Защита лабораторной работы №3

Шифрование гаммированием

Асеинова Е.В.

14 октября 2023

Российский университет дружбы народов, Москва, Россия

Цель выполнения лабораторной работы

- Освоение шифрования гаммированием
- Программная реализация алгоритма ширования гаммированием конечной гаммой

Теоретические сведения

Гаммирование - процедура наложения при помощи некоторой функции F на исходный текст гаммы шифра, то есть псевдослучайной последовательности (ПСП) с выходом генератора G. Псевдослучайная последовательность по своим статистическим свойствам неотличима от случайной последовательности, но является детерминированной, то есть известен алгоритм ее формирования.

Результат выполнения

Результат выполнения лабораторной работы

Алгоритм поиска зашифрованного текста на основе принципа формирования шифрования гаммирования:

```
[44] def encrypt(message: str, gamma: str):
       alph = alphabet('eng')
       # if message.lower() not in alph:
        # alph = alphabet('rus')
       length = len(alph)
       def gamma en(letters pair: tuple):
           ind = (letters pair[0] + 1) + (letters pair[1]+1) % length
           if ind > length:
             ind = ind-length
           neturn ind-1
       clear message = list(filter(lambda s: s.lower() in alph, message))
       clear gamma = list(filter(lambda s: s.lower() in alph, gamma))
       ind message = list(map(lambda s: alph.index(s.lower()), clear message))
       ind gamma = list(map(lambda s: alph.index(s.lower()), clear gamma))
       for i in range(len(ind_message) - len(ind_gamma)):
         ind_gamma.append(ind_gamma[i])
       print(f'{message.upper()} -> {ind_message}\n{gamma.upper()} -> {ind_gamma}'
       ind_encrypt = list(map(lambda s: gamma_en(s), zip(ind_message, ind_gamma)))
       print(f'Форма шифрования: {ind encrypt}\n')
       return ''.join(list(map(lambda s: alph[s], ind encrypt))),upper()
```

Figure 1: Реализация шифрования гаммирования

Результат выполнения лабораторной работы

Пример шифрования:

```
/ [40] def check(message:str, gamma: str):
       print(f'Peavльтат шифрования: {encrypt(message, gamma)}')
[41] message = 'ПРИКАЗ'
     gamma = 'FAMMA
     check(nessage, garma)
     ПРИКАЗ -> [15, 16, 8, 10, 0, 7]
     FAMMA -> [3, 0, 12, 12, 0, 3]
     Форма шифрования: [19, 17, 21, 23, 1, 11]
     Результат шифрования: УСХЧБЛ
 nessage = 'HELLO DARKNESS MY OLD FRIEND'
      gamma = 'TALK'
     check(message, gamma)
     HELLO DARKNESS MY OLD FRIEND -> [7, 4, 11, 11, 14, 3, 0, 17, 10, 13, 4, 18, 18, 12, 24, 14, 11, 3, 5, 17, 8, 4, 13, 3]
     TALK -> [19, 0, 11, 10, 19, 0, 11, 10, 19, 0, 11, 10, 19, 0, 11, 10, 19, 0, 11, 10, 19, 0, 11, 10]
     Форма шифрования: [1, 5, 23, 22, 8, 4, 12, 2, 4, 14, 16, 3, 12, 13, 10, 25, 5, 4, 17, 2, 2, 5, 25, 14]
     Pesynьтат шифрования: BFXWIEMCEOODMNKZFERCCFZO
```

Figure 2: Пример работы алгоритма

Выводы

- 1. Изучили шифрование гаммированием
- 2. Реализовали алгоритм шифрования гаммированием конечной гаммой на языке Python