Listas 1 - ME715 2023/2S (Julia) julia

Grupo:

- Tiago Henrique da Cruz, RA:206333.
- Marcelo Marcelo Henrique de Jesus, RA: 183168.
- João Vitor Mantovani, RA: 199910.

Instruções

- A seguinte lista deve ser resolvida em grupo antes da próxima aula.
- A resolução da lista será discutida em sala de aula por algúm dos grupos (a participação será avaliada).
- O grupo/aluno que se negar a participar, terá pontos descontados.
- Os exercícios computacionais **deverão ser resolvidos em R, Python e Julia**. Se os resultados não baterem, o grupo deverá investigar o motivo das diferenças.

Pacote: wooldridge

```
In [188...
```

```
#Instalação
#using Pkg
#Pkg.add("DataFrames")
#Pkg.add("WooldridgeDatasets")
#Pkg.add("Statistics")
```

In [189...

```
#Carregando
using WooldridgeDatasets
using DataFrames
using Statistics
```

Questão 1

[C3] Os dados existentes no arquivo MEAP01 são do estado de Michigan no ano de 2001:

O Banco de dados contém 1823 observações e 11 variaveis, desses:

- dcode: código do distrito;
- bcode: código do edificio;
- math4: percentual de estudantes satisfeitos com a matematica da quarta série;
- read4: percuntual de estudantes satisfeitos com a leitura da quarta série;
- lunch: percentual de estudantes com almoço grátis ou desconto;
- enroll: matrícula escolar;
- expend: gasto total, '\$;
- exppp: despesas por aluno, gasto/matricula;
- lenroll: log(enroll);
- lexpend: log(expend);
- lexppp: log(exppp);

```
In [190... meap01 = DataFrame(wooldridge("meap01"));
```

Use esses dados para responder às seguintes perguntas:

item a)

Encontre os majores e menores valores de math4.

item b)

Quantas escolas têm a taxa de aprovação em matemática de exatamente 50%?

item c)

Compare as taxas médias de aprovação em matemática e leitura.

O teste com aprovação mais dificil é a leitura com: 60.062

item d)

Encontre a correlação entre math4 e read4.

item e)

A variável exppp são os gastos por aluno. Encontre o exppp médio e seu desvio padrão.

item f)

1 exppp

5194.87 1091.89

Suponha que a escola A gaste USD\$6.000 por estudante e a escola B gaste USD\$5.500 por estudante. Com que percentual os gastos da escola A superam os da escola B? Compare isso a $100 \times [\log(6.000) - \log(5.500)]$, que é a diferença percentual aproximada baseada na diferença dos logaritmos.

```
In [196... Atual = round(100*((6000-5500)/5500), digits = 4)
    log_val = round(100*(log(6000)-log(5500)), digits = 4)
    println("Temos que os gastos da escola A que superam os da escola B em ",
        round((Atual - log_val), digits=2), "%")
```

Temos que os gastos da escola A que superam os da escola B em 0.39%

Questão 2

[C8] Os dados em ECONMATH foram obtidos de **estudantes de um grande curso universitário em introdução à microeconomia**. Para este probrema, estamos interessados em duas variáveis: **score**, **que é a nota do final do curso**, e, **econhs**, **que é uma variável binária que indica se um estudante fez um curso de economia no ensino médio**.

Seja as seguintes variaveis:

- age: idade em anos;
- work: horas de trabalho por semana;
- **study**: horas de estudo por semana;
- econhs: se for 1, estudou economia no ensino médio;
- colgpa: faculdade GPA, inicio do semestre;
- hsgpa: nota média do ensino médio;
- acteng: pontuação do inglês ACT;
- actmth: pontuação da ACT;
- act: composto ACT;

- mathscr: pontuação do teste de matemática, 0-10;
- male: se for 1, masculino;
- calculus: se for 1, cursou cálculo;
- attexc: se for 1, se passado attndce 'excelente';
- attgood: se for 1, se passado attndce 'bom';
- fathcoll: se for 1, o pai tem BA;
- mothcoll: se for 1, a mãe tem BA;
- score: nota do final do curso, em porcentual;

```
In [197...
```

```
econmath = DataFrame(wooldridge("econmath"));
```

item a)

Quantos estudantes estão na amostra? Quantos estudantes declaram ter frequentado um curso de economia no ensino médio?

```
In [198...
```

```
#nrow(econmath)
#nrow(filter(row -> row.econhs == 1, econmath))
DataFrame(Total_de_estudantes = nrow(econmath),
    Alunos_que_cursou_economia_no_ensino_médio = nrow(filter(row -> row.econhs == 1,
```

Out[198... 1×2 DataFrame

Row Total de estudantes Alunos que cursou economia no ensino médio

Int64	Int64	
1	856	317
4		

item b)

Encontre a nota média dos alunos que frequentaram um curso de economia do ensino médio. Como se compara com a nota média daqueles que não o fizeram?

```
In [199...
```

```
combine(groupby(econmath, :econhs), :score => mean)
```

Out[199... 2×2 DataFrame

Row	econhs	score_mean
	Int64	Float64
1	0	72.9079
2	1	72.0759

In [200...

```
println("Os estudantes que não fizeram economia no ensino médio \
    teve um desempenho maior daqueles que realizaram, \
    com um diferencial de 0.832.")
```

Os estudantes que não fizeram economia no ensino médio teve um desempenho maior daqu eles que realizaram, com um diferencial de 0.832.

item c)

Os resultados encontrados dizem necessariamente alguma coisa sobre o efeito causal de cursar economia no ensino médio sobre o desempenho no curso universitário? (explique).

Através dos resultados obtidos, não é possível afirmar a existência de um efeito causal em cursar economia no ensino médio sobre o desempenho no curso universitário. Isso se dá devido ao modo em que o experimento foi realizado. O experimento em questão é observacional, o que dificulta o estudo de fatores de confundimento e assim portanto impossibilitando a análise de efeito causal entre os fatores.

item d)

Se quiser obter uma boa estimativa causal do efeito de fazer um curso de economia no ensino médio utilizando a diferença de médias, que experiência faria?

Para o estudo dos efeitos de causalidade, podemos melhorar o experimento de modo a balancear as classes do tratamento de interesse adicionar possíveis fatores de confundimento no experimento. De modo a realizar um experimento balanceado, podemos obter uma amostra com um número igual de alunos que estudaram economia no ensino médio e de alunos que não estudaram. Além da realização de um experimento balanceado, para o estudo de causalidade, é interessante adicionar no conjunto de dados possíveis fatores de confundimento, artigos científico já realizados e relacionados ao assunto seriam consultados.