東京理科大学 大学院講義

第4回 情報検索特論

(スコアリング・用語重み付け・ベクトル空間モデル)

東京理科大学 創域理工学部 情報計算科学科 植松 幸生

本授業の目標とシラバスの確認

目標:情報検索/LLMの概念を理解し,実装レベルまで習得する

- 1 講義概要 講義概要の説明
- 2 特別講義 Federated Learning: Mei Kobayashi(5限なので, 出れない方は応相談)
- 3 情報検索基礎インデックス1全文検索の仕組みを理解する4 情報検索基礎スコアリング1TFIDF等のscoring技術の解説5 情報検索基礎インデックス2インデックスの圧縮技術を学ぶ
- 情報検索応用 LLMを用いた情報検索 LLMを用いた情報検索の仕組みを理解する
- 情報検索応用 LLMを用いた情報検索2 第6回の授業の実装を学ぶ/RAGの実装を学ぶ情報検索応用 LLMを用いた情報検索4 LLMのファインチューニングについて学ぶ
- 9 情報検索応用 応用例 実データを用いたEDAを学ぶ((Exploratory Data Analysis) 10 情報検索応用 応用例 実データを用いた情報検索技術の応用例
- 11 情報検索実践 情報検索とLLMを応用したシステムの開発1 自分で考えたシステムを実装するための方法を理 解する
- 情報検索とLLMを応用したシステムの開発2 12 情報検索実践 システムを実装する/プレゼンテーションやエレ ベータピッチの方法を学ぶ
- プレゼンテーション1 実装したシステムをデモを通じたプレゼンテーションを行う 13 情報検索実践
- プレゼンテーション2 引き続きプレゼンテーションを行う. また, 他の学生の発表を評価する 14 情報検索実践
- 15 情報検索実践 情報検索最新動向(講演)

本日のアジェンダ

この講義の範囲

- 先週のおさらい
- 本日の最終目標の共有
- ランク付け検索(ベクトル空間スコアリング)
 - 文書スコアリング
 - 単語頻度(tf)
- まとめ

前回のおさらい

何人かの人に, コード追うには時間がなさすぎ インデックスが何をやっているかよくわからない

・・・というご意見を頂いたので振り返ります!

単語のスキャ

「先生」: [1, 3, 7, 20, ...]

「東京」: [1, 2, 3, 4, 10, 25, ...]

• • •

• • •

「ゼブラ」: [1, 2, 3, 4, 10, 25, ...]

「先生」: [1, 3, 7, 20, ...]

「東京」: [1, 2, 3, 4, 10, 25, ...]

AND検索時のマージ

Posting listのskip listの話はこちら

先週のプログラムをもう一度見てみよう人。

LLMを利用したRAG等のtools実行

Toolsとは、LLMが出来ないことを外部から 与えて実行する機能です

https://platform.openai.com/docs/assistants/tools

Function Calling

Write and run python code, process files and diverse data

LLMを利用したRAG等のtools実行

Toolsとは、LLMが出来ないことを外部から 与えて実行する機能です

https://platform.openai.com/docs/assistants/tools

File Search Built-in RAG tool to process and search through files Code Interpreter Write and run python code, process files and diverse data

Function Calling Σ

Use your own custom functions to interact with your application

目的となる情報

ここが、Web検索だったり 自前で準備したデータベース だったりする (この授業では主に全文検索)7

今週最終的に学ぶこと

あるクエリ(Q)に対する,文書(D)のスコア付けの方法に関して学ぶ 最終的に必要なのは,クエリQに関連するTopK件の文書リスト

ランク付け検索(Ranked Retrieval)

答えの記載があれば極端な話1文書で構わない! (10000件の検索結果は必要がない)

- これまでの講義では、クエリは主にブール式(AND/OR/NOT)
- 文書は「合致する/しない」の二値判定
 - Ex.) ある文書に「先生」という単語が存在する
- 多くのユーザは何千件もの結果を読みたくない(特にWeb検索)
- たとえ同じ情報でも信頼できるソースの情報が見たい

ブール検索の課題: feast or famine

- ブールクエリは「少なすぎる(=0)」または「多すぎる (数千)」に陥りがち
- 例(大量): "東京 OR 先生" → 何十万件
- 例(0件): "東京 AND 先生 AND 研究 AND 交通政策"→ 0件
- 適切な件数に調整するには高度なスキルが必要
- AND は件数が少なくなりがち/OR は多くなりがち

ランク付け検索モデル

ランク付けでは、集合ではなく「並び順(上位文書の順 序)」を返す

- Jaccard係数
- Bag-of-words

最初の一歩: Jaccard係数

- 二つの集合 A, B の重なり度合い
- Jaccard(A,B) = $|A \cap B| / |A \cup B|$
- Jaccard(A,A)=1、A∩B=⊘なら0、常に0~1の範囲
- 集合のサイズが異なっても定義できる

Jaccard係数:東京/先生の例

- クエリ:東京 先生
- 文書1:東京の大学の先生が研究発表
- 文書2:大阪の先生が講演
- (集合として語の有無のみを考える:頻度は無視)
- → クエリ語の両方を含む文書1のスコアが高い

Jaccard の課題

- 単語頻度(term frequency)を考慮しない
- コレクションで稀な語ほど情報量が高いが、反映できない
- 文書長に対する適切な正規化がない

クエリと文書のマッチング・スコア

TF-IDF: Term Frequency and Inverse Document Frequency

一語クエリから考える:語が出現しなければスコア0

• 文書内の出現回数が多いほどスコアは高くすべき

この考えを多語クエリに拡張(tf, idf, tf-idf へ)

復習:二値の語-文書インシデンス行列

各文書を {0,1}^{|V|} の二値ベクトルで表現(語彙 V)

例:語が出たら1、出なければ0

語	文書A	文書B	文書C	文書D	文書E	文書F
東京	1	1	0	0	0	1
先生	1	1	0	1	0	0
研究	1	0	0	1	1	1
大学	0	1	0	0	0	0
講演	1	0	0	0	0	0
やさしさ	1	0	1	1	1	1

語-文書カウント行列(出現回数ベース)

語 t の文書 d における出現回数を用いる 各文書は № ^{|V|} のカウントベクトル(右表の列)

語	文書A	文書B	文書C	文書D	文書E	文書F
東京	15	7	0	0	0	0
先生	4	15	0	1	0	0
研究	23	22	0	2	1	1
大学	0	10	0	0	0	0
講演	5	0	0	0	0	0
やさしさ	2	0	3	5	5	1

Bag of Words(語順を無視するモデル)

- ベクトル表現では語の並び(順序)を考慮しない
- 「東京の先生は優しい」と「優しい先生は東京にいる」はほぼ同じベクトル
- 位置情報を使う位置索引(positional index)なら区別できる

順序性がない

Term Frequency

- tf(t,d):語 t が文書 d に出現した回数
- 検索の適合度計算に tf を使いたいが、単純な比例は望ま しくない
- 10回出た文書は1回より関連が高いが、10倍とは限らない

$$ext{TF}(t,d) = egin{cases} 1 + \log(f_{t,d}) & (f_{t,d} > 0) \ 0 & (f_{t,d} = 0) \end{cases}$$

付録:TFアタック(頻度スパム)と対策

- 攻撃:同じ語を文書中に過度に繰り返し、tfを人工的に増やして順位を上げる手法
- 単純なtf比例スコアは脆弱(例:"東京 東京 東京 ... 先生")
- 主な対策:
 - ・対数tf (1+log(tf))やBM25の飽和関数でtfの利得を逓減
 - ・文書長正規化(長いだけの羅列を不利に)
 - ・スパン/セクション多様性(同一セクションの反復を割引)
 - ・品質/スパムシグナル(リンク、言語モデル判定、重複率)
 - ・CAPTCHA/投稿制限など運用側の対策

希少語は情報量が高い

- コレクションで稀な語ほど、出現は関連性の手掛かりになりですい
- 例:クエリに「王来王家(おくめか)」が含まれると、その語を含む文書は重要度が高い
- → 希少語に高い重みを与えたい (idf)

$$ext{IDF}(t,D) = \log rac{N}{n_t}$$
 N: コーパス全体(D)の文書数 $ext{n_t}$: 語 $ext{t}$ を含む文書の数

コレクション頻度(cf)と文書頻度(df)

- cf t: コレクション全体での出現回数
- df_t:語 t を含む文書数(df ≤ N)
- どちらが検索に有用か? → 一般に df が良い重みづけ指標

語	cf(総出現回数)	df(文書数)
東京	10440	3997
先生	10422	8760

TF · IDF

(Term Frequency Inverse Document Frequency

この単語の頻度と単語の珍しさを掛け合わせてTFIDFという重み(単語の 重要度)を計算します

$$\text{TF-IDF}(t, d, D) = \text{TF}(t, d) \times \text{IDF}(t, D)$$

このtfidf値を重みとしたベクトルを使って、文書dとqの類似度を計算します。それが**コサイン類似度**です

$$egin{aligned} w_{t,d} &= \mathrm{TF}(t,d) imes \mathrm{IDF}(t,D) \ ec{d} &= (w_{1,d}, w_{2,d}, \dots, w_{T,d}) \ ec{q} &= (w_{1,q}, w_{2,q}, \dots, w_{T,q}) \end{aligned} \qquad & \sin(ec{q}, ec{d}) = rac{ec{q} \cdot ec{d}}{\|ec{q}\| \, \|ec{d}\|} = rac{\sum_t w_{t,q} \, w_{t,d}}{\sqrt{\sum_t w_{t,q}^2} \, \sqrt{\sum_t w_{t,d}^2}} \end{aligned}$$

qとdのベクトルの方向が近い(0度だと1になる)ほど類似している

コサイン類似度

qとdの角度Θが小さいほど大きな値になる

$$\sin(ec{q}, ec{d}) = rac{ec{q} \cdot ec{d}}{\|ec{q}\| \, \|ec{d}\|} = rac{\sum_t w_{t,q} \, w_{t,d}}{\sqrt{\sum_t w_{t,q}^2} \, \sqrt{\sum_t w_{t,d}^2}}$$

Introduction to information retrieval より抜粋

コサイン類似度を計算する疑似コード

~ (

CosineScore(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each pair(d, tf_{t,d}) in postings list
 - **do** $Scores[d] += w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top *K* components of *Scores*[]

実は順序がないため 先週学んだposting I istにtfの情報を持た せれば計算可能

BM25 (Best Matching 25について)

Tfidfのコサイン類似度に対して、良く使われる手法としてOkapi IR (BM25)というRobertsonらが開発したスコアリング方式があります

$$\mathrm{BM25}(q,d) = \sum_{t \in q} \mathrm{IDF}(t) \cdot \frac{f_{t,d}(k_1+1)}{f_{t,d}+k_1(1-b+b\cdot \frac{|d|}{\mathrm{avgdl}})}$$
 f(はtf 文書の長さを,文書集合全体の 平均文書長で正規化している

Stephen E. Robertson; Steve Walker; Susan Jones; Micheline Hancock-Beaulieu & Mike Gatford (November 1994). Okapi at TR EC-3. Proceedings of the Third Text REtrieval Conference (TREC 1994). Gaithersburg, USA.

BM25つておいしいの?

恐ろしいことに30年以上たった今でも使われています。。。。

$\mathbf{Model}\:(\to)$	Lexical	l Sparse			Dense		Late-Interacti	Microsoft Ignite			
Dataset (↓)	BM25	DeepCT	SPARTA	docT5query	DPR	ANCE	TAS-B	GenQ	ColBERT		今すぐ登録〉
MS MARCO	0.658	0.752 [‡]	0.793 [‡]	0.819^{\ddagger}	0.552	0.852^{\ddagger}	0.884^{\ddagger}	0.884 [‡]	0.865^{\ddagger}	November 17–21, 2025	
TREC-COVID	0.498*	0.347*	0.409*	0.541*	0.212*	0.457*	0.387*	0.456*	0.464*	Learn ドキュメント トレーニング	/~ Q&A~ トピック~
BioASQ	0.714	0.699	0.351	0.646	0.256	0.463	0.579	0.627	0.645		
NFCorpus	0.250	0.235	0.243	0.253	0.208	0.232	0.280	0.280	0.254	Azure プロダクツ ~ Architecture ~ 開発 ~	Azure の詳細 ~ トラブルシューティング リソース ~
NQ	0.760	0.636	0.787	0.832	0.880^{\ddagger}	0.836	0.903	0.862	0.912		
HotpotQA	0.740	0.731	0.651	0.709	0.591	0.578	0.728	0.673	0.748	る タイトルでフィルター	Learn / Azure / Al Foundry / Azure Al 検索 / 6ò Focus mode :
FiQA-2018	0.539	0.489	0.446	0.598	0.342	0.581	0.593	0.618	0.603	∨ Ranking ▲	DNASE 即海州フラフリングも様式ナス
Signal-1M (RT)	0.370	0.299	0.270	0.351	0.162	0.239	0.304	0.281	0.283	BM25 ランク付けBM25 ランキングの概要	BM25 関連性スコアリングを構成する
TREC-NEWS	0.422	0.316	0.262	0.439	0.215	0.398	0.418	0.412	0.367	BM25 ランク付けを構成する	2025/02/24
Robust04	0.375	0.271	0.215	0.357	0.211	0.274	0.331	0.298	0.310	ベクトル ランク付け	このアーティクルでは、Azure Al Search でフルテキスト検索クエリに使用した BM25 関連性スコア
ArguAna	0.942	0.932	0.893	0.972	0.751	0.937	0.942	0.978	0.914	14 ハイブリッド ランク付け (RRF) リング アルゴリズムピを構成する方法について説明します。 また、以前	
Touché-2020	0.538	0.406	0.381	0.557	0.301	0.458	0.431	0.451	0.439	スコアリング プロファイルを追加する	有効にする方法についても説明します。
CQADupStack	0.606	0.545	0.521	0.638	0.403	0.579	0.622	0.654	0.624	- > セマンティック ランク付け 0.606	BM25 の適用対象:
Quora	0.000	0.954	0.321	0.982	0.403	0.987	0.022	0.988	0.024		ft.com/ja-jp/azure/search/index-ranking-similarity
					1						recom/ja jp/azarc/scarch/macx ranking similanty
DBPedia	0.398	0.372	0.411	0.365	0.349	0.319	0.499	0.431	0.461	0.398	
SCIDOCS	0.356	0.314	0.297	0.360	0.219	0.269	0.335	0.332	0.344	0.356	
FEVER	0.931	0.735	0.843	0.916	0.840	0.900	0.937	0.928	0.934	0.931	
Climate-FEVER	0.436	0.232	0.227	0.427	0.390	0.445	0.534	0.450	0.444	0.436	
SciFact	0.908	0.893	0.863	0.914	0.727	0.816	0.891	0.893	0.878	0.908	

Table 9: In-domain and zero-shot retrieval performance on BEIR datasets. Scores denote **Recall@100**. The best retrieval performance on a given dataset is marked in **bold**, and the second best performance is <u>underlined</u>. ‡ indicates in-domain retrieval performance. * shows the capped Recall@100 score (Appendix G).

まとめ

あるクエリ(Q)に対する,文書(D)のスコア付けの方法に関して学ぶ 最終的に必要なのは,クエリQに関連するTopK件の文書リスト

I am a THINKER!

Thank you!

Contact:

Yukio Uematsu
yukio@rs.tus.ac.jp
yukio@cs.stanford.edu

