1 Introduction

We have the following facts about expressions with v_{11} :

- 1. $v_{11} \ge -v_2 \min\{v_1, v_3\}$
- 2. $p^{\min\{0,v_2+v_{11}\}} = \begin{cases} p^0 = 1 & v_{11} \ge -v_2 \\ p^{-j} & v_{11} = -v_2 j, \text{ where } j \ge 1 \end{cases}$
- 3. Following from the previous fact, we obtain that

$$p^{\min\{0,v_2+v_{11}\}}\mu(a_{11}) = \begin{cases} p^0p^{v_2} = p^{v_2} & v_{11} \ge -v_2 \\ p^{-j}(p^{v_2+j} - p^{v_2+j-1}) = p^{v_2}(1-p^{-1}) & v_{11} = -v_2 - j, \text{ where } j \ge 1 \end{cases}$$

- 4. $\alpha = \min\{\beta, v_{11} + v_2 + \gamma\}$, where $\beta = \min\{v_2, v_4\}$ and $\gamma = \max\{v_1, v_4\}$. Hence, we have the following settings:
 - (a) $\beta = v_2$ and $\gamma = v_1$ $\alpha = \begin{cases} v_2 & v_{11} \ge -v_1 \\ v_2 - j & v_{11} = -v_1 - j, \text{ where } j \ge 1 \end{cases}$
 - (b) $\beta = v_2 \text{ and } \gamma = v_4$ $\alpha = \begin{cases} v_2 & v_{11} \ge -v_4 \\ v_2 j & v_{11} = -v_4 j, \text{ where } j \ge 1 \end{cases}$
 - (c) $\beta = v_4 2$ and $\gamma = v_1$ $\alpha = \begin{cases} v_4 & v_{11} \ge v_4 v_1 v_2 \\ v_4 -j & v_{11} = v_4 v_2 v_1 j, \text{ where } j \ge 1 \end{cases}$
 - (d) $\beta = v_4 2$ and $\gamma = v_4 1$ $\alpha = \begin{cases} v_4 2 & v_{11} \ge -v_2 1 \\ v_4 2 - j & v_{11} = -v_2 1 - j, \text{ where } j \ge 1 \end{cases}$
- 1. $\min\{v_1, v_3\} = v_3, \min\{v_2, v_4\} = v_2, \max\{v_1, v_4\} = v_1$

Constraints

- (a) $v_{11} \ge -v_2 v_3$
- (b) $\alpha = \min\{v_2, v_2 + v_{11} + v_1\}$

Sub cases

(a)
$$v_1 \ge v_2 + v_3 \Rightarrow -v_2 - v_3 \ge -v_1$$

i. $p^{\min\{0, v_2 + v_{11}\}} \mu(a_{11}) = p^0 p^{v_2} + \sum_i^{v_3} p^{-i} (p^{v_2 + i} - p^{v_2 + i - 1}) = p^{v_2} + \sum_i^{v_3} p^{v_2} (1 - p^{-1}) = p^{v_2} (1 + v_3 (1 - p^{-1}))$

ii.
$$\alpha = \min\{v_2, v_2 + v_{11} + v_1\}$$
, and $v_{11} > -v_2 - v_3 \ge -v_1 \Rightarrow v_{11} + v_1 \ge 0 \Rightarrow v_2 \le v_2 + v_{11} + v_1 \Rightarrow \alpha = v_2$.

iii.
$$\Rightarrow S = p^{v_2}(1 + v_3(1 - p^{-1}))(1 + v_2(1 - p^{-1})).$$

(b)
$$v_1 < v_2 + v_3 \Rightarrow -v_2 - v_3 < -v_1$$

i.
$$p^{\min\{0,v_2+v_{11}\}}\mu(a_{11}) = \begin{cases} p^{v_2}(1+(v_1-v_2)(1-p^{-1})) & v_{11} \ge -v_1 \\ p^{v_2}(v_2+v_3-v_1)(1-p^{-1})) & -v_2-v_3 \le v_{11} \le -v_1 - 1 \end{cases}$$
ii.
$$\alpha = \begin{cases} v_2 & v_{11} \ge -v_1 \\ v_2+v_{11}+v_1 & -v_2-v_3 \le v_{11} \le -v_1 - 1 \end{cases}$$

$$\begin{aligned} &\text{ii. } & \alpha = \left\{ \begin{array}{l} v_2 & v_{11} \geq -v_1 \\ v_2 + v_{11} + v_1 & -v_2 - v_3 \leq v_{11} \leq -v_1 - 1 \end{array} \right. \\ &\text{iii. } & \Rightarrow S = \left\{ \begin{array}{l} p^{v_2} (1 + (v_1 - v_2)(1 - p^{-1}))(1 + v_2(1 - p^{-1})) & v_{11} \geq -v_1 \\ p^{v_2} [(v_2 - (v_1 - v_3))(1 - p^{-1}) + [\binom{v_2}{2} - \binom{v_1 - v_3}{2}](1 - p^{-1})^2] & -v_2 - v_3 \leq v_{11} \leq -v_1 - 1 \end{array} \right. . \end{aligned}$$

2. $\min\{v_1, v_3\} = v_3, \min\{v_2, v_4\} = v_2, \max\{v_1, v_4\} = v_4$

Constraints

- (a) $v_{11} \ge -v_2 v_3$
- (b) $\alpha = \min\{v_2, v_2 + v_{11} + v_4\}$

Sub cases

(a)
$$v_4 \ge v_2 + v_3 \Rightarrow -v_2 - v_3 \ge -v_4$$

i. $p^{\min\{0, v_2 + v_{11}\}} \mu(a_{11}) = p^0 p^{v_2} + \sum_i^{v_3} p^{-i} (p^{v_2 + i} - p^{v_2 + i - 1}) = p^{v_2} + \sum_i^{v_3} p^{v_2} (1 - p^{-1}) = p^{v_2} (1 + v_3 (1 - p^{-1}))$

ii. $\alpha = \min\{v_2, v_2 + v_{11} + v_4\}$, and $v_{11} > -v_2 - v_3 \ge -v_4 \Rightarrow v_{11} + v_1 \ge 0 \Rightarrow v_2 \le v_2 + v_{11} + v_4 \Rightarrow v_{11} + v_2 \ge 0$

iii.
$$\Rightarrow S = p^{v_2}(1 + v_3(1 - p^{-1}))(1 + v_2(1 - p^{-1})).$$

(b)
$$v_4 < v_2 + v_3 \Rightarrow -v_2 - v_3 < -v_4$$

$$\begin{split} &\text{i. } p^{\min\{0,v_2+v_{11}\}}\mu(a_{11}) = \left\{ \begin{array}{l} p^{v_2}(1+(v_4-v_2)(1-p^{-1})) & v_{11} \geq -v_4 \\ p^{v_2}(v_2+v_3-v_4)(1-p^{-1})) & -v_2-v_3 \leq v_{11} \leq -v_4-1 \end{array} \right. \\ &\text{ii. } \alpha = \left\{ \begin{array}{l} v_2 & v_{11} \geq -v_4 \\ v_2+v_{11}+v_4 & -v_2-v_3 \leq v_{11} \leq -v_4-1 \end{array} \right. \\ &\text{iii. } \Rightarrow S = \left\{ \begin{array}{l} p^{v_2}(1+(v_4-v_2)(1-p^{-1}))(1+v_2(1-p^{-1})) & v_{11} \geq -v_4 \\ p^{v_2}[(v_2-(v_4-v_3))(1-p^{-1})+[\binom{v_2}{2}-\binom{v_4-v_3}{2}](1-p^{-1})^2] & -v_2-v_3 \leq v_{11} \leq -v_4-1 \end{array} \right. \end{split}$$

iii.
$$\Rightarrow S = \begin{cases} p^{v_2} (1 + (v_4 - v_2)(1 - p^{-1}))(1 + v_2(1 - p^{-1})) & v_{11} \ge -v_4 \\ p^{v_2} [(v_2 - (v_4 - v_3))(1 - p^{-1}) + [\binom{v_2}{2} - \binom{v_4 - v_3}{2}](1 - p^{-1})^2] & -v_2 - v_3 \le v_{11} \le -v_4 - 1 \end{cases}$$

3. $\min\{v_1, v_3\} = v_3, \min\{v_2, v_4\} = v_4, \max\{v_1, v_4\} = v_1$

Constraints

- (a) $v_{11} \ge -v_2 v_3$
- (b) $\alpha = \min\{v_4, v_2 + v_{11} + v_1\}$

Sub cases

(a)
$$v_3 \le v_1 - v_4 \Rightarrow -v_3 \ge v_4 - v_1 \Rightarrow -v_2 - v_3 \ge v_4 - v_1 - v_2$$

i. $p^{\min\{0, v_2 + v_{11}\}} \mu(a_{11}) = p^0 p^{v_2} + \sum_i^{v_3} p^{-i} (p^{v_2 + i} - p^{v_2 + i - 1}) = p^{v_2} + \sum_i^{v_3} p^{v_2} (1 - p^{-1}) = p^{v_2} (1 + v_3 (1 - p^{-1}))$

ii.
$$\alpha = \min\{v_4, v_2 + v_{11} + v_1\}$$
, and $v_{11} \ge -v_2 - v_3 \ge v_4 - v_1 - v_2 \Rightarrow v_{11} + v_1 + v_2 \ge v_4 \Rightarrow \alpha = v_4$.
iii. $\Rightarrow S = p^{v_2}(1 + v_3(1 - p^{-1}))(1 + v_4(1 - p^{-1}))$.

(b)
$$v_3 > v_1 - v_4 \Rightarrow -v_3 < v_4 - v_1 \Rightarrow -v_2 - v_3 < v_4 - v_1 - v_2$$

i.
$$p^{\min\{0,v_2+v_{11}\}}\mu(a_{11}) = \begin{cases} p^{v_2}(1+(v_1-v_4)(1-p^{-1})) & v_{11} \geq v_4-v_1-v_2 \\ p^{v_2}(v_2+v_3-v_4)(1-p^{-1})) & -v_2-v_3 \leq v_{11} \leq v_4-v_1-v_2-1 \end{cases}$$

ii.
$$\alpha = \left\{ \begin{array}{ll} v_4 & v_{11} \geq v_4 - v_1 - v_2 \\ v_4 + v_{11} + v_1 & -v_2 - v_3 \leq v_{11} \leq v_4 - v_1 - v_2 - 1 \end{array} \right.$$

$$\begin{aligned} & \text{i. } p^{\min\{0,v_2+v_{11}\}}\mu(a_{11}) = \begin{cases} & p^{v_2}(1+(v_1-v_4)(1-p^{-1})) & v_{11} \geq v_4-v_1-v_2 \\ & p^{v_2}(v_2+v_3-v_4)(1-p^{-1})) & -v_2-v_3 \leq v_{11} \leq v_4-v_1-v_2 - 1 \end{cases} \\ & \text{ii. } \alpha = \begin{cases} & v_4 & v_{11} \geq v_4-v_1-v_2 \\ & v_4+v_{11}+v_1 & -v_2-v_3 \leq v_{11} \leq v_4-v_1-v_2 - 1 \end{cases} \\ & \text{iii. } \beta S = \begin{cases} & p^{v_2}(1+(v_1-v_4)(1-p^{-1}))(1+v_2(1-p^{-1})) & v_{11} \geq v_4-v_1-v_2 \\ & p^{v_2}[(v_2-(v_4-v_3))(1-p^{-1})+[\binom{v_4}{2}-\binom{v_1-v_3}{2}](1-p^{-1})^2] & -v_2-v_3 \leq v_{11} \leq v_4-v_1-v_2-1 \end{cases} . \end{aligned}$$

4. $\min\{v_1, v_3\} = v_3, \min\{v_2, v_4\} = v_4, \max\{v_1, v_4\} = v_4$

Constraints

- (a) $v_{11} \ge -v_2 v_3$
- (b) $\alpha = \min\{v_4, v_2 + v_{11} + v_4\}$

There are no sub cases here

(a)
$$p^{\min\{0, v_2 + v_{11}\}} \mu(a_{11}) = \begin{cases} p^0 p^{v_2} & v_{11} \ge -v_2 \\ p^{v_2} (v_3 (1 - p^{-1})) & -v_2 - v_3 \le v_{11} \le -v_2 - 1 \end{cases}$$

(b)
$$\alpha = \begin{cases} v_2 & v_{11} \ge -v_4 \\ v_2 + v_{11} + v_4 & -v_2 - v_3 \le v_{11} \le -v_4 - 1 \end{cases}$$

(b)
$$\alpha = \begin{cases} v_2 & v_{11} \ge -v_4 \\ v_2 + v_{11} + v_4 & -v_2 - v_3 \le v_{11} \le -v_4 - 1 \end{cases}$$

$$(c) \Rightarrow S = \begin{cases} p^{v_2} (1 + v_2 (1 - p^{-1})) & v_{11} \ge -v_2 \\ p^{v_2} [(v_3 - (v_1 - v_4))(1 - p^{-1}) + [\binom{v_4}{2} - \binom{v_1 - v_3}{2}](1 - p^{-1})^2] & -v_2 - v_3 \le v_{11} \le v_4 - v_1 - v_2 - 1 \end{cases}.$$

5. $\min\{v_1, v_3\} = v_1, \min\{v_2, v_4\} = v_2, \max\{v_1, v_4\} = v_1$

Constraints

- (a) $v_{11} \ge -v_2 v_1$
- (b) $\alpha = \min\{v_2, v_2 + v_{11} + v_1\}$

There are no sub cases here, because $-v_2 - v_1 \leq -v_1$

(a)
$$p^{\min\{0,v_2+v_{11}\}}\mu(a_{11}) = \begin{cases} p^{v_2}(1+(v_1-v_2)(1-p^{-1})) & v_{11} \ge -v_1 \\ p^{v_2}v_2(1-p^{-1})) & -v_2-v_1 \le v_{11} \le -v_1 - 1 \end{cases}$$

(b)
$$\alpha = \begin{cases} v_2 & v_{11} \ge -v_1 \\ v_2 + v_{11} + v_1 & -v_2 - v_1 \le v_{11} \le -v_1 - 1 \end{cases}$$

(b)
$$\alpha = \begin{cases} v_2 & v_{11} \ge -v_1 \\ v_2 + v_{11} + v_1 & -v_2 - v_1 \le v_{11} \le -v_1 - 1 \end{cases}$$

(c) $\Rightarrow S = \begin{cases} p^{v_2} (1 + (v_1 - v_4)(1 - p^{-1}))(1 + v_2(1 - p^{-1})) & v_{11} \ge -v_1 \\ p^{v_2} [v_2(1 - p^{-1}) + [\binom{v_2}{2}](1 - p^{-1})^2] & -v_2 - v_1 \le v_{11} \le -v_1 - 1 \end{cases}$.

6. $\min\{v_1, v_3\} = v_3, \min\{v_2, v_4\} = v_2, \max\{v_1, v_4\} = v_4$

Constraints

- (a) $v_{11} \ge -v_2 v_1$
- (b) $\alpha = \min\{v_2, v_2 + v_{11} + v_4\}$

Sub cases

(a)
$$v_2 + v_1 \le v_4 \Rightarrow -v_2 - v_1 \ge -v_4$$

i. $p^{\min\{0, v_2 + v_{11}\}} \mu(a_{11}) = p^0 p^{v_2} + \sum_i^{v_1} p^{-i} (p^{v_2 + i} - p^{v_2 + i - 1}) = p^{v_2} + \sum_i^{v_1} p^{v_2} (1 - p^{-1}) = p^{v_2} (1 + v_1 (1 - p^{-1}))$

ii.
$$\alpha = \min\{v_2, v_2 + v_{11} + v_4\}$$
, and $v_{11} \ge -v_2 - v_1 \ge -v_4 \Rightarrow v_{11} + v_4 + v_2 \ge v_2 \Rightarrow \alpha = v_2$.
iii. $\Rightarrow S = p^{v_2}(1 + v_1(1 - p^{-1}))(1 + v_2(1 - p^{-1}))$.

$$\begin{aligned} \text{(b)} \ \ v_2 + v_1 > v_4 \Rightarrow -v_4 > -v_2 - v_1 \\ \text{i.} \ \ p^{\min\{0,v_2 + v_{11}\}} \mu(a_{11}) &= \left\{ \begin{array}{l} p^{v_2} (1 + (v_4 - v_2)(1 - p^{-1})) & v_{11} \geq -v_4 \\ p^{v_2} (v_2 + v_1 - v_4)(1 - p^{-1})) & -v_2 - v_1 \leq v_{11} \leq -v_4 - 1 \end{array} \right. \\ \text{ii.} \ \ \alpha &= \left\{ \begin{array}{l} v_2 & v_{11} \geq -v_4 \\ v_2 + v_{11} + v_4 & -v_2 - v_1 \leq v_{11} \leq v_4 - v_1 \end{array} \right. \\ \text{iii.} \ \ \Rightarrow S &= \left\{ \begin{array}{l} p^{v_2} (1 + (v_4 - v_2)(1 - p^{-1}))(1 + v_2(1 - p^{-1})) & v_{11} \geq v_4 - v_1 - v_2 \\ p^{v_2} [(v_2 - (v_4 - v_3))(1 - p^{-1}) + [\binom{v_2}{2} - \binom{v_4 - v_1}{2}](1 - p^{-1})^2] & -v_2 - v_1 \leq v_{11} \leq -v_4 - 1 \end{array} \right. \end{aligned}$$

7. $\min\{v_1, v_3\} = v_1, \min\{v_2, v_4\} = v_4, \max\{v_1, v_4\} = v_1$

Constraints

- (a) $v_{11} \ge -v_2 v_1$
- (b) $\alpha = \min\{v_4, v_2 + v_{11} + v_1\}$

There are no sub cases here, because $-v_2 - v_1 \le v_4 - v_2 - v_1$

(a)
$$p^{\min\{0,v_2+v_{11}\}}\mu(a_{11}) = \begin{cases} p^{v_2}(1+(v_1-v_4)(1-p^{-1})) & v_{11} \ge v_4-v_2-v_1 \\ p^{v_2}v_4(1-p^{-1})) & -v_2-v_1 \le v_{11} \le v_4-v_2-v_1-1 \end{cases}$$

(b)
$$\alpha = \begin{cases} v_4 & v_{11} \ge v_4 - v_2 - v_1 \\ v_2 + v_{11} + v_1 & -v_2 - v_1 \le v_{11} \le v_4 - v_2 - v_1 - 1 \end{cases}$$

(b)
$$\alpha = \begin{cases} v_4 & v_{11} \ge v_4 - v_2 - v_1 \\ v_2 + v_{11} + v_1 & -v_2 - v_1 \le v_{11} \le v_4 - v_2 - v_1 - 1 \end{cases}$$

(c) $\Rightarrow S = \begin{cases} p^{v_2} (1 + (v_1 - v_4)(1 - p^{-1}))(1 + v_4(1 - p^{-1})) & v_{11} \ge v_4 - v_2 - v_1 \\ p^{v_2} [v_4(1 - p^{-1}) + [\binom{v_4}{2}](1 - p^{-1})^2] & -v_2 - v_1 \le v_{11} \le v_4 - v_2 - v_1 - 1 \end{cases}$.