Kvantummechanika gyakorlo feladatok 1

- 1. Keressük meg azt az \hat{U}_{φ_0} operátort, mely a φ gömbi polárszöget egy φ_0 konstans szöggel elforgatja, vagyis melyre $\hat{U}_{\varphi_0}\psi(r,\theta,\varphi)=\psi(r,\theta,\varphi+\varphi_0)$!
- 2. Számítsuk ki a

$$\psi(x) = \begin{cases} \sqrt{\frac{3}{2}}|x|, & \text{ha } |x| < 1, \\ 0, & \text{ha } |x| \ge 1 \end{cases}$$

hullámfüggvénnyel jellemzett kvantumállapotban annak a valószínűségét, hogy az impulzus a $[0, \Delta k]$ kicsiny intervallumba esik!

- 3. Adjunk meg egy olyan fizikai állapotot, melyben a részecske impulzus-momentumának z-komponensére egyforma valószínűséggel $\hbar,\,4\hbar$ és $7\hbar$ mérhető!
- 4. Írjuk fel a

$$\psi(x) = A \sin\left(\frac{4\pi}{d}x\right) \cos\left(\frac{4\pi}{d}x\right)$$

állapotot periódikus határfeltétel mellett impulzus sajátállapotok lineáris kombinációjaként! Mekkora A értéke, ha fizikai állapotról van szó?

- **5.** Mutassuk meg, hogy egy koherens állapot az idő előrehaladtával is koherens állapot marad! Az ehhez tartozó részfeladatok a következőek:
 - a., Számítsuk ki az $[\hat{a}, \hat{H}]$ kommutátort, ahol $\hat{H} = \hbar \omega (\hat{a}^{\dagger} \hat{a} + \frac{1}{2})$ a harmonikus oszcillátor Hamilton operátora!
 - **b.,** Lássuk be a $e^{\frac{i}{\hbar}\hat{H}t}\hat{a}e^{-\frac{i}{\hbar}\hat{H}t}=\hat{a}e^{-i\omega t}$ operátor egyenlőséget!
 - c., Bizonyítsuk, hogy ha $\Psi(0,x)$ koherens állapot, akkor $\Psi(t,x)\equiv e^{-\frac{i}{\hbar}\hat{H}t}\Psi(0,x)$ is az!
- **6.** Egy részecske kvantumállapotának síkhullámok szerinti kifejtési-együttható függvénye a következő:

$$\tilde{\psi}(k) = \begin{cases} 0 & \text{ha } |k| > 1, \\ \frac{1}{\sqrt{2}} & \text{ha } |k| \le 1. \end{cases}$$

Adjuk meg a részecske hullámfüggvényét!