# **4.1 GRAPHING THE SINE FUNCTION**

Complete the table of values for  $y = \sin(\theta)$ .

| $	heta^\circ$     | -360°       | -270°             | -180° | -90°             | Oo | 90°             | 180°  | 270°             | 360°   |
|-------------------|-------------|-------------------|-------|------------------|----|-----------------|-------|------------------|--------|
| Radian<br>Measure | <b>-2</b> π | $-\frac{3\pi}{2}$ | - π   | $-\frac{\pi}{2}$ | 0  | $\frac{\pi}{2}$ | $\pi$ | $\frac{3\pi}{2}$ | $2\pi$ |
| У                 |             |                   |       |                  |    |                 |       |                  |        |

Let 6 spaces represent  $\pi$  along the  $\theta$ -axis. Let 2 spaces along the y-axis represent 1 unit. Scale the axes. Then, plot each  $(\theta$ , y) point. Then, join the points in a smooth curve. Using your calculator, determine the points in Quadrants II and III. Then, extend your graph to cover the domain  $-2\pi \le \theta \le 2\pi$ .



#### GRAPHING THE COSECANT FUNCTION

Complete the table of values for  $y = \csc(\theta)$ . Remember,  $\csc(\theta) = \frac{1}{\sin(\theta)}$ . To find the y-

values for the graph  $y = \csc \theta$ , first evaluate  $y = \sin(\theta)$ . Then, take the reciprocal. (Your calculator has a 1/x button or an  $x^{-1}$  button that will give the reciprocal of an input.)

| $\theta^{\circ}$  | -360°       | -270°             | -180° | -90°             | Oo | 90°             | 180°  | 270°             | 360°   |
|-------------------|-------------|-------------------|-------|------------------|----|-----------------|-------|------------------|--------|
| Radian<br>Measure | <b>-2</b> π | $-\frac{3\pi}{2}$ | - π   | $-\frac{\pi}{2}$ | 0  | $\frac{\pi}{2}$ | $\pi$ | $\frac{3\pi}{2}$ | $2\pi$ |
| У                 |             |                   |       |                  |    |                 |       |                  |        |

Notice if  $\sin(\theta) = 0$ , then  $\csc(\theta)$  is undefined. An undefined value for y implies that there is a vertical asymptote at the corresponding  $\theta$  value, so draw a vertical dotted line at these locations. Plot the values of  $y = \csc(\theta)$  and draw smooth curves through the points for each defined region. Notice that the graph for  $y = \sin(\theta)$  has been penciled in so you can make comparisons between it and the graph of  $y = \sec(\theta)$ .



## **GRAPHING THE COSINE FUNCTION**

Complete the table of values for  $y = cos(\theta)$ .

| $	heta^\circ$     | -360°       | -270°             | -180° | -90°             | Oo | 90°             | 180° | 270°             | 360°   |
|-------------------|-------------|-------------------|-------|------------------|----|-----------------|------|------------------|--------|
| Radian<br>Measure | <b>-2</b> π | $-\frac{3\pi}{2}$ | - π   | $-\frac{\pi}{2}$ | 0  | $\frac{\pi}{2}$ | π    | $\frac{3\pi}{2}$ | $2\pi$ |
| у                 |             |                   |       |                  |    |                 |      |                  |        |

Let 6 spaces represent  $\pi$  along the  $\theta$ -axis. Let 2 spaces along the y-axis represent 1 unit. Scale the axes. Then, plot each  $(\theta$ , y) point. Then, join the points in a smooth curve. Using your calculator, determine the points in Quadrants II and III. Then, extend your graph to cover the domain  $-2\pi \le \theta \le 2\pi$ .



#### GRAPHING THE SECANT FUNCTION

Complete the table of values for  $y = \sec(\theta)$ . Remember,  $\sec(\theta) = \frac{1}{\cos(\theta)}$ . To find the y-

values for the graph  $y = \sec(\theta)$ , first evaluate  $y = \cos(\theta)$ . Then, take the reciprocal. (Your calculator has a 1/x button or an  $x^{-1}$  button that will give the reciprocal of an input.)

| $\theta^{\circ}$  | -360°       | -270°             | -180° | -90°             | Oo | 90°             | 180° | 270°             | 360°   |
|-------------------|-------------|-------------------|-------|------------------|----|-----------------|------|------------------|--------|
| Radian<br>Measure | <b>-2</b> π | $-\frac{3\pi}{2}$ | - π   | $-\frac{\pi}{2}$ | 0  | $\frac{\pi}{2}$ | π    | $\frac{3\pi}{2}$ | $2\pi$ |
| У                 |             |                   |       |                  |    |                 |      |                  |        |

Notice if  $\cos(\theta) = 0$ , then  $\sec(\theta)$  is undefined. An undefined value for y implies that there is a vertical asymptote at the corresponding  $\theta$  value, so draw a vertical dotted line at these locations. Plot the values of  $y = \sec(\theta)$  and draw smooth curves through the points for each defined region. Notice that the graph for  $y = \cos(\theta)$  has been penciled in so you can make comparisons between it and the graph of  $y = \sec(\theta)$ .



### **GRAPHING THE TANGENT FUNCTION**

Complete the table of values for  $y = tan(\theta)$ . Then graph the function.

| $	heta^\circ$     | -360° | -270°             | -180° | -90°             | Oo | 90°             | 180° | 270°             | 360°   |
|-------------------|-------|-------------------|-------|------------------|----|-----------------|------|------------------|--------|
| Radian<br>Measure | -2 π  | $-\frac{3\pi}{2}$ | - π   | $-\frac{\pi}{2}$ | 0  | $\frac{\pi}{2}$ | π    | $\frac{3\pi}{2}$ | $2\pi$ |
| Y                 |       |                   |       |                  |    |                 |      |                  |        |

Notice if  $y = tan(\theta)$  is undefined, then there is a vertical asymptote at this value for  $\theta$ .

Draw a dotted line parallel to the y-axis. Your curve should approach these asymptotes closely, but not touch or cross them. Plot the  $(\theta,y)$  points and draw smooth curves through the points for each defined region.



### **GRAPHING THE COTANGENT FUNCTION**

Complete the table of values for  $y = \cot(\theta)$ . Remember,  $\cot(\theta) = \frac{1}{\tan(\theta)}$ . To find the y-

values for the graph  $y = \cot(\theta)$  first evaluate  $y = \tan(\theta)$ . Then, take the reciprocal. (Your calculator has a 1/x button or an  $x^{-1}$  button.)

| $\theta^{\circ}$  | -360°       | -270°             | -180° | -90°             | Oo | 90°             | 180°  | 270°             | 360°   |
|-------------------|-------------|-------------------|-------|------------------|----|-----------------|-------|------------------|--------|
| Radian<br>Measure | <b>-2</b> π | $-\frac{3\pi}{2}$ | - π   | $-\frac{\pi}{2}$ | 0  | $\frac{\pi}{2}$ | $\pi$ | $\frac{3\pi}{2}$ | $2\pi$ |
| У                 |             |                   |       |                  |    |                 |       |                  |        |

Notice if  $\tan(\theta) = o$ , then  $\cot(\theta)$  is undefined. An undefined value for y implies that there is a vertical asymptote at the corresponding  $\theta$  value, so draw a vertical dotted line at these locations. Also, notice that if  $\tan(\theta)$  is undefined, then  $\cot(\theta) = o$ . Plot the values of  $y = \cot(\theta)$  and draw smooth curves through the points for each defined region.



## Warm up

1. Graph one complete cycle of  $y = -3\cos\frac{1}{4}\left(\theta + \frac{\pi}{3}\right) + 1$ .



2. The graph of  $y = 6\cos\left(x + \frac{3\pi}{4}\right) + 1$  is illustrated below. Determine the exact values of  $\boldsymbol{g}, \boldsymbol{h}, \boldsymbol{m}$  and  $\boldsymbol{n}$ .

