S Parameters

- **Scattering parameters** also known as S-parameters refer to the elements in a mathematical matrix describing the behavior of an electrical network (or circuit) when it is being stimulated by an electrical signal.
- At high frequencies, it becomes difficult to measure **voltages and currents** directly.

 Consequently, S-parameters describe the input-output relationships of **power waves** between the **ports** of an electrical network.

Benefits of Using S-parameters:

S-parameters provide engineers with valuable information concerning the performance of linear electrical networks, including RF circuits, amplifiers, and filters.

This information includes:

- •Details of signal magnitude, phase, reflection, and attenuation
- •Locations of signal losses and impedance mismatches
- •Transmission line parameters, such as R, L, C, G, TD, and Z0

For a matched two-port network, the reflection coefficients are zero and

$$S_{11} = S_{22} = 0 ag{10.138}$$

The input reflection coefficient can be expressed in terms of the S-parameters and the load Z_L as

$$\Gamma_i = \frac{b_1}{a_1} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L}$$
 (10.139)

where

$$\Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o} \tag{10.140}$$

Similarly, the output reflection coefficient (with $V_g = 0$) can be expressed in terms of the generator impedance Z_g and the S-parameters as

$$\Gamma_o = \frac{b_2}{a_2} \Big|_{V_r = 0} = S_{22} + \frac{S_{12} S_{21} \Gamma_g}{1 - S_{11} \Gamma_g}$$
 (10.141)

where

$$\Gamma_{g} = \frac{Z_{g} - Z_{o}}{Z_{g} + Z_{o}} \tag{10.142}$$

Thus, the S-matrix for a two-port network is written as:

$$egin{pmatrix} S_{11} & S_{12} \ S_{21} & S_{22} \end{pmatrix}$$

Where:

- S_{11} is input port reflection coefficient
- $oldsymbol{S}_{22}$ is the output port reflection coefficient
- S_{12} is the input port transmission coefficient (or "reverse voltage gain")
- S_{21} is the transmission coefficient (or "forward voltage gain")

 S_{11} (Reflection Coefficient) \rightarrow Measures how much signal is reflected (impedance matching).

 S_{21} (Transmission Coefficient) \rightarrow Measures how much signal passes through the system.

Microstrip Patch Antenna

Types of Microstrip Patch Antenna

Square Dipole Square Circular

Rectangular Elliptical Triangle

Microstrip Patch Antenna Calculation

Step 1: Calculation of the Width (W) -

$$W = \frac{c}{2f_o\sqrt{\frac{(\varepsilon_r + 1)}{2}}}$$

Step 2: Calculation of the Effective Dielectric Constant. This is based on the height, dielectric constant of the dielectric and the calculated width of the patch antenna.

$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + 12 \frac{h}{W} \right]^{-\frac{1}{2}}$$

Step 3: Calculation of the Effective length

$$L_{eff} = \frac{c}{2f_o\sqrt{\varepsilon_{eff}}}$$

https://www.everythingrf.com/rf-calculators/microstrip-patchantenna-calculator

Step 4: Calculation of the length extension AL

$$\Delta L = 0.412h \frac{(\varepsilon_{eff} + 0.3)(\frac{W}{h} + 0.264)}{(\varepsilon_{eff} - 0.258)(\frac{W}{h} + 0.8)}$$

Step 5: Calculation of actual length of the patch

$$L = L_{eff} - 2\Delta L$$

Where the following parameters are used

fo is the Resonance Frequency

W is the Width of the Patch

L is the Length of the Patch

h is the thickness

 ε_r is the relative Permittivity of the dielectric substrate

c is the Speed of light: 3 x 108