Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Курсовая работа

по дисциплине
"Математическая статистика"
по теме: "Калибровка шкалы измерителя"

Выполнила студентка группы 3630102/80201 Проверил доцент, к.ф.-м.н.

Деркаченко Анна Олеговна

Баженов Александр Николаевич

Содержание

1.	Постановка задачи	4
2.	Теория	4
	2.1. Интервальный анализ	4
	2.1.1. Задача восстановления зависимости	5
	2.1.2. Метод максимального согласования	5
3.	Ход работы	5
	3.1. Определение параметров гармонического сигнала	6
	3.2. Определение фаз отсчетов сигнала	6
4.	Реализация	6
5.	Результаты	7
6.	Обсуждение	12
7.	Список используемой литературы	13

Список иллюстраций

1.	Амплитуды входного сигнала при измерении константных сигналов, цветом обо-	
	значены разные значения констант	7
2.	Оцифрованный сигнал с иллюстрацией константных сигналов	
3.	Пример регрессионной прямой	8
4.	Гистограмма распределения параметра а регрессионной прямой	S
5.	Гистограмма распределения параметра b регрессионной прямой	S
6.	Интерполированный сигнал	10
7.	Масштабированный сигнал на $[0,1]$	10
8.	Нахождение амплитуды сигнала	11
9.	Временная шкала сигнала	11
10.	Гистограмма распределения ширин временных бинов	12

1. Постановка задачи

Дано множество данных, снятых с измерителя. Требуется откалибровать шкалу измерителя с помощью имеющихся данных. Для этого небходимо:

- 1) Определить амплитуду гармонического сигнала по набору отсчетов
- 2) Определить фазы отсчетов по амплитуде
- 3) Использовать интервальный подход к решению переопределенных СЛАУ для точного определения амплитуды

2. Теория

2.1. Интервальный анализ

Опр: uhmepean - замкнутый отрезок вещественной оси (A = [a, b]).

Опр: *интервальная неопределенность* - состояние неполного знания об интересующейся величине. В таком случае возможно указать лишь границы допустимых значений данной величины, причем величина принимает все значения из интервала с равной долей вероятности.

Алгебра интервалов:

- $\overline{A} + \underline{A} = [\overline{a}, \overline{b}] + [\underline{a}, \underline{b}] = [\overline{a} + \underline{a}, \overline{b} + \underline{b}]$
- $\overline{A} \underline{A} = [\overline{a}, \overline{b}] [\underline{a}, \underline{b}] = [\overline{a} \underline{a}, \overline{b} \underline{b}]$
- $\bullet \ \overline{A} * \underline{A} = [\overline{a}, \overline{b}] * [\underline{a}, \underline{b}] = [min(\overline{a}\underline{a}, \overline{a}\underline{b}, \overline{b}\underline{a}, \overline{b}\underline{b}), max(\overline{a}\underline{a}, \overline{a}\underline{b}, \overline{b}\underline{a}, \overline{b}\underline{b})]$
- $\frac{\overline{A}}{\underline{A}} = \frac{[\overline{a},\overline{b}]}{[\underline{a},\underline{b}]} = [\overline{a},\overline{b}] * [\frac{1}{\underline{a}},\frac{1}{\underline{b}}]$

Опр: интервальная матрица - матрица вида:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \tag{1}$$

где a_{ij} - интервал, $i=\overline{1,m}, j=\overline{1,n}.$

Опр: интервальная система линейных алгебраических уравнений (ИСЛАУ):

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$
 (2)

где a_{ij}, b_i - интервалы, $i = \overline{1, m}, j = \overline{1, n}$, или Ax = B, где $A = (a_{ij})$ - интервальная матрица, $B = (b_i)$ - интервальный вектор.

Множество решений ИСЛАУ:

• Объединенное множество $\Theta_{uni}(A,B) = \{x \in \mathbf{R}^n | \exists A' \in A, \exists B' \in B, A'x = B' \}$

• Допусковое множество $\Theta_{tol}(A,B) = \{x \in \mathbf{R}^n | \forall A' \in A, \exists B' \in B, A'x = B' \}$

При этом $\Theta_{tol}(A, B) \subseteq \Theta_{uni}(A, B)$.

Допусковое множество решений может оказаться пустым, если интервалы правой части слишком узки в сравнении с интервалами элементов матрицы.

2.1.1. Задача восстановления зависимости

Пусть A - интервальная матрица, B - интервальный столбец эмпирических данных. Тогда Ax = B - ИСЛАУ, где $x_1, ..., x_n$ - оценки исходных параметров.

Решение данного ИСЛАУ в общем случае представляет собой множество $\Theta_{uni}(A, B)$. Если требуется сильное согласование параметров с интервальными экспериментальными данными, то решением является множество $\Theta_{tol}(A, B)$.

2.1.2. Метод максимального согласования

Теорема: точка $x \in \mathbf{R}^n$ принадлежит допусковому множеству решений ИСЛАУ $\Theta_{tol}(A, B) \iff Ax \subseteq B$.

Опр: распознающий функционал - $Tol(x,A,B) = min_{1 \leq i \leq m} rad(b_i) - |\sum_{j=1}^n a_{ij} x_j - mid(b_i)|$, где $rad(a) = \frac{1}{2}(\overline{a} - \underline{a}), mid(a) = \frac{1}{2}(\overline{a} + \underline{a})$ для интервала a.

Тогда
$$\Theta_{tol}(A, B) = \{x \in \mathbf{R}^n | Tol(x, A, B) \ge 0\}.$$

В качестве оценки параметров берется точка, в которой достигается наибольшее неотрицательное значение данного распознающего функционала.

3. Ход работы

При получении сигналов с измерителя может наблюдаться нерегулярность отсчетов и амплитудная неточность (сдвиг амплитуд). При этом для сигналов с частотой выше нескольких десятков мегагерц необходимо использовать форму гармонических сигналов, чтобы достичь точности в 10%. Частота сигналов при этом очень стабильна, а амплитуда считается неизвестной, так как при дискретизации сигналов данные имеют бинарный формат, не связанный с установками прибора, генерирующего сигнал.

Таким образом, решение задачи разбивается на этапы:

- 1) Амплитудная калибровка
 - а) Подать поочередно сигналы констант и построить по ним усредненные значения для каждой ячейки (набор уровней)
 - б) Построить кусочно-линейную интерполяцию сигнала
- 2) Интервальный анализ временной калибровки
 - а) Определить параметры гармонического сигнала по амплитудным значениям
 - б) Определить фазы отсчетов сигнала

3.1. Определение параметров гармонического сигнала

Необходимо выполнить масштабирование исходной выборки $\{y_i\}$ - амплитудные значения сигнала в промежуток [0,1] и вычислить амплитуду арксинуса как пересечение прямых, проходящих через линейно зависимые точки. При этом учитываем, что амплитудные значения y_i даны с погрешностью.

Алгоритм поиска коэффициентов прямой $y = a^+x + b^+$ с положительным наклоном:

- 1) Найти множество точек $I^+ = \{I_{k0}^+,...,I_{kn}^+\}$, где I_{ki}^+ множество точек, лежащих на одной прямой с положительным наклоном
- 2) При этом каждая точка должна удовлетворять условию $y=a^+i+b^++dk$, где d смещение из-за периода
- 3) Построить интервальные оценки по спецификации прибора для $i:[i-\frac{1}{2},i+\frac{1}{2}],$ для y:[y-0.015|y|,y+0.015|y|]
- 4) Составить ИСЛАУ, подставив соответствующие интервальные оценки в СЛАУ вида:

$$\begin{pmatrix} i_0 & 1 & 0 \\ \dots & \dots & \dots \\ i_j & 1 & k \\ \dots & \dots & \dots \\ i_n & 1 & l \end{pmatrix} \begin{pmatrix} a \\ b \\ d \end{pmatrix} = \begin{pmatrix} y_0 \\ \dots \\ y_j \\ \dots \\ y_n \end{pmatrix}$$

$$(3)$$

где $i_j \in I_{ki}^+$

5) Применить метод максимального согласования для нахождения оценок параметров a и b

Таким образом, с помощью найденных a^+, b^+, a^-, b^- находится амплитуда арксинуса как ордината точки пересечения соответствующих прямых.

3.2. Определение фаз отсчетов сигнала

Необходимо провести масштабирование $\{y_i\}$ так, чтобы амплитуда стала равной $\frac{\pi}{2}$. Тогда $\Delta t_i = \frac{\Delta y_i}{2\pi\nu}$. При этом временной интервал вычисляется для точек, по котором производилось построение прямых, а временной интервал между соседними измерениями Δt_i вычисляется как среднее по всем сигналам.

4. Реализация

Реализация курсовой работы проводилась на языке Python в среде разработки PyCharm с использованием дополнительных библиотек:

- numpy
- matplotlib
- \bullet math

- \bullet seaborn
- \bullet tolsolvty

Исходный код лабораторной работы размещен в GitHub-репозитории: URL: https://github.com/derkanw/Mathstat/tree/main/coursework

5. Результаты

Рис. 1. Амплитуды входного сигнала при измерении константных сигналов, цветом обозначены разные значения констант

Рис. 2. Оцифрованный сигнал с иллюстрацией константных сигналов

Рис. 3. Пример регрессионной прямой

Рис. 4. Гистограмма распределения параметра а регрессионной прямой

Рис. 5. Гистограмма распределения параметра в регрессионной прямой

Рис. 6. Интерполированный сигнал

Рис. 7. Масштабированный сигнал на [0,1]

Рис. 8. Нахождение амплитуды сигнала

Рис. 9. Временная шкала сигнала

Рис. 10. Гистограмма распределения ширин временных бинов

6. Обсуждение

Графики исходного сигнала и сигнала после интерполяции схожи. Это свидетельствует о том, что исходные данные о сигнале заданы по закону, который хорошо просматривается и имеет достаточную гладкость.

По гистограммам распределения значений параметров регрессии можно сделать вывод, что параметр a_k примерно равен 0.85, а параметр b_k близок к нулю.

Для получения временной шкалы были использованы почти все точки сигнала, что является особенностью реализованного метода. При этом используется форма гармонических сигналов, что позволяет обрабатывать сигналы с частотой выше нескольких десятков мегагерц с достаточной точностью (порядка 10%).

Для нахождения амплитуды сигнала используется функция арксинуса, которая нивелирует проблему недостаточности точек, так как позволяет использовать почти все точки, а не только в линейной области гармонической функции вблизи нуля.

Амплитуда арксинуса ищется как пересечение прямых, проходящих через линейно зависимые точки. При этом касательные к ним не являются симметричными, что объясняется неточностью генерации сигнала.

Использование интервального анализа для поиска коэффициента прямых позволяет учитывать погрешности данных в виде неравномерных временных отсчетов и погрешности амплитудных значений.

На гистограмме распределения временных ширин наблюдается бимодальность, что соответствует заявленному распределению в работе [1].

7. Список используемой литературы

Список литературы

[1] Билев Ф.А. Исследование применения интервального подхода к задаче калибровки шкалы измерителя с нерегулярными отсчетами // Бакалаврская работа. / Рук.: Баженов А.Н. - С.-П. : СПБПУ. - 2017. - 31 с.