

問題: drafear

解答: drafear, asi1024, n_knuu, amano

解説: drafear

問題概要

- 最初,美味しさ*D*(1≤*D*≤127)のクッキーが1枚ある
- クッキー☆増殖装置にクッキーを1枚入れて(美味しさをdとする) 数字 $x(0 \le x \le 127)$ を入力すると 美味しさxのクッキーと、美味しさ $(x \ XOR \ d)$ のクッキーになる
- クッキー☆増殖装置をちょうどN-1回使用して生成されたN枚のクッキーの美味しさの和を最大化したい

例

• 美味しさ(D=)1のクッキーから(N=)3枚のクッキーを作る

例

• この場合が最大で, 60+95+99=255を出力する

考察

考察

- 二分木になっていて, 左の子 *XOR* 右の子=*x XOR* (*x XOR d*)=*d*(親)
- これを根まで辿ると, 根(D)=葉1 XOR葉2 XOR ... XOR葉N

考察

- つまり,次の問題と等価である
 - *a*↓1 + *a*↓2 + ...+ *a*↓*N* を最大化したい
 - ttboundaries the two partial contents and the partial contents are partial contents and the partial contents and the partial contents and the
- al1,...,alNを決めれば、これらを葉とし、 適当に繋げれば装置の使用手順が復元できる
- XORはビットごとなので、ビットごとに独立して考えて良い

- Nが奇数の場合
 - 最後のビットが1なら1を*N*回立てる
 - 最後のビットが0なら1をN-1回立てる
- Nが偶数の場合
 - 最後のビットが1なら1を*N*-1回立てる
 - 最後のビットが0なら1を*N*回立てる

• 例の場合

	おいしさ(2進数)	おいしさ(10進数)
元となるクッキー	0000001	1
最終生成物 1枚目	1111111	127
最終生成物 2枚目	1111111	127
最終生成物 3枚目	0000001	1

• 計算量は, データセット数*T*を考慮すると, O(TlogD)

- 127が実際大半を占める
- 実は、次のようにしても良い
 - Nが奇数の場合, 127(N-1)+D
 - Nが偶数の場合, 127(N-1)+(D XOR 127)=127N-D
- 時間計算量はO(T)

- *dp[i][j]*≔(*a↓*1 *XOR* ... *XOR a↓i* = *j*となるときの*a↓*1 + ...+*a↓i* の最大値) としたDPでも解ける
- 前処理しておけば, 各クエリに対してO(1)で答えられるので, 計算量はO(T+ND12)

統計・ジャッジ解

統計

- First Accept

 - Onsite(東京) 🗞 (^^) 🗞 ← 寿司をにぎっています (05:36)
 - Onsite(京都) ixmel (24:46)
- Accept 152 / 184 (83%)

ジャッジ解

- drafear
 - O(T), C++, 23行 431B
 - O(TlogD), C++, 31行 579B
 - dp, C++, 50行 1034B
 - dp, js, 74行 1958B
- n_knuu
 - O(T), Python, 15行 309B
- amano
 - O(T), C++, 29行 429B
- asi1024
 - dp, C++, 33行 609B