

Universidade do Minho

Escola de Ciências

Computação Gráfica

Fase II

Relatório de Desenvolvimento

André Oliveira Barbosa A91684 Francisco António Borges Paulino A91666

14 de abril de 2023

Resumo			
Este relatório foi elaborado no âmbito da segunda fase do trabalho prático da disciplina de Computação Gráfica, sobre a criação de cenas hierárquicas usando transformações geométricas.			

Conteúdo

1	Introdução		
	1.1	Enquandramento e contexto	2
2	Aná	álise e Especificação	3
	2.1	Descrição do Problema	3
3	Cor	ncepção da Resolução	4
	3.1	Cenas hierárquicas	4
		3.1.1 Exemplo de execução do Engine	4
	3.2	Criação de um ficheiro XML que recrie um modelo estático do Sistema Solar	7
		3.2.1 Exemplos do modelo	7
4	Cor	nclusão	10

Introdução

1.1 Enquandramento e contexto

Na segunda fase do trabalho prático da Unidade Curricular de Computação Gráfica foi-nos pedido a criação de cenas hierárquicas usando transformações geométricas.

Análise e Especificação

2.1 Descrição do Problema

Esta fase está essencialmente dividida entre:

- Cenas hierárquicas
- Criação de um ficheiro XML que recrie um modelo estático do Sistema Solar.

Concepção da Resolução

3.1 Cenas hierárquicas

Nesta fase, essencialmente foi alterado o leitor XML previamente desenvolvido. Sendo assim, este trabalha agora de forma recursiva. Para a execução das transformações foi criada uma classe abstrata chamada Transformation com o método apply e as classes Rotation, Translation e Scale.

3.1.1 Exemplo de execução do Engine

Figura 3.1: teste 2.1

Figura 3.2: teste 2.2

Figura 3.3: teste 2.3

Figura 3.4: teste 2.4

3.2 Criação de um ficheiro XML que recrie um modelo estático do Sistema Solar.

No ficheiro XML colocamos o Sol, os planetas (Mercúrio, Venus, Terra, MArte, Júpiter, Saturno, Urano e Neptuno), bem como algumas as seguintes luas, sendo que podemos futuramente colocar mais luas para tornar o modelo mais completo.

• Luas da Terra: Moon

• Luas de Júpiter: Europa, IO, Ganymede, Callisto

• Luas de Saturno: Titan, Iapetus

• Luas de Urano: Titania

• Luas de Neptuno: Triton

A escala que utilizamos de modo a conseguir equilibrar o realismo com a facilidade de observação do modelo do Sistema Solar foi o seguinte:

• Escala dos corpos do Sistema Solar: Inicialmente, o tamanho da Terra foi definido como 1 unidade. As dimensões dos outros planetas são as reais divididas pela dimensão real da Terra, de forma a tornar o modelo o mais realista possível. Já o Sol, neste modelo, tem um quarto do seu tamanho real. Exemplo:

- Diâmetro Real de Mercúrio: 4 879 KM

- Diâmetro Real da Terra: 12 742 KM

- Tamanho de Mercúrio no modelo: 0.38 unidades

• Distância entre os corpos do Sistema Solar: As distâncias no modelo são criadas sem escala definida, apenas com o objetivo de serem o mais próximas da realidade, mas possíveis de visualizar.

Para além disto, foi definido nesta fase um torus de modo a construirmos o característico anel de Saturno.

3.2.1 Exemplos do modelo

Figura 3.5: Perspetiva visão 1

Figura 3.6: Perspetiva visão $2\,$

Figura 3.7: Perspetiva visão 3

Conclusão

Nesta fase do projeto, o maior problema que sentimos foi definir uma escala para o tamanho dos componentes do Sistema Solar já que as distâncias e dimensões são tão imensas que tornam a visualização complicada. Contudo, tal como abordado neste relatório, acabamos por chegar a uma solução que nos parece ótima para existir um equilíbrio entre o realismo e o conforto para observar o Sistema Solar. Numa próxima fase as distâncias entre os planetas podem possivelmente ser alteradas de modo a que tenham uma escala definida para aumentar o realismo. Para além disto, deparámo-nos com alguns erros ao tentarmos modificar a função que faz a leitura dos ficheiros XML, sendo que estes foram ultrapassados após pequenas correções.

Assim, consideramos que concluimos esta fase do projeto com sucesso, realizando tudo o que foi pedido, sendo que mais uma vez admitimos a importância do projeto para consolidar os nossos conhecimentos em computação gráfica.