Lecture 3

Quadratic Inequalities

Solve the inequalities in Exercises 35–42. Express the solution sets as intervals or unions of intervals and show them on the real line. Use the result $\sqrt{a^2} = |a|$ as appropriate.

35.
$$x^2 < 2$$
 36. $4 \le x^2$ 37. $4 < x^2 < 9$ 38. $\frac{1}{9} < x^2 < \frac{1}{4}$ 39. $(x-1)^2 < 4$ 40. $(x+3)^2 < 2$ 41. $x^2 - x < 0$ 42. $x^2 - x - 2 \ge 0$

EXAMPLE 6 Solve the inequality and show the solution set on the real line:

(a)
$$|2x - 3| \le 1$$

(b)
$$|2x - 3| \ge 1$$

Solution

(a)
$$|2x - 3| \le 1$$

$$-1 \le 2x - 3 \le 1 \qquad \text{Property 8}$$

$$2 \le 2x \le 4 \qquad \text{Add 3.}$$

$$1 \le x \le 2 \qquad \text{Divide by 2.}$$

The solution set is the closed interval [1, 2] (Figure 1.4a).

(b)
$$\begin{aligned} |2x - 3| &\geq 1 \\ 2x - 3 &\geq 1 \quad \text{or} \quad 2x - 3 &\leq -1 \quad \text{Property 9} \\ x - \frac{3}{2} &\geq \frac{1}{2} \quad \text{or} \quad x - \frac{3}{2} &\leq -\frac{1}{2} \quad \text{Divide by 2.} \\ x &\geq 2 \quad \text{or} \quad x &\leq 1 \quad \text{Add } \frac{3}{2}. \end{aligned}$$

The solution set is $(-\infty, 1] \cup [2, \infty)$ (Figure 1.4b).

Relation and Functions

1. Domain and Range of a Relation

In many naturally occurring phenomena, two variables may be linked by some type of relationship. For instance, an archeologist finds the bones of a woman at an excavation site. One of the bones is a femur. The femur is the large bone in the thigh attached to the knee and hip. Table 4-1 shows a correspondence between the length of a woman's femur and her height.

Table 4-1

Length of Femur (cm)	Height (in.)		Ordered Pair
45.5	65.5	-	(45.5, 65.5)
48.2	68.0	-	(48.2, 68.0)
41.8	62.2		(41.8, 62.2)
46.0	66.0		(46.0, 66.0)
50.4	70.0	-	(50.4, 70.0)

Each data point from Table 4-1 may be represented as an ordered pair. In this case, the first value represents the length of a woman's femur and the second, the woman's height. The set of ordered pairs {(45.5, 65.5), (48.2, 68.0), (41.8, 62.2), (46.0, 66.0), (50.4, 70.0)} defines a relation between femur length and height.

Definition of a Relation in x and y

Any set of ordered pairs (x,y) is called a relation in x and y. Furthermore,

- The set of first components in the ordered pairs is called the domain of the relation.
- The set of second components in the ordered pairs is called the range of the relation.

Section 4.2

Introduction to Functions

Key Concepts

Given a relation in x and y, we say "y is a function of x" if for every element x in the domain, there corresponds exactly one element y in the range.

The Vertical Line Test for Functions

Consider a relation defined by a set of points (x, y) in a rectangular coordinate system. Then the graph defines y as a function of x if no vertical line intersects the graph in more than one point.

Examples

Example 1

Function {(1, 3), (2, 5), (6, 3)} Nonfunction {(1, 3), (2, 5), (1, 4)}

Example 2

Function Notation

f(x) is the value of the function f at x.

The domain of a function defined by y = f(x) is the set of x-values that when substituted into the function produces a real number. In particular,

- Exclude values of x that make the denominator of a fraction zero.
- Exclude values of x that make a negative value within a square root.

Example 3

Given
$$f(x) = -3x^2 + 5x$$
, find $f(-2)$.
 $f(-2) = -3(-2)^2 + 5(-2)$
 $= -12 - 10$

Example 4

Find the domain.

= -22

1.
$$f(x) = \frac{x+4}{x-5}$$
; $(-\infty, 5) \cup (5, \infty)$

2.
$$f(x) = \sqrt{x-3}$$
; [3, ∞)

3.
$$f(x) = 3x^2 - 5; (-\infty, \infty)$$

EXAMPLE 1 Identifying Domain and Range

Verify the domains and ranges of these functions.

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty, \infty)$	[0, ∞)
y = 1/x	$(-\infty,0) \cup (0,\infty)$	$(-\infty,0) \cup (0,\infty)$
$y = \sqrt{x}$	[0, ∞)	[0, ∞)
$y = \sqrt{4-x}$	$(-\infty, 4]$	[0, ∞)
$y=\sqrt{1-x^2}$	[-1, 1]	[0, 1]

Solution The formula $y=x^2$ gives a real y-value for any real number x, so the domain is $(-\infty,\infty)$. The range of $y=x^2$ is $[0,\infty)$ because the square of any real number is nonnegative and every nonnegative number y is the square of its own square root, $y=(\sqrt{y})^2$ for $y\geq 0$.

The formula y = 1/x gives a real y-value for every x except x = 0. We cannot divide any number by zero. The range of y = 1/x, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since y = 1/(1/y).

The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).