

AMBON: Arctic Marine Biodiversity Observing Network

Iken K¹, Cooper L², Grebmeier J², Danielson S¹, Mueter F¹, Hopcroft R¹, Stafford K³, Kuletz K⁴, Collins E¹, Kavanaugh M⁶, Bluhm B^{1,5}, Moore S³, Buckelew S⁷, Bochenek R⁷

(1) University of Alaska Fairbanks; USA; (2) University of Maryland, USA; (3) University of Washington, USA; (4) US Fish and Wildlife Service, USA; (5) University of Tromsø, Norway; (6) Oregon State University, USA; (7) Alaska Ocean Observing System/AXIOM, USA

Core themes Vital Stats Sustainability Methodology Continuity Recommendations

Core themes and what we have learned

Observation:

Close current gaps in taxonomic and spatial coverage in biodiversity observation on the Chukchi shelf

Integration:

Integrate with past and ongoing research programs on US Arctic shelf into Arctic biodiversity observation network

Demonstration:

Demonstrate at a regional level how a MBON could be developed in other regions and ecosystems

Pan-Arctic linkages:

Link with other programs on pan-Arctic level

Core themes Methodology Recommendations

Observation

AMBON field sampling

Core themesSustainabilityMethodologyContinuityVital StatsRecommendations

Observation

- New baselines for microbial size fraction
- > 10,000 molecular species of microbes (OTUs)

→ Microbial community strongly structured by habitat (left) and region (right).

Core themesSustainabilityMethodologyContinuityVital StatsRecommendations

South

Bottom

salinity

North

Observation

Community ordinations, AMBON 2015 (65 stations)

temperature

salinity

- Benthic communities primarily associated with sediment gradients and bottom water type
- Zooplankton & seabirds associated with bottom waters (<u>not</u> surface)
- South → North gradient
- Modest to strong correlations among communities
- Key species link communities

Mantel correlations among communities

Wanter correlations among communities					
	Infauna	Epifauna	Fish	Zooplankton	Seabirds
Infauna		<0.001	0.001	<0.001	<0.001
Epifauna	0.504		< 0.001	<0.001	< 0.001
Fish	0.157	0.414		<0.001	0.032
Zooplankton	0.448	0.352	0.185		< 0.001
Seabirds	0.373	0.331	0.080	0.414	

<u>Integration</u>

Integrate with past and ongoing research programs on US Arctic shelf into Arctic biodiversity observation network

Core themes Sustainability Methodology Vital Stats Continuity Recommendations

-3.065 m

Integration

→ Connecting short-term (cruise) with long-term (mooring) observations

Chukchi Ecosystem Observatory, CEM2-16

71° 35.976' N Longitude 161° 31.621' W

Deployment DateGMT 4 August, 2016 Deployment TimeGMT 04:33:14

36 meters below surface

Xeos Locator Beacon SN 300234063212650 SN 801 Acoustic Zooplankton Fish Profiler SN 55063 SN 4604

SeapH0x (P/T/S/pH/0x) SN 1340

SN BAT-7S12P-0416-001

SN 1557

2.54 meters 3/8" line 2 14" Vinny floats

1.74 meters 3/8" line

Dual Push-Off Release Transponders

36429 SN#2 36430 Enable 414254 Enable 414277 Disable 431712 Release

www.chukchiecosystemobservatory.org

 Core themes
 Sustainability
 Methodology
 Continuity
 Vital Stats
 Recommendations

<u>Integration</u>

Moorings provide seasonal and longerterm context for AMBON sampling

Near-bottom temperature at the CEO site since 2015

Core themesSustainabilityMethodologyContinuityVital StatsRecommendations

<u>Integration</u>

- → Integrating AMBON data with existing time series
- Example: 10 years of zooplankton observations
 - Abundances during AMBON years within range of previously observed abundances
 - Relatively low abundances in 2016/17 (warm years)
 - Long-term increase in zooplankton biomass of Pacific origin, 1946-2012 (Ershova et al. 2015)

<u>Integration</u>

→ Integrating new taxonomic understanding

Building capacity and enhancing taxonomic expertise by compiling online picture identification guides for Arctic benthos

Five volumes:

- Echinodermata
- Arthropoda
- Mollusca
- Annelida
- Miscellaneous Taxa

Currently in beta-testing (NOAA collaborators)

Core themesSustainabilityMethodologyContinuityVital StatsRecommendations

<u>Integration</u>

→ Integrating results from AMBON with other studies on data-poor stocks

Arctic cod life history

Documenting ontogenetic migrations of Arctic Cod

Forster et al. (In Prep)

Snow Crab assessment

- Estimated biomass: 810,200 mt (474,000 1,759,200 mt)
- Updated & region-specific life history parameters
 - Maturity curves
 - Fecundity

Divine et al. (In Revision)

<u>Integration</u>

→ Integrating seabird data across multiple surveys (2007-2015)

- Six clusters (identified by dominant species) 5 occur in AMBON region
- Integration with DBO network (black boxes)
- Integration with other programs
 - Arctic IERP
 - NOAA surveys
 - and many more...

 Core themes
 Sustainability
 Methodology
 Continuity
 Vital Stats
 Recommendations

<u>Integration</u>

→ Integration with NSPIRES (NASA) project on seascapes

Dominant Seascape: Spatial Variability

Areal extent of habitats in Beaufort Sea (top) and Chukchi Sea (bottom)

Core themesSustainabilityMethodologyContinuityVital StatsRecommendations

<u>Integration</u>

→ Integration with NSPIRES (NASA) project

Distributed Biological Observatory: Do satellite seascapes reflect meaningful benthic patterns?

Core themes Sustainability Methodology Vital Stats Continuity Recommendations

Integration

→ Integrating AMBON data into national archives & data portals

Example:

- Cruise track
- 2015-17 marine mammals
- Sea surface temperature

Stafford, Kate (2018). Vessel line-transect surveys of Arctic marine mammals in the Chuckchi Sea, Arctic Marine Biodiversity Observing Network (AMBON) research cruise, 2015-2017 (NCEI Accession 0177802 & NCEI Accession 0177817). Version 1.1. NOAA NCEI. Dataset.

<u>Demonstration</u>

Demonstrate at a regional level how a MBON could be developed in other regions and ecosystems

 Core themes
 Sustainability
 Methodology
 Continuity
 Vital Stats
 Recommendations

Demonstration

- Based on AMBON experience, developed guidelines for sampling design (Iken et al 2018)
- Developed <u>simulation approach</u> to evaluate alternative sampling designs for estimating species richness and abundance
- Similar <u>analysis of trade-offs</u> associated with different spatial coverage for seabird surveys

Developing an observational design for epibenthos and fish assemblages in the Chukchi Sea

K. Iken^{a,*}, F. Mueter^a, J.M. Grebmeier^b, L.W. Cooper^b, S.L. Danielson^a, B.A. Bluhm^c

College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA

b University of Maryland Center for Environmental Science, Solomons, MD, USA

Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway

Pan-Arctic Linkages

Link with other programs on pan-Arctic level

Core themes Sustainability Methodology Vital Stats Continuity Recommendations

Pan-Arctic Linkages

Ecosystem Studies ox **ESSAS** Ubarctic and Arctic Seas

(an IMBER program)

Pacific Arctic Group

Circumpolar Biodiversity Monitoring Program (CBMP)

ICES/PICES/PAME 80°N Working Group on **Integrated Ecosystem** Assessment of the Central 70'N

Arctic Ocean (Interim Report) ...

FisCAO: Fisheries in the Central Arctic Ocean

Validity

 Are we sampling target communities effectively & representatively?

 Are we able to quantify uncertainties appropriately and detect signals?

Validity

- Sampling approaches validated for most communities, but some limitations remain
 - gear selectivity (e.g., fish)
 - taxonomic uncertainties (e.g., juvenile stages)
 - missing baselines (e.g., eDNA).
- Validity of approach for meeting certain **performance measures** (e.g., estimating species richness or species abundances within a prescribed margin of error) is being tested through a **simulation approach**.

Gear selectivity (Arctic cod)

Sustainability

- Costly and logistically challenging field work that is required for longterm monitoring in the Arctic may be best achieved through collaboration with other research projects
- Exploring alternative sampling designs through a simulation approach can help determine efficient and effective designs

Simulating sampling under reduced designs...

- **1. Select index** e.g. Species richness/diversity, abundance/biomass of selected taxa
- 2. Select design

- 1. Select index e.g. Species richness/diversity, abundance/biomass of selected taxa
- 2. Select design

Evaluating alternative sampling designs

3. Select sampling density

4. Compute indices & evaluate performance

Preliminary results:

- Dropping along-shelf transects associated with least 'cost'
- Further reducing station spacing by 50% may be acceptable for some goals
- Any design with
 30 stations
 generally had poor
 performance

- Standard errors can be low for the reduced x-shelf design that dropped up to 50% of stations
- 'DBO+' performed well for <u>some</u> measures

Standard error by sample size

Are there certain methodologies that should be expanded, or some that were less effective?

Methodologies to expand:

Expand year-round seasonal sampling (mooring collections):

- eDNA, passive & active acoustic, phytoplankton & zooplankton
- Spring & winter samples (e.g. under-ice sampling)
- Continue linking to larger-scale sampling for spatial variability, connectivity and shifting distributions

New methodologies to include:

- Functional diversity analysis (started for AMBON epibenthos)
- eDNA fungal diversity and biomass component (added 2017, w/ UiT, Norway)
- eDNA: molecular markers for metazoans
- Gelatinous zooplankton (started for AMBON in 2017)

Are there certain methodologies that should be expanded, or some that were less effective?

Less effective methodologies:

- Gear selectivity of small mesh trawl may limit sampling of large fishes and invertebrates
- Species identifications for some assemblages (zooplankton, infauna) very time consuming
- Mammal observations without dedicated mammal observer limit detectability and species identifications

What aspects of the project are we likely to continue going forward?

- Continued sampling of all ecosystem components important for integrated view
- Maximize sampling through collaborations with other projects
- Reduce spatial coverage or limit frequency for some components (based on simulations)

Core themes Sustainability Methodology Continuity Vital Stats Recommendations

Communication / training

- 9 publications to date, 30 oral presentations, 17 posters
- Training for 10 graduate students (field, lab, analytical)
- Training for one post-doc

Products actively in use

- MBON Data Portal: 16 published datasets
- NCEI archive: 6 datasets (10 pending)
- North Pacific Pelagic Seabird Database
- Identification guide (Arctic benthos)
- Shiny App (microbial discovery)

Engagement

- Local stakeholders (Bering Strait)
- BOEM, NOAA, NPFMC
- Interagency Arctic Research Policy Committee (IARPC)
- Arctic Council (CAFF/CBMP, PAME)
- ICES/PICES (WGICA, Chukchi IEA)

Key recommendations to the community & federal agencies about how to construct and maintain a long-term MBON in U. S. waters to meet both scientific and natural resource managerial needs

- Develop a "minimally sufficient" sampling design, through collaborations with and by building on existing programs
 - Sampling should encompass major Chukchi Sea mater masses
 - If based on DBO lines, expand DBO line both inshore and offshore
 - Using a (slightly) reduced number of cross-shelf transects with current or reduced AMBON station spacing is most effective for multiple objectives
- Include and expand use of eDNA in any MBON design
- Continue / expand year-round sampling of biodiversity components at CEO moorings (eDNA, passive & active acoustics, particle fluxes)

Key recommendations to the community & federal agencies about how to construct and maintain a long-term MBON in U. S. waters to meet both scientific and natural resource managerial needs

- For seabirds, integrate offshore surveys with colony-based monitoring (currently minimal)
- Develop a step-wise approach to monitoring for biodiversity under challenging Arctic conditions (adapted from Grebmeier et al., in prep):
 - 1. Synthesis of historical observations to re-assess needs & priorities
 - 2. Develop thresholds & criteria that trigger enhanced sampling or modifications to existing sampling designs
 - Increased frequency
 - Adaptation of spatial sampling design (for example, if shifts occur)
 - 3. Develop new thresholds and repeat!

Thank you!

