

INTERNAL BONE RECONSTRUCTION USING MACHINE LEARNING

Moira Shooter Lucien Hugueniot

OVERVIEW

- Predicting the porosity factor (amount of void space) of a porous object such as a bone to 3D reconstruct the internal structure of the object with help of machine learning
- Can the Machine learning algorithm learn the porosity of objects?

Machine learning technical terms

Epoch: An epoch is one **complete presentation** of the data set **to be learned** by the machine learning algorithm

ReLU: Stands for Rectified Linear Unit and is a non-linear operation. It **replaces** all **negative pixel values** in feature map **with zero**.

Convolutional layer: Extracts features such as edges **from the input image**, and creates feature maps, the more features extracted the better the network recognise images

Machine learning technical terms

Pooling Layer: Reduces the dimensionality of each feature map but keeps the most important information

Dense Layer(Fully connected layer): all the neurons from the previous layer with the current layer

Drop out layer: The purpose of this layer is to avoid overfitting

Motivation

Simulations
Realistic modeling of porous materials [2]

Engineering
Soil conditions and plant growth [3]

Motivation

Medical area Prosthetics [5]

Medical area Analysing bone sickness[6]

APPROACH

PREPARE THE DATASET[1]

Depending on **healthiness factor** of the bone

Depending on **porosity factor** of the bone

THE BIGGER THE BETTER

= 190,219 images

Iterations:
Flip vertically,
horizontally,
both,
Translate,
Brightness

THE BIGGER THE BETTER

Iterations: Rotation of image to the left

CALCULATING THE POROSITY

Original Image

Alpha Image Created blur - threshold - contour - morph(closing)

Processed Image

amount of white pixels: 110818 amount of black pixels: 116290 porosity: 51.0

MODEL CREATED WITH PARAMETERS

Depending on the **healthiness factor** [1*]

Input: 150 x 150 x 1

Feature Learning

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	146, 146, 64)	1664
max_pooling2d (MaxPooling2D)	(None,	73, 73, 64)	0
dropout (Dropout)	(None,	73, 73, 64)	0
conv2d_1 (Conv2D)	(None,	69, 69, 32)	51232
max_pooling2d_1 (MaxPooling2	(None,	34, 34, 32)	0
dropout_1 (Dropout)	(None,	34, 34, 32)	0
conv2d_2 (Conv2D)	(None,	30, 30, 32)	25632
max_pooling2d_2 (MaxPooling2	(None,	15, 15, 32)	0
dropout_2 (Dropout)	(None,	15, 15, 32)	0
flatten (Flatten)	(None,	7200)	0
dense (Dense)	(None,	80)	576080
dropout_3 (Dropout)	(None,	80)	0
dense_1 (Dense)	(None,	30)	2430
dropout_4 (Dropout)	(None,	30)	0
dense_2 (Dense)	(None,	2)	62

Classification

RESULTS

TrainingDepending on health factor

Amount of epochs: 5

Loss: **0.0558**

Accuracy: 97.98%

Total time to train: 28.05 minutes

EvaluationDepending on health factor

Accuracy of 99.13%

Loss of **0.029**

Predictions

health 100% (health)

sick 98% (sick)

health 100% (health)

health 100% (health)

sick 100% (sick)

health 100% (health)

health 100% (health)

sick 100% (sick)

sick 100% (sick)

health 98% (health)

health 100% (health)

sick 97% (health)

health 100% (health)

health 100% (health)

sick 100% (sick)

sick 90% (sick)

health 93% (health)

health 97% (health)

sick 100% (sick)

sick 92% (sick)

health 100% (health)

health 100% (health)

health 100% (health)

health 100% (health)

health 100% (health)

health 100% (health)

sick 100% (sick)

sick 100% (sick)

health 100% (health)

sick 100% (sick)

health 100% (health)

health 100% (health)

health 100% (health)

sick 100% (sick)

health 100% (health)

MODEL CREATED WITH PARAMETERS

Depending on the **porosity factor** [2*]

Input: 150 x 150 x 1

Feature Learning

Classification

ex pooling2d (MaxPooling2D) (None, 73, 73, 64) 51232 onv2d 1 (Conv2D) (None, 69, 69, 32) ax pooling2d 1 (MaxPooling2 (None, 34, 34, 32) 25632 onv2d 2 (Conv2D) (None, 30, 30, 32) onv2d 3 (Conv2D) (None, 26, 26, 32) 25632 ax pooling2d 2 (MaxPooling2 (None, 13, 13, 32) ax pooling2d 3 (MaxPooling2 (None, 6, 6, 32) latten (Flatten) (None, 1152) ense (Dense) (None, 100) 115300 ense 1 (Dense) (None, 50) 5050 (None, 50) ropout (Dropout) (None, 20) 1020 nse 2 (Dense)

Output Shape

(None, 146, 146, 64)

1664

ayer (type)

RESULTS

TrainingDepending on porosity factor

Amount of epochs: 50

Loss: **0.15** Accuracy: **95%**

Total time to train: 26 min

EvaluationDepending on porosity factor

Accuracy of 95%

Loss of **0.15**

Predictions

Future Work

- Reconstruct a 3D model based on the porosity factor [4]
 - Paper: Procedural voronoi foams for additive manufacturing (SIGGRAPH 2016)
- This method depends on two parameters the density (porosity factor) and the radius of a beam (hole)
- 3D print the porous object

Q8A

Parameters

[]*]

Convolution	Amount of nodes = 64	kernel_size = 5	activation = 'relu'	input_shape = (150,150,1)
Max Pooling		pool_size = (2,2)		
Drop out	rate = 0.4			
Convolution	Amount of nodes = 32	kernel_size = 5	activation = 'relu'	
Max Pooling		pool_size = (2,2)		
Drop out	rate = 0.4			
Convolution	Amount of nodes = 32	kernel_size = 3	activation = 'relu'	
Max Pooling		pool_size(2,2)		
Drop out	rate = 0.5			
Flatten				
Dense	Amount of nodes = 80		activation = 'relu'	
Drop out	rate = 0.3			
Dense	Amount of nodes = 30		activation = 'relu'	
Drop out	rate = 0.5			
Dense	Amount of nodes = 2		activation = 'softmax'	

Parameters

[2*]

Convolution	Amount of nodes = 64	kernel_size = 5	activation = 'relu'	input_shape = (150,150,1)
Max Pooling		pool_size = (2,2)		
Convolution	Amount of nodes = 32	kernel_size = 5	activation = 'relu'	
Convolution	Amount of nodes = 32	kernel_size = 5	activation = 'relu'	
Max Pooling		pool_size = (2,2)		
Max Pooling		pool_size = (2,2)		
Flatten				
Dense	Amount of nodes = 100		activation = 'relu'	
Dense	Amount of nodes = 50		activation = 'relu'	
Drop out	rate = 0.5			

REFERENCES

- [1] Micro-computed tomography reconstructions of tibiae of stem cell transplanted osteogenesis imperfecta mice Ranzoni, A.M., Corcelli, M., Arnett, T.R., & Guillot, P.V. *Figshare*. https://dx.doi.org/10.6084/m9.figshare.c.3795019
- [2] Baravalle, R., Scandolo, L., Delrieux, C., García Bauza, C., and Eisemann, E. (2017) Realistic modeling of porous materials. *Comp. Anim. Virtual Worlds*, 28: e1719. doi: 10.1002/cav.1719.
- [3] Passioura, J.B., 2002. Soil conditions and plant growth. https://doi.org/10.1046/j.0016-8025.2001.00802.x
- [4] Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre. Procedural Voronoi Foams for Additive Manufacturing. ACM Transactions on Graphics, Association for Computing Machinery, 2016, 35, pp.1 12. <10.1145/2897824.2925922>.
- [5]https://orthofeed.com/2017/10/30/9-3m-just-in-time-3d-printed-bone-implant-project-in-australia-set-to-transform-tumour-surgery/
- [6] Eduard Reithmeier Nina Loftfield, Markus Kastner. 2017. 3D Reconstruction And Characterization Of The Porous Microstructure Of AL2O3–CoatinBasedSurfaceData.(2017)