Elementary Linear Algebra - MATH 2250 - Day 11

Name: 1. Start with the vectors $\mathbf{v}_1 = (0, 2, 1)$ and $\mathbf{v}_2 = (2, 1, 0)$. (a) Are they linearly independent? Why? (b) Are they a basis for any space? (c) What space V do they span?

(d) What is the dimension of V?

(e) Which matrices A have V as their column space?

(f) Which matrices A have V as their null space?				
	(g) Describe all vectors \boldsymbol{v}_3 that $complete$ a basis $\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3$ for $\mathbb{R}^3.$			
2.	(Important) Suppose v_1, v_2, \ldots, v_n is a basis for \mathbb{R}^n and the $n \times n$ matrix A is invertible. Show that Av_1, Av_2, \ldots, Av_n is also a basis for \mathbb{R}^n .			

3. Write a rank 3 matrix A	$A_{4\times7}$ and find its four fund	damental subspaces, by	describing a basis for each of	of them.