0-16-00

Docket No. BMS-0010

Total Pages in this Submission

UTILITY PATENT APPLICATION TRANSMITTAL ∴ (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

TO THE ASSISTANT COMMISSIONER FOR PATENTS

Box Patent Application Washington, D.C. 20231

ransr nventi				or fi	iling under 35	5 U.S	S.C. 111(a) and 37 C.F.R. 1.5	3(b) is a new utility patent application for an
				ıctı	are of the And	droge	en Receptor Ligand Binding D	Domain
								or =
ınd in	vente	ed by	<u>, </u>		, , , , , , , , , , , , , , , , , , ,			<u>\$</u>
		nn et						
		_						ペラ の の ラ
=							-	
f a C	ONT	INU	ATION A	/PI	PLICATION,	chec	ck appropriate box and supply	y the requisite information:
<u>ا</u> د	Cont	inua	tion []	Divisional		Continuation-in-part (CIP)	of prior application No.:
Which	is a	:						
		inuai	tion [Divisional		Continuation-in-part (CIP)	of prior application No.:
Which			lion [_	Divisional		Continuation in most (OID)	A second section bloom
á	onu	inuat	uon E		Divisional	Ц	Continuation-in-part (CIP)	or prior application No.:
] ≣nclos	sed a	are:						
			_				Application Elements	
j 3 1.	X	Filir	ng fee a	s c	alculated and	l trar	nsmitted as described below	
•	-	_			_			
2.	X	Spe	cificatio	n h	naving		pages and	including the following:
	a.	X	Descri	ptiv	ve Title of the	Inve	ention	
	b.		Cross	Re	ferences to F	Relat	ted Applications (if applicable)
	C.		Staten	ner	nt Regarding	Fede	erally-sponsored Research/D	evelopment (if applicable)
	d.		Refere	enc	e to Microfich	ne Ap	ppendix (if applicable)	
	e.	X	Backg	rou	and of the Inv	entic	on	
	f.	X	Brief S	un	nmary of the	Inver	ntion	
	g.		Brief D	es)	cription of the	e Dra	awings (if drawings filed)	-
	h.	X	Detaile	ed I	Description			
	i.	X	Claim(s):	as Classified	Belo	DW .	
	i.	X			of the Disclos			
	,.	_		'				

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. BMS-0010

Total Pages in this Submission

3.	X	Drawing(s) (when necessary as prescribed by 35 USC 113)						
	a.		Formal	Number of Sheets				
	b.	X	Informal	Number of Sheets 4				
4.	×	oat	h or Declaration					
	a.		Newly executed	original or copy) 🗵 Unexecuted				
	b.	Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional application only)						
	C.	X	With Power of At	torney				
S MANUAL STATE OF THE STATE OF	d.			NVENTOR(S) t attached deleting inventor(s) named in the prior application, 63(d)(2) and 1.33(b).				
3 5. 5.		The Box	Incorporation By Reference (usable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.					
6.		Con	Computer Program in Microfiche (Appendix)					
7 .	×	Nucleotide and/or Amino Acid Sequence Submission (if applicable, all must be included)						
TO THE PARTY OF TH	a.	X	Paper Copy					
: 1000 : 1000 : 1000 : 1000	b.	X	Computer Reada	ble Copy (identical to computer copy)				
	C.	X	Statement Verify	ing Identical Paper and Computer Readable Copy				
				Accompanying Application Parts				
8.		Ass	ignment Papers (d	cover sheet & document(s))				
9.		37 (CFR 3.73(B) State	ment (when there is an assignee)				
10.		Eng	lish Translation D	ocument (if applicable)				
11.		Info	rmation Disclosure	e Statement/PTO-1449				
12.		Pre	Preliminary Amendment					
13.	X	Ack	nowledgment pos	tcard				
14.	X	Cer	tificate of Mailing					
		П	First Class	Express Mail (Specify Label No.): EL603802223US				

Application Elements (Continued)

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. BMS-0010

Total Pages in this Submission

	Accompanying Application Parts (Continued)						
15.		Certified Copy of Priority Document(s) (if foreign priority is claimed)					
16.		Additional Enclosures (please identify below):					
		Request That Application Not Be Published Pursuant To 35 U.S.C. 122(b)(2)					
17.		Pursuant to 35 U.S.C. 122(b)(2), Applicant hereby requests that this patent application not be published pursuant to 35 U.S.C. 122(b)(1). Applicant hereby certifies that the invention disclosed in this application has not and will not be the subject of an application filed in another country, or under a multilateral international agreement, that requires publication of applications 18 months after filing of the application.					
	Warning						
Hayl Had hom He had He		An applicant who makes a request not to publish, but who subsequently files in a foreign country or under a multilateral international agreement specified in 35 U.S.C. 122(b)(2)(B)(i), must notify the Director of such filing not later than 45 days after the date of the filing of such foreign or international application. A failure of the applicant to provide such notice within the prescribed period shall result in the application being regarded as abandoned, unless it is shown to the satisfaction of the Director that the delay in submitting the notice was unintentional.					
		-					
		• -					

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. BMS-0010

Total Pages in this Submission

					-	
i ma Tarana		Fee Calculat	tion and Trai	nsmittal		
For		CLAIMS A	S FILED			
For	#Filed	#Allowed	#Extra	Rate	Fee	
Total Claims	32	- 20 =	12	× \$18.00	\$216.00	
Indep. Claims	8	- 3 =	5	× \$80.00	\$400.00	
Multiple Dependent	Claims (check i	f applicable)			\$0.00	
				BASI	IC FEE \$710.00	
OTHER FEE (speci	fy purpose)				\$0.00	
,				TOTAL FILIN	G FEE \$1,326.00	
A check in the amount of \$1,326.00 to cover the filing fee is enclosed. The Commissioner is hereby authorized to charge and credit Deposit Account No. 12-1086 as described below. A duplicate copy of this sheet is enclosed.						
-	the amount of	as	s filing fee.			
	ny overpayment. any additional fili	ng fees required υ	ınder 37 C.F.	R. 1.16 and 1.17.		
-			at the mailing	g of the Notice of Allowan	ce,	
pursuan	t to 37 C.F.R. 1.3	311(b).	4	Jathles A. June	Wirel	
Dated: October 13,	2000		Lav 66 i Ma Tel	thleen A. Tyrrell, Reg. No. w Offices of Jane Massey I E. Main Street arlton, NJ 08053 : 856-810-1515 x: 856-810-1454		
cc:						

CERTIFICATE OF EXPRESS MAILING

"Express Mail" Label No.EL603802223US Date of Deposit October 13, 2000

I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R 1.10 on the date indicated above and is addressed to the "BOX Sequence", Assistant Commissioner for Patents, Washington, D.C. 20231.

- 1) Patent Application Transmittal Letter (2 copies);
- 2) Application consisting of 78 pages of Specification, including five (5) pages of Claims, and one (1) page of Abstract;
- 3) 4 sheets of Informal Drawings;
- 4) Return Post Card;
- 5) Check in the amount of \$1,326.00;
- 6) Unexecuted Declaration and Power of Attorney;
- 7) Statement to Support Filing and Submission in Accordance with 37 C.F.R. §§1.821-1.825;
- 8) Sequence listing; and
- 9) Diskette containing computer readable copy of Sequence Listing.

Mathlea A June Martheen A. Tyrrell

CRYSTALLOGRAPHIC STRUCTURE OF THE ANDROGEN RECEPTOR LIGAND BINDING DOMAIN

Field of Invention

5

10

15

20

25

30

35

The present invention relates to compositions and crystals of androgen receptor ligand binding domain optionally in complex with its ligand. This invention also relates to methods of using the structure coordinates of the androgen receptor ligand binding domain /ligand complex to solve the structure of similar or homologous proteins or protein complexes. This invention also relates to methods for designing and selecting ligands that bind to the androgen receptor and methods of using such ligands.

Background of the Invention

The androgen receptor (AR) is a member of the steroid nuclearreceptor superfamily of ligand-dependent transcription factors. The binding of androgen to AR initiates the gene activation required for male sex development.

AR is an important target primarily in two drug discovery areas. In oncology drug discovery, inhibitors (antagonists or partial antagonists) of androgen receptor function are useful for treatment of anti-androgen refractory prostate cancer. In metabolic diseases drug discovery, agonists or partial agonists to the androgen receptor in muscle are useful to treat age-related diseases.

As with the other members of the steroid receptor family, AR has several functional domains including a DNA binding domain (DBD), and a 261 residue ligand-binding domain (LBD) (Mw = 30,245 Da) which contains the androgen binding site, and is responsible for switching on the androgen function.

Development of synthetic ligands that specifically bind to androgen receptors has been largely guided by trial and error method of drug design despite the importance of the androgen receptor in physiological processes and medical conditions such as prostate cancer and modulation of reproductive organ modulation. Previously, new ligands specific for androgen receptors were discovered in the absence of information on the three dimensional structure of the androgen receptor with a bound ligand. Before the present invention, researchers were

10

15

20

25

30

essentially discovering androgen receptor ligands by probing in the dark and without the ability to visualize how the amino acids of the androgen receptor held a ligand in its grasp.

Consequently, it would be advantageous to devise methods and compositions for reducing the time required to discover ligands to the androgen receptor, synthesize such compounds and administer such compounds to organisms to modulate physiological processes regulated by the androgen receptor.

The cDNA and amino acid sequences of human and rat androgen receptors have been described (Proc. Natl. Acad. Sci. U.S.A. 1988 85: 7211-7215). However, there have been no crystals reported of any androgen receptor. Thus, x-ray crystallographic analysis of such proteins has not been possible.

We have discovered the first crystal structure of the androgen receptor ligand binding domain (AR-LBD). Our understanding or the androgen receptor structure has allowed for the determination of the ligand binding site for selective androgen receptor modulators (SARMs).

Summary of the Invention

The present invention provides crystals of AR-LBD and crystals of an AR-LBD bound to a ligand, i.e. an AR-LBD/AR-LBD ligand complex. Most preferably the AR-LBD ligand is dihydrotestosterone (DHT). Thus, the present invention is directed to a crystal of an AR-LBD comprising:

- 1) an AR-LBD and an AR-LBD ligand or
- 2) an AR-LBD without an AR-LBD ligand; wherein said crystal diffracts to at least 3 angstrom resolution and has a crystal stability within 5% of its unit cell dimensions. The crystal of AR or AR-LBD preferably has at least 200 amino acid and preferably comprises amino acid sequence 672 to 917 of rat AR or the AR amino acid sequence 672 to 917 of human AR.

The present invention also provides the structure coordinates of the AR-LBD/AR-LBD ligand complex. The complete coordinates are listed in Table A.

The present invention also provides a method for determining at least a portion of the three-dimensional structure of molecules or molecular complexes which contain at least some structurally similar

10

15

20

25

30

features to the androgen receptor ligand binding domain. It is preferred that these molecules or molecular complexes comprise at least a part of the ligand binding site defined by structure coordinates of AR-LBD amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877 and F878 according to Table A, or a mutant or homologue thereof. Since the protein sequences for rat and human AR LBD are identical, the human numbering system was used herein.

The present invention also provides a machine-readable data storage medium which comprises a data storage material encoded with machine readable data defined by the structure coordinates of an AR-LBD/AR-LBD ligand or ligand complex according to Table A or a homologue of the complex.

The present invention further provides a binding site in AR-LBD for an AR-LBD ligand as well as methods for designing or selecting AR modulators including agonists, partial agonists, antagonists, partial antagonists and/or selective androgen receptor modulators (SARMs) of AR using information about the crystal structures disclosed herein.

Brief Description of the Drawing

Figure 1 is a ribbon style drawing of the Androgen Receptor LBD. The substrate DHT is shown as a ball-and-stick figure.

Figure 2 is a comparison of the androgen receptor ligand binding domain with progesterone receptor ligand binding domain.

Figure 3 provides three views of the omit electron density map of dihydrotestosterone (DHT) in the hormone-binding site of AR-LBD. There are hydrogen bonds between the steroid and the side chains of Arg 752 and Asn 705.

Figure 4 is a comparison of the binding of dihydrotestosterone to AR-LBD (top) and of progesterone to PR-LBD (bottom). Note that an additional hydrogen bond interaction would be possible if both the sidechains of both N719 and the progesterone were flipped.

Detailed Description of the Invention

The first crystal structure of the androgen receptor ligand binding domain (AR-LBD) has been determined to 2.0 Å resolution.

Crystals of rat AR-LBD were grown from precipitating solutions containing 0.9 M Sodium Tartrate, 0.1 M Na Hepes, pH 7.5. X-ray diffraction from the crystals have the symmetry and systematic absences of the orthorhombic space group P212121 with unit cell dimensions a = 56.03 Å, b = 66.27 Å, c = 70.38 Å, and one molecule per asymmetric unit (Mathews Volume = $2.16 \text{ Å}^3 \text{ Da}^{-1}$). The structure was determined by the method of molecular replacement using the structure of the Progesterone Receptor LBD (PR-LBD) as the search model.

The complex of AR-LBD with dihydrotestosterone (DHT) shows the mode of binding of the steroid to the receptor in the agonist conformation.

Dihydrotestosterone

15

5

10

The following abbreviations are used throughout the application:

A = Ala = Alanine

V = Val = Valine

20 L = Leu = Leucine

I = Ile = Isoleucine

P = Pro = proline

F = Phe = phenylalanine

W = Trp = Tryptophan

25 M = Met = Methionine

G = Gly = Glycine

S = Ser = Serine

T = Thr = Threonine

C = Cys = Cysteine

30 Y = Tyr = Tyrosine

N =Asn = Asparagine

15

20

25

30

35

Q =Gln = Glutamine

D = Asp = Aspartic Acid

E = GIu = Glutamic Acid

K = Lys = Lysine

5 R = Arg = Arginine

H = His = Histidine

"Atom type" refers to the element whose coordinates have been determined. Elements are defined by the first letter in the column.

"X, Y, Z" crystallographically define the atomic position determined for each atom.

"B" is a thermal factor that measures movement of the atom around its atomic center.

"Occ" is an occupancy factor that refers to the fraction of the molecules in which each atom occupies the position specified by the coordinates. A value of "1" indicates that each atom has the same conformation, i.e., the same position, in all molecules of the crystal.

Additional definitions are set forth in the specification where necessary.

The androgen receptor (AR) described herein is intended to include any polypeptide which has the activity of the naturally occurring androgen receptor . The AR and AR-LBD contemplated herein includes all vertebrate and mammalian forms such as rat, mouse, pig, goat, horse, guinea pig, rabbit, monkey, orangutan and human. Such terms also include polypeptides that differ from naturally occurring forms of AR and AR-LBD by having amino acid deletions, substitutions, and additions, but which retain the activity of AR and AR-LBD, respectively. The crystal structure of the invention preferably contains at least 25%, more preferably at least 50%, more preferably at least 95%, more preferably at least 90%, more preferably at least 95%, more preferably at least 99%, and most preferably all of the coordinates listed in Table A. The crystal of the AR-LBD/AR-LBD ligand of the invention preferably has the following unit cell dimensions in angstroms: $a = 56.03 \pm 5\%$, $b = 60.03 \pm 6$

= $66.27 \pm 5\%$, $c = 70.38 \pm 5\%$ and an orthorhombic space group P212121.

The AR-LBD ligand of this invention is any peptide, peptide mimetic or nonpeptide, including small organic molecules, that is capable of acting as a ligand for AR-LBD. In a preferred embodiment, the AR-LBD ligand is an AR modulator. By "AR modulator" it is meant an agonist or activator, a partial agonist or partial activator, an antagonist or inhibitor, or a partial antagonist or partial inhibitor which demonstrates tissue specific activations of the AR. Such compounds are also referred to herein as SARMs (selective androgen receptor modulators) of the AR-LBD. Examples of preferred agonists include androgens such as dihydrotestosterone.

The peptides referred to herein (e.g., AR, AR-LBD, and the like) may be produced by any well-known method, including synthetic methods, such as solid phase, liquid phase and combination solid phase/liquid phase syntheses; recombinant DNA methods, including cDNA cloning, optionally combined with site directed mutagenesis; and/or purification of the natural products, optionally combined with enzymatic cleavage methods to produce fragments of naturally occurring

Advantageously, the crystallizable compositions provided by this invention are amenable to x-ray crystallography. Thus, this invention also provides the three-dimensional structure of the AR-LBD/AR-LBD ligand complex, particularly the complex of rat AR-LBD with dihydrotestosterone.

The three-dimensional structure of the AR-LBD / dihydrotestosterone complex of this invention is defined by a set of structure coordinates as set forth in Table A. The term "structure coordinates" refers to Cartesian coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of an androgen receptor/dihydrotestosterone complex in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are then used to establish the positions of the individual atoms of the complex.

Those of skill in the art will understand that a set of structure coordinates for a receptor or receptor/ligand complex or a portion

20

25

30

5

10

15

35

10

15

20

25

30

35

thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape.

The variations in coordinates discussed above may be generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates set forth in Table A could be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates; integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.

Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in structure coordinates. If such variations are within an acceptable standard error as compared to the original coordinates, the resulting three-dimensional shape is considered to be the same.

Various computational analyses are therefore necessary to determine whether a molecule or molecular complex or a portion thereof is sufficiently similar to all or parts of the androgen receptor/dihydrotestosterone described above as to be considered the same. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, CA) version 4.1, and as described in the accompanying User's Guide.

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps:

1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures

10

15

20

25

30

35

are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this invention we will define equivalent atoms as protein backbone atoms (N, Cs, C and O) for all conserved residues between the two structures being compared. We will also consider only rigid fitting operations.

When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.

For the purpose of this invention, any molecule or molecular complex that has a root mean square deviation of conserved residue backbone atoms (N, Ca, C, O) of less than 1.5 A when superimposed on the relevant backbone atoms described by structure coordinates listed in Table A are considered identical. More preferably, the root mean square deviation is less than 1.0 Å. In a preferred embodiment of the present invention, the molecule or molecular complex comprises at least a portion of the ligand binding site defined by structure coordinates of AR-LBD amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877 and F878 according to Table A, or a mutant or homologue of said molecule or molecular complex. More preferred are molecules or molecular complexes comprising all or any part of the ligand binding site defined by structure coordinates of AR-LBD amino acids N705, Q711, R752, F764 and T877 according to Table A, or a mutant or homologue of said molecule or molecular complex. Since the protein sequences for rat and human AR LBD are identical, the human numbering system has been used herein.

The term "complex" or "molecular complex" means AR-LBD or a mutant or homologue of AR-LBD in a covalent or non-covalent association with a chemical entity or compound.

For purposes of the present invention, by "at least a portion of" it is meant all or any part of the ligand binding site defined by these structure coordinates.

By "mutant or homologue" as used herein it is meant a molecule or molecular complex having a similar structure and/or sequences to AR-LBD. By "similar structure" it is meant a mutant or homologue having a binding pocket that has a root mean square deviation from the backbone atoms of said AR-LBD amino acids of not more than 1.5 Angstroms. By "similar sequence" it is meant a mutant or homologue having 30%, or more preferably 75%, identity with AR-LBD.

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein or protein complex from the relevant portion of the backbone of the AR portion of the complex as defined by the structure coordinates described herein.

Once the structure coordinates of a protein crystal have been determined they are useful in solving the structures of other crystals.

Thus, in accordance with the present invention, the structure coordinates of an androgen receptor/dihydrotestosterone complex, and in particular a complex, and portions thereof is stored in a machine-readable storage medium. Such data may be used for a variety of purposes, such as drug discovery and x-ray crystallographic analysis or protein crystal.

Accordingly, in one embodiment of this invention is provided a machine-readable data storage medium comprising a data storage material encoded with the structure coordinates set forth in Table A.

One embodiment utilizes System 10 as disclosed in WO 98/11134, the disclosure of which is incorporated herein by reference in its entirety

For the first time, the present invention permits the use of structure-based or rational drug design techniques to design, select, and synthesize chemical entities, including inhibitory and stimulatory compounds that are capable of binding to AR-LBD, or any portion thereof.

20

25

30

35

5

10

15

10

15

20

25

30

35

One particularly useful drug design technique enabled by this invention is iterative drug design. Iterative drug design is a method for optimizing associations between a protein and a compound by determining and evaluating the three-dimensional structures of successive sets of protein/compound complexes.

Those of skill in the art will realize that association of natural ligands or substrates with the binding pockets of their corresponding receptors or enzymes is the basis of many biological mechanisms of action. The term "binding pocket" as used herein, refers to a region of a molecule or molecular complex, that, as a result of its shape, favorably associates with another chemical entity or compound. Similarly, many drugs exert their biological effects through association with the binding pockets of receptors and enzymes. Such associations may occur with all or any parts of the binding pockets. An understanding of such associations will help lead to the design of drugs having more favorable associations with their target receptor or enzyme, and thus, improved biological effects. Therefore, this information is valuable in designing potential ligands or inhibitors of receptors or enzymes, such as inhibitors of AR.

The term "associating with" refers to a condition of proximity between chemical entities or compounds, or portions thereof. The association may be non-covalent -- wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions -- or it may be covalent.

In iterative drug design, crystals of a series of protein/compound complexes are obtained and then the three-dimensional structures of each complex is solved. Such an approach provides insight into the association between the proteins and compounds of each complex. This is accomplished by selecting compounds with inhibitory activity, obtaining crystals of this new protein/compound complex, solving the three dimensional structure of the complex, and comparing the associations between the new protein/compound complex and previously solved protein/compound complexes. By observing how changes in the compound affected the protein/compound associations, these associations may be optimized.

10

15

20

30

35

In some cases, iterative drug design is carried out by forming successive protein-compound complexes and then crystallizing each new complex. Alternatively, a pre-formed protein crystal is soaked in the presence of an inhibitor, thereby forming a protein/compound complex and obviating the need to crystallize each individual protein/compound complex.

As used herein, the term "soaked" refers to a process in which the crystal is transferred to a solution containing the compound of interest.

The structure coordinates set forth in Table A can also be used to aid in obtaining structural information about another crystallized molecule or molecular complex. This may be achieved by any of a number of well-known techniques, including molecular replacement.

The structure coordinates set forth in Table A can also be used for determining at least a portion of the three-dimensional structure of molecules or molecular complexes which contain at least some structurally similar features to AR. In particular, structural information about another crystallized molecule or molecular complex may be obtained. This may be achieved by any of a number of well-known techniques, including molecular replacement.

Therefore, in another embodiment this invention provides a method of utilizing molecular replacement to obtain structural information about a crystallized molecule or molecular complex whose structure is unknown comprising the steps of:

- a) generating an X-ray diffraction pattern from said crystallized molecule or molecular complex;
 - b) applying at least a portion of the structure coordinates set forth in Table A to the X-ray diffraction pattern to generate a three-dimensional electron density map of the molecule or molecular complex whose structure is unknown; and
 - c) using all or a portion of the structure coordinates set forth in Table A to generate homology models of AR-LBD or any other nuclear hormone receptor ligand binding domain.

Preferably, the crystallized molecule or molecular complex is obtained by soaking a crystal of this invention in a solution.

10

15

20

25

30

35

By using molecular replacement, all or part of the structure coordinates of the AR-LBD/AR-LBD ligand complex provided by this invention or molecular complex whose structure is unknown more quickly and efficiently than attempting to determine such information ab initio.

Molecular replacement provides an accurate estimation of the phases for an unknown structure. Phases are a factor in equations used to solve crystal structures that can not be determined directly. Obtaining accurate values for the phases, by methods other than molecular replacement, is a time-consuming process that involves iterative cycles of approximations and refinements and greatly hinders the solution of crystal structures. However, when the crystal structure of a protein containing at least a homologous portion has been solved, the phases from the known structure provide a satisfactory estimate of the phases for the unknown structure.

Thus, this method involves generating a preliminary model of a molecule or molecular complex whose structure coordinates are unknown, by orienting and positioning the relevant portion of the AR-LBD/AR-LBD ligand complex according to Table A within the unit cell of the crystal of the unknown molecule or molecular complex so as best to account for the observed X-ray diffraction pattern of the crystal of the molecule or molecular complex whose structure is unknown. Phases can then be calculated from this model and combined with the observed Xray diffraction pattern amplitudes to generate an electron density map of the structure whose coordinates are unknown. This, in turn, can be subjected to any well-known model building and structure refinement techniques to provide a final, accurate structure of the unknown crystallized molecule or molecular complex [E. Lattman, "Use of the Rotation and Translation Functions", in Meth. Enzymol., 115, pp. 55-77 (1985); M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Set., No. 13, Gordon & Breach, New York (1972)].

The structure of any portion of any crystallized molecule or molecular complex, or mutant, homologue or orphan receptor that is sufficiently homologous to any portion of the AR-LBD/AR-LBD ligand complex can be solved by this method. Along with the aforementioned AR, there also exist a number of AR for which the activating or

10

15

20

25

30

35

deactivating ligands may not be characterized. These proteins are classified as AR due to strong sequence homology to other AR, and are known as orphan receptors.

The structure coordinates are also particularly useful to solve the structure of crystals of AR-LBD/AR-LBD ligand co-complexed with a variety of chemical entities. This approach enables the determination of the optimal sites for interaction between chemical entities, including interaction of candidate AR inhibitors with the complex. For example, high resolution X-ray diffraction data collected from crystals exposed to different types of solvent allows the determination of where each type of solvent molecule resides. Small molecules that bind tightly to these sites can then be designed and synthesized and tested for their AR inhibition activity.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 1.5-3 A resolution X-ray data to an R value of about 0.20 or less using computer software, such as X-PLOR [Yale University, 1992, distributed by Molecular Simulations, Inc.; see, e.g., Blundell & Johnson, supra; Meth. Enzymol., vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)]. This information may thus be used to optimize known AR agonists, partial agonists, antagonists, partial antagonists and SARMS, and more importantly, to design new AR agonists/antagonists.

Accordingly, the present invention is also directed to a binding site in AR-LBD for an AR-LBD ligand in which a portion of AR-LBD ligand is in van der Walls contact or hydrogen bonding contact with at least one of the following residues: V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD. For purposes of this invention, by AR-LBD binding site it is also meant to include mutants or homologues thereof. In a preferred embodiment, the mutants or homologues have at least 25% identity, more preferably 50% identity, more preferably 75% identity, and most preferably 95% identity to residues V685, L700, L701, S702, S703, L704, N705, E706, L707,

10

15

20

25

30

35

G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD binding sites.

The present invention is also directed to a machine-readable data storage medium, comprising a data storage material encoded with machine readable data, wherein the data is defined by the structure coordinates of an AR-LBD/AR-LBD ligand according to Table A or a homologue of said complex, wherein said homologue comprises backbone atoms that have a root mean square deviation from the backbone atoms of the complex of not more than 3.0Å. Preferably, the machine-readable data storage medium, according to the invention, is wherein said molecule or molecular complex is defined by the set of structure coordinates for AR-LBD/AR-LBD ligand according to Table A, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 2.0 Å. In a preferred embodiment the machine-readable data storage medium comprises a data storage material encoded with a first set of machine readable data comprising a Fourier transform of at least a portion of the structural coordinates for an AR-LBD/AR-LBD ligand according to Table A; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, said first set of data and said second set of data.

The present invention also provides for computational methods using three dimensional models of the androgen receptor that are based on crystals of AR-LBD/AR-LBD ligand complex. Generally, the computational method of designing an androgen receptor ligand determines which amino acid or amino acids of the AR-LBD interact with a chemical moiety (at least one) of the ligand using a three dimensional model of a crystallized protein comprising the AR-LBD with a bound ligand, and selecting a chemical modification (at least one) of the

10

15

20

35

chemical moiety to produce a second chemical moiety with a structure that either decreases or increases an interaction between the interacting amino acid and the second chemical moiety compared to the interaction between the interacting amino acid and the corresponding chemical moiety on the natural hormone.

The computational methods of the present invention are for designing androgen receptor synthetic ligands using such crystal and three dimensional structural information to generate synthetic ligands that modulate the conformational changes of the androgen receptor's LBD. These computational methods are particularly useful in designing an agonist, partial agonist, antagonist or partial antagonist or SARMs to the androgen receptor, wherein the agonist, partial agonist, antagonist or partial antagonist or SARMS has an extended moiety that prevents any one of a number of ligand-induced molecular events that alter the receptor's influence on the regulation of gene expression, such as preventing the normal coordination of the activation domain observed for a naturally occurring ligand or other ligands that mimic the naturally occurring ligand, such as an agonist. As described herein, synthetic ligands of the androgen receptor will be useful in modulating androgen receptor activity in a variety of medical conditions.

AR is known to comprise various domains as follows:

- 1) a variable amino-terminal domain;
- 2) a highly conserved DNA-binding domain (DBD); and

receptors from which the chimerica were generated.

- 3) a less conserved carboxyl-terminal ligand-binding domain (LBD).
- 25 This modularity permits different domains of each protein to separately accomplish different functions, although the domains can influence each other. The separate function of a domain is usually preserved when a particular domain is isolated from the remainder of the protein. Using conventional protein chemistry techniques a modular domain can sometimes be separated from the parent protein. Using conventional molecular biology techniques each domain can usually be separately expressed with its original function intact or chimerles of two different nuclear receptors can be constructed, wherein the chimetics retain the properties of the individual functional domains of the respective nuclear

Amino Terminal Domain

The amino terminal domain is the least conserved of the three domains. This domain is involved in transcriptional activation and in some cases its uniqueness may dictate selective receptor-DNA binding and activation of target genes by specific receptor isoforms. This domain can display synergistic and antagonistic interactions with the domains of the LBD. For example, studies with mutated and/or deleted receptors show positive cooperativity of the amino and carboxy terminal domains. In some cases, deletion of either of these domains will abolish the receptor's transcriptional activation functions.

10 DNA-Binding Domain

5

15

20

25

30

35

The DBD is the most conserved domain. The DBD contains two perpendicularly oriented a-helixes that extend from the base of the first and second zinc fingers. The two zinc fingers function in concert along with non-zinc finger residues to direct nuclear receptors to specific target sites on DNA and to align receptor homodimer or heterodimer interfaces. Various amino acids in DBD influence spacing between two half-sites for receptor dimer binding.

Ligand or AR Binding Domain

The LBD is the second most highly conserved domain. Whereas integrity of several different LBD sub-domains is important for ligand binding, truncated molecules containing only the LBD retain normal ligand-binding activity. This domain also participates in other functions, including dimerization, nuclear translocation and transcriptional activation. Importantly, this domain is the binding site for ligands, i.e. AR modulators, and undergoes ligand-induced conformational changes as detailed herein.

As described herein, the LBD of AR can be expressed, crystallized, its three dimensional structure determined with a ligand bound (either using crystal data from the same receptor or a different receptor or a combination thereof), and computational methods used to design ligands to its LBD, particularly ligands that contain an extension moiety that coordinates the activation domain of AR.

Once a computationally designed ligand (CDL) is synthesized, it can be tested using assays to establish its activity as an agonist, partial agonist, antagonist or partial antagonist or SARM, and affinity, as described herein. After such testing, the CDLs can be further refined by

10

15

20

25

30

35

generating LBD crystals with a CDL bound to the LBD. The structure of the CDL can then be further refined using the chemical modification methods described herein for three dimensional models to improve the activity or affinity of the CDL and make second generation CDLs with improved properties, such as that of a super agonist or antagonist.

Typically AR-LBD is purified to homogeneity for crystallization. Purity of AR-LBD is measured with SDS-PAGE, mass spectrometry and hydrophobic HPLC. The purified AR for crystallization should be at least 97.5 % pure or 97.5%, preferably at least 99.0% pure or 99.0% pure, more preferably at least 99.5% pure or 99.5% pure.

Initially purification of the unliganded receptor can be obtained by conventional techniques, such as hydrophobic interaction chromatography (HPLC), ion exchange chromatography (HPLC), and heparin affinity chromatography.

To achieve higher purification for improved crystals of AR, it will be desirable to ligand shift purify the nuclear receptor using a column that separates the receptor according to charge, such as an ion exchange or hydrophobic interaction column, and then bind the eluted receptor with a ligand, especially an agonist or partial agonist. The ligand induces a change in the receptor's surface charge such that when rechromatographed on the same column, the receptor then elutes at the position of the liganded receptor are removed by the original column run with the unliganded receptor. Usually saturating concentrations of ligand are used in the column and the protein can be preincubated with the ligand prior to passing it over the column.

More recently developed methods involve engineering a "tag" such as with histidine placed on the end of the protein, such as on the amino terminus, and then using a nickle chelation column for purification, Janknecht R., Proc. Natl. Acad.Sci. USA Vol 88:8972-8976 (1991) incorporated by reference.

To determine the three dimensional structure of a AR-LBD, it is desirable to co-crystalize the LBD with a corresponding LBD ligand.

Typically purified AR-LBD is equilibrated at a saturating concentration of ligand at a temperature that preserves the integrity of the protein. Ligand equilibration can be established between 2 and 37° C, although the receptor tends to be more stable in the 2-20° C range.

10

15

20

25

30

35

Preferably crystals are made with the hanging drop methods. Regulated temperature control is desirable to improve crystal stability and quality. Temperatures between 4 and 25°C are generally used and it is often preferable to test crystallization over a range of temperatures. It is preferable to use crystallization temperatures from 18 to 25°C, more preferably 20 to 23°C, and most preferably 22°C.

Ligands that interact with AR can act as an agonist, partial agonist, antagonist or partial antagonist or SARM based on what ligand-induced conformational changes take place.

Agonists or partial agonists induce changes in receptors that place them in an active conformation that allows them to influence transcription, either positively or negatively. There may be several different ligand-induced changes in the receptor's conformation.

Antagonists or partial antagonists bind to receptors, but fail to induce conformational changes that alter the receptor's transcriptional regulatory properties or physiologically teleram conformations. Binding of an antagonist or partial antagonist can also block the binding and therefore the actions of an agonist or partial agonist.

Partial agonists, or partial antagonists, bind to receptors and induce only part of the changes in the receptors that are induced by agonists or antagonists, respectively. The differences can be qualitative or quantitative. Thus, a partial agonist or partial antagonist may induce some of the conformation changes induced by agonists or antagonists, respectively, but not others, or it may only induce certain changes to a limited extent.

As described herein, the unliganded receptor is in a configuration that is either inactive, has some activity or has repressor activity. Binding of agonist ligands induces conformational changes in the receptor such that the receptor becomes more active, either to stimulate or repress the expression of genes. The receptors may also have non-genomic actions, some of the known types of changes and/or the sequelae of these are listed herein.

Heat shock protein binding domains present a region for binding to the LBD and can be modulated by the binding of a ligand to the LBD. Consequently, an extended chemical moiety (or more) from the ligand that stabilizes the binding or comact of the heat shock protein binding

10

15

20

25

30

domain with the LBD can be designed. Typically such chemical moieties will extend past and away from the molecular recognition domain on the ligand and usually past the buried binding cavity of the ligand.

Ligand binding by the receptor is a dynamic process, which regulates receptor function by inducing an altered conformation.

The three-dimensional structure of the liganded AR receptor will greatly aid in the development of new AR synthetic ligands. In addition, AR is overall well suited to modern methods including three-dimensional structure elucidation and combinatorial chemistry such as those disclosed in EP 335 628, U.S. patent 5,463,564, which are incorporated herein by reference. Computer programs that use crystallography data when practicing the present invention will enable the rational design of ligand to AR. Programs such as RASMOL can be used with the atomic coordinates from crystals generated by practicing the invention or used to practice the invention by generating three dimensional models and/or determining the structures involved in ligand binding. Computer programs such as INSIGHT and GRASP allow for further manipulation and the ability to introduce new structures. In addition, high throughput binding and bioactivity assays can be devised using purified recombinant protein and modern reporter gene transcription assays described herein and known in the art in order to refine the activity of a CDL.

Generally the computational method of designing an AR synthetic ligand comprises two steps:

- 1) determining which amino acid or amino acids of AR- LBD interacts with a first chemical moiety (at least one) of the ligand using a three dimensional model of a crystallized protein comprising an AR-LBD with a bound ligand; and
- 2) selecting a chemical modifications (at least one) of the first chemical moiety to produce a second chemical moiety with a structure to either decrease or increase an interaction between the interacting amino acid and the second chemical moiety compared to the interaction between the interacting amino acid and the first chemical moiety.
- Preferably the method is carried out wherein said three dimensional model is generated by comparing isomorphous ligand derivatives to produce improved phasing. Further preferred is wherein said method

10

15

20

25

30

35

comprises determining a change in interaction between said interacting amino acid and said ligand after chemical modification of said first chemical moiety, especially wherein said three dimensional model is generated by comparing isomorphous ligand derivatives to produce improved phasing. Also preferred is wherein said selecting uses said first chemical moiety that interacts with at least one of the interacting amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906.

As shown herein, interacting amino acids form contacts with the ligand and the center of the atoms of the interacting amino acids are usually 2 to 4 angstroms away from the center of the atoms of the ligand. Generally these distances are determined by computer as discussed herein and in McRee 1993, however distances can be determined manually once the three dimensional model is made. See also Wagner et al., Nature 378(6558):670-697 (1995) for stereochemical figures of -three dimensional models. More commonly, the atoms of the ligand and the atoms of interacting amino acids are 3 to 4 angstroms apart. The invention can be practiced by repeating steps I and 2 to refine the fit of the ligand to the LBD and to determine a better ligand, such as an agonist, partial agonist, antagonist or partial antagonist or SARM. The three dimensional model of AR can be represented in two dimensions to determine which amino acids contact the ligand and to select a position on the ligand for chemical modification and changing the interaction with a particular amino acid compared to that before chemical modification. The chemical modification may be made using a computer, manually using a two dimensional representation of the three dimensional model or by chemically synthesizing the ligand. The ligand can also interact with distant amino acids after chemical modification of the ligand to create a new ligand. Distant amino acids are generally not in contact with the ligand before chemical modification. A chemical

modification can change the structure of the ligand to make as new ligand that interacts with a distant amino acid usually at least 4.5

10

15

20

25

30

35

angstroms away from the ligand, preferably wherein said first chemical moiety is 6 to 12 angstroms away from a distant amino acid. Often distant amino acids will not line the surface of the binding cavity for the ligand, they are too far away from the ligand to be part of a pocket or binding cavity. The interaction between a LBD amino acid and an atom of an LBD ligand can be made by any force or attraction described in nature. Usually the interaction between the atom of the amino acid and the ligand will be the result of a hydrogen bonding interaction, charge interaction, hydrophobic interaction, van der Waals interaction or dipole interaction. In the case of the hydrophobic interaction it is recognized that this is not a per se interaction between the amino acid and ligand, but rather the usual result, in part, of the repulsion of water or other hydrophilic group from a hydrophobic surface. Reducing or enhancing the interaction of the LBD and a ligand can be measured by calculating or testing binding energies, computationally or using thermodynamic or kinetic methods as known in the art.

Chemical modifications will often enhance or reduce interactions of an atom of a LBD amino acid and an atom of an LBD ligand. Steric hindrance will be a common means of changing the interaction of the LBD binding cavity with the activation domain.

The present invention also provides methods for identifying compounds that modulate androgen receptor activity. Various methods or combinations thereof can be used to identify these compounds. For example, test compounds can be modeled that fit spatially into the AR-LBD as defined by structure coordinates according to Table A, or using a three-dimensional structural model of AR-LBD, mutant AR-LBD or AR-LBD homolog or portion thereof. Structure coordinates of the ligand binding site, in particular amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 can also be used to identify structural and chemical features. Identified structural or chemical features can then be employed to design or select compounds as potential AR modulators. By structural and chemical

10

15

20

25

30

features it is meant to include, but is not limited to, van der Waals interactions, hydrogen bonding interactions, charge interaction, hydrophobic bonding interaction, hydrophobic interaction and dipole interaction. Alternatively, or in conjunction, the three-dimensional structural model or the ligand binding site can be employed to design or select compounds as potential AR modulators. Compounds identified as potential AR modulators can then be synthesized and screened in an assay characterized by binding of a test compound to the AR-LBD. Examples of assays useful in screening of potential AR modulators include, but are not limited to, screening in silico, in vitro assays and high throughput assays. Finally, these methods may also involve modifying or replacing one or more amino acids from AR-LBD such as V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.

A preferred method of the invention can be described as a computational method of designing an androgen receptor antagonist from an androgen receptor agonist comprising:

- 1) determining a structure of a molecular recognition domain of said agonist using a three dimensional model of a crystallized protein comprising an AR-LBD, and
- 2) selecting at least one chemical modification of said agonist that provides a ligand structure that extends beyond a binding site for said agonist and in the direction of at least one protein domain important in AR biological function.

Another preferred method of the invention can be described as a computational method of designing a selective androgen receptor modulator such as an androgen receptor super agonist or antagonist comprising:

 determining at least one interacting amino acid of an AR-LBD that interacts with at least one first chemical moiety of said ligand using a three dimensional model of a crystallized protein comprising AR-LBD with a bound ligand, and

35

10

15

20

25

30

35

2) selecting at least one chemical modification of said first chemical moiety to produce a second chemical moiety with a structure to reduce or enhance an interaction between said interacting amino acid and said second chemical moiety compared to said interaction between said interacting amino acid and said first chemical moiety.

However, as will be understood by those of skill in the art upon this disclosure, other structure based design methods can be used. Various computational structure based design methods have been disclosed in the art.

For example, a number computer modeling systems are available in which the sequence of the AR-LBD and the AR-LBD structure (i.e., atomic coordinates of AR-LBD and/or the atomic coordinates of the active site, the bond and dihedral angles, and distances between atoms in the active site such as provided in Table A) can be input. This computer system then generates the structural details of the site in which a potential AR modulator binds so that complementary structural details of the potential modulators can be determined. Design in these modeling systems is generally based upon the compound being capable of physically and structurally associating with AR-LBD. In addition, the compound must be able to assume a conformation that allows it to associate with AR-LBD. Some modeling systems estimate the potential inhibitory or binding effect of a potential AR modulator prior to actual synthesis and testing.

Methods for screening chemical entities or fragments for their ability to associate with AR-LBD are also well known. Often these methods begin by visual inspection of the active site on the computer screen. Selected fragments or chemical entities are then positioned with the AR-LBD. Docking is accomplished using software such as QUANTA and SYBYL, following by energy minimization and molecular dynamics with standard molecular mechanic forcefields such as CHARMM and AMBER. Examples of computer programs which assist in the selection of chemical fragment or chemical entities useful in the present invention include, but are not limited to, GRID (Goodford, P.J. J. Med. Chem. 1985 28:849-857), AUTODOCK (Goodsell, D.S. and Olsen, A.J. Proteins,

10

15

20

25

30

35

Structure, Functions, and Genetics 1990 8:195-202), and DOCK (Kunts et al. J. Mol. Biol. 1982 161:269-288).

Upon selection of preferred chemical entities or fragments, their relationship to each other and AR-ABD can be visualized and the entities or fragments can be assembled into a single potential modulator. Programs useful in assembling the individual chemical entities include, but are not limited to CAVEAT (Bartlett et al. Molecular Recognition in Chemical and Biological Problems Special Publication, Royal Chem. Soc. 78, 182-196 (1989)) and 3D Database systems (Martin, Y.C. J. Med. Chem. 1992 35:2145-2154).

Alternatively, compounds may be designed *de novo* using either an empty active site or optionally including some portion of a known inhibitor. Methods of this type of design include, but are not limited to LUDI (Bohm H-J, J. Comp. Aid. Molec. Design 1992 6:61-78) and LeapFrog (Tripos Associates, St. Louis. MO).

The present invention is also directed to an AR-LBD selective androgen receptor modulator (SARM), in particular an agonist or antagonist or partial agonist or partial antagonist, identified by a computational process of the invention.

The present invention is further directed to a method for treating prostate cancer comprising administering an effective amount of an AR modulator, preferably an antagonist or partial antagonist, identified by a computational process of the invention.

The present invention is also direct to a method for treating an age related disease comprising administering an effective amount of an AR modulator, preferably an agonist or partial agonist, identified by a computational process of the invention, preferably wherein said age related disease is osteoporosis, muscle wasting or loss of libido.

Compounds identified as agonists, partial agonists, antagonists, partial antagonists or SARMs by the methods disclosed herein which are active when given orally can be formulated as liquids for example syrups, suspensions or emulsions, tablets, capsules and lozenges. A liquid composition will generally consist of a suspension or solution of the compound in a suitable liquid carrier(s), for example ethanol, glycerin, sorbitol, non-aqueous solvent such as polyethylene glycol, oils or water, with a suspending agent, preservative, surfactant, wetting agent,

15

20

25

30

35

flavoring or coloring agent. Alternatively, a liquid formulation can be prepared from a reconstitutable powder. For example a powder containing active compound, suspending agent, sucrose and a sweetener can be reconstituted with water to form a suspension; and a syrup can be prepared from a powder containing active ingredient, sucrose and a sweetener. A composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid compositions. Examples of such carriers include magnesium stearate, starch, lactose, sucrose, microcrystalline cellulose, binders, for example polyvinylpyrrolidone. The tablet can also be provided with a color film coating, or color included as part of the carrier(s). In addition, active compound can be formulated in a controlled release dosage form as a tablet comprising a hydrophilic or hydrophobic matrix. A composition in the form of a capsule can be prepared using routine encapsulation procedures, for example by incorporation of active compound and excipients into a hard gelatin capsule. Alternatively, a semi-solid matrix of active compound and high molecular weight polyethylene glycol can be prepared and filled into a hard gelatin capsule; or a solution of active compound in polyethylene glycol or a suspension in edible oil, for example liquid paraffin or fractionated coconut oil can be prepared and filled into a soft gelatin capsule. Compounds identified by the processes described herein which are active when given parenterally can be formulated for intramuscular or intravenous administration. A typical composition for intra-muscular administration will consist of a suspension or solution of active ingredient in an oil, for example arachis oil or sesame oil. A typical composition for intravenous administration will consist of a sterile isotonic aqueous solution containing, for example active ingredient, dextrose, sodium chloride, a co-solvent, for example polyethylene glycol and, optionally, a chelating agent, for example ethylenediaminetetracetic acid and an anti-oxidant, for example, sodium metabisulphite. Alternatively, the solution can be freeze dried and then reconstituted with a suitable solvent just prior to administration. Identified compounds which are active on rectal administration can be formulated as suppositories. A typical suppository formulation will generally consist of active ingredient with a binding and/or lubricating agent such as a gelatin or cocoa butter or other low

melting vegetable or synthetic wax or fat. Identified compounds which are active on topical administration can be formulated as transdermal compositions. Such compositions include, for example, a backing, active compound reservoir, a control membrane, liner and contact adhesive.

The typical daily dose of a varies according to individual needs, the condition to be treated and with the route of administration. Suitable doses are in the general range of from 0.001 to 10 mg/kg bodyweight of the recipient per day.

The following examples are to illustrate the invention, but should not be interpreted as a limitation thereon.

Examples

5

10

15

20

25

30

35

Cloning, Expression and Purification of the Androgen Receptor Ligand-Binding Domain

The rat androgen receptor (rAR) ligand-binding domain (LBD) cDNA, from amino acid 646 to 901, was cloned from a rat prostate cDNA library (Clontech) by PCR. The primers used were CATATGATTGAAGGCTATGAATGTCAACCTATCTTT (SEQ ID NO:3) and TCACTGTGTGTGGAAATAGATGGG (SEQ ID NO:4). The rat AR LBD was expressed as a fusion protein driven by the T7 promoter of pET28b vector (Novagen) to include an N-terminal polyhistidine tag and a thrombin cleavage site. The replacement of T877 for A (the LNCaP mutation) in this rAR LBD expression construct was performed with the QuickChange Site-Directed Mutagenesis kit (STRATAGENE). Dihydrotestosterone (DHT) was included in the E. coli (BL21-DE3) fermentation medium at a concentration of 0.05 mM. Induction with 0.4 mM isopropyl-β-D-thiogalactopyranoside was allowed to proceed for 16 hours at 20°C in M9 minimal media supplemented with casamino acids (Difco) and trace minerals, and pellets were stored at -70 °C. A total of 6-9 mg of recombinant AR LBD was isolated from a 15 gram cell pellet following sonication and chromatography on a nickel-chelate resin. Polyhistidine-tagged AR LBD of approximately 90% purity eluted at 0.45 M imidazole in a gradient of 0.05-1.0 imidazole. This material was quantitatively cleaved at an engineered site for thrombin recognition, followed by chromatography on benzamidine sepharose (Pharmacia) to remove the serine protease, with a 70% recovery. The final sample containing the sequence Gly-Ser-His-Met at the N-terminus followed by

residues 646-901 of the rat (664 – 919 in the human) AR LBD protein, was concentrated for crystallography to 2 mg/ml in 20 mM Tris (pH 7.5), 0.5 M NaCl, 10% glycerol, 1 mM EDTA and 1 mM DTT.

The sequence of the rat Androgen Receptor LBD (AR), as cloned, with the secondary structural features marked. For comparison, the aligned sequence of the Progesterone Receptor LBD (PR) is given. Residues involved in androgen binding are marked (*). Residues which are disordered in the crystal structure are underlined. The AR sequence is SEQ ID NO:1. The PR sequence is SEQ ID NO:2.

```
10
     -H1--
                            |-----H3-----
     660 GSHMIEGYECQPIFLNVLEAIEPGVVCAGHDNNQPDSFAALLSSLNELGE
                                                           AR
             GQDIQLIPPLINLLMSIEPDVIYAGHDNTKPDTSSSLLTSLNQLGE
15
                            |-----H4/5-----|
     710 ROLVHVVKWAKALPGFRNLHVDDOMAVIOYSWMGLMVFAMGWRSFTNVNS
                                                           AR
     724 RQLLSVVKWSKSLPGFRNLHIDDQITLIQYSWMSLMVFGLGWRSYKHVSG
20
           SSSS SSS |-H6|
                               |----H7----|
                                                  |---H8--
     760 RMLYFAPDLVFNEYRMHKSRMYSQCVRMRHLSQEFGWLQITPQEFLCMKA
                                                           AR
     774 QMLYFAPDLILNEQRMKESSFYSLCLTMWQIPQEFVKLQVSQEEFLCMKV
25
                       |----H9----|
     810 LLLFSIIPVDGLKNQKFFDELRMNYIKELDRIIACKRKNPTSCSRRFYQL
                                                           AR
     824 LLLLNTIPLEGLRSQTQFEEMRSSYIRELIKAIGLRQKGVVSSSQRFYQL
         ---H10/11----- | |--|
                                        |----H12----|
30
     860 TKLLDSVOPIARELHOFTFDLLIKSHMVSVDFPEMMAEIISVOVPKILSG
     874 TKLLDNLHDLVKQLHLYCLNTFIQSRALSVEFPEMMSEVIAAQLPKILAG
         SSS
     910 KVKPIYFHTO
                    AR
35
     924 MVKPLLFHK
                    PR
```

Crystallization

40

45

The AR-LBD - Dihydrotestosterone (DHT) complex was crystallized at 20° C by vapor diffusion in the hanging-drop mode. In the crystallization trials, the protein complex as obtained from MMB&B was used without any further purification. In the initial trial to obtain crystallization conditions, a sparse matrix crystallization screen was done with the Crystal Screens 1 and 2 (Hampton Research). For each crystallization trial, a 2 µl drop was prepared by mixing 1 µl of purified protein (1.9 mg ml⁻¹) with an equal volume of reservoir solution. The reservoir contained 1.0 ml of the precipitating solution. Small crystals were obtained in two days from six of the drops (table 1).

Table 1: Crystallization Conditions

20

25

30

35

	Screen/#	Precipitating Solution	Result
	1/16	1.5 M Li Sulfate, 0.1M Na Hepes, pH 7.5	Small rods
	1/29	0.8 M Na/K Tartrate, 0.1M Na Hepes, pH 7.5	Larger rods
	1/30	2% v/v PEG 400, 2.0 M Am Sulfate,	
5		0.1M Na Hepes, pH 7.5	Small cubes
	2/20	1.6 M Mg Sulfate, 0.1M MES, pH 6.5	Small crystallites
	2/32	1.6 M Am Sulfate, 0.1 M Na Cl,	
		0.1 M Hepes, pH 7.5	Small rods
	2/42	12% v/v Glycerol, 1.5 M Am Sulfate,	
10		0.1 M Tris, pH 8.5	Small rods

The largest single crystal, measuring $0.05 \text{ mm} \times 0.04 \text{ mm} \times 0.26 \text{mm}$, was obtained from Crystal Screen 1, solution # 29 (0.8 M Na/K Tartrate, 0.1M Na Hepes, pH 7.5). This crystal was subsequently used in the initial data collection run (as described below).

Optimization of the crystallization condition was done using a Cyperlab C-200 automated crystallization robotic workstation. A crystallization trial was performed using a 24-step linear gradient from 0.6 M to 1.26 M Na tartrate, 100 Mm Hepes, pH 7.5 (Note: The optimization screen used sodium rather than sodium/potassium tartrate). The largest, rod shaped crystal, with dimensions 0.09 mm x 0.09 mm x 0.20mm, was obtained at 0.887 M Na Tartrate. This crystal was used in the second data collection run (as described below).

Data Collection and Reduction

For the initial X-ray experiment, the crystal from the initial crystallization screen was flash cooled by dipping it in a cryoprotectant solution containing the precipitating solution (0.8 M Na/K Tartrate, 0.1M Na Hepes, pH 7.5) with 250mm NaCl and 20% Glycerol added and then placed it in a cold stream at 100° K.

For data set 1, X-ray diffraction data were collected with an R-Axis II imaging plate detector. The radiation was generated from a Rigaku RU-200 rotating at 5 kw power with a fine focus filament (0.3 x 3.0mm) was monchromated (Cu K α) and intensified by focusing with Yale mirrors (Molecular Structure Corporation). The crystal diffracted to better than 2.4 Å resolution. Autoindexing and processing of the measured intensity data was carried out with the HKL software package (Otwinoski, L. (1993) in CCP4 Study Weekend, Data Collection and

15

20

25

30

Processing (Sawyer, L., Issacs, N., and Bailey, S., Eds.) pp 56-62, SERC Daresbury Laboratory, Warrington, U.K). X-ray diffraction from the crystals have the symmetry and systematic absences of the orthorhombic space group P212121 with unit cell dimensions a = 56.03 Å, b = 66.27 Å, c = 70.38 Å, and one molecule per asymmetric unit (Mathews Volume = 2.16 Å 3 Da⁻¹).

A second X-ray diffraction data set (data set 2) was collected at the IMCA-CAT beamline (sector 17ID) at the Advanced Photon Source synchrotron at Argonne, II. The crystal from the optimization screen described above, was flash-cooled by placing it in the reservoir solution (0.877 M Na Tartrate, 0.1M Na Hepes, pH 7.5) with 250mm NaCl and 20% Glycerol added, and then placing it in a cold stream at 100° K. The data were collected with a Bruker 2x2 mosaic CCD detector. The crystal diffracted to better than 2.0 Å. Autoindexing and processing of the measured intensity data was carried out with the HKL2000 software package (Otwinoski, L. (1993) in CCP4 Study Weekend, Data Collection and Processing (Sawyer, L., Issacs, N., and Bailey, S., Eds.) pp 56-62, SERC Daresbury Laboratory, Warrington, U.K.). The data collection and processing statistics for both data sets are summarized in table 2.

Structure Determination (Molecular Replacement)

The structure was determined by the method of molecular replacement with the program AmoRe (Navaza, J. (1994) AmoRe: an automated package for molecular replacement. Acta Cryst. D50, 157-163). The Progesterone Receptor ligand binding domain (PR-LBD), which has 54% sequence identity and 76% sequence homology to AR-LBD, was used as the search model. The atomic coordinates of PR-LBD (Protein Data Bank reference code 1A28) by Williams & Sigler (Nature 1998 393, 391) were unmodified except for the removal of the ligand and solvent molecules. A second molecular replacement search was performed with a theoretical model for the AR-LBD provided by the MMS/CADD group (table 3). The PR-LBD structure gave a slightly better solution than the AR-model (1.7 σ vs.1.3 σ above background) and was used in the subsequent refinement, although both structures gave equivalent results with no molecular interpenetration.

	Table 2: Data Collection a	nd Processing	
		Data Set I	Data Set II
	Date	5/19/99	6/17/99
	Source/Detector	Rigaku RU-200	IMCA/APS 17ID
5	Detector	R-axis II	Bruker 2x2
	Wavelength	Cu Kα (1.54 Å)	1.00 Å
	Frames	364	400
	$\Delta\Phi$	0.5°	0.5°
	Crystal to plate distance	150 mm	135 mm
10	Time/frame	20 min	1 sec
	Number of Observations	209,891	416,207
	Data Reduction Program	HKL.	HKL2000
	Unique reflections	10,824	18,308
	Reflections Used	10,114	16,862
15	Resolution	2.4 Å (2.5-2.4 Å)	2.0 Å (2.1-2.0 Å)
	Completences	03 80/ (71 60/)	02 6 % (72 0 %)

5 Resolution 2.4 A (2.5-2.4 A) 2.0 A (2.1-2.0 A)

Completeness 93.8% (71.6%) 92.6 % (73.0 %)

Multiplicity 6.3 7.3

Mosiacity 0.502 0.332

Rsym (on I) 4.2 % (17.5%) 10.1 % (25.6%)
20 Space Group P212121 P212121

 Space Group
 P212121
 P212121

 a
 56.09 Å
 56.08 Å

 b
 66.43 Å
 65.76 Å

 c
 70.54 Å
 70.51 Å

 Wilson B-value
 39.05 Ų
 29.26 Ų

Values for data in the last resolution shell are given in parentheses

Table 3: Molecular Replacement Statistics

	Search Model:	⁻ Progesterone	AR Model
30		(PDB file 1A28)	
	Program Used	AmoRe	AMoRe
	Resolution Range	8.0 – 4.0 Å	8.0 – 4.0 Å
	Radius of Integration	25 Å	25 Å
	Number of Reflections	2.393	2,393
35	Number of Atoms	2,019	2,094
	RF Correlation (2 nd solution)	0.16 (0.12)	0.13 (0.11)
	TF Correlation (2 nd solution)	0.31 (0.20)	0.23 (0.14)
	TF R-factor (2 nd solution)	49.0% (52.7%)	52.1% (54.0%)
	Rigid Body Correlation	0.34	0.28
40	Rigid Body R-factor	48.1%	50.4%

Structure Refinement

The structure was first refined with the initial 2.4 Å data set (2σ) data, 9,818 reflections) by the method of simulated annealing with

10

15

20

25

program X-PLOR (Brünger, A.T., Kuriyan, J. & Karplus, J. (1987) "Crystallographic R-factor refinement by molecular dynamics", *Science* **235**: 458-460) in four cycles to an R-factor of 27.7%. Each refinement cycle consisted of a least-squares minimization, simulated annealing at 3000°, and individual isotropic B-factor refinement. The first cycle, with the Progesterone molecular replacement model unmodified for the sequence differences between AR and PR, gave an R-factor of 33.8%. The model was then rebuilt using the AR amino acid sequence and a second refinement cycle gave an R-factor of 29.6%. At this stage of the refinement, the DHT molecule could be clearly seen in the difference electron density map.

After each cycle, the structure was carefully examined using molecular computer graphics program Chain (Sack, John S. (1988) "CHAIN- A Crystallographic Modeling Program", *J. Mol. Graphics* **6:** 224-225) and modifications were made to the structure as needed. Several residues, from both the N- and C-termini of the molecule, which were not seen in the electron density maps were removed from the model. After the second cycle of refinement, the DHT was added to the model. Solvent molecules were added where there were 3 σ peaks in both the 2Fo - Fc and Fo - Fc electron density maps and removed if their B-factor went above 60 Å². After four cycles of X-PLOR refinement, a careful examination of the electron density showed the model to be much improved, although molecular refitting still needed to be done in some regions. The density is clear except for some of the loop regions, particularly the loop between helices I and II, which was also poorly modeled in the PR structure.

Table 4: Refinement Statistics (X-PLOR)

30	Part I: 2σ data (9,8	(9,818 reflections) to 2.4 Å		
	Cycle 1	251 residues	NI	

Cycle 1	251 residues	No ligand	0 waters	R = 33.8 %
Cycle 2	248 residues	No ligand	0 waters	R = 29.6%
Cycle 3	247 residues	ligand	18 waters	R = 28.3 %
Cycle 4	246 residues	ligand	40 waters	R = 27.7%

35

Part II: 2o data (15,067 reflections) to 2.0 Å

Cycle 5	246 residues	ligand	32 waters	R = 27.9 %
Cycle 6	246 residues	ligand	57 waters	R = 26.8 %

15

20

25

30

35

Cycle 7 246 residues ligand 58 waters R = 26.7 %Cycle 8 246 residues ligand 106 waters R = 24.2%

At this stage of the refinement, the higher resolution data collected at the APS synchrotron became available. Four additional X-PLOR refinement cycles were performed with the 2.0 Å data set (2σ data, 15,067 reflections) following the same protocol. The final structure has an R-factor of 24.2% with a total of 106 solvent molecules. The final refinement statistics are presented in table 5.

10 Table 5: Final Refinement Parameters

Resolution Range	10.0 – 2.0 A
Reflections	15,067
R-factor	24.2 %
R-free	31.2 %
# residues	246 (672-917)
# atoms	2118 (1991 atoms, 21 DHT, 106 waters)
RMS deviations	
bond lengths	0.014 Å
bind angles	1.59 4 °
Improper angles	1.558°
Average B-factors	
Protein	25.02 Å ²
DHT	14.40 Ų
Water	30.21 Ų
Wilson B-factor	29.26 Ų

Description of the Molecule

The structure of AR-LBD is complete from residues 671 through 917 for the wild-type and 672 to 918 for the LNCaP mutant. Analysis of the structures with program PROCHECK showed only minor exceptions to the allowed geometry. In the wild-type structure, the first six residues of the chain (664 - 670) are not seen in the electron density and are probably disordered. This leaves only one residue before the initial residue of the first α -helix (H1) in the wild-type structure, none in the LNCaP mutant structure. On the C-terminal end, the last two residues (918 - 919) are not seen in the electron density of the wild-type structure, but only the last is missing in the mutant. In addition, since the loop between helices 9 and 10 (residues 845-850) is not well defined, it has been modeled as poly-alanine.

10

15

20

25

30

35

Folding and Packing

As expected, the AR LBD has the same overall three-dimensional structure as those of the other nuclear hormone receptor LBDs. The molecule is folded into a "helical sandwich" consisting of 10 α -helices. There are four small pieces of beta strand, forming two short beta-sheets; one in the core of the molecule between helices 5 and 6 near the ligand binding site, and the other formed by the loop between helices 8 and 9 and the C-terminus. This latter sheet, also seen in the PR LBD structure, holds helix 12 in the closed, agonist conformation, close to and capping the ligand binding site.

Lack of Dimer Formation

Studies have indicated that the estrogen, progesterone, and androgen receptors all function as homodimers and that AR LBD forms dimers in solution. Thus it could be expected that the AR LBD domains might form homodimers in the crystal similar to those previously seen in the RXR- α and estrogen receptor (ER) LBD crystal structures. In the PR LBD structure, the two monomers in the asymmetric unit are related by a dyad, but the two-fold-symmetric configuration is strikingly different from that of the RXR and ER homodimers and the area buried in this configuration is much smaller than would be expected for stable dimer formation. In the AR LBD crystal, the ligand-binding domains are unmistakably monomeric, and there are no twofold axes relating domains. Moreover, the homodimer interaction seen in the structures of ER and RXR LBDs is not possible for the AR LBD, as the C-terminal tail is bound to the groove formed by helices 9 and 10, thereby obstructing the contact region between monomers in RXR and ER homodimers. Whether this observation reflects a non-dimeric state of the AR LBD in the functional AR dimer or is an artifact of the conditions used for AR LBD crystallization remains to be determined. It is noteworthy that the ER LBD constructs used for crystallization have been truncated to remove an analogous C-terminal extension.

Comparison with Progesterone Receptor

While there is only 55% sequence identity between AR LBD and PR LBD, there is a 77% sequence similarity, and as expected, the three-dimensional structures of these two LBDs are very similar with an r.m.s.

10

15

25

30

35

deviation of 1.3 Å between corresponding $C\alpha$ atom positions. As with PR, AR LBD has no helix 2, but its helix 12 is longer than those of RXR or TR. In the case of AR, while helices 10 and 11 are nearly contiguous, there is a proline residue at position 868 that causes a kink between the two helices.

Comparison with theoretical AR model

The theoretical AR model obtained from MMS/CADD and the AR structure have an r.m.s. deviation of 1.29 Å for the 247 alpha carbons. More importantly, the hormone binding site is virtually identical with the exception of the side chains of Met 732(749), Leu 863(880), and Leu 864 (881) which are in different rotomers. This causes the binding cavity to be more compact in the AR structure. Also, there is a flip of the side chain of Asn 688(705) so that the ND2 atom is in position to make a hydrogen bond to the carbonyl off of the D-ring.

Table 6: Comparison of AR-LBD to PR-LBD and Theoretical model

	Calpna	Main	Side	lotal
AR vs. Pr	1.22 (246)	1.27 (983)	1.80 (772)	1.53 (1,755)
AR vs. CADD	1.25 (246)	1.31 (983)	2.41(971)	1.93 (1,954)

20 Binding of Dihydrotestosterone

At the end of the molecular replacement procedure with the PR LBD structure without progesterone as search model, the largest piece of difference electron density, at approximately the 3σ level, was found at the progesterone-binding site. Replacing the bound progesterone agonist (which has a carboxyl group at the 17-position) with a model of dhydrotestosterone (DHT, which has a hydroxyl group at the 17-position) produced an even better fit to the difference electron density, indicating that DHT binds to AR LBD in an almost identical fashion to the way progesterone binds to PR LBD. Both agonists interact with helices 3, 5, and 11 of their respective LBDs. Ring A, which is identical in the two steroids, makes similar interactions with the side chains of Q711, M745, R752 (Q725, M759, R766 in PR LBD), and a conserved water molecule. The interactions with ring C are also similar, with close contacts to the mainchain of L704 (L718 in PR LBD) and sidechain of N705 (N719 in PR LBD). The contact between C18 and the O_γ1 of T877 is unique to the wild-type AR LBD, as the corresponding cysteinyl side chain is pointed

away from the steroid in the PR LBD structure.

10

15

Since progesterone and DHT differ in the substituent on ring D, it is expected that interactions with respective receptors will differ in this region. In the AR LBD structure, Nδ2 of N705 makes a hydrogen bond to the D-ring hydroxyl of DHT. A similar interaction could be made between progesterone and the PR LBD if there were a flip of both the steroid acetyl group and the side chain of N719. This would place the oxygen approximately 3.2 Å from the Nδ2 atom of Asn 719. The ligand contact surface area is slightly larger for progesterone in PR than for DHT in AR (483 vs. 448 Ų) but they are both considerably smaller than the ligand contact surface area in TR (559 Ų), PPARγ (583 Ų), or the Vitamin D receptor (677 Ų).

Figure 3 shows two orthogonal views of the omit electron density map of dihydrotestosterone (DHT) in the hormone-binding site of AR-LBD. There are hydrogen bonds between the steroid and the side chains of Arg 752 and Asn 705.

Table 7: Dihydrotestosterone Contacts (3.4 Å)

Hyd	rogen	Bonds
-----	-------	-------

20	O3 O3	Arg 752 Nh2 Gln 711 Nε2	2.89 Å (2.77 A) 3.36 Å (3.20 A)							
25	O20 O20	Asn 705 Nδ2 Thr 877 Oγ1	2.80 Å (3.20 A) 2.70 Å (N/A)							
25	Possible Close Contacts									
	C11	Leu 704 O	3.31 Å							
30	C12	Asn 705 Nδ2	3.07 Å							
	C17	Asn 705 Nδ2	3.34 Å							
35	C19	Met 745 Sδ	3.38 Å							
	C18	Thr 877 Ογ1	3.07 Å							

Comparison with Progesterone binding

Comparison of the structure of DHT in the AR-LBD with the structure of progesterone in the PR-LBD (Williams, S.P. & Sigler, P.B. (1998) "Atomic Structure of Progesterone Complexed with its Receptor", Nature 393, 391) shows a similar mode of binding. Ring A, which is identical in the two steroids, makes similar interactions with the side chains of Q711, M745, R752, Q711 and a conserved water molecule (table 8). The interaction with ring C are also similar, with close

10

15

contacts to the mainchain of L704 and sidechain of N705. The contact from C18 to the $O\gamma1$ of T877 is unique to AR-LBD, as the corresponding cysteine sidechain is pointed away from the steroid in the PR-LBD structure

Since progesterone and DHT differ in the substitution off of ring D, it is expected that there will be different interactions with the protein in this region. In the AR structure, the N82 atom of Asn 705 makes hydrogen bond to the D-ring hydroxyl.

A similar interaction could be made in the PR if there were a flip of both the steroid carboxyl group and the side chain of N719. This would place the carboxyl oxygen approximately 3.2 A from the Nδ2 atom of Asn 719. In AR-LBD, there is also a close contact to the side chain of T877 which is absent in the PR-LBD structure.

Figure 4 shows comparison of AR and PR steroid binding Comparison of the binding of dihydrotestosterone to AR-LBD (top) and of progesterone to PR-LBD (bottom). Note that an additional hydrogen bond interaction would be possible if both the sidechains of both N719 and the progesterone were flipped.

Table 8: Comparison of AR and PR steroid binding

20			J						
20		AR	PR						
	Ring A								
25	O3:	H-bond to R752 NH2 (2.9 A)	H-bond to R766 NH2 (2.8 A)						
25	25	H-bond to water (3.5 A)	H-bond to water (3.1 / 3.4 A)						
30		SC of Q711 in different rotomer distance to O3 is 3.4 and 4.13 A	Contact to SC of Gln 725 distance to O3 is 3.2 and 3.3 A						
30	C19	Contact to M745 SD (3.4 A)	Similar orientation (3.5 A)						
35	C2:	SC of Q711 (3.5 A)	different rotomer (3.2 & 3.3) distance to C4 is 4.1 A						
	Ring C								
	C11	LO704 O (3.3A)	(3.5A)						
40	C12	Contact to N705 Nδ2 (3.1A)	Contact to N719 Oδ1 (3.4 A)						
	C18	Contact T877 Ογ1 (3.1 A)	SC of C891 pointing away distance to S_{γ} is 3.8 A						
4.5	Ring D								
45	O20/C21	O21 in AR is close to C21 in PR (Possible flip of Carboxyl in PR?)							

O20: H-bond N705 Nδ2 (2.8A) O20: Contact T877 Cγ1 (2.7 A) O20: Contact to C891 Ca (3.2 A)

C21: Contact to N719 OD1 (3.2 A)

N/A

SC of C891 pointing away

C17

Contact N705 Nδ2 (3.3 A)

Ring in slightly different orientation; distance to N719 O81 is 4.7 A

10

15

20

25

5

Structure of the Complex of DHT with the LBD of the LNCaP Mutant

In the LNCaP mutant, T877 is replaced by an alanine residue. The mutant LBD structure has an r.m.s. deviation of 0.8 Å compared to the wild-type structure, close to the expected r.m.s. deviation due to the estimated errors in the coordinates. In particular, the binding of DHT is essentially identical by wild-type and mutant LBDs except at the point of mutation. Here the replacement of T877 by alanine leaves additional space off the D-ring of DHT to accommodate a larger substituent on position 17. This may explain the promiscuous ability of the LNCaP mutant, unlike wild-type AR, to bind to a variety of other hormones and analogs like some progestins, estrogens and cortisols that differ from DHT in substitution at position 17. For example, the binding of flutamide, estradiol, and progesterone to the LNCaP mutant can activate the mutant receptor. Conversely, mutation of T877 to residues with larger sidechains such as aspartic acid and lysine would be expected completely preclude the binding of ligands with any substituent at position 17 of the D-ring and such mutations have been shown to totally eliminate androgen binding.

Table A

5	ATOM ATOM	1 2	CB ILE CG2 ILE	672 672	14.846 25.527 23.734 1.00 25.78 16.247 25.008 24.099 1.00 25.56
U	ATOM	3	CG1 ILE	672	14.842 27.035 23.978 1.00 25.60
	ATOM	4	CD1 ILE	672	15.312 27.404 25.360 1.00 25.81
	ATOM	5	C ILE	672	15.115 23.900 21.789 1.00 25.32
	MOTA	6	O ILE	672	16.189 23.926 21.195 1.00 24.67
10	MOTA	7	N ILE	672	13.004 25.282 22.008 1.00 24.75
	ATOM	8	CA ILE	672	14.475 25.215 22.242 1.00 25.11
	MOTA	9	N PHE	673	14.448 22.768 22.030 1.00 25.89
	ATOM	10	CA PHE	673	14.980 21.446 21.635 1.00 25.86
15	ATOM	11	CB PHE	673	14.020 20.306 22.029 1.00 26.22
15	ATOM	12	CG PHE	673 673	14.557 18.923 21.722 1.00 25.12
	ATOM	13	CD1 PHE		15.765 18.501 22.251 1.00 25.16 13.877 18.066 20.874 1.00 25.81
	ATOM ATOM	14 15	CD2 PHE CE1 PHE	673 673	13.877 18.066 20.874 1.00 25.81 16.286 17.255 21.946 1.00 23.42
	ATOM	16	CE2 PHE	673	14.403 16.809 20.567 1.00 25.08
20	ATOM	17	CZ PHE	673	15.609 16.417 21.107 1.00 23.85
	ATOM	18	C PHE	673	15.213 21.374 20.147 1.00 25.25
	ATOM	19	O PHE	673	16.260 20.926 19.680 1.00 24.38
	ATOM	20	N LEU	674	14.193 21.792 19.412 1.00 25.01
	ATOM	21	CA LEU	674	14.237 21.802 17.969 1.00 25.58
25	MOTA	22	CB LEU	674	12.833 21.974 17.391 1.00 26.05
	MOTA	23	CG LEU	674	12.067 20.653 17.317 1.00 26.55
	ATOM	24	CD1 LEU	674	10.617 20.887 16.935 1.00 26.35
	ATOM	25	CD2 LEU	674	12.762 19.758 16.304 1.00 26.09
20	ATOM	26	C LEU	674	15.199 22.801 17.357 1.00 25.10
30	ATOM	27	O LEU	674	15.743 22.518 16.294 1.00 26.08
	MOTA	28	N ASN	675	15.440 23.939 18.019 1.00 24.63
	ATOM ATOM	29 30	CA ASN CB ASN	675 675	16.356 24.964 17.484 1.00 23.19 16.478 26.215 18.393 1.00 24.20
	ATOM	31	CB ASN CG ASN	675	16.478 26.215 18.393 1.00 24.20 15.206 27.067 18.452 1.00 24.32
35	ATOM	32	OD1 ASN	675	13.200 27.007 18.432 1.00 24.32
	ATOM	33	ND2 ASN	675	15.076 27.817 19.539 1.00 24.74
	ATOM	34	C ASN	675	17.726 24.338 17.397 1.00 21.66
	MOTA	35	O ASN	675	18.435 24.524 16.417 1.00 21.43
	ATOM	36	N VAL	676	18.095 23.612 18.448 1.00 21.17
40	MOTA	37	CA VAL	676	19.394 22.952 18.507 1.00 20.92
	ATOM	38	CB VAL	676	19.718 22.442 19.934 1.00 21.33
	MOTA	39	CG1 VAL	676	18.899 21.237 20.247 1.00 24.09
	ATOM	40	CG2 VAL	676	21.192 22.095 20.065 1.00 21.88
45	ATOM	41	C VAL	676	19.501 21.830 17.473 1.00 19.78
70	ATOM ATOM	42 43	O VAL N LEU	676 677	20.421 21.827 16.646 1.00 19.99
	ATOM	44	CA LEU	677	18.530 20.923 17.434 1.00 19.08 18.601 19.848 16.453 1.00 17.91
	ATOM	45	CB LEU	677	17.383 18.921 16.518 1.00 17.50
	ATOM	46	CG LEU	677	17.267 18.083 17.798 1.00 16.78
50	ATOM	47	CD1 LEU	677	16.355 16.934 17.541 1.00 17.01
	ATOM	48	CD2 LEU	677	18.615 17.555 18.225 1.00 17.10
	ATOM	49	C LEU	677	18.768 20.427 15.068 1.00 16.96
	MOTA	50	O LEU	677	19.640 20.008 14.347 1.00 14.94
E =	MOTA	51	N GLU	678	17.980 21.445 14.736 1.00 19.12
55	ATOM	52	CA GLU	678	18.058 22.121 13.437 1.00 20.06
	ATOM	53	CB GLU	678	16.972 23.188 13.317 1.00 23.33
	ATOM	54	CG GLU	678	15.532 22.646 13.381 1.00 28.64
	ATOM ATOM	55 56	CD GLU	678	14.459 23.736 13.387 1.00 32.31
60	ATOM	56 57	OE1 GLU OE2 GLU	678 678	14.811 24.943 13.374 1.00 34.41
00	ATOM	58	C GLU	678	13.253 23.384 13.410 1.00 34.91 19.410 22.783 13.243 1.00 19.33
	234 011	30	O GT10	070	19.410 22.783 13.243 1.00 19.33

19.966

21.257

21.388

19.966 22.737 12.152 1.00 18.20

34.580 11.167 -3.326 1.00 19.16 34.705 10.099 -4.388 1.00 19.90

23.324 14.329 1.00 19.45

24.018 14.303 1.00 18.84

		ATOM	62	CB	ALA	679	21.388	24.919	15.517	1.00 17.67
	5	MOTA	63	С	ALA	679	22.472	23.094	14.195	1.00 19.25
		ATOM	64	0	ALA	679	23.479	23.436	13.558	1.00 19.27
		ATOM	65	N	ILE	680	22.395	21.914	14.802	1.00 18.82
		ATOM	66	CA	ILE	680	23.518	20.984	14.742	1.00 17.49
		ATOM	67	CB	ILE	680	23.674	20.231	16.056	1.00 17.05
	10	ATOM	68		ILE	680	24.022	21.213	17.158	1.00 16.83
		ATOM	69		ILE	680	22.393	19.467	16.391	1.00 15.55
		ATOM	70		ILE	680	22.558	18.575	17.552	1.00 13.80
		ATOM	71	C	ILE	680	23.516	19.984	13.593	1.00 16.89
		ATOM	72	Ö	ILE	680	24.518	19.303	13.370	1.00 17.12
	15	ATOM	73	N	GLU	681	22.415	19.922	12.847	1.00 16.79
	.0	ATOM	74	CA	GLU	681	22.265	19.002	11.719	1.00 17.26
		ATOM	75	CB	GLU	681	20.902	19.227	11.094	1.00 17.20
		ATOM	76	CG	GLU	681	20.579	18.300	9.952	1.00 18.48
		ATOM	77	CD	GLU	681	20.473	16.823	10.348	1.00 13.43
	20	ATOM	78	OE1		681	20.473	16.502	11.524	1.00 17.51
· Parting	20			OE1						
1200		ATOM	79			681	20.214	15.981	9.467	1.00 18.59
The first find and first		ATOM	80	C	GLU	681	23.370	19.128	10.673	1.00 18.79
1,5		MOTA	81	O	GLU	681	23.517	20.173	10.043	1.00 20.09
	25	ATOM	82	N	PRO	682	24.145	18.044	10,437	1.00 19.02
11.000	23	ATOM	83	CD	PRO	682	23.969	16.704	11.019	1.00 18.22
1200		ATOM	84	CA	PRO	682	25.252	18.021	9.472	1.00 19.11
1,9 5		ATOM	85	CB	PRO	682	25.681	16.546	9.493	1.00 18.30
1 2		ATOM	86	CG	PRO	682	25.338	16.109	10.846	1.00 17.08
1 1 2	30	ATOM	87	C	PRO	682	24.912	18.475	8.057	1.00 19.76
11	30	ATOM	88	0	PRO	682	23.771	18.382	7.625	1.00 21.13
i nata		ATOM	89	N	GLY	683	25.901	18.995	7.339	1.00 20.64
		ATOM	90	CA	GLY	683	25.665	19.422	5.972	1.00 21.67
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	91	C	GLY	683	25.809	18.260	4,990	1.00 23.13
1.0000	25	ATOM	92	0	GLY	683	25.595	17.108	5.355	1.00 23.47
	35	ATOM	93	N	VAL	684	26.190	18.567	3,748	1.00 23.58
1000		ATOM	94	CA	VAL	684	26.365	17.573	2.685	1.00 22.44
· interest		ATOM	95	CB	VAL	684	26.320	18.216	1.259	1.00 24.93
· · · · ·		ATOM	96	CG1		684	26.217	17.130	0.183	1.00 24.57
	40	ATOM	97	CG2		684	25.153	19.228	1.131	1.00 24.89
•	40	ATOM	98	C	VAL	684	27.725	16.934	2.811	1.00 20.64
		ATOM	99		VAL	684	28.708	17.614	3.042	1.00 19.82
		ATOM	100		VAL	685	27.778	15.631	2.585	1.00 19.05
		MOTA	101		VAL	685	29.012	14.878	2.665	1.00 17.89
	45	ATOM	102		VAL	685	28.955	13.857	3.867	1.00 17.81
	45	MOTA	103	CG1		685	30.303	13.189	4.086	1.00 15.58
		ATOM	104	CG2		685	28.527	14.556	5.147	1.00 16.27
		ATOM	105		VAL	685	29.143	14.112	1.345	1.00 17.88
		ATOM	106		VAL	685	28.238	13.367	0.969	1.00 18.33
	50	ATOM	107		CYS	686	30.224	14.339	0.609	1.00 17.00
	50	ATOM	108		CYS	686	30.451	13.628	-0.650	1.00 17.52
		ATOM	109		CYS	686	31.101	14.534	-1.706	1.00 17.76
		ATOM	110		CYS	686	30.166	16.031	-2.147	1.00 21.38
		ATOM	111		CYS	686	31.354	12.447	-0.327	1.00 16.97
	55	MOTA	112		CYS	686	32.141	12.496	0.615	1.00 17.15
	55	MOTA	113		ALA	687	31.183	11.360	-1.065	1.00 17.74
		ATOM	114		ALA	687	31.949	10.132	-0.836	1.00 17.57
		ATOM	115		ALA	687	31.161	8.929	-1.295	1.00 16.91
		ATOM	116		ALA	687	33.277	10.161	-1.526	1.00 18.06
	60	ATOM	117		ALA	687	34.185	9.431	-1.139	1.00 17.98
	00	ATOM	118		GLY	688	33.370	11.023	-2.539	1.00 18.50
		ATOM	119	$C\Delta$	CT.Y	688	3/ 500	11 167	2 226	1 00 10 10

678

679

679

679

GLU

ALA

ALA

MOTA

ATOM

MOTA

ATOM

ATOM

119 CA GLY

GLY

120 C

688

688

59 0

60 N

CA

61

	ATOM	121	0	GLY	688	35.802	9.730	-4.771	1.00 20.86
	MOTA	122		HIS	689	33.582	9.630	-4.907 -5.912	1.00 20.92 1.00 22.43
	MOTA	123		HIS	689 689	33.577 32.195	8.576 7.917	-5.900	1.00 22.49
5	ATOM	124 125	-	HIS HIS	689	32.046	6.775	-6.857	1.00 22.28
5	ATOM ATOM	126	CD2		689	32.782	5.656	-7.033	1.00 22.64
	ATOM	127	ND1		689	31.040	6.724	-7.796	1.00 22.44
	ATOM	128	CE1	HIS	689	31.166	5.627	-8.516	1.00 23.43
	MOTA	129	NE2	HIS	689	32.219	4.960	-8.074	1.00 23.78
10	ATOM	130	С	HIS	689	33.923	9.063	-7.328	1.00 24.19 1.00 24.06
	MOTA	131	0	HIS	689	33.511	10.145 8.296	-7.731 -8.073	1.00 24.06 1.00 26.27
	ATOM	132	N	ASP	690	34.719 35.017	8.691	-9.447	1.00 28.86
	MOTA	133 134	CA CB	ASP ASP	690 690	36.330	8.096	-9.963	1.00 28.93
15	ATOM ATOM	134	CG	ASP	690	36.696		-11.361	1.00 30.03
13	ATOM	136	OD1		690	37.868	8.497	-11.764	1.00 31.23
	ATOM	137	OD2		690	35.819		-12.061	1.00 29.72
	ATOM	138	С	ASP	690	33.872		-10.286	1.00 30.15
	MOTA	139	0	ASP	690	33.701		-10.409	1.00 30.46 1.00 32.35
20	MOTA	140	N	ASN	691	33.065		-10.832 -11.655	1.00 32.35 1.00 33.60
	ATOM	141	CA	ASN	691 691	31.933 30.725		-11.416	1.00 33.00
	ATOM	142 143	CB CG	ASN ASN	691	30.723		-10.074	1.00 32.95
	ATOM ATOM	$\frac{143}{144}$	OD1		691	29.187	8.474	-9.930	1.00 32.13
25	ATOM	145	ND2		691	30.547	10.024	-9.069	1.00 33.57
	ATOM	146	C	ASN	691	32.284		-13.136	1.00 35.13
	MOTA	147	0	ASN	691	31.419		-13.999	1.00 36.66
	MOTA	148	N	ALA	692	33.565		-13.434	1.00 36.15 1.00 37.44
20	ATOM	149	CA	ALA	692	33.995 35.148		-14.819 -15.103	1.00 37.44
30	ATOM	150	CB C	ALA ALA	692 692	34.425		-15.027	1.00 38.39
	ATOM ATOM	151 152	0	ALA	692	34.414		-16.139	1.00 39.10
	ATOM	153	N	GLN	693	34.757		-13.928	1.00 39.29
	ATOM	154	CA	GLN	693	35.200		-13.942	1.00 40.00
35	MOTA	155	CB	GLN	693	36.131		-12.745	1.00 41.81
	MOTA	156	CG	GLN	693	37.538		-13.110	1.00 44.34 1.00 45.44
	ATOM	157	CD	GLN	693	38.420		-13.902 -13.363	1.00 45.44
	ATOM	158	OE1 NE2		693 693	39.378 38.115		-15.186	1.00 45.47
40	ATOM ATOM	159 160	NEZ C	GLN	693	33.988		-13.854	1.00 39.48
70	ATOM	161	0	GLN	693	32.997		-13.217	1.00 40.11
	ATOM	162	N	PRO	694	34.055		-14.485	1.00 38.78
	MOTA	163	CD	PRO	694	35.138		-15.375	1.00 38.88
	ATOM	164	CA	PRO	694	32.970		-14.489	1.00 36.98 1.00 37.17
45	ATOM	165	CB	PRO	694	33.571 34.432		-15.265 -16.234	1.00 37.17
	ATOM	166 167	CG C	PRO PRO	694 694	32.575		-13.109	1.00 35.56
	ATOM ATOM	168	0	PRO	694	33.411		-12.204	1.00 35.44
	ATOM	169	N	ASP	695	31.289		-12.958	1.00 34.27
50	ATOM	170	CA	ASP	695	30.776		-11.698	1.00 32.38
	ATOM	171	CB	ASP	695	29.251		-11.694	1.00 29.77
	MOTA	172	CG	ASP	695	28.660		-11.608	1.00 28.80
	MOTA	173		ASP	695	27.532 29.329		-12.089 -11.057	1.00 27.09 1.00 28.72
55	ATOM ATOM	$174 \\ 175$	C C	ASP ASP	695 695	31.318		-11.524	1.00 32.55
55	ATOM	176	0	ASP	695	31.237		-12.429	1.00 33.50
	ATOM	177	N	SER	696	32.025		-10.424	1.00 31.71
	ATOM	178	CA	SER	696	32.577		-10.077	1.00 30.42
	ATOM	179	CB	SER	696	34.064		-10.425	1.00 30.43
60	ATOM	180	OG	SER	696	34.854	-1.589		1.00 31.47
	MOTA	181	С	SER	696	32.340 32.275	-2.445 -1.418		1.00 30.15 1.00 30.10
	ATOM	182	0	SER	696	34.415	-1.410	1.000	1.00 30.10

32.104

697

PHE

-3.669

-8.099 1.00 28.48

13 ı Fi 112 ٠... ijΠ 1 :,[] :: :=£ l,ij

0.180

4.201

4.587

4.882

32.726

33.955

33.970

34.512

705

705

705

245 ND2 ASN

С

Ο

246

247

ASN

ASN

ATOM

MOTA

MOTA

3.592 1.00 16.07

3.410

4.570

2.415

31.507 10.743 12.834 1.00 17.65

32.809 11.099 11.039 1.00 19.70

1.00 17.17

1.00 17.46

1.00 17.04

		ATOM	248	N GLU	706	34.512	4.882	2.415	1.00 17.04
	5	ATOM	249	CA GLU	706	35.151	6.193	2.598	1.00 17.55
	•	MO'LA	250	CB GLU	706	35.739	6.668	1.258	1.00 18.93
		ATOM	251	CG GLU	706	36.394	8.029	1.282	1.00 21.19
		ATOM	252	CD GLU	706	37.488	8.146	2.347	1.00 23,68
		ATOM	253	OE1 GLU	706	37.586	9.225	2.978	1.00 25.14
	10	ATOM	254	OE2 GLU	706	38.246	7.175	2.569	1.00 24.37
	10	ATOM	255	C GLU	706	34.089	7.180	3.069	1.00 16.10
		MOTA	256	O GLU	706	34.313	8.023	3.950	1.00 16.62
		ATOM	257	N LEU	707	32.927	7.076	2.445	1.00 15.13
		ATOM	258	CA LEU	707	31.803	7.916	2.792	1.00 14.21
	15	ATOM	259	CB LEU	707	30.604	7.579	1.925	1.00 12.85
	10	ATOM	260	CG LEU	707	29.318	8.262	2.328	1.00 12.03
		ATOM	261	CD1 LEU	707	29.537	9.745	2.280	1.00 13.09
		ATOM	262	CD2 LEU	707	28.252	7.889	1.374	1.00 12.74
		ATOM	263	C LEU	707	31.461	7.634	4.228	1.00 14.91
	20	ATOM	264	O LEU	707	31.121	8.557	4.980	1.00 15.85
, then	20		265	N GLY	708	31.532	6.358	4.602	1.00 13.93
1 100		MOTA	266	CA GLY	708	31.230	5.976	5.965	1.00 12.96
		MOTA	267	CA GLY	708	32.213	6.620	6.917	1.00 13.13
ijŢ		MOTA	268	O GLY	708	31.849	7.061	7.987	1.00 13.55
	25	MOTA	269	N GLU	709	33.468	6.687	6.514	1.00 14.14
1	20	MOTA	270	CA GLU	709	34.525	7.279	7.322	1.00 15.83
		MOTA	270	CB GLU	709	35.874	7.046	6.658	1.00 16.73
1,00		ATOM		CG GLU	709	37.051	7.547	7.446	1.00 18.68
ii		ATOM	272 273	CD GLU	709	37.573	6.514	8.401	1.00 21.63
1 1	30	ATOM ATOM	273	OE1 GLU	709	36.766	5.660	8.826	1.00 23.39
11 .	30		275	OE1 GLU	709	38.784	6.544	8.723	1.00 23.17
re å n		ATOM ATOM	276	C GLU	709	34.334	8.775	7.486	1.00 16.65
:::::::::::::::::::::::::::::::::::::::		ATOM	277	O GLU	709	34.628	9.317	8.563	1.00 17.59
		ATOM	278	N ARG	710	33.845	9.427	6.428	1.00 16.70
inå.	35	ATOM	279	CA ARG	710	33.616	10.869	6.418	1.00 17.32
1,2,3	55	ATOM	280	CB ARG	710	33.459	11.346	4.990	1.00 16.07
		ATOM	281	CG ARG	710	34.659	11.098	4.137	1.00 16.18
A destroyal		ATOM	282	CD ARG	710	34.329	11.498	2.706	1.00 16.39
- 144		ATOM	283	NE ARG	710	35.512	11.535	1.850	1.00 15.28
	40	ATOM	284	CZ ARG		35.587	12.246	0.733	1.00 15.30
	70	ATOM	285	NH1 ARG	710	34.550	12.975	0.357	1.00 14.96
		ATOM	286	NH2 ARG		36.691	12.242	0.001	1.00 14.89
		ATOM	287	C ARG		32.376	11.230	7.218	1.00 17.85
		ATOM	288	O ARG		32.379	12.156	8.034	1.00 17.75
	45	ATOM	289	N GLN		31.291	10.516	6.955	1.00 18.71
		ATOM	290	CA GLN		30.067	10.745	7.697	1.00 19.38
		ATOM	291	CB GLN		28.908	9.938	7.127	1.00 19.79
		MOTA	292	CG GLN		28.377	10.566	5.878	1.00 22.36
		ATOM	293	CD GLN		27.058	10.010	5.446	1.00 23.37
	50	ATOM	294	OE1 GLN		26.758	9.932	4.244	1.00 25.35
		ATOM	295	NE2 GLN		26.228	9.677	6.410	1.00 24.52
		ATOM	296	C GLN		30.209	10.494	9.188	1.00 19.48
		ATOM	297	O GLN		29.564	11.183	9.985	1.00 19.57
		MOTA	298	N LEU		31.043	9.529	9.571	1.00 18.76
	55	ATOM	299	CA LEU		31.259	9.227	10.984	1.00 19.20
		ATOM	300	CB LEU		32.163	8.008	11.157	1.00 20.55
		A'TOM	301	CG LEU		32.522	7.607	12.590	1.00 21.95
		ATOM	302	CD1 LEU		31.288	7.641	13.484	1.00 23.43
		ATOM	303	CD2 LEU		33.132	6.223	12.586	1.00 22.57
	60	ATOM	304	C LEU		31.876	10.428	11.704	1.00 19.23
		7.11.O1.1	305	O 1511		31 507	10 743	12 834	1 00 17.65

712

713

305

306

MOTA

MOTA

0

Ñ

LEU

VAL

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	307 308 309 310 311 312 313 314	CG2 C O N CA	VAL VAL HIS HIS	713 713 713 713 713 713 714 714	33.427 34.453 34.722 35.750 32.328 32.325 31.330 30.215	12.270 12.859 14.292 12.069 13.277 13.802 13.434 14.356	11.619 10.658 11.001 10.750 11.990 13.086 11.128	1.00 19.68 1.00 20.01 1.00 21.16 1.00 20.06 1.00 19.53 1.00 20.00 1.00 19.20
10	ATOM ATOM ATOM ATOM ATOM ATOM	315 316 317 318 319 320	CB CG CD2 ND1 CE1 NE2	HIS HIS	714 714 714 714 714 714	29.498 30.331 31.369 30.131 31.005 31.768	14.658 15.410 15.016 16.744 17.139 16.113	10.038 9.058 8.283 8.784 7.876 7.557	1.00 20.77 1.00 21.60 1.00 22.31 1.00 22.32 1.00 23.41 1.00 23.22
15	ATOM ATOM ATOM ATOM ATOM	321 322 323 324 325	C O N CA	HIS HIS VAL VAL VAL	714 714 715 715 715	29.183 28.497 29.006 28.063 27.869	13.885 14.701 12.572 11.972 10.435	12.383 13.005 12.485 13.434 13.134	1.00 18.83 1.00 18.73 1.00 18.39 1.00 16.86 1.00 16.78
20	ATOM ATOM ATOM ATOM ATOM	326 327 328 329 330	CG1 CG2 C O	VAL	715 715 715 715 716	27.037 27.183 28.667 27.958 29.986	9.756 10.259 12.166 12.422 12.077	14.197 11.817 14.817 15.788 14.913	1.00 17.10 1.00 17.34 1.00 15.60 1.00 15.49 1.00 15.13
25	ATOM ATOM ATOM ATOM ATOM	331 332 333 334 335	CA CB CG1 CG2	VAL VAL VAL	716 716 716 716 716	30.622 32.136 32.825 32.310 30.419	12.250 11.885 12.233 10.373 13.681	16.205 16.158 17.481 15.870 16.708	1.00 15.01 1.00 14.93 1.00 13.26 1.00 14.26 1.00 15.83
30	ATOM ATOM ATOM ATOM ATOM	336 337 338 339 340	N CA CB	VAL LYS LYS LYS LYS	716 717 717 717 717	30.129 30.544 30.390 30.884 32.361	13.883 14.665 16.082 16.974 16.747	17.887 15.816 16.183 15.041 14.698	1.00 16.61 1.00 16.59 1.00 17.20 1.00 18.94 1.00 22.56
35	ATOM ATOM ATOM ATOM ATOM	341 342 343 344 345	CE NZ C	LYS LYS LYS LYS LYS	717 717 717 717 717	33.245 34.294 34.709 28.951 28.658	16.752 15.609 15.195 16.387 16.931	15.978 16.007 17.410 16.534 17.593	1.00 25.34 1.00 27.06 1.00 27.21 1.00 16.77 1.00 18.49
40	ATOM ATOM ATOM ATOM ATOM	346 347 348 349 350	N CA CB CG	TRP TRP TRP TRP TRP	718 718 718 718 718	28.049 26.618 25.889 24.433 23.757	15.976 16.143 15.442 15.266 14.069	15.659 15.868 14.689 14.841 15.254	1.00 15.68 1.00 14.61 1.00 11.97 1.00 9.66
45	ATOM ATOM ATOM ATOM	351 352 353 354	CE2 CE3 CD1 NE1	TRP TRP TRP TRP	718 718 718 718	22.373 24.176 23.472 22.228	14.371 12.778 16.199 15.688	15.293 15.612 14.645 14.918	1.00 9.98 1.00 10.09 1.00 9.89 1.00 8.38
50	ATOM ATOM ATOM ATOM	355 356 357 358 359	0	TRP TRP TRP TRP	718 718 718 718 718	21.394 23.201 21.835 26.200 25.659	13.419 11.835 12.171 15.562 16.269	15.663 15.980 16.004 17.261 18.124	1.00 9.00 1.00 8.20 1.00 7.32 1.00 15.34 1.00 14.55
55	ATOM ATOM ATOM ATOM ATOM	360 361 362 363 364	CA . CB . C .	ALA ALA ALA ALA ALA	719 719 719 719 719	26.468 26.143 26.796 26.623 25.857	14.272 13.559 12.184 14.346 14.646	17.464 18.683 18.657 19.881 20.785	1.00 16.10 1.00 15.03 1.00 13.59 1.00 15.62 1.00 15.85
60	ATOM ATOM ATOM ATOM	365 366 367 368	CA :	LYS LYS LYS LYS	720 720 720 720	27.870 28.463 29.970 30.644	14.781 15.516 15.625 14.292	19.828 20.924 20.715 21.012	1.00 17.45 1.00 18.63 1.00 19.81 1.00 21.18

	MOTA	369	CD	LYS	720	32.136	14.334	20.860	1.00 23.81
	MOTA	370	CE	LYS	720	32.762	12.975	21.244	1.00 25.84
	ATOM	371	NΖ	LYS	720	32.729	12.661	22.708	1.00 26.70
	MOTA	372	С	LYS	720	27.822	16.860	21.204	1.00 18.98
5	ATOM	373	0	LYS	720	27.921	17.377	22.321	1.00 19.86
	ATOM	374	N	ALA	721	27.070	17.369	20.238	1.00 18.21
	MOTA	375	CA	ALA	721	26.406	18.651	20.382	1.00 18.10
	MOTA	376	CB	ALA	721	26.584	19.461	19.146	1.00 17.43
	MOTA	377	С	ALA	721	24.941	18.492	20.675	1.00 18.80
10	MOTA	378	0	ALA	721	24.192	19.485	20.660	1.00 19.16
	ATOM	379	N	LEU	722	24.518	17.247	20.904	1.00 19.00
	MOTA	380	CA	LEU	722	23.119	16.912	21.207	1.00 19.60
	MOTA	381	СВ	LEU	722	22.955	15.395	21.119	1.00 19.45
	MOTA	382	CG	LEU	722	21.855	14.771	20.271	1.00 19.62
15	ATOM	383		LEU	722	21.540	15.657	19.099	1.00 17.02
	ATOM	384		LEU	722	22.298	13.382	19.815	1.00 17.38
	ATOM	385	C	LEU	722	22.754	17.362	22.616	1.00 20.27
	ATOM	386	Ö	LEU	722	23.521	17.125	23.549	1.00 21.72
	ATOM	387	N	PRO	723	21.574	17.992	22.811	1.00 20.69
20	ATOM	388	CD	PRO	723	20.500	18.317	21.861	1.00 20.29
	ATOM	389	CA	PRO	723	21.211	18.428	24.167	1.00 21.24
	ATOM	390	CB	PRO	723	19.767	18.917	23.997	1.00 20.40
	ATOM	391	CG	PRO	723	19.706	19.349	22.624	1.00 20.05
	ATOM	392	C	PRO	723	21.266	17.287	25.195	1.00 21.66
25	ATOM	393	O	PRO	723	20.821	16.165	24.935	1.00 21.14
	ATOM	394	N	GLY	724	21.800	17.588	26.369	1.00 22.02
	ATOM	395	CA	GLY	724	21.874	16.598	27.416	1.00 22.29
	ATOM	396	С	GLY	724	22.838	15.478	27.132	1.00 23.13
	ATOM	397	0	GLY	724	23.076	14.658	28.004	1.00 23.78
30	ATOM	398	N	PHE	725	23.434	15.446	25,946	1.00 24.14
	MOTA	399	CA	PHE	725	24.360	14.368	25,610	1.00 24.24
	MOTA	400	СВ	PHE	725	24.915	14.554	24,214	1.00 23.59
	MOTA	401	CG	PHE	725	25.648	13.353	23.703	1.00 23.80
	ATOM	402		PHE	725	24.944	12.239	23.260	1.00 22.83
35	MOTA	403	CD2	PHE	725	27.046	13.328	23.675	1.00 22.40
	MOTA	404	CE1	PHE	725	25.623	11.130	22.804	1.00 22.77
	MOTA	405	CE2	PHE	725	27.731	12.226	23,221	1.00 21.05
	MOTA	406	CZ	PHE	725	27.025	11.123	22.784	1.00 22.31
	ATOM	407	С	PHE	725	25.505	14.170	26,582	1.00 24.85
40	MOTA	408	0	PHE	725	25.873	13.028	26.863	1.00 23.79
	MOTA	409	N	ARG	726	26.083	15.270	27.070	1.00 25.97
	MOTA	410	CA	ARG	726	27.207	15.229	28,033	1.00 27.63
	ATOM	411	CB	ARG	726	27.831	16.620	28.204	1.00 29.27
	ATOM	412	CG	ARG	726	28.622	17.087	26,995	1.00 31.68
45	MOTA	413	CD	ARG	726	29.759	16.141	26.727	1.00 34.22
	ATOM	414	NE	ARG	726	30.657	16.595	25.670	1.00 37.18
	MOTA	415	CZ	ARG	726	31.872	16.090	25.464	1.00 38.28
	ATOM	416	NH1	ARG	726	32.635	16.558	24.486	1.00 39.44
	ATOM	417	NH2	ARG	726	32.329	15.109	26.232	1.00 38.78
50	ATOM	418	С	ARG	726	26.902	14.615	29.423	1.00 27.24
	ATOM	419	0	ARG	726	27.797	14.449	30.253	1.00 27.08
	MOTA	420	N	ASN	727	25.632	14.316	29.683	1.00 27.15
	MOTA	421	CA	ASN	727	25.244	13.695	30.938	1.00 26.29
	ATOM	422	CB	ASN	727	23.717	13.687	31.115	1.00 25.46
55	ATOM	423	CG	ASN	727	23.118	15.085	31.195	1.00 24.95
	MOTA	424	OD1		727	21.947	15.277	30.893	1.00 24.88
	ATOM	425	ND2		727	23.909	16.055	31.628	1.00 24.54
	ATOM	426	С	ASN	727	25.750	12.261	30.934	1.00 26.17
00	ATOM	427	0	ASN	727	25.992	11.689	31.994	1.00 27.30
60	ATOM	428	N	LEU	728	25.895	11.673	29.749	1.00 25.64
	ATOM	429	CA	LEU	728	26.362	10.289	29.625	1.00 25.16
	ATOM	430	CB	LEU	728	26.191	9.759	28.190	1.00 22.98

					- 45 -			
5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	431 432 433 434 435 436 437 438	CG LEU CD1 LEU CD2 LEU C LEU O LEU N HIS CA HIS CB HIS	728 728 728 728 728 729 729 729	24.859 25.084 23.856 27.833 28.571 28.247 29.642 29.737	9.711 9.133 8.883 10.208 11.157 9.064 8.808 7.455	27.448 26.076 28.203 29.974 29.739 30.516 30.871 31.570	1.00 20.68 1.00 19.66 1.00 19.79 1.00 25.79 1.00 25.15 1.00 27.05 1.00 28.68 1.00 30.72
10	ATOM ATOM ATOM ATOM ATOM	439 440 441 442 443	CG HIS CD2 HIS ND1 HIS CE1 HIS NE2 HIS	729 729 729 729 729	31.132 32.276 31.460 32.744 33.263	7.042 6.978 6.603 6.293 6.510	31.943 31.218 33.209 33.247 32.049	1.00 33.13 1.00 33.50 1.00 34.21 1.00 34.64 1.00 34.52
15	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	444 445 446 447 448 449	C HIS O HIS N VAL CA VAL CB VAL CG1 VAL	729 729 730 730 730 730	30.450 30.003 31.681 32.592 34.036 35.077	8.772 8.182 9.295 9.365 9.793 9.446	29.577 28.594 29.625 28.465 28.898 27.811	1.00 29.25 1.00 29.28 1.00 30.21 1.00 31.02 1.00 32.08 1.00 32.91
20	MOTA MOTA MOTA MOTA MOTA MOTA	450 451 452 453 454	CG2 VAL C VAL O VAL N ASP CA ASP	730 730 730 730 731 731	34.074 32.662 32.704 32.770 32.819	11.284 8.108 8.192 6.956 5.709	27.611 29.176 27.600 26.371 28.244 27.509	1.00 32.91 1.00 31.86 1.00 30.89 1.00 30.40 1.00 30.81 1.00 31.55
25	ATOM ATOM ATOM ATOM ATOM	455 456 457 458 459	CB ASP CG ASP OD1 ASP OD2 ASP C ASP	731 731 731 731 731	33.244 32.966 31.837 33.867 31.474	4.536 3.152 2.619 2.599 5.425	28.410 27.771 27.974 27.075 26.889	1.00 36.23 1.00 40.32 1.00 42.21 1.00 42.23 1.00 28.94
30	ATOM ATOM ATOM ATOM ATOM	460 461 462 463 464	O ASP N ASP CA ASP CB ASP CG ASP	731 732 732 732 732	31.408 30.403 29.079 28.024 28.073	4.912 5.760 5.510 5.711 4.654	25.789 27.587 27.057 28.119 29.186	1.00 29.47 1.00 26.17 1.00 24.53 1.00 24.04 1.00 23.64
35	MOTA MOTA MOTA MOTA MOTA	465 466 467 468 469	OD1 ASP OD2 ASP C ASP O ASP N GLN	732 732 732 732 733	28.728 27.444 28.770 28.030 29.288	3.592 4.904 6.387 5.982 7.612	28.984 30.231 25.875 24.981 25.920	1.00 22.31 1.00 23.89 1.00 23.96 1.00 22.56 1.00 23.56
40	ATOM ATOM ATOM ATOM ATOM	470 471 472 473 474	CA GLN CB GLN CG GLN CD GLN OE1 GLN	733 733 733 733 733	29.121 29.942 29.359 30.208 30.018	8.591 9.847 10.776 12.013 12.696	24.855 25.166 26.225 26.480 27.477	1.00 22.94 1.00 22.73 1.00 23.24 1.00 23.27 1.00 24.33
45	ATOM ATOM ATOM ATOM ATOM	475 476 477 478 479	NE2 GLN C GLN O GLN N MET	733 733 733 734	31.130 29.636 28.979 30.853	12.316 7.997 8.075 7.459	25.577 23.557 22.522 23.625	1.00 23.47 1.00 23.20 1.00 23.08 1.00 23.37
50	ATOM ATOM ATOM ATOM	480 481 482 483	CA MET CB MET CG MET SD MET CE MET	734 734 734 734 734	31.545 33.003 33.749 35.293 34.884	6.832 6.596 5.604 5.121 3.401	22.508 22.906 22.047 22.821 23.387	1.00 24.31 1.00 27.26 1.00 31.61 1.00 39.54 1.00 37.92
55	ATOM ATOM ATOM ATOM ATOM	484 485 486 487 488	C MET O MET N ALA CA ALA CB ALA	734 734 735 735 735	30.902 30.732 30.571 29.939 29.650	5.510 5.247 4.671 3.390 2.683	22.077 20.884 23.052 22.788 24.110	1.00 23.31 1.00 23.35 1.00 21.64 1.00 20.44 1.00 20.71
60	ATOM ATOM ATOM ATOM	489 490 491 492	C ALA O ALA N VAL CA VAL	735 735 736 736	28.644 28.398 27.799 26.516	3.570 2.905 4.460 4.734	22.013 21.015 22.501 21.877	1.00 19.23 1.00 19.59 1.00 18.69 1.00 17.76

	ATOM ATOM	493 494	CB VAL	736 736	25.742 25.373	5.771 6.998	22.760 22.011	1.00 18.30 1.00 17.05
	ATOM ATOM	495 496	CG2 VAL C VAL	736 736	24.544 26.673	5.118 5.133	23.420 20.389	1.00 17.25 1.00 18.16
5	ATOM	497	O VAL	736	25.962	4.614	19.512	1.00 17.42
	ATOM ATOM	498 499	N ILE CA ILE	737 737	27.658 27.914	5,985 6,429	20.096 18.724	1.00 17.60 1.00 16.31
	ATOM	500	CB ILE	737	29.046	7.497	18.683	1.00 14.71
10	ATOM ATOM	501 502	CG2 ILE CG1 ILE	737 737	29.476 28.602	7.772 8.819	17.272 19.325	1.00 14.05 1.00 15.11
10	ATOM	503	CD1 ILE	737	29.769	9.804	19.618	1.00 13.11
	ATOM	504	C ILE	737	28.352	5,216	17.904	1.00 16.74
	ATOM ATOM	505 506	O ILE N GLN	737 738	27.853 29.281	4.982 4.451	16.812 18.468	1.00 16.09 1.00 18.15
15	ATOM	507	CA GLN	738	29.850	3.260	17.845	1.00 17.97
	ATOM	508	CB GLN	738	30.960	2.715	18.713	1.00 20.53
	ATOM ATOM	509 510	CG GLN CD GLN	738 738	32.278 33.306	3.394 2.726	18.568 19.439	1.00 23.88 1.00 26.69
00	ATOM	511	OE1 GLN	738	33.027	2.390	20.593	1.00 29.30
20	MOTA MOTA	512 513	NE2 GLN C GLN	738 738	34.483 28.904	2.475 2.111	18.887 17.548	1.00 28.53 1.00 16.76
	ATOM	514	O GLN	738	29.249	1,226	16.788	1.00 16.78
	ATOM	515	N TYR	739	27.792	2.029	18.260	1.00 16.39
25	ATOM ATOM	516 517	CA TYR CB TYR	739 739	26.819 26.174	0.983	17.995 19.285	1.00 16.41 1.00 15.99
	ATOM	518	CG TYR	739	27.130	-0.115	20.313	1.00 15.68
	ATOM	519	CD1 TYR CE1 TYR	739	28.251 29.151	-0.852 -1.317	19.950 20.915	1.00 15.41
	ATOM ATOM	520 521	CD2 TYR	739 739	26.925	0.131	21.656	1.00 16.17 1.00 16.49
30	MOTA	522	CE2 TYR	739	27.817	-0.321	22.624	1.00 17.09
	ATOM ATOM	523 524	CZ TYR OH TYR	739 739	28.921 29.787	-1.040 -1.435	22.253 23.256	1.00 16.83 1.00 18.24
	MOTA	525	C TYR	739	25.721	1.527	17.100	1.00 16.45
35	ATOM	526	O TYR	739	25.138	0.793	16.295	1.00 17.63
55	MOTA MOTA	527 528	N SER CA SER	740 740	25.453 24.384	2.822 3.404	17.195 16.403	1.00 15.61 1.00 15.61
	ATOM	529	CB SER	740	23.619	4.403	17.252	1.00 15.49
	ATOM ATOM	530 531	OG SER C SER	740 740	24.512 24.697	5.421 4.054	17.682 15.060	1.00 18.39 1.00 14.87
40	ATOM	532	O SER	740	23.778	4.451	14.376	1.00 15.75
	ATOM ATOM	533 534	N TRP CA TRP	741 741	25.948 26.202	4.188 4.835	14.659	1.00 14.33
	ATOM	535	CB TRP	741	27.706	4.033	13.382 13.113	1.00 14.83 1.00 15.35
45	ATOM	536	CG TRP	741	28.465	3.720	13.000	1.00 17.05
40	ATOM ATOM	537 538	CD2 TRP CE2 TRP	741 741	28.765 29.467	2.987 1.834	11.800 12.190	1.00 17.91 1.00 18.98
	MOTA	539	CE3 TRP	741	28.505	3.193	10.434	1.00 18.66
	ATOM ATOM	540 541	CD1 TRP NE1 TRP	741 741	28.995 29.592	3.016 1.878	14.020 13.551	1.00 17.12 1.00 19.60
50	MOTA	542	CZ2 TRP	741	29.915	0.876	11.266	1.00 19.00
	ATOM ATOM	543 544	CZ3 TRP CH2 TRP	741 741	28.949	2.240	9.509	1.00 17.91
	ATOM	545	CH2 TRP C TRP	741	29.644 25.471	1.098 4.246	9.934 12.166	1.00 18.35 1.00 15.12
<i>55</i>	ATOM	546	O TRP	741	24.902	4.995	11.376	1.00 15.56
55	ATOM ATOM	547 548	N MET CA MET	742 742	25.391 24.723	2.920 2.339	12.034 10.870	1.00 14.55 1.00 12.90
	ATOM	549	CB MET	742	24.785	0.815	10.866	1.00 12.90
	ATOM ATOM	550 551	CG MET SD MET	742 742	24.219	0.185	9.597	1.00 12.17
60	ATOM	552	CE MET	742	25.353 26.462	0.336 -0.994	8.263 8.639	1.00 15.00 1.00 13.52
	ATOM	553	C MET	742	23.290	2.763	10.699	1.00 12.47
	ATOM	554	O MET	742	22.886	3.153	9.610	1.00 13.31

					- 47 -			
	MOTA	555 N	GLY	743	22.497	2.656	11.748	1.00 12.12 1.00 11.81
	MOTA MOTA	556 CF 557 C	GLY GLY	743 743	21.102 20.947	3.057 4 <i>.</i> 558	11.663 11.452	1.00 11.81 1.00 12.08
_	ATOM	558 0	GLY	743	20.022	5.009	10.768	1.00 11.88
5	ATOM	559 N	LEU	744 744	21.835	5.336 6.797	12.070 11.972	1.00 12.77 1.00 12.22
	ATOM ATOM	560 CA 561 CE		744	21.817 22.884	7.418	12.888	1.00 12.22
	ATOM	562 CG	LEU	744	22.702	7.481	14.399	1.00 9.95
10	ATOM)1 LEU	744	23.967	8.075	14.954	1.00 9.77
10	ATOM ATOM	564 CI 565 C)2 LEU LEU	744 744	21.516 22.087	8.341 7.258	14.799 10.563	1.00 9.16 1.00 12.20
	MOTA	566 0	LEU	744	21.424	8.173	10.080	1.00 14.22
	ATOM	567 N	MET	745	23.083	6.651	9.921	1.00 12.34
15	ATOM ATOM	568 CA 569 CE		745 7 4 5	23.466 24.839	6.991 6.427	8.541 8.191	1.00 11.39 1.00 10.75
10	ATOM	570 CG		745	25.961	6.948	9.076	1.00 8.86
	ATOM	571 SI		745	27.509	6.429	8.487	1.00 11.97
	ATOM ATOM	572 CE 573 C	MET MET	745 745	28.579 22.462	6.939 6.498	9.717 7.508	1.00 9.84 1.00 12.29
20	ATOM	574 0	MET	745	22.234	7.155	6.495	1.00 12.29
	ATOM	575 N	VAL	746	21.855	5.342	7.793	1.00 12.05
	MOTA	576 CA		746	20.874	4.733	6.934	1.00 11.50
	ATOM ATOM	577 CE 578 CG	VAL	746 746	20.524 19.245	3.315 2.852	7.426 6.811	1.00 11.19 1.00 10.17
25	MOTA	579 CG	2 VAL	746	21.615	2.355	7.095	1.00 9.64
	MOTA	580 C	VAL	746	19.605	5.565	6.942	1.00 12.13
	ATOM ATOM	581 O 582 N	VAL PHE	746 747	19.000 19.227	5.792 6.051	5.907 8.117	1.00 12.72 1.00 12.64
	ATOM	583 CA		747	18.014	6.857	8.304	1.00 12.63
30	ATOM	584 CE		747	17.763	7.031	9.800	1.00 11.19
	ATOM ATOM	585 CG 586 CD	PHE 1 PHE	747 747	16.411 15.286	7.542 6.780	10.126 9.847	1.00 10.00 1.00 9.30
	ATOM		2 PHE	747	16.253	8.798	10.700	1.00 7.79
25	ATOM		1 PHE	747	14.008	7.260	10.136	1.00 8.30
35	ATOM ATOM	589 CE 590 CZ	2 PHE PHE	747 747	14.996 13.867	9.293 8.524	10.993 10.707	1.00 6.75 1.00 8.21
	MOTA	591 C	PHE	747	18.137	8.241	7.621	1.00 3.21
	ATOM	592 0	PHE	747	17.178	8.751	7.042	1.00 13.81
40	ATOM ATOM	593 N 594 CA	ALA ALA	748 748	19.298 19.513	8.873 10.172	7.740 7.119	1.00 12.46 1.00 12.97
-10	ATOM	595 CB		748	20.749	10.172	7.119	1.00 12.97
	ATOM	596 C	ALA	748	19.640	9.988	5.635	1.00 13.78
	MOTA MOTA	597 O 598 N	ALA MET	748 749	19.226	10.850 8.864	4.882	1.00 14.44
45	ATOM	599 CA		749	20.209 20.381	8.578	5.204 3.782	1.00 14.54 1.00 14.78
	MOTA	600 CB	MET	749	21.241	7.331	3.607	1.00 15.28
	ATOM ATOM	601 CG 602 SD		749 749	21.622	6.945	2.199	1.00 15.33
	ATOM	603 CE		749	20.315 20.226	6.246 4.627	1.193 1.835	1.00 18.79 1.00 18.82
50	ATOM	604 C	MET	749	19.023	8.390	3.142	1.00 15.85
	MOTA	605 O	MET	749	18.808	8.780	1.990	1.00 17.51
	ATOM ATOM	606 N 607 CA	GLY GLY	750 750	18.088 16.748	7.829 7.618	3.895 3.384	1.00 16.02 1.00 16.34
	MOTA	608 C	GLY	750	16.057	8.956	3.225	1.00 10.34
55	MOTA	609 O	GLY	750	15.263	9.135	2.289	1.00 19.00
	MOTA MOTA	610 N 611 CA	TRP TRP	751 75 1	16.361 15 778	9.897	4.121	1.00 17.36
	ATOM	612 CB		751	15.778 16.108	11.241 12.026	4.091 5.366	1.00 17.99 1.00 16.08
60	MOTA	613 CG	TRP	751	15.528	13.458	5.416	1.00 14.99
60	ATOM ATOM		2 TRP 2 TRP	751	14.151	13.821	5.617	1.00 13.68
	ATOM		Z TRP 3 TRP	751 751	14.099 12.967	15.230 13.090	5.697 5.743	1.00 12.98 1.00 14.14
					,		2.,10	00

hitelian is the transfer of the

	ATOM	617	CD1 TRP	751	16.225	14.636	5.364	1.00 13.27
	ATOM	618	NE1 TRP	751	15.375	15.705	5.538	1.00 12.27
	MOTA	619	CZ2 TRP	751	12.907	15.926	5.899	1.00 14.74
	ATOM	620	CZ3 TRP	751	11,775	13.780	5.942	1.00 14.63
5	ATOM	621	CH2 TRP	751	11.756	15.188	6.020	1.00 14.82
•	ATOM	622	C TRP	751	16,266	11.995	2.857	1.00 18.41
	ATOM	623	O TRP	751	15.457	12.558	2.124	1.00 20.13
	ATOM	624	N ARG	752	17.569	11.971	2.607	1.00 19.13
	ATOM	625	CA ARG	752	18.150	12.616	1.431	1.00 19.06
10		626	CB ARG	752	19.644	12.380	1.389	1.00 18.53
10	MOTA				20,370	12.908	2.567	1.00 18.35
	MOTA	627	CG ARG	752				
	MOTA	628	CD ARG	752	21.870	12.901	2.317	1.00 17.24
	MOTA	629	NE ARG	752	22,467	11.573	2.298	1.00 14.94
4 =	ATOM	630	CZ ARG	752	22.976	10.973	3.370	1.00 14.90
15	MOTA	631	NH1 ARG	752	22.928	11.561	4.554	1.00 14.75
	MOTA	632	NH2 ARG	752	23.684	9.864	3.240	1.00 13.87
	ATOM	633	C ARG	752	17.572	12.077	0.138	1.00 20.27
	ATOM	634	O ARG	752	17.392	12.815	-0.828	1.00 20.66
	ATOM	635	N SER	753	17.391	10.761	0.083	1.00 22.00
20	ATOM	636	CA SER	753	16.823	10.099	-1.093	1.00 22.25
	MOTA	637	CB SER	753	16.716	8.590	-0.879	1.00 20.25
	MOTA	638	OG SER	753	17.988	8.027	-0.687	1.00 19.78
	MOTA	639	C SER	753	15.434	10.635	-1.289	1.00 23.31
	ATOM	640	O SER	753	14.978	10.803	-2.409	1.00 23.88
25	ATOM	641	N PHE	754	14.762	10.870	-0.173	1.00 24.76
	MOTA	642	CA PHE	754	13.405	11.375	-0.156	1.00 26.45
	ATOM	643	CB PHE	754	12.835	11.243	1.245	1.00 26.43
	ATOM	644	CG PHE	754	11.447	11.765	1.364	1.00 28.06
	ATOM	645	CD1 PHE	754	10.407	11.168	0.654	1.00 28.69
30	ATOM	646	CD2 PHE	754	11.184	12.895	2.118	1.00 27.96
00	ATOM	647	CE1 PHE	754	9.126	11.703	0.687	1.00 27.30
	ATOM	648	CE2 PHE	754	9.901	13.442	2.160	1.00 28.93
	ATOM	649	CZ PHE	754	8.876	12.849	1.445	1.00 28.93
	ATOM	650	C PHE	754	13.239	12.849	-0.630	1.00 29.47
35		651		754	12.543			
33	MOTA		O PHE			13.100	-1.614	1.00 26.87
	MOTA	652	N THR	755	13.823	13.732	0.125	1.00 29.01
	ATOM	653	CA THR	755	13.725	15.134	-0.190	1.00 30.83
	ATOM	654	CB THR	755	14.345	15.972	0.918	1.00 29.71
40	ATOM	655	OG1 THR	755	15.669	15.524	1.183	1.00 28.99
40	MOTA	656	CG2 THR	755	13.553	15.796	2.164	1.00 29.63
	ATOM	657	C THR	755	14.317	15.460	-1.552	1.00 32.57
	ATOM	658	O THR	755	13.841	16.358	-2.234	1.00 33.24
	ATOM	659	N ASN	756	15.262	14.639	-1.991	1.00 34.71
AE	ATOM	660	CA ASN	756	15.920	14.842	-3.273	1.00 36.48
45	ATOM	661	CB ASN	756	17.417	14.562	-3.149	1.00 36.89
	MOTA	662	CG ASN	756	18.137	15.616	-2.344	1.00 37.02
	MOTA	663	OD1 ASN	756	17.563	16,237	-1.456	1.00 39.11
	MOTA	664	ND2 ASN	756	19.392	15.844	-2.668	1.00 37.24
	MOTA	665	C ASN	756	15.360	14.065	-4.457	1.00 37.88
50	ATOM	666	O ASN	756	14.684	14.628	-5.313	1.00 39.57
	ATOM	667	N VAL	757	15.654	12,773	-4.518	1.00 38.99
	ATOM	668	CA VAL	757	15.210	11.948	-5.633	1.00 39.74
	MOTA	669	CB VAL	757	16.274	10.869	-5.971	1.00 39.96
	MOTA	670	CG1 VAL	757	17.639	11,540	-6.170	1.00 40.00
55	MOTA	671	CG2 VAL	757	16.354	9.819	-4.871	1.00 39.28
	MOTA	672	C VAL	757	13.835	11,308	-5.456	1.00 39.95
	MOTA	673	O VAL	757	13.501	10.335	-6.134	1.00 40.19
	ATOM	674	N ASN	758	13.037	11.874	-4.559	1.00 40.19
	ATOM	675	CA ASN	758	11.699	11.374	-4.265	1.00 40.48
60	ATOM	676	CB ASN	758	10.678	11.894	-5.288	
	ATOM	677	CG ASN	758	10.257	13,331	-5.005	1.00 43.82 1.00 44.84
	ATOM	678	OD1 ASN	758	11.097	14.199	-3.003 -4.764	1.00 44.84
		3.0	JDZ 23044	, 50	11.037	± 1 • ± ± ± ± ±	-4.104	1.00 40.40

	ATOM ATOM	679 680	ND2 ASN C ASN	758 758	8,953 11,622	13.576 9.858	-4.987 -4.100	1.00 45.71 1.00 40.91
	ATOM	681	O ASN	758	10.592	9.229	-4.404	1.00 40.73
_	ATOM	682	N SER	759	12,733	9.298	-3.612	1.00 40.04
5	ATOM	683	CA SER	759	12.891	7.877	-3.326	1.00 38.71
	ATOM ATOM	684 685	CB SER OG SER	759 759	11.763 11.496	7.415 8.369	-2.395 -1.378	1.00 37.53 1.00 34.26
	ATOM	686	C SER	759	13.027	6.921	-4.532	1.00 34.20
	ATOM	687	O SER	759	12.833	5.711	-4.382	1.00 39.20
10	ATOM	688	N ARG	760	13.409	7.438	-5.704	1.00 39.12
	MOTA	689	CA ARG	760	13.564	6.589	-6.892	1.00 38.62
	ATOM	690	CB ARG	760	13.451	7.422	-8.171	1.00 40.63
	ATOM ATOM	691 692	CG ARG CD ARG	760 760	13.598 13.903	6.577	-9.444 -10.715	1.00 44.41 1.00 46.97
15	ATOM	693	NE ARG	760	14.534		-11.729	1.00 48.86
. •	ATOM	694	CZ ARG	760	13.875		-12.614	1.00 49.74
	ATOM	695	NH1 ARG	760	12.542	5.795	-12.649	1.00 50.04
	ATOM	696	NH2 ARG	760	14.553		-13.398	1.00 49.46
20	ATOM	697	C ARG	760	14.897	5.840	-6.876	1.00 36.88
20	ATOM ATOM	698 699	O ARG N MET	760 761	15.024 15.902	4.741 6.466	-7.426 -6.275	1.00 37.48 1.00 34.87
	ATOM	700	CA MET	761	17.238	5.890	-6.159	1.00 34.07
	ATOM	701	CB MET	761	18.171	6.510	-7.194	1.00 33.77
~-	MOTA	702	CG MET	761	17.588	6.682	-8.571	1.00 36.10
25	ATOM	703	SD MET	761	18.859	7.115	-9.788	1.00 40.36
	ATOM	704	CE MET	761 761	18.737	8.904	-9.809	1.00 38.10
	ATOM ATOM	705 706	C MET O MET	761 761	17.738 17.144	6.242 7.080	-4.751 -4.075	1.00 29.46 1.00 28.57
	ATOM	707	N LEU	762	18.837	5.635	-4.319	1.00 26.78
30	ATOM	708	CA LEU	762	19.382	5.905	-2.992	1.00 24.13
	ATOM	709	CB LEU	762	19.956	4.637	-2.393	1.00 24.05
	ATOM	710	CG LEU	762	18.957	3.502	-2.272	1.00 23.69
	ATOM ATOM	711 712	CD1 LEU CD2 LEU	762 762	19.615	2.272	-1.632	1.00 23.99
35	ATOM	713	CD2 LEU	762	17.788 20.458	4.011 6.968	-1.439 -3.040	1.00 24.34 1.00 23.01
	ATOM	714	O LEU	762	21.537	6.726	-3.548	1.00 22.65
	MOTA	715	N TYR	763	20.162	8.132	-2.475	1.00 22,03
	ATOM	716	CA TYR	763	21.066	9.273	-2.450	1.00 20.69
40	ATOM ATOM	717 718	CB TYR CG TYR	763 763	20.250 20.946	10.540	-2.266	1.00 23.12
40	ATOM	719	CD1 TYR	763 763	20.946	11.782 12.187	-2.730 -4.052	1.00 25.58 1.00 26.87
	ATOM	720	CE1 TYR	763	21.416	13.373	-4.492	1.00 28.03
	MOTA	721	CD2 TYR	763	21.662	12.590	-1.841	1.00 26.77
A.E.	MOTA	722	CE2 TYR	763	22.247	13.789	-2.272	1.00 28.35
45	ATOM	723	CZ TYR	763	22.107	14,172	-3.604	1.00 28.85
	ATOM ATOM	724 725	OH TYR C TYR	763 763	22.595 22.068	15.379 9.173	-4.047 -1.323	1.00 30.59 1.00 18.78
	ATOM	726	O TYR	763	21.910	9.828	-0.304	1.00 17.73
	MOTA	727	N PHE	764	23.128	8.401	-1.538	1.00 17.33
50	ATOM	728	CA PHE	764	24.152	8.191	-0.533	1.00 16.94
	ATOM	729	CB PHE	764	25.086	7.078	-0.956	1.00 15.91
	ATOM ATOM	730 731	CG PHE CD1 PHE	764 764	24.505 24.211	5.724	-0.807	1.00 16.79
	MOTA	731	CD1 PHE	764	24.211	4.961 5.205	-1.908 0.450	1.00 16.06 1.00 16.83
55	MOTA	733	CE1 PHE	764	23.691	3.692	-1.756	1.00 18.06
	ATOM	734	CE2 PHE	764	23.748	3.941	0.606	1.00 18.27
	ATOM	735	CZ PHE	764	23.458	3.176	-0.496	1.00 17.80
	ATOM ATOM	736 737	C PHE	764 764	24.964	9.441	-0.375	1.00 17.39
60	ATOM	737 738	O PHE N ALA	764 765	25.379 25.224	9.797 10.084	0.734 -1.503	1.00 17.28 1.00 17.00
	ATOM	739	CA ALA	765	26.013	11.292	-1.505	1.00 17.00
	MOTA	740	CB ALA	765	27.479	10.957	-1.460	1.00 16.17

					65 654	11 010	0 041	1 00 16 66
	MOTA	741 C	ALA	765	25.674	11.913	-2.841	1.00 16.66 1.00 16.71
	ATOM	742 0	ALA	765	25.051	11.267	-3.675	1.00 10.71
	MOTA	743 N	PRO	766	26.016	13.196 14.169	-3.032 -2.064	1.00 17.10
_	ATOM	744 CD	PRO	766	26.544 25.703	13.846	-4.311	1.00 17.49
5	MOTA	745 CA	PRO	766	26.183	15.277	-4.077	1.00 17.30
	MOTA	746 CB	PRO	766	26.103	15.451	-2.608	1.00 17.07
	MOTA	747 CG	PRO	766	26.429	13.451	-5.481	1.00 17.65
	ATOM	748 C	PRO	766	25.923	13.101	-6.598	1.00 17.73
40	ATOM	749 0	PRO	766	27.578	12.569	-5.166	1.00 18.27
10	ATOM	750 N	ASP	767 767	28.416	11.850	-6.115	1.00 18.49
	ATOM	751 CA	ASP	767	29.877	12.312	-5.955	1.00 18.71
	ATOM	752 CB	ASP	767	30.413	12.135	-4.525	1.00 19.47
	ATOM	753 CG	ASP ASP	767	29.611	12.038	-3.569	1.00 20.31
15	ATOM		ASP	767	31.650	12.102	-4.348	1.00 19.04
15	MOTA		ASP ASP	767	28.330	10.317	-5.981	1.00 17.79
	MOTA	756 C 757 O	ASP	767	29.191	9.594	-6.476	1.00 18.69
	MOTA	757 O	LEU	768	27.334	9.820	-5.267	1.00 18.04
	ATOM ATOM	759 CA	LEU	768	27.164	8.379	-5.110	1.00 18.20
20	ATOM	760 CB	LEU	768	27.955	7.809	-3.914	1.00 17.47
20	ATOM	761 CG	LEU	768	28.032	6.263	-3.786	1.00 16.12
	ATOM	762 CD1		768	28.641	5.671	-5.047	1.00 14.30
	ATOM		LEU	768	28.850	5.846	-2.563	1.00 15.17
	ATOM	764 C	LEU	768	25.690	8.129	-4.930	1.00 18.58
25	ATOM	765 0	LEU	768	25.184	8.068	-3.812	1.00 17.79
	ATOM	766 N	VAL	769	24.979	8.156	-6.048	1.00 19.79
	ATOM	767 CA	VAL	769	23.553	7.895	-6.035	1.00 20.42
	ATOM	768 CB	VAL	769	22.709	9.142	-6.447	1.00 19.95
	ATOM	769 CG1	VAL	769	23.571	10.190	-7.096	1.00 20.70
30	MOTA	770 CG2		769	21.537	8.757	-7.277	1.00 19.19
	MOTA	771 C	VAL	769	23.373	6.609	-6.852	1.00 20.73 1.00 22.43
	ATOM	772 0	VAL	769	23.873	6.467	-7.961	1.00 22.43
	MOTA	773 N	PHE	770	22.871	5.604	-6.157 -6.681	1.00 19.70
۰-	MOTA	774 CA	PHE	770	22.683	4.277	-5.503	1.00 19.25
35	MOTA	775 CB	PHE	770	22.596 23.930	3.263 2.757	-4.996	1.00 16.41
	ATOM	776 CG	PHE	770	25.930	3.546	-5.053	1.00 14.52
	ATOM		PHE	770 770	24.025	1.468	-4.459	1.00 14.96
	ATOM		PHE	770	26.291	3.070	-4.588	1.00 13.39
40	MOTA	779 CE1 780 CE2		770	25.243	0.979	-3.983	1.00 13.90
40	ATOM ATOM	780 CE2	PHE	770	26.383	1.786	-4.050	1.00 13.96
	ATOM	781 CZ	PHE	770	21.425	4.134	-7.473	1.00 19.41
	ATOM	783 0	PHE	770	20.367	4.583	-7.054	1.00 19.74
	ATOM	784 N	ASN	771	21.534	3.474	-8.611	1.00 20.33
45	ATOM	785 CA	ASN	771	20.363	3.157		1.00 20.23
. •	MOTA	786 CB	ASN	771	20.524		-10.864	1.00 19.33
	ATOM	787 CG	ASN	771	21.883		-11.403	1.00 18.89
	ATOM		ASN	771	22.574		-10.942	1.00 19.51
	ATOM	789 ND2	2 ASN	771	22.289		-12.382	1.00 19.02
50	ATOM	790 C	ASN	771	20.278	1.636		1.00 21.01
	MOTA	791 0	ASN	771	21.129	1.013	-8.648	1.00 20.52
	ATOM	792 N	GLU	772	19.258	1.043	-9.898	1.00 22.23
	ATOM	793 CA	GLU	772	19.056	-0.393	-9.841	1.00 22.51
	MOTA	794 CB	GLU	772	17.888		-10.711	1.00 23.17 1.00 24.81
55	MOTA	795 CG	GLU	772	16.562		-10.099	1.00 24.61
	MOTA	796 CD	GLU	772	15.761		-9.724 -9.252	1.00 25.41
	ATOM		L GLU	772	14.624		-9.252 -9.913	1.00 25.33
	ATOM		2 GLU	772	16.265 20.282		-10.303	1.00 20.25
60	ATOM	799 C	GLU	772 772	20.282		-9.785	1.00 23.89
60	MOTA	800 O	GLU	772 773	20.031		-11.276	1.00 22.51
	ATOM	801 N 802 CA	TYR TYR	773 773	22.158		-11.748	1.00 22.55
	MOTA	802 CA	TIL	115	22.100	1.104		

5	ATOM ATOM ATOM ATOM ATOM	803 804 805 806 807 808	CB TYR CG TYR CD1 TYR CE1 TYR CD2 TYR CE2 TYR	773 773 773 773 773 773	22.640 -0.492 -13.018 1.00 22.84 23.825 -1.191 -13.593 1.00 22.80 23.680 -2.384 -14.304 1.00 23.02 24.791 -3.041 -14.837 1.00 23.77 25.095 -0.671 -13.418 1.00 22.59 26.198 -1.309 -13.938 1.00 24.43 26.047 -2.491 -14.643 1.00 24.22
10	ATOM ATOM ATOM ATOM ATOM ATOM	809 810 811 812 813 814	CZ TYR OH TYR C TYR O TYR N ARG CA ARG	773 773 773 773 774 774	26.047 -2.491 -14.643 1.00 24.22 27.172 -3.094 -15.155 1.00 25.98 23.254 -1.167 -10.680 1.00 23.17 23.969 -2.170 -10.523 1.00 24.08 23.432 -0.044 -9.982 1.00 22.85 24.427 0.047 -8.922 1.00 21.74
15	ATOM ATOM ATOM ATOM ATOM	815 816 817 818 819	CB ARG CG ARG CD ARG NE ARG CZ ARG	774 774 774 774 774	24.623 1.487 -8.494 1.00 22.23 26.026 1.952 -8.735 1.00 22.58 26.073 3.066 -9.756 1.00 23.92 26.048 4.383 -9.146 1.00 24.69 26.961 5.328 -9.365 1.00 25.97
20	ATOM ATOM ATOM ATOM ATOM	820 821 822 823 824	NH1 ARG NH2 ARG C ARG O ARG N MET	774 774 774 774 775	27.982 5.111 -10.171 1.00 25.01 26.837 6.509 -8.783 1.00 26.70 23.976 -0.796 -7.743 1.00 21.36 24.791 -1.386 -7.052 1.00 20.25 22.669 -0.854 -7.512 1.00 21.93
25	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	825 826 827 828 829 830	CA MET CB MET CG MET SD MET CE MET C MET	775 775 775 775 775 775	22.136 -1.681 -6.439 1.00 23.85 20.614 -1.582 -6.380 1.00 23.42 20.121 -0.241 -5.955 1.00 23.46 18.333 -0.199 -5.865 1.00 26.50 17.909 1.086 -7.064 1.00 27.26 22.550 -3.136 -6.666 1.00 25.38
30	ATOM ATOM ATOM ATOM ATOM	831 832 833 834 835	O MET N HIS CA HIS CB HIS CG HIS	775 776 776 776 776	22.897 -3.832 -5.733 1.00 25.75 22.507 -3.593 -7.912 1.00 27.39 22.891 -4.954 -8.262 1.00 28.41 22.418 -5.302 -9.684 1.00 29.01 22.639 -6.738 -10.067 1.00 30.57
35	ATOM ATOM ATOM ATOM ATOM	836 837 838 839 840	CD2 HIS ND1 HIS CE1 HIS NE2 HIS C HIS	776 776 776 776 776	21.877 -7.843 -9.864 1.00 30.73 23.764 -7.168 -10.739 1.00 30.81 23.685 -8.475 -10.932 1.00 29.87 22.551 -8.907 -10.411 1.00 29.53 24.403 -5.065 -8.178 1.00 29.55
40	ATOM ATOM ATOM ATOM ATOM	841 842 843 844 845	O HIS N LYS CA LYS CB LYS CG LYS	776 777 777 777 777	24.923 -5.865 -7.414 1.00 30.12 25.109 -4.283 -8.989 1.00 31.13 26.570 -4.290 -8.980 1.00 32.73 27.130 -3.481 -10.161 1.00 31.29 26.678 -3.948 -11.525 1.00 30.55
45	ATOM ATOM ATOM ATOM ATOM	846 847 848 849 850	CD LYS CE LYS NZ LYS C LYS O LYS	777 777 777 777 777	27.443 -5.163 -12.003 1.00 29.83 28.928 -4.856 -12.116 1.00 30.35 29.631 -5.860 -12.983 1.00 30.53 27.032 -3.655 -7.660 1.00 34.07 27.382 -2.478 -7.611 1.00 36.43
50	ATOM ATOM ATOM ATOM	851 852 853 854 855	N SER CA SER CB SER OG SER	778 778 778 778 778 778	26.995 -4.437 -6.596 1.00 33.74 27.387 -4.013 -5.250 1.00 33.75 26.593 -2.789 -4.769 1.00 33.69 25.254 -3.122 -4.452 1.00 33.41
55	ATOM ATOM ATOM ATOM ATOM	856 857 858 859	O SER N ARG CA ARG CB ARG	778 779 779 779	27.065 -5.204 -4.366 1.00 32.95 27.447 -5.260 -3.194 1.00 31.80 26.344 -6.149 -4.974 1.00 32.09 25.926 -7.386 -4.347 1.00 31.15 27.161 -8.256 -4.071 1.00 30.74
60	ATOM ATOM ATOM ATOM ATOM	860 861 862 863 864	CG ARG CD ARG NE ARG CZ ARG NH1 ARG	779 779 779 779 779	28.065 -8.415 -5.299 1.00 28.19 29.338 -9.182 -4.997 1.00 26.90 30.284 -9.129 -6.117 1.00 26.55 31.583 -9.401 -6.014 1.00 26.64 32.091 -9.753 -4.846 1.00 27.87

	ATOM ATOM	865 866	NH2 ARC	779	32.398 25.128	-9.234 -7.063	-7.050 -3.084	1.00 26.64 1.00 30.75
_	ATOM ATOM	867 868	O ARO	780	25.027 24.521	-7.880 -5.875	-2.163 -3.097	1.00 31.03 1.00 29.82
5	ATOM ATOM	869 870	CA MET		23.721 24.295	-5.381 -4.068	-1.990 -1.473	1.00 29.36 1.00 30.17
	ATOM	871	CG MET	780	25.194	-4.191	-0.277	1.00 30.12
	ATOM ATOM	872 873	SD MET		25.835 24.525	-2.592 -1.995	$0.168 \\ 1.114$	1.00 31.24 1.00 31.13
10	ATOM	874	C MET	780	22.262	-5.165	-2.331	1.00 29.21
	ATOM ATOM	875 876	O MET		21.542 21.831	-4.505 -5.638	-1.566 -3.497	1.00 29.43 1.00 28.58
	ATOM	877	CA TYF		20.433	-5.498	-3.897	1.00 28.82
45	ATOM	878	CB TYF		20.229	-5.985	-5.338	1.00 27.73
15	ATOM ATOM	879 880	CG TYF		18.896 18.847	-5.604 -4.861	-5.964 -7.140	1.00 26.05 1.00 25.95
	ATOM	881	CE1 TYF		17.624	-4.510	-7.718	1.00 25.58
	ATOM	882	CD2 TYP		17.686	-5.984	-5.382	1.00 25.08
20	ATOM ATOM	883 884	CE2 TYF		16.471 16.446	-5.643 -4.904	-5.955 -7.115	1.00 24.57 1.00 24.77
20	ATOM	885	OH TYF		15.238	-4.572	-7.668	1.00 24.77
	ATOM	886	C TYF		19.701	-6.393	-2.929	1.00 30.06
	ATOM ATOM	887 888	O TYF		19.984 18.730	-7.589 -5.821	-2.856 -2.235	1.00 32.08 1.00 30.74
25	ATOM	889	CA SEF		17.935	-6.500	-1.198	1.00 30.74
	ATOM	890	CB SEF		18.551	-7.836	-0.726	1.00 32.82
	ATOM	891 892	OG SEF		17.785 18.027	-8.438	0.308	1.00 35.91
	ATOM ATOM	893	C SEF		17.044	-5.483 -4.807	-0.070 0.230	1.00 30.50 1.00 30.31
30	ATOM	894	N GLN	783	19.242	-5.287	0.459	1.00 29.34
	ATOM	895	CA GLN		19.455	-4.314	1.522	1.00 28.01
	ATOM ATOM	896 897	CB GLN		20.900 21.327	-4.309 -5.532	2.020 2.805	1.00 28.50 1.00 29.62
	ATOM	898	CD GLN		21.790	-6.634	1.900	1.00 32.01
35	ATOM	899	OE1 GLN		21.486	-6.621	0.714	1.00 33.24
	ATOM ATOM	900 901	NE2 GLN C GLN		22.547 19.089	-7.587 -2.963	2.436 0.935	1.00 32.18 1.00 26.36
	ATOM	902	O GLN		18.342	-2.211	1.544	1.00 26.08
40	MOTA	903	N CYS		19.538	-2.698	-0.290	1.00 25.49
40	ATOM ATOM	904 905	CA CYS		19.212 19.951	-1.439 -1.312	-0.956 -2.294	1.00 24.45 1.00 22.82
	ATOM	906	SG CYS		21.746	-0.989	-2.120	1.00 18.24
	MOTA	907	C CYS		17.698	-1.290	-1.146	1.00 25.03
45	MOTA MOTA	908 909	O CYS		17.155 17.003	-0.183 -2.406	-1.044 -1.360	1.00 25.67 1.00 25.25
. •	ATOM	910	CA VAL		15.538	-2.399	-1.547	1.00 25.23
	ATOM	911	CB VAL		14.987	-3.826	-1.903	1.00 25.94
	ATOM ATOM	912 913	CG1 VAL		13.457 15.349	-3.901 -4.195	-1.710 -3.324	1.00 26.21 1.00 26.31
50	ATOM	914	C VAL		14.864	-1.979	-0.257	1.00 23.91
	ATOM	915	O VAL		13.881	-1.259	-0.260	1.00 24.19
	ATOM ATOM	916 917	N ARG		15.402 14.855	-2.455 -2.158	0.853 2.165	1.00 25.02 1.00 25.39
	MOTA	918	CB ARG		15.468	-3.114	3.198	1.00 25.39
55	ATOM	919	CG ARG		15.392	-4.591	2.748	1.00 28.30
	ATOM ATOM	920 921	CD ARG		15.314 14.269	-5.583 -5.206	3.900	1.00 29.76
	ATOM	922	CZ ARG		14.292	-5.475	4.851 6.157	1.00 32.39 1.00 32.41
60	ATOM	923	NH1 ARG		15.301	-6.153	6.701	1.00 32.09
OU	MOTA MOTA	924 925	NH2 ARG C ARG		13.326 15.083	-5.001 -0.679	6.932 2.520	1.00 33.31
	ATOM	926	O ARG		14.180	-0.001	3.030	1.00 24.71 1.00 25.52

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	927 928 929 930 931 932 933 934	N CA CB CG SD CE C	MET MET MET MET MET MET MET MET	787 787 787 787 787 787 787 787	16.246 16.548 18.018 18.883 20.578 21.285 15.736 15.387	-0.146 1.252 1.528 0.925 0.861 1.969 2.173 3.281	2.160 2.463 2.261 3.314 2.788 3.729 1.588 1.997	1.00 23.53 1.00 22.11 1.00 20.46 1.00 17.04 1.00 20.46 1.00 20.07 1.00 23.39 1.00 24.11
40	MOTA	935	N	ARG	788	15.521	1.752	0.348	1.00 24.89
10	ATOM ATOM	936 937	CA CB	ARG ARG	788 788	14.738 14.833	2.499 1.790	-0.625 -1.980	1.00 26.29 1.00 28.55
15	ATOM ATOM ATOM ATOM ATOM	938 939 940 941	CB CG CD NE CZ	ARG ARG ARG ARG	788 788 788 788 788	14.033 14.166 14.217 13.426 13.899	2.474 1.541 1.996 2.177	-1.980 -3.174 -4.395 -5.540 -6.783	1.00 28.35 1.00 32.52 1.00 35.44 1.00 39.11 1.00 41.32
10	ATOM ATOM ATOM ATOM	942 943 944 945	NH1	ARG ARG ARG ARG	788 788 788 788	15.182 13.079 13.312 12.596	1.960 2.567 2.475 3.473	-7.081 -7.754 -0.090 -0.146	1.00 41.94 1.00 41.48 1.00 26.13 1.00 26.50
20	ATOM	946	N	HIS	789	12.920	1.339	0.483	1.00 26.36
	MOTA	947	CA	HIS	789	11.587	1.173	1.052	1.00 26.76
	ATOM	948	CB	HIS	789	11.377	-0.287	1.479	1.00 29.07
	ATOM ATOM	949 950	CG	HIS HIS	789 789	9.970 8.890	-0.609 -0.944	1.879	1.00 30.42
25	ATOM	951		HIS	789 789	9.538	-0.567	1.137 3.188	1.00 31.35 1.00 32.05
	ATOM	952	CE1		789	8.249	-0.856	3.235	1.00 32.56
	MOTA	953	NE2	HIS	789	7.831	-1.087	2.001	1.00 32.55
	ATOM	954	С	HIS	789	11.369	2.133	2.231	1.00 26.08
30	ATOM	955	0	HIS	789	10.275	2.671	2.394	1.00 25.72
30	ATOM ATOM	956 957	N CA	LEU LEU	790 790	12.413 12.433	2.318 3.234	3.048 4.218	1.00 25.92 1.00 25.41
	MOTA	958	CB	LEU	790	13.811	3.216	4.887	1.00 23.94
	ATOM	959	CG	LEU	790	14.039	3.400	6.383	1.00 23.32
25	ATOM	960	CD1		790	15.444	3.930	6.570	1.00 22.41
35	ATOM ATOM	961 962	CD2 C	LEU LEU	790 790	13.047 12.218	4.324 4.654	7.014	1.00 23.17
	ATOM	963	0	LEU	790 790	11.359	5.380	3.720 4.216	1.00 25.47 1.00 25.06
	ATOM	964	Ň	SER	791	13.040	5.056	2.757	1.00 25.60
40	ATOM	965	CA	SER	791	12.942	6.375	2.177	1.00 26.51
40	ATOM	966	CB	SER	791	13.851	6.446	0.973	1.00 28.35
	ATOM ATOM	967 968	OG C	SER SER	791 791	14.936 11.521	5.559	1.179	1.00 32.32
	ATOM	969	0	SER	791	10.950	6.561 7.632	1.716 1.885	1.00 26.02 1.00 26.00
	ATOM	970	N	GLN	792	10.964	5.505	1.122	1.00 26.31
45	ATOM	971	CA	GLN	792	9.600	5.526	0.610	1.00 26.32
	MOTA	972	CB	GLN	792	9.237	4.200		1.00 28.65
	ATOM ATOM	973 974	CG CD	GLN GLN	792 792	9.700	4.109	-1.603	1.00 30.43
	ATOM	975	OE1	GLN	792	9.421 8.479	2,749 2,607	-2.277 -3.062	1.00 31.95 1.00 33.53
50	MOTA	976	NE2		792	10.273	1.764	-2.007	1.00 33.33
	MOTA	977	C	GLN	792	8.629	5,836	1.721	1.00 24.88
	ATOM	978	0	GLN	792	7.702	6.610	1.528	1.00 24.96
	ATOM ATOM	979 980	N CA	GLU GLU	793 793	8.886 8.014	5.301 5.550	2.907 4.051	1.00 23.72
55	ATOM	981	CB	GLU	793	8.460	4.728	5.273	1.00 22.89 1.00 23.65
	ATOM	982	CG	GLU	793	8.555	3.199	5.055	1.00 25.18
	ATOM	983	CD	GLU	793	7.383	2.406	5.651	1.00 27.08
	ATOM	984	OE1		793	6.207	2.735	5.351	1.00 25.97
60	ATOM ATOM	985 986	OE2 C	GLU	793 793	7.648 7.949	1.450 7.041	6.433	1.00 28.69
	ATOM	987	0	GLU	793	6.903	7.530	4.400 4.764	1.00 21.58 1.00 21.52
	ATOM	988	N	PHE	794	9.042	7.784	4.274	1.00 21.26

						- •			
	ATOM	989	CA	PHE	794	8.999	9.208	4.598	1.00 20.65
	ATOM	990	CB	PHE	794	10.334	9.890	4.323	1.00 19.81
	MOTA	991	CG	PHE	794	11.413	9.541	5.304	1.00 19.96
_	ATOM	992		PHE	794	11.226	9.728	6.662	1.00 20.01
5	ATOM	993		PHE	794	12.599	8.974	4.878	1.00 19.43
	ATOM	994		PHE	794	12.206	9.347	7.566	1.00 19.86
	ATOM	995		PHE	794	13.570	8.593	5.787	1.00 18.95
	ATOM	996	CZ	PHE	794	13.374	8.777	7.118	1.00 19.37
10	ATOM	997	C	PHE	794	7.929	9.863	3.759	1.00 22.26
10	ATOM	998	0	PHE	794	7.387	10.906	4.138	1.00 22.19
	AT'OM	999	N	GLY	795	7.688	9.270	2.585	1.00 23.81
	ATOM	1000	CA	GLY	795	6.676	9.750	1.662	1.00 25.46
	ATOM	1001	C	GLY	795	5.309	9.232	2.037	1.00 26.19
15	ATOM	1002	0	GLY	795	4.414	10.002	2.345	1.00 27.46
15	ATOM	1003	N	TRP	796	5.181	7.912	2.081	1.00 27.45
	ATOM	1004	CA	TRP	796	3.931	7.239	2.428	1.00 28.24
	ATOM	1005	CB	TRP	796	4.135	5.697	2.542	1.00 27.71
	MOTA	1006	CG	TRP	796	4.478	4.998	1.187	1.00 27.50
20	ATOM	1007		TRP	796	5.208	3.763	0.985	1.00 26.97
20	ATOM	1008	CE2		796	5.312	3.556	-0.417	1.00 26.72
	MOTA	1009	CE3		796 706	5.777	2.816	1.845	1.00 25.52
	MOTA	1010		TRP TRP	796 706	4.177	5.460	-0.079	1.00 27.17
	MOTA	1011 1012	CZ2		796 796	4.676	4.601	-1.035	1.00 27.59 1.00 25.70
25	ATOM ATOM	1012	CZ3	TRP TRP	796 796	5.967 6.427	2.448 1.714	-0.970 1.290	1.00 25.70
20	ATOM	1013	CH2	TRP	796	6.514	1.543	-0.106	1.00 25.31
	ATOM	1014	C	TRP	796	3,345	7.826	3.706	1.00 25.42
	ATOM	1015	0	TRP	796	2.132	8.026	3.801	1.00 29.13
	ATOM	1017	N	LEU	797	4.223	8.212	4.632	1.00 29.96
30	ATOM	1018	CA	LEU	797	3.816	8.768	5.923	1.00 29.80
•	ATOM	1019	CB	LEU	797	4.692	8.223	7.061	1.00 28.43
	ATOM	1020	CG	LEU	797	4.552	6.736	7.383	1.00 20.43
	ATOM	1021	CD1	LEU	797	5.709	6.269	8.228	1.00 27.00
	ATOM	1022	CD2	LEU	797	3.216	6.470	8.058	1.00 26.62
35	ATOM	1023	С	LEU	797	3.864	10.260	5.991	1.00 30.39
	ATOM	1024	0	LEU	797	3.447	10.827	6.983	1.00 32.25
	MOTA	1025	N	GLN	798	4.415	10.908	4.978	1.00 31.03
	MOTA	1026	CA	GLN	798	4.518	12.360	5.005	1.00 30.93
	ATOM	1027	CB	GLN	798	3.117	13.030	4.964	1.00 31.58
40	MOTA	1028	CG	GLN	798	2.253	12.757	3.701	1.00 32.86
	ATOM	1029	CD	GLN	798	0.944	13.580	3.633	1.00 32.89
	ATOM	1030	OE1	GLN	798	0.342	13.933	4.648	1.00 33.16
	ATOM	1031	NE2	GLN	798	0.521	13.892	2.421	1.00 33.46
45	ATOM	1032	С	GLN	798	5.267	12.764	6.294	1.00 30.02
45	ATOM	1033	0	GLN	798	4.716	13.460	7.147	1.00 30.51
	ATOM	1034	N	ILE	799	6.497	12.283	6.462	1.00 28.60
	ATOM	1035	CA	ILE	799	7.277	12.634	7.648	1.00 27,76
	ATOM	1036	CB	ILE	799	8.546	11.747	7.829	1.00 26.34
50	ATOM ATOM	1037		ILE	799	9.382	12.246	9.007	1.00 25.78
50	ATOM	1038 1039	CG1 CD1	ILE	799	8.168	10.286	8.046	1.00 25.57
	ATOM	1040	С	ILE ILE	799 799	7.271	10.063	9.211	1.00 25.52
	ATOM	1040	0	ILE	799	7,729	14.094	7.552	1.00 28.59
	ATOM	1041	N	THR	800	8.181	14.552	6.496	1.00 29.81
55	ATOM	1042	CA	THR	800	7.610 7.967	14.790	8.678	1.00 28.71
	ATOM	1043	CB	THR	800	7.202	16.197 16.718	8.874	1.00 28.68
	ATOM	1044	OG1	THR	800	5.839	17.003	10.142 9.815	1.00 29.24
	ATOM	1046	CG2	THR	800	7.824	17.003	9.815	1.00 31.49
	ATOM	1047	C	THR	800	9.475	16.347	9.116	1.00 29.69 1.00 28.69
60	ATOM	1048	Õ	THR	800	10.069	15.510	9.796	1.00 20.09
	ATOM	1049	N	PRO	801	10.116	17.407	8.565	1.00 29.13
	MOTA	1050	CD	PRO	801	9.618	18.376	7.569	1.00 23.13
									27.02

had had the second to be seen that the second the second that the second that the

						- 55 -			
	MOTA MOTA MOTA	1051 1052 1053	CA CB CG	PRO PRO PRO	801 801	11.555 11.797 10.908	17.600 18.983 18.956	8.780 8.178 7.002	1.00 27.74 1.00 27.08 1.00 26.58
5	ATOM ATOM ATOM ATOM ATOM	1054 1055 1056 1057 1058	C O N CA CB	PRO PRO GLN GLN GLN	801 801 802 802 802	11.907 12.981 10.982 11.189 10.316	17.570 17.101 18.045 18.079 19.162	10.271 10.666 11.095 12.542 13.192	1.00 27.38 1.00 27.75 1.00 27.01 1.00 26.73 1.00 28.09
10	ATOM ATOM ATOM ATOM	1059 1060 1061 1062	CG CD OE1 NE2	GLN GLN GLN	802 802 802 802	10.582 9.997 8.948 10.660	20.596 20.900 20.381 21.782	12.692 11.303 10.918 10.571	1.00 29.79 1.00 30.48 1.00 30.36 1.00 30.57
15	ATOM ATOM ATOM ATOM ATOM	1063 1064 1065 1066 1067	C O N CA CB	GLN GLU GLU GLU GLU	802 802 803 803 803	10.968 11.599 10.064 9.797 8.632	16.715 16.415 15.904 14.558 13.897	13.219 14.222 12.669 13.196 12.459	1.00 24.81 1.00 24.41 1.00 23.52 1.00 21.64 1.00 20.29
20	ATOM ATOM ATOM ATOM	1068 1069 1070 1071	CG CD OE1	GLU GLU	803 803 803 803	7.277 6.147 6.308 5.065	14.434 13.786 13.392 13.680	12.848 12.119 10.958 12.704	1.00 18.44 1.00 17.84 1.00 18.19 1.00 19.88
25	ATOM ATOM ATOM	1072 1073 1074 1075	C O N CA	GLU GLU PHE PHE	803 803 804 804	11.067 11.537 11.612 12.863	13.784 13.042 14.001 13.418	12.923 13.777 11.722 11.254	1.00 21.04 1.00 20.89 1.00 19.87 1.00 19.24
30	ATOM ATOM ATOM ATOM ATOM ATOM	1076 1077 1078 1079 1080	CD2	PHE PHE PHE PHE PHE	804 804 804 804 804	13.144 14.557 15.012 15.440 16.335	13.867 13.645 12.380 14.706 12.160	9.822 9.384 9.095 9.301 8.729	1.00 17.23 1.00 14.85 1.00 13.76 1.00 13.69 1.00 13.79
	ATOM ATOM ATOM ATOM	1081 1082 1083 1084		PHE PHE PHE PHE	804 804 804 804	16.765 17.214 14.034 14.807	14.496 13.217 13.802 12.939	8.936 8.647 12.157 12.564	1.00 13.36 1.00 12.84 1.00 20.31 1.00 21.30
35	ATOM ATOM ATOM ATOM	1085 1086 1087 1088	N CA CB CG	LEU LEU LEU LEU	805 805 805 805	14.187 15.271 15.250 15.552	15.086 15.503 17.008 17.834	12.463 13.339 13.582 12.330	1.00 20.30 1.00 20.09 1.00 19.58 1.00 20.47
40	ATOM ATOM ATOM ATOM ATOM	1089 1090 1091 1092 1093	CD1 CD2 C O N	LEU LEU LEU CYS	805 805 805 805 806	15.704 16.816 15.172 16.142 13.980	19.281 17.343 14.767 14.205 14.719	12.707 11.670 14.651 15.106 15.223	1.00 19.84 1.00 19.41 1.00 19.83 1.00 20.77 1.00 20.17
45	ATOM ATOM ATOM ATOM	1094 1095 1096 1097	CA CB SG C	CYS CYS CYS CYS	806 806 806 806	13.765 12.372 12.142 13.938	14.026 14.332 16.017 12.515	16.494 17.078 17.706 16.378	1.00 21.27 1.00 22.13 1.00 27.50 1.00 20.36
50	ATOM ATOM ATOM ATOM ATOM	1098 1099 1100 1101 1102	O N CA CB CG	CYS MET MET MET MET	806 807 807 807 807	14.575 13.348 13.491 12.668 11.195	11.904 11.903 10.458 9.944 9.877	17.241 15.350 15.160 13.989 14.279	1.00 20.30 1.00 19.67 1.00 18.10 1.00 17.25 1.00 16.70
55	ATOM ATOM ATOM ATOM	1103 1104 1105 1106	SD CE C	MET MET MET MET	807 807 807 807	10.377 10.144 14.947 15.371	9.142 10.560 10.062 9.038	12.911 11.908 14.979 15.490	1.00 19.42 1.00 16.21 1.00 17.75 1.00 18.41
60	ATOM ATOM ATOM ATOM ATOM ATOM	1107 1108 1109 1110 1111 1112	N CA CB CG CD CE	LYS LYS LYS LYS LYS	808 808 808 808 808 808	15.712 17.116 17.729 19.171 19.679 19.422	10.871 10.592 11.514 11.154 11.569 13.053	14.257 14.054 12.994 12.733 11.371 11.092	1.00 17.31 1.00 16.27 1.00 15.01 1.00 14.63 1.00 15.42 1.00 15.64

	ATOM	1113	ΝZ	LYS	808	20.232	13.940	11.928	1.00 14.15
	MOTA MOTA	1114 1115	C 0	LYS LYS	808 808	17.857 18.731	10.726 9.908	15.376 15.677	1.00 16.89 1.00 16.07
_	ATOM	1116	Ň	ALA	809	17.522	11.747	16.166	1.00 16.53
5	ATOM	1117	CA	ALA	809	18.175	11.931	17.461	1.00 17.68
	ATOM ATOM	$\frac{1118}{1119}$	CB C	ALA ALA	809 809	17.628 17.989	13.139 10.691	18.155 18.348	1.00 16.91 1.00 19.03
	ATOM	1120	0	ALA	809	18.932	10.207	18.996	1.00 20.50
	ATOM	1121	N	LEU	810	16.766	10.184	18.392	1.00 19.36
10	ATOM	1122	CA	LEU	810	16.459	9.011	19.186	1.00 18.99
	MOTA	1123 1124	CB CG	LEU LEU	810 810	14.966 14.406	8.811 9.020	19.263 20.651	1.00 19.09
	MOTA MOTA	1124 1125		LEU	810	12.954	8.606	20.594	1.00 20.20
	ATOM	1126		LEU	810	15.176	8.199	21.674	1.00 18.75
15	ATOM	1127	С	LEU	810	17.116	7.716	18.722	1.00 18.88
	ATOM	1128	0	LEU	810	17.213	6.780	19.509	1.00 20.78
	ATOM ATOM	1129 1130	N CA	LEU LEU	811 811	17.537 18.215	7.636 6.447	17.456 16.959	1.00 17.63 1.00 15.58
	ATOM	1131	CB	LEU	811	18.346	6.456	15.438	1.00 14.70
20	ATOM	1132	CG	LEU	811	17.148	6.107	14.574	1.00 14.14
	MOTA	1133		LEU	811	17.511	6.408	13.164	1.00 13.66
	MOTA MOTA	1134 1135	CD2	LEU LEU	811 811	16.744 19.598	4.632 6.328	14.746 17.582	1.00 13.62 1.00 15.42
	ATOM	1136	0	LEU	811	20.189	5.252	17.554	1.00 13.42
25	ATOM	1137	N	LEU	812	20.153	7.429	18.084	1.00 13.97
	ATOM	1138	CA	LEU	812	21.455	7.373	18.734	1.00 12.94
	ATOM	1139 1140	CB CG	LEU LEU	812 812	22.004 23.342	8.790 8.893	18.937 19.670	1.00 12.69 1.00 12.03
	ATOM ATOM	1140		LEU	812	23.342	8.422	18.802	1.00 12.03
30	ATOM	1142		LEU	812	23.559	10.325	20.037	1.00 13.12
	MOTA	1143	С	LEU	812	21.330	6.658	20.098	1.00 12.97
	MOTA	1144	0	LEU	812	22.282	6.118	20.629	1.00 12.99
	ATOM ATOM	$\frac{1145}{1146}$	N CA	PHE PHE	813 813	20.136 19.859	6.681 6.064	20.662 21.950	1.00 13.55 1.00 14.19
35	ATOM	1147	CB	PHE	813	19.137	7.088	22.821	1.00 15.20
	MOTA	1148	CG	PHE	813	19.818	8.435	22.841	1.00 16.11
	ATOM	1149		PHE	813	20.946	8.640	23.624	1.00 15.97
	ATOM ATOM	1150 1151		PHE PHE	813 813	19.349 21.604	9.472 9.845	22.036 23.615	1.00 16.07 1.00 18.37
40	ATOM	1152		PHE	813	19.991	10.687	22.014	1.00 17.54
	ATOM	1153	CZ	PHE	813	21.126	10.883	22.801	1.00 17.99
	MOTA	1154	C	PHE	813	18.971	4.856	21.753	1.00 14.71
	MOTA MOTA	1155 1156	O N	PHE SER	813 814	18.058 19.255	4.618 4.082	22,530 20,709	1.00 14.79 1.00 16.09
45	ATOM	1157	CA	SER	814	18.453	2.917	20.369	1.00 15.96
	MOTA	1158	CB	SER	814	17.697	3.172	19.062	1.00 15.79
	ATOM	1159	OG	SER	814	16.640	4.087	19.274	1.00 15.51
	ATOM ATOM	1160 1161	C 0	SER SER	814 814	19.169 18.610	1.581 0.620	20.294 19.779	1.00 16.05 1.00 17.02
50	ATOM	1162	N	ILE	815	20.395	1.498	20.779	1.00 17.02
	ATOM	1163	CA	ILE	815	21.099	0.226	20.747	1.00 17.04
	ATOM	1164	CB	ILE	815	21.620	-0.086	19.325	1.00 16.75
	ATOM ATOM	1165 1166		ILE ILE	815 815	22.222 22.600	1.113 -1.245	18.706 19.341	1.00 17.43 1.00 17.01
55	ATOM	1167	CD1		815	22.915	-1.753	17.953	1.00 17.01
	MOTA	1168	С	ILE	815	22.172	0.187	21.826	1.00 17.86
	ATOM	1169	0	ILE	815	23.111	0.981	21.802	1.00 18.49
	ATOM ATOM	1170 1171	N CA	ILE	816 816	21.994 22.913	-0.700 -0.804	22.809 23.947	1.00 18.25
60	ATOM	1172	CB	ILE	816	22.298	-0.804	25.178	1.00 18.91 1.00 19.07
	ATOM	1173	CG2	ILE	816	22.175	1.378	24.921	1.00 17.73
	ATOM	1174	CG1	ILE	816	20.939	-0.692	25.537	1.00 18.04

					0,			
	MOTA	1175	CD1 ILE	816	20.516	-0.346	26.933	1.00 17.73
	MOTA	1176	C ILE	816	23.302	-2.226	24.385	1.00 20.13
	MOTA	1177	O ILE	816	22.615	-3.184	24.040	1.00 20.43
	ATOM	1178	N PRO	817	24.392	-2.385	25.180	1.00 20.85
5	ATOM	1179	CD PRO	817	25.303	-1.373	25.730	1.00 21.00
	ATOM	1180	CA PRO	817	24.805	-3.720	25.631	1.00 22.05
	ATOM	1181	CB PRO	817	26.016	-3.444	26.523	1.00 21.47
	ATOM	1182	CG PRO	817	26.554	-2.197	26.001	1.00 21.80
	ATOM	1183	C PRO	817	23.706	-4.320	26.458	1.00 22.95
10	ATOM	1184	O PRO	817	22.988	-3.594	27.151	1.00 23.12
. •	ATOM	1185	N VAL	818	23.585	-5.640	26.418	1.00 24.79
	ATOM	1186	CA VAL	818	22.544	-6.316	27.195	1.00 26.35
	ATOM	1187	CB VAL	818	22.513	-7.860	26.916	1.00 27.19
	ATOM	1188	CG1 VAL	818	23.864	-8.515	27.282	1.00 27.82
15	ATOM	1189	CG2 VAL	818	21.362	-8.524	27.676	1.00 27.72
10	ATOM	1190	C VAL	818	22.742	-6.047	28.692	1.00 26.79
	ATOM	1191	O VAL	818	21.777	-5.849	29.421	1.00 26.79
		1191	N ASP	819	23.992	-5.963	29.136	1.00 20.73
	ATOM	1192	CA ASP	819	24.240	-5.732	30.550	1.00 27.83
20	ATOM ATOM	1194	CB ASP	819	25.406	-6.593	31.063	1.00 29.70
20	ATOM	1194	CG ASP	819	26.747	-5.908	30.959	1.00 32.39
	ATOM	1196	OD1 ASP	819	27.117	-5.518	29.825	1.00 33.33
		1190	OD1 ASP	819	27.431	-5.776	32.011	1.00 36.02
	ATOM ATOM	1197	C ASP	819	24.377	-4.266	30.937	1.00 30.18
25		1190		819	24.899	-3.930	32.007	1.00 29.73
20	ATOM ATOM	1200		820	23.839	-3.403	30.085	1.00 30.00
	ATOM	1200	N GLY CA GLY	820	23.878	-1.974	30.342	1.00 29.43
	ATOM	1201	CA GL1	820	25.216	-1.317	30.125	1.00 20.09
		1202		820	26.221	-1.982	29.938	1.00 27.42
30	ATOM ATOM	1203		821	25.208	0.010	30.135	1.00 28.29
30					26.410	0.831	29.947	1.00 28.29
	ATOM	1205	CA LEU	821				
	ATOM	1206	CB LEU CG LEU	821	26.023	2.110	29.195	1.00 28.29
	ATOM	1207 1208		821	25.083	1.940	27.991	1.00 28.32
35	ATOM	1208	CD1 LEU CD2 LEU	821 821	24.046	3.022	28.031	1.00 27.27
33	ATOM	1210		821	25.831	1.953	26.653	1.00 27.18
	ATOM ATOM	1211	C LEU O LEU	821	26.948 26.341	1.164 0.747	31.349 32.342	1.00 28.62
	ATOM	1212		822	28.060	1.897	31.441	1.00 28.84 1.00 28.49
		1213		822		2.268		
40	ATOM	1213		822	28.642		32.741	1.00 29.80
40	ATOM				29.865 30.924	3.169	32.576	1.00 30.45
	ATOM ATOM	1215 1216	CG LYS CD LYS	822 822	31.517	2.626 1.345	31.666 32.194	1.00 32.84 1.00 35.27
		1217		822				
	ATOM	1217	CE LYS NZ LYS	822	32.433	0.688	31.161	1.00 36.20
45	ATOM	1219			33.498	1.623	30.710 33.587	1.00 37.22
70	ATOM	1219		822	27.621	3.016		1.00 30.25
	ATOM		O LYS	822	27.353	2.655	34.731	1.00 31.02
	ATOM	1221	N ASN	823	27.065	4.080	33.029	1.00 29.98
	ATOM	1222	CA ASN	823	26.070	4.852	33.735	1.00 29.55
50	ATOM	1223	CB ASN	823	26.458	6.323	33.774	1.00 31.17
50	ATOM ATOM	1224	CG ASN	823	27.832	6.544	34.350	1.00 32.55
		1225	OD1 ASN	823	28.787	5.856	33.985	1.00 33.56
	ATOM	1226	ND2 ASN	823	27.952	7.520	35.246	1.00 34.42
	ATOM	1227	C ASN	823	24.807	4.665	32.943	1.00 28.73
55	ATOM	1228	O ASN	823	24.476	5.473	32.091	1.00 29.00
55	MOTA	1229	N GLN	824	24.127	3.562	33.199	1.00 27.99
	MOTA	1230	CA GLN	824	22.893	3.227	32.514	1.00 27.77
	ATOM	1231	CB GLN	824	22.590	1.731	32.738	1.00 28.13
	ATOM	1232	CG GLN	824	21.343	1.158	32.077	1.00 28.93
60	ATOM	1233	CD GLN	824	21.331	1.302	30.551	1.00 30.20
00	ATOM	1234	OE1 GLN	824	22.300	0.976	29.855	1.00 30.02
	MOTA	1235	NE2 GLN	824	20.211	1.775	30.028	1.00 29.72
	ATOM	1236	C GLN	824	21.723	4.115	32.960	1.00 27.61

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1237 1238 1239 1240 1241 1242 1243 1244	O N CA CB CG CD CE NZ C	GLN LYS LYS LYS LYS LYS LYS LYS LYS	824 825 825 825 825 825 825 825 825 825	20.747 21.833 20.742 20.815 19.430 19.493 18.086 17.196 20.679	4.275 4.752 5.590 5.802 5.823 5.693 5.725 4.516 6.917	32.226 34.122 34.595 36.113 36.792 38.335 39.002 38.739 33.876	1.00 27.58 1.00 27.13 1.00 26.37 1.00 28.08 1.00 31.02 1.00 33.41 1.00 34.57 1.00 35.55 1.00 24.74
10	ATOM	1246	Ö	LYS	825	19.625	7.518	33.799	1.00 25.30
	MOTA	1247	N	PHE	826	21.794	7.375	33.330	1.00 24.06
15	ATOM ATOM ATOM ATOM	1248 1249 1250 1251	CA CB CG	PHE PHE PHE PHE	826 826 826 826	21.830 23.247 23.768 22.916	8.646 9.191 9.527 10.067	32.597 32.573 33.930 34.890	1.00 23.44 1.00 25.61 1.00 28.86 1.00 29.49
10	ATOM ATOM ATOM	1252 1253 1254	CD2 CE1 CE2	PHE PHE PHE	826 826 826	25.091 23.373 25.551	9.284 10.356 9.571	34.268 36.156 35.533	1.00 29.08 1.00 29.57 1.00 29.80
20	ATOM ATOM	1255 1256	CZ	PHE PHE	826 826	24.688 21.344	10.108 8.463	36.479 31.178	1.00 30.14 1.00 21.78
20	ATOM	1257	Ö	PHE	826	20.808	9.380	30.568	1.00 21.70
	ATOM	1258	N	PHE	827	21.581	7.277	30.636	1.00 20.42
	MOTA	1259	CA	PHE	827	21.145	6.937	29.299	1.00 18.74
25	ATOM	1260	CB	PHE	827	21.814	5.644	28.857	1.00 17.62
25	ATOM	1261	CG CD1	PHE	827	21.238	5.083	27.610	1.00 16.77
	MOTA MOTA	1262 1263		PHE PHE	827 827	21.780 20.123	5.412 4.261	26.380 27.656	1.00 16.74 1.00 16.46
	ATOM	1264		PHE	827	21.225	4.939	25.212	1.00 16.50
	MOTA	1265		PHE	827	19.555	3.782	26.491	1.00 17.41
30	MOTA	1266	CZ	PHE	827	20.105	4.120	25.266	1.00 16.35
	ATOM	1267	С	PHE	827	19.627	6.778	29.277	1.00 19.19
	ATOM ATOM	1268 1269	N O	PHE ASP	827 828	18.962 19.079	7.183 6.150	28.331 30.312	1.00 18.79 1.00 20.42
	ATOM	1270	CA	ASP	828	17.638	5.943	30.421	1.00 20.42
35	MOTA	1271	CB	ASP	828	17.325	5.045	31.633	1.00 23.37
	MOTA	1272	CG	ASP	828	17.885	3.627	31.487	1.00 24.46
	ATOM	1273		ASP	828	17.900	3.095	30.365	1.00 26.34
	ATOM ATOM	$1274 \\ 1275$	C C	ASP ASP	828 828	18.296 16.931	3.023 7.287	32.501 30.572	1.00 26.77 1.00 21.41
40	ATOM	1276	0	ASP	828	15.835	7.487	30.070	1.00 21.41
	ATOM	1277	N	GLU	829	17.552	8.187	31.313	1.00 22.11
	ATOM	1278	CA	GLU	829	17.005	9.510	31.533	1.00 23.92
	ATOM	1279	CB	GLU	829	17.910	10.309	32.499	1.00 27.77
45	MOTA MOTA	1280 1281	CG CD	GLU GLU	829 829	18.168 19.650	11.823 12.266	32.130 32.334	1.00 32.20 1.00 35.29
	ATOM	1282	OE1	GLU	829	20.005	12.655	33.482	1.00 33.29
	ATOM	1283		GLU	829	20.463	12.217	31.360	1.00 34.89
	MOTA	1284	С	GLU	829	17.011	10.166	30.174	1.00 22.78
50	ATOM	1285	0	GLU	829	15.963	10.539	29.656	1.00 22.06
50	ATOM ATOM	1286 1287	N CA	LEU LEU	830 830	18.201 18.437	10.200 10.812	29.575 28.272	1.00 22.21
	ATOM	1288	CB	LEU	830	19.885	10.512	27.852	1.00 22.14 1.00 21.24
	MOTA	1289	CG	LEU	830	20.415	11.572	26.833	1.00 21.76
EE	MOTA	1290	CD1	LEU	830	20.037	13.004	27.215	1.00 21.40
55	MOTA	1291	CD2		830	21.895	11.429	26.752	1.00 22.34
	ATOM ATOM	1292 1293	C 0	LEU LEU	830 830	17.499 16.874	10.318 11.114	27.191 26.481	1.00 22.74
	ATOM	1294	N	ARG	831	17.400	9.002	27.079	1.00 23.35 1.00 22.23
	ATOM	1295	CA	ARG	831	16.559	8.352	26.097	1.00 22.23
60	MOTA	1296	CB	ARG	831	16.780	6.849	26.186	1.00 22.50
	MOTA	1297	CG	ARG	831	15.957	6.087	25.219	1.00 22.59
	MOTA	1298	CD	ARG	831	16.130	4.600	25.375	1.00 23.29

						- 00 -			
	ATOM	1299	NE	ARG	831	15.921	3.972	24.074	1.00 25.50
	MOTA	1300	CZ	ARG	831	14.738	3.800	23.491	1.00 24.36
	ATOM	1301	NH1	ARG	831	13.632	4.173	24.096	1.00 25.37
_	ATOM	1302	NH2	ARG	831	14.676	3.366	22,250	1.00 24.31
5	ATOM	1303	С	ARG	831	15.086	8.667	26.302	1.00 22.46
	MOTA	1304	0	ARG	831	14.354	8.964	25.351	1.00 22.89
	MOTA	1305	N	$ ext{TEM}$	832	14.655	8.593	27.550	1.00 22.76
	ATOM	1306	CA	MET	832	13.276	8.859	27.923	1.00 22.91
10	MOTA	1307	CB	MET	832	13.126	8.762	29.429	1.00 23.88
10	ATOM	1308	CG	MET	832	11.739	9.050	29.870	1.00 24.65
	ATOM	1309	SD	MET	832	11.693	9.332	31.596	1.00 29.43 1.00 29.67
	MOTA	1310	CE	MET	832	10.059 12.879	10.026 10.262	31.651 27.513	1.00 29.67
	MOTA MOTA	1311 1312	С О	MET MET	832 832	11.740	10.262	27.097	1.00 23.47
15	ATOM	1313	N	ASN	833	13.782	11.198	27.768	1.00 23.73
10	ATOM	1314	CA	ASN	833	13.562	12.599	27.423	1.00 23.80
	ATOM	1315	CB	ASN	833	14.676	13.482	28.013	1.00 23.64
	ATOM	1316	CG	ASN	833	14.532	13.679	29.544	1.00 23.87
	ATOM	1317		ASN	833	15.519	13.864	30.270	1.00 23.24
20	ATOM	1318		ASN	833	13.293	13.628	30.030	1.00 24.57
	ATOM	1319	С	ASN	833	13.403	12.761	25.905	1.00 23.94
	ATOM	1320	0	ASN	833	12.463	13.397	25.445	1.00 24.48
	ATOM	1321	N	TYR	834	14.240	12.093	25.123	1.00 23.69
	MOTA	1322	CA	TYR	834	14.121	12.165	23.673	1.00 24.70
25	ATOM	1323	CB	TYR	834	15.340	11.532	23.007	1.00 25.39
	MOTA	1324	CG	TYR	834	16.491	12.489	22.872	1.00 25.49
	ATOM	1325	CD1	TYR	834	16.802	13.051	21.635	1.00 26.75
	ATOM	1326	CE1	TYR	834	17.828	13.975	21.502	1.00 27.67
30	ATOM	1327	CD2	TYR	834	17.239	12.869	23,986	1.00 26.00
30	MOTA	1328	CE2	TYR	834	18.268	13.791	23.873	1.00 26.69
	MOTA MOTA	1329 1330	CZ OH	TYR TYR	834 834	18.558 19.571	14.341 15.263	22,624 22,497	1.00 28.15
	ATOM	1331	C	TYR	834	12.809	13.203 11.574	23,128	1.00 24.43
	ATOM	1332	0	TYR	834	12.297	12.006	22.082	1.00 24.45
35	ATOM	1333	N	ILE	835	12.260	10.599	23.843	1.00 24.20
	ATOM	1334	CA	ILE	835	11.004	9.991	23.450	1.00 23.48
	ATOM	1335	СВ	ILE	835	10.724	8.727	24.235	1.00 21.33
	ATOM	1336	CG2	ILE	835	9.297	8.308	24.054	1.00 19.87
_	ATOM	1337	CG1	ILE	835	11.657	7.624	23.756	1.00 20.40
40	ATOM	1338	CD1	ILE	835	11.684	6.400	24.655	1.00 21.05
	MOTA	1339	С	ILE	835	9.893	10.977	23.687	1.00 25.05
	ATOM	1340	0	ILE	835	8.972	11.061	22.889	1.00 26.24
	ATOM	1341	N	LYS	836	9.998	11.738	24.771	1.00 26.82
45	ATOM	1342	CA	LYS	836	9.006	12.747	25.137	1.00 28.28
45	ATOM	1343	CB	LYS	836	9.245	13.281	26.556	1.00 29.95
	ATOM ATOM	1344 1345	CG	LYS	836	9.115	12.252	27.712	1.00 32.62
	ATOM	1345	CD CE	LYS LYS	836 836	7.690 7.575	11.672	27.901 27.344	1.00 33.04
	ATOM	1347	NZ	LYS	836	8.559	10.238 9.259		1.00 34.32 1.00 32.90
50	ATOM	1348	C	LYS	836	9.030	13.919	27.942 24.164	1.00 32.90
00	ATOM	1349	0	LYS	836	7.997	14.545	23.946	1.00 20.39
	ATOM	1350	N	GLU	837	10.194	14.249	23.606	1.00 28.61
	ATOM	1351	CA	GLU	837	10.276	15.351	22.643	1.00 28.70
	ATOM	1352	CB	GLU	837	11.715	15.824	22.439	1.00 29.34
55	ATOM	1353	CG	GLU	837	12.305	16.584	23.627	1.00 32.13
	ATOM	1354	CD	GLU	837	11.553	17.887	23.971	1.00 34.30
	MOTA	1355		GLU	837	11.612	18.303	25.157	1.00 34.18
	ATOM	1356	OE2		837	10.925	18.503	23.063	1.00 35.58
	MOTA	1357	С	GLU	837	9.666	14.907	21.321	1.00 28.92
60	ATOM	1358	0	GLU	837	9.041	15.699	20.626	1.00 28.40
	ATOM	1359	N	LEU	838	9.826	13.631	20.991	1.00 29.32
	ATOM	1360	CA	LEU	838	9.250	13.092	19.774	1.00 30.90

						- 00 -			
		ATOM	1361	CB LEU	838	9.614	11.622	19.592	1.00 30.44
		ATOM	1362	CG LEU	838	8.810	10.983	18.460	1.00 30.56
		ATOM	1363	CD1 LEU	838	9.077	11.728	17.151	1.00 30.31
		ATOM	1364	CD2 LEU	838	9.166	9.533	18.330	1.00 30.00
	5	ATOM	1365	C LEU	838	7.740	13.211	19.884	1.00 32.66
	Ū	ATOM	1366	O LEU	838	7.076	13.706	18.983	1.00 32.60
		ATOM	1367	N ASP	839	7.186	12.724	20.979	1.00 34.82
		ATOM	1368	CA ASP	839	5.755	12.823	21.162	1.00 34.02
		ATOM	1369	CB ASP	839	5.331	12.117	22.449	1.00 37.01
	10	ATOM	1370	CG ASP	839	3.816	11.952	22.557	1.00 33.22
		ATOM	1371	OD1 ASP	839	3.249	12.375	23.592	1.00 41.54
ing thing the second se			1371		839	3.192			1.00 43.10
		MOTA	1372	OD2 ASP			11.400	21.613	1.00 42.60
		MOTA		C ASP	839	5.338	14.293	21.187	
	15	ATOM	1374	O ASP	839	4.285	14.645	20.672	1.00 39.02
	10	MOTA	1375	N ARG	840	6.195	15.151	21.731	1.00 40.51
		MOTA	1376	CA ARG	840	5.916	16.580	21.828	1.00 42.20
		ATOM	1377	CB ARG	840	7.032	17.289	22.610	1.00 43.32
		ATOM	1378	CG ARG	840	6.657	18.639	23.261	1.00 45.47
	20	ATOM	1379	CD ARG	840	6.945	19.881	22.401	1.00 46.95
, prima	20	ATOM	1380	NE ARG	840	8.319	20.371	22.542	1.00 48.57
100		ATOM	1381	CZ ARG	840	9.066	20.823	21.533	1.00 49.57
·Q		ATOM	1382	NH1 ARG	840	8.580	20.860	20.294	1.00 49.89
		ATOM	1383	NH2 ARG	840	10.314	21.220	21.755	1.00 49.90
H	25	ATOM	1384	C ARG	840	5.776	17.220	20.457	1.00 43.27
	25	ATOM	1385	O ARG	840	4.860	18.004	20.232	1.00 43.50
1495		ATOM	1386	N ILE	841	6.663	16.876	19.528	1.00 44.53
1,9 9		ATOM	1387	CA ILE	841	6.600	17.483	18.211	1.00 46.22
		ATOM	1388	CB ILE	841	7.983	17.572	17.510	1.00 45.82
	30	ATOM	1389	CG2 ILE	841	9.044	18.078	18.463	1.00 46.40
	30	MOTA	1390	CG1 ILE	841	8.383	16.237	16.918	1.00 46.46
To the same of the		ATOM	1391	CD1 ILE	841	8.064	16.150	15.463	1.00 45.92
		ATOM	1392	C ILE	841	5.534	16.913	17.286	1.00 48.04
i s		ATOM ATOM	1393 1394	O ILE N ILE	841 842	5.472 4.737	17.272	16.109	1.00 48.90
· ·	35						15.976	17.786	1.00 49.91
1 5 5	33	ATOM	1395	CA ILE	842	3.632	15.446	16.990	1.00 51.38
1 200		ATOM	1396 1397	CB ILE CG2 ILE	842	3.577	13.878	16.889	1.00 51.11
		ATOM ATOM	1398	CG2 ILE CG1 ILE	842 842	3.917 4.523	13.445 13.192	15.482	1.00 51.75
, wine		ATOM	1399	CD1 ILE	842	4.691	13.192	17.870 17.619	1.00 50.67 1.00 49.36
	40	ATOM	1400	C ILE	842	2.384	16.003	17.659	1.00 49.30
	- 1-0	ATOM	1401	O ILE	842	1.509	16.551	16.999	1.00 52.38
		ATOM	1402	N ALA	843	2.356	15.939	18.986	1.00 54.81
		ATOM	1403	CA ALA	843	1.242	16.456	19.761	1.00 57.24
		ATOM	1403	CB ALA	843	1.424	16.129	21.247	1.00 56.69
	45	ATOM	1405	C ALA	843	1.215	17.962	19.557	1.00 59.28
		ATOM	1406	O ALA	843	1.847	18.704	20.304	1.00 59.69
		ATOM	1407	N CYS	844	0.560	18.391	18.481	1.00 61.60
		ATOM	1408	CA CYS	844	0.402	19.810	18.130	1.00 63.67
		ATOM	1409	CB CYS	844	1.766	20.536	17.979	1.00 64.05
	50	ATOM	1410	SG CYS	844	2.751	20.268	16.470	1.00 65.30
		ATOM	1411	C CYS	844	-0.441	19.854	16.848	1.00 64.63
		ATOM	1412	O CYS	844	-1.618	19.471	16.889	1.00 64.70
		ATOM	1413	N ALA	845	0.136	20.332	15.738	1.00 65.65
		MOTA	1414	CA ALA	845	-0.545	20.374	14.439	1.00 65.96
	55	ATOM	1415	CB ALA	845	-0.195	21.639	13.684	1.00 65.80
		ATOM	1416	C ALA	845	-0.079	19.165	13.644	1.00 65.80
		ATOM	1417	O ALA	845	-0.675	18.829	12.620	1.00 66.85
		ATOM	1418	N ALA	846	0.998	18.533	14.127	1.00 66.74
		ATOM	1419	CA ALA	846	1.601	17.343	13.511	1.00 66.90
	60	ATOM	1420	CB ALA	846	3.110	17.333	13.730	1.00 66.74
	-	ATOM	1421	C ALA	846	0.984	16.074	14.086	1.00 66.88
		MOTA	1422	O ALA	846	1.675	15.092	14.345	1.00 66.35
					•				1.00 00.00

1.

	67.27
	67.87
	68.14
ATOM 1426 C ALA 847 -2.420 15.816 15.251 1.00	68.35
	68.33
ATOM 1428 N ALA 848 -3.468 15.079 15.597 1.00	69.11
ATOM 1429 CA ALA 848 -4.728 15.685 16.016 1.00	69.71
ATOM 1430 CB ALA 848 -5.272 16.598 14.907 1.00	69.68
	70.20
10 ATOM 1432 O ALA 848 -5.342 13.474 16.720 1.00	70.21
ATOM 1433 N ALA 849 -7.021 14.914 16.146 1.00	70.54
ATOM 1434 CA ALA 849 -8.185 14.043 16.374 1.00	70.31
ATOM 1435 CB ALA 849 -9.014 13.929 15.079 1.00	70.65
	69.92
15 ATOM 1437 O ALA 849 -7.665 12.492 18.130 1.00	70.12
	69.47
	68.74
	68.95
	67.76
	67.27
	66.46
	65.28
	65.24
	65.05
	64.16
	64.16
	62.68
	60.96
	61.34
	59.71
	59.71
	57.85
	55.45
	56.27
	57.65
	53.09
	53.22
	49.75
	46.39
ATOM 1463 CB ARG 854 -3.021 6.634 14.443 1.00	47.23
	48.09
ATOM 1465 CD ARG 854 -2.985 6.943 11.940 1.00	49.85
ATOM 1466 NE ARG 854 -4.340 7.500 11.936 1.00	51.11
	51.20
	51.32
	51.21
	43.72
	43.80
	39.68
	36.58
	36.42
	34.79
	32.86
	30.54
	28.88
	29.20
	35.02
60 ATOM 1482 O ARG 855 3.180 8.326 14.723 1.00	34.97
	33.30
	31.21

						- 03 -			
	ATOM	1547	N	LEU	863	10.596	3.602	13,105	1.00 20.71
	ATOM	1548	CA	LEU	863	11.906	3.625	13.749	1.00 18.90
	MOTA	1549	CB	LEU	863	11.827	4.423	15.040	1.00 18.78
	ATOM	1550	CG	LEU	863	11.890	5.931	14.863	1.00 18.02
5	ATOM	1551		LEU	863	12.103	6.545	16.230	1.00 19.67
Ū	ATOM	1552		LEU	863	13.049	6.291	13.944	1.00 16.59
		1553	C	LEU	863	12.462	2.218	14.004	1.00 18.08
	MOTA				863	13.676	1.984	13.895	1.00 17.06
	MOTA	1554	0	LEU		11.592	1.307	14.436	1.00 17.00
40	MOTA	1555	N	ASP	864		-0.088		1.00 10.33
10	ATOM	1556	CA	ASP	864	11.985		14.642	
	MOTA	1557	СВ	ASP	864	10.797	-0.917	15.143	1.00 19.27
	MOTA	1558	CG	ASP	864	10.525	-0.727	16.620	1.00 19.92
	MOTA	1559		ASP	864	11.256	0.045	17.271	1.00 20.94
4.5	ATOM	1560		ASP	864	9.577	-1.364	17.116	1.00 19.39
15	MOTA	1561	С	ASP	864	12.467	-0.692	13,321	1.00 19.06
	ATOM	1562	0	ASP	864	13.377	-1.519	13.298	1.00 18.82
	ATOM	1563	N	SER	865	11.847	-0.263	12.222	1.00 19.90
	ATOM	1564	CA	SER	865	12.202	-0.764	10.894	1.00 19.17
	ATOM	1565	CB	SER	865	11.226	-0.289	9.798	1.00 18.59
20	MOTA	1566	OG	SER	865	11.167	1.123	9.613	1.00 19.91
	MOTA	1567	С	SER	865	13.634	-0.507	10.489	1.00 18.01
	ATOM	1568	0	SER	865	14.213	-1.294	9.765	1.00 18.93
	ATOM	1569	N	VAL	866	14.257	0.535	11.004	1.00 17.08
	ATOM	1570	CA	VAL	866	15.619	0.747	10.589	1.00 15.20
25	ATOM	1571	СВ	VAL	866	16.093	2.211	10,783	1.00 15.01
	ATOM	1572		VAL	866	14.982	3.081	11.320	1.00 13.81
	ATOM	1573		VAL	866	17.344	2.280	11.574	1.00 13.41
	ATOM	1574	C	VAL	866	16.564	-0.260	11.194	1.00 14.83
	ATOM	1575	Ö	VAL	866	17.625	-0.518	10.641	1.00 14.66
30	ATOM	1576	N	GLN	867	16.168	-0.873	12.302	1.00 15.12
00	ATOM	1577	CA	GLN	867	17.031	-1.849	12.977	1.00 15.12
					867	16.508	-2.155	14.374	1.00 15.04
	MOTA	1578	CB	GLN		16.526		15.315	1.00 16.10
	MOTA	1579	CG	GLN	867		-0.968		
35	ATOM	1580	CD OF1	GLN	867	17.910	-0.474	15.672	1.00 17.91
55	MOTA	1581	OE1		867	18.924	-1.175	15.510	1.00 17.76
	ATOM	1582		GLN	867	17.958	0.750	16.201	1.00 17.53
	MOTA	1583	С	GLN	867	17.358	-3.143	12.233	1.00 14.54
	MOTA	1584	0	GLN	867	18.487	-3.594	12.271	1.00 15.92
40	MOTA	1585	N	PRO	868	16.364	-3.809	11.634	1.00 14.35
40	ATOM	1586	CD	PRO	868	14.914	-3.555	11.696	1.00 15.17
	ATOM	1587	CA	PRO	868	16.630	-5.040	10.886	1.00 13.73
	ATOM	1588	CB	PRO	868	15.232	-5.465	10.415	1.00 14.35
	ATOM	1589	CG	PRO	868	14.331	-4.928	11,438	1.00 14.42
A E	MOTA	1590	С	PRO	868	17.500	-4.704	9.674	1.00 13.45
45	ATOM	1591	0	PRO	868	18.341	-5.497	9.254	1.00 14.77
	ATOM	1592	N	ILE	869	17.289	-3.514	9.113	1.00 13.49
	ATOM	1593	CA	ILE	869	18.043	-3.044	7.970	1.00 12.06
	ATOM	1594	СВ	ILE	869	17.447	-1.740	7.358	1.00 12.53
F 0	MOTA	1595	CG2		869	18.272	-1.307	6,175	1.00 12.44
50	ATOM	1596	CG1		869	15.998	-1.973	6,928	1.00 12.25
	ATOM	1597	CD1	ILE	869	15.258	-0.746	6.432	1.00 11.91
	ATOM	1598	С	ILE	869	19.458	-2.818	8.411	1.00 11.70
	MOTA	1599	0	ILE	869	20.356	-3.302	7,755	1.00 13.01
	ATOM	1600	N	ALA	870	19.655	-2.254	9.610	1.00 12.19
55	ATOM	1601	CA	ALA	870	21.007	-1.993	10.110	1.00 11.52
	MOTA	1602	CB	ALA	870	20.971	-1.189	11.375	1.00 10.62
	MOTA	1603	С	ALA	870	21.758	-3.287	10.350	1.00 12.90
	ATOM	1604	0	ALA	870	22.955	-3.374	10.074	1.00 13.99
	MOTA	1605	N	ARG	871	21.082	-4.262	10.962	1.00 14.67
60	MOTA	1606	CA	ARG	871	21.659	-5.577	11.226	1.00 15.30
	ATOM	1607	CB	ARG	871	20.668	-6.465	11.970	1.00 16.99
	ATOM	1608	CG	ARG	871	21.317	-7.789	12.304	1.00 20.44
				-				001	

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1609 1610 1611 1612 1613 1614 1615 1616		ARG ARG ARG ARG ARG ARG ARG GLU GLU	871 871 871 871 871 871 871 872 872	20.552 21.529 22.248 22.085 23.221 22.119 23.216 21.300 21.669	-8.755 -9.736 -9.581 -8.513 -10.425 -6.287 -6.846 -6.256 -6.874	13.190 13.678 14.785 15.553 15.059 9.939 9.897 8.886 7.595	1.00 1.00 1.00 1.00 1.00 1.00	22.19 25.05 24.87 26.86 27.12 16.18 16.90 17.08 17.70
10	MOTA MOTA MOTA MOTA	1618 1619 1620 1621	CB CG CD OE1 OE2	GLU GLU GLU	872 872 872 872	20.546 20.070 19.041 19.199	-6.670 -7.920 -7.600 -8.069 -6.867	6.578 5.827 4.715 3.544 5.018	1.00 1.00 1.00 1.00	20.21 27.32 31.24 32.65 33.14
15	ATOM ATOM ATOM ATOM ATOM	1622 1623 1624 1625 1626	C O N CA	GLU GLU GLU LEU LEU	872 872 872 873 873 873	18.068 22.961 23.826 23.109 24.304	-6.229 -6.892 -4.927 -4.230 -2.718	7.064 6.504 7.254 6.781 6.664	1.00 1.00 1.00 1.00	16.22 16.64 15.48 13.64 13.09
20	ATOM ATOM ATOM ATOM ATOM	1627 1628 1629 1630 1631	CD2 C	LEU LEU LEU	873 873 873 873	24.040 22.957 22.396 23.511 25.489	-2.359 -0.985 -2.529 -4.510	5.640 5.856 4.229 7.662	1.00 1.00 1.00 1.00	12.60 13.12 12.29 13.26 12.91
25	ATOM ATOM ATOM ATOM ATOM	1632 1633 1634 1635 1636	O N CA CB CG	LEU HIS HIS HIS	873 874 874 874 874	26.621 25.237 26.297 25.735 25.513	-4.541 -4.688 -5.011 -5.154 -3.860	7.185 8.960 9.935 11.351 12.062	1.00 1.00 1.00	14.96 15.73 14.09 13.53
30	ATOM ATOM ATOM ATOM ATOM	1637 1638 1639 1640 1641	ND1 CE1 NE2 C	HIS HIS HIS HIS	874 874 874 874	26.303 24.365 24.451 25.616 26.945	-2.769 -3.588 -2.397 -1.878 -6.342	12.204 12.771 13.313 12.990 9.549	1.00 1.00 1.00 1.00	12.74 12.74 11.45 10.87 16.66
35	ATOM ATOM ATOM ATOM ATOM	1642 1643 1644 1645 1646	O N CA CB CG	HIS GLN GLN GLN GLN	874 875 875 875 875		-6.454 -7.356 -8.674 -9.726 -10.875	9.539 9.268 8.853 8.779 9.864	1.00 1.00 1.00 1.00	16.68 18.67 19.45 21.56 25.76
40	ATOM ATOM ATOM ATOM ATOM	1647 1648 1649 1650 1651	CD OE1 NE2 C O	GLN GLN GLN GLN GLN	875 875 875 875 875	27.871	-11.938 -11.624 -13.204 -8.521 -9.022	9.671 9.654 9.589 7.491 7.294	1.00 1.00 1.00	26.74 27.36 27.93 18.37 18.65
45	MOTA MOTA MOTA MOTA	1652 1653 1654 1655 1656	CG	PHE PHE PHE PHE PHE	876 876 876 876 876	26.737 27.338 26.453 26.966 28.038	-7.724 -7.515 -6.641 -6.506 -5.675	6.597 5.280 4.377 2.954 2.657	1.00 1.00 1.00	18.47 18.22 19.25 19.63 18.97
50	MOTA MOTA MOTA MOTA MOTA	1657 1658 1659 1660 1661	CE1	PHE PHE PHE PHE	876 876 876 876 876	26.380 28.519 26.857 27.926 28.689	-7.226 -5.558 -7.113 -6.281 -6.871	1.917 1.343 0.597 0.310 5.403	1.00 1.00 1.00	19.90 20.30 20.70 18.82 17.76
55	ATOM ATOM ATOM ATOM ATOM	1662 1663 1664 1665 1666	O N CA CB OG1	PHE THR THR THR	876 877 877 877 877	29.687 28.741 30.002 29.855 30.954	-7.412 -5.732 -5.024 -3.641 -2.808	4.920 6.086 6.215 6.915 6.525	1.00 1.00 1.00 1.00	17.95 17.85 17.77 18.24 19.13
60	ATOM ATOM ATOM ATOM	1667 1668 1669 1670	CG2 C O N	THR THR THR THR PHE	877 877 877 877	29.868 31.040 32.208 30.634	-3.765 -5.884 -5.849 -6.610	8.444 6.900 6.514 7.943	1.00 1.00 1.00	17.92 17.52 16.51 18.06

	ATOM ATOM	1671 1672	CA CB	PHE PHE	878 878	31.559 -7.50 30.863 -8.20		1.00 19.20 1.00 19.53
	ATOM	1673	CG	PHE	878	31.731 -9.22		1.00 20.60
	ATOM	1674		PHE	878	32.681 -8.82		1.00 19.88
5	ATOM	1675		PHE	878	31.623 -10.57		1.00 20.59
	MOTA	1676		PHE	878	33.518 -9.77		1.00 22.10
	MOTA	1677	CE2		878	32.454 -11.53		1.00 20.21
	ATOM	1678	CZ	PHE	878	33.403 -11.13		1.00 20.82
10	MOTA	1679	C	PHE	878	32.176 -8.56 33.400 -8.72		1.00 18.91 1.00 17.63
10	ATOM ATOM	1680 1681	O N	PHE ASP	878 879	33.400 -8.72 31.326 -9.26		1.00 17.63
	ATOM	1682	CA	ASP	879	31.800 -10.30		1.00 20.02
	ATOM	1683	CB	ASP	879	30.622 -10.97		1.00 20.24
	ATOM	1684	CG	ASP	879	29.693 -11.72		1.00 22.04
15	ATOM	1685	OD1	ASP	879	30.122 -12.07		1.00 23.16
	ATOM	1686	OD2	ASP	879	28.520 -11.96		1.00 21.98
	ATOM	1687	С	ASP	879	32.723 -9.65		1.00 20.35
	ATOM	1688	0	ASP	879	33.802 -10.17		1.00 20.51
20	ATOM	1689	N	LEU	880	32.342 -8.47		1.00 20.77
20	ATOM ATOM	1690 1691	CA CB	LEU LEU	880 880	33.149 -7.77 32.484 -6.47		1.00 20.33 1.00 20.23
	ATOM	1692	CG	LEU	880	33.089 -5.83		1.00 20.23
	ATOM	1693	CD1		880	33.310 -6.88		1.00 19.38
	ATOM	1694		LEU	880	32.159 -4.76		1.00 18.07
25	MOTA	1695	С	LEU	880	34.529 -7.49		1.00 20.40
	ATOM	1696	0	LEU	880	35.513 -7.72		1.00 21.41
	ATOM	1697	N	LEU	881	34.602 -7.04		1.00 20.90
	ATOM	1698	CA	LEU	881	35.882 -6.72		1.00 20.84
30	ATOM	1699	CB	LEU	881	35.651 -6.05		1.00 19.23
30	ATOM ATOM	1700 1701	CG CD1	LEU LEU	881 881	36.989 -5.77 37.662 -4.59		1.00 19.26 1.00 19.67
	ATOM	1701		LEU	881	36.810 -5.51		1.00 13.07
	ATOM	1703	C	LEU	881	36.818 -7.92		1.00 21.55
	MOTA	1704	0	LEU	881	38.055 -7.80		1.00 21.03
35	ATOM	1705	N	ILE	882	36.230 -9.06		1.00 22.39
	MOTA	1706	CA	ILE	882	37.013 -10.26		1.00 23.63
	ATOM	1707	CB	ILE	882	36.136 -11.39		1.00 23.00
	ATOM	1708	CG2 CG1	ILE ILE	882 882	36.855 -12.72 35.749 -11.00		1.00 22.75 1.00 22.91
40	ATOM ATOM	1709 1710	CD1	ILE	882	36.922 -10.41		1.00 22.91
70	ATOM	1711	С	ILE	882	37.668 -10.64		1.00 22.34
	ATOM	1712	Ö	ILE	882	38.859 -10.95		1.00 24.23
	MOTA	1713	N	LYS	883	36.908 -10.54		1.00 25.73
	MOTA	1714	CA	LYS	883	37.441 -10.86		1.00 28.25
45	MOTA	1715	CB	LYS	883	36.492 -11.82		1.00 27.47
	ATOM	1716		LYS	883	35.140 -11.24		
	ATOM ATOM	1717 1718	CD CE	LYS LYS	883 883	34.293 -12.16 32.926 -11.54		1.00 27.60 1.00 28.94
	ATOM	1719	NZ	LYS	883	32.926 -11.34		1.00 28.94
50	ATOM	1720	C	LYS	883	37.749 -9.65		1.00 30.08
	ATOM	1721	Ö	LYS	883	37.823 -9.79		1.00 30.81
	ATOM	1722	N	SER	884	37.976 -8.49	5 2.672	1.00 32.24
	MOTA	1723	CA	SER	884	38.268 -7.26		1.00 33.66
	MOTA	1724	CB	SER	884	38.440 -6.10		1.00 32.96
55	MOTA	1725	OG	SER	884	39.466 -6.38		1.00 32.02
	ATOM	1726 1727	С	SER	884	39.500 -7.34 39.491 -6.86		1.00 35.48 1.00 35.08
	MOTA MOTA	1727 1728	O N	SER HIS	884 885	39.491 -6.86 40.557 -7.96		1.00 35.08
	ATOM	1729	CA	HIS	885	41.815 -8.13		1.00 40.84
60	ATOM	1730	CB	HIS	885	42.882 -8.68		1.00 43.70
	ATOM	1731	CG	HIS	885	44.032 -9.39		1.00 47.44
	ATOM	1732	CD2	HIS	885	44.240 -10.70	7 0.860	1.00 49.14

	ATOM ATOM	1733 1734	CE1	HIS HIS	885 885	45.172 46.034	-9.615	0.704 0.217	1.00	49.20 49.74
	ATOM	1735		HIS	885		-10.818	0.300		50.17
5	ATOM ATOM	1736 1737	C O	HIS HIS	885 885	41.682 42.563	-9.017 -9.010	-0.432 -1.288		41.12 41.51
3	ATOM	1738	И	MET	886	40.586		-0.544		41.14
	ATOM	1739	CA	MET	886		-10.639	-1.686		41.17
	ATOM	1740	СВ	MET	886		-11.989	-1.212	1.00	43.08
40	MOTA	1741	CG	MET	886		-12.860	-0.584		45.59
10	MOTA	1742	SD	MET	886		-14.113	0.457		50.78
	MOTA	1743	CE	MET	886		-14.971	-0.725		48.51
	ATOM ATOM	1744 1745	C 0	MET MET	886 886		-10.074 -10.476	-2.761 -3.923		40.68 41.66
	ATOM	1746	N	VAL	887	38.542		-2.370		39.25
15	ATOM	1747	CA	VAL	887	37.637		-3.333		37.55
	ATOM	1748	CB	VAL	887	36.187	-8.459	-2.802	1.00	37.19
	ATOM	1749		VAL	887	35.526	-9.828	-2.756		37.49
	ATOM	1750		VAL	887	36.175	-7.817	-1.429		36.99
20	ATOM ATOM	1751 1752	С 0	VAL VAL	887 887	38.145 37.484	-7.168 -6.444	-3.702 -4.442		37.08 37.26
20	ATOM	1753	N	SER	888	39.320	-6.809	-3.188		35.90
	MOTA	1754	CA	SER	888	39.955	-5.515	-3.437		35.05
	ATOM	1755	CB	SER	888	40.231	-5.342	-4.929		35.29
	ATOM	1756	OG	SER	888	41.335	-6.133	-5.326		36.74
25	ATOM	1757	С	SER	888	39.216	-4.290	-2.898		34.27
	MOTA	1758	0	SER	888	39.402	-3.179	-3.396		34.78
	ATOM	1759	N	VAL	889	38.391	-4.485	-1.875		32.78
	ATOM ATOM	1760 1761	CA CB	VAL VAL	889 889	37.636 36.244	-3.386 -3.857	-1.283 -0.772		31.50
30	ATOM	1761		VAL	889	35.509	-2.729	-0.055		30.79
	ATOM	1763		VAL	889	35.410	-4.364	-1.903		30.08
	ATOM	1764	C	VAL	889	38.410	-3.002	-0.064		31.36
	ATOM	1765	0	VAL	889	38.855	-3.895	0.648		32.20
0.5	ATOM	1766	N	ASP	890	38.692	-1.724	0.156		31.10
35	ATOM	1767	CA	ASP	890	39.364	-1.428	1.414		30.80
	ATOM ATOM	1768 1769	CB CG	ASP ASP	890 890	40.849 41.720	-1.093 -1.949	1.296 2.261		33.89 35.96
	ATOM	1770		ASP	890	41.720	-2.314	3.373		35.86
	ATOM	1771		ASP	890	42.882	-2.260	1.901		37.33
40	ATOM	1772	C	ASP	890	38.629	-0.493	2.326		28.51
	MOTA	1773	0	ASP	890	37.889	0.379	1.889		27.96
	MOTA	1774	N	PHE	891	38.761	-0.782	3.610	1.00	26.20
	ATOM	1775	CA	PHE	891	38.096	-0.045	4.661		24.15
45	ATOM	1776	CB	PHE	891	37.595	-1.027	5.732		20.51
40	ATOM ATOM	1777 1778	CG CD1	PHE PHE	891 891	36.501 36.741	-1.937 -2.892	5.259 4.288		16.33 15.42
	ATOM	1779		PHE	891	35.230	-1.826	5.773		14.37
	ATOM	1780		PHE	891	35.720	-3.730	3.832		13.60
	ATOM	1781		PHE	891	34.220	-2.648	5.335		14.04
50	ATOM	1782	CZ	PHE	891	34.467	-3.607	4.353		13.43
	ATOM	1783	C	PHE	891	39.036	0.942	5.305		24.58
	ATOM	1784 1785	O	PHE	891	40.150	0.574	5.695		25.30
	ATOM ATOM	1786	N CD	PRO PRO	892 892	38.603 37.376	2.209 2.811	5.437 4.909		23.93
55	ATOM	1787	CA	PRO	892	39.441	3.234	6.060		23.41
	ATOM	1788	CB	PRO	892	38.582	4.485	5.940		23.21
	MOTA	1789	CG	PRO	892	37.796	4.241	4.748		23.19
	MOTA	1790	С	PRO	892	39.655	2.866	7.520	1.00	23.31
60	MOTA	1791	0	PRO	892	38.887	2.090	8.078		22.72
60	ATOM	1792	N	GLU	893	40.619	3.517	8.157		24.55
	ATOM ATOM	1793	CA CB	GLU	893 893	40.984	3.267	9.555		26.50
	AIOM	1794	CD	GLU	893	41.885	4.385	10.072	1.00	28.90

						- 01 -			
5	ATOM ATOM ATOM ATOM ATOM	1795 1796 1797 1798 1799	OE2 C	GLU GLU GLU GLU	893 893 893 893 893	42.329 42.441 43.356 41.624 39.859	4.192 5.498 6.292 5.729 3.054	11.509 12.280 11.955 13.216 10.563	1.00 33.98 1.00 37.38 1.00 39.69 1.00 39.34 1.00 26.24
40	ATOM MOTA ATOM MOTA	1800 1801 1802 1803	O N CA CB	GLU MET MET MET	893 894 894 894	39.750 39.052 37.968 37.313	1.992 4.078 3.974 5.337	11.180 10.782 11.744 11.954	1.00 27.29 1.00 26.07 1.00 26.28 1.00 28.30
10	MOTA MOTA MOTA	1804 1805 1806 1807	CG SD CE C	MET MET MET MET	894 894 894 894	38.256 38.847 37.260 36.927	6.389 5.925 5.830 2.918	12.509 14.144 15.037 11.393	1.00 32.56 1.00 38.01 1.00 35.95 1.00 24.69
15	ATOM ATOM ATOM ATOM ATOM	1808 1809 1810 1811 1812	O N CA CB CG	MET MET MET MET MET	894 895 895 895 895	36.337 36.662 35.705 35.487 34.669	2.311 2.743 1.738 1.824 3.006	12.287 10.102 9.645 8.135 7.693	1.00 24.64 1.00 23.64 1.00 22.83 1.00 21.32 1.00 21.17
20	ATOM ATOM ATOM ATOM	1813 1814 1815 1816	SD CE C	MET MET MET MET	895 895 895 895	33.044 32.088 36.171 35.469	3.064 2.305 0.328 -0.383	8.432 7.205 10.032 10.714	1.00 20.56 1.00 22.81 1.00 22.26 1.00 22.26
25	MOTA MOTA MOTA MOTA	1817 1818 1819 1820	N CA CB C	ALA ALA ALA ALA	896 896 896 896	37.362 37.867 39.243 37.914	-0.066 -1.378 -1.588 -1.581	9.616 9.953 9.350 11.460	1.00 22.06 1.00 22.36 1.00 22.56 1.00 22.96
30	ATOM ATOM ATOM ATOM	1821 1822 1823 1824	O N CA CB	ALA GLU GLU GLU	896 897 897 897	37.520 38.377 38.455 39.128	-2.630 -0.586 -0.724 0.502	11.947 12.212 13.666 14.313	1.00 23.87 1.00 23.92 1.00 24.05 1.00 25.98
	ATOM ATOM ATOM ATOM	1825 1826 1827 1828		GLU GLU GLU	897 897 897 897	39.288 39.150 40.150 38.036	0.390 1.718 2.453 2.018	15.841 16.555 16.674 17.013	1.00 27.50 1.00 27.88 1.00 29.49 1.00 29.22
35	ATOM ATOM ATOM ATOM	1829 1830 1831 1832	C O N CA	GLU GLU ILE ILE	897 897 898 898	37.076 36.873 36.129 34.801	-0.901 -1.774 -0.071 -0.178	14.276 15.094 13.884 14.459	1.00 22.80 1.00 22.95 1.00 22.19 1.00 21.88
40	ATOM ATOM ATOM ATOM	1833 1834 1835 1836	CB CG2 CG1	ILE ILE ILE	898 898 898 898	33.940 32.478 34.438 33.490	1.077 0.836 2.233 3.390	14.196 14.587 15.043 15.019	1.00 21.85 1.00 22.66 1.00 22.82 1.00 23.11
45	ATOM ATOM ATOM ATOM	1837 1838 1839 1840	C O N CA	ILE ILE ILE ILE	898 898 899 899	34.080 33.228 34.410 33.747	-1.398 -1.917 -1.860 -3.027	13.968 14.656 12.781 12.248	1.00 20.49 1.00 21.90 1.00 19.59 1.00 19.42
50	ATOM ATOM ATOM ATOM	1841 1842 1843 1844	CB CG2	ILE ILE ILE ILE	899 899 899	33.758 33.095 32.987 33.054	-3.014 -4.285 -1.786 -1.588	10.706 10.157 10.187 8.683	1.00 19.12 1.00 18.71 1.00 18.56 1.00 15.05
	ATOM ATOM ATOM ATOM	1845 1846 1847 1848	C O N CA	ILE ILE SER SER	899 899 900 900	34.305 33.571 35.565 36.177	-4.338 -5.300 -4.344 -5.518	12.832 12.982 13.233 13.822	1.00 19.02 1.00 19.98 1.00 19.03 1.00 19.74
55	MOTA MOTA MOTA MOTA	1849 1850 1851 1852	CB OG C	SER SER SER SER	900 900 900 900	37.614 38.368 36.135 36.352	-5.631 -4.478 -5.502 -6.521	13.340 13.683 15.355 16.010	1.00 19.62 1.00 22.08 1.00 20.48 1.00 21.19
60	ATOM ATOM ATOM ATOM	1853 1854 1855 1856	N CA CB	VAL VAL VAL VAL	901 901 901 901	35.866 35.808 36.705 36.407	-4.346 -4.235 -3.074 -2.785	15.939 17.396 17.927 19.382	1.00 20.99 1.00 20.43 1.00 20.22 1.00 20.37

							- 68 -				
		ATOM ATOM ATOM	1857 1858 1859	CG2 C O	VAL VAL VAL	901 901 901	38.168 34.397 33.999	-3.436 -4.087 -4.823	17.782 17.935 18.841	1.00	18.81 20.42 21.68
	5	ATOM ATOM ATOM	1860 1861 1862	N CA CB	GLN GLN GLN	902 902 902	33.614 32.264 31.929	-3.187 -2.957 -1.476	17.350 17.828 17.735	1.00	19.34 17.55 19.32
	10	ATOM ATOM	1863 1864 1865		GLN GLN GLN	902 902 902	32.952 33.089 32.211	-0.579 -0.776 -1.336	18.371 19.861 20.528	1.00	20.82 23.15 23.22
	10	ATOM ATOM ATOM ATOM	1866 1867 1868 1869	NE2 C O N	GLN GLN GLN VAL	902 902 902 903	34.197 31.145 30.337 31.075	-0.288 -3.766 -4.326 -3.810	20.404 17.207 17.938 15.872	1.00	25.36 16.24 15.40 15.79
	15	ATOM ATOM ATOM	1870 1871 1872	CA CB	VAL VAL VAL	903 903 903	30.025 30.195 29.159	-4.552 -4.461 -5.314	15.144 13.594 12.883	1.00	15.22 14.30 13.20
	00	ATOM ATOM ATOM	1873 1874 1875	C 0	VAL VAL VAL	903 903 903	30.012 29.860 28.732	-3.005 -6.010 -6.489	13.147 15.605 15.693	1.00	14.90 14.74 14.48
Same	20	ATOM ATOM ATOM ATOM	1876 1877 1878 1879	N CD CA CB	PRO PRO PRO PRO	904 904 904 904	30.976 32.377 30.884 32.350	-6.729 -6.425 -8.122 -8.481	15.893 15.571 16.356 16.602		14.65 13.72 15.80 15.45
Land	25	MOTA MOTA MOTA MOTA	1880 1881 1882 1883	CG C O N	PRO PRO PRO LYS	904 904 904 905	33.014 30.053 29.151 30.286	-7.830 -8.206 -9.039 -7.295	15.512 17.632 17.713 18.589	1.00 1.00 1.00 1.00	14.60 16.77 18.38 17.00
	30	ATOM ATOM ATOM ATOM	1884 1885 1886 1887	CA CB CG CD	LYS LYS LYS	905 905 905 905	29.525 29.866 31.293 31.464	-7.292 -6.085 -6.007 -4.733	19.830 20.668 21.132 21.947	1.00 1.00 1.00	16.34 18.17 19.96 22.09
- Total	35	ATOM ATOM ATOM ATOM	1888 1889 1890 1891	CE NZ C O	LYS LYS LYS	905 905 905 905	32.911 33.003 28.039 27.251	-4.429 -3.173 -7.273 -7.817	22.276 23.083 19.546 20.297	1.00 1.00 1.00	23.59 27.13 15.58 15.43
A CONTRACTOR OF THE PROPERTY O		ATOM ATOM ATOM ATOM	1892 1893 1894 1895	N CA CB CG2	ILE ILE ILE ILE	906 906 906 906	27.647 26.239 25.991 24.527	-6.620 -6.554 -5.423 -5.427	18.466 18.086 17.030 16.565	1.00	15.71 15.74 14.76 13.47
	40	ATOM ATOM ATOM ATOM	1896 1897 1898 1899	CG1 CD1 C	ILE ILE ILE	906 906 906 906	26.358 26.021 25.800 24.759	-4.051 -2.876 -7.899 -8.471	17.611 16.686 17.478 17.834	1.00 1.00 1.00	13.40 13.18 17.05 16.35
	45	ATOM ATOM ATOM ATOM ATOM	1900 1901 1902 1903 1904	N CA CB CG CD1	LEU LEU LEU LEU	907 907 907 907 907	26.609 26.348 27.331 27.338 28.382	-8.385 -9.631 -9.787 -8.653 -8.885	16.539 15.827 14.659 13.632 12.557	1.00 1.00 1.00	17.95 17.64 15.32 14.36 12.28
;	50	ATOM ATOM ATOM ATOM ATOM	1905 1906 1907 1908 1909	CD2 C O N CA		907 907 907 907 908 908	25.947 26.386 25.756 27.097	-8.531 -10.858 -11.860 -10.805 -11.947	13.029 16.747 16.437 17.868 18.772	1.00 1.00 1.00 1.00	13.60 18.93 20.36 19.02 19.60
;	55	ATOM ATOM ATOM ATOM ATOM	1910 1911 1912 1913 1914	CB OG C O	SER SER SER SER GLY	908 908 908 908 909	28.469 28.811 26.027 25.946	-12.099 -10.944 -11.844 -12.709 -10.791	19.407 20.135 19.867 20.752 19.812	1.00 1.00 1.00 1.00	19.21 19.20 20.23 20.86 19.30
,	60	ATOM ATOM ATOM ATOM	1915 1916 1917 1918	CA C O N	GLY GLY GLY LYS	909 909 909 910		-10.603 -9.859 -9.712 -9.422	20.817 22.102 22.987 22.236	1.00 1.00 1.00	18.22 16.28 16.09 16.37

ATOM 1921 CG LYS 910 28.418 -9.703 23.684 1.00 ATOM 1922 CD LYS 910 29.860 -9.370 23.896 1.00	17.13 16.32 17.48 17.90
	17.90
	19.93
	18.68 19.51
	18.99
	17.49
	17.52
	15.48
	15.48
	17.48
	17.40
	17.96 19.32
	21.17
	25.24
	26.63
ATOM 1939 CE LYS 912 19.509 -3.871 24.370 1.00	26.56
	27.08
	19.72
A=	19.46
	20.13
	20.30
	20.97
ATOM 1947 CG PRO 913 18.127 -4.240 18.017 1.00	21.02
30 ATOM 1948 C PRO 913 17.555 -2.665 20.658 1.00	20.77
	20.82
	20.62
	18.90
	17.34 15.42
	16.40
	15.82
	19.73
	20.71
	19.80
	19.03
	18.88
	18.76 19.63
16	21.76
ATOM 1964 CD2 TYR 915 12.881 -3.457 17.173 1.00	19.64
	20.92
	21.98
	25.00
	18.68
	18.72 18.68
	19.66
ATOM 1972 CB PHE 916 8.898 1.145 20.042 1.00	17.07
55 ATOM 1973 CG PHE 916 9.567 2.411 20.335 1.00	14.89
ATOM 1974 CD1 PHE 916 9.377 3.034 21.561 1.00	16.16
ATOM 1975 CD2 PHE 916 10.393 2.992 19.407 1.00	
	14.78
	16.01
	15.28 21.60
	22.04

	ATOM	1981	N	HIS	917	8.300	-1.804	19.718		22.86
	ATOM	1982 1983	CA CB	HIS HIS	917 917	7.354 6.549	-2.899 -2.696	19.543 18.258		24.45 23.60
	ATOM ATOM	1983	CG	HIS	917	5.921	-1.347	18.153		21.90
5	ATOM	1985		HIS	917	6.440	-0.153	17.787		21.97
	ATOM	1986		HIS	917	4.614	-1.109	18.504		21.41
	ATOM	1987		HIS	917	4.350	0.178	18.360		22.05
	MOTA MOTA	1988 1989	NE2 C	HIS HIS	917 917	5.446 8.077	0.783 -4.225	17.929 19.477		21.26 25.83
10	ATOM	1990	OT1		917	9.185	-4.257	18.908		27.53
	ATOM	1991		HIS	917	7.525	-5.225	19.988		29.26
	ATOM	1992	C1	DHT	920	27.685	5.199	4.565	1.00	13.59
	MOTA	1993	C2	DHT	920	26.814	6.485	4.636		12.55
15	ATOM	1994	C3	DHT	920	25.484	6.280	3.944		12.58
15	ATOM ATOM	1995 1996	03 C4	DHT DHT	920 920	24.904 24.887	7.249 4.964	3.448 3.857		11.99 13.18
	ATOM	1997	C5	DHT	920	25.464	3.903	4.357		13.98
	ATOM	1998	C6	DHT	920	24.727	2.560	4.241		14.79
	ATOM	1999	C7	DHT	920	25.613	1.454	3.609		14.79
20	MOTA	2000	C8	DHT	920	26.955	1.303	4.359		15.54
	ATOM	2001	C9	DHT	920	27.708	2.656	4.279		14.37
	ATOM ATOM	2002 2003		$ ext{DHT}$	920 920	26.943 29.161	3.876 2.525	4.949 4.830		14.56 14.73
	ATOM	2003		DHT	920	29.951	1.344	4.192		14.11
25	ATOM	2005	C13	DHT	920	29.194	-0.010	4.339		15.34
	ATOM	2006	C14	DHT	920	27.784	0.212	3.680	1.00	15.67
	MOTA	2007	C15	DHT	920	27.178	-1.232	3.647		15.64
	ATOM	2008	C16	DHT DHT	920 920	28.435 29.679	-2.118 -1.189	3.310 3.426		15.37 14.87
30	ATOM ATOM	2009 2010	C18	DHT	920	29.079	-0.450	5.847		14.67
00	ATOM	2011	C19	DHT	920	26.781	3.770	6.524		13.94
	MOTA	2012		DHT	920	30.910	-1.918	3.981		16.20
	MOTA	2013	0	HOH	921	16.187	17.463	26.217		26.98
35	MOTA	2014	0	HOH	922	19.878	17.183	14.290		13.49
33	ATOM ATOM	2015 2016	0	нон Нон	923 924	18.473 29.144	14.908 18.703	14.407 11.673	1.00	6.52 37.40
	ATOM	2017	0	НОН	925	27.076	19.321	12.893		18.76
	ATOM	2018	0	НОН	926	23.789	12.817	9.649		33.78
40	ATOM	2019	0	HOH	927	25.400	14.577	5.432		19.79
40	ATOM	2020	0	HOH	928	23.015	12.473	12.245		14.03
	ATOM ATOM	2021 2022	0	НОН НОН	929 930	25.209 34.235	14.445 16.490	2.442 0.235		19.95 41.09
	ATOM	2022	0	HOH	931	31.687	16.720	1.143		22.88
	MO'l'A	2024	Ŏ	нон	932	26.451	12.094	2.237	1.00	8.25
45	MOTA	2025	0	НОН	933	11.606	-0.191	-7.963		46.13
	ATOM	2026		НОН	934		0.894			15.30
	MOTA	2027 2028	0	HOH	935	15.475	2.114	16.386		12.01
	ATOM ATOM	2029	0	НОН НОН	936 937	8.514 23.094	-2.110 0.783	12.665 14.094		21.79 10.94
50	ATOM	2030	Ö	НОН	938		-13.306	5.541		40.43
	ATOM	2031	0	HOH	939	22.933	-11.472	10.611	1.00	31.03
	ATOM	2032	0	НОН	940		-11.914	5.354		51.71
	ATOM	2033	0	НОН	941	10.995	-6.843	16.294		29.91
55	ATOM ATOM	2034 2035	0	НОН НОН	942 943	23.088 26.671	9.139	-10.811 -8.686		30.10
00	ATOM	2036	0	НОН	946	35.410	-8.438	-7.084		42.68
	MOTA	2037	Ö	НОН	947	10.842	24.253	21.391		43.09
	MOTA	2038	0	НОН	948	15.704	21.095	27.707		54.35
60	ATOM	2039	0	НОН	949	1.671	16.382	5.866		24.50
00	ATOM ATOM	2040 2041	0	НОН НОН	950 951	8.009 29.490	20.744 17.190	8.572 30.961		36.16 56.26
	ATOM	2042	0	НОН	952		-12.134	25.596		39.41

		ATOM	2043	0	HOH	953	42.457	5.523	7.132	1.00 28.93
			2044			954	41.318	2.323	2.406	1.00 38.22
		MOTA		0	HOH					
		MOTA	2045	0	HOH	955	25.857	7.152	30.722	1.00 18.97
		ATOM	2046	0	HOH	956	18.191	16.505	27.701	1.00 29.01
	5					957	14.018	2.408	20.246	1.00 18.75
	5	MOTA	2047	0	HOH					
		ATOM	2048	0	HOH	958	14.651	4.006	17.873	1.00 21.70
		ATOM	2049	0	HOH	959	5.786	11.770	25.499	1.00 35.58
		ATOM	2050	Ō	НОН	960	2.694	19.497	9.834	1.00 25.35
		MOTA	2051	0	HOH	961	0.334	6.151	20.624	1.00 27.66
	10	MOTA	2052	0	HOH	962	-2.677	2.639	17.420	1.00 35.67
		MOTA	2053	Ō	НОН	963	0.868	8.543	25.138	1.00 43.49
		MOTA	2054	0	НОН	964	-8.085	7.667	23.358	1.00 40.82
		ATOM	2055	0	HOH	965	6.749	1.200	9.766	1.00 24.57
		ATOM	2056	0	нон	966	-0.636	8.734	6.585	1.00 40.09
	15									
	15	ATOM	2057	0	HOH	967	22.487	-4.734	14.335	1.00 28.04
		ATOM	2058	0	HOH	968	18.615	17.070	7.167	1.00 23.83
		ATOM	2059	0	HOH	969	10.049	19.612	2.716	1.00 28.02
						970	26.829		22.736	1.00 25.40
		ATOM	2060	0	HOH			21.030		
		MOTA	2061	0	HOH	971	23.684	9.361	5.898	1.00 24.06
	20	ATOM	2062	0	HOH	972	23.124	15.837	0.189	1.00 29.07
. 1700		ATOM	2063	ō	НОН	973	34.079	8.287	19.446	1.00 34.35
1 Trans. 1 Trans. 2 Trans. 2 Trans.										
Transport		ATOM	2064	0	HOH	974	37.522	2.898	1.092	1.00 22.39
1500		ATOM	2065	0	HOH	975	21.838	14.392	5.445	1.00 20.42
1.5		ATOM	2066	0	НОН	976	16.106	-10 859	0.784	1.00 48.09
1.1.1	25									
1172	25	ATOM	2067	0	НОН	977	11.295	27.231	20.742	1.00 24.50
1-25		ATOM	2068	0	HOH	978	21.562	-7.923	18.100	1.00 34.94
		ATOM	2069	0	HOH	979	41.647	-2.962	5.907	1.00 41.33
115 =		ATOM	2070	Ö	НОН	981	12.897	22.682	24.938	1.00 44.10
1000										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	2071	0	HOH	982	33.709	13.619	-5.931	1.00 26.84
	30	ATOM	2072	0	HOH	983	0.019	-4.834	14.164	1.00 36.91
11		ATOM	2073	0	HOH	984	39.563	3.365	-2.334	1.00 36.56
: 252										
		MOTA	2074	0	HOH	985	16.244	18.091	7.952	1.00 25.52
1000		MOTA	2075	0	HOH	986	13.038	13.790	19.688	1.00 21.93
		MOTA	2076	0	HOH	987	22.095	3.621	21.834	1.00 19.27
	35	MOTA	2077	Õ	НОН	988	2.516	2.235	3.905	1.00 30.91
1.23	00									
17790		MOTA	2078	0	HOH	989	2.950	1.064	1.716	1.00 31.16
1		ATOM	2079	0	HOH	990	5.186	-1.082	5.207	1.00 26.66
1.55		ATOM	2080	0	HOH	991	-0.310	15.229	24.529	1.00 28.42
- lagate		ATOM	2081	Ö	НОН	992	-6.181	9.210	18.935	1.00 37.84
	40									
	40	ATOM	2082	0	НОН	993	17.508	26.662	14.814	1.00 30.32
		MOTA	2083	0	HOH	994	17.401	31.211	13.007	1.00 30.57
		MOTA	2084	0	HOH	995	21.268	22.961	10.009	1.00 33.92
		ATOM	2085	Õ	НОН	996	26.335	12.379	6.567	1.00 36.58
		MOTA	2086	0	HOH	997	33.730	15.077	4.345	1.00 24.42
	45	ATOM	2087	0	HOH	998	28.576	2.290	-15.305	1.00 30.54
		ATOM	2088	0	HOH	999	33, 926	-5.402	-13.979	1.00 48.01
		ATOM	2089			1000	31.878			
				0	НОН				-10.283	1.00 38.45
		MOTA	2090	0	HOH	1021	30.673	18.487	18.256	1.00 34.16
		ATOM	2091	0	HOH	1022	35.035	20.192	15.084	1.00 37.70
	50	ATOM	2092	0	HOH	1023	32.791	17.836	19.423	1.00 35.34
	•									
		ATOM	2093	0	HOH	1024	22.587		7.907	1.00 30.71
		ATOM	2094	0	HOH	1025	29.778	-9.620	-0.255	1.00 24.68
		ATOM	2095	0	HOH	1026	25.904	17.949	24.176	1.00 16.80
		ATOM	2096	Ŏ	НОН	1027	33.066		7.455	1.00 20.84
	55									
	บบ	MOTA	2097	0	HOH	1028	31.787	15.265	28.988	1.00 32.80
		MOTA	2098	0	HOH	1029	27.029	0.835	13.994	1.00 20.01
		ATOM	2099	0	НОН	1030	20.499	2.720		1.00 31.66
			2100		НОН					
		ATOM		0		1031	10.991	16.858	-1.085	1.00 30.58
		ATOM	2101	0	HOH	1032	7.904	10.344		1.00 41.55
	60	ATOM	2102	0	HOH	1033	12.570	3.398	-10.099	1.00 26.95
		ATOM	2103	0	НОН	1034	17.128		-10.962	1.00 22.24
		ATOM	2104	0	HOH	1035	17.056	1.547	-4.553	1.00 26.98

						- 72 -			
5	ATOM ATOM ATOM ATOM ATOM ATOM	2105 2106 2107 2108 2109 2110	0 0 0 0 0	HOH HOH HOH HOH HOH	1036 1037 1038 1039 1040	11.020 3.092 24.006 29.738 1.507 10.755	0.892 -1.135 5.653 0.950 8.706 -4.751	6.595 -0.025 35.765 27.680 22.315 9.776	1.00 25.24 1.00 27.44 1.00 34.54 1.00 26.47 1.00 36.26 1.00 27.77
10	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2115 2116 2117 2118	0000000	HOH HOH HOH HOH HOH HOH HOH	1042 1043 1044 1045 1046 1047 1048 1049	20.223 30.147 28.518 39.044 37.030 7.847 9.958 6.839	-3.560 -9.103 -12.565 7.751 10.428 -2.227 -5.351 -6.928	14.440 2.467 -5.152 17.961 20.994 15.270 21.522 22.567	1.00 25.10 1.00 26.08 1.00 28.96 1.00 38.02 1.00 37.73 1.00 24.79 1.00 40.62 1.00 30.96
15									

15

20

25

We claim:

- 1. A crystal of an AR-LBD comprising:
 - a) an AR-LBD and an AR-LBD ligand or
 - b) an AR-LBD without an AR-LBD ligand;
- 5 wherein said crystal diffracts to at least 3 angstrom resolution and has a crystal stability within 5% of its unit cell dimensions.
 - 2. The crystal of claim 1 wherein said AR-LBD has at least 200 amino acids.
 - 3. The crystal of claim 1, wherein said AR-LBD is the AR amino acid sequence 672 to 917 of rat AR
 - 4. The crystal of claim 1, wherein said AR-LBD is the AR amino acid sequence 672 to 917 of human AR.
 - 5. The crystal of claim 1 wherein the crystal comprises an AR-LBD and an AR-LBD ligand and the AR-LBD ligand is an agonist or antagonist, a partial agonist or partial antagonist, or a SARMs of the AR-LBD.
 - 6. The crystal of claim 5 wherein the agonist is dihydrotestosterone.
 - 7. The crystal of claim 1 having all of the coordinates listed in Table A.
 - 8. The crystal of claim 1 wherein said crystal comprises mammalian AR-LBD protein.
 - 9. The crystal of claim 1 wherein said crystal comprises rat AR-LBD protein.
 - 10. The crystal of claim 1 wherein said AR-LBD ligand has the following unit cell dimensions in angstroms: $a = 56.03 \pm 5\%$, $b = 66.27 \pm 5\%$, $c = 70.38 \pm 5\%$ and an orthorhombic space group P212121.
- A molecule or molecular complex comprising all or any part of the ligand binding site defined by structure coordinates of AR-LBD amino acids V685, L700, L701, S702, S703, L704, N705, E706,
 L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877 and F878 according to Table A, or a mutant or homologue of said molecule or molecular complex.

30

35

- 12. The molecule or molecular complex of claim 11 wherein said mutant or homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said AR-LBD amino acids of not more than 1.5 Angstroms or 30% sequence identity with said AR-LBD amino acids.
- 13. A molecule or molecular complex comprising all or any part of the ligand binding site defined by structure coordinates of AR-LBD amino acids N705, Q711, R752, F764 and T877 according to Table A, or a mutant or homologue of said molecule or molecular complex.
- 10 14. The molecule or molecular complex of claim 13 wherein said mutant or homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said AR-LBD amino acids of not more than 1.5 Angstroms or 30% sequence identity with said AR-LBD amino acids.
- 15. A machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data is defined by the structure coordinates of an AR-LBD/AR-LBD ligand or ligand complex according to Table A or a homologue of said complex, wherein said homologue comprises backbone atoms that
 20 have a root mean square deviation from the backbone atoms of the complex of not more than 3.0Å
 - 16. The machine-readable data storage medium according to claim 15, wherein said AR-LBD/AR-LBD ligand or ligand complex is homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 2.0 Å.
 - 17. A machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data comprising a Fourier transform of at least a portion of the structural coordinates for an AR-LBD/AR-LBD ligand according to Table A; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, said first set of data and said second set of data.

10

15

20

25

30

- 18. A binding site in AR-LBD for an AR modulator in which a portion of said ligand is in van der Walls contact or hydrogen bonding contact with any portion or all of residues V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.
 - 19. The binding site according to claim 18 wherein the AR-LBD is a homologue or mutant with 25%-95% identity to residues V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.
 - 20. A method of obtaining structural information about a molecule or a molecular complex of unknown structure by using the structure coordinates set forth in Table A, comprising the steps of:
 - a. generating X-ray diffraction data from said crystallized molecule or molecular complex;
 - b. applying at least a portion of the structure coordinates set forth in Table A to said X-ray diffraction pattern to generate a three-dimensional electron density map of at least a portion of the molecule or molecular complex; and
 - c. using all or a portion of the structure coordinates set forth in Table A to generate homology models of AR-LBD or any other nuclear hormone receptor ligand binding domain.
 - 21. A computational method of designing an androgen receptor synthetic ligand comprising:
- a. using a three dimensional model of a crystallized protein comprising an AR-LBD/AR-LBD ligand complex to determine

at least one interacting amino acid of the AR-LBD that interacts with at least one first chemical moiety of the AR-LBD ligand; and

- b. selecting at least one chemical modification of said first chemical moiety to produce a second chemical moiety with a structure that either decreases or increases an interaction between said interacting amino acid and said second chemical moiety compared to said interaction between said interacting amino acid and said first chemical moiety.
- 10 22. A method for identifying a compound that modulates androgen receptor activity, the method comprising any combination of steps of:
 - a. modeling test compounds that fit spatially into the AR-LBD as defined by structure coordinates according to Table A, or using a three-dimensional structural model of AR-LBD, mutant AR-LBD or AR-LBD homologue or portion thereof;
 - b. using said structure coordinates or ligand binding site as set forth in claim 18 to identify structural and chemical features;
 - c. employing identified structural or chemical features to design or select compounds as potential AR modulators;
 - d. employing the three-dimensional structural model or the ligand binding site to design or select compounds as potential AR modulators;
 - e. synthesizing the potential AR modulators;
 - f. screening the potential AR modulators in an assay characterized by binding of a test compound to the AR-LBD; and
 - g. modifying or replacing one or more amino acids from AR-LBD selected from the group consisting of V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.

30

35

25

5

15

- 23. The method according to claim 22 wherein the potential AR modulator is from a library of compounds.
- 24. The method according to claim 22 wherein the potential AR modulator is selected from a database.
- 5 25. The method according to claim 22 wherein the potential AR modulator is designed *de novo*.
 - 26. The method according to claim 22 wherein the potential AR modulator is designed from a known agonist, partial agonist, antagonist, partial antagonist or SARMs.
- 10 27. The method according to claim 22 wherein the potential AR modulator is an agonist or partial agonist and AR activity is measured by translocation or unwinding or helix 12.
 - 28. The method according to claim 22 wherein the potential AR modulator is an antagonist or partial antagonist and AR activity is measured by translocation or unwinding or helix 12.
 - 29. An AR modulator identified by the method of claim 22.
 - 30. A method for treating prostate cancer comprising administering an effective amount of an AR modulator identified by the method of claim 22.
- 20 31. A method for treating an age related disease comprising administering an effective amount of an AR modulator identified by the method of claim 22.
 - 32. The method of claim 31 wherein said age related disease is osteoporosis, muscle wasting or loss of libido.

ABSTRACT

The first crystal structure of the androgen receptor ligand binding domain has been determined to 2.0 angstrom resolution. Disclosed are the coordinates for the crystal structure, and methods for determining agonists, partial agonists, antagonists, partial antagonists and selective androgen receptors modulators (SARMs) of the androgen receptor.

FIGURE 1

FIGURE 2

FIGURE 3

⊸ FIGURE 4

Docket No. BMS-0010

Declaration and Power of Attorney For Patent Application English Language Declaration

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

Crystallographic Structure of the Androgen Receptor Ligand Binding Domain

the specification of wh	nich					
(check one)						
is attached heretowas filed onApplication Number		_ as United States Application No.				
• •	on					
		(if applicable)				
(if applicable) I hereby state that I have reviewed and understand the contents of the above identified including the claims, as amended by any amendment referred to above.						
I acknowledge the du	ity to disclose to the Un	nited States Patent and Trademarly as defined in Title 37, Code of	COffice all information Federal Regulations.			
known to me to be Section 1.56.	material to pateritability	as defined in Title 07, 0000 of	, occident and generality			
Section 1.56. I hereby claim foreig Section 365(b) of an any PCT International listed below and have	gn priority benefits undo y foreign application(s) Il application which design e also identified below, b or PCT International app	er Title 35, United States Code, for patent or inventor's certificate gnated at least one country other to checking the box, any foreign a blication having a filing date before	Section 119(a)-(d) or e, or Section 365(a) of than the United States, pplication for patent or			
Section 1.56. I hereby claim foreig Section 365(b) of an any PCT International listed below and have inventor's certificate of	gn priority benefits under y foreign application(s) Il application which design e also identified below, b or PCT International app	er Title 35, United States Code, for patent or inventor's certificate gnated at least one country other to by checking the box, any foreign a	Section 119(a)-(d) or e, or Section 365(a) of than the United States, pplication for patent or			
Section 1.56. I hereby claim foreig Section 365(b) of any any PCT International listed below and have inventor's certificate on which priority is class.	gn priority benefits under y foreign application(s) Il application which design e also identified below, b or PCT International app	er Title 35, United States Code, for patent or inventor's certificate gnated at least one country other to by checking the box, any foreign a	Section 119(a)-(d) or e, or Section 365(a) of than the United States, pplication for patent or that of the application			
Section 1.56. I hereby claim foreig Section 365(b) of any any PCT International listed below and have inventor's certificate on which priority is class.	gn priority benefits under y foreign application(s) Il application which design e also identified below, b or PCT International app	er Title 35, United States Code, for patent or inventor's certificate gnated at least one country other to by checking the box, any foreign a	Section 119(a)-(d) or e, or Section 365(a) of than the United States, pplication for patent or that of the application Priority Not Claimed			
Section 1.56. I hereby claim foreig Section 365(b) of an any PCT International listed below and have inventor's certificate on which priority is claim. Prior Foreign Application	gn priority benefits under y foreign application(s) of application which design also identified below, but the PCT International application(s)	er Title 35, United States Code, for patent or inventor's certificate gnated at least one country other toy checking the box, any foreign a blication having a filing date before	Section 119(a)-(d) or e, or Section 365(a) of than the United States, pplication for patent or that of the application Priority Not Claimed			

60/159,394	October 14, 1999	
(Application Serial No.)	(Filing Date)	
(Application Serial No.)	(Filing Date)	
(Application Serial No.)	(Filing Date)	
Section 365(c) of any PCT Internance resofar as the subject matter of e Jnited States or PCT Internationa	ational application designating each of the claims of this ap all application in the manner p	the United States, listed below an plication is not disclosed in the pri provided by the first paragraph of 3
Section 365(c) of any PCT Internations of a section 365(c) of any PCT International J.S.C. Section 112, I acknowledgo Diffice all information known to make the section 1.56 which became available PCT International filing date of the section 1.56 which became available of the section 1.56 which became available processes the section 1.56 which became available processes which we will be section 1.56 which became available processes which we will be section 1.56 which became available processes which we will be set the section of the section	ational application designating teach of the claims of this application in the manner parties the duty to disclose to the me to be material to patental ble between the filing date of this application:	the United States, listed below an olication is not disclosed in the priorovided by the first paragraph of 3 United States Patent and Tradema illity as defined in Title 37, C. F. F. the prior application and the nation (Status)
Section 365(c) of any PCT Internations as the subject matter of elution of the States or PCT International J.S.C. Section 112, I acknowledgoffice all information known to make the Section 1.56 which became availal	ational application designating each of the claims of this ap all application in the manner part be the duty to disclose to the the to be material to patental and this patental to be the patental and the filing date of	the United States, listed below an olication is not disclosed in the priorovided by the first paragraph of 3 United States Patent and Tradema illity as defined in Title 37, C. F. F. the prior application and the nation (Status)
Section 365(c) of any PCT Internations of a section 365(c) of any PCT International J.S.C. Section 112, I acknowledgo Diffice all information known to make the section 1.56 which became available PCT International filing date of the section 1.56 which became available of the section 1.56 which the	ational application designating teach of the claims of this application in the manner parties the duty to disclose to the me to be material to patental ble between the filing date of this application:	any United States application(s), the United States, listed below an plication is not disclosed in the priorovided by the first paragraph of 3 United States Patent and Tradema sility as defined in Title 37, C. F. F. the prior application and the nation (Status) (patented, pending, abandoned) (Status) (patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

	agent(s) to prosecute this	As a named inventor, I hereby appoint the following attorney application and transact all business in the Patent and Tradem name and registration number) 22,257	r(s) and/or nark Office
	Kathleen A. Tyrrell, Reg. No. 3	8,350	
	Laura Plunkett, Reg. No. 45,01	5	
	of the law firm		
	Law Offices of Jane Massey Li 66 E. Main Street Marlton, NJ 08053	cata	
	Send Correspondence to:	Kathleen A. Tyrrell Law Offices of Jane Massey Licata 66 E. Main Street Marlton, NJ 08053	
	Direct Telephone Calls to: Kathleen A. Tyrrell, Tel: 856-	(name and telephone number)	
	Full name of sole or first inventor Roberto Weinmann		Date
:====	Sole or first inventor's signature		
1200	Residence Lawrenceville, NJ		
	Citizenship USA		
	Post Office Address 98 Bayard Lane		
	Princeton, NJ 08540		
	Full name of second inventor, if a	any	
	Howard M. Einspahr Second inventor's signature		Date
	Residence Lawrenceville, NJ		
	Citizenship USA		
	Post Office Address 67 Green Avenue		

Lawrenceville, NJ 08648

anley R. Krystek, Jr. rd inventor's signature	Date
III IIIVelloi 3 Signaturo	
esidence ingoes, NJ	
tizenship	
SA ost Office Address	
Back Brook Road	
ingoes, NJ 08551	
ıll name of fourth inventor, if any	
ohn A. Sack burth inventor's signature	Date
esidence awrenceville, NJ	
itizenship SA	
ost Office Address Merion Place	
awrenceville, NJ 08648	
awrenceville, NJ 18046	
ull name of fifth inventor, if any Aark E. Salvati	
ifth inventor's signature	Date
lesidence	
awrenceville, NJ	
USA	
ost Office Address Tracey Drive	
_awrenceville, NJ 08648	
full name of sixth inventor, if any Tohn S. Tokarski	
Sixth inventor's signature	Date
Residence	
Princeton, NJ 08540 Citizenship	
USA Post Office Address	
11 Walker Drive	
Princeton, NJ 08540	

Seventh inventor's signature	Date
Residence Lawrenceville, NJ	
Citizenship Argentina	
Post Office Address 10 Santina Ct.	
Lawrenceville, NJ 08648	
Full name of eighth inventor, if Chihuei Wang	
Eighth inventor's signature	Date
Residence Plainsboro, NJ	
Citizenship Taiwan	
Post Office Address 916 Deer Creek Drive	
Plainsboro, NJ 08536	_
Full name of ninth inventor, if any	
Ninth inventor's signature	Date
Residence	
Citizenship	
Post Office Address	
Full name of tenth inventor, if any	
Tenth inventor's signature	Date
Residence	
Citizenship	
Post Office Address	

SEQUENCE LISTING

<110> Weinmann, Roberto
Einspahr, Howard M.
Krystek, Jr., Stanley R.
Sack, John A.
Salvati, Mark E.
Tokarski, John S.
Attar, Ricardo M.
Wang, Chihuei

<120> Crystallographic Structure of the Androgen Receptor Ligand Binding Domain

<130> BMS-0010

<140>

<141>

<150> 60/159,394 <151> 1999-10-14

<160> 4

<170> PatentIn Ver. 2.1

<210> 1

<211> 260

<212> PRT

<213> Rattus sp.

<400> 1

Gly Ser His Met Ile Glu Gly Tyr Glu Cys Gln Pro Ile Phe Leu Asn 1 5 10 15

Val Leu Glu Ala Ile Glu Pro Gly Val Val Cys Ala Gly His Asp Asn 20 25 30

Asn Gln Pro Asp Ser Phe Ala Ala Leu Leu Ser Ser Leu Asn Glu Leu 35 40 45

Gly Glu Arg Gln Leu Val His Val Val Lys Trp Ala Lys Ala Leu Pro 50 55 60

Gly Phe Arg Asn Leu His Val Asp Asp Gln Met Ala Val Ile Gln Tyr 65 70 75 80

Ser Trp Met Gly Leu Met Val Phe Ala Met Gly Trp Arg Ser Phe Thr

85 90 95

Asn Val Asn Ser Arg Met Leu Tyr Phe Ala Pro Asp Leu Val Phe Asn 100 105 110

Glu Tyr Arg Met His Lys Ser Arg Met Tyr Ser Gln Cys Val Arg Met 115 120 125

Arg His Leu Ser Gln Glu Phe Gly Trp Leu Gln Ile Thr Pro Gln Glu 130 135 140

Gly Leu Lys Asn Gln Lys Phe Phe Asp Glu Leu Arg Met Asn Tyr Ile 165 170 175

Lys Glu Leu Asp Arg Ile Ile Ala Cys Lys Arg Lys Asn Pro Thr Ser 180 185 190

Cys Ser Arg Arg Phe Tyr Gln Leu Thr Lys Leu Leu Asp Ser Val Gln 195 200 205

Pro Ile Ala Arg Glu Leu His Gln Phe Thr Phe Asp Leu Leu Ile Lys 210 215 220

Ser His Met Val Ser Val Asp Phe Pro Glu Met Met Ala Glu Ile Ile 225 230 235 240

Ser Val Gln Val Pro Lys Ile Leu Ser Gly Lys Val Lys Pro Ile Tyr 245 250 255

Phe His Thr Gln 260

<210> 2

<211> 255

<212> PRT

<213> Rattus sp.

<400> 2

Gly Gln Asp Ile Gln Leu Ile Pro Pro Leu Ile Asn Leu Leu Met Ser 1 5 10 15

Ile Glu Pro Asp Val Ile Tyr Ala Gly His Asp Asn Thr Lys Pro Asp 20 25 30

- Thr Ser Ser Ser Leu Leu Thr Ser Leu Asn Gln Leu Gly Glu Arg Gln 35 40 45
- Leu Leu Ser Val Val Lys Trp Ser Lys Ser Leu Pro Gly Phe Arg Asn 50 55 60
- Leu His Ile Asp Asp Gln Ile Thr Leu Ile Gln Tyr Ser Trp Met Ser 65 70 75 80
- Leu Met Val Phe Gly Leu Gly Trp Arg Ser Tyr Lys His Val Ser Gly 85 90 95
- Gln Met Leu Tyr Phe Ala Pro Asp Leu Ile Leu Asn Glu Gln Arg Met 100 105 110
- Lys Glu Ser Ser Phe Tyr Ser Leu Cys Leu Thr Met Trp Gln Ile Pro 115 120 125
- Gln Glu Phe Val Lys Leu Gln Val Ser Gln Glu Glu Phe Leu Cys Met 130 135 140
- Gln Thr Gln Phe Glu Glu Met Arg Ser Ser Tyr Ile Arg Glu Leu Ile 165 170 175
- Lys Ala Ile Gly Leu Arg Gln Lys Gly Val Val Ser Ser Ser Gln Arg 180 185 190
- Phe Tyr Gln Leu Thr Lys Leu Leu Asp Asn Leu His Asp Leu Val Lys
 195 200 205
- Gln Leu His Leu Tyr Cys Leu Asn Thr Phe Ile Gln Ser Arg Ala Leu 210 215 220
- Ser Val Glu Phe Pro Glu Met Met Ser Glu Val Ile Ala Ala Gln Leu 225 230 235 240
- Pro Lys Ile Leu Ala Gly Met Val Lys Pro Leu Leu Phe His Lys 245 250

<210> 3

<211> 36

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Synthetic	
<400> 3 catatgattg aaggctatga atgtcaacct atcttt	36
<210> 4 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic	
<400> 4 tcactgtgtg tggaaataga tggg	24