5 AJUSTE DE CURVAS POR MÍNIMOS QUADRADOS

5.1 Introdução

O ajuste de curvas é muito utilizado para, a partir de dados conhecidos, fazer-se extrapolações. Por exemplo, conhece-se os dados de consumo anual de carga elétrica de uma cidade. A partir destes dados conhecidos, pode-se fazer projeções para o futuro e com isso, fazer-se um planejamento para que a cidade seja suprida de forma adequada nos anos subsequentes. A idéia é ajustar uma curva que melhor se ajusta aos dados disponíveis. Conhecida a equação da curva, pode-se determinar valores fora do intervalo conhecido.

Os dados conhecidos podem ser tabelados e obtidos por meio de experimentos. Como exemplo, seja os dados da tabela abaixo.

х	1,3	3,4	5,1	6,8	8,0
f(x)	2,0	5,2	3,8	6,1	5,8

A partir dos dados disponíveis, pode-se desejar saber uma estimativa do valor da função f(x) em x = 9.

A partir dos dados disponíveis, pode-se construir um diagrama de dispersão, que é a representação em gráfico dos dados disponíveis.

O objetivo é encontrar uma função $\varphi(x)$ que seja uma boa aproximação para os valores tabelados de f(x) e que nos permita extrapolar com uma certa margem de segurança.

5.2 Formulação Matemática

Seja o diagrama de dispersão anterior. A partir de uma análise do diagrama de dispersão deve-se definir uma curva para ser ajustada aos dados. No caso, ajusta-se os dados por uma reta dada pela função $\varphi(x) = \alpha_1 + \alpha_2 x$.

A questão é como definir a reta. Define-se para k = 1,...,m onde m é o número de pontos da amostra o desvio:

$$d_k = f(x_k) - \varphi(x_k)$$

Uma primeira maneira de definir a reta seria minimizar a soma dos desvios, ou seja, minimizar $\sum_{k=1}^m d_k$. O valor de d_k pode ser positivo ou negativo, assim, o somatório não seria representativo dos desvios. Uma primeira solução seria utilizar o somatório dos valores absolutos de d_k , ou seja $\sum_{k=1}^m |d_k|$, entretanto o manuseio de expressões que aparecem valor absoluto é extremamente complexo. A solução mais factível é a utilização da somo dos desvios ao quadrado, definido por:

$$D = \sum_{k=1}^{m} d_k^2 = \sum_{k=1}^{m} [f(x_k) - \varphi(x_k)]^2$$

Para o exemplo a ajuste será feita por uma reta dada por: $\varphi(x) = \alpha_1 + \alpha_2 x$. Substituindo na equação acima, tem-se:

$$D = \sum_{k=1}^{m} d_k^2 = \sum_{k=1}^{m} \left[f(x_k) - \varphi(x_k) \right]^2 = \sum_{k=1}^{m} \left[f(x_k) - (\alpha_1 + \alpha_2 x_k) \right]^2 = F(\alpha_1, \alpha_2)$$

O valor de $F(\alpha_1, \alpha_2)$ depende de α_1 e α_2 , ou seja, da reta escolhida para aproximar a função f(x) tabelada.

Como pode-se definir a reta?

Uma solução é encontrar $\overline{\alpha}_1$ e $\overline{\alpha}_2$, tais que $F(\overline{\alpha}_1, \overline{\alpha}_2)$ seja mínimo. Minimizando $F(\overline{\alpha}_1, \overline{\alpha}_2)$, está-se minimizando os desvios quadráticos. Em função deste procedimento ,é que adota-se o nome de ajuste de curvas por mínimos quadrados.

A condição necessária para que $F(\overline{\alpha}_1, \overline{\alpha}_2)$ seja um mínimo de $F(\alpha_1, \alpha_2)$ é que as derivadas parciais de $F(\alpha_1, \alpha_2)$ em relação a $\overline{\alpha}_1$ e $\overline{\alpha}_2$ sejam zero.

Como $F(\alpha_1, \alpha_2)$ é descrito pela equação:

$$F(\alpha_1, \alpha_2) = \sum_{k=1}^{m} \left[f(x_k) - (\alpha_1 + \alpha_2 x_k) \right]^2$$

$$\frac{\partial F}{\partial \alpha_1} = -2\sum_{k=1}^{m} \left[f(x_k) - \alpha_1 - \alpha_2 x_k \right] = 0$$

$$\frac{\partial F}{\partial \alpha_2} = -2\sum_{k=1}^{m} \left[f(x_k) - \alpha_1 - \alpha_2 x_k \right] x_k = 0$$

Rearranjando as equações chega-se:

$$\sum_{k=1}^{m} f(x_k) - \sum_{k=1}^{m} \alpha_1 - \sum_{k=1}^{m} \alpha_2 x_k = 0$$

$$\sum_{k=1}^{m} f(x_k) x_k - \sum_{k=1}^{m} \alpha_1 x_k - \sum_{k=1}^{m} \alpha_2 x_k^2 = 0$$

Isolando as variávies dos termos constantes, tem-se:

$$m\alpha_{1} + (\sum_{k=1}^{m} x_{k})\alpha_{2} = \sum_{k=1}^{m} f(x_{k})$$
$$(\sum_{k=1}^{m} x_{k})\alpha_{1} + (\sum_{k=1}^{m} x_{k}^{2})\alpha_{2} = \sum_{k=1}^{m} x_{k} f(x_{k})$$

Observe que resulta num sistema de equações lineares. Essas equações são conhecidas como equações normais. Para $\overline{\underline{\alpha}} = \left[\overline{\alpha} \quad \overline{\alpha}_2\right]^T$, solução das equações normais, $F(\alpha_1,\alpha_2)$ apresenta seu menor valor.

Solucionando para os valores numéricos do exemplo, tem-se:

$$\sum_{k=1}^{5} x_k = 1,3+3,4+5,1+6,8+8,0 = 24,6$$

$$\sum_{k=1}^{5} f(x_k) = 2,0+5,2+3,8+6,1+5,8 = 22,9$$

$$\sum_{k=1}^{5} (x_k)^2 = (1,3)^2 + (3,4)^2 + (5,1)^2 + (6,8)^2 + (8,0)^2 = 149,5$$

$$\sum_{k=1}^{5} x_k f(x_k) = (1,3) \cdot (2,0) + (3,4) \cdot (5,2) + (5,1) \cdot (3,8) + (6,8) \cdot (6,1) + (8,0) \cdot (5,8) = 127,54$$

Substituindo na equação normal, tem-se:

$$\begin{bmatrix} 5 & 24.6 \\ 24.6 & 149.5 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 22.9 \\ 127.54 \end{bmatrix}$$

A solução deste sistema linear resulta em: $\overline{\alpha} = \begin{bmatrix} 2,01 & 0,522 \end{bmatrix}^T$.

A reta que melhor aproxima f(x) pelo método dos mínimos quadrados é dada por:

$$\varphi(x) = 2,01+0,522x$$

Com a equação da reta, pode-se fazer projeções pada valores além do intervalo dado.

A curva a ser ajustada não necessariamente precisa ser uma reta. Uma maneira de se definir que tipo de função deve ser utilizada, pode ser a parti da análise do diagrama de dispersão.

Seja o exemplo dado pelo diagrama de dispersão:

Observe que o diagrama sugere o ajuste através de uma parábola.

5.3 Generalização do Método dos Mínimos Quadrados

Seja a função generalizada $\varphi(x)$ a ser ajustada:

$$\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \alpha_3 g_3(x) + \dots + \alpha_n g_n(x)$$

Sejam os pontos diponibilizados por meio de uma sequência histórica, ou obtidos através de experimentos ou medições.

x_1	x_2	x_3	 \mathcal{X}_m
$f(x_1)$	$f(x_2)$	$f(x_3)$	 $f(x_m)$

O objetivo é encontrar os coeficientes $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$, tais que a função $\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \alpha_3 g_3(x) + \dots + \alpha_n g_n(x)$ se aproxime ao máximo de f(x).

O ajuste de $\varphi(x)$ pelo método dos mínimos quadrados, consiste em escolher os α_j , j=1,...,n, de tal forma que: $D=\sum_{k=1}^m d_k^2=\sum_{k=1}^m \left[f(x_k)-\varphi(x_k)\right]^2$ seja mínimo.

Os coeficientes α_j , j=1,...,n, que fazem com que $\varphi(x)$ se aproxime ao máximo de f(x) são os que minimizam a função:

$$F(\alpha_1, \alpha_2, \dots, \alpha_n) = \sum_{k=1}^{m} [f(x_k) - \varphi(x_k)]^2 = \sum_{k=1}^{m} [f(x_k) - \alpha_1 g_1(x_k) - \alpha_2 g_2(x_k) - \dots - \alpha_n g_n(x_k)]^2$$

Para determinação dos coeficientes α_j , j = 1,..., n, acha-se as derivadas parciais e iguala-se a zero. Nos pontos de mínimo tem-se:

$$\frac{\partial F}{\partial \alpha_j} = 0, \quad j = 1, ..., n$$

Derivando a função *F*, tem-se:

$$\frac{\partial F}{\partial \alpha_{j}} = 2 \sum_{k=1}^{m} \left[f(x_{k}) - \alpha_{1} g_{1}(x_{k}) - \alpha_{2} g_{2}(x_{k}) - \dots - \alpha_{n} g_{n}(x_{k}) \right] \left[-g_{j}(x_{k}) \right], \quad j = 1, \dots, n$$

Impondo a condição necessária para o mínimo, tem-se:

$$\sum_{k=1}^{m} \left[f(x_k) - \alpha_1 g_1(x_k) - \alpha_2 g_2(x_k) - \dots - \alpha_n g_n(x_k) \right] \left[g_j(x_k) \right] = 0, \quad j = 1, \dots, n$$

De forma explícita, tem-se:

$$\sum_{k=1}^{m} [f(x_{k}) - \alpha_{1}g_{1}(x_{k}) - \alpha_{2}g_{2}(x_{k}) - \dots - \alpha_{n}g_{n}(x_{k})][g_{1}(x_{k})] = 0$$

$$\sum_{k=1}^{m} [f(x_{k}) - \alpha_{1}g_{1}(x_{k}) - \alpha_{2}g_{2}(x_{k}) - \dots - \alpha_{n}g_{n}(x_{k})][g_{2}(x_{k})] = 0$$

$$\vdots$$

$$\sum_{k=1}^{m} [f(x_{k}) - \alpha_{1}g_{1}(x_{k}) - \alpha_{2}g_{2}(x_{k}) - \dots - \alpha_{n}g_{n}(x_{k})][g_{n}(x_{k})] = 0$$

Separando os somatórios e isolando os termos com variáveis dos termos constantes, tem-se:

$$\left[\sum_{k=1}^{m} g_{1}(x_{k})g_{1}(x_{k})\right]\alpha_{1} + \left[\sum_{k=1}^{m} g_{2}(x_{k})g_{1}(x_{k})\right]\alpha_{2} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k})g_{1}(x_{k})\right]\alpha_{n} = \sum_{k=1}^{m} f(x_{k})g_{1}(x_{k})$$

$$\left[\sum_{k=1}^{m} g_{1}(x_{k})g_{2}(x_{k})\right]\alpha_{1} + \left[\sum_{k=1}^{m} g_{2}(x_{k})g_{2}(x_{k})\right]\alpha_{2} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k})g_{2}(x_{k})\right]\alpha_{n} = \sum_{k=1}^{m} f(x_{k})g_{2}(x_{k})$$

$$\left[\sum_{k=1}^{m} g_{1}(x_{k})g_{n}(x_{k})\right]\alpha_{1} + \left[\sum_{k=1}^{m} g_{2}(x_{k})g_{n}(x_{k})\right]\alpha_{2} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k})g_{n}(x_{k})\right]\alpha_{n} = \sum_{k=1}^{m} f(x_{k})g_{n}(x_{k})$$

As equações acima formam um sistema de equações lineares que de forma matricial pode ser representado por:

$$A\alpha = b$$

Onde:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \quad \underline{\alpha} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \quad \underline{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

cujos valores dos elementos da matriz de coeficientes e do vetor independente são determinados por:

$$a_{ij} = a_{ji} = \sum_{k=1}^{m} g_i(x_k) g_j(x_k)$$
 para $i = 1,..., n$ e $j = 1,..., n$;

$$b_i = \sum_{k=1}^{m} f(x_k) g_i(x_k)$$
 para $i = 1,..., n$;

n é o número de termos da função $\varphi(x)$ a ser ajustada; m é o número de pontos da amostra conhecida.

Exemplo:

Seja os valores da função apresentados na tabela abaixo. Através do Método de Mínimos Quadrados determine a equação da curva que melhor ajuste os pontos dados.

X	-1,0	-0,75	-0,6	-0,5	-0,3	0,0	0,2	0,4	0,5	0,7	1
f(x)	2,0	1,153	0,45	0,4	0,5	0,0	0,2	0,6	0,512	1,2	2,05

Representando os pontos através do seu diagrama de dispersão tem-se:

Pode-se observar que uma boa possibilidade é ajustar os pontos a uma parábola passando pela origem.

Portanto, procura-se a função $\varphi(x) = \alpha x^2$ que melhor represente f(x). Para a notação utilizada, $g(x) = x^2$.

A partir das equações do método, tem-se:

$$\sum_{k=1}^{11} [g(x_k)]^2 \alpha = \sum_{k=1}^{11} f(x_k) g(x_k)$$

Substituindo:

$$\sum_{k=1}^{11} [x_k^2]^2 \cdot \alpha = \sum_{k=1}^{11} f(x_k) \cdot x_k$$

como
$$\sum_{k=1}^{11} [x_k^2]^2 = 2,8464$$
 e $\sum_{k=1}^{11} f(x_k) \cdot x_k = 5,8756$, tem-se a equação linear:

$$2,8464\alpha = 5,8756 \implies \alpha = 2,0642$$

A equação $\varphi(x) = 2,0642 \ x^2$ é a parabola que melhor aproxima a função tabelada através do Método de Mínimos Quadrados.

Exemplo:

Aproximar a função tabelada apresentada no exemplo anterior por uma função do tipo: $\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$

х	-1,0	-0,75	-0,6	-0,5	-0,3	0,0	0,2	0,4	0,5	0,7	1
f(x)	2,0	1,153	0,45	0,4	0,5	0,0	0,2	0,6	0,512	1,2	2,05

Deve-se montar o sistema linear $A\underline{\alpha} = \underline{b}$, onde:

$$a_{ij} = a_{ji} = \sum_{k=1}^{11} g_i(x_k) g_j(x_k)$$
 para $i = 1,...,3$ e $j = 1,...,3$;
 $b_i = \sum_{k=1}^{11} f(x_k) g_i(x_k)$ para $i = 1,...,3$.

Para a função $\varphi(x)$ proposta, tem-se:

$$g_1(x) = 1$$
, $g_2(x) = x$, $e g_3(x) = x^2$

Chega-se portanto a:

$$a_{11} = \sum_{k=1}^{11} 1^{2} = 11$$

$$a_{12} = a_{21} = \sum_{k=1}^{11} 1 \cdot x_{k}$$

$$a_{13} = a_{31} = \sum_{k=1}^{11} 1 \cdot x_{k}^{2}$$

$$a_{22} = \sum_{k=1}^{11} x_{k}^{2}$$

$$a_{23} = a_{32} = \sum_{k=1}^{11} x_{k} \cdot x_{k}^{2}$$

$$a_{33} = \sum_{k=1}^{11} x_{k}^{2} x_{k}^{2}$$

$$b_{1} = \sum_{k=1}^{11} f(x_{k})$$

$$b_{2} = \sum_{k=1}^{11} x_{k} f(x_{k})$$

$$b_{3} = \sum_{k=1}^{11} x_{k}^{2} f(x_{k})$$

Para facilitar os cálculos, pode-se construir a tabela:

Valores Tabelados												\sum
х	-1,0	-0,75	-0,6	-0,5	-0,3	0,0	0,2	0,4	0,5	0,7	1	-0,35
f(x)	2,05	1,153	0,45	0,4	0,5	0,0	0,2	0,6	0,512	1,2	2,05	9,115
x^2	1,0	0,5625	0,36	0,25	0,09	0,0	0,04	0,16	0,25	0,49	1	4,2025
x^3	-1,0	-0,4218	-0,216	-0,125	-0,027	0,0	0,008	0,064	0,125	0,343	1	-0,2498
x^4	1,0	0,3164	0,1296	0,0625	0,0081	0,0	0,0016	0,0256	0,0625	0,2401	1	2,8464
$f(x_k)x_k$	-2,05	-0,8647	-0,270	-0,200	-0,150	0,0	0,04	0,24	0,256	0,84	2,05	-0,1087
$f(x_k)x_k^2$	2,05	0,6486	0,162	0,100	0,045	0,0	0,008	0,096	0,128	0,588	2,05	5,8756

Com os valores calculados, chega-se ao sistema linear:

$$\begin{bmatrix} 11 & -0.35 & 4.2025 \\ -0.35 & 4.2025 & -0.2498 \\ 4.2025 & -0.2498 & 2.8464 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 9.115 \\ -0.1087 \\ 5.8756 \end{bmatrix}$$

Resultando em:

$$\underline{\alpha} = \begin{bmatrix} 0.0914 \\ 0.0970 \\ 1.9377 \end{bmatrix}$$

A equação da parábola ajustada é dada por:

$$\varphi(x) = 0.0914 + 0.0970 x + 1.9377 x^2$$

Exemplo:

Ajuste os dados apresentados na tabela abaixo, utilizando o Método dos Mínimos Quadrados por:

- a) Uma reta.
- b) Uma parábola do tipo $\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$.
- c) Como você compararia as duas curvas com relação aos dados.

X	1	2	3	4	5	6	7	8
f(x)	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0

O diagrama de dispersão é dado pela figura:

Constrói-se a tabela:

Valores Tabelados										
x_k	1	2	3	4	5	6	7	8	36	
$f(x_k)$	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0	9,2	
x_k^2	1	4	9	16	25	36	49	64	204	
x_k^3	1	8	27	64	125	216	343	512	1296	
x_k^4	1	16	81	256	625	1296	2401	4096	8772	
$x_k f(x_k)$	0,5	1,2	2,7	3,2	6,0	9,0	11,9	16,0	50,5	
$x_k^2 f(x_k)$	0,5	2,4	8,1	12,8	30,0	54	83,3	128	319,1	

a)
$$\varphi(x) = \alpha_1 + \alpha_2 x \implies g_1(x) = 1$$
, $g_2(x) = x$

$$a_{11} = \sum_{k=1}^{8} 1^2 = 8$$

$$a_{12} = a_{21} = \sum_{k=1}^{8} 1 \cdot x_k = 36$$

$$a_{22} = \sum_{k=1}^{8} x_k^2 = 204$$

$$b_1 = \sum_{k=1}^{8} 1 \cdot f(x_k) = 9,2$$

$$b_2 = \sum_{k=1}^{8} x_k f(x_k) = 50,5$$

$$\begin{bmatrix} 8 & 36 \\ 36 & 204 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 9,2 \\ 50,5 \end{bmatrix}$$

$$\underline{\alpha} = \begin{bmatrix} 0,175 \\ 0,21667 \end{bmatrix}$$

A equação da reta ajustada é dada por:

$$\varphi(x) = 0.175 + 0.21667x$$

b)
$$\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 \implies g_1(x) = 1, g_2(x) = x, e g_3(x) = x^2$$

$$a_{11} = \sum_{k=1}^{8} 1^{2} = 8$$

$$a_{12} = a_{21} = \sum_{k=1}^{8} 1 \cdot x_{k} = 36$$

$$a_{13} = a_{31} = \sum_{k=1}^{8} 1 \cdot x_{k}^{2} = 204$$

$$a_{22} = \sum_{k=1}^{8} x_{k}^{2} = 204$$

$$a_{23} = a_{32} = \sum_{k=1}^{8} x_{k} \cdot x_{k}^{2} = 1296$$

$$a_{33} = \sum_{k=1}^{8} x_{k}^{2} x_{k}^{2} = 8772$$

$$a_{33} = \sum_{k=1}^{8} x_k^2 x_k^2 = 8772$$

$$b_1 = \sum_{k=1}^{8} f(x_k) = 9,2$$

$$b_2 = \sum_{k=1}^{8} x_k f(x_k) = 50,5$$

$$b_3 = \sum_{k=1}^{8} x_k^2 f(x_k) = 319,1$$

Resultando no sistema linear:

$$\begin{bmatrix} 8 & 36 & 204 \\ 36 & 204 & 1296 \\ 204 & 1296 & 8772 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 9,2 \\ 50,5 \\ 319,1 \end{bmatrix}$$

$$\underline{\alpha} = \begin{bmatrix} 0,40714 \\ 0,07738 \\ 0,01548 \end{bmatrix}$$

A equação da parábola ajustada é dada por:

$$\varphi(x) = 0,40714 + 0,07738 x + 0,01548 x^2$$

c) Para a verificação do melhor ajuste, pode-se calcular a soma dos desvios quadráticos:

Para a reta -
$$\sum_{k=1}^{8} d_k^2 = 0,08833$$

Para a parábola -
$$\sum_{k=1}^{8} d_k^2 = 0,04809$$

Portanto a parábola se ajusta melhor aos pontos tabelados.