Discrete Mathematics - Recurrence Relation

In this chapter, we will discuss how recursive techniques can derive sequences and be used for solving counting problems. The procedure for finding the terms of a sequence in a recursive manner is called **recurrence relation**. We study the theory of linear recurrence relations and their solutions. Finally, we introduce generating functions for solving recurrence relations.

Definition

A recurrence relation is an equation that recursively defines a sequence where the next term is a function of the previous terms (Expressing F_n as some combination of F_i with i < n).

Example – Fibonacci series –
$$\ F_n = F_{n-1} + F_{n-2} \$$
 , Tower of Hanoi – $\ F_n = 2F_{n-1} + 1$

Linear Recurrence Relations

A linear recurrence equation of degree k or order k is a recurrence equation which is in the format $x_n=A_1x_{n-1}+A_2x_{n-1}+A_3x_{n-1}+\dots A_kx_{n-k}$ (A_n is a constant and $A_k\neq 0$) on a sequence of numbers as a first-degree polynomial.

These are some examples of linear recurrence equations -

Recurrence relations	Initial values	Solutions
$F_n = F_{n-1} + F_{n-2}$	a ₁ = a ₂ = 1	Fibonacci number
$F_n = F_{n-1} + F_{n-2}$	a ₁ = 1, a ₂ = 3	Lucas Number
$F_n = F_{n-2} + F_{n-3}$	$a_1 = a_2 = a_3 = 1$	Padovan sequence
$F_n = 2F_{n-1} + F_{n-2}$	a ₁ = 0, a ₂ = 1	Pell number

How to solve linear recurrence relation

Suppose, a two ordered linear recurrence relation is – $\,F_n=AF_{n-1}+BF_{n-2}\,\,$ where A and B are real numbers.

The characteristic equation for the above recurrence relation is -

$$x^2 - Ax - B = 0$$

Three cases may occur while finding the roots -

Case 1 - If this equation factors as $(x-x_1)(x-x_1)=0$ and it produces two distinct real roots x_1 and x_2 , then $F_n=ax_1^n+bx_2^n$ is the solution. [Here, a and b are constants]

Case 2 - If this equation factors as $(x-x_1)^2=0$ and it produces single real root x_1 , then $F_n=ax_1^n+bnx_1^n$ is the solution.

Case 3 - If the equation produces two distinct complex roots, x_1 and x_2 in polar form $x_1=r\angle\theta$ and $x_2=r\angle(-\theta)$, then $F_n=r^n(acos(n\theta)+bsin(n\theta))$ is the solution.

Problem 1

Solve the recurrence relation $\ F_n = 5F_{n-1} - 6F_{n-2}$ where $\ F_0 = 1$ and $\ F_1 = 4$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 5x + 6 = 0$$

So,
$$(x-3)(x-2) = 0$$

Hence, the roots are -

$$x_1=3$$
 and $x_2=2$

The roots are real and distinct. So, this is in the form of case 1 Hence, the solution is –

$$F_n = ax_1^n + bx_2^n$$

Here,
$$F_n = a3^n + b2^n \ (As \ x_1 = 3 \ and \ x_2 = 2)$$

Therefore,

$$1 = F_0 = a3^0 + b2^0 = a + b$$

$$4 = F_1 = a3^1 + b2^1 = 3a + 2b$$

Solving these two equations, we get a=2 and b=-1

Hence, the final solution is -

$$F_n = 2.3^n + (-1).2^n = 2.3^n - 2^n$$

Problem 2

Solve the recurrence relation – $\,F_{n}=10F_{n-1}-25F_{n-2}\,\,$ where $\,F_{0}=3\,\,$ and $\,F_{1}=17\,\,$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 10x - 25 = 0$$

So
$$(x-5)^2 = 0$$

Hence, there is single real root $\,\,x_1=5$

As there is single real valued root, this is in the form of case 2

Hence, the solution is -

$$F_n = ax_1^n + bnx_1^n$$

$$3 = F_0 = a.5^0 + (b)(0.5)^0 = a$$

$$17 = F_1 = a.5^1 + b.1.5^1 = 5a + 5b$$

Solving these two equations, we get a=3 and b=2/5

Hence, the final solution is – $\,F_n=3.5^n+(2/5).\,n.2^n\,$

Problem 3

Solve the recurrence relation $\ F_n=2F_{n-1}-2F_{n-2}$ where $\ F_0=1$ and $\ F_1=3$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 2x - 2 = 0$$

Hence, the roots are -

$$x_1=1+i$$
 and $x_2=1-i$

In polar form,

$$x_1=r \angle \theta$$
 and $x_2=r \angle (-\theta),$ where $r=\sqrt{2}$ and $\theta=rac{\pi}{4}$

The roots are imaginary. So, this is in the form of case 3.

Hence, the solution is -

$$F_n = (\sqrt{2})^n (acos(n.\,\sqcap/4) + bsin(n.\,\sqcap/4))$$

$$1 = F_0 = (\sqrt{2})^0 (acos(0.\,\sqcap/4) + bsin(0.\,\sqcap/4)) = a$$

$$3 = F_1 = (\sqrt{2})^1 (acos(1.\,\sqcap/4) + bsin(1.\,\sqcap/4)) = \sqrt{2}(a/\sqrt{2} + b/\sqrt{2})$$

Solving these two equations we get $\ a=1$ and $\ b=2$

Hence, the final solution is -

$$F_n=(\sqrt{2})^n(cos(n.\,\pi/4)+2sin(n.\,\pi/4))$$

Non-Homogeneous Recurrence Relation and Particular Solutions

A recurrence relation is called non-homogeneous if it is in the form

$$F_n = AF_{n-1} + BF_{n-2} + f(n)$$
 where $f(n)
eq 0$

Its associated homogeneous recurrence relation is $\ F_n = AF_{n-1} + BF_{n-2}$

The solution (a_n) of a non-homogeneous recurrence relation has two parts.

First part is the solution (a_h) of the associated homogeneous recurrence relation and the second part is the particular solution (a_t) .

$$a_n = a_h + a_t$$

Solution to the first part is done using the procedures discussed in the previous section. To find the particular solution, we find an appropriate trial solution.

Let $f(n)=cx^n$; let $x^2=Ax+B$ be the characteristic equation of the associated homogeneous recurrence relation and let x_1 and x_2 be its roots.

- ullet If $x
 eq x_1$ and $x
 eq x_2$, then $a_t=Ax^n$
- ullet If $x=x_1$, $x
 eq x_2$, then $a_t=Anx^n$
- ullet If $x=x_1=x_2$, then $a_t=An^2x^n$

Example

Let a non-homogeneous recurrence relation be $F_n=AF_{n-1}+BF_{n-2}+f(n)$ with characteristic roots $x_1=2$ and $x_2=5$. Trial solutions for different possible values of

f(n) are as follows –

f(n)	Trial solutions	
4	Α	
5.2 ⁿ	An2 ⁿ	
8.5 ⁿ	An5 ⁿ	
4 ⁿ	A4 ⁿ	
2n ² +3n+1	An ² +Bn+C	

Problem

Solve the recurrence relation $F_n=3F_{n-1}+10F_{n-2}+7.5^n$ where $F_0=4$ and $F_1=3$

Solution

This is a linear non-homogeneous relation, where the associated homogeneous equation is $F_n=3F_{n-1}+10F_{n-2}$ and $f(n)=7.5^n$

The characteristic equation of its associated homogeneous relation is -

$$x^2 - 3x - 10 = 0$$

Or,
$$(x-5)(x+2) = 0$$

Or,
$$x_1=5$$
 and $x_2=-2$

Hence $a_h=a.5^n+b.\,(-2)^n$, where a and b are constants.

Since $f(n)=7.5^n$, i.e. of the form $\ c. \, x^n$, a reasonable trial solution of at will be $\ Anx^n$

$$a_t = Anx^n = An5^n$$

After putting the solution in the recurrence relation, we get -

$$An5^n = 3A(n-1)5^{n-1} + 10A(n-2)5^{n-2} + 7.5^n$$

Dividing both sides by 5^{n-2} , we get

$$An5^2 = 3A(n-1)5 + 10A(n-2)5^0 + 7.5^2$$

Or,
$$25An = 15An - 15A + 10An - 20A + 175$$

Or,
$$35A = 175$$

Or,
$$A=5$$

So,
$$F_n = An5^n = 5n5^n = n5^{n+1}$$

The solution of the recurrence relation can be written as -

$$F_n = a_h + a_t$$

$$a=a.5^n+b. (-2)^n+n5^{n+1}$$

Putting values of $\,F_0=4\,$ and $\,F_1=3\,$, in the above equation, we get $\,a=-2\,$ and

$$b = 6$$

Hence, the solution is -

$$F_n = n5^{n+1} + 6.(-2)^n - 2.5^n$$

Generating Functions

Generating Functions represents sequences where each term of a sequence is expressed as a coefficient of a variable x in a formal power series.

Mathematically, for an infinite sequence, say $a_0, a_1, a_2, \ldots, a_k, \ldots$, the generating function will be –

$$G_x=a_0+a_1x+a_2x^2+\cdots+a_kx^k+\cdots=\sum_{k=0}^\infty a_kx^k$$

Some Areas of Application

Generating functions can be used for the following purposes -

- For solving a variety of counting problems. For example, the number of ways to make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, Rs.5, Rs.10, Rs.20 and Rs.50
- For solving recurrence relations
- For proving some of the combinatorial identities
- For finding asymptotic formulae for terms of sequences

Problem 1

What are the generating functions for the sequences $\,\{a_k\}\,\,$ with $\,a_k=2\,\,$ and $\,a_k=3k\,\,$?

Solution

When
$$a_k=2$$
 , generating function, $G(x)=\sum_{k=0}^{\infty}2x^k=2+2x+2x^2+2x^3+\dots$

When
$$a_k=3k, G(x)=\sum_{k=0}^\infty 3kx^k=0+3x+6x^2+9x^3+\ldots$$

Problem 2

What is the generating function of the infinite series; $1, 1, 1, 1, \ldots$?

Solution

Here,
$$a_k=1$$
 , for $0\leq k\leq \infty$

Hence,
$$G(x) = 1 + x + x^2 + x^3 + \ldots = \frac{1}{(1-x)}$$

Some Useful Generating Functions

• For
$$a_k=a^k, G(x)=\sum_{k=0}^\infty a^k x^k=1+ax+a^2x^2+\ldots\ldots=1/(1-ax)$$

$$ullet$$
 For $a_k=(k+1), G(x)=\sum_{k=0}^{\infty}(k+1)x^k=1+2x+3x^2\ldots =rac{1}{(1-x)^2}$

For
$$a_k=c_k^n, G(x)=\sum_{k=0}^\infty c_k^n x^k=1+c_1^n x+c_2^n x^2+\ldots +x^2$$
 $=(1+x)^n$

• For
$$a_k=rac{1}{k!},G(x)=\sum_{k=0}^{\infty}rac{x^k}{k!}=1+x+rac{x^2}{2!}+rac{x^3}{3!}\ldots\ldots=e^x$$