PCT WELTORGANISATION FÜR INTERNATIONALE ANMELDUNG VERÖFFEN INTERNATIONALE ZUSAMMENARBEIT AUF

(51) Internationale Patenti C02F 1/70	klassifikation ⁶ :	A1	(11) Internationale Veröffentlichungsn (43) Internationales Veröffentlichungsdatum:	WO 96/07617 14. Marz 1996 (14.03.96)
(21) Internationales Akten (22) Internationales Anme	decichen: PCT/EP:		BE, CH, DE, DK, ES, FR,	US, europäisches Patent (AT, GB, GR, IE, IT, LU, MC, NL,
(30) Prioritistataten: P 44 31 790.5 P 44 31 975.4	8. September 1994 (08.09.94 8. September 1994 (08.09.94	4) I	Vor Ablauf der für Änderung Frist. Veröffentlichung wird eintreffen.	henberichs en der Anspeliche zugelassenen d wiederhols falls Änderungen

UMWELTCHEMIE GMBH [DE/DE]; Hans-Böckler-Allee 20, D-30173 Hannover (DE).

(72) Erfinder; und

- (72) Eränder; und
 (75) Eränder/Anmelder (nur für US): BECKER, Ame [DE/DE];
 Am Schafbrinke 58, D-30519 Hannover (DE). KOCH,
 Veronika [DE/DE]; Burgfeld 3, D-30989 Gehrden (DE).
 SELL, Michael (DE/DE]; Weißdomstrasse 46, D-31228
 Peine (DE). Schindler, Hubert [DE/DE]; Withelm-Busch-Strasse 16a, D-31311 Uetze (DE). NEURNFELDT, Gerhard [DE/DE]; Zum Finkenberg 11, D-31629 Estorf (DE).
- (74) Anwalt: LAUER, Dieter, Solvey Pharma Deutschland GmbH, Harts-Bockler-Alice 20, D-30173 Hannover (DE).
- (54) Title: METHOD OF REMOVING CHLORINE AND HALOGEN-OXYGEN COMPOUNDS FROM WATER BY CATALYTIC REDUCTION
- (54) Bezeichnung: VERFAHREN ZUR ENTFERNUNG VON CHLOR UND HALOGEN-SAUERSTOFF-VERBINDUNGEN AUS WASSER DURCH KATALYTISCHE REDUKTION

(57) Abstract

The invention concerns a method of removing substances present in water, in particular halogen-oxygen compounds which remain in the water as residues of disinfecting or are formed as by-products of oxidative water treatment. According to the invention, the substances present in water are removed by catalytic reduction in the presence of hydrogen on a supported precious metal catalyst.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Entfernung von Wasserinhaltsstoffen, insbesondere Halogen-Sauerstoff-Verbindungen, die als Reststoffe der Desimfektion noch im Wasser vorhanden sind oder als Nebenprodukte der oxidativen Wasseraufbereihung gebildet werden. Erfindungsgemäß werden die Wasserinhaltsstoffe durch katalytische Roduktion in Oegenwart von Wasserstoff an einem geträgerten Edelmetalikatalysator entfernt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gernäss dem PCT veröffentlichen.

AT	Ouemakh	GA	Gebon	MR	Mancetonica
ĀŪ	Australies	CB	Versinigres Königreich	MW	Malewi
		GE	Georgian	NE	Niger
33	Burbados	GN	Oulnes	NL	Niederlande
BE	Belgina			NO	Norwegen
BF	Burkine Pago	GR	Oriectenhand	NZ	Newsoland
B G	Delgarion	HU	Ungara		
BJ	Danie	1E	triand	PL	Polen
38	Bracilien	IT	kalien	PT	Postagal
BY	Beierus		Jopan	RO	Ruminian
CA	Keneda	KE	Kenya	RU	Russische Pöderstich
Œ	Zentrale Afrikanische Republik	KG	Kirgisistan	\$D	Sudan
		IQP	Demokratische Volksrepublik Koses	SE.	Schweden
CC	Kongo	io.	Republik Kores	81	Slowenian
CB	Schweiz	ĸŹ	Lucista	SK	Sloveksi
a	Cone d'Ivoire		Linchtenstein	\$N	Senegal
CM	Kameron	u		TD	Tiched
CN	China	LX	Sci Lanka		
CS	Tachochoelowakei	LU	Lucaburg	TG	Togo
CZ	Tachechische Republik	LV	Lettland	TJ	Tudechikisten
DE	Deumchland	MC	Monaco	11	Trinidad und Tobago
DIK	Dinemerk	MD	Republik Moldan	UA	Ukraine
	Spanion	MG	Medegesker	US	Vereinigte Stanten von Amerika
25		14L	Mari	UZ.	Unbekisten
71	Planted	MEN	Mongolei	VN	Vietnem
FR	Prenkraich	page 1	Managaran	•••	

Verfahren zur Entfernung von Chlor und Halogen-Sauerstoff-Verbindungen aus Wasser durch katalytische Reduktion

Beschreibung

Die Erfindung betrifft ein Verfahren zur Entfernung von Wasserinhaltsstoffen, insbesondere von Verbindungen und Nebenprodukten der oxidativen Wasseraufbereitung.

Die bekannten Verfahren zur Wasseraufbereitung sind häufig mehrstufige Verfahren, wobei z.B. eine thermisch-alkalische, eine oxidative, eine biologische, oder eine adsorptive Behandlung in unterschiedlicher Weise miteinander verknüpft werden können.

Es ist bekannt, daß zur Trinkwassergewinnung Oberflächenwasser z. B. durch Uferfiltration genutzt werden. Aus hygienischen Gründen und zur Einhaltung der Grenzwerte der Trinkwasserverordnung müssen insbesondere die Keime und die organischen Substanzen entfernt werden.

Ebenso sind physikalische Prozesse wie z. B. Membrantrennverfahren oder Filtrationsverfahren bekannt und werden auch eingesetzt.

Bei der oxidativen Wasseraufbereitung, z. B. durch Desinfektion mit Chlor, Hypochlorit, Chlordioxid und Ozon, in Gegenwart von oxidierbaren Substanzen entstehen auch Nebenprodukte, z. B. Halogen-Sauerstoffverbindungen wie Chlorsauerstoffverbindungen oder Bromate, halogenierte Kohlenwasserstoffe z.B. Trihalogenmethane, die entfernt werden müssen,

damit das Wasser zur Trinkwasserversorgung verwendet werden kann, oder als gereinigtes Abwasser z. B. in einen Vorfluter abgelassen werden kann oder als Brauchwasser in den Produktionsprozeß eingespeist werden kann.

Durch die oxidative Behandlung z.B. mit Ozon wird Halogenid z.B. das Chlorid oder Bromid nach folgendem Reaktionsmechanismus oxidiert.

$$O_3$$
 + Hal⁻ $\rightarrow O_2$ + OHal⁻
2O₃ + OHal⁻ $\rightarrow 2O_2$ + HalO₃⁻

Diese Reaktion ist sowohl pH-abhängig, oxidationsmittel-mengenabhängig, als auch zeitabhängig.

Da Bromationen nachweisbar kanzerogene Wirkung haben, müssen sie aus dem Wasser entfernt werden. Die Weltgesundheitsorganisation (WHO) fordert, daß der Bromatgehalt im Trinkwasser 25 $\mu g/l$ nicht überschritten werden darf, wobei zukünftig ein Grenzwert von $3\mu g/l$ anvisiert wird.

Da Chlorationen im Trinkwasser unerwünscht sind, müssen sie aus dem Wasser entfernt werden. Auch bei der Desinfektion mit Chlordioxid entstehen unerwünschte Nebenprodukte, wie z.B. Chlorite und Chlorate, die nachweislich hämolytische Anämien hervorrufen und somit im Trinkwasser nicht enthalten sein sollten.

Aber auch aus Wässern, die nicht als Trinkwasser genutzt werden sollen, müssen die genannten Inhaltsstoffe entfernt werden, da deren Oxidationspotential in vielen Fällen störend wirken kann.

Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Wasserbehandlung zur Verfügung zu stellen, mit dem Chlor

und Halogen-Sauerstoffverbindungen in wirtschaftlicher Weise entfernt werden bzw. deren Reststoffkonzentrationen minimiert werden können.

Erfindungsgemäß werden diese Verbindungen an einem geträgerten Edelmetallkatalysator mit Wasserstoff reduziert.

Der reduktive Abbau von Bromat erfolgt nach folgender Gleichung:

Der reduktive Abbau von Chlorat erfolgt nach folgender Gleichung:

$$C10_{1}^{-} + 3H_{2}^{-} -----> C1^{-} + 3H_{2}O$$

Als Katalysatoren werden Edelmetallkatalysatoren, die Metalle der achten Nebengruppe des PSE als aktive Substanz enthalten z. B. Platin, Palladium, Iridium, Rhodium, vorzugsweise Palladium oder deren Kombination mit einem Metall der Kupfergruppe, vorzugsweise Kupfer oder Silber, insbesondere Kupfer, verwendet.

In einer bevorzugten Ausführungsform der Erfindung werden Palladium/Kupfer- bzw. Palladium-Trägerkatalysatoren eingesetzt.

Als Trägermaterial werden anorganische Oxide, z.B. Al $_2$ O $_3$ vorzugsweise γ -Al $_2$ O $_3$, SiO $_2$, ZrO $_2$, MgO oder TiO $_2$ verwendet. Kombinationen dieser Materialien oder andere Trägermaterialien wie z.B. Alumosilikate, Magnesiumalumosilikate oder Aktivkohle sind ebenfalls geeignet. Vorzugsweise werden solche anorganische Materialien verwendet, die wasser- und abriebfest sind.

Erfindungsgemäß wird in das zu behandelnde Wasser Wasserstoffgas eingetragen und das mit Wasserstoff beladene Wasser mit dem Katalysator kontaktiert.

In einer bevorzugten Variante wird ein Katalysator verwendet, der als Metallkomponente vorzugsweise Palladium und/oder Rhodium oder Palladium und ein Metall der Kupfergruppe, insbesondere Kupfer, enthält. Das Katalysatorträgermaterial wird in bekannter Weise mit der Metallkomponente imprägniert.

Verwendbar ist z.B. ein imprägnierter Träger, der eine inhomogene Verteilung des Metalls bzw. der Metalle mit einer Konzentrierung im Oberflächenbereich aufweist.

Geeignet sind ebenfalls Materialien, die einen Teilchendurchmesser im Bereich von 10 bis 5.000 μm , vorzugsweise 50 bis 600 μm haben.

Im Rahmen der vorliegenden Erfindung können Wässer und wäßrige Lösungen beliebiger Herkunft behandelt werden, sofern sie frei von Stoffen sind, die bekanntermaßen als Gifte für palladium-, rhodium- oder kupferhaltige Katalysatoren wirken oder das Trägermaterial angreifen. In der vorliegenden Erfindung bezeichnet der Ausdruck "Wasser" derartige Wässer und wäßrige Lösungen.

Einerseits kann das Verfahren zur Behandlung von Wasser eingesetzt werden, das in seinem Reinheitsgrad einem Wasser entspricht, das eine natürliche Filtration durchlaufen hat. Derartiges Wasser kann wasserlösliche Substanzen, z.B. anorganische Salze, in Größenordnungen, wie sie im Grundwasser anzutreffen sind, also z.B. bis zu einigen Gramm pro Liter, enthalten.

5

Derartige Wässer sind z. B. Grundwasser, Brunnenwasser, Quellenwasser, Oberflächenwässer oder Uferfiltrate oder bereits entsprechend vorgereinigte Abwässer, z. B. industrielle Abwässer, beispielsweise aus Rauchgaswäschen, aber auch Getränke wie Mineralwasser, Limonaden und Fruchtsäfte.

Das Verfahren eignet sich somit zur Anwendung im Rahmen der Trinkwasseraufbereitung sowie der Aufbereitung von Brauchwasser z.B. für die Lebensmittel- oder Getränkeindustrie.

Andererseits ist dieses Verfahren ebenfalls geeignet Halogensauerstoffverbindungen in hochbelasteten Abwässern (z.B. Chlorat-, Bromat-Konzentrationen > 3g/l) zu reduzieren.

Gemäß der Erfindung kann der Wasserstoffeintrag in das Wasser entweder durch direktes Einleiten von Wasserstoffgas oder mittels geeigneten Sättigungssystemen, wie statische Mischer, Blasensäulenreaktoren oder über Membranen erfolgen. Andere bekannte Methoden sind ebenfalls zum Wasserstoffeintrag geeignet.

In einer bevorzugten Variante des Verfahrens erfolgt die Begasung des Wassers mit Wasserstoff in an sich bekannter Weise, z. B. über Gassättiger, wobei es jedoch wesentlich ist, daß der Wasserstoff möglichst feinperlig und ohne Gasblasenbildung eingeführt und gleichmäßig in dem Wasser verteilt wird. Als besonders geeignet erweist sich dabei die an sich bekannte Permeationsbegasung. Hierbei wird der Gaseintrag in das Wasser über eine feste Membran, beispielsweise eine unverstärkte oder gewebeverstärkte Silikonkautschukmembran oder eine feste Stützmembran mit einer 5 bis 20 µm dünnen Silikonschicht, als Kompositmembran, durchgeführt. Ein wesentliches Merkmal der Permeationsbegasung ist der blasenfreie Gaseintrag aufgrund des ausschließlich auf Diffusions-

und Löslichkeitsvorgängen beruhenden Stofftransportes in dem porenfreien Membranmaterial. Ein weiterer Vorzug der Permeationsbegasung liegt darin, daß der Gaseintrag durch einfache Vergrößerung des Gaspartialdruckes im Membransystem bis zur druckabhängigen Sättigungsgrenze des Wasserstoffs im Wasser, oder durch Erhöhung der Strömungsgeschwindigkeit des Wassers, wodurch eine Verkleinerung der Grenzschicht an der Phasengrenze Membran-Wasser erfolgt, gesteigert werden kann. Dies erweist sich als vorteilhaft, wenn größere Mengen Wasserstoff benötigt werden.

Der Wasserstoffeintrag kann entweder gleichzeitig mit dem Kontaktieren des Wassers mit dem Katalysator erfolgen oder getrennt. In einer bevorzugten Variante erfolgt der Wasserstoffeintrag vor der eigentlichen katalytischen Umsetzung.

Zum katalytischen Abbau von hohen Halogensauerstoffionenkonzentrationen wird vorteilhafterweise der Wasserstoff gleichzeitig mit dem Wasser in einen Dreiphasenreaktor (z.B. Rieselbettreaktor) mit dem Katalysator in Kontakt gebracht.

Es hat sich als zweckmäßig erwiesen, die Behandlung des Wassers in Gegenwart einer solchen Menge Wasserstoff durchzuführen, die mindestens den äquivalenten Mengen der zu entfernenden Stoffe entspricht, wobei beim Vorhandensein von weiteren reduzierbaren Stoffen diese ebenfalls reduziert werden.

Das erfindungsgemäße Verfahren kann bei Normaldruck oder geringem Überdruck, z. B. bis zu 10 Atmosphären, arbeiten. Die Löslichkeit des Wasserstoffgases in dem Wasser liegt bei Normaldruck und Temperaturen zwischen 10 und 25 °C unter 2 mg/l und wird bei Verdoppelung des Druckes auch jeweils verdoppelt. Wo zur Reduktion größerer Mengen an Sauerstoffverbindungen entsprechend größere Mengen Wasserstoff benötigt werden, hat sich die Verwendung von Dreiphasenreaktoren bewährt.

7

Sofern die Begasung des Wassers mit Wasserstoff und der Kontakt mit dem Katalysator gleichzeitig erfolgen, wird das Wasser mit dem Katalysator während einer solchen Zeitdauer in Kontakt gebracht, welche nötig ist, um die erfindungsgemäß zu entfernenden Stoffe zu reduzieren. Die katalytische Behandlung kann sowohl im Festbett- als auch im Wirbelbett- oder Fließbettreaktor durchgeführt werden.

Die Behandlung kann sowohl kontinuierlich als auch diskontinuierlich erfolgen.

In einer Ausführungsform wird Wasser, das z. B. eine oxidative Behandlungsstufe bereits durchlaufen hat, in dem sich jedoch noch Halogen-Sauerstoffverbindungen sowie z. B. Restspuren von Ozon befinden, mit einem pH-Wert von 4 bis 12, vorzugsweise 5 bis 11 insbesondere 6,5 bis 9.0 in mindestens einen Reaktor, in dem sich der geträgerte Edelmetallkatalysator befindet, eingeleitet und bei 0 bis 100 °C, vorzugsweise 5 bis 40 °C, insbesondere 10 bis 25 °C und 1 bis 10 bar mit Wasserstoff behandelt.

Es ist ebenfalls Gegenstand der Erfindung, Wasser, das Chlorit-, Chlorat- bzw. Bromationen enthält, ohne daß es oxidativ vorbehandelt wurde, direkt der katalytischen Reduktion zuzuführen.

So ist es beispielsweise möglich, Abwasser mit einem pH-Wert von 3 bis 14 und einer Bromatkonzentration von z.B. 4 g/l bei Temperaturen von 5 bis 90°C und einem Wasserstoffdruck von 1 bis 10 bar nach diesem Verfahren zu behandeln. Hierbei können Bromatumsätze von über 90% erzielt werden.

Gewünschtenfalls kann das Wasser mehrere kaskadenartig hintereinandergeschaltete, jeweils eine Begasungseinrichtung und einen Reaktor enthaltende Reaktionseinheiten nacheinander

durchlaufen. Hierbei kann der pH-Wert des Wassers beim Weiterleiten von einer Reaktionseinheit in die nachfolgende Reaktionseinheit gegebenenfalls neu einreguliert werden. In einer anderen Verfahrensausführung kann auch ein Wasser, dessen Gehalt an erfindungsgemäß zu entfernenden Stoffen bei einem ersten Durchlaufen der Begasungseinrichtung und des Reaktors nicht vollständig entfernt wurde, nochmals in den Reaktionskreislauf zurückgeführt werden.

Für das erfindungsgemäße Verfahren werden Metallkatalysatoren eingesetzt, welche aus einem mit der Metallkomponente
imprägnierten porösen Trägermaterial gebildet werden. Als Metallkomponente werden Palladium und/oder Rhodium verwendet.
Es ist ebenfalls Gegenstand der Erfindung, Palladium in Kombination mit einem Metall der Kupfergruppe zu verwenden oder
auch Rhodium zu verwenden. Als Metalle der Kupfergruppe eignen sich insbesondere Kupfer und Silber. Vorzugsweise wird
Kupfer eingesetzt.

Der Anteil der Metallkomponenten, am Gesamtkatalysator kann zwischen 0,1 und 10 Gew.-%, vorzugsweise zwischen 0,1 und 5, insbesondere zwischen 0,2 und 2,0 Gew.-% betragen.

Als gunstig erweist sich ein Palladiumgehalt von 0,1 bis 2,0 Gew.-%, insbesondere 0,1 bis 1,0 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators.

In einer bevorzugten Variante wird als Metallkomponente des Katalysators eine Kombination von Palladium mit Kupfer eingesetzt. Das Gewichtsverhältnis von Palladium zu Kupfer kann zwischen 1:1 und 8:1, insbesondere 1:1 und 4:1 liegen.

In einer Ausführungsform der Erfindung können Katalysatoren eingesetzt werden, deren Träger entweder aus porösem Material, welches eine bimodale Porenradienverteilung mit einem

9

mindestens 20 %-igen Anteil bezogen auf das Gesamtporenvolumen an Makroporen mit einem Mindestradius von 2.000 Å besitzt, bestehen oder welche eine inhomogene Verteilung des Metalls mit einer Konzentrierung im Oberflächenbereich bei einer Schichtdicke von 20 bis 100 µm je nach Teilchendurchmesser, insbesondere bei einem Teilchendurchmesser von 50 bis 1.000 µm aufweisen oder solche, die als Pulver mit einem Teilchendurchmesser kleiner als 50 µm vorliegen.

Als porose Trägermaterialien mit einer bimodalen Porenradienverteilung eignen sich Materialien mit einem Maximum der Porenradienverteilung im Bereich von kleinen Poren mit einem Radius bis zu etwa 400 Å, beispielsweise zwischen etwa 50 und 350 Å, und einem zweiten Maximum der Porenradienverteilung im Bereich von Makroporen mit einem Radius von mindestens etwa 2.000 Å. Als günstig erweist sich ein Trägermaterial mit einem Maximum der Porenradienverteilung im Bereich von kleinen Poren mit einem Radius von 50 bis 300 Å, insbesondere 50 bis 200 Å. Für den Makroporenbereich sind Porenradien im Bereich von etwa 5.000 bis etwa 20.000 Å günstig. Der Makroporenanteil der bimodalen Trägermaterialien soll ausreichend hoch sein, um eine schnelle Diffusion zu gewährleisten und kann je nach Art und Größe-der Trägerteilchen variieren. Als zweckmäßig erweisen sich z. B. bimodale Trägermaterialien mit einem Makroporenanteil zwischen 20 und 80 %, beispielsweise 20 und 60 %, vorzugsweise 40 und 60 %, insbesondere 40 und 50 %, bezogen auf das Gesamtporenvolumen. Bei Teilchen mit einem homogener Porenverteilung sollten die meisten Poren einen Radius von 30 bis 100 Å aufweisen. Für pulverförmige Teilchen gilt prinzipiell das Gleiche.

Bei der Durchführung des Verfahrens sollten die reagierenden Agenzien schnell aus dem aktiven Bereich entfernt werden.

10

Eine schnelle Abdiffusion der reagierenden Agenzien aus dem katalytisch aktiven Bereich des Katalysators kann auch dadurch gefördert werden, daß Katalysatoren eingesetzt werden, bei denen eine inhomogene Verteilung des Metalls auf dem Träger mit einer Konzentrierung im Oberflächenbereich vorliegt. Als zweckmäßig erweist sich z. B. eine inhomogene Metallverteilung, bei welcher das Metall an der Oberfläche mit einer Eindringtiefe zwischen 20 und 100 μm konzentriert ist.

Eine schnelle Abdiffusion der reagierenden Agenzien von dem Katalysator kann auch durch die Verwendung von pulverförmigen Katalysatoren, beispielsweise Katalysatorpulvern, deren Teilchen Teilchendurchmesser von unter 50 μm, insbesondere von unter 20 μm besitzen, erzielt werden.

Die BET-Oberflächen von Trägermaterialien, bzw. der Katalysatoren mit den vorstehend beschriebenen Strukturen können im Bereich von etwa 20 bis 360, insbesondere 60 bis 300 m³/g variieren. Für Trägermaterialien mit bimodaler Porenverteilung liegen die BET-Oberflächen typischerweise im Bereich von 20 - 30 bis zu 200 m³/g, bei pulverförmigen Katalysatoren bzw. Katalysatoren mit homogener Metallverteilung im Bereich von 50 bis 200 m³/g.

Es können auch Trägermaterialien eingesetzt werden, deren Porositäten sich von den vorher beschriebenen deutlich unterscheiden. So wurde gefunden, daß z.B. die Aufbringung einer porösen oxidischen Schicht auf einen praktisch nicht porösen Kern, wie z.B. aus Magnesiumalumosilikat, zu einem geeigneten Trägermaterial führt. Es wurde ebenfalls gefunden, daß Magnesiumalumosilikat ohne diese poröse Schicht ebenfalls geeignet ist.

Diese Trägermaterialien haben naturgemäß eine BET-Ober-fläche im Bereich von < 1 bis 30 m^2/g .

11

Es können Trägerteilchen unterschiedlichster Form verwendet werden. So können die Träger z. B. in Form von Pulvern, Granulaten, Kugeln, Perlen, Zylindern, Hohlzylindern oder Hohlkugeln eingesetzt werden.

Für Anwendungen im Wirbelbett eignen sich auch kleinere Teilchengrößen, z. B. pulverförmige Katalysatoren.

Trägermaterialien mit bimodaler Porenradienverteilung können auf an sich bekannte Weise hergestellt werden. Beispielsweise können zur Herstellung von porösen keramischen Materialien mit bimodaler Porenradienverteilung den Trägermassen während der Herstellung Stoffe zugesetzt werden, die sich im Laufe des Herstellungsverfahrens wieder auswaschen oder ausbrennen lassen und dabei zur Bildung von Makroporen führen. Als sogenannte Ausbrennstoffe können verbrennbare organische Stoffe wie beispielsweise Holzmehl, Stärke, Saccharose oder ein Ammoniumsalz einer organischen Säure wie Ammoniumacetat, oder auch Ruß, zugegeben werden, welche bei dem anschließenden Brennen der Trägerteilchen aus dem Material ausbrennen und Makroporen hinterlassen. Dieses Verfahren ist insbesondere geeignet zur Herstellung von bimodalen Aluminiumoxidträgern. Beispielsweise können kugelförmige Aluminiumoxidträger nach dem in den DE-OS 25 04 463 und 25 46 318 beschriebenen Verfahren erhalten werden, indem man ein Aluminiumoxidhydrosol mit einer in der Wärme hydrolysierbaren Base, z.B. Hexamethylentetramin, vermischt und der Mischung in Wasser unlösliche verbrennbare organische Stoffe oder Ruß und gegebenenfalls noch Tonerde und/oder Tonerdehydrat zumischt, die Mischung dann in eine mit Wasser nicht mischbare Flüssigkeit bei erhöhter Temperatur, beispielsweise Temperaturen zwischen 60 und 100 °C eintropft oder einsprüht, die gebildeten Gelteilchen in der mit Wasser nicht mischbaren Flüssigkeit bei der Fälltemperatur altern läßt, sodann wäscht und trocknet und anschließend kalziniert.

Eine bimodale Porenradienverteilung kann auch in an sich bekannter Weise erhalten werden durch eine nachgeschaltete gezielte Temperung der Trägermaterialien bei Temperaturen im Bereich von ca. 600 bis ca. 1.000 °C. Dieses Verfahren eignet sich insbesondere zur Porenaufweitung in SiO₂-Trägern. So lassen sich z. B. SiO₂-Trägermaterialien mit Porenradien zwischen 50 und 350 Å durch nachträgliches Tempern in bimodale Träger überführen. Beispielsweise kann in SiO₂-Perlen mit Porenradien um 215 Å durch eine 5-stündige Temperaturbehandlung bei 700 °C und anschließendes einstündiges Tempern bei 800 °C ein 20 %-iger Anteil an Makroporen im Bereich von 5.000 bis 50.000 Å erzeugt werden.

Die Imprägnierung der Trägerteilchen mit der Metallkomponente kann nach an sich zur Katalysatorherstellung üblichen Methoden erfolgen. Beispielsweise können Metallsalze oder komplexe Metallverbindungen im Tränkverfahren, Sprühverfahren oder Fällungsverfahren auf das Trägermaterial aufgebracht werden und nach Trocknung und anschließender Kalzinierung in an sich bekannter Weise reduziert werden. So können beispielsweise die Trägerteilchen mit einer Lösung oder Suspensionen von Metallsalzen oder komplexen Metallverbindungen in Wasser oder einem organischen Lösungsmittel, beispielsweise einem niederen Alkohol wie Ethanol, oder Keton, oder deren Gemischen getränkt oder besprüht werden, nach dem Trocknen gegebenenfalls bei Temperaturen bis zu 600 °C, beispielsweise zwischen 500 und 600 °C, kalziniert werden und dann mit einem metallfreien Reduktionsmittel, vorzugsweise Wasserstoff oder gegebenenfalls unter thermischer Behandlung bei Temperaturen im Bereich bis zu 550 °C, beispielsweise zwischen ca. 200 und 550 °C, oder in wäßriger Phase mit Natriumborhydrid oder Natriumformiat bei Temperaturen zwischen 10 und 50 °C reduziert werden.

13

Die Metallverteilung auf dem Trägermaterial kann in an sich bekannter Weise durch die Art der Imprägnierung variiert werden. So kann z. B. beim Tränken des Trägermaterials mit einer Lösung einer löslichen Metallverbindung die Eindringtiefe des Metalls in das Trägermaterial gesteuert werden durch Variation der Tränkzeit, z. B. zwischen 1 und 30 min und des Lösungsmittels, beispielsweise Wasser oder ein schneller verdampfendes organisches Lösungsmittel, z. B. ein niederer Alkohol wie Ethanol, oder deren Gemische oder durch die Art der Metallverbindung, mit der getränkt werden soll, oder durch Veränderung des pH-Wertes.

Die Eindringtiefe des Metalls hängt also sowohl von der Zeit, dem pH-Wert als auch von der Metallverbindung ab. Durch kurze Tränkzeiten wird erreicht, daß das Metall hauptsächlich nur im Oberflächenbereich des Trägermaterials verbreitet wird. Eine weitgehende Konzentrierung des Metalls auf den Oberflächenbereich des Trägermaterials läßt sich auch erzielen im Fällungsverfahren, durch Aufsprühen einer Lösung oder Suspension der Metallverbindung oder durch Überziehen des Trägermaterials mit einer die Metallverbindung enthaltenden Flüssigkeit. Bei Katalysatoren mit einer inhomogenen Metallverteilung mit einer Konzentrierung des Metalls im Oberflächenbereich, sogenannten Schalenkatalysatoren, wird der Reaktionsablauf von Diffusionsvorgängen wesentlich unabhängiger als bei Katalysatoren mit homogener Metallverteilung.

In einer Ausführungsform wird das Verfahren zur Trinkwasseraufbereitung kontinuierlich durchgeführt. Diese bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß man das
Wasser kontinuierlich in einen Dosierbehälter einleitet, in
welchem der pH-Wert kontrolliert und nötigenfalls durch Zusatz von Säure auf einen Wert von höchstens pH 12, vorzugsweise zwischen pH 4 und pH 11, insbesondere pH 6,5 und pH 9,
eingestellt wird und danach über eine die Durchflußgeschwin-

digkeit regulierende Pumpe mit variabler Förderleistung durch eine oder mehrere Reaktionseinheiten, welche je eine Begasungseinheit und einen Reaktor enthalten, leitet, worin das Wasser zunächst in der Begasungseinheit geführt und darin mit Wasserstoffgas gegebenenfalls unter Druck begast wird und anschließend durch den ein Katalysatorbett mit dem Metallkatalysator enthaltenden Reaktor geführt wird, wobei das Wasser insgesamt so viele Reaktionseinheiten durchlaufen kann wie zur Reduktion der erfindungsgemäß zu entfernenden Stoffe notwendig sind.

Das erhaltene Wasser kann auf an sich bekannte Weise weiterverarbeitet werden. Das Wasser ist praktisch frei von Sauerstoff, Chlor, Chlorsauerstoff und Bromsauerstoffverbindungen. Es kann direkt für solche Zwecke eingesetzt werden, wo sauerstofffreies Wasser benötigt wird, z. B. als Brauereiwasser. Gewünschtenfalls kann es auch im Rahmen der Trinkwasseraufbereitung in an sich bekannter Weise zur Wiederaufnahme von Sauerstoff belüftet werden, wobei auch eventuell noch gelöste geringe Restmengen an Gasen entfernt werden.

Bei der Behandlung von Wasser mit hohen Konzentrationen an Halogensauerstoffverbindungen im Dreiphasenreaktor ist eine vorherige pH-Wert-Einstellung nicht erforderlich.

Die nachfolgenden Beispiele sollen die Erfindung erläutern, jedoch nicht einschränken.

Beispiel 1:

In einem Rührreaktor wurden 360 ml Wasser, das 2 mg/l BrO₃-Ionen enthielt vorgelegt. Im Rührreaktor befanden sich 5 g
Pd-Katalysator (1 % Pd-Gehalt). Bei einem Wasserstoffeintrag
von 1 l/h konnte nach einer Verweilzeit von 12 Minuten kein
Bromat mehr nachgewiesen werden. Desweiteren wurde eine Menge

15

von 1,2 mg/l Bromidionen als Reaktionsprodukt gebildet.

Beispiel 2:

Reaktionsbedingungen analog Beispiel 1:

Es wurde ein Pd/Cu-Katalysator (1 % Pd, 0,25 % Cu) verwendet. Das zu behandelnde Wasser enthielt 2 mg/l BrO; -Ionen. Nach einer Verweilzeit von 12 Minuten konnte kein Bromat mehr nachgewiesen werden. Es wurden 1,25 mg/l Bromidionen als Reaktionsprodukt gebildet.

Beispiel 3:

Die Umsetzung des Bromats erfolgte an einem Katalysator-Fluidbett. Es wurden 100 g eines Pd-Cu-Trägerkatalsators (1 Gew.-% Pd, 0,25 Gew.-% Cu) eingesetzt.

Wasser mit einem BrO₃-Ionengehalt von 0,5 mg/l und einem pH-Wert von 6,3, wurde mit einer Durchflußrate von 11 l/h und bei 5 bar durch das Fluidbett geleitet. Im Wasser waren 20 ml/l Wasserstoffgas gelöst. Im abgeführten Wasser betrug die BrO₃-Ionenkonzentration im Mittel weniger als 0,01 mg/l, die Br-Ionenkonzentration konnte mit 0,3 bis 0,32 mg/l bestimmt werden.

Beispiel 4:

In einem kontinuierlichen Prozeß wurden 7m³/h Wasser mit einer Konzentration an freiem Chlor von 0,5 mg/l über ein Festbett mit 15 kg Pd-Trägerkatalysator (Pd-Gehalt 1,0 %) geleitet. Das behandelte Wasser enthielt nur noch < 0,05 mg/l freies Chlor.

Beispiel 5:

In einem Rührreaktor wurden 360 ml Wasser, das 5 mg/l Clo, - Ionen enthielt, vorgelegt. Im Rührreaktor befanden sich 5 g Pd-Katalysator (1 % Pd-Gehalt), bei einem Wasserstoffeintrag von 1 l/h konnte nach einer Verweilzeit von 15 Minuten die Clo, - Ionenkonzentration auf einen Wert unter 0,1 mg/l gesenkt werden. Desweiteren wurde eine Menge von 2,1 mg/l Chloridionen gebildet.

Beispiel 6 - 9:

In einem Wirbelbettreaktor wurde an unterschiedlichen Pd-haltigen Alugel-Trägerkatalysatoren sowohl vollentsalztes Wasser (VE-Wasser) als auch Leitungswasser in Gegenwart von Wasserstoff behandelt.

Es wurden folgende Betriebsbedingungen eingestellt:

Wasserdurchfluß: 71/h

Wasserstoffeintrag: 0,3 1/h (bei 20°C, 1bar)

Wassertemperatur: 10°C

pH-Wert: 7

Druck: 5,8 bar (abs)

Die erzielte Bromatreduktion zeigt die Tabelle 1.

Die Analysenwerte berücksichtigen für Bromid eine Nachweisgrenze von 20 μ g/l und eine Standardabweichung von \pm 20 μ g/l bzw. für Bromat eine Nachweisgrenze von 2 μ g/l und eine Standardabweichung \pm 2 μ g/l.

Beispiel 10:

In einem Rührreaktor wurden 300 ml Wasser, das 972 mg/l Chlorationen enthielt, vorgelegt. Im Rührreaktor befanden sich

5 g eines Pd/Cu-Trägerkatalysators (0,23 % Pd, 0,28 % Cu auf Aluminiumoxid). Es wurden 2 l H₂/h eingetragen. Bei einer Reaktionstemperatur von 90°C konnten nach einer Reaktionszeit von 3 Stunden nur noch 35 mg/l Chlorationen, aber 406 mg/l Chloridionen nachgewiesen werden.

Beispiel 11:

In einem Rieselbettreaktor (Dreiphasen-Festbettreaktor) befanden sich 1021,6 g eines Pd-Katalysators [0,89 % Pd auf 2rO₂/Cordierit (Magnesiumaluminiumsilikat)]. Durch diesen Reaktor wurde zusätzlich zum Wasserstoff ein kontinuierlicher Volumenstrom von 3,7 l/h eines hochbelasteten Abwassers (pH 11,7) mit einer Bromationenkonzentration von 3000·mg/l gegeben. Die Reaktionstemperatur war 60°C; im Reaktor wurde ein Druck von 4 bar gemessen. Im Ablauf wurden Bromatkonzentration unter 50 mg/l gemessen, d.h. es wurde ein katalytischer Bromatabbau von über 98 % erreicht.

Eingang Ausgang 100 75 50 79 33 60 24 40 Br' [µg/1] 70 60 70 10 10 Eingang Ausgang 5,7 ** BrO, [µg/1] 110 118 189 80 65 73 25 90 66 105 65 Zeit [g] 1 5 10 6 10 17 19 16 2 5 4 Leitungevasser Wassertyp VE-Wasser VE-Wasser VE-Wasser Kataly-sator-menge [6] 70 70 30 30 Katalysator Pd-Gehalt 1,0 0,5 1,0 1,0 **S** Bsp. Nr. v œ σ ~

Tabelle 1:

19

Patentansprüche

- 1. Verfahren zur Entfernung von Chlor und Halogen-Sauerstoffverbindungen insbesondere Chlor- und Brom-Sauerstoffverbindungen aus Wasser, dadurch gekennzeichnet, daß das Wasser in Gegenwart von Wasserstoff an einem geträgerten Edelmetallkatalysator behandelt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Katalysator der Metalle oder Metallverbindungen der achten Nebengruppe des PSE, insbesondere Palladium als aktive Komponente oder deren Kombination mit einem Metall der Kupfergruppe enthält, verwendet wird.
- 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß als Trägermaterial anorganische Oxide, z.B. Al₂O₃, SiO₂, ZrO₂, MgO oder TiO₂ allein oder in Kombination miteinander verwendet werden.
- 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß als Trägermaterial Alumosilikat, Magnesiumalumosilikat oder Aktivkohle verwendet wird.
- 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das Trägermaterial ZrO₂ und Magnesiumalumosilikat enthält.
- 6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß das Trägermaterial Magnesiumalumosilikat enthält.
- 7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß als Trägermaterial γ-Aluminiumoxid verwendet wird.

- 8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß als Metall der Kupfergruppe Kupfer oder Silber, vorzugsweise Kupfer verwendet wird.
- 9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß der Anteil der Metallkomponenten am Gesamtkatalysator zwischen 0,1 und 10 Gew.-% beträgt.
- 10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß der Katalysator einen Palladiumgehalt von 0,1 bis 5, vorzugsweise 0,2 bis 2 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, enthält.
- 11. Verfahren nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß ein mit Palladium und Kupfer imprägnierter Katalysator eingesetzt wird.
- 12. Verfahren nach Anspruch 1 bis 11, dadurch gekennzeichnet, daß die katalytische Behandlung in mindestens einem Fließbett-, Festbett- oder Wirbelbettreaktor erfolgt.
- 13. Verfahren nach Anspruch 1 bis 12, dadurch gekennzeichnet, daß die katalytische Behandlung in einem Zwei- oder Dreiphasenreaktor erfolgt.
- 14. Verfahren nach Anspruch 1 bis 13, dadurch gekennzeichnet, daß der Wasserstoffeintrag in das Wasser entweder durch direktes Einleiten von Wasserstoffgas oder mittels Sättigungssysteme oder über Membrane erfolgt.
- 15. Verfahren nach Anspruch 1 bis 14, dadurch gekennzeichnet, daß der Wasserstoffeintrag gleichzeitig mit dem Kontaktieren des Wassers mit dem Katalysator erfolgt.

21

- 16. Verfahren nach Anspruch 1 bis 15, dadurch gekennzeichnet, daß der Wasserstoffeintrag vor der katalytischen Umsetzung erfolgt.
- 17. Verfahren nach den Anspruch 1 bis 16, dadurch gekennzeichnet, daß das Wasser bei 0 bis 100°C, und 1 bis 10 bar in Gegenwart von Wasserstoff mit dem Katalysator kontaktiert wird.

INTERNATIONAL SEARCH REPORT

tner aul Application No PC1/EP 95/03481

			PCI/EP 33/03401
ÎPC 6	SIFICATION OF SUBJECT MATTER CO2F1/70		
According	to Internamenal Patent Classification (IPC) or to both national class	sitcation and IPC	
	S SEASICHED documentum searched (classification system followed by classific		
IPC 6	COZF		
	don searched other than manuscra documentation to the extent the		
	late base committed during the international search (name of data bi	are and, where practical, s	tarch time used)
	ENTS CONSIDERED TO BE RELEVANT		•
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Referent to clara No.
X	EP,A,O 586 998 (SOLVAY) 16 March see column 8, line 48 - column 9 claims 1-10	1994 , line 21;	1-3,12
P,X	WO,A,94 20423 (SOLVAY) 15 Septem see claims 1-10	ber 1994	1-3
			,
	her documents are listed in the continuation of box C.	Y Passet (amily m	embers are larted in annual.
'A' decum- connel. 'E' eartier of Blang of 'L' docume visible 'O' docume officer is 'P' docume latter th	interest that the second secon	"X" document or parties among the art. "X" document of parties among the consider an investigate "Y" document in consider document in consider document in consider in the art. "A" document member (to setemational search report
Name and s	unling address of the ISA Surveyana Patent Office, P.R. 5818 Patentians 2 NL - 2280 HV Reposits Tel. (+31-70) 346-2000, Tz. 31 651 opo nl, Pax (+31-70) 348-3016	Authorized officer Fouquier	-, Ј-Р

INTERNATIONAL SEARCH REPORT

Later and Application No PCT/EP 95/03481

Patent document cited an search report	Publication date	Patent I memb		Publication date
EP-A-586998	16-03-94	DE-A-	4229355	10-03-94
FI V 200330	32 33 31	DE-A-	4229356	10-03-94
		CN-A-	1096498	21-12-94
		CZ-A-	9301837	16-03-94
		FI-A-	933856	07-03-94
		JP-A-	6182357	05-07-94
		NO-A-	933152	07-03-94
		PL-A-	300287	07-03-94
		US-A-	5393428	28-02-95
WO-A-9420423	15-09-94	DE-A-	4405202	08-09-94
WO 1. 3 1.50 1.50		DE-D-	4491188	27-04-95
		DE-D-	4491189	27-04-95
		DE-D-	4491190	27-04-95
		-A-OW	9420202	15-09-94
		WO-A-	9420203	15-09-94
		EP-A-	0687198	20-12-95
		EP-A-	0687199	20-12-95

INTERNATIONALER RECHERCHENBERICHT

Inter nales Aktonanchon PCT/EP 95/03481

A 411.00		PCI/	EP 95/03481
IPK 6	SIFIZIERUNG DES ANMELDUNGSGEGENSTANDES CO2F1/70		
	inhernebonnien Pascestiassifikation (IPK) oder nach der nationalen	Klamfikazion und der EPK	
	ERCHIERTE GEBIETE		
IPK 6			
	erk aber secht zum Mindessprafmoff gehorende Veroffenthehmigen,		
	ler internationalen Rocherche kouaufberte elektronische Datenhant (Name der Deknbank und eve. w	arwendete Suchbegn (fe)
	ESENTLICH ANGESEHENE UNTERLAGEN	•	
Kategone	Sciencheung der Veroffentischung, sowat erforderisch unter Ang	sbe der in Betrackt kommenden Te	ste Betr, Anspruch Nr.
X	EP,A,O 586 998 (SDLVAY) 16.März siehe Spalte 8, Zeile 48 - Spalt 21; Amsprüche 1-10	1994 e 9, Zeile	1-3,12
P,X	WD,A,94 20423 (SOLVAY) 15.Septem siehe Ansprüche 1-10	ber 1994	1-3
	ere Veröffenthehungen und der Fortsetzung von Feld C zu interen	X Sethe Anhang Patentiams	live
"A" Veröffe aber to "E" älteres i Anmei	Kategorien von angegebenen Veröffentlichungen : miliekung, des dem allgemennen Stand der Technek definiert, ekt als besondern bedeutnam ansunden zut Dokument, das jedoch erst sen oder auch dem internationalen definiern veröffentlicht worden ist	Other data Prioritizationin vers Assentiating micht kultuturi, so Erfledung zugeundebegenden Theorie stensorium unt	Protesps oder der ster zugrundeltegenden
echane andere soli od evageñ	ndichang, die gezignet ist, einen Prioritatisampruch zweifelhaft er- in zu lassen, oder durch die daz Verbößenderbungsdamn einer n im Recherchenbisselbt ganannen Veröffenderbung beisegt werden er die aus einem anderen besonderen Grund angegeben ist (wie librt) ndichung, die sich auf eine mündliche Offenbarung,	tann allem anfyrund deuer V. erfindenseher Tängkatt burdu "Y" Verkilbudickung von besonder kann necht als auf erfindersech	rer Bedeuting: die bezeigerichte Erfindung 1868mischung meht als neu oder auf nich betrachtet werden vor Bedeuting: die bezeigerichte Erfindung ur Täbuktet berubend betrachte
"O" Verbile mae Be "P" Verbile dem be	Startung de vor den internetien den Annelde der	verlen, wan de Veröffentie Veröffentschungen deser Kas dese Verbindung für einen Fa "&" Veröffentlichung, die Mitglied	Cittade rehabesend at
Detain des /	Nachhanes der marrustromien Recharche	Absendedatum der internation	
	9.Dezember 1995	15.01.96	
Name and P	Cottanechrift der Internationale Recherchenbehörde Europäischen Patenturni, P.B. 3818 Patentition 2 NL - 2200 HV Rajeunje	Bevolunachtigter Beshensteter	
	Tel. (+31-70) 346-2046, Th. 31 651 epo el, Fax: (+31-70) 348-3016	Fouquier, J-F	,

INTERNATIONALER RECHERCHENBERICHT

later states Aktenanchen
PCT/EP 95/03481

Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(Patenti		Datum der Veroffsnülichung
EP-A-586998	16-03-94	DE-A-	4229355	10-03-94
Ft	•• •• •	DE-A-	4229356	10-03- 9 4
		CN-A-	1096498	21-12-94
		CZ-A-	9301837	16-03-94
		FI-A-	933856	07-03-94
		JP-A-	6182357	05-07-94
		NO-A-	933152	07-03-94
		PL-A-	300287	07-03-94
		บร-ม-	5393428	28-02-95
W0-A-9420423	15-09-94	DE-A-	4405202	08-09-94
#U-X-3460463	44 44	DE-D-	4491188	27-04-95
		DE-D-	4491189	27-04-95
		DE-D-	4491190	27-04-95
		WO-A-	9420202	15-09-94
		W0-A-	9420203	15-09-94
		EP-A-	0687198	20-12-95
		EP-A-	0687199	20-12-95

LIS005779915A

United States Patent [19]

Becker et al.

1301

[11] Patent Number:

5,779,915

[45] Date of Patent:

Jul. 14, 1998

[54]	HALOGEN-O	REMOVING CHLORINE AND XYGEN COMPOUNDS FROM ATALYTIC REDUCTION
[75]	Peir Ver	ne Becker, Hanover; Michael Sell, ne: Gerhard Neuenfeldt, Estorf; onika Koch, Gehrden; Hubert indler, Uetze, all of Germany
[73]	-	vay Umweltchemie GmbH. over. Germany
[21]	Appl. No.:	809,047
[22]	PCT Filed:	Sep. 5, 1995
[86]	PCT No.:	PCT/EP95/03481
	§ 371 Detc:	Mar. 7, 1997
	\$ 102(c) Date:	Mar. 7, 1997
[87]	PCT Pub. No.:	WO94/87617
	PCT Pub. Date	: Mar. 14, 1996

Fereign Application Priority Data

[51] Int. CL⁶

[58]	Field of	Search	 210/719.	757.
			210/762.	763

[56] References Cited U.S. PATENT DOCUMENTS

4.397.720	8/1983	Moore et al
4,990,266	2/1991	Vorlop et al 210/757
5,279,717	1/1994	Okajima et al 204/98
5,392,428		Dilla et a 1 210/631

FOREIGN PATENT DOCUMENTS

276044	7/1988	European Pat. Off.	 210/757
586998	8/1993	European Pat. Off.	
A450 633	041001	11700	

Primary Examiner-Peter A. Hruskoci

Attorney, Agent, or Firm-Evenson, McKeown, Edwards & Lenahan

[57] ABSTRACT

The invention concerns a method of removing substances present in water, in particular halogen-oxygen compounds which remain in the water as residues of disinfecting or are forned as by-products of oxidative water treatment. According to the invention, the substances present in water are removed by catalytic reduction in the presence of hydrogen on a supported precious metal catalyst.

21 Claims, No Drawings

METHOD OF REMOVING CHLORINE AND HALOGEN-OXYGEN COMPOUNDS FROM WATER BY CATALYTIC REDUCTION

DESCRIPTION

The invention relates to a method for removing substances from water, especially compounds and by-products of oxidative treatment of water.

The known methods of water treatment are often multi- 10 step processes wherein, for example, thermal-alkaline, oxidative, biological or adsorptive treatments can be combined in various ways.

It is known that surface waters can be used for obtaining 15 potable water, for example by bank filtration. For hygienic reasons, and to satisfy the limits specified in the Potable Water Ordinance, the microorganisms and organic substances must be removed in particular.

Likewise, physical processes, such as membrane separa- 20 tion methods or filtering methods are known and are being employed.

In oxidative water treatment, e.g., by disinfection with chlorine, hypochlorite, chlorine dioxide and ozone, in the presence of oxidizable substances, by-products are also formed, e.g., halogen-oxygen compounds such as chlorineoxygen compounds, or bromates, or halogenated hydrocarbons such as tribalogen methane, which have to be removed. so that the water can be used to supply potable water, or can be discharged as treated water, for example into a main ditch, or supplied as potable water into the production process.

In oxidative treatment, with ozone for example, a halide such as chloride or bromide, is oxidized by the following 35 mechanism:

0.+Hal ->0.+OHal

20,+OHal~>20,+HalO,

This reaction is dependent upon pH, upon the amount of oxidant, and also upon time.

they have to be removed from the water. The World Health Organization (WHO) requires that the bromate content in potable water not exceed 25 µg/l, and a limit of 3 µg/l is anticipated for the future.

Since chlorate ions are undesirable in drinking water, they 50 have to be removed from the water. Even in the case of disinfection with chlorine dioxide undesirable by-products are formed, which are proven to cause hemolytic anemias and thus should not be contained in potable water.

water, these substances have to be removed since their oxidation potential can be undesirable in many cases.

The object of the invention is to provide a method for water treatment wherein halogen-oxygen compounds can be removed economically or their residual concentrations can be minimized. Halogen-oxygen compounds in the sense of the lavention are chlorate and bromate compounds.

According to the invention these compounds are reduced with hydrogen on a supported precious metal catalyst.

.The reductive decomposition of bromate takes place according to the following equation:

BrO_{3"} + 3H₂ Cal > Br + 3H₂O

The reductive decomposition of chlorate takes place according to the following equation:

Precious metal catalysts which contain as an active metal substance, metals of the eighth subgroup of the periodic table of the elements. e.g., platinum, palladium, iridium, rhodium, preferably palladium or a combination of palladium with a metal of the copper group, preferably copper or silver, especially copper, are used as catalysts.

In a preferred embodiment of the invention, supported palladium/copper or palladium catalysts are used

Inorganic oxides. e.g.. Al₂O₂, preferably γ-Al₂O₂, SiO₂, ZrO₂, MgO or TiO₂, are used as support materials. Combinations of these or other support materials, such as alumosilicates, magnesium alumosilicates or active carbon. are also suitable. Preferably inorganic materials are used which are resistant to water and abrasion.

According to the invention, hydrogen gas is charged into the water to be treated, and the water charged with hydrogen is contacted with the catalyst.

In a preferred variant, a catalyst is used which contains as metal component preferably palladium and/or rhodium or palladium and a metal of the copper group, especially copper. The catalyst support material is impregnated with the metal component in a known manner.

For example, an impregnated support can be used which has an inhomogenous distribution of the metal or metals with a concentration in the surface region.

Likewise suitable are materials which have a particle diameter ranging from 10 to 5.000 µm, preferably 50 to 600

Within the scope of the present invention water and aqueous solutions of any origin can be treated if they are free of substances which act as poisons for catalysts containing palladium, rhodium or copper or which attack the support material. In the present invention, the expression "water" refers to such waters and aqueous solutions.

On the one hand the process can be used for treating water which corresponds in its purity to a water which has passed Since bromate ions have a provable carcinogenic activity. 45 through natural filtration. Such water can contain watersoluble substances, such as inorganic salts, in orders of magnitude in which they are to be found in ground water. that is, up to a few grams per liter.

Such waters are, for example, ground water, well water. spring water, surface water or bank filtrates or already correspondingly pre-filtered waste waters, such as industrial waste water, for example from flue gas washing, but also beverages such as mineral water, soft driaks and fruit juices.

The method is thus suitable for use in potable water But even from waters which are not to be used as drinking 55 parification, and in the purification of water used, for

On the other hand, this method is likewise suitable to reduce halogen-oxygen compounds in heavily contaminated waste water (e.g., chlorate or bromate concentrations >3 g/l).

In accordance with the invention the hydrogen can be introduced into the water either by direct introduction of hydrogen gas or by means of suitable saturating systems. such as static mixers, bubble column reactors, or membranes. Other known methods are likewise suitable for the as introduction of hydrogen.

In a preferred variant of the method, the gassing of the water with hydrogen is performed in a known manner, by

....

gas saturators for example, whereby it is important that the hydrogen be injected in a very fine stream and without forming gas bubbles, and be uniformly distributed in the water. Permeation gassing, a known technique, has proved especially suitable. In this technique the gas is introduced into the water through a solid membrane, for example an unreinforced or fabric relaforced silicone rubber membrane or a solid supporting membrane with a 5 to 20 µm thick silicone layer, as a composite membrane. An important characteristic of permeation gassing is the bubble-free introduction of the gas due to material transport based exclusively on diffusion and solubility processes in the nonporous membrane material. Another advantage of permeation gassing is that the introduction of the gas can be increased by simply lacreasing the gas partial pressure in the membrane system up to the pressure-dependent saturation limit of 15 hydrogen in water, or by increasing the rate of flow of the water, resulting in a reduction in size of the boundary layer at the membrane/water interface. This is advantageous when large amounts of hydrogen are needed.

Hydrogen introduction can occur either simultaneously 20 with the contact between the water and the catalyst, or separately. In a preferred variant the hydrogen introduction occurs prior to the actual catalytic reaction.

For catalytic decomposition of high halogen-oxygen ion concentrations, the hydrogen is advantageously brought into 25 contact with the catalyst simultaneously with the water in a three-phase reactor (e.g., a sprinkled bed reactor).

It has proven advantageous to perform the treatment of the water in the presence of an amount of hydrogen that corresponds at least to the equivalent amounts of the substances that are to be removed, whereby other reducible substances that may be present also are reduced.

The method of the invention can operate at normal pressure or slightly elevated pressure. e.g., up to 10 atmospheres. The solubility of hydrogen gas in the water at 35 normal pressure and temperatures between 10° and 25° C. is less than 2 mg/l and is doubled if the pressure is also doubled. Where the reduction of greater amounts of oxygen compounds requires correspondingly greater amounts of hydrogen, the use of three-phase reactors has been found 40 useful.

If the gassing of the water with hydrogen and contact with the catalyst take place simultaneously, the water is brought into contact with the catalyst for a period of time that is necessary for the reduction of the substances to be removed 45 necordance with invention. The catalytic treatment can be performed in a solid bed, a fluidized bed or a flowing bed reactor.

The treatment can be performed either continuously or discontinuously.

In one embodiment water, which for example has already passed through an oxidative treatment, but still contains halogen-oxygen compounds as well as residual traces of ozone, for example, with a pH of 4 to 12, preferably 5 to 11, especially 6.5 to 9.0, is introduced into at least one reactor 55 which contains the supported precious metal catalyst, and is treated with hydrogen at 0° to 100° C., preferably 5° to 40° C., especially 10° to 25° C., and 1 to 10 bar.

It is also an aspect of the invention to introduce water, which contains chlorate or bromate ions without having 60 been subjected to oxidative pretreatment, directly to the catalytic reduction.

Thus it is possible, for example, to treat by this process waste water with a pH of 3 to 14 and a bromate concentration of, for example, 4 g/1 at temperatures of 5° to 90° C, and 63 a hydrogen pressure of 1 to 10 bar. In this case bromate conversions of over 90% can be achieved.

4

If desired, the water can pass successively through several cascade-like reaction units in series, each containing a gassing system and a reactor. In this case the pH of the water can be readjusted if desired when passing from one reaction unit into the next-following reaction unit. In a different embodiment of the method a water whose content of substances to be removed by the method of the invention has not been completely removed by a first passage through the gassing apparatus and reactor can be returned again into the reaction circuit.

For the method of the invention, metal catalysts are used which are formed of a porous support material impregnated with the metal component. Palladium and/or rhodium is/are used as metal components. It is likewise an aspect of the invention to use palladium, or also rhodium, in combination with a metal of the copper group. Copper and silver especially are suitable as metals of the copper group. Copper is preferably used.

The proportion of the metal components in the entire catalyst can be between 0.1 and 10 wt.-%, preferably between 0.1 and 5, especially between 0.2 and 2.0 wt.-%.

A palladium content of 0.1 to 2.0 wt.-%, especially 0.1 to 1.0 wt.-%, of the total weight of the catalyst has proved advantageous.

In a preferred variant a combination of palladium with copper is used as the metal component. The weight ratio of palladium to copper can lie be between 1:1 and 8:1. especially 1:1 and 4:1.

In one embodiment of the invention catalysts can be used whose supports consist either of porous material which has a bimodal pore radius distribution amounting to at least 20% proportion of macropores with a minimum radius of 2.000Å, based on the total pore volume, or supports which exhibit a nonuniform distribution of the metal with a concentration in the surface region with a layer thickness of 20 to 100 µm, depending on the particle diameter, especially at a particle diameter of 50 to 1.000 µm, or those which exist in the form of a powder with a particle diameter smaller than 50 µm.

Materials are suitable as porous support materials with a bimodal pore radius distribution which have one maximum of the pore radius distribution in the small pore range with a radius up to about 400Å, for example between about 50 and 350Å, and a second maximum of the pore radius distribution in the macropore range with a radius of at least about 2.000Å. A support material with one pore radius distribution maximum in the small pore range with a radius of 50 to 300Å, especially 50 to 200Å, has proved desirable. For the macropore range, pore radii ranging from about 5,000 to about 20,000Å are desirable. The macropore content of the bimodal support materials should be sufficiently high to assure rapid diffusion and can vary depending upon the nature and size of the support particles. Birnodal support materials with a macropore content between 20 and 80%. preferably 40 and 60%, especially 40 and 50% of the total port volume, for example, have proven useful. In the case of particles with a uniform pore distribution, most of the pores should have a radius of 30 to 100Å. The same applies in principle to powder particles.

In the practice of the method the reacting agents should be rapidly removed from the active area.

A quick diffusion of the reacting agents from the catalytically active areas of the catalyst can also be promoted by using catalysts in which there is a non-uniform distribution of the metal on the support with a concentration in the surface region. A non-uniform metal distribution proves to be desirable in which the metal is concentrated at the surface with a depth of penetration between 20 and 100 Åm.

2.47.773

A rapid diffusion of the reacting agents from the catalyst can also be achieved by the use of catalysts in powder form, for example catalyst powders whose particles have a particle diameter of less than 50 Åm, especially less than 20 Åm.

The BET surfaces of support materials, i.e. of the catalysts with the structures described above, can vary in the range of about 20 to 360, in particular 60 to 300 m²/g. For support materials with a bimodal pore distribution the BET surfaces are typically in the range from 20-30 up to 200 m²/g, and in catalysts in powder form or catalysts with a uniform metal 10 distribution they lie in the range from 50 to 200 m²/g.

Support materials can also be used whose porosities differ decidedly from those described previously. Thus it has been found that, for example, the application of a porous oxidic coating on a core that is virtually nonporous, such as 15 magnesium alumosilicate, results in a suitable support material. It has also been found that magnesium alumosilicate without this porous coating is likewise suitable.

These support materials naturally have a BET surface in the range from less than 1 up to 30 m²/g.

Support particles of many different shapes can be used. The supports can be used in the shape, for example, of powders, granules, spheres, pearls, cylinders, hollow cylinders or hollow spheres.

For fluidized bed applications, even smaller-size particles 25 are suitable, e.g., catalysts in powder form.

Support materials with a bimodal pore radius distribution can be prepared in a known manner. For example, for the preparation of porous ceramic materials with a bimodal pore radius distribution, substances can be added to the carrier 30 material during its preparation, which can be washed or burned out again during the process, thus leading to the formation of macropores. The so-called "burn-out" substances can be combustible organic substances such as wood flour, starch, saccharose or an ammonium salt of an organic 35 acid such as ammonium acetate, or also carbon black, which burn out of the material during the subsequent firing of the support particles, leaving macropores behind. This method is especially well suited to the preparation of bimodal aluminum oxide supports. For example, spherical aluminum oxide supports can be obtained by the method described in published German Application Nos. 25 04 463 and 25 46 318. by mixing an aluminum oxide hydrosol with a base such as hexamethylenetetramine which can be hydrolyzed with the use of heat, and admixing combustible, waterinsoluble substances or carbon black, and also adding alumins and/or hydrated alumins, then dripping or spraying the mixture into a liquid that is not miscible with water at elevated temperature, for example temperatures between 60° and 100° C., letting the gel particles that form stand at the 50 precipitation temperature, and then calcining.

A bimodal pore radius distribution can also be obtained in a known manner by subsequent controlled tempering of the support materials at temperatures ranging from about 600° to about 1.000° C. This method is especially suitable for 55 pore expansion in SiO₂ supports. Thus. SiO₂ support materials with pore radii between 50 and 350Å can be converted to bimodal supports by subsequent tempering. For example, a 20% content of macropores in the range from 5.000 to 50.000Å can be produced in SiO₂ beads with a pore radius 60 of 215Å by a 5-hour heat treatment at 700° C. followed by one hour of tempering at 800° C.

The impregnation of the support particles with the metal component can be performed by methods commonly used for the preparation of catalysts. For example, metal salts or 65 complex metal compounds can be applied onto the support material by immersion, spraying or precipitation, and

reduced in a known manner after drying and subsequent calcination. For example, the support particles can be immersed in or sprayed with a solution or suspension of metal salts or complex metal compounds in water or in an organic solvent, as for example a lower alcohol such as ethanol, or a ketone or mixtures thereof, then after drying, optionally calcined at temperatures up to 600° C., for example between 500° and 600° C., and then reduced with a metal-free reducing agent, preferably hydrogen or, if desired, with heat treatment at temperatures ranging up to 550° C., for example between about 200° and 550° C., or in aqueous phase with sodium borohydride or sodium formate at temperatures between 10° and 50° C.

The distribution of metal on the support material can be varied by the method employed for impregnation, in a manner known in itself. Thus for example when the support material is inapregnated by immersion in a solution of a soluble metal compound, the depth of penetration of the metal into the support material can be controlled by varying the immersion time, e.g., between 1 and 30 minutes, and by varying the solvent, such as water or a more quickly evaporating organic solvent such as a lower alcohol such as ethanol or mixtures thereof, or by varying the nature of the metal compound with which the impregnation is to be done.

The depth of penetration of the metal thus depends on the time, the pH and the metal compound. Short immersion times cause the metal to be distributed mainly only in the surface layer of the support material. An extensive concentration of the metal in the surface of the support metal can also be achieved by the precipitation method, by spraying on a solution or suspension of the metal compound, or by costing the support material with a liquid containing the metal compound. In the case of catalysts with a non-uniform metal distribution with the metal concentrated in the surface—so-called "shell catalysts"—the course of the reaction is substantially more independent of diffusion effects than it is with catalysts having a uniform metal distribution.

In one embodiment the process is performed continuously for the purification of potable water. This preferred embodiment is characterized in that the water is fed continuously into a dosing vessel in which the pH is monitored and if accessary adjusted by addition of acid to a level not exceeding pH 12, preferably between pH 4 and pH 11, especially pH 6.5 and pH 9, and then passed by a variable-delivery pump regulating the rate of flow through one or more reactor units, each containing a gassing unit and a reactor, wherein the water first flows through the gassing unit and is gassed therein with hydrogen gas, under pressure if desired, and then is conducted through the reactor containing a catalyst bed with the metal catalyst; with the water running through as many reaction units as are necessary for the reduction of the substances that are to be removed in accordance with the invention.

The product water can be further processed in a known manner. The water is virtually free of oxygen, chlorine, and chlorine-oxygen and bromine-oxygen compounds. It can be used directly for those purposes in which oxygen-free water is required, e.g., as brewery water. If desirred, in potable water purification systems, it can also be aerated to reabsorb oxygen, in which case any slight residues of gases still dissolved in it can be removed.

in the treatment of water with high concentrations of halogen-oxygen compounds in a three-phase reactor, prior pH adjustment is not necessary.

The following examples are intended to explain, but not limit, the invention.

8 **EXAMPLE 10**

360 ml of water containing 2 mg/l of BrO₃ ioas were placed in a stirring reactor. In the stirring reactor there were 5 g of palladium catalyst (Pd content 1%). After a time of stay of 12 minutes with a hydrogen input of 1 1/h no more bromate could be detected. Furthermore, an amount of 1.2 mg/l of bromide ions formed as reaction product.

EXAMPLE 2

The reaction conditions were analogous to Example 1:

A Pd/Cu catalyst (1% Pd. 0.25% Cu) was used. The water to be treated contained 2 mg/l of BrO," ions. After a residence time of 12 minutes no more bromate could be detected. 1.25 mg/l of bromide ions were formed as a 15 reaction product.

EXAMPLE 3

The reaction of the bromate was performed on a fluidized 20 bed catalyst. 100 g of a Pd-Cu supported catalyst was used (1 wt.-% Pd. 0.25 wt.-% Cu).

Water with a BrO₃" ion content of 0.5 mg/l and a pH of 6.3 was passed through the fluidized bed at a rate of 11 l/h and at 5 bar. 20 ml/l of hydrogen gas was dissolved in the 2 water. In the discharged water the BrO, ion concentration averaged less than 0.01 mg/l; the Br ion concentration was determined to be 0.3 to 0.32 mg/l.

360 ml of water that contained 5 mg/l of ClO₃ was placed in a stirring reactor. 5 g of palladium catalyst (1% Pd content) was contained in the reactor. After a residence time of 15 minutes with a hydrogen input of 1 l/h, the ClO₃ ion concentration had fallen to a level below 0.1 mg/l. Purthermore, an amount of 2.1 mg/l of chloride ions had formed.

EXAMPLES 5-8

In a fluidized bed reactor both fully deionized water (FD water) and tap water were treated in the presence of hydrogen in a fluidized bed containing supported Alugel caralysts haivng various palladium contents.

The following operating conditions were established:

Rase of flow of water	7 Ub
Hydrogen input	0.3 1/k (st 20° C., 1 bur)
Water temperature	10° C.
phi	7
Program:	5.8 ber (ebeckste)
	·

The bromate reduction achieved is shown in Table 1.

of 20 µg/l and a standard deviation of ±20 µg/l, and for bromate a detection limit of 2 µg/1 and a standard deviation of ±2 ug/L

EXAMPLE 9

300 ml of water containing 972 mg/l of chlorate ions was placed in a stirring reactor. In the reactor were 5 grams of a supported Pd/Cu catalyst (0.23% Pd. 0.28% Cu on aluminum oxide). Two liters of hydrogen were fed in per hour. At a reaction temperature of 90° C., after a reaction time of 3 65 material comprises magnesium aluminosilicate. hours, only 35 mg/l of chlorate ions were detected, but 406 mg/l of chloride ions.

In a sprinkled bed reactor (three-phase solid bed reactor) there were 1021.6 g of a palladium catalyst (0.89% Pd on ZrO-/cordierite (magnesium aluminum silicate). Passed through this reactor, in addition to the hydrogen, was a continuous stream of 3.7 Uh of a heavily contaminated waste water (pH 11.7) with a bromate ion concentration of 3000 mg/l. The reaction temperature was 60° C.; a pressure of 4 bar was measured in the reactor. In the discharge, the 10 measured bromate concentration was less than 50 mg/l. i.e., a catalytic decomposition of bromate of over 98% had been achieved.

TABLE I

5 '		Cat	lys.	•					
	Exam-	Pd content	Azzouni of catalyst	Water	Tiros	Br			Br arl l
0	No.	%	ls	Туре	M	h	Out	ъ	Out
	5	0.5	30	Deionized	1	80	1	10 10	50 50
	6	1.0	30	Wheer Dejonized	5 1	74 110	i	10	79
5	7	1.0	70	Water Deionized	4	99 105	i	10	41 33
•	·			Water	5 10	118	1	10 10	60 24
	_		30	3 0.0 mm.	16	65 80	i	10 65	40 110
	•	1.0	70	Tup water	10	65	5.7	70	100
Ю					17 19	73 25	5_3 6.9	60 70	70 75

We claim:

- 1. A method of treating water containing at least one halogen-oxygen compound selected from the group consisting of chlorate and bromate compounds, said method comprising contacting the water with a supported precious metal catalyst in the presence of hydrogen and catalytically reducing said at least one compound, wherein said supported 40 precious metal catalyst comprises at least one metal selected from the 8th subgroup of the Periodic Table of Elements.
 - 2. A method according to claim 1, wherein said at least one metal is palladium.
- 3. A method according to claim 1. said catalyst comprises 45 a mixture of said at least one precious metal and a metal of the copper group.
 - 4. A method according to claim 3, wherein said at least one precious metal is palladium, and said metal of the copper group is selected from copper and silver.
 - 5. A method according to claim 3, wherein said metal of the copper group comprises copper.
 - 6. A method according to claim 1, wherein said precious metal catalyst is supported on an inorganic oxide support.
- 7. A method according to claim 6, wherein said inorganic The analysis values for bromide include a detection limit 55 oxide support comprises at least one oxide selected from Al₂O₃, SiO₂, ZrO₂, MgO and TiO₂
 - 8. A method according to claim 6, whereis said support comprises y-aluminum oxide.
 - 9. A method according to claim 1. wherein said catalyst is supported on a support comprising aluminosilicate, magnesium aluminosilicate or active carbon.
 - 19. A method according to claim 9, wherein the support comprises ZrO2 and magnesium aluminosilicate
 - 11. A method according to claim 9, wherein the support
 - 12. A method according to claim 1, wherein said catalyst comprises from 0.1 to 10 wt % of said precious metal.

- 13. A method according to claim 12, wherein said catalyst comprises from 0.1 to 5 wt % palladium.
- 14. A method according to claim 13, wherein said catalyst comprises from 0.2 to 2 wt % palladium.

 15. A method according to claim 1, wherein said catalyst 5
- 15. A method according to claim 1, wherein said catalyst comprises a support impregnated with palladium and copper.
- 16. A method according to claim 1, wherein the catalytic treatment is carried out in at least one flowing bed, fixed bed or fluidized bed reactor.
- 17. A method according to claim 1, wherein the catalytic treatment is carried out in a two-phase or three-phase reactor.
- 18. A method according to claim 1, wherein hydrogen is introduced into the water by a method selected from the 15 group consisting of:

- 1) direct introduction:
- ii) introduction by means of a saturation system; and
- lii) introduction through a membrane.
- 19. A method according to claim 1, wherein hydrogen is introduced into the water simultaneously with the contact between the water and the supported catalyst.
- 20. A method according to claim 1, wherein hydrogen is introduced into the water prior to contact between the water and the supported catalyst.
 - 21. A method according to claim 1, wherein the water is contacted with the catalyst at a temperature in the range from 0° to 100° C, and at a pressure in the range from 1 to 10 bar.

.