U. PORTO FEUP FACULDADE DO BORDO INJUNESTIDADE DO BORDO

Integrated Master's in Informatics and Computing Engineering

Theory of Computation

DFA, NFA, or ε -NFA: $A = (Q, \Sigma, \delta, q_0, F)$

- Example of the extended transition function, supposing the existence of the states p and q, the string w, and transitions q to p in the automaton with w: NFA ε -NFA: $\delta^{(q, w)} = \{p\}$; DFA: $\delta^{(q, w)} = p$
- Conversion of an FA (finite automaton) to a regular expression using the path construction technique: $R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)}) * R_{kj}^{(k-1)}$, where $1 \le k \le N$ e $1 \le i$, j $\le N$ (it is assumed that the FA states are enumerated from 1 to N)

PDA (Pushdown Automaton): $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

- Example of a computing trace in a given PDA using instantaneous descriptions: (q, aw, Xβ) | (p,w,αβ)
- Theorem 1: If $(q,x,\alpha) \models^* (p,y,\beta)$ then $(q,xw,\alpha\gamma) \models^* (p,yw,\beta\gamma)$
- Theorem 2: If (q,xw,α) $\vdash^* (p,yw,\beta)$ then (q,x,α) $\vdash^* (p,y,\beta)$

TM (Turing Machine): $A = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

• Example of a step in a Turing Machine: $qX_1X_2...X_n \models pBYX_2...X_n$ (in this case, the TM is at state q, replaces X_1 by Y, goes to the p state and moves in tape to the left side)

Cocke-Younger-Kasami Algorithm (CYK): used to test if a string is in a CFL and the CFL is represented by a grammar in CNF.

Regular expression operators:

- * (zero or more occurrences)
- . (concatenation: symbol can be omitted)
- + (or | or \cup)
- Precedence (from the highest to the lowest): *, ., +
- Curve brackets can be used to change the usual precedence order.

Pumping Lemma for Regular Languages:

Given an infinite regular language L. There exists a constant n (dependent of L) such that for every string w in L with $|w| \ge n$ it is possible to break w in 3 substrings w=xyz where:

- y ≠ ε
- $|xy| \le n$
- For every $k \ge 0$, the string xy^kz is also in L.

Chomsky Normal Form (CNF):

All the CFLs without ϵ (the empty string) has a grammar in the normal form of Chomsky, without useful symbols and in which all the productions are in the form:

- A \rightarrow BC (A, B, C are variables) or
- A → a (A is a variable and 'a' is a terminal)

Pumping Lemma for regular Languages without context (CFLs):

Consider L an infinite CFL. Then exists a constant n such that, for any string z in L with $|z| \ge n$ we can break z in z = uvwxy such that:

- $|vwx| \le n$
- $vx \neq \varepsilon$
- For every $i \ge 0$, $uv^i wx^i y \in L$