Introduction to Audio Content Analysis

Module 5.5: Non-negative Matrix Factorization for Fundamental Frequency Detection

alexander lerch

introduction

corresponding textbook section

Chapter 5 — Tonal Analysis: pp. 106

- lecture content
 - introduction to NMF
 - objective function and update rules
- learning objectives
 - describe the process of NMF
 - discuss the pros and cons of using NMF of polyphonic pitch detection
 - apply NMF to a simple audio file and interpret the results

introduction

overview

corresponding textbook section

Chapter 5 — Tonal Analysis: pp. 106

lecture content

- introduction to NMF
- objective function and update rules

learning objectives

- describe the process of NMF
- discuss the pros and cons of using NMF of polyphonic pitch detection
- apply NMF to a simple audio file and interpret the results

• Non-negative Matrix Factorization (NMF) Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n
- advantage of non-negativity?
 - additive model
 - relates to probability distributions
 - efficiency?

Non-negative Matrix Factorization (NMF)

Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n

• advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?

Non-negative Matrix Factorization (NMF)

Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n

• advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?

Non-negative Matrix Factorization (NMF)

Given a $m \times n$ matrix V, find a $m \times r$ matrix W and a $r \times n$ matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- rank r is usually smaller than m and n

advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?

overview

alternative formulation $V \approx WH$

$$V = \sum_{i=1}^{r} w_i \cdot h_i + E$$

•
$$V \in \mathbb{R}^{m \times n}$$

•
$$W = [w_1, w_2, ..., w_r] \in \mathbb{R}^{m \times r}$$

•
$$H = [h_1, h_2, ..., h_r]^T \in \mathbb{R}^{r \times n}$$

• E is the error matrix

¹A Cichocki, R Zdunek, A. Phan, et al., Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. John Wiley & Sons. 2009.

objective function distance and divergence

- task: iteratively minimize objective function D(V||WH)
- typical distance measures (B = WH):
 - squared Euclidean distance:

$$D_{\mathrm{EU}}(V \parallel B) = \parallel V - B \parallel^2 = \sum_{ij} (V_{ij} - B_{ij})^2$$

generalized K-L divergence:

$$D_{\mathrm{KL}}(V \parallel B) = \sum_{ij} (V_{ij} \log \left(\frac{V_{ij}}{B_{ij}}\right) - V_{ij} + B_{ij})$$

others²: Bregman Divergence, Alpha-Divergence, Beta-Divergence, . . .

² A Cichocki, R Zdunek, A. Phan, et al., Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. John Wiley & Sons, 2009.

objective function distance and divergence

- task: iteratively minimize objective function D(V||WH)
- typical distance measures (B = WH):
 - squared Euclidean distance:

$$D_{\mathrm{EU}}(V \parallel B) = \parallel V - B \parallel^2 = \sum_{ij} (V_{ij} - B_{ij})^2$$

generalized K-L divergence:

$$D_{\mathrm{KL}}(V \parallel B) = \sum_{ii} (V_{ij} \log \left(\frac{V_{ij}}{B_{ij}}\right) - V_{ij} + B_{ij})$$

• others²: Bregman Divergence, Alpha-Divergence, Beta-Divergence, . . .

² A Cichocki, R Zdunek, A. Phan, et al., Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. John Wiley & Sons, 2009.

objective function gradient descent

- minimization of objective function
- gradient descent: minimum can be found as zero of derivative
 - 2D example: given a function $f(x_1, x_2)$, find the minimum $x_1 = a$ and $x_2 = b$
 - 1 initialize $x_i(0)$ with random numbers
 - update points iteratively

$$x_i(n+1) = x_i(n) - \alpha \cdot \frac{\partial f}{\partial x_i}, \quad i = [1, 2]$$

 \Rightarrow as iteration number n increases, x_1 , x_2 will be closer to a, b

objective function gradient descent

- minimization of objective function
- gradient descent: minimum can be found as zero of derivative
 - 2D example: given a function $f(x_1, x_2)$, find the minimum $x_1 = a$ and $x_2 = b$
 - \bigcirc initialize $x_i(0)$ with random numbers
 - update points iteratively:

$$x_i(n+1) = x_i(n) - \alpha \cdot \frac{\partial f}{\partial x_i}, \quad i = [1, 2]$$

 \Rightarrow as iteration number *n* increases, x_1 , x_2 will be closer to *a*, *b*.

optimization of objective function³ $D_{EU}(V \parallel WH) = \parallel V - WH \parallel^2$

additive update rules:

$$H \leftarrow H + \alpha \frac{\partial J}{\partial H} = H + \alpha [(W^T V) - (W^T W H)]$$
$$W \leftarrow W + \alpha \frac{\partial J}{\partial W} = W + \alpha [(V H^T) - (W H H^T)]$$

$$H \leftarrow H \frac{(W^T H)}{(W^T W H)}$$
$$W \leftarrow W \frac{(V H^T)}{(W H H)^T}$$

³D Seung and L Lee. "Algorithms for non-negative matrix factorization," in Advances in neural information processing systems, 2001,

0000

Georgia | Center for Music Tech 🛚 Technology

additive vs. multiplicative update rules

optimization of objective function³ $D_{EU}(V \parallel WH) = \parallel V - WH \parallel^2$

additive update rules:

$$H \leftarrow H + \alpha \frac{\partial J}{\partial H} = H + \alpha [(W^T V) - (W^T W H)]$$
$$W \leftarrow W + \alpha \frac{\partial J}{\partial W} = W + \alpha [(V H^T) - (W H H^T)]$$

multiplicative update rules:

$$H \leftarrow H \frac{(W^T H)}{(W^T W H)}$$
$$W \leftarrow W \frac{(V H^T)}{(W H H^T)}$$

³D Seung and L Lee, "Algorithms for non-negative matrix factorization," in Advances in neural information processing systems, 2001,

objective function

Georgia Center for Music Tech Technology

additional cost function constraints

- additional penalty terms (regularization terms) may be added to objective function
- example: sparsity in W or H

$$D = ||V - WH||^2 + \alpha J_W(W) + \beta J_H(H)$$

- α, β : coefficients for controlling degree of sparsity
- $J_{\rm W}$ and $J_{\rm H}$: typically L_1, L_2 norm

example

template extraction

- unsupervised extraction of templates and activations
- input audio: 🕩

summary

lecture content

non-negative matrix factorization

- iterative process minimizing an objective function
- split a matrix into a template matrix and an activation matrix

NMF for pitch tracking

- input usually magnitude spectrogram
 - templates: spectra of notes/sounds
 - activation: loudness/trigger of these sound

