MATH 113: Abstract Algebra

Jack Lipson

September 2, 2023

Contents

		A Few Preliminaries 0.1 Sets and Equivalence Relations											
			1										
1		Introduction to Groups											
	1.1	Binary Operations	4										
	1.2	Groups	4										
		Isomorphic Binary Structures											
	1.4	More on Groups and Subgroups	7										

Chapter 0

A Few Preliminaries

0.1 Sets and Equivalence Relations

Note. \mathbb{R}^* and \mathbb{C}^* represent the set of all nonzero real and complex numbers. Zero is excluded from $\mathbb{Z}^+, \mathbb{Q}^+, \mathbb{R}^+$.

Note. When a set contains an element b that's algebraically or arithmetically equivalent to another element(s), our set can be partitioned into subsets \bar{b} which denote all entitites equivalent to b. e.g. $\frac{2}{3} = \frac{4}{6}$.

Definition 1 (Parititon). A partition of a set is a decomposition of the set into subsests s.t. every element is in exactly one subset, or *cell*.

Definition 2 (Equivalence Relation). For a nonempty set S, \sim is an equivalence relation between elements of S if for all $a, b, c \in S$, (S, \sim) satisfies:

- 1. (Reflexive) $a \sim a$.
- 2. (Symmetric) $a \sim b \Rightarrow b \sim a$.
- 3. (Transitive) $a \sim b \wedge b \sim c \Rightarrow a \sim c$.

Non-equivalence relations usually use \mathcal{R} .

Note. All relations \mathscr{R} are defined as $\{(a,b) \text{ for } a \in A, b \in B \mid a \mathscr{R} b\} \subseteq A \times B$. For equivalence relations, $\sim \subseteq S \times S$.

Remark (Natural Parition). \sim yields a natural partition of $S \colon \overline{a} = \{x \in S \mid x \sim a\}$ for all $a \in S$.

Explanation. For any $a \in S$, $a \in \overline{a}$. So each element of S is in at least one cell. To show that a is in exactly one cell, let $a \in \overline{b}$ as well. We must show

 $\overline{a} = \overline{b}. \Rightarrow : \text{If } x \in \overline{a} \text{ then } x \sim a. \text{ From our assumption } a \sim b \text{ so by (3)}, \\ x \sim b \text{ so } x \in \overline{b} \text{ thus, } \overline{a} \subseteq \overline{b}. \Leftarrow : \text{If } x \in \overline{b}, x \sim b. \text{ From our assumption, } a \sim b \text{ so, by (2), } b \sim a \text{ meaning } x \sim a \text{ via (3) implying } x \in \overline{a} \text{ s.t. } \overline{b} \subseteq \overline{a}. \text{ This completes the proof.}$

Definition 3 (Equivalence Class). Each cell \overline{a} in a natural partition given by an equivalence relation is called an equivalence class.

Definition 4 (Congruence Modulo n). Let h, k be distinct integers and $n \in \mathbb{Z}^+$. We say h congruent to k modulo n, written $h \equiv k \pmod{n}$ if $n \mid h - k$ s.t. h - k = ns for some $s \in \mathbb{Z}$.

Definition 5 (Residue Classes Modulo). Equiva; ence calsses for congruence modulo n are residueclasses modulo n.

Remark. Each residue class modulo $n \in \mathbb{Z}^+$ contains an infinite number of elements.

Definition 6 (Irreducible). An irreducible polynomial h(x) is one that cannot be factored into polynomials in $\mathcal{P}(\mathbb{R})$ all of lower degree than h(x).

Chapter 1

Introduction to Groups

1.1 Binary Operations

Definition 7 (Binary Operation). A binary operation * on a set S is a rule that assigns to each ordered pair (a,b) of elements of S another element of S generally denoted a*b or formally *(a,b). To be well-defined, * must assign a value to every possible a*b.

Definition 8 (Closure under *). A set S is closed under * if for all $a, b \in S$, $a * b \in S$. If a subset H of S is also closed under *, this is referred to as the induced operation * on H.

Definition 9 (Commutative Operation). A binary operation * on a set S is *commutative* iff a*b=b*a for all $a,b\in S$.

Definition 10 (Associative operation). A binary operation * on a set S is associative iff (a*b)*c=a*(b*c) for all $a,b,c\in S$.

Note. Associativty of function compostion follows.

Remark. A binary operation on a set, typically finite, can be represented as follows:

1.2 Groups

Definition 11 (Group). A group $\langle G, * \rangle$ is a set G combined with a binary operation * on G which satisfies the following axioms:

- (\mathcal{G}_1) * is associative.
- (\mathscr{G}_2) There exists a **unique** identity element e on G s.t. e*x = x*e for all $x \in G$.
- (\mathscr{G}_3) For each $a \in G$, there exists an $a' \in G$ s.t. a' * a = a * a' = e. This a' is called the *inverse* of a with respect to the operation *.
- (\mathscr{G}_4) (optional if part of binary operation definition) G is closed under *.

Theorem 1 (Left/Right Cancellation). If G is a group with binary operation *, then the *left and right* cancellation laws hold s.t. $a*b = a*c \Rightarrow b = c$ and $b*a = c*a \Rightarrow b = c$ for all $a, b, c \in G$.

Proof. The right cancellation proof is identical to that below.

$$a*b=a*c$$
 \therefore by supposition $a'*(a*b)=a'*(a*c)$ \therefore inverse axiom. $(a'*a)*b=(a'*a)*c$ \therefore associativity axiom $b=c$ \bigcirc identity axiom \bigcirc identity axiom

Theorem 2. Trivially, in a group G, (ab)' = b'a' for all $a, b \in G$.

Remark. Note that the solutions x, y to a * x = b and y * a = b have unique solutions in G for any $a, b \in G$. Similarly, e is unique.

Note (Idempotent for *). An element x of S is idempotent for * if x*x = x. This is always in the identity element.

Definition 12 (Abelian Group). A group G is *abelian* if its binary operation is commutative.

Definition 13 (Roots of Unity). Call the elements of the set $U_n := \{z \in \mathbb{C} \mid z^n = 1\}$ the n^{th} roots of unity, usually listed as $1 = \zeta^0, \zeta^1, \zeta^2, \ldots, \zeta^{n-1}$.

Remark. Let the unit circle $U := \{z \in \mathbb{C} \mid |z| = 1\}$. Clearly, for any $z_1, z_2 \in U$, $|z_1 z_2| = |z_1||z_2| = 1$ such that $z_1 z_2 \in U$ implying U is closed under \cdot . Note then that $\langle U, \cdot \rangle \simeq \langle R_{2\pi}, +_{2\pi} \rangle$. Similarly, $\langle U_n, \cdot \rangle \simeq \langle \mathbb{Z}_n, +_n \rangle$ for $n \in \mathbb{Z}^+$.

Definition 14 (Addition Modulo n). We respectively write \mathbb{Z}_n and \mathbb{R}_c to denote $[0, 1, \ldots, n-1]$ and [0, c]. Addition modulo n/c is written $+_n$ or $+_c$.

1.3 Isomorphic Binary Structures

Definition 15 (Binary Algebraic Structures). For two binary algebraic structures $\langle S, * \rangle$ and $\langle S', *' \rangle$ to be structurally alike, we would need a one-to-one correspondence between the elements $x \in S$ and $x' \in S'$ s.t. if $x \leftrightarrow x'$ and $y \leftrightarrow y'$ then $x * y \leftrightarrow x' *' y'$.

Remark (Homomorphism Property). This last condition is called the *homorphism property*. If the function ϕ is NOT one-to-one, it is a homormorphism only.

Definition 16 (Isomorphism). An *isomorphism* of S with S' is a one-to-one function ϕ mapping S onto S' such that $\phi(x*y) = \phi(x)*'\phi(y)$ for all $x,y \in S$.

If such a map exists, S and S' are called isomorphic binary structures denoted $S \simeq S'$.

Note (Show Binary Algebraic Structures are Isomorphic).

(Step 1) Define the function ϕ which defines $\phi(s)$ for all $s \in S$ and gives the isomorphism from $S \to S'$.

(Step 2) Show ϕ is one-to-one.

(Step 3) Show ϕ is onto.

(Step 4) Show $\phi(x * y) = \phi(x) *' \phi(y)$ for all $x, y \in S$.

Example. Take the isomorphism $\phi \colon \mathbb{R} \to \mathbb{R}^+ \colon x \longmapsto e^x$ from $\langle \mathbb{R}, + \rangle$ to $\langle \mathbb{R}^+, \cdot \rangle$. Clearly, $\forall x \in \mathbb{R}, \phi(x) \in \mathbb{R}^+$ and ϕ is bijective. Last, for $x, y \in \mathbb{R}$, $\phi(x+y) = e^{x*y} = e^x e^y = \phi(x) \cdot \phi(y)$.

Definition 17 (Structural Property). A structural property is any property of a binary structure that is invariant to any isomorphic structure. These, like cardinality, are used to show no such isomorphism exists between structures

Example. Although $\langle \mathbb{Q}, + \rangle$ and $\langle \mathbb{Z}, + \rangle$ both have cardinality \aleph_0 and have many one-to-one functions between them, the equation x + x = c has a solution $x \in Q$ for all $c \in \mathbb{Q}$, but this is not true for \mathbb{Z} if, say, c = 3. This structural property distinguishes these binary structures and thus they are

not isomorphic under the usual addition.

Theorem 3. Suppose $\langle S, * \rangle$ has an identity element e for *. If $\phi \colon S \to S'$ is an isomorphism to $\langle S', *' \rangle$ then $\phi(e)$ is an identity element for *' on S'.

Proof. Because an isomorphism exists from $S \to S'$, for any element $s' \in S'$, there exists exactly one element $s \in S$ s.t. $\phi(s) = s'$. By the definition of an isomorphism $s' = \phi(s) = \phi(s*e) = \phi(s)*'\phi(e) = s'*'\phi(e)$ for an arbitary element s' of S. This implies $\phi(e)$ is the identity element for S'.

1.4 More on Groups and Subgroups

Definition 18 (Semigroup). A semigroup is an algebraic structure combining a set with an associative binary oxperation.

Definition 19 (Monoid). A monoid is a semigroup that has an identity element corresponding to its binary operation.

Definition 20 (Subgroup). If a subset H of a group G is closed under the binary operation of G and is itself a group, H is a *subgroup* of G. This is denoted $H \leq G$. $H < G \Rightarrow H \neq G$.

Example. $\langle \mathbb{Z}, + \rangle < \langle \mathbb{R}, + \rangle$, but $\langle \mathbb{Q}, \cdot \rangle$ is *not* a subgroup of $\langle \mathbb{R}, - \rangle$.

Definition 21 (Proper and trivial subgroups). If G is a group, the subgroup consisting of G itself is the *improper subgroup* of G. All other subgroups are *proper subgroups*. The subgroup $\{e\}$ is the *trivial subgroup* of G and all other subgroups are nontrivial.

Theorem 4. A subset H of a group G is a subgroup of G if and only if:

- 1. H is closed under the binary operation of G.
- 2. the identity e of G is in H.
- 3. for all $a \in H$, $a^{-1} \in H$ also.

Proof. \Rightarrow : Let H be a subgroup of G. By definition, H is closed under G's binary operation (1). H must have an identity element because it is a group. Because a*x=a and y*a=a have unique solutions, H's identity element must be the same in H group as G group (2). (3) is trivial because H is a group.

 \Leftarrow : Let (1), (2), (3) be true. Then H has a unique identity element on its binary operation (\mathscr{G}_2) , each element of H has a unique inverse in H (\mathscr{G}_3) ,

and H is closed under the binary operation of G (optional \mathcal{G}_4). To satisfy (\mathcal{G}_1) , the binary operation on H must be associative s.t., for all $a,b,c\in H$, (ab)c=a(bc). But this is clearly holds in G so (\mathcal{G}_1) is satisfied and H is a subgroup of G.

Theorem 5. Let G be a group and $a \in G$. Then

$$H = \{a^n \mid n \in \mathbb{Z}\}$$

is a subgroup of G and the *smallest* subgroup of G that contains a.

Proof. Let's first check H is indeed a subgroup of G. (1) For any $r, s \in \mathbb{Z}$, $a \ r \text{ times}$ $a \ s \text{ times}$

 $a^r * a^s = \overbrace{(a * \cdots * a)} * \overbrace{(a * \cdots * a)} = a^{r+s} \in H$ so we have closure. (2) Let $e := a^0 \in H$ so for all $r \in \mathbb{Z}$, $a^r * a^0 = a^r$. (3) For all $r \in \mathbb{Z}$, $a^r \in H$ so $\exists a^{-r} \in H$ such that $a^r * a^{-r} = a^0 = e$. Thus, $H \leq G$.

Next, to show it's the smallest possible subgroup, just take the set $\{a\}$. To have closure, we must add $a^n \ \forall n \in Z^+$. To have inverses, we must have a^{-n} so our set becomes $\{a^n \mid n \in Z \setminus \{0\}\}$. To have an identity, we must have a^0 and this completes the proof.

Definition 22 (Cyclic Subgroup of G). For any $a \in G$, define $\langle a \rangle$ to be the set $\{a^n \mid n \in \mathbb{Z}\}$. This is called the *cyclic subgroup of G generated by a*. An element a of a group G generates G and is a generator for G if $\langle a \rangle = G$.

Definition 23 (Cyclic Group). A group is cyclic if there is some element a in G that generates G.

Example. $\langle 1 \rangle = \langle 3 \rangle = \mathbb{Z}_4$ so \mathbb{Z}_4 is cyclic and both 1 and 3 are generators.

Example. The group $\langle \mathbb{Z}, + \rangle$ is a cyclic group generated ONLY be 1 and -1.

Remark (Subgroup Diagrams). Lattice, or *subgroup diagrams*, can be drawn such that lines run down from a group G to a group H if H < G.

Example. Take two group structures of order 4: \mathbb{Z}_4 and the Klein 4-group *Vierergruppe* defined as follows:

	+	0	1	2	3		+	е	a	b	c
	0	0	1	2	3		e	е	a	b	c
\mathbb{Z}_4 :	1						a				
	2						b	b	c	е	a
	3	3	0	1	2		c	c	b	a	e

Definition 24 (Order). If the cyclic subgroup $\langle a \rangle$ of G is finite, we say the order of a is the order $|\langle a \rangle|$. Otherwise, a is of infinite order.

Theorem 6. Every cyclic group is abelian.

Theorem 7 (Division Algorithm for \mathbb{Z}). If $m \in \mathbb{Z}^+$ and $n \in \mathbb{Z}$, then there exist unique integers q, r such that

$$n = mq + r$$
 and $0 \le r < m$.

Proof. From the archimedean property, there is a unique q such that $qm \le n < (q+1)m$. Then, $0 \le r = n - mq < m$ is unique. We regard q and r as the quotient and nonnegative remainder respectively when n is divided by m.

Theorem 8. A subgroup of a cyclic group is cyclic.

Proof. Take a cyclic group G with subgroup H. If $H = \langle e \rangle$, then H is cyclic and the proof is complete.

Otherwise, $H \neq \langle e \rangle$ so there exists $b \in H, b \neq e$. Because G is cyclic, there must exist $a \in G$ such that a generates G, i.e. for all $n \in \mathbb{Z}^+$, a^n spans every value of G including every element of H. Let $c := a^m$ where m is the least positive integer such that $c \in H$. Now, for all $b \in H$, take n such that $b = a^n$. From division algorithm, there exist integers q, r such that n = mq + r so $a^n = a^{mq+r} = (a^m)^q a^r$ which implies, because $a^m \in H$ and H is a group so $a^{-m} \in H$, $a^n(a^m)^{-q} = a^r$. H is a group so this implies $a^r \in H$. Because $0 \le r < m$ and m is the least positive integer such that $a^m \in H$, r = 0 such that n = mq for all $b = a^n = (a^m)^q \in H$. $\langle c \rangle = H$ so H is cyclic.