

(1) 2. (4)	3. (2)	4. (1)	5. (.25)	6. (1)	7. (4)	8. (4)
(2) nathongo 10. (2) athon	` '	` '				/// mathongo ///
(1) $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$ Put, $y = vx$						
$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow \cot v + x \frac{dv}{dx} = \frac{v^2}{v-1} $ $\Rightarrow x \frac{dx}{dx} = \frac{v^2}{v-1} - v = \frac{v}{v-1}$						
$\begin{array}{ll} \Rightarrow & \int \left(\frac{v-1}{v}\right) dv = \int \frac{dx}{x} \\ \Rightarrow & \int \left(1 - \frac{1}{v}\right) dv = \int \frac{dx}{x} \end{array}$						
$\Rightarrow v - \ln v = \ln x + c$ $\Rightarrow \cot \frac{y}{x} = \ln y + c \text{ nothon}$ Alternate Solution:						
We have, $(xy - x^2)\frac{dy}{dx} = y$ $\Rightarrow y^2\frac{dx}{dy} = xy - x^2$ $\Rightarrow \frac{1}{x^2}\frac{dx}{dy} - \frac{1}{x} \cdot \frac{1}{y} = -\frac{1}{y^2}$	y ² go <mark>///.</mark> mathongo					
Put $\frac{1}{x} = \mathbf{v} \Rightarrow -\frac{1}{x^2} \frac{dx}{dy} = \frac{dy}{dy}$ $\therefore \frac{d\mathbf{v}}{dy} + \frac{\mathbf{v}}{y} = \frac{1}{y^2}$, which is l $\therefore \text{IF} = e^{\int \frac{1}{y} dy} = e^{\log y} =$						
$\therefore \text{ The solution is } vy = \int \frac{1}{y^2}$ $\Rightarrow \frac{y}{x} = \log y + c$						
$\Rightarrow y = x(\log y + c)$ This posses through the point $\therefore 1 = -1(\log 1 + c)$	(-1, 1) mathongo					
ie, $c = -1$ Thus, the equation of the curv $y = x (\log y - 1)$	go /// mathongo					
(4) Given differential equation $\frac{dy}{dx} = \frac{y}{x} + e^{\frac{y}{x}}$						
It is homogeneous differential $\therefore \text{ Put } y = vx \Rightarrow \frac{dy}{dx} = v + \\ \therefore v + x \frac{dv}{dx} = \frac{vx}{x} + e^{\frac{vx}{x}}$	equation. $\frac{dv}{dx}$ mothongo					
$\Rightarrow v + x rac{dv}{dx} = v + e^v$ $\Rightarrow x rac{dv}{dx} = e^v$ $\Rightarrow e^{-v} dv = rac{1}{x} dx$						
On integrating both sides, we $-e^{-v} = \log x + c$ $-e^{-\frac{y}{x}} = \log x + c$						
Given, $y(1) = 0$ $\therefore e^{-\frac{0}{1}} = \log 1 + c$ $-1 = 0 + c \implies c = -1$						
$\therefore -e^{-\frac{y}{x}} = \log x - 1$ $\Rightarrow 1 = \log x + e^{-\frac{y}{x}}$						

Answer Keys and Solutions

Answer Keys and Solutions

