Soluzioni prova scritta

A DICALLA ATIS

Ingegneria Informatica 11/01/2024

Esercizio 1

1. 2 Punti Data la matrice 2×2 ad entrate complesse

$$A = \begin{bmatrix} -3 + \mathbf{i} & 0\\ -2 - 2\mathbf{i} & 2 + 2\mathbf{i} \end{bmatrix},$$

si calcolino:

Raggio spettrale di
$$A=\sqrt{10}$$

$$||A||_{\infty}=\sqrt{2\sqrt{8}}$$

2. Punti Sia $F(\beta, m, L, U) \subset \mathbb{R}$ l'insieme dei numeri di macchina con base $\beta \in \mathbb{N}$, mantissa di lungezza $m \in \mathbb{N}$ ed esponente fra L ed U; ovvero i numeri reali $x \in \mathbb{R}$ della forma

$$x = \operatorname{segno}(x) \cdot \beta^e \cdot \sum_{j=1}^m \alpha_j \beta^{-j},$$

con $e \in \mathbb{Z}$, $L \le e \le U$ e $\alpha_j \in \{0, \dots, \beta - 1\}$, $\alpha_1 \ne 0$.

- V F Tutti i numeri interi sono contenuti in $F(\beta, m, L, U)$.
- V F I numeri di macchina sono equispaziati sulla retta reale.
- [V] **F** Se $x \in F(\beta, m, L, U)$ allora $x^{-1} \in F(\beta, m, L, U)$.
- V F Se $x, y \in F(\beta, m, L, U)$ allora $x \cdot y \in F(\beta, m, L, U)$.
- V F Nella rappresentazione floating point con precisione doppia si ha m=24 (23 bit per la mantissa dato che $\alpha_1=1$ non va memorizzato).
- V F Nella rappresentazione floating point con precisione doppia si ha m = 53 (52 bit per la mantissa dato che $\alpha_1 = 1$ non va memorizzato).

• N.B. le soluzioni qui riportate sono in forma schematica e concisa. Quando si compila la prova d'esame è necessario fornire chiare giustificazioni di tutti i passaggi risolutivi degli esercizi 2, 3 e 4.

- 3. Punti Sia $A \in \mathbb{C}^{n \times n}$, e siano $L \in \mathbb{C}^{n \times n}$ ed $U \in \mathbb{C}^{n \times n}$ le matrici della fattorizzazione LU di A ottenute con l'algoritmo di eliminazione di Gauss (senza pivoting).
- $V \to L$ è triangolare superiore e U è triangolare inferiore.
- V F L è unitaria e U è triangolare superiore.
- V F Calcolare L ed U costa $\mathcal{O}(\frac{2}{3}n^2)$ operazioni aritmetiche.
- \overline{V} \overline{F} Gli elementi sulla diagonale di U sono tutti uguali a 1.
- \overline{V} F Il determinante di A è uguale a quello di L.
- V Vale $A^{-1} = L^{-1}U^{-1}$.
- 4. 2 Punti Un corollario del teorema di Peano dice che, sotto opportune ipotesi, l'errore associato a una certa formula di quadratura $J_n(f)$ per approssimare $\int_a^b \rho(x)f(x)dx$ verifica

$$E_n(f) := \int_a^b \rho(x)f(x)dx - J_n(f) = \frac{f^{(m+1)}(\theta)}{m!}E_n(x^{m+1})$$

con $n, m \in \mathbb{N}$ e $\theta \in \mathbb{R}$.

- V F Il numero $n \in \mathbb{N}$ rappresenta il grado di precisione della formula $J_n(\cdot)$.
- V F Il numero $m \in \mathbb{N}$ rappresenta il grado di precisione della formula $J_n(\cdot)$.
- V F Una delle ipotesi necessarie è che f si derivabile m+1 volte.
- V F Una delle ipotesi necessarie è che il nucleo di Peano associato alla formula non cambi segno in [a, b].
- V F Si ha $\theta \in [a, b]$ ed il corollario fornisce un'espressione esplicita per θ .
- V F Le formule di Newton-Cotes verificano le ipotesi del corollario del teorema di Peano.

Esercizio 2

Sia $\alpha \in \mathbb{R}$ e si consideri la matrice

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -\alpha \\ 0 & 1 & \alpha^2 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$

- (i) 2 Punti Si calcolino gli autovalori di A.
- (ii) 4 Punti Si dica per quali valori di α la matrice ha un solo autovalore di modulo massimo λ_1 e si calcoli un autovettore associato a λ_1 .
- (ii) 2 Punti Si dica per quali valori di α il metodo delle potenze applicato ad A, con vettore di partenza

$$x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

risulta convergente.

- (i) Gli autovalori di A sono 0 e $\frac{\alpha^2 \pm \sqrt{\alpha^4 4\alpha}}{2}$.
- (ii) C'è un solo autovalore di modulo massimo per $\alpha > \sqrt[3]{4}$ e per $\alpha < 0$. In quei casi l'autovalore di modulo massimo è $\lambda_1 = \frac{\alpha^2 + \sqrt{\alpha^4 4\alpha}}{2}$ e gli autovettori associati a λ_1 sono della forma

$$v_1 = \begin{bmatrix} 0 \\ -\frac{\alpha}{\lambda_1} t \\ t \end{bmatrix}, \quad t \in \mathbb{R}.$$

[(ii)] Il metodo delle potenze converge all'autovettore dominante se λ_1 è l'unico autovalore di modulo massimo (quindi $|\alpha| > \sqrt[3]{4}$) ed x_0 non è ortogonale all'autovettore sinistro associato a λ_1 .

Esercizio 3

6 Punti Determinare il grado del polinomio che interpola la funzione f(x) di cui sono noti i seguenti valori:

2 Punti Si trovi l'espressione esplicita dei coefficienti del polinomio.

Dal quadro delle differenze divise

x	$\int f(x)$	DD1	DD2	DD3
-2	-5			
-1	1	6		
0	1	3	-3	
1	1	2	-2	1
2	7	3	-1	1
3	25	6	0	1
4	61	11	1	1

si deduce che il polinomio di interpolazione ha grado 3.

L'espressione esplicita dei coefficienti del polinomio di interpolazione è $x^3 - x + 1$.

Esercizio 4

Si considerino le equazioni non lineari

$$\arctan(x^3 - x^2 + x - 1) = 0, (1)$$

$$\log\left(x^3 - \frac{1}{4}x^2 + \frac{1}{2}x + \frac{7}{8}\right) = 0. \tag{2}$$

- (i) 2 Punti Si determinino le radici reali di (1) e di (2).
- (ii) 4 Punti Si scriva l'iterazione del metodo di Newton per entrambe le equazioni e si studi la convergenza locale del metodo per ogni equazione e per ogni radice trovata.
- (iii) 2 Punti Per ogni equazione e per ogni radice dire se e come conviene modificare il metodo di Newton per aumentarne l'ordine di convergenza.
- (i) L'equazione (1) ha come unica radice $\alpha_1 = 1$, mentre (2) ha come unica radice $\alpha_2 = \frac{1}{2}$.
- (ii) α_1 è radice semplice quindi Newton converge localmente in modo quadratico. α_2 è radice di molteplicità 3 quindi Newton converge in maniera lineare.
- (iii) Per α_2 conviene considerare il metodo di Newton modificato

$$x_{k+1} = x_k - 3 \frac{\log\left(x_k^3 + \frac{1}{4}x_k^2 - \frac{1}{2}x_k + \frac{7}{8}\right)\left(\left(1 + \left(x_k - \frac{1}{2}\right)^3\right)\right)}{3(x_k - \frac{1}{2})^2},$$

che ha convergenza quadratica.

Nota: L'equazione (2) del compito in classe conteneva una differenza (non voluta) di segno per cui si ottenevano 3 radici semplici $\left(-\frac{1}{4} \text{ e} \pm \frac{\sqrt{2}}{2}\right)$. Naturalmente questa differenza è stata tenuta di conto nella correzione dell'esercizio. Qui è riportata la versione pensata inizialmente perchè più utile per esercitarsi.