

SISTEM BILANGAN

Komputer merupakan mesin yang bekerja berdasarkan logika-logika matematika. Sebagian logika matematika dalam komputer dibangun dalam bentuk angka-angka atau bilangan. Pemrosesan logika tersebut berhubungan dengan sistem bilangan yang digunakan.

Sistem Bilangan merupakan cara atau teknik untuk merepresentasikan angka-angka ke dalam arsitektur sistem komputer. Setiap nilai yang kita simpan atau masukkan ke dalam memori komputer memiliki sistem bilangan tertentu.

SISTEM BILANGAN

BILANGAN DESIMAL

0, 1, 2, 3, 4,

5, 6, 7, 8, 9

BILANGAN BINER

0, 1

BILANGAN OKTAL

0, 1, 2, 3, 4,

5, 6, 7

BILANGAN HEXADESIMAL

0, 1, 2, 3, 4, 5,

6, 7, 8, 9, A, B,

C, **D**, **E**, **F**

BILANGAN DESIMAL

Bilangan desimal biasa digunakan dalam kehidupan sehari-hari. Terdapat 10 digit angka atau radiks (*radiks*) atau basis, oleh karenanya bilangan desimal juga disebut *bilangan basis 10*.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Identifikasi angka tersebut merupakan bilangan desimal adalah dengan simbol angka 10 pada bagian bawah angka

CONTOH

 $(531)_{10}$

Merupakan BILANGAN DESIMAL yang bernilai LIMA RATUS TIGA PULUH SATU

Bilangan biner juga disebut *bilangan basis 2*. Setiap bilangan biner dapat disusun oleh salah satu atau kombinasi 2 digit angka tersebut (0 dan 1)

0, 1

Identifikasi angka tersebut merupakan bilangan desimal adalah dengan simbol angka 2 pada bagian bawah angka

 $(X)_2$

BILANGAN BINER

Bilangan Biner dihitung dari digit sebelah kanan.

Digit paling kanan dari sebuah bilangan biner merupakan bernilai desimal satu (2^0) , digit kedua dari kanan merupakan bernilai desimal dua (2^1) , dst.

Apabila terdapat nilai biner 0 maka dianggap tidak dihitung (OFF), sementara nilai biner 1 maka dianggap dihitung (ON) dengan ketentuan nilainya sebagai berikut :

1	1	1	1	1	1	1	1
27	26	2 ⁵	24	2 ³	2 ²	21	20
128	64	32	16	8	4	2	1

 $(101)_2$

Merupakan BILANGAN DESIMAL yang bernilai LIMA

1	0	1	
22	21	2 ⁰	
4	0	1	

$$\rightarrow$$
 1 + 4 = 5

*nilai 0 maka tidak dihitung desimalnya

BIT & BYTE

Bit sebenarnya merupakan singkatan dari **Bi**nary Digi**t** (Digit Biner). Bit adalah satuan unit data terkecil dalam komputasi digital yang pada dasarnya terdiri dari satu digit biner (bisa berupa nilai 0 ataupun 1. Byte adalah kumpulan 8 bit yang digabung menjadi satu.

Bit \rightarrow b Byte \rightarrow B

Table 1: Data Measurement Units

Unit	Abbreviation	Decimal Value	Binary Value	Decimal Size	
bit	b	0 or 1	0 or 1	1/8 of a byte	
byte	В	8 bits	8 bits	1 byte	
kilobyte	КВ	1,000¹ bytes	1,024 ¹ bytes	1,000 bytes	
megabyte	МВ	1,000² bytes	1,024 ² bytes	1,000,000 bytes	
gigabyte	GB	1,000 ³ bytes	1,024 ³ bytes	1,000,000,000 bytes	
terabyte	ТВ	1,000 ⁴ bytes	1,024 ⁴ bytes	1,000,000,000,000 bytes	
petabyte	PB	1,000 ⁵ bytes	1,024 ⁵ bytes	1,000,000,000,000,000 bytes	
exabyte	EB	1,000 ⁶ bytes	1,024 ⁶ bytes	1,000,000,000,000,000,000 bytes	
zettabyte	ZB	1,000 ⁷ bytes	1,024 ⁷ bytes	1,000,000,000,000,000,000,000 bytes	
yottabyte	YB	1,000 ⁸ bytes	1,024 ⁸ bytes	1,000,000,000,000,000,000,000,000 bytes	

BILANGAN OKTAL

Bilangan oktal juga disebut *bilangan basis 8*. Setiap bilangan oktal melibatkan 8 digit angka, dimana setiap angka-angka tersebut bernilai 1 digit (1 suku angka) dalam bilangan oktal.

0, 1, 2, 3, 4, 5, 6, 7

Identifikasi angka tersebut merupakan bilangan desimal adalah dengan simbol angka 8 pada bagian bawah angka

 $(X)_8$

Merupakan BILANGAN OKTAL yang bernilai SATU KOSONG TUJUH

BILANGAN HEXADESIMAL

Bilangan hexadesimal juga disebut *bilangan basis 16*. Setiap bilangan oktal melibatkan 16 digit angka, dimana setiap angka-angka tersebut bernilai 1 digit (1 suku angka) dalam bilangan hexadesimal.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Identifikasi angka tersebut merupakan bilangan desimal adalah dengan simbol angka 16 pada bagian bawah angka

 $(X)_{16}$

Contoh:

 $(5A7)_{16}$

Merupakan BILANGAN OKTAL yang bernilai LIMA SEPULUH TUJUH

*A bernilai 10, B bernilai 11, C bernilai 12, D bernilai 13, E bernilai 14, F bernilai 15

LATIHAN

- 1. Jelaskan yang dimaksud dengan bit (binary digit)
- 2. Tuliskan apakah nama dan nilai bilangan-bilangan berikut :
 - a. 25_{10} = bilangan desimal bernilai dua puluh lima (contoh jwban)
 - *b.* $945_{10} = \dots$
 - c. $10101_2 = \dots$
 - $d. 753_8 = \dots$
 - e. $E7F_{16} =$

