Εργαστηριακή Άσκηση 5

ΧΡΗΣΤΟΣ ΚΟΥΤΟΥΛΗΣ ΑΜ:5064 ΜΑΡΙΑ ΚΑΤΩΛΗ, ΑΜ:5083 ΟΜΑΔΑ 18

Μέρος 1°: Συνδυαστικά κυκλώματα

Ερώτημα 1°

Ο κώδικας για τον πολυπλέκτη 4 σε 1:

Η εξομοίωση:

Ερώτημα 2°:

Ο κώδικας για τον πολυπλέκτη 16 σε 1:

```
library IEEE;
       use IEEE.std logic 1164.all;
      ⊟entity MUX16_1 is
     end MUX16_1;
10 ⊟architecture
                             RTL of MUX16 1 is
     Batchreecter Wir of MoX10_1 is

Bcomponent MUX4_1

Bport ( D: in std_logic_vector (3 downto 0);

SEL: in std_logic_vector (1 downto 0);

Y: out std_logic_);
11
       end component;
        signal F:
                              std_logic_vector (3 downto 0);
16
       begin
17
                                                                               0), SEL => SEL(1 downto 0), Y => F(0));
4), SEL => SEL(1 downto 0), Y => F(1));
8), SEL => SEL(1 downto 0), Y => F(2));
12), SEL => SEL(1 downto 0), Y => F(3));
0), SEL => SEL(3 downto 2), Y => Y);
18
       u0: MUX4_1
                                               (D \Rightarrow D(3)
                                                                  downto
                              port map
               MUX4_1
        u1:
                              port map
                                               (D \Rightarrow D(7)
                                                                  downto
      u2: MUX4_1
u3: MUX4_1
u4: MUX4_1
                            port map (D => D(11 downto 8),
port map (D => D(15 downto 12),
port map (D => F(3 downto 0),
20
21
22
                MUX4_1
23
      end RTL;
```

Η εξομοίωση:

Η μέγιστη καθυστέρηση είναι 12.247ns:

	Input Port	Output Port	RR	RF	FR	FF
1	D[0]	Y	11.859	11.859	11.859	11.859
2	D[1]	Y	11.451	111003	111003	11.451
3	D[2]	Y	11.673	11.673	11.673	11.673
4	D[3]	Υ	11.170			11.170
5	D[4]	Υ	11.852	11.852	11.852	11.852
6	D[5]	Υ	12.155	12.155	12.155	12.155
7	D[6]	Υ	8.937			8.937
8	D[7]	Υ	11.743			11.743
9	D[8]	Υ	11.621	11.621	11.621	11.621
10	D[9]	Υ	11.452			11.452
11	D[10]	Y	11.756			11.756
12	D[11]	Y	11.090			11.090
13	D[12]	Y	11.636	11.636	11.636	11.636
14	D[13]	Y	11.813			11.813
15	D[14]	Y	11.957			11.957
16	D[15]	Y	11.809			11.809
17	SEL[0]	Y	12.247	12.247	12.247	12.247
18	SEL[1]	Y	9.476	9.476	9.476	9.476
19	SEL[2]	Υ	11.246	11.246	11.246	11.246
20	SEL[3]	Υ	11.221	11.707	11.707	11.221

Ερώτημα 3°:

Ο κώδικας για τον πλήρη αθροιστή:

```
library IEEE;
2
   use IEEE.std_logic_1164.all;
  ⊟entity FULLADDER is
   ⊟port (A,B,Cin : in std logic;
5
         Y, Cout: out std logic);
6
   end FULLADDER;
7
9
  ⊟begin
10
   Y<= (A XOR B) XOR Cin;
11
    Cout<=((A XOR B) AND Cin) OR (A AND B);
   Lend behaviour;
12
13
```

Ο κώδικας για τον αθροιστή 8 δυαδικών ψηφίων:

```
1
    library IEEE;
    use IEEE.std_logic_1164.all;
 3  entity Adder8 is
   ⊟port ( A, B:
                       in std_logic_vector (7 downto 0);
      Cin : in std logic;
 6
       Y: out std_logic_vector (7 downto 0);
       Cout: out std logic );
8
   Lend Adder8;
9
10 Earchitecture RTL of Adder8 is
12
   ⊟port (A,B,Cin : in std logic;
          Y, Cout: out std_logic);
13
14
    end component;
15
    signal F: std logic vector (6 downto 0);
16
     begin
17
       u0: FULLADDER port map(A(0),B(0),Cin,Y(0),F(0));
18
       u1: FULLADDER port map(A(1),B(1),F(0),Y(1),F(1));
19
       u2: FULLADDER port map(A(2),B(2),F(1),Y(2),F(2));
20
       u3: FULLADDER port map(A(3),B(3),F(2),Y(3),F(3));
21
       u4: FULLADDER port map(A(4),B(4),F(3),Y(4),F(4));
       u5: FULLADDER port map(A(5),B(5),F(4),Y(5),F(5));
22
23
       u6: FULLADDER port map(A(6),B(6),F(5),Y(6),F(6));
24
       u7: FULLADDER port map(A(7),B(7),F(6),Y(7),Cout);
25
    end RTL;
```

Μέρος 2°:

Ερώτημα 1°:

Ο κώδικας για το D Flip Flop:

```
library IEEE;
    use IEEE.std logic 1164.all;
 3 ⊟entity DFLIPFLOP is
   ☐ port ( CLK, D, CLR, SET, EN: in
 4
                                         std logic;
 5
                Q, Qn : out std logic);
 6
    end DFLIPFLOP;
 8
   ⊟architecture RTL of DFLIPFLOP is
          signal DFF : std logic;
 9
10 ⊟begin
11 ⊟
           seq0 : process (CLK, CLR, SET, EN )
12
           begin
13
                  if (EN='0') then DFF<='0';
                  elsif (CLR='1') then DFF<='0';
14 ⊟
                  elsif (SET='1')
15 ⊟
                                 then DFF<='1';
                  elsif (CLK'event and CLK = '1') then DFF <=D;</pre>
16 ⊟
17
               end if;
           end process;
18
19
          Q <= DFF; Qn <= not DFF;
20 end RTL;
```

Ο κώδικας για το latch:

```
library IEEE;
    use IEEE.std logic 1164.all;
   ⊟entity MyLatch is
 3
      port ( Rst, Set, LE, D : in std logic;
 5
           Q, Qn: out std logic );
 6
    end MyLatch;
 7
    ⊟architecture RTL of MyLatch is
 9
   signal FF: std_logic;
10 ⊟begin
11
   seq0 : process (Rst, Set, D, LE)
12
       begin
           if Rst = '1' then FF <= '0';
13
   14
   elsif Set = '1' then FF <= '1';</pre>
15
           elsif LE = '1' then FF <= D;</pre>
   end if;
16
17
       end process;
18
        Q <= FF;
19
        Qn <= not FF;
20
     end RTL;
```

Το σχηματικό:

Η εξομοίωση:

Ερώτημα 2°:

Ο κώδικας:

```
library IEEE;
     use
         IEEE.std_logic_1164.all;
   ⊟entity Reg8 is
 4
         port (CLK , CLR, SET, EN: in
                 I: in std_logic_vector(7 downto 0);
 6
 7
                 Q: out std logic vector(7 downto 0));
 8
    end Reg8;
 9
10
   ⊟architecture RTL of Reg8 is
11
            signal DFF: std_logic_vector(7 downto 0);
12
13
   seq0 : process (CLK, CLR, SET)
14
   15
             begin
16
   if (CLR='1') then DFF<=(7 downto 0 \Rightarrow 0');
                    elsif (SET='1') then DFF<=(7 downto 0 \Rightarrow '1');
17
   18
   elsif (CLK'event and CLK = '1' and EN='1') then DFF<=I;</pre>
19
                   end if;
20
           end process;
21
          Q <= DFF;
22 end RTL;
```

Η εξομοίωση:

Τα αποτελέσματα της στατικής χρονικής ανάλυσης:

	Input Port	Output Port	RR	RF	FR	FF
1	CLR	Q[0]		11.393	11.393	
2	CLR	Q[1]		11.887	11.887	
3	CLR	Q[2]		11.781	11.781	
4	CLR	Q[3]		11.579	11.579	
5	CLR	Q[4]		11.589	11.589	
6	CLR	Q[5]		11.605	11.605	
7	CLR	Q[6]		11.885	11.885	
8	CLR	Q[7]		11.698	11.698	
9	SET	Q[0]	12.005			12.005
10	SET	Q[1]	12.499			12.499
11	SET	Q[2]	12.393			12.393
12	SET	Q[3]	12.191			12.191
13	SET	Q[4]	12.201			12.201
14	SET	Q[5]	12.217			12.217
15	SET	Q[6]	12.497			12.497
16	SET	Q[7]	12.310			12.310

Ερώτημα 3°:

Ο κώδικας:

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
 2
 3
 5
    ⊟entity Counter8 is
    port (CLK , CLR, SET, EN: in
                                                     std logic;
                    Q: out std_logic_vector(7 downto 0));
 7
      end Counter8;
 8
 9
10
11
    ⊟architecture RTL of Counter8 is
              signal sum: std_logic_vector(7 downto 0);
12
    13
          begin
14
    seq0 : process (CLK, CLR, SET)
15
                 begin
                        if (CLR='1') then sum<=(7 downto 0 => '0');
elsif (SET='1') then sum<=(7 downto 0 => '1');
elsif (CLK'event and CLK='1' and EN='1') then sum<=(sum + '1');</pre>
16
    17
    18
    19
20
             end process;
21
             Q<=sum;
    end RTL;
22
```

Η εξομοίωση:

