Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №2.2.1

Исследование взаимной диффузии газов

Автор: Алексей Домрачев 615 группа

Преподаватель: Александр Дмитриевич Калашников

12 апреля 2017 г.

1 Цель работы

- 1. Регистрация зависимости коцентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов;
- 2. Определение коэффициента диффузии по результатам измерений.

Экспериментальная установка

Рис. 1: Схема установки

$$V_1 = 360 \pm 0.5 \,\, \mathrm{cm}^3$$

$$V_2 = 360 \pm 0.5 \,\, \mathrm{cm}^3$$
 Погонная плотность: $\frac{L}{S} = 7.0 \pm 0.5 \frac{1}{\mathrm{cm}}$

2 Работа и измерения

2.1 Начальные условия

Максимальная откачка: $P_0 = 102.5$ дел Рассчитаем сколько торр в одном делении:

- 1. Всего торр: $P_0 = 1.025 \frac{\text{krc}}{\text{см}^2} = 100.5181 \cdot 10^3 \text{ }\Pi\text{a} = 753.95 \text{ торр}$
- 2. В одном делении 980,665 $\Pi a = 7.356$ торр
- 3. Основные погрешности:

$$\sigma_{V_1+V_2} = \sqrt{\sigma_{V_1}^2 + \sigma_{V_2}^2} = \sqrt{0.5^2 + 0.5^2} = 0.71 \text{ см}^3$$

$$V_{\Pi} = \frac{V_1 \cdot V_2}{V_1 + V_2}; \ \sigma_{V_{\Pi}} = V_{\Pi} \cdot \sqrt{\left(\frac{\sigma_{V_1}}{V_1}\right)^2 + \left(\frac{\sigma_{V_2}}{V_2}\right)^2 + \left(\frac{\sigma_{V_1+V_2}}{V_1 + V_2}\right)^2} =$$

$$= 180 \cdot \sqrt{\left(\frac{0.5}{360}\right)^2 + \left(\frac{0.5}{360}\right)^2 + \left(\frac{0.71}{720}\right)^2} = 0.396 \text{ см}^3$$

2.2 Измерения при 40 торр

1. Давление, полученное при открытии кранов K1, K2, K3: $P_{\Sigma}=47.814$ торр

t, c	значение	логарифм
0.00	255.0	0.000
6.35	250.7	0.017
12.70	244.3	0.043
19.04	237.0	0.073
25.39	229.6	0.105
31.74	223.3	0.133
38.09	216.0	0.166
44.43	210.6	0.191
50.78	204.2	0.222
57.13	191.7	0.254
63.48	192.5	0.281
69.83	186.2	0.315
76.17	180.8	0.344
82.52	175.5	0.374
88.87	171.0	0.400
95.22	165.8	0.431
101.57	161.4	0.457
107.91	156.1	0.491
114.26	151.7	0.519
120.61	147.4	0.548
126.96	143.0	0.578
133.30	139.0	0.607
139.65	165.0	0.636
146.00	131.0	0.666

Таблица 1: измерения при рабочем давлении 40 торр

2. Рассчитаем коэффициент наклона графика с помощью МНК:

$$k = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} = 4.65 \cdot 10^{-3} ;$$
$$\sigma_k = 0.03 \cdot 10^{-3}$$

3. Расчитаем коэффициент взаимной диффузии:

$$k = 1/\tau = \frac{V_1 + V_2}{V_1 \cdot V_2} \cdot \frac{S \cdot D}{l}$$

$$D = k \cdot \frac{l}{S} \cdot \frac{V_1 \cdot V_2}{V_1 + V_2} = 0.00465 \cdot 7.0 \cdot \frac{360 \cdot 360}{360 + 360} = 5.86 \frac{\text{cm}^2}{\text{c}}$$
(1)

Рис. 2: график при рабочем давлении 40 торр

$$\sigma_D = D \cdot \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_{l/s}}{l/s}\right)^2 + \left(\frac{\sigma_{V_{\pi}}}{V_{\pi}}\right)^2}$$

$$\sigma_D = 5.86 \cdot \sqrt{\left(\frac{0.00003}{0.00465}\right)^2 + \left(\frac{0.5}{7.0}\right)^2 + \left(\frac{0.396}{180}\right)^2} = 0.42 \frac{\text{cm}^2}{\text{c}}$$
(2)

В итоге получим:
$$D_1 = 5.86 \pm 0.42 \frac{\text{см}^2}{\text{с}}$$

2.3 Измерения при 100 торр

Давление, полученное при открытии кранов K1, K2, K3: $P_{\Sigma}=94.5$ торр

t, c	значение	логарифм
0.00	255.0	0.000
6.61	252.0	0.012
13.22	249.0	0.024
19.83	246.2	0.035
26.43	244.0	0.044
33.04	241.0	0.057
39.65	238.3	0.068
46.26	235.7	0.079
52.87	233.0	0.090
59.48	230.5	0.101
66.09	228.0	0.112
72.70	225.3	0.124
79.30	223.0	0.134
85.91	221.0	0.143
92.53	218.5	0.155
99.13	216.0	0.166
105.74	214.0	0.175
112.35	211.7	0.186
118.96	209.0	0.199
125.57	207.0	0.209
132.17	205.0	0.218
138.78	203.0	0.228
145.39	201.0	0.238
152.00	199.0	0.248

Таблица 2: измерения при рабочем давлении 100 торр

2. Рассчитаем коэффициент наклона графика с помощью МНК:

$$k = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} = 1.55 \cdot 10^{-3} ;$$
$$\sigma_k = 0.09 \cdot 10^{-3}$$

3. Расчитаем коэффициент взаимной диффузии по формулам (1) и (2):

$$D = 0.00155 \cdot 7.0 \cdot \frac{360 \cdot 360}{360 + 360} = 1.96 \frac{\text{см}^2}{\text{с}} \; ;$$

$$\sigma_D = 1.96 \cdot \sqrt{\left(\frac{0.00009}{0.00155}\right)^2 + \left(\frac{0.5}{7.0}\right)^2 + \left(\frac{0.396}{180}\right)^2} = 0.18 \frac{\text{см}^2}{\text{с}}$$
 В итоге получим:
$$D_1 = 1.96 \pm 0.18 \frac{\text{см}^2}{\text{с}}$$

Рис. 3: график при рабочем давлении 100 торр

2.4 Измерения при 150 торр

Давление, полученное при открытии кранов K1, K2, K3: $P_{\Sigma} = 142.86$ торр	Давление,	полученное	при откры	гии кранов К	(1, K2,	K3: P_{Σ}	= 142.86 Topp
---	-----------	------------	-----------	--------------	---------	------------------	----------------

t, c	значение	логарифм
0.00	255.0	0.000
6.53	251.0	0.016
13.05	248.9	0.025
19.57	246.0	0.038
26.09	243.9	0.047
32.61	241.3	0.058
39.13	240.0	0.064
45.66	238.0	0.073
52.18	236.0	0.082
58.70	234.3	0.090
65.22	232.0	0.100
71.74	231.0	0.105
78.26	228.7	0.116
84.79	226.2	0.128
91.31	225.0	0.133
97.83	223.1	0.142
104.35	222.0	0.148
110.87	220.0	0.157
117.39	218.0	0.167
123.92	216.0	0.177
130.44	214.0	0.187
136.96	212.0	0.197

Таблица 3: измерения при рабочем давлении 150 торр

2. Рассчитаем коэффициент наклона графика с помощью МНК:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = 1.36 \cdot 10^{-3} ;$$
$$\sigma_k = 0.01 \cdot 10^{-3}$$

3. Расчитаем коэффициент взаимной диффузии по формулам (1) и (2):

$$D = 0.00136 \cdot 7.0 \cdot \frac{360 \cdot 360}{360 + 360} = 1.72 \frac{\text{cm}^2}{\text{c}};$$

$$\sigma_D = 1.72 \cdot \sqrt{\left(\frac{0.00001}{0.00136}\right)^2 + \left(\frac{0.5}{7.0}\right)^2 + \left(\frac{0.396}{180}\right)^2} = 0.12 \frac{\text{cm}^2}{\text{c}}$$

В итоге получим: $D_1 = 1.72 \pm 0.12 \frac{\text{см}^2}{\text{с}}$

Рис. 4: график при рабочем давлении 150 торр

2.5 Измерения при 200 торр

Давление, полученное при открытии кранов K1, K2, K3: $P_{\Sigma}=176.54$ торр

t, c	значение	логарифм
0.00	255.0	0.000
15.17	250.0	0.020
30.35	245.0	0.040
45.52	240.5	0.059
60.70	235.3	0.080
75.87	231.0	0.099
91.04	226.0	0.121
106.22	221.8	0.140
121.39	217.6	0.159
136.57	213.0	0.180
151.74	209.0	0.199
166.91	205.0	0.218
182.09	200.9	0.238
197.26	197.0	0.258
212.43	193.0	0.279
227.61	189.0	0.300
242.78	185.2	0.320
257.96	182.0	0.337
273.13	178.0	0.359
288.30	175.0	0.376
303.48	172.0	0.394
318.65	168.3	0.415
333.83	161.0	0.460
349.00	118.0	0.771

Таблица 4: измерения при рабочем давлении 200 торр

2. Рассчитаем коэффициент наклона графика с помощью МНК:

$$k = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} = 0.97 \cdot 10^{-3} ;$$
$$\sigma_k = 0.37 \cdot 10^{-3}$$

3. Расчитаем коэффициент взаимной диффузии по формулам (1) и (2):

$$D = 0.00097 \cdot 7.0 \cdot \frac{360 \cdot 360}{360 + 360} = 1.23 \frac{\text{см}^2}{\text{с}} \; ;$$

$$\sigma_D = 1.73 \cdot \sqrt{\left(\frac{0.00037}{0.00097}\right)^2 + \left(\frac{0.5}{7.0}\right)^2 + \left(\frac{0.396}{180}\right)^2} = 0.47 \frac{\text{см}^2}{\text{c}}$$
 В итоге получим:
$$D_1 = 1.23 \pm 0.47 \frac{\text{см}^2}{\text{с}}$$

Рис. 5: график при рабочем давлении 200 торр

2.6 Измерения при 300 торр

Давление, полученное при открытии кранов K1, K2, K3: $P_{\Sigma}=253.78$ торр

t, c	значение	логарифм
0.00	255.0	0.000
20.74	248.5	0.030
41.48	244.5	0.050
62.22	239.5	0.074
82.95	236.1	0.091
103.69	231.5	0.114
124.43	228.5	0.130
145.17	224.5	0.151
165.91	221.5	0.167
186.65	217.5	0.189
207.39	215.5	0.206
228.13	211.5	0.223
248.87	207.5	0.246
269.61	204.5	0.264
290.35	201.5	0.282
311.09	198.5	0.301
331.82	196.2	0.315
352.56	193.5	0.333
373.30	190.5	0.352
394.04	187.5	0.372
414.78	184.5	0.351
435.52	182.5	0.405

2. Рассчитаем коэффициент наклона графика с помощью МНК:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = 1.10 \cdot 10^{-3} ;$$
$$\sigma_k = 0.12 \cdot 10^{-3}$$

3. Расчитаем коэффициент взаимной диффузии по формулам (1) и (2):

$$D = 0.00110 \cdot 7.0 \cdot \frac{360 \cdot 360}{360 + 360} = 1.39 \frac{\text{см}^2}{\text{с}} \; ;$$

$$\sigma_D = 1.39 \cdot \sqrt{\left(\frac{0.00012}{0.00110}\right)^2 + \left(\frac{0.5}{7.0}\right)^2 + \left(\frac{0.396}{180}\right)^2} = 0.18 \frac{\text{см}^2}{\text{с}}$$
 В итоге получим: $D_1 = 1.39 \pm 0.18 \frac{\text{см}^2}{\text{с}}$

Рис. 6: график при рабочем давлении 300 торр

2.7 Коэффициент диффузии при атмосферном давлении

D , $^{\mathrm{cm}^{2}}/_{\mathrm{c}}$	$P^{-1} \cdot 10^3, \frac{1}{\text{Topp}}$	$P^{-1} \cdot 10^5, 1/п$ а
5.86	25.0	18.75
1.96	10.0	7.50
1.72	6.7	5.00
1.23	5.0	3.75
1.39	3.3	2.50

1. Рассчитаем с помощью МНК коэффициент наклона графика :

$$k = \frac{\langle x \cdot y \rangle - \langle x \rangle \cdot \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = 29127$$

$$\sigma_k = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} = 2235$$

Рис. 7: график зависимости коэффициента диффузии от P^{-1}

2. Коэффициент диффузии при атмосферном давлении равен:

$$D=k\cdot\frac{1}{P_0}, \text{ где }P_0=101325 \text{ Па}$$

$$D=29127\cdot\frac{1}{101325}=0.287\,\frac{\text{см}^2}{\text{c}}$$

$$\sigma_D=\sigma_k\cdot\frac{1}{101325}=875.1\cdot\frac{1}{101325}=0.008\,\frac{\text{см}^2}{\text{c}}$$
 В итоге получим: $D=0.29\pm0.01\,\frac{\text{см}^2}{\text{c}}$

2.8 Длина свободного пробега

$$D=\frac{1}{3}\cdot\lambda\cdot \stackrel{-}{v}=\frac{1}{3}\cdot\lambda\cdot\sqrt{\frac{8\cdot k\cdot N_A\cdot T}{\pi\cdot\mu}},$$
 где μ - приведенная масса смеси.
$$\lambda=D\cdot 3\cdot\sqrt{\frac{\pi\cdot\mu}{8\cdot k\cdot N_A\cdot T}}=6.7\cdot 10^{-8}~\mathrm{M}$$

$$\sigma_{\lambda} = \sigma_{D} \cdot 3 \cdot \sqrt{\frac{\pi \cdot \mu}{8 \cdot k \cdot N_{A} \cdot T}} = 0.02 \cdot 10^{-4} \cdot 3 \cdot \sqrt{\frac{\pi \cdot 10^{-3} \cdot \frac{4 \cdot 29}{4 + 29}}{8 \cdot R \cdot 273}} = 2 \cdot 10^{-9} \text{ M}$$

В итоге получим: $\lambda = 6.7 \pm 0.2 \cdot 10^{-8}$ м

2.9 Эффективное сечение столкновений атомов гелия с частицами воздуха

$$\lambda = \frac{k \cdot T}{P_0 \cdot \sigma};$$

$$\sigma = \frac{k \cdot T}{P_0 \cdot \lambda} = \frac{k \cdot 273}{101325 \cdot 6.7 \cdot 10^{-8}} = 5.55 \cdot 10^{-19} \text{ m}^2$$

3 Сравнение полученных данных с теоретическими

- 1. Мы убедились что процесс диффузии подчиняется закону $\Delta n = \Delta n_0 \cdot e^{-t/\tau}$, так как графики в экспериментах представляют прямую в значениях погрешности;
- 2. Значение коэффициента диффузии 0.29 близко к табличному 0.62;
- 3. Полученные λ и σ порядково близки к аналогичным теоретическим значениям.