CS5100: Foundations of Artificial Intelligence

Uncertainty

Dr. Rutu Mulkar-Mehta Lecture 9

Administrative

- · We have finished the first 2 sections of this class
 - Search, and Logic
- · Final Exam Cancelled!
 - Higher weightage on projects and Assignments
 - More EC assignments
 - Grading:
 - 3 Projects (63% of your grade) (20, 20, 23)
 - In class problem sets (32% of your grade)
 - Participation (5%)

Administrative - Contd.

- · Project 2 is Due next week
 - Some people are already done!
- · Assignment 4 is graded and scores are returned back to you
- · Assignment 5 today!
- · Assignment 3 grading still in progress

Today

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes' Rule
 - Inference
 - Independence
- · You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty

 - R = Is it raining?T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- · We denote random variables with capital letters
- · Random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold} D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions Associate a probability with each value AKA - Prior Probability

Temperature:

Weather:

P(W)rain 0.1 fog 0.3

Probability Distributions

Unobserved random variables have distributions

P(T)		P(W)	
Т	Р	W	Р
hot	0.5	sun	0.6
		rain	0.1
cold	0.5	fog	0.3
		meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number $P(W=rain)=0.1 \label{eq:power}$

Must have:

$$\forall x \ P(X=x) \ge 0$$
 $\sum_{x} P(X=x) = 0$

Shorthand notation: P(hot) = P(T = hot), P(cold) = P(T = cold), P(rain) = P(W = rain), \dots OK if all domain entries are unique

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment (or *outcome*):

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- · Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Events

• An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)		
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

- P(+x, +y)?
- P(+x)?
- P(-y OR +x) ?

P(X,Y)

X Y P

+x +y 0.2

+x -y 0.3

+y 0.4

- **Marginal Distributions**
- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Quiz: Marginal Distributions

Conditional Probabilities

$$\begin{array}{c|ccc} P(T,W) \\ \hline T & W & P \\ hot & sun & 0.4 \\ hot & rain & 0.1 \\ cold & sun & 0.2 \\ cold & rain & 0.3 \\ \hline \end{array}$$

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

P(+x | +y)?

P(X,Y)		
Х	Υ	Р
+x	+y	0.2
+χ	-у	0.3
-x	+y	0.4
-x	-у	0.1

• P(-x | +y) ?

P(-y | +x) ?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

(T, W))
W	Р
sun	0.4
rain	0.1
sun	0.2
rain	0.3
	W sun rain sun

Normalization Trick

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

$$= \frac{W}{Sun} = 0.4$$

$$= \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick **SELECT** the P(T, W)NORMALIZE joint probabilitie the selection P(W|T=c)W P(c, W)s matching 0.4 hot sun the W to one) hot rain 0.1 evidence sun 0.4 cold sun 0.2 cold sun 0.2 rain 0.6 cold rain 0.3 cold rain 0.3 • Why does this work? Sum of selection is P(evidence)! (P(T=c), here) $P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$

Probabilistic Inference

Probabilistic inference: compute a desired probability from other known probabilities (e.g.

· We generally compute conditional probabilities

- P(on time | no reported accidents) = 0.90 - These represent the agent's beliefs given the evidence

· Probabilities change with new evidence:

P(on time | no accidents, 5 a.m.) = 0.95

- P(on time | no accidents, 5 a.m., raining) = 0.80

- Observing new evidence causes beliefs to be updated

conditional from joint)

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(d¹)
 - Space complexity O(dⁿ) to store the joint distribution

Independence

If 2 events (X and Y) are independent then:

$$p(X|Y) = p(X)$$

$$p(Y|X) = p(Y)$$

$$p(X,Y) = p(X) p(Y)$$

E.g. color of eyes and color of front door are independent

The Product Rule

 Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \iff P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

• Example:

			P(D V	V)
P(V	V)	D	W	ı
R	Р	wet	sun	0
sun	0.8	dry	sun	0
rain	0.2	wet	rain	0
rdill	0.2	alan .		_

W	Р	
sun	0.1	
sun	0.9	<u> </u>
rain	0.7	1
rain	0.2	

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1,x_2,\ldots x_n)=\prod P(x_i|x_1\ldots x_{i-1})$$

Bayes' Rule

 Two ways to factor a joint distribution over two variables:

 Thent's arrangement of the second sec That's my rule!

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?

 - Lets us build one conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we'll see later
- In the running for most important AI equation!

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

Example:

- M: meningitis, S: stiff neck P(+m) = 0.0001

Example P(+s|+m) = 0.8 P(+s|-m) = 0.01

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001} = \frac{0.0001}{0.0001} =$

- Note: posterior (or conditional) probability of meningitis still very small

Quiz: Bayes' Rule

· Given:

• What is P(W | dry)?

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

Now:

· In Class Assignment