UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE INGENIERIA DE SISTEMAS Y COMPUTACIÓN

Proyecto 1: Analítica de textos

ISIS3304 – Inteligencia de negocios

María Del Pilar Villamisar

Grupo 29 Juan Pablo Castro 202222086 Manuel Gómez 202020415 Santiago Casasbuenas 202214932

2025-10

Construcción de pipeline:

1. Selección del Modelo

Durante la primera etapa del proyecto se evaluaron múltiples algoritmos de clasificación. Se seleccionó Regresión Logística como modelo final debido a que presentó los mejores resultados en métricas como accuracy, recall, f1-score y tiempo de entrenamiento.

2. Diseño del Pipeline

Para implementar un pipeline robusto y reutilizable, se crearon tres clases, cada una encargada de una etapa crítica en el procesamiento de datos. Estas clases se encuentran en el archivo Prepipe.py, ubicado en el path proyecto1/parte2/back/Pipeline.

3. Preprocesamiento de Texto (Clean)

La clase Clean realiza una limpieza del texto en las columnas Titulo y Descripcion. Las transformaciones aplicadas incluyen:

- Eliminación de caracteres no ASCII.
- Conversión de texto a minúsculas.
- Eliminación de signos de puntuación y números.
- Remoción de stopwords en español.
- Tokenización mediante RegexpTokenizer.
- Aplicación de stemming y lemmatización para normalización de palabras.

El resultado de esta clase son dos nuevas columnas: Titulo_Normalizado y Descripcion_Normalizada.

4. Vectorización de Texto (Vectorize)

La clase Vectorize convierte el texto normalizado en representaciones numéricas usando el método TF-IDF. Se utilizan dos vectorizadores separados: uno para el título y otro para la descripción. Ambas representaciones se combinan con hstack, generando una matriz dispersa optimizada para entrenamiento de modelos.

5. Entrenamiento del Modelo (Model)

La clase Model entrena el clasificador de regresión logística. Se realiza una partición de los datos con train_test_split (80% entrenamiento, 20% prueba), y se ajusta el modelo con los vectores generados. Posteriormente, se calculan las métricas de desempeño:

• Matriz de confusión.

- Accuracy.
- F1-score.
- Precision.
- Recall.
- Reporte de clasificación completo.

6. Construcción del Pipeline

El archivo Pipeline.py importa las tres clases anteriores, carga el dataset fake_news_spanish.csv, selecciona las columnas relevantes y ejecuta el pipeline completo. Finalmente, el modelo entrenado se guarda en el archivo model.joblib dentro de la carpeta assets utilizando joblib.

Construcción de API:

1. Selección del framework:

Se selecciona FastAPI gracias a su fácil implementación y su uso de PyDantic, el cual permite una mejor implementación al momento de usar los Data Frames de pandas usados por el modelo.

2. DataModel:

Usando PyDantic, se crea una estructura de datos los cuales se van a alimentar al modelo. En este se ponen los tipos de datos y qué datos se van a usar. Esto permite pasar la información de los JSON a los dataframes fácilmente.

3. Endpoints:

Se crean dos endpoints principales. El primero es el "/predict" el cual dado una noticia, retorna la predicción de dicha noticia dada por el modelo del .joblib. El segundo modelo es el de "/train" el cual recibe un csv, el cual se pasa a un JSON y luego a un df para entrenar al modelo usando el pipeline. Se retornan los scores del nuevo modelo con los datos dados.

Construcción de aplicación web:

1. Componentes Principales

La aplicación web React cuenta con dos componentes clave para el análisis de noticias: SingleArticleAnalysis y BatchAnalysis.

2. Análisis Individual (SingleArticleAnalysis)

Este componente permite al usuario ingresar manualmente el título, la descripción y la etiqueta (Label) de una noticia. Al enviar el formulario, los datos son enviados mediante una petición POST a la API (/predict). El resultado se muestra en pantalla, indicando la autenticidad de la noticia junto con la probabilidad asociada.

3. Análisis por Lote (BatchAnalysis)

Este componente permite subir un archivo .csv o .xlsx con múltiples noticias. El archivo es procesado localmente, validando que contenga los campos requeridos: ID, Label, Titulo, Descripcion, Fecha. Luego, se transforma a un formato esperado por la API (/train) y se envía. El sistema muestra métricas como accuracy, f1-score, precision, recall, así como un reporte de clasificación y matriz de confusión.

Encuestas a usuarios:

Usuarios finales:

Los usuarios finales son los integrantes del grupo académico que quiere determinar que noticias son falsas y los factores que influyen en la veracidad de una noticia. Asimismo, una persona común que quiere saber si las noticas que lee son falsas o verdaderas es un usuario final. La aplicación sirve para que los académicos puedan enfocarse realizar otras herramientas para detectar noticias falsas, y a su vez sirve como herramienta para esto mismo. Esto hace que el proceso se automatice, y la persona no tenga que revisar cada notica manualmente para revisar si el verdadera. Esto le ayuda muchísimo al usuario brindándole seguridad de que las noticias que está leyendo verdaderas y le ahorra el tiempo de filtrar manualmente las noticias falsas.

Validación de Resultados:

Para validar el funcionamiento de la aplicación y probar la facilidad de uso de la aplicación, se realizó una encuesta a 8 personas que utilizaron la aplicación. Estos fueron los resultados:

Los resultados muestran que en general, la aplicación es fácil de usar, entender y provee valor al usuario, dando una predicción buena para cada usuario. Se evidencia también que por lo general los usuarios estuvieron satisfechos con la aplicación y se les proveyó valor con el algoritmo predictivo y la facilidad de uso.