Malapportionment and representation Party bias and responsiveness in Mexico

E. Magar¹ M. Altman² M.P. McDonald³ A. Trelles⁴

¹ITAM

 ^{2}MIT

³UF. Gainesville

⁴University of Pittsburgh

Analyzing Latin American Politics Conference University of Houston 11/14/14

How does malapportionment distort representation?

Sparsely populated areas get same representation as the densely populated

Studies of U.S. and U.K.

- instills bias when one party strong in small districts (as Tories were up to 1997, Johnston 2002)
- Reapportionment Revolution removed bias in different, predictable degrees (Cox&Katz 2002)
- no party bias from malapp. after mid-1960s (Grofman et al. 1997)

How does Mexico fare?

- malapportionment? Substantial
- Party bias? Not much, but big large-party bonus

How does malapportionment distort representation?

Sparsely populated areas get same representation as the densely populated

Studies of U.S. and U.K.

- instills bias when one party strong in small districts (as Tories were up to 1997, Johnston 2002)
- Reapportionment Revolution removed bias in different, predictable degrees (Cox&Katz 2002)
- no party bias from malapp. after mid-1960s (Grofman et al. 1997)

How does Mexico fare?

- malapportionment? Substantial
- Party bias? Not much, but big large-party bonus

Mexican congressional districts

Redistricting in 1997, 2006, and 2015 (abandoned)

Redistricting process (FPTP):

- **1** apportionment of 300 seats to 32 states
- ② optimization algorithm \rightarrow proposal
- parties propose amendments (must improve score)
- 4 repeat 2 and 3
- new map

Redistricting by experts, but behind closed doors

$$\label{eq:score} \begin{aligned} \texttt{Score} &= .4 \times \texttt{PopBalance} + .3 \times \texttt{MunicBoundaries} \\ &+ .2 \times \texttt{TravelTime} + .1 \times \texttt{Compactness} \end{aligned}$$

Topic will be salient when single-term limits dropped in 2015

The bigger project

Draw Mexico project = offspring of Public Mapping Project in U.S.

Remove opaqueness from redistricting process

DistrictBuilder is software (open-source)

- enables widespread DIY redistricting thru cloud computing
- internet lets anyone draw/inspect maps: crowdsourcing
- redistricting contests in 6 states → hundreds of legal plans

Application to Mexico Link: MexDemo (Donations?)

The bigger project

Draw Mexico project = offspring of Public Mapping Project in U.S.

Remove opaqueness from redistricting process

DistrictBuilder is software (open-source)

- enables widespread DIY redistricting thru cloud computing
- internet lets anyone draw/inspect maps: crowdsourcing
- ullet redistricting contests in 6 states o hundreds of legal plans

Application to Mexico Link: MexDemo (Donations?)

Apportionment

Hamilton method used:

- The quota (or price of a seat) is $Q = \frac{\text{nation's population}}{300}$
- First allocation is $\frac{\text{state's population}}{Q}$, rounded down
- Every state gets 2 seats min. + indigenous voting rights
- Unallocated seats, if any, awarded to states with largest fractional remainders

Most recent decennial census must be used

- ... but no obligation to redistrict as soon as available
- 6-year lag on average: 1997, 2006, 2015
- ullet and IFE considers $\pm 15\,\%$ imbalance normal (!)

Apportionment

Hamilton method used:

- The quota (or price of a seat) is $Q = \frac{\text{nation's population}}{300}$
- First allocation is $\frac{\text{state's population}}{Q}$, rounded down
- Every state gets 2 seats min. + indigenous voting rights
- Unallocated seats, if any, awarded to states with largest fractional remainders

Most recent decennial census must be used

- ... but no obligation to redistrict as soon as available
- 6-year lag on average: 1997, 2006, 2015
- ullet and IFE considers $\pm 15\,\%$ imbalance normal (!)

Malapportionment between states

Malapportionment between states

Malapportionment within states

2006 map when inaugurated

Malapportionment within states

2015 map had it been inaugurated

Malapportionment within states

2006 map in year 2015

Two types of distortion

Focus in the votes-to-seats relation (Rae 1967, Tufte 1973, Lijphart 1994, Taagepera&Shugart 1989)

Two measures of interest:

- Party bias λ : helps beneficiary buy seats with fewer votes ("packing")
- **Responsiveness** ρ: seat bonus to large parties ("microcosm strategy")

Two types of distortion

District responsiveness ρ (and party bias $\lambda>0$ in grey)

Formalization

Cube Law:

$$\frac{s}{1-s} = \left(\frac{v}{1-v}\right)^3$$

Generalization (King&Browning 1987):

$$\frac{s}{1-s} = e^{\lambda} * \left(\frac{v}{1-v}\right)^{\rho}$$

Multiparty (King 1990, Calvo&Micozzi 2005):

$$E(s_j) = \frac{e^{\lambda_j} * v_j^{\rho}}{\sum_{m=1}^{J} e^{\lambda_m} * v_m^{\rho}}$$

- State-level aggregates (average = 9.4 districts, but $\Delta^+ N$)
- 2006–2012 districts constant
- MCMC ($3 \times 10k$ iter., every 100^{th} for post. sample)

```
for (i in 1:I){ # loop over state-vears
    for (j in 1:J){ # loop over parties (dummy selects those who ran that year)
        S[i,i] ~ dbin(pi[i,i], D[i]) # D is number SMD seats in obs. i's state
    numerator[i,1] \leftarrow dummy[i,1] * exp( lambda[1] + rho * log(v[i,1]) )
    numerator[i,2] <- dummy[i,2] * exp(
                                            rho * log(v[i,2]))
    for (i in 3:J){
        numerator[i,j] <- dummy[i,j] * exp( lambda[j-1] ) * v[i,j]^rho</pre>
    for (i in 1:J){ # loop over parties (dummy selects those who ran that year)
        d1[i,i] \leftarrow dummv[i,1] * exp(lambda[1]) * v[i,1]^rho
        d2[i,j] \leftarrow dummv[i,2]
                                                   * v[i,2]^rho
        d3[i,i] \leftarrow dummv[i,3] * exp(lambda[2]) * v[i,3]^rho
        d4[i,i] \leftarrow dummv[i,4] * exp(lambda[3]) * v[i,4]^rho
        d5[i,j] \leftarrow dummy[i,5] * exp(lambda[4]) * v[i,5]^rho
        d6[i,i] \leftarrow dummv[i,6] * exp(lambda[5]) * v[i,6]^rho
        d7[i,j] <- dummy[i,7] * exp( lambda[6] ) * v[i,7]^rho
        denominator[i,j] \leftarrow d1[i,j]+d2[i,j]+d3[i,j]+d4[i,j]+d5[i,j]+d6[i,j]+d7[i,j]
        pi[i,j] <- numerator[i,j] / denominator[i,j]</pre>
### priors
for (p in 1:6){ # there are 7 party labels in the 3-election data, PRI is reference
    lambda[p] ~ dnorm( 0, tau.lambda )
7
tau.lambda <- pow(.25, -2)
rho ~ dexp(.75) # this has positive range, median close to 1, mean 1.25, max 4.5
```

Presumption

- PRI has strong bases of support in rural districts
- rural districts under-populated
- State-years above 45° line (2006–12):

PRI
$$\frac{3}{5}$$

PAN $\frac{2}{5}$
PRD $\frac{1}{4}$

Johnston-like hypothesis:

Might malapportionment \rightarrow bias in favor of PRI? Against PAN? PRD?

Results: party bias

2015 map

Results: responsiveness

District responsiveness in three elections

Findings, next steps

Preliminary analysis reveals that:

- Substantial malapportionent
- 2 No evidence of systematic party bias
- 4 Huge large-party bonus (PRI is small in few states)
- Are effects of malapp. eclipsed by inter-election volatility?
- Study residuals from estimation: relation to malapp.? turnout diff.? geography of support?

Thank you!

Findings, next steps

Preliminary analysis reveals that:

- Substantial malapportionent
- 2 No evidence of systematic party bias
- 4 Huge large-party bonus (PRI is small in few states)
- Are effects of malapp. eclipsed by inter-election volatility?
- Study residuals from estimation: relation to malapp.? turnout diff.? geography of support?

Thank you!