MODELAGEM DE SISTEMAS - CCT0797 MODELAGEM DE SISTEMAS (28/11/2019)

Contextualização

O desenvolvimento de software no mercado requer cada vez mais o conhecimento dos processos de negócio e as informações que são produzidas. O valor agregado da tecnologia nas empresas está centrado no potencial dos sistemas em extrair conhecimento e colaborar para as estratégias e tomadas de decisão.

Neste contexto a modelagem dos sistemas tem uma importância fundamental, na medida em que oferece suporte para investigação, análise e validação dos procedimentos apreendidos durante as etapas do processo de requisitos. Observa-se que quanto maior a aderência à realidade do usuário, maior será o sucesso nos resultados obtidos.

Construímos modelos para comunicar a estrutura e o comportamento desejado do sistema. Construímos modelos para visualizar e controlar a arquitetura do sistema. Construímos modelos para compreender melhor o sistema que estamos elaborando, muitas vezes expondo oportunidades de simplificação e reaproveitamento. Construímos modelos apara gerenciar os riscos.

A UML (Unified Modelling Language), linguagem de representação utilizada nessa disciplina, oferece uma diversidade de modelos para representação das partes físicas e lógicas do sistema em desenvolvimento. Os modelos são integrados e, a todo o momento, poderá ser necessário retornar aos modelos anteriormente construídos e realizar algum tipo de correção. Os modelos fornecem múltiplas visões do sistema a ser modelado, analisando-o e modelando-o sob diversos aspectos, procurando-se assim atingir a completitude da modelagem.

A capacidade de representação do negócio por meio de modelos da UML e ter visibilidade para a construção do sistema são competências que devem ser desenvolvidas no aluno nesta disciplina.

Ementa

Conceitos Básicos de Modelagem; A Linguagem UML; O Ciclo de Vida Iterativo e Incremental; Utilizando UML no Ciclo de Vida ? Concepção, Elaboração, Construção e Transição; Diagramas UML 2.0 no ciclo de vidado desenvolvimento de software.

Objetivos Gerais

Solucionar problemas do mundo real, fazendo uso da linguagem UML na representação de modelos.

Objetivos Específicos

- Conhecer o ciclo de vida iterativo e incremental, utilizado no desenvolvimento de software orientado a objetos;
- Conhecer os princípios e práticas do Processo Unificado RUP;
- Definir a ordem das iterações do desenvolvimento de software;
- Identificar requisitos funcionais e não-funcionais para representação em modelos de software;
- Utilizar os diagramas propostos pela UML;
- Construir modelos de software baseados na UML;
- Analisar a melhor forma de representação do negócio;
- Empregar as técnicas de acordo com a natureza do modelo a ser desenvolvido.

Conteúdos

UNIDADE 1 - Conceitos Básicos de Modelagem

- 1.1. A Importância da Modelagem
- 1.2. Princípios de Modelagem
- 1.3. Análise e Projeto Orientados a Objeto

UNIDADE 2 - A Linguagem UML (Unified Modeling Language)

- 2.1 Introdução a UML
- 2.2 Visões da UML
- 2.3 Síntese Geral dos Diagramas UML
- 2.4 Ferramentas CASE (Computer-Aided Software Engineering) baseadas na UML

UNIDADE 3 - O Ciclo de Vida Iterativo e Incremental

- 3.1 Apresentação
- 3.2 Etapas e Disciplinas
- 3.3 Técnicas e modelos aplicados
- 3.4 Definição das iterações

UNIDADE 4 - Utilizando UML no Ciclo de Vida

4.1 Fase - Concepção (ênfase no escopo do sistema)

4.1.1 Diagrama de Caso de Uso

Apresentação

Notação

Aplicação

Descrição de Caso de Uso

4.1.2 Diagrama de Classe - Modelo de domínio

Apresentação

Notação

Aplicação

4.1.3 Diagrama de Objetos

Apresentação

Notação

Aplicação

4.1.2 Diagrama de Pacotes

Apresentação

Notação

Aplicação

4.2 Fase - Elaboração (ênfase na arquitetura do projeto)

4.2.1 Modelo de Classes de ProjetoDefinição da Visibilidade entre Objetos

Adição de Operações

Adição de Interfaces

Relacionamentos de Dependência

Adição de Classes Utilitárias e de Coleções

4.2.2 Diagramas de Interação

Diagrama de Sequencia

Diagrama de Comunicação

Diagrama de Visão Geral da Interação

Diagrama de Temporização

4.2.3 Diagrama de Estado

Apresentação

Notação

Aplicação

4.2.4 Diagrama de Atividades

Apresentação

Notação

Aplicação

4.3 Fase Construção - ênfase no desenvolvimento

4.3.1 Diagrama de Componentes

Apresentação

Notação

Aplicação

4.4 Fase Transição - ênfase na implantação

4.4.1 Diagrama de Implantação

Apresentação

Notação

Aplicação

UNIDADE 5 - Exercícios Propostos

Procedimentos de Avaliação

O processo de avaliação oficial será composto de três etapas: Avaliação 1 (AV1), Avaliação 2 (AV2) e Avaliação 3 (AV3). Sendo AV2 e AV3 unificadas a partir de um banco de questões

proposto pelos professores da Estácio de todo o Brasil;

As avaliações poderão ser realizadas através de provas teóricas, provas práticas e realização de projetos ou outros trabalhos, representando atividades acadêmicas de ensino de

acordo com as especificidades de cada disciplina. A soma de todas as atividades que possam vir a compor o grau final de cada avaliação não poderá ultrapassar o grau máximo de dez, permitindo-se atribuir valor decimal às avaliações. Caso a disciplina, atendendo ao projeto pedagógico de cada Curso, além de provas teóricas e/ou práticas, contemple outras

atividades acadêmicas de ensino, estas não poderão ultrapassar 20% da composição do grau final;

A AV1 contemplará o conteúdo da disciplina até a sua realização, incluindo o das atividades estruturadas;

As AV2 e AV3 abrangerão todo o conteúdo da disciplina, incluindo o das atividades estruturadas.

Para aprovação na disciplina, o aluno deverá:

1. Atingir resultado igual ou superior a seis, calculado a partir da média aritmética entre os graus das avaliações, considerando-se apenas as duas maiores notas obtidas dentre

as três etapas de avaliação (AV1, AV2 e AV3) - a média aritmética obtida será o grau final do aluno na disciplina;

2. Obter grau igual ou superior a quatro em, pelo menos, duas das três avaliações;

3. Frequentar, no mínimo, 75% das aulas ministradas.

As disciplinas oferecidas na modalidade de Educação a Distância (EaD) seguirão o mesmo critério de avaliação das disciplinas presenciais.

Para a avaliação do Trabalho de Conclusão de Curso (TCC), ou trabalhos de mesma natureza, será atribuído grau único para a disciplina que, para aprovação do aluno, deverá ser

igual ou maior do que seis.

Mais detalhes: Portaria D.E. n.º 02, de 18 de novembro de 2009.

A AV1 contemplará o conteúdo da disciplina até a sua realização, incluindo o das atividades estruturadas;

As AV2 e AV3 abrangerão todo o conteúdo da disciplina, incluindo o das atividades estruturadas.

Para aprovação na disciplina, o aluno deverá:

1. Atingir resultado igual ou superior a seis, calculado a partir da média aritmética entre os graus das avaliações, considerando-se apenas as duas maiores notas obtidas

dentre as três etapas de avaliação (AV1, AV2 e AV3) - a média aritmética obtida será o grau final do aluno na disciplina;

2. Obter grau igual ou superior a quatro em, pelo menos, duas das três avaliações;

3. Frequentar, no mínimo, 75% das aulas ministradas.

As disciplinas oferecidas na modalidade de Educação a Distância (EaD) seguirão o mesmo critério de avaliação das disciplinas presenciais.

Para a avaliação do Trabalho de Conclusão de Curso (TCC), ou trabalhos de mesma natureza, será atribuído grau único para a disciplina que, para aprovação do aluno,

deverá ser igual ou maior do que seis.

Mais detalhes: Portaria D.E. n.º 02, de 18 de novembro de 2009.

Bibliografia Básica

CASATI, João Paulo. **Modelagem de sistemas[BV:RE]**. 1. ed. Rio de Janeiro: SESES, 2016. Disponível em: http://repositorio.savaestacio.com.br/site/index.html#/objeto/detalhes/126ADA15-D1D6-414E-BBF4-30A348881E90

LUIZ ANTONIO LEÃO LISBOA JUNIOR. **PADRÕES DE PROJETO DE SOFTWARE[BV:RE**]. 1. ed.. Rio de Janeiro: SESES, 2018.

Disponível em: http://repositorio.savaestacio.com.br/site/index.html#/objeto/detalhes/F35AEE02-F401-DE4B-9F91-4BB1245FD3E6

MEDEIROS, Ernani S. **Desenvolvendo Software com UML 2.0: definitivo[BV:PE]**. 1. ed. São Paulo: Pearson, 2012.

Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/2921

Bibliografia Complementar

FOWLER, Martin. **UML Essencial - Um Breve Guia Para a Linguagem-Padrão[BV:MB]**. 3. ed. Porto Alegre: Artmed, 2005.

Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788560031382/cfi/6/2!/4/2@0:0.00

GAMMA, ERICH; HELM, Richard; JOHSON, Ralph; VILSSIDES, John. **Padrões de Projetos:** Soluções Reutilizáveis de Software Orinetado a Objetos[BV:MB]. 1. ed.. Porto Alegre: Bookman, 2011.

Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788577800469

GAMMA, ERICH; HELM, Richard; JOHSON, Ralph; VILSSIDES, John. **Padrões de Projetos:** Soluções Reutilizáveis de Software Orinetado a Objetos[BV:MB]. 1. ed.. Porto Alegre: Bookman, 2011.

Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788577800469

LARMAN, Craig. **Utilizando UML e Padrões [BV:MB]**. 3ed. Porto Alegre: Bookman, 2007. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788577800476/cfi/0!/4/4@0.00:2.37

Lee, Richard C.; Tepfenhart, William M. UML e C++: guia prático de desenvolvimento orientado a objeto[BV:PE]. 1. ed.. São Paulo: Pearson, 2013.

Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/40

PAGE-JONES, Meilir. Fundamentos do desenho orientado a objeto com UML [BV:PE]. 1. ed. São Paulo: Pearson, 2001.

Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/33

Outras Informações