3네트워크 기술

가천대학교

- 2019학년도 1학기 -

Contents

❖ 통신환경의 변화

음성 통신 서비스	컴퓨터 통신 환경
전화교환기	인터넷
실시간, 고정 대역, 연속 전송 서비스	비실시간, 가변 대역 통신
회선 교환 시스템	패킷 교환 시스템
	영상, 음성 등 실시간 멀티미디어 서비스 지원 (네트워크 품질에 대한 요구)

Contents

❖ 학습목표

- 회선 교환 시스템과 패킷 교환 시스템의 차이와 원리를 이해한다.
- 가상 회선과 데이터그램의 차이와 원리를 이해한다.
- LAN, MAN, WAN의 구조를 알아본다.
- 네트워크 연동을 위한 인터네트워킹 기술을 이해한다.
- 네트워크 서비스 품질의 개요를 알아본다.

❖ 내용

- 교환 시스템
- LAN, MAN, WAN
- 인터네트워킹
- 서비스 품질(QoS)

- 회선 교환 방식 (Circuit Switching)
 - 연결형 서비스로 전화망이 대표적임
 - 고정 대역으로 할당된 연결을 설정하여 데이터 전송 시작
 - 회선에 할당된 고정된 크기의 안정적인 전송률로 데이터 전송 가능
 - 연결이 유지되는 동안에는 다른 연결에서 이 대역 사용 불가
 - 데이터 전송 경로가 연결 설정 과정에서 확정되므로 라우팅 등의 작업이 상대적으로 쉬움
- 데이터 통신에 이용하기에는 문제가 있음
 - 일반적으로 데이터통신에서는 정보 전송 시간보다 휴지기간이 더 길기 때문에 전송 효율이 급격하게 감소
 - 회선교환 방식에서는 전송속도가 일정하므로 송수신측의 정보처리 속도가 같아
 야 함
 - 여러 종류의 컴퓨터가 접속된 데이터 통신망에서는 전송효율을 제한하는 요소임

- 패킷 교환 방식 (Packet Switching)
 - 비연결형 서비스로 컴퓨터 네트워크 환경에서 주로 이용
 - 데이터를 패킷 단위로 나누어 전송하므로 패킷을 기준으로 교환 작업이 이루어짐
 - 데이터 전송을 위한 전용 대역을 따로 할당하지 않기 때문에 가변 대역의 전송률을 지원
 - 가상회선 방식 (Virtual Circuit) : 모든 패킷의 경로를 일정하게 유지
 - 데이터그램 (Datagram) : 패킷들이 각각의 경로로 전송
- 메시지 교환 방식
 - 회선 교환과 패킷 교환의 중간 형태
 - 데이터 전송 전에 경로를 미리 설정하지 않고, 대신 전송하는 메시지의 헤더마다 목적지 주소를 표시하는 방식
- 프레임 릴레이, 셀 릴레이 교환 방식
 - 데이터의 전송 속도를 향상시키는 기술

❖ 교환 시스템의 종류

- 전용 회선 방식 : 송신, 수신 호스트가 전용 통신 선로로 데이터 전송
- 교환 회선 방식 : 전송 선로 하나를 다수의 사용자가 공유

그림 3-2 교환 회선 방식을 이용한 네트워크 구성 예

- 교환 회선을 이용하는 방식 : 논리적 연결 설정 유무에 따라 구분
 - 회선 교환 : 데이터 전송 전에 양단 사이의 고정된 연결을 설정
 - 패킷 교환 : 연결을 설정하지 않고 패킷 단위로 데이터를 전송
 - 메시지 교환 : 두가지 방식의 중간 형태

(a) 회선 교환

그림 3-3 회선 교환과 패킷 교환

- 회선 교환Circuit Switching
 - 데이터를 전송하기 전에 연결 경로를 미리 설정하는 방식
 - 모든 데이터가 같은 경로로 전달
 - 고정 대역의 전송 선로를 전용으로 할당 받아 안정적인 데이터 전송률 지원

(a) 회선 교환

■ 회선 교환Circuit Switching

- 메시지 교환Message Switching
 - 데이터를 전송하기 전에 경로를 미리 설정하지 않음
 - 전송하는 메시지의 헤더마다 목적지 주소를 표시하는 방식
 - 중간의 교환 시스템은 이전 교환 시스템에서 보낸 전체 메시지가 도착할 때까지 받은 메시지를 일시적으로 버퍼에 저장
 - 모든 메시지가 도착하면 다음 교환시스템으로 전달하는 방식
 - 송신 호스트가 전송하는 전체 데이터가 하나의 단위로 교환 처리됨
 - 교환시스템에서 전송 데이터를 저장하는 기능을 제공하므로 송신호스트가 보낸 시점과 수신 호스트가 받는 시점이 반드시 일치할 필요 없음

- 패킷 교환^{Packet Switching}
 - 송신 호스트는 전송 데이터를 패킷으로 나누어 전송, 각 패킷은 독립적 라우팅
 과정을 거쳐 목적지에 도착
 - 장점: 전송 대역의 효율적 이용, 호스트의 무제한 수용, 패킷에 우선순위 부여
 - 단점: 데이터 전송 지연 (라우터 내부 버퍼에 패킷 저장, 여러 종류의 대기 큐, 패킷마다 전송되는 시간이 일정하지 않음)
 - 지터: 패킷의 도착 지연 시간이 가변적이며, 각 패킷들의 지연 시간 분포를 의미
 - 패킷 경로를 선택하는 방식
 - 정적 경로 : 호스트 사이의 전송 경로를 미리 고정
 - 동적 경로 : 네트워크 혼잡도 등 주변 환경에 따라 전송 경로를 조정

■ 패킷 교환Packet Switching

❖ 패킷 교환

- 가상 회선 : 연결형 서비스를 지원하기 위한 기능
 - 연결을 통해 전송되는 모든 패킷의 경로가 동일
 - 패킷을 보낸 순서와 도착 순서 일치

- 데이터그램
 - 패킷을 독립적으로 전송, 서로 다른 경로 전송
 - 전송할 정보의 양이 적거나 상대적으로 신뢰성이 중요하지 않은 환경에서 사용
 - 패킷을 보낸 순서와 도착 순서 불일치

- 패킷 교환 방식이 개발된 시점
 - 원거리 디지털 통신 과정에서 지금보다 더 많은 전송 오류 발생
 - 전송 패킷에 물리적인 전송 오류 처리를 위한 오버헤드 비트 많이 추가됨
 - 송수신 시스템의 오류 처리 과정이 상당히 복잡했음
 - 중간에 위치한 교환 시스템에서 오류를 검색하고 복구하는 기능 필요
- 현대 네트워크
 - 물리적인 전송 오류 발생 확률이 매우 낮음
 - 과거의 오류 제어 기능이 현재의 통신 환경에서는 낭비 요소가 됨
 - 여러 계층에서 수행되는 복잡한 오류 제어 기능 중 중복되는 기능을 제거하면 패 킷의 전송 속도를 높일 수 있음
- => 프레임 릴레이와 셀 릴레이 고안

❖ 프레임 릴레이와 셀 릴레이

- 프레임 릴레이Frame Relay
 - 동일한 속도의 전송 매체로 고속 데이터 전송을 지원할 수 있도록 고안된 기술
 - 데이터 링크 계층의 기능을 단순하게 설계 가능. 패킷교환방식 64Kbps, 프레임 릴레이 2Mbps 지원

(a) 패킷 교환망

그림 3-6 프레임 릴레이 방식의 장점

- 셀 릴레이^{Cell Relay} (ATM^{Asynchronous Transfer Mode 방식)}
 - 회선 교환과 패킷 교환 방식의 장점을 모아 고안
 - 오류 제어에 대한 오버헤드를 최소화
 - 셀이라는 고정 크기의 패킷을 사용
 - 2~100Mbps의 전송률 지원

❖ 컴퓨터 네트워크이 분류

- 호스트 사이의 연결 거리 기준 : 데이터 전송 지연에 많은 영향을 미침
- LAN (Local Area Network)
- MAN (Metropolitan Area Network)
- WAN (Wide Area Network)

LANLocal Area Network

- 소규모 지역(단일 건물, 학교 등)에 위치하는 호스트로 구성된 네트워크
- 브로드캐스팅 방식으로 전송
- 호스트 사이의 물리적 거리가 가까울수록 데이터 전송 지연이 적으며, 전송 오류 발생 가능석 낮음
- LAN에서는 보통 수십 Mbps ~ 수 Gbps의 전송 속도 지원
- LAN에서 호스트를 연결하는 방식의 구성 형태에 따라 버스형, 링형으로 구분

- 버스^{Bus}형
 - 공유 버스 하나에 여러 호스트를 직접 연결
 - 브로드캐스트 방식(한 호스트가 전송한 데이터를 모든 호스트에 전송)
 - 라우팅 기능이 따로 필요없음
 - 각 호스트를 구분하는 주소 사용. 전송 데이터에는 송수신 호스트의 주소 표기
 - 이더넷Ethernet
 - 충돌이 발생하는 것을 허용하는 대신, 충돌 후에 문제를 해결하는 사후 해결 방식

그림 3-7 버스형

■ 링^{Ring}형

- 전송 호스트의 연결이 순환 구조인 링 형태
- 전송한 데이터는 링을 한 바퀴 돌아 송신 호스트로 되돌아 옴
- 데이터를 송신한 호스트는 자신에게 돌아온 데이터를 네트워크 회수할 책임
- 토큰이라는 제어 프레임을 사용해 충돌 가능성을 차단함

그림 3-8 링형

❖ MANMetropolitan Area Network

- LAN보다 큰 지역을 지원 (도시 규모)
- DQDB^{Distributed Queue Dual Bus} 구조 지원 : 두 개의 단방향 선로가 존재
 - 분산 데이터 큐를 유지
 - 충돌 문제를 해결하기 위해 슬롯 링 개념을 변형한 FIFO 기반의 공유 슬롯 방식을 사용
 - ATM과 호환이 가능하도록 53바이트의 프레임을 지원

* MANMetropolitan Area Network

■ DQDBDistributed Queue Dual Bus 동작 원리

❖ WANWide Area Network

- 국가 이상의 넓은 지역을 지원하는 네트워크 구조
- 점대점으로 연결된 WAN 환경은 전송과 더불어 교환 기능이 반드시 필요
- 연결의 수가 증가할수록 전송 매체 비용이 많이 필요함

그림 3-10 WAN 구조

- 인터네트워킹 : 둘 이상의 서로 다른 네트워크를 연결하는 기능
 - 연결되는 네트워크의 차이를 분석해, 전송 데이터를 적절히 중개해야 함
 - 네트워크 간의 차이 : 연결형/비연결형 서비스, 데이터 전송에 사용되는 프로토콜의 종류, 호스트를 구분하기 위한 주소 표현 방법, 전송 패킷의크기, 멀티캐스팅/ 브로드캐서팅의 지원 여부 등 고려

- 라우터: 네트워크를 연결하는 장비이며, 일반적으로 계층 3 기능을 수행
- 게이트웨이: 관문, 출입구라는 의미, 2개 이상의 다른 종류 또는 같은 종류 의 통신망을 상호 접속
 - 리피터: 계층 1 기능을 지원
 - 브리지: 계층 2 기능을 지원
 - 라우터: 계층 3 기능을 지원, 경로 배정 기능을 수행

그림 3-11 게이트웨이의 역할

❖ 브리지

- 연결되는 LAN이 다른 종류일 경우 프레임 해석, 변환 등의 복잡한 작업 필요
- 브리지에 연결되는 LAN 종류만큼 MAC/물리 계층을 처리해야 함

그림 3-12 브리지의 역할

- 트랜스페런트 브리지Transparent Bridge
 - 라우팅 기능을 사용자에게 투명하게 보여줌
 - 브리지 사용자는 프레임에 라우팅 정보를 추가하지 않아도 됨
 - 브리지의 수행 동작
 - 프레임의 송수신자가 동일 방향에 위치하면 수신 프레임 무시
 - 프레임의 송수신자가 다른 방향에 위치하면 수신자 방향으로 프레임 중개

그림 3-13 브리지를 이용한 LAN의 연결

- 라우팅 테이블Routing Table
 - LAN이 동작하면서 자동으로 생성
 - 역방향 학습Backward Learning 알고리즘 : 라우팅 정보를 얻는 방식

(a) 브리지 B1

а	b	С	d	е	f	g
1	1	3	2	3	3	3

(b) 브리지 B2

a	b	С	d	е	f	g
1	1	2	1	1	2	2

그림 3-14 호스트 c의 이동을 반영한 브리지 B1과 B2의 라우팅 테이블

- 스패닝 트리Spanning Tree
 - 네트워크의 비 순환 구조
 - 스패닝 트리 알고리즘 : 비 순환 구조를 지원하는 알고리즘
 - 임의의 브리지를 트리 구조의 최상위 브리지인 루트로 지정
 - 브리지가 자신의 고유번호를 서로 공개
 - 루트 브리지에서 다른 모든 브리지까지 최단 경로 트리를 구성

그림 3-15 이중 경로에 의한 잘못된 라우팅 정보

- 소스 라우팅 브리지Source Routing Bridge
 - 트랜스페런트 브리지
 - 공유 버스에서 구현되는 CSMA/CD 방식과 토큰 버스 방식에서 사용.
 - 간편하지만, 효율적이지 못함
 - 소스 라우팅 브리지
 - 링 구조의 네트워크에서 사용
 - 송신자가 전송 프레임 내에 수신 호스트까지의 모든 경로 정보를 제공
 - 브리지는 프레임 내의 경로 정보를 이용하여 중개

❖ IP 인터네트워킹

- 인터넷에서 네트워크를 연결하는 방식
- 패킷 중개 기능은 IP 프로토콜이 수행

그림 3-16 IP 인터네트워킹의 구조

- 양쪽 MAC 계층이 다르면 패킷 변환 기능이 필요
- 필요시 패킷 분할과 병합 과정도 수행 (패킷 <-> 프레임)

그림 3-17 IP 인터네트워킹에서의 헤더 변환

❖ 인터넷 라우팅

- 고정 경로 배정Fixed Routing
 - 송수신 호스트 사이에 영구 불변의 고정 경로를 배정
 - 장점 : 간단하지만 효율적인 라우팅이 가능
 - 단점 : 트레픽 변화에 따른 동적 경로 배정이 불가능

가정 : R3, R7 선로는 고속 통신 지원
 Net.2가 Net.4보다 덜 붐빔

그림 3-18 라우터로 네트워크를 구성한 예

(a) 라우터 R1의 정보

네트워크	라우터
Net.1	
Net.2	
Net.3	R4
Net.4	R3
Net.5	R6

네트워크	라우터
Net.1	
Net.2	R3
Net.3	R5
Net.4	
Net.5	R8

(b) 라우터 R2의 정보 (c) 라우터 R3의 정보

네트워크	라우터
Net.1	R1
Net.2	
Net.3	R4
Net.4	
Net.5	R6

(d) 라우터 R4의 정보

네트워크	라우터
Net.1	R1
Net.2	
Net.3	
Net.4	R3
Net.5	R7

(e) 라우터 R5의 정보

네트워크	라우터
Net.1	R2
Net.2	R3
Net.3	
Net.4	
Net.5	R7

(f) 라우터 R6의 정보

네트워크	라우터
Net.1	R1
Net.2	
Net.3	R7
Net.4	R3
Net.5	

네트워크	라우터
Net.1	R6
Net.2	R4
Net.3	
Net.4	R5
Net.5	

(g) 라우터 R7의 정보 (h) 라우터 R8의 정보

네트워크	라우터
Net.1	R2
Net.2	R6
Net.3	R7
Net.4	
Net.5	

그림 3-19 라우팅 테이블

- 적응 경로 배정Adaptive Routing
 - 인터넷 연결 상태가 변하면 이를 전달 경로 배정에 반영
 - 특정 네트워크나 라우터가 비정상적으로 동작하는 경우
 - 네트워크의 특정 위치에서 혼잡이 발생하는 경우
 - 단점 : 경로 결정 과정에서 라우터의 부담이 증가
 - 라우터 사이의 정보의 불일치성 문제가 항상 존재
 - 특정 위치에서 변화가 발생했을 때 네트워크의 모든 라우터에 동시 반영은 현실적으로 불가능
 - 라우터 사이의 정보교환이 빠르게 자주 이루어져야 함 => 네트워크 트래픽 증가, 라우터의 처리 부담 증가

- 자율 시스템Autonomous System
 - 라우터들이 공통의 라우팅 프로토콜을 사용해 정보 교환
 - 동일한 라우팅 특성으로 동작하는 논리적인 단일 구성체
 - 내부 라우팅 프로토콜 : 자율 시스템 내부에서 사용
 - 외부 라우팅 프로토콜 : 자율 시스템 간에 사용

04_서비스 품질(QoS)

❖ 네트워크 품질Quality

- 데이터를 어느 정도로 신뢰성 있게 전송하는지를 의미
- 전송 과정에서의 데이터 분실, 전송 지연, 지연값의 일관성(지터) 등을 기준으로 전송 품질 판단

❖ QoS^{Quality of Service}: 필요한 서비스의 정도를 매개변수로 표시

- 연결 설정 지연Connection Establishment Delay
 - 연결 설정을 위한 request 프리미티브 발생과 confirm 프리미티브 도착 사이 (request-indicatin-response-confirm)의 경과 시간
 - 경과 시간이 짧을수록 서비스 품질이 좋음
- 연결 설정 실패 확률Connection Establishment Failure Probability
 - 임의의 최대 연결 설정 지연 시간을 기준으로 연결 설정이 이루어지지 않을 확률
- 전송률Throughput
 - 임의의 시간 구간에서 초당 전송할 수 있는 바이트 수
 - 전송률은 양방향 값이 다를 수 있으므로 별개로 다루어져야 함

04_서비스 품질(QoS)

- 전송 지연Transit Delay
 - 송신 호스트가 전송한 데이터가 수신 호스트에 도착할 때가지 경과한 시간
 - 양방향이 따로 다루어짐
- 전송 오류율^{Residual Error Rate}
 - 임의의 시간 구간에서 전송된 총 데이터 수와 오류발생 데이터 수의 비율
- 우선순위Priority
 - 다른 연결보다 우선 처리

04_서비스 품질(QoS)

❖ 인터넷에서의 QoS

- IP 프로토콜
 - 모든 패킷에 동일한 기준을 적용
 - 데이터 도착 순서나 100% 수신을 보장하는 않으므로 버퍼를 사용해 이 문제를 해결한 후 응용 계층으로 데이터를 전달해야 함
- QoS에서 전송 데이터의 종류별 특징
 - 영상 정보 : 대용량의 실시간 전송, 전송 오류에 관대
 - 컴퓨터 데이터 : 실시간 전송 불필요, 전송 오류에 민감함
- IP 프로토콜에서의 QoS 지원
 - 각 패킷을 서로 다른 QoS 기준으로 구분하여 라우터에서 이를 처리

Thank You