Exercise 1

$$\begin{split} \log p(x) &= \log \int_{z} p_{\theta}(x,z) dz \\ &= \log \int_{z} p_{\theta}(x,z) \frac{q_{\phi}(z|x)}{q_{\phi}(z|x)} dz \\ &= \log \left(\mathbb{E}_{q_{\phi}(z|x)} \left[\frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] \right) \\ &\geq \mathbb{E}_{q_{\phi}(z|x)} \left(\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right) \text{ due to concavity of log and Jensen's inequality[2]} \end{split}$$

We can also derive the result from the fact that KL divergence is non negative[3]. The KL divergence between the true posterior and the proposal can be written as

$$\begin{split} KL\left[q_{\phi}(z|x)\|p_{\theta}(z|x)\right] &= \int_{Z} q_{\phi}(z|x) \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \\ &= -\int_{Z} q_{\phi}(z|x) \log \frac{p_{\theta}(z|x)}{q_{\phi}(z|x)} \\ &= -\left(\int_{Z} q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} - \int_{Z} q_{\phi}(z|x) \log p(x)\right), \text{ by applying bayes rule} \\ &= -\int_{Z} q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} + \log p(x) \int_{Z} q_{\phi}(z|x) \\ &= -\mathrm{E}_{q_{\phi}(z|x)} \left(\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)}\right) + \log p(x) \\ &= \mathrm{E}_{q_{\phi}(z|x)} \left(\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)}\right) = \log p(x) - KL\left[q_{\phi}(z|x)\|p_{\theta}(z|x)\right] \end{split}$$

KL divergence can be shown to be ≥ 0 in [3]. Hence

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})}{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \right] \le \log p(\boldsymbol{x})$$
(3)

Exercise 2

Since $\hat{p}_N(x)$ is an unbiased positive estimator of p(x), meaning $\mathbb{E}\left[\hat{p}_N(x)\right] = p(x)$, . As mentioned in [1], from Jensen's inequality the log of any unbiased positive Monte Carlo estimator of the marginal likelihood results in a lower bound that can be optimized for MLE. This is shown below

Let the Monte Carlo objective $\mathcal{L}_{\mathrm{N}}(x,p)$ over $p\in\mathcal{P}$ defined by $\hat{p}_{N}(x)$ is

$$\mathcal{L}_{N}(x,p) = \mathbb{E}\left[\log \hat{p}_{N}(x)\right]$$

By the concavity of log and Jensen's inequality,

$$\mathcal{L}_N(x,p) = \mathbb{E}\left[\log \hat{p}_N(x)\right] < \log \mathbb{E}\left[\hat{p}_N(x)\right] = \log p(x)$$

PRACTICAL

The results of the training for ELBO, IWAE and FIVO bounds can be seen in Figure 1 for 2k steps and Figure 2 for 5k steps.

Figure 1: train log likelihood (ll/t) vs the number of training steps(2k steps)

Figure 2: train log likelihood (ll/t) vs the number of training steps(5k steps)

Evaluation was run, the test log likelihood after 5K steps is summarized in Table 1.

	FIVO	IWAE	ELBO
ll/t	-7.965333	-8.480670	-8.760990
ll/seq	-488.781799	-520.404730	-537.606202

Table 1: Evaluation results(5k steps)

Exercise 5

Figure 3 shows a comparison between the relative entropy and ESS re-sampling criterion as implemented in [1] by the authors. A small improvements can be observed in bound during training. The evaluation results however, don't vary significantly.

Figure 3: train log likelihood (ll/t) vs the number of training steps for relative entropy and ess re-sampling criterion

	FIVO Entropy	FIVO ESS
ll/t	-8.070633	-8.078573
ll/seq	-495.243389	-495.730597

Table 2: Evaluation results(5k steps)

References

- [1] Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Teh. Filtering variational objectives. In Advances in Neural Information Processing Systems, pages 65766586, 2017.
- [2] https://en.wikipedia.org/wiki/Jensen%27s_inequality
- [3] Elements of Information Theory by Thomas M. Cover and Joy A. Thomas