플랫폼 성능특성 지표(응답 시간->"Response Time", 경과 시간->"Turnaround Time", 가용성->"Availability", 사용률->"Utilization")

(한글)응경이가 집에서 가사활동을 하고 있다. / (영어)따루-TARU

요구사항 확인: 도출->분석->명세->확인 => 추출 -> 분석 -> 정의 -> 검증

요구분석 기법: 청(취 기술)인(터뷰 기술)이가 관(찰 기술)중(재 기술)속에서 분석(기술)모델(작성기술)을 하고 있다.

요구사항 확인 기법: 포레스트 (요구사항)검(토)프(로토타이핑)가 군중속으로 모(델 검증)인(수 테스트)다.

COCOMO 모델의 유형

구분	내용			
기본형	● 단순히 SW의 크기와 개발 모드 기준으로 계산			
(Basic COCOMO)	● LOC 기반			
중간형 (Intermediate COCOMO)	● Basic의 확장, 프로젝트 형태, 개발 환경, 개발 인력 등 요소에 따라 15개 비용 요소를 가미하여 곱한 가중치 지수 이용 ● LOC + 가중치 기반			
발전형	● Intermediate + 컴포넌트별 개발비 견적			
(Detailed COCOMO)	● 개발 단계별(생명주기)로 비용 산정 방식을 달리 할 수 있음			

COCOMO의 3가지 프로젝트 유형

구분	모드 특징		
Organia Mada	다스혀 ㅁㄷ	● 5만 라인 이하 코드	
Organic Mode	단순형 모드	● 소규모 프로젝트로 개발하는 범용적인 응용 시스템	
Carri Data da a		● 30만 라인 이하 코드	
Semi-Detached	중간형 모드	● 중규모 프로젝트로 트랜잭션 처리, 운영체제, DBMS 등 일반적	
Mode		인 형태의 정보시스템 개발	
		● 30만 라인 이상 코드	
Embedded Mode	임베디드형 모드	● 하드웨어 제어를 포함하는 최상위 규모의 실시간 처리 시스템	
		으로 스마트 팩토리, 원자력 발전 등 고도의 정보시스템 개발	

기능점수의 산정 방식 데이터 기능 측정, 트랜잭션 기능 측정

순서			상세 내역
데이터	기능	ILF	애플리케이션 경계 내에서 유지되는 Data 및 제어 정보
측정		EIF	애플리케이션 경계 밖에서 유지되는 Data 및 제어 정보
		EI	애플리케이션 경계 안으로 들어오는 데이터나 제어 정보 처리하는 단위 프로세스
트랜잭션	기능	EO	애플리케이션 경계 밖으로 조회되는 것으로 파생 데이터 생성과 같은 처리 로직을
측정			포함하는 단위 프로세스
		EQ	EO와 같으나 파생 데이터 생성과 같은 처리 로직으로 포함하지 않는 단위 프로세스

기능적 모델링 기법

구성 요소	주요 내용		
배경도	◆ 시스템 및 외부 객체와의 자료 흐름을 개략적으로 표현하는 도구		
(Context Diagram)	◆ 시스템의 범위를 전반적으로 표현		

자료흐름도			
(DFD: Data Flow	◆ 배경도를 기반으로 기능을 분할하고 분할된 기능을 버블 단위로 표현한 구조도		
Diagram)			
자료 사전	◆ 자료 ¹	별 단위나 자료의 의미에 대한 사항의	정의
(Data Dictionary)	◆ 자료	흐름도에 표현된 자료의 저장소를 구제	체적으로 명시
	표기법	표기 내용	설명
	=	자료명과 내용의 연결	다음과 같이 구성
	+	순차(sequence)	~과
	[]	선택(selection)	~ 중
	{ }n	반복(repetition)	n번을 반복
	()	선택사양(option)	추가될 수 있음
구조도	◆ 시스템의 처리기능을 블랙박스로 분할한 후 모듈로 표현하고 이들 간의 인터페이스		
(Structure Chart)	를 계층구조로 연결하여 표현		
소단위명세서	◆ 자료 흐름도의 최하위 레벨에서 특정 일이 처리될 수 있도록 로직(Logic)을 개략적으		
(Mini-Specification)	로 기술하는 구조도		

애자일의 유형

종류		특징		 비고
	•	eXtreme programming		
	•	이해관계자 간에 의사소통 방식을 개선하여 즉각적인		
		피드백을 통해 요구변화 대응		
XP	•	단순하게 코딩하여 S/W 품질 향상	•	애자일 기법 중 가장 주목을 받고
	•	테스트 강조, 5가지 가치(용기, 단순화, 커뮤니케이션		있으며 개발 관점의 방법론 집중
		(의사결정), 피드백, 존중)와 12개 실천항목으로 구성		
	•	1~3주 단위의 짧은 반복 개발 주기 수행		
	•	프로젝트를 30일 단위의 스프린트로		반복 계획과 팀 구성원의 업무
SCRUM		분리하여 반복 수행하고, 스크럼 마스터와 팀은 매일	•	추적에 중점
		15분가량의 짧은 스크럼 회의를 통하여 계획 수립		T 7 % 0 G
	•	애자일 방법론을 기반의 S/W 개발 모델을 완벽하게		
UP		제시	•	Agility 원칙과 특징을 강조
	•	비주얼 기반의 모델링 도구 지원		
	•	다양한 형태의 프로젝트 상황에 맞춤형 방법론을 적용	•	프로젝트 범위와 중요도에 따라
Crystal		할 수 있도록 다양한 세부적인 기법과 테일러링 원칙	Ť	
		제공		717 38 46
	•	프로젝트의 특징을 기반으로 하여 기능모델 도출, 설		
FDD		계와 구현, 수행의 3단계 사이클 반복하여 수행	•	명료한 설계와 구현 프로세스의
, , ,	•	이때 구현 단계에서는 2주간의 짧은 Iteration과 5단계		반복 수행
		세부 프로세스를 통해서 개발 추진		

UML의 특징

가(시화)구(현)의 명(세화)문(서화)

UML의 구성 요소 사(물)관(계)의 도(해)

UML의 메커니즘

공(통분할)명(세)이 국토 확(장 메커니즘)장(식)을 추진

세분류별 다이어그램

구분	설명	주요 다이어그램			
기능적 모델	유스케이스	사용자 입장에서 바라보는 시스템의 행동과 기능적 요구사항들에 대하여			
		표현			
	클래스	시스템 내 클래스들의 정적인 구조와 클래스 간의 관계를 표현하며			
	บ -	의존관계를 명확하게 파악 가능			
	패키지	클래스나 유스케이스의 요소들을 그룹화하여 패키지를 작성하고 패키지 간			
정적 모델		의 의존관계를 표현함으로써 시스템 컴파일 시의 계층적인 구조 파악 가능			
	컴포넌트	컴포넌트 논리적 혹은 물리적 컴포넌트들의 구조를 표현			
	배치	노드로 구성된 3차원 박스들로 시스템 하드웨어 및 소프트웨어 간 물리적			
		구조를 표현			
	사충자요	객체 집합들 사이에 전달되는 메시지를 포함하는 자료구조를 도표나			
	상호작용	순서도 등으로 표현하는 시퀀스 + 협동 다이어그램			
동적 모델	시퀀스 객체들 간의 상호작용을 메시지 흐름으로 표현하고 2차원으로 구조				
	협동	객체들 사이에 동적인 협력 사항을 구조적으로 표현			
	액티비티	행위에 대한 일련의 순서적 흐름을 다이어그램으로 표현			
	상태	클래스가 가지는 모든 가능한 상태와 이벤트, 전이를 표현			

결합도[낮음]: 내공외제스자

내(용)공(통)을 높이기 위해서는 외(부)제(어)를 쓰(스탬프)자(료)

응집도[높음]: 우논시절통순기

우(연적)는(논리적) 시(간적)절(차적)을 통(신적 or 교환적)으로 순(차적)전히 기(능적)록했다.

구분	블랙박스 테스트	화이트박스 테스트	
	◆ 프로그램 외부 명세를 보면서 기능 테스트	◆ 단위모듈 테스트의 통상적인 테스트 수행	
정의	수행	방법	
0.4	◆ 단위모듈이 블랙박스 테스트를 수행하기 위해	◆ 프로그램의 내부 로직과 소스코드를 보면서	
	서 테스트드라이버와 스텁 등이 필요	테스트 수행	
핵심	사용자의 관점으로 입/출력 테스트	개발자의 관점으로 로직 테스트	
장점	테스트가 용이함	오류에 빠른 피드백이 가능함	
단점	내부 로직 파악이 어려움	누락된 로직이 발생할 수 있음	
종류	동등분할, 경계값, 원인 및 결과	구조기반 테스트, 루프 테스트	

형상관리 기법:"형상" + 식(별)통(제)감(사)기(록)

형상관리 베이스라인: 기(능적)분(배적)설(계)시(험)제(품)운(영) + "기준선"

개발 프레임워크: 재다구실

이제야 재(사용성)다(양성)이 구(체성)실(체성) 좀 하겠군

개발 프레임워크 구성요소: 개실관운 + "환경"

개(발)실(행)이는 관(리)운(영)이 있어서 공무원에 합격했네

UI 설계원칙(유유직학)

유(효성)유(연성)하게 직(관성)접 학습(성)하다.

ISO 9126 기반 UI 품질 요구사항(가신사효유이)

기능성, 신뢰성, 사용성, 효율성, 유지 보수성, 이식성

스토리보드 작성요건(가완일이추수)

가(독성)완(전성)일(관성)이(해성) 벼를 추(적 용이성)수(정 용이성)했다.

UI 설계 도구의 유형

구분	설명	활용 툴		
와이어프레임	서비스 흐름 화면에 대한 스케치와 콘티 수준으로	조이 그리 이트파크베 트		
(Wireframe)	그려진 페이퍼나 문서 파일	종이 그림, 워드프로세 등		
목업	그래픽 디자인을 활용하여 실제 구현될 하면 구성과	파이 무어 바내미 무어 드		
(Mockup)	유사하게 구현한 정적인 모형	파워 목업, 발사믹 목업 등		
프로토타입	실제 구현될 결과물 화면을 그래픽 디자인 등을			
(Prototype)	활용하여 동적으로 개발한 모형	프로토나우, 오븐 등		
스토리보드	와이어 프레임을 정형화하고 기능 및 DB 연동을			
(Storyboard)	포함하는 전체적인 UI 화면 설계 내용이 담긴 문서	액슈어, 워드프로세서 등 		
유즈케이스	사용자의 요구사항을 액터와 행위로 묘사하는			
(Use Case)	다이어그램	바지오, 루시드 차트 등 		

UML 특성(가구명문)

가(시화 언어)구(축 언어)의 명(세화 언어)문(서화 언어)은 정기사 가구다.

UML 메커니즘(공명확장)

공(통분할)명(세서)이 국토 확(장 메커니즘)장(식)을 추진했다.

Specification(명세서), Adornment(장식), Common Division(공통분할), Extensibility Mechanism(확장 메커니즘)

UML의 구성 요소(사관도)

사(물)관(계)의 도(해)를 지켜야 한다.

사물의 구분(구행그주)

사물을 구(조사물)해(행동사물)서 그(룹사물) 주(해사물)까지 납품이 가능하다.

관계 구분(의연일실)

의(존관계)연(관관계)이는 일(반화관계)을 성실(체화관계)하게 한다.

컴포넌트 다이어그램 구성 요소(컴제요포조)

<u>컴포넌트</u>가 <u>제공</u>한 <u>요구</u>사항은 <u>포트</u>의 <u>조립</u>이다.

테스트 케이스 구성요소(식항입출 + 환특의)

공식(별자)에는 (테스트)항목에 대한 $\underline{0}$ 력(명세)과 $\underline{\dot{\sigma}}$ 력(명세)이 있고, 환경(설정)의 특(수절차요구)성에 <u>의존(성 기</u>술)적이다.

테스트케이스 설계유형(명구경)

명(세기반)구(조기반)경(험기반) 가자

다이어그램

구분	다이어그램	응용도구
	클래스	시스템에서 사용되는 객체타입을 정의하고 객체 사이에 존재하는
	(Class)	정적인 관계를 연관, 집합, 상속, 의존 형태로 표현한 다이어그램
저저 / 그 ㅈ 저	객체	대상 시스템의 클래스를 도출하기 위해 대상 시스템을 구성하는
정적/구조적	(Object)	객체
다이어그램	컴포넌트	시스템 내부에 존재하는 컴포넌트들을 알리고 컴포넌트 사이의
(Static/Structural)	(Component)	관계를 나타내는 다이어그램
	배치	네트워크, H/W 또는 S/W들을 실행파일 수준 컴포넌트들과 함께
	(Deployment)	표현, 노드와 노드들 간의 관계를 나타낸 다이어그램
	유즈케이스	시스템의 기능 및 그와 관련된 외부 요소를 사용자 관점에서
	(Use Case)	표현한 다이어그램
	순차	문제 해결을 위한 객체를 정의하고 객체 사이에 주고받는 메시지를
	(Sequence)	시간의 흐름(순서)에 따라 보여주는 다이어그램
		시스템의 동적인 측면을 표현하기 위해 메시지의 시간 순서에 따른
동적/행위적	통신	교류(동적흐름)를 보여주는 다이어그램
다이어그램	(Communication)	순차 다이어그램과 통신 다이어그램은 모두 상호 작용 다이어그램
(Dynamic/Behavioral)		으로 불림
	상태	대상 시스템의 행위들을 표현하기 위해 행위를 상태(State)들의
	·	집합으로 구분하고, 그 상태들 간의 전이(Transition) 관계와 그
	(State)	전이를 일으키는 이벤트 및 조건을 정의한 다이어그램
	활동	객체의 처리 로직이나 조건에 따른 처리흐름을 순서대로 정의한
	(Active)	다이어그램

통합테스트 유형(백빅상하) -> 백본, 빅뱅, 상향식, 하향식

시스템 테스트 유형(회안강성구)

회(복 테스트)안(전 테스트)에 가면 강(도 테스트)성(능 테스트)구(조 테스트)가 있다.

성능테스트의 유형(단복임 루스확가티)

분류	성능 테스트 유형	설명		
	단위 성능 테스트	대상 시스템을 업무 단위별로 나누어서 테스트 수행		
목적	보하 서느 데ㅅㅌ	사용자가 사용하는 패턴을 기반으로 동시 사용자 및 가중치를 적요한 시스템 환경		
분류	복합 성능 테스트	을 구축한 후 테스트 수행		
	임계 성능 테스트	시스템이 발휘할 수 있는 성능의 최대 임계치 측정		
	루프백 테스트	시스템의 특정 구간 혹은 특정 지정까지만 반복하여 수행하도록 하는 테스트 방법		
		(Loop Back Code 삽입)		
		병목 지점 도출 시 사용		
방법		시스템 동작 중 특점 시점에 순간적으로 부하(사용자 접속, 트랜잭션 등)를 증가시		
⁸ 변 분류	스파이크 테스트	켜 시스템의 내구성 측정		
正田		사용자 트랜잭션을 동시에 발생시켜 테스트 수행		
		시스템 성능 저하 없이 많은 부하(동시 사용자 등)을 수용할 수 있는지 여부 테스트		
	확장성 테스트	용량 산정, 시스템 배치 등의 목적으로 활용		
		확장 계수를 산정하여 확장성 보장 여부 테스트 수행		

가용성 테스트	다수의 트랜잭션을 발생시켜면서 시스템의 가용 여부 및 장애 발생 테스트 시스템 장애 발생 시 복구 여부를 테스트
	예) 시스템 이중화 구성 시 장애로 인한 서비스 전환이 잘 이루어지는지 검증
티어 테스트	티어별로 트랜잭션을 발생시켜 부하 지점을 찾는 테스트

단복인(임) 루즈(스)한 옷은 확실히 같이(가티) 입어야 멋있다.

기능 요구사항 분석 대상(기자인사)

기(능)자(료)들이 들어오면 인(터페이스)사(용자)를 합니다.

비기능 요구사항 분석 대상(자성품보)

자(원)기의 성(능)품(질)을 보(안)증합니다.

테스트 케이스 작성

구분	항목	설명		
공통 작성 항목	문서 정보	테스트 단계 명(단위/통합/시스템/인수 테스트), 작성자, 승인자, 작성 일자, 문서 버전		
	대상 시스템 정보	서버 또는 시스템 사양 및 구성정보 등		
	변경 여부	테스트 케이스의 변경 여부와 변경 일자, 내용, 담당자 및 변경 사유 등		
요소	테스트 범위	테스트 대상이 되는 기능 및 업무별 테스트 범위		
	테스트 조직	테스트 계획 및 수행을 위한 조직 식별		
	테스트 ID	테스트 케이스를 식별하기 위해 부여되는 고유한 ID		
		추적이 가능하도록 요구사항 명세서에 정의된 ID와 동일하게 유지		
	테스트 목적	테스트 시 중점적으로 고려해야 할 사항이나 테스트 케이스의 목적 등		
	테스트 기능 요약	애플리케이션의 테스트할 기능		
개별	입력 데이터 작성	테스트 수행 시 시전에 정의한 입력 데이터(입력 데이터, 수행 순서, 클릭할 버튼,		
게 크 테스트		체크리스트의 선택 값 등)		
케이스	기대 결과	테스트 케이스의 결과로 기대하는 결과 데이터(출력 값, 출력 결과 화면, 결과로		
항목		기대되는 동작 등)		
요소	테스트 환경	테스트 수행을 위한 물리적/논리적 테스트 환경, 테스트 중 사용하는 데이터,		
开工		테스트 결과를 기록할 서버 등		
	전제 조건	테스트 케이스 간의 종속성(순서 등), 테스트 수행 전 전제되어야 할 사항 등		
	성공/실패 기준	테스트 케이스 수행 결과의 성공과 실패 여부를 판단하는 조건		
		기대결과와 유사하지만 명확하게 작성		
	기타 요소	사용자의 테스트 요구사항 중 테스트 케이스 수행을 위해 고려해야 할 내용 등		

테스트의 원리(결완초집살정오)

결(함 존재의 밝힘의 원리)완(벽한 테스팅 불가능의 원리)이가 초(기 테스팅 시작의 원리)가(결함)집(중의 원리)에 살(충제 패러독스의 원리)다 정(황 의존성의 원리)오(류-부재의 궤변의 원리)에 떠났다.

테스트 단계(단통시인설) ->단체 통신을 시작하면 인사 후 진행 순서를 설명한다. 단위테스트, 통합테스트, 시스템 테스트, 인수 테스트, 설치 테스트 순으로 테스트 수행

테스트 오라클 유형(참새휴일)

참(오라클)샘(플링 오라클)는 휴(리스틱 오라클)일(관성검사 오라클)에 쉰다.

테스트 완료 조건(완목기커리스) -> 완전성, 목적, 기준, 커버리지, 리스크, 스케쥴

결정테이블 구성 요소(아조기) -> (테스트케이스)아(이디)침부터 (테스트)조(건)기(대 결과)가 맛있다.

상태전이 테스팅의 표기법(상전이가액) -> 상(태)전(이)이(벤트) 가드를 불러 액(션)먹이다.

명세기반 테스트 유형(동정결상 + 유폐직)

동등분할 테스트, 경곗값 분석 테스트, 결정테이블 테스팅, 상태전이 테스팅 + 유즈케이스 테스트, 페어와이즈 테스트, 직교배열 테스트

구조기반 테스트 유형(구결조조변다)

구문 커버리지(SC), 결정 커버리지(DC), 조건 커버리지(CC), 조건/결정 커버리지(C/DC), 변경 조건/결정 커버리지(MC/DC), 다중조건 커버리지(MCC)

ISO/IEC 9126품질 모델 품질 특성(기신사효유이)

기능성, 신뢰성, 사용성, 효율성, 유지보수성, 이식성

경험기반 테스트 유형(탐분체특오)

탐색적 테스팅, 분류트리 테스팅, 체크리스트 테스팅, 특성 테스팅, 오류 추정

회귀 테스트 유형(리설프)

리(Retest All-전체 샘플링)발 후 샴푸는 설(Selective-실제 수정 기반)프(Priority-영향도 기반) 입니다.

시큐어코딩 보안항목(입어보시에코캡)

입(력 데이터 검증 및 표현 처리)어(API 오용)보(안 기능 처리)시(간 및 상태 처리)다. 에(러 처리)코(드 오류)캡(슐화)

해킹(침해사고) 대응 절차(준인봉근복보)

준(비)인(식)이가 봉(쇄)근(절)이와 복(구)지보(안)건부에 가고 있다.

APT 공격 침투단계(조진침수)

장마로 인해 조(사 단계)진(입 단계)이네 집이 침(투 단계)수(집 단계)되었다.

암호화 특징(인기무부가) ->인(증)기(밀성)는 무(결성)부(인봉쇄)가(용성) 최고~!

A (uthentication) C (on fidentiality) I (ntegrity) N (on-repudiation) A (vailability)

암호화 기법 유형(대블치확압) -> 낚시하는데 대(체)불(록화)치(환)가 확(장) 압(축)박하네

S(ubstitution)B(locking)T(ransposition)E(xpansion)C(ompaction)

접근 통제 3요소

접근통제 + 정(책)씨의 메(커니즘)(보안)모(델)장

접근 통제 기본 구성(주객참감)

주(체)객(채)이 참(조 모니터링)감(사 이력)하다.

접근통제 유형(임각역)(맥댁알백-MacDacRbac)

이번 정차역은 임(의적)강(제적)역(활 기반)입니다. + 접근 통제

디지털 포렌식의(정재신연무) ->이정(당성)재(현) 신(속성)을 정연(계 보안성)무(결성)가 신고 갔다. + 의 원칙

디지털 포렌식 절차(준수보분제)

국화가 (수사)준(비)(증거)수(집)해 보(관 및 이송)여서 (증거)분(석)(보고서 및 증거)제(출)를 하였다.

대표적인 암호화 알고리즘

구분	내용	유형
DES (Data	• 56bit키를 이용하여 64bit 평문 블록을 64bit 암호문 블록으로 만드는 블록 암호화 방식이며 미국 표준	
Encryption Standard)	◆ 대칭키 방식이며, 단순하고 구현이 용이하나, 최근에는 컴퓨터 성능의 발전 으로 암호 해독의 위험이 있어서 사용이 불가함	
AES (Advance Encryption Standard)	 최근 DES의 안전성이 떨어져 이를 대체하기 위한 미국 암호화 표준 128, 192, 256bit 등 가변길이 키와 가변길이 블록을 암호화하는 기법 및 알고리즘 	
SEED	한국에서 개발한 표준 블록암호화 알고리즘으로 128비트의 대칭키 방식	
IDEA (International	• 유럽의 Xuejia Lai와 James Messey가 개발하여 PGP의 표준으로 채택된 대칭키 알고리즘으로 64비트 블록, 128비트 키로 8개의 라운드를 수행	대칭키 방식
Data Encryption	◆ 초기 PES(Proposed Encryption Standard)에서 IPES(Improved PES)로 변경되었다가 1991년에 제작된 블록 암호 알고리즘으로 현제 국제 데이터 암호	
Algorithm)	화 알고리즘으로 사용	
SKIPJACK	 미국의 NSA에서 개발한 Clipper 칩에 내장되는 블록 알고리즘으로, 전화기와 같은 음성을 암호화하는 데 주로 사용되는 64비트 입출력에 80비트의키총 32라운드 수행 소형 임베디드 기기 등 저전력, 저수준의 하드웨어에서도 암호화가 가능하도록 경량화 특성 보유 	
RSA		
(Rivest	소인수의 곱을 인수분해하는 수학적 알고리즘을 반영한 대표적인 비대칭키 방	
Shamir Adleman)	식 암호화 알고리즘 및 기법으로, 현재 전자서명, PKI 등에 활용되고 있음	
ECC		
(Elliptic	타원의 곡률을 이용한 공개키 기반의 암호화 알고리즘으로 RSA와 함께 전자	
Curve	인증서 등에 활용	
Cryptography)		
Hash (MD, SHA)	 임의의 유한 길이 입력값을 고정된 크기의 출력값으로 바꾸는 함수를 이용한 암호화 알고리즘 일방향성을 갖고 있어 암호화된 값에 대해 유추 혹은 변환을 통해 원값을 찾는 것이 불가능해야 하며, 혹시 우연히 동일한 암호화 값이 나오지 않도록 충돌회피성을 고려하여 Salt값을 추가하여 암호화하기도 함 전자서명에서 메시지 다이제스트(무결성 검증) 생성에 활용되며 대표적으 	
	로 RFC1321로 정의된 MD5와 함께 SHA 등의 알고리즘이 있음	

ARP프로토콜: 특정 호스트의 IP 주소로부터 MAC 주소를 제공하는 프로토콜, 캐시기능

PARP프로토콜: 특정 호스트의 MAC 주소로부터 IP 주소를 제공하는 프로토콜

ICMP프로토콜: 인터넷 환경에서 오류에 관한 처리를 지원

IGMP프로토콜: 멀티캐스트 그룹에 가입하거나 탈퇴할 때 사용하는 프로토콜

ALM도구의 주요 기능(이개소빌)

이슈 관리, 개발 환경, 소스 관리, 빌드 자동화

Layer	프로토콜	주요 기능			
	FTP	파일 전송 프로토콜(File Transfer Protocol)			
	POP	메일 서버와 메일 클라이언트 간 메일 송수신(Post Office Protocol)			
	SMT	메일 서버와 메일 서버 간 메일 송수신(Simple Mail Transport Protocol)			
	Telnet	다른 시스템으로 로그인할 수 있는 기능			
A 15 15	HTTP	웹 서비스 프로토콜(Hypertext Transfer Protocol)			
Application	TFTP	소형 파일 전송 프로토콜, 보안성 X(Trivial File Transfer Protocol)			
	CNIMID	네트워크 및 호스트의 상태를 모니터링(agent), 장애 발생시 경고메시지(trap) 관리			
	SNMP	서버에 전송(Simple Network Management Protocol)			
	DNS	호스트 이름에 대한 IP 주소를 알려주는 기능(Domain Name System/Service)			
	DHCP	동적 호스트 설정 프로토콜, IP 구성 관리를 단순화			
	JPEG,	사지 도여사 교즈			
Presentation	MPEG	사진 동영상 표준			
riesentation	SMB	도스, 원도우에서 파일이나 디렉토리/주변장치들을 공유하는데 사용되는 메시지			
	SIVID	형식(Server Message Block)			
	SSH	네트워크상의 다른 컴퓨터에 로그인, 원격 시스템에서 명령 실행, 다른 시스템으로			
Session	3311	파일을 복사해주는 프로토콜, Telent의 통신 내용 유출 취약성 개선(Secure Shell)			
	TLS	통신 과정에서 전송 계층 종단 간 보안과 무결성을 확보(Transport Layer Security)			
	TCP	네트워크 정보 전달 통제, 인터넷 핵심 프로토콜, RFC 793, 연결 지향형 프로토콜, 흔			
Transport	101	히 TCP(Transmission Control Protocol)/IP로 표기			
nunsport	UDP	Thin Protocol, RFC 768, 비연결 지향형 프로토콜, 저대역폭 차지, 신뢰성 요하지			
	ODF	않음(User Datagram Protocol)			
	IP	네트워크를 통해 목적지까지 패킷을 전달할 수 있게 출발지 주소와 목적지 주소를			
	"	지정(Internet Protocol)			
	ICMP	IP 프로토콜의 일부로 작동하며, 네트워크 상태, 오류 보고, 메시지 전송 및 응답			
		등과 같은 네트워크 관련 작업을 수행(Internet Control Message Protocol-Ping)			
Network	IGMP	멀티캐스트 그룹을 인근의 라우터에 알리는 수단을 제공 			
	IGIVII	(Internet Group Management Protocol)			
	ARP	데이터 전송을 위해서 목적지 IP 주소를 가지고 MAC주소를 찾는 데 내용 			
	7 (1 (1	(Address Resolution Protocol)			
	RARP	MAX주소 할당된 IP주소 정보를 요청하는 프로토콜			
		(Reverse Address Resolution Protocol)			
	MAC	자료 전송 프로토콜의 하부 계층, IEEE 802.3, Media Access Control			
	LLC	네트워크 레이어 프로토콜을 식별하고 캡슐화, IEEE 802.2, Logical Link Control			
	ATM	53바이트의 셀 단위로 패킷을 전송하는 비동기 방식 시분할 다중화 통신 기술			
	프레임	데이터 프레임들의 중계 및 다중화만을 수행하는 프로토콜 처리 프로세스를 단순화			
Data Link	릴레이	로 처리 속도와 전송지연을 감소시킨 통신 기술			
	HDLC	컴퓨터와 컴퓨터 사이에 데이터 링크를 구성하고 비트 기반의 한 프레임씩 전송되 			
		는 통신 기술			
	PPP	네트워크 간의 포인트 투 포인트 연결을 위한 프로토콜			
		주로 인터넷 연결에 사용되며, 시리얼 라인을 통해 컴퓨터와 네트워크 장비를 연결			
		데이터 링크 계층에서 동작하며, 주요 목적은 데이터 안전하고 신뢰성 있게 전송			

	CSMA/CD	어떤 스테이션이 송신할 때 대역폭을 공유하지 않고 단독으로 사용 시 충돌 문제 극복				
Physical	RS-232C	컴퓨터가 외부에서 자료를 주고받기 위해 사용하는 직렬 통신방식				
		recommended standard-232C				

ISO 12207 프로세스(기지조) -> 기본 생명주기, 지원 생명주기, 조직 생명주기

ISO 15504 (SPICE) 프로세스 수행능력 차원(불수관확예최) -> 불안정, 수행, 관리, 확립, 예측, 최적화

CMMi 단계적 표현 모델 성숙도(초관정관최) -> 초기, 관리, 정의, 정량적 관리, 최적화

ISO 25010의 품질 특성(가신사포유이보호) -> 기능성, 신뢰성, 사용성, 효율성, 유지보수성, 이식성, 보안성, 호환성

ISO 12119 구성 요소(제사실) -> 제(품 설명성)사(용자 문서)를 지낼 땐 실(행 프로그램)수가 없어야 한다.

ISO 14598 특징(반재공객) -> 반(복성)재(현성)가 공(정성)객(관성)했다.

ISO 25000 표준 프레임워크 구성(요모관측평) -> 품질 <u>요</u>구, 품질 <u>모</u>형, 품질 <u>관</u>리, 품질 <u>측</u>정, 품질 <u>평</u>가

프로세스 그룹(착계실통종)

착수 프로세스, 계획 프로세스, 실행 프로세스, 감시 및 통제 프로세스, 종료 프로세스

프로젝트 관리(통범일원 품자 의리조이)

통합관리, 범위관리, 일정관리, 원가관리, 품질관리, 자원관리, 의사소통관리, 위험(리스트)관리, 조달관리, 이해관계자관리

명령어 종류(전산논사분)

전송 명령어, 산술 명령어, 논리 명령어, 시프트 명령어, 분기 명령어

연산자 우선순위

대분류	중분류	연산자	결합규칙	우선 순위
단항 연산자	단항 연산자	! ~ ++ sizeof	<-	높음
이항 연산자	산술 연산자	* / %	->	
	시프트 연산자	+ -		
	관계 연산자	<< >>		
	비트 연산자	< <= >= > == !=		
	논리 연산자	& ^ &&		
삼항 연산자	조건 연산자	? :	->	
대입 연산자	대입 연산자	= += -= *= /= %=	<-	
		<<= >>= 등		
순서 연산자	순서 연산자	,	->	낮음

객체지향 프로그래밍언어 속성(캡추다정상)

캡(슐화)틴 추(상화)장이 다(형성)정(보 은닉)상(속성)을 받았다.

테스트 드라이버와 스텁(하스 상드)

하(위 모듈)얀 스(텁)카프를 상(위)으로 드(라이버)립니다.

-하위 모듈은 스텁, 상위 모듈은 드라이버