10

10.1

We prove that a connected transformation group A = (Q, G) is primitive iff it is irreducable.

primitive \Longrightarrow irreducable: A does not contain any primitive block $P \subset Q$ with $|P| \ge 2$ and $P \cap Pg \in \{P,\emptyset\}$ for all $g \in G$. Suppose A is reducable which means $|Q| \le 1$ or there exists an admissable partition of Q that is not trivial. Since G is transitive, Q has at least two states which contradicts $|Q| \le 1$.

Suppose there exists a non trivial admissable partition $\pi = \{H_i\}_{i \in I}$. For all $i \in I$ and all $g \in G$ there exists $j \in I$ with $H_i g \subseteq H_j$. Notice, $i \neq j$ because otherwise $P = H_i$ and $P \cap Pg = P$. Thus, $H_i \cap H_j = \emptyset$ but then it follows that $P \subseteq H_i$ and $P \cap Pg = \emptyset$ - a contradiction.

irreducable \Longrightarrow primitive: A is irreducable which means |Q| > 1 and all admissable partitions are trivial. Suppose A is imprimitive. Thus, the group produces a block system with primitive blocks $P \subset Q$ with $|P| \ge 2$ and $P \cap Pg \in \{P,\emptyset\}$ for all $g \in G$.

A primitive block produces a partition by the right coset $\pi = \{Pg | g \in G\}$. We prove that by showing $Pg_1 \cap Pg_2 = \emptyset$. Suppose there exists an element $x \in Pg_1 \cap Pg_2$. Then $x = p_1g_1 = p_2g_2$ and $p_1 = p_2g_2g_1^{-1}$. Therefore $p_1 \in P$ and also $p_1 \in Pg_2g_1^{-1}$ following

$$P = Pg_2g_1^{-1}$$

$$Pg_1 = Pg_2$$

shows that pg_1 and pg_2 are in the same primitive block.

By Lemma 8.12 any subgroup and its right coset builds also an admissable partition which is not trivial due to $2 \le |P| < |Q|$. This contradicts the assumption A being irreducable.

We showed that both directions hold true which concludes the proof.

10.2

We want to show the following: Let G be a finite group, then $TS(SM(\mathcal{G})) = (G, \mathsf{G})$ with $\mathsf{G} = \{[g] | g \in G\}.$

For this lets have a look at the definitions:

$$TS(SM(\mathcal{G})) = TS((G, G, \delta))$$
 (Def. 8.10)

$$= (G, S(\mathcal{G})) \tag{3.18}$$

$$= (G, \mathsf{G})$$
 ((1), 3.10)

Regarding (1), as per definition in the script $S(M) = \Sigma^+ \setminus \sim_M$ which describes the equivalence classes over all words of M defined by the congruence relation \sim_M , thus, it is equivalent to $\mathsf{G} = \{[g] | g \in G\}$.

10.3

10.4

We begin by constructing the permutation machine as depicted in 10.1. Next we define

Abbildung 10.1: Permutation machine

the reset machine as follows: $N = (Q, (\mathbb{Z}_5 \times \Sigma) \cup \{\lambda\}, \delta')$ with

	l				
	q_0	q_1	q_2	q_3	q_4
λ	q_0	q_1	q_2	q_3	q_4
([a], a)	q_1	q_2	q_3	q_4	q_0
([a], c)	上	q_0	\perp	q_0	q_0
([a],d)	上	\perp	q_3	q_3	\perp
([a],b)	q_2	q_1	q_3	q_0	q_4
$([a^2], a)$	q_1	q_2	q_3	q_4	q_0
$([a^2],c)$	q_4	\perp	q_4	q_4	\perp
$([a^2],d)$	上	q_2	q_2	\perp	\perp
$([a^2],b)$	q_0	q_2	q_4	q_3	q_1
$([a^3], a)$	q_1	q_2	q_3	q_4	q_0
$([a^3],c)$	上	q_3	q_3	\perp	q_3
$([a^3],d)$	q_1	q_1	\perp	\perp	\perp
$([a^3],b)$	q_1	q_3	q_2	q_0	q_4
$([a^4], a)$	q_1	q_2	q_3	q_4	q_0
$([a^4],c)$	q_2	q_2	\perp	q_2	\perp
$([a^4],d)$	q_0	\perp	\perp	\perp	q_0
$([a^4],b)$	q_2	q_1	q_4	q_3	q_0
$([a^{5}], a)$	q_1	q_2	q_3	q_4	q_0
$([a^5], c)$	q_1	\perp	q_1	\perp	q_1
$([a^5],d)$	上	\perp	\perp	q_4	q_4
$([a^5],b)$	q_0	q_3	q_2	q_4	q_1

Then we get $TS(M) \leq N\omega P$.