Matplotlib Library

Nicholas Russell Saerang

What is Matplotlib?

It is a Python library useful for data visualization. We can create bar plots, line plots, histograms, and many more!

Matplotlib is supported with other libraries such as Seaborn which we will also have a try later.

For today's workshop, go to:

https://colab.research.google.com/drive/16B6vp9XwMwliRX h9o9VlrkXjX2ftJh4?usp=sharing

from matplotlib import pyplot as plt

```
x = tuple(range(100))
y = tuple(map(lambda x:x*x, x))
fig, ax = plt.subplots()
ax.plot(x, y)
fig.show()
```


Plot Anatomy

Workflow

🎧 1 Prepare data

n / Customize plot

∩ 🤈 Create plot

N Save plot

13 Plot

∩ ∠ Show plot

1. Prepare Data

Datas can be in form of arrays, lists, NumPy arrays, or DataFrame. A trivial example would be like one of these.

```
import matplotlib.pyplot as plt
import seaborn as sns

x = [1,2,3,4,5]

x = np.array([1, 0.2, 0.1])

x = data['Year']
```

>>> from matplotlib.cbook import get_sample_data
>>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))

2. Create Plot

There are two quick ways to create a new plot.

```
fig, ax = plt.subplots(figsize = (16,9))
```

```
fig = plt.figure()
ax = fig.add_subplot(111)
```

Recall: Plot Anatomy


```
fig, ax = plt.subplots()

The whole figure i.e. the window in the figure
```

About add_subplot

https://matplotlib.org/3.3.4/api/ as gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.add subplot

```
>>> fig.add_axes()
>>> ax1 = fig.add_subplot(221) # row-col-num
>>> ax3 = fig.add subplot(212)
>>> fig3, axes = plt.subplots(nrows=2,ncols=2)
>>> fig4, axes2 = plt.subplots(ncols=3)
```

3. Plot

If we have the X and Y data, we can call the plot function to ax.

```
ax.plot(x,y)
ax.plot(x,y, label = 'my plot', alpha = 0.4, ls =
'--')
ax.plot(x,y, color = 'lightblue', linewidth = 3)
ax.plot(x,y, c = 'lightblue', linewidth = 3)
ax.scatter(x,y, marker = 'o')
```


A tale of 2 subplots

4. Customize Plot

There are many types of plot customizations. The most useful ones are:

- Set axes label
- Set bounds of x and y
- Change type of visualization (bar plot, scatter plot)

Setting Labels and Legend

```
ax.set(title = 'Plot 1', xlabel = 'X-Axis', ylabel =
'Y-Axis')
ax.legend()
ax.set_xlabel('X-Axis')
ax.set_ylabel('Y-Axis')
ax.set_title('My Plot')
```


Bounding/Limits

```
Set x limit
    ax.set_xlim(-1, 10)
Set y limit
    ax.set_ylim(-3, 7)
Set both
    ax.set(xlim = [-1, 10], ylim = [-3, 7])
```

Margin and Scaling

```
>>> ax.margins(x=0.0,y=0.1)
```

>>> ax.axis('equal')

ax.set_xscale('log')

Add padding to a plot Set the aspect ratio of the plot to 1

Texts and Annotations

How about math titles?

Say you need a sigma symbol, just like this -> Σ

We can put the letter r before the title string, just like below.

```
plt.title(r'$sigma_i = 15$')
```

Notice that the title is enclosed in dollar signs because it's using LaTeX.

Different Types of Visualization

```
>>> lines = ax.plot(x,y)

>>> ax.scatter(x,y)

>>> axes[0,0].bar([1,2,3],[3,4,5])

>>> axes[1,0].barh([0.5,1,2.5],[0,1,2])

>>> axes[1,1].axhline(0.45)

>>> axes[0,1].axvline(0.65)

Draw points with lines or markers connecting them

Draw unconnected points, scaled or colored

Plot vertical rectangles (constant width)

Plot horiontal rectangles (constant height)

Draw a horizontal line across axes

Draw a vertical line across axes
```

Different Types of Visualization

>>> ax1.hist(y)

>>> ax3.boxplot(y)

>>> ax3.violinplot(z)

Plot a histogram

Make a box and whisker plot

Make a violin plot

5. Save Plot

Save figures

>>> plt.savefig('foo.png')

Save transparent figures

>>> plt.savefig('foo.png', transparent=True)

6. Show Plot

Simply do plt.show()!

(Optional) Close Plot

For the sake of formality and/or reproducibility, we usually close and/or clear the plot. The list of possible command is as follows:

- plt.cla()
- plt.clf()
- plt.close()

```
cla() # Clear axis
clf() # Clear figure
close() # Close a figure window
```



```
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(19680801)
```

```
data = np.random.randn(2, 100)
```

```
fig, axs = plt.subplots(2, 2, figsize=(5, 5))
axs[0, 0].hist(data[0])
axs[1, 0].scatter(data[0], data[1])
axs[0, 1].plot(data[0], data[1])
axs[1, 1].hist2d(data[0], data[1])
```

plt.show()

Try to plot this!

Break Time

Which line is exponential growth?

Linear-Linear

Differences in plots are exponentially large

Log-Linear

X-axis is split into two scales, but both are linear

Log-Log

Seems polynomial growth overall

Seaborn, implemented in Matplotlib

Line Plot

We are using fifa.csv in this example.

	ARG	BRA	ESP	FRA	GER	ITA
Date						
1993-08-08	5.0	8.0	13.0	12.0	1.0	2.0
1993-09-23	12.0	1.0	14.0	7.0	5.0	2.0
1993-10-22	9.0	1.0	7.0	14.0	4.0	3.0
1993-11-19	9.0	4.0	7.0	15.0	3.0	1.0
1993-12-23	8.0	3.0	5.0	15.0	1.0	2.0

```
plt.figure(figsize = (8,6))
sns.lineplot(data=fifa)
plt.ylabel("Rank")
```

Text(0, 0.5, 'Rank')

Bar Plot

This time, we are using flight_delays.csv

	AA	AS	B6	DL	EV	F9
Month						
1	6.955843	-0.320888	7.347281	-2.043847	8.537497	18.357238
2	7.530204	-0.782923	18.657673	5.614745	10.417236	27.424179
3	6.693587	-0.544731	10.741317	2.077965	6.730101	20.074855
4	4.931778	-3.009003	2.780105	0.083343	4.821253	12.640440
5	5.173878	-1.716398	-0.709019	0.149333	7.724290	13.007554

```
plt.title("Plot Title")
sns.barplot(x=flight_delays.index, y=flight_delays['AA'])
plt.xlabel("Month")
plt.ylabel("Delay (minutes)")
Text(0, 0.5, 'Delay (minutes)')
                                 Plot Title
   8
   6
Delay (minutes)
```

12

11

10

plt.figure(figsize=(8,6))

0

Heatmap

```
plt.figure(figsize=(12,6))
sns.heatmap(data = flight delays, annot = True)
<matplotlib.axes. subplots.AxesSubplot at 0x7f14462d8c10>
                                                                                                   - 35
             -0.32
                                8.5
                                                                          3.1
                                                                                1.4
                                                                                       3.4
            -0.78
                                      27
                                                              9.6
                                                                    7.3
                                                                                                   - 30
            -0.54
                         2.1
                                6.7
                                                        10
                                                              3.2
                                                                    4.9
                                                                          3.3
                                                                                5.3
                                                                                       3.3
                                                                                                   - 25
                        0.083 4.8
                                          0.011 5.1
       4.9
                   2.8
                                                              3.2
             -1.7
                  -0.71 0.15
                                           0.83
                                                                          0.68
                                                                                      5.7
                                                                                                   - 20
            -0.22
                         4.4
                                           0.88
                                                              8.3
                                                                          5.8
                                                                                5.8
                                                                                                   - 15
             0.38
                         1.2
                                6.9
                                                              6.8
                                                                                 7.1
                                                                    10
                         0.65
                                                                                 5.1
                                                                                                   - 10
            -1.8
                               0.85
                                     0.98
                         -3.7
                                                  -2.2
                                                              15
                                                                               0.071 -1.3
                                                                                                   -5
       -0.58
                          -5
                                     0.082
                                           0.47
                                                 -3.7
                                                        6.8
                                                              1.8
                                                                    -2.5
                                                                                 2.3
                                                                                      -0.69
                   3.7
                                2.3
            -1.9
                   1.4
                         -3.2
                                                 0.22
                                                              4.9
                                                                                0.12
                                            -2.7
                                                                    0.28
                         2.5
                                                 0.66
             -1.8
                                     9.3
                                            -1.7
                                                                                      6.7
                    B6
                          DL
                                EV
                                      F9
                                            HA
                                                  MO
                                                        NK
                                                              00
                                                                    UA
                                                                          US
                                                                                 VX
                                                                                      WN
```

Scatter Plot

Now, we use candy.csv as the dataset.

	competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat
id						
0	100 Grand	Yes	No	Yes	No	No
1	3 Musketeers	Yes	No	No	No	Yes
2	Air Heads	No	Yes	No	No	No
3	Almond Joy	Yes	No	No	Yes	No
4	Baby Ruth	Yes	No	Yes	Yes	Yes

```
sns.scatterplot(x = candy['pricepercent'], y = candy['winpercent'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f144609c8d0>


```
sns.regplot(x = candy['pricepercent'], y = candy['winpercent'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f1445e794d0>


```
sns.scatterplot(x = candy['pricepercent'], y = candy['winpercent'], hue = candy['chocolate'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f1445e424d0>


```
sns.lmplot(x = 'pricepercent', y = 'winpercent', hue = 'chocolate', data = candy)
```

<seaborn.axisgrid.FacetGrid at 0x7f1445df51d0>

Categorical Scatterplot: Swarmplot

```
sns.swarmplot(x = candy['chocolate'], y = candy['winpercent'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f1445ce6b90>
   80
   70
 winpercent
   60
   50
   40
   30
   20
                 Yes
                                           No
                            chocolate
```

Histograms

Finally, we will demonstrate a Seaborn histogram from museum_visitors.csv as the dataset.

	Avila Adobe	Firehouse Museum	Chinese American Museum	America Tropical Interpretive Center
Date				
2014-01-01	24778	4486	1581	6602
2014-02-01	18976	4172	1785	5029
2014-03-01	25231	7082	3229	8129
2014-04-01	26989	6756	2129	2824
2014-05-01	36883	10858	3676	10694

sns.distplot(museum['Avila Adobe'], kde = True) # kernel density estimate

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: Futur warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f1443b01c10>

sns.distplot(museum['Avila Adobe'], kde = False) # kernel density estimate

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: Future warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f14461b9090>

sns.kdeplot(data = museum['Avila Adobe'], shade = True)
shade gives background colour to the area under the curve

a shade gives background colour to the drea ander the carve

Avila Adobe

sns.jointplot(x = museum['Avila Adobe'], y = museum['Firehouse Museum'])

<seaborn.axisgrid.JointGrid at 0x7f1442531ad0>

Putting it all together

```
for c in museum.columns:
  sns.distplot(museum[c], kde = False, label = c)
plt.xlabel("Number of visitors")
plt.ylabel("Days")
plt.legend()
/usr/local/lib/python3.7/dist-packages/seaborn/distr
  warnings.warn(msg, FutureWarning)
<matplotlib.legend.Legend at 0x7f14432eaa90>
   25
                           Avila Adobe
                           Firehouse Museum
                           Chinese American Museum
   20
                           America Tropical Interpretive Center
  15
  10
    5
                           30000
                                  40000
            10000
                    20000
                                          50000
                                                  60000
                       Number of visitors
```

```
for c in museum.columns:
    sns.kdeplot(museum[c], shade = True, label = c)

plt.xlabel("Number of visitors")
plt.ylabel("Days")
plt.xlim(0,50000)
plt.legend()
```

<matplotlib.legend.Legend at 0x7f1442cfde90>

Styling

Here are 5 different stylings in Seaborn.

(1)"darkgrid"

(2)"whitegrid"

(3)"dark"

(4)"white", and

(5)"ticks"

```
sns.set_style("dark")
sns.lineplot(data=fifa)
# (1)"darkgrid", (2)"whitegrid", (3)"dark", (4)"white", and (5)"ticks"
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f1443236c10>


```
sns.set_style("darkgrid")
sns.lineplot(data=fifa)
# (1)"darkgrid", (2)"whitegrid", (3)"dark", (4)"white", and (5)"ticks"
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f1441d9e450>


```
sns.set_style("whitegrid")
sns.lineplot(data=fifa)
# (1)"darkgrid", (2)"whitegrid", (3)"dark", (4)"white", and (5)"ticks"
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f1441ae0ed0>


```
sns.set_style("white")
sns.lineplot(data=fifa)
# (1)"darkgrid", (2)"whitegrid", (3)"dark", (4)"white", and (5)"ticks"
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f14416833d0>


```
sns.set_style("ticks")
sns.lineplot(data=fifa)
# (1)"darkgrid", (2)"whitegrid", (3)"dark", (4)"white", and (5)"ticks"
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f14413a2a90>

Notice the small ticks here

Other References

https://matplotlib.org/stable/tutorials/introductory/sample_plots.html

https://matplotlib.org/3.1.0/gallery/index.html

https://seaborn.pydata.org/examples/index.html

https://www.data-to-viz.com/

QnA