Formula sheet EE2S21

Efforts and flows

			Generalized	Generalized	
	Effort	Flow	position	momentum	
	e	f	q	p	
Electric	voltage <i>u</i> [V]	current i [A]	charge q [C]	flux ϕ [Vs]	
Translation	force F [N]	velocity v [m/s]	displacement x [m]	moment p [Ns]	
Rotation	torque	angular velocity	angular displ.	rotational mom.	
	τ [Nm]	ω [rad/s]	θ [rad]	<i>m</i> [Nms]	
Hydraulic	pressure	volume flow	volume	pressure mom.	
	$p [N/m^2]$	Q [m ³ /s]	$V [m^3]$	Γ [Ns/m ²]	
Thermo-	temperature	entropy flow	entropy	-	
dynamic	T [K]	f_T [WK ⁻¹]	S [J/K]		

Bond graphs

Ideal transformer: $e_2 = ne_1$, $f_2 = \frac{1}{n}f_1$ Ideal gyrator: $e_2 = rf_1$, $f_2 = \frac{1}{r}e_1$

System response

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau) d\tau$$

Linearization in operation point (x^*, u^*)

For
$$x=x^*+z, u=u^*+v$$
: $f(x)\approx f(x^*)+\frac{df}{dx}(x^*)z$
$$g(x,u)\approx g(x^*,u^*)+\frac{\partial g}{\partial x}(x^*,u^*)z+\frac{\partial g}{\partial u}(x^*,u^*)v$$

Laplace transforms

Impulse response
$$H(s)$$
: $Y(s) = H(s)U(s)$ $H(s) = C(sI - A)^{-1}B + D$ Properties:
$$\mathscr{L}\left(\frac{df}{dt}(t)\right) = sF(s) - f(0^+) \qquad \lim_{t \to +\infty} f(t) = \lim_{s \to 0^+} sF(s)$$

Table with Laplace transforms

$f(t)$ $(t \geqslant 0)$	F(s)	$f(t)$ $(t \geqslant 0)$	F(s)	$f(t)$ $(t \geqslant 0)$	F(s)
$\delta(t)$	1	e^{-at}	$\frac{1}{s+a}$	sin <i>bt</i>	$\frac{b}{s^2 + b^2}$
1(t)	$\frac{1}{s}$	te^{-at}	$\frac{1}{(s+a)^2}$	cos bt	$\frac{s}{s^2 + b^2}$
t	$\frac{1}{s^2}$	t^2e^{-at}	$\frac{2!}{(s+a)^3}$	$e^{-at}\sin bt$	$\frac{b}{(s+a)^2 + b^2}$
t^2	$\frac{2!}{s^3}$	$t^m e^{-at}$	$\frac{m!}{(s+a)^{m+1}}$	$e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$
t^m	$\frac{m!}{s^{m+1}}$				

Partial fraction expansion:
$$\frac{1}{(s+a)^n} \to \frac{A_1}{s+a} + \frac{A_2}{(s+a)^2} + \dots + \frac{A_n}{(s+a)^n}$$

$$\frac{1}{(s^2+bs+c)^m} \to \frac{B_1s+C_1}{s^2+bs+c} + \frac{B_2s+C_2}{(s^2+bs+c)^2} + \dots + \frac{B_ms+C_m}{(s^2+bs+c)^m}$$

if $b^2 - 4c < 0$ (i.e., no real zeros for $s^2 + bs + c$)

1st and 2nd-order systems

Standard form:
$$H_1(s) = \frac{K}{\tau s + 1}$$

$$H_2(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{K\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

Performance criteria

Rise time (10
$$\rightarrow$$
90%): $t_{\rm r} \approx \frac{1.8}{\omega_{\rm n}}$

Rise time (10
$$\rightarrow$$
90%): $t_{\rm r} \approx \frac{1.8}{\omega_{\rm n}}$ Peak time: $t_{\rm p} = \frac{\pi}{\omega_{\rm n}\sqrt{1-\zeta^2}}$
Settling time ($\pm 1\%$): $t_{\rm s} = \frac{4.6}{\zeta\omega_{\rm n}} = \frac{4.6}{\sigma}$ Overshoot: $M_{\rm p} = \exp\left(\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}\right)$

Peak time:
$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Overshoot:
$$M_{\rm p} = \exp\left(\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}\right)$$

Stability

Continuous-time system is stable if all poles have a strictly negative real part.

Routh table for $s^n + a_1 s^{n-1} + a_2 s^{n-2} + ... + a_{n-1} s + a_n$:

$$s^{n}: 1 \quad a_{2} \quad a_{4} \quad \dots$$
 with $b_{1} = -\frac{1}{a_{1}} \begin{vmatrix} 1 & a_{2} \\ a_{1} & a_{3} \end{vmatrix}, b_{2} = -\frac{1}{a_{1}} \begin{vmatrix} 1 & a_{4} \\ a_{1} & a_{5} \end{vmatrix}, \dots$

$$s^{n-1}: a_{1} \quad a_{3} \quad a_{5} \quad \dots$$

$$s^{n-2}: b_{1} \quad b_{2} \quad b_{3} \quad \dots$$

$$s^{n-3}: c_{1} \quad c_{2} \quad c_{3} \quad \dots$$

$$\vdots$$

$$s^{0}: *$$

 \rightarrow system is stable if all number in the 1st column with numbers are positive.

PID controllers

$$D(s) = K\left(1 + \frac{1}{T_{i}s} + T_{d}s\right)$$

Ziegler-Nichols 1 (quarter decay):Ziegler-Nichols 2 (ultimate gain):static gain K_s , delay τ_d , time constant τ ultimate gain K_u , period P_u P: $K = \frac{1}{K_s} \cdot \frac{\tau}{\tau_d}$ P: $K = 0.5K_u$ PI: $K = \frac{0.9}{K_s} \cdot \frac{\tau}{\tau_d}$ Ti = $\frac{\tau_d}{0.3}$ PID: $K = \frac{1.2}{K_s} \cdot \frac{\tau}{\tau_d}$ PID: $K = 0.45K_u$ PID: $K = 0.6K_u$ PID: $K = 0.6K_u$

Root locus

1+KL(s)=0 with $K\geqslant 0$ with loop gain $L(s)=\frac{\prod_{i=1}^m(s-z_i)}{\prod_{j=1}^n(s-p_j)}$; branches start in poles & end in zeros or asymptotically go to ∞ at angles $\frac{180^\circ+360^\circ(k-1)}{n-m}$ for $k=1,\ldots,n-m$ and radiating out from point $\alpha=\frac{\sum_{j=1}^n p_j-\sum_{i=1}^m z_i}{n-m}$ on real axis

Frequency domain

$$G(j\omega) = G_{
m re} + jG_{
m im}$$
: magnitude: $A = \sqrt{G_{
m re}^2 + G_{
m im}^2}$

phase:
$$\phi = \arctan \frac{G_{\mathrm{im}}}{G_{\mathrm{re}}}$$

$$\mathrm{dB} \leftrightarrow 20 \log_{10} A$$

Phase margin (PM): $(phase at 0 dB) + 180^{\circ}$

Gain margin (GM):

-(magnitude in dB at -180°) or $1/(\text{magnitude at } -180^{\circ})$

Nyquist stability criterion

encirclements of L(s) around -1 (N) = # poles of $\frac{L(s)}{1+L(s)}$ in right half-plane (Z) - # poles of L(s) in right half-plane (P)

with L(s) the loop gain. For encirclements a clockwise encirclement adds 1 and a counter-clockwise encirclement subtracts 1.

Trigonometric functions

$$\tan(30^\circ) = \frac{\sqrt{3}}{3}$$
 $\tan(45^\circ) = 1$ $\tan(60^\circ) = \sqrt{3}$