

BIOTECHNOLOGY
SYSTEMS
BRANCH

**RAW SEQUENCE LISTING
ERROR REPORT**

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following computer readable form:

Application Serial Number: 10/045,574
Source: O IPE
Date Processed by STIC: 19/03/02

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.

PLEASE FORWARD THIS INFORMATION TO THE APPLICANT BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,
- 2) TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY

FOR CRF SUBMISSION QUESTIONS, PLEASE CONTACT MARK SPENCER, 703-308-4212.

FOR SEQUENCE RULES INTERPRETATION, PLEASE CONTACT ROBERT WAX, 703-308-4216.

PATENTIN 2.1 e-mail help: patin21help@uspto.gov or phone 703-306-4119 (R. Wax)

PATENTIN 3.0 e-mail help: patin3help@uspto.gov or phone 703-306-4119 (R. Wax)

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE CHECKER VERSION 3.1 PROGRAM, ACCESSIBLE THROUGH THE U.S. PATENT AND TRADEMARK OFFICE WEBSITE. SEE BELOW FOR ADDRESS:

<http://www.uspto.gov/web/offices/pac/checker>

Applicants submitting genetic sequence information electronically on diskette or CD-Rom should be aware that there is a possibility that the disk/CD-Rom may have been affected by treatment given to all incoming mail. Please consider using alternate methods of submission for the disk/CD-Rom or replacement disk/CD-Rom. Any reply including a sequence listing in electronic form should NOT be sent to the 20231 zip code address for the United States Patent and Trademark Office, and instead should be sent via the following to the indicated addresses:

1. EFS-Bio (<<http://www.uspto.gov/ebc/efs/downloads/documents.htm>> , EFS Submission User Manual - ePAVE)
2. U.S. Postal Service: U.S. Patent and Trademark Office, Box Sequence, P.O. Box 2327, Arlington, VA 22202
3. Hand Carry directly to:
U.S. Patent and Trademark Office, Technology Center 1600, Reception Area, 7th Floor, Examiner Name, Sequence Information, Crystal Mall One, 1911 South Clark Street, Arlington, VA 22202
Or
U.S. Patent and Trademark Office, Box Sequence, Customer Window, Lobby, Room 1B03, Crystal Plaza Two, 2011 South Clark Place, Arlington, VA 22202
4. Federal Express, United Parcel Service, or other delivery service to: U.S. Patent and Trademark Office, Box Sequence, Room 1B03-Mailroom, Crystal Plaza Two, 2011 South Clark Place, Arlington, VA 22202

Revised 01/29/2002

Raw Sequence Listing Error Summary

O I P E

ERROR DETECTED	SUGGESTED CORRECTION	SERIAL NUMBER: <u>10045,574</u>
-----------------------	-----------------------------	--

ATTN: NEW RULES CASES: PLEASE DISREGARD ENGLISH "ALPHA" HEADERS, WHICH WERE INSERTED BY PTO SOFTWARE

- 1 Wrapped Nucleic
Wrapped Aminos The number/text at the end of each line "wrapped" down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to .3; this will prevent "wrapping."
- 2 Invalid Line Length The rules require that a line not exceed 72 characters in length. This includes white spaces.
- 3 Misaligned Amino
Numbering The numbering under each 5th amino acid is misaligned. Do not use tab codes between numbers; use space characters, instead.
- 4 Non-ASCII The submitted file was not saved in ASCII(DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text.
- 5 Variable Length Sequence(s) _____ contain n's or Xaa's representing more than one residue. Per Sequence Rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the <220>-<223> section that some may be missing.
- 6 PatentIn 2.0
"bug" A "bug" in PatentIn version 2.0 has caused the <220>-<223> section to be missing from amino acid sequences(s) _____. Normally, PatentIn would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220>-<223> section to the subsequent amino acid sequence. This applies to the mandatory <220>-<223> sections for Artificial or Unknown sequences.
- 7 Skipped Sequences
(OLD RULES) Sequence(s) _____ missing. If intentional, please insert the following lines for each skipped sequence:
(2) INFORMATION FOR SEQ ID NO:X: (insert SEQ ID NO where "X" is shown)
(i) SEQUENCE CHARACTERISTICS: (Do not insert any subheadings under this heading)
(xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: (insert SEQ ID NO where "X" is shown)
This sequence is intentionally skipped

Please also adjust the "(ii) NUMBER OF SEQUENCES:" response to include the skipped sequences.
- 8 Skipped Sequences
(NEW RULES) Sequence(s) _____ missing. If intentional, please insert the following lines for each skipped sequence.
<210> sequence id number
<400> sequence id number
000
- 9 Use of n's or Xaa's
(NEW RULES) Use of n's and/or Xaa's have been detected in the Sequence Listing.
Per 1.823 of Sequence Rules, use of <220>-<223> is MANDATORY if n's or Xaa's are present.
In <220> to <223> section, please explain location of n or Xaa; and which residue n or Xaa represents.
- 10 Invalid <213>
Response Per 1.823 of Sequence Rules, the only valid <213> responses are: Unknown, Artificial Sequence, or scientific name (Genus/species). <220>-<223> section is required when <213> response is Unknown or is Artificial Sequence.
- 11 Use of <220> Sequence(s) _____ missing the <220> "Feature" and associated numeric identifiers and responses.
Use of <220> to <223> is MANDATORY if <213> "Organism" response is "Artificial Sequence" or "Unknown." Please explain source of genetic material in <220> to <223> section.
(See "Federal Register," 06/01/1998, Vol. 63, No. 104, pp. 29631-32) (Sec. 1.823 of Sequence Rules)
- 12 PatentIn 2.0
"bug" Please do not use "Copy to Disk" function of PatentIn version 2.0. This causes a corrupted file, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other manual means to copy file to floppy disk.
- 13 Misuse of n n can only be used to represent a single nucleotide in a nucleic acid sequence. N is not used to represent any value not specifically a nucleotide.

SEQUENCE LISTING

<110> MACKAY, Fabienne
KALLED, Susan

<120> BAFF, Inhibitors Thereof and Their Use
in the Modulation of B-Cell Response and
Treatment of Autoimmune Disorders

<130> 08201.0024-01000

<140> 10/045,574

<141> 2001-11-07

<150> 60/117,169

<151> 1999-01-25

<150> 60/143,228

<151> 1999-07-09

<150> PCT/US00/01788

<151> 2000-01-25

<150> 09/911,777

<151> 2001-07-24

<160> 22

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 218
<212> PRT
<213> Homo Sapien

<400> 1

Met Asp Asp Ser Thr Glu Arg Glu Gln Ser Arg Leu Thr Ser Cys Leu
1 5 10 15
Lys Lys Arg Glu Glu Met Lys Leu Lys Glu Cys Val Ser Ile Leu Pro
20 25 30
Arg Lys Glu Ser Pro Ser Val Leu Leu Ser Cys Cys Leu Thr Val Val
35 40 45
Ser Phe Tyr Gln Val Ala Ala Leu Gln Gly Asp Leu Ala Ser Leu Arg
50 55 60
Ala Glu Leu Gln Gly His His Ala Glu Lys Leu Pro Ala Gly Ala Lys
65 70 75 80
Ile Phe Glu Pro Pro Ala Pro Gly Glu Gly Asn Ser Ser Gln Asn Ser
85 90 95
Arg Asn Lys Arg Ala Val Gln Gly Pro Glu Glu Thr Val Thr Gln Asp
100 105 110
Cys Leu Gln Leu Ile Ala Asp Ser Glu Thr Pro Thr Ile Gln Lys Gly
115 120 125
Ser Tyr Thr Phe Val Pro Trp Leu Leu Ser Phe Lys Arg Gly Ser Ala
130 135 140
Leu Tyr Gly Gln Val Leu Tyr Thr Asp Lys Thr Tyr Ala Met Gly His
145 150 155 160
Leu Ile Gln Arg Lys Lys Val His Val Phe Gly Asp Glu Leu Ser Leu
165 170 175
Val Thr Leu Phe Arg Cys Ile Gln Asn Leu Glu Glu Gly Asp Glu Leu
180 185 190
Gln Leu Ala Ile Pro Arg Glu Asn Ala Gln Ile Ser Leu Asp Gly Asp
195 200 205
Val Thr Phe Phe Gly Ala Leu Lys Leu Leu
210 215

<210> 2
<211> 232
<212> PRT
<213> Murine

<400> 2

Met Asp Glu Ser Ala Lys Thr Leu Pro Pro Pro Cys Leu Cys Phe Cys
1 5 10 15

Ser Glu Lys Gly Glu Asp Met Lys Val Gly Tyr Asp Pro Ile Thr Pro
 20 25 30
 Gln Lys Glu Glu Gly Ala Val Leu Leu Ser Ser Phe Thr Ala Met
 35 40 45
 Ser Leu Tyr Gln Leu Ala Ala Leu Gln Ala Asp Leu Met Asn Leu Arg
 50 55 60
 Met Glu Leu Gln Ser Tyr Arg Gly Ser Ala Thr Pro Ala Ala Ala Lys
 65 70 75 80
 Leu Leu Thr Pro Ala Ala Pro Arg Pro His Asn Ser Ser Arg Gly His
 85 90 95
 Arg Asn Arg Arg Ala Phe Pro Gly Pro Glu Glu Thr Glu Gln Asp Val
 100 105 110
 Asp Leu Ser Ala Pro Pro Ala Leu Arg Asn Ile Ile Gln Asp Cys Leu
 115 120 125
 Gln Leu Ile Ala Asp Ser Asp Thr Pro Thr Ile Arg Lys Gly Thr Tyr
 130 135 140
 Thr Phe Val Pro Trp Leu Leu Ser Phe Lys Arg Gly Asn Ala Leu Tyr
 145 150 155 160
 Ser Gln Val Leu Tyr Thr Asp Pro Ile Phe Ala Met Gly His Val Ile
 165 170 175
 Gln Arg Lys Lys Val His Val Phe Gly Asp Glu Leu Ser Leu Val Thr
 180 185 190
 Leu Phe Arg Cys Ile Gln Asn Leu Glu Glu Gly Asp Glu Ile Gln Leu
 195 200 205
 Ala Ile Pro Arg Glu Asn Ala Gln Ile Ser Arg Asn Gly Asp Asp Thr
 210 215 220
 Phe Phe Gly Ala Leu Lys Leu Leu
 225 230

<210> 3
 <211> 102
 <212> PRT
 <213> Homo Sapien

<400> 3

Val Thr Gln Asp Cys Leu Gln Leu Ile Ala Asp Ser Glu Thr Pro Thr
 1 5 10 15
 Ile Gln Lys Gly Ser Tyr Thr Phe Val Pro Trp Leu Leu Ser Phe Lys
 20 25 30
 Arg Gly Ser Ala Leu Glu Glu Lys Tyr Gly Gln Val Leu Tyr Thr Asp
 35 40 45
 Lys Thr Tyr Ala Met Gly His Leu Ile Gln Arg Lys Lys Val His Val
 50 55 60

Phe Gly Asp Glu Leu Ser Asn Asn Ser Cys Tyr Ser Ala Gly Ile Ala
65 70 75 80
Lys Leu Glu Glu Gly Asp Glu Leu Gln Leu Ala Ile Pro Arg Glu Asn
85 90 95
Ala Gln Ile Ser Leu Asp
100

<210> 4
<211> 96
<212> PRT
<213> Homo Sapien

<400> 4

Lys Gln His Ser Val Leu His Leu Val Pro Ile Asn Ala Thr Ser Lys
1 5 10 15
Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala Leu Arg Arg
20 25 30
Gly Arg Gly Leu Gln Ala Gln Tyr Ser Gln Val Leu Phe Gln Asp Val
35 40 45
Thr Phe Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Ala
50 55 60
Tyr Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp
65 70 75 80
Ile Leu Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser
85 90 95

<210> 5
<211> 104
<212> PRT
<213> Homo Sapien

<400> 5

Ser Asp Lys Pro Val Ala His Val Val Ala Asn Pro Gln Ala Glu Gly
1 5 10 15
Gln Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly
20 25 30
Val Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Ser Thr His
35 40 45
Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala Val Ser Tyr Gln Thr
50 55 60

Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly
65 70 75 80
Val Phe Gln Leu Glu Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg
85 90 95
Pro Asp Tyr Leu Asp Phe Ala Glu
100

<210> 6
<211> 97
<212> PRT
<213> Homo Sapien

<400> 6

Glu Leu Arg Lys Val Ala His Leu Thr Gly Lys Ser Asn Ser Arg Ser
1 5 10 15
Met Pro Leu Glu Trp Glu Asp Thr Tyr Gly Ile Val Leu Leu Ser Gly
20 25 30
Val Lys Tyr Ser Lys Val Tyr Phe Arg Gly Gln Ser Cys Asn Asn Leu
35 40 45
Pro Leu Ser His Lys Val Tyr Met Arg Asn Ser Lys Tyr Pro Gln Met
50 55 60
Trp Ala Arg Ser Ser Tyr Leu Gly Ala Val Phe Asn Leu Thr Ser Ala
65 70 75 80
Asp His Leu Tyr Val Asn Val Ser Glu Leu Ser Leu Val Asn Phe Glu
85 90 95
Glu

<210> 7
<211> -102
<212> PRT
<213> Homo Sapien

<400> 7

Thr Leu Lys Pro Ala Ala His Leu Ile Gly Asp Pro Ser Lys Gln Asn
1 5 10 15
Ser Leu Leu Trp Arg Ala Asn Thr Asp Arg Ala Phe Leu Gln Asp Gly
20 25 30
Phe Tyr Ser Gln Val Val Phe Ser Gly Lys Ala Tyr Ser Pro Lys Ala
35 40 45

Thr Ser Ser Pro Leu Tyr Leu Ala His Glu Val Gln Leu Phe Ser Ser
50 55 60
Gln Tyr Pro Phe Pro Trp Leu His Ser Met Tyr His Gly Ala Ala Phe
65 70 75 80
Gln Leu Thr Gln Gly Asp Gln Leu Ser Thr His Thr Asp Gly Ile Pro
85 90 95
His Leu Val Leu Ser Phe
100

<210> 8
<211> 109
<212> PRT
<213> Homo Sapien

<400> 8

Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Thr Asp Ile Pro
1 5 10 15
Ser Gly Ser His Lys Val Ser Leu Ser Ser Trp Tyr His Asp Arg Gly
20 25 30
Trp Gly Lys Ile Ser Asn Met Tyr Ala Asn Ile Cys Phe Arg His His
35 40 45
Glu Thr Ser Gly Asp Leu Ala Thr Glu Tyr Leu Gln Leu Met Val Tyr
50 55 60
Val Thr Lys Thr Ser Ile Lys Ile Pro Ser Glu Phe His Phe Tyr Ser
65 70 75 80

Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ser Gly Glu Glu Ile Ser
85 90 95
Ile Glu Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln
100 105

<210> 9
<211> 26
<212> DNA
<213> Homo Sapien

<400> 9

actgtttctt ctggaccctg aacggc

<210> 10
<211> 30
<212> DNA
<213> Homo Sapien

<400> 10

gacaagcttg ccaccatgga tgactccaca

30

<210> 11
<211> 23
<212> DNA
<213> Homo Sapien

<400> 11

actagtacaca gcagtttcaa tgc

23

<210> 12
<211> 22
<212> DNA
<213> Homo Sapien

<400> 12

ctgcagggtc cagaagaaac ag

22

<210> 13
<211> 24
<212> DNA
<213> Homo Sapien

<400> 13

ggagaaggca actccagtca gaac

24

<210> 14
<211> 24
<212> DNA
<213> Homo Sapien

<400> 14

caattcatcc ccaaagacat ggac

24

<210> 15

<211> 22

<212> DNA

<213> Homo Sapien

<400> 15

tcggaacaca acgaaacaag tc

22

<210> 16

<211> 26

<212> DNA

<213> Homo Sapien

<400> 16

cttctccttc acctggaaac tgactg

26

<210> 17

<211> 19

<212> DNA

<213> Homo Sapien

<400> 17

ggcatcgta tggactccg

19

<210> 18

<211> 19

<212> DNA

<213> Homo Sapien

<400> 18

gctggaaggt ggacagcga

19

<210> 19

<211> 35

<212> DNA

<213> Homo Sapien

<400> 19

taagaatgcg gccgcggaat ggatgagtct gcaaa

35

<210> 20

<211> 35

<212> DNA

<213> Homo Sapien

<400> 20

taagaatgcg gccgcggat cacgcactcc agcaa

35

<210> 21

<211> 21

<212> DNA

<213> Homo Sapien

<400> 21

gcagttcac agcgatgtcc t

21

<210> 22

<211> 21

<212> DNA

<213> Homo Sapien

<400> 22

gtctccgttg cgtaaaatct g

21