What Is Claimed Is:

1. A compound of the formula:

5

10

15

wherein X is one of the group consisting of C = O and NH and Y is the other of that group;

R₁ is selected from the group consisting of H, CH₃ and (CH₃)₂;

 R_2 is selected from the group consisting of CH(R)CH₂Z, CH₂CH(R)Z and CH(R)(CH₂)nCH₂Z, R being selected from the group consisting of H, CH, CH₃, CHCH, CH₂CF₃ and (CH₃)₂, Z being selected from the group consisting of H, halogens, N₃, NCS and OH and n being selected from the group consisting of 0, 1 and 2; and

 R_3 is selected from the group consisting of \underline{n} - $C_5H_{10}Z'$, \underline{n} - $C_6H_{12}Z'$, \underline{n} - $C_7H_{14}Z'$ and 1',1'- $C(CH_3)_2(CH_2)_5CH_2Z'$, Z' being selected from the group consisting of H, halogens, CN, N_3 , NCS and OH.

2. The compound of claim 1 wherein $R_1 = H$, $R_2 = CH(R)CH_2Z$, $R = CH_3$ and Z = F, and $R_3 = n-C_5H_{10}Z'$, Z' = H.

25

20

- 3. The compound of claim 1 wherein $R_1 = H$, $R_2 = CH(R)CH_2Z$, $R = CH_3$ and Z = I, and $R_3 = n C_5H_{10}Z'$, Z' = H.
- 4. The compound of claim 1 wherein $R_1 = H$, $R_2 = CH(R)CH_2Z$, $R_3O = CH_3$ and $Z = N_3$, and $R_3 = n-C_5H_{10}Z'$, Z' = H.

- 5. The compound of claim 1 wherein $R_1 = H$, $R_2 = CH(R)CH_2Z$, R = H and Z = CI, and $R_3 = n \cdot C_5H_{10}Z'$, Z' = H.
- 6. The compound of claim 1 wherein $R_1 = H$, $R_2 = CH(R)(CH_2)nCH_2Z$, R = H and $R_2 = L$ and $R_3 = L$ and
 - 7. The compound of claim 1 wherein $R_1 = H$, $R_2 = CH_2CH(R)Z$, R = CH and Z = CI, and $R_3 = n-C_5H_{10}Z'$, Z' = H.

10

- 8. The compound of claim 1 wherein $R_1 = H$, $R_2 = CHCH$, and $R_3 = n \cdot C_5 H_{10} Z'$, Z' = H.
- 9. The compound of claim 1 wherein $R_1 = H$, $R_2 = CH_2CF_3$, and $R_3 = n-C_5H_{10}Z'$, Z' = H.
 - 10. A compound of the formula:

20

25

wherein X is one of the group consisting of C = 0 and NH and Y is the other of that group;

 R_1 is selected from the group consisting of H, CH_3 and $(CH_3)_2$;

R₂ is selected from the group consisting of

CH=CH₂, CH=C(CH₃)₂, C=CH, CH₂OCH₃, CH(R)(CH₂)nCH₂Z and CH₂CH(R)(CH₂)nZ, R being selected from the group consisting of H, CH₃ and (CH₃)₂, Z being selected from the group consisting of H, halogens, N₃, NCS, OH and OAc and n being selected from the group consisting of 0, 1 and 2; and

 R_3 is selected from the group consisting of n-C₅H₁₀Z', n-C₆H₁₂Z', n-C₇H₁₄Z' and 1',1'-C(CH₃)₂(CH₂)₅CH₂Z', Z' being selected from the group consisting of H, halogens, CN, N₃, NCS and OH.

15

10

5

- 11. The compound of claim 10 wherein $R_1 = H$, $R_2 = CH(R)(CH_2)nCH_2Z$, R = H and n = 1 and Z = OH; and $R_3 = n-C_5H_{10}Z'$, Z' = H.
- 20 12. The compound of claim 10 wherein $R_1 = H$, $R_2 = CH(R)(CH_2)nCH_2Z$, R = H and Z = OAc and $R_3 = R_3 = R_3$, $R_4 = R_4$, $R_5 = R_5$, $R_5 = R_5$
- 13. The compound of claim 10 wherein $R_1 = H$, $R_2 = CH(R)(CH_2)nCH_2Z$, R = H and $R_2 = R_3$ and $R_3 =$

5

15

30

14. A medicinal preparation comprising:

R₁

wherein X is one of the group consisting of C = O and NH and Y is the other of that group;

 R_1 is selected from the group consisting of H and alkyl radicals; R_2 is selected from the group consisting of alkyl, substituted alkyl, alkenyl and alkynyl radicals; and

R₃ is selected from the group consisting of alkyl, substituted alkyl, O-alkyl, aryl, alkylaryl, O-alkylaryl, cyclic and heterocyclic radicals.

15. A medicinal preparation comprising:

 $\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\$

wherein X is one of the group consisting of C=0 and NH and Y is the other of that group;

 R_1 is selected from the group consisting of H and alkyl radicals; R_2 is selected from the group consisting of alkyl, substituted alkyl, alkenyl, alkynyl, O-alkyl, cycloalkyl, polycyclic and heterocyclic radicals; and

 $\rm R_3$ is selected from the group consisting of alkyl, substituted alkyl, O-alkyl, aryl, alkylaryl, O-alkylaryl, cyclic and heterocyclic radicals.