Сравнительный анализ методов решения задачи линейного упорядочения

Научный руководитель: д. т. н., профессор РК6 МГТУ им. Н. Э. Баумана Божко А. Н.

Студент: Антонов А. С. РК6-41М

Цели работы

Провести сравнительный анализ способов решения задачи линейного упорядочения

Точные методы

?

Эвристики

7

Метаэвристики

Задачи:

- 1. Исследовать и систематизировать существующие методы
- 2. Разработать программный комплекс и реализовать в нём методы
- 3. Провести анализ на основании результатов экспериментов

Постановка задачи

Linear Ordering Problem (LOP)

NP-hard

Графовая форма

Начальное решение (97)

$\sum_{(i,j)\in A} w_{ij}$

Оптимальное решение (148)

$$f(\pi) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} B_{\pi(i)\pi(j)}$$

5 3 4 2

5	0	25	24	28	30
3	12	0	26	23	26
4	13	11	0	22	22
2	9	14	15	0	21
1	7	11	15	16	0

Матричная форма

Исходная матрица (138)

Оптимальное решение (247)

Приложения

Актуальность LOP в различных областях

• Социология

Ранжирование социальных факторов по степени влияния на показатели (уровень образования на доход)

- Биоинформатика Анализ генной экспрессии с целью выявления регуляторных процессов
- Информационные технологии
 Ранжирование поисковой выдачи, обработка естественного языка
- Логистика
 Оптимизация маршрутов доставки, где матрица весов отражает время или стоимость перемещения между точками
- Археология определения хронологической последовательности культурных слоёв и артефактов

Жадные методы и алгоритм Беккера

Конструктивные эвристические методы

Конструктивные

order = $[] \rightarrow [5] \rightarrow [5, 3] \rightarrow [5, 3, 4] \rightarrow [5, 3, 4, 2] \rightarrow [5, 3, 4, 2, 1]$

$$\max(\Delta f)$$

Алгоритм Беккера Σ^n

$$q_i = \frac{\sum_{k=1}^{n} c_{ik}}{\sum_{k=1}^{n} c_{ki}}$$
, $i = 1 \dots n$

	1	2	3	4	5	Sum
1	0	16	11	15	7	49
2	21	0	14	15	9	59
3	26	23	0	26	12	73
4	22	22	11	0	13	68
5	30	28	25	24	0	107

	1	2	3	4	5	Becker
1	0	16	11	15	7	0.5
2	21	0	14	15	9	0.6
3	26	23	0	26	12	1.4
4	22	22	11	0	13	1.6
5	30	28	25	24	0	2.6

Методы локального поиска

Restricted Insert Neighbourhood

Окрестности

Вставка

Обмен

Реверс

$$\sum_{z=1}^{i-1} ig(b_{\sigma_z'k} - b_{k\sigma_z'} ig) < 0$$
 или $\sum_{z=i+1}^n ig(b_{\sigma_z'k} - b_{k\sigma_z'} ig) > 0$

Исходная матрица

Матрица ограничений R

Алгоритм великого потопа

Пороговый алгоритм

Параметры:

Начальный уровень воды

Скорость дождя

Архитектура программного комплекса

Python

Numpy

Pandas

Обзор бенчмарков

Матрицы различных размерностей и свойств

- LOLIB IO матрицы с экономическими данными, МВ матрицы с реальными данных о предпочтениях в голосованиях западногерманского парламента 70-80х годов
- Случайно сгенерированные матрицы матрицы с элементами, равномерно распределенными в заданном диапазоне и матрицы Тайберга

$$c_{ij} = |i - j| * k$$

• xLOLIB — матрицы повышенной размерности. Сложные для определённых классов методов

Размерность

от 44 до 60 и 75

от 100 до 500

от 100 до 1000

Анализ результатов на обобщённых данных

До 100: Greedy Best Improvement и Becker Свыше 100: LocalSearch и GDA

Анализ результатов в МВ и SGB

Becker Opt быстр но нестабилен

Жадные алгоритмы в датасете IO

- Look Ahead крайне затратен по времени
- Basic, Random, First низкая точность

Заключение

- Проведен сравнительный анализ жадных методов и их модификаций, эвристик Беккера в стандартном и оптимизированном вариантах, локального поиска и метаэвристики великого потопа для задачи линейного упорядочения
- 2. Продемонстрирована способность находить решения, близкие к оптимальному (в пределах 5% от известного оптимума или лучшего найденного), для экземпляров практически любого размера за приемлемое время
- 3. Лучший результат для задач малых размерностей (<100) показал жадный конструктивный метод наилучшей последовательной вставки
- 4. Для задач повышенной размерности лидером оказался алгоритм великого потопа

Спасибо за внимание!