Amendment to the Claims

This listing of the claims will replace all prior versions, and listing, of claims in the application.

Listing of Claims:

1. (Currently Amended) A process for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2- $(R^{1}CH_{2}CO_{2})$ phenyl-, $R^{1}CH_{2}$ -, or $R^{1}CH_{2}C(=O)OC(R^{2})_{2}$ -;

X is Cl, Br, or I;

 R^1 is H or C_1 - C_6 alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (II), a compound of Formula (II*), or a mixture of compounds of Formula (II) and (II*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the compound of Formula (II), the compound of Formula (II*), or the mixture of compounds of Formula (II) and (II*); with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III):

- (3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).
- 2. (Currently Amended) The process of Claim 1 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether,

> dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- 3. (Currently Amended) The process according to Claim 1, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III-a):

- (3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).
- 4. (Currently Amended) The process of Claim 3 for the preparation of a compound of

Formula (IV), wherein:

- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C_3 - C_6 alkyl primary amine, ammonium hydroxide, and ammonium C_1 - C_6 alkoxide.
- 5. (Currently Amended) The process of Claim 4 for the preparation of a compound of Formula (IV), wherein:
 - in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;
 - in step (2), the suitable reducing agent is Zn-Cu couple;
 - in step (2), the suitable acid catalyst, when present, is acetic acid;
 - in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and
 - in step (3) the suitable base is sodium methoxide.
- 6. (Currently Amended) The process according to Claim 5, for the preparation of a

compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a):

Reply to Office Action of November 25, 2003

- (3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).
- 7. (Currently Amended) The process of Claim 1 for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

R¹ is H, CH₃, CH₂CH₃, or CH₂CH₂CH₃;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (II) or a compound of

Formula (II*):

wherein R^3 is X; and R^4 is $R^1CH_2C(=O)O$ -;

(2) contacting the compound of Formula (II) or the compound of Formula (II*) with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III):

(3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

8. (Currently Amended) The process of Claim 7 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises

one polar aprotic solvent or a combination of two or more polar aprotic solvents;

and is selected from the group consisting of: methylene chloride, tetrahydrofuran,
t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether,

dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises
 one polar solvent or a combination of two or more polar solvents; and is selected
 from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl
 acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy
 ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- 9. (Currently Amended) The process according to Claim 7, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a) or a compound of Formula (II*-a):

(2) contacting the compound of Formula (II-a) or the compound of Formula (II*-a) with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III-a):

- (3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).
- 10. (Currently Amended) The process of Claim 9 for the preparation of a compound of Formula (IV), wherein:in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group

consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H2SO4;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- 11. (Currently Amended) The process of Claim 10 for the preparation of a compound of Formula (IV), wherein:
 - in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;
 - in step (2), the suitable reducing agent is Zn-Cu couple;
 - in step (2), the suitable acid catalyst, when present, is acetic acid;
 - in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and
 - in step (3) the suitable base is sodium methoxide.
- 12. (Currently Amended) process according to Claim 11, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a) or a compound of Formula (II*-a):

(2) contacting the compound of Formula (II-a) or the compound of Formula (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a):

- (3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).
- 13. (Currently Amended) The process of Claim 1 for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

R¹ is H, CH₃, CH₂CH₃, or CH₂CH₂CH₃;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a mixture of compounds of Formula (II) and

(II*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the mixture of compounds of Formula (II) and (II*) with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III):

- (3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).
- 14. (Currently Amended) The process of Claim 13 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide,

dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H2SO4;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- 15. (Currently Amended) The process according to Claim 13, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

Reply to Office Action of November 25, 2003

(I)

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the mixture of compounds of Formula (II-a) and (II*-a) with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III-a):

- (3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).
- 16. (Currently Amended) The process of Claim 15 for the preparation of a compound of Formula (IV), wherein:
 - in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
 - in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- 17. (Currently Amended) The process of Claim 16 for the preparation of a compound of Formula (IV), wherein:
 - in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;
 - in step (2), the suitable reducing agent is Zn-Cu couple;
 - in step (2), the suitable acid catalyst, when present, is acetic acid;
 - in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and
 - in step (3) the suitable base is sodium methoxide.
- 18. (Currently Amended) The process according to Claim 17, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the mixture of compounds of Formula (II-a) and (II*-a) with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a):

- (3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).
- 19. (Currently Amended) A process for the preparation of a compound of Formula (III):

wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2- $(R^{1}CH_{2}CO_{2})$ phenyl-, $R^{1}CH_{2}$ -, or $R^{1}CH_{2}C(=O)OC(R^{2})_{2}$ -;

X is Cl, Br, or I;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (II), a compound of Formula (II*), or a mixture of compounds of Formula (II) and (II*):

 $(II) (II^*)$

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-; and

- (2) contacting the compound of Formula (II), the compound of Formula (II*), or the mixture of compounds of Formula (II) and (II*); with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III).
- **20.** (Currently Amended) The process of Claim 19 for the preparation of a compound of Formula (III), wherein:
 - in step (1) the acyl halide of Formula Q-C(=O)X comprises:

 2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide,

 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;
 - in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
 - in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
 - in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄; and
 - in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether.
- 21. (Currently Amended) The process according to Claim 19, for the preparation of a

compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with a suitable reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (III-a).

- 22. (Currently Amended) The process of Claim 21 for the preparation of a compound of Formula (III-a), wherein:
 - in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
 - in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn:
 - in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄; and
 - in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether.
- 23. (Currently Amended) The process of Claim 22 for the preparation of a compound of Formula (III-a), wherein:
 - in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;
 - in step (2), the suitable reducing agent is Zn-Cu couple;
 - in step (2), the suitable acid catalyst, when present, is acetic acid; and
 - in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate.
- 24. (Currently Amended) The process according to Claim 23, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a).

25. (Currently Amended) A compound of Formula (II) or (II*):

or a pharmaceutically acceptable salt thereof, wherein:

in Formula II, Q is R¹CH₂- or R¹CH₂C(=O)OC(R²)₂-;

 R^1 is H or C_1 - C_6 alkyl, provided that when Q is R^1CH_2 -, R^1 is not H;

R² is independently selected from methyl, ethyl, and propyl;

R³ is Cl, Br, or I; and

R⁴ is R¹CH₂C(=O)O-; and wherein:

in Formula II*,

Q is $R^1CH_2C(=O)OC(R^2)_2=$;

 R^1 is H or C_1 - C_6 alkyl;

R² is independently selected from methyl, ethyl, and propyl;

R³ is Cl, Br, or I; and

 R^4 is $R^1CH_2C(=O)O-$;.

26. (Currently Amended) A compound of Claim 25 of Formula (II-a) or (II*-a):

or a pharmaceutically acceptable salt thereof.

27. (Currently Amended) A compound of Formula (III):

or a pharmaceutically acceptable salt thereof, wherein:

Q is \mathbb{R}^1 CH₂-or \mathbb{R}^1 CH₂C(=O)OC(\mathbb{R}^2)₂-;

 R^1 is H or $C_1\text{-}C_6$ alkyl; and

R² is independently selected from methyl, ethyl, and propyl.

28. (Currently Amended) A compound of Claim 27 of Formula (III-a):

or a pharmaceutically acceptable salt thereof.

29. (Currently Amended) A process for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (IV):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or IV or I;

 R^1 is H or C_1 - C_6 alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (VI), a compound of Formula (VI*), or a mixture of compounds of Formula (VI) and (VI*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the compound of Formula (VI), the compound of Formula (VI*), or the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (VII):

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III),

(4) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

30. (Currently Amended) The process of Claim 29 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents, and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;
- in step (3a) the activating agent is selected from the group consisting of:
 methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
 chloride, benzenesulfonyl chloride,
 p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
 triazole/diphenyl chloro-phosphate;
- in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

N,N-dimethylcyclohexylamine,

N,N-diethylcyclohexylamine,

N,N-dimethyloctylamine, tetramethylethylenediamine,

pyridine, N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane,

1,8-diazabicyclo[5.4.0]undec-7-ene, and

1,5-diazabicyclo[4.3.0]non-5-ene;

- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;
- in step (3b) the aminating agent is selected from the group consisting of: NH₃, ammonium hydroxide, and ammonium carbonate; and
- in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- **31.** (Currently Amended) The process according to Claim 29, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with an activating agent selected from the group consisting of:

i) an aryl sulfonyl halide,

- ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride; in the presence of an amine base, to form a compound of Formula (VIII-a);

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a),

and

(4) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

32. (Currently Amended) The process of Claim 31 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

- in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;
- in step (3a) the activating agent is selected from the group consisting of:
 methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
 chloride, benzenesulfonyl chloride,
 p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
 triazole/diphenyl chloro-phosphate;
- in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

tetramethylethylenediamine, pyridine,

N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane, and

1,8-diazabicyclo[5.4.0]undec-7-ene;

- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;
- in step (3b) the aminating agent is selected

from the group: NH3, ammonium hydroxide, and ammonium carbonate; and in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and

ammonium C₁-C₆ alkoxide.

33. (Currently Amended) The process of Claim 32 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile;

in step (2), the reducing agent is Zn-Cu couple;

in step (2), the acid catalyst, when present, is acetic acid;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl;

in step (3b), the aminating agent is NH₃; and

in step (4) the suitable base is sodium methoxide.

34. (Currently Amended) The process according to Claim 33, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

(V)

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

(3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of

Formula (III-a), and

- (4) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).
- 35. (Currently Amended) The process of Claim 29 for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or IV or I;

 R^1 is H or C_1 - C_6 alkyl;

 R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a mixture of compounds of Formula (VI) and (VI*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (VII):

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III),

(4) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

36. (Currently Amended) The process of Claim 35 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or

2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents, and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of:

methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride, p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and

triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

N,N-dimethylcyclohexylamine,

N,N-diethylcyclohexylamine,

N,N-dimethyloctylamine, tetramethylethylenediamine,

pyridine, N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane,

1,8-diazabicyclo[5.4.0]undec-7-ene, and

1,5-diazabicyclo[4.3.0]non-5-ene;

- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;
- in step (3b) the aminating agent is selected from the group consisting of: NH₃, ammonium hydroxide, and ammonium carbonate; and
- in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- 37. (Currently Amended) The process according to Claim 35, for the preparation of a

compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with a activating agent selected from the group consisting of:

- i) an aryl sulfonyl halide,
- ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride; in the presence of an amine base, to form a compound of Formula (VIII-a);

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a),

and

(4) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

- 38. (Currently Amended) The process of Claim 37 for the preparation of a compound of Formula (IV), wherein:
 - in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
 - in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
 - in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H2SO₄;
 - in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;
 - in step (3a) the activating agent is selected from the group consisting of:
 methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
 chloride, benzenesulfonyl chloride,
 p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
 triazole/diphenyl chloro-phosphate;
 - in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

tetramethylethylenediamine, pyridine,

N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane, and

1,8-diazabicyclo[5.4.0]undec-7-ene;

- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;
- in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate; and
- in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
- **39.** (Currently Amended) The process of Claim 38 for the preparation of a compound of Formula (IV), wherein:
 - in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile; in step (2), the reducing agent is Zn-Cu couple;
 - in step (2), the acid catalyst, when present, is acetic acid;
 - in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;
 - in step (3a) the activating agent is triazole/phosphorus oxychloride;
 - in step (3a) the amine base is triethylamine;
 - in step (3a) the leaving group LG is triazolyl;
 - in step (3b), the aminating agent is NH₃; and
 - in step (4) the suitable base is sodium methoxide.
- **40.** (Currently Amended) The process according to Claim 39, for the preparation of a compound of Formula (IV):

(IV)

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

(3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a), and

(4) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

41. (Currently Amended) A process for the preparation of a compound of Formula (III):

wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; comprising:

(1) contacting a compound of Formula (V):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or IV or I;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (VI), a compound of Formula (VI*), or a mixture of compounds of Formula (VI) and (VI*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the compound of Formula (VI), the compound of Formula (VI*), or the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (VII):

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III).

42. (Currently Amended) The process of Claim 41 for the preparation of a compound of Formula (III), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or

2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III).

42. (Currently Amended) The process of Claim 41 for the preparation of a compound of Formula (III), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or

2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of:
methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
chloride, benzenesulfonyl chloride,
p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

N,N-dimethylcyclohexylamine,

N,N-diethylcyclohexylamine,

N,N-dimethyloctylamine, tetramethylethylenediamine,

pyridine, N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane,

1,8-diazabicyclo[5.4.0]undec-7-ene, and

1,5-diazabicyclo[4.3.0]non-5-ene;

- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;
- in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate.
- 43. (Currently Amended) The process according to Claim 41, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, optionally in the presence in the absence of a suitable an acid catalyst, to form a compound of Formula (VII-a);

(3a) contacting the compound of Formula (VII-a) with a activating agent selected from the group consisting of:

- i) an aryl sulfonyl halide,
- ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride; in the presence of an amine base, to form a compound of Formula (VIII-a):

wherein LG is a leaving group derived from the activating agent; and (3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a).

44. (Currently Amended) The process of Claim 43 for the preparation of a compound of Formula (III-a), wherein:

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

- in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3a) the activating agent is selected from the group consisting of:
 methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
 chloride, benzenesulfonyl chloride,
 p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
 triazole/diphenyl chloro-phosphate;
- in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

tetramethylethylenediamine, pyridine,

N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane, and

1,8-diazabicyclo[5.4.0]undec-7-ene;

- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl; and
- in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate.
- **45.** (Currently Amended) The process of Claim 44 for the preparation of a compound of Formula (III-a), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile; in step (2), the reducing agent is Zn-Cu couple;

in step (2), the acid catalyst, when present, is acetic acid;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl; and in step (3b), the aminating agent is NH₃.

46. (Currently Amended) The process according to Claim 45, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a compound of Formula (VI-a), a compound of Formula (VI* -a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

Appl. No. 10/086,830 Amdt. dated February 25, 2004

Reply to Office Action of November 25, 2003

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

and

(3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a).

47. (Withdrawn) A compound of Formula (VI) or (VI*):

or a pharmaceutically acceptable salt thereof, wherein:

Q is $R^{1}CH_{2}$ - or $R^{1}CH_{2}C(=O)OC(R^{2})_{2}$ -;

R¹ is H or C₁-C₆ alkyl;

R² is independently selected from methyl, ethyl, and propyl;

R³ is Cl, Br, or IV; and

 R^4 is $R^1CH_2C(=O)O-$.

48. (Withdrawn) A compound of Claim 47 of Formula (VI-a) or (VI*-a):

or a pharmaceutically acceptable salt thereof.

49. (Withdrawn) A compound of Formula (VII):

or a pharmaceutically acceptable salt thereof, wherein:

Q is $R^{1}CH_{2}$ - or $R^{1}CH_{2}C(=O)OC(R^{2})_{2}$ -;

R¹ is H or C₁-C₆ alkyl; and

R² is independently selected from methyl, ethyl, and propyl.

50. (Withdrawn) A compound of Claim 49 of Formula (VII-a):

or a pharmaceutically acceptable salt thereof.

- 51. (Withdrawn) A process for the preparation of a β -D- and β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside comprising:
 - a) activating a compound of structure (1)

wherein B is a pyrimidine or purine base; and

Y is O, S or CH₂;

with an acyl halide of the formula X-C(=O)R¹, X-C(=O)C(R¹)₂OC(=O)R¹ or X-C(=O)phenylC(=O)OR¹;

wherein X is a halogen (F, Cl, Br or I), and

each R¹ is independently hydrogen, lower alkyl, alkyl, aryl or phenyl;

to form a compound of structure (2)

Appl. No. 10/086,830

Amdt. dated February 25, 2004

Reply to Office Action of November 25, 2003

(2)

wherein R' is R^1 , $-C(R^1)_2OC(=O)R^1$ or -phenylC(=O)OR¹; and at least one R is halogen (F, Cl, Br or I), and at least one R is an acyl of the formula - $OC(=O)R^1$; and then

b) reducing the compound of structure (2) with a reducing agent to form a 2',3'-dideoxy-2',3'-didehydro-nucleoside of structure (3)

$$R' O Y$$
 O
 (3)

- c) optionally deprotecting the nucleoside if necessary.
- 52. (Withdrawn) The process of Claim 51, wherein B is 5-fluorouracil or 5-fluorocytosine.
- 53. (Withdrawn) The process of Claim 51, wherein Y is O.
- 54. (Withdrawn) The process of Claim 51, wherein the β -D- and β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside is D4FC.
- 55. (Withdrawn) The process of Claim 51, wherein the β-D- and β-L-2',3'-dideoxy-2',3'-didehydro-nucleoside is β-D-D4FC.
- 56. (Withdrawn) The process of Claim 51, wherein the β -D- and β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside is β -D-D4FC.
- 57. (Withdrawn) The process of Claim 51, further comprising reducing the β-D or β-L-2',3'-dideoxy-2',3'-didehydro-nucleoside into a β-D or β-L-2'- or 3'-deoxyribo-nucleoside.
- 58. (Withdrawn) The process of Claim 51, further comprising converting the β-D or β-L-2',3'-dideoxy-2',3'-didehydro-nucleoside bearing a different nucleobase.

- 59. (Withdrawn) The process of Claim 58, wherein the β -D or β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside is β -D or β -L-2',3'-dideoxy-2',3'-didehydro-5-fluorouridine which is converted to a β -D or β -L-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine.
- 60. The process of claims 1 or 29 wherein the compound of Formula (IV) is in the form of a β-D-enantiomer.
- 61. The process of claims 19 or 41 wherein the compound of Formula (III) is in the form of a β-D-enantiomer.
- 62. The compound of claim 25 wherein the compound of Formula (II) or (II*) is in the form of a β-D-enantiomer.
- 63. The compound of claim 26 wherein the compound of Formula (II-a) or (II*-a) is in the form of a β-D-enantiomer.
- 64. The compound of claim 27 wherein the compound of Formula (III) is in the form of a β D-enantiomer.
- The compound of claim 28 wherein the compound of Formula (III-a) is in the form of a β-D-enantiomer.