CIS 471/571 (Winter 2020): Introduction to Artificial Intelligence

Lecture 13: Bayes Nets

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder:

- Homework 3: MDPs and Reinforcement Learning
 - Deadline: Feb 20, 2020

Thanh H. Nguyen 2/17/20

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

• Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

Independence

Independence

• Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form: $\forall x, y : P(x|y) = P(x)$
- We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

 $P_1(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

${f T}$	P
hot	0.5
cold	0.5

P(W)

W	P
sun	0.6
rain	0.4

 $P_2(T,W)$

T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

N fair, independent coin flips:

$P(X_1)$		
Н	0.5	
$\overline{\mathbf{T}}$	0.5	

$P(\Lambda_2)$	
Н	0.5
${f T}$	0.5

 $D(V_{\cdot})$

$$egin{array}{c|c} P(X_n) & & & \\ H & 0.5 & & \\ T & 0.5 & & \\ \end{array}$$

- Unconditional (absolute) independence very rare
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it

doesn't depend on whether I have a toothache:

• P(+catch | +toothache, +cavity) = P(+catch | +cavity)

- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Conditional Independence and the Chain Rule

• Chain rule:

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

• Trivial decomposition:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic})$$

• With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 - B: Bottom square is red G: Ghost is in the top
- Givens:

P(T,B,G) = P(G) P(T|G) P(B|G)

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	-g	0.16
+t	-b	+g	0.24
+t	-b	-g	0.04
-t	+b	+g	0.04
-t	+b	-g	0.24
-t	-b	+g	0.06
-t	-b	-g	0.06

Bayes' Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

• For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

•No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

• Why is an agent using model 2 better?

• Model 2: rain causes traffic

Example: Traffic II

Let's build a causal graphical model!

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

 $A \ Bayes \ net = Topology \ (graph) + Local \ Conditional \ Probabilities$

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$
 - \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

. . .

 $P(X_1)$

h	0.5
t	0.5

 $P(X_2)$

h	0.5
t	0.5

. . .

P(X)	(n)
h	0.5
t	0.5

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

P(R)

+r	1/4
-r	3/4

$$P(+r,-t) =$$

+r

+t	3/4	
-t	1/4	

-r

+t	1/2
-t	1/2

Example: Alarm Network

Α	J	P(J A)	
+a	+j	0.9	
+a	-j	0.1	
-a	+j	0.05	
-a	-ј	0.95	

Α	M	P(M A)	
+a	+m	0.7	
+a	-m	0.3	
-a	+m	0.01	
-a	-m	0.99	

ш	P(E)	
+e	0.002	
-e	0.998	

В	Е	A	P(A B,E)	
+b	+e	+a	0.95	
+b	+e	-a	0.05	
+b	ę	+a	0.94	
+b	ę	-a	0.06	
-b	+e	+a	0.29	
-b	+e	-a	0.71	
-b	ę	+a	0.001	
-b	-e	-a	0.999	

Example: Alarm Network

В	P(B)	
+b	0.001	
b	0.999	

	-	_
Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)		
+e	0.002		
-е	0.998		

Α	M	P(M A)	
+a	+m	0.7	
+a	-m	0.3	
-a	+m	0.01	
-a	-m	0.99	

В	Е	Α	P(A B,E)	
+b	+e	+a	0.95	
+b	+e	-a	0.05	
+b	-e	+a	0.94	
+b	-е	-a	0.06	
-b	+e	+a	0.29	
-b	+e	-a	0.71	
-b	-e	+a	0.001	
-b	-е	-a	0.999	

Example: Traffic

Causal direction

\boldsymbol{P}	T	٦		?)
1	/ τ	7	1	v

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

•Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 2^N
- How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

- Both give you the power to calculate $P(X_1, X_2, \dots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

