

#### **TEAM DETAILS**

#### TEAM 1

**GUIDE**: Prof. Jacob Mathew

#### **TEAM MEMBERS:**

Sai Krishnan R: TRV20EC049

Vinayak M: TRV20EC061

S Karthikeyan: TRV20EC055

Sharika Reghunath: TRV20EC052

## **TABLE OF CONTENTS**

O1 PROBLEM STATEMENT

04 SYSTEM

**02 OBJECTIVES** 

O5 COMPONENTS REQUIRED

**PROPOSED** 

O3 SOLUTIONS

**D6** CIRCUIT DIAGRAM





7 FLOW CHART

08 CONCLUSION

09 BUDGET

10 REFERENCE





#### **PROBLEM STATEMENT**

 RFID based door locks are vulnerable to unauthorized access and data thefts

#### **OBJECTIVE**

- Countermeasure against easy hacking of RFID
- Multi layer security system
- Low budget system

#### **EXISTING SOLUTIONS**

- RFID door lock system.
- NFC based smart door lock system.

#### PROPOSED SYSTEM

- An RFID based door lock system.
- Each RFID tag has a corresponding unique PIN.
- The PIN along with the details of the person are stored in a real time database.
- Along with this there is a web application which acts as a master lock that is used to shutdown the complete system.



#### **SYSTEM ARCHITECTURE**



### **COMPONENTS REQUIRED**

ESP32 Dev Kit V1



4x4 Matrix Membrane Type Keypad

16x2 LCD Display

LM 7805 IC











- I2C Module
- Relay Module
- Push Button
- Solenoid Lock
- RFID Tag
- DC Jack









- Circuit Board
- Jumper wires
- 2 Pin Jst Connector
- Female Header
- Male header
- Single Strand wire
- 10u Capacitor
- 1u Capacitor











#### **CIRCUIT DIAGRAM**



**CIRCUIT CONNECTION STRUCTURE** 



#### **FLOW CHART**



#### **ALGORITHM**

- Set up pin modes, connect to wifi, configure the firebase, set up RFID and configure
  ntp protocol to calculate real time.
- Enter the void loop function.
- Read function is called.
- Reads the data within the outputs node and if value is 1, jumps back to void loop else rfid function is called.
- When swiped tag is read by the reader, the keypad function and print local time function is called and unique string is stored in variable uid.
- Keypad function expects the pin to enter
- After 4 keys are pressed, read\_data function is called.

- In the read\_data function, ESP reads the data stored within the corresponding uid variable
- The hash function is then called. Within the hash functions, the pin which is in the form of array is combined to a single string.
- And this string is then hashed with an inbuilt library <mbedtls/md.h>
- This hashed value is then compared with the hash string stored within the database that was read in the previous function
- If they are equal, access is granted and the relay function and write data function is called.
  Else access is denied and write data function is called
- In the relay function, relay is switched ON and after 5 seconds it is switched OFF.
- In the write data function, a node is created with the key value as the time that was identified by print local time function
- Within this node, the name of the user, RFID uid and whether the access granted or not is stored
- Returns to void loop.

#### **REAL TIME DATABASE**









write

### **WEB APP**





### **SCHEMATIC**



#### **PCB LAYOUT**



### **CAD MODEL**



#### **FUTURESCOPE**

- Implementation of rechargeable batteries
- A mobile application can be developed
- EEPROM in ESP can be used to store data temporarily.

## **BUDGET**

| SL. No | COMPONENTS                      | QUANTITY | PRICE |
|--------|---------------------------------|----------|-------|
| 1.     | ESP32 Dev Kit V1                | 1        | ₹380  |
| 2.     | RC522 RFID Reader Writer Module | 1        | ₹94   |
| 3.     | 4x4 Matrix Membrane Type Keypad | 1        | ₹75   |
| 4      | RFID 13.56 MHz Card             | 5        | ₹55   |
| 5      | Relay Module                    | 1        | ₹38   |
| 6.     | LCD Display                     | 1        | ₹105  |
| 7      | I2C Module                      | 1        | ₹100  |
| 8      | Solenoid Lock                   | 1        | ₹315  |
| 9      | Push Button                     | 1        | ₹5    |

| 10 | Circuit board               | 1 | ₹60   |
|----|-----------------------------|---|-------|
| 11 | 12V DC Power supply adapter | 1 | ₹99   |
| 12 | Wires                       |   | ₹45   |
| 13 | Miscellaneous               |   | ₹1000 |
|    | Total                       |   | ₹2371 |

#### REFERENCE

- Shafin, Kishwar & Kabir, KaziLutful & Hasan, Nazmul & Mouri,Israt & Islam, Samina & Ansari,Lazima & Karim, Md & Hossain,Md. (2015).
  Development of an RFID Based Access Control System in the Context of Bangladesh.10.1109/ICIIECS.2015.7193024
- S. Shepard, "RFID Radio Frequency Identification", USA, ISBN: 0-07-144299-5, 2005.
- https://randomnerdtutorials.com/?s=firebase
- https://randomnerdtutorials.com/security-access-using-mfrc522-rfid-reader-with-arduino/





# **THANK YOU**

