Летняя школа «Современная математика» Дубна, июль 2009

Мишель Балазар

Асимптотический закон распределения простых чисел

Москва Издательство МЦНМО 2013

Балазар М.

Б20

Асимптотический закон распределения простых чисел. — М.: МЦНМО, 2013. — 64 с.

ISBN 978-5-4439-0062-9

Теорема о распределении простых чисел утверждает, что доля простых чисел среди чисел от 1 до n примерно равна $1/\ln n$. Ее классическое доказательство, предложенное в конце XIX века Адамаром и Валле-Пуссеном, использует комплексный анализ. Элементарное доказательство этой теоремы было найдено только спустя полвека Эрдёшем и Сельбергом. Изложению некоторого варианта этого доказательства и посвящена брошюра.

Брошюра написана по материалам цикла лекций, прочитанных автором участникам Летней школы «Современная математика» в Дубне в 2009 г.

ББК 22.132

[©] Балазар М., 2013.

[©] МЦНМО, 2013.

Предисловие

Mon maître Jules Tannery citait volontiers une phrase de Liouville ; après avoir comparé les démonstrations longues aux démonstrations courtes, il concluait : "En somme, les démonstrations longues ont un grand avantage, c'est d'être longues, et les démonstrations courtes ont un grand avantage, c'est d'être courtes".

E. Borel¹

Настоящая брошюра посвящена подробному изложению так называемого «элементарного» доказательства закона распределения простых чисел. Эта теорема утверждает, что число простых чисел, меньших или равных x, асимптотически равно $\frac{x}{\ln x}$, когда x стремится к бесконечности.

Слово «элементарное» не имеет смысла, если не оговорить, какие «элементы» математики может использовать доказательство. В данном случае подразумевается использование идей, необходимых для формулировки теоремы: арифметические функции и вещественный анализ.

Классическое доказательство Адамара и Валле-Пуссена (1896) воплотило в себе гениальные идеи Римана о применении комплексного анализа к изучению простых чисел. Эти идеи были столь оригинальными, а результат столь блестящим, почти совершенным, что мало кто решался искать другой, элементарный подход к доказательству. В результате оно было найдено только полвека спустя Эрдёшем и Сельбергом (1949). Идеи их доказательства, будучи естественными и красивыми, гармонично нашли свое место в общей теории арифметических функций.

Текст основан на изложении Постникова и Романова (1955) идей Эрдёша и Сельберга. Он является расширенной версией четырех лекций в летней школе «Современная математика» (Дубна, 2009). Автор благодарен всем слушателям, в том числе Максиму Стаценко, а также предложившим многочисленные исправления и улучшения К. Карузо, В. Клепцыну, А. Зыкину и Г. Мерзону.

¹«Мой учитель Жюль Таннери охотно цитировал фразу Лиувилля; сравнив длинные доказательства с короткими, Лиувилль делал следующий вывод: "Длинные доказательства хороши тем, что они длинные, а короткие доказательства хороши тем, что они короткие"». Э. Борель.

Список обозначений

$\pi(x)$	число простых чисел, не превосходящих x , с. 5
~	асимптотическая эквивалентность, с. 5
O, o	асимптотические обозначения, с. 5
p_k	k-е простое число, с. 6
ζ	ζ-функция Римана, с. 7
\mathcal{A}	множество арифметических функций, с. 9
δ	арифметическая δ -функция, с. 9
$\gamma = \gamma_{0,1}$	постоянная Эйлера, с. 13
*	мультипликативная свертка арифметических функций, с. 17
Φ_f	ряд Дирихле функции f , с. 18
Λ	функция Мангольдта, с. 20
ψ	сумма функции Мангольдта, с. 20
θ	функция Чебышева, с. 20
L	сумма функции ln, c. 22
μ	функция Мёбиуса, с. 23
M	сумма функции Мёбиуса, с. 24
F	пространство функций на [1; ∞), с. 25
ho	вспомогательная функция из равенств (32)—(33), с. 28
$\Lambda_2,\tilde{\Lambda}_2$	функции Сельберга, с. 41

1. Введение

1.1. Об определении числа простых чисел, не превосходящих данной величины

Примерно за 300 лет до нашей эры Евклид дал доказательство того, что «первых 1 чисел существует больше всякого предложенного количества первых чисел» («Начала», книга IX, предложение 20) — иными словами, что существует бесконечно много простых чисел.

Среди первых 10 чисел — 4 простых, среди первых ста — 25, среди первой тысячи — 168. Видно, что доля простых чисел убывает. Это, в общем-то, естественно: ведь чем больше число, тем больше у него потенциальных делителей и тем меньше у него шансов оказаться простым.

Но с какой скоростью убывает эта доля, как устроена асимптотика числа простых чисел, меньших заданного, чему примерно равно n-е простое число p_n ?

Ответ на этот вопрос был получен в конце XIX в. благодаря усилиям многих математиков: Эйлера, Дирихле, Чебышева, Римана, Адамара и Валле-Пуссена. Этим ответом является следующая теорема; чтобы ее сформулировать, мы введем одно обозначение: пусть $\pi(x)$ — число простых чисел, не превосходящих x.

Теорема (асимптотический закон распределения простых чисел).

$$\pi(x) \sim \frac{x}{\ln x} \quad (x \to \infty).$$

Иными словами, доля простых среди первых N чисел, $\frac{\pi(N)}{N}$, ведет себя как $\frac{1}{\ln N}$. Эту теорему часто называют просто «теоремой о простых числах».

Символ \sim здесь обозначает асимптотическую эквивалентность: запись

$$f(x) \sim g(x) \quad (x \to \infty)$$

означает, что

$$\frac{f(x)}{g(x)} \to 1$$
, когда $x \to \infty$.

Мы также будем использовать обозначения O и o: запись

$$f(x) = O(g(x)) \quad (x \in A)$$

означает, что существует такая положительная константа ${\it C}$, что

$$|f(x)| \leq C|g(x)|$$
 при $x \in A$,

¹Т. е. простых.

а запись

$$f(x) = o(g(x)) \quad (x \to \infty)$$

означает, что

$$\frac{f(x)}{g(x)} \to 0$$
, если $x \to \infty$.

Упражнение 1. Пусть p_k обозначает k-е простое число (p_1 = 2, p_2 = 3 и т.д.). Докажите, что теорема о простых числах равносильна утверждению

$$p_k \sim k \ln k \quad (k \to \infty).$$

Целью настоящей брошюры и будет доказательство этой теоремы; пока же обратимся к истории вопроса.

1.2. Краткая история теоремы о простых числах

В 1737 г. Эйлер представил петербургской Академии наук новое доказательство теоремы Евклида о бесконечности числа простых чисел:

$$\prod_{p} \frac{1}{1 - 1/p} = \sum_{n} \frac{1}{n} = \infty$$

(произведение берется по всем простым числам, сумма — по всем натуральным числам).

В **1793 г.**, будучи подростком, Гаусс проводил эксперименты по подсчету простых чисел на различных интервалах. На основании этих экспериментов Гаусс сделал вывод, что $\pi(x)$ приблизительно равно интегральному логарифму

$$\operatorname{li}(x) = \int_{2}^{x} \frac{dt}{\ln t}$$

при $x \to \infty$.

В **1798 г.** Лежандр в книге «Теория чисел» сформулировал утверждение о том, что $\pi(x)$ приблизительно равно $\frac{x}{a \ln x + \beta}$. В 1808 г. он предложил значения $\alpha = 1$, $\beta = -1,08366...$

В **1837 г.**, через сто лет после Эйлера, Дирихле развил его идеи и доказал, что существует бесконечно много простых чисел в любой арифметической прогрессии an+b со взаимно простыми a и b. Он использовал бесконечные ряды

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s},$$

которые до сих пор называются рядами Дирихле.

 $^{^{1}}$ Гаусс не публиковал результаты этих экспериментов, а только рассказал про них в 1849 г. в письме своему ученику, астроному Энке.

В **1848 г.** в работе [7], заглавие которой послужило названием раздела 1.1, Чебышев доказал, что если предел

$$\lim_{x \to \infty} \frac{\pi(x) \ln x}{x}$$

существует, то он равен 1, а также что если предел

$$\lim_{x \to \infty} \left(\ln x - \frac{x}{\pi(x)} \right)$$

существует, то он тоже равен 1. Тем самым, если предложенная Лежандром асимптотика $\pi(x) \approx \frac{x}{\alpha \ln x + \beta}$ имеет место 1, то $\alpha = 1$, $\beta = -1$.

Далее, в 1852 г. в статье [8] Чебышев получил неравенства

$$A\frac{x}{\ln x} \leqslant \pi(x) \leqslant B\frac{x}{\ln x}$$

с некоторыми (конкретными и довольно близкими к единице) A и B. Это позволило ему доказать так называемый *постулат Бертрана* о том, что для любого n>1 между n и 2n найдется хотя бы одно простое число.

В **1859 г.** Риман опубликовал статью с радикально новой точкой зрения на проблему распределения простых чисел. Он изучал функцию

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad \text{Re } s > 1,$$

называемую теперь дзета-функцией Римана, как функцию комплексной переменной (Эйлер рассматривал $\zeta(s)$ только для вещественных s). Центральную роль в этой статье играет тождество Эйлера, связывающее ее с простыми числами:

$$\zeta(s) = \prod_{p} \frac{1}{1 - 1/p^{s}}, \quad \text{Re } s > 1.$$

Риман аналитически продолжил дзета-функцию на всю комплексную плоскость (исключая точку s=1, где ζ имеет полюс) и получил для дзета-функции функциональное уравнение. С помощью новейших для того времени методов комплексного анализа и преобразования Фурье он указал замечательную явную формулу для $\pi(x)$ в терминах нулей дзета-функции в критической полосе $0 \leqslant \operatorname{Re} s \leqslant 1$. В связи с этим Риман предположил, что все нули этой функции находятся на «критической прямой» $\operatorname{Re} s = 1/2$. Эта знаменитая *гипотеза Римана* не доказанаи пол-

 $^{^{1}}$ С точностью $o(x/\ln^{2}x)$.

тора века спустя. Идеи Римана математики развивали до конца XIX века и в какой-то мере развивают их до сих пор.

В **1896 г.** после предварительных работ Адамара и фон Мангольдта, Адамар и Валле-Пуссен (независимо друг от друга) завершили доказательство асимптотического закона распределения простых чисел. Ключевой момент доказательства — это тот факт, что $\zeta(s) \neq 0$ при Re s=1.

В **1932 г.** Винер дал новое доказательство в рамках гармонического анализа на вещественной прямой, как применение придуманной им «тауберовой теории». Теорема Адамара и Валле-Пуссена о том, что $\zeta(s) \neq 0$ при Re s=1, играет главную роль и в этой работе.

В **1949 г.** Эрдёш и Сельберг получили «элементарное» доказательство теоремы о простых числах, то есть доказательство в рамках вещественного дифференциального и интегрального исчисления. Именно о нем мы и расскажем в этой брошюре.

Естественно, история продолжается. Появились новые доказательства 1 и новые идеи. Много усилий направлено на изучение остаточного члена

$$\pi(x) - \operatorname{li}(x)$$
.

Сегодня самая точная оценка принадлежит Виноградову [1] и Коробову [4] (1958):

$$\pi(x) - \text{li}(x) = O(xe^{-c(\ln x)^{3/5}(\ln \ln x)^{-1/5}}) \quad (x \to \infty)$$

для некоторой постоянной c>0. С другой стороны, гипотеза Римана равносильна оценке

$$\pi(x) - \text{li}(x) = O(x^{1/2} \ln x) \quad (x \to \infty).$$

Упражнение 2. Используя основную теорему арифметики, докажите, что для любого x>0

$$\prod_{p \leqslant x} \frac{1}{1 - 1/p} \geqslant \sum_{n \leqslant x} \frac{1}{n}.$$

Упражнение 3. На самом деле «официальное» определение интегрального логарифма следующее:

$$\operatorname{li}(x) = \lim_{\varepsilon \to 0} \left(\int_{0}^{1-\varepsilon} + \int_{1+\varepsilon}^{x} \right) \frac{dt}{\ln t}.$$

¹Самые интересные, на взгляд автора, — придуманные Бангом [10] (1964), Ньюманом [17] (1980), Дабусси [12] (1984) и Хильдебрандом [15] (1986).

Докажите, что это определение имеет смысл и $\mathrm{li}(x) \sim \frac{x}{\ln x}$ при $x \to \infty$. Определив $\beta(x)$ равенством

$$\operatorname{li}(x) = \frac{x}{\ln x - \beta(x)},$$

докажите, что $\beta(x) \to 1$ при $x \to \infty$.

1.3. Арифметические функции и их суммы

Определение. Арифметической функцией называется отображение $f: \mathbb{N} \to \mathbb{R}$.

На самом деле арифметическая функция — это все равно что последовательность вещественных чисел, но мы будем думать о ней именно как о функции.

Обозначим множество всех арифметических функций через \mathscr{A} . Поскольку функции, очевидно, можно складывать и умножать на числа, то это векторное пространство над вещественными числами.

Кроме того, нам потребуется следующая операция: *сумма* арифметической функции.

Определение. Пусть f — арифметическая функция. Ее *суммой* называется функция $F:(0,\infty)\to\mathbb{R}$, определенная по правилу

$$F(x) = \sum_{n \le x} f(n);$$

в частности, $F \equiv 0$ на (0, 1).

Отметим, что для удобства мы рассматриваем F как функцию вещественного аргумента (естественно, кусочно-постоянную), а не просто как арифметическую функцию, определенную на натуральных числах x.

К примеру, функция $\pi(x)$, исследованию которой и посвящена вся настоящая брошюра, — это сумма функции

$$P(n) = \begin{cases} 1, & n \text{ простое,} \\ 0 & \text{иначе.} \end{cases}$$

Пусть теперь

$$\delta(n) = \begin{cases} 1, & n = 1, \\ 0, & n > 1. \end{cases}$$
 (1)

Сумма функции δ — это функция

$$\chi(x) = \begin{cases} 1, & x \geqslant 1, \\ 0, & 0 \leqslant x < 1. \end{cases}$$

Сумма функции **1** — постоянной функции, тождественно равной 1, — это

$$\sum_{n \leqslant x} 1 = \lfloor x \rfloor = x - \{x\},\,$$

где $\lfloor x \rfloor$ — целая часть x, а $\{x\}$ — дробная часть x.

Полезно понимать, при каких условиях функция $\varphi:(0,\infty)\to\mathbb{R}$ является суммой некоторой арифметической функции f. Ответ прост: необходимо и достаточно, чтобы φ была равна константе φ_n на каждом интервале [n,n+1) $(n\in\mathbb{N})$, причем $\varphi=\varphi_0=0$ на (0,1). Тогда φ равна сумме f, где $f(n)=\varphi_n-\varphi_{n-1}$ $(n\in\mathbb{N})$.

Прежде чем заниматься $\pi(x)$ — суммой «хаотической» арифметической функции P(n), разумно рассмотреть более регулярные, например непрерывно дифференцируемые, функции. Оказывается, для асимптотики сумм таких функций имеется красивый и очень конкретный ответ, которому посвящен следующий раздел.

Упражнение 4. Найдите сумму функции id(n) = n.

Упражнение 5. Пусть $f \in \mathcal{A}$ и F — ее сумма. Найдите такую функцию $g \in \mathcal{A}$, что сумма g равна |F|. Докажите, что $|g(n)| \leq |f(n)|$ $(n \in \mathbb{N})$.

1.4. Формула Эйлера—Маклорена

Итак, мы хотим научиться достаточно точно оценивать суммы

$$\sum_{n\leq x} f(n),$$

где f — «хорошая», регулярная функция. Логично сравнивать сумму с интегралом

$$\int_{1}^{x} f(t) dt.$$

Оказывается, существует так называемая формула Эйлера—Маклорена, дающая приближенные выражения для суммы $\sum\limits_{n\leqslant N}$ для некоторого «разумного» класса (регулярных) функций f. Мы приведем здесь простейший вариант этой формулы: при выполнении определенных условий убывания на производные функции f найдется такая константа C,

что

$$\sum_{n \le N} f(n) \approx \int_{1}^{N} f(x) \, dx + C + \frac{1}{2} f(N) + \frac{1}{12} f'(N). \tag{2}$$

Разумеется, такая приближенная формула имеет смысл только вместе с оценкой на ее погрешность (обычно называемую остаточным членом).

Например, так устроена формула Тейлора: это точное равенство

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \dots + \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_{k;x_0}(x),$$

а все остальное (остаточные члены в форме Пеано, Лагранжа, Коши и т.д.) — это лишь разные варианты представления остаточного члена $r_{k:x_n}(x)$.

Следующее утверждение — простой и удобный вариант формулы Эйлера—Маклорена как *точного* равенства.

Предложение 1 (формула Сонина [6]). Пусть $f:(0,\infty)\to\mathbb{R}$ — непрерывно дифференцируемая функция. Тогда

$$\sum_{n \le x} f(n) = \int_{1}^{x} f(t) dt + \frac{f(1)}{2} - \left(\{x\} - \frac{1}{2} \right) f(x) + \int_{1}^{x} \left(\{t\} - \frac{1}{2} \right) f'(t) dt \quad (x > 0).$$

Доказательство. Пусть $N = \lfloor x \rfloor$. Интегрируя по частям, имеем

$$\int_{n}^{n+1} f(t) dt = (t-n)f(t) \Big|_{n}^{n+1} - \int_{n}^{n+1} (t-n)f'(t) dt =$$

$$= f(n+1) - \int_{n}^{n+1} \{t\}f'(t) dt.$$

Суммируя по n от 1 до N-1, мы получаем

$$\int_{1}^{N} f(t) dt = \sum_{1 \le n \le x} f(n) - \int_{1}^{N} \{t\} f'(t) dt.$$
 (3)

С другой стороны,

$$\int_{N}^{x} f(t) dt = (t - N)f(t) \Big|_{N}^{x} - \int_{N}^{x} (t - N)f'(t) dt = \{x\}f(x) - \int_{N}^{x} \{t\}f'(t) dt.$$
 (4)

Складывая (3) и (4), получим

$$\int_{1}^{x} f(t) dt = \sum_{1 < n \le x} f(n) + \{x\} f(x) - \int_{1}^{x} \{t\} f'(t) dt.$$
 (5)

Перенося два последних слагаемых из правой части (5) в левую и добавив тождество

$$\frac{f(1)}{2} - \frac{f(x)}{2} + \int_{1}^{x} \frac{f'(t)}{2} dt = 0,$$

получаем наше утверждение.

Упражнение 6. Пусть $\varphi(t)=\frac{\{t\}-\{t\}^2}{t}$. Докажите, что $|t\varphi'(t)|\leqslant 1$ при t>0, $t\not\in\mathbb{N}$.

А почему мы не остановились на формуле (5), зачем добиваться, чтобы во втором интеграле стояло $\{x\}-\frac{1}{2}$, а не просто $\{x\}$? Потому что

$$\int_{1}^{x} \left(\{t\} - \frac{1}{2} \right) dt = \frac{1}{2} (\{x\}^{2} - \{x\}) = O(1).$$
 (6)

И если f бесконечно дифференцируемая, то можно опять проинтегрировать по частям в интеграле $\int\limits_1^x \left(\{t\}-\frac{1}{2}\right)f'(t)\,dt$. Таким образом, процедуру приближения суммы функции f можно продолжать и дальше, «разлагая» ее по производным все больших порядков. Этот процесс и дает полную формулу Эйлера—Маклорена, где играют важную роль так называемые числа, многочлены и функции Бернулли. Это очень интересная теория, тесно связанная с численными и асимптотическими методами. Но в этой брошюре нам будет достаточно простейшей формулы Сонина.

Рассмотрим частный случай, когда формула Сонина принимает более интересный вид.

Предложение 2. Пусть функция $f:(0,\infty)\to\mathbb{R}$ непрерывно дифференцируема и производная f'(t) монотонно стремится к нулю при $t\to\infty$. Тогда

$$\sum_{n \le x} f(n) = \int_{1}^{x} f(t) dt + C(f) - \left(\{x\} - \frac{1}{2} \right) f(x) + \varepsilon(x) \quad (x > 0),$$

где

$$C(f) = \frac{f(1)}{2} + \int_{1}^{\infty} \left(\{t\} - \frac{1}{2} \right) f'(t) dt, \quad \varepsilon(x) = -\int_{x}^{\infty} \left(\{t\} - \frac{1}{2} \right) f'(t) dt.$$

Доказательство. Интеграл в C(f) сходится в силу оценки (6), предположения о поведении f' и известного признака сходимости Дирихле. Поэтому это утверждение есть лишь переформулировка формулы Сонина.

Упражнение 7 (функции Бернулли). Пусть $\varphi_1(x) = \{x\} - \frac{1}{2}$ и для любого $n \in \mathbb{N}$

$$\varphi_{n+1}(x) = \int_{0}^{x} (n+1)\varphi_n(t) dt + B_{n+1},$$

где константа B_{n+1} выбирается так, что $\int\limits_0^1 \varphi_{n+1}(t)\,dt=0$. Докажите, что $\varphi_n(x)$ — периодическая функция с периодом 1. Вычислите $\varphi_2(x)$, $\varphi_3(x)$. Докажите, что $\varphi_3(x)\geqslant 0$ при $0\leqslant x\leqslant 1/2$ и $\varphi_3(1-x)=-\varphi_3(x)$.

Упражнение 8. Пусть $f(t)\geqslant 0$ $(t\geqslant N,N$ целое) — монотонно стремящаяся к нулю при $t\to\infty$ функция. Докажите, что $\int\limits_N^\infty f(t)\varphi_1(t)\,dt\leqslant 0$ и $\int\limits_N^\infty f(t)\varphi_3(t)\,dt\geqslant 0$.

1.5. Четыре применения формулы Сонина

Рассмотрим четыре примера, которые понадобятся нам для дальнейших рассуждений.

1.5.1. Постоянная Эйлера. Применив предложение 2 к функции f(t) = 1/t, получим

$$\sum_{n \le x} \frac{1}{n} = \ln x + \gamma_{1,0} + \varepsilon_{1,0}(x) \quad (x > 0), \tag{7}$$

где

$$\gamma_{1,0} = \frac{1}{2} - \int\limits_{1}^{\infty} \left(\{t\} - \frac{1}{2} \right) \, \frac{dt}{t^2} = 1 - \int\limits_{1}^{\infty} \{t\} \, \frac{dt}{t^2}$$

И

$$\varepsilon_{1,0}(x) = \frac{1/2 - \{x\}}{x} + \int_{x}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{dt}{t^2}.$$
 (8)

Число $\gamma_{1,0}$ называется *постоянной Эйлера*, так как Эйлер впервые доказал существование предела

$$\lim_{n \to \infty} \left(\left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) - \ln n \right) = \gamma = \gamma_{1,0}.$$

Отметим, что $|\varepsilon_{1,0}(x)| \leq 1/x$ (x>0), поскольку $\left|\frac{1}{2}-\{x\}\right| \leq \frac{1}{2}$.

Упражнение 9. Пусть $H_N=1+\frac{1}{2}+\ldots+\frac{1}{N}$ (N-е гармоническое число). Докажите, что

$$\ln N + \gamma + \frac{1}{2N} - \frac{1}{12N^2} < H_N < \ln N + \gamma + \frac{1}{2N} \quad (N \in \mathbb{N}).$$

Упражнение 10. Докажите, что $0.57 < \gamma < 0.58$.

1.5.2. Формула Стирлинга. Применив предложение 2 к функции $f(t) = \ln t$, получим

$$\sum_{n \le x} \ln n = \int_{1}^{x} \ln t \, dt + C(\ln t) + \left(\frac{1}{2} - \{x\}\right) \ln x - \int_{x}^{\infty} \left(\{t\} - \frac{1}{2}\right) \frac{dt}{t} =$$

$$= x \ln x - x + \left(\frac{1}{2} - \{x\}\right) \ln x + \gamma_{0,1} + \varepsilon_{0,1}(x) \quad (x > 0), \quad (9)$$

где

$$\gamma_{0,1} = 1 + \int_{1}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{dt}{t}$$

И

$$\varepsilon_{0,1}(x) = \int_{x}^{\infty} \left(\frac{1}{2} - \{t\}\right) \frac{dt}{t}.$$

Стирлинг в 1730 г. обнаружил, что $\gamma_{0,1} = \frac{1}{2} \ln 2\pi$ (см. доказательство в [2, глава 9]). Отметим, что

$$\varepsilon_{0,1}(x) = \frac{\{x\}^2 - \{x\}}{2x} - \int_{x}^{\infty} (\{t\}^2 - \{t\}) \, \frac{dt}{2t^2}.$$

Отсюда несложно видеть, что $|\varepsilon_{0,1}(x)| \leq \frac{1}{8r} (x > 0)$.

Как, быть может, уже заметил внимательный читатель, сумма логарифмов всех чисел от 1 до N — это просто логарифм факториала:

$$\ln 1 + \ln 2 + ... + \ln N = \ln(1 \cdot 2 \cdot 3 \cdot ... \cdot N) = \ln N!$$

Поэтому формула (9) после избавления от логарифмов дает следующую оценку на N!:

$$\begin{split} N! &= \exp \left(N \ln N - N + \frac{1}{2} \ln N + \gamma_{0,1} + O\left(\frac{1}{N}\right) \right) = \\ &= \sqrt{2\pi N} \cdot \left(\frac{N}{e}\right)^N \cdot \left(1 + O\left(\frac{1}{N}\right)\right). \end{split}$$

Это знаменитая формула Стирлинга:

$$N! \sim \sqrt{2\pi N} \left(\frac{N}{\rho}\right)^N, \quad N \to \infty.$$

Упражнение 11. Докажите, что

$$\sqrt{2\pi N} \left(\frac{N}{e}\right)^N < N! < \sqrt{2\pi N} \left(\frac{N}{e}\right)^N e^{\frac{1}{12N}} \quad (N \in \mathbb{N}).$$

Упражнение 12. Докажите, что $\varepsilon_{0,1}(x) - x\varepsilon_{1,0}(x) = \{x\} - \frac{1}{2} + \varepsilon(x),$ где $|\varepsilon(x)| \leqslant \frac{1}{4x}$ при $x \geqslant 1$.

1.5.3. Функция $f(t) = \frac{\ln t}{t}$. Применив предложение 2 к функции $f(t) = \frac{\ln t}{t}$, получим

$$\sum_{n \le x} \frac{\ln n}{n} = \frac{1}{2} \ln^2 x + \gamma_{1,1} + \varepsilon_{1,1}(x) \quad (x > 0), \tag{10}$$

где

$$\gamma_{1,1} = \int_{1}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{1 - \ln t}{t^2} dt,$$

$$\varepsilon_{1,1}(x) = \left(\frac{1}{2} - \{x\} \right) \frac{\ln x}{x} - \int_{x}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{1 - \ln t}{t^2} dt. \tag{11}$$

Отметим, что

$$|\varepsilon_{1,1}(x)| \leq \frac{\ln x + 1}{x} \quad (x > 1).$$

1.5.4. Функция $f(t) = \ln^2 t$. Применив предложение 2 к функции $f(t) = \ln^2 t$, получим

$$\sum_{n \le x} \ln^2 n = \int_1^x \ln^2 t \, dt + C(\ln^2) + \left(\frac{1}{2} - \{x\}\right) \ln^2 x - \int_x^\infty \left(\{t\} - \frac{1}{2}\right) \cdot 2 \ln t \, \frac{dt}{t} =$$

$$= x \ln^2 x - 2x \ln x + 2x + \left(\frac{1}{2} - \{x\}\right) \ln^2 x + \gamma_{0,2} + \varepsilon_{0,2}(x) \quad (x > 0), \quad (12)$$

где

$$\gamma_{0,2} = -2 + 2 \int_{1}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{\ln t}{t} dt, \quad \varepsilon_{0,2}(x) = -2 \int_{x}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{\ln t}{t} dt.$$

Отметим, что

$$|\varepsilon_{0,2}(x)| \leqslant \frac{1+\ln x}{2x} \quad (x>1).$$

Теория постоянных C(f), появляющихся в формуле Эйлера—Маклорена, очень интересна. Ею занимался, в частности, индийский математик Рамануджан. В его тетрадях имеется следующее тождество¹:

$$\gamma_{0,2} - \gamma_{1,1} + 2\gamma_{0,1}^2 - \frac{1}{2}\gamma_{1,0}^2 = -\frac{\pi^2}{24}.$$

 $^{^{1}}$ См. [11, глава 8, разделы 17(i), 18(i)].

2. Алгебра арифметических функций

2.1. Основная теорема арифметики

Основная теорема арифметики утверждает, что каждое натуральное число однозначно (с точностью до порядка сомножителей) разлагается в произведение простых чисел. Заинтересованным читателям будет полезно посмотреть, как ее доказывал Гаусс в своей классической книге «Арифметические исследования», вышедшей в 1801 г.

Общая идея доказательства теоремы о распределении простых чисел состоит в том, что равномерность распределения натуральных чисел отражается и на распределении простых чисел. Для применения этой идеи нам необходимо сформулировать основную теорему арифметики в более удобном виде.

Для начала заметим, что ее можно переписать следующим образом: для каждого n найдутся такие числа $v_p(n) \in \mathbb{N} \cup \{0\}$, почти все равные нулю, что

$$n=\prod_p p^{\nu_p(n)}.$$

Эти числа называются p-показателями числа n; ясно, что это просто показатели степени, с которыми простые числа входят в разложение n на простые множители.

Эта переформулировка почти тавтологична, и можно было не вводить специальных обозначений. Мы, однако, воспользуемся этим, чтобы отметить, что показатели ν_p , рассматриваемые как *отображения* $\nu_p \colon \mathbb{N} \to \mathbb{N} \cup \{0\}$, играют важную роль в теории чисел. Так, кольцо p-адических чисел \mathbb{Z}_p — один из самых полезных инструментов в теории чисел — может быть определено как пополнение обычных чисел \mathbb{Z} по норме $\|\cdot\|_p = \frac{1}{p^{\nu_p(\cdot)}}$. (Впрочем, нам понятие p-адических чисел не потребуется.)

Итак, вернемся к основной теореме арифметики. Прологарифмировав равенство

$$n=\prod_p p^{\nu_p(n)},$$

получаем

$$\ln(n) = \sum_{p} v_{p}(n) \ln p = \sum_{p} \left(\sum_{k: p^{k} \mid n} 1 \right) \cdot \ln p = \sum_{p,k: p^{k} \mid n} 1 \cdot \ln p.$$
 (13)

Казалось бы, теорема приобрела гораздо менее удобочитаемый вид. Но благодаря нескольким — совершенно естественным — обозначениям и

понятиям, равенство (13) волшебным образом переписывается как

$$\ln = \Lambda * \mathbf{1} \tag{14}$$

и становится краеугольным камнем доказательства теоремы о распределении простых чисел.

Расшифруем формулу (14): в ее левой части стоит \ln — натуральный логарифм, $\mathbf{1}$ в правой части — это постоянная функция, тождественно равная 1; и \ln , и $\mathbf{1}$ мы при этом рассматриваем только на множестве натуральных чисел. Остается сказать, что такое * (операция свертки) и Λ (функция Мангольдта) — мы сделаем это дальше, в разделах 2.2 и 2.5 соответственно.

Упражнение 13. Найдите сумму p-показателя ν_p .

2.2. Свертка арифметических функций

Помимо сложения и умножения на число, на \mathscr{A} есть операция мультипликативной свертки:

$$(f*g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right) = \sum_{ab=n} f(a)g(b).$$

Эта операция является своеобразным «мультипликативным» аналогом двух «аддитивных» сверток: свертки функций

$$(f*g)(y) = \int_{-\infty}^{\infty} f(x)g(y-x) dx, \quad f,g: \mathbb{R} \to \mathbb{R},$$
 (15)

из анализа и свертки последовательностей

$$(f*g)(n) = \sum_{a+b=n} f(a)g(b), \quad f,g: \mathbb{N} \cup \{0\} \to \mathbb{N},$$
 (16)

из теории рядов и комбинаторики.

Эта операция за счет своей связи с мультипликативной структурой натуральных чисел оказывается одним из ключевых элементов, используемых в доказательстве Эрдёша и Сельберга.

Заметим, что операцию свертки можно воспринимать как «умножение» арифметических функций, ибо она обладает следующими свойствами:

- (i) f * g = g * f (коммутативность);
- (ii) (f*g)*h = f*(g*h) (ассоциативность);
- (iii) f * (g+h) = f * g + f * h (дистрибутивность);
- (iv) $f*(\lambda g) = \lambda (f*g)$ (линейность относительно умножения на число).

Докажем (іі) (остальные утверждения совсем тривиальны):

$$\begin{split} ((f*g)*h)(n) &= \sum_{a_1a_2=n} (f*g)(a_1)h(a_2) = \sum_{a_1a_2=n} \sum_{a_3a_4=a_1} f(a_3)g(a_4)h(a_2) = \\ &= \sum_{a_3a_4a_2=n} f(a_3)g(a_4)h(a_2) = \sum_{a_3a_5=n} f(a_3)\sum_{a_4a_2=a_5} g(a_4)h(a_2) = \\ &= \sum_{a_2a_4=n} f(a_3)(g*h)(a_5) = (f*(g*h))(n). \end{split}$$

Для введенной операции имеется edunuqa — это функция δ , заданная формулой (1). Действительно, для любой функции f по определению имеем

 $(f * \delta)(n) = \sum_{d \mid n} \delta(d) f\left(\frac{n}{d}\right) = f\left(\frac{n}{1}\right) = f(n).$

Из вышесказанного следует, что пространство \mathscr{A} с операцией свертки является алгеброй с единицей над полем вещественных чисел. Эта алгебра называется алгеброй Дирихле.

Упражнение 14. Вычислите 1*1, 1*id, id*id (где id(n) = n).

2.3. Формальные ряды Дирихле

Если вы уже сталкивались с понятием свертки, то, возможно, знаете, что преобразование Фурье

$$\widehat{f}(t) = \int_{-\infty}^{+\infty} f(x)e^{-itx} dx$$

переводит «аддитивную» свертку (15) в поточечное произведение:

$$\widehat{f * g}(t) = \widehat{f}(t) \cdot \widehat{g}(t).$$

Аналогом преобразования Фурье, переводящим аддитивную свертку (16) в произведение, является переход к производящим функциям $_{\infty}^{\infty}$

$$F_f(x) = \sum_{n=0}^{\infty} f(n)x^n$$
:

$$F_{f*g}(x) = F_f(x) \cdot F_g(x).$$

Оказывается, нечто подобное имеет место и для нашей мультипликативной свертки — для этого нужно рассмотреть «мультипликативную» производящую функцию

$$\Phi_f(s) = \sum_{n=1}^{\infty} f(n) \cdot n^{-s}.$$

Функция $\Phi_f(s)$ называется *рядом Дирихле* функции f. Для нас $\Phi_f(s)$ будет лишь формальным объектом, хотя на самом деле это не что иное,

как другая форма исходной функции f. Вычисления с такими объектами проводятся так же, как с конечными суммами. Например:

$$\begin{split} \Phi_f(s) \cdot \Phi_g(s) &= \left(\sum_{a \ge 1} f(a) a^{-s} \right) \cdot \left(\sum_{b \ge 1} f(b) b^{-s} \right) = \sum_{a,b} f(a) g(b) (ab)^{-s} = \\ &= \sum_n \left(\sum_{ab=n} f(a) g(b) \right) n^{-s} = \sum_n (f * g) (n) n^{-s} = \Phi_{f * g}(s). \end{split}$$

Мы не будем затрагивать тонкие вопросы о сходимости рядов Дирихле арифметических функций, ибо они уведут нас в русло комплексно-аналитического доказательства, касаться которого мы как раз не хотим.

Упражнение 15. Чему равны $\Phi_{\delta}(s)$, $\Phi_{1}(s)$, $\Phi_{\mathrm{id}}(s)$, $\Phi_{\nu_{n}}(s)$?

2.4. Сумма свертки двух арифметических функций

Выведем формулу для суммы H свертки h=f*g двух арифметических функций f и g — она понадобится нам в дальнейшем. Пусть F и G обозначают суммы этих функций. Тогда

$$H(x) = \sum_{n \le x} (f * g)(n) = \sum_{n \le x} \sum_{ab=n} f(a)g(b) = \sum_{ab \le x} f(a)g(b) =$$

$$= \sum_{a \le x} f(a)G\left(\frac{x}{a}\right) = \sum_{b \le x} g(b)F\left(\frac{x}{b}\right). \quad (17)$$

Обратите внимание, что суммы F и G здесь вычисляются в нецелых точках — как мы и обещали ранее, наше соглашение об их определенности там нам пригодилось.

Упражнение 16. Докажите принцип гиперболы Дирихле:

$$H(x) = \sum_{n \le x} (f * g)(n) =$$

$$= \sum_{a \le y} f(a)G\left(\frac{x}{a}\right) + \sum_{b \le x/y} g(b)F\left(\frac{x}{b}\right) - F(y)G\left(\frac{x}{y}\right) \quad (x, y > 0). \quad (18)$$

Упражнение 17. Пусть $f, g \in \mathcal{A}$. Докажите, что

$$\left| \sum_{n \le x} f(n) \left| G\left(\frac{x}{n}\right) \right| \right| \le \sum_{n \le x} |g(n)| \left| F\left(\frac{x}{n}\right) \right| \quad (x > 0).$$

2.5. Функция Мангольдта

В разделе 2.1 мы переформулировали основную теорему арифметики в виде «аддитивной» формулы (13) и пообещали позже привести ее к значительно более элегантному виду (14). Ее правая часть напоминает свертку — там присутствует то же самое суммирование по делителям. Теперь уже не представляет труда переписать эту правую часть в виде

$$\sum_{p,k:\,p^k|n} 1 \cdot \ln(p) = \sum_{d|n} \Lambda(d) = (\Lambda * \mathbf{1})(n),$$

где

$$\Lambda(m) = \begin{cases} \ln p, & \text{ если } m = p^k, \ k \geqslant 1, \\ 0 & \text{ иначе.} \end{cases}$$

Функция Λ называется *функцией Мангольдта*, и мы, как и было обещано, переписали основную теорему арифметики в замечательно коротком виде:

$$ln = \Lambda * 1$$
.

Заметим, что функция Λ очень хорошо «чувствует» простые числа: она отлична от нуля лишь на них и на их степенях. Возникает вопрос: а нельзя ли применить это к доказательству теоремы о распределении простых чисел?

Оказывается, можно! Рассмотрим сумму ψ функции Λ :

$$\psi(x) = \sum_{n \leqslant x} \Lambda(n)$$

и докажем следующее утверждение.

Предложение 3. Теорема о распределении простых чисел равносильна тому, что $\psi(x) \sim x$ при $x \to \infty$.

Доказательство. Для начала заметим, что в выражении

$$\psi(x) = \sum_{p,k: \, p^k \leqslant x} \ln p$$

слагаемые с $k\geqslant 2$ дают малый по сравнению с x вклад. Действительно, пусть

$$\theta(x) = \sum_{p \leqslant x} \ln p \quad (x > 0);$$

тем самым,

$$\psi(x) = \theta(x) + \theta(x^{1/2}) + \theta(x^{1/3}) + \dots$$

Поскольку $\theta(x)=0$ при x<2, получается, что $\theta(x^{1/k})=0$ при $k>\frac{\ln x}{\ln 2}$. Кроме того, $\theta(x)\leqslant x\ln x$, откуда

$$0 \le \theta(x^{1/2}) + \theta(x^{1/3}) + \dots \le \frac{\ln x}{\ln 2} \sqrt{x} \ln \sqrt{x} \le x^{1/2} \ln^2 x \quad (x > 1).$$

Следовательно,

$$\psi(x) = \theta(x) + o(x) \quad (x \to \infty),$$

так что нам остается доказать, что теорема о простых числах равносильна тому, что $\theta(x) \sim x$ при $x \to \infty$.

Заметим теперь, что для любого фиксированного $\varepsilon > 0$ мы можем также пренебречь частью суммы, отвечающей простым $p \leqslant x^{1-\varepsilon}$.

Действительно,

$$\sum_{p \leqslant x^{1-\varepsilon}} \ln p \leqslant (\ln x^{1-\varepsilon}) \cdot x^{1-\varepsilon} = \frac{(1-\varepsilon) \cdot \ln x}{x^{\varepsilon}} \cdot x = o(x).$$

С другой стороны, на интервале $(x^{1-\varepsilon}, x]$ логарифм почти не меняется:

$$(1-\varepsilon) \ln x < \ln p \le \ln x \quad (x^{1-\varepsilon} < p \le x).$$

Поэтому для функции

$$\theta_{\varepsilon}(x) = \sum_{x^{1-\varepsilon}$$

имеет место оценка

$$(1-\varepsilon)\ln x \cdot \#\{p \in (x^{1-\varepsilon}, x]\} \leq \theta_{\varepsilon}(x) \leq \ln x \cdot \#\{p \in (x^{1-\varepsilon}, x]\}.$$

Учитывая, что число простых чисел в интервале от $x^{1-\varepsilon}$ до x равно $\pi(x)-\pi(x^{1-\varepsilon})$ и поэтому не меньше $\pi(x)-x^{1-\varepsilon}$ и не больше $\pi(x)$, получаем

$$(1-\varepsilon)\frac{\pi(x)}{x/\ln x} - (1-\varepsilon)\frac{\ln x}{x^{\varepsilon}} \leqslant \frac{\theta(x) + o(x)}{x} \leqslant \frac{\pi(x)}{x/\ln x}.$$

Так как $\varepsilon > 0$ произвольно, несложно увидеть, что $\pi(x) \sim \frac{x}{\ln x} \Leftrightarrow \theta(x) \sim x$. Последнее же, как мы уже видели, равносильно тому, что $\psi(x) \sim x$. \square

Итак, искомая теорема о распределении простых чисел оказалась эквивалентной утверждению о поведении суммы ψ функции Λ .

Упражнение 18. Докажите, что

$$\theta(x) = \pi(x) \ln x - \int_{1}^{x} \pi(t) \frac{dt}{t} \quad (x > 0).$$

2.6. Асимптотика функции $\psi(x)$: угадывание ответа

Переформулировав доказываемое утверждение $\pi(x) \sim \frac{x}{\ln x}$ в виде $\psi(x) \sim x$, мы пока что не привели никакого обоснования, *почему* такая эквивалентность может иметь место. В этом разделе мы предоставим соображения в пользу этого.

А именно, вспомним, что мы записали основную теорему арифметики в виде

$$\ln = 1 * \Lambda$$
.

и перейдем к суммам в левой и правой частях. Мы получим равенство

$$L(x) = \sum_{n \le x} \psi\left(\frac{x}{n}\right),\tag{19}$$

где L и ψ — суммы функций \ln и Λ соответственно.

В силу формулы Стирлинга (9) мы знаем, что главный член асимптотики L(x) — это $x \ln x$. Каким будет главный член асимптотики в правой части? Предположим, что $\psi(x) \sim x$. Тогда

$$\sum_{n \le x} \psi\left(\frac{x}{n}\right) \sim \sum_{n \le x} \frac{x}{n} = x \sum_{n \le x} \frac{1}{n} \sim x \ln x \quad (x \to \infty)$$
 (20)

в силу формулы (7).

Таким образом, мы видим, что главные члены асимптотик у L(x) и $\sum_{n \leqslant x} \frac{x}{n}$ совпадают! Это и есть та причина, по которой логично ожидать,

что $\psi(x)$ будет вести себя как x. В самом деле, x — это именно та регулярная функция $\varphi(x)$, которая после применения формулы $\sum\limits_{n\leqslant x} \varphi\left(\frac{x}{n}\right)$

дает нужную асимптотику $x \ln x$. Конечно, мы не доказали, что поведение ψ сколько-нибудь регулярно, — мы лишь убедились, что наши действия разумно обоснованы.

В утверждении, которое мы теперь хотим доказать, говорится, что Λ обладает определенной «регулярностью в среднем». Но функция Λ , будучи связанной с основной теоремой арифметики, связана также с двумя регулярными функциями — \ln и 1.

С другой стороны, мы уже видели в разделе 2.4, что сумма свертки «хорошо выражается» через суммы сворачиваемых функций. Поэтому хотелось бы перенести функцию ${\bf 1}$ в левую часть формулы (14), «разделив» на нее, и получить выражение для Λ , которое можно будет исследовать.

Как именно это сделать, то есть как «поделить» на функцию 1, мы объясним в следующем разделе.

Упражнение 19. Докажите, что $\psi(x) - \psi(x/2) \le L(x) - 2L(x/2) \le \le \psi(x)$, и выведите отсюда, что $x \ln 2 + O(\ln x) \le \psi(x) \le 2x \ln 2 + O(\ln^2 x)$.

Упражнение 20. Докажите, что
$$\sum_{n \leq x} \frac{\Lambda(n)}{n} = x^{-1}L(x) + x^{-1}\sum_{n \leq x} \Lambda(n) \left\{ \frac{x}{n} \right\}$$
,

и выведите отсюда, что $\sum_{n \le x} \frac{\Lambda(n)}{n} = \ln x + O(1)$.

3. Обращение Мёбиуса

3.1. Функция Мёбиуса

Мы хотели бы перенести в равенстве $\ln = \Lambda * 1$ функцию 1 в левую часть. Как известно, в алгебре перенос сомножителя a в другую часть — это на самом деле домножение обеих частей равенства на обратный к a элемент, то есть на такой элемент b, что $a \cdot b = 1$.

В нашем случае в качестве произведения выступает свертка, функция a — это 1, а единица алгебры — это функция δ .

Прежде чем находить обратный элемент для функции 1, выясним, какие вообще элементы алгебры Дирихле $\mathscr A$ обратимы.

Очевидным необходимым условием обратимости функции f является $f(1) \neq 0$. Действительно, $(f*g)(1) = f(1) \cdot g(1)$, поэтому если $f*g = \delta$, то $f(1) \cdot g(1) = \delta(1) = 1$, а значит, $f(1) \neq 0$.

Оказывается, это же условие является и достаточным. А именно, пусть $f(1) \neq 0$. Рассмотрим систему линейных уравнений относительно значений g, получающуюся из равенства $f * g = \delta$:

Матрица этой системы является нижнетреугольной, а на ее диагонали стоят ненулевые коэффициенты f(1). Поэтому мы можем последовательно найти выражения для $g(1), g(2), \ldots$ и получить в итоге функцию g. (Подобные рассуждения, кстати, довольно часто применяются в алгебре — например, при обращении формальных рядов или уже упоминавшихся p-адических чисел.)

Итак, поскольку $\mathbf{1}(1)=1\neq 0$, то функция $\mathbf{1}$ — обратимый элемент алгебры Дирихле. Как устроена функция, обратная к ней? Не составляет труда найти первые значения:

$$1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, \dots$$

Как мы видим, среди первых значений обратной функции встречаются только $0,\,1$ и -1. Так ли это для всех значений? Оказывается, да!

Введем функцию Мёбиуса μ — арифметическую функцию, заданную следующим образом:

$$\mu(n) = \begin{cases} (-1)^r, & \text{если } n = q_1...q_r, \, q_1 < ... < q_r \text{ простые}; \\ 0, & \text{если } p^2 \,|\, n \text{ для некоторого простого числа } p. \end{cases}$$

(В частности,
$$\mu(1) = (-1)^0 = 1$$
.)

Предложение 4. Функция Мёбиуса — обратный элемент κ постоянной функции **1**.

Доказательство. Проверим, что $\mu*1=\delta$. Для n=1 это, очевидно, так: $1\cdot 1=1$. Пусть натуральное число n>1 разлагается на простые множители:

$$n = q_1^{\alpha_1} ... q_r^{\alpha_r}, \quad q_1 < ... < q_r, \quad \alpha_1, ..., \alpha_r \in \mathbb{N}.$$

Тогда в сумме

$$(\mu * \mathbf{1})(n) = \sum_{d \mid n} \mu(d) \cdot \mathbf{1}\left(\frac{n}{d}\right)$$

нужно учитывать только такие делители d, для которых $\mu(d) \neq 0$ — иными словами, свободные от квадратов. Такие делители имеют вид $d = q_1^{\varepsilon_1}...q_r^{\varepsilon_r}$, где все показатели $\varepsilon_i \in \{0,1\}, i=1,...,r$. Поэтому

$$\begin{aligned} (\mu * \mathbf{1})(n) &= \sum_{(\varepsilon_1, \dots, \varepsilon_r) \in \{0, 1\}^r} \mu(q_1^{\varepsilon_1} \dots q_r^{\varepsilon_r}) \cdot 1 = \sum_{(\varepsilon_1, \dots, \varepsilon_r) \in \{0, 1\}^r} (-1)^{\varepsilon_1 + \dots + \varepsilon_r} = \\ &= \left(\sum_{\varepsilon = 0, 1} (-1)^{\varepsilon}\right)^r = (1 + (-1))^r = 0. \quad \Box \end{aligned}$$

Итак, μ является обратным элементом к **1**, и мы можем переписать (14) в виде

$$\Lambda = \mu * \ln. \tag{21}$$

Таким образом, мы перенесли функцию 1 в левую часть (14). Увы, она при этом превратилась из регулярной в довольно «хаотичную»: принимающую значения 0, 1 и -1 функцию Мёбиуса μ . Впрочем, этого и следовало ожидать, поскольку функция Λ принимает значения 0 и $\ln p$, и мы хотим доказать регулярность поведения не самой Λ , а ее суммы ψ .

Мы уже видели суммы сверток ранее: формула (17), примененная к (21), дает нам соотношения

$$\psi(x) = \sum_{n \le x} \mu(n) L\left(\frac{x}{n}\right) = \sum_{n \le x} \ln n \cdot M\left(\frac{x}{n}\right),\tag{22}$$

где L и M обозначают соответственно суммы функций \ln и μ :

$$L(x) = \sum_{n \leqslant x} \ln n, \quad M(x) = \sum_{n \leqslant x} \mu(n).$$

Для функции L(x) мы имеем формулу Стирлинга (9). Применив ее к (22), получим

$$\psi(x) = \sum_{n \le x} \mu(n) \left(\frac{x}{n} \ln \frac{x}{n} - \frac{x}{n} + \left(\frac{1}{2} - \left\{ \frac{x}{n} \right\} \right) \ln \frac{x}{n} + \gamma_{0,1} + \varepsilon_{0,1} \left(\frac{x}{n} \right) \right). \tag{23}$$

Пока неясно, как из (23) получить искомый результат $\psi(x) \sim x$. Однако мы продвинулись в этом направлении: начав с формулы (22), где L — сумма арифметической функции \ln , мы пришли благодаря формуле Стирлинга к разложению $\psi(x)$ в сумму различных функций вида

$$\sum_{n \le x} \mu(n) \varphi\left(\frac{x}{n}\right),\tag{24}$$

причем почти все присутствующие в этих суммах функции φ — регулярные. Именно, в этом качестве мы встречали функции $\varphi(x) = x \ln x$, -x, $\left(\frac{1}{2} - \{x\}\right) \ln x$, $\gamma_{0,1}$, и $\varepsilon_{0,1}(x)$ (лишь третья из них разрывна). Нам потребуется исследовать подробнее задаваемые выражением (24) функции — обобщения сумм сверток, — а также функцию Мёбиуса и ее сумму M.

В следующих разделах мы будем постепенно накапливать информацию, необходимую для того, чтобы с помощью (23) доказать теорему о простых числах. Забегая вперед, отметим, что искомое утверждение $\psi(x) \sim x$ мы выведем в разделе 3.6 из оценки M(x) = o(x). При обосновании оценки M(x) = o(x) мы будем использовать замечательные идеи Эрдёша и Сельберга.

Для начала займемся суммами сверток.

Упражнение 21. Докажите, что

$$\sum_{n \le x} |\mu(n)| \le \frac{3x+3}{4} \quad (x \ge 1).$$

Упражнение 22. Выразите $\Phi_\mu,\,\Phi_{\ln}$ и Φ_Λ через дзета-функцию Римана $\zeta.$

3.2. Арифметические функции как операторы

Мы видели, что сумма H свертки h = f * g восстанавливается по сумме G функции g как

$$H(x) = \sum_{n \le x} f(n)G\left(\frac{x}{n}\right). \tag{25}$$

Формула (25) имеет смысл и для функции G, не являющейся суммой какой-либо арифметической функции.

Рассмотрим векторное пространство \mathscr{F} всех отображений из $[1, \infty)$ в \mathbb{R} (или, что то же самое, пространство вещественнозначных функций на $(0, \infty)$, обращающихся на (0, 1) в тождественный ноль).

Для любой функции $f\in\mathscr{A}$ определим оператор $S_f\colon\mathscr{F}\to\mathscr{F}$ формулой

$$S_f(\varphi)(x) = \sum_{n \le x} f(n) \varphi\left(\frac{x}{n}\right) \quad (\varphi \in \mathscr{F}).$$

Определение $S_f(\varphi)$ (дальше мы зачастую будем писать просто $S_f\varphi$) можно переписать следующим образом:

$$S_f(\varphi)(x) = \sum_{n \in \mathbb{N}} f(n) \varphi\left(\frac{x}{n}\right),$$

так как все слагаемые $\varphi(x/n)$ равны нулю при n > x.

Как устроена композиция таких операторов? Если H — сумма арифметической функции h, то $S_g(H)$ — сумма функции g*h. Поэтому сумма функции f*g*h, с одной стороны, равна $S_f(S_g(H))$, а с другой стороны, она равна $S_{f*g}(H)$. То есть для любой функции $H \in \mathscr{F}$, являющейся суммой некоторой $h \in \mathscr{A}$, имеем

$$S_f(S_g(H)) = S_{f*g}(H).$$
 (26)

Оказывается, равенство (26) выполнено для любой функции $H \in \mathscr{F}$. Иными словами,

$$S_f \circ S_g = S_{f*g} \quad (f, g \in \mathcal{A}). \tag{27}$$

Упражнение 23. Каким преобразованием график функции $\varphi\left(\frac{x}{n}\right)$ получается из графика функции φ ? На каком интервале функция $\varphi\left(\frac{x}{n}\right)$ обращается в тождественный ноль, если φ обращается в ноль на (0,1)? Упражнение 24. Докажите формулу (27).

Упражнение 25. Докажите, что $S_{\delta}=\mathrm{id}_{\pi}$, а если g — обратный элемент к f в алгебре Дирихле, то $S_g=S_f^{-1}$.

3.3. Обращение Мёбиуса и тождество для суммы функции Мангольдта

Так как μ — обратный элемент к ${\bf 1}$ в алгебре Дирихле, $S_\mu = S_1^{-1}$ (упражнение 25). Иначе говоря, если $\varphi_1, \, \varphi_2 \in {\mathscr F}$, то тождества

$$\varphi_2(x) = \sum_{n \le x} \varphi_1\left(\frac{x}{n}\right) (= S_1\varphi_1(x)) \quad (x \ge 1)$$

И

$$\varphi_1(x) = \sum_{n \leq x} \mu(n) \varphi_2\left(\frac{x}{n}\right) \; (= S_\mu \varphi_2(x)) \quad (x \geq 1)$$

равносильны. Этот факт называется *обращением Мёбиуса* и является одним из главных моментов доказательства теоремы о простых числах.

Рассмотрим несколько простых примеров.

• Пусть $\varphi_1(x) = 1$. Тогда

$$\varphi_2(x) = S_1 \varphi_1(x) = \sum_{n \leq x} 1 = \lfloor x \rfloor.$$

Поэтому

$$\sum_{n \le x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = 1,$$

что можно переписать как

$$\sum_{n \le x} \mu(n) \frac{x}{n} = 1 + \sum_{n \le x} \mu(n) \left\{ \frac{x}{n} \right\} \quad (x \ge 1).$$
 (28)

• Пусть $\varphi_1(x) = x$. Тогда

$$\varphi_2(x) = S_1 \varphi_1(x) = \sum_{n \le x} \frac{x}{n} = x(\ln x + \gamma + \varepsilon_{1,0}(x)),$$

откуда

$$\sum_{n \le x} \mu(n) \left(\frac{x}{n} \ln \frac{x}{n} + \gamma \frac{x}{n} + \frac{x}{n} \varepsilon_{1,0} \left(\frac{x}{n} \right) \right) = x \quad (x \ge 1).$$
 (29)

• Пусть $\varphi_1(x) = x \ln x$. Тогда

$$\varphi_{2}(x) = S_{1}\varphi_{1}(x) = \sum_{n \leq x} \frac{x}{n} \ln \frac{x}{n} =$$

$$= (x \ln x) \sum_{n \leq x} \frac{1}{n} - x \sum_{n \leq x} \frac{\ln n}{n} \stackrel{(7), (10)}{=}$$

$$= (x \ln x) (\ln x + \gamma + \varepsilon_{1,0}(x)) - x \left(\frac{1}{2} \ln^{2} x + \gamma_{1,1} + \varepsilon_{1,1}(x)\right) =$$

$$= \frac{1}{2} x \ln^{2} x + \gamma x \ln x - \gamma_{1,1} x + \alpha(x), \tag{30}$$

где

$$\alpha(x) = (x \ln x)\varepsilon_{1,0}(x) - x\varepsilon_{1,1}(x) = (x \ln x) \left(\frac{1/2 - \{x\}}{x} + \int_{x}^{\infty} \left(\{t\} - \frac{1}{2}\right) \frac{dt}{t^2}\right) - \left(\left(\frac{1}{2} - \{x\}\right) \frac{\ln x}{x} - \int_{x}^{\infty} \left(\{t\} - \frac{1}{2}\right) \frac{1 - \ln t}{t^2} dt\right)^{(8)} =$$

$$= \int_{x}^{\infty} \left(\{t\} - \frac{1}{2}\right) \frac{x + x \ln(x/t)}{t^2} dt.$$

Поэтому

$$\sum_{n \le x} \mu(n) \left(\frac{1}{2} \cdot \frac{x}{n} \ln^2 \frac{x}{n} + \gamma \frac{x}{n} \ln \frac{x}{n} - \gamma_{1,1} \frac{x}{n} + \alpha \left(\frac{x}{n} \right) \right) = x \ln x \quad (x \ge 1).$$
 (31)

Упражнение 26. Докажите, что

$$|\alpha(x)| \leqslant \frac{1}{7x} \quad (x > 0).$$

Упражнение 27. Пусть $\varphi(t) = \frac{\{t\} - \{t\}^2}{t}$. Докажите, что

$$\sum_{n \le x} \mu(n) (n^{-1} - x^{-1}) + x^{-1} \sum_{n \le x} \mu(n) \varphi\left(\frac{x}{n}\right) = 2x^{-1} - 2x^{-2} \quad (x \ge 1).$$

Сравним формулы (23), (29) и (28):

$$\psi(x) = \sum_{n \le x} \mu(n) \left(\frac{x}{n} \ln \frac{x}{n} - \frac{x}{n} + \left(\frac{1}{2} - \left\{ \frac{x}{n} \right\} \right) \ln \frac{x}{n} + \gamma_{0,1} + \varepsilon_{0,1} \left(\frac{x}{n} \right) \right), \quad (23)$$

$$x = \sum_{n \le x} \mu(n) \left(\frac{x}{n} \ln \frac{x}{n} + \gamma \frac{x}{n} + \frac{x}{n} \varepsilon_{1,0} \left(\frac{x}{n} \right) \right), \tag{29}$$

$$1 = \sum_{n \le x} \mu(n) \left(\frac{x}{n} - \left\{ \frac{x}{n} \right\} \right). \tag{28}$$

Если вычесть из формулы (23) формулу (29), а затем прибавить формулу (28), умноженную на $1+\gamma$, мы получим равенство

$$\psi(x) - x + 1 + \gamma = \sum_{n \le x} \mu(n) \rho\left(\frac{x}{n}\right) \quad (x \ge 1), \tag{32}$$

где

$$\rho(x) = \left(\frac{1}{2} - \{x\}\right) \ln x - (1+\gamma)\{x\} + \gamma_{0,1} + \varepsilon_{0,1}(x) - x\varepsilon_{1,0}(x). \tag{33}$$

Таким образом, мы продвинулись на шаг вперед, получив формулу $\psi(x)-x+1+\gamma=S_\mu\rho(x)$, где функция $\rho(x)$ мала (т. е. $O(\ln x)$) по сравнению с встречавшимися ранее функциями $\varphi_1(x)$ и $\varphi_2(x)$, удовлетворявшими тождествам $\psi(x)=S_\mu\varphi_1(x)$ и $x=S_\mu\varphi_2(x)$ (где $\varphi_1(x)$ и $\varphi_2(x)$ имели вид $x\ln x+\ldots$).

Из вышесказанного следует, что асимптотический закон распределения простых чисел равносилен утверждению

$$S_{\mu}\rho(x) = \sum_{n \le x} \mu(n)\rho\left(\frac{x}{n}\right) = o(x) \quad (x \to \infty).$$
 (34)

Упражнение 28. Докажите, что

$$|\rho(x)| \le \frac{1}{2} \ln x + \frac{1}{2} \quad (x \ge 1).$$

3.4. Оценки Чебыщева

Из тождества (32) уже легко вывести, что функция $\psi(x)$ имеет порядок роста x. Действительно,

$$\left| \sum_{n \leq x} \mu(n) \rho\left(\frac{x}{n}\right) \right| \leq \sum_{n \leq x} |\mu(n)| \left| \rho\left(\frac{x}{n}\right) \right|^{\text{ynp. 28}} \leq \frac{1}{2} \left(\sum_{n \leq x} |\mu(n)| + \sum_{n \leq x} |\mu(n)| \ln \frac{x}{n} \right)^{\text{ynp. 21}} \leq \frac{1}{2} \left(\frac{3x+3}{4} + \int_{1}^{x} \frac{3x/t+3}{4} \frac{dt}{t} \right) \leq \frac{3}{4}x + \frac{3}{8} + \frac{3}{8} \ln x,$$

и, следовательно,

$$\frac{x}{4} - \frac{3}{8} - \frac{3}{8} \ln x \le \psi(x) \le \frac{7x}{4} + \frac{3}{8} + \frac{3}{8} \ln x.$$

Мы почти пришли к результату Чебышева, но все-таки эта оценка груба: мы оценили функцию Мёбиуса по модулю единицей, не учитывая, что она принимает значения 0, 1 и -1 «вперемешку». В 1850 г. Чебышев получил оценки

$$0.92x \le \psi(x) \le 1.11x$$

при всех достаточно больших x, а затем Сильвестр в 1881 г. улучшил эту оценку до

$$0.95x \le \psi(x) \le 1.05x$$
.

Но чтобы продвинуться дальше, нам потребуется изучить подробнее теорию сумм сверток $S_f \varphi(x)$.

3.5. Оценки сумм сверток

Суммы сверток $S_f \varphi(x) = \sum_{n \leq x} f(n) \varphi\left(\frac{x}{n}\right)$ часто встречаются в аналитической теории чисел, поэтому очень важно знать их основные свойства.

3.5.1. Ступенчатые и гладкие функции. Во-первых, если $\varphi(x)$ равна сумме G(x) некоторой арифметической функции g (тогда, в частности, φ ступенчатая), то мы уже знаем, что

$$S_f \varphi(x) = \sum_{n \le x} f(n) G\left(\frac{x}{n}\right) = \sum_{k \le x} g(k) F\left(\frac{x}{k}\right).$$

Во-вторых, если $\varphi(x)$ непрерывная, кусочно непрерывно дифференцируемая на $[1, \infty)$ функция и $\varphi(1) = 0$ (мы тогда будем говорить,

что φ «гладкая»), то имеем

$$S_f \varphi(x) = \sum_{n \le x} f(n) \varphi\left(\frac{x}{n}\right) = \sum_{n \le x} f(n) \int_1^{x/n} \varphi'(t) dt =$$

$$= \int_1^x \varphi'(t) \left(\sum_{n \le x/t} f(n)\right) dt = \int_1^x \varphi'(t) F\left(\frac{x}{t}\right) dt.$$

Все функции, встречающиеся в этой брошюре, являются суммами ступенчатых и гладких функций.

Упражнение 29. Пусть $f \in \mathcal{A}$ такая, что F(x) = O(x), и пусть $k \in \mathbb{N}$. Докажите, что

 $\sum_{n \le x} f(n) \log^k \left(\frac{x}{n}\right) = O(x) \quad (x \ge 1).$

3.5.2. Оператор S_1 и интегральные суммы Римана. Пусть $\varphi \in \mathscr{F}$. Тогда

 $\frac{1}{x}S_1\varphi(x) = \frac{1}{x}\sum_n \varphi\left(\frac{x}{n}\right) = h\sum_n \omega(nh),$

где $h=\frac{1}{x}$ и $\omega(t)=\varphi\left(\frac{1}{t}\right)$. Иначе говоря, $\frac{1}{x}\,S_1\varphi(x)$ — интегральная сумма Римана для функции ω . Поэтому естественно сравнивать $\frac{1}{x}\,S_1\varphi(x)$ и

$$\int_{0}^{1} \omega(t) dt = \int_{1}^{\infty} \varphi(t) \frac{dt}{t^{2}}.$$

Следующие два предложения вытекают непосредственно из свойств интеграла Римана.

Предложение 5. Пусть $\varphi: [1, \infty) \to [0, \infty)$ — такая неубывающая функция, что

$$\int_{1}^{\infty} \varphi(t) \, \frac{dt}{t^2} < \infty.$$

Тогда

$$S_1 \varphi(x) \leqslant x \int_{1}^{\infty} \varphi(t) \frac{dt}{t^2}.$$

Предложение 6. Пусть функция $\varphi \in \mathscr{F}$ интегрируема по Риману на [1,a] и равна нулю на (a,∞) . Тогда

$$x^{-1}S_1\varphi(x) \to \int_1^\infty \varphi(t) \frac{dt}{t^2} \quad (x \to \infty).$$

Упражнение 30. Докажите предложение 5.

Упражнение 31. Докажите предложение 6.

Упражнение 32. Пусть $\varphi \in \mathscr{F}$ такая, что $\varphi(x)/x$ ограничена и стремится к нулю при $x \to \infty$. Докажите, что $S_1 \varphi(x) = o(x \ln x)$ при $x \to \infty$.

3.5.3. Лемма Аксера. Вспомним, что для достижения нашей цели — доказательства теоремы о распределении простых чисел — нам осталось получить оценку $S_{\mu}\rho(x)=o(x)$, где функция ρ задана (34). А откуда можно получить такую оценку? Оказывается, что имеет место следующее утверждение (формализованное в предложении 7 ниже): если числа f(n) малы в среднем и $\varphi(x)$ не возрастает слишком быстро, тогда и величина $x^{-1}(S_f\varphi)(x)$ мала. Эта простая формулировка общего явления достаточна для достижения цели, поставленной в этой брошюре.

Предложение 7 (лемма Аксера). Пусть $f \in \mathcal{A}$ такова, что

$$|f(n)| \leq 1 \quad (n \in \mathbb{N})$$

и

$$\frac{1}{N}\sum_{n=1}^{N}f(n)\to 0 \quad (N\to\infty).$$

Пусть, далее, $\varphi \in \mathscr{F}$ интегрируема по Риману на любом подотрезке луча $[1,\infty)$ и такова, что

$$|\varphi(t)| \leq \tilde{\varphi}(t) \quad (t \geq 1),$$

где $ilde{arphi}$ неубывающая и

$$\int_{1}^{\infty} \frac{\tilde{\varphi}(t)}{t^2} dt < \infty.$$

Тогда $(S_f \varphi)(x) = o(x)$ при $x \to \infty$.

Доказательство. Для начала заметим, что предположение

$$\frac{1}{N}\sum_{n=1}^{N}f(n)\to 0 \quad (N\to\infty),$$

фигурирующее в формулировке предложения, является частным случаем оценки $(S_f \varphi)(x) = o(x)$ для функции

$$\varphi(t) = \chi(t) = \begin{cases} 0, & t < 1; \\ 1, & t \ge 1. \end{cases}$$

Действительно,

$$(S_f \chi)(x) = \sum_n f(n) \chi\left(\frac{x}{n}\right) = \sum_{n \le x} f(n) = o(x).$$

Функция

$$\rho(t) = \begin{cases} 1, & t = 1; \\ 0, & t \neq 1 \end{cases}$$

также удовлетворяет оценке $(S_f \rho)(x) = o(x)$ (ибо $|(S_f \rho)(x)| \le 1$).

Теперь, пусть \mathscr{F}_0 — множество функций $\varphi \in \mathscr{F}$, интегрируемых по Риману на любом подотрезке луча $[1,\infty)$ и таковых, что $(S_f\varphi)(x)==o(x)$ при $x\to\infty$. Легко убедиться, что \mathscr{F}_0 — векторное пространство, инвариантное относительно «растяжений»: если $\varphi\in\mathscr{F}_0$ и $\lambda\geqslant 1$, тогда $\varphi_\lambda\colon t\mapsto \varphi(t/\lambda)$ также принадлежит множеству \mathscr{F}_0 (так как $(S_f\varphi_\lambda)(x)==(S_f\varphi)(x/\lambda)$). Следовательно, любая функция вида

$$\sum_{1 \le k \le K} a_k \chi_{\lambda_k} + \sum_{1 \le n \le N} b_n \rho_{\mu_n},\tag{35}$$

где a_k , $b_n \in \mathbb{R}$, λ_k , $\mu_n \geqslant 1$, принадлежит \mathscr{F}_0 . В частности, любая ступенчатая функция, равная нулю вне некоторого отрезка $[1, \alpha]$ (с произвольными значениями в точках разрыва), принадлежит \mathscr{F}_0 .

Пусть φ — функция, удовлетворяющая условиям предложения, и $\varepsilon > 0$. Существует такое $\alpha \geqslant 1$, что

$$\int_{a}^{\infty} \frac{\tilde{\varphi}(t)}{t^2} dt < \varepsilon.$$

Тогда найдутся две ступенчатые функции s^\pm , равные нулю вне $[1,\alpha]$ и такие, что

$$s^-(t) \leq \varphi(t) \leq s^+(t) \quad (1 \leq t \leq \alpha)$$

И

$$\int_{1}^{\alpha} (s^{+}(t) - s^{-}(t)) dt \leq \varepsilon$$

(поскольку φ интегрируема по Риману на [1, α]).

Тогда

$$\begin{split} S_f \varphi(x) &= \sum_{n \leq x} f(n) \varphi\left(\frac{x}{n}\right) = \\ &= \sum_{n \leq x/\alpha} f(n) \varphi\left(\frac{x}{n}\right) + \sum_{x/\alpha < n \leq x} f(n) s^-\left(\frac{x}{n}\right) + \sum_{x/\alpha < n \leq x} f(n) (\varphi - s^-)\left(\frac{x}{n}\right), \end{split}$$

откуда

$$|S_f \varphi(x)| \leq \sum_{n \leq x/a} \tilde{\varphi}\left(\frac{x}{n}\right) + \left|\sum_n f(n) s^-\left(\frac{x}{n}\right)\right| + \sum_n (s^+ - s^-) \left(\frac{x}{n}\right)$$

(так как $|\varphi| \leq \tilde{\varphi}$, $|f| \leq 1$ и $\varphi - s^- \leq s^+ - s^-$ на $[1, \alpha]$).

Рассмотрим эти три суммы. Во-первых, по предложению 5

$$\sum_{n \le x/\alpha} \tilde{\varphi}\left(\frac{x}{n}\right) \le x \int_{\alpha}^{\infty} \frac{\tilde{\varphi}(t)}{t^2} dt \le \varepsilon x.$$
 (36)

Во-вторых,

$$\left| \sum_{n \le x/\alpha} f(n) s^{-} \left(\frac{x}{n} \right) \right| = |S_f s^{-}(x)| \le \varepsilon x \quad (x \ge x_0)$$
 (37)

для некоторого x_0 (так как $s^- \in \mathscr{F}_0$).

В-третьих, по предложению 6

$$x^{-1} \sum_{n} (s^{+} - s^{-}) \left(\frac{x}{n}\right) \to \int_{1}^{\alpha} (s^{+}(t) - s^{-}(t)) t^{-2} dt \le \varepsilon.$$

Таким образом, имеем

$$\sum_{n} (s^{+} - s^{-}) \left(\frac{x}{n}\right) \leqslant 2\varepsilon x \quad (x \geqslant x_{1})$$
(38)

для некоторого $x_1 \geqslant x_0$.

Из (36), (37) и (38) вытекает, что
$$|S_f \varphi(x)| \leq 4\varepsilon x$$
 при $x \geqslant x_1$.

Первый результат такого рода получил Аксер [9] (1910). Мы для разнообразия выбрали вариант этого утверждения, принадлежащий Винтнеру [19] (1957) и близкий по духу к рассуждениям из функционального анализа. Однако на этом пути непросто получить явные оценки (зная, что $|F(x)| \le \varepsilon x$ при $x \ge x_0$, найти явно такие δ и x_1 , что $|S_f \varphi(x)| \le \delta x$ при $x \ge x_1$), что, вообще говоря, важно для дальнейшего развития теории распределения простых чисел. Существуют более эффективные варианты леммы Аксера, использующие дополнительные предположения о функции φ (например, требование, чтобы φ была φ 9 была φ 9

3.5.4. Оценки сверху. Если f — неотрицательная и неубывающая функция, мы получаем полезные оценки $S_f \varphi(x)$ сверху как для ступенчатых, так и для гладких $\varphi \geqslant 0$.

Предложение 8. Пусть $f: [1, \infty) \to [0, \infty)$ — неубывающая функция, а неотрицательная функция $\varphi(x) = G(x) \geqslant 0$ является суммой функции $g \in \mathcal{A}$. Тогда

$$S_f \varphi(x) \le \int_1^x f(t) \varphi\left(\frac{x}{t}\right) dt + \sum_{k \le x} |g(k)| f\left(\frac{x}{k}\right) \quad (x \ge 1).$$

Доказательство. Пусть $N = |x| \ (\geqslant 1)$. При $1 \le n \le N - 1$ имеем:

$$f(n)\varphi\left(\frac{x}{n}\right) = f(n) \int_{n}^{n+1} \varphi\left(\frac{x}{t}\right) dt + f(n) \int_{n}^{n+1} \left(\varphi\left(\frac{x}{n}\right) - \varphi\left(\frac{x}{t}\right)\right) dt \le$$

$$\leq \int_{n}^{n+1} f(t)\varphi\left(\frac{x}{t}\right) dt + f(n) \int_{n}^{n+1} \left(\sum_{\frac{x}{t} < k \le \frac{x}{n}} |g(k)|\right) dt \le$$

$$\leq \int_{n}^{n+1} f(t)\varphi\left(\frac{x}{t}\right) dt + f(n) \sum_{\frac{x}{n+1} < k \le \frac{x}{n}} |g(k)| \le$$

$$\leq \int_{n}^{n+1} f(t)\varphi\left(\frac{x}{t}\right) dt + \sum_{\frac{x}{n+1} < k \le \frac{x}{n}} |g(k)| f\left(\frac{x}{k}\right). \tag{39}$$

Кроме того,

$$f(N)\varphi\left(\frac{x}{N}\right) = f(N)\varphi(1) \leqslant |g(1)|f(x). \tag{40}$$

Витоге

$$\sum_{n \leq x} f(n) \varphi\left(\frac{x}{n}\right) = \sum_{n \leq N} f(n) \varphi\left(\frac{x}{n}\right) = \sum_{n < N} f(n) \varphi\left(\frac{x}{n}\right) + f(N) \varphi\left(\frac{x}{N}\right)^{(39), (40)} \leq$$

$$\leq \sum_{n < N} \int_{n}^{n+1} f(t) \varphi\left(\frac{x}{t}\right) dt + \sum_{n < N} \left(\sum_{\frac{x}{n+1} < k \leq \frac{x}{n}} |g(k)| f\left(\frac{x}{k}\right)\right) + |g(1)| f(x) =$$

$$= \int_{1}^{N} f(t) \varphi\left(\frac{x}{t}\right) dt + \sum_{\frac{x}{N} < k \leq x} |g(k)| \cdot f\left(\frac{x}{k}\right) + |g(1)| \cdot f(x) \leq$$

$$\leq \int_{1}^{x} f(t) \varphi\left(\frac{x}{t}\right) dt + \sum_{k \leq x} |g(k)| \cdot f\left(\frac{x}{k}\right). \quad \Box$$

Упражнение 33. Пусть $f: [1, \infty) \to [0, \infty)$ — неубывающая функция, и пусть $\varphi: [1, \infty) \to [0, \infty)$ непрерывно дифференцируема, $\varphi(1) = 0$. Докажите, что

$$S_f \varphi(x) \leq \int_1^x f(t) \varphi\left(\frac{x}{t}\right) dt + \int_1^x |\varphi'(t)| f\left(\frac{x}{t}\right) dt \quad (x \geq 1).$$

3.6. Теорема о простых числах и среднее значение функции Мёбиуса

Из леммы Аксера (предложение 7) и переформулировки (34) теоремы о простых числах следует, что утверждение

$$M(x) = o(x) \quad (x \to \infty) \tag{41}$$

достаточно для доказательства искомой асимптотики $\psi(x) \sim x$. Действительно,

 $\psi(x) - x + 1 + \gamma = \sum_{n \le x} \mu(n) \rho\left(\frac{x}{n}\right) \quad (x \ge 1), \tag{32}$

где $|\mu(n)| \le 1$, функция $\rho(x)$ интегрируема по Риману на любом отрезке, содержащемся в $[1, \infty)$, и

$$|\rho(x)| \le \frac{1}{2} \ln x + \frac{1}{2}, \quad \int_{1}^{\infty} t^{-2} \left(\frac{1}{2} \ln t + \frac{1}{2}\right) dt < \infty,$$

так что (41) влечет

$$\sum_{n \le x} \mu(n) \rho\left(\frac{x}{n}\right) = o(x) \quad (x \to \infty)$$

в силу леммы Аксера.

На самом деле можно провести рассуждения в обратную сторону и вывести оценку M(x) = o(x) при $x \to \infty$ из того, что $\psi(x) \sim x$. Мы проделаем этот вывод в разделе 4.2.

Упражнение 34. Пусть $f(1)=1,\ f(2)=-1,\ f(n)=0$ при n>2; $g(n)=\mu(n)$ при нечетных n и g(n)=0 при четных n. Докажите, что $\mu=f*g$, и выведите отсюда, что $|M(x)|\leqslant \frac{x+3}{4}$.

3.7. Чезаровские средние функции Мёбиуса

Для доказательства основной теоремы нам остается показать, что $\frac{1}{x}M(x) \to 0 \ (x \to \infty)$. Иными словами, что *чезаровские средние* $\frac{1}{N}\sum_{n=1}^N \mu(n)$ функции Мёбиуса стремятся к нулю. Этот факт мы и будем доказывать в оставшейся части брошюры.

Легко видеть, что $\left|\frac{M(x)}{x}\right| \leqslant 1$ (поскольку $|\mu(n)| \leqslant 1$ при всех n). Более того, мы уже знаем, что $\left|\frac{M(x)}{x}\right| \leqslant \frac{3}{4} + o(1)$ и даже что $\left|\frac{M(x)}{x}\right| \leqslant \frac{1}{4} + o(1)$ (упражнения 21 и 34). Как же улучшить эти оценки?

Важно отметить, что простейший частный случай формулы обращения Мёбиуса — тождество

$$\sum_{n \leqslant x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = 1$$

— позволяет доказать, что отклонение M(x)/x иногда бывает маленьким.

Заметим для начала, что имеет место следующее

Предложение 9. Для любого $x \ge 1$ имеем

$$\left|\sum_{n\leq x}\frac{\mu(n)}{n}\right|\leqslant 1.$$

Доказательство. Достаточно рассмотреть случай, когда x — целое. Напомним, что в силу формулы обращения Мёбиуса имеем

$$\sum_{n \le x} \mu(n) \frac{x}{n} = 1 + \sum_{n \le x} \mu(n) \left\{ \frac{x}{n} \right\} \quad (x \ge 1).$$
 (28)

Заметив, что $\{x/x\} = 0$, и поделив на x, получим

$$\left| \sum_{n \leqslant x} \frac{\mu(n)}{n} \right| = \frac{1}{x} \cdot \left| 1 + \sum_{n \leqslant x} \mu(n) \left\{ \frac{x}{n} \right\} \right| = \frac{1}{x} \cdot \left| 1 + \sum_{n \leqslant x-1} \mu(n) \left\{ \frac{x}{n} \right\} \right| \leqslant$$

$$\leqslant \frac{1}{x} \cdot (1 + (x-1)) = 1. \quad \Box$$

Предложение 10. Для любых a u b таких, что $b \ge a \ge 1$, имеем

$$\left|\int_{a}^{b} M(t) \frac{dt}{t^2}\right| \leq 4.$$

Доказательство. Заметим, что

$$\left| \int_{1}^{x} M(t) \frac{dt}{t^{2}} \right| = \left| \sum_{n \leq x} \mu(n) \int_{n}^{x} \frac{dt}{t^{2}} \right| = \left| \sum_{n \leq x} \mu(n) \left(\frac{1}{n} - \frac{1}{x} \right) \right| \leq$$

$$\leq \left| \sum_{n \leq x} \frac{\mu(n)}{n} \right| + \frac{1}{x} \sum_{n \leq x} |\mu(n)| \leq 2,$$

откуда

$$\left| \int_{a}^{b} \frac{M(t)}{t^{2}} dt \right| = \left| \int_{1}^{b} \frac{M(t)}{t^{2}} dt - \int_{1}^{a} \frac{M(t)}{t^{2}} dt \right| \le 2 + 2 = 4.$$

Теперь мы можем доказать

Предложение 11. Для любого $\delta > 0$ и любого A > 0 имеем

$$\inf_{[A,A\cdot e^{1/\delta}]} \left| \frac{M(t)}{t} \right| \le 4\delta. \tag{42}$$

Доказательство. Функция M(t) ступенчатая и принимает только целочисленные значения, причем ее значения на соседних ступеньках отличаются на ± 1 . Поэтому для функции M(t) на отрезке $[a,b] = [A,Ae^{1/\delta}]$ возможны два варианта:

1) Функция M(t) меняет знак на [a,b]. В этом случае M(t) обязательно принимает значение 0 и

$$\min_{[a,b]} \left| \frac{M(t)}{t} \right| = 0.$$

2) Функция M(t) сохраняет знак на [a, b]. Тогда имеем

$$4 \geqslant \left| \int_{a}^{b} M(t) \frac{dt}{t^{2}} \right| = \int_{a}^{b} \left| \frac{M(t)}{t} \right| \frac{dt}{t} \geqslant \inf_{[a,b]} \left| \frac{M(t)}{t} \right| \cdot \int_{a}^{b} \frac{dt}{t} = \inf_{[a,b]} \left| \frac{M(t)}{t} \right| \cdot \ln\left(\frac{b}{a}\right), \quad (43)$$

откуда следует доказываемое утверждение.

Таким образом, мы видим, что M(t)/t принимает маленькое значение в какой-то точке отрезка $[A,Ae^{1/\delta}]$. Поскольку M(t) меняется медленно, мы можем легко распространить это предложение на «близкие точки», что будет еще одним шагом в направлении нашей цели.

Предложение 12. Для любых δ и A>0 таких, что $0<\delta\leqslant 1$ и $A\geqslant \geqslant 1/\delta$, найдется подотрезок $I=[a,ae^\delta]$ отрезка $[A,A\cdot e^{2/\delta}]$, на котором выполняется неравенство

$$\left| \frac{M(t)}{t} \right| \le 8\delta \quad (t \in I).$$
 (44)

П

Доказательство. Выберем такую точку $a\!\in\![A,A\!\cdot\!e^{1/\delta}]$, что $\frac{|M(a)|}{a}\!\leqslant\!5\delta$ (она найдется, поскольку соответствующая точная нижняя грань в силу предложения 11 не превосходит 4δ). Заметим, что поскольку $|M(u)-M(v)|\leqslant|u-v|+1$, для любой точки $y\in[a,ae^\delta]$ имеет место оценка

$$|M(y)| \leq |M(a)| + |y-a| + 1 \leq 5\delta a + (e^{\delta} - 1)a + 1 \leq 5\delta a + 2\delta a + \delta a \leq 8\delta y.$$

Кроме того,

$$ae^{\delta} \leqslant Ae^{\delta+1/\delta} \leqslant Ae^{2/\delta}$$
.

Упражнение 35. Докажите, что $\left|\int_{1}^{x} t^{-2}M(t) dt\right| \leqslant \frac{1}{2}$ при $x \geqslant 1$.

4. Дифференциальные уравнения и их следствия

4.1. Дифференциальные уравнения в алгебре Дирихле

Каким образом из того, что отношение $\frac{M(x)}{x}$ бывает «иногда» сколь угодно малым (мы это только что доказали), можно вывести, что оно стремится к 0 (это и является нашей целью)?

Было бы хорошо установить, как связаны отношения $\frac{M(x)}{x}$ в близких точках (что-то вроде дифференциального уравнения): тогда мы смогли бы распространить оценку (44) на «соседние точки».

В связи с этим возникает вопрос: имеется ли в алгебре Дирихле операция, аналогичная дифференцированию обычных функций? Такая

операция должна быть линейной и удовлетворять правилу Лейбница (f*g)'=f'*g+f*g' (напомним, что роль умножения в алгебре Дирихле играет свертка).

Оказывается, такая операция есть, и это — поточечное умножение на ln, а именно:

$$f'(n) = f(n) \cdot \ln n$$
.

Действительно¹,

$$(f*g)'(n) = (\ln n) \cdot (f*g)(n) = \ln n \cdot \sum_{d|n} f(d)g\left(\frac{n}{d}\right) =$$

$$= \sum_{d|n} (f(d)\ln d)g\left(\frac{n}{d}\right) + \sum_{d|n} f(d)\left(g\left(\frac{n}{d}\right)\ln\left(\frac{n}{d}\right)\right) = (f'*g)(n) + (f*g')(n).$$

Таким образом, правило Лейбница выполнено, и мы ввели дифференцирование в алгебре Дирихле (его линейность очевидна).

Есть и другое обоснование таким образом введенного дифференцирования. Мы уже знаем, что переход к (мультипликативной) производящей функции переводит свертку в произведение: $\Phi_{f*g} = \Phi_f \cdot \Phi_g$. Такой переход действует на наше дифференцирование следующим образом:

$$\Phi_{f'}(s) = \sum_{n \ge 1} \frac{f'(n)}{n^s} = \sum_{n \ge 1} \frac{f(n) \ln n}{n^s} = -\Phi'_f(s).$$

То есть введенное нами дифференцирование можно воспринимать как обычное дифференцирование (со знаком «минус») производящих функций.

Попутно мы получили новый вариант формулировки основной теоремы арифметики:

$$\boxed{\mathbf{1}' = \Lambda * \mathbf{1}.} \tag{45}$$

Оказывается, основная теорема арифметики— это линейное дифференциальное уравнение первого порядка относительно функции ${\bf 1}$ в алгебре Дирихле!

Мы только что научились дифференцировать элементы алгебры Дирихле. Можем ли мы написать дифференциальное уравнение, которому удовлетворяет функция Мёбиуса?

Оказывается, это несложно сделать. А именно, из самого определения функции Мёбиуса

$$\mu * \mathbf{1} = \delta$$

¹Обозначение f' нужно воспринимать в соответствии с контекстом, ибо, например, если $f(n) = \ln n$, то f'(n) — это $\ln^2 n$, а не 1/n. Впрочем, всюду далее будет ясно, что имеется в виду.

вытекает, что

$$\mu' * \mathbf{1} + \mu * \mathbf{1}' = \delta' = \delta \cdot \ln = 0$$
,

то есть

$$\mu' * \mathbf{1} = -\mathbf{1}' * \mu = -\ln * \mu = -\Lambda$$

и, следовательно,

$$\mu' = -\Lambda * \mu. \tag{46}$$

Упражнение 36. Для каких $a \in \mathcal{A}$ дифференциальное уравнение f' = a * f имеет нетривиальное решение в алгебре Дирихле?

4.2. Неравенство для суммы функции Мёбиуса

Итак, мы получили (46) — дифференциальное уравнение на функцию Мёбиуса. Но нас интересует поведение не самой функции Мёбиуса, а ее суммы. Нельзя ли воспользоваться этим дифференциальным уравнением для оценки этой суммы? Увы, как мы увидим ниже, наша первая попытка не приведет к успеху, но мы ее, тем не менее, осуществим, чтобы «наработать технику».

Для начала просуммируем (46):

$$\sum_{n \le x} \mu(n) \ln n = -\sum_{n \le x} \Lambda(n) M\left(\frac{x}{n}\right). \tag{47}$$

В левой части (47) стоит сумма $\mu(n) \ln n$. Функция $\ln n$ «почти постоянна», поэтому естественно вынести $\ln x$ в отдельное слагаемое:

$$\sum_{n \le x} \mu(n) \ln n = \sum_{n \le x} \mu(n) \ln x - \sum_{n \le x} \mu(n) \ln \frac{x}{n}.$$
 (48)

В правой части (48) первое слагаемое равно $M(x) \ln x$, а второе оценивается как O(x) (см. упражнение 29). Подставив это в (47), перенеся O(x) в правую часть и разделив на $\ln x$, имеем

$$M(x) = -\frac{1}{\ln x} \sum_{n \le x} \Lambda(n) M\left(\frac{x}{n}\right) + O\left(\frac{x}{\ln x}\right). \tag{49}$$

Отсюда следует, что

$$|M(x)| \le \frac{1}{\ln x} \sum_{n \le x} \Lambda(n) \left| M\left(\frac{x}{n}\right) \right| + O\left(\frac{x}{\ln x}\right). \tag{50}$$

Неясно, каким образом из неравенства (50) вывести, что M(x) = o(x). В правой части находится величина $S_{\Lambda}|M|$, которая выглядит сложнее, чем $\psi = S_{\Lambda}\chi$, для которой мы как раз и пытаемся получить оценку $\psi(x) \sim x$. Увы, здесь нам приходится признать, что мы зашли в тупик.

Однако теперь мы можем доказать, как и было обещано в разделе 3.6, что

$$\psi(x) \sim x \ (x \to \infty) \Rightarrow M(x) = o(x) \ (x \to \infty).$$

Действительно, из (49) и равенства $\mu * \mathbf{1} = \delta$ следует, что

$$\begin{split} M(x) &= -\frac{1}{\ln x} \sum_{n \leqslant x} (\Lambda(n) - 1) M\left(\frac{x}{n}\right) + O\left(\frac{x}{\ln x}\right) = \\ &= -\frac{1}{\ln x} \sum_{n \leqslant x} \mu(n) \varphi\left(\frac{x}{n}\right) + O\left(\frac{x}{\ln x}\right), \end{split}$$

где $\varphi(x) = \psi(x) - \lfloor x \rfloor$. Поскольку $|\mu(n)| \le 1$, из условия $\psi(x) - x = o(x)$ и того факта, что $\psi(x) = O(x)$, вытекает, что M(x) = o(x) (см. упражнение 32).

Упражнение 37. Пусть $f \in \mathcal{A}$, $\varphi \in \mathcal{F}$. Докажите, что

$$S_{f'}\varphi = (S_f\varphi) \ln -S_f(\varphi \ln).$$

4.3. Идея Сельберга: дифференциальное уравнение второго порядка

Дифференцирование в алгебре Дирихле дало нам новую точку зрения на наш главный вопрос: основную теорему арифметики можно рассматривать как дифференциальное уравнение (45) относительно функции ${\bf 1}$. При этом задача о распределении простых чисел оказывается «обратной задачей» для этого дифференциального уравнения: мы хорошо понимаем, как устроено решение уравнения (45) (то есть постоянная функция ${\bf 1}$), а из этого хотим описать свойства «параметра» Λ этого уравнения.

Нам не удалось вывести теорему о простых числах из уравнения (45) и его следствия $\mu' = -\Lambda * \mu$. Сельберг предложил замечательную идею: продифференцировать основную теорему арифметики.

Итак, из (45) вытекает, что

$$\ln^2 = \mathbf{1}'' = \Lambda' * \mathbf{1} + \Lambda * \mathbf{1}' = \Lambda' * \mathbf{1} + \Lambda * \Lambda * \mathbf{1} = \Lambda_2 * \mathbf{1},$$

где

$$\Lambda_2 = \Lambda' + \Lambda * \Lambda = \Lambda \ln + \Lambda * \Lambda$$
.

Аналогичным образом из (46) вытекает, что

$$\mu \ln^2 = \mu'' = -\Lambda' * \mu - \Lambda * \mu' = -\Lambda' * \mu + \Lambda * \Lambda * \mu = \tilde{\Lambda}_2 * \mu, \tag{51}$$

$$\tilde{\Lambda}_2 = -\Lambda' + \Lambda * \Lambda = -\Lambda \ln + \Lambda * \Lambda.$$

Переходя к суммам левой и правой частей (51), получаем

$$\sum_{n \le x} \mu(n) \ln^2 n = \sum_{n \le x} \tilde{\Lambda}_2(n) M\left(\frac{x}{n}\right). \tag{52}$$

С помощью рассуждений, аналогичных проведенным в предыдущем разделе, мы можем выделить в левой части главный член $M(x) \ln^2 x$. Погрешность при этом будет равна следующему:

$$\sum_{n \le x} \mu(n) (\ln^2 x - \ln^2 n) = O\left(\sum_{n \le x} (\ln^2 x - \ln^2 n)\right) = O(x \ln x).$$
 (53)

Как и ранее, перенося остаточный член в представлении (53) в левую часть равенства (52), деля все на $\ln^2 x$ и оценивая по модулю, получаем

$$|M(x)| \le \frac{1}{\ln^2 x} \sum_{n \le x} |\tilde{\Lambda}_2(n)| \cdot |M(\frac{x}{n})| + O(\frac{x}{\ln x}).$$

Наконец, можно оценить $|\tilde{\Lambda}_2(n)|$:

$$|\tilde{\Lambda}_2(n)| = |(\Lambda * \Lambda - \Lambda')(n)| \leq (\Lambda * \Lambda + \Lambda')(n) = \Lambda_2(n),$$

откуда окончательно имеем

$$|M(x)| \le \frac{1}{\ln^2(x)} \sum_{n \le x} \Lambda_2(n) \left| M\left(\frac{x}{n}\right) \right| + O\left(\frac{x}{\ln x}\right). \tag{54}$$

Попробуем теперь оценить M(x), используя (54). Казалось бы, мы снова должны оказаться в тупике из-за необходимости исследовать сумму функции Λ_2 . Но, как мы сейчас увидим, сумму Λ_2 можно оценить с достаточной точностью.

Упражнение 38. Выразите $\Lambda_2(n)$ через разложение n в произведение простых множителей.

4.4. Тождество Сельберга для суммы арифметической функции Λ_2

У нас имеется стандартный рецепт для получения суммы

$$\psi_2(x) = \sum_{n \le x} \Lambda_2(n)$$

функции Λ_2 . Будем действовать так же, как в разделе 3.3, где мы получили тождество (32) для суммы $\psi(x)$ функции Λ .

Во-первых, так как $\Lambda_2 = \mu * \ln^2$, в силу формулы (12) имеем

$$\psi_{2}(x) = \sum_{n \leq x} \mu(n) L_{2}\left(\frac{x}{n}\right) =$$

$$= \sum_{n \leq x} \mu(n) \left(\frac{x}{n} \ln^{2} \frac{x}{n} - 2\frac{x}{n} \ln \frac{x}{n} + 2\frac{x}{n} + \left(\frac{1}{2} - \left\{\frac{x}{n}\right\}\right) \ln^{2} \frac{x}{n} + \gamma_{0,2} + \varepsilon_{0,2}\left(\frac{x}{n}\right)\right),$$
(55)

где $L_2(x) = \sum_{n \le x} \ln^2 n$.

Во-вторых, мы имеем следующие формулы:

$$x \ln x = \sum_{n \le x} \mu(n) \left(\frac{x}{2n} \ln^2 \frac{x}{n} + \gamma \frac{x}{n} \ln \frac{x}{n} - \gamma_{1,1} \frac{x}{n} + \alpha \left(\frac{x}{n} \right) \right), \tag{31}$$

$$x = \sum_{n \le x} \mu(n) \left(\frac{x}{n} \ln \frac{x}{n} + \gamma \frac{x}{n} + \frac{x}{n} \varepsilon_{1,0} \left(\frac{x}{n} \right) \right), \tag{29}$$

$$1 = \sum_{n \le x} \mu(n) \left(\frac{x}{n} - \left\{ \frac{x}{n} \right\} \right). \tag{28}$$

Теперь вычтем из (55) равенства (31), (29), (28), взятые с такими коэффициентами, чтобы члены $\frac{x}{n} \ln^2 \frac{x}{n}$, $\frac{x}{n} \ln \frac{x}{n}$, $\frac{x}{n}$ в правых частях сократились. А именно, вычтем из (55) удвоенное равенство (31), добавим (29), взятое с коэффициентом $2(1+\gamma)$, и вычтем (28), взятое с коэффициентом $2(1+\gamma_{1,1}+\gamma+\gamma^2)$. Мы приходим к тождеству

$$\psi_2(x) - 2x \ln x + 2(1+\gamma)x - 2(1+\gamma_{1,1}+\gamma+\gamma^2) = \sum_{n \le x} \mu(n)\rho_2\left(\frac{x}{n}\right), \quad (56)$$

где

$$\rho_2(x) = \left(\frac{1}{2} - \{x\}\right) \ln^2 x + \gamma_{0,2} - 2\alpha(x) + 2(1+\gamma)x\varepsilon_{1,0}(x) + 2(1+\gamma_{1,1} + \gamma + \gamma^2)\{x\}.$$

Так как $\rho_2(x) = O(\ln^2 x)$, мы получаем оценку O(x) для правой части (56) (см. упражнение 29), и, следовательно,

$$\psi_2(x) = 2x \ln x + O(x).$$
 (57)

Мы будем использовать формулу (57) в следующем виде:

$$\sum_{n \le x} (\Lambda_2(n) - 2 \ln n) = \psi_2(x) - 2L(x) =$$

$$= 2x \ln x + O(x) - 2(x \ln x + O(x)) = O(x). \quad (58)$$

Упражнение 39. Положим

$$\theta_2(x) = \sum_{\substack{p \leqslant x \\ p \text{ injoctoe}}} \ln^2 p + 2 \sum_{\substack{p < q, pq \leqslant x \\ p, q \text{ injoctible}}} \ln p \cdot \ln q.$$

Докажите, что

$$\theta_2(x) = 2x \ln x + O(x).$$

Таким образом, мы получили «двумерный аналог» нужного нам (см. предложение 3) результата $\sum_{p \leqslant x} \ln p \sim x$ — аналог, в котором суммирование ведется не только по простым числам, но и по числам, разлагающимся в произведение двух простых.

Упражнение 40. Выведите из асимптотического закона распределения простых чисел более сильную оценку, чем (57), а именно

$$\psi_2(x) = 2x \ln x - 2(1+\gamma)x + o(x).$$

4.5. Интегральное неравенство для суммы функции Мёбиуса

Докажем следующее интегральное неравенство, чтобы переформулировать нашу задачу об оценке M(x) в «более аналитическом» виде:

Предложение 13. При x > 1 верно неравенство

$$|M(x)| \le \frac{2}{\ln^2 x} \int_1^x \ln t \left| M\left(\frac{x}{t}\right) \right| dt + O\left(\frac{x}{\ln x}\right). \tag{59}$$

Доказательство, Имеем

$$\begin{split} |M(x)|\ln^2(x) & \stackrel{(54)}{\leqslant} \sum_{n \leqslant x} \Lambda_2(n) \left| M\left(\frac{x}{n}\right) \right| + O(x \ln x) = \\ & = \sum_{n \leqslant x} 2 \ln n \left| M\left(\frac{x}{n}\right) \right| + \sum_{n \leqslant x} (\Lambda_2(n) - 2 \ln n) \left| M\left(\frac{x}{n}\right) \right| + O(x \ln x). \end{split}$$

Во-первых, в силу предложения 8 и упражнения 5

$$\sum_{n \leq x} \ln n \left| M\left(\frac{x}{n}\right) \right| \leq \int_{1}^{x} \ln t \left| M\left(\frac{x}{t}\right) \right| dt + \sum_{k \leq x} |\mu(k)| \ln\left(\frac{x}{k}\right) \leq$$

$$\leq \int_{1}^{x} \ln t \left| M\left(\frac{x}{t}\right) \right| dt + O(x).$$

Во-вторых,

$$\sum_{n \leq x} (\Lambda_2(n) - 2 \ln n) \left| M\left(\frac{x}{n}\right) \right|^{\frac{17}{5}} \lesssim \sum_{n \leq x} |\mu(n)| \cdot \left| \psi_2\left(\frac{x}{n}\right) - 2L\left(\frac{x}{n}\right) \right| \stackrel{(58)}{=}$$

$$= O\left(\sum_{n \leq x} \frac{x}{n}\right) = O(x \ln x).$$

Итак,

$$|M(x)| \le \frac{2}{\ln^2 x} \int_1^x \ln t \left| M\left(\frac{x}{t}\right) \right| dt + O\left(\frac{x}{\ln x}\right).$$

Мы получили оценку |M(x)| через ее значения в меньших, чем x, точках.

Эту оценку удобнее переписать как оценку на функцию $U(x) = \frac{M(x)}{x}$ (тем более что стремление к нулю именно этой функции нам и нужно доказать): разделив обе части на x, получим

$$\left| \frac{M(x)}{x} \right| \leq \frac{2}{\ln^2 x} \int_{1}^{x} \left| \frac{M(x/t)}{x/t} \right| \cdot \frac{\ln t}{t} dt + O\left(\frac{1}{\ln x}\right);$$

таким образом,

$$|U(x)| \leq \frac{2}{\ln^2 x} \int_{1}^{x} \left| U\left(\frac{x}{t}\right) \right| \cdot \frac{\ln t}{t} dt + o(1), \tag{60}$$

Это ключевой момент доказательства: хотя нам и потребуются дополнительные рассуждения, именно эта оценка приведет нас к цели.

5. Аналитическая часть доказательства

5.1. Сведение к задаче из анализа

Мы уже знаем, что неравенство $|M(x)| \le x$ — или, что то же самое, $|U(x)| \le 1$ — выполняется при всех x (см. начало раздела 3.7). Что будет, если эту оценку подставить в правую часть полученного неравенства? Нельзя ли таким способом получить оценку типа $|U(x)| \le 1 - \varepsilon < 1$, а дальше итерировать эту процедуру?

Увы, на первом же шаге мы получим

$$|U(x)| \le \frac{2}{\ln^2 x} \int_1^x \frac{\ln t}{t} dt + o(1) = \frac{\ln^2 t}{2} \Big|_1^x \cdot \frac{2}{\ln^2 x} + o(1) = 1 + o(1),$$

с чего мы и начинали. Зато теперь видно, в чем суть неравенства (60): оно оценивает (с точностью до o(1)) значение функции U в точке x как взвешенное среднее ее значений в меньших точках.

Казалось бы, получился замкнутый круг: подставляя оценку типа $"U(x) \le \varepsilon$ при больших x" мы снова получаем ту же оценку. Но на самом деле наша оценка была далека от точной: она предполагала, что функция U все время принимает значение 1 — а как мы знаем из предложения 12, это совершенно не так. За счет этого нам удастся для каждого ε чуть-чуть улучшить оценку $"U(x) \le \varepsilon"$. В результате мы, следуя

примеру барона Мюнхгаузена, «вытянем себя за волосы» — будем последовательно получать все лучшие и лучшие асимптотические оценки для функции U и в пределе придем к искомому U(x) = o(1).

А именно, мы докажем следующее утверждение.

Предложение 14. Пусть функция $U: [0, \infty) \to \mathbb{R}$, интегрируемая на любом отрезке, такова, что:

- (i) $|U(x)| \le 1$;
- (ii) для любых δ между 0 и 1 и любого $A \ge 1/\delta$ найдется подотрезок $I = [a, ae^{\delta}]$ отрезка $[A, Ae^{2/\delta}]$, на котором $|U(t)| \le 8\delta$;
- (ііі) выполнена интегральная оценка

$$|U(x)| \leq \frac{2}{\ln^2 x} \int_1^x \left| U\left(\frac{x}{t}\right) \right| \cdot \frac{\ln t}{t} dt + o(1).$$

Тогда $U(x) \to 0$ при $x \to \infty$.

Забудем теперь, как определялась функция U(x), забудем об арифметических функциях и простых числах — все, что мы теперь будем рассматривать, это вопрос исключительно математического анализа.

Замечание. На самом деле перейти к аналитической задаче можно было и несколько раньше. А именно, доказательство предложения 12, как нетрудно убедиться, по существу чисто аналитическое и использует лишь два свойства функции M(x): то, что $|M(x)-M(y)| \le \le |x-y|+1$, и интегральную оценку

$$\left| \int_{a}^{b} M(t) \frac{dt}{t^2} \right| \leq 4$$

из предложения 10.

5.2. Аддитивная переформулировка

В правой части условия (iii) предложения 14 фигурирует мультипликативная свертка

$$\int_{1}^{x} \left| U\left(\frac{x}{t}\right) \right| \cdot \frac{\ln t}{t} \, dt,$$

но в анализе обычно удобнее работать со свертками аддитивными (см. (15)). Для того чтобы перейти к аддитивной свертке, перейдем к логарифмическим координатам — т. е. рассмотрим вместо функции U(x) функцию $u(y) = U(e^y)$.

При такой замене условие (ііі) принимает вид

$$|u(y)| \le \frac{2}{y^2} \int_0^y |u(y-s)| s \, ds + o(1),$$

или, что то же самое,

$$|u(y)| \le \frac{2}{y^2} \int_{0}^{y} |u(s)|(y-s) ds + o(1).$$

Итак, нам остается доказать следующее

Предложение 15. Пусть функция $u: [0, \infty) \to \mathbb{R}$, интегрируемая на любом отрезке, такова, что:

- (i') $|u(y)| \le 1$;
- (ii') для любых δ между 0 и 1 и любого $A \geqslant \ln \delta^{-1}$ найдется подотрезок длины δ отрезка $\left[A, A + \frac{2}{\delta}\right]$, на котором $|u(s)| \leqslant 8\delta$;
- (iii') выполнена интегральная оценка

$$|u(y)| \le \frac{2}{y^2} \int_0^y |u(s)|(y-s) ds + o(1).$$

Тогда $u(y) \rightarrow 0$ при $y \rightarrow \infty$.

5.3. Итеративный процесс

Утверждение предложения 15 состоит в том, что для всякого $\varepsilon>0$ существует такое $A\geqslant 0$, что

$$y \geqslant A \Rightarrow |u(y)| \leqslant \varepsilon. \tag{61}$$

Мы уже знаем, что для $\varepsilon_0=1$ такая оценка имеет место. Дальше мы будем ее последовательно улучшать: по уже найденным ε и A строить новые ε' и A', причем ε' будет меньше, чем ε .

А именно, мы будем использовать следующее утверждение.

Предложение 16. Пусть для функции u(y) существует число $\varepsilon_0 > 0$ и непрерывная функция $c: [0, \varepsilon_0] \to [0, \varepsilon_0)$, обладающие следующими свойствами:

- $|u(y)| \le \varepsilon_0$ при всех достаточно больших y;
- $c(\varepsilon) < \varepsilon$ для любого $\varepsilon \in (0, \varepsilon_0]$;
- если для некоторых $A \geqslant 0$, $\varepsilon \in (0, \varepsilon_0]$ выполнено (61), то оценка (61) имеет место и для $\varepsilon' = c(\varepsilon)$ и некоторого $A' \geqslant 0$. Тогда u(y) = o(1).

Доказательство. Рассмотрим последовательность (ε_n,A_n) , в которой $\varepsilon_{n+1}\!=\!c(\varepsilon_n)$ и

$$y \geqslant A_n \Rightarrow |u(y)| \leqslant \varepsilon_n.$$

Поскольку $c(\varepsilon) < \varepsilon$, последовательность (ε_n) убывающая. Для доказательства предложения 15 нам остается показать, что ее элементы стремятся к нулю. Но, переходя к пределу в реккурентном соотношении

 $\varepsilon_{n+1}\!=\!c(\varepsilon_n)$, мы видим, что ее предел $\bar{\varepsilon}\!=\!\lim_{n\to\infty}\varepsilon_n$ в силу непрерывности функции c должен удовлетворять соотношению $\bar{\varepsilon}\!=\!c(\bar{\varepsilon})$. Поскольку $c(\varepsilon)<\varepsilon$ при всех положительных ε , такое возможно лишь при $\bar{\varepsilon}\!=\!0$. А это и означает, что $\varepsilon_n\to 0$ при $n\to\infty$, и, тем самым, $u(y)\!=\!o(1)$ при $y\to\infty$.

Нам остается доказать, что наша функция u удовлетворяет посылкам этого предложения. Мы сделаем это — используя идею, описанную в разделе 5.1 — в следующих двух разделах: сперва в «модельной ситуации» для упрощенного варианта задачи, а потом и для самого предложения 15.

5.4. Упрощенная версия проблемы

Прежде чем строить итеративный процесс для доказательства предложения 15, мы разберем идеи его доказательства на упрощенной версии.

Предложение 17. Пусть функция $u:[0,\infty)\to\mathbb{R}$ интегрируема на каждом отрезке и удовлетворяет условиям

(i") $|u(y)| \leq \varepsilon_0$;

(ii") для любых δ между 0 и 1 и любого $A\geqslant 0$ найдется подотрезок длины δ отрезка $\left[A,A+\frac{2}{\delta}\right]$, на котором $|u(s)|\leqslant 2\delta$;

(iii") выполнена интегральная оценка

$$|u(y)| \leq \frac{1}{y} \int_{0}^{y} |u(s)| ds.$$

Тогда $u(y) \rightarrow 0$ при $y \rightarrow \infty$.

Доказательство. Будем следовать плану из предыдущего раздела. Пусть $0 < \varepsilon \le \varepsilon_0$ и $A \ge 0$ таковы, что для них выполняется (61). Пусть $\delta \in (0,1]$; мы выберем нужное нам значение позже. Для каждого $y \ge A$, мы можем покрыть отрезок [A,y] отрезками длины $2/\delta$:

$$\left[A, A + \frac{2}{\delta}\right], \left[A + \frac{2}{\delta}, A + \frac{4}{\delta}\right], \dots, \left[A + \frac{2(N-1)}{\delta}, A + \frac{2N}{\delta}\right],$$

где

$$A + \frac{2(N-1)}{\delta} \leqslant y < A + \frac{2N}{\delta},$$

иными словами,

$$N = 1 + \left\lfloor \frac{\delta(y - A)}{2} \right\rfloor.$$

На каждом из отрезков $\left[A+\frac{2(j-1)}{\delta},A+\frac{2j}{\delta}\right],j=1,...,N,$ выполнена оценка $|u|\leqslant \varepsilon;$ кроме того, на каждом из этих отрезков имеется подот-

резок длины δ , на котором $|u| \leq 2\delta$. Следовательно,

$$\int_{A+2(j-1)/\delta}^{A+2j/\delta} |u(s)| \, ds \leq \left(\frac{2}{\delta} - \delta\right) \cdot \varepsilon + \delta \cdot 2\delta = \frac{2}{\delta} \cdot \varepsilon \left(1 - \frac{\delta^2}{2} + \frac{\delta^3}{\varepsilon}\right) =$$

$$= \frac{2}{\delta} \cdot \varepsilon \left(1 - \frac{\varepsilon^2}{54}\right), \quad (62)$$

где мы выбрали $\delta = \varepsilon/3$. Складывая оценки (62) для всех j=1,...,N, мы получаем

$$\int_{A}^{y} |u(s)| \, ds \leq \sum_{j=1}^{N} \int_{A+2(j-1)/\delta}^{A+2j/\delta} |u(s)| \, ds \leq \frac{2N}{\delta} \cdot \varepsilon \left(1 - \frac{\varepsilon^2}{54}\right) \leq \left(y - A + \frac{2}{\delta}\right) \cdot \varepsilon \left(1 - \frac{\varepsilon^2}{54}\right),$$

и тем самым

$$\int_{0}^{y} |u(s)| \, ds = \int_{0}^{A} |u(s)| \, ds + \int_{A}^{y} |u(s)| \, ds \le \varepsilon_{0} A + \left(y - A + \frac{2}{\delta}\right) \cdot \varepsilon \left(1 - \frac{\varepsilon^{2}}{54}\right) \le \varepsilon \left(1 - \frac{\varepsilon^{2}}{55}\right)$$

при всех γ , больших некоторого A'.

Из условия (ііі") теперь вытекает, что

$$|u(y)| \le \frac{1}{y} \int_{0}^{y} |u(s)| ds \le c(\varepsilon)$$

для $c(\varepsilon) = \varepsilon \left(1 - \frac{\varepsilon^2}{55}\right)$. Это, в силу предложения 16, завершает доказательство предложения.

5.5. Доказательство основного утверждения

Мы проведем доказательство предложения 15, следуя тому же пути, что уже был пройден в предыдущем разделе; нам придется преодолеть некоторые дополнительные технические трудности, возникающие изза более сложного вида условий (ii') и (iii').

Пусть $0<\varepsilon\leqslant 1$ и $A\geqslant 0$ таковы, что для них выполняется (61). Пусть $\delta\in (0,1]$ — мы его выберем и зафиксируем позже — и положим $A'=\max\left(A,\ln\frac{1}{\delta}\right)$. Для $y\geqslant A'$ покроем отрезок [A',y] отрезками длины $2/\delta$:

$$\left[A',A'+\frac{2}{\delta}\right],\ \left[A'+\frac{2}{\delta},A'+\frac{4}{\delta}\right],\ ...,\ \left[A'+\frac{2(N-1)}{\delta},A'+\frac{2N}{\delta}\right],$$

где

$$A' + \frac{2(N-1)}{\delta} \leqslant y < A' + \frac{2N}{\delta},\tag{63}$$

иными словами,

$$N = 1 + \left\lfloor \frac{\delta(y - A')}{2} \right\rfloor. \tag{64}$$

На каждом из отрезков $\left[A'+\frac{2(j-1)}{\delta},A'+\frac{2j}{\delta}\right],j=1,...,N$, выполняется оценка $|u|\leqslant \varepsilon$, а на некотором его подотрезке длины δ выполнено $|u|\leqslant 8\delta$. Следовательно,

$$\int_{A'+2(j-1)/\delta}^{A'+2j/\delta} |u(s)| \, ds \leq \left(\frac{2}{\delta} - \delta\right) \cdot \varepsilon + \delta \cdot 8\delta = \frac{2}{\delta} \cdot \varepsilon \left(1 - \frac{\delta^2}{2} + \frac{4\delta^3}{\varepsilon}\right) =$$

$$= \frac{2}{\delta} \cdot \varepsilon \left(1 - \frac{\varepsilon^2}{1458}\right), \quad (65)$$

где мы положили $\delta = \varepsilon/9$.

С другой стороны, для $s\in \left[A'+\frac{2(j-1)}{\delta},A'+\frac{2j}{\delta}\right]$ выполнено $y-s\leqslant \frac{2}{\delta}(N-j+1)$, и потому в силу (65) имеем

$$\int_{A'}^{y} |u(s)|(y-s) ds \leq \frac{2}{\delta} \sum_{j=1}^{N} (N-j+1) \int_{A'+2(j-1)/\delta}^{A'+2j/\delta} |u(s)| ds \leq$$

$$\leq \left(\frac{2}{\delta}\right)^{2} \cdot \frac{N(N+1)}{2} \cdot \varepsilon \left(1 - \frac{\varepsilon^{2}}{1458}\right).$$

Тем самым, в силу (63) и (64),

$$\left(\frac{2}{\delta}\right)^2 \cdot \frac{N(N+1)}{2} = \frac{(2N/\delta)^2}{2} \left(1 + \frac{1}{N}\right) \leqslant \frac{(y - A' + 2/\delta)^2}{2} \left(1 + \frac{1}{\delta(y - A')/2}\right).$$

Следовательно,

$$\int_{0}^{y} |u(s)|(y-s) ds = \int_{0}^{A'} |u(s)|(y-s) ds + \int_{A'}^{y} |u(s)|(y-s) ds \le$$

$$\le A'y + \frac{(y-A'+2/\delta)^{2}}{2} \left(1 + \frac{1}{\delta(y-A')/2}\right) \cdot \varepsilon \left(1 - \frac{\varepsilon^{2}}{1458}\right) \le$$

$$\le \frac{y^{2}}{2} \varepsilon \left(1 - \frac{\varepsilon^{2}}{1459}\right) \quad (y \ge A'').$$

Из условия (iii') мы теперь получаем

$$|u(y)| \le \frac{2}{y^2} \int_0^y |u(s)|(y-s) ds + o(1) \le c(\varepsilon) \quad (y \ge A'''),$$

где $c(\varepsilon) = \varepsilon \left(1 - \frac{\varepsilon^2}{1460}\right) < \varepsilon$. Это, в силу предложения 16, и завершает доказательство предложения 15 — а вместе с ним и доказательство теоремы о распределении простых чисел.

6. Заключение

6.1. Взгляд назад

Наверное, читателю будет полезно окинуть взглядом все доказательство целиком. Вот его главные моменты.

1. Искомая теорема о простых числах

$$\pi(x) \sim \frac{x}{\ln x} \quad (x \to \infty)$$

равносильна (предложение 3) утверждению

$$\psi(x) \sim x \quad (x \to \infty), \tag{66}$$

где $\psi(x)$ — сумма функции Мангольдта Λ .

2. С помощью функции Мангольдта можно переформулировать основную теорему арифметики кратким образом как

$$ln = \Lambda * \mathbf{1},$$
(14)

где * обозначает операцию свертки в алгебре Дирихле $\mathscr A$ арифметических функций.

3. Благодаря формуле Сонина (предложение 1) и обращению Мёбиуса (предложение 4) отсюда вытекает явная формула для функции $\psi(x)$:

$$\psi(x) = x - \gamma - 1 + \sum_{n \le x} \mu(n) \rho\left(\frac{x}{n}\right),\tag{32}$$

где μ — функция Мёбиуса, γ — постоянная Эйлера, а ρ — некоторая функция, для которой $\rho(x) = O(\ln x)$. Отсюда уже следует грубая оценка вида $C_1x \leq \psi(x) \leq C_2x$.

4. Лемма Аксера (предложение 7) показывает, что (66) следует из полученной явной формулы для функции ψ и того, что

$$\sum_{n \le x} \mu(n) = o(x) \quad (x \to \infty). \tag{41}$$

- **5.** Доказательство асимптотической оценки (41) опирается на три свойства функции $U(x) = \frac{1}{x} M(x) = \frac{1}{x} \sum_{n \leq x} \mu(n)$:
- (i) $|U(x)| \le 1$ (это свойство очевидно, так как $|\mu| \le 1$);

(ii) для любых $\delta\in (0;1)$ и $A\geqslant 1/\delta$ найдется подотрезок $I=[a,ae^\delta]$ отрезка $[A,Ae^{2/\delta}]$, на котором $|U(t)|\leqslant 8\delta$;

(ііі) выполнена интегральная оценка

$$|U(x)| \leq \frac{2}{\ln^2 x} \int_{1}^{x} \left| U\left(\frac{x}{t}\right) \right| \cdot \frac{\ln t}{t} dt + o(1).$$

6. Из частного случая формулы обращения Мёбиуса

$$\sum_{n \le x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = 1 \quad (x \ge 1)$$

следует (предложение 10) интегральная оценка

$$\left| \int_{a}^{b} U(t) \frac{dt}{t} \right| = O(1).$$

Так как интеграл $\int \frac{dt}{t}$ расходится, из последней оценки можно заключить, что функция U иногда принимает малые значения (предложение 11). Пользуясь тем, что $|\mu(n)| \le 1$ (а значит, функция U не может меняться слишком быстро), отсюда можно вывести (предложение 12) утверждение (ii).

7. Для доказательства (iii) рассматриваются вспомогательные функции Λ_2 и $\tilde{\Lambda}_2$, для которых

$$\mathbf{1}'' = \Lambda_2 * \mathbf{1}, \quad \mu'' = \tilde{\Lambda}_2 * \mu, \tag{67}$$

где штрих означает дифференцирование в алгебре Дирихле. Оказывается, что $|\tilde{\Lambda}_2| \leqslant \Lambda_2$ и что имеет место оценка Сельберга:

$$\sum_{n \le x} \Lambda_2(n) = 2x \ln x + O(x), \tag{57}$$

доказательство которой основано, опять же, на формуле Сонина и обращении Мёбиуса.

Из оценки Сельберга и правил работы с суммами сверток, примененных к (67), вытекает (предложение 13) интегральное неравенство (iii).

8. Любая функция U, обладающая свойствами (i), (ii) и (iii), стремится к нулю на бесконечности. Этот чисто аналитический факт доказывается в разделе 5 при помощи процесса итеративного улучшения асимптотической оценки типа $U(x) \leq \varepsilon$.

Теперь стоит перечитать доказательство заново!

6.2. А что дальше?

Теперь нам известно, что $\psi(x) - x = o(x)$ при $x \to \infty$, то есть

$$r(x) = \frac{\psi(x) - x}{x} \to 0 \quad (x \to \infty).$$

Но как быстро это отношение стремится к нулю? Как мы упомянули в разделе 1.2, самой точной на сегодняшний день оценкой для $\pi(x) - \text{li}(x)$ является оценка, полученная в 1958 г. Виноградовым и Коробовым:

$$r(x) = O(xe^{-c(\ln x)^{3/5}(\ln \ln x)^{-1/5}}),$$
(68)

где c — некоторая положительная константа. Эта оценка доказывается с использованием методов теории функций комплексной переменной и теории тригонометрических сумм.

С другой стороны, элементарные методы развивались медленно, но неперерывно с момента появления доказательства Эрдёша и Сельберга. После важных работ Бомбьери, Вирсинга, Даймонда и Стейнига самую точную «элементарную» оценку получил в 1999 г. китайский математик Вень Чао Лу [16]:

$$r(x) = O\left(xe^{-(\ln x)^{\frac{1}{2}-\varepsilon}}\right) \tag{69}$$

для любого $\varepsilon>0$. Его доказательство использует функции Λ_k , удовлетворяющие соотношению

$$\ln^k = \mathbf{1}^{(k)} = \Lambda_k * \mathbf{1}.$$

Завершая наш рассказ, отметим, что оценка (69) не очень далека от оценки (68). Все это похоже на марафонский забег комплексного зайца и вещественной черепахи. Кто победит? Увидим. Быть может, когданибудь они объединят свои силы!

6.3. Решения упражнений

В этом разделе мы дадим краткие решения всех упражнений брошюры.

упражнение 1. Во-первых, $p_k \to \infty$ при $k \to \infty$. Если асимптотический закон верен, то $k = \pi(p_k) \sim \frac{p_k}{\ln p_k}$, откуда $\ln k \sim \ln \frac{p_k}{\ln p_k} \sim \ln p_k$ и $p_k \sim k \ln p_k \sim k \ln k$. Обратно, если $p_k \sim k \ln k$, то $\frac{p_{k+1}}{p_k} \to 1$. Поэтому из $p_{\pi(x)} \le x < p_{\pi(x+1)}$ мы получаем $x \sim p_{\pi(x)} \sim \pi(x) \ln \pi(x)$, откуда $\ln x \sim \ln(\pi(x) \ln \pi(x)) \sim \ln \pi(x)$ и $\pi(x) \sim \frac{x}{\ln \pi(x)} \sim \frac{x}{\ln x}$.

Упражнение 2. Основная теорема арифметики утверждает, что любое натуральное число n единственным образом представляется в виде $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$,

где $p_1 < ... < p_k$ — простые и $\alpha_1, ..., \alpha_k$ — натуральные числа. Если $n \le x$, то $p_1, ..., p_k \le x$ и слагаемое 1/n единственный раз встретится в разложении

$$\prod_{p \le x} (1 + p^{-1} + p^{-2} + \dots) = \prod_{p \le x} \frac{1}{1 - 1/p},$$

откуда следует искомое неравенство.

Упражнение 3. Функция $f(t) = \frac{1}{\ln t} - \frac{1}{t-1}$ непрерывно продолжается в точки 0 и 1 (со значениями 1 и 1/2 соответственно) и $\left(\int\limits_{0}^{1-\varepsilon} + \int\limits_{1+\varepsilon}^{2}\right) \frac{dt}{t-1} = 0$. Поэтому

$$\operatorname{li}(x) = \int_{0}^{2} f(t) dt + \int_{2}^{x} \frac{dt}{\ln t} \quad (x > 1).$$

Интегрируя по частям, находим, что $\operatorname{li}(x) = \frac{x}{\ln x} + \frac{x}{\ln^2 x} + O\left(\frac{x}{\ln^3 x}\right)$, откуда $\beta(x) = \ln x - \frac{x}{\operatorname{li}(x)} = 1 + O\left(\frac{1}{\ln x}\right)$.

Упражнение 4.
$$\sum_{n \le x} id(n) = \sum_{n \le x} n = \lfloor x \rfloor \frac{\lfloor x \rfloor + 1}{2} = \frac{x^2 + x}{2} - x\{x\} + \frac{\{x\}^2 - \{x\}}{2}$$
.

Упражнение 5. Имеем g(n) = |F(n)| - |F(n-1)|, откуда

$$|g(n)| = |F(n)| - |F(n-1)| \le |F(n) - F(n-1)| = |f(n)|.$$

Упражнение 6. Заметим, что $t\varphi'(t) = 1 - 2\{t\} - \frac{\{t\} - \{t\}^2}{t}$. При этом, во-первых, $t\varphi'(t) \le 1$, поскольку $\{t\} \ge 0$ и $\{t\} - \{t\}^2 \ge 0$. Во-вторых,

$$1+t\varphi'(t)=t^{-1}(1-\{t\})(2t-\{t\})>0.$$

Упражнение 7. По индукции: φ_1 периодическая с периодом 1; если φ_n периодическая с периодом 1, то

$$\varphi_{n+1}(x+1) - \varphi_{n+1}(x) = \int_{x}^{x+1} (n+1)\varphi_n(t) dt = \int_{0}^{1} (n+1)\varphi_n(t) dt = 0.$$

Из определения следует, что

$$\varphi_2(x) = \{x\}^2 - \{x\} + \frac{1}{6}; \quad \varphi_3(x) = \{x\}^3 - \frac{3}{2}\{x\}^2 + \frac{1}{2}\{x\} = \{x\} \left(\{x\} - \frac{1}{2}\right)(\{x\} - 1).$$

При $0 \le x \le 1$ имеем $\varphi_3(1-x) = (1-x)\left(\frac{1}{2}-x\right)(-x) = -\varphi_3(x)$, причем $\varphi_3(x) + \varphi_3(1-x)$ — периодическая функция с периодом 1; значит, она тождественно равна нулю.

Упражнение 8. Для любого $n \geqslant N$ имеем

$$\int_{0}^{n+1} \varphi_{1}(t)f(t) dt = \int_{0}^{1/2} \varphi_{1}(u)(f(n+u) - f(n+1-u)) du \le 0;$$

аналогичная оценка верна и для функции φ_3 .

Упражнение 9. В силу формул (7) и (8) имеем $H_N=\ln N+\gamma+\varepsilon_{1,0}(N)$, где $\varepsilon_{1,0}(N)=\frac{1}{2N}+\int\limits_N^\infty \varphi_1(t)t^{-2}\,dt$. Дважды интегрируя по частям, получим $\varepsilon_{1,0}(N)=\frac{1}{2N}-\frac{1}{12N^2}+\int\limits_N^\infty \varphi_3(t)t^{-4}\,dt$. Из упражнения 8 следует, что $\frac{1}{2N}-\frac{1}{12N^2}<\varepsilon_{1,0}(N)<<<\frac{1}{2N}$.

и Упражнение 10. Из упражнения 9 следует, что

$$H_4 - \ln 4 - \frac{1}{8} < \gamma < H_4 - \ln 4 - \frac{1}{8} + \frac{1}{192}$$

Поэтому $\gamma \in [0,572; 0,578]$.

Упражнение 11. В силу формулы (9) имеем

$$\ln N! = L(N) = N \ln N - N + \frac{1}{2} \ln 2\pi + \varepsilon_{0,1}(N),$$

где $\varepsilon_{0,1}(N) = -\int\limits_{N}^{\infty} \varphi_1(t) t^{-1} \, dt$. Дважды интегрируя по частям, получим $\varepsilon_{0,1}(N) = \frac{1}{12N} - \frac{1}{3}\int\limits_{N}^{\infty} \varphi_3(t) t^{-3} \, dt$. Из упражнения 8 следует, что $0 < \varepsilon_{1,0}(N) < \frac{1}{12N}$.

Упражнение 12. Имеем

$$\varepsilon_{0,1}(x) - x\varepsilon_{1,0}(x) = \int_{x}^{\infty} \left(\frac{1}{2} - \{t\}\right) t^{-1} dt - \frac{1}{2} + \{x\} - x \int_{x}^{\infty} \left(\{t\} - \frac{1}{2}\right) t^{-2} dt,$$

откуда $\varepsilon(x) = \int\limits_{x}^{\infty} \left(\frac{1}{2} - \{t\}\right) t^{-2}(x+t) \; dt.$ Интегрируя по частям, получим

$$\varepsilon(x) = \left(\frac{\{t\}}{2} - \frac{\{t\}^2}{2} - \frac{1}{16}\right)t^{-2}(x+t)\Big|_x^{\infty} - \int_{x}^{\infty} \left(\frac{\{t\}}{2} - \frac{\{t\}^2}{2} - \frac{1}{16}\right)\left[\frac{d}{dt}(t^{-2}(x+t))\right]dt.$$

Поскольку $\left|\frac{\{t\}}{2}-\frac{\{t\}^2}{2}-\frac{1}{16}\right|\leqslant \frac{1}{16}$ и $\frac{d}{dt}(t^{-2}(x+t))<0$, получаем $|\varepsilon(x)|\leqslant \frac{1}{8x}+\frac{1}{8x}=\frac{1}{4x}$.

Упражнение 13. $\sum_{n \le x} \nu_p(n) = \sum_{n \le x} \sum_{k \ge 1, p^k \mid n} 1 = \sum_{k \ge 1} \sum_{n \le x, p^k \mid n} 1 = \sum_{k \ge 1} \left\lfloor \frac{x}{p^k} \right\rfloor$. Кстати, это

степень, с которой p входит в разложение числа [x]! на простые множители. Упражнение 14. По определению $1*1(n) = \sum_{\substack{d \mid n}} 1 = \tau(n)$ (число делителей n);

$$\mathbf{1} * \mathrm{id}(n) = \sum_{d \mid n} d = \sigma(n)$$
 (сумма делителей n); $\mathrm{id} * \mathrm{id}(n) = \sum_{d \mid n} d \cdot \frac{n}{d} = n \tau(n)$.

Упражнение 15. $\Phi_{\delta}(s) = 1$, $\Phi_{1}(s) = \zeta(s)$, $\Phi_{id}(s) = \zeta(s-1)$,

$$\Phi_{\nu_p}(s) = \sum_n n^{-s} \left(\sum_{p^k \mid n} 1 \right) = \sum_{m,k} (p^k m)^{-s} = \frac{\zeta(s)}{p^s - 1}.$$

Упражнение 16. Пусть

$$E_1 = \left\{ (a,b) \in \mathbb{N}^2, \, a \leq y, \, b \leq \frac{x}{a} \right\}, \quad E_2 = \left\{ (a,b) \in \mathbb{N}^2, \, a \leq \frac{x}{b}, \, b \leq \frac{x}{y} \right\}.$$

Тогда

$$E_1 \cup E_2 = \{(a, b) \in \mathbb{N}^2, ab \le x\}, \quad E_1 \cap E_2 = \{a \le y\} \times \left\{b \le \frac{x}{y}\right\}.$$

Поэтому

$$\sum_{ab \leqslant x} f(a)g(b) = \sum_{(a,b) \in E_1} f(a)g(b) + \sum_{(a,b) \in E_2} f(a)g(b) - \left(\sum_{a \leqslant y} f(a)\right) \left(\sum_{b \leqslant x/y} g(b)\right),$$

откуда и следует утверждение задачи.

Упражнение 17. Имеем $S(x) = \sum_{n \leqslant x} f(n) \left| G\left(\frac{x}{n}\right) \right| = \sum_{n \leqslant x} f(n) H\left(\frac{x}{n}\right)$, где $H(x) = \sum_{n \leqslant x} h(n)$ и $|h(n)| \leqslant |g(n)|$ (упражнение 5). Поэтому

$$|S(x)| = \left| \sum_{n \le x} h(n) F\left(\frac{x}{n}\right) \right| \le \sum_{n \le x} |g(n)| \left| F\left(\frac{x}{n}\right) \right|.$$

Упражнение 18.

$$\int_{1}^{x} t^{-1} \pi(t) dt = \int_{1}^{x} t^{-1} \left(\sum_{p \le t} 1 \right) dt = \sum_{p \le x} \int_{p}^{x} t^{-1} dt = \sum_{p \le x} (\ln x - \ln p) = \pi(x) \ln x - \theta(x).$$

Упражнение 19. Имеем $L(x) = \sum_{n} \psi\left(\frac{x}{n}\right)$ и $L\left(\frac{x}{2}\right) = \sum_{n} \psi\left(\frac{x}{2n}\right)$. Поэтому

$$L(x) - 2L\left(\frac{x}{2}\right) = \psi(x) - \psi\left(\frac{x}{2}\right) + \psi\left(\frac{x}{3}\right) - \psi\left(\frac{x}{4}\right) + \dots$$

Так как последовательность $k\mapsto \psi\left(\frac{x}{k}\right)$ невозрастающая, то

$$\psi(x) \geqslant L(x) - 2L\left(\frac{x}{2}\right) \geqslant \psi(x) - \psi\left(\frac{x}{2}\right).$$

В силу формулы Стирлинга

$$L(x) - 2L\left(\frac{x}{2}\right) = x \ln x - x + O(\ln x) - 2\left(\frac{x}{2} \ln \frac{x}{2} - \frac{x}{2} + O\left(\ln \frac{x}{2}\right)\right) = x \ln 2 + O(\ln x).$$

Поэтому $\psi(x) \geqslant x \ln 2 + O(\ln x)$ и

$$\psi(x) = \sum_{0 \le k \le (\ln x)/(\ln 2)} \psi\left(\frac{x}{2^k}\right) - \psi\left(\frac{x}{2^{k+1}}\right) \le \sum_{0 \le k \le (\ln x)/(\ln 2)} L\left(\frac{x}{2^k}\right) - 2L\left(\frac{x}{2^{k+1}}\right) =$$

$$= \sum_{0 \le k \le (\ln x)/(\ln 2)} \left(\frac{x}{2^k} \ln 2 + O(\ln x)\right) \le 2x \ln 2 + O(\ln^2 x).$$

Упражнение 20. Из $ln = \Lambda * 1$ имеем

$$L(x) = \sum_{n \le x} \ln n = \sum_{n \le x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor = x \sum_{n \le x} \frac{\Lambda(n)}{n} - \sum_{n \le x} \Lambda(n) \left\{ \frac{x}{n} \right\}.$$

Поэтому

$$\left| \sum_{n \le x} \frac{\Lambda(n)}{n} - \ln x \right| = \left| \frac{L(x)}{x} - \ln x + x^{-1} \sum_{n \le x} \Lambda(n) \left\{ \frac{x}{n} \right\} \right| = O(1),$$

поскольку $L(x) = x \ln x + O(x)$ и $\sum_{n \leq x} \Lambda(n) \left\{ \frac{x}{n} \right\} \leq \psi(x) = O(x)$.

Упражнение 21. Так как $|\mu(n)| \le 1$ и $\mu(n) = 0$ при 4|n, имеем

$$\sum_{n \le x} |\mu(n)| \le \lfloor x \rfloor - \lfloor \frac{x}{4} \rfloor \le \frac{3(x+1)}{4}.$$

Упражнение 22. $\Phi_{\mu}(s) = 1/\zeta(s)$, $\Phi_{\ln}(s) = -\zeta'(s)$ и $\Phi_{\Lambda}(s) = -\zeta'(s)/\zeta(s)$.

Упражнение 23. График функции $\varphi(x/n)$ получается из графика функции φ растяжением с коэффициентом n вдоль оси Ox. Функция $\varphi(x/n)$ обращается в тождественный ноль на интервале (0,n), если φ обращается в ноль на (0,1).

Упражнение 24. Пусть $f, g \in \mathcal{A}$, и $\varphi \in \mathcal{F}$. Тогда имеем

$$\begin{split} (S_f \circ S_g) \varphi(x) &= \sum_m f(n) S_g \varphi\left(\frac{x}{m}\right) = \sum_m f(m) \sum_n g(n) \varphi\left(\frac{x/m}{n}\right) = \sum_{m,n} f(m) g(n) \varphi\left(\frac{x}{mn}\right) = \\ &= \sum_k \left(\sum_{mn=k} f(m) g(n)\right) \varphi\left(\frac{x}{k}\right) = \sum_k (f * g)(k) \varphi\left(\frac{x}{k}\right) = S_{f*g} \varphi(x). \end{split}$$

Поэтому $S_f \circ S_g = S_{f*g}$.

Упражнение 25. Имеем $S_\delta \varphi(x) = \sum_n \delta(n) \varphi\left(\frac{x}{n}\right) = \varphi(x)$; если g — обратный элемент к f в алгебре Дирихле, то $S_f \circ S_g = S_g \circ S_f = S_{f*g} = S_\delta = \mathrm{id}_{\mathscr{F}}$.

Упражнение 26. Интегрируя по частям, получаем

$$2x^{-1}\alpha(x) = \int\limits_{x}^{\infty} (2\{t\}-1)f(t) \ dt = \left(\{t\}^2 - \{t\} + \frac{1}{8}\right)f(t)\Big|_{x}^{\infty} - \int\limits_{x}^{\infty} \left(\{t\}^2 - \{t\} + \frac{1}{8}\right)f'(t) \ dt,$$
 где $f(t) = t^{-2}\left(1 + \ln\left(\frac{x}{t}\right)\right)$. Далее, $\left|\{t\}^2 - \{t\} + \frac{1}{8}\right| \leqslant \frac{1}{8}$ и $f'(t) = 2t^{-3}(\ln t - \ln(xe^{3/2}))$,

тде $f(t) = t - \left(1 + \ln\left(\frac{t}{t}\right)\right)$. Далее, $|tf - tff + \frac{\pi}{8}| \le \frac{\pi}{8}$ и $f(t) = 2t - \ln(t - \ln(xe^{-t}))$, откуда $|16x^{-1}\alpha(x)| \le |f(x)| + |f(x) - f(xe^{3/2})| + |f(xe^{3/2})| = (2 + e^{-3})x^{-2}$. В итоге $|\alpha(x)| \le \frac{2 + e^{-3}}{16x}$.

Упражнение 27. Это равенство равносильно следующему:

$$\sum_{n \le x} \mu(n) \left(\frac{x}{2n} - \frac{1}{2} + \frac{1}{2} \varphi\left(\frac{x}{n}\right) \right) = 1 - x^{-1} = \varphi_1(x) \quad (x \ge 1).$$
 (70)

Применив обращение Мёбиуса, получаем, что (70) равносильно тому, что

$$\sum_{n \le x} \varphi_1\left(\frac{x}{n}\right) = \frac{x-1}{2} + \frac{\varphi(x)}{2}$$

при *x* ≥ 1. Но

$$\sum_{n \le x} \varphi_1\left(\frac{x}{n}\right) = \sum_{n \le x} \left(1 - \frac{n}{x}\right)^{\text{ynp. 4}} = \left[x\right] - x^{-1}\left(\frac{x^2 + x}{2} - x\{x\} + \frac{\{x\}^2 - \{x\}}{2}\right) = \frac{x - 1}{2} + \frac{\varphi(x)}{2}.$$

Упражнение 28. Положим

$$\eta(x) = (-1 - \gamma)\{x\} + \gamma_{0,1} + \varepsilon_{0,1}(x) - x\varepsilon_{1,0}(x) = -\gamma\{x\} + \gamma_{0,1} - \frac{1}{2} + \varepsilon(x),$$

где $|\varepsilon(x)| \leqslant \frac{1}{4}$ при $x \geqslant 1$ (см. упражнение 12). Поэтому

$$-\gamma + \ln \sqrt{2\pi} - \frac{1}{2} - \frac{1}{4} \le \eta(x) \le \ln \sqrt{2\pi} - \frac{1}{2} - \frac{1}{4}$$

откуда
$$|\eta(x)|\leqslant \frac{1}{2}$$
 и $|\rho(x)|=\left|\left(\frac{1}{2}-\{x\}\right)\ln x+\eta(x)\right|\leqslant \frac{1}{2}\ln x+\frac{1}{2}.$

Упражнение 29. Если $|F(y)| \le Cy$ при $y \ge 1$, то

$$\left| \sum_{n \le x} f(n) \log^k \left(\frac{x}{n} \right) \right| = \left| \int_1^x k(\log t)^{k-1} t^{-1} F\left(\frac{x}{t} \right) dt \right| \le$$

$$\leq kCx \int_1^x (\log t)^{k-1} t^{-2} dt \le kCx \int_0^\infty e^{-u} u^{k-1} du = k! \cdot Cx.$$

Упражнение 30. Если φ неубывающая, то ω невозрастающая и $h\omega(nh) \leqslant \int\limits_{(n-1)h}^{nh} \omega(t) \ dt \ (n \in \mathbb{N}, \ h > 0).$ Следовательно, имеем неравенство

$$h\sum_{n}\omega(nh) \leq \int_{0}^{1}\omega(t) dt = \int_{1}^{\infty}\varphi(t)t^{-2} dt.$$

Упражнение 31. Функция $\omega(t)=\varphi(1/t)$ интегрируема по Риману на [0,1] и равна нулю на $\left[0,\frac{1}{a}\right)$. Далее, имеем $x^{-1}S_1\varphi(x)=h\sum_{n\leqslant 1/h}\omega(nh)$, где h=1/x. Так как

$$h \sum_{n \leq 1/h} \omega(nh) + \left(1 - h \left\lfloor \frac{1}{h} \right\rfloor\right) \omega(1)$$

является интегральной суммой Римана для функции ω на [0,1], эта величина стремится к $\int\limits_0^1 \omega(t) \, dt$ при $h \to 0$. Значит, $x^{-1}S_1\varphi(x) \to \int\limits_0^1 \omega(t) \, dt = \int\limits_1^a \varphi(t) t^{-2} \, dt$ при $x \to \infty$.

Упражнение 32. Пусть *C* таково, что $|\varphi(x)| \leqslant Cx$ при $x \geqslant 1$. Пусть, далее, $\varepsilon > 0$ и $A \geqslant 1$ таковы, что $|\varphi(x)| \leqslant \varepsilon x$ при $x \geqslant A$. Тогда

$$\begin{split} |S_1 \varphi(x)| & \leq \sum_{n \leq x/A} \left| \varphi\left(\frac{x}{n}\right) \right| + \sum_{x/A < n \leq x} \left| \varphi\left(\frac{x}{n}\right) \right| \leq \varepsilon x \sum_{n \leq x} \frac{1}{n} + Cx \sum_{x/A < n \leq x} \frac{1}{n} \leq \\ & \leq \varepsilon x (\ln x + 1) + Cx \left(\ln A + \frac{A}{x}\right) \leq 2\varepsilon x \ln x \end{split}$$

при достаточно большом x.

Упражнение 33. Пусть $N = \lfloor x \rfloor$ ($\geqslant 1$). При $1 \leqslant n \leqslant N - 1$ имеем

$$f(n)\varphi\left(\frac{x}{n}\right) = f(n)\int_{n}^{n+1}\varphi\left(\frac{x}{t}\right)dt + f(n)\int_{n}^{n+1}\left(\varphi\left(\frac{x}{n}\right) - \varphi\left(\frac{x}{t}\right)\right)dt \le$$

$$\leqslant \int_{n}^{n+1}f(t)\varphi\left(\frac{x}{t}\right)dt + f(n)\int_{n}^{n+1}\left(\int_{x/t}^{x/n}|\varphi'(u)|du\right)dt \le$$

$$\leqslant \int_{n}^{n+1}f(t)\varphi\left(\frac{x}{t}\right)dt + f(n)\int_{x/(n+1)}^{x/n}|\varphi'(u)|du \le$$

$$\leqslant \int_{n}^{n+1}f(t)\varphi\left(\frac{x}{t}\right)dt + \int_{x/(n+1)}^{x/n}|\varphi'(u)|f\left(\frac{x}{u}\right)du. \tag{71}$$

Кроме того.

$$f(N)\varphi\left(\frac{x}{N}\right) = f(N)\int_{1}^{x/N} \varphi'(u) \, du \le f(N)\int_{1}^{x/N} |\varphi'(u)| \, du \le \int_{1}^{x/N} |\varphi'(u)| f\left(\frac{x}{u}\right) \, du. \tag{72}$$

В итоге получаем

$$\sum_{n \leq x} f(n) \varphi\left(\frac{x}{n}\right) = \sum_{n \leq N} f(n) \varphi\left(\frac{x}{n}\right) = \sum_{n < N} f(n) \varphi\left(\frac{x}{n}\right) + f(N) \varphi\left(\frac{x}{N}\right)^{(71), (72)} \le$$

$$\leq \sum_{n < N} \int_{n}^{n+1} f(t) \varphi\left(\frac{x}{t}\right) dt + \sum_{n < N} \int_{x/(n+1)}^{x/n} |\varphi'(u)| f\left(\frac{x}{u}\right) du + \int_{1}^{x/N} |\varphi'(u)| f\left(\frac{x}{u}\right) du =$$

$$= \int_{1}^{N} f(t) \varphi\left(\frac{x}{t}\right) dt + \int_{x/N}^{x} |\varphi'(u)| f\left(\frac{x}{u}\right) du + \int_{1}^{x/N} |\varphi'(u)| f\left(\frac{x}{u}\right) du \le$$

$$\leq \int_{1}^{x} f(t) \varphi\left(\frac{x}{t}\right) dt + \int_{1}^{x} |\varphi'(u)| f\left(\frac{x}{u}\right) du.$$

Отметим, что предложение 8 и упражнение 33 можно было бы объединить в одно, более общее, утверждение (с аналогичным доказательством), если бы мы воспользовались понятием интеграла Стилтьеса.

Упражнение 34. Равенство $\mu(n)=\sum_{d\mid n}f(d)g(n/d)$ при нечетном n записывается в виде $\mu(n)=g(n)$, а при четном n — в виде $\mu(n)=g(n)-g(n/2)=-g(n/2)$. Если n/2 четное, то $4\mid n$ и $\mu(n)=0=-g(n/2)$. Если n/2 нечетное, то $g(n/2)=\mu(n/2)=-\mu(n)$.

Поэтому $|M(x)| = \left|\sum_n f(n)G\left(\frac{x}{n}\right)\right| = \left|G(x) - G\left(\frac{x}{2}\right)\right|$ не превосходит количества нечетных чисел в интервале $\left(\frac{x}{2},x\right]$. Последнее равно $\frac{x}{4} + \left\{\frac{x}{4} - \frac{1}{2}\right\} - \left\{\frac{x}{2} - \frac{1}{2}\right\}$, а $\sup\left(\left\{\frac{x}{4} - \frac{1}{2}\right\} - \left\{\frac{x}{2} - \frac{1}{2}\right\}\right) = \frac{3}{4}$.

Упражнение 35. Результат упражнения 27 можно переписать в виде

$$\int_{1}^{x} t^{-2} M(t) dt + x^{-1} \int_{1}^{x} M\left(\frac{x}{t}\right) \varphi'(t) dt = 2x^{-1} - 2x^{-2} \quad (x \ge 1),$$

где $\varphi(t) = \frac{\{t\} - \{t\}^2}{t}$.

Так как $|t\varphi'(t)| \le 1$ (упражнение 6) и $|M(t)| \le \frac{t+3}{4}$ (упражнение 34), имеем

$$\left| \int_{1}^{x} M\left(\frac{x}{t}\right) \varphi'(t) dt \right| \leq \int_{1}^{x} \frac{1}{4} \left(\frac{x}{t} + 3\right) \frac{dt}{t} \leq \frac{x}{4} + \frac{3}{4} \ln x,$$

откуда

$$2x^{-1} - 2x^{-2} - \frac{1}{4} - \frac{3\ln x}{4x} \le \int_{1}^{x} t^{-2}M(t) dt \le 2x^{-1} - 2x^{-2} + \frac{1}{4} + \frac{3\ln x}{4x}.$$

При $x\geqslant 16$ имеем $\left|2x^{-1}-2x^{-2}\pm\left(\frac{1}{4}+\frac{3\ln x}{4x}\right)\right|\leqslant \frac{1}{2}$. При $1\leqslant x\leqslant 16$ легко проверить, что $0\leqslant \int\limits_{-\infty}^{x}t^{-2}M(t)\;dt\leqslant \frac{1}{2}$.

Упражнение 36. Рассмотрим более общий вопрос: когда имеет ненулевые решения уравнение $b \cdot f = a * f$, где $a, b \in \mathcal{A}$ и все значения функции b различны? Оказывается, тогда и только тогда, когда a(1) принадлежит множеству $b(\mathbb{N})$ значений функции b.

Действительно, пусть $n_0 = \min\{n, f(n) \neq 0\}$. Из

$$f(n_0)(b(n_0) - a(1)) = \sum_{d|n_0, d>1} a(d) f\left(\frac{n}{d}\right) = 0$$

следует, что $a(1) = b(n_0)$. Обратно, если $a(1) = b(n_1)$, то можно положить f(n) = 0 при $n < n_1$, выбрать $f(n_1)$ произвольным образом и найти f(n) при $n > n_1$ по формуле $f(n) = (b(n) - b(n_1))^{-1} \sum_{d \mid n, d > 1} a(d) f\left(\frac{n}{d}\right)$.

Упражнение 37.

$$\begin{split} S_{f'}\varphi(x) &= \sum_{n \leq x} f'(n)\varphi\left(\frac{x}{n}\right) = \sum_{n \leq x} f(n)(\ln n)\varphi\left(\frac{x}{n}\right) = \\ &= \left(\sum_{n \leq x} f(n)\varphi\left(\frac{x}{n}\right)\right) \ln x - \sum_{n \leq x} f(n)\varphi\left(\frac{x}{n}\right) \ln\left(\frac{x}{n}\right) = S_f\varphi(x) \ln x - S_f(\varphi\ln(x)). \end{split}$$

Упражнение 38. Имеем $\Lambda_2(n) = \Lambda(n) \ln n + \sum_{d|n} \Lambda(d) \Lambda\left(\frac{n}{d}\right)$. Поэтому $\Lambda_2(1) = 0$,

 $\Lambda_2(p^k)=(2k-1)\ln^2 p$ (p простое, $k\in\mathbb{N}$), $\Lambda_2(p^kq^l)=2\ln p\cdot \ln q$ (p, q простые, $k,l\in\mathbb{N}$) и $\Lambda_2(n)=0$, если n имеет более двух различных простых делителей.

Упражнение 39. Левая часть отличается от $\psi_2(x)$ слагаемыми следующего вида:

• $(2k-1) \ln^2 p$, где p простое, $k \ge 2$, $p^k \le x$; их вклад можно оценить сверху:

$$O\left(\sum_{2 \leqslant k \leqslant \frac{\ln x}{\ln 2}} k \sum_{p^k \leqslant x} \ln^2 p\right) = O(\sqrt{x} \ln^3 x);$$

• $2 \ln p \cdot \ln q$, где p,q простые, p < q, $\max(k,l) \geqslant 2$ и $p^k q^l \leqslant x$; их вклад тоже можно оценить сверху:

$$O\left(\sum_{k\geqslant 2}\sum_{p}\ln p\sum_{q^{l}\leqslant x/p^{k}}\ln q\right)=O\left(\sum_{p,\,k\geqslant 2}\ln p\cdot\frac{x}{p^{k}}\right)=O(x),$$

поскольку ряд $\sum_{p,k\geqslant 2} = \frac{\ln p}{p^k}$ сходится.

В итоге мы получили искомую оценку.

Упражнение 40. Утверждение непосредственно следует из тождества (56), леммы Аксера и теоремы о простых числах в виде M(x) = o(x).

Литература

- [1] Виноградов И. М. Новая оценка функции $\zeta(1+it)$ // Изв. АН СССР. Сер. матем. 1958. Т. 22, № 2. С. 161—164.
- [2] Грэхем Р., Кнут Д., Паташник О. Конкретная математика. М.: Мир, 2009.
- [3] *Диамонд Г.* Элементарные методы в изучении распределения простых чисел // УМН. 1990. Т. 45, № 2 (272). С. 79—114.
- [4] *Коробов Н. М.* Оценки тригонометрических сумм и их приложения // УМН. 1958. Т. 13, № 4 (82). С. 185—192.
- [5] *Постников А. Г., Романов Н. П.* Упрощение элементарного доказательства А. Сельберга асимптотического закона распределения простых чисел // УМН. 1955. Т. 10. С. 75—87; 1969. Т.24. С. 263.
- [6] Сонин Н. Я. Об одном определенном интеграле, содержащем числовую функцию [x] // Варшавские университетские известия. 1885. № 2. С. 1—24.
- [7] Чебышев П. Л. Об определении числа простых чисел, не превосходящих данной величины // Полное собрание сочинений. Т. 1. М.— Л.: АН СССР, 1944. С. 173—190.
- [8] *Чебышев П. Л.* О простых числах // Полное собрание сочинений. Т. 1. М.—Л.: АН СССР, 1944. С. 191—207.
- [9] Axer A., Beitrag zur Kenntnis der zahlentheoretischen Funktionen $\mu(n)$ und $\lambda(n)$ // Prace Mat.-Fiz. 1910. V. 21, N° 1. P. 65—95.
- [10] *Bang T. S. V.* An inequality for real functions of a real variable and its application to the prime number theorem // On approximation theory (Proceedings of a conference in Oberwolfach, 1963). Basel: Birkhäuser, 1964. P. 155—160.
- [11] *Berndt B. C.* Ramanujan's Notebooks. Part 1. New York: Springer-Verlag, 1985.
- [12] *Daboussi H.* Sur le théorème des nombres premiers // C. R. Acad. Sci. Paris Ser. I Math. 1984. V. 298, Nº 8. P. 161—164.
- [13] *Erdős P.* On a new method in elementary number theory which leads to an elementary proof of the prime number theorem // Proc. Nat. Acad. Sci. U. S. A. 1949. V. 35. P. 374—384.
- [14] Gauss C. F. Disquisitiones arithmeticae. Leipzig: Gerhard Fleischer, 1801. [Рус. перев.: Гаусс К. Ф. Труды по теории чисел. М.: АН СССР, 1959.]

- [15] *Hildebrand A*. The prime number theorem via the large sieve // Mathematika. 1986. V. 33. P. 23—30.
- [16] *Lu W. C.* On the elementary proof of the prime number theorem with a remainder term // Rocky Mountain J. Math. 1999. V. 29. P. 979—1053.
- [17] *Newman D. J.* Simple analytic proof of the prime number theorem // Amer. Math. Monthly. 1980. V. 87. P. 693—696.
- [18] *Selberg A*. An elementary proof of the prime-number theorem // Ann. of Math. 1949. V. 50. P. 305—313.
- [19] *Wintner A*. On arithmetical summation processes // Amer. J. Math. 1957. V. 79. P. 559—574.

Содержание

ПІ	Тредисловие			
1.	Вве	дение	5	
	1.1.	Об определении числа простых чисел, не превосходящих		
		данной величины	5	
	1.2.	Краткая история теоремы о простых числах	6	
	1.3.	Арифметические функции и их суммы	9	
	1.4.	1 3	10	
	1.5.	Четыре применения формулы Сонина	13	
2.	Алг	ебра арифметических функций	16	
		Основная теорема арифметики	16	
	2.2.	Свертка арифметических функций	17	
	2.3.	Формальные ряды Дирихле	18	
		Сумма свертки двух арифметических функций	19	
		Функция Мангольдта	19	
	2.6.	Асимптотика функции $\psi(x)$: угадывание ответа	21	
3.	Обр	ащение Мёбиуса	23	
	3.1.	Функция Мёбиуса	23	
		Арифметические функции как операторы	25	
	3.3.	Обращение Мёбиуса и тождество для суммы функции		
		Мангольдта	26	
		Оценки Чебышева	29	
		Оценки сумм сверток	29	
	3.6.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Мёбиуса	34	
	3.7.	Чезаровские средние функции Мёбиуса	35	
4.	Диф	оференциальные уравнения и их следствия	37	
	4.1.	Дифференциальные уравнения в алгебре Дирихле	37	
	4.2.	Неравенство для суммы функции Мёбиуса	39	
	4.3.	Идея Сельберга: дифференциальное уравнение второго		
		порядка	40	
	4.4.	Тождество Сельберга для суммы арифметической функ-		
		ции Λ_2	41	
	4.5.	Интегральное неравенство для суммы функции Мёбиуса	43	
5.	Ана	литическая часть доказательства	44	
	5.1.	Сведение к задаче из анализа	44	

	5.2.	Аддитивная переформулировка	45
	5.3.	Итеративный процесс	46
	5.4.	Упрощенная версия проблемы	47
	5.5.	Доказательство основного утверждения	48
6.	Закл	лючение	50
6.		лючение Взгляд назад	
6.	6.1.		50

Мишель Балазар

Асимптотический закон распределения простых чисел

Издательство Московского центра непрерывного математического образования 119002, Москва, Большой Власьевский пер., 11. Тел. (499) 241-74-83

Подписано в печать 19.12.2012 г. Формат $60\times90^{1}/_{16}$. Бумага офсетная. Печать офсетная. Печ. л. 4. Тираж 1000. Заказ .

Отпечатано в ОАО «Щербинская типография». 117623, Москва, Типографская ул., д. 10. Тел. (495) 659-23-27.

Книги издательства МЦНМО можно приобрести в магазине «Математическая книга», Большой Власьевский пер., д. 11. Тел. (499) 241-72-85. E-mail: biblio@mccme.ru