Roll Number:	
Thapar Institute of Enginee	ering and Technology, Patiala
Computer Science and	Engineering Department
BE(3 rd Year) September 30, 2022 MST	UML501: Machine Learning
Time: 2 Hours	Marks:25
Instructors: Dr. Singara Singh Kasana, Dr. Man	inder Kaur, Dr. Jatin Bedi, Dr. Raman Goyal, Dr.
Harpreet Singh, Ms. Swati	

Note: All questions are compulsory. All parts of a question must be answered in order.

Analysis algorithm	Γable, reduce the dir n.				8 - 1		100
				1			
	X ₁	4 8	13	7			
				-			
	X ₂	11 4	5	14			
					e to		
le le		2 20					
Why regularizati	on is needed in m	nachine lea	rning m	nodels?	Derive the co	pefficients	[5]
equation of ridge	regularization for	multiple l	near re	gression	using gradie	nt descent	1
	regularization for						1
	e regularization for discuss how the ridg						1
optimization and	discuss how the ridg	ge regressio	n can sh	rink the	regression coe		
optimization and		ge regressio	n can sh	rink the	regression coe		1
optimization and	discuss how the ridg	ge regression	n can sh	rink the	regression coe		
optimization and	discuss how the ridges/fail in an exam fo	ge regression	n can sh nts is giv sult (1=	rink the	regression coe		
optimization and	discuss how the ridges/fail in an exam fo	r five stude	n can sh nts is giv sult (1=	rink the	regression coe		
optimization and	discuss how the ridges/fail in an exam for hours_study	r five stude	n can sh nts is giv sult (1=	rink the	regression coe		
optimization and	ss/fail in an exam for hours_study	r five stude	n can sh nts is giv sult (1=	rink the	regression coe		
optimization and	ss/fail in an exam for hours_study 29 15	r five stude	n can sh nts is giv sult (1=	rink the	regression coe		

95% or more.

Calculate probability of pass for a student who studies 33 hours and compare the output with the actual Result.

How many hours a student should study to ensure probability of passing is

For the fo	llowing	confusio	n matrix	$c \text{ of } 4 \times 4,$							
	True (Actual)										
				Predict	A ed B C D	A 25 12 88 33	B 48 14 40 24	C 90 16 17 13	D 70 30 11 18		
Calculate	the follo	wing									
b) So re c) Sp d) Fa	espectively ensitivity espectively pecificity alse Positively the follow	ly) with really) for class tive rate	spect to ss A for clas	each class (each class s A the height	(i.e. o	ches ((X) an	parat	ely for	A, B, C	and D
X	61	68	68	64	65	70		63	62	64	67
Y	112	123	130	115	110	125	1	00	113	116	125
			(i) Estimate the regression equation using least square error method. (ii) What will be the mostly likely estimate of the weight of the student whe height is 69 inches?								