Implementation on USRP/GNU Radio CR Platform

1.0 Cluster Formation

```
Algorithm 1: Cluster formation at SU node i
 Initialize
 n_i; H_{C,min} = 2; H_{H,min} = 1; j \in J = \{1,2,...,N(i)\};
 Repeat
 #Part I: Clusterhead election and member node joining#
 1: if (n_i > n_j | \forall j \in J) && (i \leftarrow NN_i), then
 2: nodeState_i \leftarrow CH_i
 3: else if (n_{c.i} \ge H_{C,min} \mid \forall i \in I) && (i \leftarrow NN_i), then
 4: nodeState_i \leftarrow MN_{i,i}
 5: else create a cluster C_i
 6: nodeState_i \leftarrow CH_i
 7: end if
 #Part II: Gateway node selection at MN_{i,i} of cluster C_i#
 8: if (n_{h.i} = H_{H,min} \mid \forall i \in C_i) && (i \leftarrow MN_{j,i}) then
 9: nodeState_i \leftarrow GN_{i,i,k}
10: else
11: nodeState_i \leftarrow MN_{j,i}
12: end if
```

Table 1: List of notations used in algorithms

Notation	Description
$N(i) = j \in J$	Neighbouring SU nodes of SU i
NN_i	Non-clustered SU node i
CH_i	Clusterhead of cluster i
$MN_{j,i}$	Member SU node <i>i</i> of cluster <i>j</i>
$GN_{j,i,k}$	Gateway SU node i of cluster j one-hop away from neighbouring cluster k
n_i	Number of available channels at SU node <i>i</i>
$n_{c.i}$	Set of available common channels among SU node <i>i</i> and its neighbouring SUs
$n_{h.i}$	Number of hops among SU node <i>i</i> and its neighbouring SUs
$H_{C,min}$	Minimum threshold for cluster formation among SU nodes
$H_{H,min}$	Minimum threshold for gateway SU node selection
p_{ij}	Reward estimate
$\gamma_{i,j}$	Dynamic discount factor
WF_j	OFF-state probability of channel <i>j</i>
PF_j	Packet delivery ratio at SU node <i>j</i>

2.0 RL-based Route Selection

Algorithm 2: Traditional Q-routing at SU node *i*

Initialize

$$\gamma = [0,1]; \alpha = [0,1]; Q_t^i(s_t^i, a_t^i) = 0; a_t^i \in A, s_t^i \in S$$

Repeat

- 1: Observe state s_t^i
- 2: Select exploitation or exploration action
- a. If exploitation, choose best-known action $a_t^i = \max_{k \in A} Q_t^i(s_t^i, k)$
- b. If exploration, choose random action $a_t^i \in A$
- 3: Perform action a_t^i

 $t \rightarrow t + 1$

4: Observe reward $r_{t+1}^i(s_t^i, a_t^i)$ and receive $\max_{a_t^j \in A} Q_t^j(s_t^j, a_t^j)$ from the next-hop neighbor node a_t^i

5:

6:Update Q-value $Q_t^i(s_t^i, a_t^i)$

$$Q_{t+1}^{i}(s_{t}^{i}, a_{t}^{i}) \leftarrow (1 - \alpha)Q_{t}^{i}(s_{t}^{i}, a_{t}^{i}) + \alpha \left[r_{t+1}^{i}(s_{t}^{i}, a_{t}^{i}) + \gamma \max_{k \in N(i) = a_{t}^{j}} Q_{t}^{j}(s_{t}^{j}, a_{t}^{j})\right] 1$$

Algorithm 3: Enhanced Q-routing with dynamic discount factor $\gamma_{i,i}$ model at SU node i

Initialize

$$\omega = [0,1]; \alpha = [0,1]; Q_t^i(s_t^i, a_t^i) = 0; a_t^i \in A, s_t^i \in S$$

Repeat

 $t \rightarrow t + 1$

- 1: Observe reward $r_{t+1}^i(s_t^i, a_t^i)$ and receive $\max_{a_t^j \in A} Q_t^j(s_t^j, a_t^j)$ from the next-hop neighbor node a_t^i
- 2: For $\forall j \in J$ calculate dynamic discount factor $\gamma_{i,j}$ using Equation 2a.
- 3: Update Q-value $Q_t^i(s_t^i, a_t^i)$

$$Q_{t+1}^{i}(s_{t}^{i}, j) \leftarrow (1 - \alpha)Q_{t}^{i}(s_{t}^{i}, j) + \alpha \left[r_{t}^{i}(s_{t+1}^{i}, j) + \gamma_{i, j} \max_{k \in N(i) = \alpha_{t}^{j}} Q_{t}^{j}(s_{t}^{j}, k)\right] 3$$

$$\gamma_{i,j} = \omega \sqrt{WF_j \cdot PF_j}, \quad \forall j \in J$$

$$WF_i = \bigcup_{ON}^k + \left(\bigcup_{OFF}^k \times e^{-(\lambda_{ON} + \lambda_{OFF})}\right)$$
 2b

 $PF_j = \sum_j number\ of\ packets\ (receive/sent)\ 2c$

Table 2: Q-routing model for route selection embedded in SU node i

State $s_t^i \in S = \{1, 2, ..., N-1\}$ represents a SU destination node, where N is the total number of SUs in the network.

Action $a_t^i \in A = \{1, 2, ..., J\}$ represents the selection of a next-hop SU neighbor node j, where J the number of SU i's neighboring SU nodes.

Reward $r_t^i(s_t^i, a_t^i) = \begin{cases} 1, & success \\ 0, & otherwise \end{cases}$

Node i receives a reward value of 1 if the packet it forwards has reached the SU destination node s_t^i , such as a SU BS, via its next-hop SU neighbour node $a_t^i = j$; otherwise, it receives a reward value of 0.