XE - 2019

EE24BTECH11064 - Harshil Rathan

- 1) The power input P to a centrifugal pump is a function of the volume flow rate Q, impeller diameter D, rotational speed Ω , fluid density ρ , dynamic viscosity μ , and surface roughness ϵ . To carry out a dimensional analysis using Buckingham's π theorem, which one of the following sets can be taken as the set of repeating variables?
 - a) Q, Ω, D

c) ϵ, D, ρ

b) Q, ϵ, D

- d) D, ρ, Ω
- 2) Consider the two-dimentional laminar flow of wtaer ($\mu = 0.001Ns/m^2$) between two infinitely long parallel plates 0.1m apart as shown in the figure below. The velocity profile at any location is given by $u(y) = 100(0.1y y^2)m/s$ where y is in m. The magnitude if shear stress(in N/m^2 , rounded off to 2 decimal places) acting on the bottom plate is _____

- 3) The maximum velocity in a fully developed laminar incompressible flow through a circular pipe of constant cross-sectional area is 6m/s. The average velocity (in m/s) of the flow is _____
- 4) The theoretical discharge for the flow through an orifice-meter is $40m^3/s$. If the measured discharge in an experiment is $32m^3/s$, then the discharge coefficient (rounded off to one decimal place) is _____
- 5) Consider the flow between two infinitely long parallel plates of large iwdth separated by a distance 2H. The upper plate is moving with a constant velocity U while the lower plate is stationary. The volumetric flow rate per unit width of the plate is

1

	b) compressible and irrotational	d) incompressible and irrotational
8)	Assertion[a]:The streamlines in a free vortex flow are concentric circles. Reasoning[r]: There exists only radial component for the velocity field in a free vortex flow.	
	 a) Both [a] and [r] are true and [r] is the b) Both [a] and [r] are true but [r] is nor c) [a] is true but [r] is false d) [a] is false but [r] is true 	
9)	9) The velocity components in Cartesian coordinates in a two-dimensional incompressible flow are $u = e^y \cos x$ and $v = e^y \sin x$. The magnitude of total acceleration at the point(-1,1) is	
	a) 0 b) 1	c) <i>e</i> d) <i>e</i> ²
10) For steady laminar flow at zero incidence over a flat plate, the component of velocity parallel to the plate in the boundary layer is given by $u(y) = a + by + cy^2$, where y is the distance measured normal to the flat plane. If μ is the coefficient of dynamic viscosity, U is the velocity parallel to the wall at the edge of the boundary layer thickness, the wall shear stress is given by		
	a) $\frac{\mu U}{\delta}$ b) $\frac{2\mu U}{\delta}$	c) $2\mu(\frac{U}{\delta})^2$ d) $\frac{3\mu U}{\delta}$
11)	A fluid with constant density of $1kg/m^3$ flows past a semi-cylindrical structure with a freestream velocity of $2m/s$ as shown in the figure below. The difference in static pressure between points P and Q is $10N/m^2$. If the gravitational acceleration g is	

c) *UH* d) 2 *UH*

c) $\frac{\rho}{\sqrt{2}}$ d) $\frac{\rho}{2}$

c) incompressible and rotational

6) The velocity field in Cartesian coordinates in a two-dimensional steady incompressible flow of a fluid with density ρ is $\mathbf{V} = x\hat{i} - y\hat{j}$. Assuming no body and line forces,

7) A two-dimentional velocity field in cartesian coordinates is defined by $\mathbf{V} = y\hat{i} - x\hat{j}$.

the magnitude of pressure gradient Δp at the point (1,1) is

a) 0.25 UH

b) 0.5 *UH*

a) $\sqrt{2}\rho$

This flow is

a) compressible and rotational

b) ρ

 $10m/s^2$ and the flow is assumed to be potential, what is the radius r (in m) of te semi-cylindrical structure?

a) 1

c) 0.6

b) 0.8

- d) 0.4
- 12) The mercury manometer shown in the figure below is connected to a water pipe at one end while the other end is open to atmosphere. The density of water is $1000kg/m^3$, the specific gravity of mercury is 13.6 and the gravitational acceleration g is $10m/s^2$. The gauge pressure $p_w((\ln kN/m^2, \text{ rounded off to 2 decimal places}))$ in the water pipe is _____

13) Water ($\rho = 1000 kg/m^3$, $\mu = 0.001 Ns/m^2$) flows through a smooth circular pipe of radius 0.05m. If the flow Reynolds number is 1000, then the pressure drop (in N/m^2 , rounded off to 2 decimal places) over a length of 5m will be