TP-Projet ModIA Méthodes numériques pour les problèmes d'optimisation

O.Cots, J. Gergaud, S. Gratton, P. Matalon, C. Royer, D. Ruiz et E. Simon Année universitaire 2020–2021

Résumé

Ce TP-projet concerne les problèmes d'optimisation sans contraintes. On étudie la méthode de Newton et sa globalisation par l'algorithme des régions de confiance. La résolution du sous-problème des régions de confiance sera réalisée de deux façons, soit à l'aide du point de Cauchy, soit par l'algorithme du Gradient Conjugué Tronqué.

Optimisation sans contrainte

Dans cette partie, on s'intéresse à la résolution du problème

$$\min_{x \in \mathbb{R}^n} f(x)$$

où la fonction f est de classe C^2 sur \mathbb{R}^n . On cherche donc à exploiter l'information fournie par ses dérivées première et seconde, que l'on représente en tout point x par le vecteur gradient $\nabla f(x) \in \mathbb{R}^n$ et la matrice Hessienne $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$.

1 Algorithme de Newton local

Principe

La fonction f étant C^2 , on peut remplacer f au voisinage de l'itéré courant x_k par son développement de Taylor au second ordre, soit :

$$f(y) \sim q(y) = f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2} (y - x_k)^T \nabla^2 f(x_k) (y - x_k),$$

On choisit alors comme point x_{k+1} le minimum de la quadratique q lorsqu'il existe et est unique, ce qui n'est le cas que si $\nabla^2 f(x_k)$ est définie positive. Or le minimum de q est réalisé par x_{k+1} solution de : $\nabla q(x_{k+1}) = 0$, soit :

$$\nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0,$$

ou encore, en supposant que $\nabla^2 f(x_k)$ est définie positive :

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k).$$

La méthode ne doit cependant jamais être appliquée en utilisant une inversion de la matrice Hessienne (qui peut être de très grande taille et mal conditionnée), mais plutôt en utilisant :

$$x_{k+1} = x_k + d_k,$$

où d_k est l'unique solution du système linéaire

$$\nabla^2 f(x_k) d_k = -\nabla f(x_k),$$

 d_k étant appelée direction de Newton.

Cette méthode est bien définie si à chaque itération, la matrice hessienne $\nabla^2 f(x_k)$ est définie positive : ceci est vrai en particulier au voisinage de la solution x^* cherchée si on suppose que $\nabla^2 f(x^*)$ est définie positive (par continuité de $\nabla^2 f$).

1.1 Algorithme

Algorithme 1 Algorithme de Newton (Local)

Données : f , x_0 première approximation de la solution cherchée, $\epsilon>0$ précision demandée

Sortie: une approximation de la solution du problème $\min_{x \in \mathbb{R}^n} f(x)$.

1. Tant que le test de convergence est non satisfait :

- a. Calculer d_k solution du système : $\nabla^2 f(x_k) dk = -\nabla f(x_k)$,
- b. Mise à jour : $x_{k+1} = x_k + d_k$, k = k + 1,

2. Retourner x_k .

2 Régions de confiance - Partie 1

L'introduction d'une *région de confiance* dans la méthode de Newton permet de garantir la convergence globale de celle-ci, i.e. la convergence vers un optimum local quel que soit le point de départ. Cela suppose certaines conditions sur la résolution locale des sousproblèmes issus de la méthode, qui sont aisément imposables.

Principe

L'idée de la méthode des régions de confiance est d'approcher f par une fonction modèle plus simple m_k dans une région $R_k = \{x_k + s; \|s\| \le \Delta_k\}$ pour un Δ_k fixé.

Cette région dite "de confiance" doit être suffisament petite pour que

$$m_k(x_k+s) \sim f(x_k+s)$$
.

Le principe est que, au lieu de résoudre l'équation : $f(x_{k+1}) = \min_{\|s\| \le \Delta_k} f(x_k + s)$, on résout :

$$m_k(x_{k+1}) = \min_{\|s\| \le \Delta_k} m_k(x_k + s)$$
 (2.1)

Si la différence entre $f(x_{k+1})$ et $m_k(x_{k+1})$ est trop grande, on diminue le Δ_k (et donc la région de confiance) et on résout le modèle (2.1) à nouveau. Un avantage de cette méthode est que toutes les directions sont prises en compte. Par contre, il faut faire attention à ne pas trop s'éloigner de x_k ; en général, la fonction m_k n'approche proprement f que sur une région proche de x_k .

Exemple de modèle : l'approximation de Taylor à l'ordre 2 (modèle quadratique) :

$$m_k(x_k + s) = q_k(s) = f(x_k) + g_k^{\top} s + \frac{1}{2} s^{\top} H_k s$$
 (2.2)

avec $g_k = \nabla f(x_k)$ et $H_k = \nabla^2 f(x_k)$.

2.1 Algorithme

Algorithme 2 MÉTHODE DES RÉGIONS DE CONFIANCE (ALGO GÉNÉRAL)

Données : $\Delta_{max} > 0, \, \Delta_0 \in (0, \Delta_{max}), \, 0 < \gamma_1 < 1 < \gamma_2 \text{ et } 0 < \eta_1 < \eta_2 < 1.$

Sortie : une approximation de la solution du problème : $\min_{x \in \mathbb{R}^n} f(x)$.

1. Tant que le test de convergence n'est pas satisfait :

a. Calculer approximativement s_k solution du sous-problème (2.1);

b. Evaluer
$$f(x_k+s_k)$$
 et $\rho_k=\dfrac{f(x_k)-f(x_k+s_k)}{m_k(x_k)-m_k(x_k+s_k)}$

c. Mettre à jour l'itéré courant :

$$x_{k+1} = \begin{cases} x_k + s_k & \text{si } \rho_k \ge \eta_1 \\ x_k & \text{sinon.} \end{cases}$$

d. Mettre à jour la région de confiance :

$$\Delta_{k+1} = \begin{cases} \min \left\{ \gamma_2 \, \Delta_k, \Delta_{\max} \right\} & \text{si } \rho_k \ge \eta_2 \\ \Delta_k & \text{si } \rho_k \in [\eta_1, \eta_2) \\ \gamma_1 \, \Delta_k & \text{sinon.} \end{cases}$$

2. Retourner x_k .

L'algorithme 2 est un cadre générique. On va s'intéresser à deux raffinages possibles de l'étape a.

2.2 Le pas de Cauchy

On considère ici le modèle quadratique $q_k(s)$. Le sous-problème de régions de confiance correspondant peut se révéler difficile à résoudre (parfois autant que le problème de départ). Il est donc intéressant de se restreindre à une résolution approchée de ce problème.

Le pas de Cauchy appartient à la catégorie des solutions approchées. Il s'agit de se restreindre au sous-espace engendré par le vecteur g_k ; le sous-problème s'écrit alors

$$\begin{cases}
\min & q_k(s) \\
s.t. & s = -t g_k \\
t > 0 \\
\|s\| \le \Delta_k.
\end{cases}$$
(2.3)

3 Régions de confiance - Partie 2

Dans la section précédente, on a pu voir que la technique du pas de Cauchy ne garantit pas une convergence rapide en général; on retrouve ici le problème d'une méthode de descente de gradient. On souhaite donc étudier une méthode pour la résolution approchée du sous-problème avec région de confiance (2.1), qui puisse récupérer asymptotiquement la convergence quadratique inhérente à la méthode de Newton Local. L'algorithme du Gradient Conjugué Tronqué appartient à cette catégorie.

3.1 Algorithme du Gradient Conjugué Tronqué

On s'intéresse maintenant à la résolution approchée du problème (2.1) à l'itération k de l'algorithme 2 des Régions de Confiance. On considère pour cela l'algorithme du Gradient Conjugué Tronqué :

```
Algorithme 3 ALGORITHME DU GRADIENT CONJUGUÉ TRONQUÉ
Données : \Delta_k > 0, x_k, g = \nabla f(x_k), H = \nabla^2 f(x_k).
Sortie : le pas s qui approche la solution du problème : \min_{\|s\|<\Delta_k} q(s)
       où q(s) = g^{\top} s + \frac{1}{2} s^{\top} H_k s.
Initialisations: s_0 = 0, g_0 = g, p_0 = -g;
1. Pour j = 0, 1, 2, \dots, faire :
          a. \kappa_j = p_i^T H p_j
          b. Si \kappa_j \leq 0, alors
                  déterminer \sigma_j la racine de l'équation \left\|s_j + \sigma p_j\right\|_2 = \Delta_k
                      pour laquelle la valeur de q(s_j + \sigma p_j) est la plus petite.
                  Poser s = s_j + \sigma_j p_j et sortir de la boucle.
              Fin Si
          c. \alpha_j = g_i^T g_j / \kappa_j
          d. Si ||s_j + \alpha_j p_j||_2 \ge \Delta_k, alors
                  déterminer \sigma_j la racine positive de l'équation ||s_j + \sigma p_j||_2 = \Delta_k.
                  Poser s = s_j + \sigma_j p_j et sortir de la boucle.
              Fin Si
          e. s_{j+1} = s_j + \alpha_j p_j
           f. g_{i+1} = g_i + \alpha_i H p_i
          g. \beta_j = g_{i+1}^T g_{j+1} / g_i^T g_j
          h. p_{j+1} = -g_{j+1} + \beta_j p_j
           i. Si la convergence est suffisante, poser s = s_{i+1} et sortir de la boucle.
```

2. Retourner s.

A Problèmes Tests

Les problèmes de minimisation sans contraintes à résoudre sont les suivants :

Problème 1

$$f_1: \mathbb{R}^3 \to \mathbb{R}$$

$$(x_1, x_2, x_3) \mapsto 2(x_1 + x_2 + x_3 - 3)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2.$$

On cherchera à minimiser f_1 sur \mathbb{R}^3 , en partant des points suivants

$$x_{011} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad x_{012} = \begin{bmatrix} 10 \\ 3 \\ -2.2 \end{bmatrix}.$$

Problème 2

$$f_2: \mathbb{R}^2 \to \mathbb{R}$$

$$(x_1, x_2) \mapsto 100 (x_2 - x_1^2)^2 + (1 - x_1)^2.$$

On cherchera à minimiser f_2 sur \mathbb{R}^2 , en partant des points suivants

$$x_{021} = \begin{bmatrix} -1.2 \\ 1 \end{bmatrix}, \quad x_{022} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}, \quad x_{023} = \begin{bmatrix} 0 \\ \frac{1}{200} + \frac{1}{10^{12}} \end{bmatrix}.$$

B Cas tests pour le calcul du pas de Cauchy

On considère des fonctions quadratiques de la forme $q(s) = s^{\top} \, g + \frac{1}{2} s^{\top} \, H \, s.$

Quadratique 1

$$g = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], \quad H = \left[\begin{array}{cc} 7 & 0 \\ 0 & 2 \end{array} \right].$$

Quadratique 2

$$g = \begin{bmatrix} 6 \\ 2 \end{bmatrix}, \quad H = \begin{bmatrix} 7 & 0 \\ 0 & 2 \end{bmatrix}.$$

Quadratique 3

$$g = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \quad H = \begin{bmatrix} -2 & 0 \\ 0 & 10 \end{bmatrix}.$$

C Cas tests pour la résolution du sous-problème par l'algorithme du Gradient Conjugué Tronqué

On reprendra les 3 quadratiques testées avec le pas de Cauchy, auxquelles on ajoutera :

Quadratique 4

$$g = \left[egin{array}{c} 0 \\ 0 \end{array}
ight], \quad H = \left[egin{array}{cc} -2 & 0 \\ 0 & 10 \end{array}
ight].$$

Quadratique 5

$$g = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad H = \begin{bmatrix} 4 & 6 \\ 6 & 5 \end{bmatrix}.$$

Quadratique 6

$$g = \left[\begin{array}{c} 2 \\ 0 \end{array} \right], \quad H = \left[\begin{array}{cc} 4 & 0 \\ 0 & -15 \end{array} \right].$$