Autoencoders and CNN

Συμπίεση πληροφορίας και συνέλιξη σε 2Δ και 1Δ δεδομένα

Autoencoders

Μαθαίνουν να φτιάχνουν την είσοδο, συμπιέζοντας την πληροφορία

Σημειώσεις

Κατά την εκπαίδευση:

- **Encoder**: μαθαίνει να **συμπιέζει** την πληροφορία με κατάλληλο τρόπο για να χωρέσει βέλτιστα σε λίγες διαστάσεις (θυμίζει PCA, MDS, κτλ).
- **Decoder**: μαθαίνει να συνθέτει/δημιουργεί κατάλληλα δεδομένα βάσει εισόδου μικρότερων διαστάσεων.
- Το στρώμα ελάχιστης διάστασης (στο κέντρο) καλείται latent space ή bottleneck.
- Αν οι ενεργοποιήσεις είναι γραμμικές (που δεν έχει νόημα για autoencoders, άρα πρέπει να χρησιμοποιούμε μη γραμμικές), τότε το **bottleneck** συγκλίνει στα αποτελέσματα του **PCA**. Π.χ., βάλουμε 2 νευρώνες στο bottleneck και γραμμικές ενεργοποιήσεις παντού, τότε οι τιμές στους 2 νευρώνες θα συγκλίνουν στις 2 πρώτες διαστάσεις του PCA.

Αφαίρεση θορύβου

Κατηγοριοποίηση, με λίγα επισημειωμένα δεδομένα

Το κομμάτι του autoencoder (πάνω) εκπαιδεύεται με πολλά δεδομένα. Το κομμάτι του κατηγοριοποιητή (κάτω) εκπαιδεύεται μετά και μόνο με όσα έχουμε επισημειωμένα.

Στη βιβλιογραφία αυτή η κατάσταση καλείται few-shot learning. Είναι σύνηθες πλέον να έχουμε πολλά δεδομένα (πχ κομμάτια μουσικής) αλλά λίγα με επισημειώσεις (πχ κομμάτια με fagotto). Με το few-shot learning, σκοπός είναι να αξιοποιήσουμε πολλά δεδομένα για να βγάλουμε βέλτιστο αποτέλεσμα με τα λίγα επισημειωμένα.

Συνέλιξη 2Δ: κατάλληλα για εικόνα (πχ spectrogram)

Παράδειγμα φίλτρου 2Δ: 3x3, βήμα 1, full padding

Άλλο Παράδειγμα φίλτρου 2Δ: 3x3, βήμα 2, same padding

02	00	0,	0	0	0	0			
0,	20	20	3	3	3	0 }	· ·		
00	0,	1,	3	0	3	0 ¦		1	I
0	2	3	0	1	3	0		7	I
0	3	3	2	1	2	0 ¦		7	I
0	3	3	0	2	3	0 ¦			
0	0	0	0	0	0	0			

https://keras.io/api/layers/convolution_layers/convolution2d/https://github.com/vdumoulin/conv_arithmetic

Ένα στρώμα συνελικτικού νευρωνικού δικτύου (CNN) είναι μια συλλογή από διαφορετικά φίλτρα, με τα ίδια χαρακτηριστικά μεγέθους, βηματισμού και padding (ομοίως και στη 1Δ περίπτωση στην επόμενη διαφάνεια).

Συνέλιξη 1Δ: κατάλληλα για σειρά, πχ για κυματομορφή

Παράδειγμα φίλτρου 1Δ: Μέγεθος 3, βήμα 1, full padding

Άλλο παράδειγμα φίλτρου 1Δ: Μέγεθος 9, βήμα 2, valid padding

https://keras.io/api/layers/convolution_layers/convolution1d/

https://e2eml.school/convolution_one_d.html

Αντίστροφη συνέλιξη - για το decoder κομμάτι

Χρήση φίλτρου για ανασύνθεση σήματος

