How to make 3-D mesh including topography

Procedures of makeTetraMesh

You need to execute the above commands in the directory where all input files exist.

Step 1: Define land-sea/land-lake boundaries

Input files of Step 1

File name	Contents
analysis_domain.dat	Size of computational domain
coast_line.dat	Information about land-sea/land-lake boundaries
control.dat	Parameters controlling mesh generation
observing_site.dat	Mesh size around observation sites

File format of analysis_domain.dat

Minimum of X coordinate value (km)

Maximum of X coordinate value (km)

Minimum of Y coordinate value (km)

Maximum of Y coordinate value (km)

Minimum of Z coordinate value (km)

Maximum of Z coordinate value (km)

Example

-50.0 50.01

-50.0 50.01

-50.0 50.01

File format of coast_line.dat

Number of boundaries

X coordinate value (km)

Y coordinate value (km)

End flag

0

Example of coast_line.dat

```
10014↓
353.479913264 174.431 0 0↓
353.492502288 174.418 0 0↓
353.495529099 174.413 0 0↓
353.49608366 174.409 0 0↓
353.510112063 174.394 0 0↓
353.510340906 174.386 0 0↓
353.512989179 174.381 0 0↓
353.512989179 174.378 0 0↓
353.522898605 174.377 0 0↓
353.522898605 174.378 0 0↓
```

End flag

 $[End\ flag] = 0$

The point is NOT the end point of a boundary

 $[End\ flag] = 1$

➤ The point is the end point of a <u>closed</u> boundary

 $[End\ flag] = -1$

➤ The point is the end point of an <u>unclosed</u> boundary

If you do not include the sea in the computational domain, please define a boundary which covers whole of the computational domain.

If there is no land area in the computational domain, please set [Number of boundaries] to zero.

File format of coast_line.dat

You must define the points of land-sea or land-lake boundaries in the order that land locates on the right-hand side.

File format of 'control.dat ' (1/2)

Keyword	Content	Data tuna	Option	Default	Example		Step *1)		Step)
Reyword	Content	Data type	Option	Delault	Example	1	2	3	4		
CENTER	Coordinate values (x,y,z) of the ellipsoids to specify edge lengths. The length scale is kilo-meter.	Three real values			CENTER 0.0 0.0 0.0		\bigcirc		\bigcirc		
ROTATION	Rotation angle (deg.) of the ellipsoids to specify edge lengths around the x-y plane	Real value		0.0	ROTATION 30.0		\circ		\bigcirc		
ELLIPSOIDS	Information about the ellipsoids to control edge lengths	Shown in the next slide			Shown in the next slide	0	0		\bigcirc		
NUM_THREADS	Number of threads used in parallel processing	Positive integer		1	NUM_THREADS 3						
SURF_MESH	Keyword for making surface mesh. This keyword is always required				SURF_MESH				\bigcirc		

^{*1)} Circle is drawn for the steps where the setting of the keywords is used.

Keyword 'ELLIPSOIDS'

ELLIPSOIDS

Number of ellipsoids (N_e)

Information about the 1st ellipsoid

:

Information about the N_e -th ellipsoid

[NOTE] Subsequent ellipsoids must cover the formers

Example

ELLIPSOIDS

6

40.0 1.0 0.5 0.5 0.7 60.0 5.0 0.3 0.3 0.5

100.0 10.0 0.2 0.1 0.3

200.0 20.0 0.0 0.0 0.0

300.0 30.0 0.0 0.0 0.0

500.0 50.0 0.0 0.0 0.0

a : Length along x axis (km)

len: Edge length within the ellipsoid (km)

 f_h : Oblateness on the X-Y plane

 f_v^+ : Oblateness on the Z-X plane (Upper side)

 f_v^- : Oblateness on the Z-X plane (Lower side)

$$\frac{b}{a} = 1 - f_h$$

$$\frac{c^+}{\frac{a}{a}} = 1 - f_v^+$$

$$\frac{c^{-}}{g} = 1 - f_v^{-}$$

File format of 'control.dat' (2/2)

Keyword	Content	Data type	Option	Default	Example	Step *1))
Reyword		Data type	Option	Delauit	Lxample		2	3	4
INTERPOLATE	Search radius (km)	Positive real value		100.0	INTERPOLATE 10.0				
	Maximum number of points used for the interpolation of topography data	Positive integer		3	4 1.0e-6			\bigcirc	
	Small number to avoid zero divide (km)	Positive real value		1.0e-6					
ALTITUDE	Name of the file including land topography (Altitudes)	Character string			ALTITUDE altitude.txt				
	Minimum altitude (km)	Real value		0.0	0.0 1.0e20				
	Maximum altitude (km)	Real value		1.0e10					
SEA_DEPTH	Name of the file including bathymetry data (depths of the sea floor)	Character string			SEA_DEPTH Sea_depth.txt				
	Minimum sea depth (km)	Real value		0.01	0.01 1.0e20			\bigcirc	
	Maximum sea depth (km)	Real value		1.0e10					
END	Indication of the end of controlling parameters				END		\bigcirc	\bigcirc	\bigcirc

^{*1)} Circle is drawn for the steps where the setting of the keywords is used.

Interpolation method

Inverse distance weighting method is used for interpolation of the altitude and sea depths.

$$z = \frac{\sum_{i=1}^{N} w_i z_i}{\sum_{i=1}^{N} w_i}$$

$$w_i = \frac{1}{(r_i + \varepsilon)}$$

N: Maximum number of the points used for interpolation

 ε : Small number to avoid zero divide (km)

Format of the files including topography/bathymetry data

Land topography (Altitudes)

X coordinate value (km) Y coordinate value (km) Altitude (km)

Bathymetry (Depths of the sea floor)

X coordinate value (km) Y coordinate value (km) Sea depth (km):

Example

```
-106.824031915
                 76.2046151595
                                  2.100000e-003↓
-106.824276161
                 76.1651038245
                                  6.000000e-003↓
-106.824459262
                 76.1354703228
                                  8.500000e-003↓
-106.824642292
                 76.1058368206
                                  7.400000e-003↓
-106.824886221
                 76.0663254836
                                  9.000000e-003↓
-106.825069084
                 76.0366919804
                                  9.300000e-0034
-106.825251877
                 76.0070584767
                                  8.600000e-003↓
-106.825495489
                 75.9675471378
                                  8.600000e-003↓
                                  9.400000e-003↓
-106.825678115
                 75.9379136331
-106.82586067
                 75.908280128
                                   .040000e-002↓
-106.826103966
                 75.8687687872
                                   .070000e-002↓
-106.826286354
                 75.839135281
                                  9.300000e-003↓
-106.826468671
                 75.8095017744
                                  1.110000e-002↓
                 75.7699904316
```

Altitudes are positive in the upward direction while sea depths are positive in the downward direction.

File format of 'observing_site.dat'

Number of observation sites (N_{site})

Information about the edge *X* coordinate value (km) Y coordinate value (km) length around the 1st site Number of spheres defining edge length (N_{sph}) Radius of sphere of the 1st sphere (km) Edge length within the 1st sphere (km) Radius of sphere of the N_{sph} -th sphere (km) Edge length within the N_{sph} -th sphere (km) Information about the edge length around the N_{site} -th site

*Subsequent spheres must cover the formers

Example

```
28↓

0.0000000000

5↓

0.1 0.02↓

0.3 0.05↓

1.0 0.10↓

3.0 0.30↓

5.0 0.50↓
```

Output files of Step 1

File name	Contents
makeTetraMesh.log	Log output
node_bound_curve.stp1	Coordinate values of the points on inner/outer boundaries (Input file of Step 2)
boundary_curves.stp1	Connections of the points of inner/outer boundaries (Input file of Step 2)
boundary_curves_relation.stp1	Relationship between inner/outer boundaries (Input file of Step 2)
boundary_curve_node_stp1.vtk	Coordinate values of the points of inner/outer boundaries (Input file of ParaView)
boundary_curve_stp1.vtk	Connections of the points of inner/outer boundaries (Input file of ParaView)

Visualization by ParaView (Step 1)

Bad boundary curve

- > Boundary curves must not be crossed.
- > It causes error at Step 2.
- ➤ If there are such boundaries, please execute Step 1 by different parameters or edit 'node_bound_curve.stp1' directly.

Step 2: Make 2-D mesh without breaking the boundary

Input files of Step 2

File name	Contents
analysis_domain.dat	Size of computational domain
control.dat	Parameters controlling mesh generation
observing_site.dat	Mesh size around observation sites
node_bound_curve.stp1	Coordinate values of the points of inner/outer boundaries (Output file of step 1)
boundary_curves.stp1	Connections of the points of inner/outer boundaries (Output file of step 1)
boundary_curves_relation.stp1	Relationship between inner/outer boundaries (Output file of step 1)

Output files of Step 2

File name	Contents
makeTetraMesh.log	Log output
node_bound_curve.stp2	Coordinate values of the points of inner/outer boundaries (Input file of Step 3)
boundary_curves.stp2	Connections of the points of inner/outer boundaries (Input file of Step 3)
boundary_curves_relation.stp2	Relationship between inner/outer boundaries (Input file of Step 3)
node_mesh.stp2	Coordinates of the points of 2D mesh (Input file of Step 3)
triangle_list.stp2	Connections of the points of 2D mesh (Input file of Step 3)
node_curves2mesh.stp2	Relation of the points of boundaries and the ones of 2D mesh (Input file of Step 3)
surface_triangle.laplacian_last.vtk	Information of 2D mesh (Input file of ParaView)

In addition, some intermediate file is outputted. However, you can omit these files.

Visualization by ParaView (Step 2)

surface_triangle.laplacian_last.vtk

Domain type

Sea:0

Land: 1

Lake: 2

Delaunay triangulation method

The Delaunay triangulation method with boundary constraints is used to make 2-D mesh

Delaunay triangulation method

- ✓ In the context of a finite point set *S*, a triangle is *Delaunay* if its vertices are in *S* and its open circumdisk is empty.
- ✓ A Delaunay triangulation of S is a triangulation in which every triangle is Delaunay.

Step 3: Interpolate altitudes of the nodes of 2-D mesh

Input files of Step 3

File name	Contents
analysis_domain.dat	Size of computational domain
control.dat	Parameters controlling mesh generation
observing_site.dat	Mesh size around observation sites
node_bound_curve.stp2	Coordinate values of the points of inner/outer boundaries (Output file of Step2)
boundary_curves.stp2	Connections of the points of inner/outer boundaries (Output file of Step2)
boundary_curves_relation.stp2	Relationship between inner/outer boundaries (Output file of Step2)
node_mesh.stp2	Coordinate values of the points of 2D mesh (Output file of Step2)
triangle_list.stp2	Connections of the points of 2D mesh (Output file of Step2)
node_curves2mesh.stp2	Relation of the points of boundaries and the ones of 2D mesh (Output file of Step2)
Defined in 'control.dat'	Land topography (altitudes)
Defined in 'control.dat'	Bathymetry (depth of the sea floor)
lake.dat	Information about lakes. This file is required only if you incorporate lakes in the model.

File format of 'lake.dat' (2/2)

The depths of the lake bottoms are interpolated from the land topography data.

A point located on the lake surface

Output files of Step 3

Output files of Step 3

File name	Contents
makeTetraMesh.log	Log output
node_bound_curve.stp3	Coordinate values of the points of inner/outer boundaries (Input file of Step4)
boundary_curves.stp3	Connections of the points of inner/outer boundaries (Input file of Step4)
boundary_curves_relation.stp3	Relationship between inner/outer boundaries (Input file of Step4)
node_mesh.stp3	Coordinate values of the points of 2D mesh (Input file of Step4)
triangle_list.stp3	Connections of the points of 2D mesh (Input file of Step4)
node_curves2mesh.stp3	Relation of the points of boundaries and the ones of 2D mesh (Input file of Step4)
triangles_with_height.vtk	Earth surface's mesh with topography (Input file of ParaView)

In addition, some intermediate file is outputted. However, you can omit these files.

Visualization by ParaView (Step 3)

Step 4: Make surface mesh

Input files of Step 4

File name	Contents
analysis_domain.dat	Size of computational domain
control.dat	Parameters controlling mesh generation
observing_site.dat	Mesh size around observation sites
node_bound_curve.stp3	Coordinates of the points of inner/outer boundaries (Output file of Step3)
boundary_curves.stp3	Connections of the points of inner/outer boundaries (Output file of Step3)
boundary_curves_relation.stp3	Relationship between inner/outer boundaries (Output file of Step3)
node_mesh.stp3	Coordinates of the points of 2D mesh (Output file of Step3)
triangle_list.stp3	Connections of the points of 2D mesh (Output file of Step3)
node_curves2mesh.stp3	Relation of the points of boundaries and the ones of 2D mesh (Output file of Step3)
lake.dat	Information about lakes. This file is required only if you incorporate lakes in the model.

Output files of Step 4

Output files of Step 4

File name	Contents
makeTetraMesh.log	Log output
output.poly	Surface mesh covering the computational domain (Input file of TetGen)
plc.vtk	Surface mesh covering the computational domain (Input file of ParaView)

In addition, some intermediate file is outputted. However, you can omit these files.

Visualization by ParaView (Step 4)

How to make 3-D mesh including topography

Region attribute in 'output.poly'

Please give unique region attribute to the air, the sea, each lake and the subsurface, respectively.

How to make 3D mesh from poly file

You need to execute the following command in the directory where 'output.poly' exist.

tetgen -nVpYAakq3.0/0 output.poly

Output files of TetGen

File name	Contents
output.1.node	Information of nodes (Input file of iterative refinement)
output.1.ele	Information of elements (Input file of iterative refinement)
output.1.face	Information of element faces
output.1.edge	Information of element edges
output.1.neigh	Information of adjacency relationship between elements (Input file of iterative refinement)
output.1.vtk	3D mesh (Input file of ParaView)

More information about the command and the format of the output files are available in the manual of TetGen.

Visualization by ParaView (3D mesh)

Contour of region attributes

Iterative refinement of mesh

The 3-D mesh should be refined iteratively to make element sizes sufficiently small in all parts of the model.

Input/Output files of makeMtr

Input files

File name	Contents
XXX.ele *1)	Information about the elements of 3-D mesh (Output file of TetGen).
XXX.node *1)	Information about the nodes of 3-D mesh (Output file of TetGen). The unit of coordinate values are kilo-meter.
makeMtr.param	Desired edge lengths for the entire region of the model
obs_site.dat	Desired edge lengths around observation sites. The unit of coordinate values are kilometer.

Output files

File name	Contents
XXX.mtr *1)	Desired edge lengths of each node of 3-D mesh. (Input file of TetGen)

^{*1)} In the files 'XXX' indicates the main part of the name of TetGen output files, which is specified as the execution argument of makeMtr.

File format of 'makeMtr.param'

X coordinate value (km)

Y coordinate value (km)

Z coordinate value (km)

Coordinate values of the center of the ellipsoids defining desired edge lengths

Rotation angle (deg.) of the ellipsoids around the x-y plane

Number of the ellipsoids (N_e)

Information of the 1st ellipsoid

Information of the N_e -th ellipsoid

*Subsequent ellipsoids must cover the formers

a : Length along x axis (km)

len: Maximum edge length within the ellipsoid (km)

 f_h : Oblateness on the X-Y plane

 f_v^+ : Oblateness on the Z-X plane (Upper side)

 f_v^- : Oblateness on the Z-X plane (Lower side)

$$\frac{b}{a} = 1 - f_1$$

$$\frac{c^+}{a} = 1 - f_v$$

$$\frac{c^{-}}{a} = 1 - f_v^{-}$$

File format of 'obs_site.dat'

Number of observation sites (N_{site})

Information about the edge Y coordinate value (km) X coordinate value (km) Z coordinate value (km) lengths around the 1st site Coordinate values of the 1st station Number of ellipsoids defining edge length (N_e) Maximum edge length Length along Oblateness on within the ellipsoids (km) the x-axis (km) the Z-X plane *Information of the 1st ellipsoid *1)* *1) Unlike 'makeMtr.param', oblateness on the X-Y plane cannot be considered. Information of the N_e -th ellipsoid *2) Subsequent spheres must cover the formers Information about the edge lengths around the N_{site} -th site

How to perform iterative refinement

done

```
for I in 12345

do

makeMtr output.$i

tetgen -nmpYVrAakq3.0/0 output.$i
```

Output files of the iterative refinement

Output files of the X-th iteration

File name	Contents
output.X.node	Information of nodes of the X-th iteration
output.X.ele	Information of elements of the X-th iteration
output.X.face	Information of element faces of the X-th iteration
output.X.edge	Information of element edges of the X-th iteration
output.X.neigh	Information of adjacency relationship between elements of the X-th iteration
output.X.vtk	3D mesh of the X-th iteration (Input file of ParaView)

Visualization by ParaView

Contour of region attributes

How to make 3-D mesh including topography

Input files of TetGen2Femtic

Input files of TetGen2Femtic

File name	Contents	
output.X.node	Information of nodes (output file of TetGen)	
output.X.ele	Information of elements (output file of TetGen)	
output.X.face	Information of element faces (output file of TetGen)	
output.X.neigh	Information of adjacency relationship between elements (output file of TetGen)	
resistivity_attr.dat	Parameter file for TetGen2Femtic. Unit of lengths in this file is kilo-meter.	

^{*} In the file names, 'X ' indicates the iteration number of the iterative refinement.

File format of 'resistivity_attr.dat' (1/3)

Number of region attributes (N_{reg}) *1)

Region attribute *1)

Initial resistivity (Ωm) of the region

Repeat number of the partitioning of the region *2)

0: Resistivity is not fixed, 1: Resistivity is fixed

Parameters for the 1st region

:

Parameters for the N_{reg} -th region

- *1) Region attributes are specified in 'output.poly'.
- *2) Repeat number must be -1 for the region corresponding to the sea, lakes or the air.

File format of 'resistivity_attr.dat' (2/3)

X coordinate value (km)

Y coordinate value (km)

Z coordinate value (km)

Coordinate values of the center of the ellipsoids defining desired length of parameter cells

Rotation angle (deg.) of the ellipsoids around the x-y plane

Number of the ellipsoids (N_e)

Information of the 1st ellipsoid

:

Information of the N_e -th ellipsoid

a len f_h f_v

a : Length along x axis (km)

len: Maximum edge length within the ellipsoid (km)

 f_h : Oblateness on the X-Y plane

 f_v : Oblateness on the Z-X plane

*) Subsequent spheres must cover the formers

File format of 'resistivity_attr.dat' (3/3)

Number of points defining desired length of parameter cells (N_p)

Parameters for the 1st point X coordinate value Y coordinate value Z coordinate value of the point (km) of the point (km) of the point (km) Number of the spheres (N_s) Parameters for the 1st sphere Maximum edge length Radius of the sphere (km) within the sphere (km) *) Subsequent spheres Parameters for the N_s -th sphere must cover the formers Parameters for the N_p -th point

Partitioning algorithm

- ➤ Each region is partitioned by an algorithm such as the Recursive Coordinate Bisection (Simon 1991) as shown in Usui (2015).
- > Region are partitioned into haves according to the coordinate values in its longest expansion (x, y or z direction).

How to TetGen2Femtic

You need to execute the following command in the directory where input files exist.

TetGen2Femtic output.X

* X in the execution argument indicates the iteration number of the iterative refinement.

If you add '-div_all' option in executing TetGen2Femtic, every individual subsurface element become a different model parameter in 'resistivity_block_iter0.dat'.

TetGen2Femtic output.X -div_all

If you use this option, the number of model parameters become very large because each parameter cell consists of a finite element.

Therefore, you need to use data-space method (model-space method cannot be used for the problems with large unknowns).

Output files of TetGen2Femtic

File name	Contents
mesh.dat	Data of computational mesh (Input file of FEMTIC)
resistivity_block_iter0.dat	Initial resistivity values (Input file of FEMTIC)
output.X.femtic.vtk	Data of computational mesh (Input file of ParaView)

^{*} X in the above file indicates the iteration number of the iterative refinement.

Visualization by ParaView

