?? pages

A trinomial pricing approach for quadratic interest rate model

Ismail Laachir

March 1, 2012

Premia 14

In the quadratic interest rate model, the evolution of the spot interest rate r(t) is described by the following SDE:

$$\begin{cases} dx(t) = (\alpha(t) - \beta x(t)) dt + \sigma dW(t), \\ r(t) = \frac{1}{2}x(t)^{2}, \\ x(0) = \sqrt{2r(0)}, \end{cases}$$

where β and σ are constants. α is a time-dependent function determinated by the values of β , σ and the curve of the s-maturity zero-coupon prices at time t=0. Notice that $(x(t), t \geq 0)$ is a gaussian process.

Hence the construction of a trinomial tree for quadratic model is similar to the one of Hull&White model. The only difference is that we have $r(t) = \frac{1}{2}x(t)^2$ in the first model and r(t) = x(t) in the second one.

For further information about the trinomial tree in Hull&White model, we send the reader to there.