به نام خدا

تمرین سری سوم بخش اول

تاريخ ارسال25/8/25

تاریخ تحویل7/9/91

1- برای تمرین های عملی خود می توانید از هر زبانی که مسلط تر هستید استفاده نمایید.

2- تمرین های خود را حتما از طریق hws ارسال نمایید.

3- تمرین های خود را زیپ کرده و نام فایل زیپ خود را به فرمت زیر تغییر دهید.

DS-991-firstname_lastname-name project

تمرین تئوری

مسئلهی ۱.

[5 نمره]

درخت عمومی زیر را به یک درخت دودویی تبدیل نمایید.

مسئلهي ٢.

[5 نمره]

نمایش پسوندی درخت عبارتی به صورت //-9+!۸۶۷۸ * $/^*$ $/^*$ $/^*$ داده شده است. نمایش پیشوندی درخت را بیابید (ارقام، عملوندهای درخت و کلیه عملگرهای آن، به جز! دوتایی هستند).

مسئلهي ٣.

[15 نمره]

فرض کنید دو درخت دودویی جستجوی متوازن T_1 و T_1 به ترتیب دارای n_1 و n_2 رأس، مجموعههای S_1 و S_2 را نمایش می دهند.

الف) الگوریتمی ارائه دهید که در مرتبه زمانی $\mathcal{O}(n_1\log(n_7))$ و با استفاده از حافظه اضافی O(1) مشخص کند که آیا $S_1\subseteq S_7$ است یا خیر.

 $\mathcal{O}(n_1+n_7)$ الگوریتمی ارائه دهید که در مرتبه زمانی $\mathcal{O}(n_1+n_7)$ و با استفاده از حافظه اضافی $S_1\subseteq S_7$ مشخص کند که آیا $S_1\subseteq S_7$ است یا خیر.

 $\mathcal{O}(\log(n_1) + \log(n_7))$ و با استفاده از حافظه اضافی ($n_1 + n_7$) در مرتبه زمانی $\mathcal{O}(n_1 + n_7)$ و با استفاده از حافظه اضافی $S_1 \subseteq S_7$ است یا خیر.

نكته: $S2 \subseteq S2$ يعنى مجموعه S2، مجموعه S1 را در بر داشته باشد.

مسئلهي ۴.

[15 نمره]

یک درخت جستجوی دودویی متوازن با n راس و ارتفاع $O(\log n)$ را در نظر بگیرید. با تغییر ساختار درخت و ذخیره یک سری اطلاعات اضافه در گره ها، داده ساختاری طراحی کنید که هر کدام از اعمال زیر را در زمان $O(\log n)$ انجام دهد:

- عضو x را به داده ساختار اضافه کند. insert(x)
- عضو x را از داده ساختار حذف کند. delete(x)
- interval(x,y): تعداد عناصر درخت که در محدود x تا y قرار دارد را برگرداند.

راهنمایی: در هر راس درخت، تعداد عناصر موجود در زیردرخت آن را نگه دارید...

مسئلەي ۵.

[10 نمره]

O(h+k) با (در صورت وجود) با (در صورت وجود) با کنید در یک د.د. باز هر گرهای شروع کنیم، میتوانیم k عنصر بعدی آن را (در صورت وجود) با بیابیم که k ارتفاع درخت است.

تمرین عملی

مسئلهی ۱.

[25 نمره]

متدی بنویسید که با دریافت نتیجه پیمایش Preorder یک درخت Postorder آن را برگرداند.

مثال:

20 100 100 30 32 35 80 90 ورودى : ورودى

40 09 80 100 32 35 خروجي خروجي

مسئلەي ٢.

[25 نمره]

آرایه ای به طول N دریافت کرده و با آن یک درخت دودویی جستجو تشکیل دهید.

سپس دو عدد A و B که در آرایه و جود داشته باشد را دریافت کرده و بزرگترین عدد در

مسیر A و B را به عنوان خروجی نمایش دهید.

مثال:

arr[] = { 18 36 9 6 12 10 1 8 } ورودى

A = 1

B = 10

12 : خروجي

