SYMPY: SYMBOLIC COMPUTING IN PYTHON

ONDřEJ ČERTÍK*, ISURU FERNANDO[†], AND ASHUTOSH SABOO[‡]

- 1. Introduction.
- 2. Architecture.

2

3

7

8

9

10

14

15

17

18

19

22

23

25

2.7

29

39

40

2.1. Basic Usage. Being built on Python, SymPy requires that all variable names be defined before they can be used. The statement

```
>>> from sympy import *
```

will import all SymPy functions into the global Python namespace. All the examples in this paper assume that this has been run.

Additionally, symbolic variables, called symbols, must be assigned to Python variables before they can be used. This is typically done through the symbols function, which creates multiple symbols at once. For instance,

```
>>> x, y, z = symbols('x y z')
```

creates three symbols named x, y, and z, assigned to Python variables of the same name. The Python variable names that symbols are assigned to are immaterial—we could have just as well have written a, b, c = symbol('x y z'). All the examples in this paper will assume that the symbols x, y, and z have been assigned as above.

Expressions are created from symbols using Python syntax, which mirrors usual mathematical notation. Note that in Python, exponentiation is **.

```
20 >>> (x**2 - 2*x + 3)/y
21 (x**2 - 2*x + 3)/y
```

2.2. The Core. The core of a computer algebra system (CAS) refers to the module that is in charge of resenting symbolic expressions and performing basic manipulations with them. In SymPy, every symbolic expression is an instance of a Python class. Expressions are represented by expression trees. The operators are represented by the type of an expression and the child nodes are stored in the args attribute. A leaf node in the expression tree has an empty args. The args attribute is provided by the class Basic, which is a superclass of all SymPy objects and provides common methods to all SymPy tree-elements. For example, consider the expression xy + 2:

```
30 >>> from sympy import *
31 >>> x, y = symbols('x y')
32 >>> expr = x*y + 2
```

The expression expr is an addition, so it is of type Add. The child nodes of expr are x*y and 2.

```
35 >>> type(expr)
```

36 <class 'sympy.core.add.Add'>

37 >>> expr.args

38 (2, x*y)

We can dig further into the expression tree to see the full expression. For example, the first child node, given by expr.args[0] is 2. Its class is Integer, and it has empty args, indicating that it is a leaf node.

^{*}Los Alamos National Laboratory (ondrej.certik@gmail.com).

[†]University of Moratuwa (isuru.11@cse.mrt.ac.lk).

[‡]Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus (ashutosh.saboo@gmail.com).

```
42 >>> expr.args[0]
43 2
44 >>> type(expr.args[0])
45 <class 'sympy.core.numbers.Integer'>
46 >>> expr.args[0].args
47 ()
```

The function **srepr** gives a string representing a valid Python code, containing all the nested class constructor calls to create the given expression.

>>> srepr(expr)

"Add(Mul(Symbol('x'), Symbol('y')), Integer(2))"

Every SymPy expression satisfies a key invariant, namely, expr.func(*expr.args) == expr. This means that expressions are rebuildable from their args ¹. Here, we note that in SymPy, the == operator represents exact structural equality, not mathematical equality. This allows one to test if any two expressions are equal to one another as expression trees.

Python allows classes to overload operators. The Python interpreter translates the above x*y + 2 to, roughly, (x.__mul__(y)).__add__(2). x and y, returned from the symbols function, are Symbol instances. The 2 in the expression is processed by Python as a literal, and is stored as Python's builtin int type. When 2 is called by the __add__ method, it is converted to the SymPy type Integer(2). In this way, SymPy expressions can be built in the natural way using Python operators and numeric literals.

One must be careful in one particular instance. Python does not have a builtin rational literal type. Given a fraction of integers such as 1/2, Python will perform floating point division and produce 0.5^2 . Python uses eager evaluation, so expressions like x + 1/2 will produce x + 0.5, and by the time any SymPy function sees the 1/2 it has already been converted to 0.5 by Python. However, for a CAS like SymPy, one typically wants to work with exact rational numbers whenever possible. Working around this is simple, however: one can wrap one of the integers with Integer, like x + Integer(1)/2, or using x + Rational(1, 2). SymPy provides a function S which can be used to convert objects to SymPy types with minimal typing, such as x + S(1)/2. This gotcha is a small downside to using Python directly instead of a custom domain specific language (DSL), and we consider it to be worth it for the advantages listed above.

2.3. Assumptions. An important feature of the SymPy core is the assumptions system. The assumptions system allows users to specify that symbols have certain common mathematical properties, such as being positive, imaginary, or integer. SymPy is careful to never perform simplifications on an expression unless the assumptions allow them. For instance, the identity $\sqrt{x^2} = x$ holds if x is nonnegative $(x \ge 0)$. If x is real, the identity $\sqrt{x^2} = |x|$ holds. However, for general complex x, no such identity holds.

By default, SymPy performs all calculations assuming that variables are complex valued. This assumption makes it easier to treat mathematical problems in full generality.

```
>>> x = Symbol('x')
```

¹expr.func is used instead of type(expr) to allow the function of an expression to be distinct from its actual Python class. In most cases the two are the same.

²This is the behavior in Python 3. In Python 2, 1/2 will perform integer division and produce 0, unless one uses from __future__ import division.

```
87 >>> sqrt(x**2)
88 sqrt(x**2)
```

By assuming symbols are complex by default, SymPy avoids performing mathematically invalid operations. However, in many cases users will wish to simplify expressions containing terms like $\sqrt{x^2}$.

Assumptions are set on Symbol objects when they are created. For instance Symbol('x', positive=True) will create a symbol named x that is assumed to be positive.

```
>>> x = Symbol('x', positive=True)
>>> sqrt(x**2)
```

Some common assumptions that SymPy allows are positive, negative, real, nonpositive, nonnegative, real, integer, and commutative ³. Assumptions on any object can be checked with the is_assumption attributes, like x.is_positive.

Assumptions are only needed to restrict a domain so that certain simplifications can be performed. It is not required to make the domain match the input of a function. For instance, one can create the object $\sum_{n=0}^{m} f(n)$ as $\operatorname{Sum}(f(n), (n, 0, m))$ without setting integer=True when creating the Symbol object n.

The assumptions system additionally has deductive capabilities. The assumptions use a three-valued logic using the Python builtin objects True, False, and None. None represents the "unknown" case. This could mean that the given assumption could be either true or false under the given information, for instance, Symbol('x', real=True).is_positive will give None because a real symbol might be positive or it might not. It could also mean not enough is implemented to compute the given fact, for instance, (pi + E).is_irrational gives None, because SymPy does not know how to determine if $\pi + e$ is rational or irrational, indeed, it is an open problem in mathematics.

Basic implications between the facts are used to deduce assumptions. For instance, the assumptions system knows that being an integer implies being rational, so Symbol('x', integer=True).is_rational returns True. Furthermore, expressions compute the assumptions on themselves based on the assumptions of their arguments. For instance, if x and y are both created with positive=True, then (x + y).is_positive will be True.

SymPy also has an experimental assumptions system where facts are stored separate from objects, and deductions are made with a SAT solver. We will not discuss this system here.

2.4. Extensibility. Extensibility is an important feature for SymPy. Because the same language, Python, is used both for the internal implementation and the external usage by users, all the extensibility capabilities available to users are also used by functions that are part of SymPy.

The typical way to create a custom SymPy object is to subclass an existing SymPy class, generally either Basic, Expr, or Function. All SymPy classes used for expression trees ⁴ should be subclasses of the base class Basic, which defines some basic methods for symbolic expression trees. Expr is the subclass for mathematical expressions that can be added and multiplied together. Instances of Expr typically

 $^{^3 \}text{If } A \text{ and } B \text{ are Symbols created with commutative=False}$ then SymPy will keep $A \cdot B$ and $B \cdot A \text{ distinct.}$

⁴Some internal classes, such as those used in the polynomial module, do not follow this rule for efficiency reasons.

represent complex numbers, but may also include other "rings" like matrix expressions. Not all SymPy classes are subclasses of Expr. For instance, logic expressions, such as And(x, y) are subclasses of Basic but not of Expr.

 The Function class is a subclass of Expr which makes it easier to define mathematical functions called with arguments. This includes named functions like $\sin(x)$ and $\log(x)$ as well as undefined functions like f(x). Subclasses of Function should define a class method eval, which returns values for which the function should be automatically evaluated, and None for arguments that shouldn't be automatically evaluated.

The behavior of classes in SymPy with various other SymPy functions is defined by defining a relevant _eval_* method on the class. For instance, an object can tell SymPy's diff function how to take the derivative of itself by defining the _eval_derivative(self, x) method. The most common _eval_* methods relate to the assumptions. _eval_is_assumption defines the assumptions for assumption.

As an example of the notions presented in this section, we present below a stripped down version of the gamma function $\Gamma(x)$ from SymPy, which evaluates itself on positive integer arguments, has the positive and real assumptions defined, can be rewritten in terms of factorial with gamma(x).rewrite(factorial), and can be differentiated. fdiff is a convenience method for subclasses of Function. fdiff returns the derivative of the function without worrying about the chain rule. self.func is used throughout instead of referencing gamma explicitly so that potential subclasses of gamma can reuse the methods.

```
from sympy import Integer, Function, floor, factorial, polygamma
```

```
class gamma(Function)
156
        @classmethod
157
        def eval(cls, arg):
158
             if isinstance(arg, Integer) and arg.is_positive:
159
160
                 return factorial(arg - 1)
161
        def _eval_is_real(self):
162
             x = self.args[0]
163
             # noninteger means real and not integer
164
             if x.is_positive or x.is_noninteger:
165
                 return True
166
167
        def _eval_is_positive(self):
168
             x = self.args[0]
169
             if x.is_positive:
170
                 return True
171
             elif x.is_noninteger:
172
                 return floor(x).is_even
173
174
        def _eval_rewrite_as_factorial(self, z):
175
             return factorial(z - 1)
176
177
        def fdiff(self, argindex=1):
178
             from sympy.core.function import ArgumentIndexError
179
             if argindex == 1:
180
                 return self.func(self.args[0])*polygamma(0, self.args[0])
181
```

```
182
               else:
```

184

185

186

187

188

189

197 198

199

200

201

202

203 204

205

206

207

209

210

211 212

213

214 215

216

217

218

219

220 221

222

223 224

225 226

227

228

raise ArgumentIndexError(self, argindex)

The actual gamma function defined in SymPy has many more capabilities, such as evaluation at rational points and series expansion.

3. Numerics. The Float class holds an arbitrary-precision binary floating-point value and a precision in bits. An operation between two Float inputs is rounded to the larger of the two precisions. Since Python floating-point literals automatically evaluate to double (53-bit) precision, strings should be used to input precise decimal

```
190
   values:
191
   >>> Float(1.1)
192
   1.10000000000000
   >>> Float(1.1, 30)
                       # precision equivalent to 30 digits
193
   1.1000000000000008881784197001
194
   >>> Float("1.1", 30)
195
   196
```

The preferred way to evaluate an expression numerically is with the evalf method, which internally estimates the number of accurate bits of the floating-point approximation for each sub-expression, and adaptively increases the working precision until the estimated accuracy of the final result matches the sought number of decimal digits.

The internal error tracking does not provide rigorous error bounds (in the sense of interval arithmetic) and cannot be used to track uncertainty in measurement data in any meaningful way; the sole purpose is to mitigate loss of accuracy that typically occurs when converting symbolic expressions to numerical values, for example due to catastrophic cancellation. This is illustrated by the following example (the input 25 specifies that 25 digits are sought):

```
>>> cos(exp(-100)).evalf(25) - 1
208
    >>> (cos(exp(-100)) - 1).evalf(25)
    -6.919482633683687653243407e-88
```

The evalf method works with complex numbers and supports more complicated expressions, such as special functions, infinite series and integrals.

SymPy does not track the accuracy of approximate numbers outside of evalf. The familiar dangers of floating-point arithmetic apply [18], and symbolic expressions containing floating-point numbers should be treated with some caution. This approach is similar to Maple and Maxima.

By contrast, Mathematica uses a form of significance arithmetic [32] for approximate numbers. This offers further protection against numerical errors, but leads to non-obvious semantics while still not being mathematically rigorous (for a critique of significance arithmetic, see Fateman [15]). SymPy's evalf internals are non-rigorous in the same sense, but have no bearing on the semantics of floating-point numbers in the rest of the system.

3.1. The mpmath library. The implementation of arbitrary-precision floatingpoint arithmetic is supplied by the mpmath library, which originally was developed as a SymPy module but subsequently has been moved to a standalone Python package. The basic datatypes in mpmath are mpf and mpc, which respectively act as multiprecision substitutes for Python's float and complex. The floating-point precision is controlled by a global context:

```
>>> import mpmath
229
230
    >>> mpmath.mp.dps = 30
                                # 30 digits of precision
```

```
>>> mpmath.mpf("0.1") + mpmath.exp(-50)
    mpf('0.1000000000000000000192874984794')
232
    >>> print(_)
                   # pretty-printed
    0.1000000000000000000192874985
234
```

233

235

236

238

239

241 242

243

244

245

246

247

248

249

250

252

253

254

256

257

258 259

260

261

262

263

264 265

266

267

268 269

274

275

For pure numerical computing, it is convenient to use mpmath directly with from mpmath import * (it is best to avoid such an import statement when using SymPy simultaneously, since numerical functions such as exp will shadow the symbolic counterparts in SymPy).

Like SymPy, mpmath is a pure Python library. Internally, mpmath represents a floating-point number $(-1)^s x \cdot 2^y$ by a tuple (s, x, y, b) where x and y are arbitrary-size Python integers and the redundant integer b stores the bit length of x for quick access. If GMPY [21] is installed, mpmath automatically switches to using the gmpy.mpz type for x and using GMPY helper methods to perform rounding-related operations, improving performance.

The mpmath library includes support for special functions, root-finding, linear algebra, polynomial approximation, and numerical computation of limits, derivatives, integrals, infinite series, and ODE solutions. All features work in arbitrary precision and use algorithms that support computing hundreds of digits rapidly, except in degenerate cases.

The double exponential (tanh-sinh) quadrature is used for numerical integration by default. For smooth integrands, this algorithm usually converges extremely rapidly, even when the integration interval is infinite or singularities are present at the endpoints [33, 8]. However, for good performance, singularities in the middle of the interval must be specified by the user. To evaluate slowly converging limits and infinite series, mpmath automatically attempts to apply Richardson extrapolation and the Shanks transformation (Euler-Maclaurin summation can also be used) [9]. A function to evaluate oscillatory integrals by means of convergence acceleration is also available.

A wide array of higher mathematical functions are implemented with full support for complex values of all parameters and arguments, including complete and incomplete gamma functions, Bessel functions, orthogonal polynomials, elliptic functions and integrals, zeta and polylogarithm functions, the generalized hypergeometric function, and the Meijer G-function.

Most special functions are implemented as linear combinations of the generalized hypergeometric function ${}_{p}F_{q}$, which is computed by a combination of direct summation, argument transformations (for ${}_2F_1, {}_3F_2, \ldots$) and asymptotic expansions (for ₀F₁, ₁F₁, ₁F₂, ₂F₂, ₂F₃) to cover the whole complex domain. Numerical integration and generic convergence acceleration are also used in a few special cases.

In general, linear combinations and argument transformations give rise to singularities that have to be removed for certain combinations of parameters. A typical example is the modified Bessel function of the second kind

$$K_{\nu}(z) = \frac{1}{2} \left[\left(\frac{z}{2} \right)^{-\nu} \Gamma(\nu)_{0} F_{1} \left(1 - \nu, \frac{z^{2}}{4} \right) - \left(\frac{z}{2} \right)^{\nu} \frac{\pi}{\nu \sin(\pi \nu) \Gamma(\nu)} {}_{0} F_{1} \left(\nu + 1, \frac{z^{2}}{4} \right) \right]$$

where the limiting value $\lim_{\varepsilon\to 0} K_{n+\varepsilon}(z)$ has to be computed when $\nu=n$ is an integer. A generic algorithm is used to evaluate hypergeometric-type linear combinations of the above type. This algorithm automatically detects cancellation problems, and computes limits numerically by perturbing parameters whenever internal singularities occur (the perturbation size is automatically decreased until the result is detected to

```
converge numerically).
277
```

279

280

281

282

283

284

285

287 288

289

290

292 293

294

295

296

297

298 299

300

301

302

303

304

312

313

314 315

316

Due to this generic approach, particular combinations of hypergeometric functions can be specified easily. The implementation of the Meijer G-function takes only a few dozen lines of code, yet covers the whole input domain in a robust way. The Meijer G-function instance $G_{1,3}^{3,0}\left(0;\frac{1}{2},-1,-\frac{3}{2}|x\right)$ is a good test case [34]; past versions of both Maple and Mathematica produced incorrect numerical values for large x > 0. Here, mpmath automatically removes the internal singularity and compensates for cancellations (amounting to 656 bits of precision when x = 10000), giving correct values:

```
>>> mpmath.mp.dps = 15
286
    >>> mpmath.meijerg([[],[0]],[[-0.5,-1,-1.5],[]],10000)
    mpf('2.4392576907199564e-94')
```

Equivalently, with SymPy's interface this function can be evaluated as: >>> meijerg([[],[0]],[[-S(1)/2,-1,-S(3)/2],[]],10000).evalf()

2.43925769071996e-94 291

> We highlight the generalized hypergeometric functions and the Meijer G-function, due to those functions' frequent appearance in closed forms for integrals and sums [todo: crossref symbolic integration]. Via mpmath, SymPy has relatively good support for evaluating sums and integrals numerically, using two complementary approaches: direct numerical evaluation, or first computing a symbolic closed form involving special functions. [example?]

> **3.2.** Numerical simplification. The nsimplify function in SymPy (a wrapper of identify in mpmath) attempts to find a simple symbolic expression that evaluates to the same numerical value as the given input. It works by applying a few simple transformations (including square roots, reciprocals, logarithms and exponentials) to the input and, for each transformed value, using the PSLQ algorithm [16] to search for a matching algebraic number or optionally a linear combination of user-provided base constants (such as π).

```
305
    >>> x = 1 / (\sin(pi/5) + \sin(2*pi/5) + \sin(3*pi/5) + \sin(4*pi/5)) **2
    >>> nsimplify(x)
306
    -2*sqrt(5)/5 + 1
307
    >>> nsimplify(pi, tolerance=0.01)
308
309
    22/7
    >>> nsimplify(1.783919626661888, [pi], tolerance=1e-12)
310
311
    pi/(-1/3 + 2*pi/3)
```

4. Features. SymPy has an extensive feature set that encompasses too much to cover in-depth here. Bedrock areas, such a Calculus, receive their own sub-sections below. Additionally, Table 1 describes other capabilities present in the SymPy code base. This gives a sampling from the breadth of topics and application domains that SymPy services.

Table 1: SymPy Features and Descriptions

Feature	Description
Discrete Math	Summations, products, binomial coefficients, prime number tools, integer factorization, Diophantine equation solving, and boolean logic representation, equivalence testing, and
	inference.

Tools for determining whether summation and product ex-Concrete Math pressions are convergent, absolutely convergent, hypergeometric, and other properties. May also compute Gosper's normal form [31] for two univariate polynomials. Plotting Hooks for visualizing expressions via matplotlib [?] or as text drawings when lacking a graphical back-end. Geometry Allows the creation of 2D geometrical entities, such as lines and circles. Enables queries on these entities, including asking the area of an ellipse, checking for collinearity of a set of points, or finding the intersection between two lines. Statistics Support for a random variable type as well as the ability to declare this variable from prebuilt distribution functions such as Normal, Exponential, Coin, Die, and other custom distributions. Polynomials Computes polynomial algebras over various coefficient domains ranging from the simple (e.g., polynomial division) to the advanced (e.g., Gröbner bases [7] and multivariate factorization over algebraic number domains). Sets Representations of empty, finite, and infinite sets. This in-

cludes special sets such as for all natural, integer, and complex numbers. Series Implements series expansion, sequences, and limit of se-

quences. This includes special series, such as Fourier and power series.

Vectors Provides basic vector math and differential calculus with respect to 3D Cartesian coordinate systems.

Matrices Tools for creating matrices of symbols and expressions. This is capable of both sparse and dense representations and performing symbolic linear algebraic operations (e.g., inversion

and factorization).

Combinatorics & Group Theory Implements permutations, combinations, partitions, sub-

sets, various permutation groups (such as polyhedral, Rubik, symmetric, and others). Grav codes [27], and Prufer

sequences [10].

Code Generation Enables generation of compilable and executable code in

> a variety of different programming languages directly from expressions. Target languages include C, Fortran, Julia, JavaScript, Mathematica, Matlab and Octave, Python, and

Theano.

Tensors Symbolic manipulation of indexed objects. Lie Algebras Represents Lie algebras and root systems.

Represents block and stream ciphers, including shift, Affine, Cryptography

substitution, Vigenere's, Hill's, bifid, RSA, Kid RSA, linear-

feedback shift registers, and Elgamal encryption

Special Functions	Implements a number of well known special functions, including Dirac delta, Gamma, Beta, Gauss error functions,
	Fresnel integrals, Exponential integrals, Logarithmic in-
	tegrals, Trigonometric integrals, Bessel, Hankel, Airy, B-
	spline, Riemann Zeta, Dirichlet eta, polylogarithm, Lerch
	transcendent, hypergeometric, elliptic integrals, Mathieu,
	Jacobi polynomials, Gegenbauer polynomial, Chebyshev
	polynomial, Legendre polynomial, Hermite polynomial, La-
	guerre polynomial, and spherical harmonic functions.

4.1. Simplification. The generic way to simplify an expression is by calling the simplify function. It must be emphasized that simplification is not an unambigously defined mathematical operation [14]. The simplify function applies several simplification routines along with some heuristics to make the output expression as "simple" as possible.

317 318

319

320

321 322

323 324

325

326

327

328 329

330

331

>>> expr.doit()

It is often preferable to apply more directed simplification functions. These apply very specific rules to the input expression, and are often able to make guarantees about the output (for instance, the factor function, given a polynomial with rational coefficients in several variables, is guaranteed to produce a factorization into irreducible factors). Table 4.1 lists some common simplification functions.

```
expand expand the expression factor a polynomial into irreducibles collect collect polynomial coefficients rewrite a rational function as p/q with common factors cancel apart compute the partial fraction decomposition of a rational function simplify trigonometric expressions [17]
```

Substitutions are performed through the .subs method, which is sensible to some mathematical properties while matching, such as associativity, commutativity, additive and multiplicative inverses, and matching of powers.

4.2. Calculus. Derivatives can be computed with the diff function.

```
>>> diff(sin(x), x)
332
333
    cos(x)
        Unevaluated Derivative objects are also supported.
334
    >>> expr = Derivative(sin(x), x)
335
    >>> expr
336
    Derivative(sin(x), x)
337
        Unevaluated expressions can be evaluated with the doit method.
338
339
    >>> expr.doit()
    cos(x)
340
        Integrals can be analogously calculated either with the integrate function, or
341
    the unevaluated Integral objects.
342
    >>> integrate(sin(x), x)
343
344
    -\cos(x)
    >>> expr = Integral(sin(x), x)
345
    >>> expr
346
    Integral(sin(x), x)
347
```

```
    349 -cos(x)
    350 Definite
    351 of the in
```

355

356

358 359

360

361

362

363

364

376

377

378 379

380

381

389

392

393

394

395

Definite integration can be calculated with the same method, by specifying a range of the integration variable. The following computes $\int_0^1 \sin(x) dx$.

```
352 >>> integrate(sin(x), (x, 0, 1))
353 -cos(1) + 1
```

SymPy implements a combination of the Risch algorithm [13], table lookups, a reimplementation of Manuel Bronstein's "Poor Man's Integrator" [12], and an algorithm for computing integrals based on Meijer G-functions. These allow SymPy to compute a wide variety of indefinite and definite integrals.

Summations and products are also supported, via the evaluated summation and product and unevaluated Sum and Product, and use the same syntax as integrate. Summations are computed using a combination of Gosper's algorithm and an algorithm that uses Meijer G-functions. Products are computed via some heuristics.

The limit module implements the Gruntz algorithm [19] for computing symbolic limits. For example, the following computes $\lim_{x\to\infty} x \sin(\frac{1}{x}) = 1$ (note that ∞ is oo in SymPy).

```
365 >>> limit(x*sin(1/x), x, oo)
366 1
367 As a more complicated example, SymPy computes \lim_{x\to 0} \left(2e^{\frac{1-\cos(x)}{\sin(x)}}-1\right)^{\frac{\sinh(x)}{\tan^2(x)}}=e.
368 >>> limit((2*E**((1-cos(x))/sin(x))-1)**(sinh(x)/atan(x)**2), x, 0)
369 E
```

4.3. Printers. SymPy has a rich collection of expression printers for displaying expressions to the user. By default, an interactive Python session will render the str form of an expression, which has been used in all the examples in this paper so far.

```
373 >>> phi0 = Symbol('phi0')
374 >>> str(Integral(sqrt(phi0), phi0))
375 Integral(sqrt(phi0 + 1), x)
```

Expressions can be printed with 2D monospace text with pprint. This uses Unicode characters to render mathematical symbols such as integral signs, square roots, and parentheses. Greek letters and subscripts in symbol names are rendered automatically.

Alternately, the use_unicode=False flag can be set, which causes the expression to be printed using only ASCII characters.

The function latex returns a LATEX representation of an expression. >>> print(latex(Integral(sqrt(phi0 + 1), phi0)))

```
390 >>> print(latex(Integral(sqrt(phi0 + 1), phi)
391 \int \sqrt{\phi_{0} + 1}\, d\phi_{0}
```

Users are encouraged to run the init_printing function at the beginning of interactive sessions, which automatically enables the best pretty printing supported by their environment. In the Jupyter notebook or qtconsole [29] the LATEX printer is used to render expressions using MathJax or LATEX if it is installed on the system. The 2D text representation is used otherwise.

Other printers such as MathML are also available. SymPy uses an extensible printer subsystem which allows users to customize the printing for any given printer, and for custom objects to define their printing behavior for any printer. SymPy's code generation capabilities, which we will not discuss in-depth here, use the same printer model.

4.4. Solvers. SymPy has module of equation solvers for symbolic equations. There are two submodules to solve algebraic equations in SymPy, referred to as old solve function, solve, and new solve function, solveset. Solveset is introduced with several design changes with respect to old solve function to resolve the issues with old solve function, for example old solve function's input API has many flags which are not needed and they make it hard for the user and the developers to work on solvers. In contrast to old solve function, the solveset has a clean input API, It only asks for the much needed information from the user, following are the function signatures of old and new solve function:

```
solve(f, *symbols, **flags)
                                 # old solve function
    solveset(f, symbol, domain) # new solve function
412
```

397

398

399

401

402

403

404

405

406 407

408

409

410

411

413

414

415

436

The old solve function has an inconsistent output API for various types of inputs, whereas the solveset has a canonical output API which is achieved using sets. It can consistently return various types of solutions.

```
    Single solution

416
    >>> solveset(x - 1)
417
418
    >>> {1}
          • Finite set of solution, quadratic equation
419
    >>> solveset(x**2 - pi**2, x)
420
    {-pi, pi}
421

    No Solution

    >>> solveset(1, x)
423
424
    EmptySet()
          • Interval of solution
425
    >>> solveset(x**2 - 3 > 0, x, domain=S.Reals)
426
     (-oo, -sqrt(3)) U (sqrt(3), oo)
427
          • Infinitely many solutions
428
    >>> solveset(sin(x) - 1, x, domain=S.Reals)
429
    ImageSet(Lambda(_n, 2*_n*pi + pi/2), Integers())
430
    >>> solveset(x - x, x, domain=S.Reals)
431
    (-00, 00)
432
    >>> solveset(x - x, x, domain=S.Complexes)
433
    S.Complexes
434
435
```

 Linear system: finite and infinite solution for determined, under determined and over determined problems.

```
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
437
    >>> b = Matrix([3, 6, 9])
438
    >>> linsolve((A, b), x, y, z)
439
    \{(-1,2,0)\}
440
441
    >>> linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))
    \{(-y - 1, y, 2)\}
442
```

The new solve i.e. **solveset** is under active development and is a planned replace-443 ment for solve, Hence there are some features which are implemented in solve and is 444 not yet implemented in solveset. The table below show the current state of old and 445

new solve functions.

Solveset vs Solve				
Feature	solve	solveset		
Consistent Output API	No	Yes		
Consistent Input API	No	Yes		
Univariate	Yes	Yes		
Linear System	Yes	Yes (linsolve)		
Non Linear System	Yes	Not yet		
Transcendental	Yes	Not yet		

Below are some of the examples of old **solve** function:

 Non Linear (multivariate) System of Equation: Intersection of a circle and a parabola.

```
>>> solve([x**2 + y**2 - 16, 4*x - y**2 + 6], x, y)
454
    [(-2 + sqrt(14), -sqrt(-2 + 4*sqrt(14))),
455
     (-2 + sqrt(14), sqrt(-2 + 4*sqrt(14))),
456
     (-sqrt(14) - 2, -I*sqrt(2 + 4*sqrt(14))),
457
     (-sqrt(14) - 2, I*sqrt(2 + 4*sqrt(14)))]
458
         • Transcendental Equation
459
    >>> solve(x + log(x))**2 - 5*(x + log(x)) + 6, x)
460
    [LambertW(exp(2)), LambertW(exp(3))]
461
    >>> solve(x**3 + exp(x))
462
    [-3*LambertW((-1)**(2/3)/3)]
463
```

 $\textbf{4.5. Matrices.} \ \, \text{SymPy supports matrices with symbolic expressions as elements.} \\ \blacksquare$

All SymPy matrix types can do linear algebra including matrix addition, multiplication, exponentiation, computing determinant, solving linear systems and computing inverses using LU decomposition, LDL decomposition, Gauss-Jordan elimination, Cholesky decomposition, Moore-Penrose pseudoinverse, and adjugate matrix.

All operations are computed are computed symbolically. Eigenvalues are computed by generating the characteristic polynomial using the Berkowitz algorithm and then solving it using polynomial routines. Diagonalizable matrices can be diagonalized first to compute the eigenvalues.

```
>>> A.eigenvals()
{x - sqrt(y*(x + y)): 1, x + sqrt(y*(x + y)): 1}
```

Internally these matrices store the elements as a list making it a dense representation. For storing sparse matrices, the SparseMatrix class can be used. Sparse matrices store the elements in a dictionary of keys (DoK) format.

SymPy also supports matrices with symbolic dimension values. MatrixSymbol represents a matrix with dimensions $m \times n$, where m and n can be symbolic. Matrix addition and multiplication, scalar operations, matrix inverse and transpose are stored symbolically as matrix expressions.

```
>>> m, n, p = symbols("m, n, p", integer=True)
```

```
>>> R = MatrixSymbol("R", m, n)
489
    >>> S = MatrixSymbol("S", n, p)
490
    >>> T = MatrixSymbol("t", m, p)
491
    >>> U = R*S + 2*T
492
    >>> u.shape
493
    (m, p)
494
    >>> U[0, 1]
495
    2*T[0, 1] + Sum(R[0, _k]*S[_k, 1], (_k, 0, n - 1))
496
        Block matrices are also supported in SymPy. BlockMatrix elements can be any
497
    matrix expression which includes explicit matrices, matrix symbols, and block matri-
498
    ces. All functionalities of matrix expressions are also present in BlockMatrix.
499
500
    >>> n, m, 1 = symbols('n m l')
    >>> X = MatrixSymbol('X', n, n)
501
    >>> Y = MatrixSymbol('Y', m ,m)
502
    >>> Z = MatrixSymbol('Z', n, m)
503
    >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
504
505
    >>> B
506
    Matrix([
    [X, Z],
507
    [0, Y]])
508
    >>> B[0, 0]
509
    X[0, 0]
510
511
    >>> B.shape
    (m + n, m + n)
512
```

- **5. Domain Specific Features.** SymPy includes several packages that allow users to solve domain specific problems. For example, a comprehensive physics package is included that is useful for solving problems in classical mechanics, optics, and quantum mechanics along with support for manipuating physical quantities with units.
- **5.1. Vector Algebra.** The sympy.physics.vector package provides reference frame, time, and space aware vector and dyadic objects that allow for three dimensional operations such as addition, subtraction, scalar multiplication, inner and outer products, cross products, etc. Both of these objects can be written in very compact notation that make it easy to express the vectors and dyadics in terms of multiple reference frames with arbitrarily defined relative orientations. The vectors are used to specify the positions, velocities, and accelerations of points, orientations, angular velocities, and angular accelerations of reference frames, and force and torques. The dyadics are essentially reference frame aware 3×3 tensors. The vector and dyadic objects can be used for any one-, two-, or three-dimensional vector algebra and they provide a strong framework for building physics and engineering tools.

The following Python interpreter session showing how a vector is created using the orthogonal unit vectors of three reference frames that are oriented with respect to each other and the result of expressing the vector in the A frame. The B frame is oriented with respect to the A frame using Z-X-Z Euler Angles of magnitude π , $\frac{\pi}{2}$, and $\frac{\pi}{3}$ rad, respectively whereas the C frame is oriented with respect to the B frame through a simple rotation about the B frame's X unit vector through $\frac{\pi}{2}$ rad.

```
535 >>> from sympy import pi
536 >>> from sympy.physics.vector import ReferenceFrame
537 >>> A = ReferenceFrame('A')
```

513

514

516

517

518

519

520

523

524

525 526

528

529

```
538
    >>> B = ReferenceFrame('B')
    >>> C = ReferenceFrame('C')
539
540
    >>> B.orient(A, 'body', (pi, pi / 3, pi / 4), 'zxz')
    >>> C.orient(B, 'axis', (pi / 2, B.x))
    >>> v = 1 * A.x + 2 * B.z + 3 * C.v
542
543
    >>> v
    A.x + 2*B.z + 3*C.y
544
    >>> v.express(A)
545
    A.x + 5*sqrt(3)/2*A.y + 5/2*A.z
546
```

- 5.2. Classical Mechanics. The physics.mechanics package utilizes the physics.vector package to populate time aware particle and rigid body objects to fully describe the kinematics and kinetics of a rigid multi-body system. These objects store all of the information needed to derive the ordinary differential or differential algebraic equations that govern the motion of the system, i.e., the equations of motion. These equations of motion abide by Newton's laws of motion and can handle any arbitrary kinematical constraints or complex loads. The package offers two automated methods for formulating the equations of motion based on Lagrangian Dynamics [23] and Kane's Method [22]. Lastly, there are automated linearization routines for constrained dynamical systems based on [30].
- **5.3. Quantum Mechanics.** The sympy.physics.quantum package provides quantum functions, states, operators, and computation of standard quantum models.
 - **5.4.** Optics. The physics optics package provides Gaussian optics functions.
- 5.5. Units. The physics.units module provides around two hundred predefined prefixes and SI units that are commonly used in the sciences. Additionally, it provides the Unit class which allows the user to define their own units. These prefixes and units are multiplied by standard SymPy objects to make expressions unit aware, allowing for algebraic and calculus manipulations to be applied to the expressions while the units are tracked in the manipulations. The units of the expressions can be easily converted to other desired units. There is also a new units system in sympy.physics.unitsystems that allows the user to work in specified unit systems.
- 5.6. Tensors. Ongoing work to provide the capabilities of tensor computer algebra has so far produced the tensor module. It is composed of three separated submodules, whose purposes are quite different: tensor.indexed and tensor.indexed_methods support indexed symbols, tensor.array contains facilities to operator on symbolic N-dimensional arrays and finally tensor.tensor is used to defineabstract tensors. The abstract tensors subsection is inspired by xAct[25] and Cadabra[28]. Canonicalization based on the Butler-Portugal[24] algorithm is supported in SymPy. It is currently limited to polynomial tensor expressions.
- **6. Other Projects that use SymPy.** There are several projects that use SymPy as a library for implementing a part of their project, or even as a part of back-end for their application as well.
- Some of them are listed below:
 - Cadabra: Cadabra is a symbolic computer algebra system (CAS) designed specifically for the solution of problems encountered in field theory.
 - Octave Symbolic: The Octave-Forge Symbolic package adds symbolic calculation features to GNU Octave. These include common Computer Algebra

- System tools such as algebraic operations, calculus, equation solving, Fourier and Laplace transforms, variable precision arithmetic and other features.
 - SymPy.jl: Provides a Julia interface to SymPy using PyCall.
 - Mathics: Mathics is a free, general-purpose online CAS featuring Mathematica compatible syntax and functions. It is backed by highly extensible Python code, relying on SymPy for most mathematical tasks.
 - Mathpix: An iOS App, that uses Artificial Intelligence to detect handwritten math as input, and uses SymPy Gamma, to evaluate the math input and generate the relevant steps to solve the problem.
 - **IKFast**: IKFast is a robot kinematics compiler provided by OpenRAVE. It analytically solves robot inverse kinematics equations and generates optimized C++ files. It uses SymPy for its internal symbolic mathematics.
 - Sage: A CAS, visioned to be a viable free open source alternative to Magma, Maple, Mathematica and Matlab.
 - SageMathCloud: SageMathCloud is a web-based cloud computing and course management platform for computational mathematics.
 - PyDy: Multibody Dynamics with Python.
 - galgebra: Geometric algebra (previously sympy.galgebra).
 - yt: Python package for analyzing and visualizing volumetric data (yt.units uses SymPy).
 - SfePy: Simple finite elements in Python.
 - Quameon: Quantum Monte Carlo in Python.
 - Lcapy: Experimental Python package for teaching linear circuit analysis.
 - Quantum Programming in Python: Quantum 1D Simple Harmonic Oscillator and Quantum Mapping Gate.
 - LaTeX Expression project: Easy LaTeX typesetting of algebraic expressions in symbolic form with automatic substitution and result computation.
 - **Symbolic statistical modeling**: Adding statistical operations to complex physical models.

7. Conclusion and future work.

8. References.

585

586

587

588

589

590

596

598

599

600

601 602

603

604

605

606 607

608

609

610

611

612 613

614

615

616

621

625

 $626 \\ 627$

REFERENCES

- 617 [1] https://github.com/sympy/sympy/blob/master/doc/src/modules/polys/ringseries.rst.
- 618 [2] https://reference.wolfram.com/language/ref/Flat.html.
- 619 [3] https://reference.wolfram.com/language/ref/Orderless.html.
- 620 [4] https://reference.wolfram.com/language/ref/OneIdentity.html.
 - [5] https://reference.wolfram.com/language/tutorial/FlatAndOrderlessFunctions.html.
- [6] The software engineering of the wolfram system, 2016, https://reference.wolfram.com/language/tutorial/TheSoftwareEngineeringOfTheWolframSystem.html.
 [7] W. W. ADAMS AND P. LOUSTAUNAU, An introduction to Gröbner bases, no. 3, American Math-
 - [7] W. W. ADAMS AND P. LOUSTAUNAU, An introduction to Gröbner bases, no. 3, American Mathematical Soc., 1994.
 - [8] D. H. Bailey, K. Jeyabalan, and X. S. Li, A comparison of three high-precision quadrature schemes, Experimental Mathematics, 14 (2005), pp. 317–329.
- [9] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer, 1st ed., October 1999.
- [10] N. Biggs, E. K. Lloyd, and R. J. Wilson, *Graph Theory*, 1736-1936, Oxford University
 Press, 1976.
- [11] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge University Press,
 version 0.5.1 ed.
- 634 [12] M. Bronstein, Poor Man's Integrator, http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint.
- 635 [13] M. Bronstein, Symbolic Integration I: Transcendental Functions, Springer-Verlag, New York,

636 NY, USA, 2005.

 $643 \\ 644$

647

 $648 \\ 649$

650

653

660

661

662

663

664

665

666 667

668

 $669 \\ 670$

671

679

- [14] J. CARETTE, Understanding Expression Simplification, in ISSAC '04: Proceedings of the
 2004 International Symposium on Symbolic and Algebraic Computation, New York,
 NY, USA, 2004, ACM Press, pp. 72–79, http://dx.doi.org/http://doi.acm.org/10.1145/
 1005285.1005298.
- [41] [15] R. J. FATEMAN, A review of Mathematica, Journal of Symbolic Computation, 13 (1992),
 pp. 545-579, http://dx.doi.org/DOI:10.1016/S0747-7171(10)80011-2.
 - [16] H. R. P. FERGUSON, D. H. BAILEY, AND S. ARNO, Analysis of PSLQ, an integer relation finding algorithm, Mathematics of Computation, 68 (1999), pp. 351–369.
- [17] H. Fu, X. Zhong, and Z. Zeng, Automated and Readable Simplification of Trigonometric
 Expressions, Mathematical and Computer Modelling, 55 (2006), pp. 1169–1177.
 - [18] D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys (CSUR), 23 (1991), pp. 5–48.
 - [19] D. GRUNTZ, On Computing Limits in a Symbolic Manipulation System, PhD thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 1996.
- 651 [20] D. Gruntz and W. Koepf, Formal power series, (1993).
- 652 [21] C. V. Horsen, GMPY. https://pypi.python.org/pypi/gmpy2, 2015.
 - [22] T. R. KANE AND D. A. LEVINSON, Dynamics, Theory and Applications, McGraw Hill, 1985.
- 654 [23] J. LAGRANGE, Mécanique analytique, no. v. 1 in Mécanique analytique, Ve Courcier, 1811.
- [24] L. R. U. Manssur, R. Portugal, and B. F. Svaiter, Group-theoretic approach for symbolic tensor manipulation, Int. J. Mod. Phys. C, 13 (2002), http://dx.doi.org/http://dx.doi.org/10.1142/S0129183102004571.
- 658 [25] J. Martín-Ġarcía, xact, efficient tensor computer algebra, 2002-2016, http://metric.iem.csic. 659 es/Martin-Garcia/xAct/.
 - [26] M. MOSKEWICZ, C. MADIGAN, AND S. MALIK, Method and system for efficient implementation of boolean satisfiability, Aug. 26 2008, http://www.google.co.in/patents/US7418369. US Patent 7,418,369.
 - [27] A. NIJENHUIS AND H. S. WILF, Combinatorial Algorithms: For Computers and Calculators, Academic Press, New York, NY, USA, second ed., 1978.
 - [28] K. Peeters, Cadabra: a field-theory motivated symbolic computer algebra system, Computer Physics Communications, (2007).
 - [29] F. Pérez and B. E. Granger, Ipython: a system for interactive scientific computing, Computing in Science & Engineering, 9 (2007), pp. 21–29.
 - [30] D. L. PETERSON, G. GEDE, AND M. HUBBARD, Symbolic linearization of equations of motion of constrained multibody systems, Multibody System Dynamics, 33 (2014), pp. 143–161, http://dx.doi.org/10.1007/s11044-014-9436-5.
- 672 [31] M. Petkovšek, H. S. Wilf, and D. Zeilberger, A = bak peters, Wellesley, MA, (1996).
- 673 [32] M. SOFRONIOU AND G. SPALETTA, *Precise numerical computation*, Journal of Logic and Algebraic Programming, 64 (2005), pp. 113–134.
- [33] H. TAKAHASI AND M. MORI, Double exponential formulas for numerical integration, Publications of the Research Institute for Mathematical Sciences, 9 (1974), pp. 721–741.
- 677 [34] V. T. TOTH, Maple and meijer's g-function: a numerical instability and a cure. http://www. vttoth.com/CMS/index.php/technical-notes/67, 2007.
 - 9. Supplement.
- 680 **9.1. The Gruntz Algorithm.** We first define comparability classes by calculating L:

682 (1)
$$L \equiv \lim_{x \to \infty} \frac{\log |f(x)|}{\log |g(x)|}$$

- 683 And then we define the <, > and \sim operations as follows: f > g when $L = \pm \infty$ (f
- is more rapidly varying than g, i.e., f goes to ∞ or 0 faster than g, f is greater than
- any power of q), f < g when L = 0 (f is less rapidly varying than g) and $f \sim g$ when
- 686 $L \neq 0, \pm \infty$ (both f and g are bounded from above and below by suitable integral 687 powers of the other).

Examples:

$$2 < x < e^x < e^{x^2} < e^{e^x}$$
$$2 \sim 3 \sim -5$$

$$x \sim x^2 \sim x^3 \sim \frac{1}{x} \sim x^m \sim -x$$

$$e^x \sim e^{-x} \sim e^{2x} \sim e^{x+e^{-x}}$$

$$f(x) \sim \frac{1}{f(x)}$$

The Gruntz algorithm, on an example:

$$f(x) = e^{x+2e^{-x}} - e^x + \frac{1}{x}$$

$$\lim_{x \to \infty} f(x) = ?$$

Strategy: mrv set: the set of most rapidly varying subexpressions $\{e^x, e^{-x}, e^{x+2e^{-x}}\}$, the same comparability class Take an item ω from mrv, converging to 0 at infinity. Here $\omega = e^{-x}$. If not present in the mrv set, use the relation $f(x) \sim \frac{1}{f(x)}$.

Rewrite the mrv set using ω : $\{\frac{1}{\omega}, \omega, \frac{1}{\omega}e^{2\omega}\}$, substitute back into f(x) and expand in ω :

$$f(x) = \frac{1}{x} - \frac{1}{\omega} + \frac{1}{\omega}e^{2\omega} = 2 + \frac{1}{x} + 2\omega + O(\omega^2)$$

The core idea of the algorithm: ω is from the mrv set, so in the limit $\omega \to 0$:

$$f(x) = \frac{1}{x} - \frac{1}{\omega} + \frac{1}{\omega}e^{2\omega} = 2 + \frac{1}{x} + 2\omega + O(\omega^2) \to 2 + \frac{1}{x}$$

We iterate until we get just a number, the final limit. Gruntz proved this algorithm always works and converges in his Ph.D. thesis [19].

Generally:

$$f(x) = \underbrace{O\left(\frac{1}{\omega^3}\right)}_{\infty} + \underbrace{\frac{C_{-2}(x)}{\omega^2}}_{\infty} + \underbrace{\frac{C_{-1}(x)}{\omega}}_{\infty} + C_0(x) + \underbrace{C_1(x)\omega}_{0} + \underbrace{O(\omega^2)}_{0}$$

we look at the lowest power of ω . The limit is one of: 0, $\lim_{x\to\infty} C_0(x)$, ∞ .

9.2. Series.

694 695

696

697

698 699

700

701

702

707

708

709

9.2.1. Series Expansion. SymPy is able to calculate the symbolic series expansion of an arbitrary series or expression involving elementary and special functions and multiple variables. For this it has two different implementations- the series method and Ring Series.

The first approach stores a series as an object of the Basic class. Each function has its specific implementation of its expansion which is able to evaluate the Puiseux series expansion about a specified point. For example, consider a Taylor expansion about 0:

- 703 >>> from sympy import symbols, series
- 704 >>> x, y = symbols('x, y')
- 705 >>> series($\sin(x+y) + \cos(x*y)$, x, 0, 2)
- 706 1 + $\sin(y)$ + $x*\cos(y)$ + O(x**2)

The newer and much faster[1] approach called Ring Series makes use of the observation that a truncated Taylor series, is in fact a polynomial. Ring Series uses the efficient representation and operations of sparse polynomials. The choice of sparse polynomials is deliberate as it performs well in a wider range of cases than a dense

representation. Ring Series gives the user the freedom to choose the type of coefficients he wants to have in his series, allowing the use of faster operations on certain types.

For this, several low level methods for expansion of trigonometric, hyperbolic and other elementary functions like inverse of a series, calculating nth root, etc, are implemented using variants of the Newton[11] Method. All these support Puiseux series expansion. The following example demonstrates the use of an elementary function that calculates the Taylor expansion of the sine of a series.

```
719 >>> from sympy import ring
720 >>> from sympy.polys.ring_series import rs_sin
721 >>> R, x = ring('x', QQ)
722 >>> rs_sin(x**2 + x, x, 5)
723 -1/2*x**4 - 1/6*x**3 + x**2 + x
724 The function sympy.polys.rs_series makes use o
```

714715

716

717

718

725

726

727

728

729

730

The function <code>sympy.polys.rs_series</code> makes use of these elementary functions to expand an arbitrary SymPy expression. It does so by following a recursive strategy of expanding the lower most functions first and then composing them recursively to calculate the desired expansion. Currently it only supports expansion about 0 and is under active development. Ring Series is several times faster than the default implementation with the speed difference increasing with the size of the series. The <code>sympy.polys.rs_series</code> takes as input any SymPy expression and hence there is no need to explicitly create a polynomial <code>ring</code>. An example:

```
732 >>> from sympy.polys.ring_series import rs_series
733 >>> from sympy.abc import a, b
734 >>> from sympy import sin, cos
735 >>> rs_series(sin(a + b), a, 4)
736 -1/2*(sin(b))*a**2 + (sin(b)) - 1/6*(cos(b))*a**3 + (cos(b))*a
```

9.2.2. Formal Power Series. SymPy can be used for computing the Formal Power Series of a function. The implementation is based on the algorithm described in the paper on Formal Power Series[20]. The advantage of this approach is that an explicit formula for the coefficients of the series expansion is generated rather than just computing a few terms.

The following example shows how to use fps:

```
743 >>> f = fps(sin(x), x, x0=0)
744 >>> f.truncate(6)
745 x - x**3/6 + x**5/120 + 0(x**6)
746 >>> f[15]
747 -x**15/1307674368000
```

9.2.3. Fourier Series. SymPy provides functionality to compute Fourier Series of a function using the fourier_series function. Under the hood it just computes a0, an, bn using standard integration formulas.

Here's an example on how to compute Fourier Series in SymPy:

```
752 >>> L = symbols('L')
753 >>> f = fourier_series(2 * (Heaviside(x/L) - Heaviside(x/L - 1)) - 1, (x, 0, 2*L))
754 >>> f.truncate(3)
755 4*sin(pi*x/L)/pi + 4*sin(3*pi*x/L)/(3*pi) + 4*sin(5*pi*x/L)/(5*pi)
```

9.3. Logic. SymPy supports construction and manipulation of boolean expressions through the logic module. SymPy symbols can be used as propositional variables and also be substituted as True or False. A good number of manipulation

```
759 features for boolean expressions have been implemented in the logic module.
```

```
9.3.1. Constructing boolean expressions. A boolean variable can be de-
760
    clared as a SymPy symbol. Python operators &, | and ~ are overloaded for logical
761
762
    And, Or and negate. Several others like Xor, Implies can be constructed with ^, >>
763
    respectively. The above are just a shorthand, expressions can also be constructed by
764
    directly calling And(), Or(), Not(), Xor(), Nand(), Nor(), etc.
    >>> from sympy import *
765
    >>> x, y, z = symbols('x y z')
766
    >>> e = (x \& y) | z
767
    >>> e.subs({x: True, y: True, z: False})
    True
769
770
        9.3.2. CNF and DNF. Any boolean expression can be converted to conjunc-
    tive normal form, disjunctive normal form and negation normal form. The API also
    permits to check if a boolean expression is in any of the above mentioned forms.
772
    >>> from sympy import *
    >>> x, y, z = symbols('x y z')
774
775
    >>> to_cnf((x & y) | z)
   And(Or(x, z), Or(y, z))
    >>> to_dnf(x & (y | z))
777
    Or(And(x, y), And(x, z))
    >>> is_cnf((x | y) & z)
779
780
    True
781
    >>> is_dnf((x & y) | z)
    True
782
        9.3.3. Simplification and Equivalence. The module supports simplification
783
    of given boolean expression by making deductions on it. Equivalence of two expres-
    sions can also be checked. If so, it is possible to return the mapping of variables of
785
    two expressions so as to represent the same logical behaviour.
786
    >>> from sympy import *
787
    >>> a, b, c, x, y, z = symbols('a b c x y z')
    >>> e = a & (~a | ~b) & (a | c)
789
    >>> simplify(e)
790
    And(Not(b), a)
791
    >>> e1 = a \& (b | c)
792
    >>> e2 = (x \& y) | (x \& z)
793
    >>> bool_map(e1, e2)
794
     (And(Or(b, c), a), \{b: y, a: x, c: z\})
795
        9.3.4. SAT solving. The module also supports satisfiability checking of a given
796
    boolean expression. If satisfiable, it is possible to return a model for which the ex-
797
    pression is satisfiable. The API also supports returning all possible models. The SAT
798
    solver has a clause learning DPLL algorithm implemented with watch literal scheme
    and VSIDS heuristic[26]
800
    >>> from sympy import *
801
    >>> a, b, c = symbols('a b c')
802
    >>> satisfiable(a & (~a | b) & (~b | c) & ~c)
    False
804
```

>>> satisfiable(a & (~a | b) & (~b | c) & c)

{b: True, a: True, c: True}

9.4. Diophantine Equations. Diophantine equations play a central and an important role in number theory. A Diophantine equation has the form, $f(x_1, x_2, ... x_n) = 0$ where $n \geq 2$ and $x_1, x_2, ... x_n$ are integer variables. If we can find n integers $a_1, a_2, ... a_n$ such that $x_1 = a_1, x_2 = a_2, ... x_n = a_n$ satisfies the above equation, we say that the equation is solvable.

Currently, following five types of Diophantine equations can be solved using SymPy's Diophantine module.

- Linear Diophantine equations: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$
- General binary quadratic equation: $ax^2 + bxy + cy^2 + dx + ey + f = 0$
- Homogeneous ternary quadratic equation: $ax^2 + by^2 + cz^2 + dxy + eyz + fzx = 0$
- Extended Pythagorean equation: $a_1x_1^2 + a_2x_2^2 + \cdots + a_nx_n^2 = a_{n+1}x_{n+1}^2$
- General sum of squares: $x_1^2 + x_2^2 + \dots + x_n^2 = k$

When an equation is fed into Diophantine module, it factors the equation (if possible) and solves each factor separately. Then all the results are combined to create the final solution set. Following examples illustrate some of the basic functionalities of the Diophantine module.

```
>>> from sympy import symbols
823
    >>> x, y, z = symbols("x, y, z", integer=True)
824
825
    >>>  diophantine(2*x + 3*y - 5)
826
    set([(3*t_0 - 5, -2*t_0 + 5)])
827
828
829
    \Rightarrow diophantine(2*x + 4*y - 3)
    set()
830
831
    >>> diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)
832
    set([(2, 1), (5, 1)])
833
834
835
    >>> diophantine(x**2 - 4*x*y + 4*y**2 - 3*x + 7*y - 5)
    set([(-2*t**2 - 7*t + 10, -t**2 - 3*t + 5)])
836
837
    >>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)
838
    set([(-16*p**2 + 28*p*q + 20*q**2, 3*p**2 + 38*p*q - 25*q**2, 4*p**2 - 24*p*q + 68*q**2)])
839
840
    >>> from sympy.abc import a, b, c, d, e, f
841
    >>> diophantine(9*a**2 + 16*b**2 + c**2 + 49*d**2 + 4*e**2 - 25*f**2)
842
    set([(70*t1**2 + 70*t2**2 + 70*t3**2 + 70*t4**2 - 70*t5**2, 105*t1*t5, 420*t2*t5, 60*t3*t5, 210*t4*t5,
843
844
    >>> diophantine(a**2 + b**2 + c**2 + d**2 + e**2 + f**2 - 112)
845
    set([(8, 4, 4, 4, 0, 0)])
846
```

9.5. Sets. SymPy supports representation of a wide variety of mathematical sets. This is achieved by first defining abstract representations of atomic set classes and then combining and transforming them using various set operations.

Each of the set classes inherits from the base class Set and defines methods to check membership and calculate unions, intersections, and set differences. When these methods are not able to evaluate to atomic set classes, they are represented as abstract unevaluated objects.

SymPy has the following atomic set classes:

• EmptySet represents the empty set \emptyset .

- UniversalSet is an abstract "universal set" for which everything is a member. The union of the universal set with any set gives the universal set and the intersection gives to the other set itself.
- FiniteSet is functionally equivalent to Python's built inset object. Its members can be any SymPy object including other sets themselves.
- Integers represents the set of Integers \mathbb{Z} .

- Naturals represents the set of Natural numbers N, i.e., the set of positive integers.
- Naturals0 represents the whole numbers, which are all the non-negative integers.
- Range represents a range of integers. A range is defined by specifying a start value, an end value, and a step size. Range is functionally equivalent to Python's range except it supports infinite endpoints, allowing the representation of infinite ranges.
- Interval represents an interval of real numbers. It is specified by giving the start and end point and specifying if it is open or closed in the respective ends.

Other than unevaluated classes of Union, Intersection and Set Difference operations, we have following set classes.

- ProductSet defines the Cartesian product of two or more sets. The product set is useful when representing higher dimensional spaces. For example to represent a three-dimensional space we simply take the Cartesian product of three real sets.
- ImageSet represents the image of a function when applied to a particular set. In notation, the image set of a function F with respect to a set S is $\{F(x)|x\in S\}$. SymPy uses image sets to represent sets of infinite solutions equations such as $\sin(x)=0$.
- ConditionSet represents subset of a set whose members satisfies a particular condition. In notation, the condition set of the set S with respect to the condition H is $\{x|H(x), x \in S\}$. SymPy uses condition sets to represent the set of solutions of equations and inequalities, where the equation or the inequality is the condition and the set is the domain being solved over.

A few other classes are implemented as special cases of the classes described above. The set of real numbers, Reals is implemented as a special case of Interval, $(-\infty, \infty)$. ComplexRegion is implemented as a special case of ImageSet. ComplexRegion supports both polar and rectangular representation of regions on the complex plane.

9.6. SymPy Gamma. SymPy Gamma is a simple web application that runs on Google App Engine. It executes and displays the results of SymPy expressions as well as additional related computations, in a fashion similar to that of Wolfram Alpha. For instance, entering an integer will display its prime factors, digits in the base-10 expansion, and a factorization diagram. Entering a function will display its docstring; in general, entering an arbitrary expression will display its derivative, integral, series expansion, plot, and roots.

SymPy Gamma also has several additional features than just computing the results using SymPy.

• It displays integration steps, differentiation steps in detail, which can be viewed in Figure 1:

Fig. 1: Integral steps of tan(x)

- It also displays the factor tree diagrams for different numbers.
- SymPy Gamma also saves user search queries, and offers many such similar features for free, which Wolfram|Alpha only offers to its paid users.

Every input query from the user on SymPy Gamma is first, parsed by its own parser, which handles several different forms of function names, which SymPy as a library doesn't support. For instance, SymPy Gamma supports queries like sin x, whereas SymPy doesn't support this, and supports only sin(x).

This parser converts the input query to the equivalent SymPy readable code, which is then eventually processed by SymPy and the result is finally formatted in LaTeX and displayed on the SymPy Gamma web-application.

9.7. SymPy Live. SymPy Live is an online Python shell, which runs on Google App Engine, that executes SymPy code. It is integrated in the SymPy documentation examples, located at this link.

This is accomplished by providing a HTML/JavaScript GUI for entering source code and visualization of output, and a server part which evaluates the requested source code. It's an interactive AJAX shell, that runs SymPy code using Python on the server.

Certain Features of SymPy Live:

903

904

905

906 907

908

910

911

912

913

914

915

916 917

918

919

- It supports the exact same syntax as SymPy, hence it can be used easily, to test for outputs of various SymPy expressions.
- It can be run as a standalone app or in an existing app as an admin-only handler, and can also be used for system administration tasks, as an interactive way to try out APIs, or as a debugging aid during development.
- It can also be used to plot figures (link), and execute all kinds of expressions that SymPy can evaluate.
- SymPy Live also formats the output in LaTeX for pretty-printing the output.

9.8. Comparison with Mathematica. Wolfram Mathematica is a popular proprietary CAS. It features highly advanced algorithms. Mathematica has a core implemented in C++ [6] which interprets its own programming language (know as Wolfram language).

Analogously to Lisp's S-expressions, Mathematica uses its own style of M-expressions, which are arrays of either atoms or other M-expression. The first element of the expression identifies the type of the expression and is indexed by zero, whereas the first argument is indexed by one. Notice that SymPy expression arguments are stored in a Python tuple (that is, an immutable array), while the expression type is identified by the type of the object storing the expression.

Mathematica can associate attributes to its atoms. Attributes may define mathematical properties and behavior of the nodes associated to the atom. In SymPy, the usage of static class fields is roughly similar to Mathematica's attributes, though other programming patterns may also be used the achieve an equivalent behavior, such as class inheritance.

Unlike SymPy, Mathematica's expressions are mutable, that is one can change parts of the expression tree without the need of creating a new object. The reactivity of Mathematica allows for a lazy updating of any references to that data structure.

Products in Mathematica are determined by some builtin node types, such as Times, Dot, and others. Times is overloaded by the * operator, and is always meant to represent a commutative operator. The other notable product is Dot, overloaded by the . operator. This product represents matrix multiplication, it is not commutative. SymPy uses the same node for both scalar and matrix multiplication, the only exception being with abstract matrix symbols. Unlike Mathematica, SymPy determines commutativity with respect to multiplication from the factor's expression type. Mathematica puts the Orderless attribute on the expression type.

Regarding associative expressions, SymPy handles associativity by making associative expressions inherit the class AssocOp, while Mathematica specifies the Flat[2] attribute on the expression type.

Mathematica relies heavily on pattern matching: even the so-called equivalent of function declaration is in reality the definition of a pattern matching generating an expression tree transformation on input expressions. Mathematica's pattern matching is sensitive to associative[2], commutative[3], and one-identity[4] properties of its expression tree nodes[5]. SymPy has various ways to perform pattern matching. All of them play a lesser role in the CAS than in Mathematica and are basically available as a tool to rewrite expressions. The differential equation solver in SymPy somewhat relies on pattern matching to identify the kind of differential equation, but it is envisaged to replace that strategy with analysis of Lie symmetries in the future. Mathematica's real advantage is the ability to add new overloading to the expression builder at runtime, or for specific subnodes. Consider for example

In[1]:= Unprotect[Plus]

```
971

972 Out[1]= {Plus}

973

974 In[2]:= Sin[x_]^2 + Cos[y_]^2 := 1

975

976 In[3]:= x + Sin[t]^2 + y + Cos[t]^2

977

978 Out[3]= 1 + x + y
```

1005

This expression in Mathematica defines a substitution rule that overloads the functionality of the Plus node (the node for additions in Mathematica). The trailing underscore after a symbol means that it is to be considered a wildcard. This example may not be practical, one may wish to keep this identity unevaluated, nevertheless it clearly illustrates the potentiality to define one's own immediate transformation rules. In SymPy the operations constructing the addition node in the expression tree are Python class constructors, and cannot be modified at runtime⁵ The way SymPy deals with extending the missing runtime overloadability functionality is by subclassing the node types. Subclasses may overload the class constructor to yield the proper extended functionality.

Unlike SymPy, Mathematica does not support type inheritance or polymorphism [15]. SymPy relies heavily on class inheritance, but for the most part, class inheritance is used to make sure that SymPy objects inherit the proper methods and implement the basic hashing system. Associativity of expressions can be achieved by inheriting the class AssocOp, which may appear a more cumbersome operation than Mathematica's attribute setting.

Matrices in SymPy are types on their own. In Mathematica, nested lists are interpreted as matrices whenever the sublists have the same length. The main difference to SymPy is that ordinary operators and functions do not get generalized the same way as used in traditional mathematics. Using the standard multiplication in Mathematica performs an elementwise product, this is compatible with Mathematica's convention of commutativity of Times nodes. Matrix product is expressed by the *dot* operator, or the Dot node. The same is true for the other operators, and even functions, most notably calling the exponential function Exp on a matrix returns an elementwise exponentiation of its elements. The real matrix exponentiation is available through the MatrixExp function.

Unevaluated expressions can be achieved in various ways, most commonly with the HoldForm or Hold nodes, that block the evaluation of subnodes by the parser. Note that such a node cannot be expressed in Python, because of greedy evaluation. Whenever needed in SymPy, it is necessary to add the parameter evaluate=False to all subnodes, or put the input expression in a string.

The operator == returns a boolean whenever it is able to immediately evaluate the truthness of the equality, otherwise it returns an Equal expression. In SymPy == means structural equality and is always guaranteed to return a boolean expression. To express an equality in SymPy it is necessary to explicitly construct the Equality class.

SymPy, in accordance with Python and unlike the usual programming convention, uses ** to express the power operator, while Mathematica uses the more common ^.

 $^{^5{\}rm In}$ reality, Python supports monkey patching, nonetheless it is a discouraged programming pattern.