ENGINEERING MATHEMATICS 1

LECTURE 3 (PART 1)

POLYNOMIALS EVALUATION & FACTORIZATION

A <u>POLYNOMIAL</u> is a monomial or a sum of monomials.

A POLYNOMIAL IN ONE VARIABLE is a polynomial that contains only one variable.

Example: $5x^2 + 3x - 7$

The <u>DEGREE</u> of a polynomial in one variable is the greatest exponent of its variable.

A <u>LEADING COEFFICIENT</u> is the coefficient of the term with the highest degree.

What is the degree and leading coefficient of $3x^5 - 3x + 2$?

A polynomial equation used to represent a function is called a <u>POLYNOMIAL FUNCTION</u>.

Polynomial functions with a degree of 1 are called LINEAR POLYNOMIAL FUNCTIONS

Polynomial functions with a degree of 2 are called QUADRATIC POLYNOMIAL FUNCTIONS

Polynomial functions with a degree of 3 are called CUBIC POLYNOMIAL FUNCTIONS

Find f(-2) if
$$f(x) = 3x^2 - 2x - 6$$

$$f(-2) = 3(-2)^2 - 2(-2) - 6$$

$$f(-2) = 12 + 4 - 6$$

$$f(-2) = 10$$

Find f(2a) if
$$f(x) = 3x^2 - 2x - 6$$

$$f(2a) = 3(2a)^2 - 2(2a) - 6$$

$$f(2a) = 12a^2 - 4a - 6$$

Find
$$f(m + 2)$$
 if $f(x) = 3x^2 - 2x - 6$
 $f(m + 2) = 3(m + 2)^2 - 2(m + 2) - 6$
 $f(m + 2) = 3(m^2 + 4m + 4) - 2(m + 2) - 6$
 $f(m + 2) = 3m^2 + 12m + 12 - 2m - 4 - 6$
 $f(m + 2) = 3m^2 + 10m + 2$

Find
$$2g(-2a)$$
 if $g(x) = 3x^2 - 2x - 6$
 $2g(-2a) = 2[3(-2a)^2 - 2(-2a) - 6]$
 $2g(-2a) = 2[12a^2 + 4a - 6]$
 $2g(-2a) = 24a^2 + 8a - 12$

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS

$$f(x) = 3$$

Constant Function

Degree = 0

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS

$$f(x) = x + 2$$

Linear Function

Degree = 1

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS

$$f(x) = x^2 + 3x + 2$$

Quadratic Function

Degree = 2

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS

$$f(x) = x^3 + 4x^2 + 2$$

Cubic Function

Degree = 3

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS

$$f(x) = x^4 + 4x^3 - 2x - 1$$

Quartic Function

Degree = 4

GENERAL SHAPES OF POLYNOMIAL FUNCTIONS

$$f(x) = x^5 + 4x^4 - 2x^3 - 4x^2 + x - 1$$

Quintic Function

Degree = 5

END BEHAVIOR

Degree: Even

Leading Coefficient: +

End Behavior:

As
$$x \square -\infty$$
; $f(x) \square +\infty$

As
$$x + \infty$$
; $f(x) + \infty$

END BEHAVIOR

 $f(x) = -x^2$

Degree: Even

Leading Coefficient: –

End Behavior:

As
$$x \square -\infty$$
; $f(x) \square -\infty$

As
$$x \square +\infty$$
; $f(x) \square -\infty$

END BEHAVIOR

Degree: Odd

Leading Coefficient: +

End Behavior:

As
$$x \square -\infty$$
; $f(x) \square -\infty$

As
$$x + \infty$$
; $f(x) + \infty$

 $f(x) = x^3$

END BEHAVIOR

Degree: Odd

Leading Coefficient: -

End Behavior:

As $x \square -\infty$; $f(x) \square +\infty$

As $x \square +\infty$; $f(x) \square -\infty$

 $f(x) = -x^3$

$$f(x) = 2x^2 - 3x + 4$$

Divide the polynomial by $x - 2$

Find f(2)

$$f(2) = 2(2)^2 - 3(2) + 4$$

$$f(2) = 8 - 6 + 4$$

$$f(2) \neq 6$$

When synthetic division is used to evaluate a function, it is called SYNTHETIC SUBSTITUTION.

Try this one:

Remember – Some terms are missing

$$f(x) = 3x^5 - 4x^3 + 5x - 3$$

Find f(-3)

FACTOR THEOREM

The binomial x - a is a factor of the polynomial f(x) if and only if f(a) = 0.

Is
$$x - 2$$
 a factor of $x^3 - 3x^2 - 4x + 12$

Can you find the two remaining factors?

$$(x + 3)(?)(?) = x^3 - x^2 - 17x - 15$$

Find the two unknown (?) quantities.

Factoring and Finding Roots of Polynomials

Factoring Polynomials

Terms are <u>Factors</u> of a Polynomial if, when they are multiplied, they equal that polynomial:

$$x^2 + 2x - 15 = (x - 3)(x + 5)$$

• (x - 3) and (x + 5) are Factors of the polynomial

$$x^{2} + 2x - 15$$

Solving a Polynomial Equation

Rearrange the terms to have zero on one side:

$$x^{2} + 2x = 15 \implies x^{2} + 2x - 15 = 0$$

Factor:

$$(x+5)(x-3) = 0$$

Set each factor equal to zero and solve:

$$(x+5) = 0$$
 and $(x-3) = 0$
 $x = -5$ $x = 3$

The only way that $x^2 + 2x - 15$ can = 0 is if x = -5 or x = 3

Solutions/Roots a Polynomia

Setting the <u>Factors</u> of a *Polynomial Expression* equal to zero gives the <u>Solutions</u> to the *Equation* when the polynomial expression equals zero. Another name for the Solutions of a Polynomial is the <u>Roots</u> of a *Polynomial*!

Zeros of a Polynomial Function

A <u>Polynomial Function</u> is usually written in function notation or in terms of *x* and *y*.

$$f(x) = x^2 + 2x - 15$$
 or $y = x^2 + 2x - 15$

The <u>Zeros</u> of a *Polynomial Function* are the *solutions* to the equation you get when you set the polynomial equal to zero.

Graph of a Polynomial Function

Here is the graph of our polynomial function:

$$y = x^2 + 2x - 15$$

The <u>Zeros</u> of the Polynomial are the values of x when the polynomial equals zero. In other words, the <u>Zeros</u> are the x-values where <u>y equals zero</u>.

x-Intercepts of a Polynomial

The points where y = 0 are called the <u>x-intercepts</u> of the graph.

10-10-10-10-10-

The <u>x-intercepts</u> for our graph are the points...

$$(-5, 0)$$
 and $(3, 0)$

Factors, Roots, Zeros

For our *Polynomial Function*:

$$y = x^2 + 2x - 15$$

The <u>Factors</u> are: (x+5) & (x-3)

The *Roots/Solutions* are: x = -5 and 3

The \underline{Zeros} are at: (-5, 0) and (3, 0)

Factoring a polynomial means expressing it as a *product* of other polynomials.

Factoring Method #1

Factoring polynomials with a common <u>monomial</u> factor (using GCF).

**Always look for a GCF before using any other factoring method.

<u>Steps</u>

- 1. Find the greatest common factor (GCF).
- 2. Divide the polynomial by the GCF.
 The quotient is the other factor.
- 3. Express the polynomial as the product of the quotient and the GCF.

Example: $6c^3d-12c^2d^2+3cd$

Step 1:
$$GCF = 3cd$$

Step 2: Divide by GCF

$$(6c^3d - 12c^2d^2 + 3cd) \div 3cd =$$

$$2c^2 - 4cd + 1$$

The answer should look like this:

Ex:
$$6c^3d - 12c^2d^2 + 3cd$$

$$= 3cd(2c^2 - 4cd + 1)$$

Factor these on you own looking for a

1.
$$6x^3 + 3x^2 - 12x$$

2.
$$5x^2 - 10x + 35 =$$

Factoring Method #2

Factoring polynomials that are a <u>difference of squares</u>.

A "Difference of Squares" is a <u>binomial</u> (*2 terms only*) and it factors like this:

$$a^{2}-b^{2}=(a+b)(a-b)$$

To factor, express each term as a square of a monomial then apply the rule... $a^2 - b^2 = (a + b)(a - b)$

$$Ex. \ x^2 - 16 =$$

$$x^2 - 4^2 =$$

$$(x+4)(x-4)$$

Here is another

example:
$$\frac{1}{49}x^2 - 81 =$$

$$\left(\frac{1}{7}x\right)^2 - 9^2 = \left[\frac{1}{7}x + 9\right]\left(\frac{1}{7}x - 9\right)$$

Try these o

1.
$$x^2 - 121 = 0$$

2.
$$9y^2 - 169x^2$$

3.
$$x^4 - 16 = (x^4)^{-1}$$

Factoring Method #3

Factoring a *trinomial* in the form:

$$ax^2 + bx + c$$

Factoring a trinomial:

$$ax^2 + bx + c$$

- 1. Write two sets of parenthesis, ()(). These will be the *factors* of the trinomial.
- 2. Product of <u>first</u> terms of both binomials must equal <u>first</u> term of the trinomial.

 (ax²)

Factoring a $ax^2 + bx + c$ trinomial:

- 3. The product of <u>last</u> terms of both binomials must equal <u>last</u> term of the trinomial (c).
- 4. Think of the FOIL method of multiplying binomials, the sum of the <u>outer</u> and the <u>inner</u> products must equal the <u>middle</u> term (bx).

Example:
$$x^2 - 6x + 8$$

$$(x)(x) \longrightarrow x \cdot x = x^2$$

$$(x)(x) \longrightarrow 0 + 1 = bx?$$
Factors of $+8$: $1 & 3 \longrightarrow 1x + 8x = 9x$

$$2 & 4 \longrightarrow 2x + 4x = 6x$$

$$-1 & -8 \longrightarrow -1x - 8x = -9x$$

$$-2 & 4 \longrightarrow -2x - 4x = -6x$$

$$x^{2}-6x+8=(x-2)(x-4)$$

Check your answer by using FOIL

$$(x-2)(x-4) = x^{2} - 4x - 2x + 8$$

$$= x^{2} - 6x + 8$$

Lets do another example:

$$6x^2 - 12x - 18$$

Don't Forget Method #1.

Always check for GCF before you do anything else.

$$6(x^2-2x-3)$$
 Find a GCF

$$6(x-3)(x+1)$$
 Factor trinomial

When a>1 and c<1, there may be more combinations to try!

Example: $6x^2 + 13x - 5$

Step 1:

Find the factors of $6x^2$: $\frac{3x \cdot 2x}{6x \cdot x}$

Example: $6x^2 + 13x - 5$

Step 2: Find the factors of -5:

-5 □ 1

Order can make

a difference!

Example:
$$6x^2 + 13x - 5$$

Step 3: Place the factors inside the parenthesis until O + I = bx.

Try:
$$(6x-1)(x+5)$$

$$6x^{2} + 30x - x - 5$$

O + I = 30 x - x =

doesn't work!!

29*x*

Example:
$$6x^2 + 13x - 5$$

Switch the order of the second terms and try again.

$$(6x+5)(x-1)$$

$$6x^2 - 6x + 5x - 5$$

$$O + I = -6x + 5x = -$$

This doesn't work!!

 χ

Try another combination:

Switch to 3x and 2x

$$(3x-1)(2x+5)$$

$$6x^2 + 15x - 2x - 5$$

$$O+I = 15x - 2x = 13x \text{ IT WORKS!!}$$

$$6x^2 + 13x - 5 = (3x - 1)(2x + 5)$$