1 Opamp 2

1.1 Suppositions

Chute de tension dans les sources de	1 V
courant	
Chute dans les jonctions (transistors et	$0.6\mathrm{V}$
diodes)	
Tension thermique (résistances)	$25\mathrm{mV}$
Courant dans la base (à vérifier)	0 A

1.2 Plage d'entrée / de sortie

Partir du point demandé (entrée ou sortie) et recherche le chemin "logique" qui fait perdre le plus de tension (passage par des transistors/diodes/sources de courant). Il est possible d'utiliser des tensions qui sont écrites sur le schéma.

$$I_q = \frac{U_D}{2r_E'} \qquad r_E' = \frac{U_T}{I_0}$$

La tension U_1 est entre la base de T_5 et la masse.

$$U_1 = -2R_1I_q$$

$$U_a = -U_1 \frac{R_2}{r_{s5}}$$

$$f_0 \approx \frac{1}{2\pi R_1 C_k} \cdot \frac{r_{s5}}{R_2} = 5.3 \,\text{Hz}$$

$$S_R = \frac{I_1}{C_k} = 10 \, \text{V µs}^{-1}$$

$$A = 2\frac{R_1 R_2}{2r_E' \frac{1}{0.005}} = 400'000$$

$$GBW = A2\pi f_0$$

$$A_{max} = \frac{\text{GBW}}{2\pi \cdot 10'000} = 212$$

1.3 Amplificateur à transconductance

$$U_N \in \begin{pmatrix} 13.4 \\ -14.4 - 13.8 \end{pmatrix} \quad U_P \in \begin{pmatrix} 13.4 \\ -13.8 \end{pmatrix} \quad U_a \in \begin{pmatrix} 13.4 \\ -13.2 \end{pmatrix}$$

Pour les signaux différentiels, ils doivent être identiques donc on utilise la plage la plus faible pour chaque borne. Le $-14.4\,\mathrm{V}$ (à gauche sur le schéma) viens d'une chute de tension de jonction NPN. Le $-13.8\,\mathrm{V}$ (au milieu en bas sur le schéma) viens de la chute de tension double dans le darlington.

$$U_D = U_P - U_N$$

$$S_D = \frac{I_0}{2U_T} \left[\mathbf{A} \, \mathbf{V}^{-1} \right]$$

Possibilité de modifier la transconductance en ajoutant une résistance R_E entre les émetteurs de l'étage différentiel.

Résistance de sortie :

$$r_a = r_{CE \ 4}$$

1.4 Amplificateur à transimpédance

$$A_D = \frac{U_a}{U_D} = \frac{Z}{r_s} = \frac{U_A}{U_T}$$

$$A_B = \frac{Z}{R_E + r_s}$$

1.5 Amplificateur de courant (transistor diamant)

$$S = \frac{1}{r_S}$$

Si on a une résistance externe R_E à l'émetteur

$$S_B = \frac{1}{r_S + R_E}$$

$$A_B = S_B R = \frac{R}{r_S + R_E}$$

1.5.1 Couplage sur l'émetteur

1.5.2 Couplage sur le collecteur

1.5.3 Collecteur et émetteur connectés

Comme le transistor diamant est alimenté de manière externe, on peut le faire fonctionner de la manière suivante (avec le courant qui sort "de nulle part")

1.5.4 Couplage sur la base

Circuit d'addition

Circuit de soustraction

1.5.5 Amplificateur différentiel

1.5.6 Gyrateur

Équivalent d'un transformateur mais qui fonctionne en DC

$$I_1 = \frac{1}{R_G} U_2$$

$$I_2 = \frac{1}{R_G} U_1$$

1.5.7 Intégrateur

 $r_a(C_a+C)$ représente la limite de fréquence basse de l'intégrateur. Il n'y a quasiment pas de limite haute (f_T)

1.6 Terminaisons de lignes de transmissions

1.7 Driver de ligne coax

