

Światłowody – elementarz

Trochę historii ...

 1854 - John Tyndall - propagacja światła w strumieniu wody

- 1940 metoda wytwarzania czystego SiO₂ (Corning Glass)
- 1962 laser półprzewodnikowy GaAs (GE, IBM, MIT)
- 1974 światłowód o tłumieniu < 2 dB/km;
- 1978 laser na pasmo 1300 nm;
- 1980 laser na pasmo 1550 nm;
- 1987 światłowodowy wzmacniacz optyczny EDFA
- 1990 multipleksacja falowa WDM (Bell Labs)

Dlaczego transmisja światłowodowa?

- Potencjalnie bardzo szerokie pasmo transmisyjne (kilkadziesiąt THz)
- Niskie tłumienie
- Odporność na zaburzenia elektromagnetyczne
- Brak generacji zewnętrznych pól EM
- Separacja galwaniczna pomiędzy nadajnikiem a odbiornikiem
- Mały ciężar włókna światłowodowego

Idea propagacji światła w światłowodzie skokowym

$$n_0 \sin \Theta_P = n_1 \sin \Theta_Z$$
 (zasada Sneliusa)

$$n_1 \sin \Phi_P = n_2 \sin \Phi_Z \longrightarrow \sin \Phi_K = n_2 / n_1 \longrightarrow \text{dla} \Phi > \Phi_K$$

 $\Phi > \Phi_K$ zachodzi całkowite wewnętrzne odbicie

apertura numeryczna
$$NA = \frac{n_1}{n_0} \sin \Theta_{PK} \approx \sqrt{(n_1^2 - n_2^2)}$$

$$n_1$$
=1,46 n_2 =1,42 \Rightarrow NA=0,34 (kat akceptacji 20°) n_1 =1,44 n_2 =1,42 \Rightarrow NA=0,24 (kat akceptacji 13°)

Problem:

Czy apertura numeryczna powinna być duża, czy mała?

$$NA = \sqrt{(n_1^2 - n_2^2)} \approx \text{kąt akceptacji (w radianach)}$$

Konstrukcje przestrzenne światłowodów

światłowód włóknisty (cylindryczny, o przekroju kołowym)

 $n_1 > n_2, n_1 > n_0$

światłowody planarne

Ilustracja powstawania modów propagacyjnych

Pomijając przesunięcie fazy przy odbiciu warunek zgodności faz w płaszczyźnie X ma postać:

$$A - B = m\lambda_1$$
 (λ_1 to dl. fali w osr. o wsp.zal. n_1)

co prowadzi do: $2d \sin \Theta = m\lambda_1$

MODY PROPAGACYJNE - różne rodzaje pól, które mogą się rozchodzić w światłowodzie ≈ zbiór możliwych "zygzaków"

Rozkład gęstości mocy dla różnych modów

Uwaga: dystrybucja mocy wykracza poza obrys rdzenia!

Parę wątpliwości

- Czy wielość modów jest korzystna czy niekorzystna?
- Czy można korzystając z kilku modów przesyłać kilka niezależnych sygnałów?
- Czy mod trzeba wzbudzić, czy wzbudzi się sam?

Światłowód gradientowy

$$n(r) = n_1 \left(1 - \Delta (r/a)^{\alpha}\right)$$
; $r < a$

$$n(r) = n_2 \quad ; \qquad \qquad r \ge c$$

$$\Delta = (n_1 - n_2)/n_1$$

źródło: Agrawal 1997

Światłowód jednomodowy

$$A - B = 2d \sin \Theta = m\lambda_1 = m\frac{\lambda_0}{n_1}$$

$$m = \frac{2d\sin\Theta}{\lambda_0}n_1 < 1$$

$$d \le \frac{\lambda_0}{2 \cdot NA}$$

Dokładne rozwiązanie równań Maxwella dla światłowodu cylindrycznego daje wynik:

$$d \le 0.77 \frac{\lambda_0}{NA}$$

Profil wsp. załamania standardowego światłowodu jednomodowego

źródło: Corning, SMF-28

Uwaga 1.

Światłowód z napisem "jednomodowy" nie w każdych warunkach jest jednomodowy:

$$d \le 0.77 \frac{\lambda}{NA} \implies \lambda \ge \frac{d \cdot NA}{0.77}$$

Corning[®] SMF-28[™] Optical Fiber
Product Information

Cable Cutoff Wavelength (λ_{ccf}) $\lambda_{ccf} \le 1260 \text{ nm}$

Uwaga 2.

W tech. światłowodowej przez λ rozumiemy zwykle dł. fali **w próżni**, po czym zapominamy, że w takiej konwencji w ośrodku materialnym wynosi ona λ/n !

Tłumienność światłowodów

tłumienie światłowodu = absorpcja + rozpraszanie

$$\alpha = \alpha_A + \alpha_B$$

Tłumienność światłowodu

źródło: Corning, SMF-28

???

Tłumienność i pasma transmisyjne

Światłowody plastikowe

POF - Plastic/Polymer Optical Fiber

rdzeń – PMMA – Polymethyl-Methacrylate (plexi)

polimery fluorowane (LUCINA fiber)

płaszcz – fluorowany PMMA

Światłowody plastikowe - przykłady

•Rdzeń skokowy

- •Mitsubishi ESKA
 - •486/500 2944/3000; α ~200 dB/km @ 650 nm
- •AsahiKasei
 - •1000/2200; α ~150 dB/km @ 650 nm
- Rdzeń gradientowy
 - •FiberFin
 - •675/750; α ~200 dB/km @ 650 nm; pasmo > 1.5 GHz/100m
 - •Chromis Fiberoptic
 - •<u>120/490; 50/490;</u> α ~60 dB/km @ 820 & 1300 nm
- Rdzeń jednomodowy
 - •Paradigm Optics
 - •*3.13/115*; *8/125*

Przykładowe parametry światłowodów

parametr	plastikowy	skokowy	gradientowy	jednomodowy	
długość fali [μm]	0.68	$0.85 \div 1.3$	$0.85 \div 1.3$	1.3	1.5
średn. rdzenia [μm]	500 ÷ 1000	50 ÷ 200	50 ÷ 100	10	10
średn. płaszcza [μm]		125 ÷ 380	125 ÷ 140	125	125
tłumienie [dB/km]	190	6	5 ÷ 1	0.35	0.22
NA	0.5	0.2 ÷ 0.4		0.1	0.1
cena [\$/km]			300	100	100

Idea spawania światłowodów:

<u>Fazy spawania</u> <u>światłowodów</u>

Fujikura FSM-50S

Kryteria jakości spawu:

- tłumienie ~ 0,01 ... 0.05 dB
- wytrzymałość mechaniczna

czynniki związane z włóknem:

- zgodność średnic rdzeni
- zgodność NA
- zgodność profili
- koncentryczność
- zgodność średnic pola modukoncentryczność

czynniki związane z procesem spawania:

- prostopadłość cięcia
- pozycjonowanie włókien
- zanieczyszczenia
- czasy trwania i prądy łuku w kolejnych fazach

MM