Performance Report

Name: Puneet Singh

CWID:A20143330

(CP	ı	D	F	P	F	\cap	D	N	1 2	۱	J	\cap	F٠	

- ☐ CPU performance is measure in gigaflops. My Benchmark values are calculated using total workload ie 1 Trillion converted to giga and divided by total time taken to execute 1 trillion operation.
- ☐ HPL benchmark are only available for DP operations, detailed execution and screenshots are available in manual doc.
- ☐ Theoretical Values are calculated using formula :

 Cpu performance (gigaflops) = noofcores*flopspercycle*clockfreq
- ☐ MyBench Efficiency is calculated using formula: (Mybench/ Theoretical)*100
- ☐ HPL efficiency is calculated using the formula: (HPL/theoretical)*100

Workload	concurenc Y	Mybenchv alue (Gigaflops)	HPL values	Theoritic al values	Mybenc h efficienc y	HPL efficienc y
QP	1	8.5	N/A	588.8	1.44	N/A
QP	2	16.05	N/A	588.8	2.77	N/A
QP	4	16.78	N/A	588.8	2.84	N/A
HP	1	4.45	N/A	294.4	1.51	N/A
HP	2	8.45	N/A	294.4	2.87	N/A
HP	4	8.09	N/A	294.4	2.74	N/A
SP	1	2.19	N/A	147.2	1.48	N/A
SP	2	4.63	N/A	147.2	3.14	N/A
SP	4	4.68	N/A	147.2	3.17	N/A
DP	1	1.22	38.75	73.6	1.65	52.64
DP	2	2.29	68.7	73.6	3.11	93.3
DP	4	2.31	67.53	73.6	3.13	91.75

- ☐ A simple line chart is used to show the comparison between throughput values of Mybench , HPL and theoretical values.
- ☐ X axis represents concurency , and Y axis represents cpu performance in Gflops .
- ☐ Theoretical values are Peak values and are different for different operations. For comparison between HPL and Mybench we have considered only DP operations where peak value is 73.6 gflops .
- ☐ Each unit on Y axis is 20 Gflops and ON X axis there are no of threads .

Mybench vs HPL vs Theoretical

Efficiency Comparision

□ Apparently HPL has higher efficiency , Y axis represents efficiency where as X axis represents the no of threads.

MEMORY PERFORMANCE:

Memory performance is measured in terms of throughput and latency
My Bench latency is measured using the formula:
(Total data in GB)/total time.
Theoretical value of RAM throughput is calculated using formula:

(Dram clock freq*Number of data transfer per clock * Memory Bus width* Number of interfaces).

Myrambench efficiency = (MYRambench/Theoretical)*100 Pmbw efficiency = (Pmbw/theoretical)*100

□ Values are measured with coresponding threads and blocksize with specifirs access patterns.

Memory Throughput Table:

work-loa d	concurre ncy	Blocksize	MyRamb ench values(G B/sec)	Pmbw(G B/sec)	Teoretica I (GB/sec)	Myrambe nch Efficiency	Pmbw efficiency
RWS	1	1KB	12.94	16.3	68.26	18.95	23.86
RWS	1	1MB	6.33	19.2	68.26	9.27	28.17
RWS	1	10MB	8.23	17.8	68.26	12.0	26.07
RWS	2	1KB	5.12	23.6	68.26	7.5	34.57
RWS	2	1MB	6.45	19.6	68.26	9.44	28.71
RWS	2	10MB	8.15	38.2	68.26	11.9	41.29
RWS	4	1KB	8.12	27.1	68.26	11.89	39.6
RWS	4	1MB	8.27	40.8	68.26	12.1	59.7
RWS	4	10MB	13.43	34.8	68.26	19.6	50.98
RWR	1	1KB	4.80	4.25	68.26	7.0	6.2

RWR	1	1MB	6.33	0.5	68.26	9.27	0.73
RWR	1	10MB	8.48	0.25	68.26	12.4	0.366
RWR	2	1KB	1.98	9.5	68.26	2.9	13.19
RWR	2	1MB	10.28	1.19	68.26	15.0	1.7
RWR	2	10MB	6.95	0.85	68.26	10.18	1.24
RWR	4	1KB	1.50	21.3	68.26	2.19	31.20
RWR	4	1MB	10.94	2.68	68.26	15.0	3.9
RWR	4	10MB	14.10	0.828	68.26	20.65	1.21

Memmory Latency Table:

- □ Latency is measured using formula: (time in microsecs/data transfer) note : latency is measured for 100 million operations
- ☐ Theoretical latency is taken fron specification sheets.
- MyRam bench Efficiency is measured using formula: (change in efficiency / Theoretical value)*100
 Pmbw efficiency is measured using formula: ((Pmbw-theoretical)theoretical)*100

Work-loa d	concurre ncy	Block size	MyRam Bench latency	Pmbw latency	Theoretic al Latency	MyRAm Bench Efficiency	Pmbw- Efficiency
RWS	1	1B	0.061	.006	0.014	3.35	57.142857 14
RWS	2	1B	0.055	.0046	0.014	2.92	67.142857 14
RWS	4	1B	0.040	.0041	0.014	1.85	70.714285 71
RWR	1	1B	0.091	.19	0.014	554.24	1257.1428 57

RWR	2	1B	0.22	.23	0.014	1470.34	1542.8571 43
RWR	4	1B	0.32	.33	0.014	2185.56	2257.1428 57

- ☐ A simple graph is used to compare the throughput values of MyBench, Pmbw and the theoretical value. The Y axis represents the throughput in GB/sec, X axis represents comcurency i.e no of threads.
- □ Each unit on Y axis is 20 GB/secs and X axis each unit is no of thread used for measurement of throughput.

RAM THROUGHPUT COMPARISON

- □ Latency is compared using a Bar graph which plots the efficiency calculated for both Mybench values and Pmbw.
- On Y axis we have efficiency with each unit equal to 500. And on X axis we have threads these threads are the correcponding threads used for calculation of latency.
- □ Latency efficiency increases with increase in thread i.e. change in latency is increasing thus measured latency is decreasing with increase in no of thread.

LATENCY EFFICIENCY COMPARISION

Disk Performance:

- □ Disk performance is measured in terms of throughput and latency. My Bench value is calculated using the formula : (Totala data in MB / Total time taken).
- □ lozone is used to measure throughput and values are in MB/sec , Theoretical value od disk throughput is taken from data specification sheet For Random Read value is 410 MB/sec and for Random write throughput is 540 MB/sec.
- ☐ My bench efficiency is calculated using formula(MyDiskBench/Theoretical)*100
- □ lozone efficiency is calculated using : (IOZONE/ Theoretical)*100

READ THROUGHPUT MEASUREMENT:

work-load	concurre	Blocksize	MyDiskb ench values	IOZONE	Theoretic al	MyDiskb ench Efficiency	lozone efficiency
RS	1	1 MB	1077.7	245	372	289.70430 11	65.86021505
RS	1	10MB	535.01	245	372	143.81989 25	65.86021505
RS	1	100MB	1327.06	295	372	356.73655 91	79.30107527
RS	2	1 MB	1006.6	269	744	135.29569 89	36.15591398
RS	2	10MB	900.02	279	744	120.97043 01	37.5
RS	2	100MB	1242.29	300	744	166.97446 24	40.32258065
RS	4	1 MB	1942.05	276	1488	130.51411 29	18.5483871
RS	4	10MB	3267.93	291	1488	219.61895 16	19.55645161
RS	4	100MB	1202.34	304	1488	80.802419 35	20.43010753
RR	1	1 MB	1395	136	540	258.33333 33	25.18518519
RR	1	10MB	3689.5	145	540	683.24074 07	26.85185185
RR	1	100MB	1922.04	143	540	355.93333 33	26.48148148
RR	2	1 MB	1443.93	154	1080	133.69722 22	14.25925926
RR	2	10MB	1037.9	167	1080	96.101851 85	15.46296296
RR	2	100MB	1328.3	172	1080	122.99074 07	15.92592593

RR	4	1 MB	3842.7	155	2160	177.90277 78	7.175925926
RR	4	10MB	2698	158	2160	124.90740 74	7.314814815
RR	4	100MB	1500	167	2160	69.444444 44	7.731481481

Read throughput Comparison

- □ Read throughput comparison is graph plotted against Throughput and Concurrency ie number of threads. On Y axis throughput in MB/sec with each unit equal to 250 MB/sec and on X axis each unit is the no of threads used for measurement of the value.
- ☐ Considering the reads are from Disk cache read through put comes out to be moire than theoretical values.
- □ Note: As discussed with TAs we were not suppose to clear disk cache as it creates problems while execution of benchmarks on the cluster.

WRITE THROUGHPUT MEASUREMENT:

Write	throughput	measurement	is	done	with	random	and	sequential	access
paterr	۱.								

- ☐ Theoretical value are taken from the data specification sheet.
- ☐ My DiskBench efficiency is calculate using the formula (Mydiskbench/Theoretical)*100
- □ IOzone efficiency is measured using the formula (lozone/theoretical formula).

work-loa d	concurre ncy	Blocksize	MyDiskb ench values	IOZONE	Theoretic al	MyDiskb ench Efficiency	lozone efficiency
ws	1	1 MB	233.56	256	410	56.965853 66	62.439024 39
WS	1	10MB	401.52	245	410	97.931707 32	59.756097 56
WS	1	100MB	343.71	233	410	83.831707 32	56.829268 29
WS	2	1 MB	158.34	302	820	19.309756 1	36.829268 29
WS	2	10MB	400.45	320	820	48.835365 85	39.024390 :24
WS	2	100MB	300.77	354	820	36.679268 29	43.170731 71
WS	4	1 MB	334.90	348	1640	20.420731 71	21.219512 2
WS	4	10MB	467.75	369	1640	28.521341 46	22.5
WS	4	100MB	201.46	364	1640	12.284146 34	22.195121 95
WR	1	1 MB	367.93	238	410	89.739024 39	58.048780 49
WR	1	10MB	374.10	245	410	91.243902 44	59.756097 56
WR	1	100MB	266.72	250	410	65.053658 54	60.975609 76
WR	2	1 MB	172.30	279	820	21.012195	34.024390

						12	24
WR	2	10MB	429.35	281	820	52.359756 1	34.268292 68
WR	2	100MB	410.36	310	820	50.043902 44	37.804878 05
WR	4	1 MB	416.91	206	1640	25.421341 46	12.560975 61
WR	4	10MB	396.30	219	1640	24.164634 15	13.353658 54
WR	4	100MB	341.14	220	1640	20.801219 51	13.414634 15

Write Throughput Comparison

☐ Throughput comparison is done between My bech values, IOzone and theoretical values. ON Y axis each unit is 500 MB/sec and on X axis each unit are the no of threads on used for execution .

LATENCY MEASUREMENT:

Latency	measu	rement is	s done	for	Rand	om reac	and	Randor	n write	Э		
											_	

- $\hfill \square$ My disk bench latency is calculated using the formula :(Time in ms/ no of operations).
- $\hfill \Box$ Theoretical latency is taken from data specification sheet .
- ☐ My diskbench efficiency = (Mydisk bench theoretical)*100
- ☐ IOzone efficiency = (iozone- theoretical)*100

Workload	Concurre ncy	Blocksize	MyDisk bench Latency (ms)	lozone latency (ms)	Theoretic al latency	MyDiskB ench efficiency	lozone efficiency
RR	1	1KB	.0094	.0012	.005	0.88	-0.76
RR	2	1KB	.0032	.0012	.005	-0.36	-0.76
RR	4	1KB	.0061	.0019	.005	0.22	-0.62
RR	8	1KB	.0033	.0012	.005	-0.34	-0.76
RR	16	1KB	.0039	.0005	.005	-0.22	-0.9
RR	32	1KB	.0042	.0011	.005	-0.16	-0.78
RR	64	1KB	.0031	.0010	.005	-0.38	-0.8
RR	128	1KB	.0030	.00055	.005	-0.40	-0.89
WR	1	1KB	.0440	.0020	.004	10	-0.5
WR	2	1KB	.0050	.0019	.004	0.25	-0.525
WR	4	1KB	.0021	.0032	.004	-0.475	-0.2
WR	8	1KB	.0070	.0008	.004	0.75	-0.8
WR	16	1KB	.0016	.0007	.004	-0.6	-0.825
WR	32	1KB	.0030	.0005	.004	-0.25	-0.875
WR	64	1KB	.0024	.00054	.004	-0.4	-0.865
WR	128	1KB	.0055	.00078	.004	0.375	-0.805

Read Latency Comparison

□ Read and write latency for mybench, IOzone and theoretical are measured sing these charts on X axis we have concurrency and on Y axis we have latency in ms. Each unit on Y axis is .0025 ms and on x axis there are no of threads.

Write Latency Comparison

IOPS MEASUREMENT:

☐ Theoretical IOps measurement is done using the formula :

Throughput = Iosize * IOPS

Mybench IOPS = (no of operation / total time taken to perform operation)

MyDiskBench efficiency = (Mydiskbench/Theoretical)*100

IOzone efficiency= (Iozone/Theoretical)*100

Workload	Concurre ncy	Blocksize	MyDisk bench IOPS	lozone IOPS	Theoretic al IOPS	MyDiskB ench efficiency	lozone efficiency
RR	1	1KB	105428	407545	540000	19.523703 7	75.471296 3
RR	2	1KB	326918	386087	540000	60.540370 37	71.497592 59
RR	4	1KB	161392	261735	540000	29.887407 41	48.469444 44
RR	8	1KB	302499	420125	540000	56.018333 33	77.800925 93

RR	16	1KB	252749	914856	540000	46.805370 37	169.41777 78
RR	32	1KB	324948	476689	540000	60.175555 56	88.275740 74
RR	64	1KB	318210	501206	540000	58.927777 78	92.815925 93
RR	128	1KB	327304	910565	540000	60.611851 85	168.62314 81
WR	1	1KB	22568	238699	410000	5.5043902 44	58.219268 29
WR	2	1KB	199076	250324	410000	48.555121 95	61.054634 15
WR	4	1KB	463793	174234	410000	113.12024 39	42.496097 56
WR	8	1KB	142615	560738	410000	34.784146 34	136.76536 59
WR	16	1KB	611471	658904	410000	149.13926 83	160.70829 27
WR	32	1KB	237139	802617	410000	57.838780 49	195.76024 39
WR	64	1KB	401921	701480	410000	98.029512 2	226.21463 41
WR	128	1KB	180237	670791	410000	43.960243 9	163.60756 1

[☐] Read and write iops comparison is done for thread 1, thread 4 and thread 64.

[☐] On Y axis we have IOPS, each unit is 20000 iops, and on X axis we have concurrency.

Read IOPS

Write IOPS

NETWORK PERFORMANCE MEASUREMENT:

- ☐ Mybech throughput = (total data transferd / total time) in MB/sec
- ☐ Theoretical throughput is taken from the data specification sheet i.e 10 GB/sec
- ☐ My bench efficiency and lozone efficiency is calculated by deviten the former with Theoretical values *100.

Throughput Measurement:

Protoc ol	Concur ency	Block size	MyNet bench (Mb/se c)	iperf(M b/sec)	Theore tical (Mb/se c)	MyNet Bench efficien cy	lperf Efficien cy
TCP	1	1 KB	4191.0 3	<u>1530</u>	10000	41.9103	<u>15.3</u>
TCP	1	32 KB	6257.3 4	2480	10000	62.5734	24.8
TCP	2	1 KB	4473.9 2	1410	10000	44.7392	14.1
TCP	2	32 KB	<u>5890.7</u> <u>1</u>	2370	10000	58.9071	23.7
TCP	4	<u>1 KB</u>	9217	<u>6580</u>	10000	92.17	65.8
TCP	4	32 KB	<u>6680</u>	<u>4280</u>	10000	66.8	42.8
TCP	8	1 KB	6742.3 2	<u>5140</u>	10000	67.4232	<u>51.4</u>
TCP	8	32 KB	6822.2 7	6270	10000	68.2227	62.7
<u>UDP</u>	1	1 KB	<u>1866</u>	<u>2650</u>	10000	18.66	<u>12.5</u>
<u>UDP</u>	1	32 KB	4756.8 0	3760	10000	47.568	<u>27.6</u>

UDP	2	1 KB	1221.0	3465	10000	12.2106	
			<u>65</u>			<u>5</u>	<u>24.65</u>
<u>UDP</u>	2	32 KB	<u>5153.6</u>	<u>4145</u>	10000	<u>51.5368</u>	<u>31.45</u>
<u>UDP</u>	4	<u>1 KB</u>	1260.2	<u>3368</u>	<u>10000</u>		
			3			12.6023	<u>25.22</u>
<u>UDP</u>	4	32 KB	4683.4	<u>4840</u>	<u>10000</u>		
			2			46.8342	<u>18.4</u>
<u>UDP</u>	<u>8</u>	<u>1 KB</u>	<u>5208</u>	<u>4970</u>	<u>10000</u>	<u>52.08</u>	23.67
<u>UDP</u>	8	32 KB	5070.0	4380	10000	50.7006	
			<u>63</u>			<u>3</u>	22.8

TCP Throughput Comparison

UDP Throughput Comparison

☐ Throughput comparison is done between Myench, iperf and theoretical. On Y axis we each unit is 2500 MB/sec and on x axis we have no of threads.

Latency Calculation:

- ☐ My bench latency is calculated using the formula: (total time /1 million operations)
- ☐ Efficency is calculated by (change in efficency / Theoretical val)*100.
- $\hfill \square$ Ping utility is used to calculate latency in ms.

TCP	1	<u>1B</u>	0.1151	0.045	0.0007	<u>26342.8</u> <u>5714</u>	6328.57 1429
TCP	2	<u>1B</u>	0.0547	.0245	0.0007	7714.28 5714	3400
<u>TCP</u>	<u>4</u>	<u>1B</u>	0.0462	0.0256	0.0007	<u>6500</u>	3557.14
TCP	8	<u>1B</u>	0.0258	0.0128	0.0007	3585.71 4286	1728.57 1429
<u>UDP</u>	1	<u>1B</u>	0.1162	0.0842	0.0007	37428.5 7143	11928.5 7143
<u>UDP</u>	2	<u>1B</u>	0.0529	0.0448	0.0007	7457.14 2857	6300
<u>UDP</u>	4	<u>1B</u>	0.0507	0.0358	0.0007	7142.85 7143	5014.28 5714
<u>UDP</u>	8	<u>1B</u>	0.0469	0.0394	0.0007	6600	5528.57 1429

 $[\]hfill \square$ Latency comparison is done by plotting threads on X axis and Latency on Y axis .

[■] Each unit on Y axis is .025 ms and on X axis we have no of threads.

TCP Latency Comparison

UDP Latency comparison

