1	Date: 21-06-223
M	Muhammad Nadeem Muhammad Soo So
	Muhamman 50 2019 800 50
	2014 tion to Data Science
	Introduction to Data Science.
	Section-A Section-A Task # 2
	Data Distribution:-
	Data Distribution refers to way
	data is spread or distributed across
	different values as sanges in a dataset
	It provides insights into the patterns,
	It poores mosiques into the patterns,
	txends and characteristics of the
	data Under Standing the data distribution
	is impostant in various fields including
	statistics, data analytics and machine
	learning
	There are different types of data
	distribution:
1	Normal Distribution
(ii)	Uniform Distribution
iii	Skewed Distribution
iv	Bimodal Distribution

ii) Uniform Distribution:-(Rectangler Distribution) It is a probability distribution where all values within a specified sange are equally likely. It is used when all outcomes or values are equally likely to occur They are common in simmulations, bandom number generation, and scenarious where there is no particular bias towards any specific value. The distribution is defined by specifying the minimum and manimum values of the sange Random numbers can be generated within the vange with equal probabilities.

Date: MTWTFS iii) Skewed Distribution:-It is an asymetric propabilities distribution where the data cont Concentrated more on one side of the distribution than the other It is useful for representing real-world phenomenas that enhibit a natural bias or asymmetry, such as income distribution, exam scores or stock market returns. Skewness is measured using Statistical techniques, and there are different types of skewed distribution such as positive skewed (tail to the sight) and negatively skewed (tail to be left). The choice of analysis and interpretation, depends on the Specific skewness present in the

Date: MTWTFS D Exponential Distribution: It describe the time between events occurring ata It commonly used in xeliability analyxix, quelling theory and survival analysis, where the occurence of events over time follows a constant 08 exponential decay pattern-It is defined by the sate parameters, which determines the average time between events. It can be used to calculate pobolities of uniting times, survival poobabilities 08 failure rates.

MTWTF1 Log-Normal Distribution: It describe where the logarithm of the data follows a normal distribution. It is used to model data that is skewed to the right, such as the distribution of income, stock prices 08 natural phenomena that are constrained to positive values The distribution is defined by its mean and standard deviation after taking the logarithm of the data. It can be used to analyze and make inference about the oxiginal non-logarithmic data-