Обобщённые функции

Ломов И.С.

1 Элементарная теория обобщённых функций

1.1 Основные функции в \mathbb{R}^1

Определение. Под основной функцией понимают любую вещественную функцию, финитную на $\mathbb R$ и определенную на $\mathbb R$ и непрерывную вместе с любой производной конечного порядка на $\mathbb R$.

Если $\varphi = 0$ вне [a, b], то говорят, что φ сосредоточена на [a, b]. В этом случае [a, b] - носитель $\varphi(x)$. $\sup \varphi(x) = \overline{\{x : \varphi(x) \neq 0\}}$. Пространство финитных функций является линейным, проверяется тривиально.

1.1.1 Предельный переход в K

Пусть φ_n - последовательность основных функций.

Определение. $\varphi_n(x) \to 0$ в K, если все $\varphi_n(x)$ сосредоточены на одном отрезке, последовательность $\varphi_n(x) \rightrightarrows 0$ при $n \to \infty$ на этом отрезке $u \ \forall k \in \mathbb{N} \ \varphi_n^{(k)} \rightrightarrows 0$ при $n \to \infty$

Очевидно, что $\varphi_n \to \varphi$ в K, если $\varphi \in K$ и $\varphi_n - \varphi \to 0$ в K.

Пример. "Шапочка"

$$\varphi(x; a) = \begin{cases} e^{-\frac{a^2}{a^2 - x^2}}, & |x| \le a \\ 0, & |x| > a \end{cases}$$

Пусть $\varphi_n = \frac{1}{n} \varphi(x; a) \to 0$ в K, но если возьмем $\varphi_n = \frac{1}{n} \varphi(\frac{x}{n}, a)$, то сходимости не будет т.к. функции сосредоточены на разных отрезках.

Пример. "Срезка"

$$1_R(x) = \begin{cases} 1, & |x| \leqslant R \\ 0, & |x| > 3R \\ \text{монотонно убывает}, x \in [-3R, -R] \\ \text{Монотонно возрастает}, x \in [R, 3R] \end{cases}$$

Пусть $g(x) \in C^{\infty}(\mathbb{R}) \Rightarrow g(x)1_R(x) \in K$. В этом случае на $x \in [-R, R] \Rightarrow g(x)1_R(x) = g(x)$. Более общая срезка:

$$\omega_{\varepsilon}(x) = \begin{cases} C_{\varepsilon} e^{-\frac{\varepsilon^2}{\varepsilon^2 - x^2}}, & |x| \leq \varepsilon \\ 0, & |x| > \varepsilon \end{cases}$$

 C_{ε} выбираем из условия $\int \omega_{\varepsilon}(x) dx = 1$.

Лемма. $\exists \eta(x) \in K$, такая, что $\forall x: \ 0 \leqslant \eta(x) \leqslant 1; \ x \in G_{\varepsilon} = (a - \varepsilon, b + \varepsilon); \ G = (a, b) \ u \ \eta(x) = \begin{cases} 1, \ x \in G_{\varepsilon} \\ 0, \ x \notin G_{\varepsilon} \end{cases}$

Доказательство. Пусть $\chi(x)$ - характеристическая функция множества $G_{2\varepsilon}$, то есть индикатор. Пусть $\eta(x) = \int_{\mathbb{R}} \chi(x) \omega_{\varepsilon}(x-y) dy$. Покажем, что эта функция принадлежит класса C^{∞} . $\eta(x) = \int\limits_{G_{2\varepsilon}} \omega_{\varepsilon}(x-y) dy = \int\limits_{a-2\varepsilon}^{b+2\varepsilon} \omega_{\varepsilon}(x-y) dy = \int\limits_{x-(b+2\varepsilon)}^{x-(a-2\varepsilon)} \omega_{\varepsilon}(t) dt = \{\omega_{\varepsilon} \in C^{\infty}\}$. Поэтому $\eta(x) \in C^{\infty}(\mathbb{R})$.

Проверим условие $0\leqslant \eta(x)\leqslant 1$. Функция ω_{ε} неотрицательная, поэтому левая оценка выполнена, а правая оценка выполняется благодаря выбору константы C_{ε} так как $\int\limits_{x-(b+2\varepsilon)}^{x-(a-2\varepsilon)}\omega_{\varepsilon}(t)dt\leqslant \int\limits_{\mathbb{R}}\omega_{\varepsilon}(t)dt=1$. В итоге $0\leqslant \eta(x)\leqslant 1$.

Остаётся проверить последнее условие: Пусть $|y-x|\leqslant \varepsilon \Rightarrow x-\varepsilon\leqslant y\leqslant x+\varepsilon$, тогда $\eta(x)=\int\limits_{x-\varepsilon}^{x+\varepsilon}\chi(y)\omega_{\varepsilon}(x-y)dy=0$

$$\begin{cases} \int\limits_{x-\varepsilon}^{x+\varepsilon} \omega_\varepsilon(x-y) dy = \int\limits_{-\varepsilon}^\varepsilon \omega_\varepsilon dy = 1, \ x \in G_\varepsilon \subset G_{2\varepsilon} \\ 0, \ x \notin G_\varepsilon, \text{потому что индикатор обращатеся в ноль} \end{cases}$$
 Если $a=b=0, \varepsilon=R \Rightarrow \eta(x)=1_R(x).$

Теорема. (неметризуемость пространства K) $\not\exists \rho \ makoŭ, что если \varphi_n \to \varphi \ в K, то <math>\rho(\varphi_n, \varphi) \to 0.$

Доказательство. Известна теорема о метрических пространствах: если есть в метрическом пространстве счётное чис-

ло последовательностей

к φ при $n \to \infty$. Рассмотрим контрпример: $\varphi_n^{(m)}(x) = \frac{1}{n} \varphi(\frac{x}{m};a)$. Для любого фиксированного $m \ \varphi_n^{(m)}(x) \to 0$ в K.Но если взять последовательность $\varphi_{n_m}^{(m)}(x) \to \frac{1}{n_m} \varphi(\frac{1}{m}; a)$, то не будет общего носителя.

Обобщённые функции в \mathbb{R}^1

Определение. E - множество обычных вещественных функций, определенных на \mathbb{R} , локально интегрируемых.

Пусть $f(x) \in E$, ставим в соответствие функционал на множестве K: $(f, \varphi) = \int f(x) \varphi(x) dx$ (1).

Функционал (1) очевидно является линейным, его непрерывность следует из $\{\varphi_n(x)\}\subset K, \varphi_n(x)\to 0$ в $K\Rightarrow (f,\varphi_n)\to 0$

Лемма. Существуют линейные непрерывные функционалы на К, которые не представимы в виде (1).

 \mathcal{A} оказательство. $\delta(x)$ - дельта-функция \mathcal{A} ирака: $\delta(x): \varphi(x) \to \varphi(0)$. Покажем, что этот функционал не представим в виде (1). Пусть $\exists f(x) \in E: \int\limits_{\mathbb{R}} f(x)\varphi(x)dx = \varphi(0), \forall \varphi \in K$. Пусть $\varphi(x) = \varphi(x;a)$, тогда $\int\limits_{\mathbb{R}} f(x)\varphi(x)dx = \varphi(0)$

$$\int\limits_{-a}^{a}f(x)e^{-\dfrac{a^{2}}{a^{2}-x^{2}}}dx\leqslant\int\limits_{-a}^{a}|f(x)|dx\to 0$$
 при $a\to 0$. Но $\varphi(0;a)=\dfrac{1}{e}$. Поэтому данный функционал в виде (1) не представим.

Определение. Обобщённой функцией (распределением) назовем любой линейный непрерывный функционал на множестве K. Если функционал представим в виде (1), то он регулярный, иначе сингулярный.

K' - множество всех обобщённых функций над K.

Любой обычной функции f(x) отвечает обобщённая функция, определяемая по формуле (1) $f(x) = \mathrm{const}: (c,\varphi) =$ $c\int_{\mathbb{R}} \varphi(x)dx. \ f(x): \forall x \to f(x)$ почти всюду. $f: \forall \varphi \to (f,\varphi)$. Не можем говорить про равенство в точке, но можем говорить об эквивалентности на (a, b).

1.2.1Сингулярные функции

- 1. $\delta(x)$.
- 2. $\delta(x-a), \forall a \in \mathbb{R}$.
- 3. $\delta'(x)$
- 4. $f(x) = \frac{1}{x} \notin E$

Пусть $f_1, f_2 \in K'$ равны, если $(f_1, \varphi) = (f_2, \varphi), \forall \varphi \in K$, не являются равными, если $\exists \varphi \in K : (f_1, \varphi) \neq (f_2, \varphi)$. Класс Kдостаточно широк, чтобы различать непрерывные функции:

Пемма. Пусть $f_1(x), f_2(x) \in E$ - различные непрерывные функции, тогда f_1, f_2 -различные обобщённые функции.

 \mathcal{A} оказательство. Нужно показать, что $\exists \varphi_0: (f_1, \varphi_0) \neq (f_2, \varphi_0)$. Рассмотрим $f(x) = f_1(x) - f_2(x)$, тогда $\exists x_0: f(x_0) \neq 0$ и $\exists [\alpha, \beta]: x_0 \in [\alpha, \beta]$ на этом отрезке функция f(x) сохраняет знак. Рассмотрим $\varphi_0(x) = \begin{cases} e^{-\frac{1}{(\beta - x)(x - \alpha)}}, & x \in [\alpha, \beta] \\ 0, & x \in \mathbb{R} \setminus [\alpha, \beta] \end{cases}$.

Заметим, что $\varphi_0 \in K$. $\int_{\mathbb{R}} f(x)\varphi_0(x)dx = \int_{\alpha}^{\beta} f(x)e^{-\frac{1}{(\beta-x)(x-\alpha)}}dx > 0$ т.к. f(x) - сохраняет знак, а экспонента строго положительна, поэтому $f_1 \neq f_2$.

Пусть $p \ge 0$, целое число

Определение. Обобщённая функция f имеет порядок сингулярности $\leqslant p$, если её можно представить в следующем виде:

$$(f,\varphi) = \sum_{k=0}^{p} \int_{\mathbb{R}} f_k(x)\varphi^{(k)}(x)dx = \sum_{k=0}^{p} (f_k(x),\varphi^{(k)}(x)), \forall \varphi \in K,$$
(1)

 $e \partial e \ f_1(x), \dots, f_p(x) \in E$

Пример. $f(x) \in E$, тогда регулярная $\Rightarrow p = 0$.

Пример. $\delta(x)$. Рассмотрим функцию Хевисайда $\theta(x) = \begin{cases} 1, x \geqslant 0 \\ 0, x < 0 \end{cases} \in E$. $(\theta(x), \varphi(x)) = \int\limits_{-\infty}^{\infty} \theta(x) \varphi(x) dx = \int\limits_{0}^{\infty} \varphi(x) dx$ $(\delta(x), \varphi(x)) = \varphi(0) = -\int\limits_{0}^{\infty} \varphi'(x) dx = \int\limits_{-\infty}^{\infty} -\theta(x) \varphi'(x) dx$. Поэтому порядок сингурлярности $\delta(x)$ равен 1, а для $\delta'(x)$ $p \leqslant 2$.

1.3 Действие с обобщёнными функциями

1.3.1 Сложение

Сложение и умножение на вещественное число: $\forall f_1, f_2 \in K', \ \forall \alpha_1, \alpha_2 \in \mathbb{R}: \ (\alpha_1 f_1 + \alpha_2 f_2, \varphi) = \alpha_1(f_1, \varphi) + \alpha_2(f_2, \varphi) \Rightarrow \alpha_1 f_1 + \alpha_2 f_2 \in k'$

1.3.2 Умножение на бесконечно дифференцируемую функцию

 $\forall f \in k', \ \forall \alpha(x) \in C^{\infty}(\mathbb{R}).$

$$1. \ \ f = f(x) \in E \Rightarrow (\alpha(x)f(x), \varphi(x)) = \int\limits_{\mathbb{R}} \alpha(x)f(x)\varphi(x)dx = (f(x), \alpha(x)\varphi(x)) \text{ t.k. } \alpha(x)\varphi(x) \in K.$$

2. $f \in K'$ $(\alpha(x)f,\varphi) = (f,\alpha(x)\varphi) \Rightarrow \alpha(x)f \in K'$ т.к. функционал линейный и непрерывный.

1.3.3 Дифференциорвание

 $\forall f \in K': f': (f', \varphi) = -(f, \varphi'), \forall \varphi \in K.$ Пусть $\varphi_n \to 0$ в K, тогда $\varphi'_n \to 0$ в $K \Rightarrow (f, \varphi'_n) \to 0$ т.к. f-непрерывный функционал $\Rightarrow (f', \varphi_n) \to 0$, то есть f' - линейный непрерывный функционал $f' \in K$.

Свойства производной:

1.
$$(f'', \varphi) = (f, \varphi''), (f^{(n)}, \varphi) = (-1)^n (f, \varphi^{(n)})$$

2.
$$\forall \alpha_1, \alpha_2 \in \mathbb{R}, \forall f_1, f_2 \in K' \ ((\alpha_1 f_1 + \alpha_2 f_2)', \varphi) = -(\alpha_1 f_1 + \alpha_2 f_2, \varphi') = -\alpha_1 (f_1, \varphi') - \alpha_2 (f_2, \varphi') = \alpha_1 (f_1', \varphi) + \alpha_2 (f_2', \varphi)$$
. То есть $(\alpha_1 f_1 + \alpha_2 f_2)' = \alpha_1 f_1' + \alpha_2 f_2'$

3.
$$\alpha(x) \in C^{\infty}(\mathbb{R}), f \in K'$$
 $((\alpha(x)f)', \varphi) = -(\alpha(x)f, \varphi') = -(f, \alpha(x)\varphi') = -(f, \alpha(x)\varphi' + \alpha'(x)\varphi - \alpha'(x)\varphi) = -(f, (\alpha\varphi)') + (f, \alpha'\varphi) = (f', \alpha\varphi) + (\alpha'f, \varphi) = (\alpha f' + \alpha'f, \varphi), \forall \varphi \in K.$ To есть $((\alpha(x)f)', \varphi) = (\alpha'f + \alpha f', \varphi)$

Пример.
$$\theta(x)$$
: $(\theta'(x), \varphi) = -(\theta(x), \varphi'(x)) = -\int\limits_0^\infty \varphi'(x) dx = \varphi(0) \Rightarrow \theta'(x) = \delta(x)$.

Пример.
$$\delta(x)$$
: $(\delta'(x), \varphi(x)) = -(\delta(x), \varphi'(x)) = -\int\limits_{\mathbb{R}} \delta(x) \varphi'(x) = -\varphi'(0)$. Получается, что $\delta': \varphi(x) \to -\varphi'(0)$.

Пример. Пусть f(x) - кусочно абсолютно непрерывная функция, x_1, \ldots, x_n - точки разрыва. h_1, \ldots, h_n - скачки в точках разрыва $f(x_i+0)-f(x_i-0)=h_i$. Чему равна производная такой функции?

Введём $f_1(x) = f(x) - \sum_{k=1}^n h_k \theta(x-x_k)$ - убрали скачки и сделали непрерывной. $f_1(x)$ -абсолютно непрерынвая функция

$$u \; \exists f_1'(x) \; n.s. \; cosnadaem \; c \; f'(x). \; f'(x) = f_1'(x) + \sum_{k=1}^n h_k \delta(x - x_k) \; s \; K.$$

Пример. Рассмотрим ряд
$$\sum\limits_{n=1}^{\infty} \frac{\sin nx}{n} = f(x) = \begin{cases} \frac{\pi - x}{2}, \ x \in (0, \pi] \\ 0, \ x = 0 \\ -\frac{\pi + x}{2}, \ x \in [-\pi, 0) \end{cases}$$
 Это 2π -периодическая функция. По полученной ранее формуле получаем, что $f' = -\frac{1}{2} + \pi \sum\limits_{n=0}^{\infty} \delta(x - 2\pi k)$

Пример. Сходимость ряда.

$$\sum_{n=1}^{\infty} \left(\frac{\sin nx}{n}\right)' = \sum_{n=1}^{\infty} \cos nx - pacxodumcs \ \textit{в прострнастве E. Посмотрим в пространстве K':} \left(\left(\sum_{n=1}^{N} \frac{\sin nx}{N}\right)', \varphi\right) = \left(\sum_{n=1}^{N} \cos nx, \varphi\right) = -\left(\sum_{n=1}^{N} \frac{\sin nx}{n}, \varphi'\right) = -\int_{\mathbb{R}} \sum_{n=1}^{N} \frac{\sin nx}{n} \varphi' dx \rightarrow -\int_{\mathbb{R}} \sum_{n=1}^{\infty} \frac{\sin nx}{n} \varphi' dx = -(f(x), \varphi'(x)) = (f'(x), \varphi). \ \textit{В пространстве K' ряд} \sum_{n=1}^{\infty} \cos nx = -\frac{1}{2} + \pi \sum_{k=-\infty}^{+\infty} \delta(x - 2\pi k)$$

Пример. $y = \ln |x| \in E$, но $y' \notin E$, а что в K'?

$$\begin{split} &((\ln|x|)',\varphi) = -(\ln|x|,\varphi') = -\int\limits_{-\infty}^{\infty} \ln|x|\varphi'(x)dx = -\lim\limits_{\varepsilon \to 0+0} \left(\int\limits_{-\infty}^{-\varepsilon} \ln|x|\varphi'dx + \int\limits_{\varepsilon}^{\infty} \ln|x|\varphi'dx\right) = \\ &= -\lim\limits_{\varepsilon \to 0+0} \left(\ln|x|\varphi(x)|_{-\infty}^{-\varepsilon} - \int\limits_{-\infty}^{-\varepsilon} \frac{1}{x}\varphi dx + \ln|x|\varphi|_{\varepsilon}^{\infty} - \int\limits_{\varepsilon}^{\infty} \frac{1}{x}\varphi dx\right) = -\lim\limits_{\varepsilon \to 0+0} \left(\ln\varepsilon\varphi(-\varepsilon) - \ln\varepsilon\varphi(\varepsilon) - \int\limits_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} dx\right) = \\ &= -\lim\limits_{\varepsilon \to 0+0} \left(\ln\varepsilon\varphi'(x) \left(-2\varepsilon\right) - \int\limits_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} dx\right) = \lim\limits_{\varepsilon \to 0+0} \int\limits_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} dx = \text{v.p.} \int\limits_{-\infty}^{\infty} \frac{\varphi(x)}{x} dx = \left(\frac{1}{x},\varphi\right). \text{ Hoemomy } (\ln|x|)' = \frac{1}{x} \text{ is } K'. \end{split}$$

Пример. Пусть
$$y=x_+^{\lambda}, \lambda \in (-1,0), \ x_+^{\lambda}=\begin{cases} x^{\lambda}, \ x>0 \\ 0, x\leqslant 0 \end{cases} \in E$$
. Что проихсодит в K' ?
$$((x_+^{\lambda})',\varphi)=-(x_+^{\lambda},\varphi')=-\int\limits_{-\infty}^{\infty}x_+^{\lambda}\varphi'(x)dx=-\int\limits_{0}^{\infty}x^{\lambda}\varphi'(x)dx=-\lim\limits_{\varepsilon\to 0+0}\int\limits_{\varepsilon}^{\infty}x^{\lambda}\varphi'(x)dx=-\varepsilon^{\lambda}\varphi(\varepsilon)-\int\limits_{\varepsilon}^{\infty}\lambda x^{\lambda-1}\varphi(x)dx=-\varepsilon^{\lambda}\varphi(\varepsilon)-\int\limits_{\varepsilon}^{\infty}\lambda x^{\lambda-1}(\varphi(x)-\varphi(0))dx-\int\limits_{\varepsilon}^{\infty}\lambda x^{\lambda-1}\varphi(0)dx=\varepsilon^{\lambda}(\varphi(0)-\varphi(\varepsilon))-\int\limits_{\varepsilon}^{\infty}\lambda x^{\lambda-1}(\varphi(x)-\varphi(0))dx\to-\int\limits_{0}^{\infty}\lambda x^{\lambda-1}(\varphi(x)-\varphi(0))dx$$
 В итоге $(x_+^{\lambda})':\varphi(x)\to\int\limits_{0}^{\infty}\lambda x^{\lambda-1}(\varphi(x)-\varphi(0))dx$ в K' .

${f 1.4}$ Предельный переход в K'

Рассмотрим $\{f_n\}, f_n \in K', f \in K'$

Определение. $f_n \to f$ в K', если $(f_n, \varphi) \to (f, \varphi), \forall \varphi \in K$

Пусть $f_n, f \in E, n \geqslant 1, f_n \rightrightarrows f$ в среднем на [a,b] $(f_n, f \text{ сосредоточены на } [a,b]). <math>|(f_n - f, \varphi)| = |\int\limits_{-\infty}^{\infty} (f_n - f)\varphi dx| \leqslant \{\text{KBIII}\} \leqslant \left(\int\limits_a^b (f_n - f)^2 dx\right)^{1/2} \left(\int\limits_a^b \varphi^2 dx\right)^{1/2} \to 0.$ То есть следует сходимость в K'.

Лемма. Пределом регулярных функций может быть сингулярная

Доказательство.
$$f_n(x) = \begin{cases} \frac{n}{2}, \ x \in [-\frac{1}{n}, \frac{1}{n}] \\ 0, \ |x| > \frac{1}{n} \end{cases}$$

$$(f_n(x), \varphi(x)) = \frac{n}{2} \int_{-1/n}^{1/n} \varphi(x) dx = \{\text{формула среднего}\} = \frac{n}{2} \varphi(\xi) \frac{2}{n} \to \varphi(0) = (f(x), \varphi(x)) \Rightarrow f_n(x) \to \delta(x)$$
 в K' .

1.5 Масса материальной точки

1.6 Плоскость электрического диполя

1.7 Первообразная обобщённых функций

Рассмотрим уравнение y' = 0 в K'(1).

Пемма. В пространстве K' уравнение (1) имеет решение y = const.

Доказательство. $(y',\varphi)=-(y,\varphi')=0$ (2). (2) определяет решение уравнения на пробных функциях, которые являются производными от других пробных функций $\psi(x) \in K, \ \psi(x) \geqslant 0$ - не может быть пробной так как пробные функции не являются монотонными. Обозначим пространство $K_0 = \{\varphi_0(x) \in K | \exists \varphi_1(x) - \text{пробная} : \varphi_0(x) = \varphi_1'(x)\}, K_0 \subset K$

Лемма. $\varphi_0(x) \in K_0 \Leftrightarrow \int_{-\infty}^{\infty} \varphi_0(x) dx = 0$

Доказательство. \Leftarrow : Пусть $\varphi_1(x) = \int\limits_{-\infty}^x \varphi_0(t)dt \Rightarrow \varphi_1(x) \in C^\infty$, $\varphi_1'(x) = \varphi_0(x)$. Пусть φ_0 сосредоточена на [a,b], тогда $\int_{-\infty}^{\infty} \varphi_0(t)dt = \varphi_{-\infty}^{\infty} \varphi_0(t)dt = 0 \text{ при } x > b.$

 \Rightarrow : $\varphi_0 \in K_0$, $\exists \varphi_1 : \varphi_0 = \varphi_1'$. $\int\limits_{-\infty}^{\infty} \varphi_0 dx = \int\limits_{-\infty}^{\infty} \varphi_1' dx = \varphi_1|_a^b$. Рассмотрим $\forall \varphi_1 \in K : \int\limits_{-\infty}^{\infty} \varphi_1 dx = 1, \varphi_1 \in K \backslash K_0$. Рассмотрим

 $\forall \varphi \in K$, представим в виде $\varphi(x) = \varphi_0(x) + \varphi_1(x) * \int\limits_{-\infty}^{\infty} \varphi(x) dx, \forall \varphi \in K$, здесь φ_0 - проекция φ на K_0 , а $\varphi_1(x) * \int \ldots$ проекция на $K \backslash K_0$. Получается, что $\dim(K \backslash K_0) = 1$.

 $(y,\varphi)=(y,\varphi_0)+(y_1,\varphi_0)\int\limits_{-\infty}^{\infty}\varphi(x)dx.$ Пусть $(y,\varphi_1)=c_1$ - произвольная постоянная. $(y,\varphi)=c_1\int\limits_{-\infty}^{\infty}\varphi(x)dx=(c_1,\varphi), \forall \varphi\in (x,\varphi)$

Пример.
$$\lim_{A \to \infty} \frac{1}{\pi} \frac{\sin Ax}{x} = ?$$

$$(\frac{1}{\pi} \frac{\sin Ax}{x}, \varphi(x)) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin Ax}{x} \varphi(x) dx = \{\pm \varphi(0)\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin Ax}{x} \varphi(0) dx + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin Ax}{x} (\varphi(x) - \varphi(0)) dx =$$

$$= \varphi(0) + \frac{1}{\pi} \int_{-a}^{a} \frac{\sin Ax}{x} (\varphi(x) - \varphi(0)) dx + \int_{|x| \geqslant a} \varphi(0) \frac{\sin Ax}{x} dx = \varphi(0) + \frac{1}{\pi} \int_{-a}^{a} \varphi'(\xi) \sin Ax dx + \int_{|x| \geqslant a} \varphi(0) \frac{\sin Ax}{x} dx$$

 $\int\limits_{|x|\geqslant a}\varphi(0)\frac{\sin Ax}{x}dx\text{ - }x\text{вост сходящегося ряда, поэтому стремится }\kappa\text{ нулю}.$

$$\frac{1}{\pi} \int_{-a}^{a} \varphi'(\xi) \sin Ax dx = -\frac{1}{A} \varphi' \cos Ax \Big|_{-a}^{a} + \frac{1}{A} \int_{-a}^{a} \varphi''(x) \cos Ax dx \to 0 \quad npu \ A \to +\infty.$$

Получили, что $\lim_{A\to\infty} \frac{1}{\pi} \frac{\sin Ax}{x} = \delta(x)$ в K'.

Пример. $\lim_{A\to\infty} \sin Ax = 0$. Проверяется аналогично предыдущему пункту.

Рассматриваем уравнение y' = f, $f \in K'(2)$.

Лемма. $\forall f \in K'$ уравнение (2) имеет решение в K'.

Доказательство. $(y',\varphi)=-(y,\varphi')=(f,\varphi)=(f,\int\limits_{-\infty}^{x}\varphi'(\xi)d\xi)$

$$(y,\varphi') \,=\, (f,-\,\smallint_{-\infty}^x \varphi'(\xi)d\xi), \ \forall \varphi \in K(3). \ \Pi \text{ усть } \varphi_1(x) \in K, \ \smallint_{-\infty}^\infty \varphi_1(x)dx \,=\, 1, \ \forall \varphi \in K: \ \varphi(x) \,=\, \varphi_1(x) \smallint_{-\infty}^\infty \varphi(x)dx \,+\, \varphi_0(x).$$

Определим функционал y_0 по действию на $\varphi_0(x)$. $(y_0,\varphi)=(y,\varphi_0)=(f,-\int\limits_{-\infty}^{\infty}\varphi_0(\xi)d\xi),\ y_0$ - частное решение (2) или

неопределенный интеграл функции $f.\ (y,\varphi)=(y_1,\varphi_1)\int\limits_{-\infty}^{\infty}\varphi dx+(y,\varphi_0)\Rightarrow$ решение уравнения (2) \exists в K' и записывается в виде $y = y_0 + C$.

Пример. Решить уравнение $y' + y = \theta(x)$ в K'.

Пример. Генция уривнение
$$y + y = b(x)$$
 в X . $y = ze^{-x}, y' = z'e^{-x} - ze^{-x}$, тогда наше уравнение: $z'e^{-x} = \theta(x), z' = \theta(x)e^{x}$. По формуле, полученной выше: $(z_0, \varphi) = (z, \varphi_0) = (f, -\int\limits_{-\infty}^{x} \varphi_0(\xi)d\xi) = (\theta(x)e^{x}, -\int\limits_{-\infty}^{x} \varphi_0(\xi)d\xi) = -\int\limits_{0}^{x} e^{x} \int\limits_{-\infty}^{x} \varphi_0(\xi)d\xi dx = -e^{x} \int\limits_{\infty}^{x} \varphi_0d\xi|_{x=0}^{x} + \int\limits_{0}^{\infty} e^{x} \varphi_0(x)dx = \{\varphi_0 \in K_0: \int\limits_{-\infty}^{\infty} \varphi_0 dx \xi = 0\} = \int\limits_{0}^{0} \varphi_0 d\xi + \int\limits_{0}^{\infty} e^{x} \varphi_0(x)dx = \int\limits_{-\infty}^{\infty} \varphi_0 d\xi + \int\limits_{0}^{\infty} (e^{x} - 1)\varphi_0 dx = \int\limits_{-\infty}^{\infty} \theta(x)(e^{x} - 1)\varphi_0(x)dx$. Поэтому $z_0(x) = \theta(x)(e^{x} - 1) \Rightarrow z(x) = \theta(x)(e^{x} - 1) + C, y = \theta(x)(1 - e^{-x}) + Ce^{-x}$

1.8 Обобщённые функции в \mathbb{R}^n

Определение. Функция называется обычной, если она определена на \mathbb{R}^n , принимает вещественные значения, интегрируема (по Лебегу) по любому п-мерному брусу.

Множество всех обычных функций: $E = E_n = E(\mathbb{R}^n)$

Определение. Функция называется пробной (основной), если бесконечно дифференцируема в \mathbb{R}^n и равна θ вне некоторого бруса.

Наименьшее замкнутое множество в \mathbb{R}^n вне которого пробная функция равна нулю называется её носителем. Множестов пробных функция $K = K_n$.

Определение. $\{\varphi_n\}, \varphi_n \in K_n, \varphi_n \to 0$ при $n \to \infty$ в K_n , если все φ_n сосредоточена на одном брусе и $\varphi_n \rightrightarrows 0$ в K_n вместе со всеми производными.

Определение. Обобщённой функцией назовём любой линейный непрерывный функционал на пространстве K_n . Если $f \in E_n$, то она поражадает функционал $(f,\varphi) = \int\limits_{\mathbb{D}^n} f\varphi dx(1)$. Тогда f - регулярная обобщённая функция.

Замечание. Существуют функционалы не представимые в виде (1). Например $\delta(x):(\delta,\varphi)=\varphi(0)$

Определение. Обобщённая функция $f \in K'_n$ имеет порядок синуглярности $\leqslant p$, если она представима в виде:

$$(f,\varphi) = \sum_{|k| \le p} f_k(x) D^k \varphi(x) dx = \sum_{|k| \le p} (f_k, D^k \varphi)(2),$$

$$\operatorname{ide} k = (k_1, \dots, k_n), |k| = k_1 + \dots + k_n, D^k = \frac{\partial^{|k|}}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}$$

1.8.1 Действия с обобщёнными функциям

- 1. $\forall \alpha_1, \alpha_2 \in \mathbb{R}, \forall f_1, f_2 \in K'_n \Rightarrow (\alpha_1 f_1 + \alpha_2 f_2, \varphi) = \alpha_1(f_1, \varphi) + \alpha_2(f_2, \varphi)$
- $2. \ \forall f \in K_n', \alpha(x) \in C^\infty(\mathbb{R}^n) \Rightarrow (\alpha(x)f,\varphi) = (f,\alpha(x)\varphi)$
- 3. Предельный переход. $\{f_{\nu}\}, f_{\nu} \in K'_{n}, f \in K'_{n}, f_{\nu} \to f$ в K'_{n} , если $(f_{\nu}, \varphi) \to (f_{0}, \varphi), \forall \varphi \in K_{n}$.
- 4. $(D^k f, \varphi) = (-1)^{|k|} (f, D^k \varphi)$

Примеры на дифференциорование

Пример. $(\frac{\partial^2 f}{\partial x \partial y}, \varphi) = (f, \frac{\partial^2 \varphi}{\partial y \partial x}) = (f, \frac{\partial^2 \varphi}{\partial x \partial y}) = (\frac{\partial^2 f}{\partial y \partial x}, \varphi)$. То есть для обобщённых функций также смешанные производные совпадают.

Пример.

Определение. Обычная $g(x) \in E_n$ называется обобщённой производной по Соболеву от функции (обычной) f на множестве G, если $\forall \varphi \in C^{\infty}(G)$, сосредточенной строго внутри G выполнено $(-1)^{|k|} \int\limits_G g(x) \varphi(x) dx = \int\limits_G f(x) D^k \varphi(x) dx \Rightarrow g(x) = D^k f$ в K'.

$$\begin{split} & \textbf{Пример.} \ \ \theta(x) = \begin{cases} 1, \ x_1, \dots, x_n \geqslant 0 \\ 0, \ \mathbb{R}^n \backslash \{x_1, \dots, x_n \geqslant 0\} \end{cases} \\ & (\frac{\partial^n \theta}{\partial x_1 \dots \partial x_n}, \varphi(x)) = (-1)^n (\theta, \frac{\partial^n \varphi}{\partial x_1 \dots \partial x_n}) = (-1)^n \int\limits_{x_1, \dots, x_n \geqslant 0} \frac{\partial^n \varphi}{\partial x_1 \dots \partial x_n} dx_1 \dots dx_n = \varphi(0, \dots, 0) = (\delta(x), \varphi) \end{cases} \end{split}$$

Пример. Оператор Лапласа от сферических функций:

$$\Delta = \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}, \ f(r), \ r = \sqrt{\sum_{m=1}^{n} x_{m}^{2}}, \ \frac{\partial r}{\partial x_{j}} = \frac{1}{2} \frac{2x_{j}}{r} = \frac{x_{j}}{r}, \ \frac{\partial f}{\partial x_{j}} = f'(r) \frac{\partial r}{\partial x_{j}} = f'(r) \frac{x_{j}^{2}}{r}, \ \frac{\partial^{2} f}{\partial x_{j}^{2}} = f''(r) \frac{x_{j}^{2}}{r^{2}} + f'(r) \frac{r - \frac{x_{j}^{2}}{r}}{r^{2}} = f''(r) \frac{x_{j}^{2}}{r^{2}} + f'(r) \frac{r^{2} - x_{j}^{2}}{r^{3}}$$

$$\Delta f(r) = f''(r) + f'(r) \frac{r^2 n - r^2}{r^3} = f''(r) + f'(r) \frac{n-1}{r}. \text{ Hyems meners } f(r) = r^p, \text{ morda } \Delta f(r) = r^{p-2} p(p+n-2) \quad (1).$$

1.9 Формула Грина

$$\int\limits_{G} \Delta f \varphi d\sigma = \int\limits_{G} f \Delta \varphi d\sigma + \int\limits_{\Gamma - \delta G} \left(f \frac{\partial \varphi}{\partial n} - \varphi \frac{\partial f}{\partial n} \right) d\sigma_{p}$$

$$G: \varepsilon \leqslant r \leqslant a, \ a: \varphi(x) = 0 \text{ вне } |x| \leqslant a.$$

$$\int_{r \geqslant \varepsilon} \frac{\Delta \varphi}{r^{n-2}} dx = \int_{r \geqslant \varepsilon} \varphi\left(\frac{1}{r^{n-2}}\right) dx - \int_{r=\varepsilon} \frac{\partial \varphi}{\partial r} \frac{1}{r^{n-2}} d\sigma + \int_{r=\varepsilon} \varphi \frac{\partial}{\partial r} \left(\frac{1}{r^{n-2}}\right) d\sigma$$

$$\Delta \frac{1}{r^{n-2}} = 0 \text{ из } (1).$$

$$\int_{r=\varepsilon} \frac{\partial \varphi}{\partial r} \frac{1}{r^{n-2}} d\sigma = \frac{1}{\varepsilon^{n-2}} \int_{r=\varepsilon} \frac{\partial \varphi}{\partial r} d\sigma \to 0 \text{ при } \varepsilon \to 0 \text{ так как } \frac{\partial \varphi}{\partial r} \text{ ограниченно}$$

$$\int_{r=\varepsilon} \varphi \frac{\partial}{\partial r} \left(\frac{1}{r^{n-2}}\right) d\sigma = \left\{\frac{\partial}{\partial r} \left(\frac{1}{r^{n-2}}\right) = \frac{-(n-2)r^{n-3}}{r^{2(n-2)}} = \frac{-(n-2)}{r^{n-1}}\right\} = -\frac{(n-2)}{\varepsilon^{n-1}} \int_{r=\varepsilon} \varphi d\sigma = -\frac{(n-2)\Omega_n}{\varepsilon^{n-1}\Omega_n} \int_{r=\varepsilon} \varphi d\sigma$$

$$= \left\{\frac{1}{\varepsilon^{n-1}\Omega_n} \int_{r=\varepsilon} \varphi d\sigma = S_{\varepsilon}[\varphi] - \text{ среднее значение функции на сфере}\right\} = -(n-2)\Omega_n S_{\varepsilon}[\varphi] \to -(n-2)\Omega_n \varphi(0) =$$

$$= (-(n-2)\Omega_n \delta(x), \varphi(x)), \ \forall \varphi \in K_n$$

В итоге получили, что $\Delta \frac{1}{r^{n-2}} = -(n-2)\Omega_n \delta(x), n>2$. При n=3 : $\Delta \frac{1}{r}=-4\pi\delta(x)$ и имеет первый порядок сингулярности.

1.10 Дифференциальный оператор

Определение. Пусть $P(x_1,\ldots,x_n)$ - многочлен относительно переменных x_1,\ldots,x_n . Рассмотрим дифференциальный оператор $P(\frac{\partial}{\partial dx})=P(\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n})$. Обобщённая функция E(x) называется фундаментальным решением оператор $P(\frac{\partial}{\partial dx})$, если она является решением уравнения $P(\frac{\partial}{\partial dx})E(x)=\delta(x)$

Замечание. Для оператора Лапласа $E(x)=-\frac{1}{(n-2)\Omega_n}\frac{1}{r^{n-2}}, \forall n>2.$

Пример. $P\theta(x)=\delta(x),\ \phi$ ункция хевисайда является фундаментольной для $P(\frac{\partial}{\partial dx})=\frac{\partial^n}{\partial x_1\dots\partial x_n}$

2 Преобразование Фурье и свертка обобщённых функций

2.1 Преобразование Фурье в $K = K_1$

Рассмотрим $\forall \varphi(x) \in K$, $\operatorname{supp} \varphi(x) \subset [-a, a]$.

Определение. Преобразованием Фурье функции $\varphi \in K$ называется

$$F[\varphi] \equiv \psi(\sigma) = \int_{-\infty}^{\infty} \varphi(x)e^{i\sigma x}dx = \int_{-a}^{a} \varphi(x)e^{i\sigma x}dx$$

Определение. Обратным преобразованием Фурье функции $\psi(\sigma)$ называется

$$\varphi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(\sigma) e^{-i\sigma x} d\sigma$$

Оно однозначно восстанавливает $\varphi(x)$ по $\psi(\sigma)$.

Теорема. (свойства преобразования Фурье)

I. Пусть $\varphi(x) \in K$, $\operatorname{supp} \varphi \subset [-a,a]$ для некоторого a>0. Тогда функцию $\psi(\sigma)$ можно продолжить аналитически на всю комплексную плоскость \mathbb{C} , функция $\psi(s)$, $s=\sigma+i\tau$, $\sigma,\tau\in\mathbb{R}$ так что $\forall q\in\{0\}\cup\mathbb{N}\ \exists C_q=\operatorname{const}>0:\ |s^q\psi(s)|\leqslant c_qe^{a|\tau|}\ (1)$

II. Пусть $\psi(s)$ - целая функция на $\mathbb C$ и справедлива оценка (1). Тогда \exists функция $\varphi(x) \in K$, $\mathrm{supp} \varphi \subset [-a,a]$, для которой функции $\psi(\sigma)$ ($\sigma = \mathrm{Re} s$) является её преобразованием Фурье.

Доказательство. І. Положим $\psi(s)=\int\limits_{-a}^{a}\varphi(x)e^{isx}dx,\ \forall s=\sigma+i au\in\mathbb{C}.\ |\psi(s)|\leqslant\int\limits_{-a}^{a}|\varphi(x)||e^{isx}|dx=\int\limits_{-a}^{a}|\varphi(x)|e^{- au x}dx\leqslant 0$

 $C_0e^{a|\tau|},\,C_0=\int\limits_{-a}^a|\varphi(x)|dx$, получили оценку для q=0. $\psi^{(l)}(s)=\int\limits_{-a}^a\varphi(x)(ix)^le^{isx}dx$ - существует, непрерывная $\forall s\in\mathbb{C}$, поэтому $\psi(s)$ - аналитическая функция на \mathbb{C} .

Чтобы получить оценку (1) нужно q раз интегрировать по частям: $\psi(s)=\int\limits_{0}^{a}\varphi(x)e^{isx}dx=\{$ по частям $\}=0$

$$= (-1)^q \int\limits_{-a}^{a} \varphi^{(q)}(x) \frac{1}{(is)^q} e^{isx} dx \Rightarrow |s^q \psi(s)| \leqslant C_q e^{a|\tau|}, \ C_q = \int\limits_{-a}^{a} |\varphi^{(q)}(x)| dx$$

 $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(\sigma) e^{-i\sigma x} d\sigma$ (3), эта функция единственна из единственности обратного преобразования Фурье.

Пусть в (1) $s=\sigma$ (то есть мнимая часть равна 0) $\Rightarrow |\psi(\sigma)|\leqslant C_0, |\sigma^p\psi(\sigma)|\leqslant C_q \Rightarrow (1+|\sigma|^p)|\psi(\sigma)|\leqslant C, |\psi(\sigma)|\leqslant C$

 $\varphi^{(l)}(x)=rac{1}{2\pi}\int\limits_{-\infty}^{\infty}\psi(\sigma)(-i\sigma)^le^{-i\sigma x}d\sigma$, пусть q=l+2, тогда интеграл сходится равномерно по x на любом отрезке числовой

прямой (по признаку Вейерштрасса) $\Rightarrow \varphi(x) \in C^{\infty}(\mathbb{R})$ Докажем, что в правой части формулы (3) можно интегрироваь по любой прямой в \mathbb{C} параллельной оси $O\sigma$, то есть $\varphi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(\sigma + i\tau) e^{-i(\sigma + i\tau)x} d\sigma$, $\forall \tau \in \mathbb{R}$ (4). Рассмотрим функцию $f(s) = \psi(s) e^{-isx}$, она целая. Рассмотрим прямоугольник $\Gamma = (-A)(B)(C)(A), -A = (-\sigma_0, 0), B = (-\sigma_0, \tau_0), C = (\sigma_0, \tau_0), A = (\sigma_0, 0).$ Наша функция аналитична в \mathbb{C} , поэтому по теореме Коши $\int_{\Gamma} f(s)ds = \int_{\Gamma} \psi(s)e^{-isx}ds = 0, \forall x \in \mathbb{R}$. Теперь распишем интегралы по границам этого

прямоугольника: $\left|\int\limits_{AC}\psi(\sigma_0+i\tau)e^{-(\sigma_0+i\tau)x}d\tau\right| = \left|\int\limits_0^{\tau_0}\psi(\sigma_0+i\tau)e^{-(\sigma_0+i\tau)x}d\tau\right| \leqslant \left\{|s|^2|\psi(s)| \leqslant Ce^{a|\tau|}, |\psi(s)| \leqslant \frac{C_1}{|\sigma_0+i\tau|^2}\right\} \leqslant Ce^{a|\tau|}$ $\leq C_1 \int_0^{\tau} \frac{1}{|\sigma_0 + i\tau|^2} e^{\tau x} d\tau \sim \frac{1}{|\sigma_0|} \to 0$ при $\sigma_0 \to \infty$. То есть по отрезкам (AC) и (-AB) интеграл стремится к 0 и формула

 $|\psi(s)| \leqslant C_0 e^{a|\tau|} |s|^2 |\psi(s)| \leqslant C_2 e^{a|\tau|} \Rightarrow |\psi(s)| \leqslant \frac{\tilde{C}}{1 + |s|^2} e^{a|\tau|} \leqslant \frac{\tilde{C}}{1 + |\sigma|^2} e^{a|\tau|}, \ |s| \geqslant |\sigma|.$

Подставим в (4) для фиксированного $\tau \neq 0$. $|\varphi(x)| \leqslant \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \frac{C}{1+|\sigma|^2} e^{a|\tau|} e^{\tau x} d\sigma = \tilde{\tilde{C}} e^{a|\tau|+\tau x}, \ \tilde{\tilde{C}}$ не зависит от τ .

Пусть x>a,a-x<0, пусть $\tau<0\Rightarrow \tau=-|\tau|,\ |\varphi(x)|\leqslant \tilde{\tilde{C}}e^{|\tau|(a-x)}\to 0$ при $\tau\to\infty$, аналогично для x<-a, то есть показали, что $\operatorname{supp}\varphi(x) \subset [-a, a]$