Министр науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет информационных технологий и программирования

Лабораторная работа № 3

Исследование работы БЭВМ при выполнении циклических программ

Выполнил студент группы № М3101

Михеев Артем Романович

Подпись:

Проверил:

Бабич Мария Сергеевна

Цель работы

Изучение способов организации циклических программ и исследование порядка функционирования ЭВМ при выполнении циклических программ.

Задание, вариант 6

Восстановить текст заданного варианта программы, составить описание программы, после чего занести программу в память БЭВМ и заполнить таблицу трассировки, выполняя программу по командам.

Вариант 6: (первая команда помечена плюсиком)

Адрес	Коды команд						
00A	0000						
00B	0000						
00C	0000						
00D	0010						
00E	0000						
00F	0000						
010	0000						
011	0010						
012	0000						
013	0707						
014	0000						
015	FFFC						
016	+F200						
017	480D						
018	B01A						
019	C01D						
01A	F800						
01B	4011						
01C	3011						
01D	0015						
01E	C016						
01F	F000						

Решение

1. Восстановим исходный код программы начиная с первой команды по адресу 016:

6:	CLA	# Очистить аккумулятор
7:	ADD (000D)	# Прибавить к аккумулятору значение по адр., записанному в ячейке 000D, Увеличить значение в 000D на 1
8:	BEQ 001A	# Если аккумулятор равен 0, то продолжить упр. с 001А
9:	BR 001D	# Продолжить упр. с 001D
Α:	INC	# Увеличить аккумулятор на 1
B:	ADD 0011	# Прибавить к аккумулятору значение в яч. 0011
C :	MOV 0011	# Выставить в яч. 0011 значение из аккумулятора
D:	ISZ 0015	# Прибавить к знач. в яч. 0015 единицу, если >=0, то пропустить 1 ячейку
Ε:	BR 0016	# Продолжить упр. с 0016
	7: 8: 9: A: B: C:	6: CLA 7: ADD (000D) 8: BEQ 001A 9: BR 001D A: INC B: ADD 0011 C: MOV 0011 D: ISZ 0015 E: BR 0016

1F: HLT # Остановить программу Для удобства можем переписать эту программу вот так:

ORG 000D

POINTER: WORD 0010

ORG 0010 WORD 0000

RESULT: WORD 0010

WORD 0000 WORD 0707

ORG 0015

COUNTER: WORD FFFC

ORG 0016 BEGIN:

MAIN_LOOP:

CLA

ADD (POINTER) BEQ IF_ZERO

BR ELSE

IF_ZERO:

INC

ADD RESULT

MOV RESULT

ELSE:

ISZ COUNTER BR MAIN_LOOP

HLT

2. Теперь составим таблицу трассировки, исполнив программу по-командно

Выполн кома		Содержимое регистров процессора после выполнения команды.						Ячейка, содержим. которой изменилось после вып. Программы	
Адрес	Код	СК	PA	РК	РД	Α	С	Адрес	Новый код
016	F200	017	016	F200	F200	0000	0	-	-
017	480D	018	010	480D	0000	0000	0	00D	011
018	B01A	01A	018	B01A	B01A	0000	0	-	-
01A	F800	01B	01A	F800	F800	0001	0	-	-
01B	4011	01C	011	4011	0010	0011	0	-	-
01C	3011	01D	011	3011	0011	0011	0	011	0011
01D	0015	01E	015	0015	FFFD	0011	0	015	FFFD
01E	C016	016	01E	C016	C016	0011	0	1	-
016	F200	017	016	F200	F200	0000	0	-	-
017	480D	018	011	480D	0011	0011	0	00D	012
018	B01A	019	018	B01A	B01A	0011	0	-	-

019	C01D	01D	019	C01D	C01D	0011	0	-	-
01D	0015	01E	015	0015	FFFE	0011	0	015	FFFE
01E	C016	016	01E	C016	C016	0011	0	ı	-
016	F200	017	016	F200	F200	0000	0	-	-
017	480D	018	010	480D	0000	0000	0	00D	013
018	B01A	01A	018	B01A	B01A	0000	0	-	-
01A	F800	01B	01A	F800	F800	0001	0	•	-
01B	4011	01C	011	4011	0010	0012	0	-	-
01C	3011	01D	011	3011	0013	0012	0	011	0012
01D	0015	01E	015	0015	FFFF	0012	0	015	FFFF
01E	C016	016	01E	C016	C016	0012	0	-	-
016	F200	017	016	F200	F200	0000	0	-	-
017	480D	018	010	480D	0000	0707	0	00D	0014
018	B01A	019	018	B01A	B01A	0707	0	ı	-
019	C01D	01D	019	C01D	C01D	0707	0	-	-
01D	0015	01F	015	0015	0000	0013	0	015	0000
01F	F000	020	01F	F000	F000	0013	0	-	-

3. Составим описание программы. Как по исходному коду, так и по трассировке можно сделать вывод, что программа подсчитывает кол-во нулевых элементов в массиве, расположенном в ячейках 0010-0013. Для задания размера массива используется ячейка 0015, в которой записано -N (N = кол-во элементов начиная с ячейки 0010). Результат записывается в ячеку 0011, которая также является элементом массива, к тому же в ней изначально хранится 0010, из-за чего результатом исполнения будет число 0х10+X где X это количество нулевых элементов.

Выводы

При выполнения лабораторной работы появилась необходимость еще раз вспомнить принципы работы косвенной адресации, а также команды БЭВМ для переходов, с помощью которых в программе был реализован цикл. Благодаря этому далее и самому будет проще писать такие конструкции для более сложных программ, для которых нужен даже не один цикл.