1 Unitary invariance

Prove that the regular Euclidean norm (also called the 2-norm) is unitary invariant; in other words, the 2-norm of a vector is the same, regardless of how you apply a rigid transformation to the vector (i.e., rotate or reflect). Note that rigid transformation of a vector $\vec{v} \in \mathbb{R}^d$ means multiplying by an orthogonal $U \in \mathbb{R}^{d \times d}$.

2 Eigenvalues

- (a) Let A be an invertible matrix. Show that if \vec{v} is an eigenvector of A with eigenvalue λ , then it is also an eigenvector of A^{-1} with eigenvalue λ^{-1} .
- (b) A square and symmetric matrix A is said to be positive semidefinite (PSD) $(A \succeq 0)$ if $\forall \vec{v} \neq 0, \vec{v}^T A \vec{v} \geq 0$. Show that A is PSD if and only if all of its eigenvalues are nonnegative.

Hint: Use the eigendecomposition of the matrix A.

3 Least Squares (using vector calculus)

1. In ordinary least-squares linear regression, there is typically no \vec{x} such that $A\vec{x} = \vec{y}$ (these are typically overdetermined systems — too many equations given the number of unknowns). Hence, we need to find an approximate solution to this problem. The residual vector will be $\vec{r} = A\vec{x} - \vec{y}$ and we want to make it as small as possible. The most common case is to measure the residual error with the standard Euclidean 2-norm. So the problem becomes:

$$\min_{\vec{x}} ||A\vec{x} - \vec{y}||_2^2$$

Where $A \in \mathbb{R}^{m \times n}$, $\vec{x} \in \mathbb{R}^n$, $\vec{y} \in \mathbb{R}^m$. Derive using vector calculus an expression for an optimal estimate for \vec{x} for this problem assuming A is full rank.

2. What should we do if A is not full rank?

CS 189, Fall 2017, DIS1