Project

Introduction

This dataset encompasses bike share information gathered by a company operating in Washington, D.C., spanning the years 2011 and 2012. Each entry is identified by a unique 'instant' ID number and includes various hourly recorded attributes such as date ('dteday'), season, year ('yr'), month ('mnth'), hour ('hr'), and binary indicators for holidays and weekdays. Meteorological metrics like temperature ('temp'), humidity ('hum'), and windspeed are normalized to a scale between 0 and 1. The dataset also provides counts of casual and registered riders, as well as a total count representing the overall number of riders during each recorded hour. Instances with zero bike usage were excluded from the dataset. This extensive set of variables enables a detailed examination of bike share patterns and their relationships with temporal and weather-related factors.

The below is the Descriptive Analysis of the bike share data

The De		1i. of the b	ila abawa data		
rne be		lysis of the b			L- 1
	instant	season	yr	mnth	hr \
count			17379.000000	17379.000000	17379.000000
mean	8690.0000	2.501640	0.502561	6.537775	11.546752
std	5017.0295	1.106918	0.500008	3.438776	6.914405
min	1.0000	1.000000	0.000000	1.000000	0.000000
25%	4345.5000	2.000000	0.000000	4.000000	6.000000
50%	8690.0000	3.000000	1.000000	7.000000	12.000000
75%	13034.5000	3.000000	1.000000	10.000000	18.000000
max	17379.0000	4.000000	1.000000	12.000000	23.000000
	holiday				hum \
count	17379.000000	17379.000000			17379.000000
mean	0.028770	3.003683	0.682721	0.496987	0.627229
std	0.167165	2.005771	0.465431	0.192556	0.192930
min	0.000000	0.000000	0.000000	0.020000	0.000000
25%	0.000000	1.000000	0.000000	0.340000	0.480000
50%	0.000000	3.000000	1.000000	0.500000	0.630000
75%	0.000000	5.000000	1.000000	0.660000	0.780000
max	1.000000	6.000000	1.000000	1.000000	1.000000
	windspeed	casual	registered	l count	
count	17379.000000	17379.000000	17379.000000	17379.000000)
mean	0.190098	35.676218	153.786869	189.463088	3
std	0.122340	49.305030	151.357286	181.387599)
min	0.000000	0.000000	0.000000	1.000000)
25%	0.104500	4.000000	34.000000	40.000000)
50%	0.194000	17.000000	115.000000	142.000000)
75%	0.253700	48.000000	220.000000	281.000000)
max	0.850700	367.000000	886.000000	977.000000)

The below is the insights from the descriptive analysis of the data

Season:

The data covers four seasons (1 to 4), with an average season value of approximately 2.5.

The standard deviation is around 1.11, indicating a moderate amount of variation.

Seasons are evenly distributed, as the mean is close to the midpoint (2.5).

Casual, Registered, and Total Count:

Casual, registered, and total bike counts (casual, registered, and count) have right-skewed distributions.

The mean count is 189.46, with a standard deviation of approximately 181.39.

The minimum count is 1, and the maximum count is 977.

Holiday:

The holiday variable is binary (0 or 1), indicating whether it is a holiday or not.

The dataset has a low average holiday occurrence (approximately 2.88%).

Workingday:

A binary variable (0 or 1) indicating whether it is a working day or not. The average suggests that around 68.27% of the instances are working days.

Temperature (temp): Temperature values range from 0.02 to 1, with an average of 0.5. The temperature distribution seems well-spread.

Humidity (hum): Humidity values range from 0 to 1, with an average of 0.63. The humidity distribution appears to be moderate.

Windspeed:

Windspeed values range from 0 to 0.85, with an average of 0.19. There is a moderate variation in windspeed.

Histogram to better understand the distribution of no of registered bike users.

From the above histogram, we can conclude that the no of registered bike users are decreasing steadily.

A bar plot that shows the median number of registered riders (grouped by month) for each month for the year 2011.

Another bar plot that shows the median number of registered riders (grouped by month) for each month for the year 2012.

Insights from the above bar graph

1.In the year 2011, in the 6th month the median is high which is around 130. That implies there are more no of registered bike users are in the 6th month. Whereaas in the year 2012, 9th month has more no of registered bike users.

2.In both years, the no of registered bike users are less in the first month.

3.In the year 2012 has more no of registered bike users compared to the year 2011 since the highest median of 2012 is higher than the highest median of 2011.

A bar plot showing the median number of registered riders (grouped by hour) for each hour for the month of July (include both years).

Median no of registered riders grouped by each hour in the month of july of the years 2011 and 2012.

- 1. In the month of july of both year 2011 and 2012, the 16th &17th hour has more no of registered bike users.
- 2.At the 3rd and 4th hour there are least no of registered bike users.

A bar plot showing the median number of registered riders (grouped by day) for each day (include both years)

Median no of registered rideres grouped by day for each day in the year 2011 and 2012

1.On the 17th day, no of registered bike users are more. And it was on day 21 where the no of registered bike users are least.

2. Almost every day has almost similar no of registered bike users.

A scatter plot to show the relationship between windspeed and the number of registered riders only for the month of March in the year 2011.

Relationship between windspeed and no of registered riders for the month of march in the year 2011.

- 1. As windspeed increases, the no of registered bike users decreases.
- 2. The more no of registered bike users are at the windspeed 0.3

The linear regression model to predict the no of registered bike users.

		OLS Regre	ession Re	sults				
	========							
Dep. Varia	ble:	registered	l R-squ	ared:		0.045		
Model:		OL:	Adj. I	R-squared:		0.045		
Method:		Least Squares	F-stat	tistic:		203.5		
Date:	Su	ın, 10 Mar 2024	Prob	(F-statistic	:):	7.31e-171		
Time:				ikelihood:		-1.1150e+05		
No. Observ	ations:	17379				2.230e+05		
Df Residua		17374				2.230e+05		
Df Model:	13.	1/3/-				2.2306+03		
Covariance	Type:	nonrobust						
=======								
	coef	std err	t 	P> t 	[0.025 	0.975]		
Intercept	60.0541		15.394	0.000	52.408	67.700		
season	26.0401	1.026	25.392	0.000	24.030	28.050		
holiday	-40.1160	6.749	-5.944	0.000	-53.345	-26.886		
weekday	1.2243	0.563	2.177	0.030	0.122	2.327		
windspeed	137.1213	9.279	14.778	0.000	118.934	155.309		
====== Omnibus:				 n-Watson:		0.416		
Prob(Omnib	us):	0.000) Jarque	e-Bera (JB):		12413.974		
Skew:			Prob(0.00		
Kurtosis:		5.79				37.2		
	========					=======		
Notes:								
[1] Standa	rd Errors ass	sume that the o	covariance	e matrix of	the errors	is correctl	y specified.	
Intercept:	60.054059655	5594514						
Season Coe	fficient: 26.	04012372000623	35					
Holiday Co	efficient: -4	0.115992448194	163					
Weekday Coefficient: 1.2243374021026499								
Windspeed	Coefficient:	137.1212803908	3689					
A11 C 551								
All Coeffi								
Intercept	60.054060							
season	26.040124							
holiday	-40.115992							
mpokyan	1 22/1337	70127						
[15] holid	day -40.1	15992						
weekd		24337						
winds	speed 137.1	21280						

dtype: float64

The predicted number of registered users: 105.73390873419709

Model Significance: The overall model has statistical significance, as indicated by the F-statistic (203.5) and its associated p-value (7.31e-171). This suggests that at least one of the predictors is related to the dependent variable.

R-squared Value: The R-squared value is 0.045, indicating that the model explains approximately 4.5% of the variance in the registered users' count. While this is a relatively low percentage, it suggests that the selected predictors contribute somewhat to the variability in registered users.

Individual Coefficients: The coefficients for each predictor provide information about the strength and direction of their relationship with the registered users. For instance: Season has a positive coefficient (26.04), implying that as the season variable increases, the number of registered users tends to increase. Holiday has a negative coefficient (-40.12), suggesting a decrease in registered users on holidays compared to non-holidays. Weekday has a positive coefficient (1.22), indicating a slight increase in registered users on weekdays. Windspeed has a relatively large positive coefficient (137.12), suggesting a substantial impact on the registered users' count with increasing windspeed.

Intercept Interpretation: The intercept (60.05) represents the estimated number of registered users when all predictors are zero. In this context, it might not have a practical interpretation since some predictors, like season and windspeed, cannot be

Predicted Count: The predicted number of registered users for a specific set of predictor values (season, holiday, weekday, windspeed) is approximately 105.73. This value provides an estimate based on the linear regression model, taking into account the coefficients and predictor values.