IOT ENABLED SMART FARMING APPLICATION

SPRINT DELIVERY – 4

Receiving commands from IBM cloud using Python program

```
import time import

sys

import ibmiotf.application

import ibmiotf.device import

random
```

```
#Provide your IBM Watson Device Credentials
organization = "157uf3" deviceType = "abcd"
deviceId = "7654321" authMethod = "token"
authToken = "87654321"
```

```
# Initialize GPIO

def myCommandCallback(cmd): print("Command received: %s" % cmd.data['command'])

status=cmd.data['command'] if status=="motoron": print ("motor is on") elif status == "motoroff": print ("motor is off") else :

print ("please send proper command")
```

try:

deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}

```
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
#Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
data = { 'temp' : temp, 'Humid': Humid,
'Mois': Mois}
#print data def
myOnPublishCallback():
print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %
Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on publish=myOnPublishCallback) if not success:
print("Not connected to IoTF")
time.sleep(10)
deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
- B X

    ibmiotpublishsubscribe.gy - C/Uheni (E) COT Describeab/Ubmiotpublishsubscribe.gy (3.7.0)

Rile Edit Format Run Options Window Help-
 import time
 import sys
 import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
      print("Command received: %s" % cmd.data['command'])
      status=cmd.data['command']
     if status=="motoron":
   print ("motor is on")
elif status == "motoroff":
   print ("motor is off")
else :
          print ("please send proper command")
try:
          deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
           deviceCli = ibmiotf.device.Client(deviceOptions)
           4.........
III 🔎 🔘 🐠 🧖 Elfetisphorer
                                    F 🕒 📵 O 💼 M 🤴 🖺 bridgublik
                                                                                                          📤 29°C Cloudy 🛆 🖟 📖 EVG 1801 📮
T | * MT | Python 170 Shall*
                                                                                                                 0
           Fin Lat Shell Debug Option Window Help
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6 ~ ^
 -
                                                                                                                               9 8 ...
M Grail 🚥
           4)] on win32
                                                                                                                                Citier terorites
           Type "copyright", "credits" or "license()" for more information.
 = FARMII
            ----- RESTART: C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py -----
           2022-11-07 20:01:24,074 ibmiotf.device.Client
lly: d:157uf3:abcd:7654321
                                                                                  INFO
                                                                                             Connected successfu
           Published Moisture = 90 deg C Temperature = 96 C Humidity = 76 % to IBM Watson
Published Moisture = 102 deg C Temperature = 110 C Humidity = 68 % to IBM Watson
Published Moisture = 45 deg C Temperature = 99 C Humidity = 100 % to IBM Watson
            Command received: motoron
           motor is on
           Published Moisture = 77 deg C Temperature = 91 C Humidity = 85 % to IBM Watson
Published Moisture = 73 deg C Temperature = 94 C Humidity = 86 % to IBM Watson
           Command received: motoroff
           motor is off
           Published Moisture = 101 deg C Temperature = 104 C Humidity = 87 % to IBM Watson
🏗 🔑 🔘 🐧 🖪 Nobe REP Seithcont. . 🛊 Sources 📑 🗷 📋 🐧 💍 🐧 💍 🐧 💍 🐧 biniopublikeukoot. . 🕻 Syrtun 378 Seith 🚅 25°C 🗥 🖟 🖂 1965 1965
```

Observations & Results

Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.

• Farmers wanted to adapt the use of Mobile App.

Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

Bibliography

IBM cloud reference: https://cloud.ibm.com/

IoT simulator : https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/