Appendix B

Answers to the Exercises

I believe that every human has a finite number of heart-beats.

I don't intend to waste any of mine running around doing exercises.

— Buzz Aldrin (1930–)

B.1 Chapter 1

(Page 27.)

1.
$$\mathbf{a} = (-2.5, 3)$$
 $\mathbf{b} = (1, 2)$ $\mathbf{c} = (2.5, 2)$ $\mathbf{d} = (-1, 1)$ $\mathbf{e} = (0, 0)$ $\mathbf{f} = (2, -0.5)$ $\mathbf{g} = (-0.5, -1.5)$ $\mathbf{h} = (0, -2)$ $\mathbf{i} = (-3, -2)$
2. $\mathbf{a} = (1, 2, 4)$ $\mathbf{b} = (-3, -3, -5)$ $\mathbf{c} = (-3, 6, 2.5)$ $\mathbf{d} = (3, 0, -1)$ $\mathbf{e} = (0, 0, 0)$ $\mathbf{f} = (0, 0, 3)$ $\mathbf{g} = (-3.5, 4, 0)$ $\mathbf{h} = (5, -5, -1.5)$ $\mathbf{i} = (4, 1, 5)$

See the table below.

Left-handed						Right-handed					
East	Up	North	East	$\mathbf{U}\mathbf{p}$	North	East	Up	North	East	Up	North
+x	+y	+z	-x	-y	+z	-x	-y	-z	+x	+y	-z
+x	-y	-z	-x	+y	-z	-x	+y	+z	+x	-y	+z
+x	+z	-y	-x	-z	-y	-x	-z	+y	+x	+z	+y
+x	-z	+y	-x	+z	+y	-x	+z	-y	+x	-z	-y
+y	+z	+x	-y	-z	+x	-y	-z	-x	+y	+z	-x
+y	-z	-x	-y	+z	-x	-y	+z	+x	+y	-z	+x
+y	+x	-z	-y	-x	-z	-y	-x	+z	+y	+x	+z
+y	-x	+z	-y	+x	+z	-y	+x	-z	+y	-x	-z
+z	+x	+y	-z	-x	+y	-z	-x	-y	+z	+x	-y
+z	-x	-y	-z	+x	-y	-z	+x	+y	+z	-x	+y
+z	+y	-x	-z	-y	-x	-z	-y	+x	+z	+y	+x
+z	-y	+x	-z	+y	+x	-z	+y	-x	+z	-y	-x

- (a) Right-handed.
 (b) Swap y and z.
 (c) Swap y and z.
- (a) Right-handed. (b) $x_{us} \leftarrow y_{aero}$, $y_{us} \leftarrow -z_{aero}$, $z_{us} \leftarrow x_{aero}$
 - (c) $x_{aero} \leftarrow z_{us}$, $y_{aero} \leftarrow x_{us}$, $z_{aero} \leftarrow -y_{us}$
- 6. (a) CW (b) CCW (c) CCW (d) CW
- 7. (a) 15 (b) 30 (c) 3840 (d) 2016840 (e) 5050 8. (a) $\pi/6$ (b) $-\pi/4$ (c) $\pi/3$ (d) $\pi/2$ (e) $-\pi$
- (f) $5\pi/4$ (g) $-3\pi/2$ (h) 2.923 (i) 9.198 (j) -6π
- 9. (a) -30° (b) 120° (c) 270° (d) -240° (e) 360° (f) 1° (g) 10° (h) -900° (i) 1800° (j) 36° 10. The scarecrow should have said:
- the remaining side. since the Pythagorean theorem is $c^2 = a^2 + b^2$, where a and b are the legs of the right triangle and c is the hypotenuse.
- 11. (a) $(\sin(\alpha)/\csc(\alpha)) + (\cos(\alpha)/\sec(\alpha)) = \sin^2(\alpha) + \cos^2(\alpha) = 1$
- (b) $(\sec^2(\theta) 1)/\sec^2(\theta) = 1 (1/\sec^2(\theta)) = 1 \cos^2(\theta) = \sin^2(\theta)$ $\cos^2(t)$ / $\sin^2(t) = 1/\sin^2(t) = \csc^2(t)$ (d) $\cos(\phi)(\tan(\phi) + \cot(\phi)) = \sin(\phi) + (\cos^2(\phi)/\sin(\phi)) = (\sin^2(\phi) + \cos^2(\phi))/\sin(\phi) =$ $1/\sin(\phi) = \csc(\phi)$

The sum of the squares of the legs of a right triangle is equal to the square of