

planetmath.org

Math for the people, by the people.

measure

Canonical name Measure

Date of creation 2013-03-22 11:57:33 Last modified on 2013-03-22 11:57:33

Owner djao (24) Last modified by djao (24)

Numerical id 19

Author djao (24) Entry type Definition Classification ${\rm msc}\ 60{\rm A}10$ msc 28A10 Classification Related topic LpSpace Related topic SigmaFinite Related topic Integral2 Related topic Distribution

Related topic
Defines

Defines σ -additive

Defines positive measure

Let $(E, \mathcal{B}(E))$ be a measurable space. A *measure* on $(E, \mathcal{B}(E))$ is a function $\mu \colon \mathcal{B}(E) \to \mathbb{R} \cup \{\infty\}$ with values in the extended real numbers such that:

- 1. $\mu(A) > 0$ for $A \in \mathcal{B}(E)$, with equality if $A = \emptyset$
- 2. $\mu(\bigcup_{i=0}^{\infty} A_i) = \sum_{i=0}^{\infty} \mu(A_i)$ for any sequence of pairwise disjoint sets $A_i \in \mathcal{B}(E)$.

Occasionally, the term *positive measure* is used to distinguish measures as defined here from more general notions of measure which are not necessarily restricted to the non-negative extended reals.

The second property above is called countable additivity, or σ -additivity. A finitely additive measure μ has the same definition except that $\mathcal{B}(E)$ is only required to be an algebra and the second property above is only required to hold for finite unions. Note the slight abuse of terminology: a finitely additive measure is not necessarily a measure.

The triple $(E, \mathcal{B}(E), \mu)$ is called a *measure space*. If $\mu(E) = 1$, then it is called a *probability space*, and the measure μ is called a *probability measure*. Lebesgue measure on \mathbb{R}^n is one important example of a measure.