Нейронные сети для сегментации. Программирование нейронных сетей.

Севастопольский Артём

вмк мгу

11 октября, 2016

Содержание

🚺 Задача сегментации

- Нейронные сети для сегментации
 - Patch-based подход
 - Fully Convolutional Networks (FCN)
 - Расширения FCN
 - U-Net

Задача сегментации

- Сегментация задача разбиения изображения на области, соответствующие различным объектам
- Семантическая сегментация: различаем объекты по их типам.
- Семантическая сегментация = классификация каждого пикселя.

Изображения: Fei-Fei Li & Andrej Karpathy & Justin Johnson CS231N, Lecture 13, 2015-16; http://www.inf-cv.uni-jena.de/semantic_segmentation

Задача сегментации

• Важна в медицинских изображениях

Изображение: [2]

Задача сегментации

• Важна в медицинских изображениях

Изображение: [2]

 Необходима для полного понимания изображения (например, в робототехнике)

Содержание

1 Задача сегментации

- Нейронные сети для сегментации
 - Patch-based подход
 - Fully Convolutional Networks (FCN)
 - Расширения FCN
 - U-Net

Типичная архитектура свёрточной нейронной сети

Изображение: Y. LeCun et al. "Gradient-Based Learning Applied to Document Recognition", Intelligent Signal Processing, 306-351, IEEE Press, 2001

Patch-based подход

Изображения: Fei-Fei Li & Andrej Karpathy & Justin Johnson CS231N, Lecture 13, 2015-16

- FCN [1] полностью состоят из свёрточных слоёв
- Получают сегментацию того же разрешения, что и исходное изображение
- Используют идею transfer learning (адаптируют VGG, GoogLeNet и др.)

- Предобученную сеть для классификации можно адаптировать для сегментации
- После встраивания слоёв можно произвести fine-tuning

- Предобученную сеть для классификации можно адаптировать для сегментации
- После встраивания слоёв можно произвести fine-tuning
- Основная проблема: низкое разрешение на выходе

Upsampling

- Для повышения разрешения (upsampling) можно использовать как простые, так и обучаемые методы
- Deconvolution layer
 (= fractionally strided convolution)
 (= backwards strided convolution)

Dot product between filter and input

Input: 4 x 4

Output: 2 x 2

Typical 3 x 3 convolution, stride 2 pad 1

- Обучение на картинках более эффективно, чем на отдельных патчах.
 При этом патчей можно получить намного больше.
- Для имитации обучения по патчам можно считать функцию потерь только по случайному набору выходных пикселей.

 Результаты на соревновании по сегментации PASCAL VOC 2011 [5]. Сравнение базовых моделей.

-	FĈN- AlexNet	FCN- VGG16	FCN- GoogLeNet ⁴
mean IU	39.8	56.0	42.5
forward time	50 ms	210 ms	59 ms
conv. layers	8	16	22
parameters	57M	134M	6M
rf size	355	404	907
max stride	32	32	32

Skip connections

 Идея skip connections: ансамблируются предсказания по разным разрешениям

Skip connections

 Сравнение различных ансамблей.

	pixel	mean	mean	f.w.
		acc.		
FCN-32s-fixed FCN-32s	83.0	59.7	45.4	72.0
FCN-32s	89.1	73.3	59.4	81.4
FCN-16s	90.0	75.7	62.4	83.0
FCN-8s	90.3	75.9	62.7	83.2

 Сравнение с другими методами.

	mean IU VOC2011 test	mean IU VOC2012 test	inference time	
R-CNN [12]	47.9	-	-	
SDS [16]	52.6	51.6	$\sim 50 \text{ s}$	
FCN-8s	62.7	62.2	\sim 175 ms	

Расширения FCN

- CRF-RNN [3]
- DeepLab [4]

Задача сегментации для биомедицинских данных

- Многие биомедицинские изображения более просты, чем визуальные сцены
- Одна из основных проблем в медицинской сегментации малый объём данных (десятки-сотни снимков)

https://grand-challenge.org/all_challenges/

- U-Net [2] вариант полносвёрточной нейронной сети для малых объёмов данных
- Существенно использует идею skip connections

Архитектура U-Net

Обучение U-Net

• Mini-batch SGD with momentum:

$$v \leftarrow \gamma v + \alpha \nabla_{\theta} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)}) \right)$$

$$\theta \leftarrow \theta - v$$

- Авторы [2] предпочитают обучать на больших изображениях, а не с большим batch size
- batch size = 1 (online learning), momentum = 0.99.
- Data augmentation: elastic transforms

Обучение U-Net

Границы объектов усиливаются по сравнению с внутренностями. Каждый пиксель корректной разметки $w_c(\mathbf{x})$ пересчитывается по формуле

$$w(\mathbf{x}) = w_c(\mathbf{x}) + w_0 \cdot \exp\left(-\frac{(d_1(\mathbf{x}) + d_2(\mathbf{x}))^2}{2\sigma^2}\right),$$

где $d_1(\mathbf{x}), d_2(\mathbf{x})$ — расстояния от \mathbf{x} до двух ближайших клеток.

Fig. 3. HeLa cells on glass recorded with DIC (differential interference contrast) microscopy. (a) raw image. (b) overlay with ground truth segmentation. Different colors indicate different instances of the HeLa cells. (c) generated segmentation mask (white: foreground, black: background). (d) map with a pixel-wise loss weight to force the network to learn the border pixels.

• EM Segmentation Challenge (ISBI 2012), [6]

30 изображений для обучения, 512x512

Изображение: EM Segmentation Challenge

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
:				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

• ISBI Cell Tracking Challenge 2015, [6]

PhC-U373: 35 изображений для обучения DIC-HeLa: 20 изображений для обучения

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	-
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

 Computer-Automated Detection of Caries in Bitewing Radiography 2015,
 [7]

40 изображений для обучения

No.	Important Properties Parts
1	caries (blue color)
2	enamel (green color)
3	dentin (yellow color)
4	pulp (red color)
5	crown (skin color)
6	restoration (orange color)
7	root canal treatment (cvan color)

	Caries	Enamel	Dentin	Pulp	Crown	Restoration	Root canal treatment
RANK 1	Ronneberger et al.						
RANK 2	Lee et al.						

- Kaggle Ultrasound Nerve Segmentation, 2016 [8]
 2000 изображений для
 - 2000 изображении для обучения
- U-Net лучшая модель для соревнования среди публично доступных решений (Тор 20)
- Решение 17 места: [9]

Список литературы I

Jonathan Long, Evan Shelhamer, and Trevor Darrell.

Fully Convolutional Networks for Semantic Segmentation. CVPR. 2015.

O. Ronneberger, P. Fischer, and T. Brox.

U-Net: Convolutional networks for biomedical image segmentation MICCAI, 2015.

S. Zheng et al.

Conditional Random Fields as Recurrent Neural Networks.

2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. 1529-1537

G. Papandreou, L. C. Chen, K. P. Murphy and A. L. Yuille.

Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation.

2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. 1742-1750.

PASCAL Visual Object Classes Challenge 2011 (VOC2011) URL: http://host.robots.ox.ac.uk/pascal/VOC/voc2011/

International Symposium on Biomedical Imaging: From Nano to Macro (ISBI)

URL: http://biomedicalimaging.org/2015/program/isbi-challenges/

Computer-Automated Detection of Caries in Bitewing Radiography, 2015 URL: http://www-o.ntust.edu.tw/ cweiwang/ISBI2015/challenge2/

Список литературы II

Kaggle Ultrasound Nerve Segmentation, 2016

URL: https://www.kaggle.com/c/ultrasound-nerve-segmentation

Andrew L. Beam "Segmenting the Brachial Plexus with Deep Learning", 17 place in Kaggle Ultrasound Nerve Segmentation

URL: https://beamandrew.github.io/deeplearning/2016/08/20/kaggle-segmentation.html

Z. Lian, X. Jing, X. Wang, H. Huang, Y. Tan and Y. Cui.

DropConnect Regularization Method with Sparsity Constraint for Neural Networks.

Chinese Journal of Electronics, vol. 25, no. 1, pp. 152-158, 1 2016.