Seminární úlohy 9

1. Kovový vzorek má tvar disku. Měřením byl zjištěn průměr vzorku $d=(10.15\pm0.05)$ mm, tloušťka vzorku $t=(0.481\pm0.002)$ mm a hmotnost vzorku $m=(440\pm1)$ mg. Určete hustotu vzorku a její absolutní a relativní chybu. Odhadněte, o jaký materiál by se mohlo jednat.

[řešení: $\varrho = (11.3 \pm 0.1) \text{ g cm}^{-3}$, $\eta_{\varrho} = 1.1\%$. Jedná se pravděpodobně o olovo.]

2. Index lomu skla lze měřit pomocí Abbeova polokulového refraktometru užitím monochromatického světla sodíkové výbojky o vlnové délce $\lambda = 589.6$ nm. Princip měření je znázorněn na obrázku. Nejdříve změříme index lomu n_0 sklen2ěné polokoule (obr. a) změřením maximálního úhlu lomu α_0 , tj. úhlu lomu paprsku s úhlem dopadu 90°. Následně se na polokouli umístí měřený vzorek, jehož index lomu n chceme zjistit, a provede se opět měření maximálního úhlu lomu α (obr. b).

Naměřeny byly následující úhly $\alpha_0=36^\circ 10'$ a $\alpha=59^\circ 50'$. Chyba měření úhlu činila $\sigma_\alpha=10'$. Určete index lomu n_0 polokoule a index lomu n měřeného vzorku pro použitou vlnovou délku. V obou případech vypočítejte absolutní a relativní chybu indexu lomu. Odhadněte, za jakého druhu skla byl vyroben měřený vzorek.

[řešení: $n_0 = 1.695 \pm 0.007$, $\eta_{n_0} = 0.4\%$, $n = 1.465 \pm 0.006$, $\eta_n = 0.4\%$. Jedná se pravděpodobně o sklo SIMAX (n = 1.472 pro $\lambda = 589.6$ nm).]