Accelerating Large Language Model Inference with Allo

Hongzheng Chen

PI: Zhiru Zhang

Cornell University

UW SAMPL 05/31/2024

The Era of Large Language Models (LLMs)

Conventional wisdom suggests that LLMs are MatMul dominated, and GPUs

are the optimal choice

Is FPGA suitable for efficient LLM inference?

Transformer Execution Breakdown on GPU

LLMs aren't just about MatMul; non-linear & element-wise operators also play

a significant role

- Low compute-to-memory ratio
- High kernel launch overheads

Operator Class	Representative Op	% FLOP	% Run Time
Tensor contraction	GEMM, GEMV	99.80	61.0
Stat. normalization	softmax, layernorm	0.17	25.5
Element-wise	bias, dropout	0.03	13.5

Proportions for operator classes in the BERT model (implemented in PyTorch, profiled with an NVIDIA V100 GPU)

Opportunities for FPGAs

Model-specific acceleration

- Reduced memory access
 - Activation tensors are directly streamed to the next operator
- High performance & Low energy consumption
 - Standard Transformer building blocks
- One-time compilation overheads
 - Acceptable overheads compared to long training time

Complexity in Specialized Accelerator Design

- Accelerator design is different from programming on general processors
 - Custom processing engines (PEs)

Difficulty

Challenge 1: Balancing Manual Control & Compiler Optimization

```
void systolic_tile(int8 t A tile[2][768],
int8 t B tile[768][2],
int8 t C tile[2][2]) {
#pragma dataflow
#pragma partition variable=A/B/C tile complete dim=1
hls::stream<int8 t> A fifo[2][3], B fifo[2][3];
#pragma stream variable=A/B fifo depth=3
for (int k4 = 0; k4 < 768; k4++) {
for (int m = 0; m < 2; m++) {
 int8 t v105 = A tile[m][k4];
 A fifo[m][0].write(v105);}
 // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
                                                            Custom compute
#pragma HLS unroll
for (int Tj = 0; Tj < 2; ++Tj) {
                                                            (Loop tiling & unrolling)
#pragma HLS unroll
 // ... load A/B fifo
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void systolic(int8 t A[512][768], int8 t B[768][768],
int8 t C[512][768]
int8 t local A[2][768], local B[768][2], local C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A, B
systolic_tile(local_A, local B, local C);
```

Vanilla GEMM (<1% theoretical peak)

- → Compute optimization (20% peak)
- + Loop tiling
- + Loop unrolling
- + Loop pipelining

Challenge 1: Balancing Manual Control & Compiler Optimization

```
void systolic_tile(int8 t A tile[2][768],
int8 t B tile[768][2],
int8 t C tile[2][2]) {
#pragma dataflow
#pragma partition variable=A/B/C tile complete dim=1
hls::stream<int8 t> A fifo[2][3], B fifo[2][3];
#pragma stream variable=A/B fifo depth=3
for (int k4 = 0; k4 < 768; k4++) {
for (int m = 0; m < 2; m++) {
 int8 t v105 = A tile[m][k4];
                                                          Custom memory
 A fifo[m][0].write(v105);}
                                                          (Caching & streaming)
 // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
                                                          Custom compute
#pragma HLS unroll
for (int T_i = 0; T_i < 2; ++T_i) {
                                                          (Loop tiling & unrolling)
#pragma HLS unroll
 // ... load A/B fifo
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void systolic(int8 t A[512][768], int8 t B[768][768],
int8 t C[512][768]
int8 t local A[2][768], local B[768][2], local C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A, B
systolic_tile(local_A, local B, local C);
```

Vanilla GEMM (<1% theoretical peak)

- → Compute optimization (20% peak)
- + Loop tiling
- + Loop unrolling
- + Loop pipelining
- → Memory optimization (50% peak)
- + Multi-level caching
- + Memory partitioning

Challenge 1: Balancing Manual Control & Compiler Optimization

```
void systolic_tile(int8 t A tile[2][768],
int8 t B tile[768][2],
int8 t C tile[2][2]) {
#pragma dataflow
#pragma partition variable=A/B/C tile complete dim=1
hls::stream<int8 t> A fifo[2][3], B fifo[2][3];
                                                                     Custom comm.
#pragma stream variable=A/B fifo depth=3
for (int k4 = 0; k4 < 768; k4++) {
for (int m = 0; m < 2; m++) {
 int8 t v105 = A tile[m][k4];
                                                          Custom memory
 A fifo[m][0].write(v105);}
                                                          (Caching & streaming)
 // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
                                                          Custom compute
#pragma HLS unroll
for (int T_i = 0; T_i < 2; ++T_i) {
                                                          (Loop tiling & unrolling)
#pragma HLS unroll
 // ... load A/B fifo
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void systolic(int8 t A[512][768], int8 t B[768][768],
int8 t C[512][768]
int8 t local A[2][768], local B[768][2], local C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A, B
systolic_tile(local A, local B, local C);
```

Vanilla GEMM (<1% theoretical peak)

- → Compute optimization (20% peak)
- + Loop tiling
- + Loop unrolling
- + Loop pipelining
- → Memory optimization (50% peak)
- + Multi-level caching
- + Memory partitioning
- → Dataflow optimization (95% peak)
- + Function pipelining
- + Data streaming
- + Data packing (vectorization)
- + Memory coalescing
- + Daisy chaining

~500 lines of HLS code for a 2x2 systolic array Unproductive, target-specific, hard to maintain

Challenge 1: Balancing Manual Control & Compiler Optimization

```
void systolic_tile(int8 t A tile[2][768],
int8 t B tile[768][2],
int8 t C tile[2][2]) {
#pragma dataflow
#pragma partition variable=A/B/C tile complete dim=1
hls::stream<int8 t> A fifo[2][3], B fifo[2][3];
                                                                     Custom comm.
#pragma stream variable=A/B fifo depth=3
for (int k4 = 0; k4 < 768; k4++) {
for (int m = 0; m < 2; m++) {
 int8 t v105 = A tile[m][k4];
                                                         Custom memory
 A fifo[m][0].write(v105);}
                                                         (Caching & streaming)
 // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
                                                         Custom compute
#pragma HLS unroll
for (int Tj = 0; Tj < 2; ++Tj) {
                                                         (Loop tiling & unrolling)
#pragma HLS unroll
 // ... load A/B fifo
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void systolic(int8 t A[512][768], int8 t B[768][768],
int8 t C[512][768]
int8 t local A[2][768], local B[768][2], local C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A. B
systolic_tile(local A, local B, local C);
```

Vanilla GEMM (<1% theoretical peak)

- → Compute optimization (20% peak)
- + Loop tiling **Existing HLS compiler**
- + Loop unrolling e.g., ScaleHLS [HPCA'22]
- + Loop pipelining
- → Memory optimization (50% peak)
- + Multi-level caching
- + Memory partitioning
- → Dataflow optimization (95% peak)
- + Function pipelining
- + Data streaming
- + Data packing (vectorization)
- + Memory coalescing
- + Daisy chaining

~500 lines of HLS code for a 2x2 systolic array Unproductive, target-specific, hard to maintain

Challenge 2: Bridging the Gap from Single-Kernel to Multi-Kernel Design

```
void GEMM1(int8 t A1[512][768], int8 t B1[768][3072],
     int8 t C1[512][3072]) {
#pragma partition var=A1 cyclic factor=16 dim=0
 // ... matmul computation
void GEMM2(int8 t A2[512][3072], int8 t B2[3072][768],
     int8 t C2[512][768]) {
#pragma partition var=A2 cyclic factor=16 dim=0
 // ... matmul computation
void top(int8_t X[512][768], int8_t W_A[768][3072],
    int8_t W_B[3072][768], int8_t Z[512][768]) {
int8 t Y[512][3072];
GEMM1(X, W A, Y);
GEMM2(Y, W B, Z);
```


Challenge 2: Bridging the Gap from Single-Kernel to Multi-Kernel Design

Allo Accelerator Design Language (ADL) and Compiler

^{*} Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, Zhiru Zhang, "Allo: A Programming Model for Composable Accelerator Design", PLDI, 2024.

Allo Accelerator Design Language (ADL) and Compiler

^{*} Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, Zhiru Zhang, "Allo: A Programming Model for Composable Accelerator Design", PLDI, 2024.

Allo Accelerator Design Language (ADL) and Compiler

^{*} Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, Zhiru Zhang, "Allo: A Programming Model for Composable Accelerator Design", PLDI, 2024.

Goal: Design a High-Performance LLM Accelerator

Step 1: Construct building blocks

- Performance
- Correctness
- Reusability

Linear operators

Non-linear operators

Softmax

LayerNorm

GELU

Step 2: Ensemble into a complete design

Connect different operators bottom-up

→ Algorithm specification

Pythonic: No need to learn a new DSL!

- Free-form imperative programming
- Python native keywords (e.g., for, if, else)

→ Algorithm specification

```
def gemm(A: int8[M, K],

B: int8[K, N],

C: int16[M, N]):

for i, j in allo.grid(M, N, "PE"):

for k in range(K):

C[i, j] += A[i, k] * B[K, j]
```


Pythonic: No need to learn a new DSL!

- Free-form imperative programming
- Python native keywords (e.g., for, if, else)
- Explicit type annotation

Declarative programming

e.g., TVM TE [OSDI'18], HeteroCL [FPGA'19]

```
k = te.reduce_axis((0, K), "k")
A = te.placeholder((M, K), name="A")
B = te.placeholder((K, N), name="B")
C = te.compute((M, N), lambda x, y: \
    te.sum(A[x, k] * B[k, y], axis=k), \
    name="C")
```


Not straightforward, hard to express control flow

→ Algorithm specification


```
s = allo.customize(gemm)
print(s.module)
```

→ Algorithm specification

```
python
```

→ Schedule construction

```
s = allo.customize(gemm)
print(s.module)
```

→ Real-time MLIR Module Inspection


```
module {
func.func @gemm(%arg0: memref<1024x1024xi8>,
         %arg1: memref<1024x1024xi8>,
         %arg2: memref<1024x1024xi16>) {
 affine.for %arg3 = 0 to 1024 {
 affine.for %arg4 = 0 to 1024 {
  affine.for %arg5 = 0 to 1024 {
  %0 = affine.load %arg0[%arg3, %arg5]
  %1 = affine.load %arg1[%arg5, %arg4]
  %2 = arith.extsi %0 : i8 to i16
  %3 = arith.extsi %1 : i8 to i16
  %4 = arith.muli %2, %3 : i16
  %5 = affine.load %arg2[%arg3, %arg4]
  %6 = arith.addi %5, %4 : i16
  affine.store %6, %arg2[%arg3, %arg4]
  } {loop name = "k", op name = "Sk"}
 } {loop name = "j"}
 } {loop name = "i", op_name = "PE"}
return
```

→ Algorithm specification

→ Schedule construction

s = allo.customize(gemm)

→ Algorithm specification


```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
```


→ Algorithm specification

→ Schedule construction

```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
print(s.module)
```

✓ Progressive rewrite

Each step inspectable and verifiable

X Monolithic lowering

e.g., TVM TE, HeteroCL

Hard to debug, no correctness guarantee

→ Real-time MLIR Module Inspection


```
module {
func.func @gemm(%arg0: memref<1024x1024xi8>,
         %arg1: memref<1024x1024xi8>,
         %arg2: memref<1024x1024xi16>) {
 affine.for %arg3 = 0 to 1024 {
 affine.for %arg4 = 0 to 1024 {
  %alloc = memref.alloc(): memref<1xi8>
  affine.store %c0 i8, %alloc[%c0]
  affine.for %arg5 = 0 to 1024 {
  %1 = affine.load %alloc[%c0]
  %2 = affine.load %arg1[%arg5, %arg4]
  %3 = arith.extsi %1 : i8 to i16
  %4 = arith.extsi %2 : i8 to i16
  %5 = arith.muli %3, %4 : i16
  // ... store back C
  } {loop name = "k", op name = "Sk"}
 } {loop name = "j"}
 } {loop_name = "i", op_name = "PE"}
 return
```

→ Algorithm specification

```
python
B: int8[K, N],
```

def gemm(A: int8[M, K], C: int16[M, N]): for i, j in allo.grid(M, N, "PE"): for k in range(K): C[i, j] += A[i, k] * B[k, j]

```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
buf_B = s.buffer_at(s.B, "j")
```


→ Algorithm specification


```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
buf_B = s.buffer_at(s.B, "j")
pe = s.unfold("PE", axis=[0, 1])
```


→ Algorithm specification


```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
buf_B = s.buffer_at(s.B, "j")
pe = s.unfold("PE", axis=[0, 1])
s.partition(s.A, dim=0)
s.partition(s.B, dim=1)
s.partition(s.C, dim=[0, 1])
```


→ Algorithm specification


```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
buf_B = s.buffer_at(s.B, "j")
pe = s.unfold("PE", axis=[0, 1])
s.partition(s.A, dim=0)
s.partition(s.B, dim=1)
s.partition(s.C, dim=[0, 1])
s.relay(buf_A, pe, axis=1, depth=M + 1)
s.relay(buf_B, pe, axis=0, depth=N + 1)
```


→ Algorithm specification → Architectural Diagram def gemm(A: int8[M, K], only 8 lines lines HLS code python B: int8[K, N], C: int16[M, N]): for i, j in allo.grid(M, N, "PE"): fifo_B fifo_B for k in **range**(K): C[i, j] += A[i, k] * B[k, j]PE PE → Schedule construction s = allo.customize(gemm) buf A = s.buffer_at(s.A, "j") buf_B = s.buffer_at(s.B, "j") PE PE pe = s.unfold("PE", axis=[0, 1])s.partition(s.A, dim=0) s.partition(s.B, dim=1) s.partition(s.C, dim=[0, 1])s.relay(buf A, pe, axis=1, depth=M + 1) C_{00} s.relay(buf B, pe, axis=0, depth=N + 1)

→ Algorithm specification

```
python
```

→ Schedule construction

```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
buf_B = s.buffer_at(s.B, "j")
pe = s.unfold("PE", axis=[0, 1])
s.partition(s.A, dim=0)
s.partition(s.B, dim=1)
s.partition(s.C, dim=[0, 1])
s.relay(buf_A, pe, axis=1, depth=M + 1)
s.relay(buf_B, pe, axis=0, depth=N + 1)
```

→ CPU Simulation

```
mod = s.build(target="llvm")

A = np.random.randint(-8, 8, size=(M, K)) \
    .astype(np.int8)

B = np.random.randint(-8, 8, size=(K, N)) \
    .astype(np.int8)

C = np.zeros((M, N), dtype=np.int16)
mod(A, B, C)
np.testing.assert_allclose(C, A @ B, atol=1e-3)
```


→ Algorithm specification


```
s = allo.customize(gemm)
buf_A = s.buffer_at(s.A, "j")
buf_B = s.buffer_at(s.B, "j")
pe = s.unfold("PE", axis=[0, 1])
s.partition(s.A, dim=0)
s.partition(s.B, dim=1)
s.partition(s.C, dim=[0, 1])
s.relay(buf_A, pe, axis=1, depth=M + 1)
s.relay(buf_B, pe, axis=0, depth=N + 1)
```


- Formally verify the equivalence of two C++ programs
- Support statically interpretable control-flow (SICF)
- Can be invoked for each transformation step
- Minute-scale verification!

^{*} Louis-Noël Pouchet, Emily Tucker, Niansong Zhang, Hongzheng Chen, Debjit Pal, Gabriel Rodríguez, Zhiru Zhang, "Formal Verification of Source-to-Source Transformation for HLS", FPGA, 2024.

→ Algorithm specification

→ Bitstream generation

First FFN layer in BERT-base (512, 768)x(768, 3072) w/ 16x16 SA

	Latency (ms)	BRAM	DSP	FF	LUT
Allo	15.73	0 (0%)	128 (1%)	79969 (3%)	244439 (18%)
AutoSA	15.71	514 (12%)	256 (2%)	100138 (3%)	244032 (18%)

Same level of performance but much lower resource usage

^{*} Jie Wang, Licheng Guo, Jason Cong, "AutoSA: A Polyhedral Compiler for High-Performance Systolic Arrays on FPGA", FPGA, 2021.

→ Algorithm specification

→ Bitstream generation

→ Parameterized template

Highly customizable parameters

→ Algorithm specification (Hierarchical)

→ Schedule composition

```
# Previous customizations for GEMM
s_gemm = allo.customize(gemm)
# ...
s_top = allo.customize(top)
s_top.compose(s_gemm)
```



```
→ Algorithm specification (Hierarchical)
def top(X: int8[M, K], W A: int8[K, N],
    W_B: int8[N, K], Y: int8[M, K]):
 Y: int8[M, N] = 0
 7 \cdot int8[M K] = 0
                                 - Caller definition
 gemm(X, W A, Y)
 gemm(Y, W B, Z)
 return Z
→ Callee definition
def gemm(A: int8[M, K],
    B: int8[K, N],
    C: int16[M, N])
```

Goal: Model function arguments in both **callers** and **callees** and make sure the layouts are consistent

Hierarchical dataflow graph

Hierarchical dataflow graph

- Goal: Ensure the layouts of function arguments are consistent
- Key idea: Model data layout as a type
 - N-D array layout (composite type):

$$\tau \coloneqq (\hat{\tau}_1, \ldots, \hat{\tau}_N)$$

Base type for each dimension:

Hierarchical dataflow graph

- Goal: Ensure the layouts of function arguments are consistent
- Key idea: Model data layout as a type
 - N-D array layout (composite type):

$$\tau \coloneqq (\hat{\tau}_1, \ldots, \hat{\tau}_N)$$

Base type for each dimension:

Hierarchical dataflow graph

- Goal: Ensure the layouts of function arguments are consistent
- Key idea: Model data layout as a type

Subtyping relation forms a lattice!

Intuition:

We can supply more read/write parallelism, but not less!

Subtyping relation: X<:Y

The code expecting a memory with partition type Y is also compatible with a memory with partition type X

Hierarchical dataflow graph

- Goal: Ensure the layouts of function arguments are consistent
- Key idea: Model data layout as a type
- ▶ Data layout propagation → type inference

$$\top \sqcap \mathcal{C}_{16} = \mathcal{C}_{16}$$

Create the "least common" number of memory banks

Hierarchical dataflow graph

- Goal: Ensure the layouts of function arguments are consistent
- Key idea: Model data layout as a type
- ▶ Data layout propagation → type inference

Worklist algorithm for type inference

Guaranteed to terminate in <u>linear time</u> by the *Fixed-Point Theorem* if

- (1) the structure is a finite lattice and,
- (2) the transfer function is monotonic

Proof in the supplementary material!

A Complete LLM Accelerator

- GPT2 model (the only open-source LLM in the GPT family)
 - 355M parameters, 24 hidden layers, 16 heads
 - W4A8 quantization

Is it the end?

No! We need to determine how many resources are allocated to each operator!

```
Compose all the schedules together

s = allo.customize(GPT_layer)

s.compose(s_qkv)

s.compose(s_mha)

s.compose(s_ds0)
...
```

Analytical Model for LLMs [FCCM/TRETS'24]

Linear Layer	Abbreviations	Input Matrices	Prefill	Decode
Q/K/V linear	q, k, v	XW_Q, XW_K, XW_V	$3ld^2$	$3d^2$
$Matmul_1$	a_1	QK^{T}	l^2d	(l+1)d
$Matmul_2$	a_2	$X_{ m sm}V$	l^2d	(l+1)d
Projection	p	$X_{ m sdp}W_{ m Proj}$	ld^2	d^2
FFN_1	f_1	$X_{ m mha}W_{ m FFN_1}$	ldd_{FFN}	$dd_{ m FFN}$
FFN_2	f_2	$X_{ m act}W_{ m FFN_2}$	$ldd_{ m FFN}$	$dd_{ m FFN}$

Compute resource: *M* is compute power in MACs/cycle and C is the # of layers per FPGA

$$\sum M_i C < M_{\mathsf{tot}}, i \in \{q, k, v, a_1, a_2, p, f_1, f_2\}$$

• Memory capacity: S is buffer size

$$S_{\mathsf{param}}C < \mathsf{DRAM}_{\mathsf{tot}}, \\ \sum S_iC < \mathsf{SRAM}_{\mathsf{tot}}, i \in \{\mathsf{tile}, \mathsf{KV}, \mathsf{FIFO}\}$$

• **Memory port**: s is tensor size and b is bitwidth

$$\begin{split} R_i \! = \! \left\lceil \frac{s_i b_{BRAM}}{M_i / r_i \! \times \! S_{BRAM}} \right\rceil \! \times \! \frac{M_i / r_i}{k} \\ \sum_i \! CR_i \! + \! 2C(R_{a_1} \! + \! R_{a_2}) \! < \! \mathsf{SRAM}_\mathsf{tot}, i \! \in \! \{q,\! k,\! v,\! p,\! f_1,\! f_2\} \end{split}$$

• Memory bandwidth: B is bandwidth

$$\sum_{i} CB_{i} < B_{\text{tot}}, i \in \{q, k, v, p, f_{1}, f_{2}\}$$

Figure: Pipeline diagram. Different colors stand for different input samples. Different blocks stand for different linear operators which also constitute the pipeline stages. h is the number of attention heads.

$$\begin{aligned} & C \leq \mathsf{SRAM}_{\mathsf{tot}}, i \in \{\mathsf{tile}, \mathsf{KV}, \mathsf{FIFO}\} \\ & \mathsf{port}: \ s \ \mathsf{is \ tensor \ size \ and } \ b \ \mathsf{is \ bitwidth} \end{aligned} \qquad T_{\mathsf{prefill}} = \frac{1}{freq} \frac{N}{C} \left(\frac{ld^2}{M_k} + C \max \left(\frac{ld^2}{M_k}, \frac{l^2d}{M_{a_1}}, \frac{ldd_{\mathsf{FFN}}}{M_{f_1}}, T_{\mathsf{mem}} \right) \right) \\ & R_i = \left[\frac{s_i b_{BRAM}}{M_i / r_i \times S_{BRAM}} \right] \times \frac{M_i / r_i}{k} \qquad T_{\mathsf{decode}} = \frac{1}{freq} \frac{N}{C} \left(\frac{d^2}{M_k} + C \max \left(\frac{d^2}{M_k}, \frac{(l_{\mathsf{max}} + 1)d}{M_{a_1}}, \frac{dd_{\mathsf{FFN}}}{M_{f_1}}, T_{\mathsf{mem}} \right) \right) \end{aligned}$$

^{*} Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong Zhang, Yaohui Cai, Zhiru Zhang, "Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference", TRETS, 2024. (FCCM'24 Journal Track)

Estimation on Different Models and Devices

- Q: Is FPGA suitable for efficient LLM inference?
 - Latency estimation of GPT2 and LLaMA2 on different FPGAs
 - GPU results are obtained through actual profiling

Compute-bound

Existing FPGAs are inferior in the <u>compute-intensive</u> <u>prefill</u> stage but can outperform GPUs in the <u>memory-intensive</u> <u>decode</u> stage.

LLM Accelerator Evaluation

- GPT2: single-batch, low-latency settings, adjust input/output token numbers
 - U280 FPGA (16nm), 250MHz
 - 2.2x speedup in prefill stage compared to DFX (an overlay FPGA-based xcel)
 - 1.7x speedup for long output sequences and 5.4x more energy-efficient vs A100
 - < 50 lines of schedule code</p>

	Allo	DFX	
Device	U280	U280	
Freq.	250MHz	200MHz	
Quant.	W4A8	fp16	
BRAM	384 (19.0%)	1192 (59.1%)	
DSP	1780 (19.73%)	3533 (39.2%)	
FF	652K (25.0%)	1107K (42.5%)	
LUT	508K (39.0%)	520K (39.9%)	

^{*} Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong Zhang, Yaohui Cai, Zhiru Zhang, "Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference", ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2024.

High-Level PyTorch Frontend

- Predefined schedules for commonly used NN operators
- Can directly import model from PyTorch and build optimized xcel design
 - Through TorchDynamo and torch.fx

```
import torch
import allo
import numpy as np
from transformers import AutoConfig
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
bs, seq, hs = 1, 512, 1024
example inputs = [torch.rand(bs, seq, hs)]
config = AutoConfig.from_pretrained("gpt2")
module = GPT2Model(config).eval()
mlir mod = allo.frontend.from_pytorch(
 module,
 example inputs=example inputs,
```

Summary

- Features of Allo ADL
 - Pythonic
 - Decoupled customizations
 - Composability

- High-performance
- Verifiable
- Reusable
- Multi-kernel
 - First time to leverage an ADL to design a large-scale LLM accelerator
- Future work
 - Autoscheduling
 - Build system

https://github.com/cornell-zhang/allo

