

Машинный перевод, Архитектура Seq2Seq Механизм Attention

План занятия

- Задача машинного перевода;
- Архитектура Seq2Seq для решения задачи перевода и ее обучение;
- Недостатки RNN-модели для решения задачи перевода
- Механизм внимания (Attention)

В этом видео

- Задача машинного перевода;
- Архитектура Seq2Seq для решения задачи перевода и ее обучение;
- Недостатки RNN-модели для решения задачи перевода
- Механизм внимания (Attention)

Предложение на английском и перевод на русский:

The cat is pretty

Кошечка милая

source =
$$(x_1, x_2, ..., x_n)$$

target = $(y_1, y_2, ..., y_m)$

Задача машинного перевода — найти наиболее вероятную последовательность токенов перевода на target языке при условии заданной последовательности токенов на source языке:

$$\widehat{target} = \underset{target}{argmax} P(target \mid source, \theta)$$

```
The cat is pretty
Source = (x_1, x_2, ..., x_n)
Кошечка милая
target = (y_1, y_2, ..., y_m)
```

$$P(target \mid source) = P(y_1 \mid source) \cdot P(y_2 \mid y_1, source) \dots$$
$$\dots P(y_m \mid y_1, \dots, y_{m-1}, source)$$

$$\widehat{target} = \underset{target}{argmax} P(target \mid source, \theta)$$

Задача машинного перевода — это задача Conditional Language Modeling

$$P(target \mid source) = P(y_1 \mid source) \cdot P(y_2 \mid y_1, source) \dots$$
$$\dots P(y_m \mid y_1, \dots, y_{m-1}, source)$$

$$\widehat{target} = \underset{target}{argmax} P(target \mid source, \theta)$$

Эволюция подходов к решению задача машинного перевода:

- Правиловый МТ (1950-е)
- Phrase-based/статистический МТ (1990-е)
- МТ на основе нейросетей (2010-е)

Хорошая и интересная статья об истории машинного перевода: <u>link</u>

Давайте построим RNN-модель для решения задачи перевода.

Так как машинный перевод — это задача *Conditional Language Modeling*, то архитектура нейросети будет похожа на архитектуру сети для языкового моделирования

Идея устройства RNN-модели для языкового

Идея модели:

Нейросеть будет состоять из двух частей: Encoder и Decoder.

- **Encoder** будет принимать на вход предложение на source языке и агрегировать информацию из него;
- **Decoder** будет генерировать предложение-перевод токен за токеном на основе информации, которую передаст ему encoder.

Encoder

Энкодер состоит из слоя embedding и RNN слоев. Он "читает" входную последовательность токен за токеном, и обновляет скрытые состояния своих RNN-слоев

Encoder

Скрытое состояние RNN в конце обработки предложения будет содержать агрегированную информацию о предложении

RNN

Source embeddings

Source input

вероятностей Softmax

распределение

FC слой

RNN декодера

Target embeddings

сгенерированные токены

вероятностей

FC слой

Softmax

распределение

RNN декодера

Target embeddings

сгенерированные токены

Такая архитектура модели называется **Seq2Seq** (sequence-to-sequence)

сгенерированные токены

FC слой

Softmax

RNN декодера

Target embeddings

сгенерированные токены

Обучение модели перевода

Чтобы обучить нашу модель, нам нужны данные.

Данные для задачи машинного перевода — это корпус параллельных текстов, т.е. набор пар вида:

(source_sentence, target_sentence) (доброе утро, good morning)

One-hot векторы

 $\begin{pmatrix} y_1 & y_2 & y_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$

Good Morning <EOS>

 $loss = \sum_{i=1}^{n} CE(\widehat{y_i}, y_i)$

Source sentence

One-hot векторы

 $\begin{array}{cccc} y_1 & y_2 & y_3 \\ \downarrow & \downarrow & \downarrow \\ \hat{y}_1 & \hat{y}_2 & \hat{y}_3 \end{array}$

Good Morning <EOS>

 $loss = \sum_{i=1}^{n} CE(\widehat{y_i}, y_i)$

Вся сеть целиком обучается с помощью обратного распространения ошибки

Source sentence

Teacher forcing:

Подаем на вход декодеру токены, которые модель должна сгенерировать в идеале

Teacher forcing:

Можно использовать teacher forcing с вероятностью ρ на каждой итерации обучения, начиная с ρ=1 в начале обучения и постепенно уменьшая ρ

Teacher forcing:

Bo время инференса использовать teacher forcing не получится

Нюансы обучения:

- У Encoder и Decoder разные словари (т.к языки разные);
- Для обоих словарей можно использовать subword tokenization;
- При генерации можно использовать beam search

Метрики качества для МТ

Как оценивать качество перевода?

При обучении мы используем кроссэнтропию, но она слабо коррелирует с реальным качеством перевода.

Самая распространенная метрика оценки качества перевода — BLEU

У построенной нами архитектуры есть недостатки

RNN for MT

Недостатки:

- Encoder RNN может забывать информацию из начала предложения;

RNN for MT

Недостатки:

- Encoder RNN может забывать информацию из начала предложения;
- Вся информация о входном предложении содержится в одном векторе $h_d^{\ 0}$

RNN for MT

Как можно бороться с этими проблемами:

- Использовать GRU/LSTM;
- Использовать bidirectional RNN

Но ничего из этого не поможет решить проблему достаточно хорошо

Bidirectional RNN

Один bidirectional слой имеет два вектора скрытого состояния.

Один "читает" последовательность слева направо, второй — справа налево

Итоги видео

В этом видео мы разобрали:

- Задачу машинного перевода;
- RNN-архитектуру Seq2Seq для решения задачи перевода;
- Принцип и нюансы обучения модели Seq2Seq для перевода;
- Недостатки модели Seq2Seq, основанной на RNN.