ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Подкидышев Алексей Сергеевич Студент факультета инноваций и высоких технологий (группа 790)

Лабораторная работа №2.1.6 «Эффект Джоуля Томпсона»

Долгопрудный 14 марта 2018 г.

1 Установка

Рис. 1: Схема установки для изучения эффекта Джоуля-Томпсона

- 1. Трубка, по которой протекает газ
- 2. Пористая перегородка
- 3. Труба Дьюара
- 4. Кольцо, уплотняющее трубу Дьюара
- 5. Змеевик
- 6. Балластный болон
- 7. Вольтметр
- 8. Концец термопары
- 9. Конец термопары

2 Ход работы

1. Подготовка

- 1. Включим термостат, установив на нагревателе значение комнатной температуры
- 2. Включим вольтметр. Измерим U_0
- 3. Откроем Вентиль, чтобы избиточное давление составило $\triangle p \approx 4$ атм

2.1 Измерения

2.1.1 Определение $\Delta T(p)$

Найдем значние ΔT при разных давлениях внутри сосуда, и различных температурах жидкости

$T = 27,14C^{\circ} = 300,29K$							
P, кгс	4,2	3,792	3,438	2,982	2,562		
$\Delta T, C^{\circ}$	3,833	3,415	3,047	2,555	2,113		
U, MKB	$0,\!156$	0,139	0,124	0,104	0,086		

$T = 50,05C^{\circ} = 323,2K$								
P, кгс	4,26	3,78	3,492	3,036	2,502			
$\Delta T, C^{\circ}$	3,025	2,587	2,309	1,963	1,524			
$U-U_0$, MKB	0,131	0,112	0,1	0,085	0,066			
U, mkb	0,138	0,119	0,107	0,092	0,073			

$T = 70C^{\circ} = 343,15K$								
Р, кгс	4,23	3,798	3,516	3,024	2,442			
$\Delta T, C^{\circ}$	2,628	2,249	2,027	1,67	1,269			
$U-U_0$, MKB	0,118	0,101	0,091	0,075	0,066			
U, mkb	0,138	0,119	0,107	0,092	0,073			

График

3. Определим значения коэфицентов a, b:

Зная коэфицент Джоуля Томпсона(как тангенс угла наклона прямой) Определим значения коэфицентов a,b по формуле:

$$\mu = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p}$$

для этого воспользуемся WolphramAlpha:

solve
$$8.66*10^5 = (2*a/(8.31*300.29) - b)/(7/2*8.31)$$
, $1.07*10^6 = (2*a/(8.31*323.2) - b)/(7/2*8.31)$

solve
$$8.66*10^5 = (2*a/(8.31*300.29) - b)/(7/2*8.31)$$
, $7.69*10^6 = (2*a/(8.31*323.2) - b)/(7/2*8.31)$

Получим значения:

$$27,14C^{\circ} - 50,05C^{\circ}$$

$$a = 1.04438 \frac{\text{H * m}^4}{\text{моль}^2}$$

$$b = 525.829 \frac{\text{cm}^3}{\text{моль}}$$

$$50,05C^{\circ} - 70C^{\circ}$$

$$a = 1.1 \frac{\text{H} * \text{M}^4}{\text{MOJ} \text{b}^2}$$

$$b = 540 \frac{\text{см}^3}{\text{моль}}$$

4.Погрешность:

$$\sigma_a = \frac{1}{\sqrt{n}} \sqrt{\frac{(\tilde{y}^2) - (\tilde{y})^2}{(\tilde{x}^2) - (\tilde{x})^2} - b^2}$$

Значение $\sigma_{\rm a,b}$ для каждый коэфицентов составит:

$$\sigma_{\rm a,b} \approx 10\%$$

5.Найдем значение $T_{\text{инв}}$: по формуле:

$$T_{\text{\tiny MHB}} = \frac{2a}{R * b}$$

$$T_{\text{инв}}^1 = 599.3 \text{K}$$

$$T_{\text{инв}}^2 = 519.8 \text{ K}$$

6.Вывод:

Полученные результаты ($T_{\text{инв}} \approx 550$) не совпадают с табличными ($T_{\text{инв}} \approx 2050 \text{ K}$). Это происходит потому, что уравнение Ван-дер-Ваальса хорошо описывает поведение газа в небольшом диапазоне температур, а за его пределами может сильно отклоняться от реальности. Ближе к табличным оказались результаты первых двух экспериментов ($\kappa o \not \phi u u e n mo e a u b$). Несоответствие можно объяснить тем, что уравнение Ван-дер-Ваальса лишь приближенно описывает опыт. А для $T_{\text{инв}}$ были сделаны значительные приближения, и поэтому результат резко отличается от теоритических данных.