

Conteúdo

Resumos de Matemática	1
12º Ano	1
ANÁLISE COMBINATÓRIA	6
Triângulo de pascal	
Binómio de Newton O termo de ordem p+1	
PROBABILIDADES	8
Elemento Neutro	8
Elemento Absorvente	8
Tabela de Propriedades	8
Acontecimentos B ⊂ C	8
Teorema da probabilidade	9
As três formulas mais usadas	9
Leis de Morgan	9
Acontecimentos contrários	10
Acontecimentos disjuntos	10
Acontecimentos disjuntos	10
SUCESSÕES	11
Definição do limite finito de uma sucessão	11
Limites aplicáveis	12
Exemplos para aplicar	12
Propriedades da função exponencial (k >1)	
Propriedades da função logarítmica (k >1)	
TEOREMAS IMPORTANTES	15

Teorema de Bolzano-Cauchy	15
Teorema de Weiertrass	16
Teorema de Lagrange	17
LIMITES E INDETERMINAÇÕES NUMÉRICAS	18
Tipos de indeterminações	18
Funções Polinomiais	18
Funções Racionais	18
Funções irracionais	18
Funções trigonométricas	19
ASSÍNTOTAS	20
Assíntotas Verticais	20
Assíntotas Horizontais	20
ASSÍNTOTAS NÃO VERTICAIS	21
CONTINUIDADE DE UMA FUNÇÃO	22
Continuidade de uma função num ponto	22
Continuidade lateral	22
Continuidade de uma função num intervalo	23
DERIVADAS	24
Derivada de uma função num ponto	24
Importante	24
Regras de derivação	25
Importante	26
TRIGONOMETRIA	27
Círculos Trigonométricos	27
Fórmula Fundamental da Trigonometria	27
Fórmulas Trigonométricas	27

Equações trigonometricas	28
Derivadas da funções trigonométricas	28
Tabela trigonométrica	29
Limite Notável	29
NÚMEROS COMPLEXOS	30
Forma Algébrica	30
Forma Trigonométrica	
Argumentos de um número complexo	
Operações com números complexos na forma trigonométrica	
Raízes de Números Complexos	32
GEOMETRIA	33
Equação reduzida da reta	33
Formulas para calcular o declive de uma reta	33
Equação vetorial da reta	33
Equações paramétricas da reta	34
Equação da circunferência	34
Inequação do círculo	35
Distancia entre dois pontos	35
Ponto médio	35
Equação vetorial da reta	36
Equações paramétricas da reta	36
Equação da superfície esférica	36
Inequação da esfera	37
Distancia entre dois pontos	37
Ponto médio	
Produto escalar	
Como saber o angulo entre dois vetores ?	
Equação geral do plano	38

Resumos	de	Mater	mática
INCOULLIOS	uc	IVIALEI	Hatita

Mapa Mental da matéria	39
https://ricardodsr.github.jo	30

Análise Combinatória

Triângulo de pascal

Linha 0

 C_0

Linha 1

 $C_0^{\frac{1}{0}}$ $C_1^{\frac{1}{1}}$

Linha 1

 C_0^2 C_1^2 C_2^2

Propriedades do triângulo de Pascal

•
$$C_0^n = C_n^n = 1$$

 $n \in \mathbb{N}0$

•
$$C_p^n = C_{n-p}^n$$

n, p ∈ №0 e p ≤ n

•
$$C_p^n + C_{n+p}^n = C_{p+1}^{n+1}$$
 $n, p \in \mathbb{N}0 \text{ e p} \le n$

•
$$C_0^n + C_1^n + C_2^n + \dots + C_n^n = 2^n$$
 $n \in \mathbb{N}0$

Binómio de Newton

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$$

$$(a+b)^n = C_0^n a^n + C_1^n a^{n-1}b^2 + \dots + C_{n-1}^n a b^{n-1},$$

 $n \in \mathbb{N}_0$

O termo de ordem p+1

$$T_{p+1}^n = C_p^n a^{n-p} b^p$$
, $0 \le p \le n$

$$0 \le p \le n$$

Probabilidades

Elemento Neutro

- $A \cap \Omega = A$
- A∪⊘=A

Elemento Absorvente

- A $\cap \bigcirc = \bigcirc$
- $A \cup \Omega = \Omega$

Tabela de Propriedades

Propriedade	Intersecção	União
Comutativa	$A \cap B = B \cap A$	$A \cup B = B \cup A$
Associativa	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
Distributiva	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	

Acontecimentos B ⊂ C

$$\mathsf{B} \subset \mathsf{C} \Rightarrow \begin{cases} \overline{B} \cap \overline{C} = \overline{C} \\ \overline{B} \cup \overline{C} = \overline{B} \\ B \cap C = B \\ B \cup C = C \end{cases}$$

Teorema da probabilidade

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

As três formulas mais usadas

•
$$P(A \setminus B) = P(A) - P(A \cap B)$$

•
$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

•
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Leis de Morgan

$$\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Acontecimentos contrários

$$P(A) = 1 - P(\overline{A})$$

Acontecimentos disjuntos

$$P(A \cap B) = 0$$

Acontecimentos disjuntos

$$P(A \cap B) = P(A) \times P(B) \Rightarrow P(A \mid B) = P(A)$$

Sucessões

Resumos de Matemática

Uma sucessão u de números reais é uma função real que vai de \mathbb{N} para \mathbb{R} .

Domínio

$$u: \mathbb{N} - -- \rightarrow \mathbb{R}$$

$$u: n - -- \rightarrow f(n)$$

Contradomínio da sucessão de u_n é o conjunto $\{u_n \colon n \in \mathbb{N}\}$

Definição do limite finito de uma sucessão

 $\lim u_n = a \in \mathbb{R} \ (u_n \to a)$ se, para todo o número real δ positivo existir uma ordem $p \in \mathbb{N}$ tal que:

$$\forall_n \in \mathbb{N}, n \leq p \implies |u_n - a| < \delta$$

NÚMERO DE NEPER

Neper é um número irracional e é representado por e (\approx 2,7)

Limites aplicáveis

$$Lim\left(1+\frac{1}{n}\right)^n=e$$

$$k \in \mathbb{R} e \ u_n \to \pm \infty$$

$$Lim(1+\frac{k}{u})^u=e^k$$

Exemplos para aplicar

•
$$\lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^{n+2} = \lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^n x \lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^2 = e^3 x 1 = e^3$$

•
$$\lim (1 + \frac{1}{n})^{3n} = \lim \left[\left(\left(1 + \frac{1}{n} \right)^n \right) \right]^3 = (e^{-1})^3 = e^{-3}$$

FUNÇÃO EXPONENCIAL

Propriedades da função exponencial (k >1)

- $k^x > 0$, $\forall x \in \mathbb{R}$
- $k^x < k^y \Leftrightarrow x < y$
- $k^x = k^y \Leftrightarrow x = y$
- $k^x \times k^y \Leftrightarrow k^{x+y}$
- $\bullet \quad \frac{k^x}{k^y} = k^{x-y}$
- $(k^x)^y = k^{x \times y}$
- $\bullet \quad k^{-x} = \frac{1}{k^x}$

Relação entre Função exponencial e logarítmica

$$k^y = x \iff y = \log_k x$$

FUNÇÃO LOGARÍTMICA

Propriedades da função logarítmica (k >1)

- $\log_k k^x = x$
- $k^{\log_k x} = x$
- $\log_k k = 1$
- $\log_k 1 = 0$
- $\log_k(x \times y) = \log_k x + y$
- $\log_k(\frac{x}{y}) = \log_k x y$
- $\log_k x^p = p \log_k x$

Relação entre Função exponencial e logarítmica

$$k^y = x \iff y = \log_k x$$

Teoremas Importantes

Teorema de Bolzano-Cauchy

Seja f uma função real de variável real contínua num intervalo $[a,b] \subset D_f$

Então para qualquer $k \in \mathbb{R}$ do intervalo aberto de extremos f(a) e f(b), existe pelo menos um $c \in [a,b[$, tal que f(c)=k.

Compreensão:

- Se uma função contínua assume dois valores distintos em um intervalo fechado, então ela deve assumir todos os valores entre esses dois valores no mesmo intervalo.
- A função "cruza" o eixo x em algum ponto do intervalo aberto entre os pontos onde ela assume os dois valores distintos.

Corolário do Teorema de Bolzano-Cauchy

Se f é contínua num intervalo $[a,b] \subset D_f$ e se $f(a) \rightarrow f(b) < 0$, então existe pelo menos um c \in]a, b[, tal que f(c) = 0.

Teorema de Weiertrass

Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ contínua num intervalo $[a,b] \subset D_f$ admite um máximo e um mínimo absolutos em [a,b].

Compreensão:

- Toda função contínua em um intervalo fechado possui um ponto onde ela atinge seu maior valor (máximo) e outro ponto onde ela atinge seu menor valor (mínimo).
- Esses valores máximo e mínimo não precisam necessariamente ocorrer nas extremidades do intervalo.

Teorema de Lagrange

Dados uma função $f: D_f \subset \mathbb{R} \to \mathbb{R}$ e um intervalo $[a,b] \subset D_f$

(a < b) tais que:

- f é contínua em [a, b];
- f é diferenciável em a, b.

Então existe pelo menos um ponto $c \in]a, b[$ tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Compreensão:

- A taxa média de variação da função f(x) no intervalo fechado [a, b] é igual à derivada da função em um ponto c dentro do intervalo aberto (a, b).
- A derivada da função em um ponto dentro do intervalo nos fornece a inclinação da reta secante que passa pelas extremidades do intervalo, e essa inclinação é igual à taxa média de variação da função no intervalo.

Limites e Indeterminações Numéricas

Tipos de indeterminações

Funções Polinomiais

• $\infty - \infty$ -> Por em evidencia o termo de maior grau

Funções Racionais

- $\frac{0}{0}$ -> Fatorizar o numerador e denominador
- $\frac{\infty}{\infty}$ -> Fazer o limite do termo de maior grau

Funções irracionais

- ∞ ∞ -> Multiplicar e dividir pelo conjugado e usar o caso notável
- $\frac{\infty}{\infty}$ -> Pôr em evidência x^2 dentro da raiz e usar $\sqrt{x^2} = |x|$

• $\frac{0}{0}$ -> Multiplicar e dividir pelo conjugado e usar o caso notável

Funções exponenciais e logarítmicas (Usar os limites notáveis)

$$\bullet \lim_{x \to 0} \frac{e^{-1}}{x} = 1$$

•
$$\lim_{x \to \infty} \frac{e^x}{x^p} = +\infty$$

$$\bullet \lim_{x \to \infty} \frac{\ln x}{x} = 0$$

Funções trigonométricas (Usar os limites notáveis)

$$\bullet \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Assíntotas

Assíntotas Verticais

A reta x = k é assíntota vertical da função f(x) se e só se:

$$\bullet \lim_{x \to k^{-}} f(x) = \pm \infty$$

•
$$\lim_{x \to k^+} f(x) = \pm \infty$$

Assíntotas Horizontais

A reta y = b ($b \in \mathbb{R}$ e $b \neq \infty$)é assíntota horizontal da função f(x) se e só se:

$$\bullet \lim_{x \to +\infty} f(x) = b$$

$$\bullet \lim_{x \to -\infty} f(x) = b$$

Assíntotas Não Verticais

A reta y = mx + b $(m, b \in \mathbb{R})$ é assíntota oblíqua da função f(x) se e só se $m, b \neq \infty$ e $m \neq 0$ onde:

$$\bullet \begin{cases}
 m = \lim_{x \to -\infty} \frac{f(x)}{x} \\
 b = \lim_{x \to -\infty} f(x) - mx
\end{cases}$$

$$\bullet \begin{cases}
 m = \lim_{x \to +\infty} \frac{f(x)}{x} \\
 b = \lim_{x \to +\infty} f(x) - mx
\end{cases}$$

Se m = 0 e b $\neq \infty$ então a reta y = b é assíntota da função f(x).

Continuidade de uma função

Continuidade de uma função num ponto

Uma função f definida no intervalo]a, b[e seja c ∈]a, b[

Então, f é contínua no ponto c se e só se:

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = f(c)$$

Continuidade lateral

- fé contínua à direita de $c \to \lim_{x \to c^+} f(x) = f(c)$
- fé contínua à esquerda de c $\rightarrow \lim_{x \to c^{-}} f(x) = f(c)$

Continuidade de uma função num intervalo

Uma função f é contínua num intervalo:

- aberto]a,b[, se é contínua em todos os pontos desse intervalo.
- fechado [a,b], se é contínua em]a,b[e f é contínua à direita em a e contínua à esquerda em b.

Derivadas

Derivada de uma função num ponto

•
$$f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f'(x_0)$ representa o declive da reta tangente ao gráfico de f(x) no ponto de coordenadas $(x_0, f(x_0))$

Importante

• f(x) é derivável no ponto, quando os limites laterais são iguais, ou seja :

$$f'(x_0) = f'(x_{0^-}) = f'(x_{0^+})$$

 Toda a função com derivada finita num ponto é contínua nesse ponto.

Regras de derivação

- $(u \times v)' = u'v + v'u$
- $\bullet \left(\frac{u}{v}\right)' = \frac{u'v v'u}{v^2}$
- $(u^n)' = nu^{n-1}u'$
- $\bullet \ (f \ o \ u)'(x) = \ u'(x) \times f'(u(x))$
- $(e^u)' = u'e^u$
- $(a^u)' = u'^{a^u} \ln a$
- $(\ln u)' = \frac{u'}{u}$
- $(\log_a u) = \frac{u'}{u \ln a}$

Importante

- Com a primeira derivada da função f(x)' = 0, obtemos os Máximos e Mínimos (absolutos e relativos) da função f(x)
- Com a segunda derivada da função f(x)'' = 0, obtemos os pontos de inflexão de f(x)

Trigonometria

Círculos Trigonométricos

- $cos(x) = cos(-x) \rightarrow Função par$
- $-\sin x = \sin (-x) \rightarrow \text{Função ímpar}$
- $-tan x = tan (-x) \rightarrow Função ímpar$

Fórmula Fundamental da Trigonometria

$$\sin^2 x + \cos^2 x = 1$$

Fórmulas Trigonométricas

$\tan x = \frac{\operatorname{sen} x}{\cos x}$	$\cos(a+b) = \cos a \cos b - \sin a \sin b$
$1 + \frac{1}{\tan^2 x} = \frac{1}{\sin^2 x}$	$\cos(a-b) = \cos a \cos b + \sin a \sin b$
$1 + tan^2x = \frac{1}{cos^2x}$	sen(a+b) = sen a cos b + sen b cos a
$\cos(2a) = \cos^2 a - \sin^2 a$	sen(a - b) = sen a cos b - sen b cos a
$sen(2a) = sen \ a \cos a$	$tan(a + b) = \frac{tan a + tan b}{1 - tan a tan b}$
$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$	$tan(a - b) = \frac{tan a - tan b}{1 + tan a tan b}$

Equações trigonométricas

- $\sin x = \sin \alpha \iff x = \alpha + 2k\pi \lor x = \pi \alpha + 2k\pi, k \in Z$
- $\cos x = \cos \alpha <=> x = \alpha + 2k\pi \lor x = -\alpha + 2k\pi, k \in Z$
- $tan x = tan \alpha <=> x = \alpha + k\pi, k \in Z$

Derivadas da funções trigonométricas

- $(sen u)' = u' \cos u$
- $(\cos u)' = u' \sin u$
- $(\tan u)' = \frac{u'}{\cos^2 u}$

Tabela trigonométrica

	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}$ (45°)	$\frac{\pi}{3}$ (60°)
Cosseno	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$
Seno	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
Tangente	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Limite Notável

$$\lim_{x \to 0} \frac{\sin x}{x}$$

Números Complexos

Forma Algébrica

Conjugado

$$o$$
 $z \rightarrow \bar{z} = a - bi$

Simétrico

$$\circ \quad z \to -z = -(a+bi) = -a-bi$$

Número Real $\rightarrow z = a$

Imaginário Puro $\rightarrow z = bi$

Forma Trigonométrica

$$|z| = \sqrt{a^2 + b^2}$$

$$\begin{cases} tg \ \theta = \frac{b}{a} \\ \theta \in Quadrante \end{cases}$$

Transformação de forma trigonométrica para forma algébrica:

$$z = |z| e^{i\theta} = |z| (\cos \theta + i sen \theta)$$

Argumentos de um número complexo

- Argumento positivo mínimo \rightarrow [0,2 π]
- Argumento principal $\rightarrow]-\pi,0] \cup [0,\pi]$

Número Complexo	Argumento Principal $]-\pi,0] \cup [0,\pi]$	Argumento positivo $[0,2\pi]$	Quadrante
$z_1 = 3 + \sqrt{3i}$	$\frac{\pi}{3}$	$\frac{\pi}{3}$	1°
$z_2 = 4e^{i\frac{4\pi}{3}}$	$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	3°
$z_3 = 1 - i$	$-\frac{\pi}{4}$	$\frac{7\pi}{4}$	4°
$z_2 = 2e^{i\frac{5\pi}{6}}$	$\frac{5\pi}{6}$	$\frac{5\pi}{6}$	2°

Operações com números complexos na forma trigonométrica

$$z_1 = |z_1| e^{i\theta_1}$$
 e $z_2 = |z_2| e^{i\theta_2}$

•
$$z_1 \times z_2 = |z_1| . |z_2| e^{i(\theta_1 + \theta_2)}$$

$$\bullet \quad z_1^n = |z_1|^n e^{i(n\theta_1)}$$

•
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 - \theta_2)}$$

•
$$\sqrt[n]{z_1} = \sqrt[n]{|z_1|} e^{i(\frac{\theta_1 + 2k\pi}{n})}, K \in \mathbb{Z}$$

• Conjugado de
$$z_1 \to \overline{z_1} = |z_1| \; e^{-i\theta_1}$$

• Simétrico de
$$z_1 \rightarrow -z_1 = |z_1| e^{i(\theta_1 + \pi)}$$

Auxiliar

- $z \times \bar{z} = a^2 + b^2$
- $\sqrt{-a} = i \sqrt{a}$
- $i^n = i^r$, onde r é o resto da divisão inteira de n por 4

Raízes de Números Complexos

As raízes de índice $n \in \mathbb{N}$ de um número complexo w são os números complexos z tais que:

$$z^n = w$$
 implica $z = \sqrt[n]{w}$

Geometria

Equação reduzida da reta

$$y = m*x +b$$

Formulas para calcular o declive de uma reta

- $m = (y_2 y_1) / ((x_2 x_1))$
- $m = tg \alpha$
- m = -(1/m)

Equação vetorial da reta

$$(x, y) = (p_1, p_2) + k(v_1, v_2), k \in \mathbb{R}$$

GEOMETRIA NO PLANO

Equações paramétricas da reta

$$\begin{cases} x = p_1 + k v_1 \\ y = p_2 + k v_2 \end{cases}, k \in \mathbb{R}$$

Equação da circunferência

$$(x - c_1)^2 + (y - c_2)^2 = r^2$$

Inequação do círculo

$$(x - c_1)^2 + (y - c_2)^2 \le r^2$$

Distancia entre dois pontos

- $P_1(x_1, y_1)$
- $\bullet \ P_2(x_2,y_2)$

$$d(P_1 P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Ponto médio

$$M(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$$

GEOMETRIA NO ESPAÇO

Equação vetorial da reta

$$(x, y, z) = (p_1, p_2, p_3) + k(v_1, v_2, v_3), k \in \mathbb{R}$$

Equações paramétricas da reta

$$\begin{cases} x = p_1 + k v_1 \\ y = p_2 + k v_2, k \in \mathbb{R} \\ z = p_3 + k v_3 \end{cases}$$

Equação da superfície esférica

$$(x - c_1)^2 + (y - c_2)^2 + (z - c_3)^2 = r^2$$

12º Ano

Inequação da esfera

$$(x - c_1)^2 + (y - c_2)^2 + (z - c_3)^2 \le r^2$$

Distancia entre dois pontos

- $P_1(x_1, y_1, z_1)$
- $P_2(x_2, y_2, z_2)$

$$d(P_1P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)}$$

Ponto médio

$$M(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$$

OUTROS

Produto escalar

$$\vec{u}.\vec{v} = \|\vec{u}\| \|\vec{v}\| \cos(\alpha)$$

O produto escalar de vetores perpendiculares ∟ é igual a 0!

Como saber o angulo entre dois vetores?

$$\cos(\alpha) = \frac{\vec{u}.\vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

Se possuirmos as coordenadas, então:

$$(u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Equação geral do plano

Para encontrar o d, basta substituir por um ponto do plano

$$ax + by + cz + d$$

Mapa Mental da matéria

https://ricardodsr.github.io