

SEGUNDA LISTA DE ESTATÍSTICA I

MEDIDAS DE TENDÊNCIA CENTRAL PARA DADOS NÃO-AGRUPADOS: MÉDIA ARITMÉTICA, MODA E MEDIANA

Exercício 1: Explique como o valor da mediana é determinado para um conjunto de dados que contenha um número ímpar de observações e para um conjunto de dados que contenha um número de par de observações.

Exercício 2: Explique sucitamente o significado de um valor extremo (*outlier*). Entre a média aritmética ou a mediana, qual representa uma melhor tendência central para um conjunto de dados que contenha um valor extremo? Ilustre com um exemplo.

Exercício 3: Utilizando um exemplo, mostre como um valor extremo pode afetar o valor da média aritmética.

Exercício 4: Qual das três medidas de tendência central (média aritmética, mediana e moda) pode assumir mais do que um valor para um conjunto de dados? Dê um exemplo de um conjunto de dados para o qual essa medida resumida assuma mais de um valor.

Exercício 5: Explique as relações entre a média aritmética, a mediana e a moda para histogramas simétricos e assimétricos. Ilustre essas relações com gráficos.

Exercício 6: Preços de carros têm uma distribuição que é assimétrica à direita, com valores extremos na cauda direita. Qual das medidas de tendência central é a melhor para resumir esse conjunto de dados? Explique.

Exercício 7: O conjunto de dados a seguir pertence a uma população.

_	_	_	_	_			_
5	_7	7	1 0	I _Q	16	10	7
5	,	_			10	10	,

Calcule a média aritmética, a mediana e a moda.

Exercício 8: O conjunto de dados a seguir pertence a uma amostra.

14	18	-10	8	8	-16

Calcule a média aritmética, a mediana e a moda.

Exercício 9: Os dados a seguir correspondem ao número de roubos de automóveis ocorridos em uma cidade durante os 12 últimos dias.

6	3	7	11	4	3	8	7	2	6	9	15
_	_				_	_			-	_	_

Encontre a média aritmética, a mediana e a moda.

Exercício 10: Os dados a seguir correspondem ao salário (em milhares de dólares) de seis atletas de baseball do time do New York Yankees na temporada de 2002.

_					
750	10.429	1/1600	620	1 Q 500	720
750	10.423	14.600	630	8.500	/20

Calcule a média aritmética e a mediana. Esses dados têm uma moda? Por que sim ou por que não?

Exercício 11: Os dados a seguir fornecem o número de jornais diários e de domingo, publicados em cada um dos 13 estados do oeste dos EUA, durante o ano de 2000. A ordem dos dados apresentados corresponde a: AK, AZ, CA, CO, HI, ID, MT, NV, NM, OR, UT, WA e WY.

Ī	7	16	92	29	6	12	11	8	18	19	6	24	9
													i

- a. Calcule a média aritmética e a mediana para esses dados.
- b. Esses dados contêm um valor extremo? Em caso positivo, retire o valor extremo e recalcule a média aritmética e a mediana. Qual dessas duas medidas resumidas muda em maior proporção quando você retira o valor extremo?
- c. Qual a melhor medida resumida para esses dados: a média aritmética ou a mediana? Explique.

Exercício 12: Uma propriedade de média aritmética corresponde ao fato de que, caso conheçamos as médias aritméticas e os tamanhos de amostras de dois (ou mais) conjuntos de dados, podemos calcular a média aritmética combinada de ambos (ou de todos) os conjuntos de dados. A média aritmética combinada **MAC** para dois conjuntos de dados é calculada por meio da fórmula (1).

$$MAC = \overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$
 (1)

Onde: n1 e n2 correspondem aos tamanhos de amostras relativos a dois conjuntos de dados \bar{x}_1 e \bar{x}_2 correspondem às médias aritméticas dos dois conjuntos de dados,

respectivamente. Suponha que uma amostra contendo 10 livros de estatística fornecesse uma média de preço correspondente a R\$ 95,00, e uma amostra contendo 8 livros de matemática fornecesse uma média aritmética de preço correspondente a R\$ 104,00. Encontre a média aritmética combinada (Dica: para este exemplo: n1 = 10, n2 = 8, \bar{x}_1 = 95 e \bar{x}_2 = 104).

Exercício 13: Vinte alunos de administração e 18 alunos de economia vão jogar boliche. Cada aluno joga uma partida. O placar anuncia que a média aritmética do resultado para 18 alunos de economia é igual a 144, e a média aritmética do resultado para todo o grupo de 38 alunos corresponde a 150. Encontre a média aritmética do resultado correspondente aos 20 alunos de administração.

Exercício 14: Para quaisquer dados, a soma de todos os valores é igual ao produto entre o tamanho da amostra e a média aritmética. Ou seja, $\sum_{i=1}^n x_i = n\overline{x}$. Suponha que a média da quantia em dinheiro, gasta em compras por 10 pessoas durante uma determinada semana, seja R\$ 85,50. Encontre a quantia total em dinheiro, gasta em compras, por essas 10 pessoas.

Exercício 15: A média aritmética da renda em 2002 para cinco famílias foi igual a R\$ 69.520. Qual foi a renda total em 2002 dessas cinco famílias?

Exercício 16: A média aritmética da idade de seis pessoas corresponde a 46 anos. As idades correspondentes a cinco dessas seis pessoas são iguais a 57, 39, 44, 51 e 37 anos. Encontre a idade da sexta pessoa.

MEDIDAS DE DISPERSÃO PARA DADOS NÃO-AGRUPADOS: AMPLITUDE, DESVIO-PADRÃO E VARIÂNCIA

Exercício 17: A amplitude, como uma medida de dispersão, tem a desvantagem de ser influenciada por valores extremos (*outliers*). Ilustre isso com um exemplo.

Exercício 18: O desvio-padrão pode ser negativo? Explique.

Exercício 19: Quando o valor do desvio-padrão, para um conjunto de dados, é igual a zero? Dê um exemplo. Calcule o desvio padrão para o exemplo e mostre que seu valor é igual a zero.

Exercício 20: O conjunto de dados a seguir apresentado pertence a uma população.

|--|

Calcule a amplitude, a variância e o desvio-padrão.

Exercício 21: O conjunto de dados a seguir apresentado pertence a uma amostra.

14	18	-10	8	8	-16

Calcule a amplitude, a variância e o desvio-padrão.

Exercício 22: Os dados a seguir fornecem os preços de sete livros didáticos, aleatoriamente selecionados em uma livraria de uma universidade.

00	E7	104	70	26	121	01
69	37	104	/5	20	121	0.1

- a. Encontre a média aritmética para esses dados. Calcule os desvios dos valores de dados em relação à média aritmética. A soma desses desvios é igual a zero?
- b. Calcule a amplitude, a variância e o desvio-padrão.

Exercício 23: Os dados a seguir correspondem aos valores de mercado, em 28 de fevereiro de 2002, de oito empresas de aeronaves e defesa, incluídas no S&P500 de 2002. A ordem dos valores corresponde a: General Dynamics, Boeing, United Technologies, Northrop Grumman, Lockheed Martin, Goodrich, Raytheon e Rockewell Collins. Os valores de Mercado são fornecidos em bilhões de dólares.

102	267	2//	1 1 1	2/7	2.0	1110	12
18,3	36,7	34.4	17.1	74.7	3.0	14.()	4.5
_0,0	30,7	37,7	± - /-	<u>~ ',,,</u>	0,0	, -	7,5

Encontre amplitude, a variância e o desvio-padrão.

MÉDIA ARITMÉTICA, VARIÂNCIA E DESVIO-PADRÃO PARA DADOS AGRUPADOS

Exercício 24: Utilizando as fórmulas para populações, calcule a média aritmética, a variância e o desvio-padrão para os dados agrupados fornecidos a seguir.

х	f
2 – 4	5
5 – 7	9
8 – 10	14
11 – 13	7
14 – 16	5

Exercício 25: Utilizando as fórmulas para amostras, calcule a média aritmética, a variância e o desvio-padrão para os dados agrupados fornecidos a seguir.

х	f
$0 \le x < 4$	17
$4 \le x < 8$	23
8 ≤ x < 12	15
12 ≤ x < 16	11
16 ≤ x < 20	8
20 ≤ x < 24	6

Exercício 26: A tabela a seguir fornece informações sobre as quantias (em reais) correspondentes a contas de energia elétrica, em agosto de 2002, para uma amostra de 50 famílias.

Valor da conta de energia elétrica (em reais)	Número de Famílias
0 ≤ x < 20	5
20 ≤ x < 40	16
40 ≤ x < 60	11
60 ≤ x < 80	10
80 ≤ x < 100	8

Encontre a média aritmética, a variância e o desvio-padrão. Fornece uma interpretação sucinta dos valores na coluna com rótulo m*f em sua tabela de cálculos. O que

representa
$$\sum_{i=1}^{n} m_i f_i$$
?

TEOREMA DE CHEBYSHEV

Exercício 27: Uma grande população tem média aritmética de 230 e desvio-padrão de 41. Utilizando o teorema de Chebyshev, encontre a percentagem mínima de observações que se posicionam nos intervalos $\mu \pm 2\sigma$, $\mu \pm 2,5\sigma$ e $\mu \pm 3,0\sigma$.

Exercício 28: As vendas brutas de 2002, para todas as empresas de uma grande cidade, tem média aritmética de R\$ 2,3 milhões e desvio-padrão de R\$ 0,6 milhão. Utilizando o teorema de Chebyshev, encontre a percentagem mínima de empresas da cidade que tiveram vendas brutas em 2002 de:

- a. R\$ 1,1 milhão R\$ 3,5 milhões.
- b. R\$ 0,8 milhão R\$ 3,8 milhões.
- c. R\$ 0,5 milhão R\$ 4,1 milhões.

Exercício 29: Segundo a CardWeb.com, a média aritmética das dívidas em cartões de crédito para domicílios em 2001 foi de R\$ 8.367 e desvio-padrão de R\$ 2.400 . Para estes dados, pede-se:

- a. Utilizando o teorema de Chebyshev, encontre o intervalo que contém dívidas correntes em cartões de crédito para todos os domicílios, que se encontram entre: (i) R\$ 3.567 e R\$ 13.167; (ii) R\$ 2.367 e R\$ 14.367.
- b. Utilizando o teorema de Chebyshev, encontre o intervalo que contém dívidas em cartões de crédito de pelo menos 89% de todos os domicílios.

QUARTIS E PERCENTIS

Exercício 30: Os dados a seguir fornecem os números de teclados de computador montados na Twentieth Century Electronics Company para uma amostra de 25 dias.

45	52	48	41	56	46	44	42	48	53
51	53	51	48	46	43	52	50	54	47
44	47	50	49	52					

- a. Calcule os valores dos três quartis e a amplitude interquartil.
- b. Determine o valor (aproximado) do 53º percentil.
- c. Encontre a classificação de percentil de 50.

BOX-PLOT

Exercício 31: Construa um *box-plot* com os dados do Exercício 30. Comente a assimetria desses dados.

Exercício 32: Prepare um *box-plot* com os dados fornecidos a seguir.

11	8	26	31	62	19	7	3	14	75
33	30	42	15	18	23	29	13	16	6

Este conjunto de dados contém algum valor extremo?