PPKE ITK

A számítógépes grafika alapjai

Tantárgyismertető és követelmények

Előadó: Benedek Csaba

A számítógépes grafika alapjai

- Tárgyfelelős oktató:
 - Benedek Csaba
 - Elérhetőségek:
 - MTA SZTAKI Gépi Érzékelés Kutatólaboratórium, 1111 Budapest, Kende utca 13-17, 306. szoba
 - PPKE ITK (csak előre megbeszélt konzultációs időpontban és helyen)
 - E-mail: benedek.csaba@itk.ppke.hu

- A tárgy honlapja:
 - http://grafika.itk.ppke.hu/

Személyes oldal: http://mplab.sztaki.hu/~bcsaba

Magamról

- Kutatás: számítógépes látás (és grafika), képfeldolgozás, mintafelismerés, 3D szenzorok (lézerszkennerek) adatelemzése
- MTA SZTAKI: Gépi Érzékelés Labor, Térinformatikai számítások kutatócsoport vezetője
- PPKE ITK docens (részmunkaidő), PPKE Régészeti Térinformatikai laboratórium tagja

SZTAKI Térinformatikai számítások kutatócsoport http://mplab.sztaki.hu/geocomp

PPKE Régészeti térinformatikai laboratórium

http://mplab.sztaki.hu/~bcsaba

Magamról...

• PPKE ITK oktatás:

- A számítógépes grafika alapjai (BSc, MSc)
- Basic Image Processing
- Témavezetés (önálló laboratórium, TDK, szakdolgozat, diploma, doktori)

OTDK helyezettek:

- 2017: Gálai Bence (BME), "Személyazonosítás és eseményfelismerés LiDAR szenzorral", I. helyezés
- 2017: Zsámboki Richárd (BME), "Városi Lidar pontfelhő objektumok mély tanulás alapú osztályozása,, I. helyezés
- 2015: Polcz Péter: 3D virtuális városrekonstrukció LIDAR pontfelhőkből I. helyezés
- 2015: Nagy Balázs: Dinamikus utcai környezet háromdimenziós analízise mobil lézerszkenner mérései alapján III. helyezés
- 2013: Homolya Miklós: Célkövetés légi videofelvételeken I. helyezés
- 2013: Börcs Attila, Horváth Csaba: Városi környezet automatikus analízise és rekonstrukciója légi LIDAR mérések alapján II. helyezés
- **2011:** Horváth Csaba: Tanító módszereken alapuló automatikus eseményanalízis nagy forgalmú többsávos utak videó felügyeletéhez **II. helyezés**

Önlab témák @ PPKE/SZTAKI

Orvosi adatok elemzése és VR megjelenítése

Különböző szenzoradatok egyesítése, 2D and 3D & 4D :

- Különböző jellemzők kinyerése különböző modalitásokból;
- Fontos régiók automatikus kijelölése: szaliencia, vizuális figyelem
- Objektumdetekció (szervek, csontok, ...);
- Szegmentálás, 3D modellezés.

Társ-témavezető: Dr. Manno-Kovács Andrea

Önlab témák @ PPKE/SZTAKI http://mplab.sztaki.hu/geocomp

Lézerszkennelés 3D adatok elemzése

Automatizált adatszűrés, -javítás, osztályozás

Önlab témák @ PPKE/SZTAKI http://mplab.sztaki.hu/geocomp

Lézerszkennelés Pontfelhőosztályozás

gyalogos

mozgó autó

parkoló autó

villamos/busz

oszlop

növényzet

út

épülethomlokzat

© Nagy Balázs Nagy, PhD hallgató PPKE ITK

Valós idejű Lidar feldolgozás@ SZTAKI

Cover page article in IEEE Geosci. and Remote Sensing Letters, July 2017

Velodyne HDL 64E

Camera

Mozgásérzékelés, objektumkövetés

Objektumok osztályozása

Régészeti adatelemzés

- MOST: ösztöndíj lehetőség a PPKE ITK-n!
 - 3D pontfelhőfeldolgozás, és képi felismerési feladatok

Ásatás helyszín elemzése Lidar pontfelhőn

Halomsírok - Lidar alapú terepmodell

Föld alatti sztruktúrák analízise - talajradar mérés

A tárgy oktatásának menete

- A tárgy órabeosztása
 - Előadás: hetente 2 óra
 - Gyakorlat: kéthetente 2 óra (összesen 6 alkalom)
- Számonkérés:
 - Szorgalmi időszak 1 zárthelyi, gyakorlat: beugró, jegyzőkönyv elfogadása
 - Írásbeli/Szóbeli vizsga
- Segédanyagok:
 - Kötelező olvasmány: Szirmay-Kalos László, Antal György, Csonka Ferenc: Háromdimenziós grafika, animáció és játékfejlesztés (elektronikus)
 - Ajánlott olvasmány: OpenGL 'Red Book'

Az órai munkával történő aláírás-teljesítés feltételei

- Az egyes gyakorlati órákon részvétel
- Megoldott feladatok jegyzőkönyves beadása, kiválasztott feladatok személyes megvédése
- Zárthelyi dolgozat az elméleti anyagból (definíciók és számolásos feladatok)
 - április 24-i héten (előadáson vagy gyakorlaton),
 - 1db pótzh alkalom az utolsó szorgalmi tanítási) héten.

Házi feladatokkal történő aláírásteljesítés feltételei

- 3 db 2D/3D grafikai feladat megoldása,
 - maximum 1 lehet 2D-s!
 - OpenGL könyvtár használata
 - Weboldalon: feladatlista (korlátozottan bővíthető egyéni feladatokkal), jelentkezni február 27-ig
 - Határidős bemutatások:
 - 1. feladat kész verziója: március 20 (email)
 - 2. feladat kész verziója és a 3. feladat előrehaladásának bemutatása : április 24
 - 3. feladat kész verziója: május 15.

Félév menete

Hónap	Nap	Előadás (kedd)	Gyakorlat (szerda)	Számonkérés
február	13	előadás 1		
február	20	előadás 2	gyakorlat 1	
február	27	előadás 3		
március	6	előadás 4	gyakorlat 2	
március	13	előadás 5		
március	20	előadás 6	gyakorlat 3	
március	27	tavaszi szünet		
április	3	tavaszi szünet		
április	10	előadás 7	gyakorlat 4	gyak 1-3 bemutató
április	17	előadás 8		
április	24	előadás 9	gyakorlat 5	ZH -(ea 1-8 + gy 1-4)
május	1	állami ünnep		
május	8	előadás 10		
május	15	előadás 11	gyakorlat 6	PZH + gyak. 4 bemutató

Gyakorlat: témakörök

- 1. OpenGL, bevezető
- 2. * Paramáteres görbék, felületek
- 3. * Transzformációk
- 4. * Animációk
- 5. * Megvilágítás
- 6. * Textúrázás

Nagy Balázs gyakorlat infók

*OpenGL C/C++ programozási és programtesztelési feladatok, elején: beugró (részletek előtte a weblapon), végén: jegyzőkönyv leadás