

RECHERCHE D'INFORMATION & TRAITEMENT AUTOMATIQUE DU LANGAGE

Cours 3: RI - Evaluation en RI

2022-23

Benjamin Piwowarski / Laure Soulier

Enjeux de l'évaluation en RI

- Quel modèle de RI est le plus efficace?
- Efficace? Problème difficile, pas de mesure absolue
 - Critères de qualité d'un système de RI
 - Facilité d'utilisation du système
 - Coût accès/stockage
 - Présentation des résultats
 - Efficacité de la recherche
 - Possibilités de formuler des requêtes riches
- Nombreuses mesures donnent des renseignements partiels sur le comportement du système

M1 DAC - RITAL 1/37

Evaluation Cranfield

- Objectif : évaluer la capacité d'un système à retourner des documents pertinents
- De quoi a-t-on besoin?

Paradigme de Cranfield - première expérimentation "laboratoire" en RI

Evaluation basées sur des collections de test composées de :

- Corpus de documents
- Requêtes
- Jugements de pertinence
 - Avantages
 - Peu couteux
 - Facilite les analyses d'erreurs
 - Répétables
 - Inconvénients
 - Jugements de pertinence peuvent être incomplets
 - Quelles hypothèses pour la pertinence?

M1 DAC - RITAL 2/37

- De nombreuses collections de test ont été développés par la communauté scientifique
 - Cranfield fin des années 50
 - TREC (NIST)
 - CLEF
 - NTCIR (Japon et autres langues asiatiques, cross language evaluation)

- ...

M1 DAC - RITAL 3/37

- Ad hoc Test Collections
- Web Test Collections
- Blog Track
- Chemical IR Track
- Clinical Decision Support Track
- Common Core Track
- Confusion Track
- Contextual Suggestion Track
- Interactive Track
- Knowledge Base Acceleration Track
- Legal Track
- Medical Track
- Microblog Track
- Million Query Track

- Novelty Track
- Query Track
- Question Answering Track
- Precision Medicine Track
- Real-time Summarization Track
- Relevance Feedback Track
- Robust Track
- Session Track
- SPAM Track
- Spoken Document Retrieval Track
- Tasks Track
- Temporal Summarization Track
- Terabyte Track
- Web Track

M1 DAC - RITAL 4/37

</DOC>


```
<DOC>
<DOCNO> GPXX-0002 </DOCNO>
<TITLE> ceci est un titre </TITLE>
<DATE> 2006-09-04 </DATE>
<TEXT> cecie est le contenu blablabla blablabla .</TEXT>
```

M1 DAC - RITAL 5/37

 Souvent les requêtes (mots clés) sont associés à une description plus complète (phrases) du besoin d'information

```
<top>
<num> Number: 501
<title> deduction and induction in English?
<desc> Description :
What is the difference between deduction and induction in the process of reasoning?
<narr> Narrative :
A relevant document will contrast inductive and deductive reasoning.
A document that discusses only one or the other is not relevant.
</top>
```

M1 DAC - RITAL 6/37

- Ensemble de jugements de pertinence pour chaque paire (document, requête)
 - Ces jugements peuvent être binaires ou être donnés sous forme d'un score, typiquement 0, 1, 2, 3, 4, 5
 - Ils sont formulés en fonction du besoin d'information

M1 DAC - RITAL 7/37

Evaluation Cranfield : Jugements de pertinence

M1 DAC - RITAL 8/37

Comment mesurer l'efficacité d'un système?

- Différents types de mesure
 - Rappel/Précision
 - Orientées rang
 - Prise en compte des degrés de pertinence

M1 DAC - RITAL 9/37

Métriques orientées rappel/précision

Documents de la collection

- Les deux mesures les plus courantes sont :
 - Rappel : est-ce que le système retourne TOUS les documents pertinents ?
 - Précision : est-ce que le système retourne QUE les documents pertinents ?

M1 DAC - RITAL 10/37

	Relevant	Non Relevant
Retrieved	True Positive (tp)	False Positive (fp)
not retrieved	False Negative (fn)	True Negative (tn)

• Précision = capacité à ne retrouver QUE des documents pertinents

$$Precision = \frac{tp}{tp + fp} \tag{1}$$

• Rappel = capacité à retrouver TOUS les documents pertinents

$$Rappel = \frac{tp}{tp + fn} \tag{2}$$

• Remarque : accuracy n'est pas une mesure pour la RI

$$Accuracy = \frac{tp + fn}{tp + fp + tn + fn} \tag{3}$$

M1 DAC - RITAL

Exemple

	•	
Rang	Doc	Pertinence
1	324	X
2	654	X
3	454	
4	472	
5	789	X
6	148	X
7	65	
8	32	X
9	78	
10	439	

Exercice

Calculer les mesures de rappel et de précision sachant que la collection inclue 10 documents pertinents

Evaluation d'un système

- Calcul des mesures pour chaque requête
- Moyenne sur l'ensemble des requêtes

M1 DAC - RITAL 12/37

- Rappel et précision sont en général antogonistes
 - Sélection de toute la collection \rightarrow R=1, P=0
 - Sélection d'un seul document pertinent \rightarrow R=0, P=1
- Suivant les utilisations, on peut vouloir favoriser précision (e.g. web) ou rappel (documentalistes)
- Mesure qui combine les deux métriques : F-mesure :

$$F_{\beta} = (1+\beta^2) \frac{P*R}{\beta^2 P + R} \tag{4}$$

M1 DAC - RITAL 13/37

- Les moteurs de recherche renvoient en général des listes ordonnées : l'idéal est de retourner les documents en tête de liste
- Métriques adaptées
 - Précision à k : $P@k(q) = rac{1}{k} \sum_{i=1}^k R_{d_i,q}$ avec $R_{d_i,q} \in \{0,1\}$ jugement de pertinence pour le document de rang i renvoyé par le système.
 - Rappel à k : $R@k(q) = \frac{1}{|R|} \sum_{i=1}^k R_{d_i,q}$ avec $R_{d_i,q} \in \{0,1\}$ jugement de pertinence pour le document de rang i renvoyé par le système.

M1 DAC - RITAL 14/37

M1 DAC - RITAL 15/37

Courbes de rappel/précision

Rg	RSV(q,d)	Pertinence	Rapel	Precision
1	0.95	1		
2	0.82	0		
3	0.75	0		
4	0.7	1		
5	0.65	1		
6	0.5	0		
7	0.4	0		
8	0.35	1		
9	0.2	0		
10	0.1	0		

Exercice

Tracer la courbe de rappel pour cet ordonnancement.

M1 DAC - RITAL 16/37

Rg	RSV(q,d)	Pertinence	Rappel	Precision
1	0.95	1	1/4	1
2	0.82	0	1/4	1/2
3	0.75	0	1/4	1/3
4	0.7	1	1/2	1/2
5	0.65	1	3/4	3/5
6	0.5	0	3/4	1/2
7	0.4	0	3/4	3/7
8	0.35	1	1	1/2
9	0.2	0	1	4/9
10	0.1	0	1	2/5

Précision interpolée

La précision interpolée au point de rappel r_j est égale à la valeur maximale des précisions obtenues aux points de rappel r, tel que $r >= r_j$

$$P_{interp}(r) = max_{r'>r}P(r')$$
 (5)

M1 DAC - RITAL 17/37

Rg	RSV(q,d)	Pertinence	Rapel	Precision	Pinterp
1	0.95	1	1/4	1	1
2	0.82	0	1/4	1/2	1
3	0.75	0	1/4	1/3	1
4	0.7	1	1/2	1/2	0.6
5	0.65	1	3/4	3/5	0.6
6	0.5	0	3/4	1/2	0.6
7	0.4	0	3/4	3/7	0.6
8	0.35	1	1	1/2	0.5
9	0.2	0	1	4/9	0.5
10	0.1	0	1	2/5	0.5

Précision interpolée (courbe rouge)

La précision interpolée au point de rappel r_j est égale à la valeur maximale des précisions obtenues aux points de rappel r, tel que $r>=r_j$

$$P_{interp}(r) = max_{r'>r} P(r')$$
 (6)

avec $r = \{0, 0.1, ..., 1\}$ ou r issu de la distribution de l'ordonnancement.

 \rightarrow Estime le pourcentage de documents pertinents qu'un utilisateur observera s'il veut atteindre un rappel au moins égal à r

M1 DAC - RITAL 18/37

 Précision moyenne (AvgP) est la moyenne des valeurs de précision des documents pertinents par rapport à la requête :

$$AvgP(q) = \frac{1}{n_+^q} \sum_{k=1}^N R_{d_k,q} \times P@k(q)$$
 (7)

- On peut également calculer la moyenne arithmétique de la précision interposée prise sur 11 points de rappel (approximation de l'aire sous la courbe précision-rappel)
- Moyenne des précisions moyennes (MAP) est la moyenne des AvgP sur l'ensemble des requêtes :

$$MAP = \frac{1}{|Q|} AvgP(q) \tag{8}$$

M1 DAC - RITAL 19/37

Métriques orientées rang

Mesures orientées rang

- Hypothèse : les documents pertinents doivent être retournés en premier dans la liste
- Moyenne des rangs inverses (Mean reciprocal rank): moyenne du rang du premier document sur l'ensemble des requêtes

$$MRR = \frac{1}{|Q|} \sum_{q_h \in Q} \frac{1}{Rank_h} \tag{9}$$

M1 DAC - RITAL 20/37

- Discounted cumulative gain (DCG)
 - Utilisé dans le cadre de la recherche Web
 - Utilise une information de pertinence graduée (5 niveaux)
 - Mesure le gain d'information apporté par un document en fonction de sa position dans la liste des résultats
 - Pour la RI Web seules les premières informations présentées sont importantes
- Hypothèses
 - Les documents pertinents sont plus utiles quand ils apparaissent à un rang élevé.
 - Les documents très pertinents sont plus utiles que les peu pertinents qui sont plus utiles que les non pertinents.

M1 DAC - RITAL

- Cumulative Gain (CG) ancêtre de DCG
 - CG au rang p

$$CG_p = \sum_{i=1}^p rel_i \tag{10}$$

- où rel_i est la pertinence graduée du document i
- Ne tient pas compte de l'ordre des documents
- Discounted Cumulatige Gain (DCG)
 - Prise en compte de l'ordre des documents par une fonction décroissante du rang

$$DCG_{p} = rel_{1} + \sum_{i=2}^{p} \frac{rel_{i}}{log_{2}(i)}$$

$$(11)$$

- Autres formulations possibles

M1 DAC - RITAL 22/37

- Pour moyenner DCG sur un ensemble de requêtes, on calcule une version normalisée NDCG
 - On suppose que l'on dispose d'une liste idéale de résultats dont le DCG_p vaut IDCG_p

$$nDCG_p = \frac{DCG_p}{IDCG_p} \tag{12}$$

- On moyenne ensuite sur l'ensemble des requêtes
- II faut bien sûr disposer de la liste idéale... \rightarrow petites mains du web...

M1 DAC - RITAL 23/37

NDCG - Exercice

Rang	Doc	Pertinence
1	324	1
2	654	2
3	454	
4	472	
5	789	1
6	148	1
7	65	
8	32	2
9	78	
10	439	

Exercice

Calculer la mesure de NDCG pour l'ordonnancement précédent.

M1 DAC - RITAL 24/37

0.0750

TopicID	X	Y
01	0.70	0.50
02	0.30	0.10
03	0.20	0.00
04	0.60	0.20
05	0.40	0.40
06	0.40	0.30
07	0.00	0.00
08	0.70	0.50
09	0.10	0.30
10	0.30	0.30
11	0.50	0.40
12	0.40	0.40
13	0.00	0.10
14	0.60	0.40
15	0.50	0.20
16	0.30	0.10
17	0.10	0.10
18	0.50	0.60
19	0.20	0.30
20	0.10	0.20

So you used a test collection that has n=20 topics to compute nDCG scores for two systems X and Y.

Which system is more effective?

Scores for X, Y:
$$(x_1,\ldots,x_n)$$
 (y_1,\ldots,y_n)

Per-topic difference:
$$d_i = x_i - y_i$$

Sample mean of the differences:
$$ar{d} = \sum_{j=1}^{n} d_j/n$$

Sample variance:

$$V = \sum_{j=1}^{n} (d_j - \bar{d})^2 / (n-1)$$
0.0251

Figure 1 - From Tetsuya Sakai, 2005

M1 DAC - RITAL 25/37

Figure 2 - From Tetsuva Sakai. 2005

M1 DAC - RITAL 26/37

TopicID	X	Y
01	0.70	0.50
02	0.30	0.10
03	0.20	0.00
04	0.60	0.20
05	0.40	0.40
06	0.40	0.30
07	0.00	0.00
08	0.70	0.50
09	0.10	0.30
10	0.30	0.30
11	0.50	0.40
12	0.40	0.40
13	0.00	0.10
14	0.60	0.40
15	0.50	0.20
16	0.30	0.10
17	0.10	0.10
18	0.50	0.60
19	0.20	0.30
20	0.10	0.20

Under the above assumptions,

$$d_j = x_j - y_j \text{ obeys } N(\mu_t, \sigma_t^2) \text{ where}$$

$$\mu_t = \mu_X - \mu_Y, \quad \sigma_t^2 = \sigma_X^2 + \sigma_Y^2$$
 obeys
$$\mu_t = \frac{\bar{d} - \mu_t}{\bar{d} - \mu_t}$$
 obeys

Which system is more effective?

Or, which of these hypotheses is true?

$$H_0: \mu_t = 0, \quad H_1: \mu_t \neq 0$$

If you look at the populations, X and Y are equally effective

If you look at the populations, X and Y are actually different

Figure 3 - From Tetsuya Sakai, 2005

M1 DAC - RITAL 27/37

TopicID 01 02 03 04	X 0.70 0.30 0.20 0.60 0.40	0.50 0.10 0.00 0.20 0.40	$H_0: \ \mu_t=0, H_1: \ \mu_t\neq 0$ If Ho is true, the t statistic obeys a t distribution with Φ =(n-1) degrees of freedom.
06 07	0.40 0.00	0.30	Significance level α : areas under curve = a pre-determined probability (e.g. 5%) of observing something very rare
08	0.70	0.50	0.4
09	0.10	0.30	
10	0.30	0.30	
11	0.50	0.40	0.3 P-value: area under curve = probability of observing to or something more extreme
12	0.40	0.40	
13	0.00	0.10	
14	0.60	0.40	0.1 (1-α) IF Ho is true.
15	0.50	0.20	
16	0.30	0.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17	0.10	0.10	
18	0.50	0.60	
19	0.20	0.30	—ф=4 —ф=99 t to
20	0.10	0.20	

Figure 4 - From Tetsuya Sakai, 2005

M1 DAC - RITAL 28/37

- Tests de significativité
 - Vérifier si la différence de performances entre deux systèmes est significative

Rejeter H0 (pas de différence entre A et B) Accepter H1 (A et B sont différents)

- Plusieurs tests : Student, Wilcoxon, ...
- Dépend d'un paramètre α

0.05
ightarrow 0.95% de chance que les systèmes soient différents

M1 DAC - RITAL 29/37

• Exemple de présentation de résultats

Apprentissage		P_{i}	ec^S @20	Rap	$pel^S@20$	F	$7^S@20$
\rightarrow		value	%Tx	value	%Tx	value	%Tx
Evaluation							
US2	BM25-RIC	0,016	+185,64	l*** 0,019	+139,62***	0,0177	+166.71**
	Logit-RIC	0,038	+21,66	0,031	+43.50 *	0,033	+31.75 *
\rightarrow	GS-RIC	0,015	+204,44	*** 0,008	+429.17***	0,009	+345.81**
SansRole	PM-RIC	0,019	+136,62	*** 0,006	+719.35 ***	0,008	+432.37 **
	MineRank(q)	0.046		0.045		0.044	
	MineRank(t)	0.040		0.040		0.040	
SansRole	BM25-RIC	0,075	-5,00	0,063	+335,58	0,069	+63,27
	Logit-CIT	0,071	+0,33	0,266	+3,76 ***	0,111	+1,33 **
\rightarrow	GS-RIC	0,058	+23,76	0,039	+595,56 *	0,046	+142,58
US2	PM-RIC	0,092	-22,83	0,078	$+254,\!57$	0,084	+32,86
	MineRank(q)	0.071		0.276		0.112	
	MineRank(t)	0.064		0.238		0.112	

M1 DAC - RITAL 30/37

Autres protocoles d'évaluation...

- Quand l'humain rentre en jeu...
 - Evaluation basée sur les logs utilisateurs
 - User-study

M1 DAC - RITAL 31/37

SCIENCES SORBONNE UNIVERSITÉ

• Evaluation basée sur les logs utilisateurs

M1 DAC - RITAL 32/37

- Evaluation basée sur les logs utilisateurs
 - Permet d'appliquer a posteriori des modèles sur des données utilisateurs

- Avantages

Besoin en information généré par un utilisateur réel Automatisation de l'évaluation

Inconvénients

"Artificiel"

M1 DAC - RITAL 33/37

Autres protocoles d'évaluation

SCIENCES SORBONNE UNIVERSITÉ

• User-study / Living labs

K. Balog, L. Kelly, and A. Schuth. Head First: Living Labs for Ad-hoc Search Evaluation. CIKM'14

M1 DAC - RITAL 34/37

- User-study
 - Utilisateur interagit en temps réel avec le système
- Avantages
 - Evaluation directe du système
 - Au plus proche de l'utilisateur!
- Inconvénients
 - Collecte fastidieuse, coûteuse, ...
 - Difficile d'évaluer toutes les variantes d'un modèle (paramétrage, etc...)
 - Evaluation de plusieurs modèles?

M1 DAC - RITAL 35/37

Evaluation des expérimentations en temps réel : Interleaving et A/B tests

Evaluation des expérimentations en temps réel: Interleaving et A/B tests

Interleaving

- Site provides the set of candidate items that can be re-ranked (safety mechanism)
- Experimental ranking is interleaved with the production ranking
 - Meeds 1-2 order of magnitudes data than A/B testing (also, it is within subject as opposed to between subject design)

M1 DAC - RITAL 36/37

A vous de jouer... TD is coming!

M1 DAC - RITAL 37/37