Statistical Learning and Data Mining CS 363D/ SSC 358

Lecture: Classification - Model Evaluation

Prof. Pradeep Ravikumar pradeepr@cs.utexas.edu

Adapted From: Pang-Ning Tan, Steinbach, Kumar

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	а	b		
CLASS	Class=No	С	d		

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)			
CLASS	Class=No	c (FP)	d (TN)			

• Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS					
	C(i j)	Class=Yes	Class=No			
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)			
CLASS	Class=No	C(Yes No)	C(No No)			

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS					
ACTUAL CLASS	C(i j)	+	•			
	+	-1	100			
		1	0			

Model M ₁	PREDICTED CLASS					
ACTUAL CLASS		+	•			
	+	150	40			
	•	60	250			

Model M ₂	PREDICTED CLASS					
ACTUAL CLASS		+	•			
	+	250	45			
	•	5	200			

Accuracy = 80%Cost = 3910 Accuracy = 90%Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	а	b			
	Class=No	С	d			

Accuracy is proportional to cost if

- 1. C(Yes|No)=C(No|Yes) = q
- 2. C(Yes|Yes)=C(No|No) = p

Cost	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	р	q			
	Class=No	q	р			

Cost vs Accuracy

Count	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	а	b			
	Class=No	С	d			

Cost	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	р	q			
	Class=No	q	р			

Accuracy is proportional to cost if

1.
$$C(Yes|No)=C(No|Yes) = q$$

2.
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Precision (p) = $\frac{a}{a+c}$ Among examples predicted as positive, fraction correctly predicted fraction correctly predicted

Recall (r) =
$$\frac{a}{a+b}$$

Recall (r) = $\frac{a}{a+b}$ Among examples that are actually positive, fraction correctly predicted

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_2 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

• True Positive Rate (TPR) = TP/(TP + FN)

- True Positive Rate (TPR) = TP/(TP + FN)
 - ▶ Among actual positive examples, fraction correctly predicted (cf. Recall)

- True Positive Rate (TPR) = TP/(TP + FN)
 - ▶ Among actual positive examples, fraction correctly predicted (cf. Recall)
- True Negative Rate (TNR) = TN/(TN + FP)

- True Positive Rate (TPR) = TP/(TP + FN)
 - ▶ Among actual positive examples, fraction correctly predicted (cf. Recall)
- True Negative Rate (TNR) = TN/(TN + FP)
 - ▶ Among actual negative examples, fraction correctly predicted

- True Positive Rate (TPR) = TP/(TP + FN)
 - ▶ Among actual positive examples, fraction correctly predicted (cf. Recall)
- True Negative Rate (TNR) = TN/(TN + FP)
 - ▶ Among actual negative examples, fraction correctly predicted
- False Positive Rate (FPR) = FP/(TN + FP)

- True Positive Rate (TPR) = TP/(TP + FN)
 - ▶ Among actual positive examples, fraction correctly predicted (cf. Recall)
- True Negative Rate (TNR) = TN/(TN + FP)
 - Among actual negative examples, fraction correctly predicted
- False Positive Rate (FPR) = FP/(TN + FP)
 - ▶ Among actual negative examples, fraction incorrectly predicted

- True Positive Rate (TPR) = TP/(TP + FN)
 - ▶ Among actual positive examples, fraction correctly predicted (cf. Recall)
- True Negative Rate (TNR) = TN/(TN + FP)
 - Among actual negative examples, fraction correctly predicted
- False Positive Rate (FPR) = FP/(TN + FP)
 - ▶ Among actual negative examples, fraction incorrectly predicted
- False Negative Rate (TPR) = FN/(TP + FN)

- True Positive Rate (TPR) = TP/(TP + FN)
 - ▶ Among actual positive examples, fraction correctly predicted (cf. Recall)
- True Negative Rate (TNR) = TN/(TN + FP)
 - Among actual negative examples, fraction correctly predicted
- False Positive Rate (FPR) = FP/(TN + FP)
 - ▶ Among actual negative examples, fraction incorrectly predicted
- False Negative Rate (TPR) = FN/(TP + FN)
 - Among actual positive examples, fraction incorrectly predicted

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Holdout
 - Reserve 2/3 for training and 1/3 for testing

Holdout

Reserve 2/3 for training and 1/3 for testing

Caveats:

- > Less data available for training
- > If more for training, then test error is unreliable; if more for testing, model might be underfit
- > Training, test datasets no longer independent e.g. a class over-represented in training, will be under-rep. in test

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout

Caveats:

- > Less data available for training
- > No control over records used for training: some records may show up in multiple sample-draws

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

Caveats:

> Computation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

- Bootstrap
 - Sampling with replacement

Bootstrap

- If number of records is N, then N records are sampled with replacement
- A bootstrap samples of size N will contain about 63.2% of original records
 - ▶ Prob.(record is chosen in N draws) = $1 (1 1/N)^N \approx 1 e^{-1} = 0.632$

Bootstrap

- If number of records is N, then N records are sampled with replacement
- A bootstrap samples of size N will contain about 63.2% of original records
 - ▶ Prob.(record is chosen in N draws) = $1 (1 1/N)^N \approx 1 e^{-1} = 0.632$
- Variant: 0.632 bootstrap:

Combine accuracies of each bootstrap sample ϵ_i with the accuracy computed from a training set that contains all the samples acc_s:

Accuracy,
$$acc_{boot} = \frac{1}{b} \sum_{i=1}^{b} (0.632 \times \epsilon_i + 0.368 \times acc_s).$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC Curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+
		+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP,
 TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to Construct an ROC Curve

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

