Lecture 27 Gradient Descent

Note by Samion Suwito on 4/29/25

Last Time

Basic Descent Algorithm For Unconstrained Optimisation

Given: $x_0 \in \operatorname{int} \operatorname{dom} f_0$, For $k=1,2,3,\cdots$

1. Determine direction v_k , step size s_k

Many methods for choosing each of v_k, s_k :

Ex: $v_k = -
abla f_0(x_k) \equiv$ gradient descent (accelerated gradient descent)

Ex: $s_k = s \quad \forall k \geq 1$ (fixed step size) or ideal line search...

Ex: Lecture 26 Backtracking Line Search

Given $\alpha, \beta \in (0,1)$, $s_0 > 0$

1. Set $s = s_0, \delta_k = \nabla f_0(x_k)^ op v_k$

2. If $f_0(x_k+sv_k)\leq f_0(x_k)+\alpha s\delta_k$ (Armijo Condition), then return $s_k=s$, else $s=\beta s$ and repeat step 2.

Analysis of Gradient Descent

$$v_k = -
abla f_0(x_k), lpha = rac{1}{2}$$
 (arbitrarily)

Assume step size s_k chosen small enough so that Armijo Condition is satisfied with first order characterisation:

$$\begin{split} f_0(x_{k+1}) & \leq f_0(x_k) + \alpha s_k \delta_k = f_0(x_k) - \frac{s_k}{2} \|\nabla f_0(x_k)\|_2^2 \\ & \leq f_0(x^\star) + \nabla f_0(x_k)^\top (x_k - x^\star) - \frac{s_k}{2} \|\nabla f_0(x_k)\|_2^2 \\ & = f(x^\star) + \frac{1}{2s_k} (\|x_k - x^\star\|^2 - \|x_k - x^\star - s_k \nabla f_0(x_k)\|_2^2 \\ & = f_0(x^\star) + \frac{1}{2s_k} (\|x_k - x^\star\|^2 - \|x_{k+1} - x^\star\|^2) \\ & \Longrightarrow f_0(x_{k+1}) - f(x^\star) \leq \frac{1}{2s_k} (\|x_k - x^\star\|_2^2 - \|x_{k+1} - x^\star\|_2^2) \\ & \stackrel{\leq}{\inf s_k \geq s_{LB} \forall k \geq 1}} \frac{1}{2s_{LB}} (\|x_k - x^\star\|_2^2 - \|x_{k+1} - x^\star\|_2^2) \\ & \Longrightarrow (f_0(x_k) - f_0(x^\star)) \leq \frac{1}{k} \sum_{i=1}^k (f_0(x_i - f_0(x^\star)) \\ & \leq \frac{1}{2s_{LB}k} \|x_0 - x^\star\|_2^2 \end{split}$$

LB stands for lower bound

If you sum over k you'll find a telescoping series that and things cancel out. You see that the suboptimality is inversely proportional to k and squared proportional to the initial sub optimality.

Question: What about step size?

Assume: $\nabla f(x)$ is L-Lipschitz: $\|\nabla f_0(x) - \nabla f_0(y)\|_2 \le L\|x-y\|_2$ essentially saying the gradient doesn't change too fast.

(Descent Lemma): Under assumption of L-Lipschitz

$$f_0(x) \leq f_0(y) +
abla f_0(y^ op)(x-y) + rac{L}{2} \|x-y\|^2$$

Gives this quadratic function global upper bound.

Proof: Assumption (divide by $\|x-y\|^2$) $\implies \nabla^2 f_0(x) \leq L \cdot I \quad \forall x$ $\implies \frac{L}{2} \|x\|^2 - f_0(x)$ is convex.

First order characteristic of convexity:

$$rac{L}{2}\|x\|^2 - f_0(x) \geq rac{L}{2}\|y\|^2 - f_0(y) + (Ly -
abla f_0(y))^ op (x-y)$$

Since we have an upper bound on the function we can always step at the intersection

If Step size $s_k \leq \frac{1}{L} \quad \forall k$, then will always satisfy Armijo Condition.

$$rac{s^\star}{2} = rac{L}{2} s^{\star_2} \implies s^\star = rac{1}{L}$$

• So, gradient descent with fixed step size $s=\frac{1}{L}$ ensures convergence and we moreover have the accuracy given by $f_0(x_k)-f_0(x^\star)\leq \frac{L}{2k}\|x_0-x^\star\|^2$

• What about backtracking? $s_k \geq \min\{\frac{\beta}{L}, s_0\} =: s_{LB}$ $\implies f_0(x_k) - f_0(x^\star) \leq \max\left\{\frac{L}{2\beta}, \frac{1}{2s_0}\right\}\frac{1}{k}\|x_0 - x^\star\|$

Roughly Speaking, need $O\left(\frac{1}{\varepsilon}\right)$ steps to get ε -suboptimality w/ gradient descent. *Remark*: $O\left(\frac{1}{\sqrt{\varepsilon}}\right)$ is in a sense best possible under the Lipschitz conditions, achieved by Nestrov's Accelerated gradient descent (choose v_k based on the current and previous gradient).

If more conditions are imposed (f_0 is strongly convex (more convex than a quadratic)), then can get better rate $O\left(\log\left(\frac{1}{\varepsilon}\right)\right)$

Second Order methods

Undamped Newton's Method

Newton's method chooses $v_k=-(\nabla^2 f_0(x_k))^{-1}\nabla f_0(x_k)$ ="Newton Step" *Intuition*: If f_0 was quadratic, then x_k+v_k would be optimal x^\star .

Damped Newton's Method

Newton's method will not converge in general it can be too aggressive, can overshoot when less convex than quadratic

Take $x_{k+1} = x_k - s_k (
abla^2 f_0(x_k))^{-1}
abla f_0(x_k)$ where s_k is chosen by backtracking.

 ε -suboptimality ensures $O\left(\log\log\left(\frac{1}{\varepsilon}\right)\right)$ under strong convexity. While it may look easier than gradient descent it is complex to compute the step itself.