CSE 221: Algorithms and Data Structures Lecture #8 The Constant Struggle for Hash

Steve Wolfman 2014W1

1

Today's Outline

- Constant-Time Dictionaries?
- Getting to Hash Tables by Doing Everything Wrong
 - First Pass: Plain Vectors
 - Second Pass: A Size Problem Resolved?
 - Third Pass: Crowding Resolved?
 - Fourth Pass: Allowing Diverse Keys?
 - Fifth Pass: Where the "Hash" Comes From
 - Third Pass, Take Two: Crowding Resolved Again?
- · Hash Tables...

2

Reminder: Dictionary ADT midterm · Dictionary operations would be tastier with insert - create brownies prog-project - destroy so painful... who invented - insert templates? - find wolf - delete find(wolf) - the perfect mix of oomph and Scrabble value · Stores values associated with user-specified keys - values may be any (homogenous) type - keys may be any (homogenous) comparable type

Fifth Pass: Hashing!

We only need perhaps a 64 (128?) bit number. There's no point in forming a **huge** number. We need a function to turn the strings into numbers, typically on a bounded range...

Schlemiel, Schlemazel, Trouble for Our Hash Table?

- Let's try out:
 - "schlemiel" and "schlemazel"?
 - "microscopic" and "telescopic"?
 - "abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba" and "abcdefghijklmnopqrstuvwxyzzyxwvutsrqponmlkjihgfedcba"

16

Today's Outline

- Constant-Time Dictionaries?
- · Hash Table Outline
- · Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
 - Chaining
 - Open-Addressing

Hash Table Dictionary Data Structure

- Hash function: maps keys to integers
 - result: can quickly find the right spot for a given entry
- Unordered and sparse table
 - result: cannot efficiently list all entries, list all entries between two keys (a "range query"), find minimum, find maximum, etc.

Hash Table Terminology

hash function

Steve

Will

Kendra

load factor $\lambda = \frac{\# \ of \ entries \ in \ table}{table Size}$

Hash Table Code First Pass

Value & find(Key & key) {
 int index = hash(key) % tableSize;
 return Table[index];
}

What should the hash function be?

How should we resolve collisions?

What should the table size be?

21

23

Insert 2 Insert 5 Insert 10 Think about inserting 9 Find 10 Insert 14 Insert -1 Insert 73

Today's Outline

- Constant-Time Dictionaries?
- Hash Table Outline
- · Hash Functions
- · Collisions and the Pigeonhole Principle
- · Collision Resolution:
 - Chaining
 - Open-Addressing

A Good Hash Function...

- ...is easy (fast) to compute (O(1) and practically fast).
- ...distributes the data evenly $(hash(a) \neq hash(b), probably)$.
- ...uses the whole hash table (for all $0 \le k \le$ size, there's an i such that hash(i) % size = k).

24

Good Hash Function for Integers

- · Choose
 - tableSize is
 - · prime for good spread
 - power of two for fast calculations/convenient size
 - hash(n) = n(fast and good enough?)
- Example, tableSize = 7

insert(4)

insert(17) find(12)

insert(9)

delete(17)

Good Hash Function for Strings?

- Let $s = s_1 s_2 s_3 s_4 ... s_5$: choose
 - $-\ hash(s) = s_1 + s_2 128 + s_3 128^2 + s_4 128^3 + \ldots + s_n 128^n$

Think of the string as a base 128 number.

- · Problems:
 - hash("really, really big") is really, really big!
 - hash("one thing") % 128 = hash("other thing") % 128

20

Making the String Hash Easy to Compute

• Use Horner's Rule (Qin's Rule?)

```
int hash(string s) {
  h = 0;
  for (i = s.length() - 1; i >= 0; i--) {
    h = (s<sub>i</sub> + 31*h) % tableSize;
  }
  return h;
```

27

Hash Function Summary

- · Goals of a hash function
 - reproducible mapping from key to table entry
 - evenly distribute keys across the table
 - separate commonly occurring keys (neighboring keys?)
 - complete quickly
- Sample hash functions:
 - h(n) = n % size
 - h(n) = string as base 31 number % size
 - $\ Multiplication \ hash: compute \ percentage \ through \ the \ table$
 - Universal hash function #1: dot product with random vector
 - Universal hash function #2: next pseudo-random numbe?8

How to Design a Hash Function

- Know what your keys are *or* Study how your keys are distributed.
- Try to include all important information in a key in the construction of its hash.
- Try to make "neighboring" keys hash to very different places.
- Balance complexity/runtime of the hash function against spread of keys (very application dependent).

29

Today's Outline

- Constant-Time Dictionaries?
- · Hash Table Outline
- · Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
 - Chaining
 - Open-Addressing

Collisions

- Pigeonhole principle says we can't avoid all collisions
 - try to hash without collision m keys into n slots with m > n
 - try to put 6 pigeons into 5 holes

31

The Pigeonhole Principle (informal) an't put k+1 pigeons into k holes without

You can't put k+1 pigeons into k holes without putting two pigeons in the same hole.

Image by en:User:M32Kay, used under CC attr/share-alike.

The Pigeonhole Principle (formal)

Let X and Y be finite sets where |X| > |Y|. If $f: X \rightarrow Y$, then $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$,

The Pigeonhole Principle (Example #1)

Suppose we have 5 colours of Halloween candy, and that there's lots of candy in a bag. How many pieces of candy do we have to pull out of the bag if we want to be sure to get 2 of the same colour?

- a. 2
- b. 4
- c. 6
- d. 8
- e. None of these

34

The Pigeonhole Principle (Example #2)

If there are 1000 pieces of each colour, how many do we need to pull to guarantee that we'll get 2 *black* pieces of candy (assuming that black is one of the 5 colours)?

- a. 2
- b. 4
- c. 6
- d. 8
- e. None of these

The Pigeonhole Principle (Example #3)

If 5 points are placed in a 6cm x 8cm rectangle, argue that there are two points that are not more than 5 cm apart.

The Pigeonhole Principle (Example #4)

For $a, b \in \mathbb{Z}$, we write a divides b as a|b, meaning $\exists c \in \mathbb{Z}$ such that b = ac.

Consider n + 1 distinct positive integers, each $\leq 2n$. Show that one of them must divide on of the others.

For example, if n = 4, consider the following sets:

 $\{1, 2, 3, 7, 8\}$ $\{2, 3, 4, 7, 8\}$ $\{2, 3, 5, 7, 8\}$

Hint: Any integer can be written as $2^k * q$ where k is an integer and q is odd. E.g., $129 = 2^0 * 129$; $60 = 2^2 * 15$.

The Pigeonhole Principle (Full Glory)

Let X and Y be finite sets with |X| = n, |Y| = m, and $k = \lceil n/m \rceil$.

If $f: X \to Y$, then $\exists k$ values $x_1, x_2, ..., x_k \in X$ such that $f(x_1) = f(x_2) = ... f(x_k)$.

Informally: If *n* pigeons fly into *m* holes, at least 1 hole contains at least $k = \lceil n/m \rceil$ pigeons.

Proof: Assume there's no such hole. Then, there are at most $(\lceil n/m \rceil - 1)^*m$ pigeons in all the holes, which is fewer than $(n/m + 1 - 1)^*m = n/m^*m = n$, set that is a contradiction. QED

Today's Outline

- · Constant-Time Dictionaries?
- Hash Table Outline
- · Hash Functions
- · Collisions and the Pigeonhole Principle
- · Collision Resolution:
 - Chaining
 - Open-Addressing

39

Collision Resolution

- Pigeonhole principle says we can't avoid all collisions
 - try to hash without collision m keys into n slots with m > n
 - try to put 6 pigeons into 5 holes
- What do we do when two keys hash to the same entry?
 - chaining: put little dictionaries in each entry
 - ← shove extra pigeons in one hole!
 - open addressing: pick a next entry to try

40

Hashing with Chaining

- Put a little dictionary at each entry
 - choose type as appropriate
 - common case is unordered move-to-front linked list (chain)
- · Properties
 - $-\,\,\lambda$ can be greater than 1
 - performance degrades with length of chains

Chaining Code

Load Factor in Chaining

- · Search cost
 - unsuccessful search:
 - successful search:
- · Desired load factor:

43

Today's Outline

- Constant-Time Dictionaries?
- · Hash Table Outline
- · Hash Functions
- · Collisions and the Pigeonhole Principle
- · Collision Resolution:
 - Chaining
 - Open-Addressing

45

Open Addressing

What if we only allow one Key at each entry?

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot
- · Properties
 - $-\ \lambda \leq 1$
 - performance degrades with difficulty of finding right spot

Probing

- Probing how to:
 - First probe given a key k, hash to h(k)
 - Second probe if h(k) is occupied, try h(k) + f(1)
 - Third probe if h(k) + f(1) is occupied, try h(k) + f(2)
 - And so forth
- Probing properties
 - the i^{th} probe is to (h(k) + f(i)) mod size where f(0) = 0
 - if i reaches size, the insert has failed
 - depending on f(), the insert may fail sooner
 - long sequences of probes are costly!

47

Linear Probing

f(i) = i

- Probe sequence is
 - h(k) mod size
 - $-h(k) + 1 \mod size$
 - $-h(k) + 2 \mod size$
 - ...

• findEntry using linear probing:

```
bool findEntry(const Key & k, Entry *& entry) {
  int probePoint = hash<sub>1</sub>(k);
  do {
    entry = &table[probePoint];
    probePoint = (probePoint + 1) % size;
} while (!entry->isEmpty() && entry->key != k);
  return !entry->isEmpty();
```

Linear Probing Example insert(76) insert(93) insert(40) insert(47) insert(10) insert(55) 93%7 = 240%7 = 5 47%7 = 5 47 47 47 55 93 93 93 93 93 10 10 40 40 40 40 76 76 76 76 76 probes: 1 3 493

Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Search cost (for large table sizes)

- successful search:
$$\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$$

- unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$

Values hashed close to each other probe the same

- · Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2$

Quadratic Probing

$$f(i) = i^2$$

- Probe sequence is
 - h(k) mod size
 - $(h(k) + 1) \mod size$
 - $(h(k) + 4) \mod size$
 - $(h(k) + 9) \mod size$
 - **–** ...

```
findEntry using quadratic probing:
bool findEntry(const Key & k, Entry *& entry) {
  int probePoint = hash<sub>1</sub>(k), numProbes = 0;
  do {
    entry = &table[probePoint];
    numProbes++;
    probePoint = (probePoint + 2*numProbes - 1) % size;
} while (!entry->isEmpty() && entry->key != key);
    return !entry->isEmpty();
```

Quadratic Probing Example © insert(40) insert(48) insert(76) insert(5) insert(55) 76%7 = 6 40%7 = 548%7 = 6 5%7 = 5 55%7 = 6 0 47 47 48 5 5 55 40 40 40 40 76 76 76 76 probes: 1 352

Quadratic Probing Succeeds (for $\lambda \le \frac{1}{2}$)

- If size is prime and λ ≤ ½, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all 0 ≤ i, j ≤ size/2 and i \neq j

$$(h(x) + i^2) \mod size \neq (h(x) + j^2) \mod size$$

by contradiction: suppose that for some i, j:

 $(h(x) + i^2)$ mod size = $(h(x) + j^2)$ mod size i^2 mod size = j^2 mod size $(i^2 - j^2)$ mod size = 0

 $[(i + j)(i - j)] \mod size = 0$

- but how can i + j = 0 or i + j = size when
i ≠ j and i, j ≤ size/2?

- same for i - j mod size = 0

Quadratic Probing May Fail (for $\lambda > \frac{1}{2}$)

 For any i larger than size/2, there is some j smaller than i that adds with i to equal size (or a multiple of size). D'oh!

55

Load Factor in Quadratic Probing

- For any λ ≤ ½, quadratic probing will find an empty slot; for greater λ, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering
- Quadratic probing does suffer from secondary clustering
 - How could we possibly solve this?

Values hashed to the SAME index probe the same

Double Hashing

 $f(i) = i \cdot hash_2(x)$

- · Probe sequence is
 - h₁(k) mod size
 - $(h_1(k) + 1 \cdot h_2(x)) \text{ mod size}$
 - $(h_1(k) + 2 \cdot h_2(x))$ mod size

_

• Code for finding the next linear probe:

```
bool findEntry(const Key & k, Entry *& entry) {
  int probePoint = hash1(k), hashIncr = hash2(k);
  do {
    entry = &table[probePoint];
    probePoint = (probePoint + hashIncr) % size;
  } while (!entry->isEmpty() && entry->key != k);
  return !entry->isEmpty();
```

A Good Double Hash Function...

- ...is quick to evaluate.
- ...differs from the original hash function.
- ...never evaluates to 0 (mod size).

One good choice is to choose a prime R < size and: $hash_2(x) = R - (x \text{ mod } R)$

58

Double Hashing Example insert(76) insert(93) insert(40) insert(47) insert(10) insert(55) 76%7 = 6 93%7 = 2 40%7 = 5 47%7 = 5 10%7 = 3 55%7 = 6 5 - (47%5) = 3 5 - (55%5) =

Load Factor in Double Hashing

- For any λ < 1, double hashing will find an empty slot (given appropriate table size and hash₂)
- Search cost appears to approach optimal (random hash):
 - successful search: $\frac{1}{\lambda} \ln \frac{1}{1-\lambda}$
 - unsuccessful search: $\frac{1}{1-\lambda}$
- · No primary clustering and no secondary clustering
- · One extra hash calculation

• On insertion, treat a deleted item as an empty slot 61

The Squished Pigeon Principle

- An insert using open addressing cannot work with a load factor of 1 or more.
- An insert using open addressing with quadratic probing may not work with a load factor of ½ or more.
- Whether you use chaining or open addressing, large load factors lead to poor performance!
- How can we relieve the pressure on the pigeons?

Hint: think resizable arrays!

62

Rehashing

- When the load factor gets "too large" (over a constant threshold on λ), rehash all the elements into a new, larger table:
 - takes O(n), but amortized O(1) as long as we (just about) double table size on the resize
 - spreads keys back out, may drastically improve performance
 - gives us a chance to retune parameterized hash functions
 - avoids failure for open addressing techniques
 - allows arbitrarily large tables starting from a small table
 - clears out lazily deleted items

63

Coming Up

· Parallelism and/or Graphs

Extra Slides: Some Other Hashing Methods

These are parameterized methods, which is handy if you **know** the keys in advance. In that case, you can randomly set the parameters a few times and pick a hash function that performs well. (Would that ever happen? How about when building a spell-check dictionary?)

66

Good Hashing: Multiplication Method

- Hash function is defined by size plus a parameter A
 h_A(k) = Lsize * (k*A mod 1) J where 0 < A < 1
- Example: size = 10, A = 0.485 $\begin{aligned} h_A(50) = & \lfloor 10*(50*0.485 \text{ mod 1}) \rfloor \\ = & \lfloor 10*(24.25 \text{ mod 1}) \rfloor = & \lfloor 10*0.25 \rfloor = 2 \end{aligned}$
 - no restriction on size!
 - if we're building a static table, we can try several As
 - more computationally intensive than a single mod

67

Good Hashing: Universal Hash Function

- · Parameterized by prime size and vector:
 - $a = \langle a_0 \ a_1 \dots a_r \rangle$ where $0 \ll a_i \ll size$
- Represent each key as r + 1 integers where $k_i < size$
 - size = 11, key = 39752 = > <3,9,7,5,2>
 - size = 29, key = "hello world" ==> <8,5,12,12,15,23,15,18,12,4>

$$h_a(k) = \left(\sum_{i=1}^r a_i k_i\right) \mod size$$

68

Universal Hash Function: Example

- Context: hash strings of length 3 in a table of size 131 let a = <35, 100, 21>
 - h_a ("xyz") = (35*120 + 100*121 + 21*122) % 131 = 129

69

Universal Hash Function

- Strengths:
 - works on any type as long as you can form ki's
 - if we're building a static table, we can try many a's
 - a random a has guaranteed good properties no matter what we're hashing
- Weaknesses
 - must choose prime table size larger than any k_i

70

Alternate Universal Hash Function

- Parameterized by k, a, and b:
 - k * size should fit into an int
 - a and b must be less than size

$$H_{k,a,b}(x) = ((a \cdot x + b) \mod k \cdot size)/k$$

71

Alternate Universe Hash Function: Example

• Context: hash integers in a table of size 16

$$\begin{split} \text{let } k &= 32, \, a = 100, \, b = 200 \\ h_{k,a,b}(1000) &= \left((100*1000 + 200) \% \, \left(32*16 \right) \right) / \, 32 \\ &= \left(100200 \, \% \, \, 512 \right) / \, 32 \end{split}$$

= 360 / 32

= 11

Universal Hash Function

• Strengths:

- if we're building a static table, we can try many a's
- random a,b has guaranteed good properties no matter what we're hashing
- can choose any size table
- very efficient if k and size are powers of 2

Weaknesses

- still need to turn non-integer keys into integers