

UNITED KINGDOM · CHINA · MALAYSIA

University of Nottingham

EEEE2045:

CONTROL COURSEWORK

EEEE2045 Control Coursework

Author:
George Downing

Student Number: 20273662

October 24, 2022

Contents

1	Aim of the Lab	2
2	Results and Discussion	3
	2.1 Exercise 1	. 3
	2.2 Exercise 2	
	2.3 Exercise 3	. 4
	2.4 Exercise 4a	. 4
	2.5 Exercise 4b	. 4
	2.6 Exercise 5	. 4
3	Design Questions and Solutions	5
4	Summary and Conclusions	6
\mathbf{R}	eferences	7

1 Aim of the Lab

2 Results and Discussion

2.1 Exercise 1

$$G_p(s) = \frac{a}{s+20} \tag{1}$$

$$\lim_{s \to 0} \left(G_p \left(s \right) \right) \tag{2}$$

Step Response

Figure 1: Graph showing step response of plant

The plant transfer function for a simple first order system is given by (1) where a is the gain of the system and s is the Laplace variable. Steady state is achieved when s approaches 0 as described by (2). Therefore the steady state gain of the system is a/20.

When a = 10 the steady state gain is $\frac{10}{20}$ which is 0.5.

Unity gain is achieved when the gain is equal to 1 at steady state. Hence the gain of the system is equal to 1 when a = 20. The step response of such system is shown in Figure 1.

The time constant is the time taken for the system to reach $1-e^{-1}$ or approximately 63.2% of its final value. The time constant is equal to the reciprocal of the gain of the system. Hence the time constant is equal to 0.05 seconds when the a=20. and 0.1 seconds when the a=10.

- 2.2 Exercise 2
- 2.3 Exercise 3
- 2.4 Exercise 4a
- 2.5 Exercise 4b
- 2.6 Exercise 5

3 Design Questions and Solutions

4 Summary and Conclusions

References