(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 September 2003 (04.09.2003)

PCT

(10) International Publication Number WO 03/072821 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/EP03/02035

(22) International Filing Date: 27 February 2003 (27.02.2003)

(25) Filing Language:

English

C12Q 1/68

(26) Publication Language:

English

(30) Priority Data:

02004551.4

27 February 2002 (27.02.2002)

- (71) Applicant (for all designated States except US): EPIGE-NOMICS AG [DE/DE]; Kastanienallee 24, 10435 Berlin (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ADORJAN, Peter [HU/DE]; Dunckerstrasse 4, 10437 Berlin (DE). BURGER, Matthias [DE/DE]; Graefestrasse 76, 10967 Berlin (DE). MAIER, Sabine [DE/DE]; Markelstrasse 60, 12163 Berlin (DE). NIMMRICH, Inko [DE/DE]; Heinz-Kapelle-Strasse 9, 10407 Berlin (DE). BECKER, Evelyne [DE/DE]; Kopenhagener Str. 7, 10437 Berlin (DE). LESCHE, Ralf [DE/DE]; Dänenstrasse 15, 10439 Berlin (DE). RUJAN, Tamas [DE/DE]; Vinetastrasse 7, 13189 Berlin (DE). SCHMITT, Armin [DE/DE]; Obere Watt 16, 96149 Breitengüssbach (DE).

- (74) Agents: KRAUSS, Jan et al.; Boehmert & Boehmert, Pettenkoferstrasse 20-22, 80336 München (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

03/072821 A2

(54) Title: METHOD AND NUCLEIC ACIDS FOR THE ANALYSIS OF A COLON CELL PROLIFERACTIVE DISORDER

(57) Abstract: The present invention relates to modified and genomic sequences, to oligonucleotides and/or PNA-oligomers for detecting the cytosine methylation state of genomic DNA, as well as to a method for ascertaining genetic and/or epigenetic parameters of genes for use in the differentiation, diagnosis, treatment and/or monitoring of colon cell proliferative disorders, or the predisposition to colon cell proliferative disorders.

WO 03/072821 PCT/EP03/02035

Method and nucleic acids for the analysis of a colon cell proliferative disorder

Field of the Invention

The levels of observation that have been studied by the methodological developments of recent years in molecular biology, are the genes themselves, the translation of these genes into RNA, and the resulting proteins. The question of which gene is switched on at which point in the course of the development of an individual, and how the activation and inhibition of specific genes in specific cells and tissues are controlled is correlatable to the degree and character of the methylation of the genes or of the genome. In this respect, pathogenic conditions may manifest themselves in a changed methylation pattern of individual genes or of the genome.

Colorectal cancer is the fourth leading cause of cancer mortality in men and women, although ranking third in frequency in men and second in women. The 5-year survival rate is 61% over all stages with early detection being a prerequisite for curative therapy of the disease. Up to 95% of all colorectal cancers are adenocarcinomas of varying differentiation grades.

Sporadic colon cancer develops in a multistep process starting with the pathologic transformation of normal colonic epithelium to an adenoma which consecutively progresses to invasive cancer. The progression rate of benign colonic adenomas depends strongly on their histologic appearance: whereas tubular-type adenomas tend to progress to malignant tumors very rarely, villous adenomas, particularly if larger than 2 cm in diameter, have a significant malignant potential.

During progression from benign proliferative lesions to malignant neoplasms several genetic and epigenetic alterations occur. Somatic mutation of the APC gene seems to be one of the earliest events in 75 to 80% of colorectal adenomas and carcinomas. Activation of K-RAS is thought to be a critical step in the progression towards a malignant phenotype. Consecutively, mutations in other oncogenes as well as alterations leading to inactivation of tumour suppressor genes accumulate.

Aberrant DNA methylation within CpG islands is among the earliest and most common alterations in human malignancies leading to abrogation or overexpression of a broad spectrum of genes. In addition, abnormal methylation has been shown to occur in CpG rich regulatory elements in intronic and coding parts of genes for certain tumours. In contrast to the specific hypermethylation of tumour suppressor genes, an overall hypomethylation of DNA can be observed in tumour cells. This decrease in global methylation can be detected early, far before the development of frank tumour formation. Also, correlation between hypomethylation and increased gene expression was reported for many oncogenes. In colon cancer, aberrant DNA methylation constitutes one of the most prominent alterations and inactivates many tumor suppressor genes such as p14ARF, p16INK4a, THBS1, MINT2, and MINT31 and DNA mismatch repair genes such as hMLH1.

In the molecular evolution of colorectal cancer, DNA methylation errors have been suggested to play two distinct roles. In normal colonic mucosa cells, methylation errors accumulate as a function of age or as time-dependent events predisposing these cells to neoplastic transformation. For example, hypermethylation of several loci could be shown to be already present in adenomas, particularly in the tubulovillous and villous subtype. At later stages, increased DNA methylation of CpG islands plays an important role in a subset of tumours affected by the so called CpG island methylator phenotype (CIMP). Most CIMP+ tumours, which constitute about 15% of all sporadic colorectal cancers, are characterised by microsatellite instability (MIN) due to hypermethylation of the hMLH1 promoter and other DNA mismatch repair genes. By contrast, CIMP- colon cancers evolve along a more classic genetic instability pathway (CIN), with a high rate of p53 mutations and chromosomal changes.

However, the molecular subtypes do not only show varying frequencies regarding molecular alterations. According to the presence of either micro satellite instability or chromosomal aberrations, colon cancer can be subclassified into two classes, which also exhibit significant clinical differences. Almost all MIN tumours originate in the proximal colon (ascending and transversum), whereas 70% of CIN tumours are located in the distal colon and rectum. This has been attributed to the varying prevalence of different carcinogens in different sections of the colon. Methylating carcinogens, which constitute the prevailing carcinogen in the proximal colon have been suggested to play a role in the pathogenesis of MIN cancers, whereas CIN tumours are thought to be more frequently caused by adduct-forming carcinogens, which occur more frequently in distal parts of the colon and rectum. Moreover, MIN tumours have a

better prognosis than do tumours with a CIN phenotype and respond better to adjuvant chemotherapy.

The identification of markers for the differentiation of colon carcinoma as well as for early detection are main goals of current research.

5-methylcytosine is the most frequent covalent base modification in the DNA of eukaryotic cells. It plays a role, for example, in the regulation of the transcription, in genetic imprinting, and in tumorigenesis. Therefore, the identification of 5-methylcytosine as a component of genetic information is of considerable interest. However, 5-methylcytosine positions cannot be identified by sequencing since 5-methylcytosine has the same base pairing behaviour as cytosine. Moreover, the epigenetic information carried by 5-methylcytosine is completely lost during PCR amplification.

A relatively new and currently the most frequently used method for analysing DNA for 5methylcytosine is based upon the specific reaction of bisulfite with cytosine which, upon subsequent alkaline hydrolysis, is converted to uracil which corresponds to thymidine in its base pairing behaviour. However, 5-methylcytosine remains unmodified under these conditions. Consequently, the original DNA is converted in such a manner that methylcytosine, which originally could not be distinguished from cytosine by its hybridisation behaviour, can now be detected as the only remaining cytosine using "normal" molecular biological techniques, for example, by amplification and hybridisation or sequencing. All of these techniques are based on base pairing which can now be fully exploited. In terms of sensitivity, the prior art is defined by a method which encloses the DNA to be analysed in an agarose matrix, thus preventing the diffusion and renaturation of the DNA (bisulfite only reacts with single-stranded DNA), and which replaces all precipitation and purification steps with fast dialysis (Olek A, Oswald J, Walter J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 1996 Dec 15;24(24):5064-6). Using this method, it is possible to analyse individual cells, which illustrates the potential of the method. However, currently only individual regions of a length of up to approximately 3000 base pairs are analysed, a global analysis of cells for thousands of possible methylation events is not possible. However, this method cannot reliably analyse very small fragments from small sample quantities either. These are lost through the matrix in spite of the diffusion protection.

WO 03/072821 PCT/EP03/02035

An overview of the further known methods of detecting 5-methylcytosine may be gathered from the following review article: Rein, T., DePamphilis, M. L., Zorbas, H., Nucleic Acids Res. 1998, 26, 2255.

To date, barring few exceptions (e.g., Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 1997 Mar-Apr;5(2):94-8) the bisulfite technique is only used in research. Always, however, short, specific fragments of a known gene are amplified subsequent to a bisulfite treatment and either completely sequenced (Olek A, Walter J. The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 1997 Nov;17(3):275-6) or individual cytosine positions are detected by a primer extension reaction (Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997 Jun 15;25(12):2529-31, WO 95/00669) or by enzymatic digestion (Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997 Jun 15;25(12):2532-4). In addition, detection by hybridisation has also been described (Olek et al., WO 99/28498).

Further publications dealing with the use of the bisulfite technique for methylation detection in individual genes are: Grigg G, Clark S. Sequencing 5-methylcytosine residues in genomic DNA. Bioessays. 1994 Jun;16(6):431-6, 431; Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 1997 Mar;6(3):387-95; Feil R, Charlton J, Bird AP, Walter J, Reik W. Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 1994 Feb 25;22(4):695-6; Martin V, Ribieras S, Song-Wang X, Rio MC, Dante R. Genomic sequencing indicates a correlation between DNA hypomethylation in the 5' region of the pS2 gene and its expression in human breast cancer cell lines. Gene. 1995 May 19;157(1-2):261-4; WO 97/46705 and WO 95/15373.

An overview of the Prior Art in oligomer array manufacturing can be gathered from a special edition of Nature Genetics (Nature Genetics Supplement, Volume 21, January 1999), published in January 1999, and from the literature cited therein.

Fluorescently labelled probes are often used for the scanning of immobilised DNA arrays. The simple attachment of Cy3 and Cy5 dyes to the 5'-OH of the specific probe are particularly suitable for fluorescence labels. The detection of the fluorescence of the hybridised probes may be carried out, for example via a confocal microscope. Cy3 and Cy5 dyes, besides many others, are commercially available.

Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-TOF) is a very efficient development for the analysis of biomolecules (Karas M, Hillenkamp F. Laser desorption ionisation of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299-301). An analyte is embedded in a light-absorbing matrix. The matrix is evaporated by a short laser pulse thus transporting the analyte molecule into the vapour phase in an unfragmented manner. The analyte is ionised by collisions with matrix molecules. An applied voltage accelerates the ions into a field-free flight tube. Due to their different masses, the ions are accelerated at different rates. Smaller ions reach the detector sooner than bigger ones.

MALDI-TOF spectrometry is excellently suited to the analysis of peptides and proteins. The analysis of nucleic acids is somewhat more difficult (Gut I G, Beck S. DNA and Matrix Assisted Laser Desorption Ionisation Mass Spectrometry. Current Innovations and Future Trends. 1995, 1; 147-57). The sensitivity to nucleic acids is approximately 100 times worse than to peptides and decreases disproportionally with increasing fragment size. For nucleic acids having a multiply negatively charged backbone, the ionisation process via the matrix is considerably less efficient. In MALDI-TOF spectrometry, the selection of the matrix plays an eminently important role. For the desorption of peptides, several very efficient matrixes have been found which produce a very fine crystallisation. There are now several responsive matrixes for DNA, however, the difference in sensitivity has not been reduced. The difference in sensitivity can be reduced by chemically modifying the DNA in such a manner that it becomes more similar to a peptide. Phosphorothioate nucleic acids in which the usual phosphates of the backbone are substituted with thiophosphates can be converted into a chargeneutral DNA using simple alkylation chemistry (Gut IG, Beck S. A procedure for selective DNA alkylation and detection by mass spectrometry. Nucleic Acids Res. 1995 Apr 25;23(8):1367-73). The coupling of a charge tag to this modified DNA results in an increase in sensitivity to the same level as that found for peptides. A further advantage of charge tagging is the increased stability of the analysis against impurities which make the detection of unmodified substrates considerably more difficult.

Genomic DNA is obtained from DNA of cell, tissue or other test samples using standard methods. This standard methodology is found in references such as Sambrook, Fritsch and Maniatis eds., Molecular Cloning: A Laboratory Manual, 1989.

Description

The invention provide a method for the analysis of biological samples for features associated with the development of colon cell proliferative disorders, characterised in that the nucleic acid of at least one member of the group comprising MDR1, APOC2, CACNA1G, EGR4, AR, RB1, GPIb beta, MYOD1, WT1, HLA-F, ELK1, APC, BCL2, CALCA, CDH1, CDKN1A, CDKN1B (p27 Kip1), CDKN2a, CDKN2B, CD44, CSPG2, DAPK1, EGFR, EYA4, GSTP1, GTBP/MSH6, HIC-1, HRAS, IGF2, LKB1, MGMT, MLH1, MNCA9, MSH3, MYC, N33, PAX6, PGR, PTEN, RARB, SFN, S100A2, TGFBR2, TIMP3, TP53, TP73, VHL, CDKN1C, CAV1, CDH13, DRG1, PTGS2, THBS1, TPEF (=TMEFF2; =HPP1), DNMT1, CEA, MB, PCNA, CDC2, ESR1, CASP8, RASSF1, MSH4, MSH5 is/are contacted with a reagent or series of reagents capable of distinguishing between methylated and non methylated CpG dinucleotides within the genomic sequence of interest.

The present invention makes available a method for ascertaining genetic and/or epigenetic parameters of genomic DNA. The method is for use in the improved diagnosis, treatment and monitoring of colon cell proliferative disorders, more specifically by enabling the improved identification of and differentiation between subclasses of said disorder and the genetic predisposition to said disorders. The invention presents improvements over the state of the art in that it enables a highly specific classification of colon carcinomas, thereby allowing for improved and informed treatment of patients.

In a particularly preferred embodiment the present invention makes available methods and nucleic acids that allow the differentiation between colon carcinoma, colon adenoma and normal colon tissue.

Furthermore, the method enables the analysis of cytosine methylations and single nucleotide polymorphisms.

The genes that form the basis of the present invention can be used to form a "gene panel", i.e. a collection comprising the particular genetic sequences of the present invention and/or their respective informative methylation sites. The formation of gene panels allow for a quick and specific analysis of the disorders they are related with. The gene panels described in this invention can be used with surprisingly high efficiency for the diagnosis, treatment and monitoring of and the analysis of colon cell proliferative disorders as described herein. The use of multiple CpG sites from a diverse array of genes, allows for a relatively high degree of sensitivity and specificity in comparison to single gene diagnostic and detection tools. Furthermore, the panel as described herein may be adapted for use in the analysis of many aspects of colon cell proliferative disorders.

In a preferred embodiment, the method comprises the following steps:

In the first step of the method the genomic DNA sample must be isolated from tissue or cellular sources. Such sources may include colon tissue samples, cell lines, histological slides, body fluids, or tissue embedded in paraffin. Extraction may be by means that are standard to one skilled in the art, these include the use of detergent lysates, sonification and vortexing with glass beads. Once the nucleic acids have been extracted the genomic double stranded DNA is used in the analysis.

In a preferred embodiment the DNA may be cleaved prior to the next step of the method, this may be by any means standard in the state of the art, in particular, but not limited to, with restriction endonucleases.

In the second step of the method, the genomic DNA sample is treated in such a manner that cytosine bases which are unmethylated at the 5'-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridisation behaviour. This will be understood as 'pretreatment' hereinafter.

The above described treatment of genomic DNA is preferably carried out with bisulfite (sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in

terms of base pairing behaviour. If bisulfite solution is used for the reaction, then an addition takes place at the non-methylated cytosine bases. Moreover, a denaturating reagent or solvent as well as a radical interceptor must be present. A subsequent alkaline hydrolysis then gives rise to the conversion of non-methylated cytosine nucleobases to uracil. The chemically converted DNA is then used for the detection of methylated cytosines.

Fragments of the pretreated DNA are amplified, using sets of primer oligonucleotides according to SEQ ID NO: 389 to SEQ ID NO: 518, and a, preferably heat-stable, polymerase. Because of statistical and practical considerations, preferably more than ten different fragments having a length of 100 - 2000 base pairs are amplified. The amplification of several DNA segments can be carried out simultaneously in one and the same reaction vessel. Usually, the amplification is carried out by means of a polymerase chain reaction (PCR).

The method may also be enabled by the use of alternative primers, the design of such primers is obvious to one skilled in the art. These should include at least two oligonucleotides whose sequences are each reverse complementary or identical to an at least 18 base-pair long segment of the base sequences specified in the appendix (SEQ ID NO: 133 to SEQ ID NO: 388). Said primer oligonucleotides are preferably characterised in that they do not contain any CpG dinucleotides. In a particularly preferred embodiment of the method, the sequence of said primer oligonucleotides are designed so as to selectively anneal to and amplify, only the colon tissue specific DNA of interest, thereby minimising the amplification of background or non relevant DNA. In the context of the present invention, background DNA is taken to mean genomic DNA which does not have a relevant tissue specific methylation pattern, in this case, the relevant tissue being colon, both healthy and diseased.

According to the present invention, it is preferred that at least one primer oligonucleotide is bound to a solid phase during amplification. The different oligonucleotide and/or PNA-oligomer sequences can be arranged on a plane solid phase in the form of a rectangular or hexagonal lattice, the solid phase surface preferably being composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold, it being possible for other materials such as nitrocellulose or plastics to be used as well.

The fragments obtained by means of the amplification can carry a directly or indirectly detectable label. Preferred are labels in the form of fluorescence labels, radionuclides, or detach-

able molecule fragments having a typical mass which can be detected in a mass spectrometer, it being preferred that the fragments that are produced have a single positive or negative net charge for better detectability in the mass spectrometer. The detection may be carried out and visualised by means of matrix assisted laser desorption/ionisation mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).

The amplificates obtained in the second step of the method are subsequently hybridised to an array or a set of oligonucleotides and/or PNA probes. In this context, the hybridisation preferably takes place in the manner described as follows. The set of probes used during the hybridisation is preferably composed of at least 10 oligonucleotides or PNA-oligomers. However, it is understood and as well claimed, that the process can be conducted using only one Oligonucleotide or PNA probe. In the process, the amplificates hybridise to oligonucleotides previously bonded to a solid phase. In a particularly preferred embodiment, the oligonucleotides are taken from the group comprising SEQ ID NO: 519 to SEQ ID NO: 1030. In a further preferred embodiment the oligonucleotides are taken from the group comprising SEQ ID NO: 895 to SEQ ID NO: 1030. The non-hybridised fragments are subsequently removed. Said oligonucleotides contain at least one base sequence having a length of 10 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the appendix, the segment containing at least one CpG or TpG dinucleotide. In a further preferred embodiment the cytosine of the CpG dinucleotide, or in the case of TpG, the thiamine, is the 5th to 9th nucleotide from the 5'-end of the 10-mer. One oligonucleotide exists for each CpG or TpG dinucleotide.

In the fifth step of the method, the non-hybridised amplificates are removed.

In the final step of the method, the hybridised amplificates are detected. In this context, it is preferred that labels attached to the amplificates are identifiable at each position of the solid phase at which an oligonucleotide sequence is located.

According to the present invention, it is preferred that the labels of the amplificates are fluorescence labels, radionuclides, or detachable molecule fragments having a typical mass which can be detected in a mass spectrometer. The mass spectrometer is preferred for the detection of the amplificates, fragments of the amplificates or of probes which are complementary to the amplificates, it being possible for the detection to be carried out and visualised by means

of matrix assisted laser desorption/ionisation mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI). The produced fragments may have a single positive or negative net charge for better detectability in the mass spectrometer.

The aforementioned method is preferably used for ascertaining genetic and/or epigenetic parameters of genomic DNA.

In order to enable this method, the invention further provides the modified DNA of genes MDR1, APOC2, CACNA1G, EGR4, AR, RB1, GPIb beta, MYOD1, WT1, HLA-F, ELK1, APC, BCL2, CALCA, CDH1, CDKN1A, CDKN1B (p27 Kip1), CDKN2a, CDKN2B, CD44, CSPG2, DAPK1, EGFR, EYA4, GSTP1, GTBP/MSH6, HIC-1, HRAS, IGF2, LKB1, MGMT, MLH1, MNCA9, MSH3, MYC, N33, PAX6, PGR, PTEN, RARB, SFN, S100A2, TGFBR2, TIMP3, TP53, TP73, VHL, CDKN1C, CAV1, CDH13, DRG1, PTGS2, THBS1, TPEF (=TMEFF2; =HPP1), DNMT1, CEA, MB, PCNA, CDC2, ESR1, CASP8, RASSF1, MSH4, MSH5 as well as oligonucleotides and/or PNA-oligomers for detecting cytosine methylations within said genes. The present invention is based on the discovery that genetic and epigenetic parameters and, in particular, the cytosine methylation patterns of genomic DNA are particularly suitable for improved diagnosis, treatment and monitoring of colon cell proliferative disorders. Furthermore, the invention enables the differentiation between different subclasses of colon cell proliferative disorders or detection of a predisposition to colon cell proliferative disorders.

The nucleic acids according to the present invention can be used for the analysis of genetic and/or epigenetic parameters of genomic DNA.

This objective is achieved according to the present invention using a nucleic acid containing a sequence of at least 18 bases in length of the pretreated genomic DNA according to one of SEQ ID NO: 133 to SEQ ID NO: 388 and sequences complementary thereto.

The modified nucleic acid could heretofore not be connected with the ascertainment of disease relevant genetic and epigenetic parameters.

The object of the present invention is further achieved by an oligonucleotide or oligomer for the analysis of pretreated DNA, for detecting the genomic cytosine methylation state, said oligonucleotide containing at least one base sequence having a length of at least 10 nucleotides which hybridises to a pretreated genomic DNA according to SEQ ID NO: 133 through to SEQ ID NO: 388. The oligomer probes according to the present invention constitute important and effective tools which, for the first time, make it possible to ascertain specific genetic and epigenetic parameters during the analysis of biological samples for features associated with the development of colon cell proliferative disorders. Said oligonucleotides allow the improved diagnosis, treatment and monitoring of colon cell proliferative disorders and detection of the predisposition to said disorders. Furthermore, they allow the differentiation of different subclasses of colon cell proliferative disorders. The base sequence of the oligomers preferably contains at least one CpG or TpG dinucleotide. The probes may also exist in the form of a PNA (peptide nucleic acid) which has particularly preferred pairing properties. Particularly preferred are oligonucleotides according to the present invention in which the cytosine of the CpG dinucleotide is the 5th - 9th nucleotide from the 5'-end of the 13-mer; in the case of PNA-oligomers, it is preferred for the cytosine of the CpG dinucleotide to be the 4th - 6th nucleotide from the 5'-end of the 9-mer.

The oligomers according to the present invention are normally used in so called "sets" which contain at least one oligomer for each of the CpG dinucleotides within SEQ ID NO: 133 through SEQ ID NO: 388. Preferred is a set which contains at least one oligomer for each of the CpG dinucleotides, from SEQ ID NO: 519 to SEQ ID NO: 1030. Further preferred is a set comprising SEQ ID NO: 895 to SEQ ID NO: 1030.

In the case of the sets of oligonucleotides according to the present invention, it is preferred that at least one oligonucleotide is bound to a solid phase. It is further preferred that all the oligonucleotides of one set are bound to a solid phase.

The present invention moreover relates to a set of preferably at least 10 n (oligonucleotides and/or PNA-oligomers) used for detecting the cytosine methylation state of genomic DNA using treated versions of said genomic DNA (according to SEQ ID NO: 133 to SEQ ID NO: 388 and sequences complementary thereto). However, it is understood and as well claimed, that the process can be conducted using only one Oligonucleotide or PNA oligomer. These probes enable improved diagnosis, treatment and monitoring of colon cell proliferative disorders. In particular they enable the differentiation between different sub classes of colon cell proliferative disorders and the detection of a predisposition to said disorders. In a particularly preferred embodiment the set comprises SEQ ID NO: 519 to SEQ ID NO: 1030.

The set of oligomers may also be used for detecting single nucleotide polymorphisms (SNPs) using pretreated genomic DNA according to one of SEQ ID NO: 133 to SEQ ID NO: 388.

According to the present invention, it is preferred that an arrangement of different oligonucleotides and/or PNA-oligomers (a so-called "array") made available by the present invention is present in a manner that it is likewise bound to a solid phase. This array of different oligonucleotide- and/or PNA-oligomer sequences can be characterised in that it is arranged on the solid phase in the form of a rectangular or hexagonal lattice. The solid phase surface is preferably composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold. However, nitrocellulose as well as plastics such as nylon which can exist in the form of pellets or also as resin matrices are suitable alternatives.

Therefore, a further subject matter of the present invention is a method for manufacturing an array fixed to a carrier material for the improved diagnosis, treatment and monitoring of colon cell proliferative disorders, the differentiation between different subclasses of colon cell proliferative disorders and/or detection of the predisposition to colon cell proliferative disorders. In said method at least one oligomer according to the present invention is coupled to a solid phase. Methods for manufacturing such arrays are known, for example, from Patent US 5,744,305 by means of solid-phase chemistry and photolabile protecting groups.

A further subject matter of the present invention relates to a DNA chip for the improved diagnosis, treatment and monitoring of colon cell proliferative disorders. Furthermore the DNA chip enables detection of the predisposition to colon cell proliferative disorders and the differentiation between different subclasses of colon cell proliferative disorders. The DNA chip contains at least one nucleic acid according to the present invention. DNA chips are known, for example, in Patent US 5,837,832.

Moreover, a subject matter of the present invention is a kit which may be composed, for example, of a bisulfite-containing reagent, a set of primer oligonucleotides containing at least two oligonucleotides whose sequences in each case correspond or are complementary to a 18 base long segment of the base sequences specified in the appendix (SEQ ID NO: 133 to SEQ ID NO: 388), oligonucleotides and/or PNA-oligomers as well as instructions for carrying out

and evaluating the described method. However, a kit along the lines of the present invention can also contain only part of the aforementioned components.

The oligomers according to the present invention or arrays thereof as well as a kit according to the present invention are intended to be used for the improved diagnosis, treatment and monitoring of colon cell proliferative disorders. Furthermore the use of said inventions extends to the differentiation between different subclasses of colon cell proliferative disorders and detection of the predisposition to colon cell proliferative disorders. According to the present invention, the method is preferably used for the analysis of important genetic and/or epigenetic parameters within genomic DNA, in particular for use in improved diagnosis, treatment and monitoring of colon cell proliferative disorders, detection of the predisposition to said disorders and the differentiation between subclasses of said disorders.

The methods according to the present invention are used, for example, for improved diagnosis, treatment and monitoring of colon cell proliferative disorders progression, detection of the predisposition to said disorders and the differentiation between subclasses of said disorders.

A further embodiment of the invention is a method for the analysis of the methylation status of genomic DNA without the need for pretreatment. In the first step of the method the geno-

mic DNA sample must be isolated from tissue or cellular sources. Such sources may include cell lines, histological slides, body fluids, or tissue embedded in paraffin. Extraction may be by means that are standard to one skilled in the art, these include the use of detergent lysates, sonification and vortexing with glass beads. Once the nucleic acids have been extracted the genomic double stranded DNA is used in the analysis.

In a preferred embodiment the DNA may be cleaved prior to the treatment, this may be any means standard in the state of the art, in particular with restriction endonucleases. In the second step, the DNA is then digested with one or more methylation sensitive restriction enzymes. The digestion is carried out such that hydrolysis of the DNA at the restriction site is informative of the methylation status of a specific CpG dinucleotide.

In the third step the restriction fragments are amplified. In a preferred embodiment this is carried out using a polymerase chain reaction.

In the final step the amplificates are detected. The detection may be by any means standard in the art, for example, but not limited to, gel electrophoresis analysis, hybridisation analysis, incorporation of detectable tags within the PCR products, DNA array analysis, MALDI or ESI analysis.

The present invention moreover relates to the diagnosis and/or prognosis of events which are disadvantageous or relevant to patients or individuals in which important genetic and/or epigenetic parameters within genomic DNA, said parameters obtained by means of the present invention may be compared to another set of genetic and/or epigenetic parameters, the differences serving as the basis for the diagnosis and/or prognosis of events which are disadvantageous or relevant to patients or individuals.

In the context of the present invention the term "hybridisation" is to be understood as a bond of an oligonucleotide to a completely complementary sequence along the lines of the Watson-Crick base pairings in the sample DNA, forming a duplex structure.

In the context of the present invention, "genetic parameters" are mutations and polymorphisms of genomic DNA and sequences further required for their regulation. To be designated as mutations are, in particular, insertions, deletions, point mutations, inversions and polymorphisms and, particularly preferred, SNPs (single nucleotide polymorphisms).

In the context of the present invention "methylation state analysis" is taken to mean the analysis of cytosines within a nucleic acid in order to ascertain whether they are methylated or not. In the context of the present invention, "epigenetic parameters" are, in particular, cytosine methylations and further modifications of DNA bases of genomic DNA and sequences further required for their regulation. Further epigenetic parameters include, for example, the acetylation of histones which, cannot be directly analysed using the described method but which, in turn, correlates with the DNA methylation.

In the following, the present invention will be explained in greater detail on the basis of the sequences and examples without being limited thereto.

SEQ ID NO: 1 to SEQ ID NO: 64 represent 5' and/or regulatory regions of the genomic DNA of genes MDR1, APOC2, CACNA1G, EGR4, AR, RB1, GPIb beta, MYOD1, WT1, HLA-F,

ELK1, APC, BCL2, CALCA, CDH1, CDKN1A, CDKN1B (p27 Kip1), CDKN2a, CDKN2B, CD44, CSPG2, DAPK1, EGFR, EYA4, GSTP1, GTBP/MSH6, HIC-1, HRAS, IGF2, LKB1, MGMT, MLH1, MNCA9, MSH3, MYC, N33, PAX6, PGR, PTEN, RARB, SFN, S100A2, TGFBR2, TIMP3, TP53, TP73, VHL, CDKN1C, CAV1, CDH13, DRG1, PTGS2, THBS1, TPEF (=TMEFF2; =HPP1), DNMT1, CEA, MB, PCNA, CDC2, ESR1, CASP8, RASSF1, MSH4, MSH5. These sequences are derived from the ensembl database (date 01.10.2001) (http://www.ensembl.org) and will be taken to include all minor variations of the sequence material which are currently unforeseen, for example, but not limited to, minor deletions and SNPs.

SEQ ID 133 to 388 exhibit the pretreated sequences of DNA derived from genes MDR1, APOC2, CACNA1G, EGR4, AR, RB1, GPIb beta, MYOD1, WT1, HLA-F, ELK1, APC, BCL2, CALCA, CDH1, CDKN1A, CDKN1B (p27 Kip1), CDKN2a, CDKN2B, CD44, CSPG2, DAPK1, EGFR, EYA4, GSTP1, GTBP/MSH6, HIC-1, HRAS, IGF2, LKB1, MGMT, MLH1, MNCA9, MSH3, MYC, N33, PAX6, PGR, PTEN, RARB, SFN, S100A2, TGFBR2, TIMP3, TP53, TP73, VHL, CDKN1C, CAV1, CDH13, DRG1, PTGS2, THBS1, TPEF (=TMEFF2; =HPP1), DNMT1, CEA, MB, PCNA, CDC2, ESR1, CASP8, RASSF1, MSH4, MSH5. These sequences will be taken to include all minor variations of the sequence material which are currently unforeseen, for example, but not limited to, minor deletions and SNPs.

SEQ ID NO: 389 to SEQ ID NO: 518 exhibit the sequences of primer oligonucleotides for the amplification of pretreated DNA according to Sequence ID NO: 133 to SEQ ID NO: 388.

SEQ ID NO: 65 to SEQ ID NO: 132 exhibit the sequences of oligomers which are useful for the analysis of CpG positions within genomic DNA according to SEQ ID NO: 1 to SEQ ID NO: 64.

SEQ ID NO: 519 to SEQ ID NO: 1030 exhibit the sequences of oligomers which are useful for the analysis of the methylation status of CpG positions within genomic DNA according to SEQ ID NO: 1 to SEQ ID NO: 64 after treatment of said genomic DNA with bisulfite.

SEQ ID NO: 895 to SEQ ID NO: 1030 exhibit the sequences of oligomers which are particularly useful for the analysis of CpG positions within genomic DNA according to SEQ ID NO:

1 to SEQ ID NO: 64, after treatment of said with bisulfite and are subject to a preferred embodiment of this invention.

Description of figures

Figure 1: Differentiation between healthy colon tissue and adenoma or carcinoma colon tissue according to Example 2. The labels on the left side of the plot are gene and CpG identifiers, these can be cross referenced using Table 3 and Table 7. The labels on the right side of the figure give the significance (p-value, T-test) of the difference between the means of the two groups. Each row corresponds to a single CpG and each column to the methylation levels of one sample. CpGs are ordered according to their contribution to the differentiation between the two tissue types (A = healthy, B = non healthy) with increasing contribution from top to bottom. Black indicates total methylation at a given CpG position, white represents no methylation at the particular position, with degrees of methylation represented in grey, from light (low proportion of methylation) to dark (high proportion of methylation).

Figure 2: Differentiation between healthy colon tissue and carcinoma colon tissue according to Example 2. The labels on the left side of the plot are gene and CpG identifiers, these can be cross referenced using Table 4 and Table 7. The labels on the right side of the figure give the significance (p-value, T-test) of the difference between the means of the two groups. Each row corresponds to a single CpG and each column to the methylation levels of one sample. CpGs are ordered according to their contribution to the differentiation between the two tissue types (A = healthy, B = carcinoma) with increasing contribution from top to bottom. Black indicates total methylation at a given CpG position, white represents no methylation at the particular position, with degrees of methylation represented in grey, from light (low proportion of methylation) to dark (high proportion of methylation).

Figure 3: Differentiation between healthy colon tissue and adenoma colon tissue according to Example 2. The labels on the left side of the plot are gene and CpG identifiers, these can be cross referenced in Table 5 and Table 7. The labels on the right side give the significance (p-value, T-test) of the difference between the means of the two groups. Each row corresponds to a single CpG and each column to the methylation levels of one sample. CpGs are ordered according to their contribution to the distinction to the differential diagnosis between the two tissue types (A = healthy, B = adenoma) with increasing contribution from top to bottom.

Black indicates total methylation at a given CpG position, white represents no methylation at the particular position, with degrees of methylation represented in grey, from light (low proportion of methylation) to dark (high proportion of methylation). Due to formatting of the page only 40 CpGs are shown in this figure.

Figure 4: Differentiation between carcinoma colon tissue and adenoma colon tissue according to Example 2. The labels on the left side of the plot are gene and CpG identifiers, these can be cross referenced in Table 6 and Table 7. The labels on the right side give the significance (p-value, T-test) of the difference between the means of the two groups. Each row corresponds to a single CpG and each column to the methylation levels of one sample. CpGs are ordered according to their contribution to the distinction to the differential diagnosis between the two tissue types (A = carcinoma, B = adenoma) with increasing contribution from top to bottom. Black indicates total methylation at a given CpG position, white represents no methylation at the particular position, with degrees of methylation represented in grey, from light (low proportion of methylation) to dark (high proportion of methylation).

Examples 1 and 2: Digital Phenotype

In the following examples, multiplex PCR was carried out upon tissue samples originating from colon adenomas or colon carcinoma. Multiplex PCR was also carried out upon healthy colon tissue. Each sample was treated in the manner described below in Example 1 in order to deduce the methylation status of CpG positions, the CpG methylation information for each sample was collated and then used in an analysis, as detailed in Example 2. An alternative method for the analysis of CpG methylation status is described in Example 3.

Example 1

In the first step the genomic DNA was isolated from the cell samples using the Wizzard kit from (Promega).

The isolated genomic DNA from the samples are treated using a bisulfite solution (hydrogen sulfite, disulfite). The treatment is such that all non methylated cytosines within the sample are converted to thiamidine, conversely 5-methylated cytosines within the sample remain unmodified.

18

The treated nucleic acids were then amplified using multiplex PCRs, amplifying 8 fragments per reaction with Cy5 fluorescently labelled primers. PCR primers used are described in Table 1. PCR conditions were as follows.

Reaction solution:

10 ng bisulfite treated DNA

3,5 mM MgCl2

400 μM dNTPs

2 pmol each primer

1 U Hot Star Taq (Qiagen)

Forty cycles were carried out as follows. Denaturation at 95°C for 15 min, followed by annealing at 55°C for 45 sec., primer elongation at 65°C for 2 min. A final elongation at 65°C was carried out for 10 min.

All PCR products from each individual sample were then hybridised to glass slides carrying a pair of immobilised oligonucleotides for each CpG position under analysis. Each of these detection oligonucleotides was designed to hybridise to the bisulphite converted sequence around one CpG site which was either originally unmethylated (TG) or methylated (CG). See Table 2 for further details of all hybridisation oligonucleotides used (both informative and non-informative) Hybridisation conditions were selected to allow the detection of the single nucleotide differences between the TG and CG variants.

 $5~\mu l$ volume of each multiplex PCR product was diluted in 10~x Ssarc buffer (10~x Ssarc:230 ml 20~x SSC, 180~m l sodium lauroyl sarcosinate solution 20%, dilute to 1000~m l with dH2O). The reaction mixture was then hybridised to the detection oligonucleotides as follows. Denaturation at 95° C, cooling down to $10~^{\circ}$ C, hybridisation at 42° C overnight followed by washing with 10~x Ssarc and dH2O at 42° C.

Fluorescent signals from each hybridised oligonucleotide were detected using genepix scanner and software. Ratios for the two signals (from the CG oligonucleotide and the TG oligonucleotide used to analyse each CpG position) were calculated based on comparison of intensity of the fluorescent signals.

The data obtained according to Example 1 is then sorted into a ranked matrix (as shown in Figures 1 to 4) according to CpG methylation differences between the two classes of tissues, using an algorithm. The most significant CpG positions are at the bottom of the matrix with significance decreasing towards the top. Black indicates total methylation at a given CpG position, white represents no methylation at the particular position, with degrees of methylation represented in grey, from light (low proportion of methylation) to dark (high proportion of methylation). Each row represents one specific CpG position within a gene and each column shows the methylation profile for the different CpGs for one sample. On the left side a CpG and gene identifier is shown this may be cross referenced with the accompanying tables (Table 1 and 7) in order to ascertain the gene in question and the detection oligomer used. On the right side p values for the individual CpG positions are shown. The p values are the probabilities that the observed distribution occurred by chance in the data set.

For selected distinctions, we trained a learning algorithm (support vector machine, SVM). The SVM (as discussed by F. Model, P. Adorjan, A. Olek, C. Piepenbrock, Feature selection for DNA methylation based cancer classification. Bioinformatics. 2001 Jun; 17 Suppl 1:S157-64) constructs an optimal discriminant between two classes of given training samples. In this case each sample is described by the methylation patterns (CG/TG ratios) at the investigated CpG sites. The SVM was trained on a subset of samples of each class, which were presented with the diagnosis attached. Independent test samples, which were not shown to the SVM before were then presented to evaluate, if the diagnosis can be predicted correctly based on the predictor created in the training round. This procedure was repeated several times using different partitions of the samples, a method called cross-validation. Please note that all rounds are performed without using any knowledge obtained in the previous runs. The number of correct classifications was averaged over all runs, which gives a good estimate of our test accuracy (percent of correct classified samples over all rounds).

Healthy colon tissue compared to non healthy colon tissue (colon adenoma and colon carcinoma) (Figure 1)

Figure 1 shows the differentiation of healthy tissue from non healthy tissue wherein the non healthy specimens are obtained from either colon adenoma or colon carcinoma tissue. The evaluation is carried out using informative CpG positions from 27 genes. Informative CpG positions are further described in Table 3.

Healthy colon tissue compared to colon carcinoma tissue (Figure 2)

Figure 2 shows the differentiation of healthy tissue from carcinoma tissue using informative CpG positions from 15 genes. Informative CpG positions are further described in Table 4.

Healthy colon tissue compared to colon adenoma tissue (Figure 3)

Figure 3 shows the differentiation of healthy tissue from adenoma tissue using informative CpG positions from 40 genes. Informative CpG positions are further described in Table 5.

Colon carcinoma tissue compared to colon adenoma tissue (Figure 4)

Figure 4 shows the differentiation of carcinoma tissue from adenoma tissue using informative CpG positions from 2 genes. Informative CpG positions are further described in Table 6.

Example 3: Identification of the methylation status of a CpG site within the gene CD44.

A fragment of the bisulfite treated DNA of the gene CD44 (Seq ID NO: 20) was PCR amplified using primers GAAAGGAGGTTAAAGGTTG (Seq ID NO 429) and AACTCACTTAACTCCAATCCC (Seq ID NO 430). The resultant fragment (696 bp in length) contained an informative CpG at position 235. The amplificate DNA was digested with the restriction endonuclease *Apa I*, recognition site GGGCC. Hydrolysis by said endonuclease is blocked by methylation of the CpG at position 235 of the amplificate. The digest was used as a control.

Genomic DNA was isolated from sample using the DNA wizzard DNA isolation kit (Promega). Each sample was digested using *Apa I* according to manufacturer's recommendations (New England Biolabs).

amplified using PCR primers then 10 of each genomic digest was GAAAGGAGAGGTTAAAGGTTG and AACTCACTTAACTCCAATCCC. The PCR reactions were performed using a thermocycler (Eppendorf GmbH) using 10 ng of DNA, 6 pmol of each primer, 200 µM of each dNTP, 1.5 mM MgCl2 and 1 U of HotstartTaq (Qiagen AG). The other conditions were as recommended by the Taq polymerase manufacturer. Using the above mentioned primers, gene fragments were amplified by PCR performing a first denaturation step for 14 min at 96 °C, followed by 30 - 45 cycles (step 2: 60 sec at 96°C, step 3: 45 sec at 52°C, step 4: 75 sec at 72°C) and a subsequent final elongation of 10 min at 72°C. The presence of PCR products was analysed by agarose gel electrophoresis.

PCR products were detectable with *Apa I* hydrolysed DNA isolated wherein the CpG position in question was up-methylated, when step 2 to step 4 of the cycle program were repeated 34, 37, 39, 42 and 45 fold. In contrast PCR products were only detectable with *Apa I* hydrolysed DNA isolated from down-methylated DNA (and control DNA) when step 2 to step 4 of the cycle program were repeated 42 and 45 fold. These results were incorporated into a CpG methylation matrix analysis as described in Example 2.

<u>Tables</u>

Table 1: PCR primers and products

No:	Gene:	Primer:	Amplificate Length:
1	MDR1	TAAGTATGTTGAAGAAAGATTATTGTAG	633
_	(SEQ ID NO: 1)	(SEQ ID NO: 389)	· ·
		TAAAAACTATĆCCATAATAACTCCCAAC	
		(SEQ ID NO: 390)	
2	APOC2	ATGAGTAGAAGAGGTGATAT	533
	(SEQ ID NO: 2)	(SEQ ID NO: 391)	
		CCCTAAATCCCTTTCTTACC	
		(SEQ ID NO: 392)	
3	CACNA1G	GGGATTTAAGAGAAATTGAGGTA	707
	(SEQ ID NO: 3)	(SEQ ID NO: 393)	
ļ		AAACCCCAAACATCCTTTAT	
		(SEQ ID NO: 394)	
4	EGR4	AGGGGGATTGAGTGTTAAGT	293
	(SEQ ID NO: 4)	(SEQ ID NO: 395)	
		CCCAAACATAAACACAAAAT	
		(SEQ ID NO: 396)	
5	AR	GTAGTAGTAGTAAGAGA	460
	(SEQ ID NO: 5)	(SEQ ID NO: 397)	
		ACCCCCTAAATAATTATCCT	
		(SEQ ID NO: 398)	
6	RB1	TTTAAGTTTGTTTTTGTTTTGGT	718
	(SEQ ID NO: 6)	(SEQ ID NO: 399)	
1		TCCTACTCTAAATCCTCCTCAA	
		(SEQ ID NO: 400)	
7	GPIb beta	GGTGATAGGAGAATAATGTTGG	379
	(SEQ ID NO: 7)	(SEQ ID NO: 401)	
		TCTCCCAACTACAACCAAAC	
		(SEQ ID NO: 402)	
8	MYOD1	ATTAGGGGTATAGAGGAGTATTGA	883
	(SEQ ID NO: 8)	(SEQ ID NO: 403)	
		CTTACAAACCCACAATAAACAA	
		(SEQ ID NO: 404)	
9	WT1	AAAGGGAAATTAAGTGTTGT	747
	(SEQ ID NO: 9)	(SEQ ID NO: 405)	

No:	Gene:	Primer:	Amplificate Length:
		TAACTACCCTCAACTTCCC	
		(SEQ ID NO: 406)	
10	HLA-F	TTGTTGTTTTTAGGGGTTTTGG	946
	(SEQ ID NO: 10)	(SEQ ID NO: 407)	
		TCCTTCCCATTCTCCAAATATC	
		(SEQ ID NO: 408)	
11	ELK1	AAGTGTTTTAGTTTTTAATGGGTA	966
	(SEQ ID NO: 11)	(SEQ ID NO: 409)	
		CAAACCCAAAACTCACCTAT]
		(SEQ ID NO: 410)	
12	APC	TCAACTACCATCAACTTCCTTA	491
	(SEQ ID NO: 12)	(SEQ ID NO: 411)	
	(5242210112)	AATTTATTTTÄGTGTTGTAGTGGG	· · ·
		(SEQ ID NO: 412)	<u></u>
13	BCL2	GTATTTATGTTAAGGGGGAAA	640
1.0	(SEQ ID NO: 13)	(SEQ ID NO: 413)	
	(520 12 1(5, 15)	AAAAACCACAATCCTCCC	
ŀ		(SEQ ID NO: 414)	
14	CALCA	GTTTTGGAAGTATGAGGGTG	614
17	(SEQ ID NO: 14)	(SEQ ID NO: 415)	
	(BEQ 15 140. 14)	CCAAATTCTAAACCAATTTCC	
		(SEQ ID NO: 416)	
15	CDH1	GAGGTTGGGGTTAGAGGAT	478
13	(SEQ ID NO: 15)	(SEQ ID NO: 417)	·
	(SEQ ID 140: 13)	CAAACTCACAAATACTTTACAATTC	
		(SEQ ID NO: 418)	
16	CDKN1A	GGATTAGTGGGAATAGAGGTG	408
10	(SEQ ID NO: 16)	(SEQ ID NO: 419)	
	(SEQ 1D 140. 10)	AAACCCAAACTCCTAACTACC	
		(SEQ ID NO: 420)	
17	CDKN1B (p27	GTGGGGAGGTAGTTGAAGA	478
1'	Kip1)	(SEQ ID NO: 421)	
1	(SEQ ID NO: 17)	ATACACCCTAACCCAAAAT	
	(SEQ 11) 110. 17)	(SEQ ID NO: 422)	
18	CDKN2a	TTGAAAATTAAGGGTTGAGG	598
6	(SEQ ID NO: 18)	(SEQ ID NO: 423)	
	(SEQ 15 110. 10)	CACCCTCTAATAACCAACCA	
		(SEQ ID NO: 424)	
19	CDKN2a	GGGGTTGGTTATTAGA	256
119	(SEQ ID NO: 18)	(SEO ID NO: 425)	
	(SEQ ID 110. 10)	AACCCTCTACCCACCTAAAT	
		(SEQ ID NO: 426)	
20	CDKN2B	GGTTGGTTGAAGGAATAGAAAT	708
۲۷	(SEQ ID NO: 19)	(SEQ ID NO: 427)	
		CCCACTAAACATACCCTTATTC	
		(SEQ ID NO: 428)	
21	CD44	GAAAGGAGAGGTTAAAGGTTG	696
1 کم	(SEQ ID NO: 20)	(SEQ ID NO: 429)	
	(02.20)	AACTCACTTAACTCCAATCCC	

No:	Gene:	Primer:	Amplificate Length:
		(SEQ ID NO: 430)	
22	CSPG2	GGATAGGAGTTGGGATTAAGAT	 414
	(SEQ ID NO: 21)	(SEQ ID NO: 431)	
		AAATCTTTTTCAACACCAAAAT	
		(SEO ID NO: 432)	
23	DAPK1	AACCCTTTCTTCAAATTACAAA	348
	(SEQ ID NO: 22)	(SEQ ID NO: 433)	
	(02 \ 22 \ 1. \ 0. \)	TGATTGGGTTTTAGGGAAATA	
		(SEQ ID NO: 434)	
24	EGFR	GGGTTTGGTTGTAATATGGATT	732
2.7	(SEQ ID NO: 23)	(SEQ ID NO: 435)	
	(BEQ ID 110. 23)	CCCAACACTACCCCTCTAA	
		(SEQ ID NO: 436)	
25	EYA4	GGAAGAGGTGATTAAATGGAT	226
2.5	(SEQ ID NO: 24)	(SEQ ID NO: 437)	
	(SEQ ID NO. 24)	CCCAAAAATCAAACAACAA	
		(SEQ ID NO: 438)	
56	GSTP1	ATTTGGGAAAGAGGGAAAG	300
26		(SEQ ID NO: 439)	
	(SEQ ID NO: 25)	TAAAAACTCTAAACCCCATCC	
		(SEQ ID NO: 440)	,
0.7	CTDDA (CIIC	CCCTACCCACCAATATACC	278
27	GTBP/MSH6	(SEQ ID NO: 441)	F 7 8
	(SEQ ID NO: 26)	AGATTTGGGGAAGAAGTTGTA	
ŀ	·	•	
		(SEQ ID NO: 442) TGGGTTGGAGAAGAAGTTTA	280
28	HIC-1		280
	(SEQ ID NO: 27)	(SEQ ID NO: 443) TCATATTTCCAAAAACACACC	•
1		· ·	
		(SEQ ID NO: 444)	331
29	HRAS	CTTATTCCCATCTAAACCCTATT	551
	(SEQ ID NO: 28)	(SEQ ID NO: 445)	· ·
		GTGGTTTTGTGAAGTTTTAGGT	
<u></u>		(SEQ ID NO: 446)	364
30	IGF2	CCCTTCCCCTTAACTAAACT	504
	(SEQ ID NO: 29)	(SEQ ID NO: 447)	
		AATTTGGGTTAGGTTTGGA	
		(SEQ ID NO: 448)	500
31	LKB1	TAAAAGAAGGATTTTTGATTGG	528
	(SEQ ID NO: 30)	(SEQ ID NO: 449)	
		CATCTTATTTACCTCCCTCCC	
		(SEQ ID NO: 450)	
32	MGMT	AAGGTTTTAGGGAAGAGTGTTT	636
	(SEQ ID NO: 31)	(SEQ ID NO: 451)	
		ACCTTTTCCTATCACAAAAATAA	
L		(SEQ ID NO: 452)	
33	MLH1	TAAGGGGAGAGGAGTTT	545
ļ	(SEQ ID NO: 32)	(SEQ ID NO: 453)	
		ACCAATTCTCAATCATCTCTTT	
		(SEQ ID NO: 454)	

No:	Gene:	Primer:	Amplificate Length:
34	MNCA9	GGGAAGTAGGTTAGGTT	
	(SEQ ID NO: 33)	(SEQ ID NO: 455)	
	(02 \ 22 2 1 1 1 1 1)	AAATCCTCCTCTCCAAATAAAT	
		(SEQ ID NO: 456)	616
5	MSH3	TGTTTGGGATTGGGTAGG	211
	(SEQ ID NO: 34)	(SEQ ID NO: 457)	
,	(SEQ IS THE TO	CATAACCTTTACCTATCTCCTCA	
		(SEQ ID NO: 458)	
16	MYC	AGAGGGAGTAAAAGAAAATGGT	712
	(SEQ ID NO: 35)	(SEQ ID NO: 459)	
	(BEQ 15 110: 55)	CCAAATAAACAAAATAACCTCC	
		(SEQ ID NO: 460)	
37	N33	TTTTAGATTGAGGTTTTAGGGT	497
) /	(SEQ ID NO: 36)	(SEQ ID NO: 461)	
	(SEQ ID NO. 30)	ATCCATTCTACCTCCTTTTTCT	j
		(SEQ ID NO: 462)	
20	D 4 3/6	GGAGGGGAGAGGGTTATG	374
38	PAX6	(SEQ ID NO: 463)	Γ΄.
	(SEQ ID NO: 37)	TACTATACACACCCCAAAACAA	
		(SEQ ID NO: 464)	369
39	PGR	TTTTGGGAATGGGTTGTAT	509
	(SEQ ID NO: 38)	(SEQ ID NO: 465)	
		CTACCCTTAACCTCCATCCTA	
		(SEQ ID NO: 466)	246
40	PTEN	TTTTAGGTAGTTATATTGGGTATGTT	346
	(SEQ ID NO: 39)	(SEQ ID NO: 467)	
		TCAACTCTCAAACTTCCATCA	
		(SEQ ID NO: 468)	
41	RARB	TTGTTGGGAGTTTTTAAGTTTT	353
	(SEQ ID NO: 40)	(SEQ ID NO: 469)	
		CAAATTCTCCTTCCAAATAAAT	
		(SEQ ID NO: 470)	
42	SFN	GAAGAGAGGAGGGAGGTA	489
	(SEQ ID NO: 41)	(SEQ ID NO: 471)	
		CTATCCAACAAACCCAACA	·
		(SEQ ID NO: 472)	
43	S100A2	GTTTTTAAGTTGGAGAAGAGGA	460
	(SEQ ID NO: 42)	(SEQ ID NO: 473)	
l		ACCTATAAATCACAACCCACTC	
		(SEQ ID NO: 474)	
44	TGFBR2	GTAATTTGAAGAAAGTTGAGGG	296
	(SEQ ID NO: 43)	(SEQ ID NO: 475)	
		CCAACAACTAAACAAAACCTCT	
		(SEQ ID NO: 476)	
45	TIMP3	TGAGAAAATTGTTGTTTGAAGT	306
	(SEQ ID NO: 44)	(SEQ ID NO: 477)	
	(324221.01.11)	CAAAATACCCTAAAAACCACTC	
1		(SEQ ID NO: 478)	
46	TP53	GGAGTTGTATTGTTGGGAGA	279

No:	Gene:	Primer:	Amplificate Length:
	(SEQ ID NO: 45)	(SEQ ID NO: 479)	
		TAAAACCCCAATTTTCACTAA	
		(SEQ ID NO: 480)	
47	TP73	AGTAAATAGTGGGTGAGTTATGAA	607
	(SEQ ID NO: 46)	(SEQ ID NO: 481)	
		GAAAAACCTCTAAAAACTACTCTCC	
		(SEQ ID NO: 482)	
48	VHL	TGTAAAATGAATAAAGTTAATGAGTG	362
	(SEQ ID NO: 47)	(SEQ ID NO: 483)	
		TCCTAAATTCAAATAATCCTCCT	
		(SEQ ID NO: 484)	200
49	CDKN1C	GGGGAGGTAGATATTTGGATAA	300
	(SEQ ID NO: 48)	(SEQ ID NO: 485)	
		AACTACACCATTTATATTCCCAC	
		(SEQ ID NO: 486)	435
50	CAV1	GTTAGTATGTTTGGGGGTAAAT	433
•	(SEQ ID NO: 49)	(SEQ ID NO: 487)	
		ATAAATAACACCTTCCACCCTA	
		(SEQ ID NO: 488)	286
51	CDH13	TTTGTATTAGGTTGGAAGTGGT	280
	(SEQ ID NO: 50)	(SEQ ID NO: 489) CCCAAATAAATCAACAACAACA	
			·
-	DD 01	(SEQ ID NO: 490) GGTTTTGGGTTTAGTGGTAAAT	416
52	DRG1	(SEQ ID NO: 491)	710
	(SEQ ID NO: 51)	AACTTTCATAACTCACCCTTTC	
		(SEQ ID NO: 492)	
52	PTGS2	GATTTTTGGAGAGGAAGTTAAG	381
53	(SEQ ID NO: 52)	(SEQ ID NO: 493)	
	(SEQ ID NO. 32)	AAAACTAAAAACCAAACCCATA	
		(SEQ ID NO: 494)	
54	THBS1	TGGGGTTAGTTTAGGATAGG	398
P	(SEQ ID NO: 53)	(SEQ ID NO: 495)	
	(SEQ 1D 140: 55)	CTTAAAAACACTAAAACTTCTCAAA	
		(SEQ ID NO: 496)	
55	TPEF (=TMEFF2;	TTGTTTGGGTTAATAAATGGA	295
	=HPP1)	(SEQ ID NO: 497)	
-	(SEQ ID NO: 54)	CTTCTCTCTCTCCCCTCTC	
	(520 22 1.0.0.)	(SEQ ID NO: 498)	
56	DNMT1	TCCCCATCACACCTAAAA	210
	(SEQ ID NO: 55)	(SEQ ID NO: 499)	
	(== (== = : / = : =)	GGGAGGAGGGATGTATT	
		(SEQ ID NO: 500)	
57	CEA	TATGGGAGGAGGTTAGTAAGTG	680
	(SEQ ID NO: 56)	(SEQ ID NO: 501)	
		CCCCAAATCCTACATATAAAAA	
		(SEQ ID NO: 502)	
58	MB	GTTTTTGGTAAAGGGGTAGAA	598
	(SEQ ID NO: 57)	(SEQ ID NO: 503)	

No:	Gene:	Primer:	Amplificate Length:
		CCTAAAATATCAACCTCCACCT	
		(SEQ ID NO: 504)	
59	PCNA	TTTTTAGGTTGTAAGGAGGTTTT	608
	(SEQ ID NO: 58)	(SEQ ID NO: 505)	
		TAAATACCTCCAACACCTTTCT	
		(SEQ ID NO: 506)	
50	CDC2	ATTAGAAGTGAAAGTAATGGAATTT	418
	(SEQ ID NO: 59)	(SEQ ID NO: 507)	
		TCAATTTCCAAAAACCAAC	
		(SEQ ID NO: 508)	
61	ESR1	AGGGGAATTAAATAGAAAGAG	662
	(SEQ ID NO: 60)	(SEQ ID NO: 509)	
		CAATAAAACCATCCCAAATACT	
		(SEQ ID NO: 510)	
62	CASP8	AGTGGATTTGGAGTTTAGATGT	431
	(SEQ ID NO: 61)	(SEQ ID NO: 511)	
		AACAAAATAAAAACTTCTCCCA	
		(SEQ ID NO: 512)	
63	RASSF1	ACCTCTCTACAAATTACAAATTCA	347
	(SEQ ID NO: 62)	(SEQ ID NO: 513)	
		AGTTTGGGTTAGTTTGGGTT	
		(SEQ ID NO: 514)	
64	MSH4	AGGATGTTGAGGTTTGAGATT	339
	(SEQ ID NO: 63)	(SEQ ID NO: 515)	
		CACTATAATAACCACCACCCA	
		(SEQ ID NO: 516)	005
65	MSH5	TATTAGGAATAAAGTTGGGGAG	395
	(SEQ ID NO: 64)	(SEQ ID NO: 517)	
		AACCCTTCAAACAAAAATAAAA	
		(SEQ ID NO: 518)	

Table 2: Hybridisation oligonucleotides

No:	Gene	Oligo:
1	MDR1	TTGGTGGTCGTTTTAAGG
	(SEQ ID NO: 1)	(SEQ ID NO: 519)
2	MDR1	TTGGTGGTTTTTAAGG
	(SEQ ID NO: 1)	(SEQ ID NO: 520)
3	MDR1	TTGAAAGACGTGTTTATA
	(SEQ ID NO: 1)	(SEQ ID NO: 521)
4	MDR1	TTGAAAGATGTGTTTATA
ļ	(SEQ ID NO: 1)	(SEQ ID NO: 522)
5	MDR1	AGGTGTAACGGAAGTTAG
	(SEQ ID NO: 1)	(SEQ ID NO: 523)
6	MDR1	AGGTGTAATGGAAGTTAG
	(SEQ ID NO: 1)	(SEQ ID NO: 524)
7	MDR1	TAGTTTTCGAGGAATTA
	(SEQ ID NO: 1)	(SEQ ID NO: 525)
8	MDR1	TAGTTTTTGAGGAATTA

No:	Gene	Oligo:
	(SEQ ID NO: 1)	(SEQ ID NO: 526)
9	APOC2	GAGAGTTTCGTTTTGTT
	(SEQ ID NO: 2)	(SEQ ID NO: 527)
10	APOC2	GAGAGTTTTGTTTTGTT
	(SEQ ID NO: 2)	(SEQ ID NO: 528)
11	APOC2	TTGGGGGACGTTATTGTT
	(SEQ ID NO: 2)	(SEQ ID NO: 529)
12	APOC2	TTGGGGGATGTTATTGTT
	(SEQ ID NO: 2)	(SEQ ID NO: 530)
13	APOC2	TGTGTTCGTTCGGAGTTG
	(SEQ ID NO: 2)	(SEQ ID NO: 531)
14	APOC2	TGTGTTTGGAGTTG
	(SEQ ID NO: 2)	(SEQ ID NO: 532)
15	APOC2	TGGGTTTGCGGAGAATGG
	(SEQ ID NO: 2)	(SEQ ID NO: 533)
16	APOC2	TGGGTTTGTGGAGAATGG
ļ	(SEQ ID NO: 2)	(SEQ ID NO: 534)
17	CACNA1G	TTTAGGAGCGTTAATGTG
•	(SEQ ID NO: 3)	(SEQ ID NO: 535)
18	CACNA1G	TTTAGGAGTGTTAATGTG
	(SEQ ID NO: 3)	(SEQ ID NO: 536)
19	CACNA1G	TAGGGTTACGAGGTTAGG
	(SEQ ID NO: 3)	(SEQ ID NO: 537)
20	CACNA1G	TAGGGTTATGAGGTTAGG
	(SEQ ID NO: 3)	(SEQ ID NO: 538)
21	CACNA1G	GGAGGTTACGTTTAGATT
	(SEQ ID NO: 3)	(SEQ ID NO: 539)
22	CACNA1G	GGAGGTTATGTTTAGATT
	(SEQ ID NO: 3)	(SEQ ID NO: 540)
23	CACNA1G	TTAGGGGTCGTGGATAAA
1	(SEQ ID NO: 3)	(SEQ ID NO: 541)
24	CACNA1G	TTAGGGGTTGTGGATAAA
	(SEQ ID NO: 3)	(SEQ ID NO: 542)
25	EGR4	GGTGGGAAGCGTATTTAT
	(SEQ ID NO: 4)	(SEQ ID NO: 543)
26	EGR4	GGTGGGAAGTGTATTTAT
	(SEQ ID NO: 4)	(SEQ ID NO: 544)
27	EGR4	TTATAGTTCGAGTTTTTT
L	(SEQ ID NO: 4)	(SEQ ID NO: 545)
28	EGR4	TTATAGTTTGAGTTTTTT
	(SEQ ID NO: 4)	(SEQ ID NO: 546)
29	EGR4	GGAGTTTTCGGTATATAT
	(SEQ ID NO: 4)	(SEQ ID NO: 927)
30	EGR4	GGAGTTTTTGGTATATAT
	(SEQ ID NO: 4)	(SEQ ID NO: 928)
31	AR	TGTTATTTCGAGAGAGGT
	(SEQ ID NO: 5)	(SEQ ID NO: 547)
32	AR	TGTTATTTTGAGAGAGGT
	(SEQ ID NO: 5)	(SEQ ID NO: 548)
33	AR	AGAGGTTGCGTTTTAGAG

No:	Gene	Oligo:
	(SEQ ID NO: 5)	(SEQ ID NO: 1027)
34	AR	AGAGGTTGTGTTTAGAG
	(SEQ ID NO: 5)	(SEQ ID NO: 1028)
35	AR	ATTTTGAGCGAGGTTAGT
	(SEQ ID NO: 5)	(SEQ ID NO: 549)
36	AR	ATTTTGAGTGAGGTTAGT
L	(SEQ ID NO: 5)	(SEQ ID NO: 550)
37	AR	GTAGTATTCGAAGGTAGT
ļ	(SEQ ID NO: 5)	(SEQ ID NO: 551)
38	AR	GTAGTATTTGAAGGTAGT
	(SEQ ID NO: 5)	(SEQ ID NO: 552)
39	RB1	TTAGATTTCGGGATAGGG
	(SEQ ID NO: 6)	(SEQ ID NO: 553)
40	RB1	TTAGATTTTGGGATAGGG
	(SEQ ID NO: 6)	(SEQ ID NO: 554)
41	RB1	TATAGTTTCGTTAAGTGT
	(SEQ ID NO: 6)	(SEQ ID NO: 555)
42	RB1	TATAGTTTTGTTAAGTGT
	(SEQ ID NO: 6)	(SEQ ID NO: 556)
43	RB1	GTGTATTTCGGTTTGGAG
	(SEQ ID NO: 6)	(SEQ ID NO: 557)
44	RB1	GTGTATTTTGGTTTGGAG
	(SEQ ID NO: 6)	(SEQ ID NO: 558)
45	RB1	TGGATTTACGTTAGGTTT
	(SEQ ID NO: 6)	(SEQ ID NO: 559)
46	RB1	TGGATTTATGTTAGGTTT
	(SEQ ID NO: 6)	(SEQ ID NO: 560)
47	GPIb beta	TGTTATTTGTCGTTGTAG
	(SEQ ID NO: 7)	(SEQ ID NO: 561)
48	1	TGTTATTTGTTGTAG
	(SEQ ID NO: 7)	(SEQ ID NO: 562)
49		GTGGGAGCGGAAGTTTGA
	(SEQ ID NO: 7)	(SEQ ID NO: 563)
50		GTGGGAGTGGAAGTTTGA
	(SEQ ID NO: 7)	(SEQ ID NO: 564)
51		TAGAGTAAGTCGGGTTGT
	(SEQ ID NO: 7)	(SEQ ID NO: 565)
52		TAGAGTAAGTCGGGTTGTT
	(SEQ ID NO: 7)	(SEQ ID NO: 566)
53		GGTTAGGTCGTAGTATTG
-	(SEQ ID NO: 7)	(SEQ ID NO: 567)
54		GGTTAGGTTGTAGTATTG
	(SEQ ID NO: 7)	(SEQ ID NO: 568)
55	f	GGAGTTCGGTCGGGTTTT
-	(SEQ ID NO: 7)	(SEQ ID NO: 1005)
56	•	GGAGTTTGGTTTGGTTTT
67	(SEQ ID NO: 7)	(SEQ ID NO: 1006)
57	MYOD1	ATAGTAGTCGGGTGTTGG
<u></u>	(SEQ ID NO: 8)	(SEQ ID NO: 569)
58	MYOD1	ATAGTAGTTGGGTGTTGG

No:	Gene	Oligo:
	(SEQ ID NO: 8)	(SEQ ID NO: 570)
59	MYOD1	GTGTTAGTCGTTTAGGGT
	(SEQ ID NO: 8)	(SEQ ID NO: 1009)
60	MYOD1	GTGTTAGTTGTTTAGGGT
	(SEQ ID NO: 8)	(SEQ ID NO: 1010)
61	MYOD1	TAGTTGTTCGTTTGGGTT
	(SEQ ID NO: 8)	(SEQ ID NO: 571)
62	MYOD1	TAGTTGTTTGGGTT
	(SEQ ID NO: 8)	(SEQ ID NO: 572)
63	MYOD1	AATTAGGTCGGATAGGAG
	(SEQ ID NO: 8)	(SEQ ID NO: 975)
64	MYOD1	AATTAGGTTGGATAGGAG
	(SEQ ID NO: 8)	(SEQ ID NO: 976)
65	WT1	TAGTGAGACGÁGGTTTTT
	(SEQ ID NO: 9)	(SEQ ID NO: 1017)
66	WT1	TAGTGAGATGAGGTTTTT
	(SEQ ID NO: 9)	(SEQ ID NO: 1018)
67	WT1	TATATTGGCGAAGGTTAA
07	(SEQ ID NO: 9)	(SEQ ID NO: 967)
68	WT1	TATATTGGTGAAGGTTAA
00	(SEQ ID NO: 9)	(SEQ ID NO: 968)
69	WT1	TGTTATATCGGTTAGTTG
09	(SEQ ID NO: 9)	(SEQ ID NO: 959) (
70	WT1	TGTTATATTGGTTAGTTG
1/0	(SEQ ID NO: 9)	(SEQ ID NO: 960)
71	WT1	TTTAGTTTCGATTTTTGG
'1	(SEQ ID NO: 9)	(SEQ ID NO: 573)
72	WT1	TTTAGTTTTGG
1/2	(SEQ ID NO: 9)	(SEQ ID NO: 574)
73	HLA-F	ATAGGGTACGTTAAGGTT
1/3	(SEQ ID NO: 10)	(SEQ ID NO: 575)
74	HLA-F	ATAGGGTATGTTAAGGTT
1/4	(SEQ ID NO: 10)	(SEQ ID NO: 576)
75	HLA-F	TATTTGGGCGGTGAGTG
13	(SEQ ID NO: 10)	(SEQ ID NO: 939)
76	HLA-F	TATTTGGGTGAGTG
70	(SEQ ID NO: 10)	(SEQ ID NO: 940)
77	HLA-F	GAGAGAAACGGTTTTTGT
'	(SEQ ID NO: 10)	(SEQ ID NO: 577)
78	HLA-F	GAGAGAAATGGTTTTTGT
1/0	(SEQ ID NO: 10)	(SEQ ID NO: 578)
79	HLA-F	AGTTGTTTCGTAGATATT
19	(SEQ ID NO: 10)	(SEQ ID NO: 989)
80	HLA-F	AGTTGTTTGTAGATATT
00	(SEQ ID NO: 10)	(SEQ ID NO: 990)
81	ELK1	TGTTTAATCGTAGAGTTG
0.1	(SEQ ID NO: 11)	(SEQ ID NO: 579)
92	ELK1	TGTTTAATTGTAGAGTTG
82	(SEQ ID NO: 11)	(SEQ ID NO: 580)
02	ELK1	TTTGTTTCGTTGAGTAG
83	Ervi	HITOTITICOTTOACIAC

No:	Gene	Oligo:
	(SEQ ID NO: 11)	(SEQ ID NO: 581)
84	ELK1	TTTGTTTGTTGAGTAG
	(SEQ ID NO: 11)	(SEQ ID NO: 582)
85	ELK1	GAAGGGTTCGTTTTTAA
	(SEQ ID NO: 11)	(SEQ ID NO: 583)
86	ELK1	GAAGGGTTTGTTTTTAA
	(SEQ ID NO: 11)	(SEQ ID NO: 584)
87	ELK1	ATTAATAGCGTTTTGGTT
	(SEQ ID NO: 11)	(SEQ ID NO: 585)
88	ELK1	ATTAATAGTGTTTTGGTT
	(SEQ ID NO: 11)	(SEQ ID NO: 586)
89	APC	TTTAATCGTATAGTTTGT
	(SEQ ID NO: 12)	(SEQ ID NO: 971)
90	APC	TTTAATTGTATAGTTTGT
	(SEQ ID NO: 12)	(SEQ ID NO: 972)
91	APC	TATTTAGCGGATTATATA
	(SEQ ID NO: 12)	(SEQ ID NO: 587)
92	APC	TATTTAGTGGATTATATA
32	(SEQ ID NO: 12)	(SEQ ID NO: 588)
93	APC	TATTTTGGCGGGTTGTAT
93	(SEQ ID NO: 12)	(SEQ ID NO: 985)
94	APC	TATTTTGGTGGGTTGTAT
194	(SEQ ID NO: 12)	(SEQ ID NO: 986)
95	APC	AAGGTTATCGGTTTAAGA
93	(SEQ ID NO: 12)	(SEQ ID NO: 589)
06	APC	AAGGTTATTGGTTTAAGA
96	1	(SEQ ID NO: 590)
07	(SEQ ID NO: 12) APC	GGGGGACGACGTTTTTGT
97	r — -	(SEQ ID NO: 591)
<u></u>	(SEQ ID NO: 12) APC	GGGGGATGATGTTTTGT
98	(SEQ ID NO: 12)_	(SEQ ID NO: 592)
00	BCL2	AGTGTTTCGCGTGATTGA
99		(SEQ ID NO: 593)
100	(SEQ ID NO: 13)	AGTGTTTTGTGTGATTGA
100	BCL2 (SEQ ID NO: 13)	(SEQ ID NO: 594)
101	BCL2	TAAGTTGTCGTAGAGGGG
101	(SEQ ID NO: 13)	(SEQ ID NO: 595)
100		TAAGTTGTTGTAGAGGGG
102	BCL2 (SEQ ID NO: 13)	(SEQ ID NO: 596)
102		GGATTTCGTCGTTGTAGA
103	BCL2	(SEQ ID NO: 597)
104	(SEQ ID NO: 13)	GGATTTTGTTGTAGA
104	BCL2	(SEQ ID NO: 598)
105	(SEQ ID NO: 13)	TTTTGTTACGGTGGTGGA
105	BCL2	(SEQ ID NO: 1025)
100	(SEQ ID NO: 13)	TTTTGTTATGGTGGTGGA
106	BCL2	(SEQ ID NO: 1026)
107	(SEQ ID NO: 13)	GAGGGTGACGTAATTTAG
107	CALCA	(SEQ ID NO: 599)
100	(SEQ ID NO: 14)	GAGGGTGATGTAATTTAG
108	CALCA	UAUUUIUIAIIIAU

No:	Gene	Oligo:
	(SEQ ID NO: 14)	(SEQ ID NO: 600)
109	CALCA	TGTATTGGCGGAATTTTT
10)	(SEQ ID NO: 14)	(SEQ ID NO: 601)
110	CALCA	TGTATTGGTGGAATTTTT
110	(SEQ ID NO: 14)	(SEQ ID NO: 602)
111	CALCA	ATTAGGTTCGTGTTTTAG
111	(SEQ ID NO: 14)	(SEQ ID NO: 953)
112	CALCA	ATTAGGTTTGTGTTTTAG
112	(SEQ ID NO: 14)	(SEQ ID NO: 954)
113	CALCA	GTTAGTTTCGGGATATTT
113	(SEQ ID NO: 14)	(SEQ ID NO: 603)
114	CALCA	GTTAGTTTTGGGATATTT
114	■ 5	(SEQ ID NO: 604)
115	(SEQ ID NO: 14)	TAGAGGATCGTTTGAGTT
115	CDH1	(SEQ ID NO: 605)
116	(SEQ ID NO: 15)	TAGAGGATTGTTTGAGTT
116	CDH1	(SEQ ID NO: 606)
110	(SEQ ID NO: 15)	GTTGTGATCGTATTATTG
117	CDH1	(SEQ ID NO: 607)
110	(SEQ ID NO: 15)	GTTGTGATTGTATTATTG
118	CDH1	1
	(SEQ ID NO: 15)	(SEQ ID NO: 608) TTGGGATTCGAATTTAGT
119	CDH1	
	(SEQ ID NO: 15)	(SEQ ID NO: 609)
120	CDH1	TTGGGATTTGAATTTAGT
	(SEQ ID NO: 15)	(SEQ ID NO: 610)
121	CDH1	AGGGTTATCGCGTTTATG
	(SEQ ID NO: 15)	(SEQ ID NO: 983)
122	CDH1	AGGGTTATTGTGTTTATG
	(SEQ ID NO: 15)	(SEQ ID NO: 984)
123	CDH1	TAGTGGCGTCGGAATTGT
	(SEQ ID NO: 15)	(SEQ ID NO: 929)
124	CDH1	TAGTGGTGTTGGAATTGT
	(SEQ ID NO: 15)	(SEQ ID NO: 930)
125	CDKN1A	AGGTGTATCGTTTTATA
	(SEQ ID NO: 16)	(SEQ ID NO: 611)
126	CDKN1A	AGGTGTATTGTTTTATA
	(SEQ ID NO: 16)	(SEQ ID NO: 612)
127	CDKN1A	TGGGTTAGCGGTGAGTTA
	(SEQ ID NO: 16)	(SEQ ID NO: 613)
128	CDKN1A	TGGGTTAGTGGTGAGTTA
	(SEQ ID NO: 16)	(SEQ ID NO: 614)
129	CDKN1A	GTTTATTTCGTGGGGAAA
	(SEQ ID NO: 16)	(SEQ ID NO: 615)
130	CDKN1A	GTTTATTTTGTGGGGAAA
	(SEQ ID NO: 16)	(SEQ ID NO: 616)
131	CDKN1A	TTGGAATTCGGTTAGGTT
	(SEQ ID NO: 16)	(SEQ ID NO: 617)
132	CDKN1A	TTGGAATTTGGTTAGGTT
	(SEQ ID NO: 16)	(SEQ ID NO: 618)
133	CDKN1B (p.	27AAGAGAAACGTTGGAATA

No:	Gene	Oligo:
	Kip1)	(SEQ ID NO: 619)
	(SEQ ID NO: 17)	
134	CDKN1B (p27	AAGAGAAATGTTGGAATA
	Kip1)	(SEQ ID NO: 620)
	(SEQ ID NO: 17)	(DEQ ID No. 626)
135	CDKN1B (p27	TTTGATTTCGAGGGAGT
133	1 -	(SEQ ID NO: 621)
	Kipl)	(SEQ ID NO. 021)
	(SEQ ID NO: 17)	TOTAL ATTENDA COCCA CT
136		TTTGATTTTGAGGGGAGT
	Kip1)	(SEQ ID NO: 622)
	(SEQ ID NO: 17)	
137		GTATTTGGCGGTTGGATT
	Kipĺ)	(SEQ ID NO: 623)
1	(SEQ ID NO: 17)	
138	CDKN1B (p27	GTATTTGGTGGTTGGATT
	Kip1)	(SEQ ID NO: 624)
	(SEQ ID NO: 17)	
139		TATAATTTCGGGAAAGAA
	Kip1)	(SEO ID NO: 625)
	(SEQ ID NO: 17)	
140	CDKN1B (p2'	TATAATTTTGGGAAAGAA
	Kip1)	(SEQ ID NO: 626)
	(SEQ ID NO: 17)	(022/22 1/07 020)
141	CDKN2a	AGAGTGAACGTATTTAAA
141	(SEQ ID NO: 18)	(SEQ ID NO: 627)
142	CDKN2a	AGAGTGAATGTATTTAAA
142	(SEQ ID NO: 18)	(SEQ ID NO: 628)
142	CDKN2a	GTTGTTTTCGGTTGGTGT
143		(SEQ ID NO: 1029)
1.4	(SEQ ID NO: 18)	GTTGTTTTTGGTTGGTGT
144	CDKN2a	· · ·
	(SEQ ID NO: 18)	(SEQ ID NO: 1030)
145	CDKN2a	GATAGGGTCGGAGGGGT
	(SEQ ID NO: 18)	(SEQ ID NO: 629)
146	CDKN2a	GATAGGGTTGGAGGGGT
	(SEQ ID NO: 18)	(SEQ ID NO: 630)
147	CDKN2a	GGAGTTTTCGGTTGATTG
	(SEQ ID NO: 18)	(SEQ ID NO: 997)
148	CDKN2a	GGAGTTTTTGGTTGATTG
	(SEQ ID NO: 18)	(SEQ ID NO: 998)
149	CDKN2a	AATAGTTACGGTCGGAGG
ļ	(SEQ ID NO: 18)	(SEQ ID NO: 981)
150	CDKN2a	AATAGTTATGGTTGGAGG
	(SEQ ID NO: 18)	(SEQ ID NO: 982)
151	CDKN2B	ATATTTAGCGAGTAGTGT
	(SEQ ID NO: 19)	(SEQ ID NO: 631)
152	CDKN2B	ATATTTAGTGAGTAGTGT
132	(SEQ ID NO: 19)	(SEQ ID NO: 632)
153	CDKN2B	ATAGGGGGCGAGTTTAA
133	(SEQ ID NO: 19)	(SEQ ID NO: 633)
154	CDKN2B	ATAGGGGTGGAGTTTAA
134	CDRIAND	#1111000001100/101111/11

No:	Gene	Oligo:
	(SEQ ID NO: 19)	(SEQ ID NO: 634)
155	CDKN2B	TTATTGTACGGGGTTTTA
	(SEQ ID NO: 19)	(SEQ ID NO: 635)
156	CDKN2B	TTATTGTATGGGGTTTTA
	(SEQ ID NO: 19)_	(SEQ ID NO: 636)
157	CDKN2B	TTTTAAGTCGTAGAAGGA
	(SEQ ID NO: 19)	(SEQ ID NO: 637)
158	CDKN2B	TTTTAAGTTGTAGAAGGA
	(SEQ ID NO: 19)	(SEQ ID NO: 638)
159	CD44	GTGGGGTTCGGAGGTATA
	(SEQ ID NO: 20)	(SEQ ID NO: 919)
160	CD44	GTGGGGTTTGGAGGTATA
Ì	(SEQ ID NO: 20)	(SEQ ID NO: 920)
161	CD44	GGTAGTTTCGATTATTTA
	(SEQ ID NO: 20)	(SEQ ID NO: 639)
162	CD44	GGTAGTTTTGATTATTTA
Į.	(SEQ ID NO: 20)	(SEQ ID NO: 640)
163	CD44	TTGTTTAGCGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 897)
164	CD44	TTGTTTAGTGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 898)
165	CD44	TGGTGGTACGTAGTTTGG
	(SEQ ID NO: 20)	(SEQ ID NO: 641)
166	CD44	TGGTGGTATGTAGTTTGG
	(SEQ ID NO: 20)	(SEQ ID NO: 642)
167	CSPG2	AAGATTTTCGGTTAGTTT
	(SEQ ID NO: 21)	(SEQ ID NO: 963)
168	CSPG2	AAGATTTTTGGTTAGTTT
	(SEQ ID NO: 21)	(SEQ ID NO: 964)
169	CSPG2	ATGTGATTCGTTTGGGTA
	(SEQ ID NO: 21)	(SEQ ID NO: 643)
170	CSPG2	ATGTGATTTGTTTGGGTA
	(SEQ ID NO: 21)	(SEQ ID NO: 644)
171	CSPG2	GGGTAACGTCGAATTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 901)
172	CSPG2	GGGTAATGTTGAATTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 902)
173	CSPG2	AAAAATTCGCGAGTTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 945)
174	CSPG2	AAAAATTTGTGAGTTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 946)
175	DAPK1	GTTGGAGTCGAGGTTTGA
	(SEQ ID NO: 22)	(SEQ ID NO: 645)
176	DAPK1	GTTGGAGTTGA
<u> </u>	(SEQ ID NO: 22)	(SEQ ID NO: 646)
177	DAPK1	TTTTTTGTCGGATTGGTG
	(SEQ ID NO: 22)	(SEQ ID NO: 647)
178	DAPK1	TTTTTGTTGGATTGGTG
100	(SEQ ID NO: 22)	(SEQ ID NO: 648)
179	DAPK1	GAAGGGAGCGTATTTAT

No:	Gene	Oligo:
10.	(SEQ ID NO: 22)	(SEQ ID NO: 955)
180	DAPK1	GAAGGGAGTGTATTTAT
100	(SEQ ID NO: 22)	(SEQ ID NO: 956)
101	DAPK1	TTGTTTTCGGAAATTTG
181	l l	(SEQ ID NO: 935)
100	(SEQ ID NO: 22)	TTGTTTTTTGGAAATTTG
182	DAPK1	(SEQ ID NO: 936)
183	(SEQ ID NO: 22)	TTTGTATTCGGAGTTGGG
	EGFR	(SEQ ID NO: 961)
184	(SEQ ID NO: 23)	TTTGTATTTGGAGTTGGG
	EGFR	
	(SEQ ID NO: 23)	(SEQ ID NO: 962)
185	EGFR	GATGATTTCGAGGGTGTT
	(SEQ ID NO: 23)	(SEQ ID NO: 649)
186	EGFR	GATGATTTTGAGGGTGTT
	(SEQ ID NO: 23)	(SEQ ID NO: 650)
187	EGFR	GAGGGTTTCGTAGTGTTG
	(SEQ ID NO: 23)	(SEQ ID NO: 651)
188	EGFR	GAGGGTTTTGTAGTGTTG
	(SEQ ID NO: 23)	(SEQ ID NO: 652)
189	EGFR	TGGGGATTCGAATAAAGG
	(SEQ ID NO: 23)	(SEQ ID NO: 653)
190	EGFR	TGGGGATTTGAATAAAGG
	(SEQ ID NO: 23)	(SEQ ID NO: 654)
191	EGFR	ATTTGGTTCGATTTGGAT
	(SEQ ID NO: 23)	(SEQ ID NO: 931)
192	EGFR	ATTTGGTTTGATTTGGAT
	(SEQ ID NO: 23)	(SEQ ID NO: 932)
193	EYA4	TATATACGTGTGGGTA
	(SEQ ID NO: 24)	(SEQ ID NO: 655)
194	EYA4	TATATATGTGTGGGTA
	(SEQ ID NO: 24)	(SEQ ID NO: 656)
195	EYA4	AGTGTATGCGTAGAAGGT
	(SEQ ID NO: 24)	(SEQ ID NO: 923)
196	EYA4	AGTGTATGTGTAGAAGGT
	(SEQ ID NO: 24)	(SEQ ID NO: 924)
197	EYA4	TTTAGATACGÁAATGTTA
177	(SEQ ID NO: 24)	(SEQ ID NO: 657)
198	EYA4	TTTAGATATGAAATGTTA
150	(SEQ ID NO: 24)	(SEQ ID NO: 658)
199	EYA4	AAGTAAGTCGTTGTT
199	(SEQ ID NO: 24)	(SEQ ID NO: 921)
200	EYA4	AAGTAAGTTGTTGTT
200	(SEQ ID NO: 24)	(SEQ ID NO: 922)
201	GSTP1	GGTTTTTTCGGTTAGTTG
201	(SEQ ID NO: 25)	(SEQ ID NO: 659)
202	GSTP1	GGTTTTTTGGTTAGTTG
202		(SEQ ID NO: 660)
	(SEQ ID NO: 25)	GGAGTTCGCGGGATTTTT
203	GSTP1	(SEQ ID NO: 905)
204	(SEQ ID NO: 25)	GGAGTTTGTGGGATTTTT
204	GSTP1	OUVOITIOIOOUVIIIII

No:	Gene	Oligo:
	(SEQ ID NO: 25)	(SEQ ID NO: 906)
205	GSTP1	GTAGTTTTCGTTATTAGT
	(SEQ ID NO: 25)	(SEQ ID NO: 661)
206	GSTP1	GTAGTTTTTGTTATTAGT
200	(SEQ ID NO: 25)	(SEQ ID NO: 662)
207	GTBP/MSH6	GAGGAATTCGGGTTTTAG
207	(SEQ ID NO: 26)	(SEQ ID NO: 951)
208	GTBP/MSH6	GAGGAATTTGGGTTTTAG
200	(SEQ ID NO: 26)	(SEQ ID NO: 952)
209	GTBP/MSH6	TTTGTTGGCGGGAAATTT
2.05	(SEQ ID NO: 26)	(SEQ ID NO: 925)
210	GTBP/MSH6	TTTGTTGGTGGGAAATTT
210	(SEQ ID NO: 26)	(SEQ ID NO: 926)
211	GTBP/MSH6	TTTTGTCGGACGGAGTTT
211	(SEQ ID NO: 26)	(SEQ ID NO: 663)
212	GTBP/MSH6	TTTTGTTGGATGGAGTTT
212	(SEQ ID NO: 26)	(SEQ ID NO: 664)
213	GTBP/MSH6	AAGGTTTAATCGTTTTGT
213	(SEQ ID NO: 26)	(SEQ ID NO: 665)
214	GTBP/MSH6	AAGGTTTAATTGTTTTGT
214	(SEQ ID NO: 26)	(SEQ ID NO: 666)
215	HIC-1	TTAAAACGGCGTATAGGG
213	(SEQ ID NO: 27)	(SEQ ID NO: 667)
216	HIC-1	TTAAAATGGTGTATAGGG
216		(SEQ ID NO: 668)
217	(SEQ ID NO: 27) HIC-1	AGGAGATTCGAAAGTTTA
217	(SEQ ID NO: 27)	(SEQ ID NO: 669)
218	HIC-1	AGGAGATTTGAAAGTTTA
210	(SEQ ID NO: 27)	(SEQ ID NO: 670)
219	HIC-1	TTTTAGAGCGTTAGGGTT
219	(SEQ ID NO: 27)	(SEQ ID NO: 1021)
220	HIC-1	TTTTAGAGTGTTAGGGTT
220	(SEQ ID NO: 27)	(SEQ ID NO: 1022)
221	HRAS	ATAGTGGGCGTAATTGGT
221	(SEQ ID NO: 28)	(SEQ ID NO: 671)
222	HRAS	ATAGTGGGTGTAATTGGT
222	(SEQ ID NO: 28)	(SEQ ID NO: 672)
223	HRAS	AAATTGGACGTTTAGTTG
223	(SEQ ID NO: 28)	(SEQ ID NO: 673)
224	HRAS	AAATTGGATGTTTAGTTG
224	(SEQ ID NO: 28)	(SEQ ID NO: 674)
225	HRAS	TAGAAGTCGAGAGATTTG
223	(SEQ ID NO: 28)	(SEQ ID NO: 675)
226	HRAS	TAGAAGTTGAGAGATTTG
220	(SEQ ID NO: 28)	(SEQ ID NO: 676)
227	HRAS	GAATATTTCGAAGTTTGT
221	(SEQ ID NO: 28)	(SEQ ID NO: 677)
228	HRAS	GAATATTTTGAAGTTTGT
ZZ8	(SEQ ID NO: 28)	(SEQ ID NO: 678)
229	IGF2	AGTTTGAACGATGTAAGA

PCT/EP03/02035

		36
No:	Gene	Oligo:
	(SEQ ID NO: 29)	(SEQ ID NO: 973)
230	IGF2	AGTTTGAATGATGTAAGA
	(SEQ ID NO: 29)	(SEQ ID NO: 974)
231	IGF2	GGTTATTACGÁTAATTTG
231	(SEQ ID NO: 29)_	(SEQ ID NO: 679)
232	IGF2	GGTTATTATGATAATTTG
232	(SEQ ID NO: 29)	(SEQ ID NO: 680)
233	IGF2	TTGTATGGTCGAGTTTAT
233	(SEQ ID NO: 29)	(SEQ ID NO: 941)
234	IGF2	TTGTATGGTTGAGTTTAT
234	(SEQ ID NO: 29)	(SEQ ID NO: 942)
235	IGF2	GATTAGGGCGGGAAATAT
233	(SEQ ID NO: 29)	(SEQ ID NO: 937)
236	IGF2	GATTAGGGTGGGAAATAT
230	(SEQ ID NO: 29)	(SEQ ID NO: 938)
237	IGF2	TGGAGTTTACGGAGGTTT
237	· ·	(SEQ ID NO: 681)
220	(SEQ ID NO: 29)	TGGAGTTTATGGAGGTTT
238	IGF2	(SEQ ID NO: 682)
200	(SEQ ID NO: 29)	TTAATTAACGGGTGGGTA
239	LKB1	
0.40	(SEQ ID NO: 30)	(SEQ ID NO: 683) TTAATTAATGGGTGGGTA
240	LKB1	
	(SEQ ID NO: 30)	(SEQ ID NO: 684) TTTAGGTTCGTAAGTTTA
241	LKB1	
	(SEQ ID NO: 30)	(SEQ ID NO: 965) TTTAGGTTTGTAAGTTTA
242	LKB1	
	(SEQ ID NO: 30)	(SEQ ID NO: 966)
243	LKB1	AGGGAGGTCGTTGGTATT
	(SEQ ID NO: 30)	(SEQ ID NO: 933)
244	LKB1	AGGGAGGTTGTTGGTATT
	(SEQ ID NO: 30)	(SEQ ID NO: 934)
245	MGMT	TAAGGATACGAGTTATAT
	(SEQ ID NO: 31)	(SEQ ID NO: 685)
246	MGMT	TAAGGATATGAGTTATAT
	(SEQ ID NO: 31)	(SEQ ID NO: 686)
247	MGMT	TTGGAGAGCGGTTGAGTT
	(SEQ ID NO: 31)	(SEQ ID NO: 687)
248	MGMT	TTGGAGAGTGGTTGAGTT
	(SEQ ID NO: 31)	(SEQ ID NO: 688)
249	MGMT	TAGGTTATCGGTGATTGT
	(SEQ ID NO: 31)	(SEQ ID NO: 689)
250	MGMT	TAGGTTATTGGTGATTGT
	(SEQ ID NO: 31)	(SEQ ID NO: 690)
251	MGMT	TAGGGGAGCGTTTTAGG
	(SEQ ID NO: 31)	(SEQ ID NO: 691)
252	MGMT	TAGGGGAGTGGTTTTAGG
	(SEQ ID NO: 31)	(SEQ ID NO: 692)
253	MGMT	AGTAGGATCGGGATTTTT
	(SEQ ID NO: 31)	(SEQ ID NO: 1001)
254	MGMT	AGTAGGATTGGGATTTTT

No:	Gene	Oligo:
	(SEQ ID NO: 31)	(SEQ ID NO: 1002)
255	MLH1	TTGAGAAGCGTTAAGTAT
	(SEQ ID NO: 32)	(SEQ ID NO: 693)
256	MLH1	TTGAGAAGTGTTAAGTAT
	(SEQ ID NO: 32)	(SEQ ID NO: 694)
257	MLH1	TTAGGTAGCGGGTAGTAG
	(SEQ ID NO: 32)	(SEQ ID NO: 949)
258	MLH1	TTAGGTAGTGGGTAGTAG
	(SEQ ID NO: 32)	(SEQ ID NO: 950)
259	MLH1	GTAGTAGTCGTTTTAGGG
	(SEQ ID NO: 32)	(SEQ ID NO: 695)
260	MLH1	GTAGTAGTTGTTTTAGGG
	(SEQ ID NO: 32)	(SEQ ID NO: 696)
261	MLH1	ATAGTTGTCGTTGAAGGG
	(SEQ ID NO: 32)	(SEQ ID NO: 697)
262	MLH1	ATAGTTGTTGAAGGG
[(SEQ ID NO: 32)	(SEQ ID NO: 698)
263	MLH1	TTGGATGGCGTAAGTTAT
	(SEQ ID NO: 32)	(SEQ ID NO: 699)
264	MLH1	TTGGATGGTGTAAGTTAT
	(SEQ ID NO: 32)	(SEQ ID NO: 700)
265	MNCA9	TAAAAGGCCTTTTGTGA
	(SEQ ID NO: 33)	(SEQ ID NO: 701)
266	MNCA9	TAAAAGGTTTTTGTGA
	(SEQ ID NO: 33)	(SEQ ID NO: 702)
267	MNCA9	TAGTTAGTCGTATGGTTT
	(SEQ ID NO: 33)	(SEQ ID NO: 703)
268	MNCA9	TAGTTAGTTGTATGGTTT
	(SEQ ID NO: 33)	(SEQ ID NO: 704)
269	MNCA9	GATTTATTCGGAGAGGAG
	(SEQ ID NO: 33)	(SEQ ID NO: 705)
270	MNCA9	GATTTATTTGGAGAGGAG
L	(SEQ ID NO: 33)	(SEQ ID NO: 706)
271	MSH3	ATTTTCGTTCGATGATA
	(SEQ ID NO: 34)	(SEQ ID NO: 707)
272	MSH3	ATTTTTTTTTGATGATA
	(SEQ ID NO: 34)	(SEQ ID NO: 708)
273	MSH3	AGTTTAGTCGGGGTTATA
ļ	(SEQ ID NO: 34)	(SEQ ID NO: 709)
274	MSH3	AGTTTAGTTGGGGTTATA
	(SEQ ID NO: 34)	(SEQ ID NO: 710)
275	MSH3	GGGTGAAGCGTTGAGGTT
	(SEQ ID NO: 34)	(SEQ ID NO: 711)
276	MSH3	GGGTGAAGTGTTGAGGTT
	(SEQ ID NO: 34)	(SEQ ID NO: 712)
277	MSH3	AGTATTTTCGTTTGAGGA
	(SEQ ID NO: 34)	(SEQ ID NO: 1015)
278	MSH3	AGTATTTTGTTTGAGGA
	(SEQ ID NO: 34)	(SEQ ID NO: 1016)
279	MYC	TTAGAGTGTTCGGTTGTT

WO 03/072821 PCT/EP03/02035

No:	Gene	Oligo:
	(SEQ ID NO: 35)	(SEQ ID NO: 713)
280	MYC	TTAGAGTGTTTGTT
	(SEQ ID NO: 35)	(SEQ ID NO: 714)
281	MYC	TTATAATGCGAGGGTTTG
	(SEQ ID NO: 35)	(SEQ ID NO: 1019)
282	MYC	TTATAATGTGAGGGTTTG
	(SEQ ID NO: 35)	(SEQ ID NO: 1020)
283	MYC	AGGATTTTCGAGTTGTGT
	(SEQ ID NO: 35)	(SEQ ID NO: 715)
284	MYC	AGGATTTTTGAGTTGTGT
	(SEQ ID NO: 35)	(SEQ ID NO: 716)
285	MYC	AATTTTAGCGAGAGGTAG
	(SEQ ID NO: 35)	(SEQ ID NO: 717)
286	MYC	AATTTTAGTGAGAGGTAG
	(SEQ ID NO: 35)	(SEQ ID NO: 718)
287	N33	TTGGTTCGGGAAAGGTAA
Γ.	(SEQ ID NO: 36)	(SEQ ID NO: 977)
288	N33	TTGGTTTGGGAAAGGTAA
	(SEQ ID NO: 36)	(SEQ ID NO: 978)
289	N33	TGTTATTTCGGAGGGTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 909)
290	N33	TGTTATTTTGGAGGGTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 910)
291	N33	GTTTAGTTAGCGGGTTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 943)
292	N33	GTTTAGTTAGTGGGTTTT
7-	(SEQ ID NO: 36)	(SEQ ID NO: 944)
293	N33	ATTTAGTTCGGGGGAGGA
	(SEQ ID NO: 36)	(SEQ ID NO: 993)
294	N33	ATTTAGTTTGGGGGAGGA
۲, ۱	(SEQ ID NO: 36)	(SEQ ID NO: 994)
295	PAX6	TATTGTTTCGGTTGTTAG
	(SEQ ID NO: 37)	(SEQ ID NO: 719)
296	PAX6	TATTGTTTTGGTTGTTAG
	(SEQ ID NO: 37)	(SEQ ID NO: 720)
297	PAX6	GTTAGTAGCGAGTTTAGG
	(SEQ ID NO: 37)	(SEQ ID NO: 721)
298	PAX6	GTTAGTAGTGAGTTTAGG
	(SEQ ID NO: 37)	(SEQ ID NO: 722)
299	PAX6	AGAGTTTAGCGTATTTTT
	(SEQ ID NO: 37)	(SEQ ID NO: 723)
300	PAX6	AGAGTTTAGTGTATTTTT
	(SEQ ID NO: 37)	(SEQ ID NO: 724)
301	PGR	GAATTTAGCGAGGGATTG
	(SEQ ID NO: 38)	(SEQ ID NO: 725)
302	PGR	GAATTTAGTGAGGGATTG
	(SEQ ID NO: 38)	(SEQ ID NO: 726)
303	PGR	AGTATGTACGAGTTTGAT
	(SEQ ID NO: 38)	(SEQ ID NO: 727)
304	PGR	AGTATGTATGAGTTTGAT

PCT/EP03/02035

A.T.		Oliga
No:	Gene	Oligo:
	(SEQ ID NO: 38)	(SEQ ID NO: 728) TTAAGTGTCGGATTTGTG
305	PGR	· · · · · · · · · · · · · · · · · · ·
	(SEQ ID NO: 38)	(SEQ ID NO: 1011) TTAAGTGTTGGATTTGTG
306	PGR	
	(SEQ ID NO: 38)	(SEQ ID NO: 1012)
307	PGR	GGGATAAACGATAGTTAT
	(SEQ ID NO: 38)	(SEQ ID NO: 729)
308	PGR	GGGATAAATGATAGTTAT
	(SEQ ID NO: 38)	(SEQ ID NO: 730)
309	PTEN	AGAGTTTGCGGTTTGGGG
	(SEQ ID NO: 39)	(SEQ ID NO: 731)
310	PTEN	AGAGTTTGTGGTTTGGGGT
	(SEQ ID NO: 39)	(SEQ ID NO: 732)
311	PTEN	ATTTTGCGTTCGTATTTA
	(SEQ ID NO: 39)	(SEQ ID NO: 987)
312	PTEN	ATTTTGTGTTTTTA
	(SEQ ID NO: 39)	(SEQ ID NO: 988)
313	PTEN	AGAGTTATCGTTTTGTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 957)
314	PTEN	AGAGTTATTGTTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 958)
315	PTEN	TGATGTGGCGGGATTTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 947)
316	PTEN	TGATGTGGTGGGATTTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 948)
317	RARB	TAGTAGTTCGGGTAGGGT
71,	(SEQ ID NO: 40)	(SEQ ID NO: 991)
318	RARB	TAGTAGTTTGGGTAGGGT
۲10	(SEQ ID NO: 40)	(SEQ ID NO: 992)
319	RARB	GGGTTTATCGÁAAGTTTA
517	(SEQ ID NO: 40)	(SEQ ID NO: 733)
320	RARB	GGGTTTATTGAAAGTTTA
520	(SEQ ID NO: 40)	(SEQ ID NO: 734)
321	RARB	AGTTTATTCGTATATATT
521	(SEQ ID NO: 40)	(SEQ ID NO: 735)
322	RARB	AGTTTATTTGTATATATT
522	(SEQ ID NO: 40)	(SEQ ID NO: 736)
323	RARB	TTTTTATGCGAGTTGTTT
323	(SEQ ID NO: 40)	(SEQ ID NO: 737)
224	RARB	TTTTTATGTGAGTTGTTT
324	l.	(SEQ ID NO: 738)
225	(SEQ ID NO: 40)	ATAGAGTTCGGTATTGGT
325	SFN (SEC ID NO: 41)	(SEQ ID NO: 739)
226	(SEQ ID NO: 41)	ATAGAGTTTGGTATTGGT
326	SFN	(SEQ ID NO: 740)
205	(SEQ ID NO: 41)	GTAGGTCGAACGTTATGA
327	SFN	i e e e e e e e e e e e e e e e e e e e
200	(SEQ ID NO: 41)	(SEQ ID NO: 741) GTAGGTTGAATGTTATGA
328	SFN	
200	(SEQ ID NO: 41)	(SEQ ID NO: 742) AAAAGTAACGAGGAGGGT
329	SFN	MAAAUIAACUAUUAUUAUI

WO 03/072821

No:	Gene	Oligo:
	(SEQ ID NO: 41)	(SEQ ID NO: 743)
330	SFN	AAAAGTAATGAGGAGGGT
	(SEQ ID NO: 41)	(SEQ ID NO: 744)
331	S100A2	TTTAATTGCGGTTGTGTG
	(SEQ ID NO: 42)	(SEQ ID NO: 745)
332	S100A2	TTTAATTGTGGTTGTG
	(SEQ ID NO: 42)	(SEQ ID NO: 746)
333	S100A2	TATATAGGCGTATGTATG
	(SEQ ID NO: 42)	(SEQ ID NO: 747)
334	S100A2	TATATAGGTGTATGTATG
	(SEQ ID NO: 42)	(SEQ ID NO: 748)
335	S100A2	TATGTATACGAGTATTGG
	(SEQ ID NO: 42)	(SEQ ID NO: 999)
336	S100A2	TATGTATATGAGTATTGG
	(SEQ ID NO: 42)	(SEQ ID NO: 1000)
337	S100A2	AGTTTTAGCGTGTGTTTA
75.	(SEQ ID NO: 42)	(SEQ ID NO: 749)
338	S100A2	AGTTTTAGTGTGTTTTA
	(SEQ ID NO: 42)	(SEQ ID NO: 750)
339	TGFBR2	ATTTGGAGCGAGGAATTT
	(SEQ ID NO: 43)	(SEQ ID NO: 751)
340	TGFBR2	ATTTGGAGTGAGGAATTT
540	(SEQ ID NO: 43)	(SEQ ID NO: 752)
341	TGFBR2	TTGAAAGTCGGTTAAAGT
541	(SEQ ID NO: 43)	(SEQ ID NO: 753)
342	TGFBR2	TTGAAAGTTGGTTAAAGT
P-12	(SEQ ID NO: 43)	(SEQ ID NO: 754)
343	TGFBR2	AAAGTTTTCGGAGGGGTT
7.5	(SEQ ID NO: 43)	(SEQ ID NO: 907)
344	TGFBR2	AAAGTTTTTGGAGGGGTT
544	(SEQ ID NO: 43)	(SEQ ID NO: 908)
345	TGFBR2	GGTAGTTACGÁGAGAGTT
7 13	(SEQ ID NO: 43)	(SEQ ID NO: 755)
346	TGFBR2	GGTAGTTATGAGAGAGTT
	(SEQ ID NO: 43)	(SEQ ID NO: 756)
347	TIMP3	AGGTTTTTCGTTGGAGAA
[(SEQ ID NO: 44)	(SEQ ID NO: 757)
348	TIMP3	AGGTTTTTTGTTGGAGAA
[(SEQ ID NO: 44)	(SEQ ID NO: 758)
349	TIMP3	GAAAATATCGGTATTTTG
[]	(SEQ ID NO: 44)	(SEQ ID NO: 759)
350	TIMP3	GAAAATATTGGTATTTTG
	(SEQ ID NO: 44)	(SEQ ID NO: 760)
351	TIMP3	GGGATAAGCGÁATTTTTT
	(SEQ ID NO: 44)	(SEQ ID NO: 761)
352	TIMP3	GGGATAAGTGAATTTTTT
	(SEQ ID NO: 44)	(SEQ ID NO: 762)
353	TIMP3	TTTTATTACGTATGTTTT
[]	(SEQ ID NO: 44)	(SEQ ID NO: 763)
354	TIMP3	TTTTATTATGTÁTGTTTT

7.7	[C	Oliga
No:	Gene	Oligo: (SEQ ID NO: 764)
0.5.5	(SEQ ID NO: 44)	AAGTTGAACGTTTAGGTA
355	TP53	1 ·
	(SEQ ID NO: 45)	(SEQ ID NO: 765)
356	TP53	AAGTTGAATGTTTAGGTA
	(SEQ ID NO: 45)	(SEQ ID NO: 766)
357	TP53	TTTTGAGTCGGTTTAAAG
	(SEQ ID NO: 45)	(SEQ ID NO: 767)
358	TP53	TTTTGAGTTGGTTTAAAG
	(SEQ ID NO: 45)	(SEQ ID NO: 768)
359	TP53	TATTTATTCGGTGTTGGG
	(SEQ ID NO: 45)	(SEQ ID NO: 769)
360	TP53	TATTTATTTGGTGTTGGG
	(SEQ ID NO: 45)	(SEQ ID NO: 770)
361	TP53	TTGGATTTCGAAATATTG
	(SEQ ID NO: 45)	(SEQ ID NO: 771)
362	TP53	TTGGATTTTGAAATATTG
	(SEQ ID NO: 45)	(SEQ ID NO: 772)
363	TP73	TGATTTAGCGTAGGTTTG
·	(SEQ ID NO: 46)	(SEQ ID NO: 773)
364	TP73	TGATTTAGTGTAGGTTTG
	(SEQ ID NO: 46)	(SEQ ID NO: 774)
365	TP73	TTAGAGTTCGAGTTTATA
	(SEQ ID NO: 46)	(SEQ ID NO: 775)
366	TP73	TTAGAGTTTGAGTTTATA
	(SEQ ID NO: 46)	(SEQ ID NO: 776)
367	ТР73	AAGTTACGGGTTTTATTG
Γ''	(SEQ ID NO: 46)	(SEQ ID NO: 915)
368	TP73	AAGTTATGGGTTTTATTG
	(SEQ ID NO: 46)	(SEQ ID NO: 916)
369	TP73	GGAAGTTTCGATGGTTTA
707	(SEQ ID NO: 46)	(SEQ ID NO: 777)
370	TP73	GGAAGTTTTGATGGTTTA
7,0	(SEQ ID NO: 46)	(SEQ ID NO: 778)
371	VHL	TTTATAAGCGTGATGATT
7,1	(SEQ ID NO: 47)	(SEO ID NO: 779)
372	VHL	TTTATAAGTGTGATGATT
7/2	(SEQ ID NO: 47)	(SEQ ID NO: 780)
373	VHL	GGTGTTTTCGTGTGAGAT
٦١٦	(SEQ ID NO: 47)	(SEQ ID NO: 781)
374	VHL	GGTGTTTTTGTGTGAGAT
Ρ/-	(SEQ ID NO: 47)	(SEQ ID NO: 782)
375	VHL	TGTGAGATGCGTTATTTT
3/3	(SEQ ID NO: 47)	(SEQ ID NO: 783)
376	VHL	TGTGAGATGTGTTATTTT
7/0	(SEQ ID NO: 47)	(SEQ ID NO: 784)
377	VHL	TATATTGCGCGTTTGATA
P''	(SEQ ID NO: 47)	(SEQ ID NO: 785)
378	VHL	TATATTGTGTTTTGATA
5/6	(SEQ ID NO: 47)	(SEQ ID NO: 786)
379	CDKN1C	ATGAAGAACGGTTAAGGG
D17_	CDIMITO	F-1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

No:	Gene	Oligo:
_	(SEQ ID NO: 48)	(SEQ ID NO: 787)
380	CDKN1C	ATGAAGAATGGTTAAGGG
	(SEQ ID NO: 48)	(SEQ ID NO: 788)
381	CDKN1C	TTTTATTTCGAGTTAGGT
	(SEQ ID NO: 48)	(SEQ ID NO: 789)
382	CDKN1C	TTTTATTTTGAGTTAGGT
	(SEQ ID NO: 48)	(SEQ ID NO: 790)
383	CDKN1C	TTAAGTTACGGTTATTAG
	(SEQ ID NO: 48)	(SEQ ID NO: 791)
384	CDKN1C	TTAAGTTATGGTTATTAG
	(SEQ ID NO: 48)	(SEQ ID NO: 792)
385	CDKN1C	TTAGTGTTCGTTTGGAAT
	(SEQ ID NO: 48)	(SEQ ID NO: 793)
386	CDKN1C	TTAGTGTTTGGAAT
	(SEQ ID NO: 48)	(SEQ ID NO: 794)
387	CAV1	TTGGTATCGTTGAAGAAT
50,	(SEQ ID NO: 49)	(SEQ ID NO: 795)
388	CAV1	TTGGTATTGTTGAAGAAT
500	(SEQ ID NO: 49)	(SEQ ID NO: 796)
389	CAV1	TAGATTCGGAGGTAGGTA
507	(SEQ ID NO: 49)	(SEQ ID NO: 911)
390	CAV1	TAGATTTGGAGGTAGGTA
370	(SEQ ID NO: 49)	(SEQ ID NO: 912)
391	CAV1	TGGGGGTTCGAAAAAGTG
391	(SEQ ID NO: 49)	(SEQ ID NO: 797)
392	CAV1	TGGGGGTTTGAAAAAGTG
192	(SEQ ID NO: 49)	(SEQ ID NO: 798)
393	CAV1	GAAGTGTTCGTTTTTGTT
555	(SEQ ID NO: 49)	(SEQ ID NO: 799)
394	CAV1	GAAGTGTTTTTTGTT
574	(SEQ ID NO: 49)	(SEQ ID NO: 800)
395	CDH13	GAAGTGGTCGTTAGTTTT
393	(SEQ ID NO: 50)	(SEQ ID NO: 801)
396	CDH13	GAAGTGGTTAGTTTTT
570	(SEQ ID NO: 50)	(SEQ ID NO: 802)
397	CDH13	TTGTTTAGCGTGATTTGT
577	(SEQ ID NO: 50)	(SEQ ID NO: 803)
398	CDH13	TTGTTTAGTGTGATTTGT
576	(SEQ ID NO: 50)	(SEQ ID NO: 804)
399	CDH13	AAGGAATTCGTTTTGTAA
	(SEQ ID NO: 50)	(SEQ ID NO: 903)
400	CDH13	AAGGAATTTGTTTGTAA
100	(SEQ ID NO: 50)	(SEQ ID NO: 904)
401	CDH13	AATGTTTTCGTGATGTTG
101	(SEQ ID NO: 50)	(SEQ ID NO: 895)
402	CDH13	AATGTTTTGTGATGTTG
702	(SEQ ID NO: 50)	(SEQ ID NO: 896)
403	DRG1	GAGTAGGACGGTGTTAAG
703	(SEQ ID NO: 51)	(SEQ ID NO: 805)
	" LILU III I I I I I I I I I I I I I I I	" ~~~ TT TT TO

No:	Gene	Oligo:
	(SEQ ID NO: 51)	(SEQ ID NO: 806)
105	DRG1	AAATTTAACGTTGGGTAG
	(SEQ ID NO: 51)	(SEQ ID NO: 807)
406	DRG1	AAATTTAATGTTGGGTAG
	(SEQ ID NO: 51)	(SEQ ID NO: 808)
407	DRG1	GATAATGACGGTGTTAGT
,	(SEQ ID NO: 51)	(SEQ ID NO: 809)
408	DRG1	GATAATGATGGTGTTAGT
100	(SEQ ID NO: 51)	(SEQ ID NO: 810)
409	DRG1	TGGTTGTACGTTAGGAGT
105	(SEQ ID NO: 51)	(SEQ ID NO: 811)
410	DRG1	TGGTTGTATGTTAGGAGT
710	(SEQ ID NO: 51)	(SEQ ID NO: 812)
411	PTGS2	TTTATTTCGTGGGTAAA
711	(SEQ ID NO: 52)	(SEQ ID NO: 913)
412	PTGS2	TTTATTTTGTGGGTAAA
712	(SEQ ID NO: 52)	(SEQ ID NO: 914)
413	PTGS2	AGTTATTTCGTTATATGG
713	(SEQ ID NO: 52)	(SEQ ID NO: 1007)
414	PTGS2	AGTTATTTGTTATATGG
414	(SEQ ID NO: 52)	(SEQ ID NO: 1008)
415	PTGS2	ATTTAAGGCGATTAGTTT
713	(SEQ ID NO: 52)	(SEQ ID NO: 813)
416	PTGS2	ATTTAAGGTGATTAGTTT
410	(SEQ ID NO: 52)	(SEQ ID NO: 814)
417	PTGS2	ATATTTGGCGGAAATTTG
71/	(SEQ ID NO: 52)	(SEQ ID NO: 1023)
418	PTGS2	ATATTTGGTGGAAATTTG
710	(SEQ ID NO: 52)	(SEQ ID NO: 1024)
419	THBS1	GGAGAGTTAGCGAGGGTT
717	(SEQ ID NO: 53)	(SEQ ID NO: 815)
420	THBS1	GGAGAGTTAGTGAGGGTT
720	(SEQ ID NO: 53)_	(SEQ ID NO: 816)
421	THBS1	TATTTTAACGAATGGTTT
	(SEQ ID NO: 53)	(SEQ ID NO: 817)
422	THBS1	TATTTTAATGAATGGTTT
1.22	(SEQ ID NO: 53)	(SEQ ID NO: 818)
423	THBS1	TTATAAAACGGGTTTAGT
,23	(SEQ ID NO: 53)	(SEQ ID NO: 819)
424	THBS1	TTATAAAATGGGTTTAGT
1.2.	(SEQ ID NO: 53)	(SEQ ID NO: 820)
425	THBS1	AGGTATTTCGGGAGATTA
.23	(SEQ ID NO: 53)	(SEQ ID NO: 821)
426	THBS1	AGGTATTTTGGGAGATTA
-20	(SEQ ID NO: 53)	(SEQ ID NO: 822)
427	TPEF (=TMEFF	2;ATTTGTTTCGATTAATTT
'-'	=HPP1)	(SEQ ID NO: 979)
	(SEQ ID NO: 54)	<u>·</u>
428	TPEF (=TMEFF	2;ATTTGTTTTGATTAATTT
	=HPP1)	(SEQ ID NO: 980)

		44
No:	Gene	Oligo:
	(SEQ ID NO: 54)	
429	TPEF (=TMEFF2	ATAGGTTACGGGTTGGAG
ļ	=HPP1)	(SEQ ID NO: 917)
	(SEQ ID NO: 54)	
430	TPEF (=TMEFF2	ATAGGTTATGGGTTGGAG
	=HPP1)	(SEQ ID NO: 918)
	(SEQ ID NO: 54)	
431	TPEF (=TMEFF2	;AATTTGCGAACGTTTGGG
	=HPP1)	(SEQ ID NO: 899)
	(SEQ ID NO: 54)	
432	TPEF (=TMEFF2	;AATTTGTGAATGTTTGGG
.52	=HPP1)	(SEQ ID NO: 900)
	(SEQ ID NO: 54)	(022 12 1.0000)
433	DNMT1	AGTGGGTTCGTTTAAGTT
133	(SEQ ID NO: 55)	(SEQ ID NO: 823)
434	DNMT1	AGTGGGTTTGTTTAAGTT
ריין	(SEQ ID NO: 55)	(SEQ ID NO: 824)
435	DNMT1	TTTTTTACGCGGAGTAGT
133	(SEQ ID NO: 55)	(SEQ ID NO: 825)
436	DNMT1	TTTTTTATGTGGAGTAGT
730	(SEQ ID NO: 55)	(SEQ ID NO: 826)
437	DNMT1	GAGAGAGGCGATATTTTG
737	(SEQ ID NO: 55)	(SEQ ID NO: 827)
438	DNMT1	GAGAGAGGTGATATTTTG
736	(SEQ ID NO: 55)	(SEQ ID NO: 828)
439	DNMT1	GTATTAAACGGAGAGAGGG
433	(SEQ ID NO: 55)	(SEQ ID NO: 829)
440	DNMT1	GTATTAAATGGAGAGAGG
סדק	(SEQ ID NO: 55)	(SEQ ID NO: 830)
441	CEA	AAGTGTTCGCGGTTGTTT
771	(SEQ ID NO: 56)	(SEQ ID NO: 1003)
442	CEA	AAGTGTTTGTGGTTGTTT
772	(SEQ ID NO: 56)	(SEQ ID NO: 1004)
443	CEA	TTTTGAGTCGTAGTTTAG
773	(SEQ ID NO: 56)	(SEQ ID NO: 831)
444	CEA	TTTTGAGTTGTAGTTTAG
777	(SEQ ID NO: 56)	(SEQ ID NO: 832)
445	CEA	AATAGATACGGAGAGGGA
دجم	(SEQ ID NO: 56)	(SEQ ID NO: 833)
446	CEA	AATAGATATGGAGAGGGA
140	(SEQ ID NO: 56)	(SEQ ID NO: 834)
447	MB	AGAAGGTGCGTGAGAGGT
777	(SEQ ID NO: 57)	(SEQ ID NO: 835)
448	MB	AGAAGGTGTGAGAGGT
770	(SEQ ID NO: 57)	(SEQ ID NO: 836)
449	MB	GGGTTAGTCGGGGTATTT
לדק	(SEQ ID NO: 57)	(SEQ ID NO: 837)
450	MB	GGGTTAGTTGGGGTATTT
7.50	(SEQ ID NO: 57)	(SEQ ID NO: 838)
451	MB	GGGGATAGCGAGTTATTG
T7.	μτι	

PCT/EP03/02035

		45
No:	Gene	Oligo:
	(SEQ ID NO: 57)	(SEQ ID NO: 839)
452	MB	GGGGATAGTGAGTTATTG
	(SEQ ID NO: 57)	(SEQ ID NO: 840)
453	MB	TTAGATTGCGTTATGGGG
	(SEQ ID NO: 57)	(SEQ ID NO: 841)
454	MB	TTAGATTGTGTTATGGGG
	(SEQ ID NO: 57)	(SEQ ID NO: 842)
455	PCNA	TAAAGAGGCGGGAGATT
	(SEQ ID NO: 58)	(SEQ ID NO: 1013)
456	PCNA	TAAAGAGGTGGGGAGATT
	(SEQ ID NO: 58)	(SEQ ID NO: 1014)
457	PCNA	TATGGATACGATTGGTTT
.,,	(SEQ ID NO: 58)	(SEQ ID NO: 843)
458	PCNA	TATGGATATGATTGGTTT
.50	(SEQ ID NO: 58)	(SEQ ID NO: 844)
459	PCNA	GTATTAAACGGTTGTAGG
h37	(SEQ ID NO: 58)	(SEQ ID NO: 845)
460	PCNA	GTATTAAATGGTTGTAGG
700	(SEQ ID NO: 58)	(SEQ ID NO: 846)
461	PCNA	TTTGAAGTCGAAATTAGT
401	(SEQ ID NO: 58)	(SEQ ID NO: 847)
462	PCNA	TTTGAAGTTGAAATTAGT
402	(SEQ ID NO: 58)	(SEQ ID NO: 848)
463	CDC2	TGGAATTTCGATGTAAAT
103	(SEQ ID NO: 59)	(SEQ ID NO: 849)
464	CDC2	TGGAATTTTGATGTAAAT
+04	(SEQ ID NO: 59)	(SEQ ID NO: 850)
465	CDC2	TAGTAGGACGATATTTTT
402	(SEQ ID NO: 59)	(SEQ ID NO: 851)
466	CDC2	TAGTAGGATGATATTTT
400	(SEQ ID NO: 59)	(SEQ ID NO: 852)
467	CDC2	TAGTTATTCGGGAAGGTT
407	(SEQ ID NO: 59)	(SEQ ID NO: 853)
160	CDC2	TAGTTATTTGGGAAGGTT
468	(SEQ ID NO: 59)	(SEQ ID NO: 854)
469	CDC2	AAATTGTTCGTATTTGGT
407	(SEQ ID NO: 59)	(SEQ ID NO: 855)
470	CDC2	AAATTGTTTGTATTTGGT
#/0	(SEQ ID NO: 59)	(SEQ ID NO: 856)
471	ESR1	AGATATATCGGAGTTTGG
#/1	(SEQ ID NO: 60)	(SEQ ID NO: 857)
472	ESR1	AGATATATTGGAGTTTGG
+12	(SEQ ID NO: 60)	(SEQ ID NO: 858)
473	ESR1	GTTTGGTACGGGGTATAT
1+/3	(SEQ ID NO: 60)	(SEQ ID NO: 859)
474	ESR1	GTTTGGTATGGGGTATAT
74/4	(SEQ ID NO: 60)	(SEQ ID NO: 860)
475	ESR1	TTTTAAATCGAGTTGTGT
7/3	(SEQ ID NO: 60)	(SEQ ID NO: 861)
476	ESR1	TTTTAAATTGAGTTGTGT
4/0	EOKI	JIIII MAII TOAGITOTOI

No:	Gene	Oligo:
	(SEQ ID NO: 60)	(SEQ ID NO: 862)
477	ESR1	TATGAGTTCGGGAGATTA
	(SEQ ID NO: 60)	(SEQ ID NO: 863)
478	ESR1	TATGAGTTTGGGAGATTA
., 0	(SEQ ID NO: 60)	(SEQ ID NO: 864)
479	ESR1	TGGAGGTTCGGGAGTTTA
1	(SEQ ID NO: 60)	(SEQ ID NO: 969)
480	ESR1	TGGAGGTTTGGGAGTTTA
100	(SEQ ID NO: 60)	(SEQ ID NO: 970)
481	CASP8	GAATGAGTCGAGGAAGGT
101	(SEQ ID NO: 61)	(SEQ ID NO: 865)
482	CASP8	GAATGAGTTGAGGAAGGT
702	(SEQ ID NO: 61)	(SEQ ID NO: 866)
483	CASP8	TATTGAGACGTTAAGTAA
763	(SEQ ID NO: 61)	(SEQ ID NO: 867)
484	CASP8	TATTGAGATGTTAAGTAA
707	(SEQ ID NO: 61)	(SEQ ID NO: 868)
485	CASP8	TAAGGTTACGTAGTTAGT
763	(SEQ ID NO: 61)	(SEQ ID NO: 869)
486	CASP8	TAAGGTTATGTAGTTAGT
460	(SEQ ID NO: 61)	(SEQ ID NO: 870)
487	CASP8	GTTAATAGCGGGGATTTT
40/	(SEQ ID NO: 61)	(SEQ ID NO: 871)
488	CASP8	GTTAATAGTGGGGATTTT
1100	(SEQ ID NO: 61)	(SEQ ID NO: 872)
489	RASSF1	GTAGTTTTCGAGAATGTT
409	(SEQ ID NO: 62)	(SEQ ID NO: 873)
490	RASSF1	GTAGTTTTTGAGAATGTT
490	(SEQ ID NO: 62)_	(SEQ ID NO: 874)
491	RASSF1	TAATTAGAACGTTTTTTG
491	(SEQ ID NO: 62)	(SEQ ID NO: 875)
492	RASSF1	TAATTAGAATGTTTTTTG
492	(SEQ ID NO: 62)	(SEQ ID NO: 876)
493	RASSF1	TAGTTTTCGCGTAGAATT
493	(SEQ ID NO: 62)	(SEQ ID NO: 877)
494	RASSF1	TAGTTTTGTGTAGAATT
דעק	(SEQ ID NO: 62)	(SEQ ID NO: 878)
495	RASSF1	TTTGTAGCGGGTGGAGTA
773	(SEQ ID NO: 62)	(SEQ ID NO: 995)
496	RASSF1	TTTGTAGTGGGTGGAGTA
٦٥	(SEQ ID NO: 62)	(SEQ ID NO: 996)
497	MSH4	TTGTTTCGGCGGTTTTTT
ر و ا	(SEQ ID NO: 63)	(SEQ ID NO: 879)
498	MSH4	TTGTTTTGGTGGTTTTTT
	(SEQ ID NO: 63)	(SEQ ID NO: 880)
499	MSH4	TTTTGGTACGTTAGGAGT
'	(SEQ ID NO: 63)	(SEQ ID NO: 881)
500	MSH4	TTTTGGTATGTTAGGAGT
	(SEQ ID NO: 63)	(SEQ ID NO: 882)
501	MSH4	TAAATTTTCGGTTAGTTT

No:	Gene	Oligo:
	(SEQ ID NO: 63)	(SEQ ID NO: 883)
502	MSH4	TAAATTTTTGGTTAGTTT
	(SEQ ID NO: 63)	(SEQ ID NO: 884)
503	MSH4	TTAGAGGTCGGTAGTTTA
	(SEQ ID NO: 63)	(SEQ ID NO: 885)
504	MSH4	TTAGAGGTTGGTAGTTTA
	(SEQ ID NO: 63)	(SEQ ID NO: 886)
505	MSH5	ATGTTTATCGTTTTGAGT
	(SEQ ID NO: 64)	(SEQ ID NO: 887)
506	MSH5	ATGTTTATTGTTTTGAGT
	(SEQ ID NO: 64)	(SEQ ID NO: 888)
507	MSH5	ATAGTTGTCGAATGTATG
 	(SEQ ID NO: 64)	(SEQ ID NO: 889)
508	MSH5	ATAGTTGTTGAATGTATG
	(SEQ ID NO: 64)	(SEQ ID NO: 890)
509	MSH5	TAGAAGTGCGAAGGGGTA
	(SEQ ID NO: 64)	(SEQ ID NO: 891)
510	MSH5	TAGAAGTGTGAAGGGGTA
	(SEQ ID NO: 64)	(SEQ ID NO: 892)
511	MSH5	ATGTAATTCGAATGTTTT
	(SEQ ID NO: 64)	(SEQ ID NO: 893)
512	MSH5	ATGTAATTTGAATGTTTT
	(SEQ ID NO: 64)	(SEQ ID NO: 894)

<u>Table 3: Oligonucleotides used in differentiation between colon adenomas or carcinoma tissue and healthy colon tissue.</u>

No:	Gene	Oligo:
1	CDH13	AATGTTTTCGTGATGTTG
	(SEQ ID NO: 50)	(SEQ ID NO: 895)
2	CDH13	AATGTTTTTGTGATGTTG
	(SEQ ID NO: 50)	(SEQ ID NO: 896)
3	CD44	TTGTTTAGCGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 897)
4	CD44	TTGTTTAGTGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 898)
5	TPEF (=TMEFF2	; AATTTGCGAACGTTTGGG
	HPP1)	(SEQ ID NO: 899)
	(SEQ ID NO: 54)	
6	TPEF (=TMEFF2	; AATTTGTGAATGTTTGGG
	=HPP1)	(SEQ ID NO: 900)
	(SEQ ID NO: 54)	
7	CSPG2	GGGTAACGTCGAATTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 901)
8	CSPG2	GGGTAATGTTGAATTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 902)
9	CDH13	AAGGAATTCGTTTTGTAA
	(SEQ ID NO: 50)	(SEQ ID NO: 903)
10	CDH13	AAGGAATTTGTTTTGTAA

No:	Gene	Oligo:
	(SEQ ID NO: 50)	(SEQ ID NO: 904)
11	GSTP1	GGAGTTCGCGGGATTTTT
	(SEQ ID NO: 25)	(SEQ ID NO: 905)
12	GSTP1	GGAGTTTGTGGGATTTTT
	(SEQ ID NO: 25)	(SEQ ID NO: 906)
13	TGFBR2	AAAGTTTTCGGAGGGGTT
	(SEQ ID NO: 43)	(SEQ ID NO: 907)
14	TGFBR2	AAAGTTTTTGGAGGGGTT
-	(SEQ ID NO: 43)	(SEQ ID NO: 908)
15	N33	TGTTATTTCGGAGGGTTT
10	(SEQ ID NO: 36)	(SEQ ID NO: 909)
16	N33	TGTTATTTTGGAGGGTTT
10	(SEQ ID NO: 36)	(SEQ ID NO: 910)
17	CAV1	TAGATTCGGAGGTAGGTA
17	(SEQ ID NO: 49)	(SEQ ID NO: 911)
18	CAV1	TAGATTTGGAGGTAGGTA
10	(SEQ ID NO: 49)	(SEQ ID NO: 912)
19	PTGS2	TTTATTTCGTGGGTAAA
19	(SEQ ID NO: 52)	(SEQ ID NO: 913)
20	PTGS2	TTTATTTTGTGGGTAAA
20	(SEQ ID NO: 52)	(SEQ ID NO: 914)
21	TP73	AAGTTACGGGTTTTATTG
Z I	(SEQ ID NO: 46)	(SEQ ID NO: 915)
22	TP73	AAGTTATGGGTTTTATTG
22	(SEQ ID NO: 46)	(SEQ ID NO: 916)
23	TPEF (=TMEF)	F2; ATAGGTTACGGGTTGGAG
23	=HPP1)	(SEQ ID NO: 917)
	(SEQ ID NO: 54)	(SEQ ID NO. 317)
24	TPEF (=TMEF)	F2; ATAGGTTATGGGTTGGAG
24	=HPP1)	(SEQ ID NO: 918)
	(SEQ ID NO: 54)	(BEQ 15 110. 510)
h.	CD44	GTGGGGTTCGGAGGTATA
25	(SEQ ID NO: 20)	(SEQ ID NO: 919)
h		GTGGGGTTTGGAGGTATA
26	(SEQ ID NO: 20)	(SEQ ID NO: 920)
07	EYA4	AAGTAAGTCGTTGTTGTT
27	(SEQ ID NO: 24)	(SEQ ID NO: 921)
ho.	EYA4	AAGTAAGTTGTTGTT
28	(SEQ ID NO: 24)	(SEQ ID NO: 922)
20	EYA4	AGTGTATGCGTAGAAGGT
29		(SEQ ID NO: 923)
20	(SEQ ID NO: 24) EYA4	AGTGTATGTAGAAGGT
30	(SEQ ID NO: 24)	(SEQ ID NO: 924)
21	GTBP/MSH6	TTTGTTGGCGGGAAATTT
31		(SEQ ID NO: 925)
22	(SEQ ID NO: 26)	TTTGTTGGTGGGAAATTT
32	GTBP/MSH6	
<u> </u>	(SEQ ID NO: 26)	(SEQ ID NO: 926)
-	IDCD4	172628721:1:1:17 Y 2621 N 1 N 1 N 1
33	EGR4 (SEQ ID NO: 4)	GGAGTTTTCGGTATATAT (SEQ ID NO: 927)

No:	Gene	Oligo:
	(SEQ ID NO: 4)	(SEQ ID NO: 928)
35	CDH1	TAGTGGCGTCGGAATTGT
	(SEQ ID NO: 15)	(SEQ ID NO: 929)
36	CDH1	TAGTGGTGTTGGAATTGT
	(SEQ ID NO: 15)	(SEQ ID NO: 930)
37	EGFR	ATTTGGTTCGATTTGGAT
	(SEQ ID NO: 23)	(SEQ ID NO: 931)
38	EGFR	ATTTGGTTTGATTTGGAT
	(SEQ ID NO: 23)	(SEQ ID NO: 932)
39	LKB1	AGGGAGGTCGTTGGTATT
	(SEQ ID NO: 30)	(SEQ ID NO: 933)
40	LKB1	AGGGAGGTTGTTGGTATT
	(SEQ ID NO: 30)	(SEQ ID NO: 934)
41	DAPK1	TTGTTTTCGGAAATTTG
	(SEQ ID NO: 22)	(SEQ ID NO: 935)
42	DAPK1	TTGTTTTTGGAAATTTG
	(SEQ ID NO: 22)	(SEQ ID NO: 936)
43	IGF2	GATTAGGGCGGGAAATAT
	(SEQ ID NO: 29)	(SEQ ID NO: 937)
44	IGF2	GATTAGGGTGGGAAATAT
	(SEQ ID NO: 29)	(SEQ ID NO: 938)
45	HLA-F	TATTTGGGCGGGTGAGTG
	(SEQ ID NO: 10)	(SEQ ID NO: 939)
46	HLA-F	TATTTGGGTGGGTGAGTG
	(SEQ ID NO: 10)	(SEQ ID NO: 940)
47	IGF2	TTGTATGGTCGAGTTTAT
	(SEQ ID NO: 29)	(SEQ ID NO: 941)
48	IGF2	TTGTATGGTTGAGTTTAT
-	(SEQ ID NO: 29)	(SEQ ID NO: 942)
49	N33	GTTTAGTTAGCGGGTTTT
"	(SEQ ID NO: 36)	(SEQ ID NO: 943)
50	N33	GTTTAGTTAGTGGGTTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 944)
51	CSPG2	AAAAATTCGCGAGTTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 945)
52	CSPG2	AAAAATTTGTGAGTTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 946)
53	PTEN	TGATGTGGCGGGATTTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 947)
54	PTEN	TGATGTGGGGATTTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 948)
55	MLH1	TTAGGTAGCGGGTAGTAG
	(SEQ ID NO: 32)	(SEQ ID NO: 949)
56	MLH1	TTAGGTAGTGGGTAGTAG
	(SEQ ID NO: 32)	(SEQ ID NO: 950)
57	GTBP/MSH6	GAGGAATTCGGGTTTTAG
	(SEQ ID NO: 26)	(SEQ ID NO: 951)
58	GTBP/MSH6	GAGGAATTTGGGTTTTAG
	(SEQ ID NO: 26)	(SEQ ID NO: 952)
59	CALCA	ATTAGGTTCGTGTTTTAG

No:	Gene	Oligo:
	(SEQ ID NO: 14)	(SEQ ID NO: 953)
60	CALCA	ATTAGGTTTGTGTTTTAG
	(SEQ ID NO: 14)	(SEQ ID NO: 954)
61	DAPK1	GAAGGGAGCGTATTTTAT
	(SEQ ID NO: 22)	(SEQ ID NO: 955)
62	DAPK1	GAAGGGAGTGTATTTTAT
	(SEQ ID NO: 22)	(SEQ ID NO: 956)
63	PTEN	AGAGTTATCGTTTTGTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 957)
64	PTEN	AGAGTTATTGTTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 958)
65	WT1	TGTTATATCGGTTAGTTG
1	(SEQ ID NO: 9)	(SEQ ID NO: 959)
66	WT1	TGTTATATTGGTTAGTTG
	(SEQ ID NO: 9)	(SEQ ID NO: 960)
67	EGFR	TTTGTATTCGGAGTTGGG
07	(SEQ ID NO: 23)	(SEQ ID NO: 961)
68	EGFR	TTTGTATTTGGAGTTGGG
08	(SEQ ID NO: 23)	(SEQ ID NO: 962)
69	CSPG2	AAGATTTTCGGTTAGTTT
09	(SEQ ID NO: 21)	(SEQ ID NO: 963)
70	CSPG2	AAGATTTTTGGTTAGTTT
/0	(SEQ ID NO: 21)	(SEQ ID NO: 964)
71	LKB1	TTTAGGTTCGTAAGTTTA
/1	(SEQ ID NO: 30)	(SEQ ID NO: 965)
72	LKB1	TTTAGGTTTGTAAGTTTA
1/2	(SEQ ID NO: 30)	(SEQ ID NO: 966)
73	WT1	TATATTGGCGAAGGTTAA
/3	(SEQ ID NO: 9)	(SEQ ID NO: 967)
7.4	WT1	TATATTGGTGAAGGTTAA
74		(SEQ ID NO: 968)
7.5	(SEQ ID NO: 9) ESR1	TGGAGGTTCGGGAGTTTA
75	(SEQ ID NO: 60)	(SEQ ID NO: 969)
76	ESR1	TGGAGGTTTGGGAGTTTA
/6	(SEQ ID NO: 60)	(SEQ ID NO: 970)
77	APC	TTTAATCGTATAGTTTGT
77	l l	(SEQ ID NO: 971)
70	(SEQ ID NO: 12)	TTTAATTGTATAGTTTGT
78	APC	(SEQ ID NO: 972)
	(SEQ ID NO: 12)	AGTTTGAACGATGTAAGA
79	IGF2	
	(SEQ ID NO: 29)	(SEQ ID NO: 973) AGTTTGAATGATGTAAGA
80	IGF2	
0.1	(SEQ ID NO: 29)	(SEQ ID NO: 974) AATTAGGTCGGATAGGAG
81	MYOD1	1
00	(SEQ ID NO: 8)	(SEQ ID NO: 975) AATTAGGTTGGATAGGAG
82	MYOD1	
2.2	(SEQ ID NO: 8)	(SEQ ID NO: 976)
83	N33	TTGGTTCGGGAAAGGTAA
	(SEQ ID NO: 36)	(SEQ ID NO: 977)
84	N33	TTGGTTTGGGAAAGGTAA

No:	Gene	Oligo:
•	(SEQ ID NO: 36)	(SEQ ID NO: 978)
85	TPEF (=TMEFF2	ATTTGTTTCGATTAATTT
	=HPP1)	(SEQ ID NO: 979)
	(SEQ ID NO: 54)	
86	TPEF (=TMEFF2	ATTTGTTTTGATTAATTT
	⊨HPP1)	(SEQ ID NO: 980)
	(SEQ ID NO: 54)	
87	CDKN2a	AATAGTTACGGTCGGAGG
· ,	(SEQ ID NO: 18)	(SEQ ID NO: 981)
88	CDKN2a	AATAGTTATGGTTGGAGG
ļ	(SEQ ID NO: 18)	(SEQ ID NO: 982)
89	CDH1	AGGGTTATCGCGTTTATG
	(SEQ ID NO: 15)	(SEQ ID NO: 983)
90	CDH1	AGGGTTATTGTGTTTATG
İ	(SEQ ID NO: 15)	(SEQ ID NO: 984)
91	APC	TATTTTGGCGGGTTGTAT
	(SEQ ID NO: 12)	(SEQ ID NO: 985)
92	APC	TATTTTGGTGGGTTGTAT
	(SEQ ID NO: 12)	(SEQ ID NO: 986)

<u>Table 4: Oligonucleotides used in differentiation between colon carcinoma tissue and healthy</u>
<u>colon tissue.</u>

No:	Gene	Oligo:
1	CDH13	AATGTTTTCGTGATGTTG
	(SEQ ID NO: 50)	(SEQ ID NO: 895)
2	CDH13	AATGTTTTGTGATGTTG
	(SEQ ID NO: 50)	(SEQ ID NO: 896)
3	TPEF (=TMEFF2;	AATTTGCGAACGTTTGGG
	⊨HPP1)	(SEQ ID NO: 899)
	(SEQ ID NO: 54)	
4	TPEF (=TMEFF2;	AATTTGTGAATGTTTGGG
	=HPP1)	(SEQ ID NO: 900)
	(SEQ ID NO: 54)	
5	CDH13	AAGGAATTCGTTTTGTAA
	(SEQ ID NO: 50)	(SEQ ID NO: 903)
6	CDH13	AAGGAATTTGTTTTGTAA
	(SEQ ID NO: 50)	(SEQ ID NO: 904)
7	CSPG2	GGGTAACGTCGAATTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 901)
8	CSPG2	GGGTAATGTTGAATTTAG
	(SEQ ID NO: 21)	(SEQ ID NO: 902)
9	CD44	TTGTTTAGCGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 897)
10	CD44	TTGTTTAGTGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 898)
11	EYA4	AGTGTATGCGTAGAAGGT
	(SEQ ID NO: 24)	(SEQ ID NO: 923)
12	EYA4	AGTGTATGTAGAAGGT

No:	Gene	Oligo:
	(SEQ ID NO: 24)	(SEQ ID NO: 924)
13	APC	TTTAATCGTATAGTTTGT
	(SEQ ID NO: 12)	(SEQ ID NO: 971)
14	APC	TTTAATTGTATAGTTTGT
<u> </u>	(SEQ ID NO: 12)	(SEQ ID NO: 972)
15	PTGS2	TTTATTTCGTGGGTAAA
	(SEQ ID NO: 52)	(SEQ ID NO: 913)
16	PTGS2	TTTATTTTGTGGGTAAA
	(SEQ ID NO: 52)	(SEQ ID NO: 914)
17	EYA4	AAGTAAGTCGTTGTTGTT
1 '	(SEQ ID NO: 24)	(SEQ ID NO: 921)
18	EYA4	AAGTAAGTTGTTGTT
	(SEQ ID NO: 24)	(SEQ ID NO: 922)
19	PTEN	ATTTTGCGTTCGTATTTA
1.9	(SEQ ID NO: 39)	(SEQ ID NO: 987)
20	PTEN	ATTTTGTGTTTGTATTTA
20	(SEQ ID NO: 39)	(SEQ ID NO: 988)
21	GSTP1	GGAGTTCGCGGGATTTTT
21	(SEQ ID NO: 25)	(SEQ ID NO: 905)
22	GSTP1	GGAGTTTGTGGGATTTTT
22	•	(SEQ ID NO: 906)
22	(SEQ ID NO: 25) CAV1	TAGATTCGGAGGTAGGTA
23	*	(SEQ ID NO: 911)
24	(SEQ ID NO: 49) CAV1	TAGATTTGGAGGTAGGTA
24	l	(SEQ ID NO: 912)
25	(SEQ ID NO: 49)	ATTTGGTTCGATTTGGAT
25	EGFR	(SEQ ID NO: 931)
26	(SEQ ID NO: 23) EGFR	ATTTGGTTTGATTTGGAT
26		(SEQ ID NO: 932)
2	(SEQ ID NO: 23) N33	TGTTATTTCGGAGGGTTT
27	I	(SEQ ID NO: 909)
	(SEQ ID NO: 36) N33	TGTTATTTTGGAGGGTTT
28	•	(SEQ ID NO: 910)
	(SEQ ID NO: 36)	TTGTATGGTCGAGTTTAT
29	IGF2	(SEQ ID NO: 941)
	(SEQ ID NO: 29)	TTGTATGGTTGAGTTTAT
30	IGF2	
	(SEQ ID NO: 29)	(SEQ ID NO: 942) AGTTGTTTCGTAGATATT
31	HLA-F	
	(SEQ ID NO: 10)	(SEQ ID NO: 989) AGTTGTTTTGTAGATATT
32	HLA-F	
	(SEQ ID NO: 10)	(SEQ ID NO: 990) ATAGGTTACGGGTTGGAG
33	TPEF (=TMEFF2;	
	=HPP1)	(SEQ ID NO: 917)
	(SEQ ID NO: 54)	ATACCTTATCCCTTCCAC
34	TPEF (=TMEFF2;	ATAGGTTATGGGTTGGAG
	=HPP1)	(SEQ ID NO: 918)
0.5	(SEQ ID NO: 54)	AACTTACCCCTTTTATTC
35	TP73	AAGTTACGGGTTTTATTG
26	(SEQ ID NO: 46)	(SEQ ID NO: 915)
36	TP73	AAGTTATGGGTTTTATTG

No:	Gene	Oligo:
	(SEQ ID NO: 46)	(SEQ ID NO: 916)

Table 5: Oligonucleotides used in differentiation between colon adenoma tissue and healthy colon tissue.

No:	Gene	Oligo:
1	CD44	TTGTTTAGCGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 897)
2	CD44	TTGTTTAGTGGATTTTAG
	(SEQ ID NO: 20)	(SEQ ID NO: 898)
3	HLA-F	TATTTGGGCGGTGAGTG
	(SEQ ID NO: 10)	(SEQ ID NO: 939)
4	HLA-F	TATTTGGGTGGGTGAGTG
	(SEQ ID NO: 10)	(SEQ ID NO: 940)
5	TGFBR2	AAAGTTTTCGGAGGGGTT
	(SEQ ID NO: 43)	(SEQ ID NO: 907)
6	TGFBR2	AAAGTTTTTGGAGGGGTT
	(SEQ ID NO: 43)	(SEQ ID NO: 908)
7	GTBP/MSH6	GAGGAATTCGGGTTTTAG
	(SEQ ID NO: 26)	(SEQ ID NO: 951)
8	GTBP/MSH6	GAGGAATTTGGGTTTTAG
	(SEQ ID NO: 26)	(SEQ ID NO: 952)
9	GTBP/MSH6	TTTGTTGGCGGGAAATTT
	(SEQ ID NO: 26)	(SEQ ID NO: 925)
10	GTBP/MSH6	TTTGTTGGTGGGAAATTT
	(SEQ ID NO: 26)	(SEQ ID NO: 926)
11	LKB1	AGGGAGGTCGTTGGTATT
	(SEQ ID NO: 30)	(SEQ ID NO: 933)
12	LKB1	AGGGAGGTTGTTGGTATT
	(SEQ ID NO: 30)	(SEQ ID NO: 934)
13	CD44	GTGGGGTTCGGAGGTATA
	(SEQ ID NO: 20)	(SEQ ID NO: 919)
14	CD44	GTGGGGTTTGGAGGTATA
	(SEQ ID NO: 20)	(SEQ ID NO: 920)
15	N33	GTTTAGTTAGCGGGTTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 943)
16	N33	GTTTAGTTAGTGGGTTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 944)
17	CDH13	AATGTTTCGTGATGTTG
	(SEQ ID NO: 50)	(SEQ ID NO: 895)
18	CDH13	AATGTTTTGTGATGTTG
	(SEQ ID NO: 50)	(SEQ ID NO: 896)
19	TP73	AAGTTACGGGTTTTATTG
	(SEQ ID NO: 46)	(SEQ ID NO: 915)
20	TP73	AAGTTATGGGTTTTATTG
	(SEQ ID NO: 46)	(SEQ ID NO: 916)
21	PTEN	TGATGTGGCGGGATTTTT
	(SEQ ID NO: 39)	(SEQ ID NO: 947)
22	PTEN	TGATGTGGTGGGATTTTT

No:	Gene	Oligo:
	(SEQ ID NO: 39)	(SEQ ID NO: 948)
23	N33	TGTTATTTCGGAGGGTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 909)
24	N33	TGTTATTTTGGAGGGTTT
	(SEQ ID NO: 36)	(SEQ ID NO: 910)
25	TPEF (=TMEFF2;	AATTTGCGAACGTTTGGG
	=HPP1)	(SEQ ID NO: 899)
	(SEQ ID NO: 54)	
26	TPEF (=TMEFF2;	AATTTGTGAATGTTTGGG
	=HPP1)	(SEQ ID NO: 900)
	(SEQ ID NO: 54)	
27	GSTP1	GGAGTTCGCGGGATTTTT
2,	(SEQ ID NO: 25)	(SEQ ID NO: 905)
28	GSTP1	GGAGTTTGTGGGATTTTT
20	(SEQ ID NO: 25)	(SEQ ID NO: 906)
29	EGFR	TTTGTATTCGGAGTTGGG
	(SEQ ID NO: 23)	(SEQ ID NO: 961)
30	EGFR	TTTGTATTTGGAGTTGGG
	(SEQ ID NO: 23)	(SEQ ID NO: 962)
31	RARB	TAGTAGTTCGGGTAGGGT
7.	(SEQ ID NO: 40)	(SEQ ID NO: 991)
32	RARB	TAGTAGTTTGGGTAGGGT
52	(SEQ ID NO: 40)	(SEQ ID NO: 992)
33	N33	ATTTAGTTCGGGGGAGGA
	(SEQ ID NO: 36)	(SEQ ID NO: 993)
34	N33	ATTTAGTTTGGGGGAGGA
P-	(SEQ ID NO: 36)	(SEQ ID NO: 994)
35	CAV1	TAGATTCGGAGGTAGGTA
33	(SEQ ID NO: 49)	(SEQ ID NO: 911)
36	CAV1	TAGATTTGGAGGTAGGTA
50	(SEQ ID NO: 49)	(SEQ ID NO: 912)
37	TPEF (=TMEFF2;	ATAGGTTACGGGTTGGAG
۲,	=HPP1)	(SEQ ID NO: 917)
İ	(SEQ ID NO: 54)	
38	TPEF (=TMEFF2;	ATAGGTTATGGGTTGGAG
70	=HPP1)	(SEO ID NO: 918)
	(SEQ ID NO: 54)	
39	CDKN2a	AATAGTTACGGTCGGAGG
7	(SEQ ID NO: 18)	(SEQ ID NO: 981)
40	CDKN2a	AATAGTTATGGTTGGAGG
	(SEQ ID NO: 18)	(SEQ ID NO: 982)
41	N33	TTGGTTCGGGAAAGGTAA
'-	(SEQ ID NO: 36)	(SEQ ID NO: 977)
42	N33	TTGGTTTGGGAAAGGTAA
	(SEQ ID NO: 36)	(SEQ ID NO: 978)
43	MLH1	TTAGGTAGCGGGTAGTAG
-	(SEQ ID NO: 32)	(SEQ ID NO: 949)
44	MLH1	TTAGGTAGTGGGTAGTAG
	(SEQ ID NO: 32)	(SEQ ID NO: 950)
45	APC	TATTTTGGCGGGTTGTAT

No:	Gene	Oligo:
	(SEQ ID NO: 12)	(SEQ ID NO: 985)
46	APC	TATTTTGGTGGGTTGTAT
	(SEQ ID NO: 12)	(SEQ ID NO: 986)
47	CSPG2	GGGTAACGTCGAATTTAG
• •	(SEQ ID NO: 21)	(SEQ ID NO: 901)
48	CSPG2	GGGTAATGTTGAATTTAG
,0	(SEQ ID NO: 21)	(SEQ ID NO: 902)
49	CDH1	TAGTGGCGTCGGAATTGT
1,5	(SEQ ID NO: 15)	(SEQ ID NO: 929)
50	CDH1	TAGTGGTGTTGGAATTGT
	(SEQ ID NO: 15)	(SEQ ID NO: 930)
51	PTGS2	TTTATTTTCGTGGGTAAA
	(SEQ ID NO: 52)	(SEQ ID NO: 913)
52	PTGS2	TTTATTTTGTGGGTAAA
	(SEQ ID NO: 52)	(SEQ ID NO: 914)
53	RASSF1	TTTGTAGCGGGTGGAGTA
	(SEQ ID NO: 62)	(SEQ ID NO: 995)
54	RASSF1	TTTGTAGTGGGTGGAGTA
J- 1	(SEQ ID NO: 62)	(SEQ ID NO: 996)
55	WT1	TATATTGGCGAAGGTTAA
	(SEQ ID NO: 9)	(SEQ ID NO: 967)
56	WT1	TATATTGGTGAAGGTTAA
50	(SEQ ID NO: 9)	(SEQ ID NO: 968)
57	CDKN2a	GGAGTTTTCGGTTGATTG
ρ/	I.	(SEQ ID NO: 997)
E 0	(SEQ ID NO: 18) CDKN2a	GGAGTTTTTGGTTGATTG
58		(SEQ ID NO: 998)
59	(SEQ ID NO: 18) ESR1	TGGAGGTTCGGGAGTTTA
39		(SEQ ID NO: 969)
<u></u>	(SEQ ID NO: 60) ESR1	TGGAGGTTTGGGAGTTTA
60		(SEQ ID NO: 970)
<u></u>	(SEQ ID NO: 60) IGF2	GATTAGGGCGGGAAATAT
61		1
60	(SEQ ID NO: 29)	(SEQ ID NO: 937) GATTAGGGTGGGAAATAT
62	IGF2	(SEQ ID NO: 938)
62	(SEQ ID NO: 29)	AATTAGGTCGGATAGGAG
63	MYOD1	(SEQ ID NO: 975)
C 4	(SEQ ID NO: 8)	AATTAGGTTGGATAGGAG
64	MYOD1	i e e e e e e e e e e e e e e e e e e e
	(SEQ ID NO: 8)	(SEQ ID NO: 976) AAGGAATTCGTTTTGTAA
65	CDH13	
	(SEQ ID NO: 50)	(SEQ ID NO: 903)
66	CDH13	AAGGAATTTGTTTTGTAA
<u> </u>	(SEQ ID NO: 50)	(SEQ ID NO: 904)
67	EGR4	GGAGTTTTCGGTATATAT
	(SEQ ID NO: 4)	(SEQ ID NO: 927)
68	EGR4	GGAGTTTTTGGTATATAT
	(SEQ ID NO: 4)	(SEQ ID NO: 928)
69	S100A2	TATGTATACGAGTATTGG
70	(SEQ ID NO: 42)	(SEQ ID NO: 999)
70	S100A2	TATGTATATGAGTATTGG

WO 03/072821 PCT/EP03/02035

No:	Gene	Oligo:
	(SEQ ID NO: 42)	(SEQ ID NO: 1000)
71	DAPK1	TTGTTTTTCGGAAATTTG
, 1	(SEQ ID NO: 22)	(SEQ ID NO: 935)
72	DAPK1	TTGTTTTTTGGAAATTTG
7.2	(SEQ ID NO: 22)	(SEQ ID NO: 936)
73	MGMT	AGTAGGATCGGGATTTTT
	(SEQ ID NO: 31)	(SEQ ID NO: 1001)
74	MGMT	AGTAGGATTGGGATTTTT
	(SEQ ID NO: 31)	(SEQ ID NO: 1002)
75	EYA4	AAGTAAGTCGTTGTTGTT
	(SEQ ID NO: 24)	(SEQ ID NO: 921)
76	EYA4	AAGTAAGTTGTTGTT
	(SEQ ID NO: 24)	(SEQ ID NO: 922)
77	CEA	AAGTGTTCGCGGTTGTTT
	(SEQ ID NO: 56)	(SEQ ID NO: 1003)
78	CEA	AAGTGTTTGTGGTTGTTT
· 	(SEQ ID NO: 56)	(SEQ ID NO: 1004)
79	WT1	TGTTATATCGGTTAGTTG
	(SEQ ID NO: 9)	(SEQ ID NO: 959)
80	WT1	TGTTATATTGGTTAGTTG
	(SEQ ID NO: 9)	(SEQ ID NO: 960)
81	GPIb beta	GGAGTTCGGTCGGGTTTT
	(SEQ ID NO: 7)	(SEQ ID NO: 1005)
82	GPIb beta	GGAGTTTGGTTTGGTTTT
	(SEQ ID NO: 7)	(SEQ ID NO: 1006)
83	CALCA	ATTAGGTTCGTGTTTTAG
	(SEQ ID NO: 14)	(SEQ ID NO: 953)
84	CALCA	ATTAGGTTTGTGTTTTAG
	(SEQ ID NO: 14)	(SEQ ID NO: 954)
85	PTGS2	AGTTATTTCGTTATATGG
	(SEQ ID NO: 52)	(SEQ ID NO: 1007)
86	PTGS2	AGTTATTTGTTATATGG
0.7	(SEQ ID NO: 52)	(SEQ ID NO: 1008)
87	MYOD1	GTGTTAGTCGTTTAGGGT
00	(SEQ ID NO: 8)	(SEQ ID NO: 1009)
88	MYOD1	GTGTTAGTTGTTTAGGGT
00	(SEQ ID NO: 8) EYA4	(SEQ ID NO: 1010) AGTGTATGCGTAGAAGGT
89	(SEQ ID NO: 24)	(SEQ ID NO: 923)
90	EYA4	AGTGTATGTGTAGAAGGT
90		(SEQ ID NO: 924)
91	(SEQ ID NO: 24) CSPG2	AAAAATTCGCGAGTTTAG
71	(SEQ ID NO: 21)	(SEQ ID NO: 945)
92	CSPG2	AAAAATTTGTGAGTTTAG
12	(SEQ ID NO: 21)	(SEQ ID NO: 946)
93	PGR	TTAAGTGTCGGATTTGTG
	(SEQ ID NO: 38)	(SEQ ID NO: 1011)
94	PGR	TTAAGTGTTGGATTTGTG
·	(SEQ ID NO: 38)	(SEQ ID NO: 1012)
95	PCNA	TAAAGAGGCGGGAGATT
<u></u>	11 011/12	11.21.01.0000001101111

No:	Gene	Oligo:	
	(SEQ ID NO: 58)	(SEQ ID NO: 1013)	
96	PCNA	TAAAGAGGTGGGGAGATT	
	(SEQ ID NO: 58)	(SEQ ID NO: 1014)	
97	MSH3	AGTATTTCGTTTGAGGA	
	(SEQ ID NO: 34)	(SEQ ID NO: 1015)	
98	MSH3	AGTATTTTGTTTGAGGA	
	(SEQ ID NO: 34)	(SEQ ID NO: 1016)	
99	WTi	TAGTGAGACGAGGTTTTT	
	(SEQ ID NO: 9)	(SEQ ID NO: 1017)	
100	WT1	TAGTGAGATGAGGTTTTT	
:	(SEQ ID NO: 9)	(SEQ ID NO: 1018)	
101	MYC	TTATAATGCGAGGGTTTG	
	(SEQ ID NO: 35)	(SEQ ID NO: 1019)	
102	MYC	TTATAATGTGAGGGTTTG	
•	(SEQ ID NO: 35)	(SEQ ID NO: 1020)	
103	HIC-1	TTTTAGAGCGTTAGGGTT	
	(SEQ ID NO: 27)	(SEQ ID NO: 1021)	
104	HIC-1	TTTTAGAGTGTTAGGGTT	
	(SEQ ID NO: 27)	(SEQ ID NO: 1022)	
105	PTGS2	ATATTTGGCGGAAATTTG	
	(SEQ ID NO: 52)	(SEQ ID NO: 1023)	
106	PTGS2	ATATTTGGTGGAAATTTG	
	(SEQ ID NO: 52)	(SEQ ID NO: 1024)	
107	EGFR	ATTTGGTTCGATTTGGAT	
·	(SEQ ID NO: 23)	(SEQ ID NO: 931)	
108	EGFR	ATTTGGTTTGATTTGGAT	
	(SEQ ID NO: 23)	(SEQ ID NO: 932)	
109	LKB1	TTTAGGTTCGTAAGTTTA	
	(SEQ ID NO: 30)	(SEQ ID NO: 965)	
110	LKB1	TTTAGGTTTGTAAGTTTA	
	(SEQ ID NO: 30)	(SEQ ID NO: 966)	
111	IGF2	TTGTATGGTCGAGTTTAT	
	(SEQ ID NO: 29)	(SEQ ID NO: 941)	
112	IGF2	TTGTATGGTTGAGTTTAT	
	(SEQ ID NO: 29)	(SEQ ID NO: 942)	
113	PTEN	AGAGTTATCGTTTTGTTT	
	(SEQ ID NO: 39)	(SEQ ID NO: 957)	
114	PTEN	AGAGTTATTGTTTT	
	(SEQ ID NO: 39)	(SEQ ID NO: 958)	
115	BCL2	TTTTGTTACGGTGGTGGA	
	(SEQ ID NO: 13)	(SEQ ID NO: 1025)	
116	BCL2	TTTTGTTATGGTGGTGGA	
110	(SEQ ID NO: 13)	(SEQ ID NO: 1026)	
117	AR	AGAGGTTGCGTTTTAGAG	
110	(SEQ ID NO: 5)	(SEQ ID NO: 1027)	
118	AR	AGAGGTTGTTTTAGAG	
110	(SEQ ID NO: 5)	(SEQ ID NO: 1028)	
119	CDH1	AGGGTTATCGCGTTTATG	
100	(SEQ ID NO: 15)	(SEQ ID NO: 983)	
120	CDH1	AGGGTTATTGTGTTTATG	

No:	Gene	Oligo:
	(SEO ID NO: 15)	(SEQ ID NO: 984)

<u>Table 6: Oligonucleotides used in differentiation between colon carcinoma tissue and colon adenoma tissue.</u>

No:	Gene	Oligo:	
1	CDKN2a	GTTGTTTTCGGTTGGTGT	
	(SEQ ID NO: 18)	(SEQ ID NO: 1029)	
2	CDKN2a	GTTGTTTTGGTTGGTGT	
	(SEQ ID NO: 18)	(SEQ ID NO: 1030)	
3	GPIb beta	GGAGTTCGGTCGGGTTTT	
	(SEQ ID NO: 7)	(SEQ ID NO: 1005)	
4	GPIb beta	GGAGTTTGGTTGGGTTTT	
	(SEQ ID NO: 7)	(SEQ ID NO: 1006)	

Table 7: Crossreference table to relate numbers used in figure labelling to ID numbers used
throughout the document

Number in Figures	Gene name
Healthy vs Non-Healthy	
50-D	CDH13
20-C	CD44
54-C	TPEF (=TMEFF2; =HPP1)
21-C	CSPG2
50-C	CDH13
25-B	GSTP1
43-C	TGFBR2
36-B	N33
49-A	CAV1
52-C	PTGS2
46-A	TP73
54-B	TPEF (=TMEFF2; =HPP1)
20-A	CD44
24-D	EYA4
24-B	EYA4
26-B	GTBP/MSH6
4-C	EGR4
15-E	CDH1
23-E	EGFR
30-B	LKB1
22-D	DAPK1
29-D	IGF2
10-A	HLA-F
29-C	IGF2
36-C	N33
21-D	CSPG2
39-D	PTEN
32-B	MLH1
26-A	GTBP/MSH6

14-C	CALCA		
22-C	DAPK1		
39-C	PTEN		
9-D	WT1		
23-A	EGFR		
21-A	CSPG2		
30-A	LKB1		
9-C	WT1		
60-E	ESR1		
12-A	APC		
29-A	IGF2		
8-D	MYOD1		
36-A	N33		
54-A	TPEF (=TMEFF2; =HPP1)		
18-E	CDKN2a		
15-D	CDH1		
12-C	APC		
12-0	rii C		
Healthy vs Carcinoma			
50-D	CDH13		
54-C	TPEF (=TMEFF2; =HPP1)		
50-C	CDH13		
21-C	CSPG2		
20-C	CD44		
24-B	EYA4		
12-A	APC		
52-C	PTGS2		
24-D			
39-B	EYA4 PGR		
25-B	GSTP1		
49-A	CAV1		
23-E	EGFR		
36-B			
29-C	N33 IGF2		
10-D	HLA-F		
54-B	TPEF (=TMEFF2; =HPP1)		
46-A	TP73		
10-A			
Healthy vs Adenoma			
20-C	CD44		
10-A	HLA-F		
43-C	TGFBR2		
26-A	GTBP/MSH6		
26-B	GTBP/MSH6		
30-B	LKB1		
20-A	CD44		
36-C	N33		
50-D	. CDH13		
46-A	ТР73		
39-D	PTEN		

36-B	N33		
54-C	TPEF (=TMEFF2; =HPP1)		
25-B	GSTP1		
23-A	EGFR		
40-A	RARB		
36-D	N33		
49-A	CAV1		
54-B	TPEF (=TMEFF2; =HPP1)		
18-E	CDKN2a		
36-A	N33		
32-B	MLH1		
12-C	APC		
	CSPG2		
21-C			
15-E	CDH1		
52-C	PTGS2		
62-D	RASSF1		
9-C	WT1		
18-D	CDKN2a		
60-E	ESR1		
29-D	IGF2`		
8-D	MYOD1		
50-C	CDH13		
4-C	EGR4		
42-C	S100A2		
22-D	DAPK1		
31-E	MGMT		
24-D	EYA4		
56-A	CEA		
9-D	WT1		
7-E	GPIb beta		
14-C	CALCA		
52-D	PTGS2		
8-B	MYOD1		
24-B	EYA4		
21-D	CSPG2		
38-C	PGR		
58-A	PCNA		
34-D	MSH3		
9-B	WT1		
35-B	MYC		
27-C	HIC-1		
52-B	PTGS2		
23-E	EGFR		
30-A	LKB1		
29-C	IGF2		
	PTEN		
39-C	BCL2		
13-D	AR		
5-B			
15-D	CDH1		

Carcinoma vs Adenoma		
18-B	CDKN2a	
7-E	GPIb beta	

Patent Claims

- 1.A method for detecting and differentiating between colon cell proliferative disorders associated with at least one gene and/or their regulatory regions from the group comprising MDR1, APOC2, CACNA1G, EGR4, AR, RB1, GPIb beta, MYOD1, WT1, HLA-F, ELK1, APC, BCL2, CALCA, CDH1, CDKN1A, CDKN1B (p27 Kip1), CDKN2a, CDKN2B, CD44, CSPG2, DAPK1, EGFR, EYA4, GSTP1, GTBP/MSH6, HIC-1, HRAS, IGF2, LKB1, MGMT, MLH1, MNCA9, MSH3, MYC, N33, PAX6, PGR, PTEN, RARB, SFN, S100A2, TGFBR2, TIMP3, TP53, TP73, VHL, CDKN1C, CAV1, CDH13, DRG1, PTGS2, THBS1, TPEF (=TMEFF2; =HPP1), DNMT1, CEA, MB, PCNA, CDC2, ESR1, CASP8, RASSF1, MSH4, MSH5 in a subject, said method comprising contacting a target nucleic acid in a biological sample obtained from said subject with at least one reagent or a series of reagents, wherein said reagent or series of reagents, distinguishes between methylated and non methylated CpG dinucleotides within the target nucleic acid.
- 2.A method according to claim 1 wherein, said method differentiates between normal colon tissue and colon cell proliferative disorder tissue.
- 3.A method according to claim 2 wherein, the method is carried out by means of methylation state analysis of genes from the group comprising APC, CALCA, CAV1, CD44, CDH1, CDH13, CDKN2a, CSPG2, DAPK1, EGFR, EGR4, ESR1, GSTP1, GTBP/MSH6, HLA-F, IGF2, LKB1, MLH1, MYOD1, N33, PTEN, PTGS2, TGFBR2, TP73, TPEF (=TMEFF2; =HPP1), WT1, and EYA4.
- 4.A method according to claim 1 wherein, said method differentiates between colon adenoma tissue and normal colon tissue.
- 5.A method according to claim 4 wherein, the method is carried out by means of methylation state analysis of genes from the group comprising APC, AR, BCL2, CALCA, CAV1, CD44, CDH1, CDH13, CDKN2a, CEA, CSPG2, DAPK1, EGFR, EGR4, ESR1, GPIb beta, GSTP1, GTBP/MSH6, HIC-1, HLA-F, IGF2, LKB1, MGMT, MLH1, MSH3, MYC, MYOD1, N33, PCNA, PGR, PTEN, PTGS2, RARB, RASSF1, S100A2, TGFBR2, TP73, TPEF (=TMEFF2; =HPP1), WT1, and EYA4.

- 6.A method according to claim 1 wherein, said method differentiates between colon carcinoma tissue and normal colon tissue.
- 7.A method according to claim 6 wherein, the method is carried out by means of methylation state analysis of genes from the group comprising APC, CAV1, CD44, CDH13, CSPG2, EGFR, GSTP1, HLA-F, IGF2, N33, PTEN, PTGS2, TP73, TPEF (=TMEFF2; =HPP1), and EYA4.
- 8.Use of methods according to claim 1 wherein, said methods are used to differentiate between colon adenoma tissue and colon carcinoma tissue.
- 9. A method according to claim 8 wherein, the method is carried out by means of methylation state analysis of genes from the group comprising GPIb beta and CDKN2a.
- 10. A method according to any one of Claims 1 to 9 comprising the following steps; .
 - obtaining a biological sample containing genomic DNA
 - extracting the genomic DNA
 - converting cytosine bases in the genomic DNA sample which are unmethylated at the 5-position, by treatment, to uracil or another base which is dissimilar to cytosine in terms of base pairing behaviour;
 - fragments of the pretreated genomic DNA are amplified, and
 - identification of the methylation status of one or more cytosine positions.
- 11. The method according to claim 10, characterised in that the reagent is a solution of bisulfite, hydrogen sulfite or disulfite.
- 12. The method as recited in Claims 10 and 11, characterised in that the amplification is carried out by means of the polymerase chain reaction (PCR).
- 13. The method as recited in one of the Claims 10 to 12, characterised in that the amplification is carried out by means of a heat-resistant DNA polymerase.
- 14. The method as recited in one of the Claims 10 to 13, characterised in that more than ten different fragments having a length of 100 2000 base pairs are amplified.

- 64
- 15. The method as recited in one of the Claims 10 to 14, wherein the amplification step is carried out using a set of primer oligonucleotides comprising SEQ ID NO: 389 to SEQ ID NO: 518.
- 16. The method as recited in one of the Claims 10 to 15, characterised in that the amplification of several DNA segments is carried out in one reaction vessel.
- 17. The method as recited in one of Claims 10 to 16, characterised in that the amplification step preferentially amplifies DNA which is of particular interest in healthy and/or diseased colon tissues, based on the specific genomic methylation status of colon tissue, as opposed to background DNA.
- 18. The method according to one of Claims 10 to 17, characterised in that the methylation status within at least one gene and/or their regulatory regions from the group comprising MDR1, APOC2, CACNA1G, EGR4, AR, RB1, GPIb beta, MYOD1, WT1, HLA-F, ELK1, APC, BCL2, CALCA, CDH1, CDKN1A, CDKN1B (p27 Kip1), CDKN2a, CDKN2B, CD44, CSPG2, DAPK1, EGFR, EYA4, GSTP1, GTBP/MSH6, HIC-1, HRAS, IGF2, LKB1, MGMT, MLH1, MNCA9, MSH3, MYC, N33, PAX6, PGR, PTEN, RARB, SFN, S100A2, TGFBR2, TIMP3, TP53, TP73, VHL, CDKN1C, CAV1, CDH13, DRG1, PTGS2, THBS1, TPEF (=TMEFF2; =HPP1), DNMT1, CEA, MB, PCNA, CDC2, ESR1, CASP8, RASSF1, MSH4, and MSH5 is detected by hybridisation of each amplificate to an oligonucleotide or peptide nucleic acid (PNA)-oligomer.
- 19.A method according to claim 18, characterised in that the olignonucleotide or peptide nucleic acid (PNA)-oligomer is taken from the group comprising SEQ ID NO: 519 to SEQ ID NO: 1030.
- 20. The method according to Claims 10 to 19, characterised in that the amplificates are labelled.
- 21. The method as recited in Claim 20, characterised in that the labels of the amplificates are fluorescence labels.

- 22. The method as recited in Claim 20, characterised in that the labels of the amplificates are radionuclides.
- 23. The method as recited in Claims 20, characterised in that the labels of the amplificates are detachable molecule fragments having a typical mass which are detected in a mass spectrometer.
- 24. The method as recited in one of the Claims 10 to 23, characterised in that the amplificates or fragments of the amplificates are detected in the mass spectrometer.
- 25. The method as recited in one of the Claims 23 and 24, characterised in that the produced fragments have a single positive or negative net charge.
- 26. The method as recited in one of the Claims 23 to 25, characterised in that detection is carried out and visualized by means of matrix assisted laser desorption/ionisation mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).
- 27. A method according to Claims 1 to 9 comprising the following steps;
 - a) obtaining a biological sample containing genomic DNA
 - b) extracting the genomic DNA
 - c) digesting the genomic DNA comprising at least one or more CpGs of the genes MDR1, APOC2, CACNA1G, EGR4, AR, RB1, GPIb beta, MYOD1, WT1, HLA-F, ELK1, APC, BCL2, CALCA, CDH1, CDKN1A, CDKN1B (p27 Kip1), CDKN2a, CDKN2B, CD44, CSPG2, DAPK1, EGFR, EYA4, GSTP1, GTBP/MSH6, HIC-1, HRAS, IGF2, LKB1, MGMT, MLH1, MNCA9, MSH3, MYC, N33, PAX6, PGR, PTEN, RARB, SFN, S100A2, TGFBR2, TIMP3, TP53, TP73, VHL, CDKN1C, CAV1, CDH13, DRG1, PTGS2, THBS1, TPEF (=TMEFF2; =HPP1), DNMT1, CEA, MB, PCNA, CDC2, ESR1, CASP8, RASSF1, MSH4, and MSH5 with one or more methylation sensitive restriction enzymes, and
 - d) detection of the DNA fragments generated in the digest of step c).
- 28. A method according to Claim 27, wherein the DNA digest is amplified prior to Step d).

- 29. The method as recited in Claim 28, characterised in that the amplification is carried out by means of the polymerase chain reaction (PCR).
- 30. The method as recited in one of the Claims 28 and/or 29, characterised in that the amplification of more than one DNA fragments is carried out in one reaction vessel.
- 31. The method as recited in one of the Claims 28 to 30, characterised in that the polymerase is a heat-resistant DNA polymerase.
- 32. An isolated nucleic acid of a pretreated genomic DNA according to one of the sequences taken from the group comprising SEQ ID NO: 133 to SEQ ID NO: 388 and sequences complementary thereto.
- 33. An oligomer, in particular an oligonucleotide or peptide nucleic acid (PNA)-oligomer, said oligomer comprising at least one base sequence of at least 10 nucleotides which hybridises to or is identical to a pretreated genomic DNA according to one of the SEQ ID NO: 133 to SEQ ID NO: 388 according to Claim 32.
- 34. The oligonucleotide as recited in Claim 33; wherein the base sequence includes at least one CpG or TpG dinucleotide sequence.
- 35. The oligonucleotide as recited in Claim 34; characterised in that the cytosine of the at least one CpG or TpG dinucleotide is/are located approximately in the middle third of the oligomer.
- 36. An oligomer, in particular an oligonucleotide or peptide nucleic acid (PNA)-oligomer, according to one of the sequences taken from the group comprising SEQ ID NO: 519 to SEQ ID NO: 1030.
- 37.A set of oligonucleotides, comprising at least two oligonucleotides according to any of Claims 33 to 36.
- 38. A set of oligonucleotides, comprising at least two oligonucleotides according to SEQ ID NO: 895 to 986.

- 39. One or more isolated nucleic acid(s) taken from the group according to SEQ ID NO: 65 to 110.
- 40. A set of oligonucleotides, comprising at least two oligonucleotides according to SEQ ID NO: 895 to 906, 909 to 918, 921 to 924, 931, 932, 941, 942, 971, 972, and 987 to 990.
- 41. One or more isolated nucleic acid(s) taken from the group according to SEQ ID NO: 65 to 70, 72 to 76, 78, 79, 83, 88, 103, 111, and 112.
- 42. A set of oligonucleotides, comprising at least two oligonucleotides according to SEQ ID NO: 895 to 954, 957 to 962, 965 to 970, 975 to 978, 981 to 986, and 991 to 1028.
- 43. One or more isolated nucleic acid(s) taken from the group according to SEQ ID NO: 65 to 94, 96 to 98, 100 to 102, 105, 106, 108 to 110, and 113 to 131.
- 44. A set of oligonucleotides, comprising at least two oligonucleotides according to SEQ ID NO: 005, 1006, 1029, and 1030.
- 45. One or more isolated nucleic acid(s) taken from the group according to SEQ ID NO: 120, and 132.
- 46. A set of oligomers, peptide nucleic acid (PNA)-oligomers and/or isolated nucleic acids as recited in Claims 37 to 45, comprising oligomers for detecting the methylation state of all CpG dinucleotides within one or more of the sequences according to SEQ ID NO: 1 to SEQ ID NO: 64 and sequences complementary thereto.
- 47. Use of a set of oligomers or peptide nucleic acid (PNA)-oligomers according to any of Claims 33 to 38, 40, 42, and 44 as probes for determining the cytosine methylation state and/or single nucleotide polymorphisms (SNPs) of sequences according to SEQ ID NO: 1 to SEQ ID NO: 64 and sequences complementary thereto.

- 48. Use of a set of oligonucleotides according to Claim 38 or nucleic acid(s) according to Claim 39 for the differentiation between colon adenoma or colon carcinoma tissue and normal colon tissue.
- 49. Use of a set of oligonucleotides according to Claim 40 or nucleic acid(s) according to Claim 41 for the differentiation between colon carcinoma tissue and normal colon tissue.
- 50. Use of a set of oligonucleotides according to Claim 42 or nucleic acid(s) according to Claim 43 for the differentiation between colon adenoma tissue and normal colon carcinoma.
- 51. Use of a set of oligonucleotides according to Claim 44 or nucleic acid(s) according to Claim 45 for the differentiation between colon carcinoma tissue and colon adenoma tissue.
- 52. A set of at least two oligonucleotides or peptide nucleic acid (PNA)-oligomers as recited in Claim 33, as primer oligonucleotides for the amplification of DNA sequences of one of SEQ ID NO: 133 to SEQ ID NO: 388 according to Claim 32 and/or sequences complementary thereto and segments thereof.
- 53.Use of a pretreated genomic DNA according to Claim 32 for the determination of the methylation status of a corresponding genomic DNA and/or detection of single nucleotide polymorphisms (SNPs).
- 54. A set of oligonucleotides or peptide nucleic acid (PNA)-oligomers as recited in Claims 37, 38, 40, 42 or 44, characterised in that at least one oligonucleotide is bound to a solid phase.
- 55. A set of oligonucleotides or peptide nucleic acid (PNA)-oligomers as recited in Claims 37, 38, 40, 42 or 44, characterised in that all members of the set are bound to a solid phase.
- 56. A method for manufacturing an arrangement of different oligomers or peptide nucleic acid (PNA)-oligomers (array) for analysing diseases associated with the corresponding genomic methylation status of the CpG dinucleotides within one of the SEQ ID NO: 1 to SEQ ID NO: 64 and sequences complementary thereto, wherein at least one oligomer according to any of the Claims 37, 38, 40, 42 or 44 is coupled to a solid phase.

- 57. An arrangement of different oligomers or peptide nucleic acid (PNA)-oligomers (array) obtainable according to claims 54 and 55.
- 58. An array of different oligonucleotide- and/or PNA-oligomer sequences as recited in Claim 57, characterised in that these are arranged on a plane solid phase in the form of a rectangular or hexagonal lattice.
- 59. A nucleic acid or peptide nucleic acid array for the analysis of colon cell proliferative disorders associated with the methylation state of genes comprises at least one nucleic acid according to one of the preceding claims.
- 60. The array as recited in any of the Claims 57 to 59, characterised in that the solid phase surface is composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold.
- 61. A kit comprising a bisulfite (= disulfite, hydrogen sulfite) reagent as well as oligonucleotides and/or PNA-oligomers according to one of the Claims 33 to 46.
- 62. The use of oligonucleotides or peptide nucleic acid (PNA)-oligomers according to the groups of SEQ ID NO: 65 to SEQ ID NO: 132 and SEQ ID NO: 519 to SEQ ID NO: 1030 for the detection of a predisposition to, differentiation between subclasses, diagnosis, prognosis, treatment, and/or monitoring of colon cell proliferative disorders.
- 63. A DNA sequence according to one of the sequences taken from the group comprising SEQ ID NO: 133 to SEQ ID NO: 388 and sequences complementary thereto for use in the analysis of cytosine methylation within said nucleic acid for the detection of a predisposition to, differentiation between subclasses, diagnosis, prognosis, treatment and/or monitoring of colon cell proliferative disorders.

FIG 1

FIG 2

FIG 3

WO 03/072821 PCT/EP03/02035

FIG 4

