"Tricks" of the Trade

- · Efficiency is the word
- · But the straightforward implementation of algorithms to solve eq. of motion may not be the most efficient way
- There are ways of skipping some calculations and still get the "right" answer
- · Force calculations are expensive: can we avoid parts of it, square roots? (show bench)

Force calculation shortcuts

· Newton's 3rd: once calculate F_{ii}, have F_{ii}

 If V=V(r_i) is an even power, then because

$$\mathbf{F}_{ij} = -\frac{1}{r_{ij}} \left(\frac{dv(r_{ij})}{dr_{ij}} \right) \mathbf{r}_{ij}$$

only need r_{ij}^2 for F, thus no sqrt()

Potential Interpolation

One way to not calculate a complicated potential at every step is to use interpolations:

e.g.
$$V(r_{ij}) = A \exp(-C \cdot r_{ij}) - \frac{B}{r_{ij}^6}$$
 Barker, et al. 1977 For Argon

- Use tables to evaluate the potential explicitly for only a small number of distance values
- · For arbitrary distances, interpolate the potential from bracketing values in the table

• $\delta V_k = V_{k+1} - V_k$

... at equal intervals δs. Define 1st and 2nd differences:

 $\bullet \, \delta^2 V_k = \delta V_{k+1} - \delta V_k$

• For a value s between s_k and s_{k+1} , interpolate

Potential Interpolation

• Use $s=r_{ii}^2$ and calculate $V_1 = V(s_1)$, $V_2 = V(s_2)$,

Newton-Gregory forward difference method:

Potential Interpolation

$$V(s) \approx V_k + \xi \delta V_k + \frac{1}{2} \xi(\xi - 1) \delta^2 V_k$$

where

$$\xi = (s - s_k)/\delta s$$

Potential Interpolation

For the force, using

$$\mathbf{f}_{ij} = -\frac{1}{r_{ij}} \left(\frac{dV(r_{ij})}{dr_{ij}} \right) \mathbf{r}_{ij} = -\frac{w(r_{ij})}{r_{ij}^2} \mathbf{r}_{ij}$$

and noting that

$$\frac{w(r_{ij}^2)}{r_{ij}^2} = \frac{w(s)}{s} = 2\frac{dV}{ds}$$

Thus, for f can just differentiate

$$V(s) \approx V_k + \xi \delta V_k + \frac{1}{2} \xi (\xi - 1) \delta^2 V_k$$

Potential Interpolation

 An alternate method. For each interval (s_k, s_{k+1}) represent potential by 5th order polynomial:

$$V(s) \approx c_0 + c_1 \delta s + c_2 \delta s^2 + c_3 \delta s^3 + c_4 \delta s^4 + c_5 \delta s^5$$

- Where $\delta s = s s_k$.
- c_i coeffs are determined by the exact values of V(s), dV(s)/ds, and d²V(s)/ds² evaluated at the two ends of the interval.
- Advantage: the s_k need not be evenly spaced.

Not only by algorithms...

Compiler optimizations can help:

• -O3 (illustrate)

Hardware compiler type and version:

commercial

8

Problems with PBC: time to pay...

 PBC introduces the problem that <u>all</u> image pair interactions should be considered (infinite).

PBC: still hope...

- For short-ranged interactions could possibly skip far-away interactions.
- Approximate to only consider closest real or image particles: <u>minimum image</u> <u>convention.</u>
- Pairwise interactions only require N(N-1)/2 terms.

						Ĺ
00	0	0	0	0	0	
0	0	0	0	0	0	
0		~~~~]	0		
00	Ó	0	0	00	0	
0	Ö.	10/	0	0	0	
0		0		0		
0	0	0	0	00	0	
00	0	0	0	0	0	
0		0		0		

Avoid N² calculation with r₂

- Minimum Image convention still O(N²)
- What if for short-ranged interactions could possibly skip faraway interactions – do less!
- WARNING: This introduces an error and discontinuity in force and potential at cutoff r_c
- Thus, energy will not be conserved for truncated interactions

Avoid the N² calculation

Solution:

- \bullet Truncate interaction at $\rm r_{\rm c}$
- Shift potential by an samount V_c=V(r_c)

$$V^{T}(r_{ij}) = \begin{cases} V(r_{ij}) - V_c & r_{ij} \le r_c \\ 0 & r_{ij} > r_c \end{cases}$$

Corresponds to (a)

12

Avoid the N² calculation

- Additional term V_c is constant and does not affect force calculation nor eq. of motion
- However, contribution to total energy varies from step to step. Have to account for it in the energy
- Force is still discontinuous at r=r_c
- · Solution: add yet another term

13

Avoid the N² calculation

 Additional term is linear such that derivative is zero at cutoff distance

 This is the 'shiftedforce potential'

 $V^{T}(r_{ij}) = \begin{cases} V(r_{ij}) - V_c - \left(\frac{dV(r_{ij})}{dr_{ij}}\right)_{r_{ij} = r_c} (r_{ij} - r_c) & r_{ij} \le r_c \\ 0 & r_{ij} > r_c \end{cases}$

Corresponds to (b)

14

Avoid the N² calculation

Caveats:

- Discontinuity now shifts to the gradient of the force.
- The 'shifted-force potential' does not correspond anymore to desired model potential.
- However, thermodynamics are still very similar to original problem.

Alternate Route:

• Introduce a "switching" function to smoothly taper potential to zero at large *r*.

In sum: on reducing the distance "checking"

Can do:

- · Reduced use of expensive functions
- · Could use potential interpolations
- · Get good compiler and use optimization flags
- · PBC with minimum image convention
- Add distance cutoff r_c and correct energy

BUT:

 Still have to check (but not compute) all pairs -O(N²)

16

Neighbor Lists

Solution:

- Again rely on short-range interactions and keep a list of only neighbors
- Only update this list occasionally
- Between updates, calculate interactions with all neighbors in the list
- · Can do:
 - Verlet neighbor list
 - Cell structures

Verlet Neighbor List

- Surround r_c by a "skin" of r_l
- Loop over all particles inside r_i
 (Note, more interactions than with pure r_c)
- But number of pairs ~O(N)

18

Verlet Neighbor List

- Once in a while, update list (depends on size of r_i)
- $r_{_{\parallel}}$ should be big enough so as to prevent particle 7 into penetrating within $r_{_{c}}$ in between updates
- 10-20 updates typical, proportional to r_i
- · Can do automatic updates

19

Verlet Neighbor List

Caveats:

- As the size of the system increases, the total size of the neighbor lists also increases thus affecting storage.
- Update (of the lists) is still N²

Show bench

• Next: Use alternative method of cell structures.

20