Basic Formulas of Derivatives

General Derivative Formulas:

1)
$$rac{d}{dx}(c)=0$$
 where c is any constant.

2)
$$rac{d}{dx}x^n=nx^{n-1}$$
 is called the Power Rule of Derivatives.

3)
$$\frac{d}{dx}x = 1$$

4)
$$rac{d}{dx}[f(x)]^n=n[f(x)]^{n-1}rac{d}{dx}f(x)$$
 is the Power Rule for Functions.

5)
$$\frac{d}{dx}\sqrt{x}=\frac{1}{2\sqrt{x}}$$

6)
$$rac{d}{dx}\sqrt{f(x)}=rac{1}{2\sqrt{f(x)}}rac{d}{dx}f(x)=rac{1}{2\sqrt{f(x)}}f'(x)$$

7)
$$\frac{d}{dx}c \cdot f(x) = c\frac{d}{dx}f(x) = c \cdot f'(x)$$

8)
$$\frac{d}{dx}[f(x)\pm g(x)]=\frac{d}{dx}f(x)\pm \frac{d}{dx}g(x)=f'(x)\pm g'(x)$$

9)
$$rac{d}{dx}[f(x)\cdot g(x)]=f(x)rac{d}{dx}g(x)+g(x)rac{d}{dx}f(x)$$
 is called the Product Rule.

10)
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{\left[g(x) \right]^2}$$
 is called the Quotient Rule.

Derivative of Logarithm Functions:

11)
$$\frac{d}{dx} \ln x = \frac{1}{x}$$

12)
$$\frac{d}{dx}\log_a x = \frac{1}{x \ln a}$$

13)
$$rac{d}{dx} \mathrm{ln}\, f(x) = rac{1}{f(x)} rac{d}{dx} f(x)$$

14)
$$rac{d}{dx} \mathrm{log}_a f(x) = rac{1}{f(x) \ln a} rac{d}{dx} f(x)$$

Derivative of Exponential Functions:

15)
$$\frac{d}{dx}e^x = e^x$$

16)
$$\frac{d}{dx}e^{f(x)}=e^{f(x)}\frac{d}{dx}f(x)$$

17)
$$\frac{d}{dx}a^x = a^x \ln a$$

18)
$$rac{d}{dx}a^{f(x)}=a^{f(x)}\ln arac{d}{dx}f(x)$$

19)
$$rac{d}{dx}x^x=x^x(1+\ln x)$$

Derivative of Trigonometric Functions:

20)
$$\frac{d}{dx}Sinx = Cosx$$

21)
$$rac{d}{dx}Cosx = -Sinx$$

22)
$$rac{d}{dx}Tanx=Sec^2x$$

23)
$$rac{d}{dx}Cotx = -Co\mathrm{sec}^2x$$

24)
$$rac{d}{dx}Secx = Secx \cdot Tanx$$

25)
$$\frac{d}{dx}Co\sec x = -Co\sec x \cdot Cotx$$

Derivative of Hyperbolic Functions:

26)
$$rac{d}{dx}Sinhx=Coshx$$

27)
$$rac{d}{dx}Coshx=Sinhx$$

28)
$$rac{d}{dx}Tanhx = Sech^2x$$

29)
$$\frac{d}{dx}Cothx = -Co\sec h^2x$$

30)
$$\frac{d}{dx}Sechx = -Sechx \cdot Tanhx$$

31)
$$rac{d}{dx}Ce\sec hx=-Co\sec hx\cdot Cothx$$

Derivative of Inverse Trigonometric Functions:

32)
$$rac{d}{dx} Sin^{-1} x = rac{1}{\sqrt{1-x^2}}, \, -1 < x < 1$$

33)
$$rac{d}{dx} Cos^{-1} x = rac{-1}{\sqrt{1-x^2}}, \, -1 < x < 1$$

34)
$$rac{d}{dx}Tan^{-1}x=rac{1}{1+x^2}$$

35)
$$rac{d}{dx} Cot^{-1} x = rac{-1}{1+x^2}$$

36)
$$\frac{d}{dx} Sec^{-1}x = \frac{1}{x\sqrt{x^2-1}}, \ |x|>1$$

37)
$$rac{d}{dx} Co{
m sec}^{-1} x = rac{-1}{x\sqrt{x^2-1}}, \,\, |x| > 1$$

Derivative of Inverse Hyperbolic Functions:

38)
$$rac{d}{dx}Sinh^{-1}x=rac{1}{\sqrt{1+x^2}}$$

39)
$$rac{d}{dx}Cosh^{-1}x=rac{1}{\sqrt{x^2-1}}$$

40)
$$rac{d}{dx} Tanh^{-1} x = rac{1}{1-x^2}, \ |x| < 1$$

41)
$$rac{d}{dx} Coth^{-1} x = rac{1}{x^2-1}, \,\, |x|>1$$

42)
$$rac{d}{dx}Sech^{-1}x = rac{-1}{x\sqrt{1-x^2}},~0 < x < 1$$

43)
$$rac{d}{dx}Co\sec h^{-1}x=rac{-1}{x\sqrt{1+x^2}},\ x>0$$