Auxiliar 7 - Iluminación Local

Nelson Marambio

CC3501 - Modelación y computación gráfica para ingenieros

Iluminación Local

Necesitamos las siguientes especificaciones:

- Fuente de luz
- Material/color/textura
- Geometría de la superficie (i.e. normal del triángulo)

Iluminación Local

Modelo de iluminación de Phong

Iluminación Local

- \mathcal{L}_a , \mathcal{L}_d y \mathcal{L}_s son las componentes de la luz
- \bullet \mathcal{K}_a , \mathcal{K}_d y \mathcal{K}_s son los coeficientes de reflexión del material para cada componente
- \bullet $d = \|P Q\|$ es la distancia del punto P en la superficie hasta Q en la fuente de luz
- k_c, k_l y k_q son los coeficientes de atenuación constante, lineal y cuadrático respectivamente
- \bullet α es el coeficiente de brillo

$$\mathcal{I} = \mathcal{K}_{a}\mathcal{L}_{a} + \frac{1}{k_{c} + k_{l}d + k_{a}d^{2}}(\mathcal{K}_{d}\mathcal{L}_{d}(I \cdot n) + \mathcal{K}_{s}\mathcal{L}_{s}(v \cdot r)^{\alpha}) \qquad d = \|Q - P\|$$

Variando Ka

Aumentando \mathcal{K}_a

THE CAME SECTION

Variando Kd

Aumentando \mathcal{K}_d

Variando Ka y Kd

Hacia la derecha aumenta \mathcal{K}_d Hacia arriba aumenta \mathcal{K}_a

Variando Ks y alpha

Hacia la derecha aumenta α Hacia arriba aumenta \mathcal{K}_s

Modelos de sombreado

Sobreado Flat, Gouraud y Phong

Pregunta 1

Vaya modificando las variables del modelo de iluminación de Phong en el ejemplo ex_lighting.py, y vea que va ocurriendo ¿Cómo podría simular un material metálico y uno más opaco, como por ejemplo, un material de goma?

Pregunta 2

Tome la última pregunta del Auxiliar 6 (la de la torre eiffel), y agreguele iluminación al skybox (sin considerar el piso de pasto). Recuerde que ahora necesitará figuras con vectores normales.