사용자 맞춤형 자동 조정 모니터 스탠드

7조

201821101 강민석 201821101 강동재 201821101 조승윤

지도교수: 민준기 교수님

Needs

- 일반적인 환경의 **고정된 모니터**는 사용자의 자세에 맞춰 자유롭게 조정하기 어렵다.
- 불편한 자세를 장시간동안 유지하면 목, 어깨, 허리 등에 부담이 가중되고, 이는 **근골격계 질환**으로 이어질 수 있다.
- 모니터 암 등의 수동 조정 제품은 사용자의 자세에 맞추어 **즉각적인 조정이 어렵다**.
- 사용자의 자세 변경을 감지하고, 이를 바탕으로 자동으로 모니터의 위치를 조정하는 제품을 통해 이러한 문제점을 해결할 수 있다.

Previous Research

	일반 모니터암	도트힐 - 도트스탠드	Lenovo Auto Twist Al PC
사진	7.0C		
특징	- 여러 개의 관절로 이루어져 있어 가동 범위가 매우 넓다. - 수동 조작이 필요하다.	- 사용자의 잘못된 자세를 인식하고, 자동으로 모니터의 높이를 조절하여 올바른 자세를 유도한다. - ToF 센서만을 사용하여 정확도가 낮다.	- 사용자의 얼굴 위치를 감지하여 모니터가 자동으로 이동한다. - 목소리를 통한 제어도 가능하다.

Working Principle: 개요

사용자의 현재 **얼굴 위치**를 기준으로 모니터를 **좌우, 상하 및 앞뒤** 방향으로 이동한다.

* INPUT: 카메라 모듈, ToF 센서

* OUTPUT: DC 모터x2, 액추에이터

* 딥러닝 연산: ODROID-M1S

* 구동부 제어: Arduino Uno

Working Principle: 앞뒤 병진 구동

Working Principle: 상하 병진 구동

Working Principle: 좌우 회전 구동

Working Principle: 카메라 기반 제어

Object Detection 모델을 통해 얼굴 좌표 계산

- 1. 카메라 모듈의 input에서 얼굴 좌표 계산
- 2. 실시간 좌표를 PID 제어의 피드백으로 사용
- 3. 얼굴이 화면 중앙 영역에 올때까지 제어

Working Principle: ToF 센서 기반 제어

Working Principle: 제어 및 연산부 분리

시리얼 통신

- 고성능이 필요한 Object Detection 모델 추론 연산부
- 연산량이 적고 실시간 응답이 필요한 PWM 제어부
- 연산 및 제어부 분리하여 안정적으로 구동부 제어 가능

카메라 모듈

ODROID-M1S

카메라 모듈의 실시간 입력값에서 사용자의 얼굴을 탐지하는 연산 수행

Spec Sheet: Drive System

Drive System					
	Linear Drive	Rotational Drive	Linear Actuator	Total	
Drive Ratio	3.14 mm/rot	6 deg/rot	-	-	
Stroke Length	+75mm(Forward), -59mm(Backward)	36.22~360deg(CW) 120.48~360deg(CCW)	0~150 mm	-	
Power Consumption	12V/2.5A/30W	12V/2.5A/30W	12V/0.25A/3W	~63W	
Weight	715g	685g	150g	2,365g	

Spec Sheet: Control System

Control System						
Processing Unit (ODROID-M1S)			Control Unit (Arduino Uno)			
	Model	yolov8n-face	D)4/8.4	Duty Cycle	6~8%	
Object	Input Resolution	640x640	PWM	Frequency	30Hz	
Detection	Accuracy	79.6~94.6%(mAP@0.5)		Кр	2.0	
	Optimization	RKNN Format, INT8 Quantized	PID	Ki	0	
	Inference	~50ms		Kd	1.0	
Latency	Post	~50ms	Communication			
	Processing		Protocol		USB Serial(UART)	
	Total	~100ms				
Power Consumption		5V/3A/15W	Buad Rate		9600 bps	

BOM

ВО	BOM(소요부품(자재) 명세서 – 제품 모델별 1개 기준 작성)								
사용	사용자 맞춤형 자동 조정 모니터암						₩ 261,560		
번호	부품명	규격	부품 번호	소요량	수량단위	단가	가격	제조사/판매사	
1	ODROID-M1S	0.8 TOPS@INT8, LPDDR4 4GiB	ODROID-M1S	1	EA	₩ 66,200	₩ 66,200	ODROID	
2	카메라 모듈	30FPS@FHD, USB 2.0	HU205	1	EA	₩ 49,500	₩ 49,500	휴엔텍	
3	DC 모터	DC 12V, 2.42A, 2kgf.cm	MB5171-1230L	2	EA	₩ 20,900	₩ 41,800	모터뱅크	
4	리니어 액츄에이터	DC 12V, 0.25A, 60N	LM2036U	1	EA	₩ 40,900	₩ 40,900	모터뱅크	
5	TOF센서	0.2m ~ 1.2m, 5V, UART	P012834899	1	EA	₩ 27,100	₩ 27,100	ICBANQ	
6	모터 드라이버	70W+70W 5A, 듀얼채널	L298N	1	EA	₩ 5,800	₩ 5,800	디바이스마트	
7	전원 어댑터	12V/5A	SW60-12005000	1	EA	₩ 17,000	₩ 17,000	디바이스마트	
8	UART to USB-C	USB Type C	FT232	1	EA	₩ 13,260	₩ 13,260	디바이스마트	

Improvemnt

번호	문제점	원인	개선사항
1	높이 조절이 15cm 까지만 가능하다.	액추에이터의 스트로크 길이가 15cm로 짧음.	더 긴 스트로크를 가진 액추에이터를 사용한다.
2	회전할 때 진동이 발생한 다.	축을 감싸는 부분의 공차가 너무 큼	규격화된 축과 베어링을 사용한다.
3	무거운 모니터를 장착하지 못한다.	액추에이터의 출력이 60N으 로 작으며, 모터의 무게가 무겁 다.	가벼운 모터를 사용하고 ,높은 출력의 엑추에이터를 사용한다.