

# Development of a Testbed to Demonstrate Attacks on Emulated PLC Networks

#### Victor Embacher

Department of Informatics, Technical University of Munich (TUM) Fraunhofer Institute for Applied and Integrated Security AISEC

06.05.2021





### **Outline**

- 1 Introduction
- 2 Background
- 3 Related Work
- 4 Conceptualization
- 5 Implementation
- 6 Tech Demo
- 7 Attack Demonstration
- 8 Conclusion



# Introduction - Defining IT and OT

**Information technology (IT):** corporate systems that primarily process information

#### **Operational Technology (OT):**

- directly interact with the physical world ⇒ cyber-physical systems
- control industrial components
- industrial control systems (ICS) are a common type of OT network. (more details later)





# Introduction - Convergence of IT and OT

- IT and OT have become more connected to each other
  - ⇒ control networks previously were isolated
  - ⇒ but now are connected to corporate networks or the Internet
- IT hardware and software is now more frequent in OT systems
  - ⇒ systems are now vulnerable to "general-purpose" malware
- previously unaddressed problems become more apparent:
  - insecure protocols
  - weak authentication
  - lack of attention towards network security
- ⇒ OT networks receive more attention from attackers . . .
- ... but from security researchers as well.



**Growing Pains** 



### Introduction - Motivation and Objectives

- ICS's (and other OTs) are essential to the functioning of society ⇒ critical infrastructure
- Pre-existing testing environments commonly do not address programable logic controllers (PLCs) in-depth
- ⇒ Observation: we require a safe and realistic testbed that ...
  - focuses on PLCs
  - can educate both IT and OT personnel on known issues or attacks
  - enables security research



### Background - Industrial Control Systems

- ICS is a generic term for a wide array of cyber-physical systems.
- used to automate and control processes in industry and critical infrastructure.
- different ways to structure ICS networks:
  - Distributed Control Systems (DCS): decentralized, local and a flat hierarchy
    - $\Rightarrow$  e.g. power plant
  - Supervisory Control and Data Acquisition (SCADA) Systems: centralized, multiple regions, tall hierarchy
    - $\Rightarrow$  e.g. power grid
  - single PLC controlling an industrial process



### Background - Programable Logic Controllers

- devices used to control processes, used in both SCADA systems and DCS's
- designed for rough environments (low/high temperatures, vibration, etc.)
- Run a loop:
  - 1 read inputs (usually sensors, e.g. a thermometer)
  - 2 run PLC program
  - 3 write instructions to outputs that affect the physical world (actuators, e.g. servo)
- PLC programs can be written in five languages (standardized in IEC 61131-3)
  - ⇒ we are only using Ladder Diagrams (LD)





### Background - Modbus Protocol

- commonly used in ICS networks, especially with PLCs to communicate with other ICS components.
- open protocol, standardized by the Modbus Organization.
- originally used asynchronous serial connections, evolved to support TCP/IP
- client-server protocol with request-response pairs.



Modbus TCP/IP in the five-layer Internet model



### Background - ICS and PLC Attacks

#### ICS attacks:

- ICS's are also vulnerable to many attacks known from IT
- many attacks are made possible by bad practices
  - protocols lacking encryption, authentication and integrity protection
  - passwords are insecure or hardcoded
  - legacy OS's

#### PLC attacks:

- modification of communicated sensor and actuator values
- upload a malicious PLC program

#### ⇒ only a small selection!



### Background - Simulation, Emulation and Virtualization

- Simulation: replication of a real-world system over time
- Emulation: replace hardware components with software
- Virtualization: decouple relationship between physical hardware and abstractions of it

#### Relationship of the three techniques:





# Related Work (1)

I found the following relevant testbed surveys ...

- Holm et al. (2015)
  - analyzes requirements posed to ICS testbeds and how they are adhered to  $\Rightarrow$  affected conceptualization
  - note that many testbeds do not address the requirement "fidelity"
  - most important ICS testbed related survey
- Qassim et al. (2017) and Geng et al. (2019)
  - both analyze the advantages and disadvantages of different realization techniques
  - assess hybrid techniques and virtualization as best ⇒ should be utilized whenever possible



# Related Work (2)

- ... and the following more concrete papers.
  - Formby et al. (2018) developed an ICS testbed
    - does not include all components we include
    - partially uses proprietary software
  - Alves et al. (2018)
    - general approach to SCADA testbeds instead of a specific testbed that can be used by readers
    - discuss a number of case studies using their testbed approach

#### ⇒ this thesis introduces:

- an exhaustive, high fidelity testbed with a largely automated setup,
- that only uses free and open-source components,
- and is shown to be able to demonstrate attacks and find new vulnerabilities.



### Conceptualization - Steps





### Conceptualization - Required Properties

The ICS testbed survey from **Holm et al. (2015)** poses four properties to such an environment:

- 1 Fidelity
  - accuracy of mirroring real systems
  - addressed either by replicating a real system or based on standards

#### 2 Repeatability

- results need to be verified ⇒ repetition is one way
- tests should have consistent results

#### 3 Measurement Accuracy

- measuring should not affect the outcome of tests
- Comparison: observer effect from physics

#### 4 Safe Execution of Tests

- no harm to living beings, environment, or equipment
- testbed should not be damaged



### Conceptualization - Additional Properties and Goal Conflicts

Furthermore, we have to address the following properties:

- real-time properties: e.g. low networking delays
- affordability/low cost: reduce financial barriers, make it affordable for everyone
- open-source components
- reduced manual set-up, use automation

#### However, some goals partially **conflict**:

- highest fidelity vs. open-source
- highest fidelity vs. low cost

#### some **compliment** others:

- open-source ⇒ low cost
- safe execution ⇒ repeatability



### Conceptualization - Required and Included Components

The ICS testbed survey from **Holm et al. (2015)** names a number of **required components**, we include:

• control center: HMI, data historian

• field devices: PLC

 physical/industrial process: an industrial process controlled by a single PLC

• communication architecture: switched ethernet network

• used protocols: (later slides)





### Conceptualization - Realization Techniques: Pros and Cons

#### • Physical replication of the system

- not an option for our entirely virtual testbed
- High fidelity and accuracy, repeatability, but can be unsafe and expensive!

#### Simulation

- safe, scales well, affordable, but low fidelity, accuracy
- not the best option to research cybersecurity threats ⇒ does not use real hard or software

#### • Emulation:

- good to replace hardware components with software (avoid cost and damage)
- high fidelity, safety, repeatability, accuracy
- however accuracy depends on the quality of the emulation

#### Virtualization:

- high fidelity, repeatability, accuracy, safety, lower cost, scales well
- usually the best approach, but not always possible

#### • Hybrid approach:

- choose best approach for each component ⇒ best overall properties
- however, can be expensive if physical hardware is used



# Conceptualization - Choosing the Correct Approach

- HMI & data historian ⇒ real software + virtualization
  - easy to virtualize
  - usually software running on x86 architecture + commodity OS (Windows, Linux, etc.)
- PLC ⇒ emulation via software PLC
  - simulation would be too inaccurate, limits ability to research cybersecurity of PLCs
  - we can use real PLC programs and protocols
- industrial process ⇒ software simulation
- communication architecture ⇒ network virtualization
- use real network stacks and protocols ⇒ examine real network based attacks
- no major drawbacks
- ⇒ we use an hybrid approach



### Conceptualization - Process Simulation Model



⇒ behavior will become clear in the demo!



### Implementation - Virtualizing the Hosts and Network

- use libvirt as our virtualization management framework
  provides virtualized networking and VMs
- hosts run Ubuntu cloud images + cloud-init
- we automate the installation of dependencies and configuration as much as possible with libvirt and cloud-init
- communication between hosts uses the Modbus protocol



Web Interface (Host Machine)



### Implementation - Testbed ICS Components

- PLC ⇒ OpenPLC
  - only open-source PLC
  - supports all IEC 61131-3 programming languages
- HMI ⇒ ScadaBR
  - gathers data from the PLC and industrial process
  - can be used to build graphical views (control and monitor)
- data historian ⇒ TICK stack
  - based on Telegraf, InfluxDB, Chronograf and Kapcitor
  - a lot more powerful than just using the HMI for some limited record keeping
- industrial process ⇒ next slide!



### Implementation - Simulator

- implements the simulation model we defined in the conceptualization part
- written in Python using the PyModbus library for Modbus communication
- consists of a Modbus server and a application using a Modbus client





#### **Tech Demo**



### Attack Demonstration - Adversary

- Before discussing attacks how could an adversary have gotten access?
  - propagate from a corporate network to a field network ⇒ inadequate firewalls or DMZs
  - exploitation of a remote access point
- What information does an attacker require to launch these attacks?
  - all necessary information publicly avoidable (e.g Modbus specification)
  - no need for complicated reverse engineering tasks, that might require purchasing hardware
  - ⇒ required know-how is reasonable!
- Immediately before the attack: attacker gains a MitM position via ARP cache poisoning



# Attack Demonstration - Manipulating the Thermometer (1)

- Background: Modbus traffic is not secured at all
- Idea: alter sensor values communicated via Modbus
  - under report temperature
  - PLC receives false information and behaves accordingly
  - temperature reaches unsafe levels and system becomes damaged





# Attack Demonstration - Manipulating the Thermometer (2)

#### How does the attack work?

- we match specific write requests and their responses
- use a NetfilterQueue + ScaPy based application to modify packets in real-time
- both PLC and industrial process are oblivious to the manipulation
- correct sensor values do not appear in any of the logs
  ⇒ stealthy
- attack principle can be applied to all other Modbus connections in our setup



MitM modification



### Attack Demonstration - Other Possible Attacks

- variation of the previous attack
  - redirect requests to a malicious server, instead of manipulating the traffic directly
  - choose what sensor or actuator values are passed on
- sniff password to the OpenPLC web interface and upload a malicious PLC program
- most trivial attack: write falsified values to any of the Modbus servers (no authentication)
- Exploit an injection vulnerability I discovered in the OpenPLC web interface
  - lack of input sanitation in multiple POST forms
  - requires access to web interface credentials (can be sniffed)
  - consequences: able to launch persistent XSS attacks





#### Attack Demonstration - Discussion

#### We observe that:

- the testbed is suitable to implement and demonstrate cyber-attacks
- ARP cache poisoning is an important factor in MitM attacks
- lack of attention towards security goals (e.g. integrity) in ICS software
- attacks could be avoided
  - lack of HTTPS support (OpenPLC, ScadaBR)
  - lack of TLS support in Modbus implementations  $\Rightarrow$  TLS variant exists, but seems to lack common support
- confirm that PLCs are desireable attack targets



### Conclusion - Status

• we succeeded in building a PLC testbed that can be used for attack demonstration and cybersecurity research

#### • Strengths:

- good at examining network/communication based attacks ⇒ virtualized networking
- address common requirements (properties, components)
- affordable/free

#### Weaknesses:

- strictly open-source components ⇒ less used in industry, reduces fidelity, codebase-specific attacks
- cannot examine more physically based attacks (e.g. those targeting I/O pins)
- Realized Goals: complete testbed suited for attack demonstration and research
- Open Goals: focus on real-time requirements, more realistic simulation



### Conclusion - Future Work

- examine real-time behavior of our system and how it is affected by attacks
- improve testbed in collaboration with OT personnel  $\Rightarrow$  cross-sectional teams can be very important
- examine the applicability of the TICK stack for intrusion/anomaly detection
- explore the potential of lightweight virtualization techniques such a containerization (e.g. Docker) ⇒ might decrease fidelity



### Thank you for your attention!