nhanes_bp

February 24, 2020

Fit mixed models to NHANES blood pressure data. There are two blood pressure measurement types (systolic and diastolic), with up to 4 repeated measures for each type.

https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/DEMO_G.XPT https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/BPX_G.XPT https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/BMX_G.XPT

```
[1]: import statsmodels.api as sm import pandas as pd import numpy as np
```

/nfs/kshedden/python3/lib/python3.7/sitepackages/statsmodels/compat/pandas.py:23: FutureWarning: The Panel class is
removed from pandas. Accessing it from the top-level namespace will also be
removed in the next version
 data_klasses = (pandas.Series, pandas.DataFrame, pandas.Panel)

Load and merge the data sets

```
[2]: demog = pd.read_sas("../data/DEMO_G.XPT")
   bpx = pd.read_sas("../data/BPX_G.XPT")
   bmx = pd.read_sas("../data/BMX_G.XPT")
   df = pd.merge(demog, bpx, left_on="SEQN", right_on="SEQN")
   df = pd.merge(df, bmx, left_on="SEQN", right_on="SEQN")
```

Convert from wide to long

A bit of data cleanup

```
[4]: dx = dx.sort_values(by='SEQN')
dx = dx.reset_index(drop=True)
dx['SEQN'] = dx.SEQN.astype(np.int)
dx = dx.dropna()

# Blood pressure type (systolic or diastolic)
```

```
dx["bpt"] = dx.bpvar.str[3:5]

dx["bpi"] = dx.bpvar.str[5].astype(np.int)

dx["female"] = (dx.RIAGENDR == 2).astype(np.int)

di_mean = dx.loc[dx.bpt=="DI", :].groupby("SEQN")["bp"].aggregate(np.mean)
di_mean.name = "di_mean"
dx = pd.merge(dx, di_mean, left_on="SEQN", right_index=True)

print(dx.head())
```

	SEQN	RIDAGEYR	RIAGENDR	BMXBMI	bpvar	bp	bpt	bpi	female	\
0	62161	22.0	1.0	23.3	BPXSY1	110.0	SY	1	0	
2	62161	22.0	1.0	23.3	BPXDI2	68.0	DI	2	0	
3	62161	22.0	1.0	23.3	BPXSY3	118.0	SY	3	0	
4	62161	22.0	1.0	23.3	BPXDI3	74.0	DI	3	0	
5	62161	22.0	1.0	23.3	BPXSY2	104.0	SY	2	0	

di_mean

- 0 74.666667
- 2 74.666667
- 3 74.666667
- 4 74.666667
- 5 74.666667

Subsample to make the script run faster

```
[5]: dx = dx.iloc[0:10000, :]
```

Fit a linear mean structure model using OLS. The variance structure of this model is misspecified.

```
[6]: model1 = sm.OLS.from_formula("bp ~ RIDAGEYR + female + C(bpt) + BMXBMI", dx)
result1 = model1.fit()
print(result1.summary())
```

OLS Regression Results

=============	======	========		========		======	
Dep. Variable:	bp		R-square	R-squared:		0.764	
Model:		OLS	Adj. R-s	quared:		0.764	
Method:	Least Squares		F-statis	F-statistic:		8082.	
Date:	Mon,	24 Feb 2020	<pre>Prob (F-statistic):</pre>			0.00	
Time:		00:13:49 Log-Likelihood		lihood:		-41438.	
No. Observations:		10000 AIC:		8	.289e+04		
Df Residuals:		9995	BIC:		8.292e+04		
Df Model:		4					
Covariance Type:		nonrobust					
	======						
	coef	std err	t	P> t	[0.025	0.975]	

Intercept	45.3352	0.624	72.668	0.000	44.112	46.558	
C(bpt)[T.SY]	52.3704	0.305	171.623	0.000	51.772	52.969	
RIDAGEYR	0.3017	0.007	41.102	0.000	0.287	0.316	
female	-3.0799	0.307	-10.044	0.000	-3.681	-2.479	
BMXBMI	0.4038	0.023	17.790	0.000	0.359	0.448	
==========	========					=======	
Omnibus:	935.341	Durbin-	-Watson:		1.177		
<pre>Prob(Omnibus):</pre>		0.000	Jarque-	Jarque-Bera (JB):		6588.569	
Skew:		-0.114	Prob(J	3):		0.00	
Kurtosis:		6.970	Cond. 1	Vo.		212.	
==========	========		-======		=======	=======	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Fit a mixed model to systolic data with a simple random intercept per subject. Then calculate ICC.

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: bp
No. Observations: 5000 Method: REML
No. Groups: 1675 Scale: 15.8606
Min. group size: 1 Likelihood: -17109.8829

Max. group size: 3 Converged: Yes

Mean group size: 3.0

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	96.079	1.424	67.454	0.000	93.288	98.871
RIDAGEYR	0.424	0.017	24.502	0.000	0.390	0.457
female	-3.969	0.722	-5.493	0.000	-5.385	-2.553
BMXBMI	0.307	0.053	5.742	0.000	0.202	0.411
SEQN Var	211.111	2.305				
=========	=======					

icc=0.930121

Partial out the mean diastolic blood pressure per subject

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: bp
No. Observations: 5000 Method: REML
No. Groups: 1675 Scale: 15.8604
Min. group size: 1 Likelihood: -17027.5692

Max. group size: 3 Converged: Yes

Mean group size: 3.0

Coef. Std.Err. z P>|z| [0.025 0.975]

Intercept 80.987 1.762 45.958 0.000 77.533 84.441

RIDAGEYR 0.365 0.017 21.502 0.000 0.332 0.399

female -3.273 0.689 -4.752 0.000 -4.623 -1.923

BMXBMI 0.145 0.052 2.774 0.006 0.042 0.247

di_mean 0.322 0.024 13.383 0.000 0.275 0.369

SEQN Var 190.267 2.083

icc=0.923056

Fit a mixed model to diastolic data only with simple random intercept per subject. Then calculate ICC.

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: bp
No. Observations: 5000 Method: REML
No. Groups: 1675 Scale: 36.5421
Min. group size: 1 Likelihood: -18442.0035

Max. group size: 3 Converged: Yes

Mean group size: 3.0

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	46.900	1.378	34.037	0.000	44.199	49.601
RIDAGEYR	0.181	0.017	10.794	0.000	0.148	0.213
female	-2.161	0.699	-3.091	0.002	-3.530	-0.791
BMXBMI	0.503	0.052	9.736	0.000	0.402	0.605
SEQN Var	190.243	1.421				
	.======	=======	-=====:		-=====	

icc=0.838869

Fit a mixed model to diastolic data only with simple random intercept per subject (also using subset of data).

/nfs/kshedden/python3/lib/python3.7/site-packages/statsmodels/base/model.py:512: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)
/nfs/kshedden/python3/lib/python3.7/sitepackages/statsmodels/regression/mixed_linear_model.py:2059: ConvergenceWarning:
Retrying MixedLM optimization with lbfgs
ConvergenceWarning)

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: bp

No. Observations: 5000 Method: REML
No. Groups: 1675 Scale: 34.1496
Min. group size: 1 Likelihood: -18393.5906

Max. group size: 3 Converged: Yes

Mean group size: 3.0

Coef. Std.Err. z P>|z| [0.025 0.975]

Intercept 47.989 1.339 35.848 0.000 45.365 50.613
RIDAGEYR 0.190 0.016 11.744 0.000 0.158 0.222
female -2.179 0.675 -3.227 0.001 -3.503 -0.855
BMXBMI 0.487 0.050 9.733 0.000 0.389 0.585
bpi -0.501 0.107 -4.681 0.000 -0.711 -0.292

```
SEQN Var 143.301 1.861

SEQN x bpi Cov 7.899 0.340

bpi Var 2.576 0.168
```

Fit a mixed model to both types of BP with simple random intercept per subject.

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: bp
No. Observations: 10000 Method: REML
No. Groups: 1675 Scale: 115.2323
Min. group size: 2 Likelihood: -39569.3038
Max. group size: 6 Converged: Yes

Mean group size: 6.0

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	45.311	1.140	39.759	0.000	43.078	47.545
C(bpt)[T.SY]	52.370	0.215	243.932	0.000	51.950	52.791
RIDAGEYR	0.302	0.014	21.929	0.000	0.275	0.329
female	-3.068	0.575	-5.332	0.000	-4.196	-1.940
BMXBMI	0.405	0.043	9.511	0.000	0.321	0.488
SEQN Var	117.916	0.485				
=========	=======	=======	-======	=====	-=====	

Fit a mixed model to both types of BP with subject random intercept and unique random effect per BP type with common variance.

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: bp
No. Observations: 10000 Method: REML
No. Groups: 1675 Scale: 26.2016
Min. group size: 2 Likelihood: -35818.3134

Max. group size: 6 Converged: Mean group size: 6.0 Coef. Std.Err. $z > |z| [0.025 \ 0.975]$ _____ 45.306 1.155 39.221 0.000 43.042 47.570 Intercept C(bpt)[T.SY] 52.363 0.433 120.854 0.000 51.514 53.213 RIDAGEYR female -3.064 0.576 -5.324 0.000 -4.192 -1.936 BMXBMI 58.744 1.088 SEQN Var 148.396 1.188 bpt Var

Fit a mixed model to both types of BP with subject random intercept and unique random effect per BP type with unique variance.

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: bp
No. Observations: 10000 Method: REML
No. Groups: 1675 Scale: 26.2024
Min. group size: 2 Likelihood: -35817.2945
Max. group size: 6 Converged: Yes
Mean group size: 6.0

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	45.383 52.364		39.335			
C(bpt)[T.SY] RIDAGEYR	0.296	0.433	120.853 20.628		0.268	
female BMXBMI	-3.021 0.410		-5.245 9.608			
SEQN Var	58.734	1.087				
di Var sy Var	140.838 155.963	1.533 1.620				

Fit a mixed model to both types of BP with subject random intercept and unique random effect per BP type with unique variance, and heteroscedasticity by BP type.

```
[14]: dx["sy1"] = (dx.bpvar == "BPXSY1").astype(np.int)
     dx["sy2"] = (dx.bpvar == "BPXSY2").astype(np.int)
     dx["sy3"] = (dx.bpvar == "BPXSY3").astype(np.int)
     dx["di1"] = (dx.bpvar == "BPXDI1").astype(np.int)
     dx["di2"] = (dx.bpvar == "BPXDI2").astype(np.int)
     dx["di3"] = (dx.bpvar == "BPXDI3").astype(np.int)
     model9 = sm.MixedLM.from_formula("bp ~ RIDAGEYR + female + C(bpt) + BMXBMI",
                                      groups="SEQN", re_formula="1",
                                      vc_formula={"sy": "0+sy", "di": "0+di",
                                                   "dye": "0+di1+di2+di3"},
                                      data=dx)
     result9 = model9.fit()
     print(result9.summary())
```

Mixed Linear Model Regression Results

Model:	${\tt MixedLM}$	Dependent Variable:	bp
${\tt No.\ Observations:}$	10000	Method:	REML
No. Groups:	1675	Scale:	15.7773
Min. group size:	2	Likelihood:	-35522.5285
Max. group size:	6	Converged:	Yes

Mean group size: 6.0

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
- .	45 400				40 450	45 605
Intercept	45.423	1.155	39.327	0.000	43.159	47.687
C(bpt)[T.SY]	52.349	0.434	120.675	0.000	51.499	53.199
RIDAGEYR	0.296	0.014	20.592	0.000	0.268	0.324
female	-3.027	0.576	-5.251	0.000	-4.157	-1.897
BMXBMI	0.409	0.043	9.585	0.000	0.326	0.493
SEQN Var	58.784	1.426				
di Var	138.227	2.057				
dye Var	21.215	0.323				
sy Var	159.491	2.206				