Searching

Dr. Nguyen Hua Phung

HCMC University of Technology, Viet Nam

05, 2020

Outline

- Searching Unsorted and Sorted Arrays
 - Searching Unsorted Arrays
 - Searching Sorted Arrays
- Self-organizing Lists
- 3 Hashing
 - Basic Concepts
 - Hash Function
 - Collision Resolution Policy
 - Open Hashing
 - Closed Hashing

Introduction

Definition

- \bullet $(k_1, l_1), (k_2, l_2), \ldots, (k_n, l_n)$
- Given K, locate (k_i, l_i) such that $K == k_i$

Terms

- Successfull search: $\exists j, K == k_i$
- Unsuccessful search: $\forall j, K \neq k_i$
- Exact-match query: key value exactly match searching key
- Range query: key value within a specific range

Sequential Searching

- Sequentially comparing K with k_j until K is equal to k_j or no more element.
- Best case: O(1)
- Worst case: O(n)

Jump Search

- Given sorted array A and some value j,
- Comparing K with every j'th element, i.e. A[j], A[2j], ...
 until K is
 - == $A[kj] \Rightarrow$ return found
 - > $A[kj] \Rightarrow linear search from A[(k-1)j] to A[kj]$
 - no more element ⇒ linear search from A[(k-1)j] to A[n]
- If j is \sqrt{n} , worst case cost $\approx 2\sqrt{n}$.

Binary Search

- Given an array A in ascending order,
- Comparing K with the element at the middle A[n/2], if K is
 - == $A[n/2] \Rightarrow$ return found
 - < A[n/2] ⇒ recursively search on the left half of A
 - > $A[n/2] \Rightarrow$ recursively search on the right half of A
- Worst case: O(log₂n)

Dictionary Search

- Given a sorted array A,
- Assume the values in A are evenly distributed,
- Like binary search but comparing with the element at

$$p = \frac{K - A[1]}{A[n] - A[1]} \times n$$

Frequency of Access

- In many search applications, real access patterns follow the rule: 80/20
- 80% access to 20% of data
- Arrange the array based on the frequency of access instead of the value of element
 - Sort the array based on the frequency
 - Move-to-front the element when it is found
 - Transpose: move the element one step toward the front when it is found
- Sequential search

- Keep the array sorted by frequency
- Search F
- Search D
- Search D

- Keep the array sorted by frequency
- Search F
- Search D
- Search D

- Keep the array sorted by frequency
- Search F
- Search D
- Search D

- Keep the array sorted by frequency
- Search F
- Search D
- Search D

- Keep the array sorted by frequency
- Search F
- Search D
- Search D

- Keep the array sorted by frequency
- Search F
- Search D
- Search D

- Keep the array sorted by frequency
- Search F
- Search D
- Search D

- Apply move to front
- Search F
- Search D
- Search D

- Apply move to front
- Search F
- Search D
- Search D

- Apply move_to_front
- Search F
- Search D
- Search D

- Apply move_to_front
- Search F
- Search D
- Search D

- Apply move to front
- Search F
- Search D
- Search D

- Apply move to front
- Search F
- Search D
- Search D

- Apply transpose
- Search F
- Search D
- Search D

- Apply transpose
- Search F
- Search D
- Search D

- Apply transpose
- Search F
- Search D
- Search D

- Apply transpose
- Search F
- Search D
- Search D

- Apply transpose
- Search F
- Search D
- Search D

- Apply transpose
- Search F
- Search D
- Search D

- Apply transpose
- Search F
- Search D
- Search D

- Sequential Search: O(n) requiring several key comparisons
 Binary Search: O(log n) before the target is found
- Is there a search algorithm whose complexity is O(1)?
 YES
 - Use key as the array index
 - Good on time complexity but bad on space complexity
 - Use a function to map from big space to smaller space: hashing function

Example

0	1	2	3	4	 120	121	122	1023
		2				121		1023

Hash Function Example

- Home address: address produced by a hash function
- Prime area: memory that contains all the home address
- Synonyms: a set of keys that hash to the same location
- Collision: the location of the data to be inserted is already occupied by other data.
- Probing: the technique to resolve the collisions.
- Ideal hashing:
 - No location collision
 - Compact address space

- Insert A, B, C
- hash(A) = 9
- hash(B) = 9
- hash(C) = 17

- Insert A, B, C
- hash(A) = 9
- hash(B) = 9
- hash(C) = 17

- Insert A, B, C
- hash(A) = 9
- hash(B) = 9
- hash(C) = 17

Hash Functions

- Direct hashing
- Modulo division
- Digit extraction
- Mid-square
- Folding
- Rotation
- Pseudo-random

Direct Hashing

- The address is the key itself hash(Key) = Key
- Advantage: there is no collision.
- Disadvantage: the address space (storage size) is as large as the key space

Modulo Division

- Fewer collisions if listSize is a prime number
- Example:
 - Numbering system to handle 1,000,000 employees
 - Data space to store up to 300 employees
 - hash(121267) = 121267 MOD 307 + 1 = 2 + 1 = 3

Digit Extraction

Address = selected digits from Key

• Example:

Mid-square

Address = middle digits of Key²

• Example:

$$9452 * 9452 = 89340304 \rightarrow 3403$$

- Disadvantage: the size of the Key² is too large
- Variations: use only a portion of the key

```
379452 : 379*379 = 143641 \rightarrow 364

121267 : 121*121 = 014641 \rightarrow 464

045128 : 045*045 = 002025 \rightarrow 202
```

Folding

- The key is divided into parts whose size matches the address size
- Example:

```
Key = 123456789
```

Folding: 123|456|789

Fold shift: $123 + 456 + 789 = 1368 \Rightarrow 368$

or

Fold boundary: $321 + 456 + 987 = 1764 \Rightarrow 764$

Rotation

- Hashing keys that are identical except for the last character may create synonyms.
- The key is rotated before hashing.
- Used in combination with fold shift
- Spreading the data more evenly across the address space

original key	rotated key	fold shift
600101	160010	16
60010 <mark>2</mark>	2 60010	26
60010 <mark>3</mark>	3 60010	36
60010 <mark>4</mark>	4 60010	46
60010 <mark>5</mark>	5 60010	56

Pseudorandom

- For maximum efficiency, a and c should be prime numbers
- Example:

Collision Resolution

- Except for the direct hashing, none of the others are one-to-one mapping
 - ⇒ Requiring collision resolution methods
- Each collision resolution method can be used independently with each hash function
- A rule of thumb: a hashed list should not be allowed to become more than 75% full.
- Load factor:

$$\alpha = (k/n) * 100$$

n = list size

k = number of filled elements

Collision resolution

- As data are added and collisions are resolved, hashing tends to cause data to group within the list
 Clustering: data are unevenly distributed across the list
- High degree of clustering increases the number of probes to locate an element
 Minimize clustering

Collision resolution

 Primary clustering: data become clustered around a home address.

Insert A₉, B₉, C₉, D₁₁, E₁₂

 Secondary clustering: data become grouped along a collision path throughout a list.

Collision Resolution Policies

- Open hashing
- Closed hashing
 - Bucket hashing
 - Open Addressing
 - Linear probing
 - Quadratic probing
 - Double hashing

Open Hashing

Use linked list to store synonyms

Bucket Hashing

- Hashing data to buckets that can hold multiple pieces of data.
- Each bucket has an address and collisions are postponed until the bucket is full.

Bucket Hashing Example

- Hash function: h(k) = k MOD 5
- Insert in the order: 9877, 2007, 1000, 9530,3013, 9879, and 1057

Open Addressing

- When a collision occurs, an unoccupied element is searched for placing the new element in.
- Normal hash function:

$$\begin{array}{ccc} \text{h: U} & \rightarrow & \{0,\dots,\text{m-1}\} \\ \text{set of keys} & \text{addresses} \end{array}$$

Open Addressing uses hash and probe function:

Open Addressing

- There are different methods:
 - Linear probing
 - Quadratic probing
 - Double hashing

Linear Probing

 When a home address is occupied, go to the next address (the current address + 1):

$$hp(k,i) = (h(k) + i) MOD m$$

- Advantages:
 - quite simple to implement
 - data tend to remain near their home address (significant for disk addresses)
- Disadvantages:
 - produces primary clustering

Linear Probing Example

- Hash function: h(k) = k MOD 10
- hp(k,i) = (h(k) + i) MOD 10
- Insert 1001, 9050, 9877, 2037 and 1059

0	9050
1	1001
2	
3	
4	
5	
6	
7	9877
8	2037
9	1059

Quadratic Probing

 The address increment is the collision probe number squared:

$$hp(k,i) = (h(k) + i^2) MOD m$$

- Advantages:
 - works much better than linear probing
- Disadvantages:
 - time required to square numbers
 - produces secondary clustering

Quadratic Probing Example

- Hash function: A₉, B₉, C₉, D₁₁, E₁₂,F₉
- $hp(k,i) = (h(k) + i^2) MOD 23 + 1$
- Insert A, B, C, D, E, F

Double Hashing

Using two hash functions:

$$hp(k,i) = (h_1(k)+i * h_2(k)) MOD m$$

Double Hashing Example

- Hash function 1: h₁(k) = k MOD 10
- Hash function 2: h₂(k) = 5 (k MOD 5)
- $hp(k,i) = (h_1(k) + i * h_2(k)) MOD 10$
- Insert 1001, 9050, 9877, 2037 and 1059
- $h_1(2037) = 7$, $h_2(2037) = 3$, hp(k,1) = 0, hp(k,2) = 3

0	9050
1	1001

- 2
- 3 2037
- 5

4

- 6
 - 9877
- 8
 - 1059

9