Baze podataka

Predavanja

2. Relacijski model podataka – 2.dio

ožujak 2021.

Projekcija

- Zadana je relacija r(R). Neka je skup atributa $\{A_1, A_2, ..., A_k\} \subseteq R$
- Obavljanjem operacije π_{A1, A2, ..., Ak}(r) dobiva se relacija s sa shemom { A1, A2, ..., Ak } koja sadrži vertikalni podskup relacije r
 - deg(s) = k
 - card(s) ≤ card(r) (jer se eliminiraju duplikati)

Projekcija (primjer)

Relacija nastup: u kojim gradovima nastup su nastupali koji tenori kojeg datuma

Traži se: u kojim gradovima su nastupali koji tenori

tenorGrad = $\pi_{tenor,grad}$ (nastup)

tenor	grad	datum
P. Domingo	London	15.2.1976
P. Domingo	New York	27.3.1981
P. Domingo	London	11.4.1987
J. Carreras	New York	11.4.1987
L. Pavarotti	Sydney	22.6.1992
L. Pavarotti	London	15.2.1976
L. Pavarotti	Sydney	19.1.1993
L. Pavarotti	London	14.7.1993

tenor	grad
P. Domingo	London
P. Domingo	New York
P. Domingo	London
J. Carreras	New York
L. Pavarotti	Sydney
L. Pavarotti	London
L. Pavarotti	Sydney
L. Pavarotti	London
	P. Domingo P. Domingo P. Domingo J. Carreras L. Pavarotti L. Pavarotti L. Pavarotti

tenorGrad

tenor	grad
P. Domingo	London
P. Domingo	New York
J. Carreras	New York
L. Pavarotti	Sydney
L. Pavarotti	London

SQL - Lista za selekciju

mjesto		
pbr	nazMjesto	sifZup
42000	Varaždin	7
52100	Pula	4

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

u listi za selekciju se ne moraju navesti svi atributi relacije navedene u FROM dijelu naredbe:

 u listi za selekciju se mogu navesti samo oni atributi koji se nalaze u dosegu SELECT naredbe, tj. atributi relacije koja je navedena u FROM dijelu naredbe:

SELECT nazMjesto
, pbr
, nazZup
FROM mjesto;

Neispravna naredba

SQL - Projekcija

- za ispravno obavljanje projekcije <u>nije dovoljno</u> u listi za selekciju samo navesti imena atributa prema kojima se obavlja projekcija:
 - primjer koji ujedno pokazuje kako rezultat SQL naredbe ne mora uvijek biti relacija

```
SELECT tenor
, grad
FROM nastup;
```

Neispravna projekcija

tenor	grad
P. Domingo	London
P. Domingo	New York
P. Domingo	London
J. Carreras	New York
L. Pavarotti	Sydney
L. Pavarotti	London
L. Pavarotti	Sydney
L. Pavarotti	London

 $\pi_{\text{tenor,grad}}(\text{nastup})$

SELECT DISTINCT tenor
, grad
FROM nastup;

Ispravna projekcija

tenor	grad
P. Domingo	London
P. Domingo	New York
J. Carreras	New York
L. Pavarotti	Sydney
L. Pavarotti	London

SQL - Projekcija i selekcija

student

matBr	ime	prez	postBr
100	Ivan	Kolar	52000
102	Ana	Horvat	10000
105	Jura	Novak	21000
107	Ana	Ban	51000

$$\pi_{\text{ime}}(\sigma_{\text{ime} = 'Ana' \vee postBr > 31000} \text{ (student)})$$

"međurezultat"

	matBr	ime	prez	postBr
•	100	Ivan	Kolar	52000
	102	Ana	Horvat	10000
	107	Ana	Ban	51000

Kartezijev produkt

- Zadana je relacija r(R) i relacija s(S), pri čemu je R ∩ S = Ø.
- Obavljanjem operacije r x s dobiva se relacija p(P), P = R ∪ S.
 n-torke relacije p se dobivaju spajanjem (ulančavanjem) svake
 n-torke iz relacije r sa svakom n-torkom iz relacije s
 - deg(p) = deg(r) + deg(s)
 - $card(p) = card(r) \cdot card(s)$

Kartezijev produkt (primjer)

student

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban

predmet

sifra	naziv
1	Programiranje
2	Matematika

upis = student × predmet

upis

mbr	ime	prez	sifra	naziv
100	Ivan	Kolar	1	Programiranje
100	Ivan	Kolar	2	Matematika
102	Ana	Novak	1	Programiranje
102	Ana	Novak	2	Matematika
103	Tea	Ban	1	Programiranje
103	Tea	Ban	2	Matematika

SQL - Kartezijev produkt

SELECT SELECT List

 navede li se u FROM dijelu naredbe više od jedne relacije, obavlja se operacija Kartezijevog produkta navedenih relacija

student

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban

sifra	naziv
1	Programiranje
2	Matematika

student × predmet

SELECT	*	
FROM	student,	<pre>predmet;</pre>

```
SELECT student.*, predmet.*
FROM student, predmet;
```

mbr	ime	prez	sifra	naziv
100	Ivan	Kolar	1	Programiranje
100	Ivan	Kolar	2	Matematika
102	Ana	Novak	1	Programiranje
102	Ana	Novak	2	Matematika
103	Tea	Ban	1	Programiranje
103	Tea	Ban	2	Matematika

SQL - Kartezijev produkt

- drugačija sintaksa:
- SELECT SELECT List
 FROM table [CROSS JOIN table]...
 [WHERE Condition]

```
SELECT *
FROM student CROSS JOIN predmet;
```

Kartezijev produkt triju relacija:

```
SELECT *
FROM r1 CROSS JOIN r2 CROSS JOIN r3;
```

Kartezijev produkt

 Što učiniti ukoliko je potrebno obaviti operaciju Kartezijevog produkta nad relacijama r(R) i s(S), u slučaju kada R ∩ S ≠ Ø

r	
Α	В
1	а
2	b
3	С

S	
В	С
С	α
d	β

Α	В	В	С
1	а	С	α
1	а	d	β
2	b	С	α
2	b	d	β
3	С	С	α
3	С	d	β

→ Potrebno je koristiti operaciju preimenovanja

Preimenovanje (relacije, atributa)

- Zadana je relacija r({ A₁, A₂, ..., A_n })
 - preimenovanje relacije: operacijom preimenovanja ρ_s(r) dobiva se relacija s koja ima jednaku shemu i sadržaj kao relacija r
 - preimenovanje relacije i atributa: operacijom preimenovanja ρ_{s(B₁, B₂, ..., B_n)}(**r**) dobiva se relacija **s** čija shema umjesto atributa A₁, A₂, ..., A_n sadrži atribute B₁, B₂, ..., B_n, a sadržaj relacije **s** je jednak sadržaju relacije **r**

$$p = r \times \rho_{s(B2, C)}(s)$$

•	Α	В
	1	а
	2	р
	3	С

 _			
Α	В	B2	С
1	а	С	α
1	а	d	β
2	b	С	α
2	р	d	β
3	С	С	α
3	С	d	β

SQL - Preimenovanje atributa

- ukoliko se drugačije ne navede, imena stupaca u rezultatu odgovaraju imenima atributa iz liste za selekciju
- implicitna imena stupaca rezultata se mogu promijeniti korištenjem operatora za preimenovanje AS

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

```
SELECT sifZupanija AS sifraZ
, nazZup AS nazZ
FROM zupanija;
```

sifraZ	nazZ
7	Varaždinska
4	Istarska

 rezervirana riječ AS smije se ispustiti

SQL - Preimenovanje atributa

- Primjer u kojem je potrebno koristiti preimenovanje atributa
 - SQL naredba bi bila ispravna i bez preimenovanja, ali tada kao rezultat ne bismo dobili relaciju (jer bi u shemi rezultata postojala dva atributa istog imena)

r	Α	В
	1	а
	2	b
	3	С

$$r \times \rho_{s(B2, C)}(s)$$

SELECT A, r.B, s.B AS B2, C FROM r, s;

Α	В	B2	С
1	а	С	α
1	а	d	β
2	b	С	α
2	b	d	β
3	С	С	α
3	С	d	β

Prirodno spajanje (Natural Join)

- Prirodno spajanje obavlja se na temelju jednakih vrijednosti istoimenih atributa.
- Zadane su relacije r(R) i s(S). Neka je R \cap S = { A₁, A₂, ..., A_n }. Obavljanjem operacije r $\triangleright \triangleleft$ s dobiva se relacija sa shemom R \cup S koja sadrži n-torke nastale spajanjem n-torki t_r \in r, t_s \in s, za koje vrijedi t_r(A₁) = t_s(A₁) \wedge t_r(A₂) = t_s(A₂) \wedge ... t_r(A_n) = t_s(A_n).

mjesto	pbr	nazMjesto	sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

zupanija	sifZup	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija

		_			
m	esto	uZu	ıpan	IJ	JI

pbr	nazMjesto	sifZup	nazZup
42000	Varaždin	7	Varaždinska
52100	Pula	4	Istarska
42230	Ludbreg	7	Varaždinska

što možemo reći o stupnju rezultata?

SQL - Prirodno spajanje

```
SELECT mjesto.*, zupanija.nazZup
FROM mjesto, zupanija
WHERE mjesto.sifZup = zupanija.sifZup;
```

ili:

```
SELECT mjesto.*, zupanija.nazZup
FROM mjesto JOIN zupanija
ON mjesto.sifZup = zupanija.sifZup;
```

SQL - Prirodno spajanje – jednostavnija sintaksa

```
SELECT mjesto.*, zupanija.nazZup

FROM mjesto JOIN zupanija

USING(sifzup);
```

ili:

```
SELECT mjesto.*, zupanija.nazZup

FROM mjesto NATURAL JOIN zupanija;
```

NAPOMENA: ove naredbe specifične su za PostgreSQL!

Prirodno spajanje - relacije bez istoimenih atributa

Rezultat prirodnog spajanje relacija r(R) i s(S) za koje vrijedi da je je R ∩ S = Ø identičan je rezultatu obavljanja operacije Kartezijevog produkta r x s

mjesto	pbr	nazMjesto	sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija

mjestouZupaniji	
1 1 1	

pbr	nazMjesto	sifZup	sifZupanija	nazZup
42000	Varaždin	7	7	Varaždinska
42000	Varaždin	7	4	Istarska
52100	Pula	4	7	Varaždinska
52100	Pula	4	4	Istarska
42230	Ludbreg	7	7	Varaždinska
42230	Ludbreg	7	4	Istarska

Prirodno spajanje - relacije bez istoimenih atributa

Rezultat prirodnog spajanje relacija r(R) i s(S) za koje vrijedi da je je R ∩ S = Ø identičan je rezultatu obavljanja operacije Kartezijevog produkta r x s

mjesto	pbr	nazMjesto	sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija

	. –	
miac.	tall/lina	niii
1111102	touZupa	
,		,-
,	•	,

pbr	nazMjesto	sifZup	sifZupanija	nazZup
42000	Varaždin	7	7	Varaždinska
42000	Varaždin	7	4	Istarska
52100	Pula	4	7	Varaždinska
52100	Pula	4	4	Istarska
42230	Ludbreg	7	7	Varaždinska
42230	Ludbreg	7	4	Istarska

Spajanje uz uvjet ili θ - spajanje (θ - join)

- Zadane su relacije r(R) i s(S) pri čemu je R \cap S = \emptyset . Neka je F predikat oblika A_i θ B_j, pri čemu je A_i \in R, B_j \in S, a θ je operator usporedbe iz skupa operatora { <, ≤, =, ≠, >, ≥ }
- Obavljanjem operacije r ⊳⊲ s dobiva se relacija koja sadrži n-torke iz r × s za koje je vrijednost predikata F istina (*true*), odnosno:

$$r \triangleright_F s = \sigma_F (r \times s)$$

što možemo reći o stupnju i kardinalnosti rezultata?

- Umjesto jednostavnog predikata A_i θ B_j, može se koristiti složeni predikat dobiven primjenom logičkih operatora nad jednostavnim predikatima oblika A_i θ B_i
- Problem spajanja uz uvjet relacija r(R) i s(S) kod kojih je R ∩ S ≠ Ø, rješava se na jednak način kao kod Kartezijevog produkta (korištenjem operatora preimenovanja)

Spajanje uz uvjet (primjer)

linija

let	udaljenost
CA-825	700
LH-412	4800
BA-722	15000
CA-311	13000

zrakoplov

tip	dolet
B747	13000
A320	5400
DC-9	3100

let	udaljenost	tip	dolet
CA-825	700	B747	13000
CA-825	700	A320	5400
CA-825	700	DC-9	3100
LH-412	4800	B747	13000
LH-412	4800	A320	5400
CA-311	13000	B747	13000

Linije i zrakoplovi koji na tim linijama mogu letjeti

SQL - Spajanje uz uvjet

Koristi se ekvivalencija

$$r \triangleright \triangleleft s = \sigma_F(r \times s)$$

linija ⊳⊲ zrakoplov dolet ≥ udaljenost

i	٠			٠	
ı	ī	n	м	т	a
ı	ı	ш	Ш	ı	a
				J	

let	udaljenost
CA-825	700
LH-412	4800
BA-722	15000
CA-311	13000

zrakoplov

tip	dolet
B747	13000
A320	5400
DC-9	3100

SELECT *

FROM linija, zrakoplov

WHERE dolet >= udaljenost;

Kartezijev produkt

Selekcija

Linije i zrakoplovi koji na tim linijama mogu letjeti

let	udaljenost	tip	dolet
CA-825	700	B747	13000
CA-825	700	A320	5400
CA-825	700	DC-9	3100
LH-412	4800	B747	13000
LH-412	4800	A320	5400
CA-311	13000	B747	13000

SQL - Spajanje uz uvjet

- drugačija sintaksa:
- SELECT SELECT List
 FROM table [JOIN table ON joinCondition]...
 [WHERE Condition]

```
SELECT *
  FROM linija JOIN zrakoplov
    ON dolet >= udaljenost;
```

Spajanje uz uvjet triju relacija:

```
SELECT *

FROM r1

JOIN r2

ON joinCondition

JOIN r3

ON joinCondition;
```

SQL - Spajanje uz uvjet i selekcija

 Kako pronaći linije i zrakoplove koji na tim linijama mogu letjeti, ali samo za one linije na kojima je udaljenost veća od 4000 km

```
SELECT *
  FROM linija, zrakoplov
WHERE dolet >= udaljenost
  AND udaljenost > 4000;
```

```
SELECT *
  FROM linija
    JOIN zrakoplov
    ON dolet >= udaljenost
WHERE udaljenost > 4000;
```

let	udaljenost	tip	dolet
LH-412	4800	B747	13000
LH-412	4800	A320	5400
CA-311	13000	B747	13000

SQL - Spajanje uz uvjet i projekcija

 Kako pronaći tipove zrakoplova koji se mogu iskoristiti za letove na postojećim linijama

```
π<sub>tip</sub>(linija ⊳⊲ zrakoplov) dolet ≥ udaljenost
```

```
SELECT DISTINCT tip
FROM linija, zrakoplov
WHERE dolet >= udaljenost;
```

tip B747 A320 DC-9

ili

```
SELECT DISTINCT tip
FROM linija
    JOIN zrakoplov
    ON dolet >= udaljenost;
```

Spajanje s izjednačavanjem (*Equi-join*)

 Spajanje relacija s izjednačavanjem je poseban oblik spajanja uz uvjet u kojem se kao θ operator koristi <u>isključivo</u> operator jednakosti (=)

mjesto	pbr	nazMjesto	sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija sifZup = sifZupanija

mjestouZupaniji

pbr	nazMjesto	sifZup	sifZupanija	nazZup
42000	Varaždin	7	7	Varaždinska
52100	Pula	4	4	Istarska
42230	Ludbreg	7	7	Varaždinska

Problem spajanja s izjednačavanjem relacija r(R) i s(S) kod kojih je R ∩ S ≠ Ø, rješava se na jednak način kao kod Kartezijevog produkta (korištenjem operatora preimenovanja)

SQL - Spajanje s izjednačavanjem

Koristi se ekvivalencija

$$r \triangleright \triangleleft s = \sigma_F(r \times s)$$

mjesto ⊳⊲ zupanija sifZup = sifZupanija

mjesto	pbr	nazMjesto	sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

zupanija

sifZupanija	nazZup
7	Varaždinska
4	Istarska

```
SELECT *
  FROM mjesto, zupanija
WHERE sifZup = sifZupanija;
```

ili

```
SELECT *
  FROM mjesto
    JOIN zupanija
    ON sifZup = sifZupanija;
```

SQL - Prirodno spajanje ≠ Spajanje s izjednačavanjem

 prirodno spajanje se razlikuje od spajanja s izjednačavanjem po tome što se istoimeni atributi iz dviju relacija izbacuju (tako da od svakog ostane samo po jedan)

mjesto	pbr	nazMjesto	sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

zupanija	sifZup	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija

```
SELECT mjesto.*, zupanija.nazZup
FROM mjesto, zupanija
WHERE mjesto.sifZup = zupanija.sifZup;
```

pbr	nazMjesto	sifZup	nazZup
42000	Varaždin	7	Varaždinska
52100	Pula	4	Istarska
42230	Ludbreg	7	Varaždinska

Agregacija (aggregation)

ispit

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4

Kako izračunati prosjek ocjena na svim ispitima?

Agregacija

- Zadana je relacija $\mathbf{r}(R)$. Neka je atribut $A \in R$. Neka je $\mathcal{A}\mathcal{F}$ agregatna funkcija. Rezultat operacije agregacije $\mathcal{G}_{\mathcal{A}\mathcal{F}(A)}(\mathbf{r})$ je $\mathbf{relacija}$ stupnja 1 i kardinalnosti 1, pri čemu je vrijednost atributa određena primjenom funkcije $\mathcal{A}\mathcal{F}$ nad vrijednostima atributa A u svim n-torkama relacije \mathbf{r} . Funkcija $\mathcal{A}\mathcal{F}$ može biti jedna od:
 - COUNT određuje broj pojava (broji sve, eventualni duplikati se također broje)
 - SUM izračunava sumu vrijednosti
 - AVG izračunava aritmetičku sredinu vrijednosti
 - MIN izračunava najmanju vrijednost
 - MAX izračunava najveću vrijednost
- naziv rezultantne relacije i atributa nije definiran operacijom, stoga se najčešće koristi u kombinaciji s operacijom preimenovanja
- također se koriste agregatne funkcije
 - COUNT-DISTINCT, SUM-DISTINCT, AVG-DISTINCT

Agregacija

ispit	mbrStud	akGod	nazPred	ocjena
	100	2005	Matematika	3
	101	2005	Matematika	5
	102	2005	Matematika	2
	103	2006	Matematika	3
	100	2004	Fizika	5
	101	2006	Fizika	5
	102	2006	Fizika	2
	100	2005	Vjerojatnost	4

Prosjek ocjena na svim ispitima (rješenje):

$$\rho_{\text{prosjek(prosjOcj)}}(G_{\text{AVG(ocjena)}}(\text{ispit}))$$
 prosjek prosjOcj 3.625

SELECT AVG(ocjena) AS prosjOcj
FROM ispit;

prosjOcj 3.625

Agregacija (primjeri ostalih agregatnih funkcija)

osoba

sifra	tezina	visina
101	62	170
103	94	186
105	74	181
107	62	165

$\rho_{\text{rez1(broj1)}}(G_{\text{COUNT(sifra)}}(\text{osoba}))$	rez1	broj1 4
$\rho_{\text{rez2(broj2)}}(G_{\text{SUM(tezina)}}(\text{osoba}))$	rez2	broj2 292
$\rho_{\text{rez3(broj3)}}(\mathcal{G}_{\text{AVG(visina)}}(\text{osoba}))$	rez3	broj3 175.5
$\rho_{\text{rez4(broj4)}}(G_{\text{MAX(visina)}}(\text{osoba}))$	rez4	broj4 186
$\rho_{\text{rez5(broj5)}}(\mathcal{G}_{\text{MIN(tezina)}}(\text{osoba}))$	rez5	broj5 62

Moguće je odjednom izračunati više agregatnih vrijednosti:

 $\rho_{\text{rez6(broj6, broj7, broj8)}}(G_{\text{MIN(tezina), AVG(visina), MAX(visina)}}(\text{osoba}))$

rez6	broj6	broj7	broj8
	62	175.5	186

SQL - Agregatne funkcije

 naziv rezultantnog atributa nije definiran operacijom, stoga se koristi AS operator za preimenovanje

osoba	sifra	tezina	visina
	101	62	170
	103	94	186
	105	74	181

62

165

107

SELECT COUNT(sifra) AS broj1 FROM osoba;

broj1 4

SELECT SUM(tezina) AS broj2 FROM osoba;

broj2 292

SELECT AVG(visina) AS broj3 FROM osoba;

broj3 175.5

SELECT MAX(visina) AS broj4,
MIN(tezina) AS broj5
FROM osoba;

broj4	broj5
186	62

SQL - Agregatne funkcije

osoba

_			
	sifra	tezina	visina
	101	62	170
	103	94	190
	105	74	170
	107	62	170

agregatne funkcije s DISTINCT

SELECT COUNT(DISTINCT visina) AS broj1
FROM osoba;

broj1

SELECT SUM(DISTINCT tezina) AS broj2
FROM osoba;

broj2 230

SELECT AVG(DISTINCT visina) AS broj3 FROM osoba;

broj3 180

Agregacija i grupiranje

		100	
10	p	ıt	
10	v	Iι	

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4

- Zadatak: izračunati prosječnu ocjenu za svaki pojedini predmet
 - prosjek za Matematiku
 - prosjek za Fiziku
 - ... i za sve ostale predmete čiji se naziv pojavljuje u relaciji

Agregacija i grupiranje

- Loše rješenje:
 - Za svaki predmet napisati po jedan upit

```
\rho_{\text{prosjek(prosjOcjMat)}}(G_{\text{AVG(ocjena)}}(\sigma_{\text{nazPred= 'Matematika'}}(\text{ispit)}))
```

```
SELECT AVG(ocjena) AS prosjOcjMat
   FROM ispit
  WHERE nazPred = 'Matematika';
```

prosjOcjMat 3.25

```
\rho_{\text{prosjek(prosjOciFiz)}}(G_{\text{AVG(ocjena)}}(\sigma_{\text{nazPred= 'Fizika'}}(\text{ispit)}))
```

```
SELECT AVG(ocjena) AS prosjOcjFiz
   FROM ispit
   WHERE nazPred = 'Fizika';
```

prosjOcjFiz

- itd. (za svaki naziv predmeta)
- postoji li bolje rješenje?

Grupiranje (grouping)

Zadana je relacija r(R). Neka su atributi A₁, A₂, ..., A_m, B₁, B₂, ...,
 B_n atributi sheme R. Opći oblik operacije grupiranja je sljedeći:

$$A_1, A_2, ..., A_m \mathcal{G}_{\mathcal{A}\mathcal{F}_1(\mathsf{B}_1), \mathcal{A}\mathcal{F}_2(\mathsf{B}_2), ..., \mathcal{A}\mathcal{F}_n(\mathsf{B}_n)}$$
 (r)

- a) određuju se grupe n-torki: u svakoj grupi se nalaze n-torke koje imaju jednake vrijednosti atributa A₁, A₂, ..., A_m
- b) za svaku grupu n-torki izračunavaju se vrijednosti agregatnih funkcija $\mathcal{AF}_1(\mathsf{B_1}),\ \mathcal{AF}_2(\mathsf{B_2}),\ ...,\ \ \mathcal{AF}_n(\mathsf{B_n})$
- c) za svaku grupu formira se n-torka s vrijednostima atributa A₁, A₂, ..., A_m i izračunatim vrijednostima agregatnih funkcija

Agregacija i grupiranje

ispit	mbrStud	akGod	nazPred	ocjena
	100	2005	Matematika	3
	101	2005	Matematika	5
	102	2005	Matematika	2
	103	2006	Matematika	3
	100	2004	Fizika	5
	101	2006	Fizika	5
	102	2006	Fizika	2
	100	2005	Vjerojatnost	4

$\rho_{\text{prosjek(nazPred, prosjOcj)}}(_{\text{nazPred}}\mathcal{G}_{\text{AVG(ocjena)}}(\text{ispit)})$

- grupirati po nazPred
- za svaku grupu izračunati AVG(ocjena)
- za svaku grupu formirati po jednu n-torku s vrijednošću atributa nazPred i izračunatim prosjekom
- obaviti operaciju preimenovanja

prosjek

nazPred	prosjOcj
Matematika	3.25
Fizika	4
Vjerojatnost	4

Agregacija i grupiranje

Ispisati prosječnu i najveću ocjenu za svaki predmet i akademsku godinu:

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4

 $\rho_{\text{prosjek1(nazPred, akGod, prosjOcj, maxOcj)}}(_{\text{nazPred, akGod}}G_{\text{AVG(ocjena), MAX(ocjena)}}(\text{ispit)})$

prosjek1

nazPred	akGod	prosjOcj	maxOcj
Matematika	2005	3.333	5
Matematika	2006	3	3
Fizika	2004	5	5
Fizika	2006	3.5	5
Vjerojatnost	2005	4	4

ispit

SQL - **Grupiranje**

SELECT SELECT List
FROM ...
[WHERE Condition]
[GROUP BY column [, column]...]

 $\rho_{\text{prosjek1(nazPred, akGod, prosjOcj, maxOcj)}}(_{\text{nazPred, akGod}}\mathcal{G}_{\text{AVG(ocjena), MAX(ocjena)}}(\text{ispit)})$

```
SELECT nazPred
, akGod
, AVG(ocjena) AS prosjOcj
, MAX(ocjena) AS maxOcj
FROM ispit
GROUP BY nazPred, akGod;
```

nazPred	akGod	prosjOcj	maxOcj
Matematika	2005	3.333	5
Matematika	2006	3	3
Fizika	2004	5	5
Fizika	2006	3.5	5
Vjerojatnost	2005	4	4

SQL - **Grupiranje**

 svi atributi koji se nalaze u listi za selekciju, a koji nisu argumenti agregatnih funkcija, moraju biti navedeni u GROUP BY dijelu naredbe

```
SELECT nazPred

, akGod NEISPRAVNO!

, mbrStud

, AVG(ocjena) AS prosjOcj

, MAX(ocjena) AS maxOcj

FROM ispit

GROUP BY nazPred, akGod;
```

ispit

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4

nazPred	akGod	mbrStud	prosjOcj	maxOcj
Matematika	2005	100, 101, 102 ?	3.333	5
Matematika	2006	?	3	3
Fizika	2004	?	5	5
Fizika	2006	?	3.5	5
Vjerojatnost	2005	?	4	4