TD211 Wie groß ist die Resonanzfrequenz dieser Schaltung,

wenn C = 1 nF, R = 0,1 k Ω , und L = 10 μ H beträgt?

Lösung: 1,592 MHz.

Frequenz:
$$f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

C = Kapazität (Farad)

L = Induktivität (Henry)

(Thomson'sche Schwingungsgleichung).

$$L \cdot C$$
: $1^{\Lambda^{-9}} \cdot 1^{\Lambda^{-5}}$ $= 1^{\Lambda^{-14}}$ Wurzel aus: $1^{\Lambda^{-14}} \sqrt{}$ $= 1^{\Lambda^{-7}}$ $2 \cdot Pi =$ $6,283 \cdot 1^{\Lambda^{-7}}$ $= 6,28318^{\Lambda^{-7}}$ 1 geteilt durch $6,28318^{\Lambda^{-7}}$ $= 1 591 549 Hz$

Der Verlustwiderstand ist für die Frequenz ohne Belang.