Data Reconstruction Attacks and Defenses: From Theory to Practice

Qi Lei, Courant Math and CDS

With Zihan Wang, Sheng Liu, Yuxiao Chen, Jianwei Li, Jason Lee

https://arxiv.org/abs/2212.03714

https://arxiv.org/abs/2402.09478

https://arxiv.org/abs/2312.05720

Privacy leakage

• Privacy leakage in distributed learning - data and model not co-located

[Konečný et al. 2016, McMahan et al. 2017]

Privacy leakage

• Privacy leakage in fine-tuned model – trained with licensed/private data

• Question: When and how does our observation reveal the training data?

Threat model more formally:

• Batch of data:

•
$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_B, y_B)\}$$

Private learner

- Prediction function:
 - $x \to f(x; \Theta)$

Adversary

• Model update:

• G: =
$$\frac{1}{B}\nabla_{\Theta}\sum_{i=1}^{B}\ell(f(x_i,\Theta),y_i)$$

- Inverse problem:
 - Recover S from G, O is known

- Attacking methods
 - Gradient matching (gradient inversion):

$$\min_{S=\{(x_i,y_i)\}} \left| \left| G - \sum_{i=1}^B \nabla \ell(f(x_i;\Theta), y_i) \right| \right|^2$$

- Attacking methods
 - Gradient matching (gradient inversion):

$$\min_{S=\{(x_i,y_i)\}} \left| \left| G - \sum_{i=1}^B \nabla \ell(f(x_i; \Theta), y_i) \right| \right|^2$$

• Feature reconstruction through linear algebra techniques

- Attacking methods
 - Gradient matching (gradient inversion):

$$\min_{S=\{(x_i,y_i)\}} \left| \left| G - \sum_{i=1}^B \nabla \ell(f(x_i; \Theta), y_i) \right| \right|^2$$

- Feature reconstruction through linear algebra techniques
- Partial data reconstruction through fishing parameters

- Defending methods
 - Quantizing/pruning the gradient
 - Dropout
 - Secure aggregation
 - Multiple local aggregation

Reduce observation's dimension

Increase unknown signal's dimension

- Defending methods
 - Quantizing/pruning the gradient
 - Dropout
 - Secure aggregation
 - Multiple local aggregation
 - Add noise

Reduce observation to signal ratio

Reduce observation to noise ratio

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Definition of (ϵ) -DP: can not distinguish any two neighboring datasets well (not much better than random guessing)
 - Renyi-DP: reconstructing last sample with other samples known
 - Distance measured in max divergence (DP) => in more relaxed choice of divergence

• However: they only have constant conversion rate

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

Problems:

- 1. Not practical: For a model f with S_f sensitivity, adding Gaussian noise with variance $\frac{S_f^2}{\epsilon^2}$ will satisfy (ϵ) -DP
 - But in a 2-layer m-width neural network, $S_f \propto m$
- 2. Too strong: Not necessary in some scenarios:
 - $S = \{x_1, x_2, \dots, x_B\}, G = x_1 + x_2 + \dots + x_B$
 - No DP guarantee, but not possible to reconstruct (unless with prior information)

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

- Instead, we want to achieve:
 - A more common trajectory in security:
 - → stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

- Instead, we want to achieve:
 - A more common trajectory in security:
 - → stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

- Instead, we want to achieve:
 - A more common trajectory in security:
 - → stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

- Instead, we want to achieve:
 - A more common trajectory in security:
 - → stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error
 - (hopefully matching) information theoretic lower bound

- Theoretical analysis
 - Differential Privacy: more tailored for membership inference attack
 - Renyi-DP: reconstructing last sample with other samples known

- Instead, we want to achieve:
 - A more common trajectory in security:
 - → stronger attack → stronger defense → ...
 - algorithmic upper bound for the reconstruction error
 - (hopefully matching) information theoretic lower bound

Part I: Theoretical analysis under two-layer neural networks

Warm-up:

• Two-layer neural network

$$f(x; \{W, a\}) = \sum_{j=1}^{m} a_j \sigma(w_j^{\mathsf{T}} x) = a^{\mathsf{T}} \sigma(W^{\mathsf{T}} x)$$

Observations G:

$$\nabla_{a_j} L = \sum_{i=1}^B l_i' \sigma(w_j^{\mathsf{T}} x_i), \nabla_{w_j} L = \sum_{i=1}^B l_i' \sigma'(w_j^{\mathsf{T}} x_i) x_i$$

(Bad) Examples:

- Linear activation:
- $\nabla_a L = W(\sum_{i=1}^B l_i' x_i); \nabla_W L = a(\sum_{i=1}^B l_i' x_i)^{\mathsf{T}}$
- Can only identify a linear combination of X

- Quadratic activation:
- $\nabla_{a_j} L = w_j^{\mathsf{T}} \overline{\Sigma} w_j$; $\nabla_{w_j} L = 2 \overline{\Sigma} w_j$, here $\overline{\Sigma} = \sum_{i=1}^B l_i' x_i x_i^{\mathsf{T}}$
- Can only identify the span of X

Our goal:

- Upper bound:
 - $R_U(A) := \max_{S} d(S, A(O)),$
 - Distance metric: $d(S, \hat{S}) := \min_{\pi} \sqrt{\frac{1}{B} \sum_{i} ||S_{i} \widehat{S_{\pi(i)}}||^{2}}$ (up to permutation)
 - No defense: O=G, with defense: O=D(G)
- Lower bound:
 - $R_L = \min_{\hat{S}=A(O)} \max_{S} d(S, \hat{S})$
 - No defense: $O=G+\epsilon, \epsilon \sim N(0, \sigma^2)$, with defense: $O=D(G)+\epsilon$
- Remark: our focus is on properties of model architecture/weight + defense method (not on data)

Algorithmic upper bound on defenses

Defense	Upper bound
No defense	$ ilde{O}\Big(B\sqrt{d/m}\Big)$
Local aggregation	$\tilde{O}\Big(KB\sqrt{d/m}\Big)$
σ^2 –gradient noise	$\tilde{O}\Big((B+\sigma)\sqrt{d/m}\Big)$
DP-SGD	$\tilde{O}\Big((B + \sigma \max\{1, \ G\ /C\})\sqrt{d/m}\Big)$
p-Dropout	$\tilde{O}\left(B\sqrt{d/(1-p)m}\right)$
Gradient pruning:	unknown

How: recover third moment of data

- We want to estimate $T_p := \sum_{i=1}^B E_w \left[\sigma^{(p)}(w^T x_i) \right] x_i^{\otimes p}$
- Uniquely identify $\{x_1, x_2, \dots, x_B\}$ through tensor decomposition when data is linearly independent for p>=3. [Kuleshov et al. 2015]
- Our strategy: choose $a_j = \frac{1}{m}$, $w_j \sim N(0, I)$, estimate T by $\widehat{T}_3 := \frac{1}{m} \sum_{j=1}^m g(w_j) H_3(w_j)$, $g(w_j) := \nabla_{a_j} L = \sum_{i=1}^B l_i' \sigma(w_j^T x_i)$

Tensor decomposition

- Stein's lemma: $E_{w \sim N(\mathbb{O},I)}[g(a^{\mathsf{T}}w)H_p(w)] = E[g^{(p)}a^{\otimes p}].$
- Hermite function: $H_2(w) = ww^{T} I$, $H_3(w) = w^{\otimes 3} w \otimes I$.

•
$$\widehat{T_p} := \frac{1}{m} \sum_{j=1}^m g(w_j) H_p(w_j) \approx E_{w \sim N(\mathbb{O}, I)} [g(w) H_p(w)]$$

$$\equiv \sum_{i=1}^m E \left[\sigma^{(p)}(w^{\mathsf{T}} x_i) x_i^{\otimes p} \right] =: T_p$$

• $g(w_j) := \nabla_{a_j} L = \sum_{i=1}^B l_i' \sigma(w_j^{\mathsf{T}} x_i)$ is our observation from the model gradient

Algorithmic upper bound on attacks

- Applies when $E[\sigma^{(3)}(w)]$ or $E[\sigma^{(4)}(w)] \neq 0$. Applies to sigmoid, tanh, ReLU, leaky ReLU, GeLU, SELU, ELU etc.
- Reconstruction error $\leq \tilde{O}(\sqrt{d/m})$.

Our goal:

- Upper bound:
 - $R_U(A) := \max_{S} d(S, A(O)),$
 - Distance metric: $d(S, \hat{S}) := \min_{\pi} \frac{1}{B} \sqrt{\sum_{i} ||S_{i} \widehat{S_{\pi(i)}}||^{2}}$ (up to permutation)
 - No defense: O=G, with defense: O=D(G)
- Lower bound:
 - $R_L = \min_{\hat{S}=A(O)} \max_{S} d(S, \hat{S})$
 - No defense: $O=G+\epsilon, \epsilon \sim N(0, \sigma^2)$, with defense: $O=D(G)+\epsilon$
- Remark: our focus is on properties of model architecture/weight + defense method (not on data)

Comparisons with information-theoretic lower bound on defenses

defense	Upper bound	Lower bound
No defense	$ ilde{O}\Big(B\sqrt{d/m}\Big)$	$\Omega\!\!\left(\sigma\sqrt{d/m} ight)$
Local aggregation	$ ilde{O}\Big(KB\sqrt{d/m}\Big)$	$\Omega\!\!\left(\sigma\sqrt{d/m} ight)$
σ^2 –gradient noise	$\tilde{O}\Big((B+\sigma)\sqrt{d/m}\Big)$	$\Omega\!\!\left(\sigma\sqrt{d/m}\right)$
DP-SGD	$\tilde{O}\Big((B + \sigma \max\{1, \ G\ /C\})\sqrt{d/m}\Big)$	$\Omega\left(\sigma\max\{1, G /C\}\sqrt{d/m}\right)$
p-Dropout	$\tilde{O}\left(B\sqrt{d/(1-p)m}\right)$	$\Omega\left(\sqrt{d/(1-p)m}\right)$
Gradient pruning:	unknown	$\Omega\left(\sqrt{d/(1-\hat{p})m}\right)$

Lower bound analysis

- (Bayesian) Cramer-rao: $R_L^2 \ge \sigma^2 \text{Tr}((JJ^T)^{-1})$
 - J is Jacobian of the forward function (after defense): $F: S \to D(\nabla L(S; \Theta))$
 - Key factor: how is J modified, ill-conditioned
- Connection to the linear and quadratic examples:
 - When Jacobian is singular, generally hard to reconstruct.

Take-away on the theoretical results:

• This is a promising framework (with matched dependence on d,m,p,C)

• The analysis is focused on properties of model architectures/weights, defense strength, not data (worst case of data, no prior info).

• Lower bound analysis is general, upper bound is more restrictive. (Need new tools to go beyond two-layer networks)

• Did not analyze utility-privacy trade-off

Part II: To go beyond

To go beyond

- Beyond two-layer networks
 - Empirical studies on general architectures
- Comparisons across various defense types
 - Exploit utility-privacy trade-off
 - Strength(D) = $\max_{A} d\left(S, A(D(G))\right)$. Compare D with similar utility loss
- Beyond images
 - Exploit discrete data like text, or time series

Beyond two-layer networks

- Previous findings: if last two layers are fully connected, can recover the features from the (l-2)-th layer
- Other structured data modalities: recover the embeddings first

Empirical results:

[Liu, Wang, Chen, L, 2024] https://arxiv.org/abs/2402.09478

To go beyond

- Beyond two-layer networks
 - Empirical studies on general architectures
- Comparisons across various defense types
 - Exploit utility-privacy trade-off
 - Strength(D) = $\max_{A} d\left(S, A(D(G))\right)$. Compare D with similar utility loss
- Beyond images
 - Exploit discrete data like text, or time series

Privacy-utility trade-offs

To go beyond

- Beyond two-layer networks
 - Empirical studies on general architectures
- Comparisons across various defense types
 - Exploit utility-privacy trade-off
 - Strength(D) = $\max_{A} d\left(S, A(D(G))\right)$. Compare D with similar utility loss
- Beyond images
 - Exploit discrete data like text, or time series

Beyond computer vision tasks...

Dataset	Method	R-1	R-2	R-L	Coss	Recovered Samples
	reference sample: The box contains the ball					
CoLA	LAMP	15.5	2.6	14.4	0.36	likeTHETw box contains divPORa
	Ours	17.4	3.8	15.9	0.41	like Mess box contains contains balls
	reference sample: slightly disappointed					
SST2	LAMP	20.1	2.2	15.9	0.56	likesmlightly disappointed a
	Ours	19.7	2.1	16.8	0.59	like lightly disappointed a
	reference sample: vaguely interesting, but it's just too too much					
Toma	LAMP	19.9	1.6	15.1	0.48	vagueLY', interestingtooMuchbuttoojusta
	Ours	21.5	1.8	16.0	0.51	vagueLY, interestingBut seemsMuch Toolaughs

Discussions

- Call for more theoretical analysis under the inverse problem framework
 - Computational barrier for lower bound result
 - Need new tools to go beyond two-layer networks for upper bound
- Study how data properties (ill-conditioned, prior knowledge) affect the vulnerability to privacy attacks
- Based on Strength(D) = $\max_{A} d\left(S, A(D(G))\right)$, gradient pruning is the strongest. Call for more evaluations when stronger attacks are proposed.

Thank you