Orthogonal Range Searching in 2D using Ball Inheritance

Mads Ravn

Computer Science, Aarhus University

2015

- Introduction
 - Orthogonal Range Searching
 - Previous data structures.

- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure

- Introduction
 - Orthogonal Range Searching
 - Previous data structures

- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure

Orthogonal Range Searching

Preleminaries

- Alle koordinater er unikke
- Rank space
- *n* er en potens af 2

Orthogonal Range Searching

Vi er givet n punkter fra \mathbb{R}^2 som vi ønsker at indsætte i en datastruktur sådan at vi kan svare effektivt på forespørgslen $q = [x_1, x_2] \times [y_1, y_2]$.

- Introduction
 - Orthogonal Range Searching
 - Previous data structures.

- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure

kd-træ

kd-træ

- $\mathcal{O}(n)$ plads
- $\mathcal{O}(\sqrt{n}+k)$ tid

Givet n punkter: Punkterne bliver sorteret efter x eller y på skift. Median bliver fundet og punkterne mindre end medianen bliver givet til venstre barn og punkterne højere end medianen bliver givet til højre barn. Et punkt per blad i træet.

Opbygning af kd-træ

Det $\lceil \frac{n}{2} \rceil$ 'te element bliver valgt som median. Dette element fungerer som en skille-linje mellem de to punkt-mængder. Medianen bliver låst fast på denne plads i arrayet.

Søgning i kd-træ

BISintro

Ball Inheritance Search, BIS, er en datastruktur bygget som en simplificering af den datastruktur chanetal laver i ARTIKEL

- Introduction
 - Orthogonal Range Searching
 - Previous data structures

- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure

• Vi er givet et perfekt balanceret søgetræ.

- Vi er givet et perfekt balanceret søgetræ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt.

- Vi er givet et perfekt balanceret søgetræ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt.
- Hver intern knude har en liste over hvilke af de bolde der er gået igennem som er blevet givet til venstre og højre barn.

- Vi er givet et perfekt balanceret søgetræ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt.
- Hver intern knude har en liste over hvilke af de bolde der er gået igennem som er blevet givet til venstre og højre barn.
- Vi kan nu følge en bold fra roden til et blad med lg n skridt.

- Vi er givet et perfekt balanceret søgetræ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt.
- Hver intern knude har en liste over hvilke af de bolde der er gået igennem som er blevet givet til venstre og højre barn.
- Vi kan nu følge en bold fra roden til et blad med lg n skridt.
- Det er $n \cdot \lg n$ bits.

- Vi er givet et perfekt balanceret søgetræ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt.
- Hver intern knude har en liste over hvilke af de bolde der er gået igennem som er blevet givet til venstre og højre barn.
- Vi kan nu følge en bold fra roden til et blad med lg n skridt.
- Det er $n \cdot \lg n$ bits.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved? Vi kan følge bolden

Faster Queries

Vis koncept, tid og plads her

LCA

Vis hvordan LCA virker og hvordan vi går ned og hvordan vi finder alle punkter mellem $[x_1, x_2]$.

yrange

Vis hvordan vi finder den korrekt y-range. Og hov, det her er jo netop det information vi skal bruge for at løse ball inheritance

- Introduction
 - Orthogonal Range Searching
 - Previous data structures

- 2 Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure

Ball Inheritance Search

Ball Inheritance Search Data Structure

- $\mathcal{O}(n)$ plads
- $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ tid, hvor $\epsilon > 0$ er en arbitrær lille konstant