Übung Nr.: 5

Protokollabgabe:

Solldatum: 25.01.2024....

Ist-Datum:

Note:

Note Deutsch:

PROTOKOLL

über die Füllstandsmessung der Pumpanlage

THEMA: FÜLLSTANDSMESSUNG PUMPANLAGE

Tag: Donnerstag, 15.01.2024

Zeit: 10:45 bis 13:15

Ort: HTBLA Kaindorf, Messlabor

Anwesend: Traußnigg Jan, Ursnik Iwana (Uhl Alexander, Anna Schreiner,

Unterberger Peter, Wack Christopher, Wang Bowen)

Schriftführer: Jan Traußnigg

Aufgabenstellung

In dieser Einheit wird der Druck im Füllturm der Pumpanlage und der Durchfluss der Pumpe in LabView grafisch dargestellt und in eine Excel-Tabelle gespeichert. Im nächsten Schritt soll mit Hilfe der Abmaße des Füllturms und der zeitlichen Veränderung des Drucks ein Durchfluss berechnet werden und mit dem gemessenen Durchfluss der Pumpe verglichen werden.

Resümee

In dieser Übung erlangten wir ein tieferes Verständnis von Druckmessungen und den Zusammenhang von Druck über zeitliche Veränderung und Durchfluss. Wir konnten aus unseren Fehlern lernen: Wir werden nicht mehr Messketten aufbauen, ohne uns ganz sicher zu sein. Besonders Gefallen fanden wir an der selbständigen Arbeit.

Traußnigg Jan

Uhl Alexander

Unterberger Peter

21.01.2024 Datum

HTBLA Kaindorf

Seite 2 von 6

INHALTSVERZEICHNIS

1.	. Zeitlicher Ablauf	3
2.	. Genaue Aufgabenstellung	3
	2.1. Übung 1 – Temperatursignale simulieren	3
	2.2. Übung 2 – Temperatursensoren testen Fehler! definiert.	Fextmarke nicht
	2.3. Übung 3 – Mischaufgabe Fehler! Textmarke	nicht definiert.
3	Verwendete Geräte und Hilfsmittel	5

HTBLA Kaindorf

Seite 3 von 6

1. ZEITLICHER ABLAUF

• 18.01.2024

- 10:45-11:05 -> Besprechung der Aufgabe, Besprechung des Programms der letzten Einheit
- o 11:05-11:20 -> Vorbereitung und Planen der Messkette
- o 11:20-11:50 -> Aufbau der Messkette
- o 11:50-12:30 -> grafische Darstellung in LabView & Speichern in Excel-Tabelle
- o 12:30-13:15 -> Umrechnung des Drucks in Durchfluss & Vergleich

2. GENAUE AUFGABENSTELLUNG

2.1. Übung 1 – Temperatursignale simulieren

- Mit dem Programm der letzten Einheit sollen zwei Signale: Einmal der Drucksensor und einmal die Pumpe gemessen, richtig skaliert und grafisch dargestellt werden
- Dann soll über einen Umrechnungsblock und die Abmaße des Füllturms der Druck in Durchfluss umgerechnet werden und mit dem Messergebnis des Durchflusses der Pumpe verglichen werden

3. DURCHFÜHRUNG DER ÜBUNG

3.1. Richtige Skalierung der Sensoren

Abbildung 2: Skalierung des Drucksensors: 0-0,1 bar Relativdruck

Abbildung 1: Skalierung des Sensors der Pumpe: 0-12 L/min

HTBLA Kaindorf

Seite 4 von 6

Abbildung 3: Verwendetes LabView-Programm (im ersten Schritt noch ohne Umrechnungsblock)

Abbildung 4: Grafische Anzeige der Sensoren

1	А	В	C	D	E	F
1						
2	Messlabor					
3						
4	sr					
5	Alex Uhl & Tr	außnigg				
6	HTBLA Kaind	lorf				
7	t(s)					
8	177.00	V_dm ³ /min	V_Pa	dm³/min	dm ³	
9	0	0,993879	2,09609	0	5,396929	
10	0,1	0,992575	2,094133	0	5,387295	
11	0,2	0,993879	2,093807	0	5,38569	
12	0,3	0,993227	2,093481	0	5,384084	
13	0,4	0,993553	2,095438	0	5,393718	
14	0,5	0,993227	2,093481	0	5,384084	
15	0,6	0,992901	2,094459	0	5,388901	
16	0,7	0,994206	2,094133	0	5,387295	
17	0,8	0,993879	2,095438	0	5,393718	
18	0,9	0,993879	2,094459	0	5,388901	
19	1	0,993227	2,093807	0	5,38569	
20	1,1	0,998119	2,095111	0	5,392112	
21	1,2	0,993553	2,093155	0	5,382478	
22	1,3	0,993227	2,094785	0	5,390507	
23	1,4	0,991597	2,093807	0	5,38569	
24	1,5	0,991923	2,093807	0	5,38569	
25	1,6	0,992575	2,093807	0	5,38569	
26	1,7	0,993227	2,094133	0	5,387295	
27	1,8	0,993553	2,094459	0	5,388901	
28	1,9	0,998445	2,095111	0	5,392112	
29	2	0,992249	2,09609	0	5,396929	
30	2,1	0,992249	2,095764	0	5,395323	
31	2,2	1,030402	2,097068	0,091207	5,401746	
32	2,3	1,169646	2,099351	0,508938	5,412986	
33	2,4	1,399545	2,100003	1,198635	5,416197	
34	2,5	1,758253	2,100981	2,274758	5,421014	
35	2,6	2,138809	2,101959	3,416426	5,425831	
36	2,7	2,321097	2,105873	3,963291	5,445098	
27	2 B	2 421200	2 106851	4 262627	5 //0015	

Abbildung 5: Speichern der gemessenen Werte der Sensoren in der Excel Tabelle

Interpretieren der Exceltabelle:

Die linken beiden Spalten: Spannungssignale der Sensoren

Durchfluss bis t=2,1s gleich 0, weil bis dort hin die Pumpe ausgeschalten war.

Der umgerechnete Wert des Drucksensors mit den Abmaßen wurde bereits in Volumen umgerechnet.

HTBLA Kaindorf

Seite 5 von 6

Zweiter Schritt:

X1/(1000*9.81)*10*1.39*1.39

Abbildung 6: Umrechnung von druck in V [dm^3]

Dann Signale wieder in Excel Tabelle speichern und dV/dt ausrechnen und mit mittlerem Wert von der Pumpe vergleichen:

A	В	С	D	E	F	G	Н	1	
Messlabor									
sr									
Alex Uhl & Tr	außnigg								
HTBLA Kaind	lorf								
t(s)									
	V_dm ³ /min	V_Pa	dm ³ /min	dm ³					
0	4,785091	1,763144	11,355274	3,75757		dV	4,930922		
0,1	4,790309	1,766405	11,370927	3,773626		dT	0,435		
0,2	4,797157	1,771949	11,391471	3,800922		Qrechnen	11,3354529		
0,3	4,803353	1,774557	11,410059	3,813767					
0,4	4,804657	1,779449	11,413972	3,837852			10,8844092		
0,5	4,809223	1,784666	11,427668	3,863542					
0,6	4,812158	1,787601	11,436473	3,877993					
0,7	4,813136	1,792167	11,439408	3,900472					
0,8	4,813136	1,797058	11,439408	3,924557					
	Messlabor sr Alex Uhl & Tr HTBLA Kainct(s) 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min 0 4,785091 0,1 4,790309 0,2 4,797157 0,3 4,803353 0,4 4,804657 0,5 4,809223 0,6 4,812158 0,7 4,813136	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min V_Pa 0 4,785091 1,763144 0,1 4,790309 1,766405 0,2 4,797157 1,771949 0,3 4,803353 1,774557 0,4 4,804657 1,779449 0,5 4,809223 1,784666 0,6 4,812158 1,787601 0,7 4,813136 1,792167	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min V_Pa dm³/min 0 4,785091 1,763144 11,355274 0,1 4,790309 1,766405 11,370927 0,2 4,797157 1,771949 11,391471 0,3 4,803353 1,774557 11,410059 0,4 4,804657 1,779449 11,413972 0,5 4,809223 1,784666 11,427668 0,6 4,812158 1,787601 11,436473 0,7 4,813136 1,792167 11,439408	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min V_Pa dm³/min dm³ 0 4,785091 1,763144 11,355274 3,75757 0,1 4,790309 1,766405 11,370927 3,773626 0,2 4,797157 1,771949 11,391471 3,800922 0,3 4,803353 1,774557 11,410059 3,813767 0,4 4,804657 1,779449 11,413972 3,837852 0,5 4,809223 1,784666 11,427668 3,863542 0,6 4,812158 1,787601 11,436473 3,877993 0,7 4,813136 1,792167 11,439408 3,900472	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min V_Pa dm³/min dm³ 0 4,785091 1,763144 11,355274 3,75757 0,1 4,790309 1,766405 11,370927 3,773626 0,2 4,797157 1,771949 11,391471 3,800922 0,3 4,803353 1,774557 11,410059 3,813767 0,4 4,804657 1,779449 11,413972 3,837852 0,5 4,809223 1,784666 11,427668 3,863542 0,6 4,812158 1,787601 11,436473 3,877993 0,7 4,813136 1,792167 11,439408 3,900472	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min V_Pa dm³/min dm³ 0 4,785091 1,763144 11,355274 3,75757 dV 0,1 4,790309 1,766405 11,370927 3,773626 dT 0,2 4,797157 1,771949 11,391471 3,800922 Qrechnen 0,3 4,803353 1,774557 11,410059 3,813767 0,4 4,804657 1,779449 11,413972 3,837852 0,5 4,809223 1,784666 11,427668 3,863542 0,6 4,812158 1,787601 11,436473 3,877993 0,7 4,813136 1,792167 11,439408 3,900472	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min V_Pa dm³/min dm³ 0 4,785091 1,763144 11,355274 3,75757 dV 4,930922 0,1 4,790309 1,766405 11,370927 3,773626 dT 0,435 0,2 4,797157 1,771949 11,391471 3,800922 Qrechnen 11,3354529 0,3 4,803353 1,774557 11,410059 3,813767 0,4 4,804657 1,779449 11,413972 3,837852 10,8844092 0,5 4,809223 1,784666 11,427668 3,863542 0,6 4,812158 1,787601 11,439408 3,900472	Messlabor sr Alex Uhl & Traußnigg HTBLA Kaindorf t(s) V_dm³/min V_Pa dm³/min dm³ 0 4,785091 1,763144 11,355274 3,75757 dV 4,930922 0,1 4,790309 1,766405 11,370927 3,773626 dT 0,435 0,2 4,797157 1,771949 11,391471 3,800922 Qrechnen 11,3354529 0,3 4,803353 1,774557 11,410059 3,813767 0,4 4,804657 1,779449 11,413972 3,837852 10,8844092 0,5 4,809223 1,784666 11,427668 3,863542 0,6 4,812158 1,787601 11,436473 3,877993 0,7 4,813136 1,792167 11,439408 3,900472

Abbildung 7: Versuch mit maximaler Leistung der Pumpe

4	A	В	С	D	E	F	G	Н
1								
2	Messlabor							
3								
4	sr							
5	Alex Uhl & Traußnigg							
6	HTBLA Kaindorf							
7	t(s)							
8		V_dm ³ /min	V_Pa	dm³/min	dm ³			
9	0	4,698023	1,539441	11,09407	2,656101		dV	6,384027
10	0,1	4,724111	1,538137	11,172334	2,649678		dT	0,68333333
11	0,2	4,74172	1,549224	11,225161	2,70427		Qrechnen	9,34247854
12	0,3	4,752808	1,55118	11,258423	2,713904			
13	0,4	4,749873	1,558355	11,249619	2,749228		Q	8,97807681
14	0.5		1.559659		2.75565			

Abbildung 8: Vergleich mit ca. 3/4 der maximalen Leistung der Pumpe

Wie man sehen kann sind ist das errechnete Ergebnis mit dem Druck vergleichbar mit dem mittleren Ergebnis der Pumpe.

Der Versuch wurde folgendermaßen durchgeführt:

Zuerst wird der Füllturm vollständig ausgepumpt, sobald dann die Pumpe angeschalten wird, wird das LabView Programm (die Messung gestartet) und es wird so lange gepumpt, bis der Füllturm voll ist (ca 40 sek., da wir eine nicht völlig funktionsfähige Pumpe hatten) und dann die Messung stoppen und die Berechnung in Excel durchführen:

Letztes Messergebnis des Volumens in L-erstes Messergebnis des Volumens in Ldividiert durch letztes Messergebnis der Zeit , umgerechnet in min

HTBLA Kaindorf

Seite 6 von 6

4. VERWENDETE GERÄTE UND HILFSMITTEL

- Rechner
 - o Verwendete Software:
 - LabView
 - NI MAX
 - Excel
 - SR_Messlabor
 [C:\Users\Messlabor_Kustos\Desktop\ SR_Messlabor\Messkette_2017.docx]
- Multifunction I/O Modul NI MyDAQ von National Instruments
 - o Kann analoge und digitale Daten erfassen
 - enthält Multimeter, 3,3V digitale Eingänge, mehrere Analoge Ein und Ausgänge
- Verstärkerrack mit Messmodulen der Serie 5B von Dataforth
- Diverse Kabel
- Pumpanlage
- Netzteil

Abbildung 12: NI MyDAQ

Abbildung 13: Verstärkerrack