CIENCIA Y ANALITICA DE DATOS

Actividad Semanal 6 - Visualizacion

Profesor Titular: María de la Paz Rico Fernández

Profesor Tutor: Juan Miguel Meza Méndez

Alumno: Samuel Elias Flores Gonzalez

Matrícula: A01793668

Fecha: 1/Noviembre/2022

```
# Modulos, Librerias y Paquetes
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, StandardScaler
from sklearn.decomposition import PCA
```

1. Cargar los datos

Data Set Information:

This research aimed at the case of customers default payments in Taiwan and compares the predictive accuracy of probability of default among six data mining methods. From the perspective of risk management, the result of predictive accuracy of the estimated probability of default will be more valuable than the binary result of classification - credible or not credible clients. Because the real probability of default is unknown, this study presented the novel "Sorting Smoothing Method†to estimate the real probability of default. With the real probability of default as the response variable (Y), and the predictive probability of default as the independent variable (X), the

simple linear regression result (Y = A + BX) shows that the forecasting model produced by artificial neural network has the highest coefficient of determination; its regression intercept (A) is close to zero, and regression coefficient (B) to one. Therefore, among the six data mining techniques, artificial neural network is the only one that can accurately estimate the real probability of default.

Attribute Information:

This research employed a binary variable, default payment (Yes = 1, No = 0), as the response variable. This study reviewed the literature and used the following 23 variables as explanatory variables: X1: Amount of the given credit (NT dollar): it includes both the individual consumer credit and his/her family (supplementary) credit. X2: Gender (1 = male; 2 = female). X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others). X4: Marital status (1 = married; 2 = single; 3 = others). X5: Age (year). X6 - X11: History of past payment. We tracked the past monthly payment records (from April to September, 2005) as follows: X6 = the repayment status in September, 2005; X7 = the repayment status in August, 2005; . . .;X11 = the repayment status in April, 2005. The measurement scale for the repayment status is: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above. X12-X17: Amount of bill statement (NT dollar). X12 = amount of bill statement in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 = amount of bill statement in April, 2005. X18-X23: Amount of previous payment (NT dollar). X18 = amount paid in September, 2005; X19 = amount paid in August, 2005; . . .; X23 = amount paid in April, 2005.

Base de datos de aprobación de crédito.

eh, I. C., & Lien, C. H. (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2), 2473-2480.

```
url = "https://raw.githubusercontent.com/PosgradoMNA/Actividades_Aprendizaje-/main/default%20

df = pd.read_csv(url)
```

2. Informacion del dataframe

df.columns #Se verifican los nombres actuales de las columnas del dataframe

df.head(5) #Se despliegan los primeros 5 datos

	ID	Amount_Credit	Gender	Education	Marital_Status	Age	Payment_Sep_2005	Payment
0	1	20000	2.0	2.0	1.0	24.0	2.0	
1	2	120000	2.0	2.0	2.0	26.0	-1.0	
2	3	90000	2.0	2.0	2.0	34.0	0.0	
3	4	50000	2.0	2.0	1.0	37.0	0.0	
4	5	50000	1.0	2.0	1.0	57.0	-1.0	

5 rows × 25 columns

#Se reemplazan los nombres de las columnas

```
df = df.rename(columns = {'X1' : 'Amount Credit',
                           'X2' : 'Gender',
                           'X3' : 'Education',
                           'X4' : 'Marital_Status',
                           'X5' : 'Age',
                           'X6' : 'Payment_Sep_2005',
                           'X7' : 'Payment_Aug_2005',
                           'X8' : 'Payment Jul 2005',
                           'X9' : 'Payment Jun 2005',
                           'X10' : 'Payment_May_2005',
                           'X11' : 'Payment Apr 2005',
                           'X12' : 'Bill_State_Sep_2005',
                           'X13' : 'Bill_State_Aug_2005',
                           'X14' : 'Bill State Jul 2005',
                           'X15' : 'Bill_State_Jun_2005',
                           'X16' : 'Bill State May 2005',
                           'X17' : 'Bill State Apr 2005',
                           'X18' : 'Previous_Pay_Sep_2005',
                           'X19' : 'Previous_Pay_Aug_2005',
                           'X20' : 'Previous_Pay_Jul_2005',
                           'X21': 'Previous Pay Jun 2005',
                           'X22' : 'Previous Pay May 2005',
                           'X23' : 'Previous Pay Apr 2005' },
```

inplace = False

df.head(5) #Se vuelven a desplegar los primeros 5 valores del dataframe

	ID	Amount_Credit	Gender	Education	Marital_Status	Age	Payment_Sep_2005	Payment
0	1	20000	2.0	2.0	1.0	24.0	2.0	
1	2	120000	2.0	2.0	2.0	26.0	-1.0	
2	3	90000	2.0	2.0	2.0	34.0	0.0	
3	4	50000	2.0	2.0	1.0	37.0	0.0	
4	5	50000	1.0	2.0	1.0	57.0	-1.0	

5 rows × 25 columns

df.dtypes

ID	int64
Amount_Credit	int64
Gender	float64
Education	float64
Marital_Status	float64
Age	float64
Payment_Sep_2005	float64
Payment_Aug_2005	float64
Payment_Jul_2005	float64
Payment_Jun_2005	float64
Payment_May_2005	float64
Payment_Apr_2005	float64
Bill_State_Sep_2005	float64
Bill_State_Aug_2005	float64
Bill_State_Jul_2005	float64
Bill_State_Jun_2005	float64
Bill_State_May_2005	float64
Bill_State_Apr_2005	float64
Previous_Pay_Sep_2005	float64
Previous_Pay_Aug_2005	float64
Previous_Pay_Jul_2005	float64
Previous_Pay_Jun_2005	float64
Previous_Pay_May_2005	float64
Previous_Pay_Apr_2005	float64
Υ = 3= . =	float64

dtype: object

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999

Data columns (total 25 columns): # Column Non-Null Count Dtype ---------- - -0 ID 30000 non-null int64 1 Amount Credit 30000 non-null int64 2 Gender 29999 non-null float64 3 float64 Education 29998 non-null 4 float64 Marital Status 29998 non-null 5 29995 non-null float64 Payment Sep 2005 29997 non-null float64 6 7 Payment Aug 2005 29995 non-null float64 Payment Jul 2005 float64 8 29993 non-null 9 Payment_Jun_2005 29991 non-null float64 10 Payment May 2005 float64 29984 non-null 11 Payment Apr 2005 29986 non-null float64 Bill_State_Sep_2005 float64 12 29989 non-null float64 13 Bill State Aug 2005 29989 non-null 14 Bill State Jul 2005 29987 non-null float64 Bill_State_Jun_2005 15 29985 non-null float64 16 Bill State May 2005 29983 non-null float64 17 Bill State Apr 2005 29990 non-null float64 Previous Pay Sep 2005 float64 29992 non-null Previous Pay Aug 2005 19 29991 non-null float64 29992 non-null 20 Previous Pay Jul 2005 float64 Previous Pay Jun 2005 float64 21 29989 non-null Previous Pay May 2005 22 29989 non-null float64 23 Previous_Pay_Apr_2005 29995 non-null float64 24 Y 29997 non-null float64

dtypes: float64(23), int64(2)

memory usage: 5.7 MB

df.isna()

		ID Amount_C	Credit (Gender E	ducation	Marital_Status	Age	Payment_Sep_2005
	0	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False
df.isna(().va	lues.any() # Se	verific	a si hay	algun dat	o vacio		
Tru	ıe							
	4	raise	raise	raise	raise	raise	raise	raise

→ 3. Limpieza de los datos

29996 False	False False	False	False	False	False
<pre>df.dropna(inplace = True)</pre>	#Eliminamos los	datos NaN o nulos			
df.isna().values.any() #Co	omprobamos si exi	sten datos nulos			
False					

→ 4. Calculo de la estadistica descriptiva

df.describe()

	ID	Amount_Credit	Gender	Education	Marital_Status	
count	29958.000000	29958.000000	29958.000000	29958.000000	29958.000000	29958.00
mean	15005.550504	167555.900928	1.604012	1.853094	1.551739	35.48
std	8654.547473	129737.299088	0.489070	0.790471	0.521952	9.21
min	1.000000	10000.000000	1.000000	0.000000	0.000000	21.00
25%	7516.250000	50000.000000	1.000000	1.000000	1.000000	28.00
50%	15005.500000	140000.000000	2.000000	2.000000	2.000000	34.00
75%	22497.750000	240000.000000	2.000000	2.000000	2.000000	41.00
max	30000.000000	1000000.000000	2.000000	6.000000	3.000000	79.00

8 rows × 25 columns

Decidimos eliminar los registros vacios debido a que la cantidad era muy pequeña en comparacion con la cantidad total de registros, es decir se eliminaron 42 registros de 30000, menos del 1%.

Segun la estadistica descriptiva, las columnas o variables que presentan mayor desviacion estandar son: Amount_Credit, los Bill_state y los Previous_Pay; mientras que todas las demás columnas presentas una desviación estandar alrededor de 0 y 1.

Podemos observar que las columnas presentan distintas magnitudes, es decir mientras que Amount_Credit esta en el orden de los miles, otras variables o columnas estan entre los valores 0 y 1. Esto quiere decir que se debe aplicar una normalización a los datos para poder tener una menor diferencia en los rangos de los mismos.

▼ 5. Conteo de variables categoricas

Se separan las variables de entrada y la salida.

```
X = df.drop("Y", axis=1) #Eliminamos la columna y y almacenamos dataframe en X Y = df["Y"] #Almacenamos columna Y
```

Ahora nos interesa identificar a las variables categoricas para proceder a eliminarlas, puesto que solo nos interesan las numericas

ID, Gender, Education, Marital status, Age, Payment September - April 2005.

X = X.drop(['ID', 'Gender', 'Education', 'Marital_Status', 'Age', 'Payment_Sep_2005', 'Paymen
X.head() #Mostramos dataframe con datos numericos

	Amount_Credit	Bill_State_Sep_2005	Bill_State_Aug_2005	Bill_State_Jul_2005	Bill_S
0	20000	3913.0	3102.0	689.0	
1	120000	2682.0	1725.0	2682.0	
2	90000	29239.0	14027.0	13559.0	
3	50000	46990.0	48233.0	49291.0	
4	50000	8617.0	5670.0	35835.0	
7					
4					•

→ 6. Escalamiento de los datos

Prodemos a escalar los datos para evitar sesgos creados por la diferencias de magnitudes de cada una de las columnas.

	Amount_Credit	Bill_State_Sep_2005	Bill_State_Aug_2005	Bill_State_Jul_2005	Bill_S
0	0.010101	0.149982	0.069164	0.086723	
1	0.111111	0.148892	0.067858	0.087817	
2	0.080808	0.172392	0.079532	0.093789	
3	0.040404	0.188100	0.111995	0.113407	
4	0.040404	0.154144	0.071601	0.106020	
7					
4					>

▼ 7. Reduccion de dimensiones con PCA

```
-1.28164910e-02, -7.85206363e-03, -9.97520841e-03], [-9.19042877e-02, 7.78591548e-02, -8.01930001e-03, ..., -4.45835633e-05, 7.39169942e-03, -2.01033628e-03]])
```

▼ 7.1. Explicacion de la varianza de los datos

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	Р
% Varianza Explicada	2.31	1.22	0.14	0.11	0.10	0.06	0.04	0.04	0.02	0.01	0.01	C
Desviación Estándar	0.15	0.11	0.04	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.01	C
%Proporción de Varianza	56.50	29.90	3.30	2.80	2.50	1.50	1.10	0.90	0.60	0.40	0.30	(

Como vemos en la tabla, las primeras dos componentes prinpipales nos explican el 86.5%, por lo cual podemos decir que este es el nímero minimos de componentes principales. A partir de la tercera componente la varianza explicada es muy pequeña como para ser considerada.

Double-click (or enter) to edit

```
fig, axes = plt.subplots(1,2)
axes[0].scatter(scaled_X["Amount_Credit"], scaled_X["Bill_State_Sep_2005"], c=Y)
axes[0].set_title('Before PCA')
axes[1].scatter(pcs_t[:,0], pcs_t[:,1], c=Y)
axes[1].set_title('After PCA')
plt.show()
```


Se puede observar como despues de aplicar el PCA, utilizando las dos primeras componentes, se reduce su varianza distribuyendose de mejor manera, si se visualizan demasiado juntas es debido a la cantidad de registros en el conjunto de datos.

▼ 7.2. Importancia de las variables de cada componente

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
Amount_Credit	0.681	-0.727	-0.077	-0.022	-0.025	-0.015	-0.015	-0.011	-0.004
Bill_State_Sep_2005	0.334	0.317	-0.194	0.424	-0.229	0.231	-0.204	0.366	0.088
Bill_State_Aug_2005	0.350	0.343	-0.177	0.329	-0.161	0.106	0.276	-0.225	-0.271
Bill_State_Jul_2005	0.196	0.188	-0.021	0.041	-0.012	-0.106	0.105	-0.247	0.534
Bill_State_Jun_2005	0.317	0.298	0.028	-0.227	0.155	-0.395	0.138	0.194	0.187
Bill_State_May_2005	0.313	0.289	0.095	-0.429	0.260	0.074	-0.197	-0.099	-0.128
Bill_State_Apr_2005	0.232	0.212	0.240	-0.332	-0.026	-0.020	-0.232	-0.136	-0.259
Previous_Pay_Sep_2005	0.034	0.004	0.097	0.028	0.092	0.054	0.712	-0.322	-0.245
Previous_Pay_Aug_2005	0.020	-0.002	0.094	-0.031	0.064	-0.030	0.223	-0.031	0.626
Previous_Pay_Jul_2005	0.035	-0.001	0.140	-0.095	0.141	-0.017	0.406	0.762	-0.148
Previous_Pay_Jun_2005	0.043	-0.004	0.215	-0.124	0.196	0.855	0.048	0.019	0.193
Previous_Pay_May_2005	0.062	-0.013	0.816	0.150	-0.501	-0.084	-0.018	0.004	0.018
Previous_Pay_Apr_2005	0.057	-0.014	0.329	0.562	0.712	-0.141	-0.186	-0.057	-0.063

```
pcsComponents_df.PC1.abs().idxmax()
```

^{&#}x27;Amount_Credit'

Observamos que tanto la componente 1 y 2 tienen un mayor peso sobre la variable Amount_Credit

▼ 8. Histograma de los atributos

```
fig, ax = plt.subplots()
for i in range(0,13):
  plt.hist(pcs_t[:,i])
  plt.title("PC%d"%(i+1))
  plt.show()
```


▼ 9. Visualizacion de los datos usando 3 graficos

Grafica 1

```
plt.xticks(rotation = 'vertical')
g = sns.boxplot(data=pcsComponents_df)
```


plt.xticks(rotation = 'vertical')
g = sns.boxplot(data=scaled_X)

Grafica 2

sns.pairplot(pcsComponents_df)

<seaborn.axisgrid.PairGrid at 0x7fda3a7e3dd0>

sns.pairplot(scaled_X)

<seaborn.axisgrid.PairGrid at 0x7fda34f1ad50>

Grafica 3

```
PC_components = np.arange(pcs.n_components_) + 1
_ = sns.set(style = 'whitegrid',
            font_scale = 1.2
#### c. Gráfica 3
fig, ax = plt.subplots(figsize=(10, 7))
_ = sns.barplot(x = PC_components,
                y = pcs.explained_variance_ratio_,
                color = 'b'
                )
_ = sns.lineplot(x = PC_components-1,
                 y = np.cumsum(pcs.explained_variance_ratio_),
                 color = 'black',
                 linestyle = '-',
                 linewidth = 2,
                 marker = 'o',
                 markersize = 8
                 )
plt.title('Scree Plot')
plt.xlabel('N-th Principal Component')
plt.ylabel('Variance Explained')
plt.ylim(0, 1)
plt.show()
```


10. Interpreta y explica cada uno de los gráficos

Diagrama Boxplot

Con este diagrama podemos observar la distribución de cada elemento, observando el sesgo que presentan estas mismas, siendo positivos o negativos. El diagrama consta de 4 cuartiles, distribuidos en una caja dividida y dos bigote.

En el primer boxplot nos enfocamos en el PCA, donde pordemos observar que los Componente 7, 10 y 11 son los que presentan una mayor varianza pero sin presentar outliers. Por el otro lado el componente 13 tiene una caja y bigotes reducida, pero con una gran cantidad de outliers.

En el segundo box plot se muestran las columnas y su distribución, lo que nos permite ver el comportamiento mes a mes de cada variable, lo que nos podría ayudar a detectar anomalias en algún mes en específico.

Diagrama Pairplot

El pairplot nos permite observar el comportamiento que presentan las variables con respecto a las componentes. Nos permiten visualizar como se correlacionan entre sí, o en otras palabras, como las variables forman parte del PC.

Diagrama Scree Plot

Esta ultima gráfica nos despliega la varianza explicada, las barras es la varianza de cada una de las componentes, mientras que la gráfica de línea nos muestra la varianza acumulada. Visualmente, podemos observar que sobrepasamos el 90% de la variacion total en la componente PC4. Tambien podemos observar que las componentes que mas aportan a la variacion son las dos primeras.

Esta gráfica es de gran utilidad para determinar el nómero mínimo de componentes, dependiendo de la varianza acumulada que se este buscando, en este caso con las primeras dos PC ya tenemos mas del 70% explicado.

 $\underline{https://colab.research.google.com/drive/1fjr0cUbJTr98IXqJor7X3rWS4iUuukY7\#scrollTo=F-B7uQsjv7uL}$

Colab paid products - Cancel contracts here

✓ 0s completed at 10:22 PM

×