PS1_pyglotaran

April 21, 2021

Notes K-matrix

• $K_{ij} \iff$ energy flow from state j to state i

1.1 parallel (DAS)

Energy leaves system directly

Full matrix \iff Reduced maxtrix:

• $K_{ij} = 0 \ \forall i \neq j$

1.2 sequntial (EAS)

Energy flows from one compartment i to the next i+1 until it leaves the system (K_{nn})

Assume **K** is $n \times n$ and sequence is in order

Full matrix:

• $K_{i+1i} = -K_{ii} \ \forall i < n \land K_{nn} \neq 0$

Reduced matrix:

• $K_{i+1i}^{Reduced} = K_{i+1i}^{Full} \wedge K_{ii} = 0 \ \forall i < n \wedge K_{nn} \neq 0$

1.3 General

Full matrix:

- $K_{ii} \iff -\text{ sum flows out of the compartment } i$ (to other compartments or out of the system)
- $K_{ij} \ \forall i \neq j \iff$ flow from compartment j to compare to

Reduced matrix:

- $\left(\sum_{k\neq i}^{n}K_{ki}\right)-K_{ii}^{Full}\iff$ flow of the compartment i out of the system
 $K_{ij}^{Reduced}=K_{ij}^{Full}\;\forall i\neq j\iff$ flow from compartment j to comparent i

cyano-PS1 case study

As in the lecture note we first try a global analysis

2.1 Global analysis

Assumption the process can ne described by a simple sequential model.

2.1.1 K-matrix sequential

The full K-matrix for a 4 compartment sequential scheme has the form of \mathbf{K}^{Full}

$$\mathbf{K}^{Full} = \begin{bmatrix} -k_{21} & & & \\ k_{21} & -k_{32} & & \\ & k_{32} & -k_{43} & \\ & & k_{43} & k_{4Out} \end{bmatrix}$$

Since both glotaran and pyglotaran use a reduced form of the K-matrix, it need to be transformed

$$\mathbf{K}^{Reduced} = egin{bmatrix} k_{21} & & & & \ & k_{32} & & \ & & k_{43} & k_{4Out} \end{bmatrix}$$

2.1.2 Notebook helper function for pretty output

```
[1]: from IPython.display import Markdown, display

def print_md(markdown_printable):
    """Pretty render Markdown."""
    display(Markdown(str(markdown_printable)))

def print_yaml_file(file_path):
    """Pretty render yaml file."""
    with open(file_path) as f:
        print_md(f"```yaml\n{f.read()}\n```")
```

2.1.3 Plotting functions (pyglotaran_extras + matplotlib)

```
[2]: import matplotlib.pyplot as plt
from pyglotaran_extras.plotting.plot_overview import plot_overview
from pyglotaran_extras.plotting.plot_svd import plot_svd

plt.rcParams["figure.figsize"] = (21, 14)
```

2.1.4 Analysis functions

```
[3]: from glotaran.analysis.optimize import optimize from glotaran.io import load_dataset, load_model, load_parameters from glotaran.project.scheme import Scheme
```

2.1.5 Read data

```
[4]: dataset = load_dataset("streakdata.ascii")
dataset
```

```
[4]: <xarray.Dataset>
     Dimensions:
                                       (left_singular_value_index: 49,
     right_singular_value_index: 49, singular_value_index: 49, spectral: 49, time:
     923)
     Coordinates:
       * time
                                       (time) float64 -101.0 -100.8 ... 99.24 99.46
       * spectral
                                       (spectral) float64 626.1 629.5 ... 785.3 788.7
     Dimensions without coordinates: left_singular_value_index,
     right_singular_value_index, singular_value_index
     Data variables:
         data
                                       (time, spectral) float64 50.75 59.21 ... 113.1
                                       (time, left singular value index) float64 -0...
         data left singular vectors
                                       (singular_value_index) float64 2.802e+05 ...
         data_singular_values
         data_right_singular_vectors (right_singular_value_index, spectral) float64
```

2.1.6 Load model and parameters

```
[5]: global_model = load_model("models/global-model.yml")
global_parameters = load_parameters("models/global-parameters.yml")
print_md(global_model.validate(parameters=global_parameters))
```

Your model is valid.

[6]: print_md(global_model)

3 Model

Type: kinetic-spectrum

3.1 Initial Concentration

- input1:
 - Label: input1
 - Compartments: ['s1', 's2', 's3', 's4']
 - Parameters: [input.1, input.0, input.0, input.0]
 - Exclude From Normalize: []

3.2 K Matrix

```
• km1:
```

- Label: km1 - Matrix: * ('s2', 's1'): kinetic.1 * ('s3', 's2'): kinetic.2 * ('s4', 's3'): kinetic.3 * ('s4', 's4'): kinetic.4

3.3 Irf

- irf1 (gaussian):
 - Label: irf1
 - Type: gaussian
 - Center: irf.center
 - Width: irf.width
 - Normalize: True
 - Backsweep: True
 - Backsweep Period: irf.backsweep

3.4 Dataset

- dataset1:
 - Label: dataset1
 - Megacomplex: ['mc1']
 - Initial Concentration: input1
 - − *Irf*: irf1

3.5 Megacomplex

- mc1:
 - Label: mc1
 - *K Matrix*: ['km1']

3.5.1 Create scheme and optimize it

```
[7]: global_scheme = Scheme(
        global_model,
        global_parameters,
        {"dataset1": dataset},
        non_negative_least_squares=True,
)
    global_result = optimize(global_scheme)
```

```
Iteration Total nfev Cost Cost reduction Step norm Optimality
0 1 4.7450e+07
2.84e+10
```

	1	2	4.3767e+07	3.68e+06	1.55e-01			
į	5.88e+08	_		. ==				
	2	3	4.3750e+07	1.73e+04	1.16e-02			
	1.63e+08							
	3	4	4.3750e+07	6.34e+01	3.25e-04			
2	2.50e+07	_						
	4	5	4.3750e+07	6.14e-01	2.41e-05			
2	2.84e+06							
	5	6	4.3750e+07	8.45e-03	2.04e-06			
	4.06e+05							
	`ftol` termination co							
	Function evaluations order optimality 4.06		cost 4.7450e+07	, final cost 4.	3750e+07, first-			
] : [global_result.data["	dataset1"]						
) :	<pre><xarray.dataset></xarray.dataset></pre>							
	Dimensions:			(clp_label: 4,	component: 4,			
	from_species: 4, lef	t_singular	value_index: 49	, right_singular	r_value_index: 49,			
	singular_value_index	_						
	Coordinates:	_	_		-			
	* time			(time) float64 -	-101.0 99.46			
	* spectral			(spectral) float	t64 626.1 788.7			
	* clp_label			(clp_label) <u2< td=""><td>'s1' 's2' 's4'</td></u2<>	's1' 's2' 's4'			
	* species			(species) <u2 's1'="" 's2'="" 's3'="" 's4'<="" td=""></u2>				
	rate			(component) float64 -0.225				
	lifetime			(component) float64 -4.445				
	* to_species			(to_species) <u2 's1'="" 's4'<="" td=""></u2>				
	* from_species			(from_species) <u2 's1'="" 's4'<="" td=""></u2>				
	Dimensions without c	oordinates	component, lef	t_singular_value	e_index,			
	right_singular_value	_index, sir	ngular_value_ind	ex				
	Data variables: (12/	24)						
	data			(time, spectral)) float64 50.75			
	data_left_singul	ar_vectors		(time, left_sing	gular_value_index)			
	float64				-			
	data_singular_va	lues		(singular_value	_index) float64			
	data_right_singu		5	(right_singular	_value_index,			
	spectral) float64							
	matrix			(time, clp_labe	l) float64 9.683			
	clp			(spectral, clp_	label) float64 1			
	-		•••					
	a_matrix			(component, spec	cies) float64 1			
	k_matrix				om_species) float64			
	•••			-	-			
	k_matrix_reduced			(to_species, fro	om_species) float64			
				-	-			
	irf_center			float64 -83.85				
	_							

[8]

[8]

irf_width float64 1.61

irf (time) float64 2.691e-25 ... 0.0

Attributes:

root_mean_square_error: 43.98496106181416
weighted_root_mean_square_error: 43.98496106181416

3.5.2 Result plots

[9]: fig = plot_overview(global_result.data["dataset1"], linlog=False)

[10]: print_md(global_result.optimized_parameters)

• input:

\overline{Label}	Value	StdErr	Min	Max	Vary	Non-Negative	Expr
1	1	0	-inf	inf	False	False	None

\overline{Label}	Value	StdErr	Min	Max	Vary	Non-Negative	Expr
0	0	0	-inf	inf	False	False	None

• irf:

Label	Value	StdErr	Min	Max	Vary	Non-Negative	Expr
center	-83.8533	6.73391e-05	-inf	inf	True	False	None
width	1.60986	6.95281 e-05	-inf	\inf	True	False	None
backsweep	13200	0	-inf	\inf	False	False	None

• kinetic:

\overline{Label}	Value	StdErr	Min	Max	Vary	Non-Negative	Expr
1	0.224983	3.32612 e-05	-inf	\inf	True	False	None
2	0.0680691	1.19792e-05	-inf	\inf	True	False	None
3	0.0212251	1.18649e-06	-inf	\inf	True	False	None
4	0.000159693	2.24382e-08	-inf	\inf	True	False	None

3.6 Target analysis

Theoretical background from compartmental_models.pdf

Compartmental model describing the kinetics of cyanobacterial PS I core particles upon excitation at 400 nm.

Concentration vector

$$c(t) = \begin{bmatrix} S(t) & B(t) & R_1(t) & R_2(t) & F(t) \end{bmatrix}^T$$

The concentration function correspond to

Function name	S(t)	B(t)	R_1(t)	$R_2(t)$	F(t)
Name in the schema	Soret	Bulk	Red1	Red2	Free

Differential equation

$$\frac{\mathrm{d}}{\mathrm{dt}}c(t) = \mathbf{K}c(t) + j(t)$$

Input function

$$j(t) = i(t) \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}^T$$

Transfer maxtrix ${\bf K}$

$$\mathbf{K} = \begin{bmatrix} -(k_{21} + k_{31} + k_{41} + k_{51}) & & & & \\ k_{21} & -(k_T + k_{32} + k_{42}) & k_{23} & k_{24} & \\ k_{31} & k_{32} & -(k_F + k_{23}) & & \\ k_{41} & k_{42} & -(k_F + k_{24}) & \\ k_{51} & & & k_F \end{bmatrix}$$

- k_T : effective rate constant of Chl, T stands for photochemical Trapping of the excitation energy
- k_F : natural decay rate of free Chl, F stands for Fluorescence

```
[11]: # Just a little helper to quickly make a pretty table
from tabulate import tabulate

headers = list(
    map(
        lambda x: f"***{x}***",
        ["Function name", "S(t)", "B(t)", "R_1(t)", "R_2(t)", "F(t)"],
    )
)
print(
    tabulate(
        [["**Name in the schema**", "Soret", "Bulk", "Red1", "Red2", "Free"]],
        headers=headers,
        tablefmt="github",
    )
)
```

```
| ***Function name*** | ***S(t)*** | ***B(t)*** | ***R_1(t)*** | 
***R_2(t)*** | ***F(t)*** | 
|-----|-----|
```

3.6.1 Reduced K-matrix

$$\mathbf{K} = \begin{bmatrix} k_{21} & k_T & k_{23} & k_{24} \\ k_{31} & k_{32} & k_F & \\ k_{41} & k_{42} & & k_F \\ k_{51} & & & k_F \end{bmatrix}$$

3.6.2 Reduced K-matrix ignoring input to Red1 and Red2

$$\mathbf{K} = egin{bmatrix} k_{21} & k_T & k_{23} & k_{24} \ & k_{32} & k_F \ & k_{42} & & k_F \ & k_{51} & & & k_F \end{bmatrix}$$

With the rate relations:

- $k_{23} = a_1 k_{32}$
- $k_{24} = a_2 \ k_{42}$

3.6.3 target-model.yml

```
[12]: print_yaml_file("models/target-model.yml")
     type: kinetic-spectrum
     megacomplex:
       mc1:
         k_matrix: [km1]
     k_matrix:
       km1:
         matrix:
           (s2, s1): kinetic.1
           (s5, s1): kinetic.2
           (s2, s2): kinetic.3
           (s3, s2): kinetic.4
           (s4, s2): kinetic.5
              (s2, s3): {expr:scaling.a1*kinetic.4}
     #
              (s2, s3): $scaling.1 * $kinetic.4
     #
           (s2, s3): kinetic.7
           (s3, s3): kinetic.6
              (s2, s4): {expr:scaling.a2*kinetic.5}
     #
              (s2, s4): $scaling.2 * $kinetic.5
     #
           (s2, s4): kinetic.8
            (s4, s4): kinetic.6
```

```
(s5, s5): kinetic.6
     spectral_constraints:
       - type: zero
         compartment: s1
         interval:
           - [100, 1000]
       - type: zero
         compartment: s3
         interval:
           - [100, 680]
       - type: zero
         compartment: s4
         interval:
           - [100, 690]
     irf:
       irf1:
         type: gaussian
         center: irf.center
         width: irf.width
         backsweep: True
         backsweep_period: irf.backsweep
     initial_concentration:
       input1:
         compartments: [s1, s2, s3, s4, s5]
         parameters: [
           input.1,
           input.0,
           input.0,
           input.0,
           input.0]
     dataset:
       dataset1:
         initial_concentration: input1
         megacomplex: [mc1]
         irf: irf1
     3.6.4 target-parameters.yml
[13]: print_yaml_file("models/target-parameters.yml")
     input:
```

```
- ["1", 1]
       - ["0", 0]
       - {vary: false}
     irf:
       - ["center", -84.0]
       - ["width", 1.6]
       - ["backsweep", 13800.0, {vary: false}]
     kinetic:
       - [2, {vary: false}]
       - [0.1, {vary: false}]
       - 0.05
       - 0.1
       - 0.03
       - 0.00016
       - ["7", {expr: '$kinetic.4 * $scaling.1'}]
       - ["8", {expr: '$kinetic.5 * $scaling.2'}]
     # - {non-negative: true}
     scaling:
       - [1.87, {vary: false}]
       - [1.37, {vary: false}]
[14]: target model = load model("models/target-model.yml")
      target_parameters = load_parameters("models/target-parameters.yml")
      print md(target model.validate(parameters=target parameters))
     Your model is valid.
[15]: print_md(target_model)
```

4 Model

Type: kinetic-spectrum

4.1 Initial Concentration

- input1:
 - Label: input1
 - Compartments: ['s1', 's2', 's3', 's4', 's5']
 - Parameters: [input.1, input.0, input.0, input.0, input.0]
 - Exclude From Normalize: []

4.2 K Matrix

- km1:
 - Label: km1

- Matrix:

- * ('s2', 's1'): kinetic.1
- * ('s5', 's1'): kinetic.2
- * ('s2', 's2'): kinetic.3
- * ('s3', 's2'): kinetic.4
- * ('s4', 's2'): kinetic.5
- * ('s2', 's3'): kinetic.7
- * ('s3', 's3'): kinetic.6
- * ('s2', 's4'): kinetic.8
- * ('s4', 's4'): kinetic.6
- * ('s5', 's5'): kinetic.6

4.3 Irf

- irf1 (gaussian):
 - Label: irf1
 - Type: gaussian
 - Center: irf.center
 - Width: irf.width
 - $-\ Normalize$: True
 - Backsweep: True
 - Backsweep Period: irf.backsweep

4.4 Dataset

- dataset1:
 - Label: dataset1
 - Megacomplex: ['mc1']
 - Initial Concentration: input1
 - − *Irf*: irf1

4.5 Megacomplex

- mc1:
 - Label: mc1
 - *K Matrix*: ['km1']

4.6 Spectral Constraints

- zero:
 - Type: zero
 - Compartment: s1
 - Interval: [[100, 1000]]
- zero:
 - Type: zero
 - Compartment: s3
 - Interval: [[100, 680]]
- zero:
 - *Type*: zero

 $- \ \textit{Compartment} : \ s4$

- Interval: [[100, 690]]

4.6.1 Create scheme and optimize it

```
[16]: target_scheme = Scheme(
          target_model,
          target_parameters,
          {"dataset1": dataset},
          non_negative_least_squares=True,
)
    target_result = optimize(target_scheme)
```

Iteration	Total nfev	Cost	Cost reduction	Step norm
Optimality				
0	1	1.3863e+08		
1.20e+11				
1	2	4.8613e+07	9.00e+07	2.65e-01
2.49e+10				
2	3	4.6291e+07	2.32e+06	2.78e-02
5.90e+09				
3	4	4.6058e+07	2.33e+05	1.30e-02
2.13e+09				
4	5	4.6049e+07	8.58e+03	2.76e-03
2.53e+08	_			
5	6	4.6049e+07	5.01e+02	7.49e-04
1.09e+08	_	4 4040 .07	0.04 .04	
6	7	4.6049e+07	3.21e+01	1.90e-04
2.18e+07	0	4 4040 .07	0.0700	F 00 0F
(8	4.6049e+07	2.07e+00	5.00e-05
6.48e+06	0	4 6040-107	1 24- 01	1 06- 05
8	9	4.6049e+07	1.34e-01	1.26e-05
1.52e+06				

`ftol` termination condition is satisfied.

Function evaluations 9, initial cost 1.3863e+08, final cost 4.6049e+07, first-order optimality 1.52e+06.

```
[17]: target_result.data["dataset1"]
```

```
[17]: <xarray.Dataset>
```

Dimensions: (clp_label: 5, component: 5,

from_species: 5, left_singular_value_index: 49, right_singular_value_index: 49,
singular_value_index: 49, species: 5, spectral: 49, time: 923, to_species: 5)
Coordinates:

```
rate
                                                (component) float64 -2.1 ... -0...
                                                (component) float64 -0.4762 ...
    lifetime
  * to_species
                                                (to_species) <U2 's1' ... 's5'
                                                (from_species) <U2 's1' ... 's5'
  * from_species
Dimensions without coordinates: component, left_singular_value_index,
right_singular_value_index, singular_value_index
Data variables: (12/24)
    data
                                                (time, spectral) float64 50.75 ...
    data_left_singular_vectors
                                                (time, left_singular_value_index)
    data_singular_values
                                                (singular_value_index) float64 ...
    data_right_singular_vectors
                                                (right_singular_value_index,
spectral) float64 ...
    matrix
                                                (spectral, time, clp_label)
float64 ...
    clp
                                                (spectral, clp_label) float64 0...
                                                (component, species) float64 1...
    a_matrix
                                                (to_species, from_species) float64
    k_matrix
   k_matrix_reduced
                                                (to_species, from_species) float64
    irf_center
                                                float64 -84.26
    irf_width
                                                float64 1.602
    irf
                                                (time) float64 2.23e-24 ... 0.0
Attributes:
    root_mean_square_error:
                                       45.125714328556704
    weighted_root_mean_square_error: 45.125714328556704
```

4.6.2 Result plots

```
[18]: fig = plot_overview(target_result.data["dataset1"], linlog=False)
```


[19]: print_md(target_result.optimized_parameters)

• input:

\overline{Label}	Value	StdErr	Min	Max	Vary	Non-Negative	Expr
1	1	0	-inf	inf	False	False	None
0	0	0	$-\inf$	\inf	False	False	None

• irf:

Label	Value	StdErr	Min	Max	Vary	Non-Negative	Expr
center	-84.2618	6.00839 e-05	-inf	inf	True	False	None
width	1.60168	6.52861 e-05	-inf	\inf	True	False	None
backsweep	13800	0	-inf	\inf	False	False	None

• kinetic:

\overline{Label}	Value	StdErr	Min	Max	Vary	$Non ext{-}Negative$	Expr
1	2	0	-inf	inf	False	False	None
2	0.1	0	-inf	\inf	False	False	None
3	0.0680715	3.36631e-06	-inf	\inf	True	False	None
4	0.072446	1.19977e-05	-inf	\inf	True	False	None
5	0.0281201	2.88594 e-06	-inf	\inf	True	False	None
6	0.000159065	2.17346e-08	-inf	\inf	True	False	None
7	0.135474	0	-inf	\inf	False	False	\$kinetic.4 * \$scaling.1
8	0.0385246	0	-inf	\inf	False	False	$\pi.5 * scaling.2$

• scaling:

\overline{Label}	Value	StdErr	Min	Max	Vary	$Non ext{-}Negative$	Expr
1	1.87	0	-inf	inf	False	False	None
2	1.37	0	-inf	\inf	False	False	None

[]: