

Lecture: Network Flow

Unit: 7.4

Instructor: Carlos C.L

4. Max Flow

Flow network

A directed graph G(V, E) combined with a capacity function c: $E \rightarrow \{R > 0\}$ and two vertices, a source(s) and a sink(t).

Flow

A function f: $E \rightarrow \{R > 0\}$. It must satisfy the following conditions:

$$f(e) \le c(e)$$

 $\Sigma f((u, v) = \Sigma f((u, v))$

We can prove the following holds given this conditions:

$$\Sigma$$
 f((s, u) = Σ f((u, t)) = flow of the network

Ford-Fulkerson - Edmonds Karp (published 1956)

Our problem is to find the flow function f, that maximizes the flow of the network.

Residual Graph

The residual graph is the same graph but with reverse edges and a different capacity function, the residual capacity.

Residual capacity:

How much we can increase the flow for a given edge:

$$rc(e) = c(e) - f(e)$$

Reverse edges:

For any edge (u, v) in the original graph, we define a reverse edge (v, u) in the residual graph

Augmented path:

It's a path on the residual graph with all edges having positive residual capacity.

Bottleneck capacity:

The lowest residual capacity on an augmented path.

Algorithm:

- 1. Find augmented path from s to t (use BFS or DFS)
- 2. Find bottleneck capacity
- 3. Augment each edge on the path

4. Repeat until no augmented paths can be achieved

If we use BFS for step one then we are solving with Edmonds Karp.

Complexity:

Time: O(EF), F = Max flow

Time: O(EV^2)
Space: O(V+E)

Problems:

CSES Download Speed

Dinic's Algorithm

Solves max flow problem.

Dinic's Algorithm | Network Flow | Graph Theory

Complexity:

Time complexity: O(V^2E)

For unit networks:

A unit network is a network where all edges have unit capacity.

Time complexity: O(EV^1/2)

Unweighted Bipartite Matching

We have a bipartite graph representing applicants and jobs. There is an edge (applicant, job) if the applicant has the requirements to do the job.

We want to maximize the number of applicants that get a job.

- 1. Transform problem to max flow problem
- 2. Make an imaginary source and target, connect source to applicant and jobs to applicants
- 3. Find max flow in this graph

The maximum flow from source to sink is five units. Therefore, maximum five people can get jobs.

Problems:

CSES School Dance

Matching Problems

Common matching Easier				/ariations Harder
Easier		Bipartite		Non-Bipartite
	Unweighted Edges	 Repeate path 	ow algorithms ed augmenting s with dfs croft-Karp	• Edmond's blossom algorithm

Resources:

<u>Unweighted Bipartite Matching | Network Flow | Graph Theory</u>

Assignment problem:

There are N jobs and N workers. Some jobs can only done by some workers, and we know the cost it takes for the worker to do the job. We need to assign all jobs so that the total cost is minimized.

Complexity:

Time: O(V^5)

Hungarian Algorithm

It can solve the assignment problem on O(V^3)

Problems:

