Optimal Control

Wintersemester 2025/26

Dozent: Prof. Dr. Andrea Iannelli

Contents

0) Introduction	1
1	1 Nonlinear Programming	3
	1.1 Unconstrained Problems	 8
	1.2 Constrained Problems	 12
2	2 Calculus of Variations	18
	2.1 Introduction to CV (Calculus of Variations)	 19

0 Introduction

$$\dot{x} = f(t, x, u), \quad x(t_0) = x_0, \quad t \in [t_0, t_f]$$

$$f: [t_0, t_f] \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$$

$$x = \text{state}, \quad u = \text{input}$$

Initial Value Problem (IVP)

Given $x_0, u(\cdot)$ we can compute $x(\cdot)$ functions of time \rightarrow

When is this possible? It depends on f.

Lemma 0.1 (Sufficient conditions)

Existence & Uniqueness of solutions of ODEs.

Assume that

- f is piecewise continuous in t and u
- f is globally Lipschitz in x

$$\exists k(t, u) \text{ s.t. } ||f(t, x_1, u) - f(t, x_2, u)|| \le k(t, u)||x_1 - x_2||, \ \forall x_1, x_2 \in \mathbb{R}^{n_x}$$

Then $x(\cdot)$ exists for all t and is unique.

Remarks

- Lipschitz continuous ⇒ continuous, but not the converse
- \sqrt{x} is continuous but not Lipschitz, $\dot{x} = \sqrt{x}$ does not have a unique solution
- Continuously differentiable $(\mathcal{C}^1) \Rightarrow \text{locally Lipschitz continuous } \forall x_1, x_2 \in \mathcal{X} \subset \mathbb{R}^{n_x}$
- Locally Lipschitz continuous x guarantees existence & uniqueness for small enough times

In this course we will assume $f \in \mathcal{C}^1$ and implicitly assume that t_f is chosen such that $x(\cdot)$ exists in $[t_0, t_f]$.

We do not need to worry about existence & uniqueness!

Goal in Optimal Control: Design u such that

- 1. $u(t) \in \mathcal{U}(t), x(t) \in \mathcal{X}(t) \quad \forall t \in [t_0, t_f], \quad \mathcal{X} \subseteq \mathbb{R}^{n_x}, \ \mathcal{U} \subseteq \mathbb{R}^{n_u}$ sets defining constraints on u&x
 - ⇒ Admissible input/state trajectories
- 2. The system behaves optimally according to

$$J(u) = \int_{t_0}^{t_f} \underset{\uparrow}{l}(t, x(t), u(t)) dt + \varphi(t_f, x(t_f))$$

 $\begin{array}{lll} {\rm Cost\ function} & {\rm running\ cost} & {\rm terminal\ cost} \\ \Rightarrow {\rm optimal\ behaviour} \end{array}$

Formally, we can state the goal as follows:

Find an admissible input u^* which causes the dynamics to follow an admissible trajectory x^* which minimizes J, that is

$$\int_{t_0}^{t_f} l(t, x^{\star}(t), u^{\star}(t)) dt + \varphi(t_f, x^{\star}(t_f)) \le \int_{t_0}^{t_f} l(t, x(t), u(t)) dt + \varphi(t_f, x(t_f))$$

 \forall admissible x, u

Examples of cost functions

1) Minimum-time problem

Goal: transfer the system from x_0 to a set S in the minimum time

$$J = t_f - t_0 = \int_{t_0}^{t_f} dt \qquad (l = 1, \varphi = 0)$$
$$x(t_f) \in \mathcal{S}$$

Note: t_f is also a decision variable! The unknowns are (u, t_f) .

2) Minimum control-effort problem

$$J = \int_{t_0}^{t_f} ||u(t)||^2 dt$$
$$x(t_f) \in \mathcal{S}$$

3) Tracking problem

$$J = \int_{t_0}^{t_f} (x(t) - r(t))^T Q(x(t) - r(t)) dt$$

Q>0 (positive definit matrix: symmetric & all eigenvalues positive) r(t) given signal

1 Nonlinear Programming

Nonlinear Programs (NLP) are general <u>finite-dimensional</u> optimization problems:

$$\min_{x} f(x)$$

s.t.
$$g(x) \le 0$$
, $h(x) = 0$

 $f: \mathbb{R}^n \to \mathbb{R}$, objective function

 $g: \mathbb{R}^n \to \mathbb{R}^{n_g}$, inequality constraints

 $h: \mathbb{R}^n \to \mathbb{R}^{n_h}$, equality constraints

Feasible set:

$$D = \{ x \in \mathbb{R}^n \mid g(x) \le 0, \ h(x) = 0 \}$$

 $\bar{x} \in D$ feasible point

Definition 1.1 (Global, local Minimizers)

 $x^* \in \mathcal{D}$ Global Minimizer of the NLP if

$$f(x^*) \le f(x) \quad \forall x \in \mathcal{D}$$

 $f(x^*)$ is the <u>Global Minimum</u> (or Minimum)

Nomenclature: x^* is also called (optimal) solution, $F(x^*)$ is optimal value x^* is a strict global minimizer if $f(x^*) < f(x) \quad \forall x \in \mathcal{D}$ $x^* \in \mathcal{D}$ Local Minimizer if

$$\exists \varepsilon > 0$$
, s.t. $f(x^*) \leq f(x) \quad \forall x \in B_{\varepsilon}(x^*) \cap \mathcal{D}$

$$B_{\varepsilon}(x) := \{ y \mid ||x - y|| \le \varepsilon \}$$
 $||\cdot|| : \mathbb{R}^n \to \mathbb{R}_{>0}$ any norm in \mathbb{R}^n

Strict local Minimizer if inequality holds strictly

Solving an NLP boils down to finding global or local minimizers. Does a solution always exist? No.

Definition 1.2 (infimum)

Given $S \subseteq \mathbb{R}$, $\inf(S)$ is the greatest lower bound of S:

- $z \ge \inf(\mathcal{S}), \quad \forall z \in \mathcal{S}$ (lower bound)
- $\forall \bar{\alpha} > \inf(\mathcal{S}) \quad \exists z \in \mathcal{S} \text{ s. t. } \bar{\alpha} > z \quad \text{(greatest bound)}$

Example $S = [-1, 1], -50 = \inf(S)$? \rightarrow No, $\inf(S) = -1$

- Analogous: $\sup(\mathcal{S})$ is smallest upper bound.
- inf and sup always exist if $S \neq \emptyset$
- $\inf(\mathcal{S})$ does not have to be an element of \mathcal{S}
- If S unbounded from below $\rightarrow \inf(S) = -\infty$
- $\inf([a,b]) = \inf((a,b]) = a$

Connections with NLP?

$$f:\mathcal{D} o\mathbb{R}$$
 - $ar{f}=\inf f(x)$ (similar to)

$$\inf(\underbrace{f(x) \mid x \in \mathcal{D}}_{\mathcal{S}}) := \bar{f} = \inf_{x \in \mathcal{D}} f(x)$$
 (similar to NLP)

Whenever NLP has solution, then NLP ist equivalent to this, but $\nexists x^* \in \mathcal{D}$ s. t. $f(x^*) = \bar{f} \rightarrow \text{infimum exists, but not minimum}$

Examples
$$f(x) = e^{-x}$$
, $\mathcal{D} = [0, \infty)$, $\inf(\mathcal{S}) = 0$ $f(x) = x$, $\mathcal{D} = \mathbb{R}$, $\inf(\mathcal{S}) = -\infty$, min doesn't exist!

When does the infimum coincide with the minimum?

Theorem 1.1 (Extreme value problem) (Weierstrass Theorem)

 $f: D \to \mathbb{R}, \ \mathcal{D} \subseteq \mathbb{R}^n$

If:

- $f \in \mathcal{C}$ on \mathcal{D}
- \mathcal{D} is compact
- $\mathcal{D} \neq \emptyset$

Then f attains a minimum on \mathcal{D} .

Definition 1.3 (Continuous function)

 $f: \mathcal{D} \to \mathbb{R}$ is continuous at $x \in \mathcal{D}$ if

$$\forall \epsilon > 0 \exists \delta > 0 \text{ s. t. } ||x - x'|| < \delta \implies ||f(x) - f(x')|| < \epsilon$$

If f is continuous $\forall x \in \mathcal{D}$ then f is continuous on $\mathcal{D} \to f \in \mathcal{C}$

Implication for NLP: If f is C on D and D is compact and non-empty then [NLP] has a solution!

- $\mathcal{D} \subseteq \mathbb{R}^n$: in finite-dimensional spaces: compact = closed and bounded Not compact:
 - -(a,b] (not closed)
 - $-(-\infty, b]$ (unbounded)

Compact set:

$$- [a, b] \quad -\infty < a < b < \infty$$

Warning: \mathcal{D} infinite dimensional (e.g. function space) then compact \rightleftharpoons bounded and closed

Theorem 1.1 is restrictive e.g. $f(x) = x^2, \mathcal{D} = (-\infty, \infty)$ has unique minimum

• Notation convention: Technically it is "wrong" to write

$$\min_{x \in \mathcal{D}} f(x)$$

more compact is:

$$\label{eq:minimize} \underset{x \in \mathcal{D}}{\operatorname{minimize}} \, f(x) \quad \text{or} \quad \inf_{x \in \mathcal{D}} \! f(x)$$

Goal of the Chapter: characterize necessary and sufficient conditions for x^* to be global minimizer of NLP.

Convexity

Definition 1.4 (Convex sets & functions)

• A set $C \subseteq \mathbb{R}^n$ is <u>convex</u> (cvx) if $\forall x, y \in C$

$$\{z \mid z = \lambda x + (1 - \lambda)\lambda, \lambda \in [0, 1]\} \subseteq C$$

• Given a cvx set C, a function $f:C\to\mathbb{R}$ is cvx if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in C, \quad \lambda \in (0, 1)$$

• f is strictly cvx if the inequality holds strictly.

Remarks

• The definition extends to vector functions $f: C \to \mathbb{R}^n$ for convex f_i

•
$$f: C_1 \times C_2 \to \mathbb{R}$$

 $f(x,y)$ is jointly cvx, in x,y if $z:=\begin{bmatrix} x \\ y \end{bmatrix}$, $f(z)$ is in cvx in z .

Example
$$f(x,y)=x^2+y^2,\,z=\begin{bmatrix}x\\y\end{bmatrix}\to f(z)=z_1^2+z_2^2$$

Definition 1.5

An NLP is a convex program if

- f is convex function,
- \mathcal{D} is convex set.

Lemma 1.1

Let x^* be a local minimizer of cvx program. Then x^* is also global minimizer.

Proof: try as an erxercise

Minimizers of convex NLP form a convex set.

This set might be empty (Convex NLPs not guaranteed to have solution).

<u>However</u>: Unique solution for strictly convex NLPs, if a solution exists.

Lemma 1.2 (First/Second order conditions for convexity)

1. $f: C \to \mathbb{R}$ continuously differentiable on C. Then f is cvx iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \quad \forall x, y \in C$$

$$(\nabla f)_i = \frac{\partial f}{\partial x_i}$$
 is gradient (sometimes f_{x_i})

2. f twice differentiable on C, then f convex iff

$$\nabla_{xx}^2 f(x) \ge 0 \quad \forall x \in C$$

$$(\nabla_{xx}^2)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j} \quad \text{(Hessian)}$$

• $A \ge 0$ means that: $A = A^T$ and pos semi-definite, i. e. all eigenvalues non-negative

- f strictly cvx if $\nabla^2_{xx} f(x) > 0 \quad \forall x \in C$ with A > 0 meaning pos definite and symmetric
- Interpretation: Curvature of function should be non-negative/positive
- For exercises to check convexity, the second condition is generally useful. First condition is useful for proofs.

For $\mathcal{D} = \{x \mid g(x) \leq 0, h(x) = 0\}$ the following holds: If

• h are affine functions (i.e. $h(x) = 0 \Leftrightarrow Ax = b$), • g are convex functions,

then \mathcal{D} is a convex set.

Example $a, b \in \mathbb{R}$

$$\min_{x} f$$
s.t. $x^3 - 1 \le 0$ \leftrightarrow s.t. $x - 1 \le 0$

$$(ax + b)^2 = 0$$
non-convex
non-affine
$$\min_{x} f$$
s.t. $x - 1 \le 0$

$$ax + b = 0$$
convex
affine

Moral to recognize convexity of NLP:

- 1. Use definition of cvx NLP, cvx f, convex \mathcal{D}
- 2. If \mathcal{D} written as equality/inequality-constraints, check g convex/h affine. If not, check further whether the feasible set is cvx or not (e.g. can be written equivalently with cvx g/affine h).

1.1 Unconstrained Problems

$$\mathcal{D} = \mathbb{R}^n$$

Assume throughout that $f \in \mathcal{C}^1$ (continuously differentiable).

Definition 1.6 (Descent Direction)

 $d \in \mathbb{R}^n$ is a descent direction for f at $\bar{x} \in \mathbb{R}^n$ if

$$\exists \delta > 0 \quad \text{s.t.} \quad f(\bar{x} + \lambda d) < f(\bar{x}) \quad \forall \lambda \in (0, \delta).$$

 $F(\bar{x})$: Cone of decent directions

Set of all descent directions of f at \bar{x}

A set $K \subseteq \mathbb{R}^n$ is a cone if it contains the full ray through any point in the set.

K cone if $\forall x \in K$ and $\rho \ge 0$, $\rho x \in K$

This is a geometric characterization of descent direction. It gives us a geometric condition for x^* to be a local minimizer.

Lemma 1.3 (Geometric Condition for local minimum)

 x^* is a local minimizer iff

$$\mathcal{F}(x^{\star}) = \emptyset.$$

We want an algebraic condition to be able to compute or look for x^* .

Lemma 1.4 (Algebraic first-order characterization of \mathcal{F})

If $\nabla f(\bar{x}) \neq 0$, then

$$\mathcal{F}_0(\bar{x}) = \{ d \mid \nabla f(\bar{x})^T d < 0 \} = \mathcal{F}(\bar{x}).$$

Otherwise

$$\mathcal{F}_0(\bar{x}) \subseteq \mathcal{F}(\bar{x}).$$

Proof: try Taylor-series expansion of f at \bar{x}

Graphical interpretation:

 ∇f forms angles greater or equal than 90° with <u>all</u> descent directions.

Lemma 1.5 (First-order necessary condition for local minimum)

If x^* is a local minimizer, then

$$\underbrace{\nabla f(x^{\star}) = 0}_{\text{"stationary point"}}.$$

Proof: Contradiction

If $\nabla f(x^*) \neq 0$, then $d = -\nabla f(x^*) \neq 0$. Therefore there exists a descent direction $d \in \mathcal{F}(x^*)$ by Lemma 1.4. Thus $\exists \delta > 0$ s.t. $f(x^* + \lambda d) < f(x^*) \quad \forall \lambda \in (0, \delta)$.

This is a contradiction with the fact, that x^* is a minimizer.

Why only necessary?

It can't be a sufficient condition because in case where $\nabla f(x^*) = 0$ we cannot use Lemma 1.4, e.g. $f_1(x) = -x^2$, $f_2(x) = x^3$, $\nabla f_1(0) = \nabla f_2(0) = 0$.

Lemma 1.6 (second order necessary condition)

Assume f is twice continuously differentiable $f \in \mathcal{C}^2$

$$x^{\star}$$
 local minimizer $\Rightarrow \nabla_{xx}^{2} f(x^{\star}) \geq 0$

Note: the condition on the Hessian of f can be interpreted as a local convexity property (around x^*).

Proof: 2^{nd} order Taylor expansion around x^* in direction $d \in \mathbb{R}^n$:

$$f(x^{\star} + \lambda d) = f(x^{\star}) + \lambda \nabla f(x^{\star})^{T} d + \frac{\lambda^{2}}{2} d^{T} \nabla_{xx}^{2} f(x^{\star}) d + \lambda^{2} \|d\|^{2} \alpha (\lambda d)$$

 $(\rightarrow \alpha(\cdot))$ is a function that is order 1 or higher in λd)

- 1. If x^* is local minimzer $\Rightarrow \nabla f(x^*) = 0$
- 2. Divide by λ^2 :

$$\frac{f(x^* + \lambda d) - f(x^*)}{\lambda^2} = \frac{1}{2} d^T \nabla_{xx}^2 f(x^*) d + ||d|| \alpha(\lambda d)$$

3. $\lambda \to 0$ on the right-hand-side the first term dominates

$$\frac{f(x^{\star} + \lambda d) - f(x^{\star})}{\lambda^2} \approx \frac{1}{2} d^T \nabla_{xx}^2 f(x^{\star}) d$$

4. For x^{\star} is a local minimizer, the left-hand-side must be ≥ 0 for any $d \in \mathbb{R}^n$

$$\Rightarrow$$
 $d^T \nabla^2_{xx} f(x^*) \ge 0 \quad \forall d \quad \Rightarrow \quad \nabla^2_{xx} f(x^*) \ge 0$

Only a necessary condition, because when $\nabla_{xx}^2 f(x^*)$ is singular, we need to use higher-order information.

Generally it is hard to get (global) sufficient conditions. \rightarrow convexity to the rescue!

Lemma 1.7 (First order N&S condition for global minimizers)

Assume f is convex.

$$\exists x^* \text{ s.t. } \nabla f(x^*) = 0 \quad \Leftrightarrow \quad x^* \text{ is a global minimizer}$$

If f is strictly convex, then the minimizer is unique.

Proof: $(\nabla f = 0 \Rightarrow \text{global minimum})$

First order condition for convexity:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \quad \forall x, y \in \mathbb{R}^n$$

Pick $x = x^*$:

$$f(y) \ge f(x^*), \quad \forall y \in \mathbb{R}^n$$

(Other direction holds because of Lemma 1.5)

What if we do not have global convexity?

Lemma 1.8 (Second order sufficient condition for local minimizer)

Assume $f \in \mathcal{C}^2$.

If $\nabla f(x^*) = 0$ and $\nabla^2_{xx} f(x^*) > 0 \implies x^*$ is strict local minimizer.

Proof: Taylor expansion (Similar to Lemma 1.6)

1.2 Constrained Problems

$$\mathcal{D} \subseteq \mathbb{R}^n$$
, $\mathcal{D} = \{x \mid g_i(x) \le 0, i = 1, \dots, n_g \mid h_j(x) = 0, j = 1, \dots, n_h\}$

We assume throughout g_i , h_j are all \mathcal{C}^1 functions.

Definition 1.7 (Tangent vector, tangent cone)

 $p \in \mathbb{R}^n$ is a tangent vector to \mathcal{D} at $\bar{x} \in \mathcal{D}$ if \exists differential curve $\bar{x}(s) : [0, \epsilon) \to \mathcal{D}$ with $\epsilon > 0$ such that $\bar{x}(0) = \bar{x}, \frac{d\bar{x}}{ds}\Big|_{s=0} = p$.

Tangent cone $\mathcal{T}_{\mathcal{D}}(\bar{x})$ to \bar{x} is the set of all tangent vectors

$$\mathcal{T}_{\mathcal{D}}(\bar{x}) := \{ p \mid p \text{ tangent vector to } \mathcal{D} \text{ at } \bar{x} \}$$

Graphical representation:

Set of directions that make us stay feasible (at least infinitesimally)

When it comes to geometric conditions for optimality in constrained problems, we now have 2 sets/2 directions:

- $d \in \mathcal{F}(x) \to \text{descent direction: objective improves}$
- $d \in \mathcal{T}_D(\bar{x}) \to \text{tangent vector: we stay feasible}$

Lemma 1.9 (Geometric condition for local minimizer, $\mathcal{D} \subseteq \mathbb{R}^n$)

 x^* is a local minimizer iff $\mathcal{F}(\bar{x}) \cap \mathcal{T}_{\mathcal{D}}(\bar{x}) = \emptyset$

It is basically says that "any improving direction can't be feasible".

As in the unconstrained case, we want to turn geometric conditions to algebraic ones.

Lemma 1.10 (1st order Nec. condition - semi-algebraic)

If x^* is a local minimizer. Then:

- 1. $x^* \in \mathcal{D}$
- 2. $\frac{\forall p \in \mathcal{T}_{\mathcal{D}}(x^*)}{\text{geometric}}$, it holds $\underline{p^T \nabla f(x^*) \geq 0}$

Proof:

Item $1 \rightarrow \text{feasibility}$

Item 2: Assume there is a p s.t. $p^T \nabla f(x^*) < 0$. Then

$$\exists \text{ curve } \bar{x}(s) \in \mathcal{D} \text{ s.t. } \left. \frac{df(\bar{x})}{ds} \right|_{s=0} = p^T \nabla f(x^*) < 0$$

which would mean that p is descent direction. Contradicts x^* local minimizer.

This is almost a translation of Lemma 1.9 because we replaced $\mathcal{F}(x^*)$ with its <u>algebraic</u> form " $d^T \nabla f(x^*) < 0$ ".

To obtain a fully algebraic test, we need a few more concepts.

Definition 1.8 (Active constraints, active set, regular points)

 $\bar{x} \in \mathcal{D}$

- g_i is active at \bar{x} if $g_i(\bar{x}) = 0$
- $A(\bar{x}) = \{i \mid g_i(\bar{x}) = 0\}$ set of active constraints at \bar{x}
- $\bar{x} \in \mathcal{D}$ is a <u>regular point</u> if $\nabla g_i(\bar{x})$, $i \in \mathcal{A}(\bar{x})$ and $\nabla h_j(\bar{x})$, $j = 1, \ldots, n_h$ are linearly independent.

Lemma 1.11 (Algebraic first-order characterization of target set)

If \bar{x} is regular point. Then

$$\mathcal{T}_{\mathcal{D}}(\bar{x}) = \{ p \mid \nabla h(\bar{x})^p = 0, \ \nabla q_i(\bar{x})^p < 0, \quad \forall i \in \mathcal{A}(\bar{x}) \}$$

where $\nabla h(\bar{x}) := [\nabla h_1(\bar{x}), \dots, \nabla h_{n_k}(\bar{x})] \in \mathbb{R}^{n \times n_h}$.

① can be written equivalently as $\mathcal{T}_{\mathcal{D}}(\bar{x}) = \{p \mid \mathcal{A}(\bar{x})p \geq 0\}$

$$A(\bar{x}) := \begin{bmatrix} \nabla h(\bar{x})^T \\ -\nabla h(\bar{x})^T \\ \vdots \\ -\nabla g_i(\bar{x})^T \\ \vdots \end{bmatrix} \in \mathbb{R}^{(2n_h + |\mathcal{A}(\bar{x})|) \times n}$$

$$\begin{cases} i \in \mathcal{A}(\bar{x}) \\ i \in \mathcal{A}(\bar{x}) \end{cases}$$

In other words, item 2 of Lemma 1.10 can be written as follows:

$$p \in \mathbb{R}^n : \mathcal{A}(x^*)p \ge 0, p^T \nabla f(x^*) < 0$$

still not very tractable?

Farkas Lemma to the rescue:

Lemma 1.12 (Farkas Lemma)

For any matrix $A \in \mathbb{R}^{m \times n}$, vector $b \in \mathbb{R}^n$.

Exactly one of the following holds:

- 1. $\exists y \in \mathbb{R}^m \ y \geq 0$, such that $A^T y = b$
- 2. $\exists p \in \mathbb{R}^m$, such that $A^T p \geq 0$, $p^T b < 0$

Take $A \equiv A(x^*)$ and $b \equiv \nabla f(x^*)$

If we find y satisfying 1., then 2. can't hold \Rightarrow item 2 of Lemma 1.10 is verified \Rightarrow $x^* \in \mathcal{D}$ is a local minimizer.

KTK-conditions just follow from imposing

item 1 of Lemma 1.10 $\rightarrow x^* \in \mathcal{D}$

item 2 of Lemma 1.10 $\rightarrow \exists y \in \mathbb{R}^m, y \geq 0 \text{ s.t. } \mathcal{A}(x^*)^T y = \nabla f(x^*)$

Conceptual summary:

Informal recap:

$$x^*$$
 local minimizer $\Rightarrow x^* \in \mathcal{D}$, $\forall p \in \mathcal{T}_D(x^*)$, $p^T \nabla f(x^*) \ge 0$ \updownarrow (if x^* regular point)

$$\exists y = \begin{bmatrix} \hat{\lambda}_1 \\ \hat{\lambda}_2 \\ \vdots \\ -\nu_i \\ \vdots \end{bmatrix} \} i \in \mathcal{A}(\bar{x})$$

$$y \ge 0 \quad \to A(x^*)^T y = \nabla f(x^*)$$

Let's write down $A^T y = \nabla f$

$$\nabla h(x^{\star})(\hat{\lambda}_1 - \hat{\lambda}_2) - \sum_{i \in \mathcal{A}(x^{\star})} \nabla g_i(x^{\star})\nu_i = \nabla f(x^{\star}), \quad \hat{\lambda}_1, \hat{\lambda}_2, \nu_i \ge 0 : \text{ But } (\hat{\lambda}_1 - \hat{\lambda}_2) \ge 0$$

Equivalently: $\lambda := -(\hat{\lambda}_1 - \hat{\lambda}_2) \in \mathbb{R}^{n_h}$, sign undefined

$$\exists \lambda \in \mathbb{R}^{n_h}, \quad \nu \in \mathbb{R}^{n_g}, \quad \nu \ge 0, \quad \nu_i = 0, \quad i \notin \mathcal{A}(x^*)$$
s.t.
$$\nabla f(x^*) + \nabla h(x^*)\lambda + \nabla g(x^*)\nu = 0$$
with
$$\nabla g(x^*) := \begin{bmatrix} \nabla g_1(x^*) & \nabla g_2(x^*) & \cdots & \nabla g_{n_g}(x^*) \end{bmatrix}$$
and
$$\nabla h(x^*) := \begin{bmatrix} \nabla h_1(x^*) & \nabla h_2(x^*) & \cdots & \nabla h_{n_h}(x^*) \end{bmatrix}$$

We are now ready for a fully algebraic characterization.

Definition 1.9 (Karash-Kuhn-Tucker (KKT) points)

A triplet of vectors $(\bar{x}, \bar{\lambda}, \bar{\nu}) \in \mathbb{R}^n \times \mathbb{R}^{n_h} \times \mathbb{R}^{n_g}$

 \bar{x} : opt. variable, $\bar{\lambda}$: multiplier equality constraints,

 $\bar{\nu}$: multiplier inequality constraints

is a KKT point if

1.
$$\nabla f(\bar{x}) + \nabla h(\bar{x})\bar{\lambda} + \nabla g(\bar{x})\bar{\nu} = 0$$

$$2. \ g(\bar{x}) \le 0$$

3.
$$h(\bar{x}) = 0$$

$$4. \ \bar{\nu} \ge 0$$

$$5. \ \bar{\nu}^T g(\bar{x}) = 0$$

Lemma 1.13 (KKT necessary condition for local minimizer)

If x^* is a local minimizer **and** a regular point.

Then $\exists \lambda^{\star}, \nu^{\star}$ s.t. $(x^{\star}, \lambda^{\star}, \nu^{\star} \text{ is a KKT point})$

Proof: Corollary of previous discussion

1. $\iff \exists \lambda \in \mathbb{R}^{n_h}, \ \nu \in \mathbb{R}^{n_g} \text{ s.t. } \nabla f(x^*) + \nabla h(x^*)\lambda + \nabla g(x^*)\nu = 0 \text{ It can be written}$ equivalently as

$$\nabla_x \mathcal{L}(x,\lambda,\nu)|_{x=x^\star,\lambda=\lambda^\star,\nu=\nu^\star}=0$$

where $\mathcal{L}(x, \lambda, \nu) := f(x) + \lambda^T h(x) + \nu^T g(x)$

- $2. \iff x^* \in \mathcal{D}$
- $3. \iff x^* \in \mathcal{D}$
- 4. \iff non-negativity of "y" from Farkas Lemma
- 5. $\iff \nu_i = 0, i \notin \mathcal{A}(x^*)$

 $\nu^T g(x^*) = \sum_i \nu_i g_i(x^*) = 0$ Complementary slackness

$$g_i(x^*) = \begin{cases} = 0, & i \in \mathcal{A}(x^*) \\ < 0, & i \notin \mathcal{A}(x^*) \end{cases} \text{ because } x^* \in \mathcal{D}$$

 $\nu_i \geq 0, \ \forall i$ because of Farkas' lemma.

Then $\sum_{i} \nu_{i} g_{i}(x^{\star})$ automatically sets $\nu_{i} = 0$ when $i \notin \mathcal{A}(x^{\star})$ or $g_{i}(x^{\star}) < 0$.

Intrestingly, if NLP is convex, KKT conditions are sufficient for global optimality:

Lemma 1.14 (KKT sufficient conditions fot global minimizer)

Suppose $f, g_i \quad (i = 1, \dots, n_g)$ are convex functions and

 h_j $(j = 1, ..., n_h)$ are affine functions.

If (x^*, λ^*, ν^*) is a KKT point, then x^* is a local minimizer.

Proof: For (λ^*, ν^*) KKT points:

$$b(x) := \mathcal{L}(x, \lambda^*, \nu^*) = f(x) + \sum_{i=1}^{n_g} \nu_i^* g_i(x) + \sum_{j=1}^{n_h} \lambda_j^* g_j(x)$$
 \otimes

 f, g_i, h_j are convex functions

Linear combination of cvx functions with non-negative coefficients is a convex function

$$\Rightarrow b(x)$$
 convex

- 1. b(x) convex
- 2. $\nabla b(x^*) = 0$ because of 1., (x^*, λ^*, ν^*) is a KKT point $b(x) \ge b(x^*) \quad \forall x \in \mathbb{R}^n$ $\updownarrow \text{ (if } x^* \text{ regular point)}$

$$f(x) - f(x^*) \ge -\sum_{i \in \mathcal{A}(x^*)} \nu_i^* g_i(x) - \sum_{j=1}^{n_h} \lambda_i^* h_i(x) \ge 0, \qquad x \in \mathcal{D}$$

because
$$g(x) \le 0$$
, $\nu^* \ge 0$ because $h(x) = 0$

 $\rightarrow x^{\star}$ is a global minimizer.

Second-order conditions

Similary to the unconstrained case, we can use the Hessian.

$$\nabla^2_{xx}\mathcal{L}$$

We need to check positive semi-definiteness of the Hessian only along feasible directions:

Precisel, we are interestes in this property along

Critical Directions =
$$\{p \mid \underbrace{p \in \mathcal{T}_{\mathcal{D}}(x^*)}_{\text{feasible directions}}, \underbrace{\nabla f(x^*)^T p = 0}_{\substack{\text{directions that cannot be excluded based on on first order arguments}}\}$$

$$\begin{cases} \nabla f(x^*)^T p < 0 & \to & p \text{ descent direction: } \underset{\text{condition of order 1}}{\text{already excluded by necessary}}, \\ \nabla f(x^*)^T p > 0 & \to & p \text{ ascent direction: "not harmful"}, \\ \nabla f(x^*)^T p = 0 & \to & \text{this is what is "new" compared to first order.} \end{cases}$$

Lemma 1.15 (Second order necessary condition)

- $f, g, h \in \mathcal{C}^2$ at x^*
- x^* local minimizer and regular point
- (x^*, λ^*, ν^*) KKT point (which exists by Lemma 1.13)

Then

 $p^T \nabla_{xx}^2 L(x^*, \lambda^*, \nu^*) p \ge 0$ (curvature non-negative along critical directions)

 $\forall p \neq 0 \text{ with }$

- $\nabla h(x^*)^T p = 0$
- $\nabla g_i(x^*)^T p \leq 0 \quad \forall i \in \mathcal{A}(x^*) \text{ with } \nu_i^* = 0 \mid p \in \mathcal{T}_{\mathcal{D}}(x^*)$
- $\nabla g_i(x^*)^T p = 0$ $\forall i \in \mathcal{A}(x^*)$ with $\nu_i^* > 0 \mid \nabla f(x^*)^T p = 0$

Lemma 1.16 (Second order sufficient conditions for local minimizer)

If (x^*, λ^*, ν^*) is a KKT point with

$$p^T \nabla_{xx} \mathcal{L}(^{\star}, \lambda^{\star}, \nu^{\star}) > 0$$

for same p as in Lemma 1.15.

Then x^* is a strict local minimizer.

2 Calculus of Variations

Goal in OC: Find a function that maximizes a functional (function of function) subject to dynamic constraints

In Chapter 1 we characterized solutions to optimization problems over vectors (\mathbb{R}^n)

$$\min f(x)$$
 s.t. $x \in \mathcal{D} \subseteq \mathbb{R}^n$, Static problem

• We should introduce "time" or "stages" in the problem

$$\min_{x_1,\dots,x_N} \sum_{k=1}^N f(k,x_k,x_{k-1}) \qquad \text{N coupled stages}$$

s.t.
$$x_k \in \mathcal{D}_k \subseteq \mathbb{R}^n$$
, $k = 1, ..., N$, x_0 given

equivalent to: (loses structure)

$$z = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \to \min_{z} \ p(z) \qquad z \in \mathcal{Z}, \quad z \in \mathbb{R}^{n \times N}$$

• Continuous-time description of dynamics

From N stages to continuous time by taking ∞ many stages:

$$\min_{x(\cdot)} \int_{s_1}^{s_2} f\left(s, x(s), \dot{x}(s)\right) ds$$
s.t.
$$\begin{aligned} x(s) &\in \mathcal{X} \subseteq \mathbb{R}^n, & s \in [s_1, s_2], \\ x(s_1) &= x_1, \end{aligned} & \begin{cases} \text{prototypical CV problem} \\ \bullet \text{ no ODE yet} \\ \bullet \text{ opt. variable lives in a function space} \end{aligned}$$

2.1 Introduction to CV (Calculus of Variations)

Function CLASSES & NORMS

$$(\underset{\text{vector space}}{V}, \lVert \cdot \rVert) \quad \text{normed vector space}$$

V is the set of vector functions

$$x(s), \quad s \in [s_1, s_2] \text{ taking values in } \mathbb{R}^n, \quad [s_1, s_2] \subseteq \mathbb{R}$$

Two classes:

- $V = \mathcal{C}^1([s_1, s_2], \mathbb{R}^n)$: continuously differentiable functions $x : [s_1, s_2] \to \mathbb{R}^n$
- $\hat{V} = \hat{\mathcal{C}}^1([s_1, s_2], \mathbb{R}^n)$: piecewise continuously differentiable functions

$$x:[s_1,s_2]\to\mathbb{R}^n.$$

Definition 2.1 (Piecewise continuously differentiable functions)

 $x:[s_1,s_2]\to\mathbb{R}^n$ is piecewise continuously differentiable (PCD) if

- $x \in \mathcal{C}$ on $[s_1, s_2]$,
- \exists a finite partition $\{c_k\}_{k=0}^{N+1}$ with

$$s_1 = c_0 < c_1 < \dots < c_{N+1} = s_2,$$

such that $x:[c_k,c_{k+1}]\to\mathbb{R}^n$ is \mathcal{C}^1 .

That is $x \in \mathcal{C}^1([c_k, c_{k+1}], \mathbb{R}^n), \quad \forall k = 0, 1, \dots, N.$

Example:

