Inhalt 1.Woche

- Einführung in den Stoff des Kurses.
- Mengen und ihre Elemente.
- Die Mächtigkeit #(X) einer Menge X.
- Teilmengen $Y \subset X$.
- Definition einer Teilmenge durch eine Eigenschaft P:

$$Y := \{x \in X : P(x)\} \subset X.$$

- Die leere Menge \emptyset .
- Die Potenzmenge $\mathcal{P}(X)$ einer Menge X.
- Die Mächtigkeit der Potenzmenge einer endlichen Menge:

Proposition: $\#(\mathcal{P}(X)) = 2^{\#(X)}$.

- Operationen mit Teilmengengen $X_i, i \in I$ einer Menge X: die Vereinigung $\bigcup_{i \in I} X_i$, der Durchschnitt $\bigcap_{i \in I} X_i$, die Differenz $X_i X_j$, das Komplement $\bar{X}_i := X X_i$.
- Die Eigenschaften der Operationen mit Mengen:

Proposition:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C), \quad A\cup (B\cap C)=(A\cup B)\cap (A\cup C),$$

$$A-(B\cup C)=(A-B)\cap (A-C), \quad A-(B\cap C)=(A-B)\cup (A-C).$$

- Die Venn-Diagramme.
- Einige Symbole aus der Logik: \forall , \exists , \exists !, \Longrightarrow , \Longleftrightarrow
- Geordnetes *n*-Tupel (x_1, \ldots, x_n) .
- Das direkte Produkt $\prod_{i=1}^n X_i = X_1 \times \ldots \times X_n$ einer Sammlung X_1, \ldots, X_n , von Mengen. Wenn $X_1 = \ldots = X_n = X$, verwendet man auch die alternative Notation X^n für $X_1 \times \ldots \times X_n$.
- Beispiele.

Literaturhinweis:

- S. Bosch, Abschnitt 1.1
- G. Fischer, Abschnitt 1.1.1 & 1.1.2