A DFA for binary representation of integers divisible by 3

Lemma 1: The binary representation of every natural number *n* divisible by 3 has the following property:

$$(N_e - N_u) \operatorname{mod} 3 = 0$$

where N_e is the number of 1:s in even positions (the rightmost least significant bit is nr 0) and N_u is the number of 1:s in odd positions. The reverse is also true.

Proof:

From its binary representation we can write n as

$$n = \sum_{i=u_1,...,u_{N_u}} 2^i + \sum_{i=e_1,...,e_{N_e}} 2^i$$

where $u_1,...,u_{N_u}$ are the odd positions with 1:s and $e_1,...,e_{N_e}$ are the even positions with 1:s

Now, since $2^0 = 1$ it follows that all *even* powers of $2 = 1 \mod 3$. Why? Because if you have a number 3m + 1 and multiply by $2^2 = 4$ you get 12m + 4 = 3(4m + 1) + 1. By the same reasoning all odd powers of $2 = 2 \mod 3$. Thus the expression for n can be written

$$n = \sum_{i=u_1,...,u_{N_u}} (3m_i + 2) + \sum_{i=e_1...e_{N_e}} (3m_i + 1)$$

= $3M + 2N_u + N_e$

for some integers m_i and M. If n is divisible by 3, so is this expression, and thereby also $2N_u + N_e$. Subtract by $3N_u$ and the result follows. It is also clear that if n not is divisible by 3, then $(N_u - N_e) \mod 3 \neq 0$, which proves the reverse.

Now we use this result to construct a DFA which accepts all strings with this property (and no other strings). We index the states with E/U depending on whether the *next* character is to be placed at an even or odd position respectively. They are also indexed by $(N_e - N_u)$ mod 3. i.e. the surplus of even numbered 1's *mod* 3.

Note: this DFA builds strings with the least significant bit first.

A minimization gives the following equivalent DFA:

The language of the DFA can distinguish the strings 0, 1 and 10.

0 and 1	by	0
0 and 10	by	0
1 and 10	by	1

So the language of this DFA distinguishes three strings and is therefore minimal.

The languae the DFA defines is described by the regular expression

$$L = (0 \cup (01^*0)^*)^*$$

Question: Can we find a DFA which builds strings with this property but with the most significant bit first?

Answer: Indeed. Every string which has the property from Lemma 1 also has it if you exchange most/least significant order. If the number of bits are odd, N_e and N_u are unchanged. If the number if bits are even N_e and N_u exchange values, but the crucial property still holds true. Thus the DFA above can be used this way too.