

A+

A-

Unidade 3 Seção 1

O que é isso? Clique no código e saiba mais.

Linguagens Formais e Autômatos

Α-

Webaula 1

Gramáticas Livres de Contexto

Gramáticas livres de contexto

Gramáticas livres de contexto (GLC) são aquelas nas quais todas as regras têm exatamente um símbolo não terminal (e nenhum outro símbolo) do **lado esquerdo**.

Ela gera cadeias com os caracteres representado por parêntese (), de forma que cada abertura de parêntese corresponde a um fechamento de parêntese posterior.

Um exemplo clássico de GLC é a gramática que gera cadeias com os caracteres "(" e ")" de forma que cada abertura de parênteses corresponde a um fechamento de parênteses posterior.

A-

Considere a linguagem que possui os parênteses corretamente balanceados.

$$L_{par} = \ \{\epsilon, (), (()), ()(), ((())), (())(), ()(())$$

Essa linguagem é gerada pela gramática a seguir:

$$egin{array}{l} S
ightarrow \epsilon \ S
ightarrow SS \ S
ightarrow (S) \end{array}$$

O leitor deve perceber que, pela definição apresentada, toda a gramática regular também é uma gramática livre de contexto. Entretanto a recíproca não é verdadeira. Considere a linguagem:

$$L_p = \{ab, aabb, aaabbb, \ldots\}$$

Essa linguagem pode ser facilmente gerada pela seguinte gramática livre de contexto $m{G_p}$:

$$S o aSb \mid ab$$

Árvore de derivação

Geralmente, usamos GLC, ou algum formalismo equivalente, para especificar a sintaxe de uma linguagem de programação. Por exemplo, a especificação sintática da linguagem Java é feita usando uma gramática livre de contexto (com uma notação um pouco diferente). A gramática livre de contexto G_{exp} , a seguir, gera as expressões aritméticas formadas com as operações soma e multiplicação e o número '1'.

Observe a seguir:

$$S
ightarrow S+S \ S
ightarrow S imes S \ S
ightarrow (S) \ S
ightarrow 1$$

Α-

Uma mesma cadeia pode ter diversas derivações. Por exemplo, a cadeia $1+1\times 1$ possui, entre outras, as três seguintes derivações:

```
S \Rightarrow S + S \Rightarrow 1 + S \Rightarrow 1 + S \times S \Rightarrow 1 + 1 \times S \Rightarrow 1 + 1 \times 1
S \Rightarrow S + S \Rightarrow S + S \times S \Rightarrow S + S \times 1 \Rightarrow S + 1 \times 1 \Rightarrow 1 + 1 \times 1
S \Rightarrow S + S \Rightarrow S + S \times S \Rightarrow 1 + S \times S \Rightarrow 1 + 1 \times S \Rightarrow 1 + 1 \times 1
```

Observamos que na primeira derivação, substituímos sempre a variável mais à esquerda na forma sentencial, chamada de **derivação mais à esquerda** (DME); na segunda derivação, substituímos sempre a variável mais à direita, chamada de **derivação mais à direita** (DMD), enquanto que na terceira derivação não há uma ordem preferencial de substituição.

De uma forma geral, chamamos de derivação mais à esquerda (DME) àquela na qual substituímos sempre a variável mais à esquerda na forma sentencial.

Analogamente, chamamos de derivação mais à direita (DMD) àquela na qual substituímos sempre a variável mais à direita na forma sentencial. Podemos observar ainda que as três derivações demonstradas anteriormente correspondem à estrutura da figura a seguir, que as representa na forma de árvore de derivação.

Árvore de derivação para a expressão 1+1×1

Fonte: elaborada pelo autor.

Δ.

Observe que as três derivações apresentadas anteriormente correspondem a percorrer a árvore apresentada na figura anterior, em diferentes ordens.

```
S\Rightarrow S\times S\Rightarrow S+S\times S\Rightarrow 1+S\times S\Rightarrow 1+1\times S\Rightarrow 1+1\times 1 \quad \Big( \textit{Esta \'e uma DME} \Big) S\Rightarrow S\times S\Rightarrow S\times 1\Rightarrow S+S\times 1\Rightarrow S+1\times 1\Rightarrow 1+1\times 1 \quad \Big( \textit{Esta \'e uma DME} \Big) S\Rightarrow S\times S\Rightarrow S+S\times S\Rightarrow 1+S\times S\Rightarrow 1+1\times S\Rightarrow 1+1\times 1
```

Enquanto as derivações a seguir apresentam a estrutura da árvore da próxima figura.

$$S\Rightarrow S\times S\Rightarrow S+S\times S\Rightarrow 1+S\times S\Rightarrow 1+1\times S\Rightarrow 1+1\times 1 \qquad \Big(\textit{Esta \'e uma DME} \Big)$$

$$S\Rightarrow S\times S\Rightarrow S\times 1\Rightarrow S+S\times 1\Rightarrow S+1\times 1\Rightarrow 1+1\times 1 \qquad \Big(\textit{Esta \'e uma DME} \Big)$$

$$S\Rightarrow S\times S\Rightarrow S+S\times S\Rightarrow 1+S\times S\Rightarrow 1+1\times S\Rightarrow 1+1\times 1$$

Α-

Árvore de derivação alternativa para a expressão 1+1×1

Fonte: elaborada pelo autor.

Uma árvore de derivação quando é lida de cima para baixo e da esquerda para a direita é gerada a partir de uma derivação mais à esquerda (DME).

Portanto, ela se associa a uma e somente uma DME. O mesmo se dá para derivações mais à direita (DMD), a saber, uma árvore de derivação está associada a uma e somente uma DMD.

Entretanto, não há limite para o número de derivações de uma árvore.

Você já conhece o Saber?

Aqui você tem na palma da sua mão a **biblioteca digital** para sua **formação profissional**.

Estude no celular, tablet ou PC em qualquer hora e lugar sem pagar mais nada por isso.

Mais de 475 livros com interatividade, vídeos, animações e jogos para você.

Android: https://goo.gl/yAL2Mv

iPhone e iPad - IOS: https://goo.gl/OFWqcq

A.

Bons estudos!