Statistics, Algorithms & AI (COMP7028) Offine Open-Book Exam Tuesday 9th February 2021, 1 PM – 4:30 PM Attempt ALL questions

Question 1

Draw the graph represented by the following adjacency matrix.

	Α	В	С	D	Е	F	G	Н
Α	0	0	2	3	4	0	0	0
В	0	0	3	0	0	6	2	0
С	2	3	0	5	0	4	0	1
D	3	0	5	0	0	0	0	0
E	4	0	0	0	0	0	4	2
F	0	6	4	0	0	0	2	0
G	0	2	0	0	4	2	0	0
Н	0	0	1	0	2	0	0	0

Outline *Kruskal's* algorithm and show how it can be used to construct a minimum spanning tree using the graph from above.

Outline *Dijkstra*'s algorithm and show how it can be used to calculate the shortest path from a given source vertex to all other reachable nodes in a graph using the graph from part above and vertex *A* as the source vertex.

Outline the Ford-Fulkerson algorithm for computing the maximum flow in a flow network.

Does the algorithm always terminate? If so, after how many iterations?

Consider the following st-flow network and feasible flow f.

- (i) What is the value of the flow f?
- (ii) Perform two iterations of the *Ford-Fulkerson* algorithm, starting from the flow *f*. Give the sequence of vertices on the augmenting path.
- (iii) What is the value of the maximum flow?
- (iv)List the vertices on the s side of the minimum cut.
- (v) What is the capacity of the minimum cut?

What does it mean to say that a problem is in P or in NP? What does it mean to say that a problem is NP-complete?

What does in mean for a problem to be intractable? What approaches can taken when faced with an intractable problem.

Consider the following map:

Using the A* algorithm work out a route from town A to town M. Use the following cost functions:

- g(n) = The cost of each move as the distance between each town (shown on map)
- h(n) = The Straight Line Distance between any town and town M. These distances are given in the table below.
- i) Provide the search tree for your solution.
- ii) Indicate the order in which you expanded the nodes and state the route you would take and the cost of that route.

Straight Line Distance to M

Α	223
В	222
С	166
D	192

Е	165
F	136
G	122

Н	111
I	100
J	60

K	32
L	102
M	0

For the operators and initial state description given below, explain how a regression planner searches for a plan to satisfy a goal, and give an example of a plan that achieves the goal $On(b, a) \wedge On(c, b) \wedge OnTable(a)$

- blocks are represented by constants: a, b, c, ... etc.
- states are described using the following predicates:

On(x, y) block x is on block y OnTable(x) block x is on the table

Clear(x) there is no block on top of block x

Holding(x) the arm is holding block x

ArmEmpty the arm is not holding any block

- initial state: On(c, a) Λ On(a, b) Λ OnTable(b) Λ ArmEmpty
- goal state: On(b, a) Λ On(a, c) Λ OnTable(c)
- operators:

```
[ Holding(x), Clear(y)] STACK(x, y) [ On(x, y), ArmEmpty, \neg Holding(x), \neg Clear(y)] [ On(x, y), Clear(x), ArmEmpty] UNSTACK(x, y) [Clear(y), Holding(x), \neg On(x, y), \neg ArmEmpty] [ OnTable(x), Clear(x), ArmEmpty] PICKUP(x) [ Holding(x), \neg OnTable(x), \neg ArmEmpty, ]
```

[Holding(x)] **PUTDOWN**(x) [OnTable(x), ArmEmpty, $\neg Holding(x)$,]

You are a robot in a lumber yard, and must learn to discriminate Oak wood from Pine wood. You choose to learn a *Decision Tree* classifier. You are given the following examples:

Example	Density	Grain	Hardness	Class
1	Heavy	Small	Hard	Oak
2	Heavy	Large	Hard	Oak
3	Heavy	Small	Hard	Oak
4	Light	Large	Soft	Oak
5	Light	Large	Hard	Pine
6	Heavy	Small	Soft	Pine
7	Heavy	Large	Soft	Pine
8	Heavy	Small	Soft	Pine

- i) Draw the decision tree that would be constructed by recursively applying information gain to determine the most informative attribute.
- ii) Classify these new examples as Oak or Pine using your decision tree above.

Density = Light, Grain = Small, Hardness = Hard Density = Light, Grain = Small, Hardness = Soft

For each of the truth tables below say whether it is possible for a perceptron to learn the required output.

In each case, explain the reason behind your decision.

i)	Input	0	0	1	1
•	Input	0	1	0	1
	Required Output	1	0	0	1

ii)	Input	0	0	1	1
	Input	0	1	0	1
	Required Output	1	1	0	0

iii)	Input	0	0	1	1
	Input	0	1	0	1
	Required Output	1	1	1	1

