FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Apunts d'Àlgebra Lineal (Primer curs del Grau de Matemàtiques)

Àlex Batlle Casellas

${\bf \acute{I}ndex}$

1	Mat	trius, determinants i sistemes lineals.	2
2	\mathbf{Esp}	ais vectorials.	2
	2.1	Operacions a \mathbb{R}^n	2
	2.2	Espai vectorial sobre un cos \mathbb{K} :	2

1 Matrius, determinants i sistemes lineals.

2 Espais vectorials.

Considerem el conjunt d'n-tuples de nombres reals:

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) | x_i \in \mathbb{R}\}.$$

2.1 Operacions a \mathbb{R}^n .

1. **Suma:** Sigui $u = (x_1, x_2, ..., x_n), v = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$. Aleshores:

$$u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \in \mathbb{R}^n$$
.

2. Multiplicació per un escalar: Sigui $u=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n,c\in\mathbb{R}$. Aleshores:

$$cu = (cx_1, cx_2, \dots, cx_n) \in \mathbb{R}^n$$
.

PROPIETATS:

- u + v = v + u. (commutativitat)
- (u+v)+w=u+(v+w). (associativitat)
- $\exists \mathbf{0} \in \mathbb{R}^n : u + \mathbf{0} = u$. (vector zero; notació alternativa, $\vec{0}$)
- $\forall u \in \mathbb{R}^n \exists -u \in \mathbb{R}^n : u + (-u) = \mathbf{0}.$
- c(u+v) = cu + cv. (distributivitat)
- (c+d)u = cu + du. (distributivitat)
- c(du) = (cd)u.
- 1u = u.

2.2 Espai vectorial sobre un $\cos \mathbb{K}$:

Sigui \mathbb{K} un cos commutatiu (per exemple $\mathbb{Q}, \mathbb{R}, \mathbb{C}$). Un espai vectorial sobre \mathbb{K} (\mathbb{K} -e.v.) és un conjunt de vectors E amb dues operacions + i \cdot .

- +: Donats $u, v \in E$ dóna un element u + v també d'E. És una operació commutativa, associativa, té element neutre $(\mathbf{0} \text{ o } \vec{0})$ i tot $u \in E$ té invers respecte + (-u).
- ·: Donats $u \in E$ i $c \in \mathbb{K}$ dóna un element cu d'E.

La suma i el producte compleixen

$$c(u+v) = cu + cv$$
 $(c+d)u = cu + du$ $c(du) = (cd)u$ $1u = u$ $\forall u, v \in E, c, d \in \mathbb{K}$.

Exemples d'espais vectorials:

- $\mathbb{K}^n = \{(x_1, x_2, \dots, x_n) | x_i \in \mathbb{K}\}$ és un \mathbb{K} -e.v. amb la suma i el producte naturals heretats de \mathbb{K} .
- $\mathcal{M}_{m \times n}(\mathbb{K})$ és un \mathbb{K} -e.v. format per matrius de dimensions $m \times n$ amb entrades a \mathbb{K} i les operacions naturals de la suma de matrius i el producte per un escalar.
- El conjunt de polinomis de grau $\leq d$, $\mathbb{R}_d[x] = \{p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n | a_i \in \mathbb{R}\}$ és un espai vectorial amb la suma de polinomis i el producte per un escalar.
- $\mathbb{R}[x] = \{\text{polinomis en una variable } x \text{ i coeficients en els reals} \} \text{ és un } \mathbb{R}\text{-e.v.}$
- El conjunt $\mathcal{F}(\mathbb{R}, \mathbb{R})$ de funcions $f : \mathbb{R} \to \mathbb{R}$ és un \mathbb{R} -e.v.