Relearn: connectivity_update()
Single Parameter Strategy: Use first points found
Multi Parameter Strategy: Increasing cost

		nodel	total cost	percent cost	RSS	Adj. R²	SMAPE	RE	Comments
	full matrix	+ -27.2757 + 4.62272e-06*log2^1(p)*(size^1)*log2^1(size)*(t^-2.66667)	9801124.17	100.00	1150000.00	0.97			Sparse Modeler shows the same result as the old modeling approach with the full matrix.
	min	+ -1606.52 + 228.933*log2^1(p) + 0.00752181*(size^1)*log2^1(size) + 0.873338*(t^-2.66667)	1199777.91	12.24	12400.00	0.99			
	min +1	+ -1580.3 + 224.93*log2^1(p) + 0.00706355*(size^1)*log2^1(size) + 0.946491*(t^-2.66667)	1199983.56	12.24	20200.00	0.99			
	Min +1 with theta = 0.1	+ -1609.39 + 229.256*log2^1(p) + 0.00754542*(size^1)*log2^1(size) + 0.866074*(t^-2.66667)	1245492.98	12.71	12900.00	0.99			This experiment is based on the cheapest measurements with a theta value of 0.1. The result shows that the lower theta value does not help to increase the prediction accuracy for the other terms. These are also not the most expensive measurements, as the cost is calculated by c=p*time.
	Min +2	+ -1484.68 + 215.169*log2^1(p) + 0.00590998*(size^1)*log2^1(size) + 1.06143*(t^2.66667)	1200221.49	12.25	41000.00	0.98			
sparse	Min +3	+ -1351.84 + 203.278*log2^1(p) + 0.00448621*(size^1)*log2^1(size) + 1.16863*(t^2.66667)	1200493.61	12.25	67000.00	0.97			
	Min +4	+ -1227.75 + 193.003*log2^1(p) + 0.00324528*(size^1)*log2^1(size) + 1.24263*(t^2.66667)	1200799.63	12.25	90000.00	0.97			
	Min +5	+ -14.0638 + 3.79907e-06*log2^1(p)*(size^1)*log2^1(size)*(t^-2.66667)	1201182.58	12.26	344000.00	0.87			With 5 or more additional points we get the same result as for the full matrix with the selected strategies. Less points are not sufficient to get the same model as the full matrix.
	Min +6	+ -12.8326 + 3.79335e-06*log2^1(p)*(size^1)*log2^1(size)*(t^-2.66667)	1201635.12	12.26	344000.00	0.88			
	Min +7	+ -12.1561 + 3.79026e-06*log2^1(p)*(size^1)*log2^1(size)*(t^2.66667)	1202088.55	12.26	344000.00	0.89			
	agent	+ -94.466 + 15.6015*log2^1(p) + 0.00020889*(size^1)*log2^1(size) + 1.10006*(t^2.66667)	104598.10	1.07	135.00	1.00			This experiment uses the measurement points suggested by the parameter value selection ai for modeling. The results show that the ai solution can not be generically applied to each application/problem as we do not get the same result as with the full matrix. Though it is also improtant to consider that it uses only 1% of the cost compared to 12% (min+5).
normal	full matrix	+ -27.2757 + 4.62272e-06*log2^1(p)*(size^1)*log2^1(size)*(t^2.66667)	9801124.17	100.00	1150000.00	0.97			

Measurements

	9000	834.353	1186.72	1877.45	2125.61	2535.05
d)	8000	721.454	1026.09	1640.74	1879.76	2135.01
size	7000	616.449	869.846	1409.64	1623.84	1853.32
0,	6000	509.49	714.298	1169.15	1376.47	1557.19
	5000	406.181	574.101	939.328	1122.32	1276.17
		32	64	128	256	512
				р		
	9000	125.576	165.549	252.633	292.946	331.335
	8000	109.749	145.304	222.521	257.346	292.461
size	7000	94.1432	125.065	191.532	227.713	253.495
	6000	79.7909	105.774	162.859	189.832	215.294
	5000	65.2061	86.0282	133.189	156.264	177.149
		32	64	128	256	512
				р		
	9000	40.5282	52.4854	72.8099	83.302	93.7872
	8000	35.823	46.1819	64.4428	73.7924	83.0524
size	7000	31.0822	40.1958	55.8965	64.8183	72.2867
	6000	26.3713	34.1409	48.2509	55.6438	62.3198
	5000	21.8088	28.2151	39.4186	46.3484	52.2848
		32	64	128	256	512
				р		
				•		
	9000	18.1768	23.4612	29.4351	34.3621	38.7553
	8000	16.0401	20.8859	26.3724	30.7503	34.839
ize		16.0401 14.1697	20.8859 18.467	26.3724 23.0918	30.7503 34.3621	
size	8000					31.1879
size	8000 7000	14.1697	18.467	23.0918	34.3621	31.1879 27.0231
size	8000 7000 6000	14.1697 11.9672	18.467 15.4639	23.0918 19.8202	34.3621 30.7503	34.839 31.1879 27.0231 23.2562 512
size	8000 7000 6000	14.1697 11.9672 9.9311	18.467 15.4639 12.8381	23.0918 19.8202 16.4604	34.3621 30.7503 27.3721	31.1879 27.0231 23.2562
size	8000 7000 6000	14.1697 11.9672 9.9311 32	18.467 15.4639 12.8381 64	23.0918 19.8202 16.4604 128	34.3621 30.7503 27.3721 256	31.1879 27.0231 23.2562
size	8000 7000 6000	14.1697 11.9672 9.9311	18.467 15.4639 12.8381	23.0918 19.8202 16.4604 128	34.3621 30.7503 27.3721	31.1879 27.0231 23.2562 512
	8000 7000 6000 5000	14.1697 11.9672 9.9311 32	18.467 15.4639 12.8381 64	23.0918 19.8202 16.4604 128	34.3621 30.7503 27.3721 256	31.1879 27.0231 23.2562 512 20.5119
	8000 7000 6000 5000	14.1697 11.9672 9.9311 32 9.56317	18.467 15.4639 12.8381 64	23.0918 19.8202 16.4604 128 p	34.3621 30.7503 27.3721 256	31.1879 27.0231 23.2562 512 20.5119 18.7238
size	8000 7000 6000 5000 9000 8000	14.1697 11.9672 9.9311 32 9.56317 8.50372	18.467 15.4639 12.8381 64 12.3732 11.0746	23.0918 19.8202 16.4604 128 p 14.9944 13.498	34.3621 30.7503 27.3721 256 17.9984 16.2909	31.1879 27.0231 23.2562 512 20.5119 18.7238 17.0101
	9000 8000 9000 8000 7000	14.1697 11.9672 9.9311 32 9.56317 8.50372 7.43541	18.467 15.4639 12.8381 64 12.3732 11.0746 9.67296	23.0918 19.8202 16.4604 128 p 14.9944 13.498 11.7859	34.3621 30.7503 27.3721 256 17.9984 16.2909 14.4767	31.1879 27.0231 23.2562 512 20.5119 18.7238 17.0101 15.1167
	9000 8000 9000 8000 7000 6000	14.1697 11.9672 9.9311 32 9.56317 8.50372 7.43541 6.4267	18.467 15.4639 12.8381 64 12.3732 11.0746 9.67296 8.37619	23.0918 19.8202 16.4604 128 p 14.9944 13.498 11.7859 10.2848	34.3621 30.7503 27.3721 256 17.9984 16.2909 14.4767 12.9167	31.1879 27.0231

In order to analyze the measurements with weak scaling we have to calculate the real size out of the local value.

32*6000 64*6000 32*5000 64*5000

In normal productive use theta values are only between 0 and 0.3. Even though the differences in the data are really big, selecting measurements with a lower theta that are more expensive does not help to increase the accuracy of the models.

In general it seems like we need more additional points instead! It looks like we need 5 additional points to correctly identify the model for relearn with using the cheapest points as a base for modeling and then adding points one by one from the cheapest to the expensivest point (increasing cost).

This should be further investigated. For additive terms we check the term contribution, so we should have already check this and can be sure that there it should not be a problem. For multiplicative functions this is not the case. We need to check if one parameters contribution is 99% how many points in addition we generally need for a correct model.

So we also have an answer for cases like this. So our modeling strategy/ approach works for all kind of scenarios that are known to us...

^{*} Data was taken from connectivity_update() measurements with full matrix