Основы машинного обучения

Лекция 7

Функции потерь в регрессии. Линейная классификация.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2023

Функции потерь в задачах регрессии

Среднеквадратичная ошибка

• Частый выбор — квадратичная функция потерь

$$L(y,a) = (a - y)^2$$

• Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Обучение на среднеквадратичную ошибку

a(x)	y	$(a(x)-y)^2$
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	8649
6	7	1

 $MSE \approx 1236$

a(x)	y	$(a(x)-y)^2$
4	1	9
5	2	9
6	3	9
7	4	9
8	5	9
10	100	8100
10	7	9

 $MSE \approx 1164$

Средняя абсолютная ошибка

$$L(y, a) = |a - y|$$

• Функционал ошибки — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

a(x)	y	a(x)-y
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	93
6	7	1

 $MAE \approx 14.14$

a(x)	y	a(x)-y
4	1	3
5	2	3
6	3	3
7	4	3
8	5	3
10	100	90
10	7	3

 $MAE \approx 15.43$

Функция потерь Хубера

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

• Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} L_H(y_i, a(x_i))$$

Функция потерь Хубера

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

MAPE

• Mean Absolute Percentage Error (средний модуль относительной ошибки)

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \left| \frac{a(x_i) - y_i}{y_i} \right|$$

MAPE

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

- Особенности (при $a \ge 0$):
- Недопрогноз штрафуется максимум на единицу
- Перепрогноз может быть оштрафован любым числом
- Несимметричная функция потерь (отдаёт предпочтение недопрогнозу)

MAPE

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

SMAPE

• Symmetric Mean Absolute Percentage Error (симметричный средний модуль относительной ошибки)

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \frac{|y_i-a(x_i)|}{(|y_i|+|a(x_i)|)/2}$$

SMAPE

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

Модель линейной классификации

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- a(x) должен возвращать одно из двух чисел

Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^d w_j x_j$$

Вещественное число!

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x_j\right)$$

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x_j\right)$$

Свободный коэффициент

Признаки

Beca

• Будем считать, что есть единичный признак

$$a(x) = \operatorname{sign} \sum_{j=1}^{a} w_j x_j = \operatorname{sign} \langle w, x \rangle$$

Уравнение гиперплоскости: $\langle w, x \rangle = 0$

- Линейный классификатор проводит гиперплоскость
- $\langle w, x \rangle < 0$ объект «слева» от неё
- $\langle w, x \rangle > 0$ объект «справа» от неё

• Расстояние от точки до гиперплоскости $\langle w, x \rangle = 0$:

$$\frac{|\langle w, x \rangle|}{\|w\|}$$

• Чем больше $\langle w, x \rangle$, тем дальше объект от разделяющей гиперплоскости

Отступ

- $M_i = y_i \langle w, x_i \rangle$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

Порог

$$a(x) = \operatorname{sign}(\langle w, x \rangle - t)$$

• t — порог классификатора

• Можно подбирать для оптимизации функции потерь, отличной от использованной при обучении

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

Обучение линейных классификаторов

Функция потерь в классификации

• Частый выбор — бинарная функция потерь

$$L(y,a) = [a \neq y]$$

• Функционал ошибки — доля ошибок (error rate)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Доля ошибок для линейного классификатора

• Функционал ошибки:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\text{sign}(\langle w, x_i \rangle) \neq y_i]$$

• Индикатор — недифференцируемая функция

Отступы для линейного классификатора

• Функционал ошибки:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\text{sign}(\langle w, x_i \rangle) \neq y_i]$$

• Альтернативная запись:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

Отступы для линейного классификатора

$$L(M) = [M < 0]$$

• Нельзя продифференцировать

Верхняя оценка

$$L(M) = [M < 0] \le \tilde{L}(M)$$

• Оценим сверху дифференцируемой функцией

Верхняя оценка

$$0 \le \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0] \le \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(y_i \langle w, x_i \rangle) \to \min_{w}$$

- Минимизируем верхнюю оценку
- Надеемся, что она прижмёт долю ошибок к нулю

Примеры верхних оценок

- 1. $\tilde{L}(M) = \log(1 + e^{-M})$ логистическая
- $2. \ \tilde{L}(M) = \max(0, 1-M)$ кусочно-линейная
- $3. \ ilde{L}(M) = e^{-M}$ экспоненциальная
- $4.~ ilde{L}(M) = rac{2}{1+e^M} -$ сигмоидная

Пример обучения

• Выбираем логистическую функцию потерь:

$$\tilde{Q}(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Вычисляем градиент:

$$\nabla_{w} \tilde{Q}(w, X) = -\frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_{i} x_{i}}{1 + \exp(y_{i} \langle w, x_{i} \rangle)}$$

Пример обучения

• Делаем градиентный спуск:

$$w^{(t)} = w^{(t-1)} + \eta \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_i x_i}{1 + \exp(y_i \langle w, x_i \rangle)}$$

Пример регуляризации

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) + \lambda ||w||^2 \to \min_{w}$$

- Полностью аналогично линейной регрессии
- Важно не накладывать регуляризацию на свободный коэффициент
- Можно использовать L_1 -регуляризацию