Generative Adversarial Networks (GANs)

What if we just want to sample?

Idea: don't explicitly model density, and instead just sample to generate new instances.

Problem: want to sample from complex distribution – can't do this directly!

Solution: sample from something simple (noise), learn a transformation to the training distribution.

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

Generator starts from noise to try to create an imitation of the data.

Discriminator looks at both real data and fake data created by the generator.

Discriminator

Generator

Fake data

Discriminator looks at both real data and fake data created by the generator.

Discriminator

Generator

Fake data

Discriminator tries to predict what's real and what's fake.

Discriminator tries to predict what's real and what's fake.

Generator

Real data

Fake data

Discriminator tries to predict what's real and what's fake.

Generator

Fake data

Discriminator tries to predict what's real and what's fake.

Discriminator tries to predict what's real and what's fake.

Discriminator

$$P(real) = 1$$

Generator

Fake data

Discriminator tries to predict what's real and what's fake.

Discriminator tries to predict what's real and what's fake.

Discriminator tries to predict what's real and what's fake.

Discriminator tries to identify real data from fakes created by the generator. **Generator** tries to create imitations of data to trick the discriminator.

Training GANs

Discriminator tries to identify real data from fakes created by the generator. **Generator** tries to create imitations of data to trick the discriminator.

Train GAN jointly via minimax game:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right]$$

Discriminator wants to maximize objective s.t. D(x) close to 1, D(G(z)) close to 0. **Generator** wants to minimize objective s.t. D(G(z)) close to 1.

Why GANs?

A. Courville, 6S191 2018.

Why GANs?

A. Courville, 6S191 2018.

Generating new data with GANs

After training, use generator network to create **new data** that's never been seen before.

GANs: Recent Advances

Progressive growing of GANs (NVIDIA)

Progressive growing of GANs: results

Style-based generator: results

Style-based transfer: results

Karras et al., Arxiv 2018.

CycleGAN: domain transformation

CycleGAN learns transformations across domains with unpaired data.

Deep Generative Modeling: Summary

Autoencoders and Variational Autoencoders (VAEs) Learn lower-dimensional latent space and sample to generate input reconstructions

References:

https://goo.gl/ZuBkGx9