The Carrie and the Control of the Party of the Control of the Cont

5

10

15

20

25

- 30

APPENDIX 1

A general analysis of which kind of radio-nuclides could be produced with the neutron Activator has been performed. Target elements must be natural elements which optionally selected with an isotopic enrichment, though costly. The neutron capture process leads to a daughter element which is unstable, with a reasonable lifetime, conservatively chosen to be between one minute and one year. In turn, the next daughter element can be either stable or unstable. If it is stable, the process is defined as "activation" of the sample. Since a second isotopic separation is unrealistic, the activated compound must be used directly. A practical example of this is the $^{128} ext{I}$ activation from a natural Iodine compound ($^{127} ext{I}$ ightarrow $128\,\mathrm{I}$). If, instead, the first daughter element decays into another unstable (the same time window has been used) species, which can be separated appropriate technique, the present method may constitute a pure, separated radio-nuclides to produce practical applications. As practical example, one may refer to the chain $98\text{Mo} \rightarrow 99\text{Mo} \rightarrow 99\text{m}_{\text{Tc}}$.

The suitability of a given production/decay chain to our proposed method depends on the size of the neutron capture cross-section. Two quantities are relevant: the resonance integral I_{res} , which is related to the use of a high A diffusing medium such as Lead, and the thermal capture cross-section which suggests the use of a low A diffuser such as Graphite. Another relevant parameter is the fractional content of the father nuclear species in the natural compound, which is relevant to the possible need of isotopic preparation of the target sample.

86

rarge	Isotope					half-life	Decay	Decay	Next	half-life
		Conc.	Integr.	X-sect	Isotope	activated	mode	Br. R.	Isotope	next Isot.
Na	Na- 23	1.00	0.26	0.607	Na- 24	14.96 h	β-	100.0		
Mg	Mg- 26	0.1101	0.016	0.0439	Mg- 27	9.458 m	β	100.0		
Al	Al- 27	1.00	0.112	0.244	Al- 28	2.241 m	β	100.0		
Si	Si- 30	0.031	0.697	0.124	Si- 31	2.622 h	B	100.0		
P	P - 31	1.00	0.0712	0.207	P - 32	14.26 d	β	100.0		
							P	100.0		
S	S - 34		0.0835		S - 35	87.51 d	β-	100.0		
S	S - 36	0.0002	0.10	0.167	S - 37	5.050 m	β–	100.0		
Cl	Cl- 37	0.2423	0.0025	0.	CI- 38	37.24 m	β-	100.0		
Ar	Ar- 36	0.0034	1.68	6.0	Ar- 37	35.04 d	β+	100.0		
Ar	Ar- 40	0.996	0.231	0.756	Ar- 41	1.822 h	β–	100.0		
K	K - 41	0.0673	1.44	1.67	K - 42	12.36 h	β-	100.0		
Ca	Ca- 44	0.0209	0.32	1.02	Ca- 45	163.8 d	β-	100.0		
Ca	Ca- 46	0.00	0.252	0.85	Ca- 47	4.536 d	β-	100.0	Sc- 47	3.345 d
Ca	Ca- 48	0.0019	0.379	1.26	Ca- 49	8.715 m	β-	100.0	Sc- 49	57.20 m
Sc	Sc- 45	1.00	9.24	31.10	Sc- 46	83.79 d	β-	100.0		
Γi	Ti- 50	0.054	0.0682	0.204	Ti- 51	5.760 m	β-	100.0		
V	V - 51	0.9975	2.08	5.62	V - 52	3.750 m	β-	100.0		
Cr .	Cr- 50	0.0434	5.94	18.20	Cr- 51	27.70 d	β+	100.0		
Cr	Cr- 54	0.0237		0.412	Cr- 55	3.497 m	β-	100.0		
							۲			
Mn	Mn- 55	1.00	10.50	15.40	Mn- 56	2.579 h	β–	100.0		
Fe .	Fe- 58	0.0028	1.36	1.32	Fe- 59	44.50 d	β-	100.0		
Co	Co- 59	1.00	72.0	42.70	Co- 60*	10.47 m	β–	0.24		
Co	Co- 59	1.00	72.0	42.70	Co- 60*	10.47 m	γ	99.76		
٧i	Ni- 64	0.0091	0.627	1.74	Ni- 65	2.517 h	β-	100.0		
Cu	Cu- 63	0.6917	4.47	5.11	Cu- 64	12.70 h	β+	61.0		
		0.6917			Cu- 64	12.70 h	β-	39.0		
		0.3083		2.46	Cu- 66	5.088 m	β-	100.0		
Zn	Zn- 64	0.486	1.38	0.877	Zn- 65	244.3 d	β+	100.0		
			2.89	1.15	Zn- 69	56.40 m	ρ+ β	100.0		
			2.89		Zn- 69*	13.76 h	•	99.97	Zn- 69	56.40 m
			2.89	1.15	Zn- 69*	13.76 h	γ β–	0.03	wii- U7	JU.40 III

Target	Isotope	Natur.			Activated		Decay			half-life
		Conc.	Integr.	X-sect	lsotope	activated	mode	Br. R.	Isotope	next lsot
Zn	Zn- 70	0.006	0.117	0.105	Zn- 71	2.450 m	β-	100.0		
Zn	Zn- 70	0.006	0.117	0.105	Zn-71*	3.960 h	γ	0.05	Zn- 71	2.450 m
Zn	Zn- 70	0.006	0 .117	0.105	Zn- 71*	3.960 h	β-	99.95	2 , .	2.450 m
Ga	Ga- 69	0.601	18.0	2.52	Ga- 70	21.14 m	β	99.59		
	Ga- 69	0.601	18.0	2.52	Ga- 70	21.14 m	β+	0.41		
	Ga- 71	0.399	31.80	4.26	Ga- 72	14.10 h	β-	100.0		
Ge	Ge- 70	0.205	2.23	3.35	Ge- 71	11.43 h	β+	100.0		
Ge	Ge- 74	0.365	0.416	0.482	Ge- 75	1.380 h	β-	100.0		
Ge	Ge- 76	0.078	1.31	0.172	Ge- 77	11.30 h	β-	100.0	As- 77	1.618 d
As	As- 75	1.00	63.50	5.16	As- 76	1.097 d	β-	99.98		
As	As- 75	1.00	63.50	5.16	As- 76	1.097 d	β+	0.02		
Se	Se- 74	0.009	575.0	59.40	Se- 75	119.8 d	β+	100.0		
Se	Se- 78	0.236	4.70	0.492	Se- 79*	3.920 m	γ.	99.94		
Se	Se- 78	0.236	4.70	0.492	Se- 79*	3.920 m	β_	0.06		
Se	Se- 80	0.497	0.928	0.699	Se- 81	18.45 m	β-	100.0		
Se	Se- 80	0.497	0.928	0.699	Se- 81*	57.28 m	γ	99.95	Se- 81	18.45 m
Se	Se- 80	0.497	0.928	0.699	Se- 81*	57.28 m	β΄–	0.05		10.15 ///
Se	Se- 82	0.092	0.795	0.0506		22.30 m	β÷	100.0	Br- 83	2.400 h
Se	Se- 82	0.092	0.795	0.0506	Se- 83*	1.168 m	β–	100.0	Br- 83	2.400 h
Br	Br- 79	0.5069	128.0	12.60	Br- 80	17.68 m	β+	8.3		
Br	Br- 79	0.5069	128.0	12.60	Br- 80	17.68 m	β-	91.7		
Br	Br- 79	0.5069	128.0	12.60	Вг- 80*	4.421 h	·γ	100.0	Br- 80	17.68 m
Br	Br- 81	0.4931	46.40	3.09	Br- 82	1.471 d	β-	100.0		
Br	Br- 81	0.4931	46.40	3.09	Br- 82*	6.130 m	· Y	97.6	Br- 82	1.471 d
Br	Br- 81	0.4931	46.40	3.09	Br- 82*	6.130 m	β	2.4		
	Кг- 78	0.0035	25.10	7.11	Kr- 79	1.460 d	β+	100.0		
	Kr- 82	0.116	225.0	32.20	Kr- 83*	1.830 h	γ	100.0		
	Кг- 84	0.57	3.47	0.0952	Кл- 85*	4.480 h	β-	78.6		
	Кл- 84		3.47	0.0952		4.480 h	γ	21.4		
Kr :	Kr- 86	0.173	0.023	0.34	Kr- 87	1.272 h	β-	100.0		
	Rb- 85				Rb- 86	18.63 d	β+	0.005		
	Rb- 85					18.63 d	β–	99.99		
	Rb- 85			0.551	Rb- 86*	1.017 m	γ	100.0	Rb- 86	18.63 d
Rb I	Rb- 87	0.2784	2.70	0.137	Rb- 88	17.78 m	β-	100.0		
		0.0056			Sr- 85	64.84 d	β+	100.0		
		0.0056			Sr- 85*	1.127 h	β+	13.4		
		0.0056			Sr- 85*	1.127 h	γ	86.6	Sr- 85	64.84 d
		0.0986			Sr- 87*	2.803 h	Ϋ́	99.7		
		0.0986				2.803 h	β÷	0.3		
					Sr- 89	50.53 d	β–	99.991		
	Sr- 88	0.8258			Sr- 89	50.53 d				

Target	Isotope	Natur.			Activated		Decay	Decay	Next	half-life
Target	rsotope	Conc.	Integr.	X-sect	Isotope	activated	mode	Br. R.	Isotope	next Isot.
Y	Y - 89	1.00	0.821	1.48	Y - 90	2.671 d	β-	100.0		
Y	Y - 89	1.00	0.821	1.48	Y - 90*	3.190 h	-	100.0	Y - 90	2.671 d
Y	Y - 89	1.00	0.821	1.48	Y - 90*	3.190 h	γ β–	0.002	1 - 90	2.071 a
•	1 - 07	1.00	0.021	1.40	1 - 70	J. 190 II	p-	0.002		
	Zr- 94	0.1738	0.316	0.057	Zr- 95	64.02 d	β–	98.89	Nb- 95	34.97 d
	Zr- 94	0.1738	0.316	0.057	Zr- 95	64.02 d	β-	1.11	Nb- 95*	3.608 d
Zr	Zr- 96	0.028	5.86	0.0261	Zr- 97	16.90 h	β-	5.32	Nb- 97	1.202 h
Zr	Zr- 96	0.028	5.86	0.0261	Zr- 97	16.90 h	β-	94.68		
Nb	Nb- 93	1.00	9.78	1.32	Nb- 94*	6.263 m	γ	99.5		
Nb	Nb- 93	1.00	9.78	1.32	Nb- 94*	6.263 m	β-	0.5		
Мо	Mo- 92	0.1484	0.967	0.0237	Mo- 93*	6.850 h	γ	99.88		
Мо	Mo- 92			0.0237	Mo- 93*	6.850 h	η β+	0.12		
Mo	Mo- 98			0.149	Mo- 99	2.747 d	β-	12.5		
Mo	Mo- 98			0.149	Mo- 99	2.747 d	β-	87.5	Tc- 99*	6.010 h
Mo	Mo-100			0.228	Mo-101	14.61 m	β-	100.0	Tc-101	
	0 100	0.0703	5.00	0.220	1410-101	14.01 111	p-	100.0	10-101	14.22 m
		0.0552		0.332	Ru- 97	2.900 d	β÷	99.962		
	Ru- 96	0.0552		0.332	Ru- 97	2.900 d	β÷	0.038	Tc- 97*	90.10 d
	Ru-102		4.17	1.41	Ru-103	39.26 d	β-	0.25		
	Ru-102		4.17	1.41	Ru-103	39.26 d	β-	99.75	Rh-103*	56.11 m
	Ru-104		6.53	0.37	Ru-105	4.440 h	β-	72.0	Rh-105	1.473 d
Ru	Ru-104	0.187	6.53	0.37	Ru-105	4.440 h	β–	28.0		
Rh	Rh-103	1.00	928.0	169.0	Rh-104*	4.340 m	γ	99.87		
Rh	Rh-103	1.00	928.0	169.0	Rh-104*	4.340 m	β-	0.13		
Pd	Pd-102	0.0102	19.20	3.85	Pd-103	16.99 d	β+	0.1		
	Pd-102			3.85	Pd-103	16.99 d	β+	99.9	Rh-103*	56.11 m
	Pd-108			9.77	Pd-109	13.70 h	β-	0.05	101-105	50.11 111
	Pd-108			9.77	Pd-109	13.70 h	β-	99.95		
	Pd-108			9.77	Pd-109*	4.696 m	γ	100.0	Pd-109	13.70 h
	Pd-110			0.261	Pd-111	23.40 m	β_	0.75	Ag-111	7.450 d
	Pd-110			0.261	Pd-111	23.40 m	β-	99.25	Ag-111*	
Pd	Pd-110	0.1172	2.79	0.261	Pd-111*	5.500 h	γ	73.0	Pd-111	23.40 m
	Pd-110			0.261	Pd-111*	5.500 h	β-	7.5	Ag-111	7.450 d
	Pd-110			0.261	Pd-111*	5.500 h	β-	19.5	Ag-111*	
Ag	Ag-107	0.5184	100.	44.20	Ag-108	2.370 m	β	97.15		
-	Ag-107			44.20	Ag-108	2.370 m	β+	2.85		
-	Ag-109			104.0	Ag-110*	249.8 d	γ	1.36		
	Ag-109			104.0	Ag-110*	249.8 d	β–	98.64		
Cd	Cd-106	0.0125	10.60	1 11	Cd 107	6 500 L	0	0.06		
	Cd-106			1.11	Cd-107	6.500 h	β+	0.06		
	Cd-110			1.11	Cd-107	6.500 h	β+	99.94		
	Cd-110 Cd-114			12.60	Cd-111*	48.54 m	γ	100.0		
	Cd-114 Cd-114			0.391	Cd-115	2.227 d	β–	0.0		4 40 - 1
	Cd-114 Cd-114			0.391	Cd-115	2.227 d	β–	100.0	ln-115*	4.486 h
	Cd-114 Cd-114			0.391 0.391	Cd-115*	44.60 d	β	99.989	1- 1100	4 40 7 1
Cu	Cu-114	U.2013	10.70	V.371	Cd-115*	44.60 d	β–	0.011	In-115*	4.486 h

										
Targe	t Isotope	Natur.			. Activate		Decay	Decay	Next	half-life
		Conc.				activated	mode	Br. R	. Isotope	next Isot.
Cd	Cd-116				Cd-117	2.490 h	β-	8.4	In-117	43.20 m
Cd	Cd-116				Cd-117	2.490 h	β–	91.6	In-117*	1.937 h
Cd	Cd-116				Cd-117*	3.360 h	β–	98.6	In-117	43.20 m
Cd	Cd-116	0.0749	1.74	0.0859	Cd-117*	3.3 60 h	β–	1.4	In-117*	1.937 h
ln •	In-113	0.043	322.0	13.90	ln-114	1.198 m	β–	99.5		
In	In-113	0.043	322.0	13.90	ln-114	1.198 m	β+	0.5		
In .	In-113	0.043	322.0	13.90	ln-114*	49.51 d	γ	95.6	In-114	1.198 m
In	In-113	0.043	322.0	13.90	ln-114*	49.51 d	β+	4.4		
In	In-115	0.957	3110.	232.0	In-116*	54.41 m	β–	100.0		
Sn	Sn-112	0.0097	30.40	1.16	Sn-113	115.1 d	β+	0.0		
Sn	Sn-112	0.0097	30.40	1.16	Sn-113	115.1 d	β+	100.0	In-113*	1.658 h
Sn	Sn-112	0.0097	30.40	1.16	Sn-113*	21.40 m	γ.	91.1	Sn-113	115.1 d
Sn	Sn-112	0.0097	30.40	1.16	Sn-113*	21.40 m	β+	8.9	Sir-115	115.1 u
Sn	Sn-116	0.1453	12.40	0.147	Sn-117*	13.60 d	γ	100.0		
Sn	Sn-118			0.25	Sn-119*	293.1 d	γ	100.0		
Sn	Sn-120	0.3259	1.21	0.16	Sn-121	1.127 d	β+	100.0		
Sn	Sn-122			0.21	Sn-123	129.2 d	β-	100.0		
Sn	Sn-122			0.21	Sn-123*	40.06 m	β-	100.0		
Sn	Sn-124			0.155	Sn-125	9.640 d	β-	100.0		
Sn	Sn-124			0.155	Sn-125*	9.520 m	β-	100.0		
					01. 125	7.320 III	p-	100.0		
Sb	Sb-121	0.573	213.0	6.88	Sb-122	2.700 d	β-	97.6		
Sb	Sb-121	0.573	213.0	6.88	Sb-122	2.700 d	β+	2.4		
Sb		0.573	213.0	6.88	Sb-122*	4.210 m	γ	100.0	Sb-122	2.700 d
Sb	Sb-123		122.0	4.80	Sb-124*	60.20 d	β-	100.0		
Sb	Sb-123		122.0	4.80	Sb-124*	1.550 m	γ	75.0	Sb-124	60.20 d
Sb	Sb-123		122.0	4.80	Sb-124*	1.550 m	β-	25.0		
Sb	Sb-123	0.427	122.0	4.80	Sb-124**	20.20 m	γ	100.0	Sb-124*	1.550 m
Te	Te-120	0.001	22.20	2.69	Te-121	16.78 d	β+	100.0		
Te	Te-120	0.001	22.20	2.69	Te-121*	154.0 d	γ,	88.6	Te-121	16.78 d
Te	Te-12	0.001	22.20	2.69	Te-121*	154.0 d	β+	11.4	16-121	10.70 a
Te	Te-122		79.90	3.86	Te-123*	119.7 d	γ	100.0		
Te	Te-124	0.0482	5.13	7.79	Te-125*	57.40 d	γ	100.0		
Te	Te-126				Te-127	9.350 h	β_	100.0		
Te	Te-126	0.1895	8.05		Te-127*	109.0 d	р- У	97.6	Te-127	9.350 h
	Te-126				Te-127*	109.0 d	β-	2.4	16-127	9.330 N
	Te-128				Te-129	1.160 h	β-	100.0		
Te	Te-128	0.3169			Te-129*	33.60 d	β-	36.0		
	Te-128				Te-129*	33.60 d	γ_	64.0	Te-129	1.160.1
	Te-130				Te-131	25.00 m	γ β–		I-131	1.160 h
	Te-130			_	Te-131*	1.250 d	β-	77.8		8.040 d
	Te-130				Te-131*	1.250 d	•		I-131	8.040 d
						1.230 U	γ	22.2	Te-131	25.00 m
		1.00	148.0	7.09	I -128	24.99 m	β+	6.9		
I	I -127	1.00	148.0		I -128	24.99 m	β-	93.1		
							ı-	- · •		
	Xe-124				Xe-125	16.90 h	β+	100.0	I -125	59.41 d
Xe	Xe-126	0.0009	43.90	2.52	Xe-127	36.40 d	β+	100.0		- -
							-			

90

		Natur.	Peson	Therm	Antivatad	half-life	Daggy	Descri	None	h =16 1:6-
Target	Isotope	Conc.	Integr	X-sect			Decay	-		half-life
Xe	Xe-126			2.52	Xe-127*		mode	Br. R.		next Isot.
Xe	Xe-128			6.13	Xe-127*	1.153 m 8.890 d	γ	100.0	Xe-127	36.40 d
Xe	Xe-128	0.0131	15.30	29.80	Xe-129*		γ	100.0		
Xe	Xe-132		4.46			11.90 d	γ	100.0		
Xe	Xe-132			0.517	Xe-133	5.243 d	β-	100.0		
Xe	Xe-134		4.46	0.517	Xe-133*	2.190 d	γ	100.0	Xe-133	5.243 d
Xe	Xe-134		0.591 0.591	0.303 0.303	Xe-135	9.140 h	β-	100.0		
Xe	Xe-134				Xe-135*	15.29 m	γ	100.0	Xe-135	9.140 h
Xe	Xe-136		0.591	0.303	Xe-135*	15.29 m	β-	0.004		
Λ¢	V6-130	0.089	0.116	0.299	Xe-137	3.818 m	β–	100.0		
Cs	Cs-133	1.00	393.0	33.20	Cs-134*	2.910 h	γ	100.0		
Ba	Ba-130	0.0011	176.0	13.0	Ba-131	11.80 d	β÷	100.0	Cs-131	9.690 d
Ba	Ba-130	0.0011	176.0	13.0	Ba-131*	14.60 m	·Y	100.0	Ba-131	11.80 d
Ba	Ba-132	0.001	30.40	8.06	Ba-133*	1.621 d	β+	0.01		
Ba	Ba-132	0.001	30.40	8.06	Ba-133*	1.621 d	γ	99.99		
Ba	Ba-134	0.0242	24.60	2.30	Ba-135*	1.196 d	Ϋ́	100.0		
Ba	Ba-136	0.0785	2.02	0.458	Ba-137*	2.552 m	Ϋ́	100.0		
Ba	Ba-138			0.413	Ba-139	1.384 h	β-	100.0		
La	La-139	0.9991	10.50	10.30	La-140	1.678 d	β-	100.0		
Ce -	Ce-136	0.0019	64.30	7.18	Ce-137	9.000 h	β+	100.0		
Ce	Ce-136	0.0019	64.30	7.18	Ce-137*	1.433 d	γ	99.22	Ce-137	9.000 h
Ce	Ce-136	0.0019	64.30	7.18	Ce-137*	1.433 d	β÷	0.78	CC .5.	J.000 11
Ce	Ce-138	0.0025	3.08	1.25	Ce-139	137.6 d	β+	100.0		
Ce	Ce-140			0.651	Ce-141	32.50 d	β	100.0		
Ce	Ce-142			1.15	Ce-143	1.377 d	β-	100.0	Pr-143	13.57 d
Pr	Pr-141	1.00	17.10	13.20	Pr-142	19.12 h	β-	99.98		
Pr	Pr-141	1.00	17.10	13.20	Pr-142	19.12 h	β÷	0.02		
Pr	Pr-141	1.00	17.10	13.20	Pr-142*	14.60 m	γ	100.0	Pr-142	19.12 h
Nd	Nd-146	0 1710	2 77	1.61	Nd-147	10.98 d	β	100.0		
Nd	Nd-148			2.85	Nd-149	1.720 h	•	100.0	D 140	2212.1
Nd	Nd-150			1.38			β-		Pm-149	2.212 d
1144	144-150	0.0304	13.80	1.30	Nd-151	12.44 m	β–	100.0	Pm-151	1.183 d
	Sm-144		1.75	1.88	Sm-145	340.0 d	β+	100.0		
	Sm-152			236.0	Sm-153	1.928 d	β	100.0		
Sm	Sm-154	0.227	35.50	9.64	Sm-155	22.30 m	β-	100.0		
	Eu-151	0.478	1850.	10700.	Eu-152*	9.274 h	β–	72.0		
Eu	Eu-151	0.478	1850.	10700.	Eu-152*	9.274 h	β+	28.0		
Eu	Eu-151	0.478	1850.	10700.	Eu-152**	1.600 h	γ	100.0		
Eu	Eu-153	0.522	1390.	359.0	Eu-154*	46.30 m	γ	100.0		
Gd	Gd-152	0.002	898 O	1210.	Gd-153	241.6 d	β+	100.0		
	Gd-158			2.86	Gd-159	18.56 h	β-	100.0		
	Gd-160			0.874	Gd-161	3.660 m	β-	100.0	Tb-161	6.880 d
Ть	Tb-159	1.00	469.0	31.70	Tb-160	72.30 d	β-	100.0		

91

Tan	last:-	Natur.	Reson.	Therm	. Activated	d half-life	Decay	Decay	Next	half-life
rarget	Isotope	Conc.		X-sect	Isotope	activated	mode	Br. R.		next Isot.
D.	D., 166	0.0006	053.0	27.00	D					
Dy	Dy-156			37.90	Dy-157	8.140 h	β+	100.0		
Dy	Dy-158		179.0	49.20	Dy-159	144.4 d	β+	100.0		
-	Dy-164		174.0	2890 .	Dy-165	2.334 h	β–	100.0		
	Dy-164		174.0	2890.	Dy-165*		γ	97.76	Dy-165	2.334 h
Dy	Dy-164	0.282	174.0	2890.	Dy-165*	1.257 m	β-	2.24		
Но	Ho-165	1.00	755.0	76.10	Ho-166	1.118 d	β-	100.0		
Er	Er-162	0.0014	520.	30.	Er-163	1.250 h	β+	100.0		
Er	Er-164	0.0161	143.0	15.0	Er-165	10.36 h	, β+	100.0		
Er	Er-168	0.268	40.60	3.19	Er-169	9.400 d	β-	100.0		
Er	Er-170	0.149	58.10	6.73	Er-171	7.516 h	β-	100.0		
Tm	Tm-169	1.00	1700.	120.	Tm-170	128.6 d	β÷	0.15		
Tm	Tm-169	1.00	1700.	120.	Tm-170	128.6 d	β-	99.85		
Yb	Yb-168	0.0013	378.0	2660.	Yb-169	32.03 d	β+	100.0		
	Yb-174		21.0	79.30	Yb-175	4.185 d	β+	100.0		
	Yb-176		6.64	3.28	Yb-177	1.911 h	β-	100.0	Lu-177	6.734 d
Lu	Lu-175	0 9741	644 0	29.80	Lu-176*	3.635 h	0	00.01		
	Lu-175			29.80	Lu-176*	3.635 h	β-	99.91		
	Lu-176			2810.	Lu-170		β+	0.1		
	Lu-176			2810. 2810.		6.734 d 160.4 d	β–	100.0		
	Lu-176			2810.	Lu-177* Lu-177*	160.4 d	β- γ	78.3 21.7	Lu-177	6.734 d
Hf :	Hf-174	Λ ΛΛ16	205.0	463.0	116 176	. 70.00 4		1000		
	Hf-176				Hf-175	70.00 d	β+	100.0		
				16.20	Hf-177**	51.40 m	γ	100.0		
	Hf-178		1910.	90.	Hf-179**	25.10 d	γ	100.0		
	Hf-179				Hf-180*	5.500 h	γ	98.6		
	Hf-179			44.70	Hf-180*	5.500 h	β–	1.4	Ta-180	8.152 h
Hf i	Hf-180	0.331	34.40	15.0	Hf-181	42.39 d	β–	100.0		
		0.9999			Ta-182	114.4 đ	β-	100.0		
Ta 1	Га-181	0.9999	657.0	23.70	Ta-182**	15.84 m	γ	100.0		
	W -180				W -181	121.2 d	β+	100.0		
	W -184				W -185	75.10 d	β-	100.0		
	W -184			1.95	W -185*	1.670 m	γ	100.0	W -185	75.10 d
W '	W -186	0.286	344.0	43.30	W -187	23.72 h	β–	100.0		
Re I	Re-185	0.374	1710.	129.0	Re-186	3.777 d	β–	93.1		
	Re-185		1710.	129.0	Re-186	3.777 d	β+	6.9		
Re I	Re-187	0.626	288.0		Re-188	16.98 h	β-	100.0		
Re I	Re-187				Re-188*	18.60 m	γ		Re-188	16.98 h
Os (Os-184	0.0002	869.0	3430.	Os-185	93.60 d	β+	100.0		
	Os-188				Os-189*	5.800 h	Ϋ́	100.0		
		0.161					I			

		Vame	Peron	Therm	Activate	half-life	Decay	Decay	Next	half-life
Target	Isotope	Natur. Conc.	Integr	X-cect	d Isotope		mode	Br. R.		next Isot.
<u> </u>	Os-190		24.20	15.0	Os-191	15.40 d	ß-	100.0		
Os Os	Os-190		24.20	15.0	Os-191*	13.10 h	γ	100.0	Os-191	13.40 d
Os	Os-192		6.12	2.29	Os-193	1.271 d	β -	100.0		
US	03-172	0.41	0.12	4.47	••••		•			
<u>Ir</u>	lr-191	0.373	1170.	1100.	Ir-192	73.83 d	β-	95.24		
ir	[r-191	0.373	1170.	1100.	Ir-192	73.83 d	β+	4.76		
Įr	Ir-191	0.373	1170.	1100.	Ir-192*	1.450 m	Y	99.98	[r-192	73.83 d
Įt T	tr-191	0.373	1170.	1100.	Ir-192*	1.450 m	β-	0.02		
lr	lr-193	0.627	1310.	123.0	Ir-194	19.15 h	β-	100.0		
lr Lr	Ir-193	0.627	1310.	128.0	Ir-194*	171.0 d	β	100.0		
. 14	11-173	0.027					·			
Pt	Pt-190	0.0001	86.70	175.0	Pt-191	2.900 d	β÷	100.0		
Pt	Pt-192	0.0079		12.90	Pt-193*	4.330 d	7	100.0		
Pt	Pt-194	0.329		1.65	Pt-195*	4.020 d	Y	100.0		
Pt	Pt-196	0.253	5.95	0.813	Pt-197	18.30 h	β-	100.0		
Pt	Pt-196	0.253	5.95	0.813	Pt-197*	1.590 h	β	3.3		
Pt	Pt-196	0.253	5.95	0.813	Pt-197*	1.590 h	γ	96.7	Pt-197	18.30 h
Pt	Pt-198	0.072	52.70	4.34	Pt-199	30.80 m	β	100.0	Au-199	3.139 d
• •										
Au	Au-197	1.00	1550.	113.0	Au-198	2.693 d	β-	100.0		
An	Au-197		1550.	113.0	Au-198*	2.300 d	γ	100.0	Au-198	2.693 d
Hg	Hg-196	0.0014	230.	3520 .	Hg-197	2.672 d	β+	100.0		
Hg		0.0014		3520.	Hg-197*		γ	93.0	Hg-197	2.672 d
Hg		0.0014		3520.	Hg-197*		β÷	7.0		
Hg			74.80	2.28	Hg-199*		7	100.0		
Hg	Hg-202	0.298	2.65	5.68	Hg-203		β-	100.0		••
Hg	Hg-204	0.0685	0.256	0.492	Hg-205	5.200 m	β–	100.0		-
•	•						_			-
Τl	T1-205	-	3 0.648		T1-206	4.199 m	•	100.0		
Π	T1-205	0.704	8 0.648	0.119	T1-206*	3.740 m	7	100.0	T1-206	4.199 m
							_	100.0		
Pb	Pb-208	0.524	0.61	0.06	Pb-209	3.253 h	β-	100.0		
- 0	- :						÷	۸.۵	T1-206	4.199 m
Bi	Bi-209		0.202		Bi-210	5.013 d	α	0.0	Po-210	4 7
Bi	Bi-209	1.00	0.202	0.0389	Bi-210	5.013 d	β-	100.0	FU-210	130.7(4)
**					22 W.			100.0	Pa-233	26.97 d
-Th	Th-237	2 1.00	83.50	8.49	: -[h-2333	½ 22.30 m	β	100.0	FA-133	20:77.0