Math 237: Discrete Math

Ramsfield

Last Updated: April 26, 2018

1 5.3 Weak Induction

Two harder types of problems that can be solved using weak induction:

1.1 Divisibility Problems

```
EX: Prove that for all integers n \ge 0, 4|(5^n - 1)

Proof By Induction: For the base case, we have 5^n - 1 = 5^0 - 1 = 1 - 1 = 0 and 4|0 (0 = 4 * k \ k \in Z) now assume n \ge 0 is arbitrary and 4|(5^n - 1)5 [NTS: 4|5^{n+1} - 1| Then by definition there is an integer k such that 5^n - 1 = 4k [NTS: 5^{n+1} - 1 = 4m for some m \in Z] 5^{n+1} - 1 = 5^1 * 5^n - 1 = (4+1)5^n - 1 = 4 * 5^n + 5^n - 1 Substitute 4k for 5^n - 1 + 4 * 5^n + 4k = 4(5^n + k) and (5^n + k) \in Z because n, k \in Z \therefore 4|(5^n - 1) for all n \ge 0
```

1.2 Proving Inequalities

```
Facts about inequalities: a \leq a for any a \in R if a \leq b and c \in R, then a+c \leq b+c To prove that 2 < 10, it suffices to prove that 2 < 3 < 7 < 9 < 10. Note that the fact that 2 < 11 is true but useless. If a \leq b and c \geq 0 then ac \leq bc
```

EX: Prove that for all integers $n \ge 0$, $1 + 3n \le 4^n$ **Proof By Induction:** For the base case, n = 0, then $1 + 3n = 1 + 3(0) \le 4^0 = 1$ or $1 \le 1$ which is true.

For the inductive hypothesis $n \ge 0$ is arbitrary, and assume $1 + 3n \le 4^n$ [NTS: $1 + 3(n+1) \le 4^{n+1}$

Now 1+3(n+1)=1+3n+3 which is $\leq 4^n+3$ by the inductive hypothesis. $4^{n+1}=4*4^n=(3+1)4^n=3*4^n+4^n\leq 4^n=3*4^n=4^n(1+3)$

 $= 4 \cdot (1+3)$ = $4 * 4^n$

```
= 4^{n+1}
 \therefore 1 + 3(n+1) \le 4^{n+1} when 1 + 3n \le 4^n
```

2 5.4 Strong Induction

Sometimes we need Strong Induction to prove a statement $\forall n \in S[P(n)],$ $S = n_0, n_0 + 1, ... \in Z$

This is also a 3 step processes:

- 1. Prove the base case by proving that $P(n_0)$ is true.
- 2. Assume the inductive hypothesis, which involves taking an arbitrary $n \in S$ and assuming P(k) is true for all $n_0 \le k \le n$
- 3. Now prove the inductive step, which in this case says $P(n_0) \wedge P(n_0 + 1) \wedge P(n_0 + 2) \wedge \cdots \wedge P(n) \rightarrow P(n + 1)$

EX: Prove that for every integer $n \geq 2$, n can be written as a product of a finite number of primes.

Proof By Induction For the base case, when n = 2 we have that n is a "product" of a single prime 2, so the claim holds.

Now assume $n \geq 2$ is arbitrary and the claim holds for any integer $2 \leq k \leq n$ [NTS: The claim holds for n+1]

If n+1 is prime, then we're done!

If n+1 is not prime (composite), it is composite, so there is some integer m that divides n+1 such that $2 \le m \le n$. Furthermore, $\frac{n+1}{m} \in Z$ and $2 \le \frac{n+1}{m} \le n$. Therefore both m and $\frac{n+1}{m}$ are a product of a finite number of primes. This means $n+1=\frac{n+1}{m}*m$ is also.

EX: For the recursive sequence, $b_1 = 4$, $b_2 = 12$, $b_k = b_{k-1} + b_{k-2}$, $k \ge 3$ Prove that $4|b_n \forall n \ge 1$.

Proof By Induction: For the base case, note that $b_1=4=4*1$ and $b_2=12=4*3$ so $4|b_1$ and $4|b_2$

For the inductive hypothesis, assume $n \geq 3$ and that $4|b_k$ for all $1 \leq k \leq n-1$ [NTS: $4|b_n$]

Then by definition $b_n = b_{n-1} + b_{n-2}$ and since $n \ge 3$, we know that $1 \le n-2 \le n-1$ and $1 \le n-1 \le n-1$ Therefore, by the inductive hypothesis we have $4|b_{n-2}$ and $4|b_{n-1}$. So $b_{n-2} = 4q$ for some $q \in Z$ and $b_{n-1} = 4s$ for some $s \in Z$. Meaning $b_n = 4q + 4s$, $b_n = 4(q+s)$ and $(q+s) \in Z$ because $q, s \in Z$ $\therefore 4|b_n$ while $n \ge 3$

EX: Prove that $\forall n \geq 1$, C_n is even where $C_1 = 4$, $C_2 = 10$ and $C_n = C_{n-1} + 2C_{n-2} \ \forall n \geq 3$

Proof by Strong Induction: Base case: Check everything up to the base case. For n = 1 $C_1 = 4$ and 4 is even because 4 = 2(2). For n = 2 $C_2 = 10$ and 10 = 2(5). For n = 3 $C_3 = 10 + 2(4) = 2(5 + 4)$ which is even.

Inductive Hypothesis: Let $n \geq 3$ be arbitrary and assume C_k is even whenever

 $1 \le k \le n$

Inductive Step: [NTS: C_{n+1} is even] Then $C_{n+1} = C_n + 2C_{n-1}$ By the inductive hypothesis, C_n and C_{n-1} are even. $\therefore C_n = 2s$ and $C_{n-1} = 2t$ for some $s, t \in \mathbb{Z}$ $\therefore C_{n+1} = 2(s+2t)$ which is even

3 6.1 Set Theory

In Set Theory, we always have a **universal set** that we consider to be the set containing all sets under consideration. We will denote our universal set by X (the book uses U). Given sets A and B inside X, the basic notion is that of **set containment**. We say A is a **subset** of B and write $A \subseteq B$ if the following holds:

$$\forall x \in X [x \in A \Rightarrow x \in B]$$

What does it mean if A is not a subset of B? In this case we write $A \nsubseteq B$ and this is true if the negation of the previous statement holds.

Make sure to remember $\sim (\forall x [P(x) \Rightarrow Q(x)]) \equiv \exists x [P(x) \land (Q(x))]$ For set theory we can write:

$$\exists x \in X [x \in A \land x \notin B]$$

We say sets A and B are **equal** and write A = B if $A \subseteq B$ and $B \subseteq A$.

Now we want to find the analogues of \vee , \wedge , \sim in set theory.

The analogue of \wedge is **intersection**, and for sets A and B the intersection of A and B is the set

$$A \cap B = x \in X | x \in A \land x \in B$$

The analogue for \vee is **union**. The union of A and B is the set

$$A \cup B = x \in X | x \in A \lor x \in B$$

The analogue of \sim is the **complement**. The complement of A (in X) is the set

$$A^c = x \in X | x \notin A$$

There is also refinement of this called the **relative complement** or **set difference**. Given sets A and B, the complement of A in B is the set

$$B - A = x \in B | x \notin A$$

Now that we have our "dictionary" between logic and set theory, we see that e.g. every logical equivalence in Theorem 2.1.1 on page 35 is a statement about set equality:

EX: $\sim (\sim P) \equiv P$ (Double Negation) looks like $(A^{c^c}) = A$ This is the **Double Complement Law**

EX: De Morgan's Law says $\sim (P \vee Q) \equiv (\sim P) \wedge (\sim Q)$ so in set theory it looks like

$$(A \cup B)^C = A^c \cap B^c$$

This is one of **De Morgan's Laws** for sets

Read page 342 to review **interval notation** ((a, b), [a, b], etc)

The **empty set** \emptyset is the unique subset of X that contains no elements.

Facts:

 $X^c = \emptyset$

 $\emptyset^c = X$

 $\emptyset \subseteq A$ for any $A \subseteq X$

 $A \subseteq A$ for any $A \subseteq X$

Two sets A and B are **disjoint** if $A \cap B = \emptyset$

The **power set** of a set A is the set $P(A) = B|B \subseteq A$

EX: $P(\emptyset) = \{\emptyset\}$

EX: $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Prove: if A has n elements, P(a) has 2^n elements

Proof By Induction: Base case, P(n=0) or set is $P(\emptyset)$

 $P(\emptyset) = \{\emptyset\} = 1 = 2^n = 2^0 = 1$

Inductive Hypothesis: Assume $P(k) = 2^k$ for all $0 \le k \le n-1$ [NTS:

 $P(k+1) = 2^{k+1}$

 $P(k+1) = P(k) + P(1) = 2^{k} * 2^{1}$ For the left side

 $2^{k+1} = 2^k * 2^1$

 $\therefore P(n) = 2^n$

Quiz on Thurs: 4.4, 4.6, 5.1

Set Notation, cont. 4

6.2 Set Proofs

EX: Prove that if A,B,C are sets and $A \subseteq B$, then $A \cap C \subseteq B \cap C$

Direct Proof: Assume A, B, C are sets and $A \subseteq B$ [NTS: $A \cap C \subseteq B \cap C$]

Assume $x \in A \cap C$ [NTS: $x \in B \cap C$]

Then $x \in A$ and $x \in C$. [NTS: $x \in B$ and $x \in C$] but since, if $x \in C$, then $x \in C$ we only need to show that if $x \in A$, $x \in B$

Since $x \in A$ and $A \subseteq B$, $x \in B$ and since $x \in B$ and $x \in C$, $x \in B \cap C$

Claim: Prove that for any sets A, B, if $A \subseteq B$, then $B^c \subseteq A^c$

Direct Proof by Contradiction: Assume A, B are sets and $A \subseteq B$.[NTS:

 $B^c \subseteq A^c$

Assume $x \in B^c$

By definition of complement, if $x \in B^c, x \notin B$

Suppose for the sake of contradiction $x \in A$. Then $x \in B$ since $A \subseteq B$. This is a contradiction since we know $x \notin B : x \notin A$ By definition if $x \notin A, x \in A^c$. \therefore if $x \in B^c$ then, $x \in A^c$ which is the definition of a subset. $\therefore B^c \subseteq A^c$

5 More Set Proofs

Claim: Prove that for any sets A, B, if $A \subseteq B$, then $B^c \subseteq A^c$

Direct Proof by Contrapositive: Assume A, B are sets and $A \subseteq B$.[NTS: $B^c \subseteq A^c$]

Then for every $x \in X$, if $x \in A$ then $x \in B$

Taking the contrapositive, we see that for all $x \in X$, if $x \notin B$ then $x \notin A$ By definition of complement, this says for any $x \in X$, if $x \in B^c$ then $x \in A^c$ $\therefore B^c \subseteq A^c$

Stronger Theorem:

For all sets $A, B, A \subseteq B \iff B^c \subseteq A^c$

Proof: $A \subseteq B \iff \forall x \in X[x \in A \to x \in B]$

 $\iff \forall x \in X[x \notin B \to x \notin A]$

 $\iff \forall x \in X[x \in B^c \to x \in A^c]$

 $\iff B^c \subseteq A^c$

EX: Prove that for any sets $A, B, C, A \times (B \cup C) = (A \times B) \cup (A \times C)$

Proof: Let A, B, C be arbitrary sets [NTS: $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$]

and $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$] \subseteq Let $(x, y) \in A \times (B \cup C)$. Then $x \in A$ and $y \in A$

 \subseteq Let $(x,y) \in A \times (B \cup C)$. Then $x \in A$ and $y \in B \cup C$. If $y \in B$ then $(x,y) \in A \times B$

Which means that $(x, y) \in (A \times B) \cup (A \times C)$

Similarly, if $y \in C$, then $(x,y) \in A \times C$, so $(x,y) \in (A \times B) \cup (A \times C)$

 $\therefore A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$

 \supseteq : Assume $(x,y) \in (A \times B) \cup (A \times C)$

Then $(x, y) \in A \times B$ or $(x, y) \in A \times C$

If $(x, y) \in A \times B$ then $x \in A$ and $y \in B$

Therefore $y \in B \cup C$ so $(x, y) \in A \times (B \cup C)$

Similarly, if $(x,y) \in A \times C$ then $x \in A$ and $y \in C$ so $y \in B \cup C$ and $(x,y) \in A \times (B \cup C)$

 $\therefore (A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$

 $\therefore A \times (B \cup C) = (A \times B) \cup (A \times C)$

Same theory, using if and only if statements

 $(x,y) \in A \times (B \cup C) \iff (x \in A) \land (y \in B \cup C)$ (The definition of cartesian product)

 \iff $(x \in A) \land [(y \in B) \lor (y \in C)]$ (Definition of Union)

 \iff $((x \in A) \land (x \in B) \lor ((x \in A) \land (x \in C))$ (By the distributive law)

 \iff $[(x,y) \in A \times B] \vee [(x,y) \in A \times C]$ (Definition of Cartesian product) \iff $(x,y) \in (A \times B) \cup (A \times C)$ (By definition of union)

Theorem 6.2.1

For all sets A, B

- **1.** $A \cup B \subseteq A$ and $A \cup B \subseteq B$
- **2.** $A \subseteq A \cup B$ and $B \subseteq A \cup B$
- **3.** If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

6.3 Disproof and Algebraic Proofs

EX: Fine a counterexample to disprove this claim

For all sets A, B, C:

$$(A \cap B) \cup C = A \cap (B \cup C)$$

Counterexample: $A = \{1, 2, 3\}$ $B = \{4\}$ $C = \{4, 5, 6\}$

 $(A \cap B) \cup C = \emptyset \cup C = C$

 $A \cap (B \cup C) = A \cap C = \emptyset$ But $C \neq \emptyset$

So, $(A \cap B) \cup C \neq A \cap (B \cup C)$

6 6.3 Continued

The symmetric difference of A and B is the set $A\Delta B = (A-B) \cup (B-A)$, or everything that's in A and not in B, and everything that's in B and not in A.

 $A\Delta B \equiv (A \cup B) - (A \cap B)$

EX: Prove that for any set A, $A\Delta A = \emptyset$

Proof: By definition, $A\Delta A = (A - A) \cup (A - A)$

This reduces to A-A since for any set $X, X \cup X = X$

And $x \in (A-A) \iff x \in A \land x \notin A$ but this is a contradiction! \therefore there is no such x, i.e. $A-A=\emptyset$

 $A\Delta A = \emptyset$

6.1 Chapter 7

6.2 7.1 Definitions of functions

Recall that a relation $R \subseteq A \times B$ is a function from A to B if

- 1) $\forall a \in A \exists b \in B[(a,b) \in R]$
- 2) $\forall a \in A[(a, b_1) \in R \land (a, b_2) \in R \to b_1 = b_2]$

In this case, we normally write T as $F:A\to B$ and write b=f(a) when $(a,b)\in R$

A is the domain of F.

B is the <u>co-domain</u> of F.

The range of F is the set $F(A) = \{F(a) \in B | a \in A\} \subseteq B$

Given any $b \in B$ the Inverse Image or preimage of b under F is the set $F^{-1}(b) =$

 $\{a \in A | f(a) \in B\}$ Note that if $f(A) \neq B$ then for any $b \in B - F(a)$, $f^{-1}(b) = \emptyset$ **EX:** let $D = \{finite \, subsets \, of \, \mathbb{N}\}$ and define $T : \mathbb{N} \to D$, $T(n) = \{positive \, divisors \, of \, n\}$ For instance, $T(5) = \{1, 5\}$ $T(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$ $T^{-1}(1, 5) = \{5\}$ $T^{-1}(1, 2, 3) = \{\emptyset\}$ **EX:** Let $A = \{1, 2, 3, 4, 5\}$ and define

 $F:\wp(A)\to\mathbb{Z}$

 $F(x) = \{0 \text{ if } x \text{ contains even elements 1 if } x \text{ contains odd elements} \}$ F(A) = 1 because A contains 5 elements and 5 is odd $F(\emptyset) = 0 \text{ because } \emptyset \text{ contains 0 elements and 0 is even}$ The range $F \text{ is } F(\wp(A)) = \{0,1\}$ $F^{-1}(2) = \emptyset$

7 7.2 1-1/Onto functions

A function $f: A \to B$ is 1-1 (one to one) if the following holds: If whenever f(x) = f(y) in B, x = y in A

f is onto B if for any $b \in B$ there exists an $a \in A$ such that b = f(a) You can think of One to One as the opposite of the Existence axiom for functions (There is only one y for every x)

You can think of onto as the Uniqueness axiom opposite (There is a y for every x)

EX: Prove that the function $F:\mathbb{R}\to\mathbb{R},\ f(x)=3x+2$ is 1-1 and onto \mathbb{R}

A test to help figure this out: Graph the function. Use a horizontal line to make sure it only intersects at one point

Proof: One to One: Suppose $x, y \in \mathbb{R}$ such that f(x) = f(y) [NTS: x=y] Then by definition 3x + 2 = 3y + 2 = 3x = 3y = x = y. f is one to one.

Onto: let $y \in \mathbb{R}[\text{NTS }\exists x \in \mathbb{R} \text{ such that } f(x) = y]$ Scratch Work Need $x \in \mathbb{R}$ such that y = f(x) = 3x + 2 Solve for x. y = 3x + 2 = 5 $\frac{y-2}{3} = x$ let $x = \frac{y-2}{3}$. Then $f(x) = f(\frac{y-2}{3}) = 3(\frac{y-2}{3}) + 2 = y - 2 + 2 = y$

let $x = \frac{y-2}{3}$. Then $f(x) = f(\frac{y-2}{3}) = 3(\frac{y-2}{3}) + 2 = y - 2 + 2 = y$.: f is onto.

Exercise: Let $f: \mathbb{Z} \to \mathbb{Z}$ and f(x) = 3x + 2 Prove or disprove this is 1-1 and onto

1-1: Suppose $x, y \in \mathbb{Z}$ and we need to show by definition that f(x) = f(y) implies x = y

3x + 2 = 3y + 2 => 3x = 3y => x = y

 $\therefore f$ is one to one

Onto: By definition of onto, $\forall y \in \mathbb{Z} \exists x \in \mathbb{Z}$ such that f(x) = y. So to disprove, we need to show that $\exists y \in \mathbb{Z} \forall x \in \mathbb{Z}$ such that $f(x) \neq y$. Let y = 1 this means 1 = 3x + 2 which means 3x = -1 and $x = \frac{-1}{3}$ but $\frac{-1}{3} \notin \mathbb{Z}$ and $1 \in \mathbb{Z}$ $\therefore f$ is not onto

The range is actually equal to: $\{3k+2|k\in\mathbb{Z}\}\notin\mathbb{Z}$

8 7.3 Composition and inverses

Quiz topics: 5.2, 5.3, 5.4 **INDUCTION** 2 proof problems. 1 Weak induction 1 strong induction

Let $F: X \to Y$, $g: Y' \to Z$ be functions such that $F(X) \subseteq Y' \subseteq Y$ The composition of g with F is the function $g \circ F: X \to Z$, $(g \circ F)(x) = g(F(x))$ $\mathbf{EX:} \ F: \mathbb{R} \to \mathbb{R}$ such that F(x) = 2x + 4 and $g: \mathbb{R} \to \mathbb{R}$ such that $g(x) = x^2 = 1$ Then $g \circ F: \mathbb{R} \to \mathbb{R}$, $(g \circ F)(x) = g(F(x))$, $g(2x + 4) = (2x + 4)^2 - 1 = 4x^2 + 16x + 15$ In this case, you can actually compose the other way: $F \circ g: \mathbb{R} \to \mathbb{R}$ such that $(f \circ g)(x) = f(g(x)) = f(x^2 - 1) = 2(x^2 - 1) + 4 = 2x^2 + 2$ Note that $f \circ G$ is not equal to $g \circ F$, in other words, composition is not commutative. And usually is not even defined both ways

What function properties are preserved under composition?

EX: if $F: X \to Y$ and $g: Y \to Z$ are 1-1 functions, is $gof: X \to Z$ also 1-1? What would a proof look like?

Assume $x, y \in X$ such that gof(x) = gof(y) [NTS: x = y]

By definition, g(f(x)) = g(f(y)). Since g is 1-1, this means f(x) = f(y) and since f is 1-1, x = y

 $\therefore gof \text{ is } 1\text{-}1$

This means that 1-1 is conserved in composition What about onto?

EX: If $F: X \to Y, g: Y \to Z$ and both are onto, is $goF: X \to Z$ onto?

Recall that $F: X \to Y$ is onto Y if $\forall y \in Y \exists x \in X[y = F(x)]$

if goF is onto, then we need to show that for any $z \in Z$ there exists an $x \in X$ such that z = goF(x)

Since g is onto, z = g(y) for some $y \in Y$. but F is also onto, so y = f(x) for some $x \in X$.

 $\therefore z = g(y) = g(f(x))$

 $\therefore goF$ is onto Z

This means that onto is conserved in composition

Given a set X that is nonempty, the <u>Identity function</u> on X is $I_x:X\to X$ such that $I_x(x)=x\ \forall x\in X$

Note that if $f: X \to Y$ then $foI_x = f$ and $I_y of = f$

If $f: X \to Y$ is both 1-1 and onto, then f is called a <u>bijection</u> or is said to be bijective

In this case, there is a unique function $F^{-1}: Y \to X$ called the <u>inverse</u> of f such that $F^{-1}(y) = x \iff F(x) = y$ I.E. $F \circ F^{-1} = I_y$ and $F^{-1} \circ F = I_x$

EX: $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = 2x - 1. This is a bijection. Find the inverse function: F^{-1}

Set y = 2x - 1 and then solve for x. So $x = \frac{y+1}{2}$ Reverse the roles of x and y to get $F^{-1}(x) = \frac{x+1}{2}$ Check: $f \circ f^{-1}(x) = f(f^{-1}(x))$ and the opposite

9 7.4: Cardinality

Cardinal Numbers = $0, 1, 2, 3, ..., n, ..., \aleph_0, \aleph$

The <u>cardinal numbers</u> are an ordered set that keep track of the possible sizes of sets. We will write |A| for the <u>Cardinality</u> of the set A. $|\emptyset| = 0$ by definition and for each $n \in \mathbb{N}$, $|\{1, 2, 3, ..., n\}| = n$ by definition. So a set A is <u>finite</u> if it is in bijection with the set $\{1, 2, 3, ..., n\}$ for some $n \in \mathbb{N}$ or $A = \emptyset$.

If A is not finite, then A is <u>Infinite</u>.

EX: \mathbb{N} is an infinite set by the Archimedian principle which says there is no largest natural number. $\therefore \nexists$ bijection $F: \mathbb{N} \to \{1, 2, 3, ..., n\}$ for any $n \in \mathbb{N}$. We set $|\mathbb{N}| = \aleph_0 =$ "Aleph nought"

In general, we say two non-empty sets have the same <u>cardinality</u> if \exists bijection $F:A\to B$

EX: $|\mathbb{Z}| = |\mathbb{N}|$

We need a bijection from \mathbb{Z} to \mathbb{N} . Say $F: \mathbb{Z} \to \mathbb{N}$

 $\mathbb{Z} = ..., -3, -2, -1, 0, 1, 2, 3, ...$

 $\mathbb{N} = 1, 2, 3, 4, 5, 6, \dots$

$$f(0) = 1, f(1) = 2, f(-1) = 3, f(2) = 4, f(-2) = 5, f(3) = 6, \dots$$

For the Real Numbers, there is infinitely many numbers between each integer. But we still do not achieve a larger infinite.

EX: $|\mathbb{Q}| = |\mathbb{Z} \times \mathbb{Z}| = |\mathbb{N}|$

Idea: To see that \mathbb{N} and \mathbb{Q}^+ = positive rational are in bijections, you can make a one to one and onto function.

"Punchline"

EX: $|\mathbb{R}| \neq |\mathbb{N}|$ We can show that $|(0,1)| \neq |\mathbb{N}$ using Cantor's Diagnelization method Suppose $|(0,1)| = |\mathbb{N}|$. then \exists a bijection $f: \mathbb{N} \to (0,1)$ so we can list all $r \in (0,1)$ as a sequence. $a_1 = f(1), a_2 = f(2)...$

Using decimal notation, we have the following. $a_1=0.d_{n1}d_{n2}...d_{nn}$ Let $c=0.c_1c_2c_3c_4$

10 Ch 8: Equivalence Relations

8.1 Intro

Again, recall that a relation from a set A to a set B is any subset $R \subseteq A \times B$. Now given such an R, the <u>inverse relation</u> for R is $R^{-1} = \{(b, a) \in B \times A | (a, b) \in R\} \subseteq B \times A$

EX: $A = \{1, 2, 3\}B = \{a, b, c\}$ $R = \{(2, c), (1, b), (3, b)\} \subseteq A \times B$ this means that $R^{-1} = \{(c, 2), (b, 1), (b, 3)\} \subseteq B \times A$

This R^{-1} is not a function because it violates the uniqueness axiom, but it is still a relation from $B \times A$.

If A = B, then a relation $R \subseteq A \times A$. This is called a relation on A

8.2 Equivalence relations

Given a relationship $R \subseteq A \times A$ on a set A, there are 3 properties to consider:

1. Reflexivity R is reflexive if $(a, a) \in R$ for every $a \in A$

R is reflexice is the diagonal of A, $\{(a,a) \in A \times A | a \in A\}$ is contained in R

- 2. Symmetric R is symmetric if for any $(a,b) \in A$, $(a,b) \in R \iff (b,a) \in R$
- 3. Transitive R is transitive if for any $a,b,c\in A$ if $(a,b)\in R\land (b,c)]inR\to (a,c)\in R$

A relation $R \subseteq A \times A$ on a set A satisfying all three properties is called an equivalence relation on A.

EX: $A = \{1, 2, 3\}R = \{(1, 2), (2, 1), (1, 1)\} \subseteq A \times A$

1. Is R reflexive?

No, $(1,1) \in R$ but $(2,2), (3,3) \notin R$

2. Is R symmetric?

Yes, (1,2) is symmetric to (2,1) and (1,1) is symmetric with itself

3. Is R transitive?

No $(2,1), (1,2) \in R$ but $(2,2) \notin R$

EX: $A = \mathbb{R}, R = \{(a, b) \in \mathbb{R} \times \mathbb{R} | a = b\}$

Then $R = \{(a, a) | a \in \mathbb{R}\}$ So it's just the diagonal of \mathbb{R}

1. Is R reflexive?

Yes! Basically, by definition.

2. is R symmetric?

Yes!

3. is R transitive?

Yes! Because for any $(a,b) \in R$ then a=b, and for any $(b,c) \in R$ then b=c $\therefore a=c$ and $(a,a) \in R$

The diagonal will always give you an equivalence relation.

```
EX: Let A be a set and define a relation R \subseteq \wp(A) \times \wp(A) by (X,Y) \in R \iff X \subseteq Y

1. Is R reflexive?

[NTS: \forall X \subseteq A[(X,X) \in R]]

let X \in \wp(A), so that X \subseteq A. Then (X,X) \in R \iff X \subseteq X

since every set is a subset of itself, this is true for all X \in \wp(A) : R is reflexive.

2. is R symmetric?

[NTS: for any X,Y \in \wp(A), (X,Y) \in R \iff (Y,X) \in R]

Suppose X,Y \in \wp(A) such that (X,Y) \in R. By definition, X \subseteq Y \subseteq A. Is (Y,X) \in R? This is true only if Y \subseteq X. This is not true in general. In fact, X \subseteq Y \land Y \subseteq X \iff X = Y. So, unless A = \emptyset, R is not symmetric. 3. Is R transitive?

If (X,Y) \in R and (Y,Z) \in R then X \subseteq Y and Y \subseteq Z. This means that X \subseteq Z. \therefore (X,Z) \in R
```

11