Sound Propagation in 3D Environments

Chris Carollo
Ion Storm Austin
ccarollo@ionstorm.com

What Sound Propagation is (at least in this talk)

- A method for modeling the movement of sound
- Relevant spaces:
 - Densely occluded indoor or faked outdoor
 - Multi-material
 - Basically, typical FP action game settings
- Sounds that carrying meaning

What we'll go over

- Why sound is important
- What our requirements and goals are
- What academics are working on
- A practical implementation strategy
- What its performance cost is
- What its implementation cost is
- What you should watch out for
- Some neat tricks it enables

Why is sound important?

- We use it to gather our information about our surroundings
- One of two senses game can substantially appeal to
- More enveloping sense than vision, which is tightly focused
- Typically used to direct vision

Goals: Immersion

- Spatial cues that don't disorient the player
 - Distance
 - Directionality
 - Updated as sound/listener move
 - Continuity is key!
- A world that feels solid
 - Player can't hear through walls
 - If they can, sounds are filtered appropriately

Goals: Aesthetics

- Ability to impart a mood
 - Heavy filtering for cramped or warm spaces
 - Echo/reverb for open or cold spaces
 - Other filters based on environmental materials

Implementational Benefits

- Better suited to attach meaning to sound
 - Sound "packets" that fly through the world
 - Players and Als can use sounds to make gameplay decisions
 - Similar to vision
- Single dispatcher for sound events
 - Same mechanism used to handle all sounds for all listeners
 - Easier to hook game events
 - Listeners (Als, alarms, player, etc) hear by similar method to that of the player

No Sound Propagation means...

- Generally poor sound cues that confuse players
 - Players will start ignoring sound cues after a while
- Raycasting for occlusion
 - Doesn't give a real direction when occluded
 - Lack of continuity
 - Can actually be more expensive
- Al
 - Hearing through different mechanism can lead to broken player expectations
 - Al cascades because of hearing through walls

High-end solution: Beam Tracing

- Lots of good research has been done by Funkhouser et al
- Casts volumetric beams from sides of cube
- Hitting surfaces creates more beams:
 - Reflection
 - Clipped
 - Diffraction

High-end solution: Beam Tracing

High-end solution: Beam Tracing

- Once computed, beams are cached
- Moving listeners are cheap: just moving through beams
- Moving sounds are expensive: must recalculate entire beam tree for that sound
- Lots of beams: 2K poly world with 8 reflections is ~300K beams! (Funkhouser)
- At 100B per beam, that's 30MB per sound!
- Not really viable with today's hardware limitations

On to a practical implementation...

- We've got a bunch of goals
- We've got a bunch of spaces
- What do we need to make it happen?

Implementation Requirements

- Information about how world spaces are connected
- Similar to visibility for rendering, but for sound
 - Interested more in how areas are connected than whether they are potentially connected
 - Can be more coarse
- Basically, how does a sound generated in the library get to the kitchen?

A Connectivity Database!

- World is divided into connected cells
- Cells are just convex polyhedra
- Connected through portals
- Portals work best if they're polygonal
- Needs to track listener objects in cells
- Need not be used solely for propagation
 - Top-level visibility culling for rendering
 - Pathfinding for AI
 - Object buckets for physics

Designer-Placed Volumes

- Lower-poly representation of connectivity
- Overlaid on real geometry
- Problems with manually placed volumes are because of human error and bad tools

Designer-Placed Volumes

Designer-Placed Volumes: Pros

- Very fast because of low poly count
- Can be used with any world geometry
 - CSG
 - Organic spaces
 - Polygon soup
- Used in shipping games
 - Dark Engine: Thief 1 & 2 and System Shock 2

Designer-Placed Volumes: Cons

- Loose representation can cause inconsistencies
- Must be kept in sync with real geometry, which means lots of designer work
- Specific problems:
 - Leaks: world not connected but connectivity is
 - Blocks: world connected but connectivity not
- Need to spend the time to provide good tools to designers

Automatically Generated Volumes

- More accurate representation of connectivity
- Requires geometry amenable to automation
 - Generally solid spaces
 - Some sort of ordered connectivity
- Problems with automatically generated volumes are because of code bugs and numerical instability

Automatically Generated Volumes

Automatically Generated Volumes

Pros:

- Always in sync with real world geometry
- Virtually no designer work

Cons:

- Potentially a lot of polygons
- Poly reduction can be complex

Minimal Path Tracing Overview

- Far less computationally expensive
- Also less difficult to implement
- Consists of four steps:
 - Coarse floodfill
 - Path trace
 - Postprocess
 - Repropagation
- Example of path generation algorithm

- Breadth-first floodfill of the cells, through the portals
 - Each cell knows what listeners are in it
 - Can precompute cost between portals
 - Intra-cell traversal costs determined by:
 - Distance
 - Size of portal
 - Relative facing of portals

- 1. Handle each listener object encountered
 - Generate minimal path back to sound source
 - Or not, depending on what kind of listener
 - Gather sonic properties of cells
 - Cache minimal path on object
 - Add object to "I heard something" list

- 1. End-of-frame processing step
 - Gather all paths from an object to a given sound
 - Deal with multiple paths
 - Generate filter/reverb based on paths and materials encountered
 - End up with distance, direction, and effect

- 1. Note how long until repropagation
 - Rate of movement of the sound and listener
 - Dot product of velocity with direction vector
 - Assumes constant velocity between repropagations

Minimal Path Tracing: Notes

- Minimal path generation
 - Analogous to stretching a string through portals
 - Only deals with portals
 - Solving from both ends, is analytically hard
 - Iterative solution to within a correctness epsilon
- Dealing with Head Relative Transfer Function (HRTF) hardware
 - Use "virtual speaker objects" for the hardware voice positions
 - Extrapolate positions from direction and distance

Minimal Path Tracing: Example

Minimal Path Tracing: Iterations

Minimal Path Tracing: Iterations

Minimal Path Tracing: Iterations

Minimal Path Tracing

Real-time demo of minimal path example

Minimal Path Tracing - Multipath

- Allow re-entry during initial floodfill, to within a tolerance
- Can solve multiple higher-fidelity paths if the listener object warrants it

Minimal Path Tracing - Multipath

- Relatively few, or a variable number of channels?
 - Average direction and distance for virtual sound location
 - Don't break continuity!
- Lots of channels?
 - Play all the sounds!
 - Make sure they're synced don't want to echo!

Minimal Path Tracing - Occluders

- Occlusion at portal boundaries
 - Doors, windows, etc
 - Partial occlusion just increases effective distance from source
 - Could also be dealt with by accumulating filters
- Mobile occluders
 - Probably only care about straight-line mobile occluders
 - Also might track accumulation of objects at portal boundaries

Filtering and Effects

- Filtering strength
 - Based on how materials absorb different frequencies of sound
 - Reflectance: Surface area of material
 - Transmission: Thickness of material
- Filtering and effects
 - Build as a DSP effect
 - Parametric equalization

Absorption by Material Type

(Hall, Muscal Acoustics 2nd Ed)

Caveats and Limitations

- Lots of data caching of portals and paths
 - Static worlds work best
 - Dynamic worlds can work, but require good cache invalidation and updating
- Assumes inaudibility distance
 - Sound stops propagating at some threshold
 - Must be large enough to handle best listener in world

Neat tricks

- Speed of sound delays
 - True distance is known so sound can be appropriately delayed
 - Seen as a bug?
 - Game design relevance?
 - Perhaps too pointy-headed

More neat tricks

- Better approximation of dynamic range
 - Speakers generally have poor dynamic range
 - Slow rate of attenuation makes sounds louder
 - Won't be hearing loud sounds across whole level because distances are real!

Even more neat tricks

- Listening at doors
 - Eliminate the sound occlusion when close enough
- Laser microphone
 - Place virtual listener at partially occluding window and disable its occlusion effects
- Listening quietly
 - Boost volume of important effects to certain listeners (the player) when stationary

Yet more neat tricks

- Sound masking
 - Meaning bearing sound can be masked by louder sound
 - Player can use tools or environment to generate "sound cover"
- Can provide gameplay direction in openended environment
 - What areas are interesting?
 - Example: Horn of Quintus in Thief

Conclusions

- Minimal path sound propagation is fairly straightforward
- Connectivity database can be challenging, but can be useful in other areas as well
- Good sound propagation applies to many elements of gameplay
- Subtle parts of a game experience like audio contribute more than you might typically think

Questions?