DNA (Евдокимов)

Описание программы

Задача программы состоит в выравнивании двух последовательностей, которое используется в биоинформатике при построении выравниваний аминокислотных или нуклеотидных последовательностей в Python.

Используется алгоритм Нидлмана-Вунша.

Для начала по заданным данным генерируются 2 последовательности ДНК. Затем высчитываются коэфициенты для подсчета матрицы схожести: d - штраф за разрыв равный длине самой длинной последовательности, A = коэфициент схожести символов равный квадрату штрафа за разрыв. Затем непосредственно составляется матрица. В конце концов по конечной матрицы мы можем востановить необходимое нам выравнивание.

Тесты и эксперементы

(Можно самостоятельно запустить программу) Проверим программу на разных данных:

Тест 1

Вот наши последовательности GCACT GGTGA Проводим выравнивание —GCACT GGTG-A— Объединяем GGTGCACT

Тест 2

Вот наши последовательности TCGGAGGTTT GTACAGCTTG Проводим выравнивание -T-CGGAG-GTT-T GTAC-AGC-TTG-Объединяем GTACGGAGCGTTGT

Тест 3

Вот наши последовательности
ТGAAAGGTATCGAATTCCCTAACTACGGTA
ACATTAGCCTTCCCGACCTCAAAAGGCCAAGTCCT
Проводим выравнивание
ТGA-A-AG-GTAT-CGA-ATTC------ССТАА-СТАСGGTA
-ACATTAGCC-T-TCCCGACC-TCAAAAGGCC-AAGTC-C--ТОбъединяем
ТGACATTAGCCGTATCCCGACCATTCAAAAGGCCTAAGTCTACGGTA

Тест 4

Программа достаточно быстро работает даже на 1000 символах. Результат в папке с доп. файлами.

Тест 5

На 10000 символах программа работает заметно дольше, но тоже справляется. Под результат работы я выделил отдельный файл 10000.txt

Тест 6

Наконец тест на 10⁵ символов. Программа очень долго работает. Результаты в файле.

Выводы

Смотря на результаты тестов, можно утверждать, что длина последовательности влияет на время работы. При том время растет нелинейно, а квадратично (для квадратной матрицы).