

Data Science Session Housekeeping

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
 wish to ask any follow-up questions. Moderators are going to be
 answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Data Science Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- Report a safeguarding incident:
 <u>www.hyperiondev.com/safeguardreporting</u>
- We would love your feedback on lectures: Feedback on Lectures

Learning Objectives

- Define and use variables and various data types in Python scripts.
- **Explain** and **implement** conditional statements to control the flow of a Python program.
- Design and create simple Python programs that solve specific problems using variables, data types, and conditional statements.

Lecture Overview

- → Setting Up Dev Environments
- → Variables
- → Data Types
- → Conditional Statements

Setting up your Dev Environments

Installation Cheat Sheet

Installation:

Visit the official website and download the installer for your operating system: <u>VsCode Download Link Website</u>

Install VSCode:

Run the installer and follow the on-screen instructions to install VSCode on your system.

Settings:

Customize VSCode settings by going to File > Preferences > Settings (or by pressing Ctrl+,). You can configure editor settings, themes, and extensions preferences here.

Variables

Variables

Symbols used to represent values stored in the computer's memory

It is followed by the name of the variable, "=" operator and a value/expression.

After a variable has been defined, its name can be used in expressions.

$$num2 = num1 + 5$$

The "=" operator can be used at any time on existing variables to reassign a new value to that variable.

Data Types

Data Types

- A typical modern computer has more than 100 billion bits in its volatile data storage (working memory).
- To be able to work with such quantities of **bits** without getting lost, we separate them into **chunks** that represent **pieces of information**.

Data Types

- In Python, those chunks are called values.
- Every value has a type that determines its role.
- Understanding data types is fundamental because it allows you to work with different kinds of information effectively.

```
135  # Integer

0.78  # Float

"Hello"  # String

True  # Boolean

[1, 2, 3]  # Array
```


Integers (int)

- Whole numbers without decimals.
- It can be positive, negative, or zero.
- Integers are used to represent quantities that can be counted or measured in whole units.

```
age = 25
count = 10
```


Floats (float)

- Numbers with decimal points.
- Floats are used to represent quantities that can have fractional parts, such as measurements, percentages, or values resulting from mathematical calculations.

```
temperature = 12.7
height = 1.59
```


Strings (str)

- A sequence of characters, such as letters, numbers, or symbols.
- Enclosed within single quotes (") or double quotes ("").
- Strings are used to represent text data in Python.

"Welcome to our DS lecture"
'This is an example of a String'

Strings (str)

- A backslash (\) inside quoted text indicates that the character after it has a special meaning. This is called escaping the character.
- Newlines can be included only when the string is quoted with three quotation marks.

```
"Hello everyone :)\nThis is the new line character"
'''I can type over
multiple lines with
three single quotes'''
```


Booleans (bool)

- It is often useful to have a value that distinguishes between only two possibilities, like "yes" and "no" or "on" and "off".
- For this purpose, Python has a Boolean type, which has just two values, true and false, written as those words.
- Booleans are used in logical operations and conditional statements to make decisions based on whether a condition is true or false

```
is_student = True
is_adult = False
```


NoneType (None)

- Represents the absence of a value or a **null value**.
- It is used to indicate that a variable does not have a value assigned to it.

name = None

Statements that perform different actions depending on whether a condition evaluates to true or false.

- Conditional statements are like decision-making tools in programming.
- Depending on whether a condition is true or false, you can choose to run different parts of your code.
- It's a way to make your program smarter and more flexible, allowing it to adapt to different scenarios as needed.

```
if (temperature < 20):
    print("Yikes! It's cold in here.")</pre>
```


- Conditional execution is created with the if keyword in Python.
- We want some code to be executed if, and only if, a certain condition holds.
- A **condition** is written after the **if** keyword, between parentheses, followed by a **semicolon** (:), then the statement to execute.
- The condition is a boolean expression which we form using values, comparison and logical operators.

Comparison

- * The > and < signs are the Capta hat I Alas for "is greater than" and "is less than", respectively.
- Applying them results in a Boolean value that indicates whether they hold true in this case.

```
print(3 > 4) # -> False
print(3 < 4) # -> True
```

Other similar operators are >= (greater than or equal to), <= (less than or equal to), == (equal to), and != (not equal to).</p>

```
print(50 <= 38) # False
print(50 == 50) # True
print(50 != 50) # False</pre>
```


Logical Operators

- Python supports three logical operators: and, or, and not.
- The and operator represents logical AND
 - > Its result is **true** only if **both** the values given to it are **true**.
- The or operator denotes logical OR.
 - > Its result is **true** if **either** the values given to it are **true**.
- Not flips the value given to it.
 - > not True produces False and not False gives True.

```
print(True and False) # -> False
print(True or False) # -> True
print(not True) # -> False
```


There are three primary types of conditional statements in programming:

```
if (condition):
    print("Executed if condition is true")
elif (another_condition):
    print("Executed if another_condition is true")
else:
    print("Executed if none of the conditions are true")
```


If statement: executes a block of code if a specified condition is true.

```
age = 16
if (age >= 18):
    print("You are eligible to vote.")
```

If-Else statement: executes one block of code if the condition is true and another block if the condition is false.

```
age = 16
if (age >= 18):
    print("You are eligible to vote.")
else:
    print("You are not eligible to vote.")
```


If-Elif-Else statement: It allows you to check multiple conditions and execute different blocks of code depending on which condition is true.

```
mark = 30
if (mark >= 90):
    print("A")
elif (mark >= 80):
    print("B")
elif (mark >= 70):
    print("C")
elif (mark >= 60):
    print("D")
elif (mark >= 50):
    print("E")
else:
    print("F")
```


Questions and Answers

Thank you for attending

