

Fig. 1

An Example of Source Data Infrared Technology

		:							
→	90	4013	: align	oiłqo	40635278	22	12		249
01	05	əf	gemi ler			18	C.		263
Objects 4001	4011 04	ork vork	ie netwo	remor virele	4061 1224	_	C	>	34
Obje	03	4010	l scsn	stigib	4060 775	_		>	20
	02	4009	- image	stigib	4059 5004	ිර		0	874071
	4005 01	10 T	eceptor recepto	hotor hoto-	2 d 4006 4006 2969	4003	4004	0	62
	1 7					4008 4008	4064	250	4065 21604
					4007	70000	A near infrareu	B far infrared	C infrared
							CII	b10b	\$10b

Fig. 4

SEARCH TERM - a string of text to be found within the Text or Claims of desired patents. Several related Action Search Terms may be combined to reflect a single Action. Search Terms can be classified as either "Action" or "Object."

Cells are given a reference code (e.g. A01) to depict the combination of source Search Terms. The reference code may be followed by a CorT to note that the search terms were found CELL - a cross section of Search Terms (Action x Object) within the Text or Claims of the included patents.

CLUSTER - a group of naturally related cells.

Fig. 5

The Power to be Both Focused and Inclusive

Specific Aspect Action A1 6002

Specific Aspect Action A2

Specific Aspect Action A3

Specific Aspect Action A4 6004

9009

Specific Aspect Action As

Action A

9009

Fig. 6

* Patents identified in any of these specific terms are rolled into one Action Data set.

, 0107. 6007	7008 Weighted Cot	1 1 3	2 1 1 1	4 3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	1	2	1	1	2	2	2 1 1 1	
ab Report	7005 + 7007 Document Hits Hits	24.		8/13/98 PCT 3 4	8/13/98 PCI 3 4 4/14/98 US 3 5		10/20/99 EP-B 2 4	10/5/99 US 2	6/1/89 US	9/29/98 US 2	5/26/98 US 2 1	47798 US	9/16/97 US 2	3/12/97 EP-A 2 4
Patent Crosstab Report	7003	THE	thermal imaging system with electronic		G SYSTEM m	trainer pparatus for thermal radiation	Z	AREAS Method of detection of cancerous lesions by their effect on the spatial distribution of modulation of temperature and homogeneity	of tissue Real time adaptive digital image processing for dynamic range remapping of imagery	including low-light-level visible imagery Method and apparatus for analyzing an image	to detect and identify defects Simplified simulation of effects of turbulence	Thermal imaging device Thermal imaging device with selectively Thermal imaging device with selectively	lens identification Digital imaging device optimized for color	THERMAL IMAGING DEVICE
	7011	Pecurient D			5497	5739531 4470816	6023637	EP 0 611 242 B1	5961466	5909244	5815198	5737119	5673143	568596 cs EP 0 762 173 A
	7001	Assigned	Object Weights	He Holdings	Raytheon	He Holdings United States Of America	Liu, Zhong Qi	Empresa Nacional bazan ue Construcciones Naval Militares	Omnicorder Technologies	Massachusettes Institute Of Technology	Vachtsevanos, George J.	United States Of America Hughes Electronics	Hughes Electronics	Eastman Kodak 5668596 periorinatus Eastman Kodak THERMAL He Holdings Dba Hughes Electronics EP 0 762 173 A2 THERMAL

Fig. 7

Assigned Rollup

1008	(8033	8003	VC08	8035	8028										
\			7700	C700	+700	C700	0700			Đ					•	•	
Rank	k Assignee	His	Paten	Recent Patents Hits	Recent	Weighted N	Weighted	C 01 R	7 DO F	C02 R C02	2 603	R CO3	CO4R	C04R C04 C05	R C.05		C06R C06
	8002							ç		60			7	•	Η,		c
	22						T	49		3 5	17		200	7 6	3 %	223	2 2
								13		8 8	. 6		1	7	57	100	27
								16		8	101		Ξ	3	55		40
	88							14	_	Ø	7		2		4	67	34
	8007 Applied Recent Patents							2		11	3		4		11		8
	8008 Dominance							0.48	0	0.26	0.20		0.44	0.48	48	0.40	0
	8009 Recent Dominance						7	0.44	0	0.18	0.20		0.18	0.27	27	0.28	8
	8010 Issued Innovation Factor 4						7	0.33	Ö	0.62	0.69		1.29	0.10	01	0.17	7
	8011 Applied Innovation Factor 4						נ	0.64	0	0.87	0.33		0:20	-0.02)2	0.19	9
	8012 Predictive Innovation Factor 4						3	0.31	O	0.25	-0.36		-0.79	-0.12	2	0.02	2
	1 Eastman Kodak	43	42	4	4	l	-	8		3	_				30	3	6
	2 United States Of America	34	<u>ب</u>	8	2	•		_		2	_					2 2	21
	3 Texas Instruments	20	8	6	0					2			3	,	13		2
	4 Xerox	18	18	4	4			17	3		1	1					
	5 Minnesota Mining & Manufacturing	17	17	2	2			2		1	-		1	-	14	1	
	6 Intl Business Machines	16	16	2	2					-			12	2			3
	7 Hughes Electronics	16	13	6	7					1				1	10	2	5 1
	8 Raytheon	15	11	12	8					5	2 2	2				9	2 2
	9 Hughes Aircraft	14	13	-	-					_					3	_	1
	0 Westinghouse Electric	12	12											_	2	_	10
	11 Thermoscan	12	12	5	2				-			_		_			12 5
	12 Konica	12	12	3	9			O	4						3	_	
	13 Polaroid	12	12	1	-					2	1				8		2
	14 Barr & Stroud	5	5						-						-		6
	15 Matsushita Industrial Electric	10	10	3	3					_			-		6	3	
	,																

Fig. 8B

Assignee Rollup

97.08 91.33.5.4.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	Weighted		7	4	6	1	4 6	7 5	6	15	2	8	-	20 1	2
	8025 Weighted V		48	88 ·	22	21	22	14	16	14	15	12	15	=	141
	8024 Recent V		4	2	4	2	2	200	8 -		5	5	1		3
23 134 134 134 134 134 134 134 13	8023 Recent Hits		4	9	5 4				12		5				5 3
A STATE OF THE STA	8022 Patents		42		20		16		11						10
A CONTRACTOR OF THE CONTRACTOR	Hils		43	34	20	17	16	16	15	4 5	7 4	15	12	10	10

Cell Indices - Definitions

Immovation Factor 1 (Applied or Issued)

Fig. 9

Cell Indices - Definitions

Innovation Factor 4 (Applied or Issued

Innovation Factor 4 =

Cell Selection Matrix

Cell Selection Index is calculated for each cell based on the implied suitability for joint ventures or internal development:

			,	Non-record to			
90	optic align	0	14	3.5	0	9	1.5
90	thermal image	9	0	1.75	14	0	0.75
04	wireless network	25		10.5	22		7
0	remote network or	1.		1(-		
03	digital scan	1.25		5	1.25		7.5
02	agsmi lstigib	4		15	16		15
10	photo-receptor	4		20	9		5
0	photoreceptor or	,		.,			
		License	License	License	Develop	Develop	Develop
		A	Œ	٥	A	В	O
			1001			1002	

Fig. 11

Cell Selection Index

Fig. 12

Cell Selection Matrix

fortifying / differentiating their May indicate obsolescence . Technology is mature Consider partnership or licensing opportunities 'Standard" bolders are Market has found a High "standard" Dominance Cell Selection Score - Bubble Chart . Market is searching for a - Little current exploration Broad interest in a field Patents by individuals . Consider development technology is under 13109 Low "standard" developed High Low Innovation 13116 13114 0 13107 Dominance 13112 13108 13106 o Innovation

Fig. 13 (8)

Increasing Predictive Innovation

Assignee Composite Score

14008	optic align	900	25.0	80.6	7.0	0'0	0.0	10.5	26.8	20.0	45.0	35.0	59.5	0.0	7.0	31.5	0.0
14007	agsmi Ismnədt	C05	59.0	26.4	28.0	0.0	26.3	0.0	26.8	30.1	5.7	3,5	0.0	7.0	14.0	1.8	21.0
14006	remote network or wireless network	C04	0.0	0.0	31.5	0.0	0.0	147.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.5
14005	nsos lajigib	C03	5.1	0.0	0.0	10,0	0.0	0.0	0.0	28.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14004	agami lajigib	C02	46.1	55,4	30.0	0.0	30.0	15.0	18.5	147.3	0.0	0.0	0.0	0.0	45.0	0.0	0.0
14003	photoreceptor	COI	61.4	0'0	0.0	1 400.0	40.0	0.0	0.0	0.0	0.0	0.0	0'0	260.0	0'0	0.0	0.0
	14001	ASSIMBE	A	œ	O	Q	Ц	T.	9	I		7	Y		2	Z	0
	14002	Donk	1	,	۳.	4	۲.	9	7	~	σ	0	7	12	7 6	14	15

Fig. 14

		1000000						1 1			J	~	٦.	J,	Τ,	3		
14008	ptic align	900	31.0	100.0	8.7	0,0	13.0	33.2	24.9	55.8	43.4	73.8	00	8.7	39.1	מח		
14007	ermal image	± €05	100.0	44.7	47.5		0.00					0.0		2		35.6	•	
14006	mote network or reless network	en W	0.0	0.0	21.4	0.0	0.0	100.0						0.0	0.0	7		
14005	gital scan)ib	2 8 5	200	0.0	16.7	00			4/4				-				
14004	əgsmi lsti	gib	C02	20.8	16.7	0.0	16.7	8.3		8		000			-			
14003	otoreceptor or	oyd oyd	C01	15.4	0.0	100.0	10.0	0.0	00	00	9	0.0	0.0	0.50	0.0		7	
		14001	Assignee	Α	В	01		11 4	C	Σ.		7	×	-	M	N	0	01031
	14002	-	2	Kallin	2	3	4	2	9 1	1	x c	2 6	+	12	13	14	15	

Fig. 15A

Assignee Composite Score

Assignee Composite Score

Assignee Composite Score

Assignee Composite Score

Graphical Representation of Assignee Composite Score

Fig. 16

Fig. 17

Fig. 19

Target Partner 1

Fig. 20A

Alternative Partner 2
Assignee Specific Cell Selection Indices

Fig. 20B

Alternative Partner 3

Assignee Specific Cell Selection Indices

Fig. 20C

Assignee Field Index vs. Patent Count

Standardized Assignee Cell Index - Application B

Standardized Assignee Cell Index - Application C

Fig. 24

Naturally Defined Clusters

	_	age	mi le	ermi	ч.				K	\	\				
-									×		\ \				
	10	ptor		opoto	d									25001	
						A near infrared	3 far infrared		ì						
18	18	16	14	14	14	10	-		.1	9	9	9	9	4	4
2	2	2	2	2	2		C	7	2	3	2	2	2	4	4
														900	105
C05.A05	C06,A06	A01.C01	A02,C02	A05,C05	C06	COB	200	CUD:	.A01	.C05.C02	.C03	C05,C02	C06.B06	,A04,A06,C	C06.A06.C05.A05
	2	2 18 01 02 03	2 18 sge 05 sge 05 sge 18 sge 16 sge	18 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	188	188 198 198 198 198 198 198 198 198 198	18 19 19 19 19 19 19 19	2 16 2 16 2 16 4 A near infrared digital scan digital scan wireless network 9 C infrared themal image 05 C infrared themal image 05	2 16 hotoreceptor 2 14 digital image 2 2 2 10 B far infrared 2 2 10 C infrared 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 16	CO2 CO2 CO2 CO3 CO3	C02	CO	C02

Fig. 25A

Top Assignees Across a Selected Cluster

C02, C03, C05

C02, C03, C05

Eastman Kodak

Minnesota Mining & Manufacturing

Texas Instruments

United States Of America

Hughes Electronics

Polaroid

Raytheon

Matsushita Industrial Electric

Us Philips

He Holdings Dba Hughes Electronics

Honeywell

Agfa-Gevaert

Massachusettes Institute Of Technology

Cairns & Brother

Nec

Raytheon Ti Systems

Fig. 25B

Top Inventors Eastman Kodak

hventor	Tits	Patents	Weighted Hits	Weighted Action
Chapman, Derek D.	10	10	11	4
DeBoer, Charles D.	8	8	9	5
Evans, Steven	9	9	9	3
Burberry, Mitchell S.	. 3	3	4	3
Schildkraut, Jay S.	2	2	3	4
Tutt, Lee W.	2	2	3	3
Momot, David	2	2	2	3
Bugner, Douglas E.	2	1	2	4
Byers, Gary W.	2	-	2	9
Kolb, Jr., Frederick J.	2	1	2	2
Vogel, Richard M.	2	1	2	7
Harvey, Donald M.	1	1	3	4
De Groot, Gerald H.	1	Ţ-	2	. 5
McIntyre, Dale F.	1	-	2	
Simpson, William H.,	1	1	2	3
Bloom, Richard M.	1	+	7	2

Fig. 27

Fig. 28

MTFA Altitude

All Information 29001

Figur 29