Анализ, 4 семестр

Михаил Пирогов записал со слов лектора А. А. Лодкина

30 мая 2017 г.

Глава 1 Теория меры

Билет 1: Алгебры и σ -алгебры множеств.

Определение 1.1. Пусть X – некоторое множество. Тогда $\mathcal{A} \subset 2^X$ называется *алгеброй*, если выполняются следующие условия:

- 1. \varnothing , $X \in \mathcal{A}$,
- 2. $A, B \in \mathcal{A} \Rightarrow A \cup B, A \cap B, A \setminus B \in \mathcal{A}$.

Упражнение 1. Пусть $\mathcal{A}\subset 2^X$ – алгебра, $|\mathcal{A}|<\infty$. Тогда $|\mathcal{A}|=2^n$ для некоторого n.

Доказательство. Так как $X \in \mathcal{A}$, каждый элемент X содержится как минимум в одном элементе \mathcal{A} . Пусть A(x) – пересечение всех множеств из \mathcal{A} , содержащих x. Понятно, что A(x) непусто, т.к. $x \in A(x)$. Разобьём дальнейшее доказательство на несколько пунктов:

- 1. Мы определили A(x), как наименьшее по включению множество, удовлетворяющее некоторому свойству. Поэтому у него есть эквивалентное определение: A(x) такое множество, что если $x \in B \in \mathcal{A}$, то $A(x) \subset B^{-1}$.
- 2. Введём отношение на X: пусть $x \sim y$, если A(x) = A(y). Очевидно, что это отношение эквивалентности. Докажем, что $x \sim y \Leftrightarrow y \in A(x)$.

Пусть $y \in A(x)$. Предположим, что $A(y) \neq A(x)$. Тогда выполняется минимум одно из двух утверждений: либо A(y) содержит элемент, которого нет в A(x), либо наоборот. Пусть первое. Тогда $B = A(x) \cap A(y)$ — элемент \mathcal{A} , который содержит y и строго меньше A(y), чего не может быть. Пусть второе. Тогда если A(y) не содержит x, то $A(x) \setminus A(y)$ является элементом \mathcal{A} , содержащим x, а если содержит, то снова $A(x) \cap A(y)$ является таким элементом. Причём строго меньшим, чем A(x), что опять ведёт нас к противоречию.

Пусть A(x) = A(y). Предположим, что $y \notin A(x)$. Но тогда $y \notin A(y)$, что точно ложь.

- 3. Разобьём X на классы эквивалентности по отношению \sim ; обозначим множество этих классов $\hat{\mathcal{A}}$. Понятно, что $|\hat{\mathcal{A}}| < \infty$, ведь $\hat{\mathcal{A}} \subset \mathcal{A}$. Пусть $B \in \mathcal{A}$ и $\hat{B} \in \hat{\mathcal{B}}$. Докажем, что если $B \cap \hat{B} \neq \emptyset$, то $B \cap \hat{B} = \hat{B}$.
 - Предположим противное: пусть $x \in B \cap \hat{B}$ и $y \in \hat{B} \setminus B$. Из определения отношения эквивалентности понятно, что $\hat{B} = A(x) = A(y)$. Но заметим тогда, что $\hat{B} \setminus B$ множество из \mathcal{A} , содержащее y и строго меньшее \hat{B} , чего не может быть.
- 4. Из сделанного нетрудно увидеть, что любое $B \in \mathcal{A}$ можно представить, как объединение множеств из $\hat{\mathcal{A}}$: просто для каждого $b \in B$ взять A(b) и объединить их все. При этом понятно, что любое объединение множеств из $\hat{\mathcal{A}}$ лежит в A. Т.к. элементы $\hat{\mathcal{A}}$ не пересекаются, нетрудно увидеть, что отображение, сопоставляющее множеству $\mathcal{B} \subset \hat{\mathcal{A}}$ объединение всех его элементов есть биекция биекция между множествами $2^{\hat{\mathcal{A}}}\mathcal{A}$. Поэтому количество элементов \mathcal{A} имеет искомый вид.

 $^{^1}$ Заметим, что мы существенно испльзуем конечность $\mathcal A$ каждый раз, когда говорим, что $A(x) \in \mathcal A$!