Lecture 22 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

Lecture 22: Introduction to Fourier Transforms

Fourier Transform of u(t)?

Fourier Transform of u(t)?

Method 1:
$$U(\omega) = \int_{-\infty}^{\infty} u(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-j\omega t}dt = \frac{-1}{j\omega} \left(e^{-j\omega t}\right)_{0}^{\infty}$$
 (Unsolvable)

Fourier Transform of u(t)?

Method 1:
$$U(\omega) = \int_{-\infty}^{\infty} u(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-j\omega t}dt = \frac{-1}{j\omega} \left(e^{-j\omega t}\right)_{0}^{\infty}$$
 (Unsolvable)

Method 2:

$$U(\omega) = F\{\lim_{a \to 0} (e^{-at}u(t))\} = \lim_{a \to 0} (F\{e^{-at}u(t)\}) = \lim_{a \to 0} \left(\frac{1}{a+j\omega}\right)$$

Fourier Transform of u(t)?

Method 1:
$$U(\omega) = \int_{-\infty}^{\infty} u(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-j\omega t}dt = \frac{-1}{j\omega} \left(e^{-j\omega t}\right)_{0}^{\infty}$$
 (Unsolvable)

Method 2:

$$U(\omega) = F\{\lim_{a \to 0} (e^{-at}u(t))\} = \lim_{a \to 0} (F\{e^{-at}u(t)\}) = \lim_{a \to 0} \left(\frac{1}{a+j\omega}\right)$$

Multiplying both numerator and denominator by $a - j\omega$

$$\lim_{a \to 0} \left(\frac{1}{a + j\omega} \right) = \lim_{a \to 0} \left(\frac{a - j\omega}{a^2 + \omega^2} \right) = \lim_{a \to 0} \left(\frac{a}{a^2 + \omega^2} \right) - \lim_{a \to 0} \left(\frac{j\omega}{a^2 + \omega^2} \right)$$

Area under the curve =
$$\int_{-\infty}^{\infty} \frac{a}{a^2 + \omega^2} d\omega = \pi$$
 (not a function of a)

Area under the curve = $\int_{-\infty}^{\infty} \frac{a}{a^2 + \omega^2} d\omega = \pi$ (not a function of a)

As $a \to 0$, the curve of $\frac{a}{a^2 + \omega^2}$ becomes narrower and narrower so that it results into a impulse at $\omega = 0$.

$$\lim_{a \to 0} \left(\frac{a}{a^2 + \omega^2} \right) = \pi \delta(\omega)$$

$$\lim_{a \to 0} \left(\frac{a}{a^2 + \omega^2} \right) = \pi \delta(\omega)$$

$$\lim_{a \to 0} \left(\frac{j\omega}{a^2 + \omega^2} \right) = \begin{cases} 0 & \text{when } \omega = 0 \\ \frac{j}{\omega} & \text{when } \omega \neq 0 \end{cases}$$

$$\lim_{a \to 0} \left(\frac{1}{a + j\omega} \right) = \lim_{a \to 0} \left(\frac{a}{a^2 + \omega^2} \right) - \lim_{a \to 0} \left(\frac{j\omega}{a^2 + \omega^2} \right) = \begin{cases} \pi \delta(\omega) & \text{when } \omega = 0 \\ \frac{1}{j\omega} & \text{when } \omega \neq 0 \end{cases}$$

$$u(t) \stackrel{F.T.}{\longleftrightarrow} \frac{1}{j\omega} + \pi \delta(\omega)$$

FT of
$$x(t) = rect\left(\frac{t}{T}\right)$$
?

FT of
$$x(t) = rect\left(\frac{t}{T}\right)$$
?

$$X(\omega) = \int_{-T/2}^{T/2} e^{-j\omega t} dt$$

$$X(\omega) = \frac{-1}{j\omega} \left[e^{-j\omega T/2} - e^{j\omega T/2} \right]$$

$$X(\omega) = \frac{2}{\omega 2j} \left[e^{j\omega T/2} - e^{-j\omega T/2} \right]$$

$$X(\omega) = \frac{2\sin(\omega T/2)}{\omega}$$

$$X(\omega) = \frac{T\sin(\omega T/2)}{\omega T/2}$$

$$X(\omega) = Tsinc(\omega T/2)$$

FT of
$$x(t) = rect\left(\frac{t}{T}\right)$$
?

Proof:
$$X(\omega) = \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-j\omega t} dt = T sinc\left(\frac{\omega T}{2}\right)$$

Proof:
$$X(\omega) = \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-j\omega t} dt = T sinc\left(\frac{\omega T}{2}\right)$$

What is the area of $Tsinc\left(\frac{\omega T}{2}\right)$?

What is the area of $Tsinc\left(\frac{\omega T}{2}\right)$?

$$Area = \frac{1}{2} \times \frac{4\pi}{T} \times T = 2\pi$$

Moments theorem

Synthesis:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

t = 0

Area of spectrum = $2\pi \times x(0)$

$$2\pi x(0) = \int_{-\infty}^{\infty} X(\omega) \ d\omega$$

Area of time domain signal = X(0)

Analysis:
$$X(\omega) = \int_{-\infty}^{\infty} x(\tau)e^{-j\omega\tau}d\tau$$

 $\omega = 0$

$$X(0) = \int_{-\infty}^{\infty} x(t) dt$$

Proof:
$$X(\omega) = \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-j\omega t} dt = T sinc\left(\frac{\omega T}{2}\right)$$

Try it yourself

What are W and A?

1)	$A = 4\pi \& W = 1$	2)	$A = 4\pi \& W = 2$
3)	$A = 2\pi \& W = 2$	4)	$A = 2\pi \& W = 1$

Fourier Transform of 1 is $X(\omega)$

How many statements are correct?

$1) X(\omega) = 2\pi\delta(\omega)$	$2) X(\omega) = 2\delta(\omega)$
3) $X(\omega) = \pi \delta(\omega)$	$4) X(\omega) = \delta(\omega)$

$$2\pi\delta(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} dt$$

$$2\pi\delta(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} dt$$

$$2\pi\delta(\omega - \omega_0) = \int_{-\infty}^{\infty} e^{-j(\omega - \omega_0)t} dt$$

$$2\pi\delta(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} dt$$

$$2\pi\delta(\omega - \omega_0) = \int_{-\infty}^{\infty} e^{-j(\omega - \omega_0)t} dt$$

$$2\pi\delta(\omega-\omega_0) = \int_{-\infty}^{\infty} e^{j\omega_0 t} e^{-j\omega t} dt$$

$$2\pi\delta(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} dt$$

$$2\pi\delta(\omega - \omega_0) = \int_{-\infty}^{\infty} e^{-j(\omega - \omega_0)t} dt$$

$$2\pi\delta(\omega-\omega_0) = \int_{-\infty}^{\infty} e^{j\omega_0 t} e^{-j\omega t} dt$$

$$2\pi\delta(\omega-\omega_0)=F[e^{j\omega_0t}]$$

Fourier Transform of sgn(t)?

where
$$sgn(t) = \begin{cases} 1 & t > 0 \\ -1 & t \le 0 \end{cases}$$

Fourier Transform of sgn(t)?

where
$$sgn(t) = \begin{cases} 1 & t > 0 \\ -1 & t \le 0 \end{cases}$$

Step 1:
$$sgn(t) = 2u(t) - 1$$

Step 2: F{sgn(t)}= F{2u(t) - 1} = 2(
$$\pi\delta(\omega) + \frac{1}{j\omega}$$
) - $2\pi\delta(\omega) = \frac{2}{j\omega}$

Note: Precisely, $F\{sgn(t)\}=\begin{cases} 0 & when \ \omega=0 \\ \frac{2}{j\omega} & when \ \omega\neq0 \end{cases}$ However, this expression is equivalent in

energy sense to above expression and thus both expressions are used.

Fourier Transform of sgn(t)?

where
$$sgn(t) = \begin{cases} 1 & t > 0 \\ -1 & t \le 0 \end{cases}$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
$$X(0) = \int_{-\infty}^{\infty} x(t)dt$$

$$F\{sgn(t)\} = \frac{2}{j\omega} \qquad F\{sgn(t)\} = \begin{cases} 0 & when \omega = 0\\ \frac{2}{j\omega} & when \omega \neq 0 \end{cases}$$

Fourier Transform of $\delta(t)$ is $X(\omega)$

How many statements are correct?

$1) X(\omega) = 1$	2) $ X(\omega) $ is an even function
$3) \angle X(\omega)$	4) $X(\omega)$ is a low pass filter
is an odd function	

Fourier Transform of $\delta(t)$ is $X(\omega)$

How many statements are correct?

$1) X(\omega) = 1$	2) $ X(\omega) $ is an even function
3) $\angle X(\omega)$	4) $X(\omega)$ is a low pass filter
is an odd function	

F. T. of Periodic Signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

F. T.
$$X(\omega) = \sum_{k=-\infty}^{\infty} a_k 2\pi \delta(\omega - k\omega_0)$$
 (F.T. of a periodic signal)

Spectrum is composed of impulses (Discrete spectrum).

In F. S. we plot a_k by k.

In F. T. we plot $X(\omega)$ by ω .

Draw the spectrum of $x(t) = cos(\omega_0 t)$.

$$\cos(\omega_0 t) = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$$

$$X(\omega) = \frac{1}{2} \times 2\pi \delta(\omega - \omega_0) + \frac{1}{2} \times 2\pi \delta(\omega + \omega_0)$$

$$X(\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

$$2\pi \times \frac{1}{2} = \pi$$

$$\uparrow X(\omega)$$

$$2\pi \times \frac{1}{2} = \pi$$

$$\uparrow \omega_0$$

$$\omega_0$$

Draw the spectrum of $x(t) = \sin(\omega_0 t)$.

$$\sin(\omega_0 t) = \frac{1}{2j} (e^{j\omega_0 t} - e^{-j\omega_0 t})$$

$$X(\omega) = \frac{1}{2j} \times 2\pi \delta(\omega - \omega_0) - \frac{1}{2j} \times 2\pi \delta(\omega + \omega_0)$$

$$X(\omega) = \frac{\pi}{j} \delta(\omega - \omega_0) - \frac{\pi}{j} \delta(\omega + \omega_0)$$

$$\uparrow^{X(\omega)} \qquad \uparrow^{\frac{\pi}{j}}$$

$$\frac{\pi}{j}$$

Fourier Transforms pairs

x(t)	$\mathbf{X}(\omega)$
$e^{-at}u(t)$, where $a>0$	$\frac{1}{a+j\omega}$
$e^{-a t }$, where $a>0$	$\frac{2a}{a^2 + \omega^2}$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$rect\left(\frac{t}{T}\right)$	$Tsinc\left(\frac{\omega T}{2}\right)$
$\frac{W}{2\pi}sinc\left(\frac{Wt}{2}\right)$	$rect\left(\frac{\omega}{W}\right)$

Fourier Transforms pairs

x(t)	$\mathbf{X}(\omega)$
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
sgn(t)	$\frac{2}{j\omega}$
$\frac{\delta(t-t_o)}{e^{-j\omega_0 t}}$	$e^{-j\omega t_o}$
$e^{-j\omega_0t}$	$2\pi\delta(\omega+\omega_0)$
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$\sum_{k=-\infty}^{\infty} a_k 2\pi \delta(\omega - k\omega_0)$