Probability and Statistics

1 – Descriptive Statistics

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

October 10, 2023

Chebyshev's inequalities

Theorem (1.20)

Let \overline{x} be the mean and \underline{s} the standard deviation of the data set x_1, x_2, \ldots, x_N . Then the following inequalities hold:

(i)
$$\frac{|\mathcal{I}_k|}{N} = \frac{|\{i \mid |x_i - \overline{x}| < k \cdot s\}|}{N} \ge 1 - \frac{N-1}{N k^2} > 1 - \frac{1}{k^2}$$
 for all $k \ge 1$

$$\frac{|\{i \mid (x_i - \overline{x}) \ge k \cdot s\}|}{N} < \frac{1}{1 + k^2}$$
 for all $k > 0$

Let

$$I_k := \{i \mid |x_i - \overline{x}| < k \cdot s\}$$
 and $O_k := \{i \mid |x_i - \overline{x}| \ge k \cdot s\}$.

Then

$$(N-1) \cdot s^2 = \sum_{i=1}^N (x_i - \overline{x})^2 \geq \sum_{i \in O_k} (x_i - \overline{x})^2 \geq \sum_{i \in O_k} (k \cdot s)^2 = |O_k| \cdot k^2 \cdot s^2$$

and therefore:

$$|O_k| \leq \frac{N-1}{k^2}$$
 and $|I_k| = N-|O_k| \geq N-\frac{N-1}{k^2}$

(iii): Let

$$d_i := x_i - \overline{x}$$
 for $i = 1, ..., N$ and $R_k := \{i \mid d_i \ge k \cdot s\}$.

Then, for every b > 0:

$$\sum_{i=1}^{N} (d_i + b)^2 \geq \sum_{i \in R_k} (d_i + b)^2 \geq \sum_{i \in R_k} (k \cdot s + b)^2 = |R_k|(k \cdot s + b)^2$$

Together with

with
$$\sum_{i=1}^{N} (d_i + b)^2 = \sum_{i=1}^{N} d_i^2 + 2b \sum_{i=1}^{N} d_i + Nb^2 = (N-1)s^2 + 0 + Nb^2$$

$$\sum_{i=1}^{N} (x_i - \bar{x}) = \sum_{i=1}^{N} x_i - N\bar{x} = N \cdot (\bar{x}, \bar{x}) = 0$$

(iii): Let

$$d_i := x_i - \overline{x}$$
 for $i = 1, \dots, N$ and $R_k := \{i \mid d_i \ge k \cdot s\}$.

Then, for every b > 0:

$$\sum_{i=1}^{N} (d_i + b)^2 \geq \sum_{i \in R_k} (d_i + b)^2 \geq \sum_{i \in R_k} (k \cdot s + b)^2 = |R_k|(k \cdot s + b)^2$$

Together with

$$\sum_{i=1}^{N} (d_i + b)^2 = \sum_{i=1}^{N} d_i^2 + 2b \sum_{i=1}^{N} d_i + Nb^2 = (N-1)s^2 + Nb^2$$

it follows that:

$$\frac{|R_k|}{N} \le \frac{1}{N} \cdot \frac{(N-1)s^2 + Nb^2}{(k \cdot s + b)^2} < \frac{s^2 + b^2}{(k \cdot s + b)^2}$$

(iii)

$$\frac{|R_k|}{N} \leq \frac{1}{N} \cdot \frac{(N-1)s^2 + Nb^2}{(k \cdot s + b)^2} < \frac{s^2 + b^2}{(k \cdot s + b)^2}$$

In particular, setting $b = \frac{s}{k}$:

$$\frac{|R_k|}{N} < \frac{s^2 + \frac{s^2}{k^2}}{(k \cdot s + \frac{s}{k})^2} = \frac{1 + \frac{1}{k^2}}{(k + \frac{1}{k})^2} = \frac{k^2 + 1}{(k^2 + 1)^2} = \frac{1}{k^2 + 1}$$

Corrolated data sets

Example (1.21)

Twenty students attended the lectures on probability and statistics. Points for their homework and their exam grades are listed in the following table.

Student No.	1	2	3	4	5	6	7	8	9	10
Homework Pts.	51	120	123	127	103	137	163	115	123	132
Exam Grade	5.0	3.3	3.0	3.3	3.7	2.3	1.7	2.7	2.7	2.7
Student No.	11	12	13	14	15	16	17	18	19	20
Homework Pts.	160	136	0	87	182	173	55	181	186	0
Exam Grade	2.3	3.3	5.0	3.3	1.0	2.3	4.0	1.7	1.7	5.0

Scatter Diagram

Line of Best Fit

Definition

For given non-constant data sets $x=(x_1,x_2,\ldots,x_N)$ and $y=(y_1,y_2,\ldots,y_N)$ the line of best fit

$$y = a + b \cdot x$$

is defined by the *least squares fitting* property, i.e. by minimizing the sum:

$$\sum_{i=1}^{N} (y_i - (a+b \cdot x_i))^2$$
value of "time" at X.

Lemma (1.22)

For given non-constant data sets $x = (x_1, x_2, \dots, x_N)$ and $y = (y_1, y_2, \dots, y_N)$ the coefficients of the line of best fit

$$y = a + b \cdot x$$

are given by:

$$b = \frac{\sum_{i=1}^{N} x_i y_i - N \overline{x} \overline{y}}{\sum_{i=1}^{N} x_i^2 - N \overline{x}^2} = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{(N-1) s_x^2}$$

(ii)

$$a = \overline{y} - b\overline{x}$$
 -1 $(\overline{x}_1\overline{y})$ is a part of the lie of bot fit

Proof of Lemma (1.22)

If $y = a + b \cdot x$ is the line of best fit and

$$d := \sum_{i=1}^{N} (y_i - (a + b \cdot x_i))^2$$

then:

$$\frac{\partial d}{\partial a} = \frac{\partial d}{\partial b} = 0$$

(ii):

$$0 = \frac{\partial d}{\partial a} = -2\sum_{i=1}^{N}(y_i - (a+b\cdot x_i)) = -2(N\overline{y} - Na - bN\overline{x}) = -2N(\overline{y} - a - b\overline{x})$$

$$\implies a = \overline{v} - b\overline{x}$$

Proof of Lemma (1.22)

$$0 = \frac{\partial d}{\partial b} = \frac{\partial}{\partial b} \left(\sum_{i=1}^{N} (y_i - (a+b \cdot x_i))^2 \right) = -2 \sum_{i=1}^{N} x_i (y_i - a - b \cdot x_i)$$

$$0 = \sum_{i=1}^{N} x_i y_i - N \overline{x} a - b \sum_{i=1}^{N} x_i^2 \stackrel{\text{(ii)}}{=} \sum_{i=1}^{N} x_i y_i - N \overline{x} (\overline{y} - b \overline{x}) - b \sum_{i=1}^{N} x_i^2$$

$$0 = \sum_{i=1}^{N} x_i y_i - N \overline{x} \overline{y} - b \left(\sum_{i=1}^{N} x_i^2 - N \overline{x}^2 \right) \implies b = \frac{\sum_{i=1}^{N} x_i y_i - N \overline{x} \overline{y}}{\sum_{i=1}^{N} x_i^2 - N \overline{x}^2}$$

Proof of Lemma (1.22)

(i):

):
$$\frac{\sum_{i=1}^{N}(x_{i}-\overline{x})(y_{i}-\overline{y})}{\sum_{i=1}^{N}(x_{i}-\overline{x})^{2}} = \frac{\sum_{i=1}^{N}x_{i}y_{i}-\overline{x}\sum_{i=1}^{N}y_{i}-\overline{y}\sum_{i=1}^{N}x_{i}+N\overline{x}\overline{y}}{(N-1)s_{x}^{2}} = \sum_{i=1}^{N}x_{i}y_{i}-N\overline{x}\overline{y}$$

$$= \frac{\sum_{i=1}^{N}x_{i}y_{i}-N\overline{x}\overline{y}}{(N-1)s_{x}^{2}} = \sum_{i=1}^{N}x_{i}y_{i}-N\overline{x}\overline{y}$$

$$= \frac{\sum_{i=1}^{N}x_{i}y_{i}-N\overline{x}\overline{y}}{(N-1)s_{x}^{2}} = \sum_{i=1}^{N}x_{i}y_{i}-N\overline{x}\overline{y}$$

Normalized Data Set

Definition (1.23)

The normalized form of a non-constant data set $x = (x_1, x_2, \dots, x_N)$ is defined by:

$$x^{o} := (x_{1}^{o}, x_{2}^{o}, \dots, x_{N}^{o}), \qquad x_{i}^{o} := \frac{x_{i} - \overline{x}}{s_{x}}$$

Note:
$$\overline{x^o} = 0$$
 and $s_{x^o} = 1$.

Correlation Coefficient

Definition (1.24)

Given non-constant data sets $x=(x_1,x_2,\ldots,x_N)$ with mean \overline{x} and $y=(y_1,y_2,\ldots,y_N)$ with mean \overline{y} , the correlation coefficient is defined by:

$$r := r_{x,y} := \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2 \sum_{i=1}^{N} (y_i - \overline{y})^2}} = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x s_x} = \frac{\sum_{i=1}^{N} x_i^o \cdot y_i^o}{N-1}$$

Correlation Coefficient

Definition (1.24)

Given non-constant data sets $x=(x_1,x_2,\ldots,x_N)$ with mean \overline{x} and $y=(y_1,y_2,\ldots,y_N)$ with mean \overline{y} , the correlation coefficient is defined by:

$$r := r_{x,y} := \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2 \sum_{i=1}^{N} (y_i - \overline{y})^2}} = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x s_y} = \frac{\sum_{i=1}^{N} x_i^o \cdot y_i^o}{N-1}$$

Note: $r_{x^o,y^o} = r_{x,y}$

Lemma (1.25)

Let x and y be non-constant data sets with correlation coefficient $r = r_{x,y}$. Then the line of best fit for the normalized data sets x^o and y^o is given by:

$$y = r \cdot x$$

$$\sum_{i=1}^{N} (x_i^{\circ} - \overline{x^{\circ}})(y_i^{\circ} - \overline{y^{\circ}}) = \sum_{i=1}^{N} x_i^{\circ} y_i^{\circ}$$

$$\sum_{i=1}^{N} (x_i^{\circ} - \overline{x^{\circ}})(y_i^{\circ} - \overline{y^{\circ}}) = \sum_{i=1}^{N} x_i^{\circ} y_i^{\circ}$$

$$\sum_{i=1}^{N} (N-1)s_{x_i^{\circ}}^{2} = \frac{\sum_{i=1}^{N} x_i^{\circ} y_i^{\circ}}{(N-1)} = \frac{\sum_{i=1}^{N} x_i^{\circ} y_i^{\circ}}{(N-1)}$$

Lemma (1.26)

Let $x = (x_1, x_2, ..., x_N)$ and $y = (y_1, y_2, ..., y_N)$ be non-constant data sets with mean \overline{x} and mean \overline{y} , respectively. Furthermore let r be the correlation coefficient of x and y. Then, the slope of the line of best fit for the data sets x and y is given by:

$$b = r \cdot \frac{s_y}{s_x}$$

$$r \cdot \frac{s_y}{s_x} = \frac{\displaystyle\sum_{i=1}^N (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x s_y} \cdot \frac{s_y}{s_x} = \frac{\displaystyle\sum_{i=1}^N (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x^2} = b$$