

Data Analysis

Data Science Process

Access data from multiple source

Cleaning and preparing data

Data Wrangling

Data Visualization

Data Analysis

Modeling and Problem Solving

Learning path

Data Science Workflow

Import libraries

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sklearn as sk
import statsmodels as sm
```


NumPy

(Numerical Python)

NumPy

Efficiency Multi-dimensional array
Fast operations on array without loop
Read and write data
Linear algebra
Random number generator

Operation for data analysis

Data munging/wrangling
Data cleaning
Data filtering
Data transformation
Data aggregation/summarize
Data sorting

Create array with 1M

```
from timeit import default_timer as timer

start = timer()

my_list = list(range(1000000))
for _ in range(10): my_list2 = [x * 2 for x in my_list]

end = timer()
print(end - start)
```


Create array with 1M

```
import numpy as np
from timeit import default_timer as timer
start = timer()
my_arr = np.arange(1000000)
for _ in range(10): my_arr2 = my_arr * 2
end = timer()
print(end - start)
```


Numpy Performance

10-100 times faster than pure Python

Multi-dimensional array object

N-dimensional array object (ndarray) Fast and flexible for large data set

Create array with random data

```
import numpy as np
data = np.random.randn(2, 3)
print(data)
# Operation on array
print(data * 2)
print(data + data)
# Properties of araay
print(data.dtype)
print(data.shape)
```


Create ndarray

```
import numpy as np

data1 = [1, 2, 3.5, 4, 5]
arr1 = np.array(data1)
print(arr1)

data2 = [[1, 2, 3,], [4, 5, 6]]
arr2 = np.array(data2)
print(arr2)
```


Create ndarray

np.zeros(5) np.ones(5) np.empty(5) np.arange(5)

Operation on array and scalar

```
import numpy as np
arr = np.array([[1,2,3], [4,5,6]])
print(arr)
print(arr + arr)
print(arr - arr)
print(arr * arr)
print(1 / arr)
print(arr ** 2)
```


Pandas (Panel Data Structure)

Pandas

Python data analysis library Build on top of Numpy

Key features

DataFrame object for data manipulation
Read and write data
Data alignment and missing data
Reshaping and pivoting of data
Merging, Joining and grouping data
Time series functionality

Data Structure

Data Structure

Series (1D)

DataFrame (2D)

Panel (3D)

Series

A one-dimensional labeled array capable of holding any data type

Series

pd.Series(['A', 'B', 'C', 'D'])

Series

pd.Series(['A', 'B', 'C', 'D'], index=[0, 1, 2, 3])

A two-dimensional labeled data structure with columns of potentially different types

Create dataframe from Python's dictionary

Improve sequence of columns

Data loading

Read data from text format

Function	Description
read_csv	อ่านข้อมูลในรูปแบบ CSV โดยแยกด้วย comma
read_table	อ่านข้อมูลในรูปแบบ table โดยแยกด้วย TAB
read_fwf	อ่านข้อมูลในรูปแบบ fixed-length ของ column
read_excel	อ่านข้อมูลในรูปแบบของ MS Excel
read_html	อ่านข้อมูลในรูปแบบ HTML
read_json	อ่านข้อมูลในรูปแบบ JSON (JavaScript Object Notation)
read_sql	อ่านข้อมูลจาก SQL Query ใช้งานผ่าน SQLAlchemy

Read data from datasource

Data Sources

Text file
Binary
Web API
Database

Data cleaning and preparation

Data wrangling

Data aggregation

Plotting and Visualization

Time Series

workshop

axis = 0

```
[[1 2 3] [[1 2 3] [5 7 9] [7 8 9]] [12 15 18]]
```


axis = 1

