«به نام خدا»

1.

a)
$$n = \frac{1}{2} + \sqrt{\frac{1}{4} + 2 * \ln(2) * 365} = 22.999 \approx 23$$

b) p(at least two students) =
$$1 - \prod_{i=1}^{k-1} (1 - \frac{i}{N})$$

c)
$$t = 2^{n+1/2} \sqrt{\ln\left(\frac{1}{1-\lambda}\right)} = 2^{n+1/2} \sqrt{\ln\left(\frac{1}{1-0.5}\right)} = 2^{n+1/2} \sqrt{\ln(2)} = 0.83*2^{n+1/2}$$

2. from this formula of birth-date problem:
$$k \approx \sqrt{n * m * \frac{1}{1-\epsilon}}$$
 we got:

n	$\varepsilon = 0.5$	ε = 0.1
2^{64}	3.6 * 10 ⁹	1.4 * 109
2 ¹²⁸	1.5 * 10 ¹⁹	6 * 10 ¹⁸
2^{160}	1.5 * 10 ²⁴	3.9 * 10 ²³

3.

3.1.
$$c_i = z_i \bigoplus \{x_1x_2 ... x_n \mid\mid H_1(x)H_2(x) ... H_m(x)\}; \quad (i=1,\,2,\,...,\,n+m)$$
 assume the length of x is n.

the attacker computes: $z_i = x_i \oplus c_i$ (i = 1, 2, ..., n)

and computes H(x) because he has x.

again computes: $z_{j+n} = H_j(x) \oplus c_{j+n}$ (j = 1, 2, ..., m)

He computes H(x')

Then computes: $c'_i = z_i \bigoplus x'_i$ (i = 1, 2, ..., n)

$$c\,{'}_{j+n} = z_{j+n} \, \bigoplus \, H_j(x\,{'}) \qquad (j=1,\,2,\,...,\,m)$$

3.2. No.

The attacker can still recover z₁, z₂, ..., z_{n.}

But he can't recover the bit-stream portion z_{n+1} , z_{n+2} , ..., z_{n+m} which was used for encrypting MAC_{k2}(x).

Even if he would know the whole bit-stream, he wouldn't be able to compute a valid MAC_{k2} (x'), since he doesn't know k_2 .

4.

4.1. $t = 10^6$ bits/sec

storage = $t * r = 2h * 10^6 \text{ bits/sec} = 2 * 3600 * 10^6 \text{ bits/sec} = 7.2 \text{ Gbits} = 0.9 \text{ GByte}$ Storage of less than 1 GByte can be done at moderate costs, e.g., on hard disks or CDs.

4.2. We should first Compute the number of keys that an attacker can recover in 30 days:

Number of keys = $\frac{30 \text{ days}}{10 \text{ mins}} = \frac{30*24*60}{10} = 4320$ Key derivation period = $\frac{2 \text{ h}}{4320} = 1.67 \text{ sec}$

Because has functions are fast, a key derivation can easily be performed (in software) at such a rate.