Midterm 2

Math 525: Probability

Last name, first na	ne:
Section number: $_$	
User ID·	

Question:	1	2	3	Total
Points:	35	35	30	100
Score:				

Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Question 1 (35 points)

Consider a person walking along a line. Their position at time n is denoted X_n , and they start at position zero (i.e., $X_0 = 0$). At any point in time, the person can either take a step forward $(X_{n+1} = X_n + 1)$ or a step backwards $(X_{n+1} = X_n - 1)$. Let N be a positive integer and 0 . The person walking follows the rules

$$\mathbb{P}(X_{n+1} = i + 1 \mid X_n = i) = p, \quad \text{if } -N < i < N$$

$$\mathbb{P}(X_{n+1} = i - 1 \mid X_n = i) = 1 - p, \quad \text{if } -N < i < N$$

and

$$\mathbb{P}(X_{n+1} = \pm (N-1) \mid X_n = \pm N) = 1$$

- (a) Write down the transition matrix P for N=2 and p=1/3.
- (b) Recalling that $X_0 = 0$, give an expression for $\mathbb{P}(X_{10} = 0)$ using the matrix P. Just write down an expression: do not compute anything!

Question 2 (35 points)

Recall that the characteristic function of a normal random variable $X_n \sim \mathcal{N}(0, n)$ with mean zero and variance n is

$$\phi_n(t) = e^{-nt^2/2}.$$

- (a) What is $\phi(t) = \lim_{n \to \infty} \phi_n(t)$?
- (b) Can we conclude, using Lévy's continuity theorem, that X_n converges in distribution to a random variable X with characteristic function ϕ ? Why or why not?

Lévy's continuity theorem: Let X_n be a random variable with distribution functions F_n and characteristic function ϕ_n . If $\lim_{n\to\infty}\phi_n(t)=\phi(t)$ for some function ϕ which is continuous at the origin, then there exists a distribution function F such that $F_n\Rightarrow F$ and ϕ is the characteristic function of F.

Question 3 (30 points)

We would like to compute

$$\mathbb{E}\left[I_A(X)\right]$$

where A is some (Borel) subset of the real line and X is a random variable. One way to do so involves generating independent samples X_1, \ldots, X_n (each having the same distribution as X) and making the approximation

$$\mathbb{E}\left[I_A(X)\right] \approx \frac{S_n}{n}$$
 where $S_n = I_A(X_1) + \dots + I_A(X_n)$.

The central limit theorem tells us

$$\sqrt{n}\left(\frac{S_n}{n} - \mathbb{E}\left[I_A(X)\right]\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2).$$
(*)

- (a) What is the exact value of σ^2 in the above? Simplify as much as possible.
- (b) In your own words, what is the significance of (*)?