Multipliers

Learning Outcomes:

In this lab exercise, you will implement

- A multiplier which multiplies two 2-bit binary numbers.
- A multiplier which multiplies two 4-bit binary numbers.

Consider the multiplication of two 2-bit numbers: a_1a_0 and b_1b_0 :

	$egin{array}{c} b_1 \ a_1 \end{array}$	$egin{array}{c} b_0 \ a_0 \end{array}$
$c_1 \\ b_1 a_1$	$\begin{array}{c} b_1 a_0 \\ b_0 a_1 \end{array}$	$b_0 a_0$
s ₂	S ₁	$b_0 a_0$

Where

- c_1 carry of $b_1 a_0 + b_0 a_1$
- s_1 sum of $b_1a_0 + b_0a_1$
- c_2 carry of $c_1 + b_1 a_1$

 c_2

• s_2 - sum of $c_1 + b_1 a_1$

We can use this approach to build a multiplier combinational circuit.

Exercises:

• Build a 2x2 multiplier circuit.

After successfully building the 2x2 multiplier, your elaborated design diagram will look like this:

• Build a 4x4 multiplier circuit.

Naming convention:

Use the following entity declaration for the full adder circuit:

```
entity FA is
   Port (
        A : in std_logic;
        B : in std_logic;
        C_in : in std_logic;
        S : out std_logic;
        C_out : out std_logic
   );
end FA;
```

Use the following entity declaration for the 2x2 multiplier circuit:

```
entity Multiplier_2 is
   Port ( A : in STD_LOGIC_VECTOR (1 downto 0);
        B : in STD_LOGIC_VECTOR (1 downto 0);
        Y : out STD_LOGIC_VECTOR (3 downto 0));
end Multiplier;
```

Use the following entity declaration for the 4x4 multiplier circuit:

```
entity Multiplier_4 is
   Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
        B : in STD_LOGIC_VECTOR (3 downto 0);
        Y : out STD_LOGIC_VECTOR (7 downto 0));
end Multiplier;
```

Name the internal signals as follows

- Multiplication between B[x] and A[x]: bxax (ie. b0a0, b0a1, etc.)
- i^{th} adder of j^{th} row: FA j i
- Carry of the i^{th} adder of j^{th} row: c_j_i
- Sum of the ith adder of jth row: s j i

Submission:

Submit a report with the following content

- Introduction
- 2x2 multiplier
 - o Design source file
 - o Elaborated design schematic
 - o Simulation source file
 - Timing diagram
- 4x4 multiplier
 - o Design source file
 - o Elaborated design schematic
 - o Simulation source file
 - o Timing diagram

Name your report in the following format:

```
<Index_no>_Multiplier.pdf
eg:- 210001A_Multiplier.pdf
```

References

• J. F. Wakerly, "Combinational Multipliers" in *Digital Design - Principles and Practices, 3rd Edition*. Prentice Hall, ch 5.11, pp. 406-407.