The exchange in HEX is considered *instantaneous*, whereas the evolution of the pipe took a time dt

Iteration t: t = beginning of the iteration, <math>t + dt = end of iteration

```
Known parameters:
```

 $T_{return-NET}(t)$

 $T_{storage-HOT}(t)$, $T_{storage-COLD}(t)$

 $\dot{m}_{storage-INSTRUCTION}(t)$

 $T_{supply-INSTRUCTION}(t)$

 $\dot{m}_{return-NET}(t) = \dot{m}_{supply-NET}(t)$

 $Ts_{nodes}(t)$ (list of temperatures at the beginning of each supply side pipe)

 $Tr_{nodes}(t)$ (list of outlet temperatures of each return side pipe)

 $(Tr1(t) (primary side return temperature), \dot{m}_{supply-SS}(t) = \dot{m}_{return-SS}(t))$ for each substation

Calculation process:

storage_cold
$$\rightarrow$$
 Storage_instruction (t) [$\dot{m}_{storage}(t)$] uses and may modify $T_{return-NET}(t)$, $T_{storage-COLD}(t)$ calculates $\dot{m}_{NET}(t) = \dot{m}_{return-NET}(t) - \dot{m}_{storage}(t)$

GEO HEX \rightarrow calculation of $T_{supply-NET}(t)$ (outlet primary temperature of the geothermal HEX) based on the knowledge of $T_{return-NET}(t)$ and $\dot{m}_{NET}(t)$

storage_hot
$$\rightarrow$$
 $Storage_instruction$ (t) $[\dot{m}_{storage}(t)] =>$ equilibrium with storage_cold uses and may modifies $T_{supply-NET}(t)$, $T_{storage-HOT}(t)$ calculates $\dot{m}_{supply-NET}(t) = \dot{m}_{NET}(t) + \dot{m}_{storage}(t)$

iter_returnside \rightarrow evolution of the return pipes: calculation of $T_{outlet-pipe}(t+dt)$) based on $\dot{m}_{return-SS}(t) = \dot{m}_{supply-SS}(t)$ and $Tr_{nodes}(t)$ and Tr1(t)

→ Update $Tr_{nodes}(t + dt) = T_{outlet-pipe}(t + dt)$

 \rightarrow calculation of $T_{return-NET}(t+dt)$

iter_supplyside \rightarrow calculation of $P_{Boiler}(t)$ in order to increase supply temperature from $T_{supply-NET}(t)$ to $T_{supply-INSTRUCTION}(t) = Ts_{nodes}(t)[0]$

 \rightarrow evolution of the supply pipes based on $Ts_{nodes}(t) \Rightarrow$ update

 $Ts_{nodes}(t+dt)$

$$\rightarrow$$
 $Ts1(t+dt) = Ts_{nodes}(t+dt)$

ightharpoonup Calculation substation HEX (instantaneous) => calculation of Tr1(t+dt)

and $\dot{m}_{return-SS}(t+dt)$ for each SS => we obtain $\dot{m}_{return-NET}(t+dt)$

 $T_{return-NET}(t+dt)$ is calculated with $\dot{m}_{return-SS}(t)$. However, the return mass flow at t+dt is $\dot{m}_{return-SS}(t+dt)$. Is that a problem?