自动控制理论课程的任务与体系结构

课程的体系结构

对自动控制系统的基本要求

第四章 线性系统的时域分析

- 4-1 ※系统时间响应的性能指标
- 动态性能 4-2 一阶系统的时域分析
 - 4-3 ※二阶系统的时域分析
 - 4-4 ☆ 高阶系统的时域分析
 - 稳定性 4-5%线性系统的稳定性
- 稳态性能 4-6 ※线性系统的稳态误差计算

4-1 系统时间响应的性能指标

工程上典型输入信号

时域 r(t)

 $t \ge 0$

复域 F(s)

理想单位脉冲信号

 $\delta(t)$

1

单位阶跃信号

<u>1</u>

S

单位速度信号

1

单位加速度信号

 $\frac{1}{2}t^2$

 $\frac{1}{s^3}$

单位正弦信号

 $\sin \omega t$

 $\frac{\omega}{s^2 + \omega^2}$

/ 作爾濱乙姓大學

c(t)0.5 0

动态性能指标定义

动态性能指标定义

例: 理想系统的阶跃响应

$$t_d = 0 \; ; \quad t_r = 0 \; ; \quad t_p = 0 \; ;$$

$$t_s = 0$$
; $\sigma_p = 0$

稳态误差为零

4-2 一阶系统的时域分析

• 典型的一阶系统

4. 一阶系统的单位加速度响应

$$r(t) = \frac{t^2}{2}$$

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{Ts+1}$$

(t)

$$c(t) = \frac{1}{2}t^2 - Tt + T^2(1 - e^{-\frac{1}{T}t})$$

$$e(t) = Tt - T^{2}(1 - e^{-t/T})$$

0

4-3 二阶系统的时域分析

典型的二阶系统

$$LC\frac{d^{2}c(t)}{dt^{2}} + RC\frac{dc(t)}{dt} + c(t) = r(t)$$

二阶系统的时域分析——模型

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

阻尼比

- 无阻尼自振荡频率

二阶系统

 $\Phi(\mathbf{S}) = \frac{\omega_n}{\mathbf{S}^2 + 2\xi \omega_n \mathbf{S} + \omega_n^2}$

单位阶跃响应定性分析(P78)

※1. 欠阻尼二阶系统的单位阶跃响应

欠阻尼 $0<\zeta<1$ 二阶系统单位阶跃响应及其误差图

※1. 欠阻尼二阶系统的单位阶跃响应

欠阻尼 $0<\zeta<1$ 二阶系统单位阶跃响应及其误差图

欠阻尼二阶系统单位阶跃响应结论

$$c(t) = 1 - e^{-\zeta \omega_n t} \frac{1}{\sqrt{1 - \zeta^2}} \sin(\omega_d t + \beta), t \ge 0$$

- 衰减正弦振荡形式
- 稳态误差趋于()
- 输出曲线的衰减速度取决于

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} < \omega_n$$
 — 振荡频率

二阶系统

 $\xi > 1$

单位阶跃响应定性分析

$$\Phi(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

2. 二阶系统单位阶跃响应曲线类型

图3-10 二阶系统单位阶跃响应曲线

例:已知单位负反馈系统的开环传递

函数

$$G(s)H(s) = \frac{k}{s(s+2)}$$

若使其单位阶跃响应无超调量,求 k 的取值范围。

欠阻尼二阶系统动态性能计算

$$t_r = ?$$

$$c(t) = 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin(\omega_d t + \beta)$$

$$\mathbf{t}_{\mathsf{r}} = \frac{\pi - \beta}{\omega_{\mathsf{d}}}$$

友情提醒: $\cos\beta = \xi$,所以 $\beta = \cos^{-1}\xi$

$$t_p = ?$$

得
$$t_p = \frac{\pi}{\omega_d}$$

欠阻尼二阶系统动态性能计算

$$c(t) = 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin(\omega_d t + \beta)$$

$$\sigma^{0/0} = e^{\frac{\pi\xi}{\sqrt{1-\xi^{2}}}} \times 100\%$$

二阶系统单位阶跃响应性能指标

$$t_r = \frac{\pi - \beta}{\omega_d} = \frac{\pi - \beta}{\omega_n \sqrt{1 - \zeta^2}}$$

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

$$\sigma_p \% = \frac{c(t_p) - c(\infty)}{c(\infty)} \times 100\% = e^{\frac{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}} \times 100\%$$

$$t_s = \frac{4}{\zeta \omega_n}, \Delta = 0.02, \qquad t_s = \frac{3}{\zeta \omega_n}, \Delta = 0.05$$

$$N = \frac{2\sqrt{1-\zeta^2}}{\pi\zeta}, \Delta = 0.02$$

$$N = \frac{1.5\sqrt{1-\zeta^2}}{\pi\zeta}, \Delta = 0.05$$

例3-1 系统结构如图3-15所示

若要求系统指标为

$$\sigma_p = 20 \% ; t_p = 1 s;$$

试确定系统参数 【和 7。

并计算特征量 t_s , td, tr

$\zeta = 0.456$;

$$\omega_n = 3.53 (rad/s)$$

$$K = 12.46$$

$$\tau = 0.178s$$

图3-15 控制系统结构图

已知控制系统如图, 1)确定使闭环系统具

有 $\zeta = 0.7$ 及 $\omega_n = 6 (rad/s)$ 的 k 和 τ 值;

2) 计算系统响应阶跃输入时的超调量 σ_p 和峰值时间 t_p

$$\Phi(s) = \frac{k}{s^2 + (6 + k\tau)s + k} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$k = 36$$

$$\tau = 0.067$$

$$\sigma_{p} = 4.6 \%$$

$$t_p = 0.733$$

己知控制系统的结构图如下图所示,单位阶

跃响应的超调量 $\sigma_p = 9.5\%$,峰值时间 $t_p = 1s$

试求:1) 根据已知性能确定参数 k 和 τ

$$\zeta = 0.6$$

$$\omega_n = 3.93$$

$$k = 1.54$$

$$\tau = 0.37$$

$$\sigma_p = 16.3\% \to \zeta = 0.5$$

四、二阶系统的单位脉冲响应

1) 天阻尼(
$$\zeta=0$$
) 脉冲响应、 $S_{1,2}=\pm j\omega_n$

$$S_{1,2} = \pm j\omega_n$$

$$c(t) = \omega_n \sin(\omega_n t), t \ge 0$$

输出为等幅振荡形式(无阻尼响应)

2) 欠阻尼 $(0<\zeta<1)$ 脉冲响应

$$c(t) = \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \omega_n \sqrt{1 - \zeta^2} t, t \ge 0$$

$$S_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

输出为衰减振荡形式(欠阻尼响应)

二阶系统的单位脉冲响应

3) 临界阻尼($\zeta=1$) 脉冲响应 $s_{1,2}=-\omega_n$

$$S_{1,2} = -\omega_n$$

$$c(t) = \omega_n^2 t e^{-\omega_n t}, t \ge 0$$

输出为无振荡衰减形式(临界阻尼响应)

4) 过阻尼 ($\zeta > 1$) 脉冲响应 $s_1 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$

$$S_1 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

$$c(t) = \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} (e^{s_1 t} - e^{s_2 t}), t \ge 0$$

输出为无振荡衰减形式(过阻尼响应)

☆二阶系统的单位脉冲响应

六、具有闭环负实零点的二阶系统分析

例: 已知二阶系统结构图如下:

六、具有闭环负实零点的二阶系统分析

具有一个负实零点的规范二阶系统为

$$\Phi(s) = \frac{\omega_n^2(s+z)}{z(s^2 + 2\zeta\omega_n s + \omega_n^2)}, \qquad z > 0;$$

$$C(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{1}{z} \cdot \frac{1}{z} \cdot \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot 1$$

阶跃响应为典型二阶系统的阶跃响应与乘有

1/Z 的脉冲响应之和。

响应曲线是阶跃响应和脉冲响应两条曲线

叠加组成。

具有负实零点系统的阶跃响应曲线示意图 负实零点对系统的作用为:

- (1) 使系统响应速度加快(tr和 tp减小);
- (2) 仅在过渡过程开始阶段有较大影响;
- (3) 系统的超调量略有增大;

〉高阶系统分析

$$C(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{j=1}^{q} (s - s_j) \prod_{k=1}^{r} (s^2 + 2\zeta_k \omega_k s + \omega_k^2)} \cdot \frac{1}{s}$$

$$c(t) = A_0 + \sum_{i=1}^{q} A_i e^{s_i t} + \sum_{k=1}^{r} C_k e^{-\zeta_k \omega_k t} \sin(\omega_k \sqrt{1 - \zeta_k^2} t + \beta_k)$$

高阶系统分析

• 响应的组成

$$c(t) = A_0 + \sum_{i=1}^{q} A_i e^{s_i t} + \sum_{k=1}^{r} C_k e^{-\zeta_k \omega_k t} \sin(\omega_k \sqrt{1 - \zeta_k^2} t + \beta_k)$$

高阶系统

$$\Phi_1(s) = \frac{30}{(s^2 + 2s + 5)(s + 6)}$$

主导极点

$$\sigma\% = 19.1\%$$

 $t_s = 3.89s$

$$\Phi_2(s) = \frac{5}{s^2 + 2s + 5}$$

$$\sigma\% = 20.8\%$$

 $t_s = 3.74s$

- •※ ※ 4-5 线性系统的稳定性分析
 - 1. 稳定性的基本概念
 - 2. 线性系统稳定性的充分必要条件
 - 3. 劳斯稳定判据

- 4. 劳斯稳定判据的特殊情况
- 5. 劳斯稳定判据的应用

• ※ 4-5 线性系统的稳定性分析

2 稳定性的定义

若线性控制系统在初始批动的影响 下, 其动态过程随时间的推移逐渐衰减 并趋于零(原平衡工作点)。则称系统渐 **简称稳定:**// 人之 态过程随时间的推移而发散, 则称系统

- ※ ※ 3-5 线性系统的稳定性分析
 - 1. 稳定性的基本概念
 - 2. 线性系统稳定性的充分必要条件
 - 3. 劳斯稳定判据
 - 4. 劳斯稳定判据的特殊情况
 - 5. 劳斯稳定判据的应用

劳斯判据

系统稳定的必要条件:

特征方程各项系数

系统稳定的充分条件:

劳斯表第一列元素均大于零!

若变号系统不稳定!

变号的次数为特征根在s右半平面的个数!

- ※ ※ 3-5 线性系统的稳定性分析
 - 1. 稳定性的基本概念
 - 2. 线性系统稳定性的充分必要条件
 - 3. 劳斯稳定判据
 - 4. 劳斯稳定判据的特殊情况
 - 5. 劳斯稳定判据的应用

劳斯表出现零行

设系统特征方程为:

$$s^4+5s^3+7s^2+5s+6=0$$

劳斯表出现零行 系统一定不稳定

- ※ ※ 3-5 线性系统的稳定性分析
 - 1. 稳定性的基本概念
 - 2. 线性系统稳定性的充分必要条件
 - 3. 劳斯稳定判据
 - 4. 劳斯稳定判据的特殊情况
 - 5. 劳斯稳定判据的应用

劳斯判据的应用

已知系统特征方程如下

(1)判断系统稳定性(2)求出所有的根。

$$s^6 + 3s^5 + 2s^4 + 4s^2 + 12s + 8 = 0$$

有零行不稳定!

s^6	1 3	2	4	8		Ž
s^6 s^5	3	0	12		,	W
\mathbf{S}^{4}	1	0	4			
$ \begin{array}{c} \mathbf{s}^4 \\ \mathbf{s}^3 \\ \mathbf{s}^2 \\ \mathbf{s}^1 \\ \mathbf{s}^0 \end{array} $	4	0			>V	
s^2	8	4				
s^1	-16					
\mathbf{s}^{0}	4					

3-6 线性系统的稳态误差分析及计算

- 〉什么是误差、稳态误差?
- > 如何计算稳态误差?
- > 系统的稳态误差与什么因素有关系?
- 》如何减小或者消除稳态误差,提高系统的稳态精度?

误差定义

3-6 线性系统的稳态误差分析及计算

- **) 什么是误差、稳态误差**?
- > 如何计算稳态误差?
- > 系统的稳态误差与什么因素有关系?
- 》如何减小或者消除稳态误差,提高系统的稳态精度?

如何计算稳态误差?

计算误差函数的基本步骤

(1)依据规范的方框图计算误差传递函数 $\Phi_e(s)$;

- (2) 计算 $E(s) = \Phi_e(s)R(s)$;
- (3) 计算误差函数 $e(t) = t^{-1}[E(s)]$;

若满足终值定理条件,则稳态误差为

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s\Phi_{e}(s)R(s)$$

3-6 线性系统的稳态误差分析及计算

- 〉什么是误差、稳态误差?
- > 如何计算稳态误差?
- > 系统的稳态误差与什么因素有关系?
- 》如何減小或者消除稳态误差,提高系统的稳态精度?

系统型别与开环增益

设开环传递函数G(s)H(s)=

 $\prod_{\substack{i=1\\ n-\nu\\ j=1}}^{m} (\tau_i s+1)$

 $G_n(s)$

注意: $s \to 0$ 时, $G_n(s)$ 一定 $\to 1$

此时的K为开环增益

SV表示开环有W和人人人不必有原点

v= 0 称为Q型系统

ν=1 **称为** 型系统

ν=2 称为∏型系统

ν=3 称为Ⅲ型系统

系统的稳态误差与什么因素有关

- 》 输入信号作用下的稳态误差与系统结构参数的关系

系统的稳态误差与什么因素有关

- 》输入信号作用下的稳态误差与系统结 构参数的关系。

不同的型别

稳态误差

静态误差系数

	R·1(t)	V·t	At ² /2	R·1(t)	V·t k v	$\frac{At^2/2}{k_a}$
0型	R 1+ k	8	8	k	0	0
I型	0	-V k	7-200	∞	k	0
II型	0	0	A k	∞	∞	k

系统的稳态误差与什么因素有关

- 》 输入信号作用下的稳态误差与系统结构参数的关系

例题: 已知系统结构如图所示,输入信号 r(t)=1(t),干扰n(t)=1(t),不然的稳态误差。

表1输入信号作用下的ess

表2批动信号作用下的ess

	R ·1(t)	V·t	At ² /2	$\mathbf{R} \cdot 1(\mathbf{t})$	V ·t	At ² /2
0型	R 1+ k	∞	8	R k 1	∞	∞
I型	0	- V k	1-20	0	-V k ₁	∞
II型	0	0	A k	0	0	-A k ₁

例题

求图示系统的 e_{ssn} 。

、动态误差系数法 (补充)

动态误差系数法

——输入r(t)作用下的稳态误差

$$e_{ssr}(t) = \sum_{i=0}^{\infty} \frac{1}{i!} \mathcal{D}_{e}^{(i)}(0) r^{(i)}(t) = \sum_{t=0}^{\infty} C_{i} r^{(i)}(t)$$

$$C_i$$
, $i = 0, 1, 2 \cdots$

一动态误差系数

动态误差系数法

——扰动n(t)作用下的稳态误差

$$e_{ssn}(t) = \sum_{i=0}^{\infty} \frac{1}{i!} \mathcal{Q}_{en}^{(i)}(0) r^{(i)}(t) = \sum_{i=0}^{\infty} C_{in} r^{(i)}(t) \qquad C_{in}, i = 0, 1, 2 \cdots$$

-扰动的动态误差系数

例1 已知控制系统的方框图为

计算r(t)=t、n(t)=-1(t)时,系统的稳态误差。

3-6 线性系统的稳态误差分析及计算

- ▶ 1、什么是误差、稳态误差?
- > 2、如何计算稳态误差?
- > 3、系统的稳态误差与什么因素有关系?
- 4、如何减小或者消除稳态误差,提高系统的稳态精度?

1) 消除稳态误差的措施-提高系统型别

2) 消除稳态误差的措施-复合控制

按输入信号补偿的复合控制

消除稳态误差的措施-复合控制

2005:已知控制系统如图所示,在 $G_{\mathrm{br}}(s)=0$ 时,

闭环系统响应阶跃输入时的超调量 $\sigma_p = 4.6\,\%$ 、

峰值时间 $t_p = 0.88$ 秒,1)确定系统的k值和 τ 值。

2)欲使系统闭环系统响应速度输入的稳态误差为零,请确定输入补偿环节的传递函数 $G_{hr}(S)$

$$G_1(s) = \frac{k}{s(s+5)} \quad H(s) = \tau s$$

本章重点

- 系统时间响应的性能指标;
- •二阶系统的时域分析;
- 劳斯稳定判据
- 线性系统的稳态误差计算等。
- 学握闭环极点与动态响应的关系。

