

Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q)

Práctica 9: Teorema de cambio de variables

Se sugiere complementar la resolución de los ejercicios de esta práctica con GeoGebra.

Integrales dobles en coordenadas polares

1. Para cada una de las siguientes integrales, graficar la región cuya área está dada por la integral y calcularla.

(a)
$$\int_{\pi/4}^{3\pi/4} \int_{1}^{2} r \, dr \, d\theta$$
, (b) $\int_{\pi/2}^{\pi} \int_{0}^{2\sin(\theta)} r \, dr \, d\theta$.

2. Calcular las siguientes integrales.

(a) $\iint_D x^2 y \, dA$, donde D es la mitad superior del disco con centro en el origen y radio 5.

(b) $\iint_D (2x-y) dA$, donde D es la región del primer cuadrante encerrada por la circunferencia $x^2+y^2=4$ y las rectas x=0 e y=x.

(c) $\iint_D \sin(x^2 + y^2) dA$, donde D es la región del primer cuadrante entre las circunferencias con centro en el origen y radios 1 y 3.

(d) $\iint_D e^{-x^2-y^2} dA$, donde D es la región acotada por la semicircunferencia $x=\sqrt{4-y^2}$ y el eje y.

3. Usar una integral doble para hallar el área de las siguientes regiones.

- (a) Un pétalo de la rosa $r = \cos(3\theta)$.
- (b) La región dentro de las circunferencias $(x-1)^2 + y^2 = 1$ y $x^2 + y^2 = 1$.

1

4. Calcular el volumen del sólido dado en cada uno de los siguientes casos.

- (a) Bajo el cono $z = \sqrt{x^2 + y^2}$ y arriba del disco $x^2 + y^2 \le 4$.
- (b) Bajo el paraboloide $z=18-2x^2-2y^2$ y arriba del plano xy.

- (c) Encerrado por el hiperboloide $-x^2 y^2 + z^2 = 1$ y el plano z = 2.
- (d) Dentro de la esfera $x^2 + y^2 + z^2 = 16$ y fuera del cilindro $x^2 + y^2 = 4$.
- (*) 5. (a) Se define la integral impropia en todo el plano \mathbb{R}^2 como

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2 + y^2)} dy dx = \lim_{r \to +\infty} \iint_{D_r} e^{-(x^2 + y^2)} dA$$

donde D_r es el disco con radio r y centro en el origen.

Demostrar que

$$\iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \pi.$$

(b) Una definición equivalente de la integral impropia del item (a) es

$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dA = \lim_{r \to +\infty} \iint_{S_r} e^{-(x^2+y^2)} dA$$

donde S_r es el cuadrado con vértices $(\pm r, \pm r)$.

Use esto para demostrar que

$$\left(\int_{-\infty}^{+\infty} e^{-x^2} dx\right) \left(\int_{-\infty}^{+\infty} e^{-y^2} dy\right) = \pi.$$

(c) Deducir que

$$\int_{-\infty}^{+\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

(d) Haciendo el cambio de variables $t = x/\sqrt{2}$, demostrar que

$$\int_{-\infty}^{+\infty} e^{-x^2/2} \, dx = \sqrt{2\pi}.$$

Este es un resultado fundamental para probabilidad y estadística.

Cambios de variables en \mathbb{R}^2

- 6. Para cada una de las regiones R del plano xy dadas, hallar una transformación T que mapee una región rectangular S en el plano uv (con lados paralelos a los ejes) sobre R.
 - (a) R está acotada por y = 2x 1, y = 2x + 1, y = 1 x, y = 3 x,
 - (b) R es el paralelogramo con vértices $(0,0),\,(4,3),\,(2,4),\,(-2,1),$
- 7. Utilizar las transformaciones dadas para calcular la integral.
 - (a) $\iint_R (x-3y) dA$, donde R es la región triangular con vértices (0,0), (2,1) y (1,2); x=2u+v, y=u+2v.

- (b) $\iint_R x^2 dA$, donde R es la región acotada por la elipse $9x^2 + 4y^2 = 36$; x = 2u, y = 3v.
- 8. Para cada una de las regiones R del plano xy dadas, hallar una transformación T que mapee una región rectangular S en el plano uv (con lados paralelos a los ejes) sobre R. Donde R es la región acotada por las hipérbolas y=1/x, y=4/x y las rectas y=x, y=4x.

Integrales triples en coordenadas cilíndricas

9. Identificar y graficar las siguientes superficies cuyas ecuaciónes están dadas en coordenadas cilindrícas.

(a)
$$\theta = \pi/4$$
, (b) $r = 5$, (c) $z = 4 - r^2$, (d) $2r^2 + z^2 = 1$.

10. Expresar las siguientes ecuaciones en coordenadas cilíndricas.

(a)
$$x^2 - x + y^2 + z^2 = 1$$
, (b) $z = x^2 - y^2$, (c) $-x^2 - y^2 + z^2 = 1$.

11. Graficar el sólido descripto por las siguientes desigualdades.

(a)
$$0 \le r \le 2$$
, $-\pi/2 \le \theta \le \pi/2$, $0 \le z \le 1$,

(b)
$$0 \le \theta \le \pi/2$$
, $r \le z \le 2$.

12. Para cada una de las siguientes integrales, graficar el sólido cuyo volumen está dado por la integral y calcularla.

(a)
$$\int_{-\pi/2}^{\pi/2} \int_0^2 \int_0^{r^3} r \, dz \, dr \, d\theta$$
, (b) $\int_0^2 \int_0^{2\pi} \int_0^r r \, dz \, d\theta \, dr$.

- 13. Calcular las siguientes integrales.
 - (a) $\iiint_E \sqrt{x^2 + y^2} dV$, donde E es la región que está en el interior del cilindro $x^2 + y^2 = 16$ y entre los plano z = -5 y z = 4.
 - (b) $\iiint_E z \, dV$, donde E está encerrada por el paraboloide $z = x^2 + y^2$ y el plano z = 4.
 - (c) $\iiint_E x^2 dV$, donde E es el sólido que está dentro del cilindro $x^2 + y^2 = 1$, por encima del plano z = 0 y por debajo del cono $z^2 = 4x^2 + 4y^2$.
- 14. Calcular el volumen del sólido dado en cada uno de los siguientes casos.
 - (a) Dentro del cilindro $x^2 + y^2 = 1$ y la esfera $x^2 + y^2 + z^2 = 4$
 - (b) Entre el paraboloide $z=x^2+y^2$ y la esfera $x^2+y^2+z^2=2$.

Integrales triples en coordenadas esféricas

15. Identificar y graficar las siguientes superficies cuya ecuaciónes están dadas en coordenadas esféricas.

(a)
$$\phi = \pi/3$$
, (b) $\rho = 3$, (c) $\rho = \sin(\theta)\sin(\phi)$.

16. Expresar las siguientes ecuaciones en coordenadas esféricas.

(a)
$$z^2 = x^2 + y^2$$
, (b) $x^2 + z^2 = 9$, (c) $x^2 - 2x + y^2 + z^2 = 0$.

- 17. Graficar el sólido descripto por las siguientes desigualdades.
 - (a) $2 \le \rho \le 4$, $0 \le \phi \le \pi/3$, $0 \le \theta \le \pi$,
 - (b) $\rho \le 1$, $3\pi/4 \le \phi \le \pi$.
- 18. Calcular las siguientes integrales.
 - (a) $\iiint_E (9-x^2-y^2) dV$, donde E es la semiesfera sólida $x^2+y^2+z^2 \le 9, z \le 0$,
 - (b) $\iiint_E xe^{x^2+y^2+z^2} dV$, donde E es la porción de la esfera unitaria $x^2+y^2+z^2 \le 1$ que está en el primer octante.
- 19. Hallar el volumen del sólido que está dentro de la esfera $x^2 + y^2 + z^2 = 4$, por encima del plano xy y por abajo del cono $z = \sqrt{x^2 + y^2}$.

Cambios de variables surtidos

- 20. Hallar el área del paralelogramo de vértices $A=(1,2,3),\,B=(1,3,6),\,C=(3,8,6)$ y D=(3,7,3).
- 21. Sean $u, v, w \in \mathbb{R}^3$ vectores. Probar que $u \cdot (v \times w) = \det(A)$ donde $A \in \mathbb{R}^{3\times 3}$ es la matriz que tiene a u, v y w como filas.
- 22. Sean A=(2,0,-1), B=(4,1,0), C=(3,-1,1) y D=(2,-2,2). Calcular el volumen del paralelepípedo con lados adyacentes AB, AC y AD.
- 23. Usar propiedades del producto escalar y del vectorial para decidir si los puntos $A=(1,3,2),\,B=(3,-1,6),\,C=(5,2,0)$ y D=(3,6,-4) están en el mismo plano.
- 24. Encontrar la imagen de $S=u^2+v^2\leq 1$ bajo la transformación $x=au,\,y=bv.$
- 25. Calcular $\iiint_E dV$, donde E es el sólido encerrado por el elipsoide

$$x^2/a^2 + y^2/b^2 + z^2/c^2 = 1.$$

Sugerencia: usar la transformación x = au, y = bv, z = cw.

- 26. Calcular las siguiente integrales utilizando un cambio de variables apropiado.
 - (a) $\iint_R (x+y)e^{x^2-y^2} dA$, donde R es el rectángulo encerrado por las rectas x-y=0, $x-y=2, \ x+y=0, \ x+y=3$,
 - (b) $\iint_R e^{x+y} dA$, donde R está dada por la desigualdad $|x| + |y| \le 1$.