Sprawozdanie – Laboratorium nr 4

Diagonalizacja macierzy operatora energii w 2D

Tomasz Rajchel 2019/03/21

Wstęp teoretyczny

Wartości własne i wektory własne

Niech **A** będzie macierzą kwadratową n×n, λ - liczbą rzeczywistą, a v – wektorem długości n. Niezerowy wektor, który po przekształceniu macierzą **A** wskazuje ten sam kierunek nazywamy wektorem własnym. Można to zapisać:

$$\mathbf{A} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}$$

Następnie wykonując kilka działań:

$$A \cdot v - \lambda \cdot v = 0$$

$$(A - I \cdot \lambda) \cdot v = 0$$

$$det(A - I \cdot \lambda) = 0$$

Z ostatniego równania otrzymujemy równanie charakterystyczne o stopniu rozmiaru macierzy, którego pierwiastki są wartościami własnymi macierzy.

Wektory własne znajdujemy podstawiając kolejne wartości własne za λ.

Metoda Householdera

Metoda Householdera pozwala na redukcję macierzy hermitowskiej do postaci trójdiagonalnej.

Opis zadania

Teoria

Celem zadania jest znalezienie numerycznego rozwiązania niezależnego od czasu równania Schrödingera w dwóch wymiarach.

$$H \psi = E \psi$$

W tym celu wprowadzamy siatkę węzłów:

$$x_i = \Delta \cdot i$$
, $i = 1, 2, ..., n_x$
oraz
 $y_i = \Delta \cdot i$, $i = 1, 2, ..., n_y$

Następnie dyskretyzujemy równanie własne na siatce zastępując drugie pochodne ilorazami różnicowymi.

Dokonujemy teraz reindeksacji: $l = j + (i - 1) \cdot n_y$, l = 1, 2, ..., n, $n = n_x \cdot n_y$ oraz wprowadzamy

współczynnik
$$t = \frac{-h^2}{2 m \Delta^2}$$

dzięki czemu równanie przyjmuje prostszą postać:

$$H \psi = t(\psi_{l-ny} + \psi_{l-1} - 4 \psi_l + \psi_{l+1} + \psi_{l+ny})$$

Jeśli operator H zapiszemy jako macierz kwadratową $n \times n$ to jedyne elementy niezerowe w wierszu mają postać:

$$H_{l, l\pm nv} = H_{l, l\pm 1} = t,$$
 $H_{l, l} = -4t$

więc macierz H jest pięcioprzekątniowa jak na rysunku poniżej:

Rysunek 1: Postać macierzy operatora energii dla problemu własnego $H\psi = E\psi$ w 2D.

Naszym celem jest jej diagonalizacja.

Implementacja

Zadanie wykonamy korzystając z biblioteki "Numerical Recipes", a wykresy wykonamy korzystając z programu gnuplot.

Przyjmujemy następujące parametry: $n = n_x \cdot n_y$, $n_x = 20$, $n_y = 20$, m = 10, t = -0.021.

Macierz H przekształcimy do postaci trójdiagonalnej

$$P^{-1}HP=T$$

przy użyciu procedury tred2(H, n, d, e) (dokonującej redukcji Householdera), gdzie:

- d wektor elementów na diagonali
- e wektor elementów na pierwszej poddiagonali

Następnie zdiagonalizujemy macierz T

$$\mathbf{T} \cdot \mathbf{y}_k = \lambda_k \cdot \mathbf{y}_k$$

przy użyciu procedury tqli(d, e, n, Y) w której

Y – macierz jednostkowa rozmiaru n×n, w której zapiszemy wektory własne T

Odtwarzamy wektory własne pierwotnego problemu **X** wykonując mnożenie macierzy:

$$X = P \cdot Y$$

Wyniki

Na rysunkach powyżej przedstawiono wektory własne macierzy **H** odpowiadające dziesięciu najniższym wartościom własnym *(funkcje falowe hamiltonanu dla cząstki w dwuwymiarowym kwadratowym pudle)*. W podpisach nad wykresami zamieszczono wartości własne *(energie poszczególnych stanów)*.