Álgebra lineal I, Grado en Matemáticas

Febrero 2015, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz escalonada reducida
- (b) Subespacio vectorial
- (c) Matriz de cambio de base
- (d) Aplicación lineal

Ejercicio 1: (2 puntos) Dadas dos matrices $A, B \in M_{m \times n}(\mathbb{K})$ demuestre que

$$|\operatorname{rg}(A) - \operatorname{rg}(B)| \le \operatorname{rg}(A+B) \le \operatorname{rg}(A) + \operatorname{rg}(B)$$

Ejercicio 2: (3 puntos) En un espacio vectorial de dimensión 4, y respecto a una base $\mathcal{B} = \{u_1, u_2, u_3, u_4\}$, se dan los siguientes subespacios

$$U = \{(\alpha, -\beta, -\alpha, 0), \alpha, \beta \in \mathbb{K}\}$$

$$V_a \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \end{cases}$$

- a) Determine los valores del parámetro $a \in \mathbb{K}$ para los cuales los subespacios U y V_a no sean suplementarios.
- b) En cada caso, obtenga una base y unas ecuaciones implícitas de los subespacios vectoriales $U + V_a$ y $U \cap V_a$.

Ejercicio 3: (3 puntos)

Sea $\mathcal{P}_2(x)$ el espacio vectorial de los polinomios en una variable x con coeficientes reales y grado menor o igual que 2, y E un espacio vectorial real, y $\mathcal{B} = \{u_1, u_2, u_3\}$ una base de E. Sea $f: \mathcal{P}_2(x) \to \mathbb{R}^3$ la aplicación lineal definida por

$$f(1+x+x^2) = 2u_1 + u_3$$
, $f(1+2x^2) = 3u_1 + u_2$, $f(x+x^2) = u_1 - 2u_2 + 3u_3$

- a) Calcule la matriz de f en las bases canónica o estándar de $\mathcal{P}_2(x)$ y \mathcal{B} de E.
- b) Determine si la aplicación es un isomorfismo.