

Introduction to Computational Materials Science and Materials Data Science (590400)

Hui-Chia Yu 游輝嘉

Department of Computational Mathematics, Science and Engineering

Department of Chemical Engineering and Materials Science

Michigan State University

Solving Schrödinger equation for hydrogen atom

In spherical coordinate system

$$\begin{split} \frac{1}{r^2} \frac{\partial}{\partial r} \bigg(r^2 \frac{\partial}{\partial r} \bigg) \psi(r, \theta, \phi) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \bigg(\sin \theta \frac{\partial}{\partial \theta} \bigg) \psi(r, \theta, \phi) + \\ \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \psi(r, \theta, \phi) - \frac{2m}{\hbar^2} \bigg[V(r) - E \bigg] \psi(r, \theta, \phi) = 0 \end{split}$$

$$\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)$$

$$\frac{1}{R(r)}\frac{d}{dr}\left(r^2\frac{d}{dr}\right)R(r) - \frac{2mr^2}{\hbar}\left[V(r) - E\right] = l(l+1)$$

$$\frac{1}{Y(\theta,\phi)\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta}\right) Y(\theta,\phi) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \phi^2} Y(\theta,\phi) = -l(l+1)$$

Azimuthal:
$$\frac{1}{q(\phi)}\frac{d^2}{dr^2}g(\phi) = -m^2$$

Polar:
$$\frac{\sin \theta}{f(\theta)} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) f(\theta) + l(l+1) \sin^2 \theta = m^2$$

$$Y_{l,m}(\theta,\phi) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_{l,m}(\cos\theta) e^{im\phi}$$

$$\frac{1}{R(r)}\frac{d}{dr}\left(r^2\frac{d}{dr}\right)R(r) - \frac{2mr^2}{\hbar}\left[V(r) - E\right] = l(l+1)$$

Solution of radial equation:
$$R_{n,l}(r) = \sqrt{\left(\frac{2}{a_0n}\right)^3 \frac{(n-l-1)!}{2n\left[(n+l)!\right]^3}} \cdot e^{-r/a_0n} \left(\frac{2r}{a_0n}\right)^l \cdot L_{n-l-1}^{2l+1} \left(\frac{2r}{a_0n}\right)^l$$

Table 3.2 The quantum number n, ℓ , and m_{ℓ}

Principal quantum number $n=1,\,2,\,3,\,\ldots$ Orbital angular momentum quantum number $\ell=0,\,1,\,2,\,\ldots\,,\,(n-1)< n$ Magnetic quantum number $\ell=0,\,1,\,2,\,\ldots\,,\,(n-1)< n$ $\ell=0,\,1,\,2,\,\ldots\,,\,(n-1)< n$ $\ell=0,\,1,\,2,\,\ldots\,,\,(n-1)< n$

Table 2.1 Summary of the Relationships among the Quantum Numbers n, l, m_l and Numbers of Orbitals and Electrons

Value of n	Value of l	$Values of m_l$	Subshell	Number of Orbitals	Number of Electrons
1	0	0	1 <i>s</i>	1	2
2	0	0	2 <i>s</i>	1	2
	1	-1, 0, +1	2p	3	6
3	0	0	3 <i>s</i>	1	2
	1	-1, 0, +1	3p	3	6
	2	-2, -1, 0, +1, +2	3d	5	10
4	0	0	4s	1	2
	1	-1, 0, +1	4p	3	6
	2	-2, -1, 0, +1, +2	4d	5	10
	3	-3, -2, -1, 0, +1, +2, +3	4f	7	14

Source: From J. E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition. Reprinted with permission of John Wiley & Sons, Inc.

Wave functions of hydrogen atom

Table 3.4 The radial and spherical harmonic parts of the wavefunction in the hydrogen atom ($a_o = 0.0529$ nm)

n	l	R(r)	m_ℓ	$Y(\theta, \phi)$	
1	0	$\left(\frac{1}{a_o}\right)^{3/2} 2 \exp\left(-\frac{r}{a_o}\right)$	0	$\frac{1}{2\sqrt{\pi}}$	
2	0	$\left(\frac{1}{2a_o}\right)^{3/2} \left(2 - \frac{r}{a_o}\right) \exp\left(-\frac{r}{2a_o}\right)$	0	$\frac{1}{2\sqrt{\pi}}$	
			0	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$	
2	1	$\left(\frac{1}{2a_o}\right)^{3/2} \left(\frac{r}{\sqrt{3}a_o}\right) \exp\left(-\frac{r}{2a_o}\right)$	1	$ \frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta e^{j\phi} \left\{ \begin{array}{l} \left\{ \propto \sin\theta\cos\phi \right\} \\ \left\{ \sqrt{\frac{3}{2\pi}}\sin\theta e^{-j\phi} \right\} \end{array} \right\} \left\{ \begin{array}{l} \left\{ \propto \sin\theta\cos\phi \\ \left\{ m_{\ell} = -1 \text{ and } + m_{\ell} \right\} \right\} \end{array} \right. $	
			-1	$\frac{2\sqrt{2\pi}}{2\sqrt{\frac{3}{2\pi}}\sin\theta e^{-j\phi}} \begin{cases} \begin{cases} & \text{Correspond to} \\ & \text{correspond to} \end{cases}$ $\begin{cases} \frac{1}{2\sqrt{\frac{3}{2\pi}}}\sin\theta e^{-j\phi} \end{cases} \begin{cases} & \text{correspond to} \\ & \text{correspond to} \end{cases}$	1.

Radial wavefunction and probability

Angular function

$$Y_{l,m}(\theta,\phi) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_{l,m}(\cos\theta) e^{im\phi}$$

$$l = 0, m = 0$$

$$l = 1$$

 $m = -1, 0, +1$

$$l = 2$$

 $m = -2, -1, 0, +1, +2$

$$l = 3$$

 $m = -3, -2, -1, 0, +1, +2, +3$

Schrödinger equation

Discrete electrons

$$\left[-\frac{\hbar^2}{2m} \sum_{i=1}^n \nabla_{\mathbf{r}_i}^2 - \sum_{i=1}^N \sum_{j=1}^n \frac{Z_i e^2}{\left| \mathbf{R}_i - \mathbf{r}_j \right|} + \frac{1}{2} \sum_{i=1}^n \sum_{j=1, j \neq}^n \frac{e^2}{\left| \mathbf{r}_i - \mathbf{r}_j \right|} \right] \psi(\mathbf{r}_i) = E \psi(\mathbf{r}_i)$$
Electron-ion Electron

Coulombic force

Schrödinger equation

Discrete electrons

$$\left[-\frac{\hbar^2}{2m} \sum_{i=1}^n \nabla_{\mathbf{r}_i}^2 - \sum_{i=1}^N \sum_{j=1}^n \frac{Z_i e^2}{\left| \mathbf{R}_i - \mathbf{r}_j \right|} + \frac{1}{2} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \frac{e^2}{\left| \mathbf{r}_i - \mathbf{r}_j \right|} \right] \psi(\mathbf{r}_i) = E \psi(\mathbf{r}_i)$$

Density functional theory (DFT)

$$n(\mathbf{r}) = -e \sum_{i=1}^{n} \left| \phi_i(\mathbf{r}) \right|^2$$

$$n(\mathbf{r}) = -e\sum_{i}^{n}\left|\phi_{i}(\mathbf{r})\right|^{2}$$
 Continuous electron density function
$$\left[-\frac{\hbar}{2m}\nabla^{2} + V_{ext}[n(\mathbf{r})] + V_{H}[n(\mathbf{r})] + V_{xc}[n(\mathbf{r})]\right]\phi_{i} = E\phi_{i}$$

More than one electron

MICHIGAN STATE UNIVERSITY

Schrödinger equation

Discrete electrons

$$\left[-\frac{\hbar^2}{2m} \sum_{i=1}^n \nabla_{\mathbf{r}_i}^2 - \sum_{i=1}^N \sum_{j=1}^n \frac{Z_i e^2}{\left| \mathbf{R}_i - \mathbf{r}_j \right|} + \frac{1}{2} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \frac{e^2}{\left| \mathbf{r}_i - \mathbf{r}_j \right|} \right] \psi(\mathbf{r}_i) = E\psi(\mathbf{r}_i)$$

Density functional theory (DFT)

$$n(\mathbf{r}) = -e \sum_{i=1}^{n} \left| \phi_i(\mathbf{r}) \right|^2$$
 Continue

$$n(\mathbf{r}) = -e \sum_{i}^{n} \left| \phi_{i}(\mathbf{r}) \right|^{2} \qquad \qquad \text{Continuous electron density function} \\ \left[-\frac{\hbar}{2m} \nabla^{2} + V_{ext}[n(\mathbf{r})] + V_{H}[n(\mathbf{r})] + V_{xc}[n(\mathbf{r})] \right] \phi_{i} = E \phi_{i} \qquad \qquad \text{Solution of is } \phi_{i} \text{ is obtained at the minimum of } E(\phi_{i})$$

$$E[\phi_i] = -\frac{\hbar^2}{2m} \sum_{i}^{n} \int \phi_i^* \nabla_i^2 \phi_i d^3 \mathbf{r} + \int V_{ext}(\mathbf{r}) n(\mathbf{r}) d^3 \mathbf{r} + \frac{1}{2} \int \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r} d^3 \mathbf{r}' + E_{xc}[n(\mathbf{r})]$$

Total energy

Kinetic

External

Classic Coulombic (Hartree)

Exchange-correlation

Ground state: the state of lowest total energy.

$$E[\phi_i] = -\frac{\hbar^2}{2m} \sum_{i}^{n} \int \phi_i^* \nabla_i^2 \phi_i d^3 \mathbf{r} + \int V_{ext}(\mathbf{r}) n(\mathbf{r}) d^3 \mathbf{r} + \frac{1}{2} \int \frac{n(\mathbf{r}) n(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} d^3 \mathbf{r} d^3 \mathbf{r}' + E_{xc}[n(\mathbf{r})]$$

Local density approximation (LDA): $E_{xc}[n(\mathbf{r})]$ is a function of $n(\mathbf{r})$

Generalized gradient approximation (GGA): E_{xc} is a function of $n(\mathbf{r})$ and the gradient of $n(\mathbf{r})$, i.e., $E_{xc}[n(\mathbf{r}), \nabla n(\mathbf{r})]$

There are many exchange-correlation functionals have been proposed and used, such as PBE, HSE, +U, etc. Specific choice of E_{xc} depends on the case of your problems.

Additional technique: Fourier spectrum method

- Fourier transformation: any function can be represented by a series of sin and cos.
- Solving differential equation in Fourier space is much faster.
- For periodic lattice structure in solids, wave-functions are solved using Fourier spectrum method, which is much faster than classical solving methods.

Example: Si of diamond structure

Primitive fcc cell vectors

$$(0, \frac{1}{2}, \frac{1}{2})$$
 $(\frac{1}{2}, 0, \frac{1}{2})$ $(\frac{1}{2}, \frac{1}{2}, 0)$

Basis atomic positions

$$(0, 0, 0)$$
 $(1/4, 1/4, 1/4)$

All atoms can be found at the multiple of

$$(0, 0, 0)$$
 $(0, \frac{1}{2}, \frac{1}{2})$ $(\frac{1}{2}, 0, \frac{1}{2})$ $(\frac{1}{2}, \frac{1}{2}, 0)$ $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ $(\frac{1}{4}, \frac{3}{4}, \frac{3}{4})$ $(\frac{3}{4}, \frac{3}{4}, \frac{1}{4})$

- V_{ext} potential at nucleus is singular
- Very hard to solve for the wave function, ϕ
- Use a smooth, nonsingular pseudopotential to replace V_{ext}
- Much easier to solve
- Need to keep the result of ϕ_{pseudo} close to the true one in the region away for the core
- Solve wave functions of only the valence electrons

- Log in to <u>nanohub</u>
- Search "quantum"
- Find DFT calculations with Quantum ESPRESSO
- Try different lattice constants

Volume

$$V = a^3$$

Pressure

$$P = -\frac{\partial E}{\partial V}$$

Bulk modulus

$$B = -V \frac{\partial P}{\partial V} = -V \frac{\partial^2 E}{\partial V^2}$$

- VASP (http://cms.mpi.univie.ac.at/vasp/)
 - Commercial, Plane-Wave Basis, Pseudopotentials and PAW
- PWSCF (http://www.quantum-espresso.org/)
 - Free (and available to run on nanohub), Plane-Wave Basis, Pseudopotentials and PAW
- CASTEP (http://ccpforge.cse.rl.ac.uk/gf/project/castep/)
 - Free in UK, licensed by Accelrys elsewhere, Plane-Wave Basis, Pseudopotentials
- ABINIT (http://www.abinit.org/)
 - Free (and available to run on nanohub), plane-wave basis, pseudopotentials and PAW
- WIEN2K (http://www.wien2k.at/)
 - Commercial (modest license fee), all-electron augmented wave method

Plane-wave basis: solved in Fourier space; PAW is another solving method.

Materials Project

https://next-gen.materialsproject.org/

- Log in
- Try making some phase diagram by selecting elements
- Explore crystal structures and properties of relevant compounds