Computer Science & IT

Database Management
System

Relational Model & Normal Forms

Lecture No. 08

Recap of Previous Lecture

Topic

Relation between two FD sets

Topic

FD set of a sub-relation

Topics to be Covered

FD set of a sub-relation

Minimal cover or Canonical cover

Consider a relational schema R(A,B,C,D,E,F) with FD set

$$F = \{AB \rightarrow C, B \rightarrow D, BC \rightarrow A, D \rightarrow EF\}$$

Find the FD set F1 for sub-relation R1(A,B,C,D) of R(A,B,C,D,E,F).

Also find candidate keys for the sub-relation R1(A,B,C,D).

A AB ABC
$$(A)^{+}$$
: ABC

B AC ABD $(B)^{+}$: ACD

C AD ACD $(C)^{+}$: ACD

CD $(D)^{+}$: ACD

CD $(D)^{+}$: ACD

$$(A)^{+} = \{A\}$$

$$(B)^{+} = \{B, D, P, P\}$$

$$(C)^{+} = \{A\}$$

$$(D)^{+} = \{A\}$$

$$(AB)^{\dagger} = \{A, B, C, D, E, F\} \quad AB \longrightarrow CD$$

$$(AC)^{\dagger} = \{A, B, C, D, E, F\} \quad BC \longrightarrow AD$$

$$(BC)^{\dagger} = \{B, X, A, D, E, F\} \quad ABC \longrightarrow D$$

$$(CD)^{\dagger} = \{B, X, E, F\} \quad ABD \longrightarrow C$$

$$(ACD)^{\dagger} = \{B, X, E, F\} \quad BCD \longrightarrow A$$

$$R_{1} (A,B,C,D)$$

$$R_{1} (A,B,C,D)$$

$$R_{2} (AB)^{7} = \{A,B,C,D\}$$

$$AB \rightarrow D$$

$$AB \rightarrow CD$$

$$BC \rightarrow AD = BC \rightarrow AB$$

$$AB \rightarrow CD$$

Topic: Minimal cover (Canonical cover)

"irreducible"

Minimal cover of canonical cover of FD set F is a set of functional dependencies (F_m) such that,

- $F_m = F$ and
- F_m does not contain any redundant FD, and F_m must not contain any extraneous attribute at either side of any of its FD

eg: F= { A-B, B-C, A-C} As long as A-B & B-c are present in FD set F, we don't need to mention A-C' explicitly in the FD set F. si if A-B&B->C are present then A -> c is a redundant FD o. Minimal Cover al f= fm= ∫ A→B, B→c}

eg. Let $F = \{A \rightarrow B, AB \rightarrow C\}$

In AB

C

We know A

B

i.e. A can determine B,

i.f. A' ix present, then we don't need B,

Hence AB -> C
'B' is L.H.s. of FD is extoaneous.

i. AB—c after removed af extraneous attribute becomes "A>c"

Minimal Cover of F: Fm= {A->C}

 $\alpha \rightarrow \beta$ $\alpha = A \cup (\alpha - A)$ F= $\begin{cases} fd_1 \\ fd_2 \end{cases}$ if, $A \in (\alpha - A)^{\dagger}$ with $(F - (\alpha - B))$, then A is extra $\alpha \rightarrow \beta$.

Otherwise A is not extraneous.

fdy $\begin{cases} fd_1 \\ fd_2 \end{cases}$

Topic: Testing if an Attribute is Extraneous

Consider a set F of functional dependencies and functional dependency $\alpha \to \beta$ in F.

official To test if attribute

To test if attribute $A \in \alpha$ is extraneous in α (i.e., Any extraneous attribute in LHS of FD)

- 1. compute $(\{\alpha\} \{A\})^+$ using the dependencies in F. Except $(A \rightarrow B)$
- 2. check if $(\{\alpha\} A)^+$ contains A; if it does then, A is extraneous.

 Otherwise A is not extraneous.

To test if attribute $B \in \beta$ is extraneous in β (i.e., Any extraneous attribute in RHS of FD)

- 1. compute α^+ using only the dependencies in F', F' = (F $\{\alpha \rightarrow \beta\}$) $\cup \{\alpha \rightarrow (\beta B)\}$.
 - 2. check that α^+ contains B; if it does then, B is extraneous

redundant FD&

F={A
$$\rightarrow$$
BC, B \rightarrow C}

In A BC

(i) Check if B is extraneous

(A) with SB \rightarrow C = F-(A \rightarrow BC) $Z = A$, C}

B \rightleftharpoons (A) with $Z = A$ (BC \rightarrow B)

B \rightleftharpoons (A) with $Z = A$ (BC \rightarrow B)

(ii) Check if C' is extraneous

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(A) with $Z = A$ (BC \rightarrow C) $Z = A$ (BC \rightarrow C)

(B) $Z = A$ (BC \rightarrow C)

Topic: Procedure to obtain minimal cover of FD set

- Simplify RHS of all FDs (i.e., split the FDs such that RHS contain exactly one attribute)
- For all FDs find redundant (extraneous) attribute in LHS and semove them

 Eliminate all redundant FDs

 Or Soon as identified.
 - 4. Apply Union if needed
 - 5. The result is minimal Cover

#e.g., Consider the following FD set

$$F = \{AC \rightarrow G$$

D→EG

 $BC \rightarrow D$

CG→BD

 $ACD \rightarrow B$

CE→AG

}

Find minimal cover of F.

#e.g., Consider the following FD set

$$F = \{AC \rightarrow G \\ D \rightarrow EG \\ BC \rightarrow D \\ CG \rightarrow BD \\ ACD \rightarrow B \\ CE \rightarrow AG \}$$

$$Cove Con Found Gover of F.$$

$$AC \rightarrow G \\ ACD \rightarrow B \\ CE \rightarrow AG \\ Find minimal cover of F.$$

#e.g., Consider the following FD set

$$F = \{A \rightarrow BC\}$$

 $CD \rightarrow E$

 $E \rightarrow C$

D→AEH

ABH→BD

DH→BC

}

Find minimal cover of F.

Topic: NOTE

Minimal cover of FD set F need not be unique, but all minimal cover are logically equivalent.

is if
$$Fm_1$$
 4 Fm_2 are two minimal covers of FD set F then we know $fm_1 = F$ of $Fm_2 = F$ in $Fm_1 = Fm_2$

#e.g., Consider the FD set

$$F = \{AB \rightarrow C, B \rightarrow A, A \rightarrow B\}$$

Find all minimal Covers of F .

2 mins Summary

Topic

FD set of a sub-relation

Topic

Minimal cover or Canonical cover

THANK - YOU