

FFT Implementation

Muhammed Adel Ahmed El-Sayed

Agenda

- ▶ Introduction
- ► FFT Architecture
- ▶ System Modeling
- ▶ RTL Design
- ▶ Design Verification
- ► FPGA Implementation
- ► ASIC Implementation

Introduction

FFT (Fast Fourier Transform) is an efficient algorithm that computes the Discrete Fourier Transform (DFT)

much faster than direct calculation.

Why FFT rather than DFT?

- ► Speed
- ► Efficiency
- Scalability

Key Statistics

For N = $1024 \rightarrow FFT$ is $\sim 85x$ faster

For N = $4096 \rightarrow FFT$ is $\sim 341x$ faster

Complexity Improvement: $O(N^2) \rightarrow O(N \log N)$

Computational Operations Required

Relative Execution Time

FFT Architecture

FFT Architecture

5

Algorithm

► Radix-2 Decimation in Time (DIT) based on the Cooley-Tukey algorithm.

Features

- ► Fully Pipelined: 3-stage pipeline for high throughput.
- ► FFT with 8 points each 16-bit width
- ► Fixed-Point Arithmetic
- \triangleright Complexity: $O(8 \log_2(8))$

function y = fft trans(x in,T)

► FFT Core isolated

```
% Input: x_in - 1x8 complex vector
   % Output: y - 1x8 complex vector (FFT result)
   x_in = cast(x_in, 'like', T.x);
   % STAGE 1: Bit-reversal and first butterfly operations
   % Bit-reverse input ordering: [0,4,2,6,1,5,3,7]
   x_stage1_in = cast([x_in(1), x_in(5), x_in(3), x_in(7), ...
                       x in(2), x in(6), x in(4), x in(8)], 'like', T.x stage1 in);
   % First stage butterflies (twiddle factor W^0 = 1)
   x_stage1_out = cast(complex(zeros(1, 8)), 'like', T.x_stage1_out);
   x stage1 out(1) = cast(x stage1 in(1) + x stage1 in(2), 'like', T.x stage1 out); % x0 + x4
   x_stage1_out(2) = cast(x_stage1_in(1) - x_stage1_in(2), 'like', T.x_stage1_out); % x0 - x4
   x stage1 out(3) = cast(x stage1 in(3) + x stage1 in(4), 'like', T.x stage1 out); % x2 + x6
   x_stage1_out(4) = cast(x_stage1_in(3) - x_stage1_in(4), 'like', T.x_stage1_out); % x2 - x6
   x stage1 out(5) = cast(x stage1 in(5) + x stage1 in(6), 'like', T.x stage1 out); % x1 + x5
   x_stage1_out(6) = cast(x_stage1_in(5) - x_stage1_in(6), 'like', T.x_stage1_out); % x1 - x5
   x stage1 out(7) = cast(x stage1 in(7) + x stage1 in(8), 'like', T.x stage1 out); % x3 + x7
   x stage1 out(8) = cast(x stage1 in(7) - x stage1 in(8), 'like', T.x stage1 out); % x3 - x7
   % STAGE 2: Apply twiddle factors W^0, W^2 = -1
   x_stage2_out = cast(complex(zeros(1, 8)), 'like', T.x_stage2_out);
   x_stage2_out(1) = cast(x_stage1_out(1) + x_stage1_out(3), 'like', T.x_stage2_out); % W^0 = 1
   x_stage2_out(2) = cast(x_stage1_out(2) + cast(x_stage1_out(4) * cast(-1/j, 'like', T.x_stage2_out), 'like', T.x_stage2_out), 'like', T.x_stage2_out); % W^2 = -j
   x stage2 out(3) = cast(x stage1 out(1) - x stage1 out(3), 'like', T.x stage2 out); % W^0 = 1
   x_stage2_out(4) = cast(x_stage1_out(2) - cast(x_stage1_out(4) * cast(-1/j, 'like', T.x_stage2_out), 'like', T.x_stage2_out), 'like', T.x_stage2_out); % W^2 = -j
   x stage2 out(5) = cast(x stage1 out(5) + x stage1 out(7), 'like', T.x stage2 out); % W^0 = 1
   x_stage2_out(6) = cast(x_stage1_out(6) + cast(x_stage1_out(8) * cast(-1/j, 'like', T.x_stage2_out), 'like', T.x_stage2_out), 'like', T.x_stage2_out); % W^2 = -j
   x_stage2_out(7) = cast(x_stage1_out(5) - x_stage1_out(7), 'like', T.x_stage2_out); % W^0 = 1
   x_stage2_out(8) = cast(x_stage1_out(6) - cast(x_stage1_out(8) * cast(-1/j, 'like', T.x_stage2_out), 'like', T.x_stage2_out), 'like', T.x_stage2_out); % W^2 = -j
   % Compute twiddle factors as doubles
   W1d = exp(-1j * 2 * pi * 1 / 8);
   W2d = exp(-1j * 2 * pi * 2 / 8);
   W3d = exp(-1j * 2 * pi * 3 / 8);
   % Then cast to fixed-point
   W1 = cast(W1d, 'like', T.W1);
   W2 = cast(W2d, 'like', T.W2);
   W3 = cast(W3d, 'like', T.W3);
   y = cast(complex(zeros(1, 8)), 'like', T.y);
   y(1) = cast(x_stage2_out(1) + x_stage2_out(5), 'like', T.y); % W^0 = 1
   y(2) = cast(x_stage2_out(2) + cast(x_stage2_out(6) * W1, 'like', T.y), 'like', T.y); % W^1
   y(3) = cast(x_stage2_out(3) + cast(x_stage2_out(7) * W2, 'like', T.y), 'like', T.y); % W^2 = -j
   y(4) = cast(x stage2 out(4) + cast(x stage2 out(8) * W3, 'like', T.y),
                                                                           'like', T.y); % W^3
   y(5) = cast(x stage2 out(1) - x stage2 out(5), 'like', T.y); % W^0 = 1
   y(6) = cast(x_stage2_out(2) - cast(x_stage2_out(6) * W1, 'like', T.y), 'like', T.y); % W^1
   y(7) = cast(x stage2 out(3) - cast(x stage2 out(7) * W2, 'like', T.y), 'like', T.y); % W^2 = -j
   y(8) = cast(x stage2 out(4) - cast(x stage2 out(8) * W3, 'like', T.y), 'like', T.y); % W^3
end
```

Outcomes

- Verified FFT algorithm
- Fixed-Point appropriate sizing

First Stage

Second Stage

Third Stage

24 August 2025 ©2022 Analog Devices, Inc.


```
% TEST INPUTS - Generate random complex input
  % DESTGN PARAMETERS
                                                                                     x_real = cast(randn(L, N), 'like', T.x_real);
  L = 50; % Number of test cases
                                                                                     x imag = cast(randn(L, N), 'like', T.x_imag);
  N = 8; % FFT size
                                                                                     x = cast(x real + cast(1j * x imag, 'like', T.x), 'like', T.x);
  nSeeds = 50; % Number of random seeds
% Write test cases from first seed to file
fprintf('Writing test cases from seed 1 to file...\n');
for test case = 1:L
   % Write each test case as a line with real and imaginary parts
   line str = '';
                                                                                         if seed == 1
   for n = 1:N
                                                                                          buildInstrumentedMex fft_trans -args {x(seed, :) , T}
      if n == 1
         line_str = sprintf('%.6f+%.6fj', real(x(test_case, n)), imag(x(test_case, n)));
         line str = sprintf('%s, %.6f+%.6fj', line str, real(x(test case, n)), imag(x(test case, n)));
      end
   fprintf(test cases file, '%s\n', line str);
end
                                                                                               % VERIFY RESULTS against MATLAB's built-in FFT
                                                                                                 test_errors = zeros(L, 1);
                                                                                                 test passed = true;
                                                                                                 signal_power_total = 0;
                                                                                                 noise_power_total = 0;
% 8-POINT RADIX-2 FFT ALGORITHM (3 stages)
                                                                                               for test_case = 1:L
% Initialize output arrays
                                                                                                 y_expected = fft(double(x(test_case, :)));
y = cast(zeros(L, N), 'like', T.y);
                                                                                                 error vector = y(test case, :) - y expected;
for test case = 1:L
                                                                                                 error_magnitude = abs(mean(error_vector));
% Apply our custom 8-point FFT function
                                                                                                 test_errors(test_case) = error_magnitude;
y(\text{test case}, :) = \text{fft trans mex}(x(\text{test case}, :),T);
end
```


Name	Туре	Size	Class	DT Mode	Signednes	WL	FL	Proposed Signednes		Propose FL
у	Output	1 × 8	complex embedded.fi		Signed	16	11			
▶ T	Input	1 × 1	struct							
x_in	Input	1 × 8	complex embedded.fi		Signed	16	12			
W1	Local	1 × 1	complex embedded.fi		Signed	16	15			
W1d	Local	1 × 1	complex double					Signed	32	31
W2	Local	1 × 1	complex embedded.fi		Signed	16	15			
W2d	Local	1 × 1	complex double					Signed	32	31
W3	Local	1 × 1	complex embedded.fi		Signed	16	15			
W3d	Local	1 × 1	complex double					Signed	32	31
x_stage1_in	Local	1 × 8	complex embedded.fi		Signed	16	12			
x_stage1_out	Local	1 × 8	complex embedded.fi		Signed	16	12			
x_stage2_out	Local	1 × 8	complex embedded.fi		Signed	16	11			

case 'FxPt'
 T.x_real = fi([], 1, 4 + 12, 12);
 T.x_imag = fi([], 1, 4 + 12, 12);
 T.x = fi([], 1, 4 + 12, 12);
 T.x_stage1_in = fi([], 1, 4 + 12, 12);
 T.x_stage1_out = fi([], 1, 4 + 12, 12);
 T.x_stage2_out = fi([], 1, 5 + 11, 11);
 T.W1 = fi([], 1, 1 + 15, 15);
 T.W2 = fi([], 1, 1 + 15, 15);
 T.W3 = fi([], 1, 1 + 15, 15);
 T.y = fi([], 1, 5 + 11, 11);

► Seeds passed: 50/50 (100.0%)

► Seeds failed: 0/50 (0.0%)

▶ Overall maximum error: 4.88e-04

▶ Overall mean error: 5.12e-05


```
Writing test cases from seed 1 to file...

Writing test outputs from seed 1 to file...

Seed 1: All 50 test cases passed! Max error: 4.88e-04, Mean error: 5.86e-05, SQNR: 78.3 dB

Seed 2: All 50 test cases passed! Max error: 4.88e-04, Mean error: 5.86e-05, SQNR: 78.1 dB

Seed 3: All 50 test cases passed! Max error: 4.88e-04, Mean error: 4.88e-05, SQNR: 78.2 dB

Seed 4: All 50 test cases passed! Max error: 4.88e-04, Mean error: 2.93e-05, SQNR: 78.4 dB

Seed 5: All 50 test cases passed! Max error: 4.88e-04, Mean error: 2.93e-05, SQNR: 78.2 dB

Seed 6: All 50 test cases passed! Max error: 4.88e-04, Mean error: 3.91e-05, SQNR: 78.2 dB

Seed 7: All 50 test cases passed! Max error: 4.88e-04, Mean error: 9.77e-06, SQNR: 78.5 dB
```

Seed 8. All 50 test cases massed! May error: 4 88e-04 Mean error: 6 84e-05 SONR: 78 1 dB

©2022 Analog Devices, Inc. 24 August 2025

Running FFT error analysis for 50 seeds...

10

RTL Design

RTL Design

12

RTL Design

fft_FirstStage

fft_SecondStage

fft_ThirdStage

13

Message Summary

nessage of	allilla y	
Severity	Non-Waived	Waived
FATAL	0	0
ERROR	0	0
WARNING	4	0
TNFO	2	0

Project	Namo	spyglass-1
Project	wame	Spygrass-r

Goal Name : lint/lint_abstract : default_scenario Scenario Name : fft_8point_top Top

Message Summary

Non-Waived	Waived
0	0
0	0
0	0
3	0
	0 0 0

©2022 Analog Devices, Inc.

Synopsys SpyGlass

lint/rtl_lint

fft_8point_top

15

-3.346191+1.426758j, -0.407715+0.640625j, 2.898926+-3.896973j, -0.403809+-1.485840j, 2.315430+-4.730957j, 2.539062+-0.273926j,

16

Test inputs from MATLAB

```
-0.648926+0.151855j, -0.558105+-1.632568j, 0.365479+-0.325928j,
  1.181152+0.816406j, -0.028564+-0.851807j, -1.097168+0.283447j,
  -0.758545+0.577881j, -1.476318+1.077393j, 1.930176+-0.011475j,
  -1.109619+1.063965j, 0.258789+-0.440186j, 0.623047+0.036377j, 1
  -0.845459+-0.803223j, -2.018799+3.327881j, 0.657227+-1.098389j,
                                                                                                                                                         # === Test Summary ===
                                                                                           DUT
  -0.572754+0.798584j, 0.199707+0.103760j, -1.463379+0.375732j, -
                                                                                                              Actual Output
  -0.558594+-0.315186j, 0.425781+-0.773193j, 0.854004+0.170166j,
                                                                                                                                                         # Total Test Cases: 50
                                                                                  fft_8point_top
                                                                                                                                   comparison
  0.178467+1.186035j, -1.270020+0.677490j, 0.580566+1.139648j, 1.
  -0.196777+0.084961j, -0.485107+-0.696777j, -0.918701+1.657471j,
                                                                                                                                                         # Total Errors: 0
  0.586426+-1.425049, 0.594238+-0.075439, 0.794922+0.338135, -
  -0.851807+-1.454102j, -0.276367+0.026123j, 0.517578+-1.819092j,
                                                                                                                                                         # ALL TESTS PASSED!
  0.800293+-1.809326j, -1.857666+2.005615j, 0.494629+-0.802246j,
  -1.509521+-1.462891j, 0.040771+-1.129639j, 0.663818+-0.574463j,
  0.875977+-0.138184j, 0.282959+0.654297j, -0.710205+-0.234375j,
                                                                                                                                                       Verified RTL <
  -0.242676+-1.005615j, 0.063477+1.419189j, -1.306885+-0.305176j,
  0.166748 + -2.733398j, 0.433350 + -0.825684j, -0.741699 + 1.639404j,
  -1.965332+1 692383+ a 122852+a a53223+ -1 167773+-1 897217j,
        Test outputs from MATLAB
-1.391602+0.130371j, -1.073730+0.933594j, -3.002930+-0.206543j,
-0.768066+-2.215332j, 0.014160+2.951660j, 0.687988+-1.740234j,
                                                                                                 Expected Output
2.857910+4.188965j, -5.115723+-1.055176j, 0.695312+1.236328j,
5.167969+-0.250977j, -1.511230+3.386719j, -6.001953+2.061523j,
-2.488281+0.628418j, -2.189453+3.493164j, 4.189941+-0.661133j,
1.329590+4.616699j, 0.064941+1.900391j, 2.053711+0.855957j, -0.
0.216309+-2.314453j, 2.073730+-4.678223j, -1.747070+-0.461426j,
0.310059+3.907227j, 0.912109+-0.804199j, 0.315430+3.882324j, 1.
-4.809570+3.811523j, 1.628906+-1.684570j, -0.211426+-3.821289j,
-1.508789+-1.223145j, 1.875000+-4.049316j, 3.814941+-4.488281j,
-5.193848+-3.022949j, -2.836426+-2.666016j, -2.504395+-0.967285
1.225098+3.851562j, -5.668945+-2.342285j, 5.317871+-1.139160j,
1.258301+0.124023j, -4.170898+-3.243652j, -3.205078+1.403320j,
-1.843262+0.449219j, 1.953613+0.048340j, 0.339844+0.205078j, 2.
```


17

18

Code Coverage

=== File: fft_8point_top.v	File: fft_8point_top.v File: fft_8point_top.v Enabled Coverage			*	Active	Hits	Misses % Covered		
Statement Coverage: Enabled Coverage	Active	Hits	Misses %	Covered				 LIT22G2 V	
Stmts	16	16	0	100.0	Branches	9	8	1	88.8
ondition Coverage: Enabled Coverage	Active	Covered	Misses %	Covered	Toggle Coverage: Enabled Coverage	Active	Hits	Misses %	Covered
FEC Condition Terms	2	1	1	50.0	Toggle Bins	2066	2065	1	99.9

20

Design Elaboration Artix-7 AC701 Evaluation Platform (xc7a200tfbg676-2)

275 cells

261 I/O ports

1189 Net

21

Utilization Design Information

```
| Ref Name | Used | Functional Category |
| LUT2 | 489 |
                    LUTI
IFDCE
       | 389|
                 Flop & Latch
ICARRY4 | 170 |
                   CarryLogic |
| IBUF | 131|
                   101
IOBUF
        l 130 l
                    101
LLUT1
         63 l
                   LUT
ILUT4
         55 l
                   LUTI
LLUT3
         33 l
                   LUTI
ILUT5
                   LUTI
ILUT6
                   LUTI
IBUFG
                  Clock
```

Timing summary

Max frequency: 143 MHz

Setup		Hold	Pulse Width		
Worst Negative Slack (WNS):	0.008 ns	Worst Hold Slack (WHS):	0.127 ns	Worst Pulse Width Slack (WPWS):	3.000 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	262	Total Number of Endpoints:	262	Total Number of Endpoints:	390

All user specified timing constraints are met.

22

Implemented Design

ASIC Implementation

ASIC Implementation - Openlane

24

Timing Results

Max frequency: 118 MHz

Parameter	Post-Routing
Setup Slack (ns)	0.45
Hold Slack (ns)	0.11
TNS (Total Negative Slack)	0.00

Design Area

Parameter	Post-Routing
Design Area (µm²)	197,894
Utilization (%)	5%

Power Results

Parameter	Post-Routing
Total Power (Watts)	0.295
Internal Power (%)	38.1%
Switching Power (%)	61.9%
Sequential Logic Power (%)	8.9%
Combinational Logic Power (%)	91.1%

ASIC Implementation - Openlane

Max frequency: 118 MHz

PDKs: sky130A 130nm

Std cell library: sky130_fd_sc_hd

ASIC Implementation - ICC

26

Timing Results

Max frequency: 1 GHz

Parameter	Post-Routing
Setup Slack (ns)	0.00
Hold Slack (ns)	0.01
TNS (Total Negative Slack)	0.00

Design Area

Parameter	Post-Routing
Design Area (µm²)	20,360
Utilization (%)	30%

Power Results

Parameter	Post-Routing
Total Power (Watts)	13.45 mW
Internal Power (%)	8.5285 mW
Switching Power (%)	14.5331 mW
Sequential Logic Power (%)	4.8 mW
Combinational Logic Power (%)	8.6519 mW

ASIC Implementation - ICC

Max frequency: 1 GHz

PDKs: Nangate 45nm

Std cell library: NangateOpenCellLibrary

ASIC Implementation

28

Timing Results

Parameter	Openlane	ICC
Max Frequency	118 MHz	1 GHz
Setup Slack	0.45	0.00
Hold Slack	0.11	0.01
TNS (Total Negative Slack)	0.00	0.00

Design Area

Parameter	Openlane	ICC
Design Area	197,894	20,360
Utilization	5%	30%

Power Results

Parameter	Openlane	ICC
Total Power	295	13.45
Internal Power	112.5	8.5285
Switching Power	182.6	14.5331
Sequential Logic Power	26.3	4.8
Combinational Logic Power	268.7	8.6519

References

29

DERIVATION OF THE RADIX-2 FFT ALGORITHM | Chapter Four. The Fast Fourier Transform

Can anyone explain to me the concept of DFT and FFT please | Forum for Electronics

Thank You!