Atopic Dermatitis (Eczema)

2/23/21

Tyler Jones

Introduction to Atopic Dermatitis

Eosinophilia

(eosinophils above normal range in blood)

Eosinophil

Normal

Eosinophils normal range

Eosinophilia

Eosinophils above normal range

Relation to Autoimmune diseases

Eosinophil counts:

Normal ~ 113.3 eosinophils/μL

AD \sim 290.0 eosinophils / μ L

Eosinophils

- White Blood Cells
- Associated with allergic reaction
- Can lead to inflammation and tissue damage

Fas associated factor family member 2 FAF2

FAF2

Highly Expressed in those with atopic dermatitis

(176448328, 176510074)

Multiple Sequence Alignment

Mammals found with sequences similar to this gene

Conserved Domains

UBA and UBX Domains

Down Regulation Neurofibromin 1

FAF1 and FAF2

FAF1 related to FAS receptor

FAF2 Not fully understood

UBX domain containing 8, isoform / ETEA

Conserved Domains

A75 ASN, A108 LYS, A131 GLN, A122 ILE, A128 PRO, A127 LYS, A129 VAL, A132 PRO

16 / 999 A61 VAL, A107 ASP, (A126 THR-A127 LYS), (A127 LYS-A128 PRO), A70 ASN, (A74 VAL-A75

ASN), A142 SER, A138 HIS, A75 ASN, A103 GLN, A76 ASP, A112 ASP, A130 PHE, A129 VAL,

Results obtained using MolProbity version 4.4

A67 LEU, A69 LYS, A88 GLN

A119 LYS, A75 ASN, A129 VAL, A142 SER

☐ Ramachandran 8.89%

0 / 744

A109 GLU

(A127 LYS-A128 PRO)

Outliers

Deviations

Bad Bonds

□ Bad Angles

TwistedProlines

Outliers

C-Beta

UBX model

MolProb	bity Results			^
MolF Scor		4.01		
☐ Clas	sh Score	28.51	(A17 HIS-A17 HIS), (A28 ALA-A53 PHE), (A17 HIS-A21 ILE), (A16 ARG-A20 MET), (A23 GLN-A26 LEU), (A24 PHE-A50 LEU), (A37 GLN-A41 ALA), (A25 VAL-A29 GLY), (A17 HIS-A18 GLN), (A14 GLU-A15 LEU), (A45 GLN-A46 PHE), (A38 LEU-A42 ALA), (A20 MET-A21 ILE)	
	machandran oured	54.69%		
☐ Ram Outli	machandran tliers	10.94%	A21 ILE, A63 HIS, A6 SER, A2 SER, A62 SER, A4 GLY, A58 ASN	
☐ Rota		29.63%	A58 ASN, A56 GLU, A36 LYS, A64 HIS, A55 GLN, A65 HIS, A15 LEU, A2 SER, A33 ASP, A62 SER, A43 HIS, A14 GLU, A8 MET, A18 GLN, A17 HIS, A16 ARG	
C-Be Devi	Beta viations	0		
☐ Bad	d Bonds	12 / 521	A66 HIS, A63 HIS, A43 HIS, A17 HIS, A64 HIS, A65 HIS	
Bad	d Angles	0 / 704	Results obtained using MolProbity version 4.	1.4

UBA model

FAF1

FAF2

UBA

UBX

Comparison to FAF1

Possible Future Exploration

Bibliography

Imai, Y., Nakada, A., Hashida, R., Sugita, Y., Tanaka, T., Tsujimoto, G., Matsumoto, K., Akasawa, A., Saito, H., & Oshida, T. (2002). Cloning and characterization of the highly expressed ETEA gene from blood cells of atopic dermatitis patients. *Biochemical and biophysical research communications*, 297(5), 1282–1290.

Jenerowicz, D., Czarnecka-Operacz, M., & Silny, W. (2007). Peripheral blood eosinophilia in atopic dermatitis. *Acta dermatovenerologica Alpina, Pannonica, et Adriatica, 16*(2), 47–52.

Menges, C. W., Altomare, D. A., & Testa, J. R. (2009). FAS-associated factor 1 (FAF1): diverse functions and implications for oncogenesis. *Cell cycle (Georgetown, Tex.)*, 8(16), 2528–2534. https://doi.org/10.4161/cc.8.16.9280

Phan, V. T., Ding, V. W., Li, F., Chalkley, R. J., Burlingame, A., & McCormick, F. (2010). The RasGAP proteins Ira2 and neurofibromin are negatively regulated by Gpb1 in yeast and ETEA in humans. *Molecular and cellular biology*, 30(9), 2264–2279.

Su, V., & Lau, A. F. (2009). Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. *Cellular and molecular life sciences: CMLS*, 66(17), 2819–2833. https://doi.org/10.1007/s00018-009-0048-9