Install Requirements

Load the Dataset

file_path = '/content/drive/My Drive/YU-ML-Proj-2/Credit_Card.csv'
credits_data = pd.read_csv(file_path)
credits_data.head()

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	0
0	C10001	40.900749	0.818182	95.40	0.00	95.4	0.000000	0.166667	
1	C10002	3202.467416	0.909091	0.00	0.00	0.0	6442.945483	0.000000	
2	C10003	2495.148862	1.000000	773.17	773.17	0.0	0.000000	1.000000	
3	C10004	1666.670542	0.636364	1499.00	1499.00	0.0	205.788017	0.083333	
4									

Setting up the Environmment

```
#init setup
s = setup(credits_data, ignore_features = ['CUST_ID'], session_id = 123)
credits_data.head()
```

16.00

		Descriptio	on	Valu	e		
0		Session	id	12	3		
1	Or	riginal data shap	е	(8950, 18	3)		
2	Transfo	ormed data shap	е	(8950, 17	')		
3		Ignore feature	es		1		
4		Numeric feature	es	1	7		
5	Rows wi	th missing value	es	3.5%	%		
6		Preproces	ss	Tru	е		
7		Imputation typ	ре	simpl	е		
8	Nu	umeric imputatio	on	mea	mean		
9	Cate	gorical imputation	on	mod	mode		
10		CPU Job	os	-	1		
11		Use GP	U	Fals	е		
12		Log Experime	nt	Fals	е		
13	E	Experiment Nam	ne	cluster-default-name	е		
14		U	SI	794	5		
	CUST_ID	BALANCE	В	ALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS
0	C10001	40.900749		0.818182	95.40	0.00	
1	C10002	3202.467416		0.909091	0.00	0.00	
2	C10003	2495.148862		1.000000	773.17	773.17	
3	C10004	1666.670542		0.636364	1499.00	1499.00	

Create Model

to check all the available models
models()

4 C10005 817.714335

	Name	Reference
ID		
kmeans	K-Means Clustering	sklearn.clusterkmeans.KMeans
ар	Affinity Propagation	sklearn.clusteraffinity_propagation.Affinity
meanshift	Mean Shift Clustering	sklearn.clustermean_shift.MeanShift
sc	Spectral Clustering	sklearn.clusterspectral.SpectralClustering
hclust	Agglomerative Clustering	${\it sklearn.cluster._agglomerative.} Agglomerative {\it Cl}$
dbscan	Density-Based Spatial Clustering	sklearn.clusterdbscan.DBSCAN
optics	OPTICS Clustering	sklearn.clusteroptics.OPTICS
birch	Birch Clustering	sklearn.clusterbirch.Birch

1.000000

16.00

train Kmeans Model
kmeans = create_model('kmeans')
print(kmeans)

9	Silhouette	Calinski- Harabasz	Davies- Bouldin	Homogeneity	Rand Index	Completeness
0	0.3968	2675.3726	1.3211	0	0	0

KMeans(n clusters=4 random state=123)

#train Affinity Propagation mMdel
agglo = create_model('hclust')
print(agglo)

9	Silhouette	Calinski- Harabasz	Davies- Bouldin	Homogeneity	Rand Index	Completeness
0	0.3815	2215.9591	1.4904	0	0	0

AgglomerativeClustering(n clusters=4)

Comparision of Different Models

```
models = ['kmeans', 'ap', 'birch', 'dbscan', 'hclust', 'meanshift', 'optics', 'sc']
for model name in models:
   print(f"Creating model: {model_name}")
   model = create_model(model_name)
   print(model)
   Creating model: kmeans
                      Calinski-
                                    Davies-
                                                           Rand
       Silhouette
                                           Homogeneity
                                                                Completeness
                       Harabasz
                                    Bouldin
                                                           Index
                       2675.3726
                                     1.3211
           0.3968
                                                     0
                                                              0
                                                                          0
    KMeans(n_clusters=4, random_state=123)
    Creating model: ap
                      Calinski-
                                    Davies-
                                    Bouldin Homogeneity
                                                           Rand
       Silhouette
                                                                Completeness
                                                           Index
                       Harabasz
           0.1844
                       693.4131
                                      0.9937
                                                     0
                                                              0
                                                                          0
    AffinityPropagation()
                                 ******************
    Creating model: birch
                      Calinski-
                                    Davies-
                                                           Rand
       Silhouette
                                            Homogeneity
                                                                Completeness
                       Harabasz
                                    Bouldin
                                                           Index
         0.3815
                      2215.9591
                                      1.4904
                                                     0
                                                                          0
    Birch(n_clusters=4)
    Creating model: dbscan
                      Calinski-
                                    Davies-
       Silhouette
                                            Homogeneity
                                                                Completeness
                                    Bouldin
                                                           Index
                       Harabasz
                                          0
                                                                          0
    DBSCAN(n_jobs=-1)
    Creating model: hclust
                      Calinski-
                                    Davies-
                                                           Rand
       Silhouette
                                            Homogeneity
                                                           Index
                       Harabasz
                                    Bouldin
        0.3815
                      2215.9591
                                     1.4904
                                                     0
                                                              0
                                                                          0
    AgglomerativeClustering(n_clusters=4)
    Creating model: meanshift
                      Calinski-
                                    Davies-
                                                           Rand
       Silhouette
                                            Homogeneity
                                                                Completeness
                      Harabasz
                                    Bouldin
                                                           Index
                      152.3064
         0.4270
                                      0.6082
                                                     0
                                                              0
                                                                          0
    MeanShift(n_jobs=-1)
                     Creating model: optics
                      Calinski-
                                    Davies-
                                                           Rand
       Silhouette
                                            Homogeneity
                                                                Completeness
                                    Bouldin
                                                           Index
                       Harabasz
                          6.7718
                                      1.3894
        -0.5428
                                                                          0
    OPTICS(n_jobs=-1)
    Creating model: sc
```

train Kmeans Model
kmeans = create_model('kmeans', num_clusters=3)
print(kmeans)

S	ilhouette	Calinski- Harabasz	Davies- Bouldin	Homogeneity	Rand Index	Completeness
0	0.4523	5621.0578	0.9864	0	0	0

KMeans(n clusters=3 random state=103)

Analyze results

#Assign the cluster labels to the dataset to analyze the results
kmean_results = assign_model(kmeans)
kmean_results.head()

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHAS
0	40.900749	0.818182	95.400002	0.000000	95.400(
1	3202.467529	0.909091	0.000000	0.000000	0.0000
2	2495.148926	1.000000	773.169983	773.169983	0.0000
3	1666.670532	0.636364	1499.000000	1499.000000	0.0000
4	817.714355	1.000000	16.000000	16.000000	0.0000

#Analyzing using PCA plot
plot_model(kmeans)

2D Cluster PCA Plot

##Distrortion Score Elbow for finding the Optimal number of clusters
plot_model(kmeans, plot = 'elbow')

#Analyze using the silhouette plot
plot_model(kmeans, plot = 'silhouette')

#Analyze the distribution of clusters
plot_model(kmeans, plot = 'distribution')

#Analyze the distribution of features
plot_model(kmeans, plot = 'distribution', feature = 'BALANCE')

#Preprocessing and Parameter Tunning

drop_features = ['CUST_ID', 'ONEOFF_PURCHASES_FREQUENCY', 'PURCHASES_INSTALLMENTS_FREQUENCY', 'CASH_ADVANCE_FREQUENCY', 'PRC_FULL_PAYMENT
s = setup(credits_data, normalize = True, ignore_features=drop_features, normalize_method = 'minmax', session_id = 123)

	Description	Value
0	Session id	123
1	Original data shape	(8950, 18)
2	Transformed data shape	(8950, 13)
3	Ignore features	5
4	Numeric features	13
5	Rows with missing values	3.5%
6	Preprocess	True
7	Imputation type	simple
8	Numeric imputation	mean
9	Categorical imputation	mode
10	Normalize	True
11	Normalize method	minmax
12	CPU Jobs	-1
13	Use GPU	False
14	Log Experiment	False
15	Experiment Name	cluster-default-name
16	USI	21ce

#Analyzing Models after preprocessing and parameter tunning

model = create_model('kmeans')
plot_model(model,'elbow')

	Silhouette	Calinski-Harabasz	Davies-Bouldin	Homogeneity	Rand Index	Completeness
0	0.4688	6065.2136	0.8892	0	0	0

Silho	uette	Caline
Creating	model:	kmeans

	Silhouette	Calinski-Harabasz	Davies-Bouldin	Homogeneity	Rand Index	Completeness
0	0.4523	5621.0578	0.9864	0	0	0

KMeans(n_clusters=3, random_state=123)

Creating model: ap

Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness

0.1897 1195.1314 1.3301 0 0 0

AffinityPropagation()

Creating model: birch

Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness

0 0.4348 7423.7306 0.9552 0 0 0

Birch()

Creating model: dbscan

Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness

0 0.5335 58.1533 1.4026 0 0 0

DBSCAN(n_jobs=-1)

Creating model: hclust

Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness

0 0.3578 4188.6019 1.2753 0 0 0

AgglomerativeClustering(n_clusters=3)

Creating model: meanshift

Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness

0 0.3946 634.5767 1.2488 0 0 0

MeanShift(n_jobs=-1)

Creating model: optics

Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness

train Kmeans Model

kmeans = create_model('kmeans', num_clusters=3)
print(kmeans)

	Silhouette	Calinski-Harabasz	Davies-Bouldin	Homogeneity	Rand Index	Completeness
0	0.4523	5621.0578	0.9864	0	0	0

#Analyze the distribution of clusters
plot_model(kmeans, plot = 'distribution')

plot_model(kmeans)

2D Cluster PCA Plot

plot_model(kmeans, plot = 'silhouette')

plot_model(kmeans, plot = 'distance')

#Assign a cluster to a respective data
assign_model(kmeans)

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	CASH_
0	40.900749	0.818182	95.400002	0.000000	95.400002	0.000000	0.166667	
1	3202.467529	0.909091	0.000000	0.000000	0.000000	6442.945312	0.000000	
2	2495.148926	1.000000	773.169983	773.169983	0.000000	0.000000	1.000000	
3	1666.670532	0.636364	1499.000000	1499.000000	0.000000	205.788010	0.083333	
4	817.714355	1.000000	16.000000	16.000000	0.000000	0.000000	0.083333	
8945	28.493517	1.000000	291.119995	0.000000	291.119995	0.000000	1.000000	
8946	19.183214	1.000000	300.000000	0.000000	300.000000	0.000000	1.000000	
8947	23.398672	0.833333	144.399994	0.000000	144.399994	0.000000	0.833333	
8948	13 457564	0 833333	0 000000	0 000000	0 000000	36 558777	0 000000	

Saving the Model

```
save_model(kmeans,'project-2')
     Transformation Pipeline and Model Successfully Saved
     (Pipeline(memory=Memory(location=None),
               steps=[('numerical_imputer',
                        'CASH ADVANCE',
                                                     'PURCHASES_FREQUENCY',
                                                     'ONEOFF PURCHASES FREQUENCY',
                                                     'PURCHASES_INSTALLMENTS_FREQUENCY',
                                                     \verb|'CASH_ADVANCE_FREQUENCY'|,
                                                    'CASH_ADVANCE_TRX',
'PURCHASES_TRX', 'CREDIT_LIMIT',
'PAYMENTS', 'MINIMUM_PAYMENTS',
'PRC_FULL_PAYMENT', 'TENURE'],
                                           transformer=SimpleImputer())),
                       ('categorical_imputer',
                        TransformerWrapper(include=[],
                                           transformer=SimpleImputer(strategy='most frequent'))),
                       ('trained_model', KMeans(n_clusters=4, random_state=123))]),
      'project-2.pkl')
# reduce number of clusters to 3
kmeans2 = create_model('kmeans', num_clusters=3)
         Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness
             0.4659
                             3079.5131
                                                 1.1896
unique_labels = np.unique(kmeans2.labels_)
print("Unique cluster labels:", unique_labels)
     Unique cluster labels: [0 1 2]
#train Agglomerative clustering
hclust = create_model('hclust',num_clusters=3)
         Silhouette Calinski-Harabasz Davies-Bouldin Homogeneity Rand Index Completeness
             0.3883
                             2491.3826
                                                 1.0138
```

Asign Model

kmeans_cluster = assign_model(kmeans)
kmeans_cluster

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PUR(
0	40.900749	0.818182	95.400002	0.000000	95.4
1	3202.467529	0.909091	0.000000	0.000000	0.0
2	2495.148926	1.000000	773.169983	773.169983	0.0
3	1666.670532	0.636364	1499.000000	1499.000000	0.0
4	817.714355	1.000000	16.000000	16.000000	0.0
8945	28.493517	1.000000	291.119995	0.000000	291.
8946	19.183214	1.000000	300.000000	0.000000	300.0
8947	23.398672	0.833333	144.399994	0.000000	144.0

```
Start coding or generate with AI.
```

This notebook is to analyze the Customer's Credit Card data and apply Unsupervised Machine Learning

techniques to understand the hidden relationship within the dataset so that appropriate customer base can be identified for marketing or promition purpose to increase sales/revenue etc.

```
from google.colab import drive
drive.mount('_/content/drive')
     Mounted at /content/drive
import pandas as pd;
dfCCOrig=pd.read_csv("/content/drive/MyDrive/YU-ML-Proj-1/Week6/Credit_Card.csv")
dfCCOrig.info()
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 8950 entries, 0 to 8949
    Data columns (total 18 columns):
     # Column
                                         Non-Null Count Dtype
     0 CUST ID
                                         8950 non-null
                                                        obiect
     1
         BALANCE
                                        8950 non-null
                                                        float64
         BALANCE FREQUENCY
                                        8950 non-null
                                                        float64
     3
         PURCHASES
                                        8950 non-null
                                                        float64
                                       8950 non-null
         ONEOFF_PURCHASES
         INSTALLMENTS_PURCHASES
                                        8950 non-null
         CASH_ADVANCE
                                       8950 non-null
                                                        float64
         PURCHASES_FREQUENCY
                                        8950 non-null
         ONEOFF_PURCHASES_FREQUENCY 8950 non-null
                                                        float64
         PURCHASES INSTALLMENTS FREQUENCY 8950 non-null
                                                        float64
     10 CASH_ADVANCE_FREQUENCY
                                        8950 non-null
                                                        float64
         CASH_ADVANCE_TRX
     11
                                         8950 non-null
                                                        int64
     12 PURCHASES TRX
                                        8950 non-null
                                                        int64
     13 CREDIT LIMIT
                                        8949 non-null
                                                        float64
     14 PAYMENTS
                                        8950 non-null
                                                        float64
     15 MINIMUM_PAYMENTS
                                         8637 non-null
                                                        float64
                                         8950 non-null
                                                        float64
     16 PRC_FULL_PAYMENT
                                         8950 non-null
    dtypes: float64(14), int64(3), object(1)
     memory usage: 1.2+ MB
```

From above, it was observed that all available variables are of numeric data type except one (CUST_ID)

Perform Null checks (% of Null values)

Perform EDA on Numeric variables

```
dfCCNumeric= dfCCOrig.drop(['CUST_ID', 'BALANCE_FREQUENCY', 'ONEOFF_PURCHASES_FREQUENCY', 'PURCHASES_INSTALLMENTS_FREQUENCY','CASH_ADVAN
dfCCNumeric.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 8950 entries, 0 to 8949
    Data columns (total 12 columns):
     # Column
                                Non-Null Count Dtype
         BALANCE
                                8950 non-null float64
         PURCHASES
                                8950 non-null
                                               float64
         ONEOFF_PURCHASES
                                8950 non-null
                                               float64
         INSTALLMENTS_PURCHASES 8950 non-null
                                                float64
         CASH_ADVANCE
                                8950 non-null
                                               float64
```

```
PURCHASES FREQUENCY
                                             float64
                             8950 non-null
    CASH ADVANCE TRX
                             8950 non-null
                                             int64
    PURCHASES TRX
                                             int64
                             8950 non-null
8
    CREDIT LIMIT
                             8949 non-null
                                             float64
9
    PAYMENTS
                             8950 non-null
                                             float64
10 MINIMUM_PAYMENTS
                             8637 non-null
                                             float64
11
    TENURE
                             8950 non-null
                                             int64
```

dtypes: float64(9), int64(3) memory usage: 839.2 KB

dfcCorig.drop(['CUST_ID', 'ONEOFF_PURCHASES_FREQUENCY', 'PURCHASES_INSTALLMENTS_FREQUENCY','CASH_ADVANCE_FREQUENCY','PRC_FULL_PAYMENT'].

```
array([[<Axes: title={'center': 'BALANCE'}>
       <Axes: title={'center': 'BALANCE_FREQUENCY'}>,
       <Axes: title={'center': 'PURCHASES'}>,
       <Axes: title={'center': 'ONEOFF_PURCHASES'}>,
       <Axes: title={'center': 'INSTALLMENTS_PURCHASES'}>],
      [<Axes: title={'center': 'CASH_ADVANCE'}>,
       <Axes: title={'center': 'PURCHASES_FREQUENCY'}>,
       <Axes: title={'center': 'CASH ADVANCE TRX'}>,
       <Axes: title={'center': 'PURCHASES_TRX'}>,
       <Axes: title={'center': 'CREDIT_LIMIT'}>],
      <Axes: title={'center': 'TENURE'}>, <Axes: >, <Axes: >],
```

[$\langle Axes: \rangle$, $\langle Axes: \rangle$, $\langle Axes: \rangle$, $\langle Axes: \rangle$]], dtype=object) BALANCE_FREQUENCY **BALANCE PURCHASES**

Histogram to understand the corelation

```
500 +
                                                                 import seaborn as sns
```

```
from matplotlib import pyplot as plt
plt.subplots(figsize=(20,15))
corr=dfCCNumeric.corr()
```

sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns, annot=True,)

 \Box

Perform Imputation to fill the missing or null values for above 2 variables

```
MINIMUM_PAYMENTS

CREDIT_LIMIT

dfccpp=dfccorig
dfmeanMp=dfccpp["MINIMUM_PAYMENTS"].mean().round(0).astype(int)
dfccpp["MINIMUM_PAYMENTS"].fillna(dfmeanMp, inplace=True)

dfmeanCL=dfcCpp["CREDIT_LIMIT"].mean().round(0).astype(int)
dfccpp["CREDIT_LIMIT"].fillna(dfmeanCL, inplace=True)
```

Null Check after Imputation (We can see there is no null data in teh dataset after imputation is done)

```
dfCCOrigLen=len(dfCCPP)
df1=(dfCCPP.isnull().sum()/dfCCOrigLen)*100
df2=df1[df1.values>0]
df2.sort_values(ascending=False)
```

```
Series([], dtype: float64)
from sklearn import preprocessing
dfCCPPSub=dfCCPP.drop(['CUST_ID'], axis=1)
dfCCPP_norm = preprocessing.normalize(dfCCPPSub)
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 4, random_state = 0, n_init='auto')
kmeans.fit(dfCCPP_norm)
                             KMeans
     KMeans(n_clusters=4, n_init='auto', random_state=0)
kmeans.labels_
     array([1, 2, 1, ..., 1, 1, 0], dtype=int32)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=30, learning_rate=0.1, n_iter=2000)
X_tsne = tsne.fit_transform(dfCCPP_norm)
# Add the cluster information to the reduced data
df_tsne = pd.DataFrame(data=X_tsne, columns=['t-SNE Component 1', 't-SNE Component 2'])
# Plotting
sns.scatterplot(x='t-SNE Component 1', y='t-SNE Component 2', data=df_tsne)
plt.title('Clusters Visualized with t-SNE')
plt.show()
```



```
wcss= []
for i in range(1,11):
    km = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=42)
    km.fit(dfCCPP_norm)
    wcss.append(km.inertia_)

plt.plot(range(1,11),wcss, marker='o', linestyle='--')
plt.title('Distortion Score Elbow Method', fontsize =20)
plt.xlabel('K-Value')
plt.ylabel('wcss')
plt.show()
```

Distortion Score Elbow Method 2000 - 1750 - 1500 - 1000 - 750 - 500 - 2 4 6 8 10

```
n_{clusters} = 3
# Instantiate the KMeans model
kmeans = KMeans(n_clusters=n_clusters )
# Fit the model to the scaled data
kmeans.fit(dfCCPP_norm)
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
      warnings.warn(
             KMeans
     KMeans(n_clusters=3)
kmeans.labels_
     array([2, 1, 2, ..., 2, 2, 0], dtype=int32)
from \ sklearn.metrics \ import \ silhouette\_samples, \ silhouette\_score
score = silhouette_score(dfCCPP_norm, kmeans.labels_, metric='euclidean')
score
    0.32222630149805565
from yellowbrick.cluster import SilhouetteVisualizer
visualizer = SilhouetteVisualizer(kmeans, colors='yellowbrick')
visualizer.fit(dfCCPP_norm)
                                   # Fit the data to the visualizer
                       # Finalize and render the figure
visualizer.show()
```


<Axes: title={'center': 'Silhouette Plot of KMeans Clustering for 8950 Samples in 3
Centers'}, xlabel='silhouette coefficient values', ylabel='cluster label'>

df_tsne['cluster'] = kmeans.labels_
Plotting
sns.scatterplot(x='t-SNE Component 1', y='t-SNE Component 2', hue='cluster', data=df_tsne, palette='viridis', alpha=0.4)
plt.title('Clusters Visualized with t-SNE')
nlt show(')

pca_labels = kmeans.fit_predict(dfCCPP_norm)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow warnings.warn(

dfCCOrig['cluster']=pca_labels

dfCCOrig.head()

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	(
	C10001	40.900749	0.818182	95.40	0.00	95.4	0.000000	0.166667	
	C10002	3202.467416	0.909091	0.00	0.00	0.0	6442.945483	0.000000	
:	C10003	2495.148862	1.000000	773.17	773.17	0.0	0.000000	1.000000	
;	C10004	1666.670542	0.636364	1499.00	1499.00	0.0	205.788017	0.083333	
	1 C10005	817.714335	1.000000	16.00	16.00	0.0	0.000000	0.083333	

```
corr = dfCCOrig.corr()
plt.figure(figsize = (20, 20))
sns.heatmap(corr, square = True, annot = True, cmap = 'Blues')
```

<ipython-input-20-9d33e8e2f301>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver corr = dfCCOrig.corr()

<Axes: >

cols_imp = list(corr['cluster'] <=-0.15) | (corr['cluster'] >=0.15)].index)
cols_imp

```
['BALANCE'
```

^{&#}x27;BALANCE_FREQUENCY',

^{&#}x27;PURCHASES',

^{&#}x27;ONEOFF_PURCHASES'

^{&#}x27;INSTALLMENTS_PURCHASES',

^{&#}x27;CASH ADVANCE'

^{&#}x27;ONEOFF_PURCHASES_FREQUENCY',

^{&#}x27;CASH_ADVANCE_FREQUENCY',

^{&#}x27;CASH_ADVANCE_TRX',

^{&#}x27;PURCHASES_TRX',

```
'CREDIT_LIMIT',
      'PAYMENTS',
      'cluster']
cols_imp=['BALANCE',
 'PURCHASES',
 'ONEOFF_PURCHASES',
 'INSTALLMENTS_PURCHASES',
 'CASH_ADVANCE',
'CREDIT_LIMIT',
'PAYMENTS',
'MINIMUM_PAYMENTS',
'TENURE'
 'cluster']
plt.figure(figsize = (15, 20))
for i, col in enumerate(cols_imp[:-1]):
 if i+1 < 16:
    ax = plt.subplot(4, 3, i+1)
    sns.boxplot(x = dfCCOrig['cluster'], y = dfCCOrig[col])
    plt.xlabel("Cluster", fontsize = 15)
    plt.ylabel(col, fontsize = 15)
    plt.xticks(fontsize = 13)
    plt.yticks(fontsize = 13)
plt.tight_layout()
plt.show()
```



```
dfCluster1S=dfCluster1[['BALANCE','PURCHASES', 'ONEOFF_PURCHASES', 'INSTALLMENTS_PURCHASES', 'PAYMENTS', 'MINIMUM_PAYMENTS','CREDIT_LIMI
df1=dfCluster1S.describe().loc[['mean']].round(2)
df1['MINIMUM_PAYMENT_TO_CC_LIMIT(%)']=((df1['MINIMUM_PAYMENTS']/df1['CREDIT_LIMIT'])*100).round(2)
df1['BALANCE_TO_CC_LIMIT(%)']=((df1['BALANCE']/df1['CREDIT_LIMIT'])*100).round(2)
df1['TOTAL_SPENDING']=(df1['PURCHASES']+df1['CASH_ADVANCE']).round(2)
df1['CASH_ADVANCE_TO_CC_LIMIT(%)']=((df1['CASH_ADVANCE']/df1['CREDIT_LIMIT'])*100).round(2)
df1['SPEND_TO_CC_LIMIT(%)']=((df1['TOTAL_SPENDING']/df1['CREDIT_LIMIT'])*100).round(2)
df1.insert(0,'Cluster_Name', 'Cluster 1')
```