MQTT-Control-Panel

Fabian Schätzschock Richard Krammer

13. November 2024

Inhaltsverzeichnis

1	Einführung			
2	Konzept			
	2.1	Softwa	are	. 4
3	Anforderungen 5			
	3.1	Software		
		3.1.1	MQTT	. 5
		3.1.2	Display	. 5
		3.1.3	UI-Library	. 5
		3.1.4	Input	. 5
		3.1.5	Display	. 5
	3.2	Hardw	vare	. 5
4	Software			
	4.1	Projek	ktstruktur	. 6
	4.2	User I	nterface	. 6
		4.2.1	SquarelineStudio	. 6
		4.2.2	Touch Control	. 7
	4.3	Komm	nunikation	. 7
		4.3.1	MQTT	. 7
		4.3.2	ESP-NOW	. 7
5	Ergebnisse 8			

1 Einführung

2 Konzept

2.1 Software

Das Control-Panel soll mit dem Netzwerk eines Smarthomes verbunden werden und in der Lage sein, über den im Smarthome bereits integrierten MQTT-Broker mit integrierten Geräten zu kommunizieren und den Status dieser Geräte abzufragen und anzupassen.

3 Anforderungen

3.1 Software

Zur effizienten Realisierung des Panels sind zwei Hauptfunktionalitäten zu implementieren.

3.1.1 MQTT

Um eine Kommunikation zu ermöglichen, ist eine MQTT-Library notwendig. Hierfür wurde "PubSubClient"von "knolleary"verwendet. Hierbei handelt es sich um eine simple Library, die nur das Nötigste implementiert, um einen überschaubaren Overhead zu gewährleisten.

3.1.2 Display

Bei der Umsetzung des Displays sind zwei Funktionalitäten die es zu implementieren gilt. Zum einen die Anzeige von Informationen und zum anderen die Interaktion mit dem User Interface.

3.1.3 UI-Library

Für die Ansteuerung des Displays wurde die "TFT_eSPI" Library von "Bodmer" verwendet. Diese Library bietet Support für den am Display verwendeten Controller.

3.1.4 Input

3.1.5 Display

Bei der Umsetzung des Displays sind zwei Funktionalitäten die es zu implementieren gilt. Zum einen die Anzeige von Informationen und zum anderen die Interaktion mit dem User Interface.

3.2 Hardware

4 Software

4.1 Projektstruktur

Die grundliegende Struktur des Projekts folgt der von PlatformIO normalisierten Projetstruktur.

4.2 User Interface

4.2.1 SquarelineStudio

SquarelineStudio ist eine Software, die es ermöglicht, ein User Interface mithilfe eines Drag-and-Drop-Editors zu erstellen und in C-Code zu exportieren. Dieser Code kann dann dann zusammen mit den beiden Libraries TFT_eSPI und lvgl in PlatformIO integriert werden.

TFT_eSPI

TFT_eSPI ist eine Library für Grafik und Fonts auf einem TFT-Display. Sie ist mit vielen verschiedenen Controllern kompatibel und bietet viele Funktionen, um verschiedene TFT-Display anzusteuern. Sie ist eine Hälfte des Grundgerüsts für die Darstellung von Grafiken in SquarelineStudio.

lvgl

lvgl ist eine Library für die Darstellung von flexiblen Grafiken auf vielen Platformen, darunter auch dem Arduino Framework. Zusammen mit TFT_eSPI bildet sie das Grundgerüst für die Darstellung von Grafiken in SquarelineStudio.

- 4.2.2 Touch Control
- 4.3 Kommunikation
- 4.3.1 MQTT
- 4.3.2 ESP-NOW

5 Ergebnisse