### Hochschule RheinMain

Fachbereich Design Informatik Medien Studiengang Angewandte und Wirtschaftsinformatik Prof. Dr. Bernhard Geib

# **Automatentheorie und Formale Sprachen**

Sommersemester 2022 (LV 4110)

# 9. Übungsblatt

Die Untersuchung der Fragen, was ein Algorithmus ist, was ein Algorithmus zu leisten vermag und was man allgemein unter Berechenbarkeit versteht, ist eng mit dem Verständnis um die Turing-Maschine verknüpft. Aus diesem Grund soll das vorliegende Übungsblatt in Modell und Arbeitsweise der Turing-Maschine einführen. Ziel dieser Übung ist es, sich zunächst mit der Turing-Maschine sowohl als Akzeptor auseinanderzusetzen. Danach beschäftigen wir uns auch mit der Konstruktion einer Turing-Maschine, die zur Berechnung einer vorgegebenen Funktion eingesetzt werden soll.

#### Aufgabe 9.1

Es ist eine Turingmaschine TM = (S, s<sub>0</sub>, F,  $\Sigma$ , B,  $\delta$ ), die alle Wörter über  $\Sigma$  = {a, b} mit wenigstens zwei a's akzeptiert, zu konstruieren.

- a) Geben Sie für die Überführungsfunktion  $\delta$  die Maschinentafel an.
- b) Ermitteln Sie ferner die Komponenten S, F und B.
- Lässt sich die Problemstellung auch mit einem deterministischen endlichen Automaten (DFA) lösen? Wenn ja, skizzieren Sie den zugehörigen Zustandsgraphen des DFA.

## Aufgabe 9.2

Entwerfen Sie eine Turingmaschine TM = (S, s<sub>0</sub>, F,  $\Sigma$ , B,  $\delta$ ), die alle Wörter ww über über  $\Sigma$  = {a, b, c} akzeptiert, wobei w die Spiegelung von w darstellt.

- a) Geben Sie für die Überführungsfunktion  $\delta$  die Maschinentafel an.
- b) Ermitteln Sie ferner die Komponenten S, F und B.

## Aufgabe 9.3

Es sei  $\Sigma$  = {0, 1}. Konstruieren Sie eine Turingmaschine TM = ( S,  $\Sigma$ , S<sub>0</sub>,  $\delta$ , B, F ), die das 1-Komplement eines Binärwortes w = w<sub>1</sub>w<sub>2</sub>...w<sub>n</sub>; n > 0 berechnet. Das Binärwort w befindet sich zu Beginn auf dem SL-Band und zwar rechts vom Bandanfang (\*). Das zu berechnende 1-Komplement v = v<sub>1</sub>v<sub>2</sub>...v<sub>n</sub> soll sich – nachdem die TM ange-

halten hat – an der ursprünglichen Stelle des Eingabewortes befinden (siehe Abbildung).

Beachten Sie dabei, dass im Anschluss an die Berechnung des 1-Komplements v eine Endsituation entsteht, bei der sich der SLK der TM wieder in der ursprünglichen Ausgangsposition (Bandanfang) befindet.



- a) Entwerfen Sie die Maschinentafel der TM.
- b) Wie lauten die Elemente S, B und F der TM?
- c) Verfolgen Sie die Konfigurationsfolge der TM, wenn sich zu Beginn auf dem Band das Wort w = **0100** befindet.

# Aufgabe 9.4

- a) Entwerfen Sie eine Turingmaschine TM = (S, s<sub>0</sub>, F,  $\Sigma$ , B,  $\delta$ ), welche die Sprache L(TM) = {  $0^n1^n \mid n = 1, 2, 3, ...$  } akzeptiert.
- b) Verifizieren Sie den Algorithmus der TM für die Wörter

i) 
$$w_1 = 01$$

ii) 
$$w_2 = 0011$$

ii) 
$$w_3 = 0101$$

iv) 
$$w_4 = 001$$