Loïc Anthony Sarrazin-Mc Cann

École Polytechnique de Montréal

3 mai 2018

- Introduction
- Recherche directe
- Opportunisme et ordonnancement
- Tests numériques
- Conclusion

Introduction

Introduction

•000

- Recherche directe
- Opportunisme et ordonnancemen:
- 4 Tests numériques
- Conclusion

Problème d'optimisation :

Introduction

0000

$$\begin{cases} \min_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \\ \text{s.à.} & c_j(\mathbf{x}) \le 0 \quad \forall j \in \{1, \dots, m\} \\ & l_i \le x_i \le u_i \quad \forall i \in \{1, \dots, n\} \end{cases}$$

Problème d'optimisation :

Introduction

0000

$$\begin{cases} \min_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \\ \mathsf{s.\grave{a}.} & c_j(\mathbf{x}) \leq 0 \quad \forall j \in \{1, \dots, m\} \\ & l_i \leq x_i \leq u_i \quad \forall i \in \{1, \dots, n\} \end{cases}$$

• f(x) et $c_i(x)$ sont des boîtes noires.

Boîte noire

No derivatives available

optima

Software might fail

Non-smooth, noisy

Copyright © 2009 Boeing, All rights reserved

Introduction

0000

Types d'algorithmes de DFO

Méthodes de région de confiance

5/37

Méthodes de région de confiance

Méthodes de recherche directe

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS)

Introduction

0000

Types d'algorithmes de DFO

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS)
Simpliciales (Nelder-Mead)

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS) Simpliciales (Nelder-Mead)

Autres méthodes

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS) Simpliciales (Nelder-Mead)

Autres méthodes

Heuristiques (essaim de particules, recuit simulé)

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS)

Simpliciales (Nelder-Mead)

Autres méthodes

Heuristiques (essaim de particules, recuit simulé)

Hybrides (filtrage implicite)

Problématique

Introduction

0000

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Problématique

Introduction

0000

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes?

Introduction

0000

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes ?

Si non, on étudiera alors l'impact de la stratégie opportuniste.

Problématique

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes ?

Si non, on étudiera alors l'impact de la stratégie opportuniste.

Stratégie opportuniste

La stratégie opportuniste désigne l'arrêt prématuré d'une étape d'un l'algorithme si les conditions pour passer à l'étape suivante sont déjà remplies.

Problématique

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes ?

Si non, on étudiera alors l'impact de la stratégie opportuniste.

Stratégie opportuniste

La stratégie opportuniste désigne l'arrêt prématuré d'une étape d'un l'algorithme si les conditions pour passer à l'étape suivante sont déjà remplies.

Maintes fois mentionnée et utilisée mais jamais étudiée en soi.

- Introduction
- Recherche directe
- Opportunisme et ordonnancemen
- 4 Tests numériques
- Conclusion

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Identification des méthodes

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme

7/37

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales

7/37

Identification des méthodes

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé Recherche directe directionnelles

7/37

Identification des méthodes

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Identification des méthodes

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré. Recherche directe directionnelles hybrides

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Recherche directe directionnelles hybrides

- Convergent mais on peut altérer le bon fonctionnement.

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Recherche directe directionnelles hybrides

Convergent mais on peut altérer le bon fonctionnement.
 Heuristiques

Identification des méthodes

Question 1.

Pour quelles méthodes est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Recherche directe directionnelles hybrides

- Convergent mais on peut altérer le bon fonctionnement.

Heuristiques ?

- Dépends de la forme de l'heuristique.

Méthodes de recherche directe directionelles :

Méthodes de recherche directe directionelles :

• Échantillonne f(x) et c(x) sur un ensemble fini de points.

8/37

Méthodes de recherche directe directionelles :

- Échantillonne f(x) et c(x) sur un ensemble fini de points.
- Prends une action basée seulement sur ces valeurs.

Méthodes de recherche directe directionelles :

- Échantillonne f(x) et c(x) sur un ensemble fini de points.
- Prends une action basée seulement sur ces valeurs.

Algorithme 1 Cadre de travail en recherche directe directionnelles

```
for k = 1, 2, ... do
```

Étape de recherche : Calcule f(x) à un ensemble de points S^k issu de mécanismes heuristiques.

Si succès, mise à jour de x^k

Étape de sonde : Calcule f(x) à un ensemble de points $P^k := \{x^k + \delta^k d : d \in D\}$, où D est un ensemble générateur positif. Si succès, mise à jour de x^k

end for

Remarque : on ne s'intéresse qu'aux étapes de sonde pour l'opportunisme.

Recherche par coordonnées (CS)

Algorithme 2 Recherche par coordonnées

for k = 1, 2, ... do

Etape de sonde : Calcule f(x) à un ensemble de points P^k := $\{x^k + \delta^k d : d \in D_{\oplus}\}, \text{ où } D_{\oplus} := \{\pm e_1, \pm e_2, \dots, \pm e_n\}.$

Si $\exists t$ tel que $f(t) < f(x^k)$, $t \in P^k$: Succès mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \frac{\delta^k}{2}$.

end for

Si les évaluations sont séquentielles \rightarrow On peut arrêter l'algorithme après un succès.

FIGURE - CS

Ensemble des directions
$$D = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
 Mise à jour, succès itération $k=0$

Mise a jour, succes iteration
$$k=0$$
 $x^1\leftarrow x^0+\delta^0d_4$ $\delta^1\leftarrow \delta^0$

FIGURE - CS

Ensemble des directions $D = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ Mise à jour, échec itération k=1 $x^2 \leftarrow x^1$ $\delta^2 \leftarrow \frac{\delta^1}{2}$

Recherche par coordonnées (CS)

FIGURE - CS

Recherche par motifs généralisée (GPS)

Algorithme 3 Recherche par motifs généralisée

for k = 1, 2, ... do avec $\tau \in \{0, 1\}$.

Introduction

Étape de sonde : Calcule f(x) à un ensemble de points $P^k :=$ $\{x^k + \delta^k d : d \in D\}$, où D est un ensemble générateur positif.

Si $\exists t$ tel que $f(t) < f(x^k)$, $t \in P^k$: Succès mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \tau^{-1} \delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \tau \delta^k$.

end for

Recherche par motifs généralisée (GPS)

FIGURE - GPS

Paramètres
$$\tau = \frac{2}{3},$$

$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, succès itération k=0 $x^1\leftarrow x^0+\delta^0d_3$ $\delta^1\leftarrow \frac{3}{2}\delta^0$

Recherche par motifs généralisée (GPS)

FIGURE - GPS

Paramètres

$$\tau = \frac{2}{3},
D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, échec itération k=1 $x^2 \leftarrow x^1$ $\delta^2 \leftarrow \frac{2}{3}\delta^1$

FIGURE - GPS

Recherche par ensemble générateurs (GSS)

Algorithme 4 Recherche par ensemble générateurs

for k = 1, 2, ... do

Introduction

avec
$$\tau \in \{0, 1\}, \ \phi > 0$$
.

Étape de sonde : Calcule f(x) à un ensemble de points $P^k := \{x^k + \delta^k d : d \in D\}$, où D est un ensemble générateur respectant certaines conditions.

Si
$$\exists t$$
 tel que $f(t) < f(x^k) - \rho(\delta^k)$, $t \in P^k$: Succès mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \phi \delta^k$.

Sinon
$$\nexists$$
 t tel que $f(t) < f(x^k) - \rho(\delta^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \tau \delta^k$.

end for

L'analyse de converge est basée sur la condition de décroissance

Paramètres
$$\phi = \frac{3}{2}, \ \tau = \frac{1}{2},$$

$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, succès itération k = 0

$$f(t_1) < f(x^1) - \rho(\delta^1)$$

$$x^1 \leftarrow x^0 + \delta^0 d_3$$

$$\delta^1 \leftarrow \frac{3}{2} \delta^0$$

FIGURE - GSS

Paramètres
$$\phi = \frac{3}{2}, \ \tau = \frac{1}{2},$$

$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, échec itération k = 1

$$f(t_6) > f(x^1) - \rho(\delta^1)$$

$$x^2 \leftarrow x^1$$

$$\delta^2 \leftarrow \frac{1}{2}\delta^1$$

FIGURE - GSS

FIGURE - GSS

Introduction

Recherche par treillis adaptatifs (MADS)

Algorithme 5 Recherche par treillis adaptatifs

```
for k=1,2,\ldots do avec \tau\in\{0,1\}.

Mise à jour : \delta^k\leftarrow\min(\Delta^k,(\Delta^k)^2)

Étape de sonde : Calcule f(x) à un ensemble de points P^k:=\{x^k+\delta^kd:d\in D\}, où D\subset F^k, avec F^k le cadre de demi côté \Delta^k.
```

```
Si \exists t tel que f(t) < f(x^k), t \in P^k: Succès mise à jour de x^{k+1} \leftarrow t et \Delta^{k+1} \leftarrow \tau^{-1} \Delta^k.
```

```
Sinon \nexists t tel que f(t) < f(x^k), t \in P^k: Échec mise à jour de x^{k+1} \leftarrow x^k et \Delta^{k+1} \leftarrow \tau \Delta^k.
```

end for

Recherche par motifs généralisée (MADS)

Figure - MADS

Paramètres
$$\tau = \frac{2}{3},$$

$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, succès itération k=0 $x^1\leftarrow t_1$ $\Delta^1\leftarrow \frac{3}{2}\Delta^0$

Recherche par motifs généralisée (MADS)

Figure - MADS

Paramètres
$$\tau = \frac{2}{3},$$

$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, échec itération k=1 $x^2 \leftarrow x^1$ $\Delta^2 \leftarrow \frac{2}{3}\Delta^1$

FIGURE - MADS

Introduction

Filtrage implicite (IMFIL)

Algorithme 6 Filtrage implicite

for k = 1, 2, ... do

Étape de sonde : Calcule f(x) à un ensemble de points

$$P^k := \{x^k + \delta^k d : d \in D_{\oplus}\}, \text{ où } D_{\oplus} := \{\pm e_1, \pm e_2, \dots, \pm e_n\}.$$

Si $\exists t$ tel que $f(t) < f(x^k)$, $t \in P^k$: Succès

Effectuer une recherche linéaire avec $\nabla_s f(x^k)$.

mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \frac{\delta^k}{2}$.

end for

Filtrage implicite (IMFIL)

FIGURE - IMFIL

Ensemble des directions
$$D = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Calcul de $\nabla_s f(x^0)$ Recherche linéaire $\to t_5$

Filtrage implicite (IMFIL)

FIGURE - IMFIL

Ensemble des directions
$$D = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$-\nabla_s f(x^0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 Mise à jour, succès itération
$$k = 0$$

$$x^1 \leftarrow x^0 - \beta^1 \nabla_s f(x^0)$$

$$\delta^1 \leftarrow \delta^0$$

Filtrage implicite (IMFIL)

FIGURE - IMFIL

- Introduction
- 2 Recherche directe
- 3 Opportunisme et ordonnancement
- 4 Tests numériques
- Conclusion

Définitions

Question 2.

Quand doit-on arrêter la sonde?

Définitions

Question 2.

Quand doit-on arrêter la sonde?

Question 2.

Quand doit-on arrêter la sonde?

Sonde complète

Désigne l'évaluation de la fonction objectif à tous les points de l'étape de sonde.

Tests numériques

Question 2.

Quand doit-on arrêter la sonde?

Sonde complète

Désigne l'évaluation de la fonction objectif à tous les points de l'étape de sonde.

Stratégie opportuniste simple

Désigne l'arrêt prématuré de la sonde à **l'obtention d'un point** satisfaisant le critère de succès.

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2)$$

$$t_2 = (2, 1, 2)$$

$$t_3 = (2, 2, 1)$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2,3,2)$$

$$t_6=(3,2,2)$$

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2)$$

$$t_3 = (2, 2, 1)$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2, 3, 2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1 = (1, 2, 2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1)$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2,3,2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1 = (1, 2, 2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2, 3, 2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1 = (1, 2, 2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3), f(t_4) = 5$$

$$t_5 = (2,3,2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1 = (1, 2, 2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Exemple de sonde opportuniste

Supposons CS pour résoudre $f : \mathbb{R}^3 \to \mathbb{R}$, avec $x^k = (2,2,2)$, $f(x^k) = 0$.

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), \ f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3), f(t_4) = 5$$

$$t_5 = (2,3,2), f(t_5) = -1.5\checkmark$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Exemple de sonde opportuniste

Supposons CS pour résoudre $f : \mathbb{R}^3 \to \mathbb{R}$, avec $x^k = (2,2,2)$, $f(x^k) = 0$.

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3), f(t_4) = 5$$

$$t_5 = (2,3,2), f(t_5) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_6) = 6$$

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2,2,3), f(t_4) = 5$$

$$t_5 = (2,3,2), f(t_5) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_6) = 6$$

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2,2,3), f(t_4) = 5$$

$$t_5 = (2,3,2), f(t_5) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_6) = 6$$

$$P^k :=$$

$$t_1 = (1,2,2), f(t_1) = 2X$$

$$t_2 = (2,1,2), \ f(t_2) = 1$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2,2,3), f(t_4) = 5$$

$$t_5 = (2,3,2), f(t_5) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_6) = 6$$

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2$$

$$t_2 = (2,1,2), \ f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2,3,2)$$

$$t_6 = (3, 2, 1)$$

Différentes stratégies opportunistes

Stratégie opportuniste au p^{ème} succès

Arrêt de la sonde après **l'obtention de** *p* **points** satisfaisant le critère de succès.

Différentes stratégies opportunistes

Stratégie opportuniste au p^{ème} succès

Arrêt de la sonde après **l'obtention de** *p* **points** satisfaisant le critère de succès.

Stratégie opportuniste avec au minimum q évaluations

Arrêt de la sonde **après** q **évaluations** si un point satisfaisant le critère de succès est évalué.

Définitions

Question 3.

Comment doit-on ordonner les points de P^k ?

Définitions

Question 3.

Comment doit-on ordonner les points de P^k ?

Stratégie d'ordonnancement

Stratégie guidant la permutation des points de l'ensemble P^k .

Lexicographique

Lexicographique

Ordonnés comme dans un dictionnaire.

- Lexicographique
 - Ordonnés comme dans un dictionnaire.
- 2 Aléatoire

- Lexicographique
 Ordonnés comme dans un dictionnaire.
- Aléatoire
- 3 Direction du dernier succès

- Lexicographique
 - Ordonnés comme dans un dictionnaire.
- 2 Aléatoire
- Oirection du dernier succès
 - Ordonnés selon l'angle avec la direction du dernier succès.

- Lexicographique
 - Ordonnés comme dans un dictionnaire.
- Aléatoire
- 3 Direction du dernier succès
 - Ordonnés selon l'angle avec la direction du dernier succès.
- 4 Guidé par modèle quadratique

Lexicographique

Ordonnés comme dans un dictionnaire.

- 2 Aléatoire
- 3 Direction du dernier succès

Ordonnés selon l'angle avec la direction du dernier succès.

4 Guidé par modèle quadratique

$$A \prec B \text{ si } \tilde{f}(A) < \tilde{f}(B)$$

Lexicographique

Ordonnés comme dans un dictionnaire.

- 2 Aléatoire
- 3 Direction du dernier succès

Ordonnés selon l'angle avec la direction du dernier succès.

4 Guidé par modèle quadratique

$$A \prec B$$
 si $\tilde{f}(A) < \tilde{f}(B)$

 \tilde{f} une fonction substitut quadratique de f.

Stratégies de comparaison

Déterminer la meilleure amélioration possible avec l'ordonnancement :

Stratégies de comparaison

Déterminer la meilleure amélioration possible avec l'ordonnancement :

6 Omnisciente

5 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

6 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

5 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

6 Inverse-Omnisciente

5 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

6 Inverse-Omnisciente

$$A \prec B \text{ si } f(A) > f(B)$$

6 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

6 Inverse-Omnisciente

$$A \prec B \text{ si } f(A) > f(B)$$

Impossible à appliquer en pratique

- Introduction
- 2 Recherche directe
- Opportunisme et ordonnancemen
- Tests numériques
- Conclusion

Problèmes tests

1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]

Problèmes tests

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017]

Problèmes tests

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017] x^0 irréalisable

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017]
 x⁰ irréalisable
- 3 1 Boîte noire, STYRENE, issue de [Audet, Béchard, Le Digabel 2008]

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017] x^0 irréalisable
- 3 1 Boîte noire, STYRENE, issue de [Audet, Béchard, Le Digabel 2008] $f: R^8 \mapsto R, c: R^8 \mapsto R^{11}$, 4 contraintes binaire, 7 contraintes relaxables

1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]

- 2 18 problèmes contraints issus de [Audet, Tribes, 2017] x⁰ irréalisable
- **3** 1 Boîte noire, STYRENE, issue de [Audet, Béchard, Le Digabel 2008] $f: R^8 \mapsto R, \ c: R^8 \mapsto R^{11}, \ 4$ contraintes binaire, 7 contraintes relaxables

 ${
m FIGURE}$ – Organigramme de la production de Styrène, issu de [Audet, Béchard, Le Digabel 2008]

Comparaison des stratégies opportunistes

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

Comparaison des stratégies opportunistes

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

 Ordonnancement simple plus efficace.

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

- Ordonnancement simple plus efficace.
- **2** Autres stratégies \rightarrow Sonde complète.

Comparaison des stratégies opportunistes

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

- Ordonnancement simple plus efficace.
- **2** Autres stratégies \rightarrow Sonde complète.

Impact moins important sur MADS.

FIGURE - CS sur Moré-Wild

Sans opport.

Tests numériques 000000000

Comparaison des stratégies d'ordonnancement

FIGURE - GPS sur Moré-Wild

Sans opport.

FIGURE - GPS sur Moré-Wild

1 Stratégie omnisciente moins dominante.

FIGURE - GPS sur Moré-Wild

- 1 Stratégie omnisciente moins dominante.
- Stratégie modèles performante.

Sans opport.

FIGURE - MADS sur Moré-Wild

FIGURE - MADS sur Moré-Wild

Impact moins important sur MADS.

Tests numériques 0000000000

Comparaison des stratégies d'ordonnancement

1.0

Profil de donnees, τ=1E-3

FIGURE - MADS sur Moré-Wild

Impact moins important sur MADS.

Classement différent sur CS et MADS.

FIGURE - GSS sur Moré-Wild

FIGURE - GSS sur Moré-Wild

1 Stratégie aléatoire domine la stratégie lexicographique.

FIGURE - GSS sur Moré-Wild

- 1 Stratégie aléatoire domine la stratégie lexicographique.
- 2 Aucune autre stratégie disponible avec HOPSPACK.

FIGURE - IMFIL sur Moré-Wild

Tests numériques 000000000

Comparaison des stratégies d'ordonnancement

FIGURE - IMFIL sur Moré-Wild

 Opportunisme peut être profitable avec un ordonnancement omniscient.

FIGURE - IMFIL sur Moré-Wild

- Opportunisme peut être profitable avec un ordonnancement omniscient.
- Avec les stratégies d'ordonnancement praticables, l'opportunisme est nuisible.

3 mai 2018

Sans opport.

FIGURE - Problèmes contraints avec MADS

FIGURE - Problèmes contraints avec MADS

1 Courbe de la stratégie omnisciente élevée.

FIGURE - Problèmes contraints avec MADS

- 1 Courbe de la stratégie omnisciente élevée.
- 2 Stratégie réelles peu performantes.

FIGURE - Comparaison omnisciente, inverse-omnisciente et sonde complète

500

 $\mathrm{Figure} - \mathsf{Comparaison} \ omnisciente, \ inverse-omnisciente \ et \ sonde \ complète$

Stratégie omnisciente montre un impact de l'opportunisme sur STYRENE.

FIGURE - Comparaison omnisciente, inverse-omnisciente et sonde complète

- Stratégie omnisciente montre un impact de l'opportunisme sur STYRENE.
- 2 Sonde complète ressemble d'avantage à inverse-omnisciente.

FIGURE - Comparaison omnisciente, sonde complète et avec modèles

 Figure – Comparaison omnisciente, sonde complète et avec modèles

1 La stratégie avec modèles accélère la convergence si comparée à la sonde complète.

FIGURE - Comparaison omnisciente, sonde complète et avec modèles

- La stratégie avec modèles accélère la convergence si comparée à la sonde complète.
- 2 La stratégie avec modèles converge vers un moins bon optimum que la stratégie omnisciente.

- Introduction
- 2 Recherche directe
- Opportunisme et ordonnancemen:
- 4 Tests numériques
- 5 Conclusion

 L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important
- ullet Stratégies autres que opportunisme simple o Sonde complète

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important
- Stratégies autres que opportunisme simple ightarrow Sonde complète
- Classements des stratégies : Modèles, Aléatoires, Direction du dernier succès, sonde complète et lexicographique

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important
- Stratégies autres que opportunisme simple o Sonde complète
- Classements des stratégies : Modèles, Aléatoires, Direction du dernier succès, sonde complète et lexicographique
- Pour IMFIL, l'opportunisme est inutile ou nuisible

Il y a place à l'amélioration dans l'ordonnancement.

• Ordonnancer avec d'autre types de modèles que quadratiques

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).
- Identifier des stratégies avec la barrière progressive.

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).
- Identifier des stratégies avec la barrière progressive.
- Critère d'opportunisme : décroissance minimale

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).
- Identifier des stratégies avec la barrière progressive.
- Critère d'opportunisme : décroissance minimale
- Opportunisme et parallélisme?

Réferences

J.J. Moré and S.M. Wild (2009)

Benchmarking Derivative-Free Optimization Algorithms SIAM Journal on Optimization 20(1). 172–191

C. Audet and C. Tribes (2017)

Mesh-based Nelder-Mead algorithm for inequality constrained optimization Les Cahiers du Gerad G-2017-90.

C. Audet and V. Béchard and S. Le Digabel (2008)

Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search

Journal of Global Optimization 41-2.

S. Le Digabel (2009)

Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm ACM Transactions on Mathematical Software 37-4.

