Complexity of Socio-Economic Political Systems

Application of Functional Periodicity

Complexity of Socio-Economic Political Systems

 Axiomatic design and complexity theory appear to be equally applicable to nontechnical fields such as economic development, government, and educational institutions.

• Korean Economic Development Plan 1980-85

National Science Foundation 1984-88

• MIT Department of Mechanical Engineering 1991-2001

• Transformed a system with time-dependent combinatorial complexity to a system with time-dependent periodic complexity

• In some cases, introduced new FRs

• Development of the Five-Year (1980-85) Economic Development Plan of the Republic of Korea

History of Industrialization of South Korea

- 1945 -- Liberation of Korea with the ending of the Second World War (no industrial output)
- 1948 -- Republic of South Korea under Syngman Rhee
- 1961 -- Military coup d'etat (General Park, Junghee)
- 1961 to 1970 -- Labor intensive industries (textile, apparel, shoes, etc.)
- 1970 -- Heavy industries (automobiles, shipbuilding, steel making, machine tools, earthmoving equipment, etc.)
- 1979 -- Assassination of President Park
- July 1980 --

Status of Industrialization in 1980

- Ambitious industrialization plan based on the success of the labor intensive business and overseas construction business
- Capital formation through the concentration of capital and privileges in a few business groups
- Government guaranteed loans
- Rapid pace of investment
- Corruption
- Lack of domestic market for automobiles, etc.
- Export oriented economy
- Lack of technologies
- Poor planning (duplication of efforts, market, etc.)

Status of Industrialization in 1980

- Time-Dependent Combinatorial Complexity Spiral was created.
 - Heavily borrowed capital
 - Heavy losses
 - More borrowing by going into another business
 - Cash flow driven business
 - Unsustainable debt load
 - Under investment in some areas
 - Corruption created by the government approval and control of loans, etc.

- Accepted the highest-level FR (FR= Develop heavy industries for Korea)
- Assessed the status of the following industries/sectors
 - Automobiles
 - Shipbuilding
 - Machine tools
 - Power plants and machinery
 - Earthmoving equipment
 - Small businesses
 - Research infrastructure

- Many of the FRs were not changed.
- Some FRs, DPs, and PVs were changed.
- Imposed Constraints
 - Automobiles
 - Shipbuilding
 - Machine tools
 - Power plants and machinery
 - Earthmoving equipment
 - Small businesses
 - Research infrastructure

- Changed DPs.
- Imposed Constraints

Automobiles

- The domestic market must be large enough to support the industry. A country must have at least 30 million people.
- Korea is large enough to support automobile industry.
- Minimum production volume of 400,000 passenger cars/year
- Volume too small to support three competing companies
- One company should specialize in passenger cars, another in buses, and the third in trucks until the volume can justify expansion.
- Increase the domestic demand rate.

- Changed DPs and PVs
- Imposed Constraints

Shipbuilding

- Export oriented industry.
- Korea can be competitive in shipbuilding labor intensive, human resource, etc.
- Insufficient capital and too high debt load
- Convert bank loans to equity.
- Combine the businesses to create an internationally competitive firm.

- Changed FRs
- Imposed Constraints
 - Power Plant equipment
 - Korea cannot be competitive.
 - Too much investment for the available market.
 - Should convert the plant being built to other purposes.

- Changed FRs
- Imposed Constraints
 - Machine tool industry
 - Small market worldwide
 - Korea needs machine tool industry.
 - Needs more technology and human resource.

- Changed FRs
- Imposed Constraints
 - Research Infrastructure
 - Combine KIST and KAIST
 - KIST should specialize in a few fields, e.g., automobile related technology.

- Support small business
 - Low interest loans
 - Regional engineering experimental stations
 - Require large firms to subcontract government work
 - Simplify the government approval procedure

 Transformation of the National Science Foundation Engineering Directorate (1984-88)

NSF Act of 1950, as Amended

Promote progress of science and engineering

To provide welfare, health and prosperity

To secure national defense

others

Organization of NSF Engineering

See Figure 10.1 in Suh, N. P. Complexity: Theory and Applications. New York, NY: Oxford University Press, 2005.

Problem Definition

- A wrong set of FRs.
- Even for the right FRs, there was timedependent combinatorial complexity problem.
- Not enough fund for engineering research and education.
- Entrenched PVs.
- Greater presence of engineering in Federal Government
- Vicious cycle for universities and funding agencies

New Set of FRs

- Strengthen the engineering science base.
- Create the science base for fields in which the science base is absent.
- Support emerging technologies.
- Support critical areas of technology.
- Promote engineering systems research by supporting group efforts.
- Encourage innovative research.
- Strengthen undergraduate engineering education.

New (1985) NSF Engineering Directorate Structure

See Figure 10.2 in Suh, N. P. Complexity: Theory and Applications. New York, NY: Oxford University Press, 2005.

The design equation may be written as

Goal a Goal b Goal c Goal d Goal e Goal f	0 X 0 0 0 0 0 0	0 X 0 0	0 0 X 0	0 0 0 X	O Eng. Sci. Divs. O Design, Mfg., CompInt. Eng. Div O Emer. Engr. Tech. Div. O Critical Engr. Systems Div. O Cross-discip. Res. Div. X Engr. Inf. Dev. Office	٧.
(Goal f)	$[0 \ 0]$	0	0	0	X Engr. Inf. Dev. Office	J

• Transformation of the MIT Department of Mechanical Engineering (1991-2001)

TABLE 1.2 Four Domains of an Academic Department

Costation Dogate	Nunctional Demain	Philaical Compiler	Processizionnant	
CA ₁ : Customer Satisfaction	FR ₁ : Quality	DP ₁ : Programs	PV _t : Academic People	
CA ₁₁ Undergraduates	FR ₁₁ Provide quality undergraduate education	DP ₁₁ Undergraduate program	PV ₁₁ Strong involvement of faculty	
CA ₁₂ Graduates	FR ₁₂ Provide quality graduate education	DP ₁₂ Graduate program	PV ₁₂ Academically strong graduate students	
CA ₁₃ Research Sponsors	FR ₁₃ Conduct trend-setting quality research	DP13 Research organization	PV ₁₃ Strong faculty	
CA ₁₄ Public (society at large)	FR ₁₄ Promote active participation in public activities	DP44 Service function	PV ₁₄ Active support of external activities of faculty	
CA2: Cash Flow	FR ₂ : Good Management of Resources	DP ₂ : Administrative Mechanisms	PV ₂ : Administrative People	
CA21 Teaching support	FR ₂₁ Use the general fund effectively	DP ₂₁ Budget and planning mechanism	PV21 Budget officer	
CA22 Research support	FR ₂₂ Generate external research support	DP ₂₂ Research support infrastructure	PV22 Support staff for research	
CA ₂₃ Capital investment	FR23 Solicit gifts	DP ₂₁ Fund-raising mechanisms	PV ₂₃ Department head and faculty fund generators	
CA ₂₄ Human resource "protection"	FR24 Create chairs, support, etc.	DP ₂₄ Incentive system	PV ₂₄ Department head and association head	
CA ₃ : Profit	FR ₃ : Productivity (Intellectual and Financial)	DP ₁ : Means	PV ₃ : Methods	
CA ₃₁ Better teaching paradigms	FR ₁₁ Create effective pedagogical tools	DP ₃₁ Development of textbooks, videotapes	PV ₃₁ Support and reward mechanisms	
CA _N Research infrastructure	FR ₃₂ Develop labs and centers	DP ₁₇ (Setter) research organizations	PV ₃₂ Establish interdisciplinary research activities	
CA ₃₃ New inventions and discoveries	FR ₃₃ Promote scholarship and creative activities: patents, monographs, prizes and awards	DP ₃₃ Active support, promotion, and nomination	PV ₃₃ Staff support	
CA _M Better tools (equipment/ facilities)	FR ₃₄ Secure equipment and facilities	DP _M Investment in expital goods	PV _M Fund raising	
CA ₃₅ Outstanding graduates: captains of industry, researchers, professors, government officials	FR ₃₅ Provide mentorship	DP ₃₅ Stronger faculty/student interaction	PV ₃₅ "Research teams" and commencement of thesis work at sophomore level	
CA ₄ : Growth (Intellectual and Physical)	FR ₄ : Innovation	DP4: Environment/ Culture	PV ₄ : Resources	
CA ₄₁ Define ME of the twenty first century	FR ₄₁ Create new pedagogical tools and disciplines	DP41 Creative, experimental educational programs	PV ₁₁ Faculty time and financial support	
CA ₄₂ Define engineering of the twenty-first century	FR ₄₂ Pioneer new engineering tools, methods, and books	DP ₁₂ Active interaction with industry	PV ₄₂ "Manufacturing Institute"	
CA ₂ , Shape the society of the twenty-first century	FR43 Solve societal problems	DP ₄₃ Active interaction with industry, government	PV43 External participation	
CAM Strengthen the human resource of engineering	FR ₄₄ Entice minorities and women into engineering	DP44 Special programs	PV44 Pinancial resources	

Objective of MIT's ME Department

Transformation of the field of mechanical engineering from a discipline that has been primarily based on

physics

into one that is based on physics, information, and biology,

while maintaining a strong foundation in design.

New FRs for the Department

- Information technology
 - •Bio-Instrumentation
- •Engineering systems (manufacturing systems)
 - •MEMS and nanotechnology
 - •Energy

Specific Goals of the Department

Research Emphasis

Near the Two Ends of the Research Spectrum

Research Emphasis of the ME Department

Characteristic of Academic Research

Academic research often deals with "legitimate, well-understood problems within their disciplines"

rather than

"the exceptional, unorthodox work that creates revolutions" in science and technology"

-- From Chaos by Jame Gleick --

How did we manage the change?

- To deal with the challenges and the opportunities of our era, we established new goals and examined how we should manage the required changes.
 - We identified the new fields/topics in which we should pursue excellence in education and research.

• We hired new faculty members with different expertise to complement the background of the existing faculty members.

How did we manage the change?

Out of 26 or new faculty members hired, about 50% has degrees in physics, computer science, electrical engineering, applied mathematics, biology, chemistry optics, and materials.

We created new research laboratories and facilities.

We changed the undergraduate program.

New Laboratories and Facilities

- We were able to receive a number of large gifts for our programs and laboratories.
 - We renovated 75% of the physical facilities.
 - The AMP Material Laboratory
 - Rohsenow Heat and Mass Transfer Laboratory
 - Pappalardo Undergraduate Teaching Laboratories
 - D'Arbeloff Laboratory for Information Systems
 - Der Torossian Computational Laboratory
 - Hatsopoulos Micro-Fluids Laboratory
 - Laboratory for The 21st Century Energy
 - Cross CAD/CAM Laboratory
 - Cross Student Lounge
 - The Park Lecture Halls

How did we manage the change?

• We created funds for a number of faculty chairs, textbooks, etc.

 MIT/Pappalardo Series of Mechanical Engineering Books by Oxford University Press

We partially changed doctoral programs.