Задача по анализу изображений на позицию «Аналитик данных»

Евгений Мунин

Предобработка исходных данных

Для повышения точности модели были применены следующие операции предобработки:

- Нормализация числовых признаков: приведение к значениям с мат. Ожиданием 0 и дисперсией 1.
- Для целевой переменной (категориальный признак) была применена операция **one-hot encoding**.
- Для сокращения времени на тренировку модели изображения были обрезаны, т.к. все изображения более или менее центрированы, и их полезная часть заключается в количестве и цвете центральных точек.

Возможные модели для анализа изображений:

- Многослойный перцептрон (MLP) каждый канал пикселя считывается независимым входным параметром. MLP на прямую не преднозначен для распознавания изображений
- Глубокая сверточная сеть (CNN). Используем KERAS на базе TensorFlow

Структура сверточной нейронной сети (CNN)

- С целью ускорения обучения после каждого сверточного выполняется нормализация промежуточных данных Batch Normalization
- После каждого слоя подвыборки и между полносвязными слоями добавлены Dropout с параметрами вероятности p : 0.25 и p = 0.5 соотвественно

Convolution2D_3

Batch Normalization 3

Dense_1 (256 neurons)

Dense_2 (7 neurons)

Convolution2D_1

Batch Normalization 1

Convolution2D 2

Batch Normalization_2

MaxPooling 1

Dropout 1

Convolution2D_4

Batch Normalization 4

MaxPooling_2

Dropout_2

- С целью ускорения обучения после каждого сверточного выполняется нормализация промежуточных данных **Batch Normalization**
- После каждого слоя подвыборки и между полносвязными слоями добавлены **Dropout** с параметрами вероятности p=0.25 и p=0.5 соотвественно

Комментарии к модели:

- На вход сети подается массив размерности **(71,400,400,3)**
- 4 двумерных сверточных слоя с возрастающим количеством фильтров **(16, 32, 32, 64)**
- 2 слоя подвыборки для субдескретизации MaxPooling
- В качестве функции активации на всех промежуточных слоях использована функция **ReLu**
- С целью превращения вектора действительных чисел в вектор вероятностей в завершающем полносвязном слое в качестве функции активации использована функция softmax
- Чтобы перейти от двумерной матрицы к одномерному вектору, перед 1-м полносвязным слоем установлен **Flatten**

Результаты моделирования

Модель	Улучшения настройки	Размер выборки (тренировка/валидация)	Количество итераций	Точность на тренировке	Точность на валидации
Basic model_3 classes	-	21 / 6 (9 изоб. на класс)	5	0.57	0.67
Adv model_3 classes	BatchNorm + Early Stopping	21 / 6	12	0.95	1
Basic model_7 classes	-	56 / 15	25	0.11	0.05
Adv model_7 classes	BatchNorm + Early Stopping	56 / 15	30	0.16	0.06

Выбор метрики: поскольку классы сбалансированы (количество изображений в каждом классе одинаковое) подходящей метрикой будет точность (accuracy).

Размер **Batch Size = 10** (из-за ограничений **CPU**)

Вывод:

- При решении задачи классификации из 3-х классов модель показывает высокую точность на валидации.
- При увеличении количества классов точность резко падает даже несмотря на настройку и использование инструментов регуляризации.

Рекомендации:

- Представленных данных не достаточно для построения и тренировки модели. (Пример: для получения точности >0,76 для базовой модели CNN на данных CIFAR-10 требуется порядка 60000 изображений).
- Возможно порекомендовать увеличить набор данных до 2000...5000 изображений.
- Возможно использовать другие методы регуляризации, например **L2 регуляризацию**.

Перспективы поддержки 5000 сортов вина

Рекомендации:

- Для работы с большими объемами данных рекомендуется использовать средства online-learning такие как библиотека Vowpal Wabbits или Apache Spark.
- Для повышения точности также имеет смысл использовать **ансамбли** из нескольких сетей, каждая из которых вычисляет средний вектор предсказаний, который далее усредняется.

Вариант организации команды:

Должность	Количество	Обязанности
SQL Developer	1	Реализация функционала БД и ответственность аза хранение данных в требуемых форматах. Создание и оптимизация запросов SQL.
Data Engineer	2	Предобработка набора данных (обрезание изображений, нормализация, РСА, дескриптивный статистический анализ)
Data Scientist	2	Построение, оптимизация и тестирование предиктивной модели
Front-end Developer	1	Создание клиентской части Web приложения: верстка шаблона и создание пользовательского интерфейса
Back-end Developer	1	Проектирование архитектуры сервера и поддержка его архитектуры