

Graz University of Technology

Graz University of Technology

University of Stuttgart, Graz University of Technology **Denis Kalkofen**

Graz University of Technology

goals of this work

optical see-through HMD ...

- ... provides (near correct) focus cues
- ... solves the vergence-accommodation conflict
- ... shows content with optimal contrast

contributions

- first HMD to dynamically adjust position and working volume based on eye tracking confidence
- first automatic multilayer calibration routine
- first approach to compensate varifocal change in FOV
- novel focal stack decomposition approach

related work

varifocal

Padmanaban et al. 2017

Kim et al. 2019

multifocal

Akeley et al. 2004

Mercier et al. 2017

light field

Lanman and Luebke 2013

Huang et al. 2015

holographic

Peng et al. 2020

Kim et al. 2022

previous work

Ebner et al. 2022

previous work

Ebner et al. 2022

 hybrid of multifocal display and varifocal display

 enhanced contrast due to eye-tracking error compensation

static display volume size

current work

light field

• hybrid of multifocal display and varifocal display

optimalenhanced contrast due to eye-tracking error compensation

dynamic

static display volume size

0.3 dpt

through-the-lens recording

static volume

dynamic volume

through-the-lens results

GT focus distance: 3D

eye tracking error: 0.6D

display alignment

through-the-lens images

naïve rendering

aligned rendering

magnification compensation

through-the-lens recordings of moving LCD layer

no compensation

magnification compensation

IEEE ISMAR 2024 GREATER SEATTLE AREA

Gaze-Contingent Layered Optical See-Through Displays with a Confidence-Driven View Volume

Christoph Ebner

Graz University of Technology Gra

20

Dieter Schmalstieg

University of Stuttgart, Graz University of Technology **Alexander Plopski**

Graz University of Technology

Denis Kalkofen

Graz University of Technology