Vector **1 向量**有向量的地方,就有几何

几何——指向真理之乡,创造哲学之魂。

Geometry will draw the soul toward truth and create the spirit of philosophy.

——柏拉图 (Plato) | 古希腊哲学家 | 424/423 ~ 348/347 BC

- ◀ matplotlib.pyplot.quiver() 绘制箭头图
- ◀ numpy.add() 向量/矩阵加法
- ▼ numpy.array([[4,3]]) 构造行向量,注意双重方括号
- numpy.array([[4,3]]).T 行向量转置得到列向量, 注意双重方括号
- numpy.array([[4], [3]]) 构造列向量, 注意双重方括号
- ◀ numpy.array([4, 3])[:, None] 构造列向量;按照[:, None] 形式广播数组; None 代表 numpy.newaxis, 增加新维度
- ◀ numpy.array([4, 3])[:, numpy.newaxis] 构造列向量
- ◀ numpy.array([4, 3])[None, :] 构造行向量;按照 [None, :] 形式广播数组; None 代表 numpy.newaxis, 增加新维度
- ◀ numpy.array([4, 3])[numpy.newaxis, :] 构造行向量
- numpy.array([4,3]) 构造一维数组,严格来说不是行向量
- numpy.array([4,3]).reshape((1, -1)) 构造行向量
- numpy.array([4,3]).reshape((-1, 1)) 构造列向量
- ◀ numpy.array([4,3], ndmin=2) 构造行向量
- ◀ numpy.linalg.norm() 默认计算 L2 范数
- ◀ numpy.ones() 生成全1向量/矩阵
- numpy.r_[] 将一系列的数组合并; 'r' 设定结果以行向量 (默认) 展示, 比如 numpy.r [numpy.array([1,2]), 0, 0, numpy.array([4,5])] 默认产生行向量
- ◀ numpy.r_['c', [4,3]] 构造列向量
- ◀ numpy.subtract() 向量/矩阵减法
- ◀ numpy.zeros() 生成全 0 向量/矩阵
- ▼ zip(*) 用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。*代表解包,返回的每一个都是元祖类型,而并非是原来的数据类型

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

1. 向量:有箭头的线段,一行或一列元素

向量的内涵极为丰富,本节主要从几何和数据两个视角来看向量。

几何视角

如图 1 所示,平面上,向量是**有方向的线段** (directed line segment)。线段的长度代表向量的大 小 (the length of the line segment represents the magnitude of the vector)。箭头代表向量的方向 (the direction of the arrowhead indicates the direction of the vector).

本书中,向量符号采用加粗、斜体、小写字母,比如a;矩阵符号则采用加粗、斜体、大写 字母, 比如A。

图 1 中,向量 α 的起点 (initial point) 是 O,向量的终点 (terminal point) 是 A。如果向量的起点 和终点相同,向量则为零**向**量 (zero vector),可以表示为 $\mathbf{0}$ 。

图 1. 向量起点、终点、大小和方向

图 2 给出的是几种向量的类型。

和起点无关的向量叫做自由向量 (free vector),如图 2 (a)。和起点有关的向量被称作,固定向 量 (fixed vector),如图 2 (b) 和 (c)。称方向上沿着某一个特定直线的向量为**滑动向**量 (sliding vector), 如图2(d)。

没有特别说明时,本书的向量一般是固定向量,且起点一般都在原点,除非特别说明。比 如,用三角形法求 a 和 a 两个向量之和,我们将向量 b 的起点平移至的向量 a 终点处,a + b 的结 果为向量a的起点与向量b的终点相连构成的向量。

图 2. 几种向量类型

坐标点

从解析几何角度看,向量和坐标直接相关。

如图 3 (a) 所示,一般情况下直角坐标系中任意一点坐标可以通过**多元组** (tuple) 来表达,比如图 3 (a) 所示平面直角坐标系上 A 点坐标 (4, 3),B 点坐标 (\neg 3, 4)。

图 3 (b) 所示,以原点作为向量起点,A 点对应向量 a 终点,B 点对应向量 b 终点。

图 3. 平面坐标和向量关系

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

向量也可以是两点连线构造的有方向线段,如图 4 所示。图中向量 a 以 P 为起点、A 为终点,长度是 A 和 P 两点距离。这个向量也可以记做 \overrightarrow{PA} ,本书中很少采用这种向量记法。

图 4. 连接两点的有方向线段

继续丰富向量几何内涵

向量的几何视角还可以进一步扩展。

几何上,切线指的是一条刚好触碰到曲线上某一点的直线;曲线的法线是垂直于曲线上一点的切线的直线。将切线、法线两个概念进入向量中可以得到**切向量** (tangent vector) 和**法向量** (normal vector) 这两个概念。图 5 所示为直线和曲线某一点处的切向量和法向量。

图 5. 切向量和法向量

自然界的风、水流、电磁场,在空间的每一个点上对应的物理量既有强度也有方向。将这些 既有大小又有方向的场抽象出来就是**向量场** (vector field)。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 6 所示为某个二元函数 $f(x_1, x_2)$ 对应的曲面。把图 6 比作一座山峰的话,在坡面上放置一个小球,松手瞬间小球运动的方向在 x_1x_2 平面上的投影就是梯度下降方向,也叫做下山方向;而它的反方向就是**梯度向量** (gradient vector) 方向,也叫上山方向。

图 6. 三维曲面上定义梯度向量

本书中,我们会使用向量场来描述函数在一系列排列整齐点的梯度向量。图 7 所示为在 x_1x_2 平面上,二元函数 $f(x_1, x_2)$ 在不同点处的平面等高线和梯度向量。仔细观察,可以发现任意一点处梯度向量垂直于该点处等高线。

图 7. 函数的向量场

数据视角

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

数据科学和机器学习都是"数据驱动"。没有数据,任何的算法都玩不转,因此数据是各种算法的绝对核心。"Garbage in, garbage out",优质数据本身就极具价值,甚至不需要怎样高深模型或算法。

从数据角度来看,矩阵就是表格!

简单来说,矩阵是由若干行或若干列元素排列得到的数组 (array)。矩阵内的元素可以是实数、虚数、符号,甚至是代数式。向量可以看做是一维数组,而矩阵是二维数组。

向量要么一行多列、要么一列多行,因此向量可以看做是特殊的矩阵——**一维矩阵** (one-dimensional matrix)。

一行多列的向量是**行向量** (row vector),一列多行的向量叫**列向量** (column vector)。

白话讲,行向量将n个元素排成一行,结构为 $1 \times n$ (代表1 行、n 列),如图8 (a)。下式行向量a 为1 行4 列:

$$\boldsymbol{a} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} \tag{1}$$

▲ 注意,在 Numpy 中,行向量也是二维,不同于一维数组。下一节将详细介绍。

图 8. 行向量和列向量

列向量将n个元素排成一列,结构为 $n \times 1$ (代表n行,1列),如图8(b)。

举个例子,下式行向量 b 为 4 行 1 列:

$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \tag{2}$$

▲注意,不加说明时,本书中向量一般指的是列向量。

矩阵与向量

前文提到,表格数据就是矩阵。而有数据的地方,就有向量!

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

如图 9 所示,数据矩阵 X 的每一行是一个行向量,代表一个观察值; X 的每一列为一个列向量,代表某个特征上的所有样本数据。

图 9. 观察数据的两个角度

本书使用频率最高的数据是鸢尾花卉数据集。数据集的全称为**安德森鸢尾花卉数据集** (Anderson's Iris data set),是植物学家**埃德加·安德森** (Edgar Anderson) 在加拿大魁北克加斯帕半岛上的采集的 150 个鸢尾花样本数据。

Index	Sepal length	Sepal width	Petal length	Petal width	Species
macx	X_1	X_2	X_3	X_4	С
1	5.1	3.5	1.4	0.2	
2	4.9	3	1.4	0.2	
3	4.7	3.2	1.3	0.2	Setosa
					C_1
49	5.3	3.7	1.5	0.2	CI
50	5	3.3	1.4	0.2	
51	7	3.2	4.7	1.4	
52	6.4	3.2	4.5	1.5	
53	6.9	3.1	4.9	1.5	Versicolor
99	5.1	2.5	3	1.1	C_2
100	5.7	2.8	4.1	1.3	
101	6.3	3.3	6	2.5	
102	5.8	2.7	5.1	1.9	
103	7.1	3	5.9	2.1	Virginica
•••					C_3
149	6.2	3.4	5.4	2.3	<i>C</i> ₃
150	5.9	3	5.1	1.8	

图 10. 鸢尾花数据,数值数据单位为厘米 (cm)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

这些数据都属于鸢尾属下的三个亚属,分别是山鸢尾 (setosa)、变色鸢尾 (versicolor) 和维吉尼亚鸢尾 (virginica)。每一类鸢尾花收集了 50 条样本记录,共计 150 条。

四个特征被用作样本的定量分析,它们分别是**花萼长度** (sepal length)、**花萼宽度** (sepal width)、**花瓣长度** (petal length) 和**花瓣宽度** (petal width)。

图 10 所示为鸢尾花数据集部分数据。数据整体可以看做是一个矩阵 X, X 列向量为鸢尾花一个特征的样本数据,X 的行向量代表一朵鸢尾花不同特征的数值。

再举个例子,图11所示为9只股票在2020年股价数据。

图 11 所示的数据也是一个矩阵。从向量的角度,数据的每一行是一个行向量,代表一天的收盘价格。数据的每一列是列向量,代表一支股票在一年内的走势。

再次强调,不要被向量、矩阵这些名词吓到。矩阵就是一个数据表格,而这个表格可以划分 成若干行、若干列,这就对应本章要着重介绍的行向量、列向量。

本书第4、5、6三章将介绍矩阵相关运算,居于核心的运算当属矩阵乘法。

Date	TSLA	TSM	COST	NVDA	FB	AMZN	AAPL	NFLX	GOOGL
2-Jan-2020	86.05	58.26	281.10	239.51	209.78	1898.01	74.33	329.81	1368.68
3-Jan-2020	88.60	56.34	281.33	235.68	208.67	1874.97	73.61	325.90	1361.52
6-Jan-2020	90.31	55.69	281.41	236.67	212.60	1902.88	74.20	335.83	1397.81
7-Jan-2020	93.81	56.60	280.97	239.53	213.06	1906.86	73.85	330.75	1395.11
8-Jan-2020	98.43	57.01	284.19	239.98	215.22	1891.97	75.04	339.26	1405.04
9-Jan-2020	96.27	57.48	288.75	242.62	218.30	1901.05	76.63	335.66	1419.79
10-Jan-2020	95.63	57.12	286.65	243.92	218.06	1883.16	76.80	329.05	1428.96
13-Jan-2020	104.97	58.28	289.18	251.56	221.91	1891.30	78.44	338.92	1440.03
14-Jan-2020	107.58	58.54	289.07	246.87	219.06	1869.44	77.39	338.69	1430.59
15-Jan-2020	103.70	56.66	290.10	245.17	221.15	1862.02	77.05	339.07	1439.20
16-Jan-2020	102.70	57.01	292.23	248.52	221.77	1877.94	78.02	338.62	1450.16
17-Jan-2020	102.10	56.85	293.82	248.87	222.14	1864.72	78.88	339.67	1479.52
30-Dec-2020	694.78	108.49	373.71	525.83	271.87	3285.85	133.52	524.59	1736.25
31-Dec-2020	705.67	108.63	376.04	522.20	273.16	3256.93	132.49	540.73	1752.64

图 11. 股票收盘股价数据

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

1.2 行向量:一行多列,一个样本数据点

如上一节所述,行向量是一个 $1 \times n$ 的矩阵,即 1 行、n 列。如图 12 所示,行向量**转置** (transpose) 得到列向量,反之亦然。转置运算符号为正体上标 $^{\mathrm{T}}$ 。

图 12. 行向量的转置是列向量

表 I 所示为利用 Numpy 构造行向量几种常见方法。可以用 len(a) 计算向量的长度,即向量中元素个数。

/N 77	ケチキュ
代码	注意事项
a = numpy.array([4,3])	严格地说,这种方法产生的并不是行向量;运行 a indim 发现
	a 只有一个维度;因此,转置 numpy.array([4,3]).T 得到
	的仍然是一维数组,只不过默认展示方式为行向量。
a = numpy.array([[4,3]])	│ 运行 a.ndim 发现 a 有二个维度;这个行向量转置 a.T 可以获
	得列向量; a.T 求 a 转置,等价于 a.transpose()。
	, , , , , , , , , , , , , , , , , , , ,
a = numpy.array([4,3], ndmin=2)	ndmin=2 设定数据有两个维度;转置a.T可以获得列向量。
	11位11111 2 及足数加升的十年及,农量 0.11 与从外内外内里。
2 = numnu n [1n1 [4 21]	
a = numpy.r_['r', [4,3]]	numpy.r_[] 将一系列的数组合并; 'r' 设定结果以行向量
	(默认) 展示,比如 numpy.r_[numpy.array([1,2]),
	0, 0, numpy.array([4,5])] 默认产生行向量。
	7 7 11 2 11 11 11 11 11 11 11 11 11 11 11 1
a = numpy.array([4,3]).reshape((1,-1))	reshape() 按某种形式重新排列数据; -1 自动获取数组长度
	n _o
(54 21) 527	
a = numpy.array([4, 3])[None, :]	按照 [None , :] 形式广播数组; None 代表
	numpy.newaxis,增加新维度。
a = numpy.array([4,	等同干上一例。
3])[numpy.newaxis, :]	(11) T (10)
1,	
	l

表 1. 构造行向量

行向量、矩阵

前文提到,本书常用 X 表达数据矩阵,X 的每一行代表一个数据点。为了方便区分,构造 X 的一系列行向量序号采用"上标加括号"方式,比如 $x^{(1)}$ 代表 X 的第一行行向量。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

如图 13 所示,矩阵 X 可以写作:

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}^{(1)} \\ \boldsymbol{x}^{(2)} \\ \vdots \\ \boldsymbol{x}^{(6)} \end{bmatrix}$$
 (3)

▲ 再次强调,数据分析偏爱用行向量表达坐标点。

图 13. 矩阵由一系列行向量构造

以鸢尾花为例

图 14 所示为鸢尾花数据 X 对应的热图。不考虑最后一列分类标签,X 每一行代表一朵鸢尾花样本花萼长度、花萼宽度、花瓣长度和花瓣宽度测量结果。比如, $x^{(5)}$ 代表第 5 个样本数据点,也就是编号为 5 的鸢尾花样本。

图 14. 鸢尾花数据,行向量代表样本数据点

数据云、投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

取出鸢尾花前两个特征——花萼长度、花萼宽度——对应的数据。把它们以坐标的形式画在平面直角坐标系 (记做 \mathbb{R}^2) 中,我们便得到平面散点图。如图 15 所示,这个图好比"样本数据云"。

图 15 中数据点 (5.0, 2.0) 可以写成行向量 [5.0, 2.0]。

从几何视角来看, [5.0, 2.0] 在横轴的正交投影 (orthogonal projection) 结果为 5.0, 代表它的横坐标为 5.0。(5.0, 2.0) 在纵轴的正交投影结果为 2.0, 代表其纵坐标为 2.0。

正交投影很好理解,即原来数据点和投影点连线垂直于投影点所在直线或平面。打个比方, 头顶正上方太阳光将自己身体的影子投影在地面,阳光光线垂直于地面。不特别强调的话,本书 的投影均指正交投影。

数据点 (5.0, 2.0) 是序号为 61 的样本点,对应的行向量可以写成 $x^{(61)}$ 。

从集合视角来看,(5.0, 2.0) 属于 \mathbb{R}^2 ,即 $(5.0, 2.0) \in \mathbb{R}^2$ 。图 15 中整团数据云都属于 \mathbb{R}^2 。

图 15. 鸢尾花前两个特征数据散点图

再者,如图 15 所示,从向量角度来看,行向量 [5.0, 2.0] 在横轴上投影的向量为 [5.0, 0],在纵轴上投影的向量为 [0, 2.0]。而 [5.0, 0] 和 [0, 2.0] 两个向量合成就是 [5.0, 2.0]。

再进一步,将整团数据云全部正交投影在横轴,得到图 16。图 16 中×代表的数据实际上就是 鸢尾花数据集第一列花萼长度数据点。图 16 中横轴相当于一个一维空间,即一条数轴 R。

我们也可以把整团数据云全部投影在纵轴,得到图 17。图中的×是鸢尾花数据第二列花萼宽度数据。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 16. 二维散点正交投影到横轴

图 17. 二维散点正交投影到纵轴

你可能会问,是否可以将图16中所有点投影在一条斜线上?

答案是肯定的。

如图 18 所示,鸢尾花数据投影到一条斜线上,这条斜线通过原点和横轴夹角 15°。观察图 18,我们已经发现投影点似乎是 x_1 和 x_2 的某种组合。也就是说, x_1 和 x_2 分别贡献 v_1x_1 和 v_2x_2 ,两种成分的组合 $v_1x_1 + v_2x_2$ 就是投影点坐标。

→ 大家可能会问,怎么计算图中投影点坐标?这种几何变换有何用途?这是本书第9、10章要回答的问题。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 18. 二维散点正交投影到一条斜线

三维散点图、成对特征散点图

取出鸢尾花前三个特征 (花萼长度、花萼宽度、花瓣长度) 对应的数据,并在 \mathbb{R}^3 绘制散点图,得到图 19。这些原点 $\boldsymbol{0}$ 和这些点的连线,都代表行向量。图 15 相当于图 19 在水平面 (浅蓝色背景) 正交投影结果。

图 19. 鸢尾花前三个特征数据散点图

回顾本系列丛书《数学要素》一册介绍过的成对特征散点图,具体如图 20 所示。成对特征散点图不但可以可视化鸢尾花四个特征 (花萼长度、花萼宽度、花瓣长度和花瓣宽度),通过颜色还可以展示鸢尾花三个类别 (山鸢尾、变色鸢尾、维吉尼亚鸢尾)。图 20 中的二维散点图相当于四维空间散点在不同平面上的投影结果。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 20. 鸢尾花数据成对特征散点图,考虑分类标签,图片来自《数学要素》

1.3 列向量:一列多行,一个特征

列向量是一个 $n \times 1$ 的矩阵,即n行、1列。列向量转置得到行向量。

数据矩阵 X 的每一列代表一个特征,因此列向量又常称作特征向量 (feature vector)。

▲ 注意,此特征向量不同于特征值分解 (eigen decomposition) 中的特征向量 (eigenvector)。

为了方便区分,构造 X 的列向量序号采用下标表达,比如 x_1 。如图 21 所示,矩阵 X 看做是 4 个等长列向量整齐排列得到:

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{x}_3 & \boldsymbol{x}_4 \end{bmatrix} \tag{4}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

数据分析偏爱列向量 (x_i) 表达特征,它对应概率统计的某个随机变量 (X_i) ,或者代数中的变量 (x_i) 。

图 21. 矩阵由一排列向量构造

表2总结 Numpy 构造列向量几种常见方法。

表 2. 构造列向量

代码	注意事项
<pre>a = numpy.array([[4], [3]])</pre>	运行 a.ndim 发现 a 有二个维度; numpy.array([[4], [3]]).T 获得行向量
a = numpy.r_['c', [4,3]]	numpy.r_[] 将一系列的数组合并; 'c' 设定结果以列向 量展示, 比如 np.r_['c', numpy.array([1,2]), 0, 0, numpy.array([4,5])] 默认产生行向量
<pre>a = numpy.array([4,3]).reshape((-1, 1))</pre>	reshape() 按某种形式重新排列数据; -1 自动获取数组长 度 n
a = numpy.array([4, 3])[:, None]	按照 [:, None] 形式广播数组; None 代表 numpy.newaxis, 增加新维度
<pre>a = numpy.array([4, 3])[:, numpy.newaxis]</pre>	等同于上一例

图 22 所示鸢尾花数据每一列代表鸢尾花的一个特征,比如花萼长度 (第 1 列,列向量 x_1)、花萼宽度 (第 2 列,列向量 x_2)、花瓣长度 (第 3 列,列向量 x_3) 和花瓣宽度 (第 4 列,列向量 x_4)。

从统计视角来看,我们可以计算样本数据各个特征的均值 (μ_j) ,可计算不同特征上样本数据的均方差 (σ_j) 。有必要的话,我们还可以在图中给出 $\mu_j \pm \sigma_j$ 、 $\mu_j \pm 2\sigma_j$ 对应的位置。图 22 中四副子图中的曲线代表各个特征样本数据的概率密度估计 (probability density estimation) 曲线。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 22. 鸢尾花数据, 列向量代表数据特征

大家可能会问, x_1 、 x_2 、 x_3 、 x_4 这四个向量到底意味着什么?有没有什么办法可视化这四个列向量?怎么量化它们之间的关系?答案会在本书第12章揭晓。

特殊列向量

全零列向量 (zero column vector) $\mathbf{0}$, 是指每个元素均为 0 的列向量:

$$\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}^{\mathrm{T}} \tag{5}$$

代码 numpy.zeros((4,1)) 可以生成 $4 \times 1 \pm 0$ 列向量。我们会用 θ 代表多维直角坐标系的原点。

全1列向量 (all-ones column vector) 1, 是指每个元素均为1的列向量:

$$\boldsymbol{I} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^{\mathrm{T}} \tag{6}$$

代码 numpy.ones((4,1)) 可以生成 4×1全1列向量。

再次强调,一般情况,本书默认向量为列向量,除非具体说明。

全1列向量1在矩阵乘法中有特殊的地位,本书第5、22章将分别从矩阵乘法和统计两个角度讲解。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

1.4 向量长度:模,欧氏距离,L²范数

向量长度 (length of a vector) 又叫做向量模 (vector norm)、欧几里得距离 (Euclidean distance)、欧几里得范数 (Euclidean norm) 或 L^2 范数 (L2-norm)。

定义向量a:

$$\boldsymbol{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}^{\mathrm{T}} \tag{7}$$

向量a的模为:

$$\|\boldsymbol{a}\| = \|\boldsymbol{a}\|_{2} = \sqrt{a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2}} = \left(\sum_{i=1}^{n} a_{i}^{2}\right)^{\frac{1}{2}}$$
 (8)

lack A 注意, $\|a\|_2$ 下角标 2,代表 L^2 范数。没有特殊说明, $\|a\|$ 默认代表 L^2 范数。

 \bigcirc L^2 范数是 L^p 范数的一种,本书第3章还要介绍其他各种范数。

二维向量的模

特别地,对于如下二维向量:

$$\boldsymbol{a} = \begin{bmatrix} a_1 & a_2 \end{bmatrix}^{\mathrm{T}} \tag{9}$$

二维向量 a 的 L^2 范数为:

$$\|\boldsymbol{a}\| = \sqrt{a_1^2 + a_2^2} \tag{10}$$

图 23 给出向量 a 和 b, 它们的模可以这样计算得到:

$$\|\boldsymbol{a}\| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

 $\|\boldsymbol{b}\| = \sqrt{(-3)^2 + 4^2} = \sqrt{25} = 5$ (11)

图 23. 向量 a 和 b 的模

Bk4 Ch1 01.py 绘制图23所示向量。matplotlib.pyplot.quiver() 绘制箭头图。

二维向量 a 和横轴夹角可以通过反正切求解:

$$\theta_a = \arctan\left(\frac{a_2}{a_1}\right) \tag{12}$$

上述角度可以视作"绝对夹角"。

本书下一章会介绍如何用向量内积求两个向量之间的相对夹角。

函数 numpy.linalg.norm() 默认计算 L^2 范数; 也可以用 numpy.sqrt(np.sum(a**2)) 计算向量 a 的 L^2 范数。Bk4_Ch1_02.py 计算图 23 中向量 a 和 b 模。

值得一提的是,和 ||a|| 等长的二维向量,如果起点重合,它们的终点位于同一个圆上,如图 25 (a) 所示。看到这里大家是否想到了本系列丛书《数学要素》第7章讲过的"等距线"。

如图 24 所示,向量 x 的模长度 ||x|| 取得不同数值时,我们可以得到一系列同心圆:

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2} = c \tag{13}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 24. 起点为 0、相等 L^2 范数向量终点位于一系列同心圆上

Bk4 Ch1 03.py 绘制图 24。

图 25. 等 L² 范数向量

三维向量的模

类似地,对于三维向量:

$$\boldsymbol{a} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}^{\mathrm{T}} \tag{14}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

三维向量 a 的 L^2 范数为:

$$\|\boldsymbol{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2} \tag{15}$$

图 25 (b) 所示为起点相同的等长三维向量终点位于同一正圆球面上。

单位向量

长度为 1 的向量被称作单位向量 (unit vector)。

非 0 向量 a 除以自身的模得到 a 方向上的单位向量 (unit vector in the direction of vector a):

$$\hat{a} = \frac{a}{\|a\|} \tag{16}$$

 \hat{a} 读作 "vector a hat"。a/numpy.linalg.norm(a) 可以计算向量 a 方向上的单位向量。

图 26 (a) 所示平面直角坐标系,起点位于原点的单位向量 $\mathbf{x} = [x_1, x_2]^T$ 终点位于**单位**圆 (unit circle) 上,对应的解析式为:

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2} = 1 \implies x_1^2 + x_2^2 = 1$$
 (17)

这无数个单位向量中,有两个单位向量最为特殊—— $e_1(i)$ 和 $e_2(j)$ 。如图 26 (b) 所示平面直角 坐标系中, e_1 和 e_2 分别为沿着 x_1 (水平) 和 x_2 (竖直) 方向的单位向量:

$$e_1 = i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (18)

显然, e_1 和 e_2 相互垂直。

图 26. 单位向量

图 23 给出向量 a 和 b 可以用 e_1 和 e_2 合成:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\mathbf{a} = 4\mathbf{e}_1 + 3\mathbf{e}_2$$

$$\mathbf{b} = -3\mathbf{e}_1 + 4\mathbf{e}_2$$
(19)

(19) 用到的便是向量加减法,这是下一节要介绍的内容。

图 23 这个平面就是用 e_1 和 e_2 张成的。白话说, e_1 和 e_2 好比经纬度,可以定位地表任意一点。比如, \mathbb{R}^2 平面上的任意一点都可以写成:

$$\boldsymbol{x} = x_1 \boldsymbol{e}_1 + x_2 \boldsymbol{e}_2 \tag{20}$$

从集合运算角度, $x \in \mathbb{R}^2$ 。

→本书第7章将讲解"张成 (span)"、向量空间等概念。

三维直角坐标系

三维直角坐标系中, $e_1(i)$ 、 $e_2(j)$ 和 $e_3(k)$ 分别为沿着 x_1 、 x_2 和 x_3 单位向量:

$$\mathbf{e}_1 = \mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 = \mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (21)

 $e_1(i)$ 、 $e_2(j)$ 和 $e_3(k)$ 两两相互垂直。

图 27. 三维空间单位向量

同理,图 27 这个三维空间是用 e_1 、 e_2 、 e_3 张成的。白话说, e_1 、 e_2 、 e_3 相当于经度、维度、海拔,定位能力从地表扩展到整个地球空间。

ℝ3空间任意一点可以写成:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{x} = x_1 \boldsymbol{e}_1 + x_2 \boldsymbol{e}_2 + x_3 \boldsymbol{e}_3 \tag{22}$$

而上式中的 (x_1, x_2, x_3) 代表坐标点。

此外,大家可能已经注意到, e_1 可以用不同的形式表达,比如:

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 (23)

上式中几个 e_1 等价,相当于在不同维度空间中的 e_1 。这些 e_1 之间的关系是,从低维到高维或从高维到低维投影。

→本书将在第8、9、10三章深入探讨投影这一重要线性代数工具。

1.5 加减法:对应位置元素分别相加减

从数据角度看,两个等长列向量相加,结果为对应位置元素分别相加,得到长度相同的列向量,比如下例:

$$\boldsymbol{a} + \boldsymbol{b} = \begin{bmatrix} -2\\5 \end{bmatrix} + \begin{bmatrix} 5\\-1 \end{bmatrix} = \begin{bmatrix} -2+5\\5-1 \end{bmatrix} = \begin{bmatrix} 3\\4 \end{bmatrix}$$
 (24)

两个等长列向量相减,则是对应元素分别相减,得到等长列向量,比如下例:

$$\boldsymbol{a} - \boldsymbol{b} = \begin{bmatrix} -2\\5 \end{bmatrix} - \begin{bmatrix} 5\\-1 \end{bmatrix} = \begin{bmatrix} -2-5\\5-(-1) \end{bmatrix} = \begin{bmatrix} -7\\6 \end{bmatrix}$$
 (25)

该原理也适用于等长行向量加减法。

图 28. 数据角度看向量加法

几何视角

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

从几何角度看,**向量加法** (vector addition) 结果可以用**平行四边形法则** (parallelogram method) 或**三角形法则** (triangle method) 获得,具体如图 29 所示。

图 29. 几何角度看向量加法

向量减法 (vector subtraction),向量 a 减去向量 b,可以将向量 b 换向得到-b;然后再计算向量-b与向量 a 的和,即:

$$\boldsymbol{a} - \boldsymbol{b} = \boldsymbol{a} + (-\boldsymbol{b}) = \begin{bmatrix} -2\\5 \end{bmatrix} - \begin{bmatrix} 5\\-1 \end{bmatrix} = \begin{bmatrix} -7\\6 \end{bmatrix}$$
 (26)

图 30. 几何角度向量减法

如图 30 所示, a-b 和 b-a 结果相反:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{b} - \boldsymbol{a} = -(\boldsymbol{a} - \boldsymbol{b}) = \begin{bmatrix} 5 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$$
 (27)

两个向量相同,当且仅当两者大小方向均相同。如果两个向量的大小相同但是方向相反,两 者互为反向量。两个向量方向相同或相反,则称向量平行。

 $lack \triangle$ 注意,向量a减去向量b,结果a-b对应向量箭头指向a终点;相反,向量b减去向量a得到b-a指向b终点。

请大家注意以下向量加减法性质:

$$a+b=b+a$$

$$(a+b)+c=a+(b+c)$$

$$a+(-a)=0$$
(28)

Bk4 Ch1 04.py 计算本节向量加减法示例。

1.6 标量乘法: 向量缩放

向量标量乘法 (scalar multiplication of vectors) 指的是标量和向量每个元素分别相乘,结果仍为向量。

图 31. 向量标量乘法

从几何角度,标量乘法将向量按标量比例缩放,向量方向同向或反向,如图 31 所示。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

Bk4 Ch1 05.py 完成图 31 中运算。

请大家注意以下标量乘法性质:

$$(t+k)a = ta + ka$$

$$t(a+b) = ta + tb$$

$$t(ka) = tka$$

$$1a = a$$

$$-1a = -a$$

$$0a = 0$$
(29)

其中, t 和 k 为标量。

最后用四幅图来总结本章核心内容。学完本章,希望大家看到任何向量,可以试着从几何、 数据两个角度来思考问题。

从几何角度,向量是既有长度又有方向的量。从数据角度,表格数据就是矩阵。而矩阵的每 一行向量是一个样本点,每一列向量代表一个特征。

此外,提到向量模、 L^2 范数、欧几里得距离,希望大家能够联想到正圆、正圆球。本书第 3 章还要介绍更多范数以及它们对应的几何图像。

用到向量加减法时,建议用三角形法则。处理多个向量加减,三角形法则更方便。

图 32. 总结本章重要内容的四副图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com