Chemical Reaction Networks in Pharmacology and Related Mathematical Problems

Gilles Gnacadja

AMGEN

Thousand Oaks, California, USA

Workshop on Mathematical Problems Arising from Biochemical Reaction Networks

American Institute of Mathematics

Palo Alto, California, USA 25-29 March 2013

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- Recapitulation
 - Recapitulation

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- 2 Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- Recapitulation
 - Recapitulation

Pharmacology

Pharmacology: Study interactions between biological processes and therapeutic agents.

- Pharmacokinetics: "what the body does to the drug".
 Absorption, Distribution, Metabolism, Excretion (ADME).
- Pharmacodynamics: "what the drug does to the body".
 Drug response.

Usually studied for specific physiological systems or processes.

Common foundation: Receptor Pharmacology.

Receptor

Receptor: Biochemical recognition unit.

Cell membrane receptor

- Outside cell: Binding with ligands.
- Inside cell: Transmit, modify or stop signal.

Receptor Pharmacology

- "Pharmacostatics" at beginning of research pipeline:
 Study binding equilibrium in vitro of interactions between
 - receptors,
 - ligands (pathogenic and therapeutic agents),
 - other actors.
- Mathematical needs: Equilibria of reaction networks.
 - Most needed: "Worry-free" computational algorithms. (worry-free > working)
 - Mathematical prerequisites Properties of equilibrium:
 - Existence;
 - Uniqueness or quantified multiplicity;
 - Asymptotic stability and basins of attraction.
 - Prerequisites to prerequisites:
 Classes of networks to pose and address these questions.

26 March 2013

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- 2 Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- Recapitulation
 - Recapitulation

Competitive Antagonism

$$R + L \rightleftharpoons RL + A$$

$$\downarrow \uparrow$$

$$RA$$

(Orthosteric binding: binding on same site)

Allosteric Modulation

$$R + L \rightleftharpoons RL$$

$$+ \qquad \qquad +$$

$$A \qquad \qquad A$$

$$\downarrow \uparrow \qquad \qquad \downarrow \uparrow$$

$$RA + L \rightleftharpoons RLA$$

(Allosteric binding: binding on another site)

Competitive Antagonism with Trap (Shed/Decoy) Receptor

$$R + L \rightleftharpoons RL$$

$$+ +$$

$$A + T \rightleftharpoons AT$$

$$\downarrow \uparrow \qquad \downarrow \uparrow$$

$$RA \qquad LT$$

Extensions and Variations

Receptor isomerization $R \rightleftharpoons R^* \rightleftharpoons \cdots$

Receptor dimerization $R + R \rightleftharpoons RR$

Ligand dimerization RLL, RLLAA

Intracellular actors transducing proteins, arresting proteins, etc

Enzymes as receptors ("reversible" but not weakly reversible)

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- 2 Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- 3 Recapitulation
 - Recapitulation

Parameter Inference and Simulation

Fit dose-response curves to find binding parameters when applicable network is known.

Perform exploratory simulations when applicable network is not known.

Closed-Form Formulas at All Cost

Simple, closed-form formulas for equilibrium concentrations, usually EquilConctr = rationalFnctn(BindingParams, TotalConctrs)

$$\begin{array}{l} & \scriptsize \uparrow \\ \forall \, \texttt{Ligand} \, , \, [\texttt{Ligand}]_{\texttt{Equil}} = [\texttt{Ligand}]_{\texttt{Total}} \\ & \scriptsize \uparrow \\ \forall \, \texttt{Ligand} \, , \, [\texttt{Receptor}]_{\texttt{Total}} \ll [\texttt{Ligand}]_{\texttt{Total}} \end{array}$$

Issues:

- Not mathematically sound.
 Operational wisdom: [Receptor]_{Total} < [Ligand]_{Total}/10.
- May be unjustified experimentally, e.g. in miniaturized assays.
- Need not apply in vivo.
- New formula derivation needed for every new network.
- Only possible with "receptor-centric" networks.

14/27

Expectation of Monotonicity in Dose-Response Curves

This shape is expected and is what forcibly derived closed-form formulas give.

Non-monotone responses do occur and cannot be simulated with forcibly derived closed-form formulas.

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- Recapitulation
 - Recapitulation

An Attempt at a Relevant Class of Networks

GG: Advances in Applied Mathematics 43 (2009)

Complete networks of reversible binding reactions

- $(many species) \rightleftharpoons (one species)$
- Conservation from building blocks and their stoichiometry
- Parameterized for detailed-balanced equilibrium

Properties of equilibrium:

- Unique w.r.t. total concentrations of building blocks
- Globally asymptotically stable

Limitations:

- Enzymes as receptors are not covered
- Multi-state receptors probably covered with mild extensions

An Attempt at a Larger Relevant Class of Networks

```
GG: Journal of Mathematical Chemistry 49 (2011) – part 2 of 3
GG: Linear Algebra and its Applications 437 (2012)
```

Explicitly-reversibly constructive networks

- (many species) → (one species) (binding/association)
 (one species) → (many species) (unbinding/dissociation)
 (one species) → (one species) (isomerization)
- Each elementary species is in the source of a binding reaction and in the target of an unbinding reaction (w/ isomerization).
 Each composite species is the target of a binding reaction and the source of an unbinding reaction (w/ isomerization).
- Conservation from building blocks and their stoichiometry Limitations:
 - Class is quite large. Must be subdivided for useful discussions.
 - Reactions (many species) → (many species) not covered.
 (Do they really exist?)

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- Recapitulation
 - Recapitulation

Complete Networks of Reversible Binding Reactions

GG: Mathematical Methods in the Applied Sciences 30 (2007)

GG: Advances in Applied Mathematics 43 (2009)

GG: Mathematical Biosciences 232 (2011)

Problem Statement

(skipping straight to the math)

A worry-free algorithm for finding the unique nonnegative solution $x=(x_1,\ldots,x_n)$ of the polynomial system

$$x_i + \sum_{\alpha \in I} \alpha_i a_\alpha x^\alpha = b_i , i = 1, \dots, n$$

where I finite $\subset \mathbb{Z}_{\geq 0}^n \setminus \{0_n, e_{n,1}, \dots, e_{n,n}\}, a_{\alpha} \geq 0, b_i \geq 0.$

Example of Worry-Free: Iteration of a Contraction

Polynomial Equation Reformulated as a Fixed-Point Equation

$$x_i = \frac{b_i}{1 + \sum_{\alpha \in I, \alpha_i \geqslant 1} \alpha_i a_\alpha x^{\alpha - e_{n,i}}}$$

Iterations converge if

$$\forall \alpha \in I, \alpha_1 + \cdots + \alpha_n = 2$$
.

Chemistry interpretation: Every reaction is a reversible (homo- or hetero-) dimerization of building blocks. This is quite restrictive!

GG: Mathematical Methods in the Applied Sciences 30 (2007)
Partially rediscovered: M. G. A. van Dorp, F. Berger, E. Carlon: Physical Review E 84 (2011)

If not, restrictions on binding parameters and total concentrations.

Can Worry-Free be Extended to Cover more Networks?

- Conjecture: There exists a fixed-point preserving operator that transforms the map in the fixed-point equation into a contraction (w.r.t. some metric).
- Intuition:
 - Map is monotone-decreasing w.r.t. product order.
 Works in dim 1 (one building block) thanks to total order.
 Works if all composite species are multimers (no coupling).
 Perhaps some kind of nonlinear diagonalization?
 - For networks of reversible dimerizations (not just of building blocks), perhaps some kind of iterations of iterations?
- Cell discarding algorithm with discarding by cell compression.
 Has worked well on selected examples, especially with parallel computing. Need stronger cell discarding conditions.
- Other ideas?

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- Recapitulation
 - Recapitulation

Monotonicity of Dose-Response Curves

GG et al.: Journal of Theoretical Biology 244 (2007)

$$R + L \rightleftharpoons RL$$

$$+ +$$

$$A + T \rightleftharpoons AT$$

$$\downarrow \uparrow \qquad \downarrow \uparrow$$

$$RA \qquad LT$$

Monotonicity of Dose-Response Curves

Published result found by hard labor - manual and very specific.

Problems:

- Systematic approaches to investigate monotonicity of dose-response curves.
- Classes of networks capable of exhibiting non-monotone dose-response curves, and partitioning of parameter space according the monotonicity.
- Classes of networks incapable of exhibiting non-monotone dose-response curves.

- Pharmacology
 - What is Pharmacology?
 - Reaction Networks in Receptor Pharmacology
 - Current Mathematical Modeling Practices
- Mathematical Problems
 - Classes of Networks and Properties of Equilibrium
 - Algorithms for Binding Equilibrium
 - Monotonicity of Dose-Response Curves
- Recapitulation
 - Recapitulation

Recapitulation – Three Interconnected Streams of Problems

- Algorithms for guaranteed and easy computation of equilibrium, with or without fixed-point formulation.
- Reaction networks with non-monotone dose-response curves and related partitioning of parameter space.
- Classes of networks relevant to pharmacology and appropriate for these questions and their prerequisites.