武汉大学 2008-2009 学年第二学期《高等数学 B2》考试试题

(B卷)

- 一、(18分) 1、将f() = x a r c xt a n \sqrt{x} n + 1 ² 展开为?的幂级数;
 - 2、指出该幂级数的收敛域;

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2-n)}$$
 的和.

- 二、(18分)设微分方程y'' + P(x) + Q(x) + Q(x)
 - 1、证明: $若^{1+P(-x)}$ Q \Rightarrow ,则方程有一特解y=x ,若P(-x+)x Q \Rightarrow ,则方程有一特解y=x 。
- 2、根据上面的结论, 求 (x y '' 1 x ' + y) = y 的通解和满足初始条件y(0=) 2', y = 0 的特解。
 - 3、求(x y''1-x''+y) = y 满足初始条件 $x \to 0$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ 的特解。
- $\iint_D \sqrt{\frac{1-x^2-}{1+x^2+}} d_2^3 x$ ι = 、 $(12\,

 eta)$ 计算 $\sqrt[3]{1+x^2+}$ $\sqrt[3]{y}$, 其中 D 是由圆周 x^2+ $\sqrt[3]{y}$ 及坐标轴所围成的在第一象限内的闭区域.
- 四、 $(10 \, f)$ 设 $z = f\left(x + y \times x\right)$, 其中函数 f 具有二阶连续的偏导数,求 $\frac{\partial^2 z}{\partial x \partial}$
- $\sum_{n=1}^{\infty} n! \frac{x^n}{n^n}$ 五、(10 分)求幂级数n=1 的收敛域(端点情形要讨论).
- 六、(12 分) 利用 Gauss (高斯) 公式 计算曲面积分 $(x^2y + z)y + z(y^2 + x)y + z d + x(z * y)d x \iota$

由各班学委收集, 学习部整理

七、(12 分)设 $\varphi(\pi)=1$,试确定函数 $\varphi(u)$,使得曲线积分 $\int_L [s \ ix \ \mathbf{n} \ \varphi(\)] \frac{\partial \psi}{\partial x} \ x + \varphi(\) d$

 $\pm x > 0$ 或在x < 0的域内与路径无关,并求由点 $A\left(1, \quad \right)_{\mathfrak{Y}} B\left(\pi, \quad \pi\right)$ 的上述积分 .

八、(8分) 判別级数
$$\sum_{n=1}^{\infty} \frac{\left(1\right)^{2} + !\left(\right)^{2} + 2!\left(\right) + 2! + 2! + 2!}{(2n)!}$$
 的敛散性.

武汉大学 2008—2009 学年第二学期《高等数学 B2》考试试题参考解答

(B卷)

一、(18分) (1). 将

展开为?的幂级数; (2). 指出该幂级数的收敛域;

(3). 求级数

的和.

解: 1、因为

,且

,所以,

由各班学委收集,学习部整理

由各班学委收集, 学习部整理

由各班学委收集, 学习部整理

由各班学委收集, 学习部整理

由各班学委收集, 学习部整理