一、嵌入式系统开发的基础知识

1. 嵌入式系统的特点、分类、发展与应用,熟悉嵌入式系统的逻辑组成。

(1)特点:

专用性

隐蔽性 (嵌入式系统是被包装在内部)

资源受限(要求小型化、轻型化、低功耗及低成本,因此软硬件资源受到限制)

高可靠性(任何误动作都可能会产生致命的后果)

软件固化(软件都固化在只读存储器 ROM 中,用户不能随意更改其程序功能)

实时性

(2)逻辑组成

硬件: 1)处理器(运算器、控制器、存储器)

目前所有的处理器都是微处理器 中央处理器(CPU)和协助处理器(数 字信号处理器 DSP、图像处理器、通信处理器)

2)存储器 (随机存储器 RAM 和只读存储器 ROM)

RAM 分为动态 DRAM 和静态 SRAM 两种。 DRAM 电路简单、集成度高、功耗小、成本低,但速度稍慢慢; SRAM 电路较复杂、集成度低、功耗较大、成本高,但工作速度很快,适合用作指令和数据的高速缓冲存储器

RAM 当关机或断电时,其中的信息都会消失,属于易失性存储器 ROM 属于不易失性存储器。分为电可擦可编程只读存储器(存放 固件)和闪速存储器(Flash ROM 简称内存)。内存的工作原理:在低 压下,存储的信息可读但不可写,这类似于 ROM; 在较高的电压下,

所存储的信息可以更改和删除,这有类似于 RAM。

- 3)I/O 设备与 I/O 接口
- 4)数据总线

软件

(3)分类

按嵌入式系统的软硬件技术复杂程度进行分类:

- 1)低端系统 采用 4 位或 8 位单片机,在工控领域和白色家电领域占主导地位,如计算器、遥控器、充电器、空调、传真机、 BP 机等。
- 2) 中端系统 采用 8 位/16 位/32 位单片机,主要用于普通手机、摄像机、录像机、电子游戏机等。
- 3) 高端系统采用 32 位/64 位单片机,主要用于智能手机、调制解调器、掌上计算机、路由器、数码相机等。

(4)发展

- 20 世纪 60 年代初,第一个工人的现代嵌入式系统(阿波罗导航计算机)
- 20 世纪 60 年代中期,嵌入式计算机批量生产
- 20 世纪 70 年代,微处理器出现
- 20 世纪 80 年代中期 , 外围电路的元器件被集成到处理器芯片中 , 昂贵的模拟电路 元件能被数字电路替代
- 20 世纪 90 年代中期 SOC 出现,集成电路进入超深亚微米乃至纳米加工时代
- 2. 嵌入式系统的组成与微电子技术(集成电路、 EDA、 SoC、 IP 核等技术的作用和发展)

(1)集成电路 IC

集成电路的制造大约需要几百道工序, 工艺复杂。集成电路是在硅衬底上制作而成的。硅衬底是将单晶硅锭经切割、研磨和抛光后制成的像镜面一样光滑的圆形薄片,它的厚度不足 1mm,其直径可以是 6、8、12 英寸甚至更大这种硅片称为

硅抛光片,用于集成电路的制造。

制造集成电路的工艺技术称为硅平面工艺,包括氧化、光刻、掺杂等多项工序。把这些工序反复交叉使用,最终在硅片上制成包含多层电路及电子元件的集成电路。

集成电路的特点:体积小、重量轻、可靠性高。其工作速度主要取决于逻辑门电路的晶体管的尺寸。尺寸越小,工作频率就越高,门电路的开关速度就越快。

- (2) EDA (电子信号自动化)
- (3) SoC 芯片(片上系统)

既包含数字电路, 也可以包含模拟电路, 还可以包含数模混合电路和射频电路。 SoC芯片可以是一个 CPU, 单核 SoC, 也可以由多个 CPU和/或 DSP, 即多核 SoC, 开发流程:

- (1)总体设计 可以采用系统设计语言 System C(或称 IEEE 1666,它是 C++的扩充)或 System Vetilog 语言对 SoC芯片的软硬件作统一的描述,按照系统需求说明书确定 SoC的性能能参数,并据此进行系统全局的设计。
- (2)逻辑设计 将总体设计的结果用 RTL(寄存器传输级描述语言)语言进行描述(源文件)后,在使用逻辑综合将源文件进行综合生成,生成最简的布尔表达式核心好的连接关系(以类型为 EDF的 EDA工业标准文件表示)
 - (3)综合和仿真
 - (4)芯片制造 借助 EDA 中的布局布线工具

(4) IP 核

IC 设计文件:逻辑门级,包括各种基本的门电路;寄存器传输级,如寄存器、译码器、数据转换器;行为级,如 CPU DSR 存储器、总线与接口电路等。

核库中的设计文件均属于知识产权 IP 保护的范畴,所以称为"知识产权核"或"IP 核"。

IP 核是开发 SoC的重要保证。按 IC 设计文件的类型 , IP 通常分为:软核、固核、硬核。 IP 核的复用可以减少研发成本,缩短研发时间,是实现 SoC的快速设计,尽早投放市场的有效途径。

目前主要的 CPU内核有 ARM MIPS、PowerPC、Coldfile 、x86、8051 等。 ARM 内核占所有 32 位嵌入式 RISC处理器的 90%以上。

3.嵌入式系统与数字媒体(文本、图像和音频 /视频等数字媒体的表示与处理)

(1) 文本

含义:在计算机中的文字信息,最常用的一种数字媒体。

字符集及其编码

1) 西方字符的编码

ASCII 字符集和 ASCII 编码,基本的 ASCII 字符集共 128 个字符,每个字符使用 7个二进位制进行编码。

2)汉字的编码

汉子国家编码标准有 GB2312 和 GB18030。每个汉字用 2 个字节表示。 GB2312 只有 6763 个汉字 , 经常不够用。 GB18030 字符集与 UCS/Unicode 字符集基本兼容 ,采用不等长的编码方法 ,单字节编码表示 ASCII 字符 ,与 ASCII 码兼容 ; 双字节表示汉字 ,与 GB2312 保持向下兼容 (即 GB2312 中有的 GB18030 字符集都有)

3) UCS/Unicode 编码

文本类型

1)简单文本

只能顺序阅读。

2)丰富格式文本

有插图、对文字颜色等定义,调整页面,文本布局,插入声音视频等。

3)超文本

通过超链接实现跳转、导航、回溯等操作

(2)图像

图像获取过程的核心是模拟信号的数字化,处理步骤为:

- 1)扫描 将画面网格化,每个网格为一个取样点
- 2)分色 将每个取样点的颜色分解成三原色
- 3)取样 测量每个取样点的每个分量(基色)亮度值
- 4)量化 把模拟量使用数字量来表示, A/D 转换

数字图像的主要参数:图像大小 (水平分辨率 *竖直分辨率)、位平面数目、像素深

度、颜色模型

一幅图像的数据量计算公式:

图像数据量 =图像大小 * 像素深度 /8

(3)音频 /视频

音频 / 视频信息的数字化,处理步骤为:

- 1)取样
- 2)量化
- 3)编码

数字音频的主要参数:取样频率、量化位数、声道数目、使用的压缩编码方法、比特率(每秒钟的数据量)

压缩前 波形声音的码率 (比特率) = 取样频率 * 量化为数 * 声道数(单位 b/s) 压缩后 码率 = 压缩前码率 / 压缩倍数(压缩比)

- 4.嵌入式系统与网络通信技术(数字通信与计算机网络, TCP/IP 协议,互联网接入技术等)
 - (1)数字通信
 - (2)计算机网络
 - (3) 音频 / TCP/IP 协议

(4) 互联网接入技术

二、嵌入式处理器

1. 嵌入式处理器的结构、特点与分类(不同类型的典型嵌入式处理器及其特点,嵌入式处理器分类等)

(1)不同内核嵌入式微控制器性能比较

性能 内核	51 内核	其他 8 位内核	16 位内核	其他 32 位内核	ARM
					Cortex-M 内核
处理速度	差	差	一般	好	好
低能耗	好	好	好	差	好
代码密度	差	差	一般	差	好
内存 >64KB	差	差	差	好	好
向量中断	好	好	好	一般	好
低中段延时	好	好	好	差	好
低成本	好	好	好	差	好
多供资源	好	差	差	差	好
编译器选择	好	一般	一般	一般	好
软件可移植性	好	一般	一般	一般	好

(2)冯-诺依曼结构和哈佛结构的区别

两者连接 CPU程序存储器和数据存储器的方式不同

(3)分类

按指令集分为:复杂指令集结构 CISC和精简指令集结构 RISC

按存储机制分为: 冯 - 诺依曼结构和哈佛结构

按字长分为: 8 位、16 位、32 位、64 位结构

按不同内核系列可以分为: 51、AVR、PIC、MSP430 PowerPC Coldfile 、ARM

(4)不同典型内核简介

内核系列	推出公司	内核结构	简单描述
51	Intel	CISC	8 位字长, 常用于简单的检测与控制应用领域, 最早被称为单片机。
		 哈佛结构	其价格低,应用资料齐全,开发工具便宜,开发周期短,成本低,
		HUPPHIJ	因此被广泛应用到各个行业。 随着 1T 改进型 51 内核的推出 , 加上
			许多器件厂家增加了自己的特色组件, 51系列还在使用。

AVR	Atmel	RISC 8 位、 16 位和 32 位三类字长的微控制器内核,以适应不同应用层	
		哈佛结构	次的要求。主要特点是高性能、高速度、低功耗。
PIC	Microchip	RISC	8 位、 16 位和 32 位三类字长的微控制器内核,以适应不同应用层
		哈佛结构	 次的要求。主要用于工业控制,主要优势是针对性强,特别是抗干
			大能力强。
MSP430	TI	RISC	16 位字长的微控制器区内核 , 广泛应用于手持设备嵌入式应用系统
		冯 - 结构	中,突出特点就是以超低功耗著称全球。
MIPS	MIPS	RISC	高性能高档次 32 位和 64 位处理器内核。主要特点是适应于高速、
		哈佛结构	大数据吞吐量应用场合
PowerPC	Apple ,	RISC 高性能高档次含有 32 位子集的 64 位处理器内核。 具有优	
	IBM,Motorola	哈佛结构	较低的能耗以及较低的散热量。
MC68K	Motorola	RISC	32 位字长的处理器内核 , 具有超标量的超级指令流水线 , 性能优异
		哈佛结构	明显,主要用于与高端嵌入式应用领域。
Coldfile	Frescale	RISC 32 位字长的高性能处理器内核 , 性能优越 , 集成度高	
		哈佛结构	应用领域、消费电子领域、医疗电子领域、测试与测量领域等。
ARM	ARM	RISC	32 位字长的高性能处理器内核,目前嵌入式处理器的领跑者
		多数为哈佛结构	

2. ARM 处理器内核的体系结构(工作状态,工作模式,寄存器组织,异常,数据类型与存储格式等)

(1)工作状态

一是 ARM状态,二是 Thumb指令状态及 Thumb-2状态,三是调试状态。

ARM处理器复位后开始执行代码时总是只处于 ARM状态,如果需要,可通过下面的方法切换到 Thumb状态或 Thumb-2 状态

ARM状态切换到 Thumb指令状态: 通过 BX指令,将操作数寄存器的最低位设置为 1即可。如果 R0[0]=1,则执行 BX R0指令将进入 Thumb状态

状 Thumb态切换到 ARM状态:通过 BX指令,将操作数寄存器的最低位设置为 0即可。如果 R0[0]=0,则执行 BX R0指令将进入 ARM状态。

(2) 工作模式(7种)

工作模式	功能说明	可访问的寄存器	CPSR[M4:M0]
用户模 User	程序正常执行工作模式	PC,R14-R0,CPSR	10000
快速中断模	处理高速中断,用于高速数据传	于高速数据传 PC,R14_fiq-R8_fiq,	
式 FIQ	输或通道处理	R7-R0,CPSR,SPSR_fiq	
外部中断模	用于普通中断处理	PC,R14_irq-R13_irq,	10010
式 IRQ		R12-R0,CPSR,SPSR_irq	
管理模式	操作系统的保护模式,处理软中	PC,R14_svc-R13_svc,	10011

SVC	断 SWI	R12-R0,CPSR,SPSR_svc	
中止模式	处理存储器故障,实现虚拟存储	PC,R14_abt-R13_abt,	10111
ABT	器和存储器保护	R12-R0,CPSR,SPSR_abt	
未定义指令	处理为定义的指令陷阱,用于支	PC,R14_und-R13_und,	11011
模式 UND	持硬件协处理器仿真	R12-R0,CPSR,SPSR_und	
系统模 SYS	运行特权及的操作系统任务	PC, R14-R0,CPSR	11111

(3)寄存器组织

ARM处理器共有 37 种寄存器,包括 31 个通用寄存器(含 PC)和 6 个状态寄存器。 无论何种模式, R15 均作为 PC 使用; CPSR为当前程序状态寄存器; R7-R0 为公用的通 用寄存器。所有通用寄存器均为 32 位结构。

程序状态寄存器的格式:

31 30 29 28 27 26 8 7 6 5 4 3 2 1 0

N Z C V Q 状态保留 I F T M4 M3 M2		MO
-------------------------------	--	----

条件码标志含义如下:

N为符号标志位 , N=1为负数 , N=0为正数。

Z 为全 0 标志位,运算结果为 0,则 Z=1,否则 Z=0;

C为进借位标志,有进 /借位时 C=1,否则 C=0.

V 为溢出标志,加减法运算结果溢出时 V=1,否则 V=0.

Q为增强的 DSP运算指令溢出标志,溢出时 Q=1,否则 Q=0.

控制位含义如下:

I 为中断禁止控制位 , I=1 禁止 IRQ 中断 , I=0 , 允许中断。

F 为禁止快速中断 FIQ 的控制位 , F=1 禁止 FIQ 中断 , F=0 允许。

T为 ARM和 Thumb指令切换, T=1 时执行 Thumb指令,否则执行 ARM指令。 M4-M0为模式选择位

(4)存储格式

大端模式: 32 位数据字的高字节存储在低地址,而数据字的低字节则存放在高地址中。

小端模式: 32 位数据字的高字节存储在高地址,而数据字的低字节则存放在低地址中。系统复位时,自动默认为小端模式。

例如:一个 32 位数据字 0x12345678,存放在起始地址为 0x30001000,则大端模式下 0x30001000 单元存放 0x12,0x30001001 单元存放 0x34,0x30001002 单元存放 0x56,0x30001003 单元存放 0x78;而小端模式下 0x30001000 单元存放 0x78,0x30001001 单元存放 0x56,0x30001002 单元存放 0x34,0x30001003 单元存放 0x12。

(5)数据类型

8 位、16 位、32 位三种数据类型

(6) ARM 处理器中 MMU 和 MPU

MMU存储器管理单元(memory management unit)功能:

- 1) 虚拟地址到物理地址映射
- 2)存储器访问权限受限
- 3) 虚拟存储空间的缓冲特性设置

MPU存储器保护单元 (memory protect unit)

(7) 异常(7种)

异常类型	优先级	工作模式	异常向量地址
复位 RESET	1	管理模式	0x0000000
未定义的指令 UND	6	未定义指令中止模式	0x0000004
软件中断 SWI	6	管理模式	0x00000008
指令预取中止 PABT	5	中止模式	0x000000C
数据访问中止 DABT	2	中止模式	0x0000008
外部中断请求 IRQ	4	外部中断模式	0x0000010
快速中断请求 FIQ	3	快速中断模式	0x000001C

- 3. 典型 ARM 处理器内核(ARM9 , Cortex-A , Cortex-M , Cortex-R 等的技术特点与应用 领域)
- (1) Cortex-A 系列是面向高端嵌入式应用的处理器核: 具有 MMU 、Cache、最快频率、最高性能、合理功耗。
- (2) Cortex-R 系列是面向实时控制的处理器:具有 MPU、 Cache、实时响应、合理性能、较低功耗。
- (3) Cortex-M 系列是面向低端微控制器的处理器,没有 MMU 但有 MPU,极高性价比、最低成本,极低功耗。

系列	相应内核	主要性能特点
ARM7		冯-诺依曼结构, 3 级流水线,无 MMU
经典 ARM9	ARM920T/ARM922T	哈佛结构, 5 及流水线,单 32 位 AMBA 接口
ARM9E	ARM926EJ-S/ARM946E-S/ARM966E-S/	哈佛结构,5及流水线,支持 DSP 指令,软核(soft
	ARM968E-S/ARM996HS	IP)
ARM10		哈佛结构, 6 及流水线,分支预测,支持 DSP 指
	ARM1020E/ARM1022E/ARM1026EJ-S	令,高性能浮点操作, 双 64 位总线接口, 内部 64
		位数据通路。
ARM11	ARM11MPCore/ARM1136J(F)-S	哈佛结构 , 8 级流水线 , 分支预测和返回栈 , 支持
		DSP 指令、 SIMD/Thumb-2 核心技术
	ARM1156T2(F)-S/ARM1176JZ(F)-S	哈佛结构 , 9 级流水线 , 分支预测和返回栈 , 支持
		DSP 指令、 SIMD/Thumb-2 核心技术
		冯-诺依曼结构 , 3 级流水线,支持 Thumb 指令集
嵌入	Cortex-M0, Cortex-M0+	并包含 Thumb-2、嵌套向量中断, M0+内部有
Cortex-M		MPU,而 M0 没有。

	Cortex-M1	冯-诺依曼结构, 3 级流水线,支持 FPGA 设计,
		Thumb 指令集并包含 Thumb-2
	Cortex-M3	哈佛结构 , 3 级流水线 , Thumb-2、嵌套向量中
		断,分支指令预测,内置 MPU
		哈佛结构 , 3 级流水线 , Thumb-2、嵌套向量中
	Cortex-M4	断,分支指令预测,内置 MPU,高效信号处理,
		SIMD 指令,饱和运算, FPU
Cortex-R		哈佛结构, 8 级流水线,实时应用,支持 ARM、
	Cortex-R4/R4F/ Cortex-R5/Cortex-R7	Thumb 和 Thumb-2 指令集,F 标示内置 FPU ,DSP
		扩展,分支预测,超标量执行,内置 MPU
	Cortex-A5/ Cortex-A5MPcore	
	Cortex-A7/ Cortex-A7MPcore	
应用	Cortex-A8/ Cortex-A8MPcore	
Cortex-A		哈佛结构, MPcore 为多核,超标量结构, 13 级流
	Cortex-A9 / Cortex-A9MPcore	水线,动态分支指令预测,有分支目标缓冲器
		BTB、MMU、FPU、L1、L2,支持 ARM、 Thumb
		和 Thumb/EE 指令集 ,SIMD/Jazelle RCT 技术。
	Cortex-A15 / Cortex-A15MPcore	哈佛结构,可乱序执行指令流水线

4. ARM 处理器指令系统及汇编语言程序设计(指令格式,寻址方式,指令集,伪指令, 语句格式与程序结构, ARM 汇编语言与 C 的混合编程等)

(1)指令格式

指令一般格式

<opcode>{<cond>}{S} < Rd>,<Rn>{,<op2>} 其中<>不可省

指令格式说明:

项目	含义	
<opcode></opcode>	指令的操作码	即助记符,如 MOV ADD B等
{cond}	条件域,满足条件才执行指令	可不加条件即可省略条件,如 EQ NE等
{S}	指令执行时是否需要更新 CPSR	可省略
Rd	目的寄存器	Rd 可为任意通用寄存器
Rn	第一个源操作数	Rd可为任意通用寄存器,可以与 Rd相同
Op2	第二个源操作数	可为#imm8m 寄存器 Rm及任意移位寄存器

关于 #imm8m的说明: #表示立即数,其后可以是十进制或十六进制数 对于 ARM指令集 , #imm8m表示一个由 8 位立即数经循环右移任意偶数位次形 成的 32 位操作数。

对于 Thumb指令集 , #imm8m表示一个由 8 位立即数经左移任意位次形成的 32

位操作数。

指令的条件码

条件码	助记符	标 志	含义
0000	EQ	Z 置位	相等
0001	NE	Z 清零	不相等
0010	CS	C 置位	无符号数大于或等于
0011	CC	C 清零	无符号数小于
0100	MI	N 置位	负数
0101	PL	N 清零	正数或零
0110	VS	∨ 置位	溢出
0111	VC	Ⅴ 清零	未溢出
1000	н	C 置位 Z 清零	无符号数大于
1001	LS	C 清零 Z 置位	带符号数小于或等于
1010	GE	N 等于 V	带符号数大于或等于
1011	LT	N 不等于 V	带符号数小于
1100	GT	Z 清零且 N 等于 V	带符号数大于
1101	LE	Z 置位或 N 不等于 V	带符号数小于或等于
1110	AL	忽略	无条件执行

(2) 寻址方式

1)立即寻址(立即数寻址)

例如:MOV R0, #0x1212121212

ADC R0, R0, #100

;R0 R0+100+C

2)寄存器寻址 (执行效率较高)

例如: ADD R0, R1, R2

;R0

← R1+R2

3)寄存器间接寻址

寄存器间接转址就是以寄存器中的值作为操作数地址,

而操作数本身存放在存储器

中。用间接寻址的寄存器必须用 [] 括起来。

例如: LDR R5, [R4]

;R5

←——[R4],间接寻址的寄存器是 R4

STR R1, [R2]

;[R2] R1, 间接寻址的寄存器是

R2

4)基址加变址寻址

常见的几种形式:

LDR R0, [R1, #4]

STR R1, [R2, #8]

LDR R0, [R1, #4]! (!表示指令在完成数据传输后更新基址存储器)
LDR R0, [R1], #4
LDR R0, [R1, R2]

5)相对寻址

STR R0, [R1, R2]

相对寻址以程序计数器 PC的当前值为基地址,指令中的地址标号作为偏移量,将两者相加后得到操作数的有效地址。

下列程序中跳转指令 BL 利用相对寻址方式:

BL Subroutine_A ; 跳转子程序 Subroutine_A 处执行

...

Subroutine_A:

...

MOV PC ,LR ; 从子程序返回

- 6) 堆栈寻址
- 7) 块拷贝寻址
- (3)
- (4)
- (5)
- **(6)**

三、嵌入式系统硬件组成

- 1.嵌入式硬件组成与嵌入式处理芯片(组成,特点,类型, ARM 的 AMBA 总线,嵌入式处理芯片的选型)
- (1)基于 ARM 内核的典型嵌入式应用系统硬件组成

典型嵌入式系统硬件由嵌入式最小硬件系统 (电源电路、时钟(晶振)电路、复位电路、 JTAG测试接口)、前向通道(输入接口)、后向通道(输出接口)、人机交互通道(键盘, 触摸屏以及 LED或 LCD显示输出接口)以及相互互联通信通道(CAN通信接口、以太网通信接口、USB通信接口)等组成。

电源电路 为整个嵌入式系统提供能量,是整个系统工作的基础,具有极其重要的位置。一般来说 ,如果电源电路处理得好,整个系统的故障往往能显著减少。选择设计电源电路是主要考虑以下因素:输出电压电流、输入电压电流(交流还是直流)、安全因素、体积限制、功耗限制、成本限制。

常用的电源模块是交流变直流(AC-DC)模块、直流变直流模块(DC-DC)、低压稳压器(LDO)。稳压器包括普通稳压器和低压差稳压器 LDQ 78XX 系列属于普通稳压器, LM2576/2596为开关稳压芯片, CAT6219/AS2815/1117/2908等属于低压稳压器。稳压器的最大特点就是低噪声、低成本、纹波小、精度高、电路简单。

(2)基于 ARM 内核的典型嵌入式芯片的硬件组成

1)存储器及控制器

片内程序存储器通常是用 Flash ROM, 一般配有几 KB到几 MB不等。片内数据存储器通常使用 SRAM 一般几 KB到几百 KB。

- 2)中断控制器
 - 一般采用向量中断 (VIC)或嵌套向量中断 (NVIC)。Cortex-M 支持嵌套的向量中断。
- 3) DMA控制器(直接存储器访问控制器)

使用 DMA控制器 , 可将数据块从外设传输至内存、 从内存传输至外设或从内存传输至内存。

- 4) 电源管理与时钟控制器
- 5) GPIO接端口(General Purpose Input Output 通用输入/输出端口) 作为输入时具有缓冲功能,而作为输出是具有锁存功能, GPIO 也可以作为双向 I/O 使用。在 ARM处理芯片中, GPIO引脚通常是多功能的,以减少引脚数,减少功耗。
- 6) 定时计数组件

主要包括看门狗定时器(WDT)监视着程序的运行状态

Timer 通用定时器 用于一般的定时

RTC可直接提供年月日时分秒,使应用系统具有独立的日期和时间

脉冲宽度调制解调器 (PWN) 用于脉冲宽度的调制, 比如电机控制、 用于变频调整等。

- 7) 模拟通道组件
- 8) 互联通信组件

(3) ARM 的 AMBA 总线

- (4)常用 ARM 嵌入式处理芯片
 - 1) NXP 的典型 ARM 芯片
 - 2) TI 的典型 ARM 芯片
 - 3) Samsung 的典型 ARM 芯片
 - 4) Atmel 的典型 ARM 芯片
 - 5) ST 的典型 ARM 芯片
 - 6) Freescale 的典型 ARM 芯片
 - 7) Nuvoton 的典型 ARM 芯片
 - 8) Intel 的典型 ARM 芯片
 - 9) 其他 ARM 芯片厂家
- (5)嵌入式处理芯片的选型
 - 1)性价比原则性能高,价格低

2)参数选择原则

ARM内核(指令流水线、支持 Thumb/Thumb-2 指令集、最高时钟频率的限制、最低功耗要求以及低成本要求)

系统时钟频率 (频率越高,处理速度越快;通常 ARM芯片的速度主要取决于 ARM内核) 芯片内部存储器的容量

片内外围电路 (GPIO外部引脚条数、 定时计数器、 LCD液晶显示控制器、 多核处理器、 ADC、通信接口)

- 2. 嵌入式系统的存储器(层次结构,分类,性能指标;片内存储器,片外存储器,外部存储设备等)
- 3. I/O 接口、 I/O 设备以及外部通信接口(GPIO 、I²C 、SPI、UART 、USB、HDMI 等;键盘、 LED 、LCD 、触摸屏、传感器等; RS-232/RS-485 、CAN 、以太网和常用无线通信接□)
- (1) GPIO(通用输入输出接口)

在嵌入式处理器内部,输入具备缓冲功能,输出具有锁存功能。 GPIO 一般有三态: 0 态、1态、高阻状态。

(2)集成电路互连总线接口 IIC

集成电路互连总线用于连接嵌入式处理器及外围器件,采用串行半双工传输的总线标准。

IIC 总线具有的接口线少 , 控制方式简单 , 器件封装紧凑 , 通信速率较高 (100kb/s,400kb/s, 高速模式可达 3.4Mb/s) 等优点。

IIC 总线的操作时序

IIC 总线 只有两条信号线 , 一条是数据线 SDA , 另一条是时钟线 SCL , 所有的操作均通 过这两条信号线完成。数据线 SDA 上的数据必须在时钟的高电平周期保持稳定 , 它的高 低电平状态只有在 SCL 时钟信号线是低电平时才能改变。

1)启动和停止条件

总线上的所有器件都不使用总线时, SCL 线和 SDA 线各自的上拉电阻把电平拉高,使它们均处于高电平。 主控制器启动总线操作的条件是当 SCL 线保持高电平时 SDA 线有高电平转为低电平, 此时主控制器在 SCL 产生时钟信号, SDA 线开始传输数据。 若 SCL 线为高电平时 SDA 由低转为高,则总线工作停止,恢复空闲状态

- 2)数据传送格式
- 3)应答(ACK)信号传送
- 4)读/写操作
- 5)总线仲裁
- 6) 异常中断条件
- (3)串行外设接口 SPI

(4)串行异步通信接口 UART

- (5)高清多媒体接口 HDMI
- (6)常用简单输入设备(键盘、触摸屏、传感器)
- (7)常用简单输出设备(LED、数码管、 LCD、)
- (8)基于 UART 的 RS—232/RS—485 CAN 总线接口 以太网通信接口常用无线通信接口(GPS 模块、 GPRS 模块、 WiFi 模块、蓝牙模块、射频无线收发模块)
- 4.基于 ARM 内核的典型嵌入式处理芯片(S3C2410/S3C2440 芯片的内部结构,如片上总 线、 DMA 、时钟控制、中断控制、 GPIO 、 UART 、 I²C、 SPI、 Timer 、 RTC 、 WDT 及其 他硬件组件)

四、嵌入式系统软件

- 1.嵌入式系统的软件组成与实时操作系统 (嵌入式系统软件组成, 嵌入式操作系统的发展, 实时系统与实时操作系统,微内核与宏内核,嵌入式操作系统的仿真平台等)
- 2.板级支持软件包(BSP)和引导加载程序 Bootloader(硬件抽象层 HAL,BSP的功能和移植,Bootloader的执行过程, U-boot 及其移植等)
- 3. 嵌入式 Linux 操作系统(嵌入式 Linux 的发展和自由软件,嵌入式 Linux 内核的结构、系统调用接口,常见嵌入式 Linux 等)
- 4. 嵌入式操作系统 μ **COS-II** (基本特点、代码结构、任务管理与调度、任务通信、中断处理、移植等)

五、嵌入式系统的开发

- 1.嵌入式系统的开发过程和工具(开发步骤,交叉开发平台和工具,系统的调试工具等)
- 2.系统开发工具软件(ADS、RVDS的特点与使用,GCC的常用命令与参数)
- 3.以 S3C2410/S3C2440 为背景的应用系统开发 (硬件接口及部件的综合使用; 无操作系统环境下的系统开发; μC/OS-II 环境下的系统开发)

考试方式

考试时间: 120 分钟, 满分 100 分

包含:选择题(40分)、填空题(40分)、综合题(20分)