Assignment 4: PLINK, PCA, and Clustering

Habiba Tarek Ramadan Ali "ID: 21010445"

2025-03-17

Part 1: Principal Component Analysis Using PLINK

QC on Qatari dataset using PLINK

Total number of removed variants is 27324

Test	Threshold	Variants Removed
HWE	0.01	1076
MAF	0.1	13739
GENO	0.001	12509

```
hablba@hablba_Vostro-3500:-5 plink1.9 --file qatari --maf 0.1 --geno 0.001 --hwe 0.01 --make-bed --ou t pruned@patari
PLINK V1.9.0-b.7.7 64-bit (22 Oct 2024) cog-genomics.org/plink/1.9/
(C) 2005-2024 Shaun Purcell, Christopher Chang GNU General Public License v3
Logging to pruned@patari.log.
Options in effect:
    --file qatari
    --geno 0.001
    --hwe 0.01
    --make-bed
    --out pruned@patari
7661 MB RAM detected; reserving 3830 MB for main workspace.
    .ped scan complete (for binary autoconversion).
Performing single-pass .bed write (67735 variants, 156 people).
    --file: pruned@patari-temporary.bed + pruned@patari-temporary.bim + pruned@patari-temporary.fam written.
67735 variants loaded from .bim file.
156 people (49 males, 107 females) loaded from .fam.
Using 1 thread (no multithreaded calculations invoked).
Before main variant filters, 156 founders and 0 nonfounders present.
calculating allele frequencies... done.
Warning: 1388 het. haploid genotypes present (see pruned@patari.hh ); many commands treat these as missing.
Total genotyping rate is 0.998816.
12509 variants removed due to missing genotype data (--geno).
Warning: --hwe observation counts vary by more than 10%, due to the X chromosome. You may want to use a more stringent (i.e. less extreme) --hwe p-value threshold for X chromosome variants: male samples are ignored there, so the same degree of HHE violation corresponds to a less-extreme p-value than it does elsewhere in the genome.
    --hwe: 1076 variants removed due to Minor allele threshold(s)
    (--naf/--nax-maf/--max-mac/--max-mac).
40411 variants and 156 people pass filters and QC.
Note: No phenotypes present.
```

PCA

```
habiba@habiba-Vostro-3500:~$ plink1.9 --bfile prunedQatari --pca --out qatari_pca
PLINK v1.9.0-b.7.7 64-bit (22 Oct 2024) cog-genomics.org/plink/1.9/
(C) 2005-2024 Shaun Purcell, Christopher Chang GNU General Public License v3
Logging to qatari_pca.log.
Options in effect:
    --bfile prunedQatari
    --out qatari_pca
    --pca

7661 MB RAM detected; reserving 3830 MB for main workspace.
40411 variants loaded from .bim file.
156 people (49 males, 107 females) loaded from .fam.
Using up to 8 threads (change this with --threads).
Before main variant filters, 156 founders and 0 nonfounders present.
Calculating allele frequencies... done.
Warning: 1032 het. haploid genotypes present (see qatari_pca.hh ); many commands treat these as missing.
Total genotyping rate is exactly 1.
40411 variants and 156 people pass filters and QC.
Note: No phenotypes present.
Excluding 1061 variants on non-autosomes from relationship matrix calc.
Relationship matrix calculation complete.
    --pca: Results saved to qatari_pca.eigenval and qatari_pca.eigenvec .
habiba@habiba.Vastro.3500.xe
```

```
# Load PCA Eigenvectors (Remove first two columns)
qatari_eigenVec <- read.table("/home/habiba/qatari_pca.eigenvec", header=
# Keep only columns from 3rd column
qatari_eigenVec <- qatari_eigenVec[, 3:ncol(qatari_eigenVec)]

# Rename first few PCs (adjust as needed)
colnames(qatari_eigenVec)[1:3] <- c("PC1", "PC2", "PC3")

# Load PCA Eigenvalues
qatari_eigenVal <- read.table("/home/habiba/qatari_pca.eigenval", header=
colnames(qatari_eigenVal) <- c("Eigenvalue")

# Print results
# print(qatari_eigenVec)
# print(qatari_eigenVec)
# print(qatari_eigenVal)</pre>
```

```
# Load necessary libraries
library(ggplot2)

# Create scatter plots for PC1 vs PC2, PC1 vs PC3, and PC2 vs PC3
ggplot(qatari_eigenVec, aes(x=PC1, y=PC2)) +
   geom_point(aes()) + # Color points based on PC3
   theme_minimal() +
   labs(title="PCA Plot: PC1 vs PC2", x="Principal Component 1", y="Principal")
```



```
ggplot(qatari_eigenVec, aes(x=PC1, y=PC3)) +
   geom_point(aes()) +
   theme_minimal() +
   labs(title="PCA Plot: PC1 vs PC3", x="Principal Component 1", y="Principal Component 1")
```



```
ggplot(qatari_eigenVec, aes(x=PC2, y=PC3)) +
   geom_point(aes()) +
   theme_minimal() +
   labs(title="PCA Plot: PC2 vs PC3", x="Principal Component 2", y="Principal Component 2
```

PCA Plot: PC2 vs PC3


```
library(ggplot2)
# Compute explained variance
total variance <- sum(qatari eigenVal$Eigenvalue)
qatari_eigenVal$ExplainedVariance <- (qatari_eigenVal$Eigenvalue / total_</pre>
# Add PC numbers for plotting
qatari_eigenVal$PC <- seq_len(nrow(qatari_eigenVal)) # Ensure sequence s</pre>
# Scree plot for the first 20 principal components
ggplot(qatari eigenVal[1:20, ], aes(x = factor(PC), y = ExplainedVariance
  geom_line(aes(group = 1), color = "red", size = 1) + # Add a line for
  geom_point(color = "red", size = 2) + # Highlight points
 labs(title = "Scree Plot", x = "Principal Component", y = "Explained Va
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-as
## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning
## generated.
```



```
#install.packages("scatterplot3d", INSTALL_opts = c('--no-lock'))
#install.packages("cluster")
#install.packages("ggplot2")

library(cluster) # For Dunn's index
library(ggplot2) # 2D visualization
library(scatterplot3d) # 3D visualization
```

3D Scatter Plot of First Three Principal Components

Part 2: Clustering in R

Task 2.1: Perform Clustering

```
# Load necessary libraries
library(fpc)  # Cluster evaluation metrics
library(gridExtra)  # Arrange multiple plots
library(grid)  # Work with graphical objects
reducedVectors <- qatari_eigenVec[, 1:3]</pre>
```

```
# Function to compute Dunn's Index
# The ratio between the min inter-cluster distance to the max intra clus
# The higher the Dunn index the better the clustering
compute dunn index <- function(data, clusters) {</pre>
 dist matrix <- dist(data)</pre>
  dunn index <- cluster.stats(dist matrix, clusters)$dunn</pre>
 return(dunn index)
 #return(dunn(dist(data), kmeans_result$clusters)) msh sh3'ala
}
plot_2d_clusters <- function(data, clusters, k) {</pre>
  data Cluster <- as.factor(clusters) # Convert cluster labels to factor
 plot pc1 pc2 <- ggplot(data, aes(x = PC1, y = PC2, color = Cluster)) +
    geom_point(size = 2) +
    labs(title = paste("K =", k, "- PC1 vs PC2"), x = "PC1", y = "PC2") +
    theme_minimal()
 plot_pc1_pc3 <- ggplot(data, aes(x = PC1, y = PC3, color = Cluster)) +</pre>
    geom_point(size = 2) +
    labs(title = paste("K =", k, "- PC1 vs PC3"), x = "PC1", y = "PC3") +
    theme_minimal()
 plot_pc2_pc3 <- ggplot(data, aes(x = PC2, y = PC3, color = Cluster)) +
    geom_point(size = 2) +
    labs(title = paste("K =", k, "- PC2 vs PC3"), x = "PC2", y = "PC3") +
```

```
theme_minimal()
  # Arrange the three plots side by side
    return(grid.arrange(plot_pc1_pc2, plot_pc1_pc3, plot_pc2_pc3, ncol =
  }
# Define cluster sizes
cluster sizes \leftarrow c(2, 4, 6, 8, 10)
# Initialize storage for results
kmeans results <- list()</pre>
dunn values <- data.frame(Clusters = integer(), Dunn = numeric())</pre>
plots 3d <- list()</pre>
plots 2d <- list()</pre>
# Run clustering and generate plots
for (k in cluster sizes) {
  set.seed(123) #ensures reproducibility
  # Perform K-means clustering
  kmeans_result <- kmeans(reducedVectors, centers = k, nstart = 25) #run</pre>
  kmeans_results[[as.character(k)]] <- kmeans_result #store the results</pre>
  clusters <- kmeans result$cluster # assignment of each point</pre>
  # Compute Dunn's Index
  dunn_index <- compute_dunn_index(reducedVectors, clusters)</pre>
  dunn values [k/2, ] \leftarrow c(k, dunn index)
}
# Function to generate a 3D scatter plot
for (k in cluster_sizes) {
  clusters <- kmeans_results[[as.character(k)]]$cluster</pre>
  cluster_colors <- rainbow(length(unique(clusters)))[clusters]</pre>
  scatterplot3d(reducedVectors$PC1, reducedVectors$PC2, reducedVectors$PC
                 color = cluster_colors, pch = 19,
```

```
main = paste("3D Scatter Plot (K=", k, ")"),
xlab = "PC1", ylab = "PC2", zlab = "PC3")
}
```

3D Scatter Plot (K= 2)

3D Scatter Plot (K= 4)

3D Scatter Plot (K= 6)

3D Scatter Plot (K= 8)

3D Scatter Plot (K= 10)

Dunn's Index vs. Number of Clusters

Task 2.2: Visualize Clusters

```
# Display 2D plots for each cluster size
for (k in cluster_sizes) {
   plots_2d[[as.character(k)]] <- plot_2d_clusters(qatari_eigenVec,kmeans_)
}</pre>
```

Cluster

1

2

-0.1

0.1

PC2

0.2

Cluster

1

2

3

0.2

Cluster

