physicx,扩展的 physics 宏包

雾月, Longaster*

2023年2月2日 v0.3.6

目录

第1节	简介	1	4.4	genegralmatrix	12
笠っ 世	基本用法与宏包选项	1	4.5	matrix 类通用键值选项	12
毎 4 リ	基本用法司宏包选项	1	4.6	例子	15
第3节	括号, quantity	2			
3.1	新的括号命令	2	第5节	杂项	18
3.2	旧的括号命令	4	5.1	定义新的括号命令	19
			5.2	定义新的矩阵命令	20
第4节	矩阵, matrix	6			
4.1	diagonalmatrix	7	版本历史	史	22
4.2	commamatrix	9			
4.3	qxmatrix	10	代码索	31	22

第1节 简介

physics 宏包定义了一些简写的命令,但是已经9年未更新了,physicx 对其进行了一定的扩展,基本兼容 physics 原有的命令。

要求: expl3 宏包版本至少 Released 2021-08-27, 不准备兼容低版本, 尽管并不依赖某些新特性。如果使用 TeXLive, 可以使用自带的控制台进行更新。如果你想兼容低版本, 可以在 LPPL 1.3c 协议下自行修改。

第2节 基本用法与宏包选项

太长不看版: 若仍要使用 physics 宏包,则使用 physics 宏包选项,不可再加载 physics 宏包。

通常情况下,可用像使用 physics 宏包那样使用 physicx 的命令,它们是基本兼容的,但是 physicx 宏包并不依赖 physics 宏包,但目前 physicx 并不提供诸如 \dd 的命令,你可以使用 physics 宏包选项来加载 physics 宏包。也可以自行加载,但必须首先加载 physics 再加载 physicx 宏包,一般情况下使用 physics 宏包选项即可。

宏包选项: compat 将尽量兼容 physics 宏包。physics: 自动启用 compat 选项并加载 physics 宏包。short:将重定义一些简写的命令。mathtools:启用 mathtools 宏包定义的一些环境,如 matrix*等。unimath:加载 unicode-math 宏包并设置一些兼容操作。

reqty 控制是否重定义 physics 宏包的括号类命令。noqty 相当于 reqty=false。初始为重定义。

^{*}Email: longaster@163.com

fixdif 用于控制是否接入 fixdif 宏包的功能, 当这个选项设置为真时, 用户必须自行加载 fixdif 宏包, 若还启用了 physics 选项,则将微分号和偏微分号替换为 fixdif 的实现。

original 用于恢复被 physics 宏包重定义的 \div、\Re、\Im 命令。仅当使用了 physics 选项或加载了 physics 宏包时生效。

第3节 括号, quantity

3.1 新的括号命令

"新的括号命令"指 physicx 宏包定义的括号命令。

\qxqty New: 2021-11-13

```
\xquantity \xquantity {\quantity类键值选项\} {\code\}
          \qxqty [(quantity类键值选项)] {(code)}
          \qxqty * [\quantity类键值选项\] {\code\}
```

这些命令用于替代 physics 宏包的括号类命令。

带*的命令禁止自动调整括号大小。

\xquantity 的速度更快些。

可以自定义 quantity 类命令, 见第 5.1 节。

```
例1:
```

```
\ \xquantity{}{x^2} \quad \xquantity{type=v}{\in \xquantity} 
   \xquantity{type=v}{\int_a^b} $ \qquad
\xquantity{size=\bigg}{x^2} \quad \displaystyle
   \xquantity{size=\bigg}{\int_a^b} $
   \xquantity{}{x^2} \quad \xquantity{type=v}{\int} \quad \quad
   \xquantity{type=v}{\int_a^b} \quad \xquantity{size=\bigg}{x^2}
   \xquantity{size=\bigg}{\int_a^b}
$ \qxqty{x^2} \quad \qxqty[type=v]{\int} \quad \displaystyle
   \qxqty[v]{\int_a^b} $ \qquad
$ \qxqty[size=\bigg]{x^2} \quad \displaystyle
   \qxqty[size=\bigg]{\int_a^b}$
1/
   \qxqty{x^2} \quad \qxqty[type=v]{\int} \quad
   \qxqty[v]{\int_a^b} \quad \qxqty[size=\bigg]{x^2} \quad
   \qxqty[size=\bigg]{\int_a^b}
\backslash]
               \left| \int_{a}^{b} \right| \qquad \left( x^{2} \right) \quad \left( \int_{a}^{b} \right)
                                    (x^2) \left| \int \right| \left| \int_a^b \right| \left( x^2 \right) \left( \int_a^b \right)
               \left| \int_{a}^{b} \right| \qquad \left( x^{2} \right) \quad \left( \int_{a}^{b} \right)
                                   (x^2) \left| \int \right| \left| \int_a^b \left( x^2 \right) \left( \int_a^b \right) \right|
```

physicx 宏包的一个标准的括号命令由如下 8 个部分构成:

⟨pre⟩ ⟨left-size⟩ ⟨left⟩ ⟨arg⟩ ⟨code⟩ ⟨right-size⟩ ⟨right⟩ ⟨post⟩

每一部分都有一个对应的键,可以在 (quantity 类键值选项) 中设置。

pre post left right left-size code

它们代表了标准括号命令的对应部分。当 left-size、right-size 有一个为空时,则会移除 left-size、right-size这两个部分。

left-size 和 right-size 的参数可以为诸如 \left、\Bigl、\right、\Bigr 等值,也可 以是一个数值,此时,它表示这个括号的高度为这个数值乘以一个标准括号高度。它们的关系 right-size 为:size=\big 相当于 size=1.2,size=\Big 相当于 size=1.8,size=\bigg 相当于 size=2.4, size=\Bigg 相当于 size=3。

left-size 初始为 \left, right-size 初始为 \right。

size auto noauto args args*

size 同时设置 left-size 和 right-size。

auto 设置 left-size=\left, right-size=\right。

noauto将 size设置为空。一般情况下,可以不写 size=,而只写它的值。如 \qxqty[size=\Big]{x} 与 \qxqty[\Big]{x} 效果相同,如 \qxqty[size=2]{x} 与 \qxqty[2]{x} 效果相同。

args 键将 $\langle arg \rangle$ 部分设置为 [$\langle args \rangle$],而 args* 键将 $\langle arg \rangle$ 部分设置为其值。

```
例 2:
\ \q xqty[x] \q xqty[size=\big]{x} \q xqty[size=1.2]{x} \q xqty[1.2]{x} 
(x)(x)(x)(x)(x)
```

type type = $\langle p | b | B | v | V | a | m | pm | bm | Bm | vm | Vm | sm | ... \rangle$

初始值 = p

type 键使用预定义的括号类型。

它们的值正如 amsmath 的矩阵环境的 matrix 前的部分。p 代表(),b 代表[],B 代表 { },v 代表"||",V 代表"|||",a 代表"()"。

带有m的则为矩阵类的括号。

如果使用了 mathtools 宏包或使用了 mathtools 宏包选项,则还定义了 p*\sm*\spm\spm* 等值,它们对应 pmatrix*、smallmatrix*、psmallmatrix、psmallmatrix* 等环境。 可以使用 args 键来设置它们的参数。 mathtools 宏包必须手动加载。

它们是通过 left、right、size 键来设置的。

注意: left、right 的设置必须合法, 即若 size 不为空, 则 left、right 必须可以跟在 \left\\right 这两个调整大小的命令后面。不能如同:

left=\begin{matrix}, right=\end{matrix}, left-size=\left, right-size=\right. 一般情况下,可以不写 type= 而只写它的值。

```
例 3:
  \xquantity{left=\begin{pmatrix}, right=\end{pmatrix}, noauto}
    { ABC & dec \\ hij & HJK } \quad
  \qxqty[p,2]{ \xquantity { m } { ABC & dec \\ hij & HJK } } \quad
  \xquantity{left=\begin{smallmatrix}, right=\end{smallmatrix}, noauto}
    { ABC & dec \\ hij & HJK } \quad
  \xquantity {type=m*} { ABC & dec \\ hij & HJK } \quad
  \xquantity {type=sm} { ABC & dec \\ hij & HJK } \quad
\]
                                                             ABC
                                                                       dec
                                                _{hij\ HJK}^{ABC\ dec}
                                                                               \begin{array}{cc} ABC & dec \\ hij & HJK \end{array}
                                                                      HJK
```

```
例 4:
\makeatletter
%% 定义了一个 \spxqty, 它的第一个参数为可选的键值参数,
%% 第二个用于控制字体大小,当不给出或者为0时,使用text字体,当为1时,使用script字体,
%% 当为2时,使用scriptscript字体,否则为display字体
%% 其后的值为内容,除了可以使用 {} 外,也支持 \bgroup \egroup。这在其它命令中是不支持的
\newbox\spxqty@box \newcount\spxqty@int
\newcommand{\spxqty}[1][]{%
  \def\spxqty@opt{#1}%
  \afterassignment\spxqty@auxi
  \spxqty@int\numexpr 0}
\newcommand{\spxqty@auxi}{%
  \afterassignment\spxqty@auxii
  \setbox\spxqty@box\hbox}
\newcommand{\spxqty@auxii}{%
  \color@begingroup $
  \ifcase\spxqty@int \textstyle \or\scriptstyle \or\scriptstyle
    \else\displaystyle \fi
  \bgroup \aftergroup\spxqty@auxiii}
$\color@endgroup \egroup
  \expandafter\xquantity\expandafter{\spxqty@opt}{\box\spxqty@box}}
\makeatother
\scriptstyle \ \spxqty \scriptstyle \ \prod_{i=0}^\infty \frac{1}{i^2}} $
\scriptstyle 1{\prod}_{i=0}^{i=0}^{infty} 
\scriptstyle \ \spxqty \bgroup \prod_{i=0}^\infty \frac{1}{i^2}\egroup $
\scriptstyle \ \spxqty [2] -1\bgroup \prod_{i=0}^\infty \frac{1}{i^2}\egroup $
\left(\textstyle\prod_{i=0}^{\infty}\frac{1}{i^2}\right)\left(\prod_{i=0}^{\infty}\frac{1}{i^2}\right)\left(\prod_{i=0}^{\infty}\frac{1}{i^2}\right)\left(\prod_{i=0}^{\infty}\frac{1}{i^2}\right)\left(\prod_{i=0}^{\infty}\frac{1}{i^2}\right)
```

3.2 旧的括号命令

"旧的括号命令"是指 physics 宏包定义的命令。可以使用 reqty 宏包选项设置是否使用新的机制重新定义它们。

在仅使用 physicx 而不使用 physics 宏包时,本节命令不宜再使用,仅出于兼容性原因而保留。

增加了 \oorder \\00rder 命令,以输出 $o(\blacksquare)$, $\mathcal{O}(\blacksquare)$,它们的大小写总是固定的。而 \order 则会依据 physics 宏包是否加载、compat 选项是否给定来使用大小写,若给定,出于兼容性考虑,\order 输出大写的 $\mathcal{O}(\blacksquare)$ 。

Full	Short	Description
\quantity	$\qty(\typical)_{\sqcup} ightarrow (lacksquare)$	automatic () braces
	$\qty(all)_\sqcup oigcirc$	
	$\qty(\grande)_{\sqcup} ightarrow \left(lacksquare$	
	$\qty[\typical]_{\sqcup} ightarrow [lacksquare]$	automatic [] braces
	$\qty \typical _{\sqcup} ightarrow lacksquare$	automatic braces
	$\verb qty{ typical}_{\sqcup} \to \{ $	automatic $\{\ \}$ braces
	\qty<\typical> $_{\sqcup} ightarrow \langle \blacksquare angle$	automatic $\langle \ \rangle$ braces

	$\qty=\typical=_{\sqcup}\to \ \blacksquare\ $ $\qty\big\{\}_{\sqcup}\to \{\}$ $\qty\Big\{\}_{\sqcup}\to \{\}$	automatic braces manual sizing (works with any of the above bracket types)
	$\label{eq:continuous_problem} $$ \qty\Big\{\}_{\sqcup} \to \left\{\right\} $$$	
	↔ \qty() ↔ \qty[] ↔ \qty	alternative syntax; robust and more LATEX-friendly
\absolutevalue	$ \leftrightarrow \ \abs{a} \rightarrow a $	automatic sizing; equivalent to
	$\abs\Big{a} ightarrow \left a \right $	inherits manual sizing syntax from \qty
	\abs*{\grande} $ ightarrow$	star for no resize
\norm	$\texttt{\norm}\{\mathtt{a}\} \to \ a\ $	automatic sizing
	$\texttt{\norm\Big\{a\}} \to \left\ a\right\ $	manual sizing
	$\verb norm*{\grande} \to \ \qquad \ $	star for no resize
\evaluated	$\left x\right _{0}^{\infty}$	vertical bar for evaluation limits
	$\left \text{eval} \right _{0}^{\infty}$	
	$\langle val(x)_0^{-10} \rangle$	alternate form
	$ (x _0^{\inf ty} \to (x _0^{\infty}) (x _0^{\infty} $	alternate form
	$\left \left(\right)^{0} \right = 0$	automatic sizing
	$\texttt{\eval*[\venti]_0^\infty} \to [_0^{\infty}]$	star for no resize
\order	$\texttt{\normalfoot}(x^2) \to \mathcal{O}(x^2)$	order symbol; automatic sizing and space handling
	\order\Big{x^2} $ ightarrow \mathcal{O}\!\left(x^2 ight)$	manual sizing
	$\operatorname{\operatorname{Voorder}}\{x^2\} \to o(x^2)$	lowercase o
	$\texttt{\ \ } \ \ \ \ \ \ \mathcal{O}(x^2)$	uppercase O
	$\operatorname{\operatorname{Vorder}}^{\ \ }$	star for no resize
\commutator	$\operatorname{A}\{\mathtt{B}\} \to [A,B]$	automatic sizing
	$\verb \comm Big{A}{B} \to \Big[A,B\Big]$	manual sizing
	$\comm*{A}{\grande} \rightarrow [A,]$	star for no resize
\anticommutator	$\texttt{\ \ } \{ \texttt{A} \} \{ \texttt{B} \} \rightarrow \{ A, B \}$	same as \poissonbracket
\poissonbracket	$\texttt{\pb{A}{B}} \rightarrow \{A,B\}$	same as \anticommutator

出于兼容性考量,仍然保留了\matrixquantity (\mqty)、\smallmatrixquanity (\smqty)命令的定义,它们与\quantity命令相似,只是将它们的值放入相应的矩阵中。可以使用更高级的矩阵命令,见第4节。

你还可以自定义 quantity 类命令, 见第 5 节。

第4节 矩阵, matrix

physicx 宏包极大地扩展了 physics 原有的矩阵类命令。提供了丰富的键值接口来设置矩阵。

定义了三个基本命令: \genegralmatrix、 \commamatrix、 \diagonalmatrix, 及 \qxmatrix。

```
      Image: Image
```

```
例 6:\commamatrix
$\commamatrix{1, 2, 3, 4}$,\quad
$\commamatrix[b]{1, 2, 3, 4}$,\quad
$\commamatrix{1; 2; 3; 4}$,\quad
$\commamatrix[b]{1; 2; 3; 4}$,\quad
$\commamatrix[b]{1, 2; 3, 4}$,\quad
$\commamatrix[b]{1, 2, 3, 4}$,\quad
```

例 7:\generalmatrix \$\generalmatrix{p}{A}{m}{n}\$, \$\generalmatrix{v}{A}{3}{3}\$, \$\generalmatrix*{p}{A}{3}{3}\$, $\begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ & & A \end{pmatrix}, \begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{vmatrix}, \begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots \\ A_{21} & A_{22} & A_{23} & \cdots \\ A_{31} & A_{32} & A_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$

4.1 diagonalmatrix

diagonalmatrix,即对角矩阵。

```
\diagonalmatrix \diagonalmatrix
                                   [⟨matrix类键值选项⟩] {⟨diag键选项⟩}
                \diagonalmatrix = [\langle matrix类键值选项\] {\langle diag键选项\}
                \diagonalmatrix + [\langle matrix类键值选项\] {\langle diag键选项\}
                \diagonalmatrix = + [\( matrix类键值选项\)] {\( diag键选项\)}
```

- = 开启保存模式,即不输出计算的矩阵,而将其全局保存至 \physicxtmp 宏中,将其展开一次 即可得到矩阵的值(不包括外部的 \begin{matrix} 等)。
- = 将覆盖 saveto 和 saveto* 键的设置,即总是将矩阵保存到 \physicxtmp 中,而不管 saveto和 saveto*的设置。
 - + 启用 enhanced 模式,在该模式下能使用更多的键值选项,但速度相较而言慢些。

diag 键选项:

auto-update noauto-update true false \cap 1 -1

' 1

'-1

auto-update 将自动更新矩阵的行数和列数,使得给出的元素总是完整地出现在矩阵中。

true 在设置主对角线元素的同时设置矩阵的行数和列数为主对角线元素个数。行数和列 数可以被后续的处理更改。

数字键将设置矩阵的对角元素的值。对角元素的位置是当前矩阵的相应元素的位置。

不带"!"的设置主对角线元素,即"\",带"!"设置副对角线元素,即"/"。正数为上方, 负数为下方。

注意副对角线元素的设置依赖矩阵的大小,即矩阵的行数和列数,在设置副对角线元素时 行数和列数必须被直接或间接地设置。

当 (diag 键选项) 不为键值对时,则将其设置为主对角线元素。

这个矩阵命令自动更新 MaxMatrixCols 计数器,即矩阵最大的列数。

见下方的几个例子。

例 8:		
<pre>\$\diagonalmatrix[v,empty=\Box]{a,b,c,d}\$ \ \$\diagonalmatrix[v,empty=\Box]{ 0={a,b,c,d} }\$ \ \$\diagonalmatrix[v,empty=\Box]{auto-update, 2={a,b,c,d} }\$ \ \$\diagonalmatrix[v,empty=\Box]{ 2={a,b,c,d} }\$ \ \$\diagonalmatrix[v,empty=\Box]{auto-update, '0={a,b,c,d} }\$ \ \$\diagonalmatrix[v,empty=\Box]{auto-update, '0={a,b,c,d} }\$ \ \$\diagonalmatrix[v,empty=\Box]{ '0={a,b,c,d} }\$</pre>		
例 9:		
<pre>\$\diagonalmatrix[v,empty=\Box]{ 0={a,b,c,d}, 1={h,j,j} }\$ \ \$\diagonalmatrix[v,empty=\Box]{ 0={a,b,c,d}, 1={h,j,j,k} }\$ \ \$\diagonalmatrix[v,empty=\Box]{ auto-update, 0={a,b,c,d}, 1={h,j,j,k} }\$ \ \$\diagonalmatrix[v,empty=\Box]{ auto-update, 0={a,b,c,d}, 1={h,j,j,k} ,-4={m}}\$ \</pre>		
$ \begin{vmatrix} a & h & \Box & \Box & & a & h & \Box & \Box & & a & h & \Box & \Box & & & a & h & \Box & \Box & \Box & & & & & & & $		
例 10:		
<pre>\$\diagonalmatrix[v,empty=\Box]{ 0={1,2,3,4}, -1={11,22,33}, '-1={p,pp,ppp} }\$ \ \$\diagonalmatrix[v,empty=\Box]{ 0={1,2,3,4}, 2=A, -1={\sum,\cup,\prod}, '-1={\int,\oint_a^n} }\$ \ \$\diagonalmatrix[v,empty=\Box,sep=\C]{ 0=1 \C 2 \C 3 \C 4, 2=A, -1=\sum \C \cup \C \prod, '-1=\int \C \oint_a^n }\$ \</pre>		
<pre>\$\diagonalmatrix=[v,empty=\Box,sep=\C]{ 0=1 \C 2 \C 3 \C 4, 2=A, -1=\sum \C \cup \C \prod, '-1=\int \C \oint_a^n }\$ \ {\ttfamily\meaning\physicxtmp}</pre>		
$ \begin{vmatrix} 1 & \Box & \Box & \Box & & 1 & \Box & A & \Box & & 1 & \Box & A & \Box & & 1 & \Box & A & \Box & & 1 & \Box & 1 & & 1 & \Box & 1 & & 1$		

\diagonalmatrix 中可用的 matrix 类键值选项:

见表 2,它们的具体用法见第 4.5 节。 $\langle diag$ 键选项 \rangle 设置的即是 diag 键。

enhanced 模式下增加的可用键值:

表 2

expand	rows	cols	auto-update	empty
check	diag	diag+	diag-now	diag-data
item	item+	item-now	item-data	check-range
begin	end	args	args*	after-begin
after-begin+	after-end	after-end+	sepdim	type
saveto	saveto*	transpose	1	T
MaxMatrixCols	enhanced	!enhanced	sep	adi-order
beginning	beginning+	ending	ending+	

row-list	col-list	element-code	element-code*
element-except	element-except+	expand-element	row-iterate
col-iterate			

4.2 commamatrix

commamatrix,即逗号分隔的矩阵。

```
\commamatrix \commamatrix [(matrix类键值选项)] {(矩阵元素)} 
\commamatrix = [(matrix类键值选项)] {(矩阵元素)} 
\commamatrix + [(matrix类键值选项)] {(矩阵元素)} 
\commamatrix = + [(matrix类键值选项)] {(矩阵元素)}
```

=、+ 的功能同 \diagonalmatrix。

在非 enhanced 模式下,做的工作仅仅是把 align 分隔符替换为 &,把 cr 分隔符替换为 \\, 功能有限,但速度更快。

这个矩阵命令<mark>不会</mark>自动更新 MaxMatrixCols 计数器, 需要通过 MaxMatrixCols 键设置, 或通过 \setcounter 设置。

见下方的几个例子。

```
| 例 11:

| $\commamatrix[b]{a,b;c,d}$ \
| $\commamatrix[b]{a,b}; c,d}$ \
| $\commamatrix[b]{a,b};
```

\commamatrix 可用的键值选项:

见表 3,具体用法见第 4.5 节。 〈矩阵元素〉设置的即是 array 键。

enhanced 模式下增加的键值选项:

表 3

array	expand	rows	cols	check-range
begin	end	args	args*	after-begin
after-end	sepdim	type	save-to	save-to*
MaxMatrixCols	enhanced	!enhanced	cr	align

row-list	col-list	element-code	element-code*
element-except	element-except+	expand-element	row-iterate
col-iterate			

4.3 qxmatrix

例 12:

\qxmatrix 扩展的 \xmatrix。

```
\\ \qxmatrix \q
```

一个稍复杂的例子:

\qxmatrix 可用的键值选项:

见表 4, 具体用法见第 4.5 节。

表 4

array	expand	rows	cols
auto-update	main	row-list	col-list
infinite	!infinite	element-code	element-code*
element-except	element-except+	expand-element	row-iterate
col-iterate	begin	end	args
args*	sepdim	type	saveto
saveto*	MaxMatrixCols		

4.4 genegralmatrix

generalmatrix,即通用矩阵命令。

```
| \quad \qu
```

4.5 matrix 类通用键值选项

```
element-code
element-code*
```

element-code = $\{\langle code \rangle\}$

element-code* = \langle except-empty | except-blank | except-dots | except-tl | except-regex|only-regex|\langle macro name\rangle

Updated: 2022-04-27

element-code 使用三个参数,分别为 main、行角标、列角标。 此选项设置每一个矩阵元素要显 示的代码。\physicx@matrixelement 宏保存这 *(code)* (带有三个参数)。

element-code*控制要排除的元素,这些元素不使用 element-code 中的处理代码。一般 情况下,应该首先使用 element-code,再使用 element-code*,如果先使用 element-code*, 再使用 element-code,则 element-code* 不会生效。

- except-empty 将排除空元素(完全为空,不包含任何字符);
- except-blank 排除空白元素(包括空格);
- element-dots 排除 \cdots \vdots \ldots \\ddots;
- except-tl 排除 \physicxexcept 的中记号,如果字符是一个整体要被排除,应该使用 花括号:\def\physicxexcept{{abc}{ABC}},将排除元素为 abc 或 ABC 的情况;
- except-regex 将排除那些匹配正则表达式的元素,这个正则表达式保存在 \physicxexcept
- only-regex 将排除那些不匹配正则表达式的元素,这个正则表达式保存在 \physicxexcept 中:
- 它的值也可以是一个宏的名称,它使用这个宏来处理。这个宏应有三个参数。

注意 element-code* 会重定义 \physicx@matrixelement。

element-except+

这个键设置(或附加)\physicxexcept 的值,这个宏的值用于 element-code* 的相关设置中。

expand-element expand-element = true | false

初始值 = false

是否对生成的矩阵值进行展开,一般情况是不需要的,当使用 saveto 保存到宏中,则可能需要 启用该选项。

empty

当矩阵的某元素未被设置时,使用其值设置之。

check check = \langle none | empty | ignore | igep | all \rangle

是否对输入的元素进行检查。

empty 选项检查当输入的元素为空时,使用 empty 键的值替换之。

ignore 检查当输入的元素为 \PHYSICXIGNORE 时,不对该元素进行设置操作。 igep对 empty和ignore进行检查。

row-iterate

设置行、列的角标的索引方法,它们接收一个参数,分别代表对应元素的行索引和列索引。

col-iterate

last-row last-col

diag = {\diag 键选项\} diag diag+ = {\diag 键选项\} diag+

 $diag-now = {\langle diag 键选项 \rangle}$ diag-now

diag-data = {〈预先定义的diag数据〉} diag-data

diag-data+ diag-data+ = {〈预先定义的diag数据〉}

diag-now 立即解析给出的 (diag 键选项), 不待 adi 处理, 或 adi 处理完毕后还需设置矩阵元 素。可用于 beginning ending 键中进行额外的设置。

diag-data可使用 \setmatrixdata 设置的数据,见第5节。

!enhanced

是否启用 enhanced 模式。

item item+ item-now item-data item-data+ 初始值 = true check-range check-range = true|false 当解析 item 选项时,是否检查元素索引越界,为真时,不设置越界元素。 begin begin = $\{\langle code \rangle\}$ end $= \{\langle code \rangle\}$ end 设置输出矩阵时使用的环境。一般为 begin=\begin{matrix},end=\end{matrix}。 但是可以是任意代码,一般情况下 begin 和 end 需配对。 $args args = \langle code \rangle$ $args* args* = \langle code \rangle$ 当 begin 键使用的环境需要参数时,可使用这个键设置。 args 设置方括号括起来的参数,将 [(code)] 放到 begin 键的代码之后。 args*将 (code) 放到 begin 键的代码之后。 如:begin=\begin{matrix*},args=c,则为 \begin{matrix*}[c]。 begin=\begin{array},args*={[t]{ccc}},则为 \begin{array}[t]{ccc}。 after-begin after-begin+ after-end after-end+ 初始值 = Opt $sepdim sepdim = \langle dim \rangle$ 初始值 = mtype type = $\langle m|p|b|B|v|V|sm|...\rangle$ 设置输出矩阵的类型。m 使用 matrix 环境,p 使用 pmatrix 环境,等。 当加载了 mathtools 宏包或使用了 mathtools 宏包选项时,还额外定义了 m* 和 sm*、sp、 sp* 等环境,它们代表 martix*\smallmatrix*\psmallmatrix 等环境。 还可使用由\setmatrixtype 定义的类型。见第5节。 一般情况下,如果 type 的值与 matrix 类的键没有相同的名字,则可省略 type,直接写它 的值。不能保证未来版本不会增加新的键,若要使得简写仍然有效,应该保证它的名字比较特 别,使得出现相同键名的概率低。 saveto saveto = \(macro name\) saveto* saveto* = \langle macro name \rangle 将矩阵的值保存到相应的宏中。 transpose transpose = true|false 初始值 = false 为真,则将矩阵元素转置,不对角标转置。 Τ MaxMatrixCols MaxMatrixCols = 〈整数〉 设置 MaxMatrixCols 计数器的值。一般情况下无需给出键名,直接使用 〈整数〉 即可。 enhanced enhanced = true | false 初始值 = false

```
      cr
      cr
      = 〈符号〉
      初始值 = ;

      align align = 〈符号〉
      初始值 = ,

      sep sep = 〈符号〉
      初始值 = ,
```

设置分隔符。〈符号〉可以是任意记号,不会对其进行展开。

sep 设置 diag、row-list、col-list 的分隔符。

cr 设置换行(\\))对应的符号。align 设置 align (&)对应的符号,用于 array 键或 \commamatrix 中。

 $\verb|adi-order| = \langle adi | dia | iad | aid | ida | dai \rangle$

初始值 = adi

设置 array/main、diag、item 的处理顺序。

beginning
beginning+
ending
ending+

设置在adi处理前后要执行的代码,可以是任意代码,一般用于设置。

4.6 例子

```
(例 15:

$\commamatrix[
begin=\begin{array},end=\end{array},args*={{clr}}, % two {{ }}
]{A, E, I; MNOP, QRST, UVWX}$
$\commamatrix[
begin=\left[\begin{array}, end=\end{array}\right], args*={{clr}},
]{A, E, I; MNOP, QRST, UVWX}$

A E I A E I MNOP QRST UVWX

ANOP QRST UVWX

ANOP QRST UVWX
```

```
例16: $\generalmatrix+{rows=5,cols=4,main=A}$$ $\generalmatrix+{array={ 1,2,3,4; a,b,c,d; \oplus,\otimes,\cup,\spadesuit },rows=3,cols=4,type=p}$$$ $\generalmatrix+{array={ 1,2,3,4; a,b,c,d; \oplus,\otimes,\cup,\spadesuit }, type=p,auto-update }$$$$ $A_{11} \ A_{12} \ A_{23} \ A_{24} \ A_{21} \ A_{22} \ A_{23} \ A_{24} \ A_{31} \ A_{32} \ A_{33} \ A_{34} \ A_{41} \ A_{42} \ A_{43} \ A_{44} \ A_{43} \ A_{44} \ A_{51} \ A_{52} \ A_{53} \ A_{54}$$$$$
```

```
例 17:
$\generalmatrix + {
     array={ 1,2,3,4; a,b,c,d; \oplus,\otimes,\cup,\spadesuit },
     type=v,rows=3,cols=4,
    row-list={A,B,C}, col-list={\blacklozenge,\Box,\heartsuit}
}$
$\generalmatrix + * {
     array={ 1,2,3,4; a,b,c,d; \oplus,\otimes,\cup,\spadesuit },
     type=v,rows=3,cols=4,
     row-list={A,B,C}, col-list={\blacklozenge,\Box,\heartsuit}
}$
$\generalmatrix + * {
     array={ 1,2,3,4; a,b,c,d; \oplus,\otimes,\cup,\spadesuit },
     type=v,rows=3,cols=4, element-code*=except-dots,
    row-list={A,B,C}, col-list={\blacklozenge,\Box,\heartsuit}
}$
 \begin{vmatrix} 1_{A \blacklozenge} & 2_{A \square} & 3_{A \heartsuit} & 4_{A} \\ a_{B \blacklozenge} & b_{B \square} & c_{B \heartsuit} & d_{B} \\ \oplus_{C \blacklozenge} & \otimes_{C \square} & \cup_{C \heartsuit} & \spadesuit_{C} \end{vmatrix} \begin{vmatrix} 1_{A \blacklozenge} & 2_{A \square} & 3_{A \heartsuit} & 4_{A} & \cdots_{A} \\ a_{B \blacklozenge} & b_{B \square} & c_{B \heartsuit} & d_{B} & \cdots_{B} \\ \oplus_{C \blacklozenge} & \otimes_{C \square} & \cup_{C \heartsuit} & \spadesuit_{C} & \cdots_{C} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{vmatrix} \begin{vmatrix} 1_{A \blacklozenge} & 2_{A \square} & 3_{A \heartsuit} \\ a_{B \blacklozenge} & b_{B \square} & c_{B \heartsuit} \\ \oplus_{C \blacklozenge} & \otimes_{C \square} & \cup_{C \heartsuit} & \spadesuit_{C} & \cdots_{C} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{vmatrix}
```

```
例 19:
% new a \generalmatrix command, use enhanced mode, with 1 arg
\newgeneralmatrix + \ffempty [1] { rows=5,cols=5,element-code={##1},type=v, #1 }
\frac{0={1,2,3,4,5,6}, 0={-1,-2,-3,-4,-5,-6}}{}
$\ffempty{
 main=A, diag={ 0=\{1,2,3,4,5,6\}, 0=\{-1,-2,-3,-4,-5,-6\} },
 item={ \{1,3\}\{2,4\}=\setminus Box \}
}$
$\ffempty{
 main=A, diag={ 0=\{1,2,3,4,5,6\}, 0=\{-1,-2,-3,-4,-5,-6\} },
 item={
    \{1,3\}\{2,4\}=\setminus Box, \% (1,2), (1,4), (3,2), (3,4) = \setminus Box
    {4}{5}=\PHYSICXIGNORE, % ignore setting of (4,5)
   \{-\}\{5\}=\blacksquare, % col=5
    \{4\}\{-\}=\heartsuit, % row=4
 }
}$
         A
                                    A
                                         1
                A
                     -1| | 1
                               -1
                                                  | 1
                                                           A
                                                                 -2
                     A
 A
           A
                          A
                               2
                                         -2
                                              A
                                                   A
                                                       2
                                    A
                                                            A
                          A
 A
      A \quad -3 \quad A
                     A
                               -3
                                              A
                                                   A \quad \Box \quad -3 \quad \Box
                                                                      \Diamond
                                                       \Diamond
                                                                  \Diamond
                     A
                         A
                                              A
                                                            \Diamond
 A
     -4 A
                4
                                                                      A
                              -4
                                   A
                                         4
                                                  \left| -5 \right| A
                A
                     5 \mid |-5|
                                    A
                                         A
-5
      A
           A
                               A
                                                                 A
```

第5节 杂项 18

```
例 20:
% xparse-like new command
\NewGeneralMatrix + \fftest { D(){adi} O{} } {
  rows=5,cols=5, element-code={##1},
  main=A, diag=\{0=\{1,2,3,4,5,6\}, 0=\{-1,-2,-3,-4,-5,-6\}\},
  item={
    \{1,3\}\{2,4\}=\setminus Box, % (1,2), (1,4), (3,2), (3,4)=\setminus Box
    {4}{5}=\PHYSICXIGNORE, % ignore setting of (4,5)
    \{-\}\{5\}=\blacksquare, \% col=5
    \{4\}\{-\}=\ now=4
  }, adi-order=#1, #2 }
$\fftest[type=v]$
                        % adi-order=adi, process order: array/main, diag, item
$\fftest(aid)[type=v]$ % adi-order=aid, process order: array/main, item, diag
$\fftest(aid)[type=v,
  diag+=\{ 2=\{HH,II,JJ\}, -2=\{ , , \} \}, \% add to diag
  item+={ \{4\}\{1\}=\{\} }, % add to item
  ending=\physicxset*{matrix}{ item-now={ {4}{4}=\fbox{LL} } }, % set item at ending
]$
$\fftest(aid)[type=v,
  diag+=\{ 2=\{HH,II,JJ\}, -2=\{ , , \} \},
  item+={ \{4\}\{1\}=\{ \} \},
  ending=\physicxset*{matrix}{ item-now={ {4}{4}=\fbox{LL} } },
  saveto=\savetosomething,
{\ttfamily\meaning\savetosomething}
                                        HH
                                                                        -1
          A
                                   A
                                       -2
                                                       2
                                                            A
              A
                             -3
                                             JJ
 A
     -3
                   -3
               \Diamond
                       \Diamond
 \Diamond
                    A
                             -4
                                        4
                                             A
                                                                  LL
          A
                A
                    \blacksquare | 1-5
                             A
                                   A
                                        A
                                             5 | |
                                                                         5
 -5
                                                  -5
                                                      A
macro: ->1 \& Box \& HH \& Box \& -1 \A \& 2 \& A \& II \& blacksquare \& Box \& -3 \& Box & JJ \
&&\heartsuit &\fbox {LL}&A\\-5&A&&A&5
```

第5节 杂项

```
\physicxset \physicxset {(通用键值选项)}
         \physicxset * {(类型)} {(类型可用的键值选项)}
         physicx 宏包的设置命令。
             〈类型〉为 quantity、matrix 等。
```

\setquantitytype \setquantitytype {\type name\} {\quantity类键选项\}

自定义 quantity 类的 type。

\physicxtmp \physicxempty \physicxexcept \PHYSICXIGNORE \physicxempty 保存 empty 键的值。\physicxexcept 保存 element-except 的值。 永远不要在正文中使用 \PHYSICXIGNORE。仅应 diag、item 键的设置中使用。

第5节 杂项 19

```
\setmatrixtype \setmatrixtype \{\langle type name \rangle\} \{\langle begin \rangle\} \{\langle end \rangle\}
```

\setmatrixdata \setmatrixtype * {\type name\} {\matrix类键选项\}

 $\starting{ \data type} \ {\data name} \ {\data}$

〈data type〉为 item 或 diag,将〈data〉 保存,以后可以在 item-data、diag-data 中通过〈data name〉来引用。

定义新的括号命令 5.1

> 定义新的矩阵命令。\newxquantity 与 LATeX2。的 \newcommand 形式相同。\NewXQuantity 与 xparse 的 \NewDocumentCommand 形式相同。

其中\NewXQuantity命令使用的宏变量从第2开始,第1个保留作内部使用。

可以使用 \newcommand 或 \NewDocumentCommand 配合 \xquantity 命令来定义新的括号 命令。

实际上,\qxqty 的定义就是

例 21:

 $\NewXQuantity \qxqty { 0{} m } {#2} {#3}$

例 22:

\newxquantity \xcommu [3] [] {#1, type=b} {#2,#3}

- $\ \d \A}{B} \quad \d \C\B}_{\d \C\B} \$
- $\$ \xcommu[\Big]{A}{B} \quad \xcommu[\big]{\dfrac{A}{B}}{\dfrac{C}{D}} \$

 $\ \$ \xOrder{x^n} \quad \xOrder{\dfrac{1}{x^n}} \quad \xOrder[\\Big]{\dfrac{1}{x^n}} \$

$$\begin{array}{ll} [A,B] & \left[\frac{A}{B},\frac{C}{D}\right] & \left[A,B\right] & \left[\frac{A}{B},\frac{C}{D}\right] \\ \mathcal{O}(x^n) & \mathcal{O}\left(\frac{1}{x^n}\right) & \mathcal{O}\left(\frac{1}{x^n}\right) \end{array}$$

\@declarequantitycmd \@declareparencmd

 $\ensuremath{ \mbox{ Qdeclarequantitycmd 0/1 0/1 } \cmd } \{\ensuremath{ \mbox{ cmd} } \}$

 $\verb| (declareparencmd (cmd) {(arg spec)} {(replace)} {(pre code)} (left) (right) {(post)} | (declareparencmd (cmd) {(arg spec)} {(replace)} {(pre code)} (left) (right) {(post)} | (declareparencmd (cmd) {(cmd) {(arg spec)} {(arg spec)} {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg spec)} {(arg spec)} {(arg spec)} | (declareparencmd (cmd) {(arg spec)} {(arg$

这两个命令不宜再使用。

由 \@declarequantitycmd 命令定义的 quantity 命令,其后除可使用 \big、\Big 等命令 外,也支持任意命令。宏变量从第4个开始,前3个保留作内部使用。

由 \@declareparencmd 命令定义的 quantity 命令, 其后仅可使用 \big、\Big、\bigg、 \Bigg这四个命令。宏变量从第 6 个开始,前 5 个保留作内部使用。

几个个例子:

第 5 节 杂项 20

```
例 23:
% \catcode`\ =9 \catcode`\@=11
\@declarequantitycmd 1 1 \quantity
   { !g } { \{
                        } { #4 } { \}
                                            } }
    { !o
         } { { [
                                            } }
                        } { #5 } { ]
   { !d() } { (
                        } { #6 } { )
                                            } }
   { !d|| } { { \vert
                        } { #7 } { \vert
   { !d<> } { { \langle } { #8 } { \rangle } }
   { !d== } { { \\Vert } { \\#9 } { \\\Vert
  }
\@declarequantitycmd 1 0 \matrixquantity
  {
   { !g }
     {
       { \IfBooleanT{#3}{\left\{} }
       { \begin{matrix} #4 \end{matrix} }
       { \IfBooleanT{#3}{\right\}} }
     }
    { !o } { \begin{bmatrix} } {#5} { \end{bmatrix} } }
   { !d() }
     {
       { \IfBooleanTF{#3}{\left\lgroup}{\left(} }
       { \begin{matrix} #6 \end{matrix} }
        { \IfBooleanTF{#3}{\right\rgroup}{\right)} }
    { !d|| } { \begin{vmatrix} } {#7} { \end{vmatrix} } }
   { !d<> } { \left\langle } { \begin{matrix} #8 \end{matrix} } { \right\rangle }
   { !d== } { { \begin{Vmatrix} } {#9} { \end{Vmatrix} } }
 }
```

```
例 24:

% \catcode`\ =9 \catcode`\@=11
\@declareparencmd \pqty { m } {#6} { } ( ) { }
\@declareparencmd \absolutevalue { m } {#6} { } \vert \vert { }
\@declareparencmd \00rder { m } {#6} { \mathcal{0} } ( ) { }
\@declareparencmd \commutator { m m } { #6 , #7 } { } [ ] { }
```

5.2 定义新的矩阵命令

```
\newdiagonalmatrix \newdiagonalmatrix
                                                  \c d = (arg nums)  [(default)] {(matrix keys)} {(diag keys)}
\newcommamatrix
                        \NewDiagonalMatrix
                                                \langle cmd \rangle \{\langle args spec \rangle\} \{\langle matrix keys \rangle\} \{\langle diag keys \rangle\}
\verb|\NewCommaMatrix||
                        \newgeneralmatrix
\NewGeneralMatrix
                       \newcommamatrix
                                                  \c cmd \ [\langle arg nums \rangle]
                                                                           [\langle default \rangle] \{\langle matrix keys \rangle\} \{\langle comma value \rangle\}
                        \newcommamatrix
                                                + \c md \ [\langle arg\ nums \rangle] \ [\langle default \rangle] \ \{\langle matrix\ keys \rangle\} \ \{\langle comma\ value \rangle\}
                        \NewCommaMatrix
                                                  \langle cmd \rangle \{\langle args\ spec \rangle\} \{\langle matrix\ keys \rangle\} \{\langle comma\ value \rangle\}
                        \NewCommaMatrix
                                                + \langle cmd \rangle {\langle args\ spec \rangle} {\langle matrix\ keys \rangle} {\langle comma\ value \rangle}
                                                                           [\langle default \rangle] \{\langle matrix keys \rangle\}
                        \newgeneralmatrix
                                                  \newgeneralmatrix + \cmd [\arg nums] [\default] {\mbox{matrix keys}}
                                                  \c d \ {\c md} \ {\c matrix keys}
                        \NewGeneralMatrix
                        \label{eq:cmd} $$\operatorname{MewGeneralMatrix} + \c md \ {\langle args spec \rangle} \ {\langle matrix keys \rangle}$
```

第 5 节 杂项 21

```
例 25:
\quad
$ \xdmat{1, \commamatrix{2&3\\4&5}} $ \quad
$ \xdmat{1, \mqty{2&3\\4&5}} $ \quad
\newdiagonalmatrix \xxdmat [3] [] {#1, diag={true, 0={#2}, #3} } {}
\xim x \xim (1,2,3,4){(0={a,b,c,d}) } \xim (a,b,c,d)
$ \xadmat{a,b,c,d} $
1
                       2 3
                     4 5
1
 2 b
         2 3
 c 3
d
```

\newgeneralmatrix \NewGeneralMatrix 的例子见例 19 和例 20。

版本历史

v0.1.2	(2021/11/11)	v0.3.3	(2022/07/30)
General: 新增 quantity 选项。		General: 修改 sepdim 的行	行为,在其为 0pt 时,不显示使用
v0.1.3	(2021/11/12)	\\[0.0pt]	
General: 将 quantity 重命名为 re	eqty	对 fixdif 宏包提供支持。	
v0.2	(2021/11/12 - 2021/11/13)	v0.3.4	(2022/09/13)
General: 新增 \xquantity \\qxqt	y、\txqty 命令。1	General: 修复文档错误。	
旧的括号命令不再推荐使用,仅	由于兼容性原因保留。4	新增 original 选项。(^{#8}) 1
移除 \Order 命令。	4	v0.3.5	(2022/10/22)
v0.2.1	(2021/11/14)	General: size 现在可以接	受数值值。 <mark>2</mark>
General: 修复矩阵类不能使用 typ	e 简写的错误。3	v0.3.6	(2022/11/16 - 2023/02/02)
移除 \txqty 命令。		General: quantity 新增 au	ıto 键。
v0.3	(2021/11/27)	适配 fixdif Version 2.0a	
General: 简单兼容 unicode-math	宏包1		

代码索引

意大利体的数字表示描述对应索引项的页码;带下划线的数字表示定义对应索引项的代码行号;罗马字体的数字表示使用对应索引项的代码行号。

Symbols	check-range
!infinite 12	code 2
·	col-iterate
'-1	col-list
'1	cols
-1	\commamatrix
7	cr
\\(cmd \rangle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
\\(macro name\)	D
Numbers	\dd 1
0	diag
1	diag+
	diag-data
Α	diag-data+ 13
adi-order	diag-now
after-begin	\diagonalmatrix 6-9
after-begin+	
	_
after-end	E
after-end+ 14	element-code
after-end+	element-code
after-end+ 14 align 15 args 2,14	element-code 13 element-code* 13 element-except 13
after-end+ 14 align 15 args 2,14 args* 2,14	element-code 13 element-code* 13 element-except 13 element-except+ 13
after-end+ 14 align 15 args 2,14 args* 2,14 array 12	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13
after-end+ 14 align 15 args 2,14 args* 2,14 array 12 auto 2	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13 end 14
after-end+ 14 align 15 args 2,14 args* 2,14 array 12	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13 end 14 ending 15
after-end+ 14 align 15 args 2,14 args* 2,14 array 12 auto 2	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13 end 14 ending+ 15 ending+ 15
after-end+ 14 align 15 args 2,14 args* 2,14 array 12 auto 2 auto-update 7,12	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13 end 14 ending 15 ending+ 15 enhanced 14
after-end+ 14 align 15 args 2,14 args* 2,14 array 12 auto 2 auto-update 7,12 B B begin 14 beginning 15	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13 end 14 ending 15 ending+ 15 enhanced 14 expand 12
after-end+ 14 align 15 args 2,14 args* 2,14 array 12 auto 2 auto-update 7,12 B 14	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13 end 14 ending 15 ending+ 15 enhanced 14
after-end+ 14 align 15 args 2,14 args* 2,14 array 12 auto 2 auto-update 7,12 B B begin 14 beginning 15	element-code 13 element-code* 13 element-except 13 element-except+ 13 empty 13 end 14 ending 15 ending+ 15 enhanced 14 expand 12

G	\qxmatrix
\genegralmatrix 6	\qxqty 1,19
\generalmatrix	D.
Ī	R right 2
infinite	right-size
item	row-iterate
item+	row-list
item-data	rows
item-data+	1000
item-now	S
100m 100m	saveto 14
L	saveto* 14
last-col	sep
last-row	sepdim 14
left 2	\setmatrixdata 13,19
left-size	\setmatrixtype 14,19
	\setquantitytype
M	size
main	\smallmatrixquanity5
$\mbox{\mbox{\it matrix}quantity}$	\smqty 5
MaxMatrixCols	
\mqty 5	T
N	T
\NewCommaMatrix	T_EX and $ET_EX 2_{\varepsilon}$ commands:
	\@declareparencmd
\newcommamatrix	\@declarequantitycmd 19
\NewDiagonalMatrix	\Big 19
\newdiagonalmatrix	\big 19
\NewDocumentCommand	\Bigg
\NewGeneralMatrix	\bigg 19
\newgeneralmatrix	\Bigl 2
\NewXQuantity	\Bigr 2
\newxquantity	\cdots 13
noauto	\ddots 13
noauto-update	\div1
0	\Im 1
\00rder 4	\ldots 13
\oorder 4	\left 2,3
\order 4	\newcommand 19
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\physicx@matrixelement
P	\Re 1
\physicxempty 18	\right 2,3
\physicxexcept 13, 18	\setcounter 9
\PHYSICXIGNORE	\vdots 13
\physicxset	transpose
\physicxtmp	true
post	type 3,14
pre	
	X
Q	\xmatrix 10
\quantity	\xquantity 1,19