Class 7: Machine Learning 1

Idara Ibekwe A16865157

Today we will start our multi-part exploration of some key machine learning methods. We will begin with clustering - finding groupings in data, and then dimensionallity reduction

Clustering

Let's start with "k-means" clustering. The main function in base R for this is kmeans()

```
# make up some data
hist(rnorm(100000, mean=3))
```

Histogram of rnorm(1e+05, mean = 3)


```
tmp <- c(rnorm(30,-3), rnorm(30,+3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


Now let's try out kmeans()

```
km <- kmeans(x, centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 -3.086699 3.382890
2 3.382890 -3.086699
```

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 55.28201 55.28201 (between_SS / total_SS = 91.9 %)
```

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q. How many points in a cluster?

km\$size

[1] 30 30

Q. What component of your result object details cluster assignment/membership?

km\$cluster

Q. What are centers/mean values of each cluster?

km\$centers

```
x y
1 -3.086699 3.382890
2 3.382890 -3.086699
```

Q. Make a plot of your data showing your clustering results?

```
plot(x, col=c("purple","blue"))
```


plot(x, col=c(1,2))


```
plot(x,col=(km$cluster))
points(km$centers, col="green", pch=15, cex=3)
```


Q. Run kmeans() again and cluster into 4 groups and plot the results.

```
km4 <- kmeans(x, centers=4)
km4</pre>
```

K-means clustering with 4 clusters of sizes 14, 11, 5, 30

Cluster means:

x y 1 2.548342 -2.991225

2 3.768156 -3.788253

3 4.872042 -1.810605

4 -3.086699 3.382890

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 11.224807 5.707075 2.195289 55.282014 (between_SS / total_SS = 94.6 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

```
km4$cluster
```

plot(x,col=km4\$cluster)

Hierarchal Clustering: Bottom up is the most common type of clustering

This form of clustering aims to reveal the structure in your data by progressively grouping points into smaller numbers of clusters.

The main function in base R for this called hclust(). This function does not take input data indirectly, but wants a "distance matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

The print out above is not very useful (unlike that from kmeans) but there is a useful plot() method.

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my treee using the function cutree()

Principal Component Analysis (PCA)

The goal of PCA is to reduce the dimensionality of a dataset down to some smaller subset of new variables (called PCs) that are a useful bases for further analysis, like visualization, clustering, etc.

Data import

Read data about eating trends in the UK and N. ireland

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
x</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
dim(x)
[1] 17 4

nrow(x)
[1] 17
```

[1] 4

```
barplot(as.matrix(x), col=rainbow(nrow(x)))
```


The so-called pairs plot can be useful for small data sets

```
rainbow(nrow(x))
```

```
[1] "#FF0000" "#FF5A00" "#FFB400" "#F0FF00" "#96FF00" "#3CFF00" "#00FF1E" [8] "#00FF78" "#00FFD2" "#00D2FF" "#0078FF" "#001EFF" "#3C00FF" "#9600FF" [15] "#F000FF" "#FF00B4" "#FF005A"

pairs(x,col=rainbow(nrow(x)), pch=16)
```


The Pairs plot is useful for small datasets but it can be lots of work to interpret and gets untractable for larger datasets.

So PCA to the rescue....

The main function to do in PCA in base R is called prcomp(). This function wants the transpose of our data in this case.

```
pca<- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

```
$class
[1] "prcomp"
```

```
pca$x
```

```
PC1
                             PC2
                                        PC3
                                                       PC4
          -144.99315
                       -2.532999 105.768945 -4.894696e-14
England
Wales
          -240.52915 -224.646925 -56.475555
                                             5.700024e-13
Scotland
                      286.081786 -44.415495 -7.460785e-13
           -91.86934
N.Ireland 477.39164
                      -58.901862
                                  -4.877895
                                            2.321303e-13
```

A major PCA result visualization is called PCA plot (aka a score plot, biplot, PC1 vs. PC2 plot, ordination plot)

Another important output from PCA is called the "loadings" vector or the "rotation" component - this tells us how much the original variables (the foods in this case) contribute to the new PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.103508492
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.316290619
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001847469

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.