9.9 Appello 2014-07-02

9.9.1 Esercizio 1

Dimostrare che $A \subseteq \mathbb{N}$ è ricorsivo solo se A, \overline{A} sono RE.

Soluzione

 $A \text{ ricorsivo} \Rightarrow A, \overline{A} \text{ sono RE}.$

Essendo A ricorsivo, la sua funzione caratteristica \mathcal{X}_A è calcolabile e può essere utilizzata per definire la funzione semi-caratteristica di A:

$$SC_A(x) = \mathbb{1}\left(\mu w.\overline{sg}(\mathcal{X}_A(x))\right)$$

La funzione semi-caratteristica di \overline{A} può essere definita in modo analogo

$$SC_{\overline{A}}(x) = \mathbb{1}\left(\mu w.\mathcal{X}_A(x)\right)$$

 A, \overline{A} sono RE $\Rightarrow A$ ricorsivo

Entrambe le funzioni semi-caratteristiche sono calcolabili e possono essere combinate per definire la funzione caratteristica.

Sia e_1 un programma tale che $\phi_{e_1} = SC_A$ e e_2 tale che $\phi_{e_2} = \overline{sg}(SC_{\overline{A}})$, entrambi esistono perché le loro funzioni sono calcolabili.

$$\mathcal{X}_{A}(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} = \begin{cases} SC_{A}(x) & x \in A \\ \overline{sg}(SC_{\overline{A}}(x)) & x \notin A \end{cases}$$
$$= \left(\mu w. \left(S\left(e_{1}, x, (w)_{1}, (w)_{2}\right) \wedge S\left(e_{2}, x, (w)_{1}, (w)_{2}\right) \right) \right)_{1}$$

9.9.2 Esercizio 2

Definire una funzione $f: \mathbb{N} \to \mathbb{N}$ totale, non calcolabile tale che f(x) = x/2 per ogni $x \in \mathbb{N}$ e pari, oppure dimostrare che tale funzione non esiste.

Soluzione

La funzione deve essere totale e non viene specificato nulla per quanto riguarda il valore della funzione sui numeri dispari.

Sia $\{\phi_n\}$ una qualsiasi enumerazione delle funzioni calcolabili.

La funzione f può essere definita come

$$f(x) = \begin{cases} x/2 & x \text{ è pari} \\ \phi_x(x) + 1 & \text{altrimenti} \end{cases}$$

Si ha quindi che la funzione f:

- è totale, perché definita su tutto N
- vale x/ se x è pari
- ullet è diversa da tutte le funzioni calcolabili se x è dispari e quindi negli infiniti punti dispari non è calcolabile

$$A = \{x | \forall k \in \mathbb{N}.x + k \in W_x\}$$

Soluzione

A sembra non essere RE, perché per provare l'appartenenza è necessario andare a provare infiniti valori di k.

Si può quindi provare la riduzione $\overline{K} \leq_m A$.

Serve quindi una funzione tale che se $x \in \overline{K}$, f(x) sia definita $\forall x' \geq x$ ed una funzione definita su tutto \mathbb{N} soddisfa questa condizione, mentre se $x \in K$, f(x) non deve essere definita in almeno un punto $x' \geq x$.

$$g(x,y) = \begin{cases} 1 & \neg H(x,x,y) \\ \uparrow & H(x,x,y) \end{cases}$$

Non posso usare $x \in \overline{K}$ perché la funzione semi-caratteristica non è calcolabile, devo ragionare sul numero di passi y impiegati dal programma per terminare.

Essendo calcolabile, per SMN esiste f calcolabile e totale, che funziona da funzione di riduzione, perché:

- $x \in \overline{K}$: $\forall y \neg H(x, x, y)$ è vero e quindi $\forall y \phi_{f(x)}(y) = 1$ ed in particolare $\phi_{f(x)}(f(x) + k) = 1 \forall k$, ovvero $f(x) \in A$.
- $x \in K$: $\exists y_0$ tale che $\forall y > y_0$, $\phi_{f(x)}(y) = g(x,y) = \uparrow$, è quindi possibile trovare almeno un valore $y' > y_0$ tale che y' > x + 0, pertanto $f(x) \notin A$.

Si ha quindi che A non è RE.

 $\overline{A} = \{x | \exists k \in \mathbb{N}. x + k \notin W_x\}$, anche in questo caso sembra non essere RE, perché per verificare l'appartenenza è necessario che il programma x non termini quando riceve in input x + k.

Si può quindi provare la riduzione $\overline{K} \leq_m \overline{A}$.

Serve quindi una funzione tale che se $x \in \overline{K}$, f(x) non termini quanto riceve in input x + k e si può osservare che i programmi che calcolano \emptyset sono in \overline{A} . Se invece $x \in K$, f(x) deve essere definita su tutti gli input > x.

$$g(x,y) = \begin{cases} \uparrow & x \in \overline{K} \\ 1 & x \in K \end{cases} = SC_K(x)$$

Essendo calcolabile, per SMN esiste f calcolabile e totale, che funziona da funzione di riduzione, perché:

- $x \in \overline{K}$: il predicato $\neg H(x, x, y)$ vale $\forall y$ e quindi $\phi_{f(x)}(y) = \uparrow \forall y$, pertanto $f(x) \in \overline{A}$.
- $x \in K$: $\phi_{f(x)}(y) = g(x,y) = 1 \forall y$ ed in particolare $\phi_{f(x)}(y) \downarrow \forall y > x$ e quindi $f(x) \in A$

Segue quindi che anche \overline{A} non è RE.

9.9.4 Esercizio 4

$$V = \{x | E_x \text{ infinito}\}$$

Soluzione

V è saturo, perché $\mathcal{V} = \{f | |cod(f)| = \infty\}.$

Banalmente la funzione $id \in \mathcal{V}$ e tutte le sue parti finite non appartengono per definizione a \mathcal{V} , quindi per Rice Shapiro V è non RE.

Analogamente $id \notin \overline{\mathcal{V}}$ e la funzione \emptyset appartiene a $\overline{\mathcal{V}}$ ed è parte finita di id, quindi per Rice Shapiro, $\overline{\mathcal{V}}$ è non RE.

9.9.5 Esercizio 5

Enunciare il secondo teorema di ricorsione e dimostrare che $\exists k | W_k = \{k * i | i \in \mathbb{N}\}.$

Soluzione

Il teorema dice che, data una funzione $f: \mathbb{N} \to \mathbb{N}$ calcolabile e totale, $\exists e. \phi_e = \phi_{f(e)}$

$$g(x,y) = \begin{cases} 1 & x \text{ è multiplo di } y \\ \uparrow & \text{altrimenti} \end{cases} = \mathbb{1}\left(\mu z.|xz-y|\right)$$

Essendo g calcolabile, per SMN esiste $f: \mathbb{N} \to \mathbb{N}$ calcolabile e totale tale che $g(x,y) = \phi_{f(x)}(y) \forall y$ e quindi si ha che

$$W_{f(x)} = \{x * i | i \in \mathbb{N}\}$$

e per il secondo teorema di ricorsione, esiste x tale che $\phi_x = \phi_{f(x)}$, ovvero $\exists x$ tale che:

$$W_x = W_{f(x)} = \{x * i | i \in \mathbb{N}\}$$