

Problema de modelagem de um reator químico

Métodos Numéricos para Equações Diferenciais

Autores:

Lucas Rodrigues Estorck Pinto - 202310349511 Tainá Martins Macário - 202310070411

Professor:

Grazione Souza

Rio de Janeiro, Nova Friburgo 20 de setembro de 2025

Conteúdo

1	Introdução	2
2	Metodologia	3
3	Implementação computacional	5
	3.1 Estrutura do código, organização dos dados e implementação	5
	3.2 Análise de complexibilidade e perfomance	6
	3.3 Convergência, estabilidade e sensibilidade	7
	3.4 Ambiente computacional e modularidade	8
4	Resultados e discussão	9
5	Conclusão	15
\mathbf{R}	eferências Bibliográficas	16
\mathbf{A}	pêndice A: Tabelas de análise de convergência	17
A	pêndice B: Código fonte	20

1 Introdução

Este trabalho tem como objetivo aplicar o método de Runge-Kutta de 4° ordem no contexto da disciplina de Métodos Numéricos para Equações Diferenciais. O contexto de aplicação é a análise de um reator de batelada, onde a produção de penicilina por fermentação é controlada pelo sistema de equações mostrado nas Equações (1) e (2).

$$\frac{dg}{dt} = 13.1g - 13.94g^2 \tag{1}$$

$$\frac{df}{dt} = 1.71g\tag{2}$$

Onde g é a concentração adimensional da massa celular, f é a concentração adimensional de penicilina e t é o tempo adimensional no intervalo $0 \le t \le 1$. As condições iniciais para a solução do problema são:

$$g(0) = 0.03 f(0) = 0.0$$

Para a resolução, o algoritmo de Runge-Kutta de 4° ordem será implementado na linguagem de programação Julia, uma linguagem de alto nível e dinâmica, projetada para computação científica e numérica de alto desempenho. Ela combina características de linguagens interpretadas com a eficiência de linguagens compiladas. Dessa forma, Julia oferece a velocidade de uma linguagem compilada com a facilidade de uso do Python, a linguagem mais conhecida e implementada atualmente. [1]

Por fim, os resultados obtidos com a implementação serão discutidos e analisados. Espera-se, assim, avaliar a eficiência do método numérico aplicado e discutir sua aplicabilidade em sistemas reais, onde a resolução de equações diferenciais por métodos numéricos é necessária.

2 Metodologia

A metodologia utilizada para a resolução do problema baseou-se na aplicação do método de Runge-Kutta clássico de quarta ordem (RK4). Desenvolvido no início do século XX, este método representa uma classe de algoritmos empregados para a solução numérica de Equações Diferenciais Ordinárias (EDOs) e se destaca pelo equilíbrio entre precisão, estabilidade e custo computacional.

A forma geral de um método de Runge-Kutta é expressa pela Equação (3), onde s é o número de estágios, os coeficientes k_i são os incrementos/inclinações calculados em diferentes pontos do intervalo e b_i são os pesos que ponderam tais incrementos. [2]

$$y_{n+1} = y_n + \sum_{i=1}^{s} b_i k_i \tag{3}$$

O método clássico de quarta ordem é o mais difundido do grupo. Ele estima a solução de um Problema de Valor Inicial (PVI) utilizando uma média ponderada de quatro incrementos $(k_1, k_2, k_3 e k_4)$, que representam a inclinação da função em diferentes pontos dentro do intervalo de tempo Δt . Para um PVI da forma $\frac{d\phi}{dt} = f(t, y)$, a iteração para encontrar o próximo valor ϕ_{n+1} a partir de um valor conhecido ϕ_n é dada pela Equação (4).

$$\phi^{n+1} = \phi^n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \Delta t \tag{4}$$

Os incrementos são definidos por:

$$k_1 = \left(\frac{d\phi}{dt}\right)^n \tag{5}$$

$$k_2 = \frac{d\phi}{dt} \left(t^n + \frac{\Delta t}{2}, \, \phi^n + k_1 \frac{\Delta t}{2} \right) \tag{6}$$

$$k_3 = \frac{d\phi}{dt} \left(t^n + \frac{\Delta t}{2}, \, \phi^n + k_2 \frac{\Delta t}{2} \right) \tag{7}$$

$$k_4 = \frac{d\phi}{dt} \left(t^n + \Delta t, \, \phi^n + k_3 \Delta t \right) \tag{8}$$

No contexto deste trabalho, o método RK4 foi aplicado ao sistema de equações diferenciais que descreve o reator de batelada. Como o modelo apresenta duas equações acopladas, relativas à concentração adimensional de células (g) e de penicilina (f), os incrementos k_1 , k_2 , k_3 e k_4 foram calculados separadamente para cada variável, mas em instantes intermediários de tempo idênticos. Para sistemas acoplados da forma:

$$\frac{dg}{dt} = f_g(t, g, f)$$

$$\frac{df}{dt} = f_f(t, g, f)$$

O método RK4 mantém a consistência temporal avaliando as derivadas de ambas as equações nos mesmos pontos intermediários, preservando assim o acoplamento entre as variáveis e garantindo que a ordem de precisão do método seja mantida para o sistema como um todo.

O passo de integração inicial foi definido como $\Delta t = 0.05$, conforme a especificação do problema. Posteriormente, foram realizados testes de convergência numérica, diminuindo-se gradualmente o valor de Δt para verificar se os resultados obtidos tendiam à solução de referência, comportamento esperado de um método de quarta ordem. Essa etapa permitiu avaliar a confiabilidade e a ordem de precisão efetiva do esquema implementado.

Além disso, foi conduzida uma análise de sensibilidade, em que os parâmetros cinéticos do modelo (coeficientes lineares e quadráticos) foram modificados em variações percentuais positivas e negativas. Esse procedimento teve como objetivo avaliar a influência de incertezas experimentais ou variações nos coeficientes sobre a dinâmica do reator, fornecendo uma compreensão mais ampla do comportamento do sistema.

Toda a formulação foi implementada na linguagem Julia, escolhida por sua eficiência em cálculos científicos e suporte a bibliotecas de visualização. O código foi estruturado de modo a resolver numericamente o sistema de EDOs, registrar os resultados em formato tabular, gerar gráficos de evolução temporal de g(t) e f(t) e automatizar a análise de convergência e sensibilidade. Essa integração entre modelagem matemática, implementação computacional e análise crítica assegurou que os resultados numéricos obtidos fossem não apenas consistentes, mas também interpretáveis no contexto da engenharia química.

3 Implementação computacional

A implementação numérica do problema foi realizada na linguagem *Julia*, versão 1.11.7+0. Esta linguagem se destaca pela combinação de sintaxe de alto nível e desempenho comparável ao de linguagens compiladas, como C e C++. Tal performance é viabilizada pelo modelo de compilador just-in-time (JIT) que utiliza a infraestrutura LLVM para gerar código nativo otimizado em tempo de execução [1].

A natureza fortemente tipada da linguagem, combinada com inferência automática de tipos, assegura que o código escrito em estilo conciso e expressivo seja convertido em rotinas eficientes, eliminando a necessidade de recorrer a extensões em C ou Fortran para obter desempenho adequado, como frequentemente observado em ambientes baseados em Python [3, 4].

3.1 Estrutura do código, organização dos dados e implementação

O código foi estruturado de forma modular, utilizando estruturas de dados (struct) para organizar os parâmetros do modelo e os resultados das simulações. A estrutura ReactorParams encapsula os coeficientes cinéticos do reator:

```
struct ReactorParams

a1::Float64 # Coeficiente linear (13.1)

a2::Float64 # Coeficiente quadrático (13.94)

b1::Float64 # Coeficiente produção penicilina (1.71)

end
```

Esta abordagem garante type safety e facilita a parametrização para análises de sensibilidade, além de melhorar a legibilidade e manutenibilidade do código.

O núcleo da implementação consiste na função runge_kutta_4, que resolve o sistema de equações diferenciais ordinárias através do método RK4 clássico. A implementação segue rigorosamente a formulação matemática apresentada na Equação (4), adaptada para sistemas acoplados.

Para um sistema de EDOs da forma:

$$\frac{dg}{dt} = f_g(t, g, f) = a_1 g - a_2 g^2 \frac{df}{dt} = f_f(t, g, f) = b_1 g$$
 (9)

A função central $runge_kutta_4$ implementa o algoritmo através da pré-alocação, inicialização e cálculo dos coeficientes k para f. Abaixo, segue o trecho do código onde implementa-se a inicialização e o cálculo dos coeficientes:

```
# Número de passos
n_steps = Int(ceil(t_max / dt))
```

```
# Inicializar vetores de resultados

t = Vector{Float64}(undef, n_steps + 1)

g = Vector{Float64}(undef, n_steps + 1)

f = Vector{Float64}(undef, n_steps + 1)
```

A pré-alocação dos vetores de solução é uma otimização fundamental que evita realocações dinâmicas durante a execução, reduzindo significativamente o overhead computacional e melhorando a localização de memória. Complementarmente, o cálculo dos coeficientes:

```
Cálculo dos coeficientes k para g
1
                 k1_g = dg_dt(g_n, f_n, t_n, params)
2
                 k2_g = dg_dt(g_n + k1_g * dt/2, f_n + k1_f * dt/2, t_n + dt/2, params)
3
                 k3_g = dg_dt(g_n + k2_g * dt/2, f_n + k2_f * dt/2, t_n + dt/2, params)
4
                 k4_g = dg_dt(g_n + k3_g * dt, f_n + k3_f * dt, t_n + dt, params)
5
            Cálculo dos coeficientes k para f
6
                 k1_f = df_dt(g_n, f_n, t_n, params)
7
                 k2_f = df_dt(g_n + k1_g * dt/2, f_n + k1_f * dt/2, t_n + dt/2, params)
8
                 k3_f = df_dt(g_n + k2_g * dt/2, f_n + k2_f * dt/2, t_n + dt/2, params)
9
                 k4_f = df_dt(g_n + k3_g * dt, f_n + k3_f * dt, t_n + dt, params)
10
```

É importante notar que, para sistemas acoplados, os coeficientes k_i de ambas as variáveis são calculados nos mesmos instantes intermediários de tempo, garantindo consistência no avanço temporal e preservando o acoplamento entre as equações. Este tratamento é essencial para manter a precisão de quarta ordem do método quando aplicado a sistemas de EDOs.

A fórmula de atualização implementa diretamente a Equação (4):

```
g[i+1] = g_n + (dt/6) * (k1_g + 2k2_g + 2k3_g + k4_g)
f[i+1] = f_n + (dt/6) * (k1_f + 2k2_f + 2k3_f + k4_f)
t[i+1] = t_n + dt
```

3.2 Análise de complexibilidade e perfomance

O custo computacional do algoritmo implementado é O(N), onde N representa o número de passos temporais. Cada iteração realiza um número fixo de operações aritméticas (16 avaliações de função para o sistema 2 \times 2), resultando em complexidade linear em relação ao número total de pontos da discretização temporal.

A utilização de operações vetorizadas e a pré-alocação de memória contribuem significativamente para a eficiência computacional. Embora o código atual não implemente explicitamente macros de otimização de baixo nível (@inbounds, @simd), a infraestrutura LLVM do Julia realiza otimizações automáticas que resultam em performance próxima ao código compilado manualmente.

3.3 Convergência, estabilidade e sensibilidade

A validação numérica da implementação foi conduzida através da função analise_convergencia_completa, que verifica empiricamente a ordem de convergência teórica do método RK4. O procedimento compara soluções obtidas com diferentes passos de integração ($\Delta t = 0.05, 0.025, 0.01, 0.005, 0.001$) com uma solução de referência calculada usando $\Delta t = 5 \cdot 10^{-4}$.

O método RK4 é um integrador explícito de quarta ordem, cuja análise teórica de truncammento leva a erro local da ordem $O(h^5)$, implicando um erro global de acumulação da ordem $O(h^4)$ para problemas não rígidos com solução suficientemente suave. [5]. A verificação empírica confirma que, ao reduzir o passo de integração h por um fator r, o fator global diminui aproximadamente por um fator r^4 , validando a implementação.

Este método possui região de estabilidade absoluta limitada, definida pela condição |R(z)| < 1, onde R(z) é o polinômio de estabilidade associado com $z = \lambda h$ representa o produto do autovalor λ do sistema linearizado pelo passo de integração h. [6]

Para o sistema estudado, que apresenta comportamento não-rígido (autovalores com partes reais de magnitude moderada), o controle da estabilidade é garantido pela escolha adequada do passo temporal. A implementação permite ajuste fácil do passo h através do parâmetro dt, facilitando estudos de estabilidade.

A estrutura modular do código facilita a implementação de análises de sensibilidade, conduzidas através da função analise_sensibilidade_coeficientes. Esta função varia sistematicamente cada parâmetro cinético $(a_1, a_2 \ e \ b_1)$ em $\pm 5\%$ e $\pm 10\%$, avaliando o impacto sobre as concentrações finais:

```
for var in variacoes
1
                     fator = 1 + var/100
2
                     a1_novo = a1_orig * fator
3
                     params_mod = ReactorParams(a1_novo, a2_orig, b1_orig)
4
5
                     t, g, f = runge_kutta_4(g0, f0, dt_base, t_max, params_mod)
6
                     label = var == 0 ? "Original (a=13.1)" : @sprintf("a=%.2f (\%+d%%)", a1 novo,
                     resultado = SimulationResult(t, g, f, params_mod, dt_base, label)
                     push!(resultados_a1, resultado)
9
10
                 resultados_sensibilidade["a1"] = resultados_a1
```

Esta abordagem permite quantificar a robustez da solução frente a incertezas experimentais nos parâmetros cinéticos, fornecendo informações valiosas para a validação do modelo e análise de confiabilidade dos resultados.

3.4 Ambiente computacional e modularidade

A execução foi realizada em um MacBook Air equipado com processador Apple M4 e sistema operacional macOS Sequoia. Esta configuração moderna permite explorar adequadamente as otimizações de baixo nível fornecidas pelo compilador LLVM, resultando em tempos de execução reduzidos sem comprometer a precisão numérica.

O código foi estruturado com foco na reproducibilidade, incluindo geração automática de relatórios tabulares, gráficos de alta qualidade (resolução 300 DPI) e documentação abrangente dos parâmetros utilizados. Todos os resultados são salvos em formatos padrão (PNG para gráficos, TXT para dados tabulares), facilitando a integração com sistemas de documentação LATEX.

A arquitetura do código permite fácil extensão para métodos de integração mais sofisticados. Para problemas rígidos (stiff), onde o RK4 pode exigir passos extremamente pequenos, a estrutura modular facilita a substituição do núcleo integrador por métodos implícitos ou semi-implícitos, como BDF (Backward Differentiation Formulas) ou métodos Rosenbrock, disponíveis no ecossistema Julia através da biblioteca DifferentialEquations.jl.

Esta flexibilidade arquitetural garante que o código desenvolvido possa servir como base para estudos mais avançados, mantendo consistência na interface de dados e nos procedimentos de análise implementados.

4 Resultados e discussão

A resolução numérica do sistema de equações diferenciais ordinárias que governa a dinâmica do reator de batelada revelou comportamentos distintos para as concentrações adimensionais de células g(t) e penicilina f(t) ao longo da operação, conforme apresentado nas Figuras (1) e (2).

Figura 1: Evolução da concentração de células g(t)

Figura 2: Evolução da concentração de células g(t)

A análise da Figura (1) revela que a concentração adimensional de células g(t) apresenta uma dinâmica característica de crescimento logístico com saturação. Partindo da condição inicial g(0) = 0.03, a concentração celular experimenta uma fase de crescimento acelerado até $t \approx 0.4$, momento em que a taxa de crescimento diminui progressivamente devido ao efeito inibitório do termo quadrático a_2g^2 na equação diferencial.

O sistema atinge um regime de semi-equilíbrio em $t \approx 0.7$ com a concentração final convergindo para g(1) = 0.9397, considerando $\Delta t = 0.001$ como referência. Este comportamento é consistente com o modelo cinético proposto, onde o termo linear $a_1g = 13.1g$ representa o crescimento celular e o termo quadrático $a_2g^2 = 13.94g^2$ modela a limitação por recursos ou inibição por produtos

metabólicos.

A capacidade de suporte efetiva do sistema pode ser estimada por meio de $\frac{dg}{dt} = 0$, resultando em $g_{eq} = \frac{a_1}{a_2} = \frac{13.1}{13.94} = 0.940$, valor que chega extremamente próximo do resultado numérico obtido, com um erro de 0.0319%, apenas.

O comportamento da concentração de penicilina f(t), ilustrado na Figura (2), apresenta características fundamentalmente diferentes do comportamento de g(t). A partir da condição inicial f(0) = 0.0, a concentração de penicilina exibe crescimento monotônico aproximadamente linear para t > 0.5, atingindo f(1) = 1.1844 ao final da simulação.

Este comportamento é explicado pela estrutura da equação $\frac{df}{dt} = b_1 g = 1.71 g$ que estabelece que a taxa de produção de penicilina é diretamente proporcional à concentração de células. Durante a fase de crescimento celular exponencial (t < 0.3) a produção de penicilina acelera progressivamente. Após t = 0.5, quando a concentração celular se aproxima do equílibrio, a taxa de produção de penicilina se torna aproximadamente constante, resultando no comportamento linear observado.

A representação no plano de fase g x t, apresentado na Figura (3) fornece algumas explicações adicionais sobre a dinâmica do sistema acoplado. A trajetória inicia na origem modificada (0.03,0) e evolui em direção ao ponto (0.940,1.184), descrevendo uma curva monotônica que reflete o acoplamento unidirecional entre as variáveis.

Figura 3: Plano de fase g x f

A concavidade da curva no plano de fase mostra que a produção inicial de penicilin aé relativamente baixa devido à pequena população celular, mas acelera significativamente durante a fase de crescimento exponencial das células. A transição para um regime de crescimento linear de f(t) corresponde à região onde a trajetória se aproxima de uma reta no plano de fase.

A análise de convergência, conduzida variando o passo de integração de $\Delta t = 0.001$ até $\Delta t = 0.05$ é exibida nas Tabelas (3), (4), (5), (6) e (7), no Apêndice A. As Tabelas (1) e (2) exibem os resultados de forma resumida, resultados estes que demonstram convergência consistente para ambas as variáveis.

Δt	g(1)
0.050	0.93968222
0.025	0.93968341
0.010	0.93968347
0.005	0.93968347
0.001	0.93968347

Tabela 1: Concentração de células g(t) em t=1 com variação de Δt

Δt	f(1)
0.050	1.18425817
0.025	1.18443113
0.010	1.18444499
0.005	1.18444537
0.001	1.18444540

Tabela 2: Concentração de células f(t) em t=1 com variação de Δt

Os erros relativos entre $\Delta t = 0.05$ e $\Delta t = 0.001$ são da ordem de $1.3 \cdot 10^{-6}$ para g(t) e de $1.6 \cdot 10^{-4}$ para f(t), confirmando a alta precisão do método implementado. A convergência observada é de consistente com a ordem teóriaca $O(h^4)$ do método RK4, o que valida a implementação computacional.

A variação do coeficiente linear a_1 produz impactos significativos na dinâmica de ambas as variáveis, o que pode ser visto nas Figuras (4) e (5). A análise de ambas revela que o aumento em a_1 eleva diretamente a capacidade de suporte para a concentração de células. Para um aumento de 10% de a_1 em g(t), observa-se que g(1) = 1.040, enquanto para uma diminuição de 10% do coeficiente, obtem-se g(1) = 0.846. A relação é aproximadamente linear, conforme espera-se na análise de equilíbrio $g_{eq} = \frac{a_1}{a_2}$.

Da mesma forma, na concentração de penicilina, o efeito é amplificado devido ao acoplamento. Para um aumento de 10% em a_1 , tem-se f(1) = 1.311, representando um aumento de 10.7% em relação ao caso base. Paralelamente, para uma redução de 10% em a_1 , tem-se f(1) = 1.047, com uma redução de 11.6%.

Figura 4: Sensibilidade de g(t) ao coeficiente linear a_1

Figura 5: Sensibilidade de f(t) ao coeficiente linear a_1

Já em relação ao coeficiente quadrático a_2 , as Figuras (6) e (7) mostram o comportamento, que é inverso ao observado para a_1 . Em relação a concentração de células, as reduções em a_2 aumentam a capacidade de suporte. Para 10% de redução, g(1) = 1.044, enquanto para 10% de aumento, g(1) = 0.855.

Da mesma maneira ao coeficiente a_1 , a concentração de penicilina segue a mesma tendência da concentração de células devido ao acoplamento, então com variações de $\pm 10\%$ em a_2 , há mudanças de aproximadamente $\pm 11\%$ em f(1).

Figura 6: Sensibilidade de g(t) ao coeficiente quadrático a_2

Figura 7: Sensibilidade de f(t) ao coeficiente quadrático a_2

Por fim, nas Figuras (8) e (9) tem-se a variação do coeficiente de produção b_1 . As curvas de g(t) são quase idênticas para todas as variações de b_1 testadas. Esta situação ocorre pois b_1 não aparece na equação diferencial que rege g(t), confirmando que a produção de penicilina não afeta retroativamente o crescimento celular no modelo proposto.

Já na concentração de penicilina, vê-se um efeito diretamente proporcional, o que é esperado pela relação $\frac{df}{dt} = b_1 g$. Variações de $\pm 10\%$ em b_1 resultam em mudanças correspondentes de $\pm 10\%$ em f(1), demonstrando linearidade perfeita.

Figura 8: Sensibilidade de g(t) ao coeficiente linear b_1

Figura 9: Sensibilidade de f(t) ao coeficiente linear b_1

A implementação do método RK4 demonstrou excelente estabilidade numérica e convergência consistente com a teoria, o que valida a abordagem computacional aqui adotada. Os resultados revelaram um comportamento dinâmico distinto para as duas variáveis do sistema, sendo elas: crescimento logístico saturado para a concentração celular e crescimento linear para a produção da penicilina após o regime transiente inicial.

A análise de sensibilidade quantificou a influência de cada parâmetro cinético, evidenciando que as variações de $\pm 10\%$ nos coeficientes resultam em desvios controláveis de aproximadamente 11% na produção final de penicilina. Particularmente relevante é a constatação da não-influência do coeficiente de produção b_1 na dinâmica celular, o que confirma o desacoplamento unidirecional do modelo proposto.

5 Conclusão

O presente trabalho demonstrou com sucesso a aplicação do método de Runge-Kutta de quarta ordem na resolução numérica de um sistema de equações diferenciais ordinárias que modela a dinâmica de um reator de batelada para produção de penicilina. A implementação computacional em linguagem Julia comprovou-se eficaz, proporcionando resultados numericamente consistentes e computacionalmente eficientes.

A análise de convergência confirmou empiricamente a ordem teórica $O(h^4)$ do método RK4, com erros relativos da ordem de $1.3 \cdot 10^{-6}$ para a concentração celular e $1.6 \cdot 10^{-4}$ para a concentração de penicilina quando comparados entre $\Delta t = 0.001$ e $\Delta t = 0.05$. Esta verificação valida a implementação computacional e a adequação do método para o problema.

A estabilidade numérica observada e a complexidade computacional linear O(N) validam tanto a implementação quanto a adequação do método para o problema estudado.

Os resultados revelaram comportamentos fisicamente coerentes: crescimento logístico saturado para a concentração celular, convergindo para $g_{eq}=0.940$, possuindo uma concordância excelente com a previsão teórica $\frac{a_1}{a^2}$, e crescimento linear para a penicilina após regime transiente. O desacoplamento unidirecional do modelo foi confirmado pela independência da dinâmica celular em relação ao coeficiente b_1 .

A análise paramétrica quantificou que variações de $\pm 10\%$ nos coeficientes a_1 e a_2 resultam em mudanças de aproximadamente $\pm 11\%$ na produção final de penicilina. O coeficiente b_1 apresentou relação diretamente proporcional com a produção, sem afetar o crescimento celular.

Os resultados indicam que t=0.7 representa um marco adequado entre crescimento celular (com 95% do valor final) e produção de penicilina para definição de tempos de ciclo. A robustez do processo frente a variações paramétricas ($\pm 11\%$ de variação para $\pm 10\%$ nos coeficientes) e a independência entre b_1 e crescimento celular sugerem estratégias de otimização que podem melhorar a eficiência produtiva sem comprometer a fase de crescimento.

As limitações incluem a hipótese de sistema não-rígido e parâmetros constantes, que podem não se aplicar a modelos mais complexos.

Trabalhos futuros podem incluir: implementação de métodos implícitos para sistemas rígidos (BDF, Rosenbrock); incorporação de efeitos dinâmicos de temperatura, pH e concentração de substrato; desenvolvimento de algoritmos de otimização automática para maximização da produtividade; análise de incertezas probabilísticas utilizando métodos de Monte Carlo; e extensão para reatores contínuos e fed-batch com controle em tempo real.

A estrutura modular desenvolvida facilita essas extensões, posicionando este trabalho como base sólida para investigações mais avançadas em modelagem e otimização de bioreatores.

Em síntese, o trabalho demonstrou a aplicabilidade de métodos numéricos clássicos na solução de problemas de engenharia química, fornecendo validação teórica e conclusões operacionais relevantes para otimização de processos biotecnológicos.

Referências Bibliográficas

- [1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, "Julia: A fresh approach to numerical computing," *SIAM Review*, vol. 59, no. 1, pp. 65–98, 2017.
- [2] S. C. Chapra and R. P. Canale, *Métodos Numéricos para Engenharia*. Porto Alegre: AMGH Editora, 7 ed., 2016.
- [3] "Para que serve a linguagem julia?." https://www.datacamp.com/pt/blog/what-is-julia-used-for, 2024. Accessed: 2025-09-19.
- [4] "Julia vs python which one is best fit for your business?." https://eluminoustechnologies.com/blog/julia-vs-python/, 2025. Accessed: 2025-09-19.
- [5] J. C. Butcher, Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, 3 ed., 2016.
- [6] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, 1993. Classical reference on RK methods and stability analysis.

Apêndice A: Tabelas de análise de convergência

t	g(t)	f(t)
0.0000	0.03000000	0.00000000
0.0500	0.05609750	0.00357042
0.1000	0.10234364	0.01016446
0.1500	0.17899199	0.02194005
0.2000	0.29296190	0.04184897
0.2500	0.43774353	0.07293434
0.3000	0.58892539	0.11689063
0.3500	0.71767463	0.17298491
0.4000	0.80961352	0.23854627
0.4500	0.86732904	0.31044706
0.5000	0.90068113	0.38616634
0.5500	0.91903849	0.46403921
0.6000	0.92887253	0.54308151
0.6500	0.93406426	0.62274571
0.7000	0.93678404	0.70273696
0.7500	0.93820306	0.78289921
0.8000	0.93894186	0.86315057
0.8500	0.93932608	0.94344830
0.9000	0.93952579	1.02377014
0.9500	0.93962956	1.10410452
1.0000	0.93968347	1.18444540

Tabela 3: Resultados para $\Delta t=0.0010,\,1000$ passos, $g(0)=0.03,\,f(0)=0.0$ e coeficientes $a_1=13.1,a_2=13.94$ e $b_1=1.71$

t	g(t)	f(t)
0.0000	0.03000000	0.00000000
0.0500	0.05609749	0.00357042
0.1000	0.10234363	0.01016446
0.1500	0.17899197	0.02194004
0.2000	0.29296186	0.04184897
0.2500	0.43774348	0.07293433
0.3000	0.58892534	0.11689061
0.3500	0.71767459	0.17298489
0.4000	0.80961348	0.23854625
0.4500	0.86732902	0.31044704
0.5000	0.90068112	0.38616632
0.5500	0.91903848	0.46403919
0.6000	0.92887252	0.54308148
0.6500	0.93406426	0.62274568
0.7000	0.93678404	0.70273694
0.7500	0.93820306	0.78289918
0.8000	0.93894186	0.86315054
0.8500	0.93932608	0.94344828
0.9000	0.93952579	1.02377012
0.9500	0.93962956	1.10410449
1.0000	0.93968347	1.18444537

Tabela 4: Resultados para $\Delta t=0.0050,\,200$ passos, $g(0)=0.03,\,f(0)=0.0$ e coeficientes $a_1=13.1,a_2=13.94$ e $b_1=1.71$

t	g(t)	f(t)
0.0000	0.03000000	0.00000000
0.0500	0.05609743	0.00357041
0.1000	0.10234345	0.01016444
0.1500	0.17899159	0.02193999
0.2000	0.29296126	0.04184887
0.2500	0.43774275	0.07293418
0.3000	0.58892463	0.11689040
0.3500	0.71767399	0.17298462
0.4000	0.80961303	0.23854594
0.4500	0.86732868	0.31044670
0.5000	0.90068088	0.38616596
0.5500	0.91903832	0.46403882
0.6000	0.92887242	0.54308111
0.6500	0.93406420	0.62274530
0.7000	0.93678400	0.70273656
0.7500	0.93820304	0.78289880
0.8000	0.93894185	0.86315016
0.8500	0.93932608	0.94344789
0.9000	0.93952579	1.02376973
0.9500	0.93962956	1.10410410
1.0000	0.93968347	1.18444499

Tabela 5: Resultados para $\Delta t=0.0100,\,100$ passos, $g(0)=0.03,\,f(0)=0.0$ e coeficientes $a_1=13.1,a_2=13.94$ e $b_1=1.71$

$\overline{}$ t	g(t)	f(t)
0.0000	0.03000000	0.00000000
0.0500	0.05609544	0.00357016
0.1000	0.10233712	0.01016361
0.1500	0.17897820	0.02193813
0.2000	0.29293988	0.04184544
0.2500	0.43771647	0.07292873
0.3000	0.58889898	0.11688271
0.3500	0.71765233	0.17297497
0.4000	0.80959576	0.23853493
0.4500	0.86731545	0.31043480
0.5000	0.90067128	0.38615344
0.5500	0.91903175	0.46402585
0.6000	0.92886814	0.54306782
0.6500	0.93406151	0.62273180
0.7000	0.93678236	0.70272291
0.7500	0.93820206	0.78288507
0.8000	0.93894128	0.86313637
0.8500	0.93932575	0.94343407
0.9000	0.93952560	1.02375590
0.9500	0.93962945	1.10409026
1.0000	0.93968341	1.18443113

Tabela 6: Resultados para $\Delta t=0.0250,\,40$ passos, $g(0)=0.03,\,f(0)=0.0$ e coeficientes $a_1=13.1,a_2=13.94$ e $b_1=1.71$

t	g(t)	f(t)
0.0000	0.03000000	0.00000000
0.0500	0.05607190	0.00356722
0.0000	0.10226165	0.00330722 0.01015390
0.1000	0.10=0100	
0.1500	0.17881616	0.02191602
0.2000	0.29267641	0.04180476
0.2500	0.43738777	0.07286383
0.3000	0.58857636	0.11679015
0.3500	0.71737472	0.17285811
0.4000	0.80935935	0.23840190
0.4500	0.86711749	0.31029131
0.5000	0.90051646	0.38600195
0.5500	0.91891989	0.46386783
0.6000	0.92879248	0.54290474
0.6500	0.93401279	0.62256509
0.7000	0.93675209	0.70255376
0.7500	0.93818375	0.78271435
0.8000	0.93893042	0.86296468
0.8500	0.93931940	0.94326179
0.9000	0.93952194	1.02358326
0.9500	0.93962736	1.10391742
1.0000	0.93968222	1.18425817

Tabela 7: Resultados para $\Delta t=0.0500,\,20$ passos, $g(0)=0.03,\,f(0)=0.0$ e coeficientes $a_1=13.1,a_2=13.94$ e $b_1=1.71$

Apêndice B: Código fonte

```
using Plots, Printf, Statistics, Dates
2
     # Estrutura para armazenar parâmetros do modelo
3
     struct ReactorParams
4
         a1::Float64 # Coeficiente linear (13.1)
5
         a2::Float64 # Coeficiente quadrático (13.94)
6
         b1::Float64 # Coeficiente produção penicilina (1.71)
7
8
     end
9
     # Parâmetros originais conforme especificação do problema
10
     PARAMS_ORIGINAL = ReactorParams(13.1, 13.94, 1.71)
11
12
     function dg_dt(g, f, t, params::ReactorParams)
13
         return params.a1 * g - params.a2 * g^2
14
15
16
     function df_dt(g, f, t, params::ReactorParams)
17
         return params.b1 * g
18
19
     end
20
     # Implementação do método Runge-Kutta clássico de 4 ordem
21
     function runge_kutta_4(g0, f0, dt, t_max, params::ReactorParams)
22
23
         Implementa o método Runge-Kutta clássico de 41 ordem para sistema de EDOs
24
25
         Parâmetros:
26
         - g0, f0: condições iniciais
         - dt: incremento de tempo
28
         - t_max: tempo máximo de simulação
29
         - params: parâmetros do modelo
30
31
         Retorna:
32
         - t, g, f: vetores com soluções numéricas
33
34
35
         # Número de passos
36
         n_steps = Int(ceil(t_max / dt))
37
38
         # Inicializar vetores de resultados
39
         t = Vector{Float64}(undef, n_steps + 1)
40
         g = Vector{Float64}(undef, n_steps + 1)
41
         f = Vector{Float64}(undef, n_steps + 1)
42
43
         # Condições iniciais
44
         t[1] = 0.0
45
         g[1] = g0
         f[1] = f0
47
48
         # Loop principal do método RK4
49
```

```
for i in 1:n_steps
50
              # Valores atuais
51
              t_n = t[i]
52
              g_n = g[i]
53
              f_n = f[i]
54
55
              \# Cálculo dos coeficientes k para g
56
              k1_g = dg_dt(g_n, f_n, t_n, params)
57
              k2_g = dg_dt(g_n + k1_g * dt/2, f_n, t_n + dt/2, params)
58
              k3_g = dg_dt(g_n + k2_g * dt/2, f_n, t_n + dt/2, params)
59
              k4_g = dg_dt(g_n + k3_g * dt, f_n, t_n + dt, params)
 60
61
              # Cálculo dos coeficientes k para f
62
              k1_f = df_dt(g_n, f_n, t_n, params)
63
              k2_f = df_dt(g_n + k1_g * dt/2, f_n, t_n + dt/2, params)
64
              k3_f = df_dt(g_n + k2_g * dt/2, f_n, t_n + dt/2, params)
65
              k4_f = df_dt(g_n + k3_g * dt, f_n, t_n + dt, params)
66
 67
              # Aplicação da fórmula RK4
68
              g[i+1] = g_n + (dt/6) * (k1_g + 2*k2_g + 2*k3_g + k4_g)
69
              f[i+1] = f_n + (dt/6) * (k1_f + 2*k2_f + 2*k3_f + k4_f)
70
              t[i+1] = t_n + dt
71
          end
72
73
          return t, g, f
74
75
     end
76
      # Estrutura para armazenar resultados
77
78
     struct SimulationResult
         t::Vector{Float64}
79
         g::Vector{Float64}
80
         f::Vector{Float64}
81
82
          params::ReactorParams
         dt::Float64
83
         label::String
84
85
86
      # Função para salvar resultados em formato tabular
87
     function salvar_resultados_tabela(t, g, f, dt, filename)
88
89
          Salva os resultados em formato de tabela para o relatório
90
91
          open(filename, "w") do file
92
              write(file, "="^70 * "\n\n")
93
94
              write(file, "PARÂMETROS DA SIMULAÇÃO:\n")
95
              write(file, @sprintf(" Incremento de tempo (t): %.4f\n", dt))
96
97
              write(file, @sprintf(" Tempo máximo (t_max): %.1f\n", t[end]))
              write(file, @sprintf(" Número de passos: %d\n", length(t)-1))
98
              write(file, "Condições iniciais: g(0) = 0.03, f(0) = 0.0 n")
99
              write(file, "Coeficientes: a = 13.1, a = 13.94, b = 1.71\n\n")
100
101
```

```
write(file, "RESULTADOS NUMÉRICOS:\n")
102
              write(file, @sprintf("%-12s %-15s %-15s\n", "t", "g(t)", "f(t)"))
103
              write(file, "-"^45 * "\n")
104
105
              # Mostrar todos os pontos para dt principal, ou pontos selecionados para outros
106
              step = dt == 0.05 ? 1 : max(1, Int(round(length(t)/20)))
107
108
              for i in 1:step:length(t)
109
                  write(file, @sprintf("%-12.4f %-15.8f %-15.8f\n", t[i], g[i], f[i]))
110
              end
111
112
              # Sempre mostrar o último ponto
113
              if step > 1
114
                  write(file, @sprintf("%-12.4f %-15.8f %-15.8f\n", t[end], g[end], f[end]))
116
              end
117
                      write(file, "\n")
118
              write(file, @sprintf("VALORES FINAIS (t = %.1f):\n", t[end]))
119
              write(file, @sprintf(" g(\%.1f) = \%.8f n", t[end], g[end]))
120
              write(file, @sprintf("f(\%.1f) = \%.8f\n", t[end], f[end]))
121
122
          end
123
          println("Resultados salvos em: $filename")
     end
124
125
      # Função para análise de convergência conforme especificação
126
127
     function analise_convergencia_completa(g0, f0, t_max)
128
         Realiza análise de convergência variando t conforme requisito 2
129
130
          Incremento inicial: t = 0.05, depois testa convergência
131
         println("\n" * "="^60)
132
         println("ANÁLISE DE CONVERGÊNCIA NUMÉRICA")
133
         println("="^60)
135
          # Valores de t para teste de convergência (começando com 0.05 conforme especificação)
136
          dt_values = [0.05, 0.025, 0.01, 0.005, 0.001]
137
          resultados = SimulationResult[]
138
139
          println("Testando convergência com diferentes valores de t:")
140
          println("-"^60)
141
142
          # Solução de referência com t muito pequeno
143
         println("Calculando solução de referência (t = 0.0005)...")
144
          t_ref, g_ref, f_ref = runge_kutta_4(g0, f0, 0.0005, t_max, PARAMS_ORIGINAL)
145
146
          # Arquivo para resultados de convergência
147
          open("convergencia_numerica.txt", "w") do file
148
              write(file, "ANÁLISE DE CONVERGÊNCIA NUMÉRICA\n")
149
              write(file, "="^70 * "\n\n")
150
151
              write(file, @sprintf("%-8s %-12s %-12s %-12s %-12s %-10s\n",
152
                    "t", "g(1)", "f(1)", "Erro g", "Erro f", "Ordem"))
153
```

```
write(file, "-"^{75} * "\n")
154
155
              erro_anterior_g = 0.0
156
157
              for (idx, dt) in enumerate(dt_values)
158
                  println(@sprintf("Simulando com t = %.4f...", dt))
159
160
                  t, g, f = runge_kutta_4(g0, f0, dt, t_max, PARAMS_ORIGINAL)
161
162
                  # Calcular erros em relação à solução de referência
163
                  erro_g = abs(g[end] - g_ref[end])
164
                  erro_f = abs(f[end] - f_ref[end])
165
166
                  # Calcular ordem de convergência
                  ordem = idx > 1 && erro_anterior_g > 0 ? log2(erro_anterior_g / erro_g) : 0.0
168
169
                  write(file, @sprintf("%-8.4f %-12.8f %-12.8f %-12.2e %-12.2e %-10.2f\n",
170
                        dt, g[end], f[end], erro_g, erro_f, ordem))
171
172
                  println(@sprintf(" t = \%.4f: g(1) = \%.8f, f(1) = \%.8f, Erro_g = \%.2e",
173
                          dt, g[end], f[end], erro_g))
174
175
                  # Salvar resultados tabulares para cada t
176
                  filename = @sprintf("resultados_dt_%.4f.txt", dt)
177
                  salvar_resultados_tabela(t, g, f, dt, filename)
179
                  # Armazenar para plotagem
180
                  resultado = SimulationResult(t, g, f, PARAMS_ORIGINAL, dt, "t = $dt")
181
182
                  push!(resultados, resultado)
183
                  erro_anterior_g = erro_g
184
              end
185
              write(file, "\nNOTAS:\n")
187
              write(file, " Solução de referência calculada com t = 0.0005\n")
188
              write(file, " Ordem de convergência teórica do RK4: 4\n")
189
              write(file, " Erro = |valor_calculado - valor_referência|\n")
190
          end
191
192
          return resultados
193
194
     end
195
      # Função para plotar resultados principais (conforme requisito 3)
196
     function plotar_resultados_principais(resultados)
197
198
          Gera os gráficos principais dos resultados conforme especificação
199
200
201
         println("\nGerando gráficos dos resultados...")
202
          # Configurar tema dos gráficos
203
          gr(size=(800, 600), dpi=300)
204
```

```
# 1. Gráfico da evolução temporal de g(t)
206
          p1 = plot(title="Evolução da Concentração de Células g(t)",
207
                    xlabel="Tempo adimensional (t)",
208
                    ylabel="Concentração adimensional g(t)",
209
                    legend=:bottomright,
210
211
                    grid=true,
                    linewidth=2)
212
213
          # 2. Gráfico da evolução temporal de f(t)
214
          p2 = plot(title="Evolução da Concentração de Penicilina f(t)",
215
                    xlabel="Tempo adimensional (t)",
216
                    ylabel="Concentração adimensional f(t)",
217
                    legend=:bottomright,
218
                    grid=true,
                    linewidth=2)
220
221
222
          # 3. Plano de fase q vs f
          p3 = plot(title="Plano de Fase: g(t) vs f(t)",
223
                    xlabel="Concentração de células g(t)",
224
                    ylabel="Concentração de penicilina f(t)",
225
                    legend=:bottomright,
226
                    grid=true,
227
                    linewidth=2)
228
229
          # Cores para diferentes t
230
231
          cores = [:red, :blue, :green, :orange, :purple]
232
          for (i, res) in enumerate(resultados)
233
234
              cor = cores[min(i, length(cores))]
              estilo = res.dt == 0.05 ? :solid : (res.dt <= 0.01 ? :dash : :dot)</pre>
235
              largura = res.dt == 0.05 ? 3 : 2
236
237
              plot!(p1, res.t, res.g,
                    label=res.label,
239
                    color=cor,
240
                    linestyle=estilo,
241
242
                    linewidth=largura)
243
              plot!(p2, res.t, res.f,
244
                    label=res.label,
245
                    color=cor,
246
                    linestyle=estilo,
247
                    linewidth=largura)
248
249
              plot!(p3, res.g, res.f,
250
                    label=res.label,
251
                    color=cor,
252
253
                    linestyle=estilo,
                    linewidth=largura)
254
          end
255
256
          # Salvar gráficos individuais
257
```

```
savefig(p1, "evolucao_g_tempo.png")
258
          savefig(p2, "evolucao_f_tempo.png")
259
          savefig(p3, "plano_fase.png")
260
261
          # Gráfico combinado
262
          p_combined = plot(p1, p2, layout=(2,1), size=(800, 1000))
263
          savefig(p_combined, "resultados_principais.png")
264
265
          println("Gráficos principais salvos:")
266
          println(" evolucao_g_tempo.png")
267
          println(" evolucao_f_tempo.png")
268
         println(" plano_fase.png")
269
          println(" resultados_principais.png")
270
272
          return p1, p2, p3
     end
273
      # Função para análise de sensibilidade (requisito 4)
275
     function analise_sensibilidade_coeficientes(g0, f0, t_max, dt_base)
276
277
          Análise de sensibilidade quando da variação de coeficientes das equações
278
          Conforme requisito 4 da especificação
279
280
         println("\n" * "="^60)
281
         println("ANÁLISE DE SENSIBILIDADE DOS COEFICIENTES")
283
          println("="^60)
284
          # Variações percentuais dos coeficientes
285
286
          variacoes = [-10, -5, 0, 5, 10] # em %
          resultados_sensibilidade = Dict{String, Vector{SimulationResult}}()
287
288
          # Coeficientes originais
289
          a1_orig, a2_orig, b1_orig = 13.1, 13.94, 1.71
291
          # Análise do coeficiente a = 13.1
292
          println("Analisando sensibilidade do coeficiente a = 13.1...")
293
          resultados_a1 = SimulationResult[]
294
295
          for var in variacoes
296
              fator = 1 + var/100
297
              a1_novo = a1_orig * fator
              params_mod = ReactorParams(a1_novo, a2_orig, b1_orig)
299
300
              t, g, f = runge_kutta_4(g0, f0, dt_base, t_max, params_mod)
301
              label = var == 0 ? "Original (a=13.1)" : @sprintf("a=%.2f (%+d%%)", a1_novo, var)
302
              resultado = SimulationResult(t, g, f, params_mod, dt_base, label)
303
              push!(resultados_a1, resultado)
304
305
          end
          resultados_sensibilidade["a1"] = resultados_a1
306
307
          # Análise do coeficiente a = 13.94
308
          println("Analisando sensibilidade do coeficiente a = 13.94...")
```

```
resultados_a2 = SimulationResult[]
310
311
          for var in variacoes
312
              fator = 1 + var/100
313
              a2_novo = a2_orig * fator
314
              params_mod = ReactorParams(a1_orig, a2_novo, b1_orig)
315
316
              t, g, f = runge_kutta_4(g0, f0, dt_base, t_max, params_mod)
317
              label = var == 0 ? "Original (a=13.94)" : @sprintf("a=%.2f (%+d%%)", a2_novo, var)
318
              resultado = SimulationResult(t, g, f, params_mod, dt_base, label)
319
              push!(resultados_a2, resultado)
320
          end
321
         resultados_sensibilidade["a2"] = resultados_a2
322
          # Análise do coeficiente b = 1.71
324
         println("Analisando sensibilidade do coeficiente b = 1.71...")
325
          resultados_b1 = SimulationResult[]
326
327
         for var in variacoes
328
              fator = 1 + var/100
329
              b1_novo = b1_orig * fator
330
              params_mod = ReactorParams(a1_orig, a2_orig, b1_novo)
331
332
              t, g, f = runge_kutta_4(g0, f0, dt_base, t_max, params_mod)
333
              label = var == 0 ? "Original (b=1.71)" : @sprintf("b=%.2f (%+d%%)", b1_novo, var)
334
335
              resultado = SimulationResult(t, g, f, params_mod, dt_base, label)
              push!(resultados_b1, resultado)
336
          end
337
338
          resultados_sensibilidade["b1"] = resultados_b1
339
         return resultados_sensibilidade
340
     end
341
      # Função para plotar análise de sensibilidade
343
     function plotar_sensibilidade(resultados_sensibilidade)
344
          ....
345
          Gera gráficos da análise de sensibilidade
346
347
         println("Gerando gráficos de análise de sensibilidade...")
348
349
          cores = [:red, :orange, :black, :blue, :green]
351
          # Gráficos para cada coeficiente
352
          plots_g = []
353
          plots_f = []
354
355
          coef_nomes = ["a (coef. linear)", "a (coef. quadrático)", "b (coef. produção)"]
356
357
          coef_keys = ["a1", "a2", "b1"]
358
          for (idx, (key, nome)) in enumerate(zip(coef_keys, coef_nomes))
359
              resultados = resultados_sensibilidade[key]
360
361
```

```
# Gráfico g(t)
362
              p_g = plot(title="Sensibilidade de g(t) - $nome",
363
                         xlabel="Tempo (t)", ylabel="g(t)",
364
                         legend=:bottomright, grid=true)
365
366
              # Gráfico f(t)
367
              p_f = plot(title="Sensibilidade de f(t) - $nome",
368
                         xlabel="Tempo (t)", ylabel="f(t)",
369
                         legend=:bottomright, grid=true)
370
371
              for (i, res) in enumerate(resultados)
372
                  cor = cores[i]
373
                  estilo = occursin("Original", res.label) ? :solid : :dash
374
                  largura = occursin("Original", res.label) ? 3 : 2
376
                  plot!(p_g, res.t, res.g,
377
                        label=res.label, color=cor,
378
                        linestyle=estilo, linewidth=largura)
379
380
                  plot!(p_f, res.t, res.f,
381
                        label=res.label, color=cor,
382
                        linestyle=estilo, linewidth=largura)
              end
384
385
              push!(plots_g, p_g)
386
387
              push!(plots_f, p_f)
388
              # Salvar gráficos individuais
389
390
              savefig(p_g, "sensibilidade_$(key)_g.png")
              savefig(p_f, "sensibilidade_$(key)_f.png")
391
          end
392
393
          # Gráficos combinados
          p_combined_g = plot(plots_g..., layout=(3,1), size=(800, 1200))
395
         p_combined_f = plot(plots_f..., layout=(3,1), size=(800, 1200))
396
397
          savefig(p_combined_g, "sensibilidade_completa_g.png")
398
          savefig(p_combined_f, "sensibilidade_completa_f.png")
399
400
         println("Gráficos de sensibilidade salvos:")
401
          for key in coef_keys
              println(" sensibilidade_$(key)_g.png")
403
              println(" sensibilidade_$(key)_f.png")
404
          end
405
          println(" sensibilidade_completa_g.png")
406
          println(" sensibilidade_completa_f.png")
407
408
409
         return plots_g, plots_f
     end
410
411
      # Função para análise quantitativa da sensibilidade
412
     function relatorio_sensibilidade(resultados_sensibilidade)
```

```
414
          Gera relatório detalhado da análise de sensibilidade
415
416
          open("analise_sensibilidade_completa.txt", "w") do file
417
              write(file, "ANÁLISE DE SENSIBILIDADE DOS COEFICIENTES\n")
418
              write(file, "="^70 * "\n\n")
419
420
              write(file, "VALORES ORIGINAIS:\n")
421
              write(file, " a = 13.1 (coeficiente linear)\n")
422
              write(file, " a = 13.94 (coeficiente quadrático)\n")
              write(file, " b = 1.71 (coeficiente de produção)\n\")
424
425
426
              # Valor original de referência
              res_original = findfirst(r -> occursin("Original", r.label),
                                       resultados_sensibilidade["a1"])
428
              g_ref = resultados_sensibilidade["a1"][res_original].g[end]
429
              f_ref = resultados_sensibilidade["a1"][res_original].f[end]
430
431
              write(file, @sprintf("VALORES DE REFERÊNCIA (t=1):\n"))
432
              write(file, @sprintf("g(1) = \%.8f\n", g_ref))
433
              write(file, @sprintf(" f(1) = \%.8f n, f_ref))
434
435
              # Análise para cada coeficiente
436
              coef_nomes = Dict("a1" => "a (coeficiente linear)",
437
                                "a2" => "a (coeficiente quadrático)",
438
439
                               "b1" => "b (coeficiente de produção)")
440
              for (key, nome) in coef_nomes
441
442
                  write(file, "SENSIBILIDADE DO $nome:\n")
                  write(file, "-"^50 * "\n")
443
                  write(file, @sprintf("%-15s %-12s %-12s %-10s %-10s\n",
444
                        "Variação", "g(1)", "f(1)", "g(%)", "f(%)"))
445
                  write(file, "-"^65 * "\n")
447
                  for res in resultados_sensibilidade[key]
448
                      if !occursin("Original", res.label)
449
                          delta_g_pct = ((res.g[end] - g_ref) / g_ref) * 100
450
                          delta_f_pct = ((res.f[end] - f_ref) / f_ref) * 100
451
452
                           # Extrair variação do label
453
                          if occursin("(+", res.label)
                               variacao = split(split(res.label, "(+")[2], "%")[1] * "%"
455
                               variacao = "+" * variacao
456
                          elseif occursin("(-", res.label)
457
                               variacao = split(split(res.label, "(-")[2], "%")[1] * "%"
458
                               variacao = "-" * variacao
459
460
461
                               variacao = "Original"
                          end
462
463
                          write(file, @sprintf("%-15s %-12.8f %-12.8f %-10.2f %-10.2f\n",
464
                                 variacao, res.g[end], res.f[end], delta_g_pct, delta_f_pct))
```

```
end
466
467
                  end
                  write(file, "\n")
468
              end
469
470
              write(file, "INTERPRETAÇÃO DOS RESULTADOS:\n")
471
              write(file, " g(%) e f(%): variação percentual em relação ao caso original\n")
472
              write(file, " Valores positivos indicam aumento da concentração\n")
473
              write(file, "Valores negativos indicam diminuição da concentração\n")
474
          end
476
          println("Relatório de sensibilidade salvo: analise_sensibilidade_completa.txt")
477
478
      # FUNÇÃO PRINCIPAL
480
     function main()
481
482
          Função principal que executa toda a simulação conforme especificação
483
484
          println("Iniciando simulação completa do reator de batelada...")
485
          println("Linguagem: Julia")
486
         println("Data: $(Dates.now())")
488
          # PARÂMETROS DO PROBLEMA (conforme especificação)
489
          g0 = 0.03
                        # q(0) = 0.03
          f0 = 0.0
                        # f(0) = 0.0
491
          t_{max} = 1.0 	 # 0 	 t 	 1
492
          dt_inicial = 0.05 # t inicial = 0.05 (conforme requisito 2)
493
494
          # 1. ANÁLISE DE CONVERGÊNCIA (requisitos 2 e 3)
495
          println("\n1 EXECUTANDO ANÁLISE DE CONVERGÊNCIA...")
496
          resultados_convergencia = analise_convergencia_completa(g0, f0, t_max)
497
          # 2. PLOTAR RESULTADOS PRINCIPAIS (requisito 3)
499
         println("\n2 GERANDO GRÁFICOS DOS RESULTADOS...")
500
          plotar_resultados_principais(resultados_convergencia)
501
502
          # 3. ANÁLISE DE SENSIBILIDADE (requisito 4)
503
          println("\n3 EXECUTANDO ANÁLISE DE SENSIBILIDADE...")
504
          resultados_sensibilidade = analise_sensibilidade_coeficientes(g0, f0, t_max, 0.01)
505
          # 4. PLOTAR SENSIBILIDADE
507
          println("\n4 GERANDO GRÁFICOS DE SENSIBILIDADE...")
508
          plotar_sensibilidade(resultados_sensibilidade)
509
510
          # 5. RELATÓRIO DE SENSIBILIDADE
511
          println("\n5GERANDO RELATÓRIO DE SENSIBILIDADE...")
512
513
          relatorio_sensibilidade(resultados_sensibilidade)
514
          # 6. RESUMO FINAL
515
          println("\n" * "="^80)
516
          println("SIMULAÇÃO CONCLUÍDA COM SUCESSO!")
```

```
println("="^80)
518
         println("\n ARQUIVOS GERADOS:")
519
         println("\n TABELAS DE RESULTADOS:")
520
         println(" convergencia_numerica.txt - Análise de convergência")
521
         println(" resultados_dt_0.0500.txt - Resultados com t=0.05 (principal)")
522
523
         println(" resultados_dt_*.txt - Resultados para outros valores de t")
         println(" analise_sensibilidade_completa.txt - Análise detalhada")
524
525
         println("\n GRÁFICOS PRINCIPAIS:")
526
         println(" evolucao_g_tempo.png - Evolução de g(t)")
527
         println(" evolucao_f_tempo.png - Evolução de f(t)")
528
         println(" plano_fase.png - Plano de fase g vs f")
529
         println(" resultados_principais.png - Gráficos combinados")
530
         println("\nGRÁFICOS DE SENSIBILIDADE:")
532
         println(" sensibilidade_a1_g.png, sensibilidade_a1_f.png")
533
         println(" sensibilidade_a2_g.png, sensibilidade_a2_f.png")
534
         println(" sensibilidade_b1_g.png, sensibilidade_b1_f.png")
535
         println(" sensibilidade_completa_g.png, sensibilidade_completa_f.png")
536
537
          # Resultados finais com t = 0.05
538
         resultado_principal = resultados_convergencia[1] # t = 0.05
539
         println("\n RESULTADOS FINAIS (t = 0.05):")
540
         println(@sprintf(" g(1) = %.8f", resultado_principal.g[end]))
541
         println(@sprintf(" f(1) = %.8f", resultado_principal.f[end]))
543
     end
544
545
546
     main()
```