CS224n: NLP with Deep Learning

Winter 2019

Scribes: Akash Gupta

Lecture 6

Course Coordinator: Prof. Chris Manning

Language Modeling - Task of predicting what word comes next. Formally, given a sequence $x^{(1)}, \ldots, x^{(t)}$ compute probability distribution of the next word $x^{(t+1)}$:

$$P(x^{(t+1)}|x^{(1)},....,x^{(t)})$$

where $x^{(t+1)}$ can be any word in the vocabulary $V = \{w_1, \dots, w_V\}$

-> LM can also be thought of as a system that assigns probability to a piece of text. For eg - for some text $x^{(1)}, \ldots, x^{(t)}$ the probability of this text is (according to LM):

$$P(x^{(1)}, \dots, x^{(T)}) = P(x^{(1)}) \times P(x^{(2)}|x^{(1)}) \times \dots \times P(x^{(T)}|P(x^{T-1}), \dots, x^{(1)})$$

$$(6.1)$$

$$= \prod_{t=1}^{T} P(x^{(t+1)}|x^{(1)}, \dots, x^{(t)})$$
(6.2)

(Pre deep learning) n-gram Language Model -

- 1. n-gram is a chunk of n consecutive words.
- 2. Simplifying Assumption $x^{(t+1)}$ depends only on the preceding n-1 words.

$$P(x^{(t+1)}|x^{(t)},...,x^{(t)}) = \frac{P(x^{(t+1)},x^{(t)},...,x^{(t-n+2)})}{P(x^{(t)},...,x^{(t-n+2)})}$$

3. How to get prob? - By counting the no. of n-gram and n-1 gram.

$$P(x^{(t+1)}|x^{(t)}, \dots, x^{(1)}) = \frac{count(x^{(t+1)}, x^{(t)}, \dots, x^{(t-n+2)})}{count(x^{(t)}, \dots, x^{(t-n+2)})}$$

- 4. Sparsity problem -
 - (a) What if numerator is 0? Prob assigned 0 (BAD!), Solution Smoothing i.e. adding small delta.
 - (b) What if denominator is 0? Cannot even calculate prob (BAD!), Solution Back off i.e. n = n-1, So 4-gram LM to tri-gram LM.
- 5. Increasing n makes sparsity problems worse. Can't have > 5
- 6. Storage problem As n increases, model size increases since we have to store counts of n-grams.
- 7. Generate text using n-gram by sampling and concatenating.

Neural LM -

- 1. Fixed-window Neural model From NER in Lecture 3 Using embedding matrix
 - Improvements over n-gram LM No sparsity problem, No need to store n-grams

6-2 Lecture 6

- Drawbacks Fixed window is too small, Enlarging window increases W, $x^{(1)}$ and $x^{(2)}$ are multiplied by completely different weights in W. No symmetry in how inputs are processed > Main idea behind introducing using RNNs for LM
- 2. Recurrent Neural Networks (RNNs) -
 - input sequences, hidden states, outputs.
 - Same weight matrix applied all the words (at every time step).
 - Number of hidden states = no. of inputs.
 - Embeddings can be downloaded (e.g. GloVe), Can be fine tuned, or learned from scratch.
 - Advantages Can process any length, Computation for may steps back, Model size doesn't increase for longer input, Same weights applied.
 - Disadvantages Recurrent computation is slow, Not many steps back in practice.
 - Idea behind using same weights is that we are trying to learn a general function and not just one word and since each words are vectors they have a lot of positions(or numbers) to store information for different context.
 - Train using SGD and loss fn cross entropy.
 - Backpropagation through time -

$$\frac{\partial J^{(t)}}{\partial W} = \sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial W}|_{i}$$

- Character level RNN-LM
- 3. Evaluating LM Std eval metric perplexity

$$perplexity = \prod_{t=1}^{T} \left(\frac{1}{P_{LM}(x^{(t+1)}|x(t), \dots, x(1))}\right)^{1/T}$$

which is equal to exponential of cross entropy loss. So low perplexity is better

- -> Language modeling is a benchmark task for measuring progress on Language Understanding. Other tasks Predictive typing, Speech recognition, Authorship Identification, NMT, etc.
- $-> RNN \neq LM$
- -> Sentiment Classification use final hidden state as sentence encoding
- QA Question encoding + context
- > RNN = Vanilla RNN