HW5

October 22, 2024

Exercise 1 Let $X_0 = (1, 0, ..., 0) \in \mathbb{R}^d$ and $X_n \in \mathbb{R}^d$ be defined inductively by choosing X_{n+1} , independently from $X_1, ..., X_n$, and randomly from the ball of radius $|X_n|$ centered at the origin, that is, $X_{n+1}/|X_n|$ is uniformly distributed on the unit ball.

- 1. Let $R_n = |X_n|$. Show that R_n , $n \ge 1$, are i.i.d. and characterize the distribution of R_1 .

 Hint: for independence, use $\sigma(R_1, \ldots, R_n) \subset \sigma(X_1, \ldots, X_n)$ and $X_{n+1}/|X_n| \perp \sigma(X_1, \ldots, X_n)$.
- 2. Show that there exists a constant c such that $n^{-1} \log R_n \to c$ a.s. and find c.

Exercise 2 Recall that for independent r.v.'s X_n , $n \ge 1$, the tail σ -algebra is defined by

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(X_m, \ m \ge n).$$

- 1. Show that $\{\limsup_{n\to\infty} S_n > 0\} \notin \mathcal{T}$.
- 2. Show that $\{\limsup_{n\to\infty} S_n/c_n > x\} \in \mathcal{T} \text{ if } c_n \to \infty.$

Exercise 3 Let $X_1, X_2, ...$ be i.i.d. and not identically 0. Consider the radius of convergence of the random power series $\sum_{i=1}^{\infty} X_n(\omega)t^n$:

$$r(\omega) = \sup\{r > 0 : \sum_{n=1}^{\infty} |X_n(\omega)| r^n < \infty\} = \left(\limsup_{n \to \infty} \sqrt[n]{|X_n(\omega)|}\right)^{-1}.$$

- 1. Show that $r(\omega) = 1$ a.s. if $\mathsf{E}\log^+|X_1| < \infty$, where $\log^+ x = \max(\log x, 0)$.
- 2. Show that $r(\omega) = 0$ a.s. if $\mathsf{E} \log^+ |X_1| = \infty$.

Exercise 4 Let X_1, X_2, \ldots be independent with $\mathsf{E} X_n = 0$ and $\mathsf{E} X_n^2 \leq C$ for some C > 0. Let $p \in (1/2, 1)$ and $\alpha > 1/(2p-1)$.

- 1. Show that $S_{n_k}/n_k^p \to 0$, a.s. as $k \to \infty$, where $n_k = [k^{\alpha}]$.
- 2. Let $D_k = \max_{n_k \le n \le n_{k+1}} |S_n S_{n_k}|$. Use Kolmogorov's maximal inequality to show that

$$\mathsf{P}\big(\big\{D_k/k^\beta\geq 1, \text{ i.o.}\big\}\big)=0, \quad \forall \beta\in (\alpha/2,\alpha p).$$

3. Show that $S_n/n^p \to 0$, a.s. as $n \to \infty$.

Exercise 5 We will reprove the independence of collection times in the coupon collector problem without any serious computation. Recall that ξ_1, ξ_2, \ldots are i.i.d. uniform on $\{1, 2, \ldots, n\}$, and

$$\tau_k^n = \min\{m \ge 0 : |\{\xi_1, \xi_2, \dots, \xi_m\}| \ge k\}, \quad 0 \le k \le n,$$

are the first time that one collects k distinct coupons $(\tau_0^n = 0)$. Let $\mathcal{F}_m = \sigma(\xi_1, \dots, \xi_m)$.

Fix $k_0 \in \{1, 2, ..., n-1\}$ and let $T = \tau_{k_0}^n$. Assume $T < \infty$ a.s. as a fact.

- 1. Show that $\{T=m\} \in \mathcal{F}_m$ for every $m \geq 1$.
- 2. Show that

$$\{T = m\} \cap \{\tau_{k_0+1}^n - \tau_{k_0}^n \ge \ell + 1\}$$

$$= \bigcup_{|A| = k_0, \ A \subset \{1, \dots, n\}} \left(\{\{\xi_1, \dots, \xi_{m-1}\} \subsetneq \{\xi_1, \dots, \xi_m\} = A\} \cap \{\xi_{m+1}, \dots, \xi_{m+\ell} \in A\} \right),$$
(1)

and use independence of \mathcal{F}_m and $\sigma(X_\ell, \ell \geq m+1)$ to show

$$P(T = m, \ \tau_{k_0+1}^n - \tau_{k_0}^n \ge \ell + 1) = P(T = m) \left(\frac{k_0}{n}\right)^{\ell}, \quad \ell \ge 0.$$
 (2)

- 3. By summing Eq. (2) over $m \ge 1$, show that $P(\tau_{k_0+1}^n \tau_{k_0}^n \ge \ell + 1) = (k_0/n)^{\ell}, \ \ell \ge 0$.
- 4. Show that if $B \cap \{T = m\} \in \mathcal{F}_m$ for every $m \geq 1$, then

$$P(B \cap \{\tau_{k_0+1}^n - \tau_{k_0}^n \ge \ell + 1\}) = P(B) \left(\frac{k_0}{n}\right)^{\ell}, \quad \ell \ge 0.$$

Hint: one can write $B = \bigcup_{m=1}^{\infty} (B \cup \{T = m\})$ since $T < \infty$ a.s.; then use Eq. (1).

5. For any $\ell_1, \ldots, \ell_{k_0}$, show that for every $m \geq 1$,

$$\{\tau_1^n = \ell_1, \ldots, \tau_{k_0}^n = \ell_{k_0}\} \cap \{T = m\} \in \mathcal{F}_m.$$

Conclude that $\tau^n_{k_0+1} - \tau^n_{k_0}$ is independent of $\sigma(\tau^n_1, \dots, \tau^n_{k_0})$.

Exercise 6 Let X_n , $n \ge 1$, be arbitrary r.v.'s on $(\Omega, \mathcal{F}, \mathsf{P})$ such that $\sum_{n=1}^{\infty} \pm X_n$ convergence P-a.s. for

all choices of ± 1 's. The goal is to show that $\sum_{n=1}^{\infty} X_n^2 < \infty$, a.s.

1. Let ξ_n be i.i.d. r.v.'s on $(\Theta, \mathcal{G}, \mu)$ with $\mu(\xi_n = \pm 1) = \frac{1}{2}$. Let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathsf{P}}) = (\Omega \times \Theta, \mathcal{F} \otimes \mathcal{G}, \mathsf{P} \times \mu)$ be the product space. Using Fubini's theorem, show that

$$\tilde{\mathsf{P}}\Big(\Big\{(\omega,\theta):\sum_{n=1}^{\infty}\xi_n(\theta)X_n(\omega)\text{ converges}\Big\}\Big)=1,$$

and hence for P-a.e. ω , $\sum_{n=1}^{\infty} \xi_n(\theta) X_n(\omega)$ converges for μ -a.e. θ .

2. Using Kolmogorov's one-series theorem on $(\Theta, \mathcal{G}, \mu)$ to conclude that for those ω in part 1,

$$\sum_{n=1}^{\infty} |X_n(\omega)|^2 = 2\sum_{n=1}^{\infty} \operatorname{Var}_{\theta}(\xi_n X_n)^2 := 2\sum_{n=1}^{\infty} \int |\xi_n(\theta) X_n(\omega)|^2 \mu(d\theta) < \infty.$$