宝石鉴定及仪器

- 1. 涉及内容
 - a. 区别天然品的种类
 - b. 合成品的识别
 - c. 人工优化处理的鉴别
- 2. 鉴定方法
 - a. 肉眼观察鉴定
 - b. 物理性质测试鉴定
 - c. 以晶体光学性质为依据的偏光显微镜鉴定
 - d. 晶体结构分析
 - e. 化学成分分析
- 3. 特殊性
 - a. 检测需要无损
 - b. 为商业服务,需要简单、快速、便捷、经济
 - c. 判别是天然/人工/人工优化处理

肉眼检查

- 1. 常用工具: 放大镜
- 2. 观察内容
 - a. 表面损伤(刻痕、凿痕、表面瑕疵)
 - b. 切磨质量(小面大小、角度的准确性及对称性)、抛光质量
 - c. 内部裂隙、解理及双晶纹
 - d. 包裹体(指固相、气相及液相包裹体)
 - e. 颜色分布特征、均匀程度(色带、色块)
 - f. 某些合成宝石的生长线和气泡
 - g. 拼合宝石的接合面、光泽和气泡层
- 3. 宝石显微镜观察
 - 三个光源: 底光源、顶光源、侧光源

宝石偏光镜

- 1. 作用: 总的来说,就是宝石的偏振特性
 - a. 观察透明宝石的消光情况,判断它们是均质体、非均质体或多晶质集合体
 - 单晶体: 在整体范围内原子都是规则排列的;
 - 多晶体:由许多小单晶体(晶粒)构成,在各晶粒范围内,原子是有序排列的。整体各向同性、无规则的外形。
 - b. 鉴定均质宝石的异常双折射现象
 - c. 检查宝石的多色性
 - d. 与石英楔子配合可测定宝石的光性符号

2. 操作方法&鉴定方法

- a. 转动上偏光片,使其与下偏光振动方向正交。此时视域最暗,处于消光位置。
 - i. 将所测宝石放置在下偏光片之上的载物台上,转动宝石 360°, 根据消光情况,判断宝石的有关性质:
 - ii. 如果宝石全黑,没有明暗变化,则属均质体。即为非晶质或等轴 晶系晶体。如钻石、石榴石、尖晶石等
 - iii. 如果宝石有四明四暗变化,则表明为非均质体。如红宝石、蓝宝石、祖母绿、水晶、碧玺、托帕石等。
 - iv. 如果宝石始终是明亮的,则可能为多晶质集合体。由于组成集合体的许多微小晶体的方向各不相同,使得宝石在各种位置都不能消光。如玛瑙、翡翠等。
- b. 用宝石偏光镜可以测定均质宝石异常双折射现象

钻石、石榴石、合成尖晶石、玻璃及琥珀等可具异常双折射现象,这些宝石在正交偏光下呈不规则的明亮变化。

在此情况下, 先将宝石在正交偏光镜下转动至最亮处, 然后转动上偏光使 其与下偏光振动方向平行:

若为均质体宝石,则宝石的亮度变强。若为非均质体宝石,则亮度基本保持不变。

- c. 测定有色非均质宝石的多色性。转动上偏光使其与下偏光振动方向平行。 转动宝石即可。
- d. 测量轴性。
 - i. 在上偏光与下偏光处于正交的位置上使宝石的光轴方向直立;
 - ii. 加上透镜聚光。即可测定非均质宝石的轴性。

二色镜

1. 用一块无色透明的冰洲石菱面体,因为冰洲石的双折射率高,它将穿过宝石的两条 平面偏振光分离开来,并将两束偏振光并列展示于窗口

- 2. 若见有多色性,该宝石必定是非均质体(一轴晶或二轴晶);
- 3. 若一颗宝石只显示两种颜色(或色调),它可能为一轴晶,也可能为二轴晶
- 4. 若一颗宝石可显示三种颜色,它一定是二轴晶。
- 5. 均质体宝石(等轴晶系及非晶质体)无多色性。
- 6. 同时, 无色的非均质体宝石也不具多色性。

分光镜

- 1. 根据宝石对可见光谱的选择性吸收现象,研究宝石颜色的组成及致色因子,进而达到鉴别宝石目的的一种仪器
- 2. 观察方式

3. 作用

- a. 鉴定具有特征吸收光谱的宝石
- b. 区分天然品与仿制品
- c. 区分天然品与人工优化处理品

折射仪

1. 根据所测得的折射率值准确鉴定宝石品种

2. 工作原理: 全反射

将宝石置于折射仪的测台上,宝石的小面通过折射油与棱镜紧密接触,目镜中所观察到的明暗界线即是相应的折射率值。在转动宝石360°。

3. 结果

- a. 有一个阴影边界。即宝石只有一个折射率值,说明所测宝石为均质体.
- b. 出现二个阴影边界。说明所测宝石为非均质体
 - i. 一条阴影边界移动,此时宝石为一轴晶: 若高折射率的阴影边界移动,则为正光性 若低折射率的阴影边界移动,则为负光性
 - ii. 二条阴影边界均移动,此时宝石为二轴晶: 若高折射率的阴影边界移动幅度大,则为正光性 若低折射率的阴影边界移动幅度大,则为负光性 最高折射率与最低折射率的差值,即为该宝石的双折射率值.
- c. 仅有折射油的阴影边界。说明宝石的折射率值超出折射仪的量程。

4. 作用

测折射率、双折射率, 判断轴性、光性正负

查尔斯滤色镜

1. 查尔斯(Chelsea)滤色镜又称滤色器. 滤色镜仅使红色光和黄绿色光通过

2. 曾是专门用以鉴别祖母绿的一种简易设备,现在查尔斯镜的用途已经扩大

	宝石名称(及产地)	查尔斯滤色镜下的颜色
绿色宝石	哥伦比亚和前苏联的祖母绿	红至粉红色 (与祖母绿的颜色浓度有关)
	印度、尼日利亚、巴基斯坦、南非、 赞比亚和津巴布韦的祖母绿	绿色
	合成祖母绿	亮红色(红色较天然祖母绿明亮)
	绿色翡翠	绿色
	人工染色翡翠	粉红色,有些为绿色
	人工染色玉髓、石英岩	粉红色,有些为绿色
	绿玉髓	绿色
	绿色钙铁榴石	粉红色
	绿玻璃	绿色
蓝色宝石	蓝宝石	绿色、灰绿色或黄色
	合成蓝色尖晶石	亮红色(钴致色), 黄橙色(铁)
	蓝色玻璃	绿色、灰绿色(铁), 亮红色(钴)

3. 翡翠在滤色镜下变绿色部分的一定是染色的

热导仪

- 1. 根据钻石的良好传热性而设计的,用来鉴别钻石真假
- 2. 操作方法
 - a. 打开热导仪的电源,对金属针状测头进行约 20 秒钟的加热
 - b. 将热针触及被测"钻石"样品的表面,根据热导仪的信号即可确定出其真伪
 - c. 如果红色二极管点亮, 并伴随发出蜂鸣声说明被测者为真钻石
 - d. 如果红色二极管未点亮,且仪器不发出蜂鸣声,说明被测者为假钻石或仿 冒品
- 3. 合成碳化硅(莫桑石)在热导仪上有着与钻石一样的反应。需要使用另一种仪器字再次甄别,其原理是钻石具有透过长波紫外线的能力;而合成碳化硅却吸收长波紫外线

比重测试

- 1. 适合于未镶嵌的宝石、玉石
- 2. 静水称重法 计算公式

3. 重液法

利用重液法可以快速测试宝石比重的近似值。其方法是把宝石放在配制好的己知比重的重液中:

- a. 当宝石的比重小于重液的比重时,宝石在重液中上浮;
- b. 当宝石的比重大于重液的比重时,宝石在重液中下沉;
- c. 当宝石的比重等于重液的比重时,宝石悬浮于重液中。
- 4. 最常见的重液是二溴二烯(2.18)、三溴甲烷(2.89)、二碘甲烷 (3.33) 用上述三种重液与二甲苯(0.87)按各种比例混合可配制出密度值为3.33——0.87的 一系列重液

紫外灯

- 1. 紫外线的波长范围大约在 100-380nm 之间
- 2. 长波紫外线(365nm)、短被紫外线(253.6nm)
- 3. 作用
- a. 区别天然宝石及其仿制品
- b. 区别合成品与天然品
- c. 人工优化处理的鉴别