고급수학 및 연습 2 중간고사

(2012년 10월 20일 오후 1:00-3:00)

학번: 이름:

모든 문제의 답에 풀이과정을 명시하시오. (총점 200점)

Problem 1. [25pts] Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as follows:

$$f(x,y) = \begin{cases} xy \sin \frac{1}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a) (5pts) For a vector \mathbf{v} , find the directional derivative of f at (0,0) in the direction of \mathbf{v} .
- (b) (10pts) Determine whether f is differentiable at (0,0) or not and explain your arguments.
- (c) (10pts) Show that $D_1 f$ is discontinuous at (0,0).

Problem 2. [20pts] Find local maximum points, local minimum points, and saddle points of the following function.

$$f(x,y) = \frac{1}{3}x^3 - x\sin y \ (-\pi < y < \pi)$$

Problem 3. [25pts] Let a, b and c be positive real numbers.

- (a) (15pts) Find the maximum value of $f(x, y, z) = x^a y^b z^c$ subject to the constraint given by $x + y + z = 1, \ x, y, z \ge 0.$
- (b) (10pts) Using (a), deduce that if u, v, w are any positive real numbers, then

$$\left(\frac{u}{a}\right)^a \left(\frac{v}{b}\right)^b \left(\frac{w}{c}\right)^c \le \left(\frac{u+v+w}{a+b+c}\right)^{a+b+c}$$
.

Problem 4. [20pts] Consider the function

$$f(x,y) = \int_{\frac{\pi}{2}}^{x^2 y} \frac{\sin(xt)}{t} dt$$

which is defined on $\{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0\}$.

Find the linear approximation of f(x,y) at $\left(1,\frac{\pi}{2}\right)$.

Problem 5. [20pts] Suppose that a C^1 function F(x,y) = (f(x,y), g(x,y)) satisfies the following properties

- (i) For all $(x, y) \in \mathbb{R}^2$, we have $g(x, y) = f(2x y, y^2 4x)$.
- (ii) The following table describes values of related functions at two points, (0,0) and (1,2).

point	f	g	D_1f	D_2f
(0,0)	2	2	5	2
(1,2)	1	2	4	6

Find the Jacobian matrix of F at (1,2).

Problem 6. [20pts] Consider the following function $F(x,y,z)=(x^3,\,x+z^2,\,x+y^3+z^5)$, which is written in rectangular coordinates. We transform the variables of F to spherical coordinates, and denote it as $G(\rho,\varphi,\theta)$. Find the net (infinitesimal) rate of change of volume of G at $(\rho,\varphi,\theta)=\left(1,\frac{\pi}{6},\frac{\pi}{4}\right)$.

Problem 7. [20pts] Let X(t) be a \mathcal{C}^2 curve on \mathbb{R}^2 such that X(0) = P, $X'(0) = \mathbf{v}$, $X''(0) = \mathbf{a}$. Let f(x,y) be a C^2 function with grad $f(P) = \mathbf{w}$ and f''(P) given by a matrix A. Calculate

$$\left. \frac{d^2}{dt^2} \right|_{t=0} f(X(t)).$$

Problem 8. [30pts] Consider the following vector fields which are defined on \mathbb{R}^3 except z-axis.

$$\mathbf{a}(x,y,z) = \left(\frac{-y}{x^2 + y^2}, \, \frac{x}{x^2 + y^2}, \, 0\right), \quad \mathbf{F}(x,y,z) = \left(\frac{-y}{x^2 + y^2} + e^x, \, \frac{x}{x^2 + y^2}, \, 1\right)$$

Consider the curve $X(t) = (3\cos t, 2\sin t, t)$ $(0 \le t \le 2\pi)$ in \mathbb{R}^3 .

- (a) (10pts) Determine whether two vector fields \mathbf{a} , \mathbf{F} are closed vector fields or not and explain your arguments.
- (b) (10pts) Determine whether two vector fields **a**, **F** have potential functions or not and explain your arguments.
- (c) (10pts) Find the value of the line integral $\int_X \mathbf{F} \cdot d\mathbf{s}$.

Problem 9. [20pts] For the following vector field \mathbf{F} and the parametrization X of a curve, find the value of the line integral $\int_X \mathbf{F} \cdot d\mathbf{s}$.

$$\mathbf{F}(x, y, z) = (e^{x} \log y, \frac{e^{x}}{y} - \cos z, y \sin z) \quad (y > 0)$$
$$X(t) = (\sin t \log t, e^{t}, \frac{t}{2}) \left(\frac{\pi}{2} \le t \le \frac{3\pi}{2}\right)$$