Sample mean $\overline{x} = \frac{x_1 + \dots + x_n}{n}$. Population mean $\mu_X = E(X) = \sum_{x \in X} (xp(x))$ $\begin{array}{l} E(g(X)) = \sum_{x \in \chi} (g(x)p(x)) = \int_{-\infty}^{\infty} g(x)f(x) \, dx \\ E(aX + Y + b) = aE(X) + E(Y) + b \end{array}$

Chapter 1 Descriptive Statistics

Data:

1. Categorical/ Qualitative Nominal (Cannot be ranked), Ordinal (Can be ranked)

2. Quantitative Discrete (Counting), Continuous (Measuring)

$$\begin{array}{ll} \text{Sample median } \widetilde{x} = \begin{cases} x_{\frac{x+1}{2}}, & \text{if } n \text{ is odd} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), & \text{if } n \text{ is even} \end{cases}. \\ \text{Trimmed mean: } \overline{x}_{\text{tr}(10)} \text{ (Mean after eliminate top and bottom 10\%)}$$

Inter-quartile range (IQR): $Q_3 - Q_1$ Sample range: $x_{max} - x_{min}$

Ways of presenting:

1. Line Chart, Pie Chart, Bar Chart Histogram (Table with bars) Frequency Table (Arranged with columns and rows) Boxplot (Gives quartiles and outliers, left line $Q_1 - 1.5IQR$, right line $Q_3 + 1.5IQR$) Scatter plot (Data comes in pairs)

Skewness:

Left skewed (Mean < median), Right skewed (Mean > median) Symmetric (Mean \approx median)

Chapter 2 Probability

Difference: $A - B = \{s | s \in A \text{ and } s \notin B\} = A \cap B^c$. Symmetric Difference: $A\Delta B = \{s | s \in A \cup B \text{ and } s \notin A \cap B\}.$

Commutative, associative, distributive

De Morgan's Laws: $(A \cap B)^c - A^c \cup B^c$, $(A \cup B)^c - A^c \cap B^c$

Permutation: Ordered arrangement of set of objects

No. of permutations of n distinct objects taken r once: $\frac{n!}{(n-r)!}$

No. of permutations of n objects arranged in a circle: (n-1)!

Combination: Unordered arrangement of selecting r from n: $\binom{n}{r}$ No. of combinations of n distinct objects taken r once: $\frac{n!}{(n-r)!r!}$

No. of ways that n distinct stuff grouped into k classes: $\frac{n!}{n_1! \cdots n_k!}$

If P(AB) = P(A)P(B), A and B are independent. Independent: not mutually effected. Disjoint: No overlap.

Mutually independent: $P(\bigcap_{k=i}^{j} A_k) = \prod_{k=i}^{j} P(A_k)$ for all i < j Pairwise independent: $P(A_i A_j) = P(A_i) P(A_j)$ for all i < j

Probability: $0 \le P(E) \le 1, P(S) = 1, P(E^c) = 1 - P(E)$ Mutually exclusive (Disjoint): $P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$

Countable: $A = \bigcup_{k=1}^{\infty} \{a_k\}$ E.g. N

Probability of empty set: $P(\Phi) = 0$

Exhaustive: $E_1 \cup \cdots \cup E_n = S$

Partition: Mutually Exclusive + Exhuastive

Sample Variance: $s_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$

Population Variance $\sigma_X^2 = \operatorname{Var}(X) = \sum_{x \in \chi} ((x - \mu)^2 p(x))$ $\operatorname{Var}(X) = E((X - \mu)^2) = E(X^2) - \mu^2$ $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$

If X and Y are independent, Var(X + Y) = Var(X) + Var(Y)

Sample Standard Deviation: s_{n-1}

 $P(A) \leq P(B)$ if $A \subseteq B$

 $P(A_1 \cup \dots \cup A_n) = \sum_{j=1}^{n} (-1)^{j-1} \sum_{i_1 < \dots i_j} {n \choose j} P(A_{i_1} \cdots A_{i_j})$

 $P(A|B) = \frac{P(AB)}{P(B)} \ge P(AB) = P(A|B)P(B) = P(B|A)P(A)$ $P(A_1 \cdots A_n) = P(A_n|A_1 \cdots A_{n-1}) \cdots P(A_2|A_1)P(A_1)$

 $P((A \cap B)|D) = P(A|(B \cap D))P(B|D)$ If B_i is partition of S, $P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$

Law of total probability: Let S be sample space. Bayes' Theorem: If B_i is partition, $P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^n P(A|B_i)P(B_i)}$

Chapter 3 Random Variables

Random variable $X: S \to R$: X(a) is assigned to outcome a in S Probability mass function (pmf): p(x)

Bernoulli $X \sim \text{Binomial}(n, p)$: $E(X) = np \quad \text{Var}(X) = np(1 - p)$

Cumulative distribution function (cdf): $F(x) = P(X \le x)$

P(a < X < b) = F(b) - F(a)

F(x) is non-decreasing and $0 \le F(x) \le 1$.

Discrete r.v.: Finite or countably infinite number of values Continuous r.v.: Values continuously on an interval

 $0 < p(x) \le 1$ for all $x \in \chi$, p(x) = 0 for all $x \notin \chi$.

Probability density function (pdf): f(x)

f(x) > 0 for all $x \in \chi$, and f(x) = 0 for all $x \notin \chi$ $\sum_{x \in \chi} p(x) = \int_{-\infty}^{\infty} f(x) dx = 1$ $P(X \in A) = \sum_{A} p(x) = \int_{A} f(x) dx$ P(X = k) = 0 for any k for continuous r.v..

 $F(a) = P(X \le a) = \sum_{x \le a} p(x) = \int_{-\infty}^{a} f(x) dx$ $P(a < X \le b) = F(b) - F(a) = \int_{a}^{b} f(x) dx$

Chebystev's Inequality: For any t > 0: $P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}$ Let $t = k\sigma$, $P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$

r-th moment about origin of $X: E(X^r)$ for $r \in \mathbb{N}$

Skewness: $E(Z^3) = \frac{\mu_3}{\sigma^3}$ where μ_3 is 3rd central moment

+ve skewness: Right long tail -ve skewness: Left long tail

Kurtosis: $E(Z^4) = \frac{\mu_4}{\sigma^4}$ where μ_4 is 4th central moment

Excess kurtosis = Kurtosis -3

0 excess kurtosis: Normal distribution

+ve ex. kurtosis: Thicker tails -ve ex. kurtosis: Thinner tails

Moment generation function (mgf): $M_X(t) = E(e^{tX})$

$$\begin{split} &M_X^k(0) = \frac{d^k}{dt^k} M_X(t)\big|_{t=0} = E(X^k) \\ &\text{For Binomial distribution: } &M_X(t) = E(e^{tX}) = (pe^t + 1 - p)^n \end{split}$$

For Normal distribution: $M_Z(t) = E(e^{tZ}) = e^{\frac{t^2}{2}}$

For *n* trials: $p(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$ for $x = 0, \dots, n$ Poisson distribution $X \sim \text{Poisson}(\lambda)$: $E(X) = \lambda \quad \text{Var}(X) = \lambda$ Determine probability of counts of occurrence over line λ is rate of occurrences of event per unit time or space or average number of occurrences of event per unit time or space $p(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$ for $x = 0, 1, \cdots$ r-th moment about origin of X: $E(X^r)$ for $r \in \mathbb{N}$ Count of occurrences for t units of time with rate λ : r-th central moment: $E((X - E(X))^r)$ for $r \in \mathbb{N}$ $Y_t \sim \text{Poisson}(\lambda t)$ Poisson Limit Theorem: When $\lambda = np$, $\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{\lambda^k e^{-\lambda}}{k!}$

Closely approximates if n is large and p is small

Normal distribution $X \sim N(\mu, \sigma^2)$: $E(X) = \mu \text{ Var } (X) = \sigma^2$ $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$

Standard normal distribution $X \sim N(0,1)$ (Use z-table):

Distribution function $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$ If $X \sim N(\mu, \sigma^2)$, $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

Chapter 4 Parameter Estimation

Unknown population: An unknown distribution of r.v. XSample: Collection of data of XParameter: μ_X, σ_X^2 Statistic: $\overline{x}, s_{n-1}^2, s_n^2$

Estimator: X_1, \dots, X_n Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$

k-th sample moment about origin: $\overline{X^k}$ Estimate: x_1, \dots, x_n If $E(X) = \mu$, $Var(X) = \sigma^2$,

 $E(\overline{X}) = \mu$, $\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$, $E(s_{n-1}^2) = \sigma^2$ Point estimator of θ : $Y = T(X_1, \dots, X_n)$ (estimate θ) Point estimate of θ : $y = T(x_1, \dots, x_n)$

cdf of $X: X \sim F(x; \theta)$

Method of moment estimator (MME): $(\hat{\theta}_1, \dots, \hat{\theta}_m)$ of $(\theta_1, \dots, \theta_m)$ $\frac{\overline{X} - \mu_X}{S_{n-1}/\sqrt{n}} \sim t(n-1)$. $\hat{\theta}_i = g_i(\overline{X}, \dots, \overline{X^m}, \dots)$ where $\overline{X^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$ μ_X (known σ_X^2): $P(X^m, \dots, X^m, \dots)$

When n is large, $\overline{X^k} \approx E(X^k)$.

E.g. MME of λ when $X \sim \text{Poisson}(\lambda)$ is $\hat{\lambda} = \overline{X}$.

If $E(\hat{\theta}) = \theta$, then $\hat{\theta}$ is unbiased estimator of θ .

Bias of $\hat{\theta}$: $b_n(\hat{\theta}) = E(\hat{\theta}) - \theta$.

If unbiased only at ∞ , it is asymptotic.

If $E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta$ and $Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$, $\hat{\theta}_1$ is more efficient.

Chapter 5 Hypothesis Testing

Null hypothesis H_0 : Tested to reject or not (With = sign) Alternative hypothesis H_1 : Accept if reject H_0 . $\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 \text{ if } H_0 \text{ is true})$

 $\beta = P(\text{Type II error}) = P(\text{Not reject } H_0 \text{ if } H_0 \text{ is false})$

Critical value: c where \overline{X} is a rare event under H_0 (Reject H_0) Power of test statement: $1 - \beta = 1 - P(\overline{X} \le c \text{ if } \mu_X = \mu_2)$

At significance level a:

One-sided right [left] test: Let $H_0: \sigma_X^2 = \sigma_0^2, H_1: \sigma_X^2 > [<]\sigma_0^2$ Critical value (unknown μ_X): Reject if $\frac{(n-1)s_{n-1}^2}{\sigma_0^2} > [<]\chi_{n-1,a[1-a]}^2$ p-value (unknown μ_X): Reject if $P(U_{n-1} > [<]\frac{(n-1)s_{n-1}^2}{\sigma_0^2}) < a$

Two-sided test: Let $H_0: \sigma_X^2 = \sigma_0^2, H_1: \sigma_X^2 \neq \sigma_0^2$

Critical value (unknown μ_X): Reject if $\frac{(n-1)s_{n-1}^2}{\sigma_0^2} < \chi_{n-1,1-\frac{a}{2}}^2$ or $\frac{(n-1)s_{n-1}^2}{\sigma_0^2} > \chi_{n-1,\frac{a}{2}}^2$ p-value (unknown μ_X):

Reject if $2\min(P(U_{n-1} < \frac{(n-1)s_{n-1}^2}{\sigma_n^2}), P(U_{n-1} > \frac{(n-1)s_{n-1}^2}{\sigma_n^2})) < a$

Point estimators cannot provide precision and reliability. Range may be more meaningful.

R.v.: Random interval Numerical: Confidence interval Given $T_1 \leq T_2$, high $T_2 - T_1$ have high reliability, low precision $P(T_1 \leq \theta \leq T_2) \geq 1 - \alpha. \ [T_1, T_2] \ \text{is} \ 1 - \alpha \ \text{confidence interval.}$ $P(\mu_X - k_1 \leq \overline{X} \leq \mu_X + k_2) = P(\overline{X} - k_2 \leq \mu_X \leq \overline{X} + k_1) = 1 - \alpha$ If $X \sim N(0, 1)$ and $Y = X_1^2 + \dots + X_n^2$, then $Y \sim \chi^2(n)$. If $Z \sim N(0, 1)$, $Y \sim \chi^2(n)$, $W = \frac{Z}{\sqrt{Y/n}} \sim t(n)$.

If $X \sim N(\mu_X, \sigma_X^2)$, $\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{n})$, $\frac{(n-1)S_{n-1}^2}{\sigma_v^2} \sim \chi^2(n-1)$

 μ_X (known σ_X^2): $P(-z_{\frac{\alpha}{2}} \le \frac{\overline{X} - \mu_X}{\sigma_X / \sqrt{n}} \le z_{\frac{\alpha}{2}}) = 1 - \alpha$

 μ_X with $1 - \alpha$ C.I.: $\left[\overline{X} - z_{\frac{\alpha}{2}} \sigma_X / \sqrt{n}, \overline{X} + z_{\frac{\alpha}{2}} \sigma_X / \sqrt{n} \right]$

 $\mu_X \text{ (unknown } \sigma_X^2): P(-t_{n-1,\frac{\alpha}{2}} \leq \frac{\overline{X} - \mu_X}{S_{n-1}/\sqrt{n}} \leq t_{n-1,\frac{\alpha}{2}}) = 1 - \alpha$ $\sigma_X^2 \text{ (unknown } \mu_X): P(\chi_{n-1,1-\frac{\alpha}{2}}^2 \leq \frac{(n-1)S_{n-1}^2}{\sigma_X^2} \leq \chi_{n-1,\frac{\alpha}{2}}^2) = 1 - \alpha$

 σ_X^2 (known μ_X): $P(\chi_{n,1-\frac{\alpha}{2}}^2 \le \sum_{i=1}^n \left(\frac{X_i - \mu_X}{\sigma_X}\right)^2 \le \chi_{n,\frac{\alpha}{2}}^2) = 1 - \alpha$

Simple test: Let $H_0: \mu_X = \mu_1, H_1: \mu_X = \mu_2$ for $\mu_1 < \mu_2$ $\alpha = P(\overline{X} > c \text{ if } \mu_X = \mu_1) = P(\frac{\overline{X} - \mu_1}{\sigma_X/\sqrt{n}} > \frac{c - \mu_1}{\sigma_X/\sqrt{n}} = z_a)$

Critical value: Reject H_0 if $\overline{x} > c$ p-value = $P(\overline{X} > \overline{x} \text{ if } \mu_X = \mu_1)$ Reject if p-value < a

One-sided right [left] test: Let $H_0: \mu_X = \mu_0, H_1: \mu_X > [<]\mu_0$ Critical value (known σ_X^2): Reject if $\overline{x} > [<]\mu_0 + [-]z_a \frac{\sigma_X}{\sqrt{n}}$

p-value (known σ_X^2): Reject if $P(Z > [<] \frac{\overline{x} - \mu_0}{\sigma_X / \sqrt{n}}) < a$.

t value (unknown σ_X^2): Reject if $\overline{x} > [<]\mu_0 + [-]t_{n-1,a} \frac{s_{n-1}}{\sqrt{n}}$ p-value (unknown σ_X^2): Reject if $P(T_{n-1} > [<] \frac{\overline{x} - \mu_0}{s_{n-1}/\sqrt{n}}) < a$

Two-sided test: Let $H_0: \mu_X = \mu_0, H_1: \mu_X \neq \mu_0$

Critical value (known σ_X^2): Reject if $\left|\frac{\overline{x}-\mu_0}{\sigma_X/\sqrt{n}}\right| > z_{\frac{\alpha}{2}}$

p-value (known σ_X^2): Reject if $2P(Z>\left|\frac{\overline{x}-\mu_0}{\sigma_X/\sqrt{n}}\right|) < a$

t value (unknown σ_X^2): Reject if $\left|\frac{\overline{x}-\mu_0}{s_{n-1}/\sqrt{n}}\right| > t_{n-1,\frac{a}{2}}$

p-value (unknown σ_X^2): Reject if $2P(T_{n-1} > \left| \frac{\overline{x} - \mu_0}{s_{n-1}/\sqrt{n}} \right|) < a$

Chapter 6 Simple linear regression model and Least squares

Scatter plot: Collection of paired data of x and y Model: $Y = \beta_0 + \beta_1 x + \epsilon$ Regression coefficients: β_0, β_1 Least square method: $S(u,v) = \sum_{i=1}^{n} (y_i - (u + vx_i))$

Finding minimum of S at (a,b): $a = \overline{y} - b\overline{x}$ $b = \frac{\sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)/n}{\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2/n} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{S_{XY}}{S_{XX}}$ Fitted regression line: $\hat{y} = a + bx$ Substitute x_i , $e_i = y_i - \hat{y}_i$ Sum of Squared Errors (SSE) $= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ Pearson's correlation coefficient $r = \frac{S_{XY}}{\sqrt{S_{XX}}\sqrt{S_{YY}}}$ Population correlation coefficient $\rho = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y}$

 $0 < \rho < 1$: Positively correlated (Slope is +ve) $-1 < \rho < 0$: Negatively correlated (Slope is -ve)

 $\rho = 0$: Uncorrelated

 $z_{\text{Fisher}} = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$. $\mu = \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right)$ and $\sigma = \frac{1}{n-3}$

Regression Sum of Squares (RSS) = $\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$ Total variability of response (SST) = $\sum_{i=1}^{n} (y_i - \overline{y})^2$ = RSS + SSE

Variation due to regression model and variation due to error

R-squared: $R^2 = \frac{\text{RSS}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$ $\text{Var}(\epsilon) = \sigma^2 \quad \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{S_{XX}}, \ \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}$ $100(1 - \alpha)\%$ prediction interval for y_{new}

 $= \hat{y}_{new} \pm t_{n-2,\frac{\alpha}{2}} s \sqrt{1 + \frac{1}{n} + \frac{(x_{new} - \overline{x})^2}{S_{XX}}}$

Assume ϵ are independent and normally distributed.

Assume $\operatorname{Var}(\epsilon) = \sigma^2, E(\epsilon) = 0$ $\epsilon_i \sim N(0, \sigma^2), \, \hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{XX}}\right), \, \hat{\beta}_0 \sim N\left(\beta_0, \frac{\sigma^2 \sum_{i=1}^n x_i^2}{nS_{XX}}\right)$

They are unbiased estimators. $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}) Y_i}{S_{XX}}$ $E(\hat{\beta}_0) = \frac{\sum_{i=1}^n (x_i - \overline{x}) E(Y_i)}{S_{XX}} = \frac{\sum_{i=1}^n (x_i - \overline{x}) (\beta_0 + \beta_1 x_i)}{S_{XX}} = \beta_1$ $Var(\hat{\beta}_1) = \frac{\sum_{i=1}^n (x_i - \overline{x})^2 Var(Y_i)}{(S_{XX})^2} = \frac{\sigma^2}{S_{XX}}$ Residual $e_i = y_i = \hat{y}_i$ is actual value of ϵ_i

Mean Square Error (MSE) $S^2 = \frac{\sum_{i=1}^n E_i^2}{n-2} = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$ MSE is unbiased estimator of σ^2 . $s^2 = \frac{\text{SSE}}{n-2} = \frac{Syy - bSxy}{n-2}$ Replacing unknown σ^2 by MSE, $T_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{S^2/S_{XX}}} \sim t(n-2)$

 $100(1-\alpha)\%$ C.I. is $b \pm t_{n-2} \cdot \frac{\alpha}{2} \sqrt{s^2/S_{XX}}$

Replacing unknown σ^2 by MSE, $T_{n-2} = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{S^2 \sum_{i=1}^n x_i^2/nS_{XX}}}$

 $\begin{array}{l} \sqrt{S^2 \sum_{i=1}^n x_i^2/nS_{XX}} \\ 100(1-\alpha)\% \text{ C.I. is } (\overline{y}-b\overline{x}) \pm t_{n-2,\frac{\alpha}{2}} \sqrt{s^2 \sum_{i=1}^n x_i^2/nS_{XX}} \\ \text{One-sided right test: } H_0: \beta_1 = b_1, H_1: \beta_1 > b_1 \\ \text{t value: } \frac{b-b_1}{s/\sqrt{S_{XX}}} > t_{n-2,\alpha} \quad \text{p-value: } P(T_{n-2} > \frac{b-b_1}{s/\sqrt{S_{XX}}}) < \alpha \\ \text{One-sided right test: } H_0: \beta_0 = b_0.H_1: \beta_0 > b_0 \\ \text{t value: } \frac{a-b_0}{s\sqrt{\sum_{i=1}^n x_i^2/nS_{XX}}} > t_{n-2,\alpha} \\ \text{p-value: } P(T_{n-2} > \frac{a-b_0}{s\sqrt{\sum_{i=1}^n x_i^2/nS_{XX}}}) < \alpha \end{array}$