A FLUORESCEÍNA COMO SONDA DE pH: APLICAÇÃO À ESTIMATIVA DO pH DE UMA ÁGUA NATURAL

HO C-OH

1. OBJETIVOS

- Traçado de espetros de absorção no UV-Visível e de fluorescência.
- Estudo da influência do pH nos espetros de absorção e emissão da fluoresceína.
- Estimativa do pH de uma água natural utilizando a fluoresceína como sonda de pH.

2. INTRODUÇÃO

2.1. O pH das águas naturais

O pH das águas naturais depende da concentração relativa dos iões carbonato (CO₃²-), iões hidrogenocarbonato (HCO₃-), e dióxido de carbono dissolvido (CO₂).

Normalmente, a água da chuva é ligeiramente ácida (pH=5.7), devido à reação da água com o dióxido de carbono dissolvido a partir da atmosfera onde a chuva cai, segundo a equação:

$$H_2O(I) + CO_2(aq) \rightleftharpoons HCO_3^-(aq) + H^+(aq)$$
 (1)

Ao contrário, a água subterrânea é, em geral, ligeiramente alcalina (pH=8.0), devido à reação da água com os iões carbonato dissolvidos das rochas onde a água passa:

$$H_2O(I) + CO_3^2-(aq) + OH^-(aq)$$
 (2)

A água dos rios e lagos pode apresentar-se ácida ou alcalina, dependendo se o fator mais importante é a precipitação, as rochas ou a evaporação.

A forma como as concentrações relativas de $CO_2(aq)$, $HCO_3^-(aq)$ and $CO_3^{2-}(aq)$ varia com o pH encontra-se na figura 1. As concentrações de $CO_2(aq)$ e de $HCO_3^-(aq)$ igualam-se a pH ≈ 6.3 , e as concentrações de $HCO_3^-(aq)$ e $CO_3^{2-}(aq)$ são iguais a pH ≈ 10.3 .

Em condições ácidas (pH<6.3), a espécie dominante é o dióxido de carbono, enquanto em condições fortemente alcalinas (pH>10.3) é o ião carbonato que domina. Em condições intermédias (6.3 < pH < 10.3), predomina o ião hidrogeno-carbonato.

Biofísica - 2021/2022

Figura 1 – Variação com o pH das concentrações de CO₂, HCO₃-e CO₃²-.

2.2. A fluoresceína como sonda de pH

A fluoresceína (figura 2) é um corante que tem sido utilizado como sonda de pH.

Figura 2 - Estrutura da fluoresceína.

As soluções deste corante apresentam uma forte absorção na região do azul, transmitindo a côr amarela (figura 3-A). A fluoresceína possui ainda uma emissão de fluorescência dependente do pH, e em soluções neutras ou básicas, é visível uma forte emissão na região do verde (figura 3-B). Assim, a fluoresceína é muito útil como sonda de pH, sendo utilizada neste trabalho para a estimativa do pH de uma água natural [1].

Figura 3 – Soluções de fluoresceína em meios de diferente pH.

Biofísica – 2021/2022 2

2.3. Comportamento fotofísico da fluoresceína

Nas soluções de fluoresceína ocorre um equilíbrio iónico dependente do pH:

Em soluções aquosas com pH acima de 9, a fluoresceína encontra-se quase totalmente na forma de dianião (grupos fenol e ácido carboxílico ionizados). Por acidificação do meio, forma-se o monoanião (protonação do fenol), depois a espécie neutra (protonação do ácido carboxílico) e, por fim, o catião. O equilíbrio pode ainda envolver a formação de uma lactona.

Apenas os aniões são fluorescentes, sendo os rendimentos quânticos de 0.37 e 0.93, para o monoanião e dianião, respetivamente. Assim, o espetro de fluorescência é dominado pelo dianião (fig. 4), com apenas uma pequena contribuição do monoanião [5].

Figura 4 – Espetros de absorção e fluorescência da fluoresceína em meio básico.

3. TÉCNICA EXPERIMENTAL

Biofísica – 2021/2022 3

3.1. Preparação de soluções

- Preparar, em balões de 5 ml, soluções de fluoresceína com concentração de 4×10-6 M em tampões com vários valores de pH. Existem já preparadas as soluções-tampão com pH=2; 3; 4; 5; 5.5; 6; 6.5; 7; 8; 9 e 10. Utilizar uma solução-mãe de fluoresceína em etanol, com a concentração de aprox. 4×10⁻⁴ M.
- Preparar 5 ml de solução de fluoresceína com concentração de 4×10⁻⁶ M numa água mineral engarrafada. Para tal, pipetar a quantidade requerida de solução de fluoresceína em etanol 4×10⁻⁴ M e evaporar o solvente sob corrente de azoto ou árgon. Completar o volume com a água mineral.

3.2. Medidas de absorção

- Traçar os espetros de absorção, na gama 340 a 600 nm, das soluções de fluoresceína com diferentes valores de pH. Utilizar como referência o tampão de pH respetivo (Escala de absorvância sugerida: 0 a 0.5).
- Traçar, nas mesmas condições, o espetro de absorção da fluoresceína numa água mineral engarrafada.

3.3. Medidas de fluorescência

- Traçar os espetros de fluorescência (λ_{exc} =460 nm), na gama 470-600 nm, das soluções de fluoresceína com diferentes valores de pH (Utilizar sensibilidade baixa).
- Traçar, nas mesmas condições, o espetro de fluorescência da fluoresceína na água engarrafada.

4. ANÁLISE DE RESULTADOS

- Interpretar os espetros de absorção da fluoresceína a vários valores de pH.
- Analisar o espetro de absorção da fluoresceína na água e identificar as formas de fluoresceína presentes em solução.
- Interpretar os espetros de fluorescência da fluoresceína a vários valores de pH.
- Traçar o gráfico da intensidade de fluorescência em função do pH do meio. Comentar o gráfico obtido.
- A partir do gráfico anterior, e com base nos espetros da fluoresceína obtidos na água engarrafada, estimar o pH da água mineral. Comparar com o valor tabelado no rótulo.

5. BIBLIOGRAFIA

- R. Sjöback, J. Nygren, M. Kubista, "Absorption and fluorescence properties of fluorescein", [1] Spectrochimica Acta Part A 51, L7-L21 (1995).
- C. H. J. Wells, "Introduction to Molecular Photochemistry", Chapman and Hall, London, 1972. [2]
- [3] J. R. Lakowicz, "Principles of Fluorescence Spectroscopy", Plenum Press, New York, 1983.
- M.M. Martin, L.J. Lindqvist, "The pH Dependence of Fluorescein Fluorescence", J. Luminescence [4] **10**, 381 (1975).

Biofísica - 2021/2022 4