Memory Size= 7 bits=> 2\*\*7 = 126 bytes in my memory
Frame/page size=> number of bits per frame=> want 16 bytes/page
=> In base 2 of 16 = 4 bits
Can address up to 2\*\*3 VP's

What is the valid range of virtual addresses?

For P1 -> 7 bit system, virtual addresses can go from 000 0000-> 010 1111 (see valid bits)

For P2 000 0000-> 001 1111



Page Table P1

| VP # valid PP |   |       |  |  |
|---------------|---|-------|--|--|
| 0=000         | 1 | 2=010 |  |  |
| 1=001         | 1 | 5=101 |  |  |
| 2=010         | 1 | 3=011 |  |  |
| 3=011         | 0 |       |  |  |
| 4             | 0 |       |  |  |
| 5             | : |       |  |  |
| 6             |   |       |  |  |
| 7             |   |       |  |  |

Page Table P2

| VP# valid PP |   |     |  |  |
|--------------|---|-----|--|--|
| 0=000        | 1 | 100 |  |  |
| 1=001        | 1 | 110 |  |  |
| 2=010        | 0 |     |  |  |
| 3=011        | 0 |     |  |  |
| 4<br>0       |   |     |  |  |
| 5            | : |     |  |  |
| 6            |   |     |  |  |
| 7            |   |     |  |  |

#### Physical memory

| 000 0000<br>000 1111 |       |
|----------------------|-------|
| 001 0000<br>001 1111 |       |
| 010 0000<br>010 1111 | P1-0  |
| 011                  | P1-2  |
| 100                  | P2-0  |
| 101                  | P1 -1 |
| 110                  | P2-1  |
|                      |       |

20 bits VPN Offset=>12 bits



20 bits VPN Offset=>12 bits



20 bits VPN Offset=>12 bits



If using single page table
2^12 =4K per page
If code and heap take up 1
meg of storage
Then how many pages will
they need?
1 meg/4K=>2^20/2^12 =
2^8 pages or 256 pages
Need 256 pages for stack

too

20 bits VPN Offset=>12 bits



If using single page table
2^12 =4K per page
If code and heap take up 1
meg of storage
Then how many pages will
they need?
1 meg/4K=>2^20/2^12 =
2^8 pages or 256 pages
Need 256 pages for stack
too

But have 2^20 = 1,000,000
Virtual pages, which means
the page table will have
1,000,000 rows
Of which only 512 are needed



#### Multilevel page table version

| Outer=10 bits | Inner=10 bits | Offset=>12 bits |
|---------------|---------------|-----------------|
|---------------|---------------|-----------------|

1 Outer page table has 2^10 or 1000 rows, each row holds the address of an inner page table 1000 *potential* inner page tables, each with 2^10 or 1000 rows (only allocate the ones needed, ie valid bit=1 in outer page table)



#### Multilevel page table example

#### For a 32 bit system; 20 bits VPN, 12 bits offset

| Outer=10 bits | Inner=10 bits | Offset=>12 bits |
|---------------|---------------|-----------------|
|---------------|---------------|-----------------|



If using 4K pages=> (2^12 bits) 2^10 ~1000 2^20 ~1,000,000

If using multilevel page table

Remember a single level page table uses 2^20 \* 4bytes entry = 4M

Multilevel page table uses
Outer = 2^10\*4bytes = 4kB
Inner? Only 2 inner pages
Allocated
2 \* 2^10\*4bytes = 8kB
Total= 12kB