R16

Code No: 133AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018 ANALOG ELECTRONICS

(Common to ECE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

	(20 1)	· · · · · · · · · · · · · · · · · · ·
1.a)	What are the types of distortion in amplifiers.	[2]
b)	Classify the amplifiers according to the method of coupling.	[3]
c)	Why the h parameter model is not suitable to analyze transistor at high frequencies.	[2]
d)	What are the elements in the Hybrid 'Π' model?	[3]
e)	What is cascode amplifier?	[2]
f)	State the advantages and disadvantages of the source follower.	[3]
g)	What is meant by positive and negative feedback?	[2]
h)	State the Barkhausen criterion for oscillations.	[3]
i)	What are the requirements of a tuned amplifier?	[2]
j)	Give the definition of power amplifier. Also list the types in it based on location	of Q
	point.	[3]

PART-B

(50 Marks)

(25 Marks)

2. Draw the h-parameter equivalent circuit for a typical common emitter amplifier and derive expression for A_i , A_v , R_i and R_o [10]

OR

3. Draw simplified h parameter equivalent circuit and calculate A_i , A_v , A_{vs} , R_i and R_o for the cascode circuit shown in figure 1. Assume that transistors are identical with $h_{fe}=10$, $h_{ie}=2 \text{ K}\Omega$, $h_{re}=h_{oe}=0$.

Figure: 1

- 4.a) Derive an expression for current gain with resistive load.
 - b) The hybrid- Π parameters of the transistor used in the circuit shown in figure 2 are g_m = 50 mA/V, $r_{b'e}$ =1 K Ω , $r_{b'e}$ =4 M Ω , r_{ce} =80 K Ω , C_c =3 pF, C_e =100 pF and $r_{bb'}$ =100 Ω , find (i) upper 3 dB frequency of current gain (ii) the Magnitude of voltage gain at A_{vs} =V $_0$ /V $_s$ at frequency of part (i) [5+5]

- 5.a) A single stage CE amplifier is measured to have a voltage gain bandwidth f_H of 5 MHz with R_L =500 Ω . Assume h_{fe} =100, g_m =100 mA/V, r_{bb} :=100 Ω , C_C =1pF and f_T =400 MHz. (i) find the value of source resistance that will give the required bandwidth. (ii) with the value of Rs found in (i), find the mid band voltage gain V_0/V_s .
 - b) In hybrid 'pi' model of a transistor at high frequencies, show that the g_m is proportional to the collector current. [5+5]
- 6.a) Discuss the input and output characteristics of a folded cascade amplifier with NMOS input.
 - b) Derive expression for A_v and R_o for common gate amplifier.

[5+5]

OR

- 7.a) Draw and explain the CS stage with diode connected load.
 - b) Discuss the MOSFET characteristics in depletion mode.

[5+5]

- 8.a) Show that for a current series feedback amplifier the input and output resistances are increased by a factor if $(1+A\beta)$ with feedback.
 - b) Identify the topology of feedback in the circuit of figure 3 giving Justification. Two transistors are identical with $h_{ie}=2$ K and $h_{fe}=100$. Calculate i) R_{if} (ii) A_{if} (iii) A_{vf} [5+5]

WWW.MANARESETS.CO.IN

- 9.a) Explain the principle of operation of the wein bridge oscillator.
 - b) Mention the features and advantages of the crystal oscillator.

[5+5]

- 10.a) Show that the transformer coupled class A amplifier maximum efficiency is 50%.
 - b) Compare the push-pull class B and complementary symmetry class B amplifier. [5+5] **OR**
- 11.a) A tuned amplifier is required to have a voltage gain of 30 at 10.7 MHz with 200 KHz BW. An FET with g_m =5 mA/V and r_d =100 K Ω is available. Calculate the values of tank circuit elements.
 - b) Draw and explain the frequency response of tuned amplifier.

[5+5]

---00000----