CHAPTER

6

Electromagnetic Induction

Magnetic Flux

 $\phi = \vec{B} \cdot \vec{A} = BA \cos \theta$ weber for uniform \vec{B} .

 $\phi = \int \vec{B} \cdot d\vec{A}$ for non uniform \vec{B} .

Faraday's Laws of Electromagnetic Induction

- (i) An induced emf is setup whenever the magnetic flux linking that circuit changes.
- (ii) The magnitude of the induced emf in any circuit is proportional to the rate of change of the magnetic flux linking the circuit, $\epsilon \, \alpha \, \frac{d \, \phi}{dt}$.

Lenz's Laws

The direction of an induced emf is always such as to oppose the cause producing it.

Law of EMI

 $e=-\frac{d\phi}{dt}$. The negative sign indicated that the induced emf opposes the change of the flux.

Motional EMF

When a conductor is moved across a magnetic field, an electromotive force (emf) is produced in the conductor. If the conductors forms part of a closed circuit then the emf produced causes an electric current to flow round the circuit. Hence an emf (and thus a current) is induced in the conductor as a result of its movement across the magnetic field. This is known as motional emf

EMF Induced across a moving Straight Conductor in Uniform Magnetic Field

 $E = BLv \sin \theta$ volt where (is $\vec{L} \perp \vec{v}$ and \vec{B})

 $B = \text{flux density in wb/m}^2$;

L = length of the conductor (m);

v = velocity of the conductor (m/s);

 θ = angle between direction of motion of conductor & B.

Coil Rotation in Magnetic Field Such that Axis of Rotation is Perpendicular to the Magnetic Field

Instantaneous induced emf. $E = NAB\omega \sin \omega t = E_0 \sin \omega t$, where

N = number of turns in the coil; A = area of one turn;

B = magnetic induction; $\omega =$ uniform angular velocity of the coil;

 $E_0 = \text{maximum induced emf.}$

Self Induction and Self Inductance

The property of the coil or the circuit due to which it opposes any change of the current coil or the circuit is known as **Self-Inductance**. It's unit is Henry.

Coefficient of Self inductance $L = \frac{\phi_s}{i}$ or $\phi_s = Li$

L depends only on;

- (i) Shape of the loop and
- (ii) Medium

i = current in the circuit.

 ϕ_s = magnetic flux linked with the circuit due to the current *i*.

self induced emf $e_s = \frac{d\phi_s}{dt} = -\frac{d}{dt}$ (*Li*) = -L $\frac{di}{dt}$ (if *L* is constant)

Mutual Induction

If two electric circuits are such that the magnetic field due to a current in one is partly or wholly linked with the other, the two coils are said to be electromagnetically coupled circuits. Then any change of current in one produces a change of magnetic flux in the other and the latter opposes the change by inducing an emf within itself. This phenomenon is called **Mutual Induction**.

Induced emf in the latter circuit due to a change of current in the former is called **Mutually Induced EMF**.

The circuit in which the current is changed, is called the primary and the other circuit in which the emf is induced is called the secondary.

The co-efficient of mutual induction (mutual inductance) between two electromagnetically coupled circuit is the magnetic flux linked with the secondary per unit current in the primary.

Mutual inductance = $M = \frac{\phi_m}{I_p} = \frac{\text{flux linked with secondary}}{\text{current in the primary}}$

Mutually induced emf $(E_m) = \frac{d\phi_m}{dt} = -\frac{d}{dt}$ $(MI) = -M\frac{dI}{dt}$ M depends on (1) geometry of loops (2) medium (3) orientation and distance between the loops.

Solenoid

There is a uniform magnetic field along the axis the solenoid (ideal : length >> diameter)

 $B = \mu ni$ where;

 μ = magnetic permeability of the core material;

n = number of turns in the solenoid per unit length;

i =current in the solenoid;

Self inductance of a solenoid $L = \mu n^2 A l$;

A = area of cross section of solenoid.

Super Conducting Loop in Magnetic Field

 $R=0; \ \epsilon=0.$ Therefore $\phi_{total}=constant.$ Thus through a superconducting loop flux never changes.

Energy Stored in an Inductor:

$$U = \frac{1}{2} LI^2.$$

Energy of interaction of two loops $U = I_1 \phi_2 = I_2 \phi_1 = MI_1I_2$, where M is mutual inductance.

Growth of a Current in an L-R Circuit

$$I = \frac{E}{R} (1 - e^{-Rt/L}). [If initial current = 0]$$

 $\frac{L}{R}$ = time constant of the circuit.

$$I_0 = \frac{E}{R}.$$

- (i) L behaves as open circuit at t = 0 [If i = 0]
- (ii) L behaves as short circuit at $t = \infty$ always.

Curve (1)
$$\longrightarrow \frac{L}{R}$$
 Large

Curve (2)
$$\longrightarrow \frac{L}{R}$$
 Small

Decay of Current

Initial current through the inductor = I_0 ; Current at any instant $i = I_0 e^{-Rt/L}$

