COMM053-Practical Business Analysis Group 12 Coursework Report

Students Names:
Govind Konnanat - 6797843
Naima Rashid - 6844356
Akhil Bhardwaj - 6828141
Venkat Sandeep Imandi - 6829480
Ratan Rana Paleka Sheeba - 6826777

Title:

Rainfall Prediction and Influence Analysis: A Comparative Study of Machine Learning Techniques on Imbalanced Datasets

Section-1: Introduction (Research Question and Data Understanding)

1.1 Problem Statement and Business Use Case:

Knowing if it rains the next day is a critical need for all of us in our daily lives as accurate weather predictions help individuals plan their activities for the next day better.

Not only is this useful for normal consumer usage but also for business industries such as the transportation and energy industry which can use the information rarely to prepare and use alternate methods and take precautions. The large-scale success of this project could be used in the agriculture industry where the majority of decisions are made based on the weather conditions.

1.2 Research Question:

Our project deals with rain prediction and identifying the key factors behind the influence of rain based on the condition of the previous day. We use the dataset on Kaggle which gives us 10 years of weather observations in Australia across various locations on a daily basis.

Our objective is to run various classification models on this dataset in order to decide which model works best with an imbalanced dataset and to decode which factors affect rain the most.

Source: https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package/data

1.3 Data Dictionary:

Date-The date of observation

Location-The common name of the location of the weather station

MinTemp-The minimum temperature in degrees celsius

MaxTemp-The maximum temperature in degrees celsius

Rainfall-The amount of rainfall recorded for the day in mm

Evaporation-The so-called Class A pan evaporation (mm) in the 24 hours to 9am

Sunshine-The number of hours of bright sunshine in the day.

WindGustDir-The direction of the strongest wind gust in the 24 hours to midnight

WindGustSpeed-The speed (km/h) of the strongest wind gust in the 24 hours to midnight

WindDir9am-Direction of the wind at 9am

WindDir3pm-Direction of the wind at 3pm

WindSpeed9am-Wind speed (km/hr) averaged over 10 minutes prior to 9am

WindSpeed3pm-Wind speed (km/hr) averaged over 10 minutes prior to 3pm

Humidity9am-Humidity (percent) at 9am

Humidity3pm-Humidity (percent) at 3pm

Pressure9am-Atmospheric pressure (hpa) reduced to mean sea level at 9am

Pressure3pm-Atmospheric pressure (hpa) reduced to mean sea level at 3pm

Cloud9am-Fraction of sky obscured by cloud at 9am. This is measured in "oktas", which are a unit of eigths. It records how many eigths of the sky are obscured by cloud. A 0 measure indicates completely clear sky whilst an 8 indicates that it is completely overcast.

Cloud3pm-Fraction of sky obscured by cloud (in "oktas": eighths) at 3pm. Temp9am-Temperature (degrees C) at 9am

Temp3pm-Temperature (degrees C) at 3pm

RainToday-Boolean: 1 if precipitation (mm) in the 24 hours to 9am exceeds 1mm, otherwise 0

RainTomorrow-The amount of next day rain in mm. Used to create response variable RainTomorrow. This is the target/dependent variable.

We have 23 columns in which we are using all the columns other than the target variable "Rain Tomorrow" to predict the target column.

Since we have 10 years of data, we have 145,460 observations or rows. It has a mix of outliers and null values along with a class imbalance which we will be looking to overcome.

CRISP-DM Approach - Initially we we did the modelling but when we came to the conclusion that the results could be not what the users would want due to the imbalance in prediction, we had to re-iterate the whole process to see any potential improvements and changes to better improve the business requirements.

1.4 Data Loading and Sampling

We have loaded up the dataset in R of which we have sampled 10% ie: 14546 rows due to memory constraints, ease of computation and comparison.

	101	Filter														Q,	
	Date	Location	MinTemp	MaxTemp [©]	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	Pressure9am	
	01-12-2008	Albury	13.4	22.9	0.6	NA	NA	W	44	W	WNW	20	24	71	22	100	7.7
	02-12-2008	Albury	7.4	25.1	0.0	N/A	NA	WNW	44	NNW	WSW	4	22	44	25	1010).6
	03-12-2008	Albury	12.9	25.7	0.0	NA	NA	WSW	46	W	WSW	19	26	38	30	100	7.6
	04-12-2008	Albury	9.2	28.0	0.0	N/A	NA	NE	24	SE	E	11	9	45	16	101	7.6
	05-12-2008	Albury	17.5	32.3	1.0	NA	NA	W	41	ENE	NW	7	20	82	33	1010),8
	06-12-2008	Albury	14.6	29.7	0.2	N/A	NA	WNW	56	W	W	19	24	55	23	1009).2
	07-12-2008	Albury	14.3	25.0	0.0	N/A	NA	w	50	SW	w	20	24	49	19	1009	9.6
	08-12-2008	Albury	7.7	26.7	0.0	NA	NA	w	35	SSE	W	6	17	48	19	101	3,4
	09-12-2008	Albury	9.7	31.9	0.0	NA	NA	NNW	80	SE	NW	7	28	42	9	100	3.5
	10-12-2008	Albury	13.1	30.1	1.4	N/A	NA	W	28	S	SSE	15	11	58	27	100	15
	11-12-2008	Albury	13.4	30.4	0.0	N/A	N/A	N	30	SSE	ESE	17		48	22	101	1.5
	12-12-2008	Albury	15.9	21.7	2.2	N/A	NA	NNE	31	NE	ENE	15	13	89	91	1010	2.5
	13-12-2008	Albury	15.9	18.6	15.6	NA.	NA	w	61	NNW	NNW	28	28	76	93	994	1
	14-12-2008	Albury	12.6	21.0	3.6	N/A	NA	SW	44	W	SSW	24	20	65	43	100	ú
	15-12-2008	Albury	8.4	24.6	0.0	NA	NA	NA	NA NA	S	WNW	4	30	57	32	100	9.7
	16-12-2008	Albury	9.8	27.7	NA	N/A	NA	WNW	50	MA	WNW	NA	22	50	28	101	3.4
	17-12-2008	Albury	14.1	20.9	0.0	N/A	NA	ENE	22	ssw	E	11	9	69	82	101	2
	18-12-2008	Albury	13.5	22.9	16.8	NA	NA	W	63	N	WNW	6	20	80	65	100	SE
	19-12-2008	Albury	11.2	22.5	10.6	N/A	NA	SSE	43	WSW	SW	24	17	47	32	1009	9,4
	20-12-2008	Albury	9.8	25.6	0.0	NA	NA	SSE	26	SE	NNW	17		45	26	1019	9.2
	21-12-2008	Albury	11.5	29.3	0.0	N/A	NA	s	24	SE	SE	9	9	56	28	1019	9.3
	22-12-2008	Albury	17.1	33.0	0.0	N/A	NA	NE	43	NE	N	17	22	38	28	101	5.6
	23-12-2008	Albury	20.5	31.8	0.0	N/A	NA	WNW	41	W	w	19	20	54	24	100	12
	24-12-2008	Albury	15.3	30.9	0.0	N/A	NA	N	33	ESE	NW	6	13	55	23	101	1.0
	25-12-2008	Albury	12.6	32.4	0.0	N/A	NA	w	43	E	w	4	19	49	17	1012	2.5
	26-12-2008	Albury	16.2	33.9	0.0	N/A	NA	wsw	35	SE	WSW	9	13	45	19	1010	0.5
	27-12-2008	Albury	16.9	33.0	0.0	N/A	NA	wsw	57	NA	w	0	26	41	28	100	5.8
	28-12-2008	Albury	20.1	32.7	0.0	N/A	NA	WNW	48	N	WNW	13	30	56	15	100	5.2
	29-12-2008	Albury	19.7	27.2	0.0	N/A	NA	WNW	46	NW	WSW	19	30	49	22	100-	ŧ.
1																	

Fig 1.4.1 Initial Dataframe Imported

	full_df ×							
\Leftrightarrow	⇒ 🖅 🛡 F	ilter						Q
P	ressure9am ÷	Pressure3pm +	Cloud9am ÷	Cloud3pm [‡]	Temp9am ÷	Temp3pm [‡]	RainToday	RainTomorrow
	1007.7	1007.1	8	NA	16.9	21.8	No	No
	1010.6	1007.8	NA	NA	17.2	24.3	No	No
	1007.6	1008.7	NA	2	21.0	23.2	No	No
	1017.6	1012.8	NA	NA	18.1	26.5	No	No
	1010.8	1006.0	7	8	17.8	29.7	No	No
	1009.2	1005.4	NA	NA	20.6	28.9	No	No
	1009.6	1008.2	1	NA	18.1	24.6	No	No
	1013.4	1010.1	NA	NA	16.3	25.5	No	No
	1008.9	1003.6	NA	NA	18.3	30.2	No	Yes
	1007.0	1005.7	NA	NA	20.1	28.2	Yes	No
	1011.8	1008.7	NA	NA	20.4	28.8	No	Yes
	1010.5	1004.2	8	8	15.9	17.0	Yes	Yes
	994.3	993.0	8	8	17.4	15.8	Yes	Yes
	1001.2	1001.8	NA	7	15.8	19.8	Yes	No
	1009.7	1008.7	NA	NA	15.9	23.5	No	NA
	1013.4	1010.3	0	NA	17.3	26.2	NA	No
	1012.2	1010.4	8	1	17.2	18.1	No	Yes
	1005.8	1002.2	8	1	18.0	21.5	Yes	Yes
	1009.4	1009.7	NA	2	15.5	21.0	Yes	No

Fig 1.4.2 Initial Dataframe Imported Pt2

As we can see it has a lot of null values and potential outliers which will need processing later on, so we peek into the numerical analysis of the data frame we are working with.

```
# first look at the data set using summary() to understand what type of data we are working with
> summary(sampled_df)
     Date
                                           MinTemp
                      Location
                                                                             Rainfall
                                                            MaxTemp
                                                                                              Evaporation
 Length:14546
                    Length:14546
                                        Min.
                                               :-6.80
                                                         Min.
                                                                          Min.
                                                                                    0.000
                                                                                             Min.
 Class :character
                    Class :character
                                        1st Qu.: 7.70
                                                         1st Qu.:18.00
                                                                         1st Qu.:
                                                                                    0.000
                                                                                            1st Qu.:
                                                                                                      2.600
Mode
       :character
                    Mode :character
                                        Median :12.00
                                                         Median :22.70
                                                                          Median:
                                                                                    0.000
                                                                                            Median :
                                                                                                      4.800
                                                                                    2.341
                                        Mean
                                                         Mean
                                                                :23.26
                                                                          Mean
                                                                                            Mean
                                                                                                      5.454
                                                :12.25
                                        3rd Qu.:16.90
                                                         3rd Qu.:28.20
                                                                          3rd Qu.:
                                                                                    0.600
                                                                                             3rd Qu.:
                                                :29.40
                                                                :46.80
                                                                          Max. :371.000
                                                                                                    :58.500
                                        Max.
                                                         Max.
                                                                                            Max.
                                        NA'S
                                                .149
                                                         NA'S
                                                                .125
                                                                          NA's
                                                                                • 341
                                                                                            NA's
                                                                                                    .6333
                                                                            WindDir3pm
                  WindGustDir
                                                         WindDir9am
                                                                                                WindSpeed9am
    Sunshine
                                      WindGustSpeed
Min.
        : 0.000
                  Length:14546
                                      Min.
                                                9.00
                                                        Length:14546
                                                                           Length:14546
                                                                                                Min.
                                                        Class :character
                                                                           Class :character
 1st Qu.: 4.900
                  Class :character
                                      1st Qu.:
                                               31.00
                                                                                                1st Qu.: 7.00
Median :
          8.500
                  Mode
                        :character
                                      Median :
                                               39.00
                                                        Mode
                                                              :character
                                                                            Mode :character
                                                                                                Median :13.00
          7.668
                                      Mean
                                               40.04
                                                                                                Mean
                                                                                                       :14.04
 3rd Qu.:10.700
                                      3rd Qu.: 48.00
                                                                                                3rd Qu.:19.00
                                              :122.00
                                      Max.
                                                                                                Max.
NA's
        :7005
                                      NA's
                                              :1057
                                                                                               NA's
                                                                                                       :177
                  Humidity9am
 WindSpeed3pm
                                                      Pressure9am
                                                                                           Cloud9am
                                    Humidity3pm
                                                                       Pressure3pm
                           2.00
                                             1.00
                                                            : 982.2
                                                                                981.4
                                                                                        Min.
                                                                                                :0.000
 Min.
        : 0.00
                 Min.
                                                     Min.
                                                                      Min.
                                   Min.
 1st Qu.:13.00
                 1st Qu.:
                          57.00
                                   1st Qu.: 36.00
                                                     1st Qu.:1013.0
                                                                      1st Qu.:1010.5
                                                                                        1st Qu.:1.000
Median :19.00
                 Median : 70.00
                                   Median : 52.00
                                                     Median :1017.6
                                                                      Median :1015.1
                                                                                        Median:5.000
                          68.55
 Mean
        :18.55
                 Mean
                                   Mean
                                          : 51.45
                                                     Mean
                                                            :1017.6
                                                                      Mean
                                                                             :1015.2
                                                                                        Mean
                                                                                               :4.433
                                                                                        3rd Qu.:7.000
                 3rd Qu.: 83.00
                                   3rd Qu.: 66.00
 3rd Ou.:24.00
                                                     3rd Qu.:1022.4
                                                                       3rd Qu.:1020.0
                        :100.00
                                          :100.00
                                   Max.
                                                     Max.
                                                            :1040.4
                                                                      Max.
                                                                              :1038.9
                                                                                                :8.000
        :324
                        :275
                                   NA's
                                          :466
                                                     NA's
                                                            :1522
                                                                      NA's
                                                                              :1528
                                                                                                :5589
   Cloud3pm
                    Temp9am
                                     Temp3pm
                                                    RainToday
                                                                      RainTomorrow
Min.
                 Min.
                                  Min.
                                         :-3.90
                                                  Length:14546
        :0.000
                        :-4.80
                                                                      Length: 14546
 1st Qu.:2.000
                 1st Qu.:12.40
                                  1st Qu.:16.70
                                                   Class :character
                                                                      Class :character
 Median:5.000
                 Median :16.80
                                  Median :21.20
                                                   Mode
                                                         :character
                                                                      Mode
                                                                             :character
Mean
        -4 498
                 Mean
                        :17.06
                                  Mean
                                         .21 75
 3rd Qu.:7.000
                 3rd Qu.:21.60
                                  3rd Qu.:26.40
 Max.
        :8.000
                 Max.
                         :37.50
                                  Max.
                                          :45.90
NA's
        :5943
                         :185
                                         :388
```

From here we can infer that we have a mix of categorical and numerical variables. It is also noted that there are several null values in some columns and different scales of data we are dealing with.

1.5 Exploratory Data Analysis

1.5.1 Examining Target Variable

> print(table(data_clean\$RainTomorrow))

No Yes 11055 3162

This is the class imbalance we are going to be wary of during our modelling with more instances of no rain compared to rain so our model might be biased towards predicting no rain better.

1.5.2 Examining the Distribution of Data

The above distributions indicate that the Temperatures are the normal distribution of temperatures suggesting no need for transformation, but outliers will be checked.

As for Rainfall, given the huge right skew, we will examine if this column provides any use when modelling and will be dropped.

Evaporation and Sunshine were found to have a lot of null values which explains the skewed values (which will be explored later).

The distributions for Wind Speed are fairly regular but zero wind speed values might be placeholders for missing data, but we assumed in our analysis that it was not a windy day and we will be checking them for outliers as well.

1.5.3 Plotting the Null Values

We have plotted the percentage of null values and have observed that Sunshine, Evaporation and Cloud 9am and 3pm have high per cent of null values so we have decided to make separate models by keeping the columns and dropping the columns to see the effect on accuracy on the model.

1.5.4 Detecting Outliers

Baked on the distribution and the rate of outliers, the columns Evaporation, Windspeed9am, Rainfall and WindSpeed3pm show plenty of values lying outside the outer fence so we can classify them as outliers and we will deal with them during our feature engineering phase.

1.5.5 Correlation Matrix

After cleaning the data, we have plotted the correlation to see which numerical features are correlated namely(Rainfall& RainToday, MinMax Temp with Temperatures during different time periods) as a lot of models dont work well with multi-collinearity, we will select the features based on this when we are doing the modelling phase.

Section 2: Data preparation and cleaning

2.1 Data Cleaning

2.1.1 Imputing null values.

Since we had null values in the target variable (RainTomorrow), dropped those rows as we can't train the model with those. For the numerical columns we have replaced them with the median of the column since it is more robust to outliers in the data and for the categorical data, the mode imputation method was chosen.

2.1.2 Outlier Removal

For removing the outliers, we identified them using the box plot, if they were below or above 3 times the Inter Quartile Range, they were labelled as outliers and were replaced with the maximum value of the column as removing them would lead to loss of data.

2.1.3 Model selection

For our common and initial model, we have chosen to go with logistic regression as it is well-suited for binary classification. Additionally, it fits our aim of giving us the feature importance as it has good interpretability and will us the reasons and the factors behind the decision it has made. Since our dataset is large, it will be easier for us to compute and compare multiple models at low cost. The assumption of linearity holds for most of our variables so we will be doing the feature engineering based on the model.

2.2 Feature Engineering

```
> print(sapply(data_clean, class))
                                    MinTemp
                                                                Rainfall
         Date
                    Location
                                                   MaxTemp
                                                                            Evaporation
                                                                                              Sunshine
  "character"
                 "character"
                                  "numeric"
                                                "numeric"
                                                                "numeric"
                                                                                             "numeric"
                                                                               "numeric"
  WindGustDir WindGustSpeed
                                WindDir9am
                                               WindDir3pm
                                                            WindSpeed9am
                                                                           WindSpeed3pm
                                                                                           Humidity9am
  "character"
                                                                               "numeric"
                   "numeric"
                                "character"
                                               "character"
                                                                "numeric"
                                                                                              "integer"
  Humidity3pm
                Pressure9am
                               Pressure3pm
                                                  Cloud9am
                                                                Cloud3pm
                                                                                Temp9am
                                                                                               Temp3pm
    "integer"
                                                                "integer"
                                                                               "numeric"
                                                                                              "numeric"
                   "numeric"
                                  "numeric"
                                                 "numeric"
    RainToday
               RainTomorrow
    "numeric"
                   "numeric"
```

Converted "Date" column from character to datetime format and extracted day, month, and year features. Optimized the dataset by dropping the original column. Following that, the categorical features (Yes/No) were then encoded to 0s and 1s. Min-max scaling was used to scale all the values of the data frame between 0 and 1 in order to put all the numerical values on the same scale.

The directions and locations were encoded by using one-hot encoding to accurately capture potential timespecific patterns in wind direction and the locations. Again this was done for the main version of the dataset and we have created many versions of our main dataset which allowed us to encode the features differently and try out different models in different versions of our dataset. Log transformation was also done on skewed columns to make it a normal distribution for statistical analysis.

For instance, date is encoded as a sine and cosine function to capture the phase and amplitude in one of the datasets, whereas location is alternatively label encoded to reduce the dimensionality and increase computation speed.

In order to fix the class imbalance we have used the SMOTE method from the package ROSE which produces synthetic samples only for the train data in order to, prevent data leakage and provide a more accurate evaluation of the model's performance. All the 3 methods,(class balancing, undersampling and oversampling) will be tested on the models. Since over-sampling can add noise/overfitting, and undersampling can cause important data to be lost or underfitted, we will test out the model on all the datasets.

Feature Selection:

The fields that will be included in the data for the project have been selected based on their relevance to RainTomorrow and their potential impact on the predictive model. The included fields that are directly related to the target variable, such as rainfall, temperature, humidity, and wind speed, will be included.

The fields that will be excluded from the project will be determined based on their lack of relevance, multicollinearity, or presence of nulls. Some of the datasets prepared to be modelled do not include date, location, rainfall, or evaporation.

Section 3: Modelling - Machine Learning Algorithms Implementation

Govind Konnanat: 6797843

The 2 models I have selected are:

- 1. Logistic Regression
- 2. Neural Network

Model 1- Logistic Regression Modelling and Performance Evaluation

To reiterate from the report, the logistic regression model was chosen because it is well-suited for binary classification. Additionally, it fits our aim of giving us the feature importance as it has good interpretability and will us the coefficients so that we can decode the factors behind the rain prediction.

I first used the dataset without dates and location and have further added features and compared the performance. I have also created a data frame to record the performance metrics of the models and different as we go on with the modelling.

For all of the variations of the dataset, I have used a 60,40 split to incorporate maximum instances of the '0' variable so that the test data is not biased.

After the training using the default parameters on the training data and noting down the performance metrics by plotting the confusion matrix on the test set, I ran the evaluations on the training set in order to confirm the absence of overfitting on the training. Since the value was pretty close to the test accuracy, I concluded the model was able to generalize well for new data points.

> TestconfusionMatrix\$overall['Accuracy']
 Accuracy
0.8385792
> TrainconfusionMatrix\$overall['Accuracy']
 Accuracy
0.8450176

Following this, the ROC curve was plotted in order to find how the classes would be distinguished from each other.

This AUC of 0.85 indicates that this model can classify between the positive and negative classes pretty well.

The overall performance of the model is pretty good at first glance with 83% accuracy and 94% recall, but since we used an imbalanced dataset, we have to examine the results closely to see the full picture. So I have decided to plot the performance of the models by class in order to see the weakness of the model.

```
Class Precision Recall F1_Score
1 Positive (1) 0.4942174 0.7098560 0.5827273
2 Negative (0) 0.9403189 0.8628763 0.8999346
```

As we can see here, the model does really well for predicting when there is no rain but the real use-case of the project would be in the successful prediction of the rain it is also clear better recall and it would be the ideal model as we want to maximize True Positives as being more false alerts would be fine rather than being totally unprepared for the rain. So will be doing similar metrics comparison for the following datasets with varying features by storing all the values in a dataframe to be compared in the end.

Following this dataset, I have added 1 hot encoded location and the days, months, and years extracted from the date to the data frame further increasing the dimensionality to see if it helps the model generalize better. However, the metrics showed me that these features only help increase the values of the negative which is not our goal with this model.

So, with these 2 basic models done, we can finally see which are the factors that contribute most to our decision-making, so I have plotted the estimate of the coefficients of the linear model below.

From this, we can infer that the most contributing features for the prediction are Pressure, Windspeed, Humidity and Temperature in that order. These are readings of the day before that provide the most valuable insight.

However, in our initial data preparation, we had seen that the value sunshine had a lot of null values, but when I dropped the column the accuracy dropped, so there is no bias with the imputation.

Following this, the hyperparameter tuning was done with, mixture and penalty, which were opted for fine-tuning. A grid was set to find the best combination for fine tuning, and this was set up for 10-fold cross-validation. The model was trained with these parameters and found to have better performance on the negative class again which in turn increased the overall performance but not the bias for the predictions.

The 10-fold cross-validation only increases the performance marginally so we can say the training data is well-fitted and good at generalizing.

After the SMOTE sampling was done for the dataset, I ran the logistic model again to see how the class balancing would help the model, I did end up having the most precision out of all the models and better-balanced precision between the positive and negative class, but the recall was still behind.

Model 2-Artificial Neural Network Modelling and Performance Evaluation

For modelling with the ANN, I could not use the same dataset with the large number of dimensions as it took an unrealistic amount of computation time, so I had to do label encoding to the location and the wind direction columns. The months and days should be a cyclic continuous feature so that the model can understand the jump from 12 to 1 month and 30 to 1 for days. So, I transformed them using sin and cosine to get the amplitude and phase of the dates.

The Resampling technique was applied now using SMOTE to fix the class imbalance and overall practical use of the dataset. I have used SMOTE on a SMOTE balanced dataset for both oversampling of the minority class and undersampling of the majority class to create a balanced dataset. An oversampled dataset in which we have oversampled the minority dataset by adding 2000 generated values for the minority class. On the under sample we have undersampled the majority dataset by removing values for the majority class. Because

over-sampling can add noise/overfitting, and undersampling can cause important data to be lost or underfitting, I will test out the model on all the datasets.

For building the ANN, I chose the sequential model as there is a clear flow of data throughout the neurons. Layers of 5 dense layers were set with the neurons decreasing from 32 neurons with ReLU as an activation function to the sigmoid function in the output layer to squish the values to binary. A fairly low learning was given to the Adam optimiser to help the weights converge and prevent missing the minima.

After fitting the balanced SMOTE data on the ANN, the history reveals a consistent improvement in the neural network's performance over 50 epochs. Starting with an accuracy of 72.1%, the model demonstrated a gradual increase, reaching a peak validation accuracy of 66.67%. Despite some fluctuations, both training and validation losses decreased, indicating effective learning from the data. The model's ability to generalize to unseen data is evident as it can balance under/overfitting, although there might be room for further improvement. The training time per epoch was reasonable at 4 seconds, shows good efficiency proving our encoding techniques earlier.

After evaluating the test set, observed that it does give 83.2% accuracy. After this, I did the evaluation on the over sampled data which gave me a loss in accuracy which indicated that it was adding noise to the data. When fitted on the test data, the training accuracy indicated improvements, but the test accuracy remains the same so, undersampling wasn't helping the model to distinguish the classes.

So, after this, it was time to consider the ANN without the sampling techniques and to find out the performance.

However as observed, while the validation accuracy was much higher than other models, the loss was starting to diverge which meant that it was starting to overfit the data, and the test accuracy was similar to the oversampling techniques. The confusion matrix was plotted, and all the metrics were added to the result dataframe for comparison. Although performance metrics are plotted in the R script, *I have not included all of the plots for all the models here, only the key findings.*

So based on all the above evidence, it was chosen that the best model for ANN would be the dataset balanced with sampling techniques. Hyperparameter tuning was then done on this model fitting this dataset.

After training for more epochs, it was clear that this model performs much better for the positive class, this might be due to the resampling techniques we have done. The AUC value was obtained to be 0.75 which is decent.

Comparing both the models:

Comparing the data frames with all the metrics, it is evident that the *Logistic regression model with the Hyperparameter tuning is the model that gives the best overall result* but to examine the class imbalance, we will dive into the metrics by class.

÷	Class	Precision [‡]	Recall [‡]	F1_Score [‡]	Model
2	Negative (0)	0.9403189	0.8628763	0.8999346	Logistic Reg without Location & Date
4	Negative (0)	0.9381606	0.8728033	0.9043026	Logistic Reg with Date Encoded
6	Negative (0)	0.9392849	0.8723893	0.9046021	Logistic Regression With Hyperparameter Tuning
8	Negative (0)	0.9170455	0.8662516	0.8909251	ANN with Sampling Techniques
10	Negative (0)	0.8800000	0.8858385	0.8829096	Tuned ANN
12	Negative (0)	0.7979545	0.9205558	0.8548819	Logistic Regression with Sampling
1	Positive (1)	0.4942174	0.7098560	0.5827273	Logistic Reg without Location & Date
3	Positive (1)	0.5096774	0.6968026	0.5887285	Logistic Reg with Date Encoded
5	Positive (1)	0.5072581	0.6996663	0.5881253	Logistic Regression With Hyperparameter Tuning
7	Positive (1)	0.5159285	0.6452867	0.5734024	ANN with Sampling Techniques
9	Positive (1)	0.6122766	0.5987842	0.6054552	Tuned ANN
11	Positive (1)	0.7645688	0.5253604	0.6227848	Logistic Regression with Sampling

From the data frame, we can see that the overall performance from the logistic regression model comes from the negative class but since we want to predict the rain, the positive class will be the priority for this case. The Hyperparameter tuning of ANN gives the best F1 score and will be the best overall, but since Recall tumps over the Precision in the data, **The logistic regression model without location and date** would be the best model for us to use out of these models.

Hence the conclusion from my modelling to use on our data would be (ranked top 3):

- 1. The logistic regression model without location and date (for better recall)
- 2. The Hyperparameter tuned ANN with oversampling (for better precision)
- 3. The Logistic regression model with Hyperparameter tuning (for better overall accuracy)

Venkat Sandeep Imandi- 6829480

1. Gradient Boosting Machine:

Gradient Boosting Machine, a member of the ensemble learning team, enhances accuracy and resilience by teaming up the forecasts of many models. It builds trees one after another, with each correcting the mistakes of the previous group.

Gradient Boosting demonstrates its effectiveness in binary classification through the following approach.:

Initialization:

The initial step involves making a prediction, which can be as simple as calculating the overall mean of the target variable in the training data.

Sequential Tree Building:

At each iteration, a new decision tree is optimized to learn from the current ensemble's prediction errors. This tree, weighted by a learning rate, joins the ensemble to improve overall accuracy while mitigating overfitting.

Combining Predictions:

The final prediction is generated by aggregating the individual predictions of all trees, with each contribution adjusted by the learning rate for optimal blend.

Training Process:

The training loop concludes upon hitting a pre-specified iteration count or when a stopping criterion, such as attaining a desired level of performance on the validation set, is satisfied.

Fitting GBM to the 'WeatherAus.csv' to predict the outcome RainTomorrow:

- Gradient Boosting Machine model was built using the XGBoost library. This model harnessed the "binary: logistic" objective function over 100 boosting rounds, effectively learning from the provided training data X_train (Independent variables in the dataset) and corresponding labels y_train (Outcome variable).
- Then, we make predictions on the test data with the predict function based on the extracted patterns from the trained model.
- · Finally, we will obtain a confusion matrix, which provides a summary of the predicted and actual class labels.
- Based on the Confusion Matrix we calculate Accuracy, Precision and Recall. And we plotted the ROC (Receiver Operating Characteristics) curve to assess the performance of a binary classification model at various classification thresholds.

Here are the performance metrics for the Gradient Boosting Machine model:

Accuracy: 0.6815

Precision: 0.8664

Recall: 0.3963

Gradient Boosting Machine with Hyper parameter Tuning:

- Incorporated 5-fold cross-validation for comprehensive performance assessment across multiple data segments. Real-time iteration progress updates, enabled by 'verboselter = TRUE, facilitates model behaviour observation and potential intervention during training.
- The hyper_grid_GBM sets up a search space for tuning the XGBoost GBM model. It fixes crucial settings like learning rate and tree depth, providing various combinations to test and find the best fit for your data.
- The train function is employed to train a GBM model optimized for accuracy, leveraging XGBoost's xgbTree method and a custom hyperparameter grid (hyper_grid_GBM). The resulting model, ready for evaluation and application, is saved as GBM_Model_Tuned.
- Similarly, predictions were made on the test data based on the tuned GBM model and evaluation metrics were calculated.

Performance metrics for Gradient Boosting Machine with Hyper Parameter Tuning:

Accuracy (Tuned): 0.7203 Precision (Tuned): 0.7761 Recall (Tuned): 0.4245

To understand how data changes affect model performance, we trained the model on several modified datasets. Below you will find the performance metrics for each variation.

Dataset	Accuracy	Precision	Recall	AUC
Removing location field and with 10% over sampling and without hyper parameter tuning.	0.65	0.79	0.37	0.81
Removing location field and with 10% over sampling and with hyper parameter tuning.	0.71	0.74	0.4	0.72

With Location and no over sampling	0.85	0.53	0.73	0.86

Summary of Model:

Gradient Boosting Machine shows promise in handling the dataset, with the potential for improved performance after hyperparameter tuning. Optimizing hyperparameters like learning rate and tree depth through careful selection and fine-tuning is crucial for maximizing model performance. This process enables tailoring the model to the unique characteristics of the dataset, unlocking its full potential for accurate and reliable predictions. Below is the ROC curve with Hyper Parameter Tuning.

Analysing the Receiver Operating Characteristic (ROC) curve showed that the model was moderately good at distinguishing between positive and negative cases. It got an AUC (Area Under the Curve) score of 0.74, where higher values mean better performance. In this case, an AUC of 0.74 indicates a decent ability to balance the number of correctly identified positives (true positive rate) with the number of incorrectly identified positives (false positive rate).

2. Logistic Regression:

Logistic Regression is a statistical method used for binary and multiclass classification problems. For classification problems with two or more categories, Logistic Regression leverages the logistic function to estimate the probability of an instance belonging to a particular class. The model's output, always between 0 and 1, allows for reliable probability assessment.

- Training a Logistic Regression model involves iterative optimization techniques like gradient descent, which navigate a "terrain" of probabilities to find the configuration that best aligns with the observed data.
- The foundation of Logistic Regression rests on the assumption that the logit (log-odds) of the dependent variable exhibits a linear relationship with each independent variable.
- Logistic regression coefficients quantify the change in the log-odds of the dependent variable due to a one-unit increase in the corresponding independent variable. Exponentiating these coefficients yields the corresponding odds ratios, reflecting the multiplicative effect of each variable on the odds of belonging to the positive class.

Fitting Logistic Regression to the 'WeatherAus.csv' to predict the outcome RainTomorrow:

Constructed a binary logistic regression model, expertly crafted for predicting the probability of rain tomorrow variable. It harnesses the power of R's glm function and leverages oversampled data to ensure balanced training. The resulting model, stored as 'logistic_model', stands ready for further analysis and forecasting.

- Leveraged the predict function within R's statistical framework to execute predictions using the previously fitted logistic model. It targets the test dataset, designated as testData, and employs the type = "response" configuration to generate probabilities for the positive class, indicating the estimated likelihood of 'RainTomorrow'. The resulting predictions are captured within the variable predictions_LR, poised for subsequent performance evaluation and analysis.
- Finally, calculated evaluation metrics with confusion matrix generated from actual and predicted values.

Performance Metrics for Logistic Regression:

Accuracy: 0.7836 Precision: 0.5041 Recall: 0.7599

Logistic Regression with Hyper Parameter Tuning:

- · Like the Gradient Boosting Machine, crafted a cross-validation plan for the logistic regression model, ensuring rigorous training and evaluation. It leverages a 5-fold split for thorough testing and defines a hyperparameter grid to explore various model configurations, aiming to discover the optimal settings for peak performance. These arrangements, stored for future use, lay the groundwork for systematic model optimization.
- Executed logistic regression model training using the train function with the "glmnet" method, incorporating elastic net regularization for model fitting and feature selection. It operates on oversampled data to address class imbalance, utilizes cross-validation as defined in ctrl_LR for robust model assessment, and tunes hyperparameters within the grid specified. The model is explicitly configured for binary classification with the family parameter set to "binomial."
- Verified how well the fine-tuned rain prediction model performs on new data. Generated a confusion matrix to see how often the model's guesses match reality, and then it calculates scores for accuracy, precision, and recall summarizing its overall performance. The model's predictions are also converted into numbers for easier use in other analyses.

Performance metrics for Logistic Regression with Hyper Parameter Tuning:

Accuracy (Tuned): 0.7827 Precision (Tuned): 0.5028 Recall (Tuned): 0.7574

Like the Gradient Boosting Algorithm, trained the model on several modified datasets. Here are the performance metrics corresponding to each variant.

Dataset	Accuracy	Precision	Recall	AUC
Removing location field and with 10% over sampling and without hyper parameter tuning.	0.72	0.44	0.79	0.85
Removing location field and with 10% over sampling and with hyper parameter tuning.	0.74	0.46	0.71	0.74
With Location and no over sampling	0.85	0.72	0.5	0.88

Summary of the Model:

The Logistic Regression model performs well in prediction accuracy and identifying positive cases (high recall). However, compared to GBM, its accuracy for positive cases (precision) could be improved through tuning settings like alpha and lambda. This balance between accuracy and precision should be considered

depending on the specific situation and potential consequences of false negatives. Attached below the ROC curve with Hyper Parameter Tuning.

Fig: ROC curve for Logistic Regression with Hyper Parameter Tuning.

AUC jumps from 0.74 to 0.774, demonstrating a clear rise in the model's ability to separate classes. This signifies improved performance and more accurate predictions.

Akhil Bhardwaj- 6828141

1. Logistic regression:

- · It is a statistical method and is used to predict the categorical outcomes.
- It is a classification algorithm and is used for binary classification when the dependent variable has two possible outcomes.
- The logistic regression model utilizes the sigmoid function, an S-shaped curve, to map the linear combination of features to values within the range of 0 and 1.
- The sigmoid function is expressed as $\sigma(z) = 1/(1 + e^{-(-z)})$, where z is the linear combination of coefficients (β 0, β 1, β 2, ..., β n) and corresponding independent variables (x1, x2, ..., xn). In this formula, β 0 represents the intercept, while β 1, β 2, and so on, denote the slopes associated with the independent variables x1 through xn.

In this dataset we are predicting, will there be rain tomorrow. It has two possible answers Yes or No. As the dependent variable has two possible outcomes so this is a binary classification problem. So, we can apply logistic regression to this. For dataset Modelling is started with:

1. Data Preprocessing:

The dataset (df_dat_enc) is initially processed to separate the feature matrix (X) and the target variable (y). The target variable, 'RainTomorrow,' is excluded from the feature matrix.

Code:

X <- df_dat_enc[, !(names(df_dat_enc) %in% c('RainTomorrow'))] y <- df dat enc\$RainTomorrow

2. Splitting the data:

The data is split into training and testing sets using an 80-20 split. This is achieved through the createDataPartition function, creating X_train, X_test, y_train, and y_test.

3. Logistic Regression Model Training: Model is trained using training data and using glm function.

Code:

 $logreg_model <- glm(y_train \sim ., data = X_train, family = binomial)$

- 5. Model Evaluation: Predictions are made on the test set using the trained logistic regression model. predictions <- predict(logreg_model, newdata = X_test, type = "response")
- 6. Confusion Matrix:

A confusion matrix is generated to evaluate the performance of the model on the test set. It gives the number of true positive, true negative, false positive, and false negative predictions made by the model. A heatmap is created to visually represent the confusion matrix.

7. Accuracy, Precision, Recall, and F1-Score Calculation: The following Performance Metrices were calculated

```
> accuracy <- mean(predicted_labels == y_test)
> cat("Accuracy on the test set:", accuracy, "\n")
Accuracy on the test set: 0.8469926
> cat("Precision:", precision, "\n")
Precision: 0.8719563
> cat("Recall:", recall, "\n")
Recall: 0.9410965
> cat("F1-Score:", f1_score, "\n")
F1-Score: 0.9052081
> |
```

8. ROC curve and AUC score:

• ROC curve is plotted to compare the true positive rate to false positive rate.

```
> accuracy <- mean(predicted_labels == y_test)
> cat("Accuracy on the test set:", accuracy, "\n")
Accuracy on the test set: 0.8469926
> cat("Precision:", precision, "\n")
Precision: 0.8719563
> cat("Recall:", recall, "\n")
Recall: 0.9410965
> cat("F1-Score:", f1_score, "\n")
F1-Score: 0.9052081
> |
```

AUC score is used to calculate the area that comes under the ROC curve.

This model had the best Accuracy, F-1 score and AUC score among all the logistic regression models I created. I created models on two datasets with Date and location and without date and location. This model I created with including Date and location. I used oversampling and hyperparameter tuning on other models. Logistic regression Model created by using oversampling had high precision but low accuracy and model which used hyperparameter tuning had the best Recall but less accuracy and AUC score.

Model	Dataset	Accuracy	Precision	Recall	F-1score	AUC Score
Logistic Regression	Without Location and date and without sampled data	0.8360886	0.8634249	0.9345538	0.8975824	0.8531
Logistic Regression	Without Location and date and with sampled data	0.7544847	0.9105467	0.7546911	0.8253253	0.842
Logistic Regression	With Location and date and without sampled data	0.8469926	0.8719563	0.9410965	0.9052081	0.8688
Logistic Regression	With Location and date and with sampled data	0.7769961	0.9219669	0.7794849	0.84476	0.8534
Logistic Regression	(Without Location and date and without sampled data) with Hyperparametric tuning	0.8326	0.8515014	0.9473684	0.8968804	0.6994
Logistic Regression	(Without Location and date)and with sampled data and Hyperparametric tuning	0.764	0.9091892	0.7697941	0.8337051	0.7572

Naïve Bayes:

- It is a classification algorithm and is applied with continuous variables that are assumed to be normally distributed.
- The term "naive" is used because it operates under the assumption that the variables are independent of each other.
- The mean and S.D of each class are used to fit this model.
- It is based on the Bayesian principle of conditional probability.
- The Bayes theorem calculates the conditional probability of an event J given the occurrence of event K.
- P(J|K) = P(K|J) * P(J) / P(K)

1. Naive Bayes Model Training:

Model is trained using the naive Bayes function using library (1071) with the target variable y_train and features X train.

```
naive_bayes_model <- naiveBayes(as.factor(y_train) ~ ., data = X_train)</pre>
```

- 2. **Predictions on the Test Set**: The trained Naive Bayes model is used to make predictions on the test set (X_test).
- 3. Model Evaluation Finding Accuracy:

Accuracy is calculated by comparing the predicted labels to the actual labels in the test set.

4. **Confusion Matrix**: A confusion matrix is generated to evaluate the performance of the model on the test set. It gives the number of true positive, true negative, false positive, and false negative predictions made by the model. A heatmap is created to visually represent the confusion matrix.

5. Accuracy, Precision, Recall, and F1-Score Calculation: The following Performance Metrices were calculated.

```
> accuracy_nb <- mean(predicted_labels_nb == y_test)
> cat("Accuracy on the test set (Naive Bayes):", accuracy_nb, "\n")
Accuracy on the test set (Naive Bayes): 0.7157932
> cat("Precision (Naive Bayes):", precision_nb, "\n")
Precision (Naive Bayes): 0.8858246
> cat("Recall (Naive Bayes): ", recall_nb, "\n")
Recall (Naive Bayes): 0.7276846
> cat("F1-Score (Naive Bayes):", f1_score_nb, "\n")
F1-Score (Naive Bayes): 0.799005
> |
```

6. ROC curve and AUC score:

·ROC curve is plotted to compare the true positive rate to false positive rate. AUC score is used to calculate the area that comes under the ROC curve

This model had the best Accuracy, Recall, and F-1 score among all the Naïve bayes models I created. I created models on two datasets with Date and location and without date and location, with doing oversampling and without oversampling. This model I created was on dataset which included date and time and without oversampling. Dataset with Date and location and which was oversampled had the highest

Precision	and		, AUC	<u> </u>			score.
Naïve Bayes	Without Location and date and without sampled data	0.7077031	0.8748616	0.7231121	0.7917815	0.7681	
Naīve Bayes	Without Location and date and with sampled data	0.6950405	0.8791715	0.6993135	0.7789957	0.7718	
Naīve Bayes	With Location and date and without sampled data	0.7157932	0.8858246	0.7276846	0.799005	0.7726	
Naīve Bayes	With Location and date and with sampled data	0.7045375	0.8885116	0.7094442	0.7889447	0.7764	

CONCLUSION:

In conclusion, the comparative evaluation of Naive Bayes and Logistic Regression models for the rainfall prediction task reveals that Logistic Regression outperforms Naive Bayes across key performance metrics. Logistic Regression exhibited higher accuracy, recall, F-1 score, and AUC score, making it the preferred choice for deployment in this specific scenario. The model's capability to handle linear relationships and capture complex patterns in the data aligns well with the characteristics of the rainfall prediction task. While Naive Bayes has merits in terms of computational efficiency and handling categorical features, Logistic Regression's superior performance across a range of metrics makes it the recommended model for accurate and reliable rainfall prediction.

Naima Rashid - 68443556

MODEL SELECTION:

- Implemented **KNN and Logistic Regression** with varying configurations and different feature sets and transformations.
- Both the models K-Nearest Neighbours (KNN) and Logistic Regression are well suited for this classification problem due to their simplicity and effectiveness is binary classification tasks.
- KNN is very well suited where there's diverse distribution of data and logistic regression is great fir binary classifications.
- The models were created with and without log transformation, hyperparameter tuning and SMOTE balancing to optimize performance.

MODEL PERFORMANCE ANALYSIS:

1. K-Nearest Neighbours (KNN):

- 1. With Date & Location
 - It demonstrates a reasonably good accuracy (78.1%) however accuracy alone may not provide a complete picture.
 - Precision (80.9%) and recall (94.1%) show good identification of positive cases and a good f1-score means a good balance between the two.
 - With a 66.4% AUC, the model shows moderate skill in distinguishing between positive and negative instances. It's not good but its also not the worse.
- 2. Without Date & Location
 - The metrics display a consistent pattern. It shows a slight improvement overall when compared to the model incorporating date and location.
- 3. Without Date & Location (w/ Hyperparameter Tuning)
 - There is an improvement in recall (96.3%). Hyperparameter tuning enhances the model's ability to catch positive instances.
 - But there's a decrease in precision (80.4%). Although there was an improvement in recall, it comes at the cost of slight decrease in precision.
- 4. Without Date & Location (w/ Hyperparameter Tuning & Log Transformation)
 - Log transformation shows a slight improvement overall with notable increase in metrics, indicating a better overall model performance.

- 5. Without Date & Location (w/ Hyperparameter Tuning, Log Transformation, Feature Selection)
 - Selecting features contributes to significant improvements in accuracy, precision, recall, f1score, and AUC.
- 6. Without Date & Location (w/ Hyperparameter Tuning, Log Transformation, Feature Selection, SMOTE Balancing)
 - Theres a drop in accuracy from 82.7% to 77.9%.
 - Theres a significant drop in both recall & precision.
 - Therefore, the model became less effective after applying SMOTE balancing.
 - 2. Logistic Regression:
- 1. Without Date & Location
 - Started with high accuracy of 84.6%.
 - String precision (87.9%) and recall (94.2%) and a good f1-score (90.5%) with AUC at 87.0% showing an excellent distinguishing capability.
- 2. Without Date & Location (w/ Log Transformation)
 - Noticed a consistent improvement in metrics after log transformation.
- 3. Without Date & Location (w/ Hyperparameter Tuning & Log Transformation)
 - Hyperparameter tuning introduced very minor improvements.
- 4. Without Date & Location (w/ Hyperparameter Tuning, Log Transformation, SMOTE Balancing)
 - Like KNN, there's a drop in accuracy possibly due to overfitting of the model.
 - Achieved a good precision but the recall dropped affecting f1-score.
- 5. Without Date & Location (w/ SMOTE Balancing)
 - Noticed a further drop in accuracy but maintained a good precision and recall.

MODEL	DATASET	ACCURACY	PRECISION	RECALL	F1-SCORE	AUC
KNN	With Date and Location	0.781	0.809	0.941	0.869	0.664
	Without Date and Location	0.792	0.82	0.939	0.876	0.694
	Without Date and Location (w/ Hyperparameter Tuning)	0.789	0.804	0.963	0.876	0.692
	Without Date and Location (w/ Hyperparameter Tuning and Log Transformation)	0.805	0.818	0.966	0.886	0.738
	Without Date and Location (w/ Hyperparameter Tuning, Log Transformation, Feature Selection)	0.827	0.851	0.952	0.899	0.776
	Without Date and Location (w/ Hyperparameter Tuning, Log Transformation, Feature Selection, SMOTE balancing)	0.779	0.819	0.729	0.772	0.782
Logistic Regression	Without Date and Location	0.846	0.87	0.942	0.905	0.87
	Without Date and Location (w/ Log Transformation)	0.848	0.871	0.944	0.906	0.87
	Without Date and Location (w/ Log Transformation and Hyperparameter Tuning)	0.847	0.869	0.944	0.905	0.871
	Without Date and Location (w/ Log Transformation, Hyperparameter Tuning, SMOTE balancing)	0.793	0.927	0.797	0.857	0.873
	Without Date and Location (w/ SMOTE balancing)	0.797	0.927	0.802	0.86	0.869

Conclusion:

Best Performing models:

For K-Nearest Neighbour (KNN):

The K-Nearest Neighbour (KNN) model achieved an accuracy of 82.7%, with a particularly high recall of 95.2%, indicating its effectiveness in identifying positive cases. However, the precision, F1-Score, and AUC suggest a balanced performance across all metrics.

Configurations: Without Date & Location (w/ Hyperparameter Tuning, Log Transformation, Feature Selection)

Metrics:

Accuracy: 82.7%Precision: 85.1%Recall: 95.2%F1-Score: 89.9%AUC: 77.6%

True Positives: 252True Negatives: 2113

False Positives: 371False Negatives: 107

Confusion Matrix - KNN (Part 5)


```
> cat("Accuracy with all features (Hyperparameter Tuning):", accuracy_all, "\n")
Accuracy with all features (Hyperparameter Tuning): 0.8054872
> cat("Precision after Hyperparameter Tuning - All Features:", precision_all, "\n")
Precision after Hyperparameter Tuning - All Features: 0.8180084
> cat("Recall after Hyperparameter Tuning - All Features:", recall_all, "\n")
Recall after Hyperparameter Tuning - All Features: 0.9657658
> cat("F1 Score after Hyperparameter Tuning - All Features:", f1_score_all, "\n")
F1 Score after Hyperparameter Tuning - All Features: 0.8857674
> cat("AUC-ROC after Hyperparameter Tuning - Selected Features:", auc_roc_selected, "\n")
AUC-ROC after Hyperparameter Tuning - Selected Features: 0.776297
```

For Logistic Regression:

Logistic Regression model, despite a slightly higher accuracy of 84.8%, showed comparable precision and recall values. The AUC of 87.0% indicates good discriminative power.

Configurations: Without Date & Location (w/Log Transformation)

Metrics:

Accuracy: 84.8%
Precision: 87.1%
Recall: 94.4%
F1-Score: 90.6%
AUC: 87%

True Positives: 322
True Negatives: 2089
False Positives: 310
False Negatives: 122

```
Accuracy with log-transformed: 0.8480478

> metrics_part2 <- calculate_classification_metrics(y_test_part2, predicted_labels_part2)
True Positives: 322
True Negatives: 2089
False Positives: 310
False Negatives: 122
Precision: 0.8707795
Recall: 0.9448213
F1 Score: 0.9062907

> cat("AUC-ROC with default parameters:", auc_roc_part2, "\n")
AUC-ROC with default parameters: 0.8703004

> |
```


Comparing the models:

Both KNN and Logistic Regression performed well but Logistic Regression consistently achieved higher accuracy.

- 1. Accuracy: Logistic Regression shows a higher accuracy and indicates a better overall performance.
- 2. Precision: Logistic Regression Exhibits a superior precision which means it more accurately predicts positive outcomes.
- 3. Recall: KNN has a slightly better recall as compared to Logistic Regression which means better ability to capture positives instances.
- 4. F1-Score: Both models show similar scores and a good balance between recall and precision.
- **5.** AUC: Logistic Regression has a better AUC score showing an enhanced ability to distinguish between positive and negative cases.

Overall Best Model: Logistic Regression Without Date & Location (w/Log Transformation)

Logistic Regression Without Date & Location (w/Log Transformation) with accuracy of 84.8%, recall of 94.4%, precision of 87.1%, f1-score of 90.6%, and AUC of 87%. This configuration achieves a best performance across all evaluation metrics.

Ratan Rana Paleka Sheeba - 6826777

1. DECISION TREE ALGORITHM

The decision tree algorithm is versatile and simple as it can be used of both classification and regression tasks. The decision tree has the structure of flowcharts. The leaf nodes represent the class label and the internal nodes of the flowchart represents a test done on an attribute.

Initially the dataset is split into training and testing sets. In Decision Trees the target variable to be implemented, it must be in the form of a factor. So, the target variable (**RainTomorrow**) column, is then converted to a factor.

The Decision Tree model is built using the rpart function. The **RainTomorrow** target variable is predicted based on all other features in the **trained** dataset using the formula **RainTomorrow** ~. **The method = "class"** argument specifies that it's a classification tree the column RainTomorrow is categorical.

We then visualise the tree using the rpart.plot function and the output obtained is as follows:-

Using the **predict** function the predictions are made on the test dataset (**testData**). The **type = "class"** argument returns the class prediction for each instance in the test set.

A confusion matrix is created using **confusionMatrix** from the **caret** package. This matrix is essential to evaluate the performance of the classification model.

Metrics such as Accuracy, Precision, Recall, and F1 score are calculated from the confusion matrix. These metrics provide insight into how well the model is performing.

The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) are implemented. The ROC and the AUC are important for measuring the performance of the model especially in datasets where classes are imbalanced.

The **pROC** package is used to implement the ROC object, and **auc** is used to estimate the AUC score.

The ROC curve is a graph which represents the true positive rate and the false positive rate at various threshold intervals. The AUC represents the degree or measure of separability achieved by the model.

The **plot** function is used to plot the ROC curve which helps to represent the performance of the model visually.

The estimated values of the performance metrics are as follows:-

Accuracy	Precision	Recall	AUC	f-1 Score
0.8304409	0.8514503	0.9472256	0.8658108	0.896788

2. LOGISTIC REGRESSION ALGORITHM

The logistic regression is a statistical method which is commonly used on datasets which contains one or more variables that ultimately determine the end result. As our dependant variables in our dataset are categorical, it is advantageous use a machine learning model like Logistic regression.

The logistic regression model uses the generalized linear model (gml) function to be implemented. As the target variable RainTomorrow is a dependant variable, the function "RainTomorrow ~ " is used.

The rest of the feature columns in the trained set are independent variables. A part of the data is selected for training and it is trained on the "trained" dataset. Predictions are made on the **tested** dataset using the **predict** function.

A confusion matrix is created to measure the model's performance. This helps in calculating various performance metrics as follows.

Accuracy	Precision	Recall	AUC	f-1 Score
0.8473255	0.7117517	0.5160772	0.8658108	0.5983225

Then the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) are calculated for the model using the **roc** and **auc** functions. The ROC curve is plotted to provide a visually representation of the performance of the model by using the **plot** function.

Summary of the two models

The objective of the Logistic regression model is to Predict whether it will rain tomorrow, by using a range of features related to weather. And in the case of Decision tree, it is similar to Logistic Regression. But Logistic Regression is simpler and more linear, while Decision Trees are non-linear and can turn out to be more complicated when it reaches the stages of deep trees.

Decision Trees offer straightforward interpretability whereas Logistic Regression also provides interpretable results, but the only difference is that it is necessary for it to have to understand about the log odds. As both models were evaluated using similar metrics, but their performance is quite similar and close. The Logistic regression model produces an accuracy of 0.847325, which is just over the accuracy score produces by Decision Tree. This suggests that Logistic Regression is slightly more suitable for predicting the target variable.

Section 4: Discussion of the findings, Conclusion and Recommendations

All the members of the group have done modelling with the logistic regression model and the other model that models that were tested are:

- 1. Artificial Neural Network
- 2. K-nearest neighbours
- 3. Gradient Boosting
- 4. Decision Tree
- 5. Naive Bayes

Model Performance Comparison:

Logistic Regression:

Best Configuration: Logistic regression with log transformation consistently achieved the highest accuracy (84%) across group members.

Feature Importance: Identified key features impacting rain prediction: Pressure, Temperature, Windspeed, and Humidity.

Impact of Date and Location: Minimal impact observed, suggesting that these variables may not contribute significantly.

Artificial Neural Network (ANN):

Best Precision: ANN demonstrated the best precision per class and a favorable positive-to-negative prediction ratio.

Considerations: Though precise, the time complexity of ANN was noted, impacting its efficiency compared to other models.

K-Nearest Neighbours (KNN):

Best Recall: KNN exhibited the highest recall at 96%, making it proficient in capturing positive instances. Considerations: Model performance suggested suitability for scenarios where correctly identifying rainy days is crucial.

Gradient Boosting:

Imbalance Handling: Despite an 85% accuracy, gradient boosting struggled with class imbalance. Recommendation: Further hyperparameter tuning and addressing imbalance could enhance its performance.

Decision Tree:

Overall Best Model: Decision tree was considered the best overall model but faced challenges in generalizing the positive class.

Feature Importance: Like logistic regression, identified Pressure, Temperature, Windspeed, and Humidity as influential.

Naive Bayes:

Naive Bayes is computationally less expensive, making it suitable for large datasets or real-time applications. If the dataset predominantly consists of categorical features, Naive Bayes may perform well.

We analysed the performance of all the models by comparing their accuracy, precision, recall, f1 and AUC. It is to be noted that since sampling was done on the data we can use accuracy to compare the metrics between them

OUR FINAL MODEL AFTER CONCLUSIONS: LOGISTIC REGRESSION

For the logistic regression model, comparing what we found out, most of us found the best accuracy (84%) for the logistic regression model with log transformation of the features. This suggests that the feature transformation is useful and gives us the best recall in most cases.

The Artificial Neural network is found to have the best precision per class and the ratio of positive to negative predictions. The KNN has the best recall out of all the models with 96 per cent. Gradient boosting did not perform much for this dataset even with 85% accuracy, it did not handle the class imbalance well. The decision tree model was seen to be the best overall model, but the positive class was not generalised properly in the model.

Hence from the modelling, the most important features based on the feature selection and the interpretation of the coefficient that increased the performance were Pressure, Temperature, Windspeed and Humidity.

The dates and the location were not found to have as much impact as we thought they did.

Our future recommendation that would increase the further performance of the model would be collecting more samples of data where it was raining which decreases the imbalance and would further improve the performance of all the models.

For business needs, the time taken is also an important factor while modelling so, we have compiled the time taken versus the accuracy which gave us:

Gradient Boosting >Logistic Regression>Decision Tree>KNN>ANN

Business Implications on the best model:

Stakeholders can use logistic regression for accurate and interpretable rain predictions with a low accurate computation time and cost.

It noted considering trade-offs between precision and recall based on specific business needs.

It is also easier to emphasize the ease of monitoring and updating models to adapt to changing data patterns.

Section 5: Author Contribution Statement

Govind Konnanat (6797843)-Acquisition of dataset, Initial EDA preparation, Lead the team and divided the work, set up meetings, Preparation of Visualisations, deciding on evaluation techniques, worked on data processing report preparation and the hyperparameter for each model to improve accuracy.

Naima Rashid (6844356)- Played a role in getting the data ready and making sure it's clean for our project. Created visualizations to spot trends and worked on the presentation. Focused on precision and recall, crucial for our use-case predictions. Additionally, contributed to writing the group report.

Akhil Bhardwaj (6828141)- Addressed the missing values and outliers in the dataset, identified patterns and trends in the data, visualised key statistics, worked on report writing and documentation.

Venkat Sandeep Imandi (6829480)- Performed one hot encoding on the categorical values including time series encoding with sine function for the date column, over-sampled the data to reduce the imbalance and expressed ideas in the team meetings and documentation.

Ratan Rana Paleka Sheeba (6826777)-Active in meetings and had inputs about the dataset with classifications, helped during modelling and selection phase.