Lycee Pascal	Student's Name:	Subject:	Date:
Anout			
Lee Pascar		Mathematics	//2023
3		Grade:	Duration: 2 hours
LIP	Class: Gr12 (LS)	/	

Exercise I: (7pts)

- A) Consider the function g defined over $]-\infty$; $+\infty[$ by $g(x) = 1 + (x-1)e^{-x}$.
 - 1) Determine $\lim_{x \to -\infty} g(x)$ and $\lim_{x \to +\infty} g(x)$.
 - 2) Calculate g'(x) and set up the table of variations of g.
 - 3) Calculate g(0). Deduce the sign of g.
- B) Given the function f defined over $]-\infty$; $+\infty[$ by $f(x)=x(1-e^{-x}).$

Designate by (C) the representative curve of f in an orthonormal system (0; \vec{i} ; \vec{j}).

- 1) Determine $\lim_{x \to -\infty} f(x)$ and calculate f(-1.5).
- 2) Determine $\lim_{x \to +\infty} f(x)$ and show that the straight line (d): y = x is an asymptote to (C).
- 3) Study the relative position of (C) and (d).
- 4) Show that f'(x) = g(x) and set up the table of variations of f.
- 5) Show that (C) admits an inflection point I whose coordinates are to be determined.
- 6) Draw (C) and (d).
- C) Let h be a function defined by $h(x) = \ln (f(x))$.
 - 1) Determine the domain of definition of h.
 - 2) Draw the table of variations of h.

Exercise II: (7 pts)

Let f be a function defined over \mathbb{R} by $f(x) = x + 2 - e^{-x}$.

Designate by (C) the representative curve of f in an orthonormal system (0; \vec{i} ; \vec{j}).

- 1) a) Calculate $\lim_{x \to +\infty} f(x)$ and show that the straight line (d) of equation y = x + 2 is an asymptote to (C)..
 - b) Calculate $\lim_{x \to -\infty} f(x)$ and calculate f(-1.5) and f(-2).
- 2) Calculate f'(x) and set up the table of variations of f.
- 3) Write the equation of (T) the tangent to (C) at the point A of abscissa 0.
- 4) Show that the equation f(x) = 0 admits a unique solution α and verify that : $-0.5 < \alpha < -0.4$.
- 5) Draw (d), (T) and (C).
- 6) Designate by $A(\alpha)$ the area of region limited by the curve (C), axis of abscissas and the two lines of equations $x = \alpha$ and x = 0.

Show that
$$A(\alpha) = \left(-\frac{\alpha^2}{2} - 3\alpha - 1\right)$$
 units of area

Exercise III: (3pts)

A)

Let $f(x) = (x+2)e^{-x}$ and $F(x) = (ax+b)e^{-x}$ where a and b are two real numbers. Calculate a and b if F is the primitive of f.

B) Let $g(x) = x + a + b \ln x$ where a and b are two real numbers (x > 0). Calculate a and b if the representative curve (C) of g passes through the point A(1; 2) and admits at a point B of abscissa 2 a horizontal tangent.

Exercise IV:

Choose, with justification, the correct answer. (3 pts)

No°	Questions	Answers		
		a	b	С
1	The domain of definition of $f(x) = \frac{\ln(2-e^{-x})}{x-3}$ is]- <i>ln</i> 2; +∞[]0; ln2[∪]ln2; +∞[\mathbb{R}
2	The solution of the inequality $ln(x-1) < ln(2x-6)$]1; e ² [R]5; +∞[
3	$\lim_{x \to 2} \frac{\int_{2}^{x} (1+2t)dt}{x-2} = \cdots$	1	5	0
4	$\int_{-7}^{7} (x^3 - x) dx = \cdots$	0	2000001	200000
5	If $a > 0$ then $\ln\left(\frac{e}{a}\right) + \ln\left(ae^2\right) = \dots$	0	3	2
6	$\lim_{x \to +\infty} \left[\ln(1+2x) - \ln(1+x) \right] = \cdots$	2	ln2	0