AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

(Currently amended) A compound of the formula (I):

$$\bigcap_{(O)_m}^{CF_3} \bigcap_{(O)_m}^{(I)}$$

wherein:

N=O is a formula (A) or (B):

$$N = \bigvee_{NR^2R^3}^{Z} \qquad (A)$$

$$XR^1$$
 (B)

Z is YR1 or NR5R6;

or when Z is YR^1 , R^1 and R^3 may form together with the adjacent $Y=C-NR^2$ atoms, a five or six membered saturated heterocyclic ring which optionally contains an additional N or O atom, and is unsubstituted or substituted by one or more R^7 groups or one of the ring carbon atoms may form a carbonyl or imino group, and which ring is optionally fused to a benzene ring optionally substituted by R^7 ;

or when Z is YR^1 , R^1 and R^3 may form together with the adjacent —Y—C—NR²— atoms, a group (A^2):

$$N = \bigvee_{\substack{N \\ R^{2n}}}^{R^e} \qquad (A^2)$$

Y, X and W are each independently O or S;

or R^1 and R^4 may form together with the adjacent —X—C—W— group, a five or six membered unsaturated, partially saturated or saturated heterocyclic ring, unsubstituted or substituted by one or more R^7 groups or one of the ring carbon atoms may form a carbonyl group;

 R^1 is (C_1-C_8) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl or (C_3-C_8) cycloalkyl, which last four mentioned groups are unsubstituted or substituted by one or more R^8 groups; or is (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl which cycloalkyl is unsubstituted or substituted by one or more R^8 groups; or is $-(CR^9R^{10})_pR^{11}$ or $-(CR^9R^{10})_p$ heterocyclyl; or when Y is O is (C_1-C_6) alkylamino, NH (C_3-C_8) cycloalkyl or NH (C_1-C_8) alkylamino,

$$\begin{split} R^{2a} &\text{ is } (C_1\text{-}C_6) \text{alkyl, } (C_3\text{-}C_6) \text{alkenyl, } (C_3\text{-}C_6) \text{alkynyl, } (C_3\text{-}C_8) \text{cycloalkyl, } (C_1\text{-}C_6) \text{alkoxy, } (C_3\text{-}C_6) \text{alkynyloxy, } (C_3\text{-}C_6) \text{alkylamino, } \text{di-}(C_1\text{-}C_6) \text{alkylamino, } \text{NHCO}(C_1\text{-}C_6) \text{alkyl, } \text{NHSO}_2(C_1\text{-}C_6) \text{alkyl, } \text{OC}_1\text{-}C_6) \text{alkyl } \text{or } \text{SO}_2(C_1\text{-}C_6) \text{alkyl } \text{which } \text{last thirteen mentioned groups are unsubstituted or substituted by one or more } R^8 \text{ groups; or } \text{is } (C_3\text{-}C_8) \text{cycloalkyl-}(C_1\text{-}C_6) \text{alkyl } \text{which } \text{cycloalkyl is unsubstituted } \text{or substituted by one or more } R^8 \text{ groups; or } \text{is } \text{-} (\text{CR}^9 R^{10})_p \text{R}^{11}, \text{-}(\text{CR}^9 R^{10})_p \text{heterocyclyl, } \text{OH, } \text{SO}_2 R^{11}, \text{NH}_2, \text{NHCOR}^{11}, \text{NHR}^{11}, \text{NH}(C_3\text{-}C_8) \text{cycloalkyl, } \text{NH}(\text{CH}_2)_R \text{-}^{11}, \text{O(CHR}^{10})_r R^{11}; \text{O(CH}_2)_r \text{heterocyclyl } \text{ or } \text{N=C[(C_1\text{-}C_6) \text{alkyl}]_2; } \text{or } \text{ is } \text{(C}_3\text{-}C_6) \text{alkenyl } \text{substituted } \text{ by } R^{11}; \end{aligned}$$

R² and R⁵ are each independently is R^{2a} or H;

R3 and R6 are each independently is H or R1;

 R^4 is (C_1-C_6) alkyl substituted by R^8 ; or is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl or (C_3-C_8) cycloalkyl which last three mentioned groups are unsubstituted or substituted by one or more R^8 groups; or is (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl unsubstituted or substituted by one or more R^8 groups; or is — $(CR^2R^{10})_nR^{11}$ or — $(CR^2R^{10})_n$ heterocyclyl:

or when W is O, R4 is (C1-C6)alkylamino;

or R² and R³ together with the adjacent N atom form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁷ groups;

R7 is R8, R4, (C1-C6)alkyl or CH2OH;

$$\begin{split} R^8 & is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, S(O)_n R^{12}, CN, CO_2(C_1-C_6) alkyl, CO_2H, NO_2, OH, amino, (C_1-C_6) alkylamino, di-(C_1-C_6) alkylamino, carbamoyl, (C_1-C_6)-alkylcarbamoyl, di-(C_1-C_6)-alkylcarbamoyl, CH[O(C_1-C_6) alkyl]_2, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy or O(CH_2), R^{11}; \end{split}$$

R⁹ and R¹⁰ are each independently H, (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

 R^{11} is aryl unsubstituted or substituted by one or more groups selected from (C_1-C_6) alkyl, (C_1-C_6) alkoyl, (C_2-C_6) alkoyl, (C_3-C_6) alkynyl, (C_3-C_6) cycloalkyl, — $(CH_2)_nR^{13}$, heterocyclyl, halogen, (C_1-C_6) alkoxy, (C_1-C_6) alkoxy, (C_1-C_6) alkoyl, (C_1-C_6) alkoyl, (C_1-C_6) alkylamino;

R¹² is (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more groups selected from halogen, (C_1 - C_6)alkyl and (C_1 - C_6)haloalkyl;

$$\label{eq:continuous} \begin{split} R^c & is \ H, \ (C_1-C_6) alkyl, \ (C_2-C_6) alkyl, \ (C_2-C_6) alkyl, \ (C_3-C_8) cycloalkyl, \ (C_3-C_8) cycloalkyl, \ (C_1-C_6) alkyl, \ halogen, \ (C_1-C_6) alkoxy, \ (C_1-C_6) alkoxy, \ (C_3-C_6) alkynyloxy, \ (C_3-C_6) alkynyloxy, \ (C_1-C_6) alkynyloxy, \ (C_1-C_6) alkylamino, \ (C_1-C_6) alkylamino, \ (C_1-C_6) alkylamino, \ (C_1-C_6) alkylamino \ or \ O(CH_2)_R^{11} \ wherein \ r \ is \ 0 \ or \ 1; \end{split}$$

```
U is N or CH,
```

m, s and u are each independently 0 or 1;

n is 0, 1 or 2:

p is 0, 1, 2 or 3;

r is 0 or an integer from 1 to 6; and each heterocyclyl in the above mentioned radicals is independently a mono or bicyclic heterocyclic radical having 3 to 7 ring atoms in each ring and 1 to 4 hetero atoms selected from N, O and S;

with the proviso that in (A) when Z is NR 6 R 6 then up to three of R 2 , R 3 , R 4 and R 6 are not simultaneously H_1

or a pesticidally acceptable salt thereof.

(Canceled)

- 3. (Original) A compound or a salt thereof as claimed in claim 1, wherein R^1 is (C_1-C_8) alkyl or (C_3-C_6) alkenyl, which groups are unsubstituted or substituted by one or more groups selected from (C_1-C_4) alkoxy, $S(O)_nR^{12}$ and OH; or is $-(CR^9R^{10})_nR^{11}$.
- 4. (Original) A compound or a salt thereof as claimed in claim 1, wherein R² is H, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₁-C₆)alkynyl, (C₁-C₆)alkynyloxy, (CR⁹R¹⁰)_pR¹¹, —(CR⁹R¹⁰)_pheterocyclyl, NHR¹¹ or O(CH₂)_nR¹¹; or is (C₁-C₆)alkyl unsubstituted or substituted by a di-(C₁-C₄)alkylamino group.
- 5. (Original) A compound or a salt thereof as claimed in claim 1, wherein R^3 is (C_1-C_8) alkyl or (C_3-C_6) alkenyl, which groups are unsubstituted or substituted by an (C_1-C_4) alkoxy or OH group; or is H or $-(CR^9R^{10})_pR^{11}$.
- (Original) A compound or a salt thereof as claimed in claim 1, wherein R⁴ is (C₁-C₆)alkyl substituted by (C₁-C₄)alkoxy or OH; or is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₆)eycloalkyl

which last three mentioned groups are unsubstituted or substituted by an (C_1-C_4) alkoxy or OH group; or is (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl which cycloalkyl is unsubstituted or substituted by an (C_1-C_4) alkoxy or OH group; or is $-(C_8^9R^{10})_pR^{11}$ or $-(C_8^9R^{10})_p$ heterocyclyl.

7. (Original) A compound or a salt thereof as claimed in claim 1, wherein N=Q is a formula (A) in which Z is YR¹ and R¹ and R³ form together with the adjacent —Y—C—NR²— atoms, a heterocyclic ring which is of formula (A¹), (A²), (A³) or (A⁴):

$$N = \bigcap_{\substack{N \\ R^d}} R^b$$

$$R^c$$

$$R^d$$

$$N = \bigvee_{\substack{N \\ R^{2a}}}^{R^{e}} \qquad (A^{2})$$

$$N = \bigvee_{\substack{ N \longrightarrow \\ R^2}} (CH_2)_t \tag{A^4}$$

wherein:

Y is O or S:

U is N or CH;

V is O or CH2;

t is 0 or 1;

 R^a , R^b , R^c and R^d are each independently selected from H, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_8) eycloalkyl, halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, (C_0-C_6) alkenyloxy, (C_2-C_6) alkynyloxy, (C_1-C_6) alkoxy, (C_1-C_6) alkenyloxy, (C_1-C_6) alkynyloxy, $(C_1-C_$

or Ra and Rb, or Rc and Rd may form a carbonyl or imino group;

 R° and R° are each independently selected from H, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, $(C_3\text{-}C_8)$ cycloalkyl, $(C_3\text{-}C_8)$ cycloalkyl- $(C_1\text{-}C_6)$ alkyl, halogen, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ haloalkoxy, $(C_0\text{-}C_6)$ alkynyloxy, — $(CH_2)_pR^{11}$, heterocyclyl, CN, $CO_2(C_1\text{-}C_6)$ alkyl, NO_2 , amino, $(C_1\text{-}C_6)$ alkylamino, di- $(C_1\text{-}C_6)$ alkylamino and $O(CH_2)_pR^{11}$ wherein r is 0 or 1;

R9 is H, (C1-C6)alkyl, halogen, (C1-C6)alkoxy, CO2(C1-C6)alkyl or R11;

 R^{2a} is (C_1-C_6) alkyl unsubstituted or substituted by one or more groups selected from halogen, (C_1-C_6) alkyzy, $CH[O(C_1-C_6)$ alkyl]_2, CN, $CO_2(C_1-C_6)$ alkyl and CO_2H ; or is (C_3-C_6) alkenyl unsubstituted or substituted by one or more halogen or phenyl groups; or is (C_3-C_6) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, (C_3-C_6) alkenyloxy or (C_3-C_6) alkynyloxy; or is $-(CHR_{10})_pR^{11}$ wherein R^{10} is H or (C_1-C_6) alkyl, P is P or P is P or P in P is P or P in P is P or P in P is P or or P in P is P or or or more groups selected from halogen, P is P or or more groups selected from halogen and P is P or P is P or P in P in P is P or P in P is P or P in P in P in P in P is P or P in P is P or P in P is P in P in

8. (Currently amended) A process for the preparation of a compound of formula (I)

or a salt thereof as defined in claim 7, which process comprises:

a) where N=Q is a formula (A) in which Z is YR^1 , m is zero, and R^1 , R^2 and R^3 are as defined in claim 7. reacting a compound of formula (II):

$$\bigcap_{CF_3} \bigcap_{NR^2R^3} (II)$$

wherein Y, R² and R³ are as defined in formula (I), with a compound of formula (III):

$$R^{1}L$$
 (III)

wherein R1 is as defined in formula (I) and L is a leaving group in the presence of a base; or

b) where N=Q is a formula (A) in which Z is YR^1 , m is zero, R^3 is H, and R^1 and R^2 are as defined in formula (I), as a 1-pot reaction, reacting a compound of formula (IV):

with a strong base, and an isothiocyanate or isocyanate compound of formula (V):

$$R^2$$
— N = C = Y (V)

wherein R^2 is as defined in formula (I) to give the corresponding acylthiourea or acylurea intermediate of formula (II) above wherein R^3 is H, followed by reacting said intermediate with a compound of formula (III) as described in above process a); or

c) where N=Q is a formula (A) which is a heterocyclic ring of formula (A^1), (A^2), (A^3) or (A^4), wherein the various symbols are as defined in claim 7, acylating the corresponding compound of formula (A^{18}), (A^{28}), (A^{38}) or (A^{48}):

$$N = \bigcap_{\substack{N \\ R^{2a}}} R^{e} \tag{A^{2a}}$$

$$N = \bigcap_{R^2} (CH_2)_1 \tag{A}^{2a}$$

$$N = \bigvee_{\substack{N = -\sqrt{2}\\ R^2}} (CH_2)_t$$
(A^{4a})

wherein the various symbols are as defined in claim 7, with a compound of formula (VI):

wherein L is a leaving group; or

d) where N=Q is a formula (A) in which Z is Nk⁶R⁶, m is zero, and R², R³, R⁵ and R⁶ are as defined in formula (I), reacting a compound of formula (VIII):

$$\begin{array}{c|c} CF_3 & O & SR^1 & (VII) \\ \hline \\ N & R^2 & \\ \hline \\ R^3 & \end{array}$$

wherein R¹, R² and R³ are as defined in formula (I), with a compound of formula (VIII):

wherein R5 and R6 are as defined in formula (I), in the presence of a base; or

 \underline{d}) where N=Q is a formula (A) which is a heterocyclic ring of formula (A¹) or (A⁴), m is zero, Y is S and the other symbols are as defined in claim 7, cyclizing a compound of formula (IX) or (X) respectively:

$$\begin{array}{c|c} CF_3 & 0 & S & R^c & R^d \\ \hline \\ N & R^2 & R^a & R^b \end{array}$$

$$\begin{array}{c|c} CF_3 & O & S & \\ \hline \\ N & \\ N & \\ R^2 & \\ \end{array}$$

wherein the various symbols are as defined in formula (I) and L_1 is a leaving group, in the presence of a base; or

 \underline{e}) where m is zero and N=Q is a formula (B) in which R¹ and R⁴ are as defined in formula (I), the reaction of reacting a compound of formula (XI):

$$\bigcap_{N} \bigcap_{H} \bigcap_{N} \bigcap_{R^4} (XI)$$

wherein X, W and R^4 are as defined in formula (I), with a compound of formula (III) as defined in the above process a), in the presence of a base; or

- <u>f</u>) where Q is as defined above, and m is 1 oxidizing a corresponding compound in which m is 0; and if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt
- if desired, converting a resulting compound of formula (1) into a pesticidally acceptable salthereof.
- (Original) A pesticidal composition comprising a pesticidally effective amount of a compound of formula (I) or a pesticidally acceptable salt thereof as defined in claim I, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.

- 10. (Canceled)
- 11. (Currently amended) A compound or salt thereof as claimed in claim [[2]] $\underline{1}$, wherein R^1 is $(C_1\text{-}C_8)$ alkyl or $(C_3\text{-}C_6)$ alkenyl, which groups are unsubstituted or substituted by one or more groups selected from $(C_1\text{-}C_4)$ alkoxy, $S(O)_nR^{12}$ and OH; or is $-(CR^9R^{10})_pR^{11}$.
- 13. (Original) A compound or salt thereof as claimed in claim 3, wherein R^2 is H, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-C₆)alkynyloxy, (CR⁹R¹⁰)_pR¹¹, —(CR⁹R¹⁰)_pheterocyclyl, NHR¹¹ or O(CH₂)_rR¹¹; or is (C₁-C₆)alkyl unsubstituted or substituted by a di-(C₁-C₄)alkylamino group.
- 14. (Currently amended) A compound or salt thereof as claimed in claim [[2]] $\underline{1}$, wherein R^3 is (C₁-C₈)alkyl or (C₃-C₆)alkenyl, which groups are unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is H or $-(CR^9R^{10})_pR^{11}$.
- 15. (Original) A compound or salt thereof as claimed in claim 3, wherein R³ is (C₁-C₈)alkyl or (C₃-C₆)alkenyl, which groups are unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is H or —(CR⁹R¹⁰)_pR¹¹.
- 16. (Original) A compound or salt thereof as claimed in claim 4, wherein R^3 is (C_1-C_8) alkyl or (C_3-C_6) alkenyl, which groups are unsubstituted or substituted by an (C_1-C_4) alkoxy or OH group; or is H or $-(CR^9R^{10})_pR^{11}$.
- 17. (Currently amended) A compound or salt thereof as claimed in claim [[2]] 1, wherein R⁴ is (C₁-C₆)alkyl substituted by (C₁-C₄)alkoxy or OH; or is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₆)alkyn

 C_8)cycloalkyl which last three mentioned groups are unsubstituted or substituted by an $(C_1$ - C_4)alkoxy or OH group; or is $(C_3$ - C_8)cycloalkyl- $(C_1$ - C_6)alkyl which cycloalkyl is unsubstituted or substituted by an $(C_1$ - C_4)alkoxy or OH group; or is $-(CR^9R^{10})_pR^{11}$ or $-(CR^9R^{10})_p$ heterocyclyl.

- 18. (Original) A compound or salt thereof as claimed in claim 3, wherein R⁴ is (C₁-C₈)alkyl substituted by (C₁-C₄)alkoxy or OH; or is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₈)cycloalkyl which last three mentioned groups are unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is (C₃-C₆)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl is unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is —(CR⁹R¹⁰_bR¹¹ or —(CR⁹R¹⁰_bheterocyclyl.
- 19. (Original) A compound or salt thereof as claimed in claim 4, wherein R⁴ is (C₁-C₃)alkyl substituted by (C₁-C₄)alkoxy or OH; or is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₆)cycloalkyl which last three mentioned groups are unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is (C₃-C₆)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl is unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is —(CR⁹R¹¹0_bR¹¹ or —(CR⁹R¹0_bheterocyclyl.
- 20. (Original) A compound or salt thereof as claimed in claim 5, wherein R⁴ is (C₁-C₀)alkyl substituted by (C₁-C₄)alkoxy or OH; or is (C₃-C₀)alkenyl, (C₃-C₀)alkynyl or (C₃-C₀)cycloalkyl which last three mentioned groups are unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is (C₃-C₀)cycloalkyl-(C₁-C₀)alkyl which cycloalkyl is unsubstituted or substituted by an (C₁-C₄)alkoxy or OH group; or is —(CR²R¹¹₀,kR¹¹ or —(CR²R¹⁰,heterocyclyl.
- 21. (Original) A method for the control of arthropod or nematode pests, said method comprising applying to said pests or to a locus at which they reside or feed or which is susceptible to infestation thereby, a pesticidally effective amount of a compound or salt thereof as claimed in claim 1.
- 22. (Original) A method for the control of arthropod or nematode pests, said method comprising applying to said pests or to a locus at which they reside or feed or which is

PATENT MER 05-3070 574313-3433

susceptible to infestation thereby, a pesticidally effective amount of a composition as claimed in claim 9.