

ECE 3561 Advanced Digital Design Class 07: Flip-Flops 2 – SR, JK, and T FFs

Drew Phillips Spring 2024

S-R Flip-Flop

- Similar to S-R latch but triggered by edges
- Implementation: controller/responder structure (compare with D-FF)

Operation summary:

S = R = 0 No state change

S = 1, R = 0 Set Q to 1 (after active Ck edge)

S = 0, R = 1 Reset Q to 0 (after active Ck edge)

S = R = 1 Not allowed

Constraint: S=R=1 not allowed

Falling-Edge Triggered S-R FF

Add a bubble to the CLK

_	S	R	CLK	Q
	0	0		Q
	0	1		0
	1	0	-	1
	1	1	7	Not allowed

AU23

3

S-R FF Characteristic Equation

 Use K-map to derive characteristic equation (just like S-R latch):

S	R	CLK	Q
0	0	J	Q
0	1		0
1	0	¬	1
1	1	7	Not allowed

AU23

J-K Flip-Flop

- J-K Flip-Flop is an extended S-R Flip-Flop
- Difference: If J=K=1, then Q+=Q'
 - For S-R FF, S=R=1 is not allowed

$$J \leftrightarrow S \\ K \leftrightarrow R$$

After eliminating S=R=1

J	K	CLK	Q
0	0	*	Q
0	1	1	0
1	0	_	1
1	1		\overline{Q}

$$Q^+ = JQ' + K'Q$$

Variable-Entered K-Map

$$Q^+ = J\bar{Q} + \bar{K}Q$$

Variables = Conditional 1's

$$\begin{array}{c|cccc}
 & K & 0 & 1 \\
 & 0 & Q & 0 \\
 & 1 & 1 & \bar{Q}
\end{array}$$

$$\equiv \begin{array}{c|cc} & K & 0 & 1 \\ & 0 & Q & 0 \\ & & 1 & Q + \bar{Q} & \bar{Q} \end{array}$$

1

Q

J-K FF Controller-Responder Implementation

FIGURE 11-25

J-K Flip-Flop (Q Changes on Rising Edge)

© Cengage Learning 2014

J	K	CLK	Q
0	0	*	Q
0	1		0
1	0		1
1	1		\overline{Q}

T Flip-Flop

- Toggle (T) Flip-Flop
 - T=1: toggle the state
 - T=0: keep the state

TQ	Q ⁺	
0 0	0	
0 1	1	
1 0	1	
1 1	0	
(b)		

AU23

8

T Flip-Flop Characteristic Equation

If
$$T=1: Q^{+}=Q'$$

Implementing Flip-Flops

- There are multiple ways to implement flip-flops (or other functions):
 - Controller-responder latch structure (already seen this for D, SR, and JK FFs)
 - Adapter Design Pattern approach
 - Compare characteristic equations

Adapter Design Pattern Approach

- Implement one flip-flop using another flip-flop
- Add combinational logic in front of the inside flip-flop
- Example: Convert S-R FF into a J-K FF

Adapter Design Pattern Approach

 Identify the input and output of the combinational circuit, which transforms a set of input signals to another set of targeted input signals

 $- (J,K,Q) \rightarrow (S,R)$

Find the truth table

– Inputs: (J,K,Q)

Outputs: (S,R)

- To construct the truth table, use the already known truth table of S-R
 FF and the expected truth table of J-K FF under your design
 - Both should generate the same Q→Q+
 - These two truth tables give a relationship between (J,K,Q) and (S,R)

Adapter Design Pattern Example

Adapter Design Pattern Example

Draw the circuit.

Compare Characteristic Equations

Compare next state equations of T and J-K FFs:

$$Q^{+} = T \oplus Q = T'Q + TQ'$$
$$Q^{+} = K'Q + JQ'$$

Compare next state equations of T and D FFs:

$$Q^{+} = T \oplus Q = T'Q + TQ'$$
$$Q^{+} = D$$

T Flip-Flop Implementation

FIGURE 11-28

Implementation of T Flip-Flops

© Cengage Learning 2014

- (a) Conversion of J-K to T
- (b) Conversion of D to T

16

Practice Problem: Convert D FF to J-K FF

- Use either:
 - Adapter design pattern approach
 - Compare characteristic equations
- Draw the circuit

Convert D FF to J-K FF

Summary of Flip-Flops

