ECE 340: Semiconductor Electronics

Practice problems for chapter 1 to 4

© 2015 Wenjuan Zhu, UIUC

ECE 340: Semiconductor Electronics

- 1. In an n-type silicon wafer ($N_d = 10^{17} \, \text{cm}^{-3}$) illuminated uniformly with 10 mW/cm² of red light ($E_{ph} = 1.8 \, \text{eV}$). The absorption coefficient of red light in silicon is $10^{-3} \, \text{cm}^{-1}$. The minority carrier lifetime is 10ms.
- (a) Calculate the electron and hole densities
- (b) Calculate the positions of the quasi-Fermi levels for the two carrier types and compare it to the Fermi energy in the absence of illumination.
- (c) If the light was turned off at t = 0, find a formula for excess hole concentration $\delta p(t)$ for t > 0. Does low level injection condition satisfied in this case?

© 2015 Wenjuan Zhu, UIUC

ECE 340: Semiconductor Electronics

2. Image at one end of a n-type silicon, all minority carriers are constantly swept out (i.e.
p=0 at x=0), while the majority carrier remains the same. The doping concentration is
10^{15} cm ⁻³ . The hole mobility is 1000 cm ² /V-s, $\tau_p = 1\mu s$, T=300K. For simplicity,
assume KT/q=25mV at 300K.

- (a) What is the excess hole concentration δp at x=0?
- (b) Find the minority carrier concentration distribution p(x) and sketch p(x) vs x.
- (c) At $x = 50\mu m$, calculate the hole diffusion current.

© 2015 Wenjuan Zhu, UIUC

ECE 340: Semiconductor Electronics

- 3. A silicon crystal is know to contain 10^{-4} atomic percent of arsenic (As) as an impurity. It then receives a uniform doping of $2x10^{16}$ phosphorus (P) atoms and a subsequent uniform doping of $1x10^{16}$ Gallium (Ga) atoms. A thermal annealing treatment then completely activates all impurities. (silicon has $5x10^{22}$ atoms cm⁻³, intrinsic carrier concentration for silicon is $1.5x10^{10}$ cm⁻³)
- (a) What is the conductivity type of this silicon sample?
- (b) What is the electron and hole concentration?
- (c) Find the location of the Fermi-level.

© 2015 Wenjuan Zhu, UIUC

ECE 340: Semiconductor Electronics

4. A silicon bar with height of h=100um, width W=1cm and length of L=10 cm, was doped by diffusion. The doping profile is $N_d(x) = N_0(1 - x/h)$, where $N_0 = 10^{15}$ cm⁻³. Calculate the resistance of this bar along the length direction. Assume mobility is uniform μ_n =1000 cm²/V-s.

© 2015 Wenjuan Zhu, UIUC

ECE 340: Semiconductor Electronics

5