- Digital System Design 2022 Spring
 - total 104 pts = maximum 100 pts + 4 bonus pts
 - Extension limit = { png , jpg , heic , zip , pdf }
 - ▲ You must hand your answer in at the board before due time (2022-05-02 11:00 AM KST).

The problems start from the next page.

Name

Student ID

20210114 8 digits

1. Obtain the 1's and 2's complements of the following binary numbers: (18pts = 6pts each)

- (a) 11100010
- (b) 10111101
- (c) 11000011

(a) 1'S complement: 00011101 2'S complement: 00011110

(b) 2'S complement: 01000010 2'S complement: 01000011

(C) (1'S complement: 00111100 2'S complement: 00111101 2. Find the 9's and the 10's complements of the following decimal numbers: (16pts = 8pts each)

- (a) 65,234,035
- (b) 87,000,367

(b)
$$87,000,367$$

(a) $9'S$ complement: 34765964
 -65234035
 34765964

10'S complement: 34765965

- (a) (-9) + (-11)
- (b) (-9) + (-7)
- (c) (-9) + 11

(a)
$$-9$$
 (b) 1 (overflow! $\frac{-11}{-20}$ (old) $\frac{(0101)}{01100} \Rightarrow \pm 12 \neq -20$.

(b)
$$-9$$
 1001 1000 1000 1000 1000

4. Repeat question 3 using 1's complement to represent negative numbers. (15pts = 5pts each)

(c)
$$-9$$
 $\frac{1010}{1000001}$ $\frac{11}{1200001}$ $\frac{11}{1200001}$ $\frac{11}{1200001}$ $\frac{11}{1200001}$ $\frac{11}{1200001}$

5. (a) Design a half-subtractor circuit with inputs x and y and outputs *Diff* and B_{out}. The circuit subtracts the bits x - y and places the difference in D and the borrow in B_{out}.
(b) Design a full-subtractor circuit with three inputs x, y, B_{in} and two outputs *Diff* and B_{out}. The circuit subtracts x - y - B_{in}, where B_{in} is the input borrow, B_{out} is the output borrow, and *Diff* is the difference. (20pts = 10pts each)

(a)	z y	Diff	Bout		
	0 0	0	0	Diff= x'y+ xy'= x\thetay Bout = x'y	2 Diff
	0 (Ī	1	Bart = 2'4	y — — — — — — — — — — — — — — — — — — —
	10	1	0	<i>F</i>	But
	1 1	0	0		

	I		
(b)	dy Bin	Diff Bout	<p,4></p,4>
	0 0 0	0 0	X 8m 00 01 11 10
	0 0 1	/ /	$0 0 0 \Rightarrow 0 0 \Rightarrow 0 0 = 70000000000000000000$
	0 1 0	/	Diff = x \therefore \text{Bin}
	0 1 1	0 /	1 1 0 1 0
	/ 0 0	/ 0	
	1 0 1	0 0	L> dy'Bin + x'y'Bin + xyBin+x'yBin'
	/ / 0	0 0	
	/ / /	, ,	= $(\alpha y + \alpha y') B \bar{n} + (\alpha y' + \alpha y') B \bar{n}' = (\alpha \oplus y)' B \bar{n} + (\alpha \oplus y) B \bar{n}'$
		' '	= A D Y D BIN

6. Derive the <u>two-level Boolean expression</u> for the output carry C_4 shown in the lookahead carry generator of below. (20pts)

$$P_T = A_7 \oplus B_7$$
 $G_{TT} = A_7 B_7$

$$C_{\overline{1}+1} = A_{\overline{1}}B_{\overline{1}} + C_{\overline{1}}(A_{\overline{1}} \oplus B_{\overline{1}}) = G_{\overline{1}} + P_{\overline{1}}C_{\overline{1}}$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_4 = C_{73} + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$$

End of the Homework #4

CSED273S2022_hw4: page 7