COMP 474/6741 Intelligent Systems (Winter 2024)

Worksheet #8: Neural Networks & Word Embeddings

Task 2. Calculate your first neuron activation for the *Perceptron* (only 100 billion-1 more to go!):

Your input vector $\vec{x} = [0, 1, 1]$ and your weights are $\vec{w} = [0.25, 0.5, 0.75]$. Activation function:

$$f(\vec{x}) = \begin{cases} 1, & \text{if } \vec{x} \cdot \vec{w} \ge \text{threshold} \\ 0, & \text{otherwise} \end{cases}$$

(use a threshold of 0.5):

$$f(\vec{x}) =$$

Task 3. Let's train our Perceptron to learn the logical *and* function. Here, we have a two-dimensional input vector and four labeled training examples l_0, \ldots, l_3 :

	x_0	x_1	$x_0 \wedge x_1$
l_0	1	1	1
l_1	1	0	0
l_2	0	1	0
l_3	0	0	0
	ı		

Epoch	Input	w_0	w_1	w_2	$f(\vec{x})$	ok?
	l_0	0	0.2	0.2		
0	l_1					
	l_2					
	l_3					
	l_0					
1	l_1					
	l_2					
	l_3					

Note that x_2 is our *bias* (input always 1). Use a threshold for the activation function of 0.5 and set the learning rate $\eta = 0.1$. Train the Perceptron by checking the output for each training sample. Update the weights if there is an error: $w'_i = w_i + \eta \cdot (label - predicted) \cdot x_i$.

Task 4. Let's compute the *loss* of the Perceptron above at each epoch using mean squared error (MSE) as the cost function:

$$MSE(x) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Loss at end of Epoch 0:	Epoch 1:	

Task 5. Here are three words in one-hot vector representation (three words, so three dimensions):

Task 6. Ok, now re-write the question from Task 1 in form of a word vector calculation:

Verify with https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/

Task 7. Consider the following sentence: "the cat drinks the milk". We will use this sentence to train a Word2Vec model using the skip-gram approach. Assume that you use a context window of size 1 (1 word before and 1 word after the input word), and your vocabulary only contains the words in the sentence above.

Using only the sentence above, create the training instances using the skip-gram method:

Instance	Input Word	To Predict	Instance	Input Word	To Predict
1			5		
2			6		
3			7		
4			8		

Task 8. Now, (a) encode the vocabulary using one-hot vectors, assuming alphabetical ordering, no stop-word filtering (left) and (b) using these vectors, encode the first three training instances above as input vectors for the network:

Word	One-Hot Vector			
cat	1			
drinks				
milk				
the				

Instance	Context	Word	One-Hot Vector	
1	Input			
1	Output			
2	Input			
	Output			
3	Input			
3	Output			

Task 9. Compute the softmax function σ on the vector v below:

$$\sigma(v)_{j} = \frac{e^{v_{j}}}{\sum_{k=1}^{K} e^{v_{k}}} \qquad v = \begin{bmatrix} 0.5\\0.9\\0.2 \end{bmatrix} \quad , \sigma(v) = \begin{bmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

 $(e = Euler's \text{ number} \approx 2.71828)$