

Autumn Examinations 2011/2012

Exam Code(s) 3IF1

Exam(s) Third Year Examination in Information Technology

Module Code(s) CT332

Module(s) Database Systems II

Paper No. Repeat Paper

Discipline(s) Information Technology

Course Co-ordinator(s)

Internal Examiner(s) Professor G. Lyons

Dr. M. Madden Dr C O'Riordan*

External Examiner(s) Professor M. O'Boyle

No. of Pages 3

Duration 3 hours

Instructions: Attempt any 3 questions.

All questions will be marked equally.

Requirements:

MCQ Handout Statistical/ Log Tables Cambridge Tables Graph Paper Log Graph Paper Other Materials

Release to Library: Yes

PTO

Q.1.	i)	Discuss the property	ties of a well designed	relational schema.	(6)
	ii)	With respect to EER diagrams, explain the term <i>specialisation</i> . Describe the different types of specialisation and propose an appropriate mapping to a relational schema for each specialisation. It appropriate examples in your answer.			
	iii)	Given $R = \{A, B, C, D, E, F, G, H, I\}$ and the following functional dependencies:			al
		decompose R to a s	set of relations such tha	nt all relations satisfy BO	CNF. (8)
	iv)	Explain, with the use of an example, the meaning of the term <i>non-additive join</i> . Illustrate, with an example, how one might test if a relational schema has the <i>non-additive join</i> property.			(8)
Q.2.	i)	What is meant by <i>conflict-serializability</i> . For either two-phase lockin or timestamping, show how conflict-serializability is guaranteed. (19)			
	ii)	Show how the following schedule would proceed under two phase locking <i>or</i> time-stamping.			
		Ta	Tb	Tc	
				read_item(X) read_item(Y)	
			<pre>read_item(Y) read_item(Z)</pre>	_ (/	
		read_item(X) read_item(Z)			
		(2)	write_item(Y)		
		write_item(Z)		write_item(X)	(10)
	iii)	Explain the recovery process for a system operating under the			

Explain the recovery process for a system operating under the immediate update protocol. Suggest how the principles underlying the recovery mechanism can be extended to operate in a distributed database. (13)

<u>PTO</u>

Q.3. i) Given the following company database schema:

EMPLOYEE: <u>SSN</u>, Fname, Lname, Salary, Address, Age, Dno

DEPARTMENT: <u>Dno</u>, Dname, Description

DEPT_LOCN: <u>Dno, DLocation</u>

PROJECT: Pno, Pname, Budget, Proj_Desc, Plocation

WORKS_ON: SSN, Pno, Hours

provide an SQL query for the following:

List all employees (Fname, Lname) who work for a department based in "Dublin" *or* who have worked more than 10 hours on a project located in "Dublin". (4)

Outline the process of heuristic optimisation. Develop an operator tree that represents an efficient evaluation strategy for the above query.(16)

- ii) Discuss in detail the structure of a B+ tree. Explain, with the aid of an example how a B+ tree grows when new data is added. Discuss the efficiency of a B+ tree. (13)
- Q.4. i) In parallel databases, relations may be distributed in different ways. These include *round-robin based approaches*, *hashing based approaches* and via the use of a *partitioning vector*. Describe these approaches and discuss their suitability for different types of queries.

(8)

- ii) Given a parallel database, suggest an efficient means to execute a *sort* operation on a relation. (9)
- iii) With respect to Datalog, explain, with suitable examples, the notion of rule-safety. (8)
- iv) With a schema of your choice, show how the relational operators can be implemented in Datalog. (8)