



FIGURE 1 - General Overview of Distributed File Storage System

Communication  
with other Server  
nodes



FIGURE 2 : One Embodiment of a Server Node



FIGURE 3 - Five metadata structures



FIGURE 4 - Sample Portion of a Filename Table

320

590

591

592

| Index | G-Code | Data   | File Logical Block                          |
|-------|--------|--------|---------------------------------------------|
| S10-  | 45     | GNODE  | Gnode = 67, Extent = 2, Root = TRUE         |
| S11-  | 46     | DATA   | Disk Logical Blocks: 456, 457 Drive 13      |
| S12-  | 47     | DATA   | Disk Logical Blocks: 667, 668 Drive 15      |
| S13-  | 48     | DATA   | Disk Logical Blocks: 112, 113 Drive 19      |
| S14-  | 49     | PARITY | Disk Logical Blocks: 554, 555 Drive 2       |
| S15-  | 50     | DATA   | Disk Logical Blocks: 458, 459 Drive 13      |
| S16-  | 51     | DATA   | Disk Logical Blocks: 669, 670 Drive 15      |
| S17-  | 52     | DATA   | Disk Logical Blocks: 119, 120 Drive 19      |
| S18-  | 53     | PARITY | Disk Logical Blocks: 556, 557 Drive 2       |
| S19-  | 54     | LINK   | Index 76                                    |
|       | ...    | ...    |                                             |
| S20-  | 76     | GNODE  | Gnode = 67, Extent = 3, Root = FALSE        |
| S21-  | 77     | DATA   | Disk Logical Blocks: 460, 461, 462 Drive 13 |
| S22-  | 78     | DATA   | Disk Logical Blocks: 671, 672, 673 Drive 15 |
| S23-  | 79     | PARITY | Disk Logical Blocks: 121, 122, 123 Drive 19 |
| S24-  | 80     | LINK   | Index 88                                    |
|       | ...    | ...    |                                             |
| S25-  | 88     | GNODE  | Gnode = 67, Extent = 3, Root = FALSE        |
| S26-  | 89     | DATA   | Disk Logical Blocks: 463, 464, 465 Drive 13 |
| S27-  | 90     | DATA   | Disk Logical Blocks: 674, 675, 676 Drive 15 |
| S28-  | 91     | PARITY | Disk Logical Blocks: 124, 125, 126 Drive 19 |
| S29-  | 92     | GNODE  | Gnode = 43, Extent = 4, Root = FALSE        |
|       | ...    | ...    |                                             |

FIGURE 5 . Sample Portion of a Gee Table

| Attribute Data |                         |
|----------------|-------------------------|
| 602-           | File Attribute - type   |
| 604-           | File Attribute - mode   |
| 606-           | File Attribute - links  |
| 608-           | File Attribute - uid    |
| 610-           | File Attribute - gid    |
| 612-           | File Attribute - size   |
| 614-           | File Attribute - used   |
|                |                         |
| 620-           | File Attribute - fileId |
| 622-           | File Attribute - atime  |
| 624-           | File Attribute - mtime  |
| 626-           | File Attribute - ctime  |
| 628-           | Child Gnid Index        |
| 630-           | Gee Index - Last Used   |
| 631-           | Gee Offset - Last Used  |
| 632-           | Gee Index - Midpoint    |
| 633-           | Gee Offset - Midpoint   |
| 634-           | Gee Index - Tail        |
| 635-           | Gee Offset - Tail       |
| 636-           | Gee Index - Root        |
| 638-           | Gnode Status            |
|                |                         |
| 640-           | Quick Shot Status       |
| 642-           | Quick Shot Link         |

600

FIGURE 6 - G-NODE ATTRIBUTES



FIGURE 7- Structure of a Gnid String



FIGURE 8a - Structure of a Cache Node



FIGURE 8B - Conceptual division of a Cache Node Table  
into Three Lists



FIGURE 9 - A Sample Lock String



FIGURE 10 - Refresh Nodes configured as a binary tree.



FIGURE 11 - RefreshNodes configured as a doubly-linked list



FIGURE 12 - Structure of an Intent Log Entry



FIGURE 13 - Structure of a File Handle



FIGURE 14a: Example of a File Look Up



FIGURE 14b Example of a File Access



FIGURE 15:  
Performing a File Access



FIGURE 16 : Performing a File Handle Look-Up



FIGURE 17: Caching File Data



FIGURE 18 - File Allocation

- Gnode  
Redirectors  
(GNR)



FIGURE 19



Figure 20a



FIGURE 20b

CONVENTIONAL RAID MAPPING  
(PRIOR ART)



FIGURE 21

FIGURE 22A



FIGURE 22B



FIGURE 23



FIGURE 24A



FIGURE 24B

2405



2405  
2410  
2415  
2420  
2430  
2440  
2450  
2460  
2470  
2480

FIGURE 25



FIGURE 26A



FIGURE 26B



DISK ARRAY INITIALIZATION USING GEE TABLE  
SPACE ALLOCATION

2530

| 2532  | 2534   | 2536                           |      |
|-------|--------|--------------------------------|------|
| INDEX | G-CODE | DATA                           | 2542 |
| ...   | ...    | ...                            |      |
| 45    | GNODE  | EXTENT=2                       |      |
| 46    | DATA   | BLOCKS 456, 457: Drive 13      |      |
| 47    | DATA   | BLOCKS 667, 668: Drive 15      |      |
| 48    | DATA   | BLOCKS 112, 113: Drive 19      |      |
| 49    | PARITY | BLOCKS 554, 555: Drive 2       |      |
| ...   | ...    | ...                            |      |
| 76    | GNODE  | EXTENT=3                       |      |
| 77    | DATA   | BLOCKS 460, 461, 462: Drive 13 |      |
| 78    | DATA   | BLOCKS 671, 672, 673: Drive 15 |      |
| 79    | PARITY | BLOCKS 121, 122, 123: Drive 19 |      |
| ...   | ...    | ...                            |      |
| 88    | GNODE  | EXTENT=2                       |      |
| 89    | DATA   | BLOCKS 463, 464, 465: Drive 2  |      |
| 90    | DATA   | BLOCKS 674, 675, 676: Drive 5  |      |
| 91    | PARITY | BLOCKS 124, 125, 126: Drive 13 |      |
| ...   |        |                                |      |

FIGURE 27

## ARRAY PREPARATION / G-TABLE FORMATTING

2448



FIGURE 28



FIGURE 29

## DRIVE FAILURE RECOVERY MECHANISM



FIGURE 30

DATA RECOVERY  
PROCESS



FIGURE 31

FIGURE 32A



FIGURE 32B





FIGURE 33

FIGURE 34A

| INITIAL ALLOCATION           |                       |              |  | DISK SPACE % |
|------------------------------|-----------------------|--------------|--|--------------|
| [DATA DATA DATA DATA PARITY] | 4 block parity ↗ 3480 | 10000 groups |  | 36%          |
| [DATA DATA DATA PARITY]      | 3 block parity ↗ 3481 | 10000 groups |  | 28%          |
| [DATA DATA PARITY]           | 2 block parity ↗ 3482 | 10000 groups |  | 22%          |
| [DATA PARITY]                | 1 block parity ↗ 3483 | 10000 groups |  | 14%          |

FIGURE 34B

|                       | FREE ↗ 3492 | OCCUPIED ↗ 3490 | TOTAL ↗ 3490 | DISK SPACE % |
|-----------------------|-------------|-----------------|--------------|--------------|
| 3480 ↘ 4 block parity | 2500 groups | 7500 groups     | 10000 groups | 36%          |
| 3481 ↘ 3 block parity | 7500 groups | 2500 groups     | 10000 groups | 28%          |
| 3482 ↘ 2 block parity | 3500 groups | 6500 groups     | 10000 groups | 22%          |
| 3483 ↘ 1 block parity | 500 groups  | 9500 groups     | 10000 groups | 14%          |

FIGURE 34C

|                       | FREE ↗ 3492                        | OCCUPIED ↗ 3490 | TOTAL ↗ 3490 | DISK SPACE %         |
|-----------------------|------------------------------------|-----------------|--------------|----------------------|
| 3480 ↘ 4 block parity | 2500 groups                        | 7500 groups     | 10000 groups | 36%                  |
| 3481 ↘ 3 block parity | -5000 groups<br>of 3 block parity  | 2500 groups     | 5000 groups  | 14%                  |
| 3482 ↘ 2 block parity | +10000 groups<br>of 1 block parity | 3500 groups     | 10000 groups | 22%                  |
| 3483 ↘ 1 block parity |                                    | 10500 groups    | 20000 groups | 28% ↗ REDISTRIBUTION |

FIGURE 35A

PROPOSED CHANGES  
TO THE PARITY GROUPING ALGORITHM

## PARITY GROUP REDISTRIBUTION PROCESSES

3500

3510

## PARITY GROUP DISSOLUTION

5-BLOCK PARITY  
GROUP

3515

1-BLOCK PARITY  
GROUP

3520

3-BLOCK PARITY  
GROUP

3525



OR

2-BLOCK PARITY  
GROUP

3530

2-BLOCK PARITY  
GROUP

3530



OR

1-BLOCK PARITY  
GROUP

3520

1-BLOCK PARITY  
GROUP

3520

1-BLOCK PARITY  
GROUP

3520



FIGURE 35B

## PARITY GROUP CONSOLIDATION

3535

3525

## 3-BLOCK PARITY GROUP

2-BLOCK PARITY  
GROUPS

3530

1-BLOCK PARITY  
GROUP

OR

## 5-BLOCK PARITY GROUP

3515



3600



FIGURE 36



FIGURE 37



FIGURE 38

**FIG. 39**



**FIG. 40**

4000 4020 4025 4028 4032 4040 4044 4046 4048



## F3 OBJECT POSITIONING PLAN

- Push LF to F4-F5 Cluster
- Issue File Handle For LF = Stale
- If Requested,
  - Send acceptance for copy
  - of SF to F1
  - Create copy of SF
  - Send file handle of SF to F1

→  
FO25

**FIG. 41**



42

FIGURE



FIGURE 43

| PCI map                                                  | Block Size | Opcode | Spare | Parity Index | Spare | RAM Addr |
|----------------------------------------------------------|------------|--------|-------|--------------|-------|----------|
| 63-----62,61-----59,58-----56,55-----51,50-----35,34,32, |            |        |       |              |       | 31-----0 |

4400

FIGURE

44