Protein Cellular Component Ontology Prediction Data Challenge 2023

Waël Doulazmi, Ambroise Odonnat, Roman Plaud

Master MVA, ENS Paris-Saclay name.surname@ens-paris-saclay.fr

Advanced Learning for Text and Graph Data January 27, 2023

1/39

Overview

- 1 Protein Data
- 2 Feature Engineering
- 3 Sequence Modelling
- 4 Structure Modelling
- **5** Proposed Method
- **6** Results
- Conclusion

Overview

- 1 Protein Data
- Peature Engineering
- Sequence Modelling
- 4 Structure Modelling
- 6 Proposed Method
- 6 Results
- Conclusion

Cellular Component Ontology Prediction

Classification task

18 classes of Cellular Component Ontology

Multiple Representations

- Sequences of amino acids
- Graphs $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - * nodes $\mathcal{V} \to \text{amino acids}$
 - \star edges $\mathcal{E} \rightarrow$ based on distance and chemical properties

4/39

Protein Data

Sequence Representation

A-Y-I-A-K-Q-R-Q-I-S-F-V-K-S-H-F-S-R-Q-L-E-E-R-L-G-L-S-R-V-G-D-G-T-Q-D-N-L-S-G-A-E-K-A-V-Q-V-K-V-K-A-L-P-D-A-Q-F-E

Figure 1: A sequence of amino acids

Graph Representation

Figure 2: Graph representation of 2 proteins from class 8

Dataset

Data	Labels	# train set	# test set
6111 proteins	18 classes	4888	1223

Table 1: Dataset description

Split	$\# \mathcal{G} $	Avg. $ \mathcal{V} $	Avg. $ \mathcal{E} $
Train	4888	258	4486
Test	1223	254	4379

Table 2: Dataset statistics

Unbalanced Classification

Figure 3: Repartition of data in training set

Weighted Loss for Training

- Minority classes seen less often than majority classes
- Idea → give more impact on the loss to minority classes
- Weighted PyTorch implementation of negative log-likelihood

Choice of weight

For the class *i* of cardinal N_i , $w_i = \frac{1}{\sqrt{N_i}}$

Overview

- 1 Protein Data
- Peature Engineering
- 3 Sequence Modelling
- 4 Structure Modelling
- 6 Proposed Method
- 6 Results
- Conclusion

Edge Features

5 attributes associated to each edge:

- Distance between two connected nodes (amino acids)
- Membership binary variable for each of the 4 types of edges:
 - a distance-based edge \rightarrow 99.91 % of edges
 - **b** peptide bond edge \rightarrow 10.80 % of edges
 - c k-NN edge \rightarrow 0 % of edges
 - $oldsymbol{d}$ hydrogen bond edge $oldsymbol{
 ightarrow}$ 0.36 % of edges

86 attributes associated to amino acids:

• 3D Coordinates (3)

86 attributes associated to amino acids:

- 3D Coordinates (3)
- One-hot encoding of amino acid type (20)

86 attributes associated to amino acids:

- 3D Coordinates (3)
- One-hot encoding of amino acid type (20)
- Hydrogen bond acceptor / donor status (2)

86 attributes associated to amino acids:

- 3D Coordinates (3)
- One-hot encoding of amino acid type (20)
- Hydrogen bond acceptor / donor status (2)
- Chemical EXPASY features (61)

86 attributes associated to amino acids:

- 3D Coordinates (3)
- One-hot encoding of amino acid type (20)
- Hydrogen bond acceptor / donor status (2)
- Chemical EXPASY features (61)

We ignore features that are redundant with edges.

EXPASY

- **61** chemical properties of the amino acid in the protein
- Might be redundant with amino acid type
- Might be too **fine-grained** for our task

EXPASY

- **61** chemical properties of the amino acid in the protein
- Might be redundant with amino acid type
- Might be too fine-grained for our task

 \longrightarrow No knowledge on biology, so we explore them with **PCA**

PCA

- All features from all nodes \rightarrow 1,572,264 \times 61 data-frame
- Normalize all features to zero mean and unit variance
- Keep components explaining 80% of total variance

Figure 4: We keep the 4 first components

13/39

PCA

- Keep 4 components → compact information
- Project the features on the first 2 components
- All features seems to be of equal importance

Figure 4: Circle of correlations

Node Features - Amino acid type

- **Salient** feature: different amino acids have different properties
- Influence at both local and global level

Node Features - Amino acid type

- Salient feature: different amino acids have different properties
- Influence at both local and global level

 \longrightarrow We put most of our efforts on these features

Node Features - Amino acid type

- One-hot encoding: inconvenient for Machine Learning
- Multiple options to get to a **dense** representation (SVD, ...)
- We use tools from NLP (Word2Vec, BERT, ...)

Overview

- 1 Protein Data
- Peature Engineering
- 3 Sequence Modelling
- 4 Structure Modelling
- 6 Proposed Method
- 6 Results
- Conclusion

Protein Language

NLP for proteins

- Sequences on the vocabulary of amino acids
- Various studies show that NLP approach is relevant [Ofer et al., 2021]

Protein Language

NLP for proteins

- Sequences on the vocabulary of amino acids
- Various studies show that NLP approach is relevant [Ofer et al., 2021]

For our task

- Amino acids embeddings as node features
- Protein embeddings for classification / multi-modal models

NLP approaches

- Word2Vec → amino acids embeddings
- TF-IDF, BoW, GoW → protein sequence embeddings

NLP approaches

- ullet Word2Vec \longrightarrow amino acids embeddings
- ullet TF-IDF, BoW, GoW \longrightarrow protein sequence embeddings

Language models like BERT provides both!

Figure 5: ProtBERT [Elnaggar et al., 2021]

NLP - Amino Acids embeddings

- ProtBERT was trained on UniRef100 (257 millions proteins)
 - * Masked Language Modelling
 - * Produce contextual embeddings
- Features for multi-modal GNNs, carry information on both:
 - * The amino acid
 - ⋆ Its role at protein level
- \longrightarrow No need to fine-tune it!

→ But are ProtBERT protein embeddings powerful enough to work only with sequences?

Figure 6: ProtBERT sequence embeddings, t-SNE visualization

 \longrightarrow With 250 epochs of fine-tuning on our task:

Figure 7: ProtBERT sequence embeddings, t-SNE visualization

→ Dominant classes start to cluster

 \longrightarrow With 250 epochs of fine-tuning on our task, and weighted cross-entropy:

Figure 8: ProtBERT sequence embeddings, t-SNE visualization

→ Interesting embeddings!

22/39

 \longrightarrow With 250 epochs of fine-tuning on our task, and weighted cross-entropy:

Figure 9: ProtBERT sequence embeddings, t-SNE visualization of test dataset

 \longrightarrow This structure is also present in test data!

\longrightarrow Are we done?

Figure 10: 40-NN classifier, on 2D protein sequence embeddings

Might be good for accuracy, terrible for loss!

24/39

 \longrightarrow Are we done?

Classifiers on Protein embeddings

- Trained various classifiers: LogReg, SVM, MLP...
- Models tend to be very confident
- Errors are heavily penalized by the loss
- → Good starting point, but we can do better with structure!

Overview

- 1 Protein Data
- Peature Engineering
- 3 Sequence Modelling
- 4 Structure Modelling
- 6 Proposed Method
- 6 Results
- Conclusion

Structure Modelling

Node features

- Original node attributes (86)
- BERT embeddings of amino-acids of (1024)

Structure Modelling

Node features

- Original node attributes (86)
- BERT embeddings of amino-acids of (1024)

Edge filtering

- Use all provided edges
- Use only distance-based edges
- Use only peptide bond edges
- A subset of edges based on their attributes.

Edge Filtering

Figure 10: Edge filtering

27/39

Overview

- Protein Data
- Peature Engineering
- 3 Sequence Modelling
- 4 Structure Modelling
- **5** Proposed Method
- **6** Results
- Conclusion

Framework

Figure 11: Architecture overview

GNNs

- Implementation with DGL [Wang et al., 2019]
- GCN [Kipf et al., 2017]
- GAT [Veličković et al., 2018]
- HGPSL [Zhang et al., 2019]

Implementation Details

Training

- 50 epochs with early stopping, batch size = 64
- Adam optimizer, lr = 0.001, StepLR
- Train-val split of 85%

Models

- GCN & GAT \rightarrow 2 graphs layers + 2-layer MLP
- HGPSL → default setting
- $n_{hid} \in [128, 256, 512, 1024]$ for message passing layers

Overview

- 1 Protein Data
- Peature Engineering
- Sequence Modelling
- 4 Structure Modelling
- 6 Proposed Method
- **6** Results
- Conclusion

Notations

Node embedding of dimension k

- $G_{all} \rightarrow original node attributes, k = 86 (baseline)$
- $G_{BERT} \rightarrow BERT$ embeddings, k = 1024

Notations

Node embedding of dimension k

- $G_{all} \rightarrow original node attributes, k = 86 (baseline)$
- $G_{BERT} \rightarrow BERT$ embeddings, k = 1024

Protein embedding

- P_{Tfidf} → TF-IDF features of the protein sequences (baseline)
- $P_{BERT} \rightarrow BERT$ embeddings of protein sequences

Notations

Node embedding of dimension *k*

- $G_{all} \rightarrow original node attributes, k = 86 (baseline)$
- $G_{BERT} \rightarrow BERT$ embeddings, k = 1024

Protein embedding

- P_{Tfidf} → TF-IDF features of the protein sequences (baseline)
- $P_{BERT} \rightarrow BERT$ embeddings of protein sequences

Multi-modal $G_{BERT} + \lambda P_{BERT}$

- Scale protein embedding by $\lambda \in \{0.1, 0.2\}$
- Sum graph and protein embeddings

Results

dimension * * 128	1.69 0.964 1.106
* 128	0.964
128	
	1.106
120	
128	1.132
64	1.966
 256	0.788
256	0.779
512	0.848
512	0.809
024	0.845
1024	0.794
	256 2 56 512 512 024

Table 3: Loss value on test set

Overview

- 1 Protein Data
- Peature Engineering
- Sequence Modelling
- 4 Structure Modelling
- 6 Proposed Method
- 6 Results
- Conclusion

Conclusion

Promising results

- Use of adapted models for structured data
- Great performance even with simple GNNs
- Combining embeddings outperforms both approaches

Further work

- Other LM like T5 and XLNet might outperform BERT
- Investigate other approaches for unbalanced classification
- Take advantage of graph tools like k-core, graph kernels, . . .

Thanks for your attention!

References

Yang et al. (2019)

XLNet: Generalized Autoregressive Pretraining for Language Understanding Advances in Neural Information Processing Systems

Ofer et al. (2021)

The language of proteins: NLP, machine learning & protein sequences Computational and Structural Biotechnology Journal

Elnaggar et al. (2021)

ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing IEEE Transactions on Pattern Analysis and Machine Intelligence

Raffel et al. (2020)

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Journal of Machine Learning Research

References

Kipf et al. (2017)

Semi-Supervised Classification with Graph Convolutional Networks International Conference on Learning Representations

Veličković et al. (2018)

Graph Attention Networks

International Conference on Learning Representations

Zhang et al. (2019)

Hierarchical Graph Pooling with Structure Learning Advances in Neural Information Processing Systems

Wang et al. (2019)

Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs

Computing Research Repository

Appendix

Model	Embeddings	Hidden dimension	${\cal L}$
LogReg	P _{Tfidf}	*	1.69
LogReg	P_{BERT}	*	0.964
HGPSL	G _{BERT}	128	1.106
HGPSL	$G_{BERT} + P_{BERT}$	128	1.132
GCN	G _{all}	64	1.966
GCN	G_{BERT}	128	0.856
GCN	$G_BERT + \lambda P_BERT$	128	0.856
GCN	G_{BERT}	256	0.788
GCN	$G_{BERT} + \lambda P_{BERT}$	256	0.779
GCN	G_{BERT}	512	0.848
GCN	$\mathbf{G_{BERT}} + \lambda \mathbf{P_{BERT}}$	512	0.809
GCN	G _{BERT}	1024	0.845
GCN	$\mathbf{G_{BERT}} + \lambda \mathbf{P_{BERT}}$	1024	0.794

Table 4: Loss value on test set

39/39

January 27, 2023