Семинар 8

Алексеев Василий

31 марта + 4 апреля 2023

Содержание

1	Inv (Diag 1. Part 2)		1
	1.1	Инвариантность характеристического многочлена	1
	1.2	Собственные подпространства преобразования	1
	1.3	Инвариантные подпространства преобразования	2
2 3a	Зад	ачи	3
	2.1	# 24.42(1)	3
	2.2	# 24.70	5
	2.3	# 24.55(1)	7

1. Inv (Diag 1. Part 2)

1.1. Инвариантность характеристического многочлена

Пусть $\phi: X \to X$ линейное преобразование вещественного линейного пространства X размерности n. Пусть в X выбран некоторый базис $e=(e_1,\ldots,e_n)$, в котором матрица преобразования ϕ есть $A \in \mathbb{R}^{n \times n}$. Тогда собственные значения n преобразования (то есть все числа $\lambda \in \mathbb{R}$, такие что $\phi(x) = \lambda x$ для хотя бы одного ненулевого вектора x) можно было искать как действительные корни характеристического уравнения x матрицы этого преобразования:

$$\det(A - \lambda E) = 0 \tag{1}$$

В этом месте стоило задаться вопросом: а корректен ли такой способ поиска собственных значений? В том смысле, не получится ли так, что у характеристического уравнения для матрицы A преобразования ϕ в базисе e будут одни корни, а у характеристического уравнения для матрицы A' того же преобразования ϕ , но уже в ∂ ругом базисе e', корни будут другие? Пусть "старый" и "новый" базисы связаны матрицей перехода: e' = eS, $S \in \mathbb{R}^{n \times n}$, $\det S \neq 0$. Тогда матрица A' в "новом" базисе e' так выражается через матрицу A в "старом" базисе $e: A' = S^{-1}AS$. Распишем характеристический многочлен матрицы A':

$$\det(A' - \lambda E) = \det(S^{-1}AS - \lambda S^{-1}S)$$

$$= \det(S^{-1} \cdot (A - \lambda E) \cdot S)$$

$$= \det S^{-1} \cdot \det(A - \lambda E) \cdot \det S = \det(A - \lambda E)$$

То есть характеристические многочлены матриц одного и того же преобразования в разных базисах совпадают! Получается, будут одинаковыми все коэффициенты в характеристических многочленах, стоящие при λ в одинаковых степенях:

$$(-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} \operatorname{Sp} A' + \dots + \det A' = (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} \operatorname{Sp} A + \dots + \det A$$

То есть у матриц A и A' преобразования ϕ совпадают след и определитель. Эти величины являются инвариантами, связанными с преобразованием, то есть они не зависят от выбора базиса. А раз совпадают характеристические многочлены, то и корни характеристических уравнений матриц A и A' будут одинаковыми (вплоть до кратностей). Поэтому характеристическое уравнение матрицы (1) можно называть характеристическим уравнением преобразования.

1.2. Собственные подпространства преобразования

Пусть найдено собственное значение $\lambda \in \mathbb{R}$ преобразования. Рассмотрим множество всех векторов L_{λ} , каждый из которых под действием ϕ остаётся параллелен себе с коэффициентом λ :

$$L_{\lambda} = \{ \mathbf{x} \in X \mid \phi(\mathbf{x}) = \lambda \mathbf{x} \} \tag{2}$$

то есть L_{λ} состоит из собственных векторов, относящихся к собственному значению λ , а также из нулевого вектора (который по определению собственным вектором не является). Покажем, что L_{λ} есть подпространство в X. Пусть $\mathbf{x}_1, \mathbf{x}_2 \in L_{\lambda}$. Тогда для их суммы имеем:

$$\phi(x_1 + x_2) = \phi(x_1) + \phi(x_2) = \lambda x_1 + \lambda x_2 = \lambda(x_1 + x_2)$$

то есть сумма $x_1 + x_2$ тоже вектор из L_{λ} . Аналогично $\alpha x \in L_{\lambda}$, $\alpha \in \mathbb{R}$, $x \in L_{\lambda}$. Получается, L_{λ} замкнуто относительно операций сложения векторов и умножения вектора на число, поэтому является подпространством X.

Подпространство L_λ называется собственным подпространством, соответствующим собственному значению λ . Собственные векторы, относящиеся к λ , являются ненулевыми векторами L_λ .

Раз λ собственное значение, то оно будет корнем характеристического уравнения преобразования $(1)^1$. Пусть кратность λ как корня есть $p \geq 1$. Что можно сказать о pазмерности собственного подпространства L_{λ} , соответствующего λ ? Очевидно, dim $L_{\lambda} \geq 1$. Также очевидно, что dim $L_{\lambda} \leq n = \dim X$. Можно ли указать более точную верхнюю границу для dim L_{λ} ? Допустим, dim $L_{\lambda} \equiv d > p$. Тогда в подпространстве L_{λ} можно выбрать d линейно независимых векторов. Дополним эту систему векторов до базиса e' пространства X. Что можно сказать про матрицу A' преобразования ϕ в этом базисе? Так как первые d векторов базиса e' собственные, то:

$$A' = \begin{pmatrix} \lambda & 0 & 0 & \dots & 0 & \cdot & \cdot & \dots & \cdot \\ 0 & \lambda & 0 & \dots & 0 & \cdot & \cdot & \dots & \cdot \\ 0 & 0 & \lambda & \dots & 0 & \cdot & \cdot & \dots & \cdot \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & \cdot & \cdot & \dots & \cdot \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ddots & \cdot & \dots & \cdot \end{pmatrix}$$

Но характеристическое уравнение такой матрицы²:

$$\det(A' - lE) = (\lambda - l)^d \cdot (\dots) = 0$$

и у него λ , очевидно, корень кратности как минимум d. Но такого не может быть, потому что корни вплоть до кратностей инварианты, а изначальная кратность p по предположению меньше d. Поэтому верно следующее утверждение.

Утверждение 1.1. Пусть λ есть корень характеристического уравнения преобразования ϕ (1) кратности $p \ge 1$. Тогда размерность соответствующего собственного подпространства L_{λ} не превосходит p.

1.3. Инвариантные подпространства преобразования

Посмотрим ещё раз на собственное подпространство L_{λ} (2). Заметим, что если $\mathbf{x} \in L_{\lambda}$, то

$$\phi(\phi(\mathbf{x})) = \phi(\lambda \mathbf{x}) = \lambda \phi(\mathbf{x})$$

то есть образ $\phi(x)$ любого вектора x из L_λ также лежит в L_λ . Тогда про подпространство L_λ говорят, что оно является инвариантным относительно преобразования ϕ .

Определение 1.1. Подпространство L' линейного пространства L называется *инвариантным* относительно преобразования $\phi: L \to L$, если $\forall x \in L' \to \phi(x) \in L'$. Иными словами, если $\phi(L') \subseteq L'$.

¹Почему это верно? То есть обычно как, находим корни, и они — собственные значения. Почему верно наоборот: что если собственное значение, то обязательно корень?

 $^{^2}$ Из-за небольшой коллизии обозначений в этом месте пришлось вместо "стандартного" $\det(A - \lambda E) = 0$ написать $\det(A - lE) = 0$, то есть переменная в уравнении есть l, потому что λ уже означает некоторое собственное значение.

Пусть вектор x_1 собственный, соответствующий λ , то есть $\phi(x_1) = \lambda x_1$ и x_1 ненулевой. Тогда множество векторов $L_{x_1} = \{x \in X \mid x = \alpha x_1, \alpha \in \mathbb{R}\}$, очевидно, будет одномерным подпространством. Но оно также будет инвариантно относительно ϕ :

$$\phi(\alpha \mathbf{x}_1) = \alpha \phi(\mathbf{x}_1) = \underbrace{\alpha \cdot \lambda}_{\beta \in \mathbb{R}} \mathbf{x}_1 = \beta \mathbf{x}_1$$

(то есть образ любого вектора вида αx_1 также лежит в L_{x_1} , более того, αx_1 будет собственным при $\alpha \neq 0$, так как $\phi(\alpha x_1) = \alpha \cdot \lambda x_1 = \lambda \cdot \alpha x_1$). Итого, на каждый собственный вектор x_1 преобразования натянуто одномерное инвариантное подпространство.

Ести ли какие-нибудь "другие" примеры инвариантных подпространств?

Пример. Для любого преобразования $\phi: X \to X$ инвариантными будут нулевое подпространство $\{\mathbf{0}\}$ и всё пространство X.

Пример. Если λ_1 и λ_2 есть два различных собственных значения преобразования ϕ , то инвариантной будет сумма соответствующих собственных подпространств: $L_{\lambda_1} + L_{\lambda_2}$.

Пример. Вспомним про номер, в котором рассматривается преобразование ϕ геометрического трёхмерного пространства векторов \mathscr{L} , суть которого — ортогональная проекция на прямую \mathscr{L}_1 : x=y=z (базис ортонормированный). Формула преобразования: $\phi(x)=\frac{(x,a)}{|a^2|}a$, где a есть направляющий вектор прямой \mathscr{L}_1 . Матрица преобразования: $A=\frac{1}{3}\begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix}$. Какие подпространства будут инвариантны относительно ϕ ?

Очевидно, нулевое подпространство $\{\mathbf{0}\}$ и всё пространство $\mathscr L$ инвариантны.

Найдутся ли *одномерные* инвариантные подпространства? Да — очевидно, это сама сама прямая \mathcal{L}_1 (1). А также любая прямая, перпендикулярная \mathcal{L}_1 . Например, прямая с направляющим вектором $\boldsymbol{b} = (2, -1, -1)^T$.

Найдутся ли *двумерные* инвариантные подпространства? Да — очевидно, это плоскость, перпендикулярная \mathcal{L}_1 . А также... любая плоскость, *содержащая* \mathcal{L}_1 (1). То есть все плоскости вида $\{t_1 \boldsymbol{a} + t_2 \boldsymbol{b} \mid t_1, t_2 \in \mathbb{R}\}$, где \boldsymbol{b} есть некоторый вектор, не параллельный \boldsymbol{a} .

Заметим, что $\phi(a) = 1 \cdot a$, то есть вектор a собственный, соответствующий собственному значению $\lambda = 1$. И через него, как через собственный вектор, проходит одномерное инвариантное подпространство. Так и получилось: это подпространство и есть прямая \mathcal{L}_1 . Также получается, что $\phi(b) = \mathbf{0} = 0 \cdot b$, то есть вектор b тоже собственный, но соответствующий собственному значению $\lambda = 0$.

2. Задачи

2.1. # 24.42(1)

Найти собственные значения и собственные векторы дифференцирования $D: \mathscr{P}^{(n)} \to \mathscr{P}^{(n)}$ как линейного преобразования пространства многочленов степени не выше n.

Решение.

Способ 1: "Из определения".

Ищем собственный многочлен в виде:

$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_{n-1} t^{n-1} + a_n t^n$$
(3)

Его образ:

$$(D(p))(t) = a_1 + 2a_2t + \dots + na_nt^{n-1}$$

Рис. 1: Подпространства трёхмерного геометрического векторного пространства: одномерное и двумерные — инвариантные относительно преобразования ϕ ортогонального проектирования на прямую \mathcal{L}_1 . (Плоскости и прямые нарисованы как геометрические объекты, с "видимой" и "невидимой" частью, но это сделано лишь для лучшего восприятия рисунка — на самом деле под прямыми и плоскостями в данном случае имеются в виду векторные подпространства, для которых понятие "относительного расположения" не такое, как для их "геометрических аналогов".)

Раз p(t) собственный, то должно найтись число $\lambda \in \mathbb{R}$ (собственное значение):

$$D(p) = \lambda p \leftrightarrow a_1 + 2a_2t + \dots + na_nt^{n-1}$$

= $\lambda a_0 + \lambda a_1t + \dots + \lambda a_{n-1}t^{n-1} + \lambda a_nt^n$ (4)

Приравнивая коэффициенты при t в одинаковых степенях у многочленов "слева" и "справа", получаем систему:

$$\begin{cases} a_1 = \lambda a_0 \\ 2a_2 = \lambda a_1 \\ \vdots \\ na_n = \lambda a_{n-1} \\ 0 = \lambda a_n \end{cases}$$

Из последнего уравнения следует две возможности: $\lambda \neq 0$ (и a_n обязательно ноль) и $\lambda = 0$ (тогда a_n любой). Если $\lambda \neq 0$, то из предпоследнего уравнения следует $a_{n-1} = 0$. И

далее, все коэффициенты получаются нулевыми, вплоть до a_1 (второе уравнение системы) и a_0 (первое уравнение). То есть в рассматриваемом случае $p\equiv 0$. Но собственный по определению не нулевой. Поэтому выбор $\lambda\neq 0$ ни к чему не привёл.

Пусть теперь $\lambda=0$. Из предпоследнего уравнения следует $a_n=0$. И таким образом зануляются все коэффициенты вплоть до a_2 (второе уравнение системы) и a_1 (первое уравнение). Но... про a_0 так ничего и не известно! То есть a_0 может быть любым. Получается, любой многочлен вида $p(t)=a_0,\ a_0\neq 0$ будет собственным для $\lambda=0$. И если бы требовалось, например, найти максимальную по числу линейно независимую систему из собственных векторов преобразования D, то это была бы, например, система из одного вектора $\{-17.5\}$.

Способ 2: "Стандартная схема".

Введём базис в пространстве многочленов $\mathscr{P}^{(n)}$. Например:

$$e = (1, t, t^2, \dots, t^{n-1}, t^n)$$

В этом базисе у многочлена p (3) будет координатный столбец $\xi = (a_0, a_1, \dots, a_{n-1}, a_n)^T$, а у его образа D(p) будет столбец $\eta = (a_1, 2a_2, \dots, na_n, 0)$.

В базисе e у преобразования D будет матрица $\overset{``}{A} \in \mathbb{R}^{(n+1)\times (n+1)}$:

$$A\xi = \eta \quad \leftrightarrow \quad A \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \\ a_n \end{pmatrix} = \begin{pmatrix} a_1 \\ 2a_2 \\ \vdots \\ na_n \\ 0 \end{pmatrix} \quad \Rightarrow \quad A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & n \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

Характеристическое уравнение матрицы:

$$\det(A - \lambda E) = 0$$

$$\begin{vmatrix} -\lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & -\lambda & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -\lambda & n \\ 0 & 0 & 0 & \dots & 0 & -\lambda \end{vmatrix} = 0 \Rightarrow \lambda = 0 \quad (\text{кратность } n+1)$$

Собственные векторы для единственного найденного $\lambda = 0$:

$$(A - \lambda E)\xi = 0$$

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & n \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \\ a_n \end{pmatrix} = 0 \Rightarrow \begin{cases} a_0 \in \mathbb{R} \\ a_1, a_2, \dots, a_n = 0 \end{cases}$$

То есть собственные векторы, соответствующие $\lambda = 0$, это константные ненулевые многочлены. Собственное подпространство, соответствующее $\lambda = 0$, это одномерное подпространство с базисом, например, $\{-17.5\}$.

2.2. # 24.70

Пусть $\phi: L \to L$ линейное преобразование линейного пространства X. Доказать, что любое подпространство $L' \subseteq L$, содержащее $\operatorname{Im} \phi$, инвариантно.

Решение. Проверим инвариантность подпространства L' просто по определению:

$$x \in L' \Rightarrow \phi(x) \in \operatorname{Im} \phi \subseteq L'$$

То есть, да, инвариантно.

(Решение получилось до неприличия коротким, поэтому попробуем далее немного "раскрутить сюжет" и заметить "что-нибудь интересное".)

Так как $\operatorname{Im} \phi \subseteq L' \subseteq L$, то

$$\dim \operatorname{Im} \phi \leq \dim L' \leq \dim L$$

Минимальное по размерности подпространство L', удовлетворяющее условию задачи, это $\operatorname{Im} \phi$. Максимальное по размерности — это всё L.

Если $L' \neq L$, то существует ненулевое прямое дополнение L'' подпространства L':

$$L' \oplus L'' = L$$

Выберем теперь базисы в L' и L''. Пусть это будут базисы $p=(\pmb{p}_1,\ldots,\pmb{p}_k)$ и $q=(\pmb{q}_1,\ldots,\pmb{q}_l)$ соответственно $(k=\dim L', l=\dim L'', k+l=\dim L\equiv n)$. Тогда можно в качестве базиса в L взять объединение базисов p и q:

$$e = (\mathbf{p}_1, \dots, \mathbf{p}_k, \mathbf{q}_1, \dots, \mathbf{q}_l)$$

Какой будет матрица A преобразования ϕ в этом базисе? Можно выписать её по столбцам. Так, первый столбец — это координаты $\phi(p_1)$ в e. Единственное, что можно сказать про $\phi(p_1)$ — это то, что $\phi(p_1) \in \operatorname{Im} \phi$, а потому и $\phi(p_1) \in L'$, и, значит, раскладывается по базису p. Аналогично и с образами остальных векторов базиса e. Поэтому матрица A имеет вид:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Причём Rg $A=\dim \operatorname{Im} \phi$, а потому из k ненулевых строк можно максимум выбрать $\dim \operatorname{Im} \phi$ линейно независимых.

Пусть в качестве L' выбрано просто ${\rm Im}\,\phi$ (один из "граничных случаев", минимальное по размерности L'). Тогда в матрице преобразования первые ${\rm Im}\,\phi$ строчек будут и ненулевыми, и линейно независимыми. Также можно заметить, что в этом случае размерность прямого дополнения L'' получается равной:

$$\dim L'' = \dim L - \dim L' = \dim L - \dim \operatorname{Im} \phi = \dim \operatorname{Ker} \phi$$

то есть равна размерности ядра преобразования Ker ϕ ! Однако значит ли это, что L'' обязательно и есть ядро?.. На самом деле, нет, может, и не ядро. Потому что если Ker $\phi \cap \text{Im } \phi \neq \{\mathbf{0}\}$, то их сумма не прямая и Ker ϕ не будет прямым дополнением Im ϕ^3 .

³ А у какого преобразования, например, ядро будет иметь ненулевое пересечение со множеством значений?

2.3. # 24.55(1)

Пусть $\phi: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ есть линейное преобразование квадратных матриц второго порядка, заданное формулой:

$$\phi(X) = AX, \quad A = \begin{pmatrix} -4 & 0\\ 1 & 4 \end{pmatrix}$$

Надо найти собственные значения и максимальную линейно независимую систему собственных векторов преобразования ϕ . В случае, если эта система из собственных векторов может быть выбрана в качестве базиса, записать в нём матрицу преобразования ϕ . *Решение*. Пойдём по "стандартной схеме": найдём собственные значения из характеристического уравнения $\det(A-\lambda E)=0$, потом для каждого собственного значения λ_i будем искать собственные векторы как решения соответствующей однородной системы с матрицей $(A-\lambda_i E)$.

Характеристическое уравнение:

$$\det(A - \lambda E) = 0$$

$$\begin{vmatrix} -4 - \lambda & 0 \\ 1 & 4 - \lambda \end{vmatrix} = 0 \Rightarrow \begin{cases} \lambda_1 = 4 \\ \lambda_2 = -4 \end{cases}$$

Собственные векторы для λ_1 :

$$(A - \lambda_1 E) \mathbf{x} = 0$$

$$\begin{pmatrix} -8 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \mathbf{x}_1 = \begin{pmatrix} 0 \\ 2023 \end{pmatrix}$$

Собственные векторы можно либо просто подобрать, глядя на матрицу (и понимая при этом, сколько линейно независимых векторов должно получиться: в данном случае это всего один вектор x_1 , так как в системе $(A-\lambda_1 E)x=0$ одна параметрическая неизвестная — переменная x_2). Либо можно просто по-честному решить систему, получив базис в пространстве решений (фундаментальную матрицу) — этот базис и будет давать максимальную линейно независимую систему собственных векторов для λ_1 (базис в соответствующем собственном подпространстве).

Собственные векторы для λ_2 :

$$(A - \lambda_2 E)\mathbf{x} = 0$$

$$\begin{pmatrix} 0 & 0 \\ 1 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \boxed{\mathbf{x}_2 = \begin{pmatrix} -8 \\ 1 \end{pmatrix}}$$

Снова всего один собственный вектор, который тоже несложно подобрать из по сути единственного уравнения системы $x_1 + 8x_2 = 0$.

Получается, нашли собственные векторы \mathbf{x}_1 и \mathbf{x}_2 , их два. Можно взять в качестве базиса систему $e' = \{\mathbf{x}_1, \mathbf{x}_2\}$. В этом базисе из собственных векторов матрица A' преобразования будет иметь вид:

$$A' = \begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix}$$

где на диагонали стоят собственные значения, которые соответствуют векторам базиса e' из собственных векторов, так как $\phi(x_1) = \lambda_1 x_1$ и $\phi(x_2) = \lambda_2 x_2$.

Нашли базис из собственных векторов, получили диагональный вид матрицы преобразования ϕ . Преобразования квадратных матриц второго порядка $\mathbb{R}^{2\times 2}$... размерности *четыре*... Но мы нашли базис $\{x_1, x_2\}$ — в котором всего $\partial \epsilon a$ вектора!?..

Какой сейчас год?.. Какой сейчас год?.. АААААААААА!