Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: Practice Questions for Date: 04/20/22 Course: Math 101 A04 Spring 2022 Sections 11.4 & 11.5 [Not f

Find the slope of the curve below at the given points. Sketch the curve along with its tangents at these points.

$$r = \cos 2\theta; \quad \theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$$

The slope of a curve $r = f(\theta)$ is given by the formula below.

$$\frac{dy}{dx} \bigg|_{(\Gamma,\theta)} = \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{f'(\theta) \cos \theta - f(\theta) \sin \theta}$$

To apply the formula, first determine the derivative of $f(\theta)$.

$$f'(\theta) = (\cos 2\theta)'$$
$$= -2\sin 2\theta$$

Substitute $f(\theta)$ and $f'(\theta)$ into the equation.

$$\frac{dy}{dx} \Big|_{(r,\theta)} = \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{f'(\theta) \cos \theta - f(\theta) \sin \theta}$$

$$= \frac{(-2 \sin 2\theta) \sin \theta + (\cos 2\theta) \cos \theta}{(-2 \sin 2\theta) \cos \theta - (\cos 2\theta) \sin \theta}$$

To find slope when $\theta = 0$, substitute 0 for θ in the equation.

$$\frac{(-2\sin 2\theta)\sin\theta + (\cos 2\theta)\cos\theta}{(-2\sin 2\theta)\cos\theta - (\cos 2\theta)\sin\theta} = \frac{-2\sin 2(0)\sin 0 + \cos 2(0)\cos 0}{-2\sin 2(0)\cos 0 - \cos 2(0)\sin 0}$$
$$= \frac{1}{0}$$

Therefore, the slope is undefined when $\theta = 0$.

To find slope when $\theta = \frac{\pi}{2}$, substitute $\frac{\pi}{2}$ for θ in the equation.

$$\frac{(-2\sin 2\theta)\sin\theta + (\cos 2\theta)\cos\theta}{(-2\sin 2\theta)\cos\theta - (\cos 2\theta)\sin\theta} = \frac{-2\sin 2\left(\frac{\pi}{2}\right)\sin\frac{\pi}{2} + \cos 2\left(\frac{\pi}{2}\right)\cos\frac{\pi}{2}}{-2\sin 2\left(\frac{\pi}{2}\right)\cos\frac{\pi}{2} - \cos 2\left(\frac{\pi}{2}\right)\sin\frac{\pi}{2}}$$
$$= \frac{0}{1}$$

Therefore, the slope is 0 when $\theta = \frac{\pi}{2}$.

To find slope when $\theta = \pi$, substitute π for θ in the equation.

$$\frac{(-2\sin 2\theta)\sin\theta + (\cos 2\theta)\cos\theta}{(-2\sin 2\theta)\cos\theta - (\cos 2\theta)\sin\theta} = \frac{-2\sin 2(\pi)\sin\pi + \cos 2(\pi)\cos\pi}{-2\sin 2(\pi)\cos\pi - \cos 2(\pi)\sin\pi}$$
$$= \frac{-1}{0}$$

Therefore, the slope is undefined when $\theta = \pi$.

To find slope when $\theta = \frac{3\pi}{2}$, substitute $\frac{3\pi}{2}$ for θ in the equation.

$$\frac{(-2\sin 2\theta)\sin\theta + (\cos 2\theta)\cos\theta}{(-2\sin 2\theta)\cos\theta - (\cos 2\theta)\sin\theta} = \frac{-2\sin 2\left(\frac{3\pi}{2}\right)\sin\frac{3\pi}{2} + \cos 2\left(\frac{3\pi}{2}\right)\cos\frac{3\pi}{2}}{-2\sin 2\left(\frac{3\pi}{2}\right)\cos\frac{3\pi}{2} - \cos 2\left(\frac{3\pi}{2}\right)\sin\frac{3\pi}{2}}$$
$$= \frac{0}{-1}$$

Therefore, the slope is 0 when $\theta = \frac{3\pi}{2}$.

When a graph has symmetry about the x-axis, if the point (r,θ) lies on the graph, then the point $(r,-\theta)$ or $(-r,\pi-\theta)$ lies on the graph. When a graph has symmetry about the y-axis, if the point (r,θ) lies on the graph, then the point $(r,\pi-\theta)$ or $(-r,-\theta)$ lies on the graph. When a graph has symmetry about the origin, if the point (r,θ) lies on the graph, then the point $(-r,\theta)$ or $(r,\theta+\pi)$ lies on the graph.

Note that this curve has symmetry about the x-axis, y-axis, and origin. To graph the curve, make a short table of values, plot the corresponding points, and use information about symmetry to connect the points with a smooth curve. The calculations are shown rounded to two decimal places as needed.

θ	r= cos 2θ
0	1
$\frac{\pi}{8}$	0.71
$\frac{\pi}{6}$	0.5

Continue the table. The calculations are shown rounded to two decimal places as needed.

θ	$r = \cos 2\theta$	
$\frac{\pi}{4}$	0	
$\frac{\pi}{3}$	- 0.5	
$\frac{3\pi}{8}$	- 0.71	
$\frac{\pi}{2}$	- 1	

Recall that the graph is symmetric about the origin. Therefore, the correct graph of the curve is shown below.

