

Winning Space Race with Data Science

Paula Rodríguez Sánchez 13 September 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- SpaceX Data Collection using SpaceX API
- SpaceX Data Collection with Web Scraping
- SpaceX Data Wrangling
- SpaceX Exploratory Data Analysis using SQL
- Space-X EDA DataViz Using Python Pandas and Matplotlib
- Space-X Launch Sites Analysis with Folium-Interactive Visual Analytics and Ploty Dash
- SpaceX Machine Learning Landing Prediction

Summary of all results

- EDA results
- Interactive Visual Analytics and Dashboards
- Predictive Analysis: Classification

Introduction

Project background and context

- Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.
- Problems you want to find answers
 - We want to know what are the factors that determine the landing of the rocket and what are the operating conditions that needs to ensure a successful landing program.

Methodology

Executive Summary

- Data collection methodology:
 - Data eas collected using SpaceX API and web scraping.
- Perform data wrangling
 - One hot encoding was applied.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Data collection was done using get request to the SpaceX API.
- The response content was decoded as a Json using .json() function call and turn it into a pandas dataframe using .json_normalize().
- The data was cleaned: we checked for missing values and filled in missing values where necessary.
- In addition, we performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup. The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

Data Collection – SpaceX API

- It is used the get request to the SpaceX API to collect data, clean the requested data and did some basic data wrangling and formatting.
- The link to the notebooks in GitHub is:

https://github.com/parodsa/Applie d_DataScience_Capstone

Data Collection - Scraping

- We performed web scraping to collect Falcon 9 historical launch records from a Wikipedia. We use BeautifulSoup and request to extract the Falcon 9 launch records from HTML table. We then, created a data frame by parsing the launch HTML.
- https://github.com/parodsa/Applied_DataScie nce_Capstone/blob/main/jupyter-labs-spacexdata-collection-api.ipynb

Data Wrangling

- We determined the training labels by performing an exploratory data analysis.
- We calculated the number of launches and the number and occurrence of each orbits
- We created landing outcome label from outcome column and exported the results to csv.
- https://github.com/parodsa/Applied_DataScience_Capstone/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

 We explored the data by visualizing the relationship between different variables: flight number and launch site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend

EDA with SQL

- We applied EDA with SQL to get insight from the data. We wrote queries to find out:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.
- https://github.com/parodsa/Applied_DataScience_Capstone/blob/main/jupyte
 r-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- We created a folium map to mark all the launch sites. We also create map objects such as markers, circles, lines to mark the success or failure of launches for each launch site.
- Finally, we created a launch set outcomes (failure=0 or success=1)
- https://github.com/parodsa/Applied_DataScience_Capstone/blob/main/lab_jupyter_launch_site_location.ipynb

Predictive Analysis (Classification)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models.
- We found the best performing classification model.
- https://github.com/parodsa/Applied_DataScience_Capstone/blob/main/Space
 X_Machine%20Learning%20Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch Site Names Begin with 'CCA'

11]:	<pre>%sql SELECT * FROM 'SPACEXTBL' WHERE Launch_Site LIKE 'CCA%' LIMIT 5;</pre>									
	* sqlite:///my_data1.db Done.									
11]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

In [19]:

**sql SELECT * FROM SPACEXTBL WHERE "Landing _Outcome" LIKE 'Success%' AND (Date BETWEEN '04-06-2010' AND '20-03-2017') ORDER

* sqlite:///my_datal.db
Done.

Out[19]:

**Date Time (UTC) Booster_Version Launch_Site Payload PAYLOAD_MASS_KG_ Orbit Customer Mission_Outcome Landing_Outcome

All launch global map markers

Launch outcomes

Launch outcomes with color markers

< Dashboard Screenshot 1>

Replace < Dashboard screenshot 1> title with an appropriate title

• Show the screenshot of launch success count for all sites, in a piechart

• Explain the important elements and findings on the screenshot

< Dashboard Screenshot 2>

Replace <Dashboard screenshot 2> title with an appropriate title

• Show the screenshot of the piechart for the launch site with highest launch success ratio

• Explain the important elements and findings on the screenshot

< Dashboard Screenshot 3>

Replace <Dashboard screenshot 3> title with an appropriate title

• Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

• The decision tree classifier is the model with the highest classification accuracy

Confusion Matrix

• The confusion matrix of the best performing model with an explanation

Conclusions

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- KSC LC-39A had the most successful launches of any sites.

