Proiectarea și Analiza Algortmilor Semestrul II 2024 - 2025 Curs 1

Cadre Didactice

Răzvan CIOARGĂ

Curs: Luni 8:00 - 10:00 - A117

Cabinet: B513; E-mail: razvan.cioarga@cs.upt.ro

Laborator:

A305: Joi 14 - 16, gr. 2.2

A305: Joi 16 - 18, gr 2.1

Bogdan ANCA

Laborator:

A305: Miercuri 10 - 12, gr. 1.2

A305: Miercuri 12 - 14, gr. 3.1

A305: Miercuri 14 - 16, gr. 1.1

Simona MARIȘ

Laborator:

B529: Miercuri 14 - 16, gr. 3.2

Regulament Curs

- → Regulamentul detaliat este disponibil pe cv.upt.ro, pagina cursului PAA
- →Este OBLIGATORIU să citiți acest regulament
- →După săptămâna 1, orice întrebare referitoare la organizare și reguli va avea ca efect îndrumarea spre lectura regulamentului

Regulament Curs - Activitate Predare

- →Se va face prezența la curs
- →Studentii cu peste 80% prezență la curs se califică pentru a primi puncte suplimentare la examen. Aceasta e condiție minimă, participarea activă la activități va fi de asemenea luată în considerare. Aceste puncte suplimentare nu sunt garantate
- →Dacă nu puteți / nu vreiți să fiți atenți, cel puțin nu deranjați colegii care vor / pot

Regulament Curs - Notare

Nota minimă pentru promovare este 5.00

→NotaFinală = 0.34 * NotaLaborator + 0.66 * NotaExamen

→Daca NotaLaborator < 5.00 SAU NotaExamen < 5.00 : NotaFinală = 1

- →NotaLaborator: 5 Teste (quiz) și 3 Aplicații (cod)
- →NotaLaborator = media aritmetică a 8 note (5 quiz + 3 cod)
- →Laboratorul este promovat dacă NotaLaborator >= 5.00
- →Codul va fi scris în C99
- →Codul va fi corectat automat + manual
- →Erori de compilare: codul va fi notat cu o (zero) puncte
- Testele și aplicațiile notate vor fi anunțate cu o săptămână înainte la curs

- →NotaExamen: 3 probe
 - →Teorie (quiz)
 - →Aplicație (cod) pot fi mai multe enunțuri
 - →Scrisă (hârtie) concomitent cu proba Aplicație
- →NotaExamen = (Teorie + Aplicație + Scrisă) /3
- →NotaExamen se calculează doar dacă fiecare dintre probe >=5.00
- →Nu există examen parțial
- →Examenul nu se recunoaște parțial

- →Examen proba Aplicație:
 - →Codul trebuie să compileze. Erori de compilare => o (zero) puncte
 - →Codul va fi testat automat (8 puncte)
 - →Codul va fi inspectat de cadrul didactic (2 puncte)
 - →Nerespectarea cerintelor sau constrângerilor din enunț => depunctare

- →Examen proba Scrisă:
 - →Enunțuri care cer desenarea de scheme, diagrame, explicații elaborate, demonstrații
 - →Parte din subiecte vor fi legate de subiectele de la proba Cod

Obiective

- Abilitatea de a folosi structuri de date complexe pentru a reprezenta datele problemelor reale
- →Abilitatea de a concepe algoritmi care folosesc structuri de date complexe
- →Abilitatea de a combina algoritmi pentru a rezolva probleme complexe
- →Abilitatea de a alege cel mai eficient mod de rezolvare fiind data o problemă
- →Abilitatea de a justifica soluția aleasă

Ce vom studia?

- → Arbori Generalizați
- →Arbori Binari
- →Arbori Binari Ordonați
- →Arbori Echilibrați (AVL)
- →Arbori Binari Optimi
- →Arbori Multicăi (Trie)

- →Arbori B
- →Grafuri Neorientate
- →Grafuri Ponderate
- →Grafuri Ponderate Orientate
- → Algoritmi specifici tuturor structurilor de date enumerate

Proiectarea și Analiza Algoritmilor De ce C?

- →Cel mai bun limbaj pentru a înțelege reprezentarea datelor la cel mai jos nivel (hardware)
- Dacă știți să aplicați noțiunile învățate în C, trecerea la orice alt limbaj e trivială
- →Invers nu e neaparat valabil
- C nu are mecanisme care ascund sau repară erori de programare

Cunoștințe anterioare necesare

Considerăm dobândite abilitățile și cunoștințele de la cursurile precedente

Acest curs va construi și se va baza pe aceste abilități și cunoștințe

→În special PC, TP, SDA

- →Abilitatea de a citi și înțelege un enunț
- →Abilitatea de a mapa datele din enunț pe o structură de date cunoscută / studiată
- →Abilitatea de a scrie cod (C99) corect dpdv al execuției
- →Abilitatea de a rezolva problemele apărute în cod (debugging)
- →Abilitatea de a compila cod (C99) împărțit în mai multe fișiere sursă (biblioteci)

- →Cunoștințe legate de modul de reprezentarea fizică a datelor în memoria de lucru
- →Cunoștințe generale legate de interfața procesor memorie
- →Cunoștițe legate de manipularea datelor din / în memorie
- →Cunoștințe legate de calculul complexității altoritmilor (big-O)
- →Structuri de date studiate: Stivă, Coadă, Liste, etc...
- →Împărțirea unei probleme în unități de cod mai mici, eventual reutilizabile

- →Cunoștințe specifice limbajului C:
 - →Lucrul cu argumente din linia de comandă
 - →Citirea și scrierea din / în fișiere text
 - →Declararea variabilelor de un anumit tip
 - →Definirea tipurilor de date compuse (struct, union)
 - →Tablouri: reprezentare, lucru cu tablouri, tablouri ca parametrii de funcții
 - →Funcții: definire, utilizare, înțelegere mecanism apel și returnare

- →Cunoștințe specifice limbajului C (2):
 - → Alocare dinamică a memoriei
 - Pointeri, Aritmetica pointerilor, lucru cu pointeri
 - →Prevenirea memory-leaks-urilor
 - **→**Recursivitate
 - → Tehnici uzuale de programare
- →Laborator S2 -> Test (Quiz) C + cunoștințe anterioare

Cunoștințe anterioare necesare

Va urez un semestru plin de oportunități și rezultate

Ne revedem săptămâna viitoare