

Sequences

1

J. Balasubramaniam[†] and G V V Sharma^{*}

Abstract—This manual covers the properties of sequences through examples. Python scripts are provided for understanding the properties of sequences.

1 Limit

Problem 1.1. Sketch the following sequence.

$$x_n = \frac{2n}{n + 4\sqrt{n}}, \quad n \ge 0$$
 (1.1)

Solution:

import numpy as np
import matplotlib.pyplot as plt

n = np.linspace(0,1e9,100)
T_n = (2.0*n)/(n+4.0*np.sqrt(n))
plt.plot(n,T_n)
plt.grid()
plt.xlabel('\$n\$')
plt.ylabel('\$x_n\$')
#Comment the following line
#plt.savefig('../figs/seq_converge
.eps')
plt.show()

Definition 1.1. The sequence x_n converges to a limit L if for $\epsilon > 0$, there exists an integer $K(\epsilon)$ such that for all $n > K(\epsilon)$,

$$|x_n - L| < \epsilon \tag{1.2}$$

Proposition 1.1. Archimedian Property: For any real number x, there exists an integer n > x.

Problem 1.2. Guess the value of L for x_n in (1.1) as $n \to \infty$.

† The author is with the Department of Mathematics, IIT Hyderabad. *The author is with the Department of Electrical Engineering, IIT, Hyderabad 502285 India e-mail: {jbala,gadepall}@iith.ac.in. All material in the manuscript is released under GNU GPL. Free to use for all.

Fig. 1.1

Solution: From Fig. 1.1, L = 2.

Problem 1.3. Show that x_n in (1.1) converges to L = 2 using Definition 1.1.

Solution:

$$|x_n - 2| = \left| \frac{2n}{n + 4\sqrt{n}} - 2 \right| \tag{1.3}$$

$$=\frac{8\sqrt{n}}{n+4\sqrt{n}}\tag{1.4}$$

$$<\frac{8\sqrt{n}}{n} = \frac{8}{\sqrt{n}}\tag{1.5}$$

Using Proposition 1.1, choose $K(\epsilon) > \frac{64}{\epsilon^2}$ to be an integer.

$$n > K(\epsilon) \Rightarrow n > \frac{64}{\epsilon^2} \Rightarrow \frac{8}{\sqrt{n}} < \epsilon$$
 (1.6)

Thus, there exists $K(\epsilon)$ such that $|x_n - 2| < \epsilon$.

Problem 1.4. Let $x_n = \frac{1}{\ln(n+1)}$.

- 1) Find the value to which x_n converges.
- 2) Find $K(\epsilon)$ when $\epsilon = \frac{1}{2}$ and $\epsilon = \frac{1}{10}$.

2 Monotonicity and Boundedness

Definition 2.1. A sequence x_n is said to be monotonically *increasing* if

$$x_{n+1} > x_n \tag{2.1}$$

 x_n is monotonically decreasing if $x_{n+1} < x_n$.

Definition 2.2. The sequence x_n is said to be bounded if for all n > N

$$|x_n| < M \tag{2.2}$$

for some positive real number M.

Problem 2.1. Consider the sequence defined by

$$x_n = \begin{cases} 1 & n = 1\\ \frac{x_{n-1}+1}{3} & n > 1 \end{cases}$$
 (2.3)

Is the sequence

- 1) Monotonic?
- 2) Bounded?

Solution: The following code plots Fig. 2.1. It is obvious from the figure that x_n is both monotonically decreasing as well as bounded.

import numpy as np
import matplotlib.pyplot as plt

x = []temp = 1

for i **in** range (100):

x.append(temp) temp = (temp+1.0)/3.0

plt.plot(range(100), x)

plt.grid()

plt.xlabel('\$n\$')

plt.ylabel('\$x n\$')

#Comment the following line

plt.show()

Problem 2.2. Prove that x_n is monotonically decreasing.

Proof. From (2.3), it can be shown that

$$x_n = \frac{1}{2} \left(1 + \frac{1}{3^{n-1}} \right) \tag{2.4}$$

Fig. 2.1

Thus,

$$x_{n-1} - x_n = \frac{2}{3^{n-1}} > 0 \Rightarrow x_{n-1} > x_n$$
 (2.5)

which is the condition for x_n to be monotonically decreasing.

Problem 2.3. Prove that x_n is monotonically decreasing using induction.

Proof. Since $x_1 = 1, x_2 = \frac{2}{3} < x_1$. Let $x_k < x_{k-1}$. Then

$$x_{k+1} - x_k = \frac{x_k + 1}{3} - \frac{x_{k-1} + 1}{3}$$
 (2.6)

$$=\frac{x_k - x_{k-1}}{3} < 0 \tag{2.7}$$

Thus, $x_k < x_{k-1} \Rightarrow x_{k+1} < x_k$. This shows that x_n is decreasing.

Problem 2.4. Show that x_n is bounded.

Proof. From (2.4), it is obvious that

$$|x_n| \le 1 \tag{2.8}$$

Thus, x_n is bounded.

Problem 2.5. Find the limit of x_n .

Solution: From Fig. 2.1, it is clear that the limit is $\frac{1}{2}$.

Problem 2.6. Show that the limit of x_n is $\frac{1}{2}$.

Problem 2.7. Show that the sequence defined by

$$x_n = \begin{cases} 2 & n = 1\\ \sqrt{2x_{n-1} + 1} & n > 1 \end{cases}$$
 (2.9)

is monotone as well as bounded. Find its limit.

Proposition 2.1. Any monotone sequence that is bounded is convergent.

Problem 2.8. Graphically show that $x_n = \sqrt{n+1}-1$ is divergent.

Solution: The following code results in Fig. 2.8. It is obvious that the series does not converge.

Fig. 2.8

Problem 2.9. Show that x_n in Problem 2.8 is increasing.

Proof. Since $x_n > x_{n-1}$ for all n, the sequence is increasing.

Problem 2.10. Show that x_n in Problem 2.8 is unbounded.

Proof. For every M, it is possible to find an integer $n > M^2 - 1 \Rightarrow \sqrt{n+1} > M$. Thus, x_n is unbounded.

Proposition 2.2. A monotone unbounded sequence is divergent.

3 Cauchy Sequence

Definition 3.1. The sequence x_n is Cauchy if for every $\epsilon > 0$, there exists an integer N such that

$$|x_m - x_n| < \epsilon$$
 whenever $n, m \ge N$ (3.1)

Problem 3.1. Show that

$$x_n = \frac{1}{n^2} \tag{3.2}$$

is a Cauchy sequence.

Proof. Let m > n > N.

$$|x_m - x_n| = \left| \frac{1}{m^2} - \frac{1}{n^2} \right| = \left| \frac{(m-n)(m+n)}{m^2 n^2} \right|$$
 (3.3)

The numerator in (3.3)

$$|(m-n)(m+n)| < 2m^2 \tag{3.4}$$

Thus,

$$|x_m - x_n| < \frac{2}{n^2} < \frac{2}{N^2} < \epsilon$$
 (3.5)

Thus it is possible to find an N given ϵ for x_n such that x_n is Cauchy.

Proposition 3.1. Every Cauchy sequence is convergent and vice versa.

Problem 3.2. Show that

$$x_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$
 (3.6)

is a Cauchy sequence.

Problem 3.3. Is $x_n = \sqrt{n}$ a Cauchy sequence?