

INDUSTRIAL SCENARIO JULY 2021

رغد النفيعي Script for multi – purpose humanoid robot

1-وبليات التشفيل

1.1 ابعاد الروبرت الذراع:-

البالون:-

القاعدة و العجلات و المحركات :-

2.1 ابعاد الحلبة

3.1 قوانين التشغيل

- استخدم أجهزة الاستشعار المسموح بها لرؤية الضوء الأخضر
 - لا تقفز فوق الحاجز
 - تحديث المعلومات حول الخريطة للبقاء في الحلبة
- استخدام برنامج واحد على الروبوت، بسبب تعدد بيئات البرمجة.
 - تحديث صياغة منطقة البداية.
 - تحديث قاعدة نهاية الجولة.

Motor Degree Value M1 M2 M3 M4 M4 M5 M90 M4 M5 M5

5.1 تفاصيل عملية التشغيل

صممت الدائرة بحيث تتكون من مصدر جهد بجهد 12 فولت تيار مستمر ، ومصدر جهد 5 فولت تيار مستمر ، ومحركين DC ، وعصا تيار مستمر ، ومتحكم دقيق (Arduino Uno) ، ومحرك 1298n ، ومحركين DC ، وعصا تحكم للتحكم في السرعة و اتجاه المحركات. وايضا بطارية V12 هي بطارية (Varicore) قابلة لإعادة الشحن وذات عمر طويل. يتم تضمين دائرة إعادة الشحن ، كل هذه الأجزاء متصلة وتأخذ قيمًا من قاعدة البيانات بناءً على الدرجات المأخوذة من لوحة التحكم بالتي تأخذ مكان على الخادم.

2 – تجارب التشفيل

وحدة التجارب:

النتيجة	الجزء
یعمل بشکل جید	ذراع
المسافة جيدة بين الذراع و البالون	البالون
الابعاد و المسافة جيدة تتناسب مع الذراع و البالون	القاعدة
يوجد 4 عجلات جميعها تعمل بشكل جيدة للغاية	العجلات

اختبار التكامل:

النتيجة	الجزء
قمت بفحص المحرك بشكل مفصل و قمت بفحصها جميعا معا و المحاولة	الذراع
إيجابية ذلك لأنها تعمل معا بانسجام دون اخطاء	
المسافة جيدة بين الذراع و البالون بالتي يمكن لذراع الوصول للبالون	البالون
بعد جمع جميع المحركات الأساسية جميعها تعمل بشكل ممتاز	القاعدة
العجلات 4 تعمل بشكل رائع و أيضا تتحمل وزن الذراع و البالون الموجودين	العجلات

اختبار النظام

النتيجة	الذراع
لا يوجد عيوب ويعمل بسرعة وبشكل منتظم	اختبار النظام على
	محركات الذراع
النتيجة	الهيكل
جميع العجلات تعمل بشكل جيد	اختبار النظام على
	المحرك الأساسي

اختبار قابلية الاستخدام

بعد استخدام روبوت آخر للمقارنة لاختبار حركة الروبوت، قمت برسم حركة للروبوت حتى بعد 9 دقائق من إطلاق الروبوت، يذهب ويدور حول الروبوت الآخر ويحرك الذراع، وارى انه نجح الروبوت في ذلك.

اختبار التوافق

لقد قمت في البداية اختبار جميع أجزاء الروبوت ، ثم اختبرت الروبوت كامل مع بعضة البعض وذلك باستخدام البرامج .

اختبار أداء

اختبار الحمل :يقاوم قوة تصل إلى 500 فولت ولا ينكسر الذراع.

اختبار الإجهاد: قمنا بأجراء اختبار الروبوت تحت ضغط عالي ، في البداية كان يعمل بشكل ممتاز ولكن مع مرور الوقت عند الاختبار الثامن ، أصبح الروبوت يعمل ببطء ثم انكسر الذراع ولذلك لا يمكنه تحمل المزيد من 500 فولت.

اختبار قابلية التوسع : لقد قمت بدمج روبرتين معا ثم بعد ذلك ولكن عند محاولتي دمج الروبوت الثالث كسر الروبوت الخاص بي ولم يعد يعمل ، أي أن الروبوت يمكن أن يتوسع إلى روبرتين أخرى .

اختبار الثبات خضع الروبوت لعدة اختبارات مختلفة في ظل ظروف مختلفة وقمت باختباره في درجات الحرارة الشديدة وفي البرودة الشديدة ، كل ذلك بالترتيب لقياس ثبات الروبوت ، ووجدت أن الروبوت يمكن أن يعمل في ظل ظروف مختلفة وقاسية ، ولكن في درجات الحرارة الشديدة والبرودة الشديدة ، لا يستطيع الروبوت تحمل ذلك .

3- الأخطاء التوقعة

- الميكانيكي MECH:
- 1-اختلاف الابعاد 2- انخفاض حودة القطع 3- فقد بعض القطع 4- الخطاء في ترتيب القطع
 - الكتروني ELCTR

1-توصيل الأجزاء بشكل غير مناسب 2- تطبيق الجهد الزائد لتشغيل لوحة 3-استخدام محركات خاطئة 4- استخدام خاطئ للموصلات و الاسلاك

- AI •
- 1- الكشف الخاطئ 2- تغير دليل الملفات 3- ملفات مكررة 4- أسماء الملفات غير مفهومة او صعبة.
- انترنت الأشياء IOT 1-لا يوجد اتصال بالأنترنت 2- فقدان البيانات 3- اخطار امنية 4- فشل الاتصال بقاعدة البيانات
 - الصناعي INDU

1-عدم وجود متابعة منتظمة 2- عدم التوافق و تنظيم بين الأعضاء 3- اضطراب الأفكار 4- يفقد السيطرة

يجب توضيح الأخطاء التي قد تكرر مما يجعل العملية اكثر تنظيم و اسهل و اكثر وضوح لجميع المهندسين

4- دليل الستخدم

*دليل المستخدم لتشغيل الروبرت: يتكون الروبوت من ثلاث أجزاء رئيسة: الجسم الذي يحتوي على محرك و العجلات، الذراع، البالون.

أولا: نقوم بتجميع العجلات في الهيكل

ثانيا: نضع الذراع في الامام و البالون في الخلف.

وهذه صورة توضح ذلك

ثالثا: قم بتوصيل القطعة التي مثل USB بالكمبيوتر لتظهر لك بعد ذلك وحدة التحكم.

تحذير : يحتوي الروبرت على موجات كهربائية و ذراع قوية و حادة .لا ينصح ان يستخدمه الأطفال .

الضمان لمدة عامين ، بسبب المناخ البيئي شديد الحرارة و البرودة لذلك ، فإن الأجزاء الداخلية للروبوت لا يمكنها تحمل وقد تم إثبات ذلك عن طريق العديد من التجارب .