Midterm 1 Version 1 Review

March 29, 2020

Question 1

a. Because we know

 $S_1 = \{aa, bb, cc, aab, aac, aaa, bba, bbb, bbc, cca, ccb, ccc, aaaa, ...\}$ and S_2 is a set of all strings over U with length 3, we can conclude

$$S_1 \cap S_2 = \{aaa, aab, aac, bba, bbb, bbc, cca, ccb, ccc\}$$

b. See table below

p	q	r	$\neg r$	$p \lor q$	$p \lor q \Rightarrow \neg r$
Τ	Т	Т	F	Т	F
Т	Т	F	Т	Т	Т
Τ	F	Т	F	Т	F
F	Т	Т	F	Т	F
Τ	F	F	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	F	F	Т
F	F	F	Т	F	Т

c. Let $x \in \mathbb{N}$, and $y = \underline{\hspace{1cm}}$

We will prove that predicate P(x,y) is true, or predicate Q(x,y) is true.

Correct Solution:

Let $x = \underline{\hspace{1cm}}$, and $y \in \mathbb{N}$.

We will prove that both predicates P(x,y) and Q(x,y) are false.

Notes:

• How can I proceed a proof when there is ∨ on R.H.S of the statement? What's the general structure of proof given this symbol?

Question 2

- a. $\exists x \in P, Student(x) \land Attends(x)$
- b. $\forall x \in P, \exists y \in P, Student(y) \land Attends(y) \Rightarrow Loves(x, y)$

Correct Solution:

 $\forall x \in P, \exists y \in P, Student(y) \land Attends(y) \land Loves(x, y)$

Notes:

- When should \Rightarrow be used, and when should \land be used?
- c. $\forall x \in P, Student(x) \land Attends(x) \Rightarrow Loves(x, x)$
- d. $\forall x_1, x_2 \in P, \ x_1 \neq x_2 \Rightarrow Loves(x_1, x_2) \land Loves(x_2, x_1) \Rightarrow \neg Attends(x_1) \lor \neg Attends(x_2)$

Correct Solution:

 $\forall x_1, x_2 \in P, x_1 \neq x_2 \land Loves(x_1, x_2) \land Loves(x_2, x_1) \Rightarrow \neg Attends(x_1) \lor \neg Attends(x_2)$

Question 3

- a. $\forall a, b, c \in \mathbb{Z}, \exists l, m, n \in \mathbb{Z}, b = la \land c = mb \Rightarrow c = na$
- b. Let $a, b, c \in \mathbb{Z}$. Assume there is some $l, m, n \in \mathbb{Z}$, b = la and c = mb.

We want to show there is some $n \in \mathbb{Z}$, c = na.

Because we know c = mb and b = la, we can conclude that

$$c = mb (1)$$

$$= (ml)a \tag{2}$$

Since $ml \in \mathbb{Z}$, we can choose n = ml.

Then,

$$c = na (3)$$

Question 4

• Let $x, y \in \mathbb{R}$.

We want to show $\lfloor x + y \rfloor \ge \lfloor x \rfloor + \lfloor y \rfloor$.

Because we know $x \in \mathbb{R}$, by using fact 1 on x, we can conclude there is $\epsilon \in \mathbb{R}$ and $0 \le \epsilon < 1$, $x = \lfloor x \rfloor + \epsilon$.

Then,

$$\lfloor x + y \rfloor \ge |\lfloor x \rfloor + \epsilon + y| \tag{1}$$

Then, because we know $\lfloor x \rfloor \in \mathbb{Z}$ and $y \in \mathbb{R}$, by using fact 2, we can conclude

$$\lfloor x + y \rfloor \ge \lfloor x \rfloor + \lfloor \epsilon + y \rfloor \tag{2}$$

Then, since $\lfloor \epsilon + y \rfloor \ge \lfloor y \rfloor$,

$$\lfloor x + y \rfloor \ge \lfloor x \rfloor + \lfloor y \rfloor \tag{3}$$