MEMORIA DE CÁLCULO ESTRUCTURA DE HORMIGÓN ARMADO Y ESTRUCTURA DE TECHOS

PROPIETARIAS: ALAN DA SILVA

DNI: 34.448.014

OBRA: NUEVA

DESTINO: VIVIENDA UNIFAMILIAR

DIRECCIÓN: CALLE FRANCISCO RAMIREZ 69) 4027

INDICE:

1 - DISEÑO DE LOSA ALIVIANADA – ANALISIS DE CARGAS	Pág 3
2 - DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE VIGAS DE H°A°	Pág 9
3 - DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE COLUMNAS DE H°A°	_Pág 15
4 - DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE BASES DE H°A°	_Pág 23
5 - DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE ESCALERA DE H°A°	_Pág 29
6 - DISEÑO Y VERIFICACIÓN ESTRUCTURA METALICA DE TECHOS	Pág 33

1 – DISEÑO DE LOSA ALIVIANADA ANALISIS DE CARGAS

1.1 INTRODUCCIÓN.

Según el proyecto arquitectónico, el edificio se compone de 2 bloques, uno de ellos corresponde a una vivienda familiar de dos plantas, y el otro a una vivienda multifamiliar de dos plantas también. El nivel de piso terminado adoptado en planta baja es Z= +0.10 m y el nivel de piso terminado en la planta alta es de Z= +3.00 m.

La losa es alivianada con viguetas pre tensadas y bloques de polietireno expandido, más una carpeta de compresión de HºAº.

Los materiales a utilizar son, en todos los casos:

Calidad del hormigón: H-21 $f_c = 21 Mpa$

Acero: ADN 420

1.2 METODOLOGÍA DE CÁLCULO.

El método de cálculo está basado en el reglamento CIRSOC 201-05, con todas las verificaciones correspondientes.

El análisis de cargas correspondiente, se realiza teniendo en cuenta todas las cargas que inciden de manera significativa y las que están especificadas en el reglamento CIRSOC 101-05.

La determinación de solicitaciones se realiza mediante el software de cálculo por elementos finitos SAP 2000 V16.

1.3.2 ANALISIS DE CARGAS:

El peso propio de la estructura de H°A°, sean losas macizas, vigas y columnas, está considerado en el software de cálculo, por lo tanto, no es necesario determinarlo previamente. En cambio, las cargas provenientes del peso propio de las losas alivianadas se deben hallar previamente y sus descargas a las vigas como cargas lineales. Según lo proyectado, el destino del edificio será de vivienda familiar, por lo tanto, usamos las sobrecargas correspondientes. Las cargas están divididas según cargas permanentes (D) o sobrecargas de uso (L):

Descarga debido al uso (cargas vivas):

$$q_L(vivienda) = 2.00 \frac{KN}{m^2}$$

$$q_L(balcones) = 5.00 \frac{KN}{m^2}$$

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. Nº 3311

Descarga debido al solado:

La carga permanente debido al solado es la siguiente, según lo dispuesto en el proyecto

arquitectónico:

$$q_D(contrapiso) = 18 \frac{KN}{m^3}$$

$$q_D(carpeta\,) = 21 \frac{KN}{m^3}$$

$$q_D(piso\ cer\'amico) = 0.28 \frac{KN}{m^2}$$

$$q_D(cielorraso) = 0.20 \frac{KN}{m^2}$$

$$q_D(losa) = 2.75 \frac{KN}{m^2}$$

Entonces la carga permanente del solado + peso de la losa es:

$$q_D(sol + losa) = 18\frac{KN}{m^3} \cdot 0.05m + 21\frac{KN}{m^3} \cdot 0.02m + 0.28\frac{KN}{m^2} + 0.20\frac{KN}{m^2} + 2.75\frac{KN}{m^2} = 4.55\frac{KN}{m^2}$$

Descarga debido lineales debido a las mamposterías:

$$q_D(mamposteria) = 0.20 \text{ m} \cdot 3.00 \text{ m} \cdot 12.00 \frac{\text{KN}}{\text{m}^3} = 7.20 \frac{KN}{m}$$

Descarga de las losas alivianadas a las vigas:

En las vigas donde apoyan las viguetas, la acción de las cargas es por longitud, saliendo esta carga del producto de las cargas por unidad de superficie y el área influencia según el siguiente esquema:

BLOQUE FRENTE

Descarga de los techos:

La descarga de los techos se obtiene de la misma manera y mediante esquema siguiente, la cual se aplicarán sobre las vigas encadenado del último piso, y esta se transmitirá a través de las columnas.

BLOQUE FRENTE

$$q_L(techos) = 1.00 \frac{KN}{m^2}$$

$$q_D(techos) = 0.25 \frac{KN}{m^2}$$

Faldón Nº 1 = Faldón Nº 2

$$q_L(techos) = \frac{1.00 \frac{KN}{m^2} \cdot 51.95 m^2}{12.00 m} = 4.32 \ \frac{KN}{m}$$

$$q_D(techos) = \frac{0.25 \frac{KN}{m^2} \cdot 32.53 m^2}{12.00 m} = 1.08 \frac{KN}{m}$$

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. Nº 3311

BLOQUE FONDO

Faldón Nº 3 = Faldón 4

$$q_L(techos) = \frac{1.00 \cdot 49.86m^2}{12.00m} = 4.15 \; \frac{KN}{m}$$

$$q_D(techos) = \frac{0.25 \frac{KN}{m^2} \cdot 49.86m^2}{12.00m} = 1.04 \frac{KN}{m}$$

Descarga del tanque:

El tanque se apoya en una estructura metálica que en las mamposterías que se descargan sobre las vigas V301, V302, V303 y 304.

$$q_D(tanque) = 10.00 KN$$

Con todas estas cargas, más el peso propio de las vigas y columnas de H°A°, se aplican los polinomios de mayoración de carga según CIRSOC 201-05:

$$\begin{aligned} q_U &= 1.4 \cdot (D+F) \\ q_U &= 1.2 \cdot (D+F+T) + \ 1.6 \cdot (L+H) + (f_1 \cdot L_r \ o \ 0.5 \cdot S \ o \ 0.5 \cdot R) \\ q_U &= 1.2 \cdot D + \ 1.6 \cdot (L_r \ o \ S \ o \ R) + (f_1 \cdot L \ o \ 0.8 \cdot W) \\ q_U &= 1.2 \cdot D + \ 1 \cdot E + f_1 \cdot (L+L_r) + f_2 \cdot S \\ q_U &= 1.2 \cdot (D+F+T) + \ 1.6 \cdot W + f_1 \cdot L + (f_1 \cdot L_r \ o \ 0.5 \cdot S \ o \ 0.5 \cdot R) \\ q_U &= 0.9 \cdot D + \ 1.6 \cdot W + 1.6 \cdot H \\ q_U &= 0.9 \cdot D + \ 1 \cdot E + 1.6 \cdot H \end{aligned}$$

En la siguiente tabla se detallan las cargas tanto vivas como muertas que actúan sobre cada viga.

DISTRIBUCION DE CARGAS EN VIGAS											
				Carga por	Carga por	Carga por	TOT::	T.C.T.:			
	L	AREA DE	AREA	superficie	superfici	longitud	TOTAL	TOTAL			
VIGA	TOTAL(m	INFLUENCIA	(m²)	qd	e ql	mamposteria	qd	ql			
)		, ,	(Kn/m²)	(Kn/m²)	ql (Kn/m)	(Kn/ml)	(Kn/ml)			
Nivel Z=	3,00 m		<u> </u>								
V101	3,15	-	0,00	4,55	2,00	7,20	7,20	0,00			
V102	5,31	-	0	4,55	2,00	7,20	7,20	0,00			
V103	8,66	5	18,65	4,55	2,00	7,20	17,00	4,31			
V104	8,66	5	18,65	4,55	2,00	7,20	17,00	4,31			
V105	8,66	6	18,65	4,55	2,00	7,20	17,00	4,31			
V106	8,66	6	18,65	4,55	2,00	7,20	17,00	4,31			
V107	2,40	-	0,00	4,55	2,00	7,20	7,20	0,00			
V108	3,03	-	0,00	4,55	2,00	7,20	7,20	0,00			
V109	3,03	-	0,00	4,55	2,00	7,20	7,20	0,00			
V110	4,23	-	0,00	4,55	2,00	7,20	7,20	0,00			
V111	4,23	-	0,00	4,55	2,00	7,20	7,20	0,00			
V112	4,23	-	0,00	4,55	2,00	7,20	7,20	0,00			
V113	4,23	-	0,00	4,55	2,00	7,20	7,20	0,00			
V114	4,23	-	0,00	4,55	2,00	7,20	7,20	0,00			
V115	4,23	-	0,00	4,55	2,00	7,20	7,20	0,00			
V116	7,69	1	12,90	4,55	2,00	7,20	14,83	3,36			
V117	7,69	1	12,90	4,55	2,00	7,20	14,83	3,36			
V118	4,11	-	0,00	4,55	2,00	7,20	7,20	0,00			
V119	7,69	2	27,50	4,55	2,00	7,20	23,47	7,15			
V120	7,69	2	27,50	4,55	2,00	7,20	23,47	7,15			
V121	4,11	-	0,00	4,55	2,00	7,20	7,20	0,00			
V122	6,12	4	13,10	4,55	2,00	7,20	16,94	4,28			
V123	1,48	3	5,00	4,55	2,00	7,20	22,57	6,76			
V124	6,32	-	0,00	4,55	2,00	7,20	7,20	0,00			
V125	4,11	-	0,00	4,55	2,00	7,20	7,20	0,00			
V126	4,49	-	0,00	4,55	2,00	7,20	7,20	0,00			
V127	4,49	-	0,00	4,55	2,00	7,20	7,20	0,00			
V128	1,60	7	2,59	4,55	2,00	7,20	14,57	3,24			
V129	10,39	11	23,00	4,55	2,00	7,20	17,27	4,43			
V130	10,39	11	23,00	4,55	2,00	7,20	17,27	4,43			
V131	10,39	11	23,00	4,55	2,00	7,20	17,27	4,43			
V132	10,39	12	44,00	4,55	2,00	7,20	26,47	8,47			
V133	10,39	12	44,00	4,55	2,00	7,20	26,47	8,47			
V134	10,39	12	44,00	4,55	2,00	7,20	26,47	8,47			
V135	1,60	10	2,59	4,55	2,00	7,20	14,57	3,24			
V136	10,39	13	23,00	4,55	2,00	7,20	17,27	4,43			
V137	10,39	13	23,00	4,55	2,00	7,20	17,27	4,43			
V138	10,39	13	23,00	4,55	2,00	7,20	17,27	4,43			
LOSA TA	NQUE										
V401	2,40	-	0,00	14,00	2,00	7,20	7,20	0,00			
V402	2,40	-	0	14,00	2,00	7,20	7,20	0,00			
V403	4,69	15	6,10	14,00	2,00	7,20	25,41	2,60			
V404	4,69	16	6,10	14,00	2,00	7,20	25,41	2,60			

2- DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE VIGAS DE HºAº

2.1 INTRODUCCIÓN.

Se realiza tanto el dimensionado de la sección de hormigón, como las barras de acero, y su correspondiente doblado, siguiendo un criterio de optimización de materiales y mano de obra, esto quiere decir que se trata de armonizar el armado de las mismas siempre y cuando se cumplan con los requisitos mínimos de diseño y resistencia.

Los materiales a utilizar son, en todos los casos:

Calidad del hormigón: H-21 $f_c = 21 Mpa$ Acero: ADN 420

2.2 METODOLOGÍA DE CÁLCULO.

El método de cálculo está basado en el reglamento CIRSOC 201-05, repitiendo lo visto en el diseño de losas. Se realiza el pre-dimensionado por flecha máxima, adoptando siempre que sea posible un ancho b=0.20 m, según requerimientos arquitectónicos.

Todas las vigas se calculan como vigas rectangulares, no considerando anchos de colaboración, estando de esta manera del lado de la seguridad.

La determinación de solicitaciones se realiza mediante el software de cálculo por elementos finitos SAP 2000 V16, el cual toma las descargas de las losas y considera a la estructura trabajando como todo un conjunto.

2.3 VERIFICACIÓN ESTRUCTURAL.

2.3.1 PRE-DIMENSIONADO.

DETERMINACIÓN ESPESORES EN VIGAS											
VIGA	L(m)	FACTOR	h _{cal} (m)	h _{adop} (m)							
Nivel Z= + 3,	25 m										
V101	3,15	18,5	0,17	0,40							
V102	5,31	18,5	0,29	0,40							
V103	3,15	18,5	0,17	0,40							
V104	5,31	18,5	0,29	0,40							
V105	3,15	18,5	0,17	0,30							
V106	5,31	18,5	0,29	0,30							
V107	2,40	16	0,15	0,30							
V108	3,03	18,5	0,16	0,30							
V109	3,03	18,5	0,16	0,30							
V110	4,23	18,5	0,23	0,30							
V111	4,23	18,5	0,23	0,30							
V112	4,23	18,5	0,23	0,30							
V113	4,23	18,5	0,23	0,30							
V114	4,23	18,5	0,23	0,30							
V115	4,23	18,5	0,23	0,30							
V116	1,48	8	0,19	0,30							
V117	6,32	21	0,30	0,30							
V118	4,11	18,5	0,22	0,30							
V119	1,48	8	0,19	0,30							
V120	6,32	21	0,30	0,30							
V121	4,11	18,5	0,22	0,30							
V122	6,32	16	0,40	0,40							
V123	1,48	8	0,19	0,30							
V124	6,32	21	0,30	0,30							

				_
V125	4,11	18,5	0,22	0,30
V126	4,49	16	0,28	0,30
V127	4,49	16	0,28	0,30
V128	1,50	8	0,19	0,30
V129	3,23	21	0,15	0,30
V130	3,71	21	0,18	0,30
V131	3,45	18,5	0,19	0,30
V132	3,23	18,5	0,17	0,30
V133	3,71	21	0,18	0,30
V134	3,45	18,5	0,19	0,30
V135	1,50	8	0,19	0,30
V136	3,23	21	0,15	0,30
V137	3,71	21	0,18	0,30
V138	3,45	18,5	0,19	0,30
LOSA TANQU	JES			
V301	3,15	16	0,20	0,40
V302	5,31	16	0,33	0,40
V303	3,15	16	0,20	0,40
V304	5,31	16	0,33	0,40

Pág. 10 de 36

2.3.2 SOLICITACIONES:

Como se mencionó anteriormente, las solicitaciones son determinadas mediante el software SAP 2000 V16.

Ejemplo de resultados que tira el programa para cada viga individual:

$$\emptyset \cdot M_n \ge M_n \emptyset = 0.9$$

Conociendo los valores geométricos de b y d, se halla el factor kd:

$$k_d = \frac{d}{\sqrt{\frac{M_n}{b}}}$$

Con este valor se ingresa a las tablas denominadas "kd" CIRSOC 201-05, y se obtienen los valores de los coeficientes adimensionales k_e , k_z , k_z .

Primeros se verifica que la deformación del acero sea mayor que 0.005 para asegurar que la sección este controlada por la tracción.

$$\varepsilon_s = \varepsilon_c \cdot \frac{1 - k_c}{k_c} \varepsilon_s \ge 0.005$$

Si esta condición se verifica, se puede continuar usando $\emptyset=0.90\,$ y calcular la armadura necesaria. De caso contrario se debe modificar \emptyset y re calcular todo.

La armadura necesaria está dada por:

$$A_s = k_e \cdot \frac{M_n}{d}$$

La armadura mínima por fragüe y temperatura es:

$$A_{smin} = \frac{1.4 \cdot b_w \cdot d}{f_y}$$

2.3.4 VERIFICACIÓN AI CORTE:

Se utilizan los valores de corte máximo, independientemente si es un apoyo directo o indirecto y se aplica el mismo criterio de mayoración de cargas y minoración de resistencia.

$$\emptyset \cdot V_n \geq V_u \emptyset = 0.75$$

La contribución del hormigón para resistir el corte es:

$$V_c = \frac{1}{6} \cdot \sqrt{f'_c} \cdot b_w \cdot d$$

Si $V_c > V_n$ entonces el hormigón tiene capacidad para resistir sólo el corte, por lo que se colocará una armadura mínima dada por estribos de 1 \emptyset 6 mm c/25 cm.

Si se da el caso contrario, es decir $V_c < V_n$ entonces se procede de la siguiente manera:

$$V_{\rm s} = V_{\rm n} - V_{\rm c}$$

Y con este valor de V_s se calcula la armadura para corte:

$$V_S = \frac{A_V \cdot f_y \cdot d}{S}$$

Se adoptan estribos con barras de Ø 6 mm, por lo tanto, nos queda hallar la separación "s" para cada caso.

Pág. 12 de 36

AMILA N. COUTOUNE

Por último, se verifica que la tensión límite en el hormigón no sea sobrepasada:

$$\tau_n = \frac{V_n}{b_w \cdot d} \le \tau_{lim} = \frac{1}{6} \cdot \sqrt{f'_c}$$

A continuación se adjuntan las planillas de calullo

			Mu	Mn					As	Asmin	
Denom.	d(m)	b(m)	(KNm)	(MNm)	kd	ke	kc	ES	(cm ²)	(cm²)	Adoptado
Z =3,00 m			-						, ,		
V 101	0,38	0,20	20,00	0,0222	1,14	25,207	0,130	0,020	1,47	2,53	3 Ø 12 mm
V 102	0,38	0,20	94,00	0,1044	0,53	27,11	0,286	0,007	7,45	2,53	3 Ø 12 mm + 4 Ø 16 mm
V 103	0,38	0,20	15,00	0,0167	1,32	24,301	0,048	0,060	1,07	2,53	3 Ø 12 mm
V 104	0,38	0,20	122,00	0,1356	0,46	28,324	0,375	0,005	10,10	2,53	3 Ø 12 mm + 4 Ø 16 mm
V 105	0,28	0,20	8,60	0,0096	1,28	24,301	0,048	0,060	0,83	1,87	3 Ø 12 mm
V 106	0,28	0,20	54,50	0,0606	0,51	27,427	0,310	0,007	5,93	1,87	3 Ø 12 mm +2 Ø 16 mm
V 107	0,28	0,20	4,25	0,0047	1,82	24,301	0,048	0,060	0,41	1,87	3 Ø 12 mm
V 108	0,28	0,20	6,70	0,0074	1,45	24,301	0,048	0,060	0,65	1,87	3 Ø 12 mm
V 109	0,28	0,20	7,70	0,0086	1,35	24,301	0,048	0,060	0,74	1,87	3 Ø 12 mm
V 110	0,28	0,20	11,10	0,0123	1,13	24,766	0,091	0,030	1,09	1,87	3 Ø 12 mm
V 111	0,28	0,20	11,00	0,0122	1,13	24,766	0,091	0,030	1,08	1,87	3 Ø 12 mm
V 112	0,28	0,20	11,00	0,0122	1,13	24,766	0,091	0,030	1,08	1,87	3 Ø 12 mm
V 113	0,28	0,20	11,00	0,0122	1,13	24,766	0,091	0,030	1,08	1,87	3 Ø 12 mm
V 114	0,28	0,20	11,15	0,0124	1,13	24,766	0,091	0,030	1,10	1,87	3 Ø 12 mm
V 115	0,28	0,20	11,20	0,0124	1,12	24,766	0,091	0,030	1,10	1,87	3 Ø 12 mm
V 116	0,38	0,20	76,60	0,0851	0,58	26,399	0,231	0,010	5,91	2,53	4 Ø 16 mm
V 117	0,28	0,20	66,00	0,0733	0,46	26,758	0,529	0,003	7,01	1,87	3 Ø 12 mm + 3 Ø 16 mm
V 118	0,28	0,20	5,50	0,0061	1,60	24,301	0,048	0,060	0,53	1,87	3 Ø 12 mm + 3 Ø 16 mm
V 119	0,38	0,20	90,15	0,1002	0,54	27,427	0,310	0,007	7,23	2,53	4 Ø 16 mm
V 120	0,38	0,20	98,00	0,1089	0,51	27,427	0,310	0,007	7,86	2,53	3 Ø 12 mm + 3 Ø 16 mm
V 121	0,38	0,20	20,00	0,0222	1,14	24,766	0,091	0,030	1,45	2,53	3 Ø 12 mm + 3 Ø 16 mm
V 122	0,38	0,20	120,00	0,1333	0,47	28,038	0,355	0,005	9,84	2,53	5 Ø 16 mm
V 123	0,28	0,20	31,00	0,0344	0,67	25,625	0,167	0,015	3,15	1,87	3 Ø 12 mm
V 124	0,28	0,20	28,40	0,0316	0,70	25,625	0,167	0,015	2,89	1,87	3 Ø 12 mm
V 125	0,28	0,20	21,00	0,0233	0,82	25,207	0,130	0,020	2,10	1,87	3 Ø 12 mm
V 126	0,28	0,20	9,60	0,0107	1,21	24,301	0,048	0,060	0,93	1,87	3 Ø 12 mm
V 127	0,28	0,20	9,60	0,0107	1,21	24,301	0,048	0,060	0,93	1,87	3 Ø 12 mm
V 128	0,28	0,20	31,00	0,0344	0,67	25,625	0,167	0,015	3,15	1,87	3 Ø 12 mm
V 129	0,28	0,20	12,50	0,0139	1,06	24,766	0,091	0,030	1,23	1,87	4 Ø 12 mm
V 130	0,28	0,20	14,00	0,0156	1,00	24,766	0,091	0,030	1,38	1,87	4 Ø 12 mm
V 131	0,28	0,20	22,50	0,0250	0,79	25,207	0,130	0,020	2,25	1,87	4 Ø 12 mm
V 132	0,28	0,20	20,50	0,0228	0,83	25,207	0,130	0,020	2,05	1,87	4 Ø 12 mm
V 133	0,28	0,20	4,00	0,0044	1,88	24,301	0,048	0,060	0,39	1,87	4 Ø 12 mm
V 134	0,28	0,20	43,00	0,0478	0,57	26,758	0,529	0,003	4,57	1,87	4 Ø 12 mm
V 135	0,28	0,20	30,50	0,0339	0,68	25,625	0,167	0,015	3,10	1,87	4 Ø 12 mm
V 136	0,28	0,20	32,22	0,0358	0,66	26,021	0,200	0,012	3,33	1,87	4 Ø 12 mm
V 137	0,28	0,20	15,00	0,0167	0,97	24,766	0,091	0,030	1,47	1,87	4 Ø 12 mm
V 138	0,28	0,20	23,40	0,0260	0,78	25,207	0,130	0,020	2,34	1,87	4 Ø 12 mm

Denom.	d(m)	b(m)	Vu(KN)	Vn(MN)	/c(MN	Vs (MN)	s(cm)	τη (Mpa)	lim (Mpa	Adoptado
Z =3,00 m										
V 101	0,38	0,20	28,00	0,037	0,058	As min	25,00	0,491	3,819	1Ø 6 c/15 cm
V 102	0,38	0,20	90,00	0,120	0,058	0,062	14,43	1,579	3,819	1Ø 6 c/5 cm
V 103	0,38	0,20	66,00	0,088	0,058	0,030	29,84	1,158	3,819	1Ø 6 c/10 cm
V 104	0,38	0,20	120,00	0,160	0,058	0,102	8,77	2,105	3,819	1Ø 6 c/5 cm
V 105	0,28	0,20	50,00	0,067	0,043	0,024	27,56	1,190	3,819	1Ø 6 c/15 cm
V 106	0,28	0,20	86,00	0,115	0,043	0,072	9,16	2,048	3,819	1Ø 6 c/5 cm
V 107	0,28	0,20	12,60	0,017	0,043	As min	25,00	0,300	3,819	1Ø 6 c/15 cm
V 108	0,28	0,20	18,00	0,024	0,043	As min	25,00	0,429	3,819	1Ø 6 c/15 cm
V 109	0,28	0,20	18,00	0,024	0,043	As min	25,00	0,429	3,819	1Ø 6 c/15 cm
V 110	0,28	0,20	25,20	0,034	0,043	As min	25,00	0,600	3,819	1Ø 6 c/15 cm
V 111	0,28	0,20	19,00	0,025	0,043	As min	25,00	0,452	3,819	1Ø 6 c/15 cm
V 112	0,28	0,20	24,00	0,032	0,043	As min	25,00	0,571	3,819	1Ø 6 c/15 cm
V 113	0,28	0,20	18,00	0,024	0,043	As min	25,00	0,429	3,819	1Ø 6 c/15 cm
V 114	0,28	0,20	25,00	0,033	0,043	As min	25,00	0,595	3,819	1Ø 6 c/15 cm
V 115	0,28	0,20	25,00	0,033	0,043	As min	25,00	0,595	3,819	1Ø 6 c/15 cm
V 116	0,38	0,20	24,00	0,032	0,058	As min	25,00	0,421	3,819	1Ø 6 c/5 cm
V 117	0,28	0,20	84,00	0,112	0,043	0,069	9,51	2,000	3,819	1Ø 6 c/5 cm
V 118	0,28	0,20	34,00	0,045	0,043	0,003	256,99	0,810	3,819	1Ø 6 c/15 cm
V 119	0,38	0,20	134,00	0,179	0,058	0,121	7,41	2,351	3,819	1Ø 6 c/5 cm
V 120	0,38	0,20	135,00	0,180	0,058	0,122	7,33	2,368	3,819	1Ø 6 c/5 cm
V 121	0,38	0,20	41,00	0,055	0,058	As min	25,00	0,719	3,819	1Ø 6 c/15 cm
V 122	0,38	0,20	93,00	0,124	0,058	0,066	13,55	1,632	3,819	1Ø 6 c/15 cm
V 123	0,28	0,20	52,00	0,069	0,043	0,027	24,79	1,238	3,819	1Ø 6 c/15 cm
V 124	0,28	0,20	31,00	0,041	0,043	As min	25,00	0,738	3,819	1Ø 6 c/15 cm
V 125	0,28	0,20	30,00	0,040	0,043	As min	25,00	0,714	3,819	1Ø 6 c/15 cm
V 126	0,28	0,20	23,00	0,031	0,043	As min	25,00	0,548	3,819	1Ø 6 c/15 cm
V 127	0,28	0,20	23,00	0,031	0,043	As min	25,00	0,548	3,819	1Ø 6 c/15 cm
V 128	0,28	0,20	37,00	0,049	0,043	0,007	100,35	0,881	3,819	1Ø 6 c/15 cm
V 129	0,28	0,20	47,00	0,063	0,043	0,020	33,10	1,119	3,819	1Ø 6 c/15 cm
V 130	0,28	0,20	50,00	0,067	0,043	0,024	27,56	1,190	3,819	1Ø 6 c/15 cm
V 131	0,28	0,20	47,00	0,063	0,043	0,020	33,10	1,119	3,819	1Ø 6 c/15 cm
V 132	0,28	0,20	87,00	0,116	0,043	0,073	8,99	2,071	3,819	1Ø 6 c/5 cm
V 133	0,28	0,20	90,00	0,120	0,043	0,077	8,53	2,143	3,819	1Ø 6 c/5 cm
V 134	0,28	0,20	97,00	0,129	0,043	0,087	7,61	2,310	3,819	1Ø 6 c/15 cm
V 135	0,28	0,20	37,00	0,049	0,043	0,007	100,35	0,881	3,819	1Ø 6 c/15 cm
V 136	0,28	0,20	47,00	0,063	0,043	0,020	33,10	1,119	3,819	1Ø 6 c/15 cm
V 137	0,28	0,20	50,00	0,067	0,043	0,024	27,56	1,190	3,819	1Ø 6 c/15 cm
V 138	0,28	0,20	47,00	0,063	0,043	0,020	33,10	1,119	3,819	1Ø 6 c/15 cm

3 - DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE COLUMNAS DE HºAº

3.1 INTRODUCCIÓN

Las columnas de hormigón son dimensionadas a partir de las solicitaciones que surgen del modelo tridimensional del análisis mediante elementos finitos. Del mismo se obtienen los esfuerzos de momento flector, corte y axil de cada barra. Luego, el proceso de dimensionamiento seccional y verificación estructural se hace mediante planillas de cálculo que verifican las resistencias y condiciones recomendadas por el reglamento CIRSOC 201.

3.2 SOLICITACIONES:

Las solicitaciones son obtenidas del Sap, en la figura siguiente se observan los diagramas de axiles

A si mismo cada columna tiene sus diagramas de axiles y momentos como se puede observar a modo de ejemplo la columna C105.

3.3 ANALISIS DE ESBELTECES:

El grado de esbeltez de la columna depende de sus características geométricas. Es función entonces de la longitud lu, el coeficiente de empotramiento k, adoptado 0.70 para todas las columnas y la sección de las mismas, dadas por el radio de inercia:

$$\lambda = \frac{k \cdot Lu}{\sqrt{\frac{I}{A}}}$$

y la esbeltez límite con la cual se compara, la cual es función de los momentos en la parte superior y en la parte inferior de la columna, para cada dirección.

$$\lambda_{LIM} = 34 - 12 \cdot \frac{M_1}{M_2}$$

Si $\lambda < \lambda$ lim entonces la columna se comportará como una columna corta, despreciando los efectos de segundo orden. Caso contrario serán columnas esbeltas y se analizarán con el método de los momentos amplificados, teniendo en cuenta así dichos efectos.

3.4 COLUMNAS FLEXO COMPRIMIDAS:

El método consiste en considerar los momentos generados en los ejes principales de inercia. Como las columnas solicitadas a compresión puras generan momentos pequeños, se calcula un momento mínimo según el CIRSOC 201, y se usa el mayor de los dos.

Se determina los esfuerzos axiles provenientes del modelo de cálculo. Luego, se calcula los momentos mínimos a considerar, mediante la siguiente expresión:

$$M_{\min} = P_{U} \cdot (0.015 + 0.03 \cdot h)$$

A estos momentos se le debe multiplicar por el factor amplificación si fuera una columna esbelta. Donde "h" es la sección de la barra en la cual se considera la flexión. En nuestro caso los momentos en ambas direcciones siempre serán iguales ya que las secciones transversales de las columnas son cuadradas. Luego, se determina la resistencia de la columna para cuando ésta es corta, mediante la siguiente expresión:

$$P_n = 0.80 \cdot \left(0.85 \cdot f_c' \cdot \left(A_g - A_s\right) + f_y \cdot A_s\right)$$

Aquí se considera la Resistencia que aporta la sección de hormigón (descontando la sección del acero) y la resistencia del acero. A la misma se aplica los siguientes factores, 0,85 considerando la fluencia lenta del hormigón, y 0,80 por la presencia de momentos parásitos no contemplados en los cálculos y en el armado. Finalmente, la carga de diseño se multiplica por el factor de reducción de resistencia a compresión establecido por el reglamento, que es igual a 0,65.

Este valor de resistencia debe ser mayor que la carga solicitante.

La armadura se calcula mediante la cuantía hallada en los diagramas de interacción del CIRSOC 201, ingresando con:

$$m = \frac{M_n}{b \cdot h^2}$$

$$n = \frac{p_n}{b \cdot h}$$

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. Nº 3311

	Analisis de esbeltes en ambas direcciones												
Denom.	h(m)	b(m)	l(m)	Mi (KNm)	Ms (KNm)	k	λ	λlim	TIPO COLUMNA	Pu (KN)			
Z = 2,67 m													
C101 x-x	0,20	0,20	3,00	-2,22	5,88	0,7	36,37	38,53	Columna corta	115,10			
C101 y-y	0,20	0,20	3,00	-0,30	0,50	0,7	36,37	41,20	Columna corta	115,10			
C102 x-x	0,20	0,20	3,00	-2,80	11,70	0,7	36,37	36,87	Columna corta	278,90			
C102 y-y	0,20	0,20	3,00	0,17	-1,47	0,7	36,37	137,76	Columna corta	278,90			
C103 x-x	0,20	0,20	3,00	-4,20	15,70	0,7	36,37	37,21	Columna corta	181,10			
C103 y-y	0,20	0,20	3,00	0,12	-0,57	0,7	36,37	91,00	Columna corta	181,10			
C104 x-x	0,20	0,20	3,00	4,86	-11,48	0,7	36,37	62,35	Columna corta	140,70			
C104 y-y	0,20	0,20	3,00	0,17	-1,26	0,7	36,37	122,94	Columna corta	140,70			
C105 x-x	0,20	0,20	3,00	-3,70	11,90	0,7	36,37	37,73	Columna corta	370,30			
C105 y-y	0,20	0,20	3,00	-1,26	1,86	0,7	36,37	42,13	Columna corta	370,30			
C106 x-x	0,20	0,20	3,00	-4,67	12,53	0,7	36,37	38,47	Columna corta	202,20			
C106 y-y	0,20	0,20	3,00	-1,62	2,24	0,7	36,37	42,68	Columna corta	202,20			
C107 x-x	0,20	0,20	3,00	-4,18	11,17	0,7	36,37	38,49	Columna corta	39,00			
C107 y-y	0,20	0,20	3,00	-0,24	0,13	0,7	36,37	56,15	Columna corta	39,00			
C108 x-x	0,20	0,20	3,00	-2,80	6,36	0,7	36,37	39,28	Columna corta	152,00			
C108 y-y	0,20	0,20	3,00	0,17	-1,47	0,7	36,37	137,76	Columna corta	152,00			
C109 x-x	0,20	0,20	3,00	-4,20	11,50	0,7	36,37	38,38	Columna corta	82,50			
C109 y-y	0,20	0,20	3,00	0,12	-0,57	0,7	36,37	91,00	Columna corta	82,50			
C110 x-x	0,30	0,30	3,00	4,86	8,16	0,7	24,25	26,85	Columna corta	301,50			
C110 y-y	0,30	0,30	3,00	0,17	63,00	0,7	24,25	33,97	Columna corta	301,50			
C111 x-x	0,30	0,30	3,00	-3,70	6,50	0,7	24,25	40,83	Columna corta	301,50			
C111 y-y	0,30	0,30	3,00	-1,26	14,00	0,7	24,25	35,08	Columna corta	301,50			
C112 x-x	0,30	0,30	3,00	-4,67	5,60	0,7	24,25	44,01	Columna corta	230,00			
C112 y-y	0,30	0,30	3,00	-1,62	4,90	0,7	24,25	37,97	Columna corta	230,00			
C113 x-x	0,30	0,30	3,00	-2,80	2,70	0,7	24,25	46,44	Columna corta	543,20			
C113 y-y	0,30	0,30	3,00	0,17	14,70	0,7	24,25	33,86	Columna corta	543,20			
C114 x-x	0,30	0,30	3,00	-4,20	10,30	0,7	24,25	38,89	Columna corta	254,80			
C114 y-y	0,30	0,30	3,00	0,12	6,70	0,7	24,25	33,79	Columna corta	254,80			
C115 x-x	0,30	0,30	3,00	-3,20	4,50	0,7	24,25	42,53	Columna corta	315,00			
C115 y-y	0,30	0,30	3,00	0,17	5,70	0,7	24,25	33,64	Columna corta	315,00			
C116 x-x	0,30	0,30	3,00	-3,70	3,90	0,7	24,25	45,38	Columna corta	559,00			
C116 y-y	0,30	0,30	3,00	-1,26	2,00	0,7	24,25	41,56	Columna corta	559,00			
C117 x-x	0,30	0,30	3,00	-4,67	1,60	0,7	24,25	69,03	Columna corta	317,00			
C117 y-y	0,30	0,30	3,00	-1,62	6,40	0,7	24,25	37,04	Columna corta	317,00			
C118 x-x	0,30	0,30	3,00	-4,18	1,60	0,7	24,25	65,35	Columna corta	327,00			
C118 y-y	0,30	0,30	3,00	-0,24	6,50	0,7	24,25	34,44	Columna corta	327,00			
C119 x-x	0,30	0,30	3,00	-4,18	5,00	0,7	24,25	44,03	Columna corta	558,00			
C119 y-y	0,30	0,30	3,00	-0,24	0,60	0,7	24,25	38,80	Columna corta	558,00			
C120 x-x	0,30	0,30	3,00	-4,18	3,50	0,7	24,25	48,33	Columna corta	327,00			
C120 y-y	0,30	0,30	3,00	-0,24	6,50	0,7	24,25	34,44	Columna corta	327,00			
C121 x-x	0,30	0,30	3,00	-4,18	13,90	0,7	24,25	37,61	Columna corta	182,00			
C121 y-y	0,30	0,30	3,00	-0,24	6,20	0,7	24,25	34,46	Columna corta	182,00			
C122 x-x	0,30	0,30	3,00	-4,18	21,50	0,7	24,25	36,33	Columna corta	333,70			
C122 y-y	0,30	0,30	3,00	-0,24	0,50	0,7	24,25	39,76	Columna corta	333,70			
C123 x-x	0,30	0,30	3,00	-4,18	13,50	0,7	24,25	37,72	Columna corta	186,00			
C123 y-y	0,30	0,30	3,00	-0,24	5,90	0,7	24,25	34,49	Columna corta	186,00			

Pág. **18** de **36**

Analisis de esbeltes en ambas direcciones												
Denom.	h(m)	b(m)	l(m)	Mi (KNm)	Ms (KNm)	k	λ	λlim	TIPO COLUMNA	Pu (KN)		
Z =5,59 m												
C210 x-x	0,25	0,25	3,00	-3,00	6,12	0,7	29,10	39,88	Columna corta	234,50		
C210 y-y	0,25	0,25	3,00	0,13	47,25	0,7	29,10	33,97	Columna corta	234,50		
C211 x-x	0,25	0,25	3,00	-2,78	4,88	0,7	29,10	40,83	Columna corta	234,50		
C211 y-y	0,25	0,25	3,00	-0,95	10,50	0,7	29,10	35,08	Columna corta	234,50		
C212 x-x	0,25	0,25	3,00	-3,50	4,20	0,7	29,10	44,01	Columna corta	108,70		
C212 y-y	0,25	0,25	3,00	-1,22	3,68	0,7	29,10	37,97	Columna corta	108,70		
C213 x-x	0,25	0,25	3,00	-2,10	2,03	0,7	29,10	46,44	Columna corta	405,90		
C213 y-y	0,25	0,25	3,00	0,13	11,03	0,7	29,10	33,86	Columna corta	405,90		
C214 x-x	0,25	0,25	3,00	-3,15	7,73	0,7	29,10	38,89	Columna corta	124,00		
C214 y-y	0,25	0,25	3,00	0,09	5,03	0,7	29,10	33,79	Columna corta	124,00		
C215 x-x	0,25	0,25	3,00	-2,40	3,38	0,7	29,10	42,53	Columna corta	186,00		
C215 y-y	0,25	0,25	3,00	0,13	4,28	0,7	29,10	33,64	Columna corta	186,00		
C216 x-x	0,25	0,25	3,00	-2,78	2,93	0,7	29,10	45,38	Columna corta	338,00		
C216 y-y	0,25	0,25	3,00	-0,95	1,50	0,7	29,10	41,56	Columna corta	338,00		
C217 x-x	0,25	0,25	3,00	-3,50	1,20	0,7	29,10	69,03	Columna corta	188,00		
C217 y-y	0,25	0,25	3,00	-1,22	4,80	0,7	29,10	37,04	Columna corta	188,00		
C218 x-x	0,25	0,25	3,00	-3,14	1,20	0,7	29,10	65,35	Columna corta	190,00		
C218 y-y	0,25	0,25	3,00	-0,18	4,88	0,7	29,10	34,44	Columna corta	190,00		
C219 x-x	0,25	0,25	3,00	-3,14	3,75	0,7	29,10	44,03	Columna corta	333,00		
C219 y-y	0,25	0,25	3,00	-0,18	0,45	0,7	29,10	38,80	Columna corta	333,00		
C220 x-x	0,25	0,25	3,00	-3,14	2,63	0,7	29,10	48,33	Columna corta	191,00		
C220 y-y	0,25	0,25	3,00	-0,18	4,88	0,7	29,10	34,44	Columna corta	191,00		
C221 x-x	0,25	0,25	3,00	-3,14	10,43	0,7	29,10	37,61	Columna corta	107,00		
C221 y-y	0,25	0,25	3,00	-0,18	4,65	0,7	29,10	34,46	Columna corta	107,00		
C222 x-x	0,25	0,25	3,00	-3,14	16,13	0,7	29,10	36,33	Columna corta	204,00		
C222 y-y	0,25	0,25	3,00	-0,18	0,38	0,7	29,10	39,76	Columna corta	204,00		
C223 x-x	0,25	0,25	3,00	-3,14	10,13	0,7	29,10	37,72	Columna corta	107,00		
C223 y-y	0,25	0,25	3,00	-0,18	4,43	0,7	29,10	34,49	Columna corta	107,00		

	Analisis de esbeltes en ambas direcciones												
Denom.	h(m)	b(m)	l(m)	Mi (KNm)	Ms (KNm)	k	λ	λlim	TIPO COLUMNA	Pu (KN)			
Z = 8,41 m													
C310 x-x	0,20	0,20	3,00	-1,50	4,28	0,7	36,37	38,20	Columna corta	175,88			
C310 y-y	0,20	0,20	3,00	-15,00	33,08	0,7	36,37	39,44	Columna corta	175,88			
C311 x-x	0,20	0,20	3,00	-2,78	3,41	0,7	36,37	43,76	Columna corta	175,88			
C311 y-y	0,20	0,20	3,00	-3,00	7,35	0,7	36,37	38,90	Columna corta	175,88			
C312 x-x	0,20	0,20	3,00	-3,50	2,94	0,7	36,37	48,30	Columna corta	81,53			
C312 y-y	0,20	0,20	3,00	-1,22	2,57	0,7	36,37	39,67	Columna corta	81,53			
C313 x-x	0,20	0,20	3,00	-2,10	1,42	0,7	36,37	51,78	Columna corta	304,43			
С313 у-у	0,20	0,20	3,00	-5,20	7,72	0,7	36,37	42,09	Columna corta	304,43			
C314 x-x	0,20	0,20	3,00	-3,15	5,41	0,7	36,37	40,99	Columna corta	93,00			
C314 y-y	0,20	0,20	3,00	-1,50	3,52	0,7	36,37	39,12	Columna corta	93,00			
C315 x-x	0,20	0,20	3,00	-2,40	2,36	0,7	36,37	46,19	Columna corta	139,50			
C315 y-y	0,20	0,20	3,00	-15,00	2,99	0,7	36,37	94,15	Columna corta	139,50			
C316 x-x	0,20	0,20	3,00	-2,78	2,05	0,7	36,37	50,26	Columna corta	253,50			
С316 у-у	0,20	0,20	3,00	-0,95	1,05	0,7	36,37	44,80	Columna corta	253,50			
C317 x-x	0,20	0,20	3,00	-3,50	0,84	0,7	36,37	84,04	Columna corta	141,00			
С317 у-у	0,20	0,20	3,00	-1,22	3,36	0,7	36,37	38,34	Columna corta	141,00			
C318 x-x	0,20	0,20	3,00	-3,14	0,84	0,7	36,37	78,79	Columna corta	142,50			
C318 y-y	0,20	0,20	3,00	-1,50	3,41	0,7	36,37	39,27	Columna corta	142,50			
C319 x-x	0,20	0,20	3,00	-3,14	2,63	0,7	36,37	48,33	Columna corta	249,75			
C319 y-y	0,20	0,20	3,00	-0,18	0,32	0,7	36,37	40,86	Columna corta	249,75			
C320 x-x	0,20	0,20	3,00	-3,14	1,84	0,7	36,37	54,47	Columna corta	143,25			
C320 y-y	0,20	0,20	3,00	-2,00	3,41	0,7	36,37	41,03	Columna corta	143,25			
C321 x-x	0,20	0,20	3,00	-3,14	7,30	0,7	36,37	39,16	Columna corta	80,25			
C321 y-y	0,20	0,20	3,00	-1,80	3,26	0,7	36,37	40,64	Columna corta	80,25			
C322 x-x	0,20	0,20	3,00	-3,14	11,29	0,7	36,37	37,33	Columna corta	153,00			
C322 y-y	0,20	0,20	3,00	-0,18	0,26	0,7	36,37	42,23	Columna corta	153,00			
C323 x-x	0,20	0,20	3,00	-3,14	7,09	0,7	36,37	39,31	Columna corta	80,25			
С323 у-у	0,20	0,20	3,00	-2,50	3,10	0,7	36,37	43,69	Columna corta	80,25			

	Analisis de esbeltes en ambas direcciones												
Denom.	h(m)	b(m)	l(m)	Mi (KNm)	Ms (KNm)	k	λ	λlim	TIPO COLUMNA	Pu (KN)			
COLUMNA	COLUMNAS TANQUE												
C510 x-x	0,20	0,20	2,00	3,65	6,12	0,7	24,25	26,85	Columna corta	98,00			
C510 y-y	0,20	0,20	2,00	0,13	47,25	0,7	24,25	33,97	Columna corta	98,00			
C511 x-x	0,20	0,20	2,00	-2,78	4,88	0,7	24,25	40,83	Columna corta	98,00			
C511 y-y	0,20	0,20	2,00	-0,95	10,50	0,7	24,25	35,08	Columna corta	98,00			
C512 x-x	0,20	0,20	2,00	-3,50	4,20	0,7	24,25	44,01	Columna corta	185,00			
C512 y-y	0,20	0,20	2,00	-1,22	3,68	0,7	24,25	37,97	Columna corta	185,00			

Pág. 20 de 36

CAMILA N. COUTOUNE
INGENIERA CIVIL
M. P. Nº 3311

3.5 COLUMNAS FLEXO COMPRECIÓN OBLICUA:

Para las columnas sometidas a flexo compresión oblicua, se determina la resistencia nominal de la barra a flexocompresión recta, en ambas direcciones, según los procedimientos establecidos por dicho reglamento, y finalmente para determinar la capacidad de la barra a flexocompresión oblicua se aplica el método de la carga inversa, cuya ecuación es la siguiente:

$$\frac{1}{P_n} = \frac{1}{P_{nx0}} + \frac{1}{P_{ny0}} - \frac{1}{P_{n0}}$$

Donde Pnxo es la resistencia de la barra a flexocompresión recta en la dirección x, Pnyo es la resistencia de la barra a flexocompresión recta en la dirección y, y Pno es la resistencia a compresión pura.

A continuación, se adjuntan las tablas de cálculo para los dos tipos de columnas

PARA CADA PISO TOMAMOS LAS COLUMNA MAS SOLICITADA, SEA CENTRADA, BORDE O DE ESQUINA Y EXTENDEMOS EL RESULTADO A LAS DEMAS.

						Со	lumnas	solicitadas	a flexo co	mpresiói	n					
Denom.	h(m)	b(m)	l(m)	M2 (KNm)	Pu (KN)	M2min (KNm)	δ_{ns}	Mn (MNm)	Pn (MN)	n (Mpa)	m (Mpa)	Υ	ρ	Ast (cm ²)	Pumax (MN)	adoptado
Z = 2,67 m	' = 2,67 m															
C104 x-x	0,20	0,20	3,00	-11,48	140,70	2,95	1,00	0,004546	0,2165	5,41	0,57	0,9	0,0100	4,00	0,5356	6 Ø 12 mm
C104 y-y	0,20	0,20	3,00	-1,26	140,70	2,95	1,00	0,004546	0,2165	5,41	0,57	0,9	0,0100	4,00	0,5356	0 Ø 12 IIIII
C105 x-x	0,20	0,20	3,00	11,90	370,30	7,78	1,00	0,018308	0,5697	14,24	2,29	0,9	0,0200	8,00	0,6999	4Ø 16 mm
C105 y-y	0,20	0,20	3,00	1,86	370,30	7,78	1,00	0,011964	0,5697	14,24	1,50	0,9	0,0200	8,00	0,6999	49 10 11111
C119 x-x	0,30	0,30	3,00	11,17	558,00	5,00	1,00	0,017185	0,8585	9,54	0,64	0,9	0,0150	13,50	1,3898	6 Ø 16 mm
C119 y-y	0,30	0,30	3,00	0,13	558,00	0,60	1,00	0,000923	0,8585	9,54	0,03	0,9	0,0150	13,50	1,3898	0 0 10 111111
C120 x-x	0,30	0,30	3,00	11,17	327,00	3,50	1,00	0,017185	0,5031	5,59	0,64	0,9	0,0200	18,00	1,5747	4Ø 16 mm +
C120 y-y	0,30	0,30	3,00	0,13	327,00	6,50	1,00	0,010000	0,5031	5,59	0,37	0,9	0,0200	18,00	1,5747	2Ø 12 mm

	ESTRIBOS												
Denom.	Denom. db (cm²)		Smax 1 (cm)	Smax 2 (cm)	Smax 3 (cm)	Adoptado							
Z = 2,67 m													
C104 x-x	1,20	0,60	0,20	14,40	28,80	1 Ø 6 mm c/15 cm							
C104 y-y	1,20	0,60	0,20	14,40	28,80	1 Ø 6 mm c/15 cm							
C105 x-x	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm							
C105 y-y	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm							
C119 x-x	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm							
C119 y-y	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm							
C120 x-x	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm							
C120 y-y	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm							

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. Nº 3311

	Columnas solicitadas a flexo compresión															
Denom.	h(m)	b(m)	l(m)	M2 (KNm)	Pu (KN)	M2min (KNm)	δ_{ns}	Mn (MNm)	Pn (MN)	n (Mpa)	m (Mpa)	Υ	ρ	Ast (cm ²)	Pumax (MN)	adoptado
Z =5,59 m																
C219 x-x	0,25	0,25	3,00	3,75	333,00	5,00	1,00	0,007692	0,5123	8,20	0,49	0,9	0,0150	9,38	0,9652	6 Ø 16 mm
C219 y-y	0,25	0,25	3,00	0,45	333,00	0,60	1,00	0,000923	0,5123	8,20	0,06	0,9	0,0150	9,38	0,9652	0 0 10 111111
C220 x-x	0,25	0,25	3,00	2,63	191,00	3,50	1,00	0,005385	0,2938	4,70	0,34	0,9	0,0200	12,50	1,0935	4Ø 16 mm +
C220 y-y	0,25	0,25	3,00	4,88	191,00	6,50	1,00	0,010000	0,2938	4,70	0,64	0,9	0,0200	12,50	1,0935	2Ø 12 mm

	ESTRIBOS											
Denom.	db (cm²)	dbe (cm)	Smax 1 (cm)	Smax 2 (cm)	Smax 3 (cm)	Adoptado						
Z =5,59 m												
C219 x-x	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						
C219 y-y	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						
C220 x-x	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						
C220 y-y	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						

	Columnas solicitadas a flexo compresión															
Denom.	h(m)	b(m)	l(m)	M2 (KNm)	Pu (KN)	M2min (KNm)	δ_{ns}	Mn (MNm)	Pn (MN)	n (Mpa)	m (Mpa)	Υ	ρ	Ast (cm ²)	Pumax (MN)	adoptado
Z = 8,41 m																
C319 x-x	0,20	0,20	3,00	3,75	333,00	5,00	1,00	0,007692	0,5123	12,81	0,96	0,9	0,0150	6,00	0,6177	6 Ø 12 mm
C319 y-y	0,20	0,20	3,00	0,45	333,00	0,60	1,00	0,000923	0,5123	12,81	0,12	0,9	0,0150	6,00	0,6177	0 Ø 12 IIIII
C320 x-x	0,20	0,20	3,00	2,63	191,00	3,50	1,00	0,005385	0,2938	7,35	0,67	0,9	0,0200	8,00	0,6999	4Ø 16 mm
C320 y-y	0,20	0,20	3,00	4,88	191,00	6,50	1,00	0,010000	0,2938	7,35	1,25	0,9	0,0200	8,00	0,6999	49 10 IIIII

	ESTRIBOS											
Denom.	db (cm ²)	dbe (cm)	Smax 1 (cm)	Smax 2 (cm)	Smax 3 (cm)	Adoptado						
Z = 8,41 m												
C319 x-x	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						
C319 y-y	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						
C320 x-x	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						
C320 y-y	1,60	0,60	0,20	19,20	28,80	1 Ø 6 mm c/15 cm						

4 - DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE BASES DE HºA

4.1 INTRODUCCIÓN.

Las bases fueron propuestas del tipo aisladas, ya que la calidad del suelo y tipología estructural lo amerita. Si bien no se ha realizado estudios de suelo, se pudo observar mediante exploración visual del suelo en excavaciones de hasta -2.00 del nivel de suelo natural, la presencia tosca de mediana calidad. Se ha considerado una tensión admisible de suelo máxima de 2.00 kg/cm², y una cota de fundación mínima de -2.00m desde el nivel +/- 0.00 adoptado por proyecto, esta profundidad como maximo, ya que si se sigue encontrando suelos como arcillas a esta profundidad, se procederá al cambio de tipologia de fundaciones.

$$\sigma_{adm} = 2.0 \frac{kg}{cm^2}$$

4.2 METODOLOGÍA DE CÁLCULO.

Primeramente, se pre dimensionan las dimensiones en planta de la zapata con la carga total sin mayorar proveniente de la estructura y peso propio de la zapata. Luego se analiza la flexión, corte y punzonado de la geometría propuesta y se determina la armadura a colocar.

4.3 VERIFICACIÓN ESTRUCTURAL.

4.3.1 SOLICITACIONES.

Se puede observar a continuación las cargas en las bases sin mayorar:

Pág. 24 de 36

4.3.2 PREDIMENSIONADO, VERIFICACIÓN TENSIÓN ADMISIBLE DEL TERRENO

Para el modelo, se supuso que las columnas están articuladas con las bases, es decir que no transmiten momentos a estas. Sin embargo, se le introduce un momento mínimo para tener un margen de seguridad.

Las cargas axiales son las mismas que las cargas de las columnas P_u , más el peso propio de la base, más el peso del suelo de la tapada. Todo esto da como resultado una carga N, con la cual se efectuará el cálculo, la cual basa su nomenclatura en el siguiente esquema:

				Р	REDIMEN:	SIONADO	BASES		•	•		
Denom.	Posición	P (KN)	N (KN)	c(m)	b(m)	σadm (KN/m²)	Sup Nec. (m²)	B (m)	B _{adoptado} (m)	A _{adoptado} (m)	Sup Adop. (m²)	d0 (m)
B1	Borde	115,10	119,70	0,20	0,20	200,00	0,60	0,77	1,00	1,50	1,50	0,4
B2	Centro	278,90	290,06	0,20	0,20	200,00	1,45	1,20	1,50	1,50	2,25	0,4
В3	Borde	182,00	189,28	0,20	0,20	200,00	0,95	0,97	1,00	1,50	1,50	0,4
B4	Borde	147,00	152,88	0,20	0,20	200,00	0,76	0,87	1,00	1,50	1,50	0,4
B5	Centro	381,00	396,24	0,20	0,20	200,00	1,98	1,41	1,50	1,50	2,25	0,4
В6	Borde	200,15	208,16	0,20	0,20	200,00	1,04	1,02	1,00	1,50	1,50	0,4
В7	Borde	39,00	40,56	0,20	0,20	200,00	0,20	0,45	1,00	1,50	1,50	0,4
В8	Centro	152,00	158,08	0,20	0,20	200,00	0,79	0,89	1,50	1,50	2,25	0,4
В9	Borde	82,50	85,80	0,20	0,20	200,00	0,43	0,65	1,00	1,50	1,50	0,4
B10	Centro	310,00	322,40	0,20	0,20	200,00	1,61	1,27	1,50	1,50	2,25	0,4
B11	Centro	310,00	322,40	0,20	0,20	200,00	1,61	1,27	1,50	1,50	2,25	0,4
B12	Borde	230,00	239,20	0,20	0,20	200,00	1,20	1,09	1,20	1,60	1,92	0,4
B13	Centro	540,00	561,60	0,20	0,20	200,00	2,81	1,68	1,75	1,75	3,06	0,4
B14	Borde	255,00	265,20	0,20	0,20	200,00	1,33	1,15	1,20	1,60	1,92	0,4
B15	Borde	315,00	327,60	0,20	0,20	200,00	1,64	1,28	1,20	1,60	1,92	0,4
B16	Centro	560,00	582,40	0,20	0,20	200,00	2,91	1,71	1,75	1,75	3,06	0,4
B17	Borde	318,00	330,72	0,20	0,20	200,00	1,65	1,29	1,20	1,60	1,92	0,4
B18	Borde	328,00	341,12	0,20	0,20	200,00	1,71	1,31	1,20	1,60	1,92	0,4
B19	Centro	559,00	581,36	0,20	0,20	200,00	2,91	1,70	1,75	1,75	3,06	0,4
B20	Borde	330,00	343,20	0,20	0,20	200,00	1,72	1,31	1,20	1,60	1,92	0,4
B21	Borde	180,00	187,20	0,20	0,20	200,00	0,94	0,97	1,20	1,60	1,92	0,4
B22	Centro	335,00	348,40	0,20	0,20	200,00	1,74	1,32	1,75	1,75	3,06	0,4
B23	Borde	185,00	192,40	0,20	0,20	200,00	0,96	0,98	1,20	1,60	1,92	0,4

Se procede a verificar si la carga cae dentro del núcleo de presiones. También se verifica que la tensión máxima no supere la admisible.

$$\sigma_{max} = \frac{N}{B} \cdot \left(1 + \frac{6 \cdot e_x}{B} + \frac{6 \cdot e_y}{B} \right)$$

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. N. 3311

VERIFICACION TENSIONES MAXIMAS Y NUCLEO DE PRESIONES										
Denom.	B (m)	d0 (m)	M (KNm)	N (KN)	e (m)	B/6 (Nucleo)	σmax (KN/m²)			
B 002 x-x	1,50	0,40	2,85	290,06	0,010	0,250	138,25			
B 002 y-y	1,50	0,40	2,40	290,06	0,008	Dentro Nucleo	Verifica			
B 005 x-x	1,50	0,40	3,00	396,24	0,008	0,250	187,04			
В 005 у-у	1,50	0,40	3,15	396,24	0,008	Dentro Nucleo	Verifica			
B 008 x-x	1,50	0,40	2,40	158,08	0,015	0,250	81,99			
В 008 у-у	1,50	0,40	4,20	158,08	0,027	Dentro Nucleo	Verifica			
B 010 x-x	1,50	0,40	0,75	322,40	0,002	0,250	149,96			
B 010 y-y	1,50	0,40	3,00	322,40	0,009	Dentro Nucleo	Verifica			
B 011 x-x	1 50	0,40	0,70	322,40	0,002	0,250	150,93			
B 011 y-y	1,50	0,40	3,60	322,40	0,011	Dentro Nucleo	Verifica			
B 013 x-x	1,75	0,40	0,70	561,60	0,001	0,292	187,30			
В 013 у-у	1,/3	0,40	2,80	561,60	0,005	Dentro Nucleo	Verifica			
B 016 x-x	1,75	0,40	1,50	582,40	0,003	0,292	194,82			
B 016 y-y	1,/3	0,40	2,65	582,40	0,005	Dentro Nucleo	Verifica			
B 019 x-x	1,75	0,40	1,50	581,36	0,003	0,292	194,48			
В 019 у-у	1,/3	0,40	2,65	581,36	0,005	Dentro Nucleo	Verifica			
B 022 x-x	1 70	0.40	0,70	348,40	0,002	0,292	118,58			
В 022 у-у	1,75	0,40	3,60	348,40	0,010	Dentro Nucleo	Verifica			

4.3.2 DISEÑO- BASES CENTRADAS:

El diseño a flexión se realiza de la misma manera que una losa o una viga. En el caso de las bases centradas, calculamos el momento sobre un lado, y aplicamos la misma armadura en ambos sentidos. La verificación a flexión no difiere de lo que se hizo anteriormente

	DISEÑO A FLEXION - BASES CENTRADAS											
Denom.	B (m)	d (m)	c (m)	N (KN)	M0 (KNm)	Mn (MNm)	kd	Ke	As nec (cm²/m)	As min (cm²/m)	Adoptado	
B2	1,50	0,50	0,20	290,06	40,85	0,045	2,35	24,301	2,21	9	1 DB 12 mm c/10cm	
B5	1,50	0,50	0,20	396,24	55,80	0,062	2,01	24,301	3,01	9	1 DB 12 mm c/10cm	
В8	1,50	0,50	0,20	158,08	22,26	0,025	3,18	24,301	1,20	9	1 DB 12 mm c/10cm	
B10	1,50	0,50	0,30	322,40	38,69	0,043	2,41	24,301	2,09	9	1 DB 12 mm c/10cm	
B11	1,50	0,50	0,30	322,40	38,69	0,043	2,41	24,301	2,09	9	1 DB 12 mm c/10cm	
B13	1,75	0,50	0,30	561,60	84,34	0,094	1,63	24,301	4,55	9	1 DB 12 mm c/10cm	
B16	1,75	0,50	0,30	582,40	87,46	0,097	1,60	24,301	4,72	9	1 DB 12 mm c/10cm	
B19	1,75	0,50	0,30	581,36	87,31	0,097	1,61	24,301	4,71	9	1 DB 12 mm c/10cm	
B22	1,75	0,50	0,30	348,40	52,32	0,058	2,07	24,301	2,83	9	1 DB 12 mm c/10cm	

También se realiza la verificación al punzonado, y en caso de no verificar se re-calcula aumentando la altura "d" de la base, con el objetivo de evitar la colocación de armadura de corte.

	VERIFICACION PUNZONADO										
Denom.	b (m)	d (m)	c (m)	N (KN)	b0 (m)	Vc (KN)	Vu (KN)	Vc>Vu			
B2	0,22	0,50	0,20	290,06	1,68	641,561	386,75	Verifica			
B5	0,22	0,50	0,20	396,24	1,68	641,561	528,32	Verifica			
В8	0,22	0,50	0,20	158,08	1,68	641,561	210,77	Verifica			
B10	0,32	0,50	0,30	322,40	2,48	947,066	429,87	Verifica			
B11	0,32	0,50	0,30	322,40	2,48	947,066	429,87	Verifica			
B13	0,32	0,50	0,30	561,60	2,48	947,066	748,80	Verifica			
B16	0,32	0,50	0,30	582,40	2,48	947,066	776,53	Verifica			
B19	0,32	0,50	0,30	581,36	2,48	947,066	775,15	Verifica			
B22	0,32	0,50	0,30	348,40	2,48	947,066	464,53	Verifica			

DISEÑO- BASES DE BORDE: 4.3.3

Las bases de borde trabajan de manera similar a las bases centradas, salvo que necesitan la existencia de un tensor (encadenado inferior) para absorber el par momento generado por la excentricidad de la carga.

			VERIFI	CACION E	XCENTRIC	DAD MAXI	MA		
Denom.	A (m)	B (m)	N (KN)	bx (m)	e (m)	η	h (m)	tg α	e_{max}
B101	1,00	1,50	119,70	0,35	0,33	0,67	1,75	0,210	0,80
B103	1,00	1,50	189,28	0,35	0,33	0,67	1,75	0,210	0,56
B104	1,00	1,50	152,88	0,25	0,38	0,67	1,75	0,210	0,66
B106	1,00	1,50	208,16	0,35	0,33	0,67	1,75	0,210	0,53
B107	1,00	1,50	40,56	0,35	0,33	0,67	1,75	0,210	2,03
B109	1,00	1,50	85,80	0,35	0,33	0,67	1,75	0,210	1,05
B112	1,20	1,60	239,20	0,35	0,43	0,67	1,75	0,210	0,57
B114	1,20	1,60	265,20	0,25	0,48	0,67	1,75	0,210	0,53
B115	1,20	1,60	327,60	0,35	0,43	0,67	1,75	0,210	0,46
B117	1,20	1,60	330,70	0,35	0,43	0,67	1,75	0,210	0,46
B118	1,20	1,60	341,12	0,35	0,43	0,67	1,75	0,210	0,45
B120	1,20	1,60	343,20	0,35	0,43	0,67	1,75	0,210	0,45
B121	1,20	1,60	187,20	0,35	0,43	0,67	1,75	0,210	0,68
B123	1,60	1,60	192,40	0,35	0,63	0,67	1,75	0,210	0,84

					DISEÑO	A FLEXION	- BASES D	E BORDE			
Denom.	B (m)	d (m)	c (m)	N (KN)	M0	Mn	kd	Ke	As nec	As min	Adoptado
		` '	` '	` '	(KNm)	(MNm)			(cm²/m)	(cm²/m)	·
B101x-x	1,50	0,40	0,20	119,70	16,86	0,019	2,92	24,301	1,14	7,2	1 DB 10 mm c/10cm
B101y-y	1,00	0,40	0,20	119,70	9,58	0,011	3,88	24,301	0,65	7,2	1 DB 10 mm c/10cm
B103x-x	1,50	0,40	0,20	189,28	26,66	0,030	2,32	24,301	1,80	7,2	1 DB 10 mm c/10cm
B103y-y	1,00	0,40	0,20	189,28	15,14	0,017	3,08	24,301	1,02	7,2	1 DB 10 mm c/10cm
B104x-x	1,50	0,40	0,20	152,88	21,53	0,024	2,59	24,301	1,45	7,2	1 DB 10 mm c/10cm
B104y-y	1,00	0,40	0,20	152,88	12,23	0,014	3,43	24,301	0,83	7,2	1 DB 10 mm c/10cm
B106x-x	1,50	0,40	0,20	208,16	29,32	0,033	2,22	24,301	1,98	7,2	1 DB 10 mm c/10cm
В106у-у	1,00	0,40	0,20	208,16	16,65	0,019	2,94	24,301	1,12	7,2	1 DB 10 mm c/10cm
B107x-x	1,50	0,40	0,20	40,56	5,71	0,006	5,02	24,301	0,39	7,2	1 DB 10 mm c/10cm
В107у-у	1,00	0,40	0,20	40,56	3,24	0,004	6,66	24,301	0,22	7,2	1 DB 10 mm c/10cm
B109x-x	1,50	0,40	0,20	85,80	12,08	0,013	3,45	24,301	0,82	7,2	1 DB 10 mm c/10cm
В109у-у	1,00	0,40	0,20	85,80	6,86	0,008	4,58	24,301	0,46	7,2	1 DB 10 mm c/10cm
B112x-x	1,60	0,40	0,30	239,20	31,58	0,035	2,14	24,301	2,13	7,2	1 DB 10 mm c/10cm
B112y-y	1,20	0,40	0,30	239,20	20,18	0,022	2,67	24,301	1,36	7,2	1 DB 10 mm c/10cm
B114x-x	1,60	0,40	0,30	265,20	35,01	0,039	2,03	24,301	2,36	7,2	1 DB 10 mm c/10cm
B114y-y	1,20	0,40	0,30	265,20	22,38	0,025	2,54	24,301	1,51	7,2	1 DB 10 mm c/10cm
B115x-x	1,60	0,40	0,30	327,60	43,25	0,048	1,82	24,301	2,92	7,2	1 DB 10 mm c/10cm
B115y-y	1,20	0,40	0,30	327,60	27,64	0,031	2,28	24,301	1,87	7,2	1 DB 10 mm c/10cm
B117x-x	1,60	0,40	0,30	330,70	43,66	0,049	1,82	24,301	2,95	7,2	1 DB 10 mm c/10cm
В117у-у	1,20	0,40	0,30	330,70	27,90	0,031	2,27	24,301	1,88	7,2	1 DB 10 mm c/10cm
B118x-x	1,60	0,40	0,30	341,12	45,04	0,050	1,79	24,301	3,04	7,2	1 DB 10 mm c/10cm
B118y-y	1,20	0,40	0,30	341,12	28,78	0,032	2,24	24,301	1,94	7,2	1 DB 10 mm c/10cm
B120x-x	1,60	0,40	0,30	343,20	45,31	0,050	1,78	24,301	3,06	7,2	1 DB 10 mm c/10cm
B120y-y	1,20	0,40	0,30	343,20	28,96	0,032	2,23	24,301	1,95	7,2	1 DB 10 mm c/10cm
B121x-x	1,60	0,40	0,30	187,20	24,72	0,027	2,41	24,301	1,67	7,2	1 DB 10 mm c/10cm
B121y-y	1,20	0,40	0,30	187,20	15,80	0,018	3,02	24,301	1,07	7,2	1 DB 10 mm c/10cm
B123x-x	_	0,40	0,30	192,40	25,40	0,028	2,38	24,301	1,71	7,2	1 DB 10 mm c/10cm
B123y-y		0,40	0,30	192,40	16,23	0,018	2,98	24,301	1,10	7,2	1 DB 10 mm c/10cm
				,	· · · · · · · · · · · · · · · · · · ·		•				•

			VERI	FICACION	PUNZONA	DO		
Denom.	b (m)	d (m)	c (m)	N (KN)	b0 (m)	Vc (KN)	Vu (KN)	Vc>Vu
B101	0,35	0,40	0,30	28,03	1,95	650,000	37,37	Verifica
B103	0,25	0,40	0,20	95,61	1,35	450,000	127,48	Verifica
B104	0,35	0,40	0,30	98,54	1,95	650,000	131,39	Verifica
B106	0,35	0,40	0,30	92,35	1,95	650,000	123,13	Verifica
B107	0,35	0,40	0,30	133,92	1,95	595,735	178,56	Verifica
B109	0,25	0,40	0,20	99,01	1,35	450,000	132,01	Verifica
B112	0,35	0,40	0,30	92,35	1,95	650,000	123,13	Verifica
B114	0,35	0,40	0,30	133,92	1,95	595,735	178,56	Verifica
B115	0,25	0,40	0,20	99,01	1,35	450,000	132,01	Verifica
B117	0,35	0,40	0,30	82,21	1,95	650,000	109,61	Verifica
B118	0,35	0,40	0,30	109,54	1,95	650,000	146,05	Verifica
B120	0,35	0,40	0,30	82,21	1,95	650,000	109,61	Verifica
B121	0,35	0,40	0,30	109,54	1,95	650,000	146,05	Verifica
B123	0,35	0,40	0,30	152,06	1,95	595,735	202,74	Verifica

5 - DISEÑO Y VERIFICACIÓN ESTRUCTURAL DE ESCALERA DE HºAº

5.1- INTRODUCCIÓN.

Se diseñan dos escalaeras, una de una tramo, para la vivienda, y otra de dos tramos para los departamentos, la cual se repetirá por dos pisos. Las escaleras a diseñar serán materializada mediante losas de H°A°. La geometría de la misma ya está definida por la arquitectura del proyecto. Las solicitaciones son halladas con el SAP 2000, como con el resto de la estructura.

Escalera para la vivienda (Le1)

Escalera para departamentos (Le2 y Le3)

5.2- PREDIMENSIONADO

La escalera se diseña y verifica como cualquier losa de hormigón armado, un procedimiento muy similar al de las vigas, compuesto por pre dimensionado, por flecha máxima, con los factores dados por CIRSOC 201.

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. N. 3311 Pág. **30** de **36**

DETERMINACION ESPESORES EN LOSAS ESCALERA										
LOSA	L (m)	FACTOR	h _{cal} (m)	h _{adop} (m)						
Le01	4,27	28	0,15	0,15						
Le01	2,00	28	0,07	0,12						
Le01	2,00	28	0,07	0,12						

5.3- DISEÑO A FLEXION

El diseño a flexión se realiza por una faja de ancho igual a 1 metro. Luego se determina la armadura por metro lineal y una armadura de repartición, ya que la losa trabaja una dirección.

El procedimiento de cálculo es el mismo que para vigas, la diferencia es la armadura mínima para que es:

$$A_{smin} = 0.0018 \cdot b \cdot h$$

Dimensionado a la Flexión													
Denom.	d (m)	l(m)	Mu (KNm)	Mn (MNm)	kd	ke	kc	εs	_	Asmin (cm²)	Adoptado	As _{reparticion} (cm ²)	Adoptado
Le01	0,130	4,27	22,79	0,0253	0,82	25,207	0,048	0,060	4,91	2,88	1 Ø 10 mm c/10cm	0,98	1 Ø 8 mm c/20cm
Le02	0,100	2,00	5,00	0,0056	1,34	24,766	0,091	0,030	1,38	2,34	1 Ø 10 mm c/10cm	0,47	1 Ø 8 mm c/20cm
Le03	0,100	2,00	5,00	0,0056	1,34	24,766	0,091	0,030	1,38	2,34	1 Ø 10 mm c/10cm	0,47	1 Ø 8 mm c/20cm

5.4- VERIFICACION AL CORTE:

De la mima manera que para las vigas, calculamos la contribución de la sección de hormigón para resistir el corte, y si esta es mayor la sección verifica y no es necesario agregarle armadura de corte.

Verificación al Corte								
Denom.	d(m)	l(m)	Vu(KN)	Vn(MN)	Vc(MN)	Vs (MN)		
Le01	0,130	4,27	21,35	0,028	0,099	Verifica		
Le02	0,100	2,00	10,00	0,013	0,076	Verifica		
Le03	0,100	2,00	10,00	0,013	0,076	Verifica		

6 - DISEÑO Y VERIFICACIÓN ESTRUCTURA METALICA DE TECHOS

6.1- INTRODUCCIÓN.

La estructura de techo según el planteo arquitectónico se puede dividir en dos niveles, techos en z= 6.72 m, el cual cuenta con dos faltones y en z= 12.00m el cual cuenta también con dos faldones. Estos faldones apoyan sobre encadenados superiores o mampostería montada inmediatamente sobre estos encadenados.

A partir del siguiente esquema se propone como solución usar como cabios secciones cajón, compuestas por dos perfiles C conformados en frio, cuyas dimensiones se verificarán, y clavadores de sección C.

7.2- METODOLOGIA DE CÁLCULO.

La metodología es relativamente sencilla. Se considerarán las cargas estipuladas por el reglamento CIRSOC 101. En función de la geometría del entramado del techo se determinará el momento flector y esfuerzo cortante último y máximos a lo largo de los perfiles, y según el reglamento CIRSOC 303 de chapas plegadas en frío, se determinarán las resistencias nominales y de diseño de los perfiles utilizados.

Las cargas utilizadas son:

- Sobrecarga de diseño, para techos: 1 KN/m²
- Sobrecarga muerta del techo y su estructura: 0.25 KN/m²

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. Nº 3311

Los polinomios de evaluación de combinaciones de cargas, cuyo mayor valor será considerado, serán:

$$\begin{split} q_U &= 1.4 \cdot (D+F) \\ q_U &= 1.2 \cdot (D+F+T) + \ 1.6 \cdot (L+H) + (f_1 \cdot L_r \ o \ 0.5 \cdot S \ o \ 0.5 \cdot R) \\ q_U &= 1.2 \cdot D + \ 1.6 \cdot (L_r \ o \ S \ o \ R) + (f_1 \cdot L \ o \ 0.8 \cdot W) \\ q_U &= 1.2 \cdot D + \ 1 \cdot E + f_1 \cdot (L+L_r) + f_2 \cdot S \\ q_U &= 1.2 \cdot (D+F+T) + \ 1.6 \cdot W + f_1 \cdot L + (f_1 \cdot L_r \ o \ 0.5 \cdot S \ o \ 0.5 \cdot R) \\ q_U &= 0.9 \cdot D + \ 1.6 \cdot W + 1.6 \cdot H \\ q_U &= 0.9 \cdot D + \ 1 \cdot E + 1.6 \cdot H \end{split}$$

La verificación a la flexión se realizará considerando que solo es aplicable el estado de momento elástico, ya que los demás estados no son aplicables por contener las vigas arrostramiento lateral continuo tanto encima (por la cubierta de techo) y por debajo (por el cielorraso) del alma. En la siguiente planilla se aprecia las verificaciones mencionadas para cada posición.

Posicion № 1								
1. ANÁLISIS DE CARGAS								
Sobrecarga de uso	L:	1,00	kN/m²					
Sobrecarga muerta cubierta de techo	ec:	0,25	kN/m²					
Sobrecarga muerta cieloraso	ec:	0,02	kN/m²					
Total sobrecarga muerta	D:	0,27	kN/m²					
Sobrecarga viento	W:	0,00	kN/m²					
Polinomio de combinación	1.4D:	0,38	kN/m²					
Polinomio de combinación	1.2D+1.6L+0,8W:	1,92	kN/m²					
Polinomio determinante	Qu:	1,92	kN/m²					
2. SOLICITACIONES								
Longitud de cálculo	Lc:	4,5						
Separación entre perfiles	Sep:		m .					
Carga última por metro lineal	Qu/m:		kN/m					
Momento último máximo	Mu:	14,61						
Esfuerzo cortante máximo	Vu:	12,99	kN					
	IÓN A LA FLEXIÓN	_						
Cantidad de perfiles		2						
Perfil seleccionado		C120X50X15X2						
Módulo de elasticidad	E:	200000						
Tensión de fluencia	Fy:		MPa					
Módulo elástico de la sección efectiva	Se:	35,26						
Momento elástico efectivo	Mn:	16,57	kNm					
Factor de reducción de resistencia	ф:	0,9						
Momento de diseño	Md:	14,91	kNm					
Verificación	Md > Mu	VERIFICA						
	4							
4. VERIFICACIÓN AL CORTE								
Tensión nominal de corte	Fv:		MPa					
Área del alma de la barra	Aw:	0,002						
Resistencia nominal al corte	Vn:	564	kN					
Factor de reducción de resistencia	φv:	0,95						
Resistencia de diseño al corte	Vd:	535,8						

Vd > Vu:

Verificación:

CAMILA N. COUTOUNE INGENIERA CIVIL M. P. Nº 3311

VERIFICA

Po	sicion Nº 2		
1. ANÁL	ISIS DE CARGAS		
Sobrecarga de uso	L:	1	kN/m²
Sobrecarga muerta cubierta de techo	ec:	0,25	kN/m²
Sobrecarga muerta cieloraso	ec:	0,02	kN/m²
Total sobrecarga muerta	D:	0,27	kN/m²
Polinomio de combinación	1.4D:	0,378	kN/m²
Polinomio de combinación	1.2D+1.6L:	1,924	kN/m²
Polinomio determinante	Qu:	1,924	kN/m²
2. SO	LICITACIONES		
Longitud de cálculo	Lc:	4,3	m
Separación entre perfiles	Sep:	2,05	
Carga última por metro lineal	Qu/m:	3,94	kN/m
Momento último máximo	Mu:		kNm
Esfuerzo cortante máximo	Vu:	8,48	***************************************
3 VEDIEICA	CIÓN A LA FLEXIÓN		
Cantidad de perfiles		2	
Perfil seleccionado	***************************************	C100X50X15X2	
Módulo de elasticidad	E:	200000	MPa
Tensión de fluencia	Fy:		MPa
Módulo elástico de la sección efectiva	Se:	27,7	
Momento elástico efectivo	Mn:	13,02	
Factor de reducción de resistencia	ф:	0,9	
Momento de diseño	Md:	11,72	kNm
Verificación	Md > Mu	VERIFICA	
	CACIÓN AL CORTE		
Tensión nominal de corte	Fv:		MPa
Área del alma de la barra	Aw:	0,002	
Resistencia nominal al corte	Vn:	564	kN
Factor de reducción de resistencia	фv:	0,95	
Resistencia de diseño al corte	Vd:	535,8	kN
Verificación:	Vd > Vu:	VERIFICA	

Posi	icion Nº 3							
1. ANÁLISIS DE CARGAS								
Sobrecarga de uso	L:	1	kN/m²					
Sobrecarga muerta cubierta de techo	ec:	0,25	kN/m²					
Sobrecarga muerta cieloraso	ec:	0,02	kN/m²					
Total sobrecarga muerta	D:	0,27	kN/m²					
Polinomio de combinación	1.4D:	0,378	kN/m²					
Polinomio de combinación	1.2D+1.6L:	1,924	kN/m²					
Polinomio determinante	Qu:	1,924	kN/m²					
2. SOLICITACIONES								
Longitud de cálculo	Lc:	2,05	m					
Separación entre perfiles	Sep:	1	m					
Carga última por metro lineal	Qu/m:	1,92	kN/m					
Momento último máximo	Mu:	1,01	kNm					
Esfuerzo cortante máximo	Vu:	1,97	kN					
3. VERIFICAC	IÓN A LA FLEXIÓN							
Cantidad de perfiles		1						
Perfil seleccionado		C100X50X15X1.6						
Módulo de elasticidad	E:	200000	MPa					
Tensión de fluencia	Fy:	235	MPa					
Módulo elástico de la sección efectiva	Se:	11,34	cm³					
Momento elástico efectivo	Mn:	2,66	kNm					
Factor de reducción de resistencia	ф:	0,9						
Momento de diseño	Md:	2,40	kNm					
Verificación	Md > Mu	VERIFICA						
4. VERIFICACIÓN AL CORTE								
Tensión nominal de corte	Fv:	141	MPa					
Área del alma de la barra	Aw:	0,0016	m²					
Resistencia nominal al corte	Vn:	225,6	kN					
Factor de reducción de resistencia	φv:	0,95						
Resistencia de diseño al corte	Vd:	214,32	kN					
Verificación:	Vd > Vu:	VERIFICA						