UNIDAD 12 - B

CICLO FRIGORÍFICO

BIBLIOGRAFÍA:

- Guía de Estudio ;
- •Cengel, Yunus A.; Boles, Michael A. "Termodinámica"; 5° Edic.;

Edit. Mc Graw Hill; 2006

CICLO FRIGORÍFICO

12.B. Ciclos Frigoríficos. . Ciclos de refrigeración o ciclos frigoríficos. Concepto de maquina frigorífica y de bomba de calor. Ciclo inverso de Carnot. Ciclos a compresión de vapor. Dos fríos. Irreversibilidades. Selección del refrigerante. Mejoras para aumentar la eficiencia. Doble compresión con refrigeración intermedia, subenfriamiento del líquido, reinyección. Casos de aplicación. Sistemas de refrigeración por absorción.

EL CALOR FLUYE ESPONTÁNEAMENTE DESDE LA TEMPERATURA MAYOR HACIA LA TEMPERATURA MENOR

Si se desea que el calor fluya en sentido inverso:

Enunciado de Clausius del Segundo Principio de la Termodinámica

"Es imposible construir un dispositivo que funcione según un ciclo y no produzca otro efecto que el paso de calor de un cuerpo a otro más caliente".

MÁQUINA FRIGORÍFICA

PARA REFRIGERAR

BOMBA DE CALOR

CICLO FRIGORÍFICO

$$COP_{MF} = \frac{Energía \ util}{Energía \ consumida} = \frac{Q_{FF}}{W_{N}} = \frac{Q_{FF}}{|Q_{FC}| - Q_{FF}}$$

$$COP_{BC} = \frac{Energía \quad útil}{Energía \quad consumida} = \frac{Q_{FC}}{W_{N}} = \frac{|Q_{FC}|}{|Q_{FC}| - Q_{FF}}$$

(NO SE LLAMAN "RENDIMIENTOS" PORQUE SON >1)

RELACIÓN ENTRE COPBC Y COPME

$$\begin{split} \text{COP}_{\text{BC}} &= Q_{\text{FC}}/(Q_{\text{FC}} - Q_{\text{FF}}) \quad (1) \qquad \text{COP}_{\text{MF}} = Q_{\text{FF}}/(Q_{\text{FC}} - Q_{\text{FF}}) \quad (2) \\ \text{COP}_{\text{BC}} &= 1/(1 - Q_{\text{FF}}/Q_{\text{FC}}) \quad (3) \\ \\ \text{De} \; &(1) \quad Q_{\text{FC}} - Q_{\text{FF}} = Q_{\text{FC}}/\text{COP}_{\text{BC}} \\ \\ Q_{\text{FC}}/\text{COP}_{\text{BC}} = Q_{\text{FF}}/\text{COP}_{\text{MF}} \; \; ; \; Q_{\text{FF}}/Q_{\text{FC}} = \text{COP}_{\text{MF}}/\text{COP}_{\text{BC}} \quad (4) \\ \\ \text{De} \; &(2) \quad Q_{\text{FC}} - Q_{\text{FF}} = Q_{\text{FF}}/\text{COP}_{\text{MF}} \end{split}$$

$$\begin{aligned} \text{Reempl} \; &(4) \; \text{en} \; &(3) \quad \text{COP}_{\text{BC}} = 1/(1 - \text{COP}_{\text{MF}}/\text{COP}_{\text{BC}}) \; = \; \text{COP}_{\text{BC}}/\text{COP}_{\text{BC}} - \text{COP}_{\text{MF}} \\ \\ \text{COP}_{\text{BC}} - \text{COP}_{\text{MF}} = 1 \end{aligned}$$

CICLO INVERSO DE CARNOT : MÁXIMA EFICIENCIA

CICLO INVERSO DE CARNOT

$$COP_{MFCarnot} = \frac{Q_{FF}}{|Q_{FC}| - Q_{FF}} = \frac{\Delta S}{\Delta ST_{FC}} = \frac{T_{FF}}{T_{FC}} = \frac{T_{FF}}{T_{FC}}$$

EJ: Si $T_{FF}=0$ °C=273°K Y $T_{FC}=30$ °C=303°K ; $COP_{MFC}=9,1$; $CPF_{BCC}=10,1$

CUANTO MENOR SEA (T_{FC} - T_{FF}) MAYOR COP !!!

DIFICULTADES PARA MATERIALIZAR EL CICLO INVERSO DE CARNOT EN UNA MÁQUINA REAL

EXPANSIÓN ISOENTRÓPICA DE VAPOR HÚMEDO:

- > EXPANSIÓN CON ALTO PORCENTAJE DE HUMEDAD
- >W_T ES PEQUEÑO FRENTE A LOS COSTOS DE INVERSIÓN Y OPERACIÓN DE LA TUBINA

PARA DISMINUIR LA PRESIÓN DESDE P_{COND} HASTA P_{EV} SIMPLEMENTE SE COLOCA UN DISPOSITIVO QUE GENERE PÉRDIDA DE CARGA:

VÁLVULA REDUCTORA O TUBO CAPILAR

CICLO FRIGORÍFICO A COMPRESIÓN DE VAPOR EN RÉGIMEN HÚMEDO

RECORDANDO: Coeficiente de Joule-Thomson

$$h_1 = h_2$$
 $u_1 + P_1 v_1 = u_2 + P_2 v_2$
 $T_2 \begin{cases} < T_1 \\ > T_1 \\ = T_1 \end{cases}$

El comportamiento de la temperatura de un fluido durante un proceso de estrangulamiento (h constante) está descrito por el coeficiente de Joule-Thomson

$$\mu_{\mathsf{JT}} = \left(\frac{\partial T}{\partial P}\right)_h$$

 $\mu_{\text{JT}} \begin{cases} < 0 & \text{la temperatura aumenta} \\ = 0 & \text{la temperatura permanece constante} \\ > 0 & \text{la temperatura disminuye} \end{cases}$

(En cada curva de h=ctte, se va cambiando el tapón poroso, pero se mantienen las condiciones de entrada)

El coeficiente de Joule-Thomson es una medida del cambio en la temperatura con la presión durante un proceso de entalpía constante, o sea, representa la pendiente de las líneas h constante en un diagrama T - P . Los fluidos frigorígenos trabajan en la zona en que $\mu_{JT} > 0$

CICLO FRIGORÍFICO A COMPRESIÓN DE VAPOR EN RÉGIMEN HÚMEDO

CICLO FRIGORÍFICO A COMPRESIÓN DE VAPOR EN RÉGIMEN SECO

CICLO CON DOS FRÍOS

HELADERA DOMÉSTICA: Dos fríos

CICLO REAL: IRREVERSIBILIDADES

- >TRANSFERENCIAS DE CALOR HACIA O DESDE LOS ALREDEDORES
- >FRICCIÓN DEL FLUIDO

CICLO REAL : IRREVERSIBILIDADES EN EL COMPRESOR

Rendimiento isoentrópico del compresor

$$\eta_{\text{C}} = \frac{\text{Trabajo ideal}}{\text{Trabajo real}} = \frac{w_{\text{s}}}{w_{\text{C}}} = \frac{h_{2\text{s}} - h_{1}}{h_{2} - h_{1}}$$

SELECCIÓN DEL REFRIGERANTE:

- $P_{\text{EVAP}} > P_{\text{ATM}}$
- $>P_{COND}$ < 20 bar
- >T_{EVAP}: 5 A 10 °C MENOR A LA REQUERIDA EN LA CÁMARA A REFRIGERAR
- >T_{COND}: 5 A 10 °C MAYOR QUE LA TFC (AMBIENTE, AGUA SUPERFICIAL O SUBTERRÁNEA)
- **≻NO TÓXICO**
- >NO CORROSIVO
- >ALTO PUNTO CRÍTICO
- >CALOR LATENTE DE EVAPORACIÓN ALTO
- >BAJO COSTO
- >NO DAÑAR EL AMBIENTE

MEJORAS PARA INCREMENTAR EL COP

$$COP_{MF} = \frac{Energia \ \text{útil}}{Energia \ consumida} = \frac{Q_{FF}}{W_{C}}$$

SUBENFRIAMIENTO DEL LÍQUIDO SATURADO A LA SALIDA DEL CONDENSADOR

COMPRESIÓN MULTIETAPA CON REFRIGERACIÓN INTERMEDIA.

SUBENFRIAMIENTO DEL LÍQUIDO SATURADO

$$COP_{MF} = \frac{Q_{FF}}{Wc}$$

COMPRESIÓN EN DOS ETAPAS CON INTERENFRIAMIENTO

COMPRESIÓN EN DOS ETAPAS CON INTERENFRIAMIENTO Y SUBENFRIAMIENTO

COMPRESIÓN EN DOS ETAPAS CON INTERENFRIAMIENTO POR REINYECCIÓN

ACONDICIONADOR DE AIRE: BOMBA DE CALOR / MÁQUINA FRIGORÍFICA

OPERACIÓN DE LA BOMBA DE CALOR-MODO DE CALENTAMIENTO

OPERACIÓN DE LA BOMBA DE CALOR-MODO DE ENFRIAMIENTO

ciclo frigorífico.mp4

SISTEMAS DE REFRIGERACIÓN POR ABSORCIÓN

SISTEMAS DE REFRIGERACIÓN POR ABSORCIÓN

FIN