e^x$ சார்பின் பூரியர் தொடரைக் காண்க.

21. Solve:
$$x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$$
.
Solve: $x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$.

Using Laplace transform, solve

$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 5y = e^{-2t}, \text{ given that } y = 0, \frac{dy}{dt} = 1$$
when $t = 0$.

லாப்லாஸ் உருமாற்றத்தைப் பயன்படுத்தி தீர் :

$$rac{d^2y}{dt^2}$$
 $+6rac{dy}{dt}$ $+5y=e^{-2t}$ இங்கு $t=0$ எனும்போது

$$y=0, \frac{dy}{dt}=1.$$

- $\sqrt{23}$. (a) Show that the vector point function $\vec{A}=\left(4xy-z^3\right)i+2x^2j-3xz^2k$ is irrotational. $\vec{A}=\left(4xy-z^3\right)i+2x^2j-3xz^2k$ என்ற வெக்டர் புள்ளி வழிச்சார்பு சுழற்சியற்றது எனக்காட்டு.
 - (b) If $\vec{F}=xyzi+xyz^2j+x^2yzk$, find div curl \vec{F} . $\vec{F}=xyzi+xyz^2j+x^2yzk$ எனில் div curl \vec{F} -ஐ காண்க.
 - 24. If $\vec{F} = (2x+y)i + (3y-x)j$ and C is formed by the straight lines OA and AB, where O, A, B are (0,0), (2,0), (3,2) then show that $\int_{C} \vec{F} \cdot d\vec{r} = 11$.

 $ec{F}=(2x+y)i+(3y-x)j$ என்க. C-யானது OA மற்றும் AB , ஆகிய நேர்கோடுகளால் இணைக்கப்படும் வளைவரை. இங்கு O,A,B என்ற புள்ளிகள் முறையே $(0,0),\,(2,0),\,(3,\,2)$ எனில் $\int\limits_{C} ec{F}.dec{r}=11$ எனக்காட்டு.