EMU415 DBMS Homework1

AUTHOR team_yes_sql

TEAM MEMBERS

```
# Retrieve and display team members' information
team_members <- dbGetQuery(con, "SELECT first_name, last_name, student_id FROM team_members")
print(team_members)</pre>
```

```
first_name last_name student_id
      Cemil
                Neşe
                       21948303
2 Ömer Faruk
               Çiftçi
                      21831151
3
       Emre
                 Gül
                      21948121
4
      Kerem Kaplan
                      21948168
              Göktaş
      Beyza
                      21948102
6 Ahmet Taha Karakaya
                       21948192
7 Hatice Nur
                Güneş
                       21948135
```

QUESTION 5

• Find the total number of team members

```
SELECT COUNT(*) AS number_of_members FROM team_members;
```

1 records

number_of_members

7

• List team members by age from oldest to youngest.

SELECT member_id, first_name, last_name, student_id, age FROM team_members ORDER BY age DESC;

		7 records		
member_id	first_name	last_name	student_id	age
2	Ömer Faruk	Çiftçi	21831151	25
3	Emre	Gül	21948121	24
1	Cemil	Neşe	21948303	22
4	Kerem	Kaplan	21948168	22
5	Beyza	Göktaş	21948102	22
6	Ahmet Taha	Karakaya	21948192	22
7	Hatice Nur	Güneş	21948135	22

localhost:6974 1/3

• Identify the range of expected graduation years within your team

```
SELECT DISTINCT graduation_year FROM team_members;

2 records

graduation_year

2024

2023

Analyze the distribution of team members across different joining years
```

1 records

SELECT COUNT(*) AS joined_2018 FROM team_members WHERE join_year = 2018;

joined_2018

1

```
SELECT COUNT(*) AS joined_2019 FROM team_members WHERE join_year = 2019;
```

1 records

joined_2019

6

QUESTION 6

```
1 records

team_identifier

8165b97a6d0aca32fb2464198932d2c437ee9e0d

▼
```

localhost:6974 2/3

Cryptographic algorithms like SHA-1 are used in database management for various purposes, such as ensuring data integrity and security. For example, SHA-1 hashes can be computed for sensitive data like passwords before storing them in the database, making it difficult for attackers to recover the original passwords. Additionally, SHA-1 hashes can be used to verify the integrity of data stored in the database, ensuring that it has not been tampered with.

localhost:6974 3/3