Unit – II Sequence & Series

Formula Sheet

Define Geometric series

The series $a + ar + ar^2 + ar^3 + ar^4 + \dots$ is called geometric series. The series converges if |r| < 1, diverges if $r \ge 1$ and oscillatory if $r \le -1$

Harmonic Series(p- Series)

The series $\sum \frac{1}{n^p}$ is called Harmonic Series and it converges if p >1 and diverges if p \le 1

Comparison tests for convergence

- (a) If there are two series of positive terms $\sum u_n$ and $\sum v_n$ such that
 - (i) $\sum v_n$ Converges (ii) $u_n \leq v_n$ for all values of n, then $\sum u_n$ also converges.
- (b) If there are two series of positive terms $\sum u_n$ and $\sum v_n$ such that
 - (i) $\sum v_n$ Diverges (ii) $v_n \le u_n$ for all values of n , then $\sum u_n$ also diverges.

Comparison Test (Limit Form)

If $\sum u_n$ and $\sum v_n$ are two series of positive terms such that $\lim_{n\to\infty} \frac{u_n}{v_n} = l$, is a finite non-zero quantity then the two series are either convergent or divergent.

Integral test for convergence

A positive term series $\sum u_n = \sum f(n)$, where f(n) decreases as n increases converges or diverges according as the integral $\int_{1}^{\infty} f(x) dx$ is finite or infinite.

D' Alembert's Ratio Test for convergence

The series $\sum u_n$ of positive terms is convergent if $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}<1$ and diverges if $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}>1$

Alternating series

A series with alternately positive and negative terms is called an alternating series.

Leibnitz's Test for convergence for alternating series

An alternating series $u_1 - u_2 + u_3 - u_4 + \dots$ converges if

- (i) Each term is numerically less than its preceding term (i.e.) $u_1 > u_2 > u_3$
- (ii) $\lim_{n\to\infty} u_n = 0$

Absolute convergence

If $\sum u_n$ is convergent and $\sum |u_n|$ is convergent, then $\sum u_n$ is said to be Absolute Convergent

Define Conditional convergence

If $\sum u_n$ is convergent and $\sum |u_n|$ is divergent, then $\sum u_n$ is said to be conditionally convergent.

Formulae

$$(i) \quad \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$(ii)\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

$$(iii) \lim_{n\to\infty} \left(1+n\right)^{1/n} = e$$

$$(iv) \lim_{n\to\infty} \frac{x^n}{n!} = 0$$

$$(v) \lim_{n\to\infty}\frac{n}{(n!)^{1/n}}=e$$

$$(vi)\lim_{n\to\infty}\left(n\right)^{1/n}=1$$