Maximum Flow Problem

- Given a weighted directed graph
 - Each edge is a pipe whose weight denotes its capacity: the maximum amount it can transport
 - Use c(e) for the capacity of edge e
 - Given a source, s, and a sink, t, find the maximum amount (flow) can transfer from s to t

Flow

- A flow network N consists of
 - A connected directed graph G with weighted edge denoting capacity
 - A source (no incoming edges) and a sink (no outgoing
- A flow for network N is an assignment of an integer value f(e) to each edge e of G, such that
 - Capacity rule $\forall e \in G$, $0 \le f(e) \le c(e)$
 - Conservation rule

$$\forall v \in G, v \neq s, t, \sum_{e \in E^-(v)} f(e) = \sum_{e \in E^+(v)} f(e)$$

 $E^{-}(v)$: incoming edges of v

 $E^+(v)$: outgoing edges of v

An Example Flow

Flow value and Maximum flow

• The *value* of a flow *f*, denoted by |*f*| is

$$|f| = \sum_{e \in E^{-}(t)} f(e) = \sum_{e \in E^{+}(s)} f(e)$$

• A maximum flow is a flow with maximum value

Cuts

- A cut of N is a partition $\chi = (V_s, V_t)$ of the vertices of N such that $s \in V_s$ and $t \in V_t$
 - -(u, v) is a *forward* edge if $u \in V_s$ and $v \in V_t$
 - -(u, v) is a **backward edge** if $v \in V_s$ and $u \in V_s$
- Capacity of a cut: total capacity of forward edges

Cuts: the other example

- A cut of N is a partition $\chi = (V_s, V_t)$ of the vertices of N such that $s \in V_s$ and $t \in V_t$
 - -(u, v) is a forward edge if $u \in V_s$ and $v \in V_t$
 - -(u, v) is a backward edge if $v \in V_s$ and $u \in V_t$
- Capacity of a cut: total capacity of forward edges

Network Flow v.s. Flow Across Cut

• Given a flow f for N, the flow across cut χ , denoted $f(\chi)$, is equal to the sum of the flows in the forward edges minus the sum of the flows in the backward edges.

Network Flow v.s. Flow Across Cut

- · Lemma and Theorem
 - Let N be a flow network, and let f be a flow for N. For any cut χ of N, the value of f is equal to the flow across cut, that is, $|f| = f(\chi)$.
 - Let *N* be a flow network, and let χ be a cut of *N*. Given any flow *f* for *N*, the flow across cut χ does not exceed the capacity of χ . that is, $f(\chi) \le c(\chi)$
 - Let *N* be a flow network. Given any flow *f* and any cut χ , the value of *f* does not exceed the capacity of χ , that is $|f| \le c(\chi)$.
- Minimum cut of *N* is the cut with minimum capacity.

Residual Capacity

- Let N be a flow network, and let f be a flow for N. Let e = (u, v) be an edge in G for N. The residual capacity from u to v with respect to the flow f is defined as $\Delta_f(u,v) = c(e) - f(e)$. The residual capacity from v to u w.r.t. f is defined as $\Delta_f(v,u) = f(e)$
 - Intuition: the residual capacity is the capacity that f has not fully take advantage of
- Let π be a path from s to t, and edges can be traversed in either forward or backward direction
 - Forward edge: origin of the edge encountered first
 - Backward edge: destination encountered first

$$\Delta_f(e) = \begin{cases} c(e) - f(e) & \text{e is forward} \\ f(e) & \text{e is backward} \end{cases}$$

Augmenting Paths

- The residual capacity of a path π is the minimum residual capacity of the edges: $\Delta_f(\pi) = \min_{e \in \pi} \Delta_f(e)$
- An *augmenting path* for flow f is a path π from the source s to sink t with nonzero residual capacity
 - For each edge e of π
 - f(e) < c(e), if e is a forward edge
 - f(e) > 0, if e is a backward edge

Understanding backward edges

Conservation rule still holds after pushing residual capacity

The Max-Flow, Min-Cut Theorem

- Lemma 1:
 - Let π be a augmenting path for flow f in network N, there exists a flow f' for N of value $|f'| = |f| + \Delta_f(\pi)$
- Lemma 2:
 - If a network N does not have an augmenting path with respect to a flow f, then f is a maximum flow. Also there is a cut of N such that $|f|=c(\chi)$.
- Theorem:
 - The value of a maximum flow is equal to the capacity of a minimum cut

The Ford-Fulkerson Algorithm

```
\begin{split} & maxFlowFordFulkerson(N) \\ & // N = (G, c, s, t) \\ & \{ & \text{for each edge e in N do } \{ & \text{f(e)} = 0; \\ & \text{stop} = \text{false;} \\ & \} \\ & \text{while (!stop) } \{ & \text{traverse G starting at s to find an augmenting path for f;} \\ & \text{if an augmenting } \pi \text{ path exists } \{ & \Delta = \min \min \Delta_f(e) \text{ along } \pi; \\ & \text{for each edge e in } \pi \text{ } \{ & \text{if (e is an forward edge) f(e)} += \Delta; \text{ else f(e)} -= \Delta; \\ & \} & \text{else} \\ & \text{stop} = \text{true;} \\ & \} \end{split}
```

Example of the Ford-Fulkerson Algorithm

How to Compute Augmenting Paths

- Method 1
 - Modify BFS or DFS by considering only the following edges
 - Outgoing edges of v with flow less than the capacity
 - Incoming edges of v with nonzero flow
- Method 2
 - Construct a residual graph R_f with respect to flow f
 - $V(R_f) = V(G)$
 - Add edge (u, v) to R_f if $\Delta(u, v) > 0$
 - Traverse R_f use BFS

Depth-first search algorithm

Analysis of the Ford-Fulkerson Algorithm

- Let *n* and *m* be #vertices and #edges (n<=m+1)
- Let f^* be a maximum flow
- Each loop increases the value of the flow by at least 1
 - The upper bound for the outer loop is $|f^*|$
- DFS or BFS takes time O(m)
- The algorithms takes $O(m|f^*|)$

The Ford-Fulkerson Algorithm maxFlowFordFulkerson(N) // N = (G, c, s, t)for each edge e in N do { f(e) = 0;At most stop = false;|f*| iterations while (!stop) { rtraverse G starting at s to find an augmenting path for f; if an augmenting π path exists { O(m) Δ = minimum $\Delta_f(e)$ along π ; \rightarrow for each edge e in π { if (e is an forward edge) $f(e) += \Delta$; else $f(e) -= \Delta$; } else stop = true;

Example of a bad case

Runs slow when choose (s, x, y,t) and (s,y,x,t) alternatively

The Edmonds-Karp Algorithm

- Try to find a "good" augmenting path each time
 - Choose an augmenting path with the smallest number of edges
 - · Can be implemented using BFS traversal

Breadth-first search algorithm

```
\label{eq:basic_state} \begin{cases} BFS(G,s) \\ \{ & \text{for each node } u \in N - \{s\} \ \{ \\ & \text{color}[u] = WHITE; \\ & d[u] = \infty; \\ & \pi[u] = \text{null}; \\ \} \\ & \text{color}[s] = GRAY; \\ & d[s] = 0 \\ & \text{enqueue}(Q,s); \end{cases}
```

d[]: tracks shortest distance, assuming each edge's weight is 1

 $\pi[\mbox{\rm]:}$ tracks the parent-child relationship in the breadth-first tree

Lemmas and Theorem

- Let g be the flow obtained from flow f with an augmentation along a path of minimum length then for each vertex v, $d_i(v) \le d_o(v)$
- When executing the Edmonds-Karp algorithm on a network with *n* vertices and *m* edges, the number of flow augmentations is no more than *nm*.
- Given a flow network with *n* vertices and *m* edges, the Edmonds-Karp algorithm computes a maximum flow in O(*nm*²) time

Maximum Bipartite Matching

- Bipartite graph
 - a graph with vertices partitioned into two sets X and Y, such that every edge has one endpoint in X and the other in Y
- Matching in a bipartite graph
 - A set of edges that has no end points in common
- Maximum bipartite matching

An example of reduction

- The matching with the greatest number of edges

Reduction to the Maximum Flow Problem

- Let G be a partite graph whose vertices are partitioned into sets X and Y. Create a flow network H as follows
 - Add each vertex of G into H plus a source vertex s and a sink vertex t.
 - Add edges of G into H and make each edge orient from an endpoint in X to an endpoint in Y
 - Insert a directed edge from s to each vertex in X
 - Insert a directed edge from each vertex in Y to t
 - Assign each edge in H a capacity of 1

G H

All edges with capacity 1

Y

Reduction to the Maximum Flow Problem

- Given the maximum flow f of H, define M as a set of edges such that e in M iff f(e) =1
 - M is a matching
 - M is a maximum matching
- Reverse transformation: given a matching M in H, define a flow f
 - For each edge e of H that is also in G, f(e) = 1 if $e \in M$ and f(e) = 0 otherwise.
 - For each edge of H incident to s or t and v be the other end point, f(e) = 1 if v is is an endpoint of some edge of M and f(e) = 0 otherwise

