Распознавание текста на основе скелетного представления толстых линий и свёрточных сетей*

Mypзин Д. А., Mecmeцкий Л. М., Peйep И. А., Cmpuэсов В. В. murzin.da@phystech.edu; mestlm@mail.ru; reyer@forecsys.ru; strijov@phystech.edu

Московский физико-технический институт

В работе рассматривается задача распознавания текста на изображении путём преобразования его в медиальное представление с последующим применением свёрточной нейронной сети для задачи классификации. Данный способ имеет ряд преимуществ по сравнению с классическими дискретными способами распознавания текста. В работе предлагается способ повышения качества распознавания толстых линий за счёт нового способа порождения их описаний. В качестве тестовых данных используются шрифты в растровом представлении.

Ключевые слова: распознавание текста, непрерывное медиальное представление, свёрточные нейронные сети.

Введение

Работа посвящена задаче распознавания символов на изображении. Это задача имеет множество применений, от оцифровки старых книг до распознавания рукописного текста.

Существующие методы распознавания текста можно разбить на две группы: «дискретные» и «непрерывные». Дискретные алгоритмы работают с изображением в первоначальном виде, то есть в виде матрицы пикселей. Такой способ обработки изображений близок компьютерам, но не людям, так как мы привыкли различать фигуры и образы, которые являются непрерывными объектами.

С другой стороны, непрерывные алгоритмы построены на использовании таких интуитивных для человека понятий как фигура и форма. Непрерывные алгоритмы устроены примерно следующим образом. Сначала строится непрерывное описание исходного изображения. Это может быть описание границы в виде кривых, либо медиальное представление, то есть набор кривых (скелет) и радиальная функция, которая каждой точке кривой сопоставляет максимальный радиус окружности, лежащей внутри фигуры, с центром в этой точке.

В работе предлагается алгоритм распознавания текста, в котором сначала строится медиальное представление для изображения, с последующим применением свёрточной нейронной сети. Эта сеть состоит из последовательных операций свёртки и уплотнения. В операции свёртки по отдельности рассматривается каждая небольшая часть описания изображения и в ней выделяются характерные паттерны в этой части. Операции уплотнения состоит в уменьшении числа признаков путём замены нескольких частей описания изображения на одну часть, аккумулирующую информацию о найденных паттернах.

Постановка задачи

В работе решается задача распознования рукописных символов на изображении. Рассматриваются два варианта постановки задачи, «дискретный» и «непрерывный», которые

Научный руководитель: Стрижов В. В. Консультант: Местецкий Л. М.

отличаются форматом исходных изображений. Опишем постановку задачи, после чего определим форматы изображений для обоих вариантов.

Пусть задано множество символов $\mathcal{S} = \{s_1, \dots, s_k\}$ и выборка изображений:

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i) | i = 1, \dots, m\}$$

где \mathbf{x}_i является объектом, описывающим i-ое изображение, а $y_i \in \mathcal{S}$ — символом, на нём изображённым.

Требуется построить алгоритм f, решающий задачу классификации изображений, то есть, принимающий описание изображения в том же формате как в исходной выборке и возвращающий список вероятностей $\hat{p} = \{\hat{p}_1, \dots, \hat{p}_k\}$:

$$f: \mathbf{x} \mapsto (\hat{p_1}, \dots, \hat{p_k})$$

где \hat{p}_i — предсказание вероятности того что на изображение находится символ s_i , $\forall i \ \hat{p}_i \in [0,1], \hat{p}_1+\ldots+\hat{p}_k=1$. По списку вероятностей можно будет получить предсказание символа на изображении взяв символ с наибольшей вероятностью.

Делаются следующие предположения о выборке:

- Каждое изображение содержит ровно один символ, написанный от руки.
- Каждый символ на изображении полностью содержится в изображении, причём расстояние между символом и границами изображения строго больше нуля
- Каждый символ из множества символов S встречается достаточно большое число раз в выборке, то есть не существует пар символов $c_1, c_2 \in S$, таких что символ c_2 встречается много больше раз чем символ c_1 . В идеале равномерное распределение на символах (каждый символ встречается равное число раз).

В качестве функции ошибки для оценки качества алгоритма будем использовать перекрёстную энтропию:

$$H(p, \hat{p}) = -\sum_{i=1}^{k} p \log \hat{p}$$

где p — истинный вектор вероятностей (все нули кроме одного элемента), \hat{p} — предсказание вероятностей.

Перейдём к описанию форматов изображений для обоих вариантов постановок.

Постановка задачи (дискретный случай)

Сначала введём определение множества цветов:

Определение 1. \mathcal{C} — множество цветов, которые может принимать один пиксель изображения. В работе всегда предполагается $\mathcal{C} = \{0,1\}$, где ноль соответствует белому цвету, а 1 чёрному. Другими возможными вариантами могут быть $\mathcal{C} = \{0,1,\ldots,255\}$ — оттенки серого и $\mathcal{C} = \{0,1,\ldots,255\}^3$ — цветовое пространство RGB.

В данной постановке описание изображения \mathbf{x} представляет собой матрицу из h строк и w столбцов: $\mathbf{x}_i = [c_{ij}] \in \mathcal{C}^{h \times w}$. Каждый элемент матрицы описывает цвет одного пикселя изображения. Ответ $y_i \in \mathcal{S}$ — символ, находящийся на изображении \mathbf{x}_i .

В работе предлагается использовать базу данных рукописных изображений MNIST [1]. В ней каждое изображение имеет размер 28×28 , а цвета пикселей кодируются числами от 0 до 255 (оттенки серого, 0 — белый, 255 — чёрный).

Постановка задачи (непрерывный случай)

В данной постановке описанием изображения является скелетное представление с заданной на нём радиальной функцией. Введём необходимые определения, в соответствии с [2]:

Определение 2. Фигура — связная область на плоскости \mathbb{R}^2 , такая что её граница представляет собой дизъюнктное объединение конечного числа отрезков.

Определение 3. Пустой круг фигуры — круг, полностью содержащийся внутри фигуры.

Определение 4. Максимальный пустой круг фигуры — пустой круг, который не содержится ни в каком другом пустом круге этой фигуры.

Определение 5. Скелет фигуры — связный граф на плоскости, такой что каждая точка каждого ребра графа является центром максимального пустого круга.

Определение 6. Радиальная функция для скелетного представления — функция, которая каждой точке скелетного представления сопоставляет радиус максимального круга с центром в этой точке.

Определение 7. Медиальное представление фигуры — скелет фигуры с соответствующей медиальной функцией.

В работе предлагается использовать выборку, в которой медиальное представление имеет следующий вид: скелет задан в виде графа, радиальная функция задана на каждой вершине этого графа, а значение радиальной функции на рёбрах определяется как взвешенное среднее радиальной функции на концах ребра.

Также, дополнительно, каждая вершина имеет степень от одного до трёх.

Базовый алгоритм

В качестве базового алгоритма используется свёрточная нейронная сеть для задачи в дискретной постановке. Предлагается использовать следующую структуру сети:

$$INPUT->[[CONV->RELU]*2->POOL]*3->FC$$

- INPUT входной слой, имеет размеры $28 \times 28 \times 1$
- CONV слой свёртки. Фильтры имеют размер 3×3 . Также используется увеличение пространственных размеров на 2 в каждой размерности предыдущего слоя путём дополнения одинарной линией из нулей с каждой стороны.
- RELU слой активации. Используется функция $f(x) = \max(0, x)$
- POOL слой пулинга. Каждая группа пикселей 2×2 уплотняется в один пиксель, путём взятия максимума.
- FC полносвязный слой.

Обучение сети будет осуществляться методом обратного распространения ошибки.

Литература

- [1] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist database of handwritten digits, 1998. http://yann.lecun.com/exdb/mnist/.
- [2] Леонид Моисеевич Местецкий. *Непрерывная морфология бинарных изображений: фигуры, скелеты, циркуляры.* Физматлит, 2009.

- [3] Солдатова Ольга Петровна and Гаршин Александр Александрович. Применение сверточной нейронной сети для распознавания рукописных цифр. 2010.
- [4] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. Best practices for convolutional neural networks applied to visual document analysis. 2003.
- [5] Dan Claudiu Cires, Ueli Meier, Luca Maria Gambardella, and Jurgen Schmidhuber. Convolutional neural network committees for handwritten character classification. 2011.
- [6] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik. Emnist: an extension of mnist to handwritten letters, 2017. https://www.nist.gov/itl/iad/image-group/emnist-dataset.
- [7] Aleksey Morozov. Low data drug discovery with one-shot learning. 2017.
- [8] Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, and Vijay Pande. Low data drug discovery with one-shot learning. 2016.
- [9] Визильтер Ю.В., Горбацевич В.С., and Желтов С.Ю. Структурно-функциональный анализ и синтез глубоких конволюционных нейронных сетей. 2018.