CSE 417T Introduction to Machine Learning

Lecture 8

Instructor: Chien-Ju (CJ) Ho

Logistics

- HW1: Due Feb 14
 - Reserve time if you have never used Gradescope
 - Make sure the submission is readable (if you scan your handwriting)
 - Correctly assign pages to each problem
- HW2: Due Feb 24

- Exams
 - Exam1: March 10 (Thursday)
 - Timed exam at the lecture time
 - More logistical details to come within 1~2 weeks
 - Exam 2: last lecture of the semester

Recap

Linear Models

This is why it's called linear models

• H contains hypothesis $h(\vec{x})$ as some function of $\vec{w}^T\vec{x}$

	Domain	Model
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}$

Credit Card Example

Approve or not

Credit line

Prob. of default

$$\theta(s) = \frac{e^s}{1 + e^s}$$

- Algorithm:
 - Focus on $g = argmin_{h \in H} E_{in}(h)$

Linear Classification (Perceptron)

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = sign(\vec{w}^T\vec{x})\}$
 - Error measure: binary error $e(h(\vec{x}), y) = \mathbb{I}[h(\vec{x}) \neq y]$
- Data is linearly separable
 - Run PLA => $E_{in} = 0$ => Low E_{out}
- Data is not linearly separable
 - Minimizing E_{in} is NP hard
 - Pocket algorithm
 - Engineering the features (e.g., handwritten digits)
 - More discussion later in the semester

Linear Regression

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
 - Squared error $e(h(\vec{x}), y) = (h(\vec{x}) y)^2$

- Given dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - $E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (\vec{w}^T \vec{x}_n y_n)^2$
- Goal: find $\overrightarrow{w}_{lin} = argmin_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$

Linear Regression "Algorithm"

- There is a closed-form solution for minimizing E_{in}
 - Closed-form solution for $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = 0$ (E_{in} is convex)
- One-step algorithm
 - Given $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$

• Construct
$$X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_N^T \end{bmatrix} = \begin{bmatrix} x_{1,0} & x_{1,1} & \cdots & x_{1,d} \\ x_{2,0} & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{2,0} & x_{N,1} & \cdots & x_{N,d} \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

• Output $\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$ (Assume $X^T X$ is invertible)

Logistic Regression

- Predict a probability
 - Interpreting $h(\vec{x}) \in [0,1]$ as the probability for y = +1 given \vec{x}
- Hypothesis set $H = \{h(\vec{x}) = \theta(\vec{w}^T\vec{x})\}$

•
$$\theta(s) = \frac{e^s}{1+e^s} = \frac{1}{1+e^{-s}}$$

- Algorithm
 - Find $g = argmin_{h \in H} E_{in}(h)$

- Two key questions
 - How to define $E_{in}(h)$?
 - How to perform the optimization (minimizing E_{in})?

Define $E_{in}(\vec{w})$: Cross-Entropy Error

$$E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

- Minimizing cross entropy error is the same as maximizing likelihood
- Likelihood: $Pr(D|\vec{w})$

```
• \vec{w}^* = argmax_{\vec{w}} \Pr(D|\vec{w}) (maximizing likelihood)
= argmin_{\vec{w}} E_{in}(\vec{w}) (minimizing cross-entropy error)
```

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Minimizing Cross Entropy Error

Maximizing Likelihood

Write Down the Likelihood

- How are $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$ generated?
 - $(\vec{x}_1, ..., \vec{x}_N)$ are i.i.d. drawn from a distribution
 - $(y_1, ..., y_N)$ are labeled according to target function $f(\vec{x})$
- UNKNOWN TARGET DISTRIBUTION (target function f plus noise) $P(y \mid \mathbf{x})$ UNKNOWN INPUT DISTRIBUTION $P(\mathbf{x})$ TRAINING EXAMPLES (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2),..., (\mathbf{x}_N, y_N) \mathbf{ERROR} MEASURE $\mathbf{MEASURE}$ $\mathbf{MEASURE}$ $\mathbf{HYPOTHESIS}$ \mathbf{J} HYPOTHESIS SET \mathcal{H}

- Likelihood Pr(D|h)
 - The probability of seeing dataset D if D is generated according to h

•
$$\Pr(D|h) = \Pr((\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)|h)$$

 $= \Pr(\vec{x}_1, ..., \vec{x}_N) \Pr((y_1, ..., y_N)|(\vec{x}_1, ..., \vec{x}_N), h)$
 $= \prod_{n=1}^{N} \Pr(\vec{x}_n) \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)$ (Assumption of independent data)

Maximum Likelihood

Choosing the hypothesis that maximizes the likelihood

```
• g = argmax_{h \in H} \Pr(D|h)

= argmax_{h \in H} \prod_{n=1}^{N} \Pr(\vec{x}_n) \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)

= argmax_{h \in H} \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)
```

 $\prod_{n=1}^{N} \Pr(\vec{x}_n)$ doesn't depend on h

• We interpret $h(\vec{x})$ as the probability of y=+1

•
$$\Pr(y|\vec{x},h) = \begin{cases} h(\vec{x}) = \theta(\vec{w}^T \vec{x}) & \text{for } y = +1 \\ 1 - h(\vec{x}) = 1 - \theta(\vec{w}^T \vec{x}) & \text{for } y = -1 \end{cases}$$

- Since $1 \theta(s) = \theta(-s)$
 - $Pr(y|\vec{x}, h) = \theta(y \vec{w}^T \vec{x})$

Maximum Likelihood

Choosing the hypothesis that maximizes the likelihood

```
• g = argmax_{h \in H} \Pr(D|h)
= argmax_{h \in H} \prod_{n=1}^{N} \Pr(y_n | \vec{x}_n, h)
```

•
$$\overrightarrow{w}^* = argmax_{\overrightarrow{w}} \prod_{n=1}^{N} \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)$$

$$= argmax_{\overrightarrow{w}} \ln(\prod_{n=1}^{N} \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmax_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmin_{\overrightarrow{w}} - \sum_{n=1}^{N} \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^{N} \ln \frac{1}{\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)}$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

Cross Entropy Error

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

- Minimizing $E_{in}(\vec{w})$ is the same as maximizing likelihood
- Next question: How to solve $\vec{w}^* = argmin_{\vec{w}} E_{in}(\vec{w})$
 - Answer: Solve for $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = 0$
 - No single-step solution like we have in linear regression

Using Logistic Regression for Classification

• Let \overrightarrow{w}^* or g be the learned logistic regression model, how can we make classification predictions using \overrightarrow{w}^* ?

- Set a cutoff probability C% (e.g., 50%).
 - Classify +1 if $g(\vec{x}) = \theta(\vec{w}^* \vec{x}) > C\%$
 - Classify -1 if $g(\vec{x}) = \theta(\vec{w}^{*T}\vec{x}) < C\%$
- When C is 50 (a common choice)
 - $\theta(\vec{w}^{*T}\vec{x}) > 50\% = \vec{w}^{*T}\vec{x} > 0$
 - Equivalent to using \vec{w}^* as the linear classification hypothesis, i.e., $g(\vec{x}) = sign(\vec{w}^{*T}\vec{x})$

Gradient Descent

A general optimization technique

Gradient Descent

• A technique for optimizing functions that gradients exist everywhere.

• An iterative method that converges to local optimum.

 Converge to global optimum if the function is convex (since there is only one local optimum).

Gradient Descent: Minimizing $E_{in}(\vec{w})$

An iterative method of the form:

$$\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$$

- \vec{v}_t : a unit vector, determining the direction of the update
- η_t : a scalar, determining how much to update
- How to choose \vec{v}_t and η_t ?

Choosing
$$\vec{v}_t$$
 in $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

- Intuition: Choose \vec{v}_t that moves towards the "steepest" direction
 - Approaching the minimum faster
- Taylor's approximation:

•
$$E_{in}(\overrightarrow{w}(t) + \eta_t \overrightarrow{v}_t) = E_{in}(\overrightarrow{w}(t)) + \eta_t \nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))^T \overrightarrow{v}_t + O(\eta_t^2)$$

• $E_{in}(\overrightarrow{w}(t+1)) - E_{in}(\overrightarrow{w}(t)) \approx \eta_t \nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))^T \overrightarrow{v}_t$

•
$$E_{in}(\vec{w}(t+1)) - E_{in}(\vec{w}(t)) \approx \eta_t \nabla_{\vec{w}} E_{in}(\vec{w}(t))^T \vec{v}_t$$

 η_t is usually small, so ignore this term

- Choose unit vector \vec{v}_t that minimizes $\nabla_{\vec{w}} E_{in}(\vec{w}(t))^T \vec{v}_t$
 - \vec{v}_t should be in the opposite direction of $\nabla_{\vec{w}} E_{in}(\vec{w}(t))$

•
$$\vec{v}_t = \frac{-\nabla_{\vec{w}} E_{in}(\vec{w}(t))}{\|\nabla_{\vec{w}} E_{in}(\vec{w}(t))\|}$$

Choosing η_t in $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

 η too small

 η too large

variable η_t – just right

Choosing
$$\eta_t$$
 in $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

- Intuition (for convex E_{in})
 - When E_{in} is closer to the minimum,
 - $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))$ is smaller
 - We should set η_t smaller

• Therefore, set $\eta_t = \eta \|\nabla_{\vec{w}} E_{in}(\vec{w}(t))\|$

Putting Them Together

• Iterative update rule: $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

•
$$\vec{w}(t+1) \leftarrow \vec{w}(t) - \eta \nabla_{\vec{w}} E_{in}(\vec{w}(t))$$

$$\vec{v}_t = \frac{-\nabla_{\vec{w}} E_{in}(\vec{w}(t))}{\|\nabla_{\vec{w}} E_{in}(\vec{w}(t))\|}$$

$$\eta_t = \eta \| \nabla_{\vec{w}} E_{in}(\vec{w}(t)) \|$$

Gradient calculations

•
$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

•
$$\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} \frac{-y_n \overrightarrow{x} e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n}}{1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \overrightarrow{x}_n}{1 + e^{y_n \overrightarrow{w}^T \overrightarrow{x}_n}}$$

Gradient Descent for Logistic Regression

- Initialize $\vec{w}(0)$
- For t = 0, ...
 - Compute $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t)) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \overrightarrow{x}_n}{1 + e^{y_n \overrightarrow{w}(t)} \overrightarrow{T} \overrightarrow{x}_n}$
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} E_{in}(\vec{w}(t))$
 - Terminate if the stop conditions are met
- Return the final weights

 η : learning rate. A parameter the learner can choose.

Gradient Descent for Logistic Regression

- Initialization
 - Random initialization is a good idea and a common approach
 - (we specify the initialization in HW2 mostly for grading purposes)
- Stop conditions (a mix of the following criteria)
 - When the number of iteration exceeds the pre-set threshold
 - When the improvement on E_{in} (e.g., check $\nabla_{\overrightarrow{w}}E_{in}$) is too small
 - When E_{in} is small enough

Computation of Gradient Descent

- Gradient Descent for Logistic Regression
 - Initialize $\vec{w}(0)$
 - For t = 0, ...
 - Compute $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t)) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \overrightarrow{x}_n}{1 + e^{y_n \overrightarrow{w}(t)^T \overrightarrow{x}_n}}$
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} E_{in}(\vec{w}(t))$
 - Terminate if the stop conditions are met
 - Return the final weights
- Which step requires the most computation?
 - Calculate $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \vec{x}_n}{1 + e^{y_n \overrightarrow{w}^T \vec{x}_n}}$
 - The time complexity is O(N)
 - *N* is large for big datasets

Stochastic Gradient Descent

Deal with Heavy Computation of $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$

- Speed up the implementation of $\nabla_{\vec{w}} E_{in}(\vec{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \vec{x}_n}{1 + e^{y_n \vec{w}^T \vec{x}_n}}$
 - Vectorization can make your HW2 running time in several order of magnitudes faster
 - Example:
 - Given $[x_1, ..., x_N]$, want to calculate $[e^{x_1}, ..., e^{x_N}]$
 - Using for loop:
 - Loop from n=1 to N, calculate e^{x_n}
 - Vectorized method:
 - Using numpy library: np.exp($[x_1, ..., x_N]$)
 - Why? Matrix operations are optimized in a low level using numpy operations (or other scientific computing libraries).
 - Try to replace loops with numpy matrix operations in your HW2

Deal with Heavy Computation of $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$

- Speed up the implementation of $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \vec{x}_n}{1 + e^{y_n \overrightarrow{w}} T_{\overrightarrow{x}_n}}$
 - Vectorization can make your HW2 running time in several order of magnitudes faster
- Solve $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$ "in expectation"
 - Define $e_n(\vec{w}) = \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$, the point-wise error caused by (\vec{x}_n, y_n)
 - Observe that
 - $E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} e_n(\overrightarrow{w})$
 - $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} \nabla_{\overrightarrow{w}} e_n(\overrightarrow{w})$
 - Draw a point \vec{x}_n from $\{\vec{x}_1, \dots, \vec{x}_N\}$ uniformly at random
 - $E_{\vec{x}_n}[\nabla_{\vec{w}}e_n(\vec{w})] = \nabla_{\vec{w}}E_{in}(\vec{w})$

Stochastic Gradient Descent (SGD)

- Algorithm
 - Initialize $\vec{w}(0)$
 - For t = 0, ...
 - Randomly choose n from $\{1, ..., N\}$
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} e_n(\vec{w}(t))$
 - Terminate if the stop conditions are met
 - Return the final weights
- $\mathbb{E}[\nabla_{\overrightarrow{w}}e_n(\overrightarrow{w})] = \nabla_{\overrightarrow{w}}E_{in}(\overrightarrow{w})$
 - SGD is doing the same thing as GD in expectation
 - More efficient (scale to large dataset), suitable for online data, helps escaping local min, etc.
 - Noisier, harder to define stop criteria

Mini-Batch Gradient Descent

- GD: Computationally heavy, stable updates
- SGD: Computationally light, noisy updates
- Middle ground: Mini-Batch Gradient Descent
 - In each iteration, randomly choose k points $\{n(1), ..., n(k)\}$
 - Update rule

•
$$\overrightarrow{w}(t+1) \leftarrow \overrightarrow{w}(t) - \eta \frac{1}{k} \sum_{i=1}^{k} \nabla_{\overrightarrow{w}} e_{n(i)}(\overrightarrow{w}(t))$$

- Side note about HW2
 - Please report your results on GD (non-stochastic version)
 - You should feel free to play around with SGD or mini-batch on your own

Non-Linear Transformation

Limitations of Linear Models

Using Non-Linear Transformations

• Find a feature transform Φ that maps data from \vec{x} space to \vec{z} space

Using Non-Linear Transformations

• Learn a linear classifier in \vec{z} space: $g^{(z)}(\vec{z}) = sign(\vec{w}^{(z)}\vec{z})$

 $\vec{x} = (1, x_1, x_2)$

$$\vec{z} = (1, x_1^2, x_2^2)$$

$$g^{(z)}(\vec{z}) = sign(-0.6 + z_1 + z_2)$$

Using Non-Linear Transformations

• Transform the learned hypothesis back to \vec{x} space

•
$$g(\vec{x}) = g^{(z)}(\Phi(\vec{x})) = sign(\vec{w}^{(z)}\Phi(\vec{x}))$$

$$\vec{x} = (1, x_1, x_2)$$

$$\vec{z} = (1, x_1^2, x_2^2)$$

$$g^{(z)}(\vec{z}) = sign(-0.6 + z_1 + z_2)$$

Nonlinear Transformation

Generalization of Nonlinear Transformation

- Fact (We'll prove this later)
 - The VC Dimension of d-dim perceptron is d + 1
- VC dimension of perceptron on input space $\vec{x} = (x_0, ..., x_d)$
 - d+1
- VC dimension of perceptron on input space $\vec{z} = (z_0, ..., z_{d'})$
 - $\leq d' + 1$ (usually treated as $\approx d' + 1$)
- Careful: Non-linear transform might lead to "nonsense" behavior

How to Choose Feature Transform Φ

How to Choose Feature Transform Φ

Must choose Φ BEFORE looking at the data

Otherwise, you are doing "data snooping"

The hypothesis set H is as large as anything your brain can think of

Choose Φ Before Seeing Data

- Rely on domain knowledge (feature engineering)
 - Handwriting digit recognition example
- Use common sets of feature transformation
 - Polynomial transformation
 - 2nd order Polynomial transformation
 - $\vec{x} = (1, x_1, x_2)$
 - $\Phi_2(\vec{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$
 - Pros: more powerful (contains circle, ellipse, hyperbola, etc)
 - Cons: 2-d => 5-d
 - More computation/storage
 - Worse generalization error

The VC dimension of d-dim perceptron is d+1