Balanced Growth Path

Pei-Ju Liao

Department of Economics, NTU

Fall Semester

Basic Solow Growth Model

- Production function: Y = F(K, L)
- Output per worker: y=f(k), where $k=\frac{K}{L}$ is capital per worker
 - Only k matters for y. Population size does not affect the relationship between y and k.
- At steady state:
 - $k=k^*$, $y^*=f(k^*)$, and $c^*=(1-s)f(k^*)$, where s is saving rate
 - Capital, output, and consumption are steady over time.

Basic Solow Growth Model

- The basic Solow model implies no growth for an economy at steady state.
- However, this is not consistent with Macro data:
 - The website: Gapminder.org
 - Balanced growth path (BGP):
 - -Kaldor, Nicholas, 1961, "Capital Accumulation and Economic Growth", in *The Theory of Capital*, edited by Friedrich A. Lutz and Douglas C. Hague. New York: St. Martin's Press.

Balanced Growth Path

- The stylized facts of industrialized economies in the 20th century reported in Kaldor Nicholas (1961).
- Kaldor facts:
 - The growth rate of GDP is roughly constant over time.
 - The capital labor ratio $\frac{K}{L}$ and the output-labor ratio $\frac{Y}{L}$ are growing at a roughly constant rate.
 - The real wage, $w = F_L$, is growing at a constant rate.
 - The capital-output ratio $\frac{K}{Y}$ is roughly constant over time. \rightarrow with grown
 - The investment-output ratio $\frac{I}{Y}$ is roughly constant over time.
 - The rental rate on capital, $r = F_K$, is constant over time.
 - The income share of capital, $\frac{rK}{Y}$ and the income share of labor $\frac{wL}{Y}$ are roughly constant over time.

Balanced growth is a situation in which C_t , Y_t , I_t , K_t , and w_t grow at constant, but possibly different rates.

- An economy that behaves according to the above facts is **along a balanced growth path**.
- The basic Solow model and the neoclassical growth model we introduced so far are inconsistent with the first three facts because these frameworks predict no growth in the long run.
- How to reconcile the neoclassical growth model with the Kaldor facts?

Macro fours on [1. Growth 2. Regale -

1. Shu: 只能解释 S-S & 外生多的 2. New classial: 2+ 多所称Regule

3. BGP: // / +然於解释] S-SPO Canth

- How to reconcile the neoclassical growth model with the Kaldor facts?
- Consider "the engine of growth" in the neoclassical growth model:
 - Exogenous growth: -> mode bes not poole interpretation just assumption such as population growth, technological progress...
 - 2 , Endogenous growth: ——> option chine itself will grow such as human capital accumulation, endogenous population growth, spillover effects from production activity...
 - 1. 翠純假設不断有外生的复数 -> 造成成長
- 2. 解出的复数本身就是有成长

Dynamic Programming and BGP

各期的战期决策应期尺 否则無按用vecusine 来解

- Dynamic Programming
 - A dynamic programming problem should be **stationary**.
 - All functions in a dynamic programming problem are **time-invariant**.
- When "growth" is introduced into a dynamic programming problem,
 - The problem is non-stationary.
 - Some variables grow at some rates.
 - No steady state
- How to incorporate "growth" into our current framework? **Detrend**,

removing the growth!!

Why Detrend?

- We are more interested in steady-state properties.
- When we calibrate the model, some parameters are calibrated by some stationary relationships observed from data.
- We want to have a "manageable" model economy that is consistent with BGP.

The Decline in the Labor Income Share 1

The stylized facts have visibly broken down since around 2000.

Figure: Labor Income Share in the U.S.

Source: Figure 1 in Sachs (2018).

The Decline in the Labor Income Share 2

$$rK \Rightarrow \frac{rK}{r} = \alpha \uparrow$$

$$wh \Rightarrow \frac{wh}{r} = +\alpha \downarrow$$

Same pattern is observed in OECD and Taiwan.

Source: Figure 1 in Lin, Chang, and Lu (2017).

Necessary condition

The necessary conditions for the existence of BGP are

Production function is constant returns to scale.Homothetic utility functions

Existence of BGP •000

Homogenous vs Homothetic Functions

• Homogenous of degree *k*:

$$f(tx_1, tx_2, \dots, tx_n) = t^k f(x_1, x_2, \dots, x_n), \forall t > 0.$$

- Homothetic function
 - A function is called homothetic if it is a monotone transformation of a homogenous function.
 - Example: u(x,y)=xy is a homogenous function. we will call $v(x,y)=x^3y^3+xy$ and w(x,y)=xy+1 as homothetic functions because $v(x,y)=\left[u(x,y)\right]^3+u(x,y)$ and w(x,y)=u(x,y)+1.

Examples for the Existence of BGP

• Example 1:

The periodic utility function is $u(c_t, 1 - h_t) = \log c_t - Bh_t$. When we consider growth and detrend the objective function, $\Rightarrow \max \sum_{t=0}^{\infty} (\beta \eta)^t [\log \hat{c}_t - Bh_t] + \text{constant}.$

Example 2:

$$u(c_t, 1 - h_t) = \log c_t + A \log(1 - h_t),$$

$$\Rightarrow \max \sum_{t=0}^{\infty} (\beta \eta)^t [\log \hat{c}_t + A \log(1 - h_t)] + \text{constant}.$$

• Example 3:

$$u(c_t, 1 - h_t) = \frac{(c_t^{\alpha} (1 - h_t)^{1 - \alpha})^{1 - \sigma}}{1 - \sigma},$$

$$\Rightarrow \max \sum_{t=0}^{\infty} (\beta \eta g^{\alpha(1 - \sigma)})^t \frac{(\hat{c_t}^{\alpha} (1 - h_t)^{1 - \alpha})^{1 - \sigma}}{1 - \sigma}.$$

An Example for No BGP

Suppose the periodic utility function is $c^{1-\sigma} = (1-h_1)^{1-\sigma}$

$$u(c_t, 1 - h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} + A \frac{(1-h_t)^{1-\sigma}}{1-\sigma}.$$

With population growth rate η and exogenous technological progress g, the detrended lifetime utility function is:

$$\sum_{t=0}^{\infty} (\beta \eta)^{t} \left[\frac{c_{t}^{1-\sigma}}{1-\sigma} + A \frac{(1-h_{t})^{1-\sigma}}{1-\sigma} \right]$$

$$= \sum_{t=0}^{\infty} (\beta \eta)^{t} \left[\frac{(g^{t} \hat{c}_{t})^{1-\sigma}}{1-\sigma} + A \frac{(1-h_{t})^{1-\sigma}}{1-\sigma} \right]$$

$$= \sum_{t=0}^{\infty} (\beta \eta g^{1-\sigma})^{t} \frac{\hat{c}_{t}^{1-\sigma}}{1-\sigma} + \sum_{t=0}^{\infty} (\beta \eta)^{t} A \frac{(1-h_{t})^{1-\sigma}}{1-\sigma}.$$

In this case, there is no balanced growth path.