What Is Claimed Is:

1_	A method for facilitating secure transmission of an email message
2	to anonymous recipients without divulging the identities of the anonymous
3	recipients, comprising:
4	identifying recipients of the email message, wherein the recipients can
5	include known recipients, who can be identified by examining the email message
6	and anonymous recipients, who cannot be identified by examining the email
7	message;
8	generating a session key for the email message;
9	encrypting a body of the email message with the session key;
10	creating a recipient block for the email message that contains an entry for
11	each recipient of the email message;
12	wherein each entry in the recipient block contains the session key
13	encrypted with a public key associated with the recipient to form an encrypted
14	session key, so that only a corresponding private key held by the recipient can be
15	used to decrypt the encrypted session key;
16	wherein each entry additionally contains an identifier for the associated
17	public key, so that each recipient can determine whether the recipient possesses
18	the corresponding private key that can decrypt the encrypted session key;
19	wherein identifiers for public keys belonging to known recipients are
20	statistically unique;
21	wherein identifiers for public keys belonging to anonymous recipients are
22	not statistically unique; and
23	sending the email message to the recipients.

1	2.	The method of claim 1, wherein identifiers for public keys
2	belonging to	anonymous recipients provide only enough information to exclude a
3	large percenta	age of all possible corresponding private keys from being able to
4	decrypt the bo	ody of the email message.
1	3.	The method of claim 2, wherein an identifier for a public key is
2	formed by cre	eating a hash of the public key.
1	4.	The method of claim 3, wherein an identifier for a public key
2	belonging to	an anonymous recipient is additionally modified so the identifier is
3	not statistical	ly unique;
4	where	by the identifier cannot be used to uniquely identify the anonymous
5	recipient; and	
6	where	by a recipient can use the identifier to exclude a large percentage of
7	all possible co	orresponding public keys held by the recipient from matching the
8	identifier.	
1	5.	The method of claim 1, further comprising, - encrypting the body
2	of the email n	nessage, including a checksum into the body of the email message,
3	so that a recip	ient can examine the checksum to verify that the correct private key
4	was used in de	ecrypting the email message.
1	, % .	A method for facilitating secure transmission of an email message
2	to anonymous	recipients without divulging the identities of the anonymous
3	recipients, cor	mprising:
4	receivi	ng the email message at a recipient, wherein the email message
5	includes,	

1	a message body that has been encrypted with a session key,
2	a recipient block that contains an entry for each recipient of
3	the email message,
4	wherein each entry in the recipient block contains the
5	session key encrypted with a public key associated with the
6	recipient to form an encrypted session key,
7	wherein each entry additionally contains an identifier for
8	the associated public key,
9	wherein identifiers for public keys belonging to known
10	recipients are statistically unique, and
11	wherein identifiers for public keys belonging to anonymous
12	recipients are not statistically unique;
13	attempting to match a candidate public key held by the recipient with key
14	identifier in the recipient block;
15	if the candidate public key matches a key identifier,
16	decrypting the associated encrypted session key using an
17	associated private key to restore the session key,
18	decrypting the message body using the session key, and
19	examining a checksum in the message body to verify that
20	message body was correctly decrypted.
1	7. The method of claim 6, wherein identifiers for public keys
2	belonging to anonymous recipients provide only enough information to exclude a
3	large percentage of all possible corresponding private keys from being able to
4	decrypt the message body of the email message.

1

8.

2	formed by creating a hash of the public key.
1	9. The method of claim 8, wherein an identifier for a public key
2	belonging to an anonymous recipient is additionally modified so the identifier is
3	not statistically unique;
4	whereby the identifier cannot be used to uniquely identify the anonymous
5	recipient; and
6	whereby a recipient can use the identifier to exclude a large percentage of
7	all possible public keys belonging to the recipient from matching the identifier.
1	10. A computer-readable storage medium storing instructions that
2	when executed by a computer cause the computer to perform a method for
3	facilitating secure transmission of an email message to anonymous recipients
4	without divulging the identities of the anonymous recipients, the method
5	comprising:
6	identifying recipients of the email message, wherein the recipients can
7	include known recipients, who can be identified by examining the email message
8	and anonymous recipients, who cannot be identified by examining the email
9	message;
10	generating a session key for the email message;
11	encrypting a body of the email message with the session key;
12	creating a recipient block for the email message that contains an entry for
13	each recipient of the email message;
14	wherein each entry in the recipient block contains the session key
15	encrypted with a public key associated with the recipient to form an encrypted

The method of claim 7, wherein an identifier for a public key is

16	session key, so that only a corresponding private key held by the recipient can be
17	used to decrypt the encrypted session key;
18	wherein each entry additionally contains an identifier for the public key, so
19	that each recipient can determine whether the recipient possesses the
20	corresponding private key that can decrypt the encrypted session key;
21	wherein identifiers for public keys belonging to known recipients are
22	statistically unique;
23	wherein identifiers for public keys belonging to anonymous recipients are
24	not statistically unique; and
25	sending the email message to the recipients.
1	11. The computer-readable storage medium of claim 10, wherein
2	identifiers for public keys belonging to anonymous recipients provide only enough
3	information to exclude a large percentage of all possible corresponding private
4	keys from being able to decrypt the body of the email message.
1	12. The computer-readable storage medium of claim 11, wherein an
2	identifier for a public key is formed by creating a hash of the public key.
1	13. The computer-readable storage medium of claim 12, wherein an
2	identifier for a public key belonging to an anonymous recipient is additionally
3	modified so the identifier is not statistically unique;
4	whereby the identifier cannot be used to uniquely identify the anonymous
5	recipient; and
6	whereby a recipient can use the identifier to exclude a large percentage of
7	all possible public keys belonging to the recipient from matching the identifier.

1	14. The computer-readable storage medium of claim 10, wherein prior
2	to encrypting the body of the email message, the method further comprises
3	including a checksum into the body of the email message, so that a recipient can
4	examine the checksum to verify that the correct private key was used in
5	decrypting the email message.
1	15. A computer-readable storage medium storing instructions that
2	when executed by a computer cause the computer to perform a method for
3	facilitating secure transmission of an email message to anonymous recipients
4	without divulging the identities of the anonymous recipients, the method
5	comprising:
6	receiving the email message at a recipient, wherein the email message
7	includes,
8	a message body that has been encrypted with a session key,
9	a recipient block that contains an entry for each recipient of
10	the email message,
11	wherein each entry in the recipient block contains the
12	session key encrypted with a public key associated with the
13	recipient to form an encrypted session key,
14	wherein each entry additionally contains an identifier for
15	the associated public key,
16	wherein identifiers for public keys belonging to known
17	recipients are statistically unique, and
18	wherein identifiers for public keys belonging to anonymous
19	recipients are not statistically unique;
20	attempting to match a candidate public key held by the recipient with key
21	identifier in the recipient block;

1	if the candidate public key matches a key identifier,
2	decrypting the associated encrypted session key using an
3	associated private key to restore the session key,
4	decrypting the message body using the session key, and
5	examining a checksum in the message body to verify that
6	message body was correctly decrypted.
1	16. The computer-readable storage medium of claim 15, wherein
2	identifiers for public keys belonging to anonymous recipients provide only enough
3	information to exclude a large percentage of all possible corresponding private
4	keys from being able to decrypt the message body of the email message.
1	17. The computer-readable storage medium of claim 16, wherein an
2	identifier for a public key is formed by creating a hash of the public key.
1	18. The computer-readable storage medium of claim 17, wherein an
2	identifier for a public key belonging to an anonymous recipient is additionally
3	modified so the identifier is not statistically unique;
4	whereby the identifier cannot be used to uniquely identify the anonymous
5	recipient; and
6	whereby a recipient can use the identifier to exclude a large percentage of
7	all possible public keys belonging to the recipient from matching the identifier.
1	19. An apparatus that facilitates secure transmission of an email
2	message to anonymous recipients without divulging the identities of the
3	anonymous recipients, comprising:

4	an identifying mechanism that is configured to identify recipients of the
5	email message, wherein the recipients can include known recipients, who can be
6	identified by examining the email message, and anonymous recipients, who
7	cannot be identified by examining the email message;
8	a key generation mechanism that is configured to generate a session key
9	for the email message;
10	an encryption mechanism that is configured to encrypt a body of the email
11	message with the session key;
12	a recipient block creation mechanism that is configured to create a
13	recipient block for the email message that contains an entry for each recipient of
14	the email message;
15	wherein each entry in the recipient block contains the session key
16	encrypted with a public key associated with the recipient to form an encrypted
17	session key, so that only a corresponding private key held by the recipient can be
18	used to decrypt the encrypted session key;
19	wherein each entry additionally contains an identifier for the associated
20	public key, so that each recipient can determine whether the recipient possesses
21	the corresponding private key that can decrypt the encrypted session key;
22	wherein identifiers for public keys belonging to known recipients are
23	statistically unique;
24	wherein identifiers for public keys belonging to anonymous recipients are
25	not statistically unique; and
26	a sending mechanism that is configured to send the email message to the
27	recipients.

belonging to anonymous recipients provide only enough information to exclude a

The apparatus of claim 19, wherein identifiers for public keys

20.

1

2

6

3	large percentage of all possible corresponding public keys from being able to
4	decrypt the body of the email message.
1	21. The apparatus of claim 20, wherein an identifier for a public key is
2	a hash of the public key.
1	22. The apparatus of claim 21, wherein the recipient block creation
2	mechanism is additionally configured to modify an identifier for a public key
3	belonging to an anonymous recipient so the identifier is not statistically unique;
4	whereby the identifier cannot be used to uniquely identify the anonymous
5	recipient; and
6	whereby a recipient can use the identifier to exclude a large percentage of
7	all possible public keys held by the recipient from matching the identifier.
1	23. The apparatus of claim 19, further comprising a checksum
2	mechanism that, wherein prior to encrypting the body of the email message, the
3	checksum mechanism is configured to include a checksum into the body of the
4	email message, so that a recipient can examine the checksum to verify that the
5	correct private key was used in decrypting the email message.
1	An apparatus that facilitates secure transmission of an email
2	message to anonymous recipients without divulging the identities of the
3	anonymous recipients, comprising:
4	a receiving mechanism that is configured to receive the email message at a
5	recipient, wherein the email message includes,

a message body that has been encrypted with a session key,

l	a recipient block that contains an entry for each recipient of
2	the email message,
3	wherein each entry in the recipient block contains the
4	session key encrypted with a public key associated with the
5	recipient to form an encrypted session key,
6	wherein each entry additionally contains an identifier for
7	the associated public key,
8	wherein identifiers for public keys belonging to known
9	recipients are statistically unique, and
10	wherein identifiers for public keys belonging to anonymous
11	recipients are not statistically unique;
12	a matching mechanism that is configured to attempt to match a candidate
13	public key belonging to the recipient with key identifier in the recipient block;
14	a decryption mechanism, wherein if the candidate public key matches a
15	key identifier, the decryption mechanism is configured to,
16	decrypt the associated encrypted session key using a
17	corresponding private key to restore the session key,
18	decrypt the message body using the session key, and to
19	examine a checksum in the message body to verify that
20	message body was correctly decrypted.
1	25. The apparatus of claim 24, wherein identifiers for public keys
2	belonging to anonymous recipients provide only enough information to exclude a
3	large percentage of all possible corresponding private keys from being able to
4	decrypt the message body of the email message.

1	26. The apparatus of claim 25, wherein an identifier for a public key is
2	a hash of the public key.
1	27. The apparatus of claim 26, wherein an identifier for a public key
2	belonging to an anonymous recipient is additionally modified so the identifier is
3	not statistically unique;
4	whereby the identifier cannot be used to uniquely identify the anonymous
5	recipient; and
6	whereby a recipient can use the identifier to exclude a large percentage of
7	all possible public keys belonging to the recipient from matching the identifier.