Esercizi di Strutture Discrete

Alberto Carraro

27/04/2006

MCD, mcm, congruenze

Esercizio 1. Quali sono il quoto e il resto della divisione di -202 per 20?

Soluzione $-202 = 20 \cdot (-10) + (-2)$

Esercizio 2. Sia $a \in \mathbb{Z}$. Si dimostri che $0 \mid a$ sse a = 0.

Soluzione

- (⇒) Assumiamo $0 \mid a$. Allora esiste $c \in \mathbb{Z}$ tale che $a = 0 \cdot c$. Ma per ogni $c \in \mathbb{Z}$ si ha $0 = 0 \cdot c$, quindi a = 0.
- (<) Assumiamo a=0. Come già detto per ogni $c\in\mathbb{Z}$ si ha $0=0\cdot c$. Quindi $0\mid 0$.

Esercizio 3. Si dimostri che per ogni $a \in \mathbb{Z}$

- $a) a \mid 0$
- b) 1 | a

Soluzione

- a) Bisogna verificare che esiste $c \in \mathbb{Z}$ tale che 0 = ac. Basta prendere c = 0.
- b) Bisogna verificare che esiste $c \in \mathbb{Z}$ tale che $a = 1 \cdot c$. Basta prendere c = a.

Esercizio 4. Si dimostri che $a \mid 1$ sse a = 1 oppure a = -1.

Soluzione

- (⇒) Assumiamo $a \mid 1$. Allora esiste $c \in \mathbb{Z}$ tale che 1 = ac. Gli unici casi possibili in \mathbb{Z} sono: c = a = 1 oppure c = a = -1.
- (⇐) Assumiamo a=1. Allora esiste $c \in \mathbb{Z}$ tale che 1=ac. Basta prendere c=1. Ora assumiamo a=-1. Allora esiste $c \in \mathbb{Z}$ tale che 1=ac. Basta prendere c=-1.

Esercizio 5. Qual è la classe di equivalenza di 24 nella relazione \equiv_9 in \mathbb{Z} , cioè cos'è $[24]_{\equiv_9}$?

Soluzione Sono tutti i numeri interi a tali che $9 \mid (24-a)$: cioè è l'insieme $\{\ldots, -21, -12, -3, 6, 15, 24, \ldots\}$.

Esercizio 6. Siano a, b, m, n numeri interi, $m, n \ge 1$, e sia [m, n] il mcm positivo di m ed n. Si dimostri che $a \equiv_m b$ e $a \equiv_n b$ sse $a \equiv_{[m,n]} b$.

Soluzione

 (\Rightarrow) Assumiamo $a \equiv_m b \in a \equiv_n b$.

$$m \mid (a-b)$$
 (def di congruenza)
 $n \mid (a-b)$ (def di congruenza)
 $(m \mid (a-b) \land m \mid (a-b)) \Rightarrow [m,n] \mid (a-b)$ (def di mcm)

Quindi $a \equiv_{[m,n]} b$.

 (\Leftarrow) Assumiamo $a \equiv_{[m,n]} b$.

$$[m,n] \mid (a-b) \qquad \qquad \text{(def di congruenza)}$$

$$\exists c \in \mathbb{Z}.([m,n]c=(a-b)) \qquad \text{(def di divisibilità)}$$

$$\exists k \in \mathbb{Z}.(mk=[m,n]) \qquad \qquad \text{(def di mcm)}$$

$$\exists h \in \mathbb{Z}.(nh=[m,n]) \qquad \qquad \text{(def di mcm)}$$

$$m(kc)=(a-b) \qquad \qquad n(hc)=(a-b)$$

Quindi $a \equiv_m b$ e $a \equiv_n b$.

Esercizio 7. Si dimostri che per ogni numero naturale n si ha $7^n \equiv_8 1$ se n è pari, e $7^n \equiv_8 7$ se n è dispari.

Soluzione

a) Assumiamo n pari. Allora n=2k con $k\in\mathbb{N}.$ Possiamo procedere per induzione su k.

(Caso base: k = 0) $7^0 = 1$. $1 \equiv_8 1$ è vero perché $8 \mid 0$.

(Caso ind: k > 0) Supponiamo $8 \mid (7^{2k} - 1)$ e verifichiamo l'asserto per n = 2(k+1).

$$\exists c \in \mathbb{Z}.((7^{2k}-1)=8c)$$
 (ipotesi induttiva)
$$7^{2k}=8c+1$$

$$7^{2k+2}=49(8c+1)$$

$$7^{2(k+1)}-1=49\cdot 8c+48)$$

$$7^{2(k+1)}-1=8(49c+6)$$

$$8\mid (7^{2(k+1)}-1)$$

b) Assumiamo n dispari. Allora n=2k+1 con $k\in\mathbb{N}.$ Possiamo procedere per induzione su k.

(Caso base: k = 0) $7^1 = 7$. $7 \equiv_8 7$ è vero perché $8 \mid 0$.

(Caso ind: k > 0) Supponiamo $8 \mid (7^{2k+1} - 7)$ e verifichiamo l'asserto per n = 2(k+1) + 1.

$$\exists c \in \mathbb{Z}.((7^{2k+1}-7)=8c)$$
 (ipotesi induttiva)
$$7^{2k+1}=8c+7$$

$$7^{2k+2+1}=49(8c+7)$$

$$7^{2(k+1)+1}-7=49\cdot 8c+7\cdot 48$$

$$7^{2(k+1)+1}-7=8(49c+42)$$

$$8\mid (7^{2(k+1)+1}-7)$$