Отчет о выполнении лабораторной работы 1.3.1

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

1 Аннотация

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используются: в первой части - прибор Лермантова, проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

2 Теоретические сведения

3 Ход работы

3.1 Определение модуля Юнга по измерениям растяжения проволоки

Для определения модуля Юнга используется прибор Лермантова, схема которого изображена на рис. 1. Верхний конец проволоки П, изготовленной из исследуемого материала, прикреплен к консоли К, а нижний - к цилиндру, которым оканчивается шарнирный кронштейн Ш. На этот же цилиндр опирается рычаг г, связанный с зеркальцем 3. Таким образом, удлинение проволоки можно измерить по углу поворота зеркальца.

Рис. 1: Прибор Лермантова

Натяжение проволоки можно менять, перекладывая грузы с площадки М на площадку О и наоборот. Такая система позволяет исключить влияние деформации кронштейна К на точность измерений, так как нагрузка на нем все время остается постоянной. Проволока П при отсутствии нагрузки всегда несколько изогнута, что не может не сказаться на результатах, особенно при небольших нагрузках. Проволока вначале не столько растягивается, сколько распрямляется.

1. Параметры установки

$$d=(0.46\pm0.01)$$
 мм – диаметр проволоки, $r=15$ см – длина рычага, $h=(143\pm0.1)$ см – расстояние от шкалы до зеркальца, $L=(147.5\pm0.1)$ см – длина проволоки.

2. Площадь поперечного сечения проволоки

$$S = \pi \frac{d^2}{4} = 0.166 \quad \text{mm}^2$$

$$\sigma_S = S \cdot \sqrt{2 \left(\frac{\sigma_d}{d}\right)} = 0.005 \quad \text{mm}^2$$

3. Направим зрительную трубу на зеркальце 3. При этом в трубу четко видно отражение шкалы в зеркальце. Тогда удлинение проволоки

$$\Delta l = r \tan \varphi$$

$$\tan 2\varphi = \frac{n}{h} \approx 2 \tan \varphi$$

$$\Delta l = \frac{nr}{2h}$$

$$\sigma_{\Delta l} = \Delta l \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}$$

Рис. 2: Вычисление удлинения проволоки

- 4. Оценим максимальную величину нагрузки, приняв разрушающее напряжение $\sigma_{\rm pasp}=900~{\rm H/mm^2}.$ Тогда рабочее напряжение не должно превышать 30% от величины разрушающего, а максимальная масса груза $4.57~{\rm kr}.$
- 5. Проведём измерения при увеличении и при уменьшении нагрузки. Результаты занесём в таблицу 1.

P, H	2.41	4.80	7.21	9.62	12.03
Δl , mm	0.142	0.320	0.488	0.640	0.776
$\sigma_{\Delta l}$, MM	0.004	0.007	0.011	0.014	0.017
P, H	12.03	9.62	7.21	4.80	2.41
1 '		0.0_		1.00	
Δl , MM	0.776	0.635	0.488	0.315	0.142

Таблица 1: Удлинения проволоки

По получным данным построим графики, изображённые на рисунках 2-3.

Рис. 3: Увеличение нагрузки

Рис. 4: Уменьшение нагрузки

6. Вычислим модуль Юнга по формуле

$$E = \frac{\sigma}{\varepsilon} = \frac{PL}{S\Delta l} = k\frac{L}{S},$$

где k – коэффициент наклона графика $P(\Delta l)$.

$$\sigma_E = E \cdot \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2}$$

Окончательный результат

$$E = (1.61 \pm 0.05) \cdot 10^{11} \quad \Pi a$$

Сравнение с табличными значениями позволяет предположить, что материал проволоки - стальной сплав.

3.2 Определение модуля Юнга по измерениям изгиба бал-ки

Экспериментальная установка состоит из прочной стойки с опорными призмами А и Б (рис. 5). На ребра призм опирается исследуемый стержень (балка) В. В середине стержня на призме Д поднешена площадка П с грузами. Измерять стрелу прогиба можно с помощью индикатора И, укрепляемого на отдельной штанге. Полный оборот большой стрелки индикатора соответствует 1 мм и одному делению малого циферблата.

Рис. 5: Схема уставовки для измерения модуля Юнга

1. Параметры установки

$$l_{\rm AB} = (50 \pm 0.1)$$
 cm

Материал стержня	Ширина, см	Высота, см
Медь	2.18 ± 0.01	0.45 ± 0.01
Дерево	2.12 ± 0.01	0.95 ± 0.01
Сталь	2.10 ± 0.01	0.39 ± 0.01

Таблица 2: Ширина и длина стержней

2. Снимем зависимость стрелы прогиба y_{max} от величины нагрузки P. Измерения проделаем при возрастании и убывании нагрузки. Занесём результаты в таблицу.

				Медь				
P, H	5.017	9.951	14.887	19.620	19.620	14.887	9.951	5.017
y_{max} , MM	0.72	1.48	2.21	2.97	2.97	2.26	1.44	0.68
	Дерево							
P, H	4.934	9.870	14.447	19.458	19.458	14.447	9.870	4.934
y_{max} , MM	0.61	1.24	1.78	2.59	2.59	1.82	1.26	0.62
	Сталь							
P, H	4.934	9.87	14.399	19.410	19.410	14.399	9.870	4.934
y_{max} , MM	0.68	1.31	1.97	2.56	2.56	2.01	1.3	0.69

Таблица 3: Зависимость y_{max} от нагрузки

По полученным данным построим графики зависимости $P(y_{max})$.

Рис. 6: Медь, увеличение нагрузки

Рис. 7: Медь, уменьшение нагрузки

Рис. 8: Дерево, увеличение нагрузки

Рис. 9: Дерево, уменьшение нагрузки

Рис. 10: Сталь, увеличение нагрузки

Рис. 11: Сталь, уменьшение нагрузки

3. Вычислим модуль Юнга по формуле

$$E = \frac{Pl_{\text{AB}}^3}{4ab^3y_{max}},$$

$$\sigma_E = \sqrt{3\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{P/y_{max}}}{P/y_{max}}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 3\left(\frac{\sigma_b}{b}\right)^2}$$

где P/y_{max} – средний коэффициент наклона графика зависимости $P(y_{max})$ при уменьшении и увеличении нагрузки.

Окончательный результат

Материал	Модуль Юнга, 10 ¹⁰ Па
Медь	10.11 ± 0.41
Дерево	19.03 ± 0.41
Сталь	1.27 ± 0.06

Таблица 4: Модуль Юнга

4 Вывод

В ходе работы двумя разными способами были измерены модули Юнга для различных материалов. Оба метода доказали свою применимость, позволив вычислить модули Юнга с точностью около 5%.