Интегрирование функций

К.ф.-м.н. Завьялова Наталья Александровна natalia.zavyalova@gmail.com

Постановка задачи

Для заданной функции f(x) вычислить значение определенного интеграла

$$I = \int_{a}^{b} f(x)dx$$

Желательно, чтобы метод численного интегрирования обладал следующими свойствами:

- Универсальность. Функция f(x) может быть задана в виде «черного ящика», как способ вычисления f(x) по данному x.
- Экономичность. Количество вычислений функции f(x) по возможности должно быть сведено к минимуму.
- Хорошая обусловленность. Неустранимые погрешности Δf в значениях f(x) не должны приводить к значительной итоговой ошибке ΔI .

Приложения

Численное интегрирование может применяться для

- интегрирования функций, известных только в некоторых точках, например, полученных в результате измерений;
- интегрирования сложных выражений, не имеющих элементарных первообразных, либо имеющих слишком громоздкие выражения для них;
- построения методов численного решения уравнений в обыкновенных и частных производных (методы конечных элементов, интегро-интерполяционные методы).

Методы, основанные на определении интеграла

Вспомним, как определяется определенный интеграл Римана.

Рассмотрим на отрезке интегрирования [a,b] сетку $a = x_0, x_1, ..., x_N = b$.

Возьмем от каждого отрезка по одной точке-представителю $\xi_i \in [x_{i-1}, x_i]$ и составим интегральную сумму

$$S_N = \sum_{i=1}^N f(\xi_i) \Delta x_i$$

Значение интеграла определяется как предел при $\max \Delta x_i \to 0$ значений интегральных сумм

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{N} f(\xi_i) \Delta x_i$$

Формула прямоугольников

Возьмем в качестве приближенного значения интеграла значение некоторой интегральной суммы:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{N} f(\xi_i) \Delta x_i$$

Возьмем в качестве ξ_i середину отрезка $[x_{i-1}, x_i]$:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{N} f(\frac{x_{i-1} + x_i}{2}) \Delta x_i$$

Методы численного интегрирования называют **квадратурными формул**ами или просто **квадратурами**.

Данный метод называется формулой **средней точки** или формулой средних **прямоугольников**.

Формула средних прямоугольников

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} f\left(\frac{x_{i-1} + x_{i}}{2}\right) \Delta x$$

Формулы односторонних прямоугольников

Выбор в качестве ξ_j средней точки интервала не принципиален, можно взять, например, левый или правый конец интервала.

Соответствующие формулы называются формулами левых и правых прямоугольников.

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} f(x_{i-1}) \Delta x$$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} f(x_i) \Delta x$$

Составные квадратурные формулы

Построенные формулы прямоугольников являются составными квадратурными формулами. Квадратурная формула называется составной, если является результатом применения некоторой элементарной квадратурной формулы к каждому интервалу $[x_{i-1}, x_{i}]$.

Элементарная квадратура	Составная квадратура
$\int_{a}^{b} f(x)dx \approx (b-a)f\left(\frac{a+b}{2}\right)$	$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} f\left(\frac{x_{i-1} + x_{i}}{2}\right) \Delta x_{i}$
$\int_{a}^{b} f(x)dx \approx (b-a)f(a)$	$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} f(x_{i-1}) \Delta x_{i}$
$\int_{a}^{b} f(x)dx \approx (b-a)f(b)$	$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} f(x_i) \Delta x_i$

Будем дальше строить только элементарные квадратурные формулы, составные получаются из них тривиально.

Приближение подынтегральной функции

Пусть подынтегральная функция f(x) хорошо приближается некоторой просто интегрируемой функцией P(x). Тогда

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} P(x)dx$$

В качестве функции P(x) могут выступать

- многочлены;
- тригонометрические многочлены;
- экспоненциальные многочлены и тому подобные.

Остановимся на случае, когда P(x) - многочлен. Тогда задача приближения f(x) с помощью функции P(x) может быть решена, например, с помощью алгебраической интерполяции.

Интерполяционные квадратурные формулы

Введем на отрезке [a, b] некоторую сетку

$$\Omega_S = \{ a \le x_0 < x_1 < x_2 < \dots < x_S \le b \}$$

Построим на этой сетке интерполяционный многочлен в форме Лагранжа:

$$L_s(x) = \sum_{k=0}^{s} \varphi_k(x) f(x_k)$$

где $\varphi_k(x)$ - это базисные интерполяционные многочлены Лагранжа

$$\varphi_k(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i}$$

Интегрируя $L_s(x)$ по отрезку [a,b], имеем:

$$\int_{a}^{b} L_{s}(x)dx = (b-a)\sum_{k=0}^{s} w_{k}f(x_{k}) \qquad \qquad w_{k} \equiv \frac{1}{b-a}\int_{a}^{b} \varphi_{k}(x)dx$$

Интерполяционные квадратурные формулы

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} L_{s}(x)dx = (b-a)\sum_{k=0}^{s} w_{k}f(x_{k}) \qquad w_{k} \equiv \frac{1}{b-a}\int_{a}^{b} \varphi_{k}(x)dx$$

Утверждение

Величины w_k не зависят от конкретных значений a,b,x_i , а зависят лишь от относительного расположения узлов x_i .

Доказательство

Сделаем замену переменных

$$x = \frac{a+b}{2} + \xi \frac{b-a}{2}$$
 $\xi \in [-1, 1]$:

$$w_{k} = \frac{1}{b-a} \int_{a}^{b} \prod_{i \neq k} \frac{x - x_{i}}{x_{k} - x_{i}} dx = \frac{1}{2} \int_{-1}^{1} \prod_{i \neq k} \frac{\xi - \xi_{i}}{\xi_{k} - \xi_{i}} d\xi$$

Интерполяционные квадратурные формулы

Вид квадратурной формулы

$$\int_{a}^{b} f(x)dx \approx (b-a) \sum_{k=0}^{s} w_{k} f(x_{k})$$

является универсальным, и мог быть написан из общих соображений линейности квадратурной формулы по значениям подынтегральной функции (по аналогии с линейностью самого интеграла).

Величины w_k называются **весами квадратурной формулы**. Веса не зависят от конкретного отрезка интегрирования, и могут быть вычислены на некотором «стандартном» отрезке. Обычно используют отрезок [0, 1] или [-1, 1].

Соответственно x_k называются **узлами квадратурной формулы**. Они также обычно приводятся для стандартного отрезка, а для конкретного отрезка [a, b] они получаются линейным преобразованием.

Формулы Ньютона-Котеса

Изучим случай, когда Ω - равномерная сетка:

$$x_i = a + \frac{b-a}{s}i, \qquad i = 0, \dots, s$$

Интерполяционные квадратурные формулы на такой сетке называются формулами **Ньютона-Котеса**. Некоторые из них имеют свои названия.

Название	Узлы	Beca	Вид
Трапеций	апеций a,b		$(b-a)\frac{f(a)+f(b)}{2}$
Симпсона	a, b	1/6	$(b-a)\frac{f(a)+4f(\frac{a+b}{2})+f(b)}{6}$
	$\frac{a+b}{2}$	2/3	(b-a) 6
Правило 3/8	a, b	1/8	$f(a) + 3f(\frac{2a+b}{3}) + 3f(\frac{a+2b}{3}) + f(b)$
правило 3/0	a, b $\frac{2a+b}{3}, \frac{a+2b}{3}$	3/8	8/(b-a)

Формула трапеций

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{f(a)+f(b)}{2}$$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} \frac{f(x_{i-1}) + f(x_i)}{2} \Delta x_i$$

Формула Симпсона

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{f(a)+4f\left(\frac{a+b}{2}\right)+f(b)}{6}$$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} \frac{f(x_{i-1}) + 4f\left(\frac{x_{i-1} + x_i}{2}\right) + f(x_i)}{6} \Delta x_i$$

Для одного отрезка:
$$\int\limits_{a}^{b} f(x) dx \approx (b-a) \frac{f(a) + 3f\left(\frac{2a+b}{3}\right) + 3f\left(\frac{a+2b}{3}\right) + f(b)}{8}$$

Составная формула:
$$\int\limits_{a}^{b} f(x) dx \approx \sum_{i=1}^{N} \frac{f(x_{i-1}) + 3f\left(\frac{2x_{i-1} + x_i}{3}\right) + 3f\left(\frac{x_{i-1} + 2x_i}{3}\right) + f(x_i)}{8} \Delta x_i$$

Что точнее?

Попробуйте угадать, какая из двух квадратурных формул точнее:

Степень квадратурной формулы

Будем говорить, что квадратурная формула имеет алгебраическую степень точности m, если она точно интегрирует все многочлены степени не более m, а некоторые многочлены степени m+1 уже нет. Например, формула средней точки имеет алгебраическую степень 1: она точна для всех линейных функций

$$\int_{a}^{b} (\alpha x + \beta) dx = (b - a) + \alpha \frac{b^{2} - a^{2}}{2} = (b - a) \left(\alpha \frac{a + b}{2} + \beta \right)$$

И не точна, например, для $3x^2$

$$\int_{a}^{b} 3x^{2} dx = b^{3} - a^{3} = (b - a)(a^{2} + ab + b^{2}) \neq (b - a)\frac{3}{4}(a^{2} + ab + b^{2})$$

Условия заданной степени

Утверждение

Для того, чтобы квадратурная формула имела алгебраическую степень m необходимо и достаточно, чтобы она точно интегрировала функции $1, x, x^2, \dots, x^m$.

Доказательство

Достаточность. Пусть
$$P_m(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_m x^m$$

$$(b-a)\sum_{k=0}^{s} w_k P_m(x) = (b-a)\sum_{k=0}^{s} w_k \sum_{r=0}^{m} \alpha_r x^r =$$

Достаточность. Пусть
$$P_m(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_m x^m$$

$$\int\limits_{k=0}^{b} f(x) dx = (b-a) \sum_{k=0}^{s} w_k f(x_k)$$
 $(b-a) \sum_{k=0}^{s} w_k P_m(x) = (b-a) \sum_{k=0}^{s} w_k \sum_{r=0}^{m} \alpha_r x^r =$
$$w_k \equiv \frac{1}{b-a} \int\limits_{a}^{b} \varphi_k(x) dx$$

$$= \sum_{r=0}^{s} \alpha_r (b-a) \sum_{k=0}^{m} w_k x^r = \sum_{r=0}^{m} \alpha_r \int_{a}^{b} x^r dx = \int_{a}^{b} P_m(x) dx$$

Необходимость очевидна.

Условия заданной степени

Условия из утверждения позволяют строить квадратурные формулы степени m, решая систему уравнений (для простоты взят отрезок [-1, 1]):

$$2\sum_{k=0}^{S} w_k = \int_{-1}^{1} dx = 2$$

$$2\sum_{k=0}^{S} x_k w_k = \int_{-1}^{1} x dx = 0$$

$$2\sum_{k=0}^{s} x_k^2 w_k = \int_{-1}^{1} x^2 dx = \frac{2}{3}$$

...

$$2\sum_{k=0}^{S} x_k^m w_k = \int_{-1}^{1} x^m dx = \frac{1 + (-1)^m}{m+1}$$

Погрешность интегрирования

Для краткости обозначим

$$I[f] = (b - a) \sum_{k=0}^{S} w_k f(x_k) \qquad E[f] = \int_{a}^{b} f(x) ax - I[f]$$

Функционал E[f] назовем остаточным членом квадратуры или просто, погрешностью квадратуры.

Если квадратура имеет алгебраическую степень m, то $E[P_m] \equiv 0$.

Для определения E[f] представим f(x) в виде формулы Тейлора с интегральным остаточным членом:

$$f(x) = f(a) + f'(x - a) + \dots + \frac{f^{(m)}(a)}{m!} (x - a)^m + R_m(x)$$

$$R_m(x) = \int_a^x \frac{f^{(m+1)}(t)}{m!} (x - t)^m dt = \int_a^x \frac{f^{(m+1)}(t)}{m!} (x - t)^m dt$$

$$z_+ = \max(z, 0) = \begin{cases} 0, z \le 0 \\ z, z > 0 \end{cases}$$

Так как $f(x) - R_m(x)$ является многочленом степени m, он интегрируется квадратурной формулой точно:

$$E[f] = E[R_m]$$

Остаточный член квадратурной формулы совпадает с погрешностью интегрирования остаточного члена формулы Тейлора.

$$R_m(x) = \int_a^b \frac{f^{(m+1)}(t)}{m!} (x - t)_+^m dt$$

$$E[f] = E[R_m] = \int_a^b R_m(x) dx - (b - a) \sum_{k=0}^s w_k R_m(x_k)$$

Подставим выражение для $R_m(x)$ и поменяем последовательность интегрирования:

$$E[f] = \int_{a}^{b} \frac{f^{(m+1)}(t)}{m!} \left[\int_{a}^{b} (x-t)_{+}^{m} dx - (b-a) \sum_{k=0}^{s} w_{k}(x_{k}-t)_{+}^{m} dt \right]$$

$$Q(t)$$

Итак, остаточный член квадратуры выражен в виде

$$E[f] = \int_{a}^{b} \frac{f^{(m+1)}}{m!} Q(t) dt$$

где

$$Q(t) = \int_{a}^{b} (x - t)^{m} dx - (b - a) \sum_{k=0}^{s} w_{k} (x_{k} - t)^{m}$$

— функция, зависящая только от конкретного вида квадратурной формулы и ее степени m. Заметим, что Q(t) достаточно вычислить только для стандартного отрезка $\tau \in [-1,1]$.

$$Q\left(\frac{a+b}{2} + \tau \frac{b-a}{2}\right) = \left(\frac{b-a}{2}\right)^{m+1} q(\tau)$$

$$q(\tau) = \int_{\tau}^{1} (\xi - \tau)^{m} d\xi - 2 \sum_{k:\xi_{k} > \tau} w_{k} (\xi_{k} - \tau)^{m}$$

Если $Q(t) > 0 \ (< 0)$ на всем отрезке [a, b], то из теоремы об интегральном среднем,

$$E[f] = \frac{f^{(m+1)}(\xi)}{m!} \int_{a}^{b} Q(t)dt = \frac{f^{(m+1)}(\xi)(b-a)^{m+2}}{2^{m+2}m!} \int_{-1}^{1} q(\tau)d\tau \qquad \xi \in [a,b]$$

$$|E[f]| \le \frac{M_{m+1}(b-a)^{m+2}}{2^{m+2}m!} \left| \int_{-1}^{1} q(\tau)d\tau \right|$$

Если Q(t) меняет знак, то неулучшаемая оценка выглядит так:

$$|E[f]| \le \frac{M_{m+1}(b-a)^{m+2}}{2^{m+2}m!} \int_{-1}^{1} |q(\tau)| d\tau$$

Остаточные члены стандартных формул

Формула	m	q(au)	E[f]
Левых прямоугольников	0	1- au	$\frac{f'(\zeta)(b-a)^2}{2}$
Правых прямоугольников	0	-1- au	$-\frac{f'(\zeta)(b-a)^2}{2}$
Средней точки	1	$\frac{(1- \tau)^2}{2}$	$\frac{f''(\zeta)(b-a)^3}{24}$
Трапеций	1	$\frac{\tau^2-1}{2}$	$-\frac{f''(\zeta)(b-a)^3}{12}$
Симпсона	3	$\frac{(\tau -1)^3(1+3 \tau)}{12}$	$-\frac{f^{IV}(\zeta)(b-a)^{5}}{2880}$
Правило «3/8»	3	$\begin{cases} \frac{9\tau^4 - 1}{36}, & \tau \leqslant 1/3\\ \frac{(\tau - 1)^3 \tau }{4}, & \tau > 1/3 \end{cases}$	$-\frac{f^{IV}(\zeta)(b-a)^{5}}{6480}$

Остаточный член составной формулы

Для элементарных квадратурных формул степени m остаточный член имеет вид

$$E[f] = \frac{f^{(m+1)}(\xi)(b-a)^{m+2}}{C}$$
 либо $|E[f]| = \frac{M_{m+1}(b-a)^{m+2}}{C}$

Найдем соответствующее выражение для составной квадратурной формулы с равномерным шагом $\Delta x_i = h = \mathrm{const}$:

$$\tilde{E}[f] = \sum_{i=1}^{N} \frac{f^{(m+1)}(\xi_i)h^{m+2}}{C} = (b-a)\frac{f^{(m+1)}(\xi)h^{m+1}}{C}, \qquad \xi \in [a,b]$$

$$|\tilde{E}[f]| \le \sum_{i=1}^{N} \frac{M_{m+1} \Delta x_i^{m+2}}{C} \le \frac{M_{m+1} N \Delta x_i^{m+2}}{C} \le (b-a) \frac{M_{m+1} h^{m+1}}{C}.$$

Последнее выражение верно и для неравномерной сетки, если $h \equiv \max \Delta x_i$ максимальный шаг сетки.

Порядок сходимости

Теперь ясна связь между алгебраическим порядком квадратурной формулы и порядком сходимости:

Утверждение

Для составной квадратурной формулы алгебраической степени m ее остаточный член стремится к нулю как $O(h^{m+1})$, где h шаг сетки составной формулы. Иначе говоря, формула имеет **порядок сходимости** m+1.

Недостаточная гладкость

Если m+1-я производная функции f(x) не ограничена, остаточный член квадратурной формулы m -ой степени может стремиться к нулю медленнее, чем $O(h^{m+1})$. Остаточный член может быть найден тем же способом, но с заменой m на $m' \le m$, где m'+1 число ограниченных производных у f(x).

Правило Рунге

Сделаем предположение, что в выражении

$$I^* = I_h + E[f] = I_h + (b - a) \frac{f^{(p)}(\xi)h^p}{C}$$

точка ζ слабо зависит от h:

$$I^* = I_h + ch^p + o(h^p),$$

где c константа и не зависит от h. Величина

$$\varepsilon_h = ch^p$$

может считаться главным членом ошибки (то есть ошибкой с точностью до бесконечно малой по h поправки).

Правило Рунге

Вычислим интеграл несколько раз на серии сгущающихся сеток с шагами $h, h/2, h/4, \ldots$:

$$I^* = I_h + \varepsilon_h + o(h^p) = I_h + ch^p + o(h^p)$$

$$I^* = I_{h/2} + \varepsilon_{h/2} + o(h^p) = I_{h/2} + 2^{-p}ch^p + o(h^p)$$

$$I^* = I_{h/4} + \varepsilon_{h/4} + o(h^p) = I_{h/4} + 2^{-2p}ch^p + o(h^p)$$

Заметим, что разность приближенных значений интегралов позволяет оценить разность главных членов соответствующих погрешностей:

$$\Delta_{h/2} \equiv I_{h/2} - I_h = \varepsilon_h - \varepsilon_{h/2} + o(h^p) = (2^p - 1)\varepsilon_{h/2} + o(h).$$

Правило Рунге

Правило Рунге позволяет просто оценить главный член погрешности вычислении интеграла на мелкой сетке:

$$\varepsilon_{h/2} = \frac{I_{h/2} - I_h}{2^p - 1} + o(h)$$

Использование правила Рунге требует осторожности. Требуется контролировать что фактический порядок оходимости численного метода соответствует номинальному p. Фактический порядок p^* может в силу некоторых обстоятельств (например, недостаточная гладкость f(x)) быть меньше номинального порядка сходимости p. Простейший способ контроля следить за выполнением соотношения

$$p^* = \log_2 \frac{\Delta_h}{\Delta_{h/2}} \approx p$$

Использование правила Рунге, пример 1

Интегрирование методом Симпсона p=4 функции $\frac{1}{\sqrt{\chi}}$ на [1,9].

			V	
N	I_h	$\Delta_h = I_h - I_{2h}$	$\varepsilon_h = \Delta_h/(2^4 - 1)$	p^*
40	4.0000010223489	*	*	*
80	4.0000000647720	$-9.57577 \cdot 10^{-7}$	$-6.38385 \cdot 10^{-8}$	*
160	4.0000000040624	$-6.07096 \cdot 10^{-8}$	$-4.04731 \cdot 10^{-9}$	3.98
320	4.0000000002541	$-3.80827 \cdot 10^{-9}$	$-2.53885 \cdot 10^{-10}$	3.99
640	4.0000000000159	$-2.38246 \cdot 10^{-10}$	$-1.58831 \cdot 10^{-11}$	4.00
1280	4.0000000000010	$-1.48832 \cdot 10^{-11}$	$-9.92214 \cdot 10^{-13}$	4.00
2560	4.0000000000001	$-8.91731 \cdot 10^{-13}$	$-5.94487 \cdot 10^{-14}$	4.06
5120	4.0000000000000	$-1.16351 \cdot 10^{-13}$	$-7.75676 \cdot 10^{-15}$	2.94
10240	3.999999999999	$-1.28342 \cdot 10^{-13}$	$-8.55612 \cdot 10^{-15}$	-0.14
	1	^	1	'

Tочное значение
$$I = \int_1^9 \frac{dx}{\sqrt{x}} = 4$$
.

Использование правила Рунге, пример 2

Интегрирование методом Симпсона p=4 функции $3-\sqrt{x}$ на [0,9].

•			· · · · · · · · · · · · · · · · · · ·	
Ν	I_{h}	$\Delta_h = I_{2h} - I_h$	$\varepsilon_h = \Delta_h/(2^4 - 1)$	p^*
40	9.0030633904588	*	*	*
80	9.0010830724831	$-1.98032 \cdot 10^{-3}$	$-1.32021 \cdot 10^{-4}$	*
160	9.0003829239736	$-7.00149 \cdot 10^{-4}$	$-4.66766 \cdot 10^{-5}$	1.50
320	9.0001353840708	$-2.47540 \cdot 10^{-4}$	$-1.65027 \cdot 10^{-5}$	1.50
640	9.0000478654974	$-8.75186 \cdot 10^{-5}$	$-5.83457 \cdot 10^{-6}$	1.50
1280	9.0000169230090	$-3.09425 \cdot 10^{-5}$	$-2.06283 \cdot 10^{-6}$	1.50
2560	9.0000059831870	$-1.09398 \cdot 10^{-5}$	$-7.29321 \cdot 10^{-7}$	1.50
5120	9.0000021153757	$-3.86781 \cdot 10^{-6}$	$-2.57854 \cdot 10^{-7}$	1.50
10240	9.0000007478989	$-1.36748 \cdot 10^{-6}$	$-9.11651 \cdot 10^{-8}$	1.50
		^	•	

Tочное значение
$$I = \int_0^9 3 - \sqrt{x} dx = 9$$
.

Степень интерполяционных формул

Утверждение

Формулы интерполяционного типа, построенные по s+1 узлу гарантированно будут иметь алгебраическую степень не менее s.

Доказательство

На сетке из s+1 узла интерполяция точно восстанавливает многочлены до степени s включительно. Следовательно, и квадратурная формула будет интегрировать их точно.

Формулы Ньютона-Котеса с нечетным количеством узлов имеют степень на 1 выше, чем гарантируется утверждением

Формула	Количество узлов, $\mathit{s}+1$	Алгебраическая степень, <i>т</i>	
Трапеций	2	1 = s	
Симсона	3	3 > s	
Правило «3/8»	4	3 = s	

Условия повышения степени

Пусть
$$I[f] = \sum_{k=0}^{3} w_k f(x_k)$$
 интерполяционная квадратурная формула.

Рассмотрим произвольный многочлен P(x), степени выше s. Разделим его с остатком на

многочлен
$$\omega(x) = \prod_{k=0}^{3} (x - x_k)$$

$$P(x) = V(x)\omega(x) + z(x)$$

Многочлен Z(x) имеет степень не выше s, и, следовательно, интегрируется точно E[Z]=0. Тогда ошибка интегрирования P(x) составляет

$$E[P] = E[V\omega] = \int_{a}^{b} V(x)\omega(x)dx - I[V\omega] = \int_{a}^{b} V(x)\omega(x)dx$$

Квадратурная формула для $V(x)\omega(x)$ дает 0 поскольку эта функция обнуляется во всех узлах x_k .

Условия повышения степени

Для многочлена

$$P(x) = V(x)\omega(x) + Z(x)$$

ошибка квадратурной формулы составляет

$$E[P] = \int_{a}^{b} V(x)\omega(x)dx$$

Например, для формулы Симпсона последний интеграл обнуляется, если V(x) = V - константа

$$\int_{a}^{b} V(x)(x-a)(x-b) \left(x - \frac{a+b}{2}\right) dx =$$

$$= V \int_{a}^{b} (x-a)(x-b) \left(x - \frac{a+b}{2}\right) dx = 0$$

Стало быть, формула Симпсона будет точной для всех многочленов, которые при делении на $\omega(x)$ дают в частном константу, то есть для всех многочленов степени s+1.

Условия повышения степени

Причина повышения порядка формулы Симпсона в удачном расположении узлов квадратуры.

Задача

Разместить узлы x_k , k = 0, ..., s квадратуры так, чтобы интеграл

$$E[P] = \int_{a}^{b} V(x)\omega(x)dx$$

обнулялся для произвольного многочлена V(x) как можно большей степени d .

Если удастся так расположить узлы квадратуры, то она будет иметь алгебраический порядок m = s + d + 1.

Ортогональные многочлены

Построим такой многочлен $\omega(x)$, который был бы ортогонален многочленам $1,x,\ldots,x^s$ в смысле

$$(x^r, \omega(x)) \equiv \int_a^b x^r \omega(x) dx = 0, \qquad r = 0, ..., s$$

Для построения такого многочлена $\omega(x)$ можно использовать процесс ортогонализации Грама-Шмидта для набора функций $1, x, \dots, x^{s+1}$.

В результате ортогонализции из многочлена x^{s+1} получится многочлен $\omega(x) = x^{s+1} + \dots$, ортогональный всем функциям $1, x, \dots, x^s$,

а следовательно, и любому многочлену V(x) степени $\deg V \leq s$.

Многочлены Лежандра

Многочлены Лежандра $L_m(x)$ ортогональны

$$\int_{-1}^{1} L_m(x)L_n(x) dx = \frac{2}{n+1} \delta_{nm}$$

Каждый многочлен $L_m(x)$ имеет m различных действительных корней на отрезке [-1,1].

Многочлены Лежандра

Построенный многочлен
$$\omega(x) = C_{s+1}L_{s+1}\left(\frac{2x-a-b}{b-a}\right)$$

 C_{s+1} - Некоторый несущественный нормировочный множитель.

Использование в качестве узлов квадратурной формулы корней многочлена Лежандра позволяет добиться обнуления всех интегралов

$$\int_{a}^{b} V(x)\omega(x)dx$$

при $\deg V(x) \leq s$, то есть повысить степень квадратуры до 2s+1, почти вдвое по сравнению с формулами с произвольным выбором узлов.

Для $\deg V(x)=s+1$ никакой выбор узлов не обеспечит обнуления интеграла (достаточно взять $V(x)=\omega(x)$). Стало быть, максимальная степень квадратуры с s+1 узлом 2s+1.

Формулы Гаусса

Формулами Гаусса называются интерполяционные квадратурные формулы, имеющие максимальную алгебраическую степень для данного числа узлов. Формула Гаусса с K узлами имеет степень 2K-1 и порядок 2K. Формулы Гаусса обычно приводят для стандартного отрезка [-1,1]:

Число узлов, K	Узлы <i>х_k</i>	Beca <i>w_k</i>	E[f]
1	0	1	$\frac{f''(\zeta)(b-a)^3}{24}$
2	$\pm \frac{1}{\sqrt{3}}$	1/2	$\frac{f^{IV}(\zeta)(b-a)^5}{4320}$
3	$\begin{array}{c} 0 \\ \pm \frac{\sqrt{15}}{5} \end{array}$	4/9 5/18	$\frac{f^{VI}(\zeta)(b-a)^7}{2016000}$

Простейшая формула Гаусса совпадает с формулой средней точки. Узлы формул Гаусса не содержат крайних точек отрезка интегрирования.

Литература

Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. 3-е издание, Москва. БИНОМ, Лаборатория знаний, 2004, 636 с.

∠ Н.Н. Калиткин, Е.А. Альшина. Численные методы: в 2 кн. Кн. 1 Численный анализ. Москва, Издательский центр «Академия», 2013, 304 с.

В И.П. Мысовских. Интерполяционные кубатурные формулы. Москва. Наука, Главная редакция физико-математической литературы, 1981, 336 с.