Math 110BH Homework 7

Nathan Solomon

March 20, 2024

1

Prove that the intersection of two principal ideals in a UFD is a principal ideal.

2

Find an example of a non-free submodule $N \subset M$ of a free module M over some domain R.

3

Show that a submodule N of a module M generated by n elements over a PID also can be generated by n elements.

4

Prove that the group \mathbb{Z}^n cannot be generated by n-1 elements.

5

Find two non-free modules M and N over $\mathbb{Z}/6\mathbb{Z}$ such that $M \oplus N$ is free.

Let $M = \mathbb{Z}/2\mathbb{Z}$ and let $N = \mathbb{Z}/3\mathbb{Z}$.

6

Let R be a PID and let M be a torsion finitely generated R-module with the invariant factors $d_1|d_2|\cdots|d_k$. Set

$$I = \{a \in R \text{ such that } aM = 0\}.$$

Prove that $I = d_k R$.

7

Classify all abelian groups of order 300.

Any abelian group of order 300 is isomorphic to one of the four following groups:

$$(\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z}) \oplus (\mathbb{Z}/5\mathbb{Z}) \oplus (\mathbb{Z}/5\mathbb{Z})$$

$$(\mathbb{Z}/2^2\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z}) \oplus (\mathbb{Z}/5\mathbb{Z}) \oplus (\mathbb{Z}/5\mathbb{Z})$$

$$(\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z}) \oplus (\mathbb{Z}/5^2\mathbb{Z})$$

$$(\mathbb{Z}/2^2\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z}) \oplus (\mathbb{Z}/5^5\mathbb{Z}).$$

8

Find the rank of the subgroup in \mathbb{Z}^3 generated by (2, -2, 0), (0, 4, -4), and (5, 0, -5).

9

Determine the invariant factors of the factor group \mathbb{Z}^3/N , where N is generated by (3, -3, 3), (0, 6, 12), and (9, 0, -9).

10

Let M be a finitely generated torsion module over a PID R. Prove that M is cyclic if and only if every two elementary divisors of M are relatively prime.