

1. (4 points) If $R_1 = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)\}$ on the set $A = \{a, b, c, d\}$ and $R_2 = \{(a,b), (a,c), (c,b), (b,c)\}$ on the set $B = \{a,b,c\}$, which of the relations is reflexive? Symmetric? Transitive? If the property does not hold for one of the relations, please say why.

Posterie V Symmetrie V Transitive V

Not reflexive (no self relations)

Not Symmetric (for every XPy we must have yRx, however we have (a,b) but not (b,a))

Not Transitive (we have (c,b) + (b,c)

2. (6 points) if $a_n = 4a_{n-1} - 4a_{n-2}$, with $\underline{a_0 = 6}$ and $\underline{a_1 = 8}$, prove by induction that $a_n = 6 \cdot 2^n - 2n \cdot 2^n$ by induction on n,

B.S

$$a_0 = 6 = 6 \cdot 2^{\circ} - 2 \cdot 0 \cdot 2^{\circ}$$

 $6 = 6 \checkmark$
 $a_1 = 8 = 6 \cdot 2^{\circ} - 2 \cdot 1 \cdot 2^{\circ}$
 $8 = 8 \checkmark$

$$a_{n+1} = 4a_n - 4a_{n-1}$$

$$= 4 \left[6 \cdot 2^n - 2 \cdot n \cdot 2^n \right] - 4 \left[(6 \cdot 2^{n-1} - 2 \cdot (n-1) \cdot 2^{n-1}) \right] \quad \text{by I.H.}$$

$$= 4 \cdot 6 \cdot 2^n - 4 \cdot 7 \cdot n \cdot 2^n - 4 \cdot 6 \cdot 2^{n-1} + 4 \cdot 2 \cdot (n-1) \cdot 2^{n-1}$$

$$= 2 \cdot 2 \cdot 6 \cdot 2^n - 2 \cdot 2 \cdot 2 \cdot n \cdot 2^n - 2 \cdot 2 \cdot 6 \cdot 2^{n-1} + 2 \cdot 2 \cdot 7 \cdot (n-1) \cdot 2^{n-1}$$

$$= 2 \cdot 6 \cdot 2^{n+1} - 6 \cdot 2^{n+1} - 2 \cdot 2 \cdot 5 \cdot 2^{n+1} + 2 \cdot (n-1) \cdot 2^{n+1}$$

$$= 2^{n+1} (2 \cdot 6 - 6) - 2 \cdot 2^{n+1} (2 \cdot n - n + 1) = 2^{n+1} (6) - 2 \cdot 2^{n+1} (n+1)$$