1 Transformée de Laplace

Propriétés : Pour des signaux x(t), y(t) : — Bijectivité : $\mathcal{L}(\mathcal{L}^{-1}(x(t))) = x(t)$ — Linéarité : (a, b constantes) $\begin{cases} \mathcal{L}(ax(t) + by(t)) = a\mathcal{L}(x(t)) + b\mathcal{L}(y(t)) \\ \mathcal{L}^{-1}(aX(p) + bY(p)) = a\mathcal{L}^{-1}(X(p)) + b\mathcal{L}^{-1}(Y(p)) \end{cases}$ Derivation: $\begin{cases} \mathcal{L}(\frac{\mathrm{d}x(t)}{\mathrm{d}t}) = pX(p) - x(0^+) \\ \mathcal{L}(\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2}) = p(pX(p) - x(0^+)) - \dot{x}(0^+) \end{cases}$ C.I. nulles: (conditions d'*Heaviside*) $(n \in \mathbb{N})$: $\mathcal{L}(\frac{\mathrm{d}^{\mathbf{n}}x(t)}{\mathrm{d}t^{n}}) = p^{n}X(p)$ - Intégration : $\mathcal{L}(\int_0^t x(\tau)d\tau) = \frac{1}{p}X(p)$ - Retard : $\mathcal{L}(x(t-\tau)) = e^{-p\tau}X(p)$

Théorème de la valeur initiale :

$$\lim_{t \to 0^+} x(t) = \lim_{p \to +\infty} pX(p)$$

Théorème de la valeur finale :

$$\lim_{t \to +\infty} x(t) = \lim_{p \to 0} pX(p)$$

Transformées usuelles	
Impulsion $\delta(t)$	1
Échelon $u(t)$	$\frac{1}{p}$
$\mathrm{C^{te}}$	$\frac{\mathrm{C^{te}}}{p}$
t	$\frac{1}{p^2}$
e^{-at}	$\frac{1}{p+a}$

2 Schémas bloc

Fonction de transfert : $H(p) = \frac{\text{Sortie}}{\text{Entre}} = \frac{Y(p)}{X(p)}$

FTBO :
$$H_{BO} = A(p)B(p)$$
 FTBF : $H_{BF} = \frac{A(p)}{1 + A(p)B(p)}$

Théorème de superposition : Pour un système soumis à plusieurs entrées $X_i(p)$, la sortie est :

$$Y(p) = \sum_{k} Y_k$$

où les $Y_k(p)$ sont les sorties obtenues pour l'entrée $X_k(p)$ en annulant les autres $X_i(p)$ (càd $i \neq k$).

3 Système du premier ordre

Forme canonique de la fonction de transfert :

$$H(p) = \frac{K}{1 + \tau p} , \begin{cases} K \text{ gain statique} \\ \tau \text{ constante de temps} \end{cases}$$

Réponse impulsionnelle :

Signal d'entrée : $x(t) = \delta(t) \leftrightarrow X(p) = 1$

- Réponse : $y(t) = \frac{K}{\tau} e^{-\frac{t}{\tau}}$
- Pente à l'origine : —

Réponse indicielle :

Signal d'entrée : $x(t) = u(t) \leftrightarrow X(p) = \frac{1}{p}$

- Réponse : $y(t) = K(1 e^{-\frac{t}{\tau}})$
- Pente à l'origine : $\frac{K}{\tau}$ Temps de réponse à 5% : $t_{5\%}=\ln(20)\tau\approx 3\tau$

Réponse à une rampe :

Signal d'entrée : $x(t) = tu(t) \leftrightarrow X(p) = \frac{1}{p^2}$

- Réponse : $y(t) = K(t \tau + \tau e^{-\tau})$
- Pente à l'origine : 0
- Asymptote à l'infini : $K(t-\tau)$