DIS 2B

GRAPHS

a graph is defined on a set of vertices and edges: G= (V,E)

	can repeat vertices	no repeated verts.
no restrictions on startlend	walk: a sequence of edges with possible repeats	patn: a sequence of vertices with no repeats
start = end	tour: a walk that starts/ends at the same vertex	cycle' a path where the first/last vertex repeats

Fulerian means can edge is visited exactly once

INDUCTION ON GRAPHS

first decide: induction on vertices or edges?

BASE CASE

smallest graph where the claim applies

INDUCTIVE HYPOTHESIS

state the claim for <u>n vertices</u> / <u>m edges</u>

INDUCTIVE STEP

snow the claim for not vertices / mot edges
by removing a vertex / edge and putting it back

- ex. induction on vertices
 - + take a graph with ntl vertices
 - a choose a vertex, remove it and its edges
 - use IH on the n vertex graph
- -) add the vertex back and show the claim still holds

BUILD-UP ERROR

in the induction step, why must we remove and add back instead of just starting with a smaller graph and adding to it?

because of build-up error

we want to prove the claim for all graphs with ntl vertices, but it we start from a vertices, we have to consider all the ways one could add an additional vertex.

TREES

equivalent de finitions:

- -) connected acyclic
- connected and IEI= |VI-1
- > connected, and removing any edge disconnects it
- > connected, and adding an edge creates a cycle.

an exercise; prove that any of these implies the others

BIPARTITE GRAPHS

vertices can be split into 2 groups L and R where edges only go between the groups

COMPLETE GRAPHS

each vertex is connected to every other vertex 4 n(n-1)/2 edges