Quick Sensitivity Curves for Pulsar Timing Arrays Making unrealistic sensitivity curves more realistic

Jeremy Baier

Oregon State University

October 3, 2024

Outline

Introduction to Pulsar Timing Arrays

Sensitivity Curves

Derivation of Quick Sensitivity Curves

Conclusions

Pulsars

- Pulsars are rapidly rotating neutron stars that emit beams of radiation.
- "millisecond" pulsars are highly stable
- Can track changes in relative motion between Earth and pulsars

Figure: Relative motion of the earth and pulsar can be seen in the arrival times of pulses.

Pulsars Timing Arrays (PTAs)

- an array of millisecond pulsars
- track relative changes in Earth-pulsar distance over decades
- correlations between pulsars across the sky reveal gravitational waves

Figure: Artist rendering of a PTA

In general, sensitivity curves are a way to characterize the sensitivity of a detector to a given signal.

- ▶ Encode the noise properties of the detector.
- ► Can be used to assess to the "detectability" of something.
- Useful figures of merit for detector characterization.
- ► tools exist to calculate the sensitivity curve for gravitational wave detectors ...

Figure: Community resource for approximate GW sensitivity curves

https://gwplotter.com/

But PTA sensitivity curves are not pizza slices !!

Figure: Example "realistic" sensitivity curve for a PTA https://hasasia.readthedocs.io

Project goals:

- derive a quick sensitivity curve for PTAs
- ▶ implement quick sensitivity curve into *GW Plotter*
- share with the rest of the GW astronomy community

Quick Sensitivity Curve Derivation

We will start from the realistic sensitivity curves presented in eq. 92 of Hazboun et al. (2019),

$$S_{\text{eff}}(f) = \left(\sum_{I} \sum_{J>I} \frac{T_{IJ}}{T_{\text{obs}}} \frac{\chi_{IJ}^2}{S_I(f)S_J(f)}\right)^{-1/2}$$

- \triangleright S_{eff} is the effective background sensitivity
- T_{obs}: Total observational time span
- T_{IJ}: Overlapping observational time span between pulsars I and J
- $\triangleright \chi_{IJ}$: correlation coefficients
- \triangleright $S_I(f)$: Individual pulsar sensitivity I

Derivation of Quick Sensitivity Curves

Simplifying assumptions from GW Plotter:

- Uniform distribution of pulsars across the sky
- Identical noise properties for all pulsars
- $ightharpoonup T_I = T_{
 m obs}$ (all pulsars observed for full timespan)
- Same observational cadence for all pulsars

Simplified Sensitivity Equation

Assuming uniform pulsar distribution across the sky,

$$\chi_{IJ}^2 \approx 1/48$$

$$S_{\text{eff}}(f) = \left(\sum_{I} \sum_{J>I} \frac{T_{IJ}}{T_{\text{obs}}} \frac{1}{48S_I(f)S_J(f)}\right)^{-1/2}$$

Simplified Sensitivity Equation

Assuming uniform pulsar distribution across the sky,

$$\chi_{IJ}^2 \approx 1/48$$

$$S_{\text{eff}}(f) = \left(\sum_{I} \sum_{J>I} \frac{T_{IJ}}{T_{\text{obs}}} \frac{1}{48S_I(f)S_J(f)}\right)^{-1/2}$$

Assuming that all pulsars have been observed for the total timespan, $T_{\rm obs} = T_{IJ}$,

$$S_{\text{eff}}(f) = \left(\sum_{I} \sum_{J>I} \frac{1}{48S_{I}(f)S_{J}(f)}\right)^{-1/2}$$

Simplified Sensitivity Equation

Assuming that all pulsars have the same noise properties, $S_I \approx S_J$. So the sum can be simplified. . .

$$\sum_{I} \sum_{J>I} \frac{1}{48S_{I}(f)S_{J}(f)} \approx \frac{N_{\mathrm{psr}}(N_{\mathrm{psr}}-1)}{2} \frac{1}{48S_{I}(f)^{2}}$$

And our expression for sensitivity becomes...

$$S_{\text{eff}}(f) = \left(\frac{N_{\text{psr}}(N_{\text{psr}}-1)}{2} \frac{1}{48S_I(f)^2}\right)^{-1/2}$$

So we only need to calculate the sensitivity for one pulsar!

Final Sensitivity Equation

Single pulsar sensitivity is given by:

$$S_I(f) = \frac{1}{\mathcal{N}_I^{-1}(f)\mathcal{R}(f)} = \frac{12\pi^2 f^2}{\mathcal{N}_I^{-1}(f)}$$

where $\mathcal{N}_{I}^{-1}(f)$ is the noise-weighted inverse transmission function for pulsar I.

Final Sensitivity Equation

Single pulsar sensitivity is given by:

$$S_I(f) = \frac{1}{\mathcal{N}_I^{-1}(f)\mathcal{R}(f)} = \frac{12\pi^2 f^2}{\mathcal{N}_I^{-1}(f)}$$

where $\mathcal{N}_I^{-1}(f)$ is the noise-weighted inverse transmission function for pulsar I.

From the above equation, it follows that:

$$S_{\text{eff}}(f) = \left(\frac{96}{N_{\text{psr}}(N_{\text{psr}} - 1)}\right)^{1/2} \frac{12\pi^2 f^2}{N_I^{-1}(f)}$$

Invserse Noise-Weighted Transmission

$$\mathcal{N}^{-1}(f) \equiv rac{1}{2T_{\mathsf{span}}} \sum_{I,J} \left[G \left(G^T C G
ight)^{-1} G^T
ight]_{I,J} e^{i2\pi f \left(t_i - t_j
ight)},$$

Most expensive part of the computation because C is an $N_{\rm toa} \times N_{\rm toa}$ covariance matrix. (memory intensive)

Invserse Noise-Weighted Transmission

$$\mathcal{N}^{-1}(f) \equiv \frac{1}{2T_{\text{span}}} \sum_{I,J} \left[G \left(G^T C G \right)^{-1} G^T \right]_{I,J} e^{i2\pi f \left(t_i - t_j \right)},$$

Most expensive part of the computation because C is an $N_{\rm toa} \times N_{\rm toa}$ covariance matrix. (memory intensive)

So we approximate...

$$\mathcal{N}_I^{-1}(f) \approx \frac{\mathcal{T}_I(f)}{P_{\mathrm{N}}(f)}$$

where $\mathcal{T}_I(f) \approx \left(1 + \frac{1}{T_{\rm obs}f}\right)^{-6}$ is an approximation to the transmission function and $P_{\rm N}(f)$ is the power in the noise.

Transmission Function

Here we use a first order polynomial approximation to the transmission function:

$$\mathcal{T}_I(f) pprox \left(1 + rac{1}{\mathcal{T}_{
m obs}f}
ight)^{-6}$$

The transmission function describes how much power we lose at each frequency due to our fit to a timing model.

Figure: Example of an unapproximated transmission function.

Noise Power

The power in the noise is given by:

$$P_N = P_{\text{WN}} + P_{\text{RN}} = 2\Delta t \sigma^2 + A_{\text{RN}} f^{-\gamma_{\text{RN}}}$$

where

- $ightharpoonup \sigma$ is the time of arrival uncertainty
- $ightharpoonup \Delta t$ is the observational cadence
- \triangleright $A_{\rm RN}$ is the red-noise amplitude
- lacktriangle and $\gamma_{
 m RN}$ is the red-noise spectral index

Final Expression

Putting it all together, we have the final expression for the simplified sensitivity curve...

$$S_{\text{eff}}(f) = \left(\frac{96}{N_{\text{psr}}(N_{\text{psr}} - 1)}\right)^{1/2} \frac{12\pi^2 f^2}{\mathcal{T}_I(f) P_{\text{N}}(f)}$$

Final Expression

Putting it all together, we have the final expression for the simplified sensitivity curve...

$$S_{\rm eff}(f) = \left(\frac{96}{N_{\rm psr}(N_{\rm psr}-1)}\right)^{1/2} \frac{12\pi^2 f^2}{\mathcal{T}_I(f) P_{\rm N}(f)}$$

... and now we just have to learn JavaScript ...

GW Plotter Update

Figure: My more realistic sensitivity curve approximation in GW Plotter !!

https://jeremy-baier/github.io/gwplotter

Conclusions

- Sensitivity curves are a way to characterize the sensitivity of a detector to a given signal.
- PTA sensitivity curves are not pizza slices !!
- With some approximations, I derive approximate but quick sensitivity curve for PTAs.
- ► I implement quick background sensitivity curves into GW Plotter to better represent the PTA community.

References

- Hazboun, J. S., Romano, J. D., Smith, T. L. (2019). Realistic sensitivity curves for pulsar timing arrays. *Phys. Rev. D*, 100, 104028.
- Moore, C. J., Cole, R. H., Berry, C. P. L. (2015). Gravitational-wave sensitivity curves. *Class. Quantum Grav.*, 32, 015014.
- Babak, S. et al. (2024). Forecasting PTA sensitivity. arXiv:2404.02864.
- Jennings, R. (2021). Transmission Functions for Polynomial Fits. NANOGrav Memorandum 006.