Metody numeryczne 2021/2022: lista 3

- 1. Niech $\mathbf{u} \in \mathbb{R}^N,\, \mathbf{u} \neq \mathbf{0}.$ Zdefiniujmy macierz $\mathbf{P} = \mathbb{I} 2\frac{\mathbf{u}\mathbf{u}^T}{||\mathbf{u}||^2}.$
 - (a) Wyznacz \mathbf{P}^{-1} .
 - (b) Znajdź wektory i wartości własne macierzy \mathbf{P} .
 - (c) Oblicz wyznacznik macierzy P.
 - (d) Podaj interpretację geometryczną macierzy P.
- 2. Przyjmijmy $\mathbf{u} \equiv \mathbf{x} \mp ||\mathbf{x}|| \mathbf{e}_1$, gdzie $\mathbf{e}_1 \equiv (1, 0, \dots, 0)$. Niech $\mathbf{x} \in \mathbb{R}^N$. Oblicz $\mathbf{P}\mathbf{x}$ dla macierzy \mathbf{P} z 1. zadania.
- 3. Używając transformacji Householdera dokonaj rozkładu QR następujących macierzy

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 11 \\ -4 & 0 & -4 \\ -4 & -3 & -4 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 2 & 1 & -3 \\ -2 & -4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$

oraz rozwiąż układy równań $\mathbf{A}\mathbf{x} = (1, 1, 1)^T$, $\mathbf{B}\mathbf{x} = (1, 2, 3)^T$.

4. Metodą obrotów Givensa znajdź faktoryzację QR następującej macierzy:

$$\mathbf{A} = \begin{pmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{6} + \frac{3}{2}\sqrt{2} & -\frac{1}{4}\sqrt{6} + \frac{11}{4}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{6} + \frac{3}{2}\sqrt{2} & \frac{1}{4}\sqrt{6} + \frac{9}{4}\sqrt{2} \\ 0 & 1 & \frac{1}{2}\sqrt{3} + \frac{1}{2} \end{pmatrix}.$$

- 5. Udowodnij, że dla nieosobliwej macierzy $\mathbf{A} \in \mathbb{R}^{n \times n}$ rozkład $\mathbf{A} = \mathbf{Q}\mathbf{R}$ (\mathbf{Q} macierz ortogonalna, \mathbf{R} macierz trójkątna górna) jest jednoznaczny jeśli zażądamy, że elementy na diagonali macierzy \mathbf{R} są dodatnie.
- 6. Udowodnij wzór Shermana-Morrisona

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

dla $\mathbf{A} \in \mathbb{R}^{n \times n}$, det $\mathbf{A} \neq 0$, $1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u} \neq 0$ oraz $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Do czego można ten wzór wykorzystać?

7. (zadanie numeryczne NUM4) Rozwiąż równanie macierzowe $\mathbf{A}\mathbf{y} = \mathbf{b}$ dla

$$\mathbf{A} = \begin{pmatrix} 10 & 8 & 1 & 1 & \dots & 1 & 1 & 1 & 1 \\ 1 & 10 & 8 & 1 & \dots & 1 & 1 & 1 & 1 \\ 1 & 1 & 10 & 8 & \dots & 1 & 1 & 1 & 1 \\ \dots & \dots \\ 1 & 1 & 1 & 1 & \dots & 1 & 10 & 8 & 1 \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 10 & 8 \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 1 & 10 \end{pmatrix}$$

oraz $\mathbf{b} \equiv (5, ..., 5)^T$. Macierz \mathbf{A} ma liczby 10 na diagonali, 8 na pierwszej pozycji nad diagonalą, a pozostałe elementy są równe 1. Wymiar macierzy ustalamy na N=50. Odpowiedni algorytm, podobnie jak dla zadania $\mathbf{NUM3}$, należy zaimplementować samodzielnie (mile widziane jest sprawdzenie wyniku przy użyciu procedur bibliotecznych lub pakietów algebry komputerowej).

1