Given a dataset for performing linear regression with one variable. Example: Used care price production 10/p Frgine Capacity Price 7/p -> Miles Driven,

But for simplicity purpose we once taking only one i/p. let, 20 matrix Hiles Driver | Brice 7=mx+c (1000, 2.5) 20, x +00 2520 2.5 2520 3.6 (2520, 3.6) ho(x) = 00 + 01 x

Find Find Miles Driven Find Find CSV (Comma Separate Mector) con storce huge no. of datas in tabular form.

25/ 2/25 1) What is machine leavining? Supervised learning What are the different types of m/l? Semisupowised

Charling 1

Charling 1 of What ois leavining? 10 s Unsufservise d ey what is Superneised learning! 5) what type ob problem me can solve using Supervise & learning? Regussion Classification 6) what is Regression problem explain with a real-libe example? with one variable a Lineage Regression ho(x) 200+0,x Initially choose Do and D. randomly. (xti, he (xti)) $\rightarrow h_{\theta}(\alpha) \geq 0_{0} + 0_{1} \alpha$ $e^{00104} \geq (h_{\theta}(\alpha))$ $e^{00109} = \left(h_{\theta}\left(x^{(i)}\right) - y^{(i)}\right)^{2}$ the only need & we walver The distance can be -ve but me only need magnitude, but me con'est do mod(11). Because, for later me have to do desirative but mod make can make problem at then. So, me can do square. Now, assume those one on data samples.
So, total no. of evicous = 1 1 (ho(x(i)) - y(i)) } ploss bunction mean squared ervor (MSE) Minimize Esucore Minimize J(00,01)

00,0,

Performing Partial Derivative: $\frac{m}{3(0_0, 0_1)} = \frac{1}{2m} \sum_{i=1}^{\infty} \left(h_0(x^{(i)}) - y^{(i)} \right)^2 \quad h_0(x^{(i)}) = 0_0 + 0_1 x^{(i)}$ $\frac{d}{d\theta_0} 3(0_0, 0_1) = \frac{1}{2m} \sum_{i=1}^{\infty} \frac{d}{d\theta_0} \left(\theta_0 + \theta_1 x^{(i)} + y^{(i)} \right)^2$ $= \frac{1}{2m} \sum_{i=1}^{\infty} \frac{d(0_0 + \theta_1 x^{(i)} + y^{(i)})^2}{d(0_0 + \theta_1 x^{(i)} - y^{(i)})} \quad d\theta_0$ $= \frac{1}{2m} \sum_{i=1}^{\infty} \frac{d(0_0 + \theta_1 x^{(i)} - y^{(i)})}{d(0_0 + \theta_1 x^{(i)} - y^{(i)})} \quad d\theta_0$ $= \frac{1}{2m} \sum_{i=1}^{\infty} 2(0_0 + \theta_1 x^{(i)} - y^{(i)}) (1 + 0 - 0)$

