13-4 Vectors

The journey of a boat or airplane can be described by giving its speed and direction, such as 50 km/h northeast. Any quantity such as force, velocity, or acceleration, that has both magnitude (size) and direction. is a vector.

When a boat moves from point A to point B, its journey can be represented by drawing an arrow from A to B, \overline{AB} (read "vector AB"). If \overline{AB} is drawn in the coordinate plane, then the journey can also be represented as an ordered pair.

$$\overrightarrow{AB}$$
 = (change in x, change in y)

The magnitude of a vector AB is the length of the arrow from point A to point B and is denoted by the symbol $|\overline{AB}|$. You can use the Pythagorean Theorem or the Distance Formula to find the magnitude of a vector. In the diagrams above,

$$|\overrightarrow{AB}| = \sqrt{4^2 + 3^2} = 5$$

and $|\overrightarrow{CD}| = \sqrt{5^2 + 2^2} = \sqrt{29}$.

Example 1 Given: Points P(-5, 4) and Q(1, 2)

- a. Sketch PO.
- **b.** Find \overline{PO} .
- c. Find | PO |.

Solution

b.
$$\overrightarrow{PQ} = (1 - (-5), 2 - 4) = (6, -2)$$

c. $|\overrightarrow{PQ}| = \sqrt{6^2 + (-2)^2} = \sqrt{40} = 2\sqrt{10}$