Assignment 5

Anuraag Vasal

11/29/2021

```
#Importing required libraries
```

data_cereals_scaled <- scale(data_cereals)</pre>

```
library(cluster)
library(caret)
library(dendextend)
library(knitr)
library(factoextra)
library(readr)
#Importing dataset
Cereals <- read_csv("Cereals.csv")</pre>
## Rows: 77 Columns: 16
## -- Column specification -----
## Delimiter: ","
## chr (3): name, mfr, type
## dbl (13): calories, protein, fat, sodium, fiber, carbo, sugars, potass,
vita...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show col types = FALSE` to quiet this
message.
data_cereals <- data.frame(Cereals[,4:16])</pre>
#Preprocessing the data
data_cereals <- na.omit(data_cereals)</pre>
#Normalizing the Data
```

#(1) Applying hierarchical clustering to the data using Euclidean distance to the normalize measurements and using Agnes to compare the clustering from single linkage, complete linkage, average linkage, and Ward.

```
distance <- dist(data_cereals_scaled, method = "euclidean")
hier.clust_complete <- hclust(distance, method = "complete")
#Plotting the dendogram
plot(hier.clust_complete, cex = 0.7, hang = -1)</pre>
```

Cluster Dendrogram

distance hclust (*, "complete")

#Using agnes function to perfrom clustering with single linkage, complete linkage, average linkage and Ward.

```
hier.clust_single <- agnes(data_cereals_scaled, method = "single")
hier.clust_complete <- agnes(data_cereals_scaled, method = "complete")
hier.clust_average <- agnes(data_cereals_scaled, method = "average")
hier.clust_ward <- agnes(data_cereals_scaled, method = "ward")</pre>
```

#Single Linkage vs Complete Linkage vs Average Linkage vs Ward

```
print(hier.clust_single$ac)
## [1] 0.6067859
print(hier.clust_complete$ac)
```

```
## [1] 0.8353712
print(hier.clust_average$ac)
## [1] 0.7766075
print(hier.clust_ward$ac)
## [1] 0.9046042
```

#We can see that Ward method is best with highest value of 0.9046042.

#(2) Choosing the clusters:

#We will choose 5 clusters after observing the distance.

```
pltree(hier.clust_ward, cex = 0.7, hang = -1, main = "Dendrogram of agnes
(Using Ward)")
rect.hclust(hier.clust_ward, k = 5, border = 1:4)
```

Dendrogram of agnes (Using Ward)

data_cereals_scaled agnes (*, "ward")

```
Cluster1 <- cutree(hier.clust_ward, k=5)
dataframe2 <- as.data.frame(cbind(data_cereals_scaled,Cluster1))</pre>
```

#(3)Commenting on the structure of the clusters and on their stability

#Creating Partitions

```
set.seed(123)
Part_1 <- data_cereals[1:50,]
Part_2 <- data_cereals[51:74,]</pre>
```

#Performing Hierarchial Clustering, consedering k = 5.

```
ag_single <- agnes(scale(Part_1), method = "single")
ag_complete <- agnes(scale(Part_1), method = "complete")
ag_average <- agnes(scale(Part_1), method = "average")
ag_ward <- agnes(scale(Part_1), method = "ward")
cbind(single=ag_single$ac , complete=ag_complete$ac , average= ag_average$ac , ward= ag_ward$ac)

## single complete average ward
## [1,] 0.6393338 0.8138238 0.7408904 0.8764323

pltree(ag_ward, cex = 0.6, hang = -1, main = "Dendogram of Agnes with Partitioned Data (Using Ward)")
rect.hclust(ag_ward, k = 5, border = 1:4)</pre>
```

Dendogram of Agnes with Partitioned Data (Using W


```
scale(Part_1)
agnes (*, "ward")
```

```
cut_2 <- cutree(ag_ward, k = 5)</pre>
```

#Calculating the centeroids.

```
result <- as.data.frame(cbind(Part_1, cut_2))
result[result$cut_2==1,]</pre>
```

```
calories protein fat sodium fiber carbo sugars potass vitamins shelf
weight
## 1
           70
                    4
                        1
                              130
                                     10
                                            5
                                                   6
                                                         280
                                                                   25
                                                                          3
1
## 3
           70
                    4
                        1
                              260
                                      9
                                            7
                                                    5
                                                         320
                                                                   25
                                                                          3
1
## 4
           50
                    4
                        0
                              140
                                     14
                                            8
                                                    0
                                                         330
                                                                   25
                                                                          3
1
##
     cups
           rating cut_2
## 1 0.33 68.40297
## 3 0.33 59.42551
                       1
## 4 0.50 93.70491
                        1
centroid_1 <- colMeans(result[result$cut_2==1,])</pre>
result[result$cut_2==2,]
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
##
weight
## 2
           120
                     3
                         5
                                15
                                     2.0
                                           8.0
                                                    8
                                                          135
                                                                     0
                                                                           3
1.00
## 8
           130
                     3
                         2
                               210
                                     2.0 18.0
                                                    8
                                                          100
                                                                    25
                                                                           3
1.33
## 14
           110
                     3
                         2
                               140
                                     2.0 13.0
                                                     7
                                                          105
                                                                    25
                                                                           3
1.00
## 20
                         3
                                     4.0 10.0
                                                          160
                                                                    25
                                                                           3
           110
                     3
                               140
                                                    7
1.00
## 23
           100
                     2
                         1
                               140
                                     2.0 11.0
                                                    10
                                                          120
                                                                    25
                                                                           3
1.00
                                     5.0 12.0
                         2
                                                          200
                                                                           3
## 28
           120
                     3
                               160
                                                    10
                                                                    25
1.25
## 29
                         0
                                                          190
                                                                           3
           120
                     3
                               240
                                     5.0 14.0
                                                    12
                                                                    25
1.33
## 35
                         3
                                                          100
                                                                           3
           120
                     3
                               75
                                     3.0 13.0
                                                    4
                                                                    25
1.00
## 42
           100
                     4
                         2
                               150
                                     2.0 12.0
                                                     6
                                                           95
                                                                    25
                                                                            2
1.00
## 45
           150
                     4
                         3
                                95
                                     3.0 16.0
                                                    11
                                                          170
                                                                    25
                                                                           3
1.00
## 46
           150
                     4
                         3
                               150
                                     3.0 16.0
                                                    11
                                                          170
                                                                    25
                                                                           3
1.00
## 47
                         2
                               150
                                     3.0 17.0
                                                    13
                                                          160
                                                                    25
                                                                            3
           160
                     3
1.50
                         2
                                                                           3
## 50
           140
                     3
                               220
                                     3.0 21.0
                                                    7
                                                          130
                                                                    25
1.33
                         2
## 52
           130
                     3
                               170
                                     1.5 13.5
                                                    10
                                                          120
                                                                    25
                                                                           3
1.25
##
      cups
             rating cut_2
                         2
## 2 1.00 33.98368
## 8 0.75 37.03856
                        2
## 14 0.50 40.40021
                        2
```

```
## 20 0.50 40.44877
## 23 0.75 36.17620
                         2
## 28 0.67 40.91705
                         2
## 29 0.67 41.01549
                         2
## 35 0.33 45.81172
                         2
## 42 0.67 45.32807
                         2
## 45 1.00 37.13686
                         2
## 46 1.00 34.13976
                         2
## 47 0.67 30.31335
                         2
## 50 0.67 40.69232
                         2
## 52 0.50 30.45084
                         2
centroid_2 <- colMeans(result[result$cut_2==2,])</pre>
result[result$cut_2==3,]
##
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
weight
                          2
## 6
                      2
                               180
                                      1.5 10.5
                                                    10
                                                            70
                                                                     25
           110
                                                                             1
1
## 7
           110
                      2
                          0
                               125
                                      1.0 11.0
                                                    14
                                                            30
                                                                     25
                                                                             2
1
                                                                     25
## 9
            90
                      2
                          1
                                      4.0 15.0
                               200
                                                     6
                                                           125
                                                                             1
1
                          2
                               220
                                                    12
                                                                     25
                                                                             2
## 11
           120
                      1
                                      0.0
                                          12.0
                                                            35
1
## 13
           120
                      1
                          3
                               210
                                      0.0
                                          13.0
                                                     9
                                                            45
                                                                     25
                                                                             2
1
## 15
                          1
                                      0.0 12.0
                                                                     25
                                                                             2
           110
                      1
                               180
                                                    13
                                                            55
1
## 18
           110
                      1
                          0
                                90
                                      1.0 13.0
                                                    12
                                                            20
                                                                     25
                                                                             2
1
## 19
           110
                      1
                          1
                               180
                                      0.0
                                           12.0
                                                    13
                                                            65
                                                                     25
                                                                             2
1
## 25
                      2
                          1
                               125
                                                    13
                                                            30
                                                                     25
                                                                             2
           110
                                      1.0
                                          11.0
1
## 26
                      1
                          0
                               200
                                                            25
           110
                                      1.0 14.0
                                                    11
                                                                     25
                                                                             1
1
                                                                             2
## 30
           110
                      1
                          1
                               135
                                      0.0 13.0
                                                    12
                                                            25
                                                                     25
1
                      2
                          0
                                                                     25
## 31
           100
                                45
                                      0.0
                                          11.0
                                                    15
                                                            40
                                                                             1
1
                          1
                               280
                                          15.0
                                                     9
                                                            45
                                                                     25
                                                                             2
## 32
           110
                      1
                                      0.0
1
## 36
           120
                      1
                          2
                               220
                                      1.0 12.0
                                                    11
                                                            45
                                                                     25
                                                                             2
1
## 37
           110
                      3
                          1
                               250
                                      1.5 11.5
                                                    10
                                                            90
                                                                     25
                                                                             1
1
## 38
           110
                      1
                          0
                               180
                                      0.0 14.0
                                                    11
                                                            35
                                                                     25
                                                                             1
           110
                      2
                          1
                               180
                                      0.0 12.0
                                                    12
                                                            55
                                                                     25
                                                                             2
## 43
```

```
1
## 48
            100
                      2
                           1
                                220
                                                             90
                                                                       25
                                                                              1
                                       2.0 15.0
                                                       6
1
## 49
                      2
                           1
                                190
                                      0.0 15.0
                                                             40
                                                                       25
                                                                              2
            120
1
##
      cups
              rating cut_2
## 6
      0.75 29.50954
## 7 1.00 33.17409
                          3
## 9 0.67 49.12025
                          3
## 11 0.75 18.04285
                          3
## 13 0.75 19.82357
                          3
## 15 1.00 22.73645
                          3
## 18 1.00 35.78279
                          3
## 19 1.00 22.39651
                          3
## 25 1.00 32.20758
                          3
                          3
## 26 0.75 31.43597
                          3
## 30 0.75 28.02576
                          3
## 31 0.88 35.25244
## 32 0.75 23.80404
                          3
## 36 1.00 21.87129
                          3
## 37 0.75 31.07222
                          3
## 38 1.33 28.74241
                          3
## 43 1.00 26.73451
                          3
## 48 1.00 40.10596
                          3
## 49 0.67 29.92429
                          3
centroid_3 <- colMeans(result[result$cut_2==3,])</pre>
result[result$cut_2==4,]
##
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
weight
## 10
                           0
                                                                       25
             90
                      3
                                210
                                         5
                                              13
                                                       5
                                                            190
                                                                               3
1
## 12
            110
                      6
                           2
                                290
                                         2
                                              17
                                                       1
                                                            105
                                                                       25
                                                                              1
1
                      2
                           0
                                280
                                              22
                                                       3
                                                             25
                                                                       25
## 16
            110
                                         0
                                                                              1
1
## 17
            100
                      2
                           0
                                290
                                         1
                                              21
                                                       2
                                                             35
                                                                       25
                                                                               1
1
                      2
                           0
                                                                       25
## 22
            110
                                220
                                         1
                                              21
                                                       3
                                                             30
                                                                              3
1
## 24
                      2
                           0
                                                       5
                                                                       25
                                                                              3
            100
                                190
                                         1
                                              18
                                                             80
1
## 27
            100
                      3
                           0
                                  0
                                         3
                                              14
                                                       7
                                                            100
                                                                       25
                                                                               2
1
## 33
            100
                      3
                           1
                                140
                                         3
                                              15
                                                       5
                                                             85
                                                                       25
                                                                              3
1
                                                       3
                                                                       25
## 34
            110
                      3
                           0
                                170
                                         3
                                              17
                                                             90
                                                                               3
1
                      2
## 41
            110
                           1
                                260
                                         0
                                              21
                                                       3
                                                             40
                                                                       25
                                                                              2
```

```
1
## 44
            100
                                                              95
                                                                        25
                                                                                2
                           1
                                   0
                                               16
                                                        3
                                          0
1
             90
                       3
                           0
                                 170
                                          3
                                               18
                                                        2
                                                              90
                                                                        25
                                                                                3
## 51
1
##
              rating cut_2
      cups
## 10 0.67 53.31381
## 12 1.25 50.76500
                          4
## 16 1.00 41.44502
                          4
## 17 1.00 45.86332
                          4
## 22 1.00 46.89564
                          4
## 24 0.75 44.33086
                          4
## 27 0.80 58.34514
                          4
## 33 0.88 52.07690
                          4
## 34 0.25 53.37101
                          4
## 41 1.50 39.24111
                          4
## 44 1.00 54.85092
                          4
## 51 1.00 59.64284
                          4
centroid_4 <- colMeans(result[result$cut_2==4,])</pre>
centroids <- rbind(centroid_1, centroid_2, centroid_3, centroid_4)</pre>
x2 <- as.data.frame(rbind(centroids[,-14], Part_2))</pre>
#Calculating the Distance
Distance 1 <- get dist(x2)</pre>
Matrix_1 <- as.matrix(Distance_1)</pre>
dataframe1 <- data.frame(data=seq(1,nrow(Part_2),1), Clusters =</pre>
rep(0, nrow(Part_2)))
for(i in 1:nrow(Part_2))
  {dataframe1[i,2] <- which.min(Matrix_1[i+4, 1:4])}
dataframe1
      data Clusters
##
## 1
         1
                   1
## 2
          2
                   4
          3
## 3
                    3
## 4
          4
                    2
          5
                   2
## 5
## 6
          6
                   1
## 7
         7
                    2
## 8
         8
                    2
## 9
         9
                    3
                    3
## 10
         10
## 11
         11
                    2
## 12
         12
                    2
                    2
## 13
         13
                    3
## 14
         14
## 15
         15
                   4
```

2

3

16

17

16

17

```
## 18
         18
                    2
                    4
## 19
         19
         20
                    4
## 20
## 21
         21
                    3
## 22
         22
                    4
## 23
         23
                    4
## 24
                    3
         24
cbind(dataframe2$Cluster1[51:74], dataframe1$Clusters)
##
          [,1] [,2]
##
    [1,]
             2
                   1
##
    [2,]
             4
                   4
             5
                   3
##
    [3,]
             5
                   2
##
    [4,]
             2
##
                   2
    [5,]
             2
                   1
##
    [6,]
             2
                   2
##
    [7,]
             5
                   2
##
    [8,]
             4
                   3
##
    [9,]
             4
                   3
## [10,]
             5
                   2
## [11,]
             5
## [12,]
                   2
             5
                   2
## [13,]
             3
                   3
## [14,]
## [15,]
             4
                   4
             5
                   2
## [16,]
             4
                   3
## [17,]
                   2
## [18,]
             2
## [19,]
             4
                   4
## [20,]
             4
                   4
## [21,]
             3
                   3
                   4
## [22,]
             4
             4
                   4
## [23,]
## [24,]
             3
                   3
table(dataframe2$Cluster1[51:74] == dataframe1$Clusters)
##
## FALSE
           TRUE
             12
      12
```

#Since we are getting 12 FALSE and 12 TRUE, we can conclude that the model is partially stable.

#4) The elementary public schools would like to choose a set of cereals to include in their daily cafeterias. Every day a different cereal is offered, but all cereals should support a healthy diet. For this goal, you are requested to find a cluster of "healthy cereals." Should the data be normalized? If not, how should they be used in the cluster analysis?

#Clustering Healthy Cereals.

```
Healthy Cereals <- Cereals
Healthy Cereals na <- na.omit(Healthy Cereals)</pre>
Clusthealthy <- cbind(Healthy_Cereals_na, Cluster1)</pre>
Clusthealthy[Clusthealthy$Cluster1==1,]
                           name mfr type calories protein fat sodium fiber
##
carbo
                      100% Bran
                                        C
                                                 70
                                                               1
## 1
                                                                    130
                                                                            10
5
## 3
                       All-Bran
                                   Κ
                                        C
                                                 70
                                                          4
                                                               1
                                                                    260
                                                                            9
7
## 4 All-Bran with Extra Fiber
                                   Κ
                                        C
                                                 50
                                                          4
                                                                    140
                                                                            14
8
##
     sugars potass vitamins shelf weight cups
                                                   rating Cluster1
                                  3
## 1
          6
                280
                          25
                                         1 0.33 68.40297
## 3
          5
                320
                          25
                                  3
                                         1 0.33 59.42551
                                                                  1
## 4
          0
                330
                          25
                                  3
                                         1 0.50 93.70491
                                                                  1
Clusthealthy[Clusthealthy$Cluster1==2,]
                                          name mfr type calories protein fat
##
sodium
## 2
                            100% Natural Bran
                                                  0
                                                       C
                                                               120
                                                                         3
                                                                              5
15
## 8
                                       Basic 4
                                                  G
                                                       C
                                                               130
                                                                          3
                                                                              2
210
## 14
                                      Clusters
                                                  G
                                                       C
                                                               110
                                                                         3
                                                                              2
140
## 20
                           Cracklin'_Oat_Bran
                                                  Κ
                                                       C
                                                               110
                                                                         3
                                                                              3
140
## 23
                       Crispy_Wheat_&_Raisins
                                                       C
                                                  G
                                                               100
                                                                          2
                                                                              1
140
## 28 Fruit & Fibre Dates, Walnuts, and Oats
                                                       C
                                                                              2
                                                               120
                                                                         3
160
                                 Fruitful Bran
                                                       C
                                                               120
## 29
                                                  Κ
                                                                         3
                                                                              0
240
                           Great Grains Pecan
                                                       C
                                                               120
                                                                         3
                                                                              3
## 35
75
                       Just Right Fruit & Nut
                                                                         3
## 40
                                                       C
                                                               140
                                                                              1
170
## 42
                                          Life
                                                  Q
                                                       C
                                                               100
                                                                         4
                                                                              2
150
## 45
            Muesli Raisins, Dates, & Almonds
                                                  R
                                                       C
                                                               150
                                                                         4
                                                                              3
95
## 46
           Muesli_Raisins,_Peaches,_&_Pecans
                                                  R
                                                       C
                                                               150
                                                                         4
                                                                              3
150
                         Mueslix_Crispy_Blend
                                                       C
                                                                         3
                                                                              2
## 47
                                                  Κ
                                                               160
150
                                                       C
                    Nutri-Grain Almond-Raisin
                                                  Κ
                                                               140
                                                                              2
## 50
                                                                         3
220
```

## 52			(Datmeal	_Raisin	_Crisp)	G C		130		3	2
170			D	N-+	D-1-1	D	_	D 6		120		,	1
## 53 200			PC	os t_na t	Raisi	n_Brai	1	P C		120		3	1
## 57				Ouake	r_Oat_S	allares	c	Q C		100		4	1
135				Quake		quares	•	ų c		100		_	_
## 59					Raisi	n_Brar	า	к с		120		3	1
210					Naisi	b. a.	•			120		_	_
## 60				Ra	isin_Nu	t Bran	n	G C		100		3	2
140								-				_	
## 71				Tota	l_Raisi	n_Brar	า	G C		140		3	1
190					_	_							
##	fiber	carbo	sugars	potass	vitami	ns she	elf	weight	cups	ra ⁻	ting	Clust	ter1
## 2	2.0	8.0	8	135		0	3	1.00	1.00	33.9	8368		2
## 8	2.0	18.0	8	100		25	3	1.33	0.75	37.0	3856		2
## 14	2.0	13.0	7	105		25	3			40.4			2
## 20	4.0	10.0	7	160		25	3	1.00	0.50	40.4	4877		2
## 23	2.0	11.0	10	120		25	3			36.1			2
## 28	5.0	12.0	10	200		25	3			40.9			2
## 29	5.0	14.0	12	190		25	3			41.0			2
## 35	3.0	13.0	4	100		25	3			45.8			2
## 40	2.0	20.0	9	95		00	3			36.4			2
## 42	2.0	12.0	6	95		25	2			45.3			2
## 45	3.0	16.0	11	170		25	3			37.1			2
## 46	3.0	16.0	11	170		25	3			34.1			2
## 47	3.0	17.0	13	160		25	3			30.3			2
## 50	3.0	21.0	7	130		25	3			40.6			2
## 52	1.5	13.5	10	120		25	3			30.4			2
## 53	6.0	11.0	14	260		25	3			37.8			2
## 57	2.0	14.0	6	110		25	3			49.5			2
## 59	5.0	14.0	12	240		25	2			39.2			2
## 60	2.5	10.5	8	140		25	3			39.7			2
## 71	4.0	15.0	14	230	1	00	3	1.50	1.00	28.5	9278		2
Clusth	ealthy	[Clust	thealthy	/\$Clust	er1== <mark>3</mark> ,]							
##				name m	fr type	calor	ries	prote	in fa	t sod	ium f	iber	
carbo								•					
## 6	Apple_	Cinnar	non_Che	erios	G C		110)	2	2 :	180	1.5	
10.5													
## 7			Apple_3	Jacks	K C		110)	2	0 :	125	1.0	
11.0													
## 11		(Cap'n'Cr	runch	Q C		120)	1	2	220	0.0	
12.0 ## 13	Cinn	amon -	Toast_Cr	runch	G C		120)	1	3 :	210	0.0	
13.0	CIIII	u	. 543 (_C	ancn	J C		120		_			0.0	
## 15			Cocoa_F	Puffs	G C		110)	1	1 :	180	0.0	
12.0			20204_1	4115	5 C				-	-	_00	0.0	
## 18			Corn	Pops	к с		110)	1	0	90	1.0	
13.0													

## 19		Count	_Chocula	G	С	110	1	1	180	0.0
12.0 ## 25		Fro	ot_Loops	K	С	110	2	1	125	1.0
11.0 ## 26 14.0	Frosted_Flakes				С	110	1	0	200	1.0
## 30 13.0		Fruity	_Pebbles	Р	С	110	1	1	135	0.0
## 31 11.0		Gold	len_Crisp	Р	С	100	2	0	45	0.0
## 32 15.0		Golder	_Grahams	G	С	110	1	1	280	0.0
## 36 12.0		Honey_Gr	aham_Ohs	Q	С	120	1	2	220	1.0
## 37 11.5	Н	oney_Nut_	Cheerios	G	С	110	3	1	250	1.5
## 38 14.0		Ho	ney-comb	Р	С	110	1	0	180	0.0
## 43 12.0			xy_Charms	G	С	110		1	180	0.0
## 48 15.0	Muli	_	Cheerios	G	С	100		1	220	2.0
## 49 15.0		Nut&Hone	ey_Crunch	K	С	120		1	190	0.0
## 67 9.0			Smacks	K	С	110		1	70	1.0
## 74 13.0 ## 77	lulb.	aatias Us	Trix oney Gold	G G	c c	110 110		1	140 200	0.0
16.0 ##		_	ritamins s							1.0
## 6	10	70	25	1	_	-	29.50954	CIUS	3	
## 7	14	30	25	2			33.17409		3	
## 11	12	35	25	2			18.04285		3	
## 13	9	45	25	2			19.82357		3	
## 15	13	55	25	2	1	1.00	22.73645		3	
## 18	12	20	25	2	1	1.00	35.78279		3	
## 19	13	65	25	2	1	1.00	22.39651		3	
## 25	13	30	25	2			32.20758		3	
## 26	11	25	25	1			31.43597		3	
## 30	12	25	25	2			28.02576		3	
## 31	15	40	25	1			35.25244		3	
## 32	9	45 45	25 25	2			23.80404		3	
## 36 ## 37	11 10	45 90	25 25	2 1			21.87129 31.07222		3 3	
## 37	10	90 35	25 25	1			28.74241		3	
## 43	12	55	25 25	2			26.73451		3	
## 48	6	90	25	1			40.10596		3	
## 49	9	40	25	2			29.92429		3	
## 67	15	40	25	2			31.23005		3	

## ##		12 25 25 8 60 25	2 1			.00 27.75		3		
Clusthealthy[Clusthealthy\$Cluster1==4,]										
##		n	ame	mfr	type	calories	protein	fat	sodium	fiber
car ## 15		Bran_C	hex	R	С	90	2	1	200	4
## 13	10	Bran_Fla	kes	Р	С	90	3	0	210	5
## 17	12	Cheer	ios	G	С	110	6	2	290	2
##	16	Corn_C	hex	R	С	110	2	0	280	0
22 ## 21	17	Corn_Fla	kes	K	С	100	2	0	290	1
##	22	Cris	pix	K	С	110	2	0	220	1
21 ##	24	Double_C	hex	R	С	100	2	0	190	1
18 ##	33	Grape_Nuts_Fla	kes	Р	С	100	3	1	140	3
15 ##	34	Grape-N	uts	Р	С	110	3	0	170	3
	39	Just_Right_CrunchyNugg	ets	K	С	110	2	1	170	1
17 ##	41		Kix	G	С	110	2	1	260	0
21 ##	51	Nutri-grain_Wh	eat	K	С	90	3	0	170	3
18 ##	54	Product	_19	K	С	100	3	0	320	1
20 ##	62	Rice_C	hex	R	С	110	1	0	240	0
23 ##	63	Rice_Krisp	ies	K	С	110	2	0	290	0
22 ##	68	Specia	1 K	K	С	110	6	0	230	1
16 ##	70	Total_Corn_Fla		G	С	110	2	1	200	0
21										
## 16	72	Total_Whole_Gr	ain	G	С	100	3	1	200	3
## 21	73	Trip	les	G	С	110	2	1	250	0
## 17	75	Wheat_C	hex	R	С	100	3	1	230	3
## 17	76	Wheat	ies	G	С	100	3	1	200	3
##		sugars potass vitamins s	helf	f wei	ight c	ups rat	ing Clus	ster1	L	

```
## 9
           6
                 125
                            25
                                   1
                                           1 0.67 49.12025
                                                                    4
## 10
            5
                 190
                            25
                                   3
                                           1 0.67 53.31381
                 105
                            25
                                                                    4
## 12
           1
                                   1
                                           1 1.25 50.76500
## 16
            3
                  25
                            25
                                   1
                                           1 1.00 41.44502
                                                                    4
## 17
           2
                  35
                                   1
                                           1 1.00 45.86332
                                                                    4
                            25
## 22
           3
                  30
                            25
                                   3
                                           1 1.00 46.89564
                                                                    4
           5
                                   3
## 24
                  80
                            25
                                           1 0.75 44.33086
                                                                    4
## 33
           5
                  85
                            25
                                   3
                                                                    4
                                           1 0.88 52.07690
           3
                                   3
## 34
                  90
                            25
                                           1 0.25 53.37101
                                                                    4
                                                                    4
## 39
           6
                  60
                           100
                                   3
                                           1 1.00 36.52368
## 41
           3
                  40
                            25
                                   2
                                                                    4
                                           1 1.50 39.24111
## 51
           2
                  90
                            25
                                   3
                                                                    4
                                           1 1.00 59.64284
           3
                                   3
                                                                    4
## 54
                  45
                           100
                                           1 1.00 41.50354
           2
## 62
                  30
                            25
                                   1
                                           1 1.13 41.99893
                                                                    4
## 63
           3
                  35
                            25
                                   1
                                           1 1.00 40.56016
                                                                    4
           3
                  55
                                   1
                                                                    4
## 68
                            25
                                           1 1.00 53.13132
## 70
           3
                  35
                           100
                                   3
                                           1 1.00 38.83975
                                                                    4
## 72
           3
                                   3
                                                                    4
                 110
                           100
                                           1 1.00 46.65884
## 73
           3
                                   3
                                           1 0.75 39.10617
                                                                    4
                  60
                            25
           3
                 115
## 75
                            25
                                   1
                                           1 0.67 49.78744
                                                                    4
           3
## 76
                 110
                            25
                                   1
                                           1 1.00 51.59219
```

#Mean ratings to determine the best cluster.

```
mean(Clusthealthy[Clusthealthy$Cluster1==1,"rating"])
## [1] 73.84446

mean(Clusthealthy[Clusthealthy$Cluster1==2,"rating"])
## [1] 38.26161

mean(Clusthealthy[Clusthealthy$Cluster1==3,"rating"])
## [1] 28.84825

mean(Clusthealthy[Clusthealthy$Cluster1==4,"rating"])
## [1] 46.46513
```

#As we can se that the mean ratings of the cluster1 is the highest (i.e. 73.84446), Hence we can choose cluster 1.