Unidad I: Sucesiones numéricas y Series de Funciones

Ecuaciones Diferenciales y Cálculo Multivariado Año 2024

Parte A: Series Infinitas de términos constantes T13: SERIES INFINITAS

Problema 1: Escribir el número $\frac{1}{1} = 0.33333...$ descomponiéndolo como suma

de términos que contengan potencias de 10.

Problema 2: Una hoja de 1 m de lado, es decir de 1 m² de área, se divide en dos mitades, se obtiene dos cuadriláteros uno de ellos se vuelve a dividir en dos y se repite la operación anterior, seguimos el proceso indefinidamente. Expresar el área total como suma de los sucesivos cuadriláteros.

Problema 3: Se deja gar una pelota de tenis desde una altura de 6 m y comienza a rebotai Cada vez que pega en el suelo rebota verticalmente hasta una altura que es las ¾ partes de la altura anterior. Expresar la distancia total que recorre la pelota, como suma de las distancias recorridas en cada rebote.

Dada la sucesión infinita {an} de números, si sumamos cada uno de ellos:

$$a_1 + a_2 + a_3 + a_4 + ... + a_n + ...$$
 SUMA INFINITA

Definición: Dada la sucesión infinita {an} de números se denomina serie infinita a la expresión de la forma

$$a_1 + a_2 + a_3 + a_4 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

Para resolver esta suma procedemos de la siguiente manera.

Sea:

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$

....

$$S_n = a_1 + a_2 + a_3 + a_4 + ... + a_n$$
 SUMA PARCIAL N-ÉSIMA

A esta nueva sucesión de sumas parciales {Sn} se denomina SUCESIÓN DE SUMAS PARCIALES

Definición: Dada la sucesión infinita {an} entonces la sucesión {Sn} de sumas parciales se llama serie infinita.

$$\{S_n\} = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

Los números a_1 ; a_2 ; a_3 ; ...; a_n . Son los términos de la serie infinita. Los números s_1 ; s_2 ; s_3 ; ...; s_n . Son los sumas parciales de la serie infinita.

Luego si tenemos $S_n = a_1 + a_2 + a_3 + \cdots + a_{n-2} + a_{n-1} + a_n$ Tomando el límite

$$\lim_{n \to \infty} S_n = S$$
 — Suma de la serie infinita

Ejemplo 1: Dada la expresión del Problema 1, expresarlo como serie

Ejemplo 2: Dada la expresión del Problema 2, expresarlo como serie

Ejemplo 3: Dada la expresión del Problema 3, expresarlo como serie

Definición: Dada la sucesión infinita $\{S_n\}$ de sumas parciales de la serie $\sum a_n$

Si la sucesión converge a un límite S, entonces se dice que la serie converge a S y

S se llama suma de la serie infinita.

Es decir que una serie infinita $\sum_{n=1}^{a_n} a_n$ es convergente, si converge la sucesión de sumas parciales $\{S_n\}$, lo que implica que:

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n a_k$$

Si la sucesión de las sumas parciales de una serie diverge, S no existe ($S \to \infty$ o S no existe), entonces se dice que la serie diverge.

Una serie divergente no tiene suma.

T14: PROPIEDADES DE LAS SERIES INFINITAS

Propiedad 1: La convergencia o divergencia de una serie no es afectada al cambiar un número finito de términos (por ejemplo, omitiendo pocos términos al inicio).

Propiedad 2: La convergencia o divergencia de una serie no es afectada al multiplicar cada término de la serie por una constante.

Propiedad 3: Dos series convergentes pueden sumarse (o restarse) término a término. La serie resultante es convergente y su suma es obtenida sumando (o restando) las sumas de las series dadas.

Propiedad 4: Si se suma una serie convergente y una divergente, entonces la serie resultante es divergente.

T15:

a) Condición necesaria de convergencia de una serie.

Si
$$\sum_{n=1}^{\infty} a_n$$
 es convergente $\Rightarrow \lim_{n\to\infty} a_n = 0$

En una serie convergente el $\lim_{n\to\infty}a_n=0$, pero este límite en una serie no garantiza que la serie sea convergente.

Demostración: $\sum_{n=1}^{\infty} a_n \text{ es convergente, por lo que existe el } \lim_{n\to\infty} S_n = S$

Siendo:
$$S_n = S_{n-1} + a_n \implies a_n = S_n - S_{n-1}$$

Si el $\lim_{n\to\infty} S_n = S$ existe y es único, existirá $\lim_{n\to\infty} S_{n-1} = S$

Luego:
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$$

De la suposición de que $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 0$

Ejemplo 6: Dada la serie armónica determinar si converge.

T15:

b) Criterio del término enésimo para la divergencia

Si el
$$\lim_{n\to\infty} a_n \neq 0$$
 => La serie infinita $\sum_{n=1}^{n} a_n$ es divergente

Ejemplo 7: Determinar si son divergentes:

a)
$$\sum_{n=1}^{\infty} \frac{n+2}{2n-1} =$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{2n^2} =$$

T16: Condición necesaria y suficiente de una Serie Infinita. Condición de Cauchy

La condición necesaria y suficiente para la convergencia de una serie infinita es que la suma de q términos a partir de un cierto \mathbf{m} en adelante se pueda hacer menor que un cierto $\varepsilon > 0$, tan pequeño como se quiera con tal de tomar \mathbf{m} suficientemente grande y \mathbf{q} fijo.

Dada la serie:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_m + a_{m+1} + a_{m+2} + \dots + a_{m+q} + \dots + a_n + \dots \quad \text{es convergente } \mathbf{si} \mathbf{y} \mathbf{solo} \mathbf{si}$$

O sea:
$$|a_m + a_{m+1} + a_{m+2} + ... + a_{m+q}| < \epsilon$$
 Con $\epsilon > 0$ (tpcsq)

T17: Series especiales

a) Serie geométrica

$$\left\{a \ q^{n-1}\right\} \implies \sum_{n=1}^{\infty} a \ q^{n-1} = \underbrace{a}_{a_1} + \underbrace{a}_{a_2} + \underbrace{a}_{a_3} + \underbrace{a}_{a_4} + \underbrace{a}_{a_4} + \underbrace{a}_{a_n} + \underbrace{a}_{a_n}$$

razón

$$S_1 = a$$

$$S_2 = a + a q$$

$$S_3 = a + a q + a q^2$$

$$S_4 = a + a q + a q^2 + a q^3$$

• • •

$$S_n = a + a q + a q^2 + a q^3 + ... + a q^{n-1}$$
 (1)

En (1) multiplico q a ambos miembros

$$q S_n = a q + a q^2 + a q^3 + a q^4 + ... + a q^n$$
 (2)

Ahora: (2) – (1):
$$q S_n - S_n = a q^n - a = a (q^n - 1) \Rightarrow S_n = \frac{a (q^n - 1)}{(q - 1)} = \frac{a (1 - q^n)}{(1 - q)}$$

$$S = \lim_{n \to \infty} \frac{a(1 - q^n)}{1 - q} = \lim_{n \to \infty} \frac{a}{1 - q} x \lim_{n \to \infty} (1 - q^n)$$

$$S = \frac{a}{1 - q} x \lim_{n \to \infty} (1 - q^n)$$

Conclusión: $\sum_{n=1}^{\infty} a \ q^{n-1} \begin{cases} \text{es convergente} \Leftrightarrow |q| < 1 \\ \text{es divergente} \Leftrightarrow |q| \ge 1 \end{cases}$

Ejemplo 8: Determinar si es convergente la serie que permite representar al número real 0.33..... En caso de serlo encontrar la suma de sus términos.

b) Serie armónica

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$
 Serie divergente

c) Serie p o Serie armónica generalizada

$$\sum_{p=1}^{\infty} \frac{1}{p^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{p^p} + \dots \Rightarrow \begin{cases} \sin p > 1 \text{ la serie es convergente} \\ \sin p < 1 \text{ la serie es divergente} \end{cases}$$

SERIES DE TÉRMINOS POSITIVOS T18: Criterio de la integral de Cauchy

Suponga $\sum_{n=1}^{+\infty} a_n$ es una serie de términos positivos y f es una función continua, monótona decreciente y no negativa en el intervalo [1 , + ∞) tal que $f(n) = a_n \forall n \ge 1$.

$$\int_{1}^{+\infty} f(n) dn = \exists y \text{ finito} \Rightarrow \sum_{1}^{\infty} a_n \text{ es convergente}$$

$$\int_{1}^{+\infty} f(n) dn = \exists \text{ o inf inito} \Rightarrow \sum_{1}^{\infty} a_n \text{ es divergente}$$

$$f(n) = a_n, \forall n \in \mathbb{N} \Rightarrow \sum_{n=1}^{+\infty} a_n \text{ es convergente si } \int_{1}^{+\infty} f(n) \, dn \text{ es convergente}$$

Demostración:

$$1 \times a_2 + 1 \times a_3 + \dots + 1 \times a_n \le \int_1^1 f(x) \, dx \le 1 \times a_1 + 1 \times a_2 + \dots + 1 \times a_{n-1}$$
$$S_n - a_1 \le \int_1^n f(x) \, dx \le S_{n-1}$$

$$\lim_{n\to\infty} \left(\mathbf{S}_n - \mathbf{a}_1 \right) \le \lim_{n\to\infty} \left(\int_{1}^{n} \mathbf{f}(\mathbf{x}) \ d\mathbf{x} \right) \le \lim_{n\to\infty} \left(\mathbf{S}_{n-1} \right)$$

$$S \leq \lim_{\substack{n \to \infty \\ +\infty}} \left(\int_{1}^{\infty} f(x) \, dx \right) \leq 1$$

Conclusion:
$$S \le \lim_{\substack{n \to \infty \\ +\infty}} \left(\int_{1}^{n} f(x) \, dx \right) \le S$$

$$\int_{1}^{+\infty} f(n) \, dn = \exists \ y \ \text{finito} \Rightarrow \sum_{1}^{\infty} a_n \ \text{es convergente}$$

$$\int_{1}^{+\infty} f(n) \, dn = \exists \ y \ \text{inf inito} \Rightarrow \sum_{1}^{\infty} a_n \ \text{es divergente}$$

Ejemplo 9: Determinar si es convergente la serie armónica.

Ejemplo 10: Determinar si la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente.

T19: Criterios de comparación

Mediante ellos se comparan ordenadamente los términos de la serie en estudio con los de otras series cuyo comportamiento se conoce.

Dadas dos series: $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ de términos positivos

- a) Si $\sum_{n=1}^{+\infty} b_n$ es convergente y $a_n \le b_n$, $\forall n \in \mathbb{N} \Rightarrow \sum_{n=1}^{+\infty} a_n$ también es convergente.
- b) Si $\sum_{n=1}^{\infty} b_n$ es divergente y $a_n \ge b_n$, $\forall n \in \mathbb{N} \Rightarrow \sum_{n=1}^{\infty} a_n$ también es divergente.

T19: Criterios de comparación

c) Criterio de comparación en el límite

Dadas dos series: $\sum_{n=1}^{+\infty} a_n$ y $\sum_{n=1}^{+\infty} b_n$ de términos positivos y $\lim_{n\to\infty} \frac{a_n}{b_n} = L$

c1) Si L > 0 entonces ambas son convergentes o ambas son divergentes.

- c2) Si L = 0 y $\sum_{n=1}^{+\infty} b_n$ es convergente entonces $\sum_{n=1}^{+\infty} a_n$ es convergente.
- c3) Si L = ∞ y $\sum_{n=1}^{+\infty} b_n$ es divergente entonces $\sum_{n=1}^{+\infty} a_n$ es divergente.

Ejemplo 11: Determinar si es convergente o divergente la serie $\sum_{n=1}^{+\infty} \frac{n}{8+n^3}$

Ejemplo 12: Determinar si es convergente o divergente la serie $\sum_{n=1}^{+\infty} \frac{Ln(8+n)}{n}$

T20: Serie P o Serie Armónica Generalizada

Esta serie tiene la forma: $\sum_{n=1}^{\infty} \frac{1}{np}$.

Se demostrará que: Si p > 1, la serie convergente

Si p < 1, la serie divergente

Si p
$$\neq$$
 1: $\lim_{n \to \infty} \int_{1}^{n} \frac{dx}{x^{p}} = \lim_{n \to \infty} \int_{1}^{n} x^{-p} dx = \lim_{n \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{n} = \lim_{n \to \infty} \left[\frac{n^{1-p}}{1-p} - \frac{1}{1-p} \right]$

Si p > 1: La expresión $n^{1-p} \to 0$ y el límite será $L = \frac{1}{p-1}$, la serie converge

Si p < 1: La expresión $n^{1-p} \to \infty$ y el límite será $L = \infty$, la serie diverge

Si p = 1:
$$\lim_{n\to\infty}\int_{1}^{n}\frac{dx}{x}=\lim_{n\to\infty}[Lnx]_{1}^{n}=\lim_{n\to\infty}[Ln\ n-Ln\ 1]=\infty$$
, la serie diverge

Conclusión: Dada $\sum_{n=1}^{\infty} \frac{1}{n^p}$ es convergente si p > 1 y divergente si p < 1

Si
$$\sum_{n=1}^{+\infty} a_n$$
 es una serie de términos positivos y calculamos $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$

- a) Si L < 1 $\Rightarrow \sum_{n=1}^{\infty} a_n$ es convergente
- b) Si L > 1 $\Rightarrow \sum_{n=1}^{+\infty} a_n$ es divergente
- c) Si L = 1 nada se puede decir.

Demostración:

a) Si L < 1.

Sea k = L + ϵ > 0 / L < k < 1 \Rightarrow \exists N \in \aleph / \forall n \geq N se verifica que: $\frac{a_{n+1}}{a_n} \leq k < 1$,

Entonces: $a_{n+1} \leq k \times a_n$, $\forall n \geq N$

Por tanto:

$$\begin{array}{l} a_{N+1} \leq k \times a_{N} \\ a_{N+2} \leq k \times a_{N+1} \leq k^{2} \times a_{N} \\ a_{N+3} \leq k \times a_{N+2} \leq k^{2} \times a_{N+1} \leq k^{3} \times a_{N} \\ a_{N+4} \leq k \times a_{N+3} \leq k^{2} \times a_{N+2} \leq k^{3} \times a_{N+1} \leq k^{4} \times a_{N} \\ \dots \\ a_{N+(n-N)} \leq k \times a_{N+(n-N-1)} \leq k^{n-N} \times a_{N} \quad \Rightarrow \quad a_{n} \leq k^{n-N} \times a_{N} \end{array}$$

Demostración:

Aplicando sumatoria miembro a miembro:

$$\sum_{n=N+1}^{\infty} a_n \leq \sum_{n=N+1}^{\infty} k^{n-N} \times a_N$$

$$\sum_{n=N+1}^{\infty} a_n \leq k^{-N} \times a_N \sum_{n=N+1}^{\infty} k^n$$

Serie Geométrica convergente ya que | k | < 1

Por criterio de comparación $\sum_{n=N+1}^{\infty} a_n$ es convergente

Demostración:

b) Si L > 1
$$\Longrightarrow \exists N \in \mathbb{N} / \forall n \ge N$$
 se verifica que : $\frac{a_{n+1}}{a_n} > 1$

Entonces: $a_{n+1} > a_n, \forall n \ge N$, lo que significa

que:
$$\lim_{n \to \infty} a_n \neq 0$$

La serie diverge

Ejemplo 13: Determinar si es convergente o divergente la serie $\sum_{n=1}^{+\infty} \frac{n^n}{n!}$

Ejemplo 14: Determinar si es convergente o divergente la serie

$$\sum_{n=1}^{+\infty} \frac{2^n}{n!}$$

T22: Criterio de la Raíz o de la raíz de Cauchy

Si
$$\sum a_n$$
 es una serie de términos positivos y calculamos

$$\lim_{n\to\infty} \sqrt[n]{a_n} = L$$

a) Si L < 1
$$\Rightarrow \sum_{n=1}^{\infty} a_n$$
 es convergente

b) Si L > 1
$$\Rightarrow \sum_{n=1}^{\infty} a_n$$
 es divergente

Ejemplo 15: Determinar si es convergente o divergente la serie
$$\sum_{i=1}^{+\infty} \left(\frac{1}{\log n}\right)^n$$

T23: Criterio de Raabe

Si
$$\sum_{n=1}^{+\infty} a_n$$
 es una serie de términos positivos y calculamos $\lim_{n\to\infty} n \left[\frac{a_n}{a_{n+1}} - 1 \right] = L$

- a) Si L > 1 $\Rightarrow \sum_{n=1}^{\infty} a_n$ es convergente
- b) Si L < 1 $\Rightarrow \sum_{n=1}^{\infty} a_n$ es divergente
- c) Si L = 1 nada se puede decir.

Ejemplo 16: Determinar si es convergente o divergente la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$

T24: Series alternantes - Criterio de Leibnitz

En estas series sus términos son alternadamente positivos y negativos

$$\sum_{n=1}^{+\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots$$

Condición necesaria y suficiente para la convergencia de una serie alternada

Dada la serie:
$$\sum_{n=1}^{+\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + ... + (-1)^{n+1} a_n + ...$$
 con $a_n > 0$, $\forall n$

- 1) Si $a_n \ge a_{n+1}$, $\forall n \in \mathbb{N}$ (serie monótona decreciente)
- $2) \lim_{n\to\infty} a_n = 0$

Demostración:

Dada la serie: $\sum_{1} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + ... + (-1)^{n+1} a_n + ...$

Recordando que $a_n > 0$, $\forall n \in \aleph$

Considerando las sumas parciales de índice par:

$$S_2 = (a_1 - a_2)$$
 Considerando $a_1 > a_2 \Rightarrow S_2 > 0$
$$S_4 = (a_1 - a_2) + (a_3 - a_4)$$
 Considerando $a_1 > a_2 \land a_3 > a_4 \Rightarrow S_4 > 0$

...

 $S_{2n} = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n})$ Siendo $S_{2n} > 0$ y crece a medida que n aumenta.

Considerando ahora:

$$S_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - ... - (a_{2n-2} - a_{2n-1}) - a_{2n}$$

Es decir que: $S_{2n} > a_1, \forall n \in \aleph$

 $\{S_{2n}\}$: sucesión acotada y monótona creciente.

Considerando las sumas parciales de índice impar:

$$S_1 = a_1$$

 $S_3 = a_1 - (a_2 - a_3)$
 $S_5 = a_1 - (a_2 - a_3) - (a_4 - a_5)$

...

$$S_{2n+1} = a_1 - (a_2 - a_3) - (a_4 - a_5) - ... - (a_{2n} - a_{2n+1})$$

$$a_1 = S_1 > S_3 > S_5 > \dots > S_{2n+1}$$

Entonces $\{S_{2n+1}\}$: sucesión acotada monótona decreciente.

Como
$$S_{2n+1} = S_{2n} + a_{2n+1}$$

$$\lim S_{2n+1} = \lim S_{2n+1}$$

$$\lim_{n\to\infty} S_{2n+1} = \lim_{n\to\infty} S_{2n} + \lim_{n\to\infty} a_{2n+1}$$

$$\lim_{n\to\infty} S_{2n+1} - \lim_{n\to\infty} S_{2n} = \lim_{n\to\infty} a_{2n+1}$$

$$S - S = \lim_{n\to\infty} a_{2n+1} = 0$$

Entonces $\{S_n\}$ es convergente es decir:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots$$
es convergente Ing. Roxana Ramírez - 2024

Conclusión

Dada la serie
$$\sum_{n=1}^{\infty} (-1)^n a_n =$$

- 1) Si $a_n \ge a_{n+1}$, $\forall n \in \mathbb{N}$ (serie monótona decreciente)
- $\lim_{n\to\infty} a_n = 0$

Entonces, $a_n > a_{n+1}$ es equivalente a: $\frac{a_{n+1}}{a_n} < 1$

- \square Si en una serie alternada $a_n > a_{n+1}$ pero $\lim_{n \to \infty} a_n \neq 0$ la serie es oscilante. (no convergente)
- \square Si en una serie alternada $\lim_{n\to\infty}a_n=0$, pero sus términos no son decrecientes, entonces la serie es divergente.

Ejemplo 17: Determinar si es convergente o divergente la serie $\sum_{i=n}^{+\infty} \frac{(-1)^n}{n!}$

T25: Serie de términos cualesquiera

$$\sum_{n=1}^{+\infty} a_n \Rightarrow \sum_{n=1}^{+\infty} |a_n|$$

Series absolutamente convergente

Dada la serie $\sum_{n=0}^{\infty} a_n$ se dice que es absolutamente convergente si:

$$\sum_{n=0}^{+\infty} |a_n|$$
 es convergente

Series condicionalmente convergente

Dada la serie $\sum_{n=1}^{\infty} a_n$ se dice que es condicionalmente convergente si:

- 1) $\sum_{n=1}^{\infty} a_n$ es convergente
- 2) $\sum_{n=0}^{+\infty} |a_n|$ es divergente

Teorema: si una serie es absolutamente convergente entonces es convergente.

Ejemplo 18: Determinar si es convergente o divergente la serie $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + 1}$