МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

ΙΠСА

Кафедра Системного проектування

Лабораторна робота №1 з дисципліни «Цифрова обробка сигналів» на тему:

«Ряд Фур'є. Явище Гіббса»

Виконав: Студент групи ДА-21 Михалько В. Г. Варіант №17

- 1. Для периодического сигнала, вид и параметры которого заданы в таблицах, выполнить разложение в ряд Фурье.
- 2. Построить графики, изображающие полученные амплитудный и фазовый спектры сигнала.
- 3. В одной системе координат построить график исходного сигнала и гафик суммы первых 50 гармоник.
- 4. Используя отсчеты амплитудного и фазового спектров, построить графики первых 5 гармоник сигнала и их суммы (в одной системе координат).
- 5. Исследовать поведение колебаний Гибса при изменении колиества суммируемых членов ряда

Вариант	Номер функции, описывающей сигнал	Α,	b,	f, Гц	φ, р ад	τ,	Т,
		B (1/c)	В			c	c
17	6	-	-	1/T	0	0.8T	1

Номер функции	Описание					
6.	$s(t) = \begin{cases} \cos^2(2\pi f t + \varphi) + b, & 0 \le t < +\tau \\ 0, & \tau \le t < T \end{cases}$					

n	B-n	C-n	A-n	phi-n (рад)	phi-n (в градусах)
1	-0,2115	0,1030	0,2352	-1,1176	-64,03
2	0,3722	0,1577	0,4042	1,1700	67,04
3	-0,0445	0,1510	0,1574	-0,2866	-16,42
4	0,0018	0,1086	0,1086	0,0166	0,95
5	0,0089	0,0686	0,0692	0,1290	7,39

3. Графік вхідної функції

Ряд Фур'є із перших 50 гармонік:

$$y = 0.37661 - 0.2115\cos(2\pi x) + 0.103\sin(2\pi x) + 0.37215\cos(4\pi x) + 0.1577\sin(4\pi x) + \frac{50}{2\pi n} \left(\left(\frac{\sin(1.6\pi \cdot n)}{2\pi n} + \frac{\sin(1.6\pi(n+2))}{4\pi(n+2)} + \frac{\sin(1.6\pi(n-2))}{4\pi(n-2)} \right) \cdot \cos(2\pi nx) + \left(\frac{(1-\cos(1.6\pi n))}{2\pi n} + \frac{(1-\cos(1.6\pi(n-2)))}{4\pi(n-2)} + \frac{(1-\cos(1.6\pi(n+2)))}{4\pi(n+2)} \right) \sin(2\pi nx) \right)$$

Графік ряду Фур'є із перших 50 гармонік і графік вхідної функції (сигналу) :

4. Графіки нульової і перших 5 гармонік, а також їх сума:

Графік вхідного сигналу і суми нульової і перших 5 гармонік:

Висновок. Отже, в ході лабораторної роботи були здобуті практичні і теоретичні навички в розкладанні періодичної функції в ряд Фур'є. Було побудовано амплітудно-частотну і фазо-частотну характеристики функції для перших 5 гармонік відповідного ряду Фур'є. Порівнюючи графіки вихідної функції і її ряду з перших 50 гармонік можна зробити висновок, що розклад зроблений правильно.