MAST30025 Assignment 3 2021 Michael Le LaTex

Michael Le (99811)

May 17, 2021

Question 1:

Part a:

$$\overline{\mathbf{r}(\mathbf{A})} = \mathbf{r}(\mathbf{A}A^C\mathbf{A}) \le \mathbf{r}(A^C\mathbf{A}) \le \mathbf{r}(\mathbf{A})$$

Part b:

$$(A^CA)^2 = (A^CA)(A^CA) = A^CAA^CA = A^CA$$

NOTE: A^C A

 $\underline{\text{Part c:}}$ Show that this matrix is unique (invariant to the choice of conditional inverse)

$$A(A^{T}A)_{1}^{C} A^{T} = A(A^{T}A)_{2}^{C} A^{T} A(A^{T}A)_{1}^{C} A^{T}$$

$$= A(A^{T}A)_{2}^{C} [A^{T}A(A^{T}A)_{1}^{C}A^{T}]^{T}$$

$$= A(A^{T}A)_{2}^{C}$$

Question 2:

Part a:

```
library(MASS)
library(Matrix)
n = 12
y = c(22,23,24,22,26,16,18,19,28,27,29,29)
X = matrix(c(rep(1,17),rep(0,12),rep(1,3),rep(0,12),rep(1,4)),12,4)
XtX = t(X)\%*\%X # From here
#Applying therem 6.2 from the less thank full rank module.
#We first need to compute the rank.
r = rankMatrix(XtX)[1]
#Now we need to find a 3 x 3 minor.
Ac = matrix(0.4.4)
Ac[2:4,2:4] = t(solve(XtX[2:4,2:4]))
Ac = t(Ac)
#Ac is our conditional inverse
Ac
##
    [,1] [,2] [,3] [,4]
## [1,] 0 0.0 0.0000000 0.00
## [2,] 0 0.2 0.0000000 0.00
## [3,] 0 0.0 0.3333333 0.00
## [4,] 0 0.0 0.0000000 0.25
```

Part b:

```
library(MASS)
library(Matrix)
b = ginv(t(X)%*%X)%*%t(X)%*%y
c = y - X%*%b
SSRes = sum(e^2)
s2 = SSRes/(n-r)
s2
## [1] 2.068519
#[1] 2.068519
```

Different Method. No matter what Conditional Inverse you use, s^2 value does not change.

```
b = Ac%*%t(X)%*%y
e = y - X%*%b
SSRes = sum(e^2)
s2 = SSRes/(n-r)
s2
## [1] 2.068519
#[1] 2.068519
```

Part c:

```
#Thoerem 6.10

tt = c(1,2,1,0)

tt%*%Ac%*%t(X)%*%X

## [,1] [,2] [,3] [,4]

## [1,] 3 2 1 0

#It would have been estimable if mew (the intercept) + (any treatment or contast)

#In this case the contasts add up to become non zero, Hence

#It is not estimable
```

Using a different conditional inverse using ginv function.

```
library(MASS)
library(Matrix)
tt = c(1,2,1,0)
XtXc = ginv(t(X)%*%X)
tt%*%XtXc%*%t(X)%*%X
## [,1] [,2] [,3] [,4]
## [1,] 1.5 1.5 0.5 -0.5
#It would have been estimable if mew (the intercept) + (any treatment or contast)
#In this case the contasts add up to become non zero, Hence
#It is not estimable
```

Part d:

```
#Using R the generalised inverse

tt = c(1,0,1,0)

ta = qt(0.950,n-r)

halfwidth = ta*sqrt(s2*t(tt)%*% XtXc%*%tt)

c(tt%*%b-halfwidth,tt%*%b + halfwidth)

## [1] 16.14451 19.18882

#Using the Conditional Inverse from Theoerm 6.2

tt = c(1,0,1,0)

ta = qt(0.950,n-r)

halfwidth = ta*sqrt(s2*t(tt)%*%Ac%*%tt)

c(tt%*%b-halfwidth,tt%*%b + halfwidth)

## [1] 16.14451 19.18882
```

Part e:

```
#Creating our hypothesis
library(MASS)
library(Matrix)
C = matrix(c(0,1,0,-1),1,4)
SS = t(C\% *\%b)\% *\%solve(C\% *\%Ac\% *\%t(C))\% *\%C\% *\%b
#Fstat
Fstat = (SS/1)/s2
Fstat
##
        [,1]
## [1,] 25.27037
#p value
pf(Fstat,1,n-r,lower=F)
          [,1]
##
## [1,] 0.0007123037
```

Reject the null hypothesis, p value $< \alpha = 0.05$

$Question\ 3:$

question 5:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Show that XTX Z=t. where Z has a solution., We need to also show,
$\nu\left(\left(\sum_{X}^{T}X\left b\right \right)=\nu\left(X^{T}X\right)=\nu\left(X\right)=\nu\left(X_{1}\right)+\nu\left(X_{2}\right).$
We first observe that since tip, is estimable in the first models Zi has a solution to XIXIZ=to Smilary for Zz to the system XZXZZ=tz, Assume Xz is at full rank Thus,
$r((x^{\dagger}x t]) \geq r(X^{\dagger}x).$
Show the reverse inequality, r([x*x t]) = r (x, Tx, X, Tx, t, Tx
$= V \left(\begin{bmatrix} X_1^{T} X_1 & Y_1^{T} X_2 & X_1^{T} X_1 \\ Y_2^{T} X_1 & X_2^{T} X_2 & X_2^{T} X_2 \end{bmatrix} \right)$
$= V \left(\begin{bmatrix} X_1^{\top} & 0 \\ 0 & X_2^{\top} \end{bmatrix} \begin{bmatrix} X_1 & X_2 & X_1 & Z_1 \\ X_1 & X_2 & X_2 & Z_2 \end{bmatrix} \right)$
$\frac{2}{2} r \left(\begin{bmatrix} Y_1^{\dagger} & 0 \\ 0 & Y_2^{\dagger} \end{bmatrix} \right) = r(Y_1) + r(Y_2).$
=> Equality is proved, ETB is estimable in the full model.

Question 4:

Part a:

```
setwd("~/Desktop/UNIMELB 2021 Material/UNIMELB S1 2021
(Currently)/MAST30025/Tutorials /Tutorials/Rfile/data")
mile = read.csv("mile.csv")
str(mile)
## 'data.frame': 62 obs. of 6 variables:
## $ Year : int 1861 1862 1868 1868 1873 1874 1875 1880 1882 1884 ...
## $ Time : num 286 273 270 269 269 ...
## $ Name : chr "N.S.,Greene" "George,Farran" "Walter,Chinnery" "William,Gibbs" ...
## $ Country: chr "IRL" "IRL" "GBR" "GBR" ...
## $ Place : chr NA NA NA NA ...
## $ Gender : chr "Male" "Male" "Male" "Male" ...
#Ensure you convert gender into your Factor Type.
genderfactor = factor(mile$Gender)
plot(Time ~ Year, pch=as.character(genderfactor), col=genderfactor, data=mile)
```


The data may look linear, but its decreasing as the years gone by. There are not in dependant and does not satisfy the linear model assumptions.

Part b:

```
imodel = Im(Time~Year*Gender, data = mile)
amodel = Im(Time~Year*Gender,data = mile)
anova(imodel,amodel)
## Analysis of Variance Table
##
## Model 1: Time ~ Year * Gender
## Model 2: Time ~ Year + Gender
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 58 518.03
## 2 59 895.62 -1 -377.59 42.276 2.001e-08 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

There is significant evidence that there is interaction difference between the rate of improvements in the male and female records. We should use the interaction model.

Part c:

```
imodel$coef[c(1,2)] + imodel$coef[c(3,4)]
## (Intercept) Year
## 953.7469611 -0.3661867
plot(Time ~ Year, data = mile, col=as.numeric(genderfactor)+1,pch=as.character(genderfactor))
for (i in 1:2) { with(mile, lines(Year[as.numeric(genderfactor)==i],fitted(imodel)
[as.numeric(genderfactor)==i], col=i+1))}
```


Case 1 for females

 $\mathrm{Time} = 2309 - 1.034 \mathrm{*Year}$

Case 2 for males

 $\mathrm{Time} = 954 - 0.366 \mathrm{*Year}$

Part d:

```
-imodel$coef[3]/imodel$coef[4]
## GenderMale
## 2030.95
```

We expect that the world records will be equal around the year 2031. However this is unlikely to be an accurate estimate, as we are extrapolating well beyond the range of the data.

Part e:

This is not an estimable quantity; it is not expressible as a linear function of the parameters. This is consistent with part (d), because "estimable" really means linearly estimable. So we can estimate a value for this quantity even though it is not estimable.

Part f:

confint(imodel)[4,]
2.5 % 97.5 %
0.4620087 0.8730100

Part g:

```
library(car)
## Loading required package: carData
linearHypothesis(imodel, c(0,1,0,1), -0.4)
## Linear hypothesis test
##
## Hypothesis:
## Year + Year:GenderMale = - 0.4
##
## Model 1: restricted model
## Model 2: Time ~ Year * Gender
##
## Res.Df RSS Df Sum of Sq
                                  F Pr(>F)
       59 604.84
## 1
## 2
      58 518.03 1 86.806 9.7191 0.002837 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
```

We should reject the null hypothesis p value $< \alpha = 5$ per cent.

$Question\ 5:$

Part a:

Part a:
Var Ti-Tz
1 -
comparing
all contrasts from
thest mont 3
point(1),
· hu
$= \sigma^2 \left(\frac{1}{1+1} \right) \text{where} i=1,2,3.$
N: 1 12 12 13 13
113
we want to minimize,
$f(n_1, n_2, n_3, \lambda) = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \right) + \lambda (s_{11} + 2n_2) + n_3 - 100$
$f(n_1, n_2, n_3, \lambda) = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \right) + \lambda (Sn_1 + 2n_2 + n_3 - 100)$
12 113 113/ 113
$= 6^{2} \left(\frac{1}{h_{1}} + \frac{1}{h_{2}} + \frac{2}{h_{3}} \right) + \lambda \left(\frac{5}{h_{1}} + \frac{2}{h_{2}} + \frac{1}{h_{3}} - 100 \right)$
(h, h h)
This gives, $\frac{3f}{\partial n_i} = \frac{-8^2}{n_i} + 5\lambda = 0$ — (1)
Du - M
$\frac{\partial f}{\partial h_2} = \frac{-6^2 + 2\lambda = 6}{h_2^2} = (1)$
Sha H2
of20 + 2 = 0 - (5)
$\frac{\partial f}{\partial h_3} = \frac{-2\sigma^2 + \lambda}{h_3^2} + \lambda = 0$
$= N_1^2 = \frac{6^2}{5} = \frac{2}{5} N_2^2 = \frac{1}{10} N_3^2$
5 5 10 3
$\Rightarrow h_1 = 1 n_3, n_2 = 1 n_3$
V(0) 2
110
Then, $\frac{5}{100}$ N ₃ $+\frac{2}{100}$ N ₃ + N ₃ = 100
VII 2
V. V.
nus, n3 = 27.92 (-27), N2= 3.5 ≈ 4, 4, =9
Wantity.
11 Trinay
Part h

Part b:

```
x = sample(50,50)

x[1:9]

## [1] 43 3 30 8 4 15 22 36 44

x[10:23]

## [1] 42 21 2 5 17 49 19 27 35 31 47 14 9 12

x[24:50]

## [1] 45 26 10 11 18 37 6 28 13 32 41 50 38 40 48 23 46 39 16 24 29 25 20 34 7

## [26] 1 33
```

END OF ASSIGNMENT.