视频处理子系统

文件标识: RK-SYS1-MPI-VPSS

发布版本: V0.3.0

日期: 2021.2

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

VPSS(Video Process Sub-System)是视频处理子系统,支持的具体图像处理功能包括CROP、Scale、像素格式转换、固定角度旋转、Cover/Coverex、Mirror/Flip、Aspect Ratio、压缩解压等。

产品版本

芯片名称	内核版本
RK356X	4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V0.1.0	许丽明	2020-12-16	初始版本
V0.2.0	许丽明	2021-01-23	完善数据结构定义
V0.3.0	许丽明	2021-02-05	修正部分勘误,增加函数、结构体跳转

目录

```
视频处理子系统
   前言
   目录
   功能描述
   基本概念
      GROUP
      CHANNEL
      CROP
      像素格式转换
      Scale
      Mirror/Flip
      Cover
      Coverex
      Overlayex
      固定角度旋转
      任意角度旋转
      压缩
      解压
      注意
   举例
   API 参考
      RK_MPI_VPSS_CreateGrp
      RK_MPI_VPSS_DestroyGrp
      RK_MPI_VPSS_StartGrp
      RK_MPI_VPSS_StopGrp
      RK_MPI_VPSS_ResetGrp
      RK_MPI_VPSS_GetGrpAttr
      RK_MPI_VPSS_SetGrpAttr
      RK_MPI_VPSS_SetGrpCrop
      RK_MPI_VPSS_GetGrpCrop
      RK_MPI_VPSS_SendFrame
      RK_MPI_VPSS_GetGrpFrame
      RK_MPI_VPSS_ReleaseGrpFrame
      RK_MPI_VPSS_EnableBackupFrame
      RK_MPI_VPSS_DisableBackupFrame
      RK_MPI_VPSS_SetChnAttr
```

RK_MPI_VPSS_GetChnAttr RK_MPI_VPSS_EnableChn

```
RK_MPI_VPSS_DisableChn
   RK_MPI_VPSS_SetChnCrop
   RK_MPI_VPSS_GetChnCrop
   RK_MPI_VPSS_SetChnRotation
   RK MPI VPSS GetChnRotation
   RK_MPI_VPSS_SetChnRotationEx
   RK MPI VPSS GetChnRotationEx
   RK_MPI_VPSS_GetChnFrame
   RK_MPI_VPSS_ReleaseChnFrame
   RK_MPI_VPSS_AttachMbPool
   RK MPI VPSS DetachMbPool
数据类型
   VPSS_MAX_GRP_NUM
   VPSS_MAX_GRP_PIPE_NUM
   VPSS MAX CHN NUM
   VPSS MIN IMAGE WIDTH
   VPSS MIN IMAGE HEIGHT
   VPSS_MAX_IMAGE_WIDTH
   VPSS_MAX_IMAGE_HEIGHT
   VPSS GRP
   VPSS GRP PIPE
   VPSS CHN
   VPSS_CROP_COORDINATE_E
   VPSS CROP INFO S
   VPSS_ROTATION_EX_ATTR_S
   VPSS_GRP_ATTR_S
   VPSS_CHN_ATTR_S
   VPSS CHN MODE E
错误码
```

功能描述

基本概念

GROUP

VPSS 对用户提供组(GROUP)的概念。最大个数请参见VPSS_MAX_GRP_NUM 定义,各 GROUP 分时复用硬件设备,硬件依次处理各个组提交的任务。

CHANNEL

VPSS 组的通道。提供多个通道,每个通道具有缩放、裁剪等功能。把图像裁剪、缩放成用户设置的目标分辨率输出。

CROP

裁剪, 分为2种:组裁剪、通道裁剪。

- 组裁剪, VPSS 对输入图像进行裁剪。
- 通道裁剪, VPSS 利用硬件设备对各个通道的输出图像进行裁剪。

像素格式转换

支持输入输出图像的数据格式转换,例如NV12->RGB565等。

Scale

缩放,对图像进行缩小放大。组水平、垂直最大支持32倍放大、缩小;通道水平、垂直最大支持32倍放大、缩小。

Mirror/Flip

Mirror 即水平镜像, Flip 即上下翻转。 (暂未提供接口实现)

Cover

视频遮挡区域,调用 VGS 对 VPSS 的输出图像填充纯色块。

Coverex

视频遮挡区域,调用 VGS 对 VPSS 通道的输出图像填充纯色块。

Overlayex

视频叠加区域,调用 VGS 对 VPSS 通道的输出图像叠加位图。

固定角度旋转

支持 0 度、90 度、180 度以及 270 度固定角度的旋转功能。

任意角度旋转

支持仟意角度的旋转功能。

压缩

支持AFBC压缩。

解压

支持AFBC解压。

注意

• 使用时输入宽高16位对齐。

举例

```
RK_S32 s32Ret = RK_SUCCESS;
VPSS_GRP VpssGrp = 0;
VPSS_CHN VpssChn[VPSS_MAX_CHN_NUM] = { VPSS_CHN0, VPSS_CHN1, VPSS_CHN2,
VPSS_CHN3 };
VPSS_GRP_ATTR_S stGrpVpssAttr;
VPSS_CHN_ATTR_S stVpssChnAttr;

stGrpVpssAttr.u32Maxw = SRC_WIDTH;
stGrpVpssAttr.u32MaxH = SRC_HEIGHT;
stGrpVpssAttr.enPixelFormat = PIXEL_FORMAT_YUV_SEMIPLANAR_420;
stGrpVpssAttr.enCompressMode = COMPRESS_AFBC_16x16;
```

```
stGrpVpssAttr.stFrameRate.s32SrcFrameRate = -1;
stGrpVpssAttr.stFrameRate.s32DstFrameRate = -1;
s32Ret = RK_MPI_VPSS_CreateGrp(VpssGrp, &stGrpVpssAttr);
if (s32Ret != RK_SUCCESS) {
    return s32Ret;
}
stCropInfo.bEnable = RK_TRUE;
stCropInfo.enCropCoordinate = VPSS_CROP_ABS_COOR;
stCropInfo.stCropRect.s32X = 640;
stCropInfo.stCropRect.s32Y = 360;
stCropInfo.stCropRect.u32Width = 640;
stCropInfo.stCropRect.u32Height = 360;
s32Ret = RK_MPI_VPSS_SetGrpCrop(VpssGrp, &stCropInfo);
if (s32Ret != RK_SUCCESS) {
    return s32Ret;
}
s32Ret = RK_MPI_VPSS_GetGrpCrop(VpssGrp, &stCropInfo);
if (s32Ret != RK_SUCCESS) {
    return s32Ret;
}
memset(&stVpssChnAttr, 0, sizeof(VPSS_CHN_ATTR_S));
stVpssChnAttr.enChnMode = VPSS_CHN_MODE_USER;
stVpssChnAttr.enCompressMode = COMPRESS_MODE_NONE;
stVpssChnAttr.enDynamicRange = DYNAMIC_RANGE_SDR8;
stVpssChnAttr.enPixelFormat = PIXEL_FORMAT_YUV_SEMIPLANAR_420;
stVpssChnAttr.stFrameRate.s32SrcFrameRate = -1;
stVpssChnAttr.stFrameRate.s32DstFrameRate = -1;
stChnCropInfo.bEnable = RK_TRUE;
stChnCropInfo.enCropCoordinate = VPSS_CROP_RATIO_COOR;
stChnCropInfo.stCropRect.s32X = 500;
stChnCropInfo.stCropRect.s32Y = 500;
stChnCropInfo.stCropRect.u32Width = 500;
stChnCropInfo.stCropRect.u32Height = 500;
for (RK_S32 i = 0; i < VPSS_MAX_CHN_NUM; i++) {
    stVpssChnAttr.u32Width = SRC_WIDTH / VPSS_MAX_CHN_NUM * (i + 1);
    stVpssChnAttr.u32Height = SRC_HEIGHT / VPSS_MAX_CHN_NUM * (i + 1);
    s32Ret = RK_MPI_VPSS_SetChnAttr(VpssGrp, VpssChn[i], &stVpssChnAttr);
    if (s32Ret != RK_SUCCESS) {
        return s32Ret;
    }
    s32Ret = RK_MPI_VPSS_GetChnAttr(VpssGrp, VpssChn[i], &stVpssChnAttr);
    if (s32Ret != RK_SUCCESS) {
        return s32Ret;
    }
    s32Ret = RK_MPI_VPSS_SetChnCrop(VpssGrp, VpssChn[i], &stChnCropInfo);
    if (s32Ret != RK_SUCCESS) {
        return s32Ret;
    }
    s32Ret = RK_MPI_VPSS_GetChnCrop(VpssGrp, VpssChn[i], &stChnCropInfo);
    if (s32Ret != RK_SUCCESS) {
        return s32Ret;
    s32Ret = RK_MPI_VPSS_EnableChn(VpssGrp, VpssChn[i]);
    if (s32Ret != RK_SUCCESS) {
        return s32Ret:
    }
}
```

```
s32Ret = RK_MPI_VPSS_startGrp(VpssGrp);
if (s32Ret != RK_SUCCESS) {
    return s32Ret;
}
s32Ret = RK_MPI_VPSS_StopGrp(VpssGrp);
if (s32Ret != RK_SUCCESS) {
    return s32Ret;
}
for (RK_S32 i = 0; i < VPSS_MAX_CHN_NUM; i++) {
    s32Ret = RK_MPI_VPSS_DisableChn(VpssGrp, VpssChn[i]);
    if (s32Ret != RK_SUCCESS) {
        return s32Ret;
    }
}
s32Ret = RK_MPI_VPSS_DestroyGrp(VpssGrp);
if (s32Ret != RK_SUCCESS) {
    return s32Ret;
}</pre>
```

API 参考

该功能模块为用户提供以下 API:

- RK MPI VPSS CreateGrp: 创建一个 VPSS GROUP。
- RK MPI VPSS DestroyGrp: 销毁一个 VPSS GROUP。
- RK MPI VPSS StartGrp: 启用 VPSS GROUP。
- RK MPI VPSS StopGrp: 禁用 VPSS GROUP。
- RK MPI VPSS ResetGrp: 重置一个 VPSS GROUP。
- RK MPI VPSS GetGrpAttr: 获取 VPSS GROUP 属性。
- RK MPI VPSS SetGrpAttr: 设置 VPSS GROUP 属性。
- RK MPI VPSS SetGrpCrop: 设置 VPSS GROUP CROP 功能属性。
- RK MPI VPSS GetGrpCrop: 获取 VPSS GROUP CROP 功能属性。
- RK MPI VPSS SendFrame: 用户向 VPSS GROUP 发送数据。
- RK MPI VPSS GetGrpFrame: 用户从 VPSS GROUP 获取一帧原始图像。
- RK MPI VPSS ReleaseGrpFrame: 用户释放一帧原始图像。
- RK MPI VPSS EnableBackupFrame: 使能 backup 帧。
- RK MPI VPSS DisableBackupFrame: 不使能 backup 帧。
- RK MPI VPSS SetChnAttr: 设置 VPSS 通道属性。
- RK MPI VPSS GetChnAttr: 获取 VPSS 通道属性。
- RK MPI VPSS EnableChn: 启用 VPSS 通道。
- RK MPI VPSS DisableChn: 禁用 VPSS 通道。
- RK MPI VPSS SetChnCrop: 设置 VPSS 通道裁剪功能属性。
- RK MPI VPSS GetChnCrop: 获取 VPSS 通道裁剪功能属性。
- RK MPI VPSS SetChnRotation: 设置 VPSS 通道图像固定角度旋转属性。
- RK MPI VPSS GetChnRotation: 获取 VPSS 通道图像固定角度旋转属性。
- RK MPI VPSS SetChnRotationEx: 设置 VPSS 的任意角度旋转属性。
- RK MPI VPSS GetChnRotationEx: 获取 VPSS 的任意角度旋转属性。
- RK MPI VPSS GetChnFrame: 用户获取一帧通道图像。
- RK MPI VPSS ReleaseChnFrame: 用户释放一帧通道图像。
- RK MPI VPSS AttachMbPool:将 VPSS 的通道绑定到某个视频缓存 MB 池中。
- RK MPI VPSS DetachMbPool: 将 VPSS 的通道从某个视频缓存 MB 池中解绑定。

RK_MPI_VPSS_CreateGrp

【描述】

创建一个 VPSS GROUP。

【语法】

RK_S32 RK_MPI_VPSS_CreateGrp(<u>VPSS_GRP_VpssGrp</u>, const <u>VPSS_GRP_ATTR_S_*</u> *pstGrpAttr);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
pstGrpAttr	VPSS GROUP 属性指针。	输入

【返回值】

返回值	描述
0	成功。
≢ 10	失败,请参见 <u>错误码</u> 。

【注意】

• 不支持重复创建。

RK_MPI_VPSS_DestroyGrp

【描述】

销毁一个 VPSS GROUP。

【语法】

RK_S32 RK_MPI_VPSS_DestroyGrp(<u>VPSS_GRP</u> VpssGrp);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,请参见 <u>错误码</u> 。

- GROUP 必须已创建。
- 调用此接口之前,必须先调用 RK MPI VPSS StopGrp 禁用此 GROUP。
- 调用此接口时,会一直等待此 GROUP 当前任务处理结束才会真正销毁。

RK_MPI_VPSS_StartGrp

【描述】

启用 VPSS GROUP。

【语法】

RK_S32 RK_MPI_VPSS_StartGrp(<u>VPSS_GRP</u> VpssGrp);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,请参见 <u>错误码</u> 。

【注意】

- GROUP 必须已创建。
- 同组调用该函数仅第一次调用成功, 重复调用返回失败。

RK_MPI_VPSS_StopGrp

【描述】

禁用 VPSS GROUP。

【语法】

RK_S32 RK_MPI_VPSS_StopGrp(<u>VPSS_GRP</u> VpssGrp);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,请参见 <u>错误码</u> 。

- GROUP 必须已创建。
- 同组调用该函数仅第一次调用成功, 重复调用返回失败。

RK_MPI_VPSS_ResetGrp

【描述】

复位 VPSS GROUP。

【语法】

RK_S32 RK_MPI_VPSS_ResetGrp(<u>VPSS_GRP</u> VpssGrp);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
∃E 0	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_GetGrpAttr

【描述】

获取 VPSS GROUP 属性。

【语法】

RK_S32 RK_MPI_VPSS_GetGrpAttr(<u>VPSS_GRP_VpssGrp, VPSS_GRP_ATTR_S_*</u>*pstGrpAttr);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
pstGrpAttr	VPSS GROUP 属性指针。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,请参见 <u>错误码</u> 。

- GROUP 必须已创建。
- GROUP 属性必须合法,其中部分静态属性不可动态设置。

RK_MPI_VPSS_SetGrpAttr

【描述】

设置 VPSS GROUP 属性。

【语法】

RK_S32 RK_MPI_VPSS_SetGrpAttr(<u>VPSS_GRP_VpssGrp</u>, const <u>VPSS_GRP_ATTR_S_*pstGrpAttr</u>);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
pstGrpAttr	VPSS GROUP 属性指针。	输入

【返回值】

返回值	描述
0	成功。
]	失败,请参见 <u>错误码</u> 。

【注意】

- GROUP 必须已创建。
- GROUP 属性必须合法,其中部分静态属性不可动态设置。

RK_MPI_VPSS_SetGrpCrop

【描述】

设置 VPSS CROP 功能属性。

【语法】

RK_S32 RK_MPI_VPSS_SetGrpCrop(<u>VPSS_GRP</u> VpssGrp, const <u>VPSS_CROP_INFO_S</u> *pstCropInfo);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
pstCropInfo	CROP 功能参数。	输入

【返回值】

返回值	描述
0	成功。
丰0	失败,请参见 <u>错误码</u> 。

- GROUP 必须已创建。
- 相对模式裁剪时,裁剪区域坐标取值范围为[0,999],裁剪区域宽高取值范围为[1,1000]。
- CROP 区域的尺寸不能小于 VPSS 最小尺寸,不能超过 VPSS 支持的最大输入分辨率;裁剪区域起始点不支持负坐标,裁剪区域右边界不能超出 VPSS 支持的最大输入宽度,裁剪区域下边界不能超出 VPSS 支持的最大输入高度。
- 如果裁剪区域超出图像范围,裁剪坐标向原点方向移动,优先保证裁剪出的宽高与所设置的参数相同。
- 如果裁剪宽度大于输入图像宽度,则裁剪输出宽度调整为输入图像宽度。
- 如果裁剪高度大于输入图像高度,则裁剪输出高度调整为输入图像高度。

RK_MPI_VPSS_GetGrpCrop

【描述】

获取 VPSS CROP 功能属性。

【语法】

RK_S32 RK_MPI_VPSS_GetGrpCrop(VPSS_GRP_VpssGrp, VPSS_CROP_INFO_S *pstCropInfo);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
pstCropInfo	CROP 功能参数。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,请参见 <u>错误码</u> 。

RK_MPI_VPSS_SendFrame

【描述】

用户向 VPSS 发送数据。

【语法】

RK_S32 RK_MPI_VPSS_SendFrame(<u>VPSS_GRP_VpssGrp, VPSS_GRP_PIPE VpssGrpPipe, const VIDEO_FRAME_INFO_S *pstVideoFrame, RK_S32 s32MilliSec);</u>

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssGrpPipe	VPSS 组的管道号。取值只能为 0。	输入
pstVideoFrame	待发送的图像信息。	输入
s32MilliSec	超时参数 s32MilliSec 设为-1 时,为阻塞接口; 0 时为非阻塞接口; 大于 0 时为超时等待时间,超时时间的单位为毫秒(ms)。	输入

【返回值】

返回值	描述
0	成功。
∃ =0	失败,请参见 <u>错误码</u> 。

【注意】

- GROUP 必须已创建。
- VPSS 通道设置为 AUTO 模式时使用此接口前,VPSS 应正常启动,并与后端接收者绑定;或 VPSS 通道设置为 USER 模式,用户通过获取图像接口获取图像。

RK_MPI_VPSS_GetGrpFrame

【描述】

用户从 GROUP 获取一帧原始图像。主要应用场景:高清设备解码回放,要求暂停、步进时,PIP 层和普通视频层上的两个通道显示同一帧图像。通过本接口和RK_MPI_VPSS_SendFrame 等接口的配合使用,可实现该功能。

【语法】

RK_S32 RK_MPI_VPSS_GetGrpFrame(<u>VPSS_GRP_VpssGrp, VPSS_GRP_PIPE VpssGrpPipe, VIDEO_FRAME_INFO_S *pstVideoFrame</u>);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssGrpPipe	VPSS 组的管道号。取值只能为 0。	输入
pstVideoFrame	图像信息。	输出

【返回值】

返回值	描述
0	成功。
事60	失败,请参见 <u>错误码</u> 。

【注意】

- GROUP 必须已创建。
- 获取的图像要及时释放,否则将造成 VB 不够或解码回放时停止,建议与 RK_MPI_VPSS_ReleaseGrpFrame 接口配对使用。
- 使能了 backup 帧时才能获取。

RK_MPI_VPSS_ReleaseGrpFrame

【描述】

用户释放一帧源图像。

【语法】

RK_S32 RK_MPI_VPSS_ReleaseGrpFrame(<u>VPSS_GRP_VpssGrp, VPSS_GRP_PIPE VpssGrpPipe, const_VIDEO_FRAME_INFO_S *pstVideoFrame</u>);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssGrpPipe	VPSS 组的管道号。取值只能为 0。	输入
pstVideoFrame	图像信息。	输入

【返回值】

返回值	描述
0	成功。
⊒10	失败,请参见 <u>错误码</u> 。

【注意】

- 实际上,此接口的 VpssGrp 参数并无实际用途,可在取值范围内任意设置。注意PIPE 号取值只能为 0。
- 此接口需与 RK_MPI_VPSS_GetGrpFrame 配对使用。

RK_MPI_VPSS_EnableBackupFrame

【描述】

使能 Backup 帧。

【语法】

RK_S32 RK_MPI_VPSS_EnableBackupFrame(VPSS_GRP_VpssGrp);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
≢ E0	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_DisableBackupFrame

【描述】

不使能 Backup 帧。

【语法】

RK_S32 RK_MPI_VPSS_DisableBackupFrame(<u>VPSS_GRP_VpssGrp</u>)

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_SetChnAttr

【描述】

设置 VPSS 通道属性。

【语法】

RK_S32 RK_MPI_VPSS_SetChnAttr(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, const <u>VPSS_CHN_ATTR_S</u> *pstChnAttr);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
pstChnAttr	VPSS 通道属性。	输入

【返回值】

返回值	描述
0	成功。
≢60	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_GetChnAttr

【描述】

获取 VPSS 通道属性。

【语法】

RK_S32 RK_MPI_VPSS_GetChnAttr(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, <u>VPSS_CHN_ATTR_S</u> *pstChnAttr);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS MAX CHN NUM</u>)。	输入
pstChnAttr	VPSS 通道属性。	输出

【返回值】

返回值	描述
0	成功。
∃E 0	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_EnableChn

【描述】

启用 VPSS 通道。

【语法】

RK_S32 RK_MPI_VPSS_EnableChn(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
∃‡ 0	失败,请参见 <u>错误码</u> 。

【注意】

- 多次使能仅第一次返回成功,后续调用返回失败。
- GROUP 必须已创建。

RK_MPI_VPSS_DisableChn

【描述】

禁用 VPSS 通道。

【语法】

RK_S32 RK_MPI_VPSS_DisableChn(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
∃E 0	失败,请参见 <u>错误码</u> 。

【注意】

- 多次禁用仅第一次返回成功,后续调用返回失败。
- GROUP 必须已创建。

$RK_MPI_VPSS_SetChnCrop$

【描述】

设置 VPSS 通道裁剪功能属性。

【语法】

RK_S32 RK_MPI_VPSS_SetChnCrop(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, const <u>VPSS_CROP_INFO_S</u> *pstCropInfo);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
pstCropInfo	CROP 功能参数。	输入

【返回值】

返回值	描述
0	成功。
丰0	失败,请参见 <u>错误码</u> 。

【注意】

- GROUP 必须已创建。
- 如果裁剪区域超出图像范围,裁剪坐标向原点方向移动,优先保证裁剪出的宽高与所设置的参数相同。
- 如果裁剪宽度大于输入图像宽度,则裁剪输出宽度调整为输入图像宽度。
- 如果裁剪高度大于输入图像高度,则裁剪输出高度调整为输入图像高度。

RK_MPI_VPSS_GetChnCrop

【描述】

获取 VPSS 通道裁剪功能属性。

【语法】

RK_S32 RK_MPI_VPSS_GetChnCrop(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, <u>VPSS_CROP_INFO_S</u> *pstCropInfo);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
pstCropInfo	CROP 功能参数。	输出

【返回值】

返回值	描述
0	成功。
∃E 0	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_SetChnRotation

【描述】

设置 VPSS 通道图像固定角度旋转属性。

【语法】

RK_S32 RK_MPI_VPSS_SetChnRotation(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, ROTATION_E enRotation);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
enRotation	旋转属性。	输入

【返回值】

返回值	描述
0	成功。
≢€0	失败,请参见 <u>错误码</u> 。

【注意】

- GROUP 必须已创建。
- 通道属性必须已设置。
- 仅支持0度、90度、180度、270度的旋转,不支持任意角度旋转。

RK_MPI_VPSS_GetChnRotation

【描述】

获取 VPSS 通道图像固定角度旋转属性。

【语法】

RK_S32 RK_MPI_VPSS_GetChnRotation(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, ROTATION_E *penRotation);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS MAX CHN NUM</u>)。	输入
penRotation	旋转属性。	输出

【返回值】

返回值	描述
0	成功。
≢ E0	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_SetChnRotationEx

【描述】

设置 VPSS 的任意角度旋转属性。

【语法】

RK_S32 RK_MPI_VPSS_SetChnRotationEx(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, const <u>VPSS_ROTATION_EX_ATTR_S</u>* pstRotationExAttr);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
pstRotationExAttr	任意角度旋转属性结构体指针。	输入

【返回值】

返回值	描述
0	成功。
≢€0	失败,请参见 <u>错误码</u> 。

- GROUP 必须已创建。
- 必须在设置通道属性后才能设置此属性。
- 此接口与 RK MPI VPSS SetChnRotation 接口不能同时使用。

RK_MPI_VPSS_GetChnRotationEx

【描述】

获取 VPSS 的任意角度旋转属性。

【语法】

RK_S32 RK_MPI_VPSS_GetChnRotationEx(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, <u>VPSS_ROTATION_EX_ATTR_S</u>* pstRotationExAttr);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
pstRotationExAttr	任意角度旋转属性结构体指针。	输出

【返回值】

返回值	描述
0	成功。
事60	失败,请参见 <u>错误码</u> 。

【注意】

• GROUP 必须已创建。

RK_MPI_VPSS_GetChnFrame

【描述】

用户从通道获取一帧处理完成的图像。

【语法】

RK_S32 RK_MPI_VPSS_GetChnFrame(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, VIDEO_FRAME_INFO_S *pstVideoFrame, RK_S32 s32MilliSec);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
pstVideoFrame	处理完成的图像信息。	输出
s32MilliSec	超时参数 s32MilliSec 设为-1 时,为阻塞接口;0 时为非阻塞接口; 口; 大于 0 时为超时等待时间,超时时间的单位为毫秒(ms)。	输入

【返回值】

返回值	描述
0	成功。
∃ €0	失败,请参见 <u>错误码</u> 。

【注意】

- GROUP 必须已创建。
- 只有在 USER 模式下,并且队列深度不为 0,才能获取到图像。
- 仅在User模式或者调用RK MPI VPSS EnableBackupFrame使能backup帧时调用该接口获取图像。
- 当 s32MilliSec 设为-1 时,表示阻塞模式,程序一直等待,直到获取到图像才返 回。如果 s32MilliSec 等于 0 时,表示非阻塞模式。如果 s32MilliSec 大于 0 时,表 示超时等待模式,参数 的单位是毫秒,指超时时间,在此时间内如果没有获取到图像,则超时返回。

RK_MPI_VPSS_ReleaseChnFrame

【描述】

用户释放一帧通道图像。

【语法】

RK_S32 RK_MPI_VPSS_ReleaseChnFrame(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, const VIDEO_FRAME_INFO_S *pstVideoFrame);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围[0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS MAX CHN NUM</u>)。	输入
pstVideoFrame	图像信息。	输入

【返回值】

返回值	描述
0	成功。
∃E 0	失败,请参见 <u>错误码</u> 。

【注意】

- 此接口需与 RK MPI VPSS GetChnFrame 配对使用。
- 接口调用同 RK MPI VPSS GetChnFrame 调用次数——对应,不允许同一帧多次调用。

RK_MPI_VPSS_AttachMbPool

【描述】

将 VPSS 的通道绑定到某个视频缓存 MB 池中。

【语法】

RK_S32 RK_MPI_VPSS_AttachMbPool(<u>VPSS_GRP</u> VpssGrp, <u>VPSS_CHN</u> VpssChn, MB_POOL hMbPool);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入
hMbPool	视频缓存 MB 池信息。	输入

【返回值】

返回值	描述
0	成功。
丰60	失败,请参见 <u>错误码</u> 。

【注意】

- 必须保证组已创建。
- 用户必须调用接口 RK_MPI_MB_CreatePool 创建一个视频缓存 MB 池,再通过调用接口 RK_MPI_VPSS_AttachMbPool 把当前组的通道绑定到固定 PoolId 的 MB 池中。支持多个组的多个通道绑定到同一个 MB 池中。
- 当要切换当前组绑定的 MB 池时,只需再调一次接口 <u>RK MPI VPSS AttachMbPool</u>正确配置需要 绑定到的 MB 池即可。
- hMbPool 必须保证是已创建 MB 池的有效 PoolId。
- 在调用 RK MPI VPSS DetachMbPool后,销毁创建的 MB 之前,需要保证 MB 没 有被 VPSS 后端绑定的模块使用,可以通过 sleep 或清除后端模块通道缓存的方式 先把 MB 都释放,再销毁缓存 MB 池。

RK_MPI_VPSS_DetachMbPool

【描述】

将 VPSS 的通道从某个视频缓存 MB 池中解绑定。

【语法】

RK_S32 RK_MPI_VPSS_DetachMbPool(VPSS_GRP_VpssGrp, VPSS_CHN_VpssChn);

【参数】

参数名	描述	输入/输出
VpssGrp	VPSS GROUP 号。 取值范围: [0, <u>VPSS_MAX_GRP_NUM</u>)。	输入
VpssChn	VPSS 通道号。 取值范围: [0, <u>VPSS_MAX_CHN_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
∃ E0	失败,请参见 <u>错误码</u> 。

【注意】

• 必须保证组已创建。

数据类型

VPSS 模块相关数据类型定义如下:

- VPSS MAX GRP NUM: 定义 VPSS GROUP 的最大个数。
- VPSS MAX GRP PIPE NUM: 定义 VPSS GROUP 上最大的 PIPE 个数。
- VPSS MAX CHN NUM: 定义 VPSS 通道的最大个数。
- VPSS MIN IMAGE WIDTH: 定义 VPSS 图像的最小宽度。
- VPSS MIN IMAGE HEIGHT: 定义 VPSS 图像的最小高度。
- VPSS MAX IMAGE WIDTH: 定义 VPSS 图像的最大宽度。
- VPSS MAX IMAGE HEIGHT: 定义 VPSS 图像的最大高度。
- VPSS GRP: 定义 VPSS 组号。
- VPSS GRP PIPE: 定义 VPSS 组的管道号。
- VPSS CHN: 定义 VPSS 通道号。
- VPSS CROP COORDINATE E: 定义 CROP 起点坐标的模式。
- VPSS CROP INFO S: 定义 CROP 功能所需信息。
- VPSS ROTATION EX ATTR S: 定义 VPSS 的任意角度旋转属性。
- VPSS GRP ATTR S: 定义 VPSS GROUP 属性。
- VPSS CHN ATTR S: 定义 VPSS 通道属性。
- VPSS CHN MODE E: 定义 VPSS CHN 工作模式。

VPSS_MAX_GRP_NUM

【说明】

定义 VPSS GROUP 的最大个数。

【定义】

#define	VPSS_	MAX	_GRP_	_NUM
---------	-------	-----	-------	------

256

【注意事项】

无

VPSS_MAX_GRP_PIPE_NUM

【说明】

定义 VPSS GROUP 的最大个数。

【定义】

#define VPSS_MAX_GRP_PIPE_NUM

1

【注意事项】

只能设置为0。

VPSS_MAX_CHN_NUM

【说明】

定义 VPSS 通道的最大个数。

【定义】

#define VPSS_MAX_CHN_NUM

4

【注意事项】

无

VPSS_MIN_IMAGE_WIDTH

【说明】

定义 VPSS 图像的最小宽度。

【定义】

#define VPSS_MIN_IMAGE_WIDTH

64

【注意事项】

无

VPSS_MIN_IMAGE_HEIGHT

【说明】

定义 VPSS 图像的最小高度。

【定义】

#define VPSS_MIN_IMAGE_HEIGHT

64

【注意事项】

无

VPSS_MAX_IMAGE_WIDTH

【说明】

定义 VPSS 图像的最大宽度。

【定义】

#define VPSS_MAX_IMAGE_WIDTH

8192

【注意事项】

无

VPSS_MAX_IMAGE_HEIGHT

【说明】

定义 VPSS 图像的最大高度。

【定义】

#define VPSS_MAX_IMAGE_HEIGHT

8192

【注意事项】

无

VPSS_GRP

【说明】

定义 VPSS 组号。

【定义】

typedef RK_S32 VPSS_GRP;

【注意事项】

无

VPSS_GRP_PIPE

【说明】

定义 VPSS 组的管道号。

【定义】

typedef RK_S32 VPSS_GRP_PIPE;

【注意事项】

VPSS_GRP_PIPE 取值只能为 0。

VPSS_CHN

【说明】

定义 VPSS 通道号。

【定义】

typedef RK_S32 VPSS_CHN;

【注意事项】

无

VPSS_CROP_COORDINATE_E

【说明】

定义 CROP 起点坐标的模式。

【定义】

```
typedef enum rkvPss_CROP_COORDINATE_E {
    VPSS_CROP_RATIO_COOR = 0,
    VPSS_CROP_ABS_COOR
} VPSS_CROP_COORDINATE_E;
```

【成员】

成员名称	描述
VPSS_CROP_RATIO_COOR	相对坐标。
VPSS_CROP_ABS_COOR	绝对坐标。

【注意事项】

相对坐标,即起始点的坐标值是以与当前图像宽高的比率来表示,使用时需做转换,具体请参见 VPSS_CROP_INFO_S。

VPSS_CROP_INFO_S

【说明】

定义 CROP 功能所需信息。

【定义】

```
typedef struct rkVPSS_CROP_INFO_S {
    RK_BOOL bEnable;
    VPSS_CROP_COORDINATE_E enCropCoordinate;
    RECT_S stCropRect;
} VPSS_CROP_INFO_S;
```

【成员】

成员名称	描述
bEnable	CROP 使能开关。
enCropCoordinate	CROP 起始点坐标模式。
stCropRect	CROP 的矩形区域。

【注意事项】

 若 enCropCoordinate 为 VPSS_CROP_RATIO_COOR (相对坐标模式),使用 stCropRect 的成员时应做转换,计算公式为:

s32X = 起始点坐标 x 原始图像宽度/1000,合法取值范围: [0, 999],计算完成 后会进行取整操作和对齐操作。公式同样适用于纵坐标计算。

u32Width = 区域宽度 x 实际图像宽度/1000,区域宽度取值范围:[1,1000]。计算完成后会进行取整操作和对齐操作。公式同样适用于区域高度计算。

• 坐标和宽高要求 2 像素对齐。

VPSS_ROTATION_EX_ATTR_S

【说明】

定义 VPSS 的任意角度旋转属性。

【定义】

```
typedef struct rkvPSS_ROTATION_EX_ATTR_S {
    RK_BOOL bEnable;
    ROTATION_EX_S stRotationEx;
} VPSS_ROTATION_EX_ATTR_S;
```

【成员】

成员名称	描述
bEnable	Enable/Disable 任意角度旋转功能。
stRotationEx	任意角度旋转的详细属性。具体描述请参考"系统控制"章节。

【注意事项】

无

VPSS_GRP_ATTR_S

【说明】

定义 VPSS GROUP 属性。

【定义】

【成员】

成员名称	描述
u32MaxW	输入图像宽度。静态属性,创建 Group 时设定,不可更改。
u32MaxH	输入图像高度。静态属性,创建 Group 时设定,不可更改。
enPixelFormat	输入图像像素格式。静态属性,创建 Group 时设定,不可更改。
enDynamicRange	输入图像动态范围。静态属性,创建 Group 时设定,不可更改。
stFrameRate	组帧率。
enCompressMode	输入图像压缩方式。静态属性,创建 Group 时设定,不可更改。

【注意事项】

• 无效参数无需设置,不做异常参数检查。

- u32MaxW、u32MaxH 必须设置为 VPSS 实际输入图像宽高。
- enPixelFormat 必须设置为 VPSS 实际输入图像的像素格式。

VPSS_CHN_ATTR_S

【说明】

定义 VPSS 通道的属性。

【定义】

【成员】

成员名称	描述
enChnMode	通道工作模式。
u32Width	目标图像宽度。要求 2 对齐。
u32Height	目标图像高度。要求 2 对齐。
enVideoFormat	目标图像视频格式。
enPixelFormat	目标图像像素格式。
enDynamicRange	目标图像动态范围。
enCompressMode	目标图像压缩模式。
stFrameRate	帧率控制信息。
bMirror	水平镜像使能。
bFlip	垂直翻转使能。
u32Depth	用户获取通道图像的队列长度。
stAspectRatio	幅形比参数。

【注意事项】

无

VPSS_CHN_MODE_E

【说明】 定义 VPSS CHN 工作模式。 【定义】

```
typedef enum rkVPSS_CHN_MODE_E {
    VPSS_CHN_MODE_USER = 0,
    VPSS_CHN_MODE_AUTO = 1,
    VPSS_CHN_MODE_PASSTHROUGH = 2
} VPSS_CHN_MODE_E;
```

【成员】

成员名称	描述
VPSS_CHN_MODE_USER	用户设置模式。
VPSS_CHN_MODE_AUTO	自动模式。
VPSS_CHN_MODE_PASSTHROUGH	穿透模式。使用该模式时,VPSS硬件本身不处理数据, 将传递解析数据至下级处理。

【注意事项】

无

错误码

视频处理子系统 API 错误码如下所示:

错误代码	宏定义	描述
0xA0068001	RK_ERR_VPSS_INVALID_DEVID	VPSS GROUP 号无效
0xA0068002	RK_ERR_VPSS_INVALID_CHNID	VPSS 通道号无效
0xA0068003	RK_ERR_VPSS_ILLEGAL_PARAM	VPSS 参数设置无效
0xA0068004	RK_ERR_VPSS_EXIST	VPSS GROUP 已创建
0xA0068005	RK_ERR_VPSS_UNEXIST	VPSS GROUP 未创建
0xA0068006	RK_ERR_VPSS_NULL_PTR	输入参数空指针错误
0xA0068008	RK_ERR_VPSS_NOT_SUPPORT	操作不支持
0xA0068009	RK_ERR_VPSS_NOT_PERM	操作不允许
0xA006800C	RK_ERR_VPSS_NOMEM	分配内存失败
0xA006800D	RK_ERR_VPSS_NOBUF	分配 BUF 池失败
0xA006800E	RK_ERR_VPSS_BUF_EMPTY	图像队列为空
0xA0068010	RK_ERR_VPSS_NOTREADY	VPSS 系统未初始化
0xA0068012	RK_ERR_VPSS_BUSY	VPSS 系统忙
0xA0068013	RK_ERR_VPSS_SIZE_NOT_ENOUGH	MB 块大小不够