

Workshop 9

COMP90051 Machine Learning Semester 2, 2018

Learning Outcomes

At the end of this workshop you should be able to:

- apply cross validation/information theoretic approaches to choose the optimal number of clusters for a GMM
- generate data from a GMM
- fit GMMs in scikit-learn

Slides

Worksheet 9

Gaussian mixture model

- Data set $\{x_1, ..., x_n\}$ without labels
- GMM assumes each $\mathbf{x}_i \in \mathbb{R}^m$ is drawn i.i.d. from

$$\sum_{c=1}^k w_c \mathcal{N}(\mathbf{\mu}_c, \mathbf{\Sigma}_c)$$

• EM algorithm allows us to find μ_c , Σ_c , $w_c \, \forall c$ that maximise the likelihood

Assumption: *k* is known

Selecting k

- Why not treat k as a parameter to be optimised?
- No, not a good idea
- Larger $k \Rightarrow$ more flexible model \Rightarrow overfitting

Approaches for selecting k

- Sometimes k is known from context
 - e.g. clustering genetic profiles from cells with a known number of cell types
- Less principled:
 - Subjective choice based on visualisation (may need dimensionality reduction)
 - * Try plausible values and check whether the results vary
- More principled:
 - * Cross-validation
 - * Information theory

Covered today

- * Kink method
- Non-parametric models

Cross-validation

- Evaluate goodness of fit using the log-likelihood
- Fit a GMM on the training set for a range of k, then compute the log-likelihood on training/validation sets
- Expect to see validation log-likelihood plateau, then drop, beyond the "optimal" \boldsymbol{k}

Akaike information criterion (AIC)

Let $N_{\rm par}$ be the number of independent parameters in a model and L^* be the maximum value of the likelihood function. The Akaike information criterion is defined as

$$AIC = 2N_{par} - 2 \ln L^*$$

- Used generally for model selection: smaller is better
- Information theoretic interpretation: estimates (relative) information lost in approximating the true model by proposed model.
- Trade-off between model complexity (first term) and goodness of fit (second term)

Akaike information criterion (AIC)

- AIC estimator is only valid asymptotically—when the number of instances n is large.
- For small n, should use a corrected AIC (correction depends on the model). For univariate linear models:

AICc =
$$2N_{par} + \ln L^* + \frac{2N_{par}(N_{par} + 1)}{n - N_{par} - 1}$$

Bayesian information criterion

Let $N_{\rm par}$ be the number of independent parameters in a model and L^* be the maximum value of the likelihood function evaluated on a sample of size n. The Bayesian information criterion is defined as ${\rm BIC} = N_{\rm par} \ln n - 2 \ln L^*$

- Similar to AIC, but can be motivated by a Bayesian argument
- Approximately maximises p(model|data), independent of prior over models
- In practice, BIC tends to underfit, whereas AIC tends to overfit

Applying AIC and BIC to GMMs

- Fit a GMM on the data for a range of k
- Compute AIC/BIC (depends on maximum likelihood for optimal parameters)
- Choose the model with the smallest AIC/BIC

