Modèle géométrique

- Modèle géométrique direct
 - Définition
 - Paramétrisation de Denavit hartenberg
 - exercices
- Modèle(s) géometrique(s) inverse(s) MGI
 - Equations de Paul
 - Méthode de Paul
 - Remarques
 - exercices

Modèle géométrique direct

Définition :

- Connaître le modèle géométrique direct(MGD) d'un robot correspond à pouvoir exprimer :
 - à partir des coordonnées d'un point/vecteur exprimées dans le repère effecteur du robot
 - Les coordonnées du même point /vecteur, exprimées dans le repère de travail (0 = world frame) du robot
 - En fonction des coordonnées articulaires
- Le MGD se ramène donc à la matrice de transformation homogène ⁰T_f:

Resultat MGD robot scara

- Complexité variable, calculs redondants...
 - [1] réduction trigo
 - [2] expansion trigo
- Notations
 - ci, si $cos(\theta i), sin(\theta i)$
 - cijk:cos(θi+θj+θk)

$${}^{0}T_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{2}c_{12} + a_{1}c_{1} \\ s_{12} & c_{12} & 0 & a_{2}s_{12} + a_{1}s_{1} \\ 0 & 0 & 1 & d_{2} + d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} [1]$$

$${}^{0}T_{2} = \begin{vmatrix} c_{1}c_{2} - s_{1}s_{2} & -c_{1}s_{2} - s_{1}c_{2} & 0 & -a_{2}s_{1}s_{2} + a_{2}c_{1}c_{2} + a_{1}c_{1} \\ c_{1}s_{2} + s_{1}c_{2} & c_{1}c_{2} - s_{1}s_{2} & 0 & a_{2}c_{1}s_{2} + a_{2}s_{1}c_{2} + a_{1}s_{1} \\ 0 & 0 & 1 & d_{2} + d_{1} \\ 0 & 0 & 0 & 1 \end{vmatrix} [2]$$

Denavit Hartenberg

- Trop de choix possibles :
 - Axes des repères (x,y,z?)
 - Origines des repères (où les placer)
- Nécessité d'un langage commun (normalisation)
- Paramétrisation de Denavit-Hartenberg
 - Règles imposées de choix des axes et origines
 - Unicité des transformations homogènes
 - Un et un seul repère lié à chaque articulation
 - ${}^{i}T_{i+1} = rot_{z,\theta i+1}$. Trans ${}_{ai+1,0,d i+1}$. Rot ${}_{x,\alpha i+1}$

- Axe z_i = axe d'action de l'articulation i+1
 - Prismatique : axe de translation :distance d_{i+1}
 - Rotoïde axe de rotation : angle θ_{i+1}
- Repère fixe R_0 choisi arbitrairement (sauf z_0)...

- Lorsque z_i intersecte z_{i+1} (cas facile)
 - x_{i+1} orthogonal au plan généré par z_i, z_{i+1}
 - O_{i+1} à l'intersection des axes z_i, z_{i+1}

- Lorsque z_{i+1} est parallèle à z_i
 - x_{i+1} orthogonal à z_{i+1} et z_i =>
- Infinite de solutions, levée avec choix arbitraire ci-après
 - x_{i+1} passe par l'origine O_i, ce qui fixe O_{i+1}

DENAVIT-HARTENBERG Règle 4

- REGLE 4 (CAS RARE)
- Lorsque z_{i+1}, z_i sont non-coplanaires
 - x_{i+1} orthogonal à z_{i+1} et à z_i
 - x_{i+1} intersecte z_{i+1} et z_i
 - Oi+1 = intersection entre x_{i+1} et z_{i+1}

- LES FINITIONS
- Axes $y_i = z_i ^ x_i$

(right hand rule: majeur droit= pouce droit ^ index droit)

- Variables:
 - Angles de rotation autour de z_i : θ_{i+1}
 - Translations le long de z_i: d_{i+1}

- INTERET :Si on applique ces règles précédentes,
- il existe un et seul quadruplet $(\theta_{i+1}, a_{i+1}, d_{i+1}, \alpha_{i+1})$ tel que

$$^{\mathbf{I}}T_{i+1} = Rot_{z,\theta i+1}$$
. Trans $_{ai+1,0,d i+1}$. Rot $_{x,\alpha i+1}$

Seuls (θ_{i+1}, d_{i+1}) peuvent être variables

Tableau de denavit-hartenberg

$$^{i}T_{i+1} = rot_{z,\theta i+1}$$
. Trans $_{ai+1,0,d i+1}$. Rot $_{x,\alpha i+1}$

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	X_{i+1}
0,1	θ_{1^*}		d ₁	α ₁ =-90°
1,2	θ_{2^*}	a_2		
2,3	θ^{3*}			α ₃ =-90°
3,4	θ_{4*}		d_4	α ₄ =90°
4,5	θ _{5*}			α ₅ =-90°
5,6	θ _{6*}		d_6	

${}^{0}T_{6} = [{}^{0}T_{1}.{}^{1}T_{2}.{}^{2}T_{3}].$	$. \left[{}^3T_4. {}^4T_5. {}^5T_6 \right]$
⁰ T ₃ : BRAS	$^{3}T_{6}$: PINCE ROTULE

MGD Bras Robot (3 dl)

$${}^{i}T_{i+1} = rot_{z,\theta i+1}$$
. Trans ${}_{ai+1,0,d i+1}$. Rot ${}_{x,\alpha i+1}$

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	X _{i+1}
0,1	θ_{1^*}		d ₁	α ₁ =-90°
1,2	θ_{2^*}	a_2		
2,3	θ _{3*}			α ₃ =-90°

*: paramètre v

$${}^{0}T_{3} = {}^{0}T_{1} \cdot {}^{1}T_{2} \cdot {}^{2}T_{3}$$

 INTERET : suffisant pour fixer la position de L'origine de la pince (facile à inverser)

MGD Pince de type Rotule(3 dl)

$$^{X_3}_{i+1}$$
 = rot_{z,\thetai+1}. Tans _{ai+1,0,di+1}. Rot_{x,\alphai+1}

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	x _{i+1}
3,4	θ_{4*}		d ₄	α ₄ =90°
4,5	θ_{5^*}			α ₅ =-90°
5,6	θ _{6*}		d ₆	

* : paramètre v

$${}^{3}\mathsf{T}_{6} = {}^{3}\mathsf{T}_{4} \cdot {}^{4}\mathsf{T}_{5} \cdot {}^{5}\mathsf{T}_{6}$$

 INTERET : permet de fixer l'orientation de la pince (facile à inverser, ne dépend pas du robot)

Calcul formel: MGD Bras Robot (invérifiable)

T03 : trigsimp(T01.T12.T23);
T03_aff:subst(l_subst,T03);
print("T03");print(T03 aff);

			Y	
i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	X _{i+1}
0,1	θ _{1*}		d ₁	-90°
	T,		Т	
1,2	θ_{2^*}	a_2		
	Ζ"			
2,3	θ _{3*}			-90°
	3			***************************************

 y_0

Calcul formel: MGD Bras Robot (vérification indispensable)

```
\label{local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_loc
```


Exercice: MGD robot scara

- Compléter tableau Denavit-Hartenberg scara
 - Règle 1: zi = axe de l' articulation i+1
 - Règle 3: zi et zi+1 colinéaires => xi+1 passe par Oi
 - Finitions: yi=zi^xi

$${}^{i}T_{i+1} = rot_{z,\theta i+1}$$
 . Trans ${}_{ai+1,0,d i+1}$. Rot ${}_{x,\alpha i+1}$

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	x _{i+1}
0,1				
1,2				
2,3				

Exercice: MGD manipulateur sphérique

- Compléter tableau Denavit-Hartenberg
 - Règle 1: zi = axe de l' articulation i+1
 - Règle 2: (zi et zi+1 non colineaires):
 Oi+1 = intersection de zi et zi+1
 - Finitions: yi=zi^xi

$${}^{i}T_{i+1} = rot_{z,\theta i+1}$$
 . Trans ${}_{ai+1,0,d i+1}$. Rot ${}_{x,\alpha i+1}$

i, i+1	Rot	Trans	Trans	rot
	z _i	x _{i+1}	z _i	x _{i+1}
0,1				
1,2				
2,3				

Exercice : MGD manipulateur cartésien

- Compléter tableau Denavit-Hartenberg
 - Règle 1: zi = axe de l' articulation i+1
 - Règle 2: (zi et zi+1 non colineaires):
 Oi+1 = intersection de zi et zi+1
 - Finitions: $yi=zi^x$ i $T_{i+1} = rot_{z,\theta i+1}$. Trans $T_{ai+1,0,d i+1}$. Rot $T_{x,\alpha i+1}$

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	x _{i+1}
0,1				
1,2				
2,3				

Exercice: MGD RPR

- Compléter tableau Denavit-Hartenberg
 - Règle 1: zi = axe de l' articulation i+1
 - Règle 2: (zi et zi+1 non colineaires):
 Oi+1 = intersection de zi et zi+1
 - Finitions: yi=zi^xi

$${}^{i}T_{i+1} = rot_{z,\theta i+1}$$
 . Trans ${}_{ai+1,0,di+1}$.Rot ${}_{x,\alpha i+1}$

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	X _{i+1}
0,1				
1,2				
2,3				

Exercice: MGD RPP

- Compléter tableau Denavit-Hartenberg
 - Règle 1: zi = axe de l' articulation i+1
 - Règle 2: (zi et zi+1 non colineaires):
 Oi+1 = intersection de zi et zi+1
 - Finitions: yi=zi^xi

$$^{i}T_{i+1} = rot_{z,\theta i+1}$$
. Trans $_{ai+1,0,d i+1}$. Rot $_{x,\alpha i+1}$

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	x _{i+1}
0,1				
1,2				
2,3				

Modèle Géométrique Inverse

Le MGD permet

 de déterminer l'orientation et la position de l'effecteur du robot, en fonction des variables articulaires θ_{i*}, d_{i*} (* <=> variables...)

LE MGI permet

de déterminer les variables articulaires θ_{i*}, d_{i*} en fonction de l'orientation et la position de l'effecteur du robot, (ou tout autre contrainte géométrique)

Modèle Géométrique Inverse

Remarques

- Le MGI n'a rien à voir avec l'inversion de la matrice ⁰T_f
- Il s'agit plutôt d'imposer certaines composantes de 0T_f , qui sont des fonctions non-linéaires des θ_{i^*} , d_{i^*}
- Ce problème n'a pas de solution analytique générale (équations non-linéaires).
- Nombre de solutions (3 cas)
 - Aucune (configuration impossible)
 - Un nombre fini (cas le plus fréquent)
 - Une infinité (redondance => liberté à exploiter)

Exemple: MGI Scara

 Scara doit prendre la plaque rouge (par le haut, en pinçant le côté mince de la plaque)

Contraintes sur la matrice ⁰T_f

 PB1 : Coordonnées de l'effecteur (centre de la pince)

$$U_{0} = \begin{bmatrix} {}^{0}T_{f} \end{bmatrix}_{\text{désirée}} = \begin{bmatrix} x & x & x & x & x_{f} \\ x & x & x & x & y_{f} \\ x & x & x & x & z_{f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemple: MGI Scara

- Scara doit prendre la plaque rouge (par le haut, en pinçant le côté mince de la plaque)
- Repère 6 lié à la pince,
 - axe x6 parallèle aux mords
 - axe z6 dirigé dans l'axe de la pince
- PB2 : Orientation de la pince

$$U_0 = \begin{bmatrix} 0 & \pm 1 & 0 & x \\ -1 & 0 & 0 & x \\ 0 & 0 & -1 & x \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemple: MGI Scara(+ rotule)

- Scara doit prendre la plaque rouge (par le haut, en pinçant le côté mince de la plaque)
- PB1 = Position de la pince
- + PB2 = Orientation de la pince

Calcul direct, trop complexe

- Équations à résoudre :
 - Pour obtenir la posture désirée du robot, il suffit d'écrire l'égalité entre
 - [1] ${}^{0}T_{f}(q_{i})$, exprimée en fonction des coordonnées articulaires $(q_{i} = \theta_{i}^{*}, d_{i}^{*})$
 - [2] La posture désirée : $U_0 = \begin{bmatrix} 0 \\ T_f \end{bmatrix}_{\text{désirée}}$
 - Et d'en déduire les coordonnées (θ_i* , d_i *)
- Ces équations sont souvent trop compliquées pour être résolues directement !..

Exemple: MGI Scara

Équation à résoudre à gauche de l'équation

$${}^{0}T_{f}(q_{i}) = \begin{bmatrix} {}^{0}X_{f} & {}^{0}Y_{f} & {}^{0}Z_{f} & {}^{0}O_{f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{0}T_{f}(q_{i})=U_{0}$$

à droite de l'équation

$$U_0 = \begin{bmatrix} 0 & \pm 1 & 0 & x_f \\ \pm 1 & 0 & 0 & y_f \\ 0 & 0 & -1 & z_f \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}x_{f} = \begin{bmatrix} s1 s2 s4 s6 - c1 c2 s4 s6 + c1 c4 s2 s6 + c2 c4 s1 s6 + c1 c5 c6 s2 s4 + c2 c5 c6 s1 s4 - c4 c5 c6 s1 s2 + c1 c2 c4 c5 c6 \\ -c1 s2 s4 s6 - c2 s1 s4 s6 + c4 s1 s2 s6 - c1 c2 c4 s6 + c5 c6 s1 s2 s4 - c1 c2 c5 c6 s4 + c1 c4 c5 c6 s2 + c2 c4 c5 c6 s1 \\ -c6 s5 \end{bmatrix}$$

$${}^{0}y_{f} = \begin{bmatrix} -c1 c5 s2 s4 s6 - c2 c5 s1 s4 s6 + c4 c5 s1 s2 s6 - c1 c2 c4 c5 s6 + c6 s1 s2 s4 - c1 c2 c6 s4 + c1 c4 c6 s2 + c2 c4 c6 s1 \\ -c5 s1 s2 s4 s6 + c1 c2 c5 s4 s6 - c1 c4 c5 s2 s6 - c2 c4 c5 s1 s6 - c1 c6 s2 s4 - c2 c6 s1 s4 + c4 c6 s1 s2 - c1 c2 c4 c6 \\ -s5 s6 \end{bmatrix}$$

$${}^{0}z_{f} = \begin{bmatrix} c1 s2 s4 s5 + c2 s1 s4 s5 - c4 s1 s2 s5 + c1 c2 c4 s5 \\ s1 s2 s4 s5 - c1 c2 s4 s5 + c1 c4 s2 s5 + c2 c4 s1 s5 \\ -c5 \end{bmatrix} {}^{0}O_{f} = \begin{bmatrix} c1 d6 s2 s4 s5 + c2 d6 s1 s4 s5 - c4 d6 s1 s2 s5 + c1 c2 c4 d6 s5 - a2 s1 s2 + a2 c1 c2 + a1 c1 \\ d6 s1 s2 s4 s5 - c1 c2 d6 s4 s5 + c1 c4 d6 s2 s5 + c2 c4 d6 s1 s5 + a2 c1 s2 + a2 c2 s1 + a1 s1 \\ -c5 d6 + d3 + d1 \end{bmatrix}$$

Cas d'un poignet Rotule équations de position [1]

i, i+1	Rot	Trans	Trans	rot
	z _i	x _{i+1}	z _i	x _{i+1}
f-3,f-2	$\theta_{\text{f-2*}}$		d _{f-2}	$\alpha_{\text{f-2}}$ =90°
f-2,f-1	$\theta_{ extsf{f-1*}}$			α _{f-1} =-90°
f-1,f	$\theta_{f^{\star}}$		d _f	

- [1]: les coordonnées de l'origine du repère f-1,
- exprimées dans le repère 0, sont indépendantes de q_{f-2}, q_{f-1}, q_f

$${}^{0}O_{f-1} = {}^{0}T_{f-3}.^{f-3}O_{f-1} = \underbrace{{}^{0}T_{f-3}}_{fct(q_{1,...,q_{f-3})}}.\underbrace{\begin{bmatrix} 0 \\ 0 \\ d_{f-2} \\ 1 \end{bmatrix}}_{f-3}O_{f-1}$$

Cas d'un poignet Rotule équations de position [2]

i, i+1	Rot	Trans	Trans	rot
	z _i	x _{i+1}	z _i	X _{i+1}
f-3,f-2	$\theta_{\text{f-2*}}$		d _{f-2}	$\alpha_{\text{f-2}}$ =90°
f-2,f-1	$\theta_{ extsf{f-1*}}$			α _{f-1} =-90°
f-1,f	$\theta_{f^{\star}}$		d _f	

[2] : les coordonnées désirées de l'origine du repère f-1, exprimées dans le repère 0, peuvent être calculées depuis la

posture désirée

Sture desiree
$$\begin{bmatrix} {}^{0}O_{f-1} \end{bmatrix}_{\text{desiree}} = \begin{bmatrix} {}^{0}T_{f} \end{bmatrix}_{\text{desiree}} \cdot {}^{f}O_{f-1} = \underbrace{U_{0}}_{\text{connue}} \cdot \underbrace{\begin{bmatrix} 0 \\ 0 \\ -d_{f} \\ 1 \end{bmatrix}}_{fO_{f-1}}$$

Cas d'un poignet Rotule équations de position [3]

- L'équation [3] : [1] =[2] , entre
 - [1] les coordonnées ⁰O_{f-1} calculées depuis le MGD
 - [2] les coordonnées [⁰O_{f-1}]_{désirées}, calculées depuis U₀
- Permet de faire apparaître les équations de position de la pince
 - Indépendantes des variables articulaires de la pince

Robot Scara (f=6), équations de position

• [1] : orig. rep. 5 depuis coord. articulaires = 4^{eme} colonne de ⁰T₅

$${}^{0}O_{5} = \begin{bmatrix} -a2 s1 s2 + a2 c1 c2 + a1 c1 \\ a2 c1 s2 + a2 c2 s1 + a1 s1 \\ d3 + d1 \end{bmatrix} = fct(\theta_{1}^{*}, \theta_{2}^{*}, d_{3}^{*})$$

[2] : Orig. du repère 5 depuis la posture désirée (connue)

$$\begin{bmatrix} {}^{0}O_{\text{5desiree}} \\ -1 \end{bmatrix} = \begin{bmatrix} 0 & \pm 1 & 0 & x_{f} \\ \pm 1 & 0 & 0 & y_{f} \\ 0 & 0 & -1 & z_{f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{6}O_{5} \\ 0 \\ 0 \\ -d_{f} \end{bmatrix} = \begin{bmatrix} x_{f} \\ y_{f} \\ z_{f} + d_{6} \\ 1 \end{bmatrix}$$

Cas (fréquent) d'un poignet rotule équations d'orientation

- les f-3 degrés de liberté q₁,..., q_{f-3} sont connus
- Phase 2 :
 - on résout les équations d'orientation
 - Exprimées dans le repère f-3 (juste avant la pince)

Exercice (cao maxima) résolution equs. d'orientation

- On pose f=6 (sans importance)
- Dét
- En

terminar 3T -fet(a a a)		Zi	X i+1	Z _i	^ i+1
terminer ${}^{3}T_{6}$ =fct(q_4, q_5, q_6)	f-3,f-2	$\theta_{\text{f-2*}}$		d _{f-2}	α _{f-2} =90°
déduire ${}^{3}R_{6}$ =fct(q_4, q_5, q_6)	f-2,f-1	$\theta_{ extsf{f-1*}}$			$\alpha_{\text{f-1}}$ =-90°
_	f-1,f	$\theta_{f^{\star}}$		d _f	
déduire $(q_4, q_5, q_6) = fct(r_{ii}^{\alpha})$					
f-3 _D			f-3 _D	dácir	·Á

Rot

Trans

rot

Méthode de PAUL

$$\underbrace{^0T_f(q_1,q_f)}_{\text{COMPLIQUE}} = \underbrace{U_0}_{\text{SIMPLE}}$$
 Repère 0

- But : équations plus simples à gauche
 - les exprimer dans un autre repère que 0
 - elles seront plus compliquées à droite
 - les q_i n'apparaîtront que d'un côté à la fois:

$$^{1}T_{f}(q_{2},q_{f})=^{1}T_{0}.U_{0}=U_{1}(q_{1}) \qquad \text{Repère 1}$$

$$^{2}T_{f}(q_{3},q_{f})=^{2}T_{0}.U_{0}=U_{2}(q_{1},q_{2}) \qquad \text{Repère 2}$$

$$^{i}T_{f}(q_{i+1},q_{f})=^{i}T_{0}.U_{0}=U_{i}(q_{1},q_{i}) \qquad \text{Repère i}$$

Equations de PAUL

Equations élémentaires pour la méthode de Paul

	Équation (s)	inconnue(s)
Type 1		
Type 2		
Type 3	$\int [1] X_1 . \sin(A_i) + Y_1 . \cos(A_i) = 2$	
Type 4	$\int [1]X_1.R_j.\sin(A_i) = 1$	
Type 5	$\int [1] X_1 \cdot \sin(A_i) = Y_1 + Z_1 \cdot R$	-
Type 6	$\int [1] W.\sin(A_k) = X.\cos(A_i) + Y.\sin(A_i) + Z$	-
Type 7 modifié	$ \int W2.\sin(A_k) + W1.\cos(A_k) = X.\cos(A_i) + Y.\sin(A_i) + Z $	-
Type 8 modifié	$\int X.\cos(A_i) + Y.\cos(A_k) = 2$	-

Résolution des équations : en annexe + exos

Méthode de Paul sur SCARA (position<=> origine rep 5)

Equs. Repère 0 : [4^{eme} colonne de ⁰T₅] = [⁰O₅ désirée]

$${}^{0}O_{5} = \begin{bmatrix} -a2 s1 s2 + a2 c1 c2 + a1 c1 \\ a2 c1 s2 + a2 c2 s1 + a1 s1 \\ d3 + d1 \end{bmatrix} = \begin{bmatrix} x_{f} \\ y_{f} \\ z_{f} + d_{6} \end{bmatrix}$$

$$d_{3} = z_{f} + d_{6} - d_{1}$$

$$d_3 = z_f + d_6 - d_1$$

- Equs. Repère 1 : $[4^{eme}$ colonne de ${}^{1}T_{5}$] = $[{}^{1}O_{5}$ désirée = ${}^{1}T_{0}$. ${}^{0}O_{5d}$]
 - à gauche : ¹T₅ ne dépend plus de c1,s1
 - à droite : ¹T₀ ne dépend que de c1,s1
 - Les équations lignes 1 et 2 seront linéaires en s1,c1,s2,c2

Méthode de Paul sur SCARA (position<=> origine rep 5)

Equs. Repère 1 : [4^{eme} colonne de ¹T₅]=[¹T₀ . ⁰O₅ désirée]

$${}^{1}O_{5} = \begin{vmatrix} a2 & c2 \\ a2 & s2 \end{vmatrix} = \begin{vmatrix} s1 & yf + c1 & xf - a1 \\ c1 & yf - s1 & xf \end{vmatrix}$$

$$d3 \qquad zf + d6 - d1$$

• Les lignes 2 et 1 forment une equ. de Paul de Type 6 [on aura donc aucune ou 2 solutions en $(\theta 1, \theta 2)$]

[Ligne 2]
$$[a2].s2 = [yf].c1 + [-xf].s1 + [0]$$

[Ligne 1] $[a2].c2 = [yf].s1 - [-xf].c1 + [-a1]$

TYPE 6:
$$\begin{bmatrix}
[1] & W.\sin(A_k) = X.\cos(A_i) + Y.\sin(A_i) + Z1 \\
[2] & W.\cos(A_k) = X.\sin(A_i) - Y.\cos(A_i) + Z2
\end{bmatrix}$$

VARIABLES: $\theta_2 = A_k, \theta_1 = A_i$

CONSTANTES: W = a2, X = yf, Y = -xf, Z1 = 0, Z2 = -a1

Exercice 1 MGI scara

- Soit U₀ la posture désirée du robot scara (+rotule)
 - Résumer sur une feuille de papier la suite des calculs à effectuer pour que le robot scara atteigne cette posture (employer maxima pour calcul formel)
 - Saisir les instructions correspondantes avec le logiciel scilab (ou matlab, ou octave, ou autre)
 - Vérifier le bon fonctionnement lorsque d1=a1=a2=1m, pour des postures du type :

$$U_0 = \begin{vmatrix} 0 & \pm 1 & 0 & x_f = \text{ a vous de choisir quelques valeurs} \\ \pm 1 & 0 & 0 & y_f = \text{ a vous de choisir quelques valeurs} \\ 0 & 0 & -1 & z_f = \text{ a vous de choisir quelques valeurs} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Exercice 2 Comprendre les postures

- On veut que l'effecteur (pince rotule) d'un robot
 - ait son axe z_f à 45°, dans le plan x0,y0
 - ait son axe x_f (les mords) vertical, dirigé vers le haut
 - ait une origine de corodonnées algébriques
 - -1 m, suivant l'axe x₀
 - 2 m, suivant l'axe y₀
 - 3 m suivant l'axe z₀
- Ecrire la posture U₀ correspondante

Exercice 3 : MGI manipulateur sphérique (position effecteur)

- Ecrire le MGI d'un manipulateur sphérique 3 axes, permettant de fixer la position de l'effecteur (ne pas écrire les équations d'orientation)
 - Déterminer le type, les variables et les paramètres des équations à résoudre (équations de Paul<=> MGI)
 - Changer éventuellement de repère lorsque les équations sont trop compliquées

i, i+1	Rot	Trans	Trans	rot
	z _i	X _{i+1}	z _i	x _{i+1}
0,1	θ_{1^*}		d ₁	α ₁ =+90°
1,2	θ_{2^*}			α ₂ =-90°
2,3			q ³ *	