

AD-A074 560 NORTHWESTERN UNIV EVANSTON IL DEPT OF CHEMISTRY F/G 7/3
CHARGE TRANSFER AND PARTIAL OXIDATION IN THE CONDUCTIVE HYDROCA--ETC(U)
SEP 79 R C TEITELBAUM, S L RUBY, T J MARKS N00014-77-C-0231

UNCLASSIFIED TR-7

NL

1 OF 1
AD
A074560

END
DATE
FILMED
11-79
DDC

DDA074560

OFFICE OF NAVAL RESEARCH

Contract N00014-77-C-0231
Task No. NR 053-640

TECHNICAL REPORT NO. 7

(14)

LEVEL II

Charge Transfer And Partial Oxidation
In The Conductive Hydrocarbon - Iodine
Complex "2 Perylene · 3I₂"

by

Robert C. Teitelbaum, Stanley L. Ruby, and Tobin J. Marks

Prepared for Publication

in

The Journal of the American Chemical Society

Northwestern University
Department of Chemistry
Evanston, Illinois 60201

September 17, 1979

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

79 10 01 002

unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 7	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Charge Transfer and Partial Oxidation in the Conductive Hydrocarbon - Iodine Complex 2 Perylene-31 ¹ Sub 2	5. TYPE OF REPORT & PERIOD COVERED Interim, 1979	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(S) Robert C. Teitelbaum, Stanley L. Ruby, ¹³ Tobin J. Marks	8. CONTRACT OR GRANT NUMBER(S) N00014-77-C-0231	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry Northwestern University, Evanston, IL 60201	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR-053-640	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Dept. of the Navy, Arlington, VA. 22217	12. REPORT DATE September 17, 1979	13. NUMBER OF PAGES 38
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 12 38 11 27 Sep 79	15. SECURITY CLASS. (of this report) Unclassified	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited	14 TR-1 9 Interim technical rept.,	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Polyiodide Conductive material Mixed valence material Resonance Raman	Iodine Mössbauer Hydrocarbon complex Perylene	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <p>It has long been thought that the highly conductive complexes formed between elemental iodine and various polycyclic aromatic hydrocarbons are molecular complexes, i.e., they contain iodine as I_2. In this contribution we report resonance Raman and iodine-129 Mössbauer spectroscopic</p>	260 805	

unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

characterization of the form of the iodine in the most highly conductive of these materials: "2perylene·3I₂". We find that "2perylene·3I₂" is not a molecular complex, but rather a partially oxidized, mixed-valence compound, the charge distribution of which can be approximately formulated on the basis of the spectral data as (perylene)^{+0.4} (I₃⁻·2I₂)_{0.4}.

ACCESSION for		
NTIS	White Section <input checked="" type="checkbox"/>	
DDC	Buff Section <input checked="" type="checkbox"/>	
UNANNOUNCED	<input type="checkbox"/>	
JUSTIFICATION _____		
BY _____		
DISTRIBUTION/AVAILABILITY CODES		
Dist.	AVAIL. and/or SPECIAL	
A		

unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Contribution from the Department
of Chemistry and the Materials
Research Center
Northwestern University
Evanston, Illinois 60201
and the Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

CHARGE TRANSFER AND PARTIAL OXIDATION
IN THE CONDUCTIVE HYDROCARBON - IODINE
COMPLEX "2PERYLENE·3I₂"

by Robert C. Teitelbaum,^{1a} Stanley L. Ruby,^{1b} and Tobin J. Marks*^{1a,2}

ABSTRACT

It has long been thought that the highly conductive complexes formed between elemental iodine and various polycyclic aromatic hydrocarbons are molecular complexes, i.e. they contain iodine as I₂. In this contribution we report resonance Raman and iodine-129 Mössbauer spectroscopic characterization of the form of the iodine in the most highly conductive of these materials: "2perylene·3I₂". We find that "2perylene·3I₂" is not a molecular complex, but rather a partially oxidized, mixed-valence compound, the charge distribution of which can be approximately formulated on the basis of the spectral data as (perylene)⁺⁴⁺ (I₃⁻·2I₂)_{0.4}.

INTRODUCTION

A question of great current interest in the field of electrically conductive, low-dimensional materials composed of molecular stacks³ concerns the importance of incomplete charge transfer or "partial oxidation" in facilitating charge transport.^{3,4} Considerable experimental and theoretical evidence points to the prerequisite of bringing the arrayed molecules (usually planar, conjugated organics or metal-organics) into formal fractional oxidation states (mixed valency) to help overcome band-filling, bandwidth, and Coulombic impediments to charge conduction along the molecular stack.^{3,4} This ionic, mixed valent state is usually brought about via the addition of electron acceptors (or donors) to the system. In apparent contradiction to the above viewpoint stands a large class of highly conductive solids formed by the addition of elemental iodine to various polycyclic aromatic hydrocarbons.⁵ In several cases, iodination increases the electrical conductivity of the hydrocarbon by as much as 10^{12} - 10^{14} .⁵ These materials have long been formulated as covalently bonded molecular complexes, i.e., unoxidized with iodine present as I_2 .

In contrast to the conventional structural model for conductive hydrocarbon-iodine complexes, recent investigations in several laboratories, including our own, have shown that halogenation

is an exceedingly effective method for introducing partial oxidation in a number of planar organic and metallomacrocyclic systems.⁶⁻⁸

The structures of such materials generally consist of arrays of partially oxidized donor molecules and reduced halogen acceptor counterions.⁶⁻⁸ In the case of iodine dopants we have also shown that the powerful combination of resonance Raman and iodine-129 Mössbauer spectroscopy can be used to deduce the form of the iodine present in such materials (i.e. I₂, I⁻, I₃⁻, I₅⁻, or mixtures thereof), and thus the degree of partial oxidation.^{6a-c, 9} This technique is especially informative in instances where disorder^{6b} or (as in the present case)^{10a} the extreme complexity of the structure hinders diffraction studies. With these considerations in mind, we have now applied the Raman-Mössbauer technique to the most highly conductive [γ (300°K) \approx 0.1(ohm cm)⁻¹ for compressed, polycrystalline samples^{10g} and 5-20 (ohm cm)⁻¹ for single crystals¹¹] and most thoroughly studied of the hydrocarbon-iodine complexes, that of perylene (A):

"2perylene·3I₂".¹⁰ Our goal was to determine whether or not this is a molecular complex. We report here that "2perylene·3I₂" is not a molecular complex, but is a partially oxidized,

EXPERIMENTAL

Synthesis of Perylene·I_{2,92}. Lustrous, silver-black crystals of "2perylene·3I₂" were grown from hot benzene solutions of perylene and I₂ using the procedure of Kommandeur and Hall.^{10h} The product was quickly washed with benzene and was briefly dried under a stream of prepurified nitrogen. Since noticeable discoloration (due to iodine loss) of this compound occurs within 10-15 minutes at room temperature in an open vessel, samples were stored in closed containers under nitrogen at -35° C in the dark. The sample for elemental analysis was maintained at 0° C until immediately prior to analysis. The stoichiometry determined corresponds to perylene·I_{2,92}.

Anal. Calcd. for C₂₀H₁₂I_{2,92}: C, 38.56; H, 1.94; I, 59.49.
Found: C, 38.28; H, 1.80; I, 59.04.

Synthesis of Perylene·¹²⁹I_{2,92}. The ¹²⁹I-enriched sample was prepared by the above procedure. The reagent ¹²⁹I₂ was prepared by hydrogen peroxide oxidation of an acidified solution of Na¹²⁹I (Oak Ridge National Laboratory, 87% ¹²⁹I isotopic content). The resulting ¹²⁹I₂ was extracted with pentane, and the resulting solution was washed with water, dried over Na₂SO₄, and evaporated in a nitrogen stream to yield solid ¹²⁹I₂.

Iodine-129 Mössbauer Studies. Source, absorber, and detector were employed in the standard transmission geometry. The $^{66}\text{Zn}^{129}\text{Te}$ source ($t_{\frac{1}{2}} = 69$ min.) was prepared by irradiation of a $^{66}\text{Zn}^{128}\text{Te}$ target (pressed in an aluminum disk) in the Argonne CP-5 reactor for 2 hr. The source produced sufficient 27.7 KeV γ -radiation for 3-4 hr. of Mössbauer effect data collection. Absorbers were prepared by powdering the iodine-129 enriched sample, mixing it with an inert filler (boron nitride), and loading it into a Lucite sample holder. Both source and absorber were cooled in liquid He during data collection. Three sources were used, in sequence, to collect all of the data. Data collected from each source were checked for reproducibility and then summed to give the final spectrum. The spectrometer velocity was generated with a feedback-controlled vibrator using sinusoidal acceleration. Velocity calibration was accomplished with ^{57}Fe foil. Data collection utilized a proportional counter in conjunction with a 400 channel multichannel analyzer, operating in the time mode. Paper tape was used for data storage.

Mössbauer Data Processing. Initial Mössbauer effect data processing and analysis employed the computer program, GENFIT,^{6b,12} which finds the best values for the parameters of isomer shift (δ), quadrupole coupling constant (e^2qQ), line width (Γ), population (p_i) base-line, and asymmetry parameter (η) via

non-linear least squares minimization of the difference between the observed and calculated spectra. Each unique iodine micro-environment, or site, is described by a set of five parameters and gives rise to an eight-line quadrupole absorption pattern. The observed spectrum is a summation of the absorption patterns of all of the iodine sites.

The goodness of fit is judged by the parameter "Misfit," which has been previously defined by Ruby.¹² Final data processing and analysis were accomplished using a modified version of GENFIT,¹³ which includes corrections for the absorber thickness¹³⁻¹⁵ (see Results and Discussion for full explanation), histogram and cosine errors. Both versions of GENFIT include a broadening parameter, κ_i^{6b} , which allows one or more sites to have a distribution of quadrupole coupling constants. This occurs when one site can be in several slightly different environments, resulting in a modest spread in the quadrupole coupling constant. This results in a blurring of the spectral peaks from a single octet (for each site i) in a way which is larger for those lines at larger velocities. Normally, each site is unique and can be described by five parameters. If one site has a distribution in its quadrupole coupling constant (e^2qQ), it could be replaced by several sites with slightly different e^2qQ values. However, it is more convenient to use the broadening

formula by adding one extra parameter to each site. In the present case, it was only necessary to apply this broadening to two of the sites. This nonequivalence was incorporated in the fitting procedure as a velocity-dependent line broadening function (eq (1)) where Γ_i is the

$$\Gamma_n = \sqrt{[\kappa_i (V_n - \delta_i)]^2 + \Gamma_i^2} \quad (1)$$

actual line width of the broadening parameter of the i^{th} site,^{6a} V_n is the velocity of the n^{th} line, δ_i is the isomer-shift of the i^{th} site, Γ_n is the observed width of the n^{th} line. The lines farthest away from the center of gravity (δ_i isomer shift) are broadened to a greater extent than those lines closer to δ_i . This has the same effect as a distribution of quadrupole splittings. Using this value of Γ_n , reasonable line widths when compared to the natural line width (Γ_0 , vide infra) are obtained for all sites. For a "perfect" sample one expects $\Gamma_n = \Gamma_0$, but many effects can cause larger values to be observed.

Resonance Raman Studies. Laser Raman spectra were recorded with Kr^+ (6471 Å) or Ar^+ (4880, 5145 Å) excitation using a Spex 1401 double monochromator and photon counting detection. Samples were examined in nitrogen-flushed, 5 or 12 mm. spinning (ca. 1200 rpm) Pyrex sample tubes. A 180° back scattering detection geometry was employed. Several scans were made of each sample (the initial at lowest laser power) to check for sample

decomposition. This effect was relatively minor and resulted only in gradual diminution of the polyiodide bands with accompanying increase in perlene fluorescence. Spectra were calibrated using the exciting line (ν_0) or the laser plasma lines.

RESULTS AND DISCUSSION

The goal of this investigation was to identify, via resonance Raman and I-129 Mössbauer spectroscopy, the form(s) of iodine present in "2perylene·3I₂" and thus to determine whether or not this material is partially oxidized. Further details of the very complex crystal structure are under investigation by diffraction techniques and will be reported in due course.

Crystals of "2perylene·3I₂" were grown from hot benzene solutions of perylene and I₂ (¹²⁷I₂ or ¹²⁹I₂) by the procedure of Kommandeur and Hall.^{10h} Elemental analysis of a freshly prepared sample indicated that the composition is actually perylene·I_{2,92}.

In Figure 1 are presented resonance Raman scattering spectra (5145 Å excitation; sealed, spinning polycrystalline samples) of perylene·I_{2,92} along with those of relevant model compounds in which the form of the iodine present has already been unambiguously established by diffraction methods. Since the perylene complex slowly loses iodine on standing in an open container at room temperature, spectra were also recorded of samples which had been progressively depleted of iodine using a flow of prepurified nitrogen gas. Except for a progressive diminution of poly-iodide scattering intensity and an increase in perylene fluorescence, spectra were identical to that shown in Figure 1A. It was also

established that the perylene $\cdot I_{2.92}$ Raman spectra are essentially independent of exciting wavelength over the range 4880-6471 Å (Figure 2). The spectral scattering pattern exhibited by the perylene complex (175s, 145w, 115m cm^{-1}) is clearly and most importantly, inconsistent with a simple molecular I_2 charge transfer complex. Interaction with the π -cloud of benzene perturbs ν_{I-I} of I_2 only slightly (Figure 1B, 209 cm^{-1}) from the gas phase value of 215 cm^{-1} ¹⁶, while even a stronger donor such as DMSO only displaces ν_{I-I} to 189 cm^{-1} ^{17a,b}. This effect can be understood by viewing I_2 as a Lewis acid. Interaction with Lewis bases populates molecular orbitals with I-I antibonding character,^{17c,d} thus increasing the I-I bond lengths and decreasing the stretching force constant.^{6a-c} It is also possible to reject, in perylene $\cdot I_{2.92}$, the presence exclusively of symmetrical (i.e. $D_{\infty h}$) I_3^- units, as exemplified by $\text{As}(\text{C}_6\text{H}_5)_4^+ I_3^-$ ¹⁸ (Figure 1C, $\nu_{I_3^-}$ symm, fundamental = 113 cm^{-1}) and a number of other symmetrical triiodide compounds.^{6a,9} Likewise, the Raman scattering energies of unsymmetrical (C_s) triiodide ion (B) as in CsI_3 ¹⁸, 148s and 102s, cm^{-1} ^{9,19} are at considerable variance with the perylene results. The spectral pattern exhibited by symmetrical I_5^- species (C) as found

B

C

in $(\text{trimesic acid} \cdot \text{H}_2\text{O})_2 \text{H}^+ \text{I}_5^-$ ²⁰ (Figure 1D, $\nu_{\text{I}_2} = 162\text{s, cm}^{-1}$; other transitions at 104w and 75w, cm^{-1}) is also not evident.

Rather, the resonance Raman spectrum of perylene $\cdot \text{I}_{2,92}$ can be assigned to a structural model with both I_3^- and I_2 units, weakly interacting. An example of this type of compound is Cs_2I_6 (Figure 1E, $\nu_{\text{I}_2} = 172\text{s, cm}^{-1}$, $\nu_{\text{I}_3} = 149\text{m}$ and 105s, cm^{-1}) which is known to possess " I_3^{-2} " units²¹ (D) (i. e., I_2 and distorted I_3^- , weakly interacting), and $(\text{phenacetin})_2 \text{H}^+ \text{I}_3^- \text{I}_2$

(Figure 1F, $\nu_{\text{I}_2} = 187\text{m, cm}^{-1}$, $\nu_{\text{I}_3} = 120\text{s cm}^{-1}$) which possesses chains of alternating I_3^- and I_2 units (E)²². The Raman transition at 145 cm^{-1} in perylene $\cdot \text{I}_{2,92}$ is most reasonably ascribed to the same origin as the 149 cm^{-1} transition in Cs_2I_6 : slight distortion

of the I_3^- units (i. e., unequal I-I bond distances). This vibrational mode is also observed in the resonance Raman spectrum of $CsI_3^{9,19,23}$, and is formally derived from the Raman-inactive antisymmetric stretching transition under $D_{\infty h}$ symmetry. Resonance Raman data and spectral assignments for the compounds are compiled in Table I.

Iodine- 129 Mössbauer studies of perylene- $I_{2.92}$ were undertaken to obtain additional, quantitative information on the polyiodide species present as well as to investigate the possible presence of Raman-inactive I^- or other iodine containing species. The experimental spectrum is represented by the data points in both Figures 3A and 3B. It is possible to immediately reject the presence of significant amounts of isolated I^- ions ($\delta = -0.51$ mm/sec, $e^2q^{129}Q = 0.00$ MHz²⁴). The presence of isolated I_2 molecules (for I_2 in benzene, $\delta = +0.76$ mm/sec, $e^2q^{129}Q = -1692$ MHz²⁴; for I_2 in hexane, $\delta = +0.98$ mm/sec, $e^2q^{129}Q = -1587$ MHz²⁴) as the sole iodine containing species could also be rejected. Rather, the spectrum is more complex, and considerable effort was put into deriving an optimized polyiodide structural model for perylene- $I_{2.92}$. Initial attempts were made to fit the data to two sites with relative populations of either 1:1 or 1:2 (symmetrical I_3^-). In neither case was acceptable agreement found between experimental and calculated spectra. Similarly,

attempting to fit the data to three sites with relative populations 1:1:1 (distorted I_3^-) or 2:2:1 (symmetric I_3^-) did not result in a good agreement. Even attempting to fit the data to four sites resulted in poor agreement between experimental and calculated lineshapes. However, with five sites a satisfactory fit was obtained, using either of two different refinement procedures (vide infra). It will be seen that such a fit can be reasonably interpreted in terms interacting I_2 units and I_3^- ions. Derived relative populations suggest that two I_2 units weakly coordinate to each distorted I_3^- ions, as exemplified by F. Such a structure is in good agreement with the Raman data.

To insure maximum reliability, two approaches were employed in the Mössbauer data analysis. The optimized computer fit shown in Figure 3A employs the standard "thin" absorber approximation. That is, the quadrupole pattern is assumed to be the sum of Lorentzians whose the positions, intensities, and widths have the ideal values calculated from the ground and excited state quadrupole Hamiltonians.^{13,15} Parameters obtained in this fit are compiled in Table II. When individual lines of the spectrum are well resolved or when the absorber thickness, T , approaches zero, as is often found, the "thin" approximation is valid. T is given by equation 2,

$$T = \gamma_0 f A^n \quad (2)$$

where σ_0 is the resonance cross-section per nucleus, f_A is the recoilless fraction of the absorber at the measurement temperature, and n is the number of resonant nuclei per unit area. Appreciable absorber thickness (significant T_{γ}) results in saturation of the most intense lines and a resultant relative increase in the intensities of other lines. Also observed are saturation of poorly resolved lines as well as minor changes in the quadrupole line positions. It was noted in the "thin" absorber fit (Figure 3A) that slight disparities occurred in the intensities of central lines relative to the outermost lines. This situation plausibly arises from neglect of absorber thickness, so corrections were introduced as outlined below, employing a modified version of the fitting routine.¹³

The theory and computational techniques employed for the inclusion of thickness effects have been explained in detail elsewhere;¹³⁻¹⁵ only the pertinent and important points will be summarized here. The calculated counting rate or transmitted flux as a function of the relative velocity (v) of source and absorber is given by equation 3,¹⁵

$$\text{Rate } (v) = \int \text{FLUX}(E, v) * \text{TRANS}(E) dE \quad (3)$$

where the flux distribution (FLUX) and transmission (TRANS) are

defined in equations 4¹⁵ and 5¹⁵,

$$\text{FLUX}(E, v) = B + S(1-f_s) + \frac{2f_s S}{\pi \Gamma_s} \left[1 + \left(\frac{E - E_0 - E(v/c)}{\Gamma_s/2} \right)^2 \right]^{-1} \quad (4)$$

$$\text{TRANS}(E) = \exp [-T A(E)] \quad (5)$$

where E_0 is the nominal γ -ray energy, E is the actual energy of the γ -ray, B is the background counting rate, S is the integrated signal rate, f_s is the source recoilless fraction, $A(E)$ is the normalized absorption shape, Γ_s is the source line width, and c is the speed of light. This is the flux that is used for a non-split single site source, e.g. ZnTe. FLUX, in general, is not this simple. It is instructive to look at the form of the normalized absorption shape (equation 6¹⁵):

$$A(E) = \sum_{i=\text{sites}} \sum_{\ell=\text{lines}} \alpha_{\ell} p_i \left[1 + \frac{E - E_0 - \delta_i - E(v/c) - e^2 q Q^* \epsilon_{\ell}}{\Gamma_s} \right]^{15} \quad (6)$$

The term, $\alpha_{\ell} p_i$, relates the relative intensity of a given line (ℓ) of the eight line quadrupole pattern and the relative number of atoms of each site i (p_i) to the observed absorption spectrum ($A(E)$). The only other new term is $e^2 q Q^* \epsilon_{\ell}$, where $e^2 q Q$ is the quadrupole coupling constant and ϵ_{ℓ} is the position of each line in the quadrupole pattern. Thus, it is easy to see that the overall absorption spectrum is the sum of the eight line spectra of each of the individual sites. If there is

any deviation from axial symmetry at a particular site, then η , the asymmetry parameter, will have a non-zero value. The term ϵ_i includes the effects due to η . The rate equation can be rearranged in a more tractable form (equation 7¹⁵)

$$\text{Rate}(v) = R_o \left[1 - f_s \left(\frac{S}{S+B} \right) (1 - TI(v)) \right] \quad (7)$$

where $TI(v)$ is the transmission integral (equation 8¹⁵)

$$TI(v) = \int F(E, v) * \text{TRANS}(E) dE \quad (8)$$

The parameter FSB (equation 9¹⁵) embodies the properties of the source

$$FSB = f_s \left(\frac{S}{S+B} \right) \quad (9)$$

and detector.

Our aim is to find the relative population (p_i) of the various iodine sites. We are not concerned whether the total amount of iodine is large or small. To determine the total amount of iodine present (alternately, to measure FSB) would require auxiliary measurements. But, we need merely choose a plausible value for FSB to obtain the proper p_i . The fitting routine is employed to minimize the difference between the experimental and calculated spectrum using the parameters of isomer shift (δ), quadrupole coupling constant (e^2qQ), line width (Γ), asymmetry parameter (η), and relative population (p_i).

The result of fitting the data using the thickness correction is shown in Figure 3B and the final Mössbauer parameters are set out in Table II, where they can be compared with those obtained from the "thin" absorber data refinement. The fit using the thickness correction did not improve Misfit, but made a significant visual improvement. Also, the values for the line width parameters are now quite reasonable; in the "thin" absorber fit, they were found to be several times the natural line width ($\Gamma_0 = 0.59 \text{ mm/sec}^{24a}$) a rather unrealistic result. However, only minor changes in some of the isomer shifts, quadrupole coupling constants, and relative populations are observed. Thus, although the final Mössbauer parameters which will be considered in the discussion of polyiodide structure are those which include the precautionary thickness correction, they differ only slightly from the "thin" absorber parameters.

The isomer shift and quadrupole splitting parameters obtained for the five site polyiodide model (F) compare favorably with values reported for the structurally similar I_5^- ion ($(\text{trimesic acid}\cdot H_2O)_{10}H^{+129}I_5^-$, G) and the distorted I_3^- ion ($Cs^{+129}I_3^-$, H) as can be seen below.

site	5	2	4	1	3
δ (mm/sec)	0.76	1.27	-0.07	1.23	1.40
(I — I)	I — I — I	I — I — I	I — I — I	I — I — I	I — I — I
$e^2 q^{129} Q$ (MHz)	1341	-1669	-550	-1746	-958

F

0.53	1.15	0.18	1.15	0.53	-0.24	1.14	0.11
I — I	I — I	I — I	I — I	I — I	I — I	I — I	I — I
-1404	-1777	-965	-1777	-1404	-616	-1787	-1036

G^{6b}H²⁵

The parameters obtained for chemically similar sites in the three polyiodides are rather close. For example, the three iodine sites in the distorted triiodide unit of the perylene complex have isomer shift and quadrupole coupling constant values generally similar to those of the distorted triiodide in CsI_3 , and evidencing greater distortion of the I^-_3 than in I^-_5 (G). The " I^-_2 " site (site 2) closest to the distorted I^-_3 has isomer shift and quadrupole coupling constant values intermediate between those of the " I^-_2 " unit in CsI_3 and those of free I^-_2 . They are nearly indistinguishable from those of the " I^-_2 " unit in I^-_5 . The small but nonzero asymmetry parameter found for

site 2 in the "thin" analysis of the perylene complex appears to reflect some deviation from axial symmetry of that particular iodine environment. In summary, the structural model of I_3^- (very likely distorted) and I_2 deduced from the iodine Mössbauer data is in good accord with the resonance Raman results.

CONCLUSIONS

The results of this resonance Raman/iodine Mössbauer spectral study indicate that "2perylene·3I₂" (more correctly formulated as perylene·I_{2.92}) contains iodine as both I₃⁻ and I₂. On the basis of results for model compounds, these polyiodide units appear to be weakly interacting. Thus, "2perylene·3I₂" is actually a partially oxidized material with an approximate charge distribution (perylene)^{+0.4} (I₃⁻ · 2I₂)_{0.4}. Thus, this conductive material is not an exception to the general observations about the importance of mixed valence vis-à-vis charge transport. In this connection, it is interesting to note that the first ionization potential of tetra-²⁶ thiafulvalene, which forms an extensive series of conductive,^{7e, 27} mixed valence compounds with iodine, is comparable to that of²⁸ perylene, i.e.²⁶ 6.83 eV versus²⁸ 6.97 eV, respectively. By implication, the present results also indicate that other conductive hydrocarbon-iodine complexes are also mixed valent. This question is presently under further investigation.

ACKNOWLEDGMENTS

This research was generously supported by the Office of Naval Research (to T.J.M.), the Department of Energy (to S.L.R.), and by the NSF-MRL program through the Materials Research Center of Northwestern University (grant DMR76-80847A01).

REFERENCES AND NOTES

- (1) (a) Department of Chemistry and the Materials Research Center, Northwestern University.
(b) Physics Division, Argonne National Laboratory.
- (2) Camille and Henry Dreyfus Teacher-Scholar.
- (3) (a) Miller, J. S.; Epstein, A. J., eds., Synthesis and Properties of Low-Dimensional Materials, Ann. N. Y. Acad. Sci., 1978, 313.
(b) Keller, H. J., ed. Chemistry and Physics of One-Dimensional Metals, Plenum Press, New York, 1977.
(c) Miller, J. S.; Epstein, A. J. Prog. Inorg. Chem., 1976, 20, 1-151.
(d) Keller, H. J., ed. Low Dimensional Cooperative Phenomena, Plenum Press, N. Y., 1975.
(e) Soos, Z. G.; Klein, in Molecular Associations, Foster, R., ed., Academic Press, N. Y., 1975, chapt. 1.
(f) Masuda, K.; Silver, M. Charge and Energy Transfer in Organic Semiconductors, Plenum Press, N. Y., 1974.
(g) Interrante, L. V. Extended Interactions Between Metal Ions in Transition Metal Complexes, ACS Symposium Series, 5, 1974.
- (4) (a) Torrance, J. B. Accts. Chem. Res., 1979, 12, 79-86.
(b) Torrance, J. B.; Scott, B. A.; Kaufman, F. B. Solid State Comm., 1975, 17, 1369-1373.
(c) Butler, M. A.; Wudl, F.; Soos, Z. G. Phys. Rev., 1975, B, 12, 4708-4719.
(d) LaPlaca, S. J.; Corfield, P. W. R.; Thomas, R.; Scott, B. A. Solid State Comm., 1975, 17, 635-638.
(e) Coppens, P. Phys. Rev. Letters, 1975, 35, 98-100.
(f) Soos, Z. G. Ann. Rev. Phys. Chem., 1974, 25, 121-153.

(5) (a) Perlstein, J. H. Angew. Chem. Int. Ed. Engl., 1977, 16, 519-534.

(b) Foster, R. Organic Charge Transfer Complexes, Academic Press, N. Y., 1969, chapt. 9.

(c) Gutmann, F.; Lyons, L. E. Organic Semiconductors, Wiley, N. Y., 1967, p. 84.

(6) (a) Marks, T. J. in reference 3a, p. 594-616.

(b) Cowie, M. A.; Gleizes, A.; Gryniewich, G. W.; Kalina, D. W.; McClure, M. S.; Scaringe, R. P.; Teitelbaum, R. C.; Ruby, S. L.; Ibers, J. A.; Kannewurf, C. R.; Marks, T. J. J. Amer. Chem. Soc., 1979, 101, 2921-2936.

(c) Brown, L. D.; Kalina, D. W.; McClure, M. S.; Ruby, S. L.; Schultz, S.; Ibers, J. A.; Kannewurf, C. R.; Marks, T. J. J. Amer. Chem. Soc., 1979, 101, 2937-2947.

(d) Lin L.-S.; Wang, J. C.; Kannewurf, C. R.; Marks, T. J., submitted for publication.

(e) Schramm, C. S.; Stojakovic, D. R.; Hoffman, B. M.; Marks, T. J. Science, 1978, 200, 47-48.

(f) Petersen, J. L.; Schramm, C. S.; Stojakovic, D. R.; Hoffman, B. M.; Marks, T. J. J. Amer. Chem. Soc., 1977, 99, 286-288.

(g) Phillips, T. E.; Hoffman, B. M. J. Amer. Chem. Soc., 1977, 99, 7734-7736.

(7) (a) Kamaràs, K.; Mihàly, G.; Grilner, G.; Jànossy, A. J. Chem. Soc. Chem. Comm., 1978, 974-975, and references therein.

(b) Endres, H.; Keller, H. J.; Lehman, R.; van de Sand, H.; Dong, V.; Poveda, A. in reference 3a, p. 633-650, and references therein.

(c) Abkowitz, M. A.; Brill, J. W.; Chaikin, P. M.; Epstein, A. J.; Froix, M. F.; Griffiths, C. H.; Gunning, W.; Heeger, A. J.; Little, W. A.; Miller, J. S.; Novatny, M.; Tanner, D. B.; Slade, M. L. in reference 3a, p. 459-466.

- (d) Isett, L.C.; Perez-Albuerne, E.A. Solid State Comm., 1977, 21, 433-435, and references therein.
- (e) Scott, B.A.; LaPlaca, S.J.; Torrance, J.B.; Silverman, B.D.; Welber, B. J. Amer. Chem. Soc., 1977, 99, 6631-6639, and references therein.

(8) Halogenation has also been applied to polymeric systems, such as polyacetylene; see for example Chiang, C.K.; Fincher, C.R., Jr.; Park, Y.W.; Heeger, A.L.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDairmid, A.G. Phys. Rev. Lett., 1977, 39, 1098-1101; Hsu, S.L.; Signorelli, A.J.; Pez, G.P.; Baughman, R.H. J. Chem. Phys., 1978, 69, 106-111; and Akhtar, M., Chiang, C.K.; Cohen, M.J.; Kleppinger, J.; Heeger, A.I.; Louis, E.J.; MacDairmid, A.G.; Milliken, I.; Moran, M.J.; Peebles, D.L.; Shirakawa, H. in reference 3a, p. 726-736.

(9) (a) Teitelbaum, R.C.; Ruby, S.L.; Marks, T.J. J. Amer. Chem. Soc. 1978, 100, 3215-3217.
(b) Marks, T.J.; Webster, D.F.; Ruby, S.L.; Schultz, S. J. Chem. Soc. Chem. Comm., 1976, 444-445.
(c) Kalina, D.W.; Stojakovic, D.R.; Teitelbaum, R.C.; Marks, T.J., manuscript in preparation.

(10) (a) Simon, K.; Ibers, J.A.; Marks, T.J., unpublished observations.
(b) Aronson, S.; Mittelman, J.S.; Bramwell, F.B. J. Inorg. Nucl. Chem. 1977, 39, 1094-1095.
(c) Aronson, S.; Sinensky, G.; Langsam, Y.; Binder, M. J. Inorg. Nucl. Chem., 1976, 38, 407 -
(d) Kinoshita, M.; Hisao, K.; Akamatu, H. Bull Chem. Soc. Japan, 1976, 49, 1407-1408.

(e) Kuhlman, M.I.; Drickamer, H.G. J. Amer. Chem. Soc., 1972, 94, 8325-8332.

- (f) Bentley, W. H.; Drickamer, H. G. J. Chem. Phys., 1965, 42, 1573-1587.
- (g) Singer, L.S.; Kommandeur, J. J. Chem. Phys., 1961, 34, 133-140.
- (h) Kommandeur, J.; Hall, F. R. J. Chem. Phys., 1961, 34, 129-133.
- (i) Uchida, T.; Akamatu, H. Bull. Chem. Soc. Japan, 1961, 34, 1015-1020.
- (11) Labes, M. M. "Abstracts of Papers," 177th National Meeting of the American Chemical Society, Honolulu, Hawaii, April 1979; PHYS096; (two-probe measurement in the needle axis direction).
- (12) (a) Ruby, S. L. Mössbauer Effect Methodology, 1973, 8, 263-276.
 (b) The traditional goodness-of-fit parameter

$$\chi^2 = \sum_i^n [(x_i - x_{ic}) / \Delta x_i]^2$$

gives satisfactorily small values for either a good model (the calculated values x_{ic} agree well with the data x_i) or for a poor experiment (Δx_i is large).

- (13) Shenoy, G. K.; Friedt, J. M.; Maletta, H.; Ruby, S. L. Mössbauer Effect Methodology, 1974, 9, 277-305.
- (14) (a) Margulies, S.; Ehrman, J. R. Nucl. Instr. Methods, 1961, 12, 131-137.
 (b) Margulies, S.; Debrunner, P.; Frauenfelder, H. Nucl. Instr. Methods, 1963, 21, 217-231.
- (15) Ruby, S. L.; Hicks, J. M. Rev. Sci. Instr., 1962, 33, 27-30.
- (16) Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Wiley Interscience, N.Y., 1978, p. 109.

(17) (a) Reference 5b, chapt. 4.

(b) Popov, A. I.; Surles, J. in MTP Int. Rev. Sci., Inorg. Chem. Series Two, Vol. 3, Gutmann, V., ed., University Park Press, Baltimore, 1975, chapt. 6.

(c) Gabes, W.; Nijman-Meester, M. A. M. Inorg. Chem., 1973, 12, 589-592.

(d) Datta, S. N.; Ewig, C. S.; Van Wazer, J. R. J. Mol. Struct., 1978, 48, 407-416.

(18) Rumsink, J.; Swen-Walstra, S.; Migchelsen, T. Acta Cryst., 1972, B28, 1331-1335.

(19) (a) Gabes, W.; Gerding, H. J. Mol. Struct., 1972, 267-279.
 (b) The numbers given are averages of the correlation field-split transitions. The splitting is rather small--ca. 10cm^{-1} .

(20) Herbstein, F. H.; Kapon, M. Acta Cryst., 1972, A28, S74, and private communication to T.J.M.

(21) Havinga, E. E.; Boswijk, K. H.; Wiebenga, E. H. Acta Cryst. 1954, 7, 487-490.

(22) (a) Herbstein, F. H.; Kapon, M. Nature (London), 1972, 239, 153-154.
 (b) Herbstein, F. H.; Kapon, M. Phil. Trans Royal Soc. (London), in press.

(23) In Cs_2I_3 , the I-I distances in the triiodide units are 2.84(2) and 3.00(2) \AA , while in CsI_3 , the distances are 2.843(2) and 3.038(2) \AA .¹⁸

(24) (a) Gibb, T. C. Principles of Mössbauer Spectroscopy, Chapman and Hall, London, 1976, Chapt. 4.2.
 (b) Bancroft, G. M.; Platt, R. H. Adv. Inorg. Chem. Radiochem., 1972, 15, 59-258.

(25) de Waard, H.; Ruby, S. L.; Teitelbaum, R. C. unpublished results on $\text{Cs}^{129}\text{I}_3$.

(26) Gleiter, R.; Schmidt, E.; Cowan, D. O.; Ferraris, J. P. J. Electron Spectrosc. Relat. Phenom., 1973, 2, 207-210.

(27) Johnson, C. K.; Teitelbaum, R. C.; Marks, T. J. unpublished results.

(28) Clar, E.; Schmidt, W. Tetrahedron, 1976, 32, 2563-2566.

Table I. Resonance Raman data and assignments for various polyiodide containing compounds.

Compound	Internal coordinate change		
	$\nu''I_2''$	$\nu'I_3'''$	other
perylene· $I_{2\text{ eq}}$	175s	145w, 115m	
Cs_2I_6	172s	149w, 105s	
$(\text{phenacetin})_2H^+I_5^- \cdot I_2$	187m	120s	
CsI_3		148s, 102s	
I_2 in DMSO	189s		
I_2 in benzene	209s		
I_2 (gas)	215s		
$(\text{trimesic acid}\cdot H_2O)_{10} \cdot H^+I_5^-$	162s		104w, 75w

Table II. Iodine-129 Mössbauer Parameters for Perylene-I₂-I₂

	5	2	4	1	3	(I - I) ₂	I - I - I - I	
<u>s (mm/sec)^a</u>								
"Thick" Absorber Corrections								
Site 1	1.23(1)		-1746(5)	0.51(3)		-	0.0(1)	1.0
Site 2	1.27(2)		-1669(5)	0.97(2)		-	0.0(1)	2.0(1)
Site 3	1.40(15)		-958(10)	1.25(9)	0.08(3)	0.0(1)	0.8(1)	
Site 4	-0.07(2)		-550(10)	0.77(8)		-	0.0(1)	0.7(1)
Site 5	0.76(5)		-1341(10)	1.34(7)	0.05(2)	0.0(1)	1.7(2)	
"Thin" Absorber Approximation								
Site 1	1.23(1)		-1746(5)	0.97(3)		-	0.0(1)	1.0
Site 2	1.18(2)		-1678(5)	1.8(1)		-	0.0(1)	2.0(1)
Site 3	1.14(3)		-1058(8)	1.6(5)	0.2(1)	0.2(1)	0.8(1)	
Site 4	-0.03(4)		-604(7)	1.1(1)		-	0.0(1)	0.9(1)
Site 5	0.76(4)		-1341(10)	3.5(3)	0.0(1)	0.0(1)	2.2(2)	
Misfit (%)								
"Thick" Absorber	1.03(2)							
"Thin" Absorber	0.84(2)							
Ratio of Average Population of "I ₂ " : I ₂								
"Thick" Absorber	2.2(3):1.0							
"Thin" Absorber	2.1(3):1.0							

^a Vs. ZnTe

^b Line width

^c Broadening parameter (see text)

^d Asymmetry parameter

^e Relative population

Figure 1. Resonance Raman spectra ($\nu_0 = 5145 \text{ \AA}$) of A, polycrystalline perylene \cdot I_{2.92}; B, I₂ as a solution in benzene; C, polycrystalline As(C₆H₅)₄⁺I₅⁻; D, polycrystalline (trimesic acid \cdot H₂O)₁₀H⁺I₅⁻; E, polycrystalline Cs₂I₈; F, polycrystalline (phenacetin)₂H⁺I₃⁻I₂.

RESONANCE RAMAN SPECTRA

Figure 2. Resonance Raman spectra of perylene-L₂,_∞ at various exciting frequencies (ν_0). A. Kr⁺, 6471 Å; B. Ar⁺, 5471 Å;
C. Ar⁺, 4880 Å.

Figure 3. Iodine -129 Mössbauer spectrum of polycrystalline perylene- $I_{2.92}$ at 4°K. A. The solid line represents the optimized computer fit to the experimental data points, using the "thin" approximation. B. The solid line represents the optimized computer fit using absorber thickness corrections.

472:GAN:716:tam
78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No.</u>	<u>Copies</u>		<u>No.</u>	<u>Copies</u>
Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217 Attn: Code 472	2		Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314	12	
ONR Branch Office 536 S. Clark Street Chicago, Illinois 60605 Attn: Dr. George Sandoz	1		U.S. Army Research Office P.O. Box 1211 Research Triangle Park, N.C. 27709 Attn: CRD-AA-IP	1	
ONR Branch Office 715 Broadway New York, New York 10003 Attn: Scientific Dept.	1		Naval Ocean Systems Center San Diego, California 92152 Attn: Mr. Joe McCartney	1	
ONR Branch Office 1030 East Green Street Pasadena, California 91106 Attn: Dr. R. J. Marcus	1		Naval Weapons Center China Lake, California 93555 Attn: Dr. A. B. Amster Chemistry Division	1	
ONR Area Office One Hallidie Plaza, Suite 601 San Francisco, California 94102 Attn: Dr. P. A. Miller	1		Naval Civil Engineering Laboratory Port Hueneme, California 93401 Attn: Dr. R. W. Drisko	1	
ONR Branch Office Building 114, Section D 666 Summer Street Boston, Massachusetts 02210 Attn: Dr. L. H. Peebles	1		Professor K. E. Woehler Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940	1	
Director, Naval Research Laboratory Washington, D.C. 20390 Attn: Code 6100	1		Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380	1	
The Assistant Secretary of the Navy (R,E&S) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350	1		Office of Naval Research 800 N. Quincy Street Arlington, Virginia 22217 Attn: Dr. Richard S. Miller	1	
Commander, Naval Air Systems Command Department of the Navy Washington, D.C. 20360 Attn: Code 310C (H. Rosenwasser)	1		Naval Ship Research and Development Center Annapolis, Maryland 21401 Attn: Dr. G. Bosmajian Applied Chemistry Division	1	
			Naval Ocean Systems Center San Diego, California 92132 Attn: Dr. S. Yamamoto, Marine Sciences Division	1	

TECHNICAL REPORT DISTRIBUTION LIST, 053

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. R. N. Grimes University of Virginia Department of Chemistry Charlottesville, Virginia 22901	1	Dr. M. H. Chisholm Department of Chemistry Indiana University Bloomington, Indiana 47401	1
Dr. M. Tsutsui Texas A&M University Department of Chemistry College Station, Texas 77843	1	Dr. B. Foxman Brandeis University Department of Chemistry Waltham, Massachusetts 02154	1
Dr. M. F. Hawthorne University of California Department of Chemistry Los Angeles, California 90024	1	Dr. T. Marks Northwestern University Department of Chemistry Evanston, Illinois 60201	1
Dr. D. B. Brown University of Vermont Department of Chemistry Burlington, Vermont 05401	1	Dr. G. Geoffrey Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802	1
Dr. W. B. Fox Naval Research Laboratory Chemistry Division Code 6130 Washington, D.C. 20375	1	Dr. J. Zuckerman University of Oklahoma Department of Chemistry Norman, Oklahoma 73019	1
Dr. J. Adcock University of Tennessee Department of Chemistry Knoxville, Tennessee 37916	1	Professor O. T. Beachley Department of Chemistry State University of New York Buffalo, New York 14214	1
Dr. A. Cowley University of Texas Department of Chemistry Austin, Texas 78712	1	Professor P. S. Skell Department of Chemistry The Pennsylvania State University University Park, Pennsylvania 16802	1
Dr. W. Hatfield University of North Carolina Department of Chemistry Chapel Hill, North Carolina 27514	1	Professor K. M. Nicholas Department of Chemistry Boston College Chestnut Hill, Massachusetts 02167	1
Dr. D. Seyferth Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts 02139	1		