Санкт-Петербургский Политехнический университет Петра Великого Институт прикладной математики и механики

Кафедра «Прикладная математика»

Курсовая работа по дисциплине "Методы оптимизации"

Тема: общий сравнительный анализ эффективности применения метода одномерной минимизации для выбора шага в методе наискорейшего спуска

Выполнили студенты гр.3630102/70301 Камянский Д.В.

Лебедев К.С.

Иванкин А.С.

Ли Жуйци

Руководитель

доцент, к.ф.-м.н. Родионова Е.А.

1. Постановка задачи курсовой работы	3
2. Описание методов одномерной минимизации	3
а) Постановка задачи одномерной минимизации	3
b) Метод золотого сечения	4
с) Метод Фибоначчи	4
3. метод наискорейшего спуска	5
4. Результаты и выводы	7
5. Список литературы	8

1. Постановка задачи курсовой работы

Целью курсовой работы является оценка и сравнение методов Золотого сечения и Фибоначчи по их вычислительной эффективности для выбора шага в методе наискорейшего спуска.

Достижение указанной цели осуществлялось путем решения следующих основных задач:

- 1. Выбор функции, для которой выполняются условия применимости методов, и точки начального приближения.
- 2. Подсчет параметров: число итераций основного алгоритма; общее число обращений к функции, общее количество арифметических операций.
- 3. Анализ полученных результатов.

2. Описание методов одномерной минимизации

а) Постановка задачи одномерной минимизации

$$f: R \rightarrow R$$

 $\exists ! \, x^* \in [a, b]$ доставляющая минимум f(x)

$$\forall x, y \in |a, b| \begin{cases} x^* < x \le y => f(x^*) \le f(x) \le f(y) \\ x^* > x \ge y => f(x^*) \le f(x) \le f(y) \end{cases}$$

Найти $\mathbf{x}^* = \operatorname{argn}\{f(\mathbf{x}), \mathbf{x} \in |\mathbf{a}, \mathbf{b}|\}$ с точностью ϵ

Методы одномерной минимизации основаны на построении последовательности вложенных отрезков $[a_n$, $b_n]$, сходящихся к искомой точке \mathbf{x}^* .

b) Метод золотого сечения

В данном методе строится последовательность вложенных отрезков, осуществляющих золотое сечение.

На каждом шаге алгоритма рассматривается три отрезка [a_n , α_n], [$lpha_n$

,
$$eta_n$$
], [eta_n , b_n] где $lpha_n=b_n-rac{b_n-a_n}{arphi}$, $eta_n=lpha_n+rac{b_n-a_n}{arphi}$ $arphi=rac{1+\sqrt{5}}{2}$

Исходя из ограничений, наложенных на целевую функцию, определяется следующее приближение [a_{n+1} , b_{n+1}] и переопределяются α_{n+1} , β_{n+1}

$$a_{n+1} = \alpha_n, \ \alpha_{n+1} = \beta_n, \ \beta_{n+1} = b_{n+1} - (\alpha_{n+1} - a_{n+1}), \ b_{n+1} = b_n \quad \text{if} \quad f(\alpha_n) > f(\beta_n)$$

$$a_{n+1} = a_n$$
, $\alpha_{n+1} = a_{n+1} + (b_{n+1} - \beta_{n+1})$, $\beta_{n+1} = \alpha_n$, $b_{n+1} = \beta_n$ if $f(\alpha_n) \le f(\beta_n)$

Можно выделить два важных свойства метода золотого сечения:

1:
$$|\mathbf{b}_{n} - a_{n}| = \left(\frac{-1 + \sqrt{5}}{2}\right)^{n} (b_{1} - a_{1})$$

2: На каждом шаге алгоритма достаточно пересчитать значение f(x) лишь в одной точке, α_n или β_n

с) Метод Фибоначчи

Метод Фибоначчи является оптимальным последовательным методом, т.е. методом, обеспечивающим максимальное гарантированное сокращение отрезка локализации при заданном числе N вычислений функции. Этот метод основан на использовании чисел Фибоначчи F_n , задаваемых рекуррентной формулой

$$F_n = F_{n-1} + F_{n-2} \ (n \ge 2)$$

Метод Фибоначчи состоит из N-1 шагов. Очередной (k+1)-й шаг выполняют здесь аналогично (k+1)-й итерации метода деления отрезка пополам. В отличие от него точки α^k , β^k находят по формулам

$$\alpha^{k} = \alpha^{k} + \frac{F_{N-k-1}}{F_{N-k+1}} \Delta^{k} \qquad \beta^{k} = \alpha^{k} + \frac{F_{N-k}}{F_{N-k+1}} \Delta^{k}$$

Новый отрезок локализации определяют по тому же правилу:

Если
$$\mathrm{f}(\alpha^{\mathrm{k}}) \leq \mathrm{f}(\beta^{\mathrm{k}})$$
. то $\left[a^{\mathrm{k}+1}\,,b^{\mathrm{k}+1}\right] = \left[\alpha^{\mathrm{k}},\beta^{\mathrm{k}}\right]$

Если
$$f(\alpha^k) > f(\beta^k)$$
. то $[a^{k+1}, b^{k+1}] = [a^k, b^k]$

3. метод наискорейшего спуска

$$f(x_k - \alpha_k \nabla f(x_k)) = \min_{\alpha \ge 0} f(x_k - \alpha \nabla f(x_k))$$

Начальный этап

Выберем eps>0 параметр. характеризующий условие окончание вычислений, x_0 — начальное приближение. Положим k=0 и перейдем к основному этапу

Основной этап

Шаг 1: вычисляем V/(т).

Шаг 2: определяем α_k , исходя из условия $\min_{\alpha \geq 0} f(x_k - \alpha \nabla f(x_k))$.

Шаг 3: полагаем $\mathbf{x}_{k+1} = x_k - \alpha_k \nabla f(x_k)$, заменяем K на K +1 и переходим к шагу 1.

Условие окончания вычислений $\|\nabla f\|^2 < eps$

Теорема 1 Для ограниченной снизу функции $f(x) \in C^1$, градиент $\nabla f(x)$ которой удовлетворяет условию Липшица с постоянной L:

 $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ при любых $x, y \in R^n$. значение параметра α_k градиентном методе выбираются по формуле $f(x) - f(x_k) \le \epsilon \alpha \big| |\nabla f(x_k)| \big|^2$; последовательность $\{x\}$. определяемая процессом $\{x_{k+1} = x\}$

 $x_k - \alpha_k \nabla f(x_k) \, \mathbf{x}_0 - \mathbf{д}$ ано k = 0,1,2,...), такова, что неравенство $(\left||\nabla f(x_k)|\right|^2 < \mathrm{eps})$ при $k \to \infty$ выполнено при любом малом положительном eps для любого начального приближения \mathbf{x}_0

Теорема 2 Если Функция f(x) удовлетворяет Теореме 1 при условии определения параметра α_k по формуле ($f(x_k - \alpha_k \nabla f(x_k)) = 0$

 $\min_{\alpha \geq 0} f(x_k - \alpha \nabla f(x_k))$ в оптимальном градиентном методе, то

 $\left|\left|\nabla f(x_k)\right|\right| o 0$ при $k o \infty$ при любом начальном x_0

Теорема 3 Пусть функция $f(x) \in C^2$, причем квадратичная форма $y^T H(x) y$. связанная с матрицей Гессе вторых производных H(x), такова, что при любых т $f(x) \in R^n$

$$||y||^2 \le y^T H(x) y \le M||y||^2 0 < m < M$$

Пусть $\{x_k\}$ последовательность, определяемая процессом $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$, Тогда для любой начальной точки то последовательность $\{x_k\}$ при $k \to \infty$ сходится к единственной точке минимума x_0 , со скоростью, определяемое следующим образом:

$$|f_k - f_*| \le q^k (f_0 - f_*), ||x_k - x_*|| \le Cq^{\frac{k}{2}}, 0 < q < 1$$

В данной работе будем рассматривать функцию:

$$f(x_1, x_2) = 2x_1^2 + 3x_2^2 + \frac{\sin(2x_1 + 7x_2)}{49} + 3x_1 + 2x_2$$

с начальным приближением $x_0 = \{-100; 100\}$

Вывод оценок для теоремы 3:

$$y^{T}H(x)y = 4y_{1}^{2} + 6y_{2}^{2} - \frac{(2y_{1} + 7y_{2})^{2}}{49} * \sin(2x_{1} + 7x_{2})$$
$$y^{T}H(x)y \ge 4y_{1}^{2} + 6y_{2}^{2} - \frac{(2y_{1} + 7y_{2})^{2}}{49} \ge 4y_{1}^{2} + 6y_{2}^{2} - \frac{(2|y_{1}| + 7|y_{2}|)^{2}}{49}$$

$$=4y_1^2 + 6y_2^2 - \frac{4}{49}y_1^2 - y_2^2 - \frac{4}{7}|y_1 - y_2| \ge 3y_1^2 + 5y_2^2 - \frac{4}{7}|y_1y_2| \ge 3y_1^2 + 5y_2^2 - \frac{2}{7}y_1^2 - \frac{2}{7}y_2^2 \ge 2y_1^2 + 4y_2^2 \ge 2 * ||y||^2, \mathbf{m} = \mathbf{2}$$

$$y^{T}H(x)y \le 4y_{1}^{2} + 6y_{2}^{2} \le 6||y||^{2}, \mathbf{M} = \mathbf{6}$$

$$2||y||^{2} \le y^{T}H(x)y \le 6||y||^{2}$$

4. Результаты и выводы

Метод Золотого сечения

3	i _n	i_f	i_m
1e-1	4	48	140
1e-3	6	72	210
1e-5	7	84	245
1e-7	8	96	280
1e-10	10	120	350

Метод Фибоначчи

3	i _n	i_f	i _m
1e-1	4	60	236
1e-3	6	75	295
1e-5	6	90	354
1e-7	7	105	413
1e-10	10	120	472

i_n – число итераций основного алгоритма

 \mathbf{i}_f —общее число обращений к функции

 i_m — общее количество арифметических операций

Вывод: из полученных результатов следует, что для данной задачи МЗС показывает себя эффективнее МФ: i_f в МЗС не превышает i_f в МФ, а для невысоких € значительно ниже; i_m в МЗС для всех рассмотренных € значительно ниже, чем в МФ. Но для высоких точностей i, ниже в МФ по сравнению с МЗС, что делает его предпочтительнее при высокой сложности вычислений в основном алгоритме (напр., вычисление градиента).

5. Список литературы

- 1. Курс лекций по предмету Методы оптимизации, Родионова Е.А. 2020.
- 2. Петухов Л.В., Серёгин Г.А., Родионова Е.А. Методы оптимизации. Задачи выпуклого программирования: Учеб. пособие СПб. : Изд-во Политехнического ун-та, 2014.
- 3. Лыткина Л.И., Сафонов К.В., Хоролич Г.Б. Методы оптимизации и вариационное исчисление:

Учеб. пособие. Сиб. гос. аэрокосмич. ун-т. – Красноярск, 2012. – 116 с.

4. Амосов А.А Вычислительные методы для инженеров: Учеб. пособие / Амосов А.А., Дубинский Ю.А., Копченова Н.В. - М.: Высш. шк., 1994. - 544 с.:ил.