শিক্ষা নিয়ে গড়বো দেশ

তথ্য-প্রযুক্তির বাৎলাদেশ

Bangabandhu Sheikh Mujibur Rahman Digital University, Bangladesh

LAB REPORT-02

COURSE NO.-ICT 4256 COURSE TITLE-COMPUTER NETWORKING LAB

SUBMITTED BY

Mehrin Farzana

ID:2101013

Department of ICT

Session: 2021-2022

Bangabandhu Sheikh Mujibur Rahman Digital

University, Bangladesh

SUBMITTED TO

Md.Toukir Ahmed

Lecturer

Department of ICT, BDU

Bangabandhu Sheikh Mujibur Rahman Digital

University, Bangladesh

Date of Submission:14 February, 2023

Lab Introduction:

In this lab we'll be learning the basics of Router and Repeater and uses of them in LANs using a network simulation tool, Cisco Packet Tracer.

Objectives:

- To learn what a Router and a repeater is
- How a Router and a repeater works
- Where and why a Router is needed
- Where and why a Repeater is needed

Index

Experiment No.	Experiment Title	Page
01	Introduction with Router using Cisco Packet Tracer	2
02	Introduction with Repeater using Cisco Packet Tracer	7

Experiment No.: 1

Experiment Title: Introduction with Router using Cisco Packet Tracer

Objectives:

- To learn what a Router is
- How a Router works
- Where and why a Router is needed

Discussion:

A Router, an inevitable device for the internet, is a networking device that forwards data packets between computer networks.

- It connects two or more LANs
- It is a layer 3(i.e. Network layer) device
- It has a memory and stores routing table

Methodology:

- Create a New Project.
- Create the basic Network topology.
- Configuration of the Network Nodes.
- Choose the Statistics.
- Run the Simulation.
- Analysis of the Results.

Working procedure:

Fig 1.1: Physical rear view of a 2911 Router

1. Connecting two LANs of different IP schemes with a Router

Fig 1.2: Two labeled LANs of different IP schemes connected by a Router in CPT

1.1. Configure PC0, PC1, PC2 with the following IP addresses and Subnet Masks

Host	IP Address	Subnet Mask	Default Gateway
PC0	10.0.0.1	255.0.0.0	10.0.0.4
PC1	10.0.0.2	255.0.0.0	10.0.0.4
PC2	10.0.0.3	255.0.0.0	10.0.0.4

1.2. Configure PC3, PC4, PC5 with the following IP addresses and Subnet Masks

Host	IP Address	Subnet Mask	Default Gateway
PC3	192.168.1.1	255.255.255.0	192.168.1.4
PC4	192.168.1.2	255.255.255.0	192.168.1.4
PC5	192.168.1.3	255.255.255.0	192.168.1.4

1.3. Connection tests across PCs in a single LAN

Ping two PCs by there IP addresses from another PC within a LAN, one after another. If connection is there, four replies will come.

Do the same for the second LAN.

Fig 1.3: Pinging PC2 and PC1 from PC0

1.4. Connecting LANs with a Router

- A. Connecting LAN1 with the Router by the GigabitEthernet0/0 interface
- B. Connecting LAN2 with the Router by the GigabitEthernet0/1 interface
- C. Giving the interfaces an IP address and a Subnet Mask of the same scheme

Interface	IP address	Subnet Mask
GigabitEthernet0/0	10.0.0.4	255.0.0.0
GigabitEthernet0/1	192.168.1.4	255.255.255.0

D. Check "On" in the port status for each interface in the

Fig 1.4: Configuring GigabitEthernet0/0 and GigabitEthernet0/1 of the Router

2. Sending data across LANs

For the first time communication, 1 packet may be lost, but from then on, data will be transmitted with 0% loss.

Also, if observed in simulation mode, for the first time communication, switch will be broadcasting data packets as the IP address of the Router hasn't been stored.

Fig 1.5: Pinging PC5 from PC0

3. Simulation:

Fig 1.6: Successful packets travel across PCs

Fig 1.7: PDU information at Router5

Fig 1.8: Inbound and Outbound PDU details at Router5

Conclusion:

- A Router is needed to create an inter LAN.
- A Router has a memory and it stores routing table
- A Router is a layer 3 device

Experiment No.: 2

Experiment Title: Introduction with Repeater using Cisco Packet Tracer

Objectives:

- To learn what a Repeater is
- How a Repeater works
- Where and why a Repeater is needed

Discussion:

Signals traveling a long distance tend to get weak or corrupted. For this we use a repeater to generate the same signal midway.

- A Repeater generates the signal over the same network
- It is a layer 1(i.e. Physical layer) device
- It does not amplify the signal
- It is a two port device

Methodology:

- Create a New Project.
- Create the basic Network topology.
- Configuration of the Network Nodes.
- Choose the Statistics.
- Run the Simulation.
- Analysis of the Results.

Working procedure:

1. Connecting two LANs of the same IP scheme with a Router

Fig 2.1: Physical rear view of a repeater

Fig 2.2: Two LANs of same IP schemes connected through a repeater in CPT

1.1. Configure PC0, PC1, PC2 with the following IP addresses and Subnet Masks

Host	IP Address	Subnet Mask
PC0	10.0.0.1	255.0.0.0
PC1	10.0.0.2	255.0.0.0
PC2	10.0.0.3	255.0.0.0

1.2. Configure PC3, PC4, PC5 with the following IP addresses and Subnet Masks

Host	IP Address	Subnet Mask
PC3	10.0.0.4	255.0.0.0
PC4	10.0.0.5	255.0.0.0
PC5	10.0.0.6	255.0.0.0

1.3. Connection tests across PCs in a single LAN

Ping two PCs by there IP addresses from another PC within a LAN, one after another. If connection is there, four replies will come.

Do the same for the second LAN.

Fig 2.3: Pinging PC2 and PC1 from PC0

1.4. Connecting two LANs via the two switches with straight through Ethernet cables by the two interfaces of the Repeater.

2. Sending data across LANs

Fig 2.4: Pinging PC5 from PC0

3. Simulation:

Fig 2.5: Successful packets travel across PCs

Fig 2.6: PDU information at Repeater

Fig 2.7: Inbound and Outbound PDU details at Repeater

Conclusion:

- A Router is a layer 1 device
- A Repeater is needed to regenerate signal traveling over long distances.
- A Repeater does not amplify the signal, only regenerates the same signal over the same network.

Lab Conclusion:

From this lab we got to know about,

The basics of Router

- A Router is a layer 3 device, therefore, it operates at the Network layer of the OSI model
- A Router is an intelligent device as it has a a memory where it stores the routing table

The basics of Repeater

- A Repeater is a layer 1 device. Therefore, it operates at the Physical layer of the OSI model.
- A Repeater is a 2 port device as it generally has only 2 ports
- A Repeater only regenerates the received-signal and does not amplify it
- ➤ A repeater works over the same LAN

Use of Router

- ➤ A Router is used to create an inter-LAN(Local Area Network)
- A Router can inter-connect two LANs of different IP schemes

Use of Repeater

A repeater is used to regenerate a signal that needs to travel a long distance over the same network; for without it(repeater), the signal may get weak or corrupted.