NumPy for R (and S-Plus) users

Help

R/S-Plus	Python	Description
help.start()	help()	Browse help interactively
help()	help	Help on using help
help(plot) Or ?plot	help(plot) or ?plot	Help for a function
help(package='splines')	help(pylab)	Help for a toolbox/library package
demo()		Demonstration examples
example(plot)		Example using a function

Searching available documentation

R/S-Plus	Python	Description
help.search('plot')		Search help files
apropos('plot')		Find objects by partial name
library()	help(); modules [Numeric]	List available packages
find(plot)	help(plot)	Locate functions
methods(plot)		List available methods for a function

Using interactively

R/S-Plus	Python	Description
Rgui	ipython -pylab	Start session
	TAB	Auto completion
source('foo.R')	execfile('foo.py') or run foo.py	Run code from file
history()	hist -n	Command history
<pre>savehistory(file=".Rhistory")</pre>		Save command history
q(save='no')	CTRL-D	End session
	CTRL-Z # windows	
	sys.exit()	

Operators

R/S-Plus	Python	Description
help(Syntax)		Help on operator syntax

Arithmetic operators

R/S-Plus	Python	Description
a<-1; b<-2	a=1; b=1	Assignment; defining a number
a + b	a + b O r add (a, b)	Addition
a - b	a - b or subtract(a,b)	Subtraction
a * b	a * b or multiply(a,b)	Multiplication
a / b	a / b or divide(a,b)	Division
a ^ b	a ** b	Power, \$a^b\$
	power(a,b)	
	pow(a,b)	
a %% b	a % b	Remainder
	remainder(a,b)	
	fmod(a,b)	
a %/% b		Integer division
	a+=b <i>Or</i> add(a,b,a)	In place operation to save array creation overhead
factorial(a)		Factorial, \$n!\$

Relational operators

R/S-Plus	Python	Description
a == b	a == b or equal(a,b)	Equal
a < b	a < b OT less(a,b)	Less than
a > b	a > b O r greater(a,b)	Greater than
a <= b	$a \le b \ or \ less_equal(a,b)$	Less than or equal
a >= b	$a >= b Or greater_equal(a,b)$	Greater than or equal
a != b	a != b <i>Ol</i> not_equal(a,b)	Not Equal

Logical operators

R/S-Plus	Python	Description
a && b	a and b	Short-circuit logical AND
a b	a or b	Short-circuit logical OR
a & b	logical_and(a,b) or a and b	Element-wise logical AND
a b	logical_or(a,b) or a or b	Element-wise logical OR
xor(a, b)	<pre>logical_xor(a,b)</pre>	Logical EXCLUSIVE OR
!a	$logical_not(a)$ Or not a	Logical NOT

root and logarithm

R/S-Plus	Python	Description
sqrt(a)	math.sqrt(a)	Square root
log(a)	math.log(a)	Logarithm, base \$e\$ (natural)
log10(a)	math.log10(a)	Logarithm, base 10
log2(a)	math.log(a, 2)	Logarithm, base 2 (binary)
exp(a)	math.exp(a)	Exponential function

Round off

R/S-Plus	Python	Description
round(a)	around(a) Or $math.round(a)$	Round
ceil(a)	ceil(a)	Round up
floor(a)	floor(a)	Round down
	fix(a)	Round towards zero

Mathematical constants

R/S-Plus	Python	Description
pi	math.pi	\$\pi=3.141592\$
exp(1)	$math.e \ OF \ math.exp(1)$	\$e=2.718281\$

Missing values; IEEE-754 floating point status flags

R/S-Plus	Python	Description
	nan	Not a Number
	inf	Infinity, \$\infty\$
	plus_inf	Infinity, \$+\infty\$
	minus_inf	Infinity, \$-\infty\$
	plus_zero	Plus zero, \$+0\$
	minus zero	Minus zero, \$-0\$

Complex numbers

R/S-Plus	Python	Description
1i	z = 1j	Imaginary unit
z <- 3+4i	z = 3+4j Or z = complex(3,4)	A complex number, \$3+4i\$
abs(3+4i) <i>Or</i> Mod(3+4i)	abs(3+4j)	Absolute value (modulus)
Re(3+4i)	z.real	Real part
Im(3+4i)	z.imag	Imaginary part
Arg(3+4i)		Argument

Trigonometry

R/S-Plus	Python	Description
atan2(b,a)	atan2(b,a)	Arctangent, \$\arctan(b/a)\$
	hypot(x,y)	Hypotenus; Euclidean distance

Generate random numbers

R/S-Plus	Python	Description
runif(10)	random.random((10,))	Uniform distribution
	<pre>random.uniform((10,))</pre>	
<pre>runif(10, min=2, max=7)</pre>	<pre>random.uniform(2,7,(10,))</pre>	Uniform: Numbers between 2 and 7
matrix(runif(36),6)	random.uniform(0,1,(6,6))	Uniform: 6,6 array
rnorm(10)	random.standard_normal((10,))	Normal distribution

Vectors

R/S-Plus	Python	Description
a <- c(2,3,4,5)	a=array([2,3,4,5])	Row vector, \$1 \times n\\$-matrix
adash $<- t(c(2,3,4,5))$	array([2,3,4,5])[:,NewAxis]	Column vector, \$m \times 1\$-
	array([2,3,4,5]).reshape(-1,1)	matrix
	r_[1:10,'c']	

Sequences

R/S-Plus	Python	Description
seq(10) <i>OT</i> 1:10	arange(1,11, dtype=Float)	1,2,3, ,10
	range(1,11)	
seq(0,length=10)	arange(10.)	0.0,1.0,2.0, ,9.0
seq(1,10,by=3)	arange(1,11,3)	1,4,7,10
seq(10,1) or 10:1	arange(10,0,-1)	10,9,8, ,1
seq(from=10,to=1,by=-3)	arange(10,0,-3)	10,7,4,1
seq(1,10,length=7)	linspace(1,10,7)	Linearly spaced vector of n=7
		points
rev(a)	a[::-1] <i>Or</i>	Reverse
	a.fill(3), $a[:] = 3$	Set all values to same scalar value

Concatenation (vectors)

R/S-Plus c (a, a)	<pre>Python concatenate((a,a))</pre>	Description Concatenate two vectors
c(1:4.a)	concatenate((range(1.5).a), ax:	is=1)

Repeating

R/S-Plus	Python	Description
rep(a,times=2)	concatenate((a,a))	1 2 3, 1 2 3
rep(a,each=3)	a.repeat(3) <i>Or</i>	1 1 1, 2 2 2, 3 3 3
rep(a,a)	a.repeat(a) <i>OY</i>	1, 2 2, 3 3 3

Miss those elements out

R/S-Plus	Python	Description
a[-1]	a[1:]	miss the first element
a[-10]		miss the tenth element
a[-seq(1,50,3)]		miss 1,4,7,
	a[-1]	last element
	a[-2:]	last two elements

Maximum and minimum

R/S-Plus	Python	Description
pmax(a,b)	maximum(a,b)	pairwise max
max(a,b)	<pre>concatenate((a,b)).max()</pre>	max of all values in two vectors
v <- max(a) ; i <- which.max(a)	v,i = a.max(0),a.argmax(0)	

Vector multiplication

R/S-Plus	Python	Description
a*a	a*a	Multiply two vectors
	dot(u,v)	Vector dot product, \$u \cdot v\$

Matrices

R/S-Plus	Python	Description
rbind(c(2,3),c(4,5))	a = array([[2,3],[4,5]])	Define a matrix
array(c(2.3.4.5) - dim=c(2.2))		

Concatenation (matrices); rbind and cbind

R/S-Plus Python	Description
-----------------	-------------

rbind(a,b)	<pre>concatenate((a,b), axis=0)</pre>	Bind rows
cbind(a,b)	<pre>vstack((a,b)) concatenate((a,b), axis=1)</pre>	Bind columns
	hstack((a,b))	
	concatenate((a,b), axis=2)	Bind slices (three-way arrays)
	<pre>dstack((a,b)) concatenate((a,b), axis=None)</pre>	Concatenate matrices into
		one vector
rbind(1:4,1:4)	<pre>concatenate((r_[1:5],r_[1:5])).reshape</pre>	(2,-1) Bind rows (from vectors)
	vstack((r_[1:5],r_[1:5]))	
cbind(1:4,1:4)		Bind columns (from vectors)

Array creation

R/S-Plus	Python	Description
$matrix(0,3,5) \ or \ array(0,c(3,5))$	zeros((3,5),Float)	0 filled array
	zeros((3,5))	0 filled array of integers
matrix(1,3,5) or array(1,c(3,5))	ones((3,5),Float)	1 filled array
matrix(9,3,5) <i>Or</i> $array(9,c(3,5))$		Any number filled array
diag(1,3)	identity(3)	Identity matrix
diag(c(4,5,6))	diag((4,5,6))	Diagonal
	a = empty((3,3))	Empty array

Reshape and flatten matrices

R/S-Plus	Python	Description
<pre>matrix(1:6,nrow=3,byrow=T)</pre>	arange(1,7).reshape(2,-1)	Reshaping (rows first)
	a.setshape(2,3)	
matrix(1:6,nrow=2)	arange(1,7).reshape(-1,2).transpose()	Reshaping (columns first)
array(1:6,c(2,3))		
as.vector(t(a))	a.flatten() <i>OY</i>	Flatten to vector (by rows, like
		comics)
as.vector(a)	a.flatten(1)	Flatten to vector (by columns)
a[row(a) <= col(a)]		Flatten upper triangle (by
		columns)

Shared data (slicing)

R/S-Plus	Python	Description
b = a	b = a.copy()	Copy of a

Indexing and accessing elements (Python: slicing)

R/S-Plus	Python	Description
a <- rbind(c(11, 12, 13, 14),	a = array([[11, 12, 13, 14],	Input is a 3,4 array
c(21, 22, 23, 24),	[21, 22, 23, 24],	
c(31, 32, 33, 34))	[31, 32, 33, 34]])	
a[2,3]	a[1,2]	Element 2,3 (row,col)
a[1,]	a[0,]	First row
a[,1]	a[:,0]	First column
	a.take([0,2]).take([0,3], axis=1)	Array as indices
a[-1,]	a[1:,]	All, except first row
	a[-2:,]	Last two rows
	a[::2,:]	Strides: Every other row
	a[,2]	Third in last dimension (axis)
a[-2,-3]		All, except row, column (2,3)
a[,-2]	a.take([0,2,3],axis=1)	Remove one column
	a.diagonal(offset=0)	Diagonal

Assignment

R/S-Plus	Python	Description
a[,1] <- 99	a[:,0] = 99	
a[,1] <- c(99,98,97)	a[:,0] = array([99,98,97])	
a[a>90] <- 90	(a>90).choose(a,90)	Clipping: Replace all elements over
	a.clip(min=None, max=90)	90
	a.clip(min=2, max=5)	Clip upper and lower values

Transpose and inverse

R/S-Plus	Python	Description
t(a)	a.conj().transpose()	Transpose
	a.transpose()	Non-conjugate transpose
det(a)	linalg.det(a) or	Determinant
solve(a)	linalg.inv(a) or	Inverse
ginv(a)	linalg.pinv(a)	Pseudo-inverse
	norm(a)	Norms
eigen(a)\$values	linalg.eig(a)[0]	Eigenvalues
svd(a)\$d	linalg.svd(a)	Singular values
	linalg.cholesky(a)	Cholesky factorization
eigen(a)\$vectors	linalg.eig(a)[1]	Eigenvectors
rank(a)	rank(a)	Rank

Sum

R/S-Plus	Python	Description
apply(a,2,sum)	a.sum(axis=0)	Sum of each column
apply(a,1,sum)	a.sum(axis=1)	Sum of each row
sum(a)	a.sum()	Sum of all elements
	a.trace(offset=0)	Sum along diagonal
apply(a,2,cumsum)	a.cumsum(axis=0)	Cumulative sum (columns)

Sorting

R/S-Plus	Python	Description
	a = array([[4,3,2],[2,8,6],	Example data
	[1,4,7]])	
t(sort(a))	a.ravel().sort() Or	Flat and sorted
apply(a,2,sort)	a.sort(axis=0) or msort(a)	Sort each column
t(apply(a,1,sort))	a.sort(axis=1)	Sort each row
	a[a[:,0].argsort(),]	Sort rows (by first row)
order(a)	a.ravel().argsort()	Sort, return indices
	a.argsort(axis=0)	Sort each column, return indices
	a.argsort(axis=1)	Sort each row, return indices

Maximum and minimum

R/S-Plus	Python	Description
apply(a,2,max)	a.max(0) Or amax(a [,axis=0])	max in each column
apply(a,1,max)	a.max(1) or amax(a, axis=1)	max in each row
max(a)	a.max() <i>Or</i>	max in array
<pre>i <- apply(a,1,which.max)</pre>		return indices, i
pmax(b,c)	maximum(b,c)	pairwise max
apply(a,2,cummax)		
	a.ptp(); a.ptp(0)	max-to-min range

Matrix manipulation

R/S-Plus	Python	Description
a[,4:1]	fliplr(a) Or a[:,::-1]	Flip left-right
a[3:1,]	flipud(a) or a[::-1,]	Flip up-down
	rot90(a)	Rotate 90 degrees
kronecker(matrix(1,2,3),a)	kron(ones((2,3)),a)	Repeat matrix: [a a a ; a a a]

a[lower.tri(a)] <- 0	triu(a)	Triangular, upper
a[upper.tri(a)] <- 0	tril(a)	Triangular, lower

Equivalents to "size"

R/S-Plus	Python	Description
dim(a)	a.shape Or a.getshape()	Matrix dimensions
ncol(a)	a.shape[1] or size(a, axis=1)	Number of columns
<pre>prod(dim(a))</pre>	a.size Or size(a[, axis=None])	Number of elements
	a.ndim	Number of dimensions
object.size(a)	a.nbytes	Number of bytes used in memory

Matrix- and elementwise- multiplication

R/S-Plus	Python	Description
a * b	a * b or multiply(a,b)	Elementwise operations
a %*% b	matrixmultiply(a,b)	Matrix product (dot product)
	inner(a,b) <i>Or</i>	Inner matrix vector multiplication \$a\cdot b'\$
outer(a,b) <i>Or</i> a %o% b	outer(a,b) <i>OF</i>	Outer product
crossprod(a,b) <i>OF</i> t(a) %*% b		Cross product
kronecker(a,b)	kron(a,b)	Kronecker product
solve(a,b)	linalg.solve(a,b)	Left matrix division, \$b^{-1} {\cdot}a\$ \newline (solve linear equations)
	vdot (a,b)	Vector dot product
	cross(a,b)	Cross product

Find; conditional indexing

R/S-Plus	Python	Description
which(a != 0)	a.ravel().nonzero()	Non-zero elements, indices
<pre>which(a != 0, arr.ind=T)</pre>	(i,j) = a.nonzero()	Non-zero elements, array indices
	(i,j) = where(a!=0)	
<pre>ij <- which(a != 0, arr.ind=T);</pre>	<pre>v = a.compress((a!=0).flat)</pre>	Vector of non-zero values
v <- a[ij]	v = extract(a!=0,a)	
which $(a>5.5)$	(a>5.5).nonzero()	Condition, indices
<pre>ij <- which(a>5.5, arr.ind=T);</pre>	a.compress((a>5.5).flat)	Return values
v <- a[ij]		
	where $(a>5.5,0,a)$ <i>OT</i> a * $(a>5.5)$	Zero out elements above 5.5
	a.put(2,indices)	Replace values

Multi-way arrays

R/S-Plus	Python	Description
	a = array([[[1,2],[1,2]], [[3,	4], Define a 3-way array
	[3,4]])	
	a[0,]	

File input and output

R/S-Plus	Python	Description
f <- read.table("data.txt")	<pre>f = fromfile("data.txt")</pre>	Reading from a file (2d)
	<pre>f = load("data.txt")</pre>	
f <- read.table("data.txt")	f = load("data.txt")	Reading from a file (2d)
f <- read.table(file="data.csv",	f = load('data.csv',	Reading fram a CSV file (2d)
sep=";")	<pre>delimiter=';')</pre>	
<pre>write(f,file="data.txt")</pre>	save('data.csv', f, fmt='%.6f',	Writing to a file (2d)
	<pre>delimiter=';')</pre>	
	f.tofile(file='data.csv',	Writing to a file (1d)
	format='%.6f', sep=';')	
	<pre>f = fromfile(file='data.csv',</pre>	Reading from a file (1d)
	sep=';')	

Plotting

Basic x-y plots

R/S-Plus	Python	Description
plot(a, type="l")	plot(a)	1d line plot
plot(x[,1],x[,2])	plot(x[:,0],x[:,1],'o')	2d scatter plot
	plot(x1,y1,'bo', x2,y2,'go')	Two graphs in one plot
plot(x1,y1)	plot(x1,y1,'o')	Overplotting: Add new plots to
matplot(x2,y2,add=T)	plot(x2,y2,'o')	current
	show() # as normal	
	subplot(211)	subplots
<pre>plot(x,y,type="b",col="red")</pre>	plot(x,y,'ro-')	Plotting symbols and color

Axes and titles

R/S-Plus	Python	Description
grid()	grid()	Turn on grid lines
plot(c(1:10,10:1), asp=1)	figure(figsize=(6,6))	1:1 aspect ratio

plot(x,y, xlim=c(0,10),	axis([0, 10, 0, 5])	Set axes manually
ylim=c(0,5))		
<pre>plot(1:10, main="title",</pre>		Axis labels and titles
<pre>xlab="x-axis", ylab="y-axis")</pre>		
	text(2,25,'hello')	Insert text

Log plots

R/S-Plus	Python	Description
plot(x,y, log="y")	semilogy(a)	logarithmic y-axis
plot(x,y, log="x")	semilogx(a)	logarithmic x-axis
plot(x,y, log="xy")	loglog(a)	logarithmic x and y axes

Filled plots and bar plots

R/S-Plus	Python	Description
plot(t,s, type="n", xlab="",	fill(t,s,'b', t,c,'g',	Filled plot
ylab="")	alpha=0.2)	
<pre>polygon(t,s, col="lightblue")</pre>		
<pre>polygon(t,c, col="lightgreen")</pre>		
stem(x[,3])		Stem-and-Leaf plot

Functions

R/S-Plus	Python	Description
$f \leftarrow function(x) sin(x/3) -$		Defining functions
cos(x/5)		
<pre>plot(f, xlim=c(0,40), type='p')</pre>	x = arrayrange(0,40,.5)	Plot a function for given range
	$y = \sin(x/3) - \cos(x/5)$	
	plot(x,y, 'o')	

Polar plots

R/S-Plus	Python	Description
	theta = arange(0,2*pi,0.001)	
	$r = \sin(2*theta)$	
	polar(theta, rho)	

Histogram plots

R/S-Plus	Python	Description
hist(rnorm(1000))		
hist(rnorm(1000), breaks= -4:4)		

```
hist(rnorm(1000),
breaks=c(seq(-5,0,0.25),
seq(0.5,5,0.5)), freq=F)
plot(apply(a,1,sort),type="1")
```

3d data

Contour and image plots

R/S-Plus	Python	Description
contour(z)	levels, colls = contour(Z, V,	Contour plot
	origin='lower', extent=	
	(-3,3,-3,3))	
	<pre>clabel(colls, levels, inline=1,</pre>	
	<pre>fmt='%1.1f', fontsize=10)</pre>	
filled.contour(x,y,z,	contourf(Z, V,	Filled contour plot
<pre>nlevels=7, color=gray.colors)</pre>	cmap=cm.gray,	
	origin='lower',	
	extent=(-3,3,-3,3))	
<pre>image(z, col=gray.colors(256))</pre>	im = imshow(Z,	Plot image data
	interpolation='bilinear',	
	origin='lower',	
	extent=(-3,3,-3,3))	
	<pre># imshow() and contour() as above</pre>	Image with contours
	quiver()	Direction field vectors

Perspective plots of surfaces over the x-y plane

R/S-Plus	Python	Description
$f \leftarrow function(x,y) x*exp(-x^2-$	n=arrayrange(-2,2,.1)	
y^2)	[x,y] = meshgrid(n,n)	
$n \leftarrow seq(-2,2, length=40)$	z = x*power(math.e,-x**2-y**2)	
z <- outer(n,n,f)		
persp(x,y,z,		Mesh plot
theta=30, phi=30, expand=0.6,		
ticktype='detailed')		
persp(x,y,z,		Surface plot
theta=30, phi=30, expand=0.6,		
col='lightblue', shade=0.75,		
ltheta=120,		
ticktype='detailed')		

Scatter (cloud) plots

R/S-Plus	Python	Description
cloud(z~x*y)		3d scatter plot

Save plot to a graphics file

R/S-Plus	Python	Description
<pre>postscript(file="foo.eps")</pre>	<pre>savefig('foo.eps')</pre>	PostScript
plot(1:10)		
<pre>dev.off()</pre>		
pdf(file='foo.pdf')	savefig('foo.pdf')	PDF
<pre>devSVG(file='foo.svg')</pre>	savefig('foo.svg')	SVG (vector graphics for www)
<pre>png(filename = "Rplot%03d.png"</pre>	<pre>savefig('foo.png')</pre>	PNG (raster graphics)

Data analysis

Set membership operators

R/S-Plus	Python	Description
a <- c(1,2,2,5,2)	a = array([1,2,2,5,2])	Create sets
b <- c(2,3,4)	b = array([2,3,4])	
	a = set([1,2,2,5,2])	
	b = set([2,3,4])	
unique(a)	uniqueld(a)	Set unique
	unique(a)	
	set(a)	
union(a,b)	union1d(a,b)	Set union
	a.union(b)	
intersect(a,b)	intersect1d(a)	Set intersection
	a.intersection(b)	
setdiff(a,b)	setdiff1d(a,b)	Set difference
	a.difference(b)	
setdiff(union(a,b),intersect(a,b))	setxor1d(a,b)	Set exclusion
	a.symmetric_difference(b)	
is.element(2,a) <i>Or</i> 2 %in% a	2 in a	True for set member
	setmember1d(2,a)	
	contains(a,2)	

Statistics

R/S-Plus	Python	Description
105 1103	1 yenon	Description

apply(a,2,mean)	a.mean(axis=0)	Average
apply(a,2,median)	<pre>mean(a [,axis=0]) median(a) Or median(a [,axis=0])</pre>	Median
apply(a,2,sd)	a.std(axis=0) Or std(a [,axis=0])	Standard deviation
apply(a,2,var)	a.var(axis=0) <i>Or</i> var(a)	Variance
cor(x,y)	$correlate(x,y) \ Or \ corrcoef(x,y)$	Correlation coefficient
cov(x,y)	cov(x,y)	Covariance

Interpolation and regression

R/S-Plus	Python	Description
$z < - lm(y \sim x)$	(a,b) = polyfit(x,y,1)	Straight line fit
plot(x,y)	plot(x,y,'o', x,a*x+b,'-')	
abline(z)		
solve(a,b)	<pre>linalg.lstsq(x,y)</pre>	Linear least squares $y = ax + b$
	polyfit(x,y,3)	Polynomial fit

Non-linear methods

Polynomials, root finding

R/S-Plus	Python	Description
	poly()	Polynomial
polyroot(c(1,-1,-1))	roots()	Find zeros of polynomial
	polyval(array([1,2,1,2]),arange(1,11))	Evaluate polynomial

Differential equations

R/S-Plus	Python	Description
	diff(x, n=1, axis=0)	Discrete difference function and
		approximate derivative

Fourier analysis

R/S-Plus	Python	Description
fft(a)	fft(a) <i>Or</i>	Fast fourier transform
fft(a, inverse=TRUE)	ifft(a) <i>Or</i>	Inverse fourier transform
	convolve(x,y)	Linear convolution

Symbolic algebra; calculus

R/S-Plus Python Description

Programming

R/S	S	ΡI	us

.R

library(RSvgDevice) string <- "a <- 234"

eval(parse(text=string))

Python

.ру from pylab import * string="a=234" eval(string)

Description

Script file extension Comment symbol (rest of line) Import library functions Eval

Loops

R/S-Plus for(i in 1:5) print(i) for(i in 1:5) { print(i) print(i*2)

Python

for i in range(1,6): print(i) for i in range (1,6): print(i) print(i*2)

Description

for-statement Multiline for statements

Conditionals

R/S-Plus

if (1>0) a <- 100 ifelse(a>0,a,0)

Python

if 1>0: a=100

Description

if-statement

Ternary operator (if?true:false)

Debugging

R/S-Plus

.Last.value objects() rm(x)

print(a)

Python

print a

Description

Most recent evaluated expression List variables loaded into memory Clear variable \$x\$ from memory **Print**

Working directory and OS

R/S-Plus

list.files() OF dir() list.files(pattern="\.r\$") getwd() setwd('foo') system("notepad")

Python

os.listdir(".") grep.grep("*.py") os.getcwd() os.chdir('foo') os.system('notepad') os.popen('notepad')

Description

List files in directory List script files in directory Displays the current working directory Change working directory Invoke a System Command

Time-stamp: "2007-11-09T16:46:36 vidar"

©2006 Vidar Bronken Gundersen, /mathesaurus.sf.net

Permission is granted to copy, distribute and/or modify this document as long as the above attribution is retained.