Estructuras Discretas

Recursión en árboles

Liliana Reyes

Universidad Nacional Autónoma de México Facultad de Ciencias

2 de marzo de 2023

Árboles

Introducción

- Son estructuras de datos no lineales.
- Están organizados de forma jerárquica.
- Las relaciones entre los elementos (llamados nodos) se indican mediante las ramas del árbol.

Árboles

Introducción

Ejemplo

Un árbol genealógico, en el cual los nodos son los personajes de los Simpsons y las líneas que forman las ramas, se dibujan cuando un Simpson es hijo de otro, o bien, es padre o es madre.

Definición

Un árbol es una estructura jerárquica aplicada a una colección de elementos llamados nodos. Uno de los cuales es conocido como raíz, creando una relación con los demás elementos a través de las ramas, lo cual da lugar a términos como padre, hijo, hermano, antecesor, sucesor, ancestro y descendiente.

Término	Descripción	Eiemplo
Nodo	Elementos de información de un árbol	A,B,C,D,E,F,G,H,I,J y K son nodos
Raíz	Todo árbol que no es vacío tiene un no- do destacado del cual descienden todos los elementos de un árbol	A es raíz del árbol
Padre	Antecesor o ancestro directo de un nodo	A es padre de B, C y D; B es padre de E y F; C es padre de G; D es padre de H e I; G es padre de J y K
Hijo	Sucesor o descendiente directo de un nodo	B, C y D son hijos de A; E y F son hijos de B; G es hijo de C; J y K son hijos de G; H e I son hijos de D
Hoja	Nodo que no tiene ningún hijo o descen- diente. Las hojas tienen grado cero	E,F,J,K, H e I son hojas
Nodo interno	Nodo que tiene padre y tienen descendientes. No son ni raíz ni hojas	B, C, D y G son internos
Subárbol	Si consideramos un nodo que no es el raíz, el nodo junto con todos sus descendientes son un subárbol del árbol original	El árbol T_1 cuya raíz es B con descendientes E y F es subárbol del original

Liliana Reyes (UNAM) Recursión 2 de marzo de 2023

Término	Descripción	Ejemplo
Grado de un	Es el número de hijos que tiene un nodo	El grado de A es 3, el grado de C es 1, el
nodo		grado de B, G y D es 2 y el grado de E, F, J
		K, H e I es 0
Grado del	Es el grado máximo de todos los nodos del	El grado máximo es 3, por lo tanto, el grado
árbol	árbol	del árbol es tres
Peso de un	Número total de hojas de un árbol	En total son seis hojas, el peso del árbol es
árbol		6
Nivel de un	Número de ancestros que tiene un nodo,	El nivel de A es 1; el nivel de B, C y D es 2;
nodo	considerando que la raíz tiene nivel 1	el nivel de E, F G, H e I es 3 y el nivel de J
		y K es 4
Altura del	Es el máximo de todos los niveles de los	La altura del árbol es 4
árbol	nodos de un árbol	

Liliana Reyes (UNAM) Recursión 2 de marzo de 2023

Árbol binario

Definición (Árbol binario)

En un árbol binario cualquier nodo pueden tener como máximo dos hijos. Se hace referencia sus hijos como hijo de izquierdo e hijo derecho. De igual manera, a los árboles que se forman considerando a los hijos como raíz, se les denomina subárbol izquierdo y subárbol derecho, respectivamente.

8/17

Árbol binario recursivo

Definición (Árbol binario recursivo)

Un árbol binario con elementos de información de tipo A, se define recursivamente mediante las siguientes reglas:

- 1 Casos base:
 - a) El árbol vacío, denotado por Vacio, es un árbol binario de tipo A.
 - b) Si r es un elemento de A, entonces la hoja que contiene a r es un árbol binario de tipo A, denotado por H r.
- 2 Caso recursivo:
 - a) Si r es un elemento de A, T_1 y T_2 son árboles binarios entonces (AB r T_1 T_2) es un árbol binario. Donde r es la raíz del árbol, T_1 es el subárbol izquierdo y T_2 es el subárbol derecho.

Árbol binario

Ejemplo

AB 1 (AB 2 (AB 4 (H 8) (H 9)) (H 5)) (AB 3 (AB 6 (H 10) (H 11)) (AB 7 Vacio (H 12)))

Liliana Reyes (UNAM) Recursión 2 de marzo de 2023 10/

Ejemplo

Vamos a generar recursivamente todo el subárbol \mathcal{T}_2 , para lo cual procedemos de la siguiente forma:

El tipo del árbol es enteros, para lo cual toda la información o tipos de dato que contengan los nodos serán de tipo entero.

Según la regla 1 a) de la definición, 10 es de tipo entero, entonces (H 10) es un árbol binario.

10

■ Por el mismo argumento (H 11) y (H 12) también son árboles binarios.

11

12

■ Por la regla 2 a) de la definición tomamos (H 10) y (H 11) como árboles binarios izquierdo y derecho respectivamente, y 6 es de tipo entero, entonces (AB 6 (H 10) (H 11)) = Izq1 es un árbol binario.

Según la regla 1 a) de la definición, 12 es de tipo entero, entonces (H 12) es un árbol binario.

12

■ Por la regla 2 a) de la definición tomamos Vacio y (H 12) como árboles binarios izquierdo y derecho respectivamente, y 7 es de tipo entero, entonces (AB 7 Vacio (H 12)) = Der1 es un árbol binario.

■ Por la regla 2 a) de la definición tomamos Izq1 y Der1 como los árboles binarios izquierdo y derecho y como 3 es de tipo entero, entonces (AB 3 Izq1 Der1) es un árbol binario.

Sustituyendo tenemos (AB 3 (AB 6 (H 10) (H 11)) (AB 7 Vacio (H 12))) es un árbol binario.

Funciones

Función que obtiene la raíz de un árbol.

```
raiz Vacio = error 'El arbol vacio no tiene raiz'
raiz (H x) = x
raiz (AB r t1 t2) = r
```

Funciones

Función que obtiene el subárbol derecho de un árbol binario.

```
derecho Vacio = error 'El arbol vacio no tiene subarbol
derecho'
derecho (H x) = Vacio
derecho (AB r t1 t2) = t2
```

Funciones

Función que obtiene la altura de un árbol binario.

```
altura Vacio = 0
altura (H x) = 1
altura (AB r t1 t2) = 1 + (maximo (altura t1) (altura t2))
```

Ejercicios

Si tomamos el árbol binario como:

```
t1 = (AB 3 (AB 6 (H 10) (H 11)) (AB 7 Vacio (H 12)))
```

- Función que obtiene el número de nodos de un árbol binario. numNodos (t1) = 6
- Función que obtiene el número de hojas de un árbol binario. numHojas (t1) = 3
- Función que nos indica si un determinado elemento se encuentra dentro de un árbol.

```
buscaAB 7 (t1) = True
buscaAB 17 (t1) = False
```