

Artificial & Computational IntelligenceDSE CLZG557

M5: Probabilistic Representation & Reasoning

Raja vadhana P Assistant Professor, BITS - CSIS

BITS Pilani
Pilani Campus

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing, Constraint Satisfaction Problem
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time, Reinforcement Learning

innovate

lead

Module 5: Probabilistic Representation and Reasoning

- A. Inference using full joint distribution
- B. Bayesian Networks
 - I. Knowledge Representation
 - II. Conditional Independence
 - III. Exact Inference
 - IV. Introduction to Approximate Inference

Reasoning under uncertainty

Building a Bayesian Network

Example Bayesian Net #2

Example Bayesian Net #3

Assumption Bayesian Nets

- A node is conditionally independent of its non-descendants given its parents
- A node is conditionally independent of all other nodes in the net, given its parents, children and children's parents.

Inferences in Bayesian Nets

Enumeration

Belief Nets

Diagnostic

Causal

Inter-Casual

Mixed Inferences

Examples

 Calculate the probability that alarm has sounded, but neither burglary nor earthquake happened, and both John and Mary called

2. What is the probability that Burglary happened given John & Mary called the police

3. What is the probability that John calls given earthquake occurred?

 Calculate the probability that alarm has sounded, but neither burglary nor earthquake happened, and both John and Mary called

$$P(j, m, a, \neg b, \neg e) = P(j \mid a)P(m \mid a)P(a \mid \neg b \land \neg e)P(\neg b)P(\neg e)$$

= 0.90 × 0.70 × 0.001 × 0.999 × 0.998 = 0.000628

2. What is the probability that Burglary happened given John & Mary called the police

$$P(B | J,M) = \frac{P(B, J, M)}{P(J, M)}$$

$$P(B | J,M) = \frac{\sum_{A, E} P(J, M, A, B, E)}{\sum_{A, B, E} P(J, M, A, B, E)}$$

achieve

lead

2. What is the probability that Burglary happened given John & Mary called the police

$$P(B | J,M) = \frac{P(B, J, M)}{P(J, M)}$$

$$P(B | J,M) = \frac{\sum_{A, E} P(J, M, A, B, E)}{\sum_{A, B, E} P(J, M, A, B, E)}$$

achieve

lead

2. What is the probability that Burglary happened given John & Mary called the police

$$P(B | J,M) = \frac{P(B, J, M)}{P(J, M)}$$

$$P(B | J,M) = \frac{\sum_{A, E} P(J, M, A, B, E)}{\sum_{A, B, E} P(J, M, A, B, E)}$$

achieve

lead

3. What is the probability that John calls given earthquake occurred?

$$P(J | E) = \frac{P(J, E)}{P(E)}$$

$$P(J | E) = \frac{\sum_{M, A, B} P(J, M, A, B, E)}{\sum_{J, M, A, B} P(J, M, A, B, E)}$$

Fault Diagnostic System

Fault Diagnostic System

Raw Data	On battery power		Resolution Notes Power outage due to transformer fire			
Raw Data						
Classified Tags	Sympt	om	Cause	e(s)	Lin	k
Classified rags	on_battery	_power	power_outage, tr	ansformer_fire	due,	to
RN Manning	Child Variable	Child State	Parent Variable	Parent State	Ancestor Variable	Ancestor State
BN Mapping	on_battery_power	yes	power_outage	yes	transformer	Fire

Fault Diagnostic System

Figure 8. Fused Bayesian Network structure for top six occurring UPS messages.

Fault Diagnostic System

Inferences in Bayesian Nets

Reduce Guaranteed Independent nodes

D-Connectedness Vs D-Separation

- 1. Each variable is conditionally independent of its nondescendants, given its parents
- 2. Eliminate the hidden variables that is neither a query nor an evidence
- 3. Two variables are d-separated if they are conditionally independent given evidences

Try it & Test

X	Y	Evidence Z	d-sep?
F	W	С	No
L	W	R	No
R	L	С	Yes
В	R	С	No

 \triangleright P(R|L,C) = P(R|L)

R & L are d-separated ie., conditionally independent given C

D-Separation in Inference

X	Y	Evidence Z	d-sep?
F	W	С	No
L	W	R	No
R	L	С	Yes
В	R	С	No

 \triangleright P(R|L,C) = P(R|L)

R & L are d-separated ie., conditionally independent given C

D-Separation in Inference

Variable Elimination

- 1. Each variable is conditionally independent of its nondescendants, given its parents
- 2. Eliminate the hidden variables that is neither a query nor evidence
- 3. Two variables are d-separated if they are conditionally independent given evidences

>
$$P(B) = \sum_{L, B, W, R, F} P(L, C, B, W, R, F)$$

= $\sum_{L} \sum_{B} P(L|C) \cdot P(B|W) \cdot \sum_{W} P(C|W, R) \cdot \sum_{R} P(R|F) \cdot \sum_{F} P(F)$
= $P(B|W)$

All other variables are hidden w.r.t to B as (L, C, R, F) are neither evidence nor query nor (L, C, R, F) ∈ Ancestors(W, B)

This is variable elimination example targeting irrelevant nodes

Approximate Inferences in Bayesian Nets

Introduction

Prior Sampling

Sample Generation by Randomization

0.3, 0.2, 0.6, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.9, 0.55......

Prior Sampling

V	L	D	F
Т	T	F	Т
F	F	F	F
T	F	F	Т
F	T	F	Т
Т	Т	F	Т
Т	F	F	F
F	F	F	Т
Т	F	F	F

lead

Rejection Sampling

Sample Generation by Randomization

 $0.3,\, 0.2,\, 0.6,\, 0.58,\quad 0.73,\, 0.87,\, 0.15,\, 0.6,\, \ 0.57,\, 0.85,\, 0.12,\, 0.004,\quad 0.93\,\,,\, 0.0002,\, 0.9, 0.555, 0.38................$

Rejection Sampling

Inference

V	L	D	F
Т	Т	Т	T
F	F	Т	F
Т	F	Т	Т
F	Т	Т	Т
Т	Т	Т	Т
Т	F	Т	F
F	F	Т	Т
Т	F	Т	F

Likelihood Weighing

Sample Generation by Randomization

V	L	D	F	wgt
F	F	Т	Т	0.4*1* 0.1 *1=
F	F	Т	Т	
F	F	Т	Т	
F	F	Т	Т	
F	F	Т	Т	
F	Т	Т	Т	
F	Т	Т	F	

$$P(^{F}|D,^{V}) = 0.04 / 7*0.04$$

0.3, 0.2, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.99,,....

Likelihood Weighing

Inference

V	L	D	F	wgt
F	F	Т	F	1*0.99* 0.1 *1=
F	F	Т	Т	1*0.99* 0.1 *1=
F	F	Т	Т	1*0.99* 0.1 *1=
Т	F	Т	F	1*0.2* 0.1 *1=

$$= 0.099 + 0.099 / (3*0.099 + 0.02)$$

Privacy Preserving Data Augmentation / Generation

 $[0,4], [5,9], \dots, [95,99] \rightarrow (1,6,\dots,1) \text{ n=100} \rightarrow (1,3,\dots,0) \text{ n=93}$ Marginal Distribution(Sensitive Attribute) = (1/93, 3/93.....0/93)

Table 2. Example noisy marginal distributions for network N_1 .

(a) Marginal distribution for 'age probability

'higrade'	01	02
[0, 4]	0.02	0.02
[5, 9]	-0.1	0
[95, 99]	0	0

Table 3. Processed noisy marginal distributions for network N_1

'age'	probability
[0, 4]	0.05
[5, 9]	0
[95, 99]	0.1

'higrade'	01	02
[0,4]	0.025	0.025
[5,9]	0	0
[95, 99]	0	0

(b) Marginal distribution for 'age' and 'higrade

Table 4. Noisy marginal distributions for network N_1 that are consistent on at-

'age'	probability
[0, 4]	0.05
[5, 9]	0
[95, 99]	0.067

01	02
0.025	0.025
0	0
0.0335	0.0335
	0.025

Source Credit: TPDP 2020: Synthetic Data Generation with Differential Privacy via Bayesian Networks

Required Reading: AIMA - Chapter #13, #14.1, #14.2

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials

Artificial & Computational IntelligenceDSE CLZG557

M6: Reasoning over time & Reinforcement Learning

Raja vadhana P Assistant Professor, BITS - CSIS

BITS Pilani
Pilani Campus

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing, Constraint Satisfaction Problem
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time, Reinforcement Learning

Reasoning Over Time

Time & Uncertainty

Morkov Model

Transition Model

Next Session Plan:

- Hidden Morkov Models
- Inferences in Temporal Models