Интенсив

по анализу А/В-тестирований: день 4

07/2020

День 4

Ускорение А/Б тестов и прочие способы уменьшить дисперсию: Стратификация

Влияние внешних факторов

Пример 1: маленькая выборка -> низкая репрезентативность

Пример 2: влияние недельной/месячной сезонности

Влияние оценщика

Пример 1: высокий bias возможен при проверке гипотез t-Критерием на распределении с «жирными» хвостами

Пример 2: высокий bias возможен при (непараметрическом) бутстрэпе медиан -> средняя оценки boot-медиан может не совпадать с медианой изначального распределения

Увеличение чувствительности метрики

Для непрерывных метрик можно использовать методы повышения чувствительности путем сокращения дисперсии

Идея

Сокращение дисперсии —> Повышение чувствительности —> Ускорение эксперимента

Стратификация

Стратификация

Стратификация (stratified sample)

На этапе дизайна эксперимента, разбиваем пользователей на k групп (страт), определяется вероятность попадания в страту

Пост-стратификация (post-stratification)

Получив рандомную выборку, применяется стратификация на основе заранее известных вероятностей попадания в страту

Какая средняя позиция у баннера?

Баннер показывался в списке на 1,2,3,4 и 5 позициях. Но просто взять среднее по всем позициям – неправильно. Чтобы узнать реальное среднее, будем считать среднее взвешенное

Способ №1

Показы	Позиция
300	1
150	2
200	3
50	4
30	5

Какая средняя позиция у баннера?

Баннер показывался в списке на 1,2,3,4 и 5 позициях. Но просто взять среднее по всем позициям – неправильно. Чтобы узнать реальное среднее, будем считать среднее взвешенное

Способ №1

							Показы *
Позиция	Показы		Позиция		Показы		Позиция
1	300	Умножаем	1	*	300	=	300
2	150	позицию на показы	2	*	150	=	300
3	200		3	*	200	=	600
4	50		4	*	50	=	200
5	30		5	*	30	=	150
				Сум	ма = 730	Сум	има = 1550

Какая средняя позиция у баннера?

Баннер показывался в списке на 1,2,3,4 и 5 позициях. Но просто взять среднее по всем позициям – неправильно. Чтобы узнать реальное среднее, будем считать среднее взвешенное

Способ №1

							Показы *
Позиция	Показы		Позиция		Показы		Позиция
1	300	Умножаем	1	*	300	=	300
2	150	позицию на показы	2	*	150	=	300
3	200		3	*	200	=	600
4	50		4	*	50	=	200
5	30		5	*	30	=	150
				Сум	ма = 730	Сум	има = 1550

Средняя взвешенная позиция

$$=\frac{1550}{730}=2{,}12$$

Какая средняя позиция у баннера?

Баннер показывался в списке на 1,2,3,4 и 5 позициях. Но просто взять среднее по всем позициям – неправильно. Чтобы узнать реальное среднее, будем считать среднее взвешенное

Способ №2

Показы	Позиция
300	1
150	2
200	3
50	4
30	5

Какая средняя позиция у баннера?

Баннер показывался в списке на 1,2,3,4 и 5 позициях. Но просто взять среднее по всем позициям – неправильно. Чтобы узнать реальное среднее, будем считать среднее взвешенное

Способ №2

		Cy	мма = 730		Cy	мма = 1
5	30		30	/ 730	=	0,041
4	50		50	/ 730	=	0,068
3	200		200	/ 730	=	0,274
2	150	Переводим показы в доли	150	/ 730	=	0,205
1	300		300	/ 730	=	0,411
Позиция	Показы		Γ	юказов		Доля
			Показы /	Сумма		

Какая средняя позиция у баннера?

Баннер показывался в списке на 1,2,3,4 и 5 позициях. Но просто взять среднее по всем позициям – неправильно. Чтобы узнать реальное среднее, будем считать среднее взвешенное

Способ №2

			Показы /	′ Сумма		
Позиция	Показы			показов		Доля
1	300		300	/ 730	=	0,411
2	150	Переводим показы в доли	150	/ 730	=	0,205
3	200		200	/ 730	=	0,274
4	50		50	/ 730	=	0,068
5	30		30	/ 730	=	0,041
		Cva	мма = 730		Cv	мма = 1

				Взве	шенная
	Позиция		Доля	П	озиция
	1	*	0,411	=	0,411
	2	*	0,205	=	0,411
	3	*	0,274	=	0,822
.110	4	*	0,068	=	0,274
10 Kaem 110 3MILIO	5	*	0,041	=	0,205
10 JK 110 /					

Какая средняя позиция у баннера?

Баннер показывался в списке на 1,2,3,4 и 5 позициях. Но просто взять среднее по всем позициям – неправильно. Чтобы узнать реальное среднее, будем считать среднее взвешенное

Способ №2

			Показы / Сумма		
Позиция	Показы		показов		Доля
1	300	TT	300 / 730	=	0,411
2	150	Переводим показы в доли	150 / 730	=	0,205
3	200		200 / 730	=	0,274
4	50		50 / 730	=	0,068
5	30		30 / 730	=	0,041
		Сул	има = 730	Cy	умма = 1

 e^x periment fest

Стратификация

Дисперсия по

страте

Пост-стратификация

Способ расчета повторяет логику расчета любой взвешенной оценки:

- 1. Выбираем переменные, наиболее влияющие на метрику. Страта (или группа) определяется k-градацией этой переменной.
- 2. Считаем вероятность попадания пользователя в группу по аналогии с тем, как мы считали доли до этого в примере
- 3. Считаем дисперсию *var* внутри группы (страты)
- 4. Считаем взвешенную оценку var_{strat}
- 5. Добиваемся сокращения дисперсии

отличие от пре-стратификации от пост в том, что веса определяются на этапе конфига

в страту, попросту – вес
$$t(\hat{Y}_{strat}) = \frac{1}{2} \sum_{n_k \sigma_{l_k}}^{K} \sigma_{l_k \sigma_{l_k}}^2$$

Вероятность попадания

для нормирования по выборке (по аналогии в формуле стандартной ошибки – это $\frac{\sigma}{\sqrt{n}}$, или

это дисперсия среднего)

 e^x periment fest

Стратификация

Среднее стратифицированное по выборке будет такое же как и само среднее по ГС, т.к. считается среднее взвешенное по стратам. Можно особо не углубляться:

$$E_{strat}(\hat{Y}_{strat}) = \sum_{k=1}^{K} p_k E_{strat}(\bar{Y}_k) = \sum_{k=1}^{K} p_k \mu_k = \mu.$$

Y: метрика

 $\mu = E(Y)$: среднее по метрике в ГС

 p_k : доля k страты в ГС = вероятность попадания в страту

Стратифицированная дисперсия по выборке считается взвешенно по каждой страте. Вес определяется вероятностью попадания пользователя в страту.

Например, если за страты мы берем регионы и их у нас 3 с аудиторией разбитые по долям 30%, 50%, 20%, то веса для них p_{k1} =

$$0.3, p_{k2} = 0.5, p_{k3} = 0.2$$

9, 7, 8, 6, 9, 6, 7, 5, 4

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

9, 7, 8, 6, 9, 6, 7, 5, 4

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

9, 7, 8, 6, 9, 6, 7, 5, 4

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 6.777778$$

$$\sigma^2 = 2.617284$$

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

$$\bar{x} = 8$$

$$\sigma^2 = 1$$

$$w = 0.22$$

9, 7, 8, 6, 9, 6, 7, 5, 4

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 7.25$$
 $\sigma^2 = 1.6875$
 $\bar{x} = 8$
 $w = 0.44$
 $\sigma^2 = 1$
 $w = 0.22$

9, 7, 8, 6, 9, 6, 7, 5, 4

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

$$\bar{x} = 7.25$$

$$\sigma^2 = 1.6875$$

$$w = 0.44$$

$$\sigma^2 = 1$$

$$w = 0.22$$

$$\bar{x} = 5.33$$

$$\sigma^2 = 1.555556$$

$$w = 0.33$$
9, 7, 8, 6, 9, 6, 7, 5, 4

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

$$\bar{x} = 7.25$$

$$\sigma^2 = 1.6875$$

$$\bar{x} = 8$$

$$w = 0.44$$

$$\bar{x} = 5.33$$

$$\sigma^2 = 1$$

$$w = 0.22$$

$$0, 7, 8, 6, 9, 6, 7, 5, 4$$

$$var(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

$$\operatorname{var}(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

Внутригрупповая диперсия

$$0.22 * 1$$
+ $0.44 * 1.6875$
+ $0.33 * 1.555556$
= 1.490741

Стратификация

Выборочное среднее и дисперсия

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

$$\bar{x} = 7.25$$

$$\sigma^2 = 1.6875$$
 $\bar{x} = 8$

$$w = 0.44$$

$$\bar{x} = 5.33$$

$$\sigma^2 = 1$$

$$w = 0.22$$

$$0, 7, 8, 6, 9, 6, 7, 5, 4$$

$$\operatorname{var}(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$

Внутригрупповая диперсия

= 1.490741

$$0.22 * 1$$
 $0.22 * (8 - 6.777778)^2$
+ $0.44 * 1.6875$ + $0.44 * (7.25 - 6.777778)^2$
+ $0.33 * 1.5555556$ + $0.33 * (5.33 - 6.777778)^2$

Межгрупповая диперсия

= 1.126543

Стратификация

Выборочное среднее и дисперсия

$$\bar{x} = 6.777778$$
 $\sigma^2 = 2.617284$

$$\bar{x} = 7.25$$

$$\sigma^2 = 1.6875$$

$$\bar{x} = 8$$

$$w = 0.44$$

$$\bar{x} = 5.33$$

$$\sigma^2 = 1$$

$$w = 0.22$$

$$0, 7, 8, 6, 9, 6, 7, 5, 4$$

$$\bar{x} = 6.777778$$

$$\sigma^2 = 2.617284$$

$$\operatorname{var}(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2 = 1.490741 + 1.126543 = 2.617284$$

$$0.22 * 1$$
 $+ 0.44 * 1.6875$
 $+ 0.33 * 1.555556$
 $= 1.490741$

$$0.22 * (8 - 6.7777778)^{2}$$
 $+ 0.44 * (7.25 - 6.7777778)^{2}$
 $+ 0.33 * (5.33 - 6.777778)^{2}$
 $= 1.126543$

Межгрупповая диперсия

Если разобрать дисперсию на составные компоненты, то получим внутригрупповую и межгрупповую дисперсии:

$$\operatorname{var}(\overline{Y}) = \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^{K} \frac{w_k}{n} (\mu_k - \mu)^2$$
$$\geq \sum_{k=1}^{K} \frac{w_k}{n} \sigma_k^2 = \operatorname{var}(\widehat{Y}_{strat})$$

Дисперсия по случайной выборке будет либо такой же, как в стратифицированной выборке, либо больше, т.к. в стратифицированной выборке мы избавляемся от межгрупповой дисперсии.

Демонстрация R

Выводы

- Страты должны быть стабильными и не меняться во времени иначе вес страты будет нестабильным и это приведет к непредсказуемому изменению дисперсии
- Плохо подобранные переменные для стратификации влекут за собой увеличение дисперсии
- Стратификацию можно использовать, когда есть проблемы с балансом выборок. Например, аномальный всплеск покупок из одной страты с большой дисперсией можно приглушить стратификацией
- Разные исследования показывают, что стратификация может сократить дисперсию от 1% до 40%

День 4

Ускорение А/Б тестов и прочие способы уменьшить дисперсию: CUPED

Типичная картина

На маленьких эффектах чаще всего мы видим низкую мощность на ранних этапах эксперимента. Причиной этому является высокая дисперсия:

 e^x periment fest

Cuped

Проблема: высокая дисперсия на маленьких эффектах

Чтобы добиться сокращения дисперсии необязательно ждать окончания эксперимента для прокраса

 e^x periment fest

Cuped

Решение: Сокращение за счет истории

Сокращение достигается путем использования пред-экспериментальных данных:

- а) использование стратификации
- б) использование ковариат

Пред-экспериментальные + Экспериментальные данные

$$Y_{CUPED} = Y - \theta X$$

, где

Y – экспериментальная метрика

X – метрика до проведения эксперимента.

Для сохранения среднего используется

$$X - \hat{X}$$

$$\theta - \frac{cov(X, Y)}{var(X)}$$

в CUPED мы смотрим не просто на бизнес-метрику Y, а на измененную Y_{CUPED} , которая чувствительнее, благодаря ее связи с пред-экспериментальным периодом

$$Y_{CUPED} = Y - \theta X$$

Идея заключается в том, что дисперсия Y обусловлена двумя компонентами: дисперсией ковариаты X и дисперсией неизвестных переменных. После коррекции Y_{CUPED} , мы избавляемся от дисперсии X и оставляем влияние неизвестных переменных

CUPED: Принцип работы 1/3

При использовании CUPED'а учитывается поведение пользователя до эксперимента (ковариата X) и во время эксперимента (фактическая метрика Y).

После нахождения между этими метриками зависимости уменьшается дисперсия → увеличивается чувствительность

Таким образом, мы узнаем как изменилось поведение пользователя от среднего.

CUPED: Принцип работы 2/3

CUPED имеет две модификации: использование пред-стратификации или ковариаты:

- Пред-стратификация использует категориальные данные типа региона, пакетный тариф и т.п.
- Ковариата числовая непрерывная метрика (средний чек) взятая из истории пользователя

На практике чаще используется ковариата, т.к. она позволяет сильнее сократить дисперсию, чем стратификация

CUPED: Принцип работы 3/3

uid	exp_variant	sessionDuration (метрика)		СОРЕД метрика
1	control	31	30	31-(30 - средняя ковариата)*theta
2	control	23	20	23-(20 - средняя ковариата)*theta
3	test	25	22	25-(22 - средняя ковариата)*theta
4	test	41	46	41-(46 - средняя ковариата)*theta

^{*}среднее по ковариате и тета подбираются по всем группам

 e^x periment fest

 e^x periment fest

Если X = Y, то метрика после эксперимента не меняется

Соотвественно, если сумма остатков > 0, то изменения есть

Экспериментальная метрика

Демонстрация R

Ограничения и требования

- Необходимы исторические данные о пользователе
- Неочевидно какой пред-экспериментальный период выбрать для ковариаты
- Подходит для работы с разницей средних
- Для дискретных (бинарных) величин не подходит

День 4

Ratio-метрика и линеаризация

ВЫБОРОЧНАЯ МЕТРИКА

$$\bar{X} = \frac{\sum_{i} X_{i}}{n}$$

- СРЕДНИЙ ЧЕК
- ARPU

ПОЮЗЕРНАЯ МЕТРИКА

$$\bar{R} = \frac{\bar{Y}}{\bar{Z}} = \frac{\sum_{i} Y_{i}}{\sum_{i} Z_{i}}$$

- CTR
- Action Per Session

Пользователь	Действие на странице	Просмотры страницы
1	10	200
2	3	259
4	90	139
5	10	20

$$ratioUser1 = \frac{10}{200} = 0.05$$

$$ratioUser1 = \frac{3}{259} = 0.011$$

$$ratioUser1 = \frac{90}{139} = 0.647$$

$$ratioUser1 = \frac{10}{20} = 0.5$$

$$ratioUser1 = \frac{10}{20} = 0.5$$

Пользователь	Действие на странице	Просмотры страницы
1	10	200
2	3	259
4	90	139
5	10	20

$$globalRatio = \frac{10 + 3 + 90 + 10}{200 + 259 + 139 + 20} = 0,182$$

$$naiveAVG = \frac{0.05 + 0.011 + 0.647 + 0.5}{4} = 0,302$$

$$bias = 0.302 - 0.182 = 0.12$$

ratio метрику мы можем посчитать как минимум тремя способами

naiveRatio

- Имеет сильный сдвиг относительно globalRatio
- За счет сдвига pvalue может «краситься» случайно

globalRatio

- Требует считать дисперсию для отношения двух случайных величин
- Невозможно сохранить «поюзерную» направленность
- Для расчета дисперсии требуется использовать bootstrap или разложение ряда для второго момента (читай дополнительные материалы)

L-метрика (линеаризация)

- Сохраняет «поюзерную» направленность
- Можно использовать базовые статистические оценщики
- Можно использовать для дальнейшей оптимизации дисперсии
- Просто вычисляется
- Не сохраняется global ratio

Принцип работы линеаризации

$$Lx, y, k(U) = X(u) - kY(u)$$

- K ratio по контролю
- Х клики пользователя
- Y просмотры пользователя

мы хотим понять отклонение метрики в эксперименте относительно ratio в контроле.

иначе говоря – смотрим, что изменилось в эксперименте относительно ситуации в контроле

Сравнение способов анализа ratio-метрик

- pvalue по L метрики сонаправлен с pvalue для ratio bootstrap
- Среднее всех отношений сильно отличается от bootstrap и L метрики за счет сдвига
- Линеаризация **не позволяет ускорять a/b теста**

Плюсы L метрики

- Сохраняется поюзерная направленность
- На L метрику можно использовать методы оптимизации дисперсии вроде CUPED
- Если перед вами не стоит задача сохранять поюзерную направленность или упрощать статистические операции то можно использовать bootstrap для оценки ratio метрик. Результат будет сонаправлен L метрики

e^x periment fest

Мирмахмадов Искандер

Черемисинов Виталий

07/2020