CS4670 / 5670: Computer Vision Noah Snavely

Lecture 29: Face Detection Revisited

Remember eigenfaces?

• They don't work very well for detection

Issues: speed, features

- Case study: Viola Jones face detector
- Exploits two key strategies:
 - simple, super-efficient, but useful features
 - pruning (cascaded classifiers)
- Next few slides adapted Grauman & Liebe's tutorial
 - http://www.vision.ee.ethz.ch/~bleibe/teaching/tutorial-aaai08/
- Also see Paul Viola's talk (video)
 - http://www.cs.washington.edu/education/courses/577/04sp/contents.html#DM

34	11								-6	ral In	i ugʻ	_	
		33	3	19	19	18	18	2	24				
	8_	36	11	- 5	11	5	6	15	33				
17	22	17	4	6	3	5	7	35	18		Sum	Cost	Total Cos
8	3 7	15 1	22	5 19	1 29	20 6	10 20	12 9	22 27				
16	7	11	17	15	29	25	19	29	10	$\Sigma\Sigma$	69	6	6
34	26	29	31	5	6	30	17	4	10				
33	28	30	4	28	21	26	5	32	21	Integral	69	4	4
1	18	13	5	27	16	28	19	32	23	Ü			
12	13	16	23	13	7	21	5	2	15				
34		78	- 1	100	119	137	155	157	181				
68	87	156	170	194	224	247	271	288	345				
	126	212	230		293	321	352	404	479				
93	137		_	313		395	436	500	597				
	152	254	316	370	433	487	548	621	745	55			
	175	288	367	436	501	580	660	762	896	$\Sigma\Sigma$:		17+4+6+15+22	
117		377	487	561	632	741	838		1088	Integral v	way:	313+87-194-1	37= 69
117 151	235		582	684	776			1151 1310					
117 151 184	296	468	C10					1310	1498				
117 151		468 500 541	619 683	748 825			1250	1422	1625				

										ral In	0	_	
34	11	33	3	19	19	18	18	2	24				
34	8	36	11	5	11	5 _	6	15	33				
17 8	22	17 15	4	6 5	3	5 20	7 10	35 12	18 22		Sum	Cost	Total Cos
8	7	15	22	19	29	6	20	9	27				
16	7	11	17	15	29	25	19	29	10	$\Sigma\Sigma$	352	24	30
34	26	29	31	5	6	30	17	4	10				
33	28	30	4	28	21	26	5	32	21	Integral	352	4	8
1	18	13	5	27	16	28	19	32	23				
12	13	16	23	13	7	21	5	2	15				
34	45	1	81	100	119	137	155	157	181				
68	87	156	170	194	224	247	271	288	345				
85	126	212	230	260	293	321	352	404	479				
93	137	238	278	313	347	395	436	500	597				
101	152	254	316	370	433	487	548		745	laka ana l		011.156 247 4	CO 252
117	175	288	367	436	501	580	660		896	Integral w	ay:	911+156-247-4	o8= 352
151 184	- 1	377 468	487 582	561 684	- 1	741	838	944 1151					
185	315	500	619	748	_			1310					
100		541	683	825				1422					
197	340												

34							ın	τε	g	ral In	าage	5	
٥.	11	33	3	19	19	18	18	2	24		_		
34	8	36	11	5	11	5	6	15	33				
17	22	17	4	6	3	5	7	35	18		Sum	Cost	Total Cost
8	3	15	22	5	1	20	10	12	22		Juili	Cost	iotai cost
8	7	1	22	19	29	6	20	9	27	$\Sigma\Sigma$	141	9	39
16	7	11	17	15	2	25	19	29	10				
34	26	29	31	5	6	30	17	4 32	10 21	Integral	141	4	12
33 1	28 18	30 13	4 5	28 27	21 16	26 28	5 19	32	21	integral		7	12
12	13	16	23	13	7	28	19	2	15				
34	45	78	81	100	119	137	155	157	181				
68	45 87	156	170	194	224	247	271	288	345				
85	126	212	230	260	293	321	352	404	479				
93	137	238	278	313	347	395	436	500	597				
101	152	254	316	370	433	487		621					
117	175	288	367	436	501	580		762	896	Integral v	vav:	762-621= 141	
11/	235	377	487	561	632	741	838	944	1088		- 1 -	·-	
151	296	468	582	684	776	911	1013	1151	1316				
	230	500	619	748	856	1019	1140	1310	1498				
151	315	500			0.40	1124	1250	1422	1625				
151 184		541	683	825	940	1124	1230	1422	1023				

AdaBoost for feature+classifier selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.

Resulting weak classifier:

For next round, reweight the examples according to errors, choose another filter/threshold combo.

Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

AdaBoost: Intuition

Consider a 2-d feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Figure adapted from Freund and Schapire

K. Grauman, B. Leibe

18

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0,1$ for negative and positive examples respec-
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , ϵ_j = $\sum_{i} w_i |h_j(x_i) - y_i|.$
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost Algorithm

Start with uniform weights on training examples

For T rounds

_ Evaluate weighted error for each feature, pick best.

Re-weight the examples:

◆ Incorrectly classified -> more weight Correctly classified -> less weight

Final classifier is combination of the weak ones, weighted according to error they had.

an B Leibe

Freund & Schapire 1995

Cascading classifiers for detection

For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,

- > Filter for promising regions with an initial inexpensive classifier
- Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

Fleuret & Geman, IJCV 2001 Rowley et al., PAMI 1998 Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

Figure from Viola & Jones CVPR 2001

Viola-Jones Face Detector: Results

K. Grauman, B. Leibe

Detecting profile faces?

Detecting profile faces requires training separate detector with profile examples.

K. Grauman, B. Leibe

Visual Object Recognition Tutorial

Visual Object Recognition Tutorial

Viola-Jones Face Detector: Results

K. Grauman, B. Leibe

Questions?