Math2221 Higher Theory and Applications of Differential Equations

Tutorial Problem Set 1

School of Mathematics and Statistics The University of New South Wales

Updated July 26, 2018

Standard Questions

Before the tutorial, you should at least attempt the recommended questions (or parts of questions), which are numbered in **bold**. Answers and hints (including some with working) are given at the end.

- 1. (Revision) Classify each of the following first-order ODEs as separable, linear, exact or homogeneous and then find the general solution.
 - (i) 4xy' = 5y
 - (ii) $(x+1)^2y' + 3(x+1)y = 4$
 - (iii) $(x^2 + y^2)y' + 2xy = 0$
 - (iv) $2xy\,dx + x^2\,dy = 0$
- 2. (Revision) Find the general solution of each of the following second-order ODEs.
 - (i) u'' 4u = 0
 - (ii) u'' + 4u = 0
 - (iii) u'' + 2u' + 2u = 0
 - (iv) u'' + 6u' + 9u = 0
- 3. (Revision) Solve each of the following initial value problems.
 - (i) $\frac{dx}{dt} = 3t^2x^2$ with x(0) = 1.
 - (ii) $t \frac{dx}{dt} = x + \sqrt{t^2 + x^2}$ with x(1) = 0.
 - (iii) $2xe^y + e^x + (x^2 + 1)e^y \frac{dy}{dx} = 0$ with y = 0 when x = 0.
 - (iv) $\frac{dy}{d\theta} + y \cos \theta = \frac{1}{2} \sin 2\theta$ with $y(\pi/2) = 4$.
 - (v) $\ddot{x} + 4x = \sin 2t$ with x = 0 and $\dot{x} = 1$ when t = 0. (The dot means d/dt.)
 - (vi) $u'' 5u' + 4u = 2e^{2x}$ with u = 1 and u' = 3 at x = 0.
- 4. (Revision) Find the general solution to each of the following inhomogeneous ODEs.
 - (i) $u'' + 4u = 8x^2 + 13e^{3x} + 16\cos 2x$
 - (ii) $u'' + 2u' + 5u = 12e^{-x}\cos x$

In both cases, solve the initial-value problem for the ODE with initial conditions u(0) = 0 and u'(0) = 0.

5. Verify that $u_1 = \sin x^2$ is a solution of

$$xu'' - u' + 4x^3u = 0$$

and use reduction of order to find a second, linearly independent solution.

6. Verify that $u_1 = x + 1$ is a solution of

$$xu'' - (x+1)u' + u = 0$$

and use reduction order to find the general solution.

- 7. For each of the following polynomials p(z), write down the general solution of the homogeneous equation p(D)u = 0.
 - (i) $p(z) = z^3 z^2 + z 1$

(ii)
$$p(z) = z^4 - 2z^3 - 2z^2 + 8 = (z-2)^2(z^2 + 2z + 2)$$

- 8. State whether the following are true or false.
 - (i) If the Wronskian of a set of functions is identically zero, the functions must be linearly dependent.
 - (ii) If a set of functions is linearly dependent, the Wronskian must be identically zero.
 - (iii) If the Wronskian of a set of functions is zero at some points and not zero at some points, the functions are linearly independent.
- 9. Compute the Wronskian of the set of functions

$$y_1(x) := x^2 - x,$$
 $y_2(x) := x^2 + x,$ $y_3(x) := x^2.$

Is the set of functions linearly dependent or linearly independent?

- 10. For each of the following ODEs, write down the linear, first-order ODE satisfied by the Wronskian W of any two, linearly independent solutions, and hence find the form of W.
 - (i) $(1-x^2)u'' 2xu' + \nu(\nu+1)u = 0$ (Legendre's equation of order ν).
 - (ii) $x^2u'' + xu' + x^2u = 0$ (Bessel's equation of order 0).

Advanced Questions

The following questions are more challenging. In some cases they may require you to do additional research and/or draw on material related to non-prerequisite courses.

- 11. Prove that if the polynomial p(z) can be factorised as p(z) = q(z)r(z) then p(D) = q(D)r(D) = r(D)q(D).
- 12. Suppose that L and M are linear differential operators with orders r and s, respectively,

$$Lu(x) = \sum_{j=0}^{r} a_j(x) D^j u$$
 and $Mu(x) = \sum_{k=0}^{s} b_k(x) D^k u$.

- (i) Use induction on r to show that LM is a linear differential operator of order r+s.
- (ii) What is the leading coefficient of LM?
- (iii) Deduce that the *commutator* LM ML is a linear differential operator of order r + s 1.
- 13. Suppose that the polynomial $p(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$ has distinct zeros $\lambda_1, \lambda_2, ..., \lambda_m$. Thus, $u_j(x) = e^{\lambda_j x}$ is a solution of the homogeneous equation p(D)u = 0, for j = 1, 2, ..., m.
 - (i) Show that the Wronskian of $u_1, u_2, ..., u_m$ is

$$W(x) = e^{(\lambda_1 + \lambda_2 + \dots + \lambda_m)x} V(\lambda_1, \lambda_2, \dots, \lambda_m)$$

where V is the Vandermonde determinant:

$$V(\lambda_1, \lambda_2, \dots, \lambda_m) = \det[\lambda_i^{j-1}] = \begin{vmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \lambda_m^2 & \cdots & \lambda_m^{m-1} \end{vmatrix}.$$

(ii) Use column operations to show that

$$V(\lambda_1, \lambda_2, \cdots, \lambda_m) = V(\lambda_2, \dots, \lambda_m) \prod_{i=2}^m (\lambda_i - \lambda_1).$$

(iii) Deduce that

$$V(\lambda_1, \lambda_2, \dots, \lambda_m) = \prod_{1 \le j < i \le m} (\lambda_i - \lambda_j)$$

and that $u_1, u_2, ..., u_m$ are linearly independent.

Answers and Hints

- 1. (i) linear, separable, $y^4=Cx^5$ (ii) linear, $y=\frac{2}{x+1}+\frac{C}{(x+1)^3}$ (iii) homogeneous, $y(y^2+3x^2)=C$ (iv) separable, linear and exact, $x^2y=C$
- 2. (i) $u = Ae^{2x} + Be^{-2x}$ (ii) $u = A\cos 2x + B\sin 2x$ (iii) $u = e^{-x}(A\cos x + B\sin x) = Ce^{-x}\sin(x \phi)$ (iv) $u = e^{-3x}(A + Bx)$
- 3. (i) $x = 1/(1-t^3)$ (ii) $x = \frac{1}{2}(t^2-1)$ (iii) $(x^2+1)e^y + e^x = 2$ (iv) $y = \sin \theta 1 + 4e^{1-\sin \theta}$ (v) $x = \frac{5}{8}\sin 2t \frac{1}{4}t\cos 2t$ (vi) $u = e^x + e^{4x} e^{2x}$
- 4. (i) $u = A\cos 2x + B\sin 2x + 2x^2 1 + e^{3x} + 4x\sin 2x$, A = 0, B = -3/2 (ii) $u = e^{-x}(A\cos 2x + B\sin 2x + 4\cos x)$, A = -4, B = 0
- **5**. $u = \cos x^2$
- **6**. $u = Ae^x + B(x+1)$
- 7. (i) $Ae^x + B\cos x + C\sin x$ (ii) $Ae^{2x} + Bxe^{2x} + Ce^{-x}\cos x + Ee^{-x}\sin x$
- 8.
 - (i) False. W(x) = 0 for all x is a necessary condition for linear dependence but it is not sufficient. This is not quite obvious, and we give a counter example of two linearly independent functions for which the Wronskian vanishes for all x: Let

$$f_1(x) := x^2, \qquad f_2(x) := x |x|.$$

To compute the Wronskian we have to distinguish the two cases (i) $x \ge 0$ and (ii) x < 0.

(i) For $x \ge 0$, $f_2(x) = x^2$ and the Wronskian is given by

$$W(x) = \det \begin{pmatrix} x^2 & x^2 \\ 2x & 2x \end{pmatrix} = 2x^3 - 2x^3 = 0.$$

(ii) For x < 0, $f_2(x) = -x^2$ and the Wronskian is given by

$$W(x) = \det \begin{pmatrix} x^2 & -x^2 \\ 2x & -2x \end{pmatrix} = -2x^3 + 2x^3 = 0.$$

Clearly the Wronskian always vanishes, but the functions f_1 and f_2 are linearly independent. To prove the linear independence of f_1 and f_2 , we write down

$$c_1 f_1(x) + c_2 f_2(x) = c_1 x^2 + c_2 x |x| = 0.$$

For x = 1 we obtain $c_1 + c_2 = 0$ and for x = -1 we get $c_1 - c_2 = 0$. Thus $c_1 = c_2 = 0$ and the functions are linearly independent.

- (ii) True. Because the functions are linearly dependent the columns in the matrix in the definition of the Wronskian are linearly dependent and thus W(x) = 0.
- (iii) True. If there exists $x \in I$ such that $W(x) \neq 0$ then the functions are linearly independent. (Note that this statement is the negation of the statement in (b).)
- 9. We compute the Wronskian:

$$W(x) = \det \begin{pmatrix} x^2 - x & x^2 + x & x^2 \\ 2x - 1 & 2x + 1 & 2x \\ 2 & 2 & 2 \end{pmatrix}$$

$$W(x) = (x^{2} - x)[2(2x + 1) - 2(2x)] + (x^{2} + x)[2(2x) - 2(2x - 1)] + \dots$$
$$x^{2}[2(2x - 1) - 2(2x + 1)]$$
$$= 0$$
(1)

This is a necessary condition for linear dependence. However it is not sufficient! Note that

$$y_3(x) = x^2 = \frac{1}{2}(x^2 - x) + \frac{1}{2}(x^2 + x) = \frac{1}{2}y_1(x) + \frac{1}{2}y_2(x);$$

so in this case the functions are linearly dependent.

- **10**. (i) $W = C/(1-x^2)$ for $x \neq \pm 1$. (ii) W = C/x
- **12**. (ii) $a_r(x)b_s(x)$
- **13**. (ii) For j = 2, 3, ..., m, replace C_j with $C_j \lambda_1 C_{j-1}$.