1

EE5609: Matrix Theory Assignment-11

Major Saurabh Joshi MTech Artificial Intelligence AI20MTECH13002

Abstract

This document solves problem on Eigen values and properties.

Download all solutions from

https://github.com/saurabh13002/EE5609/tree/master/Assignment11

1 Problem

Let **A** be a real symmetric matrix and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$. Then choose the correct option.

- 1) **B** is invertible if and only if **A** is invertible.
- 2) All Eigenvalues of **B** are necessarily real.
- 3) $\mathbf{B} \mathbf{I}$ is necessarily invertible.
- 4) **B** is necessarily invertible.

2 EXPLANATION

Statement 1.	B is invertible if and only if A is invertible.	
False statement	Matrix B is invertible even if A is non invertible.	
Example:	Consider a matrix	
	$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(2.0.1)
	a real non invertible, symmetric matrix.	
	$\implies \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + i \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1+i & 0 \\ 0 & 1 \end{pmatrix}$	(2.0.2)
	is invertible even if A is non invertible.	

Statement 2.	All Eigenvalues of B are necessarily real.	
False statement	Matrix B can have complex Eigenvalues.	
Proof:	Eigen values of \mathbf{B} = Eigen values of (\mathbf{I}) + i (Eigen values of \mathbf{A}).	
	Clearly from (2.0.2) above Eigen values of B are 1 and $1 + i$ respectively.	
	Hence B can also have complex Eigen value.	
Statement 3.	$\mathbf{B} - \mathbf{I}$ is necessarily invertible.	
False statement	$\mathbf{B} - \mathbf{I} = i\mathbf{A}$ will be invertible if \mathbf{A} , is invertible.	
Proof:	We have $\mathbf{B} - \mathbf{I} = i\mathbf{A}$	
	$\Longrightarrow \mathbf{B} - \mathbf{I} = i\mathbf{A} = \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix}, \text{from } (2.0.1)$	
	Hence $\mathbf{B} - \mathbf{I}$ is not invertible, unless \mathbf{A} is invertible.	
Statement 4.	B is necessarily invertible.	
	,	
Correct Statement:	Matrix \mathbf{B} has non zero Eigen values corresponding to Eigenvector X .	
Proof:	Let X be an Eigen vector of A corresponding to Eigen value λ	
	also, $\lambda\epsilon\mathbb{R}$	
	$\implies \mathbf{A}X = \lambda X$	
	$\therefore \mathbf{B}X = (\mathbf{I} + i\mathbf{A})X = \mathbf{I}X + i\mathbf{A}X = X + i\lambda X$	
	$\Longrightarrow \mathbf{B}X = (1+i\lambda)X$	
	Therefore, $1 + i\lambda$ is an Eigen value of B ,	
	corresponding to Eigen vector X, which are non zero.	
	Hence, B is necessarily invertible.	

TABLE 1: Solution summary