

FILTER CAPACITOR

POWER SUPPLY BUILDING BLOCKS

prepared by:

Gyro A. Madrona

Electronics Engineer

........

TOPIC OUTLINE

Filter Capacitor

Smoothing Pulsating DC

FILTER CAPACITOR

FILTER CAPACITOR

A <u>filter capacitor</u> charges up when the voltage rises and discharges when the voltage drops, filling in the gaps of the pulsating DC waveform. This results in a <u>smoother DC</u> output.

Power Supply Block Diagram

SMOOTHING PULSATING DC

SMOOTHING HALF-WAVE

Discharging equation

$$v_c(t) = v_o e^{-\frac{t}{\tau}}$$

where:
$$\tau = RC$$

Let
$$\tau = 10\Delta t$$

$$v_c(\Delta t) = v_o e^{-\frac{\Delta t}{10\Delta t}}$$

$$v_c(\Delta t) = 0.905v_o$$

For half-wave, if the discharge time constant for the capacitor is 10 times the pulse duration, the average DC output level is approximately 90% of v_P .

DC with AC Ripple

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

be level @ a
let
$$\gamma = 10 \text{ At}$$
, then

$$Va(00) = 0.9(16.97)$$

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

Solution

$$\frac{ky \ VDT}{VL} = \frac{Va}{\frac{PL}{PL}}$$

$$\frac{PL}{PL} + PL$$

$$\frac{PL}{PL} + PL$$

$$\frac{PL}{PL} = \frac{Va \ PL}{VL}$$

$$\frac{PL}{PL} = \frac{Va \ PL}{VL} - PL$$

$$\frac{PL}{PL} = \frac{15.27(100)}{9} - 10$$

$$\frac{PL}{PL} = \frac{100}{9} - 10$$

ans

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

Solution

Pulse Duration

$$\Delta t = \frac{1}{2} \cdot \frac{1}{7}$$

$$\Delta t = \frac{1}{2(60)}$$

$$\Delta t = 8.33 \, \text{ms}$$

for
$$Y = 10 \text{ At}$$

$$Y = RC$$

$$C_1 = \frac{10 \text{ At}}{R_1 + R_2}$$

$$C_1 = \frac{10(8.33 \,\mathrm{m})}{69.67 + 100}$$

SMOOTHING FULL-WAVE

Discharging equation

$$v_c(t) = v_o e^{-\frac{t}{\tau}}$$

where:
$$\tau = RC$$

Let
$$\tau = 10\Delta t$$

$$v_c(\Delta t/2) = v_o e^{-\frac{\Delta t/2}{10\Delta t}}$$

$$v_c(\Delta t/2) = 0.95v_o$$

For full-wave, if the discharge time constant for the capacitor is 10 times the pulse duration, the average DC output level is approximately 95% of v_P .

DC with AC Ripple

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

$$\frac{by \ VDT}{VL} = \frac{PL}{Va} = \frac{PL}{PL}$$

$$R_1 + R_L = \frac{Va RL}{VL}$$

$$R_1 = \frac{Va RL}{VL} - RL$$

$$R_1 = \frac{Va RL}{VL} - RL$$

$$R_1 = \frac{16.12(100)}{9} - 10$$

$$R_2 = \frac{16.12(100)}{9} - 10$$

$$R_3 = \frac{Va RL}{VL} - RL$$

$$R_4 = \frac{Va RL}{VL} - RL$$

$$R_5 = \frac{Va RL}{VL} - RL$$

$$R_7 = \frac{Va RL}{VL} - RL$$

$$R_8 = \frac{Va RL}{VL} - RL$$

$$R_9 = \frac{Va RL}{VL} - RL$$

$$R_{11} = \frac{Va RL}{VL} - RL$$

$$R_{12} = \frac{Va RL}{VL} - RL$$

$$R_{13} = \frac{Va RL}{VL} - RL$$

$$R_{14} = \frac{Va RL}{VL} - RL$$

$$R_{15} = \frac{Va RL}{VL} - R$$

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

Solution

Pulse Duration

$$\Delta t = \frac{1}{2} \cdot \frac{1}{f}$$

$$\Delta t = \frac{1}{2(60)}$$

tor
$$Y = 10 \text{ At}$$

$$Y = RC$$

$$C_1 = \frac{10 \text{ At}}{4x + 12x}$$

$$C_1 = \frac{10(8.33 \text{ m})}{79.11 + 100}$$

LABORATORY

