電気回路 • 電子回路

注意: 答案用紙は一人当たり2枚である.問題(A)と(B)はそれぞれ対応する答案用紙に解答せよ.

問題 (A) 以下の(1)と(2)に答えよ. なお, j は虚数単位を, E, V, Iの上の点「・」は, それらが大きさと位相を含む複素数であることを意味する. また, 適切な単位をつけて解答すること.

- (1) 図 A-1 の回路は, 交流電圧源 $e(t) = \sqrt{2}\sin t$ が接続され, 定常状態にある. R = 1 [Ω], L = 1.5 [H], C = 2 [F]のとき, 以下の問い①~⑤に答えよ.
 - ① 交流電圧源 *e*(*t*) の最大値, 実効値, 平均値(絶対平均値), 角周波数, そして周波数を求めよ. ただし, 有効数字を 2 桁とする.
 - ② 回路の電流 i(t) のフェーザ表示を I とするとき, I を求めよ. ただし、複素数は分母を実数化すること.
 - ③ インダクタ電圧 $v_L(t)$ のフェーザ表示を V_L とするとき、 V_L を求めよ. ただし、複素数は分母を実数化すること.
 - ④ 抵抗電圧 $v_R(t)$ とキャパシタ電圧 $v_C(t)$ のフェーザ表示をそれぞれ V_R と V_C とするとき,電圧フェーザ V_R , V_L , V_C の関係を解答用紙に図示せよ.
 - ⑤ Iと VL の瞬時値 i(t) と v_L(t) を求めよ.
- (2) 図 A-2 の回路は,角周波数の異なる 2 つの交流電圧源 $e_1(t) = 5\sqrt{2}\sin 2t$, $e_2(t) = \sqrt{2}\sin 4t$ が接続され,定常状態にある.以下の問い①~③に答えよ.
 - ① 複数の電源からなる線形回路において、任意点間の電圧は、それぞれの電源が単独に存在していた場合の和に等しい、この電気回路の解析手法の名称を答えよ.
 - ② ①の手法を用いるとき、図 A-2 の等価回路を 2 つ描け、ただし、必要な電源と素子名 $(e_1(t), e_2(t), R_1, R_2, L, C)$ を併記すること.
 - ③ $R_1 = R_2 = 1$ [Ω], L = 0.5 [H], C = 0.5 [F]のとき,図 A-2 のインダクタ電圧の瞬時値 $\nu_L(t)$ を求めよ.ただし,必要な位相(θ_1 , θ_2)を定義して,解答すること.

電気回路·電子回路

問題(B) 以下の各設問に解答せよ. 解答順は任意とする.

- (1) エミッタ接地基本増幅回路に関する,次の各問について答えよ.
 - a) バイポーラ・トランジスタ 1 素子,抵抗とキャパシタ(コンデンサ)各 2 素子,直流電源 $V_{\rm CC}$ からなるエミッタ接地基本増幅回路の回路図を示し、その特徴を述べよ.
 - b) バイアス電流の必要性について述べよ.
 - c) バイアス電流が、必ずしも設計通りにならなくなる要因を2点示せ.
 - d) バイアス電流の安定化に有効な回路と動作原理を示せ.
- (2) 演算増幅器 1 個と必要な受動素子を用いて、二つの入力電圧 $\nu_{1,\nu_{2}}$ に対して、電圧 ν_{0} = 2 (ν_{1} - ν_{2})を 出力する回路を設計せよ. さらに、設計した回路について、確かに ν_{0} = 2 (ν_{1} - ν_{2}) となることを 導出せよ.