

A PREEMINENT RESEARCH UNIVERSITY

A fast approach to estimating Windkessel model parameters for patient-specific multi-scale CFD simulations of aortic flow

Zongze Li, Wenbin Mao

Department of Mechanical Engineering University of South Florida

Introduction:

- Knowing hemodynamics in vessel is important.
 - Wall shear stress (WSS) is related to thrombosis.
- ☐ Current clinical flow visualization techniques have limitations.
 - Difficult to obtain velocity and pressure fields in vasculature.
- ☐ Computational fluid dynamics (CFD) with Windkessel model.
 - Current way to find parameters for Windkessel model needs iterations of periodic flow simulation.
- □ Objective: find a fast way to obtain accurate Windkessel model parameters.

Lamped parameter model

^[1] Liebeskind D S, Hinman J D, Kaneko N, et al. Endothelial Shear Stress and Platelet FcγRIIa Expression in Intracranial Atherosclerotic Disease[J]. Frontiers in Neurology, 2021, 12: 244. [2] https://en.wikipedia.org/wiki/Ascending aorta

Lattice Boltzmann method (LBM)

- ☐ Simple two step algorithm:
 - 1. Fluid node collides by the collision operator.
 - 2. Stream to neighbor fluid nodes.
- Advantages:
 - Collision step is local; streaming step takes no computation; natural to parallelize.
 - Easy to handle complex geometry by voxelization.
- BGK collision operator and D3Q19 lattice structure are used in this study.

[2]

BGK operator

D3Q19 descriptor

^[1] Lenan, Zhang & Jebakumar, Anand Samuel & Abraham, John. (2016). Lattice Boltzmann method simulations of Stokes number effects on particle motion in a channel flow. Physics of Fluids. 28. 063306. 10.1063/1.4953800. [2] https://en.wikipedia.org/wiki/Bhatnagar%E2%80%93Gross%E2%80%93Krook operator

Three element Windkessel model

R₁: characteristic resistance; R₂: peripheral resistance; C: compliance;

Geometric resistance

Goal of our algorithm

Flow distribution can be controlled by:

$$\label{eq:Q_RSA} Q_{RSA}^{\prime\prime} : Q_{RCCA}^{\prime\prime} : \dots : Q_{DAo}^{\prime\prime} = \frac{1}{R_{total_{RSA}}} : \frac{1}{R_{total_{RCCA}}} : \dots : \frac{1}{R_{total_{DAo}}}$$

For each branch: $R_{total} = R_{geo} + R_1 + R_2$

Find geometric resistance

 R_{geo} in both cases are similar, to simplify the algorithm, steady simulation is used.

R_{aux} is to control flow distribution of each branch.

$$Q\%_{RSA}: Q\%_{RCCA}: \dots: Q\%_{DAo} = \frac{1}{R_{total_{RSA}}}: \frac{1}{R_{total_{RCCA}}}: \dots: \frac{1}{R_{total_{DAo}}}$$

$$R_{total} = R_{geo} + \boxed{R_{aux}}$$

Find Windkessel model parameters

Input value Controllable value $Q\%_{LCCA}$ $Q\%_{RCCA}$ $Q\%_{LSA}$ Q(t)Flowrate Vs Time $Q\%_{DAo}$ Pressure Vs Time

i denotes each branch.

$$\begin{split} R_{total_i} &= \frac{P_{mean}}{Q_{mean_i}} \\ \text{Where, } P_{mean} &= \frac{1}{3} (P_{max} - P_{min}) + P_{min}; \\ Q_{mean_i} &= \frac{\int_0^T Q(t) dt}{T} * \frac{Q\%_i}{} \end{split}$$

2. Get Windkessel model resistance and max min pressure for branch i:

$$\begin{split} R_{WKM_i} &= R_{total_i} - R_{geo_i} \\ P_{max_i} &= P_{max} - Q_{mean_i} R_{geo_i} \\ P_{min_i} &= P_{min} - Q_{mean_i} R_{geo_i} \end{split}$$

3. Find R₁, R₂, and C for branch i by the pattern search. $R_{1i} = 0 \sim R_{WKM_i}$; $R_{2i} = R_{WKM_i} - R_{1i}$; $C_i = 0 \sim 3$ ml/mmHg Objective function:

$$obj = \sqrt{\frac{1}{2}[(P_{max_i} - P_{max_{ODE}})^2 + (P_{min_i} - P_{min_{ODE}})^2]}$$

Get a set of R₁, R₂, and C for all branches.

Simulation setup

Fluid settings:

Newtonian fluid;

Density: 1060 kg/m³;

Kinematic viscosity 3.3e-6 m²/s.

Boundary condition:

No slip and rigid wall;

Plug profile periodic velocity inlet;

Flowrate variant pressure outlet with three element Windkessel model.

Mesh Independence study:

When $dx \le 0.02$ cm, the difference is smaller than 1%. In the simulation, there are about 21 million fluid cells.

Results

Constant zero pressure outlets

Flow distribution without Windkessel model

Branch DAo RSA RCCA LCCA LSA Distribution 90.06% 2.08% 0.84% 4.82% 2.48%

Our algorithm with Windkessel model

Where val_{sim} is the value in simulation; val_{set} is the pre-set value; n is the amount of branch.

Flow distribution				
Branch	Branch Pre-set Simulation			
DAo	69.10%	68.81%		
RSA	9.50%	9.36%		
RCCA	9.80%	9.69%		
LCCA	5.20%	5.17%		
LSA	6.40%	6.33%		
L2 nori	0.16%			

Pressure range		
Unit: mmHg	Pre-set	Simulation
Max pressure	120	119.56
Min Pressure	80	79.60
L2 norm e	rror	0.42

Windkessel model parameters			
Branch	R_1	R_2	С
DAo	0.26	0.35	1.43
RSA	1.91	2.36	0.19
RCCA	1.85	2.45	0.20
LCCA	3.50	4.66	0.11
LSA	2.84	3.72	0.13
Resistance unit:		Complia	
mmHg*s/mL		mL/m	ımHg

Results for simulation with stenosis or even distribution

F
di
0%
U%0

<u>r</u>	riow distribution			
Branch	Pre-set	Simulation		
DAo	69.10%	68.61%		
RSA	9.50%	9.42%		
RCCA	9.80%	9.75%		
LCCA	5.20%	5.21%		
LSA	6.40%	6.37%		
L2 norm error		0.22%		

Flow distribution

Windkessel model parameters			
Branch	R_1	R_2	С
DAo	0.26	0.33	1.41
RSA	1.91	2.36	0.19
RCCA	1.85	2.45	0.20
LCCA	3.50	4.66	0.11
LSA	2.84	3.72	0.13
Resistance unit: Compliance unit:			
mmHg*s/mL mL/mmHg			ımHg

Flow distribution			
Branch	Simulation		
DAo	20.00%	20.38%	
RSA	20.00%	19.98%	
RCCA	20.00%	19.97%	
LCCA	20.00%	20.13%	
LSA	20.00%	19.79%	
L2 norm error		0.20%	

Windkessel model parameters			
Branch	R_1	R_2	С
DAo	0.91	1.21	0.42
RSA	0.89	0.89	0.38
RCCA	0.91	1.15	0.41
LCCA	0.91	1.15	0.41
LSA	0.90	1.05	0.40
Resistan	ce unit:	Compliance unit:	
mmHg*s/mL mL/mmHg			ımHg

Pressure	rang

Unit: mmHg	Pre-set	Simulation
Max pressure	120	122.75
Min Pressure	80	78.76
L2 norm error		2.14

Tressure range			
Unit: mmHg	Pre-set	Simulation	
Max pressure	120	125.64	
Min Pressure	80	78.49	
L2 norm error		4.13	

Preceure range

Results: animation from normal geometry with physiological flow distribution

Velocity magnitude field

Wall shear stress

Lambda 2

Conclusion:

We developed a fast algorithm to approach optimal Windkessel parameters for patient-specific aortic flow simulations:

- 1. Find geometric resistances by a steady CFD simulation.
- 2. Get the optimized Windkessel model parameters by the global optimization with the consideration of R_{geo} .
- 3. Run periodic flow simulation with tuned Windkessel model.

By this algorithm, max, min pressure of ascending aorta and flow distribution of each downstream branch are controllable.

Thank you!

Appendix

Windkessel model parameters			
Branch	R_1	R_2	C
DAo	0.27	2.20	1.53
RSA	1.96	15.98	0.21
RCCA	1.90	15.50	0.22
LCCA	3.59	29.20	0.11
LSA	2.92	23.73	0.14
Resistance unit: Compliance unit:			
mmHg*s/mL mL/mmHg			

For 80~120mmHg with normal geometry and normal flowrate distribution

Windkessel model parameters			
Branch	R_1	R_2	С
DAo	0.14	2.21	0.64
RSA	0.78	12.23	0.12
RCCA	0.89	13.80	0.10
LCCA	0.89	13.80	0.10
LSA	0.73	11.40	0.12
Resistance unit:		Compliance unit:	
mmHg*s/mL		mL/mmHg	

Madhavan S, Kemmerling E M C. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow[J]. Biomedical engineering online, 2018, 17(1): 1-20.