CS 1511 Homework 17

Mathew Varughese, Justin Kramer, Zach Smith Friday, March 22

32.)

Let $L \in BPL$.

 \exists TM T and \exists integer k such that:

 $\forall x \forall R \ \mathrm{T}(x,R)$ halts using log space

if $x \in L$ then $prob(T(x,R) \text{ accepts}) \ge 3/4$

if $x \notin L$ then $prob(T(x,R) \text{ accepts}) \le 1/4$

LOGSPACE \subset P. This is because with $\log n$ space, there are $2^{\log n}$ possible configurations for R. This simplifies to polynomial time.

Now, there exists some u, where u is a random assignment of Take an input x that has a length of n. Now we will have C be the number of configurations of TM T with input x. We will combine each configuration with another set of the same configurations to form a matrix. We will create this matrix such that each cell will have a 1/2 probability if the second configuration is reachable from the first in one step, and a probability of 0 otherwise. With this created, each cell W_t with configurations c_1 and c_2 is the probability of reaching configuration c_2 from c_1 in t steps, where W_t is the matrix created by multiplying W by itself t times. By scaling this up, we can compute the accepting probability of T(x, R) and decide if $x \in L$. With this we can see that each probability is a multiple of $1/2^{poly(n)}$, which we can represent with a poly number of digits. Therefore, $L \in P$ and $BPL \subseteq P$.