Exercises: Line Integral by Coordinate

Problem 1. Let C be the curve from point p=(0,0) to q=(2,4) on the parabola $y=x^2$. Calculate $\int_C (x^2-y^2)dx$.

Problem 2. Let $\mathbf{r}(t) = [t, t^2, t^3]$ and $\mathbf{f}(\mathbf{r}) = [x - y, y - z, z - x]$. Let C be the curve from the point of t = 0 to the point of t = 1. Calculate $\int_C \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r}$.

Problem 3. Let r(t) = [x(t), y(t)] where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Let p be the point given by $t = \pi/4$. Calculate $\frac{dx}{ds}$ at p.

Problem 4. Let r(t) = [x(t), y(t), z(t)]. Let p be the point given by $t = t_0$. Prove that $\left[\frac{dx}{ds}(t_0), \frac{dy}{ds}(t_0), \frac{dz}{ds}(t_0)\right]$ is a unit tangent vector at p.

Problem 5. This problem allows you to see the equivalence of line integral by length and line integral by coordinate. Let r(t) = [x(t), y(t)] where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Convert $\int_C x \, dx + \int_C y^2 \, dy$ to line integral by length.