Data Visualization With Stata

Andy Grogan-Kaylor

26 Apr 2022 09:51:19

Introduction

- Stata is a powerful and intuitive data analysis program.
- Learning how to graph in Stata is an important part of learning how to use Stata.
- Yet, the default graphs in Stata can sometimes be less than optimal.
- This document is an introduction to (a) basic graphing ideas in Stata; and (b) some simple ways to make your Stata graphs look more professional.

What are Variables?

- By variables, I simply mean the columns of data that you have.
- For our purposes, you may think of variables as synonymous with questionnaire items, or columns of data.

Variable Types

- categorical variables represent unordered categories like neighborhood, or religious affiliation, or place of residence.
- continuous variables represent a continuous scale like a mental health scale, or a measure of life expectancy.

A Data Visualization Strategy

Once we have discerned the type of variable that have, there are two followup questions we may ask before deciding upon a chart strategy:

- Is our graph about **one thing at a time**?
 - How much of x is there?
 - What is the distribution of x?
- Is our graph about two things at a time?
 - What is the relationship of x and y?
 - How are x and y associated?

Data

We are going to use the famous "iris" data collected by Edgar Anderson in the early 20th Century.

. use "iris.dta", clear

. summarize

Variable	Obs	Mean	Std. dev.	Min	Max
Sepal_Length	150	5.843333	.8280661	4.3	7.9
Sepal_Width	150	3.057333	.4358663	2	4.4
Petal_Length	150	3.758	1.765298	1	6.9
Petal_Width	150	1.199333	.7622377	.1	2.5
Species	150	2	.8192319	1	3

The iris data set has 5 variables.

Species of Iris

Iris species images courtesy Wikipedia.

Figure 1: Iris Species

Petals and Sepals

Basic Graphs

Continuous Variable histogram

. histogram Petal_Length
(bin=12, start=1, width=.49166667)

Figure 2: Petals and Sepals

Figure 3: Histogram of Petal Width

Categorical Variable graph bar

. graph bar, over(Species)

Figure 4: Bar Graph of Species

Continuous by Continuous twoway

. twoway scatter Petal_Length Petal_Width

Categorical by Categorical graph bar

```
. recode Petal_Length ///
> (min/3.758 = 0 "below mean") ///
> (3.758/max = 1 "above mean"), ///
> generate(Petal_Group) // dichotomize Petal_Length
(150 differences between Petal_Length and Petal_Group)
.
. graph bar, over(Species) over(Petal_Group)
```

Continuous by Categorical graph bar

. graph bar Petal_Length, over(Species)

Figure 5: Scatterplot

Figure 6: Bar Graph of Species by Category of Petal Length

Figure 7: Bar Graph of Petal Length by Species

Titles and Labels , title(...) xtitle(...) ytitle(...)

```
. twoway scatter Petal_Length Petal_Width, scheme(s1rcolor) ///
> title("Petal Length by Petal Width") ///
> xtitle("Petal Width") ytitle("Petal Width") ///
> caption("Iris Data")
```

Better Graphing With Schemes ,scheme(...)

The easiest method to make better Stata graphs is through the use of predefined Stata graphing schemes.

Pre-Defined Schemes

Some schemes, e.g. economist, sj, s1color, and s1rcolor are pre-installed with Stata.

Economist Scheme

. twoway scatter $Petal_Length\ Petal_Width$, scheme(economist)

Stata Journal Scheme

. twoway scatter $Petal_Length\ Petal_Width$, scheme(sj)

Figure 8: Graph With Titles and Labels

s1color Scheme

. twoway scatter $Petal_Length\ Petal_Width$, scheme(s1color)

s1rcolor Scheme

. twoway scatter Petal_Length Petal_Width, scheme(s1rcolor)

User Written Schemes

Two of the best user written schemes are plottig and lean2.

Use the findit command e.g. findit lean2 to find these schemes.

lean2 Scheme

. twoway scatter Petal_Length Petal_Width, scheme(lean2)

Michigan graph scheme

I have written a michigan graph scheme described here.

```
. twoway (scatter Petal_Length Petal_Width) ///
> (lfit Petal_Length Petal_Width), scheme(michigan)
```


Figure 9: Scatterplot with Economist Scheme

Figure 10: Scatterplot with $Stata\ Journal\ Scheme$

Figure 11: Scatterplot with s1color Scheme

Figure 12: Scatterplot with ${ t s1rcolor}$ Scheme

Figure 13: Scatterplot with lean2 Scheme

Figure 14: Scatterplot with michigan Scheme

Schemes as a Base for Further Tweaking

Schemes can be used as a base that can then be further modified.

```
. twoway (scatter Petal_Length Petal_Width, msymbol(0) mcolor(red)) ///
> (lfit Petal_Length Petal_Width), ///
> scheme(lean2)
(note: named style 0 not found in class symbol, default attributes used)
```

Even More Tweaks

Based upon an example at https://blog.stata.com/2018/10/02/scheming-your-way-to-your-favorite-graph-style/ $\,$

```
. twoway scatter Sepal_Length Sepal_Width Petal_Width Petal_Length, ///
> color(%50 %50 %50) /// transparency
> title("Multiple Iris Characteristics") /// title
```

> scheme(s1rcolor) // scheme

More Information

See also Two Page Stata

Created by agrogan@umich.edu

Figure 15: Modified Scatterplot with ${\tt lean2}$ Scheme as a Base

Figure 16: Modified Scatterplot with s1rcolor Scheme as a Base