

LEIC-T 2023/2024

Aprendizagem - Machine Learning Homework 2

Deadline 9/10/2024 20:00

Submit on Fenix as pdf

I) Bayesian Classifier (8 pts)

Given a data set describing a sample

\mathbf{x}_1	X 2	Class
0.5	0.5	A
1	1.5	A
1.5	0.8	Α
2	1.8	A
2	0	В
2	1	В
3	0	В
5	1.2	В

And the query vector $x = (x_1, x_2)^T = (1, 2)^T$

- a) (3pts) Compute the most probable class for the query vector, under the Naive Bayes assumption, using 1-dimensional Gaussians to model the likelihoods. (Hint, the likelihood is described of each class is described by two Gaussians (Normal Distributions, each distribution is defined by a mean value and standard deviation..)
- b) (3 pts) Compute the most probable class for the query vector assuming that the likelihoods are 2-dimensional Gaussians.
- c) (1 pts) Given a data set

X	3 Class
0	A
1	A
1	A
0	A
1	В
1	В
0	В
1	В

And the query vector x3 = True = 1

Compute the most probable class, with x3 being a categorial class 1=True, 0=False.

LEIC-T 2023/2024 Aprendizagem - Machine Learning Homework 2

Deadline 9/10/2024 20:00

Submit on Fenix as pdf

d) (1pts) Given a data set describing a sample combining the data set before

\mathbf{x}_1	\mathbf{x}_2	X 3	Class
0.5	0.5	0	A
1	1.5	1	A
1.5	0.8	1	A
2	1.8	0	A
2	0	1	В
2	1	1	В
3	0	0	В
5	1.2	1	В

x1 and x2 are dependable and x3 is independent of x1 and x2. x3 is a categorial class. And the query vector $x = (1,2,1)^T$ Compute the most probable class and indicate the estimated relative probability.

Hint,

$$p(A, x_{query}) = p((1,2)|A) \cdot P(1|A) \cdot p(A)$$

$$p(B, xquery) = p((1,2)|B) \cdot P(1|B) \cdot p(B)$$

you have already computed the values in b) and in c)

$$P(1|A) = card(A.1)/card(A) = 2/4$$

P(1|B) = card(A.1)/card(B) = 3/4

III Software Experiments (2pts)

Download the jupyter notebook HM2 kB.ipynb.

Split the data using the command (in the notebook)

digits = datasets.load_digits()

X, y = digits.data, digits.target

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, stratify=y, random_state=your_group number)

And do the experiments with kNN with k=1, k=3, and GaussNB as indicated in the file and indicate the accuracy results.

Load the wine data set wine = datasets.load_wine() and redo the experiments, indicate the new accuracy values.

Which method gives better result for which data set? Do you know why? Pls indicate in one sentence.