Support Vector Regression

上一篇介绍对于logistic regression的kernel方法,这次介绍对于一般的回归使用kernel的方法

— Kernel Ridge Regression

我们采用L2-正则化的时候需要解决这样一件事情。配合表示定理我们转化为关于 β 的问题,这里直接用的是square-error。

Kernel Ridge Regression Problem

solving ridge regression
$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w}^T \mathbf{z}_n)^2$$
 yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \beta_n \mathbf{z}_n$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \underbrace{\sum_{n=1}^{N} \sum_{m=1}^{N} \beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}_{\text{regularization of } \boldsymbol{\beta} \text{ on } K\text{-based regularizer}} + \frac{1}{N} \underbrace{\sum_{n=1}^{N} \left(y_{n} - \sum_{m=1}^{N} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m}) \right)^{2}}_{\text{linear regression of } \boldsymbol{\beta} \text{ on } K\text{-based features}}$$

$$= \frac{\lambda}{N} \boldsymbol{\beta}^{T} K \boldsymbol{\beta} + \frac{1}{N} \left(\boldsymbol{\beta}^{T} K^{T} K \boldsymbol{\beta} - 2 \boldsymbol{\beta}^{T} K^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y} \right)$$

kernel ridge regression:

use representer theorem for kernel trick on ridge regression

Solving Kernel Ridge Regression

$$E_{\text{aug}}(\boldsymbol{\beta}) = \frac{\lambda}{N} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{K} \boldsymbol{\beta} + \frac{1}{N} \left(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{K}^{\mathsf{T}} \mathbf{K} \boldsymbol{\beta} - 2 \boldsymbol{\beta}^{\mathsf{T}} \mathbf{K}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y} \right)$$

$$\nabla E_{\text{aug}}(\boldsymbol{\beta}) = \frac{2}{N} \left(\lambda \mathbf{K}^{\mathsf{T}} \mathbf{I} \boldsymbol{\beta} + \mathbf{K}^{\mathsf{T}} \mathbf{K} \boldsymbol{\beta} - \mathbf{K}^{\mathsf{T}} \mathbf{y} \right) = \frac{2}{N} \mathbf{K}^{\mathsf{T}} \left((\lambda \mathbf{I} + \mathbf{K}) \boldsymbol{\beta} - \mathbf{y} \right)$$

want $\nabla E_{\text{aug}}(\beta) = \mathbf{0}$: one analytic solution

$$\beta = (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$$

- (·)⁻¹ always exists for λ > 0, because
 K positive semi-definite (Mercer's condition, remember? :-))
- time complexity: $O(N^3)$ with simple dense matrix inversion

can now do non-linear regression 'easily'

我们使用kernel matrix的test时候第一个矩阵是X_train,第二个是X_test,因为最终得到的g是用X_train里面的模型进行线性组合得到的,所以训练的时候需要用X_train,X_train,测试的时候用的是X_train,X_test

对比一下两个模型:

Linear versus Kernel Ridge Regression

linear ridge regression

$$\mathbf{W} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- more restricted
- O(d³ + d²N) training;
 O(d) prediction
 - —efficient when $N \gg d$

kernel ridge regression

$$\beta = (\lambda I + K)^{-1} y$$

- more flexible with K
- O(N³) training;
 O(N) prediction
 —hard for big data

linear versus kernel: trade-off between efficiency and flexibility

二、Support Vector Regression Primal

这里引入tube regression对于SVM standard进行微调

1. 对比一下Soft-Margin和Least Square两种情况的模型:

Soft-Margin SVM versus Least-Squares SVM

least-squares SVM (LSSVM)

= kernel ridge regression for classification

soft-margin Gaussian SVM

Gaussian LSSVM

- LSSVM: similar boundary, many more SVs \implies slower prediction, dense β (BIG g)
- dense β: LSSVM, kernel LogReg;
 sparse α: standard SVM

这里我们的 β 比较dense,我们希望有和standard SVM一致的sparse 特性,利用SV改进loss function

2. 考虑一下Tube Regression:

我们把cost function重新定义

Tube Regression

will consider tube regression

- within a tube: no error
- outside a tube: error by distance to tube

error measure:

$$\operatorname{err}(y, s) = \max(0, |s - y| - \epsilon)$$

- $|s-y| \leq \epsilon$: 0
- $|s-y| > \epsilon$: $|s-y| \epsilon$

—usually called ϵ -insensitive error with $\epsilon > 0$

Tube versus Squared Regression

tube \approx squared when |s - y| small & less affected by outliers

L2-Regularized Tube Regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \max \left(0, |\mathbf{w}^T \mathbf{z}_n - y| - \epsilon \right)$$

Regularized Tube Regr.

 $\min \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum \text{tube violation}$

- unconstrained,
 but max not differentiable
- 'representer' to kernelize, but no obvious sparsity

standard SVM

 $\min \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum \text{margin vio.}$

- not differentiable, but QP
- dual to kernelize,
 KKT conditions ⇒ sparsity

will mimic standard SVM derivation:

$$\min_{\boldsymbol{b}, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} \max \left(0, |\mathbf{w}^T \mathbf{z}_n + \mathbf{b} - y_n| - \epsilon \right)$$

我们模仿标准SVM的模型得到现在的模型

注意我们对于regularization的最小化是对于loss function而对于SVM本质上是对于margin的最小化,所以两者有差别!!!

Standard Support Vector Regression Primal

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^{N} \max\left(0, |\mathbf{w}^T\mathbf{z}_n + b - y_n| - \epsilon\right)$$

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} \boldsymbol{\xi}_n$$

$$s.t. \ |\mathbf{w}^T \mathbf{z}_n + b - y_n| \le \epsilon + \boldsymbol{\xi}_n$$

$$\boldsymbol{\xi}_n > 0$$

mimicking standard SVM making constraints linear

$$\min_{\substack{c,\mathbf{w},\boldsymbol{\xi}\\c,\mathbf{w},\boldsymbol{\xi}}} \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} \xi_{n}$$

$$s.t. \ |\mathbf{w}^{T}\mathbf{z}_{n} + b - y_{n}| \le \epsilon + \xi_{n}$$

$$\xi_{n} \ge 0$$

$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} (\xi_{n}^{\vee} + \xi_{n}^{\wedge})$$

$$-\epsilon - \xi_{n}^{\vee} \le y_{n} - \mathbf{w}^{T}\mathbf{z}_{n} - b \le \epsilon + \xi_{n}^{\wedge}$$

$$\xi_{n}^{\vee} \ge 0, \xi_{n}^{\wedge} \ge 0$$

Support Vector Regression (SVR) primal: minimize regularizer + (upper tube violations ξ_n^{\wedge} & lower violations ξ_n^{\vee})

这就是SVR primal,我们使用新的loss function而不是square或者一般的svm

Support Vector Regression

Support Vector Regression Primal

Quadratic Programming for SVR

$$\min_{b,\mathbf{w},\boldsymbol{\xi}^{\vee},\boldsymbol{\xi}^{\wedge}} \qquad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} \left(\boldsymbol{\xi}_{n}^{\vee} + \boldsymbol{\xi}_{n}^{\wedge}\right)$$

$$s.t. \qquad -\epsilon - \boldsymbol{\xi}_{n}^{\vee} \leq y_{n} - \mathbf{w}^{T}\mathbf{z}_{n} - b \leq \epsilon + \boldsymbol{\xi}_{n}^{\wedge}$$

$$\boldsymbol{\xi}_{n}^{\vee} \geq 0, \boldsymbol{\xi}_{n}^{\wedge} \geq 0$$

- parameter C: trade-off of regularization & tube violation
- parameter ϵ : vertical tube width —one more parameter to choose!
- QP of $\tilde{d} + 1 + 2N$ variables, 2N + 2Nconstraints

next: remove dependence on $\frac{\partial}{\partial}$ by SVR primal \Rightarrow dual?

 ϵ 是可选的,这个是比standard多的变量

三、Support Vector Regression Dual

我们用使用Dual模型对它进行改进,同之前我们引入拉格朗日因子

Lagrange Multipliers $lpha^{\wedge}$ & $lpha^{\vee}$

objective function
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \left(\xi_n^\vee + \xi_n^\wedge\right)$$

Lagrange multiplier α_n^{\wedge} for $y_n - \mathbf{w}^T \mathbf{z}_n - b \le \epsilon + \xi_n^{\wedge}$ Lagrange multiplier α_n^{\vee} for $-\epsilon - \xi_n^{\vee} \le y_n - \mathbf{w}^T \mathbf{z}_n - b$

Some of the KKT Conditions

•
$$\frac{\partial \mathcal{L}}{\partial w_i} = 0$$
: $\mathbf{w} = \sum_{n=1}^{N} \underbrace{(\alpha_n^{\wedge} - \alpha_n^{\vee})}_{\beta_n} \mathbf{z}_n$; $\frac{\partial \mathcal{L}}{\partial b} = 0$: $\sum_{n=1}^{N} (\alpha_n^{\wedge} - \alpha_n^{\vee}) = 0$

• complementary slackness: $\frac{\alpha_n^{\wedge}(\epsilon + \boldsymbol{\xi}_n^{\wedge} - y_n + \mathbf{w}^T \mathbf{z}_n + b)}{\alpha_n^{\vee}(\epsilon + \boldsymbol{\xi}_n^{\vee} + y_n - \mathbf{w}^T \mathbf{z}_n - b)} = 0$

standard dual can be derived using the same steps as Lecture 4

利用KKT条件我们推导一下。

我们看一下Dual相似性:

SVM Dual and SVR Dual

min
$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} \xi_{n}$$
s.t.
$$y_{n}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \ge 1 - \xi_{n}$$

$$\xi_{n} > 0$$

min
$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + C\sum_{n=1}^{N} (\xi_{n}^{\wedge} + \xi_{n}^{\vee})$$

s.t. $1(y_{n} - \mathbf{w}^{\mathsf{T}}\mathbf{z}_{n} - b) \leq \epsilon + \xi_{n}^{\wedge}$
 $1(\mathbf{w}^{\mathsf{T}}\mathbf{z}_{n} + b - y_{n}) \leq \epsilon + \xi_{n}^{\vee}$
 $\xi_{n}^{\wedge} \geq 0, \xi_{n}^{\vee} \geq 0$

min
$$\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$$
$$-\sum_{n=1}^{N} 1 \cdot \alpha_n$$
$$\text{s.t. } \sum_{n=1}^{N} y_n \alpha_n = 0$$
$$0 \le \alpha_n \le C$$

min
$$\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (\alpha_{n}^{\wedge} - \alpha_{n}^{\vee}) (\alpha_{m}^{\wedge} - \alpha_{m}^{\vee}) k_{n,m}$$

$$+ \sum_{n=1}^{N} ((\epsilon - y_{n}) \cdot \alpha_{n}^{\wedge} + (\epsilon + y_{n}) \cdot \alpha_{n}^{\vee})$$
s.t.
$$\sum_{n=1}^{N} 1 \cdot (\alpha_{n}^{\wedge} - \alpha_{n}^{\vee}) = 0$$

$$0 \le \alpha_{n}^{\wedge} \le C, 0 \le \alpha_{n}^{\vee} \le C$$

similar QP, solvable by similar solver

回到之前关于sparsity的解决

Sparsity of SVR Solution

•
$$\mathbf{W} = \sum_{n=1}^{N} \underbrace{(\alpha_n^{\wedge} - \alpha_n^{\vee})}_{\beta_n} \mathbf{Z}_n$$

· complementary slackness:

$$\alpha_n^{\wedge}(\epsilon + \boldsymbol{\xi}_n^{\wedge} - y_n + \mathbf{w}^T \mathbf{z}_n + b) = 0$$

$$\alpha_n^{\vee}(\epsilon + \boldsymbol{\xi}_n^{\vee} + y_n - \mathbf{w}^T \mathbf{z}_n - b) = 0$$

- strictly within tube $|\mathbf{w}^T \mathbf{z}_n + b y_n| < \epsilon$ $\Rightarrow \boldsymbol{\xi}_n^{\wedge} = 0$ and $\boldsymbol{\xi}_n^{\vee} = 0$ $\Rightarrow (\epsilon + \boldsymbol{\xi}_n^{\wedge} - y_n + \mathbf{w}^T \mathbf{z}_n + b) \neq 0$ and $(\epsilon + \boldsymbol{\xi}_n^{\vee} + y_n - \mathbf{w}^T \mathbf{z}_n - b) \neq 0$ $\Rightarrow \alpha_n^{\wedge} = 0$ and $\alpha_n^{\vee} = 0$ $\Rightarrow \beta_n = 0$
- SVs ($\beta_n \neq 0$): on or outside tube

SVR: allows sparse β

SVR提供了 $sparse \beta$

四、对于核方法的总结

1. 总结一下

首先是linear部分:

PLA/	pocket

minimize err_{0/1} specially

linear SVR

minimize regularized err_{TUBE} by QP

linear soft-margin SVM

 $\begin{array}{l} \text{minimize regularized} \\ \widehat{\text{err}}_{\text{SVM}} \text{ by QP} \end{array}$

linear ridge regression

minimize regularized err_{SQR} analytically

regularized logistic regression

minimize regularized err_{CE} by GD/SGD

然后我们有kernel形式的:

PLA/pocket	linear SVR	
linear soft-margin SVM	linear ridge regression	regularized logistic regression
	kernel ridge regression	kernel logistic regression
	kernelized linear ridge regression	kernelized regularized logistic regression
SVM	SVR	probabilistic SVM
minimize SVM dual by QP	minimize SVR dual by QP	run SVM-transformed logistic regression

probabilistic SVM是2-level的方法,先SVM再logistic regression

2. 选择:

- 第一排不怎么用
- 第三排不怎么用,dense data!