Math H110 Theorems.

- 1. **Lemma.** Let F be a field, $\lambda \in F$, V a vector space over F (denoted by V/F), $v \in V$. Then, if $\lambda v = 0$, then $\lambda = 0$ or v = 0.
- 2. **Lemma.** A vector space over a field is a module over a field.
- 3. **Theorem.** The intersection of a family of subspaces of a vector space *V* is a subspace of *V*.
- 4. **Lemma.** Let $S = \{v_1, \dots, v_t\}$. Then the subspace of all linear combinations of the elements of S is the span S.
- 5. **Theorem.** Let $L = v_1, ..., v_n$ be a list of vectors in a vector space V over a field F and let $T : F^n : \to V$ be linear transformation with $(\lambda_1, ..., \lambda_n) \mapsto \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then, we have the following:
 - (a) L spans V iff T is onto.
 - (b) L is linearly independent iff T is 1-1 iff nul $T = \{0\}$.
 - (c) L is a basis iff T is 1-1 and onto.
- 6. **Prop.** Consider $T: F^n \to V$ with $(\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 v_1 + \dots + \lambda_n v_n$, so $T(e_i) = v_i$ for all i. Then, T is the unique linear map $F_n \to V$ that sends $e_i \mapsto v_i$ for all i.
- 7. **Theorem.** Every subspace *X* of *V* has complement.
- 8. **Lemma.** If v_1, \ldots, v_t is linearly dependent list, then there is an index k such that $v_k \in \text{span}(v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_t)$. Furthermore, the span of the list of length t-1 gotten by removing v_k from the list is the same as the span of the original list.
- 9. **Prop.** In a finite-dimensional vector space, the length is of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.
- 10. Cor. Two bases of V have the same number of elements.
- 11. **Prop.** X + Y is direct iff the null space of the sum map is $\{0\}$.
- 12. **Theorem.** Every subspace of a finite-dimensional vector space is finite-dimensional.

- 13. **Prop.** Every spanning list for a vector space can be pruned down to a basis of the space.
- 14. **Cor.** Every finite-dimensional vector space has a basis.
- 15. **Prop.** In a finite-dimensional vector space, every linearly independent list can be extended to a basis of the space.
- 16. **Major Theorem.** Every subspace of a finite-dimensional vector space has a complement.
- 17. **Prop.** Let X, Y be subspaces of a finite-dimensional vector space V. Then:
 - (a) $\dim X + \dim Y = \dim V$.
 - (b) $X \cap Y = \{0\}.$

Then, $V = X \oplus Y$.

- 18. **Prop.** $\dim(X \oplus Y) = \dim X + \dim Y$.
- 19. **Prop.** If V is a finite-dimensional vector space (with $\dim V = n$), then every subspace has dimension at most n.
- 20. **Prop.** Let $\dim V = n$. Then, a linearly independent list of vectors of V with length n is a basis for V.
- 21. **Prop.** Let $\dim V = n$. Then, every spanning list for V of length n is a basis for V.
- 22. **Lemma.** The list $(x_1, 0), ..., (x_t, 0); (0, y_1), ..., (0, y_k)$ of length t + k is a basis of $X \times Y$.
- 23. Cor. $\dim(X \times Y) = \dim X + \dim Y$.
- 24. Cor. Let $T: V \to W$ be a linear map with $\dim V = d$. Then, rank $T \le d$.
- 25. **Rank-Nullity Theorem.** $\dim V = \operatorname{rank} V + \operatorname{nullity} V$.
- 26. **Prop.** If $T: V \to W$ is 1-1, then nullity T = 0.
- 27. **Cor.** If $T: V \to W$ is 1-1 and onto, then $\dim V = \dim W$.

- 28. **Theorem.** The set of linear maps $V \to W$ is a vector space $L \cdot (F^n, W) \to T \longrightarrow (Te_1, \dots, Te_n) \in W^n$.
- 29. **Theorem.** $\dim(X+Y) = \dim X + \dim Y \dim(X \cap Y)$.