Inventarios: precio variable Clase 23

Investigación Operativa UTN FRBA 2021

Curso: I4051(Palazzo)

Docente: Rodrigo Maranzana

Enunciado

Una empresa compra, fracciona y distribuye 300.000 tn de fertilizante en un año. Por motivos de mejor mantenimiento del fertilizante toda compra se fracciona inmediatamente y el inventario se conserva de esta manera. Cada lote de producción posee costos fijos de \$80, mientras que el costo administrativo de colocar una orden de compra se estima en \$20. El costo de almacenamiento es de 0,1 \$/tn al mes. Toda inversión en capital de trabajo es evaluada a una tasa de 20% anual. Para la compra de fertilizante, se adquieren los siguientes precios:

bj (\$/Tn)	qi		
1	<10.000		
0.98	10.000 - 30.000		
0.96	30.000 - 50.000		
0.94	> 50.000		

Determinar el lote óptimo de compra. Graficar el CT para todos los precios.

Ubicación de los datos

Una empresa compra, fracciona y distribuye 300.000 tn de fertilizante en un año. Por motivos de mejor mantenimiento del fertilizante toda compra se fracciona inmediatamente y el inventario se conserva de esta manera. Cada lote de producción posee costos fijos de \$80, mientras que el costo administrativo de colocar una orden de compra se estima en \$20. El costo de almacenamiento es de 0,1 \$/tn al mes. Toda inversión en capital de trabajo es evaluada a una tasa de 20% anual. Para la compra de fertilizante, se adquieren los siguientes precios:

bj (\$/Tn)	qi		
1	<10.000		
0.98	10.000 - 30.000		
0.96	30.000 - 50.000		
0.94	> 50.000		

$$CTE(q) = C_{Adq} + C_{Alm}(q) + C_{Ped}(q)$$

$$\rightarrow C_{Adq} = b_q * D$$

$$\rightarrow C_{Alm}(q) = \frac{1}{2} * b_q * q * i$$

$$\rightarrow C_{Ped}(q) = \frac{D}{q} * K$$

Costos de pedido

Una empresa compra, fracciona y distribuye 300.000 tn de fertilizante en un año. Por motivos de mejor mantenimiento del fertilizante toda compra se fracciona inmediatamente y el inventario se conserva de esta manera. Cada lote de producción posee costos fijos de \$80, mientras que el costo administrativo de colocar una orden de compra se estima en \$20. El costo de almacenamiento es de 0,1 \$/tn al mes. Toda inversión en capital de trabajo es evaluada a una tasa de 20% anual. Para la compra de fertilizante, se adquieren los siguientes precios:

bj (\$/Tn)	qi		
1	<10.000		
0.98	10.000 - 30.000		
0.96	30.000 - 50.000		
0.94	> 50.000		

$$C_{fijo producción} + C_{administrativo}$$

$$C_{Ped}(q) = \frac{D}{q} * K$$

Ubicación de los datos

Una empresa compra, fracciona y distribuye 300.000 tn de fertilizante en un año. Por motivos de mejor mantenimiento del fertilizante toda compra se fracciona inmediatamente y el inventario se conserva de esta manera. Cada lote de producción posee costos fijos de \$80, mientras que el costo administrativo de colocar una orden de compra se estima en \$20. El costo de almacenamiento es de 0,1 \$/tn al mes. Toda inversión en capital de trabajo es evaluada a una tasa de 20% anual. Para la compra de fertilizante, se adquieren los siguientes precios:

bj (\$/Tn)	qi		
1	<10.000		
0.98	10.000 - 30.000		
0.96	30.000 - 50.000		
0.94	> 50.000		

¡Solo considera el costo del producto!

$$- C_{Alm}(q) = \frac{1}{2} * b * i * q$$

El costo de almacenamiento no tiene que multiplicarse Por la tasa de inmovilización de capital

$$C_{Alm}(q) = \frac{1}{2} * \left(\boldsymbol{b_a} + \boldsymbol{b_{(q_i)}} * \boldsymbol{i} \right) * q$$

Datos

$q^* = ???$	Cantidad a pedir en cada orden		
$T = 1 a \tilde{n} o$	Período de análisis		
D = 300.000 Tn	Demanda del producto en T		
$b(q_i) = piecewise(q_i)$	Costo del producto		
adm = 20 \$/pedido	Costo administrativo de la orden		
pro = 80 \$/pedido	Costo fijo de producción de la orden		
k = adm + pro = 20 \$/pedido + 80 \$/pedido	Costo de orden de compra		
$\boldsymbol{b_a} = 0.1 \frac{\$}{mes * Tn} * 12 \frac{mes}{a\tilde{n}o} = 1.2 \frac{\$}{a\tilde{n}o * Tn}$	Costo anual de almacenamiento fijo		
i = 0.20	Tasa de inmovilización de capital		

Lote óptimo y Costo Total Estimado

- Sabemos que la función a optimizar es Piecewise (a trozos) y sí tiene óptimos locales.
- Tiene solución analítica en cada intevalo.
- Además, cada uno es convexo y tiene un mínimo global.

$$CTE = \frac{1}{2} * (b_a + b_{(q_i)} * i) * q + \frac{D}{q} * K + b_{(q_i)} * D \qquad q^* = \sqrt{\frac{2 * D * K}{(b_a + b_{(q_i)} * i)}}$$

b_{j}	q_j^*	CTE_j^*	qMÍN	$CTE_{j}^{qM{ m i}N}$	q M ÁX	CTE_{j}^{qMAX}
1 \$/Tn	6.546,53	309.165			10.000	310.000
0,98 \$/Tn	6.555,90	303.152	10.000	303.980	30.000	315.940
0,96 \$/Tn	6.565,32	297.139	30.000	309.880	50.000	323.400
0,94 \$/Tn	6.574,77	291.126	50.000	317.300		

50.000

10.000

q

50.000

10.000

q

50.000

10.000

q

50.000

291.126

q*=10.000

Resultado

- Lote óptimo $q^* = 10.000$
- Costo total estimado $CTE^* = 303.980$
- Cantidad de veces a pedir $n = D/q^* = 30$ veces

¿Cómo escalo el problema en Python?

scipy.optimize

• Optimización multivariada local: scipy.optimize.minimize(.)

res = scipy.optimize.minimize(fun, x0) res.fun -> valor óptimo res.x -> x del valor óptimo

• Optimización metaheurística: scipy.optimize.differential_evolution(.) scipy.optimize.dual_annealing(.)

...

```
def CTE(q):
    return <formula CTE(q) no lineal>

res = scipy.optimize.minimize(CTE, x0)

cte_opt = res.fun
q_opt = res.x
```

Desafío: Armar el problema visto en Python y optimizarlo con scipy.optimize.minimize