Grupo 7169 - Sem. 2025-2

Tarea 01

Marcos López Merino

Prof.: Dr. Salvador E. Venegas Andraca

Entrega: 28 de marzo de 2025

Problema 1

Considere los siguientes números complejos:

$$a = (2+3i)(4+i), (1.1)$$

$$b = \frac{2+3i}{4+i}. (1.2)$$

(a) Exprese cada número en la forma x + iy.

Solución

Para expresar cada uno de los números de la forma deseada primero desarrollamos cada una de las expresiones. Por un lado, (1.1) queda como

$$a = 2(4) + 2i + 3i(4) + 3i(i),$$

$$= (8-3) + i(2+12),$$

$$a = 5 + 14i,$$

$$(1.3)$$

con x = 5 y y = 14.

Por el otro, (1.2) se ve como

$$b = \frac{2+3i}{4+i} \frac{4-i}{4-i},$$

$$= \frac{(2+3i)(4-i)}{4^2-i^2},$$

$$= \frac{8-2i+12i+3}{17},$$

$$= \frac{8+3}{17} + \frac{12-2}{17}i,$$

$$b = \frac{11}{17} + \frac{10}{17}i,$$
(1.4)

con
$$x = \frac{11}{17}$$
 y $y = \frac{10}{17}$.

(b) Calcule el complejo conjugado de $a \ y \ b$.

Solución

De los resultados del inciso anterior, tenemos que el complejo conjugado de (1.3) es

$$a^* = 5 - 14i.$$

y de (1.4)

$$b^* = \frac{11}{17} - \frac{10}{17}i.$$

(c) Exprese cada número en la forma polar, $re^{i\theta}$.

Solución

Para pasar a la forma polar primero debemos recordar que

$$r = \sqrt{x^2 + y^2},$$

 $\theta = \arctan\left(\frac{y}{x}\right).$

Así, para a tenemos que

$$r = \sqrt{5^2 + 14^2} = \sqrt{221},$$

$$\theta = \arctan\left(\frac{14}{5}\right).$$

Entonces, (1.3) en su representación polar se ve como:

$$a = \sqrt{221} e^{i \arctan\left(\frac{14}{5}\right)}. \tag{1.5}$$

Para (1.4) tenemos

$$r = \sqrt{\left(\frac{11}{17}\right)^2 + \left(\frac{10}{17}\right)^2} = \sqrt{\frac{13}{17}},$$
$$\theta = \arctan\left(\frac{10}{11}\right).$$

Tal que,

$$b = \sqrt{\frac{13}{17}} e^{i \arctan\left(\frac{10}{11}\right)}.$$

(d) Calcule a^5 y \sqrt{b} . Use la representación más conveniente para cada operación, pero exprese el resultado en la forma x+iy.

Solución

Para calcular a^5 usamos la representación dada por (1.3), tal que,

$$a^5 = \left(\sqrt{221}e^{i\arctan(14/5)}\right)^5,$$

= $(221)^{5/2}e^{i5\arctan(14/5)},$

donde $r=(221)^{5/2}$ y $\theta=5\arctan(14/5)-2\pi$. Entonces,

$$a^{5} = (221)^{5/2} \left[\cos \left(5 \arctan(14/5) - 2\pi \right) + i \sin \left(5 \arctan(14/5) - 2\pi \right) \right],$$

$$a^{5} = 718525 - 104426i.$$

Análogamente,

$$\sqrt{b} = \left[\left(\frac{13}{17} \right)^{1/2} e^{i \arctan(10/11)} \right],$$
$$= \left(\frac{13}{17} \right)^{1/4} e^{i \arctan(10/11)/2},$$

donde $r=(13/17)^{1/4}$ y $\theta=\arctan(10/11)/2.$ Por lo que,

$$\sqrt{b} = \left(\frac{13}{17}\right)^{1/4} \left[\cos\left(\frac{\arctan(10/11)}{2}\right) + i\sin\left(\frac{\arctan(10/11)}{2}\right)\right],$$

$$\sqrt{b} = 0.8722 + 0.3372i.$$

Muestre lo siguiente:

- (a) Si a = x + iy, entonces $a \cdot a^* = ||a||^2$.
- (b) Si $a=r_1\mathrm{e}^{i\theta_1}$ y $b=r_2\mathrm{e}^{i\theta_2}$, con $r_i,\theta_i\in\mathbb{R}$.
- (c) Si $a = re^{i\theta}$, con $r, \theta \in \mathbb{R}$, entonces |a| = r.
- (d) Si $a = re^{ix+y}$, con $r, x, y \in \mathbb{R}$, entonces $|a| = re^y$.

Considere los operadores

$$\hat{S}^{\dagger} = |0\rangle\langle 0| - i|1\rangle\langle 1|,$$

$$\hat{Y} = -i|0\rangle\langle 1| + i|1\rangle\langle 0|.$$

y los kets

$$|\psi\rangle = \frac{1+i}{2}|0\rangle + \frac{i}{2}|1\rangle,$$

$$|\phi\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{\mathrm{e}^{i\theta}}{\sqrt{2}}|1\rangle.$$

- (a) Muestre que los operadores son unitarios y que los kets están normalizados.
- (b) Calcule $\langle \phi | \psi \rangle$ y $\langle \psi | \phi \rangle$.
- (c) Calcule $\hat{T}|\psi\rangle$ y $\hat{S}^{\dagger}|\phi\rangle$.
- (d) Mida el estado $\hat{T}|\psi\rangle$ en la base computacional. ¿Cuál es la probabilidad de medir $|0\rangle$ y $|1\rangle$?
- (e) Mida el estado $\hat{S}^\dagger |\phi\rangle$ en la base diagonal. ¿Cuál es la probabilidad de medir $|+\rangle$ y $|-\rangle$?

Muestre que la matriz

$$U = \begin{pmatrix} e^{i\phi} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & e^{-i\phi} \cos \frac{\pi}{2} \end{pmatrix}$$

es unitaria, para $\theta \in (0,2\pi)$ y $\phi \in [0,2\pi).$

Si \hat{H} es el operador Hadamard. Muestre que

$$\hat{H}^{\otimes n}|0\rangle^{\otimes n} = \frac{1}{\sqrt{2^{2n}}} \sum_{i=0}^{2^{n}-1} |i\rangle.$$

Calcula los eigenvalores y lo eigenvectores de la matrix X de Pauli.

$$\hat{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$