Propositional Logic

Cunsheng Ding

HKUST, Hong Kong

September 4, 2015

Contents

- Propositions
- Propositional Operators
- The Conditional Operator
- The Biconditional Operator
- 5 Compound Propositional Forms

Propositions

Definition 1

A <u>proposition</u> is a **declarative statement** that is either true (T) or false (F), but not both.

Example 2

Each of the following statements is a proposition.

- 1+1=2. (T)
- 2+2=3. (F)

Propositions

Remark

A statement cannot be true or false unless it is declarative.

Each of the following is not a proposition.

- No parking.
- Who has an iMac?

Remark

Declarations about semantic tokens of non-constant value are NOT propositions.

• For example: x + 2 = 5.

This is because this statement does not have the value T or F.

Propositions

Remark

A declarative statement is a proposition even if no one knows if it is true.

- For example: There are infinitely many twin prime numbers.
- **2** (3,5), (5,7), (11,13), ···
- This is a unsettled conjecture (called, twin-prime conjecture).

Remark

Often, a proposition is condition-based.

 For example: If you would pay me ten million dollars, you will become the President of HKUST.

Truth Tables

Definition 3

The <u>boolean domain</u> is the set $\{T, F\}$. Either of its elements is called a <u>boolean value</u>.

Definition 4

An *n*-tuple (p_1, \ldots, p_n) of boolean values is called a boolean *n*-tuple.

Example 5

• (T, T, F, T, F) is a boolean 5-tuple.

Truth Tables

Definition 6

An $\underline{n\text{-operand truth table}}$ is a table that assigns a boolean value to the set of all boolean $\underline{n\text{-tuples}}$.

Example 7

Table 1: A 2-operand truth table.

Boolean 2-tuples	Boolean value
(T,T)	T
(T,F)	T
(F,T)	Т
(F,F)	F

Propositional Operators or Logical Operators

Definition 8

A propositional operator is a **rule** defined by a truth table.

An operator is <u>monadic</u> if it has only one argument. It is <u>dyadic</u> if it has two arguments.

Example 9

- The truth table in Table 1 defines a dyadic operator, called "disjunction", read "or", and denoted by "∨".
- The following truth table defines a monadic operator, called "negation", read "not", and denoted by "~".

Table 2: A 1-operand truth table.

Boolean 1-tuples	Boolean value
T	F
F	T

The Negation Operator "Not"

Recall of definition: the negation \sim

р	\sim p ("not p ")		
T	F		
F	Τ		

Example 10

- p: It is sunny.
- $\bullet \sim p$: It is NOT sunny.

The Disjunction Operator "Or"

Recall of definition: the disjunction \vee

р	q	$p \lor q$ ("p or q")
T	Τ	T
T	F	Τ
F	T	Τ
F	F	F

Example 11

Let c, a and b be real numbers.

- p: c < a.</p>
- q: c = a.
- $p \lor q$: $c \le a$.

The Conjunction Operator "And"

Definition 12

Table 3: The conjunction operator "and", \wedge

р	q	$p \wedge q$ ("p and q")
T	T	Τ
Τ	F	F
F	T	F
F	F	F

Example 13

Let *c*, *a* and *b* be real numbers.

- $p: c \geq a$.
- $q: c \leq b$.
- $p \land q$: $a \le c \le b$.

The Exclusive-or Operator "⊕"

Definition 14

It is denoted by " $p \oplus q$ ", and defined to be $(p \lor q) \land (\sim (p \land q))$. It means that "p or q but not both".

Table 4: The exclusive-or operator, \oplus

р	q	$p \oplus q$ ("p or q but not both")
Τ	T	F
T	F	T
F	T	T
F	F	F

The Conditional Operator "implies"

Definition 15

The conditional operator is denoted by $p \to q$, read <u>implies</u>, and defined by the following truth table:

Table 5 : The conditional operator \rightarrow

р	q	p ightarrow q ("if p then q ")
T	Т	T
T	F	F
F	T	T
F	F	Т

Example 16

If 0 = 1, then 1 = 2. Is this a true statement?

The Conditional Operator "implies"

Remarks

• In the form $p \rightarrow q$, p is called the <u>antecedent of hypothesis</u>, and q is called the consequent or conclusion.

Example 17

If the Yankees win the World Series, then they give Lou Gehrig a \$1,000 bonus.

The Biconditional Operator "if and only if"

Definition 18

The biconditional operator is denoted by \leftrightarrow , read if and only if, and defined by the following truth table:

Table 6: The biconditional operator \leftrightarrow

р	q	$p \leftrightarrow q$
T	T	Т
T	F	F
F	T	F
F	F	T

Example 19

This computer program is correct if, and only if, it produces correct answers for all possible sets of input data.

Remark

The phrases necessary condition and sufficient condition, as used in formal English, correspond exactly to their definitions in logic.

Propositional Variables

Definition 20

A <u>propositional variable</u> is a variable such as p, q, r (possibly subscripted, e.g. p_i) over the boolean domain.

Atomic Propositional Forms

Definition 21

An atomic propositional form is either a boolean constant or a propositional variable.

Example 22

Boolean constants: T and F.

Atomic propositional forms: p, q, r, etc.

Compound Propositional Forms

Definition 23

A <u>compound propositional form</u> is derived from atomic propositional forms by application of propositional operators.

Example 24

Some compound propositional forms on two variables:

- $\bullet \quad p \lor q, \ p \land q, \ p \oplus q, \ p \to q, \ p \leftrightarrow q$
- ullet $\sim p$, $(p \lor \sim q) \to q$

Remark

Any compound propositional form can be evaluated by a truth table.

Problem 25

Evaluating the compound propositional form $(p \lor \sim q) \to q$ by a truth table.

Order of Operations for Logical Operators

- ∼: Evaluate negations first.
- \vee and \wedge : Evaluate \vee and \wedge second. When both are present, parenthesis may be needed.
- \to and \leftrightarrow : Evaluate \to and \leftrightarrow third. When both are present, parenthesis may be needed.

Example 26

Evaluate the compound propositional form $(pee \sim q)
ightarrow q$ in the following order.

р	q	\sim q	$p\lor\sim q$	$(pee\sim q) ightarrow q$
Т	T			
Т	F			
F	T			
F	F			

Example 26

Evaluate the compound propositional form $(pee \sim q) \to q$ in the following order.

		Step 1		
р	q	\sim q	$p\lor\sim q$	$(pee \sim q) ightarrow q$
T	Τ	F		
Т	F	Т		
F	Τ	F		
F	F	T		

Example 26

Evaluate the compound propositional form $(p \lor \sim q) \to q$ in the following order.

		Step 1	Step 2	
р	q	\sim q	$p\lor\sim q$	$(pee \sim q) ightarrow q$
T	Τ	F	T	
Т	F	T	T	
F	Τ	F	F	
F	F	T	T	

Example 26

Evaluate the compound propositional form $(p \lor \sim q) \to q$ in the following order.

		Step 1	Step 2	Step 3
р	q	\sim q	$p\lor\sim q$	$(pee \sim q) ightarrow q$
Т	Τ	F	T	Т
T	F	Т	Τ	F
F	Τ	F	F	Т
F	F	T	T	F