$$\varepsilon_{r} = \varepsilon_{0}^{r} \left(\frac{M_{water} - \sum_{i}^{n_{cat}} w_{i} C_{i}}{M_{water}} \right) + \varepsilon_{r}^{min} \left(\frac{\sum_{i}^{n_{cat}} w_{i} C_{i}}{M_{water}} \right)$$

The relative permittivity varies with cation concentration

 ε_0^r the relative permittivity 80.1

 $arepsilon_r^{min}$ the dielectric constant of water under the condition of dielectric saturation,

6

 $\it M_{water}$ the molarity of water at room temperature taken as 55 M

 w_i the total number of water molecules held by the ion i

Constant	Value
w_{K+}	4
W_{Li+}	5
w_{Na+}	5
w_{Cs+}	3
w_{H+}	10

Reference

Energy Environ. Sci., 2019,12, 3380-3389