(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 30. August 2001 (30.08.2001)

PC₁

(10) Internationale Veröffentlichungsnummer WO 01/62850 A1

(51) Internationale Patentklassifikation⁷: 51/04, 25/12, C08F 279/02, 279/04

C08L 55/02,

(74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; 51368 Leverkusen (DE).

(21) Internationales Aktenzeichen:

PCT/EP01/01494

(22) Internationales Anmeldedatum:

12. Februar 2001 (12.02.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 08 418.4 23. Februar 2000 (23.02.2000) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE]; 51368 Leverkusen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): EICHENAUER, Herbert [DE/DE]; Gustav-Heinemann-Str. 3, 41539 Dormagen (DE). WENZ, Eckhard [DE/DE]; Suevenstr. 5, 50679 Köln (DE). ALBERTS, Heinrich [DE/DE]; Schulstr. 1a, 51519 Odenthal (DE). JANSEN, Ulrich [DE/DE]; Stürzelberger Str. 50, 41541 Dormagen (DE). GASCHE, Hans-Erich [DE/TT]; Via Frizzoni 28, I-24121 Bergamo (IT).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,

TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: ABS MOULDING MATERIAL WITH IMPROVED WORKABILITY AND A HIGH LUSTRE

(54) Bezeichnung: ABS-FORMMASSEN MIT VERBESSERTER VERARBEITBARKEIT UND HOHEM GLANZ

(57) Abstract: The invention relates to an ABS moulding material. In said material, the rubber graft polymers have 3 butadiene polymer latices of a defined particle size, particle size distribution and gel content, whereby at least one polybutadeine latex has been produced by seed polymerization.

(57) Zusammenfassung: Die Erfindung betrifft ABS-Formmassen, wobei die Pfropfkautschukpolymerisate 3 Butadienpolymerisatlatices definierter Teilchengröße, Teilchengrößenverteilung und Gelgehalt aufweisen und wobei mindestens ein Polybutadienlatex durch Saatpolymerisation hergestellt wurde.

5

10

15

20

30

ABS-Formmassen mit verbesserter Verarbeitbarkeit und hohem Glanz

ABS-Formmassen werden schon seit vielen Jahren in großen Mengen als thermoplastische Harze für die Herstellung von Formteilen aller Art eingesetzt. Dabei kann das Eigenschaftsniveau dieser Harze in weiten Bereichen variiert werden.

Für die Herstellung von großflächigen Teilen, insbesondere von Gehäuseteilen, werden ABS-Polymerisate benötigt, die sich durch ein sehr gutes Verarbeitungsverhalten, insbesondere durch sehr hohe thermoplastische Fließfähigkeit auszeichnen und zu Formteilen mit sehr hohem Oberflächenglanz führen. Dabei dürfen die sonstigen Eigenschaften (z.B. Zähigkeit, E-Modul) nicht negativ beeinflusst werden.

Unter Nutzung der Technologie der Emulsionspolymerisation wurde versucht, Produkte mit den geforderten Eigenschaften durch kombinierten Einsatz verschiedener Pfropfkautschukkomponenten in einer thermoplastische Harzmatrix herzustellen.

So beschreiben z.B. die DE-A 24 20 357 und DE-A 24 20 358 thermoplastische Formmassen von ABS-Typ mit hoher Zähigkeit, hohem Oberflächenglanz und leichterer Verarbeitbarkeit durch Kombination eines grobteiligen Pfropfkautschuks mit einem feinteiligen Pfropfkautschuk, wobei die Gewichtsverhältnisse Styrol: Acrylnitril in den Pfropfkautschuken und im Matrixharz spezielle Werte aufweisen müssen.

Nachteilig bei derartigen Formmassen vom ABS-Typ ist, dass zwei separat hergestellte Pfropfkautschukpolymerisate benötigt werden. Außerdem erfüllen die Fließfähigkeiten nicht die Anforderungen moderner Verarbeitungstechnik.

EP-A 470 229, EP-A 473 400 und WO 91/13118 lehren die Herstellung stoßresistenter, hochglänzender thermoplastischer Harze durch Kombination eines Pfropfpoly-

meren mit geringem Kautschukgehalt und niedrigem Teilchendurchmesser mit einem Pfropfpolymeren mit hohem Kautschukgehalt und größerem Teilchendurchmesser.

Nachteilig bei diesen Produkten ist die nicht immer ausreichende thermoplastische Fließfähigkeit sowie die Notwendigkeit zweier separater Pfropfpolymerisationsschritte.

In DE-A 41 13 326 werden thermoplastische Formmassen mit zwei unterschiedlichen Pfropfprodukten beschrieben, wobei die Kautschukgehalte der Pfropfkautschuke jeweils maximal 30 Gew.-% betragen. Dadurch ist die Verwendung relativ. hoher Pfropfkautschukmengen notwendig, wodurch die thermoplastische Fließfähigkeit nur in engen Grenzen variiert werden kann. Außerdem sind die erreichbaren Glanzwerte ungenügend und auch hier sind zwei separate Pfropfpolymerisationsreaktionen notwendig.

15

30

10

5

Auch durch Verwendung von Mischungen zweier Kautschuklatices als Pfropfgrundlagen wurde versucht, Pfropfkautschuke zur Herstellung von verbesserten ABS-Produkten zu synthetisieren.

So beschreibt z.B. die EP-A 288 298 die Herstellung von Produkten mit einem feinteiligen und einem gröberteiligen Kautschuklatex als Pfropfgrundlagen, wobei jedoch nur Pfropfkautschuke mit niedrigen Kautschukgehalten um 40% beschrieben werden. Die daraus hergestellten thermoplastischen Harze weisen nur unzureichende Verarbeitbarkeit aufgrund schlechter thermoplastischer Fließfähigkeit auf; außerdem müssen Harzkomponenten mit hohen Acrylnitrilgehalten verwendet werden, was üblicherweise zur Verfärbung der ABS-Produkte führt.

In EP-A 745 624 wird die Verwendung zweier Kautschuklatices mit definierten Breiten der Teilchengrößenverteilungen zur Herstellung von ABS-Formmassen ohne Farbvertiefungen bei Formteilen mit Rippenstrukturen beschrieben. Diese Produkte

5

10

15

20

25

30

I)

führen jedoch zu einer schlechten Relation zwischen Zähigkeit und thermoplastischer Verarbeitbarkeit (Fließfähigkeit).

- 3 -

Es bestand daher die Aufgabe, thermoplastische Formmassen vom ABS-Typ bereitzustellen, die die genannten Nachteile nicht aufweisen, eine sehr gute thermoplastische Verarbeitbarkeit besitzen und zu Formteilen mit sehr hohem Oberflächenglanz führen. Dabei sollten die ABS-Formmassen vorzugsweise ein in einem einzigen Verfahrensschritt hergestelltes Pfropfkautschukprodukt enthalten, wobei das Pfropfkautschukpolymerisat Kautschukgehalte über 50 Gew.-%, vorzugsweise über 55 Gew.-% aufweisen sollte.

Gegenstand der Erfindung sind Polymerzusammensetzungen enthaltend

ein Pfropfkautschukpolymerisat, welches erhältlich ist durch Emulsionspolymerisation von Styrol und Acrylnitril im Gewichtsverhältnis 95:5 bis 50:50, wobei Styrol und/oder Acrylnitril ganz oder teilweise ersetzt werden kann durch α-Methylstyrol, Methylmethacrylat oder N-Phenylmaleinimid oder Mischungen hieraus, in Gegenwart einer Mischung aus einem Butadienpolymerisatlatex (A) mit einem mittleren Teilchendurchmesser $d_{50} \le 250$ nm, vorzugsweise 100 bis 240 nm, besonders bevorzugt 130 bis 230 nm und ganz besonders bevorzugt 150 bis 220 nm und einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 20 bis 80 nm, vorzugsweise von 30 bis 60 nm, und einem Gelgehalt von 30 bis 95 Gew.-%, vorzugsweise 40 bis 90 Gew.-% und besonders bevorzugt 50 bis 85 Gew.-%, vorzugsweise erhalten durch Saatpolymerisation unter Verwendung eines Saatlatex mit einem mittleren Teilchendurchmesser d₅₀ von 10 bis 100 nm, vorzugsweise 20 bis 90 nm und besonders bevorzugt 30 bis 80 nm, einem Butadienpolymerisatlatex (B) mit einem mittleren Teilchendurchmesser $d_{50} > 250$ nm bis 350 nm, vorzugsweise 260 bis 340 nm und besonders bevorzugt 270 bis 320 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) 5

10

15

20

von 30 bis 100 nm, vorzugsweise von 40 bis 80 nm, und einem Gelgehalt von 30 bis 80 Gew.-%, vorzugsweise 40 bis 75 Gew.-% und besonders bevorzugt 45 bis 70 Gew.-%, vorzugsweise erhalten durch Saatpolymerisation unter Verwendung eines Saatlatex mit einem mittleren Teilchendurchmesser d₅₀ von 30 bis 150 nm, vorzugsweise 35 bis 140 nm und besonders bevorzugt von 40 bis 130 nm, ganz besonders bevorzugt unter Verwendung des gleichen Saatlatex wie bei der Herstellung des Polybutadienlatex (A), und einem Butadienpolymerisatlatex (C) mit einem mittleren Teilchendurchmesser d₅₀ >350 nm, vorzugsweise 360 bis 450 nm, besonders bevorzugt 370 bis 440 nm und ganz besonders bevorzugt von 375 bis 430 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 40 bis 150 nm, vorzugsweise 50 bis 100 nm, und einem Gelgehalt von 50 bis 95 Gew.-%, vorzugsweise 55 bis 90 Gew.-% und besonders bevorzugt 60 bis 85 Gew.-%, vorzugsweise erhalten durch Saatpolymerisation unter Verwendung eines Saatlatex mit einem mittleren Teilchendurchmesser d₅₀ von 100 bis 250 nm, vorzugsweise 120 bis 240 nm und besonders bevorzugt von 150 bis 220 nm, ganz besonders bevorzugt unter Verwendung des Butadienpolymerisatlatex (A) als Saatlatex, wobei die Butadienpolymerisatlatices jeweils 0 bis 50 Gew.-% eines weiteren Vinylmonomeren copolymerisiert enthalten und wobei das Massenverhältnis von eingesetzten Pfropfmonomeren zu eingesetzten Butadienpolymerisaten 5:95 bis 70:30, vorzugsweise 10:90 bis 60:40 und besonders bevorzugt 20:80

bis 50 : 50 ist, und

- 25 II) mindestens ein kautschukfreies Copolymerisat aus Styrol und Acrylnitril im Gewichtsverhältnis 95:5 bis 50:50, wobei Styrol und/oder Acrylnitril ganz oder teilweise durch \alpha-Methylstyrol, Methylmethacrylat, oder N-Phenylmaleinimid oder Mischungen hieraus ersetzt werden kann,
- 30 wobei mindestens ein Latex ausgewählt aus den Butadienpolymerisatlatices (A), (B) und (C), vorzugsweise zwei Latices ausgewählt aus den Butadienpolymerisatlatices

(A), (B) und (C) und besonders bevorzugt alle drei Butadienpolymerisatlatices (A), (B) und (C) durch Saatpolymerisation hergestellt werden.

Die Butadienpolymerisatlatices (A), (B) und (C) bei der Herstellung des Pfropfkautschukpolymerisats (I) können prinzipiell in beliebigen Mengen eingesetzt werden.

Vorzugsweise werden die Butadienpolymerisatlatices (A), (B) und (C) bei der Herstellung des Pfropfkautschukpolymerisats (I) in Anteilen von 5 bis 70 Gew.-%, vorzugsweise 10 bis 60 Gew.-% und besonders bevorzugt 15 bis 50 Gew.-% (A), 10 bis 70 Gew.-%, vorzugsweise 15 bis 60 Gew.-% und besonders bevorzugt 20 bis 55 Gew.-% (B) und 5 bis 60 Gew.-%, vorzugsweise 7,5 bis 50 Gew.-% und besonders bevorzugt 10 bis 45 Gew.-% (C) eingesetzt (jeweils bezogen auf den jeweiligen Feststoffanteil der Latices).

15

10

5

Im allgemeinen können die erfindungsgemäßen Formmassen 1 bis 60 Gew.-Teile, vorzugsweise 5 bis 50 Gew.-Teile (I) und 40 bis 99 Gew.-Teile, vorzugsweise 50 bis 95 Gew.-Teile (II) enthalten.

Gegenstand der vorliegenden Erfindung ist weiterhin ein Verfahren zur Herstellung einer Polymerzusammensetzung, wobei ein Pfropfkautschukpolymerisat, welches erhältlich ist durch Emulsionspolymerisation von Styrol und Acrylnitril im Gewichtsverhältnis 95 : 5 bis 50 : 50, wobei Styrol und/oder Acrylnitril ganz oder teilweise ersetzt werden kann durch α-Methylstyrol, Methylmethacrylat oder N-Phenylmaleinimid oder Mischungen hieraus, in Gegenwart einer Mischung aus einem Butadienpolymerisatlatex (A) mit einem mittleren Teilchendurchmesser d₅0 ≤ 250 nm und einer Breite der Teilchengrößenverteilung (gemessen als d₀0-d₁0 aus der integralen Teilchengrößenverteilung) von 20 bis 80 nm, und einem Gelgehalt von 30 bis 95 Gew.-%, einem Butadienpolymerisatlatex (B) mit einem mittleren Teilchendurchmesser d₅0 >250 bis 350 nm, einer Breite der Teilchengrößenverteilung

(gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 30 bis

100 nm, und einem Gelgehalt von 30 bis 80 Gew.-%, und einem Butadienpolymerisatlatex (C) mit einem mittleren Teilchendurchmesser $d_{50} > 350$ nm, einer Breite der Teilchengrößenverteilung (gemessen als d_{90} - d_{10} aus der integralen Teilchengrößenverteilung) von 40 bis 150 nm, und einem Gelgehalt von 50 bis 95 Gew.-%, unter Verwendung von mindestens einem durch Saatpolymerisation hergestellten Latex ausgewählt aus den Butadienpolymerisatlatices (A), (B) und (C) hergestellt wird, wobei die Butadienpolymerisatlatices jeweils 0 bis 50 Gew.-% eines weiteren Vinylmonomeren copolymerisiert enthalten und wobei das Massenverhältnis von eingesetzten Pfropfmonomeren zu eingesetzten Butadienpolymerisaten 5 : 95 bis 70 : 30 ist, und das Pfropfpolymerisat mit mindestens einem kautschukfreien Copolymerisat aus Styrol und Acrylnitril im Gewichtsverhältnis 95 : 5 bis 50 : 50, wobei Styrol und/oder Acrylnitril ganz oder teilweise durch α -Methylstyrol, Methylmethacrylat, oder N-Phenylmaleinimid oder Mischungen hieraus ersetzt werden kann, gemischt wird.

15

20

25

10

5

Außerdem können die erfindungsgemäßen Formmassen weitere kautschukfreie nicht aus Vinylmonomeren aufgebaute Thermoplastharze enthalten, wobei man diese Thermoplastharze in Mengen bis zu 1000 Gew.-Teilen, vorzugsweise bis zu 700 Gew.-Teilen und besonders bevorzugt bis zu 500 Gew.-Teilen (jeweils bezogen auf 100 Gew.-Teile I+II) verwendet.

Die Butadienpolymerisatlatices (A), (B) und (C) können durch Emulsionspolymerisation von Butadien in bekannter Weise hergestellt werden (siehe z.B. in Houben-Weyl, Methoden der Organischen Chemie, Makromolekulare Stoffe, Teil 1, S. 674 (1961), Thieme Verlag Stuttgart). Als Comonomere können bis zu 50 Gew.-% (bezogen auf die gesamte zur Butadienpolymerisatherstellung eingesetzte Monomerenmenge) eines oder mehrerer mit Butadien copolymerisierbarer Monomerer eingesetzt werden.

30

Beispiele für solche Monomere sind Isopren, Chloropren, Acrylnitril, Styrol, α-Methylstyrol, C₁-C₄-Alkylstyrole, C₁-C₈-Alkylacrylate, C₁-C₈-Alkylmethacrylate,

Alkylenglykoldiacrylate, Alkylenglykoldimethacrylate, Divinylbenzol; vorzugsweise wird Butadien alleine oder in Abmischung mit bis zu 20 Gew.-%, vorzugsweise mit bis zu 10 Gew.-% Styrol und/oder Acrylnitril eingesetzt.

- 5 Bevorzugt wird nach der sogenannten Saatpolymerisationstechnik gearbeitet, bei der zunächst ein feinteiliges Polymerisat, vorzugsweise ein Butadienpolymerisat, als Saatlatex hergestellt und dann durch Weiterumsatz mit Butadien enthaltenden Monomeren zu größeren Teilchen weiterpolymerisiert wird.
- 10 Als Saatlatexpolymere werden vorzugsweise Butadienpolymerisate wie z.B. Polybutadien, Butadien / Styrol – Copolymerisate, Butadien / Acrylnitril – Copolymerisate oder Polymerisate aus den oben genannten Monomeren eingesetzt.
- Im Prinzip können auch andere feinteilige Latexpolymere wie z.B. Polystyrol oder 15 Styrolcopolymerisate, Polymethylmethacrylat oder Methylmethacrylatcopolymere sowie Polymerisate anderer Vinylmonomerer verwendet werden.
 - Bevorzugte Saatlatexpolymere sind Polybutadienlatices.

25

- 20 Dabei wird bei der Herstellung des Butadienpolymerisatlatex (A) ein Saatlatex mit einem mittleren Teilchendurchmesser d₅₀ von 10 bis 100 nm, vorzugsweise 20 bis 90 nm und besonders bevorzugt 30 bis 80 nm eingesetzt.
 - Bei der Herstellung des Butadienpolymerisatlatex (B) wird ein Saatlatex mit einem mittleren Teilchendurchmesser d₅₀ von 30 bis 150 nm, vorzugsweise 35 bis 140 nm und besonders bevorzugt 40 bis 130 nm eingesetzt, ganz besonders bevorzugt ist die Verwendung des gleichen Saatlatex wie bei der Herstellung des Butadienpolymerisatlatex (A).
- 30 Bei der Herstellung des Butadienpolymerisatlatex (C) wird ein Saatlatex mit einem mittleren Teilchendurchmesser d₅₀ von 100 bis 250 nm, vorzugsweise 120 bis

240 nm und besonders bevorzugt von 150 bis 220 nm eingesetzt, ganz besonders bevorzugt ist die Verwendung des Butadienpolymerisatlatex (A) als Saatlatex.

Die Saatlatexpolymere besitzen einen Gelgehalt von 10 bis 95 Gew.-%, vorzugsweise von 20 bis 90 Gew.-% und besonders bevorzugt von 30 bis 85 Gew.-%.

Der Butadienpolymerisatlatex (A) besitzt einen mittleren Teilchendurchmesser d_{50} \leq 250 nm, vorzugsweise 100 bis 240 nm, besonders bevorzugt 130 bis 230 nm und ganz besonders bevorzugt 150 bis 220 nm, eine Breite der Teilchengrößenverteilung (gemessen als $d_{50} - d_{10}$ aus der integralen Teilchengrößenverteilung) von 20 bis 80 nm, vorzugsweise 30 bis 60 nm und einen Gelgehalt von 30 bis 95 Gew.-%, vorzugsweise 40 bis 90 Gew.-% und besonders bevorzugt 50 bis 85 Gew.-%.

Der Butadienpolymerisatlatex (B) besitzt einen mittleren Teilchendurchmesser d_{50} von > 250 nm bis 350 nm, vorzugsweise von 260 bis 340 nm und besonders bevorzugt von 270 bis 320 nm, eine Breite der Teilchengrößenverteilung (gemessen als $d_{50} - d_{10}$ aus der integralen Teilchengrößenverteilung) von 30 bis 100 nm, vorzugsweise 40 bis 80 nm und einen Gelgehalt von 30 bis 80 Gew.-%, vorzugsweise 40 bis 75 Gew.-% und besonders bevorzugt 45 bis 70 Gew.-%.

20

25

5

10

15

Der Butadienpolymerisatlatex (C) besitzt einen mittleren Teilchendurchmesser d_{50} von > 350 nm, vorzugsweise von 360 bis 450 nm, besonders bevorzugt von 370 bis 440 nm und ganz besonders bevorzugt 375 bis 430 nm, eine Breite der Teilchengrößenverteilung (gemessen als $d_{50} - d_{10}$ aus der integralen Teilchengrößenverteilung) von 40 bis 150 nm, vorzugsweise 50 bis 100 nm und einen Gelgehalt von 50 bis 95 Gew.-%, vorzugsweise 55 bis 90 Gew.-% und besonders bevorzugt 60 bis 85 Gew.-%.

Die Bestimmung des mittleren Teilchendurchmessers d₅₀ sowie der d₁₀ – und d₉₀ – Werte kann durch Ultrazentrifugenmessung ermittelt werden (vgl. W. Scholtan, H.Lange: Kolloid Z. u. Z. Polymere 250, S. 782 bis 796 (1972)), die angegebenen

Werte für den Gelgehalt beziehen sich auf die Bestimmung nach der Drahtkäfigmethode in Toluol (vgl. Houben-Weyl, Methoden der Organischen Chemie, Makromolekulare Stoffe, Teil 1, S. 307 (1961), Thieme Verlag Stuttgart).

Die Gelgehalte der Butadienpolymerisatlatices (A), (B) und (C) sowie der Saatpolymerlatices können in prinzipiell bekannter Weise durch Anwendung geeigneter Reaktionsbedingungen eingestellt werden (z.B. hohe Reaktionstemperatur und/oder Polymerisation bis zu hohem Umsatz sowie gegebenenfalls Zusatz vernetzend wirkender Substanzen zur Erzielung eines hohen Gelgehaltes oder z.B. niedrige Reaktionstemperatur und/oder Abbruch der Polymerisationsreaktion vor Eintreten einer zu starken Vernetzung sowie gegebenenfalls Zusatz von Molekulargewichtsreglern wie beispielsweise n-Dodecylmercaptan oder t-Dodecylmercaptan zur Erzielung eines niedrigen Gelgehaltes). Als Emulgator können übliche anionische Emulgatoren wie Alkylsulfate, Alkylsulfonate, Aralkylsulfonate, Seifen gesättigter oder ungesättigter Fettsäuren sowie alkalischer disproportionierter oder hydrierter Abietin- oder Tallölsäuren verwendet werden, vorzugsweise werden Emulgatoren mit Carboxylgruppen (z.B. Salze von C₁₀-C₁₈-Fettsäuren, disproportionierte Abietinsäure, Emulgatoren gemäß DE-OS 36 39 904 und DE-OS 39 13 509) eingesetzt.

Zur Erzielung des erfindungsgemäßen Effektes müssen mindestens ein Latex ausgewählt aus den Butadienpolymerisatlatex-Komponenten (A), (B) und (C), vorzugsweise zwei Latices ausgewählt aus den Butadienpolymerisatlatex-Komponenten (A), (B) und (C) und besonders bevorzugt alle drei Butadienpolymerisatlatex-Komponenten (A), (B) und (C) durch Saatpolymerisation hergestellt worden sein.

25

5

10

15

20

Die Pfropfpolymerisation bei der Herstellung des Pfropfpolymerisats I) kann nach beliebigen Verfahren durchgeführt werden, vorzugsweise wird sie so durchgeführt, dass das Monomerengemisch kontinuierlich zu dem Gemisch der Butadienpolymerisatlatices (A), (B) und (C) gegeben und polymerisiert wird.

5

10

15

Dabei werden bevorzugt spezielle Monomer/Kautschuk-Verhältnisse eingehalten und die Monomeren in einer bekannten Weise zum Kautschuklatex geben.

Zur Erzeugung der erfindungsgemäßen Komponente I) werden vorzugsweise 15 bis 50 Gew.-Teile, besonders bevorzugt 20 bis 40 Gew.-Teile, eines Gemisches aus Styrol und Acrylnitril, das gegebenenfalls bis zu 50 Gew.-% (bezogen auf Gesamtmenge der in der Pfropfpolymerisation eingesetzten Monomeren) eines oder mehrerer Comonomerer enthalten kann, in Gegenwart von vorzugsweise 50 bis 85 Gew.-Teilen, besonders bevorzugt 60 bis 80 Gew.-Teilen (jeweils bezogen auf Feststoff) des Butadienpolymerisatlatex-Gemisches aus (A), (B) und (C) polymerisiert.

Die bei der Pfropfpolymerisation eingesetzten Monomeren sind vorzugsweise Mischungen aus Styrol und Acrylnitril im Gew.-Verhältnis 95:5 bis 50:50, besonders bevorzugt im Gew.-Verhältnis 80:20 bis 65:35, wobei Styrol und/oder Acrylnitril ganz oder teilweise durch copolymerisierbare Monomere, vorzugsweise durch α-Methylstyrol, Methylmethacrylat oder N-Phenylmaleinimid ersetzt werden können. Prinzipiell können zusätzlich beliebige weitere copolymerisierbare Vinylmonomere in Mengen bis ca. 10 Gew.-% (bezogen auf Gesamtmenge der Monomeren) mitverwendet werden.

20

Zusätzlich können bei der Pfropfpolymerisation Molekulargewichtsregler eingesetzt werden, vorzugsweise in Mengen von 0,01 bis 2 Gew.-%, besonders bevorzugt in Mengen von 0,05 bis 1 Gew.-% (jeweils bezogen auf Gesamtmonomermenge in der Pfropfpolymerisationstufe).

25

Geeignete Molekulargewichtsregler sind beispielsweise Alkylmercaptane wie n-Dodecylmercaptan, t-Dodecylmercaptan; dimeres α-Methylstyrol; Terpinolen.

Als Initiatoren kommen anorganische und organische Peroxide, z.B. H₂O₂, Di-tert.-30 Butylperoxid, Cumolhydroperoxid, Dicyclohexylpercarbonat, tert.-Butylhydroperoxid, p-Menthanhydroperoxid, Azoinitiatoren wie Azobisisobutyronitril, anorganische Persalze wie Ammonium-, Natrium- oder Kaliumpersulfat, Kaliumperphosphat, Natriumperborat sowie Redox-Systeme in Betracht. Redox-Systeme bestehen in der Regel aus einem organischen Oxidationsmittel und einem Reduktionsmittel, wobei im Reaktionsmedium zusätzlich Schwermetallionen vorhanden sein können (siehe Houben-Weyl, Methoden der Organischen Chemie, Band 14/1, S. 263 bis 297).

Die Polymerisationstemperatur ist im allgemeinen 25°C bis 160°C, vorzugsweise 40°C bis 90°C. Geeignete Emulgatoren sind oben angegeben.

10

5

Dabei kann nach üblicher Temperaturführung, z.B. isotherm, gearbeitet werden; vorzugsweise wird die Pfropfpolymerisation jedoch so durchgeführt, dass der Temperaturunterschied zwischen Beginn und Ende der Reaktion mindestens 10°C, vorzugsweise mindestens 15°C und besonders bevorzugt mindestens 20°C beträgt.

15

Zur Erzeugung der erfindungsgemäßen Komponente I) kann die Pfropfpolymerisation vorzugsweise durch Monomerenzulauf derart durchgeführt werden, dass innerhalb der ersten Hälfte der Gesamtmonomerenzudosierzeit 55 bis 90 Gew.-%, vorzugsweise 60 bis 80 Gew.-% und besonders bevorzugt 65 bis 75 Gew.-% der gesamten bei der Pfropfpolymerisation einzusetzenden Monomeren zudosiert werden; der verbleibende Monomeranteil wird innerhalb der zweiten Hälfte der Gesamtmonomerzudosierzeit zudosiert.

25

20

Als kautschukfreie Copolymerisate II) werden vorzugsweise Copolymerisate des Styrols und Acrylnitrils im Gewichtsverhältnis 95:5 bis 50:50 verwendet, wobei Styrol und/oder Acrylnitril ganz oder teilweise durch α -Methylstyrol, Methylmethacrylat oder N-Phenylmaleinimid ersetzt werden kann.

30

Besonders bevorzugt sind Copolymerisate II) mit Anteilen an eingebauten Acrylnitril-Einheiten <30 Gew.-%.

Diese Copolymerisate besitzen vorzugsweise mittlere Molekulargewichte \overline{M}_W von 20 000 bis 200 000 bzw. Grenzviskositäten [η] von 20 bis 110 ml/g (gemessen in Dimethylformamid bei 25°C).

- Einzelheiten zur Herstellung dieser Harze sind beispielsweise in der DE-A 2 420 358 und der DE-A 2 724 360 beschrieben. Durch Masse- bzw. Lösungspolymerisation hergestellte Vinylharze haben sich besonders bewährt. Die Copolymerisate können allein oder in beliebiger Mischung zugesetzt werden.
- Außer aus Vinylmonomeren aufgebauten Thermoplastharzen ist auch die Verwendung von Polykondensaten z.B. aromatischen Polycarbonaten, aromatischen Polyesterarbonaten, Polyestern, Polyamiden als kautschukfreies Copolymerisat in den erfindungsgemäßen Formmassen möglich.
- Geeignete thermoplastische Polycarbonate und Polyestercarbonate sind bekannt (vgl. z.B. DE-A 1 495 626, DE-A 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396, DE-OS 3 077 934), z.B. herstellbar durch Umsetzung von Diphenolen der Formeln (III) und (IV)

HO
$$R^5$$
 A R^5 OH (III)

20

HO
$$\xrightarrow{R^1}$$
 C $\xrightarrow{R^1}$ OH (IV)

worin

- A eine Einfachbindung, C₁-C₅-Alkylen, C₂-C₅-Alkyliden, C₅-C₆-Cycloalkyliden, -O-, -S-, -SO₂- oder -CO- ist,
- R⁵ und R⁶ unabhängig voneinander für Wasserstoff, Methyl oder Halogen, insbesondere für Wasserstoff, Methyl, Chlor oder Brom stehen,
 - R¹ und R² unabhängig voneinander Wasserstoff, Halogen bevorzugt Chlor oder Brom, C₁-C₈-Alkyl, bevorzugt Methyl, Ethyl, C₅-C₆-Cycloalkyl, bevorzugt Cyclohexyl, C₆-C₁₀-Aryl, bevorzugt Phenyl, oder C₇-C₁₂-Aralkyl, bevorzugt Phenyl-C₁-C₄-alkyl, insbesondere Benzyl, bedeuten,
 - m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 ist,
- 15 n 0 oder 1 ist,

10

25

- R^3 und R^4 für jedes X individuell wählbar sind und unabhängig voneinander Wasserstoff oder C_1 - C_6 -Alkyl bedeuten und
- 20 X Kohlenstoff bedeutet,

mit Kohlensäurehalogeniden, vorzugsweise Phosgen, und/oder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalogeniden, durch Phasengrenzflächen-Polykondensation oder mit Phosgen durch Polykondensation in homogener Phase (dem sogenannten Pyridinverfahren), wobei das Molekulargewicht in bekannter Weise durch eine entsprechende Menge an bekannten Kettenabbrechern eingestellt werden kann.

Geeignete Diphenole der Formeln (III) und (IV) sind z.B. Hydrochinon, Resorcin, 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 2,2-Bis-(4-hydroxy-3,5-dimethylphenyl)-propan, 2,2-Bis-(4-hydroxy-3,5-dimethylpheny

hydroxy-3,5-dichlorphenyl)-propan, 2,2-Bis-(4-hydroxy-3,5-dibromphenyl)-propan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3,3-dimethylcyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3,3,5,5-tetramethylcyclohexan oder 1,1-Bis-(4-hydroxyphenyl)-2,4,4,-trimethylcyclopentan.

Bevorzugte Diphenole der Formel (III) sind 2,2-Bis-(4-hydroxyphenyl)-propan und 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, bevorzugtes Phenol der Formel (IV) ist 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.

10

15

5

Es können auch Mischungen von Diphenolen eingesetzt werden.

Geeignete Kettenabbrecher sind z.B. Phenol, p-tert.-Butylphenol, langkettige Alkylphenole wie 4-(1,3-Tetramethyl-butyl)phenol gemäß DE-A 2 842 005, Monoalkylphenole, Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten gemäß DE-A 3 506 472, wie p-Nonylphenol, 2,5-di-tert.-Butylphenol, p-tert.-Octylphenol, p-Dodecylphenol, 2-(3,5-Dimethylheptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol. Die erforderliche Menge an Kettenabbrechern ist im allgemeinen 0,5 bis 10 Mol-%, bezogen auf die Summe der Diphenole (III) und (IV).

20

Die geeigneten Polycarbonate bzw. Polyestercarbonate können linear oder verzweigt sein; verzweigte Produkte werden vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an drei - oder mehr als dreifunktionellen Verbindungen, z.B. solchen mit drei oder mehr als drei phenolischen OH-Gruppen, erhalten.

25

Die geeigneten Polycarbonate bzw. Polyestercarbonate können aromatisch gebundenes Halogen, vorzugsweise Brom und/oder Chlor, enthalten; vorzugsweise sind sie halogenfrei.

Sie haben mittlere Molekulargewichte ($\overline{M}_{\rm W}$, Gewichtsmittel) bestimmt z.B. durch Ultrazentrifugation oder Streulichtmessung von 10 000 bis 200 000, vorzugsweise von 20 000 bis 80 000.

Geeignete thermoplastische Polyester sind vorzugsweise Polyalkylenterephthalate, d.h., Reaktionsprodukte aus aromatischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten (z.B. Dimethylestern oder Anhydriden) und aliphatischen, cycloaliphatischen oder arylaliphatischen Diolen und Mischungen solcher Reaktionsprodukte.

10

Bevorzugte Polyalkylenterephthalate lassen sich aus Terephthalsäuren (oder ihren reaktionsfähigen Derivaten) und aliphatischen oder cycloaliphatischen Diolen mit 2 bis 10 C-Atomen nach bekannten Methoden herstellen (Kunststoff-Handbuch, Band VIII, S. 695 ff, Carl Hanser Verlag, München 1973).

15

In bevorzugten Polyalkylenterephthalaten sind 80 bis 100, vorzugsweise 90 bis 100 Mol-% der Dicarbonsäurereste, Terephthalsäurereste und 80 bis 100, vorzugsweise 90 bis 100 Mol-% der Diolreste, Ethylenglykol- und/oder Butandiol-1,4-Reste.

Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butandiol-1,4-Resten 0 bis 20 Mol-% Reste anderer aliphatischer Diole mit 3 bis 12 C-Atomen oder cycloaliphatischer Diole mit 6 bis 12 C-Atomen enthalten, z.B. Reste von Propandiol-1,3, 2-Ethylpropandiol-1,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, Cyclohexandi-methanol-1,4, 3-Methylpentandiol-1,3 und -1,6, 2-Ethylhexandiol-1,3, 2,2-Diethylpropandiol-1,3, Hexandiol-2,5, 1,4-Di(β-hydroxyethoxy)-benzol, 2,2,-Bis-4-hydroxycyclohexyl)-propan, 2,4-Dihydroxy-1,1,3,3-tetramethyl-cyclobutan, 2,2-Bis-(3-β-hydroxyethoxyphenyl)-propan und 2,2-Bis-(4-hydroxypro-

Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basiger Carbonsäuren, wie sie in der DE-OS

poxyphenyl)-propan (DE-OS 2 407 647, 2 407 776, 2 715 932).

1 900 270 und der US-PS 3 692 744 beschrieben sind, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit. Es ist ratsam, nicht mehr als 1 Mol-% des Verzweigungsmittels, bezogen auf die Säurekomponente, zu verwenden.

5

Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z.B. deren Dialkylestern) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind und Mischungen dieser Polyalkylenterephthalate.

10

Bevorzugte Polyalkylenterephthalate sind auch Copolyester, die aus mindestens zwei der oben genannten Alkoholkomponenten hergestellt sind: besonders bevorzugte Copolyester sind Poly-(ethylenglykolbutandiol-1,4)-terephthalate.

15

Die vorzugsweise geeigneten Polyalkylenterephthalate besitzen im allgemeinen eine Intrinsic-Viskosität von 0,4 bis 1,5 dl/g, vorzugsweise 0,5 bis 1,3 dl/g, insbesondere 0,6 bis 1,2 dl/g, jeweils gemessen in Phenol/o-Dichlorbenzol (1:1 Gew.-Teile) bei 25°C.

20

Geeignete Polyamide sind bekannte Homopolyamide, Copolyamide und Mischungen dieser Polyamide. Es können dies teilkristalline und/oder amorphe Polyamide sein.

25

30

Als teilkristalline Polyamide sind Polyamid-6, Polyamid-6,6, Mischungen und entsprechende Copolymerisate aus diesen Komponenten geeignet. Weiterhin kommen
teilkristalline Polyamide in Betracht, deren Säurekomponente ganz oder teilweise aus
Terephthalsäure und/oder Isophthalsäure und/oder Korksäure und/oder Sebacinsäure
und/oder Azelainsäure und/oder Adipinsäure und/oder Cyclohexandicarbonsäure,
deren Diaminkomponente ganz oder teilweise aus m- und/oder p-Xylylen-diamin
und/oder Hexamethylendiamin und/oder 2,2,4-Trimethylhexamethylendiamin
und/oder 2,2,4-Trimethylhexamethylendiamin und/oder Isophorondiamin besteht und
deren Zusammensetzung prinzipiell bekannt ist.

WO 01/62850

Außerdem sind Polyamide zu nennen, die ganz oder teilweise aus Lactamen mit 7-12 C-Atomen im Ring, gegebenenfalls unter Mitverwendung einer oder mehrerer der oben genannten Ausgangskomponenten, hergestellt werden.

-17-

5

10

15

20

25

30

Besonders bevorzugte teilkristalline Polyamide sind Polyamid-6 und Polyamid-6,6 und ihre Mischungen. Als amorphe Polyamide können bekannte Produkte eingesetzt werden. Sie werden erhalten durch Polykondensation von Diaminen wie Ethylendiamin, Hexamethylendiamin, Decamethylendiamin, 2,2,4- und/oder 2,4,4-Trimethylhexamethylendiamin, m- und/oder p-Xylylen-diamin, Bis-(4-aminocyclohexyl)-methan, Bis-(4-aminocyclohexyl)-propan, 3,3'-Dimethyl-4,4'-diamino-dicyclohexylmethan, 3-Aminomethyl,3,5,5,-trimethylcyclohexylamin, 2,5- und/oder 2,6-Bis-(aminomethyl)-norbornan und/oder 1,4-Diaminomethylcyclohexan mit Dicarbonsäuren wie Oxalsäure, Adipinsäure, Azelainsäure, Azelainsäure, Decandicarbonsäure, Heptadecandicarbonsäure, 2,2,4- und/oder 2,4,4-Trimethyladipinsäure, Isophthalsäure und Terephthalsäure.

Auch Copolymere, die durch Polykondensation mehrerer Monomerer erhalten werden, sind geeignet, ferner Copolymere, die unter Zusatz von Aminocarbonsäuren wie ε -Aminocapronsäure, ω -Aminoundecansäure oder ω -Aminolaurinsäure oder ihren Lactamen, hergestellt werden.

Besonders geeignete amorphe Polyamide sind die Polyamide hergestellt aus Isophthalsäure, Hexamethylendiamin und weiteren Diaminen wie 4,4'-Diaminodicyclohexylmethan, Isophorondiamin, 2,2,4- und/oder 2,4,4-Trimethylhexamethylendiamin, 2,5- und/oder 2,6-Bis-(aminomethyl)-norbornen; oder aus Isophthalsäure, 4,4'-Diamino-dicyclohexylmethan und ε-Caprolactam; oder aus Isophthalsäure, 3,3'-Dimethyl-4,4'-diamino-dicyclohexylmethan und Laurinlactam; oder aus Terephthalsäure und dem Isomerengemisch aus 2,2,4- und/oder 2,4,4-Trimethylhexamethylendiamin.

Anstelle des reinen 4,4'-Diaminodicyclohexylmethans können auch Gemische der stellungsisomeren Diaminodicyclohexylmethane eingesetzt werden, die sich zusammensetzen aus

5 70 bis 99 Mol-% des 4,4'-Diamino-Isomeren
1 bis 30 Mol-% des 2,4'-Diamino-Isomeren
0 bis 2 Mol-% des 2,2'-Diamino-Isomeren und

gegebenenfalls entsprechend höher kondensierten Diaminen, die durch Hydrierung von Diaminodiphenylmethan technischer Qualität erhalten werden. Die Isophthalsäure kann bis zu 30 % durch Terephthalsäure ersetzt sein.

Die Polyamide weisen vorzugsweise eine relative Viskosität (gemessen an einer 1 gew.-%igen Lösung in m-Kresol bei 25°C) von 2,0 bis 5,0, besonders bevorzugt von 2,5 bis 4,0 auf.

Bevorzugte erfindungsgemäße Formmassen enthalten 1 bis 60 Gew.-Teile, vorzugsweise 5 bis 50 Gew.-Teile Pfropfpolymerkomponente I) und 40 bis 99 Gew.-Teile, vorzugsweise 50 bis 95 Gew.-Teile kautschukfreies Copolymerisat II).

20

10

15

Die Herstellung der erfindungsgemäßen Formmassen erfolgt durch Vermischen der Komponenten I) und II) auf üblichen Mischaggregaten (vorzugsweise auf Mehrwalzenstühlen, Mischextrudern oder Innenknetern).

- Gegenstand der Erfindung ist daher weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Formmassen, wobei man die Komponenten I) und II) vermischt und bei erhöhter Temperatur, im allgemeinen bei Temperaturen von 150°C bis 300°C, compoundiert und extrudiert.
- Den erfindungsgemäßen Formmassen können bei Herstellung, Aufarbeitung, Weiterverarbeitung und Endverformung die erforderlichen bzw. zweckmäßigen Additive

zugesetzt werden, z.B. Antioxidantien, UV-Stabilisatoren, Peroxidzerstörer, Antistatika, Gleitmittel, Entformungsmittel, Flammschutzmittel, Füll- oder Verstärkerstoffe (Glasfasern, Kohlefasern, etc.), Farbmittel.

- Die Endverformung kann auf handelsüblichen Verarbeitungsaggregaten vorgenommen werden und umfasst z.B. Spritzgießverarbeitung, Plattenextrusion mit gegebenenfalls anschließender Warmverformung, Kaltverformung, Extrusion von Rohren und Profilen, Kalander-Verarbeitung.
- In den folgenden Beispielen sind die angegebenen Teile immer Gewichtsteile und die angegebenen % immer Gew.-%, wenn nicht anders angegeben.

Beispiele:

5

10

15

20

Komponenten

ABS-Pfropfpolymerisat 1 (erfindungsgemäß)

15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadiensaatlatex mit einem d₅₀-Wert von 46 nm durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 191 nm, einer Breite der Teilchengrößenverteilung d₉₀d₁₀ von 42 nm und einem Gelgehalt von 69 Gew.-%, 30 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 125 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser dso von 297 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 77 nm und einem Gelgehalt von 61 Gew.-% und 15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 125 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 422 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 63 nm und einem Gelgehalt von 80 Gew.-% werden mit Wasser auf einem Feststoffgehalt von ca. 20 Gew.-% gebracht, wonach auf 59°C erwärmt und mit 0,5 Gew.-Teilen Kaliumperoxodisulfat (gelöst in Wasser) versetzt wird.

Danach werden 40 Gew.-Teile eines Gemisches aus 73 Gew.-% Styrol, 27 Gew.-% Acrylnitril und 0,12 Gew.-Teile tert.-Dodecylmercaptan innerhalb 6 Stunden gleichmäßig zudosiert, parallel dazu wird 1 Gew.-Teil (gerechnet als Festsubstanz) des Natriumsalzes eines Harzsäuregemisches (Dresinate 731, Abieta Chemie GmbH, Gersthofen, Deutschland, gelöst in alkalisch eingestelltem Wasser) über einen Zeitraum von 6 Stunden zudosiert. Im Laufe der 6 Stunden wird die Reaktionstemperatur von 59°C auf 77°C angehoben. Nach einer zweistündigen Nachreaktionszeit bei

80°C wird der Pfropflatex nach Zugabe von ca. 1,0 Gew.-Teilen eines phenolischen Antioxidans mit einem Magnesiumsulfat / Essigsäure – Gemisch koaguliert und nach dem Waschen mit Wasser das resultierende feuchte Pulver bei 70°C getrocknet.

- 21 -

5 ABS-Pfropfpolymerisat 2 (erfindungsgemäß)

10

15

20

15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 46 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 189 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 50 nm und einem Gelgehalt von 76 Gew.-%, 30 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 119 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 285 nm, einer Breite der Teilchengrößenverteilung d₉₀d₁₀ von 60 nm und einem Gelgehalt von 67 Gew.-% und 15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem dso-Wert von 189 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 399 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 56 nm und einem Gelgehalt von 85 Gew.-% werden mit Wasser auf einem Feststoffgehalt von ca. 20 Gew.-% gebracht, wonach auf 55°C erwärmt und mit 0,5 Gew.-Teilen Kaliumperoxodisulfat (gelöst in Wasser) versetzt wird.

Danach werden 40 Gew.-Teile eines Gemisches aus 73 Gew.-% Styrol, 27 Gew.-% Acrylnitril und 0,12 Gew.-Teile tert.-Dodecylmercaptan innerhalb 5 Stunden gleichmäßig zudosiert, parallel dazu wird 1 Gew.-Teil (gerechnet als Festsubstanz) des Natriumsalzes eines Harzsäuregemisches (Dresinate 731, Abieta Chemie GmbH, Gersthofen, Deutschland, gelöst in alkalisch eingestelltem Wasser) über einen Zeitraum von 5 Stunden zudosiert. Im Laufe der 5 Stunden wird die Reaktionstemperatur von 55°C auf 80°C angehoben. Nach einer zweistündigen Nach-

reaktionszeit bei 80°C wird der Pfropflatex nach Zugabe von ca. 1,0 Gew.-Teilen eines phenolischen Antioxidans mit einem Magnesiumsulfat / Essigsäure – Gemisch koaguliert und nach dem Waschen mit Wasser das resultierende feuchte Pulver bei 70°C getrocknet.

5

10

15

20

ABS-Pfropfpolymerisat 3 (erfindungsgemäß)

15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadiensaatlatex mit einem d₅₀-Wert von 48 nm durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 185 nm, einer Breite der Teilchengrößenverteilung d₉₀d₁₀ von 51 nm und einem Gelgehalt von 69 Gew.-%, 30 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 125 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser dso von 297 nm, einer Breite der Teilchengrößenverteilung d90-d10 von 77 nm und einem Gelgehalt von 61 Gew.-% und 15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadiensaatlatex mit einem d₅₀-Wert von 185 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 422 nm, einer Breite der Teilchengrößenverteilung d90-d10 von 63 nm und einem Gelgehalt von 80 Gew.-% werden mit Wasser auf einem Feststoffgehalt von ca. 20 Gew.-% gebracht, wonach auf 55°C erwärmt und mit 0,5 Gew.-Teilen Kaliumperoxodisulfat (gelöst in Wasser) versetzt wird.

25

30

Danach werden 40 Gew.-Teile eines Gemisches aus 73 Gew.-% Styrol, 27 Gew.-% Acrylnitril und 0,12 Gew.-Teile tert.-Dodecylmercaptan innerhalb 5 Stunden gleichmäßig zudosiert, parallel dazu wird 1 Gew.-Teil (gerechnet als Festsubstanz) des Natriumsalzes eines Harzsäuregemisches (Dresinate 731, gelöst in alkalisch eingestelltem Wasser) über einen Zeitraum von 5 Stunden zudosiert. Im Laufe der 5 Stunden wird die Reaktionstemperatur von 55°C auf 80°C angehoben. Nach einer

zweistündigen Nachreaktionszeit bei 80°C wird der Pfropflatex nach Zugabe von ca. 1,0 Gew.-Teilen eines phenolischen Antioxidans mit einem Magnesiumsulfat / Essigsäure – Gemisch koaguliert und nach dem Waschen mit Wasser das resultierende feuchte Pulver bei 70°C getrocknet.

5

10

15

20

ABS-Pfropfpolymerisat 4 (erfindungsgemäß)

20 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadiensaatlatex mit einem d₅₀-Wert von 48 nm durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 185 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 51 nm und einem Gelgehalt von 69 Gew.-%, 27,5 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d50-Wert von 125 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 297 nm, einer Breite der Teilchengrößenverteilung d90-d10 von 77 nm und einem Gelgehalt von 61 Gew.-% und 12,5 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadiensaatlatex mit einem d50-Wert von 185 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d50 von 422 nm, einer Breite der Teilchengrößenverteilung d90-d10 von 63 nm und einem Gelgehalt von 80 Gew.-% werden mit Wasser auf einem Feststoffgehalt von ca. 20 Gew.-% gebracht, wonach auf 55°C erwärmt und mit 0,5 Gew.-Teilen Kaliumperoxodisulfat (gelöst in Wasser) versetzt wird.

25

30

Danach werden 40 Gew.-Teile eines Gemisches aus 73 Gew.-% Styrol, 27 Gew.-% Acrylnitril und 0,12 Gew.-Teile tert.-Dodecylmercaptan innerhalb 5 Stunden gleichmäßig zudosiert, parallel dazu wird 1 Gew.-Teil (gerechnet als Festsubstanz) des Natriumsalzes eines Harzsäuregemisches (Dresinate 731, gelöst in alkalisch eingestelltem Wasser) über einen Zeitraum von 5 Stunden zudosiert. Im Laufe der 5 Stunden wird die Reaktionstemperatur von 55°C auf 80°C angehoben. Nach einer

WO 01/62850

PCT/EP01/01494

zweistündigen Nachreaktionszeit bei 80°C wird der Pfropflatex nach Zugabe von ca. 1,0 Gew.-Teilen eines phenolischen Antioxidans mit einem Magnesiumsulfat / Essigsäure – Gemisch koaguliert und nach dem Waschen mit Wasser das resultierende feuchte Pulver bei 70°C getrocknet.

- 24 -

5

10

15

20

ABS-Pfropfpolymerisat 5 (erfindungsgemäß)

peroxodisulfat (gelöst in Wasser) versetzt wird.

17,5 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 46 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 189 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 50 nm und einem Gelgehalt von 76 Gew.-%, 35 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 119 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 285 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 60 nm und einem Gelgehalt von 67 Gew.-% und 17,5 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 189 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 399 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 56 nm und einem Gelgehalt von 85 Gew.-% werden mit Wasser auf einem Feststoffgehalt von ca. 20 Gew.-% gebracht, wonach auf 55°C erwärmt und mit 0,5 Gew.-Teilen Kalium-

25

Danach werden 30 Gew.-Teile eines Gemisches aus 73 Gew.-% Styrol, 27 Gew.-% Acrylnitril und 0,1 Gew.-Teile tert.-Dodecylmercaptan innerhalb 6 Stunden gleichmäßig zudosiert. Die weitere Herstellung erfolgt wie bei ABS-Pfropfpolymerisat 1 beschrieben.

5

10

15

20

25

30

ABS-Pfropfpolymerisat 6 (erfindungsgemäß)

15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Butadien/Styrol = 90 : 10 - Copolymerlatex mit einem d₅₀-Wert von 39 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Butadien/Styrol = 90: 10 - Copolymerlatex mit einem mittleren Teilchendurchmesser d₅₀ von 176 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 48 nm und einem Gelgehalt von 60 Gew.-%, 30 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Polybutadienlatex mit einem d₅₀-Wert von 119 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Polybutadienlatex mit einem mittleren Teilchendurchmesser d50 von 285 nm, einer Breite der Teilchengrößenverteilung d90-d10 von 60 nm und einem Gelgehalt von 67 Gew.-% und 15 Gew.-Teile (gerechnet als Feststoff) eines unter Verwendung eines Butadien/Styrol = 90 : 10 - Copolymerlatex mit einem d₅₀-Wert von 176 nm als Saatlatex durch radikalische Saatpolymerisation hergestellten anionisch emulgierten Butadien/Styrol = 90 : 10 - Copolymerlatex mit einem mittleren Teilchendurchmesser d₅₀ von 391 nm, einer Breite der Teilchengrößenverteilung d₉₀-d₁₀ von 75 nm und einem Gelgehalt von 74 Gew.-% werden mit Wasser auf einen Feststoffgehalt von ca. 20 Gew.-% gebracht, wonach auf 55°C erwärmt und mit 0,5 Gew.-Teilen Kaliumperoxodisulfat (gelöst in Wasser) versetzt wird.

- 25 -

Danach werden 40 Gew.-Teile eines Gemisches aus 73 Gew.-% Styrol, 27 Gew.-% Acrylnitril innerhalb 5 Stunden gleichmäßig zudosiert, 0,12 Gew.-Teile tert.-Dodecylmercaptan werden gleichmäßig innerhalb der ersten 4 Stunden zudosiert. Parallel dazu wird 1 Gew.-Teil (gerechnet als Festsubstanz) des Natriumsalzes eines Harzsäuregemisches (Dresinate 731, Abieta Chemie GmbH, Gersthofen, Deutschland, gelöst in alkalisch eingestelltem Wasser) über einen Zeitraum von 5 Stunden zudosiert. Im Laufe der 5 Stunden wird die Reaktionstemperatur von 55°C auf 80°C angehoben. Die weitere Herstellung erfolgt wie bei ABS-Pfropfpolymerisat 1 beschrieben.

ABS-Pfropfpolymerisat 7 (Vergleichsmaterial, nicht erfindungsgemäß)

Die unter "ABS-Pfropfpolymerisat 1" beschriebene Herstellung wird wiederholt, wobei als feinteilige Kautschukkomponente ein ohne Verwendung von Saatlatex hergestellter Polybutadienlatex mit einem mittleren Teilchendurchmesser d_{50} von 183 nm, einer Breite der Teilchengrößenverteilung $d_{90}-d_{10}$ von 103 nm und einem Gelgehalt von 79 Gew.-%, als mittlere Kautschukkomponente ein ohne Verwendung von Saatlatex hergestellter Polybutadienlatex mit einem mittleren Teilchendurchmesser d_{50} von 305 nm, einer Breite der Teilchengrößenverteilung $d_{90}-d_{10}$ von 108 nm und einem Gelgehalt von 55 Gew.-%, und als grobteilige Kautschukkomponente ein ohne Verwendung von Saatlatex hergestellter Polybutadienlatex mit einem mittleren Teilchendurchmesser d_{50} von 423 nm, einer Breite der Teilchengrößenverteilung $d_{90}-d_{10}$ von 99 nm und einem Gelgehalt von 78 Gew.-% eingesetzt wurden.

15

20

30

10

5

ABS-Pfropfpolymerisat 8 (Vergleichsmaterial, nicht erfindungsgemäß)

Die unter "ABS-Pfropfpolymerisat 1" beschriebene Herstellung wird wiederholt, wobei anstelle des Polybutadienlatexgemisches 60 Gew.-Teile (gerechnet als Feststoff) eines ohne Verwendung von Saatlatex hergestellten Polybutadienlatex mit einem mittleren Teilchendurchmesser d_{50} von 131 nm, einer Breite der Teilchengrößenverteilung $d_{90}-d_{10}$ von 76 nm und einem Gelgehalt von 88 Gew.-% eingesetzt wurden.

25 ABS-Pfropfpolymerisat 9 (Vergleichsmaterial, nicht erfindungsgemäß)

Die unter "ABS-Pfropfpolymerisat 1" beschriebene Herstellung wird wiederholt, wobei anstelle des Polybutadienlatexgemisches 60 Gew.-Teile (gerechnet als Feststoff) eines ohne Verwendung von Saatlatex hergestellten Polybutadienlatex mit einem mittleren Teilchendurchmesser d₅₀ von 423 nm, einer Breite der Teilchen-

WO 01/62850 PCT/EP01/01494

- 27 -

größenverteilung d_{90} – d_{10} von 99 nm und einem Gelgehalt von 78 Gew.-% eingesetzt wurden.

Harzkomponente 1

5

Statistisches Styrol / Acrylnitril – Copolymerisat (Styrol : Acrylnitril – Gewichtsverhältnis 72 : 28) mit einem \overline{M}_w von ca. 85.000 und \overline{M}_w / \overline{M}_n –1 \leq 2 erhalten durch radikalische Lösungspolymerisation.

Harzkomponente 2

Statistisches Styrol / Acrylnitril – Copolymerisat (Styrol : Acrylnitril – Gewichtsverhältnis 72 : 28) mit einem \overline{M}_w von ca. 115.000 und \overline{M}_w / \overline{M}_n –1 \leq 2 erhalten durch radikalische Lösungspolymerisation.

15

20

25

10

Formmassen

Die oben beschriebenen Polymerkomponenten werden in den in Tabelle 1 angegebenen Anteilen, 2 Gew.-Teilen Ethylendiaminbisstearylamid und 0,1 Gew.-Teilen eines Silikonöls in einen Innenkneter vermischt und nach Granulierung zu Prüfstäben und zu einer ebenen Platte (zur Beurteilung der Oberfläche) verarbeitet.

Die folgenden Daten werden ermittelt:

Kerbschlagzähigkeit bei Raumtemperatur (a_k) nach ISO 180/1A (Einheit: kJ/m²), thermoplastische Fließfähigkeit (MVI) nach DIN 53735U (Einheit: cm³/10min) und Oberflächenglanz nach DIN 67530 bei einem Reflektionswinkel von 20° (Reflektometerwert).

WO 01/62850 PCT/EP01/01494

- 28 -

Aus den Beispielen (Prüfdaten siehe Tabelle 2) ist ersichtlich, dass sich die erfindungsgemäßen Formmassen durch eine Kombination hoher Zähigkeiten, sehr guter Verarbeitbarkeit und extrem hoher Glanzwerte auszeichnen.

5

Tabelle 1: Zusammensetzungen der Formmassen

Beispiel	ABS-	ABS-	Harzkompo-	Harzkompo-							
	Pfropf-	Pfropf-	nente 1	nente 2							
	polymer	polymer 9	(GewTeile)	(GewTeile)							
	1	2	9	4	2	9	7	∞	(Gew		
	(Gew	Teile)									
	Teile)										
	27		1		1	,	1	:	1	73	-
2	1	27	1	:	1	:	•	1		73	•
3	-	:	27				1		•	73	•
#		1	1	27		:	:	ŀ		73	-
5	•	:	:	i	23,2	ı		;	ı	76,8	-
9	:	1	ŀ	:	1	27	•	;	-	73	-
7(Vergleich)		ŀ	ı	:	ı		27		-	73	-
8(Vergleich)	1	1	ı	·	·	ı		13,5	13,5	73	-
6	40	;	1	:	ŀ	:	1	ı	1	1	09
10		:	40	:		ł	ŀ	1		•	09
11(Vergleich)			1	-		:		-	40	•	09

Tabelle 2: Prüfdaten der Formmassen

Beispiel	a _k (kJ/m²)	MVI (cm ³ /10 min)	Glanzgrad
	18.1	39.9	86
2	19.2	39.0	96
3	19.4	39.1	96
4	17.1	40.2	96
5	19.4	38.3	95
9	18.6	40.1	96
7 (Vergleich)	19.1	36.2	92
8 (Vergleich)	18.3	35.2	93
6	32.0	8.1	95
10	30.8	8.5	95
11 (Vergleich)	30.3	7.6	88

WO 01/62850 PCT/EP01/01494

- 31 -

Patentansprüche

5

10

15

20

25

30

1. Polymerzusammensetzungen enthaltend

I) ein Pfropfkautschukpolymerisat, welches erhältlich ist durch Emulsionspolymerisation von Styrol und Acrylnitril im Gewichtsverhältnis 95: 5 bis 50: 50, wobei Styrol und/oder Acrylnitril ganz oder teilweise ersetzt werden kann durch α-Methylstyrol, Methylmethacrylat oder N-Phenylmaleinimid oder Mischungen hieraus, in Gegenwart einer Mischung aus einem Butadienpolymerisatlatex (A) mit einem mittleren Teilchendurchmesser $d_{50} \le 250$ nm und einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 20 bis 80 nm, und einem Gelgehalt von 30 bis 95 Gew.-%, einem Butadienpolymerisatlatex (B) mit einem mittleren Teilchendurchmesser d₅₀ >250 bis 350 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 30 bis 100 nm, und einem Gelgehalt von 30 bis 80 Gew.-%, und einem Butadienpolymerisatlatex (C) mit einem mittleren Teilchendurchmesser d₅₀ >350 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 40 bis 150 nm, und einem Gelgehalt von 50 bis 95 Gew.-%, wobei die Butadienpolymerisatlatices jeweils 0 bis 50 Gew.-% eines weiteren Vinylmonomeren copolymerisiert enthalten und wobei das Massenverhältnis von eingesetzten Pfropfmonomeren zu eingesetzten Butadienpolymerisaten 5:95 bis 70:30 ist, und

II) mindestens ein kautschukfreies Copolymerisat aus Styrol und Acrylnitril im Gewichtsverhältnis 95 : 5 bis 50 : 50, wobei Styrol und/oder Acrylnitril ganz oder teilweise durch α-Methylstyrol, Methylmeth-

5

10

15

2.

acrylat, oder N-Phenylmaleinimid oder Mischungen hieraus ersetzt werden kann,

wobei mindestens ein Latex ausgewählt aus den Butadienpolymerisatlatices (A), (B) und (C) durch Saatpolymerisation hergestellt wird.

- Polymerzusammensetzungen gemäß Anspruch 1, wobei der Butadienpolymerisatlatex (A) einen mittleren Teilchendurchmesser d₅₀ von 100 bis 240 nm, eine Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 30 bis 60 nm und einen Gelgehalt von 40 bis 90 Gew.-%, der Butadienpolymerisatlatex (B) einen mittleren Teilchendurchmesser d₅₀ von 260 bis 340 nm, eine Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 40 bis 80 nm, und einem Gelgehalt von 40 bis 75 Gew.-%, und der Butadienpolymerisatlatex (C) einen mittleren Teilchendurchmesser d₅₀ von 360 bis 450 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 50 bis 100 nm, und einen Gelgehalt von 55 bis 90 Gew.-% aufweisen.
- 20 3. Polymerzusammensetzungen gemäß Anspruch 1 und 2, wobei der Butadienpolymerisatlatex (A) einen mittleren Teilchendurchmesser d₅₀ von 130 bis 230 nm und eine Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 30 bis 60 nm, und einem Gelgehalt von 50 bis 85 Gew.-%, der Butadienpolymerisatlatex (B) einen mittleren Teilchendurchmesser von d₅₀ 270 bis 320 nm, eine Breite der 25 Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 40 bis 80 nm und einen Gelgehalt von 45 bis 70 Gew.-%, und der Butadienpolymerisatlatex (C) einen mittleren Teilchendurchmesser von d₅₀ 375 bis 430 nm, eine Breite der Teilchengrößen-30 verteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 50 bis 100 nm und einen Gelgehalt von 60 bis 85 Gew.-%, aufweisen.

Polymerzusammensetzung gemäß Anspruch 1 bis 3, wobei mindestens zwei 4. Latices ausgewählt aus den Butadienpolymerisatlatices (A), (B) und (C) durch Saatpolymerisation hergestellt werden.

5

Polymerzusammensetzung gemäß Anspruch 4, wobei alle drei Butadienpoly-5. merisatlatices (A), (B) und (C) durch Saatpolymerisation hergestellt werden.

6. Verfahren zur Herstellung einer Polymerzusammensetzung, wobei ein Pfropf-10 kautschukpolymerisat, welches erhältlich ist durch Emulsionspolymerisation von Styrol und Acrylnitril im Gewichtsverhältnis 95 : 5 bis 50 : 50, wobei Styrol und/oder Acrylnitril ganz oder teilweise ersetzt werden kann durch α-Methylstyrol, Methylmethacrylat oder N-Phenylmaleinimid oder Mischungen hieraus, in Gegenwart einer Mischung aus einem Butadienpolymerisatlatex 15 (A) mit einem mittleren Teilchendurchmesser $d_{50} \le 250$ nm und einer Breite der Teilchengrößenverteilung (gemessen als doo-d10 aus der integralen Teilchengrößenverteilung) von 20 bis 80 nm, und einem Gelgehalt von 30 bis 95 Gew.-%, einem Butadienpolymerisatlatex (B) mit einem mittleren Teilchendurchmesser d₅₀ >250 bis 350 nm, einer Breite der Teilchengrößenverteilung (gemessen als d90-d10 aus der integralen Teilchen-20 größenverteilung) von 30 bis 100 nm, und einem Gelgehalt von 30 bis 80 Gew.-%, und einem Butadienpolymerisatlatex (C) mit einem mittleren Teilchendurchmesser d₅₀ >350 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 40 bis 25 150 nm, und einem Gelgehalt von 50 bis 95 Gew.-%, unter Verwendung von mindestens einem durch Saatpolymerisation hergestellten Latex ausgewählt aus den Butadienpolymerisatlatices (A), (B) und (C) hergestellt wird, wobei die Butadienpolymerisatlatices jeweils 0 bis 50 Gew.-% eines weiteren Vinylmonomeren copolymerisiert enthalten und wobei das Massenverhältnis von eingesetzten Pfropfmonomeren zu eingesetzten Butadienpolymerisaten 5:95 30

bis 70: 30 ist, und das Pfropfpolymerisat mit mindestens einem kaut-

schukfreien Copolymerisat aus Styrol und Acrylnitril im Gewichtsverhältnis 95:5 bis 50:50, wobei Styrol und/oder Acrylnitril ganz oder teilweise durch α-Methylstyrol, Methylmethacrylat, oder N-Phenylmaleinimid oder Mischungen hieraus ersetzt werden kann, gemischt wird.

- 34 -

5

20

25

- 7. Polymerzusammensetzungen gemäß Ansprüchen 1 bis 6 enthaltend zusätzlich mindestens ein Harz ausgewählt aus aromatischem Polycarbonat, aromatischem Polyestercarbonat, Polyester, Polyamid oder Mischungen daraus.
- 10 8. Polymerzusammensetzungen gemäß Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass bei der Erzeugung der Pfropfkautschukpolymerisate der Monomerenzulauf derart durchgeführt wird, dass innerhalb der ersten Hälfte der Gesamtmonomerzudosierzeit 55 bis 90 Gew.-% der gesamten bei der Pfropfpolymerisation einzusetzenden Monomeren zudosiert werden und der verbleibende Monomeranteil innerhalb der zweiten Hälfte der Gesamtmonomerzudosierzeit zudosiert wird.
 - Polymerzusammensetzungen gemäß Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass bei der Erzeugung der Pfropfkautschukpolymerisate der Temperaturunterschied zwischen Beginn und Ende der Pfropfreaktion mindestens 15°C beträgt.
 - 10. Verfahren zur Herstellung von Polymerzusammensetzungen gemäß Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass man die Komponenten I) und II) vermischt und bei erhöhter Temperatur compoundiert und extrudiert.
 - Verwendung der Polymerzusammensetzungen gemäß Ansprüchen 1 bis 10 zur Herstellung von Formteilen.
- 30 12. Formteile erhältlich aus Polymerzusammensetzungen gemäß Ansprüchen 1 bis 10.

13.

5

10

Pfropfkautschukpolymerisat, erhältlich durch Emulsionspolymerisation von Styrol und Acrylnitril im Gewichtsverhältnis 95 : 5 bis 50 : 50, wobei Styrol und/oder Acrylnitril ganz oder teilweise ersetzt werden kann durch α-Methylstyrol, Methylmethacrylat oder N-Phenylmaleinimid oder Mischungen hieraus, in Gegenwart einer Mischung aus einem Butadienpolymerisatlatex (A) mit einem mittleren Teilchendurchmesser $d_{50} \le 250$ nm und einer Breite der Teilchengrößenverteilung (gemessen als d90-d10 aus der integralen Teilchengrößenverteilung) von 20 bis 80 nm und einem Gelgehalt von 30 bis 95 Gew.-%, einem Butadienpolymerisatlatex (B) mit einem mittleren Teilchendurchmesser d₅₀ >250 bis 350 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 30 bis 100 nm, und einem Gelgehalt von 30 bis 80 Gew.-%, und einem Butadienpolymerisatlatex (C) mit einem mittleren Teilchendurchmesser d₅₀ >350 nm, einer Breite der Teilchengrößenverteilung (gemessen als d₉₀-d₁₀ aus der integralen Teilchengrößenverteilung) von 40 bis 150 nm, und einem Gelgehalt von 50 bis 95 Gew.-%, wobei die Butadienpolymerisatlatices jeweils 0 bis 50 Gew.-% eines weiteren Vinylmonomeren copolymerisiert enthalten, wobei das Massenverhältnis von eingesetzten Pfropfmonomeren zu eingesetzten Butadienpolymerisaten 5:95 bis 70:30 ist und wobei mindestens ein Latex ausgewählt aus den Butadienpolymerisatlatices (A), (B) und (C) durch Saatpolymerisation hergestellt wird.

20

15

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8L55/02 CO8L C08L51/04 CO8L25/12 CO8F279/02 C08F279/04 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C08L C08F IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° 1 - 13WO 89 05836 A (DOW CHEMICAL CO) X 29 June 1989 (1989-06-29) page 20, line 31 -page 21, line 6; claims 1,6-8; tables 5-11 1 - 13EP 0 845 496 A (BAYER AG) X 3 June 1998 (1998-06-03) page 3, line 23 - line 28; claim 1 US 4 874 815 A (BUBECK ROBERT A ET AL) 1 - 13X 17 October 1989 (1989-10-17) claims 1,4,5 1 - 13US 4 713 420 A (HENTON DAVID E) Α 15 December 1987 (1987-12-15) claims 1,4,5Patent family members are listed in annex. Further documents are listed in the continuation of box C. . Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art *P* document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 16/07/2001 4 July 2001 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Rouault, Y Fax: (+31-70) 340-3016

ATTEMENTATION AND DEPARTMENT AND AND

Information on patent family members

Intern. .nal Application No PCT/EP 01/01494

Detai	* dan		Publication		atent family	Publication
	nt document search report		date		member(s)	date
110 00	205006		20.06.1000	D.C.	2751720 D	11 04 1006
MO 88	905836	Α	29-06-1989	DE	3751728 D	11-04-1996
				DE	3751728 T	31-10-1996
				EP	0390781 A	10-10-1990
				JP	2799327 B	17-09-1998
				JP	3501626 T	11-04-1991
EP 08	845496		03-06-1998	DE	19649255 A	04-06-1998
		. •		AU	4688997 A	04-06-1998
				BR	9706037 A	06-07-1999
				JP	10158343 A	16-06-1998
				US	5883189 A	16-03-1999
IIS 4	 874815	Α	17-10-1989	AU	594039 B	01-03-1990
00 4	074013	••	2, 20 2000	AU	5271686 A	07-08-1986
				CA	1266732 A	13-03-1990
				DE	3670498 D	23-05-1990
				EP	0190884 A	13-08-1986
				JP	8003023 B	17-01-1996
				JP	61203158 A	09-09-1986
				KR	9303476 B	22-04-1994
					9303470 D	22-04-1994
US 4	713420	Α	15-12-1987	NONE		

Interna .nales Aktenzeichen PCT/EP 01/01494

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 C08L55/02 C08L51/04 C08F279/02 C08L25/12 C08F279/04 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) CO8L CO8F IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete tallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) WPI Data. EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie® 1 - 13WO 89 05836 A (DOW CHEMICAL CO) X 29. Juni 1989 (1989-06-29) Seite 20, Zeile 31 -Seite 21, Zeile 6; Ansprüche 1,6-8; Tabellen 5-11 EP 0 845 496 A (BAYER AG) 1 - 13X 3. Juni 1998 (1998-06-03) Seite 3, Zeile 23 - Zeile 28; Anspruch 1 US 4 874 815 A (BUBECK ROBERT A ET AL) 1 - 13X 17. Oktober 1989 (1989-10-17) Ansprüche 1,4,5 1 - 13US 4 713 420 A (HENTON DAVID E) 15. Dezember 1987 (1987-12-15) Ansprüche 1,4,5 Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum Besondere Kategorien von angegebenen Veröffentlichungen oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert. aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden *E* ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Theorie angegeben ist 'X' Veröffentlichung von besonderer Bedeutung: die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden .y. Veröffentlichung von besonderer Bedeutung: die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und "O" Veröffentlichung, die sich auf eine mündliche Offenbarung. eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist diese Verbindung für einen Fachmann naheliegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 16/07/2001 4. Juli 2001 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Rouault, Y Fax: (+31-70) 340-3016

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Interna. .ales Aktenzeichen

PCT/EP 01/01494

Im Recherchenberich ngeführtes Patentdokui		Datum der Veröffentlichung		itglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 8905836	A	29-06-1989	DE	3751728 D	11-04-1996
			DE	3751728 T	31-10-1996
			EP	0390781 A	10-10-1990
			JP	2799327 B	17-09-1998
			JP	3501626 T	11-04-1991
EP 0845496	Α	03-06-1998	DE	19649255 A	04-06-1998
			AU	4688997 A	04-06-1998
			BR	9706037 A	06-07-1999
			JP	10158343 A	16-06-1998
			US	5883189 A	16-03-1999
US 4874815	Α	17-10-1989	AU	594039 B	01-03-1990
			AU	5271686 A	07-08-1986
			CA	1266732 A	13-03-1990
			DE	3670498 D	23-05-1990
			EP	0190884 A	13-08-1986
			JP	8003023 B	17-01-1996
			JP	61203158 A	09-09-1986
			KR	9303476 B	22-04-1994
US 4713420	Α	15-12-1987	KEII		