

SÍLABO PAVIMENTOS

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VI SEMESTRE ACADÉMICO: 2018-II

I. CÓDIGO DEL CURSO : 09128106050

II. CRÉDITOS : 05

III. REQUISITOS : 09028205040 Caminos I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte del área curricular de Tecnología. Es de carácter teórico – práctico. El propósito del curso es brindar al estudiante conocimientos básicos de diseño y evaluación de pavimentos para ser aplicados como última etapa del estudio y para construcción y rehabilitación de caminos. El curso se desarrolla a través de las siguientes unidades de aprendizaje: I. Clasificación de pavimentos. II. Introducción del uso de polímeros. III. Pavimentos especiales.

VI. FUENTES DE CONSULTA:

Bibliográficas

Chang Albitres, C. (2011). *Guía de Diseño Empírico Mecanístico de Pavimentos*. edición 2011, Instituto de Construcción y Gerencia

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: CLASIFICACIÓN DE PAVIMENTOS

OBJETIVOS DE APRENDIZAJE

- Tomar conocimiento del comportamiento de los suelos y ubicarlos de acuerdo a las funciones que desempeñan en cada uno de los tipos de pavimentos
- Poner en práctica cada uno de los tipos de ensayos que se realizan en pavimentos en el mundo y asimilarlos a la realidad del país.

PRIMERA SEMANA

Primera sesión:

Tipos de pavimentos y a la clasificación de suelos.

Segunda sesión:

Estudio de Canteras. Estabilización de suelos, mezcla de suelos, requisitos granulométricos,

SEGUNDA SEMANA

Primera sesión:

Compactación de suelos; Toma de muestras para ensayos y suelos de fundación

Segunda sesión:

Primera práctica calificada

TERCERA SEMANA

Primera sesión:

Definición de los pavimentos de acuerdo a los esfuerzos que soportan los pavimentos rígidos y flexibles

Segunda sesión:

Diseño de un pavimento rígido, módulo de reacción del terreno. Presentación de Trabajo 1.

CUARTA SEMANA

Primera sesión:

Diseño de un pavimento rígido. Diseño de Juntas longitudinales, transversales de contracción, dilatación y proceso construcción,

Segunda sesión:

Segunda práctica calificada

UNIDAD II: INTRODUCCIÓN DEL USO DE POLÍMEROS

OBJETIVOS DE APRENDIZAJE

- Participar en el desarrollo de las metodologías más usadas en el diseño de pavimentos para determinar el método de diseño adecuado de acuerdo a las condiciones del terreno.
- Analizar los pasos a seguir para la construcción de un pavimento en función de la maquinaria a utilizar

QUINTA SEMANA

Primera sesión:

Retardadores de pavimentos y aireantes

Segunda sesión:

Tipos de concretos y características de sus mezclas, comportamiento del concreto.

SEXTA SEMANA

Primera sesión:

Dosificación en el proceso constructivo de pavimentos rígidos.

Segunda sesión:

Inspección y control de calidad y evaluación y tipos de fallas.

SÉPTIMA SEMANA

Primera sesión:

Concreto poroso y suelos expansivos

Segunda sesión:

Tercera práctica calificada

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión

Diseño de pavimentos flexibles.

Segunda sesión

Emulsiones asfálticas, asfaltos modificados

DÉCIMA SEMANA

Primera sesión.

Aplicación de métodos de diseño de mezclas asfálticas

Segunda sesión

Diseño de una mezcla asfáltica en frío.

UNDÉCIMA SEMANA

Primera sesión

Clasificación de las mezclas asfálticas según el tipo de tráfico.

Segunda sesión

Diseño de mezclas asfálticas.

DUODÉCIMA SEMANA

Primera sesión

Producción de concreto asfáltico, transporte y colocación del concreto asfáltico.

Segunda sesión

Inspección y control de calidad

DECIMOTERCERA SEMANA

Primera sesión

Proceso constructivo de pavimentos flexibles y control de calidad.

Segunda sesión

Cuarta práctica calificada

UNIDAD III: PAVIMENTOS ESPECIALES

OBJETIVOS DE APRENDIZAJE

- Aplicar el uso de pavimentos articulados como solución en reemplazo de los pavimentos convencionales.
- Elaborar procedimiento adecuados de diseño y construcción para la utilización de pavimentos articulados.
- Participar en el uso de pavimentos articulados debido que representa la solución en la construcción en forma rápida.

DECIMOCUARTA SEMANA

Primera sesión

Pavimentos articulados, otros tipos de pavimentos.

Segunda sesión

Pavimentos de piedras talladas

DECIMOQUINTA SEMANA

Primera sesión.

Mejoramiento de suelos. Compactación con rodillos de impacto y oscilatorios.

Uso de fibras y reciclado en pavimento de concreto, pavimentos de concreto estampados.

Segunda sesión

Manejo de especificaciones técnicas para el diseño y construcción de pavimentos.

DECIMOSEXTA SEMANA.

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII.CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

El desarrollo de las clases se efectuará promoviendo la participación de los alumnos planteando preguntas sobre conceptos básicos y de criterios sobre nuevos componentes en pavimentos. Se formará grupos de trabajo para el desarrollo de un trabajo escalonado.

X. MEDIOS Y MATERIALES

Equipos: Un proyector multimedia una computadora personal para el profesor y los alumnos, ecran y una impresora.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2*PE+EP+EF)/4 PE = ((P1 + P2+ P3 +P4- MN)/3 + W1 + PL)/3 PL = (Lb1+Lb2+Lb3+Lb4)/4 Donde:

PF : Promedio Final EP : Examen Parcial EF : Examen Final

PE : Promedio de evaluaciones

P1...P4 : Prácticas Calificadas

MN : Menor Nota de Prácticas Calificadas

PL : Promedio de laboratorios Lb1...Lb4 : Notas de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de: Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	К
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad.	
(d)	Trabajar adecuadamente en un equipo multidisciplinario.	R
(e)	Identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional.	
(g)	Comunicarse, con su entorno, en forma efectiva.	
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.	
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.	
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil	R

XIII. HORARIO, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
3	2	2

- b) **Número de sesiones por semana:** Tres sesiones.
- c) **Duración**: 7 horas académicas de 45 minutos.

XIV. DOCENTE DEL CURSO:

Ing. Lidia Pacheco Miranda.

XV. FECHA:

La Molina, julio de 2018.