from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m

Importing the Dependencis

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics

Data collection and analysis

load the data from csv file to a panda Dataframe
insurance_dataset = pd.read_csv('/content/Medical_insurance.csv')

#first five row of the dataframe
insurance_dataset.head()

→		age	sex	bmi	children	smoker	region	charges	
	0	19	female	27.900	0	yes	southwest	16884.92400	ıl.
	1	18	male	33.770	1	no	southeast	1725.55230	
	2	28	male	33.000	3	no	southeast	4449.46200	
	3	33	male	22.705	0	no	northwest	21984.47061	
	4	32	male	28.880	0	no	northwest	3866.85520	

Next steps: Generate insurance_dataset code with insurance_dataset plots

number of rows and columns
insurance_dataset.shape

→ (2772, 7)

#getting some information about dataset
insurance_dataset.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 2772 entries, 0 to 2771

New interactive

sheet

Data	columns ((total	7 columns):			
#	Column	Non-N	Null Count	Dtype			
0	age	2772	non-null	int64			
1	sex	2772	non-null	object			
2	bmi	2772	non-null	float64			
3	children	2772	non-null	int64			
4	smoker	2772	non-null	object			
5	region	2772	non-null	object			
6	charges	2772	non-null	float64			
dtype	es: floate	54(2),	int64(2),	object(3)			
memory usage: 151.7+ KB							

Categorial Features: -Sex -Smoker -Region

#checking for missing values
insurance_dataset.isnull().sum()

→		0
	age	0
	sex	0
	bmi	0
	children	0
	smoker	0
	region	0
	charges	0

Data Analysis

dtype: int64

statical measures of the dataset
insurance_dataset.describe()

	charges	children	bmi	age	
-	2772.000000	2772.000000	2772.000000	2772.000000	count
	13261.369959	1.101732	30.701349	39.109668	mean
	12151.768945	1.214806	6.129449	14.081459	std
	1121.873900	0.000000	15.960000	18.000000	min
	4687.797000	0.000000	26.220000	26.000000	25%
	9333.014350	1.000000	30.447500	39.000000	50%
	16577.779500	2.000000	34.770000	51.000000	75%
	63770.428010	5.000000	53.130000	64.000000	max

#distribution of age value
sns.set()
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['age'])
plt.title('Age Distribution')
plt.show()

<ipython-input-79-30bd7651d2c1>:4: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(insurance_dataset['age'])


```
#Gender Column
plt.figure(figsize=(6,6))
sns.countplot(x='sex',data=insurance_dataset)
plt.title('Sex Distribution')
plt.show()
```


insurance_dataset['sex'].value_counts()

```
count

sex

male 1406
female 1366

dtype: int64

# BMI Distribution
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['bmi'])
plt.title('BMI Distribution')
plt.show()
```


<ipython-input-82-de48435fbc01>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(insurance_dataset['bmi'])

Normal Bmi Range --> 18.5 To 24.9

```
#children column
plt.figure(figsize=(6,6))
sns.countplot(x='children',data=insurance dataset)
plt.title('Children')
plt.show()
```

 $\overline{2}$

insurance_dataset['children'].value_counts()

→		count
	children	
	0	1186
	1	672
	2	496
	3	324
	4	52
	5	42

dtype: int64

```
#Smoker column
plt.figure(figsize=(6,6))
sns.countplot(x='smoker',data=insurance_dataset)
plt.title('smoker')
plt.show()
```


insurance_dataset['smoker'].value_counts()

count
smoker
no 2208
yes 564

dtype: int64

```
#region column
plt.figure(figsize=(6,6))
sns.countplot(x='region',data=insurance_dataset)
plt.title('region')
plt.show()
```

 $\overline{2}$

insurance_dataset['region'].value_counts()

→		count
	region	
	southeast	766
	southwest	684
	northwest	664
	northeast	658
	dtype: int64	

```
# Distribution of chares values
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['charges'])
plt.title('charges Distribution')
plt.show()
```

<ipython-input-89-10c36008c91b>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(insurance_dataset['charges'])

Data Pre-Processing

Encoding the categorial feature

```
#encoding the sex column
insurance_dataset.replace({'sex':{'male':0, 'female':1}}, inplace=True)
#encoding smoker column
insurance_dataset.replace({'smoker':{'yes':0, 'no':1}}, inplace=True)
#encoding region column
```

insurance_dataset.replace({'region':{'southeast':0,'southwest':1,'northeast':2,'northwest

```
<ipython-input-90-5c813f3b4a07>:2: FutureWarning: Downcasting behavior in `replace` i
    insurance_dataset.replace({'sex':{'male':0, 'female':1}}, inplace=True)
    <ipython-input-90-5c813f3b4a07>:5: FutureWarning: Downcasting behavior in `replace` i
    insurance_dataset.replace({'smoker':{'yes':0, 'no':1}}, inplace=True)
    <ipython-input-90-5c813f3b4a07>:8: FutureWarning: Downcasting behavior in `replace` i
    insurance_dataset.replace({'region':{'southeast':0,'southwest':1,'northeast':2,'nor
```

Splitting the feature and Target

```
X= insurance_dataset.drop(columns='charges',axis=1)
Y= insurance_dataset['charges']
```

print(X)

\rightarrow		age	sex	bmi	children	smoker	region
	0	19	1	27.900	0	0	1
	1	18	0	33.770	1	1	0
	2	28	0	33.000	3	1	0
	3	33	0	22.705	0	1	3
	4	32	0	28.880	0	1	3
				• • •			
	2767	47	1	45.320	1	1	0
	2768	21	1	34.600	0	1	1
	2769	19	0	26.030	1	0	3
	2770	23	0	18.715	0	1	3
	2771	54	0	31.600	0	1	1

[2772 rows x 6 columns]

print(Y)

```
16884.92400
1
         1725.55230
         4449.46200
        21984.47061
         3866.85520
2767
         8569.86180
2768
         2020.17700
2769
        16450.89470
2770
        21595.38229
2771
         9850.43200
Name: charges, Length: 2772, dtype: float64
```

Splitting the data into Training data and Teasting Data

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2, random_state=2)
```

print(X.shape, X_train.shape, X_test.shape)

Liner Regeression

#Loading the linear Regression Model