Chapter 14.3: Partial Derivatives

Mechanics

- 1. Find all first and second partial derivatives for $f(x,y) = e^x + x \ln(y)$.
- 2. Find f_x , f_y , f_z , and f_{xzz} for the function $f(x, y, z) = x \sin(yz)$.
- 3. Find the total derivative Df at the given point for each function below. Remember that Df is the matrix of (partial) derivatives of the function and if f is a function from \mathbb{R}^n to \mathbb{R}^m then Df is a $m \times n$ matrix.
 - (a) $f(x) = 2x^3 + 7$ at x = 2.
 - (b) $\mathbf{f}(t) = \langle 2\cos(t), 2\sin(t), t \rangle$ at $t = \pi/2$.
 - (c) $f(x,y) = \sqrt{y-x}$ at (x,y) = (1,2).
 - (d) $f(x, y, z) = e^{2y-x} + z^2 + 4$ at (x, y, z) = (1, 2, 3).
 - (e) $\mathbf{f}(s,t) = \langle 2s + 3t, t s \rangle$ at (s,t) = (1,1).

Note: The graph of this function is a surface (in this case all of \mathbb{R}^2) parameterized by two variables just like the graph of the function in (b) is a curve parameterized by one variable - we'll see these more later! Another way of thinking about this is that this is a *change of variables* for \mathbb{R}^2 between the system of coordinates (s,t) and (x,y).

Applications

4. The speed of sound C traveling through ocean water is a function of temperature, salinity, and depth. It may be modeled by the function

$$C(T, S, D) = 1450 + 4.5T - 0.05T^{2} + 0.0003T^{3} + (1.5 - 0.01T)(S - 35) + 0.015D,$$

where C is the speed of sound in meters/second, T is the temprature in degrees Celsius, S is the salinity in grams/liter of water, and D is the depth below the ocean surface in meters.

- (a) State the units in which each of the partial derivatives C_T , C_S , and C_D are expressed and explain the physical meaning of each.
- (b) Find the partial derivatives C_T , C_S , and C_D .
- (c) Evaluate each of the three partial derivatives at the point where T = 10, S = 35, and D = 100. What does the sign of each partial derivative tell us about the behavior of the function C at the point (10, 35, 100)?
- 5. Recall from last week's worksheet that a utility function is a multivariable function u(x, y, z), where x, y, z represent three independent properties of an object (eg., price, quantity, quality), and u tells you how much you value that item. The marginal utility functions are the partial derivatives u_x, u_y and u_z . What is the economic interpretation of the marginal utilities?

Extensions

6. Below is a contour plot for a function f(x, y), with values for some of the contours (level curves) indicated on the *left* of the figure.

7. The fifth-order partial derivative $\partial^5 f/\partial x^2 \partial y^3$ is zero for each of the following functions. To show this as quickly as possible, which variable would you differentiate with respect to first: x or y?

Try to answer without writing anything down. Why did you make the choice you did?

(a)
$$f(x,y) = y^2 x^4 e^x + 2$$

(b)
$$f(x,y) = y^2 + y(\sin(x) - x^4)$$

(c)
$$f(x,y) = x^2 + 5xy + \sin(x) + 7e^x$$

(d)
$$f(x,y) = xe^{y/2}$$

8. Let A be any 2×2 matrix, and let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\mathbf{f}(\mathbf{x}) = A\mathbf{x}$. Compute the total derivative $D\mathbf{f}$. What do you notice? What familiar family of functions from Calc 1 does this remind you of? Can you generalize this result?