Unsere Ausgangsquader $Q_0=Q$ hat die geforderten Eigenschaften. Seine $Q=Q_0\supset Q_1\supset Q_2\supset \cdots$ bereits konstruiert. Es gelte $Q_m=I_1\times I_2\times \cdots I_n$, $I_k=[a_k,b_k]\subset \mathbb{R}$ $\forall k=1,2,\cdots,n$. Wir splitten jedes der Intervalle I_k in der Intervalllemitte auf und erhalten Unterteilung $I_k=I_{k_1}\cup I_{k_2}$ mit $I_{k_1}=\left[a_k,\frac{a_k+b_k}{2}\right]$, $I_{k_2}=\left[\frac{a_k+b_k}{2},b_k\right]$, $1\leq k\leq n$. Die kartesischen Produckte $I_{1_{\gamma_1}}\times I_{2_{\gamma_2}}\times \cdots I_{n_{\gamma_n}}$, $\gamma\in 1,2$ $\forall 1\leq k\leq n$ aller Intervallhälften der I_k , $k=1,2,\cdots n$ unterteilen den abgeschlossener Quader Q_m in in insgesamt 2^n vielen kleinere abgeschlos. Quader Nur können wir folgendes Kriterium formulieren:

25 Satz von Heine-Borel: Für ein Menge $K \subset \mathbb{R}^n$ sind folgende Ausagen äquivalent:

- a) K ist abgeschlossen und beschränkt
- b) K ist kompakt

Beweis. Siehe Satz 21.

Korollar

Für jede kompakte Teilmenge $\emptyset \neq A \subset \mathbb{R}$ gilt:

$$sup A \in A, inf A \in A$$

Beweis. Da A als kompakte Menge insbesondere beschränkt ist, existeren supA, $infA \in R$. Weil sowohl supA als auch infA Häufungspunkte geeigneter Folgen in A sind, impliziert die Abgeschlossenheit von A in Verbindung mit Satz 8, dass $supA \in A$ und $infA \in A$ gilt.

26 Satz: Ist $U \subset \mathbb{R}^n$ offen $K \subset U$ -kompakt und $f: U \to \mathbb{R}^m$ -stetige Abbildung, so ist $f(k) \subset \mathbb{R}^m$ ebenfalls kompakt.

Beweis. Sei $(U_i)_{i\in I}$ eine offene Überdeckung von f(k). Sei $\forall i\in I,\ V_i:=f^{-1}\left(U_i\right),\ f$ —stetig $\Longrightarrow i\in I$ V_i —offen. Die Familie $(V_i)_{i\in I}$ ist dine Überdeckungvon K, K-kompakt $\Longrightarrow \exists V_{i_1}, V_{i_2}, \cdots V_{i_n}$ s.d. $K\subset \bigcup_{p=1}^k U_{i_p} \Longrightarrow f(k)\subset \bigcup_{p=1}^k U_{i_p} \Longrightarrow f(k)$ -kompakt

27 Satz: Ist $U \subset \mathbb{R}^n$ offen, $k \subset U$ kompakt und $f: U \to \mathbb{R}$ eine stetige Funktion auf U, so gibt es Punkte $p, q \in K$ mit $f(p) = \sup \{f(x) : x \in K\}, f(q) = \inf \{f(x) : x \in K\}$

Beweis. Laut Satz 26 ist $A := f(k) \subset \mathbb{R}$ kompakt, also im Hinblick auf dem Korollar zu Satz 25: $supf(k) \in f(k)$, $inff(k) \in f(k)$. Deshalb können wir $p, q \in K$ mit gewünschten Eigenschaften finden \square

Definition: Sei $U \subset \mathbb{R}^n$ eine beliebige Teilmenge und $f: U \to \mathbb{R}^m$ eine Abbildung. Dann nennt man f gleichmäßig stetig auf U wenn gilt:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{s.d.} \; |x - y| < \delta, \; x, y \in U \implies |f(x) - f(y)| < \varepsilon$$

28 Satz: Sei $R \in \mathbb{R}^n$ kompakt und $f: K \to \mathbb{R}^m$ eine stetige Abbildung. Dann ist f gleichmäßig stetig auf K

Beweis. Sei $\varepsilon > 0$ vergegeben. $\forall a \in K \ \exists r(a) > 0 \ \text{mit} \ |f(x) - f(a)| < \frac{\varepsilon}{2} \ \forall x \in B(a, r(a)) \cap K \ \text{(wegen der Stetigkeit von } f \ \text{in a)}$ Offenbar ist $K \subset \bigcup_{a \in K} B(a, \frac{r(a)}{2})$. K-kompakt $\implies a_1, a_2, \cdots, c_k \ \text{s.d.} K \subset \bigcup_{p=1} B\left(a_p, \frac{r(a_p)}{2}\right)$. Man setz nun $\delta := \frac{1}{2}min\left\{r\left(a_1\right), \cdots, \left(a_k\right)\right\}$ Seien dann $x_1, x_2 \in K \ \text{mit} \ |x_1 - x_2| < \delta$ beliebig gewählt. Wir fixieren ein $i \in \{1, 2, \cdots, k\}$ mit $x_1 \in B\left(a_i, \frac{r(a_i)}{2}\right)$; dann gilt auch $|x_2 - a_i| \le |x_2 - x_1| + |x_1 + a_i| < \delta + \frac{r(a_i)}{2} < r(a_i)$ also liegt mit x_1 auch x_2 in $B(a_i, r\left(a_i\right))$, und wir erhalten $|f\left(x_1\right) - f\left(x_2\right)| \le |f\left(x_1\right) - f\left(a_i\right)| + |f\left(a_i\right) - f\left(x_2\right)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$. Damit ist die gleichmäßig Stetigkeit von f auf K beweisen.

§5 Partielle Ableitung

Definition: Seien $U \subset \mathbb{R}^n$ offen, ferner

$$f: U \to \mathbb{R}(x_1, x_2, \cdots, x_n) \mapsto f(x_1, x_2, \cdots, x_n)$$

eine Funktion auf U und $a = (a_1, a_2, \dots, a_n) \in U$

a) f heißt in a partiell differenzierbar nach x_i oder auch partiell differenzierbar bezüglich der i-ten Koordinate, wenn der Grenzwert

$$D_{i}f(a): \frac{\partial f}{\partial x_{i}}(a)_{i} := = \lim_{\substack{t \to a_{i} \\ t \neq a_{i}}} \frac{f(a_{1}, \cdots, a_{i-1}, t, a_{i+1}, \cdots, a_{n}) - f(a_{1}, \cdots, a_{i-1}, a_{i}, a_{i+1}, \cdots, a_{n})}{t - a_{i}}$$

dann $\frac{\partial f}{\partial x_i}(a)$ die partille Ableitung von fnach x_i an der Stelle a

- b) f heißt in a partiall differenzierbar, wenn f in a nach $allen x_i, i = 1, \dots, n$ partiell differenzierbarist. In diesem Fall nennt man den Vektor $grad(f(a)) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right)$ den $Gradient \ von \ f \ in \ a$
- c) f heißt auf U partiell differenzierbar, wenn f partiell differenzierbar in a für jedes $a \in U$ ist.
- d) f heißt in a stetig partiell differenzierbar , wenn f auf U partiell differenzierbar ist und zusätzlich alle Ableitungen $\frac{\partial f}{\partial x_i} = D_i f_i U \to \mathbb{R}, 1 \leq i \leq n$, an der Stelle a stetig sind.
- e) f heißt stetig partiell differenzierbar auf U, wenn f in jedem $a \in U$ stetig partiell differenzierbar ist. Für die Menge aller solcher Funktion führen wir die Bezeichnung

$$C^1(U) := \{ f : U \to \mathbb{R} : f \text{ ist stetig partial differenzier bar auf } U \}$$

ein.

Beispiel

4 Partielle Ableitung

Definition: Seien $U \subset \mathbb{R}^n$ offen, ferner $f: U \to \mathbb{R}(x_1, x_2, \dots, x_n) \mapsto f(x_1, x_2, \dots, x_n)$ eine Funktion auf U und $a = (a_1, a_2, \dots, a_n) \in U$. Seien $k \in \mathbb{N}$ und $i \in 1, \dots, n$

- a) f heißt in a k-mal partiell differenzierbar nach x_i , wenn f (k-1)-mal partiell differenzierbar auf U ist und alle partiell Ableitungen (k-1)-ter Ordnung von f an der Stell a partiell differenzierbar nach x_i sind.
- b) f heißt in a k-mal partiell differenzierbar, wenn f in a k-mal partiell differenzierbar ist. Nach x_j für alle $j \in 1, 2, \dots, n$ ist. Die partielle Ableitungen der Ordnung k von f in a sind dann gegeben durch

$$D_{i_k} \left(D_{i_{k-1}} \left(\cdots D_{i_2} \left(D_{i_1} (f) \right) \cdots \right) \right) (a) := \frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \cdots \partial x_{i_1}} (a)$$

$$:= D_{i_k} D_{i_{k-1}} \cdots D_{i_1} f(a)$$

$$:= f_{x_{i_k}}^{(k)} x_{i_{k-1}} \cdots x_{i_1} (a)$$

wobei die Indizes i_1, \dots, i_k voneinandere unabhängig die Menge $1, 2, \dots, n$ durchlaufen.

- c) f heißt k- mal partiell differenzierbar auf U, wenn f in jedem $a \in U$ k-mal partiell differenzierbar sit. Die Funktionen $D_{i_k} \cdots D_{i_1} f: U \to \mathbb{R}, i_1, i_2, \cdots, i_k \in 1, \cdots, n$ heißen partiell Ableitung k-te Ordnung von f.
- d) f heißt k-mal stetig partiell differenzierbar auf U wenn fk-mal partiell differenzierbar auf U ist und alle partiellen Ableitungen der Ordnung $\leq k$ auf U stetig sind. Für die Menge aller solcher Funktionen führen wir die Bezeichnung

 $C^k(U) := \{ f : U \to \mathbb{R} : f \text{ ist } k\text{-mal stetig partial differential auf } U \}$

ein.

29 Satz: Sei $U \subset \mathbb{R}^n$ offen und sei $f: U \to \mathbb{R}$ zweimal partiell differenzierbar auf U; außerhalb seien alle partiellen Ableitungen 2.Ordnung von f stetig auf U. Dann gilt:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \forall i, j \in 1, \dots, n$$

Korollar

Seien $U \subset \mathbb{R}^n$ offen, $k \geq 2$ und sei $f \in C^k(U)$. Dann gilt für jedes k-Tupel von Indizes $(i_1, i_2, \dots, i_k \in 1, 2, \dots, n^k)$ und für jedes Permutation $\pi : \{1, \dots, k\} \to \{1, \dots, k\}$:

$$D_{i_k}D_{i_{k-1}}\cdots D_{i_1}f = D_{i_{\pi(k)}}D_{i_{\pi(k-1)}}\cdots D_{i_{\pi(1)}}f$$

•

Beweis. Der Beweis erfolgt durch vollständige Induktion über k. Den Induktions Anfang bildet Satz 29 im Induktionsschluss verwendet man die Tatsache, dass sich jede Permutation als Hintereinanderausführung endliche vieler Vertauchungen benachbarter Glider darstellen lässt.