Euler-séta és körséta létezésének szükséges és elégséges feltétele. Hamilton-kör és út létezésére szükséges, ill. elégséges feltételek: komponensszám ponttörlés után (Petersen-gráf) Dirac, Ore tételei, gazdag párok, hízlalási lemma, Chavátal-lezárt.

• Euler-séták

Def: A G gráf Euler-(kör)sétája a G egy olyan (kör)sétája, ami G minden élét tartalmazza.

Megj:

- (1) A fenti definíció 2×2 fogalmat definiál: az Euler-sétát és az Euler-körsétát irányítatlan és irányított gráfra is.
- (2) Szokás a definíciót abban a formában kimondani, hogy az Euler-(kör)séta G minden élét **pontosan** egyszer tartalmazza. Tekintettel arra, hogy egy séta nem mehet át kétszer ugyanazon az élen, ez redundáns kivánalom, hiszen következménye az általunk használt definíciónak. Használatos ezen kívül az Euler-kör ill. Euler-út megnevezés is a fenti fogalmakra.
- (3) Irányítatlan Euler-séta: "G egy vonallal lerajzolható".

Cél: Gyors módszer az Euler-(kör)séta megtalálására, létezésének ellenőrzésére.

Megf: (1) Ha a G irányított gráfnak van Euler-körsétája, akkor

- (a) G izolált pontoktól eltekintve gyengén összefüggő, és
- (b) minden v csúcsára $\rho(v) = \delta(v)$ teljesül.

Biz: (a) Ha G két különböző gyenge komponense is tartalmaz élt, akkor G-nek nem lehet Euler-körsétája, hisz egyetlen séta sem tartalmazhat élt két különböző gyenge komponensből. \checkmark

(b) Ha végighaladunk az Euler-körsétán, akkor a v csúcsba pontosan annyiszor lépünk be, mint ahányszor kilépünk onnan. A körséta G minden élét pontosan egyszer érinti: $\rho(v) = \delta(v)$

Megf: (2) Ha a G irányítatlan gráfnak van Euler-körsétája, akkor

- (a) G izolált pontoktól eltekintve összefüggő, és
- (b) G-ben minden fokszám páros.

Biz: Az irányított esethez hasonló. (a) Egy (kör)séta nem tartalmazhatja két különböző komponensnek is 1-1 élét, és (b) az Euler-körsétát követve tetszőleges v csúcsba ugyanyannyiszor lépünk be, mint ahányszor kilépünk belőle. Ezért d(v) páros.

Megf: (3) Ha a G irányítatlan gráfnak van Euler-sétája, akkor

- (a) G izolált pontoktól eltekintve összefüggő, és
- (b) G-nek 0 vagy 2 páratlan fokú csúcsa van.

Biz: (a) \checkmark . (b): Tegyük fel, hogy G Euler-sétája egy uv-séta. Ekkor minden $w \neq u, v$ csúcsra d(w) kétszer annyi, mint ahányszor az Euler-séta w-n áthalad, vagyis d(w) páros. Ha u = v, akkor az Euler-séta körséta, így d(u) is páros (2b) miatt. Ha pedig $u \neq v$, akkor u-ból 1-gyel többször lépünk ki, mint be, v-be 1-gyel többször lépünk be, mint ki, vagyis d(u) és d(v) páratlanok.

Megj: A fenti megfigyelés segítségével bizonyos esetekben azonnal látszik, hogy G-nek nincs Euler-sétája ill. -körsétája.

G irányítatlan Euler-gráf, ha G minden v csúcsra d(v) páros.

Lemma: Ha G Euler-gráf, akkor G élei kiszínezhetők úgy, hogy az egyszínű élek (irányított) kört alkossanak minden színre.

Biz: Induljunk el G egy éle mentén, és haladjunk tovább az (irányított) élek mentén. Mivel G Euler, ezért sosem akadunk el: előbb-utóbb ismétlődik egy csúcs, így találunk egy C_1 kört. C_1 éleit törölve $G-C_1$ Euler-gráf marad. Ismételjük meg ezt a $G-C_1$ gráfon. Így G minden éle előbb-utóbb sorra kerül és megkapja a C_2, C_3, \ldots köröket. Ezért $E(G) = C_1 \cup C_2 \cup \ldots$ diszjunkt körök uniójára bomlik fel. Színezzük ki a C_1 kör éleit az i-dik színnel.

Tétel: (1) (G irányított gráfnak van Euler-körsétája) \iff (G Euler-gráf és G izolált pontoktól eltekintve gyengén összefüggő)

(2) (G irányítatlan gráfnak van Euler-körsétája) \iff (G Euler-gráf és G izolált pontoktól eltekintve összefüggő)

Biz: \Rightarrow : Láttuk. $\checkmark \Leftarrow$: A Lemma miatt E(G) felbontható körökre, tehát körsétákra is. Ha a körséták száma legalább 2, akkor választunk két körsétát, aminek van közös csúcsa és e csúcs mentén "összevarjuk" azokat. Mindezt addig végezzük, amíg egyetlen körséta marad.

Tétel: (3) (G irányítatlan gráfnak van Euler-sétája) \iff (G izolált pontoktól eltekintve összefüggő és 0 vagy 2 páratlan fokú csúcsa van.)

Biz: \Rightarrow : Láttuk. $\checkmark \Leftarrow$: Ha G Euler-gráf, akkor (2) miatt van Euler-körsétája, ami Euler-séta is egyúttal. Ha G nem Euler-gráf, akkor legyenek u és v a G páratlan fokú csúcsai. Ekkor G+uv Euler-gráf, és (2) miatt van Euler-körsétája. Feltehető, hogy e körséta utolsó éle uv. Ezt az uv élt elhagyva a körsétából, G Euler-sétáját kapjuk.

Euler-körséta keresése Euler-gráfban: E(G)-t felbontjuk körsétákra, amiket összevarrunk. Körsétát a felbontáshoz pl. úgy is kereshetünk, hogy addig követünk egy sétát, amíg tudunk. Előbb-utóbb elakadunk, de ez csakis a séta kiindulási pontjában történhet meg. Ezért a bejárt séta egy körséta, amit a felbontásban felhasználunk.

• Hamilton-körök és -utak

Def: A G gráf Hamilton-köre (Hamilton-útja) a G olyan köre (útja), ami G minden csúcsát tartalmazza.

Megj: A célunk hasonló, mint az Euler-(kör)séta esetén, azaz gyors módszer, amivel el lehet dönteni egy gráfról, hogy van-e Hamilton-köre ill. -útja. Sajnos jól használható szükséges és elégséges feltételt nem tudunk adni erre a problémára, és jó oka van annak, hogy nem is számítunk ilyen feltétel létezésére. Tudunk viszont jól használható szükséges, és jól használható elégséges feltételt adni, de ezek csak bizonyos gráfok esetén hasznosak.

Szükséges feltétel Hamilton-kör és -út létezésére

- (1) Ha a G gráfnak van Hamilton-köre, akkor $\forall U \subseteq V(G)$ esetén G-U komponenseinek száma legfeljebb |U|.
- (2) Ha a G gráfnak van Hamilton-útja, akkor $\forall U \subseteq V(G)$ esetén G-U komponenseinek száma legfeljebb |U|+1.

Megj: A fenti feltétel, miszerint k csúcs törlésétől a gráf legfeljebb k (ill. k+1) komponensre eshet szét feltétlenül **szükséges** ahhoz, hogy G-nek legyen Hamilton-köre ill. -útja. Abból azonban, hogy G teljesíti a fenti feltételt, nem következik, hogy G-nek csakugyan van Hamilton-köre vagy útja. A szükséges feltételt úgy tudjuk alkalmazni, hogy a segítségével igazoljuk egy konkrét gráfról, hogy nincs Hamilton-köre (vagy-útja). Ha pl. azt látjuk, hogy G-ből 42 csúcsot elhagyva 43 komponens keletkezik, akkor G-nek nincs Hamilton-köre. Ha a komponensszám legalább 44, akkor G-nek Hamilton-útja sincs.

Biz: (1,2) G-t tekinthetjük úgy, mint egy kör (ill. út), amihez még további éleket adunk hozzá. Könnyű látni, hogy egy kör (ill. út) k pont elhagyásától legfeljebb k (k+1) komponensre eshet szét. A további élek

(amit a körhöz ill. úthoz hozzá kell adni, hogy G-t kapjuk) csak csökkenteni tudják a komponensszámot, növelni nem. Ezért G-ből k csúcsot törölve legfeljebb k (k+1) komponens keletkezhet.

Megj: Az ábrán látható Petersen-gráfnak (sok más mellett) két érdekes tulajdonsága van.

- 1. Teljesíti a fenti szükséges feltételt.
 - (a) Tegyük fel, hogy külső körből k_1 , a belsőből k_2 csúcsot hagytunk el. Ha $k_1=0$ vagy $k_2=0$, akkor a gráf összefüggő marad. Különben a kölső kör legfeljebb k_1 , a belső pedig legfeljebb k_2 részre esik szét, vagyis összesen legfeljebb k_1+k_2 komponens létezik.

- 2. Nincs Hamilton-köre.
 - (a) Ha lenne Hamilton-köre, akkor a Hamilton-kör éleit felváltva pirosra és zöldre tudnánk színezni. Ha a körön kívüli élek sárgák, akkor a 3-regularitás miatt minden csúcsból pontosan egy piros, sárga ill. zöld él indulna. Ha megpróbáljuk az éleket így kiszínezni, kiderül, hogy nem lehet.

A továbbiakban elégséges feltételeket fogunk látni Hamilton-kör létezésére. Ezek segítségével (szerencsés esetben) gyorsan és kétséget kizáróan tudjuk bizonyítani, hogy egy adott gráfnak van Hamilton-köre. Az elégséges feltétel vizsgálata azonban nem alkalmas arra, hogy egy gráf a Hamilton-körének hiányát igazoljuk.

Def: Legyen G n-csúcsú, egyszerű gráf.

Az $u, v \in V(G)$ csúcspár gazdag, ha $d(u) + d(v) \ge n$. A G gráfra teljesül a Dirac-feltétel, ha $d(v) \ge \frac{n}{2} \forall v \in V(G)$ -re. G-re igaz az Ore-feltétel, ha G bármely két nem szomszédos csúcsa gazdag párt alkot.

Dirac tétele: Gre igaz a Dirac-feltétel \Rightarrow G-nek van H-köre.

Ore tétele: G-re igaz az Ore-feltétel $\Rightarrow G$ -nek van H-köre.

Megj: A Dirac-feltétel erősebb (többet kíván), mint az Ore. Ezért az Ore-tétel erősebb, mint a Dirac: gyengébb feltételből igazolja ugyanazt. Ezért az Ore-tétel bizonyítása a Dirac-tételt is igazolja.

• A Chvátal-lezárt

Hízlalási lemma: Tegyük fel, hogy G egyszerű gráf, és (u, v) gazdag pár. (G-nek van Hamilton-köre) $\iff (G + uv$ -nek van Hamilton köre).

Megj: A hízlalási lemma jelentőségge az, hogy segít eldönteni azt, hogy van-eG-ben Hamilton-kör. Azt mondja ki ugyanis, hogy a gazdag párok közé G-be "ingyen" behúzhatunk éleket, u.i. ez nem változtat azon a tényen, hogy van vagy nincs Hamilton-kör a vizsgált gráfban. Megtehetjük tehát, hogy a lemma

segítségével addig húzunk be éleket a gráfba, amíg lehet. Ha az így adódó \overline{G} Chvátal-lezártban találunk Hamilton-kört, akkor G-nek is bizonyosan van Hamilton-köre. Ha pedig \overline{G} nem tartalmaz Hamilton-kört, akkor persze G-nek nincs Hamilton-köre.

Biz: \Rightarrow : Láttuk. \checkmark \Leftarrow : Legyen C a G+uv Hamilton-köre. Ha $uv \notin C$, akkor C a G-nek is Hamilton-köre, kész vagyunk. Ha viszont $uv \in C$, akkor C-uv a G egy Hamilton-útja. Legyen ez a Hamilton-út $u=v_1,v_2,\ldots,v_n=v$. Legyen $A:=N(v)=\{v_i:vv_i\in E(G)\}$ a v szomszédainak halmaza, és legyen $B:=\{v_{i-1}:uv_i\in E(G)\}$ az u szomszédait a Hamilton-úton megelőző csúcsok halmaza.

Világos, hogy $v \notin A$ és $v \notin B$, így $|A \cup B| \le n-1$. Mivel (u,v) gazdag pár, ezért $|A| + |B| = d(u) + d(v) \ge n$. Ezek szerint $A \cap V \ne \emptyset$, legyen pl. $v_i \in A \cap B$. Ekkor $v_1, v_2, \ldots, v_i, v_n, v_{n-1}, \ldots, v_{i+1}, v_1$ a G egy Hamilton-köre.

Ore tétele: Ha ${\cal G}$ bármely két nemszomszédos csúcsa gazdag párt alkot, akkor ${\cal G}$ -nek van Hamilton-köre.

Biz: A hízlalási lemma alapján G bármely két nemszomszédos csúcsát "ingyen" összeköthetjük. Így G Chátal-lezártja a $\overline{G} = K_n$ teljes gráf. Mivel K_n -nek van H-köre, ezért G-nek is van.

Dirac-tétele: Ha $\delta(G) \geq \frac{|V(G)|}{2},$ akkorG-nekvan Hamilton-köre.

Biz: G bármely két csúcsa gazdag párt alkot, ezért G-re teljesül az Ore-feltétel. Az Ore-tétel miatt G-nek van Hamilton-köre.