Lista 3 Zadanie 6

Zadanie można rozwiązać używając drzewa rekursji dla rozmiaru partycji.

Skoro $0\leq\alpha\leq\frac{1}{2},$ wówczas $\frac{1}{2}\leq1-\alpha\leq1,$ stąd $n\alpha^i\leq n(1-\alpha)^i$ dla $i\geq1,$ czyli gałąź składająca się tylko z podziału elementów w proporcji α jest najkrótsza (minimalna głębokość), zaś dla $1-\alpha$ - najdłuższa (maksymalna głębokość). Zgodnie z algorytmem QuickSort drzewo kończy podział w momencie otrzymania tablicy wielkości 1-go elementu. Aby otrzymać minimalną głębokość drzewa należy wyznaczyć liczbę kz równania $n\alpha^k=1.$

$$n\alpha^k = 1 => \alpha^k = \frac{1}{n} => k = \log_\alpha \frac{1}{n}$$

 $\log_\alpha \frac{1}{n} = \log_\alpha 1 - \log_\alpha n = -\log_\alpha n = -\frac{\lg n}{\lg \alpha}$

drzewa należy wyznaczyć liczbę
$$k$$
 z równania $n\alpha^k=1$ $n\alpha^k=1 \Rightarrow \alpha^k=\frac{1}{n} \Rightarrow k=\log_{\alpha}\frac{1}{n}$ $\log_{\alpha}\frac{1}{n}=\log_{\alpha}1-\log_{\alpha}n=-\log_{\alpha}n=-\frac{lgn}{lg\alpha}$ Analogicznie dla maksymalnej głębokości: $n(1-\alpha)^s=1 \Rightarrow (1-\alpha)^s=\frac{1}{n} \Rightarrow s=\log_{1-\alpha}\frac{1}{n}$ $\log_{1-\alpha}\frac{1}{n}=\log_{1-\alpha}1-\log_{1-\alpha}n=-\log_{1-\alpha}n=-\frac{lgn}{lg(1-\alpha)}$