

planetmath.org

Math for the people, by the people.

Baouendi-Treves approximation theorem

 ${\bf Canonical\ name} \quad {\bf BaouendiTreves Approximation Theorem}$

Date of creation 2015-05-07 16:14:43 Last modified on 2015-05-07 16:14:43

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 7

Author jirka (4157) Entry type Theorem Classification msc 32V25 Suppose M is a real smooth manifold. Let \mathcal{V} be a subbundle of the complexified tangent space $\mathbb{C}TM$ (that is $\mathbb{C}\otimes TM$). Let $n=\dim_{\mathbb{C}}\mathcal{V}$ and $d=\dim_{\mathbb{R}}M$. We will say that \mathcal{V} is integrable, if it is integrable in the following sense. Suppose that for any point $p\in M$, there exist m=d-n smooth complex valued functions z_1,\ldots,z_m defined in a neighbourhood of p, such that the differentials dz_1,\ldots,dz_m are \mathbb{C} -linearly independent and for all sections $L\in\Gamma(M,\mathcal{V})$ we have $Lz_k=0$ for $k=1,\ldots,m$. We say $z=(z_1,\ldots,z_m)$ are near p.

We say f is a if Lf = 0 for every $L \in \Gamma(M, \mathcal{V})$ in the sense of distributions (or classically if f is in fact smooth).

Theorem (Baouendi-Treves). Suppose M is a smooth manifold of real dimension d and \mathcal{V} an integrable subbundle as above. Let $p \in M$ be fixed and let $z = (z_1, \ldots, z_m)$ be basic solutions near p. Then there exists a compact neighbourhood K of p, such that for any continuous solution $f: M \to \mathbb{C}$, there exists a sequence p_j of polynomials in m variables with complex coefficients such that

$$p_j(z_1,\ldots,z_m)\to f$$
 uniformly in K .

In particular we have the following corollary for CR submanifolds. A real smooth CR submanifold that is embedded in \mathbb{C}^N has the CR vector fields as the integrable subbundle \mathcal{V} . Also the coordinate functions z_1, \ldots, z_N can be taken as the basic solutions. We will require that M be a generic submanifold rather than just any CR submanifold to make sure that \mathbb{C}^N is of the minimal dimension.

Corollary. Let $M \subset \mathbb{C}^N$ be an embedded real smooth generic submanifold and $p \in M$. Then there exists a compact neighbourhood $K \subset M$ of p such that any continuous CR function f is uniformly approximated on K by polynomials in N variables.

This result can be used to extend CR functions from CR submanifolds. For example, if we can fill a certain set with analytic discs attached to M, we can approximate f on $K \subset M$ and by the maximum principle we will be able to use the fact that uniform limits of holomorphic functions (in this case polynomials) are holomorphic. A key point is that while K is not arbitrary, it does not depend on f, it only depends on M and p.

Example. Suppose $M \subset \mathbb{C}^2$ is given in coordinates (z, w) by $\operatorname{Im} w = |z|^2$. Note that for some t > 0, the map $\xi \mapsto (t\xi, t)$ is an attached analytic disc.

By taking different t > 0, we can fill the set $\{(z,w) \mid \operatorname{Im} w \geq |z|^2\}$ by analytic discs attached to M. If f is a continuous CR function on M, then there exists some compact neighbourhood K of (0,0) such that f is uniformly approximated on K by holomorphic polynomials. By maximum principle we get that this sequence of holomorphic polynomials converges uniformly on all the discs for $t < \epsilon$ for some $\epsilon > 0$ (such that the boundary of the disc lies in K). Hence f extends to a holomorphic function on $\epsilon > \operatorname{Im} w > |z|^2$, and which is continuous on $\epsilon > \operatorname{Im} w \geq |z|^2$.

Using methods of the example it is possible (among many other results) to prove the following.

Corollary. Suppose $M \subset \mathbb{C}^N$ be a smooth strongly pseudoconvex hypersurface and f a continuous CR function on M. Then f extends to a small neighbourhood on the pseudoconvex side of M as a holomorphic function.

Using the above corollary we can prove the Hartogs phenomenon for hypersurfaces by reducing to the standard Hartogs phenomenon (although the theorem also holds without pseudoconvexity with a different proof).

Corollary. Let $U \subset \mathbb{C}^N$ be a domain with smooth strongly pseudoconvex boundary. Suppose f is a continuous CR function on ∂U . Then there exists a function f holomorphic in U and continuous on \bar{U} , such that $F|_{\partial U} = f$.

References

- [1] M. Salah Baouendi, Peter Ebenfelt, Linda Preiss Rothschild., Princeton University Press, Princeton, New Jersey, 1999.
- [2] Albert Boggess., CRC, 1991.