

Context-Free Grammars

Example A context-free grammar $G\colon S\to aSb$ $S\to \lambda$ A derivation: $S\Rightarrow aSb\Rightarrow aaSbb\Rightarrow aabb$

A context-free grammar
$$G \colon S \to aSb$$

$$S \rightarrow \lambda$$

Another derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Describes parentheses: (((())))

Example

A context-free grammar $G \colon S \to aSa$

$$S \rightarrow bSb$$

$$S \to \lambda$$

A derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

A context-free grammar $G\colon \quad S \to aSa$

$$S \rightarrow bSb$$

$$S \to \lambda$$

Another derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$$

Example

 $S \rightarrow aSa$ A context-free grammar $G: S \rightarrow aSb$

 $S \rightarrow SS$

 $S \to \lambda$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

12

 $L(G) = \{ww^R: \ w \in \{a,b\}^*\}$

 $S \rightarrow bSb$

 $S \to \lambda$

A context-free grammar $G\colon \ S\to aSb$

$$S \rightarrow SS$$

$$S \to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$

13

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \lambda$$

$$L(G) = \{ w : n_a(w) = n_b(w),$$

and
$$n_a(v) \ge n_b(v)$$

in any prefix
$$v$$
}

Describes

matched

parentheses: ()((()))(())

Definition: Context-Free Grammars

Grammar
$$G = (V, T, S, P)$$

Variables

Terminal Start symbols variable

Productions of the form: *

 $A \rightarrow x$

Variable

String of variables and terminals

G = (V, T, S, P)

$$L(G) = \{w: S \Longrightarrow w, w \in T^*\}$$

16

Definition: Context-Free Languages

A language L is context-free

if and only if

there is a context-free grammar G with L = L(G)

Derivation Order

1.
$$S \rightarrow AB$$

2.
$$A \rightarrow aaA$$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

5.
$$B \rightarrow \lambda$$

Leftmost derivation:

Rightmost derivation:

18

$$S \rightarrow aAB$$

$$A \rightarrow bBb$$

$$B \to A \mid \lambda$$

Leftmost derivation:

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$$

$$\Rightarrow abbbbB \Rightarrow abbbb$$

Rightmost derivation:

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$$

$$\Rightarrow abbBbb \Rightarrow abbbb$$

Derivation Trees

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$S \Rightarrow AB$$
 (S)

$$S \to AB$$
 $A \to aaA \mid \lambda$ $B \to Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB$

 $S \to AB$ $A \to aaA \mid \lambda$ $B \to Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$

 $S \to AB$ $A \to aaA \mid \lambda$ $B \to Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + C \Rightarrow a +$$

The grammar $E \rightarrow E + E \mid E*E \mid (E) \mid a$ is ambiguous:

string a + a*a has two derivation trees $E \rightarrow E + E \mid E*E \mid (E) \mid a$ $E \rightarrow E + E \mid E*E \mid (E) \mid a$ $E \rightarrow E + E \mid E*E \mid (E) \mid a$

The grammar $E \rightarrow E + E \mid E*E \mid (E) \mid a$ is ambiguous:

string a + a*a has two leftmost derivations $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E*E$ $\Rightarrow a + a*E \Rightarrow a + a*a$ $E \Rightarrow E*E \Rightarrow E + E*E \Rightarrow a + E*E$ $\Rightarrow a + a*E \Rightarrow a + a*a$

Definition:

A context-free grammar $\,G\,$ is $\,$ ambiguous $\,$

if some string $w \in L(G)$ has:

two or more derivation trees

In other words:

A context-free grammar G is ambiguous

if some string $w \in L(G)$ has:

two or more leftmost derivations (or rightmost)

20

· Ambiguity is **bad** for programming languages

We want to remove ambiguity

We fix the ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

New non-ambiguous grammar: $E \rightarrow E + T$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

The grammar $G: E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $F \rightarrow a$

is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

Another Ambiguous Grammar

 $\begin{array}{c} \text{IF_STMT} \ \to \ \text{if EXPR then STMT} \\ & \text{if EXPR then STMT else STMT} \end{array}$

A parser knows the grammar of the programming language

Parser

PROGRAM → STMT_LIST

STMT_LIST → STMT; STMT_LIST | STMT;

STMT → EXPR | IF_STMT | WHILE_STMT | { STMT_LIST }

EXPR → EXPR + EXPR | EXPR - EXPR | ID

IF_STMT → if (EXPR) then STMT | if (EXPR) then STMT else STMT

WHILE_STMT → while (EXPR) do STMT

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

Phase 1:
$$S \Rightarrow SS$$
 Find derivation of $S \Rightarrow aSb$ $aabb$ $S \Rightarrow bSa$ $S \Rightarrow \lambda$

All possible derivations of length 1

$$S \Rightarrow SS \qquad aabb$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Rightarrow 2$$

Phase 2
$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS \qquad aabb$$
Phase 1 $S \Rightarrow SS \Rightarrow bSaS$

$$S \Rightarrow SS \qquad S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSb \Rightarrow aSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

Phase 2
$$S \Rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$
Phase 3
$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

Time complexity of exhaustive search $Suppose \ \ there \ are \ no \ productions \ of \ the \ form$ $A \to \lambda$ $A \to B$ Number of phases for string $\ w: \ 2 \, |w|$

For grammar with $\,k\,$ rules

Time for phase 1: k

k possible derivations

Time for phase 2: k^2 $k^2 \qquad \qquad possible \ derivations$

Time for phase 2 |w|: $k^{2|w|}$ $k^{2|w|} \quad \text{possible derivations}$

S-grammar example:

$$S \rightarrow aS$$

$$S \rightarrow bSS$$

$$S \rightarrow c$$

Each string has a unique derivation

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Time for a phase: 1

Total time for parsing string w: |w|

For general context-free grammars:

There exists a parsing algorithm that parses a string |w| in time $|w|^3$

(we will show it in the next class)

_.