FastPrice

Nosso objetivo é revolucionar a forma como os usuários escolhem serviços de transporte, garantindo que sempre encontrem a melhor opção em termos de custo-benefício. Para isso, estamos desenvolvendo o FatsPrice, um site inteligente que compara em tempo real os preços das corridas em diferentes plataformas de transporte.

Atuamos no setor de transporte, onde identificamos um espaço no mercado: a dificuldade dos usuários em comparar os preços de corridas entre diferentes aplicativos, como Uber e 99. Nossa missão é transformar a experiência do usuário, fornecendo uma plataforma intuitiva, confiável e eficiente, que o ajude a tomar decisões rápidas, econômicas e inteligentes.

Acreditamos na inovação e agilidade como diferencial competitivo e, por isso, estamos investindo na integração de IA para oferecer um serviço que garanta o melhor preço em tempo real.

Além do segmento de transporte rápido, planejamos expandir nossa solução para o mercado aéreo, permitindo que os usuários comparem preços de passagens e encontrem o melhor preço para suas viagens.

Nosso compromisso é com a transparência, acessibilidade e inovação, proporcionando uma ferramenta fácil de usar, rápida e confiável. Ao garantir que nossos usuários tenham acesso às melhores opções de transporte de maneira simples.

Com um modelo de negócios baseado em planos de assinatura e parcerias estratégicas, nossa visão é nos tornarmos referência no setor, oferecendo a melhor plataforma de comparação de preços.

Inteligência Artificial e Machine Learning

A equipe tinha a tarefa de criar um algoritmo de IA, capaz de calcular a estimativa do valor das viagens considerando variáveis externas, sendo assim, escolhemos algumas como, trânsito, feriado e condições climáticas.

O sistema utiliza técnicas de análise de dados e simulação de variações para gerar preços mais realistas e dinâmicos.

Cálculo do Preço por Quilômetro

Criamos uma base que fornece o Km e o preço estimado da corrida em diferentes serviços em um excel(Valores e distancias fornecidas pela Khipo, utilizamos esses dados como base histórica), sendo assim, dividimos o preço da corrida pelo km. Depois chegamos à média dos serviços por Km(Essa média foi gerada com mais de 10 milhões de linhas do excel).

0	Bag	2.678327
1	Black	3.002814
2	Black Bag	3.607032
3	Comfort	2.367388
4	Flash	1.562460
5	Flash Bikes	0.426808
6	Flash Moto	0.789072
7	Moto	0.715550
8	Taxi	2.387005
9	Uber Flash	1.276152
10	Uber Promo	1.346829
11	UberFlash	1.530532
12	UberX	1.572605
13	UberX Promo	1.050327
14	WPP-1-1	2.718785
15	WPP-42-1	3.339630
16	WPP-5-5	3.085946
17	WPP-7-6	2.040284
18	comfort99	2.142736
19	delivery99	1.753126
20	pop99	1.991392
21	poupa99	1.761212
22	regular-taxi	3.391470
23	top99	3.714983
24	turbo-taxi	3.313987

Aplicação de Fatores Externos

Para tornar a estimativa de preço mais próxima da realidade, são aplicados multiplicadores de acordo com condições específicas:

- Chuva: Acréscimo de 10% no valor da corrida.
- Feriado: Acréscimo de 15%.
- Trânsito intenso: Acréscimo de 20%.

O algoritmo escolhe aleatoriamente quais desses fatores serão aplicados, simulando variações de preço que ocorrem em diferentes situações do dia a dia.

Fizemos essa medida para o sistema ficar dinâmico, mas futuramente queremos deixar essas variações de trânsito e clima, conectadas com APIs apropriadas para trazer as informações reais.

Variação Aleatória

Além dos fatores externos, uma flutuação aleatória de até 5% é inserida para simular variações dinâmicas de mercado, como demanda momentânea ou ajustes internos da plataforma.

Estimativa de Corrida

Após o cálculo dos valores ajustados, o usuário pode inserir a distância desejada, e o sistema gera uma previsão do custo da viagem com base na média dos preços ajustados por tipo de serviço.

Código completo

```
import pandas as pd
import numpy as np
import random
df = pd.read_csv("rideestimative_v3 - Copia.csv", sep=";")
df["Price"] = pd.to_numeric(df["Price"], errors="coerce")
df["km"] = pd.to_numeric(df["km"], errors="coerce")
df.dropna(subset=["Price", "km"], inplace=True)
df["Price_per_km"] = df["Price"] / df["km"]
fatores = {
     "chuva": 1.10,
"feriado": 1.15,
"transito": 1.20
fatores_aplicados = {chave: random.choice([True, False]) for chave in fatores}
fator_aplicado = 1.0
fatores_selecionados = []
for fator, ativo in fatores_aplicados.items():
     if ativo:
         fator_aplicado *= fatores[fator]
         fatores_selecionados.append(fator)
df["Fator_Ajuste"] = ", ".join(fatores_selecionados) if fatores_selecionados else "nenhum"
df["Fator_Ajuste_Valor"] = fator_aplicado
df["Price_per_km_ajustado"] = df["Price_per_km"] * fator_aplicado
df["Variacao_Aleatoria"] = np.random.uniform(-variacao_maxima, variacao_maxima, size=len(df))
df["Price_per_km_ajustado"] *= (1 + df["Variacao_Aleatoria"])
df["Variacao_Considerada"] = df["Fator_Ajuste"] + " " + df["Variacao_Aleatoria"].round(4).astype(str)
media_por_produto = df.groupby("ProductID")["Price_per_km_ajustado"].mean().reset_index()
media_por_produto.to_excel("media_preco_por_km_ajustado.xlsx", index=False)
km_desejado = float(input("\nDigite a quantidade de km desejada: "))
media_por_produto["Valor_Estimado"] = media_por_produto["Price_per_km_ajustado"] * km_desejado
print("\nValores estimados para a distância informada:")
print(media_por_produto[["ProductID", "Valor_Estimado"]])
media_por_produto.to_excel("valores_estimados.xlsx", index=False)
fatores_df = pd.DataFrame({
     "Fatores_Aplicados": [", ".join(fatores_selecionados)],
"Fator_Total": [fator_aplicado]
fatores_df.to_excel("fatores_aplicados.xlsx", index=False)
print("\nFatores aleatórios aplicados:", fatores_selecionados)
print("Valores estimados salvos em 'valores_estimados.xlsx'.")
print("Fatores aplicados salvos em 'fatores_aplicados.xlsx'.")
```

Exemplo:

Aqui podemos ver que a corrida tem 20 Km.

```
Digite a quantidade de km desejada: 20
```

Futuramente o Km será a distância real da corrida.

Aqui podemos ver que o sistema escolheu, como fator externo, o feriado

```
Fatores aleatórios aplicados: ['feriado']
```

Futuramente esses fatores viram de APIs, para ficar total voltado para o uso no dia a dia

Aqui podemos ver os preços estimados da corrida, por cada serviço, vindo da base da empresa parceira Khipo.

	ProductID	Valor_Estimado
8	Bag	53.515902
1.	Black	60.199203
2.	Black Bag	72.031838
3	Comfort	47.306687
4	Flash	31.209853
5	Flash Bikes	8.557480
6	Flash Moto	15.794557
7	Moto	14.333203
8	Taxi	47.639277
9	Uber Flash	25.515605
10	Uber Promo	26.935966
11	UberFlash	30.593799
12	UberX	31.416041
13	UberX Promo	21.019843
14	WPP-1-1	54.776565
15	WPP-42-1	69.245635
16	WPP-5-5	62.515751
17	WPP-7-6	40.487092
18	comfort99	42.410859
19	delivery99	34.725087
20	pop99	39.876698
21	poupa99	35.228226
22	regular-taxi	67.818606
23	top99	74.435354
24	turbo-taxi	66.367480