课程名称 无机及分析化学(下) 适用专业 12 化工和制药 考试学期 12-13-3 考试形式开卷□闭卷√ 考试时间 120分钟

				מס	#	* "
题 号	_	=	_=_			- 总分
得 分						

-、选择题 (每题1分,共20分)

1	2	3	4	5	6	7	8	9	10
									C

- 1. 滴定分析中, 对滴定反应的要求是: A
- A. 反应必须定量完成
- B. 反应必须有颜色变化
- C. 滴定剂必须与被测物 1: 1 反应 D. 滴定剂必须是基准物
- 2.下有关系统误差描述正确的是: C
- A. 系统误差具有随机性 B. 系统误差在分析过程中不可避免
- C. 系统误差具有单向性 D. 系统误差是由一些不确定的偶然因素造成的
- 3.在确认不存在操作错误的情况下,判断可疑数据取舍时,应采用的检验方法是: B

- A. t 检验 B. Q 检验 C. F 检验 D. 凭感觉

4.对于一个化学反应 aA+bB=cC+dD, A 为被测组分,B 为标准溶液,则滴定度 $T_{A/B}$ 与标准溶液物质 的量浓度 c 的关系为: C

A.
$$T_{A/B} = \frac{b}{a} \cdot \frac{c_B M_A}{1000}$$
 B. $T_{A/B} = \frac{c_B M_A}{1000}$

B.
$$T_{A/B} = \frac{c_B M_A}{1000}$$

C.
$$T_{A/B} = \frac{a}{b} \cdot \frac{c_B M_A}{1000}$$
 D. $T_{A/B} = \frac{a}{b} \cdot \frac{c_A M_B}{1000}$

D.
$$T_{A/B} = \frac{a}{b} \cdot \frac{c_A M_B}{1000}$$

5、用 HCl 溶液滴定 NaOH 和 Na_2CO_3 的混合溶液,以酚酞为指示剂,消耗 HCl 溶液 V_1 mL,再以甲 基橙为指示剂继续滴定,消耗 HCl 溶液 V2 mL,则 V1 和 V2 的关系是: (D)

A.
$$V_1=2V_2$$
 B. $V_1=V_2$ C. $2V_1=V_2$ D. $V_1>V_2$

$$\mathbf{B}$$
. $\mathbf{V}_1 = \mathbf{V}_2$

$$C_1 = V_1 = V_2$$

$$D. V_1 > V_2$$

6、现要用 EDTA 滴定法测定某样品中 Zn²⁺的含量,为了减少滴定误差,则用于标定 EDTA 的基准物

A. $Pb(NO_3)_2$ B. Na_2CO_3 C. Zn D. $CaCO_3$	
7 对配位反应中的条件稳定常数,正确的叙述是: A	
A. 条件稳定常数是实验条件下的实际稳定常数	
B. 酸效应系数总是使条件稳定常数减小	
C. 所有的副反应均使条件稳定常数减小	
D. 条件稳定常数与配位滴定突跃无关	
8、当 M 和 N 离子共存时,欲以 EDTA 滴定其中的 M 离子,当 $C_M = \frac{1}{10} C_N$ 时,要准确滴定 M, J	则
要求ΔlgK 值为: (B)	
A. 4 B. 5 C. 6 D. 7	
9、佛尔哈德法可以直接测定的离子为: D	
A. Cl^- B. Br^- C. I^- D. Ag^+	
10、若两电对在反应中电子转移数均为1,为使反应完全程度达到99.9%,两电对的条件电位差至少	>应
大于: (D)	
A. 0.09V B. 0.18V C. 0.27V D. 0.35V	
二、填空题(共 10 分)	
1、置信度一定时,增加测定次数 n,置信区间(变大,变小或者不变)	
2、银量法根据使用指示剂的不同可分为莫尔法、佛尔哈德法和。	
3、测定值与多次测定平均值的符合程度称为:,用以说明各测定值	
°	
4、pH=4.74 的有效数字有位;按有效数字计算:0.0054+1.6268+27.57	
=	
5、用草酸钠标定 KMnO4 溶液, 为了使反应定量及迅速进行, 滴定时应注意控制、	_
和。	
6、用 0.02 mol·L-1 的 EDTA 滴定同浓度的 Mg ²⁺ , pH 最高允许上限是(已知	
$K_{sp}(Mg(OH)_2) = 1.8 \times 10^{-11}$	
1. 变小 2. 法扬司法 3. 精密度, 相接近的程度 4.2; 29.20;	
5 温度,酸度,速度 6 9.48(or 9.5)	
三、判断题: (每题 1 分,对的打 "√",错的打 "×"。共 10 分)	
1. 分析结果精密度好,准确度就高。 ()	

质应为: C

2. 当几个数据相加或相减时、它们的和或差的有效数字的保留,应以	小数点后位数量小
的数据为依据。	()即相对加入
3. 在络合滴定中,溶液的最佳酸度范围是由 EDTA 决定的。	()
4. 铬黑工是酚碱滴定中常用的指示剂。	()
5. K _{Al-EDTA} =16.1,具有很高的稳定性,因此可用 EDTA 直接滴定 Al ³⁺ 。	()
6. 滴定分析中的化学计量点是指加入标准溶液与被测物质恰好反应完	全的那一点。()
7.还原滴定曲线的纵坐标是 E, 而配位滴定法的纵坐标是 pM 。	()
8. 根据酸碱质子理论,OH·的共轭酸是 H ₂ O。	()
9. 配制好的 Na ₂ S ₂ O ₃ 标准溶液应立即用基准物质标定。	()
10. 金属指示剂本身无色,但是其与金属离子反应后生成有颜色的配	合物。
$1. \times 2. \times 3. \times 4. \times 5. \times 6. \sqrt{7. \sqrt{8. \sqrt{9.}}}$	× 10. ×

1. (10 分)测定 SiO₂ 的质量分数,得到下列数据(%), 28.62, 28.59, 28.51, 28.48, 28.52, 28.63 求平均值、标准偏差、置信度分别为 90%和 95%时平均值的置信区间。t 值表如下表:

المارا ما المارا	置信度				
测定次数	90%	95%	99%		
2	6.314	12.706	63.657		
3	2.920	4.303	9.925		
4	2.353	3,182	5.841		
5	2.132	2.776	4.604		
6	2.015	2.571	4.032		
7	1.943	2.447	3.707		
8	1.895	2.365	3,500		
9	1.860	2.306	3.355		
10	1.833	2.262	3.250		
11	1.812	2.228	3.169		
21	1.725	2.086	2.846		
∞	1.645	1.960	2.576		

$$\overline{x} = (\frac{28.62 + 28.59 + 28.51 + 28.48 + 28.52 + 28.63}{6})\% = 28.56\%$$
解答:
$$s = \sqrt{\frac{(0.06)^2 + (0.03)^2 + (0.05)^2 + (0.08)^2 + (0.04)^2 + (0.07)^2}{6 - 1}\%} = 0.06\%$$

置信度为 90%, n=6 时, t=2.015, 置信度为 95%, n=6 时, t=2.571, 因此

$$u = (28.56 \pm \frac{2.015 \times 0.06}{\sqrt{6}})\% = (28.56 \pm 0.05)\%$$
$$u = (28.56 \pm \frac{2.571 \times 0.06}{\sqrt{6}})\% = (28.56 \pm 0.06)\%$$

三、综合题(共50分)

平均值、平均偏差、相对平均偏差、标准偏差和相对标准偏差。

解: 平均值
$$\bar{x}=\frac{0.2041+0.2049+0.2039+0.2043}{4}=0.2043 \text{ mol/}_L$$
 平均偏差 $\bar{d}=\frac{0.0002+0.0006+0.0004+0.0000}{4}=0.0003 \text{ mol/}_L$ 相对平均偏差 $\frac{\bar{d}}{\bar{x}}\times 100\%=\frac{0.0003}{0.2043}\times 100\%=0.15\%$ 标准偏差: $Sx=\sqrt{\frac{(0.0002)^2+(0.0006)^2+(0.0004)^2+(0.0000)^2}{4-1}}=0.0004 \text{ mol/}_L$ 相对标准偏差 RSD= $\frac{0.0004}{0.2043}\times 100\%=0.2\%$

3. (10 分) 分析不纯 CaCO₃ (其中不含干扰物质) 时, 称取试样 0.3000g, 加入浓度为 0.2500mol/L 的 HCl 标准溶液 25.00mL。煮沸除去 CO₂, 用浓度为 0.2012mol/L 的 NaOH 溶液返滴定过量酸, 消耗了 5.84mL。计算试样中 CaCO₃ 的质量分数。(已知 M(CaCO₃)=100.09)

解:

$$\begin{split} w_{CaCO_3} &= \frac{\frac{1}{2}(c_{HCl}V_{HCl} - c_{NaOH}V_{NaOH})M_{CaCO_3}}{m_s} \\ &= \frac{(0.2500 \times 0.02500 - 0.2012 \times 0.00584) \times 100.09}{2 \times 0.3000} \times 100\% = 25.40\% \end{split}$$

4. (10 分) 用 0.01000 mol·L-1 HNO₃ 溶液滴定 20.00mL 0.01000 mol·L-1 NaOH 溶液时, 化学计量点 pH 为多少? 化学计量点附近的滴定突跃为多少? 应选用何种指示剂指示终点?

$$\begin{split} & \left[OH^{-}\right] = \frac{0.01000 \times 0.02}{20.00 + 19.98} = 5.00 \times 10^{-6} \\ & \text{pH} = 8.70 \\ & \text{计量点后, HNO}_3 \text{过量 } 0.02\text{mL} \\ & \left[H^{+}\right] = \frac{0.01000 \times 0.02}{20.00 + 20.02} = 5.0 \times 10^{-6} \\ & \text{pH} = 5.30 \\ & \text{滴定突跃为 } 8.70 - 5.30, 选中性红为指示剂 \end{split}$$

5. (10分)标定 NaOH 溶液,用邻苯二甲酸氢钾基准物 0.502 6g,以酚酞为指示剂滴定至终点,用去 5. (10 分)标定 NaOH 浴液, 州邓本一, (邻苯二甲酸氢钾的摩尔质量为 204.23 g · mol·) NaOH 溶液 21.88 mL。求 NaOH 溶液的浓度。(邻苯二甲酸氢钾的摩尔质量为 204.23 g · mol·) 解: n(NaOH)=n(邻苯二甲酸氢钾)

$$\frac{0.5026}{204.23} = 21.88 \times 10^{-3} \times c(NaOH)$$

c(NaOH)=0.1125 mol·L-1

6. (10 分)问答题:

1(4分) 某同学配制如下溶液 0.02mol·L-1KMnO4, 请指出错误:

准确称取 3. 161g 固体 KMnO4, 用煮沸的去离子水溶解, 转移至 1000mL 容量瓶, 稀释至刻度, 然后用干 燥的滤纸过滤。

答:错误有以下4点:

- (1) 不应该准确称取固体 KMnO4, 应用台秤称取 3.2g, 处理后待标定。
- (2)不是用煮沸过的去离子水溶解,应将固体 KMnO4溶解于 1000mL 蒸馏水中,煮沸 1h,冷却后过滤除 去 MnO2
- (3) 不能用容量瓶贮存 KMnO4 溶液,应用棕色试剂瓶贮存且避光保存。
- (4) 过滤时不能用滤纸,应用玻璃砂芯漏斗过滤
- 2. (4分) 为什么φ^θ(I₂/2I⁻)> φ^θ(Cu²⁺/Cu⁺), 从电位的大小看,应该 I₂氧化 Cu⁺,但是 Cu⁺却能将 I⁻ 氧化为 I2。

答: 当 I 下浓度较大时, 2 Cu + 4 I = 2 CuI + 1₂ 反应生成沉淀, 使[Cu+]降低,则中(Cu2+/Cu+) 增加,使 φ^{θ} ($I_2/2I^-$) $< \varphi^{\theta}$ (Cu^{2+}/Cu^+),反应向右进行。故 Cu^+ 能将 I-氧化为 I_2 。

- 3. (2分)以 K₂Cr₂O₇标定 Na₂S₂O₃溶液浓度时,是使用间接碘量法。能否用 K₂Cr₂O₇溶液直接滴 定 Na₂S₂O₃ 溶液? 为什么?
- (2) 答: 因 $Cr_2O_7^{2-}$ 与 $S_2O_3^{-}$ 反应产物不单一,无定量关系, 反应不能定量地进行,故不能用 $K_2Cr_2O_7$ 溶液直接滴定 Na₂S₂O₃溶液。