

An Example Problem

Let's assume we want to <u>estimate real-estate prices in Taiwan</u>

The Data File

Data for this problem is available (in csv format) from the data folder

On Linux/OS X or on the Windows Powershell check it by running this:

```
In [33]: !ls data
real_estate.csv
```

On a classic Windows command prompt you can run instead:

```
In [34]: !dir data
real_estate.csv
```

- csv stand for "Comma Separated Values"
- It's a simple text-based data format

Pandas

You can read csv files

- Using notepad or any text editor
- Using excel (which imports them into worksheets)
- ...Or using Python

In particular, we will rely on the <u>pandas</u> package

pandas is a python data-analysis library

- It can be used to load, inspect, and manipulate data
- With a focus on tables (called "dataframes" and series) pandas is imported with:

```
In [35]: import pandas as pd
```

Loading the Data

We can then load a csv file with read_csv

```
In [36]: import os
           fname = os.path.join('data', 'real estate.csv')
           data = pd.read csv(fname, sep=',')
           data.head()
Out[36]:
              house age dist to MRT #stores
                                                   longitude price per area
                                          latitude
            0 14.8
                       393.2606
                                          24.96172 121.53812 7.6
            1 17.4
                       6488.0210
                                         24.95719 121.47353 11.2
           2 16.0
                       4066.5870 0
                                         24.94297 121.50342 11.6
            3 30.9
                       6396.2830
                                         24.94375 121.47883 12.2
           4 16.5
                       4082.0150 0
                                         24.94155 121.50381 12.8
```

- We use os.path.join to obtain a path that works on both Win and *nix
- read_csv returns a DataFrame object
- The head methods returns a DataFrame with the first 5 rows
- Dataframes are displayed as html tables by Jupyter

The indexing operator for DataFrame objects is heavily overloaded

We can access a whole column by its name:

```
In [37]: data['house age']
Out[37]: 0
                14.8
                17.4
                16.0
                30.9
                16.5
                 0.0
         409
                0.0
          410
                35.4
          411
                37.2
          412
                10.8
         413
         Name: house age, Length: 414, dtype: float64
```

■ Every column in a DataFrame is an object of the series class

Every DataFrame and Series has a special field called an index

In the visualization, it's the first column (in bold font, with no name)

In [38]:	data.head()						
Out[38]:		house age	dist to MRT	#stores	latitude	longitude	price per area
	0	14.8	393.2606	6	24.96172	121.53812	7.6
	1	17.4	6488.0210	1	24.95719	121.47353	11.2
	2	16.0	4066.5870	0	24.94297	121.50342	11.6
	3	30.9	6396.2830	1	24.94375	121.47883	12.2
	4	16.5	4082.0150	0	24.94155	121.50381	12.8

It is analogous to a <u>primary key</u> in a database

- Every rows has an unique index value
- ...Which is used to identify and quickly access to the row

We can access the index with the index attribute

```
In [39]: data.index
Out[39]: RangeIndex(start=0, stop=414, step=1)
```

Our DataFrame has a numeric index

We can access a row by its index value using the loc property

■ The results is once again a series object

For a Series that corresponds to a row

...The index is the sequence of column names

```
In [41]: data.loc[3].loc['house age']
Out[41]: 30.9
```

- Therefore, we can use 100 to retrieve a given column value
- We can even do both operations at once, by passing a tuple to loc

```
In [42]: data.loc[3, 'house age']
Out[42]: 30.9
```

Pandas supports also positional access

To see this, let's consider again the series for row 3

We can access an element by its position using the iloc property

```
In [44]: r3.iloc[1] # this is dist to MRT
Out[44]: 6396.283
```

Positional access might be useful

...Since the "normal" index is attached to a row even if it moves around

- For example, if we reorder the rows in a DataFrame
- The index values move together with the rows:

```
In [45]: first rows = data.loc[[2, 1, 5, 3, 4]]
           first rows
Out[45]:
               house age dist to MRT #stores
                                            latitude
                                                     longitude price per area
                         4066.587
            2 16.0
                                    0
                                            24.94297 121.50342 11.6
            1 17.4
                         6488.021
                                            24.95719 121.47353
                                                               11.2
            5 32.0
                         1156.777
                                           24.94935 121.53046 12.8
            3 30.9
                         6396.283
                                           24.94375 121.47883 12.2
                                           24.94155 121.50381 12.8
            4 16.5
                         4082.015
                                    ()
```

- In most cases, index access is more convenient
- For some algorithms the sequence matters and we need positional access

We can use just the [] operator (without loc or iloc)

...Pandas tries to understand which of the two we need:

```
In [46]: print(r3[3])
    print(r3['latitude'])

24.94375
24.94375
```

If there is an abiguity, we get an error:

A Possible Problem Statement

Now that we know better about pandas, let's look again at the data

In [48]: data.head() Out[48]: longitude price per area house age dist to MRT #stores latitude **0** 14.8 393.2606 24.96172 121.53812 7.6 **1** 17.4 6488.0210 24.95719 121.47353 11.2 4066.5870 24.94297 121.50342 **2** 16.0 11.6 **3** 30.9 6396.2830 24.94375 121.47883 12.2 **4** 16.5 4082.0150 0 24.94155 121.50381 12.8

- The first four columns contain quantities that easy to estimate
- ...But that's not true for the last one!

Obtaining price information requires actual houses to be sold and bought

- Therefore, it might be useful to learn a machine model
- ...That can estimate the price based on the easily available information

Using Histograms

Since our goal is roughly defined, it's a good idea to inspect the dataset

We will start by using histograms, i.e. plots with:

- On the x-axis: values for one attribute
- On the y-axis: occurrency count in the dataset

They are useful to display the distribution of each column

Some comments:

- Continuous attributes are typically discretized (i.e. binned) first
- The counts can be normalized to obtain frequencies

Histograms can be built directly from pandas

- ...By using the <u>hist</u> method.
- matplotlib is used behind the scens and can be employed to add details
- ...Or as an alernative, if we need a more complex plot

Dataset Inspection via Histograms

Let's inspect the "house age" attribute

What can you say about that?

Using Histograms

Let's inspect the "house age" attribute

- There seems to be two main clusters, roughly normally distributed
- Lower age values are roughly uniformly likely

Now, try building histograms for the other columns

Let's inspect the "dist to MRT" attribute

■ This attribute has a large range and low values are much more prevalent

Let's inspect the "#stores" attribute

■ The dataset covers rather uniformly the range for this attribute

Let's inspect the "latitude" attribute

■ There is a central cluster w.r.t. this attribute

Let's inspect the "longitude" attribute

■ The dataset is a bit less uniformly distributed w.r.t. longitude

Let's inspect the target (i.e. "price per area")

■ There are a few significant outliers here

Dataset Inspection via Cartesian Plots

We can obtain information about the distribution of each column

...By using statistics. For example we can call:

In [58]: data.describe() Out[58]: dist to MRT longitude #stores latitude price per area house age **count** 414.000000 414.000000 414.000000 414.000000 414.000000 414.000000 17.712560 1083.885689 24.969030 121.533361 37.980193 4.094203 mean std 11.392485 1262.109595 2.945562 0.012410 0.015347 13.606488 0.000000 23.382840 0.000000 24.932070 121.473530 7.600000 min 25% 9.025000 289.324800 1.000000 24.963000 121.528085 27.700000 492.231300 50% 16.100000 4.000000 24.971100 121.538630 38.450000 75% 28.150000 1454.279000 6.000000 24.977455 121.543305 46.600000 43.800000 6488.021000 10.000000 25.014590 121.566270 117.500000 max

- Statistics are a very compact way to convey information
- ...But they are also less rich than using a histogram

Dataset Inspection via Cartesian Plots

The third tool we'll use for dataset inspection

...Is given by Cartesian plots, which have:

- On the x-axis: the index value
- On the y-axis: the value of one attribute
- Consecutive points are connected by a line

A few comments

- Cartesian plot are extremely useful with time series
- ...Where the index represents time, or a sequence number

They are far less useful with non-sequential data

That said, we are going to use them all the same

Using Cartesian Plots

Let's inspect the "house age" attribute

■ As expected, there is no significant patter

Try making Cartesian plots for all attributes

Let's inspect the "dist to MRT" attribute

■ This attribute roughly decreases along the table

Let's inspect the "#stores" attribute

■ This attribute roughly increases along the table

Let's inspect the "latitude" attribute

Let's inspect the "latitude" attribute

■ This attribute roughly increases along the table

Let's inspect the "longitude" attribute

Let's inspect the "longitude" attribute

■ This attribute roughly increases along the table

Let's inspect the target (i.e. "price per area")

Let's inspect the target (i.e. "price per area")

- The dataset is sorted according to this attribute!
- ...Which explains also the other observed patterns

Dataset Inspection via Scatter Plots

The fourth tool we'll use for dataset inspection

...Is given by scatter plots, which have:

- On the x-axis: the values for one attribute
- On the y-axis: the values for anotehr attribute (usually the target)
- Points in scatter plot are not connected by a line

Some comments:

- These are great for the visual identification of correlations
- By looking at the shape of the "cloud of points"
- ...It is possible to get insight on how the attributes are connected

Using Scatter Plots

Let's inspect how "house age" and the target are linked

■ There does not seem to be a strong correlation here

Try building some scatter plots w.r.t. the target

Let's inspect how "dist to MRT" and the target are linked

Let's inspect how "dist to MRT" and the target are linked

■ The correlation is a bit stronger here

Let's inspect how "#stores" and the target are linked

Let's inspect how "#stores" and the target are linked

A slightly positive correlation here

Let's inspect how "latitude" and the target are linked

Let's inspect how "latitude" and the target are linked

A somewhat complicated relation

Let's inspect how "longitude" and the target are linked

- We have one box per value of an attribute
- lacksquare On the y axis, we have a second attribute (usually the target)

- The box boundaries are the 1st and 3rd quartile
- The green line represents the mean

- The "whiskers" extend for 1.5 the inter-quartile range
- Values outside the whiskers are plotted directly

- lacksquare Box plots are great to see how the distribution of a y depends on x
- They can be used with continuous attributes, if we first discretize them

Conclusions and Take-Home Messages

Inspecting a new dataset is very important

- We can get a sense of the dataset
- We can spot the main challenges we will have to face
- ...Including potentially some critical issues (inadequate data)
- It may prevent us from making some mistakes later
- ...And it will allow us some sanity check over the results

Of course, these benefits depend a lot on your experience

- Perhaps some of you already got idea by looking at the plots
- ...But for now the important thing is just to keep them in mind