III sem B.Tech (IT/CCE)

ICT 2154 Digital Systems &

ICT 2171 Digital systems and computer organisation

- Topics covered
- MINTERM, MAXTERM
- Writing Boolean expressions for the given truth table
- Design of a combinational circuit for the given problem
- Realization of a logic circuit using Universal gates

MINTERMS & MAXTERMS

- MIN and MAX are means to represent the inputs through logical AND /OR operations
- Consider a 3-variable Boolean function, F(a,b,c)
- Prepare a table with 6 columns
- In first column, write all possible binary combinations, possible with three input variables, one below the other. Ex:000,001...., ... 111
- In 2nd column, write decimal equivalent of all the corresponding input combinations.

Rough

	INPUTS A B C	MINTERMS Product	Decimal notation of minterms	Maxterms SuM	Decimal notation of maxminterms
0	000-	ラ 見る こ-1.1.1.	mo	A+B+C	Mo
1	001	ABC -	\mathcal{M}_{ι}	A+B+C 0+0+000	M^{-1}
2	0 1 0	7BZ	$m_{\underline{\imath}}$	A+B+C	Mz
3	011	ЯВ C	m ₃	A+B+C	M ₃
4	100	ABC	m 4	A+B+C	M 4
5	101	ABC	m5	A+B+C	M5
6	110	ABC	me	A+B+C	Mc
7	1 1 1	ABC	\mathcal{M}_{\pm}	A+B+c	Mz

Minterms (Standard products) and Maxterms (standard sums)

Row No.	A B C Minterms		Maxterms	
0	0 0 0	$A'B'C'=m_0$	$A + B + C = M_0$	
1	0 0 1	$A'B'C = m_1$	$A + B + C' = M_1$	
2	0.1.0	$A'BC' = m_2$	$A + B' + C = M_2$	
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$	
4	100	$AB'C' = m_4$	$A' + B + C = M_4$	
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$	
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$	
7	1 1 1	$ABC = m_{\tau}$	$A' + B' + C' = M_2$	

Write the Boolean function for f(x, y, z) given below

Boolean function can be represented as (i) sum of minterms and (ii) product of maxterms.

Sum of Minterms and product of maxterms expressions

X	У	z	f	f
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

Sum of minterms: Canonical form

$$F(x, y, z) = \underbrace{x'y'z'}_{= m_0} + \underbrace{x'y'}_{= m_1} z + \underbrace{xy'}_{= m_5} z' + \underbrace{xy'}_{= m_5} z' + \underbrace{xyz'}_{= m_6} z' + \underbrace{xyz'}_{= m_5} z'$$

Sum of product(simplified): Standard forms

$$F(x, y, z) = y + zyz = y + zz$$

Product of maxterms: Canonical form

$$F(x, y, z) = \underbrace{(x+y'+z).(x+y'+z').(x'+y'+z')}_{= M_2. M_3. M_7}$$

= $\Pi (2,3,7)$

Product of sum: Standard forms

$$F(x, y, z) = (x+y')(y'+z')$$

Rough

Relationship between sum of minterms and product of maxterms

• Sum of minterms : Canonical form

•
$$F(x, y, z) = x'y'z' + x'y'z + xy'z' + xy'z' + xyz'$$

$$= m_0 + m_1 + m_4 + m_5 + m_6$$

$$= \sum_{m} (0, 1, 4, 5, 6)$$

$$F'(x, y, z) = \sum_{m} (2, 3, 7) = m2 + m3 + m7$$

Taking complement on both sides and applying DeMorgan's theorem

Express the Boolean function F(a,b,c)=ab'+c' using Sum of minterms and Product of maxterms

Two methods

- 1. Identify the missing term and include them in the expression using the postulates : x+0=x, x.1=x, x+x'=1, x.x'=0
- 2. Write the truth table from the given expression and then write sum of minterms and product of maxterms

$F(a,b,c) = \underline{ab'+c'}$ using method 1

$$= ab \cdot 1 + c \cdot 1$$

$$= ab \cdot (c+c) + c \cdot (a+a)$$

$$= abc + abc + ac + ac$$

$$+ ac (b+b) + ac (b+b)$$

$$= m_{4} + m_{5} + m_{1} + m_{0}$$

$$= \sum_{m} (0,2+,5) \qquad \Rightarrow f(a,b,c) = \sum_{m} (1,3,7)$$

$$F(a,b,c) = \sum_{m} (1,3,7) \Rightarrow f(a,b,c) = \sum_{m} (1,3,7)$$

F(a,b,c)= ab'+c' using method 2

→ Q=1

$$f(a,b,0 = \Sigma m(0, 2, 4,5,6)$$

= $\Lambda m(1, 3,7)$

Design a combinational circuit that takes 3-bit input and generates an output high whenever the input is a prime number.

Draw the circuit using basic logic gates

F(A,B,C)

Truth table

(2)
$$F = Em()$$
 or $fm()$ | 0000

(3) $F = Em()$ or $fm()$ | 0001

(4) Draw the ext

$$4 100

5 100

7 + 11

$$F(A,B,C) = Em(2,3,5,7)

= AB + AC$$$$

Rough

Design a combinational circuit that takes 2-bit input and outputs the square of the input

Rough

Drawing the circuit using only universal gates

$$A + \overline{A}B = A + B$$

2. F(x,y,z) = xz + y'z+x'yz using only NAND gates

$$= xz + z(\overline{y} + \overline{x}y) = zz + z(\overline{y} + \overline{x})$$

$$= zz + \overline{z} + \overline{z}$$

$$= z(z + \overline{y} + \overline{z}) = z(1 + \overline{y}) = z$$

$$F(x,y,z) = xz + xy$$

$$F = \overline{zz} \cdot \overline{xy}$$

$$F = \overline{zz} \cdot \overline{xy}$$

$$F = \overline{zz} \cdot \overline{xy}$$

3. Realize the simplified $F(x,y,z) = \Sigma$ (1,2,3,4,5,7) using only NAND gates

•

4. F(a,b,c)=a+bc using only NAND gates

Drawing the circuits using only NOR gates

• 1.
$$F(x,y,z) = (x+y)(y+z)$$

$$\overline{F} = (\overline{X+Y}) + (\overline{Y+Z})$$

$$\overline{F} = (\overline{X+Y}) + (\overline{Y+Z})$$

MOT using NOR
$$F = A + B$$

$$= A + A = A$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

3. $f(x,y,z) = x \cdot (y+z)$ $\Rightarrow f = \overline{x} + \overline{(y+z)}$

4. f(a, b, c, d) = a.b.(c+d) $= \overline{a} + \overline{b} + \overline{(c+d)}$ $= 1 \quad 2 \quad 3$

Any questions