Predicting Competence in a Foreign Language

Capstone Part 5: Results

Aim

Problem Statement:

 Applications for degree courses linked to European languages have fallen by almost a quarter in the past five years, and applications to other language courses have dropped by almost a fifth (source, Press Association analysis).

Q: Would it make a difference if we could predict competence in a foreign language?

Audience & Goals

Target Audience:

- Schools/boards of education who need justification for funding in targeted areas
- Students who need justification of the factors leading to success in order to continue studying languages

Goal:

 A model that can predict the achievement of competence in a foreign language on the basis of variable factors (ie. not moving to the country in question or being adopted by bilingual parents)

Approach

Exploratory Data Analysis

Modelling

- Select data set
- Set Target
- Data analysis to understand distribution of data and correlation with the Target
- Selection of features with strongest correlation with Target
- (Removal of ones with strong co-correlations)
- Establish baseline accuracy (0.68)
- Select classifier models (~9)
- Train models against 70% of the data
- Tune models to identify best hyperparameters for optimal model performance
- Test models against remaining 30% of the data
- Identify best performing models, score and visualise outputs (and communicate to you guys!)

Data

Source:

 <u>European Survey on Language Competences</u> (2012, Centre for Research on Education and Lifelong Learning)

Summary:

- 14 countries
- ~53k secondary school students
- 499 data fields:
 - Results of language tests in listening, reading and writing skills, scored according to the Common European Framework of Reference (CEFR)
 - Results of administered questionnaires

Test Results (CEFR) & Classification

Level Name	Level Code	Description	Proportion of Results	Target	Proportion of Target
N/A	-A1	Below minimum level	0.16		
Basic user	A1	Breakthrough or beginner	0.37	Low (0)	0.69
	A2	Waystage or elementary 0.16			
Intermediate user	B1			High (1)	0.31
	B2				

Test Results (CEFR) & Classification

Sample Survey Questions

Language-specific:

- Languages spoken at home
- Exposure to target language outside school
- Perceived difficulty/usefulness of language
- Parents' language knowledge

General:

- Time spent studying
- Class size
- Enjoyment of school subjects
- Access to IT/internet and frequency of usage
- Socio-economic factors

Correlations

Positive:

- Parents' knowledge of target language
- Perceived usefulness of language (particularly for entertainment and computing)
- Enjoyment of target language

Negative:

 Perceived difficulty of learning and understanding the target language

Frequency of PC usage in classes and for study is very strongly correlated across all school subjects and non-study
activities BUT not correlated with high performance

Best Performing Model

Model	Precision	Recall	Accuracy	Baseline Accuracy
Random Forest	0.81	0.82	0.82	0.68

Best Predictors

Best Predictors

Language-specific:

- Perceived usefulness (job/entertainment/IT)
- Difficulty
- Frequency of media consumption (websites/films/TV/music)
- Perceived competence (ability to understand TV & Radio/hold a conversation/write letters, etc.)
- Parents' language ability
- Enjoyment of language

General:

Socio-economic status

Limitations

I would struggle to recommend this model for the original purpose for the following reasons:

- 49% of the dataset relates to English which could be skewing the feature importance (ie. media)
- Better at predicting low performance than high performance
- Correlation does not necessarily mean causation (does achievement make it enjoyable or vice versa?)

Next Steps

Expand modelling as follows with a view to deciding whether it can be used for a different purpose:

- high/low performance balance in dataset
- target language balance in dataset
- discipline-specific Targets (listening / reading / writing)
- multi-class modelling

Review goal to inform focus for next steps

Thank you

Liz Spiking DSI5