Exponents and Radicals

$$x^{m}x^{n} = x^{m+n}$$

$$(x^{m})^{n} = x^{mn}$$

$$(xy)^{n} = x^{n}y^{n}$$

$$x^{1/n} = \sqrt[n]{x}$$

$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}$$

$$\sqrt[n]{\sqrt[n]{x}} = \sqrt[n]{\sqrt[n]{x}}$$

$$\sqrt[n]{x} = \sqrt[n]{x}\sqrt[n]{x}$$

Special Products

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x - y)^{2} = x^{2} - 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x - y)^{3} = x^{3} - 3x^{2}y + 3xy^{2} - y^{3}$$

Factoring Formulas

$$x^{2} - y^{2} = (x + y)(x - y)$$

$$x^{2} + 2xy + y^{2} = (x + y)^{2}$$

$$x^{2} - 2xy + y^{2} = (x - y)^{2}$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Inequalities and Absolute Value

If a < b and b < c, then a < c.

If a < b, then a + c < b + c.

If a < b and c > 0, then ca < cb.

If a < b and c < 0, then ca > cb.

If a > 0, then

$$|x| = a$$
 means $x = a$ or $x = -a$.

$$|x| < a$$
 means $-a < x < a$.

$$|x| > a$$
 means $x > a$ or $x < -a$.

Geometric Formulas

Formulas for area A, perimeter P, circumference C, and volume V:

Rectangle

$$A = lw$$

$$P = 2l + 2w$$

Box

$$V = lwh$$

Triangle

$$A = \frac{1}{2}bh$$

Pyramid

$$V = \frac{1}{3}ha^2$$

Circle

$$A = \pi r^2$$

$$C = 2\pi r$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$A = 4\pi r^2$$

Cylinder

$$V = \pi r^2 h$$

Cone

$$V = \frac{1}{3}\pi r^2 h$$

Heron's Formula

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

where
$$s = \frac{a+b+c}{2}$$

Distance and Midpoint Formulas

Distance between $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint of
$$P_1P_2$$
: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Lines

Slope of line through
$$P_1(x_1, y_1) \text{ and } P_2(x_2, y_2)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-slope equation of line
$$y - y_1 = m(x - x_1)$$

through
$$P_1(x_1, y_1)$$
 with slope m

Slope-intercept equation of
$$y = mx + b$$
 line with slope m and y -intercept b

Two-intercept equation of line with *x*-intercept *a* and *y*-intercept *b*
$$\frac{x}{a} + \frac{y}{b} = 1$$

Logarithms

$$y = \log_a x \quad \text{means} \quad a^y = x$$

$$\log_a a^x = x \qquad \qquad a^{\log_a x} = x$$

$$\log_a 1 = 0 \qquad \qquad \log_a a = 1$$

$$\log_a x = \log_{10} x \qquad \qquad \ln x = \log_e x$$

$$\log_a xy = \log_a x + \log_a y \qquad \qquad \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a x^b = b \log_a x \qquad \qquad \log_b x = \frac{\log_a x}{\log_a b}$$

Exponential and Logarithmic Functions

Graphs of Functions

Linear functions: f(x) = mx + b

Power functions: $f(x) = x^n$

Root functions: $f(x) = \sqrt[n]{x}$

Reciprocal functions: $f(x) = 1/x^n$

Absolute value function Greatest integer function

Complex Numbers

For the complex number z = a + bi

the **conjugate** is
$$\bar{z} = a - bi$$

the **modulus** is
$$|z| = \sqrt{a^2 + b^2}$$

the **argument** is θ , where $\tan \theta = b/a$

Polar form of a complex number

For z = a + bi, the **polar form** is

$$z = r(\cos\theta + i\sin\theta)$$

where r = |z| is the modulus of z and θ is the argument of z

De Moivre's Theorem

$$z^{n} = [r(\cos\theta + i\sin\theta)]^{n} = r^{n}(\cos n\theta + i\sin n\theta)$$

$$\sqrt[n]{z} = [r(\cos\theta + i\sin\theta)]^{1/n}$$

$$= r^{1/n} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$

where k = 0, 1, 2, ..., n - 1

Rotation of Axes

Rotation of axes formulas

$$x = X\cos\phi - Y\sin\phi$$

$$y = X \sin \phi + Y \cos \phi$$

Angle-of-rotation formula for conic sections

To eliminate the xy-term in the equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

rotate the axis by the angle ϕ that satisfies

$$\cot 2\phi = \frac{A - C}{R}$$

Polar Coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$r^2 = x^2 + y^2$$
$$y$$

Sums of Powers of Integers

$$\sum_{k=1}^{n} 1 = n$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

The Derivative

The average rate of change of f between a and b is

$$\frac{f(b) - f(a)}{b - a}$$

The **derivative** of f at a is

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Area Under the Graph of f

The area under the graph of f on the interval [a, b] is the limit of the sum of the areas of approximating rectangles

$$A = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \, \Delta x$$

where

$$\Delta x = \frac{b-a}{n}$$

$$x_k = a + k \Delta x$$

Sequences and Series

Arithmetic

$$a, a + d, a + 2d, a + 3d, \dots$$
 or $a_n = a + (n-1)d$

$$S_n = \sum_{k=1}^n a_k = \frac{n}{2} [2a + (n-1)d] = n \left(\frac{a+a_n}{2}\right)$$

Geometric

$$a, ar, ar^2, ar^3, \dots$$
 or $a_n = ar^{n-1}$

$$S_n = \sum_{k=1}^n a_k = a \frac{1 - r^n}{1 - r}$$

Infinite geometric series

$$\sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + ar^3 + \cdots$$

If |r| < 1 the series converges and its sum is

$$S = \frac{a}{1 - r}$$

If $|r| \ge 1$ the series diverges.

The Binomial Theorem

Binomial Theorem

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n$$

Binomial coefficients

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} (r \le n), \text{ where } n! = 1 \cdot 2 \cdot 3 \cdots (n-1)n$$

Finance

Compound interest

$$A = P\bigg(1 + \frac{r}{n}\bigg)^{nt}$$

where A is the amount after t years, P is the principal, r is the interest rate, and the interest is compounded n times per year.

Continuously compounded interest

$$A = Pe^{rt}$$

where A is the amount after t years, P is the principal, r is the interest rate, and the interest is compounded continuously.

Conic Sections

Circles

$$(x - h)^2 + (y - k)^2 = r^2$$

Parabolas

$$x^2 = 4py$$

Focus (0, p), directrix y = -p

Focus (p, 0), directrix x = -p

$$y = a(x - h)^{2} + k,$$

 $a < 0, h > 0, k > 0$

$$y = a(x - h)^{2} + k,$$

 $a > 0, h > 0, k > 0$

Ellipses

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{h^2} + \frac{y^2}{a^2} = 1$$

Foci (
$$\pm c$$
, 0), $c^2 = a^2 - b^2$

Foci
$$(0, \pm c), c^2 = a^2 - b^2$$

Hyperbolas

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Foci (
$$\pm c$$
, 0), $c^2 = a^2 + b^2$
Asymptotes: $y = \pm \frac{b}{a}x$

Foci
$$(0, \pm c)$$
, $c^2 = a^2 + b^2$
Asymptotes: $y = \pm \frac{a}{b}x$

Angle Measurement

 π radians = 180°

$$1^{\circ} = \frac{\pi}{180} \operatorname{rad} \qquad 1 \operatorname{rad} = \frac{180^{\circ}}{\pi}$$

$$s = r\theta$$
 $A = \frac{1}{2}r^2\theta$ (θ in radians)

To convert from degrees to radians, multiply by $\frac{\pi}{180}$.

To convert from radians to degrees, multiply by $\frac{180}{\pi}$.

Trigonometric Functions of Real Numbers

$$\sin t = y \qquad \qquad \csc t = \frac{1}{y}$$

$$\cos t = x$$
 $\sec t = \frac{1}{2}$

$$\tan t = \frac{y}{x} \qquad \cot t = \frac{x}{y}$$

Trigonometric Functions of Angles

$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{\theta}{r}$$

$$\cos \theta = \frac{x}{r}$$
 $\sec \theta = \frac{1}{r}$

$$\tan \theta = \frac{y}{x} \qquad \cot \theta = \frac{x}{y}$$

Right Angle Trigonometry

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\csc \theta = \frac{\text{hyp}}{\text{opp}}$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$
 $\sec \theta = \frac{\text{hy}}{\text{adj}}$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$
 $\cot \theta = \frac{\text{adj}}{\text{opp}}$

Special Values of the Trigonometric Functions

θ	radians	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	$\pi/2$	1	0	
180°	π	0	-1	0
270°	$3\pi/2$	-1	0	_

Special Triangles

Graphs of the Trigonometric Functions

Sine and Cosine Curves

 $y = a \sin k(x - b)$ (k > 0) $y = a \cos k(x - b)$ (k > 0)

amplitude: |a| period: $2\pi/k$ horizontal shift: b

Graphs of the Inverse Trigonometric Functions

Fundamental Identities

$$\sec x = \frac{1}{\cos x}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{1}{\tan x}$$

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x \qquad \cot\left(\frac{\pi}{2} - x\right) = \tan x$$

$$\sec\left(\frac{\pi}{2} - x\right) = \csc x \qquad \csc\left(\frac{\pi}{2} - x\right) = \sec x$$

Reduction Identities

$$\sin(x + \pi) = -\sin x \qquad \qquad \sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\cos(x + \pi) = -\cos x \qquad \qquad \cos\left(x + \frac{\pi}{2}\right) = -\sin x$$

$$\tan(x + \pi) = \tan x \qquad \qquad \tan\left(x + \frac{\pi}{2}\right) = -\cot x$$

Addition and Subtraction Formulas

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \qquad \tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double-Angle Formulas

$$\sin 2x = 2\sin x \cos x \qquad \cos 2x = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$= 1 - 2\sin^2 x$$

Formulas for Reducing Powers

$$\sin^{2} x = \frac{1 - \cos 2x}{2}$$

$$\tan^{2} x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

Half-Angle Formulas

$$\sin\frac{u}{2} = \pm\sqrt{\frac{1-\cos u}{2}} \qquad \cos\frac{u}{2} = \pm\sqrt{\frac{1+\cos u}{2}}$$

$$\tan\frac{u}{2} = \frac{1-\cos u}{\sin u} = \frac{\sin u}{1+\cos u}$$

Product-to-Sum and Sum-to-Product Identities

$$\sin u \cos v = \frac{1}{2} [\sin(u+v) + \sin(u-v)]$$

$$\cos u \sin v = \frac{1}{2} [\sin(u+v) - \sin(u-v)]$$

$$\cos u \cos v = \frac{1}{2} [\cos(u+v) + \cos(u-v)]$$

$$\sin u \sin v = \frac{1}{2} [\cos(u-v) - \cos(u+v)]$$

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$$

$$\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

The Laws of Sines and Cosines

The Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

The Law of Cosines

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

