```
In [19]:
           import pandas as pd
In [20]:
           df=pd.read csv("health care diabetes.csv")
In [21]:
           df.head()
Out[21]:
              Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
                                                                                                        50
           0
                       6
                              148
                                              72
                                                            35
                                                                     0 33.6
                                                                                                0.627
                                                                                                                   1
           1
                       1
                               85
                                              66
                                                            29
                                                                     0 26.6
                                                                                                0.351
                                                                                                        31
                                                                                                                   0
           2
                       8
                               183
                                                             0
                                                                                                        32
                                              64
                                                                     0 23.3
                                                                                                0.672
           3
                       1
                               89
                                              66
                                                            23
                                                                    94 28.1
                                                                                                        21
                                                                                                                   0
                                                                                                0.167
                       0
           4
                              137
                                              40
                                                            35
                                                                   168
                                                                        43.1
                                                                                                        33
                                                                                                2.288
                                                                                                                   1
In [22]:
            df.columns
          Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
Out[22]:
                   'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                 dtvpe='object')
In [23]:
            df.corr()
Out[23]:
                                    Pregnancies
                                                 Glucose BloodPressure SkinThickness
                                                                                         Insulin
                                                                                                     BMI DiabetesPedigreeFunction
                                                                                                                                        Age Outcome
                       Pregnancies
                                       1.000000 0.129459
                                                               0.141282
                                                                             -0.081672
                                                                                      -0.073535 0.017683
                                                                                                                         -0.033523
                                                                                                                                    0.544341
                                                                                                                                              0.221898
                                                                                                                                              0.466581
                           Glucose
                                       0.129459 1.000000
                                                               0.152590
                                                                             0.057328
                                                                                       0.331357 0.221071
                                                                                                                          0.137337
                                                                                                                                    0.263514
                     BloodPressure
                                       0.141282 0.152590
                                                               1.000000
                                                                             0.207371
                                                                                       0.088933 0.281805
                                                                                                                          0.041265
                                                                                                                                    0.239528
                                                                                                                                              0.065068
                      SkinThickness
                                      -0.081672 0.057328
                                                               0.207371
                                                                             1.000000
                                                                                       0.436783 0.392573
                                                                                                                          0.183928
                                                                                                                                   -0.113970
                                                                                                                                              0.074752
                            Insulin
                                      -0.073535 0.331357
                                                               0.088933
                                                                             0.436783
                                                                                       1.000000 0.197859
                                                                                                                          0.185071 -0.042163
                                                                                                                                             0.130548
```

Pregnancies Glucose BloodPressure SkinThickness

```
BMI
                                      0.017683 0.221071
                                                             0.281805
                                                                           0.392573
                                                                                     0.197859 1.000000
                                                                                                                      0.140647
                                                                                                                                0.036242
                                                                                                                                         0.292695
          DiabetesPedigreeFunction
                                     -0.033523 0.137337
                                                             0.041265
                                                                           0.183928
                                                                                     0.185071 0.140647
                                                                                                                      1.000000
                                                                                                                                0.033561
                                                                                                                                         0.173844
                                      0.544341 0.263514
                                                             0.239528
                                                                          -0.113970
                                                                                   -0.042163 0.036242
                                                                                                                      0.033561
                                                                                                                                1.000000
                                                                                                                                         0.238356
                              Age
                                                                                    0.130548 0.292695
                         Outcome
                                      0.221898 0.466581
                                                             0.065068
                                                                           0.074752
                                                                                                                      0.173844
                                                                                                                                0.238356
                                                                                                                                         1.000000
In [24]:
           df.Insulin.value counts(normalize=True)
                  0.486979
Out[24]:
          105
                  0.014323
          130
                  0.011719
          140
                  0.011719
          120
                  0.010417
                    . . .
          73
                  0.001302
          171
                  0.001302
          255
                  0.001302
          52
                  0.001302
          112
                  0.001302
          Name: Insulin, Length: 186, dtype: float64
In [25]:
           df.Insulin.median()
          30.5
Out[25]:
In [26]:
           Insulin median=df[df['Insulin']!=0]['Insulin'].median()
           Insulin median
          125.0
Out[26]:
In [27]:
           df['Insulin']=df['Insulin'].apply(lambda x: Insulin median if x==0 else x)
           df.head()
Out[27]:
             Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
```

Insulin

BMI DiabetesPedigreeFunction

Age Outcome

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	125.0	33.6	0.627	50	1
1	1	85	66	29	125.0	26.6	0.351	31	0
2	8	183	64	0	125.0	23.3	0.672	32	1
3	1	89	66	23	94.0	28.1	0.167	21	0
4	0	137	40	35	168.0	43.1	2.288	33	1

```
In [28]:
    selected_col=['Glucose','BloodPressure','SkinThickness','BMI']
    for i in selected_col:
        median=df[df[i]!=0][i].median()
        df[i]=df[i].apply(lambda x: Insulin_median if x==0 else x)

    df.head()
```

Out[28]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	0	6	148.0	72.0	35.0	125.0	33.6	0.627	50	1
	1	1	85.0	66.0	29.0	125.0	26.6	0.351	31	0
	2	8	183.0	64.0	125.0	125.0	23.3	0.672	32	1
	3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
	4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1

```
In [29]: df.BloodPressure.value_counts(normalize=True).to_frame().iloc[0,:].values[0]
```

Out[29]: 0.07421875

```
In [30]: df.Insulin.value_counts(normalize=True).to_frame().iloc[0,:].values[0]*100
```

Out[30]: 49.21875

```
In [31]:
          df.Insulin.value_counts(normalize=True)
         125.0
                  0.492188
Out[31]:
         105.0
                  0.014323
         130.0
                  0.011719
         140.0
                  0.011719
         120.0
                  0.010417
                    . . .
         73.0
                   0.001302
         171.0
                  0.001302
                  0.001302
          255.0
          52.0
                  0.001302
         112.0
                  0.001302
         Name: Insulin, Length: 185, dtype: float64
In [32]:
          df.Insulin.median()
         125.0
Out[32]:
In [33]:
          df.dtypes.value counts()
         float64
                    6
Out[33]:
         int64
         dtype: int64
```

Week-1

```
In [34]:
          df.isnull().any()
         Pregnancies
                                      False
Out[34]:
         Glucose
                                      False
         BloodPressure
                                      False
          SkinThickness
                                      False
         Insulin
                                      False
          BMI
                                      False
         DiabetesPedigreeFunction
                                      False
         Age
                                      False
```

```
Outcome False dtype: bool
```

In [35]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	float64
2	BloodPressure	768 non-null	float64
3	SkinThickness	768 non-null	float64
4	Insulin	768 non-null	float64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(6), int64(3)
memory usage: 54.1 KB

In [36]: df.columns

In [37]: df.corr()

Out[37]:

0	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
Pregnancies	1.000000	0.127686	0.144984	0.166035	0.025047	0.013372	-0.033523	0.544341	0.221898
Glucose	0.127686	1.000000	0.142632	0.074363	0.418751	0.063797	0.136858	0.266243	0.492985
BloodPressure	0.144984	0.142632	1.000000	0.318976	0.006733	0.317618	-0.039053	0.208816	0.156317
SkinThickness	0.166035	0.074363	0.318976	1.000000	-0.084830	0.117861	-0.130843	0.241883	0.093974
Insulin	0.025047	0.418751	0.006733	-0.084830	1.000000	0.073039	0.126503	0.097101	0.203790
ВМІ	0.013372	0.063797	0.317618	0.117861	0.073039	1.000000	0.069369	-0.010714	0.129443

			Pregnancies	Glucose Bloo	dPressure	Skin	Thickness	Insulin	BN	/II	DiabetesPedio	reeFunction	Age	Outcome
Diabete	sPedigree	Function	-0.033523	0.136858	-0.039053		-0.130843	0.126503	0.06936	59		1.000000	0.033561	0.173844
		Age	0.544341	0.266243	0.208816		0.241883	0.097101 -0	0.01071	14		0.033561	1.000000	0.238356
	(Outcome	0.221898	0.492985	0.156317		0.093974	0.203790	0.12944	13		0.173844	0.238356	1.000000
8]: data=d	1f													
	ive = df ive.head		tcome']==1]											
Preg	nancies	Glucose	BloodPressure	SkinThicknes	s Insulin	вмі	DiabetesP	edigreeFuncti	ion A	ge	Outcome			
0	6	148.0	72.0	35.0	125.0	33.6		0.6	627	50	1			
2	8	183.0	64.0	125.0	125.0	23.3		0.6	572	32	1			
4	0	137.0	40.0	35.0	168.0	43.1		2.2	288	33	1			
6	3	78.0	50.0	32.0	0.88	31.0		0.2	248	26	1			
8	2	197.0	70.0	45.0	543.0	30.5		0.7	158	53	1			
	data['Glucose'].value_counts().head(10)													
data[grucose													
125.0	19													
125.0 99.0	19 17													
125.0 99.0 100.0	19 17 17													
125.0 99.0 100.0 111.0	19 17 17 14													
125.0 99.0 100.0	19 17 17													
125.0 99.0 100.0 111.0 129.0	19 17 17 14 14													
125.0 99.0 100.0 111.0 129.0 106.0	19 17 17 14 14 14													
125.0 99.0 100.0 111.0 129.0 106.0 112.0 108.0 95.0	19 17 17 14 14 14 13													
125.0 99.0 100.0 111.0 129.0 106.0 112.0 108.0	19 17 17 14 14 14 13													

```
In [42]:
          plt.hist(data['Glucose'])
         (array([ 4., 19., 87., 149., 161., 130., 88., 54., 44., 32.]),
Out[42]:
          array([ 44. , 59.5, 75. , 90.5, 106. , 121.5, 137. , 152.5, 168. ,
                 183.5, 199. ]),
          <BarContainer object of 10 artists>)
         160
         140
         120
         100
          80
           60
           40
          20
                   60
                        80
                             100
                                  120
                                        140
                                             160
                                                   180
                                                         200
In [43]:
          data['BloodPressure'].value counts().head(10)
         70.0
                  57
Out[43]:
         74.0
                  52
         78.0
                  45
         68.0
                  45
         72.0
                  44
         64.0
                  43
         80.0
                  40
         76.0
                  39
                  37
         60.0
         125.0
                  35
         Name: BloodPressure, dtype: int64
In [44]:
          plt.hist(data['BloodPressure'])
                         6., 42., 150., 235., 185., 88., 14., 9., 36.]),
         (array([ 3.,
Out[44]:
```

```
array([ 24. , 34.1, 44.2, 54.3, 64.4, 74.5, 84.6, 94.7, 104.8,
      114.9, 125. ]),
<BarContainer object of 10 artists>)
```



```
data['SkinThickness'].value counts().head(10)
          125.0
                   227
Out[45]:
          32.0
                    31
          30.0
                    27
          27.0
                    23
          23.0
                    22
          33.0
                    20
          28.0
                    20
                    20
          18.0
          31.0
                    19
                    18
          19.0
          Name: SkinThickness, dtype: int64
```

```
In [46]:
          plt.hist(data['SkinThickness'])
```

(array([93., 210., 190., 44., 3., 0., 0., 1., 0., 227.]), Out[46]: array([7., 18.8, 30.6, 42.4, 54.2, 66., 77.8, 89.6, 101.4, 113.2, 125.]), <BarContainer object of 10 artists>)

In [45]:


```
In [47]:
          data['Insulin'].value counts().head(10)
         125.0
                  378
Out[47]:
         105.0
                   11
         130.0
                   9
         140.0
                    9
         120.0
         94.0
         180.0
         100.0
         135.0
                    6
         115.0
         Name: Insulin, dtype: int64
In [48]:
          plt.hist(data['Insulin'])
         (array([142., 517., 55., 29., 7., 10., 4., 1., 2., 1.]),
Out[48]:
          array([ 14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6,
                 762.8, 846. ]),
          <BarContainer object of 10 artists>)
```



```
In [49]:
         data['BMI'].value_counts().head(10)
         32.0
                 13
Out[49]:
         31.6
                 12
         31.2
                 12
         125.0
                 11
         32.4
                 10
         33.3
                 10
         30.1
                  9
         32.8
                  9
         32.9
                   9
         30.8
         Name: BMI, dtype: int64
In [50]:
         plt.hist(data['BMI'])
         (array([243., 409., 97., 7., 1., 0., 0., 0., 0., 11.]),
Out[50]:
          array([ 18.2 , 28.88, 39.56, 50.24, 60.92, 71.6 , 82.28, 92.96,
                103.64, 114.32, 125. ]),
          <BarContainer object of 10 artists>)
```


In [51]: data.describe().transpose()

			-	_	-	-	
٦	11	+		5	7	- 1	0
J	u	υ.		J	_	- 1	

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	121.708333	30.437117	44.000	99.75000	117.0000	140.25000	199.00
BloodPressure	768.0	74.802083	16.333946	24.000	64.00000	73.0000	82.00000	125.00
SkinThickness	768.0	57.483073	44.637491	7.000	25.00000	35.0000	125.00000	125.00
Insulin	768.0	140.671875	86.383060	14.000	121.50000	125.0000	127.25000	846.00
ВМІ	768.0	33.782943	12.974268	18.200	27.50000	32.4000	36.82500	125.00
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

Week-2

```
In [52]:
```

plt.hist(positive['Glucose'],histtype='stepfilled',bins=10)

8/5/22, 11:09 AM Healthcare Projests (array([7., 16., 30., 41., 37., 32., 29., 29., 24., 23.]),

array([78. , 90.1, 102.2, 114.3, 126.4, 138.5, 150.6, 162.7, 174.8,

```
186.9, 199. ]),
           [<matplotlib.patches.Polygon at 0x285c148d9d0>])
          40
          35
          30
          25
          20
          15
          10
           5
              80
                     100
                            120
                                    140
                                           160
                                                  180
                                                         200
In [53]:
          positive['Glucose'].value counts().head(10)
         125.0
Out[53]:
         128.0
                   6
          129.0
         115.0
         158.0
         146.0
                   5
                   5
         124.0
         162.0
                   5
         173.0
                   5
         109.0
         Name: Glucose, dtype: int64
In [54]:
          plt.hist(positive['BloodPressure'], histtype='stepfilled', bins=10)
         (array([ 1., 2., 13., 42., 87., 67., 29., 6., 5., 16.]),
Out[54]:
          array([ 30. , 39.5, 49. , 58.5, 68. , 77.5, 87. , 96.5, 106. ,
                 115.5, 125. ]),
           [<matplotlib.patches.Polygon at 0x285c14fcf40>])
```

Out[52]:


```
In [55]:
          positive['BloodPressure'].value counts().head(10)
         70.0
                  23
Out[55]:
         76.0
                 18
         78.0
                 17
         74.0
                 17
         72.0
                 16
         125.0
                 16
         80.0
                 13
                 13
         64.0
                 13
         82.0
         84.0
                 12
         Name: BloodPressure, dtype: int64
In [56]:
          plt.hist(positive['BMI'],histtype='stepfilled',bins=10)
         (array([109., 127., 27., 2., 1., 0., 0., 0., 0.,
                                                                      2.]),
Out[56]:
          array([ 22.9 , 33.11, 43.32, 53.53, 63.74, 73.95, 84.16, 94.37,
                104.58, 114.79, 125. ]),
          [<matplotlib.patches.Polygon at 0x285c15627f0>])
```



```
In [57]:
          positive['BMI'].value counts().head(10)
         32.9
                 8
Out[57]:
         31.6
                 7
         33.3
         31.2
         30.5
         32.0
                 5
         34.3
         30.4
         32.4
         43.3
                 4
         Name: BMI, dtype: int64
In [58]:
          plt.hist(positive['SkinThickness'],histtype='stepfilled',bins=10)
         (array([12., 60., 84., 21., 2., 0., 0., 1., 0., 88.]),
Out[58]:
          array([ 7., 18.8, 30.6, 42.4, 54.2, 66., 77.8, 89.6, 101.4,
                 113.2, 125. ]),
          [<matplotlib.patches.Polygon at 0x285c15ce130>])
```



```
In [59]:
          positive['SkinThickness'].value counts().head(10)
         125.0
                  88
Out[59]:
         32.0
                  14
         30.0
                   9
         33.0
         39.0
         37.0
         36.0
         35.0
         27.0
         29.0
         Name: SkinThickness, dtype: int64
In [60]:
          plt.hist(positive['Insulin'], histtype='stepfilled', bins=10)
         (array([ 16., 196., 28., 13., 3., 7., 3., 1., 0., 1.]),
Out[60]:
          array([ 14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6,
                 762.8, 846. ]),
          [<matplotlib.patches.Polygon at 0x285c1623f70>])
```



```
In [61]:
          positive['Insulin'].value_counts().head(10)
         125.0
                   140
Out[61]:
         130.0
                     6
          180.0
         175.0
                     3
         156.0
         185.0
          225.0
                     2
         155.0
         114.0
                     2
         160.0
         Name: Insulin, dtype: int64
In [62]:
          BloodPressure = positive['BloodPressure']
          Glucose = positive['Glucose']
          Insulin = positive['Insulin']
          BMI = positive['BMI']
          Thickness = positive['SkinThickness']
In [63]:
          plt.scatter(BloodPressure, Glucose, color=['b'])
          plt.xlabel('BloodPressure')
          plt.ylabel('Glucose')
          plt.title('BloodPressure & Glucose')
          plt.show()
```


In [64]: import seaborn as sns


```
In [66]:
           g =sns.scatterplot(x= "Insulin" ,y= "BMI",
                               hue="Outcome",
                               data=data);
                       . .
                                                            Outcome
             120
                                                              • 0
                                                              • 1
             100
              80
          BM
              60
              40
              20
                            200
                                        400
                                                   600
                                                              800
                                        Insulin
In [67]:
           g =sns.scatterplot(x= "SkinThickness" ,y= "BloodPressure",
                               hue="Outcome",
                               data=data);
             120
             100
          BloodPressure
              80
              60
                                                            Outcome
              40
                                                              1
              20
                       20
                               40
                                       60
                                               80
                                                       100
                                                               120
                                     SkinThickness
```

In [68]:

data.corr()

Out[68]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
Pregnancies	1.000000	0.127686	0.144984	0.166035	0.025047	0.013372	-0.033523	0.544341	0.221898
Glucose	0.127686	1.000000	0.142632	0.074363	0.418751	0.063797	0.136858	0.266243	0.492985
BloodPressure	0.144984	0.142632	1.000000	0.318976	0.006733	0.317618	-0.039053	0.208816	0.156317
SkinThickness	0.166035	0.074363	0.318976	1.000000	-0.084830	0.117861	-0.130843	0.241883	0.093974
Insulin	0.025047	0.418751	0.006733	-0.084830	1.000000	0.073039	0.126503	0.097101	0.203790
ВМІ	0.013372	0.063797	0.317618	0.117861	0.073039	1.000000	0.069369	-0.010714	0.129443
DiabetesPedigreeFunction	-0.033523	0.136858	-0.039053	-0.130843	0.126503	0.069369	1.000000	0.033561	0.173844
Age	0.544341	0.266243	0.208816	0.241883	0.097101	-0.010714	0.033561	1.000000	0.238356
Outcome	0.221898	0.492985	0.156317	0.093974	0.203790	0.129443	0.173844	0.238356	1.000000

In [69]:

sns.heatmap(data.corr())

Out[69]:

<AxesSubplot:>


```
plt.subplots(figsize=(10,10))
sns.heatmap(data.corr(),annot=True,cmap='viridis')
```

Out[70]: <AxesSubplot:>


```
plt.subplots(figsize=(10,10))
sns.heatmap(data.corr(),annot=True)
In [71]:
              <AxesSubplot:>
```

Out[71]:

Week-3

```
In [72]:
           data.head()
             Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
Out[72]:
                                                              125.0 33.6
          0
                      6
                           148.0
                                          72.0
                                                                                           0.627
                                                                                                   50
                                                        35.0
          1
                      1
                            85.0
                                          66.0
                                                        29.0
                                                              125.0 26.6
                                                                                           0.351
                                                                                                   31
                                                                                                             0
          2
                      8
                           183.0
                                                                                                   32
                                          64.0
                                                       125.0
                                                              125.0 23.3
                                                                                           0.672
          3
                            89.0
                                                               94.0 28.1
                                                                                                   21
                                                                                                             0
                      1
                                          66.0
                                                        23.0
                                                                                           0.167
          4
                      0
                           137.0
                                          40.0
                                                        35.0
                                                              168.0 43.1
                                                                                           2.288
                                                                                                   33
                                                                                                             1
In [73]:
           features = data.iloc[:,[0,1,2,3,4,6,7]].values
           label = data.iloc[:,8].values
In [74]:
           from sklearn.model selection import train test split
           X train, X test, y train, y test = train test split(features, label, test size=0.2, random state =10)
In [94]:
           from sklearn.linear model import LogisticRegression
           model = LogisticRegression()
           model.fit(X train,y train)
           import warnings
           warnings.filterwarnings('ignore')
In [95]:
           mode1
          LogisticRegression()
Out[95]:
In [76]:
           print(model.score(X_train,y_train))
           print(model.score(X_test,y_test))
```

file:///C:/Users/SAMBIT/Downloads/Healthcare Projests .html

0.7671009771986971

```
0.7142857142857143
In [77]:
          from sklearn.metrics import confusion matrix
          cm = confusion matrix(label, model.predict(features))
          cm
         array([[443, 57],
Out[77]:
                 [130, 138]], dtype=int64)
In [78]:
          from sklearn.metrics import classification report
          print(classification report(label, model.predict(features)))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.77
                                       0.89
                                                 0.83
                                                            500
                     1
                             0.71
                                       0.51
                                                 0.60
                                                            268
                                                 0.76
              accuracy
                                                            768
                                                            768
            macro avg
                             0.74
                                       0.70
                                                 0.71
         weighted avg
                             0.75
                                       0.76
                                                 0.75
                                                            768
```

Week-4

```
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

probs = model.predict_proba(features)

probs = probs[:, 1]

auc = roc_auc_score(label, probs)
print('AUC: %.3f' %auc)

fpr, tpr, threshold = roc_curve(label, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='.')
```

AUC: 0.825

```
Out[79]: [<matplotlib.lines.Line2D at 0x285c2d877c0>]
```

```
from sklearn.tree import DecisionTreeClassifier
model3 = DecisionTreeClassifier(max_depth=5)
model3.fit(X_train,y_train)
```

Out[80]: DecisionTreeClassifier(max_depth=5)

```
In [81]: model3.score(X_train,y_train)
```

Out[81]: 0.8175895765472313

```
In [82]: model3.score(X_test,y_test)
```

Out[82]: 0.72727272727273

```
In [83]:
    from sklearn.ensemble import RandomForestClassifier
    model4 = RandomForestClassifier(n_estimators=11)
    model4.fit(X_train,y_train)
```

Out[83]: RandomForestClassifier(n_estimators=11)

AUC: 0.862

0.6948051948051948

SVC(gamma='auto')

0.6168831168831169

probs = probs[:, 1]

print('AUC: %.3f' %auc)

from sklearn.svm import SVC

model5.fit(X train,y train)

model5.score(X test,y test,)

model5 = SVC(kernel='rbf',gamma='auto')

from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

probs = model3.predict proba(features)

fpr, tpr, thresholds = roc curve(label, probs)

plt.plot([0, 1], [0, 1], linestyle='--')

print("true Positive Rate - {}, False Positive Rate - {} Threshold - {}".format(tpr,fpr,thresholds))

auc = roc auc score(label, probs)

plt.plot(fpr, tpr, marker='.')
plt.xlabel("false Positive Rate")
plt.ylabel("True Positive Rate")

Out[85]:

In [86]:

Out[86]:

In [87]:

Out[87]:

In [88]:


```
In [89]:
    from sklearn.metrics import precision_recall_curve
    from sklearn.metrics import f1_score
    from sklearn.metrics import auc
    from sklearn.metrics import average_precision_score
    probs = model.predict_proba(features)
    probs = probs[:, 1]

    yhat = model.predict(features)

    precision, recall, thresholds = precision_recall_curve(label, probs)

    f1 = f1_score(label, yhat)

    auc = auc(recall, precision)

    ap = average_precision_score(label, probs)
    print('f1=%.3f auc=%.3f ap=%.3f' %(f1, auc, ap))
```

```
print('f1=%.3f auc=%.3f ap=%.3f' %(f1, auc, ap))
          plt.plot([0, 1], [0.5, 0.5], linestyle='--')
          plt.plot(recall, precision, marker='.')
          f1=0.596 auc=0.689 ap=0.692
          f1=0.596 auc=0.689 ap=0.692
          [<matplotlib.lines.Line2D at 0x285c310c910>]
Out[89]:
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
                       0.2
                                0.4
                                         0.6
                                                 0.8
              0.0
                                                          1.0
In [90]:
          from sklearn.metrics import precision recall curve
          from sklearn.metrics import f1 score
          from sklearn.metrics import auc
          from sklearn.metrics import average_precision_score
          probs = model3.predict proba(features)
          probs = probs[:, 1]
          yhat = model.predict(features)
          precision, recall, thresholds = precision recall curve(label, probs)
```

f1 = f1 score(label, yhat)

auc = auc(recall, precision)

print('f1=%.3f auc=%.3f ap=%.3f' %(f1, auc, ap))

plt.plot([0, 1], [0.5, 0.5], linestyle='--')

```
plt.plot(recall, precision, marker='.')
          f1=0.596 auc=0.801 ap=0.692
          [<matplotlib.lines.Line2D at 0x285c2966880>]
Out[90]:
          1.0
          0.9
          0.8
          0.7
          0.6
          0.5
          0.4
                       0.2
                                0.4
                                         0.6
              0.0
                                                 0.8
                                                          1.0
In [91]:
          from sklearn.metrics import precision recall curve
          from sklearn.metrics import f1 score
          from sklearn.metrics import auc
          from sklearn.metrics import average precision score
          probs = model4.predict proba(features)
          probs = probs[:, 1]
          yhat = model.predict(features)
          precision, recall, thresholds = precision_recall_curve(label, probs)
          f1 = f1_score(label, yhat)
          auc = auc(recall, precision)
          print('f1=%.3f auc=%.3f ap=%.3f' %(f1, auc, ap))
          plt.plot([0, 1], [0.5, 0.5], linestyle='--')
```

plt.plot(recall, precision, marker='.')

f1=0.596 auc=0.942 ap=0.692 Out[91]: [<matplotlib.lines.Line2D at 0x285c2936e80>]

Project submited by :- Sambit Mahanta

In []:

In []: