1. Defina: autovalores y autovectores.

2. Defina: Autoespacio.

3. Defina: multiplicidad algebráica y geométrica

4. Verdadero o falso: En general, la multiplicidad algebraica es mayor o igual que la multiplicidad geométrica

5. Demuestre: Si A es una matriz triangular de n × n, entonces los autovalores de A son los elementos de la diagonal

6. Demuestre: Una matriz cuadrada A es inversible si y sólo si, $\lambda = 0$ no es un autovalor de A.

7. **Demuestre:** Si λ es un autovalor de la matriz inversible A, entonces es λ autovalor de A^{-1} .

8. Demuestre: Los autovalores de A y A^T , son iguales.

9. Demuestre: La suma de los autovalores de A es igual a la traza de A.

10. Demuestre: El producto de los autovalores de A es igual al determinante de A.

11. Demuestre: Si λ es un autovalor de A, entonces $k\lambda$ ($k \ne 0$) es autovalor de kA.

12. Demuestre: Sea A una matriz de orden n. Si A tiene n autovalores distintos, entonces A tiene un conjunto de n autovectores LI.

- 13. Si A es una matriz $n \times n$ y λ es un número real, entonces son equivalentes las siguientes proposiciones
 - **1.** λ es un autovalor de A.
 - **2.** El sistema de ecuaciones $(A \lambda I)x = 0$ tiene soluciones no triviales.
 - **3.** En R^n existe un vector $x \models 0$ tal que $Ax = \lambda x$.
 - **4.** λ es solución de la ecuación característica det(A λ I) = 0

14. Definición de valor y vector propio de una TL.

15. Verdadero o falso: Los autovalores de una matriz A son iguales a los de A^{T} .

16. Verdadero o falso: Sea A una matriz con n autovalores. Si M es una matriz semejante a A los autovalores de M serán distintos a los de A.

17. ¿Toda matriz cuadrada tendrá autovalores y autovectores?

18. Sea P(λ) = $\lambda^2(\lambda - 3)^3(\lambda - 0, 3)$ el polinomio característico de una matriz A. ¿A es inversible?

19. Verdadero o falso: Sea A una matriz de orden n, con n autovalores distintos, A es diagonalizable.

20. Mencione 4 propiedades de los autovalores.