

Bachelorarbeit

Bootstrapping Ansätze zur Bestimmung von Konfidenzbändern für Verteilungsfunktionen

Dennis Richter Monat der Abgabe

Gutachter:

Prof. Dr. Peter Buchholz Name des Zweitgutachters

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl für praktische Informatik (LS 4) https://ls4-www.cs.tu-dortmund.de

Inhaltsverzeichnis

1	Ein	leitung	1
2	Gru	ındlagen	3
	2.1	Regressionsanalyse	3
	2.2	Punktschätzer	3
	2.3	Konfidenzintervalle	3
	2.4	Konfidenzbänder	3
	2.5	Methoden	3
	2.6	Bootstrap	3
3	Vor	stellung der Algorithmen	5
	3.1	parametrisches Bootstrapping	5
	3.2	nicht-parametrisches Bootstrapping	5
4	Imp	olementierung	7
	4.1	Parameter studien in OMNeT++	7
	4.2	Testszenario	7
	4.3	TODO	7
5	Aus	swertung	9
	5.1	Analytisches Verfahren	9
	5.2	parametrisches Bootstrapping	9
	5.3	nicht-parametrisches Bootstrapping	9
	5.4	Vergleich	9
6	Sch	lussteil	11
	6.1	Fazit	11
	6.2	Ausblick	11
\mathbf{A}	Wei	itere Informationen	13
Αl	bild	lungsverzeichnis	15

Algorithmenverzeichnis	17
Literaturverzeichnis	19
Erklärung	19

INHALTSVERZEICHNIS

ii

Einleitung

Grundlagen

2.1 Regressionsanalyse

$$y_j = \eta(x_j, \theta_0) + \epsilon_j, \quad j = 1, 2, ..., n \text{ und } \epsilon \sim N(0, \sigma^2)$$
 (2.1)

2.2 Punktschätzer

$$\mathbb{P}\left(\theta_L \le \theta_0 \le \theta_U\right) \ge 1 - \alpha \tag{2.2}$$

$$\theta_L, \theta_U = \hat{\theta} \mp z_{\alpha/2} \sqrt{V(\hat{\theta})} \tag{2.3}$$

2.3 Konfidenzintervalle

$$\mathbb{P}\left(y_L(x) \le \eta(x, \theta_0) \le y_U(x)\right) \ge 1 - \alpha \quad \forall x \in \mathbb{R}$$
 (2.4)

$$y_L(x), y_U(x) = \eta(x, \hat{\theta}) \mp z_{\alpha/2} \sqrt{\left(\frac{\partial \eta(x, \theta)}{\partial \theta}\right)_{\hat{\theta}}^T V(\hat{\theta}) \left(\frac{\partial \eta(x, \theta)}{\partial \theta}\right)_{\hat{\theta}}}$$
(2.5)

2.4 Konfidenzbänder

$$\mathbb{P}\left(y_L(x) \le \eta(x, \theta_0) \le y_U(x) \quad \forall x \in \mathbb{R}\right) \ge 1 - \alpha \tag{2.6}$$

$$y_L(x), y_U(x) = \eta(x, \hat{\theta}) \mp \sqrt{\chi_p^2(a) \left(\frac{\partial \eta(x, \theta)}{\partial \theta}\right)_{\hat{\theta}}^T V(\hat{\theta}) \left(\frac{\partial \eta(x, \theta)}{\partial \theta}\right)_{\hat{\theta}}}$$
(2.7)

2.5 Methoden ...

2.6 Bootstrap

```
for j=0 to B do

for i=0 to n do

ziehe ein Sample y_{ij} von F(.)

end for

berechne die Statistik s_j=s(y_j)

end for
```

Algorithmus 2.1: Basic-Sampling Methode

```
Eingabe: zufälliges Sample y = (y_1, y_2, ... y_n) von F(.) erstelle die EDF F_n(.|y) for j = 0 to B do

for i = 0 to n do

ziehe ein Sample y_{ij}^* von F_n(.|y)

end for

berechne die Statistik s_j^* = s(y_j^*)

end for

erstelle die EDF G_n(.|s*)
```

Algorithmus 2.2: Bootstrap-Sampling Methode

Vorstellung der Algorithmen

- 3.1 parametrisches Bootstrapping
- 3.2 nicht-parametrisches Bootstrapping

Implementierung

- 4.1 Parameterstudien in OMNeT++
- 4.2 Testszenario
- 4.3 TODO

Auswertung

5.1 Analytisches Verfahren

Eine Referenz [1].

- 5.2 parametrisches Bootstrapping
- 5.3 nicht-parametrisches Bootstrapping
- 5.4 Vergleich

Schlussteil

- 6.1 Fazit
- 6.2 Ausblick

Anhang A

Weitere Informationen

Abbildungsverzeichnis

Algorithmenverzeichnis

2.1	Basic-Sampling Methode	•												4
2.2	Bootstrap-Sampling Methode													4

Literaturverzeichnis

[1] AGGARWAL, ALOK und JEFFREY SCOTT VITTER: The Input/Output Complexity of Sorting and Related Problems. Communications of the ACM, 31(9):1116–1127, 1988.

ERKLÄRUNG 21

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich gemacht habe.

Dortmund, den 9. Januar 2021

Muster Mustermann