AD175C Datasheet

Zhuhai Jieli Technology Co.,LTD

Version: 1.0

Date: 2023.09.08

AD175C Features

CPU

- 32bit DSP
- Maximum speed 160MHz
- Interrupts with 8 priority level

Memory

Optional built-in flash memory

Clocks

- On-chip 16 MHz clock
- On-chip 200KHz lower-temperature-drift clock

Audio APA

- Support for driving 4 or 8 ohm speaker
- Mono Class-D Speaker Amplifier
 - 0.42W/8 Ω @3.7V
 - $0.17W/8 \Omega @2.4V$
 - 0.62W/4 Ω @3.7V
 - 0.25W/4 Ω @2.4V

Peripherals

- Three multi-function 16-bit timers, support capture and PWM mode
- Two UART Controllers(UART0/1) supports DMA and Flow Control
- One IIC Master controller

- Two SPI Master / Slaver controller with DMA SPI0 support 4bit, SPI1 support 2bit
- 15-channel 10-bit general purpose ADC
- 4-channel Advance PWM controller
- 18 Individually programmable and multiplexed GPIO pins
- Digital peripheral crossbar
- Support Touch Key of pulse counter
- Up to 8 external interrupt / wake-up source (low power available,can be multiplexed to any I/O)
- Watchdog

PMI

- Less than 2uA soft off current
- VBAT range : 2.0V to 5.5V
- IOVDD range: 2.0V to 3.4V

Packages

OSOP24

Temperature

- Operating temperature: -40° C to $+85^{\circ}$ C
- Storage temperature: -65° C to $+150^{\circ}$ C

Applications

- Sound Toy
- Audio player
- Universal Microcontroller

1 Block Diagram

Figure 1-1 AD175C Block Diagram

2 Pin Definition

2.1 Pin Assignment

Figure 2-1 AD175C Package Diagram

2.2 Pin Description

Table 2-1 AD175C Pin Description

				SC 1 III Description
PIN NO.	Name	Туре	Function	Other Function
1	FSPG	I/O	GPIO (pull down)	
2	PA5	I/O	GPIO	ADC5:ADC Input Channel 5; PWMCK1;
3	PA4	I/O	GPIO	ADC4:ADC Input Channel 4; PWMCK0;
4	PA3	I/O	GPIO	ADC3:ADC Input Channel 3; CAP0:Timer0 Capture; PWM0:Timer0 PWM Output;
5	PA2	I/O	GPIO	ADC2:ADC Input Channel 2; TMR0:Timer0 Clock Input;
6	PA1	I/O	GPIO	ADC1:ADC Input Channel 1; LVD:Low Voltage Detect;
7	PA0	I/O	GPIO (pull up)	Long press reset; ADC0:ADC Input Channel 0;
8	VSS	G		System ground;
9	IOVDD	РО	Power supply for GPIO	Built-in linear voltage regulator output;
10	VBAT	PI		Power supply input;
11	APAP	O		Class-D APA Positive Output;
12	APAN	0		Class-D APA Negative Output;
13	PB3	I/O	5V tolerant IO	
14	PB2	I/O	5V tolerant IO (pull up)	MCLR:Low level reset;
15	PB1	I/O	5V tolerant IO	Serial port code upgrade pin;
16	PB0	I/O	5V tolerant IO	
17	PA12	I/O	GPIO	ADC12:ADC Input Channel 12;
18	PA11	I/O	GPIO	ADC11:ADC Input Channel 11;
19	PA10	I/O	GPIO	ADC10:ADC Input Channel 10;
20	PA9	I/O	GPIO (pull down)	ADC9:ADC Input Channel 9;
21	PA8	I/O	GPIO (pull down)	ADC8:ADC Input Channel 8;
22	PA7	I/O	GPIO (pull down)	ADC7:ADC Input Channel 7;
23	PA6	I/O	GPIO (pull down)	ADC6:ADC Input Channel 6;
24	PD3	I/O	GPIO	ADC14:ADC Input Channel 14;

Pin Type	Description	Pin Type	Description
P	Power	I/O	Input or Output
PI	Power Input	I	Input
PO	Power Output	О	Output
AO	Analog Output	G	Ground

			CROSSBAR			
SPI0	SPI1	IIC	UART0	UART1	PWMCH0	PWMCH1
SPI0_CLK	SPI1_CLK	IIC_CLK	UART0_TX	UART1_TX	PWMCH0L	PWMCH1L
SPI0_DI	SPI1_DI	IIC_DAT	UART0_RX	UART1_RX	PWMCH0H	PWMCH1H
SP0_D0	SPI1_D0					
SP0_DAT2						
SP0_DAT3						

	Input Channel x6		Output Channel x8			
WAKEUP	Timer1	IRFLT	PWM1	CLK_OUT0	APA_DOP	
PWMFP0	Timer2	TOUCH_CAP	PWM2	CLK_OUT1	APA_DON	
PWMFP1	CAP1	UART1_CTS	UART1_RTS	CLK_OUT2		
EXT_CLK	CAP2					

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 3-1

Symbol	Parameter	Min	Max	Unit
Topt	Operating temperature	-40	+85	°C
Tstg	Storage temperature	-65	+150	°C
VBAT	Supply Voltage	-0.3	6	V
$V_{\rm IOVDD}$	Voltage applied at IOVDD	-0.3	3.6	V
$ m V_{GPIO}$	Voltage applied to GPIO	-0.3	IOVDD+0.3	V
$ m V_{HVIO}$	Voltage applied to High Voltage Resistant IO	-0.3	+5.5	V

Note: The chip can be damaged by any stress in excess of the absolute maximum ratings listed below

3.2 PMU Characteristics

Table 3-2

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
VBAT	Voltage Input	2.0	3.7	5.5	V	
IOVDD	Voltage output	2.0	3.0	3.4	V	VBAT = 4.2V, 10mA loading
10 ()	Loading current	4	<u> </u>	100	mA	IOVDD=3.3V@VBAT ≥ 3.6V
$V_{ m LVD}$	Voltage input	1.8	2.5	2.5	V	Low-Voltage Detection of IOVDD

3.3 IO Input/Output Electrical Logical Characteristics

Table 3-3

GPIO input ch	aracteristics					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
$V_{\rm IL}$	Low-Level Input Voltage	-0.3	_	0.3* IOVDD	V	IOVDD = 3.0V
V_{IH}	High-Level Input Voltage	0.7* IOVDD	-	IOVDD+0.3	V	IOVDD = 3.0V
High Voltage F	Resistant IO inp <mark>ut c</mark> hara	cteristics				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Low-Level Input Voltage	-0.3	-	0.3* IOVDD	V	IOVDD = 3.0V
V_{IH}	High-Level Input Voltage	0.7* IOVDD	-	+5V	V	IOVDD = 3.0V
Resistant IO o	utput characteristics					
Symbol	Paramete	er	GPIO	Тур	Unit	Test Conditions
	0.1*IOVDD Driv	ve current	PA0~PA12 PD3	HD=1:-7 HD=2:-22 HD=3:-27		IOVDD = 3.0V
$ m V_{OL}$			PB0~PB3	-7	mA	
	0.1*HPVDD Driv APA IO total current l		APAN APAP	-400		VBAT=3.7V

	0.9*IOVDD Drive current	PA0~PA12 PD3	HD=1:7 HD=2:24 HD=3:56		IOVDD = 3.0V
$ m V_{OH}$		PB0~PB3	7	mA	
	0.9*HPVDD Drive current APA IO total current limit of 400mA	APAN APAP	400		VBAT=3.7V

3.4 Internal Resistor Characteristics

Table 3-4

Port	Internal Pull-Up Resistor	Internal Pull-Down Resistor	Comment
PA0~PA12,PB0~PB3,PD3	10K	200K	 PA0,PB2 default pull up PA6~PA9 default pull down Internal pull-up/pull-down resistance accuracy ±20%

3.5 Audio APA Characteristics

Table 3-5

Parameter	MODE	Min	Тур	Max	Unit	Test	Conditions
Frequency Response		20		20K	Hz	R _L =10K	,VBAT=3.7V
		10.M	1.57	/X	Vrms	$R_L=4\Omega$	
	Diff (N to P)		1.83	V	Vrms	$R_L=8\Omega$	f=1kHz/0dB
			2.22	_	Vrms	R _L =10K	VBAT=3.7V
Output Swing	Single-ended		1.11	_	Vrms	R _L =10K	
Output Swing		_	0.99	_	Vrms	$R_L=4\Omega$	
	Diff (N to P)	_	1.17	_	Vrms	$R_L=8\Omega$	f=1kHz/0dB
	1	_	1.44	_	Vrms	R _L =10K	VBAT=2.4V
	Single-ended	_	0.72	_	Vrms	R _L =10K	
			0.62	_	W	$R_L=4\Omega$	f=1kHz/0dB
Output power	Diff (N to P)		0.42	_	W	$R_L=8\Omega$	VBAT=3.7V
Output power	Diff (N to 1)		0.25	_	W	$R_L=4\Omega$	f=1kHz/0dB
		_	0.17	_	W	$R_L=8\Omega$	VBAT=2.4V
	The state of the s	_	-31	_	dB	$R_L=4\Omega$	f=1kHz/0dB
	Diff (N to P)	_	-35	_	dB	$R_L=8\Omega$	A-Weighted
		_	-75	_	dB	R _L =10K	VBAT=3.7V
THD+N	Single-ended	_	-70	_	dB	R _L =10K	VB/11 3.7 V
1112.11		_	-31	_	dB	$R_L=4\Omega$	f=1kHz/0dB
	Diff (N to P)	_	-36	_	dB	$R_L=8\Omega$	A-Weighted
		_	-73	_	dB	R _L =10K	VBAT=2.4V
	Single-ended	_	-70	_	dB	R _L =10K	, D/11 2. TV
		_	97	_	dB	$R_L=4\Omega$	f=1kHz/0dB
S/N	Diff (N to P)	_	97	_	dB	$R_L=8\Omega$	A-Weighted
		_	95	_	dB	R _L =10K	VBAT=3.7V

	Single-ended	_	75	_	dB	R _L =10K	
			94	_	dB	$R_L=4\Omega$	f=1kHz/0dB
S/N	Diff (N to P)	_	94	_	dB	$R_L=8\Omega$	A-Weighted
		_	88	_	dB	R _L =10K	VBAT=2.4V
	Single-ended	_	72	_	dB	R _L =10K	V DA 1-2.4 V
		_	88	_	dB	$R_L=4\Omega$	f=1kHz/-60dB
	Diff (N to P)	_	88	_	dB	$R_L=8\Omega$	A-Weighted
		_	86	_	dB	R _L =10K	VBAT=3.7V
Dynamic Range	Single-ended	_	75	_	dB	R _L =10K	VBA1-3.7 V
Dynamic Range		_	87	_	dB	$R_L=4\Omega$	f=1kHz/-60dB
	Diff (N to P)	_	87		dB	$R_L=8\Omega$	A-Weighted
		_	85		dB	R _L =10K	VBAT=2.4V
	Single-ended	_	74		dB	R _L =10K	V DA 1-2.4 V

4 Package Information

4.1 QSOP24

SYMBOL	MILLIMETER						
SYMBOL	MIN	NOM	MAX				
Α	_	_	1.75				
A1	0.10	0.15	0.25				
A2	1.30	1.40	1.50				
A3	0,60	0.65	0.70				
b	0.23	_	0.31				
bl	0.22	0.25	0.28				
С	0.20	_	0.24				
cl	0.19	0.20	0.21				
D	8.55	8.65	8.75				
Е	5.80	6.00	6.20				
El	3.80	3.90	4.00				
e	().635BSC					
h	0.30	-	0.50				
L	0.50	-	0.80				
L1		1.05REF					
θ	0		8°				

Figure 4-1 AD175C Package

5 IC Marking Information

- ① LLLLLLLLL: Production Batch
- ② AD17Nx: Chip Model
- 3 Built-in flash size
 - 0: No Flash Memory
 - 2: 2Mbit Flash
 - 4: 4Mbit Flash
 - 8: 8Mbit Flash
 - 6: 16Mbit Flash
 - 3: 32Mbit Flash

6 Solder-Reflow Condition

Figure 6-1 Classification Reflow Profile

Classification Profiles

Table 6-1

	Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
	Temperature Min (T _{smin})	100 °C	150 ℃
Preheat/	Temperature Max (T _{smax})	150 °C	200 ℃
Soak	Time (ts) from (T _{smin} to T _{sma} x)	60-120 seconds	60-180 seconds
Average ramp-up rate (T _{smax} to T _p)		3 °C/second max	3 °C/second max
Liquidous temperature (T _L)		183 ℃	217 ℃
Time (t _L) maintained above T _L		60-150 seconds	60-150 seconds
Peak package body temperature (Tp)		See Table 6-2.	See Table 6-3.
Time within 5°C of actual Peak Temperature (tp)		10-30 seconds	20-40 seconds
Ramp-down rate (T _p to T _L)		6 °C/second max.	6 °C/second max.
Time 25 °C to peak temperature		6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within 5° C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.

SnPb - Classification Temperature

Table 6-2

Package	Volume mm ³	Volume mm ³	
Thickness	< 350	≥ 350	
<2.5 mm	240 +0/-5 ℃	225 +0/-5 °C	
≥ 2.5 mm	225 +0/-5 °C	225 +0/-5 °C	

Pb-free - Classification Temperature Table 6-3

Package	Volume mm ³	Volume mm ³	Volume mm ³
Thickness	< 350	350 - 2000	> 2000
< 1.6mm	260 ℃	260 ℃	260 ℃
1.6 mm - 2.5mm	260 ℃	250 ℃	245 ℃
> 2.5mm	250 °C	245 ℃	245 ℃

7 Revision History

Date	Revision	Description
2023.09.08	V1.0	Initial Release.

