(u ovoj tablici zaokružiti brojeve rješavanih zadataka)

Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno
											1

ZEMRIS 21.1.2004.

Treća kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

1. Regularnim izrazom opisati nizove koje prihvaća zadani DKA.

	a	b	С	
q_0	q_1	q_2	q_1	0
q_1	q_1	q_2	q_1	1
q_2	q_1	q_3	q_1	1
q_3	q ₃	q_3	q ₃	0

- 2. Formalno definirati Turingov stroj.
- 3. Izgraditi potisni automat koji provjerava da li je matematički izraz pravilno napisan u postfiks notaciji (u nepravilnom nizu ne odgovara odnos operatora i operanada, npr. 12*+). U izrazima se pojavljuju dekadske znamenke (svaka je zasebni operand!) i operatori +, -, *, /. Automat prihvaća praznim stogom. Provesti odgovarajuću transliteraciju (pretvorbu) znakova.
- 4. Dokazati istovjetnost jezika koje je moguće generirati kanonskim slijedom i rekurzivnih jezika.
- 5. Izbaciti jedinične i ε produkcije iz zadane gramatike.

$$\begin{array}{ccccc} S {\rightarrow} cdDa & B {\rightarrow} C & C {\rightarrow} cC \\ S {\rightarrow} aAa & B {\rightarrow} \epsilon & C {\rightarrow} D \\ A {\rightarrow} B & B {\rightarrow} bcB & D {\rightarrow} cdD \\ A {\rightarrow} \epsilon & D {\rightarrow} \epsilon \end{array}$$

- 6. Jezik L sastoji se od nizova oblika w\$ (w^C) ^R pri čemu za niz w vrijedi: w∈ (0+1) ⁺. Oznaka (w^C) ^R predstavlja obrnuto napisani jedinični komplement niza w (zagrade nisu dio ulaznog niza!). Odrediti (najužu) klasu jezika u koju spada jezik L, odrediti pripadni (najjednostavniji) automat koji ga prihvaća te odrediti vremensku složenost prihvaćanja jezika L.
- 7. Opisati konstrukciju konteksno ovisne gramatike koja generira jezik koji prihvaća linearno ograničeni automat.
- Konstruirati gramatiku nad abecedom {a,b,c} koja generira nizove oblika a¹b¹c¹+¹b¹a¹ uz i,j≥0.
- 9. Opisati model kojim se ocjenjuje vremenska složenost prihvaćanja jezika.
- 10. Konstruirati deterministički Turingov stroj koji pretvara brojeve zapisane u bazi 3 u brojeve zapisane u bazi 9. Početni broj u bazi 3 zapisan je na traci TS-a. Traka TS-a je dvostrano beskonačna i ima samo jedan trag. U polju trake lijevo od najznačajnije znamenke početnog broja nalazi se znak X. Ostala polja trake ispunjena su praznim znakovima B. Na početku rada glava TS-a nalazi se na znaku X. Pretvoreni broj u bazi 9 potrebno je zapisati lijevo od znaka X, počevši od najmanje značajne znamenke koja je neposredno uz taj znak.

(u ovoj tablici zaokružiti brojeve rješavanih zadataka)

Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno

ZEMRIS 10.12.2003.

Druga kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Konstruirati potisni automat M koji praznim stogom prihvaća nizove nad abecedom {a,b,c} za koje vrijede sljedeća dva uvjeta:
 - a) $n_a=4\cdot n_c=8\cdot n_b-g$ dje vrijednosti n_a , n_b i n_c odgovaraju broju pojavljivanja odgovarajućih znakova u nizu,
 - b) neposredno iza svakog znaka c moraju biti tri znaka a, a iza svakog znaka b moraju biti dva znaka a.

2. Opisati postupak pretvorbe desno-linearne gramatike u jednostavnu gramatiku pogodnu za konstrukciju NKA.

- 3. Provjeriti da li zadani LR parser prihvaća niz aaacabac. Redukcije su u tablici opisane posebnim formatom, r(X,n). Oznaka X označava koji je nezavršni znak s lijeve strane produkcije, a brojka n određuje broj znakova s desne strane te produkcije.
- 4. Navesti algoritme koji se koriste u postupku odbacivanja beskorisnih znakova gramatike te navesti i objasniti redoslijed kojim se algoritmi izvode.

	a	b	С	1	S	Α	В
0	s2				1	3	
1				prihvati			
2	s2		s5		4	6	
3		s9					7
4				r(S,2)			
5	r(A,2)	r(A,2) s9		r(S,2) r(A,2)			
6	s8	s9					7
7				r(S,2)			
8	r(A,3)	r(A,3)		r(S,2) r(A,3)			
9	s11					10	
10				r(B,2)			
11	s11		s5			12	
12	s8						

5. Zadanu gramatiku pretvoriti u lijevo-linearnu gramatiku.

S→abS A	A→aS		a	b	С	ε	
S→bA	A→baA	\mathbf{q}_0	q_0,q_1	\mathbf{q}_0	\mathbf{q}_0	\mathbf{q}_3	0
S→ε A	A→bab	q_1	-	q_1	q_1	-	1
		q_2	q_2	q_2	-	-	1
		q_3	q_4	q_2	q_6	-	0
		q_4	q_4	q_5	-	-	0
		q_5	-	q ₅	q_5	-	1
6. Pretvoriti zadani ε-NKA	A u DKA.	q_6	\mathbf{q}_6	-	\mathbf{q}_6	-	1

- 7. Opisati postupak konstrukcije potisnog automata M_2 koji prihvaća prihvatljivim stanjem iz potisnog automata M_1 koji prihvaća praznim stogom.
- 8. Konstruirati DKA koji prihvaća nizove opisane zadanim regularnim izrazom.

$$(a^{+}+ab^{*})(a^{*}+b^{*})^{+}(a^{+}+b^{+})^{*}(a^{*}bc+b^{+}c)$$

- 9. Pokazati da konteksno neovisni jezici nisu zatvoreni s obzirom na presjek.
- 10. Konstruirati Mealyev automat koji kao izlaz daje ostatak dijeljenja ulaznog broja s 8. Dijeljeni broj učitava se od najmanje značajne znamenke prema najviše značajnoj znamenci. Ulazni niz zapisan je kao binarni broj, a izlaz je dekadski broj. Mealyev automat u trenucima kad nema izlaza (npr. ostatak još nije izračunat) ispisuje znak -.

(u ovoj tablici zaokružiti brojeve rješavanih zadataka)

Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno
											-

ZEMRIS 12.11.2003.

Prva kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Konstruirati minimalni DKA koji prihvaća oktalno zapisane brojeve koji su djeljivi s tri, a nisu djeljivi s dva. DKA čita brojeve počevši od znamenke najveće težine.
- 2. Formalno definirati DKA i pripadnu funkciju $\hat{\delta}$.

δ	a	b	С	λ
\mathbf{q}_0	qı	q_0	q_2	В
q_1	q_2	q_4	q_3	Α
\mathbf{q}_2	\mathbf{q}_3	q_1	\mathbf{q}_2	D
q_3	\mathbf{q}_0	q_4	q_4	С
q_4	q ₃	q ₃	q_2	Е

- 3. Zadani Mooreov automat pretvoriti u Mealyev automat.
- 4. Opisati postupak pretvorbe ε-NKA u NKA.
- 5. Uporabom algoritma podjele stanja (2. algoritam) minimizirati DKA zadan dijagramom.

- 6. Jezici L₁ i L₂ definirani su nad abecedom {a,b,c}. Jezik L₁ sadrži sve nizove čiji je sufiks ab, a jezik L₂ sadrži sve nizove u kojima nema uzastopnog ponavljanja znaka b i znaka c (tj. zabranjeno je pojavljivanje podnizova bb i cc). Konstruirati DKA M koji prihvaća jezik L=L₁∩L₂.
- 7. Navesti svojstva ε-NKA dobivenog postupkom konstrukcije iz regularnog izraza.
- 8. Formalno ispitati da li zadani DKA M₁ i ε-NKA M₂ prihvaćaju iste jezike.

M_1	a	b	c		_	M_2	a	b	c	ε	
$\overline{q_0}$	$\begin{array}{c c} q_0 \\ q_0 \\ q_2 \\ q_0 \end{array}$	qı	q_2	1		p_0	p ₀ ,p ₂ - p ₀	pi	-	p ₂	1
q_1	q_0	q_3	q_3	0		p_1	-	p_2	p ₂	p ₂	0
\mathbf{q}_2	q_2	q_2	q_2	0		p_2	p_0	-	-	-	0
q_3	q_0	q_2	q_2	0							

- 9. Dokazati da su regularni jezici zatvoreni s obzirom na nadovezivanje.
- 10. Regularnim definicijama opisati brojeve koji se koriste u programskom jeziku C i srodnim jezicima. Brojevi mogu biti realni i cijeli, a cijeli brojevi se dalje dijele na oktalne, dekadske i heksadekadske. Oktalni brojevi uvijek počinju nulom, a heksadekadski počinju prefiksom 0x ili 0X. Svaki broj može imati predznak (+ ili -), a realni brojevi uvijek uključuju bar jednu znamenku i decimalnu točku. Eksponent realnog broja nije obavezan, ali može uključivati oba predznaka. Sva slova koja se pojavljuju u zapisu brojeva mogu biti velika ili mala (npr. 0xa1f≡0XA1F, +1.23e-12≡+1.23E-12, itd.)

Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno
						-					

11.1.2003. **ZEMRIS**

Treća kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Zadani DKA M₁ minimizirati uz uporabu metode podjele stanja.
- 2. Opisati postupak simulacije Turingovog stroja s jednom $M_1 \mid q \mid x \mid y \mid w$ trakom pomoću stogovnog stroja s dva stoga.
- 3. Konstruirati ε-NKA M₃ za zadanu gramatiku.

S→Sba	A→Aab
S→Sa	$A \rightarrow Ab$
$S \rightarrow Ac$	$A \rightarrow Sc$
S→ε	$A\rightarrow \varepsilon$

4. Dokazati da dijagonalni jezik nije rekurzivno prebrojiv.

IVI	4	Λ	y	VV	
q_0	$\cdot q_0$	q_1	\mathbf{q}_3	q 5	0
q_1	q_4	\mathbf{q}_0	q_3	q ₈	0
q_2	q_5	q ₄	\mathbf{q}_9	q_3	0
q_3	\mathbf{q}_3	q_1	q_5	q ₄	0
q_4	q_4	q_4	q_3	q_8	0
\mathbf{q}_{5}	\mathbf{q}_5	\mathbf{q}_3	q_5	q_4	1
q_6	q_4	\mathbf{q}_9	q_7	\mathbf{q}_{5}	1
q_7	q_6	\mathbf{q}_0	q ₉	q_2	1
q_8	q_8	q_3	q_8	q_1	1
q_9	\mathbf{q}_3	q_2	\mathbf{q}_7	q_6	1

- 5. Za zadanu gramatiku:
 - a) odrediti klasu gramatike prema Chomskyevoj hijerarhiji,

b) odrediti da li je gramatika jednoznačna,

c) regularnim izrazom opisati nizove koje gramatika generira,

d) odrediti koliko različitih nizova duljine 3 znaka

 $S \rightarrow TT$ B→ fB $A \rightarrow Ac$ $T \rightarrow Abc$ $A \rightarrow cA$ B→ eB

 $T \rightarrow f$ $A \rightarrow AT$ B→ rB $T \rightarrow fSA$ A→ TA Β→ ε

 $T \rightarrow fB$

- 6. Konstruirati Turingov stroj M₆ u osnovnom obliku koji računa broj znakova n_a i n_b u nizu w∈(a+b)*. Rezultat treba ispisati u obliku =n_a1n_b pri čemu se vrijednosti n_a i n_b prikazuju odgovarajućim brojem znakova 0 (jedan znak 0 označava vrijednost 1, a odsutnost znakova 0 predstavlja vrijednost 0). Početni zapis na traci je w=1B gdje je B oznaka za prazninu. Niz w ne mora ostati zapisan na traci, a glava se nalazi na početku niza w.
- 7. Dokazati da su konteksno ovisni jezici zatvoreni s obzirom na nadovezivanje.
- 8. Konstruirati konteksno ovisnu gramatiku nad abecedom {a,b} koja generira nizove oblika $a^i b^j a^k$ uz i,j,k ≥ 1 te i+k \geq j.
- 9. Definirati polinomne klase složenosti jezika.

gramatika može generirati.

10. Zadani Turingov stroj $M_{10}=(\{q_0,q_1,q_2,q_3,q_4,q_5\},\{X,Y\},$ $\{X,Y,B\},\ \delta,\ q_0,\ B,\ q_0$) prihvaća jezik L=L(M_{10}). Na početku rada, glava Turingovog stroja nalazi se na krajnje lijevom znaku ulaznog niza, a iza zadnjeg znaka u nizu postoji bar jedna praznina. Opisati nizove iz jezika L regularnim izrazom. Odrediti broj pomaka glave Turingovog stroja M₁₀ potrebnih za prihvaćanje niza duljine n kao funkciju f(n). Odrediti općenitu prostornu i vremensku složenost prihvaćanja jezika L.

M_{10}	X	Y	В
$\overline{q_0}$	q ₁ ,B,R	q_2,B,R	-
q_1	q_1,X,R	q_1,Y,R	q_3,B,L
\mathbf{q}_2	q_2,X,R	q_2,Y,R	q_4,B,L
\mathbf{q}_3	q ₅ ,B,L	-	-
q_4	-	q_5,B,L	-
q_5	q_5,X,L	q_5,Y,L	q_0,B,R

(zaokružiti brojeve rješavanih zadataka u tablici ispod)

- 4					,	J							
	Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno	

ZEMRIS 7.12.2002.

Druga kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Jezik L definiran je nad abecedom {a,b,c} i sastoji se od svih nizova u kojima se ne pojavljuje podniz aba. Opisati nizove iz jezika L pomoću regularnog izraza.
- 2. Navesti formalnu definiciju konteksno neovisne gramatike.
- 3. Konstruirati potisni automat M koji praznim stogom prihvaća nizove nad abecedom {a,b,c} za koje vrijede sljedeća dva uvjeta:
 - a) $n_c=4\cdot n_b=8\cdot n_a$ gdje vrijednosti n_a , n_b i n_c odgovaraju broju pojavljivanja odgovarajućih znakova u nizu,
 - b) neposredno iza svakog znaka a moraju biti četiri znaka c, a iza svakog znaka b moraju biti dva znaka c.

U rješenju zadatka nije dopušteno koristiti pretvorbu znakova.

- 4. Opisati postupak odbacivanja mrtvih znakova gramatike.
- 5. Konstruirati konteksno neovisnu gramatiku G koja generira nizove iz jezika $L=\{a^ib^jc^kd^je^{i+m}\mid i>1,0\leq j\leq 2,m>3,k>4\}.$
- 6. Konstruirati potisni automat M koji prihvaća nizove koje generira zadana gramatika G.

$$S \rightarrow abAc$$
 $A \rightarrow aAbAc$
 $S \rightarrow bAS$ $A \rightarrow aAc$
 $S \rightarrow cc$ $A \rightarrow bA$
 $S \rightarrow \varepsilon$ $A \rightarrow c$

- 7. Opisati postupak konstrukcije konteksno neovisne gramatike koja generira jezik koji se prihvaća praznim stogom potisnog automata.
- 8. Zadanu lijevo-linearnu gramatiku G_L pretvoriti u desno-linearnu gramatiku G_D.

$$S \rightarrow Sba$$

$$S \rightarrow S a$$

$$S \rightarrow c$$

$$S \rightarrow \epsilon$$

- 9. Dokazati da je presjek konteksno neovisnog jezika i regularnog jezika konteksno neovisni jezik.
- 10. Minimizirati zadani DKA uz uporabu algoritma traženja neistovjetnih stanja (3. algoritam). Dobiveni automat prikazati tablično.

	a	b	С	
q_0	q ₄	q_1	\mathbf{q}_0	1
q_1	\mathbf{q}_7	q_3	q_6	0
q_2	q_0	q_6	q_5	1
q_3	q ₄	\mathbf{q}_7	\mathbf{q}_3	1
q_4	q_3	\mathbf{q}_7	\mathbf{q}_3	0
q_5	q_2	\mathbf{q}_5	q_4	1
q_6	q_6	q_4	q ₄	1
q ₇	q_1	q_0	q_6	0

			(Zaokru	ziti broj	eve rjesa	ivanin za	idataka i	i tabiici)			
Ime i prezime	1	2	3	4	5	6 -	7	8	9	10	Ukupno

ZEMRIS 9.11.2002.

Prva kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Konstruirati minimalni DKA koji prihvaća dekadske brojeve djeljive s 15. DKA brojeve treba čitati od znamenke najveće težine prema znamenki najmanje težine.
- 2. Opisati jednostavan algoritam pronalaženja istovjetnih stanja (1. algoritam).
- 3. Na temelju zadanog Mealyevog automata, konstruirati istovjetni Mooreov automat.

δ	0	1	λ	0	1
q_0	q_2	\mathbf{q}_0	q_0	b d	d
q_1	$\begin{array}{c} q_2 \\ q_0 \\ q_1 \\ q_3 \end{array}$	q_1	q_1	d	С
q_2	q_1	q_3	q_2	С	a
q_3	q_3	q_2	q_3	a	b

- 4. Opisati postupak pretvorbe NKA u DKA.
- 5. Minimizirati zadani DKA uz uporabu algoritma pronalaženja neekvivalentnih stanja (3. algoritam).
- 6. Ispitati istovjetnost zadanih regularnih izraza.

a)
$$a^{+}[b^{*}+c(a+c)^{*}]^{+}a^{*}(b^{*}+c^{+})=a(a+b+c)^{*}c$$

b)
$$b(b+c)^*b(a+c)^*=bc^*b[(b+c)^*+a(a+c)^*]$$

- 7. Opisati generator konačnog automata.
- 8. Zadani ε-NKA pretvoriti u DKA.

	a	b	С	3	
\mathbf{q}_0	q_1,q_2	_	q_2	q_3	1
q_1	_	q_3	_	q_4	0
\mathbf{q}_2	q_2,q_4	q_1	q_4	_	0
q_3	q_0	q_3	_		0
q_4	-	-	q_4	q_3	0

- 9. Navesti rekurzivna pravila za regularne izraze te pravila asocijativnosti i prednosti za osnovne operatore koji se koriste u regularnim izrazima.
- 10. Formalno ispitati istovjetnost zadanih DKA M₁ i DKA M₂.

M_1	a	b	С		_	M_2	a	b	С	L
q_0	q ₀ q ₃ q ₃	q_1	q_2	1		p_0	p_0	p_1	p ₁ p ₂ p ₂ p ₃	
q_1	q_3	q_1	q_2	1		p_1	p_3	p_1	p ₂	
q_2	q_3	\mathbf{q}_3	q_2	1		p_2	p_3	p_2	p ₂	
q_3	q ₃	q ₃	q ₃	0		p_3	p ₃	p_3	p_3	

	a	b	С	
\mathbf{q}_0	q_1	q_3	q_2	1
q_1	q_1	- q4	\mathbf{q}_{5}	1
q_2	q_5	q_4	q ₇	0
q_3	q_6	q_3	q ₉	0
q_4	q_6	\mathbf{q}_3	\mathbf{q}_7	0
q_5	q_8	q_4	q ₇	0
q_6	q_1	\mathbf{q}_3	q_2	1
q_7	q_6	\mathbf{q}_3	q ₇	0
q_8	\mathbf{q}_1	q_4	q_5	1
q ₉	q ₉	q ₉	q ₉	0

					,	,	1,000	III Zadata	na)			
_	Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno
- 1												J. Capito
- 1		1			l	1	i	ł		l	1	1
- 1			1	ł	1	l	l		1	l	1	
			l		1	ł					l	1

ZEMRIS

14.1.2002.

Treća kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Konstruirati Turingov stroj u osnovnom obliku koji provjerava da li je neprazni ulazni niz oblika 1²", n≥0 (broj jedinica mora biti potencija broja 2). S obje strane niza postoji praznina, a glava je početno na prvom znaku 1 gledano s lijeva.
- 2. Definirati deterministički potisni automat.
- 3. Izbaciti jedinične i ε-produkcije iz zadane gramatike.

- 4. Opisati postupak simulacije Turingovog stroja s višestrukim trakama pomoću Turingovog stroja s višestrukim tragovima.
- 5. Minimizirati zadani DKA uz uporabu metode podjele skupa stanja (2. metoda).

	a	b	С	d	
\mathbf{q}_0	\mathbf{q}_0	q ₉	q_8	q_1	1
q_1	q_1	q_0	q_7	q_8	0
q_2	q_2	q_5	\mathbf{q}_6	q_1	1
q_3	q_3	q ₇	q_8	q_1	1
q_4	q_4	q_6	q_3	q ₇	0
\mathbf{q}_{5}	q_5	q4	q_2	q_0	1
q_6	q_6	q_3	q_7	q.	0
q_7	q ₇	q4	q_1	q_0	0
q ₈	q ₈	q_1	\mathbf{q}_0	q7	0
q ₉	q ₉	q_4	q_6	q_0	0

- 6. Konstruirati kontekstno ovisnu gramatiku koja generira nizove oblika 1^{2^n} , $n \ge 0$.
- 7. Dokazati da su rekurzivno prebrojivi jezici zatvoreni s obzirom na uniju.
- 8. Konstruirati Turingov stroj s dvostruko beskonačnom trakom koji invertira binarni broj zapisan na traci (invertirani broj može započinjati nulama). Na početku rada Turingovog stroja nije poznat položaj glave u odnosu na niz (potrebno je pronaći položaj niza na traci). Na koji način je moguće ubrzati rad konstruiranog Turingovog stroja bez promjene skupa znakova trake?
- 9. Jezik L_1 svodi se u logaritamskom prostoru na jezik L_2 . Dokazati da ako je L_2 u klasi P onda je i L_1 u klasi P.
- 10. Konstruirati gramatiku koja generira nizove oblika $\mathbf{a}^{\mathbf{i}}\mathbf{b}^{\mathbf{j}}\mathbf{c}^{\mathbf{i}}\mathbf{d}^{\mathbf{j}}\mathbf{e}^{\mathbf{i}}$ pri čemu su $i, j \ge 1$.

(zaokružiti brojeve riješavanih zadataka)

Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno
											-

ZEMRIS 26.11.2001.

Druga kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

l Iz zadanog potisnog automata M_1 koji nizove prihvaća praznim stogom, konstruirati potisni automat M_2 koji nizove prihvaća prihvatljivim stanjem.

$$\begin{array}{lll} PA \ M_1 \!\!=\!\! (\{q_0\}, \{a,b,c,d,e\}, \{X,Y,Z\}, \, q_0, \, \delta, \, Z, \, \varnothing \,) \\ \delta(q_0,a,Z) \!\!=\!\! (q_0,Z) & \delta(q_0,a,X) \!\!=\!\! (q_0,X) & \delta(q_0,a,Y) \!\!=\!\! (q_0,Y) \\ \delta(q_0,b,Z) \!\!=\!\! (q_0,XZ) & \delta(q_0,b,X) \!\!=\!\! (q_0,XX) & \delta(q_0,b,Y) \!\!=\!\! (q_0,XY) \\ \delta(q_0,d,Z) \!\!=\!\! (q_0,YZ) & \delta(q_0,c,X) \!\!=\!\! (q_0,\epsilon) & \delta(q_0,d,Y) \!\!=\!\! (q_0,YY) \\ \delta(q_0,\epsilon,Z) \!\!=\!\! (q_0,\epsilon) & \delta(q_0,d,X) \!\!=\!\! (q_0,YX) & \delta(q_0,e,Y) \!\!=\!\! (q_0,\epsilon) \end{array}$$

- 2. Navesti algoritam za izbacivanje jediničnih produkcija iz kontekstno neovisne gramatike.
- 3. Iz potisnog automata M₁ zadanog u prvom zadatku općenitim postupkom konstruirati kontekstno neovisnu gramatiku.
- 4. Navesti postupak konstrukcije NKA iz pojednostavljene gramatike.
- 5. Konstruirati gramatiku koja generira nizove iz jezika L= $\{a^ib^jc^kd^je^l \mid i,j,k,l > 0\}$.
- 6. Izbaciti sve beskorisne znakove iz slijedeće gramatike.

$S\rightarrow cAbD$	B→baEdA	$C \rightarrow dcBCb$	D→dbdD
S→aCbB	$B\rightarrow bB$	C→bEcA	D→dcA
$A \rightarrow dBCD$	В→ε	$C\rightarrow aCBcd$	D→dAbc
$A \rightarrow cA$		$C\rightarrow \epsilon$	$E\rightarrow bcCdE$
			E→dba

- 7. Navesti postupak konstrukcije potisnog automata koji prihvaća praznim stogom iz potisnog automata koji prihvaća prihvatljivim stanjem.
- 8. Iz Mealyevog automata zadanog funkcijom prijelaza δ i izlaznom funkcijom λ konstruirati Mooreov automat.

9.	Dokazati da su kontekstno neovisni jezici zatvoreni s
	obzirom na Kleenov operator.

δ	0	1	λ	0	1
q_0	q_0	q_3	q_0	0	0
q_0 q_1 q_2 q_3	$\begin{array}{c} q_0 \\ q_1 \\ q_2 \\ q_2 \end{array}$	q_3	q_1	0	1
\mathbf{q}_{2}	q_2	q_1	q_2	1	1
q_3	q_2	q_0	q_3	1	0

10. Pretvoriti zadani ε-NKA u DKA.

	a	b	С	ε	
q_0	-	q_3	q ₄	q_1,q_2	0
q_1	q_4	q_3	-	-	0
q_2	q ₄	-	q ₄	-	0
q_3	q_{3}, q_{5}	q_3	q_3	-	0
q_4	q ₄	q_4	q ₄	-	0
q_5	q_5	q_3	q_3	q_3	1

Ime i prezime	1	2	3	4	5	6	7	8	9	10	Ukupno

ZEMRIS 29.10.2001.

Prva kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Jezik L čine heksadekadski brojevi dijeljivi s 512₍₁₀₎. Pretpostavlja se da je 0 dijeljiva s 512₍₁₀₎ pa L sadrži broj 0. Jezik L ne sadrži prazan niz i brojeve koji počinju s 0 (npr. 0A3₍₁₆₎). Brojevi su zapisani tako da je znamenka najveće težine lijevo. Konstruirati miminalni DKA koji prihvaća jezik L. Napomena: 512=2·256=2·16².
- 2. Navesti definiciju nedohvatljivog stanja i napisati algoritam za pronalaženje nedohvatljivih stanja.
- 3. Konstruirati minimalni DKA koji prihvaća jezik $L=L_1\cup L_2$. Jezici L_1 i L_2 sastoje se od nizova opisanih regularnim izrazima $r_1=b(a+b+c)^*a$ i $r_2=c(a+b)^*b(a+c)^*$.
- 4. Dokazati ekvivalenciju ε-NKA i DKA koji je dobiven pretvorbom ε-NKA→NKA→DKA.
- 5. Minimizirati zadani DKA uz uporabu metode pronalaženja neekvivalentnih stanja (3. metoda).

	a	b	С	d	
q_0	q_0	q_3	q_6	q ₈	1
q_1	q_1	q_4	q_6	q_3	1
q_2	q_4	q ₅	q_0	q_2	1
q_3	q_6	q_8	q 7	q_3	0
q_4	q_6	q ₇	q_3	q_1	0
q_5	q_6	q_8	q_0	q_8	0
q_6	q_0	q_5	q_6	q_8	0
q_7	q ₇	q_5	q_6	q_3	1
q_8	q_6	q_5	q_0	q_3	0

- 6. Jezik L nad abecedom {a,b} sastoji se od nizova u kojima je broj znakova a i b jednak, odnosno n_a=n_b=n. Jezik L sadrži i prazan niz. Minimalni DKA prihvaća sve nizove iz jezika L za koje je n≤m. Izraziti broj stanja minimalnog DKA kao funkciju od m.
- 7. Dokazati da su regularni jezici zatvoreni s obzirom na operaciju komplementiranja.
- 8. Zadani ε-NKA pretvoriti u minimalni DKA.

	a	b	С	3	
q_0	q_1,q_3	q_2	q_0,q_1	q_2	0
q_1	q_1	q_2	q_3	q_3	0
q_2	q_2	q_3	q_1	-	1
q_3	q_3	q_1	q_1	q_1	0

- 9. Opisati postupak ispitivanja nepraznosti regularnih jezika.
- 10. Konstruirati Mealyev automat koji učitava binarni broj i ispisuje rezultat cjelobrojnog dijeljenja učitanog broja s 2₍₁₀₎. Binarni broj zapisan je tako da je znamenka najveće težine lijevo.

III kontrolna zadaća

27. siječanj 2000.

- **1.** Zadana su dva konačna automata: M=({S0},{a, b},{d(S0,a)=S0,d(S0,b)=S0},S0,{}) i N=({S0,S1},{a,b},{d(S0,a)=S1,d(S0,b)=S1,d(S1,a)=S1,d(S1,b)=S1},S0,{S0}). Koje ulazne nizove prihvaćaju dani konačni automati? Opišite odnos između jezika koje ti automati prihvaćaju.
- **2.** Konstruirajte ϵ -NKA iz zadanog regularnog izraza. Opišite postupak konstrukcije. L= ab + b (b⁺ + a^{*})*

3. Rekonstruirati gramatiku iz koje je nastao slijedeći potisni automat:

	()	+	*	konst.	1
<e></e>	1	2	2	2	3	2
<t></t>	2	2	4	5	2	5
<p></p>	2	6	2	4	2	6
)	2	7	2	2	2	2
∇	2	2	2	2	2	8

- 1: stavi <T>)<E>; pomakni
- 2: odbaci
- 3: stavi <T>; pomakni
- 4: stavi <E>; pomakni
- 5: stavi <P>; zadrži
- 6: izvuci; zadrži
- 7: izvuci; pomakni
- 8: prihvati
- **4.** Opisati postupak konstrukcije linearno ograničenog automata za jezik zadan konteksnoovisnom gramatikom.
- 5. Opisati utjecaj broja traka Turingovog stroja na prostornu složenost.
- **6.** Dokazati da ako se jezik L' polinomski svodi na jezik L tada je jezik L' u klasi P ako je jezik L u klasi P.
- 7. Opišite Chomskijevu hijerarhiju jezika, gramatika i automata.
- 8. Na ulaznoj traci Turingovog stroja zapisan je niz "\$1". Konstruirati TS koji će generirati redoslijedom sve potencije broja dva, a vrijednost broja predstavljena je na ulaznoj traci brojem jedinica. Brojevi su međusobno odijeljeni graničnikom "\$". (Primjer: nakon određenog vremena stanje na ulaznoj traci je: "\$1\$11\$111")
- **9.** Konstruirati gramatiku koja generira nizove oblika ww, gdje je $w = (0+1)^*$. Odredite tip izgrađene gramatike prema Chomskijevoj razredbi. Prikažite primjenu produkcija gramatike prilikom generiranja niza 0101.
- **10.** Konstruirati Turingov stroj koji oduzima dva broja zapisana na traci binarnim znamenkama (0 i 1). Brojevi su zapisani tako da je najznačajnija znamenka lijevo, razdvojeni su nekim graničnikom, a rezultat se zapisuje desno od znaka "=" koji je već zapisan na traci desno odmah iza brojeva. Od prvog broja (lijevog) se oduzima drugi (desni) i prvi je sigurno veći.

Treća kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Konstruirati Turingov stroj u osnovnom obliku koji provjerava da li je u ulaznom nizu isti broj znakova a, b i c. Na traci se nalazi samo ulazni niz i praznine, nakon ispitivanja stanje na traci mora ostati nepromijenjeno.
- 2. Dokazati da su kontekstno-ovisni jezici pravi podskup rekurzivnih jezika.
- 3. Izbaciti sve jedinične i ε-produkcije iz slijedeće gramatike.

S→aAbBcC	B→bcB
S→cdDa	B→ε
S→aAa	$C \rightarrow cC$
A→B	$C \rightarrow D$
Α→ε	$D\rightarrow cdD$
	D→ε

- 4. Dokazati da je unija dva rekurzivna jezika također rekurzivni jezik.
- 5. Pomoću regularnog izraza opisati sve nizove, uključujući i prazan niz, koji se sastoje od znakova 0, 1 i 2 te u kojima nema uzastopnog ponavljanja znakova 0 i 1.
- 6. Konstruirati Turingov stroj koji uvećava binarni broj zapisan na ulaznoj traci za 101₍₂₎. Na ulaznoj traci se nalazi samo binarni broj, ako je upisan. Glava Turingovog stroja se na početku nalazi na praznini neposredno s lijeve strane broja. Ukoliko na prvoj slijedećoj poziciji s desna nema broja, Turingov stroj se treba ponašati kao da je ulazni broj bio 0.
- 7. Opisati postupak ubrzanja Turingovog stroja za konstantni faktor.
- 8. Konstruirati NKA za slijedeću gramatiku.

$$S \rightarrow Bca$$
 $A \rightarrow Aa$ $B \rightarrow Bcb$ $S \rightarrow Aba$ $A \rightarrow Bb$ $B \rightarrow Bb$ $A \rightarrow \epsilon$ $B \rightarrow \epsilon$

- -9. Dokazati da ako se jezik L' polinomski-svodi na jezik L'ada je jezik L' u klasi P ako je jezik L u klasi P.
- 10. Konstruirati gramatiku koja generira nizove oblika $a^i b^j c^k d^i e^j$, i, j, $k \ge 1$.

Druga kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori 1

- 1. Navesti i objasniti algoritam za izbacivanje ε-produkcija iz kontekstno-neovisne gramatike.
- 2. Iz slijedećeg potisnog automata M_1 koji prihvaća nizove prihvatljivim stanjem, konstruirati potisni automat M_2 koji će nizove prihvaćati praznim stogom.

```
\begin{array}{lll} PA\;M_1 \!\!=\!\! (\;\{q_0,q_1\},\;\{0,1\},\;\{N,J,K\},\;q_0,\;\delta,\;K,\;\{q_1\}\;) \\ \delta(q_0,0,K) \!\!=\!\! (q_0,NK) & \delta(q_0,1,N) \!\!=\!\! (q_0,\epsilon) \\ \delta(q_0,1,K) \!\!=\!\! (q_0,JK) & \delta(q_0,2,N) \!\!=\!\! \{(q_0,N),\!(q_1,\epsilon)\} \\ \delta(q_0,2,K) \!\!=\!\! \{(q_0,K),\!(q_1,\epsilon)\} & \delta(q_0,0,J) \!\!=\!\! (q_0,\epsilon) \\ \delta(q_0,\epsilon,K) \!\!=\!\! (q_1,\epsilon) & \delta(q_0,1,J) \!\!=\!\! (q_0,JJ) \\ \delta(q_0,0,N) \!\!=\!\! (q_0,NN) & \delta(q_0,2,J) \!\!=\!\! \{(q_0,J),\!(q_1,\epsilon)\} \end{array}
```

- 3. Detaljno navesti algoritam za konstrukciju NKA iz lijevo linearne gramatike.
- 4. Konstruirati gramatiku koja će generirati nizove znakova a, b, c, d pri čemu broj znakova a mora biti jednak broju znakova b. Gramatika ne smije generirati prazan niz.
- 5. Izbaciti sve beskorisne znakove iz slijedeće gramatike.

```
\begin{array}{lll} S \!\!\rightarrow\!\! bAbE & C \!\!\rightarrow\!\! eA \\ S \!\!\rightarrow\!\! aABc & C \!\!\rightarrow\!\! \epsilon \\ A \!\!\rightarrow\!\! beA & D \!\!\rightarrow\!\! cDAaB \\ A \!\!\rightarrow\!\! \epsilon & D \!\!\rightarrow\!\! bDaE \\ B \!\!\rightarrow\!\! dC & E \!\!\rightarrow\!\! ed \\ B \!\!\rightarrow\!\! aD & E \!\!\!\rightarrow\!\! ac \end{array}
```

- 6. Navesti definiciju determinističkog potisnog automata, i obrazložiti pojedine uvjete.
- 7. Konstruirati potisni automat koji će provjeravati da li su u matematičkom izrazu pravilno upotrijebljene zagrade. Mogu se pojaviti sve tri vrste zagrada, odnosno: (), [] i {}. Sve zagrade moraju biti pravilno ugniježđene (npr. nije dozvoljeno: {[}]). Provesti odgovarajuću transliteraciju preostalih matematičkih znakova.
- 8. Ispitati ekvivalentnost slijedećih regularnih izraza.

a)
$$a^*(a^++\epsilon)ab(b^++\epsilon)^*=a^+b^+$$

b) $a^*(a^*+b^*)^*b^*=a(a+b)^*b$

9. Minimizirati slijedeći DKA uz uporabu metode za pronalaženje neekvivalentnih stanja (3. algoritam).

	a	b	c	1
q_0	q_5	q_6	q ₇	1
q_1	q!	q ₈	q_1	0
q_2	q ₇	q_6	q ₄	1
q_3	q_3	q_6	qı	0
q_4	q_2	q_1	q ₅	0
q_5	q_5	q_6	q_1	1
q_6	q_6	q_3	q_1	0
q ₇	q_7	q ₈	q 7	0
q_8	q ₈	q ₈	q_1	0

10. Dokazati da konkatenacija dva kontekstno-neovisna jezika daje kontekstno-neovisan jezik.

Prva kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori i

- 1. Opisati postupak konstrukcije Mealyevog iz Mooreovog automata.
- 2. Konstruirati DKA koji će provjeravati da li je heksadekadski zapisan broj djeljiv sa 5. Ulaznu abecedu čine znamenke 0-9 i slova A-F.
- 3. Opisati algoritam kojim se provjerava da li je regularni jezik prazan.
- 4. Konstruirati Mealyev konačni automat koji će iz izvornog programa u ANSI C-u izbacivati sve komentare. ANSI C podržava dvije vrste komentara komentar ograđen znakovima /* i */ te komentar koji počinje znakovima //, a završava na kraju tekućeg reda. Automat ne treba (i ne može) prepoznavati ugniježđene komentare. S obzirom na složenost znakova koji označavaju početke i kraj komentara, provesti transliteraciju.
- 5. Minimizirati slijedeći DKA metodom podjele stanja (2. algoritam).

	a	b	c	
q_0	q_0	q 7	q_2	1
q_1	q_1	q_6	q_0	0
q_2	q_2	q_3	q_1	0
q_3	q_3	q_1	q_2	1
q_4	q_2	q_2	q_1	0
q_5	q_4	q_0	q_1	l
q_6	q_6	q_3	q_1	0
q ₇	q_1	q_2	q_0	0

- 6. Konstruirati DKA koji će prepoznavati jezik $L=L_1-L_2$. Jezici L_1 i L_2 su zadani regularita izrazima $L_1=(a+c)*b(b+c)*$ i $L_2=c(a+b)*c$.
- 7. Navesti i objasniti načine programskog ostvarenja funkcije prijelaza.
- 8. Konstruirati DKA iz slijedećeg ε-NKA.

	a	b	С	ε	
q_0	q_1	q_2	q_1	q_2	0
q_1	q_1, q_2	q_1	q_3	q_2	0
q_2	q_2	q_1	q_3	-	0
q_3	q_2	-	-	-	1

- 9. Ulaznu abecedu DKA čine znakovi {a,b,c}. Konstruirati DKA koji će prihvaćati sve nizove u kojima je jednak broj pojavljivanja znakova ulazne abecede. Broj pojavljivanja pojedinog znaka, u svakom prefiksu niza koji je u jeziku, smije biti najviše za jedan veći od broja pojavljivanja svakog od preostala dva znaka. (Ako sa na, na i nc označimo broj pojavljivanja pojedinog znaka u prefiksu, tada moraju vrijediti slijedeće nejednakosti: $|n_a n_b| <= 1$, $|n_a n_c| <= 1$ i $|n_b n_c| <= 1$) Npr. niz abcbca je u jeziku, ali niz abbcca nije u jeziku.
- 10. Dokazati svojstvo zatvorenosti regularnog jezika s obzirom na supstituciju.

Prva kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori I

- 1. Metodom podjele stanja (Algoritam 2) minimizirati konačni automat zadan tablicom. Početno stanje je stanje "0".
- 2. Dokažite ekvivalentnost nedeterminističkog konačnog automata (NKA) $M=(Q, \Sigma, \delta, q_0, F)$ izgrađenog iz nedeterminističkog konačnog automata s ε -prijelazima (ε -NKA) $M'=(Q', \Sigma', \delta', q_0', F')$.
- 3. Konstruirati Mooreov KA koji će kao izlaz dati ostatak dijeljenja cijelog broja sa tri. Broj je zadan oktalno te se učitava počevši od znamenke najveće težine.

	0	1	2	3	
0	0	5	1	3	1
1	1	3	8	5	0
2	2	7	0	5	0
3	3	8	5	1	0
4	4	2	7	8	0
5	5	2	3	8	0
6	6	2	0	3	0
7	7	0	5	2	0
8	8	4	1	3	1

- 4. Definirati ekvivalentnost stanja determinističkih konačnih automata. Objasniti postupak minimizacije determinističkog konačnog automata pronalaženjem neekvivalentnih stanja (Algoritam 3).
- 5. Nad abecedom Σ={ 0,1,2 } definiran je jezik koji sadrži sve nizove ovih znakova u kojima nema dva uzastopna ponavljanja znakova '0' ili '1'. Opisati jezik regularnim izrazom.
- 6. Opisati algoritam za utvrđivanje beskonačnosti jezika L(M) kojega prihvaća deterministički konačni automat M.
- 7. Konstruirati i nacrtati DKA koji prihvaća zapise brojeva opisanih regularnim izrazom (znak '|' označava operator 'ILI'):

$$(\ +\ |\ -\ |\ \epsilon\)\ brojka^{^{+}}\left(\epsilon\ |\ .\ brojka^{^{+}}\right)\left(\ \epsilon\ |\ (\ E\ (\ +\ |\ -\ |\ \epsilon\)\ brojka^{^{+}}\right)\right)$$

- 8. Nad abecedom $\Sigma = \{a, b, c\}$ definirani su jezici L_1 i L_2 opisani regularnim izrazima: $l_1 = a^*b^*c^*$ i $l_2 = a^*(b+c)^*$. Konstruirati DKA koji će prihvaćati jezik $L = L_2 L_1$.
- 9. Dokažite svojstvo zatvorenosti regularnih izraza s obzirom na presjek.
- 10.Zadani ε-NKA pretvoriti u ekvivalentni minimalni DKA.

Treća kontrolna zadaća iz predmeta Automati, formalni jezici i jezični procesori I

1. Konstruirati NKA na temelju zadane lijevo linearne gramatike:

$$\langle A \rangle \rightarrow \langle A \rangle_a \mid \langle B \rangle_b \mid c$$

 $\langle B \rangle \rightarrow \langle B \rangle_b \mid \langle C \rangle_c \mid d$

 $\langle C \rangle \rightarrow \langle C \rangle_c \mid e$

- 2. Opisati konstrukciju TS M_2 ekvivalentnog TS M_1 uz sažimanje prostora na TS M_2 za konstantni faktor c.
- 3. Konstruirati minimalni DKA koji prihvaća jezik $L=L_1\cap L_2^{C}$. Jezici su zadani regularnim izrazima $l_1=(a+b)*(b+c)*(a+c)*$ i $l_2=(a+b)*(a+c)*$.
- 4. Opišite utjecaj broja traka Turingovog stroja na vremensku složenost izračunavanja.
- 5. Zadani DKA minimizirati primjenom metode pronalaženja ekvivalentnih stanja (Algoritam 1).

			1
0	4	6	0
1	3	7	0
2	7	0	0
3	5	4	0
4	3	1	0
5	3	3	1
6	7	2	0
7	3	4	0

abl

6. Za zadanu kontekstno neovisnu gramatiku konstruirati ekvivalentni potisni automat:

$$\langle S \rangle \rightarrow 1 \langle B \rangle 0 \langle S \rangle | \epsilon$$

 $\langle B \rangle \rightarrow 1 \langle B \rangle 1 | 01$

- 7. Konstruirati kontekstno neovisnu gramatiku koja generira sve nizove oblika $w = \{a^i b^j c^k d^j e^i \mid i, j, k \ge 0 \}$.
- 8. Konstruirati TS u osnovnom obliku koji će prihvaćati nizove oblika ww gdje su w svi nizovi znakova 0 i 1 (naputak: TS je nedeterministički).
- 9. Dokazati da je jezik L rekurzivan ako su jezici L i njegov komplement L^C oba rekurzivno prebrojivi.
- 10. Konstruirati gramatiku koja generira sve nizove oblika $w = \{ 0^n 1^n 2^n \mid n \ge 1 \}$.

2. kontrolna zadaća iz predmeta

Automati, formalni jezici i jezični procesori I

- 1. Konstruirati minimalni determinističi konačni automat koji prihvaća jezik oblika: a+b=c, gdje su a,b∈{0,1,2} i c∈{0,1,2,3,4} takvi da je zadovoljena matematička jednakost (npr. 1+1=2, 2+1=3, ...). Izraziti broj stanja minimalnog determinističkog konačnog automata u slučaju da su a i b iz skupa {0,1, ...,n} uz n<10 kao funkciju od n.
- 2. Minimizirati tablicom zadani DKA koristeći metodu pronalaženja neekvivalentnih stanja (algoritam 3).
- 3. Opisati postupak konstrukcije NKA iz desno linearne gramatike.
- 4. Opisati postupak pretvorbe konteksno neovisne gramatike u Chomskyev normalni oblik.
- 5. Dokazati zatvorenost konteksno neovisnih jezika s obzirom na supstituciju.

	а	b	С	
q_0	q_1	94	q ₄	0
q ₁	qs	q_2	q ₄	0
q_2	96	q_6	q_3	0
q_3	q_3	q_3	q_3	1
q ₄	q 4	9 4	q 4	0
q ₅	qı	q_6	q ₄	0
q_6	q_2	q_2	q_3	0

- 6. Konstruirati kontekstno neovisnu gramatiku nad skupom znakova $\{0,1,2\}$ koja generira nizove oblika w, s time da u w nema uzastopnog ponavljanja znaka "1" niti znaka "2" te da vrijedi $w=w^R$ (tj. w se čita jednako i sa lijeve i sa desne strane).
- 7. Iz zadane gramatike izbaciti sve jedinične i s produkcije:

$$S \rightarrow AxB \mid zD$$

$$B \to x \mid \epsilon$$

$$A \rightarrow yB \mid zA \mid B$$

$$D \rightarrow A \mid y$$

- 8. Konstruirati PA koji prihvaća sve nizove nad abecedom {a,b} u kojima ima dvostruko više znakova "a" nego znakova "b".
- 9. Za zadani PA $M=(\{q_0,q_1\}, \{0,1\}, \{K,X\}, \delta, q_0, K, \emptyset)$ konstruirati kontekstno neovisnu gramatiku:

$$\begin{array}{ll} \delta(q_0,\ 1,\ K) = \{(q_0,\ XK)\} & \delta(q_0,\ \epsilon,\ K) = \{(q_0,\ \epsilon)\} \\ \delta(q_0,\ 1,\ X) = \{(q_0,\ XX)\} & \delta(q_1,\ 1,\ X) = \{(q_1,\ \epsilon)\} \\ \delta(q_0,\ 0,\ X) = \{(q_1,\ X)\} & \delta(q_1,\ 0,\ K) = \{(q_0,\ K)\} \end{array}$$

10. Zadane su gramatike G_1 i G_2 . Konstruirati gramatiku G koja generira jezik $L(G) = L(G_1) \cap L(G_2)$.

$$G_1: S_1 \rightarrow 0 S_1 | 1 | \epsilon$$

$$G_2: S_2 \rightarrow 01S_2 | 10S_2 | 00S_2 | 11S_2 | \epsilon$$