

Authenticated Encryption

Definitions

Goals

An authenticated encryption system (E,D) is a cipher where

As usual: E: $K \times M \times N \longrightarrow C$

but D: $K \times C \times N \longrightarrow M \cup \{\bot\}$

Security: the system must provide

ciphertext is rejected

- sem. security under a CPA attack, and
- ciphertext integrity:
 attacker cannot create new ciphertexts that decrypt properly

Ciphertext integrity

Let (E,D) be a cipher with message space M.

Def: (E,D) has **ciphertext integrity** if for all "efficient" A:

 $Adv_{CI}[A,E] = Pr[Chal. outputs 1]$ is "negligible."

Authenticated encryption

Def: cipher (E,D) provides <u>authenticated encryption</u> (AE) if it is

- (1) semantically secure under CPA, and
- (2) has ciphertext integrity

Bad example: CBC with rand. IV does not provide AE

• $D(k,\cdot)$ never outputs \perp , hence adv. easily wins CI game

Implication 1: authenticity

Attacker cannot fool Bob into thinking a message was sent from Alice

 \Rightarrow if D(k,c) $\neq \perp$ Bob knows message is from someone who knows k (but message could be a replay)

Implication 2

Authenticated encryption \Rightarrow

Security against **chosen ciphertext attacks** (next segment)

End of Segment