

Pengantar Data Mining #3: Praproses Data [1]

Isnan Mulia, S.Komp, M.Kom

Kualitas Data

- Data yang akan digunakan dalam data mining tidak selalu dalam kondisi yang siap pakai
- Kemungkinan yang bisa terjadi:
 - Data tidak lengkap; ada atribut yang tidak ada nilainya
 - Data mengandung nilai yang tidak seharusnya diisikan
 - Data tidak konsisten, khususnya yang didapatkan dari berbagai sumber
 - Ukuran data terlalu besar

Kualitas Data

Faktor yang mempengaruhi kualitas data

- Akurasi → data sesuai dengan fakta yang ada
 Kendala: data yang didapat bukan merupakan data asli responden
- Kelengkapan → setiap field data diisi
 Kendala: ada field yang tidak dianggap penting saat pemasukan data
- Konsistensi → keseragaman format data Kendala: penamaan tidak seragam
- <u>Ketepatan waktu</u> → waktu input data sesuai dengan waktu data didapatkan Kendala: ada data yang terlambat diinput
- <u>Dapat dipercaya</u> → bagaimana data dapat dipercaya oleh pengguna
- <u>Dapat diinterpretasikan</u> → seberapa mudah data dapat dipahami

Tujuan Praproses Data

- · Meningkatkan kualitas data yang digunakan
- Meningkatkan hasil data mining
- Meningkatkan efisiensi dan kemudahan proses data mining

Tugas dalam Praproses Data

- Data cleaning → membersihkan data dari nilai kosong, derau (noise), pencilan
- Data integration → menggabungkan banyak database, file, dll menjadi 1 sumber
- *Data reduction* > mengurangi ukuran data
- Data transformation -> mengubah bentuk data yang ada menjadi bentuk yang lain

Tugas dalam Praproses Data

Data Cleaning

- Membersihkan data-data yang mengandung:
 - Nilai kosong (*missing values*) → atribut objek yang tidak memiliki nilai
 - Derau (noise) → error/variasi acak pada variabel terukur; nilai atribut yang tidak bermakna
 - Pencilan (outlier) → nilai atribut yang terlalu besar/kecil & sangat berbeda dengan nilai atribut yang lain
 - Inkonsistensi → ada label kategori yang tidak sesuai

Data Cleaning - Missing Values

No	Nama	JK	Pendidikan	Lama Bekerja	Grade	Tunjangan
1	Ani	Р	S2		Supervisor	Ya
2	Budi	L	S1	5	Manager	Ya
3	Cipta	L	S2	2	Supervisor	Ya
4	Doddy		SMA	3	Staf	Tidak
5	Endah	Р	SMA	2	Staf	Tidak
6	Farid	L		3	Staf	Tidak
7	Ginanjar	L	S1	4	Supervisor	Ya
8	Hanum	Р	S1	2		Ya
9	Intan	Р	S2	3	Supervisor	Ya
10	Joko	L	S1		Staf	Tidak

Data Cleaning – Missing Values

Menangani *missing values*.

- Menghapus baris/tuple data
- Isi *missing value* secara manual → cukup melelahkan
- Isi *missing value* menggunakan:
 - ukuran pemusatan data (rata-rata/median)
 - rata-rata/median atribut dari sampel dengan label kelas yang sama dengan baris/tuple yang mengandung missing value
 - nilai yang paling mungkin, yang ditentukan dari regresi atau induksi decision tree
- Mendesain database & prosedur input data dengan sebaik-baiknya, untuk meminimalkan kemungkinan munculnya missing values

Dapat membuat data menjadi *bias*

Data Cleaning – Missing Values

No	Nama	JK	Pendidikan	Lama Bekerja	Grade	Tunjangan
1	Ani	Р	S2	1	Supervisor	Ya
2	Budi	L	S1	5	Manager	Ya
3	Cipta	L	S2	2	Supervisor	Ya
4	Doddy	2	SMA	3	Staf	Tidak
5	Endah	Р	SMA	2	Staf	Tidak
6	Farid	L	3	3	Staf	Tidak
7	Ginanjar	L	S1	4	Supervisor	Ya
8	Hanum	Р	S1	2	4	Ya
9	Intan	Р	S2	3	Supervisor	Ya
10	Joko	L	S1	5	Staf	Tidak

Data Cleaning - Noise

Menangani *noise: data smoothing* melalui *binning*

- Mengurutkan data, kemudian membagi data tsb ke dalam sejumlah bin/ember, kemudian dihaluskan berdasarkan:
 - Rata-rata bin
 - Median *bin*
 - Nilai batas minimum & maksimum *bin*

Kelebihan data smoothing.

- Dapat digunakan untuk memahami tren pada data
- Membantu dalam mendapatkan hasil yang akurat dari data

Kekurangan data smoothing.

- Tidak selalu memberikan penjelasan yang jelas mengenai pola pada data
- Ada kemungkinan mengabaikan suatu titik data

Data Cleaning - Noise

Data: 8, 16, 9, 15, 21, 21, 24, 30, 26, 27, 30, 34

Setelah diurutkan: 8, 9, 15, 16, 21, 21, 24, 26, 27, 30, 30, 34

Pembagian data menggunakan bin dengan frekuensi sama:

- Bin 1: 8, 9, 15, 16
- Bin 2: 21, 21, 24, 26
- Bin 3: 27, 30, 30, 34

Data smoothing menggunakan rata-rata bin:

- Bin 1: rata-rata = $\frac{8+9+15+16}{4}$ = 12 \rightarrow data bin 1: 12, 12, 12, 12
- Bin 2: rata-rata = $\frac{21+21+24+26}{4}$ = 23 \rightarrow data bin 2: 23, 23, 23, 23
- Bin 3: rata-rata = $\frac{27+30+30+34}{4}$ = 30 \rightarrow data bin 3: 30, 30, 30, 30

Data Cleaning - Noise

Data: 8, 16, 9, 15, 21, 21, 24, 30, 26, 27, 30, 34

Setelah diurutkan: 8, 9, 15, 16, 21, 21, 24, 26, 27, 30, 30, 34

Pembagian data menggunakan *bin* dengan frekuensi sama:

- *Bin* 1: 8, 9, 15, 16
- Bin 2: 21, 21, 24, 26
- Bin 3: 27, 30, 30, 34

Data smoothing menggunakan batas minimum & maksimum bin:

- *Bin* 1: minimum = 8, maksimum = $16 \rightarrow data bin$ 1: 8, 8, 16, 16
- Bin 2: minimum = 21, maksimum = 26 \rightarrow data bin 2: 21, 21, 26, 26
- *Bin* 3: minimum = 27, maksimum = 34 → data *bin* 3: 27, 27, 27, 34

Data Integration

- Menggabungkan data dari berbagai sumber
- Harus memperhatikan struktur data yang digunakan
- Masalah yang mungkin muncul:

 - Perbedaan tipe data yang digunakan
 - Redundansi data → dapat dideteksi menggunakan analisis korelasi
- Hasil: data warehouse

Data Integration

Nama	Pekerjaan	Lokasi Rumah	Gender	Kartu	Rumah	Menikah	Pulsa (Ribu)	Internet (Ribu)	Jumlah Anak	Kategori Pelanggan
Andi	Analis	А	Pria	Prabayar	Kontrak	Tidak	100	150	0	Silver
Budi	Dokter	Α	Pria	Pascabayar	Pribadi	Ya	500	300	2	Platinum
Citra	Guru	В	Wanita	Prabayar	Kontrak	Tidak	100	100	0	Silver
Dedi	Analis	Α	Pria	Prabayar	Kontrak	Ya	150	200	3	Gold
Evan	Dokter	С	Pria	Pascabayar	Pribadi	Ya	700	400	4	Platinum

Nama	Pekerjaan	Alamat	Jenis Kelamin	Prabayar	Kontrak	Menikah	Pulsa (Ribu)	Internet (Ribu)	Jumlah Anak	Kelompok
Feni	Dokter	2	W	0	0	1	600	380	1	1
Gito	Guru	1	Р	1	1	0	100	70	0	3
Hani	Analis	3	W	1	1	0	200	250	0	2
Jodi	Dokter	1	Р	0	0	1	450	270	2	1

Data Integration

_			
	_		_

Nama	Pekerjaan	Lokasi Rumah	Gender	Kartu	Rumah	Menikah	Pulsa (Ribu)	Internet (Ribu)	Jumlah Anak	Kategori Pelanggan
Andi	Analis	А	Pria	Prabayar	Kontrak	Tidak	100	150	0	Silver
Budi	Dokter	А	Pria	Pascabayar	Pribadi	Ya	500	300	2	Platinum
Citra	Guru	В	Wanita	Prabayar	Kontrak	Tidak	100	100	0	Silver
Dedi	Analis	А	Pria	Prabayar	Kontrak	Ya	150	200	3	Gold
Evan	Dokter	С	Pria	Pascabayar	Pribadi	Ya	700	400	4	Platinum
Feni	Dokter	В	Wanita	Pascabayar	Pribadi	Ya	600	380	1	Platinum
Gito	Guru	А	Pria	Prabayar	Kontrak	Tidak	100	70	0	Silver
Hani	Analis	С	Wanita	Prabayar	Kontrak	Tidak	200	250	0	Gold
Jodi	Dokter	А	Pria	Pascabayar	Pribadi	Ya	450	270	2	Platinum

Data Reduction

- Mengurangi dimensi dari data
- Tujuan: mendapatkan representasi data dengan ukuran yang lebih kecil, tetapi masih mempertahankan keutuhan data aslinya
- Strategi:
 - Reduksi dimensional
 - Reduksi jumlah data
 - Kompresi data

Data Reduction

Reduksi dimensional

- Proses mengurangi jumlah variabel acak atau atribut yang dipertimbangkan
- Contoh: transformasi wavelet, PCA, seleksi atribut

Reduksi jumlah data

- Mengganti data asli dengan representasi data yang berukuran lebih kecil
- Bisa berupa teknik parametrik atau nonparametrik
- Contoh:
 - Parametrik: regresi, model log-linear
 - Nonparametrik: histogram, clustering, sampling, data cube aggregation

Data Reduction

Kompresi data

- Data dipadatkan/dikompres
- Jika data asli bisa direkonstruksi dari data terkompres tanpa kehilangan informasi, maka disebut metode kompresi lossless
- Jika hanya bisa didapatkan data perkiraan dari rekonstruksi data terkompres, maka disebut metode kompresi lossy

Data Reduction - Reduksi Dimensional

Principal Component Analysis:

- Mencari k vektor orthogonal berdimensi n yang dapat merepresentasikan data dengan baik, dengan $k \le n$
 - => Menggabungkan semua atribut yang tersedia menjadi atribut baru
- Langkah-langkah:
 - 1. Normalisasi data input yang digunakan
 - 2. Hitung vektor orthonormal yang menjadi basis untuk data input ternormalisasi → principal component
 - 3. Urutkan *principal component* berdasarkan signifikansinya, dari yang paling signifikan sampai yang paling tidak signifikan
 - 4. Hapus beberapa *principal component* yang paling tidak signifikan

Data Reduction – Reduksi Dimensional

Principal Component Analysis:

Sumber: https://dezyre.gumlet.io/files.dezyre.com /images/Tutorials/Principal+Component +Analysis.jpg

Sumber: https://miro.medium.com/max/700/ 1*ba0XpZtJrgh7UpzWcIgZ1Q.jpeg

Data Reduction - Reduksi Dimensional

Seleksi *subset* atribut:

- Menghapus atribut yang tidak relevan/redundan
- Untuk *n* atribut, terdapat 2ⁿ subset yang mungkin
 - Pencarian manual dapat melelahkan
 - Penentuan subset atribut dapat dilakukanmenggunakan metode heuristik
- Tujuan: menemukan himpunan atribut minimum sehingga distribusi peluang data kelas yang dihasilkan dapat sedekat mungkin dengan distribusi yang didapatkan menggunakan data asli
- Atribut "terbaik" & "terburuk" ditentukan menggunakan uji signifikansi statistik, dengan asumsi setiap atribut saling bebas satu dengan lainnya

Data Reduction – Reduksi Dimensional

Seleksi *subset* atribut:

- Metode heuristik untuk seleksi *subset* atribut:
 - Stepwise forward selection
 - Stepwise backward selection
 - Kombinasi stepwise forward selection & stepwise backward selection
 - Induksi *decision tree*

Forward selection	Backward elimination	Decision tree induction
Forward selection Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ Initial reduced set: $\{\}$ $\Rightarrow \{A_1\}$ $\Rightarrow \{A_1, A_4\}$ $\Rightarrow Reduced attribute set: \{A_1, A_4, A_6\}$	Initial attribute set:	Decision tree induction Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ A_4 ? A_4 ? A_4 ? A_4 ? A_6 ? Class 1 Class 2 Class 1 Class 2
		$\{A_1, A_4, A_6\}$

Data Reduction - Reduksi Dimensional

Nama	Pekerjaan	Lokasi Rumah	Gender	Kartu	Rumah	Menikah	Pulsa (Ribu)	Internet (Ribu)	Jumlah Anak	Kategori Pelanggan
Andi	Analis	А	Pria	Prabayar	Kontrak	Tidak	100	150	0	Silver
Budi	Dokter	А	Pria	Pascabayar	Pribadi	Ya	500	300	2	Platinum
Citra	Guru	В	Wanita	Prabayar	Kontrak	Tidak	100	100	0	Silver
Dedi	Analis	А	Pria	Prabayar	Kontrak	Ya	150	200	3	Gold
Evan	Dokter	С	Pria	Pascabayar	Pribadi	Ya	700	400	4	Platinum
Feni	Dokter	В	Wanita	Pascabayar	Pribadi	Ya	600	380	1	Platinum
Gito	Guru	А	Pria	Prabayar	Kontrak	Tidak	100	70	0	Silver
Hani	Analis	С	Wanita	Prabayar	Kontrak	Tidak	200	250	0	Gold
Jodi	Dokter	А	Pria	Pascabayar	Pribadi	Ya	450	270	2	Platinum

→ Atribut Nama dapat dihapus, karena nama melekat pada objek karyawan, & tidak memiliki pola tertentu yang dapat digunakan untuk menentukan kategori pelanggan, seperti atribut lainnya

Recap

- Kualitas data
- Tugas dalam praproses data
- Data cleaning
- Data integration
- Data reduction (PCA, seleksi atribut)

Next: bagaimana cara kerja metode praproses diskretisasi?

