FRAME ANALYSIS USING THE STIFFNESS METHOD

- Simple Frames
 - Frame-Member Stiffness Matrix
 - Displacement and Force Transformation Matrices
 - Frame-Member Global Stiffness Matrix
- Special Frames
 - Frame-Member Global Stiffness Matrix

Simple Frames

Frame-Member Stiffness Matrix

[k']

	1'	2	3'	4′	5′	6'
1′	AE/L	0	0	- AE/L	0	0
2'	0	12 <i>EI/L</i> ³	6 <i>EI/L</i> ²	0	- 12 <i>EI/L</i> ³	6 <i>EI/L</i> ²
3'	0	6 <i>EI/L</i> ²	4 <i>EI/L</i>	0	- 6 <i>EI/L</i> ²	2 <i>EI/L</i>
4′	-AE/L	0	0	AE/L	0	0
5′	0	-12 <i>EI/L</i> ³	-6 <i>EI/L</i> ²	0	12 <i>EI/L</i> ³	-6 <i>EI/L</i> ²
6'	$\bigcup_{i=1}^{n} 0_i$	$6EI/L^2$	2 <i>EI/L</i>	0	- 6 <i>EI/L</i> ²	4 <i>EI/L</i>)

Displacement and Force Transformation Matrices

Force Transformation

$$\lambda_{x} = \frac{x_{j} - x_{i}}{L}$$

$$\lambda_{y} = \frac{y_{j} - y_{i}}{L}$$

$$q_{4} = q_{4'} \cos \theta_{x} - q_{5'} \cos \theta_{y}$$

$$q_{5} = q_{4'} \cos \theta_{y} + q_{5'} \cos \theta_{x}$$

$$q_{6} = q_{6'}$$

$$\lambda_{x} = \frac{x_{j} - x_{i}}{L} \qquad \begin{bmatrix} q_{4} \\ q_{5} \\ q_{6} \end{bmatrix} = \begin{bmatrix} \lambda_{x} & -\lambda_{y} & 0 \\ \lambda_{y} & \lambda_{x} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} q_{4'} \\ q_{5'} \\ q_{6'} \end{bmatrix}$$

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \\ q_6 \end{bmatrix} = \begin{bmatrix} \lambda_x & -\lambda_y & 0 & 0 & 0 & 0 \\ \lambda_y & \lambda_x & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_x & -\lambda_y & 0 \\ 0 & 0 & 0 & \lambda_y & \lambda_x & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} q_{1'} \\ q_{2'} \\ q_{3'} \\ q_{4'} \\ q_{5'} \\ q_{6'} \end{bmatrix}$$

$$[q] = [T]^T [q]$$

$$[q] = [T]^{T}[q']$$

$$= [T]^{T}([k'][d'] + [q'^{F}])$$

$$= [T]^{T}[k'][d'] + [T]^{T}[q'^{F}]$$

$$[q] = [T]^{T}[k'][T][d] + [T]^{T}[q'^{F}] = [k][d] + [q^{F}]$$

Therefore,
$$[k] = [T]^T [k'][T]$$

$$[q^F] = [T]^T [q'^F]$$

$$[q] = [T]^{\mathrm{T}}[q']$$

$$[d'] = [T][d]$$

$$[k] = [T]^{\mathrm{T}}[k'][T]$$

Frame Member Global Stiffness Matrix

$$[q] = [T]^{\mathsf{T}}[q'] = [T]^{\mathsf{T}}\left(\begin{bmatrix}k'\end{bmatrix}[d'] + \begin{bmatrix}q'^{\mathsf{F}}\end{bmatrix}\right) = [T]^{\mathsf{T}}[k'][d'] + [T]^{\mathsf{T}}[q'^{\mathsf{F}}] = \underbrace{[T]^{\mathsf{T}}[k'][T]}[d] + \underbrace{[T]^{\mathsf{T}}[q'^{\mathsf{F}}]}_{[q^{\mathsf{F}}]}$$

$$[k] = [T]^{T}[k'][T] =$$

Example 1

For the frame shown, use the stiffness method to:

- (a) Determine the **deflection** and **rotation** at B.
- (b) Determine all the reactions at supports.
- (c) Draw the quantitative shear and bending moment diagrams.

$$E = 200 \text{ GPa}, I = 60(10^6) \text{ mm}^4, A = 600 \text{ mm}^2$$

$$\frac{AE}{6 \text{ m}} = \frac{(600 \times 10^{-6} \text{m}^2)(200 \times 10^6 \frac{\text{kN}}{\text{m}^2})}{6 \text{m}} = 20000 \text{ kN/m}$$

$$\frac{12EI}{L^3} = \frac{12(200 \times 10^6 \frac{\text{kN}}{\text{m}^2})(60 \times 10^{-6} \text{m}^4)}{(6 \text{m})^3} = 666.667 \text{ kN/m}$$

Global:

$$\frac{6EI}{L^2} = \frac{6(200 \times 10^6 \frac{\text{kN}}{\text{m}^2})(60 \times 10^{-6} \text{m}^4)}{(6\text{m})^2} = 2000 \text{ kN}$$

$$\frac{4EI}{L} = \frac{4(200 \times 10^{6} \frac{\text{kN}}{\text{m}^{2}})(60 \times 10^{-6} \text{m}^{4})}{6\text{m}} = 8000 \text{ kN} \bullet \text{m}$$

$$\frac{2EI}{L} = \frac{2(200 \times 10^6 \frac{\text{kN}}{\text{m}^2})(60 \times 10^{-6} \text{m}^4)}{6\text{m}} = 4000 \text{ kN} \bullet \text{m}$$

Using Transformation Matrix:

Global:

• Member Stiffness Matrix

Stiffness Matrix: Member 1

Local:

$$[q] = [q']$$
-> $[k]_1 = [k']_1$

Stiffness Matrix: Member 2

$$[k']_2 = \begin{bmatrix} 1' & 2' & 3' & 4' & 5' & 6' \\ 20000 & 0 & 0 & -20000 & 0 & 0 \\ 0 & 666.667 & 2000 & 0 & -666.667 & 2000 \\ 0 & 2000 & 8000 & 0 & -2000 & 4000 \\ -20000 & 0 & 0 & 20000 & 0 & 0 \\ 0 & -666.667 & -2000 & 0 & 666.667 & -2000 \\ 6' & 0 & 2000 & 4000 & 0 & -2000 & 8000 \end{bmatrix}$$

$$[k]_2 = [T]^T [k']_2 [T]$$

$$1 & 2 & 3 & 7 & 8 & 9 \\ 1 & 666.667 & 0 & 2000 & -666.667 & 0 & 2000 \\ 2 & 0 & 20000 & 0 & 0 & -20000 & 0 \\ 2 & 0 & 20000 & 0 & 0 & -20000 & 0 \\ 2 & 0 & 20000 & 0 & 0 & -20000 & 0 \\ 3 & 2000 & 0 & 8000 & -2000 & 0 & 4000 \\ -666.667 & 0 & -20000 & 0 & 666.667 & 0 & -2000 \\ 8 & 0 & -20000 & 0 & 0 & 20000 & 0 \\ 9 & 2000 & 0 & 4000 & -2000 & 0 & 8000 \end{bmatrix}$$

Global Stiffness Matrix:

$[k]_1$

	4	6	5	1	2	3
4	20000	0	0	-20000	0	0
6	0	666.667	2000	0	-666.667	2000
5	0	2000	8000	0	-2000	4000
1	-20000	0	0	20000	0	0
2	0	-666.667	-2000	0	666.667	-2000
3	0	2000	4000	0	-2000	8000

$[k]_2$

	[K]									
	4	5	1	2	3					
4	20000	0	-20000	0	0					
5	0	8000	0	-2000	4000					
1	-20000	0	20666.667	0	2000					
2	0	-2000	0	20666.667	-2000					
3	0	4000	2000	-2000	16000					

	1	2	3	7	8	9
1	666.66	7 0	2000	666.66	57 0	2000
2	0	20000	0	0	-20000	0
3	2000	0	8000	-2000	0	4000
7	-666.66	57 0	-2000	666.66	57 0	-2000
8	0	-20000	0	0	20000	0
9	2000	0	4000	2000	0	8000

$$[q]_1 = [k]_1[d]_1 + [q^F]_1$$

Example 2

For the beam shown, use the stiffness method to:

- (a) Determine the **deflection** and **rotation** at **B**
- (b) Determine all the reactions at supports
- (c) Draw the quantitative shear and bending moment diagrams.

E = 200 GPa, $I = 60(10^6) \text{ mm}^4$, $A = 600 \text{ mm}^2 \text{ for each member}$.

Member 1:

$$\lambda_x = \cos \theta_x = 6/7.5 = 0.8$$
 $\lambda_y = \cos \theta_y = 4.5/7.5 = 0.6$

$$\frac{AE}{L} = \frac{(600 \times 10^{-6} \ m^2)(200 \times 10^6 \ kN/m^2)}{7.5 \ m}$$

$$= 16000 \ kN/m$$

$$\frac{12EI}{L^3} = \frac{12(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{(7.5 \ m)^3}$$

$$= 341.33 \ kN/m$$

$$\frac{6EI}{L^2} = \frac{6(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{(7.5 \ m)^2}$$

$$= 1280 \ kN$$

$$\frac{4EI}{L} = \frac{4(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{7.5 \ m}$$

$$= 6400 \ kN \bullet m$$

$$\frac{2EI}{L} = \frac{2(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{7.5 \ m}$$

$$= 3200 \ kN \bullet m$$

Member m:

$$\lambda_x = \cos \theta_x$$
$$\lambda_y = \cos \theta_y$$

$[k_m] = [T]^T[k'][T] =$

$$\lambda_x = \cos \theta_x = 6/7.5 = 0.8$$
$$\lambda_y = \cos \theta_y = 4.5/7.5 = 0.6$$

		4	5	6	1	2	3
	4	10362.879	7516.162	-768	-10362.879	-7516.162	-768
	5	7516.162	5978.451	1024	-7516.162	-5978.451	1024
r <i>1</i> 1	6	-768	1024	6400	768	-1024	3200
$[k_1] =$	1	-10362.879	-7516.162	768	10362.879	7516.162	768
	2	-7516.162	-5978.451	-1024	7516.162	5978.451	-1024
	3	-768	1024	3200	768	-1024	6400

Member 2:

$$\lambda_x = \cos 0^{\circ} = 1.0, \ \lambda_y = \cos 90^{\circ} = 0$$

$$\frac{AE}{L} = \frac{(600 \times 10^{-6} \ m^2)(200 \times 10^6 \ kN/m^2)}{6 \ m}$$

$$= 20000 \ kN/m$$

$$\frac{12EI}{L^3} = \frac{12(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{(6 \ m)^3}$$

$$= 666.667 \ kN/m$$

$$\frac{6EI}{L^2} = \frac{6(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{(6 \ m)^2}$$

$$= 2000 \ kN$$

$$\frac{4EI}{L} = \frac{4(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{6 \ m}$$

$$= 8000 \ kN \bullet m$$

$$\frac{2EI}{L} = \frac{2(200 \times 10^6 \ kN/m^2)(60 \times 10^{-6} \ m^4)}{6 \ m}$$

$$= 4000 \ kN \bullet m$$

		4	5	6		1	2	3
	4	(10362.879	7516.16	52 -76	8	-10362.879	-7516.162	-768
	5	7516.162	5978.45	51 102	4	-7516.162	-5978.451	1024
f f 3	6	-768	1024	640	0	768	-1024	3200
$[k_1] =$	1	-10362.879	9 -7516.10	62 768	8	10362.879	7516.162	768
	2	-7516.162	-5978.4	51 -102	24	7516.162	5978.451	-1024
	3	-768	1024	320	0	768	-1024	6400
		1	2	3	•	7 8	9	
	1	20000	0	0	- 2	0000 0	0	
	2	0	666.667	2000		0 - 666.0	567 2000	
[1,] —	3	0	2000	8000		0 - 2000	0 4000	
$[\kappa_2] =$	7	-20000	0	0	20	0000 0	0	
	8	0	-666.667	-2000		0 666.6	-2000	
	9	0	2000	4000		0 - 2000	0 8000	

Global:

$$\begin{bmatrix}
\mathcal{Q}_{1_0} \\
\mathcal{Q}_{2_0} \\
\mathcal{Q}_{3}
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
30362.9 & 7516.16 & 768 \\
7516.16 & 6645.12 & 976 \\
768 & 976 & 14400
\end{bmatrix} \begin{bmatrix}
D_1 \\
D_2 \\
D_3
\end{bmatrix} + \begin{bmatrix}
0 \\
9 \\
9
\end{bmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_3 \end{pmatrix} = \begin{pmatrix} 4.575(10^{-4}) \text{ m} \\ -1.794(10^{-3}) \text{ m} \\ -5.278(10^{-4}) \text{ rad} \end{pmatrix}$$

Member 1:

$$\lambda_x = \cos \theta_x = 6/7.5 = 0.8$$
 $\lambda_y = \cos \theta_y = 4.5/7.5 = 0.6$

Member 2:

$$\begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_7 \\ q_8 \\ q_9 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & & & \\ \mathbf{2} & &$$

Example 3

For the beam shown, use the stiffness method to:

- (a) Determine the **deflection** and **rotation** at B.
- (b) Determine all the reactions at supports.
- (c) Draw the quantitative shear and bending moment diagrams.

E = 200 GPa, $I = 60(10^6) \text{ mm}^4$, $A = 600 \text{ mm}^2 \text{ for each member}$.

$$\begin{pmatrix} D_1 \\ D_2 \\ D_3 \end{pmatrix} = \begin{pmatrix} 1.751(10^{-3}) \text{ m} \\ -4.388(10^{-3}) \text{ m} \\ 2.049(10^{-3}) \text{ rad} \end{pmatrix}$$

 $\lambda_{v} = \cos 53.13^{\circ} = 0.6$

$$\begin{pmatrix} q_4 \\ q_5 \\ q_6 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{pmatrix} 6.51 \\ 24.17 \\ 26.46 \\ -20.01 \\ -6.17 \\ 4.89 \end{pmatrix}$$

Member 2:

$$\begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_7 \\ q_8 \\ q_9 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 7 \\ q_8 \\ q_9 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 7 \\ 8 \\ 9 \end{pmatrix}$$

$$\begin{pmatrix} q_1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 5 \\ 7.5 \\ 0 \\ 5 \\ -7.5 \end{pmatrix} = \begin{pmatrix} 35.02 \\ 6.17 \\ 15.12 \\ -35.02 \\ 3.83 \\ -8.08 \end{pmatrix}$$

Special Frames

Stiffness matrix

$$\lambda_{ix} = \cos \theta_i$$
 $\lambda_{jx} = \cos \theta_j$
 $\lambda_{iy} = \sin \theta_i$ $\lambda_{jy} = \sin \theta_j$

$$[q^*] = [T]^T[q']$$

$$\begin{bmatrix} q_{1*} \\ q_{2*} \\ q_{3*} \\ q_{4*} \\ q_{5*} \\ q_{6*} \end{bmatrix} = \begin{bmatrix} 1* & \lambda_{ix} & -\lambda_{iy} & 0 & 0 & 0 & 0 \\ \lambda_{iy} & \lambda_{ix} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_{jx} & -\lambda_{jy} & 0 \\ 0 & 0 & 0 & \lambda_{jy} & \lambda_{jx} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} q_{1'} \\ q_{2'} \\ q_{3'} \\ q_{4'} \\ q_{5'} \\ q_{6'} \end{bmatrix}$$

$$[T] = \begin{bmatrix} 1^* & 2^* & 3^* & 4^* & 5^* & 6^* \\ 1' & \lambda_{ix} & \lambda_{iy} & 0 & 0 & 0 & 0 \\ 2' & -\lambda_{iy} & \lambda_{ix} & 0 & 0 & 0 & 0 \\ -\lambda_{iy} & \lambda_{ix} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 4' & 0 & 0 & 0 & \lambda_{jx} & \lambda_{jy} & 0 \\ 5' & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• Member Stiffness Matrix

$[k] = [T]^{T}[k'][T] =$

Example 4

For the beam shown:

- (a) Use the stiffness method to determine all the **reactions** at supports.
- (b) Draw the quantitative free-body diagram of member.
- (c) Draw the quantitative bending moment diagrams and qualitative deflected shape.

Take $I = 200(10^6) \text{ mm}^4$, $A = 6(10^3) \text{ mm}^2$, and E = 200 GPa for all members. Include axial deformation in the stiffness matrix.

$$\begin{bmatrix} \mathbf{k'} \end{bmatrix} = \frac{N_i}{V_i} \begin{bmatrix} AE/L & 0 & 0 & -AE/L & 0 & 0 \\ 0 & 12EI/L^3 & 6EI/L^2 & 0 & -12EI/L^3 & 6EI/L^2 \\ 0 & 6EI/L^2 & 4EI/L & 0 & -6EI/L^2 & 2EI/L \\ -AE/L & 0 & 0 & AE/L & 0 & 0 \\ 0 & -12EI/L^3 & -6EI/L^2 & 0 & 12EI/L^3 & -6EI/L^2 \\ M_j & 0 & 6EI/L^2 & 2EI/L & 0 & -6EI/L^2 & 4EI/L \end{bmatrix}$$

$$\frac{AE}{L} = \frac{(0.006 \, m^2)(200 \times 10^6 \, kN/m^2)}{8 \, m} = 150 \times 10^3 \, kN/m$$

$$\frac{4EI}{L} = \frac{4(200 \times 10^6 \, kN/m^2)(0.0002 \, m^4)}{8 \, m} = 20 \times 10^3 \, kN \bullet m$$

$$\frac{2EI}{L} = 10 \times 10^3 \, kN \bullet m$$

$$\frac{6EI}{L^2} = \frac{6(200 \times 10^6 \, kN/m^2)(0.0002 \, m^4)}{(8 \, m)^2} = 3.75 \times 10^3 \, kN$$

$$\frac{12EI}{L^3} = \frac{12(200 \times 10^6 \, kN/m^2)(0.0002 \, m^4)}{(8 \, m)^3} = 0.9375 \times 10^3 \, kN/m$$

$$[k']_1 = [k']_2 = \begin{bmatrix} N_i \\ N_j \\ N$$

$$\lambda_{ix} = \cos(22.02^{\circ}) = 0.927,$$
 $\lambda_{jx} = \cos(0^{\circ}) = 1,$
 $\lambda_{iy} = \sin(22.02^{\circ}) = 0.375$ $\lambda_{jy} = \sin(0^{\circ}) = 0$

$$[q^*] = [T]^T[q']$$

$$[k^*]_1 = [T]_1^T [k']_1 [T]_1$$

$$\begin{bmatrix} 1* & 2* & 3* & 4 & 5 & 6 \\ 1* & 129.046 & 51.811 & -1.406 & -139.058 & 0.351 & -1.406 \\ 2* & 51.811 & 21.892 & 3.476 & -56.240 & -0.869 & 3.476 \\ -1.406 & 3.476 & 20.00 & 0 & -3.75 & 10.00 \\ -139.058 & -56.240 & 0.00 & 150 & 0 & 0 \\ 5 & 0.351 & -0.869 & -3.75 & 0 & 0.938 & -3.75 \\ 6 & -1.406 & 3.476 & 10.00 & 0 & -3.75 & 20 & 0 \end{bmatrix}$$

$$[q^{F^*}] = [T]^T[q^{F'}]$$

$$[q^{F*}] = [T]_1^T \begin{pmatrix} 0 \\ 20 \\ 40 \\ 0 \\ 20 \\ -40 \end{pmatrix} = \begin{pmatrix} -7.50 \\ 18.54 \\ 2^* \\ 40 \\ 0 \\ 20 \\ -40 \end{pmatrix} = \begin{pmatrix} -7.50 \\ 18.54 \\ 2^* \\ 40 \\ 3^* \\ 40 \\ 18.54 \end{pmatrix} \xrightarrow{40 \text{ kN} \cdot \text{m}} 40 \text{ kN} \cdot \text{m}$$

$$= \begin{pmatrix} 0 \\ 18.54 \\ 2^* \\ 40 \\ 0 \\ 20 \\ -40 \end{pmatrix} = \begin{pmatrix} -7.50 \\ 18.54 \\ 20 \\ 6 \end{pmatrix}$$

Member 2 $\lambda_{ix} = \lambda_{jx}$ $\lambda_{iy} = \lambda_{jy}$ 22.02° 2 2 3

$$[q] = [T]^T[q']$$

$$\begin{pmatrix}
q_4 \\
q_5 \\
q_6 \\
q_7 \\
q_8 \\
q_9
\end{pmatrix} = \begin{pmatrix}
1' & 2' & 3' & 4' & 5' & 6' \\
0.927 & 0.375 & 0 & 0 & 0 & 0 & 0 \\
-0.375 & 0.927 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.927 & 0.375 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.375 & 0.927 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
q_{1'} \\
q_{2'} \\
q_{3'} \\
q_{4'} \\
q_{5'} \\
q_{6'}
\end{pmatrix}$$

$$\begin{bmatrix}
T]_2^T$$

$$[k]_2 = [T]_2^T [k']_2 [T]_2$$

$$[q^{F^*}] = [T]^T[q^{F'}]$$

$$[q^{F}] = [T]_{2}^{T} \begin{pmatrix} 0 \\ 24 \\ 32 \\ 0 \\ 24 \\ -32 \end{pmatrix} = \begin{pmatrix} 8.998 \\ 22.249 \\ 8.998 \\ 7 \\ 22.249 \\ 8 \\ 9 \end{pmatrix}$$

$$= \begin{pmatrix} 8.998 \\ 22.249 \\ 8.998 \\ 7 \\ 22.249 \\ 8 \\ 9 \end{pmatrix}$$

$$= \begin{pmatrix} 8.998 \\ 32 \\ 8.998 \\ 7 \\ 22.249 \\ 8 \\ 9 \end{pmatrix}$$

$$= \begin{pmatrix} 8.998 \\ 32 \\ 8.998 \\ 7 \\ 22.249 \\ 8 \\ 9 \end{pmatrix}$$

$$= \begin{pmatrix} 22.249 \\ 8.998 \\ 7 \\ 22.249 \\ 8 \\ 9 \end{pmatrix}$$

$$= \begin{pmatrix} 22.249 \\ 8.998 \\ 7 \\ 22.249 \\ 8 \\ 9 \end{pmatrix}$$

Global Stiffness:

$$\begin{pmatrix} D_{1*} \\ D_{3*} \\ D_{4} \\ D_{5} \\ D_{6} \end{pmatrix} = \begin{pmatrix} -0.0205 & m \\ -0.0112 & rad \\ -0.0191 & m \\ -0.0476 & m \\ -0.0024 & rad \end{pmatrix}$$

Member 1: $[q^*] = [k^*][d^*] + [q^{F^*}]$

			1*	2*	3*	4	5	6				
$\left(\begin{array}{c}q_{1*}\end{array}\right)$		1*	129.046	51.811	-1.406	-56.240	0.351	-1.406	$D_{1*}=-0.0205$	+	-7.50	
q_{2^*}									$ \begin{vmatrix} D_{2*} = 0.0 \\ D_{0.00} \\ D_{3*} = -0.0112 \\ D_{4} = -0.0191 \\ D_{5} = -0.0476 \\ D_{6} = -0.0024 $		18.54	
q_{3*}	_ 102	3*	-1.406	3.476	20.00	0	-3.75	10.00			40	
q_4	-10^{3}	4	-139.058	-56.240	0.00	150	0	0			0	
q_5		5	0.351	-0.869	-3.75		0.938	-3.75			20	
q_6		6	-1.406	3.476	10.00	0	-3.75	20			-40	

$$\begin{pmatrix}
q_{1*} \\
q_{2*} \\
q_{3*} \\
q_{4} \\
q_{5} \\
q_{6}
\end{pmatrix} = \begin{pmatrix}
0 \\
22.63 & kN \\
0 \\
-8.49 & kN \\
19.02 & kN \\
7.87 & kN \cdot m
\end{pmatrix}$$

Example 5

For the beam shown:

- (a) Use the stiffness method to determine all the **reactions** at supports.
- (b) Draw the quantitative free-body diagram of member.
- (c) Draw the quantitative bending moment diagrams and qualitative deflected shape.

Take $I = 400(10^6) \text{ mm}^4$, $A = 60(10^3) \text{ mm}^2$, and E = 200 GPa for all members.

$$\frac{AE}{L} = \frac{(60 \times 10^{-3} \text{m}^2)(200 \times 10^6 \text{ kN/m}^2)}{4 \text{ m}}$$
$$= 3000 \times 10^3 \text{ kN/m}$$

$$\frac{4EI}{L} = \frac{4(200 \times 10^{6} \text{ kN/m}^{2})(400 \times 10^{-6} \text{m}^{4})}{4 \text{ m}}$$
$$= 80 \times 10^{3} \text{ kN} \cdot \text{m}$$

$$\frac{2EI}{L} = \frac{2(200 \times 10^{6} \text{ kN/m}^{2})(400 \times 10^{-6} \text{ m}^{4})}{4 \text{ m}}$$

$$= 40 \times 10^{3} \text{ kN} \cdot \text{m}$$

$$\frac{6EI}{L^{2}} = \frac{6(200 \times 10^{6} \text{ kN/m}^{2})(400 \times 10^{-6} \text{ m}^{4})}{(4 \text{ m})^{2}}$$

$$= 30 \times 10^{3} \text{ kN}$$

$$\frac{12EI}{L^{3}} = \frac{12(200 \times 10^{6} \text{ kN/m}^{2})(400 \times 10^{-6} \text{ m}^{4})}{(4 \text{ m})^{3}}$$

$$= 15 \times 10^{3} \text{ kN/m}$$

$$64$$

Member 1: $[q] = [k][d] + [q^F]$

Member 2:

$$\frac{AE}{L} = \frac{(60 \times 10^{-3} \text{m}^2)(200 \times 10^6 \text{ kN/m}^2)}{3.61 \text{ m}}$$

$$= 3324 \times 10^3 \text{ kN/m}$$

$$\frac{4EI}{L} = \frac{4(200 \times 10^6 \text{ kN/m}^2)(400 \times 10^{-6} \text{m}^4)}{3.61 \text{ m}}$$

$$= 88.64 \times 10^3 \text{ kN} \cdot \text{m}$$

$$\frac{6EI}{L^2} = \frac{6(200 \times 10^6 \text{ kN/m}^2)(400 \times 10^{-6} \text{ m}^4)}{(3.61 \text{ m})^2}$$

$$= 36.83 \times 10^3 \text{ kN}$$

$$\frac{12EI}{L^3} = \frac{12(200 \times 10^6 \text{ kN/m}^2)(400 \times 10^{-6} \text{ m}^4)}{(3.61 \text{ m})^3}$$

$$= 20.41 \times 10^3 \text{ kN/m}$$

$$\frac{2EI}{L} = \frac{2(200 \times 10^6 \text{ kN/m}^2)(400 \times 10^{-6} \text{ m}^4)}{3.61 \text{ m}}$$

$$= 44.32 \times 10^3 \text{ kN} \cdot \text{m}$$

$$\frac{2}{3324} = \frac{3}{36.83} \times \frac{3}{36.83}$$

Global:

$$\begin{pmatrix} Q_4 = -50 \\ Q_5 = 0 \\ Q_{6} = -80 \\ Q_{9*} = 0 \end{pmatrix} = 10^3 \begin{pmatrix} 4 & 5 & 6 & 7* & 9* \\ 4036.923 & -1524.780 & 30.646 \\ -1524.780 & 232.582 & -9.569 \\ 30.646 & -9.569 & 168.643 \\ -452.884 & 643.585 & -35.786 & 205.452 & -35.786 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 10^3 \begin{pmatrix} D_4 \\ D_5 \\ D_6 \\ D_{7*} \\ D_{9*} \end{pmatrix} + \begin{pmatrix} 0 \\ 40 \\ -26.67 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} D_4 \\ D_5 \\ D_6 \\ D_{7*} \\ D_{9*} \end{pmatrix} = \begin{pmatrix} -2.199 \times 10^{-5} & m \\ -3.095 \times 10^{-4} & m \\ -2.840 \times 10^{-4} & \text{rad} \\ 0.979 \times 10^{-3} & m \\ 6.161 \times 10^{-4} & \text{rad} \end{pmatrix}$$

$$\begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \\ q_6 \end{pmatrix} = \begin{pmatrix} 65.97 & kN \\ 36.12 & kN \\ 24.59 & kN \cdot m \\ -65.97 & kN \\ 43.88 & kN \\ -40.11 & kN \cdot m \end{pmatrix} 24.59 \text{ kN} \cdot m$$

$$20 \text{ kN/m}$$

$$20 \text{ kN/m}$$

$$20 \text{ kN/m}$$

$$40.11 \text{ kN} \cdot m$$

$$65.97 \text{ kN}$$

$$36.12 \text{ kN}$$

$$36.12 \text{ kN}$$

Member 2:

$$\begin{pmatrix} q_4 \\ q_5 \\ q_6 \\ q_{7*} \\ q_{9*} \end{pmatrix} = 10^3 \begin{pmatrix} 4 & 5 & 6 & 7* & 8* & 9* \\ 1036.923 & -1508.14 & 30.57 & -455.21 & 1769.34 & 30.57 \\ -1508.14 & 2296.15 & 20.26 & 651.27 & -2678.93 & 20.26 \\ 30.57 & 20.26 & 88.64 & -35.73 & -8.84 & 44.32 \\ -455.21 & 651.27 & -35.73 & 210.67 & -769.1 & -35.73 \\ 1769.34 & -2678.93 & -8.84 & -769.1 & 3128.82 & -8.84 \\ 30.57 & 20.26 & 44.32 & -35.73 & -8.84 & 88.64 \end{pmatrix} \begin{pmatrix} D_4 \\ D_5 \\ D^*_7 \\ 0 \\ D^*_9 \end{pmatrix}$$

$$\begin{pmatrix} q_4 \\ q_5 \\ q_6 \\ q_{7*} \\ q_{8*} \\ q_{9*} \end{pmatrix} = \begin{pmatrix} 15.97 & kN \\ -43.88 & kN \\ -39.89 & kN \cdot m \\ 0 & kN \\ 46.69 & kN \\ 0 & kN \cdot m \end{pmatrix}$$

$$\begin{pmatrix} 39.89 & kN \cdot m \\ -39.89 & kN \cdot m \\ 0 & kN \\ 46.69 & kN \\ 0 & kN \cdot m \end{pmatrix}$$

$$\begin{pmatrix} 43.88 & kN \\ -39.89 & kN \cdot m \\ 0 & kN \\ 46.69 & kN \\ 0 & kN \cdot m \end{pmatrix}$$

