Quantum Random Number Generator

Introduction & Circuit Design

Quantum Random Number Generators (QRNGs) use quantum superposition and measurement to produce true randomness.

Introduction:

- A qubit is the fundamental unit of quantum information.
- Unlike a classical bit, it can exist in a superposition of 0 and 1 simultaneously.
- Measuring a qubit collapses it to either 0 or 1 with probabilities determined by its quantum state.

Circuit design:

- Three qubits initialized in 0 state.
- Apply Hadamard gate to each qubit → equal superposition of |0] and |1].
- Measure all qubits → produce random classical bitstrings.

Ensures 50% probability for 0 or 1 for each qubit, producing uniformly random outputs.

Calibration and Error Mitigation

Challenge:

Quantum hardware and simulators introduce systematic readout errors and minor bias, affecting randomness quality.

Calibration Phase:

- Separate calibration circuits were constructed for all possible basis states (2^{n_q}) .
- Measurements from these circuits form the response matrix M, which quantifies how actual measurements deviate from ideal outcomes.

Error Mitigation Process:

- The inverse of the calibration matrix M^{-1} is applied to the raw probability vector p_{raw} : $p_{mitigated} = M^{-1} \cdot \vec{p}_{raw}$
- This correction minimizes measurement bias and restores uniformity in probability distribution.
- Negative probabilities (due to inversion noise) are clipped to zero and renormalized.

Advantage of this method

- Produces a bias-free, physically consistent probability distribution.
- Prepares data for reliable statistical validation in the next analysis stage.
- Integrated **error mitigation** ensures minimal bias in output.

Analytical Framework

- Conducted up to 2048 measurement shots per run to gather sufficient data for statistical analysis.
- Computed the **mitigated probability distribution** across all 2^{n_q} quantum states.

Statistical Tests Implemented:

- Chi-Square Uniformity Test: $\chi 2 = \sum_i rac{(O_i E_i)^2}{E_i}$
 - \circ p-value $> 0.05 \rightarrow$ no significant deviation from uniform distribution.
- Shannon Entropy Calculation: $H = -\sum_i p_i \log_2 p_i$
 - Observed entropy $H \approx 2.99 \text{H}$ bits for 3 qubits (max = 3 bits) \rightarrow near-perfect randomness.

Dynamic Configuration:

- Qubits (1–6): adjusts random bit precision.
- Shots (500–5000): controls statistical reliability.
- Samples (1–20): determines number of random outputs generated.

Conclusion

- Fully interactive QRNG with tunable parameters and built-in error mitigation.
- Achieves high entropy and unbiased randomness suitable for **secure, reproducible, and verifiable** quantum random number generation.

Live Demo Interface

Hosted on **Hugging Face Spaces** for live access: https://huggingface.co/spaces/lvsl/qrng-demoh

Github link: https://github.com/Lalitha124/qrng-demo

Thank You

Lalitha Lakkaraju

Roll No: M25IQT007

MTech Quantum Technologies 1st Year