Number Theory Notes

JLH

Date

Contents

1	Finite Fields		
	1.1	Generalities	ļ
		1.1.1 Finite fields	ļ
		1.1.2 Multiplicative group of a finite field	(
	1.2	Equations over a finite field	8
	1.3	Quadratic reciprocity	1(
2	p-ac		1
	2.1	p-adic Integers and Rationals	1
	2.2	p-adic Equations	2
	2.3	Multiplicative group of p-adic rationals	29

4 CONTENTS

Chapter 1

Finite Fields

1.1 Generalities

1.1.1 Finite fields

Definition - Characteristic of a field

If K is a field then the map $\mathbb{Z} \to K$ induced by $1 \mapsto 1$ is a ring morphism. The image of this morphism is an integral domain since K is a field, hence the kernel is a prime ideal. Since \mathbb{Z} is a PID, we can define the characteristic of K, denoted $\operatorname{Char} K$ to be the positive generator of the kernel. a

^aA foot

Proposition - Frobenius map

If K is a field and Char K is prime then

$$\sigma_p: K \to K := x \mapsto x^p$$

is an injection.

Proof. Easy to show $\sigma_p(0) = 0, \sigma_p(1) = 1$. Also

$$\sigma_p(ab) = (ab)^p = a^p b^p = \sigma_p(a)\sigma_p(b)$$

$$\sigma_p(a+b) = (a+b)^p = a^p + b^p = \sigma(a) + \sigma(b)$$

by expanding the binomial and noting that when $1 \le k \le p$, $p \mid \binom{p}{k} k! (p-k)!$ and is coprime to the latter two, thus $p \mid \binom{p}{k}$. Since σ_p is a morphism of fields it is injective.

Proposition - Classification of finite fields

Let K be a finite field and suppose $\Omega \models \mathrm{ACF}_p$ where p is prime and q is a non-trivial power of p. Then

- 1. $\operatorname{Char} K \neq 0$ and $|K| = p^{[K:\mathbb{F}_p]}$ 2. $\mathbb{F}_q := \{x \in \Omega \, | \, x^q = x\}$ is the unique subfield of Ω with q elements.

Proof.

- 1. If $\operatorname{Char} K = 0$ then $\mathbb Z$ injects into K thus thus $\aleph_0 \leq |\mathbb Z| \leq |K|$ which is false. Since $[K : \mathbb F_p]$ is the cardinality of any basis B of K as a vector space over \mathbb{F}_p and $K \cong \mathbb{F}_p^B$, $|K| = \left|\mathbb{F}_p^B\right| = p^{[K:\mathbb{F}_p]}$.
- 2. Easy to show elementarily that \mathbb{F}_q is a subfield. As polynomials over a field are seperable if and only the gcd of the derivative and the polynomial is 1,

$$D(X^q - X) = qX^{q-1} - 1 = -1$$

Hence it has q distinct roots in the algebraic closure of Ω , namely Ω itself. Hence $|\mathbb{F}_q|=q$. Uniqueness: if $L \leq \Omega$ and |L| = q then for any unit $x \in L \setminus \{0\}$, $x^{q-1} = 1$ by Lagrange and so $x \in \mathbb{F}_q$. Thus $L \subseteq \mathbb{F}_q$ and they have equal finite cardinality, so $L = \mathbb{F}_q$.

3. If L is a field such that |L| = q then the image of \mathbb{Z} in L has cardinality dividing q by Lagrange. Hence $\operatorname{Char} L = p$ and the image of \mathbb{Z} is \mathbb{F}_p . Finitely generate L over \mathbb{F}_p and for each generator a the minimal polynomial of a over \mathbb{F}_p splits in Ω since it is aglebraically closed. By 'embedding finite extensions via conjugates' in Galois Theory, there is a map $L \to F_q$ which is injective. It is an isomorphism since they have the same finite cardinality.

1.1.2 Multiplicative group of a finite field

Definition – Euler's Totient Function

If $1 \le a \le d$ in \mathbb{Z} then a is coprime to d if and only if $\overline{a} \in \mathbb{Z}/d\mathbb{Z}$ is a generator since

$$\begin{aligned} &(a,d) = 1\\ \Leftrightarrow & \exists \lambda, \mu \in \mathbb{Z}, \lambda a + \mu d = 1\\ \Leftrightarrow & \exists \lambda \in \mathbb{Z}, \overline{\lambda a} = 1\\ \Leftrightarrow & \langle \overline{a} \rangle = \mathbb{Z}/d\mathbb{Z} \end{aligned}$$

We define Euler's totient function

$$\phi(d) := |\{a \in \mathbb{Z}/d\mathbb{Z} \mid \langle a \rangle = \mathbb{Z}/d\mathbb{Z}\}| = |\{a \in \mathbb{Z} \mid 1 \le a \le d \land (a, d) = 1\}|$$

7 1.1. GENERALITIES

For any cyclic group G, let $\Phi(G) = \{g \in G \mid \langle g \rangle = G\}$ be the set of generators.

Proposition – Partitioning cyclic groups If $n \in \mathbb{Z}_{>0}$ then $n = \sum_{d \mid n} \phi(d)$.

Proof. Let $n \in \mathbb{Z}_{>0}$ and let d divide n. Then by some cyclic group theory there exists a unique cyclic subgroup $C_d \leq \mathbb{Z}/n\mathbb{Z}$ with cardinality d. We want to show that $\mathbb{Z}/n\mathbb{Z} = \bigsqcup_{d|n} \Phi(C_d)$. Indeed if $x \in \mathbb{Z}/n\mathbb{Z}$ then $\langle x \rangle$ has some order d dividing n by Lagrange. Hence $x \in \Phi(\langle x \rangle) = \Phi(C_d)$. Thus $\mathbb{Z}/n\mathbb{Z} \subseteq \bigcup_{d|n} \Phi(C_d)$.

To show it is disjoint notice that if x is in $\Phi(C_d) \cap \Phi(C_e)$ then d and e are both the order of x.

Proposition - Sufficient condition for cyclic

Let G be a group such that for any $d \mid |G|$,

$$\left|\left\{x \in G \,|\, x^d = e\right\}\right| \le d$$

then G is cyclic.

Proof. We show that for all divisors of |G| there is an element of G of that order. Then in particular |G| |G|and so there is a generator of G.

Let $d \mid G$. Consider $\{x \in G \mid x \text{ has order } d\}$. If it is non-empty, then take such an x:

$$\langle x \rangle \subseteq \left\{ g \in G \,|\, g^d = e \right\}$$

and so $d \leq |\langle x \rangle| \leq \left|\left\{g \in G \,|\, g^d = e\right\}\right| \leq d$. Then $\langle x \rangle = \left\{g \in G \,|\, g^d = e\right\}$. Hence for $g \in G$,

$$g$$
 has order $d\Leftrightarrow g$ has order $d\wedge g^d=e$ $\Leftrightarrow g$ has order $d\wedge g\in \langle x
angle$ $\Leftrightarrow \langle g
angle=\langle x
angle$

Hence $|\{x \in G \mid x \text{ has order } d\}| = \phi(d)$ In either case, (empty or not), $|\{x \in G \mid x \text{ has order } d\}| \le \phi(d)$

Assume for a contradiction that there exists a d such that $\{x \in G \mid x \text{ has order } d\}$ is empty. Then partitioning

$$G = \bigsqcup_{d \mid |G|} \{ x \in G \mid x \text{ has order } d \}$$

we have that

$$|G| = \sum_{d||G|} |\{x \in G \,|\, x \text{ has order } d\}| < \sum_{d||G|} \phi(d) = |G|$$

a contradiction.

Proposition – \mathbb{F}_q^* **is cyclic** Suppose $d\mid |\mathbb{F}_q^*|$. Then since $\mathbb{F}_q[X]$ has division algorithm, $\left|\left\{x\in \mathbb{F}_q^*\mid x^d=1\right\}\right|$ Hence \mathbb{F}_q^* is cyclic.

$$\left|\left\{x \in \mathbb{F}_{q}^{*} \mid x^{d} = 1\right\}\right| \le d$$

Equations over a finite field

Proposition

Power sums lemma Let $u \in \mathbb{N}$ and K be field with |K| = q a power of a non-trivial prime. Then

$$\sum_{x \in K} x^u = \begin{cases} -1 & , 1 \le u \land q - 1 \mid u \\ 0 & , \text{ otherwise} \end{cases}$$

Proof. Case u=0 then $\sum_{x\in K^n} x^u = \sum_{x\in K^n} 0 = 0$.

Case $1 \le u \land q - 1 \mid u$ then for some d,

$$\sum_{x \in K} x^u = \sum_{x \in K} (x^{(q-1)})^d = \sum_{x \in K^*} 1^d = (q-1)1 = -1$$

Case $1 \le u \land q - 1 \nmid u$ then there exist $d, r \in \mathbb{N}$ such that u = (q - 1)d + r and 0 < r < q - 1. Let y be a generator of K^* (K^* is cyclic). Then suppose for a contradiction that $y^u = 1$, then $q - 1 \mid u$ since q - 1 is the order of y, a contradiction. Multiplying by y is a bijection on the group, hence

$$\sum_{x \in K^n} x^u = \sum_{x \in K^n} (yx)^u = y^u \sum_{x \in K^n} x^u$$

Thus $(1-y^u)\sum_{x\in K^n}x^u=0$ and so $\sum_{x\in K^n}x^u=0$, as $y^u\neq 1$.

Definition - Vanishing

Let R be a ring. Suppose for all $I \subseteq R[x1, \dots, x_n]$ We define the vanishing of I in R,

$$\mathbb{V}(I,R) := \{ x \in R^n \mid \forall f \in I, f(x) = 0 \}$$

If the context is obvious we just write $\mathbb{V}(I)$.

Proposition - Chevalley

Suppose for all $f \in I \subseteq K[x_1, ..., x_n]$ (finite),

$$\sum_{f \in I} \deg f < n$$

Then

$$|\mathbb{V}(I)| = 0 \mod p$$

Proof. Consider $P := \prod_{f \in I} (1 - f^{q-1})$. This is well defined as I is finite. We show that $\mathbb{V}(I) = P^{-1}(1)$. Let $x \in K^n$.

$$x \in \mathbb{V}(I) \Rightarrow \forall f \in I, f(x) = 0 \Rightarrow f(x)^{q-1} = 0 \Rightarrow P(x) = 1$$

 $x \notin \mathbb{V} \Rightarrow \exists f \in I, f \neq 0 \Rightarrow f(x)^{q-1} = 1 \Rightarrow P(x) = 0$

Let $S: K[x_1,\ldots,x_n] \to K:= f \to \sum_{x\in K^n} f(x)$ Then $S(P)=\sum_{x\in V(I)} 1=|\mathbb{V}(I)|\mod p$. Thus we need show that S(P)=0.

$$\deg P = \sum_{f \in I} (q-1) \deg f = (q-1) \sum_{f \in I} \deg f < n \Rightarrow < (q-1)n$$

by assumption. Hence there exists a finite set T and $\lambda_i \in K$ such that

$$P = \sum_{i \in T} \lambda_i \prod_{j=1}^n x_j^{u_{ij}}$$

and for all $i \in T$, $\sum_{j=1}^{n} u_{ij} < (q-1)n$. Then

$$\begin{split} S(P) &= \sum_{x \in K^n} P(x) \\ &= \sum_{x \in K^n} \sum_{i \in T} \lambda_i \prod_{j=1}^n x_j^{u_{ij}} \\ &= \sum_{i \in T} \lambda_i \sum_{x \in K^n} \prod_{j=1}^n x_j^{u_{ij}} \end{split}$$

Let $i \in T$ then there exists a k such that $u_{ik} < q - 1$ so

$$\begin{split} &\sum_{x \in K^n} \prod_{j=1}^n x_j^{u_{ij}} \\ &= \sum_{x_1 \in K} \cdots \sum_{x_n \in K} \prod_{j=1}^n x_j^{u_{ij}} \\ &= \sum_{x_1 \in K} \cdots \sum_{x_k \in K} \cdots \sum_{x_n \in K} \prod_{j \neq k} x_j^{u_{ij}} \sum_{x_k \in K} x_k^{u_{ik}} \\ &= \sum_{x_1 \in K} \cdots \sum_{x_k \in K} \cdots \sum_{x_n \in K} \prod_{j \neq k} x_j^{u_{ij}} 0 \end{split}$$

The last part using the power sum lemma. Hence $|V(I)| = S(P) = 0 \mod p$

Corollary - Non-trivial vanishing

Suppose for all $f \in I \subseteq K[x_1, \dots, x_n]$ (finite),

$$\sum_{f \in I} \deg f < n$$

and $0 \in \mathbb{V}(I)$ then $\exists x \in \mathbb{V}(I) \setminus \{0\}$.

Proof. If |V| = 1 then $p|/|\mathbb{V}|$ which is a contradiction. Thus the vanishing is non-trivial.

Definition – Homogeneous $f \in K[x_1, \dots, x_n] \text{ is homogeneous with degree } m \text{ if all monomials are of degree } m.$

Corollary - Conics over a finite field

If $3 \le n$ then if $f \in K[x_1, \dots, x_n]$ is homogeneous with degree 2 then it has a non-trivial zero.

Quadratic reciprocity 1.3

Definition – Legendre symbol

If p is prime that is not 2 and $x \in \mathbb{F}_p$ then

$$\left(\frac{x}{p}\right) := \begin{cases} x^{\frac{p-1}{2}} &, x \text{ unit } \\ 0 &, x = 0 \end{cases}$$

Check that for each p this is a group morphism when restricted to the units $\mathbb{F}_p^* \to \langle -1 \rangle$.

Proposition - The Legendre symbol finds squares

If K is a finite field with Char K = p,

- If p = 2 then all elements are square.
- ullet If p
 eq 2 then the non-zero squares form a subgroup of index 2, and is the kernel of the group morphism $\left(\frac{\star}{p}\right): x \to x^{\frac{q-1}{2}}$ into $\langle -1 \rangle$.

So the following sequence is exact.

1.3. QUADRATIC RECIPROCITY

11

$$1 \longrightarrow (K^*)^2 \stackrel{\subseteq}{\longrightarrow} K^* \stackrel{\left(\frac{\star}{p}\right)}{\longrightarrow} \langle -1 \rangle \longrightarrow 1$$

Proof.

- If p=2 then the Frobenius map $\sigma_2: x\mapsto x^2$ is an automorphism of K. Hence the preimage of any element squares to that element.
- If $p \neq 2$ then write $K^* = \langle g \rangle$ since it is cyclic. The map $x \to x^{\frac{q-1}{2}}$ has kernel $\{x \in K \mid x \text{ square}\}$ since (writing any element as a multiple of g)

$$g^n \in \ker \Leftrightarrow g^{\frac{n(q-1)}{2}} = 1 \Leftrightarrow q-1 \mid \frac{n(q-1)}{2} \Leftrightarrow n \text{ even} \Leftrightarrow x \text{ square}$$

We check where the generator g is sent. If $g^{\frac{q-1}{2}}=1$ then the order of g is less than q-1 which is a contradiction hence the image is non-trivial. Any element of the image of the map squares to 1 hence solves $x^2-1=0$, which only has two solutions in K. Thus the image is $\langle -1 \rangle$ and the index of the kernel is 2.

Definition – $\varepsilon(n)$

If $n \in \mathbb{Z}$ is odd

$$\varepsilon(n) := \frac{n-1}{2} \pmod{2}$$

Proposition - Computations

$$\begin{pmatrix} \frac{1}{p} \end{pmatrix} = 1$$

$$\begin{pmatrix} \frac{-1}{p} \end{pmatrix} = (-1)^{\varepsilon(p)}$$

Proposition - Quadratic reciprocity

Let $l \neq p$ be primes that aren't 2. Then

$$\left(\frac{l}{p}\right)\left(\frac{p}{l}\right) = (-1)^{\varepsilon(l)\varepsilon(p)}$$

Proof. Let w be order l element of Ω , the algebraic closure of \mathbb{F}_p . For $x \in \mathbb{F}_l$ write w^x to be w^r for any $r \in \mathbb{Z}$ such that $x = \overline{r} \in \mathbb{F}_l$ (independant of choice of r by $w^l = 1$). Let

$$y = \sum_{x \in \mathbb{F}_l} \left(\frac{x}{l}\right) w^x \in \Omega$$

We first show that $y^2=(-1)^{\varepsilon(l)}\bar{l}$, where $\bar{l}\in\mathbb{F}_p$.

$$y^{2} = \left(\sum_{x \in \mathbb{F}_{l}} \left(\frac{x}{l}\right) w^{x}\right) \left(\sum_{y \in \mathbb{F}_{l}} \left(\frac{y}{l}\right) w^{y}\right)$$

$$= \sum_{x \in \mathbb{F}_{l}} \sum_{y \in \mathbb{F}_{l}} \left(\frac{x}{l}\right) w^{x} \left(\frac{y}{l}\right) w^{y}$$

$$= \sum_{x \in \mathbb{F}_{l}} \sum_{y \in \mathbb{F}_{l}} \left(\frac{xy}{l}\right) w^{x+y}$$

$$= \sum_{u \in \mathbb{F}_{l}} \sum_{x \in \mathbb{F}_{l}} \left(\frac{x(u-x)}{l}\right) w^{u}$$

Case on what x is:

$$x \neq 0 \Rightarrow \left(\frac{x(u-x)}{l}\right) = \begin{pmatrix} \frac{xu-x^2}{l} \\ \left(\frac{x^2}{l}\right) \left(\frac{-1}{l}\right) \left(\frac{1-\frac{u}{x}}{l}\right) \end{pmatrix}$$

$$= x^{p-1} \left(\frac{-1}{l}\right) \left(\frac{1-\frac{u}{x}}{l}\right)$$

$$= (-1)^{\varepsilon(l)} \left(\frac{1-\frac{u}{x}}{l}\right)$$

If x = 0 then clearly $\left(\frac{x(u-x)}{l}\right) = 0$. Hence

$$y^2 = \sum_{u \in \mathbb{F}_l} \sum_{x \in \mathbb{F}_l^*} (-1)^{\varepsilon(l)} \left(\frac{1 - \frac{u}{x}}{l} \right) = (-1)^{\varepsilon(l)} \sum_{u \in \mathbb{F}_l} \sum_{x \in \mathbb{F}_l^*} \left(\frac{1 - \frac{u}{x}}{l} \right)$$

Given $x \neq 0$, case on what u is:

$$u = 0 \Rightarrow \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1 - \frac{u}{x}}{l} \right)$$
$$= \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1}{l} \right)$$
$$= \sum_{x \in \mathbb{F}_{l}^{*}} 1$$
$$= \bar{l} - 1$$

$$u \neq 0 \Rightarrow \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1 - \frac{u}{x}}{l}\right)$$

$$= \sum_{x \in F_{l}^{*}} \left(\frac{1 - \frac{1}{x}}{l}\right)$$

$$= \sum_{s \in \mathbb{F}_{l}^{*}} \left(\frac{1 - s}{l}\right)$$

$$= \sum_{s \in \mathbb{F}_{l} \setminus \{1\}} \left(\frac{s}{l}\right)$$

$$= \sum_{s \in \mathbb{F}_{l}} \left(\frac{s}{l}\right) - \left(\frac{1}{l}\right)$$

$$= -1$$

Since the index of the kernel of $(\frac{\star}{l})$ is 2, and the cosets have equal cardinality. Hence

$$y^{2}(-1)^{\varepsilon(l)} = \sum_{u \in \mathbb{F}_{l}} \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1 - \frac{u}{x}}{l}\right)$$
$$= \bar{l} - 1 - \sum_{u \in \mathbb{F}_{l}^{*}} w^{u}$$
$$= \bar{l} - (1 + w + w^{2} + \dots + w^{l})$$

since l is prime. Note that $0=w^l-1=(w+1)(1+w+\cdots+w^l)$. Hence $1+w+\cdots+w^l=0$ and $y^2=(-1)^{\varepsilon(l)}\overline{l}$. Next we show that $y^{p-1}=\left(\frac{p^{-1}}{l}\right)$.

$$y^p = \sum_{x \in \mathbb{F}_l} \left(\frac{x}{l}\right)^p w^x p$$
 'Freshman's dream'
$$= \sum_{x \in \mathbb{F}_l} \left(\frac{x}{l}\right) w^x p$$

$$\left(\frac{x}{l}\right) = \pm 1 \text{ and } p \text{ is odd}$$

$$= \sum_{z \in \mathbb{F}_l} \left(\frac{zp^{-1}}{l}\right) w^z$$

$$= \left(\frac{p^{-1}}{l}\right) \left(\sum_{z \in \mathbb{F}_l} \left(\frac{z}{l}\right) w^z\right)$$

$$= \left(\frac{p^{-1}}{l}\right) y$$

Hence

$$y^{p-1} = \left(\frac{p^{-1}}{l}\right) = \left(\left(\frac{pl}{l}\right)^{-1}\right)$$

thus

Chapter 2

p-adic Fields

2.1 p-adic Integers and Rationals

Definition - Projective system

Let \mathcal{C} be a category. A contravariant functor $F:(\mathbb{N},\leq)\to\mathcal{C}$ is called a projective system.

Definition – Projective system for *p***-adic integers**

Define a contravariant functor $A:(\mathbb{N},\leq)\to\mathbf{Ring}$ such that for each n

$$n \mapsto \mathbb{Z}/p^n\mathbb{Z}$$
 and $\pi_n : \mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ is the projection

and for any n such that $1 \le n$, there exists a surjective ring morphism $\phi_n : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$ such that $\phi_n \circ \pi_n = \pi_{n-1}$ and $\ker(\phi_n) = p^{n-1}\mathbb{Z}/p^n\mathbb{Z}$.

Exercise. Check that such a ϕ_n exists.

Definition – *p*-adic integers

Let

$$\mathbb{Z}_p = \{ x \in \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z} \mid (\forall n \in \mathbb{N}, x_n \in \mathbb{Z}/p^n \mathbb{Z}) \land (\forall n > 0, \phi_n(x_n) = x_{n-1}) \}$$

be the projective limit. Define addition and multiplication pointwise. Verify that this \mathbb{Z}_p is a ring with $0 = (0)_{n \in \mathbb{N}}$ and $1 = (1)_{n \in \mathbb{N}}$.

For each $n \in \mathbb{N}$ let $\varepsilon_n : \mathbb{Z}_p \to \mathbb{Z}/p^n\mathbb{Z}$ be the ring morphisms mapping $x \mapsto x_n$. Note that by definition $\phi_n \circ \varepsilon_n = \varepsilon_{n-1}$.

In addition, provide each $\mathbb{Z}/p^n\mathbb{Z}$ with the discrete toplogy, giving $\prod_{n\in\mathbb{N}}\mathbb{Z}/p^n\mathbb{Z}$ the product topology

and \mathbb{Z}_n the subset topology.

Proposition – \mathbb{Z}_p is compact

Since each $\mathbb{Z}/p^n\mathbb{Z}$ is finite, each $\mathbb{Z}/p^n\mathbb{Z}$ is compact. Hence by Tychonoff's theorem the product is compact. Since closed in compact is compact we just need to show that \mathbb{Z}_p is closed.

We want to write \mathbb{Z}_p as the intersection of closed sets

$$D_k := \left\{ x \in \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z} \,|\, \phi_k(x_k) = x_{k-1} \right\}$$

for $k \in \mathbb{N}$. Clearly

$$\bigcap_{k\in\mathbb{N}} D_k = \mathbb{Z}_p$$

and

$$D_k = \bigcup_{x_{k-1} \in \mathbb{Z}/p^{k-1}\mathbb{Z}} \left(\varepsilon_{k-1}^{-1}(x_{k-1}) \cap \bigcup \left\{ \varepsilon_k^{-1}(x_k) \,|\, x_k \in \mathbb{Z}/p^k\mathbb{Z} \,\wedge\, \phi_k(x_k) = x_{k-1} \right\} \right)$$

Since each $\{x_k\}$ is closed in $\mathbb{Z}/p^k\mathbb{Z}$, each preimage $\varepsilon_k^{-1}(x_k)$ is closed. Thus the finite union of the preimages

$$\bigcup \left\{ \varepsilon_k^{-1}(x_k) \, | \, x_k \in \mathbb{Z}/p^k \mathbb{Z} \, \wedge \, \phi_k(x_k) = x_{k-1} \right\}$$

is closed. Since each $\{x_{k-1}\}$ is closed in $\mathbb{Z}/p^{k-1}\mathbb{Z}$, each preimage $\varepsilon_{k-1}^{-1}(x_{k-1})$ is closed. Thus intersection

$$\left(\varepsilon_{k-1}^{-1}(x_{k-1})\cap\bigcup\left\{\varepsilon_k^{-1}(x_k)\,|\,x_k\in\mathbb{Z}/p^k\mathbb{Z}\,\wedge\,\phi_k(x_k)=x_{k-1}\right\}\right)$$

is closed. Hence the finite union is closed and D_k is closed. Arbitrary intersection of closed is closed so \mathbb{Z}_p is closed and thus compact.

Proposition – Universal property of \mathbb{Z}_p

Suppose R is a ring with ring morphisms $\rho_n: R \to \mathbb{Z}/p^n\mathbb{Z}$ for each $n \in \mathbb{N}$ such that for each n > 0, $\phi_n \circ \rho_n = \rho_{n-1}$. Then there exists a unique ring morphism $f: R \to \mathbb{Z}_p$ such that for each $n, \varepsilon_n \circ f = \rho_n$.

Proof. If there exists such a map then it is unique: suppose f, g both satisfy the given properties. Then for any n and any $a \in R$, $\varepsilon_n \circ f(a) = \rho_n(a) = \varepsilon_n \circ g(a)$. Thus f(a) = g(a), by the property of products (if they agree on all the projections they are equal).

For existence we let $a \in R$ and consider the set

$$\bigcap_{n\in\mathbb{N}}\varepsilon_n^{-1}\circ\rho_n(a)$$

show that it has cardinality 1, and let f map a to this unique element. If $x, y \in \bigcap_{n \in \mathbb{N}} \varepsilon_n^{-1} \circ \rho_n(a)$ then for any $n \in \mathbb{N}$, $\varepsilon_n(x) = \rho_n(a) = \varepsilon_n(y)$. Thus a = b by the property of products. Hence the cardinality is ≤ 1 .

To show that the set is non-empty, take $x=(\rho_n(a))_{n\in\mathbb{N}}$. This is in \mathbb{Z}_p since for each n>0, $\phi_n\circ\rho_n(a)=$ $\rho_{n-1}(a)$. Also it is in the intersection since for each n, $\varepsilon_n(x) = \rho_n(a)$. Hence the cardinality is 1. Hence f is well-defined and for all $n \in \mathbb{N}$, $\varepsilon_n \circ f = \rho_n$.

For any n,

$$\varepsilon_n \circ f(a+b) = \rho_n(a+b) = \rho_n(a) + \rho_n(b) = \varepsilon_n \circ f(a) + \varepsilon_n \circ f(b) = \varepsilon_n(f(a) + f(b))$$

Hence by property of products f(a + b) = f(a) + f(b) and similarly for multiplication. Note that for any n, $\varepsilon_n \circ f(1) = \rho_n(1) = 1$. Hence f(1) = 1. Thus f is a ring morphism.

Corollary – \mathbb{Z} injects into \mathbb{Z}_p Then there exists a unique injective ring morphism $\iota: \mathbb{Z} \to \mathbb{Z}_p$ such that for each $n, \varepsilon_n \circ \iota = \pi_n$.

Proof. By the previous theorem the morphism exists and is unique. It must send $1\mapsto 1$ hence $\iota(x)=0$ would imply $\pi_n(x) = \varepsilon_n \circ \iota(x) = 0$ for all $n \in \mathbb{N}$. Hence for any $n \in \mathbb{N}$, $p^n \mid x$. Thus x = 0.

Proposition – The kernel of ε_n

Multiplying by p^n is injective and $x_n = 0$ implies $x \in p^n \mathbb{Z}_p$

$$0 \longrightarrow \mathbb{Z}_p \xrightarrow{p^n \times} \mathbb{Z}_p \xrightarrow{\varepsilon_n} \mathbb{Z}/p^n \mathbb{Z} \longrightarrow 0$$

is a short exact sequence of abelian groups.

Proof. To check that the morphism $\mathbb{Z}_p \to \mathbb{Z}_p$ multiplying by p^n is injective it suffices to show that multiplying by p is injective. Suppose x is in the kernel of this map, then px = 0 thus for any n, $px_{n+1} = \varepsilon_{n+1}(px) = 0$. We show that for any n, $x_n = 0$. There exists $a \in \mathbb{Z}$ such that $\pi_{n+1}(a) = x_{n+1}$. Since $\pi_{n+1}(pa) = px_{n+1} = 0$, $pa = p^{n+1}b$ for some $b \in \mathbb{Z}$. Hence $a = p^n b$ since \mathbb{Z} is an integral domain. Thus $\pi_n(a) = x_n = 0$. Thus x = 0.

To check that the $p^n\mathbb{Z}_p=\ker(\varepsilon_n)$ we note that for any $x\in\mathbb{Z}_p$, $\varepsilon_n(p^nx)=p^nx_n=0\in\mathbb{Z}/p^n\mathbb{Z}$. Hence $p^n\mathbb{Z}_p\subseteq\ker(\varepsilon_n)$. For the other direction suppose $\varepsilon_n(x)=0$. Suppose $n\leq m\in\mathbb{Z}$. Then there exists a unique $a_m \in \mathbb{Z}$ such that $0 \le a < p^m$ and $\pi_m(a_m) = \varepsilon_m(x)$. Then

$$\pi_n(a_m) = \phi_m \circ \cdots \circ \phi_{n+1} \pi_m(a_m) = \phi_m \circ \cdots \circ \phi_{n+1} \varepsilon_m(x) = \varepsilon_n(x) = 0$$

Thus there exists a unique $b_m \in \mathbb{Z}$ such that $a_m = p^n b_m$.

Let $b = (\pi_m(b_m))_{m \in \mathbb{N}} \in \mathbb{Z}_p$. Note that multiplying by p^n commutes with all the map as they are ring homomorphisms. Then for any $m \in \mathbb{N}$,

$$\phi_{m+1}\varepsilon_{m+1}(b) = \phi m + 1 \circ \pi_{m+1}(b_{m+1}) = \phi m + 1 \circ \pi_{m+1}(p^n a_{m+1})$$

= $p^n \phi_{m+1} \circ \pi_{m+1}(p^n a_{m+1}) = p^n \pi_m(a_m)$
= $\pi_m(b_m)$ = $\varepsilon_m(b)$

Hence $b \in \mathbb{Z}_p$. Furthermore, let $m \in \mathbb{N}$ then

$$\varepsilon_m(p^n b) = p^n \pi_m(b_m) = \pi_m(p^n b_m) = \pi_m(a_m) = \varepsilon_m(x)$$

Hence $p^n b = x$. Thus $x \in p^n \mathbb{Z}_p$.

Proposition – \mathbb{Z}_p is a local ring, decomposition of non-zero elements

- 1. $x_n \in \mathbb{Z}/p^n\mathbb{Z}$ is a unit if and only if $x_n \notin p\mathbb{Z}/p^n\mathbb{Z}$. 2. $x \in \mathbb{Z}_p$ is a unit if and only if $x \notin p\mathbb{Z}_n$. 3. For any $x \in \mathbb{Z}_p \setminus \{0\}$ there exist unique $n \in \mathbb{N}$ and $u \in \mathbb{Z}_p$ such that u is a unit and $p^n u = x$.

Proof.

1. If x_n is a unit and $x_n \in p\mathbb{Z}/p^n\mathbb{Z}$ then write $x_n = py_n$ for $y_n \in \mathbb{Z}/p^n\mathbb{Z}$. We see that p is a unit since $x_n^{-1}py_n=1$. However p is nilpotent since $p^n=0$ a contradiction. Hence $x_n\notin p\mathbb{Z}/p^n\mathbb{Z}$. Conversely if $x_n \notin p\mathbb{Z}/p^n\mathbb{Z}$ then supposing $x_1 = 0$ deduces $x \in p\mathbb{Z}_p$ by the previous proposition. Hence $x_n \in pA$ a contradiction. Thus $x_1 \neq 0 \in \mathbb{Z}/p^1\mathbb{Z}$, a field, so x_1 is a unit in $\mathbb{Z}/p^1\mathbb{Z}$. Hence there exist $x_{\mathbb{Z}}, y_{\mathbb{Z}}, z_{\mathbb{Z}} \in \mathbb{Z}$ such that $\iota(x_{\mathbb{Z}}) = x$ and

$$\begin{aligned} x_{\mathbb{Z}}y_{\mathbb{Z}} + pz_{\mathbb{Z}} &= 1 \\ \Rightarrow \pi_n(x_{\mathbb{Z}}y_{\mathbb{Z}} + pz_{\mathbb{Z}}) &= 1 \\ \Rightarrow x_ny_n + pz_n &= 1 \\ \Rightarrow x_ny_n(1 + \dots + (pz_n)^{n-1}) &= 1 - (pn)^z = 1 \in \mathbb{Z}/p^n\mathbb{Z} \\ \Rightarrow x_n \text{ is a unit} \end{aligned}$$

Hence x_n is a unit if and only if $x_n \notin p\mathbb{Z}/p^n\mathbb{Z}$.

2. If x is a unit of \mathbb{Z}_p then in particular x_1 is a unit. Suppose $x \in p\mathbb{Z}_p$ then $x_1 = 0$ by the previous proposition. Hence x_1 is not a unit, a contradiction. Thus $x \notin p\mathbb{Z}_p$.

For the converse suppose $x \notin p\mathbb{Z}_p$ then by the previous proposition $x_1 \neq 0$. For any $n \in \mathbb{N}$, if $x_n \in \mathbb{N}$ $\mathbb{Z}/p^n\mathbb{Z}$ then $x_1 = \phi_n \circ \cdots \circ \phi_2 x_n = 0$ which is false. Hence for any $n \in \mathbb{N}$, $x_n \notin p\mathbb{Z}/p^n\mathbb{Z}$ which by the first part implies there exists a unique $y_n \in \mathbb{Z}/p^n\mathbb{Z}$, $x_ny_n = 1$. We show that $y := (y_n)_{n \in \mathbb{N}}$ is the inverse of x in \mathbb{Z}_p . To show that $y \in \mathbb{Z}_p$ let $n \in \mathbb{N}$.

$$x_n \phi_{n+1}(y_{n+1}) = \phi_{n+1}(x_{n+1})\phi_{n+1}(y_{n+1})\phi_{n+1}(x_{n+1}y_{n+1}) = \phi(1) = 1$$

Hence $\phi_{n+1}(y_{n+1}) = y_n$ by uniqueness of inverses in $\mathbb{Z}/p^n\mathbb{Z}$. To show that xy = 1 note that for any $n \in \mathbb{N}$, $\varepsilon_n(xy) = x_n x_y = 1$. Hence xy = 1.

3. Let $x \in \mathbb{Z}_p$ be non-zero and consider the set

$${n \in \mathbb{N} \mid \varepsilon_n(x) = 0}$$

This is non-empty since $\varepsilon_0(x) = 0$. By induction there exists a maximum of this set, call this n. Since $\varepsilon_n(x)=0$ by the previous proposition $x=p^ny$ for some $y\in\mathbb{Z}_p$. Suppose $y\in\mathbb{Z}_p$ then $\varepsilon_{n+1}(x)=0$ which is a contradiction with maximality. Hence by the previous part of this proposition y is a unit.

Suppose we have another decomposition $x = p^m z$ with z a unit. Then by maximality of n, $m \le n$. By the previous proposition we have that multiplication by p^m is injective. Hence $p^n y = p^m z$ implies $p^{n-m}y=z$. Since z is a unit, n-m=0. Hence n=m and $y=p^{n-m}y=z$.

Definition – \mathbb{N}_{∞}

On the set $\mathbb{N}_{\infty} := \mathbb{N} \cup \{\infty\}$ define commutative addition such that if $n, m \in \mathbb{N}$ then it is the usual addition and for any $x \in \mathbb{N}_{\infty}$, $x + \infty = \infty$. We order the set using \leq , where it is the usual $m \leq n$ for $m, n \in \mathbb{N}$ and for any $x \in \mathbb{N}_{\infty}$, $x \leq \infty$ and if $\infty \leq x$ then $x = \infty$. This is a total order hence we have a well defined infimum for any non-empty set.

Definition – p-adic valuation

Given p a prime, define $v_p: \mathbb{Z}_p \to \mathbb{N}_\infty$ sending any non-zero x to n, where $n \in \mathbb{N}$ and $u \in \mathbb{Z}_p$ is a unit such that $x = p^n u$. In the other case we define $v_p(0) := \infty$.

Proposition

For any p prime and $x, y \in \mathbb{Z}_p$

$$v_p(xy) = v_p(x) + v_p(y), \quad \inf\{v_p(x), v_p(y)\} \le v_p(x+y)$$

Proof. Case on what x, y are.

Corollary

 \mathbb{Z}_p is an integral domain.

Proof. Let $x,y\in\mathbb{Z}_p$ with xy=0. Suppose for a contradiction both x,y are non-zero. Then $v_p(x),v_p(y)\in\mathbb{N}$ hence $\infty=v_p(xy)=v_p(x)+v_p(y)\in\mathbb{N}$, a contradiction.

Definition – **Metric** on \mathbb{Z}_p

Define a norm on \mathbb{Z}_p by

$$|\star|: \mathbb{Z}_p \to \mathbb{R}_{\geq 0} := x \mapsto \begin{cases} 0 &, x = 0 \\ p^{-v_p(x)} &, x \neq 0 \end{cases}$$

This satisfies

- 1. $|x| = 0 \Leftrightarrow x = 0$
- 2. $|x + y| \le \max(|x|, |y|) \le |x| + |y|$
- 3. $|xy| \le |x| |y|$
- 4. |1| = 1

This induces a metric on \mathbb{Z}_p .

Proof. Straight forward.

Proposition - Cosets are clopen balls

For any n and $a \in \mathbb{Z}$ the coset $a + p^n \mathbb{Z}_p$ is a clopen ball $B_{\delta}(a)$ for some $\delta \in \mathbb{R} -> 0$.

Proof. $b \in a + p^n \mathbb{Z}_p$ if and only if $n \le v_p(b-a)$ if and only if $|b-a| \le p^{-n}$ if and only if $|b-a| < \frac{p^{-n} + p^{1-n}}{2} =: \delta$, as the image of the norm is discrete. Hence $a + n^n \mathbb{Z}_p = \overline{B_{n-n(p)}} = B_{\delta}(a)$ and is clopen. as the image of the norm is discrete. Hence $a+p^n\mathbb{Z}_p=\overline{B_{p^{-n}(a)}}=B_\delta(a)$ and is clopen.

Proposition - Induced topologies are equivalent

The metric topology \mathcal{T}_0 is the same as the subspace topology \mathcal{T}_1 from $\prod_{n\in\mathbb{N}}\mathbb{Z}/p^n\mathbb{Z}$.

Proof. We first show that the neighbourhoods of points are the same. Call the neighbourhood filter for a point a in the metric tolopogy $N_0(a)$ and the other $N_1(a)$. We use $\langle \star | \ldots \rangle$ to mean the neighbourhood filter generated by $\{\star \mid \dots \}$.

$$\begin{split} N_1(a) &= \langle U \cap \mathbb{Z}_p \,|\, a \in U \in \text{ product topology on } \prod \mathbb{Z}/p^n \mathbb{Z} \rangle \\ &= \langle \varepsilon_n^{-1}(U) \cap \mathbb{Z}_p \,|\, \exists n \in \mathbb{N}, a_n \in U \subseteq \mathbb{Z}/p^n \mathbb{Z} \rangle \\ &= \langle U \subseteq \mathbb{Z}_p \,|\, \exists n \in \mathbb{N}, a + \ker(\varepsilon_n) \subseteq U \rangle \\ &= \langle U \subseteq \mathbb{Z}_p \,|\, \exists n \in \mathbb{N}, a + p^n \mathbb{Z}_p \subseteq U \rangle \\ &= \langle U \subseteq \mathbb{Z}_p \,|\, \exists \delta > 0, B_\delta(a) \subseteq U \rangle \\ &= N_0(a) \end{split}$$

The penultimate equality is due to cosets being clopen balls for one inclusion and the other inclusion follows from finding $n \in \mathbb{N}$ such that $p^{-(n+1)} < \delta < p^{-n}$.

Since a subset U is open in a topology if and only if for all points $a \in U, U \in N(p)$ we see that $U \in \mathcal{T}_0$ if and only if $\forall p \in U, U \in N_0(p)$ if and only if $\forall p \in U, U \in N_1(p)$ if and only if $U \in \mathcal{T}_1$.

Proposition – Topological properties of \mathbb{Z}_p \mathbb{Z}_p is complete in the topological sense and the image of \mathbb{Z} is dense in \mathbb{Z}_p .

Proof. Any Cauchy sequence in \mathbb{Z}_p has a subsequence converging to $x \in \mathbb{Z}_p$ as \mathbb{Z}_p is a compact metric space. This is also the unique limit of the original sequence as it is Cauchy. Hence \mathbb{Z}_p is complete.

Clearly $\iota(\mathbb{Z}) \subseteq \mathbb{Z}_p$. Let $x \in \mathbb{Z}_p$. We want to show that there exists a sequence in $\iota(\mathbb{Z})$ converging to x, hence showing that $x \in \overline{\iota(\mathbb{Z})}$. For any $n \in \mathbb{N}$ there exists an element $b \in \mathbb{Z}$ such that $\pi_n(b) = \varepsilon_n(x)$. Define the sequence $y: \mathbb{N} \to \mathbb{Z}_p := n \to \iota(b)$. Then we claim that $\lim_{n \in \mathbb{N}} y(n) = x$ Let $\delta \in \mathbb{R}_{>0}$. There exists $N \in \mathbb{N}$ such that $p^{-N} < \delta$. Let $n \in \mathbb{N}$ be such that $N \leq n$. Then $\varepsilon_n(x - y(n)) = 0$ implies $x - y(n) \in p^n \mathbb{Z}/p^n \mathbb{Z}$ and so

$$|x - y(n)| = p^{-v_p(x - y(n))} \le p^{-n} \le p^{-N} < \delta$$

Thus the limit exists and is x. Hence $\overline{\iota(\mathbb{Z})} = \mathbb{Z}_p$.

Definition – \mathbb{Q}_p

Since \mathbb{Z}_p is an integral domain, we can construct its field of fractions. We call this \mathbb{Q}_p .

Proposition – Inclusions into \mathbb{Q}_p

There is a unique injective ring morphism $\mathbb{Z}_p \to \mathbb{Q}_p$ which (without confusion) we treat as \subseteq and there is a unique injective extension of the ring morphism $\iota : \mathbb{Z} \to \mathbb{Z}_p$ to $\mathbb{Q} \to \mathbb{Q}_p$.

$$\mathbb{Z} \xrightarrow{\subseteq} \mathbb{Q}$$

$$\iota \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}_p \xrightarrow{\subseteq} \mathbb{Q}_p$$

Proof. The inclusion $\mathbb{Z}_p \to \mathbb{Q}_p$ is a result of the construction of the field of fractions. We extend ι by mapping $\frac{a}{b} \in \mathbb{Q}$ to $\frac{\iota(a)}{\iota(b)} \in \mathbb{Q}_p$. Check that it is well-defined and injective, a ring morphism and that the diagram above commutes.

Proposition – Decomposition of units in \mathbb{Q}_p

 $\mathbb{Q}_p \cong \mathbb{Z}_p[\frac{1}{p}]$ canonically and any unit of \mathbb{Q}_p can be uniquely written in the form p^nu for $n \in \mathbb{Z}$ and u a unit in the image of \mathbb{Z}_p under the isomorphism.

Proof. Let $f: \mathbb{Z}_p[\frac{1}{p}] \to \mathbb{Q}_p$ such that $\sum_{i=0}^n x_i(\frac{1}{p})^i \mapsto \sum_{i=0}^n \frac{x_i}{p^i}$. Clearly f is well defined and injective. To show that it is surjective note that for any element $\frac{a}{b} \in \mathbb{Q}_p$ with $a, b \in \mathbb{Z}_p, b \neq 0$ we can write $b = p^n u$ for unique $n \in \mathbb{N}$ and u a unit. Hence $\frac{a}{b} = \frac{a}{p^n u} = \frac{au^{-1}}{p^n}$ which is due to an element of $\mathbb{Z}_p[\frac{1}{p}]$ via f.

The same trick gives us the decomposition of units in \mathbb{Q}_p .

Definition – p-adic valuation for \mathbb{Q}_p

Extend the definition of v_p to \mathbb{Q}_p by taking $x \neq 0$ to n such that $p^n u = x$.

Note that $0 \le v_p(x)$ if an only if x is a p-adic integer.

Definition – Addition is a homeomorphism on \mathbb{Q}_p

Let $a \in \mathbb{Q}_p$. Then the map $\mathbb{Q}_p \to \mathbb{Q}_p$ sending $b \mapsto a + b$ is a homeomorphism.

Proof. Let $b \in \mathbb{Q}_b$ and let $\delta \in \mathbb{R}_{>0}$. It suffices that $a + B_{\delta}(b) \subseteq B_{\delta}(a+b)$. Indeed if $c \in B_{\delta}(b)$ then $|a+c-(a+b)| = |c-b| < \delta$.

This map has inverse -a which is continuous for the same reasons. Hence $a + \star$ is a homeomorphism. \Box

Proposition – Topological properties of \mathbb{Q}_p

- 1. For any $n \in \mathbb{N}$, $p^n \mathbb{Z}_p$ is clopen in \mathbb{Q}_p , in particular \mathbb{Z}_p is open in \mathbb{Q}_p . 2. \mathbb{Q}_p is locally compact and $\iota(\mathbb{Q})$ is dense in \mathbb{Q}_p .

Proof. Since \mathbb{Z}_p and \mathbb{Q}_p share the same metric Each $p^n\mathbb{Z}_p$ is clopen in \mathbb{Q}_p . We first note that \mathbb{Q}_p is locally compact at 0 since \mathbb{Z}_p is an open compact neighbourhood of 0. Furthermore, for any $a \in \mathbb{Q}_p$, $a + \star$ is a homeomorphism so the coset $a + \mathbb{Z}_p$ is the image of an open compact set which is open and compact. Clearly $a \in a + \mathbb{Z}_p$. Hence \mathbb{Q}_p is locally compact.

Clearly $\iota(\mathbb{Q}) \subseteq \mathbb{Q}_p$ Let $x \in \mathbb{Q}_p$, then $x = p^n u$ for $n \in \mathbb{N}$ and $u \in \mathbb{Z}_p$ a unit. Then $u \in \overline{\iota(\mathbb{Z})} \subseteq \overline{\iota(\mathbb{Q})}$ and so $x \in p^n \overline{\iota(\mathbb{Q})} \subseteq \overline{\iota(\mathbb{Q})}$. Thus \mathbb{Q} is dense in \mathbb{Q}_p .

 \mathbb{Q}_p is complete: take a Cauchy sequence in \mathbb{Q}_p . Let $\delta = 1$, then there exists $N \in \mathbb{N}$ such that for any $n, m \in \mathbb{N}$, if $N \leq n \leq m$ then $|x_m - x_n| \leq 1$. Hence the sequence $(x_m)_{N \leq m} \subseteq x_N + \mathbb{Z}_p$ which is compact as it is an image of the homeomorphism $x_m + \star$. Hence there is a subsequence converging to a limit in $x_m + \mathbb{Z}_p$, and applying Cauchy we conclude this is the limit of the original sequence.

Proposition - Series converge iff terms converge

Let $x: \mathbb{N} \to \mathbb{Q}_p$ be a sequence. Then x converges if and only if $\lim_{n \in \mathbb{N}} (x(n+1) - x(n)) = 0$.

Proof. Since \mathbb{Q}_p is complete it suffices to show that x is Cauchy if and only if $\lim_{n \in \mathbb{N}} (x(n+1) - x(n)) = 0$. The forward implication is straightforward. For the other direction take $\delta \in \mathbb{R}_{>0}$. By assumption

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}_{>N}, |x(n+1) - x(n)| < \frac{\delta}{2}$$

Let $n,m\in\mathbb{N}$ be such that $N\leq n\leq m$. By induction we can show that $|x(m)-x(n)|\leq \frac{\delta}{2}<\delta$, using $|x+y| \le \max(|x|,|y|)$ for the induction.

2.2 p-adic Equations

Proposition – Non-empty projective limits

Suppose $F:(\mathbb{N},\leq)\to\mathcal{C}$ is a projective system. Denote \downarrow_m^n as the image map in \mathcal{C} from $F(n)\to F(m)$. Suppose that for every $n \in \mathbb{N}$ the object F(n) in \mathcal{C} is finite and non-empty. Then the projective limit

$$\varprojlim F := \left\{ x \in \prod_{n \in \mathbb{N}} F(n) \mid \forall n \in \mathbb{N}, \downarrow_{n+1}^{n} x_{n+1} = x_n \right\}$$

is non-empty. Conversely if the projective limit is non-empty then each F(n) is non-empty.

Proof. The trick is to construct a surjective projective system where the image objects are subsets of each F(n). Let $n \in \mathbb{N}$. Suppose for a contradiction that

$$\forall k \in \mathbb{N}, \exists l \in \mathbb{N}_{>k}, \downarrow_n^{n+l} D_{n+l} \neq \downarrow_n^{n+k} D_{n+k}$$

Then by induction we can show that

$$\forall k \in \mathbb{N}, \exists l \in \mathbb{N}_{\geq k}, \downarrow_n^{n+l} D_{n+l} \subset \downarrow_n^{n+k} D_{n+k}$$

Since D_n is finite and each $\downarrow_n^{n+k} D_{n+k} \subseteq D_n$, we can conclude by induction that there exists $k \in \mathbb{N}$ such that $\downarrow_n^{n+k} D_{n+k} = \emptyset$, which implies that D_{n+k} is empty, a contradiction. Hence

$$\exists k \in \mathbb{N}, \forall l \in \mathbb{N}_{\geq k}, \downarrow_n^{n+l} D_{n+l} = \downarrow_n^{n+k} D_{n+k}$$

The sets 'become constant'. We define a functor $G:(\mathbb{N},\leq)\to\mathcal{C}$ sending $n\mapsto\downarrow_n^{n+k}D_{n+k}$ and with the same image maps as F. This functor is well-defined and surjective because for any $n\in\mathbb{N}$, using the 'becomes constant' property of G(n+1) we can show that $\downarrow_n^{n+1}G(n+1)=G(n)$.

Let $x_0 \in G(0)$, which is non-empty as it is the image of a non-empty set g(k) for some $k \in \mathbb{N}$. By induction we can find $x_n \in G(n)$ for each $n \in \mathbb{N}$ such that $\downarrow_n^{n+1} x_{n+1} = x_n$. Hence $(x_n)_{n \in \mathbb{N}} \in \varprojlim G$. Since each $x_n \in F(n)$, $(x_n)_{n \in \mathbb{N}} \in \varprojlim F$.

The converse is immediate from the previous proposition.

Notation.

For $\phi: A \to B$ a ring morphism, S a finite subset of $A[x_1, \dots, x_m]$, and

$$f = \sum_{\lambda \in S} \lambda \prod_{i=1}^{m} (x_i)^{r_{i,\lambda}} \in A[x_1, \dots, x_m]$$

we write $\phi(f)$ to mean

$$\sum_{\lambda \in S} \phi(\lambda) \prod_{i=1}^{m} (x_i)^{r_{i,\lambda}} \in B[x_1, \dots, x_m]$$

Proposition - Vanishing commutes with limit

Let $I \subseteq \mathbb{Z}_p[x_1,\ldots,x_m]$. Then

$$\mathbb{V}(I,\mathbb{Z}_p) \leftrightarrow \varprojlim_{\mathbb{I}} n \in \mathbb{N}] \mathbb{V}(\varepsilon_n(I),\mathbb{Z}/p^n\mathbb{Z})$$

 $\text{via } (a_1,\ldots,a_m) \in \mathbb{V}(I) \text{ being sent to } (\varepsilon_n(a_1),\ldots,\varepsilon_n(a_m))_{n \in \mathbb{N}} \in \varprojlim \mathbb{V}(\varepsilon_n(I),\mathbb{Z}/p^n\mathbb{Z}).$

In particular $\mathbb{V}(I)$ is non-empty if and only if for all $n \in \mathbb{N}$, $V_n := \mathbb{V}(\varepsilon_n(I))$ is non-empty, where $\varepsilon_n(I)$ denotes $\{\varepsilon_n(f) \mid f \in I\}$.

Proof. Note that $(a_1, \ldots, a_m) \in (\mathbb{Z}_p)^m$, if and only if for all $i \in \{1, \ldots, m\}$, $a_i \in \varprojlim \mathbb{Z}/p^n\mathbb{Z}$ if and only if for all $i \in \{1, \ldots, m\}$, $n \in \mathbb{N}$, $\varepsilon_n(a_i) \in \mathbb{Z}/p^n\mathbb{Z}$ and $\downarrow_n^{n+1} \varepsilon_{n+1}(a_i) = \varepsilon_n(a_i)$. This is if and only if for all $n \in \mathbb{N}$,

$$(\varepsilon_n(a_1),\ldots,\varepsilon_n(a_m))\in \mathbb{Z}/p^n\mathbb{Z}^m$$
 and $\downarrow_n^{n+1}(\varepsilon_{n+1}(a_1),\ldots,\varepsilon_{n+1}(a_m))=\varepsilon_n(a_i)$

which is if and only if $(\varepsilon_n(a_1), \dots, \varepsilon_n(a_m))_{n \in \mathbb{N}} \in \underline{\lim}(\mathbb{Z}/p^n\mathbb{Z}^m)$. Hence we have an isomorphism of rings

$$(\mathbb{Z}_p)^m = (\underline{\lim} \, \mathbb{Z}/p^n \mathbb{Z})^m \cong \underline{\lim} (\mathbb{Z}/p^n \mathbb{Z}^m)$$

We first show that the functor V mapping $n \mapsto V_n$ and $n \le m$ to $\downarrow_n^m : V_m \to V_n$ is a projective system. We just need to show that

$$\forall n \in \mathbb{N}, \forall a \in V_{n+1}, \downarrow_n^{n+1} a \in V_n$$

Indeed if $a \in V_{n+1}$ then ¹

$$\varepsilon_n(f) \circ \downarrow_n^{n+1}(a) = \downarrow_n^{n+1} \circ \varepsilon_{n+1}(f)(\downarrow_n^{n+1}(a))$$

$$= \downarrow_n^{n+1}(\varepsilon_{n+1}(f)(a)) \qquad \text{verify this}$$

$$= \downarrow_n^{n+1}(0) = 0 \qquad \text{since } a \in V_{n+1}$$

Hence this forms a projective system with each V_n finite (since they are respectively subsets of $\mathbb{Z}/p^n\mathbb{Z}$).

Claim: $\varprojlim V$ bijects with $\mathbb{V}(I)$ via the isomorphism

$$(\mathbb{Z}_p)^m \cong \underline{\lim}(\mathbb{Z}/p^n\mathbb{Z}^m)$$

$$(a_1, \dots, a_m) \in \mathbb{V}(I) \subseteq (\mathbb{Z}_p)^m \Leftrightarrow \forall f \in I, f(a_1, \dots, a_m) = 0 \in \mathbb{Z}_p$$

$$\Leftrightarrow \forall n \in \mathbb{N}, \forall f \in I, \varepsilon_n(f(a_1, \dots, a_m)) = 0 \in \mathbb{Z}/p^n \mathbb{Z}$$

$$\Leftrightarrow \forall n \in \mathbb{N}, \forall f \in I, \varepsilon_n(f)(\varepsilon_n(a_1), \dots, \varepsilon_n(a_m)) = 0 \in \mathbb{Z}/p^n \mathbb{Z}$$

$$\Leftrightarrow (\varepsilon_n(a_1), \dots, \varepsilon_n(a_m))_{n \in \mathbb{N}} \in \underline{\lim} V$$

Definition – Primitive

For R a ring $(a_1, \ldots, a_m) \in R^m$ is primitive if there exists $i \in \{1, \ldots, m\}$ such that a_i is a unit. For the cases $R = \mathbb{Z}/p^n\mathbb{Z}$ or $R = \mathbb{Z}_p$, elements are non-primative if and only if for all $i \in \{1, \ldots, m\}$, $a_i \in pR^m$.

Proposition – Vanishings in \mathbb{Q}_p , \mathbb{Z}_p , and $\mathbb{Z}/p^n\mathbb{Z}$

Let $I \subseteq \mathbb{Z}_p[x_1,\ldots,x_m]$ be such that $\forall f \in I, f$ is homogeneous. Then the following are equivalent:

- 1. There exists a non-zero $a \in \mathbb{V}(I, \mathbb{Q}_p)$.
- 2. There exists a primitive $a \in \mathbb{V}(I, \mathbb{Z}_p)$.

¹For $\phi: A \to B$ and $a \in A^m$ we write $\phi(a) = \phi(a_1, \dots, a_m) = (\phi(a_1), \dots, \phi(a_m))$. In our projective system we use this notation for \int_n^{n+1} .

3. For each $n \in \mathbb{N}$, there exists a primitive $a \in \mathbb{V}(\varepsilon_n(I), \mathbb{Z}/p^n\mathbb{Z})$.

Proof. 2. implies 1. is straightforward. If 1. is true then there exists a non-zero $a=(a_1,\ldots,a_m)\in(\mathbb{Q}_p)^m$ such that for any $f\in I$, f(a)=0. Define $b=p^{-h}a$ where $h=\min_{1\leq i\leq m}(v_p(a_i))$. This is well-defined as all a_i are non-zero. b is in $(\mathbb{Z}_p)^m$: for any $i\in\{1,\ldots,m\}$, $a_i=p^{v_p(a_i)}u_i$ for a unit $u_i\in\mathbb{Z}_p$ and so $b_i=p^(v_p-h)u_i$ with $0\leq v_p-h=v_p(b_i)$ since h was the minimum. b is primitive: there exists an i that minimises $v_p(a_i)$. Then $b_i=p^{-h}a_i=p^{v_p(a_i)-h}u_i=u_i$ is a unit in \mathbb{Z}_p . b is in the vanishing $\mathbb{V}(I,\mathbb{Z}_p)$ because f is homogeneous. (Write out f as a sum and use the fact that the powers add to the degree of f.)

We show 2. if and only if 3. by considering the subsets $P(I, \mathbb{Z}_p)$ and $P(\varepsilon_n(I), \mathbb{Z}/p^n\mathbb{Z})$, the primitive elements of the vanishings. The $P(\varepsilon_n(I), \mathbb{Z}/p^n\mathbb{Z})$ form a projective system with limit $\varprojlim P(\varepsilon_n(I), \mathbb{Z}/p^n\mathbb{Z}) \cong P(I, \mathbb{Z}_p)$ via the same isomorphism. Then $P(I, \mathbb{Z}_p)$ is non-empty if and only if for all $n \in \mathbb{N}$, $P(\varepsilon_n(I), \mathbb{Z}/p^n\mathbb{Z})$ is non-empty.

Proposition - Taylor's theorem

If *R* be a ring, $f \in R[x]$ and $a \in \mathbb{Z}_p$, there exists a $g \in R[x]$ such that

$$f(x) - f(a) = f'(a)(x - a) + g(x)(x - a)^{2}$$

Proof. Rephrase the statement as

$$f(x) - f(a) = f'(a)(x - a) \qquad \text{mod } (x - a)^2$$

We show that for any n, $f = x^n$ satisfies the above. If n = 0 then we can pick g(x) = 0 and we are done. For the induction step we assume there exists $g \in R[x]$ such that

$$x^{n} - a^{n} = na^{n-1}(x-a) + g(x)(x-a)^{2}$$

Suffices to show that

$$\frac{x^{n+1} - a^{n+1}}{x - a} = (n+1)a^n \mod (x - a)$$

Then

$$\frac{x^{n+1} - a^{n+1}}{x - a} = x^n + \dots + a^n$$

$$= \sum_{k=0}^n x^k a^{n-k} \mod (x - a)^2$$

$$= \sum_{k=0}^n a^n \mod (x - a)^2$$

$$= (n+1)a^n \mod (x - a)^2$$

Hence it is true for all monomials. Now let $f = \sum_{n} \lambda_n x^n$ be any polynomial. Then

$$f(x) - f(a) = \sum_{n} \lambda_n (x^n - a^n) \mod (x - a)^2$$

$$= \sum_{n} \lambda_n n a^{n-1} (x - a) \mod (x - a)^2$$

$$= (x - a) \sum_{n} \lambda_n n a^{n-1} \mod (x - a)^2$$

$$= (x - a) f'(a) \mod (x - a)^2$$

Proposition - Newton's Method

Let $f \in \mathbb{Z}_p[x]$, $a \in \mathbb{Z}_p$ conceptually: Suppose $|f'(a)| \leq 1$. Then there exists $y \in \mathbb{Z}_p$ such that

1. $|f'(a)(y-a)| \le |f(a)|$ - 'y is close to a'

2. $|f(y)| \le \frac{|f(a)|}{p}$ - 'f(y) is much closer to 0'

3. |f'(y)| = |f'(a)| - 'derivatives match'

Elementarily: Suppose $b, c \in \mathbb{Z}_p, n, k \in \mathbb{Z}$. Suppose $0 \le 2k < n$, $f(a) = p^n b$, $f'(a) = p^k c$ and c is a unit. Then there exists $y \in \mathbb{Z}_p$ such that

$$y - a \in p^{n-k} \mathbb{Z}_p$$
 $f(y) \in p^{n+1} \mathbb{Z}_p$, $v_p(f'(y)) = k$,

Proof. Take $y = a - p^{n-k}c^{-1}b$. Clealy $y - a \in p^{n-k}\mathbb{Z}_p$. By Taylor's formula

$$\begin{split} f(y) - f(a) &= -f'(a)p^{n-k}c^{-1}b + g(y)c^{-2}b^2(p^{n-k})^2 \\ \Rightarrow f(y) - p^nb &= -p^kbp^{n-k}z + g(y)c^{-2}b^2p^{2n-2k} \\ \Rightarrow f(y) &= c^{-2}b^2g(y)p^{2n-2k} \end{split}$$

Hence $f(y) \in p^{2n+1}\mathbb{Z}_p$ if and only if $2n+1 \le 2n-2k$ if and only if $2k+1 \le n$, which is true.

To check that $v_p(f'(y)) = k$ we use Taylor's formula again:

$$f'(y) - f'(a) = f''(a)(y - a) + g(y)(y - a)^{2}$$

Hence

$$f'(y) = f'(a) - f''(a)p^{n-k}c^{-1}b + g(x)p^{2n-2k}c^{-2}b^{2}$$

$$= p^{k}c - (f''(a)c^{-1}b + g(x)p^{n-k}c^{-2}b^{2})p^{n-k}$$

$$= p^{k}(c - \star p^{n-2k})$$

where $\star \in \mathbb{Z}_p$. Hence $c - \star p^{n-2k}$ is a unit since p does not divide it. Thus $v_p(f'(y)) = k$.

Proposition - Polynomials are continuous

The maps $\star + \star : (\mathbb{Q}_p)^2 \to \mathbb{Q}_p$ and $\star \cdot \star : (\mathbb{Q}_p)^2 \to \mathbb{Q}_p$ are continuous. Hence by induction polynomials

Proof. Standard. For product use the trick

$$ab - cd = a(b - d) + b(a - c) + (a - c)(d - b)$$

Proposition - General Hensel

If $f \in \mathbb{Z}_p[x_1,\ldots,x_m]$ and there exist $a \in (\mathbb{Z}_p)^m$, $n,k \in \mathbb{Z}$ such that $0 \le 2k < n$ and $f(a) \in p^n\mathbb{Z}_p$ and there exists $j \in \{1,\ldots,m\}$ such that $v_p(\frac{\partial f}{\partial x_j}(a)) = k$, then there exists $y \in (\mathbb{Z}_p)^m$ such that

$$a - y \in p^{n-k} \mathbb{Z}_p$$
 and $f(y) = 0$

Proof. Case m=1 and let $f\in \mathbb{Z}_p[x_1]$, $a\in \mathbb{Z}_p, n, k\in \mathbb{Z}$ such that $f(a)\in p^n\mathbb{Z}_p$ such that $v_p(\frac{\partial f}{\partial x_1}(a))=v_p(f'(a))=k$. Let $y_n=a$. By induction with Newton's Method at each step, we obtain for each $l\in \mathbb{N}_{>n}$ a $y_l\in \mathbb{Z}_p$ such that $f(y_l)\in p^m\mathbb{Z}$, $v_p(f'(y_m))=k$ and $y_l-y_{l-1}\in p^{l-1-k}\mathbb{Z}_p$. The $(y_m)_{m\in \mathbb{N}}$ is a sequence in \mathbb{Z}_p which is Cauchy since each $y_l-y_{l-1}\in p^{l-1-k}\mathbb{Z}_p$ so $|y_l-y_{l-1}|\le p^{k+1-l}\to 0$ as $l\to \infty$. Since \mathbb{Z}_p is complete this converges to $y\in \mathbb{Z}_p$. It is clear that $|y-y^l|\le p^{k-l}$ for each l. In particular $|y-a|\le p^{k-n}$ hence $a-y\in p^{n-k}$. Furthermore since f is continuous and $f(y_n)$ are in shrinking balls around 0,

$$f(y) = f(\lim_{n \to \infty} y_n) = \lim_{n \to \infty} f(y_n) = 0$$

For the case 1 < m we reduce it to the same situation as above. Suppose $f \in \mathbb{Z}_p[x_1, \dots, x_m]$, $a \in (\mathbb{Z}_p)^m$, $n,k \in \mathbb{Z}$ such that $f(a) \in p^n \mathbb{Z}_p$ and there exists $j \in \{1,\ldots,m\}$ such that $v_p(\frac{\partial f}{\partial x_j}(a)) = k$. Then take $f(a_1,\ldots,a_{j-1},x_j,a_{j+1},\ldots,a_m)\in\mathbb{Z}_p[x_j]$, f with its variables substituted for a_i except for when i=j. This satisfies the conditions of the first part so we are done.

Corollary – Hensel Let $f \in \mathbb{Z}_p[x_1,\ldots,x_m]$, suppose there exists $c \in (p\mathbb{Z}_p)^m$ such that $\varepsilon_1(f(c)) = 0$ and there exists a $j \in \{1,\ldots m\}$ such that $\frac{\partial f}{\partial x_j}(c) \neq 0$ then there exists a $c^* \in (\mathbb{Z}_p)^m$ such that $f(c^*) = 0$ and $\varepsilon_1(c^* - c) = 0$.

Proof. Apply general Hensel with n = 1 and k = 0.

Corollary – Quadratic forms for $p \neq 2$

We only need to find primitive solutions in $\mathbb{Z}/p\mathbb{Z}'$. Suppose $p \neq 2$, $A \in (p\mathbb{Z}_p)^{n \times n}$ such that for all

 $i,j\in\left\{ 1,\ldots,m
ight\} ,A_{ij}=\mathbb{Z}/p^{ji}\mathbb{Z}$ and $\det A$ a unit. Let

$$f = x^T A x = \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i x_j \in \mathbb{Z}_p[x_1, \dots, x_m]$$

Let $a \in \mathbb{Z}_p$, if there exists primitive $c \in (\mathbb{Z}_p)^m$ such that $ep_1(f(c) - a) = 0$ then there exists $c^* \in (\mathbb{Z}_p)^m$ such that $f(c^*) = a$ and $\varepsilon_1(c^* - c) = 0$.

Proof. By Hensel applied to g(x) := f(x) - a it suffices to show that there exists a $j \in \{1, \dots, m\}$ such that $\frac{\partial f}{\partial x_j}(c) \neq 0$. Suppose not. Then for any $j \in \{1, \dots, m\}$

$$0 = \frac{\partial f}{\partial x_j}(c) = 2\sum_{i \in S} A_{ij}c_i$$

Since $p \neq 2$ we have that for all j

$$0 = \sum_{i \in S} \varepsilon_1(A_{ij}) \varepsilon_1(c_i) = \varepsilon_1(\mathbb{Z}/p^j\mathbb{Z}) \varepsilon_1(c)$$

Hence

$$0 = \varepsilon_1(A)\varepsilon_1(c)$$

Since the determinant of A is a unit, the determinant of $\varepsilon_1(A)$ is a unit (determinant commutes with ring morphisms). Thus multiplying by the adjugate of $\varepsilon_1(A)$ we obtain $0 = \varepsilon_1(c)$. This is a contradiction as c is primitive.

Corollary – Quadratic forms for \mathbb{Z}_2

'We only need to find primitive solutions in $\mathbb{Z}/2^3\mathbb{Z}'$. Suppose $A\in(2\mathbb{Z}_2)^{n\times n}$ such that for all $i,j\in\{1,\ldots,m\}$, $A_{ij}=\mathbb{Z}/p^{ji}\mathbb{Z}$. Let

$$f = x^T A x = \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i x_j \in \mathbb{Z}_2[x_1, \dots, x_m]$$

Let $a \in \mathbb{Z}_2$. If there exists primitive $c \in (\mathbb{Z}_2)^m$ such that $ep_3(f(c)-a)=0$ and

$$\det(A) \text{ is a unit of } \mathbb{Z}_2 \quad \ \lor \quad \ \exists j \in \{1,\dots,m\} \,, \varepsilon_2(\frac{\partial f}{\partial x_j}(c)) \neq 0$$

then there exists $c^* \in (\mathbb{Z}_p)^m$ such that $f(c^*) = a$ and $\varepsilon_1(c^* - c) = 0$.

Proof. We show that

$$\det A$$
 is a unit of \mathbb{Z}_2 \Rightarrow $\exists j \in \{1, \dots, m\}, \varepsilon_2(\frac{\partial f}{\partial x_j}(c)) \neq 0$

Suppose not.

$$\begin{split} \forall j \in \left\{1,\dots,m\right\}, & \varepsilon_2(\frac{\partial f}{\partial x_j}(c)) = 0 \\ \Rightarrow \forall j, \varepsilon_2(2\sum A_{ij}c_i) = 0 \\ \Rightarrow \forall j, 2\varepsilon_2(A_j)\varepsilon_2(c) = 0 \\ \Rightarrow 2\varepsilon_2(A)\varepsilon_2(c) = 0 \\ \Rightarrow 2\varepsilon_2(c) = 0 \quad \text{since det A is a unit} \\ \Rightarrow \varepsilon_2(c) = 0 \quad \forall \varepsilon_2(c) = 2 \\ \Rightarrow \varepsilon_1(c) = 0 \quad \text{a contradiction} \end{split}$$

Hence in either case $\exists j, \varepsilon_2(\frac{\partial f}{\partial x_j}(c)) \neq 0$ We can then apply general Hensel with n=3, k<2, g(x)=f(x)-a and obtain c^* .

2.3 Multiplicative group of p-adic rationals

Definition – \mathbb{U}_n

For each $n \in \mathbb{N}$ the map $\varepsilon_n : \mathbb{Z}_p \to \mathbb{Z}/p^n\mathbb{Z}$ is a surjective ring homomorphism, thus makes sense to consider $\varepsilon_n : \mathbb{Z}_p^* \to (\mathbb{Z}/p^n\mathbb{Z})^*$ the surjective group homomorphism of the unit groups. We define the subgroup $\mathbb{U}_n := \ker \varepsilon_n$. We can characterise $\mathbb{U}_n = 1 + p^n\mathbb{Z}_p$ because

$$x \in \mathbb{U}_n \Leftrightarrow \varepsilon_n(x-1) = 0 \Leftrightarrow x-1 \in p^n \mathbb{Z}_p$$

Note that $\mathbb{U} := \mathbb{U}_0 = \mathbb{Z}_p^*$ since \mathbb{Z}_p is a local ring. Also note that for any $n \in \mathbb{N}$,

$$\mathbb{U}/\mathbb{U}_n = \mathbb{Z}_p^* / \ker \varepsilon_n \cong (\mathbb{Z}/p^n \mathbb{Z})^*$$

hence \mathbb{U}/\mathbb{U}_n is cyclic and of order $p^n - 1$.

Proposition

For any $n \in \mathbb{N}$, there is a unique group homomorphism $\mathbb{U}_{n+1} \to \mathbb{U}_n$ such that

$$(\mathbb{Z}/p^{n+1}\mathbb{Z})^* \xrightarrow{\downarrow_n^{n+1}} (\mathbb{Z}/p^n\mathbb{Z})^*$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$\mathbb{U}/\mathbb{U}_{n+1} \longrightarrow \mathbb{U}/\mathbb{U}_n$$

commutes, using the isomorphism from the definition above. Thus \mathbb{U}/\mathbb{U}_n form a projective system with limit

$$\underline{\lim} \, \mathbb{U}/\mathbb{U}_n \cong \underline{\lim} (\mathbb{Z}/p^n\mathbb{Z})^* = \mathbb{U}$$

Without confusion, we label the maps $\mathbb{U}/\mathbb{U}_{n+1} \to \mathbb{U}/\mathbb{U}_n$ by \downarrow_n^{n+1} as well.

Proposition - Cardinality trick

For any $n \in \mathbb{N}$ the map $\mathbb{U}_n/\mathbb{U}_{n+1} \to \mathbb{Z}/p\mathbb{Z}$ sending $\overline{1+p^nx} \mapsto \varepsilon_1(x)$ is a group isomorphism. Hence if $m \le n \in \mathbb{N}$ then $|\mathbb{U}_m/\mathbb{U}_n| = p^{n-m}$.

Proof. The map is well defined: suppose $\overline{1+p^nx}=\overline{1+p^ny}$ then there exists a $z\in\mathbb{Z}_p$ such that

$$\frac{1+p^n x}{1+p^n y} = 1 + p^{n+1} z$$

Hence $p^n(x-y) = p^{n+1}z(p^ny+1)$ and so $\varepsilon_1(x-y) = 0$. The map is injective since

$$\varepsilon_1(x-y) = 0 \Rightarrow x-y = pz \Rightarrow 1 + p^n x - (1+p^n y) = p^n z \Rightarrow \overline{1+p^n x} = \overline{1+p^n y}$$

The map is a group morphism because

$$\overline{1+p^nx1+p^nx} = \overline{1+p^n(x+y+p^nxy)} \mapsto \varepsilon_1(x+y) = \varepsilon_1(x) + \varepsilon_1(y)$$

Note that this gives us $|\mathbb{U}_n/\mathbb{U}_{n+1}|=p$.

Fix m and induct on n. Assume $|\mathbb{U}_m/\mathbb{U}_n|=p^{n-m}$. By the third isomorphism:

$$\mathbb{U}_m/\mathbb{U}_n \cong (\mathbb{U}_m/\mathbb{U}_{n+1})/(\mathbb{U}_n/\mathbb{U}_{n+1})$$

Hence

$$|\mathbb{U}_m/\mathbb{U}_{n+1}| = |\mathbb{U}_m/\mathbb{U}_n| |\mathbb{U}_n/\mathbb{U}_{n+1}| = p^{n-m}p = p^{n+1-m}$$

Proposition

Suppose $0 \to A \to G \to B \to 0$ is an exact sequence of finite abelian groups. |A|, |B| coprime. Then $G \cong A \oplus B$ and there is a unique subgroup of G isomorphic to B given by the kernel of $b: G \to G := x \to |B|x$.

Proof. By injectivity of f It suffices to show that $f(A) \oplus \ker(b)$ and $\ker(b) \cong B$. Since |A|, |B| coprime there exist $\lambda, \mu \in \mathbb{N}$ such that $\lambda |A| + \mu |B| = 1$.

$$x \in f(A) \cap \ker(b) \Rightarrow |A|x = |B|x = 0 \Rightarrow x = \lambda |A|x + \mu |B|x = 0$$

Thus the intersection is trivial. For all $y \in G$, $|B|y \in \ker(g) = f(A)$ by exactness. Furthermore $|B|y \in f(A)$ so |A||B|y = 0, hence $|A|y \in \ker(b)$. Thus

$$x \in G \Rightarrow x = \lambda |A|x + \mu |B|x$$

where $\lambda |A|x \in \ker(b)$ and $\mu |B|x \in f(A)$. Hence $f(A) \oplus \ker(b)$.

 $g|_{\ker(b)}$ is well-defined. It is surjective since g is surjective and anything that maps to B under g will have order dividing |B|. It is injective because

$$x \in \ker(g) \Leftrightarrow x \in f(A)|B|x = 0 \Leftrightarrow x \in f(A) \cap \ker(b) \Leftrightarrow x = 0$$

Thus this is an isomorphism.

If $B' \leq G$ is isomorphic to B then |B|B' = 0 and so $B' \subseteq \ker(b)$ hence they are equal because they have the same finite cardinality. Thus the subgroup isomorphic to B.

$$\frac{\text{Proposition}}{\varprojlim_{[} n \in \mathbb{N}] \mathbb{U}_m/\mathbb{U}_n \cong \mathbb{U}_m }$$

Proof. Idea: let $m \in \mathbb{N}$. Construct the diagram:

where every level is exact. Taking the limit of each part, we obtain

$$1 \longrightarrow \varprojlim_{[} n \in \mathbb{N}] \mathbb{U}_m / \mathbb{U}_n \qquad \longrightarrow \mathbb{U} \longrightarrow \mathbb{U} / \mathbb{U}_m \longrightarrow 1$$

Which is exact. Hence $\varprojlim_{\lceil} n \in \mathbb{N}]\mathbb{U}_m/\mathbb{U}_n \cong \mathbb{U}_m$.

Proposition – Decomposition of \mathbb{U} $\mathbb{U} = \mathbb{V} \oplus \mathbb{U}_1$ where $\mathbb{V} := \mathbb{V}(\left\{x^{p-1} - 1\right\}, \mathbb{Q}_p)$ is the unique subgroup of \mathbb{U} isomorphic to \mathbb{F}_p^* .

Proof. For each $n \in \mathbb{N}$ consider

$$1 \to \mathbb{U}_1/\mathbb{U}_n \to \mathbb{U}/\mathbb{U}_n \to \mathbb{F}_n^* \to 1$$

where the second map an injection is induced by $\mathbb{U}_1\subseteq\mathbb{U}_n$, and the third a surjection induced by $\mathbb{U}/\mathbb{U}_n\cong$ $(\mathbb{Z}/p^n\mathbb{Z})^* \to \mathbb{Z}/p\mathbb{Z}^* = \mathbb{F}_n^*.$

Calling the second map f and the third map g, let $y = \overline{1+x} \in \mathbb{U}/\mathbb{U}_n$ for $x \in \mathbb{Z}_p$

$$y \in f(\mathbb{U}_1/\mathbb{U}_n) \Leftrightarrow 1 + x \in \mathbb{U}_1 \Leftrightarrow \overline{x} \in p\mathbb{Z}_n \Leftrightarrow y - 1 \in p\mathbb{Z}_n \Leftrightarrow g(y) = 1$$

Hence the above is an exact sequence with $\mathbb{U}_1/\mathbb{U}_n$ and \mathbb{F}_p^* both finite due to our previous computation.

By the previous proposition there exists \mathbb{V}_n a unique subgroup of \mathbb{U}/\mathbb{U}_n isomorphic to \mathbb{F}_p^* such that $\mathbb{U}/\mathbb{U}_n\cong\mathbb{C}$ $\mathbb{U}_1/\mathbb{U}_n \oplus \mathbb{V}_n$ where this is the isomorphism that commutes with inclusions $\mathbb{V}_n \subseteq \mathbb{U}/\mathbb{U}_n$ and $\mathbb{U}_1/\mathbb{U}_n \subseteq \mathbb{U}/\mathbb{U}_n$.

Then the \mathbb{V}_n form a projective system with maps $\mathbb{V}_{n+1} \to \mathbb{V}_n$ induced by the maps $\mathbb{U}/\mathbb{U}_{n+1} \to \mathbb{U}/\mathbb{U}_n$:

Since the whole diagram commutes (the right triangle commutes because it uses same maps as the middle triangle) the map from $\mathbb{V}_{n+1} \to \mathbb{V}_n$ is well defined and an isomorphism.

Taking the limit of the projective system V_n , we obtain

$$\mathbb{F}_p^* \cong \underline{\lim} \, \mathbb{V}_n \leq \underline{\lim} \, \mathbb{U}/\mathbb{U}_n \cong \mathbb{U}$$

Furthermore

$$\mathbb{U}\cong \varprojlim \mathbb{U}/\mathbb{U}_n\cong \varprojlim (\mathbb{U}_1/\mathbb{U}_n\oplus \mathbb{F}_p^*)$$

Since projective limits commute with direct sums we have that

$$\mathbb{U} \cong \varprojlim_{\mathbb{I}} n \in \mathbb{N}](\mathbb{U}_1/\mathbb{U}_n) \oplus \varprojlim_{\mathbb{I}} \mathbb{F}_p^* \cong \mathbb{U}_1 \oplus \mathbb{F}_p^*$$

using the limit of $\mathbb{U}_1/\mathbb{U}_n$.

There are at most $x \in \mathbb{Z}_p$ that satisfy $x^{p-1} = 1$ (by sending the polynomial to \mathbb{Q}_p and using factor theorem). There at at least p-1 solutions due to the existence of a subgroup isomorphic to \mathbb{F}_p^* and using Lagrange. Hence \mathbb{V} is the unique subgroup isomorphic to \mathbb{F}_p^* .

Corollary – Multiplicative representatives
$$x^{p-1}-1$$
 splits in \mathbb{Q}_p , and the roots form the group $\mathbb{V}=\mathbb{V}(\left\{x^{p-1}-1\right\},\mathbb{Q}_p)\cong\mathbb{F}_p^*$.

Proposition – Units close to 1 converge to 1 when taking the power

Let
$$n \in \mathbb{N}$$
. If $p = 2$ and $2 \le n$ or if $p \ne 2$ and $1 \le n$ then

$$x \in \mathbb{U}_n \setminus \mathbb{U}_{n+1} \Rightarrow x^p \in \mathbb{U}_{n+1} \setminus \mathbb{U}_{n+2}$$

Hence by induction if $i \in \mathbb{N}$ then

$$x \in \mathbb{U}_n \setminus \mathbb{U}_{n+1} \Rightarrow x^{p^i} \in \mathbb{U}_{n+i} \setminus \mathbb{U}_{n+i+1}$$

Proof. Let $x \in \mathbb{U}_n$. We can find $y \in \mathbb{Z}_p$ such that $x = 1 + p^n y$. We show that in either case

$$x \in \mathbb{U}_n \Rightarrow x^p \in \mathbb{U}_{n+1}$$

In either case $1 \le n$. Hence $x^p = 1 + p^{n+1}y + \cdots + p^{np}y^p$ using the binomial expansion. After $p^{n+1}y$, the power of p is at least 2n hence the power is at least n+1 since $1 \le n$. Thus $\varepsilon_{n+1}(x^p) = 1$.

It suffices to show that in both cases $x^p \in \mathbb{U}_{n+2} \Rightarrow x \in \mathbb{U}_{n+1}$. Case $p \neq 2$: suppose $x^p \in \mathbb{U}_{n+2}$ then

$$1 = \varepsilon_{n+2}(1 + p^{n+1}y + \binom{p}{2}p^{2n}y^2 + \dots + p^{np}y^p) = 1 + \varepsilon_{n+2}(p^{n+1}y)$$

because for the third term $1 \le n \Rightarrow n+2 \le 2n+1$ which is less than or equal to the power of p in $\binom{p}{2}p^{2n}$; and after that $1 \le n \Rightarrow n+2 \le 3n$ which is less than or equal to the power of p. Hence $ep_{n+2}(p^{n+1}y) = 0$ and so p divides y hence $x \in \mathbb{U}_{n+1}$.

Case p = 2: suppose $x^p \in \mathbb{U}_{n+2}$ then

$$1 = \varepsilon_{n+2}(1 + 2 \cdot 2^n y + p^{2n} y^2) = 1 + \varepsilon_{n+2}(p^{n+1} y)$$

as $2 \le n \Rightarrow n+2 \le 2n$. Once again p divides y hence $x \in \mathbb{U}_{n+1}$.

Proposition – Decomposition of \mathbb{U}_1 If $p \neq 2$ then $\mathbb{U}_1 \cong \mathbb{Z}_p$. If p = 2 then $\mathbb{U}_1 \cong \langle -1 \rangle \oplus \mathbb{U}_2$ and $\mathbb{U}_2 \cong \mathbb{Z}_2$.

Proof. If $p \neq 2$ then (non-canonically) take $\alpha = 1 + p \in \mathbb{U}_1 \setminus \mathbb{U}_2$. Due to the previous proposition, $\alpha^{p^{n-1}} \in \mathbb{U}_1 \setminus \mathbb{U}_2$. $\mathbb{U}_n \setminus \mathbb{U}_{n+1}$ and $\alpha^{p^n} \in \mathbb{U}_{n+1} \setminus \mathbb{U}_{n+2}$. Together with the useful cardinality trick we have that $|\mathbb{U}_1/\mathbb{U}_{n+1}| = p^n$. Thus $\alpha^{p^{n-1}}\mathbb{U}_{n+1}\neq 1$ and $\alpha^{p^n}\mathbb{U}_{n+1}=1$ in $\mathbb{U}_1/\mathbb{U}_{n+1}$. Hence $\mathbb{U}_1/\mathbb{U}_{n+1}$ is cyclic with $\alpha\mathbb{U}_{n+1}$ as its generator.

For each $n \in \mathbb{N}$ we define

$$\phi_{n+1}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{U}_1/\mathbb{U}_{n+1}:=\pi_n(z) \mapsto \alpha^z \mathbb{U}_{n+1}$$

Then we claim that each ϕ_{n+1} is an isomorphism of groups such that the following commutes

Each ϕ_{n+1} is well defined and injective as $\pi_n(a-b)=0$ if and only if $a-b\in p^n\mathbb{Z}$ if and only if $\alpha^{a-b}\in \mathbb{U}_{n+1}$ if and only if $\alpha^a \mathbb{U}_{n+1} = \alpha^b \mathbb{U}_{n+1}$ if and only if $\phi_{n+1}(a) = \phi_{n+1}(b)$. ϕ_{n+1} is surjective since $\phi_{n+1}(1) = \alpha \mathbb{U}_{n+1}$ and \mathbb{U}_{n+1} is cyclic with generator $\alpha \mathbb{U}_{n+1}$. It is a group morphism as

$$\phi_{n+1}(a+b) = \alpha^{a+b} \mathbb{U}_{n+1} = \alpha^a \mathbb{U}_{n+1} \alpha^b \mathbb{U}_{n+1} = \phi_{n+1}(a) \phi_{n+1}(b)$$

It commutes with the diagram since for any $a \in \mathbb{Z}$.

$$\phi_{n+1}\downarrow_n^{n+1}\pi_{n+1}(z) = \phi_{n+1}\pi_n(z) = (\alpha \mathbb{U}_{n+1})^z = \downarrow_{n+1}^{n+2} (\alpha \mathbb{U}_{n+1})^z = \downarrow_{n+1}^{n+2} (\phi_{n+2}(z))$$

Taking the limit we obtain

$$\mathbb{Z}_p = \varprojlim_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z} \cong \varprojlim_{n \in \mathbb{N}} \cong \mathbb{U}_1$$

If p=2 then let $\alpha=5\in\mathbb{U}_2\setminus\mathbb{U}_3$. Due to the previous proposition, $\alpha^{p^{n-1}}\in\mathbb{U}_{n+1}\setminus\mathbb{U}_{n+2}$ and $\alpha^{p^n}\in\mathbb{U}_n$ $\mathbb{U}_{n+2}\setminus\mathbb{U}_{n+3}$. Together with the useful cardinality trick we have that $|\mathbb{U}_2/\mathbb{U}_{n+2}|=p^n$. Thus $\alpha^{p^{n-1}}\mathbb{U}_{n+2}\neq 1$ and $\alpha^{p^n}\mathbb{U}_{n+2}=1$ in $\mathbb{U}_2/\mathbb{U}_{n+2}$. Hence $\mathbb{U}_2/\mathbb{U}_{n+2}$ is cyclic with $\alpha\mathbb{U}_{n+2}$ as its generator.

For each $n \in \mathbb{N}$ we define

$$\phi_{n+2}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{U}_2/\mathbb{U}_{n+2}:=\pi_n(z) \mapsto \alpha^z \mathbb{U}_{n+2}$$

Then we claim that each ϕ_{n+2} is an isomorphism of groups such that the following commutes

Each ϕ_{n+1} is a well defined group isomorphism and commutes with the diagram by similar reasoning as above.

Hence

$$\mathbb{Z}_2 \cong \varprojlim_{n \in \mathbb{N}} \mathbb{U}_2 / \mathbb{U}_{n+2} \cong \mathbb{U}_2$$

It remains to show that $\mathbb{U}_1 \cong \langle -1 \rangle \oplus \mathbb{U}_2$. Consider the exact sequence

$$1 \longrightarrow \mathbb{U}_2 \stackrel{\subseteq}{\longrightarrow} \mathbb{U}_1 \stackrel{\varepsilon_2}{\longrightarrow} (\mathbb{Z}/2^2\mathbb{Z})^* = \langle -1 \rangle \longrightarrow 1$$

Note that $-1 \notin \mathbb{U}_2 = \ker(\varepsilon_2)$ since it is mapped to $-1 \neq 1 \in (\mathbb{Z}/p^2\mathbb{Z}2)^*$. Hence $\mathbb{U}_2 \cap \langle -1 \rangle = \langle 1 \rangle$ in \mathbb{U}_1 . Furthermore for any $x \in \mathbb{U}_1$, $\varepsilon_2(x) = 1$ or $\varepsilon_2(x) = -1$. Thus $x \in \langle 1 \rangle + \mathbb{U}_1$. Hence $U_1 \cong \langle -1 \rangle \oplus \mathbb{U}_2$.

Proposition – Decomposition of \mathbb{Q}_p^*

If $p \neq 2$ then \mathbb{Q}_p^* is isomorphic to $\langle p \rangle \overset{r}{\times} \mathbb{V} \times \mathbb{U}_1$ under (\times, \times, \times) which is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}_p$ under (+, +, +).

If p=2 then \mathbb{Q}_p^* is isomorphic to $\langle p \rangle \oplus \langle -1 \rangle \oplus \mathbb{U}_2$ under (\times, \times, \times) which is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}_2$ under (+, +, +).

Proof. In either case there exists a group isomorphism

$$\mathbb{Q}_p^* \cong \langle p \rangle \times \mathbb{U}$$

via the decomposition of units in \mathbb{Q}_p . (Take the element $p^n u$ to (p^n, u)).

By the decomposition of U we have

$$\mathbb{Q}_p^* \cong \langle p \rangle \times \mathbb{U} \cong \langle p \rangle \times \mathbb{V} \times \mathbb{U}_1$$

If $p \neq 2$ then $\mathbb{V} \cong \mathbb{F}_p^* \cong \mathbb{Z}/(p-1)\mathbb{Z}$ under addition and by the decomposition of $U_1 \mathbb{U}_1 \cong \mathbb{Z}_p$ under addition we have what we want.

If p=2 then \mathbb{V} is trivial but $\mathbb{U}_1\cong \langle -1\rangle \times \mathbb{U}_2$. Furthermore, $\langle -1\rangle\cong \mathbb{Z}/2\mathbb{Z}$ and $\mathbb{U}_2\cong \mathbb{Z}_p$ so we have what we want.

Proposition – Sufficient condition for squares in \mathbb{Q}_p^*

If $p \neq 2$ then $x = p^n u \in \mathbb{Q}_p^*$ is a square if and only if n is even and $\left(\frac{\varepsilon_1(u)}{p}\right) = 1$.

Proof. Take $x = p^n u \in \mathbb{Q}_p^* \cong \langle p \rangle \times \mathbb{V} \times \mathbb{U}_1$. We can write $u = vu_1$ for some $v \in \mathbb{V}$ and $u_1 \in \mathbb{U}_1$, then x is square if and only if p^n , v and u_1 are all square. We have that p^n is square if and only if n is even. Since \mathbb{U}_1 is the kernel of ε_1 , $\varepsilon_1(vu_1) = \varepsilon_1(v) \in \mathbb{F}_p^*$. Since the Legendre symbol finds squares $\varepsilon_1(v)$ is square if and only if $\left(rac{arepsilon_1(v)}{p}\right)=1$. Lastly $\mathbb{U}_1\cong\mathbb{Z}_p$ and 2 is unit of \mathbb{Z}_p so multiplying by 2 is a bijection. Thus squaring is a bijection on \mathbb{U}_1 and u_1 is square.

Corollary
$$\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2 \cong C_2 \times C_2.$$

Proof.

$$Q_p^*/(\mathbb{Q}_p^*)^2 \cong (\langle p \rangle \times \mathbb{V} \times \mathbb{U}_1)/(\langle p^2 \rangle \times \ker\left(\frac{\star}{p}\right) \times \mathbb{U}_1)$$
$$\cong \langle p \rangle/\langle p^2 \rangle \times \mathbb{V}/\ker\left(\frac{\star}{p}\right) \times \mathbb{U}_1/\mathbb{U}_1$$
$$\cong C_2 \times C_2$$

Proposition

An element $x = p^n u \in \mathbb{Q}_2^*$ is square if and only if n is even and $\varepsilon_3(u) = 1$.

Proof. Using the decomposition $\mathbb{Q}_2^* \cong \langle p \rangle \times \langle -1 \rangle \times \mathbb{U}_2$ we have that x is square if and only if n is even and u is square. -1 is not square in $\langle -1 \rangle$ and so u is square if and only if it is square in \mathbb{U}_2 . Below show that $(\mathbb{U}_2)^2 \cong \mathbb{U}_3$. This implies u is square if and only if $\varepsilon_3(u) = 1$.

Let $a \in \mathbb{U}_2$ and suppose it is is not in \mathbb{U}_3 . By units converge to 1 we have $a \in \mathbb{U}_2 \setminus \mathbb{U}_3 \Rightarrow a^2 \in \mathbb{U}_3 \setminus \mathbb{U}_4$ hence $a^2 \in \mathbb{U}_3$. On the other hand $a \in \mathbb{U}_3$ then clearly its square is in \mathbb{U}_3 . Hence $(\mathbb{U}_2)^2 \subseteq \mathbb{U}_3$.

Let $a \in \mathbb{U}_3$. By Hensel we can find $c^* \in \mathbb{Z}_2$ such that $(c^*)^2 - a = 0$ and $\varepsilon_1(c^* - 1) = 0$ by considering $f = x^2 - a$ with solution $c = 1 \in 2\mathbb{Z}_2$. Hence $a = (c^*)^2$ and writing $c^* = 1 + b^*$ we see that $\varepsilon_1(b^*) = 0$ and so $c^* \in \mathbb{U}_2$. Hence $\mathbb{U}_3 \subseteq (\mathbb{U}_2)^2$.