

WiSentinel

Detection of humans using Wi-Fi signals

Ilya Nyrkov, Bao Lam Bui, Shivam Singh Chauhan, Max Hufnagel, Muhammad Amir Rafiq Mohd Rafee

Embedded Systems, Cyber-Physical Systems and Robotics School of Computation, Information and Technology Technical University of Munich

July 22nd, 2025

Tun Vhrenturn

- Introduction
- Project Architecture
- Bata Collection & Model Training
- Difficulties & Improvements to be made
- Practical Applications
- 6 Conclusion & Q&A

Introduction

- Motivation: Human detection without the usage of cameras.
- Technology: Channel State Information (CSI) data from Wi-Fi with machine learning.

- Introduction
- Project Architecture
- Bata Collection & Model Training
- 4 Difficulties & Improvements to be made
- Practical Applications
- 6 Conclusion & Q&A

Project Architecture Hardware Setup

- Router: TP-Link Archer C7 x2 (red)
- Switch to connect the laptop to the routers (green)
- Laptop: ThinkPad X1 Carbon G10 (blue)

Figure 1 Hardware setup, with different parts highlighted

Project Architecture Software Setup

- Router: custom-built OpenWrt firmware
 - ☐ Patched ath9k driver to allow CSI capture
 - Built with Docker, with certain features enabled.
 - Instructions are documented in the repository
- Laptop: Ubuntu
- Data capturing tool: Atheros CSI Tool
- Codebase: pure Python libraries
 - NumPy, Matplotlib and csiread for the main data processing.
 - ☐ FastAPI for communication between the backend and the frontend (Telegram bot)

- Introduction
- Project Architecture
- Bata Collection & Model Training
- Difficulties & Improvements to be made
- 5 Practical Applications
- 6 Conclusion & Q&A

Demonstration

WiSentinel Demonstration

Data Collection & Model TrainingData Collection

Figure 2 Front side view

Figure 3 Right side view

Data Collection & Model Training Data Collection

- The room is set up with the routers in the positions in the figure.
- Laptop initiates an SSH connection into the receiver to capture the packets.
- Packets are saved in .dat format from the capturing tool.
- Different poses (standing, T-pose) and environments are captured (with a person, with no person).

Figure 4 Diagram for router layout

Data Collection & Model Training Data Format and Presence Model

Data format: 4-dimensional tensor with dimensions (packet_count, subcarrier_count, receiving_antennas, ltf_count).

- 56 subcarriers in total, 60 packets per training window.
- 3 transmitting antennas (Tx)+ 3 receiving antennas (Rx).
- "Instability Footprint" is used to determine human presence.

Figure 5 Standard Deviation across time for 56 subcarriers and 9 antenna pairs.

Data Collection & Model Training Features, Pose Model and Location Model

- Vector of 9 features are extracted from the data, not every model uses all to prevent overfitting.
- Physics-based: tof_mean (Time of Flight), aoa_peak (Angle of Arrival)
- Statistical: std_amp (Amplitude Standard Deviation), $skew_amp$ (Skewness)
- CNN is used in all models to recognize patterns and identify changes over time.

```
[[-193.+226.j 6.+207.j 0. +0.j]
[ 19.+112.j 76. -24.j 0. +0.j]
[ 230. -64.j 139.-157.j 0. +0.j]]
```

Figure 6 2D tensor with amplitude and phase values per Tx + Rx pair

Data Collection & Model Training Model Training

Figure 7 Training pipeline

- Introduction
- Project Architecture
- Data Collection & Model Training
- 4 Difficulties & Improvements to be made
- Practical Applications
- 6 Conclusion & Q&A

Difficulties & Improvements

- Lack of & potential inaccuracy of data.
 - Data must be labelled manually.
 - Lack of available time & locations for data gathering.
 - ☐ Environment interference (people walking, different materials, signal degradation)
- Hardware capabilities & cost considerations.
- Lack of experience in different fields (ML, signal processing, etc.).
- Differences in data model compared to existing ones.
- Lack of existing tools for use.

- Introduction
- Project Architecture
- Bata Collection & Model Training
- Difficulties & Improvements to be made
- 5 Practical Applications
- 6 Conclusion & Q&A

Practical Applications Example: Home intrusion detection

Figure 8 Demonstrative workflow

- Introduction
- Project Architecture
- Bata Collection & Model Training
- Difficulties & Improvements to be made
- Practical Applications
- 6 Conclusion & Q&A

Conclusion

