

At the end of this lesson, you should be able to:

- Explain Quality and its meaning
- List the dimensions of product and service quality
- Assess the use of analytics to ensure quality

What is Quality?

Meeting or exceeding customers expectations

Georgia Tech

Garvin's 8 Dimensions of Product Quality

- 1. Performance
- 2. Functionality
- 3. Durability
- 4. Reliability
- 5. Conformance to Specifications
- 6. Serviceability
- 7. Aesthetics
- 8. Perceived Quality

Dimensions of Service Quality

- Consistency
- Courtesy
- Convenience/Availability
- Communication
- Accuracy/Reliability
- Timeliness/Responsiveness
- Credibility/Trustworthy
- Security

Georgia Tech

How Could Analytics be Used with Respect to Quality?

At the end of this lesson, you should be able to:

Describe Juran's Cost of Quality

Appraisal Costs	Prevention Costs	
 Inspection and Test 	Training	
• Lab	Quality Improvement	
Calibration	Quality Audits	
Product/Process	Quality Planning	
Audits		

1000600		
Appraisal Costs Inspection and Test Lab Calibration Product/Process Audits	Prevention Costs Training Quality Improvement Quality Audits Quality Planning	
Internal Failure Costs Scrap Rework Re-testing	External Failure Costs • Warranty • Reputation • Returns • Litigation	
0	0 0	Geo

At the end of this lesson, you should be able to:

- Outline the types of variation
- Explain the use of statistics in analyzing variation

What is Variation (From Webster's Dictionary?

- The extent to which, or the range in which, a thing <u>varies</u>
- A measure of the change in data, a <u>variable</u>, or a function

VARY

- To make a partial change in: make different in some attribute or characteristic
- To make differences between items

What Can Cause the Weight to Vary?

- Random/Common Causes
 - Inherent in the process used
 - · Unavoidable with current process
 - · Can do nothing about this
- Assignable/Special Causes
 - · Can be identified
 - Can be corrected/fixed (ex: new operator error)

At the end of this lesson, you should be able to:

- Explain the basics of a control chart
- Explain what indicates assignable causes of variation in a control chart

How Does This Relate Back to Types of Variation?

- Upper and Lower control limits are set based on Common/Random causes of variation for the process (we know these will lead to a normal distribution)
- Data plotting and monitoring is to watch for Assignable/Special causes of variation (these are causes of variation we can do something about)

At the end of this lesson, you should be able to:

- Discuss control charts for continuous values (variables)
- Explain how to setup and evaluate control charts for variables

The Central Limit Theorem

From Merriam Webster: "any of several fundamental theorems of probability and statistics that state the conditions under which the distribution of a sum of independent random variables is approximated by the normal distribution"

Translation: Take a sample of 5 boxes of cereal, weigh each and calculate the average weight for the sample. Do this 20-30 times and plot the averages. You will get a normal distribution.

Georgia Tech

Thinking More...

- We should be able to take periodic samples and use the information from the samples to represent the population as a whole
 - This is great news for measurements that would be cost prohibitive to conduct on all items
- Recall from a normal distribution that 99.73% of all values should fall within 3 standard deviations of the mean
 - If a average or mean falls outside of 3 standard deviations, it is 99.73% likely that an assignable cause of variation has occurred
- A Normal Distribution has 2 parts: its Mean and Standard Deviation
 - We will use 2 control charts to monitor these: \bar{x} and r Chart

\overline{x} Chart (Monitors the mean)

Assuming 3σ limits:

$$\begin{aligned} &\mathsf{UCLx} = \bar{\bar{X}} + \mathsf{A_2}^* \; \bar{R} \\ &\mathsf{LCLx} = \bar{\bar{X}} - \mathsf{A_2}^* \; \bar{R} \end{aligned}$$

Sample Size	Mean Factor A ₂
2	1.880
3	1.023
4	.729
5	.577
6	.483
7	.419
8	.373

Georgia Tech

R Chart (Monitors the spread)

Assuming 3σ limits:

$$UCLr = D_4 * \bar{R}$$

$$LCLr = D_3^* \bar{R}$$

Sample Size	Upper Range D ₄	Lower Range D ₃
2	3.268	0
3	2.574	0
4	2.282	0
5	2.115	0
6	2.004	0
7	1.924	0.076
8	1.864	0.136

Steps for Statistical Process Control Monitoring a Variable

- 1. Collect Data
- 2. Calculate \bar{R}
- 3. Calculate UCLr and LCLr
- 4. Plot R-chart
- 5. Calculate \bar{x}
- 6. Calculate UCLx and LCLx
- 7. Plot X-chart

Georgia Tech

Summary 1. Control Charts look to identify assignable causes of variation. 2. Can be used to reduce defects. Georgia

At the end of this lesson, you should be able to:

Discuss how to determine if a process is actually capable of meeting a desired specification

Process Capability

• SPC tells us if a process is showing signs of an assignable cause of variation but there is another important aspect to a given process:

Is the process capable of meeting a necessary requirement?

- Parts are often given design tolerances
 - Ex: 15 inches +- .5
- 2 common measurements are the Process Capability Ratio and Process Capability Index

Georgia Tech

Process Capability Index (Cp)

Cp = (Upper specification – Lower Specification)/ 6σ

- Cp >=1.0 indicates process is capable
- Six Sigma equates to a Cp >=2.0
- This value only looks at spread, not how well a process is centered on its target value

Process Capability Index (Cpk)

Cpk = Minimum of [{upper specification- $\bar{x}/3\sigma$ }, { \bar{x} -lower specification/ 3σ }]

- Gives the proportion of variation between the center of the process and the nearest specification limit
- Cpk = 1 means process meets specifications
- Cpk < 1 Process does NOT meet specifications
- Cpk > 1 Process is better than the specification requires

Lets Apply to Prior Problem

Say the requirement given by Coke is the bottleneck diameter must be .600 +-.050. Above the tolerance and cap will not fit. Below the tolerance and the cap will fall off. Assume the standard deviation is .012

Cpk = Minimum of [{upper specification- $\bar{x}/3s$ } , { \bar{x} -lower specification/3s}]

 $Cpk = Minimum of [\{(.650-.597)/(3*.012)\}, \{(.597-.550)/(3*.012)\}]$

 $Cpk = Minimum of [\{1.306\}, \{1.472\}]$

Cpk = 1.306 (Capable as Cpk>1)

At the end of this lesson, you should be able to:

- Explain Statistical Process Control
- Describe how this analytical technique is used in reducing defects

Recap

- Processes are central to creating products and services
- How could we use data and analytics to asses quality?
- Assignable vs. Common Causes of Variation
- SPC monitors for the presence of assignable variation
 - Still requires company to investigate
 - Not all assignable variation is bad (may want it to continue)
- P and C charts for Attributes (good/bad, pass/fail)