WHAT IS CLAIMED IS:

1. A siloxane-based resin prepared by hydrolyzing and polycondensing monomers (a), (b) and (c) in an organic solvent in the presence of a catalyst and water, wherein monomer (a) is a cyclic siloxane compound of formula (1), monomer (b) is a silane compound of formula (2), and monomer (c) is a silane compound of formula (3):

Formula (1)

10

15

5

[in which,

R is hydrogen atom, C_{1-3} alkyl group, C_{3-10} cycloalkyl group or C_{6-15} aryl group;

each of X_1 , X_2 and X_3 , independently, is hydrogen atom, C_{1-3} alkyl group, C_{1-10} alkoxy group or halogen group, provided that at least one of them is C_{1-10} alkoxy group or halogen group;

m is an integer from 1 to 10; and
n is an integer from 3 to 8];

20

Formula (2)

 $R'SiX_1X_2X_3$

[in which,

8. R' is hydrogen atom, C_{1-3} alkyl group, C_{3-10} cycloalkyl group or C_{6-15} aryl group; and

each of X_1 , X_2 and X_3 , independently, is $C_{1\text{--}10}$ alkoxy gruop or halogen group]; and

10 Formula (3)

 $R"SiX_1X_2X_3$

[in which,

R" is C_{1-3} alkyl or aryl group including fluoro, phenyl or cyano substituent; and each of X_1 , X_2 and X_3 , independently, is C_{1-10} alkoxy group or halogen group].

- 2. The siloxane-based resin according to claim 1, wherein the monomer(c) is selected from the group consisting of 3,3,3-trifluoropropyl trimethoxy silane, phenethyl trimethoxy silane and cyanoethyl trimethoxy silane.
- 3. A method of forming an insulating film between 25 interconnect layers of a semiconductor device, the method

comprising the steps of: dissolving a siloxane-based resin according to claim 1 in an organic solvent to provide a coating composition; coating a substrate with the coating composition to form a coating film; and curing the coating film by heat.

- 4. The method according to claim 3, wherein the coating composition further comprises one or more porogen(s).
- 10 5. The method according to claim 4, wherein the porogen is cyclodextrin of formula (4) or a derivative thereof:

Formula (4)

5

20

[in which,

15 q is an integer of 6-12;

each of R_1 , R_2 and R_3 , independently, is halogen atom, C_{0-10} amino or azido group, C_{3-20} imidazole or pyridine group, C_{1-10} cyano group, C_{2-10} carbonate group, C_{1-10} carbamate group or a functional group represented by - OR_4 (wherein R_4 is hydrogen atom, C_{2-30} acyl group, C_{1-20} alkyl group, C_{3-10} alkene group, C_{3-20} alkyne group, C_{7-20}

tosyl group, C_{1-10} mesyl group, C_{0-10} phosphorus group, C_{3-10} cycloalkyl group, C_{6-30} aryl group, C_{1-20} hydroxyalkyl group, carboxy group, C_{1-20} carboxyalkyl group, glucosyl group, maltosyl group or Si compound represented by $Sir_1r_2r_3$, wherein each of r_1 , r_2 and r_3 , independently, is C_{1-5} alkyl, C_{1-5} alkoxy or C_{6-20} aryl group)].