## ECON 6170

## Problem Set 7

Gabe Sekeres

October 21, 2024

Worked with Fenglin Ye on Exercise 5, Exercise 6, and additional exercises Exercise 1.

**Exercise 1.** False. Consider the example of f(x) = |x| on X = [-10, 10]. This function is not differentiable at  $x_0 = 0$ , since  $\lim_{x \searrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = 1$ , and  $\lim_{x \nearrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = -1$ . Since  $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$  DNE, f is not differentiable at  $x_0$ . It is, however, continuous at  $x_0$ .

**Exercise 3.** Prove the chain rule.

**Proof.** Suppose that  $f: X \subseteq \mathbb{R} \to \mathbb{R}$  is differentiable at  $x_0 \in \text{int}(X)$  and that  $g: Y \to \mathbb{R}$  (where  $f(X) \subseteq Y$ ) is differentiable at  $f(x_0)$ . This means that  $f'(x_0)$  exists and  $g'(f(x_0))$  exist. Consider the limit:

$$\lim_{x \to x_0} \frac{(g \circ f)(x) - (g \circ f)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \frac{f(x) - f(x_0)}{x - x_0}$$

and since f is differentiable and therefore continuous,  $x \to x_0 \Longrightarrow f(x) \to f(x_0)$ , and

$$= \lim_{f(x)\to f(x_0)} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \lim_{x\to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g'(f(x_0))f'(x_0) = (g' \circ f)(x_0)f'(x_0)$$

Since both of the above derivatives exist, their limits are finite, so this limit exists and is finite. Thus, we have that  $(g \circ f)'(x_0) = (g' \circ f)(x_0)f'(x_0)$ 

**Exercise 4.** Prove: Suppose  $f:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$ , and f is strictly increasing and differentiable on (a,b). Then

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \, \forall \, x \in (a, b)$$

**Proof.** Fix some  $x_0 \in (a, b)$ . Consider the limit:

$$\lim_{f(x)\to f(x_0)} \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

Which follows from the fact that  $f^{-1}(f(x)) = x$  and the fact that f is differentiable (and therefore continuous) and strictly increasing implies that as  $x \to x_0$ ,  $f(x) \to f(x_0)$ .

**Exercise 5.** Prove: Let [a,b] be a compact interval in  $\mathbb{R}$  and suppose  $f:[a,b]\to\mathbb{R}$  is continuous and differentiable on (a,b). If f'(x)=0 for all  $x\in(a,b)$ , then f is constant.

**Proof.** By the Mean Value Theorem, we have that f(b) - f(a) = f'(c)(b - a) for some  $c \in (a, b)$ . Since  $f'(x) = 0 \ \forall \ x \in (a, b), \ f(b) - f(a) = 0 \Longrightarrow f(a) = f(b)$ . Say that f(a) = f(b) = y for some  $y \in \mathbb{R}$ . Then fix some  $x_0 \in (a, b)$ , and consider  $f(x_0) - f(a)$ . By the Mean Value Theorem, we have that  $f(x_0) - f(a) = f'(c)(x_0 - a)$  for some  $c \in (a, x_0)$ . Since  $f'(x) = 0 \ \forall \ x \in (a, x_0) \subseteq (a, b), \ f(x_0) - f(a) = 0 \Longrightarrow f(x_0) = f(a) = y$ . Since this holds for arbitrary  $x_0 \in (a, b)$ , it must be the case that  $f(x) = y \ \forall \ x \in [a, b]$ , and f is constant.  $\square$ 

**Exercise 6.** Prove: Suppose  $f:(a,b)\subseteq\mathbb{R}\to\mathbb{R}, f\in C^k$ , and that  $f'(x_0)=f''(x_0)=\cdots=f^{(k-1)}(x_0)=0$  and  $f^{(k)}(x_0)\neq 0$ . Then if k is even and  $f^{(k)}(x_0)>0$ , f has a local minimum at  $x_0$ .

**Proof.** We have that  $f^{(k)}(x_0) > 0$  at  $x_0$ , meaning that since  $f^{(k)}$  is continuous, there exists  $\varepsilon > 0$  such that  $f^{(k)}(y) > 0 \ \forall \ y \in B_{\varepsilon}(x_0)$ . Take some  $y \in B_{\varepsilon}(x_0)$  such that  $y > x_0$ . Then by Taylor's Theorem, there exists x' between  $x_0$  and y such that

$$f'(y) = P_{k-1}(x_0) + \frac{f^{(k)}(x')}{(k-1)!}(y-x_0)^{k-1}$$

Since  $f''(x_0) = \cdots = f^{(k-1)}(x_0) = 0$ ,  $P_{k-1}(x_0) = 0$ , and since  $(y - x_0) > 0$  and  $x' \in B_{\varepsilon}(x_0)$ ,  $\frac{f^{(k)}(x')}{(k-1)!}(y - x_0)^{k-1} = f'(y) > 0$ , meaning that since  $f'(x_0) = 0$ ,  $f(x) > f(x_0)$  for all  $x \in (x_0, y)$ .

Next, take some  $y' < x_0$ . Since  $y' - x_0 < 0$ , we have that f'(y') < 0 from Taylor's Theorem. Then we have f'(x) < 0 for all  $x \in (y', x_0)$ , so thus  $f(x) > f(x_0)$ .

Since  $f(x) > f(x_0)$  for all  $x \in B_{\varepsilon}(x_0)$ ,  $x_0$  is a local minimum.

Exercise 1. Prove the following:

Theorem 1. Cauchy-Schwartz Inequality. For any  $x, y \in \mathbb{R}^d$ ,

$$|x \cdot y| \le ||x|| \cdot ||y||$$

**Proof.** Assume that  $\|\cdot\|$  is the induced norm of the d-dimensional Euclidean space, the Euclidean norm, *i.e.*,

$$||x|| = \sqrt{\sum_{i=1}^{d} x_i^2}$$

We have that

$$|x \cdot y| = \left| \sum_{i=1}^{d} x_i y_i \right| \le \sqrt{\sum_{i=1}^{d} (x_i y_i)^2}$$

from the Triangle Inequality. Then this is equal to

$$\sqrt{\sum_{i=1}^{d} (x_i)^2 (y_i)^2} = \sqrt{\sum_{i=1}^{d} x_i^2 \sum_{i=1}^{d} y_i^2} = \sqrt{\sum_{i=1}^{d} x_i^2 \sum_{i=1}^{d} y_i^2} = ||x|| \cdot ||y||$$

Thus,  $|x \cdot y| \le ||x|| \cdot ||y||$ .