

Reconnaissance faciale

ESP32-cam + edge impulse

préparé par:

mohammed essalhi mohammed el idrissi laoukili wassima azzouzii encadré par:

Pr.anass bouayad

PLAN

01	Prob	lémo	atia	ue
		-		

- 02 Objectifs de la solution
- 03 Approche Initiale
- 04 Développement du Modèle
- 05 Architecture de la solution
- 06 Fonctionnement de la solution
- 07 Démonstration
- 08 Résultats clés
- 09 Conclusion

Problématique

Les solutions d'IA basées sur le cloud nécessitent une connexion Internet constante.

Besoin d'une solution de reconnaissance faciale économique, autonome et en temps réel.

Objectifs de la solution

- ® Reconnaître les visages directement avec l'ESP32-CAM.
- Ö Distinguer les utilisateurs autorisés des non-autorisés.
- Réagir à la détection (ouvrir ou refuser l'accès).
- Fournir un retour visuel via des LED.
- Simuler une porte avec un servo-moteur.

Approche initiale

- Démarrage avec la détection d'objets pour tester l'intégration.
- Trop simple pour un contrôle d'accès sécurisé.
- Passage à la classification de visages pour plus de précision.

Développement du modèle

Dataset

Entraînement

Resultat du test

- Visages autorisés (via caméra de téléphone).
- Visages non-autorisés/aléatoire.

Suppression de fond testée \rightarrow aucune amélioration notable.

Développement du modèle

Dataset

Entraînement

Resultat du test

Téléversement des images sur Edge Impulse.

Construction d'un modèle de classification d'images.

Pipeline du modèle:

- Redimensionnement (96x96), niveaux de gris.
- Extraction de caractéristiques.
- Classifieur par réseau de neurones.

Last training performance (validation set)

% ACCURACY 77.8%

Confusion matrix (validation set)

	AUTHERIZED	UNAUTHERIZED
AUTHERIZED	100%	0%
UNAUTHERIZED	50%	50%
F1 SCORE	0.83	0.67

Développement du modèle

Dataset

Entraînement

Resultat du test

Faible précision initiale avec la cam PC.

Apprentissage clé : la diversité des caméras est cruciale.

Amélioration du jeu de données \rightarrow réentraînement \rightarrow meilleurs résultats.

Bonne précision obtenue → modèle déployé.

Architecture du solution

Fonctionnement du solution

Configuration Matérielle

Intégration du Code Arduino

Fonctionnement du solution

Configuration Matérielle

Arduino Code Integration

Model inference returns classification label.

Based on result:

- Control GPIO pins for LEDs...
- Rotate servo motor.

Efficient use of Serial Monitor for debugging and feedback.

Demonstration

Demonstration

Key Results

☑ Real-time face recognition with low latency.

Full offline operation.

(3) Hardware fully responds to detection.

Accuracy greatly improved after data enhancement.

Conclusion

Conclusion

A fully functional edge-based face recognition system.

Affordable, scalable, and privacy-respecting.

Important insights:

- Training data variety is crucial.
- Background removal is not always effective.
- Camera consistency matters.

Conclusion

Conclusion

Add more faces and improve model generalization.

Create a web dashboard for monitoring access.

Log access events to SD card or remote server.

Support voice feedback or SMS alerts.

Explore multi-face detection and tracking.

Documentations

