Who Am I?

Paulo Dichone

Software, Cloud, AI Engineer and Instructor

What Is This Course About?

- Knowledge Graphs & RAG -
 - Fundamentals of Knowledge Graphs
 - Implement Knowledge Graphs to Improve RAG Systems
 - Optimization and Best Practices

Who Is This Course For

Course Prerequisites

- 1. Know Programming (highly *preferred... at least the basics*)
 - a. There will be Python code
 - b. Basics of LangChain, LLM, Al
- 2. This is <u>not</u> a programming course
- 3. Willingness to learn:)

Course Structure

Theory (Fundamental Concepts) Mixture of both Hands-on

Development Environment setup

- Python
- VS Code (or any other code editor)
- OpenAl API Account and API Key

Set up OpenAl API Account

** Please note that you will need an API key to use OpenAI services, and there may be some costs associated with using the API. However, these costs should be minimal.

OpenAl API - Dev Environment Setup

Python (Win, Mac, Linux)

https://kinsta.com/knowledgebase/install-python/

Knowledge Graphs Deep Dive

- What are they?
- Why (motivation)?
- Advantages
- Key concepts
- Structure
- Components
- Use cases
- Advantages & Challenges

Knowledge Graphs

A KG is a **structured** representation of **facts** and **relationships** within a specific **domain...**

Key concepts

Key concepts

Attributes:

- Birth data
- Nationality
- profession

Entity

Edge/Relationship

Entity

Key concepts

Attributes:

- Birth data
- Nationality
- profession

Triples

- Subject (Albert)
- Predicate (studied)
- Object (Physics)

Structure

- Graph-based Structure: nodes, edges, to model real-world knowledge
- Ontology: schema that defines the types of entities, relationships and attributes
- Taxonomy: Hierarchical classification of entities in the graph

Structure

- Nodes: represent entities or instances
- Edges: relationships between entities
- Labels: tags assigned to nodes and edges to define their types
- Properties: additional information or attribute about nodes and edges

KG construction

- Manual curation: manual input of data into graph
- Automated Extraction: using algos and NLP to extract information from unstructured data sources (txt, docs, DBs...)
- **Crowdsourcing:** input from a large number of sources to populate and refine the graph.

KG applications

- Search engines: enhance search capabilities
- Recommendation systems: provide personalized recommendations
- Data Integration: combine data from various sources into one framework
- Al and Machine Learning: enhance machine understanding

KG Advantages

- Enhanced data interoperability: good for integrating heterogeneous data sources
- Improved data quality and Consistency: ensures accuracy (well-defined ontologies and taxonomies)
- Facilitate Advanced Querying: allows complex queries
- **Supports Inference and Reasoning:** machines can infer new knowledge from existing data easily

KG challenges

- Data quality: accuracy and reliability of the data is challenging
- Scalability: managing and processing large-scale KGs efficiently
- Complexity: developing and maintaining complex ontologies and taxonomies
- Data Privacy: securing sensitive data while utilizing KGs

Conclusion

- KGs: a powerful tool for structuring and reasoning about complex data
- Scalability: enhance capabilities of AI systems (improve search and recommendation engines...)
- **Data integration:** facilitate data integration and analysis across various domains

Knowledge Graphs Deep Dive neo4j

- Building a Knowledge Graph
 - Introduction to neo4j
 - Relationships
 - Entities
- hands -on

Building a Knowledge Graph

Technologies and Languages

RDF (Resource Description Framework)

SPARQL (SPARQL Protocol and RDF Query Language)

OWL (Web Ontology Language)

Neo4j

(a:Person)-[:STUDIED]->(p:Physics)

(a:Person)-[:WON]->(n:NobelPrize)

(a:Person)-[:DIED_IN]->(u:USA)

Neo4j graph database

Neo4j

A leading graph database management system that provides an ACID-compliant transactional backend for applications

Key concepts:

- Nodes
- Relationships
- Properties
- Labels
- **Cypher -** the query language for interacting with the graph data

Summary

- Neo4j set up
 - Account
 - Create a graph database
 - Neo4j browser
 - Visual KGs
- Create a KG programmatically
- Querying the KG

Knowledge Graphs & RAG

Graph retrieval-augmented generation (GraphRAG)

A powerful addition to traditional vector search retrieval methods

Knowledge Graph & RAG - Steps

Knowledge Graph & RAG - Overview

GraphRAG Hand-on

Build a Knowledge Graph and a Hybrid Retrieval for RAG

Graph Retriever - Flow

Hands-on - The Roman Empire RAG System

Enhance the accuracy of RAG application with Knowledge Graphs

- Unstructured data retrieval (vector store, keyword search, vector search)
- Graph Retrieval (more involved, but offers more freedom)

Hands-on - The Roman Empire RAG System

Enhance the accuracy of RAG application with Knowledge Graphs

Congratulations!

You made it to the end!

• Next steps...

Course Summary

- Knowledge Graphs for RAG (GraphRAG)
 - Fundamentals of Knowledge Graphs
 - Key characteristics
 - How they work
 - Deep dive into Building Knowledge Graphs
 - Built first simple KG
 - Basics Cypher Query Language
 - The Neo4J Graph database
 - GraphRAG Hands on
 - Using framework to extract, embed unstructured text
 - Full on real-world use case scenarios

Wrap up - Where to Go From Here?

- Keep learning
 - Extend the projects we worked on in this course
 - Implement your own knowledge Graphs and RAG
- Challenge yourself to keep learning new skills!

Thank you!