Bilancia elettrostatica di Columb

Gruppo 3

27 Febbraio 2023

Data esperienza: 27 Febbraio 2023
Gruppo: Marta Arnoldi
Luca Brambilla
Giovanni Carminati
Istruttore: Prof. CALVI

Contents

1	Obiettivi:	2
2		2
3	Materiale e strumenti di misura usati	3
4	Svolgimento dell'esperienza 4.1 preparazione	3 4
5	Dati Raccolti	4
6	Analisi Dati 6.1 PARTE A 6.2 PARTE B 6.3 PARTE C 6.4 Stima ε ₀	5
7	Discussione dei risultati ottenuti	7

1 Obiettivi:

Primo Obiettivo

verificare la dipendenza della forza di Coulomb dall'inverso del quadrato della distanza tra le cariche

Secondo Obiettivo

determinare la dipendenza dalla carica della forza di Coulomb la carica è direttamente proporzionale al potenziale. Pertanto, basta studiare la dipendenza della forza di Coulomb dal potenziale

Terzo Obiettivo

misura della costante dielettrica ϵ_0 nel vuoto

2 Cenni Teorici

2.1 Forza elettrostatica

Due corpi dotati di carica si attraggono con una forza data da: (costante dielettrica nell'aria $\epsilon_d \simeq 1$)

$$F = k \frac{q_1 q_2}{d^2}$$

$$k = \frac{1}{4\pi\epsilon_0\epsilon_d}$$

$$q = CV = 4\pi\epsilon_0\epsilon_d V$$

2.2 Torsione

la forza di torsione è direttamente proporzionale all'angolo di cui si è dovuto torcere il filo

$$F_{tor} = C_{tor}\theta$$

2.3 Equilibrio

si ha quando $F_{Columb}b = \tau_{torsione}$ dove b è il braccio della forza, visto che $K_{tor} = C_{tor}/b$ è costante possiamo verificare:

$$\theta \propto \frac{1}{d^2}$$
 (1) $\theta \propto V_1 V_2$ (2)

e misurare k_{tor} dalla forza peso $(mg = k_{tor}\theta)$

2.4 Misurazione di ϵ_0

dato che $F \propto \frac{V_1 V_2}{d^2}$, possiamo ricavare ϵ_0 verificando 2.3 e usando:

$$k_{tor}\theta = 4\pi\epsilon_0 \frac{V_1 V_2}{d^2}$$

3 Materiale e strumenti di misura usati

4 Svolgimento dell'esperienza

L'esperienza consiste nel caricare le sfere con un generatore di tensione, porle a una distanza nota e in seguito alla curvatura dell'angolo (dovuta alla forza repulsiva tra le due sfere) aumentare la torsione del filo che sostiene la sfera sospesa riportandola in posizione.

4.1 preparazione

- verificare che le sfere siano scariche (da ripetere a ogni misura)
- torcere il filo fino a quando la sfera sospesa è posizionata nello 0
- misurare il diametro delle sfere
- porre le sfere alla stessa altezza (centri sullo stesso asse)
- considerare l'umidità del laboratorio

4.2 Parte A: verifica $\theta \propto V_1 V_2$

- fissare la sfera mobile a una distanza fissa
- caricare le sfere (variando *V*)
- torcere il filo fino a quando la sfera sospesa torna in posizione (prendere misura dell'angolo di torsione)
- scaricare le sfere

sono state svolte misure sia con $V_1 = V_2$ (A.1) ,sia fissando V_1 e variando V_2

IMPORTANTE: se durante la carica le sfere sono troppo vicine può esserci dispersione della carica dell'una sulla seconda a causa dell'umidità

4.3 Parte B: verifica $\theta \propto \frac{1}{d^2}$

come 4.2 ma fissando V e variando la distanza d

4.4 Parte C: misura della costante di torsione K_{tor}

- ruotare la piattaforma di sostegno della sferetta sospesa ponendola orizzontalmente rispetto al piano
- torcere il filo affinchè l'asta della sfera sia orizzontale rispetto al piano di appoggio e fissare lo 0
- aggiungendo pesetti sulla sfera aumentare la torsione per riportarla in posizione prendendo nota dell'angolo

5 Dati Raccolti

diametro sfere 34.3 mm umidità laboratorio 34%

errore di misura dovuto alla sensibilità dello strumento 1° distanza (PARTE A) 10 cm

PARTE A.1 ($V_1 = V_2$)

V (kV)	2	3	4	5	6
$ar{ heta}$	7.0	16.0	33.7	48.7	71.7

PARTE A.2 ($V_1 = 6 \,\text{kV}$)

$V_2(kV)$	2	3	4	5	6
$ar{ heta}$	21.3	38.0	52.0	60.0	71.7

PARTE B (V = 6 kV)

d	6	7	8	9	12	15	18
$\bar{\theta}$	186.3	124.7	105.3	92.3	52.0	32.3	18.0

PARTE C (per costante di torsione)

m(mg)	20	40	50	70	90
$ar{ heta}$	128.8	254.2	321.6	450.8	584.6

link per csv contenente le misurazioni parte A.1

link per csv contenente le misurazioni parte A.2

link per csv contenente le misurazioni parte B

link per csv contenente le misurazioni parte C

6 Analisi Dati

6.1 PARTE A

Da A.1 e A.2 possiamo tracciare un grafico con V_1V_2 nell'asse delle ascisse e $\bar{\theta}$ sulle ordinate

6.2 PARTE B

ripetiamo il grafico ponendo sull'asse delle ascisse $1/d^2$

NOTA: essendo che a piccole distanze le sfere non sono perfettamente approssimabili a punti materiali è opportuno applicare la correzione 1/B dove $B=1-\frac{4r_{sfera}^3}{d^3}$

6.3 PARTE C

dalle misure effettuate otteniamo $K_{tor} = (8.6 \pm 0.1)10^{-5} \, \text{N rad}^{-1}$

6.4 Stima ϵ_0

possiamo stimare ϵ_0 sia da PARTE A che da PARTE B assumendo i seguendi dati:

costante torcente	e k_{tor}	$8.6 \times 10^{-5} \mathrm{Nrad}^{-1}$
sigma K_{tor}	σ_k	$0.1 \times 10^{-5} \mathrm{kg}\mathrm{m}^{-2}$
coeff retta 1	B_1	3.5×10^{-8}
sigma B_1	σ_{B_1}	0.1×10^{-8}
coeff retta 2	B_2	1.24×10^{-2}
sigma B_2	σ_{B_2}	0.05×10^{-2}
raggio sfere	r	$1.7 \times 10^{-2} \mathrm{m}$
distanza in A	d	0.1 m carica sfere in B
V	$6 \times 10^3 \mathrm{V}$	

$$\epsilon_{A} = \frac{B_{A}K_{tor}d^{2}}{4\pi r^{2}} = 8.5 \times 10^{-12}$$

$$\epsilon_{B} = \frac{B_{B}K_{tor}}{4\pi V^{2}r^{2}} = 8.2 \times 10^{-12}$$

$$\sigma_{\epsilon_{A}} = \sqrt{\left(\frac{\sigma_{k}}{k}\right)^{2} + \left(\frac{\sigma_{B_{1}}}{B_{1}}\right)^{2}} = 0.3 \times 10^{-12}$$

$$\sigma_{\epsilon_{B}} = \sqrt{\left(\frac{\sigma_{k}}{k}\right)^{2} + \left(\frac{\sigma_{B_{2}}}{B_{2}}\right)^{2}} = 0.3 \times 10^{-12}$$

concludiamo quindi con i valori di ϵ_0 :

usando relazione
$$\theta \propto V_1 V_2$$
 (parte A) $\epsilon_0 = (8.5 \pm 0.3)~10^{-12}~{\rm N~m^{-1}}$ usando relazione $\theta \propto 1/d^2$ (parte B) $\epsilon_0 = (8.3 \pm 0.3)~10^{-12}~{\rm N~m^{-1}}$

7 Discussione dei risultati ottenuti

considerando i grafici della PARTE A, PARTE B e PARTE C, l'accordo con il χ^2 è ragionevole e quindi la relazione ben verificata.

la stima della costante ϵ_0 è molto vicina al valore reale ($8.9 \times 10^{-12} \,\mathrm{N}\,\mathrm{m}^{-1}$), entrambi i valori ottenuti sono delle sottostime del valore vero e questo può essere dovuto all'umidità del laboratorio

link dati e codice python