

Report No:CCIS15120096601

# **FCC REPORT**

# (Bluetooth)

Applicant: Grand Electronics, INC

Address of Applicant: 11650 Brentcross Dr Tomball, TX 77377, United States

**Equipment Under Test (EUT)** 

Product Name: tablet

Model No.: Air7, A7, Air7s, Air7pro, Air7ultra, X7s

Trade mark: NeuTab

FCC ID: 2AGNKAIR7

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 15 Dec., 2015

**Date of Test:** 15 Dec., to 30 Dec., 2015

Date of report issued: 31 Dec., 2015

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 31 Dec., 2015 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Steven Ciu Test Engineer Tested by: Date: 31 Dec., 2015

Reviewed by: Date: 31 Dec., 2015

Project Engineer





### 3 Contents

|   |      | P                                       | Page |
|---|------|-----------------------------------------|------|
| 1 | (    | COVER PAGE                              | 1    |
| 2 | \    | /ERSION                                 | 2    |
| 3 |      | CONTENTS                                |      |
|   |      |                                         |      |
| 4 | T    | TEST SUMMARY                            | 4    |
| 5 | C    | GENERAL INFORMATION                     | 5    |
|   | 5.1  | CLIENT INFORMATION                      | 5    |
|   | 5.2  | GENERAL DESCRIPTION OF E.U.T.           |      |
|   | 5.3  | TEST MODE                               |      |
|   | 5.4  | LABORATORY FACILITY                     | 7    |
|   | 5.5  | LABORATORY LOCATION                     | 7    |
|   | 5.6  | TEST INSTRUMENTS LIST                   | 8    |
| 6 | 7    | FEST RESULTS AND MEASUREMENT DATA       | 9    |
|   | 6.1  | Antenna requirement                     |      |
|   | 6.2  | CONDUCTED EMISSIONS                     |      |
|   | 6.3  | CONDUCTED OUTPUT POWER                  |      |
|   | 6.4  | 20db Occupy Bandwidth                   |      |
|   | 6.5  | Carrier Frequencies Separation          |      |
|   | 6.6  | HOPPING CHANNEL NUMBER                  |      |
|   | 6.7  | Dwell Time                              |      |
|   | 6.8  | PSEUDORANDOM FREQUENCY HOPPING SEQUENCE | 32   |
|   | 6.9  | BAND EDGE                               | 33   |
|   | 6    | S.9.1 Conducted Emission Method         |      |
|   | 6    | S.9.2 Radiated Emission Method          |      |
|   | 6.10 | • • • • • • • • • • • • • • • • • • •   |      |
|   | _    | S.10.1 Conducted Emission Method        |      |
|   | 6    | S.10.2 Radiated Emission Method         | 57   |
| 7 | T    | FEST SETUP PHOTO                        | 62   |
| 8 | E    | EUT CONSTRUCTIONAL DETAILS              | 64   |





4 Test Summary

| T 100t Odiffillary               |                   | 1      |
|----------------------------------|-------------------|--------|
| Test Item                        | Section in CFR 47 | Result |
| Antenna Requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)     | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)     | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)     | Pass   |
| Hopping Channel Number           | 15.247 (a)(1)     | Pass   |
| Dwell Time                       | 15.247 (a)(1)     | Pass   |
| Radiated Emission                | 15.205/15.209     | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |

Pass: The EUT complies with the essential requirements in the standard.





# **5** General Information

### 5.1 Client Information

| Applicant:               | Grand Electronics, INC                                                                              |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Address of Applicant:    | 11650 BrentcrossDr Tomball, TX 77377,United States                                                  |  |  |  |
| Manufacturer:            | GRAND ELECTRI-TECH GLOBAL TRADING LIMITED                                                           |  |  |  |
| Address of Manufacturer: | UNIT 04, 7/F, BRIGHT WAY TOWER, NO. 33 MONG KOK ROAD, KOWLOON, HK.                                  |  |  |  |
| Factory:                 | SHENZHEN CHAOMING INDUSTRIAL CO.,LTD.                                                               |  |  |  |
| Address of Factory:      | Fl.4, Block 1, Yu Jing Tai Industrial Park, Huarong Rd., Dalang, Longhua, Bao'an District, Shenzhen |  |  |  |

# 5.2 General Description of E.U.T.

| <u> </u>               |                                                                                                                                                                                                            |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Product Name:          | tablet                                                                                                                                                                                                     |  |  |  |  |
| Model No.:             | Air7, A7, Air7s, Air7pro, Air7ultra, X7s                                                                                                                                                                   |  |  |  |  |
| Operation Frequency:   | 2402MHz~2480MHz                                                                                                                                                                                            |  |  |  |  |
| Transfer rate:         | 1/2/3 Mbits/s                                                                                                                                                                                              |  |  |  |  |
| Number of channel:     | 79                                                                                                                                                                                                         |  |  |  |  |
| Modulation type:       | GFSK, π/4-DQPSK, 8DPSK                                                                                                                                                                                     |  |  |  |  |
| Modulation technology: | FHSS                                                                                                                                                                                                       |  |  |  |  |
| Antenna Type:          | Internal Antenna                                                                                                                                                                                           |  |  |  |  |
| Antenna gain:          | 1.0dBi                                                                                                                                                                                                     |  |  |  |  |
| Power supply:          | Rechargeable Li-ion Battery DC3.7V-3000mAh                                                                                                                                                                 |  |  |  |  |
| AC adapter:            | Model: HT-003-050200                                                                                                                                                                                       |  |  |  |  |
|                        | Input:100-240V AC,50/60Hz                                                                                                                                                                                  |  |  |  |  |
|                        | Output:5V DC MAX2000mA                                                                                                                                                                                     |  |  |  |  |
| Remark:                | The model No.: Air7, A7, Air7s, Air7pro, Air7ultra, X7swere identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model name. |  |  |  |  |





| Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK |           |         |           |         |           |         |           |  |  |
|----------------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|--|--|
| Channel                                                        | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |  |
| 0                                                              | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |  |  |
| 1                                                              | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |  |  |
| 2                                                              | 2404MHz   | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |  |  |
| 3                                                              | 2405MHz   | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |  |  |
| 4                                                              | 2406MHz   | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |  |  |
| 5                                                              | 2407MHz   | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |  |  |
| 6                                                              | 2408MHz   | 26      | 2428MHz   | 46      | 2448MHz   | 66      | 2468MHz   |  |  |
| 7                                                              | 2409MHz   | 27      | 2429MHz   | 47      | 2449MHz   | 67      | 2469MHz   |  |  |
| 8                                                              | 2410MHz   | 28      | 2430MHz   | 48      | 2450MHz   | 68      | 2470MHz   |  |  |
| 9                                                              | 2411MHz   | 29      | 2431MHz   | 49      | 2451MHz   | 69      | 2471MHz   |  |  |
| 10                                                             | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |  |  |
| 11                                                             | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |  |  |
| 12                                                             | 2414MHz   | 32      | 2434MHz   | 52      | 2454MHz   | 72      | 2474MHz   |  |  |
| 13                                                             | 2415MHz   | 33      | 2435MHz   | 53      | 2455MHz   | 73      | 2475MHz   |  |  |
| 14                                                             | 2416MHz   | 34      | 2436MHz   | 54      | 2456MHz   | 74      | 2476MHz   |  |  |
| 15                                                             | 2417MHz   | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |  |  |
| 16                                                             | 2418MHz   | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |  |  |
| 17                                                             | 2419MHz   | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |  |  |
| 18                                                             | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |  |  |
| 19 2421MHz 39 2441MHz 59 2461MHz                               |           |         |           |         |           |         |           |  |  |



Report No: CCIS15120096601

### 5.3 Test mode

| Transmitting mode: | Keep the EUT in transmitting mode with worst case data rate. |  |  |
|--------------------|--------------------------------------------------------------|--|--|
| Remark             | GFSK (1 Mbps) is the worst case mode.                        |  |  |

The sample was placed 0.8m above the ground plane of 3m chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

### 5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### ● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully describedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

### ●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### ● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

### 5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366





### 5.6 Test Instruments list

| Radia | Radiated Emission:                            |                                   |                             |                  |                         |                             |  |  |  |  |
|-------|-----------------------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|--|--|--|--|
| Item  | Test Equipment                                | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |  |
| 1     | 3m SAC                                        | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 08-23-2014              | 08-22-2017                  |  |  |  |  |
| 2     | BiConiLog Antenna                             | SCHWARZBECK                       | VULB9163                    | CCIS0005         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 3     | Horn Antenna                                  | SCHWARZBECK                       | BBHA9120D                   | CCIS0006         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 4     | Pre-amplifier<br>(10kHz-1.3GHz)               | HP                                | 8447D                       | CCIS0003         | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 5     | Pre-amplifier<br>(1GHz-18GHz)                 | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 6     | Pre-amplifier<br>(18-26GHz)                   | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 7     | Horn Antenna                                  | ETS-LINDGREN                      | 3160                        | GTS217           | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 8     | Spectrum analyzer<br>9k-30GHz Rohde & Schwarz |                                   | FSP30                       | CCIS0023         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 9     | EMI Test Receiver                             | Rohde & Schwarz                   | ESRP7                       | CCIS0167         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 10    | Loop antenna                                  | Laplace instrument                | RF300                       | EMC0701          | 04-01-2015              | 03-31-2016                  |  |  |  |  |

| Conducted Emission: |                   |                    |                       |                  |                         |                             |  |  |  |  |
|---------------------|-------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|--|--|--|
| Item                | Test Equipment    | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |  |
| 1                   | Shielding Room    | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 08-23-2014              | 08-22-2017                  |  |  |  |  |
| 2                   | EMI Test Receiver | Rohde & Schwarz    | ESCI                  | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 3                   | LISN              | CHASE              | MN2050D               | CCIS0074         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 4                   | Coaxial Cable     | CCIS               | N/A                   | CCIS0086         | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 5                   | EMI Test Software | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |  |  |  |



### 6 Test results and Measurement Data

### 6.1 Antenna requirement

# Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### E.U.T Antenna:

The Bluetoothantenna is anintegral antenna which permanently attached, and the best case gain of the antenna is1.0dBi.







### 6.2 Conducted Emissions

| 0.2 | Conducted Linissions  |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Test Method:          | ANSI C63.4:2009                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Receiver setup:       | RBW=9kHz, VBW=30kHz, Sw                                                                                                                                                                                                                                                                                                                         | RBW=9kHz, VBW=30kHz, Sweep time=auto                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Limit:                | Eroguanay rango (MHz) Limit (dBuV)                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | <del></del>           | Prequency range (MHZ)  Quasi-peak  Average                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                        | 56 to 46*                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                       | 0.5-5                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|     |                       | 5-30 60 50                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                  | n of the frequency.                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                       | AUX Equipment E.U.T EMI Receiver  Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                          |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Test procedure:       | <ol> <li>The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance.</li> <li>The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs).</li> <li>Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.4: 2</li> </ol> | n network(L.I.S.N.). This edance for the measuricals connected to the m/50uH coupling impector the block diagram of the checked for maximum did the maximum emissicall of the interface cab | is provides a ing equipment. In a graph of the second of t |  |  |  |  |  |
|     | Test Uncertainty:     |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             | ±3.28 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|     | Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Test mode:            | Bluetooth (Continuous transm                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | Test results:         | Pass                                                                                                                                                                                                                                                                                                                                            | 9,                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | . 53. 1000            | 1 . 2.20                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

### **Measurement Data**





### Line:



Trace: 17

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: Tablet EUT Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: STEVEN
Remark :

| Kemark                                    |        |               |                |       |       |               |               |            |  |
|-------------------------------------------|--------|---------------|----------------|-------|-------|---------------|---------------|------------|--|
|                                           | Freq   | Read<br>Level | LISN<br>Factor |       | Level | Limit<br>Line | Over<br>Limit | Remark     |  |
|                                           |        |               |                | 2000  | 20102 |               | Line          | 1103114111 |  |
| _                                         | MHz    | dBu∀          | ₫B             | ₫B    | dBu∀  | dBu∀          | ₫B            |            |  |
| 1                                         | 0.160  | 31.77         | 0.27           | 10.78 | 42.82 | 65.47         | -22.65        | QP         |  |
| 2                                         | 0.170  | 13.73         | 0.27           | 10.77 | 24.77 | 54.94         | -30.17        | Average    |  |
| 3                                         | 0.220  | 23.33         | 0.28           | 10.76 | 34.37 | 62.83         | -28.46        | QP         |  |
| 4                                         | 0.226  | 8.37          | 0.27           | 10.75 | 19.39 | 52.61         | -33.22        | Average    |  |
| 5                                         | 0.285  | 19.21         | 0.26           | 10.74 | 30.21 | 60.68         | -30.47        | QP         |  |
| 6                                         | 0.339  | 7.66          | 0.27           | 10.73 | 18.66 | 49.22         | -30.56        | Average    |  |
| 7                                         | 0.369  | 20.25         | 0.27           | 10.73 | 31.25 | 58.52         | -27.27        | QP         |  |
| 8                                         | 2.435  | 5.65          | 0.27           | 10.94 | 16.86 | 46.00         | -29.14        | Average    |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 3.173  | 26.10         | 0.27           | 10.91 | 37.28 | 56.00         | -18.72        | QP         |  |
| 10                                        | 3.364  | 11.05         | 0.27           | 10.91 | 22.23 | 46.00         | -23.77        | Average    |  |
| 11                                        | 15.307 | 22.91         | 0.32           | 10.90 | 34.13 | 60.00         | -25.87        | QP         |  |
| 12                                        | 15.552 | 11.20         | 0.32           | 10.90 | 22.42 | 50.00         | -27.58        | Average    |  |





### Neutral:



Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Tablet Model : Air7 Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: STEVEN

Remark

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----------------------------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                        | MHz    | dBu∜          | <u>dB</u>      | ₫B            | dBu₹  | dBu∀          | <u>dB</u>     |         |
| 1                                      | 0.150  | 31.87         | 0.25           | 10.78         | 42.90 | 66.00         | -23.10        | QP      |
| 2                                      | 0.170  | 29.34         | 0.25           | 10.77         | 40.36 | 64.94         | -24.58        | QP      |
| 3                                      | 0.170  | 13.44         | 0.25           | 10.77         | 24.46 | 54.94         | -30.48        | Average |
| 4                                      | 0.185  | 28.89         | 0.25           | 10.77         | 39.91 | 64.24         | -24.33        | QP      |
| 5                                      | 0.200  | 27.39         | 0.25           | 10.76         | 38.40 | 63.62         | -25.22        | QP      |
| 6                                      | 0.226  | 7.36          | 0.25           | 10.75         | 18.36 | 52.61         | -34.25        | Average |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9   | 0.339  | 8.50          | 0.26           | 10.73         | 19.49 | 49.22         | -29.73        | Average |
| 8                                      | 2.448  | 24.87         | 0.29           | 10.94         | 36.10 | 56.00         | -19.90        | QP      |
| 9                                      | 2.448  | 8.59          | 0.29           | 10.94         | 19.82 | 46.00         | -26.18        | Average |
| 10                                     | 3.454  | 26.60         | 0.29           | 10.91         | 37.80 | 56.00         | -18.20        | QP      |
| 11                                     | 10.905 | 12.54         | 0.25           | 10.93         | 23.72 | 50.00         | -26.28        | Average |
| 12                                     | 17.849 | 12.27         | 0.26           | 10.90         | 23.43 | 50.00         | -26.57        | Average |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss





# 6.3 Conducted Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                                                                       |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2009 and DA00-705                                                                                            |  |
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz) |  |
| Limit:            | 125 mW(21 dBm)                                                                                                           |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                    |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                         |  |
| Test mode:        | Non-hopping mode                                                                                                         |  |
| Test results:     | Pass                                                                                                                     |  |

#### **Measurement Data**

|              | GFSK mode               |             |        |  |
|--------------|-------------------------|-------------|--------|--|
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest       | 3.67                    | 21.00       | Pass   |  |
| Middle       | 3.59                    | 21.00       | Pass   |  |
| Highest      | 3.39                    | 21.00       | Pass   |  |
|              | π/4-DQPSK ι             | mode        |        |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest       | 3.43                    | 21.00       | Pass   |  |
| Middle       | 3.31                    | 21.00       | Pass   |  |
| Highest      | 3.18                    | 21.00       | Pass   |  |
|              | 8DPSK mode              |             |        |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest       | 3.46                    | 21.00       | Pass   |  |
| Middle       | 3.43                    | 21.00       | Pass   |  |
| Highest      | 3.21                    | 21.00       | Pass   |  |



### Test plot as follows:

## Modulation mode:GFSK



Date: 9.DEC.2015 23:17:46

### Lowest channel



Date: 9.DEC.2015 23:19:14

### Middle channel



Date: 9.DEC.2015 23:20:03

Highest channel



### Modulation mode:π/4-DQPSK



Date: 10.DEC.2015 00:19:58

#### Lowest channel



Date: 10.DEC.2015 00:20:45

### Middle channel



Date: 10.DEC.2015 00:21:30

Highest channel



### Modulation mode:8DPSK



Date: 10.DEC.2015 00:22:45

#### Lowest channel



Date: 10.DEC.2015 00:23:23

### Middle channel



Date: 10.DEC.2015 00:24:12

Highest channel





# 6.4 20dB Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2009 and DA00-705                                         |  |
| Receiver setup:   | RBW=30kHz, VBW=100kHz, detector=Peak                                  |  |
| Limit:            | NA                                                                    |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Non-hopping mode                                                      |  |
| Test results:     | Pass                                                                  |  |

### **Measurement Data**

| Toot showned | 20dB Occupy Bandwidth (kHz) |           |       |
|--------------|-----------------------------|-----------|-------|
| Test channel | GFSK                        | π/4-DQPSK | 8DPSK |
| Lowest       | 848                         | 1124      | 1172  |
| Middle       | 848                         | 1124      | 1172  |
| Highest      | 848                         | 1128      | 1176  |

### Test plot as follows:



### Modulation mode:GFSK



Date: 10.DEC.2015 00:28:33

### Lowest channel



Date: 10.DEC.2015 00:30:00

### Middle channel



Date: 10.DEC.2015 00:31:57

Highest channel



### Modulation mode:π/4-DQPSK



Date: 10.DEC.2015 00:33:48

#### Lowest channel



Date: 10.DEC.2015 00:35:31

### Middle channel



Date: 10.DEC.2015 00:37:39

Highest channel



### Modulation mode:8DPSK



Date: 10.DEC.2015 00:39:06

#### Lowest channel



Date: 10.DEC.2015 00:40:23

### Middle channel



Date: 10.DEC.2015 00:41:40

Highest channel





# 6.5 Carrier Frequencies Separation

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2009 and DA00-705                                         |  |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, detector=Peak                                 |  |
| Limit:            | 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)          |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Hopping mode                                                          |  |
| Test results:     | Pass                                                                  |  |

### **Measurement Data**





| GFSK mode    |                                      |             |        |
|--------------|--------------------------------------|-------------|--------|
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
| Lowest       | 1004                                 | 565.33      | Pass   |
| Middle       | 1004                                 | 565.33      | Pass   |
| Highest      | 1004                                 | 565.33      | Pass   |
|              | π/4-DQPSK mo                         | de          |        |
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
| Lowest       | 1004                                 | 752.00      | Pass   |
| Middle       | 1004                                 | 752.00      | Pass   |
| Highest      | 1004                                 | 752.00      | Pass   |
| 8DPSK mode   |                                      |             |        |
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
| Lowest       | 1004                                 | 784.00      | Pass   |
| Middle       | 1004                                 | 784.00      | Pass   |
| Highest      | 1004 784.00 Pass                     |             | Pass   |

Note: According to section 6.4

| Mode      | 20dB bandwidth (kHz)<br>(worse case) | Limit (kHz)<br>(Carrier Frequencies Separation) |
|-----------|--------------------------------------|-------------------------------------------------|
| GFSK      | 848                                  | 565.33                                          |
| π/4-DQPSK | 1128                                 | 752.00                                          |
| 8DPSK     | 1176                                 | 784.00                                          |

### Test plot as follows:



### Modulation mode:GFSK



Date: 10.DEC.2015 00:45:33

#### Lowest channel



Date: 10.DEC.2015 00:46:45

### Middle channel



Date: 10.DEC.2015 00:47:32

Highest channel



### Modulation mode:π/4-DQPSK



Date: 10.DEC.2015 00:51:23

#### Lowest channel



Date: 10.DEC.2015 00:49:50

### Middle channel



Date: 10.DEC.2015 00:48:49

Highest channel



### Modulation mode:8DPSK



Date: 10.DEC.2015 00:52:25

#### Lowest channel



Date: 10.DEC.2015 00:53:28

### Middle channel



Date: 10.DEC.2015 00:54:48

Highest channel





# 6.6 Hopping Channel Number

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                       |  |
|-------------------|--------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2009 and DA00-705                                            |  |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |  |
| Limit:            | 15 channels                                                              |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane    |  |
| Test Instruments: | Refer to section 5.7 for details                                         |  |
| Test mode:        | Hopping mode                                                             |  |
| Test results:     | Pass                                                                     |  |

### **Measurement Data:**

| Mode                   | Hopping channel numbers | Limit | Result |
|------------------------|-------------------------|-------|--------|
| GFSK, π/4-DQPSK, 8DPSK | 79                      | 15    | Pass   |



### GFSK



Date: 10 DEC 2015 00:50:45

#### π/4-DQPSK



Date: 10.DEC.2015 01:05:22

### 8DPSK



Date: 10.DEC.2015 01:07:41



### 6.7 Dwell Time

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2009 and KDB DA00-705                                     |  |
| Receiver setup:   | RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak                           |  |
| Limit:            | 0.4 Second                                                            |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Hopping mode                                                          |  |
| Test results:     | Pass                                                                  |  |

### Measurement Data (Worse case)

| · · · · · · · · · · · · · · · · · · · | <u> </u> |                     |                |        |
|---------------------------------------|----------|---------------------|----------------|--------|
| Mode                                  | Packet   | Dwell time (second) | Limit (second) | Result |
|                                       | DH1      | 0.13120             |                |        |
| GFSK                                  | DH3      | 0.27456             | 0.4            | Pass   |
|                                       | DH5      | 0.31488             |                |        |
|                                       | 2-DH1    | 0.12928             |                |        |
| π/4-DQPSK                             | 2-DH3    | 0.27072             | 0.4            | Pass   |
|                                       | 2-DH5    | 0.31488             |                |        |
|                                       | 3-DH1    | 0.13248             |                |        |
| 8DPSK                                 | 3-DH3    | 0.26688             | 0.4            | Pass   |
|                                       | 3-DH5    | 0.31488             |                |        |

For GFSK,  $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.410\*(1600/(2\*79))\*31.6=131.20ms DH3 time slot=1.716\*(1600/(4\*79))\*31.6=274.56ms DH5 time slot=2.952\*(1600/(6\*79))\*31.6=314.88ms

2-DH1 time slot=0.404\*(1600/ (2\*79))\*31.6=129.28ms

2-DH3 time slot=1.692\*(1600/ (4\*79))\*31.6=270.72ms

2-DH5 time slot=2.952\*(1600/ (6\*79))\*31.6=314.88ms

3-DH1 time slot=0.414\*(1600/ (2\*79))\*31.6=132.48ms

3-DH3 time slot=1.668\*(1600/ (4\*79))\*31.6=266.88ms

3-DH5 time slot=2.952\*(1600/ (6\*79))\*31.6=314.88ms



### Test plot as follows:

### Modulation mode:GFSK



Date: 16.DEC.2015 15:41:02

### DH1



Date: 16.DEC.2015 15:42:41

### DH3



Date: 16.DEC.2015 15:44:14

DH5



### Modulation mode:π/4-DQPSK



Date: 16.DEC.2015 15:47:24

### 2-DH1



Date: 16.DEC.2015 15:48:47

### 2-DH3



Date: 16.DEC.2015 15:49:57

2-DH5



### Modulation mode:8DPSK



Date: 16.DEC.2015 15:51:13

### 3-DH1



Date: 16.DEC.2015 15:52:34

### 3-DH3



Date: 16.DEC.2015 15:54:10 3-DH5

Report No: CCIS15120096601

### 6.8 Pseudorandom Frequency Hopping Sequence

### Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

### **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.





# 6.9 Band Edge

# 6.9.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2009 and DA00-705                                                                                                                                                                                                                                                                                                                                                           |  |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                   |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |
| Test mode:        | Non-hopping mode and hopping mode                                                                                                                                                                                                                                                                                                                                                       |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |

### Test plot as follows:



### **GFSK**

### **Lowest Channel**





Date: 16.DEC.2015 16:21:43

No-hopping mode

Hopping mode

Date: 16.DEC.2015 16:45:32

### **Highest Channel**





Date: 16.DEC.2015 16:04:15

No-hopping mode

Date: 16.DEC.2015 16:29:45

Hopping mode



### $\pi/4$ -DQPSK

### Lowest Channel





Date: 16.DEC.2015 16:08:15

No-hopping mode

Date: 16.DEC.2015 16:35:29

Hopping mode

### **Highest Channel**





Date: 16.DEC.2015 16:06:50

No-hopping mode

Date: 16.DEC.2015 16:32:28

Hopping mode



### 8DPSK

### Lowest Channel





Date: 16.DEC.2015 16:11:41

No-hopping mode

Date: 16.DEC.2015 16:37:32

Hopping mode

# Highest Channel





Date: 16.DEC.2015 16:19:06

No-hopping mode

Date: 16.DEC.2015 16:40:30

Hopping mode



## 6.9.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section 15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:          | ANSI C63.10: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |
| Test Frequency Range: | 2.3GHz to 2.5G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                                                                                                                                        |
| ·                     | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Value                                                                                                                                                                                                                                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                                                                                                                                                                                                                                 |
| Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit (dBuV/<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark Average Value                                                                                                                                                                                                                          |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value                                                                                                                                                                                                                                    |
| Test setup:           | AE EUT (Turntable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ground Reference Plane Test Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ion Antenna Tower  Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Swwww.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
| Test Procedure:       | groundat a 3 todetermine to 2. The EUT was antenna, whi tower.  3. The antenna ground to derhorizontal an measurement 4. For each sus and thenthe at the rotatables maximum reasonation of the emission of the | meter camber the position of set 3 meters chwas mount height is varietermine the moderation of the mod | er. The table we feel the highest research away from the ed on the top ed from one neaximum value arizations of the tuned to height om 0 degrees was set to Pearlaximum Hold EUT in peak peould be stop therwise the effect of the top | vas rotated adiation. The interferer of a variable of a variable of the field one antenna was arrangents from 1 m to 360 degrated by the mode was apped and the missions the one using processing processing and the missions the one using processing proces | nce-receiving e-height antenna  r meters above the d strength. Both are set to make the ed to its worst case neter to 4 meters and rees to find the unction and 10dB lower than the e peak values of the nat did not have beak, quasi-peak or |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |
| Test mode:            | Non-hopping me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |

## Remark:

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





## **GFSK** mode

Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet Model : Air7
Test mode : DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: steven

| mar r |          |       |                   |      |           |        |        |               |         |
|-------|----------|-------|-------------------|------|-----------|--------|--------|---------------|---------|
|       | Freq     |       | Antenna<br>Factor |      |           |        |        | Over<br>Limit | Remark  |
| -     | MHz      | —dBu⊽ | <u>dB</u> /m      |      | <u>ab</u> | dBuV/m | dBuV/m | <u>d</u> B    |         |
| 1     | 2390.000 |       |                   |      | 0.00      |        |        |               |         |
| 2     | 2390,000 | 11.69 | 27. 58            | 6.63 | 0.00      | 45.90  | 54.00  | -8.10         | Average |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet : AIT7
Test mode : DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: steven
Remark :

| Marr |          | Road  | Antenna      | Cable | Dreamn |        | Limit  | Over  |         |   |
|------|----------|-------|--------------|-------|--------|--------|--------|-------|---------|---|
|      | Freq     |       | Factor       |       |        |        |        |       |         |   |
| -    | MHz      | dBu₹  | <u>dB</u> /m | dB    | dB     | dBuV/m | dBuV/m | dB    |         | - |
|      | 2390.000 |       |              |       |        |        |        |       |         |   |
| 2    | 2390.000 | 11.71 | 27.58        | 6.63  | 0.00   | 45.92  | 54.00  | -8.08 | Average |   |





## Test channel:Highest

#### Horizontal:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet Model : Air7 Test mode : DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: steven Remark :

1 2

|   |                      |        | Antenna<br>Factor |            |            |        |                     |            |       |
|---|----------------------|--------|-------------------|------------|------------|--------|---------------------|------------|-------|
| , | MHz                  | ——dBu∇ | <u>dB</u> /m      | <u>d</u> B | <u>d</u> B | dBuV/m | $\overline{dBuV/m}$ | <u>d</u> B | <br>_ |
|   | 2483.500<br>2483.500 |        |                   |            |            |        |                     |            |       |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet Model : Air7 Test mode : DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

|   | Freq                 |       | Antenna<br>Factor             |            |            |                     |        |    |  |
|---|----------------------|-------|-------------------------------|------------|------------|---------------------|--------|----|--|
| - | MHz                  | —dBu∇ | $\overline{-dB}/\overline{m}$ | <u>d</u> B | <u>d</u> B | $\overline{dBuV/m}$ | dBuV/m | āB |  |
|   | 2483.500<br>2483.500 |       |                               |            |            |                     |        |    |  |





# π/4-DQPSK mode

Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

EUT Model : Air7 Test mode : 2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

| CINALI |                      |       | Antenna<br>Factor |                |        |                     |           | Remark |
|--------|----------------------|-------|-------------------|----------------|--------|---------------------|-----------|--------|
|        | MHz                  | —dBu∜ | dB/π              | <br><u>d</u> B | dBuV/m | $\overline{dBuV/m}$ | <u>dB</u> |        |
| 1 2    | 2390.000<br>2390.000 |       |                   |                |        |                     |           |        |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT Model : Air7
Test mode : 2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

| Freq                 |      | Antenna<br>Factor |                |        |        |           | Remark |
|----------------------|------|-------------------|----------------|--------|--------|-----------|--------|
| MHz                  | dBu∜ | <u>dB</u> /m      | <br><u>d</u> B | dBuV/m | dBuV/m | <u>dB</u> |        |
| 2390,000<br>2390,000 |      |                   |                |        |        |           |        |





## Test channel:Highest

#### Horizontal:



: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

EUT Model : Air7
Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: steven

|   | 200                  |      | Antenna<br>Factor |            |            |                     |                     |           | Remark |  |
|---|----------------------|------|-------------------|------------|------------|---------------------|---------------------|-----------|--------|--|
| - | MHz                  | dBu∜ |                   | <u>d</u> B | <u>d</u> B | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u> |        |  |
|   | 2483.500<br>2483.500 |      |                   |            |            |                     |                     |           |        |  |







: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Site Condition EUT : Tablet Model : Air7
Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

| .c.mari | 2000                 |      | Antenna<br>Factor |            |              |        | Limit<br>Line |           | Remark |
|---------|----------------------|------|-------------------|------------|--------------|--------|---------------|-----------|--------|
| -       | MHz                  | dBu∀ | <u>dB</u> /m      | <u>d</u> B | <u>dB</u>    | dBuV/m | dBuV/m        | <u>dB</u> |        |
| 1 2     | 2483.500<br>2483.500 |      |                   |            | 0.00<br>0.00 |        |               |           |        |





## 8DPSK mode

Test channel: Lowest

Horizontal:



Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Tablet Model : Air7 Test mode : 3DH1-L mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

|   | Freq                 |       | Antenna<br>Factor  |   |              |                                |        | Over<br>Limit | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|---|----------------------|-------|--------------------|---|--------------|--------------------------------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | MHz                  | —dBu₹ | $\overline{-dB/m}$ | ā | āĒ           | $\overline{dB}\overline{uV/m}$ | dBuV/m | <u>d</u> B    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + |
| 1 | 2390.000<br>2390.000 |       |                    |   | 0.00<br>0.00 |                                |        |               | RECEIVED TO THE PARTY OF THE PA |   |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet Model : Air7 Test mode : 3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Test France : Test F

| marr |                      | Read | Antenna      | Cable      | Preamp    |        | Limit  | Over      |        |   |
|------|----------------------|------|--------------|------------|-----------|--------|--------|-----------|--------|---|
|      | Freq                 |      | Factor       |            |           |        |        |           | Remark |   |
| 2    | MHz                  | dBu∜ | <u>dB</u> /m | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |        | - |
|      | 2390.000<br>2390.000 |      |              |            |           |        |        |           |        |   |





## Test channel:Highest

## Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

EUT : Air7
Test mode : 3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: steven
Remark :

| oa. | 975                  |      | Antenna<br>Factor |    |              |        |                     |    |                 |
|-----|----------------------|------|-------------------|----|--------------|--------|---------------------|----|-----------------|
| -   | MHz                  | dBu∜ | d <u>B</u> /m     | dB | <u>d</u> B   | dBuV/m | $\overline{dBuV/m}$ | dB |                 |
|     | 2483.500<br>2483.500 |      |                   |    | 0.00<br>0.00 |        |                     |    | Peak<br>Average |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet

Condition EUT Model : Air7
Test mode : 3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: steven
Remarb

|     | Freq                 |      | Antenna<br>Factor |    |            |                |        |    | Remark |
|-----|----------------------|------|-------------------|----|------------|----------------|--------|----|--------|
| -   | MHz                  | dBu₹ | <u>dB</u> /m      | dB | <u>d</u> B | dBu√/m         | dBuV/m | dB |        |
| 1 2 | 2483.500<br>2483.500 |      |                   |    |            | 58.26<br>45.81 |        |    |        |





## 6.10 Spurious Emission

## 6.10.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and DA00-705                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |



#### **GFSK**

## Lowest channel



Date: 10.DEC.2015 13:52:18

## 30MHz~25GHz

## Middle channel



Date: 10.DEC.2015 13:55:04



## Highest channel



Date: 10.DEC.2015 13:56:30



## π/4-DQPSK

#### Lowest channel



Date: 10.DEC.2015 14:00:03

## 30MHz~25GHz Middle channel



Date: 10.DEC.2015 14:03:48



## Highest channel



Date: 10.DEC.2015 14:06:14



## 8DPSK

#### Lowest channel



Date: 10.DEC.2015 14:08:34

## 30MHz~25GHz Middle channel



Date: 10.DEC.2015 14:09:40



## Highest channel



Date: 10.DEC.2015 14:11:06





## 6.10.2 Radiated Emission Method

| .10.2 Radiated Emission Method |                                         |                |              |                             |                  |  |  |  |  |
|--------------------------------|-----------------------------------------|----------------|--------------|-----------------------------|------------------|--|--|--|--|
| Test Requirement:              | quirement: FCC Part15 C Section 15.209  |                |              |                             |                  |  |  |  |  |
| Test Method:                   | ANSI C63.10: 2009                       |                |              |                             |                  |  |  |  |  |
| Test Frequency Range:          | 9kHz to 25GHz                           |                |              |                             |                  |  |  |  |  |
| Test site:                     | Measurement Distance: 3m                |                |              |                             |                  |  |  |  |  |
| Receiver setup:                | Frequency                               | Detector       | RBW          | VBW                         | Remark           |  |  |  |  |
|                                | 30MHz-1GHz                              | Quasi-peak     | 120kHz       | 300kHz                      | Quasi-peak Value |  |  |  |  |
|                                | Above 1GHz                              | Peak           | 1MHz         | 3MHz                        | Peak Value       |  |  |  |  |
|                                | Above 1G112                             | RMS            | 1MHz         | 3MHz                        | Average Value    |  |  |  |  |
| Limit:                         | Frequen                                 | су             | Limit (dBuV/ | /m @3m)                     | Remark           |  |  |  |  |
|                                | 30MHz-88I                               | MHz            | 40.0         | )                           | Quasi-peak Value |  |  |  |  |
|                                | 88MHz-216                               | 6MHz           | 43.5         | 5                           | Quasi-peak Value |  |  |  |  |
|                                | 216MHz-960                              | OMHz           | 46.0         | )                           | Quasi-peak Value |  |  |  |  |
|                                | 960MHz-1                                | GHz            | 54.0         | )                           | Quasi-peak Value |  |  |  |  |
|                                | Above 1G                                | H <sub>7</sub> | 54.0         | )                           | Average Value    |  |  |  |  |
|                                | Above 10                                | )1 IZ          | 74.0         | )                           | Peak Value       |  |  |  |  |
| Test setup:                    | Tum Table 0.8 Ground Plane — Above 1GHz | EUT 3m         | Da -         | Antenra Sear Anter Receiver |                  |  |  |  |  |





| Test Procedure:   | The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation.                                                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                                 |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                        |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                        |
|                   | The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                                |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Uncertainty: | ±4.88 dB                                                                                                                                                                                                                                                                                                                                               |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.





## Measurement data:

#### **Below 1GHz**

Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Tablet Condition EUT

: A1r7
Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: steven
Remark :

| MALK                       |         |       |                                 |            |            |                     |        |               |        |
|----------------------------|---------|-------|---------------------------------|------------|------------|---------------------|--------|---------------|--------|
|                            | Freq    |       | Antenna<br>Factor               |            |            |                     |        | Over<br>Limit | Remark |
| _                          | MHz     | dBu₹  | $^{}\overline{dB}/\overline{m}$ | <u>d</u> B | <u>d</u> B | $\overline{dBuV/m}$ | dBuV/m | <u>dB</u>     |        |
| 1                          | 88.033  | 49.18 | 11.32                           | 0.90       | 29.58      | 31.82               | 43.50  | -11.68        | QP     |
| 1<br>2<br>3<br>4<br>5<br>6 | 132.221 | 50.19 | 8.77                            | 1.21       | 29.32      | 30.85               | 43.50  | -12.65        | QP     |
| 3                          | 153.739 | 45.85 | 8.42                            | 1.33       | 29.19      | 26.41               | 43.50  | -17.09        | QP     |
| 4                          | 173.814 | 44.72 | 9.23                            | 1.35       | 29.02      | 26.28               | 43.50  | -17.22        | QP     |
| 5                          | 294.114 | 38.43 | 12.95                           | 1.75       | 28.46      | 24.67               | 46.00  | -21.33        | QP     |
| 6                          | 438.655 | 34.62 | 15.55                           | 2.22       | 28.85      | 23.54               | 46.00  | -22.46        | QP     |





## Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Tablet Condition

EUT . A1r/
Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: steven
Remark :

| emark |         |       |                   |            |           |                     |               |           |        |
|-------|---------|-------|-------------------|------------|-----------|---------------------|---------------|-----------|--------|
|       | Freq    |       | Antenna<br>Factor |            |           |                     | Limit<br>Line |           | Remark |
| _     | MHz     | —dBu∇ | — <u>dB</u> /m    | <u>d</u> B | <u>dB</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u> |        |
| 1     | 87.725  | 53.86 | 11.18             | 0.90       | 29.58     | 36.36               | 40.00         | -3.64     | QP     |
| 2     | 108.267 | 46.27 | 12.39             | 1.03       | 29.47     | 30.22               | 43.50         | -13.28    | QP     |
| 2     | 153.200 | 53.26 | 8.39              | 1.32       | 29.19     | 33.78               | 43.50         | -9.72     | QP     |
| 4     | 174.424 | 53.45 | 9.29              | 1.35       | 29.02     | 35.07               | 43.50         | -8.43     | QP     |
| 5     | 272.278 | 40.75 | 12.46             | 1.69       | 28.50     | 26.40               | 46.00         | -19.60    | QP     |
| 6     | 322.189 | 35.39 | 13.46             | 1.85       | 28.50     | 22.20               | 46.00         | -23.80    | QP     |



## **Above 1GHz:**

| Te                 | st channel:             |                             | Lowest             |                          | Le                | vel:                   | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4804.00            | 48.36                   | 31.53                       | 10.57              | 40.24                    | 50.22             | 74.00                  | -23.78             | Vertical     |
| 4804.00            | 49.05                   | 31.53                       | 10.57              | 40.24                    | 50.91             | 74.00                  | -23.09             | Horizontal   |
| Te                 | st channel:             |                             | Lowest             |                          | Level:            |                        | Average            |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4804.00            | 40.18                   | 31.53                       | 10.57              | 40.24                    | 42.04             | 54.00                  | -11.96             | Vertical     |
| 4804.00            | 41.25                   | 31.53                       | 10.57              | 40.24                    | 43.11             | 54.00                  | -10.89             | Horizontal   |

| Te                 | st channel:             |                             | Middle             |                          | Le                | vel:                   | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4882.00            | 48.72                   | 31.58                       | 10.66              | 40.15                    | 50.81             | 74.00                  | -23.19             | Vertical     |
| 4882.00            | 47.61                   | 31.58                       | 10.66              | 40.15                    | 49.70             | 74.00                  | -24.30             | Horizontal   |
| Te                 | st channel:             |                             | Middle             |                          | Level:            |                        | Average            |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4882.00            | 40.11                   | 31.58                       | 10.66              | 40.15                    | 42.20             | 54.00                  | -11.80             | Vertical     |
| 4882.00            | 39.65                   | 31.58                       | 10.66              | 40.15                    | 41.74             | 54.00                  | -12.26             | Horizontal   |

| Te                 | st channel:             |                             | Highest            |                          | Le                | vel:                   | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4960.00            | 48.37                   | 31.69                       | 10.73              | 40.03                    | 50.76             | 74.00                  | -23.24             | Vertical     |
| 4960.00            | 47.70                   | 31.69                       | 10.73              | 40.03                    | 50.09             | 74.00                  | -23.91             | Horizontal   |
| Te                 | st channel:             | •                           | Highest            |                          | Level:            |                        | Average            |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4960.00            | 40.26                   | 31.69                       | 10.73              | 40.03                    | 42.65             | 54.00                  | -11.35             | Vertical     |
| 4960.00            | 39.18                   | 31.69                       | 10.73              | 40.03                    | 41.57             | 54.00                  | -12.43             | Horizontal   |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.