Assignment 3: Performance Evaluation of Five Recommender Algorithms

Name: Shashank P C

Student ID: 4147336

E-mail: <u>s4147336@student.rmit.edu.au</u>

Contact: +61 413 138 751

Statement:-

I certify that this is all my own original work. If I took any parts from elsewhere, then they were non-essential parts of the assignment, and they are clearly attributed in our submission. I will show I agree to this honor code by typing "Yes": YES

TABLE OF CONTENTS

- O Introduction to Recommender Systems
- Overview of Implemented Methods (M1–M5)
- Optimisations in Methods 3, 4, and 5
- Effect on K on prediction performance
- Performance Comparison (MAE & RMSE)
- Why Some Methods Perform Better
- Conclusion

Introduction to Recommender Systems

- Recommender Systems suggest relevant items to users
- Commonly used in platforms like Netflix, Amazon, Spotify
- Predict user preferences based on past behavior or item similarity
- Aim to improve user engagement and satisfaction
- O Core task: **predict user rating** r_{a.l} for item i

Overview of Implemented Methods (M1-M5)

Method	Description	Prediction Logic	Fallback
Method 1	User Average	$\hat{r}_{a,i} = \bar{u}_a,$	-
Method 2	Item Average	$\hat{r}_{a,i} = \bar{t}_i,$	-
Method 3	User-KNN Collaborative Filtering	Weighted rating from K most similar users who rated item i	If none, use user average
Method 4	Item-KNN Collaborative Filtering	Weighted rating from K most similar items rated by user a	If none, use item average
Method 5	Hybrid method	$\hat{r}_{a,i} = \lambda \hat{r}_{a,i}^u + (1 - \lambda)\hat{r}_{a,i}^t,$	If none, use user average

Optimisations in Methods 3, 4, and 5

Method 3:-

- Manually computed cosine similarity between users
- O Avoided self-comparisons: skipped similarity(u, u)
- O Configured K=5 & selected Top-K similar users who rated the same item
- Weighted average used for prediction
- Fallback to user's average if no neighbours rated the item.
- Only predicted where test rating exists (test_ds > 0)

Optimised for: personalized predictions & sparse data handling

Optimisations in Methods 3, 4, and 5

Method 4:-

- Computed cosine similarity between items using all user ratings
- Created a full item-to-item similarity matrix (1682×1682)
- O For each item, selected K (value set as 5) most similar items rated by user
- Used weighted average of user's ratings for prediction
- Fallback to item's average rating if no similar items found

Optimised for: stability with high item density & cold users

Optimisations in Methods 3, 4, and 5

Method 5:

- Blended predictions from Method 3 and Method 4
- O Used a weighted combination: $\hat{r}_{a,i} = \lambda \hat{r}_{a,i}^u + (1-\lambda)\hat{r}_{a,i}^t$,
- Lambda set to 0.5 for equal weightage for user and item predictions
- Combines strengths of both methods
- More robust for cold-start or sparse scenarios

Optimised for: balanced predictions and overall performance

Effect on K on prediction performance

Method	K	MAE	RMSE
Method 3 (User KNN)	3	0.8593	1.0953
	5	0.8247	1.0431
	7	0.8074	1.0207
	10	0.795	1.004
Method 4 (Item KNN)	3	0.7783	1.0249
	5	0.757	0.9845
	7	0.7499	0.9691
	10	0.7443	0.9612
Method 5 (Hybrid)	3	0.7478	0.9574
	5	0.7329	0.9362
	7	0.7272	0.9281
	10	0.7234	0.9237

Performance Comparison (MAE)

- OLower MAE indicates more accurate predictions
- OMethod 5 (Hybrid) outperforms all other approaches
- Oltem-based (Method 4) performs better than user-based (Method 3)
- OMethods 1 and 2 (global averages) are least accurate
- OHybrid model leverages strengths of both user and item similarities

Performance Comparison (RMSE)

- RMSE decreases overall from Method 1 to Method 5
- Method 3 (User-KNN) shows a small performance drop possibly due to sparse user overlaps
- Method 4 (Item-KNN) improves over both baseline and Method 3
- Method 5 (Hybrid) achieves the lowest RMSE, showing best overall performance
- Combining user and item information in Method 5 helps reduce prediction error and improve robustness

Why Some Methods Perform Better

- \bigcirc Method 1 and Method 2 use global averages \rightarrow limited personalization.
- Method 3 (User-KNN) underperforms slightly due to sparse user overlap in test set.
- Method 4 (Item-KNN) performs better items are more densely rated, making similarity more reliable
- Method 5 (Hybrid) consistently achieves the lowest error in both MAE and RMSE.
- O Hybrid model balances user behavior and item similarity → more robust across sparse or cold-start scenarios
- Personalization and combined signals lead to better predictions.

Conclusion

- Accuracy improves as methods shift from global assumptions to personalized, similarityaware predictions.
- O Method 5 outperforms by integrating both user- and item-level insights.

THANK YOU