

Introducción a la inteligencia artificial para la clasificación de enfermedades cardíacas utilizando Random Forest

PLBM. Enrique Hernandez Laredo

¿Qué es la inteligencia artificial?

La inteligencia artificial (IA)
es la capacidad de las
máquinas para usar
algoritmos, aprender de los
datos y utilizar lo aprendido
en la toma de decisiones tal
y como lo haría un ser
humano

Fuente: Lasse Rouhiainen. INTELIGENCIA ARTIFICIAL 101 COSAS QUE DEBES SABER HOY SOBRE NUESTRO FUTURO INTELIGENCIA ARTIFICIAL. (2018).

Artificial Intelligence

Any technique that enables computers to mimic human intelligence. It includes machine learning

Machine Learning

A subset of Al that includes techniques that enable machines to improve at tasks with experience. It includes *deep learning*

Deep Learning

A subset of machine learning based on neural networks that permit a machine to train itself to perform a task.

Fuente: https://docs.microsoft.com/es-es/azure/machine-learning/media/concept-deep-learning-vs-machine-learning/ai-vs-machine-learning-vs-deep-learning.png

¿Qué es la inteligencia artificial?

La inteligencia artificial (IA)
es la capacidad de las
máquinas para usar
algoritmos, aprender de los
datos y utilizar lo aprendido
en la toma de decisiones tal
y como lo haría un ser
humano

Fuente: Lasse Rouhiainen. INTELIGENCIA ARTIFICIAL 101 COSAS QUE DEBES SABER HOY SOBRE NUESTRO FUTURO INTELIGENCIA ARTIFICIAL. (2018).

Artificial Intelligence

Any technique that enables computers to mimic human intelligence. It includes machine learning

Machine Learning

A subset of Al that includes techniques that enable machines to improve at tasks with experience. It includes *deep learning*

Deep Learning

A subset of machine learning based on neural networks that permit a machine to train itself to perform a task.

Fuente: https://docs.microsoft.com/es-es/azure/machine-learning/media/concept-deep-learning-vs-machine-learning/ai-vs-machine-learning-vs-deep-learning.png

TIPOS DE APRENDIZAJE AUTOMÁTICO

- -Regresiones
- -Clasificación
- -Reducción de la dimensionalidad

- -Clustering
- -Detección de anomalías
- -Reducción de la dimensionalidad

FUENTE: ANALYTICS VIDHYA

Algoritmos para clasificación

- Random Forest
- Arboles de Decisión
- Regresión logística
- Support Vector Machines
- Naive Bayes
- Models Neural Networks
- Etc..

Aprendizaje automático supervisado

Aprendizaje automático supervisado

Aprendizaje automático supervisado

patrones.

Descanso de 5 min...

¿Qué es un árbol de decisión?

- Algoritmo de Machine Learning basado en aprendizaje supervisado
- Permite realizar tareas de clasificación
- Basado principal en un conjunto de reglas IF/ELSE

¿Qué es un árbol de decisión?

Fuente: 2 Árboles de clasificación | Modelos Predictivos (fhernanb.github.io)

Funcionamiento de un árbol de decisión

Fuente: Didier G. Presentación Introducción a la ciencia de datos Modulo 6. (Material diplomado Ciencia de datos ITPE)

Arboles de decisión:

Arboles de decisión:

m=22 values= [8,7,7] X3<=2

if

m=8 values= [8,0,0] Class=Setosa else

m=14 values= [0,7,7] X4<=1.4

if

m=7 values= [0,7,0] Class=Versicolor

m=7 values= [0,0,7] Class=Virginica Desde el punto de vista de automatización ¿Encuentras un error?

Gini impurity

Es una métrica que nos permite evaluar la pureza de los nodos:

-Para la característica X1 recorre todas sus valores posibles

-Después continua con X2,X3,X....

$$Gi = 1 - \sum_{k=1}^{n} p^2$$

i= nodo del árbol

K=cada una de las clases

n= número total de las clases

P= ratio de ejemplos de la clase k en el nodo i

Arboles de decisión:

$$Gi = 1 - \sum_{k=1}^{n} p^2$$

i= nodo del árbol

K=cada una de las clases

n= número total de las clases

P= ratio de ejemplos de la clase k en el nodo i

Clasification and Regression Tree(CART)

- 1. Selecciona una variable de corte.
- 2. Explora todos los rangos de valores de la variable de corte.
- 3. Copia los dos subconjuntos de valores en nodo 1 y 2 respectivamente.
- 4. Evalua el resultado de pureza en los nodos a partir de:

$$J(k,tk) = \frac{m_{izq}}{m} G_{izq} + \frac{m_{der}}{m} G_{der}$$

5.Se elige la variable de corte que minimice la función y se repite el proceso

¿Qué es Random Forest?

- Evolución de los arboles de decisión
- Algoritmo de Machine Learning basado en aprendizaje supervisado
- Permite realizar tareas de clasificación
- NO recorre todo el rango de valores de las variables de corte
- Mejora el overfitting en el algoritmo CART
- Basado en la técnica de Ensable learning

Ensable learining

Figure 7-2. Hard voting classifier predictions

Fuente: https://miro.medium.com/max/700/1*UpMaRrS9z71LaQgN_coxbA.png

Bagging

Sesión practica...

https://github.com/enriquehdez98/Taller_introducion_IA_OEPS

Contacto:

ehernandezl190@alumno.uaemex.mx

Enrique Hernández

Medical bioengineer intern at CENTRO MÉDICO ISSEMYM TOLUCA Área metropolitana de Toluca · **Información de contacto**

128 contactos

