

Lists

- In R, lists provide a way to store collections of arbitrary size and type
 - You can mix character vectors, numeric vectors, matrices, summaries...

Data frames

- Data frames, which we've used extensively, are a special kind of list
 - Each list entry is a vector with the same length
 - You can still mix variable classes
 - Printed as a table

List columns

- Lists can contain almost anything
 - A list can even contain a list!
- What if an entry in your list is a list, but it has the same length as the other entries?
- Could that be a "column" in a data frame?

List columns

- Lists can contain almost anything
 - A list can even contain a list!
- What if an entry in your list is a list, but it has the same length as the other entries?
- Could that be a "column" in a data frame?

Seriously?

YES!!!!!!

- List columns turn out to be very useful
- Imagine you have granular data nested within large units
 - Make a list storing your granular data table
 - Add granular data table list to a data frame containing larger units
- Why stop there??
 - You can store more complex R objects, like output from regressions on each granular data table, in a list
 - You can add that list to your data frame
- Keeping everything in one data frame with list columns means there are fewer things to worry about

Repeated sampling

- "Repeated sampling" is a conceptual framework that underlies almost all of statistics
 - Repeatedly draw random samples of the same size from a population
 - For each sample, compute the mean
 - The distribution of the sample mean converges to a Normal distribution
- Repeated sampling doesn't happen in reality
 - Data are difficult and expensive to collect
 - You get your data, and that's pretty much it
- Repeated sampling can happen on a computer

Bootstrapping

- Hard to overstate how important and useful bootstrapping is in statistics
- Basic idea is to mimic repeated sampling with the one sample you have
 - That sample is draw at random from your population
 - You'd like to draw more samples, but you can't
 - So you draw a bootstrap sample from the one sample you have
 - The bootstrap sample has the same size as the original sample,
 and is drawn with replacement
 - Repeat

Why bootstrap?

- The repeated sampling framework often provides useful theoretical results under certain assumptions or asymptotics
 - Sample means follow a known distribution
 - Regression coefficients follow a known distribution
 - Odds ratios follow a known distribution
- If your assumptions aren't met, or your sample isn't large enough for asymptotics, you can't use the "known distribution"
- Bootstrapping gets you back to repeated sampling, and uses an empirical rather than a theoretical distribution for your statistic of interest

Coding the bootstrap

- Bootstrapping is natural in the context of iteration
- Write a function (or functions) to:
 - Draw a sample with replacement
 - Analyze the sample
 - Return object of interest
- Repeat this process many times
- Keeping track of the bootstrap samples, analyses, and results in a single data frame organizes the process and prevents mistakes
- That's why you use <u>LIST COLUMNS!!</u>