

Softwarica College of IT & E-Commerce

ST4068CEM (Mathematics for Computer Science)

Coursework Brief [September 2022]

Module Title:	Ind/Group:	Cohort:	Module Code:
Mathematics For Computer Science	Individual	Sep. 2022	ST4068CEM
Coursework Title:	Handout Date:		
Coursework			
Lecturer:	Due Date:		
Shanta Rayamajhi Basnet			
Estimated Time (hrs.): [In Hours]	Coursework Type:		% Of Module
Word Limit:[]	Assignment		Mark:
			33%
0 1 1 1 0 0		1	

Submission arrangement online via Softwarica's Moodle:

File types and method of recording: Submission should be with one file.

Mark and Feedback date: TBD

Mark and Feedback method: Marks and Feedback file will be released on

Softwarica's Moodle.

File types and method of recording:

Mark and Feedback date: 2 weeks after submission

Mark and Feedback method: Written feedback using Softwarica Moodle

Module Learning Outcomes Assessed:

Construct and communicate proofs using methods of propositional logic and induction.

Task and Mark distribution:

0-39	40-49	50-59	60-69	70-79	80+
Work mainly	Most	Most	Strengths in	Most work	All work
incomplete	Elements	Elements are	all elements	exceeds the	substantially
and /or	completed;	strong, minor		standard	exceeds the
weaknesses	weaknesses	weaknesses		expected	standard
in most areas.	outweigh				expected
	strengths				

Notes:

- 1. You are expected to use the <u>CU Harvard</u> referencing format. For support and advice on how this student can contact <u>Centre for Academic Writing (CAW).</u>
 - 2. Please notify your registry course support team and module leader for disability support.
- 3. Any student requiring an extension or deferral should follow the university process as outlined here.
- 4. The University cannot take responsibility for any coursework lost or corrupted on disks, laptops or personal computer. Students should therefore regularly back-up any work and are advised to save it on the University system.
- 5. If there are technical or performance issues that prevent students submitting coursework through the online coursework submission system on the day of a coursework deadline, an appropriate extension to the coursework submission deadline will be agreed

Marking Rubric

GRADE	Problem	Math	Math	Presentation	Uses of
	Solving	Content	Communication		Mathematical
					Terminology
First	Detailed	Demonstrate	Accurately	Solution is	Mathematical
≥ 70	response	a clear	communicates	presented in	terminology
	given with no	knowledge	solutions to	an easy	is presented
	mathematical	and	problems and	follow step	and uses
	errors when	application of math	concepts.	by step model.	correctly.
	solving problems.	skills.		model.	
Upper	Detailed	Demonstrate	Satisfactory	Solution is	Mathematical
Second	responses	a general	communicates	presented in	terminology
60-69	given that	knowledge	solutions to	logical	correctly
	shows	and	problems and	manner.	used.
	understanding	application	concepts.		
	of the	of math			
	problem but	skills.			
	final answer				
	may not be				
	correct when				
	solving				
Lower	problems Explanation	Demonstrate	Limited	Solution is	Mathematical
Second	or diagram	a limited	communication	presented in	terminology
50-59	unclear, final	knowledge	of solutions to	difficult	correctly
30-39	answer is not	and	problems and	way.	used but
	correct but	application	concepts.	way.	some
	response	of math	conceptor		problem in
	shows some	skills.			presentation
	understanding				•
	of the				
	problem.				
Third	Little	Demonstrate	Little	Solution is	Some
40-49	understanding	a little	communication	difficult to	mathematical
	of the	knowledge	of solutions to	follow at	terminology
	problem is	and	problems and	times.	is presented
	evidenced.	application of math	concepts.		but not
		skills.			correctly used.
1	I	SKIIIS.	l	I	useu.

Fail < 40	Miss key points and no appropriate supporting diagram provided. The response shows no understanding of the problem.	Demonstrate no knowledge and application of math skills.	Inaccurately communicates solutions to problems and concepts.	The readers is unable to follow the steps taken in the solution	No mathematical terminology is used or attempted.
Late submission	0	0	0	0	0

Section: A [60 Marks]

There are (FOUR) 4 questions in this section, attempt ALL questions.

Q.N.1

a.

i. Find the truth value of $\neg (p \land q) \Rightarrow r$ if p and r are false, and q is true.

(2 marks)

ii. What is the truth value if the brackets are removed?

(2 marks)

b.

Let p and q be the proposition

p: Swimming is allowed.

q: Sharks have been spotted near the shores

Express each of the following compound propositions as an English sentence.

(6 marks)

- i. $p \wedge q$:
- ii. $\neg p \lor q$:
- iii. $p \rightarrow \neg q$.
- **c.** Write converse, inverse and contrapositive of "If today is my birthday, then I will get cake." (3 marks)

Q.N.2

a. We consider the problem of controlling a nuclear reactor. Given the atomic sentences "The operator presses the alarm", "the reactor is in danger of melting down", "The control process closes down the reactor", and "The core temperature is rising rapidly", represent the first by A, the second by B, the third by C and the last by D. Convert into English

- i. $B \Rightarrow (AVC)$
- ii. A∨¬D
- iii. (A∧B) ⇒ C
- iv. $(AVD) \Rightarrow (C \Leftrightarrow B)$

(8 marks)

- b. Convert into symbolic form
- If the operator presses the alarm and the core temperature is not rising rapidly then the control process does not close down the reactor.
- ii. If the core temperature is rising rapidly then the reactor is in danger of melting down and the operator presses the alarm.
- iii. If the core temperature is rising rapidly then the reactor is in danger of melting down or the operator presses the alarm.

(6 marks)

Q.N.3

a. Construct a truth table to establish the following compound propositions tautology, contradiction or contingency: $[(p \land q) \lor [\sim p \lor (p \land \sim q)]$

(5maks)

b. Prove the following statements are tautology

a.
$$[(p \land \neg q) \lor \neg p] \lor q$$
 (4 marks)

ii.
$$[p \ v \ (\neg p \ \Lambda \ q)] \ v \ (\neg p \ \Lambda \ \neg q)$$
 (4 marks)

Q.N. 4

a. Prove by the method of Mathematical Induction:

$$1.2 + 2.3 + 3.4 \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
(5 marks)

b. Using the principle of mathematical induction, prove that $(n^2 + n)$ is even for all $n \in N$.

(7 marks)

c.

i. Give a Recursive formula for: 6, 12, 18, 24, 30.....

(4 marks)

ii. Given a recursive sequence if $oldsymbol{t}_{n+1} = oldsymbol{t}_n + oldsymbol{t}_{n-1}$ Where

$$t_0 = 1$$
 and $t_1 = 3$ then find t_5 (4 marks)

Section: B [40 Marks]

There are (THREE) 3 questions in this section, attempt ALL questions.

Q.N.1

a. State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we don't have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a barbecue tomorrow.

(5 marks)

b. Translate the following argument into propositional calculus and test for validity using truth table. "If Fred has access to file file.dat then it is encrypted. If file.dat is not encrypted, then it cannot be in a publically accessible directory. Therefore, Fred has access to file.dat and it is not in a publically accessible directory."

(5 marks)

c. Show that the hypothesis is valid: It is not sunny this afternoon and it is colder than yesterday. We will go swimming only if it is sunny. If we don't go swimming, then will take a canoe trip, if we take a canoe trip, then we will be home by sunset. Therefore, we will be home by sunset.

(6 marks)

Q.N.2

Let, Predicates:

J(x): x is judges

S(x): x is sober

D(x): x is defendants H(x): x is honest. L(x): x is lawyers. I(x): x is innocents P(x): x is plaintiffs a. Express the following using the language of predicate calculus, where it is understood that the people being discussed is in the courtroom. i. All judges are sober. (2 marks) ii. All defendants are innocents. (2 marks) iii. Some plaintiffs are lawyers (2 marks) b. Express the following in normal English: (2 marks) i. $\forall x \in C: J(x) \vee S(x)$ ii. $\forall x \in C: H(x) \land L(x) \Rightarrow S(x)$ (2 marks) c. Give the negation of each statement both in symbolic form and in natural English. All judges are sober. (2 marks) ii. There is a dishonest lawyer (2 mark) Q.N.3

c. Construct the formal Proof to show that

i. A,
$$A \Rightarrow B$$
, $C \Rightarrow \neg B$ \frown C (5 marks)

ii.
$$PVQ, Q \Rightarrow \neg R, R \vdash P$$
 (5 marks)