<u>Goal of this programming assignment</u>: The key objective of this assignment is for students to learn how to implement a range of data structures. This assignment will include the concepts of linked lists, structs, standard binary trees and threaded binary trees.

<u>Problem description</u>: In computer data structures, a binary tree is used for searching and sorting data in a hierarchical way. A binary tree can either be an empty binary tree or it can either be a complete or full binary tree. The standard operations in a binary tree are insertion, deletion and traversal. In this assignment students are required to implement these 3 operations in the form of functions and then call these functions when there is a need for the operation.

Programming activity 1: You are required to implement code that creates the binary tree below.

Program requirements: Your program should have the following functions.

Function Name	Description	Points
insert_Root()	If tree is empty insert the node as root. If root	5 points
	exist give error, "This is not an empty binary tree."	
insert_Left()	Inserts a left child of the parent	5 points
insert_Right()	Inserts a right child of parent	5 points
inorder_Succ()	Finds the inorder successor of node X.	5 points
inorder_Trav()	Find the inorder traversal of the tree.	5 points

Required console output:

Your program should provide the following console:

Binary tree	functions: Select the function you like to proceed with,	
1. In	sert root	
2. In	sert left	
3. In	sert right	
4. In	order Successor	
5. In	order Travesal	
Selection o	hoice: 1	
Enter the r	oot node information: 0	
The root n	ode is 0.	
Binary tree	functions: Select the function you like to proceed with,	
1. In	sert root	
2. In	sert left	
3. In	sert right	
4. In	order Successor	
5. In	order Travesal	
Selection choice: 1		
Error: This is not an empty binary tree.		
Binary tree functions: Select the function you like to proceed with,		
1. In	sert root	
2. In	sert left	
3. In	sert right	
4. In	order Successor	
5. In	order Travesal	
Selection o	hoice: 2	
Enter the parent information: 0		
Enter the left child information: 1		
The left child is 1.		

1. Insert root		
2. Insert left		
3. Insert right		
4. Inorder Successor		
5. Inorder Travesal		
Selection choice: 3		
Enter the parent information: 0		
Enter the right child information: 2		
The right child is 2.		
Binary tree functions: Select the function you like to proceed with,		
1. Insert root		
2. Insert left		
3. Insert right		
4. Inorder Successor		
5. Inorder Travesal		
Selection choice: 4		
Enter the node which you want to find the successor: 0		
The inorder successor of 0 is 5		
Binary tree functions: Select the function you like to proceed with,		
1. Insert root		
2. Insert left		
3. Insert right		

Binary tree functions: Select the function you like to proceed with,

Selection choice: 5

4. Inorder Successor

5. Inorder Travesal

The inorder traversal of the tree is 3 1 4 0 5 2

Files to upload:

- 1. Screenshot of the above-mentioned console of the program.
- 2. C source code file. Name the file tree.c

Point deduction policy:

Late submission penalty: minus 5 points.

Program does not compile: minus 50% of total points.