

MULTIPLEXING Komunikasi Data

Muhammad Zen Samsono Hadi, ST. MSc. Lab. Telefoni Gedung D4 Lt. 1

Multiplexing

Frequency Division Multiplexing

- FDM
- Digunakan bila bandwidth media transmisi yang digunakan melebihi bandwidth yang diperlukan dari sinyal-sinyal yang ditransmisikan
- Sejumlah sinyal dimodulasikan ke frekuensi pembawa yang berbeda-beda
- Frekuensi pembawa berlainan (terpisah) dimana bandwidth sinyal tidak overlap (guard bands)
- Contoh : broadcast radio dan TV
- Sinyal campuran yang ditransmisikan sepanjang media berupa analog

Frequency Division Multiplexing Diagram

Proses FDM

FDM System

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

(c) Receiver

FDM untuk tiga band sinyal suara

(a) Spectrum of $m_1(t)$, positive f

(b) Spectrum of $s_1(t)$ for $f_1 = 64$ kHz

(c) Spectrum of composite signal using subcarriers at 64 kHz, 68 kHz, and 72 kHz

Sistem Pembawa Analog

- Di Amerika Serikat, FDM AT&T (USA) merancang hirarki skema FDM yg memuat sistem transmisi dari berbagai kapasitas
- Hirarki AT & T
- Group
 - o 12 voice channels (4kHz each) = 48kHz
 - Range 60kHz to 108kHz
- Supergroup
 - o 60 channel
 - FDM of 5 group signals on carriers between 420kHz and 612 kHz
- Mastergroup
 - o 10 supergroups

Sistem Multiplexing FDM

Wavelength Division Multiplexing

- Banyaknya beam dari cahaya yang mempunyai frekuensi yang berbeda-beda
- Sinyal ditransmisikan menggunakan fiber optik
- Mempunyai bentuk seperti FDM
- Setiap warna dari cahaya (wavelength) membawa data yang terpisah pada kanal
- Ditemukan oleh Bell Laboratory pada tahun 1997
 - o 100 beams
 - Masing-masing pada 10 Gbps
 - Mempunyai rate 1 terabit per second (Tbps)
- Sekarang tersedia sistem komersial dengan 160 kanal pada 10Gbps
- Sistem Lab. (Alcatel) 256 kanal pada 39.8 Gbps
 - 10.1 Tbps
 - o diatas 100km

Operasi WDM

- Arsitektur umumnya sama dengan FDM
- Banyak sumber yg dibangkitkan oleh sinar laser dengan frekuensi yang berbeda
- Multiplexer merupakan gabungan beberapa sumber untuk pengiriman melalui single fiber
- Optical amplifiers dapat memperkuat semua wavelengths
- Demux memisahkan kanal-kanal sesuai dengan kerapatan
- Mempunyai range wavelength 1550nm
- 200MHz per channel
- Sekarang 50GHz

Synchronous Time Division Multiplexing

- Diterapkan bila rate data suatu media bisa melebihi rate data dari sinyal digital yang ditransmisikan
- Multiple sinyal digital dapat ditransmisikan melalui jalur tunggal dengan cara interleaving bagian-bagian dari setiap sinyal
- Interleaving dalam bentuk level bit atau blok-blok byte
- Time slots sebelumnya diberikan pada sumber
- Time slots sudah dialokasikan sebelum ada data
- Time slots tidak mempunyai distribusi antara sumber

Time Division Multiplexing

TDM Link Control

- Tidak memuat header dan pasangannya
- Data link control protocols tidak diperlukan
- Flow control
 - Rate data pada saluran yang dimultiplex sudah dipastikan
 - Bila satu kanal receiver tidak dapat menerima data, kanal yang lain tetap harus membawa data tersebut
 - Hubungan antar sumber harus lancar
 - Akan meninggalkan slot yang kosong

Error control

 Error yang dideteksi dan di atasi oleh sistem kanal secara individu

Data Link Control on TDM

(b) Input data streams

 \cdots f_2 F_1 d_2 f_1 d_2 f_1 d_2 d_1 d_2 d_1 d_2 d_1 A_2 C_1 F_2 A_1 f_2 F_1 f_2 f_1 d_2 f_1 d_2 d_1 d_2 d_1 d_2 d_1 C_2 C_1 A_2 A_1 F_2 F_1

(c) Multiplexed data stream

Legend: F = flag field d = one octet of data field

A = address field f = one octet of FCS field

C = control field

Framing

- Tidak terdapat tanda atau karakter SYNC dalam frame TDM
- Karena pada sistem komunikasi data harus mempertahankan sinkronisasi frame
- Dengan cara menambahkan digit framing
 - Satu kontrol bit ditambahkan pada setiap frame TDM
 - ▼ Seperti melalui kanal yaitu "control channel"
 - Bit yang tidak teridentifikasi dipergunakan pada control channel
 - Contohnya adalah tidak seperti membolak-balik pola bit data, 01010101... pada kanal
 - Untuk mensinkronkan, receiver membandingkan bit yang datang dari satu posisi frame dengan pola yang diinginkan

Pulse Stuffing

- Probem tersulit dalam merancang TDM sinkron adalah saat mensinkronkan berbagai sumber data
- Clock yang beda akan menyebabkan hilangnya sinkronisasi
- Data rate dari sumber yg berbeda tidak berhubungan dengan jumlah rasional sederhana
- Penyelesaian Pulse Stuffing
 - Rate data yang yg keluar (tidak termasuk framing bit) lebih besar dibanding penjumlahan rate data yang masuk
 - Menambahkan dummy bit extra atau pulsa-pulsa kedalam setiap sinyal yg masuk sampai clock lokal sesuai
 - Stuff pulsa disisipkan pada lokasi yang tepat dalam frame dan ditujukan pada demultiplexer

TDM sumber Analog and Digital

Digital Carrier Systems

- Merupakan hirarki struktur TDM
- Sistem ini digunakan di USA/Canada/Japan
- ITU-T menggunakan sistem yang hampir sama
- Di Amerika menggunakan sistem dengan format DS-1 (Digital System)
- Multiplexes 24 kanal suara
- Setiap frame mempunyai 8 bit per kanal ditambah 1 framing bit
- Sehingga mempunyai total 193 bits per frame

Digital Carrier Systems (2)

- Untuk setiap kanal suara terdiri dari satu word data dalam bentuk digital (PCM, 8000 samples per sec)
 - Data rate 8000x193 = 1.544Mbps
 - Lima dari keenam frame dipergunakan sampel PCM 8 bit
 - Setiap frame keenam berisikan 7 bit PCM word plus bit signaling
 - Signaling bits membentuk suatu deretan untuk setiap kanal suara yang memuat informasi routing dan kontrol jaringan
- Mempunyai format sama sebagai penyedia layanan digital
 - o Terdiri dari 23 kanal untuk data
 - ▼ 7 bits per frame plus indicator bit untuk data atau sistem kontrol
 - Kanal ke 24 adalah untuk byte sync khusus

Mixed Data

- Format DS-1 bisa dipergunakan untuk membawa campuran kanal suara dan data
- Dalam hal ini digunakan seluruhnya yaitu 24 kanal
- Tanpa menyediakan byte sync
- Dapat dilakukan interleave dengan kanal DS-1 untuk multiplexing pada level yang lebih tinggi
 - Ds-2 mengkombinasikan empat input DS-1 dengan rate
 6.312Mbps

Format Transmisi DS-1

Notes:

- 1. The first bit is a framing bit, used for synchronization.
- 2. Voice channels:
 - 8-bit PCM used on five of six frames.
 - 7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
- Data channels:
 - Channel 24 is used for signaling only in some schemes.
 - Bits 1-7 used for 56 kbps service
 - Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.

DCS (Digital Carrier System)

• Hierarki sinyal digital untuk layanan telepon yang menggunakan multiplexing digital

SONET/SDH

- Merupakan interface transmisi optik yang pada awalnya diusulkan oleh BellCore
- Distandarisasi oleh ANSI
- Versi yang kompatible dengan SONET (Synchronous Optical Network) adalah SDH (Synchronous Digital Hierarchy), telah diterbitkan oleh ITU-T
- Hirarki sinyal
 - Hirarki terendah adalah Synchronous Transport Signal level 1 (STS-1) atau Optical Carrier level 1 (OC-1)
 - o Rate 51.84Mbps
 - Dapat digunakan sebagai DS-3 atau group sinyal dengan rate rendah (DS1 DS1C DS2) plus rate ITU-T (misalnya 2.048Mbps)
 - Multiple STS-1 dapat dikombinasi untuk membentuk sinyal STS-N
 - o ITU-T dengan kecepatan terendah adalah 155.52Mbps (STM-1)

Format Frame SONET

(a) STS-1 frame format

(b) STM-N frame format

SONET STS-1 Overhead Octets

|--|

Section	
Overhead	

STS-ID Framing Framing A2 C1A1 BIP-8 Orderwire User E1 $\mathbf{F1}$ **B1** DataCom DataCom DataCom D1**D2 D3** Pointer Pointer Pointer H1H2 Action H3 BIP-8 APS APS **B2** K1K2 DataCom DataCom DataCom **D4 D5 D6** DataCom DataCom DataCom **D7 D8 D9** DataCom DataCom DataCom D10 D12 D11 Growth Growth Orderwire Z1 \mathbb{Z}^2 E2

Line Overhead

(a) Transport Overhead

Trace
_ J1
BIP-8
В3
Signal
Label C2
Path
Status G1
User
F2
Multiframe
H4
Growth
Z3
Growth
Z4
Growth
Z5

(b) Path Overhead

Statistical TDM

- Dalam proses Synchronous TDM, merupakan hal yang umum apabila jatah waktu (time slot) dalam sebuah frame dibuang
- Pada statistical TDM yaitu dengan cara mengalokasikan time slot secara dinamis sesuai permintaan
- Multiplexer men-scan sejumlah line input dan mengumpulkan data sampai frame menjadi penuh kemudian mengirim
- Rate data pada saluran akan menjadi lebih kecil dibandingkan dengan jumlah rate data pada line input

Format Frame Statistical TDM

Flag Address Control Statistical TDM subframe FCS Flag

(a) Overall frame

Address Data

(b) Subframe with one source per frame

Address Length Data • • • Address Length Data

(c) Subframe with multiple sources per frame

Kinerja

- Output data rate kurang dari jumlah rate data input
- Permasalahan akan muncul periode puncak saat input melebihi kapasitas
 - Menahan kelebihan input sementara
 - Mempertahankan pada kondisi minimum untuk menekan terjadinya delay

Buffer Size and Delay

(a) Mean buffer size versus utilization

(a) Mean delay versus utilization

Cable Modem Outline

- Two channels from cable TV provider dedicated to data transfer
 - One in each direction
- Each channel shared by number of subscribers
 - Scheme needed to allocate capacity
 - Statistical TDM

Cable Modem Operation

Downstream

- Cable scheduler delivers data in small packets
- If more than one subscriber active, each gets fraction of downstream capacity
 - ➤ May get 500kbps to 1.5Mbps
- Also used to allocate upstream time slots to subscribers

Upstream

- User requests timeslots on shared upstream channel
 - Dedicated slots for this
- Headend scheduler sends back assignment of future tme slots to subscriber

Cable Modem Scheme

Asymmetrical Digital Subscriber Line

- ADSL
- Link between subscriber and network
 - Local loop
- Uses currently installed twisted pair cable
 - Can carry broader spectrum
 - o 1 MHz or more

xDSL

- High data rate DSL
- Single line DSL
- Very high data rate DSL