

Molecular Quantum Circuit Design

Jakob S. Kottmann
Institute for Computer Science
University of Augsburg

Perruzo/McClean, Nat. Comm, 2014 McClean, NJP, 2016 Motivation: VQEs as black-boxes

Many projects need robust VQEs

Motivation: VQEs as black-boxes

Proof of concept scalability: challenging!

Basic Building Blocks

Pair Correlators

Basis Change

Analogy

electronic structure

quantum machine learning

basis change

correlate

High-Level Design

High-Level Design

More Graphs
Heuristic Grouping

Single graphs are cheap

classically simulable

VQE-Style Wavefunction

Krylov-Style Wavefunction

$$a \left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle + b \left| \begin{array}{c} \\ \\ \end{array} \right\rangle + c \left| \begin{array}{c} \\ \\ \end{array} \right\rangle$$

Transfer Insight

Example

Linear H4 Molecule

parameters: 4 cnots: 6 - 70

UpCCGSD parameters: 18 cnots: 66 — 188

k-UpCCGSD: Lee, JCTC, 2018

parameters: 6 cnots: 116

2-UpCCGSD parameters: 36 cnots: 432

k-UpCCGSD: Lee, JCTC, 2018

Heuristic Orbitals Optimized Orbitals 135 **HF Orbitals Energy Error** 90 45 0 Adapt HF

180

2-UpCCGSD parameters: 36 cnots: 432

Adapt(C,R)
parameters: 12
cnots: 448

Adapt: Grimsley/Mayhall, Nat. Comm, 2019

Motif hard to detect locally

2-UpCCGSD parameters: 36 cnots: 432

Adapt(C,R)
parameters: 12
cnots: 448

$$a \left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle + b \left| \begin{array}{c} \\ \\ \end{array} \right\rangle$$

Transfer Insight

Single Graphs (automatized)

Optimized Low-Depth Quantum Circuits for Molecular Electronic Structure using a Separable Pair Approximation

Jakob S. Kottmann^{1, 2, *} and Alán Aspuru-Guzik^{1, 2, 3, 4, †}

Multi-Graphs (concept & examples)

Molecular Quantum Circuit Design: A Graph-Based Approach

Jakob S. Kottmann* (Dated: July 27, 2022)

Krylov-Style Multi-Graphs

Compact Effective Basis Generation: Insights from Interpretable Circuit Design

Jakob S. Kottmann¹ and Francesco Scala²

quantum open-source foundation

PhD Position Available

code examples online

github/kottmanj/talks_and_material

