Mathematics 300 Test 1

Name:

You are to use your own calculator, no sharing. Show your work to get credit.

1. (10 points) For the following list the elements of the set between brackets.

(a) $S = \{x \in \mathbb{Z} : x(x-4) \le 0\}$

(b) $U = \{A : A \subseteq X \text{ and } |A| = 2\}$ where $X = \{1, 2, 4\}$. $U = \{1, 2, 3\}$

(c)
$$P = A \times B$$
 where $A = \{1, 3\}$ and $B = \{x, y\}$.

 $P = \{(1, x), (1, y), (3, x), (3, y)\}$

2. (10 points) If $A = \{0, 1\}$ and $B = \{3\}$ what are the following

AxB = 80,3), (1.3) \$

P(A) = \(\forall \phi \) \(\{03 \, \le 13 \, \le 0 \, 1\right\} \)

P(B) = { Ø, {3}}

 $P(A \times B) = \frac{1}{2} \emptyset , \frac{1}{2} (0,3), (1,3) \frac{1}{2} \frac{1}{2}$

 $A \times \mathcal{P}(B) = \frac{\{(0, \emptyset), (0, \xi 3 \xi), (1, \emptyset), (1, \xi 3 \xi)\}}{\{(0, \emptyset), (0, \xi 3 \xi), (1, \emptyset), (1, \xi 3 \xi)\}}$

3. (15 points) Let $C_j = \{j, j+1, j+2, j+3\}.$

CR = {3,45,6} Cy = {4,56,78 C= {5,6,7,8}

What is $C_3 \cup C_4 \cup C_5$? $\{3, 4, 5, 6, 7, 8\}$

What is $C_3 \cap C_4 \cap C_5$? $\{5, 6\}$

(-2= = = 2, -1, 0, 13 (== {-1,0,1, 2,7 (a = {0,1,2,3}

What is $\bigcup_{k=0}^{\infty} C_k$? $\{-\lambda, -1, 0, 1, \dots, \}$

What is $\bigcap_{k=0}^{\infty} C_k$?

4. (5 points) Given an expression for the shaded region

The shaded regions is $(A \land \overline{B}) \cup (B \land C \land \overline{A})$

5. (10 points) (a) Draw the Venn diagrams for $A \cup \overline{B}$ and $\overline{B-A}$. (Be sure to label the sets.)

(b) Is $A \cup \overline{B} = \overline{B - A}$? Why?

yes, as you can see above, the same regions are shaded in both AUB and B-A

6. (10 points) (a) Make the truth table for $P \Longrightarrow \sim Q$.

(b) Make the truth table for $\sim P \lor \sim Q$

wake the that table for a five Q.					
P	Q	~P	~Q	IMP VA	rd [
T	T	F	F	F	Λ
T	F	F	T	I T	/
F	T	T	F	1\ T	
F	F	T	T	11	
	1	•		1 \	

(c) Are $P \Rightarrow \sim Q$ and $\sim P \lor \sim Q$ logically equivalent? Explain your answer. Yes they are logically equivalent because the same truth fables.

21 Q

7. (5 points) If $S_1 = \{(x, 2-2x) : x \in [0,1]\}$ and $S_2 = \{(x, 2(1-x)) : x \in [1,2]\}$ draw $S_1 \cup S_2$ in the plane.

2-0

2-2

- 8. (10 points) Define the following:
 - (a) The integer n is even. An integer n is even if n=2a where for some $a \in \mathbb{Z}$.
 - (b) The integer n is odd. An integer n is odd if n=2a+1 where for some a \(\mathbb{Z} \).
 - (c) The integer a divides the integer b. The integer a divides the integer b, if b = am for some m EZ and a is the divisor of b and bus a multiple of a.
 - (i) How do we write "a divides b" in symbols?
- (d) The integer p is prime. An integer p is prime of it has exactly two positive divisors 1 and p. and 1171
- 9. (10 points) Prove that if x and y are both even integers, then $3x^2 xy + 5y^2$ is divisible by 4.

Let x and y be both even integers.

$$X = 2a$$
 for some $a, b \in \mathbb{Z}$ $Y = 2b$.

$$3x^{2} - xy + 5y^{2} = 3(2a)^{2} - (2a)(2b) + 5(2b)^{2}$$

$$3x^2 - xy + 5y^2 = 12a^2 - 4ab + 20b^2$$

$$3x^2 - xy + 5y^2 = 4(3a^2 - ab + 5b^2)$$

10. (10 points) Prove that if a, b, and c are integers and a divides b, then ac divides bc.

Lets say a, b, and c are integers.

By definition, if alb, then b = ad for some integer d \(\mathbb{Z} \), so my troly note and a for some integer d \(\mathbb{Z} \), so my troly note and a for some integer d \(\mathbb{Z} \), so my troly note and a for some integer d \(\mathbb{Z} \), ad c

= ad c

= ad c

= ac (d)

= (ac) k, where k \(\mathbb{Z} \),

thus ac | bc.

11. (5 points) What is the negotiation of the statement "For every $\varepsilon > 0$ there exists a N > 0 such that for all $n \ge N$ the inequality $|a_n| < \varepsilon$ holds." $\forall \varepsilon (\varepsilon > 0) \exists_N (N \nearrow 0) \forall_n (n \nearrow N) (|a_n| \nearrow \varepsilon)$ $\exists \varepsilon (\varepsilon \nearrow 0) \forall_N (N \nearrow 0) \exists_n (n \nearrow N) (|a_n| \nearrow \varepsilon)$ There exists an $\varepsilon \nearrow 0$, such that for every $N \nearrow 0$, there also exists an $n \nearrow N \nearrow 0$ that $(|a_n| \nearrow \varepsilon)$.