信息学院本科生 2007-2008 学年第一学期

		线性代数i	果程期末考试	试卷(A 卷)
专业:	年级:	学号:	姓名:	成绩:
说明: A^T 表示矩阵 A^{-1} 表示可:				位矩阵, <i>0</i> 是零矩 示向量α, <i>β</i> 的内积.
错l 字·	的后面括号中均	真"×",4-6	为单选题,将	括号中填" √", 好正确选项前的 [小题 3 分,共
15分)	, , , , , , , , , , , , , , , , , , ,		liu o Edw	
1. 若 <i>A</i> , <i>B</i> 都是				· · · · · · · · · · · · · · · · · · ·
2. 设 T 为 n 维约	线性空间 V 的组	线性变换, V †	中向量组 α_1, α_2	$\alpha_2, \dots, \alpha_m$ 线性无
关,则 $T\alpha_1,T$	$lpha_{\scriptscriptstyle 2}, \cdots, Tlpha_{\scriptscriptstyle m}$ 线性	走无关. ()	
3. 设向量组1: a	$lpha_{_{1}},lpha_{_{2}},\cdots,lpha_{_{r}}$ 可且	由向量组2: β	eta_1,eta_2,\cdots,eta_s 线情	生表示,当 $r < s$
时,向量组 2	2 必线性相关.	()	
4. 设 -2 是 3 阶		•	•	正值为()
	(B) -4		(D) 8	,
5. 下面说法中不			,	
(A) 排列经	过一次互换改	· 变其奇偶性.		
(B) 数量矩阵 kE 和任何同阶方阵可交换.				
	A 中存在一个			秩大干 <i>r</i> .
	量组没有极大			
6. 设有齐次线性			其中 A. B 均	为 <i>m×n</i> 矩阵.
现有 4 个命是		0 11 212 0 ,	X 1 11,2 · 3	7
	 {=0 的解均是	· RX = 0 的解	. 则秩(4)≥3	姓 (R)
	(A) \geqslant 秩 (B) ,则	_	` ´	
`	X = 0 = BX = 0			HJ/ 01 •
	(A)=秩 (B) ,则 (A) 的是: (p.4. 一 V PJ 用牛・	
アタート DD 正火 JC 10th	1017F: ()		

(A) (1) (2) (B) (1)(3) (C) (2)(4) (D) (3)(4)

计算题 (第1小题7分,第2小题8分,共15分)

│ 1. 计算 n(n > 2) 阶行列式

$$|D_n| = \begin{vmatrix} x_1 - m & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - m & x_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - m \end{vmatrix}$$

2. 计算矩阵 A, B, C 的行列式,其中 A, B 为 n(n > 2) 阶方阵.

(依次为 4 分, 2 分, 2 分)

$$A = \begin{pmatrix} 1+x & 1 & \cdots & 1 \\ 1 & 1+x & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1+x \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & n \end{pmatrix}, \quad C = \begin{pmatrix} O & A \\ B & O \end{pmatrix}.$$

求 A⁻¹. (8分)

得 分 |

四、 有三个向量 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,且 α_3 不能被 α_1,α_2 线 性表示,证明 α_1,α_2 线性相关. (8 分)

得 分

已知线性方程组(共13分)

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = a \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = b \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = -2 \end{cases}$$

- (1) a,b 为何值时,方程组有解? (5 分)
- (2) 方程组有解时,求出其导出组的一个基础解系. (5分)
- (3) 方程组有解时,求出方程组的全部解.(3分)

得 分

六、 已知实二次型 $f(x_1,x_2,x_3)=2x_1x_2+2x_2x_3+2x_3x_4$, 求正交变换x = Qy,将该二次型化为标准形,并写出正交 变换x = Qv,最后给出该二次型的负惯性指数.

得 β 七、 E 为n阶单位矩阵,P,Q 为n阶方阵, $|P-E| \neq 0$. 设 $A = \begin{pmatrix} P & Q \\ O & E \end{pmatrix}$, 证明: 对任意正整数k, 都有 $A^{k} = \begin{pmatrix} P^{k} & Q_{k} \\ O & E \end{pmatrix}$, 其中 $Q_{k} = (P^{k} - E)(P - E)^{-1}Q.(10 分)$

八、 设 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 是n维线性空间V的一组基底,且V中 向量 α_{n+1} 在该组基底下的坐标 $(x_1,x_2,...,x_n)$ 中所有 x_i 全 不为 0. (共 8 分)

- (1)证明: $\alpha_1,\alpha_2,\ldots,\alpha_{n+1}$ 中任意n个向量必可构成V 的基底.(4 分)
- (2)求 α_1 在基底 $\alpha_2,\alpha_3,\ldots,\alpha_{n+1}$ 下的坐标. (4 分)

设A 是一个n 阶实对称矩阵,证明: (共8 分)

- (1) 若存在可逆矩阵 U,使得 $A=U^TU$,则 A 的主对角线上的 元全大于零. (5分)
- (2) 设列向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 A 的 n 个两两正交的单位特征向 量,对应的特征值是 $\lambda_1, \lambda_2, \dots, \lambda_n$,则

$$A = \lambda_1 \alpha_1 \alpha_1^T + \lambda_2 \alpha_2 \alpha_2^T + \dots + \lambda_n \alpha_n \alpha_n^T \cdot (3 \%)$$