Statistics for Data Science -1

Lecture 8.2: Random Variable: Application

Usha Mohan

Indian Institute of Technology Madras

1. Define what is a random variable.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.
- 4. Cumulative distribution function, graphs, and examples.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.
- 4. Cumulative distribution function, graphs, and examples.
- 5. Expectation and variance of a random variable.

Introduction

Rolling a dice twice Tossing a coin three times

Application- Life insurance

➤ A life insurance agent has 2 elderly clients, each of whom has a life insurance policy that pays ₹1 lakh upon death.

- A life insurance agent has 2 elderly clients, each of whom has a life insurance policy that pays ₹1 lakh upon death.
- ▶ Let *A* be the event that the younger one dies in the following year, and let *B* be the event that the older one dies in the following year.

- A life insurance agent has 2 elderly clients, each of whom has a life insurance policy that pays ₹1 lakh upon death.
- ▶ Let *A* be the event that the younger one dies in the following year, and let *B* be the event that the older one dies in the following year.
- Assume that A and B are independent, with respective probabilities P(A) = .05 and P(B) = .10.

- A life insurance agent has 2 elderly clients, each of whom has a life insurance policy that pays ₹1 lakh upon death.
- ▶ Let *A* be the event that the younger one dies in the following year, and let *B* be the event that the older one dies in the following year.
- Assume that A and B are independent, with respective probabilities P(A) = .05 and P(B) = .10.
- Let X denotes the total amount of money (in units of ₹lakhs) that will be paid out this year to any of these clients' beneficiaries.

- A life insurance agent has 2 elderly clients, each of whom has a life insurance policy that pays ₹1 lakh upon death.
- ▶ Let *A* be the event that the younger one dies in the following year, and let *B* be the event that the older one dies in the following year.
- Assume that A and B are independent, with respective probabilities P(A) = .05 and P(B) = .10.
- Let X denotes the total amount of money (in units of ₹lakhs) that will be paid out this year to any of these clients' beneficiaries.
- ➤ X is a random variable that takes on one of the possible values 0, 1, 2 with respective probabilities

▶ Let X denote the total amount of money in \mathbb{Z} lakhs disbursed.

- Let X denote the total amount of money in ₹lakhs disbursed.
- ► X takes the values 0,1,2.

- Let X denote the total amount of money in ₹lakhs disbursed.
- X takes the values 0,1,2.

```
Value of X Relevant event
```

- Let X denote the total amount of money in ₹lakhs disbursed.
- ➤ X takes the values 0,1,2.

Value of X	Relevant event
0	

- Let X denote the total amount of money in ₹lakhs disbursed.
- ➤ X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$

- Let X denote the total amount of money in ₹lakhs disbursed.
- ➤ X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$
1	

- Let X denote the total amount of money in ₹lakhs disbursed.
- ➤ X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$
1	$(A\cap B^c)\cup (A^c\cap B)$

- Let X denote the total amount of money in ₹lakhs disbursed.
- ➤ X takes the values 0,1,2.

, , , , , , , , , , , , , , , , , , ,	
Value of X	Relevant event
0	$A^c \cap B^c$
1	$(A\cap B^c)\cup (A^c\cap B)$
2	

- Let X denote the total amount of money in ₹lakhs disbursed.
- ➤ X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$
1	$(A\cap B^c)\cup (A^c\cap B)$
2	$A \cap B$

- Let X denote the total amount of money in ₹lakhs disbursed.
- X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$
1	$(A\cap B^c)\cup (A^c\cap B)$
2	$A \cap B$

▶ We say X is a random variable taking on one of the values 0, 1, and 2 with respective probabilities

- Let X denote the total amount of money in ₹lakhs disbursed.
- X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$
1	$(A\cap B^c)\cup (A^c\cap B)$
2	$A \cap B$

- We say X is a random variable taking on one of the values 0, 1, and 2 with respective probabilities
 - $P\{X=0\} = P(A^c \cap B^c) = 0.95 \times 0.9 = 0.855$

- Let X denote the total amount of money in ₹lakhs disbursed.
- X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$
1	$(A\cap B^c)\cup (A^c\cap B)$
2	$A \cap B$

- We say X is a random variable taking on one of the values 0, 1, and 2 with respective probabilities
 - $P\{X=0\} = P(A^c \cap B^c) = 0.95 \times 0.9 = 0.855$
 - $P\{X = 1\} = P((A \cap B^c) \cup (A^c \cap B)) = (0.05 \times 0.9) + (0.95 \times 0.1) = 0.140$

- Let X denote the total amount of money in ₹lakhs disbursed.
- X takes the values 0,1,2.

Value of X	Relevant event
0	$A^c \cap B^c$
1	$(A\cap B^c)\cup (A^c\cap B)$
2	$A \cap B$

- ► We say *X* is a random variable taking on one of the values 0, 1, and 2 with respective probabilities
 - $P\{X=0\} = P(A^c \cap B^c) = 0.95 \times 0.9 = 0.855$
 - $P\{X = 1\} = P((A \cap B^c) \cup (A^c \cap B)) = (0.05 \times 0.9) + (0.95 \times 0.1) = 0.140$
 - $P\{X=2\} = P(A \cap B) = 0.05 \times 0.1 = 0.005$

Definition

A random variable that can take on at most a countable number of possible values is said to be a discrete random variable.

Definition

A random variable that can take on at most a countable number of possible values is said to be a discrete random variable.

Definition

A random variable that can take on at most a countable number of possible values is said to be a discrete random variable.

Thus, any random variable that can take on only a finite number or countably infinite number of different values is discrete.

Definition

A random variable that can take on at most a countable number of possible values is said to be a discrete random variable.

- Thus, any random variable that can take on only a finite number or countably infinite number of different values is discrete.
- ► There also exist random variables whose set of possible values is uncountable.

Definition

A random variable that can take on at most a countable number of possible values is said to be a discrete random variable.

- Thus, any random variable that can take on only a finite number or countably infinite number of different values is discrete.
- ► There also exist random variables whose set of possible values is uncountable.

Definition

When outcomes for random event are numerical, but cannot be counted and are infinitely divisible, we have continuous random variables.

Section summary

- What is a random variable.
- Probability of a random variable.
- Defined discrete and continuous random variable.