물질 matter

- 물질관
 - 물질을 어떻게 바라 보는지 그 관점
- 서양 물질관의 변천 과정
 - (1) 탈레스의 1원소설 (BC 7세기) : 물
 - (2) 엠페도클레스의 4원소설 (BC 5세기) : 물, 불, 공기, 흙
 - (3) 데모크리스트의 입자설 (BC 5세기) : 원자
 - (4) 아리스토텔레스의 4원소 변환설 : 물, 불, 공기, 흙 + dry, hot, cold, wet
 - (5) 중세의 연금술 (AD 8~11세기)
- •동양의 물질관
 - 오행설 (BC 4세기) : 물, 불, 나무, 금, 흙의 오행

- 그리스 물질관
 - 물질의 기본 구성 요소
 - 땅(earth), 물(water), 공기(air), 불(fire)
 - 물질의 기본 특성
 - Hot, wet, dry, cold
 - Earth = hot + wet
 - Fire = dry + hot
 - Water = cold + wet
 - Air = dry + cold
 - 예) 돌 stone
 - Earth이 높은 비율로 구성
 - 예) 토끼 rabbit
 - Water과 fire이 높은 비율로 구성
 - 따라서 부드럽고 생명이 있음

- 그리스 물질관의 문제점
 - 물질 예를 들어 돌을 계속 반으로 쪼개더라도 fire, air, water, earth의 어떤 원소가 되지 않는다.
 - 진공(眞空; vacuum)을 설명하지 못한다.

- 진공 眞空 vacuum
 - 아리스토텔레스는 진공을 부정
 - 왜냐하면 모든 공간은 위에서 언급한 4 개의 물질로 구성되어 있으므로
 - 진공의 본래 의미
 - 어떤 물질도 없이 공간만 있는 상태
 - 말 그대로 '진짜로 공간만 있는 상태'

- •동양의 오행설
 - 물, 불, 나무, 금, 흙의 오행을 5가지 기본요소로 생각하였다.
 - 오행 사이에는 도와주는 성질과 다른 것을 이기는 성질이 있어서 물질이 만들어주는 데 영향을 준다고 하였다.
 - 오행설은 물질이 균형과 조화 속에서 일정한 규칙을 가지고 변한다고 설명하였다.

- 원자 原子 atom άτομο
 - 더 이상 쪼갤 수 없는 것
 - 화학 반응을 통하여 더 쪼갤 수 없는 기본적인 덩어리 단위
- 원자의 구성 요소
 - 전자 electron
 - 양성자 proton
 - 중성자 neutron

- 원자의 구조
 - 핵 (nucleus) : 양성자 (proton), 중성자 (neutron)
 - 전자 (electron)

입자	질량(kg)	상대질량	전하 (C)	상대 전하
양성지	1.673X10 ⁻²⁴	1	+1.602X10 ⁻¹⁹	+1
중성자	1.675X10 ⁻²⁴	1	0	0
전자	9.110X10 ⁻³¹	1/1837	-1.602X10 ⁻¹⁹	-1

• 수소 원자

- 원자의 표시
 - 아래 그림은 전자가 3개, 양성자가 3개, 중성자가 3개인 원자이다.
 - 전자 개수=양성자 개수 → 원자번호 Z=3 → Li
 - 양성자 개수 (Z) + 중성자 개수 (N) \rightarrow 질량수 A = Z + N = 6

• 주기율표 periodic table

- 탄소 carbon : Z=6
 - 동위원소 : 원자번호 Z는 같지만 질량수 A(=Z+N)는 다르다.
 - 즉, 양성자 개수는 같지만 중성자 개수가 다른 원자를 서로가 동위원소(isotope)라 부른다.
 - 탄소의 동위원소 : (1) $^{12}_{6}C$, (2) $^{14}_{6}C$
 - 생명체는 음식물 섭취를 통하여 (1)과 (2)가 일정한 비율을 유지한다.
 - 생명체가 죽으면 (2)는 (1)로 변한다.
 - 따라서 (1)과 (2)의 비율이 감소한다.
 - 비율이 변화된 정도를 가지고 생명체가 언제 죽었는지 알 수 있다.
 - 이는 실제 유물에서 식물의 연도 측정을 하는데 사용하는 방법이다.

- 베타 붕괴
 - 원자핵에서 전자가 밖으로 빠져 나오면 다음과 같은 반응이 일어난 것이다.

 $neutron \rightarrow proton + electron$

- 즉, 원자핵에서 중성자(neutron)은 양성자(proton)이 되며 이때 전자(electron)은 원자 핵 밖으로 빠져 나온다.
- 원자핵에서 양성자의 개수는 +1 증가한다.
- 예) 넵투늄 $_{93}Np$ 이 베타붕괴하면 플루토늄 $_{94}Pu$ 이 된다.

- 새로운 원자 생성 1
 - 1946년
 - 플루토늄 $_{94}Pu$ + 알파입자 (proton 2; neutron 2) \rightarrow 퀴륨 $_{96}Cm$
 - 퀴륨 ₉₆Cm (불안정) → 아메리슘 ₉₅Am
 - 1955년
 - 이후 일사천리로 101번까지 만들어짐
 - 미국 연구팀 101번 원자 : 멘델레븀 $_{101}Md$
 - 101번 원자 만들려면 99번 원자 아인슈타이늄 $_{99}Es$
 - 아인슈타이늄 99*ES*
 - 플루토늄 $_{94}Pu$ + 알파입자 : 가속기(accelerator)로 3년간 계속 작업
 - 이렇게 만들어진 메델레븀 $_{101}Md$ 원자 17개

- 새로운 원자 생성 2
 - 1960년부터 원자를 만드는 새로운 방법이 도입
 - 102번 원자를 만들기 위해 23번 원자와 79번 원자를 융합 : 23+79 = 102
 - 103번 원자까지는 미국이 만들어 왔다.
 - 그러던 중 소련 두브나 연구소에서 104번 원자를 발견했다고 발표
 - 미국과 소련의 경쟁이 시작
 - 이 경쟁에 독일 다름슈타트 연구팀까지 가세
 - 1996년 104번 ~ 109번까지 원자의 이름이 결정
 - 두브늄 105번 ₁₀₅Db
 - 시보귬 106번 ₁₀₆Sg
 - 다륨슈타튬 110번 ₁₁₀Ds
 - 2016년 6월 국제순수응용화학연합(IUPAC)
 - 새로 발견된 4개의 원자 이름 공시
 - 니호늄 118번 ₁₁₈0g