

Universidad Técnica Federico Santa María

Departamento de Matemática

2do Semestre 2020

Tarea 3

Series Tiempo II MAT268

Nombre: Ike Mercado Rol: 201610025-3 Profesor: Ronny Vallejos

Tarea 3

Series Tiempo II MAT268 Tarea 3

Problema 1

Muestre que $\hat{\boldsymbol{\beta}} = (ZZ^T)^{-1}Z \otimes I_K)\boldsymbol{y}$ minimiza

$$\bar{S}(\boldsymbol{\beta}) = \boldsymbol{u}^T \boldsymbol{u} = [\boldsymbol{y} - (Z^T \otimes I_K)]^T [\boldsymbol{y} - (Z^T \otimes I_K)]$$

Desarrollo

Sabemos que $y = (Z^T \otimes I_K)\beta + u$, entonces

$$\bar{S}(\boldsymbol{\beta}) = u^{T}u$$

$$= (y - (z^{T} \otimes I_{K})\boldsymbol{\beta})^{T}(y - (z^{T} \otimes I_{K})\boldsymbol{\beta})$$

$$= y^{T}y - ((z^{T} \otimes I_{K})\boldsymbol{\beta})^{T}y + ((z^{T} \otimes I_{K})\boldsymbol{\beta})^{T}((z^{T} \otimes I_{K})\boldsymbol{\beta}) - y^{T}(z^{T} \otimes I_{K})\boldsymbol{\beta}$$

$$= y^{T}y - 2\boldsymbol{\beta}^{T}(z^{T} \otimes I_{K})^{T}y + \boldsymbol{\beta}^{T}(z^{T} \otimes I_{K})^{T}(z^{T} \otimes I_{K})\boldsymbol{\beta}$$

Derivando a ambos lados de la igualdad con respecto a ${\pmb \beta}$

$$\frac{\partial \bar{S}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2(z^T \otimes I_K)^T y + 2(zz^T \otimes I_K)\boldsymbol{\beta} = 0$$

Despejando $\boldsymbol{\beta}$ se sigue que

$$\hat{\boldsymbol{\beta}} = (zz^T \otimes I_K)^{-1} (z^T \otimes I_K)^T y = ((zz^T)^{-1} z \otimes I_K) y$$

Problema 2

Pruebe que

$$\sqrt{T}(\hat{\boldsymbol{b}} - \boldsymbol{b}) \stackrel{d}{\to} \mathcal{N}(0, \sigma_u \otimes \Gamma^{-1})$$

si y_t es estable y

$$\frac{1}{\sqrt{T}}vec(ZU^T) = \frac{1}{\sqrt{T}}(I_K \otimes Z)vec(U^T) \stackrel{d}{\to} \mathcal{N}(0, \sigma_u \otimes \Gamma^{-1})$$

Desarrollo

Notemos que

$$\hat{B} = B + UZ^{T}(ZZ^{T})^{-1}$$

$$\hat{B} - B = UZ^{T}(ZZ^{T})^{-1}$$

$$(\hat{B} - B)^{T} = (UZ^{T}(ZZ^{T})^{-1})^{T}$$

$$(\hat{B} - B)^{T} = (ZZ^{T})^{-1}ZU^{T}$$

MAT-279

Tarea 3

Series Tiempo II MAT268 Tarea 3

Aplicamos la vectorizacion a ambos lados de la igualdad

$$vec((\hat{B} - B)^{T}) = vec((ZZ^{T})^{-1}ZU^{T})$$

$$vec((\hat{B} - B)^{T}) = (I_{K} \otimes (ZZ^{T})^{-1}Z)vec(U^{T})$$

$$vec(\hat{B}^{T}) - vec(B^{T}) = (I_{K} \otimes (ZZ^{T})^{-1}Z)vec(U^{T})$$

Ocupando que $b = vec(B^T)$ se sigue que

$$\hat{b} - b = (I_K \otimes (ZZ^T)^{-1})(I_K \otimes Z)vec(U^T)$$

$$\sqrt{T}(\hat{b} - b) = \left(I_K \otimes \left(\frac{ZZ^T}{T}\right)^{-1}\right)\sqrt{T}(I_K \otimes Z)vec(U^T)$$

Dado que y_t es estable, se tiene que $(ZZ^T/T)^{-1}$ converge en probabilidad a Γ se sigue que

$$\sqrt{T}(\hat{b}-b) = \left(I_K \otimes \Gamma^{-1}\right) \sqrt{T}(I_K \otimes Z) vec(U^T)$$

Luego como $(I_K \otimes Z)vec(U^T)$ converge en distribución a una normal $\mathcal{N}(0, \Sigma_u \otimes \Gamma^{-1})$ y usando el lema de Slutsky se sigue que

$$\sqrt{T}(\hat{b}-b) \stackrel{d}{\longrightarrow} (I_K \otimes \Gamma^{-1}) \mathcal{N}(0, \Sigma_u \otimes \Gamma^{-1})$$

Lo que es equivalente a

$$\sqrt{T}(\hat{b}-b) \xrightarrow{d} \mathcal{N}(0, (I_K \otimes \Gamma^{-1})(\Sigma_u \otimes \Gamma^{-1})(I_K \otimes \Gamma^{-1}))$$

$$\sqrt{T}(\hat{b}-b) \xrightarrow{d} \mathcal{N}(0, (\Sigma_u \otimes \Gamma^{-1}))$$

MAT-279 2

Tarea 3

Problema 3

Derive detalladamente las ecuaciones

$$\widetilde{\boldsymbol{\mu}} = \frac{1}{T} \left(I_K - \sum_{i} \widetilde{A}_i \right)^{-1} \sum_{t} \left(y_t - \sum_{i} \widetilde{A}_i y_{t-i} \right)$$

$$\widetilde{\boldsymbol{\alpha}} = (\widetilde{X} \widetilde{X}^T)^{-1} \widetilde{X} \otimes I_K) (\boldsymbol{y} - \widetilde{\boldsymbol{\mu}}^*)$$

$$\widetilde{\Sigma}_u = \frac{1}{T} (\widetilde{Y}^0 - \widetilde{A} \widetilde{X}) (\widetilde{Y}^0 - \widetilde{A} \widetilde{X})^T$$

Desarrollo:

Considere la función de log-verosimilitud como:

$$\ell(\mu, \alpha, \Sigma_{\mu}) = -\frac{KT}{2} ln 2\pi - \frac{T}{2} ln(\Sigma_{\mu}) - \frac{1}{2} tr[(Y^{0} - AX)' \Sigma_{\mu}^{-1} (Y^{0} - AX)]$$

donde

$$Y^{0} := (y_{1} - \mu, ..., y_{T} - \mu)_{K \times T} \qquad A = (A_{1}, ..., A_{p})_{K \times Kp}$$

$$Y^{0}_{t} := \begin{bmatrix} y_{t} - \mu \\ \vdots \\ y_{t-p+1} - \mu \end{bmatrix} \qquad X := (Y^{1}_{0}, ..., Y^{0}_{T-1})$$

$$\alpha := Vec(A) \qquad \Sigma_{u} := \mathbb{E}[u_{t}u^{T}_{t}] = Cov[u_{t}]$$

D Erivamos con respecto a μ e igualamos a cero

$$\frac{\partial \ell}{\partial \mu} = \frac{\partial}{\partial \mu} \left[\mu^{T} \left(I_{K} - \sum_{i} A_{i} \right)^{T} \sum_{u}^{-1} \sum_{t} \left(y_{t} - \sum_{i} A_{i} y_{t-i} \right) - \frac{T}{2} \mu^{T} \left(I_{K} - \sum_{i} A_{i} \right)^{T} \sum_{u}^{-1} \sum_{t} \left(y_{t} - \sum_{i} A_{i} y_{t-i} \right) \mu \right]
= \left(I_{K} - \sum_{i} A_{i} \right)' \sum_{\mu}^{-1} \sum_{t} \left(y_{t} - \sum_{i} A_{i} y_{t-i} \right) - T \left(I_{K} - \sum_{i} A_{i} \right)' \sum_{\mu}^{-1} \left(I_{K} - \sum_{i} A_{i} \right) \mu
= \left[I_{K} - A (1_{(px1)} I_{K}) \right]' \sum_{\mu}^{-1} \left[\sum_{t} \left(y_{t} - \mu - A Y_{t-1}^{0} \right) \right]$$

Derivemos con respecto a α

$$\frac{\partial \ell}{\partial \alpha} = -\frac{1}{2} \frac{\partial}{\partial \alpha} \left([(y - \mu^*)^T - \alpha^T (X \otimes I_K)] (I_T \otimes \Sigma_u^{-1}) [y - \mu^* - (X^T \otimes I_k) \alpha] \right)
= -\frac{1}{2} \left(-(X \otimes I_K) (I_T \otimes \Sigma_u^{-1}) [y - \mu^* - (X^T \otimes I_k) \alpha] \right) - [(y - \mu^*)^T - \alpha^T (X \otimes I_K)] (I_T \otimes \Sigma_u^{-1}) (X^T \otimes I_K)
= -\frac{1}{2} \left(-(X \otimes I_K) (I_T \otimes \Sigma_u^{-1}) [y - \mu^* - (X^T \otimes I_k) \alpha] - [(y - \mu^*)^T - \alpha^T (X \otimes I_K)] (X \otimes I_K) (I_T \otimes \Sigma_u^{-1}) \right)
= (X \otimes I_K) (I_T \otimes \Sigma_\mu^{-1}) [y - \mu^* - (X' \otimes I_K)) \alpha]
= (X \otimes \Sigma_\mu^{-1}) (y - \mu^*) - (XX' \otimes \Sigma_\mu^{-1}) \alpha$$
(INCOMPLETO)

MAT-279 3

Problema 4

Este problema consiste en modelar las rentabilidades de los fondos de pensiones a través de un modelo Var(p). Para esto considere la base de datos de las AFP Cuprum, Habitat, PlanVital y Provida. Elija un fondo de pensiones que usted desee modelar (A, B, C, D, E). Una versión actualizada de este conjunto de datos entre los años 2005 y 2020 está en la siguiente página: https://github.com/faosorios/AFP/tree/master/datasets

- (a) Grafique la serie de tiempo multivariada que selecionó (por ejemplo el fondo A de las cuatro AFPs, K = 4) como función del tiempo.
- (b) Usando los criterios discutidos en clase seleccione el orden p de un proceso VAR.
- (c) Mediante el método de los mínimos cuadrados, obtenga las estimaciones de los parámetros del modelo VAR(p) que usted propone y escriba la ecuación del modelo ajustado. Comente sobre la significancia de los parámetros.
- (d) ¿Es el proceso estimado estable?
- (e) Considere las ultimas cuatro observaciones de cada serie como si no hubiera sido observada. Entonces, prediga el proceso hasta cuatro pasos adelante y compare el error cuadrático medio entre los valores predichos y los valores reales de cada AFP. ¿Para cuál AFP el modelo predice mejor?
- (f) Grafique las series y sus predicciones en un sólo gráfico, incluyendo intervalos de confianza del 95% para cada predicción.
- (g) Determine si la normalidad de los residuos del modelo es plausible usando un contraste de hipótesis con los valores proporcionados por la función normality.test del paquete VARS de R.

DEsarrollo El desarrollo esta junto con los códigos en este link https://github.com/ike-mercado-huanaque/SeriesTiempo2/blob/main/Tarea3.ipynb

MAT-279 4