A interface hardware / software

# Arquitetura de Computadores III

Arquiteturas Manycore e Redes-em-Chip

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

241

241

# Processador Fujitsu ARM A64FX

- Total de 7.299.072 núcleos.
- Processador A64FX 48C 2.2GHz
- Arquitetura ARM projetada pela Fujitsu

https://www.r-ccs.riken.jp/en/fugaku/project



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

24

# Processador Fujitsu ARM A64FX



https://postk-web.r-ccs.riken.jp/spec.html

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

243

243

# Arquiteturas Kalray MPPA 256

#### **MPPA-256** I/O Subsystem RM RM I/O Subsystem RM RM RM C4 C5 Shared Memory (2MB) RM C<sub>6</sub> RM C13 C12 C11 C15 C14

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3892

Compute Cluster

2024 Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Chip

244

244

# Arquitetura Epiphany-V

#### **Epiphany-V**



https://www.parallella.org/2016/10/05/epiphany-v-a-1024-core-64-bit-risc-processor/

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

245

245

# Arquiteturas de Aceleradores Manycore

#### Intel Xeon Phi (Knights Corner)



 $\underline{\text{https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-phi-coprocessor-codename-knights-corner.html}$ 

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

246

# Arquiteturas de Aceleradores Manycore

#### Intel Xeon Phi (Knights Landing)



 $\underline{\text{https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases.html}$ 

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

247

247

# Arquiteturas de Aceleradores Manycore

#### **Graphics Processing Unit (GPU)**



https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

248

# Arquiteturas de Aceleradores Manycore

#### **Graphics Processing Unit (GPU)**



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

249

249

# CPU e GPU integradas

Ex: Intel Ivy Bridge and Haswell



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

250

#### Revolução Manycore

- GTX 280 (2008) 240 núcleos
- GTX 480 (2010) 480 núcleos
- GTX 690 (2012) 1536 núcleos
- GTX Titan (2014) 2880 núcleos
- GTX Titan (2017) 3840 núcleos
- Titan V (2019) 5120 núcleos

Outros números generosos fazem parte do pacote. Encontramos 5.120 núcleos CUDA divididos em seis clusters, frequência de 1.200 MHz (1.455 MHz em boost), 640 núcleos tensor (usados em aprendizagem de máquina), 320 TMUs (unidades para texturização), além de TDP de 250 W.



https://tecnoblog.net/noticias/2017/12/08/nvidia-gpu-titan-v/

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

251

251

### Arquiteturas manycore e redes-em-chip

linhas • Em gerais, uma arquitetura *manycore* que demanda uma rede-empossui característica o propósito geral de processamento, paralelo, principalmente com muitas comunicações coletivas. Por este motivo, é necessário ter uma rede capaz de oferecer diversos caminhos de interconexão entre os núcleos, memórias, outros dispositivos entre do dentro chip. Uma arquitetura de possui esta característica.



Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

252

2024

### Antes do Manycore...

- Processador multi-core:
  - 2 núcleos: barramento
  - 4 núcleos: barramento ou chave crossbar
  - 6 núcleos: barramento ou chave crossbar
  - 8 núcleos: barramento ou chave crossbar
  - 12 núcleos: barramento ou chave crossbar
  - 16 núcleos: barramento ou chave crossbar!?
- 48 núcleos: como interconectar!?

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

253

253

### Processador Manycore

• O problema está no fio para interconectar os núcleos!



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

254

# Processador Manycore

- O problema está no fio para interconectar os núcleos!
  - Problema 1: atenuação do sinal.
    - Perda dos dados.



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

255

255

# Processador Manycore

- O problema está no fio para interconectar os núcleos!
  - Problema 2: núcleos distantes não escutam sinal.
    - Colisão e perda de dados.



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

# Se o problema está no fio...

- Vamos eliminar a influência do fio!
  - Rede-em-Chip com fio, mas fio curto!
  - Há também:
    - · Rede-em-Chip sem fio!
    - Rede-em-Chip óptica!
    - Rede-em-Chip reconfigurável!

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

257

257

#### Do Barramento ao roteador

- Evolução da interconexão global para NoC.
  - a) fio longo dominado pela resistência,
  - b) adição de repetidores ou buffers,
  - c) repetidores se tornam latches,
  - d) latches evoluem para roteadores de NoC.

CIDON, I., KOLODNY, A., GINOSAR, R., The Elements of NoC, Tutorial (Slides), ACM/IEEE International Symposium on Networks-on-Chip (NOCS), San Diego, USA, 2009



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

# Rede-em-Chip

- Interconexões não escaláveis:
  - Barramento e Chave Crossbar.
    - Por que?



Qual a principal limitação do barramento?

Imaginem uma chave crossbar 99x99? É viável? Por que?

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

259

259

# Rede-em-Chip

- Principais características:
  - Composta por roteadores,
  - Possui pacotes de rede,
  - Trabalha com protocolo de roteamento,
  - · Possui diversas topologias,
  - Trabalha com Qualidade-de-Serviço (QoS),
  - É tolerante a falhas,
  - É escalável!

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

260

#### Redes-em-Chip



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

261

261

### Tipos de Buffers

- Buffers de entrada: As técnicas de arbitragem são relativamente simples, possui uma melhor relação de área e potência, além de proporcionar um melhor desempenho para a chave crossbar.
- Buffers de saída: Em função de N entradas conectadas a cada um dos buffers de saída, a chave crossbar precisa ser N vezes mais rápida. A adoção de buffers de saída não é a mais adequada para alto desempenho. No entanto, existem vantagens em se tratando da eliminação do bloqueio de pacotes que não receberam permissão de envio porque o primeiro pacote da fila ainda não teve liberação de uma determinada saída. Este problema é conhecido como head of the line blocking e pode acontecer nas soluções com buffers de entrada.



 Buffers de crosspoint: Cada ponto de conexão da chave crossbar possui um buffer. É utilizada a técnica de roteamento chamada de selfrouting. Neste caso, em cada crosspoint seria necessário além do buffer um decodificador para decisão de envio ou não do pacote. Esta solução aumenta o tamanho e a potência consumida da chave crossbar.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

#### Preocupações no projeto de NoC

- Deadlock: é a representação de uma dependência cíclica. Neste caso, um pacote não consegue progredir e fica restrito a um subconjunto de estados ou roteadores.
- Livelock: é a representação de uma contínua retransmissão do pacote sem atingir o nó destino. Comum em protocolos de roteamento.
- Starvation: é a representação da não alocação de um recurso devido a postergação indefinida de acesso ao mesmo. Comum em protocolos de arbitragem.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

263

263

### Redes-em-Chip (topologias)



FREITAS, H. C.; SANTOS, T. G. S.; NAVAUX, P. O. A. NOC Architecture Design for Multi-Cluster Chips, IEEE International Conference on Field Programmable Logic and Applications, FPL, Heidelberg, p. 53-58. 2008

- (a) Estrela
- (d) Torus
- (b) Árvore
- (e) Hipercubo
- (c) Mesh
- (f) Pipeline



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

264

# Redes-em-Chip (Classificações)



DE ROSE, C., NAVAUX, P. O. A., Arquiteturas Paralelas, [S.I.], Sagra Luzzatto, 2003

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

265

265

# Redes Dinâmicas (multi-nível)

Um único caminho entre entrada e saída faz com que o roteamento seja eficiente, podendo ser feito de forma descentralizada.



Freitas, Alves, Navaux, NoC e NUCA: Conceitos e Tendências para Arquiteturas de Processadores Many-Core, Escola Regional de Alto Desempenho (ERAD), Cap.3, 2009

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

266

# Redes Dinâmicas (multi-nível)





2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

267

# Redes Dinâmicas (multi-nível)





2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

268

267

# Redes Dinâmicas (multi-nível bloqueante)





2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

269

269

# Redes-em-Chip (Classificações)



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Adaptado de:

AHMADI, H., DENZEL, W. E., A Survey of Modern High-Performance Switching Technique, IEEE Journal on Selected Areas in Communications, v.7, n.7, p.1091-1103, September 1989.

ANDERSON, G. A., JENSEN, E. D., Computer Interconnection Structures: Taxonomy, Characteristics, and Examples, ACM Computing Surveys, v.7, n.4, p.197-213, December 1975.

DUATO, J., YALAMANCHILI, S., NI, L., Interconnection Networks, [S.I.], Morgan Kaufmann, 2002.

270

# Viabilidade das NoCs

|                         |                     |                                                                                                                                             | _    |
|-------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| Tipo de<br>Interconexão |                     | Prós (+) e Contras (-)                                                                                                                      |      |
| Barramento              |                     | O aumento do fio aumenta a resistência degradando o desempenho.                                                                             | -    |
| Chave Crossbar          | .io                 | O aumento do fio aumenta a resistência degradando o desempenho.                                                                             | -    |
| Network-on-Chip         | н                   | Os fios são ponto-a-ponto entre roteadores e o desempenho não degrada em função do aumento de nós.                                          | +    |
| Barramento              |                     | O árbitro é um gargalo à medida que o número de nós aumenta.                                                                                | -    |
| Chave Crossbar          | Árbitro             | O árbitro pode ser centralizado ou descentralizado e não é o fator<br>principal para degradação do desempenho em função do aumento dos nós. | +-   |
| Network-on-Chip         |                     | As decisões de roteamento são distribuídas e não representam um gargalo.                                                                    | +    |
| Barramento              | 0                   | A largura de banda é limitada e compartilhada por todos os nós.                                                                             | -    |
| Chave Crossbar          | Largura de<br>banda | Cada interconexão é independente e a largura de banda de comunicação por conexão não é afetada pelas demais.                                | +    |
| Network-on-Chip         | 1                   | A largura de banda não é afetada pelo aumento da rede.                                                                                      | +    |
| Barramento              | -et                 | Latência é afetada pelo fio.                                                                                                                | +    |
| Chave Crossbar          | Latência            | Latência é afetada pelo fio.                                                                                                                | +    |
| Network-on-Chip         | Ľ                   | Latência é afetada pelas contenções em roteadores                                                                                           | -    |
| Barramento              | dade                | Em sua maioria são compatíveis com qualquer IP ( <i>Intelectual Property</i> ) incluindo os softwares.                                      | +    |
| Chave Crossbar          | Compatibilidade     | Em sua maioria são compatíveis com qualquer IP (Intelectual Property) incluindo os softwares.                                               | +    |
| Network-on-Chip         | Com                 | São necessários adaptadores (wrappers) entre os IPs e os softwares precisam de sincronização em sistemas multi-core.                        | _    |
| Barramento              | dade                | Conceitos simples e bem compreendidos.                                                                                                      | +    |
| Chave Crossbar          | Complexidade        | Conceitos simples e bem compreendidos.                                                                                                      | +    |
| Network-on-Chip         | etuj                | le Computadores III - Engenharia e Ciência da Computação - PUC<br>Projetistas precisam de uma reeducação em função dos novos conceitos.     | Mina |

Adaptado de Bjerregaard, A Survey of Research and Practices of Network-on-Chip, ACM Computing Surveys 2006

271

2024

271

#### **Protocolos**

- Políticas e estratégias de transporte de dados em uma NoC é de responsabilidade dos protocolos.
- A definição do protocolo descreve as principais características de funcionamento da rede.
- Os protocolos precisam ser capazes de:
  - Garantir a entrega de dados.
  - Confiabilidade da rede.
  - A melhor rota.
  - Melhor desempenho, entre outros.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

### Research Manycore Chip



https://www.legitreviews.com/an-overview-of-intels-teraflops-research-chip 460

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

273

273

# Research Manycore Chip



https://www.youtube.com/watch?v=TAKGOUvtzpE https://www.youtube.com/watch?v=We\_PRtRfiNs

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

274

# Research Manycore Chip



https://www.youtube.com/watch?v=TAKGOUvtzpE https://www.youtube.com/watch?v=We PRtRfiNs

#### Por que a Intel estuda dois tipos de topologias?

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

275

275

### Processadores manycore - cache compartilhada



2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

276