IUPAC nomenclature:

IUPAC name of compound consists of

- i) Root word
- ii) Suffix
- iii) Prefix
- Root word gives the number of carbons in parent skeleton
- Suffix gives the nature of the functional group
- Prefix gives the nature of the substituent.

Side chains:

i) Alkyl: It contains one hydrogen less than that of alkane. Ex.

CH ₃ –	Methyl
C ₂ H ₅ –	Ethyl
CH ₃ – CH ₂ – CH ₂ –	n – propyl
CH ₃ - CH - CH ₃	iso propyl
CH ₃ – CH ₂ – CH ₂ – CH ₂ –	n–Butyl
CH ₃ - CH - CH ₂ - CH ₃	Iso butyl
CH ₃ - CH- CH ₂ - CH ₃	Sec – butyl
CH ₃ CH ₃ - C - CH ₃	ter – butyl
CH ₃ – CH ₂ – CH ₂ – CH ₂ – CH ₂ –	n – pentyl (Amyl)
CH ₃ - CH - CH ₂ - CH ₂ - CH ₃	Iso pentyl (Iso amyl)
CH ₃ - C - C ₂ H ₅	Ter-Pentyl
CH ₃ CH ₃ - C - CH ₃ CH ₃	Neo – Pentyl

Alkenyl: It contains one hydrogen less than that of Alkene.

 $Ex : CH_2 = CH -$

Ethenyl (Vinyl)

 $CH_3 - CH = CH -$

1-Propenyl

 $CH_2 = CH - CH_2 -$

Allyl

$$CH_3 - CH_2 - CH = CH - 1-Butenyl$$

Alkynyl: It contains one hydrogen less than that of alkyne

Ex:
$$HC \equiv C -$$
 ethynyl $H_3C - C \equiv C 1 -$ propynyl $H_3C - CH_2 - C \equiv C 1 -$ butynyl

- When all the carbons are present in a straight chain, the alkane is called normal alkane.
- When all the carbons are not present in straight chain, it may be called iso alkane.

Ex:
$$CH_3 - CH_2 - CH_2 - CH_3$$
 n – Butane $CH_3 - CH - CH_3$ Iso butane CH_3

Root word:

No. of carbons:	Root word
1	Meth
2	Eth
3	Prop
4	But
5	Pent
6	Hex
7	Hept
8	Oct
9	Non
10	Dec

- 1. **Longest chain rule :** Select the continuous chain of carbons having maximum number of carbon atoms.
- 2. **Lowest sum rule:** Gives the lowest possible numbers to the substituents and functional groups.
- 3. Longest chain rule can be violated to include the double bonds triple bonds, functional groups.
- 4. If two or more functional groups are present, senior functional group is given suffix and junior functional group is given prefix.
- 5. If two or more different substituents are present at various positions, consider the lowest sum irrespective of the nature of substituents.
- 6. If two similar substituents are present at identical positions from opposite ends, then follow alphabetical order to give lowest number.

- 7. If two or more carbon chains having the same number of carbons are present then the chain having more number of branches is selected as parent chain.
- 8. If the compounds contact more than one functional group the principal group form the suffix while the other functional group is considered as the substitutent.
- 9. The preference order is COOH > Acid derivatives > CHO > CN > C = O > OH > NH₂ > O > C = C > C \equiv C.

Name	Formula	Suffix	Prefix
Carboxylic acid	– СООН	oic acid	carboxy
Acid chloride	– COCI	oyl chloride	Chloro formlye
Acid amide	– CONH₂	Amide	Carbomyl
Ester	– COOR	ate	Alkoxy carbonyl
Aldehyde	– CHO	al	Aldo or formyl
Cyanide	– CN	nitrile	Cyano
Ketone	-C = O	one	Keto or oxo
Alcohol	– OH	ol	Hydroxy
Amine	- NH ₂	amine	Amino
Ether	-0-	_	Alkoxy
Alkene	-C=C-	ene	ene
Alkyne	-C ≡ C -	yne	yne

Substituents: Which are given only prefixes:

– X (Cl, Br, I)	halo
- ONO	nitrite
- NO ₂	nitro
– NO	nitroso
– OR	Alkoxy
– R	Alkyl

EXERCISES:

	Structure	IUPAC name
1.	CH ₃ CH ₃ - CH - C - CH ₃ CH ₃ CH ₃	2, 2, 3 – trimethyl butane
2.	CH ₃ -CH-CH ₂ -CH ₃ CH CH CH ₃ CH ₃	2, 3 – dimethyl pentane
3.	CH ₃ - CH - CH - CH CH ₃ C ₂ H ₅	2, 3 – dimethyl pentane
4.	$\begin{array}{c c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH} - \operatorname{CH_2} - \operatorname{CH_3} \\ & \\ \operatorname{CH_3} \operatorname{C_2H_5} \end{array}$	3–ethyl – 4 – methyl hexane
5.	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ CH CH ₃ CH ₃	4 – isopropyl heptane
6.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2, 3, 6 – trimethyl – 4 - propyl heptane
7.	$CH_3-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2$ $ CH-CH_3 CH_3-CH_3 CH_3-CH_3 CH_3-CH_3 CH_3 CH_5 CH_5 $	5 – (1, 2, 2 – trimethyl propyl) nonane
8.	$CH_3 - CH - CH_2 - CH_3$ $CH = CH_2$	3 – methyl pent – 1 – ene
9.	$CH_2 = CH - CH = CH_2$	But – 1, 3 – diene
10.	$\begin{array}{c} \operatorname{CH_3-CH_2-CH_2-CHCH_2-CH_2-CH_3} \\ \\ \operatorname{CH-CH_2} \end{array}$	3 – propyl hex – 1 – ene
11.	$CH \equiv C - CH = CH - CH_3$	Pent - 3 - en - 1 - yne
12.	$CH \equiv C - CH = CH_2$	But – 1 – en – 3 – yne
13.	CH ₃ - CH- CH- CH ₃ Cl Br	2 – Bromo – 3 – chloro butane

14.	CH ₃ - CH - CH - CH - CH ₂ - CH ₂ - CH ₃ 	4 – bromo – 3 – chloro – 2 – nitro octane
15.	$CH_3 - O - C_2H_5$	Methoxy ethane
16.	$C_2H_5 - O - C_2H_5$	Ethoxy ethane
17.	CH ₃ -O-CH-CH ₃ CH ₃	2 – Methoxy propane
18.	$CH_3 - CH = CH - CH - CH_2 - CH_3$ $ $ OC_2H_5	4 – Ethoxy hex – 2 – ene
19.	CH ₃ – CH– CH ₃ OH	propan – 2 – ol
20.	CH ₃ - CH-CH = CH-CH ₃ OH	pent – 3 – en – 2 – ol
21.	CH ₃ CH ₃ - C - OH CH ₃	2 – methyl propan – 2 – ol
22.	CH ₃ -CH-CH-CH ₂ -CH ₃ CH ₃ OH	2 – Methoxy pentan – 3 – ol
23.	O H - C H	Methanal
24.	CH ₃ – CHO	Ethanal
25.	CH ₃ - CH - CHO CH ₃	2 – Methyl propanal
26.	OH CH ₃ H ₃ C - CH- CH- CHO	3 – Hydroxy – 2– Methyl Butanal
27.	CH ₂ - CH - CH- CHO OH	2 – Hydroxy – But – 3 – enal
28.	CH ₃ – C– CH ₃ O	Propanone
29.	O H ₃ C - C - CH - CHO CH ₃	3 – keto – 2– Methyl Butanal

30.	O H- C OH	Methanoic acid
31.	CH ₃ H ₃ C - CH - COOH	2– Methyl propanoic acid
32.	CHO H ₃ C - CH ₂ - CH - CH - COOH CH ₃	3 – Aldo -2 - Methyl pentanoic acid
33.	COOH COOH	Ethan -dioic acid
34.	H-C-OCH ₃	Methyl methanoate
35.	CH ₃ −COOC ₂ H ₅	Ethyl ethanoate
36.	CH ₃ - CH- C- O - CH ₃ CI O	Methyl – 2– chloro propanoate
37.	CH ₃ – CH ₂ – NH ₂	Ethanamine
38.	CH ₃ - CH - CH ₃ NH ₂	Propan – 2- amine
39.	CH ₃ - CH-CH-CH ₃ OH NH ₂	3 – Amino – Butan – 2– ol
40.	CH ₃ – NH – CH ₃	N – methyl amino methane
41.	CH ₃ – NH – C ₂ H ₅	N – Methyl amino ethane
42.	CH ₃ -N-CH ₃ CH ₃	N, N – Dimethyl amino methane
43.	$CH_3 - N - C_2 H_5$ CH_3	N, N – Dimethyl amino ethane
44.	H – CN	Methane nitrile
45.	CH ₃ – CN	Ethane nitrile
46.	CH ₃ - CH - CN CH ₃	2– methyl propane nitrile
47.	CH ₂ -CH ₂ CN CN	butane –1, 4 – Dinitrile

48.	CH ₂ -CH ₂ -CH ₂ 	3–cyano pentane – 1, 5 – dinitrile
49.	COOCH ₃ CH ₂ COOCH ₃	Dimethyl propane dioate
50.	CH ₂ —COOCH ₃ CH ₂ —COOC ₂ H ₅	Ethyl methyl butane dioate

Structure

1. CH₃ – COOH Acetic acid 2. Formic acid **HCOOH** 3. Acetaldehyde CH₃CHO 4. Acetone 5. Vinyl cyanide $CH_2 = CH - CN$ $CH_2 = CH - OH$ 6. Vinyl alcohol 7. Acetonitrile $CH_3 - CN$ 8. Methyl carbinol $CH_3 - CH_2 - OH$ Trimethyl carbinol 9. 10. Ter – Butyl alcohol 11. Acetyl chloride

Common Name

CH₃ - NC

Methyl carbyl amine

35.