

Akademia Górniczo-Hutnicza

im. Stanisława Staszica w Krakowie.

Wydział Informatyki, Elektroniki i Telekomunikacji

Sensory w aplikacjach wbudowanych

SPRAWOZDANIE

Rok I, Systemy wbudowane, Elektronika i Telekomunikacja IIst.

Temat: Moduł z sensorami oparty na procesorze STM32F103, zgodny z wyprowadzeniami Mikrobus™

Zespół:
1. Mateusz Kozyra
2. Mirosław Wiącek
2. 3. Radosław Sajdak

Data oddania sprawozdania:

Ocena sprawozdania:

Uwagi prowadzącego zajęcia:

Informacje dodatkowe:

Spis treści

1.	Wstęp			3
	1.1.	Mikro	bus TM	3
	1.2.	STM3	22F103	3
	1.3.	STS30)	3
	1.4.	BMP2	280	3
				3
1.6. Makefile		file	3	
	1.7.	Githu	b	3
2.	Wyk	Wykonanie projektu		
	2.1.	Projekt płytki		5
		2.1.1.	Schemat	5
		2.1.2.	Layout	5
		2.1.3.	Popełnione błędy oraz wykonane przeróbki	5
	2.2.	Oprog	gramowanie	6
		2.2.1.	Biblioteki peryferiów	6
		2.2.2.	API	6
		2.2.3.	Niewykorzystane możliwości	6
		2.2.4.	System kontroli wersji	6
3.	Prez	entacja	działania	7
4.	Wnioski			9

1. Wstęp

Krótki opis co w ogóle zostało zrobione, po co itp.

1.1. MikrobusTM

Co to microbus i po co to jest

1.2. STM32F103

Krótki opis wybranego procka

1.3. STS30

Krótki opis sensora Mirka

1.4. BMP280

Krótki opis sensora Matiego

1.5. MQ2

Krótki opis sensora Matiego

1.6. Makefile

Napisać, że pisaliśmy na dwóch różnych płytkach, więc mieliśmy do tego Makefile. Krótko jak działa

1.7. Github

Założenia korzystania z systemu kontroli wersji. Krótko o tym co to jest

1.7. Github

2. Wykonanie projektu

2.1. Projekt płytki

2.1.1. Schemat

Tutaj wkleję schemat, opiszę krótko jak zdecydowałem się go podzielić. Warto wspomnieć o tym, że korzystałem przy projektowaniu z dokumentacji producentów, a i tak się pomyliłem. Trzeba też koniecznie powiedzieć, że komponenty dobierałem samodzielnie na podstawie dostępności na Mouserze i dokumentacji. Koniecznie napisać, o konwerterze do debugu kodu.

2.1.2. Layout

Pokazać warstwy elektryczne. Zdjęcia wydrukowanych płytek. Jakie problemy się pojawiły (1 raz z Kicadem, więc np. okazało się, że domyślnie ścieżki ma całkiem szerokie. Podobnie viasy). Brak miejsca na wyprowadzenia SWD

2.1.3. Popełnione błędy oraz wykonane przeróbki

- Pokazać odcięcie LDO konwertera
- Bramka wisząca w powietrzu
- Zła przetwornica 5V (Vin > Vout)
- Źle wsadzony mosfet. Pokazać możliwe przeróbki (OPAMP, rezystory, zdjęcia z prób i cięć).
- Bypass przetwornicy
- Ręczne lutowanie SWD do procka

6 2.2. Oprogramowanie

2.2. Oprogramowanie

2.2.1. Biblioteki peryferiów

Krótko opisać jakie były założenia przy tworzeniu peryferiów (rozbicie drzewka kodu dla porządku, ustandaryzowane kody błędów, osobne libki na wszystko itp.)

2.2.2. API

Założenia API. Jak działa, wrzucić grafy, listę komend(?), mechanizmy rejestracji komend jako coś, co pozwala łatwo rozbudować soft do innej aplikacji.

2.2.3. Niewykorzystane możliwości

Nie wiem, tutaj mógłbym może napisać że zrobiłem kozak timery, ale w sumie to nie wiadomo po co bo API jest bezobsługowe xD No i może o tym, że Mati nie wiadomo po co pisał na F4...

2.2.4. System kontroli wersji

IMHO spoko też napisać, o tym, że korzystaliśmy z tego gita mocno, dbaliśmy o porządek, robiliśmy review itp. To jednak zjadło kupę czasu.

3. Prezentacja działania

Wrzucić tutaj fotki z cutecoma i pokazać, że działa. Może jakieś zdjęcia że przed initem lampka nie świeci, a po świeci xD

4. Wnioski

No na pewno napisać, że inaczej bym PCBka zrobił. Że dużo było czytania dokumentacji, trzeba było sobie przypomnieć sporo z elektroniki, a i tak pojawiły się błędy. Na pewno, że 0805 są za duże. Że robienie review pomaga obu stronom czegoś się nauczyć. Że sensory na PCB muszą być przemyślane (MQ + temperatury). Że mimo tego, że N osób widziało schematy i layout, to błędy przeszły produkcję i dużo czasu straciło się na debug zasilaczami, oscyloskopami itp.. Ale trzeba też powiedzieć, że robiliśmy projekt 4fun i dużo się nauczyliśmy.