APPROXIMATIONS FOR THE DISTRIBUTION OF THE DISCRETE SCAN STATISTICS WHEN THE SCANNING WINDOW HAS ARBITRARY SHAPE

Alexandru Amărioarei

National Institute of Research and Development for Biological Sciences

The 19th Conference of the Romanian Society of Probability and Statistics

27-28 May, 2016, București, România

OUTLINE

- Introduction
 - Framework
 - Problem
- METHODOLOGY
 - Approximation
 - Simulation methods: Normal data
- SIMULATION STUDY
 - Numerical examples
 - Power
- REFERENCES

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 Methodology
 - Approximation
 - Simulation methods: Normal data
- SIMULATION STUDY
 - Numerical examples
 - Power
- 4 References

Definitions and notations

Preliminary notations

Let T_1 , T_2 be positive integers

- Rectangular region $\mathcal{R}_2 = [0, T_1] \times [0, T_2]$
- $\bullet \ (X_{s_1,s_2})_{\substack{1 \leq s_1 \leq T_1 \\ 1 \leq s_2 \leq T_2}} \text{ i.i.d. r.v.'s}$
 - Bernoulli($\mathcal{B}(1,p)$)
 - Binomial($\mathcal{B}(n,p)$)
 - Poisson($\mathcal{P}(\lambda)$)
 - Normal($\mathcal{N}(\mu, \sigma^2)$)
- X_{s_1,s_2} number of observed events in the elementary subregion $r_{s_1,s_2} = [s_1 - 1, s_1] \times [s_2 - 1, s_2]$

Two dimensional scan statistic

Let $2 \le m_s \le T_s$, $s \in \{1,2\}$ be positive integers

• Define for $1 \le i_s \le T_s - m_s + 1$ and $1 \le j_s \le m_s$ the 2-way tensor $\mathfrak{X}_{i_1,i_2} \in \mathbb{R}^{m_1 \times m_2}$,

$$\mathfrak{X}_{i_1,i_2}(j_1,j_2) = X_{i_1+j_1-1,i_2+j_2-1}$$

• Take $S: \mathbb{R}^{m_1 \times m_2} \to \mathbb{R}$ to be a measurable real valued function (*score function*) and define

$$Y_{i_1,i_2}(\mathcal{S}) = \mathcal{S}\left(\mathfrak{X}_{i_1,i_2}\right)$$

DEFINITION

The two dimensional scan statistic with score function ${\mathcal S}$ is defined by

$$S_{m_1,m_2}(T_1,T_2;\mathcal{S}) = \max_{\substack{1 \leq i_1 \leq T_1 - m_1 + 1\\ 1 \leq i_2 \leq T_2 - m_2 + 1}} Y_{i_1,i_2}(\mathcal{S})$$

SHAPE OF THE SCANNING WINDOW

Let G be the geometrical shape of the scanning window (rectangle, quadrilateral, ellipse, etc.) and \tilde{G} be its corresponding discrete form.

- ullet Rasterization algorithms (omputer vision): continuous shape ightarrow discrete shape
 - Line Bresenham line algorithm ([Bresenham, 1965])
 - Circle Bresenham circle algorithm ([Bresenham, 1977])
 - Bezier curves [Foley, 1995]

SHAPE OF THE SCANNING WINDOW

To each discrete shape \tilde{G} it corresponds an unique matrix (2-way tensor) $A\left(\mathcal{G}
ight) =A\left(ilde{G}
ight)$ (of smallest size) with 0 and 1 entries (1 if there is a point and 0 otherwise):

Arbitrary window scan statistic

Let G be a geometric shape and A=A(G) its corresponding $\{0,1\}$ matrix of size $m_1\times m_2$.

ullet Define the score function ${\mathcal S}$ associated to the shape G by

$$S(X_{i_1,i_2}) = A \circ X_{i_1,i_2} = \sum_{s_1=i_1}^{i_1+m_1-1} \sum_{s_2=i_2}^{i_2+m_2-1} A(s_1-i_1+1,s_2-i_2+1) X_{s_1,s_2}$$

Remark

If, in particular, the shape G is a rectangle of size $m_1 \times m_2$ than its corresponding $\{0,1\}$ matrix of the same size has all the entries equal to 1 so the score function

$$S\left(X_{i_1,i_2}\right) = \sum_{s_1=i_1}^{i_1+m_1-1} \sum_{s_2=i_2}^{i_2+m_2-1} X_{s_1,s_2}$$

is the classical rectangular window of the two dimensional scan statistics.

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 METHODOLOGY
 - Approximation
 - Simulation methods: Normal data
- 3 SIMULATION STUDY
 - Numerical examples
 - Power
- 4 References

Problem and related work

OBJECTIVE

Find a good estimate for the distribution of the two dimensional discrete scan statistic with score function ${\cal S}$

$$Q_{\mathbf{m}}(\mathsf{T};\mathcal{S}) = \mathbb{P}\left(S_{\mathbf{m}}(\mathsf{T};\mathcal{S}) \leq \tau\right)$$

with $\mathbf{m}=(m_1,m_2)$ and $\mathbf{T}=(T_1,T_2)$

Previous work:

- Continuous scan statistics
 - Rectangles: [Loader, 1991], [Glaz et al., 2001], [Glaz et al., 2009]
 - Circles: [Anderson and Titterington, 1997]
 - Triangles, ellipses and other convex shapes: [Alm, 1983, Alm, 1997, Alm, 1998], [Tango and Takahashi, 2005], [Assunção et al., 2006]
- Discrete scan statistics
 - No results!

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 Methodology
 - Approximation
 - Simulation methods: Normal data
- SIMULATION STUDY
 - Numerical examples
 - Power
- 4 References

Approximation methodology for the general scan statistic

APPROXIMATION AND ERROR BOUNDS

Theorem (Generalization of [Amărioarei, 2014])

Let
$$t_1, t_2 \in \{2, 3\}$$
, $Q_{t_1, t_2} = \mathbb{P}\left(S_{\mathsf{m}}\left(t_1(m_1 - 1), t_2(m_2 - 1); \mathcal{S}\right) \leq \tau\right)$ and $L_s = \left\lfloor \frac{T_s}{m_s - 1} \right\rfloor$, $s \in \{1, 2\}$. If \hat{Q}_{t_1, t_2} is an estimate of Q_{t_1, t_2} , $\left|\hat{Q}_{t_1, t_2} - Q_{t_1, t_2}\right| \leq \beta_{t_1, t_2}$ and τ is such that $1 - \hat{Q}_{2, 2}(\tau) \leq 0.1$ then

$$\left| \mathbb{P}(S_{\mathsf{m}}(\mathsf{T}; \mathcal{S}) \leq \tau) - \left(2\hat{Q}_2 - \hat{Q}_3 \right) \left[1 + \hat{Q}_2 - \hat{Q}_3 + 2(\hat{Q}_2 - \hat{Q}_3)^2 \right]^{1 - L_1} \right| \leq E_{sf} + E_{sapp},$$

where, for
$$t \in \{2, 3\}$$

$$\begin{split} \hat{Q}_t &= \left(2\hat{Q}_{t,2} - \hat{Q}_{t,3}\right) \left[1 + \hat{Q}_{t,2} - \hat{Q}_{t,3} + 2(\hat{Q}_{t,2} - \hat{Q}_{t,3})^2\right]^{1-L_2} \\ E_{sf} &= (L_1 - 1)(L_2 - 1)\left(\beta_{2,2} + \beta_{2,3} + \beta_{3,2} + \beta_{3,3}\right) \\ E_{sapp} &= (L_1 - 1)\left[F_1\left(1 - \hat{Q}_2 + A_2 + C_2\right)^2 + (L_2 - 1)(F_2C_2 + F_3C_3)\right] \\ A_2 &= (L_2 - 1)\left(\beta_{2,2} + \beta_{2,3}\right) \\ C_t &= (L_2 - 1)F_t\left(1 - \hat{Q}_{t,2} + \beta_{t,2}\right)^2. \end{split}$$

ILLUSTRATION OF THE APPROXIMATION PROCESS

Find Approximation

ILLUSTRATION OF THE APPROXIMATION PROCESS

ILLUSTRATION OF THE APPROXIMATION PROCESS

OUTLINE

- - Framework
 - Problem
- METHODOLOGY
 - Approximation
 - Simulation methods: Normal data
- - Numerical examples
 - Power

SPSR 2016

Simulation methods for Normal data

IMPORTANCE SAMPLING ALGORITHM

Test the null hypothesis of randomness against an alternative of clustering

 H_0 : The r.v.'s X_{s_1,s_2} are i.i.d. $\mathcal{N}(\mu,\sigma^2)$

 H_1 : There exists $\mathcal{R}(i_1, i_2) = [i_1 - 1, i_1 + m_1 - 1] \times [i_2 - 1, i_2 + m_2 - 1] \subset \mathcal{R}_2$ where the r.v.'s $X_{s_1,s_2} \sim \mathcal{N}(\mu_1,\sigma^2)$, $\mu_1 > \mu$ and $X_{s_1,s_2} \sim \mathcal{N}(\mu,\sigma^2)$ outside $\mathcal{R}(i_1,i_2)$

OBJECTIVE

Find a good estimate for $\mathbb{P}_{H_0}(S_m(T;\mathcal{S}) \geq \tau)$.

We are interested in evaluating the probability

$$\mathbb{P}_{\textit{H}_{0}}\left(\textit{S}_{m}(\textbf{T};\mathcal{S}) \geq \tau\right) = \mathbb{P}\left(\bigcup_{\textit{i}_{1}=1}^{\textit{T}_{1}-\textit{m}_{1}+1}\bigcup_{\textit{i}_{2}=1}^{\textit{T}_{2}-\textit{m}_{2}+1}\textit{E}_{\textit{i}_{1},\textit{i}_{2}}(\mathcal{S})\right)$$

where $E_{i_1,i_2}(S) = \{Y_{i_1,i_2}(S) > \tau\}$.

IMPORTANCE SAMPLING ALGORITHM

Algorithm 1 Importance Sampling Algorithm for Scan Statistics

Begin

Repeat for each k from 1 to ITER (iterations number)

- 1: Generate uniformly the couple $(i_1^{(k)}, i_2^{(k)})$ from the set $\{1, \ldots, T_1 m_1 + 1\} \times \{1, \ldots, T_2 m_1 + 1\}$ $m_2 + 1$.
- 2: Given the couple $(i_1^{(k)}, i_2^{(k)})$, generate a sample of the random field $\tilde{\mathbf{X}}^{(k)} = \{\tilde{X}_{s_1, s_2}^{(k)}\}$, with $s_j \in$ $\{1,\ldots,T_j\}$ and $j\in\{1,2\}$, from the conditional distribution of **X** given $\left\{Y_{i(k),j(k)}(\mathcal{S})\geq \tau\right\}$.
- 3: Take $c_k = C(\widetilde{\mathbf{X}}^{(k)})$ the number of all couples (i_1,i_2) for which $\widetilde{Y}_{i_1,i_2}(\mathcal{S}) \geq au$ and put $\widehat{\rho}_k(2) = \frac{1}{\epsilon_k}$

End Repeat Return

$$\widehat{\rho}(2) = \frac{1}{\textit{ITER}} \sum_{k=1}^{\textit{ITER}} \widehat{\rho}_k(2), \quad \textit{Var} \left[\widehat{\rho}(2) \right] \approx \frac{1}{\textit{ITER} - 1} \sum_{k=1}^{\textit{ITER}} \left(\widehat{\rho}_k(2) - \frac{1}{\textit{ITER}} \sum_{k=1}^{\textit{ITER}} \widehat{\rho}_k(2) \right)^2$$

End

IMPORTANCE SAMPLING ALGORITHM: $\mathcal{N}(\mu, \sigma^2)$

Step 2 requires to sample:

- $Y_{i_i^{(k)},i_j^{(k)}}(\mathcal{S})$ from the tail distribution $\mathbb{P}\left(Y_{i_i^{(k)},i_j^{(k)}}(\mathcal{S}) \geq \tau\right)$ ([Devroye, 1986])
- ullet for the other indices, from the conditional distribution given $\left\{Y_{:(k)::(k)}(\mathcal{S})\geq au
 ight\}$

Lemma (Generalization of [Amarioarei, 2014, Lemma 3.4.4])

Let N be a positive integer, $\mathbf{X} = (X_1, X_2, \dots, X_N)$ be a vector of i.i.d. $\mathcal{N}(\mu, \sigma^2)$ and $\mathbf{a} = (a_1, \dots, a_N) \in \mathbb{R}^N$ a non zero constant vector $(a_i \neq 0 \text{ for some }$ particular j). Then conditionally given $\langle \mathbf{a}, \mathbf{X} \rangle = t$, the r.v.'s X_s with $s \neq j$ are jointly distributed as

$$\tilde{X}_s = \frac{a_s}{\|a\|} \left[\frac{t - \mu a_j}{\|a\|} - \frac{1}{\|a\| - |a_j|} \sum_{i \neq j} a_i \left(Z_i - \frac{\mu |a_j|}{\|a\|} \right) \right] + Z_s$$

where Z_s are i.i.d. $\mathcal{N}(\mu, \sigma^2)$ r.v.s.

OUTLINE

- INTRODUCTION
 - Framework
 - Problem
- 2 Methodology
 - Approximation
 - Simulation methods: Normal data
- SIMULATION STUDY
 - Numerical examples
 - Power
- 4 References

Numerical examples

Table 1 : Numerical results for $\mathbb{P}(S \leqslant \tau)$: Triangle

Window's shape

Triangle $(m_1 = 14, m_2 = 18, Nt = 133, IS = 1e4, IA = 1e5)$

		$\sim B(1, 0.01)$		$X_{s_1,s_2} \sim B(5,0.05)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
3	0.916175	0.919820	0.010823	59	0.862501	0.894851	0.012021		
4	0.997471	0.997507	0.000257	60	0.935163	0.948980	0.005516		
5	0.999946	0.999946	0.000005	61	0.972665	0.975087	0.002637		
6	0.999999	0.999999	0	62	0.986982	0.988558	0.001273		
7	0.999999	0.999999	0	63	0.994493	0.994676	0.000599		
8	1.000000	1.000000	0	64	0.997532	0.997604	0.000280		
9	1.000000	1.000000	0	65	0.998943	0.998978	0.000126		
10	1.000000	1.000000	0	66	0.999556	0.999562	0.000057		
11	1.000000	1.000000	0	67	0.999824	0.999819	0.000025		

	$X_{s_1,s}$	$_{2} \sim \mathcal{P}(0.25)$		$X_{s_1,s_2} \sim \mathcal{N}(0,1)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
59	0.737933	0.822902	0.024424	50	0.912185	0.932616	0.007379		
60	0.871787	0.903293	0.011103	51	0.946149	0.957850	0.004762		
61	0.938941	0.951589	0.005389	52	0.966194	0.974052	0.003052		
62	0.972291	0.975560	0.002639	53	0.980486	0.982878	0.001962		
63	0.987388	0.988468	0.001309	54	0.988291	0.989444	0.001243		
64	0 994128	0.994332	0.000642	55	0.993024	0.993292	0.000805		
65	0.997330	0.997386	0.000307	56	0.995643	0.996031	0.000505		
66	0.998794	0.998844	0.000147	57	0.997513	0.997494	0.000318		
67	0.999474	0.999490	0.000068	58	0.998482	0.998597	0.000198		

12(1 0 01)

Scanning a region of size $T_1 \times T_2 = 250 \times 250$

Table 1 : Numerical results for $\mathbb{P}(S \leqslant \tau)$: Triangle

Window's shape

Triangle $(m_1 = 14, m_2 = 18, Nt = 133, IS = 1e4, IA = 1e5)$

	^s ₁ ,s ₂	$\sim B(1, 0.01$		$\lambda_{s_1,s_2} \sim \mathcal{B}(5,0.05)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
3	0.916175	0.919820	0.010823	59	0.862501	0.894851	0.012021		
4	0.997471	0.997507	0.000257	60	0.935163	0.948980	0.005516		
5	0.999946	0.999946	0.000005	61	0.972665	0.975087	0.002637		
6	0.999999	0.999999	0	62	0.986982	0.988558	0.001273		
7	0.999999	0.999999	0	63	0.994493	0.994676	0.000599		
8	1.000000	1.000000	0	64	0.997532	0.997604	0.000280		
9	1.000000	1.000000	0	65	0.998943	0.998978	0.000126		
10	1.000000	1.000000	0	66	0.999556	0.999562	0.000057		
11	1.000000	1.000000	0	67	0.999824	0.999819	0.000025		

		X_{s_1,s_2}	$\sim \mathcal{P}(0.25)$		$X_{s_1,s_2} \sim \mathcal{N}(0,1)$					
	τ	Sim	АррН	ETotal	τ	Sim	АррН	ETotal		
-	59	0.737933	0.822902	0.024424	50	0.912185	0.932616	0.007379		
	60	0.871787	0.903293	0.011103	51	0 946149	0.957850	0.004762		
	61	0.938941	0.951589	0.005389	52	0.966194	0.974052	0.003052		
	62	0.972291	0.975560	0.002639	53	0.980486	0.982878	0.001962		
	63	0 987388	0.988468	0.001309	54	0.988291	0.989444	0.001243		
	64	0.994128	0.994332	0.000642	55	0.993024	0.993292	0.000805		
	65	0.997330	0.997386	0.000307	56	0.995643	0.996031	0.000505		
	66	0 998794	0.998844	0.000147	57	0.997513	0.997494	0.000318		
	67	0.999474	0.999490	0.000068	58	0.998482	0.998597	0.000198		

Table 2: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Rectangle

Window's shape

Rectangle $(m_1 = 11, m_2 = 12, Nt = 132, IS = 1e4, IA = 1e5)$

×	٠			×					٠		
•											*
•		П			П		П		П		H
×											×
•					П		П				ŧ
ж											ñ
×	П		П	П	П	П	П	П		П	•
м		П		П			П		П		H
Ħ			П		П		П	П		П	×
•		П			П		П		П		1
٠											ī
×	П	Г	П		П	П	Г	П	Г	П	Ė
4	×	Ŧ	•	÷			Ŧ		Ŧ		

		$\sim \mathcal{B}(1, 0.01)$		$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
3	0.947673	0.947757	0.005972	59	0.857404	0.856832	0.012641		
4	0.997963	0.997979	0.000180	60	0.920590	0.919603	0.005960		
5	0.999942	0.999942	0.000004	61	0.956954	0.956530	0.002886		
6	0.999998	0.999998	0	62	0.977155	0.977179	0.001395		
7	0.999999	0.999999	0	63	0.988161	0.988263	0.000669		
8	1 000000	1.000000	0	64	0.994206	0.994089	0.000319		
9	1 000000	1.000000	0	65	0.997114	0.997114	0.000149		
10	1.000000	1.000000	0	66	0.998593	0 998613	0.000069		
11	1.000000	1.000000	0	67	0.999341	0.999819	0.000031		

		X _{s1} ,s	$_{2} \sim \mathcal{P}(0.25)$		$X_{s_1,s_2} \sim \mathcal{N}(0,1)$					
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
_	59	0.763228	0.763426	0.025991	50	0.864066	0 866081	0.010457		
	60	0.856115	0.858712	0.012264	51	0.904818	0.903116	0.006651		
	61	0.918130	0.918395	0.005941	52	0.932521	0.932663	0.004281		
	62	0.954831	0.954517	0.002958	53	0.954031	0.953874	0.002751		
	63	0.975084	0.975426	0.001483	54	0.968702	0.968700	0.001775		
	64	0.986979	0.987017	0.000735	55	0.978715	0.978566	0.001145		
	65	0.993240	0.993240	0.000361	56	0.985771	0.985812	0.000731		
	66	0.996511	0.996547	0.000176	57	0.990663	0.990575	0.000468		
	67	0.998276	0.998279	0.000084	58	0.993763	0.993827	0.000296		

12(1 0 01)

Table 2: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Rectangle

Window's shape

Rectangle $(m_1 = 11, m_2 = 12, Nt = 132, IS = 1e4, IA = 1e5)$

		÷	×	ı,	r		ī	×	÷	×	į.
÷	Н	-	н	Н	Н	Н	-	н	Н	н	٠
٠	П		П	П	Т		П	П		П	Ŧ
Ħ										п	×
٠		П		П	П	П	П	П	П	Ħ	
н		ш									Ŧ
Ŧ					Г						
а	П	П		П	П	П	П	п	П		×
٠		ш	ш	ш					ш	ш	۰
B	П		н	П	П	П		н		н	×
٠											۰
٠	Ш	Ш	ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	×

	1, 2	$\sim B(1,0.01$		$\lambda_{s_1,s_2} \sim \mathcal{D}(5,0.05)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
3	0.947673	0.947757	0.005972	59	0.857404	0.856832	0.012641		
4	0.997963	0.997979	0.000180	60	0.920590	0.919603	0.005960		
5	0.999942	0.999942	0.000004	61	0.956954	0.956530	0.002886		
6	0.999998	0.999998	0	62	0.977155	0.977179	0 001395		
7	0.999999	0.999999	0	63	0.988161	0.988263	0.000669		
8	1.000000	1.000000	0	64	0.994206	0.994089	0.000319		
9	1.000000	1.000000	0	65	0.997114	0.997114	0.000149		
10	1.000000	1.000000	0	66	0.998593	0 998613	0.000069		
11	1.000000	1.000000	0	67	0.999341	0.999819	0.000031		

			$_2 \sim \mathcal{P}(0.25)$		$X_{s_1,s_2} \sim \mathcal{N}(0,1)$					
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
-	59	0.763228	0.763426	0.025991	50	0.864066	0.866081	0.010457		
	60	0.856115	0.858712	0.012264	51	0.904818	0.903116	0.006651		
	61	0.918130	0.918395	0.005941	52	0.932521	0.932663	0.004281		
	62	0 954831	0.954517	0.002958	53	0.954031	0.953874	0.002751		
	63	0.975084	0.975426	0.001483	54	0.968702	0.968700	0.001775		
	64	0.986979	0.987017	0.000735	55	0.978715	0.978566	0.001145		
	65	0.993240	0.993240	0.000361	56	0.985771	0.985812	0.000731		
	66	0 996511	0.996547	0.000176	57	0.990663	0.990575	0.000468		
	67	0.998276	0.998279	0.000084	58	0.993763	0.993827	0.000296		

Table 3: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Quadrilateral

Window's shape

Quadrilateral ($m_1 = 14, m_2 = 18, Nt = 131, IS = 1e4, IA = 1e5$)

	X_{s_1,s_2}	$\sim \mathcal{B}(1, 0.01)$)	$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
3	0.925258	0.926174	0.009722	59	0.913203	0.926709	0.007540		
4	0.997615	0.997619	0.000235	60	0.958806	0.963738	0.003582		
5	0.999945	0.999945	0.000005	61	0.981433	0.982643	0.001725		
6	0.999999	0.999999	0	62	0.991635	0.991891	0.000823		
7	0.999999	0.999999	0	63	0.996170	0.996220	0.000387		
8	1.000000	1.000000	0	64	0.998287	0.998322	0.000180		
9	1.000000	1.000000	0	65	0.999243	0.999240	0.000082		
10	1.000000	1.000000	0	66	0.999679	0.999693	0.000037		
11	1.000000	1.000000	0	67	0.999866	0.999869	0.000016		

	X s1 , s	$_{2} \sim \mathcal{P}(0.25)$		$m{X_{s_1,s_2}} \sim \mathcal{N}(0,1)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
59	0.836771	0.871611	0.015388	50	0.920571	0.935366	0.006875		
60	0 918389	0.931407	0.007235	51	0.949483	0.957631	0.004378		
61	0.960554	0.963979	0.003555	52	0.968977	0.972699	0.002844		
62	0.981340	0.982444	0.001754	53	0.980772	0.982865	0.001823		
63	0 991148	0 991396	0.000863	54	0.988182	0.989097	0.001175		
64	0.995798	0.996026	0.000423	55	0.992870	0.992982	0.000758		
65	0.998148	0.998168	0.000205	56	0.995739	0.995736	0.000481		
66	0.999126	0.999157	0.000097	57	0.997355	0.997429	0.000302		
67	0.999618	0.999621	0.000045	58	0.998397	0.998445	0.000190		

Table 3: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Quadrilateral

Window's shape Quadrilateral $(m_1 = 14, m_2 = 18, Nt = 131, IS = 1e4, IA = 1e5)$

	X_{s_1,s_2}	$\sim \mathcal{B}(1, 0.01$	L)		X_{s_1,s_2}	$\sim \mathcal{B}(5, 0.05)$	5)
τ	Sim	АррН	ETotal .	τ	Sim	АррН	E Total
3	0.925258	0.926174	0.009722	59	0.913203	0.926709	0.007540
4	0.997615	0.997619	0.000235	60	0.958806	0.963738	0.003582
5	0.999945	0.999945	0.000005	61	0.981433	0.982643	0.001725
6	0.999999	0.999999	0	62	0.991635	0 991891	0.000823
7	0.999999	0.999999	0	63	0.996170	0.996220	0.000387
8	1.000000	1.000000	0	64	0.998287	0.998322	0.000180
9	1.000000	1.000000	0	65	0.999243	0.999240	0.000082
10	1.000000	1.000000	0	66	0.999679	0.999693	0.000037
11	1.000000	1.000000	0	67	0.999866	0.999869	0.000016

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{oldsymbol{s_1},oldsymbol{s_2}}\sim\mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
•	59	0.836771	0.871611	0.015388	50	0.920571	0.935366	0.006875	
	60	0.918389	0.931407	0.007235	51	0.949483	0.957631	0.004378	
	61	0.960554	0.963979	0.003555	52	0.968977	0.972699	0.002844	
	62	0.981340	0.982444	0 001754	53	0.980772	0.982865	0.001823	
	63	0.991148	0.991396	0.000863	54	0 988182	0.989097	0.001175	
	64	0.995798	0.996026	0.000423	55	0.992870	0.992982	0.000758	
	65	0.998148	0.998168	0.000205	56	0.995739	0.995736	0.000481	
	66	0.999126	0.999157	0.000097	57	0.997355	0.997429	0.000302	
	67	0.999618	0.999621	0.000045	58	0.998397	0.998445	0.000190	

~ 13(1 0 01)

Scanning a region of size $T_1 \times T_2 = 250 \times 250$

Table 4: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Circle

Window's shape

Circle $(m_1 = 13, m_2 = 13, Nt = 129, IS = 1e4, IA = 1e5)$

	^s ₁ ,s ₂	$\sim B(1, 0.01)$,		^s ₁ ,s ₂	$\sim B(5, 0.05)$,	
τ	Sim	АррН	ETotal .	τ	Sim	АррН	E Total	
3	0.949902	0.950399	0.006284	59	0.920134	0.920987	0.005962	
4	0.998131	0.998099	0.000187	60	0.956871	0.957137	0.002840	
5	0.999947	0.999947	0.000004	61	0.977475	0.977539	0.001366	
6	0.999998	0.999998	0	62	0.988597	0.988595	0.000651	
7	0.999999	0.999999	0	63	0.994265	0.994274	0.000306	
8	1.000000	1.000000	0	64	0.997227	0.997257	0.000142	
9	1.000000	1.000000	0	65	0.998698	0.998675	0.000065	
10	1.000000	1.000000	0	66	0.999377	0.999381	0.000029	
11	1.000000	1.000000	0	67	0.999709	0.999715	0.000013	
								۰

		$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
_	59	0.860740	0.860278	0.012220	50	0.889276	0.889385	0.008241		
	60	0.918923	0.919454	0.005955	51	0.920701	0.920950	0.005242		
	61	0.955942	0.955339	0.002915	52	0.945380	0.945514	0.003351		
	62	0.975615	0.975720	0.001449	53	0.962727	0.962884	0.002142		
	63	0.987403	0.987314	0.000712	54	0.974988	0.974968	0.001370		
	64	0.993559	0.993485	0.000347	55	0.983200	0.983188	0.000875		
	65	0.996698	0.996696	0.000167	56	0.989078	0.988928	0.000556		
	66	0.998365	0.998353	0.000079	57	0.992649	0.992725	0.000350		
	67	0.999213	0.999202	0.000037	58	0.995300	0.995278	0.000220		

~ B(E 0.05)

 $X_{a_1} \sim \mathcal{B}(1,0.01)$

Scanning a region of size $T_1 \times T_2 = 250 \times 250$

Table 4: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Circle

Window's shape

Circle $(m_1 = 13, m_2 = 13, Nt = 129, IS = 1e4, IA = 1e5)$

	^s ₁ ,s ₂	P = D(1, 0.01)	.)		^ s ₁ , s ₂	$\mathcal{L}(3,0.03)$,,
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total
3	0.949902	0.950399	0.006284	59	0.920134	0.920987	0.005962
4	0.998131	0.998099	0.000187	60	0.956871	0.957137	0.002840
5	0.999947	0.999947	0.000004	61	0.977475	0.977539	0.001366
6	0.999998	0.999998	0	62	0.988597	0.988595	0.000651
7	0.999999	0.999999	0	63	0.994265	0.994274	0.000306
8	1.000000	1.000000	0	64	0.997227	0.997257	0.000142
9	1.000000	1.000000	0	65	0.998698	0.998675	0.000065
10	1.000000	1.000000	0	66	0.999377	0.999381	0.000029
11	1.000000	1.000000	0	67	0.999709	0.999715	0.000013

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
_	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
_	59	0.860740	0.860278	0.012220	50	0.889276	0.889385	0.008241	
	60	0 918923	0.919454	0.005955	51	0.920701	0.920950	0.005242	
	61	0.955942	0.955339	0.002915	52	0.945380	0.945514	0.003351	
	62	0.975615	0.975720	0 001449	53	0.962727	0.962884	0.002142	
	63	0.987403	0.987314	0.000712	54	0.974988	0.974968	0.001370	
	64	0.993559	0.993485	0.000347	55	0.983200	0.983188	0.000875	
	65	0.996698	0.996696	0.000167	56	0.989078	0.988928	0.000556	
	66	0.998365	0.998353	0.000079	57	0.992649	0.992725	0.000350	
	67	0.999213	0.999202	0.000037	58	0.995300	0.995278	0.000220	

 $X_{a_1} \sim \mathcal{B}(5, 0.05)$

Table 5: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Ellipse

Window's shape

Ellipse $(m_1 = 19, m_2 = 9, Nt = 135, IS = 1e4, IA = 1e5)$

	X_{s_1,s_2}	$\sim \mathcal{B}(1, 0.01)$)	$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.945149	0.944018	0.006856	59	0.761436	0.764423	0.022290	
4	0.997692	0.997783	0.000217	60	0.861070	0.858224	0.011120	
5	0.999934	0.999935	0.000005	61	0.922564	0.920545	0.005593	
6	0.999998	0.999998	0	62	0.956994	0.956925	0.002803	
7	0.999999	0.999999	0	63	0.977214	0.977111	0.001391	
8	1.000000	1.000000	0	64	0.988164	0.988170	0.000678	
9	1.000000	1.000000	0	65	0.993942	0.994013	0.000328	
10	1.000000	1.000000	0	66	0 997061	0.997005	0.000155	
11	1.000000	1.000000	0	67	0.998561	0.998565	0.000072	

$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
59	0.638328	0.638600	0.042412	50	0.845330	0.842760	0.011460	
60	0.769531	0.769090	0.021264	51	0.887757	0.887823	0.007568	
61	0.860703	0.859829	0.010885	52	0.921023	0.920804	0.005026	
62	0.918782	0.919289	0.005606	53	0.944751	0.944745	0.003312	
63	0.954499	0.954971	0.002890	54	0.961667	0.961830	0.002176	
64	0.975360	0.975217	0.001468	55	0.973786	0.973964	0.001431	
65	0.986788	0.986846	0.000746	56	0.982379	0.982058	0.000929	
66	0.993076	0.993056	0.000372	57	0.988009	0.988142	0.000599	
67	0.996464	0.996456	0.000183	58	0.992139	0.992160	0.000385	

12(1 0 01)

Scanning a region of size $T_1 \times T_2 = 250 \times 250$

Table 5: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Ellipse

Window's shape

Ellipse $(m_1 = 19, m_2 = 9, Nt = 135, IS = 1e4, IA = 1e5)$

	× _{s1} , _{s2}	$\sim B(1, 0.01)$.)		X s ₁ , s ₂	$\sim B(5, 0.05)$	
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total
3	0.945149	0.944018	0.006856	59	0.761436	0.764423	0.022290
4	0.997692	0.997783	0.000217	60	0.861070	0.858224	0.011120
5	0.999934	0.999935	0.000005	61	0.922564	0.920545	0.005593
6	0.999998	0.999998	0	62	0.956994	0.956925	0.002803
7	0.999999	0.999999	0	63	0.977214	0.977111	0.001391
8	1.000000	1.000000	0	64	0.988164	0.988170	0.000678
9	1.000000	1.000000	0	65	0.993942	0.994013	0.000328
10	1.000000	1.000000	0	66	0.997061	0.997005	0.000155
11	1.000000	1.000000	0	67	0.998561	0.998565	0.000072

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$			
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total
-	59	0.638328	0.638600	0.042412	50	0.845330	0.842760	0.011460
	60	0 769531	0.769090	0.021264	51	0.887757	0.887823	0.007568
	61	0.860703	0.859829	0.010885	52	0.921023	0.920804	0.005026
	62	0.918782	0.919289	0.005606	53	0.944751	0.944745	0.003312
	63	0.954499	0.954971	0.002890	54	0.961667	0 961830	0.002176
	64	0.975360	0.975217	0.001468	55	0.973786	0.973964	0.001431
	65	0.986788	0.986846	0.000746	56	0.982379	0.982058	0.000929
	66	0.993076	0.993056	0.000372	57	0.988009	0.988142	0.000599
	67	0.996464	0.996456	0.000183	58	0.992139	0.992160	0.000385

Table 6: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Annulus

Window's shape

Annulus ($m_1 = 17, m_2 = 17, Nt = 124, IS = 1e4, IA = 1e5$)

	^s ₁ ,s ₂	$\sim B(1, 0.01)$			^ s ₁ ,s ₂	$\sim B(5, 0.05)$	
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total
3	0.881687	0.882372	0.009897	59	0.951321	0.951283	0.001572
4	0.995456	0.995488	0.000210	60	0.975645	0.975784	0.000654
5	0.999882	0.999883	0.000004	61	0.988191	0.988284	0.000280
6	0.999997	0.999997	0	62	0.994451	0 994451	0.000120
7	0.999999	0.999999	0	63	0.997437	0.997444	0.000051
8	1.000000	1.000000	0	64	0.998835	0.998838	0.000021
9	1.000000	1.000000	0	65	0.99948	0.999483	0.000009
10	1.000000	1.000000	0	66	0.999774	0.999774	0.000003
11	1.000000	1.000000	0	67	0.999903	0.999903	0.000001

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
_	59	0.902926	0.903783	0.003972	50	0.860688	0.860266	0.006625	
	60	0.948792	0.949016	0.001623	51	0.905117	0.904708	0.003571	
	61	0.973906	0.973904	0.000700	52	0.936387	0.935930	0.001991	
	62	0.986863	0.986917	0.000311	53	0.957907	0.957630	0.001137	
	63	0.993560	0.993580	0.000138	54	0.972310	0.972343	0.000661	
	64	0.996904	0.996901	0.000061	55	0.982134	0.982127	0.000386	
	65	0.998536	0.998536	0.000027	56	0.988540	0.988555	0.000228	
	66	0.999318	0.999318	0.000011	57	0.992783	0.992775	0.000135	
	67	0.999688	0.999689	0.000005	58	0.995458	0.995467	0.000079	

~ 13(1 0 01)

Scanning a region of size $T_1 \times T_2 = 250 \times 250$

Table 6: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Annulus

Window's shape

Annulus ($m_1 = 17, m_2 = 17, Nt = 124, IS = 1e4, IA = 1e5$)

	$\lambda_{s_1,s_2} \sim \mathcal{B}(1,0.01)$				$\lambda_{s_1,s_2} \sim B(s,0.05)$			
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.881687	0.882372	0.009897	59	0.951321	0.951283	0.001572	
4	0.995456	0.995488	0.000210	60	0.975645	0.975784	0.000654	
5	0.999882	0.999883	0.000004	61	0.988191	0.988284	0.000280	
6	0.999997	0.999997	0	62	0.994451	0.994451	0.000120	
7	0.999999	0.999999	0	63	0.997437	0.997444	0.000051	
8	1.000000	1.000000	0	64	0.998835	0.998838	0.000021	
9	1.000000	1.000000	0	65	0.99948	0.999483	0.000009	
10	1.000000	1.000000	0	66	0.999774	0.999774	0.000003	
11	1.000000	1.000000	0	67	0.999903	0.999903	0.000001	

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$			
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total
-	59	0.902926	0.903783	0.003972	50	0.860688	0.860266	0.006625
	60	0.948792	0.949016	0.001623	51	0.905117	0.904708	0.003571
	61	0.973906	0.973904	0.000700	52	0.936387	0.935930	0.001991
	62	0.986863	0.986917	0.000311	53	0.957907	0.957630	0.001137
	63	0.993560	0.993580	0.000138	54	0.972310	0.972343	0.000661
	64	0.996904	0.996901	0.000061	55	0.982134	0.982127	0.000386
	65	0.998536	0.998536	0.000027	56	0.988540	0.988555	0.000228
	66	0.999318	0.999318	0.000011	57	0.992783	0.992775	0.000135
	67	0.999688	0.999689	0.000005	58	0.995458	0.995467	0.000079

~ B(E 0.05)

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 Methodology
 - Approximation
 - Simulation methods: Normal data
- 3 SIMULATION STUDY
 - Numerical examples
 - Power
- 4 References

Power of the scan statistic test

Power evaluation for $\mathcal{B}(1,0.001)$ model

Triangular simulated cluster

Rectangular simulated cluster

Power evaluation for $\mathcal{B}(1,0.001)$ model

Quadrilateral simulated cluster

Circular simulated cluster

Power evaluation for $\mathcal{B}(1,0.001)$ model

Ellipsoidal simulated cluster

Annular simulated cluster

SPSR 2016

thank you!

Alm, S. E. (1983).

On the distribution of scan statistic of poisson process.

In Gut, A. and Helst, L., editors, *Probability and Mathematical Statistics*, pages 1–10. Upsalla University Press.

Alm, S. E. (1997).

On the distributions of scan statistics of a two-dimensional poisson process. *Advances in Applied Probability*, pages 1–18.

Alm, S. E. (1998).

Approximation and simulation of the distributions of scan statistics for poisson processes in higher dimensions.

Extremes, 1(1):111-126.

Amărioarei, A. (2014).

Approximations for the multidimensional discrete scan statistics.

PhD thesis, University of Lille 1.

Anderson, N. H. and Titterington, D. M. (1997).

Some methods for investigating spatial clustering, with epidemiological applications.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 160(1):87-105.

Assunção, R., Costa, M., Tavares, A., and Ferreira, S. (2006).

Fast detection of arbitrarily shaped disease clusters.

Statistics in Medicine, 25(5):723-742.

Bresenham, J. (1965).

Algorithm for computer control of a digital printer.

IBM Systems Journal, 4(1).

Bresenham, J. (1977).

A linear algorithm for incremental digital display of circular arcs.

Communications of the ACM, 20(2):100-106.

Devroye, L. (1986).

Non uniform random variate generation.

Springer-Verlag, New York.

Foley, J. (1995).

Computer Graphics, Principles and Practice in C.

Addison-Wesley Professional.

Glaz, J., Naus, J., and Wallenstein, S. (2001). *Scan Statistics*.

SPSR 2016

Springer.

Glaz, J., Pozdnyakov, V., and Wallenstein, S. (2009).

Scan Statistics: Methods and Applications.

Birkhaüser Boston.

Loader, C. R. (1991).

Large-deviation approximations to the distribution of scan statistics.

Advances in Applied Probability, pages 751-771.

Tango, T. and Takahashi, K. (2005).

A flexibly shaped spatial scan statistic for detecting clusters.

Int J Health Geogr, 4:11.

Tango, Toshiro Takahashi, Kunihiko England Int J Health Geogr. 2005 May 18;4:11.

