

Michael Musty, Dartmouth College (grad)
math.dartmouth.edu/~mjmusty
Maine Québec Number Theory Conference
October 14, 2017

Acknowledgements

- ► Sam Schiavone
- Jeroen Sijsling
- John Voight

Outline

- 1. What is a 2-solvable Belyĭ map?
- 2. Motivation
- 3. Algorithm to compute explicitly
 - 3.1 Find permutation triples
 - 3.2 Compute equations
- 4. Explicit examples

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a Belyĭ map.

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyĭ map**. The **degree** of a Belyĭ map is the number of sheets in the covering.

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyī map**. The **degree** of a Bely**ĭ** map is the number of sheets in the covering.

In the 1980s, Grothendieck described a bijection between Belyĭ maps and *dessins d'enfants*.

Theorem (G.V. Belyĭ 1979)

A curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyī map**. The **degree** of a Bely**ĭ** map is the number of sheets in the covering.

In the 1980s, Grothendieck described a bijection between Belyĭ maps and dessins d'enfants. $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on these sets.

A Zoo of Bijections

A Zoo of Bijections

Example 🛎

Example 🛎

2-solvable (Galois) Belyĭ maps

2-solvable (Galois) Belyĭ maps

The **field of moduli of a curve** X (defined over $\overline{\mathbb{Q}}$) is the fixed field of the group $\{\tau \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : X^{\tau} \cong X\}$.

The **field of moduli of a curve** X (defined over $\overline{\mathbb{Q}}$) is the fixed field of the group $\{\tau \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : X^{\tau} \cong X\}$.

Similarly, the **field of moduli of a Belyĭ map** φ is the fixed field of $\{\tau \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : \varphi^{\tau} \cong \varphi\}$.

The **field of moduli of a curve** X (defined over $\overline{\mathbb{Q}}$) is the fixed field of the group $\{\tau \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : X^{\tau} \cong X\}$.

Similarly, the **field of moduli of a Belyĭ map** φ is the fixed field of $\{\tau \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : \varphi^{\tau} \cong \varphi\}$.

Theorem (Sybilla Beckmann 1989)

Assume (X, φ) is a pair consisting of a curve X and a Belyĭ map φ for X. Let M be the field of moduli of the pair (X, φ) . Let G be the Galois group of the Galois closure of the cover $\varphi: X \to \mathbb{P}^1$. For every prime $p \in \mathbb{Z}$, if p does not divide #G, then X has good reduction at primes of M above p. Moreover, p is unramified in M.

$$G = \operatorname{Gal}(K(X)/K(\mathbb{P}^1))$$
 $G \cong \langle \sigma \rangle \leq S_d$ $\widetilde{G} = \operatorname{Gal}(K(\widetilde{X})/K(\mathbb{P}^1))$ $\widetilde{G} \cong \langle \widetilde{\sigma} \rangle \leq S_{md}$ $H = \operatorname{Gal}(K(\widetilde{X})/K(X))$ $H \cong \langle \tau \rangle \leq S_{md}$

$$\begin{split} G &= \mathsf{Gal}(K(X)/K(\mathbb{P}^1)) & G \cong \langle \sigma \rangle \leq S_d \\ \widetilde{G} &= \mathsf{Gal}(K(\widetilde{X})/K(\mathbb{P}^1)) & \widetilde{G} \cong \langle \widetilde{\sigma} \rangle \leq S_{md} \\ H &= \mathsf{Gal}(K(\widetilde{X})/K(X)) & H \cong \langle \tau \rangle \leq S_{md} \end{split}$$

$$1 \longrightarrow H \stackrel{\iota}{\longrightarrow} \widetilde{G} \stackrel{f}{\longrightarrow} G \longrightarrow 1$$
$$\widetilde{\sigma} \stackrel{?}{\longrightarrow} \sigma$$

$$G = \operatorname{\mathsf{Gal}}(K(X)/K(\mathbb{P}^1)) \qquad G \cong \left\langle \left((12), (1)(2), (12) \right) \right\rangle \leq S_2$$
 $\widetilde{G} = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(\mathbb{P}^1)) \qquad \widetilde{G} \cong \langle \widetilde{\sigma} \rangle \leq S_4$ $H = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(X)) \qquad H \cong \langle (13)(24) \rangle \leq S_4$

$$G = \operatorname{\mathsf{Gal}}(K(X)/K(\mathbb{P}^1)) \qquad G \cong \left\langle \left((12), (1)(2), (12) \right) \right\rangle \leq S_2$$
 $\widetilde{G} = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(\mathbb{P}^1)) \qquad \widetilde{G} \cong \langle \widetilde{\sigma} \rangle \leq S_4$ $H = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(X)) \qquad H \cong \langle (13)(24) \rangle \leq S_4$

$$1 \longrightarrow H \xrightarrow{\iota} \widetilde{G} \xrightarrow{f} G \longrightarrow 1$$
$$\widetilde{\sigma} \xrightarrow{?} \sigma$$

$$\sigma = (\sigma_0, \sigma_1, \sigma_\infty) = ((12), (1)(2), (12)) \in S_2^3$$

$$\tau = (13)(24) \in S_4$$

$$\widetilde{G} = \langle \widetilde{\sigma} \rangle \leq S_4$$

$$\sigma = (\sigma_0, \sigma_1, \sigma_\infty) = ((12), (1)(2), (12)) \in S_2^3$$
 $\tau = (13)(24) \in S_4$
 $\widetilde{G} = \langle \widetilde{\sigma} \rangle \leq S_4$

$$1 \longrightarrow \langle \tau \rangle \stackrel{\iota}{\longrightarrow} \widetilde{G} \stackrel{f}{\longrightarrow} \langle \sigma \rangle \longrightarrow 1$$
$$\widetilde{\sigma} \stackrel{?}{\longrightarrow} \sigma$$

$$\sigma = (\sigma_0, \sigma_1, \sigma_\infty) = ((12), (1)(2), (12)) \in S_2^3$$
 $\tau = (13)(24) \in S_4$
 $\widetilde{G} = \langle \widetilde{\sigma} \rangle < S_4$

$f^{-1}(\sigma_0)$	$f^{-1}(\sigma_1)$	$f^{-1}(\sigma_\infty)$
(12)(34)	(1)(2)(3)(4)	(12)(34)
(14)(23)	(13)(24)	(14)(23)
(1432)		(1432)
(1234)		(1234)

1769

There are 32 possible σ from these lists.

1769

There are 32 possible σ from these lists.

Only 6 such triples correspond to Belyĭ maps.

There are 32 possible σ from these lists.

Only 6 such triples correspond to Belyĭ maps.

Eliminating redundancies we are left with 3 permutation triples corresponding to distinct Belyĭ maps.

There are 32 possible σ from these lists.

Only 6 such triples correspond to Belyĭ maps.

Eliminating redundancies we are left with 3 permutation triples corresponding to distinct Belyĭ maps.

$\widetilde{G}\cong \mathbb{Z}/4\mathbb{Z}$		
((1432), (1)(2)(3)(4), (1234))		
((1432), (1)(2)(3)(4), (1234)) $((1432), (13)(24), (1432))$		
$\widetilde{G}\cong \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$		
((12)(34), (14)(23), (13)(24))		

4T1-[4,2,4]-4-22-4-g1

4T1-[4,2,4]-4-22-4-g1

$$(\sigma_0, \sigma_1, \sigma_\infty) = ((1432), (13)(24), (1432))$$

4T1-[4,2,4]-4-22-4-g1

$$(\sigma_0, \sigma_1, \sigma_\infty) = ((1432), (13)(24), (1432))$$

Let X by the curve in \mathbb{P}^5 cut out by the following equations:

Let X by the curve in \mathbb{P}^5 cut out by the following equations:

$$x_{0} - x_{1}^{2}$$

$$x_{1}x_{2} + x_{1} + x_{3}^{2} - x_{3}x_{4}^{2}$$

$$x_{1}x_{3}^{2} + x_{1} - x_{3}x_{4}^{2}$$

$$x_{1}x_{4}^{2} + (1/2)x_{3}^{3} - (1/2)x_{3}x_{4}^{4}$$

$$x_{2}^{2} + 2x_{3}^{3}x_{4}^{2} - 2x_{3}^{2}x_{4}^{4} + 2x_{3}^{2} - 2x_{3}x_{4}^{2} + 2x_{4}^{4} + 1$$

$$x_{2}x_{3} - x_{3}^{3} + x_{3}^{2}x_{4}^{2} - x_{4}^{2}$$

$$x_{2}x_{4}^{2} + x_{3}^{3} - x_{3}^{2}x_{4}^{2} + x_{3}$$

$$x_{3}^{4} - x_{3}^{2}x_{4}^{4} + x_{3}^{2} + x_{4}^{4}$$

Let X by the curve in \mathbb{P}^5 cut out by the following equations:

$$x_{0} - x_{1}^{2}$$

$$x_{1}x_{2} + x_{1} + x_{3}^{2} - x_{3}x_{4}^{2}$$

$$x_{1}x_{3}^{2} + x_{1} - x_{3}x_{4}^{2}$$

$$x_{1}x_{4}^{2} + (1/2)x_{3}^{3} - (1/2)x_{3}x_{4}^{4}$$

$$x_{2}^{2} + 2x_{3}^{3}x_{4}^{2} - 2x_{3}^{2}x_{4}^{4} + 2x_{3}^{2} - 2x_{3}x_{4}^{2} + 2x_{4}^{4} + 1$$

$$x_{2}x_{3} - x_{3}^{3} + x_{3}^{2}x_{4}^{2} - x_{4}^{2}$$

$$x_{2}x_{4}^{2} + x_{3}^{3} - x_{3}^{2}x_{4}^{2} + x_{3}$$

$$x_{3}^{4} - x_{3}^{2}x_{4}^{4} + x_{3}^{2} + x_{4}^{4}$$

The map to \mathbb{P}^1 defined by $x_0 \in K(X)$ is a genus 5 Belyĭ map with monodromy group $C_8 : C_2$.

Thanks for listening!

https://math.dartmouth.edu/~mjmusty/32.html