FACULDADE SENAC FLORIANÓPOLIS

Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

Guilherme Valmir de Andrade Rafael Bruno Krieger Carlos Eduardo Aranha

PROJETO DE GERENCIAMENTO DE EQUIPAMENTOS DA BRIGADA DE INCÊNDIO DO SENAC

Florianópolis

1 CONTEXTUALIZAÇÃO DO PROBLEMA

A Brigada de Incêndio da Faculdade Senac Florianópolis solicitou o desenvolvimento de um software para otimizar o processo de inspeção dos produtos relacionados ao combate a incêndio da unidade.

O objetivo é ter mais controle sobre a situação dos produtos relacionados à brigada de incêndio e o posicionamento correto de cada um deles no prédio, a fim de evitar multas e eventuais suspensões de alvará de incêndio – além de, evidentemente, reforçar a segurança de todos que frequentam a instituição.

Para isso, será necessário permitir um controle de entrada e saída de equipamentos, além de cadastrar as informações dos extintores e demais produtos de combate a incêndio com todas as suas características, tais como tempo de recarga e tipo de material, além do local em que deve estar situado dentro do prédio do Senac.

2 TÉCNICAS UTILIZADAS NO LEVANTAMENTO DE INFORMAÇÕES

Para o levantamento dos requisitos utilizamos a técnica de entrevista aberta, isto é, no reunimos com os clientes e tivemos uma conversa informal com cada um deles a respeito do problema.

Além disso, foi realizada uma pesquisa de campo. Nesta pesquisa, caminhamos pelos corredores do SENAC a fim de verificar informações dos extintores e demais produtos relacionados à brigada de incêndio para podermos criar um banco de dados de acordo com a realidade.

3 REQUISITOS FUNCIONAIS

Requisitos funcionais são aqueles sem os quais não é possível o funcionamento do sistema. Geralmente consideramos como requisitos funcionais o CRUD, isto é, a utilização de um banco de dados com a possibilidade de inserção, exclusão, alteração e seleção de dados e as

funcionalidades primárias exigidas pelo cliente. Abaixo segue a Tabela 1 com a lista de requisitos funcionais:

Tabela 1 – Requisitos Funcionais

RF01	Manter produtos.
RF02	Manter locais.
RF03	Manter fornecedores.
RF04	Controlar entrada de produtos.
RF05	Controlar saída de produtos.
RF06	Controlar através de uma agenda produtos que necessitam
	manutenção.
RF07	Registrar todas as inspeções dos equipamentos.
RF08	Registrar produtos provisórios de terceiros.
RF09	Emitir alertas para extintores que estão perto da validade.
RF10	Manter usuários
RF11	Manter chamados

4 REQUISITOS NÃO FUNCIONAIS

Requisitos não funcionais são aqueles dos quais o funcinamento do sistema não depende. Geralmente são considerados requisitos não funcionais os requisitos técnicos como linguagem de programação utilizada, tecnologia de banco de dados, identidade visual, entre outros. A Tabela 2 apresenta os requisitos não funcionais:

Tabela 2 – Requisitos não funcionais

RNF01	Padrão de cores do SENAC.
RNF02	Banco de dados MySQL.
RNF03	Versões WEB e MOBILE.
RNF04	Funcionar de acordo com as melhores práticas de UI Design.
RNF05	Responsividade tanto na versão WEB quanto na versão MOBILE.
RNF06	Leitura de QR code com número de série do produto para facilitar a
	inspeção através do aplicativo mobile.

5 REGRAS DE NEGÓCIO

Regras de negócio são itens que devem ser seguidos para a melhor funcionalidade do sistema. Geralmente utilizamos como regra de negócio boas práticas de usabilidade para evitar anomalias no banco de dados e regras baseadas em leis e normas pré definidas como o cálculo do INSS no salário de um funcionário, por exemplo. A Tabela 3 apresenta as regras de negócio do sistema:

Tabela 3 – Regras de Negócio

RNE01	Todos os extintores que saem do Senac para manutenção devem voltar
	exatamente com o mesmo tipo de produto e número de série.
RNE02	Não pode haver equipamentos com número de série duplicado.
RNE03	Quando o extintor voltar do processo de manutenção, deve voltar para o
	mesmo lugar onde estava.
RNE04	O extintor reserva deve receber uma marcação no banco de dados indicando
	que é provisório, e se está ativo ou não.
RNE05	As trocas de extintores em manutenção deverão acontecer de forma
	alternada, de modo que equipamentos vizinhos não saiam ao mesmo tempo.
RNE06	O funcionário do Senac escalado para esta função deve se responsabilizar
	pelo acompanhamento na inspeção de todos os equipamentos. Ele deverá
	cadastrar inclusive o número de série do extintor cedido pela empresa que irá
	ficar no lugar de um extintor do Senac retirado para manutenção.
RNE07	A empresa prestadora contratada pelo Senac para dar manutenção aos
	extintores se responsabilizará pelo cumprimento de um prazo de entrega
	segundo o qual todos os equipamentos devem ser entregues.
1	

6 BANCO DE DADOS

A seguir seguem os três modelos padrão de modelagem do banco de dados para que o desenvolvedor possa se basear quando desenvolver o banco de dados do sistema. Os modelos são, respectivamente: Conceitual, Lógico e Físico. A seguir apresentaremos cada um deles.

6.1 MODELO CONCEITUAL

Este é o modelo de mais alto nível e mais próximo da realidade do usuário. Neste modelo o foco está nas entidades e seus relacionamentos. Ele pode ser representado por um diagrama de entidade e relacionamento (DER), como apresenta a Figura 1.1. A Figura 1.2 é uma tabela com a respectiva cardinalidade entre os relacionamentos das entidades.

Figura 1.1 – Diagrama de Entidade e Relacionamento (DER)

Figura 1.2 – Tabela de Cardinalidade

6.2 MODELO LÓGICO

No modelo lógico são levados em consideração mais parâmetros além do conceitual. Neste modelo temos a nomenclatura, o tipo de dados e oss tipos de chaves (primária, estrangeira, etc). A Figura 2 a seguir mostra o modelo lógico do sistema:

Figura 2 – Modelo Lógico

6.3 MODELO FÍSICO

Este modelo se dá basicamente pelo script que gera o banco de dados, que pode ser diferente de acordo com o SGBD utilizado. Neste caso estamos utilizando o MySQL. A seguir o script utilizado para gerar o banco de dados:

create database if not exists extintor;

use extintor;

```
create table if not exists tipo_extintor(
id int not null auto_increment,
nome varchar(255), /*CO2, Água, etc*/
unidade varchar(255) not null, /*Litro, Kg*/
primary key(id))
engine = InnoDB;
create table if not exists tipo_produto(
id int not null auto_increment,
nome varchar(255) not null,
primary key(id))
engine = InnoDB;
create table if not exists predio(
id int not null auto_increment,
nome varchar(255) not null, /*Nome do prédio caso a instituição possua mais de um*/
primary key(id))
engine = InnoDB;
create table if not exists corredor(
id int not null auto_increment,
predio int not null,
nome varchar(255), /*Ex: corredor 1, auditório, etc*/
constraint fk_predio
foreign key (predio) references predio(id),
primary key(id))
engine = InnoDB;
create table if not exists produto(
codigo int not null, /*Código ou número de série do produto, não se repete*/
nome varchar(255) not null, /*Nome do produto*/
lacre varchar(255), /*Número de lacre*/
cor_lacre varchar(255), /*Cor do lacre*/
```

```
manometro varchar(255), /*Caso o extintor possua numeração de manometro*/
numero_serie varchar(255), /*Número de série do produto*/
comprimento_mangueira varchar(255), /*Comprimento da mangueira de incêndio caso seja o
caso*/
carga varchar(255), /*Carga extintor - Comum, Alta Temperatura e Baixa Temperatura*/
tipo_extintor int not null, /*Chave estrangeira ligada ao tipo de extintor - água, CO2, etc*/
tipo_produto int not null, /*Chave estrangeira ligada ao tipo de produto*/
local int not null, /*Chave estrangeira referente ao local onde o produto se encontra*/
observação text, /*informações sobre o lacre, qualidade do produto, etc*/
estado varchar(255) not null, /*Estado da inspeção do produto - S para passou e N para não
passou*/
ultimo_servico datetime, /*data da última inspeção do produto*/
proximo_servico datetime, /*data da próxima inspeção do produto*/
numero_manutencao int, /*Número de inspeções já realizadas*/
codigo_inmetro varchar(255), /*Código do INMETRO presente no extintor especificamente*/
codigo_registro varchar(255), /*Código do registro presente no extintor especificamente*/
mesano servico varchar(255), /*Mês e ano de serviço presente no extintor especificamente*/
proximo_teste varchar(255), /*Ano para o próximo teste do produto*/
constraint fk_tipo
foreign key(tipo_extintor) references tipo_extintor(id),
constraint fk_predio_produto
foreign key (local) references predio(id),
constraint fk_tipo_produto
foreign key (tipo_produto) references tipo_produto(id),
primary key(codigo))
engine = InnoDB;
create table if not exists foto_produto(
id int not null auto_increment,
produto int not null,
diretorio varchar(255) not null,
constraint fk_foto
foreign key(produto) references produto(codigo),
```

primary key(id))

```
engine = InnoDB;
create table if not exists produto_provisorio(
numero_serie varchar(255) not null,
local int not null,
ativo int not null,
constraint fk_predio_provisorio
foreign key (local) references predio(id),
primary key(numero_serie))
engine = InnoDB;
create table if not exists fornecedor(
id int not null auto_increment,
nome varchar(255) not null,
telefone varchar(255) not null,
cnpj varchar(255) not null,
endereco varchar(255) not null,
municipio varchar(255) not null,
primary key(id))
engine = InnoDB;
create table if not exists usuario(
id int not null auto_increment,
login varchar(255) not null,
senha varchar(255) not null,
nivel varchar(255) not null,
primary key(id))
engine = InnoDB;
create table if not exists chamado(
id int not null auto_increment,
produto int not null,
data datetime not null,
```

fornecedor int not null,

usuario int not null,
constraint fk_chamado_produto
foreign key (produto) references produto(codigo),
constraint fk_chamado_fornecedor
foreign key (fornecedor) references fornecedor(id),
constraint fk_chamado_usuario
foreign key (usuario) references usuario(id),
primary key(id))
engine = InnoDB;

7 INTERFACES DO SISTEMA

Nesta seção trataremos de algumas interfaces do sistema para que o usuário possa ter uma noção do sistema que será desenvolvido. Há diversas ferramentas que possibilitam a criação destas interfaces. Neste caso utilizamos o Photoshop para ter um maior controle dos itens presentes na tela. Dividiremos esta seção em duas subseções. A primeira delas apresentará algumas telas da versão web do sistema e a seção seguinte apresentará algumas telas da versão mobile.

7.1 INTERFACES WEB

As figuras 3 e 4 a seguir mostram duas telas da versão web do sistema. A primeira figura mostra a tela inicial do sistema, onde há um menu lateral, um hotlink com as principais informações e tabelas que mostram dados que podem ser gerenciados no banco de dados. Já na segunda figura temos uma tela de cadastro de extintor.

Figura 3 – Tela inicial da versão web do sistema.

Figura 4 – Tela de cadastro de extintores da versão web do sistema.

7.2 INTERFACES MOBILE

A seguir mostramos as figuras de 5 a 8. Nestas figuras temos algumas telas da versão mobile do sistema. Na figura 5 temos a tela de login. Na figura 6 temos a tela inicial do sistema mobile com os respectivos menus. Na figura 7 temos uma tela de cadastro de fornecedores. Já na figura 8 temos uma tela de listagem dos fornecedores cadastrados onde é possível abrir detalhes, editar informações e excluir fornecedores.

Figura 5 – Tela de login da versão mobile do sistema

Figura 6 – Tela inicial da versão mobile do sistema

Figura 7 – Tela de cadastro de fornecedores da versão mobile do sistema.

Figura 8 – Tela de listagem de fornecedores da versão mobile do sistema.

8 HISTÓRIA DO USUÁRIO

Controlar o estado, a validade e a localização correta de cada um dos extintores de incêndio do prédio da Faculdade Senac Florianópolis é uma das atribuições de Brigada de Incêndio da unidade, que faz inspeções periódicas para identificar os equipamentos que precisam de manutenção.

Para aperfeiçoar este processo e minimizar eventuais brechas de segurança que possam causar acidentes ou multas, os brigadistas solicitaram o desenvolvimento de um sistema para auxiliar no monitoramento dos extintores da unidade.

Os professores Paulo César Lapolli e Luciano Kogut – que também é brigadista – indicaram na primeira reunião que a primeira funcionalidade do sistema deveria ser permitir o cadastro de todos os extintores do prédio com todas as suas características, a começar por informações cruciais como o número do lacre, a localização e a data da próxima manutenção.

Foi solicitado o desenvolvimento de uma plataforma web, por onde seriam realizados os cadastros dos extintores por um membro da Brigada. O sistema também deve contar com uma versão para dispositivos móveis, com todas as mesmas funcionalidades, a fim de agilizar o processo de inspeção.

Os brigadistas gostariam de poder contar com uma agenda dos extintores que precisam sofrer manutenção ou recarga – quando um equipamento estiver se aproximando da validade, será emitido um alerta.

Através da plataforma mobile, o sistema deverá fornecer todas as informações sobre o extintor no momento da inspeção, em que serão verificados detalhes como o estado do lacre, conteúdo, conjunto da obra, avarias e data de validade.

O inspetor terá acesso a um checklist e fará um registro de todos os itens avaliados. O sistema deve oferecer um controle das inspeções que estão sendo realizadas, bem como tudo o que o inspetor identificou em termos de problemas e sugestões.

Quando o extintor voltar do processo de manutenção, deve passar por um controle de entrada e saída e voltar para o mesmo lugar onde estava, com o mesmo produto do anterior – inclusive em caso de extintor reserva, que deve receber uma marcação no banco de dados indicando que é provisório, e se está ativo ou não.

Há extintores de água, CO2 e pó químico. Cada um destes materiais é indicado para determinado tipo de fogo; por isso, estão localizados estrategicamente. Por exemplo: no laboratório de informática, há um extintor de CO2, ideal para apagar incêndios em aparelhos eletrônicos.

Foi feito o levantamento de todos os atributos que devem ser cadastrados: número do lacre, fornecedor, local, tipo, peso, data da próxima manutenção e número de manutenções — a cada três saídas, o extintor passa por uma reavaliação mais profunda, de modo que o mesmo equipamento não seja modificado por mais de nove vezes.

Os brigadistas ressaltaram, ainda, a importância de alternar as trocas de extintores de acordo com a localização, para que o mesmo recinto não corra o risco de ficar com mais de um extintor a menos durante as manutenções.

Por se tratar de um aplicativo a ser utilizado nas dependências da Faculdade Senac Florianópolis, o padrão de cores do sistema deverá estar alinhado à marca da instituição. A interface da plataforma web será desenvolvida em HTML, CSS e Javascript, com códigos PHP para o processamento dos dados, que seriam armazenados no banco MySQL. Já a versão mobile teria a linguagem Javascript no back-end.

É importante que as interfaces dos sistemas web e mobile sejam intuitivas, responsivas e alinhadas com as melhores práticas de UX e UI, a fim de aprimorar e agilizar o processo de inspeção de extintores de incêndio, sem representar uma complicação a mais para os brigadistas.

Além de todos os requisitos já mencionados, os analistas sugerem a conversão dos números de série dos extintores em QR Code, para que o aplicativo tenha acesso instantâneo a todas as informações do equipamento em questão, facilitando as inspeções.

15

Ao apresentar um esboço do projeto ao professor Luciano, os analistas ressaltaram que a

entidade onde serão armazenados os extintores no banco de dados deve se chamar "produto", a

fim de permitir o cadastro e gerenciamento de outros dispositivos de interesse da Brigada, como

mangueiras de incêndio, sensores, alarmes, detectores de fumaça, portas corta-fogo e demais

acessórios.

O professor Luciano confirmou que, embora os extintores sejam o centro do problema, há

a necessidade de controlar os demais equipamentos de segurança contra incêndio, e a ideia de

criar uma entidade genérica chamada "produto" foi aprovada. O brigadista conduziu os

analistas a uma breve vistoria guiada aos dispositivos utilizados na unidade e prestou maiores

esclarecimentos sobre dados relevantes a serem armazenados e gerenciados, como a cor do

lacre dos extintores de incêndio, que segue um padrão de números de série estabelecido pela

empresa responsável pelas manutenções.

Depois das observações do professor Luciano, o projeto foi revisado levando em conta a

possibilidade de cadastro e gerenciamento de todos os outros dispositivos de combate a

incêndio disponíveis na unidade.

9 REFERÊNCIAS

MACHADO, Felipe Nery Rodrigues. Análise e gestão de requisitos de software: onde

nascem os sistemas. São Paulo, SP: Érica, 2011.

MACHADO, Felipe; ABREU, Maurício. **Projeto de banco de dados:** uma visão prática. 17ª

ed. São Paulo: Érica, 2012.

SILVA, Eli Lopes da. Elaboração de trabalhos acadêmicos: normas, dicas e erros comuns.

Florianópolis: Ed. do Autor, 2016.