ЛАБОРАТОРНАЯ РАБОТА №52

РЕГУЛИРОВКА ТОКОВ И НАПРЯЖЕНИЙ

Поляков Даниил, Б07-Ф3

Цель работы: сравнение реостата и потенциометра как регуляторов тока и напряжения; выяснение, в каких случаях выгодно регулировать ток и напряжение с помощью реостата, а в каких – с помощью потенциометра.

Оборудование:

- Источник ЭДС;
- Вольтметр;
- Амперметр;
- Реостат 100 Ом;
- Реостат 330 Ом;
- Ключ цепи;
- Набор проводов.

Расчётные формулы:

• Сопротивление реостата:

$$R = \frac{\varepsilon - U}{I}$$

 ε — ЭДС источника тока (измерено вольтметром при нулевом положении ползунка реостата);

U — напряжение, приложенное к нагрузке (измеряется вольтметром);

I – сила тока, протекающего через цепь (измеряется амперметром).

• Коэффициент полезного действия реостата:

$$\eta = \frac{U}{\varepsilon}$$

U – напряжение, приложенное к нагрузке (измеряется вольтметром);

arepsilon – ЭДС источника тока.

• Сопротивление нагрузки:

$$\rho = \frac{U}{I}$$

U — напряжение, приложенное к нагрузке (измеряется вольтметром);

I – сила тока, протекающего через цепь (измеряется амперметром). • Сопротивление части потенциометра, к которой подключен вольтметр (при холостом ходу, и при наличии нагрузки, если p>>R):

$$R = \frac{U}{I}$$

U – напряжение, приложенное к нагрузке (измеряется вольтметром);

I – сила тока, протекающего через цепь (измеряется амперметром).

• Коэффициент полезного действия потенциометра:

$$\eta = \frac{W}{W_0} = \frac{U^2}{\rho \varepsilon I}$$

U – напряжение, приложенное к нагрузке (измеряется вольтметром);

ho – сопротивление нагрузки;

 ε – ЭДС источника тока;

I – сила тока, протекающего через цепь (измеряется амперметром).

• Напряжение на нагрузке:

$$U_{\scriptscriptstyle \rm H} = \frac{\rho R}{\rho + R} \cdot I_{\scriptscriptstyle \rm H}$$

 ρ – сопротивление нагрузки;

R – сопротивление части потенциометра, к которой подключена нагрузка;

 $I_{\scriptscriptstyle
m H}$ – сила тока в цепи.

- Формулы для вычисления погрешностей:
 - о Абсолютная приборная погрешность:

$$\Delta f_{\rm np} = \frac{\theta A}{3}$$

heta – класс точности прибора;

A — предел измерения шкалы.

Метод проведения измерений и схемы цепей

1. Изучение реостата.

Соберём схему:

Установим ЭДС источника ε около 30 В. Снимем показания амперметра I и вольтметра U при крайнем положении ползунка реостата (при котором его сопротивление максимально). Будем постепенно уменьшать сопротивление реостата и снимать показания приборов.

2. Изучение потенциометра.

Соберём схему:

ЭДС источника не изменялось. Будем изменять положение ползунка потенциометра, снимая показания приборов, сначала при разомкнутом ключе (U_x и I_x), а затем при замкнутом (U_H и I_H).

Таблицы и обработка данных

Погрешности амперметра и вольтметра:

$$\Delta I = \frac{\theta A}{3} = \frac{0.005 \cdot 0.25A}{3} = 0.0017 \text{ A}$$
$$\Delta U = \frac{\theta A}{3} = \frac{0.015 \cdot 100B}{3} = 0.5 \text{ B}$$

Коэффициенты наклона графиков (и их погрешности) каждой прямой зависимости найдём по методу наименьших квадратов.

1. Изучение реостата.

ЭДС источника равно 30.4 В (показание вольтметра при нулевом сопротивлении реостата).

<i>U</i> , B	I, A	R, Om	η, %
23.2	0.080	90.0	76.3
24.0	0.080	80.0	78.9
24.4	0.0825	72.7	80.3
24.8	0.085	65.9	81.6
25.6	0.0875	54.9	84.2
26.4	0.090	44.4	86.8
26.8	0.0925	38.9	88.2
27.6	0.095	29.5	90.8
28.4	0.0975	20.5	93.4
29.2	0.100	12.0	96.1
29.6	0.100	8.0	97.4
30.4	0.105	0	100

Теоретически зависимость выражается формулой:

$$U = \varepsilon - IR = \varepsilon \frac{\rho}{R + \rho}$$

Чтобы найти сопротивление нагрузки, построим график зависимости *U(I)*:

Прямая выражается зависимостью:

$$U = I\rho$$

Как тангенс угла наклона, находим ρ :

$$ho=280\pm9~\mathrm{Om}$$

2. Изучение потенциометра.

U_{x} , B	$I_{\rm x}$, A	R, Om	$U_{\scriptscriptstyle m H}$, B	$I_{\scriptscriptstyle \mathrm{H}}$, A	η,%
0	0.290	0	0	0.290	0
2.1	0.295	7.1	2.0	0.295	0.16
4.2	0.300	14.0	4.0	0.300	0.63
6.1	0.310	19.7	5.8	0.315	1.3
8.8	0.310	28.4	8.4	0.320	2.6
10.9	0.320	34.1	10.2	0.330	3.7
13.2	0.330	40.0	12.3	0.350	5.1
17.0	0.330	51.5	14.5	0.370	6.7

Зависимость напряжения на вольтметре от положения движка (сопротивления части потенциометра, подключенной к вольтметру) при отсутствии нагрузки, при наличии нагрузки и зависимость КПД от положения движка:

Теоретически, зависимости напряжения от сопротивления должны являться прямой пропорциональностью, но в нашем случае имеются неидеальные измерительные приборы, а сопротивление нагрузки ненамного превышает сопротивление потенциометра.

Для последних двух точек вычислим два значения напряжения на нагрузки теоретически:

$$U_{\scriptscriptstyle \rm H} = \frac{\rho R}{\rho + R} \cdot I_{\scriptscriptstyle \rm H}$$

$$U_{\rm H_6} = 12.2 \; \rm B$$

$$U_{\rm H7} = 16.1 \; \rm B$$

Выводы

Реостат следует использовать в случае, когда его сопротивление сравнимо с сопротивлением нагрузки, а потенциометр — когда его сопротивление намного превышает сопротивление нагрузки. Следует учесть, что в обоих случаях использование реостата/потенциометра для изменения напряжения на нагрузке приводит к значительным потерям энергии источника.