Apuntes **COMPLEMENTARIOS** a la materia vista en clases

La tasa neta de reproducción mide en qué medida una generación de mujeres se está sustituyendo a sí misma si las tasas específicas de fecundidad por edad y las tasas de mortalidad por edad permanecen constantes.

Cuando TNR > 1 el número de hijas es **mayor** al número de madres Cuando TNR < 1 el número de hijas es **menor** al número de madres

La *TNR* no nos da información sobre la velocidad del cambio pero se puede estimar si conocemos la **edad media de la maternidad** que representa el número de años en que una generación de madres se sustituye a sí misma. También se denomina los años promedio en una generación sustituye a otra.

De forma análoga en que calculamos el crecimiento de la población por medio de

 $r = \frac{\ln\left(\frac{N(T)}{N(0)}\right)}{t}$, si M es la edad media de la maternidad de la cohorte, entonces $TNR \approx \frac{N(M)}{N(0)}$ es una medida de la razón entre la generación de madres N(0) y la generación de hijas N(M).

Sustituyendo y despejando esa razón en la fórmula de crecimiento exponencial, podemos escribir $\frac{N(M)}{N(0)} = e^{r^{*t}}$ o $\mathit{TNR} = e^{r^{*M}}$ ya que t, el tiempo transcurrido entre 0 y T equivale a los años promedio en que una generación sustituye a otra (M).

Despejando r tenemos:
$$r = \frac{\ln TNR}{M}$$

Esta tasa se denomina la tasa intrínseca de crecimiento o la tasa intrínseca de crecimiento natural e indica la tasa que en el largo plazo tendría la población si las tasas de fecundidad y mortalidad actuales se mantuvieran constantes durante un periodo de tiempo equivalente al tiempo en que dura en extinguirse una cohorte: ω (la letra griega omega que indica la última edad a la que hay sobrevivientes en una tabla de vida).

Esta tasa es independiente de la distribución por edad que tenga la población. Dado que, si en el largo plazo la fecundidad y la mortalidad por edad permanecen constantes, la estructura por edad será constante, entonces la tasa intrínseca de crecimiento indica las consecuencias que en el crecimiento a largo plazo tiene la fecundidad y mortalidad actual independientemente de cuál sea la distribución por edad de la población.

Apuntes **COMPLEMENTARIOS** a la materia vista en clases

El procedimiento para obtener la tasa intrínseca de crecimiento que en el largo plazo tendría la población si las tasas de fecundidad y mortalidad se mantuvieran constantes implica varias iteraciones hasta que la tasa de crecimiento no se modifique. Este se ilustra a continuación (ver también la hoja de cálculo). En el ejemplo se toma como edad media de la maternidad 27 años:

Α	В	С	D	E	F	G	Н	ı	J
	₅ L _a		. L			$e^{-r_n(a+2.5)} \cdot {}_5L_a \cdot {}_5m_a$	2nda	3ra	4ta
Edad a	l_0	$_{5}m_{a}$	$\frac{_5 L_a}{l_0} \cdot _5 m_a$	$-r_0\cdot(a+2.5)$	$e^{-r_0\cdot(a+2.5)}$	ϵ ${}^{5}L_{a}$ ${}^{5}M_{a}$	iteración	iteración	iteración
15	4.667	0.0057	0.0265	-0.2862	0.7511	0.019877	0.020469	0.020426	0.020430
20	4.631	0.0663	0.3069	-0.3680	0.6921	0.212407	0.220570	0.219976	0.220034
25	4.582	0.1120	0.5133	-0.4498	0.6378	0.327397	0.342839	0.341711	0.341821
30	4.532	0.0789	0.3575	-0.5316	0.5877	0.210120	0.221882	0.221020	0.221104
35	4.469	0.0571	0.2550	-0.6133	0.5415	0.138074	0.147030	0.146371	0.146435
40	4.391	0.0159	0.0698	-0.6951	0.4990	0.034843	0.037415	0.037225	0.037244
45	4.290	0.0061	0.0262	-0.7769	0.4598	0.012033	0.013030	0.012956	0.012963
		TNR	1.5552			0.954750	1.003234	0.999685	1.000030
					y(r _n)-1=	-0.045250	0.003234	-0.000315	0.000030
		In(TNR)=	0.4416		y(r _n)-1/27=	-0.001676	0.000120	-0.000012	0.000001
		r _n	0.01636			0.014680	0.014799	0.014788	0.014789
					cambio en r _n	-0.001676	-0.000120	0.000012	-0.000001

Iteraciones:

r ₀ = In(1.5552)/27=.01636	y(r ₀)= 0.954750
r ₁ = .01636+(.954750-1)/27=.014680	$y(r_1) = 1.003234$
r ₂ = .014680+(1.003234-1)/27=.014799	y(r ₂)= 0.999685
r ₃ = .014799+(.999685-1)/27=.014788	$y(r_3) = 1.000030$
r ₄ = .014788+(1.000030-1)/27= .014789	

En las columnas de la A a la D se encuentra el cálculo de la tasa neta de reproducción (TNR=1.5552) en la fila r_n se encuentra la tasa intrínseca de crecimiento calculada a partir de la tasa neta de crecimiento (r_0 =.01636), en las columnas de la E a la G se encuentra el desarrollo de la siguiente fórmula para obtener un nuevo valor de la tasa intrínseca de crecimiento:

en el ejemplo
$$r_0 = \frac{\ln(TNR)}{27} = \frac{0.4416}{27} = 0.01636$$

con ese valor de r_0 calculamos $e^{-r_n(a+2.5)}$ para a=15 $e^{-.01636(15+2.5)}=e^{-.2862}=0.7511$

son los cálculos que están en las columnas E y F.

Apuntes **COMPLEMENTARIOS** a la materia vista en clases

 $\frac{_5L_a}{l_0}$ $_5m_a$ se refiere al cálculo de la TNR, $_5m_a$ son las tasas de fecundidad por edad de nacimientos **femeninos.**

 $e^{-r_n(a+2.5)}$ es un término que aproxima el crecimiento de las mujeres en cada grupo de edad. En cada iteración suponemos que el grupo de mujeres ha estado *creciendo* a una tasa de $-r_n$. Este es el cálculo que se encuentra en las columnas E y F.

En la siguiente columna se calcula el valor de $y(r_1) = \sum_{a=15,5}^{45} e^{-r_n(a+2.5)} \cdot \frac{_5L_a}{l_0} \cdot _5m_a$.

Para a=15:
$$e^{-r_n(a+2.5)} \cdot {}_5L_a \cdot {}_5m_a = 0.7511 \cdot {}_5L_a \cdot {}_5m_a = 0.7511 \cdot .0265 = .019877$$

este es el cálculo que se encuentra en la columna G.

Y la suma
$$y(r_n) = \sum_{a=15.5}^{45} e^{-r_n(a+2.5)} \frac{{}_5L_a}{l_0} {}_5m_a$$
 es igual a $y(r_1) = .954750$

Con este valor generamos una nueva tasa de crecimiento:

$$r_1 = r_0 + \frac{y(r_n) - 1}{27} = .01636 + \frac{.954750 - 1}{27} = .014680$$

Con este nuevo valor repetimos el procedimiento y obtenemos $\mathcal{Y}(r_2)$. En la segunda iteración para a=15

$$e^{-r_1(a+2.5)} \cdot {}_5L_a \cdot {}_5m_a = e^{-.014680 \cdot (15+2.5)} \cdot .0265 = .020469$$

Apuntes **COMPLEMENTARIOS** a la materia vista en clases

En la última iteración obtenemos $y(r_3) = 1.000030$ y $r_4 = .014789$ el valor de la tasa intrínseca de crecimiento.

Cuando $\mathcal{Y}(r_n)$ =1, quiere decir que las mujeres en edad reproductiva se sustituyen a sí mismas y hay un *equilibrio* entre la tasa de crecimiento r_n , la función de maternidad $_n m_a$ y la mortalidad por edad $_n L_a$. Dado que esa tasa de crecimiento permanece constante, entonces la estructura por edad también es constante.

En la cuarta iteración el cambio en la tasa de crecimiento es de apenas -.0000001 esta es la tasa de crecimiento (.014789) implícita en las tasas de fecundidad y mortalidad con que calculamos el primer valor de la TNR.