CS581 Theory of Computation: Homework #2

Due on February 1 2016 at 2:00pm

Harry H. Porter Winter 2016

Konstantin Macarenco

Give context-free grammars generating the following languages.

Problem 2.6 b

The complement of the language $\{a^nb^n|n\geq 0\}$

$$S \to aSb \mid bY \mid Ya$$
$$Y \to bY \mid aY \mid \epsilon$$

Problem 2.6 d

 $\{x_1 \# x_2 \# \cdots \# x_k | k \ge 1, \text{ each } x_i \in \{a, b\}^*, \text{ and for some } i \text{ and } j, x_i = x_j^R\}$

$$\begin{split} S &\rightarrow ABC \\ A &\rightarrow D\#A \mid \epsilon \\ B &\rightarrow 0B0 \mid 1B1 \mid E \\ C &\rightarrow \#DC \mid \epsilon \\ D &\rightarrow 1D \mid 0D \mid \epsilon \\ E &\rightarrow \#DE \mid \# \end{split}$$

Problem 2.7

Give informal English description of PDAs for the languages in Exercise 2.6

Problem 2.7 b

The complement of the language $\{a^nb^n|n\geq 0\}$

The PDA would work as follows:

- 1. Push start symbol on the stack.
- 2. If the first symbol is a b then move to accept state, since a^nb cannot start with b therefore this string is in compliment.
- 3. If the first symbol is a then push a on the stack, keep pushing a's for all consecutively following a's. When see first b after stream of a's, start consuming a's from the stack.
- 4. If stream is over and there is only start symbol fail.
- 5. If start symbol is consumed when b is scanned, then go to accept b > a.
- 6. If followed by a, then go to accept, since string has a form of $a^i b^j a \cdots$.
- 7. Last option all be are consumed, but there is stil a remains on the stack \rightarrow accept state since a>b

Problem 2.7 d

$$\{x_1 \# x_2 \# \cdots \# x_k | k \ge 1, \text{ each } x_i \in \{a, b\}^*, \text{ and for some } i \text{ and } j, x_i = x_j^R\}$$

A PDA that recognizes this language will nondeterministically check all possible combinations of x_i and x_j , by pushing character of x_i onto the stack, and consuming them when checking x_j . And skipping all other correct string sequences. If a pair $x_i = x_j^R$ is found, and all the rest of the imput is in form of $\{x_1 \# x_2 \# \cdots \# x_k\}$ - Accept, fail otherwise.

Problem 2.9

Give a context-free grammar that generates the language

$$A = \{a^i b^j c^k | i = j \text{ or } j = k \text{ where } i, j, k \ge 0\}$$

Is your grammar ambiguous? Why or why not?

$$S \to AB \mid CD$$

$$A \to aAb \mid \epsilon$$

$$B \to cB \mid \epsilon$$

$$C \to aC \mid \epsilon$$

$$D \to bDc \mid \epsilon$$

The language is not ambiguous...

Let $G = (V, \sum, R, S)$ be the following grammar. $V = \{S < TU\}; \sum = \{0, \#\};$ and R is the set of rules:

$$\begin{split} \mathbf{S} &\to TT \mid U \\ \mathbf{T} &\to 0T \mid T0 \mid \# \\ \mathbf{U} &\to 0U00 \mid \# \end{split}$$

Problem 2.13 a

Describe L(G) in English.

Informally L(G) is either two or more # separated by arbitrary number of 0's (zero or more) or zero or more zero followed by # and by twice as many zeros as in before #. More formally it is $\{0_1^{i_1} \# 0_2^{i_2} \# 0_3^{i_3} \# 0_4^{i_4} \# \cdots \# 0_k^{i_n} \mid \text{where } i_j \geq 0 \text{ and } k \geq 3\}$ or $\{0^n \# 0^{2n} | n \geq 1\}$

Problem 2.13 b

Prove that L(G) is not regular.

<u>Case</u> 1. Assume that L(G) is regular.

<u>Case</u> 2. Consider the word $0^p \# 0^{2p} \in L(G)$. By pumping lemma there eixsts a word $xyz \in L(G)$, and puping length p, such that $|xy| \leq p$ and for all $i \geq 0$, $xy^iz \in L$. In case of word $= 0^p \# 0^{2p}$, xy can only be in 0^p , however for $i \geq 0$ xy^iz is $0^{p+i} \# 0^{2p} \notin L(G)$ is a contradiction. Therefore L(G) is no regular.

Problem 2.15

Give a counterexample to show that the following construction fails to prove that the class of context-free languages is closed under star. Let A be a CFL that is generated by th CFG $G = (V, \sum, R, S)$. Add the new rule $S \to SS$ and call the resulting grammar G'A. This grammar is supposed to generate A*.

This rule applied to grammar $G = (\{S\}, \{a, b\}, \{S \to aSb | \epsilon\}, S) + S \to SS$ we get grammar G' that can produce a word: $aababb \notin A^*$

Let CFG G be the following grammar.

$$S \rightarrow aSb \mid bY \mid Ya$$

$$Y \rightarrow bY \mid aY \mid \epsilon$$

Give a simple description of L(G) in English. Use that description to give a CFG for $\overline{L(G)}$, the compliment of L(G).

L(G) is the language that produces all strings not in a^nb^n , i.e. compliment of a^nb^n .

CFG of $\overline{L(G)}$:

$$S \to aSb \mid \epsilon$$

Problem 2.28

Give unambiguous CFGs for the following languages.

Problem 2.28 a

 $\{w | \text{ in every prefix of } w \text{ the number of a's is at least the number of b's } \}$

$$S \to aS \mid BS \mid \epsilon$$
$$B \to aBBb \mid \epsilon$$

Problem 2.28 b

 $\{w | \text{ the number of a's and the number of b's in } w \text{ are equal } \}$

$$\begin{split} S &\to aA \mid bB \mid \epsilon \\ A &\to bS \mid aAA \\ B &\to aS \mid bBB \end{split}$$

Problem 2.28 c

 $\{w|$ the number of a's is at least the number of b's in $w\}$

$$S \to aA \mid bB \mid a$$
$$A \to bS \mid aAA$$
$$B \to aS \mid bBB$$

Use the pumping lemma to show that the following languages are not context free.

Problem 2.30 a

$$L = \{0^n 1^n 0^n 1^n | n \ge 0\}$$

Let p be the pumping lentgth, $s = 0^p 1^p 0^p 1^p$. By pumping lemma there exists $s = uv^i x y^i z \in L$, where $|vxy| \le p$ and |vy| > 1. There are two possible cases for v and y.

- <u>Case</u> 1. v and y contain at most one type of symbols, then when we pump i = p we will get string with member of unequal length: $s = 0^p 1^{2p} 0^p 1^p \notin L$ or $s = 0^{2p} 1^p 0^2 p 1^p \notin L$ or $s = 0^{2p} 1^p 0^{2p} 1^p \notin L$ or $s = 0^{2p} 1^p 0^{2p} 1^p \notin L$
- <u>Case</u> 2. v and y contain different types of symbols, then when i is pumped the resulting string will have members out of order, for example $0001110001010111 \notin L$. Therefore L is not Context free.

Problem 2.30 d

$$L = \{t_1 \# t_2 \# \cdots \# t_k | k \ge 2, \text{ each } t_i \in \{a, b\}^*, \text{ and } t_i = t_i \text{ for some } i \ne j\}$$

Let p be the pumping lentgth, $s = a^p b^p \# a^p b^p \in L$. By pumping lemma there exists $s = uv^i xy^i z \in L$, where $|vxy| \leq p$ and |vy| > 1. There are three cases

- Case 1. v or y contain #. Then for i = 0, s = uxz and it doesn't contain $\# \notin L$
- <u>Case</u> 2. v and y on the left side of #. Then when we pump i left side becomes longer than the right side $\notin L$
- <u>Case</u> 3. v and y on the right side of #. Then when we pump i right side becomes longer than the left side $\notin L$

Therefore L is no Context free.

Problem 2.31

Let L be the language of all palindromes over $\{0,1\}$ containing equal numbers of 0s and 1s. Show that B is not context free.

Let p be the pumping lentgth, $s = 0^p 1^2 p 0^p \in L$. By pumping lemma there exists $s = uv^i xy^i z \in L$, where $|vxy| \leq p$ and |vy| > 1. To prove that L is not context free we need to consider following cases

- <u>Case</u> 1. vxy consits of only 1's. Then if we pump i = p, then $s = 0^p 1^4 p 0^p \notin L$, since number of 1's is greater than number of 0's.
- <u>Case</u> 2. vxy consits of only 0's. Then if we pump i = p, then $s = 0^2 p 1^2 p 0^p \notin L$, since number of 0's is greater than number of 1's and s is no longer a palindrome.

Case 3. vxy consits of 0's and ones. Then if we pump i=2, then $s=uv^2xy^2z\notin L$, since s is no longer a palindrome.

Therefore L is not context free.

Problem 2.33

Show that $F = \{a^i b^j \mid i = kj \text{ for some positive integer } k\}$ is not context free.

Let p be the pumping lentgth, $s = a^{q^2}b^q \in F$, where q is a prime, and q > p. By pumping lemma there exists $s = uv^i xy^i z \in L$, where |vxy| < p and |vy| > 1. To prove that L is not context free we need to consider following cases:

- Case 1. vxy consits of only a's, then $v=a^k$ and $y=a^l$ in this case it is easy to find such i that $t = \frac{q^2 + i \times (k+l)}{q}$ is not an integer
- Case 2. vxy consits of only b's, then $v=b^k$ and $y=b^l$ in this case it is easy to find such i that $t = \frac{q^2}{q + i \times (k + l)}$ is not an integer
- Case 3. vxy consits of a's and b's, then $v=a^k$ and $y=b^l$, i that $t=\frac{q^2+i\times k}{q+i\times l}$, there are many possible combinations of i, k, l, that make t not integer.

Therefore F is not regular.

Problem 2.35

Let G be a CFG in Chomsky normal form that contains b variables. Show that if G generates some string with a derivation having at least 2^b steps, L(G) is infinite.

Since Chomsky form can have eiter two variables, or one terminal on the right, therefore it's derivation tree will be a binary tree. String w that derived with 2^b steps will have length $|w| > w^b$. Height of such a tree will be b+1, since there is only b variables, then at least one or more variable is used twice, i.e. language contains recursion, hence L(G) is infinite.

Problem 2.46

Consider the following CFG G: Describe L(G) and show that G is ambiguous. Give an

$$S \to SS \mid T$$
$$T \to aTb \mid ab$$

unambiguous grammar H where L(H) = L(G) and sketch a proof that H is unambiguous.

 $L(G) = \{(a^n b^n)^i | \text{ where } i, n > 0\}. \ ababab \in L(G) \text{ and has two derivation trees}$

Therefore L(G) is ambiguous.

Unambiguous grammar for this language is:

$$S \to TS \mid \epsilon$$

$$T \to aTb \mid ab$$