16CSCN01: Introduction to Computer Networks

Lecture 4: DNS

Transport Layer

Dr. Amal ElNahas

Application Layer What Will We Study?

DNS Servers

Root DNS server:

- There are 13 root DNS servers worldwide
- When local name server fails, it contacts the root name server
- Root either knows the mapping (reply directly) or knows IP of an "authoritative" name server that has the mapping

Top-Level Domain DNS server:

Responsible for each of the TLD, e.g..com, .edu,.eg,...

Authoritative DNS server:

- Holds the mapping (names-IP) of all hosts within same organization
- Local DNS server:
 - Doesn't belong to the DNS hierarchy
 - Acts as a default DNS server (contacted first)

DNS Queries

Recursive vs Iterative

DNS Query: Iterative

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

DNS Query: Recursive

recursive query:

- puts burden of name resolution on contacted name server
- heavy load?

How DNS works?

DNS Records

Format:

(name, value, type, ttl)

Types:

A, MX, CNAME, NS

DNS Records

 \blacksquare Type A

name is hostname, value is IP address.

(machine1.foo.com, 145.37.2.126, A)

Type=MX

value is name of mailserver associated with alias name name (foo.com, mail.foo.com, MX)

you are here now

Physical

Transport Layer

 Logical communication between applications on 2 different machines (end-to-end protocols)

 Network layer delivers packets to a specific destination host, while transport protocol distinguishes between different destinations (applications) within the same host

Internet Transport Layer

Internet supports two protocols:

- Transport Control Protocol (TCP)
 - Reliable
 - In order delivery
 - Flow control
 - Congestion control
 - Needs connection set up
- User Datagram Protocol (UDP)
 - Unreliable
 - Unordered delivery
 - Best effort service

UDP: User Datagram Protocol

- •"best effort" service, UDP segments may be:
 - lost
 - delivered out of order to app

•connectionless:

- No handshaking between UDP sender, receiver
- Each UDP segment handled independently of others

Why is there a UDP?

- No connection establishment (which can add delay)
- Simple: no connection state at sender, receiver
- Small segment header
- No congestion control: UDP can blast away as fast as desired
- Best for DNS queries, real-time applications (VoIP,...)

UDP Segment Header

src port
dst port
length
checksum

UDP Packet

UDP checksum:

- Goal: detect "errors" (e.g., flipped bits) in transmitted segment
- Sender:
 - Calculate checksum and adds it to the header

Receiver:

- Recalculate the checksum and compare it with the one stored in header.
 - NO: error detected
 - YES: no error detected.

8 bytes →	
← Header	Data
Source port number	Destination port number
16 bits	16 bits
Total length	Checksum
16 bits	16 bits