Recap – Electrocyclic reaction

Cyclization of a **conjugated** polyene (**ring closing**)
Reverse process (**ring opening**)

- Outermost π bonds converted to σ bond and π bonds reorganized
- Classified based on the number of π electrons

4 e⁻ system

6 e⁻ system

Thermal conditions

- Draw ground state HOMO of butadiene (for 4n system)
 and hexatriene (for 4n+2 system)
- Determine mode of closure (dis/con)

Photochemical conditions

- Draw excited state HOMO of butadiene (for 4n system)
 and hexatriene (for 4n+2 system)
- Determine mode of closure (dis/con)

Recap – Electrocyclic Reactions

A pericyclic reaction can take place only if the symmetries of the reactant (**R**) MOs are the same as the symmetry of the product (**P**) MO

Based on electron count the same rules apply for the ring opening

System (no of	Mode of rotation	Allowedness of the reaction	
electrons)		Thermal	Photochemical
4 <i>n</i>	con	allowed	forbidden
4 <i>n</i>	dis	forbidden	allowed
4 <i>n</i> +2	con	forbidden	allowed
4 <i>n</i> +2	dis	allowed	forbidden

Activity

$$CH_3$$
 hv
 CH_3
 CH_3
 CH_3

$$\begin{array}{c} \text{CH}_3 \\ \text{Ph} \\ \hline \\ \text{CD}_3 \\ \end{array}$$

- Go to <u>www.menti.com</u>
 - Use code 3492 3318

Activity

(2E, 4Z, 6E)-2, 4, 6-octatriene

More Examples

Thermal isomerization of benzocyclobutene to *ortho* quinodimethane

Thermal valence isomerization of cycloheptatriene-norcaradiene

Interesting examples

Selectivity in rotation – called as torquoselectivity

Electrocyclic Reaction: Torquoselectivity

- Donor substituents prefer con—out mode
- p acceptor substituents prefer con—in mode

Electrocyclic Reaction: Torquoselectivity

More Practice Problems

disrotatory

Synthetic Applications

HO
$$\frac{H_2 \text{ Lindlar cat.}}{H_0}$$
 $\frac{\Delta}{Con}$? $\frac{\Delta}{Dis}$?

Synthesis of Endiandric acid

Cycloaddition Reactions

Involves the addition of two (or more) molecules to form a ring by transferring electrons from π bonds to form σ bonds

$$[2\pi + 2\pi]$$

$$[4\pi + 2\pi]$$

$$[4\pi + 6\pi]$$

$$[4\pi + 6\pi]$$

Classified by the number of π electrons interacting (shown in red)

Ease of Reaction

Ease with which a cycloaddition takes place thermally depends on number of π electrons involved

$$[4\pi + 2\pi] \xrightarrow{\Delta} \text{ Occurs readily}$$

$$[4\pi + 2\pi] \xrightarrow{\Delta} \text{ Occurs readily}$$

Diels-Alder a widely used reaction in organic synthesis

Why is this so ??

Interactions – Cycloaddition Reactions

Cycloadditions involve **facial** interactions and not **side by side** interactions

One face of 4π system

One face of 2π system

Modes of Facial Attack

A pi system may be attacked by two distinct ways.

- If attack is from the same face of pi system, then the reaction is suprafacial (s) on the pi system.
- If attack is on opposite faces of pi system, then the reaction is antarafacial (a) on the pi system.

Suprafacial attack

Antarafacial attack

Remember the Symmetry Rules?

A successful cycloaddition reaction -

The terminal π lobes of the reactants must have the correct symmetry for bonding to occur

Frontier Molecular Orbital Theory

When two reactants undergo the cycloaddition reaction HOMO of one reactant will interact with LUMO of the other.

Best interactions — Low HOMO-LUMO gap

Possibilities for Orbital Interactions

Remember - Facial interactions

Possibility One

Suprafacial – Suprafacial Interactions

Possibility 2 for Orbital Interactions

Suprafacial-Antarafacial interaction
Symmetry allowed but geometrically difficult

FMO Explanation – $[2\pi + 2\pi]$

Thermal Conditions

Geometric and steric constraints make this difficult

Difficult for thermal $[2\pi_s + 2\pi_a]$ cycloaddition to occur What happens under photochemical conditions?

FMO Explanation – $[2\pi + 2\pi]$

Thermal Conditions

Geometric and steric constraints make this difficult

Difficult for thermal $[2\pi_s + 2\pi_a]$ cycloaddition to occur What happens under photochemical conditions?

FMO Explanation – $[2\pi + 2\pi]$

Photochemical Conditions

Suprafacial $[2\pi_s + 2\pi_s]$

Photochemical $[2\pi_s + 2\pi_s]$ cycloaddition easier to occur

$[4\pi + 2\pi]$

For this course – Dienes – electron rich Dienophile – electron deficient

'Normal' electron demand Diel's Alder Reactions

Typically: $HOMO - e^{-}$ rich compd $LUMO - e^{-}$ deficient compd

In this case diene – HOMO and dienophile - LUMO

FMO Explanation – $[4\pi + 2\pi]$

Thermal Conditions

Easy for thermal $4\pi_s + 2\pi_s$ cycloaddition to occur

FMO Explanation – $[4\pi + 2\pi]$

Photochemical Conditions

Bonding (top face diene)

Bonding (bottom face diene)

Antarafacial $[4\pi_s + 2\pi_a]$ or $[4\pi_a + 2\pi_s]$

Photochemical $[4\pi+2\pi]$ cycloaddition not easy to occur

Selection Rules for Cycloaddition

System (total no. of	Mode of addition	Allowedness of the reaction	
electrons)		Thermal	Photochemical
4 <i>n</i>	s/s	forbidden	allowed
4 <i>n</i>	s/a	allowed	forbidden
4 <i>n</i> +2	s/s	allowed	forbidden
4 <i>n</i> +2	s/a	forbidden	allowed

(n = natural number)Since s/a mode is difficult to achieve mainly the s/s mode is observed

 $[2\pi + 2\pi]$ Cycloaddition

$2\pi + 2\pi$ Cycloaddition

$$\frac{hv}{direct} + \frac{hv}{direct} + \frac{hv}{direct} + the above products$$

$2\pi + 2\pi$ Intramolecular Cycloaddition

Interesting Synthetic Applications

pentaprismane

bishomohexaprismane

Provides access to strained caged compounds