Table of contents

- Overview of models
- 2 General notation
- Model 1
- 4 Model 2
- Model 3
- 6 References

Overview of models

Overview of models

The following tables provide an overview of the specified models, with model extensions/changes highlighted in **bold**. Please note that the input data are assumed to be complete for each model (i.e., no missing data).

Model	Dependent variable	Constant & trend component
1	continuous, Normal, iid err	pooled, linear
2	continuous, Normal, iid err	individual effects, linear
3	continuous, Normal, iid err	individual effects, quadratic
4	count, Poisson, iid err	individual effects, quadratic

Table 1: Overview of specified models

Overview of models — continued

Placeholder

Model	Dependent variable	Constant & trend component
5	placeholder	placeholder
_		

Table 2: Overview of specified models — continued

General notation

General notation

Individual n, for n = 1, ..., N, where N is the number of individuals

Time period t, for t = 1, ..., T, where T is the number of time periods

 \mathbf{Y}^{obs} is a $N \times T$ matrix representing the observed dependent variable

 \mathbf{Y}^{pred} is a $N \times T$ matrix representing the predicted dependent variable

 \pmb{X} is a matrix of size $N \times T$ representing the explanatory variable (e.g., time periods, starting at zero)

General notation — continued

Latent class (aka, sub-population) c, for c=1,...,C, where C is the number of classes

 Π is a $N \times C$ matrix representing the mixture proportion (e.g., the probability that individual n=1 belongs to class c=1); thus,

$$0 \le \pi_{n,c} \le 1$$
 and $\sum_{c=1}^{C} \pi_{n,c} = 1$ (1)

Model 1

Model 1 — dependent variable

```
Continuous
```

```
Normal ( aka, Gaussian )
```

iid err: independent (i.e., uncorrelated over individuals and time periods) and identically distributed errors

No missing data

Model 1 — constant and trend component

Constant without interindividual differences within-class (i.e., the constant is allowed to vary between classes but not within classes)

Linear (i.e., non-stationary, deterministic) trend component without interindividual differences within-class (i.e., the trend component is allowed to vary between classes but not within classes)

Based on Koop (2003), the assumptions of no interindividual differences within-class regarding the constant and trend component correspond to a pooled model (i.e., a pooled model for each class)

According to Ram and Grimm (2009), latent class growth analysis (or LCGA for short) refers to a subset of GMMs assuming ${\bf no}$ interindividual differences within-class regarding the constant and trend component

Model 1 — likelihood

$$y_{n,t}^{obs} \sim \sum_{c=1}^{C} \pi_{n,c} Normal(\mu_{c,n,t}, \sigma_c)$$
 (2)

where M is a C-tuple containing $N \times T$ matrices, and σ is a row vector of size C.

$$\mu_{c,n,t} = \beta_{0,c} + \beta_{1,c} \, x_{n,t} \tag{3}$$

where eta_0 is a row vector of size C representing the constant, and eta_1 is a row vector of size C with

$$\beta_{1,c} < \beta_{1,c+1} \tag{4}$$

for identification. In combination with \pmb{X} , $\pmb{\beta}_1$ represents the linear trend component.

Model 1 — prior

$$\pi_n \sim \textit{Dirichlet}(\alpha)$$
 (5)

where α is a row vector of size C with $\alpha_c=1$ (i.e., π_n is assigned a flat, proper prior).

$$\beta_{0,c} \sim Normal(0,5)$$
 (6)

$$\beta_{1,c} \sim \textit{Normal}(0,1)$$
 (7)

$$\sigma_c \sim Normal(0,1) \mathbf{1}(\sigma_c > 0)$$
 (8)

where the Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_c>0)$.

Model 2

Model 2 — dependent variable

```
Continuous
```

```
Normal ( aka, Gaussian )
```

iid err: independent (i.e., uncorrelated over individuals and time periods) and identically distributed errors $\,$

No missing data

Model 2 — constant and trend component

Constant with interindividual differences within-class (i.e., the constant is allowed to vary between classes and within classes)

Linear (i.e., non-stationary, deterministic) trend component without interindividual differences within-class (i.e., the trend component is allowed to vary between classes but not within classes)

Based on Koop (2003), the assumptions of interindividual differences within-class regarding the constant and no interindividual differences within-class regarding the trend component correspond to an individual effects model (i.e., an individual effects model for each class)

Model 2 — likelihood

$$y_{n,t}^{obs} \sim \sum_{c=1}^{C} \pi_{n,c} \operatorname{Normal}(\mu_{c,n,t}, \sigma_c)$$
 (2)

where M is a C-tuple containing $N \times T$ matrices, and σ is a row vector of size C.

$$\mu_{c,n,t} = \beta_{0,n,c} + \beta_{1,c} \, x_{n,t} \tag{9}$$

where ${\pmb B}_0$ is a ${\pmb N} \times {\pmb C}$ matrix representing the constant, and ${\pmb \beta}_1$ is a row vector of size ${\pmb C}$ with

$$\beta_{1,c} < \beta_{1,c+1} \tag{4}$$

for identification. In combination with ${\pmb X}$, ${\pmb \beta}_1$ represents the linear trend component.

Model 2 — prior

$$\pi_n \sim \textit{Dirichlet}(\alpha)$$
 (5)

where α is a row vector of size C with $\alpha_c=1$ (i.e., π_n is assigned a flat, proper prior).

$$\beta_{0,n,c} \sim \textit{Normal}(0,10) \tag{10}$$

$$\beta_{1,c} \sim \textit{Normal}(0,1)$$
 (7)

$$\sigma_c \sim Normal(0,1) \mathbf{1}(\sigma_c > 0)$$
 (8)

where the Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_c > 0)$.

Model 3

References

Koop, G. (2003). Bayesian Econometrics. Wiley.

Ram, N. & Grimm, K. J. (2009). Growth Mixture Modeling: A Method for Identifying Differences in Longitudinal Change Among Unobserved Groups. *International Journal of Behavioral* Development, 33(6), 565-576.