# Tehnički fakultet Rijeka

# Računalom podržana mjerenja

Seminarski rad



Izradili: Deni Klen, Ani Perušić, Mihael Petranović, Mateo Srića

Mentor: prof. dr. sc. Saša Vlahinić

Rijeka, ožujak 2021

# Sadržaj

| Uvod                              | 3  |
|-----------------------------------|----|
| Razvojna okruženja i sklopovlje   | 3  |
| Arduino platforma                 |    |
| Python                            |    |
| Senzor                            |    |
| Opis rada                         |    |
| Programska podrška                |    |
| Praćenje i pohranjivanje podataka |    |
| Grafičko sučelje                  | 7  |
| Sažetak                           | 10 |
| Literatura                        | 10 |

#### Uvod

Tema seminarskog rada je izrada grafičkog sučelja u Python-u koje će prikazivati podatke o temperaturi i vlažnosti pomoću senzora spojenog na Arduino mikročip, kao i izrada data loggera, uređaja koji prikuplja podatke sa senzora i sprema ih za kasnije korištenje.

# Razvojna okruženja i sklopovlje

### Arduino platforma

Mikročipska ploča korištena u izradi projekta je Arduino Micro. Ona je jedna od Arduinovih mikročipovskih ploča koje su napravljene za početnike; jednostavna je za upotrebu te pisanje koda, a služi kao dobra polazna točka za upoznavanje i učenje elektronike. Zasnonavana je na Atmegi32U4 i razvijena zajedno s Adafruitom. Ima 20 digitalnih ulazno/izlaznih pinova (od kojih se 7 mogu koristiti kao PWM izlazi, a 12 kao analogni ulazi), kristalni oscilator od 16 MHz, mikro USB vezu, ICSP zaglavlje i gumb za resetiranje. Sadrži sve potrebno za podršku mikrokontrolera i jednostavno se spaja na računalo uz pomoć mikro USB kabela. Ugrađena USB komunikacija uklanja potrebu za sekundarnim procesorom. To omogućuje mikročipskoj ploči da se na povezanom računalu prikaže kao miš i tipkovnica, uz virtualni (CDC) serijski / COM priključak.

Programsku podršku za mikročip pisali smo u Arduino IDE-u. To je softver otvorenog koda koji olakšava pisanje programske podrške i prijenos na bilo koju Arduino ploču. Aktivni razvoj se odvija na GitHub-u.

#### Python

Za izradu grafičkog sučelja koristili smo programski jezik Python. Python je programski jezik visoke razine i opće namjene koji omogućava brzi rad i učinkovitu integraciju sustava. Njegove jezične konstrukcije i objektno orijentirani pristup imaju kao cilj pomoći programerima da napišu jasan i logičan kod bez obzira o veličini projekta. Python se dinamički upisuje i prikuplja smeće, stoga programer na mora misliti o alokaciji i brisanju memorije, podržava više paradigmi programiranja, uključujući strukturirano (posebno proceduralno), objektno

orijentirano i funkcionalno programiranje. Python se često opisuje kao jezik "s uključenim baterijama" zbog svoje sveobuhvatne standardne biblioteke koja uvelike olakšava programiranje.

#### Senzor

Senzor korišten za prikupljanje podataka o temperaturi i vlažnosti je DHT11. U njemu se nalazi senzor temperature — mali termistor zalemljen na pločicu te senzor vlage — mala tiskana pločica koja je nadolemljena na osnovnu. Što je više vlage u zraku, više vlage dolazi i na same vodove te je otpor među njima manji (ili počinje postojati kada se pojavljuje voda — to je razlog zašto senzor očitava vrijednosti od 20%, tek onda može očitati nekakav otpor). Osim navedene dvije komponente još nalazimo jedan integrirani krug koji analzira ulaze od prethodno navedenih senzora i komunicira s Arduinom.



Slika 1. VMA311 DHT11 senzor



Slika 2. Arduino Micro

## Opis rada

Prije otvaranja programa, potrebno je spojiti Arduino pločicu na računalo i senzor na Arduino pločicu. Senzor se na Arduino spaja na 5V, uzemljenje i analogni ulaz A0. Nakon pravilnog spajanja se može otvoriti program. Potrebno je odabrati port na koji je Arduino spojen nakon čega se može pokrenuti konekcija između računala i Arduina gumbom *Connect to Arduino*. U svakom trenutku se može ista konekcija zaustaviti gumbom *Disconnect from Arduino*.





Slika 3. DHT22/11 senzor spojen na Arduino Micro

Slika 4. Prikaz zaglavlja prozora

Sučelje se sastoji od dva gumba - Show Last Minute i Show Last Hour koji pritiskom pokazuju grafove i podatkovne vrijednosti u tablici.

Show Last Minute

Slika 5. Gumbi za prikaz podataka



Slika 6. Graf vrijednosti za protekli sat

| Hour Statistics |                     |                  |                                      |                                   |  |
|-----------------|---------------------|------------------|--------------------------------------|-----------------------------------|--|
| Time            | Average temperature | Average humidity | Standard<br>deviation<br>temperature | Standard<br>deviation<br>humidity |  |
| 17              | 23.0                | 48.0             | 0.0                                  | 0.0                               |  |
| 16              | 23.0                | 47.0             | 0.0                                  | 0.0                               |  |
| 15              | 23.0                | 47.0             | 0.0                                  | 0.0                               |  |
| 14              | 24.0                | 45.0             | 0.0                                  | 0.0                               |  |
| 13              | 24.0                | 44.0             | 0.0                                  | 0.0                               |  |
| 12              | 25.0                | 42.0             | 0.0                                  | 0.0                               |  |
| 11              | 25.0                | 56.0             | 0.0                                  | 12.0                              |  |
| 10              | 24.0                | 42.0             | 0.0                                  | 0.0                               |  |
| 09              | 25.0                | 40.0             | 1.0                                  | 0.0                               |  |
| 80              | 27.0                | 39.0             | 1.0                                  | 2.0                               |  |
| 07              | 27.0                | 68.0             | 1.0                                  | 17.0                              |  |
| 06              | 27.0                | 40.0             | 0.0                                  | 1.0                               |  |
| 05              | 26.0                | 75.0             | 1.0                                  | 19.0                              |  |
| 04              | 23.0                | 49.0             | 0.0                                  | 7.0                               |  |
| 03              | 23.0                | 46.0             | 0.0                                  | 0.0                               |  |
| 02              | 23.0                | 45.0             | 0.0                                  | 0.0                               |  |
| 01              | 24.0                | 43.0             | 0.0                                  | 1.0                               |  |
|                 |                     |                  |                                      |                                   |  |

Slika 7. Sirovi prikaz vrijednosti

## Programska podrška

### Praćenje i pohranjivanje podataka

Arduino pločica služi za spremanje vrijednosti senzora kao i izračun srednjih vrijednosti i standardne devijacije. Programska podrška za Arduino uključuje blago izmjenjenu DHT biblioteku koja je obavljala čitanje vrijednosti, prebacivanje i spremanje u varijable te provjeru kontrolne sume. Na početku se sve vrijednosti postavljaju na tisuću što omogućuje da se ta vrijednost nikada ne dostigne. Koristi se funkcija *resetData()*. Da je *default* vrijednost postavljena na nula, ne bi se moglo razaznati kada je nula izmjerena vrijednost, a kada *default*. U glavnom kodu svake dvije sekunde izvršava se prihvaćanje novih vrijednosti senzora. Vrijednosti kraće od dvije sekunde mogle bi remetiti očitanja, no u ovom slučaju češća očitanja nisu potrebna. Nakon očitanja vrijednosti, temperatura i vlažnost se spremaju u zasebne nizove. Korištena je logika kružnih lista i slanje trenutnog indeksa. Time se zna koja je vrijednost najnovija, a starije su vrijednosti redom lijevo od nje.

```
void setup() {
    Serial.begin(9600);
                                                    void resetData(){
    resetData();
                                                      lastMinuteCounter = 0;
                                                     lastHourCounter = -1;
                                                     addToHour = false;
  void loop() {
                                                     for (int i = 0; i < 30; i++) {
    delay(frequency);
                                                       lastMinuteTemperatureArray[i] = 1000;
    DHT.read11(dhtPin);
                                                       lastMinuteHumidityArray[i] = 1000;
    addToMinuteArrays();
                                                     for (int i = 0; i < 60; i++) {
    addToHourArrays();
                                                       lastHourAverageTemperatureArray[i] = 1000;
                                                        lastHourAverageHumidityArray[i] = 1000;
    printValues();
                                                       lastHourSDTemperatureArray[i] = 1000;
                                                       lastHourSDHumidityArray[i] = 1000;
    checkCounters();
                                                      }
Slika 8. Glavni dio programa
                                                               Slika 9. resetData()
          void addToMinuteArrays() {
            lastMinuteTemperatureArray[lastMinuteCounter] = (int)DHT.temperature;
            lastMinuteHumidityArray[lastMinuteCounter] = (int)DHT.humidity;
                         Slika 10. Dodavanje novih vrijednosti
void addToHourArrays() {
                                              float averageTemp(){
```

Slika 11. Poziv funkcija za dodavanje vrijednosti sata

addToSDHours();

addToAverageHours();

if(addToHour){

Slika 12. Računjanje srednje vrijednosti tempetarure

averageTemperature += lastMinuteTemperatureArray[i];

float averageTemperature = 0;

return (averageTemperature / 30);

for (int i = 0; i < 30; i++)

```
void addToAverageHours() {
    lastHourAverageTemperatureArray[lastHourCounter] = averageTemp();
    lastHourAverageTemperatureArray[lastHourCounter] = averageHum();
}

void addToSDHours() {
    lastHourSDTemperatureArray[lastHourCounter] = SDTemp();
    lastHourSDHumidityArray[lastHourCounter] = SDHum();
```

Slika 13. Dodavanje vrijednosti sata

```
float SDTemp(){
   float SDTemp = 0;
   float SDTemperature[30] = {0};
   for(int i = 0; i < 30; i++) {
        SDTemperature[i] = pow(lastMinuteTemperatureArray[i] - lastHourAverageTemperatureArray[lastHourCounter], 2);
        SDTmp += SDTemperature[i];
   }
   return sqrt(SDTmp / 30);
}</pre>
```

Slika 14. Računanje standardne devijacije

Nakon spremanja vrijednosti u nizove, isti se python kodu šalju preko serijske komunikacije. Kada Arduino zaprimi vrijednost "1" šalje vrijednosti za predhodnu minutu, a kada zaprimi "2" šalje za predhodnih sat vremena. U oba slučaja na kraju šalje i trenutni indeks polja na kojemu se nalazi.

Slika 15. Funkcija za ispis vrijednosti

Slika 16. Ispis vrijednosti

## Grafičko sučelje

Python-ova programska podrška se temelji na bibliotekama *tkinter* (izrada prozora i objekata), *serial* (čitanje sa serijskog porta), *threading* (lakše upravljanje procesima i memorijom), *Matplotlib* (izračun i prikaz raznih grafova), *NumPy*, *pandas* i *re* (manipulacija podataka) te *time* i *datetime*(izračun i prikaz vremena).

Inicijalizacija serijskog porta kao i dretve koja obrađuje serijski ulaz i izlaz odrađuje se pritiskom na *Connect to Arduino* gumb. Za aktivaciju ulaza označujemo jedan od ponuđenih iz kombiniranog okvira. Istom logikom, pritiskom *Disonnect from Arduino* gumba zaustavlja se dretva, odnosno komunikacija.

```
def serialPorts():
    return [p.device for p in serial.tools.list_ports.comports()]
    pass

def serialInit():
    global serialPort
    serialPort = serial.Serial()
    serialPort.baudrate = 9600
    serialPort.port = COMPortCombobox.get()
    serialPort.open()

def startOrStop():

def startSerialThread():
    global serialThreadBoolean
    if not serialThreadBoolean = True
        serialThreadBoolean = True
        serialThread = Thread( target=serialInit, daemon=True)
        serialThread.start()
        return True
    else:
        error(0)
        return False

def stopSerialThread():
    global serialThreadBoolean
    global serialThreadBoolean
    global serialThreadBoolean
    global serialPort
    serialPort.close()
```

Slika 17. Funkcije za čitanje i slanje sa serijskog porta, kao i za dretve

Opisani će biti samo proces koji se izvršava pritiskom na gumb *Show Last Minute* jer je za prikaz podataka sata jako sličan. Poziva se izravno funkcija *showMinuteStats()* koja šalje "1" na serijski port označavajući da želi primiti podatke o predhodnoj minuti. U slučaju da serijski port nije otvoren, dolazi do iznimke i program skočnim prozorom javlja da komunikacija između Arduina i računala nije započeta. Kada dobije podatke, odvaja vrijednosti u listu delimiterima "," i ";". Iz te liste odvaja podatke temperature i vlage u zasebne nizove.

```
def showMinuteStats():
    global currentSecondsIndex
try:
    if serialPort:
        serialPort.write(bytes("1", 'utf-8'))
        line = serialPortToLine()
        twoSeconds = re.split(';|,', line)
        y = 0
        for x in range(0, 60, 2):
            twoSecondsTemperature[y] = int(twoSeconds[x])
            y += 1
            currentSecondsIndex = int(twoSeconds[60])

        g = rearangeMinutes()
        minuteStats(g)
        graphMinutes()
    except:
    error(1)
```

Slika 18. Dohvaćanje podataka

Poziva se funkcija *rearangeMinutes()* čiji je posao pronaći ispravan redoslijed podataka. Ista je krucijalna jer inače se nebi mogao odrediti ispravan poredak podataka, svaki bi mogao biti najnoviji. To radi uz pomoć funkcije *circularArray(a, l, ind)* koja, koristivši se pomoćnim

poljem, reorganizira podatke. Nakon namještanja ispravnog polja, u drugo se dodaju vremena očitavanja podataka. Funkcija na kraju vraća indeks zadnjeg elementa. Zatim se zove funkcija minuteStats(g) koja stvara novi prozor i u tablicu stavlja podatke nizova. Na kraju se poziva funkcija za stvaranje grafa koji iste vrijednosti prikaže grafički linearnim grafom.

```
def rearangeMinutes():
    global newTwoSecondsTemperature
    global newTwoSecondsHumidity
    global secondsTimeArray
    secondsTimeArray = [1000 for x in range(30)]
    tmp = [1000 for x in range(30)]
    g = 0
    t = 0

tmp = circularArray(twoSecondsTemperature[::-1], 30, 29-currentSecondsIndex)
    newTwoSecondsTemperature = tmp[0:30]
    tmp = circularArray(twoSecondsHumidity[::-1], 30, 29-currentSecondsIndex)
    newTwoSecondsHumidity = tmp[0:30]

if int(format(datetime.now(), '%5')) % 2 == 1:
    t = 1

white g < 30 and newTwoSecondsTemperature[g] != 1000:
    secondsTimeArray[g] = format(datetime.now() - timedelta(seconds=g*2 - t), '%H:\%M:\%5')
    g += 1

if g == 30:
    g = 20

if secondsTimeArray[g] == 1000:
    secondsTimeArray[g] = newTwoSecondsTemperature[:g]
    newTwoSecondsTemperature = newTwoSecondsTemperature[:g]
    newTwoSecondsTimeArray = secondsTimeArray[:g]
    newTwoSecondsTimeArray = newTwoSecondsHumidity[:g]

else:
    secondsTimeArray = secondsTimeArray[:g+1]
    newTwoSecondsHumidity = newTwoSecondsHumidity[:g+1]

return g</pre>
```

Slika 19. Manipulacija poljima

```
def circularArray(a, l, ind):
    b = [None]*2*l
    out = [None]*2*l
    i = 0

while i < l:
    b[i] = b[l + i] = a[i]
    i += 1

i = ind
    j = 0

while i < l + ind :
    out[j] = b[i]
    i += 1

return out</pre>
```

Slika 20. Namještanje kružnog niza

```
fgraphMinutes():
    figureSeconds = plt.figure("Last minute", figsize=(18, 7))
    axisSeconds = figureSeconds.add_subplot()
    axisSeconds.set_xlabel('Time')
    axisSeconds.set_ylabel('Values')
    axisSeconds.plot(secondsTimeArray[::-1], newTwoSecondsTemperature[::-1], label='Temperature')
    axisSeconds.plot(secondsTimeArray[::-1], newTwoSecondsHumidity[::-1], label='Humidity')
    figureSeconds.subplots.adjust(top=0.97, left=0.043, right=0.971, bottom=0.079)
    axisSeconds.legend(loc='best', shadow=True)
    plt.show()
```

Slika 21. Stvaranje grafa

```
def showMinuteStats(): =
  def showHourStats(): =
  def minuteStats(g): =
  def hourStats(g): =
  def circularArray(a, l, ind): =
  def rearangeMinutes(): =
  def graphMinutes(): =
  def graphHours(): =
```

Slika 22. Sve funkcije

## Sažetak

U radu se upoznajemo načinom na koji smo realizirali mjerenje vrijednosti temperature i vlažnosti, koristeći se Arduinom i DHT11 senzorom, te grafičkim sučeljem napisanim u Python jeziku za vizualno prikazivanje istih. Dotičemo se razvojnog okruženja, sklopovlja i programske podrške korištene pri izradi projekta te detaljnije objašnjavamo neke dijelove koda i funkcije potrebne za ispravan rad projekta.

## Literatura

https://store.arduino.cc/arduino-micro

 $\underline{\text{https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf}$ 

https://www.arduino.cc/en/software

https://github.com/arduino/Arduino

https://docs.python.org/3/library/tkinter.html

https://matplotlib.org/stable/index.html

https://numpy.org

https://docs.python.org/3/library/time.html