Algebra Lineare (modulo di C.I.); Informatica per il Management; 26.05.23

1.

Siano
$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ -1 & 1 & 0 & 1 & -1 \\ 1 & -1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 2 & 1 \end{bmatrix}, \ v_k = \begin{bmatrix} 1 \\ 2 \\ -2 \\ k \end{bmatrix}.$$

- a) Si determini una base di C(A).
- b) Si determinino i k per i quali $v_k \in C(A)$.

Siano
$$v_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$.

- b) Si determini una base di $\mathcal{N}(A)$.
- b') Si stabilisca se v_1, v_2, v_3 è una base di $\mathcal{N}(A)$.
- 2. Sono date le applicazioni

$$F(x,y) = (x,2x+y);$$

G lineare, con
$$[G] = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
;

H lineare:
$$H(1,0,0) = (1,0)$$
, $H(0,1,0) = (0,1)$, $H(0,0,1) = (1,1)$.

- a) Si stabilisca se l'applicazione è iniettiva, suriettiva, biiettiva;
- b) Si calcoli se possibile l'applicazione inversa;
- c) Si determinino le dimensioni degli spazi immagine e nucleo.
- d) Si calcoli se possibile G o H.
- 3. Sia

$$\mathrm{F}(x) = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 0.8 & -0.6 \ 0 & -0.6 & -0.8 \end{array}
ight] x, \quad orall x \in \mathbb{R}^3.$$

- a) Si determini se possibile una base ortonormale di \mathbb{R}^3 di autovettori di F.
- b) Si scriva la relazione fra le matrici di F rispetto alle basi canonica e trovata.