App.E: Programming of differential equations

Hans Petter Langtangen 1,2

Simula Research Laboratory ¹

University of Oslo, Dept. of Informatics ²

Aug 15, 2015

How to solve any ordinary scalar differential equation

$$u'(t) = \alpha u(t)(1 - R^{-1}u(t))$$

 $u(0) = U_0$

Examples on scalar differential equations (ODEs)

Terminolog

- Scalar ODE: a single ODE, one unknown function
- Vector ODE or systems of ODEs: several ODEs, several unknown functions

Examples:

$$u'=\alpha u$$
 exponential growth $u'=\alpha u\left(1-rac{u}{R}
ight)$ logistic growth $u'+b|u|u=g$ falling body in fluid

We shall write an ODE in a generic form: u' = f(u, t)

- Our methods and software should be applicable to any ODE
- Therefore we need an abstract notation for an arbitrary ODE

$$u'(t) = f(u(t), t)$$

The three ODEs on the last slide correspond to

$$\begin{split} f(u,t) &= \alpha u, \quad \text{exponential growth} \\ f(u,t) &= \alpha u \left(1 - \frac{u}{R}\right), \quad \text{logistic growth} \\ f(u,t) &= -b|u|u + g, \quad \text{body in fluid} \end{split}$$

Our task: write functions and classes that take f as input and produce u as output

What is the f(u, t)?

Proble

Given an ODE,

$$\sqrt{u}u' - \alpha(t)u^{3/2}(1 - \frac{u}{R(t)}) = 0,$$

what is the f(u, t)?

Solution

The target form is u'=f(u,t), so we need to isolate u' on the left-hand side:

$$u' = \underbrace{\alpha(t)u(1 - \frac{u}{R(t)})}_{f(u,t)}$$

Such abstract f functions are widely used in mathematics

We can make generic software for:

- Numerical differentiation: f'(x)
- Numerical integration: $\int_a^b f(x)dx$
- Numerical solution of algebraic equations: f(x) = 0

Applications:

- $\int_{-1}^{1} (x^2 \tanh^{-1} x (1+x^2)^{-1}) dx:$ $f(x) = x^2 \tanh^{-1} x (1+x^2)^{-1}, \ a = -1, \ b = 1$
- Solve $x^4 \sin x = \tan x$: $f(x) = x^4 \sin x \tan x$

We use finite difference approximations to derivatives to turn an ODE into a difference equation

u'=f(u,t)

Assume we have computed $\,u$ at discrete time points $\,t_0,\,t_1,\,\ldots,\,t_k$. At $\,t_k$ we have the ODE

$$u'(t_k) = f(u(t_k), t_k)$$

Approximate $u'(t_k)$ by a forward finite difference,

$$u'(t_k) \approx \frac{u(t_{k+1}) - u(t_k)}{\Delta t}$$

Insert in the ODE at $t = t_k$:

$$\frac{u(t_{k+1})-u(t_k)}{\Delta t}=f(u(t_k),t_k)$$

Terms with $u(t_k)$ are known, and this is an algebraic (difference) equation for $u(t_{k+1})$

An ODE needs an initial condition: $u(0) = U_0$

Numerics:

Any ODE u' = f(u, t) must have an initial condition $u(0) = U_0$, with known U_0 , otherwise we cannot start the method!

Mathematics

In mathematics: $u(0)=U_0$ must be specified to get a unique solution.

Example:

$$u' = u$$

Solution: $u = Ce^t$ for any constant C. Say $u(0) = U_0$: $u = U_0e^t$.

We continue solution by hand

```
Say U_0=2: u_1=(1+\Delta t)u_0=(1+\Delta t)U_0=(1+\Delta t)2 u_2=(1+\Delta t)u_1=(1+\Delta t)(1+\Delta t)2=2(1+\Delta t)^2 u_3=(1+\Delta t)u_2=(1+\Delta t)2(1+\Delta t)^2=2(1+\Delta t)^3 u_4=(1+\Delta t)u_3=(1+\Delta t)2(1+\Delta t)^3=2(1+\Delta t)^4 u_5=(1+\Delta t)u_4=(1+\Delta t)2(1+\Delta t)^4=2(1+\Delta t)^5 \vdots=\vdots u_k=2(1+\Delta t)^k Actually, we found a formula for u_k! No need to program...
```

How accurate is our numerical method?

- Exact solution: $u(t) = 2e^t$, $u(t_k) = 2e^{k\Delta t} = 2(e^{\Delta t})^k$
- Numerical solution: $u_k = 2(1 + \Delta t)^k$

When going from t_k to t_{k+1} , the solution is amplified by a factor:

- Exact: $u(t_{k+1}) = e^{\Delta t} u(t_k)$
- Numerical: $u_{k+1} = (1 + \Delta t)u_k$

Using Taylor series for e^x we see that

$$e^{\Delta t} - (1 + \Delta t) = 1 + \Delta t + \frac{\Delta t^2}{2} + \operatorname{frac}\Delta t^3 + \cdots - (1 + \Delta t) = \operatorname{frac}\Delta t^3 + \mathcal{O}(\Delta t)$$

This error approaches 0 as $\Delta t
ightarrow 0$.

What about the general case u' = f(u, t)?

```
Given any U_0: u_1 = u_0 + \Delta t f(u_0, t_0) u_2 = u_1 + \Delta t f(u_1, t_1)
```

 $u_3 = u_2 + \Delta t f(u_2, t_2)$ $u_4 = u_3 + \Delta t f(u_3, t_3)$

:

No general formula in this case...

Rule of thumb:

When hand calculations get boring, let's program!

We start with a specialized program for u'=u, $u(0)=U_0$

Algorithm:

Given Δt (dt) and n

- ullet Create arrays t and ullet of length n+1
- Set initial condition: $u[0] = U_0$, t[0] = 0
- For k = 0, 1, 2, ..., n 1:
 - t[k+1] = t[k] + dt
 - u[k+1] = (1 + dt)*u[k]

We start with a specialized program for u'=u, $u(0)=U_0$

```
Program:

import numpy as np
import sys

dt = float(sys.argv[1])
U0 = 1
T = 4
n = int(T/dt)

t = np.zeros(n+1)
u = np.zeros(n+1)
t[0] = 0
u[0] = U0
for k in range(n):
t[k+1] = t[k] + dt
u[k+1] = (1 + dt)*u[k]

# plot u against t
```



```
| General function:
| def ForwardEuler(f, UO, T, n):
| m''Solve u'=f(u,t), u(O)=UO, with n steps until t=T."""
| import numpy as np t = np.zeros(n+1) | u = np.zeros(n+1) | u = np.zeros(n+1) | u = np.zeros(n+1) | fu[k] is the solution at time t[k] |
| u[O] = UO | t[O] = O | dt = T/float(n) |
| for k in range(n):
| t[k+1] = t[k] + dt | u[k+1] | u[k] + dt*f(u[k], t[k]) |
| return u, t |
| Magic:
| This simple function can solve any ODE (!)
```

```
Let us make a class instead of a function for solving ODEs  
Usage of the class: 
    method = ForwardEuler(f, dt)  
    method set_initial_condition(U0, t0)  
    u, t = method.solve(T)  
    plot(t, u)  

How? 

Store f, \Delta t, and the sequences u_k, t_k as attributes  
Split the steps in the ForwardEuler function into four methods:

• the constructor (__init__)  
• set_initial_condition for u(0) = U_0  
• solve for running the numerical time stepping  
• advance for isolating the numerical updating formula  
    (new numerical methods just need a different advance method, the rest is the same)
```

import numpy as np class ForwardEuler_v1: def __init__(self, f, dt): self.f, self.dt = f, dt def set_initial_condition(self, U0): self.U0 = float(U0)

```
The code for a class for solving ODEs (part 2)

class ForwardEuler_vi:

...

def solve(self, T):
    """Compute solution for 0 <= t <= T."""
    n = int(round(T)self.dt))    # no of intervals
    self.u = np.zeros(n*i)
    self.u = np.zeros(n*i)
    self.u[0] = float(self.U0)
    self.t[0] = float(self.U0)

for k in range(self.n):
    self.k = k
    self.t[k*i] = self.t[k] + self.dt
    self.u[k*i] = self.t[k] + self.dt
    self.u[k*i] = self.advance()
    return self.u, self.t

def advance(self):
    """Idvance the solution one time step."""
    # Create local variables to get rid of "self." in
    # the numerical formula
    u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t
    unev = u[k] + dt*f(u[k], t[k])
    return unev
```

```
# Idea: drop dt in the constructor.
# Let the user provide all time points (in solve).

class ForwardEuler:
    def __init__(self, f):
        # test that f is a function
        if not callable(f):
            raise TypeError('f is %s, not a function' % type(f))
        self. f = f

def set__initial_condition(self, U0):
        self. U0 = float(U0)

def solve(self, time_points):
    ...
```

```
class ForwardEuler:

def solve(self, time_points):

"""Compute u for t values in time_points list."""

self.t = np.asarray(time_points))

self.u = np.zeros(len(time_points))

self.u[O] = self.UO

for k in rangs(len(self.t)-1):
    self.k = k
    self.u[k+i] = self.advance()

return self.u, self.t

def advance(self):

"""Idvance the solution one time step."""

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+i] - t[k]
    unev = u[k] + dt*f(u[k], t[k])
```

```
Code:

def test.ForwardEuler_against_linear_solution():
    def f(u, t):
        return 0.2 + (u - h(t)) **4

def h(t):
        return 0.2*t + 3

    solver = ForwardEuler(f)
    solver.set_initial_condition(U0=3)
    dt = 0.4; T = 3; n = int(round(float(T)/dt))
    time_points = np.linspace(0, T, n*1)
    u, t = solver.solve(time_points)
    u_exact = h(t)
    diff = np.abs(u_exact - u).max()
    tol = 1E-14
    success = diff < tol
    assert success</pre>
```

Using a class to hold the right-hand side f(u,t)Mathematical problem: $u'(t) = \alpha u(t) \left(1 - \frac{u(t)}{R}\right), \quad u(0) = U_0, \quad t \in [0,40]$ Class for right-hand side f(u,t): $\text{class Logistic:} \quad \text{def _init_(self, alpha, R, U0):} \quad \text{self. alpha, self. R, self. U0 = alpha, float (R), U0}$ $\text{def __call_(self, u, t):} \quad \text{if } f(u,t)$ return self. alpha+u+(1 - u/self. R)Main program: problem = Logistic(0.2, 1, 0.1) $\text{time_points = np linspace}(0, 40, 401)$ method = ForwardBuler(problem) method : set initial condition(problem. U0) $u, t = \text{method solve}(\text{time_points})$

Numerical methods for ordinary differential equations $u_{k+1} = u_k + \Delta t \, f(u_k, t_k)$ 4 th-order Runge-Kutta method: $u_{k+1} = u_k + \frac{1}{6} \left(K_1 + 2K_2 + 2K_3 + K_4 \right)$ $K_1 = \Delta t \, f(u_k, t_k)$ $K_2 = \Delta t \, f(u_k + \frac{1}{2}K_1, t_k + \frac{1}{2}\Delta t)$ $K_3 = \Delta t \, f(u_k + \frac{1}{2}K_2, t_k + \frac{1}{2}\Delta t)$ $K_4 = \Delta t \, f(u_k + K_3, t_k + \Delta t)$ And lots of other methods! How to program a wide collection of methods? Use object-oriented programming!

```
Common tasks for ODE solvers:

• Store the solution u_k and the corresponding time levels t_k, k=0,1,2,\ldots,n

• Store the right-hand side function f(u,t)

• Set and store the initial condition

• Run the loop over all time steps

Principles:

• Common data and functionality are placed in superclass ODESolver

• Isolate the numerical updating formula in a method advance

• Sub classes, e.g., Forward Euler, just implement the specific numerical formula in advance
```

```
class ODESolver:
    def __init__(self, f):
        self.f = f

def advance(self):
    """dwance solution one time step."""
        raise NotImplementedError # implement in subclass

def set initial_condition(self, U0):
    self.U0 = float(U0)

def solve(self, time_points):
    self.t = np. saarray(time_points)
    self.u = np. zeros(len(self.t))
    # Assume that self.t[0] corresponds to self.U0

# Time loop
    for k in range(n-1):
        self.uk=1] = self.advance()
    return self.u, self.t

def advance(self):
    raise NotImplemtedError # to be impl. in subclasses
```

```
Subclass code:
    class ForwardEuler(ODESolver):
        def advance(self):
            u, f, k, t = self.u, self.f, self.k, self.t

            dt = t[k+1] - t[k]
            unev = u[k] + dt *f(u[k], t)
            return unev

Application code for u' - u = 0, u(0) = 1, t ∈ [0, 3], Δt = 0.1:
        from ODESolver import ForwardEuler
        def testi(u, t):
            return u

method = ForwardEuler(testi)
method.set_initial_condition(U0=1)
            u, t = method.solve(time_points=np.linspace(0, 3, 31))
            plot(t, u)
```

The implementation of a Runge-Kutta method Subclass code: class RungeRutta4(ODESolver): def advance(self): u, f, k, t = self.u, self.f, self.k, self.t dt = t[k+1] - t[k] dt 2 = dt/2.0 K1 = dt*f(u[k] + 0.5*K1, t + dt2) K3 = dt*f(u[k] + 0.5*K2, t + dt2) K4 = dt*f(u[k] + 8.3, t + dt) unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4) return unew Application code (same as for ForwardEuler): from ODESolver import RungeKutta4 def test(u, t): return u method = RungeKutta4(test1) method.set.initial_condition(U0=1) u, t = method.solve(time_points=np.linspace(0, 3, 31)) plot(t, u)

```
The user should be able to check intermediate solutions and terminate the time stepping

• Sometimes a property of the solution determines when to stop the solution process: e.g., when u < 10<sup>-7</sup> ≈ 0.

• Extension: solve(time_points, terminate)

• terminate(u, t, step_no) is called at every time step, is user-defined, and returns True when the time stepping should be terminated

• Last computed solution is u [step_no] at time t [step_no]

def terminate(u, t, step_no):

eps = 1.0E-6

return abs(u[step_no,0]) < eps # small number
return abs(u[step_no,0]) < eps # close enough to zero?
```


Example on a system of ODEs (vector ODE) Two ODEs with two unknowns u(t) and v(t): u'(t) = v(t) v'(t) = -u(t)Each unknown must have an initial condition, say $u(0) = 0, \quad v(0) = 1$ In this case, one can derive the exact solution to be $u(t) = \sin(t), \quad v(t) = \cos(t)$

Systems of ODEs appear frequently in physics, biology, finance, ...

The ODE system that is the final project in the course $S' = -\beta SI$ $I' = \beta SI - \nu R$ $R' = \nu I$ Initial conditions: $S(0) = S_0$ $I(0) = I_0$ R(0) = 0

Another example on a system of ODEs (vector ODE) Second-order ordinary differential equation, for a spring-mass system (from Newton's second law): $mu'' + \beta u' + ku = 0, \quad u(0) = U_0, \quad u'(0) = 0$ We can rewrite this as a system of two first-order equations, by introducing two new unknowns $u^{(0)}(t) \equiv u(t), \quad u^{(1)}(t) \equiv u'(t)$ The first-order system is then $\frac{d}{dt}u^{(0)}(t) = u^{(1)}(t)$ $\frac{d}{dt}u^{(1)}(t) = -m^{-1}\beta u^{(1)} - m^{-1}ku^{(0)}$ Initial conditions: $u^{(0)}(0) = U_0, \quad u^{(1)}(0) = 0$

Making a flexible toolbox for solving ODEs

- For scalar ODEs we could make one general class hierarchy to solve "all" problems with a range of methods
- Can we easily extend class hierarchy to systems of ODEs?
- The example here can easily be extended to professional code (Odespy)

Vector notation for systems of ODEs: unknowns and

General software for any vector/scalar ODE demands a general mathematical notation. We introduce n unknowns

$$u^{(0)}(t), u^{(1)}(t), \dots, u^{(n-1)}(t)$$

in a system of n ODEs:

$$\frac{d}{dt}u^{(0)} = f^{(0)}(u^{(0)}, u^{(1)}, \dots, u^{(n-1)}, t)$$

$$\frac{d}{dt}u^{(1)} = f^{(1)}(u^{(0)}, u^{(1)}, \dots, u^{(n-1)}, t)$$

$$\vdots =$$

$$\frac{d}{dt}u^{(n-1)} = f^{(n-1)}(u^{(0)}, u^{(1)}, \dots, u^{(n-1)}, t)$$

Vector notation for systems of ODEs: vectors

We can collect the $u^{(i)}(t)$ functions and right-hand side functions $f^{(i)}$ in vectors:

$$u = (u^{(0)}, u^{(1)}, \dots, u^{(n-1)})$$

$$f = (f^{(0)}, f^{(1)}, \dots, f^{(n-1)})$$

The first-order system can then be written

$$u' = f(u, t), \quad u(0) = U_0$$

where u and f are vectors and U_0 is a vector of initial conditions

The magic of this notation:

Observe that the notation makes a scalar ODE and a system look the same, and we can easily make Python code that can handle both cases within the same lines of code (!)

How to make class ODESolver work for systems of ODEs

- Recall: ODESolver was written for a scalar ODE
- Now we want it to work for a system u' = f, $u(0) = U_0$, where u, f and U_0 are vectors (arrays)
- What are the problems?

Forward Euler applied to a system:

$$\underbrace{u_{k+1}}_{\text{vector}} = \underbrace{u_k}_{\text{vector}} + \Delta t \underbrace{f(u_k, t_k)}_{\text{vector}}$$

In Python code:

```
unew = u[k] + dt*f(u[k], t)
```

where

- u is a two-dim. array (u[k] is a row)
- f is a function returning an array (all the right-hand sides $f^{(0)}, \ldots, f^{(n-1)}$

```
The adjusted superclass code (part 1)
```

To make ODESolver work for systems:

- Ensure that f(u,t) returns an array.
- This can be done be a general adjustment in the superclass!
- Inspect U_0 to see if it is a number or list/tuple and make corresponding u 1-dim or 2-dim array

```
class ODESolver:
    def __init__(self, f):
         # Wrap user's f in a new function that always
# converts list/tuple to array (or let array be array)
         self f = lambda u, t: np.asarray(f(u, t), float)
    def set_initial_condition(self, U0):
          if isinstance(UO, (float,int)): # scalar ODE
                                                # no of equations
             self.neq = 1
U0 = float(U0)
         else:
UO = np.asarray(UO)
                                                # system of ODEs
         self.neq = U0.size
self.U0 = U0
                                                # no of equations
```

The superclass code (part 2) class ODESolver:

```
def solve(self, time_points, terminate=None):
    if terminate is None:
        terminate = lambda u, t, step_no: False
                  self.t = np.asarray(time_points)
                 self.u = np.zeros(n)
else: self.u = np.zeros(n)
else: self.u = np.zeros(n)
else: self.u = np.zeros((n,self.neq))
                 # Assume that self.t[0] corresponds to self.U0 self.u[0] = self.U0
                  # Time loop
                 for k in range(n-1):
                sof k in range(n-1):
    self. k = k
    self. u[k+1] = self.advance()
    if terminate(self.u, self.t, self.k+1):
        break # terminate loop over k
    return self.u[k+2], self.t[k+2]
All subclasses from the scalar ODE works for systems as well
```

Example on how to use the general class hierarchy

Spring-mass system formulated as a system of ODEs:

$$mu'' + \beta u' + ku = 0$$
, $u(0)$, $u'(0)$ known

$$u^{(0)} = u, \quad u^{(1)} = u'$$

$$u(t) = (u^{(0)}(t), u^{(1)}(t))$$

$$f(u,t) = (u^{(1)}(t), -m^{-1}\beta u^{(1)} - m^{-1}ku^{(0)})$$

u'(t) = f(u, t)

Code defining the right-hand side:

def myf(u, t): # u is array with two components u[0] and u[1]: return [u[1], -beta*u[1]/m - k*u[0]/m]

Newton's 2nd law for a ball's trajectory through air leads to

$$\frac{dx}{dt} = v_3$$

$$\frac{dv_x}{dt}=0$$

$$\frac{dy}{dt} = v_y$$

$$\frac{dy}{dt} = v_y$$
$$\frac{dv_y}{dt} = -g$$

Air resistance is neglected but can easily be added!

- 4 ODEs with 4 unknowns:
 - the ball's position x(t), y(t)
 - the velocity $v_x(t)$, $v_y(t)$

Alternative implementation of the f function via a class

Better (no global variables)

```
class MyF:
     def __init__(self, m, k, beta):
    self.m, self.k, self.beta = m, k, beta
```

def __call__(self, u, t):
 m, k, beta = self.m, self.k, self.beta
 return [u[1], -beta*u[1]/m - k*u[0]/m]

Main program:

```
from ODESolver import ForwardEuler
 # initial condition:
U0 = [1.0, 0]

f = MyF(1.0, 1.0, 0.0) # u'' + u = 0 => u(t) = cos(t)

solver = ForwardEuler(f)
solver.set_initial_condition(U0)
```

T = 4*pi; dt = pi/20; n = int(round(T/dt))
time_points = np.linspace(0, T, n+1)
u, t = solver_solve(time_points)

u is an array of [u0,u1] arrays, plot all u0 values:
u0.values = u[:,0]
u0_exact = cos(t) plot(t, u0_values, 'r-', t, u0_exact, 'b-')

Throwing a ball; ODE model Throwing a ball; code

Define the right-hand side:

from ODESolver import ForwardEuler

from Unbodyer import rowarduler f t = 0: prescribe x, y, v, v, v y x = y = 0 f start at the origin v0 = 5; theta = 80*pi/180 f velocity magnitude and angle vx = v0·cos(theta) vy = v0·sin(theta) f Initial condition: v0 = v0 =

solver= ForwardEuler(f)

solver round diduction(u0)
solver.set_initial_condition(u0)
time_points = np.linspace(0, 1.2, 101)
u, t = solver.solve(time_points)

u is an array of [x,vx,y,vy] arrays, plot y vs x: x = u[:,0]; y = u[:,2]plot(x, y)

Throwing a ball; results

Comparison of exact and Forward Euler solutions

Logistic growth model; ODE and code overview

Model:

$$u' = \alpha u(1 - u/R(t)), \quad u(0) = U_0$$

R is the maximum population size, which can vary with changes in the environment over time

Implementation features:

- Class Problem holds "all physics": α , R(t), U_0 , T (end time), f(u,t) in ODE
- Class Solver holds "all numerics": Δt , solution method; solves the problem and plots the solution
- Solve for $t \in [0, T]$ but terminate when |u R| < tol

```
class Problem:
    def __init__(self, alpha, R, U0, T):
        self.alpha, self.R, self.U0, self.T = alpha, R, U0, T

    def __call__(self, u, t):
        """Return f(u, t):"""
        return self.alphaeu*(i - u/self.R(t))

    def terminate(self, u, t, step_no):
        """ferminate when u is close to R. """
        tol = self.R*0.01
        return abs(u[step_no] - self.R) < tol

    problem = Problem(alpha=0.1, R=500, U0=2, T=130)
```


##