- #paper/read ~ 2017 CE ~ Transformer, Attention Mechanism, Natural Language
 Processing, NLP
 - Attention Is All You Need
 - https://arxiv.org/abs/1706.03762
 - https://jalammar.github.io/illustrated-transformer/
 - https://nlp.seas.harvard.edu/2018/04/03/attention.html
 - Mentioned papers:
 - Gated Recurrent Unit, GRU
 - Sequence to Sequence Learning, Seq2seq
 - Using Attention to Align and Translate
 - RNN Encoder-Decoder
 - Google's Neural Machine Translation
 - Attention-based Neural Machine Translation
 - Exploring the Limits of Language Modeling
 - LSTM for Machine Reading
 - Convolutional Seq2seq
 - Generating Sequences With RNNs
 - Mentioned topics:
 - LSTM
 - Beam Search

Summary

- Architecture
 - The model consists of encoder and decoder stacks comprised of sublayers.

- Neither encoders nor decoders in this stack share weights, although they are identical in structure.
- The bottom encoder gets a sequence of N embeddings of size D
 as an input.
- Self-Attention is used where all W_K , W_V , and W_Q are applied to the input embeddings.
 - This allows the model to consider the most crucial parts of the context while encoding each word.
 - Before Softmaxing, the attention scores are divided by $\sqrt{\text{key size}}$ which leads to more stable Gradients.

- The default size in the paper is 64 (compared to the size of 512 used for the input embeddings).
- Attention key size is important for determining the query-key compatibility.
 - Its shortening leads to worse performance and its lengthening leads to higher Compute requirements.
 - A more sophisticated Function than dot product may be beneficial.
- The weighted sum of the value vectors is the output of the selfattention layer (it is fed to the fully-connected network within the current encoder).
- Moreover, self-Attention in Transformers is multi-headed.
 - There are h sets of W_K , W_V , and W_Q inside each encoder.
 - In the paper, the default h=8.
 - The resulting weighted sums of *values* are concatenated and fed to an additional weight matrix W_O (in order to shrink them back to the standard input size).
 - It gives the model several representational subspaces to avoid dominance of a single word while calculating attention scores.
- Here is a recap of a singe multi-headed self-attention layer:

