5 - Запросы на отрезках

А. Сумма простая

1 секунда, 512 мегабайт

Вам нужно научиться отвечать на запрос «сумма чисел на отрезке».

Массив не меняется. Запросов много. Отвечать на каждый запрос следует за $\mathcal{O}(1)$.

Входные данные

Размер массива — n и числа x,y,a_0 , порождающие массив a: $a_i=(x\cdot a_{i-1}+y) \bmod 2^{16}$

Далее следует количество запросов m и числа z, t, b_0 , порождающие массив b: $b_i = (z \cdot b_{i-1} + t) \bmod 2^{30}$.

Массив c строится следующим образом: $c_i = b_i \mod n$.

Запросы: i-й из них — найти сумму на отрезке от $min(c_{2i}, c_{2i+1})$ до $max(c_{2i}, c_{2i+1})$ в массиве a.

Ограничения: $1 \le n \le 10^7$, $0 \le m \le 10^7$. Все числа целые от 0 до 2^{16} . t может быть равно -1.

Выходные данные

Выведите сумму всех сумм.

входные данные		
3 1 2 3 3 1 -1 4		
выходные данные		
23		

 $a = \{3, 5, 7\}, b = \{4, 3, 2, 1, 0, 2^{30} - 1\}, c = \{1, 0, 2, 1, 0, 0\},$ запросы = $\{[0, 1], [1, 2], [0, 0]\}$, суммы = $\{8, 12, 3\}$.

B. RSO

2 секунды, 256 мегабайт

Входные данные

В первой строке находится число n — размер массива. ($1 \le n \le 500~000$) Во второй строке находится n чисел a_i — элементы массива. Далее содержится описание операций, их количество не превышает 1~000~000. В каждой строке находится одна из следующих операций:

- set $i \times m$ установить a[i] в x.
- Sum $i\ j$ вывести значение суммы элементов в массиве на отрезке с i по j, гарантируется, что $(1 \le i \le j \le n)$.

Все числа во входном файле и результаты выполнения всех операций не превышают по модулю $10^{18}.$

Выходные данные

Выведите последовательно результат выполнения всех операций sum. Следуйте формату выходного файла из примера.

входные	данные
5	
1 2 3 4 5	
sum 2 5	
sum 1 5	
sum 1 4	
sum 2 4	
set 1 10	
set 2 3	
set 5 2	
sum 2 5	
sum 1 5	
sum 1 4	
sum 2 4	

выходные	данные
14	
15	
10	
9	
12	
22	
20	
12 22 20 10	

C. RMQ2

2 секунды, 256 мегабайт

Входные данные

В первой строке находится число n — размер массива. ($1 \le n \le 10^5$) Во второй строке находится n чисел a_i — элементы массива. Далее содержится описание операций, их количество не превышает $2 \cdot 10^5$. В каждой строке находится одна из следующих операций:

- set ijx установить все a[k], $i \le k \le j$ в x.
- add ijx увеличить все a[k], $i \le k \le j$ на x.
- $\min i j$ вывести значение минимального элемента в массиве на отрезке с i по j, гарантируется, что $(1 \le i \le j \le n)$.

Все числа во входном файле и результаты выполнения всех операций не превышают по модулю $10^{18}.$

Выходные данные

Выведите последовательно результат выполнения всех операций min. Следуйте формату выходного файла из примера.

D. Разреженные таблицы

2 секунды, 256 мегабайт

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Входные данные

В первой строке зданы три натуральных числа n, m ($1\leqslant n\leqslant 10^5$, $1\leqslant m\leqslant 10^7$) и a_1 ($0\leqslant a_1<16\,714\,589$) — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и v_1 ($1\leqslant u_1,v_1\leqslant n$) — первый запрос.

Для того, размер ввода был небольшой, массив и запросы генерируются. Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \bmod 16714589.$$

Например, при n=10, $a_1=12345$ получается следующий массив: a=(12345,305498,7048017,11694653,1565158,2591019,9471233,570265,13137658,1325095).

Запросы генерируются следующим образом:

$$u_{i+1} = ig((17 \cdot u_i + 751 + r_i + 2i) mod nig) + 1, \ v_{i+1} = ig((13 \cdot v_i + 593 + r_i + 5i) mod nig) + 1,$$

где r_i — ответ на запрос номер i.

Обратите внимание, что u_i может быть больше, чем v_i

Выходные данные

В выходной файл выведите u_m , v_m и r_m (последний запрос и ответ на него).

входные данные			
10 8 12345 3 9			
выходные данные			
5 3 1565158			

Можно заметить, что массивы u,v и r можно не сохранять в памяти полностью.

Запросы и ответы на них выглядят следующим образом:

i	u_i	v_{i}	r_i
1	3	9	570265
2	10	1	12345
3	1	2	12345
4	10	10	1325095
5	15	9	570265
6	2	1	12345
7	3	2	305498
8	5	3	1565158

Эта задача скорее всего не решается стандартными интерпретаторами Python 2 и Python 3. Используйте соответствующие компиляторы PyPy.

Е. Криптография

2 секунды, 256 мегабайт

Задано n матриц $A_1, A_2, ..., A_n$ размера 2×2 . Необходимо для нескольких запросов вычислить произведение матриц $A_i, A_{i+1}, ..., A_i$. Все вычисления производятся по модулю r.

Входные данные

Первая строка входного файла содержит числа r ($1 \le r \le 10\,000$), n ($1 \le n \le 200\,000$) и m ($1 \le m \le 200\,000$). Следующие n блоков по две строки содержащие по два числа в строке — описания матриц. Затем следуют m пар целых чисел от 1 до n, запросы на произведение на отрезке.

Выходные данные

Выведите m блоков по две строки,по два числа в каждой — произведения на отрезках. Разделяйте блоки пустой строкой. Все вычисления производятся по модулю r

В	ходн	ые д	данные		
0	4 4 1 0				
2	1 2				
	0 2				
	0 2				
2	4 3 3 2				
В	ыход	ные	данные		
	2 0				
	2				
0	1 0				
	1 2				

F. RMQ наоборот

2 секунды, 256 мегабайт

Рассмотрим массив a[1..n]. Пусть Q(i,j) — ответ на запрос о нахождении минимума среди чисел a[i],...,a[j]. Вам даны несколько запросов и ответы на них. Восстановите исходный массив.

Входные данные

Первая строка входного файла содержит число n — размер массива, и m — число запросов ($1 \le n, m \le 100\,000$). Следующие m строк содержат по три целых числа i,j и q, означающих, что Q(i,j)=q ($1 \le i \le j \le n, -2^{31} \le q \le 2^{31}-1$).

Выходные данные

Если искомого массива не существует, выведите строку «inconsistent».

В противном случае в первую строку выходного файла выведите «consistent». Во вторую строку выходного файла выведите элементы массива. Элементами массива должны быть целые числа в интервале от -2^{31} до 2^{31} – 1 включительно. Если решений несколько, выведите любое.

входные	данные	
3 2 1 2 1 2 3 2		
выходные	данные	
consistent 1 2 2		

Входные данные 3 3 1 2 1 1 1 2 2 3 2 Выходные данные inconsistent

Codeforces (c) Copyright 2010-2020 Михаил Мирзаянов Соревнования по программированию 2.0