

Exercise 4 Discussion

- Please resend my invitation to your ASwR GitHub repository
 - They expire after 7 days and I did not accept some in time
 - Consequently the deadline is extended through Thursday, March 24.
- I did see several team solutions
- Best time so far is ~18.5 seconds
- We can address remaining GitHub access issues after today's lecture

Matrix Computation

- Last time we looked at benchmarks for
 - o lm(),qr(),prcomp(),princomp(),crossprod(),and %*%
- The first four are computed with matrix decomposition
- Why do matrix decomposition? Seems like a lot of work!

Consider a standard regression problem

$$y = X\beta + \epsilon,$$

where X is an $n \times p$ design matrix (data matrix), y is a response vector, and ϵ is an error vector.

If we use least squares to slove for β , we have

$$\hat{eta} = rg \min_{eta} \lVert y - Xeta
Vert_2.$$

The *normal equations* are usually shown as a linear system to solve for eta

$$X^T X eta = X^T y$$

and the solution is $\hat{eta} = (X^TX)^{-1}X^Ty$, when X is full rank.

How do we compute this? Is it fast? Is it accurate?

If a matrix inverse is not your final result, there is a cheaper way to get there

- ullet Solving Ax=b for x by LU factorization is cheaper than using A^{-1}
 - \circ Factor A=LU, then solve two triangular systems using back substitution: Ly=b and Ux=y
 - \circ Solution by LU decomposition is under half the work
- If A is symmetric and positive definite, as in $A=X^TX$, we have Cholesky factorization $A=R^TR$, where R is upper triangular
 - Another factor of 2 cheaper

What about accuracy?

- The $condition\ number$ of a matrix A is $\kappa(A)=rac{\sigma_{\max}}{\sigma_{\min}}\geq 1$, assuming full rank, under L_2 norm
 - \circ When A is viewed as a projection, it is a ratio of maximum to minimum stretching
 - $\circ~$ In Ax=b, a bound on changes in x relative to changes in b
 - \circ For least squares, that's change in estimate \hat{eta} relative to change in response y
 - \circ Errors in finite representation of y can be magnified by the condition number
- ullet Forming X^TX squares the condition number
- We can use decompositions of X instead of X^TX for solving the least squares problem

Surprises in Finite Representation

```
x = float::as.float(1/1:1e8) # reducing to 32 bit representation
sum(x)
                               # summing forward
## # A float32 vector: 1
## [1] 15.404
sum(rev(x))
                               # summing backward
## # A float32 vector: 1
## [1] 18.808
5*.Machine$double.eps
                              # back to 64 bit
## [1] 1.110223e-15
 (2 + 5*.Machine$double.eps) - 2 # cancellation example
## [1] 8.881784e-16
```

- Decompositions introduce zeros to form a *triangular matrix* for a back substitution solution
- A = LU and $A = R^TR$ are fast for $A = X^TX$
 - Use *Gaussian elimination* (linear combination of rows) to introduce zeros
- ullet Work with n imes p matrix X to avoid squaring conditon number
- ullet X=QR, orthogonal Q and an upper triangular R
 - $\circ \ \ Q^TQ=I_p$ and $QQ^T=I_n$ for an n imes p matrix X
 - Usually Householder reflections
 - Orthogonal matrices have condition number 1: they do not magnify error

Gaussian elimination

$$\begin{bmatrix} X_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} X^1 & X^2 \end{bmatrix}$$

$$A = \begin{bmatrix} x_1 & x_{12} \\ x_2 & x_{22} \end{bmatrix}$$

Householder reflection

Using QR in Least Squares

Begin with
$$\hat{eta} = \argmin_{eta} \lVert y - X eta
Vert_2.$$

Substitute
$$X=QR$$
 to get $\hat{eta}=rg\min_{eta}\lVert y-QReta
Vert_{2}.$

Now, note that
$$\|Q\|_2=1$$
 and $Q^TQ=I_p$, so that $\hat{eta}=rgmin_{eta}\|Q^Ty-Reta\|_2.$

So the the minumum is given by solving the triangular system $Q^Ty=R\hat{eta}$ for \hat{eta} by back substitution.

The $\mbox{lm}(\mbox{)}$ function and many other model fitting functions in R use the QR decomposition.

The Singular Value Decomposition

$$X = UDV^T$$

For $n \geq p$, U is an $n \times p$ orthogonal matrix of left singular vectors V is a $p \times p$ orthogonal matrix of right singular vectors D is a $p \times p$ diagonal matrix of singular values

Exercise: show how to use this decomposition to solve the least squares problem (Hint: follow QR ideas):

$$\hat{eta} = rg\min_{eta} \lVert y - Xeta
Vert_2.$$

Truncated SVD as Regression Basis Vectors

Suppose we have n images, each with p pixel values. The well known MNIST data set of digit images is an example with $n=60\,000$ and $p=784\,(28\times28)$.

Let A be the matrix of n_A images of a single digit, the pixel values of each image as a column. That is, we partition the digits into separate matrices, like A, and consider using them for classification of new images.

The SVD of $A=UDV^T$. If u_i and v_i are the columns of U and V, respectively, then

$$A = \sum_{i=1}^p d_i u_i v_i^T.$$

and image j in column $a_j = \sum_{i=1}^p (d_i v_{ij}) u_i$.

From matrix approximation, we know that this SVD can be truncated to some $k \ll p$ components and still represent each image well.

Truncated SVD as Regression Basis Vectors

For some $k \ll p$, we have $x_j = \sum_{i=1}^k (d_i v_{ij}) u_i$.

The u_i are basis functions constructed from data, a set of orthogonalized "images", which are the regressors and the d_iv_{ij} are the regression coefficients.

We can now look at classification of a new image of a digit by regressing it onto each of the 10 digit bases and classifying it into the category that fits best.

The tuning parameter k can be optimized with crossvalidation.

References

Trefethen, L. N., Bau, D. (1997). Numerical Linear Algebra. SIAM. ISBN: 0898713617

• Great book for intuition, although fairly advanced

Golub, Gene H. and van Loan, Charles F.. Matrix Computations. Fourth: JHU Press, 2013.

• Encyclopedic book for algorithms and the theory behind them and error analysis