ELETRÔNICA BÁSICA I – ELE08497 - LABORATÓRIO 3 CIRCUITOS RETIFICADORES COM E SEM FILTRO CAPACITIVO

1. OBJETIVO

Verificar o funcionamento dos circuitos básicos de retificação e filtragem capacitiva.

2. INTRODUÇÃO TEÓRICA

Uma fonte alimentação CC fornece uma tensão ou uma corrente contínua, e é constituída por um circuito retificador, filtros e reguladores de tensão (caso de fonte de alimentação regulada).

Um diagrama de blocos típico da fonte é mostrado na figura abaixo. O primeiro bloco é um transformador de potência, geralmente abaixador, e tem a função de adequar os níveis de 127 ou 220 V_{RMS} aos níveis exigidos pelo circuito retificador.

O segundo Bloco é o circuito com diodos que tem a função de retificar a onda da entrada, senoide com valor médio zero, em uma onda com valor médio ou componente contínua, positiva ou negativa, conforme a necessidade de projeto. Embora a onda retificada tenha componente contínua ela ainda apresenta uma grande variação, de zero até o valor de pico da senoide, o que ainda é inadequada para alimentar a maioria dos circuitos. Faz-se, portanto necessário a utilização do terceiro bloco, o circuito de filtro, com o objetivo de reduzir a variação da onda retificada.

O quarto Bloco é o circuito encarregado de manter a tensão constante e contínua para uma ampla variação da corrente a ser solicitada pela carga e para uma variação da tensão de alimentação da rede. Este circuito é denominado circuito regulador de tensão.

Os circuitos retificadores são classificados de acordo com o tipo de tensão na saída:

- Retificador de meia-onda: onda com apenas um semi-ciclo da senoide.
- Retificador de onda completa: onda com dois semi-ciclos da senoide, mas com a mesma polaridade.

Os retificadores de onda completa são classificados de acordo com a configuração de diodos:

- Retificador com transformador de tap central,
- · Retificador em ponte de diodos.

2.1. RETIFICADOR DE MEIA ONDA

O diodo só conduz no semiciclo positivo da senoide. Os semi-ciclos positivos das tensões V_{S1} E V_R diferem apenas da tensõo no diodo ($\approx 0.7 \text{ V}$)

Colocando-se um capacitor em paralelo com a carga (figura abaixo), após o segundo semi-ciclo positivo, ele se carrega através do diodo (tempo: t₁ a t₂), e descarrega-se sobre a carga (tempo: t₂ a t₃), enquanto o diodo está cortado. A região sombreada da onda retificada e filtrada é o intervalo de tempo de condução do diodo

Retificador de meia onda com filtro capacitivo

Onda Retificada e filtrada

A ondulação na forma de onda retificada e filtrada se dá em torno do valor médio ou componente contínua dessa onda. O fator de ondulação é um dos requisitos especificados para a fonte de alimentação regulada, e é dado por:

$$\gamma = \frac{\text{valor efetivo da ondulação}}{\text{tensão media}} = \frac{V_{\text{rippleRMS}}}{V_{CC}}$$

Outro parâmetro de especificação é a sensibilidade da tensão de saída em relação à de entrada, denominada de regulação de entrada, e é dada por:

$$S_V = \frac{\Delta V_{CC}}{\Delta V_{IMPMS}}$$

A regulação da tensão de saída em relação a corrente de saída pode ser descrita pelo seu fator de regulação, ou pela resistência de saída:

$$S_L = \frac{V_{CC}(\text{sem carga}) - V_{CC}(\text{plena carga})}{V_{CC}(\text{nominal})} \qquad R_{OUT} = -\frac{\Delta V_{CC}}{\Delta I_{CC}}$$

A estabilidade da tensão de saída em relação a temperatura é dada por::

$$S_T = \frac{\Delta V_{CC}}{\Delta T}$$

A máxima corrente de saída é outro parâmetro de especificação da fonte de tensão regulada.

2.2. RETIFICADOR DE ONDA COMPLETA COM TRANSFORMADOR DE TAP CENTRAL

Retificador de Onda completa com transformador de Tap Central

Tensão do Secundário 1

Tensão do Secundário 2 (Invertida em relação a do secundário 1)

Tensão de Saída do Retificador

Podemos entender o retificador de onda completa com transformador com tap central com a união de dois retificadores de meia onda, cada um atuando em seu semi-ciclo.

No semi-ciclo positivo de V_{S1} o Diodo D_1 conduz e o Diodo D_2 corta, então a saída é quase igual a tensão do secundário 1. No semi-ciclo seguinte o Diodo D_1 corta e o Diodo D_2 conduz, então a saída é quase igual a tensão do secundário 2. Desta forma a tensão a saída é quase igual a tensão dos secundários, e nos dois semi-ciclos com a mesma polaridade. A diferença é a tensão do diodo envolvido no circuito de condução.

A tensão de saída tem frequência o dobro da do sinal de entrada.

Se colocado um capacitor em paralelo com a carga, obtém-se uma ondulação menor que nos retificadores de meia onda, pois a carga no capacitor é reposta em metade do tempo.

2.3. RETIFICADOR DE ONDA COMPLETA EM PONTE DE DIODOS

Os diodos da ponte ligam e cortam aos pares, conforme indicado nas figuras abaixo.

Retificador de Onda Completa com Ponte de Diodos

Estados dos diodos durante o semi-ciclo positivo do secundário:

 D_3 e D_2 conduzindo, D_1 e D_4 cortados.

Estados dos diodos durante o semi-ciclo negativo do secundário:

D₃ e D₂ cortados, D₁ e D₄ conduzindo

A onda de saída é quase igual a tensão do secundário. A diferença é a tensão dos dois diodos envolvidos no circuito de condução.

A onda de saída deste retificador é quase igual a do retificador de onda completa com tap central.

Tensão de secundário

Tensão de saída do retificador

2.4. FILTRO CAPACITIVO

A amplitude da ondulação da tensão de saída é função do valor do capacitor e da resistência de carga.

Um valor alto do capacitor diminui a tensão de ondulação, mas também diminui o intervalo de tempo de condução dos diodos. O Capacitor descarrega-se sobre a carga nos intervalos em que os diodos estão cortados. A sua carga é reposta durante o intervalo de tempo da condução dos diodos. Portanto o pico de corrente nos diodos aumenta com o aumento da capacitância.

O valor do capacitor depende da tensão de ondulação, e do valor de pico para a corrente através do díodo. Os seguintes são adotados para a determinação desse valor:

- Da aproximação triangular;
- Gráfico (ou de Schade).

3. PARTE EXPERIMENTAL

3.1. VERIFICAÇÃO DA INTEGRIDADE DOS DIODOS SEMICONDUTORES

3.1.1- Com um multímetro selecionado para teste de diodos verifique a integridade dos diodos semicondutores 1N4004/7, pela medição das tensões nos sentidos direto e reverso. Anote as leituras do multímetro nas duas situações.

D1-1N4004 a 7

D2-1N4004 a 7

FIG. 3.1.1

3.2- ATITUDES PREVENTIVAS DE SEGURANÇA:

- 3.2.1- Atenção com as ligações, PRINCIPALMENTE AS LIGAÇÕES DO PRIMÁRIO DO TRANSFORMADOR COM A TOMADA. Identifique corretamente os enrolamentos do primário e do secundário e os pontos de ligação do primário correspondentes a tensão da tomada (127 Vca), pois o primário normalmente é um enrolamento com tap central e permite a ligação em 110 Vca e 220 Vca.
- 3.2.2- Observar que o terra dos canais do osciloscópio é único. Por via das dúvidas, use apenas um terminal de terra de um dos canais.
- 3.2.3- Observar que irá trabalhar com capacitores eletrolíticos. Portanto NÃO POLARIZE OS CAPACITORES ELETROLÍTICOS INVERSAMENTE SOB PENA DE EXPLOSÃO DO CAPACITOR.

3.3- RETIFICADOR DE MEIA ONDA

3.3.1- Monte o circuito retificador da figura abaixo (Retificador de meia onda) e esboce as formas de onda nos pontos indicados para os canais CH1 e CH2 do osciloscópio, sem o capacitor de filtro. D₁ = 4004/7.

3.3.2- Ligue o capacitor de filtro e esboce as formas de onda nos locais indicados como CH1 e CH2. D₁ = 4004/7.

3.3.3- Altere a posição dos canais CH1 e CH2, conforme indicado na figura abaixo. $D_1 = 4004/7$.

3.3.4- Monte o circuito da figura abaixo (Retificador de Onda Completa em Ponte de Diodos) e esboce as formas de onda nos pontos indicados para os canais CH1 e CH2 do osciloscópio, sem os capacitores de filtro. D₁, D₂ = 4004/7.

3.3.5- Insira gradativamente os capacitores de 10 μ F, 100 μ F, 470 μ F no circuito e esboce as formas de onda vistas nos canais CH₁ e CH₂ do osciloscópio. D₁, D₂ = 4004/7.

