G12: Contrôle continu nº 2.

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées; X_1 a pour densité $\frac{1}{2x^2}\mathbf{1}_{[1,+\infty[}(|x|).$

On note, pour tout $n \ge 1$, $M_n = \sup_{1 \le k \le n} X_k$.

- 1. (a) Montrer que $A = \{\sup_{n \ge 1} X_n = +\infty\}$ est un événement asymptotique de $(X_n)_{n \ge 1}$.
 - (b) Quelles valeurs peut prendre $\mathbb{P}(A)$?
- 2. (a) Déterminer la fonction de répartition de X_1 puis, pour tout $n \ge 1$, celle de M_n .
 - (b) Soit $r \in \mathbb{N}^*$. Montrer que $\limsup\{M_n < r\} = \bigcap_{n \ge 1}\{M_n < r\}$ et en déduire que

$$\mathbb{P}\left(\limsup\{M_n < r\}\right) = 0.$$

- (c) Montrer que, pour tout $r \in \mathbb{N}^*$, $\liminf_{n \to +\infty} M_n \ge r$ presque sûrement; en déduire que $\lim_{n \to +\infty} M_n = +\infty$ presque sûrement.
 - (d) Que vaut $\mathbb{P}(A)$?
- 3. Montrer que la suite $(M_n/n)_{n\geq 1}$ converge en loi vers une variable aléatoire Z dont on précisera la fonction de répartition.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires positives de carré intégrable. On suppose que $\lim_{n\to +\infty} \mathbb{E}[X_n] = +\infty$ et que la suite $\left(\frac{\mathbb{V}(X_n)}{\mathbb{E}[X_n]}\right)_{n\geq 1}$ est bornée.

- 1. Montrer que la suite $\left(\frac{X_n}{\mathbb{E}[X_n]}\right)_{n\geq 1}$ converge vers 1 dans L².
- 2. On suppose que, pour tout $n \ge 1$, X_n suit la loi de Poisson de paramètre $\lambda_n > 0$ c'est à dire

$$\forall k \in \mathbb{N}, \qquad \mathbb{P}(X_n = k) = e^{-\lambda_n} \frac{\lambda_n^k}{k!},$$

et que $\sum_{n\geq 1} \frac{1}{\lambda_n} < +\infty$.

- (a) La suite $\left(\frac{X_n}{\lambda_n}\right)_{n\geq 1}$ converge-t-elle vers 1 dans L²?
- (b) Montrer que $\left(\frac{X_n}{\lambda_n}\right)_{n\geq 1}$ converge vers 1 presque sûrement.