HEC 2008

Exercice avec préparation 1

1. Question de cours : Donner la formule de la variance d'une somme finie de variables aléatoires prenant un nombre fini de valeurs.

Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes de même loi, à valeurs dans $\{-1;1\}$, définies sur une même espace probabilisé (Ω, \mathscr{A}, P) . On pose, pour tout $n \in \mathbb{N}^*$, $p = \mathbb{P}([X_n = 1])$, et on suppose que $p \in]0;1[$.

- 2. Pour tout $n \in \mathbb{N}^*$, on pose $Y_n = \prod_{i=1}^n X_i$.
 - a) Déterminer les lois de Y_2 et de Y_3 .
 - b) On pose, pour $n \ge 1$, $\mathbb{P}([Y_n = 1]) = p_n$. Déterminer une relation de récurrence entre p_{n+1} et p_n , puis la valeur de p_n pour tout $n \ge 1$.
 - c) Existe-t-il des valeurs de n pour les quelles les variables Y_n et Y_{n+1} sont indépendantes ?
- 3. On pose : $S_n = \sum_{i=1}^n X_i$. Déterminer la loi de S_n , son espérance et sa variance. (Indication : on pourra se ramener à des variables aléatoires X_i' $(1 \le i \le n)$ indépendantes suivant une loi de Bernoulli).
- 4. Écrire un programme en Pascal permettant de simuler la loi de S_n .

Exercice sans préparation 1

Étudier la limite éventuelle de la suite (u_n) définie par :

$$u_0 \in]0; 1[$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = 1 + \frac{u_n}{n+1}$

Déterminer deux réels a et b tels que : $u_n = 1 + \frac{a}{n} + \frac{b}{n^2} + \frac{1}{n^2} \epsilon\left(\frac{1}{n}\right)$ avec $\lim_{n \to +\infty} \epsilon\left(\frac{1}{n}\right) = 0$.

Exercice avec préparation 2

1. Définition et propriétés de la loi de Bernoulli et de la loi binomiale.

Une urne contient 2n boules $(n \in \mathbb{N}^*)$ de couleurs toutes différentes. La moitié d'entre elles sont marquées du chiffre zéro et les autres sont numérotées de 1 à n.

On extrait simultanément n boules de cette urne, obtenant ce qu'on appelle une poignée. On suppose que toutes les poignées sont équiprobables. Pour i entier compris entre 1 et n, on note X_i la variable aléatoire réelle qui prend la valeur 1 si la boule i se trouve dans la poignée et 0 sinon.

- 2. Déterminer la loi de probabilité de X_i .
- 3. Pour $(i,j) \in [1,n]^2$ tel que $i \neq j$, calculer la covariance du couple (X_i,X_j) .
- 4. On note S la variable aléatoire réelle prenant pour valeur la somme des numéros portés par les boules figurant dans la poignée.
 - a) Exprimer S en fonction de X_1, X_2, \ldots, X_n .
 - b) En déduire l'espérance et la variance de S.
- 5. On désigne par Z la variable aléatoire réelle donnant le nombre de boules portant le numéro zéro au sein de la poignée. Donner la loi de probabilité de Z puis son espérance.

Exercice sans préparation 2

Soit f la fonction définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) = x^3 + y^3 - 3xy + 1.$$

- 1. Calculer les dérivées partielles d'ordre 1 et d'ordre 2 de f.
- 2. Déterminer les points critiques de f.
- 3. La fonction f a-t-elle des extrema locaux?

Exercice avec préparation 3

1. Question de cours : Donner la définition d'un estimateur et définir la notion de risque quadratique.

Une urne contient N boules numérotées de 1 à N. On sait que N est au moins égal à deux, mais on ne connaît pas sa valeur exacte et on cherche à l'estimer. Pour cela, on effectue n tirages avec remise $(n \in \mathbb{N}^*)$ et on note Z_k le numéro de la boule obtenue au k-ième tirage $(1 \le k \le n)$. On modélise l'expérience par un espace probabilisé (Ω, \mathcal{A}, P) .

2. On pose, pour tout $n \in \mathbb{N}^*$, $M_n = \frac{1}{n} \sum_{k=1}^n Z_k$.

Donner l'expression d'un estimateur sans biais de N, fonction de M_n et dont la suite des variances converge vers 0 lorsque n tend vers $+\infty$.

- 3. On note $S_n = \max(Z_1, Z_2, ..., Z_n)$.
 - a) Déterminer la fonction de répartition de S_n .
 - b) Montrer que pour toute variable aléatoire Y à valeurs dans $\{1, 2, \ldots, N\}$, on a la relation :

$$\mathbb{E}(Y) = \sum_{k=1}^{N} \mathbb{P}([Y \geqslant k]).$$

- c) En déduire que : $\mathbb{E}(S_n) \geqslant N \frac{N}{n+1}$.
- d) En déduire que S_n est un estimateur de N, dont l'espérance converge vers N lorsque n tend vers $+\infty$.

Exercice sans préparation 3

Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ telle que :

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

- 1. a) Trouver une relation entre A^2 , A et I (matrice identité d'ordre 2).
 - b) En déduire que A est inversible et calculer son inverse.
- 2. Calculer les valeurs propres possibles de A.
- 3. A est-elle diagonalisable?

Exercice avec préparation 4

Dans cet exercice, on note C^0 l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} .

1. Question de cours : Donner la définition d'une valeur propre et d'un vecteur propre d'un endomorphisme.

Soit Φ l'application définie sur C^0 qui, à toute fonction f de C^0 , associe la fonction $g=\Phi(f)$ définie par :

$$\forall x \in \mathbb{R}, \ g(x) = \int_0^x f(t) \ dt.$$

- 2. Rappeler pourquoi, pour toute fonction f de C^0 , $\Phi(f)$ est dérivable et expliciter sa fonction dérivée.
- 3. Vérifier que Φ est un endomorphisme de C^0 .
- 4. Donner un exemple de fonction continue sur \mathbb{R} et non dérivable sur \mathbb{R} . L'application Φ est-elle surjective? Injective?

Soit λ un réel quelconque. On dit que λ est une valeur propre de Φ s'il existe une fonction f non nulle de C^0 , telle que $\Phi(f) = \lambda f$. Une telle fonction est appelée fonction propre associée à la valeur propre λ .

5. Recherche des valeurs propres non nulles de Φ . On suppose, dans cette question, que Φ admet une valeur propre λ non nulle.

Soit f une fonction propre associée à λ .

- a) Montrer que f est dérivable sur \mathbb{R} .
- b) En dérivant la fonction $x \to f(x)e^{-\frac{x}{\lambda}}$, montrer que f ne peut être que la fonction nulle.
- c) Conclure alors que Φ n'admet aucune valeur propre.
- **6.** Pour toute function f de C^0 , on pose : $F_0 = \Phi(f)$ et $\forall n \in \mathbb{N}^*$, $F_n = \Phi(F_{n-1})$.
 - a) Montrer que F_n est de classe C^{n+1} sur \mathbb{R} et préciser la valeur de ses dérivées successives en 0.
 - **b)** En déduire que : $\forall x \in \mathbb{R}, \ F_n(x) = \int_0^x \ \frac{(x-t)^n}{n!} f(t) \ dt.$

Exercice sans préparation 4

X et Y sont deux variables aléatoires réelles indépendantes définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ et ayant la même loi de densité φ , définie par :

$$\forall x \in \mathbb{R}, \quad \varphi(x) = ke^{-|x|}.$$

- 1. Déterminer la valeur du réel k.
- 2. Déterminer la fonction de répartition F de X.
- 3. Justifier l'existence de $\mathbb{E}(X)$ et $\mathbb{V}(X)$ et les calculer.

Exercice avec préparation 5

Pour tout nombre réel a, on note A(a) la matrice

$$A(a) = \begin{pmatrix} 2 & 1 & a \\ 1 & 1+a & 1 \\ a & 1 & 2 \end{pmatrix}$$

- 1. a) Question de cours : Rappeler la définition d'une matrice diagonalisable.
 - b) Montrer que si une matrice est diagonalisable, sa transposée est également diagonalisable.
- 2. a) Justifier le fait que pour tout a réel, la matrice A(a) est diagonalisable.
 - b) montrer que a est valeur propre de A(a) et déterminer le sous-espace propre associé.
 - c) Calculer $A(a)\begin{pmatrix}1\\1\\1\end{pmatrix}$ et $A(a)\begin{pmatrix}1\\0\\-1\end{pmatrix}$.
 - d) Diagonaliser A(a).
- 3. Soit $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}$ trois suites réelles vérifiant, pour tout n entier naturel,

$$\begin{cases} x_{n+1} = 2x_n + y_n \\ y_{n+1} = x_n + y_n + z_n \\ z_{n+1} = y_n + 2z_n \end{cases}$$

- a) Si l'on pose pour tout n entier naturel, $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$, quelle relation a-t-on entre X_{n+1} et X_n ?
- b) Déterminer une condition nécessaire et suffisante portant sur x_0 , y_0 et z_0 pour que les suites (x_n) , (y_n) et (z_n) soient bornées. Que peut-on dire alors de ces trois suites?
- 4. a) Montrer que si B et B' sont deux matrices semblables de $\mathcal{M}_3(\mathbb{R})$ et qu'il existe $C \in \mathcal{M}_3(\mathbb{R})$ telle que $C^2 = B$, alors il existe $C' \in \mathcal{M}_3(\mathbb{R})$ telle que $C'^2 = B'$.
 - b) Montrer que si B et C sont deux matrices de $\mathcal{M}_3(\mathbb{R})$ telles que $C^2 = B$, alors BC = CB.
 - c) Si $a \in \mathbb{R}$, déterminer les matrices de $\mathcal{M}_3(\mathbb{R})$ commutant avec la matrice $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.
 - d) Existe-t-il une matrice M de $\mathcal{M}_3(\mathbb{R})$ telle que $M^2 = A(3)$?

Exercice sans préparation 5

- 1. Vérifier que la fonction F définie sur \mathbb{R} par : $F(x) = \frac{1}{1+e^{-x}}$, vérifie les propriétés d'une fonction de répartition.
- 2. Déterminer la loi du maximum de deux variables aléatoires indépendantes définies sur une même espace probabilisé (Ω, \mathcal{A}, P) , et de même loi de fonction de répartition F. Généraliser à n variables.

Exercice avec préparation 6

1. Question de cours : Écrire la formule de Taylor à l'ordre n $(n \in \mathbb{N}^*)$ avec reste intégral pour une fonction d'une variable réelle de classe C^{n+1} et à valeurs dans \mathbb{R} .

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-x^2}$, et F la primitive de f qui vérifie F(0) = 0.

- 2. Étudier les variations de F et tracer sa courbe représentative dans un repère orthonormé.
- 3. a) Montrer que, pour tout x réel, l'intégrale $\int_0^1 e^{-(xt)^2} dt$ existe. On définit alors la fonction G par :

$$G(x) = \int_0^1 e^{-(xt)^2} dt.$$

b) Démontrer que G est dérivable sur \mathbb{R}^* et que sa dérivée est donnée par :

$$\forall x \in \mathbb{R}^*, \ G'(x) = \frac{xe^{-x^2} - F(x)}{x^2}.$$

En déduire les variations de G.

- c) Montrer que G est continue en 0 et que $\lim_{x\to +\infty} G(x)=0$.
- d) Vérifier que G est dérivable en 0 et que G' est continue sur \mathbb{R} .
- 4. a) Montrer que G vérifie :

$$\forall x \in \mathbb{R}, \ xG'(x) + G(x) = f(x).$$

b) On veut prouver que G est l'unique fonction g dérivable sur \mathbb{R} telle que :

$$\forall x \in \mathbb{R}, \ xg'(x) + g(x) = f(x) \quad (E).$$

Soit G_1 une fonction réelle dérivable sur \mathbb{R} et vérifiant l'équation (E). On pose $H = G - G_1$. Déterminer H(x) pour x > 0 puis pour x < 0. conclure en utilisant la continuité de H en 0.

Exercice sans préparation 6

Les variables aléatoires considérées dans cet exercice sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Soit a un réel strictement positif et X une variable aléatoire de loi uniforme sur [0; 2a].

a) Soit $n \in \mathbb{N}^*$. On considère n variables aléatoires indépendantes X_1, \ldots, X_n qui ont toutes la même loi que X. On pose :

$$M_n = \max(X_1, \ldots, X_n).$$

Déterminer la loi de M_n et calculer son espérance et sa variance.

b) En déduire que $U_n = \frac{n+1}{2n} M_n$ est un estimateur sans biais de $\mathbb{E}(X)$. Est-il préférable à l'estimateur $V_n = \frac{X_1 + \dots + X_n}{n}$?