

Funktionsgrenzwerte, Stetigkeit, L'Hopital

* Definition Funktionsgrenzwert. Was bedeutet $\lim_{x\to a} f(x)$? f: D→R

Lösung.

$$f(x_n) \longrightarrow y$$
.

In diesen Fall scheibt man lin f(x) = y.

Eigener Lösungsversuch.

lun f(x) existient nicht!

Funktionsgrenzwerte. Existieren folgende Grenzwerte? Falls ja, berechnen Sie diese.

a)
$$\lim_{x \to 2} f(x)$$
, $f(x) = x^2$

b)
$$\lim_{x\to 0} f(x)$$
, $f(x) = \sin\left(\frac{1}{x}\right)$, $\mathbb{D} = \mathbb{R} \setminus \{0\}$

c)
$$\lim_{x\to 0} f(x)$$
, $f(x) = \frac{\sin(x)}{x}$ (Hinweis: l'Hopital)

d)
$$\lim_{x \to \infty} f(x)$$
, $f(x) = \frac{x}{x+1}$

e)
$$\lim_{x \to 1} f(x)$$
, $f(x) = \frac{x^2 - 1}{x - 1}$

Lösung. Falls möglich einfach einsetzen, sofern die Flet. stetig eist!

a) $\lim_{x\to 2} x^2 = 4$.

$$(a) \lim_{x\to 2} x^2 = 2^2 = 4$$

$$\sin\left(\frac{\Lambda}{x}\right)$$
 besitzt keinen brenswert für x > 0, da es sich in keener Hölle einpendelt!

 $x_n = \frac{1}{\frac{\pi}{2} + n \cdot 2\pi} \rightarrow 0$ wit $f(x_n) = \sin\left(\frac{\Lambda}{x_n}\right) = \Lambda$
 $x_n = \frac{1}{\frac{3\pi}{2} + n \cdot 2\pi} \rightarrow 0$ wit $f(x_n) = -1$

Zwei Folgen x_h & $x_h' \to 0$, ober $f(x_h) \longrightarrow 1$ d.h. Grenzwert lim f(v) existing $f(x_h') \longrightarrow -1$

Eigener Lösungsversuch.

Lim
$$\frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} \neq \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} \neq \frac{f'(x)}{g'(x)}$$

Purchalary in Klauser!

(A Notation:

$$\lim \frac{f(x)}{g(x)} \neq \frac{f'(x)}{g'(x)}$$
 $\frac{f(x)}{g(x)} \neq \frac{f'(x)}{g'(x)}$

with erlands: $\frac{\infty}{0}$, $\frac{2}{0}$

c)
$$\lim_{x\to 0} \frac{\sin(x)}{x} \stackrel{\text{lift}}{=} \lim_{x\to 0} \frac{\cos x}{1} = \frac{\cos(0)}{1} = \frac{1}{1}$$

$$\frac{2}{\sqrt{\frac{1}{x}}} = 2x \rightarrow \infty$$

$$\frac{2}{\sqrt{\frac{1}{x}}} = -2 \xrightarrow{x \rightarrow \infty} -\infty$$

型0,009gg...

$$\lim_{x \to \infty} \frac{x}{1+x} = \lim_{x \to \infty} \frac{1}{1+x} = \frac{1}{1+x} = 1$$

$$\frac{ODRP}{1+X} = \frac{\cancel{(\frac{1}{x}+1)}}{\cancel{(\frac{1}{x}+1)}} \frac{\cancel{(\frac{1}{x}+1)}}{\cancel{(\frac{1}{x}+1)}} = 1$$

$$e) \lim_{x \to \Lambda} \frac{x^{2} - 1}{x - 1} \stackrel{e'H}{=} \lim_{x \to 1} \frac{2x}{\Lambda} = \frac{z \cdot \Lambda}{\Lambda} = 2$$

$$\frac{\text{ODER}:}{x-1} = \underbrace{(x-1)(x+1)}_{x-1} = x+1 \xrightarrow{x\to 1} 1+1=2.$$

Stetigkeit. Welche Funktionen sind stetig bzw. stetig fortsetzbar? (Mit Begründung.)

a) Was bedeutet Stetigkeit anschaulich? Wie ist diese definiert?

b)
$$f(x) = x^3 + 3x + 4$$

c)
$$f(x) = \frac{\sin(x)}{x}$$
, $\mathbb{D} = \mathbb{R} \setminus \{0\}$

d)
$$f(x) = \sin\left(\frac{1}{x}\right)$$
, $\mathbb{D} = \mathbb{R} \setminus \{0\}$

e)
$$f(x) = \frac{\sin(e^{x^2})}{2x^4}$$

Lösung.

a) auscharlich: "Dwihzeichnen ohne Absetzen"

 $\underbrace{0ef}: \forall x_0 \in D: \lim_{x \to x_0} f(x) = f(x_0)$

Stefigleit: Alle elementaren Forten (Polynome, sin(x), cos(x), tan(x), ex, ax, ln x, loga x, a/x, ...) sind stetly

(out dem Def.-Boretch) & auch deren Summe/Different/Modulet/Quotlent/

Vertrangfung!

b) Polyron shetty (c) $\frac{\sin x}{x}$ another thothy (d) $\sin \left(\frac{\pi}{x}\right)$ Voknupfung shetty!

another thothy

a) ebenso stelly /

Storig fortsotalar: Eine Funktion ist stotig fortsotater an eine Stelle xo, falls lin f(x) existingt! Man definent dann f(x):= lin f(x).

b, Def. Leveich D=R, wichts zu tun!

C) stetige Fortsetzung von f:

$$\widehat{f}(x) = \begin{cases} \frac{f(x) = \frac{\sin x}{x}}{x}, & x \in |\mathcal{R}| \{0\} \\ \lim_{x \to 0} \frac{\sin x}{x} = 1, & x = 0 \end{cases}$$
side c) Why quor

-Eigener Lösungsversuch.

d) nicht stelig fortsotzler, de lûn $\sin(\frac{1}{x})$ nicht existiert (siehe b) Überg zervor)

e) nicht stelig fortsotzler, de lûn $\frac{\sin(e^{x^2})}{2x^9}$ nicht existiert (l'H gelt nicht $\frac{\sin(1)''}{0}$): $\frac{\sin(e^{x^2})}{2x^4} \rightarrow +\infty$ $\frac{2x^4}{2x^4}$

$$\frac{\sin\left(\frac{e^{x^{2}}}{e^{x^{2}}}\right)}{\frac{2x^{4}}{\sqrt{6}}} \rightarrow +\infty$$