

Modelagem de um Sistema de Resfriamento de Chips

Exercício Programa 03

Relatório Final

Natanael Magalhães Cardoso, 8914122 Valber Marcelino Filho, 11353165

Professora: Cláudia Peixoto

Turma: 03

Universidade de São Paulo

Escola Politécnica

MAP3121 - Métodos Numéricos e Aplicações

Universidade de São Paulo ESCOLA POLITÉCNICA

MAP3121 - Métodos Numéricos e Aplicações

Modelagem de um Sistema de Resfriamento de Chips

Natanael Magalhães Cardoso*, Valber Marcelino Filho†

1. INTRODUÇÃO

O método de Rayleigh-Ritz é usado para obtenção de resultados aproximados para equação diferencial parcial dadas as condições de contorno. Neste método, o problema de valor limite é primeiramente formulado para um problema de escolha. Entre todo o conjunto de funções diferenciáveis que satisfazem as condições de limite, escolhe-se as funções que minimizam uma certa integral. Então, o conjunto de funções viáveis fica reduzido, para resultar em uma solução para o problema de minimização e, consequentemente, numa solução para o problema de valor limite.

O método de Rayleigh-Ritz é comumente utilizado para obter uma solução para o modelo da viga de Euler-Bernoulli (biapoiada) com rigidez de flexão constante, ou seja, mesmo material e mesma seção transversal em todo o domínio. Em certas áreas da engenharia, como mecânica e civil, são utilizadas estruturas como vigas, treliças e placas que possuem propriedades necessárias para a construção de prédios, aviões e navios. Essas estruturas estão sujeitas a cargas de tração, torção, flexão. Sendo assim, elas precisam ser projetadas para suportar essas forças, permitindo que possam exercer suas funções sem problemas.

Neste projeto, utilizaremos o método de Rayleigh-Ritz com aproximação por splines lineares para modelar numericamente um sistema termodinâmico conservativo: o comportamento da difusão térmica que ocorre em um chip sujeito a aquecimento e sob ação de um resfriador.

*nUSP: 8914122, Turma: 03

[†]nUSP: 11353165, Turma: 03

2. MÉTODOS

2.1. MODELAGEM DO SISTEMA TERMODINÂMICO

Este problema será restrito à análise unidimensional e a distribuição de calor pode é modelada pela equação do calor obtida a partir da lei de Fourier e da propriedade de conservação de energia

$$\rho C \frac{\partial T}{\partial t}(t, x) = \frac{\partial}{\partial x} \left(k(x) \frac{\partial T}{\partial x}(t, x) \right) + Q(x)$$
(1)

onde T(t,x) é a temperatura do processador no instante t e na posição x; ρ é a densidade do material; C é o calor específico do material; k é a condutividade térmica e Q é uma fonte de calor.

Do ponto de vista elétrico, a potência dissipada por um circuito integrado (*P*) pode ser expressa pela eq. (2).

$$P = C \cdot V^2 \cdot f \tag{2}$$

onde C é a capacitância parasita, V é a tensão de alimentação e f é a frequência de clock

No caso real, a potência sofre variações, pois a tensão pode oscilar, bem como a frequência, que depende da carga de trabalho. Contudo, nesta análise será considerando um processador que trabalhe em regime constante, gerando sempre a mesma quantidade de calor e que o resfriador sempre consiga extrair a mesma quantidade de calor. Isso implica em uma taxa de variação da temperatura no tempo nula, como expressa a eq. (3)

$$\frac{\partial T}{\partial t}(t, x) = 0 \tag{3}$$

Então, a eq. (1) pode ser simplificada para eq. (4)

$$-\frac{\partial}{\partial x}\left(k(x)\frac{\partial T(x)}{\partial x}\right) = Q(x) \tag{4}$$

Com o equacionamento do sistema físico a ser estudado completo, desejamos obter a solução de equilíbrio resolvendo numericamente a equação (4) usando o método dos elementos finitos.

2.2. MÉTODO DE RAYLEIGH-RITZ

O método de Rayleigh-Ritz fornece um procedimento para resolver uma equação diferencial da forma descrita pela eq. (5), que é a equação da viga de Euler-Bernoulli biapoiada

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}y}{\mathrm{d}x}\right) + q(x)y = f(x) \tag{5}$$

e condições de contorno

$$y(0) = y(1) = 0 (6)$$

O método de Rayleigh-Ritz aproxima a solução y minimizando a integral, não sobre todas as funções, mas sobre um conjunto menor de funções consistindo em combinações lineares de certas funções de base $\phi_1, \phi_2, ..., \phi_n$. Estas funções de base são linearmente independentes e satisfazem $\phi(0) = \phi(1) = 0$.

Uma aproximação

$$\phi(x) = \sum_{i=1}^{n} c_i \phi_i(x) \tag{7}$$

para a solução y(x) da eq. (5) é obtida encontrando as constantes $c_1, c_2, ..., c_n$ que minimizam a integral da eq. (8)

$$I[\phi] = I\left[\sum_{i=1}^{n} c_i \phi_i\right] \tag{8}$$

e fazendo $\frac{\partial I}{\partial c_j}=0$, para cada j=1,2,...,n, chegamos a um sistema normal Ac=b, onde A é uma matriz simétrica

$$\begin{pmatrix} \langle \phi_1, \phi_1 \rangle & \langle \phi_2, \phi_1 \rangle & \dots & \langle \phi_n, \phi_1 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \phi_1, \phi_n \rangle & \langle \phi_2, \phi_n \rangle & \dots & \langle \phi_n, \phi_n \rangle \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} \langle f, \phi_1 \rangle \\ \vdots \\ \langle f, \phi_n \rangle \end{pmatrix}$$
(9)

Os valores de a_{ij} e b_i são descritos pelas eqs. (10) e (11), respectivamente

$$a_{ij} = \int_0^1 [p(x)\phi_i'(x)\phi_j'(x) + q(x)\phi_i(x)\phi_j(x)]dx \tag{10}$$

$$b_i = \int_0^1 f(x)\phi_i(x)dx \tag{11}$$

Para uma base linear por pates definida pela eq. (12) e com intervalos h igualmente espaçados

$$\phi_{i}(x) = \begin{cases} 0, & \text{se } 0 \le x \le x_{i-1} \\ \frac{1}{h}(x - x_{i-1}), & \text{se } x_{i-1} < x \le x_{i} \\ \frac{1}{h}(x_{i+1} - x), & \text{se } x_{i} < x \le x_{i+1} \\ 0, & \text{se } x_{i+1} < x \le 1 \end{cases}$$

$$(12)$$

Como ϕ_i e ϕ_i' são diferentes de zero apenas em (x_{i-1}, x_{i+1}) , $\phi_i(x)\phi_j(x) = \phi_i'(x)\phi_j'(x) = 0$ fora deste intervalo. Assim, A reduz-se a um sistema linear tridiagonal e a diagonal principal, a supradiagonal, a subdiagonal e os termos independentes são definidas, respectivamente, pelas eqs. (13), (14), (15) e (16)

$$a_{ii} = \int_{0}^{1} p(x) [\phi'_{i}(x)]^{2} + q(x) [\phi_{i}(x)]^{2} dx$$

$$= \left(\frac{1}{h}\right)^{2} \int_{x_{i-1}}^{x_{i}} p(x) dx + \left(\frac{-1}{h}\right)^{2} \int_{x_{i}}^{x_{i+1}} p(x) dx + \left(\frac{1}{h}\right)^{2} \int_{x_{i-1}}^{x_{i}} (x - x_{i-1})^{2} q(x) dx + \left(\frac{1}{h}\right)^{2} \int_{x_{i}}^{x_{i+1}} (x_{i+1} - x)^{2} q(x) dx$$

$$(13)$$

$$a_{i,i+1} = \int_0^1 p(x)\phi_i'(x)\phi_{i+1}'(x) + q(x)\phi_i(x)\phi_{i+1}(x)dx$$

$$= -\left(\frac{1}{h}\right)^2 \int_{x_i}^{x_{i+1}} p(x)dx + \left(\frac{1}{h}\right)^2 \int_{x_i}^{x_{i+1}} (x_{i+1} - x)(x - x_i)q(x)dx$$
(14)

$$a_{i,i-1} = \int_0^1 p(x)\phi_i'(x)\phi_{i-1}'(x) + q(x)\phi_i(x)\phi_{i-1}(x)dx$$

$$= -\left(\frac{1}{h}\right)^2 \int_{x_{i-1}}^{x_i} p(x)dx + \left(\frac{1}{h}\right)^2 \int_{x_{i-1}}^{x_i} (x_i - x)(x - x_{i-1})q(x)dx$$
(15)

$$b_{i} = \int_{0}^{1} f(x)\phi_{i}(x)dx = \frac{1}{h} \int_{x_{i-1}}^{x_{i}} (x - x_{i-1})f(x)dx + \frac{1}{h} \int_{x_{i}}^{x_{i+1}} (x_{i+1} - x)q(x)dx$$
 (16)

Para obter uma solução no intervalo [0, L], basta dividir os intervalos no novo domínio fazendo h = L/n e, para obter soluções não homogêneas, basta modificar a eq. (7) pela (17)

$$\phi(x) = \sum_{i=1}^{n} c_i \phi_i(x) + u(0) + [u(L) - u(0)]x$$
(17)

2.3. IMPLEMENTAÇÃO

2.3.1 Trabalhos anteriores

A realização deste método exige a resolução das integrais definidas em (13), (14), (15) e (16) e a resolução de um sistema linear tridiagonal da eq. (9). Para isso, as funções anteriormente implementadas para calcular a solução de um sistema tridiagonal (EP1) e a integral numérica de uma função usando quadratura gaussiana (EP2) foram reutilizadas neste projeto. Sendo

assim, a única rotina implementada foi a do cálculo da solução de uma EDO usando método de Rayleigh-Ritz com splines lineares.

2.3.2 Design e Otimizações

Diferentemente dos projetos 1 e 2, que foram implementados sob paradígma funcional, o programa aqui implementado usa o paradigma orientado a objetos. Esta escolha foi feita para evitar cálculos desnecessários, pois, para avaliar o modelo em um ponto diferente dentro do intervalo [0, L], não é necessário recalcular os coefientes, que envolve o cálculo de 6 integrais usando quadratura gaussiana e a solução de um sistema tridiagonal. Nesta implementação, os coeficientes são armazenados no estado do objeto e são reutilizados.

2.3.3 Descrição

Foi implementada uma classe denominada *RayleighRitz* com os métodos *fit* e *evaluate*. A vantagem dessa abordagem em relação à programação funcional é calcular os coeficientes uma única vez a partir do método *fit* e persistir os valores calculados no estado do objeto para serem reutilizados em chamadas do método *evaluate*.

- **fit(f, k, q, n, L, u0, uL):** recebe as funções f(x), k(x) e q(x), o número n de pontos interpolados, o limite L do intervalo [0, L], as condições de contorno u(0) = u0 e u(L) = uL, calcula os coeficientes c_i da eq. (9) e armazena os valores nos atributos da instância para serem usados pelo método *evaluate*.
- evaluate(x): avalia o modelo para obter $\phi(x)$, que é a aproximação da solução da equação diferencial no ponto x a partir da eq. (17).

3. RESULTADOS E DISCUSSÃO

3.1. MÁXIMA PRECISÃO DOS TESTES

■ Tabela 1: Informações sobre a precisão do sistema com cálculo usando pontos flutuantes

Parâmetro	Valor
Número máximo de dígitos	15
Epsilon	$2.220446049250313 \cdot 10^{-16}$

A Tabela 1 foi obtida a partir do atributo float_info do módulo sys da biblioteca padrão do Python 3 (Kong et al.; Van Rossum et al.), que mostra informações sobre cálculos com pontos flutuantes na máquina. Dois parâmetros importantes são o número máximo de dígitos decimais representados fielmente em um ponto flutuante e o erro epsilon, que é a diferença absoluta entre 1.0 e o menor valor maior que 1.0 que é representável como um ponto flutuante.

3.2. VALIDAÇÃO

A validação consiste em resolver uma EDO da descrita pela eq. (18) de solução exata determinada pela eq. (19) com o programa implementado.

$$u''(x) = 12x(1-x) - 2 (18)$$

$$u(x) = x^4 - 2x^3 + x^2 (19)$$

A Fig. 1 mostra a solução u(x) dada pelo programa com condições de contorno não homogêneas, com $u(0) = u(1) = T_0$ e $T_0 \in [274,304]$. Já a Fig. 2 compara as curvas obtidas pela solução aproximada com diferentes pontos de interpolação e a solução exata. Analisando a Fig. 3, que mostra o erro absoluto entre a solução aproximada e a solução exata e a máxima precisão da representação de um ponto flutuante (Seção 3.1), é possível concluir que o aumento do erro com o aumento de pontos interpolados vem a propagação de erros de arredondamento ou truncamento decorrente de operações com pontos flutuantes. Visto que, para um número pequeno de pontos, o erro corresponde à oscilações ao redor do limite da precisão da máquina e aumenta proporcionalmente com o aumento de operações com pontos flutuantes.

I Figura 1: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(1) = T_0$ e T_0 ∈ [274, 304] junto do campo de tangentes normalizado

■ **Figura 2:** Comparação da solução calculada a partir de diferentes números de pontos interpolados com a solução exata

Figura 3: Erro absoluto entre a solução aproximada u_n e a solução exata u para diferentes valores de n

■ Tabela 2: Parâmetros do modelo usado no Teste 8

n	Erro absoluto	Ordem
7	6.9389×10^{-18}	-
15	6.9389×10^{-18}	1
31	1.8041×10^{-16}	3.8461×10^{-2}
63	5.6899×10^{-16}	3.1707×10^{-1}

3.3. TESTES COM FORÇANTES DE CALOR

A equação diferencial (4) que define o sistema modelado é resolvida pelo método de Rayleigh-Ritz. Em todos os testes com forçantes de calor, é considerado k(x) = 3.6

3.3.1 Teste 1

Neste teste tanto o aquecimento quanto o resfriamento são modelados como constantes ao longo do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 3 e o calor total do sistema é modelado pela eq. (20)

$$Q = Q_+^0 - Q_-^0 (20)$$

■ Tabela 3: Parâmetros do modelo usado no Teste 1

Parâmetro	Valor
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q_{-}^{0})	55

Figura 4: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(20) = T_0$ e T_0 ∈ [274, 304] junto do campo de tangentes normalizado

■ **Figura 5:** Comparação da solução calculada a partir de diferentes números de pontos interpolados com a solução exata

3.3.2 Teste 2

Neste teste o aquecimento é modelado como uma distribuição gaussiana e o resfriamento é constantes ao longo do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 4 e o calor total do sistema é modelado pela eq. (21)

$$Q = Q_{+}^{0} \exp\left(\frac{-\left(x - \frac{L}{2}\right)^{2}}{\sigma_{+}^{2}}\right) - Q_{-}^{0}$$
(21)

■ Tabela 4: Parâmetros do modelo usado no Teste 2

Parâmetro	Valor
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q_{-}^{0})	35
Variação de aquecimento em torno do ponto central (σ_+)	5.5

Figura 6: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(20) = T_0$ e $T_0 \in [274,304]$ junto do campo de tangentes normalizado

■ Figura 7: Comparação da solução calculada a partir de diferentes números de pontos interpolados com a solução exata

3.3.3 Teste 3

Neste teste tanto o aquecimento quanto o resfriamento são modelados como distribuição gaussiana ao longo do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 5 e o calor total do sistema é modelado pela eq. (22)

$$Q = Q_{+}^{0} \exp\left(\frac{-\left(x - \frac{L}{2}\right)^{2}}{\sigma_{+}^{2}}\right) - Q_{-}^{0} \exp\left(\frac{-\left(x - \frac{L}{2}\right)^{2}}{\sigma_{-}^{2}}\right)$$
(22)

■ Tabela 5: Parâmetros do modelo usado no Teste 3

Parâmetro	Valor
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q_{-}^{0})	60
Variação de aquecimento em torno do ponto central (σ_+)	3
Variação de resfriamento em torno do ponto central (σ_{-})	3

Figura 8: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(20) = T_0$ e $T_0 \in [274, 304]$

■ **Figura 9:** Comparação da solução calculada a partir de diferentes números de pontos interpolados com a solução obtida pelo Matlab

Agora, com os mesmos parâmetros, mas considerando um resfriamento um pouco menor, $Q_-^0=40$, chega-se a solução mostrada na Fig. 10

I Figura 10: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(20) = T_0$ e T_0 ∈ [274, 304]

3.3.4 Teste 4

Neste teste, o aquecimento é modelado como uma distribuição gaussiana e o resfriamento é uma distribuição gaussiana mais intensa nos extremos do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 6 e o calor total do sistema é modelado pela eq. (23)

$$Q = Q_{+}^{0} \left[\exp \left(\frac{-\left(x - \frac{L}{2}\right)^{2}}{\sigma_{+}^{2}} \right) \right] - Q_{-}^{0} \left[\exp \left(\frac{-\left(x\right)^{2}}{\theta^{2}} \right) + \exp \left(\frac{-\left(x - L\right)^{2}}{\theta^{2}} \right) \right]$$
(23)

■ Tabela 6: Parâmetros do modelo usado no Teste 4

Parâmetro	Valor
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q_{-}^{0})	55
Variação de aquecimento em torno do ponto central (σ_+)	1.2
Variação de resfriamento em torno do ponto central (θ)	2.9

Figura 11: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(20) = T_0$ e $T_0 \in [274, 304]$

■ **Figura 12:** Comparação da solução calculada a partir de diferentes números de pontos interpolados com a solução obtida pelo Matlab

3.4. TESTES COM VARIAÇÃO DE MATERIAL

Nos testes com variação de material, k(x) é descrito pela eq. (24)

$$k(x) = \begin{cases} k_s & \text{se } x \in \left(\frac{L}{2} - d, \frac{L}{2} + d\right) \\ k_a & \text{caso contrario} \end{cases}$$
 (24)

3.4.1 Teste 5

Neste teste, tanto o aquecimento quanto o resfriamento são modelados como constantes ao longo do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 7 e o calor total do sistema é modelado pela eq. (20)

■ Tabela 7: Parâmetros do modelo usado no Teste 5

Parâmetro	
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q_{-}^{0})	30
Condutividade térmica do silício (k_s)	3.6
Condutividade térmica do alumínio (k_a)	60

l Figura 13: Solução u(x) com condições de contorno não homogêneas, $u(0)=u(20)=T_0$ e $T_0\in[274,304]$

3.4.2 Teste 6

Neste teste, o aquecimento é modelado como uma distribuição gaussiana e o resfriamento é constantes ao longo do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 8 e o calor total do sistema é modelado pela eq. (21)

■ Tabela 8: Parâmetros do modelo usado no Teste 6

Parâmetro	Valor
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q^0)	35
Variação de aquecimento em torno do ponto central (σ_+)	5.5
Condutividade térmica do silício (k_s)	3.6
Condutividade térmica do alumínio (k_a)	60

l Figura 14: Solução u(x) com condições de contorno não homogêneas, $u(0)=u(20)=T_0$ e $T_0\in[274,304]$

3.4.3 Teste 7

Neste teste, tanto o aquecimento quanto o resfriamento são modelados como distribuição gaussiana ao longo do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 9 e o calor total do sistema é modelado pela eq. (22)

■ Tabela 9: Parâmetros do modelo usado no Teste 7

Parâmetro	Valor
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q_{-}^{0})	30
Variação de aquecimento em torno do ponto central (σ_+)	2
Variação de resfriamento em torno do ponto central (σ_{-})	8
Condutividade térmica do silício (k_s)	3.6
Condutividade térmica do alumínio (k_a)	60

I Figura 15: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(20) = T_0$ e T_0 ∈ [274, 304]

3.4.4 Teste 8

Neste teste, o aquecimento é modelado como uma distribuição gaussiana e o resfriamento é uma distribuição gaussiana mais intensa nos extremos do chip. Os valores dos parâmetros deste teste estão dispostos na Tabela 10 e o calor total do sistema é modelado pela eq. (23)

■ Tabela 10: Parâmetros do modelo usado no Teste 8

Parâmetro	Valor
Comprimento do chip (<i>L</i>)	20
Calor adicionado no sistema (Q_+^0)	60
Calor retidado do sistema (Q_{-}^{0})	30
Variação de aquecimento em torno do ponto central (σ_+)	2
Variação de resfriamento em torno do ponto central (θ)	4
Condutividade térmica do silício (k_s)	3.6
Condutividade térmica do alumínio (k_a)	60

Figura 16: Solução u(x) com condições de contorno não homogêneas, $u(0) = u(20) = T_0$ e T_0 ∈ [274, 304]

4. Conclusão

Neste trabalho, projetamos um sistema de resfriamento de chips partindo da abstração do problema físico, levantamento de hipóteses e simplificações (Seção 2.1), passando pela descrição do método de Rayleigh-Ritz utilizado para resolver o problema (Seção 2.2) e respectivas otimizações de implementação deste método (Seção 2.3.2) até a analise dos resultados obtidos (Seções 3.2, 3.3 e 3.4).

Os resultados obtidos pelos testes quando comparados com o valor exato ou com o valor obtido por simulação no Matlab são bem próximos. Com isso, concluímos que o método de Rayleigh-Ritz eficaz para resolver o problema proposto, tendo grande eficácia em obter a aproximação da solução da equação diferencial.

REFERÊNCIAS

Qingkai Kong, Timmy Siauw, and Alexandre M Bayen. Python programming and numerical methods: a guide for engineers and scientists. https://pythonnumericalmethods.berkeley.edu/notebooks/chapter09.02-Floating-Point-Numbers.html. Accessed: 2022-06-01.

Guido Van Rossum et al. The python standard library documentation: Sys module. https://docs.python.org/3/library/sys.html#sys.float_info. Accessed: 2022-06-01.

Universidade de São Paulo

Escola Politécnica

MAP3121 - Métodos Numéricos e Aplicações