(Da)
Solution wife Tik

Reconstruction weights w; for x; are found like:

 $W_{i} = \frac{C^{-1}1}{1^{T}C^{-1}1} \quad \text{with } \quad C_{i}k = (x_{i} - y_{i})^{T}(x_{i} - y_{k})$ $i_{j}k \in N_{i} \quad N_{i} = number \quad of neighbors \quad for each x_{i}$

Scaling all goodafa points by & affects the matrix C in the following way:

$$C_{ik} = (\lambda \vec{x}_i - \lambda \eta_i)^T (x_i - y_k) = (\lambda (\vec{x}_i - \eta_i))^T (\lambda (\vec{x}_i - \eta_k))$$

$$= \lambda^2 (\vec{x}_i - \vec{\eta}_i)^T (\vec{x}_i - \vec{\eta}_k) = \lambda^2 C_{ik}$$

So wi for di amounts to

$$W_1 = \frac{\left(\frac{1}{2^2}C\right)^{-1}1}{1\left(\frac{1}{2^2}C\right)^{-1}1} = \frac{1}{2^2} \frac{C^{-1}1}{1 C^{-1}1}$$

which is the same as before scaling of the data

b) & For translation of Modala points we can show that the matrix & is wnaffected.

$$C_{jk} = (\vec{x}_i + \vec{v}) - (y_j + \vec{v})) T(\vec{x}_i + \vec{v}) - (y_k + \vec{v}))$$

$$= (\vec{x}_i - y_i)^T (\vec{x}_i - y_k)$$

as wi depends only on C and CEs is unaffected by translation wi isn't either.

c) To show that C is unaffected by rotation of data points we use the Facts: that

1. Retations are described by orthogonal metricles.

2. For an orthogonal matrix U UU = I since U= UT

Cit = (Ux; - Un;) T (Ux; - Un) - (u(x; -)) T (u(x; -))

$$G_{ik} = (u_{x_i} - u_{y_i})^T (u_{x_i} - u_{y_i}) = (u_{(x_i - y_i)})^T (u_{(x_i - y_i)})^T (u_{(x_i - y_i)})$$

$$= (x_i - y_i)^T u^T u_{(x_i - y_i)} = (x_i - y_i)^T (x_i - y_i)$$

(1) ((in-1)) ((1) (1) (1) (1) (1) (1)

12 = (1-12) (1-12)

did is the come as before souling of the data

of the matrix of its wasfested.

(5+0-(5+3) (5+2) (5+2) = 3

the (xi - y) (xi - y).

Your Anna Sergagon

$$\begin{array}{lll}
\textcircled{3} & \textcircled{3} & \textcircled{3} & \textcircled{4} & &$$

b) min w Cw stubject to w 1 = 1

win wTCw - h(wT11-1)

Jw (w \(\omega \) - \(\lambda \) = 2 \(\omega \) - \(\lambda \) = 0

 $Cw \approx \frac{L}{2} 1$ (=) $w = \frac{L}{2} C^{-1} 1$ constant =) thirection of $w = C^{-1} 1$ scaling factor

Restraint $\sqrt{1}w = 1$ $w = \frac{c^{-1}A}{a}$ $1 = \sqrt{1}w = \sqrt{1}\frac{c^{-1}A}{a}$

 $= 0 \alpha = \sqrt{1 C^{-1} y} \qquad \omega = \frac{C^{-1} x}{\sqrt{1 C^{-1} y}}$

c)
$$2(\omega + \lambda A = 0$$

 $(\omega = A \cdot (-\lambda)$

$$(-\frac{2}{3})$$
 $(-\frac{2}{3})$ $(-\frac$

The constant factor infront of w does not change its direction but merely its ranginihale. Shape we reside w after solving (w=11 anyways, the solution stays the source