# Comparing Conditional Random Fields and LSTM Networks for Named Entity Recognition

Josef Gugglberger (student) Clemens Sauerwein (supvervisor) December 23, 2019

LV 703605-6 Masterseminar



1

### Motivation

test

#### Overview

- 1. Background & Related Work
- 2. Implementation Details
- 3. Evaluation and Comparison
- 4. Conclusion

Background & Related Work

#### Named Entity Recognition

#### **Definition: NER**

Named Entity Recognition is the task of locating and classifying named entities in unstructured text. A named entity is classified into a predefined set of categories.

#### Named Entity Recognition

#### **Definition: NER**

Named Entity Recognition is the task of locating and classifying named entities in unstructured text. A named entity is classified into a predefined set of categories.

James visited the Eiffel Tower in 2012.



James [PERSON] visited the Eiffel [LOCATION] Tower [LOCATION] in 2012 [TIME].

#### Conditional Random Fields

#### **Definition: CRF**

A Conditional Random Field is a discriminative probabilistic classifier. It makes its prediction not just based on the input sample, but also based on the context of the input sample.

#### Conditional Random Fields

#### **Definition: CRF**

A Conditional Random Field is a discriminative probabilistic classifier. It makes its prediction not just based on the input sample, but also based on the context of the input sample.

$$p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} exp(\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, X_t))$$
 (1)

where Z(x) is an normalization function:

$$Z(x) = \sum_{k=1}^{T} \exp(\sum_{k=1}^{K} \theta_{k} f_{k}(y_{t}, y_{t-1}, x_{t}))$$
 (2)

3

#### Recurrent Neural Networks

#### **Definition: RNN**

RNNs are a special type of artificial neural networks that have a feedback loop feeding the hidden layers back into themselves. The loop provides a kind of memory that allow the network to better recognize patterns.

#### Recurrent Neural Networks

#### **Definition: RNN**

RNNs are a special type of artificial neural networks that have a feedback loop feeding the hidden layers back into themselves. The loop provides a kind of memory that allow the network to better recognize patterns.

- · Suited for sequence labeling
- · Problems with long term dependencies
- · Vanishing and exploding gradient

#### Long-Short-Term-Memory Networks

#### Definition: LSTM networks

LSTM networks are a special case of RNNs, which where designed to overcome issues with the vanishing gradient on long term relationships.

#### Long-Short-Term-Memory Networks

#### Definition: LSTM networks

LSTM networks are a special case of RNNs, which where designed to overcome issues with the vanishing gradient on long term relationships.



Implementation Details

#### Dataset CoNLL

#### Conference on Computational NL Learning

CoNLL 2003 was a shared task on language independent named entity recognition. The data is based on news wire articles from the Reuters corpus.

#### Four types of Named Entities:

- Person
- Location
- · Organization
- Miscellaneous

#### Dataset W-NUT

#### Workshop on Noisy User-generated Text

W-NUT 17 was a workshop that focused on NLP on noisy and informal text, such as comments from social media, online reviews, forums, etc.

#### Four types of Named Entities:

- Person
- Location
- Corporation
- · Consumer good
- · Creative work
- Group

### Dataset Syntax

| Word     | POS | Syntax Chunk | NE    |
|----------|-----|--------------|-------|
| U.N.     | NNP | I-NP         | I-ORG |
| official | NN  | I-NP         | 0     |
| Ekeus    | NNP | I-NP         | I-PER |
| heads    | VBZ | I-VP         | 0     |
| for      | IN  | I-PP         | 0     |
| Baghdad  | NNP | I-NP         | I-LOC |
|          |     | 0            | 0     |

#### Conditional Random Fields

#### Libraries:

- pycrfsuite
- nltk
- · gensim

Features should describe characteristics of named entities.

- Word Features
- Sentence & Collection Features
- · Dictionary Features
- · Features from unsupervised ML algorithms

#### **Word Features**

- · length of word
- the word starts with an upper-case letter
- the word contains an upper-case letter
- · the word contains a digit
- the word contains a special character (-, /, etc.)
- word shape: 'Word'  $\rightarrow$  'Aa+', 'WORD'  $\rightarrow$  'A+', '2019-12-12'  $\rightarrow$  '9999#99#99'

#### Sentence & Collection Features

- position of word in sentence
- number of occurrences in collection

#### Dictionary Features

#### The word is contained in:

- stop-words list
  - is, as, the, are, has, that, etc.
  - Problems: 'The Who', 'Take That'
- · name list
  - · 7579 person names form nltk corpus
- word list
  - dictionary of 235892 words from nltk corpus
- wordnet
  - · dictionary and thesaurus
  - · provides hypernyms, synonyms, etc.

#### Features from unsupervised ML algorithms

The cluster of each word is used as a feature.

- brown cluster
  - hierarchical clustering algorithm



#### Features from unsupervised ML algorithms

The cluster of each word is used as a feature.

- · brown cluster
  - hierarchical clustering algorithm
- · Latent Dirichlet Allocation (LDA) topic
  - modelling the abstract topics of document
  - example: document A is 20% topic 1, 60% topic 2 and 20% topic 3

#### Features from unsupervised ML algorithms

The cluster of each word is used as a feature.

- · brown cluster
  - hierarchical clustering algorithm
- · Latent Dirichlet Allocation (LDA) topic
  - modelling the abstract topics of document
  - example: document A is 20% topic 1, 60% topic 2 and 20% topic 3
- gensim implementation of w2v cluster
  - maps similar words to similar vectors
  - $w2v(king)-w2v(man)+w2v(woman) = \sim w2v(queen)$

#### LSTM Network

#### Libraries:

- · Keras functional API
- · Tensorflow as backend

#### LSTM Network

#### Libraries:

- · Keras functional API
- · Tensorflow as backend



#### Bidirectional LSTM Layer

- · idea is to duplicate LSTM layer
  - · input as-is is feed into first LSTM layer
  - · input reversed is feed into second LSTM layer
- · speech depends on context past and future

#### Bidirectional LSTM Layer

- · idea is to duplicate LSTM layer
  - input as-is is feed into first LSTM layer
  - · input reversed is feed into second LSTM layer
- · speech depends on context past and future

#### Example:

The other day we saw Paris.

#### Bidirectional LSTM Layer

- · idea is to duplicate LSTM layer
  - input as-is is feed into first LSTM layer
  - · input reversed is feed into second LSTM layer
- · speech depends on context past and future

#### Example:

The other day we saw Paris Hilton.

#### Time Distributed Dense Layer

· adds the same dense layer to every timestep

#### Time Distributed Dense Layer

· adds the same dense layer to every timestep



#### The best of both worlds?

combine the LSTM approach with CRF by adding a CRF layer at bottom:

- use past input features via LSTM layer
- · use sentence level tag information via CRF layer

#### The best of both worlds?

combine the LSTM approach with CRF by adding a CRF layer at bottom:

- · use past input features via LSTM layer
- · use sentence level tag information via CRF layer



## Evaluation and Comparison

#### **Evaluation**

Evaluation of the implemented NER systems with metrics:

- precision
- recall
- F1-score

#### **Evaluation**

Evaluation of the implemented NER systems with metrics:

- precision
- · recall
- F1-score

Evaluation performed based on:

- · token level
- named entity level (CoNLL standard)

#### Results

#### CoNLL dataset:

| Method      | Precision | Recall | F1-score |
|-------------|-----------|--------|----------|
| CRF         | 84.25     | 85.42  | 84.83    |
| Bi-LSTM     | 83.03     | 87.09  | 85.01    |
| Bi-LSTM-CRF | 86.44     | 83.39  | 84.89    |

#### W-NUT dataset:

| Method      | Precision | Recall | F1-score |
|-------------|-----------|--------|----------|
| CRF         | 31.54     | 56.72  | 40.53    |
| Bi-LSTM     | 8.69      | 23.16  | 12.63    |
| Bi-LSTM-CRF | 28.01     | 18.00  | 21.92    |

## Conclusion