Линейные методы классификации: метод стохастического градиента

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

март 2014

Содержание

- Градиентные методы обучения
 - Минимизация эмпирического риска
 - Линейный классификатор
 - Метод стохастического градиента
- Порождающие и разделяющие модели
 - Принцип максимума правдоподобия
 - Регуляризация правдоподобия
 - Примеры
- Валансировка ошибок и ROC-кривая
 - Определение ROC-кривой
 - Эффективное построение ROC-кривой
 - Градиентная максимизация AUC

Задача построения разделяющей поверхности

- Задача классификации с двумя классами, $Y = \{-1, +1\}$: по обучающей выборке $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ построить алгоритм классификации a(x, w) = sign f(x, w), где f(x, w) pазделяющая (дискриминантная) функция, w вектор параметров.
- f(x,w) = 0 разделяющая поверхность; $M_i(w) = y_i f(x_i,w)$ отступ (margin) объекта x_i ; $M_i(w) < 0 \iff$ алгоритм a(x,w) ошибается на x_i .
- Минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

функция потерь $\mathscr{L}(M)$ невозрастающая, неотрицательная.

Непрерывные аппроксимации пороговой функции потерь

$$H(M) = (-M)_+$$
 — кусочно-линейная (Hebb's rule); $V(M) = (1-M)_+$ — кусочно-линейная (SVM); $L(M) = \log_2(1+e^{-M})$ — логарифмическая (LR); $Q(M) = (1-M)^2$ — квадратичная (FLD); $S(M) = 2(1+e^{M})^{-1}$ — сигмоидная (ANN); $E(M) = e^{-M}$ — экспоненциальная (AdaBoost).

Линейный классификатор

 $f_j \colon X \to \mathbb{R}, \ j = 1, \dots, n$ — числовые признаки; Линейный алгоритм классификации:

$$a(x,w) = \operatorname{sign}\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right),\,$$

где $w_0,w_1,\dots,w_n\in\mathbb{R}$ — коэффициенты (веса признаков); Введём константный признак $\mathit{f}_0\equiv -1$.

Векторная запись:

$$a(x, w) = sign(\langle w, x \rangle).$$

Отступы объектов x_i :

$$M_i(w) = \langle w, x_i \rangle y_i$$

Минимизация эмпирического риска Линейный классификатор Метод стохастического градиента

Похож ли нейрон на линейный классификатор?

Математическая модель нейрона

Линейная модель нейрона МакКаллока-Питтса [1943]:

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right),$$

где $\sigma(s)$ — функция активации (в частности, sign).

Градиентный метод численной минимизации

Минимизация аппроксимированного эмпирического риска:

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(\langle w, x_i \rangle y_i) \to \min_{w}.$$

Численная минимизация методом градиентного спуска:

 $w^{(0)} :=$ начальное приближение;

$$w^{(t+1)} := w^{(t)} - \eta \cdot \nabla Q(w^{(t)}), \qquad \nabla Q(w) = \left(\frac{\partial Q(w)}{\partial w_j}\right)_{j=0}^n,$$

где η — градиентный шаг, называемый также темпом обучения.

$$w^{(t+1)} := w^{(t)} - \eta \sum_{i=1}^{\ell} \mathscr{L}'(\langle w^{(t)}, x_i \rangle y_i) x_i y_i.$$

Идея ускорения сходимости:

брать (x_i, y_i) по одному и сразу обновлять вектор весов.

Алгоритм SG (Stochastic Gradient)

Вход:

выборка X^{ℓ} ; темп обучения η ; параметр λ ;

Выход:

веса w_0, w_1, \ldots, w_n ;

- 1: инициализировать веса w_i , j = 0, ..., n;
- 2: инициализировать текущую оценку функционала:

$$Q := \sum_{i=1}^{\ell} \mathscr{L}(\langle w, x_i \rangle y_i);$$

- 3: повторять
- 4: выбрать объект x_i из X^{ℓ} (например, случайно);
- 5: вычислить потерю: $\varepsilon_i := \mathcal{L}(\langle w, x_i \rangle y_i)$;
- 6: градиентный шаг: $w := w \eta \mathcal{L}'(\langle w, x_i \rangle y_i) x_i y_i;$
- 7: оценить значение функционала: $Q := (1 \lambda)Q + \lambda \varepsilon_i$;
- 8: **пока** значение Q и/или веса w не стабилизируются;

Частный случай №1: дельта-правило ADALINE

Задача регрессии: $X=\mathbb{R}^{n+1}$, $Y\subseteq\mathbb{R}$,

$$\mathscr{L}(a,y)=(a-y)^2.$$

Адаптивный линейный элемент ADALINE [Видроу и Хофф, 1960]:

$$a(x, w) = \langle w, x \rangle$$

Градиентный шаг — дельта-правило (delta-rule):

$$w := w - \eta (\underbrace{\langle w, x_i \rangle - y_i}) x_i$$

 Δ_i — ошибка алгоритма a(x, w) на объекте x_i .

Частный случай №2: правило Хэбба

Задача классификации: $X = \mathbb{R}^{n+1}$, $Y = \{-1, +1\}$,

$$\mathscr{L}(a,y)=(-\langle w,x\rangle y)_+.$$

Линейный классификатор:

$$a(x, w) = \operatorname{sign}\langle w, x \rangle.$$

Градиентный шаг — правило Хэбба [1949]:

если
$$\langle w, x_i \rangle y_i < 0$$
 то $w := w + \eta x_i y_i$,

Если $X = \{0,1\}^n$, $Y = \{0,+1\}$, то правило Хэбба переходит в правило перцептрона Розенблатта [1957]:

$$w := w - \eta(a(x_i, w) - y_i)x_i.$$

Обоснование Алгоритма SG с правилом Хэбба

Задача классификации: $X = \mathbb{R}^{n+1}$, $Y = \{-1, 1\}$.

Теорема (Новиков, 1962)

Пусть выборка X^ℓ линейно разделима:

$$\exists \tilde{w}, \ \exists \delta > 0: \ \langle \tilde{w}, x_i \rangle y_i > \delta$$
 для всех $i = 1, \ldots, \ell$.

Тогда Алгоритм SG с правилом Хэбба находит вектор весов w,

- разделяющий обучающую выборку без ошибок;
- при любом начальном положении $w^{(0)}$;
- при любом темпе обучения $\eta > 0$;
- независимо от порядка предъявления объектов x_i ;
- за конечное число исправлений вектора w;
- ullet если $w^{(0)}=0$, то число исправлений $t_{\mathsf{max}}\leqslant rac{1}{\delta^2}\max \|x_i\|.$

SG: Инициализация весов

Возможны варианты:

- **2** небольшие случайные значения: $w_i := \text{random} \left(-\frac{1}{2n}, \frac{1}{2n} \right);$
- ullet $w_j:=rac{\langle y,f_j
 angle}{\langle f_i,f_i
 angle},\;\;f_j=ig(f_j(x_i)ig)_{i=1}^\ell$ вектор значений признака.

Упражнение: доказать, что оценка *w* оптимальна, если

- 1) функция потерь квадратична и
- 2) признаки некоррелированы, $\langle f_i, f_k \rangle = 0$, $j \neq k$.
- обучение по небольшой случайной подвыборке объектов;
- **(5)** многократные запуски из разных случайных начальных приближений и выбор лучшего решения.

SG: Порядок предъявления объектов

Возможны варианты:

- перетасовка объектов (shuffling): попеременно брать объекты из разных классов;
- чаще брать те объекты, на которых была допущена бо́льшая ошибка (чем меньше M_i , тем больше вероятность взять объект) (чем меньше $|M_i|$, тем больше вероятность взять объект);
- **③** вообще не брать «хорошие» объекты, у которых $M_i > \mu_+$ (при этом немного ускоряется сходимость);
- **9** вообще не брать объекты-«выбросы», у которых $M_i < \mu_-$ (при этом может улучшиться качество классификации);

Параметры μ_+ , μ_- придётся подбирать.

SG: Выбор величины градиентного шага

Возможны варианты:

💿 сходимость гарантируется (для выпуклых функций) при

$$\eta_t \to 0, \quad \sum_{t=1}^{\infty} \eta_t = \infty, \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty,$$

в частности можно положить $\eta_t=1/t$;

метод скорейшего градиентного спуска:

$$Q(w - \eta \nabla Q(w)) \to \min_{\eta},$$

позволяет найти *адаптивный шаг* η^* ;

Упражнение: доказать, что при квадратичной функции потерь $\eta^* = ||x_i||^{-2}$.

- пробные случайные шаги
 - для «выбивания» из локальных минимумов;

SG: Достоинства и недостатки

Достоинства:

- легко реализуется;
- возможно динамическое (потоковое) обучение;
- **1** на сверхбольших выборках не обязательно брать все x_i ;

Недостатки:

- возможна расходимость или медленная сходимость;
- застревание в локальных минимумах;
- подбор комплекса эвристик является искусством;
- проблема переобучения;

SG: Проблема переобучения

Возможные причины переобучения:

- 🚺 слишком мало объектов; слишком много признаков;
- инейная зависимость (мультиколлинеарность) признаков:

```
пусть построен классификатор: a(x,w)=\mathrm{sign}\langle w,x\rangle; мультиколлинеарность: \exists u\in\mathbb{R}^{n+1}\colon \langle u,x\rangle\equiv 0; тогда \forall \gamma\in\mathbb{R} a(x,w)=\mathrm{sign}\langle w+\gamma u,x\rangle
```

Симптоматика:

- ① слишком большие веса ||w||;
- \bigcirc неустойчивость a(x, w);
- $Q(X^{\ell}) \ll Q(X^{k});$

Терапия:

- сокращение весов (weight decay);
- ранний останов (early stopping);

SG: Сокращение весов

Штраф за увеличение нормы вектора весов:

$$Q_{\tau}(w;X^{\ell}) = Q(w;X^{\ell}) + \frac{\tau}{2} ||w||^2 \to \min_{w}.$$

Градиент:

$$\nabla Q_{\tau}(w) = \nabla Q(w) + \tau w.$$

Модификация градиентного шага:

$$w := w(1 - \eta \tau) - \eta \nabla Q(w).$$

Подбор параметра регуляризации au:

- скользящий контроль;
- стохастическая адаптация;
- 3 байесовский вывод второго уровня;

Принцип максимума правдоподобия

Пусть $X \times Y$ — в.п. с плотностью p(x,y|w) — модель данных. Пусть $X^{\ell} = (x_i,y_i)_{i=1}^{\ell} \sim p(x,y|w)$ — простая выборка (i.i.d.)

• Максимизация правдоподобия:

$$L(w; X^{\ell}) = \ln \prod_{i=1}^{\ell} p(x_i, y_i | w) = \sum_{i=1}^{\ell} \ln p(x_i, y_i | w) \to \max_{w}.$$

• Минимизация аппроксимированного эмпирического риска:

$$\widetilde{Q}(w; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(y_i f(x_i, w)) \to \min_{w};$$

• Эти два принципа эквивалентны, если положить

$$-\ln p(x_i, y_i|w) = \mathcal{L}(y_i f(x_i, w)).$$

порождающая модель $p
ightharpoons \overline{p}$ разделяющая модель f и \mathscr{L}

Обобщение: вероятностная (байесовская) регуляризация

p(x,y|w) — вероятностная модель порождения данных; $p(w;\gamma)$ — априорное распределение параметров модели; γ — вектор *гиперпараметров*;

Теперь не только появление выборки X^{ℓ} , но и появление модели w также полагается случайным.

Совместное правдоподобие данных и модели:

$$p(X^{\ell}, w) = p(X^{\ell}|w) p(w; \gamma).$$

Принцип максимума совместного правдоподобия:

$$L(w, X^{\ell}) = \ln p(X^{\ell}, w) = \sum_{i=1}^{\ell} \ln p(x_i, y_i | w) + \underbrace{\ln p(w; \gamma)}_{\text{регуляризатор}} \rightarrow \max_{w, \gamma}.$$

Пример 1: квадратичный (гауссовский) регуляризатор

Пусть $w \in \mathbb{R}^n$ имеет n-мерное гауссовское распределение:

$$p(w; \sigma) = \frac{1}{(2\pi\sigma)^{n/2}} \exp\left(-\frac{\|w\|^2}{2\sigma}\right), \quad \|w\|^2 = \sum_{j=1}^n w_j^2,$$

т. е. все веса независимы, имеют нулевое матожидание и равные дисперсии σ ; σ — гиперпараметр.

Логарифмируя, получаем квадратичный регуляризатор:

$$-\ln p(w;\sigma) = \frac{1}{2\sigma} ||w||^2 + \operatorname{const}(w).$$

Вероятностный смысл параметра регуляризации: $au=rac{1}{\sigma}$.

Пример 2: лапласовский регуляризатор

Пусть $w \in \mathbb{R}^n$ имеет n-мерное распределение Лапласа:

$$p(w; C) = \frac{1}{(2C)^n} \exp\left(-\frac{\|w\|_1}{C}\right), \quad \|w\|_1 = \sum_{j=1}^n |w_j|,$$

т. е. все веса независимы, имеют нулевое матожидание и равные дисперсии; C — гиперпараметр.

Логарифмируя, получаем регуляризатор по L_1 -норме:

$$-\ln p(w; C) = \frac{1}{C} \sum_{j=1}^{n} |w_j| + \text{const}(w).$$

Почему этот регуляризатор приводит к отбору признаков?

Пример 2: лапласовский регуляризатор

$$Q(w, X^{\ell}) = \sum_{i=1}^{\ell} \ln p(x_i, y_i | w) + \frac{1}{C} \sum_{j=1}^{n} |w_j| \to \min_{w, C}.$$

Почему этот регуляризатор приводит к отбору признаков:

Замена переменных: $u_j = \frac{1}{2} \big(|w_j| + w_j \big), \ v_j = \frac{1}{2} \big(|w_j| - w_j \big).$ Тогда $w_j = u_j - v_j$ и $|w_j| = u_j + v_j$;

$$\begin{cases} Q(u,v) = \sum_{i=1}^{\ell} \mathcal{L}(M_i(u-v,w_0)) + \frac{1}{C} \sum_{j=1}^{n} (u_j+v_j) \to \min_{u,v} \\ u_j \geqslant 0, \quad v_j \geqslant 0, \quad j=1,\ldots,n; \end{cases}$$

чем больше C, тем больше ограничений-неравенств активны, но если $u_i = v_i = 0$, то вес $w_i = 0$ и признак не учитывается.

Регуляризация в линейных классификаторах

- В случае мультиколлинеарности
 - решение $Q(w) o \min_{w}$ неединственно или неустойчиво;
 - классификатор a(x; w) неустойчив;
 - переобучение: $Q(X^{\ell}) \ll Q(X^k)$.
- Регуляризация это выбор наиболее устойчивого решения
 - Гаусс без отбора признаков;
 - Лаплас с отбором признаков;
 - возможны комбинации (ElasticNet) и другие варианты...
- Выбор параметра регуляризации au:
 - с помощью скользящего контроля;
 - с помощью оценок обобщающей способности;
 - стохастическая адаптация;
 - байесовский вывод второго уровня.

Зоопарк методов

- ullet Вид разделяющей поверхности f(x,w):
 - линейная $f(x, w) = \langle x, w \rangle$;
 - нелинейная;
- ullet Вид непрерывной аппроксимации функции потерь $\mathscr{L}(M)$:
 - логарифмическая $\mathscr{L}(M) = \log(1 + e^{-M})$...LR;
 - кусочно-линейная $\mathscr{L}(M) = (1 M)_+$... SVM;
 - экспоненциальная $\mathcal{L}(M) = e^{-M}$... AdaBoost;
- Вид регуляризатора $-\log p(w; \gamma)$:
 - равномерный ... персептроны, LR;
 - гауссовский с равными дисперсиями ... SVM, RLR;
 - гауссовский с неравными дисперсиями ... RVM;
 - лапласовский ...приводит к отбору признаков;
- ullet Вид численного метода оптимизации $Q(w)
 ightarrow {\sf min}.$

Балансировка ошибок I и II рода

Задача классификации на два класса, $Y=\{-1,+1\};$ Модель классификации: $a(x,w,w_0)=\mathrm{sign}\big(f(x,w)-w_0\big).$

 $a(x_i,w)=-1$, $y_i=+1$ — ложно-отрицательная классификация («пропуск цели», ошибка I рода)

 $a(x_i,w)=+1,\ y_i=-1$ — ложно-положительная классификация («ложная тревога», ошибка II рода)

На практике цена ошибок I и II рода может быть неизвестна или многократно пересматриваться.

Постановка задачи

- Выбирать w_0 без обучения w заново.
- Ввести характеристику качества классификатора, инвариантную относительно выбора цены потерь.

Определение ROC-кривой

ROC — «receiver operating characteristic».

- Каждая точка кривой соответствует некоторому $a(x; w, w_0)$.
- по оси X: доля ложно-положительных классификаций (FPR — false positive rate):

$$\mathsf{FPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = -1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]};$$

 $1 - \mathsf{FPR}(a)$ называется специфичностью алгоритма a.

• по оси Y: доля верно-положительных классификаций (TPR — true positive rate):

$$\mathsf{TPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = +1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]};$$

 $\mathsf{TPR}(a)$ называется также чувствительностью алгоритма a.

Пример ROC-кривой

Алгоритм эффективного построения ROC-кривой

```
Вход: выборка X^{\ell}; дискриминантная функция f(x,w); Выход: \left\{(\mathsf{FPR}_i,\mathsf{TPR}_i)\right\}_{i=0}^{\ell}, AUC — площадь под ROC-кривой.
```

```
1: \ell_{\mathbf{y}} := \sum_{i=1}^{\ell} [y_i = y], для всех y \in Y;
2: упорядочить выборку X^{\ell} по убыванию значений f(x_i, w);
3: поставить первую точку в начало координат:
   (FPR_0, TPR_0) := (0,0); AUC := 0;
4: для i := 1, \ldots, \ell
5:
      если y_i = -1 то сместиться на один шаг вправо:
        FPR_i := FPR_{i-1} + \frac{1}{\ell}; TPR_i := TPR_{i-1};
6:
        AUC := AUC + \frac{1}{\ell}TPR_i;
7:
      иначе сместиться на один шаг вверх:
        FPR_i := FPR_{i-1}; TPR_i := TPR_{i-1} + \frac{1}{\ell};
8:
```

Градиентная максимизация AUC

Модель:
$$a(x_i, w, w_0) = \operatorname{sign}(f(x_i, w) - w_0).$$

 AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$\begin{aligned} \mathsf{AUC} &= \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} \big[y_i = -1 \big] \mathsf{TPR}_i = \\ &= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_i < y_j \big] \big[f(x_i, w) < f(x_j, w) \big] \to \max_{w}. \end{aligned}$$

Явная максимизация аппроксимированного AUC:

$$Q(w) = \sum_{i,j: y_i < y_j} \mathscr{L}(\underbrace{f(x_j, w) - f(x_i, w)}_{M_{ij}(w)}) \to \min_{w},$$

где $\mathcal{L}(M)$ — гладкая убывающая функция отступа, $M_{ii}(w)$ — новое понятие отступа для пар объектов.

Резюме в конце лекции

- Методы обучения линейных классификаторов отличаются
 - видом функции потерь;
 - видом регуляризатора;
 - численным методом оптимизации.
- Аппроксимация пороговой функции потерь гладкой убывающей функцией отступа $\mathscr{L}(M)$ повышает качество классификации (за счёт увеличения зазора) и облегчает оптимизацию.
- Регуляризация решает проблему мультиколлинеарности и также снижает переобучение.
- *Максимизация AUC* не зависит от соотношения штрафов за ошибки I и II рода.