

Boolean Query Processing and Optimization

Dr. Rajendra Prasath

Indian Institute of Information Technology Sri City, Chittoor

> Topics to be covered

- Recap:
 - Inverted Index Construction
 - Term Document Matrix
- Boolean Operators
- Boolean Retrieval
- Boolean Queries
- Text Collection / Corpora
- Evaluation Strategy
 - More topics to come up ... Stay tuned ...!!

Recap: Information Retrieval

- Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).
- These days we frequently think first of web search, but there are many other cases:
 - E-mail search
 - Searching your laptop
 - Corporate knowledge bases
 - Legal information retrieval
 - and so on . . .

Recap: Look at 3 documents

- d₁- Darjeeling is a city and a municipality in the Indian state of West Bengal. It is located in the Lesser Himalayas at an elevation of 6,700 feet
- d₂- Darjeeling is noted for its tea industry, its views of Kangchenjunga, the world's third-highest mountain, and the Darjeeling Himalayan Railway, a UNESCO World Heritage Site
- d₃- Darjeeling is the headquarters of the Darjeeling District which has a partially autonomous status within the state of West Bengal. It is also a tourist destination in India

Boolean Incidence Matrix

Terms	$\mathbf{d_1}$	$\mathbf{d_2}$	d_3	• • •	$\mathbf{d_n}$
the	1	1	1	• • •	0
a	1	1	1	• • •	1
Darjeeling	1	1	1	• • •	0
is	1	1	1	• • •	0
of	1	1	1	• • •	0
in	1	0	0	• • •	1
and	1	1	0	• • •	0
Bengal	1	0	1	• • •	0
It	1	0	1	• • •	0
Its	0	1	0	• • •	1
state	1	0	1	• • •	0
West	1	0	1	• • •	1

Boolean queries: Exact match

- → The Boolean retrieval model is being able to ask a query that is a Boolean expression:
 - → Boolean Queries are queries using AND, OR and NOT to join query terms
 - ♦ Views each document as a <u>set</u> of words
 - ♦ Is precise: document matches condition or not
 - ♦ Perhaps the simplest model to build an IR system on
- ♦ Primary commercial retrieval tool for 3 decades
- ♦ Many search systems you still use are Boolean:
 - ♦ Email, library catalog, Mac OS X Spotlight

Example: WestLaw http://www.westlaw.com/

- Largest commercial (paying subscribers) legal search service
- started in 1975; ranking added in 1992; new federated search added 2010)
- ♦ Tens of terabytes of data; ~700,000 users
- ♦ Majority of users still use boolean queries
- ♦ Example query:
 - What is the statute of limitations in cases involving the federal tort claims act?
 - ♦ LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
 - 4 /3 = within 3 words, /S = in same sentence

Example: WestLaw http://www.westlaw.com/

- **♦**Another example query:
 - ♦ Requirements for disabled people to be able to access a workplace
- ♦Note that SPACE is disjunction, not conjunction!
- ♦Long, precise queries; proximity operators; incrementally developed; not like web search
- ♦ Many professional searchers still like Boolean search
 - ♦ You know exactly what you are getting

Boolean queries: More general merges

- ♦ Exercise: Adapt the merge for the queries:
 - ♦ Brutus AND NOT Caesar
 - ♦ Brutus OR NOT Caesar
- ♦ Can we still run through the merge in time Θ(x+y)?
 - ♦ Linear time?
 - ♦ What can we achieve?

Merging

- ♦ What about an arbitrary Boolean formula?
- ♦ (Brutus OR Caesar) AND NOT
- ♦ (Antony OR Cleopatra)
- ♦ Can we always merge in "linear" time?
 - ♦ Linear in what?
- ♦ Can we do better?

Query optimization

- ♦ What is the best order for query processing?
- ♦ Consider a query that is an AND of n terms.
- ♦ For each of the n terms, get its postings, then AND them together.

Query: Brutus AND Calpurnia AND Caesar

Query optimization example

- ♦ Process in order of increasing frequencies:
 - ♦ start with smallest set, then keep cutting further

Execute the query as (Calpurnia AND Brutus) AND Caesar

More general optimization

- ♦ Get doc. freq.'s for all terms
- ♦ Estimate the size of each OR by the sum of its doc. freq.'s (conservative)
- ♦ Process in increasing order of OR sizes

Exercise

 Recommend a query processing order for

(tangerine OR trees) AND (marmalade OR skies) AND (kaleidoscope OR eyes)

 Which two terms should we process first?

Term	Freq		
eyes	213312		
kaleidosco	87009		
marmalade	107913		
skies	271658		
tangerine	46653		
trees	316812		

Query Processing - Exercises

- ♦ Exercise: If the query is friends AND romans AND (NOT countrymen), how could we use the freq of countrymen?
- Exercise: Extend the merge to an arbitrary Boolean query. Can we always guarantee execution in time linear in the total postings size?
- Hint: Begin with the case of a Boolean formula query: in this, each query term appears only once in the query

Exercise

- Try the search feature at http://www.rhymezone.com/shakespeare/
- Write down five search features you think it could do better

Summary

In this class, we focused on:

- (a) Boolean Index Creation
- (b) Boolean Operators
- (c) Boolean Queries: AND, OR and NOT
- (d) Boolean Term Document Matrix
- (e) Boolean IR
 - Document Retrieval
 - ii. Evaluation of Boolean Retrieval
- (f) Boolean Query Processing
- (g) Query Optimization

Questions It's Your Time

