

Adversarial Search and Games

ARTIFICIAL INTELLIGENCE
JUCHEOL MOON

1

Tic-Tac-Toe

•2-player, deterministic, turns

3

The MaxMax game

•In a two-player game with players X and Y, a vector $\langle v_X, v_Y \rangle$ is associated with each node.

5

Games vs. search problems

- •"Unpredictable" opponent
- •solution is a strategy specifying a move for every possible opponent reply
- •Time limits
- •unlikely to find goal, must approximate
- ■Tic-Tac-Toe
- https://www.math10.com/en/math-games/tic-tactoe/tic-tac-toe.html

2

The MinMax game

- •The possible moves for MAX at the root node are labeled a_1 , a_2 , and a_3 .
- ${}^{\bullet}\text{This}$ particular game ends after one move each by MAX and MIN

4

Multiplayer games (MaxMaxMax game?)

•In a three-player game with players A, B, and C, a vector (v_A, v_B, v_C) is associated with each node.

6

IBM DeepBlue

Pruning

•Is it possible to compute the correct minimax decision without looking at every node in the game tree?

8

$\alpha - \beta$ pruning

7

 $\alpha - \beta$ pruning

9 10

Properties of $\alpha - \beta$?

- ullet lpha is the best value (to max) found so far off the current path
- •If V is worse than α , max will avoid it MAX
- •Similarly for β and min
- •Pruning (does / does not) affect final result

11

11