Analysis update on γ measurement in $B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$ decays

Martin Tat

Oxford LHCb

21st May 2021

Outline

- Introduction
- 2 Binning scheme
- 3 $B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$ selection
- 4 Global fit
- Global fit
- 6 Summary

Introduction

b o uar c s and b o uar u s interference when D^0 and $ar D^0$ decay into a common final state

In this analysis, consider $D o K^+K^-\pi^+\pi^-$

Introduction

• CP observables:

$$\begin{split} \bullet & \ x_{\pm}^{DK} = r_B^{DK} \cos \left(\delta_B^{DK} \pm \gamma \right) \\ \bullet & \ y_{\pm}^{DK} = r_B^{DK} \sin \left(\delta_B^{DK} \pm \gamma \right) \\ \bullet & \ x_{\xi}^{D\pi} = \text{Re}(\xi^{D\pi}), \ y_{\xi}^{D\pi} = \text{Im}(\xi^{D\pi}) \qquad \left(\xi^{D\pi} = \frac{r_B^{D\pi}}{r_D^{DK}} e^{i \left(\delta_B^{D\pi} - \delta_B^{DK} \right)} \right) \end{split}$$

Event yield in bin i

$$\begin{split} N_{i}^{-} &= h_{B^{-}} \Big(K_{i} + \left(x_{-}^{2} + y_{-}^{2} \right) \bar{K}_{i} + 2 \sqrt{K_{i} \bar{K}_{i}} \big(x_{-} c_{i} + y_{-} s_{i} \big) \Big) \\ N_{-i}^{+} &= h_{B^{+}} \Big(K_{i} + \left(x_{+}^{2} + y_{+}^{2} \right) \bar{K}_{i} + 2 \sqrt{K_{i} \bar{K}_{i}} \big(x_{+} c_{i} + y_{+} s_{i} \big) \Big) \end{split}$$

Amplitude averaged strong phases and fractional yield

$$c_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \cos(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi |\mathcal{A}(\bar{D^0})|^2}}, \quad K_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}{\sum_j \int_j \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}$$

Binning Scheme

Binning scheme

Binning scheme

- Use LHCb model (arXiv:1811.08304) implemented in AmpGen
- ullet Calculate D^0 and $ar{D^0}$ amplitude from D daughter momenta
- $\mathcal{A}(D^0)/\mathcal{A}(\bar{D^0}) = r_D \exp(i\delta_D)$
- ullet Bin along δ_D to avoid dilution during averaging
- ullet Enhance interference by separating bin +i and -i at $r_D=1$
- ullet Analogy from $K_S\pi^+\pi^-\colon m_+^2=m_-^2$ separates CF and DCS resonances
- Maximize $Q = \frac{1}{2}(Q_+ + Q_-)$ by moving bin boundaries symmetrically around $\delta_D = 0$:

$$Q_\pm^2 = 1 - \sum_i rac{\mathcal{K}_i ar{\mathcal{K}}_i (1-c_i^2-s_i^2)}{\mathcal{N}_i^\pm} \Big/ \sum_i \mathcal{K}_i$$

Binning scheme

Strong phases

(a) c_i and s_i for the 2×4 binning scheme

(b) c_i and s_i for the 2×8 binning scheme

Fractional yields

(a) K_i for the 2×4 binning scheme

(b) K_i for the 2×8 binning scheme

Study of γ precision

- Generate 2000 B^{\pm} candidates in Ampgen
- Unbinned fit benchmark: $\Delta \gamma = 11^{\circ}$
- Both 2×4 and 2×8 binning schemes are consistent with their Q values

(a) 2×4 binning scheme $\Delta \gamma = 13^{\circ}$

(b) 2×8 binning scheme $\Delta \gamma = 12^{\circ}$

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$
 selection

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$
 selection

Samples

- Stripping lines:
 - StrippingB2D0PiD2HHHHBeauty2CharmLineDecision
 - StrippingB2D0KD2HHHHBeauty2CharmLineDecision
- Data samples: 2015-2018 (2011-2012 not processed yet)
- MC samples: 2016-2018, filtered, AmpGen

Initial cuts

Trigger requirements identical to that of LHCb-ANA-2020-001

Run 1 trigger	(Bu_LOGlobal_TIS or Bu_LOHadronDecision_TOS)	
requirements	and (Bu_Hlt1TrackAllLODecision_TOS)	
	and (Bu_Hlt2Topo2BodyBBDTDecision_TOS or	
	Bu_H1t2Topo3BodyBBDTDecision_TOS or	
	Bu_Hlt2Topo4BodyBBDTDecision_TOS)	
Run 2 trigger	(Bu_LOGlobal_TIS or Bu_LOHadronDecision_TOS)	
requirements	and (Bu_Hlt1TrackMVADecision_TOS or	
	Bu_Hlt1TwoTrackMVADecision_TOS)	
	and (Bu_Hlt2Topo2BodyDecision_TOS or	
	Bu_Hlt2Topo3BodyDecision_TOS or	
	Bu_Hlt2Topo4BodyDecision_TOS)	

Initial cuts

Rectangular cuts before BDT

Standard cuts	Value
Bachelor momentum <i>p</i>	< 100 GeV
Bachelor has RICH	True
K^{\pm} from D momentum p	< 100 GeV
\mathcal{K}^{\pm} has RICH	True
D invariant mass	Within $\pm 25\mathrm{MeV}$ of $m_{D^0}^\mathrm{PDG}$
DecayTreeFitter (DTF) convergence	True
B^\pm DTF mass range	[5080, 5800]MeV

Boosted Decision Tree

- BDTG from TMVA Toolkit
- Signal sample: $B^\pm \to D K^\pm$ and $B^\pm \to D \pi^\pm$ MC samples
- Background sample: $B^{\pm} \to D\pi^{\pm}$ using $m_{B^{\pm}}^{\mathsf{DTF}} \in [5800, 7000] \mathsf{MeV}$

BDT training particles

BDT training variables part 1

Name	Rank (%)	Description
log(DO_RHO_BPV)	7.7	D radial distance to beamline
log(Bu_FDCHI2_OWNPV)	6.3	B^{\pm} flight distance χ^2
log(Bu_RHO_BPV)	6.1	B^\pm radial distance to beamline
log(Bach_PT)	6.1	Bachelor transverse momentum
Bu_PTASY_1.5	5.3	B^\pm asymmetry parameter
log(1-D0_DIRA_BPV)	5.0	Angle between PV and D
log(Bu_IPCHI2_OWNPV)	4.8	B^\pm impact parameter χ^2
log(1-Bu_DIRA_BPV)	4.7	Angle between PV and B^\pm
log(h[1,2]_PT)	4.4	K^\pm transverse momentum
Bu_MAXDOCA	4.4	B^{\pm} distance of closest approach
log(Bach_IPCHI2_OWNPV)	4.1	Bachelor impact parameter χ^2

BDT training particles

BDT training variables part 2

Name	Rank (%)	Description
log(Bu_constD0PV_D0_P)	3.7	D momentum from DTF
log(DO_VTXCHI2DOF)	3.3	$D0$ vertex fit χ^2
log(h[3,4]_IPCHI2_OWNPV)	3.3	π^{\pm} impact parameter χ^2
log(D0_IPCHI2_OWNPV)	3.2	D impact parameter χ^2
log(h[3,4]_PT)	3.2	π^\pm transverse momentum
log(Bu_PT)	2.8	B^\pm transverse momentum
log(h[1,2]_P)	2.8	K^{\pm} momentum
log(Bach_P)	2.7	Bachelor momentum
log(Bu_constDOPV_P)	2.6	B^\pm momentum from DTF
log(h[1,2]_IPCHI2_OWNPV)	2.5	K^\pm impact parameter χ^2
DO_MAXDOCA	2.5	D distance of closest approach
log(Bu_VTXCHI2DOF)	2.0	B^\pm vertex fit χ^2
log(h[3,4]_P)	1.9	π^{\pm} momentum

BDT training results

Charmless backgrounds from $B^{\pm} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}K^{\pm}$

- Remove cut on DTF χ^2
- Look in the D mass sideband [1770, 1820]MeV

(a) No charmless cuts Yield: 2605 ± 57

(b) Flight significance cut at 2 Yield: 110 + 19

- Choose flight significance cut at 2
- ullet A cut larger than pprox 3 gives a charmless yield consistent with 0

Charmless backgrounds from $B^{\pm} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{\pm}$

• No charmless background observed in the $B^\pm o D\pi^\pm$ channel!

Mis-ID background from $B^{\pm} \rightarrow (K\pi\pi\pi)_D h^{\pm}$

- Study using MC samples from 2018
- Yields have been scaled to account for differences in sample size and branching fractions
- $\pi\pi\pi\pi$ background is negligible

(a) D invariant mass distribution

- **(b)** Signal and $K\pi\pi\pi$ background yield
- A cut at PIDK > 0 reduces the contamination from 7.2% to 1.8%

Final cuts

Cuts after BDT training

Background suppression cuts	Value	
BDTG	< 0.75	
Bachelor PID	PIDK $>$ 4 ($<$ 4) for DK ($D\pi$)	
K^{\pm} from D PID	PIDK > 0	
Flight significance	> 2	
DTF χ^2	$\ln(\chi^2) < 3$	

Global fit

Global fit

Signal parameterisation

- PDF shape parameterization identical to LHCb-ANA-2020-001
- Signal: Gaussian + Modified Gaussian
- Shape fixed from MC, yield and width floated
- Exponential background

$$f_{\text{MG}}(m|m_B,\sigma,\alpha_L,\alpha_R,\beta) \propto \begin{cases} \exp\left(\frac{-\Delta m^2(1+\beta\Delta m^2)}{2\sigma^2+\alpha_L\Delta m^2}\right), & \Delta m=m-m_B<0\\ \exp\left(\frac{-\Delta m^2(1+\beta\Delta m^2)}{2\sigma^2+\alpha_R\Delta m^2}\right), & \Delta m=m-m_B>0 \end{cases}$$

Partially reconstructed background

- $B^{\pm} \rightarrow D\pi^{\pm}$:
 - **1** $B^{\pm} \to (D^{*0} \to D^0[\pi^0])\pi^{\pm}$
 - 2 $B^0 \to (D^{*\mp} \to D^0[\pi^{\mp}])\pi^{\pm}$
 - **3** $B^{\pm(0)} \to D^0[\pi^{0(\mp)}]\pi^{\pm}$
 - **4** $B^{\pm} \to (D^{*0} \to D^0[\gamma])\pi^{\pm}$
- $B^{\pm} \rightarrow DK^{\pm}$:
 - **1** $B^{\pm} \to (D^{*0} \to D^0[\pi^0])K^{\pm}$
 - ② $B^0 \to (D^{*\mp} \to D^0[\pi^{\mp}])K^{\pm}$
 - **3** $B^{\pm(0)} \to D^0[\pi^{0(\mp)}]K^{\pm}$
 - **4** $B^{\pm} \to (D^{*0} \to D^{0}[\gamma])K^{\pm}$
 - **6** $B_s^0 \to \bar{D^0}[\pi^+]K^-$
 - **6** Mis-ID from partially reconstructed $B^\pm o D\pi^\pm$ channel

Global fit

Figure 10: Global fit of B^{\pm} mass distribution for the DK^{\pm} channel (left) and $D\pi^{\pm}$ channel (right)

- $B^{\pm} \rightarrow DK^{\pm}$ yield: 2290 \pm 59
- $B^{\pm} \rightarrow D\pi^{\pm}$ yield: 33113 ± 211

Global fit toy studies

- Generated 1000 toy datasets using the fitted parameters
- Almost all free parameters have pull distributions with zero mean and standard deviation 1
- Consistent with LHCb-ANA-2020-001

Global fit toy studies

Figure 11: low_dpi_ratio_b2drho_vs_b2dstpi

Global fit toy studies

Figure 12: low_dpi_ratio_b2drho_vs_b2dstpi

Summary

Summary:

- Global and CP fits are working
- Toy studies show no suspicious behaviour

Next steps:

• Fine tuning the PDF shape parameters and efficiencies?

Backup slides: DaVinci error

DaVinci error message:

```
BZDPL_DZKKPIPL... INFO 'upleTolobecayFreefitter:: The INFO message is suppressed : Renaming duplicate to Bu_constDBPV_0B_plplus_0'
BZDPL_DZKKPIPL... INFO 'upleTolobecayFreeFitter:: The INFO message is suppressed : Renaming duplicate to Bu_constDBPV_0B_plplus_1'
BZDPL_DZKKPIPL... ERROR TUpleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_1D : BZDPL_DZKKPIPL... ERROR TUpleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_1D : StatusCode=FAILURE
BZDPL_DZKKPIPL... ERROR TUpleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_1D : StatusCode=FAILURE
BZDPL_DZKKPIPL... ERROR TUpleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_1D : StatusCode=FAILURE
BZDPL_DZKKPIPL... ERROR TUpleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_1D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TUpleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_1D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TUpleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_0D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TupleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_0D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TupleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_0D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TupleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_0D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TupleTolobecayFreeFitter:: Tuple entry error : Bu_constDBPV_0B_plplus_1D : Bu_constDBPV_0B_plplus_0D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TupleTolobecayFreeFitter: Tuple entry error : Bu_constDBPV_0B_plplus_0D : Dplus_0D : STATUSCODEFAILURE
BZDPL_DZKKPIPL... ERROR TupleTolobecayFreeFitter: Tuple entry error : Bu_cons
```