Laplace Transform

Some important signals:

$$f(t) = 1 \quad t > 0$$

$$= 0 \quad t < 0$$

Parabolic:
$$f(H = \frac{1}{2}t^2 + 70)$$

 $p(H) = 0 + < 0$

$$X[f,(+)*f_{2}(+)] = F_{3}(3)F_{2}(5)$$

 $X[f(t-7)u(t-7)] = \bar{c}^{ST}F(3)$

Initial Value Theorem

Final Value Theorem

If SF(3) is analytic on the imaginary axis and in the right-half of the S-p lane Xt + f(t) = Xt + SF(3) $t \to \infty$

-It sFly has any pole with real part Zero or positive, the final value theorem is NOT applicable.

Example:
$$f(t) \xrightarrow{K} F(s) = \frac{5}{s(s^2 + s + 2)}$$

SF(s) =
$$\frac{5}{5^{4}+5+2}$$

At $f(t) = At SF(s) = At $\frac{5}{5^{4}+5+2} = \frac{5}{2}$

At $F(s) = \frac{w}{5^{4}+w^{2}}$, $F_{2}(s) = \frac{5+1}{5(5-2)}$

SF₁ = $\frac{5w}{5^{4}+w^{2}}$ or $\frac{5}{5} = \frac{5+1}{5-2}$

SF₂ is $\frac{5}{5} = \frac{5+1}{5-2}$

The right-half of the s-plane.

The right-half of the s-plane.

So Final value theorem cannot be applied.$

Example: $y(3) = \frac{K_1}{5} e(3) = \frac{K_1}{5} \left(\frac{1}{5} - K_2 y(5) \right)$ $\left(1+\frac{K_1K_2}{5}\right)Y(3)=\frac{K_1}{5^2}$ K1/52 5 + K1 K2 is analytic in the closed right-half of the 5-plane. $SY(S) = \frac{KL}{S+K} \frac{K_1}{S+K_2} = \frac{L}{K_2}$

$$K_{z}=0.25$$
, $Y(t)=4$, $t\to\infty$
 $K_{z}=0.25$, $Y(t)=4$, $t\to\infty$

Invoise deplue Transform

 $G(s)$ is given, find $g(t)$
 $g(t)=\sqrt{1}[G(s)]$

Example:

 $G(s)=\frac{5s+3}{[s+1)}$

Find $g(t)$

Univer Heaviside

 $G(s)=\frac{5s+3}{[s+1)}$
 $G(s)=\frac{5s+3}{[s+1)}$

$$C = (5+3) G(5) = -6$$

$$G(5) = -\frac{1}{5+1} + \frac{7}{5+2} - \frac{6}{5+3}$$

$$\sqrt{g(+)} = -\frac{1}{6} + 7 + \frac{7}{5+2} - \frac{6}{5+3}$$
The pole-inary Asion the two origins $g(t) = 0$

$$\sqrt{g(+)} = -\frac{3}{2} - \frac{3}{2} -$$