Towards Conversational Data Annotation: Personalized Annotation Explanation Generation via Large Language Models Literature Review & Challenges

Mark Nagengast Porro

Contents

1. Relevant Approach Papers

- 1.1 Are Human Explanations Always Helpful? Towards Objective Evaluation of Human Natural Language Explanations
- 1.2 ActiveAED: A Human in the Loop Improves Annotation Error Detection
- 1.3 Explain Yourself! Leveraging Language Models for Commonsense Reasoning
- 1.4 Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture
- 1.5 LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation

2. Challenges

Are Human Explanations Always Helpful? Towards Objective Evaluation of Human Natural Language Explanations $\rm I/V$

- ► Human-annotated explanations commonly used as ground truth for metrics such as *BLEU* and *ROUGE*
 - Semantic similarity or word-matching generally does not suffice to judge an explanation's validity
 - Often subjective or task-dependent
- Metric for evaluating quality of free-text human-annotated explanation for labeling of an instance, called TREU
- ► The quality of an explanation is derived from its helpfulness to a model's prediction performance
- ► Helpfulness judged both during fine-tuning and inference, expanding on *Simulatability* score

Are Human Explanations Always Helpful? Towards Objective Evaluation of Human Natural Language Explanations $\rm II/V$

Summary

Simulatability measures the difference in performance when including and excluding the explanation in the input

```
Baseline explain: Question Content choice1: Choice1 choice2: Choice2 choice3: Choice3

Infusion explain: Question Content choice1: Choice1 choice2: Choice2 choice3: Choice3

explain: Question Content choice1: Choice1 choice2: Choice2 choice3: Choice3

explain: Question Content choice1: Choice1 choice2: Choice2 choice3: Choice3
```

Figure: Two settings: No explanations (Baseline) and explanations as part of input (Infusion)

- Usage of a prompt-based unified data format
 - Minimize influence of variations between tasks
 - Convert tasks into unified multiple-choice generation task

Are Human Explanations Always Helpful? Towards Objective Evaluation of Human Natural Language Explanations III/V

Summary

Figure: Prediction accuracies on the ECQA dataset for different amounts of training data and four different setting combinations. Values averaged over three models with different random seeds.

Are Human Explanations Always Helpful? Towards Objective Evaluation of Human Natural Language Explanations ${\sf IV/V}$

Summary

```
\begin{aligned} & \textbf{Treu} = & (Accu(M_{\texttt{Infusion}}^{\texttt{Infusion}}) - Accu(M_{\texttt{Baseline}}^{\texttt{Baseline}})) \\ & + & (Accu(M_{\texttt{Baseline}}^{\texttt{Infusion}}) - Accu(M_{\texttt{Baseline}}^{\texttt{Baseline}})) \end{aligned}
```

Figure: The proposed metric; $M_{finetune\ setting}^{predict\ setting}$, where M denotes a model.

- ▶ The second summand is the Simulatability metric
- ► TREU includes fine-tuning model M using infusion
- ► TREU seems better able to rank explanation quality consistently across multiple datasets and model architectures

Are Human Explanations Always Helpful? Towards Objective Evaluation of Human Natural Language Explanations V/V

Similarities

- ► TREU metric is concerned with assessing natural language explanations given for label annotations
- ▶ It considers the fine-tuning of models using such explanations

ActiveAED: A Human in the Loop Improves Annotation Error Detection I/IV

- Typical workflow in Annotation Error Detection (AED):
 - Apply AED method, correct flagged errors afterwards
 - ▶ No human intervention in the AED step itself
- ActiveAED: AED scoring method with a human-in-the-loop repeatedly queried for error corrections
 - ▶ Requires error scores to rank the erroneous (err.) instances
 - Error corrections are used in its prediction loop
- Based on Area-under-the-Margin metric (AUM)

ActiveAED: A Human in the Loop Improves Annotation Error Detection II/IV

- 1. Ranking-based AED method finds *k* most likely annotation errors
- 2. The (presumed) annotation errors are forwarded to an annotator who provides corrections if nec.
- 3. The dataset is updated with the corrections
- Repeat until a stopping condition is met, e.g. fraction of errors < thresh.</p>

ActiveAED: A Human in the Loop Improves Annotation Error Detection III/IV

- ▶ Annotator has annotation budget of *n* err. instances
- ▶ Either spend the budget on the top-n instances once (SOTA), or repeatedly correct the top-k instances ($k \ll n$) until budget is exhausted (done here)
 - k := 50; small enough to be handled in a single annot. session
- ► Errors defined on sequence level, i.e. sequence is treated as err. if at least one token in it is
- Significantly more compute-intensive than other scoring-based AED methods

ActiveAED: A Human in the Loop Improves Annotation Error Detection $\ensuremath{\mathsf{IV}/\mathsf{IV}}$

Similarities

- ► A human annotator is actively involved in improving the annotations of data
- Does not make use of annot. explanations or LMs during correction

Explain Yourself! Leveraging Language Models for Commonsense Reasoning I/V

- Proposes Commonsense Auto-Generated Explanation framework (CAGE)
 - ► Improve performance of LMs on commonsense question answering / reasoning (CR) tasks
 - Leverage human explanations in the form of free-text sequences and highlighted span annotations
 - Explanations provide information not present in the input (world knowledge)
 - Highlighting of relevant input portions as additional guidance towards the right answer
 - ▶ Both types collected in a new dataset *Common Sense Explanations* (CoS-E)

Explain Yourself! Leveraging Language Models for Commonsense Reasoning $\rm II/V$

Summary

Question:	While eating a hamburger with friends, what are people trying to do?
Choices: CoS-E:	have fun, tasty, or indigestion Usually a hamburger with friends indicates a good time.
Question:	After getting drunk people couldn't understand him.it was because of his what?
Choices:	lower standards, slurred speech, or falling down
CoS-E:	People who are drunk have difficulty speaking.
Question:	People do what during their time off from work?
Choices: CoS-E:	take trips, brow shorter, or become hysterical People usually do something relaxing, such as taking trips, when they don't need to work.

Figure: Examples from CoS-E dataset.

Explain Yourself! Leveraging Language Models for Commonsense Reasoning III/V

- CoS-E builds upon Commonsense Question Answering (CQA) dataset, CAGE framework shall generate explanations for CQA
- Two-phased framework:
 - Provide CQA example (question + answer choices) + corresp. CoS-E explanation to CAGE LM
 - CAGE LM is trained to generate the CoS-E explanation (i.e. an explanation close to it)
 - Correct answer not provided, just the explanation for why it's best (→ explain-and-then-predict; reasoning)
 - Use CAGE LM to gen. CAGE explanations for each CQA example
 - Provide them to another CR model (CSRM) which then performs a prediction

Explain Yourself! Leveraging Language Models for Commonsense Reasoning IV/V

Figure: Two-phased CAGE framework; (1) Train CAGE LM to generate explanations E (token-wise). Conditioned on question Q, answer choices A_0 , A_1 , A_2 and already generated expl. tokens up to E_{i-1} . (2) The trained CAGE LM provides gen. explanation to downstream CSRM.

Explain Yourself! Leveraging Language Models for Commonsense Reasoning V/V

- ► Human explanations are used to train / fine-tune an LM
- ► Auto-gen. explanations are used to aid solving of a prediction task by another LM, similar to annot.
- ▶ No human component during inference

Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture I/IV

- Active Learning (AL) for data annotation iteratively:
 - 1. Selects samples from an unlabeled data pool and queries their annot. from human annotators (human-in-the-loop)
 - 2. Fine-tunes the underlying model with newly annotated data
 - 3. Evaluates model performance
- ► Natural-language explanations usually neglected, focus on labelling, though both may be needed
- ► This work proposes a dual-model AL system arch. that leverages human explanations

Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture II/IV

- ► AL data selector chooses few unlabeled examples
- Human provides labels and explanations
- Annot. used to fine-tune Expl.-Gen. model
- Generated expl. and annot. labels used to fine-tune the pred. model
- ► Humans *review* pred. and gen. expl., start next iter.

Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture III/IV

 Fine-tuning process teaches the prediction model to rely on explanations

Explanation-generation Model:

Training Input explain: what is the relationship between [hypothesis] and [premise] choice1: entailment choice2: neutral choice3: contradiction

Training Target [human annotated explanations]
Model Generation [generated free-form explanation]

Prediction Model:

Training Input question: what is the relationship between [hypothesis] and [premise] choice1: entailment choice2: neutral choice3: contradiction <sep> because [generated free-form explanation]

Training Target [human annotated label]
Model Prediction [predicted category]

Figure: Prompt-based input templates for both models

Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture IV/IV Similarities

- ► A human-in-the-loop is repeatedly queried to provide guidance for LM in prediction task (similar to ActiveAED)
- Human-annotated explanations used to improve generation of explanations provided by a model

LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation I/IV

- Proposes framework "Label-Efficient AnnotatioN" for sequence labeling and classification tasks
 - ► Seeks to minimize human annot. efforts
 - Enables learning from explanations for each labeling decision
 - Enhanced supervision / annotation

LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation II/IV

Figure: System architecture; Allow annotators to provide explanations for their decisions (enhanced annot.) either in natural language or by selecting *triggers* at helpful portions. Explanations parsed into labeling rules (\rightarrow weakly labeled data), used to provide annot. recommendations.

LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation III/IV

- Soft-matching between trigger representations and unlabeled sentences to generate weakly labeled data
- Natural language explanations parsed into logical form by semantic parser
 - Quality ingredients preparation all around, and a very fair price for NYC.

 POSITIVE because the word price is directly preceded by fair

 UNLABELED Delicious food with a fair price POSITIVE

Figure: Example of leveraging labeling explanations on novel data, done here for Sentiment Analysis. The phrase "Delicious food with a fair price" is weakly labeled by the above explanation.

LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation IV/IV Similarities

- ► A human annotator is aided by a model in labeling data using explanations
- Model is not trained / fine-tuned on generating explanations, but rather on providing recommendations based on previous explanations

Challenges

- Choice of model
- Source of human-annot. explanations
- Which tasks to tackle (sentiment, offensiveness, etc.)
- Going beyond textual data