

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Teoria da Computação Lista de Exercícios – Turing-completude, Tese de Church-Turing Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	

Exercício 1

Demonstre que máquinas de Turing que possuam na função de transição a opção adicional de ficar parada na mesma célula são equivalentes às Máquinas de Turing tradicionais.

Solution:

Claramente uma MT com a opção extra de ficar parada consegue simular uma MT tradicional, basta não utilizar a opção extra.

Uma MT tradicional M também pode simular uma MT M' com a opção extra. Caso haja uma transição do tipo $\delta(q_i,c) \mapsto (q_j,c',S)'$, a MT tradicional vai substituir por duas transições do tipo $\delta(q_i,c) \mapsto (q_{i'},c',R)$ e $\delta(q_{i'},x) \mapsto (q_j,x,L)$, em que $x \in \Gamma$. Ou seja, em uma transição do tipo ficar imóvel na fita, a MT tradicional escreve o mesmo símbolo, mas move a cabeça da fita para a direita, e vai para um estado novo q_i' . Deste estado, após ler qualquer símbolo, ele deve ir para o estado q_i e mover a cabeça da fita para esquerda.

Exercício 2

Demonstre que máquinas de Turing com uma fita infinita nos dois lados (a adotada no modelo JFLAP) são equivalentes às Máquinas de Turing tradicionais.

Solution:

Claramente uma MT M', com fita infinita nos dois lados consegue simular uma MT M tradicional.

Para isto, ela insere um marcador # à esquerda do primeiro símbolo da entrada e adicionar transições para todos os estados do tipo $\delta(q_i, \#) \mapsto (q_i, \#, R)$. Ou seja caso a leitura do marcador seja realizada, a cabeça deve se movimentar para a direita.

O inverso também é verdadeiro. M consegue simular M'. Provaremos isso ao demonstrar que uma máquina M'' com duas fitas consegue simular M'. E com M'' pode ser simulada por M, temos a equivalência.

Seja a_0 o símbolo inicial. Quando a cabeça de M' está à direita de a_0 , a simulação é realizada na fita 1. Quando a cabeça de M' está a esquerda de a_0 a simulação é efetuada na fita 2, mas de maneira invertida.

A função de transição é definida da seguinte forma:

- Se $\delta'(q_i, c) = (q_j, c', L/R)$ e a cabeça de M' está sobre, ou à direita de a_0 , temos $\delta''(q_i, (c, x)) = (q_j, (c, b), L/R)$.
- Se $\delta'(q_i, c) = (q_j, c', L/R)$ e a cabeça de M' está à esquerda de a_0 temos $\delta''(q_i, (x, c)) = (q_j, (x, c'), R/L)$.
- O movimento inicial é:
 - $-\delta''(q_0,(a_0,\sqcup)) = (q,(A,\#),R)$ no caso que $\delta'(q_0,a_0) = (q,A,R)$.
 - $-\delta''(q_0,(a_0,\sqcup)) = (q,(A,\#),R)$ no caso que $\delta'(q_0,a_0) = (q,A,R)$.
- Se a cabeça de M' está sob a posição de a_0 e é movida para a direita, a cabeça da segunda fita fica parada. Se a cabeça está sob a posição de a_0 e vai para a esquerda, a cabeça da primeira fita de M'' fica parada.

Exercício 3

Demonstre que máquinas de Turing com k fitas são equivalentes às Máquinas de Turing tradicionais.

Exercício 4

Demonstre que máquinas de Turing não-determinísticas são equivalentes às Máquinas de Turing tradicionais.

Exercício 5

Dê um exemplo de uma Máquina de Turing não-determinística

Exercício 6

(**Desafio**) Dê uma descrição em português de uma máquina de Turing não determinística que decida a linguagem:

$$L = \{0^i | i \text{ \'e um n\'umero composto}\}$$

Exercício 7

(**Desafio dos mestres**) Projete uma máquina de Turing não-determinística que decida a linguagem do exercício anterior.

Exercício 8

Explique o conceito de Turing-completude (Turing-completeness). No que esta definição é relevante no âmbito de Linguagens de Programação?

Exercício 9

Discorra sobre a tese de Church-Turing.