A LOWER BOUND FOR PERIODS OF MATRICES

PIETRO CORVAJA, ZÉEV RUDNICK AND UMBERTO ZANNIER

ABSTRACT. For a nonsingular integer matrix A, we study the growth of the order of A modulo N. We say that a matrix is exceptional if it is diagonalizable, and a power of the matrix has all eigenvalues equal to powers of a single rational integer, or all eigenvalues are powers of a single unit in a real quadratic field.

For exceptional matrices, it is easily seen that there are arbitrarily large values of N for which the order of A modulo N is logarithmically small. In contrast, we show that if the matrix is not exceptional, then the order of A modulo N goes to infinity faster than any constant multiple of $\log N$.

1. Introduction

Let A be a $d \times d$ nonsingular integer matrix, and $N \geq 1$ an integer. The order, or period, of A modulo N is defined as the least integer $k \geq 1$ such that $A^k = I \mod N$, where I denotes the identity matrix. If A is not invertible modulo N then we set $\operatorname{ord}(A,N) = \infty$. In this note we study the minimal growth of $\operatorname{ord}(A,N)$ as $N \to \infty$.

If A is of finite order (globally), that is $A^r = I$ for some $r \ge 1$, then clearly $\operatorname{ord}(A, N) \le r$ is bounded. If A is of infinite order, then $\operatorname{ord}(A, N) \to \infty$ as $N \to \infty$. Moreover, in this case it is easy to see that $\operatorname{ord}(A, N)$ grows at least logarithmically with N, in fact if no eigenvalue of A is a root of unity then:

$$\operatorname{ord}(A,N) \geq \frac{d}{\eta_A} \log N + O(1)$$

where $\eta_A := \sum_{|\lambda_j|>1} \log |\lambda_j|$, the sum over all eigenvalues $\{\lambda_j\}$ of A which lie outside the unit circle (η_A is the entropy of the endomorphism of the torus $\mathbb{R}^d/\mathbb{Z}^d$ induced by A, or the logarithmic Mahler measure of the characteristic polynomial of A, and the condition that no eigenvalue of A is a root of unity is equivalent to ergodicity of the toral endomorphism).

There are cases when the growth of $\operatorname{ord}(A,N)$ is indeed no faster than logarithmic. For instance if we take d=1, and A=(a) where a>1 is an integer, and $N_k=a^k-1$ then

$$\operatorname{ord}(A, N_k) = k \sim \frac{\log N_k}{\log a}$$

and so

(1)
$$\liminf \frac{\operatorname{ord}(A, N)}{\log N} = \frac{1}{\log a} < \infty$$

in this case.

Date: February 9, 2004.

The same behaviour occurs in the case of 2×2 unimodular matrices $A \in \mathrm{SL}_2(\mathbb{Z})$ which are hyperbolic, that is A has a pair of distinct real eigenvalues $\lambda > 1 > \lambda^{-1}$. Then

(2)
$$\liminf \frac{\operatorname{ord}(A, N)}{\log N} = \frac{2}{\log \lambda} = \frac{2}{\eta_A}$$

See e.g. $[KR2]^{-1}$.

These cases turn out to be subsumed by the following definition: We say that A is *exceptional* if it is of finite order or if it is diagonalizable and a power A^r of A satisfies one of the following:

- (1) The eigenvalues of A^r are all a power of a single rational integer a > 1;
- (2) The eigenvalues of A^r are all a power of a single unit $\lambda \neq \pm 1$ of a real quadratic field.

We will see that if A is exceptional, then there is some c > 0 and arbitrarily large integers N for which $\operatorname{ord}(A, N) < c \log N$.

Our main finding in this note is

Theorem 1. If $A \in \operatorname{Mat}_d(\mathbb{Z})$ is not exceptional then

$$\frac{\operatorname{ord}(A,N)}{\log N} \to \infty$$

as $N \to \infty$.

A special case is that of diagonal matrices, e.g. $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. In that case Theorem 1 says that $\operatorname{ord}(a,b;N)/\log N \to \infty$ if a,b are multiplicatively independent, in contrast with (1).

Theorem 1 is in fact equivalent to a subexponential bound on the greatest common divisor $gcd(A^n - I)$ of the matrix entries of $A^n - I$. We shall derive it from

Theorem 2. If $A \in \operatorname{Mat}_d(\mathbb{Z})$ is not exceptional then for all $\epsilon > 0$

$$\gcd(A^n - I) < \exp(\epsilon n)$$

if n is sufficiently large.

In the special case of a diagonal matrix such as $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, we have $\gcd(A^n - I) = \gcd(a^n - 1, b^n - 1)$. In [BCZ] it is shown that if a, b are multiplicatively independent then for all $\epsilon > 0$,

(3)
$$\gcd(a^n - 1, b^n - 1) < \exp(\epsilon n)$$

for n sufficiently large, giving Theorem 2 in that case. To prove Theorem 2 in general, we will use a version of (3) for S-units in a general number field [CZ] .

We note that Theorem 2 establishes upper bounds on $\gcd(A^n-I)$. As for lower bounds, it is conjectured in [AR] that if A has a pair of multiplicatively independent eigenvalues then $\liminf \gcd(A^n-I) < \infty$.

Motivation: A natural object of study for number theorists, the periods of toral automorphisms were also investigated by a number of physicists and mathematicians interested in classical and quantum dynamics, see e.g. [HB, K, DF]. One

¹a special case of this appeared as a problem in the 54-th W.L. Putnam Mathematical Competition, 1994, see [An, pages 82, 242]).

reason for our own interest also lies in the quantum dynamics of toral automorphisms: It has recently been shown that any ergodic automorphism $A \in \mathrm{SL}_2(\mathbb{Z})$ of the 2-torus admits "quantum limits" different from Lebesgue measure [FNB], if one does not take into account the hidden symmetries ("Hecke operators") found in [KR1]. The key behind the constructions of these measures is the existence of values of N satisfying (2), that is $\mathrm{ord}(A,N) \sim 2\log N/\eta_A$. A higher-dimensional version of this would involve taking ergodic symplectic automorphisms $A \in \mathrm{Sp}_{2g}(\mathbb{Z})$ of the 2g-dimensional torus. Theorem 1 gives one obstruction to extending the construction of [FNB] to the higher-dimensional case.

2. Proof of Theorem 2

Assume that for a certain positive ϵ and all integers n in a certain infinite sequence $\mathcal{N} \subset \mathbb{N}$ we have

(4)
$$\gcd(A^n - I) > \exp(\epsilon n)$$
.

We shall prove that A is "exceptional", in the sense of the above definition.

We let $k \subset \overline{\mathbb{Q}}$ be the splitting field for the characteristic polynomial of A, so we may put A in Jordan form over k, namely, we may write

$$A = PBP^{-1}$$
,

where P is an invertible $d \times d$ matrix over k and B is in Jordan canonical form.

For later reference we introduce a little notation related to the field k.

We let M (resp. M_0) denote the set of (resp. finite) places of k. We shall normalize all the absolute values with respect to k, i.e. in such a way that the product formula $\prod_{\mu \in M} |x|_{\mu} = 1$ holds for $x \in k^*$, and the absolute logarithmic Weil height reads $h(x) = \sum_{\mu} \log \max\{1, |x|_{\mu}\}$. We also let S be a finite set of places of k including the archimedean ones and we denote by \mathcal{O}_S^* the group of S-units in k^* , namely those elements $x \in k$ such that $|x|_{\mu} = 1$ for all $\mu \notin S$.

Note that $B^n - I = P^{-1}(A^n - I)P$; since the entries of P and its inverse are fixed independently of n, hence have bounded denominators as n varies, this formula shows that the entries of $B^n - I$ have a "big" g.c.d., in the sense of ideals of k, for $n \in \mathcal{N}$. Since the entries of $B^n - I$ are algebraic integers, not necessarily rational, to express their g.c.d. we shall use the formula-definition

$$\log \gcd(B^n - I) := \sum_{\mu \in M_0} \log^- \max_{ij} |(B^n - I)_{ij}|_{\mu},$$

where $\log^-(x) := -\min(0, \log x)$; this is a nonincreasing nonnegative function of x > 0.

Note that this definition agrees with the usual notion in case B has rational integer entries. From (4) and the above formula $B^n - I = P^{-1}(A^n - I)P$ we immediately deduce that

(5)
$$\sum_{\mu \in M_0} \log^- \max_{ij} |(B^n - I)_{ij}|_{\mu} > \frac{\epsilon}{2} n, \quad \text{for large } n \in \mathcal{N} .$$

In fact, each entry of B^n-I is a linear combination of entries of A^n-I with coefficients having bounded denominators, whence $|(B^n-I)_{ij}|_{\mu} \leq c_{\mu} \max_{rs} |(A^n-I)_{rs}|_{\mu}$, where c_{μ} are positive numbers independent of n such that $c_{\mu}=1$ for all but finitely many $\mu \in M$. This proves (5).

We start by showing that B must be necessarily diagonal. In fact, if not some block of B would contain on the diagonal a 2×2 matrix of the form

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

where λ is an (algebraic integer) eigenvalue of A. Hence $B^n - I$ would contain among its entries the numbers $\lambda^n - 1$ and $\lambda^{n-1}n$. Then, for every $\mu \in M_0$, we would have

$$\max_{ij} |(B^n - I)_{ij}|_{\mu} \ge \max(|\lambda^n - 1|_{\mu}, |\lambda^{n-1}n|_{\mu}) \ge |n|_{\mu},$$

whence $\log^- \max_{ij} |(B^n - I)_{ij}|_{\mu} \le \log^- |n|_{\mu} = -\log |n|_{\mu}$. In conclusion,

$$\sum_{\mu \in M_0} \log^- \max_{ij} |(B^n - I)_{ij}|_{\mu} \le \sum_{\mu \in M_0} -\log |n|_{\mu} = \log n$$

the last equality holding because of the product formula. However this contradicts (5) for all large $n \in \mathcal{N}$ and this contradiction proves that B is diagonal.

Therefore from now on we assume that B is a diagonal matrix formed with the eigenvalues $\lambda_1, \ldots, \lambda_d$ of A, each counted with the suitable multiplicity.

Another case now occurs when there exist two multiplicatively independent eigenvalues, denoted α, β . Now, from (5) we get, for large $n \in \mathcal{N}$,

(6)
$$\sum_{\mu \in M_0} \log^- \max(|\alpha^n - 1|_{\mu}, |\beta^n - 1|_{\mu}) \ge \sum_{\mu \in M_0} \log^- \max_{ij} |(B^n - I)_{ij}|_{\mu} > \frac{\epsilon}{2} n.$$

We are then in position to apply (after a little change of notation) the following fact from [CZ], stated as Proposition 2 therein:

Proposition 3 (Proposition 2 of [CZ]). Let $\delta > 0$. All but finitely many solutions $(u, v) \in (\mathcal{O}_S^*)^2$ to the inequality

$$\sum_{\mu \in M_0} \log^- \max\{|u - 1|_{\mu}, |v - 1|_{\mu}\} > \delta \cdot \max\{h(u), h(v)\}$$

satisfy one of finitely many relations $u^a v^b = 1$, where $a, b \in \mathbb{Z}$ are not both zero.

Actually, Prop. 2 in [CZ] is a little stronger, since the summation is over all $\mu \in M$ rather than the finite $\mu \in M_0$ and since it also asserts that the relevant pairs (a,b) may be computed in terms of δ .

We apply this fact with $u=\alpha^n, v=\beta^n$ and S containing the finite set of places of k which are nontrivial on α or β ; note that (6) implies the inequality of the proposition, with $\delta=\epsilon/(2\max(h(\alpha),h(\beta)))$. We conclude that, for an infinity of $n\in\mathcal{N}$, a same nontrivial relation $\alpha^{an}\beta^{bn}=1$ holds, contradicting the multiplicative independence of α,β .

Therefore we are left with the case when all pairs of eigenvalues are multiplicatively dependent. This means that they generate in k^* a subgroup Γ of rank ≤ 1 .

If the rank is zero all the eigenvalues λ_i are roots of unity, so the matrix A has finite order and thus it is exceptional. Hence let us assume from now on that the rank is 1. Let then $\lambda \in \Gamma$ be a generator of the free part of Γ (it exists by basic theory). Then, for suitable roots of unity ζ_1, \ldots, ζ_d and rational integers a_1, \ldots, a_d we may write

(7)
$$\lambda_i = \zeta_i \lambda^{a_i}, \qquad i = 1, \dots, d.$$

Necessarily the ζ_i lie in k.

Let σ be an automorphism of k. Then σ fixes the set of eigenvalues, since A is a matrix defined over \mathbb{Q} ; hence σ fixes the above group Γ . Let r be the order of the torsion in Γ , so the subgroup $[r]\Gamma$ of r-th powers in Γ is cyclic, generated by λ^r . (Note that automatically $\zeta_i^r = 1$ in (7)). Then σ must send λ^r to another generator of $[r]\Gamma$, whence

$$\sigma(\lambda)^r = \lambda^{\pm r}.$$

Therefore in particular λ^r is at most quadratic over \mathbb{Q} (in fact, recall that k/\mathbb{Q} is normal).

Let us first assume that λ^r is rational. Raising the equations (7) to the power 2r, we see that the eigenvalues λ_i^{2r} of the matrix A^{2r} are positive rationals; since they are algebraic integers, they are therefore positive rational integers. Since they are pairwise multiplicatively dependent they are powers of a same positive integer (which can be taken $\lambda^{\pm 2r}$). We thus fall in another of the exceptional situations.

The last case occurs when λ^r is a quadratic irrational. Then some automorphism σ must send it to its inverse λ^{-r} . As before, we may raise equations (7) to the r-th power to find $\lambda_i^r = \lambda^{ra_i}$. Therefore $\sigma(\lambda_i^r) = \lambda_i^{-r}$. Since the λ_i are algebraic integers, the same is true for the $\lambda_i^{\pm r}$, and hence we find that all the eigenvalues of A^r are units (some of them possibly equal to ± 1) in a same quadratic field.

This concludes the proof.

3. Proof of Theorem 1

The following Lemma shows that Theorems 1 and 2 are in fact equivalent:

Lemma 4. Let A be a nonsingular integer matrix of infinite order. Then the following are equivalent:

- (1) For all $\epsilon > 0$, we have $\gcd(A^n I) < \exp(\epsilon n)$ if n is sufficiently large;
- (2) $\operatorname{ord}(A, N)/\log N \to \infty$.

Proof. Assume that $\gcd(A^n-I)<\exp(\epsilon n)$ for all $\epsilon>0$. Fix $\epsilon>0$. Take $n=\operatorname{ord}(A,N)$ and note that N divides all the matrix entries of $A^{\operatorname{ord}(A,N)}-I$. Since A does not have finite order and thus $\operatorname{ord}(A,N)\to\infty$ as $N\to\infty$, we have for N sufficiently large that

$$N \leq \gcd(A^{\operatorname{ord}(A,N)} - I) < \exp(\epsilon \operatorname{ord}(A,N))$$

Thus

$$\log N < \epsilon \operatorname{ord}(A,N) \ .$$

Since this holds for all $\epsilon > 0$ we find $\operatorname{ord}(A, N) / \log N \to \infty$.

Conversely, suppose that there is some $\rho > 0$ and an infinite sequence of integers \mathcal{N} so that $\gcd(A^n - I) > \exp(\rho n)$ for all $n \in \mathcal{N}$. Then for the sequence $N_n := \gcd(A^n - I)$, $n \in \mathcal{N}$ (which is infinite since $N_n > \exp(\rho n)$) we have

$$\operatorname{ord}(A, N_n) \le n < \log \gcd(A^n - I)/\rho = \log N_n/\rho$$

and thus $\liminf \operatorname{ord}(A, N) / \log N < \infty$.

4. Comments

It is readily seen that exceptional cases do in fact occur, and that they give rise to powers A^n such that $\gcd(A^n-I)$ is exponentially large, and hence to arbitrarily large integers N for which $\operatorname{ord}(A,N)$ is logarithmically small. The last case of the eigenvalues in a quadratic field of course requires that the irrational ones occur in conjugate pairs, since A is defined over \mathbb{Q} , and that the determinant of A is ± 1 . Examples of such integer matrices can be produced from the action of a fixed such 2×2 hyperbolic matrix $A_0 \in SL_2(\mathbb{Z})$ on tensor powers, or from $A_0 \otimes \sigma$ where σ is a permutation matrix.

To see that the exceptional cases lead to exponentially large gcd, consider first the case that a power of A has all eigenvalues a power of a single integer a>1. As we have seen in the course of proof of Theorem 2, replacing a matrix by a conjugate (over \mathbb{Q}) does not change the asymptotic behaviour. Thus we may assume that A^r is diagonal with eigenvalues a^{m_1}, \ldots, a^{m_d} . Then clearly $\operatorname{ord}(A^r, N) \leq \operatorname{ord}(a, N)$ and taking $N_n := a^n - 1$ gives $\operatorname{ord}(a, N_n) = n \sim \log N_n/a$. Thus we find $\operatorname{ord}(A, N_n) \leq r \log N_n/a$.

Now assume that a power A^r of A has all its eigenvalues a power of a single unit $\lambda > 1$ in a real quadratic field K. Then for some matrix P with entries in K, we have $A^r = PBP^{-1}$ with B diagonal with eigenvalues $\lambda^{a_1}, \ldots, \lambda^{a_d}$, where a_i are integers which sum to zero.

Since P is only determined up to a scalar multiple, we may, after multiplying P by an algebraic integer of K, assume that P has entries in the ring of integers \mathcal{O}_K of K, and then $P^{-1} = \frac{1}{\det(P)} P^{ad}$ where P^{ad} also has entries in \mathcal{O}_K .

The entries of $A^{rk} - I$ are thus \mathcal{O}_K -linear combinations of $(\lambda^{a_ik} - 1)/\det(P)$. We now note that

$$\lambda^{-k} - 1 = -\lambda^{-k}(\lambda^k - 1)$$

and thus the entries of $A^{rk}-I$ are all \mathcal{O}_K -linear combinations of $(\lambda^{|a_i|k}-1)/\det(P)$, which are in turn \mathcal{O}_K -multiples of $(\lambda^k-1)/\det(P)$. In particular, $\gcd(A^{rk}-I)$, which is a \mathbb{Z} -linear combination of the entries of $A^{rk}-I$, can be written as

$$\gcd(A^{rk} - I) = \frac{\lambda^k - 1}{\det(P)} \gamma_k$$

with $\gamma_k \in \mathcal{O}_K$.

Now taking norms from K to \mathbb{Q} we see

$$|\gcd(A^{rk}-I)|^2 = \frac{|\mathbf{N}_{K/\mathbb{Q}}(\lambda^k-1)|}{|\mathbf{N}_{K/\mathbb{Q}}(\det P)|} |\mathbf{N}_{K/\mathbb{Q}}(\gamma_k)|.$$

Since $\gamma_k \neq 0$, we have $|\mathbf{N}_{K/\mathbb{Q}}(\gamma_k)| \geq 1$ and thus

$$|\gcd(A^{rk} - I)|^2 \ge \frac{|\mathbf{N}_{K/\mathbb{Q}}(\lambda^k - 1)|}{|\mathbf{N}_{K/\mathbb{Q}}(\det P)|} \gg \lambda^k$$

which gives $|\gcd(A^{rk}-I)| \gg \lambda^{k/2}$, namely exponential growth.

References

- [AR] N. Ailon and Z. Rudnick Torsion points on curves and common divisors of a^k-1 and b^k-1 , to appear in Acta Arithmetica, preprint math.NT/0202102.
- [An] Andreescu, T, and Gelca, R. Mathematical Olympiad challenges. Birkhauser Boston, Inc., Boston, MA, 2000.

- [BCZ] Bugeaud, Y., Corvaja, P. and Zannier, U. An upper bound for the G.C.D of $a^n 1$ and $b^n 1$, Math. Zeitschrift. **243** (2003), 79–84.
- [CZ] Corvaja, P. and Zannier, U. A lower bound for the height of a rational function at S-unit points. Preprint, math.NT/0311030
- [DF] F. J. Dyson and H. Falk, Period of a discrete cat mapping, Amer. Math. Monthly 99 (1992), no. 7, 603–614.
- [FNB] F. Faure, S. Nonnenmacher, S. De Bievre. Scarred eigenstates for quantum cat maps of minimal periods. Comm. Math. Phys. 239 (2003), 449–492.
- [HB] Hannay and M. V. Berry, Quantization of linear maps on the torus-fresuel diffraction by a periodic grating. Phys. D 1 (1980), no. 3, 267–290.
- [K] J.P. Keating, Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity 4 (1991), no. 2, 277–307;
- [KR1] P. Kurlberg and Z. Rudnick. Hecke theory and equidistribution for the quantization of linear maps of the torus. *Duke Math. J.*, 103(1):47–77, 2000.
- [KR2] Kurlberg, P., Rudnick, Z., On Quantum Ergodicity for Linear Maps of the Torus, Commun. Math. Phys. 222 (2001) 1, 201–227.

DIPARTIMENTO DI MATHEMATICA E INF., VIA DELLE SCIENZE, 206, 33100 UDINE, ITALY (corvaja@dimi.uniud.it)

RAYMOND AND BEVERLY SACKLER SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TEL AVIV 69978, ISRAEL (rudnick@post.tau.ac.il)

I.U.A.V. -DCA, S. CROCE 191, 30135 VENEZIA, ITALY (zannier@iuav.it)