

ĐẠI HỌC ĐÀ NẮNG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

SYSTEM ANALYSIS AND DESIGN

- Nguyen Thanh Binh, Nguyen Quang Vu, Le Viet Truong, Vo Van Luong, Nguyen Ngoc Huyen Tran
- Faculty of Computer Science

ĐẠI HỌC ĐÀ NẮNG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

Chapter 2

An overview of Unified modeling language

An overview of Unified modeling language

- Modeling concept
- Object-oriented modeling techniques
- History of UML
- Brief introduction to UML
 - Notions
 - Diagrams
 - Views

Model and modeling

- A model is a simplification of reality. We build models so we can better understand the system we are developing.
- Modeling is the process of building models to represent a system
- Modeling
 - helps us to visualise a system as it is or as we want it to be
 - allows us to specify the structure or behaviour of a system
 - gives us a template that guides us in constructing a system
 - documents the decision we have made

Model and modeling: Example

Model and modeling: Example

Object-oriented modeling techniques

- Object-oriented modeling techniques are processes/methodologies/approaches for software modeling and designing
 - 1975 1990: several object-oriented techniques are developed
 - 1990 1994: there are more than 50 object-oriented modeling techniques

- Best-known techniques
 - OOD (Object-Oriented Design)
 - OOSE (Object-Oriented Software Engineering)
 - OMT (Object Modeling Technique)

OMT technique

- Developed by Jim Rumbaugh (1991)
- Consists of 3 main types of models
 - Object model: Object diagram
 - Dynamic model: State diagram
 - Functional model: Data flow diagram

OMT Object Diagram

OOD technique

- Developed by Grady Booch (1991)
- Consists of
- Static view
 - Class diagram
 - Object diagram
 - Module diagram
- Dynamic view
 - State transition diagram
 - Process diagram
 - Interaction diagram

Main

Module

CRC: Class

State Icon

OIG Object

History

Message

Module

Subsystem

OOSE technique

- Developed by Ivar Jacobson (1992)
- Consists of 5 models
 - Requirements model: Problem domain diagram, Use-case diagram
 - Analysis model: Analysis diagram
 - Design model: State transition diagrams, Inter
 - Implementation model
 - Test model

History of UML

- Too many object-oriented modeling techniques
 - Need for standardisation
 - Unification of modeling techniques
- In 1994
 - Rumbaugh and Booch unified their approaches for the UML project at Rational Software
- In 1995
 - The first version was released under the name "Unified Method" v0.8
- In 1996
 - Jacobson joined the team
- In 1997
 - The birth of UML v0.9 integrating OOSE
 - The first conference of the UML is organized
- In 2005, UML 2.0 is released
 - New diagrams, enhancement of existing diagrams
- In September, 2013, UML v.2.5 RTF Beta 2
- In June, 2015, UML v.2.5

History of UML

Contributions to UML **HP Fusion** Harel Description of operations, Finite state machine numbering messages Gamma Framework, patteri Wirfs-Brock Responsabilities **Booch** UNIFIED OOD MODELING Rumbaugh **Shlear-Mellor LANGUAGE** Life cycle of objects OMT **Jacobson** OOSE **Embley** Myers Singleton classes, Odell **Pre and post-conditions** Composite objects Classification

Introduction to UML

- UML (Unified Modeling Language) is a modeling language
 - consisting of the vocabulary, syntax and semantics
 - allowing to represent a system at different levels: conceptual, physical
 - consisting of vocabulary and rules to describe different models representing a system

• UML

- is neither a methodology nor a process
- allows freedom of design
- can be combined with several development processes

Introduction to UML

- UML is a language of visualisation
 - using graphical representations
 - providing a better view of the system (thanks to graphical representations)
- UML is a language of specification
 - allowing to specify a system without ambiguity
 - allowing to specify a system at different stages: analysis, design, deployment
- UML is a language of construction
 - allowing to simulate the system
 - UML models are easily transformed into source code
- UML is a language of documentation
 - allowing to describe all the development stages of the system
 - Built models are complete documents of the system

Introduction to UML: the diagrams

- Consisting of 10 main diagrams
 - Requirements modeling
 - Use-case diagrams
 - Static structural modeling
 - Class diagrams
 - Object diagrams
 - Dynamic behavioral modeling
 - Activity diagrams
 - State diagrams
 - Interaction diagrams
 - Sequence diagrams
 - Communication diagrams
 - Architectural modeling
 - Package diagrams
 - Component diagrams
 - Deployment diagrams

Introduction to UML: Use-case diagram

- Showing the possible uses of a system
- Describing the static view of the system according to users perspective
- Being very important to understand the functions of the system

Introduction to UML: class diagram

- Describing the classes and their relationship
- Describing the static view of the system

Introduction to UML: object diagram

- Describing a set of objects and their relationship
- An object diagram represents the same information that a class diagram but at the instance level of classes
- Describing the static view of the system
- Example

Class diagram

Object diagram

Introduction to UML: activity diagram

- Describing the information flows in the system
- Modeling **the dynamic view** of the system

• Example: Making coffee

Introduction to UML: state diagram

- Describing the internal behaviour of the system
- Modeling the dynamic view of the system
- Example

Introduction to UML: interaction diagram

- Describing the behaviours of the system by the interactions between the composing objects
- modeling the dynamic view of the system
- The interaction diagram is an extension of the object diagram by describing the interactions between objects
- Consisting of two types of diagrams
 - **Sequence Diagram** describes the interactions between objects with the emphasis on sequencing of messages
 - Communication Diagram describes the interactions between objects with the emphasis on the structure of objects

Introduction to UML: interaction diagram

Sequence Diagram example

"Sending Fax" Sequence Diagram

Introduction to UML: interaction diagram

Communication diagram example

"Sending Fax" Communication diagram

Introduction to UML: Package diagrams

- Packages
 - Universal element is used to organize classes, or some other group into a group
- Package diagrams
 - Displays packages and the relationships between packages.
 - Example

Introduction to UML: component diagrams

- Describe the organisation of different components of the system
- The static view of the organisation of the system
- Example

"Online Shopping Website" Component Diagram

Introduction to UML: deployment diagrams

• Describing the physical organisation of different components (machines) of the system (material)

An example of deployment diagram of JEE web application

Introduction to UML: extension mechanism

- Built-in extension mechanism
 - Stereotypes
 - Tagged values
- Notes
- Constraints
 - OCL textual language

- Stereotype
 - is a built-in extension mechanism
 - expands the vocabulary of UML
 - is used to create new types of UML elements that derive from the existing kinds but which are adapted to a given problem
 - there are predefined stereotypes in UML
 - Notation
 - "name of stereotype"
 - Possibility to introduce an icon

- Tagged values
 - Another extension mechanism
 - Provide additional information on the elements of UML
 - Pairs of type {name = value}
 - Example

1	Class {author = NTB, version = 2.0}
	/ \ / \

- Notes
 - are comments attached to one or more modeling elements
 - provide additional information on modeling elements
 - belong to the view, not the models

Constraints

- are restrictions that limit the use of an element or the element semantic
- are expressed in natural language
- are expressed in OCL (Object Constraint Language)
- Example

	{width > 0} : {length >	በጌ
length.int	. Tierigui >	0 }

Introduction to UML: views

• A system is modelled by 5 different views in the UML

Introduction to UML: views

Diagrams and views

