

Diagnostician training

Martin Chilvers
Jan Byrne
Janette Jacobs
Alejandro Rojas

Jie Wang Mitch Roth Tim Miles

Department of Plant, Soil and Microbial Sciences

Workshop outline

Morning Session - qPCR

8:45 Sample preparation overview

9:15 qPCR overview

9:45 Break

10:00 qPCR setup

11:00 qPCR lectures - SDS and Phytophthora specific discussion

12:00 Lunch

Afternoon Session - Isothermal amplification and RPA

1:00 Review of qPCR results

1:30 RPA overview

2:15 RPA sample prep and reaction setup

3:00 Run RPA reactions

3:30 Break

3:40 Review RPA results

4:00 Q & A session

Workshop wrap up - questions and survey

Why use molecular techniques?

- Not reliant on morphology
- Very useful it traits are limited or plastic
- Also useful due to convergent evolution
- Useful for resolving relationships
- May support/resolve morphological taxonomy

- Fusarium spp.
- Overlapping morphology

Fundamentals of PCR

PCR

PCR Thermocycler

Agarose gel electrophoresis

 DNA is separated by migration through a gel due to voltage gradient, small molecules travel faster than larger ones

Agarose gel electrophoresis

 Using a DNA ladder of known size we can determine the size of our PCR product

Real-time PCR instrument (examples)

Bio-Rad

heid Applied Biosystems

Real-time qPCR assay

Hydrolysis probe chemistry

• R: reporter fluorescent molecule

qPCR Serial Dilution Standard Curve

ΔRn: Delta normalized reporter

Unknown Sample Quantification

Real-time PCR Advantages

- Quantifiable result
- Larger dynamic range ~ 7 orders of magnitude
- Quicker time to result than end-point PCR
- Low-medium sample throughput
 - i.e. single tube reactions, 96/384 well plates, OpenArray 3072 wells