Des malheurs évités le bonheur se compose. (Alphonse Karr)

- 1. Que dire de $\mathbb{P}(A)$ si A est indépendant de lui même?
- 2. On lance deux dés simultanément.
 - (a) Décrire de façon ensembliste les événements suivants A : « On obtient deux fois le même résultat » et B : « La somme des deux chiffres est égale à 4 »
 - (b) Calculer P(A), P(B), $P(A \cup B)$, $P(A \cap B)$. A et B sont-ils indépendants?
- 3. Soit Ω un univers et soient A, B, C trois événements de Ω . Traduire en termes ensemblistes (en utilisant uniquement les symboles d'union, d'intersection et de passage au complémentaire, ainsi que A, B et C) les événements suivants :
 - (a) Seul A se réalise;
 - (b) A et B se réalisent, mais pas C.
 - (c) les trois événements se réalisent;
 - (d) au moins l'un des trois événements se réalise;
 - (e) au moins deux des trois événements se réalisent;
 - (f) aucun ne se réalise;
 - (g) au plus l'un des trois se réalise;
 - (h) exactement deux des trois se réalisent;
- 4. Soit (Ω, \mathcal{A}) espace probabilisé et $(A_n)_{n\in\mathbb{N}}$ une suite d'événements deux à deux incompatibles. Montrer que $\mathbb{P}(A_n) \to 0$.
- 5. On suppose avoir un espace probabilisable (Ω, \mathcal{A}) modélisant le jeu de pile ou face équilibré infini (ie $\Omega = \{P, F\}^{\mathbb{N}^*}$) tel que \mathcal{A} contienne les événements P_n : « le lancer numéro n donne pile » et F_n : « le lancer numéro n donne face ».
 - (a) Montrer que A : « on obtient au moins un pile », B : « on obtient que des faces » sont des événements.
 - (b) On note pour $k \in \mathbb{N}^*$, C_k : « on n'obtient que des piles à partie du lancer n ». Montrer que C_k est un événement, puis que « on n'obtient que des piles à partir d'un certain rang » est aussi un événement.
- 6. On suppose avoir un espace probabilisable (Ω, \mathcal{A}) modélisant le jeu de lancer de dé équilibré infini tel que \mathcal{A} contienne les événements N_n : « le lancer numéro n donne 1 ».
 - (a) Expliciter Ω .
 - (b) Définir $\bigcap_{i=4}^{+\infty} N_i$, $(\bigcap_{i=1}^{3} \overline{N_i}) \cap (\bigcap_{i=4}^{+\infty} N_i)$, $\bigcup_{i=4}^{+\infty} N_i$.
 - (c) Décrire avec les N_i l'événement « parmi les lancers suivant le n^e lancer on obtient au moins une fois 1 ».
 - (d) Montrer que $\left(\bigcup_{i=n+1}^{+\infty} N_i\right)_{n\in\mathbb{N}}$ est décroissante et décrire l'événement $\bigcap_{n=0}^{+\infty} \left(\bigcup_{i=n+1}^{+\infty} N_i\right)$.
- 7. Soit (Ω, \mathcal{A}) probabilisable et $(A_n)_n$ une famille d'événements. Soit B défini par « parmi les $(A_n)_n$ seul un nombre fini se réalisent ». Décrire B en compréhension, montrer que B est un événement.
- 8. Supposons qu'il existe une bijection f de \mathbb{N} sur $\mathcal{P}(\mathbb{N})$. Que dire de l'antécédent par f de l'ensemble $E = \{n \in \mathbb{N}, n \notin f(n)\}$? Qu'en conclure?

- 9. Montrer que si deux événements sont incompatibles et indépendants alors l'un au moins des deux est de probabilité nulle.
- 10. Soit $n \ge 1$. Déterminer une probabilité sur $\{1, \ldots, n\}$ telle que la probabilité de $\{1, \ldots, k\}$ soit proportionnelle à k^2 .
- 11. On lance deux dés à 6 faces, un rouge et un bleu. Calculer les probabilités que la somme vaille i pour $2 \le i \le 12$.
- 12. Montrer qu'il est impossible de truquer un dé à 6 faces pour que les probabilités de l'exercice précédent soient toutes égales. On pourra noter $p_i = \mathbb{P}(\{i\})$ et introduire le polynôme $p_1 + p_2X + ... + p_6X^5$.
- 13. Soit $n \ge 1$. On lance n fois un dé parfaitement équilibré. Quelle est la probabilité d'obtenir au moins une fois le chiffre 6? Au moins deux fois le chiffre 6? Au moins k fois le chiffre 6?

14. Tirages successifs avec remise

- Une urne contient r boules rouges et b boules bleues. On note N=r+b et les boules sont discernables.
- On tire une boule, on note sa couleur et on la remet dans l'urne.
- On répète cette opération n fois.
- Soit $k \in [0, n]$, quelle est la probabilité d'obtenir k boules rouges?

15. Tirages successifs sans remise

- Une urne contient r boules rouges et b boules bleues. On note N = r + b et les boules sont discernables.
- On tire une boule, on note sa couleur et **on ne la remet pas** dans l'urne.
- On répète cette opération n fois (avec $n \leq N...$)
- Soit $k \in [0, n]$, quelle est la probabilité d'obtenir k boules rouges?
- Cette expérience est appelée tirage successif sans remise.
- 16. On lance un dé équilibré jusqu'à obtenir 6. Déterminer la probabilité que tous les nombres obtenus soient pairs.
- 17. On lance une pièce ayant pour laquelle la probabilité de faire pile vaut $p \in]0,1[$. Soit A_n l'événement « on obtient pour la première fois deux piles consécutifs au lancer numéro n ». On note a_n sa probabilité.
 - (a) Déterminer a_1, a_2, a_3 .
 - (b) Exprimer pour n > 0, a_{n+2} en fonction de a_{n+1} et a_n .
 - (c) En déduire que l'évènement « on obtient deux piles consécutifs » est presque-sûr.
- 18. On pose pour $n \in \mathbb{N}$, $\mathbb{P}(n) = \frac{1}{2^{n+1}}$. Montrer que l'on définit ainsi une probabilité sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ et calculer $\mathbb{P}(\{n \in \mathbb{N}, n \geq 10\})$.
- 19. Pierre et Paul jouent au jeu suivant : ils lancent (chacun leur tour par exemple) une pièce équilibrée, Pierre gagne si la suite pile-pile-face sort avant la suite face-pile-pile, dans le cas contraire c'est Paul qui gagne.
 - Notons P_n l'événement « Pierre gagne au lancer numéro n » et p_n la probabilité de cet événement.
 - (a) Calculer g_3, g_4, g_n pour $n \ge 4$. En déduire la probabilité que Pierre gagne. Peut-on en déduire la probabilité que Paul gagne?
 - (b) Notons d_n la probabilité qu'au cours des n premiers lancers il n'y ait jamais deux piles consécutifs. Préciser d_1, d_2 et montrer que pour n > 0 on a $d_{n+2} = \frac{1}{2}d_{n+1} + \frac{1}{4}d_n$. En déduire que d_n tend vers 0.

- (c) Montrer alors que pour $n \ge 2$ la probabilité qu'aucun des deux joueurs n'ait gagné au lancer numéro n est $d_n + \frac{1}{2^n}$
- (d) Quelle est la probabilité que Paul gagne?
- 20. On tire 5 cartes dans un jeu de 32 cartes.
 - (a) Quelle est la probabilité d'obtenir les quatre as?
 - (b) Un joueur dévoile deux cartes de son jeu qui sont des as. Quelle est maintenant la probabilité qu'il détienne quatre as?
- 21. On dispose de n urnes numérotées de 1 à n. Dans l'urne noméro k se trouvent k boules blanches et n-k boules rouges. On choisit au hasard une urne puis on tire 2 boules dans cette urne.
 - (a) Quelle est la probabilité d'avoir 2 boules rouges?
 - (b) Même question si on tire les 2 boules avec remise.
 - (c) Quelles sont les limites de ces probabilités quand $n \to +\infty$?
- 22. Vous êtes ministre de la santé et on veut vous vendre un test de dépistage d'une maladie touchant une personne sur 10000 en vantant son efficacité : si une personne est malade, le test est positif à 99%. Si une personne n'est pas malade, le test est positif à 0,1%. Quelle est la probabilité qu'une personne dépistée positive soit effectivement malade?
 - Quelle est la probabilité qu'une personne dépistée négative soit effectivement malade?
- 23. Dans un certain pays, le temps est soit sec (S) soit humide (H). Son évolution obéit à la règle immuable suivante : si le temps est sec aujourd'hui, il sera sec demain avec la probabilité 4/5 (et donc humide avec la probabilité 1/5). Si le temps est humide aujourd'hui, il sera humide demain avec la probabilité 3/5. Appelons S_n (resp. H_n) l'événement « le temps est sec (resp. humide) le n eme jour ». On note s_n et h_n les probabilités de ces événements. On note également X_n le vecteur colonne $\binom{s_n}{h_n}$
 - (a) En utilisant la règle d'évolution, exprimer s_{n+1}, h_{n+1} en fonction de s_n et h_n .
 - (b) En déduire que l'on a $X_{n+1} = AX_n$, où A est une matrice à déterminer.
 - (c) Nous sommes dimanche et il fait sec. Quelle est la probabilité que le temps soit sec mardi? soit humide mercredi?
- 24. Une compagnie aérienne étudie l'évolution des réservations sur l'un de ses vols. Elle constate que l'état d'une place donnée évolue ainsi : elle est libre au jour 0 (jour d'ouverture des réservations). Si elle est libre au jour n, il y a une probabilité $\frac{4}{10}$ que quelqu'un la réserve au jour n+1. Par contre si elle est réservée au jour n, elle reste réservée au jour n+1 avec une probabilité $\frac{9}{10}$. Soit p_n la probabilité que la place soit réservée au jour n.
 - (a) Exprimer p_{n+1} en fonction de p_n
 - (b) En déduire p_n et $\lim p_n$.
- 25. Une guêpe entre au temps n=0 dans un appartement composé de deux pièces A et B. Elle évolue ainsi :
 - Si elle est en A à l'instant n, elle reste en A avec probabilité $\frac{1}{3}$ ou passe en B avec une probabilité $\frac{2}{3}$ à l'instant n+1
 - Si elle est en B à l'instant n, elle retourne en A avec probabilité $\frac{1}{4}$, reste en B avec une probabilité $\frac{1}{2}$, et sort de l'appartement avec une probabilité $\frac{1}{4}$ à l'instant n+1
 - Si elle est dehors, elle y reste.

On note A_n l'événement « la guêpe est en A à l'instant n ». On définit de même B_n et C_n .

Soit
$$X_n = \begin{pmatrix} P(A_n) \\ P(B_n) \\ P(C_n) \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$

- (a) Calculer X_0, X_1, X_2 .
- (b) Montrer qu'il existe une matrice $M \in \mathcal{M}_3(\mathbb{R})$ telle que $\forall n \in \mathbb{N} \ X_{n+1} = MX_n$
- (c) Montrer que $(M \lambda I_3)$ est inversible sauf pour 3 valeurs à préciser $\lambda_1 < \lambda_2 < \lambda_3$.
- (d) Pour $i \in \{1, 2, 3\}$ déterminer $Y_i \in \mathcal{M}_{3,1}(\mathbb{R})$ non nul tel que $MY_i = \lambda_i Y_i$
- (e) Soit $P = (Y_1 \ Y_2 \ Y_3) \in \mathcal{M}_3(\mathbb{R})$. Montrer que P est inversible. Calculer P^{-1} et $P^{-1}MP$
- (f) En déduire M^n pour tout $n \in \mathbb{N}^*$, puis l'expression de X_n en fonction de n.
- (g) Que vaut $\lim X_n$? Interpréter.
- 26. Une marque vend des montres de bonne qualité avec une probabilité de tomber en panne de 0,01. Des contrefaçons sont aussi vendues, représentant 20% du marché, avec une probabilité de panne de 0,1.
 - (a) Si on achète une montre quelle est la probabilité qu'elle tombe en panne?
 - (b) Si on achète une montre et qu'elle tombe en panne, quelle est la probabilité que ce soit une contrefaçon?
- 27. Un avion quadri-réacteur a besoin de deux moteurs pour pouvoir voler. Un avion bi-réacteur a besoin d'un moteur pour voler. La probabilité de panne d'un réacteur lors d'un vol trans-atlantique est p. On suppose que les pannes des réacteurs sont indépendantes les unes des autres. Quel avion vous semble le plus sûr?