Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Propiedades de convergencia a infinito

06 de Mayo MAT1106 - Introducción al Cálculo

Si $x_n \to \infty$ y z_n cumple $M < z_n$ para todo n y algún M > 0, entonces $x_n \cdot z_n \to \infty$.

Si $x_n \to \infty$ y $M < z_n$ para algún M real y todo n natural, entonces $x_n + z_n \to \infty$.

- Si $x_n > z_n$ para todo $n y z_n \to \infty$, entonces $x_n \to \infty$.
- Si $x_n \to \infty$ y $0 < z_n < M$ para todo n y algún M, entonces $\frac{x_n}{z_n} \to \infty$.

Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión, y supongamos que existe una cantidad finita de subsucesiones tales que x_n pertenece a alguna subsucesión para todo n natural. Muestre que $x_n\to\infty$ si y solo si todas las subsucesiones convergen a infinito. ¿Qué pasaría si fuesen infinitas subsucesiones?