EXAMENUL DE BACALAUREAT – 2011 Proba E. c) Probă scrisă la MATEMATICĂ

Model

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

BAREM DE EVALUARE ȘI DE NOTARE

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

SUB	IECTULI	(30 de puncte)
1.	$-1 \le \frac{x+1}{3} < 1 \Leftrightarrow -3 \le x+1 < 3$	2p
	$-4 \le x < 2$	2 p
	$x \in \mathbb{Z} \Rightarrow x \in \{-4, -3, -2, -1, 0, 1\}$	1p
2.	$f(x) = g(x) \Rightarrow 2x - 1 = x^2 - 2x + 3$	1p
	$\Rightarrow x^2 - 4x + 4 = 0 \Rightarrow x = 2$	2p
	punctul de intersecție este $A(2,3)$	2 p
3.	$\sqrt{2-x} = 2-x$	1p
	Condiție $2-x \ge 0 \Rightarrow x \in (-\infty, 2]$	1p
	Ecuația dată este echivalentă cu: $2-x=4-4x+x^2 \Leftrightarrow x^2-3x+2=0$	2 p
	$x \in \{1, 2\}$	1p
4.	$P_5 = 5! = 120, C_5^2 = \frac{5!}{2!3!} = 10, A_6^2 = \frac{6!}{4!} = 30$	3p
	$\frac{P_5}{C_5^2 + A_6^2} = \frac{120}{40} = 3$	2 p
5.	$\frac{y-3}{0-3} = \frac{x-2}{-1-2}$	3p
	v 5 1 2	2p
	Ecuația dreptei $AB: y = x + 1$	-P
6.	Prin aplicarea teoremei cosinusului în triunghiul MNP se obține	
	$NP^2 = MN^2 + MP^2 - 2MN \cdot MP \cdot \cos(\ll NMP)$	2p
	$\cos 120^{\circ} = -\frac{1}{2} \Rightarrow NP^2 = 19 \Rightarrow NP = \sqrt{19}$	2p
	Perimetrul este egal cu $5 + \sqrt{19}$	1p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}$	2p
	$\begin{vmatrix} 0 & 1 \\ = 1 - 0 = 1 \end{vmatrix}$	3 p

b)	$A^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$	2p
	$A^{2} - 2A + I_{2} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} - 2\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$	2p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	1р
c)	$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow X^2 = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix}$	1p
	$\begin{cases} a^2 + bc = 1 \\ b(a+d) = 2 \end{cases} \begin{cases} a^2 + bc = 1 \\ a - d \end{cases} \begin{cases} a^2 = 1 \\ a - d \end{cases}$	
	$X^{2} = A \Leftrightarrow \begin{cases} a^{2} + bc = 1 \\ b(a+d) = 2 \\ c(a+d) = 0 \\ d^{2} + bc = 1 \end{cases} \Leftrightarrow \begin{cases} a^{2} + bc = 1 \\ a = d \\ ab = 1 \\ c = 0 \end{cases} \Leftrightarrow \begin{cases} a^{2} = 1 \\ a = d \\ ab = 1 \\ c = 0 \end{cases}$	3p
	Se obțin soluțiile $X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$	1p
2.a)	(x-3)(y-3)+3=xy-3x-3y+9+3	3p
	$= x * y, \forall x, y \in \mathbb{R}$	2p
b)	$x * x = 19 \Rightarrow (x-3)^2 + 3 = 19$	2p
	$(x-3)^2 = 16 \Rightarrow x \in \{-1,7\}$	3p
c)	$x*3=3*x=3, \forall x \in \mathbb{R}$	2p
	$\sqrt[3]{1} * \sqrt[3]{2} * \dots * \sqrt[3]{2011} = \left(\sqrt[3]{1} * \sqrt[3]{2} * \dots * \sqrt[3]{26}\right) * 3 * \left(\sqrt[3]{28} * \sqrt[3]{29} * \dots * \sqrt[3]{2011}\right)$	2p
	= 3	1p
SUBIECTUL al III-lea (30 de pur		te)

 $f'(x) = (e^x - x)' = e^x - 1$ 3p $f'(x) - f(x) = (e^x - 1) - (e^x - x) = x - 1$ **b)** y - f(0) = f'(0)(x - 0)2p 2p f(0)=1, f'(0)=02p 1p Ecuația tangentei este y = 1 $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{e^x - x}{x} = -1$ 2p 2p $\lim_{x \to -\infty} (f(x) + x) = \lim_{x \to -\infty} e^x = 0$ Ecuația asimptotei este y = -x1p $\int_{1}^{e} \left(f(x) - \frac{1}{x+1} \right) dx = \int_{1}^{e} \frac{1}{x} dx$ 2.a) 2p

2p

1p

 $=\ln x\Big|_1^e$

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

b)	$A = \int_{1}^{2} \left f(x) \right \mathrm{d}x =$	2p
		2p
	$ \left = \left(\ln x + \ln \left(x + 1 \right) \right) \right _{1}^{2} = $ $= \ln 3 $	1p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx =$	1p
	$= \pi \int_{1}^{2} \left(\frac{1}{x^{2}} + \frac{1}{(x+1)^{2}} + \frac{2}{x(x+1)} \right) dx =$	1p
	$ = \pi \left(-\frac{1}{x} - \frac{1}{x+1} + 2\ln\frac{x}{x+1} \right) \Big _{1}^{2} = $	2p
	$=\pi\left(\frac{2}{3}+2\ln\frac{4}{3}\right)$	1p