Deep Learning for Language: GRUs/LSTMs, Attention

Robin Jia

USC CSCI 467, Spring 2024 February 29, 2024

Review: "Vanilla"/"Elman" RNN

- Previous hidden state h_{t-1}
- Vector for current word x_t
- Learn linear function of both inputs, add bias, apply non-linearity
- Parameters: Recurrence params (W_b, W_x, b) , initial hidden state h_0 , word vectors

Review: Long-Range Dependencies

- Every step, you update the hidden state with the current word
- Over time, information from many words ago can easily get lost!
- This means RNNs can struggle to model long-range dependencies

The keys to the cabinet by the door on the left are (on the table)

Review: Vanishing Gradient Problem

- Gradient through "keys" word vector: $\delta Loss/\delta(h_T)$ * $\delta(h_T)/\delta(h_{T-1})$ * $\delta(h_{T-1})/\delta(h_{T-2})$ * ... * $\delta(h_3)/\delta(h_2)$ * $\delta(h_2)/\delta(x_2)$
 - What is each individual $\delta(h_t)/\delta(h_{t-1})$ term?
 - Elman network: $h_t = \tanh(W_h h_{t-1} + W_x x_t + b)$, $\frac{\delta h_t}{\delta h_{t-1}} = \tanh'(W_h h_{t-1} + W_x x_t + b) \cdot W_h$
 - After t timesteps, have a factor of $(W_h)^t$ (to the t-th power)!
 - If $W_h \ll 1$, this quickly becomes 0 ("vanishes")

Ignore for now The same parameter over and over!

Outline

- Reducing the effect of vanishing gradients
- Sequence-to-sequence learning
- Attention

Avoiding Vanishing Gradients

Where did we go wrong?

$$h_t = \tanh\left(W_h h_{t-1} + W_x x_t + b\right),\,$$

Multiplicative

relationship between previous state and next state

$$h_t = \tanh(W_h h_{t-1} + W_x x_t + b), \quad \frac{\delta h_t}{\delta h_{t-1}} = \tanh'(W_h h_{t-1} + W_x x_t + b) \cdot W_h$$

Leads to repeated multiplication by W_h

Avoiding Vanishing Gradients

- Extreme idea: A purely additive relationship
 - Pro: No vanishing gradients
 - Pro: Old hidden state carried through to all future times
 - Con: May be good to "forget" irrelevant information about old states

$$h_t = h_{t-1} + g(h_{t-1}, x_t),$$
Additive relationship

$$\frac{\delta h_t}{\delta h_{t-1}} = 1 + \frac{\delta}{\delta h_{t-1}} g(h_{t-1}, x_t)$$

Gradients also add, not multiply

Avoiding Vanishing Gradients

- Middle-ground: Gated recurrence relationship
 - Additive component makes gradients add, not multiply = less vanishing gradients
 - Forget gate allows for selectively "forgetting" some neurons within hidden state
 - When forget gate is all 1's, becomes the purely additive model (no vanishing)

Gated Recurrent Units (GRUs)

- One type of gated RNN
 - Here z_t is the "forget gate" vector
 - If $Z_{ti} = 1$:
 - Forget the *i*-th neuron
 - Allow updating its value to \tilde{h}_{ti} , computed from r_{ti}
 - If $z_{ti} = 0$:
 - Don't forget the *i*-th neuron
 - Do not allow updating its value
 - Additive relationship between h_t. ₁ and h_t
 - Parameters: W_n, W_n, W

Sigmoid ensures gate is between 0 and 1

Forget gate
$$(z_t) = \sigma(W_z \cdot [h_{t-1}, x_t])$$

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$$

Planned update to h_t $\tilde{h}_t = \tanh(W \cdot [r_t \odot h_{t-1}, x_t])$

Actual update to h_t $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$

Forget

Add update parts of h_{t-1} to parts that were forgotten

Long Short-Term Memory (LSTM)

Forget gate
$$f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f)$$

$$i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$$

$$o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$$

Planned update to c_t $\tilde{c}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c)$

Cell state $c_t = f_t \odot c_t + i_t \odot \tilde{c}_t$

Hidden state $h_t = o_t \odot \tanh(c_t)$ Add the previous cell state *

- Another, more complicated gated RNN
- Commonly used in practice
- Overall idea:
 - Split the hidden state into normal hidden state h, and "cell" state c,
 - Cell state uses gated recurrence with forget gate f_t
 - Hidden state is gated function of cell state
 - Also has input and output gates $i_t \& o_t$

Add the previous cell state * forget gate

What do LSTMs learn?

- Here: a characterlevel LSTM (not word-level)
- Blue/Green: Low/high values of 1 neuron
- Below: Top-5 predictions for next character
- This neuron seems to detect whether we're inside a URL

What do LSTMs learn?

- Here: a characterlevel LSTM (not word-level)
- Blue/Green: Low/high values of 1 neuron
- Below: Top-5 predictions for next character
- This neuron fires only inside a Markdown [[link]] (so it knows when to close the square brackets?)

Outline

- Reducing the effect of vanishing gradients
- Sequence-to-sequence learning
- Attention

Review: Autoregressive Language Modeling

- At each step, probabilistically predict the next word given current hidden state
- One step's desired output is the next step's input ("autoregressive")
- To mark end of sequence, model should predict the [END] token
- Called a "Decoder": Looks at the hidden state and "decodes" next word

Text classification ("Encoder only")

- First run an RNN over text
- Use the final hidden state as an "encoding" of the entire sequence
- Use this as features, train a classifier on top
- Downside: Later words processed better than early words (long range dependency issues)

Bi-directional encoders

- Run one RNN left-to-right, and another one right-to-left
 - (I'll call forward-direction hidden states f_t , backward-direction hidden states b_t)
- Concatenate the 2 final hidden states as final representation
 - Note: This encoding is twice as large now—we've doubled the number of features passed to the final classifier

Sequence-to-sequence Tasks

- Sequence-to-sequence tasks
 - Machine translation (Russian -> English)
 - Summarization (Document -> Summary)
 - Personal Assistants (Command -> Action)
- Encoder: "Reads" the input sentence, produces a feature vector summarizing the input
- Decoder: Uses that vector as its initial state, predicts output tokens one at a time

Encoder-decoder model

- Example: Machine Translation
 - Input = English text
 - Output = Spanish text
- Encoder: Process English sentence into vector
 - E.g. Bidirectional encoder
 + MLP layer to generate decoder's initial state
- Decoder: Use vector as initial hidden state and start doing language modeling in Spanish
- Vector space acts as a "shared language"

The Power of Building Blocks

- We now know about a lot of components
- We can assemble in any way we think makes sense, given the input and desired output
- We only have to think about the forward pass!
- Code to learn parameters is always the same:
 - Get a batch of training examples
 - Compute the loss (forward pass)
 - Run backpropagation to get gradient of loss w.r.t. parameters
 - Gradient descent to update parameters

Announcements

- HW2 due today @ 11:59pm
- Section Friday: Midterm Review (practice exam + questions)
- Midterm exam: Thursday March 7, SLH 100
 - Practice exams released on website
 - Everything through end of today's lecture is fair game
 - Will post spreadsheet of lecture video links on Piazza

Outline

- Reducing the effect of vanishing gradients
- Sequence-to-sequence learning
- Attention

What's missing? Alignment

- Challenge: The single encoder output has to store information about the entire sentence in a single vector
- Better strategy: Look for the next input word to translate, then translate that word
- Traditional MT: Alignment between input & output sentences
- Can we get a neural network to model alignments?

Attention

- Compute similarity between decoder hidden state and each encoder hidden state
 - E.g., dot product, if same size
- Normalize similarities to probability distribution with softmax
- Output: "Context" vector c = weighted average of encoder states based on the probabilities
 - No new parameters (like ReLU/max pool)
- Use c when computing decoder outputs or transitions
- Intuition
 - Step 1: Find similar input words
 - Step 2: Grab the encoder representation of those words
 - Step 3: Tell the decoder that this is relevant

Using Attention in Seq-to-seq model

- Many similar ways one could implement an attention mechanism
- Example from a well-known 2015 paper by Luong et al. on machine translation
 - Blue = encoder states
 - Red = decoder states
 - Note: Encoder was unidirectional here
- Dot-product decoder state h_t with encoder states, then apply softmax to produce weights a_t
- Weighted sum of encoder states yields context vector c_t
- Context vector c_t concatenated with decoder state h_t , fed through 1 MLP layer to generate \tilde{h}_t
- \tilde{h}_t used to make prediction y_t

Visualizing attention

- Source is English, Target is French
- Each row is a probability distribution over the English text
- Alignment makes sense, overcomes word order differences
 - When generating "économique" attend to "Economic"
 - When generating "européenne" attend to "European"

Attention as Retrieval

Machine Learning Mastery

https://machinelearningmastery.com > Blog

How to Develop a Neural Machine Translation System from ...

Oct 6, 2020 — **Machine translation** is a challenging task that traditionally involves large statistical **models** developed using highly sophisticated linguistic ...

GitHub https://google.github.io > nmt

Tutorial: Neural Machine Translation - seq2seq

For more details on the theory of Sequence-to-Sequence and **Machine Translation models**, we recommend the following resources: ... The **training** script will save ...

Neural Machine Translation... · Alternative: Generate Toy Data · Training

- Consider a search engine:
 - Queries: What you are looking for
 - E.g., What you type into Google search
 - Keys: Summary of what information is there
 - E.g., Text from each webpage
 - Values: What to give the user
 - E.g., The URL of each webpage

General Form of Attention

(8) Attention Layer

- Inputs (all vectors of length *d*):
 - Query vector q
 - Key vectors k₁, ..., k_T
 - Value vectors v₁, ..., v_T

How well does the query match each key?

- Output (also vector of length d)
 - Dot product q with each key vector k_t to get score s_t : $s_t = q^\top k_t$
 - Softmax to get probability distribution p_1 , ..., p_T :

$$p_t = \frac{e^{s_t}}{\sum_{j=1}^T e^{s_j}}$$

Return weighted average of value vectors:

Attention in Seq-to-seq RNNs

- Applies a general attention layer where:
 - Query = Current decoder hidden state
 - Keys = Encoder hidden states
 - Values = Encoder hidden states (same as keys)

Conclusion

- GRUs, LSTMs: Add gates + additive connections to reduce vanishing gradients
- Ways to use RNNs
 - As a decoder: To generate text
 - As an encoder: To produce feature vectors for text
 - Sequence-to-sequence: Use 2 RNNs, one for each purpose
- Attention: Know which part of the input matters when generating each word of the output
 - After Spring Break: Can we get rid of RNN's, and only use attention?