Memory Management (3)

Dr. Jun Zheng
CSE325 Principles of Operating
Systems
10/23/2019

Pros and Cons of Segmentation

- □Advantages
 - □Segment sharing
 - ☐ Easier to relocate segment than entire program
 - □Advoid allocating unused memory
 - □Flexible protection
 - □Efficient translation
 - □Segment table small -> fit in MMU
- □ Disadvantages
 - □Segments have varible lengths -> How to fit
 - □External fragmentation: wasted memory

Paging

- □ Physical address space of a process can be noncontiguous; process is allocated fixed sized units of physical memory whenever the latter is available
 - ☐ Avoids external fragmentation
 - ☐ Avoids problem of varying sized memory chunks
- □Still have Internal fragmentation

Paging

- □ Divide physical memory into fixed-sized blocks called **frames**
 - ☐ Size is power of 2, between 512 bytes and 16 Mbytes
- □Divide logical memory into blocks of same size called **pages**
- ☐ Keep track of all free frames
- □To run a program of size N pages, need to find N free frames and load program
- □Set up a page table to translate logical to physical addresses

Address Translation Scheme

- ☐ Address generated by CPU is divided into:
 - □ Page number (p) used as an index into a page table which contains base address of each page in physical memory
 - □ Page offset (*d*) combined with base address to define the physical memory address that is sent to the memory unit

page number	page offset
р	d
m - n	n

☐ For given logical address space 2^m and page size 2ⁿ

Page Translation

Page Translation Example

Page Translation Exercise

- □8-bit virtual address, 10-bit physical address, and each page is 64 bytes
 - ☐ How many virtual pages?
 - ☐ How many physical pages?
 - ☐ How many entries in page table?
 - □Given page table = [2, 5, 1, 8], what's the physical address for virtual address 241?
- ☐m-bit virtual address, n-bit physical address, k-bit page size
 - □What are the answers to the first three questions above?

Internal Fragmentation

- ☐ Calculating internal fragmentation
 - \square Page size = 2,048 bytes
 - \square Process size = 72,766 bytes
 - \Box 35 pages + 1,086 bytes
 - \Box Internal fragmentation of 2,048 1,086 = 962 bytes
 - \Box Worst case fragmentation = 1 frame 1 byte
 - ☐ On average fragmentation = 1 / 2 frame size
- ☐ So small frame sizes desirable?
 - ☐ But each page table entry takes memory to track
 - ☐ Page sizes growing over time
 - □ Solaris supports two page sizes − 8 KB and 4 MB

Page Protection

- ☐Implemented by associating protection bits with each virtual page in page table
- □ Protection bits
 - □ present bit: map to a valid physical page?
 - □read/write/execute bits: can read/write/execute?
 - □user bit: can access in user mode?
 - $\square x86$: PTE_P, PTE_W, PTE_U
- □Checked by MMU on each memory access