Машинное обучение

Лекция 3 Метод k ближайших соседей (продолжение)

> Андрей Нарцев andrei.nartsev@gmail.com anartsev@hse.ru

> > НИУ ВШЭ, 2025

План лекции

Overview

Метод k ближайших соседей

- Оценка обобщающей способности и подбор гиперпараметров
- Взвешенный kNN
- kNN для задачи регрессии

Overview

- Основные понятия:
 - пространство объектов
 - пространство ответов,
 - признаковое описание,
 - обучающая выборка,
 - функционал ошибки
- Типы задач:
 - обучение с учителем: регрессия, классификация, ранжирование
 - обучение без учителя: кластеризация, понижение размерности
- Типы признаков:
 - бинарные
 - порядковые
 - категориальные
 - числовые

Гипотеза компактности и knn

Гипотеза компактности

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$
- Задача классификация (ответы из множества $\mathbb{Y} = \{1, ..., K\}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сертируем объекты обучающей выберки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \le \rho(x,x_{(2)}) \le \cdots \le \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Измерение ошибки модели

Вопросы

- Как сравнить две модели?
- Как подобрать k и метрику?

Accuracy

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

- Всегда смотрите на баланс классов!
- Доля верных ответов не обязательно меняется от 0.5 до 1 для разумных моделей

Как выбрать k?

Обучающая выборка

На каком классе чаще всего ездит	Ближайшее к дому метро	Способ оплаты	Согласился повысить категорию?
Эконом	Таганская	Карта	да
Комфорт	Юго-Западная	Наличные	нет
Комфорт	Строгино	Карта	да

Применяем модель:

Эконом Таганская Карта	?
------------------------	---

Как выбрать k?

Обучающая выборка

На каком классе чаще всего ездит	Ближайшее к дому метро	Способ оплаты	Согласился повысить категорию?
Эконом	Таганская	Карта	да
Комфорт	Юго-Западная	Наличные	нет
Комфорт	Строгино	Карта	да

Применяем модель:

	Эконом	Таганская	Карта	да
--	--------	-----------	-------	----

С точки зрения качества на обучающей выборке лучший выбор k=1

Как выбрать k?

1-nearest neighbours

20-nearest neighbours

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Гиперпараметры

- Нельзя подбирать k по обучающей выборке гиперпараметр
- Нужно использовать дополнительные данные

Обобщающая способность

Обобщающая способность

Как готовиться к экзамену?

Заучить все примеры с занятий

Разобраться в предмете и усвоить алгоритмы решения задач

Переобучение (overfitting)

Обобщение (generalization)

Хорошее качество на обучении Низкое качество на новых данных

Хорошее качество на обучении Хорошее качество на новых данных

Отложенная выборка

Отложенная выборка

- Слишком большое обучение тестовая выборка нерепрезентативна
- Слишком большой тест модель не сможет обучиться
- Обычно: 70/30, 80/20

Кросс-валидация

Кросс-валидация

- Надёжнее отложенной выборки, но медленнее
- Параметр количество разбиений n (фолдов, folds)
- Хороший, но медленный вариант $n=\ell$ (leave-one-out)
- Обычно: n=3 или n=5 или n=10

Подбор числа соседей

Чуть больше терминов

• После подбора всех гиперпараметров стоит проверить на совсем новых данных, что модель работает

- Обучающая выборка построение модели
- Валидационная выборка подбор гиперпараметров модели
- Тестовая выборка финальная оценка качества модели

Метод k ближайших соседей с весами

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Проблема с расстояниями

Взвешенный knn

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} w_i [y_{(i)} = y]$$

Варианты:

•
$$w_i = \frac{k+1-i}{k}$$

•
$$w_i = q^i$$

• Не учитывают сами расстояния

Взвешенный knn

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} w_i [y_{(i)} = y]$$

Парзеновское окно:

•
$$w_i = K\left(\frac{\rho(x,x_{(i)})}{h}\right)$$

- К ядро
- h ширина окна

Ядра для весов

• Гауссовское ядро:

$$K(z) = (2\pi)^{-0.5} \exp\left(-\frac{1}{2}z^2\right)$$

• И много других:

Ядра для весов

$$h = 0.05$$

$$h = 0.5$$

$$h = 5$$

kNN для регрессии

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$
- Задача регрессии (ответы из множества $\mathbb{Y} = \mathbb{R}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Усредняем ответы:

$$a(x) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)}$$

• Можно добавить веса:

$$a(x) = \frac{\sum_{i=1}^{k} w_i y_{(i)}}{\sum_{i=1}^{k} w_i}$$

•
$$w_i = K\left(\frac{\rho(x,x_{(i)})}{h}\right)$$

• Формула Надарая-Ватсона

Функция потерь для регрессии

• Частый выбор — квадратичная функция потерь

$$L(y,a) = (a - y)^2$$

• Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Функция потерь для регрессии

• Ещё один вариант — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

• Слабее штрафует за серьёзные отклонения от правильного ответа

Резюме

Плюсы kNN

- Если данных много и для любого объекта найдётся похожий в обучающей выборке, то это лучшая модель
- Очень простое обучение
- Мало гиперпараметров
- Бывают задачи, где гипотеза компактности уместна
 - Классификация изображений
 - Классификация текстов на много классов

Минусы kNN

- Часто другие модели оказываются лучше
- Надо хранить в памяти всю обучающую выборку
- Искать к ближайших соседей довольно долго
- Мало способов настроить модель