Teoría de conjuntos

Clase 07

IIC 1253

Prof. Cristian Riveros

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Representación

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Representación

¿qué es un conjunto?

Definición

Un conjunto es una colección bien definida de objetos. Estos objetos son llamados elementos del conjunto y se dice que pertenecen a él.

Las siguiente nociones son primitivas y no requieren definición:

- Conjunto.
- Elemento del conjunto.
- Pertenecia (∈).

Definiremos la teoría de conjuntos a partir de estas nociones primitivas.

Nociones primitivas: pertenecia (€)

Si S es un conjunto y a es un objeto:

$$a \in S$$
 significa a es un elemento de S $a \notin S$ significa a NO es un elemento de S

Un conjunto esta completamente determinado por sus elementos.

Definición

Para definir un conjunto S en particular, es posible especificar sus elementos usando **llaves** como:

$$S = \{1,2,3\}$$

$$S' = \{0,1,2,\ldots\}$$

Nociones primitivas: conjunto y elementos de un conjunto

"En teoría de conjuntos, un objeto puede ser un conjunto."

Ejemplos

Suponga que $A = \{1,2\}$ y $B = \{1,\{1,2\}\}$

- ¿es cierto que 2 ∈ A?
- ¿es cierto que 2 ∈ B?
- ¿es cierto que $A \in B$?

¿es cierto que si $A \in B$ y $B \in C$, entonces $A \in C$?

Subconjunto (⊆)

Definición

Para dos conjuntos A y B, diremos que A es subconjunto de B si, y solo si:

$$\forall x. \ x \in A \rightarrow x \in B$$

Si A es subconjunto de B escribiremos $A \subseteq B$.

Ejemplos

- ¿es cierto que $\{1,2\} \subseteq \{1,2,3\}$?
- ¿es cierto que $\{1, \{2\}\} \subseteq \{1, 2\}$?
- ¿es cierto que $\{1,2\} \subseteq \{1,\{1,2\}\}$?

¿es cierto que si $A \subseteq B$ y $B \subseteq C$, entonces $A \subseteq C$?

Igualdad entre conjuntos (=)

Definición

Para dos conjuntos A y B, diremos que A es **igual** de B si, y solo si:

$$A \subseteq B$$
 y $B \subseteq A$.

Si A es igual a B escribiremos A = B. En otras palabras:

$$A = B$$
 si, y solo si, $\forall x. \ x \in A \leftrightarrow x \in B$

Ejemplos

- ¿es cierto que $\{1,2\} = \{2,1\}$?
- ¿es cierto que $\{1,2\} = \{\{1,2\}\}$?
- ¿es cierto que $\{1,2\} = \{1,1,2\}$?

¿es cierto que A = A para todo conjunto A?

Negación de subconjunto
$$(\not\equiv)$$
 e igualdad $(\not\equiv)$

Escribiremos la negación de la relación de subconjunto e igualdad como:

$$A \notin B$$
 si, y solo si, A **NO** es subconjunto de B

$$A \neq B$$
 si, y solo si, $A \text{ NO}$ es igual a B

¿qué debe suceder para que se cumpla A ⊈ B?

$$A \notin B$$
 si, y solo si, existe un $x \in A$ tal que $x \notin B$

¿qué debe suceder para que se cumpla A ≠ B?

$$A \neq B$$
 si, y solo si, $A \nsubseteq B$ o $B \nsubseteq A$

Conjunto vació

Definición (axioma)

Existe un conjunto \emptyset tal que para todo x se cumple que $x \notin \emptyset$.

$$\forall x. \ x \notin \emptyset$$

El conjunto Ø lo llamaremos el conjunto vació.

Proposición

Existe un único conjunto vacío.

Demostración

Por contradicción , suponga que existe un conjunto \varnothing' tal que:

- 1. $\forall x. \ x \notin \emptyset'$ y
- 2. $\emptyset' \neq \emptyset$.

Conjunto vació

Definición (axioma)

Existe un conjunto \varnothing tal que para todo x se cumple que $x \notin \varnothing$.

 $\forall x. \ x \notin \emptyset$

El conjunto Ø lo llamaremos el conjunto vació.

Proposición

Existe un único conjunto vacío.

¿es cierto que $\emptyset \in A$ para todo A? ¿ $\emptyset \subseteq A$ para todo A?

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Representación

Maneras de describir un conjunto

1. Por extensión: listando todos sus elementos.

$$S = \{1, 2, 3, 4, 5\}$$

2. Por comprensión: dando una "propiedad lógica" $\phi(x)$ que satisfacen solo los elementos del conjunto.

$$S = \{ x \mid \phi(x) \}$$

Maneras de describir un conjunto

¿cuáles son descripciones válidas?

- $S_1 = \{a, b, c, \ldots, x, y, z\}$
- $S_2 = \{1, 2, 3, \ldots\}$
- $S_4 = \{A \mid A \text{ es un conjunto con más de tres elementos}\}$
- $S_5 = \{B \mid B \in B\}$

¿existen descripciones inválidas en teoría de conjuntos?

Paradoja de Russell (1901)

Bertrand Russell (1872 - 1970)

Paradoja de Russell (1901)

Defina el siguiente conjunto:

$$S^* = \{B \mid B \notin B\}$$

¿es la definición de S^* válida?

 $i \ S^* \in S^* ?$

¿cuál es el problema de este tipo de descripciones?

Problema

"Considerar descripciones que se referencian a si mismas"

Moraleja: NO todas las descripciones son válidas en teoría de conjuntos.

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Representación

Operaciones sobre conjuntos

Definición

Se definen las siguientes operaciones entre conjuntos:

■ Union: $A \cup B$ son todos los elementos que están en A o en B.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

■ Intersección: $A \cap B$ todos los elem. que están en A y en B, simult..

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

Operaciones sobre conjuntos

Definición

Se definen las siguientes operaciones entre conjuntos:

Diferencia: $A \setminus B$ son todos los elem. que están en A pero no en B.

$$A \setminus B = \{ x \mid x \in A \land x \notin B \}$$

Complemento: A^c son todos los elementos que NO están en A.

$$A^c = \{x \mid x \notin A\}$$

(**relativo** a un universo \mathcal{U} tal que $A \subseteq \mathcal{U}$)

Operaciones sobre conjuntos

Ejemplos

Suponiendo que A = $\{1,2\}$ y B = $\{1,\{2\}\}$ con \mathcal{U} = $\{1,2,\{1\},\{2\}\}$:

- $A \cup B = \{1, 2, \{2\}\}$
- $\bullet A \cap B = \{1\}$
- $A \setminus B = \{2\}$
- $B \setminus A = \{\{2\}\}$
- $A^c = \{\{1\}, \{2\}\}$

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

1. Asociatividad:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

2. Conmutatividad:

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Demostración: ejercicio!

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

3. Idempotencia:

$$A \cup A = A$$

 $A \cap A = A$

4. Absorción:

$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

Demostración: ejercicio!

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

5. Distributividad:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

6. De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Demostraremos Distributividad (De Morgan es ejercicio)

Demostración:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Vamos a demostrar: $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.
(la otra dirección es similar)
Sea $x \in A \cup (B \cap C)$.
Por demostrar: $x \in (A \cup B) \cap (A \cup C)$
 $x \in A \cup (B \cap C) \implies x \in A \lor x \in B \cap C$ (por def.)
 $\Rightarrow x \in A \lor (x \in B \land x \in C)$ (por def.)
 $\Rightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C)$ (por def.)
 $\Rightarrow (x \in A \cup B) \land (x \in A \cup C)$ (por def.)
 $\Rightarrow x \in (A \cup B) \cap (A \cup C)$ (por def.)

Todas las propiedades son consecuencia de una equivalencia lógica!

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

7. Elemento neutro:

$$A \cup \varnothing = A$$

 $A \cap \mathcal{U} = A$

8. Dominación:

$$A \cup \mathcal{U} = \mathcal{U}$$

 $A \cap \emptyset = \emptyset$

Demostración: ejercicio!

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

9. Elemento inverso:

$$A \cup A^c = \mathcal{U}$$
$$A \cap A^c = \emptyset$$

Demostración: ejercicio!

Paréntesis y precedencia

Simplificación de operadores de conjuntos y parentésis

Desde ahora asumiremos el siguiente orden de precedencia entre operadores:

Operadores	Precedencia
·c	1
\cap	2
U	3

Ejemplo

$$P \cap Q^{c} \cup R \cap Q = ((P \cap (Q)^{c}) \cup (R \cap Q))$$

Definición

Para un conjunto ${\mathcal S}$, se definen las siguientes operaciones :

■ Union generalizada: $\bigcup S$ son todos los elementos que pertenecen a algún elemento de S.

$$\bigcup S = \{x \mid \exists A. \ A \in S \land x \in A\}$$

■ Intersección generalizada: $\bigcap S$ son todos los elementos que pertenecen a todos los elementos en S, simultaneamente.

$$\bigcap \mathcal{S} = \{ x \mid \forall A. \ A \in \mathcal{S} \to x \in A \}$$

Definición (alternativa)

Para un conjunto \mathcal{S} , se definen las siguientes operaciones:

Union generalizada:

$$\bigcup \mathcal{S} = \bigcup_{A \in \mathcal{S}} A$$

Intersección generalizada:

$$\bigcap \mathcal{S} = \bigcap_{A \in \mathcal{S}} A$$

Ejemplos

Suponiendo que $\mathcal{S} = \{\{1,2\},\{2,3\},\{2,4\}\}$:

- $\cup S = \{1, 2, 3, 4\}$

¿cuál es el conjunto $\bigcup \varnothing$? ¿ $\bigcap \varnothing$?

Caso especial

Si $S = \{A_1, A_2, \dots, A_k\}$, se definen las siguientes operaciones:

Union generalizada (conjunto indexado):

$$\bigcup S = \bigcup_{i=1}^k A_i$$

■ Intersección generalizada (conjunto indexado)

$$\bigcap \mathcal{S} = \bigcap_{i=1}^k A_i$$

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Representación

Conjunto potencia

Definición

Para un conjunto A, se define el **conjunto potencia** $\mathcal{P}(A)$ de todos los subconjuntos de A:

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

Ejemplo

Suponga que $A = \{1, 2, 3, 4\}$, entonces:

- ¿es cierto que $2 \in \mathcal{P}(A)$?
- ¿es cierto que $\{1,2\} \in \mathcal{P}(A)$?
- **■** ¿es cierto que $A \in \mathcal{P}(A)$?
- **■** ¿es cierto que $\emptyset \in \mathcal{P}(A)$?

¿cuál es el resultado de $\cup \mathcal{P}(A)$? ¿o de $\cap \mathcal{P}(A)$?

Conjunto potencia

Ejemplo 1

Para el conjunto $\{1,2\}$, ¿cuales son todos los elementos de $\mathcal{P}(\{1,2\})$?

(¿qué flecha estaría faltando?)

Conjunto potencia

Ejemplo 2

Para el conjunto $\{1,2,3\}$, ¿cuales son todos los elementos de $\mathcal{P}(\{1,2,3\})$?

Cardinalidad de un conjunto

Definición

Para todo conjunto A, se define el valor:

|A| = número de elementos distintos en A.

Ejemplo

- $|\{1,2\}| = 2$
- $|\{1,1,2\}| = 2$
- $|\{1,2,3,\ldots\}| = \infty$

¿para cuál conjunto se tiene que |A| = 0?

¿cuál es la cardinalidad de $\mathcal{P}(A)$?

Suponga $A = \{1, 2, ..., n\}$, ¿cuál es la **cardinalidad** de $\mathcal{P}(A)$ según n?

¿cuál es la cardinalidad de $\mathcal{P}(A)$?

Suponga $A = \{1, 2, ..., n\}$, ¿cuál es la **cardinalidad** de $\mathcal{P}(A)$ según n?

¿cuántos subconjuntos hay con k-elementos?

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

¿cuántos subconjuntos hay en total?

$$|\mathcal{P}(A)| = \sum_{k=0}^{n} \binom{n}{k}$$
 (suma sobre todos los niveles)
= $(1+1)^n = 2^n$ (teorema del binomio)

Teorema del binomio:
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} b^k$$

¿cuál es la cardinalidad de $\mathcal{P}(A)$?

Suponga $A = \{1, 2, ..., n\}$, ¿cuál es la **cardinalidad** de $\mathcal{P}(A)$ según n?

La cardinalidad de $\mathcal{P}(A)$ es:

$$|\mathcal{P}(A)| = 2^n$$

■ En adelante, usaremos la notación:

$$2^A$$
 = conjunto potencia de A

...en vez de $\mathcal{P}(A)$.

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Representación

Representación de conjuntos

Dado un universo finito \mathcal{U} .

¿cómo representamos y operamos los subconjuntos de $\mathcal U$ en un computador?

... podemos representarlos usando palabras de bits.

Bits y sus operaciones

■ Un bit es un símbolo que puede ser 0 o 1.

Las operaciones más comunes entre bits son OR, AND y NOT.

OR	0	1		AND	0	1	NOT	
0	0	1	-	0	0	0	0	1
1	1	1		1	0	1	1	0

Ejemplo

- (0 AND 1) OR 1 = 1
- 1 AND (0 OR (NOT 1)) = 0
- NOT ((0 OR 1) AND (1 AND 0)) = 1

Bits y sus operaciones

■ Una palabra (o string) de bits de largo n es una secuencia finita:

$$a_1 a_2 \dots a_n$$

tal que para todo $i \le n$ se cumple $a_i \in \{0, 1\}$.

Si $u = a_1 \dots a_n$ y $v = b_1 \dots b_n$ son dos palabras de bits entonces:

$$u \text{ OR } v = (a_1 \text{ OR } b_1)(a_2 \text{ OR } b_2) \dots (a_n \text{ OR } b_n)$$
 $u \text{ AND } v = (a_1 \text{ AND } b_1)(a_2 \text{ AND } b_2) \dots (a_n \text{ AND } b_n)$
 $\text{NOT } u = (\text{NOT } a_1)(\text{NOT } a_2) \dots (\text{NOT } a_n)$

Ejemplo

- 0011011 OR 1011010 = 1011011
- 0011011 AND 1011010 = 0011010
- NOT 0011011 = 1100100

Considere un universo \mathcal{U} finito con n elementos tal que:

$$\mathcal{U} = \{e_1, e_2, \dots, e_n\}$$

donde e_1, e_2, \ldots, e_n es un orden arbitrario de los elementos de \mathcal{U} .

Definición

Para un conjunto $S \subseteq \mathcal{U}$, definimos su representación como palabra de bit

$$\mathsf{bits}(S) = a_1 a_2 \dots a_n$$

tal que:

$$a_i = \begin{cases} 1 & \text{si } e_i \in S \\ 0 & \text{si } e_i \notin S \end{cases} \quad \text{para todo } 1 \le i \le n$$

Ejemplo

Suponga que \mathcal{U} = $\{1,2,3,4,5,6,7,8\}.$

- $\bullet bits(\{2,4,6,8\}) = 01010101$
- \bullet bits($\{1,4,7\}$) = 10010010
- $\bullet \mathsf{bits}(\varnothing) = 00000000$
- \bullet bits(U) = 11111111

¿cómo representamos las operaciones de conjuntos con palabras de bits?

Para $S \subseteq \mathcal{U}$ y $T \subseteq \mathcal{U}$, si bits(S) y bits(T) son las representaciones en palabras de bits de S y T, entonces:

- bits $(S \cup T)$ = bits(S) OR bits(T)
- bits $(S \cap T)$ = bits(S) AND bits(T)
- ullet bits (S^c) = NOT bits(S)

Ejemplo

Suponga que $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8\}$ tal que:

```
bits(\{2,4,6,8\}) = 01010101
bits(\{1,4,7\}) = 10010010
```

- \blacksquare ¿cuál es la representación de $\{2,4,6,8\} \cup \{1,4,7\}?$
- ¿cuál es la representación de $\{2,4,6,8\} \cap \{1,4,7\}$?
- ¿cuál es la representación de {2,4,6,8}°?

Representación binaria y conjunto potencia

Sea \mathcal{U} un conjunto finito con n elementos.

Propiedad

"Para cada conjunto $X \in 2^{\mathcal{U}}$ se asocia una única palabra de bits de largo n y vice-versa"

¿cómo podemos usar esta propiedad para calcular la cardinalidad de $2^{\mathcal{U}}$?