$$5. H_{0}(z) = 0.2 \cdot z + 0.5$$

$$z^{2} - 1 \lambda z + 0.\lambda$$

$$\Delta(z) = 1 + H_{0}(z) = 1 + 0.\lambda z + 0.5 = z^{2} - z + 0.7$$

$$z^{2} - 1.\lambda z + 0.\lambda z + 0.\lambda$$

$$z^{2} - 1.\lambda z + 0.\lambda z + 0.\lambda$$

$$z^{2} - 1.\lambda z + 0.\lambda$$

$$A = 1 \quad 0 = 0.7$$

$$A = 1 \quad 0 = 0.7$$

* cond 2:
$$\Delta(-1) = 1 + 1 - 0.7 = 1.3 > 0$$
 (n=2 even)

· cond 3: |ao| < an <=> 10.71 < 1 < 1 (=) 0.7 < 1 ()

Array for Jury's stability test
$$\frac{z^0}{z^0} = \frac{z^1}{z^2} = \frac{z^2}{z^2}$$

$$\frac{1}{20} = 0.7 \quad \alpha_1 = -1 \quad \alpha_2 = 1$$

$$\frac{1}{20} = \frac{1}{20} = \frac{$$

=) THE SYSTEM IS STABLE

7.
$$\Delta(z) = z^3 - 2z^2 + 1.4z - 0.1$$

 $n = 3$
 $a_3 = 1$ $a_2 = -2$ $a_1 = 1.4$ $a_0 = -0.1$
• cond 1: $\Delta(1) = 1 - 2 + 1.4 - 0.1 = 0.3 > 0$ (F)
• cond 2: $\Delta(-1) = -1 - 2 - 1.4 - 0.1 = -4.5 < 0$ ($n = 3$ odd)

· cond 3: |ao|< an (=) |ao| < a3 (=) +0.1 < 1 (1)

Routh Array

$$b_0 = \begin{vmatrix} a_0 & a_{n-0} \end{vmatrix} = \begin{vmatrix} -0.1 & 1 \\ 1 & -0.1 \end{vmatrix} = 0.01 - 1 = 0.99$$

$$b_1 = \begin{vmatrix} a_0 & a_{n-1} \end{vmatrix} = \begin{vmatrix} -0.1 & -2 \\ 1 & -0.1 \end{vmatrix} = -0.14 + 2 = 1.86$$

$$b_1 = \begin{vmatrix} a_0 & a_{n-1} \end{vmatrix} = \begin{vmatrix} -0.1 & 1.4 \\ 1 & -2 \end{vmatrix} = 0.2 - 1.4 = -1.2$$

$$b_2 = \begin{vmatrix} a_0 & a_{n-2} \end{vmatrix} = \begin{vmatrix} -0.1 & 1.4 \\ 1 & -2 \end{vmatrix} = 0.2 - 1.4 = -1.2$$

Array for Jury's stability test

	20	150	72	23
1	ac =-0.1	a=1.4	Q2=-2	a3 = 1
2	a3=1	a=-2	a = 1.4	Qo=-0,1
3	bo = -0.99	b,=1.86	b2=-1.7	
4	b2 = -1.2	6, =1.86	bo = -0.99	

· cond 4: |bo| > |bn-1 | => 0.99 > 1.2 (E)

=) THE SYSTEM IS UNSTABLE