1

.....

8. Logaritmi: definizioni e proprietà

8.1 Definizioni

Definizione. Dati $a,b \in \mathbb{R}^+$, con $a \neq 1$, si definisce **logaritmo in base** a **di** b l'esponente che deve essere applicato ad a per ottenere come risultato b. Formalmente

$$\log_a b = c \Leftrightarrow a^c = b, \operatorname{con} a, b \in \mathbb{R}^+, a \neq 1, \forall c \in \mathbb{R}$$

Il numero a si dice base del logaritmo, il numero b si dice argomento del logaritmo.

La scrittura $c = \log_a b$ si legge "c è il logaritmo in base a di b".

Il logaritmo in base dieci \log_{10} si dice anche **logaritmo decimale** e si indica solitamente con Log. Nell'utilizzo dei logaritmi si usa spesso come base il numero e, detto **numero di Nepero**, che è un numero trascendente [cioè un numero che non può essere ottenuto risolvendo un'equazione algebrica, è un numero irrazionale] il cui valore è 2,7182818284...; il **logaritmo naturale** o neperiano \log_e si indica più brevemente con il simbolo \ln .

Esempi.
$$\log_2 8 = 3$$
, infatti $2^3 = 8$; $\log_9 3 = \frac{1}{2}$, infatti $9^{\frac{1}{2}} = \sqrt{9} = 3$; $\log_x 1 = 0$ infatti $x^0 = 1$.

Rappresentazione semilogaritmica di un numero. Dato un numero in notazione esponenziale $x = m \cdot 10^k$, con $m \in [1,10)$ si ha:

$$Log(x) = Log(m \cdot 10^k) = Log(m) + k$$
 con $0 \le Log(m) < 1$

Il numero m è detto **mantissa** di x, il numero k è detto **caratteristica** di x.

Esempi

$$35.400 = 3.54 \cdot 10^4$$
 da cui $Log 35400 = Log (3.5 \cdot 10^4) = Log 10^4 + Log 3.5 = 4 + Log 3.54$
 $Log 0.000035 = Log (3.5 \cdot 10^{-5}) = -5 + Log 3.5$

8. 2 Proprietà dei logaritmi

$$\log_a 1 = 0 \qquad \qquad \log_a a = 1 \qquad \qquad a^{\log_a(b)} = b$$

Segno del logaritmo:

$$\log_a x > 0$$
 per $x > 1$ $\log_a x < 0$ per $0 < x < 1$

Il logaritmo trasforma prodotti in addizioni, quozienti in sottrazioni, potenze in prodotti:

$$\log_{a}(b_{1} \cdot b_{2}) = \log_{a}(|b_{1}|) + \log_{a}(|b_{2}|)$$

$$\log_{a}(\frac{b_{1}}{b_{2}}) = \log_{a}(|b_{1}|) - \log_{a}(|b_{2}|)$$

$$\log_{a}(b^{n}) = n \cdot \log_{a}(|b|)$$

$$\log_{a}(\sqrt[n]{b}) = \frac{1}{n} \cdot \log_{a}(|b|)$$

$$\log_{a}(\frac{b_{1}}{b_{2}}) = \log_{a}(|b|)$$

$$\log_{a}(\frac{b_{1}}{b_{2}}) = \log_{a}(|b|)$$

$$\log_{a}(\frac{b_{1}}{b_{2}}) = \log_{a}(|b|)$$

$$\log_{a}(\frac{b_{1}}{b_{2}}) = \log_{a}(|b|)$$

Cambiamento di base:

$$\log_a b = \frac{\log_c b}{\log_c a} \qquad \qquad \log_a b = \log_a c \cdot \log_c b$$

......www.matematicamente.it