A4988 を MOSFET 代わりに使うハックのアイディア

青木翔平

28, Jul 2015

1 発生した問題

以下の問題が発生した。

- 買った MOSFET が動かない
- 12V 流しても 24V 流しても 3V 程度しかソースに出てこない
- AC アダプタの DIP 基板に挿したら極性が変わるという謎の問題もあるけどここでは別の話

エジソンプラザで買った MOSFET(2SK352) のグラフを図1に示す。

2 ステッピングモータのドライバのハック

A4988 は step 信号と dir 信号で駆動される一般的なステッピングモータドライバである。この出力波形はマイクロステップ駆動の有無で変わってくるが、step 信号のパルスに応じて正弦波を出力するという特性を持つ。例として図 2 に 16 マイクロステップ駆動時の出力波形を示す。

本アイディアは 24V の入力を A4988 に加えたとき、出力される正弦波をコンデンサで平滑化してすることで常に 12V 以上の出力電圧を得てやるという意図である。図 3 にこのアイディアを示す。

3 RC 回路の利用

問題は正弦波入力に対してコンデンサで平滑可能かという点なので、単純のために RC 回路の正弦波入力に対する RC 回路の過渡応答を調べる。

RC 回路を図 4 に示す。

キルヒホッフの法則と回路方程式から、以下が成り立つ。

$$v_i - v_o = iR$$
$$i = C \cdot \frac{dv_0}{dt}$$

両式からiを削除して、

$$v_i - v_0 = CR \cdot \frac{dv_0}{dt} \tag{1}$$

2SK352

SILICON N-CHANNEL MOS FET

高速度電力スイッチング 高周波電力増幅

特 長

- ■高周波特性が優れている。
- ■入出力容量が低い。
- ■高精細ディスプレイのビデオ出力ステージ,各種 **人** 用途のドライバ等に最適。

(JEDEC TO-126 MOD.)

2. Drain

3. Gate

S (Ta=25)	°C)
	S (Ta=25)

Item	Symbol	Rating	Unit
Drain-Source Voltage	V _D SS	250	V.
Gate-Source Voltage	V _{GSS}	±9	V
Drain Current	ID	.0.3	A
Drain Peak Current	ID(peak)	0.5	A
Body-Drain Diode Reverse Drain Current	I _{DR}	0.3	A
Channel Dissipation	Pch*	8	W
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	-55 ~+150	°C

*Value at Tc=25°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

	Test Condition		min.	typ.	max.	Unit
V _{(BR)DSS}	I _{D=lmA} , V _{GS=0}		250	-	1	V
I _{GSS}	V _{GS} =±9 V, V _{DS} =0		-	1	±1	mA
I _{DSS}	V _{DS} =200V, V _{GS} =0		-	-	1	mA
V _{GS} (off)	$I_{D}=1mA$, $V_{DS}=10V$		1.0	-	5.0	V
RDS (on)	I _D =0.1A , V _{GS} =9V	*	-	30	50	Ω
V _{DS(on)}	I _D =0.1A , V _{GS} =9V	*	-	3.0	5.0	. 🔻
Yfs	I _D =0.15A, V _{DS} =20V	*	- 50	80	-	mS
Ciss				20	-	pF
	I _{GSS} I _{DSS} V _{GS} (off) R _{DS} (on) V _{DS} (on) Yfs	I _{GSS} V _{GS} =±9 V, V _{DS} =0 I _{DSS} V _{DS} =200V, V _{GS} =0 V _{GS} (off) I _D =1mA , V _{DS} =10V R _{DS} (on) I _D =0.1A , V _{GS} =9V V _{DS} (on) I _D =0.1A , V _{GS} =9V Yfs I _D =0.15A, V _{DS} =20V	I _{GSS} V _{GS} =±9 V, V _{DS} =0 I _{DSS} V _{DS} =200V, V _{GS} =0 V _{GS} (off) I _D =1mA , V _{DS} =10V R _{DS} (on) I _D =0.1A , V _{GS} =9V * V _{DS} (on) I _D =0.1A , V _{GS} =9V * Yfs I _D =0.15A , V _{DS} =20V *	I _{GSS} V _{GS} =±9 V, V _{DS} =0 - I _{DSS} V _{DS} =200V, V _{GS} =0 - V _{GS} (off) I _D =1mA , V _{DS} =10V 1.0 R _{DS} (on) I _D =0.1A , V _{GS} =9V * V _{DS} (on) I _D =0.1A , V _{GS} =9V * Yfs I _D =0.15A, V _{DS} =20V *	I _{GSS} V _{GS} =±9 V, V _{DS} =0 I _{DSS} V _{DS} =200V, V _{GS} =0 V _{GS} (off) I _D =1mA , V _{DS} =10V 1.0 - R _{DS} (on) I _D =0.1A , V _{GS} =9V * - 30 V _{DS} (on) I _D =0.1A , V _{GS} =9V * - 3.0 Yfs I _D =0.15A, V _{DS} =20V * 50 80	I _{GSS} V _{GS} =±9 V, V _{DS} =0 - - ±1 I _{DSS} V _{DS} =200V, V _{GS} =0 - - 1 V _{GS} (off) I _D =1mA, V _{DS} =10V 1.0 - 5.0 R _{DS} (on) I _D =0.1A, V _{GS} =9V * - 30 50 V _{DS} (on) I _D =0.1A, V _{DS} =20V * 50 80 - V _I (s) I _D =0.15A, V _{DS} =20V * 50 80 -

図 1 2SK352 のデータシート

式(1)をラプラス変換して

$$V_i(s) - V_o(s) = CR \cdot sV_o(s) \tag{2}$$

伝達関数は、

$$G(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{cRs + 1}$$
 (3)

 v_i に正弦波として $v_i = f(t) = \alpha sin(\omega t)$ を与えた時の過渡応答は、式 (3) の伝達関数に正弦関数のラプラス変換 F(s) を畳み込んで逆ラプラス変換することで求められる。

$$G(s)F(s) = \frac{1}{CRs+1} \cdot \frac{1}{s^2 + \omega^2}$$

$$= \frac{1}{CRs^3 + s^2 + cs\omega^2 s + \omega^2}$$

図 2 16 マイクロステップ駆動時の出力波形

図3 正弦波出力(青線)をコンデンサで平滑して所望の出力(赤線)を得たい

図4 RC 回路

$$\begin{split} &= \frac{1}{CR} \cdot \frac{1}{\left(s + \frac{1}{CR}\right) \left(s + i\omega\right) \left(s - i\omega\right)} \\ &= \frac{1}{CR} \cdot \left(s - \frac{1}{CR}\right) \cdot \frac{1}{s^2 - \left(\frac{1}{CR}\right)^2} \cdot \frac{1}{s^2 + \omega^2} \\ &= \frac{1}{CR} \left(s - k\right) \cdot \left(\frac{1}{s^2 - k^2} - \frac{1}{s^2 + \omega^2}\right) \cdot \frac{1}{\omega^2 - k^2} \end{split}$$