数据网络技术基础

交换接入技术支持部北京分部 2001.04

主讲人: 周秋平

议程

网络分层体系结构

应用、传输层

物理、数据链路层

网络层——地址

网络层——路由

网络层应用协议

网络的演进

1980'S 1970'S

网络俄接:

1970 'S-1980 'S

网络耳联:

1980'S 1990'S

Interneting Network

网络的分类——作用范围

▲ LAN(局域网)

- → 为一个工作组、单位提供内部的数据共享
- → 设备、线路属于同一个管理机构
- 以太网、令牌环

♦ WAN (广域网)

- → 为分布在不同地域的用户提供数据共享
- → 一般需要租用运营商的线路
- → DDN、X25、帧中继

网络的分类——拓扑结构

总线网

- 以太网

环形网

→ 令牌环、FDDI

星形网

→ 总部+分支机构

OSI七层模型

为什么分层(一)

△打电话

- →交谈的内容
- → 交谈的语言
- →语音的传送

为什么分层(二)

△ 分解复杂的通信过程

- →各层之间相对独立
- → 容易实现和维护
- → 灵活性好
- →利于标准化工作

OSI 模型 vs. TCP/IP 模型

OS 夠製

Application
Presentation
Session
Tiansport
Network
Detalink
Physical

TCPP勞型

TELNET SMIP TFIP FIP							
TOP	up-						
P. IDVP. ARP							
P. DVP.	KP						
P. DVP. A	VRP						

网络设备对应层次

数据的封装

数据网络技术基础

http://support.huawei.com

层次通信模型

标准化组织

- △ 国际标准化组织(ISO)
- ♦ 电子电器工程师协会(IEEE)
- ▲ 美国国家标准局(ANSI)
- ♦ 电子工业协会(EIA/TIA)
- ▲ 国际电信联盟(ITU)
- △国际电报电话咨询委员会(CCITT)——ITU前身
- ♦ Internet行动委员会(IAB)
- ▲ IETF——RFC标准制定者

议程

网络分层体系结构

应用、传输层

物理、数据链路层

网络层——地址

网络层——路由

网络层应用协议

高层

高层功能

- ▲为应用程序提供网络接口
- ▲本身是一个网络应用程序
 - ◆电子邮件—SVITP、POP
 - 文件
 ★ 文件
 ★ TIP、TFTP
 - ▼ MDXIII HTTP
 - ▼ME—SVVP

传输层

传输层基本功能

- △为上层提供端到端的可靠服务
 - →端到端的差错控制
 - →端到端的流量控制
 - →向高层屏蔽通信子网的细节

端口的应用

常见端口值

File Transfer Protocol [Default
File Transfer Protocol [Control]
Telnet
Simple Mail Transfer Protocol
Domain Name Server
World Wide Web HTTP
Network News Transfer Protocol
SNMP
SNMP TRAP

议程

网络分层体系结构

应用、传输层

物理、数据链路层

网络层——地址

网络层——路由

网络层应用协议

物理层与数据链路层

物理层

- ▲ 在物理传输媒体上传送比特流
- ▲ 确定与物理传输媒体接口的特性
 - → 机械特性
 - 电气特性
 - → 功能特性
 - → 规程特性

双绞线连接器

■ 双绞线的连接器均使用RJ-45水晶头

以太网线的线序

▲ 直连网线

直通网线示例

▲ 级连网线

数据链路层

为上层提供可靠的数据帧透明传输

- → 链路管理
- → 帧同步
- → 寻址
- → 流量控制
- → 差错控制

常见数据链路层协议

- ▲ SDLC——同步数据链路控制 (IBM SNA)
- ▲ HDLC—高级数据链路控制
- ▲ LAPB——平衡型链路访问规程
- ▲ SLIP—串行线路网际协议
- ▲ PPP——点到点协议

物理层与数据链路层模型

LAN					WAN				
Doto	E	802.2 LLC		P S	Н	L	F R R E		
Data Link	I Н Е R	8 0 2	8 0 2	F D	P L P I P	D L C	A P B	A L M A E Y	
Physical	N E T	3	5	I	V.24 EIA-530 G.703 EIA/TIA-232 V.35 EIA/TIA-449 HSSI				

常见局域网

以太网/802.3

令牌环/802.5

FDDI/ISO 9314

MAC/物理地址

以太网

- 施乐公司于1973年首次提出
- ▲ 技术核心
 - → CSMA/CD
- ▲ 速率
 - → 10M、100M、1000M

以太网—工作原理

▲ CSMA/CD:载波监听多点访问/冲突检测

▲ 同一时刻只能有一台主机在发送

载波师: 发送前的侧

冲突剑: 发送或针的剑

回退: 检则中部处理

以太网—共享

以太网—交换

广域网

HDLC、PPP、X.25、FR、IPOA、POS

两种交换方式

电路交换

- 预先建立实连接
- 传统电话业务

▲ 分组交换

- 信息分组
- → X25、IP

PSTN

ISDN

- ▲ 高可用帯宽(128K)
- ▲ 快速连接
- ▲ 上网同时可打电话

ISDN速率标准

基本速率接口 (BRI)

- ▲ 单一物理连接
- ▲ 两条逻辑连接
- ▲ 客户端适用

基群速率接口 (PRI)

- ▲ 单一物理连接
- ▲ 30条逻辑连接
- ▲ 中心节点适用

ISDN 参考点与设备

特性

- ▲ 面向比特
- ▲ 数据链路层协议
- ▲ 运行于同步串行线路

PPP

特性

- ▲ 支持同步、异步链路
- ▲ 提供PAP、CHAP用户验证
- ▲ 支持多种三层协议

X.25网——模型

—分层结构 X.25网—

OSI参考模型

DTE

X.25网——应用

Frame-Relay

- ▲ 协议简化
- 快速交换

X25 vs. FR

X25

- → 协议严谨
- → 逐段纠错与流控
- → 面向传统的传输线路
- 低速率、低效率
- → 高可靠

帧中继

- → 简化的X25
- → 检错、不纠错
- 面向高质量线路
- → 高速率、高效率

DDN

E1/CE1

特性

- ▲ 点到多点
- ▲ 灵活
- ▲ 节省线路

分支机构

рс

议程

网络分层体系结构

应用、传输层

物理、数据链路层

网络层——地址

网络层——路由

网络层应用协议

网络层

网络层——寻址和路由

寻找最佳路径、转发数据包

IP协议基本功能

- → 提供了全球统一的编址方式,屏蔽了物理网络 地址的差异,使路由查找成为可能。
- → 提供了全球统一的报文格式,屏蔽了网络链路 层差异,使网络互联成为可能。

IP报文格式(一)

图 6 IP 数据报的格式

IP报文格式(二)

- ▲ 版本
 - → 4----IPv4
- ▲ 當艘
 - → 单位为4字节,最大60字节
- ▲ 総度
 - → 单位字节,最大65535字节
- ▲ 标识
 - → 数据包分片后重组
- ▲ 标志 占北特,只用到低的两个比特
 - → MF (More Fragment)
 - ✓ MF=1,后面还有分片的数据包
 - ✓ MF=O , 分片数据包的最后一个
 - DF (Don't Fragment)
 - ✓ DF=1,不允许分片
 - ✓ DF=0,允许分片

IP报文格式(三)

▲ 段偏移

- 分片后的分组在原分组中的相对位置
- 总共13比特,单位为8字节
- ▲ 寿命——TTL (Time To Live)
 - → 丢弃TTL=0的报文

🍐 协议

- 携带的是何种协议报文
- → 1: ICMP
- → 6: TCP
- → 17: UDP
- → 89: OSPF

网络地址和主机地址

IP地址=网络部分+主机部分

网络	主机
1	1 2
2	3

IP地址

32位

网络部分	+	主机部分	
8位	8位	8位	8位
202	101	100	200

IP地址类型

特殊的IP地址

网络地址

- → 主机部分全0的地址
- → 代表一个网段
- → 常见于路由表
- → 例: 133.25.0.0
- → 全0地址0.0.0.0

广播地址

- → 主机部分全1的地址
- → 代表网段内所有的接口和主机
- → **例**: 133.25.255.255
- → 全1地址255.255.255.255

▲ Loopback世址

- → 127.X.X.X
- → 用作本地软件回送测试(Loopback test)之 用。如: 127.0.0.1

IP地址范围

网络类别	最大 网络数	第一个可用的网络号码	最后一个可用的 网络号码	每个网络中的 最大主机数
Α	126	1	126	16,777,214
В	16,382	128.1	191.254	65,534
С	2,097,15	192.0.1	223.255.254	254
	0			

IP地址特点

- ▲ IP地址是有层次结构的
- ▲ IP地址不能反映主机的地理位置
- ▲ IP地址的分配对象是机构、组织等地理上的虚拟实体

无子网编址

- **▲** 172.16.0.0
- ▲自然网段

172.16.30.1

172.16.28.1

172.16.30.10

带子网编址

▲主网:172.16.0.0

▲掩码:255.255.25.0

▲子网:172.16.4.0 172.16.8.0

掩码

▲ 1代表网络的,0代表主机的分

▲ VLSM—可变长子网箱马

- → M为掩码中1的位数, n为掩码中0的位数
- \rightarrow 0<=m<=32 \ 0<=n<=32
- \rightarrow m+n=32
- → 无类型子网

1111111. 1111111. 11110000. 00000000 255.255.240.0

子网规划(一)

	201.222.5.8 255.255.255.248	201.222.5.9 255.255.255.248
201.222.5.0 255.255.255.0	201.222.5.16 255.255.255.248	201.222.5.17
	201.222.5.24 255.255.255.248	255.255.255.248
20子网,每个子网5个主机	201.222.5.32 255.255.255.248	255.255.255.248
		255.255.258

子网规划(二)

- △ 子网规划的核心工作——掩码界定
 - → 确定掩码中1的位数或者0的位数

- ▲ 如果要求子网能容纳n台主机,掩码中O的位数(代表主机的位数)为M,则:
 - → M={Log₂(n+2)} { }代表上取整运算
 - n+2代表加上一头一尾的网络地址和广播地址
 - → 例: n=13, 则M=4

子网规划实例(一)

某公司向NIC申请一B类网 (191.38.0.0/16) IP地址空间,该公司可依照自己的组织结构为公司的各个分公司、部门划分IP地址空间,形成有层次的子网结构,大大方便了管理工作。

子网规划实例(二)

- → 子网号的长度: 6位
- → 子网的最大数目: 64
- → 主机号的长度: 10位
- ◆ 主机的最大数目: 1022 (除去子 网网络地址和子网广播地址)

子网规划实例(三)

使用者	子网号	第一个可用的主机 地址	最后一个可用的主 机地址
总公司	0	191.38.0.1	191.38.3.254
成都分公司	1	191.38.4.1	191.38.7.254
广州分公司	2	191.38.8.1	191.38.11.254
云南分公司	3	191.38.12.1	191.38.15.254
上海分公司	4	191.38.16.1	191.38.19.254

子网判定

▲ 给定一个地址A及其掩码M,判定地址B在掩码M下和A是否属于同一个子网

▲ 用在路由匹配、路由查找中

<mark>▲ 离开掩码,谈论地址A和B是否在同一子网毫无</mark> 意义

子网判定实例(一)

判定实例

→ PC机地址: 18.56.75.27,

掩码: 255.255.240.0

- 目的地址: 18.56.82.23

子网判定实例(二)

▲ 第一步,将目的地址和给定的地址做逻辑异或运算

00010010.00111000.01010010.00010111

18.56.82.23

00010010.00111000.01001011.00011011

18.56.75.27

0000000

0.0.25.12

不动1,相动0

数据网络技术基础 http://support.huawei.com

901100

子网判定实例(三)

00000000.00000000.00011001.00001100 0.0.25.12

11111111. 11111111. 11110000. 00000000

255.255.240.0

0000000.000000000.00010000.0000000 0.0.16.0

两个都是1,结果才为1,否则为0

子网判定实例(四)

- △ 两次运算后,得到一个4字节的结果
 - → 4个字节全0,则在给定掩码下,两个地址属于同一个子网

→ 4个字节不全0,则在给定掩码下,两个地址 属于不同子网

子网快速判定(一)

▲ 快速則定方法

- 关注掩码中非0的字节
- 256减去掩码中各个非0的字节
- → 减的结果只可能为1、2、4、8、16.....128
- 两个地址的对应部分分别除以刚才减的结果,下 取整
- 比较下取整的结果
 - ✓ 都相同,则属于同一子网
 - ✓ 否则,属于不同子网

子网快速判定(二)

▲ 快速判定实例

- → PC机地址: 18.56.75.27, 掩码: 255.255.240.0
- → 目的地址: 18.56.82.23
- → 掩码前两个字节为255, 256-255=1, 结果一目了然
- → 掩码第三个字节为240, 256-240=16
- → [75/16]=4, [82/16]=5 []代表下取整运算
- → 结论: 在给定掩码下,两个地址属于不同子网

地址界定(一)

△ 给定一个地址A和中部M,给出在M下A所属的子网网络地址和子网广播地址

△ 同样离不开掩码的限制

地址界定(二)

▲ 对机器来说,很简单

- → 列出地址A和掩码M的二进制形式
- → 对掩码中1的位,A对应的内容不变:对 掩码中0的位, A对应的内容变为0
 - ✓ 结果为子网网络地址
- → 对掩码中1的位,A对应的内容不变:对 掩码中0的位,A对应的内容变为1
 - ✓ 结果为子网广播地址

地址界定(三)

▲ 对人工来说,子网网络地址界定

- → 掩码M分解为三部分: 255、0和其它(假设值为N)
- → 掩码中255的部分,A对应字节不变
- → 掩码中0的部分,A对应字节变为0
- → 掩码中N的部分
 - ✓ 假设A对应字节的值为P, 同时令L=256-N
 - ✓ 令H=[P/L] []代表下取整运算
 - ✓ 令K=HxL
- → 掩码中N的部分,A对应字节变为K
- → 最后的结果即为在M下A所属的子网网络地址

地址界定(四)

▲ 对人工来说,子网广播地址界定

- → 掩码M分解为三部分: 255、0和其它(假设值为N)
- → 掩码中255的部分,A对应字节不变
- → 掩码中0的部分,A对应字节变为1
- → 掩码中N的部分
 - ✓ 假设A对应字节的值为P, 同时令L=256-N
 - ✓ 令H=[P/L] []代表下取整运算
 - √ 令 K=(H+1)xL-1
- → 掩码中N的部分,A对应字节变为K
- → 最后的结果即为在M下A所属的子网广播地址

地址界定(五)

- ▲ 地址界定实例
- ▲ IP地址:211.167.138.37

掩码:255.255.240.0

- ▲ 子网网络地址
 - **→** [138/16]=8
 - → 8x16=128
 - → 子网网络地址为: 211.167.128.0
- 📤 子网广播地址
 - **→** [138/16]=8
 - \rightarrow (8+1)x16-1=143
 - → 子网广播地址为: 211.167.143.255

议程

网络分层体系结构

应用、传输层

物理、数据链路层

网络层——地址

网络层——路由

网络层应用协议

什么是路由

- ▲ 路由是指导IP报文发送的路径信息
- ▲ 路由存在于三层网络设备和主机中

不可路由协议

可路由协议

路由的种类

- ▲ 静态路由
 - → 手工配置

- ▲ 动态路由
 - → 通过路由协议学习到

- ▲ 直 強曲
 - → 系统自动生成

动态——网络拓扑变化

IGP & EGP

• RIP

- ◆ IGRP
- OSPF

路由的格式

▲ 包括两大部分

- → 目的地址 (IP网段+掩码)
- → 下一跳(IP地址或者具体的出端口)
- → 例: 125.67.8.0 255.255.255.0 56.6.7.1 125.67.8.0 255.255.255.0 Serial 2/0/0

▲ 缺ध曲(默战曲)

- → 目的地址全0
- → 例: 0.0.0.0 0.0.0.0 56.6.7.1 0.0.0.0 0.0.0.0 Serial 2/0/0

路由匹配

最份都亚配

- → 精确匹配
- → 125.67.8.0 255.255.255.0 Serial 2/0/0 125.67.8.16 255.255.255.240 Serial 2/0/1 数据包目的地址: 125.67.8.20
- → 从Serial 2/0/1 端口转发出去

两条路由都匹 配,选哪一条?

议程

网络分层体系结构

应用、传输层

物理、数据链路层

网络层——地址

网络层——路由

网络层应用协议

网络层应用协议

地址解析协议ARP

PING (-)

PING(_)

双向的过程

- → Echo Request报文送过去
- → Echo Reply报文送回来

报文是过不去,还 是回不来?

PING(三)

两个方向独立寻路

- → 为Echo Request报文寻找路由
- → 为Echo Reply报文寻找路由

是不是没有过去/回来的路由?

PING(四)

寻路的根据——目的地址

- → Echo Request报文的目的地址
- → Echo Reply报文的目的地址
- 两个报文地址的对应关系

哦,原来没有对应地址的路由。

Tracert

综合举例

假设一台PC机A,其网卡的IP地址为a1.a2.a3.a4,掩码为m1.m2.m3.m4。从A Ping设备B, B的地址为b1.b2.b3.b4,则:

- 1、在掩码m1.m2.m3.m4下,b1.b2.b3.b4与a1.a2.a3.a4是不是属于同一个子网?
 - 1.1、如果的话,A查拉口的ARP表,看有好多的MAC地址?
 - 1.1.1、有B的MAC地上,直接通言;
 - 1.1.2 没有,A向外播AP请教设,解除的MAC地址;
 - 1.2、如果不是的话,A查找<mark>网关的IP地址,将数据包直接发给</mark> 网关。数据包如何被进一步转发给B,由网关负责。

综合举例(续)

网关

- 主机的网络出口
- → 一般情况下必须配置
- 网关的地址必须和本机在同一个子网
- 主机配置网关相当于给主机配置一条缺省路由

哦,刚才不通是 没有配置网关

