Лекция 7. Свойства пределов последовательности

7.1. Единственность предела

Теорема 7.1.1. Если последовательность имеет предел, то он единственный.

Доказательство. Предположим противное — пусть

$$\lim_{n \to \infty} a_n = a \quad \land \quad \lim_{n \to \infty} a_n = b \quad \land \quad a \neq b,$$

для определённости положим a < b. Возьмём $\varepsilon = \frac{b-a}{4} > 0$, т. е. $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \varnothing$.

Пользуясь сходимостью последовательности $\{a_n\}$ к a, находим число N_1 такое, что для всех $n>N_1$

$$a - \varepsilon < a_n < a + \varepsilon \tag{7.1}$$

Точно также в силу сходимости последовательности $\{a_n\}$ к b существует число N_2 такое, что для всех $n>N_2$

$$b - \varepsilon < a_n < b + \varepsilon \tag{7.2}$$

Выберем число $N = \max(N_1; N_2)$. При n > N выполняются оба неравенства — и (7.1), и (7.2), следовательно, для всех n > N

$$b - \varepsilon < a_n < a + \varepsilon,$$

но тогда $b-\varepsilon < a+\varepsilon$. Значит, $0 < b-a < 2\varepsilon < \frac{b-a}{2}$, так как $\varepsilon = \frac{b-a}{4}$. Пришли к противоречию. Теорема доказана.

Рис. 1. Взаимное расположение графиков степенных функций

Приведенное доказательство иллюстрирует рис. 1. Мы брали ε —окрестности точек a и b непересекающиеся (рис. 1 (a)), а получили, что все члены последовательности с достаточно большими номерами должны принадлежать пересечению этих окрестностей (рис. 1 (b).

В доказательстве теоремы использовались неравенства (7.1) и (7.2), из которых первое имело место при $n > N_1$, второе при $n > N_2$. Чтобы выполнялись оба эти неравенства, мы брали $n > N = \max(N1; N2)$. Такой приём будет часто использоваться в дальнейшем без пояснений.

7.2. Теорема «о двух милиционерах»

7.2.1. Для сходящихся последовательностей

Теорема 7.2.1. Пусть последовательности $\{a_n\}$ и $\{c_n\}$ сходятся κ одному и тому же пределу и для всех n выполняется

$$a_n \le b_n \le c_n,\tag{7.3}$$

тогда последовательность $\{b_n\}$ сходится κ тому же пределу.

Доказательство. Обозначим $a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$, тогда теорему можно сформулировать короче:

$$\left(\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = a \ \land \ a_n \le b_n \le c_n\right) \ \Rightarrow \ \lim_{n\to\infty} b_n = a.$$

Для произвольного $\varepsilon>0$ находим N такое, что при всех n>N выполняются неравенства

$$a - \varepsilon < a_n < a + \varepsilon$$
 If $a - \varepsilon < c_n < a + \varepsilon$.

Тогда для таких n

$$a - \varepsilon < a_n \le b_n \le c_n < a + \varepsilon$$
,

т. е. $b_n \in U_{\varepsilon}(a)$ для всех n > N, что и требовалось доказать.

Замечание 7.1. Очевидно, что теорема справедлива и в случае строгих неравенств

$$a_n < b_n < c_n$$
.

Замечание 7.2. Поскольку сходимость или расходимость последовательности и значение предела, если последовательность сходится, не зависят от ее начальных членов, то теорема справедлива и в случае, когда неравенства (7.3) выполняются начиная с некоторого номера. Подобное замечание можно будет сделать и к некоторым последующим теоремам, но не будем заострять на этом внимание.

Пример 7.1. Доказать, что $\lim_{n\to\infty} \frac{3^n}{n^n} = 0$.

 \diamond Для всех $n \geq 6$ верно неравенство $\frac{3}{n} \leq \frac{1}{2}$, поэтому

$$0 < \left(\frac{3}{n}\right)^n \le \left(\frac{1}{2}\right)^n$$

при $n \geq 6$. Здесь слева и справа стоят члены последовательностей, имеющих пределом ноль¹. Значит, по теореме «о двух милиционерах» и

$$\lim_{n \to \infty} \frac{3^n}{n^n} = 0.$$

7.2.2. Аналог для бесконечно больших

Теорема 7.2.2. Пусть $\lim_{n\to\infty}a_n=+\infty$ и для всех n выполняется $a_n\leq b_n,$ тогда и

$$\lim_{n\to\infty}b_n=+\infty.$$

Kopoue,
$$\left(\lim_{n\to\infty} a_n = +\infty \land a_n \le b_n\right) \Rightarrow \lim_{n\to\infty} b_n = +\infty.$$

Доказательство. Для любого E>0 находим N такое, что при всех n>N выполняется неравенства

$$a_n > E$$
.

Tогда для таких n

$$E < a_n < b_n$$

т. е. $b_n \in U_{\varepsilon}(+\infty)$ для всех n > N, что и требовалось доказать.

¹Смотри предыдущую лекцию.

Пример 7.2. Доказать, используя аналог теоремы «о двух милиционерах» для бесконечно больших последовательностей, что

$$\lim_{n \to \infty} (n!) = +\infty.$$

 \diamond Так как для всех $n \geq 1$ справедливо соотношение $n! = 1 \cdot 2 \cdot 3 \cdots n \geq n$, и $\lim_{n \to \infty} n = +\infty$, то $\lim_{n \to \infty} (n!) = +\infty$.

 $\mathcal{A}/3$: Доказать аналогичную теорему, что $\lim_{n\to\infty}a_n=-\infty$, если $\lim_{n\to\infty}b_n=-\infty$ и для всех n выполняется $a_n\leq b_n$.

7.3. Предельные переходы в неравенствах

Теорема 7.3.1. Члены сходящихся последовательностей $\{a_n\}$ и $\{b_n\}$ начиная с некоторого номера будут связаны тем же неравенством, что и их пределы, короче, если $\lim_{n\to\infty} a_n > \lim_{n\to\infty} b_n$, то

$$\exists N \in \mathbb{N}: \forall n > N \quad a_n > b_n.$$

Доказательство. Обозначим $\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b.$

Возьмём $\varepsilon = \frac{a-b}{4} > 0$, т. е. $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \emptyset$ и $b+\varepsilon < a-\varepsilon$ (рис. 2).

Рис. 2. Иллюстрация к доказательству теоремы 7.3.1.

Для данного ε находим N такое, что при всех n>N выполняются неравенства

$$b-\varepsilon < b_n < b+\varepsilon$$
 и $a-\varepsilon < a_n < a+\varepsilon$.

Для этих n справедливо $b_n < b + \varepsilon < a - \varepsilon < a_n$, что и требовалось доказать.

Пример 7.3. Согласно теореме 7.3.1 все члены сходящейся последовательности с достаточно большими номерами положительны, если её предел положителен, и отрицательны, если предел отрицателен.

Теорема 7.3.2 (Сохранение нестрогого неравенства в пределе). *Если члены сходящихся последовательностей связаны нестрогим неравенством*

$$a_n \le b_n \quad \forall n \in \mathbb{N},$$

то пределы этих последовательностей также связаны нестрогим неравенством

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n.$$

Доказательство. Обозначим $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Предположим противное: a>b, тогда из теоремы 7.3.1 следует, что

$$\exists N \in \mathbb{N}: \forall n > N \quad a_n > b_n$$

но это противоречит условию $a_n \leq b_n$ доказываемой теоремы.

Замечание 7.1. Если в теореме 7.3.2 вместо нестрогих неравенств $a_n \leq b_n$ выполненяются строгие неравенств $a_n < b_n$, то для пределов всё равно будет справедливо только нестрогое неравенство $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

Это видно на примере последовательностей $a_n=0$ и $b_n=1/n$, для которых $a_n< b_n$ при всех $n\in\mathbb{N}$, в то время как $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=0$.

Поэтому при переходе к пределу в строгих неравенствах необходимо соблюдать следующее правило: если существуют пределы выражений в левой и правой частях с трого-го неравенства, то при переходе к пределу в этом неравенстве с трого е неравенство нужно заменить на нестрого е.

7.4. Связь ограниченности и сходимости

Определение 7.1. Последовательность ограниче на, если ограничено числовое множество значений ее членов.

В символах: $\{a_n\}$ — ограниченная последовательность (о г р а н и ч е н а), если

$$\exists C > 0: \forall n \in \mathbb{N} |a_n| \le C.$$

Д/З: Сформулировать в символах определения ограниченной последовательности сверху (снизу), неограниченной последовательности сверху (снизу), неограниченной последовательности.

Теорема 7.4.1. Если последовательность сходится, то она ограничена.

Доказательство. Пусть $\lim_{n\to\infty}a_n=a$. Взяв $\varepsilon=1$, находим N такое, что $|a_n-a|<1$ для всех n>N. Тогда при этих n

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|.$$

Поэтому, положив $C = \max\{|a_1|, |a_2|, \dots, |a_N|, 1+|a|\}$, получим $|a_n| \leq C$ при всех n, т. е. последовательность $\{a_n\}$ ограничена.

Замечание 7.1. Ограниченность последовательности — н е о б х о д и м о е условие ее сходимости, т. е. если последовательность неограниченная, то она расходится. Из ограниченности последовательности не следует ее сходимость. Например, ограниченная последовательность $a_n = (-1)^n$ является расходящейся.

Из расходимости последовательности не следует ее неограниченность. Примером является та же последовательность $\{(-1)^n\}$.

Лемма 7.4.2. $Ecnu \lim_{n\to\infty} a_n = a \neq 0, mo$

$$\exists N \in \mathbb{N}: \quad \forall n > N \quad \frac{1}{2}|a| < |a_n| < \frac{3}{2}|a|.$$

Доказательство. На практике было доказано (№ 91), что

если $\lim_{n\to\infty} a_n = a$, то $\lim_{n\to\infty} |a_n| = |a|$.

Найдём для $\varepsilon = |a|/2$ такое N, что при всех n > N

$$||a_n| - |a|| < \frac{1}{2}|a|.$$

Тогда

$$|a| - \frac{1}{2}|a| < |a_n| < |a| + \frac{1}{2}|a|,$$

что и требовалось доказать.

 $\mathbb{Z}/3$: Докажите, что, если $\lim_{n\to\infty}a_n=a>0$, то

$$\exists N \in \mathbb{N}: \quad \forall n > N \quad \frac{1}{2}a < a_n < \frac{3}{2}a;$$

ели же $\lim_{n\to\infty}a_n=a<0$, то

$$\exists N \in \mathbb{N}: \forall n > N \quad \frac{3}{2}a < a_n < \frac{1}{2}a.$$