МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №5

по дисциплине: Исследование операций тема: «Двойственный симплекс метод»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: проф. Вирченко Юрий Петрович

Лабораторная работа №5

Двойственный симплекс метод

Цель работы: изучить элементы теории двойственности, двойственный симплекс-метод для пары симметрично двойственных задач, а также метод последовательного уточнения оценок.

Задание: составить и отладить программы решения транспортной задачи распределительным методом и методом потенциалов. В рамках подготовки тестовых данных решить задачу вручную.

Вариант 10

$$z = -3x_1 + 9x_2 + x_3 + 4x_4 \to min;$$

$$\begin{cases}
-4x_1 + x_2 - 4x_3 + x_4 \ge 15, \\
2x_1 + 3x_2 + 4x_3 + 2x_4 \ge 30, \\
3x_1 + 7x_2 + 2x_3 - 3x_4 = 25, \\
x_i \ge 0 (i = \overline{1, 4}).
\end{cases}$$

Блок-схемы:

Листинг программы:

```
#include <vector>
#include <array>
#include "../../libs/alg/alg.h"
int main() {
    // Подготовить входные данные
    std::vector<std::array<Fraction, 5>> matrix;
    matrix.push\_back(\{\{\{-4\}, \{1\}, \{-4\}, \{1\}, \{15\}\}\});
    matrix.push\_back(\{\{\{2\}, \{3\}, \{4\}, \{2\}, \{30\}\}\});
    matrix.push_back({{{3}}, {7}, {2}, {-3}, {25}}});
    std::array < Fraction, 5> function {{{-3}, {9}, {1}, {4}, {0}}};
    // Вывод ответа
    auto g = solveDualSimplexMethod<5, 3, Fraction>(matrix, function, MIN, Fraction());
    std::cout << std::get<0>(g) << std::endl;</pre>
    auto 1 = std::get<1>(g);
    for (int i = 0; i < l.size(); i++) {</pre>
        std::cout << 1[i] << " ";
}
```

```
#pragma once

#include "../alg.h"

enum Extremum {
    MIN,
    MAX
};
```

```
template <std::size_t T, std::size_t MatrixLines, typename CountType>
std::tuple<std::vector<std::array<CountType, MatrixLines + 1>>, std::array<CountType, MatrixLines + 1>, Extremum>
getDualProblem(std::vector<std::array<CountType, T>> sourceSystem, std::array<CountType, T> sourceFunc, Extremum extr) {
    std::vector<std::array<CountType, MatrixLines + 1>> resMatrix;
    for (int i = 0; i < T; i++) {
       resMatrix.push_back({});
   }
   std::array<CountType, MatrixLines + 1> resFunc;
    resFunc.back() = sourceFunc.back();
   for (int i = 0; i < MatrixLines; i++) {</pre>
       resFunc[i] = sourceSystem[i].back();
       for (int j = 0; j < T - 1; j++) {
           resMatrix[j][i] = sourceSystem[i][j];
   }
   for (int j = 0; j < T - 1; j++) {
        resMatrix[j].back() = sourceFunc[j];
   }
    return {resMatrix, resFunc, extr == MIN ? MAX : MIN};
}
template <std::size_t T, std::size_t MatrixLines, typename CountType, std::size_t ExtendedMatrixSize = T + MatrixLines>
std::tuple<std::array<CountType, ExtendedMatrixSize>, std::vector<std::array<CountType, ExtendedMatrixSize>>>
→ introduceNewVariables(std::vector<std::array<CountType, T>> sourceSystem, std::array<CountType, T> sourceFunc) {
std::vector<std::array<CountType, ExtendedMatrixSize>> newSystem;
   for (int i = 0; i < MatrixLines; i++) {</pre>
       newSystem.push_back({});
   }
   std::array<CountType, ExtendedMatrixSize> newFunc;
   for (int i = 0; i < MatrixLines; i++) {</pre>
       newSystem[i].back() = sourceSystem[i].back();
       int j;
       for (j = 0; j < T - 1; j++) {
           newSystem[i][j] = sourceSystem[i][j];
       }
       newSystem[i][j + i] = \{1\};
   }
   newFunc.back() = sourceFunc.back();
   for (int i = 0; i < T - 1; i++) {
       newFunc[i] = sourceFunc[i];
   }
   return {newFunc, newSystem};
}
template <std::size_t T, std::size_t MatrixLines, typename CountType, std::size_t ExtendedMatrixSize = T + MatrixLines>
std::tuple<CountType, std::vector<CountType>> solveDualSimplexMethod(std::vector<std::array<CountType, T>> sourceSystem,
\hookrightarrow std::array<CountType, T> sourceFunc, Extremum extr, CountType EPS) {
```

```
// Если экстремум - минимум
   if (extr == MIN) {
       // То получаем двойственную задачу и решаем её той же функцией
       auto reversed = getDualProblem<T, MatrixLines, CountType>(sourceSystem, sourceFunc, extr);
       auto res = solveDualSimplexMethod<MatrixLines + 1, T - 1, CountType>(std::get<0>(reversed),

    std::get<1>(reversed), std::get<2>(reversed), EPS);

       auto newF = std::get<1>(res);
       std::rotate(newF.begin(), newF.begin() + T - 2, newF.end());
       return {std::get<0>(res), newF};
   }
   // Вводим дополнительные переменные
   auto newVars = introduceNewVariables<T, MatrixLines, CountType>(sourceSystem, sourceFunc);
   auto newFunc = std::get<0>(newVars);
   auto newSystem = std::get<1>(newVars);
   // Решаем обычным симплекс-методом
   CountType ans = solveSimplexMethodMax(newSystem, newFunc, EPS);
   // Возвращаем последнюю строчку
    return {ans, std::vector<CountType>(newFunc.begin(), newFunc.end() - 1)};
}
```

```
#pragma once
#include "../alg.h"
template <std::size_t T, std::size_t MatrixLines, typename CountType, std::size_t ExtendedMatrixSize = T + MatrixLines>
std::tuple<CountType, std::vector<CountType>> solveCommonDualSimplexMethod(std::vector<std::array<CountType, T>>

→ sourceSystem, std::array<CountType, T> sourceFunc, Extremum extr, CountType EPS) {
   // Если экстремум - минимум
   if (extr == MIN) {
       // То получаем двойственную задачу и решаем её той же функцией
       auto reversed = getDualProblem<T, MatrixLines, CountType>(sourceSystem, sourceFunc, extr);
       auto res = solveCommonDualSimplexMethod<MatrixLines + 1, T - 1, CountType>(std::get<0>(reversed),

    std::get<1>(reversed), std::get<2>(reversed), EPS);

       auto newF = std::get<1>(res);
       std::rotate(newF.begin(), newF.begin() + T - 2, newF.end());
       return {std::get<0>(res), newF};
   }
   // Вводим дополнительные переменные
   auto newVars = introduceNewVariables<T, MatrixLines, CountType>(sourceSystem, sourceFunc);
   auto newFunc = std::get<0>(newVars);
   auto newSystem = std::get<1>(newVars);
   // Строим симплекс-таблицу, копируя в неё матрицу newSystem
   std::vector<std::array<CountType, ExtendedMatrixSize>> simplexMatrix(newSystem);
   // Добавляем новую строку - целевую функцию, умножая её коэф. уі на -1
```

```
simplexMatrix.push_back(newFunc);
for (int i = 0; i < T; i++)
    simplexMatrix.back()[i] *= -1;
CountType minusOne = {-1};
CountType zero = EPS;
// Используем метод последовательного уточнения оценок
while (true) {
    int minRowIndex = -1;
    for (int i = 0; i < MatrixLines; i++)</pre>
        if (simplexMatrix[i].back() < zero && (minRowIndex == -1 || simplexMatrix[i].back() <</pre>

    simplexMatrix[minRowIndex].back()))

            minRowIndex = i;
    if (minRowIndex == -1) break;
    int minColumnIndex = -1;
    for (int i = 0; i < ExtendedMatrixSize - 1; i++)</pre>
        if (simplexMatrix[minRowIndex][i] < zero && (minColumnIndex == -1 | |</pre>
        (minusOne * simplexMatrix.back()[i] / simplexMatrix[minRowIndex][i]) < (minusOne *</pre>

→ simplexMatrix.back()[minColumnIndex] / simplexMatrix[minRowIndex][minColumnIndex])))
            minColumnIndex = i;
    if (minColumnIndex == -1) throw std::invalid_argument("No solution");
    subtractLineFromOther(simplexMatrix, minRowIndex, minColumnIndex, EPS);
}
// Возвращам последнюю строчку
return {simplexMatrix.back().back(), std::vector<CountType>(simplexMatrix.back().begin(), simplexMatrix.back().end()
→ - 1)};
```

Результат выполнения программы:

```
95
0 7 0 8 0 7 0
```

Результаты вычислений:

$$z = -3x_1 + 9x_2 + x_3 + 4x_4 \to min;$$

$$\begin{cases}
-4x_1 + x_2 - 4x_3 + x_4 \ge 15, \\
2x_1 + 3x_2 + 4x_3 + 2x_4 \ge 30, \\
3x_1 + 7x_2 + 2x_3 - 3x_4 = 25, \\
x_i \ge 0 (i = \overline{1, 4}).
\end{cases}$$

Получим двойственную задачу

$$z' = 15y_1 + 30y_2 + 25y_3 \to max;$$

$$\begin{cases}
-4y_1 + 2y_2 + 3y_3 \le -3, \\
y_1 + 3y_2 + 7y_3 \le 9, \\
-4y_1 + 4y_2 + 2y_3 \le 1, \\
y_1 + 2y_2 - 3y_3 \le 4, \\
y_i \ge 0 (i = \overline{1,3}).
\end{cases}$$

Получим симплекс-таблицу

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_4	-3	2	-1	1	3	1	1	0
y_5	9	1	4	1	1	-2	0	1
y_6	1	-1	4	6	3	-8	0	0
y_7	4	-1	4	6	3	-8	0	0
z'	0	-2	-7	-8	-7	9	0	0

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_3	-1	-4/3	2/3	1	1/3	0	0	0
y_5	16	31/3	-5/3	0	-7/3	1	0	0
y_6	3	-4/3	8/3	0	1	0	1	0
y_7	1	-3	4	0	1	0	0	1
z'	-25	-145/3	-40/3	0	25/3	0	0	0

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_2	-3/2	-2	1	3/2	1/2	0	0	0
y_5	27/2	7	0	5/2	-3/2	1	0	0
y_6	7	4	0	-4	-2	0	1	0
y_7	7	5	0	-6	-1	0	0	1
z'	-45	-75	0	20	15	0	0	0

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_1	3/4	1	-1/2	-3/4	-1/4	0	0	0
y_5	33/4	0	7/2	31/4	1/4	1	0	0
y_6	4	0	2	-1	-1	0	1	0
y_7	13/4	0	5/2	-9/4	1/4	0	0	1
z'	45/4	0	-75/2	-145/4	-15/4	0	0	0

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_1	7/5	1	0	-6/5	-1/5	0	0	1/5
y_5	37/10	0	0	109/10	-1/10	1	0	-7/5

y_6	7/5	0	0	4/5	-6/5	0	1	-4/5
y_2	13/10	0	1	-9/10	1/10	0	0	2/5
z'	60	0	0	-70	0	0	0	15

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_1	197/109	1	0	0	-23/109	12/109	0	5/109
y_3	37/109	0	0	1	-1/109	10/109	0	-14/109
y_6	123/109	0	0	0	-130/109	-8/109	1	-76/109
y_2	175/109	0	1	0	10/109	9/109	0	31/109
z'	9130/109	0	0	0	-70/109	700/109	0	655/109

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_1	11/2	1	23/10	0	0	3/10	0	7/10
y_3	1/2	0	1/10	1	0	1/10	0	-1/10
y_6	22	0	13	0	0	1	1	3
y_4	35/2	0	109/10	0	1	9/10	0	31/10
z'	95	0	7	0	0	7	0	8

$$x_1 = 0, x_2 = 7, x_3 = 0, x_4 = 8, z_{min} = 95$$

Вывод: в ходе лабораторной работы изучили элементы теории двойственности, двойственный симплекс-метод для пары симметрично двойственных задач, а также метод последовательного уточнения оценок.