基 礎 徹 底 演 習 問題プリント

ベクトル①

[51]

O を原点とする座標平面上に 3 点 A, B, C があり, \overrightarrow{OA} = (3, 4), \overrightarrow{OB} = (4, -2), \overrightarrow{OC} = (12, 5) である。

- (1) $|\overrightarrow{OB}| = \boxed{P} \sqrt{\boxed{1}}$, $\overrightarrow{OA} \cdot \overrightarrow{OB} = \boxed{\mathring{\ro}}$ であり、 $\triangle OAB$ の面積は $\boxed{\texttt{II}}$ である。また、 \overrightarrow{OC} を \overrightarrow{OA} , \overrightarrow{OB} を用いて表すと、 $\overrightarrow{OC} = \boxed{\mathring{\ro}}$ $\overrightarrow{OA} + \boxed{\mathring{\ro}}$ \overrightarrow{OB} である。
- (3) 点 E(x, y) がある。四角形 ABEC が平行四辺形であるとき、x = y である。

ı	ア	イ	ウ	エ	オ	カ	+	ク	ケ	コ	サ	シ	ス	セ
ı														

年 組 番 名前

52

 \triangle OAB において、辺 OA を 3:1 に内分する点を C、辺 OB を 2:1 に内分する点を D とし、AD と BC の交点を P とする。また、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ とする。

(1) AP:PD = k:(1-k) (ただし、0 < k < 1) とすると

$$\overrightarrow{OP} = (\overrightarrow{P} - k)\overrightarrow{a} + \overrightarrow{P} k\overrightarrow{b}$$

である。次に、BP:PC=l:(1-l) (ただし、0 < l < 1) とすると

$$\overrightarrow{\mathrm{OP}} = \frac{\mathbf{I}}{\mathbf{J}} l \overrightarrow{a} + (\mathbf{D} - l) \overrightarrow{b}$$

である。したがって,
$$k=$$
 キ , $l=$ ケ となるから

$$\overrightarrow{OP} = \frac{\cancel{y}}{\cancel{z}}\overrightarrow{a} + \frac{\cancel{z}}{\cancel{z}}\overrightarrow{b}$$

である。

(2) $|\vec{a}| = 6$, $|\vec{b}| = 5$, $|\vec{a} - \vec{b}| = 7$ のとき

$$\vec{a} \cdot \vec{b} = \boxed{9}$$
, $\cos \angle AOB = \boxed{9}$

であり、四角形 OCPD の面積は フノー である。