OR 과제 - 6

20192208 김형훈

2025-05-18

6.7 - 2

최종 해법은 다음과 같다.

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	0	0	2	5	0	100
x_2	0	-1	1	3	1	0	20
x_5	0	16	0	-2	-4	1	10

a

$$\bullet \ B^{-1}b_{new} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 30 \\ 90 \end{bmatrix} = \begin{bmatrix} 30 \\ -30 \end{bmatrix}$$

•
$$Z_{new} = [5, 0] \begin{bmatrix} 30 \\ -30 \end{bmatrix} = 150.$$

(0)
$$Z + 2x_3 + 5x_4 = 150$$

(1)
$$-x_1 + x_2 + 3x_3 + x_4 = 30$$

(2)
$$16x_1 - 2x_3 - 4x_4 + x_5 = -30$$

•
$$x_5 < 0$$
 (infeasible)

• Z-행의 비기저 변수 x_1, x_3, x_4 의 계수는 각각 0, 2, 5. bfs였다면 최적 조건을 만족

b

$$\bullet \ B^{-1}b_{new} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 70 \end{bmatrix} = \begin{bmatrix} 20 \\ -10 \end{bmatrix}$$

•
$$Z_{new} = [5, 0] \begin{bmatrix} 20 \\ -10 \end{bmatrix} = 100.$$

(0)
$$Z + 2x_3 + 5x_4 = 100$$

$$(1) -x_1 + x_2 + 3x_3 + x_4 = 20$$

(2)
$$16x_1 - 2x_3 - 4x_4 + x_5 = -10$$

• 기저해: (0, 20, 0, 0, -10). infeasible

• rc: (0, 0, 2, 5, 0). bfs였다면 최적

C

$$\bullet \ B^{-1}b_{new} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 100 \end{bmatrix} = \begin{bmatrix} 10 \\ 60 \end{bmatrix}$$

•
$$Z_{new} = [5,0] \begin{bmatrix} 10 \\ 60 \end{bmatrix} = 50.$$

(0)
$$Z + 2x_3 + 5x_4 = 50$$

(1)
$$-x_1 + x_2 + 3x_3 + x_4 = 10$$

(2)
$$16x_1 - 2x_3 - 4x_4 + x_5 = 60$$

• 기저해: (0, 10, 0, 0, 60). feasible

d

$$\bullet \text{ origin: } z-c_3=2, z=15$$

• new:
$$z - c_3 = 15 - 80 = -65$$

(0)
$$Z - 65x_3 + 5x_4 = 100$$

(1)
$$-x_1 + x_2 + 3x_3 + x_4 = 20$$

(2)
$$16x_1 - 2x_3 - 4x_4 + x_5 = 10$$

• 기저해: (0, 20, 0, 0, 10). feasible

e

$$\begin{array}{c|c} \bullet \ x_1 & \text{if } c: c_B B^{-1} A_{\cdot 1} - c_1 = [5,0] \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \end{bmatrix} - (-2) = 2 \\ N & B^{-1} A & \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{array}$$

•
$$N_{\cdot 1}$$
: $B^{-1}A_{\cdot 1} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$

(0)
$$Z + 2x_1 + 2x_3 + 5x_4 = 100$$

$$(1) \ x_2 + 3x_3 + x_4 = 20$$

(2)
$$5x_1 - 2x_3 - 4x_4 + x_5 = 10$$

• 기저해: (0, 20, 0, 0, 10). feasible

f

•
$$B = \begin{bmatrix} 2 & 0 \\ 5 & 1 \end{bmatrix}$$

$$\cdot B^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix}$$

•
$$c_B = [6, 0]$$

$$\cdot B^{-1}b = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 90 \end{bmatrix} = \begin{bmatrix} 10 \\ 40 \end{bmatrix}$$

•
$$Z = [6, 0] \begin{bmatrix} 10 \\ 40 \end{bmatrix} = 60.$$

$$\bullet \ x_1 \text{ \'er rc: } c_B B^{-1} A_{\cdot 1} - c_1 = [6,0] \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 12 \end{bmatrix} - (-5) = 2$$

•
$$N_{\cdot 1}$$
: $B^{-1}A_{\cdot 1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 12 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{29}{2} \end{bmatrix}$

$$\bullet \ x_3 \text{ In } \text{rc: } c_B B^{-1} A_{\cdot 3} - c_3 = [6,0] \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} - 13 = -4$$

$$\bullet \ N_{\cdot 3} : B^{-1}A_{\cdot 3} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{5}{2} \end{bmatrix}$$

$$\bullet \ x_4 \text{ = rc: } c_B B^{-1} A_{.4} - c_4 = [6,0] \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 0 = 3$$

•
$$N_{.4}$$
: $B^{-1}A_{.4} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{5}{2} \end{bmatrix}$

(0)
$$Z + 2x_1 - 4x_3 + 3x_4 = 60$$

(1)
$$-\frac{1}{2}x_1 + x_2 + \frac{3}{2}x_3 + \frac{1}{2}x_4 = 10$$

(2)
$$\frac{29}{2}x_1 + \frac{5}{2}x_3 - \frac{5}{2}x_4 + x_5 = 40$$

g

•
$$N_{\cdot 6}$$
: $B^{-1}A_{\cdot 6} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$

•
$$x_6$$
의 rc: $(5,0)$ $\begin{bmatrix} 3 \\ -7 \end{bmatrix} - 10 = 5.$

(0)
$$Z + 2x_3 + 5x_4 + 5x_6 = 100$$

$$(1) \ -x_1 + x_2 + 3x_3 + x_4 + 3x_6 = 20$$

(2)
$$16x_1 - 2x_3 - 4x_4 + x_5 - 7x_6 = 10$$

• 기저해: (0, 20, 0, 0, 10, 0). feasible

• rc: (0, 0, 2, 5, 0, 5). 최적.

h

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	0	0	2	5	0	0	100
x_2	0	-1	1	3	1	0	0	20
x_5	0	16	0	-2	-4	1	0	10
x_6	0	2	3	5	0	0	1	50

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	0	0	2	5	0	0	100
x_2	0	-1	1	3	1	0	0	20
x_5	0	16	0	-2	-4	1	0	10
x_6	0	5	0	-4	-3	0	1	-10

(0)
$$Z + 2x_3 + 5x_4 = 100$$

$$(1) -x_1 + x_2 + 3x_3 + x_4 = 20$$

(2)
$$16x_1 - 2x_3 - 4x_4 + x_5 = 10$$

(3)
$$5x_1 - 4x_3 - 3x_4 + x_6 = -10$$

• 기저해: (0, 20, 0, 0, 10, -10). infeasible

• rc: (0, 0, 2, 5, 0). bfs면 최적.

i

•
$$B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$

$$\bullet \ B^{-1} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}$$

•
$$c_B = [5, 0]$$

•
$$B^{-1}b = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 100 \end{bmatrix} = \begin{bmatrix} 20 \\ 0 \end{bmatrix}$$

•
$$Z = \begin{bmatrix} 5, 0 \end{bmatrix} \begin{bmatrix} 20 \\ 0 \end{bmatrix} = 100$$

$$\bullet \ x_1 \text{ arc: } c_B B^{-1} A_{\cdot 1} - c_1 = [5,0] \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 10 \end{bmatrix} - (-5) = 0$$

•
$$N_{\cdot 1}$$
: $B^{-1}A_{\cdot 1} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 10 \end{bmatrix} = \begin{bmatrix} -1 \\ 15 \end{bmatrix}$

•
$$x_3$$
의 rc: $c_B B^{-1} A_{\cdot 3} - c_3 = [6,0] \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} - 13 = 2$

•
$$N_{\cdot 3}$$
: $B^{-1}A_{\cdot 3} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$

$$\bullet \ x_4 \text{ Pl rc: } c_B B^{-1} A_{.4} - c_4 = [6,0] \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 0 = 5$$

•
$$N_{\cdot 4}$$
: $B^{-1}A_{\cdot 4}=\begin{bmatrix}1&0\\-5&1\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}1\\-5\end{bmatrix}$

(0)
$$Z + 0x_1 + 2x_3 + 5x_4 = 100$$

(1)
$$x_2 - x_1 + 3x_3 + x_4 = 20$$

(2)
$$x_5 + 15x_1 - 5x_3 - 5x_4 = 0$$

- 기저해: (0, 20, 0, 0, 0). feasible
- rc: (0, 0, 2, 5, 0). 최적.

7.1-4

a

쌍대문제

$$\begin{array}{ll} \text{Minimize} & W=40y_1+20y_2+90y_3\\ \text{Subject to} & 3y_1+y_2+5y_3\geq 5\\ & y_1+y_2+3y_3\geq 10\\ & y_1,y_2,y_3\geq 0 \end{array}$$

iteration 1

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	-5	-10	0	0	0	0
x_3	0	3	1	1	0	0	40
x_4	0	1	1	0	1	0	20
x_5	0	5	3	0	0	1	90

• bfs: (0, 0, 40, 20, 90)

• 상보기저해: (0, 0, 0, -5, -10)

iteration 2

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	5	0	0	10	0	200
x_3	0	2	0	1	-1	0	20
x_2	0	1	1	0	1	0	20
x_5	0	2	0	0	-3	1	30

• bfs: (0, 20, 20, 0, 30)

• 상보기저해: (0, 10, 0, 5, 0)

b

$$\begin{array}{ll} \text{Minimize} & W = 40y_1 + 20y_2 + 90y_3 \\ \text{Subject to} & -3y_1 - y_2 - 5y_3 \leq -5 \\ & -y_1 - y_2 - 3y_3 \leq -10 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

$$\begin{array}{ll} \text{Maximize} & -W = -40y_1 - 20y_2 - 90y_3 \\ \text{Subject to} & -3y_1 - y_2 - 5y_3 + y_4 = -5 \\ & -y_1 - y_2 - 3y_3 + y_5 = -10 \\ & y_1, y_2, y_3, y_4, y_5 \geq 0 \end{array}$$

iteration 1

	-W	y_1	y_2	y_3	y_4	y_5	RHS
	1	40	20	90	0	0	0
y_4	0	-3	-1	-5	1	0	-5
y_5	0	-1	-1	-3	0	1	-10

• bfs: (0, 0, 0, -5, -10)

iteration 2

	-W	y_1	y_2	y_3	y_4	y_5	RHS
	1	20	0	30	0	20	-200
y_4	0	-2	0	-2	1	-1	5
y_2	0	1	1	3	0	-1	10

• bfs: (0, 10, 0, 5, 0)

7.3-1

Maximize
$$Z=2x_1+3x_2$$
 Subject to
$$3x_1-9x_2\leq 20$$

$$0\leq x_1\leq \frac{40}{3}, 0\leq x_2\leq \frac{40}{9}$$

a

- bfs: $(\frac{40}{3},\frac{40}{9})$
- obj: 40

b

Maximize
$$Z-2x_1-3x_2=0$$
 Subject to
$$x_3=20-3x_1+9x_2$$

$$0\leq x_1\leq \frac{40}{3}, 0\leq x_2\leq \frac{40}{9}, x_3\geq 0$$

 $\bullet \ x_2 \, {\rm enter} \,$

$$Z - 2x_1 - 3x_2 = 0$$

$$x_3 = 20 + 9x_2 \quad \dots \quad x_2 \le \frac{40}{9}$$

$$x_2 = \frac{40}{9} - y_2$$

$$x_3 = 60 - 3x_1 - 9y_2 \quad \dots \quad x_1 \le \frac{40}{3}$$

$$Z - 2x_1 + 3y_2 = \frac{40}{3}$$

ullet x_1 enter

$$x_1 = \frac{40}{3} - y_1$$

$$x_3 = 20 + 3y_1 - 9y_2$$

$$Z + 2y_1 + 3y_2 = 40$$

- bfs(x_1, x_2, x_3, y_1, y_2): $(\frac{40}{3}, \frac{40}{9}, 20, 0, 0)$
- obj: = 40

C

8.2-7

a

초기 수송표

	목적지 1	목적지 2	목적지 3	목적지 4	공급
근원지 1	3	7	6	4	5
근원지 2	2	4	3	8	2
근원지 3	4	3	8	5	3
수요	3	3	2	2	

iteration

	목적지 1	목적지 2	목적지 3	목적지 4	공급
근원지 1	$3 (x_{11} = 3)$	7	6	4	2
근원지 2	2	4	3	8	2
근원지 3	4	3	8	5	3
수요	0	3	2	2	

	목적지 1	목적지 2	목적지 3	목적지 4	공급
	$3 (x_{11} = 3)$	2 ($x_{12} = 2$)	6	4	0
근원지 2	2	4	3	8	2
근원지 3	4	3	8	5	3
수요	0	1	2	2	

	목적지 1	목적지 2	목적지 3	목적지 4	공급
근원지 1	$3 (x_{11} = 3)$	2 ($x_{12} = 2$)	6	4	0
근원지 2	2	$1(x_{22}=1)$	3	8	1
근원지 3	4	3	8	5	3
수요	0	0	2	2	

	목적지 1	목적지 2	목적지 3	목적지 4	공급
근원지 1	$3 (x_{11} = 3)$	$2 (x_{12} = 2)$	6	4	0
근원지 2	2	$1(x_{22}=1)$	$1(x_{23}=1)$	8	0
근원지 3	4	3	8	5	3
수요	0	0	1	2	

	목적지 1	목적지 2	목적지 3	목적지 4	공급
근원지 1	$3 (x_{11} = 3)$	$2 (x_{12} = 2)$	6	4	0
근원지 2	2	$1(x_{22}=1)$	$1(x_{23}=1)$	8	0
근원지 3	4	3	$1(x_{33}=1)$	5	2
수요	0	0	0	2	

	목적지 1	목적지 2	목적지 3	목적지 4	공급
근원지 1	$3 (x_{11} = 3)$	$2 (x_{12} = 2)$	6	4	0
근원지 2	2	$1 (x_{22} = 1)$	$1(x_{23}=1)$	8	0
근원지 3	4	3	$1(x_{33}=1)$	2 $(x_{34} = 2)$	0
수요	0	0	0	0	

초기 기저 가능해

- $x_{11} = 3$ (비용: $3 \times 3 = 9$)
- $x_{12}=2$ (비용: $7\times 2=14$)
- $x_{22}=1$ (비용: $4\times 1=4$)
- $x_{23} = 1$ (비용: $3 \times 1 = 3$)
- $x_{33} = 1$ (비용: $8 \times 1 = 8$)
- $x_{34}=2$ (비용: $5\times 2=10$)
- 다른 모든 $x_{ij} = 0$.

초기해의 총 수송 비용

$$Z = (3 \times 3) + (7 \times 2) + (4 \times 1) + (3 \times 1) + (8 \times 1) + (5 \times 2)$$

$$Z = 9 + 14 + 4 + 3 + 8 + 10 = 48$$

iteration 1

기저 변수

• $u_1 = 0$ 으로 설정.

•
$$x_{11}: u_1 + v_1 = c_{11} \Rightarrow 0 + v_1 = 3 \Rightarrow v_1 = 3$$

•
$$x_{12}: u_1 + v_2 = c_{12} \Rightarrow 0 + v_2 = 7 \Rightarrow v_2 = 7$$

•
$$x_{22}: u_2 + v_2 = c_{22} \Rightarrow u_2 + 7 = 4 \Rightarrow u_2 = -3$$

$$\bullet \ x_{23}: u_2+v_3=c_{23} \Rightarrow -3+v_3=3 \Rightarrow v_3=6$$

•
$$x_{33}: u_3 + v_3 = c_{33} \Rightarrow u_3 + 6 = 8 \Rightarrow u_3 = 2$$

•
$$x_{34}: u_3 + v_4 = c_{34} \Rightarrow 2 + v_4 = 5 \Rightarrow v_4 = 3$$

$$\therefore u_1 = 0, u_2 = -3, u_3 = 2, v_1 = 3, v_2 = 7, v_3 = 6, v_4 = 3.$$

비기저 변수 제약식

•
$$x_{13}: c_{13} - u_1 - v_3 = 6 - 0 - 6 = 0$$

•
$$x_{14}: c_{14} - u_1 - v_4 = 4 - 0 - 3 = 1$$

$$\bullet \ x_{21}: c_{21}-u_2-v_1=2-(-3)-3=2-(-3+3)=2$$

$$\bullet \ x_{24}: c_{24}-u_2-v_4=8-(-3)-3=8-(-3+3)=8$$

$$\bullet \ x_{31}: c_{31}-u_3-v_1=4-2-3=-1$$

•
$$x_{32}: c_{32} - u_3 - v_2 = 3 - 2 - 7 = -6$$

• enter: x_{32}

• 경로:
$$x_{32} o x_{33} o x_{23} o x_{22} o x_{32}$$

•
$$\theta = \min(x_{33}, x_{22}) = \min(1, 1) = 1.$$

할당량

•
$$x_{32} = 0 + \theta = 1$$

•
$$x_{33} = 1 - \theta = 0$$

$$\bullet \ x_{23}=1+\theta=2$$

•
$$x_{22} = 1 - \theta = 0$$
 (탈락 변수)

• 기저해:
$$x_{11} = 3, x_{12} = 2, x_{23} = 2, x_{32} = 1, x_{33} = 0, x_{34} = 2$$

•
$$Z = (3 \times 3) + (7 \times 2) + (3 \times 2) + (3 \times 1) + (8 \times 0) + (5 \times 2) = 42.$$

iteration 2

기저 변수

•
$$u_1 = 0$$

•
$$x_{11}: u_1 + v_1 = c_{11} \Rightarrow 0 + v_1 = 3 \Rightarrow v_1 = 3$$

•
$$x_{12}: u_1 + v_2 = c_{12} \Rightarrow 0 + v_2 = 7 \Rightarrow v_2 = 7$$

•
$$x_{32}: u_3 + v_2 = c_{32} \Rightarrow u_3 + 7 = 3 \Rightarrow u_3 = -4$$

•
$$x_{33}: u_3 + v_3 = c_{33} \Rightarrow -4 + v_3 = 8 \Rightarrow v_3 = 12$$

•
$$x_{34}: u_3 + v_4 = c_{34} \Rightarrow -4 + v_4 = 5 \Rightarrow v_4 = 9$$

$$\bullet \ x_{23}: u_2+v_3=c_{23} \Rightarrow u_2+12=3 \Rightarrow u_2=-9$$

$$\therefore u_1 = 0, u_2 = -9, u_3 = -4, v_1 = 3, v_2 = 7, v_3 = 12, v_4 = 9.$$

비기저 변수의 제약식

$$\bullet \ x_{13}: k_{13} = c_{13} - u_1 - v_3 = 6 - 0 - 12 = -6$$

•
$$x_{14}: k_{14} = c_{14} - u_1 - v_4 = 4 - 0 - 9 = -5$$

•
$$x_{21}: k_{21} = c_{21} - u_2 - v_1 = 2 - (-9) - 3 = 2 + 9 - 3 = 8$$

•
$$x_{22}: k_{22} = c_{22} - u_2 - v_2 = 4 - (-9) - 7 = 4 + 9 - 7 = 6$$

$$\bullet \ x_{24}: k_{24} = c_{24} - u_2 - v_4 = 8 - (-9) - 9 = 8 + 9 - 9 = 8$$

$$\bullet \ x_{31}: k_{31} = c_{31} - u_3 - v_1 = 4 - (-4) - 3 = 4 + 4 - 3 = 5$$

• enter: x_{13}

• 경로:
$$(1,3) \xrightarrow{+} (3,3) \xrightarrow{-} (3,2) \xrightarrow{+} (1,2) \xrightarrow{-} (1,3)$$

•
$$\theta = \min(x_{33}, x_{12}) = \min(0, 2) = 0.$$

할당량

•
$$x_{13} = 0 + 0 = 0$$

•
$$x_{33} = 0 - 0 = 0$$
 (탈락 변수)

•
$$x_{32} = 1 + 0 = 1$$

•
$$x_{12} = 2 - 0 = 2$$

• 기저해:
$$x_{11} = 3, x_{12} = 2, x_{13} = 0, x_{23} = 2, x_{32} = 1, x_{34} = 2.$$

•
$$Z = (3 \times 3) + (7 \times 2) + (6 \times 0) + (3 \times 2) + (3 \times 1) + (5 \times 2) = 9 + 14 + 0 + 6 + 3 + 10 = 42.$$

iteration 3

기저 변수

•
$$u_1 = 0$$
 으로 설정

•
$$x_{11}: u_1 + v_1 = c_{11} \Rightarrow 0 + v_1 = 3 \Rightarrow v_1 = 3$$

•
$$x_{12}: u_1 + v_2 = c_{12} \Rightarrow 0 + v_2 = 7 \Rightarrow v_2 = 7$$

•
$$x_{13}: u_1 + v_3 = c_{13} \Rightarrow 0 + v_3 = 6 \Rightarrow v_3 = 6$$

•
$$x_{23}: u_2 + v_3 = c_{23} \Rightarrow u_2 + 6 = 3 \Rightarrow u_2 = -3$$

•
$$x_{32}: u_3 + v_2 = c_{32} \Rightarrow u_3 + 7 = 3 \Rightarrow u_3 = -4$$

•
$$x_{34}: u_3 + v_4 = c_{34} \Rightarrow -4 + v_4 = 5 \Rightarrow v_4 = 9$$

$$\therefore u_1 = 0, u_2 = -3, u_3 = -4, v_1 = 3, v_2 = 7, v_3 = 6, v_4 = 9.$$

비기저 변수 제약식

•
$$x_{14}: k_{14} = c_{14} - u_1 - v_4 = 4 - 0 - 9 = -5$$

$$\bullet \ x_{21}: k_{21} = c_{21} - u_2 - v_1 = 2 - (-3) - 3 = 2 + 3 - 3 = 2$$

$$\bullet \ x_{22}: k_{22} = c_{22} - u_2 - v_2 = 4 - (-3) - 7 = 4 + 3 - 7 = 0$$

$$\bullet \ x_{24}: k_{24} = c_{24} - u_2 - v_4 = 8 - (-3) - 9 = 8 + 3 - 9 = 2$$

•
$$x_{31}: k_{31} = c_{31} - u_3 - v_1 = 4 - (-4) - 3 = 4 + 4 - 3 = 5$$

•
$$x_{33}: k_{33} = c_{33} - u_3 - v_3 = 8 - (-4) - 6 = 8 + 4 - 6 = 6$$

• enter: x_{14}

• 경로:
$$(1,4) \xrightarrow{+} (3,4) \xrightarrow{-} (3,2) \xrightarrow{+} (1,2) \xrightarrow{-} (1,4)$$

$$\bullet \ \theta = \min(x_{34}, x_{12}) = \min(2, 2) = 2.$$

할당량

•
$$x_{14} = 0 + 2 = 2$$

•
$$x_{34} = 2 - 2 = 0$$
 (탈락 변수)

•
$$x_{32} = 1 + 2 = 3$$

•
$$x_{12} = 2 - 2 = 0$$

• 기저해:
$$x_{11}=3, x_{12}=0, x_{13}=0, x_{14}=2, x_{23}=2, x_{32}=3.$$

•
$$Z = (3 \times 3) + (7 \times 0) + (6 \times 0) + (4 \times 2) + (3 \times 2) + (3 \times 3) = 32$$

iteration 4

기저 변수

•
$$u_1 = 0$$
 으로 설정.

•
$$x_{11}: u_1 + v_1 = c_{11} \Rightarrow 0 + v_1 = 3 \Rightarrow v_1 = 3$$

$$\bullet \ x_{12}: u_1+v_2=c_{12} \Rightarrow 0+v_2=7 \Rightarrow v_2=7$$

•
$$x_{13}: u_1 + v_3 = c_{13} \Rightarrow 0 + v_3 = 6 \Rightarrow v_3 = 6$$

•
$$x_{14}: u_1 + v_4 = c_{14} \Rightarrow 0 + v_4 = 4 \Rightarrow v_4 = 4$$

$$\bullet \ x_{23}: u_2+v_3=c_{23} \Rightarrow u_2+6=3 \Rightarrow u_2=-3$$

$$\begin{array}{l} \bullet \; x_{32}: u_3+v_2=c_{32} \Rightarrow u_3+7=3 \Rightarrow u_3=-4 \\ \\ \therefore u_1=0, u_2=-3, u_3=-4, v_1=3, v_2=7, v_3=6, v_4=4. \end{array}$$

$$\bullet \ x_{21}: k_{21} = c_{21} - u_2 - v_1 = 2 - (-3) - 3 = 2$$

$$\bullet \ x_{22}: k_{22} = c_{22} - u_2 - v_2 = 4 - (-3) - 7 = 0$$

$$\bullet \ x_{24}: k_{24} = c_{24} - u_2 - v_4 = 8 - (-3) - 4 = 7$$

$$\bullet \ x_{31}: k_{31} = c_{31} - u_3 - v_1 = 4 - (-4) - 3 = 5$$

$$\bullet \ x_{33}: k_{33} = c_{33} - u_3 - v_3 = 8 - (-4) - 6 = 6$$

$$\bullet \ x_{34}: k_{34} = c_{34} - u_3 - v_4 = 5 - (-4) - 4 = 5$$

모든 $k_{ij} \geq 0$ 이므로, 현재 해가 최적.

•
$$x_{11} = 3$$

•
$$x_{12} = 0$$

•
$$x_{13} = 0$$

•
$$x_{14} = 2$$

•
$$x_{23} = 2$$

•
$$x_{32} = 3$$

• 다른 모든
$$x_{ij} = 0$$
.

$$Z = 9 + 8 + 6 + 9 = 32.$$

8.4-5

피할당인	과업 1	과업 2	과업 3	과업 4
A	4	1	0	1
В	1	3	4	0
С	3	2	1	3
D	2	2	3	0

피할당인	과업 1	과업 2	과업 3	과업 4
Α	4	1	0	1
В	1	3	4	0
С	2	1	0	2
D	2	2	3	0

피할당인	과업 1	과업 2	과업 3	과업 4
Α	3	0	0	1
В	0	2	4	0
С	1	0	0	2
D	1	1	3	0

최적 할당 및 총비용:

- A -> 과업 2
- B -> 과업 1
- C -> 과업 3
- D -> 과업 4

Z = 1 + 1 + 1 + 0 = 3