Kinetic versus thermodynamic control:

selected examples using MO theory (DAR, 1,3-butadiene addition, enolate alkylation, naphthalene sulfonation)

Types of organic reactions

Substitution

$$\begin{array}{c|c} OH & CI \\ \hline & + & H_2O \end{array}$$

Addition

Rearrangement

Elimination

$$H_2SO_4$$

Pericyclic Reaction

Radical Reaction

$$\begin{array}{c|c} & \text{Cl}_2 & \text{CI} \\ \hline & hv & \end{array}$$

Pericyclic reactions

Pericyclic reactions, which do not involve ionic or radical intermediates, are a unique type of reaction involving π electrons.

There are 3 major classes of pericyclic reactions: cycloaddition reactions, electrocyclic reactions and sigmatropic rearrangements.

We can understand these reactions easily with the help of Molecular orbitals!

Linear Combination of Atomic Orbitals (LCAO)

combination of two s orbitals

the two 1s orbitals combining out-of-phase to give an antibonding orbital

the two 1s orbitals combining in-phase to give a bonding orbital

energy level diagram

combination of two p orbitals

here the different phases of the p orbital are shown by shading one half and not the other

the end-on overlap of two 2p atomic orbitals to give the $2p\sigma^*$ antibonding MO

the end-on overlap of two 2p atomic orbitals to give the $2p\sigma$ bonding MO

The end-on overlap

The side-on overlap

the side-on overlap of two 2p atomic orbitals to give the $2p\pi^*$ antibonding MO

the side-on overlap of two 2p atomic orbitals to give the $2p\pi$ bonding MO

Bonding in Ethelene

3 orbitals formed

3 orbitals mixed

Destructive overlap

HOMO = Highest Occupied Molecular Orbital

<u>LUMO</u> = Lowest Unoccupied Molecular Orbital

Constructive overlap

Summary of MOT

The atomic orbitals combine to form a new orbital known as molecular orbital

Constructive overlap results **Bonding Molecular orbital (B.M.O)** and destructive overlap results **Antibonding Molecular Orbital (A.B.M.O)**

The, B.M.O has lower energy and hence greater stability than the corresponding A.M.O.

Electrons of the molecule are filled just like in case of atomic orbitals – Follow Aufbau, Pauli exclusion, and Hund'e rule.

....First BMO then ABMO

Summary of MOT

Destructive overlap results Nodal Plane- possibility of finding electrons are minimum.

BMO are represented as σ , π and ABMO are represented as σ^* , π^*

HOMO - 'Highest Occupied Molecular Orbital',

LUMO - 'Lowest Unoccupied Molecular Orbital'.

The **HOMO** is the highest energy MO that has any electrons in it.

The **LUMO** is the next highest energy orbital (it will be empty).

The **LUMO** is the lowest energy place to put or excite an electron.

Frontier molecular orbital theory

MOT of alkenes fails to explain

- 1) Unusual stability of conjugated dienes
- 2) Why do alkenes absorb UV light
- 3) Why some pericyclic reactions occur but others do not!

$$H_2C = C - C = CH_2$$

Do not undergo DAR

Undergoes DAR

$$\pi_3$$
 ____ LUMO

$$\pi_2$$
 HOMO

$$\pi_1$$

[4+2] Cycloaddition Reaction allowed under heating conditions

[2+2]-Cycloaddition

[2+2] Cycloaddition

[2+2] Cycloaddition Reaction is Forbidden under heating conditions

[2+2]-Cycloaddition

[2+2] Cycloaddition Reaction allowed under photochemical conditions