Алгоритмы и структуры данных-1 Лекция 10

Дата: 27.11.2023

Программная инженерия, 2 курс 2023-2024 учебный год

Нестеров P.A., PhD, ст. преподаватель департамент программной инженерии ФКН

План

Сбалансированные бинарные деревья поиска

AVL-деревья и балансировка по высоте

2-3-4 деревья ↔ Красно-черные деревья. Балансировка по длине путей

Избегаем вырождения BST

AVL-деревья

AVL-историческая справка

Предложены Г.М. Адельсоном-Вельским и Е.М. Ландисом в 1962 году

AVL-историческая справка

Предложены Г.М. Адельсоном-Вельским и Е.М. Ландисом в 1962 году

Баланс AVL-дерева определяется через сравнение высот поддеревьев у каждой вершины

AVL-дерево

Условимся, что

- высота пустого дерева составляет -1
- высота дерева с одной вершиной составляет 0

AVL-дерево

Бинарное дерево поиска является AVL-деревом тогда и только тогда, когда высоты левого и правого поддерева для каждой вершины отличаются не более, чем на 1

factor(v) = height(v.left) - height(v.right)

AVL-дерево

Бинарное дерево поиска является AVL-деревом тогда и только тогда, когда высоты левого и правого поддерева для каждой вершины отличаются не более, чем на 1

factor(
$$v$$
) = height(v . $left$) - height(v . $right$)
$$-1 \le factor(v) \le 1$$

AVL-дерево?

AVL-дерево?

AVL-дерево?

нарушен фактор баланса!!!

Покажем, что высота AVLдерева логарифмическая...

Любое полное complete дерево является AVL-деревом

Идеальное perfect дерево – верхняя граница по количеству вершин для AVL-дерева

Идеальное perfect дерево – верхняя граница по количеству вершин для AVL-дерева

Какова нижняя граница?

Высота AVL-дерева снизу ограничена идеальным деревом

Определим функцию F(h), значение которой должно соответствовать минимальному количеству вершин в AVL-дереве с высотой h

Определим функцию F(h), значение которой должно соответствовать минимальному количеству вершин в AVL-дереве с высотой h

Общий случай AVL-дерева высоты h складывается из:

- поддерева высотой h-1
- поддерева высотой h-2
- корня

Общий случай AVL-дерева высоты h складывается из:

- поддерева высотой h-1
- поддерева высотой h-2
- корня

$$F(h) = F(h-1) + 1 + F(h-2)$$

$$F(h) = \begin{cases} 1, h = 0 \\ 2, h = 1 \\ F(h-1) + 1 + F(h-2), h > 1 \end{cases}$$

Решение?

- заметим, что F(h) + 1 = (F(h-1) + 1) + (F(h-2) + 1)
- тогда, F(h) + 1 это число Фибоначчи

$$F(h) = \begin{cases} 1, h = 0 \\ 2, h = 1 \\ F(h-1) + 1 + F(h-2), h > 1 \end{cases}$$

Решение?

- заметим, что F(h) + 1 = (F(h-1) + 1) + (F(h-2) + 1)
- тогда, F(h) + 1 это число Фибоначчи

$$F(3) + 1 = 8 \Rightarrow F(3) = 7$$

 $F(6) + 1 = 34 \Rightarrow F(6) = 33$

$$F(h) = \begin{cases} 1, h = 0 \\ 2, h = 1 \\ F(h-1) + 1 + F(h-2), h > 1 \end{cases}$$

Приблизительно,

$$F(h) \approx 1.8944 \cdot \phi^h - 1 = \Omega(\phi^h),$$

где
$$\phi = \frac{1+\sqrt{5}}{2} = 1.6180$$
 — это соотношение золотого сечения

$$F(h) \approx 1.8944 \cdot \phi^h - 1 = n$$

Выразим высоту через n:

$$h = \log_{\phi} \frac{n+1}{1.8944} = \log_{\phi} (n+1) - 1.3277$$

Сменим основание логарифма:

$$h = 1.4404 \cdot \log(n+1) - 1.3277$$

Таким образом, высота AVL-дерева

- ограничена снизу $\log(n+1)-1$ мдеальное дерево
- ограничена сверху $1.4404 \log(n+1) 1.3277$

Таким образом, высота AVL-дерева

- ограничена снизу $\log(n+1)-1$ мдеальное дерево
- ограничена сверху $1.4404 \log(n+1) 1.3277$

Например, для $n=10^6$ имеем, что $19 \le h < 28$

Поддержание баланса

Заметим, что

- при вставке ключа высота дерева может увеличиться не более, чем на 1
- при удалении ключа высота дерева может уменьшиться не более, чем на 1
- при поиске высота дерева не меняется

Баланс восстанавливается с помощью поворотов дерева...

Одинарные повороты. Контекст

левый поворот

правый поворот

Одинарные повороты. Контекст

левый поворот

правый поворот

Одинарные повороты. Контекст

левый поворот

leftRotate(Node* pivot)

```
1 current = pivot->right
2 pivot->right = current->left
3 current->left = pivot
4 // привязать к родителю
```

правый поворот

rightRotate(Node* pivot)

```
1 current = pivot->left
2 pivot->left = current->right
3 current->right = pivot
4 // привязать к родителю
```

Усложняем ситуацию...

Дисбаланс зигзагом – налево—направо

Дисбаланс зигзагом — налево—направо

Дисбаланс зигзагом — налево—направо

Дисбаланс зигзагом — налево—направо

Дисбаланс зигзагом — налево—направо

leftRightRotate(Node* pivot)

- 1 leftRotate(pivot->right)
- 2 rightRotate(pivot)
- 4 // привязать к родителю

Правый-левый поворот определяется симметрично...

Вставка в AVL-дерево

Одинарные повороты применяются для исправления одностороннего перекоса

Вставка в AVL-дерево

Двойные повороты применяются для исправления зигзагообразного перекоса

Вставка в AVL-дерево

Итак...

- вставка/удаление сопровождаются изменением фактора баланса «снизу вверх»
- исправляем дисбаланс у вершины, фактор баланса которой стал по модулю больше **2**

В AVL-дереве повороты выполняются довольно часто...

Красно-черные деревья

Черная высота bh(v)

Для каждой вершины v красно-черного дерева определяется черная высота bh(v) — количество черных вершин на пути из v до NULL-ершины без учета самой вершины v

Черная высота bh(v)

Правила красно-черного дерева

- 1. Каждая вершина окрашена в один из цветов
- 2. Корень всегда окрашен в черный [правило корня]
- 3. NULL-вершины окрашены в черный
- 4. Потомки красной вершины черные [правило красного]
- 5. Любой путь из вершины v до NULL-вершины содержит одинаковое число черных вершин [bh-правило]

Следствия из правил КЧД

Если красная вершина имеет потомков, то их обязательно два и оба они черного цвета

Следствия из правил КЧД

Если красная вершина имеет потомков, то их обязательно два и оба они черного цвета

Почему?

Следствия из правил КЧД

Если у черной вершины один ребенок, то он красный

Почемуя

КЧД ↔ 2-3-4 дерево

2-3-4 дерево

Много-проходное (ветвящееся) дерево, в вершинах которого может быть от одного до трех ключей — от двух до четырех потомков

2-3-4 дерево

Много-проходное (ветвящееся) дерево, в вершинах которого может быть от одного до трех ключей — от двух до четырех потомков

2-3-4 дерево. 2-вершина

КЧД является изометрией 2-3-4 дерева

2-3-4 дерево. 3-вершина

КЧД является изометрией 2-3-4 дерева

2-3-4 дерево. 4-вершина

КЧД является изометрией 2-3-4 дерева

Цвет вершины нужен, чтобы из КЧД снова получить 2-3-4 дерево

KЧД \leftrightarrow 2-3-4 дерево

КЧД ↔ 2-3-4 дерево

Оценим высоту КЧД...

1. 2-3-4 дерево является идеальным в мире многопроходных деревьев, поэтому $h_{234} = \log(n+1)$

KЧД \leftrightarrow 2-3-4 дерево

Оценим высоту КЧД...

- 1. 2-3-4 дерево является идеальным в мире многопроходных деревьев, поэтому $h_{234} = \log(n+1)$
- 2. Если в $\mathsf{K} \ \ \, \square \ \ \, \square \ \ \,$ не было красных вершин, то $h_{RB} = h_{234}$

КЧД ↔ 2-3-4 дерево

Оценим высоту КЧД...

- 1. 2-3-4 дерево является идеальным в мире многопроходных деревьев, поэтому $h_{234} = \log(n+1)$
- 2. Если в $\mathsf{K} \ \ \, \square \ \ \, \square \ \ \, \square$ не было красных вершин, то $h_{RB} = h_{234}$
- 3. Если в КЧД есть красные вершины, то высота 2-3-4 дерева уменьшается максимум в два раза $h_{RB}=2\cdot h_{234}$

KЧД \leftrightarrow 2-3-4 дерево

Оценим высоту КЧД...

- 1. 2-3-4 дерево является идеальным в мире многопроходных деревьев, поэтому $h_{234} = \log(n+1)$
- 2. Если в $\mathsf{K} \ \ \, \square \ \ \, \square \ \ \,$ не было красных вершин, то $h_{RB} = h_{234}$
- 3. Если в $\mathsf{K} \ \Box \ \Box$ есть красные вершины, то высота 2-3-4 дерева уменьшается максимум в два раза $h_{RB}=2\cdot h_{234}$

Тогда,
$$\log(n+1) \le h_{RB} \le 2 \cdot \log(n+1)$$

2-3-4 дерево — член более широкого класса В-деревьев

КЧД и время работы

- 1. Поиск не меняет структуры дерева, поэтому выполняется за $O(\log n)$
- 2. Вставка и удаление ключей должны поддерживать правила КЧД, поэтому имеем усложнение на константу $O(\log n)$

В

leftRotate(B) + recolor(A,B)

leftRotate(B) + recolor(A,B)

rightLeftRotate(B) + recolor(B,C)

rightLeftRotate(B) + recolor(B,C)

insert(D)

recolor(A,C)

insert(D)

recolor(A,C)

insert(D)

Это все хорошо, пока у В нет предков...

recolor(A,C)

Выталкиваемый из 4-вершины ключ вставляется в вершину-предка, а он

- может отсутствовать или
- быть 2-вершиной или
- быть 3-вершиной или
- быть 4-вершиной

Recap

Одинарные и двойные повороты – основные средства обеспечения сбалансированности BST

AVL-дерево балансируется непосредственно по высоте

КЧД балансируется по длине путей через изометрию с 2-3-4 деревом

Teaser – Лекция 11

Ленивое удаление ключей в AVL-деревьях Удаление в КЧД. Вершина двойного черного цвета Итоги по сбалансированным деревьям поиска...