22) On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie sur \mathbb{N}^* par :

$$u_n = \int\limits_0^1 \frac{x^n}{1+x} dx$$

1. Les fonctions notées $f_n: x \to \frac{x^n}{1+x}$ sont continues et positives sur [0 ;1].

Conjecturer alors le sens de variations de la suite $(u_n)_{n\in\mathbb{N}^*}$.

- a. Démontrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante.
- b. La suite $(u_n)_{n\in\mathbb{N}^*}$ est elle convergente ?
- 2. a. Prouver que pour tout $n \in \mathbb{N}$ et tout $x \in [0; 1]$,

$$0 \le f_n(x) \le x^n$$

- c. Déduisez-en que pour tout $n \in \mathbb{N}^*$, $0 \le u_n \le \frac{1}{1+n}$
- 3. En déduire la limite de la suite $(u_n)_{n \in \mathbb{N}^*}$.