Université AUBE NOUVELLE

Niveau : L_1 ST

Durée : 2h, par M. PARE

Année Académique : 2021-2022 Date : 20/01/2022

Devoir d'algèbre (Documents et calculatrice non autorisés)

Exercice 1 (12 pts)

1) Donner la définition d'une assertion.

2) En quoi consiste le raisonnement par contraposé.

3) Soit le tableau suivant :

Г		non(P)	$Q \Rightarrow P$	non(P)etQ
F	W.	1010(1)	<u></u>	V
F	V	V		Ė
F	F,	V		C
V	F	F	V	-
V	V	F	V	-

Compléter le tableau ci-dessus par la table de vérité de : non(P); $(Q\Rightarrow P)$; (non(P) et Q).

4) Dans \mathbb{R} , on considère la relation \mathcal{R} définie par :

$$x\mathcal{R}y \Longleftrightarrow x^2 - y^2 = x - y.$$

- a) Définir une relation d'équivalence.
- b) Montrer que \mathcal{R} est une relation d'équivalence.
- c) Déterminer la classe d'équivalence de 1 notée C_1 .
- 5) Après avoir écrit à l'aide des quantificateurs donner la négation des assertions suivantes puis dire si ces assertions quantifiées sont vraies ou fausses.
 - a) Pour tout nombre réel x, il existe un nombre réel y dont leur somme dépasse zéro.
 - b) Il existe un nombre réel x dont pour tout nombre réel y, leur somme donne 0.

Exercice 2(08 pts)

- 1) Soit $F = \{(x, y, z) \in \mathbb{R}^3, x + 3y z = 0\}.$
 - a) Donner quatre éléments de F.
 - b) Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
 - c) Déterminer une base de F.

2) Soit A=
$$\begin{pmatrix} -1 & -1 & 2 \\ 1 & 1 & -1 \\ 2 & -1 & 0 \end{pmatrix}$$
; B= $\begin{pmatrix} 3 & -2 & 0 \\ -1 & 5 & 1 \\ 2 & 1 & 2 \end{pmatrix}$.

- a) Déterminer la transposée de la matrice A notée tA . La matrice A est-elle symétrique ?
- b) Calculer B^2 , AB et A-2B

Corrige du devoir d'algèbre ST D

Exercice 1

1) line assertion est une affirmation qui est soit thaie on Jasusse, mais pas les deux à la jois. (1)

2) Le rui sonnement par contrapose est basé sur l'équivalence 1 L'assertion (P=) q) est équivalente à (non(q)=) non(p)). Donc pour montrer que P=) q, on montre que (non(q)=) non(p) et pour contrapé en cléduit que (P=) q). (1)

P 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9=>P F V V	non(p) et Q.	2
---	---------------------	--------------	---

4) Dans IR On definit la relation R par $\forall (x,y) \in \mathbb{R}^2$, $\forall Ry \in \mathbb{R}$ $x^2y^2 = x-y$

a) Une relation d'équivalence est une relation à la poir reflexive, symétrique et transitive

b) Montrons que Restance relation d'équivalence * Reflexivite Vacir, ona: x-x2=x-x=) urx donc Restroflexive (0,5) * Symetrie Soil x, y & R lel que X Ry XRy => x -y2 = x-y $=) -(x^2y^2) = -(x-y)$ =) -x"+y2 =-x+y =) y2-x2 = y-x XRy => YRX donc Rest symetrique(0,5) * Transitivite Soit 2, y, 3 ∈ IR. lel que XRy etyR3 12 Ry =) 1 12-y2 21-y 0 1 y R3 =) 1 y 2 3 = y -3 0 0 +0 => x2y2+y2-2=11-y+y-3 =) x232 = x-3 =) xR3 (C.) blonc 18 Ry =) x R3 done Rest hansitate Condusion: Rest une relation reflexive, symetrique of et transitive donc Rest une relation d'équi valence

C) La classe déquivalence de 1

$$G = \frac{1}{2}y \in IR/IRy$$
 $IRy = \frac{1^2-y^2}{1-y} = 1-y$
 IRy

5) Assertion

a) Yx \in IR, \text{Jy \in IR}, \text{x+y>0} \text{Jx \in IR}, \text{Yy \in R}, \text{x+y \in 0}

b) \text{Jx \in IR}, \text{Y \in IR}, \text{x+y \in 0} \text{Yx \in IR}, \text{Jy \in IR}, \text{x+y \in 0}

a) Vraie (0,5)

b) Fausse (0,5)

Francia 2

1) still
$$f = \int (7,9,3) \in IR^3$$
, $7 + 3y - 3 = 0$
9) 4 elements de $F : (0,0,0) : (7,2,7)$
b) trentions que f est un sous-espace vedoriel de IR^3
 $\times L$ element multe de IR^3 est $(9,9,0)$ et $0+3x0-0=0$
clone $(9,0,0) \in F$
 $\times S$ to $X = (x,y,3)$ et $X = (x',y',3') \in F$; $\lambda \in IR$
gen real monther que $X + \lambda X' \in F$
En a: $X + \lambda X' = (7 + \lambda X', y + \lambda y', 3 + \lambda 3')$
(alculono: $A = (x + \lambda x') + 3(y + \lambda y') + (3 + \lambda 3')$
 $A = x + 3y - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3y - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3y - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3y - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3y - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3y' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3y' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$
 $A = x + 3x' - 3 + \lambda(x' + 3y' - 3')$

C) Delerminons une base de
$$f$$
 $F = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3y - 3 = 0$
 $E = \int (x_1y_1)^3 \int ER^3$, $1 + 3$

b)
$$B^{2} = \begin{pmatrix} 3 - 20 \\ -1 & 51 \\ 2 & 12 \end{pmatrix} \begin{pmatrix} 3 - 20 \\ -1 & 51 \\ 2 & 12 \end{pmatrix} = \begin{pmatrix} 1.5 \\ -6 & 28 \\ 7 \\ 9 & 3 & 5 \end{pmatrix}$$

$$AB = \begin{pmatrix} -1 - 12 \\ 4 & 1 - 1 \\ 2 & -10 \end{pmatrix} \begin{pmatrix} 3 - 20 \\ -1 & 51 \\ 2 & 12 \end{pmatrix} = \begin{pmatrix} 2 - 1 & 3 \\ 0 & 2 & -1 \\ 7 & -9 & -1 \end{pmatrix}$$

$$A - 2B = \begin{pmatrix} -1 - 12 \\ 1 & 1 - 1 \\ 2 & -1.0 \end{pmatrix} - 2\begin{pmatrix} 3 - 20 \\ -1 & 51 \\ 2 & 12 \end{pmatrix}$$

$$A - 2B = \begin{pmatrix} -7 & 3 & 2 \\ 3 - 9 & -3 \\ -2 & -3 & -4 \end{pmatrix} \begin{pmatrix} 1.5 \\ 1.$$