Тема. Перша та друга ознаки рівності трикутників

<u>Мета.</u> Ознайомитися з поняттям ознак рівності фігур, зокрема трикутників, з першою та другою ознаками рівності трикутників. Вчитись доводити рівність трикутників, користуючись цими ознаками

Повторюємо

- Які фігури ви вже вивчили в курсі геометрії?
- Як позначаються певні фігури?
- Що таке трикутник?
- Назвіть елементи трикутника

Проведіть експеримент

• Накресліть довільний трикутник та позначте його, наприклад АВС:

- Виміряйте транспортиром один з кутів цього трикутника, наприклад <А
- Позначте точку О поза трикутником і відкладіть від неї промінь.
- Виміряйте циркулем або лінійкою з позначками сторону трикутника АС та відкладіть від точки О на промені:

• Відкладіть кут, рівний <А, від променя ОС:

• Виміряйте сторону АВ трикутника і відкладіть на стороні кута. З'єднайте точки В і С

- Виріжте обидва трикутники і спробуйте накласти один на другий.
- Зробіть висновок: які елементи були задані рівними в обох трикутників та чи виявились рівними також інші елементи?

Ознайомтеся з інформацією

Геометричні фігури називають **рівними**, якщо їх можна сумістити накладанням.

Теорема 1 (перша ознака рівності трикутників)

Якщо дві сторони і кут між ними одного трикутника дорівнюють відповідно двом сторонам і куту між ними іншого трикутника, то такі трикутники рівні.

Доведення.

Розглянемо ΔABC і $\Delta A_1B_1C_1$.

Maemo: $AB = A_1B_1$, $AC = A_1C_1$, $\angle A = \angle A_1$.

Оскільки $\angle A = \angle A_1$, то ΔABC можна накласти на $\Delta A_1B_1C_1$ так, що вершина A суміститься з вершиною A_1 , сторона AB накладеться на промінь A_1B_1 , сторона AC – на промінь A_1C_1 .

Оскільки AB = A_1B_1 і AC = A_1C_1 , то сумістяться точки B і B_1 та C і C_1 .

Отже, Δ ABC і Δ A₁B₁C₁ збігаються при накладанні. Тому Δ ABC = Δ A₁B₁C₁. Доведено.

Розв'язування задач

Теорема 2 (друга ознака рівності трикутників)

Якщо сторона і два прилеглих до неї кути одного трикутника дорівнюють відповідно стороні і двом прилеглим до неї кутам іншого трикутника, то такі трикутники рівні.

Задача 1.

Відрізки AB і CD перетинаються в точці O так, що AO = DO і CO = BO. Доведіть, що AC = BD.

Розв'язання.

Розглянемо \triangle ACO і \triangle DBO.

∠COA = ∠BOD як вертикальні.

AO = DO, CO = BO за умовою.

Тому \triangle ACO = \triangle DBO за I ознакою рівності трикутників.

Отже, AC = BD як відповідні сторони.

Задача 2.

Довести рівність кутів $\angle A$ і $\angle C$, зображених на малюнку, якщо $\angle ADB = \angle CDB$ і $\angle ABD = \angle CBD$.

Доведення.

Розглянемо $\triangle ABD$ і $\triangle CBD$.

BD – спільна сторона, \angle ADB = \angle CDB і \angle ABD = \angle CBD за умовою. Тому \triangle ABD = \triangle CBD за ІІ ознакою рівності трикутників.

Отже, $\angle A = \angle C$ (як відповідні елементи рівних трикутників). Доведено.

Задача 3

Відомо, що AB || CD та BC || AD (див. малюнок). Доведіть, що трикутники ABC і CDA рівні.

Доведення

∠BCA = ∠DAC як внутрішні різносторонні при ВС || AD і січній AC. ∠BAC = ∠ACD як внутрішні різносторонні при AB || CD і січній AC. Сторона AC в трикутниках ABC і CDA є спільною, отже, ці трикутники рівні за ІІ ознакою рівності трикутників.

Пригадайте

- Сформулюйте першу ознаку рівності трикутників
- Сформулюйте другу ознаку рівності трикутників

Домашнє завдання

- Опрацювати конспект і §12, 13.
- Розв'язати письмово №402, 416, усно №430

Фото виконаної роботи потрібно надіслати вчителю на HUMAN або на електронну nouty nataliartemiuk.55@gmail.com

Джерела

- 1. Геометрія: підруч. Для 7кл. загальноосвіт. навч. закл./ М.І.Бурда, Н.А.Тарасенкова. К.: Видавничий дім «Освіта», 2016. 208с.
- 2. Всеукраїнська школа онлайн