1.(a)	Standard Form = (0.11) 2×24 = (14) 10
	Normalized 1 = (1.111) 2x24 = (30)10
	Denormalized n = (0:1111) xx24 = (15)10

(c) If the system has negative supports.

Maximum	Minimum	
C-1: (0.111), x24 =(14),0	-(0:111) 2×24 = -(14)10	
C-2: (1.11), x24 = (80),0	-(1711) 2 x 24 = - (30)10	
C-3: (0:111), X2" =(15),0	- (0.111) x 2" = -(15)10	

2. Consider the real number $\mathbf{x} = (6.235)_{10}$

2. (a)
$$\lambda = (6.235)_{10}$$

$$(b)_{10} = (110)_{2}$$

$$(c) \cdot 235)_{10} = (001111000)_{2}$$

$$(c) \cdot 235)_{10} = (10.001111000)_{2}$$

$$(c) \cdot 235)_{10} = (10.001111000)_{2}$$

$$(c) \cdot 235)_{10} = (110.001111000)_{2}$$

$$(d) \cdot 235)_{10} = (110.001111000)_{2}$$

$$(e) \cdot 235)_{10} = (110.001111000)_{2}$$

$$(e) \cdot 235)_{10} = (110.001111000)_{2}$$

$$(e) \cdot 235)_{10} = (110.001111000)_{2}$$

(b)
$$(6.255)_{10} = (110.001111000)_2$$

$$= (0.110001111000)_2 \times 2^3$$
When $m = 5$

$$(0.11000)_2$$

$$(0.11000)_2$$

$$(0.11000)_2 \times 2^3 = (6.2.5)_{10}$$

(c) For both
$$m=5$$
 and $m=6$, $\int l(x) = (6.25)_{10}$

$$\delta = \left| \frac{\int l(x) - x}{x} \right| = \left| \frac{6 \cdot 25 - 6 \cdot 235}{6 \cdot 235} \right| = 2 \cdot 4 |x|_{10}^{-3} (\text{approx.})$$

3.(a)
$$2x^{2} - 60x + 3 = 0$$

=> $x^{2} - 30x + \frac{3}{2} = 0$
 $\therefore x = \frac{-b \pm \sqrt{b^{2} - 40c}}{2a}$ | Herre,
 $b = -30$
 $c = 3/c$

Solving,

$$x_1 = \frac{30 + \sqrt{894}}{2} = 15 + 14.9499$$
 [upto $6 \le ... \le ..$

Now, 24 x x2 = 29.9499 x 0.0501000 = 1.50048 [upto 6sf]

: x4xx2 \$ 1.5

So, when roots are multiplied, loss of significance occours. as we subtracted two close numbers.

(b)
$$x_1 + x_2 = 29.9499 + 0.0501000$$

= 30 ... $x_1 + x_2 = -\frac{1}{2}$
 $x_1 \times x_2 = 29.9499 \times 0.0501000$
= 1.50048 ... $x_1 \times x_2 \neq \sqrt{a}$

(c)
$$x_1 x_2 = \frac{6}{2}$$

 $\Rightarrow x_2 = \frac{1.5}{25.7499} = 0.0500836 [upto 65]$