Računarstvo i automatika Matematička analiza 2, Predispitne obaveze 1 4. februar 2023.

Student:

Sve odgovore obrazložiti.

1. (2 poena) Pokazati da red $\sum\limits_{n=3}\frac{(-1)^{n-1}2^{n-2}}{3^{n-3}}$ konvergira i naći njegovu sumu.

2. (4 poena) Da li je $\sum_{n=0} a_n = 1 + 0 + \frac{1}{2^2} + 0 + \frac{1}{2^4} + 0 + \frac{1}{2^6} + \dots$ alternativni red? Da li se njegova konvergencija može ispitati primenom Lajbnicove teoreme (navesti teoremu)? Ispitati konvergenciju datog reda.

3. (2 poena) Ispitati apsolutnu konvergenciju reda $\sum\limits_{n=1}(-1)^n\sin\frac{1}{n}.$

4. (1 poen) Odrediti $\sum\limits_{n=0}^{\infty}\frac{(-1)^n9^n}{(2n)!}.$

5. (2 poena) Razviti u Tejlorov red u tački 1 funkciju $f(x) = \ln(2-x)$. Gde dobijeni red konvergira?

6. (2 poena) Promeniti redosled integracije u ponovljenom integralu $\int_{-1}^{1} dx \int_{0}^{2-x^2} f(x,y)dy$.

7. (3 poena) Izračunati $\iint\limits_{\sigma} dx dy \text{ ako je } \sigma = \{(x,y) \in \mathbb{R}^2 : 2x^2 + 2y^2 \leq 6x, 2x + 2y \geq 3, y \geq 0\}.$

8. (4 poena) Da li na integral $I=\int\limits_L \frac{x}{x^2+y^2}dx$, gde je putanja $L=\{(x,y)\in\mathbb{R}^2:x^2+y^2=2\}$ pozitivno orijentisana, može da se primeni Grinova teorema (navesti teoremu)? Izračunati I.

Računarstvo i automatika, Matematička analiza 2, Predispitne obaveze 2 04. februar 2023.

Student:

Sve odgovore obrazložiti.

1. (2 poena) Ako je f(z) = P(x,y) + iQ(x,y), z = x + iy, diferencijabilna funkcija, izraziti f'(z) preko P_x i P_y .

2. (2 poena) Za funkciju $f(z)=e^z=e^{x+iy}$ odrediti Ref=P i Imf=Q, i naći f'(z) koristeći prethodni zadatak.

3. (3 poena) Preslikavanjem $w=e^z$ preslikati skup $G=\{z=x+iy\in\mathbb{C}:y=\pi/2,x<0\}.$

4. (3 poena) Odrediti geometrijsko mesto skupa tačaka $P=\{z\in\mathbb{C}:z(1-i)+\overline{z}(1+i)=2\}$. Skicirati P u kompleksnoj ravni.

5. (3 poena) Izračunati $I=\int\limits_L(Rez+Imz)dz$ ako je putanja $L=\{z=x+iy\in\mathbb{C}:x+y=2,x\geq 0,y\geq 0\}$ orijentisana od tačke A(0,2)?

6. (3 poena) Da li postoji zatvorena pozitivno orijentisana putanja L u kompleksnoj ravni takva da je $\int_L \frac{z}{(z+1)^2} dz = 3$?

7. (3 poena) Funkciju $f(z)=(z^2+2)(\frac{1}{z}+\frac{1}{z^3})$ razviti u Loranov red u tački $\alpha=0$. Gde dobijeni red konvergira? Odrediti Res[f(z),0].

- 8. (3 poena) Da li je funkcija $f(x) = \begin{cases} \sin \frac{1}{x} & x \in [-\pi, \pi] \setminus \{0\} \\ 0 & x = 0 \end{cases}$ monotona po delovima nad $[-\pi, \pi]$? Da li je neprekidna po delovima nad istim intervalom?
- 9. (3 poena) Za koje $b \in \mathbb{R}$ integral $\int_{b-i\infty}^{b+i\infty} \frac{e^{st}}{s^2-5} ds$ konvergira? Za takvo b, odrediti vrednost ovog integrala.