#### Satz 43

Eine Sprache  $L\subseteq \Sigma^*$  ist genau dann durch einen regulären Ausdruck darstellbar, wenn sie regulär ist.

#### Beweis:

Sei also  $L = L(\gamma)$ .

Wir zeigen:  $\exists$  NFA N mit L = L(N) mit Hilfe struktureller Induktion.

**Induktionsanfang:** Falls  $\gamma=\emptyset$ ,  $\gamma=\epsilon$ , oder  $\gamma=a\in\Sigma$ , so folgt die Behauptung unmittelbar.

## Induktionsschritt:

 $\gamma = \alpha \beta$ :

nach Induktionsannahme  $\exists$  NFA  $N_{\alpha}$  und  $N_{\beta}$  mit

$$L(N_\alpha) = L(\alpha)$$
 und  $L(N_\beta) = L(\beta)$  .



# Induktionsschritt (Forts.):

$$\gamma = (\alpha \mid \beta)$$
:

nach Induktionsannahme  $\exists$  NFA  $N_{\alpha}$  und  $N_{\beta}$  mit

$$L(N_{\alpha}) = L(\alpha)$$
 und  $L(N_{\beta}) = L(\beta)$  .



# Induktionsschritt (Forts.):

 $\gamma = (\alpha)^*$  : nach Induktionsannahme  $\exists$  NFA  $N_\alpha$  mit

$$L(N_{\alpha}) = L(\alpha)$$
.



"⇐—":

Sei  $M=(Q,\Sigma,\delta,q_0,F)$  ein deterministischer endlicher Automat. Wir zeigen: es gibt einen regulären Ausdruck  $\gamma$  mit  $L(M)=L(\gamma)$ .

Sei  $Q = \{q_0, \dots, q_n\}$ . Wir setzen

 $R^k_{ij} := \{w \in \Sigma^*; ext{ die Eingabe } w ext{ überführt den im Zustand}$   $q_i$  gestarteten Automaten in den Zustand  $q_j$ , wobei alle zwischendurch durchlaufenen Zustände einen Index kleiner gleich k haben $\}$ 

**Behauptung:** Für alle  $i,j\in\{0,\ldots,n\}$  und alle  $k\in\{-1,0,1,\ldots,n\}$  gilt: Es gibt einen regulären Ausdruck  $\alpha_{ij}^k$  mit  $L(\alpha_{ij}^k)=R_{ij}^k$ .

## Bew.:

Induktion über k: k = -1: Hier gilt

$$R_{ij}^{-1} := \begin{cases} \{a \in \Sigma; \ \delta(q_i, a) = q_j\}, & \text{falls } i \neq j \\ \{a \in \Sigma; \ \delta(q_i, a) = q_j\} \cup \{\epsilon\}, & \text{falls } i = j \end{cases}$$

 $R_{ij}^{-1}$  ist also endlich und lässt sich daher durch einen regulären Ausdruck  $\alpha_{ij}^{-1}$ beschreiben.

### Bew.:

Induktion über k:

 $k \Rightarrow k+1$ : Hier gilt

$$R_{ij}^{k+1} = R_{ij}^k \cup R_{i\,k+1}^k (R_{k+1\,k+1}^k)^* R_{k+1\,j}^k$$
  
$$\alpha_{ij}^{k+1} = (\alpha_{ij}^k \mid \alpha_{i\,k+1}^k (\alpha_{k+1\,k+1}^k)^* \alpha_{k+1\,j}^k)$$

Somit gilt:  $L(M) = L((\alpha_{0 f_1}^n \mid \alpha_{0 f_2}^n \mid \cdots \mid \alpha_{0 f_r}^n))$ , wobei  $f_1, \ldots, f_r$  die Indizes der Endzustände seien.

□(Satz 43)

## 3.8 Abschlusseigenschaften regulärer Sprachen

#### Satz 44

Seien  $R_1, R_2 \subseteq \Sigma^*$  reguläre Sprachen. Dann sind auch

$$R_1R_2, R_1 \cup R_2, R_1^*, \Sigma^* \setminus R_1 (=: \bar{R_1}), R_1 \cap R_2$$

reguläre Sprachen.

#### Beweis:

 $R_1R_2, R_1 \cup R_2, R_1^*$  klar.

 $\Sigma^* \setminus R_1$ : Sei  $R_1 = L(A)$ , A DFA,  $A = (Q, \Sigma, \delta, q_0, F)$ ,

 $\delta$  vollständig.

Betrachte  $A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$ .

Dann ist  $L(A') = \Sigma^* \setminus L(A)$ 

 $R_1 \cap R_2$  : De Morgan