

Recommender

Kick-off

T9 - Big Data

T-DAT-901

Manipulating big data

Millions of lines

- Millions of lines
- High dimensional space

- Millions of lines
- High dimensional space
- Unclean and diverse sources of data

- Millions of lines
- High dimensional space
- Unclean and diverse sources of data
- Short time for response

Clustering

• Unsupervised learning

- Unsupervised learning
- Separate data into clusters

- Unsupervised learning
- Separate data into clusters
- Minimize dissimilarity inside a cluster

- Unsupervised learning
- Separate data into clusters
- Minimize dissimilarity inside a cluster
- Optimize shape and number of clusters

Dimension reduction

• From many dimensions to 2D

- From many dimensions to 2D
- Allow visualizations

- From many dimensions to 2D
- Allow visualizations
- Fasten algorithms

- From many dimensions to 2D
- Allow visualizations
- Fasten algorithms
- Control loss of information

Supervised learning

Supervised learning

Associate groups with outcomes

Supervised learning

- Associate groups with outcomes
- Learn on data and predict

Supervised learning

- Associate groups with outcomes
- Learn on data and predict
- Beware of complexity and robustness

Back to the project

Back to the project

Given a bunch of user behaviors:

Back to the project

Given a bunch of user behaviors:

• Cluster users and/or products

Back to the project

Given a bunch of user behaviors:

- Cluster users and/or products
- Identify user preferences

Back to the project

Given a bunch of user behaviors:

- Cluster users and/or products
- Identify user preferences
- Issue recommendations

Any questions

?

