Chapter 3, Section 11

April 17, 2025

- **1.** Show that the result of (11.2) is false without the projective hypothesis. For example, let $X = \mathbb{A}^n_k$, let $P = (0, \dots, 0)$, let U = X P, and let $f: U \to X$ be the inclusion. Then the fibers of f all have dimension 0, but $R^{n-1}f_*\mathcal{O}_U \neq 0$.
- 2. Show that a projective morphism with finite fibers (= quasi-finite (II, Ex. 3.5)) is a finite morphism.
- **3.** Let X be a normal, projective variety over an algebraically closed field k. Let \mathfrak{d} be a linear system (of effective Cartier divisors) without base points, and assume that \mathfrak{d} is not composite with a pencil, which means that if $f: X \to \mathbb{P}^n_k$ is the morphism determined by \mathfrak{d} , then dim $f(X) \geq 2$. Then show that every divisor in \mathfrak{d} is connected. This improves Bertini's theorem (10.9.1).
- **4.** Principle of Connectedness. Let $\{X_t\}$ be a flat family of closed subschemes of \mathbb{P}^n_k parameterized by an irreducible curve T of finite type over $k_{\tilde{\iota}}$ Suppose there is a nonempty open set $Y \subseteq T$, such that for all closed points $t \in Y$, X_t is connected. Then prove that X_t is connected for all $t \in T$.
- **5.** Let Y be a hypersurface in $X = \mathbb{P}^N_k$ with $N \geq 4$. Let \hat{X} be the formal completion of X along Y (II, §9). Prove that the natural map $\operatorname{Pic} \hat{X} \to \operatorname{Pic} Y$ is an isomorphism.
- **6.** Again let T be a hypersurface in $X = \mathbb{P}_k^N$, this time with $N \geq 2$.
 - (a) If \mathscr{F} is a locally free sheaf on X, show that the natural map

$$H^0(X,\mathscr{F}) \to H^0(\hat{X},\hat{\mathscr{F}})$$

is an isomorphism.

- (b) Show that the following conditions are equivalent:
 - (i) for each locally free sheaf \mathfrak{F} on \hat{X} , there exists a coherent sheaf \mathscr{F} on X such that $\mathfrak{F} \cong \hat{\mathscr{F}}$ (i.e., \mathfrak{F} is algebraizable);
 - (ii) for each locally free sheaf \mathfrak{F} on \hat{X} , there is an integer n_0 such that $\mathfrak{F}(n)$ is generated by global sections for all $n \geq n_0$.
- (c) Show that the conditions (i) and (ii) of (b) imply that the natural map $\operatorname{Pic} X \to \operatorname{Pic} \hat{X}$ is an isomorphism. Note. In fact, (i) and (ii) always hold if $N \geq 3$. This fact, coupled with (Ex. 11.5) leads to Grothendieck's proof of the Lefschetz theorem which says that if Y is a hypersurface in \mathbb{P}^N_k with $N \geq 4$, then $\operatorname{Pic} Y \cong \mathbb{Z}$, and it is generated by $\mathscr{O}_Y(1)$.
- **7.** Now let Y be a curve in $X = \mathbb{P}^2_k$.
 - (a) Use the method of (Ex. 11.5) to show that $\operatorname{Pic} \hat{X} \to \operatorname{Pic} Y$ is surjective, and its kernel is an infinite-dimensional vector space over k.
 - (b) Conclude that there is an invertible sheaf \mathfrak{L} on \hat{X} which is not algebraizable.
 - (c) Conclude also that there is a locally free sheaf \mathfrak{F} on \hat{X} so that no twist $\mathfrak{F}(n)$ is generated by global sections.
- **8.** Let $f: X \to Y$ be a projective morphism, let \mathscr{F} be a coherent sheaf on X which is flat over Y, and assume that $H^i(X_y, \mathscr{F}_y) = 0$ for some i and some $y \in Y$. Then show that $R^i f_*(\mathscr{F})$ is 0 in a neighborhood of y.