A search for new physics at the LHC: top partners into same-sign leptons.

Matteo Abis matteo.abis@cern.ch

Università di Padova and CERN

June 10, 2012

Physics beyond the Standard Model

- What is the Standard Model of particle physics?
- Why do physicists like it?
- Why are we not completely satisfied with it?

Modern physics and the Standard Model

Simmetry

Let's review it in "old" physics first.

What was "old" physics like?

- $\textbf{ 2} \ \, \mathsf{potential} \to \mathsf{simmetries} \to \mathsf{simple} \,\, \mathsf{equations} \to \mathsf{happy} \,\, \mathsf{physicists!}$

What was "old" physics like?

- **1** Theory + experiment \longrightarrow force or potential energy.
- $oldsymbol{2}$ potential o simmetries o simple equations o happy physicists!

Gravity

What was "old" physics like?

- lacktriangledown Theory + experiment \longrightarrow force or potential energy.
- $oldsymbol{2}$ potential o simmetries o simple equations o happy physicists!

Gravity

Depends only on the distance r, simmetry under rotations.

Angular momentum is constant.

Easy equation, the orbits are ellipses.

Simmetries and modern physics

A first success: the birth of special relativity

Look! Your equations have more simmetries than we expected!

$$abla \cdot \vec{E} = \rho$$

$$abla \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \vec{J}$$
...

Simmetries and modern physics

A first success: the birth of special relativity

Look! Your equations have more simmetries than we expected!

$$abla \cdot \vec{E} = \rho$$

$$abla \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \vec{J}$$
...

Lorentz transformations

- space and time translations;
- space rotations;
- Lorentz boosts: $t' = \frac{t vx/c^2}{\sqrt{1 v^2/c^2}}$.

Simmetries first!

- Space and time are homogeneous: no privileged points.
- Space is isotropic: no privileged direction.

What is the most general physical theory compatible with these requirements?

Simmetries first!

- Space and time are homogeneous: no privileged points.
- Space is isotropic: no privileged direction.

What is the most general physical theory compatible with these requirements?

Relativistic mechanics!

$$E = mc^2$$

Unification of mechanics and electromagnetism, under the same simmetry principle.

Goal

Unification and full description of electromagnetic, weak nuclear force, and strong nuclear force.

3 symmetry principle. $[SU(3) \times SU(2) \times U(1)]$ invariance];

Goal

Unification and full description of electromagnetic, weak nuclear force, and strong nuclear force.

- **①** symmetry principle. $[SU(3) \times SU(2) \times U(1)]$ invariance;
- 2 particles: what is the universe made of?

Goal

Unification and full description of electromagnetic, weak nuclear force, and strong nuclear force.

- symmetry principle. $[SU(3) \times SU(2) \times U(1) \text{ invariance}];$
- particles: what is the universe made of?

Goal

Unification and full description of electromagnetic, weak nuclear force, and strong nuclear force.

- symmetry principle. $[SU(3) \times SU(2) \times U(1)]$ invariance,
- particles: what is the universe made of?

Why do physicists like the Standard Model?

Theory

Very few and simple premises, simmetry principles. Unbelievable predicting power for all kind of phenomena.

Experiment

$$g_{\text{exp}}/2 = 1.001\,159\,652\,180\,85(76)$$

 $g_{\text{th}}/2 = 1.001\,159\,652\,177\,60(520)$

- Incredible experimental precision: less than one part per trillion.
- Unmatched agreement between theory and experiment.

The Large Hadron Collider

pp collisions

The ultimate test for the Standard Model.

The Compact Muon Solenoid

Also known as the CMS detector

Tracker silicon detectors for the particle momentum; Calorimeters scintillators for the energy; μ detectors only muons get this far.

Shortcomings of the Standard Model

The hierarchy problem

- Why three generations?
- Why this enormous mass difference?

Nature for the physicist

Beauty \rightarrow similar masses. They now span five orders of magnitude!

Top partners

Extending the Standard Model

Common prediction

New, unknown particles giving part of their mass to the heavy quarks.

Large masses for a good reason \longrightarrow happy physicists!

The hunt for the top partners

We are looking for their murder scene signature

Decay products

- two same-sign electrons or muons;
- many jets (at least four);
- large mass \rightarrow large energy.

Quarks and jets

The strong nuclear force and quark confinement

Jet

A group of particles moving in the same direction. It is the result of the production of quarks.

Quarks and jets

The strong nuclear force and quark confinement

Jet

A group of particles moving in the same direction. It is the result of the production of quarks.

- Force increasing with distance between quarks. Like a spring.
- When energy of the spring $> mc^2$ a new quark is created.
- Quarks are confined in particles with zero net strong charge.

Quarks and jets

What you see in the detector

Signal vs background

True background: other Standard Model particles decaying in the same way.

Fake background: charge misidentification, leptons coming from secondary decays.

The data analysis

Signal is extremely small! A handful of events out of 40 trillions of collisions.

Selections

Find the best variables for signal/background discrimination. Careful checks with Monte Carlo simulations.

Example: H_T

The momentum of the jets in the event, in a plane perpendicular to the beam line.

Do the top partners exist?

Excluded at 95% CL for masses below 655 GeV/ c^2 .