# AIR QUALITY MONITORING SYSTEM

### **GROUP MEMBERS:**

- 1)M.ALTAF KHATTAK(12-0374)
- 2)ARHAM SHAH(12-0506)
- 3) ANEES WAQAR(12-0511)

# CONTENTS

- Brief Introduction
- Equipment's/Components
- Block Diagram
- Flow Chart
- Working
- Simulation
- Deliverables
- Challenges
- Task Management
- Conclusion

### PROBLEM STATEMENT

- Air pollution is one of environmental issues that cannot be ignored.
- Inhaling pollutants for a long time causes damages in human health.
- Traditional air quality monitoring methods, such as building air quality monitoring stations, are typically expensive.
- This project is suitable for air quality monitoring in realtime.

### INTRODUCTION

- The purpose of our device is to monitor the quality of air using different sensors.
- Sensors data is then collected in controller and transmitted through GSM module to PC where it is calibrated and displayed to user.
- The data is stored in database in order to extract information for future use.

## COMPONENTS

- Sensors
  - O MQ-7(Carbon mono-oxide sensor)
  - O MQ-131(Ozone sensor)
  - O MQ-135(Smoke sensor/air pollution)
  - MQ-136(Hydrogen sulphide sensor)
  - MICS-2714(Nitrogen dioxide sensor)
- Controller
  - O Arduino UNO-R3
- GSM module(transmitter/receiver)

# BLOCK DIAGRAM



# FLOW CHART

Transmission



# FLOW CHART

Reception



# Working

- MQ-7 is a 6-pin device that is used to detect concentration of CO in air.
- VCC=5V
- Can detect CO-gas concentrations anywhere from 20 to 2000ppm.
- High sensitivity and fast response time

- MQ-131 gas sensor is used to detect O3 concentration in air.
- It's also 6 pin device, 4 of them are used to fetch signals, and other 2 are used for providing heating current.
- VCC=5V
- Can detect O3 concentration form 10ppb-2ppm
- Fast response and high sensitivity.

- MQ-135 is used for detecting a wide range of gases, including NH3, NOx, alcohol, benzene, smoke and CO2.
- 6 pin device.
- VCC=5V
- Detecting concentration scope 10ppm-300ppm NH3
- 10ppm-1000ppm Benzene
- 10ppm-300ppm Alcohol

- MQ-136 sensor used to detect the concentration of hydrogen sulphide present in air.
- 6 pin device but since we are using module MQ-131 thus it has 4 pins
  - 1. VCC=5v
  - 2.DOUT(Digital output)
  - 3.AOUT(Analogue output)
  - o 4.GND
- Detecting concentration scope:
  - 1-100ppm H2S

- MICS-2714 is a robust MEMS sensor for nitrogen dioxide and leakage detection.
- Detectable gases
  - Nitrogen dioxide NO2 0.05 10ppm
  - Hydrogen H2 1 1000ppm

# SIMULATION

• ALGORITHM

### DELIVERABLES



# TASK MANAGEMENT

| ARHAM SHAH                                                                                                                                                                    | M.ALATAF<br>KHATTAK                                                                                | ANEES WAQAR                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>1.) Literature Review</li> <li>2.)Sensor and</li> <li>controller study and</li> <li>their selection</li> <li>3.)Block Diagram</li> <li>4.)Documented Work</li> </ol> | <ul><li>1.)Coding</li><li>2.)Simulation</li><li>3.)Algorithm</li><li>4.) Documented Work</li></ul> | <ol> <li>Hardware part</li> <li>Gantt chart</li> <li>Documented Work</li> <li>Visited EPA for data collection and sensors info</li> </ol> |

## CHALLENGES

- Collection of data/calibration.
  - O Visited EPA thrice.
  - O They just imported devices from japan and they only know how to operate. They don't know the how that device works.
- Sensor ordered but not received yet thus we just stimulate how sensors will work.

### CONCLUSION

- Till mid of December our sensors will arrive (sir Kashif Islam)
- Interface with controller will then be completed
- In FYP-2 prototype of device and its GUI on PC will be completed.
- Data will be then verified by EPA.