Fundamentals of Signals and Systems

Chapter 5 - Discrete Processing of Analog Signals

Outline of Topics

- Sampling ADC
- Sampling theorem
- Reconstruction DAC
- 4 Hybrid systems
- **DFT**

Analog-to-Discrete Conversion

To convert a continuous-time signal, i.e., analog signal, into a discrete one.

Mathematically, sampling is described with

$$x(t) \rightarrow x[n] = x(nT_s)$$
 (1)

Physically, a sampling can be implemented with an electronic switch.

$$\underbrace{x(t)}_{t = nT_s} \underbrace{x[n] = x(nT_s)}_{}$$

Fig. 5.1: Implementation of sampling operation in time domain

Ideally, sampling should satisfy: $x[n] \Leftrightarrow x(t)$.

Fig. 5.2: Three continuous-time signals yielding the same x[n] when sampled with the same period T_s .

Fig. 5.2 implies that all

$$x_1(t), x_2(t), x_3(t)$$
 sampling with $T_s \Rightarrow x[n]$

Under what conditions x(t) can be uniquely determined by its samples x[n]? And how serious the situation is if these conditions are not satisfied?

Let
$$x(t) \leftrightarrow \tilde{X}(j\omega), \ x[n] \leftrightarrow X(e^{j\Omega}).$$
 Note
$$x[n] \Leftrightarrow x(t) \Leftrightarrow X(e^{j\Omega}) \Leftrightarrow \tilde{X}(j\omega)$$

It follows from the IFT of $\tilde{X}(j\omega)$ and (1) that

$$x[n] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{X}(j\omega) e^{j\omega n T_s} d\omega$$

Divide $(-\infty, +\infty)$ for ω into a set of intervals with the points

$$\omega_k \triangleq \frac{2\pi k + \pi}{T_s}, \quad k = \dots, -2, -1, 0, 1, 2, \dots$$

Then $x[n] = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} \int_{(2\pi k - \pi)/T_s}^{(2\pi k + \pi)/T_s} \tilde{X}(j\omega) e^{j\omega nT_s} d\omega$ and hence with $\xi = T_s \omega$

$$x[n] = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} \frac{1}{T_s} \int_{(2\pi k - \pi)}^{(2\pi k + \pi)} \tilde{X}(j\xi/T_s) e^{j\xi n} d\xi$$

With some manipulations, it can be shown that

$$\begin{cases}
X(e^{j\Omega}) &= \frac{1}{T_s} \sum_{k=-\infty}^{+\infty} \tilde{X}(j\frac{\Omega + 2k\pi}{T_s}) \\
(\omega &= \frac{\Omega}{T_s}, \ \omega_s \triangleq \frac{2\pi}{T_s}) \\
X(e^{jT_s\omega}) &= \frac{1}{T_s} \sum_{k=-\infty}^{+\infty} \tilde{X}(j(\omega + k\omega_s))
\end{cases} \tag{2}$$

As known,
$$x(t) = \frac{\omega_M}{2\pi} (\frac{\sin(\omega_M t/2)}{\omega_M t/2})^2 \leftrightarrow \tilde{X}(j\omega) = (1 - \frac{|\omega|}{\omega_M}) w_{2\omega_M}(\omega)$$
.

Fig. 5.3: (a) $|X(e^{j\omega T_S})|$ with $T_s=\frac{4\pi}{3\omega_M}$; (b) $|X(e^{j\omega T_S})|$ with $T_s=\frac{4\pi}{5\omega_M}$.

$\mathsf{Theorem}$

Suppose x(t) is bandlimited:

$$\tilde{X}(j\omega) = 0, \ \forall \ |\omega| \ge \omega_M$$

Then x(t) can be recovered from its samples $x[n] = x(nT_s)$ if

$$\omega_s \triangleq \frac{2\pi}{T_s} > 2\omega_M \triangleq \omega_N \tag{3}$$

where ω_N is usually referred to as the Nyquist rate.

This is also called *Nyquist Theorem* or Sampling theorem.

Example 5.1 : Let x(t) be a signal with a band limited to ω_M and $p_{\tau}(t)$ is a periodic signal:

$$p_{\tau}(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\tau} w_{\tau}(t - kT)$$

Analyze the spectrum of $\tilde{x}(t) = x(t)p_{\tau}(t)$.

Fig. 5.4: A mixer equivalent to a sampler. (a) x(t); (b) $\tau p_{\tau}(t)$; (c) $\tau \tilde{x}(t)$.

Reconstruction - DAC

Solution: First of all, $p_{\tau}(t) = \sum_{k} c[k] e^{j\omega_{s}kt}$, where

$$c[k] = \tau^{-1} \frac{1}{T_s} \tau \frac{\sin(k\omega_s \tau/2)}{k\omega_s \tau/2} = \frac{1}{T_s} \frac{\sin(k\omega_s \tau/2)}{k\omega_s \tau/2}, \ \forall \ k$$

Therefore, $\tilde{x}(t)=x(t)p_{\tau}(t)\leftrightarrow \tilde{X}(j\omega)=\sum_k c[k]X(j(\omega-k\omega_s))$. One observes

$$\lim_{T/T_s \to 0} c[k] = 1/T_s \implies x[n] = x(nT_s) \leftrightarrow X(e^{jT_s\omega}) \approx \tilde{X}(j\omega)$$

This implies that the ideal sampling can be realized using a mixer.

Discrete-to-Analog Conversion

This is done with

Fig. 5.5: Structure of the discrete-analog-convertor (DAC).

where Mix is a device to execute $x_p(t) = \sum_{m=-\infty}^{+\infty} x[m]\delta(t-mT_s)$, $h_d(t) \leftrightarrow H_d(j\omega)$ and

$$x[n] \rightarrow \hat{x}(t) = \sum_{m=-\infty}^{+\infty} x[m]h_d(t - mT_s) \tag{4}$$

How is $\hat{x}(t)$ close to the original x(t)?

Applying the FT to both sides of the above equation yields

$$\hat{X}(j\omega) = \sum_{m=-\infty}^{+\infty} x[m] H_d(j\omega) e^{-jm\omega T_s} = H_d(j\omega) X(e^{j\omega T_s})$$
 (5)

Take

Outline

$$H_d(j\omega) = T_s w_{2\omega_l}(\omega) \triangleq H_0(j\omega) \Leftrightarrow h_0(t) = T_s \frac{\sin(\omega_l t)}{\pi t}$$
 (6)

It turns out from (4) that the corresponding reconstructed signal is

$$\hat{x}_0(t) = T_s \sum_{m=-\infty}^{+\infty} x[m] \frac{\sin(\omega_l(t - mT_s))}{\pi(t - mT_s)}$$
(7)

Under the recovery condition (3), it follows from (2), (5), and (6) that $\hat{X}(j\omega)=\tilde{X}(j\omega)$ and hence $\hat{x}_0(t)\equiv x(t)$ as long as

$$w_M < \omega_l \le \frac{\omega_s}{2} \tag{8}$$

Note that $\hat{x}_0(nT_s)=x[n]$ is always true if $\omega_l=\frac{k\omega_s}{2}$ for any integer k>1 which violates (8), even though $\hat{x}_0(t)\neq x(t)$ for all $t\neq nT_s$. As seen, (4) can be rewritten into

$$\hat{x}(t) = \sum_{m=-\infty}^{n} x[m]h_d(t - mT_s) + \sum_{m=n+1}^{+\infty} x[m]h_d(t - mT_s)$$

In an on-line (real-time) signal reconstruction system, for $t<(n+1)T_s$ the samples of discrete-time sequence x[m] are available just for $m\leq n$.

To make $\hat{x}(t)$ implementable, it suffices to ensure

$$h_d(t) \equiv 0, \ \forall \ t < 0$$

This means that the reconstruction system $H_d(j\omega)$ should be causal!

 $h_0(t)=T_s {sin(\omega_l t)\over \pi t}$ is non-causal. Though of theoretical importance, in practice it has to be replaced with an implementable reconstruction system.

Zero order hold (ZOH)

Outline

$$h_1(t) \triangleq w_{T_s}(t - T_s/2) \implies \hat{x}_1(t) = \sum_{m = -\infty}^{+\infty} x[m]h_1(t - mT_s)$$

Fig. 5.6: Reconstruction of x(t) (dotted-line) using ZOH, where $T_s = 0.1$.

Clearly, the reconstructed signal $\hat{x}_1(t)$ is very different from x(t).

Why is that?

DFT

Note: $H_1(j\omega)=2\frac{\sin(\omega T_s/2)}{\omega}e^{-j\omega T_2/2}$, $\hat{x}_1(t)$ different from x(t) due to: i) there is a time delay of $T_s/2$; ii) $|H_1(j\omega)|$ is not flat within $[-\omega_M,\omega_M]$, and iii) $|H_1(j\omega)|$ is not nil constantly outside $[-\omega_M,\omega_M]$. This is demonstrated with Fig. 5.6.

Fig. 5.7: Demonstration of the imperfection of the ZOH reconstruction.

First order hold (FOH):
$$h_2(t) \triangleq \frac{t}{T_s} \left[w_{T_s}(t - \frac{T_s}{2}) - w_{T_s}(t - \frac{3T_s}{2}) \right]$$

Reconstruction - DAC

Fig. 5.8: Reconstruction of x(t) (dotted-line) using $\hat{x}_2(t) = \sum_n x[n]h_2(t-nT_s)$.

It can be shown that

$$\hat{x}_2(t) = \sum_{n} [x[n] + \frac{x[n+1] - x[n]}{T_s} (t - nT_s)] h_1(t - nT_s)$$

Clearly, the first order hold yields a better result. Why is that?

To remove these undesired high frequency components, the continuous-time signal $\hat{x}(t)$ from the hold is usually smoothed by a smoothing analog low-pass filter - anti-imaging filter $H_i(i\omega)$.

Based on (5), we have

$$\bar{X}(j\omega) = H_i(j\omega)H_d(j\omega)X(e^{j\omega T_s})$$
(9)

What is the best $H_i(j\omega)$?

Note: Sampling Theorem yields a sufficient condition only.

Aliasing effect

Fig. 5.9: (a)-(b) — for $x_0(t)$; (c)-(d) — for $x_1(t)$; (e)-(f) — for $\hat{x}_0(t)$.

If we discretize this signal with a sampling frequency $8.00 \ kHz$, the high frequency spectrum than 20 kHz will be folded around the frequency ω_s . This aliasing effect can damage badly the reconstructed signal.

In many applications, the analog signals have a very wide bandwidth of spectrum. In order to reduce the effect of the aliasing phenomenon, the signals are pre-filtered before sampled. Such a filter, denoted as $H_a(j\omega)$, is usually called aliasing filter and is intended to limit the spectrum of the output $x_a(t)$ to $\omega_s/2$ without damaging too much the information of x(t).

Fig. 5.10: Block-diagram of discrete processing of continuous-time signals.

DFT

The DTFT $X(e^{j\Omega})$ of x[n] is a function of the continuous variable Ω .

Fig. 5.11: (a) a finite duration x[n] of 24 samples; (b) the magnitude spectrum of $X(e^{j\Omega})$.

The discrete Fourier transform (DFT) is the sampled DTFT of the same signal at the frequency points

$$\Omega_k = \frac{2\pi k}{N_s} \triangleq k\Omega_s, \quad k \in \mathcal{Z}$$
 (10)

where $\Omega_s = 2\pi/N_s$ is the sampling period with N_s a positive integer.

The N_s -point DFT of x[n] is then defined as

$$X[k] \triangleq \sum_{s=0}^{+\infty} x[n]e^{-j\frac{2\pi kn}{N_s}} = X(e^{j\Omega_s k})$$
 (11)

Note X[k] is periodic with period N_s . So, the DTFS suggests

$$X[k] = \sum_{m=0}^{N_s - 1} \tilde{x}[m]e^{-j\Omega_s mk}$$
(12)

where the $\tilde{x}[m]$ (i.e., the DTFS coefficients of X[k]) are given by

$$\tilde{x}[m] = \frac{1}{N_s} \sum_{k=0}^{N_s - 1} X[k] e^{j\Omega_s k m}, \ m = 0, 1, \dots, N_s - 1$$
 (13)

called the N_s -point inverse discrete Fourier transform (IDTF) of X[k].

It can be shown that

$$\tilde{x}[m] = \sum_{l=-\infty}^{+\infty} x[m - lN_s] \tag{14}$$

¹Here, the periodic signal X[k] is decomposed using bases $\{e^{-j\Omega_s m},\ m=0,1,\cdots,N_s-1\}$ rather than $\{e^{j\Omega_s m},\ m=0,1,\cdots,N_s-1\}$ as they are identical.

It is easy understand that (14) is in general not invertible, this is to say that x[n] can not be uniquely determined from $\tilde{x}[n]$ for any N_s .

However, if x[n] is of finite duration L, say

$$x[n] = 0, \; \forall n < N_1, \; n > N_1 + L - 1.$$
 Then

$$\tilde{x}[n] = x[n], \quad n = N_1, N_1 + 1, \dots, N_1 + L - 1$$

as long as

Outline

$$N_s \ge L \tag{15}$$

The above is actually consistent with the sampling theorem specified with (3), while (14) is the discrete counterpart of (2). It should be noted that (15) is just a sufficient condition for the sampling number N_s to ensure the reconstruction of x[n] from its DFT.

Example 5.2: Consider the signal x[n] shown in Fig. 5.11, which is of a duration of L=24 samples. Computed its N_s -DFT and then corresponding IDFT $\tilde{x}[n]$ for different $N_s = 12, 24, 28$.

Case I: $N_s = 12 < L$, corresponding a under-sampling situation.

Fig. 5.12: (a) 12-point DFT of x[n] shown in Fig. 5.11 The x-axis seems wrong; (b) the IDFT $\tilde{x}[n]$.

 $\tilde{x}[n]$ is totally different from x[n] for $n=13,14,\cdots,23$ due to aliasing effect.

Case II: $N_s = 24 = L$, corresponding to the critical sampling. The results are represented in Fig. 5.13.

Fig. 5.13: (a) 24-point DFT of x[n] shown in Fig. 5.11; (b) the IDFT $\tilde{x}[n]$.

For this case, as observed, $\tilde{x}[n] = x[n], \ n = 0, 1, 2, \cdots, 23$, which means that x[n] can be recovered from X[k] as there is no overlapping between x[n] and x[n+24m] for any non-zero integer.

Case III: $N_s = 28 > L$, corresponding to an over-sampling. The results are represented in Fig. 5.14.

Fig. 5.14: (a) 28-point DFT of x[n] shown in Fig. 5.11; (b) the IDFT $\tilde{x}[n]$.

As expected, $\tilde{x}[n] = x[n], n = 0, 1, 2, \dots, 23$, which is confirmed in Fig. 5.14(a). Though over-sampling provides a better resolution than the critical-sampling, both have exactly the same information on x[n].