Each wi eliminates 1/2 the pussibilities We learn something new by wi only if its 1/2 elim are not already that is wills NOT a linear combination of the wis me'r oun so far 15 probe - any thing but 2 - possible measires FAIL 1/2" probability How do we know, I mext wi makes progress? 4 bit example s = 1010 PUSL W = 0000, 0001, 0100, 0101Verify each wis = 0

SKIP	_	Lut	Lix	70	H	Inc K	
3 / /		ואכו /	NA 12		M	WILL	

S= 1010 our socret

W	W1S	W.S	Pass w?
0000	0000	0	
0001	0000	0	
0010	0010	1	
0011	0010	1	
0100	0000	0	
0101	0000	0	
0110	0010	1:	
0111	0010	1.	
1000	1000	1	
1001	1000	1	
1010	1010	0	V
1011	1010	Ü	/
1100	1000	1	
1101	1000	1	
1110	1010	0	1
(1))	1010	0	

Consider $W_1 = 0.01$ $W_2 = 1.010$ $W_3 = 1.111$

W, +W2 leave for possible s (work next)

0101

1010 } each · W, or ! o W, 15 00

11111

+ 0000 , f conrece

W3 does not make progress

All 3 are still pussible for s

Note

W3 = W, + W2

W3 15 not linearly indep of w, + W2

Likewise will span of was + wz

W, = W2 - W2

If we have so far chosen

W, Wz., We that are linearly

(w, wx) and now wx+2

double the span of w, .. wx if wx 15 also linerily independent

(114,5)

Work of	rom P. 114			
2	0/0/.5	1010.5	2:1111	
0000	0	0	0	
000)		0	1	
0010	0	1		
0011			0	
0100		0		
0101	0		0 -	
0110			0_	
0111	0)	 er for Paulinian-Per void - Maria
1000	0			
1001	1		U	No
1010	(0	0)	0 -	new,
1011		0		1mld:
1100			0	
110	0		}	
1110			/ 1	
(11)	0	<u> </u>	0 -	

because with can be abbed for Not) to each w. wice not to reach a new element of {0,1}

So

1) EACH New wi doubtes the number of values we cannot pick

2) There are 2" possible w's seen by mensure month

3) We need n-1 w's

FAIL
/2-1 then 2/2-1 Hen 4/2-1

 $\frac{2ncceed}{(1-\frac{1}{2}n-1)(1-\frac{3}{2}n-1)(1-\frac{4}{2}n-1)}$

 $\left(\left| \frac{2^{n-2}}{2^{n-1}} \right| \right)$

 $\frac{O}{11}$ |K=n-2| $|Z^{k-1}|$

$$= (1 - 1/2) (1 - 1/4) \cdot (1 - 1/8) \cdot \cdot \cdot (1 - 1/2^{n-1})$$

Note
$$(1-a)(1-b) \ge (1-a-b)$$

Solve
$$Ws = 0$$
 farssian ξ / m
 $\theta(n^3)$

(117)

Exercise Bernstein Vazirani problem Recall H(1x>) = 1/5 (10> + (-1) × 117) if 1x> 15 10> or 11> And recall for a basis state 1x> Han (1x7) = 1/2° \(\frac{5}{150} \left(-1)^{\text{X'y}} \right) \(\frac{1}{30} \right) \\ \frac{5}{150} \left(-1)^{\text{X'y}} \right) \(\frac{1}{30} \right) \\ \frac{5}{150} \\ \frac{1}{30} \\ \fr We (cs) con think of 1x> as a bit string $X_1X_2 \cdots X_n$ the info about)x> is encoded into ±1 phases of 1y> using X - 4 Recall H(H(1x7)) = 1x7 $H(H) = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ H is its own inverse, & by induction
so is
Hen its own inverse

$$= H^{*n}(H^{*n}(1x7)) = 1x7$$

$$\frac{8 \times \text{xample}}{|x>=|110>}$$
 (n=3)

9	X1y	x·y	(-))
000	000	U)
001	000	0	
010	010		
011	010		
100	100	1	_
101	100		-)
110	110	U	
	110	0	

Can we are that

some XMy would change if any bit of x was different?

Also X.y is a parity but on Xiy
So some X.y also changes if
any bit at 1x> is different

unique signature at passible sigs?

14> = () cil sdown in previous page

In our example

= 1/VE (10007 + 10017 + 11107 + 1117 -1/VE \ 1010>+ 1011> + 1100> + 1101> H(10007) 000 001 010 Grand sum 1/58 /58 (81220) · we got it back 140> Men (1x7) encodes 1x7 in
plasses of 1y7 uniquely
for basis state 1x7

B-V problem

for some scort s

Recalling how to excode a state

If I can produce

Jan Z (-1) 1x>

X + {v,13}^n

L can Mon that other to retrieve s Because Mis Hs own inverse

I can create

1/12 & 1x> easily from Hen (1017)

Need / 52 = 1x> (-1) s.x n qubits some qubit

To get phase kick back:
$1/2 \leq X > (-1)^{S \cdot X}$
some over
To get phase kick back: 1/2n × (-1)s.x Some over Monld Decome 1/2n × (-1)s.x World Decome
Hen the atom + you get 15> on the
Six = 0 want Six = 1 want - D
107, 112 down work - "-" would be global
1+7 same deal
1-7 = (10>-147)/52 AHA

Try
$$|70 > = 10^{n}1 >$$
 $|70 > = 10^{n}1 >$
 $= (10^{n} >) H(14 >)$
 $= (10^{n} <) H(14 >)$
 $= (10^{n} <) H(14 >)$
 $= (10^{n} <) H(14 >)$
Now drive toward inputs of ()
can landle back states

 $= \frac{1}{\sqrt{2^{n+1}}} \left(\frac{10^{n}}{2^{n}} \left(\frac{100^{n}}{2^{n}} + \frac{100^{n}}{2^{n}} \right) \left(\frac{100^{n}}{2^{n}} + \frac{100^{n$

$$\begin{array}{c} X \cdot S = 0 \quad \text{on} \quad \Delta \\ X \cdot S = 0 \quad \begin{bmatrix} \Delta \\ \Delta \end{bmatrix} \Rightarrow \begin{bmatrix} 10 > -14 > 1 \\ \sqrt{2} \end{bmatrix} \\ \times S = 1 \quad \begin{bmatrix} -1 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 14 > -10 > 1 \\ \sqrt{2} \end{bmatrix} \\ = (-1)^{X \cdot S} \begin{bmatrix} 10 > -14 > 1 \\ \sqrt{2} \end{bmatrix} \end{array}$$

$$= (-1)^{X-S} [10>-11>)$$

$$\frac{50}{1/2} = \frac{1}{1/2} = \frac{1$$

$$= (1/\sqrt{5}n \le (-1)^{x/s}) \times (10>-14>)$$

$$+ **(14>) = 15> ! D$$

Consider (as some sources do for B.Zprahlem)

U = ?

promise box is effor

 $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

on $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

How can we tell which we have?

U(107)?

I(10>)= 10> I(10>)= 10>

U(117)? I(147)=117

Z(117)=-117) the difference

I(1+7)=1+7 ANA Z(1+7)=1-7

> H(U(H(10>))) 10>-I 11>-Z