Problem R-05P ($C_{17}H_{20}OSe_2$). Reproduced below is the 95.4 MHz proton decoupled ⁷⁷Se NMR spectrum of 1,1-bisphenylseleno-3-methyl-2-butanol (the chemical shifts are arbitrarily referenced).

- (a) What is the ¹H frequency of the spectrometer?
- (b) Explain why there are two signals.
- (c) Analyze one of the signals (an expansion of the downfield peak is shown).

Problem R-05P (C₁₇H₂₀OSe₂). Reproduced below is the 95.4 MHz proton decoupled ⁷⁷Se NMR spectrum of 1,1-bisphenylseleno-3-methyl-2-butanol (the chemical shifts are arbitrarily referenced).

(a) What is the ¹H frequency of the spectrometer?

⁷⁷Se
$$I = \frac{1}{2}$$
, 7.5% abundant, 19.07 MHz (¹H = 100)

¹H Frequency:
$$\frac{\gamma_H}{\gamma_{Se}} \times 95.4 = \frac{100}{19.07} \times 95.4 = 500.26 \text{ MHz}$$

(b) Explain why there are two signals.

The asymmetric center at C^2 makes the two PhSe groups diastereotopic ($\Delta \delta_{Se-Se} = 31$ ppm).

(c) Analyze one of the signals (an expansion of the downfield peak is shown).

The central peak at 9540 Hz is from the fraction of molecules having ⁷⁷Se in the selenium at 131 ppm, and all the isotopes of the slenium at 100 ppm other than ⁷⁷Se. The satellites on the 131 ppm peak are from those molecules having ⁷⁷Se at both seleniums (they add up to 7.23% of the central peak). The two seleniums are coupled to each other:

$$^{2}J_{\text{Se-Se}} = 60.2 \text{ Hz}$$