NAME: Final version 005

# **MAT-181 FINAL TAKE-HOME EXAM**

This exam is to be taken without discussion or correspondance with any human. Please show work!

| question | available points | earned points |
|----------|------------------|---------------|
| 1        | 10               |               |
| 2        | 15               |               |
| 3        | 10               |               |
| 4        | 10               |               |
| 5        | 10               |               |
| 6        | 10               |               |
| 7        | 15               |               |
| 8        | 20               |               |
| EC       | 5                |               |
| EC       | 5                |               |
| Total    | 100              |               |

#### 1. (10 Points)



For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of ages at a skilled nursing facility, where most of the patients are elderly but a few are quite young.
- (b) The distribution of weights of newborn babies
- (c) The distribution of annual income for NBA basketball players where only a few are high-paid superstars.
- (d) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.

#### 2. (15 Points)

In a deck of strange cards, there are 352 cards. Each card has an image and a color. The amounts are shown in the table below.

|        | black | blue | green | Total |
|--------|-------|------|-------|-------|
| kite   | 25    | 19   | 37    | 81    |
| quilt  | 40    | 15   | 12    | 67    |
| shovel | 36    | 20   | 45    | 101   |
| wheel  | 30    | 24   | 49    | 103   |
| Total  | 131   | 78   | 143   | 352   |

- (a) What is the probability a random card is a shovel given it is black?
- (b) Is a quilt or a wheel more likely to be green?
- (c) What is the probability a random card is blue given it is a wheel?
- (d) What is the probability a random card is both a wheel and blue?
- (e) What is the probability a random card is either a quilt or black (or both)?
- (f) What is the probability a random card is blue?
- (g) What is the probability a random card is a kite?

## 3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

| Type of fruit | Mean mass (g) | Standard deviation of mass (g) |  |  |
|---------------|---------------|--------------------------------|--|--|
| Α             | 119           | 15                             |  |  |
| В             | 60            | 14                             |  |  |
| C             | 104           | 5                              |  |  |
| D             | 131           | 11                             |  |  |

One specimen of each type is weighed. The results are shown below.

| Type of fruit    | Mass of specimen (g) |  |
|------------------|----------------------|--|
| Α                | 128.3                |  |
| В                | 67                   |  |
| $\boldsymbol{C}$ | 103.8                |  |
| D                | 128.6                |  |
|                  | A<br>B               |  |

Which specimen is the most unusually large (relative to others of its type)?

## 4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 97.6 millimeters and a standard deviation of 7.6 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 90.2 and 107.3 millimeters?

## 5. (10 points)

A species of duck is known to have a mean weight of 108.3 grams and a standard deviation of 60 grams. A researcher plans to measure the weights of 144 of these ducks sampled randomly. What is the probability the **sample mean** will be between 114.8 and 116.8 grams?

## 6. (10 points)

An ornithologist wishes to characterize the average body mass of *Catharus guttatus*. She randomly samples 20 adults of *Catharus guttatus*, resulting in a sample mean of 28.89 grams and a sample standard deviation of 1.44 grams. Determine a 95% confidence interval of the true population mean.

| _  |     |         |
|----|-----|---------|
| 7. | (15 | points) |

A student is taking a multiple choice test with 300 questions. Each question has 4 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 86 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

| X           | У                | xy          |
|-------------|------------------|-------------|
| 240         | 7.1              |             |
| 560         | 5.1              |             |
| 180         | 7.3              |             |
| 550         | 5.9              |             |
| 850         | 4.4              |             |
| 130         | 7.7              |             |
| 680         | 4.5              |             |
| 510         | 6.4              |             |
| 160         | 7.1              |             |
| $\sum X =$  | $\sum y =$       | $\sum xy =$ |
| $\bar{X} =$ | $\bar{y} =$      |             |
| $S_X =$     | s <sub>y</sub> = |             |

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (b and a) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of a and b.)

(e) Please plot the data and a corresponding regression line.



## 9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.34. If 81 trials occur, what is the probability of getting at least 23 but less than 36 successes?

In other words, let  $X \sim \text{Bin}(n = 81, p = 0.34)$  and find  $P(23 \le X < 36)$ .

Use a normal approximation along with the continuity correction.

## 10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean  $\mu$  = 180. You decide to run two-tail test on a sample of size n = 9 using a significance level  $\alpha$  = 0.1.

You then collect the sample:

| 284.1 | 159.7 | 158.1 | 201.1 | 185.9 |
|-------|-------|-------|-------|-------|
| 247.6 | 144   | 289.4 | 299.6 |       |

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?