Graphs

Definition ((c_e, c_v) -graph): We define a (c_e, c_v) -graph to be a simple undirected graph where each edge and vertex is assigned a colour from $[c_e], [c_v]$ respectively.

Definition (Isomorphism): A function $f:V(G)\to V(H)$ for G,H (c_e,c_v) -graphs is an isomorphism if it is a classic graph isomorphism and preserves colours. We write $G\cong H.$

Definition (Graph Class): If \mathbb{G}^{c_e,c_v} is the class of all (c_e,c_v) -graphs then a **graph class** $\mathcal{G}\subseteq\mathbb{G}^{c_e,c_v}$ is just some subclass.

Definition (Hereditary Class): A graph class $\mathcal G$ is **hereditary** if the class is closed under taking *induced* subgraphs: $G \in \mathcal G \wedge U \subseteq V(G) \implies G[U] \in \mathcal G$.

Definition (Hereditary Closure): Given a graph class $\mathcal G$ define the **hereditary closure** as the minimal hereditary class $\overline{\mathcal G}$ containing $\mathcal G$. Intuitively this is just $\mathcal G$ and all possible induced subgraphs of $G\in\mathcal G$.

Flags

The choice of $\mathcal G$ informs all the following definitions.

∆ Important

In Razborov's original formulation^[1] he defines flags in a very general way in terms of finite model theory. In particular his definitions place requirements on $\mathcal G$ that mean it must be hereditary. For this reason we don't reference hereditary closures in the classic flag case.

Modified from (Silva, Filho, Sato - 2016: Flag Algebras: A First Glance).

Original definitions: Section 2.1 of (Razborov - 2007: Flag Algebras).

Definition (Type): A **type of size** $k \in \mathbb{N}_0$ is some $\sigma \in \mathcal{G}$ with $V(\sigma) = [k]$. We write $|\sigma|$ for the size of the type.

Definition (Embedding): An **embedding** of a type σ of size k into $F \in \mathcal{G}$ is an injective function $\theta: [k] \to V(F)$ such that θ is an isomorphism between σ and $F[\operatorname{im} \theta]$.

Definition (Flag): A pair (F,θ) where $F \in \mathcal{G}$ and θ is an embedding of σ into F is a σ -flag.

Notation: We denote the collection of all σ -flags up to isomorphism with \mathcal{G}^{σ} . Use a subscript \mathcal{G}_n^{σ} to denote only flags of size n. If $\sigma=\emptyset$ we can drop the σ superscript.

Notation: We will often implicitly treat a type σ as a σ -flag. Specifically one with the $\mathrm{id}:[|\sigma|]\to[|\sigma|]$ embedding.

Definition (Labelled): We refer to a vertex in (F,θ) as labelled if it is in the image of θ , and often call $\operatorname{im} \theta$ the *labelled part of* F.

Definition (Flag Isomorphism): $f:V(F)\to V(F')$ is a σ -flag isomorphism from $(F,\theta)\to (F',\theta')$ if it is an isomorphism $F\to F'$ which preserves labels, meaning $f(\theta(i))=\theta'(i)\ \forall\ i\in[|\sigma|].$ We can write $(F,\theta)\cong (F',\theta')$ if such an f exists.

Empty-flags: If $\sigma = \emptyset$, the empty graph, then flags are just graphs with trivial embeddings. We usually just write F rather than (F,θ) and treat graphs as implicit \emptyset -flags.

Induced Count

Definition (Induced Count): Fix two σ -flags $(F,\theta),(G,\eta)$. We define the induced count of (F,θ) in (G,η) written $c((F,\theta);(G,\eta))$ (abbreviated as c(F,G) if θ,η are implicit) as the number of induced copies of F in G s.t. the labelled part of F maps to the labelled part of G.

Specifically this is the number of subsets $\operatorname{im}(\eta) \subseteq U \subseteq V(G)$ such that $(F,\theta) \cong (G[U],\eta)$. Clearly c(F,G) = 0 if |G| < |F|.

Extension to multiple flags: Take a finite number of σ -flags $(F_i, \theta_i), i \in [t]$ and another σ -flag (G, η) . We now define $c(F_1, \ldots, F_t; G)$ as the number of t-tuples of induced copies of F_1, \ldots, F_t in G which are disjoint except precisely at the labelled part of G.

Precisely this is the number of subsets $U_1, \ldots, U_t \subseteq V(G)$ such that $\operatorname{im} \eta = U_i \cap U_j \ \forall \ i,j \in [t]$ where $i \neq j$ and $(F_i,\theta_i) \cong (G[U_i],\eta)$ for all $i \in [t]$.

Definition (Fit): Note that if $c(F_1, \ldots, F_t; G) > 0$ then $|G| - |\sigma| \ge \sum_{i=1}^t |F_i| - |\sigma|$. If this holds we say F_1, \ldots, F_t fit in G.

Classic Density

This is the classic density used in Razborov's flag algebras: (Razborov - 2007).

Definition (Induced Density): For σ -flags (F,θ) and (G,η) define $p((F,\theta),(G,\eta))$ (abbreviated as p(F,G)) as the proportion of subsets $\operatorname{im} \eta \subseteq U \subseteq V(G)$ such that $(F,\theta) \cong (G[U],\eta)$:

$$p(F;G) = rac{c(F;G)}{inom{|G|-|\sigma|}{|F|-|\sigma|}}.$$

Extension to finite set of flags: As with c(F,G) we can extend to a finite collection of flags $(F_i,\theta_i),\ i\in[t]$ where we normalise $c(F_1,\ldots,F_t;G)$ by the total number of possible subsets $U_1,\ldots,U_t\subseteq V(G)$ such that $U_i\cap U_j=\operatorname{im}\eta\ \forall i\neq j.$

$$p(F_1,\ldots,F_t;G) = rac{c(F_1,\ldots,F_t;G)}{inom{|G|-|\sigma|}{|F_1|-|\sigma|,\ldots,|F_t|-|\sigma|,R}}$$

using multinomial coefficient notation where $R = (|G| - |\sigma|) - \sum_{i=1}^t |F_i| - |\sigma|$.

Probabilistic Interpretation: You can interpret $p(F_1, \ldots, F_t; G)$ as the probability that a uniformly random tuple $U_1, \ldots, U_t \subseteq V(G)$ such that $U_i \cap U_j = \operatorname{im} \eta \ \forall \ i \neq j$ has the property that $(F_i, \theta_i) \cong (G[U_i], \eta) \ \forall \ i \in [t].$

Lemma (Chain Rule): If $F_1, ..., F_t$ are σ -flags which fit in G then for all $1 \le s \le t$ and every n such that $F_1, ..., F_s$ fit into a σ flag of size n and a σ -flag and $F_{s+1}, ..., F_t$ fit in G we have:

$$p(F_1,\ldots,F_t;G) = \sum_{F \in \mathcal{G}_n^\sigma} p(F_1,\ldots,F_s;F) p(F,F_{s+1},\ldots,F_t;G).$$

Labelling

Definition (Label Extension): Given a σ -flag (F,θ) and some unlabelled vertex $v \in V(F) \setminus \operatorname{im} \theta$ we can construct a **label extension** $\theta' \colon [|\sigma|+1] \to V(F)$ as

$$heta'(i) = egin{cases} heta(i) & ext{if } i \in [|\sigma] \ v & ext{if } i = |\sigma| + 1. \end{cases}$$

This is an embedding of the type σ' with vertices $[|\sigma|+1]$ obtained by adding a new vertex $|\sigma|+1$ to σ such that $\sigma'\cong F[\operatorname{im}\theta']$.

 (F, θ') is then a σ' -flag.

Local Flags

⊘ Todo

Needs an example of a density hard to describe with classic flags. Maybe something like paths of length 2 in a Δ -regular graph.

Let \mathcal{G} be some graph class and consider its hereditary closure $\overline{\mathcal{G}}$. We inherit the definition of flags and induced count from the classic case, where we take underlying graphs from $\overline{\mathcal{G}}$.

≡ Example

If the class \mathcal{G} is the class of regular graphs then this class is not hereditary. It's hereditary closure \mathcal{G} is just the class of all graphs.

Let Δ be some graph parameter $\Delta\colon \mathcal{G}\to\mathbb{N}_0$ such that $\Delta(G)\to\infty$ implies $|G|\to\infty$. (More formally there is some monotone increasing unbounded function f such that for all $G\in\mathcal{G}$ we have $|G|\geq f(\Delta(G))$.

∆ Important

We almost exclusively use the maximum degree function Δ so you can effectively always interpret $\Delta(G)$ in this way.

Definition (Local Density): Rather than normalising the induced count of σ -flags $c((F,\theta);(G,\eta))$ by $\binom{|G|-|\sigma|}{|F|-|\sigma|}$ we instead normalise by $\binom{\Delta(G)}{|F|-|\sigma|}$.

$$ho(F;G):=rac{c(F;G)}{inom{\Delta(G)}{|F|-|\sigma|}}.$$

Note the ho
eq p notation. We consider this as a function $\overline{\mathcal{G}}^\sigma imes \mathcal{G}^\sigma o \mathbb{R}_{\geq 0}.$

Because of our choice of "normalisation" we are no longer guaranteed a [0,1] codomain. The full range for ρ is $\mathbb{R}_{\geq 0}$.

Example of why ρ can be unbounded.

This unboundedness is undesirable. We will now define a restricted subset of the classic flags to the case where we do not have this divergent behaviour.

⊘ Todo

Needs an elucidatory example of a family of graphs ${\cal G}$ where we describe which structures have divergent density and which do not.

Definition (Local σ **-flag):** Fix some graph class $\mathcal G$ and takes its hereditary closure $\overline{\mathcal G}$. This class gives us a collection of flags and types. Let σ be a type. Then a σ -flag $(F,\theta)\in\overline{\mathcal G}^\sigma$ is a **local** σ **-flag** if we have the following properties:

- 1. $(G,\eta) \to \rho((F,\theta);(G,\eta))$ is a bounded function as a function $\mathcal{G}^{\sigma} \to \mathbb{R}_{\geq 0}$. (We are very intentionally using \mathcal{G} and not its closure here).
- 2. If we label any of F's unlabelled vertices we get another local flag.

To state this 2nd property precisely: We require that for any label extension θ' of θ , the induced extended flag (F,θ') is also a local flag.

This is not a circular definition as any label extension of (F,θ) reduces the number of unlabelled vertices by 1; We could define inductively starting with those flags with no unlabelled vertices.

What we're trying to capture here is that any "subflag" of F is also a local flag, meaning we can pin down F's vertices and continue to get bounded behaviour.

Note: This second property is not necessarily implied by the first, so it is a required part of the definition of a local flag.

Lemma: There exists an infinite class of graphs $\mathcal G$ and a flag (F,θ) such that $\rho((F,\theta);\cdot)$ is a bounded function but a label extension (F,θ') has unbounded density.

✓ Proof >

Consider 3-vertex-coloured graphs (red, blue, black) and take $\mathcal G$ to be the class of graphs with a single red vertex, $\Delta(G)^2$ blue vertices and the rest black vertices such that there are no red-blue edges.

Relative to this $\mathcal G$ then the following \emptyset -flag is local: $F=(\bullet \ \bullet)$. We can calculate that for $G\in \mathcal G$ we have $c(F;G)=\Delta(G)^2$ as we have 1 choice for the red vertex and $\Delta(G)^2$ for the blue. Hence $\rho(F;G)=c(F;G)/\binom{\Delta(G)}{2}\leq 2$.

Consider labelling the red-vertex in F, giving $F'=(ullet \bullet)$. with type $\sigma=ullet$. For any $G\in \mathcal{G}$ there is a unique embedding η_0 of σ , mapping this red vertex to the single red vertex. However we still have $c(F';(G,\eta_0))=\Delta(G)^2$ so $\rho(F';(G,\eta_0))=c(F';(G,\eta_0))/\Delta\sim\Delta(G)$ which is unbounded.

Notation: Write $\mathcal{G}^{\sigma}_{\mathrm{loc},n}$ to be the set of all local σ -flags of size n up to isomorphism. Write $\mathcal{G}^{\sigma}_{\mathrm{loc}}$ for all local σ -flags. If $\sigma=\emptyset$ then we can drop the σ superscript.

The chain rule does not hold in general for local flags.

△ Warning

Just because valid local σ -flags exist does not necessarily mean σ itself is implicitly a local σ -flag.

⊘ Note

By our above definitions if (F,θ) is a local σ -flag then the function $\Delta(G)$ somehow "bounds" the degrees of freedom for embeddings of unlabelled vertices of F into G.

e.g. If $\Delta(G)$ is the maximum degree function, then $\Delta(G)$ bounds the degree of freedom of picking a vertex which is connected to some fixed vertex. This gives intuition to why the local σ -flags in the class of graphs with this choice of $\Delta(G)$ is precisely those flags F where each vertex is connected to some labelled vertex.

1. Razborov - 2007: <u>Flag Algebras</u> ↔