Podstawy Elektrotechniki i Elektroniki część 4

dr hab. inż. Stanisław Hałgas, prof. PŁ

Półprzewodniki

Półprzewodniki są materiałami, których opór właściwy (rezystywność) jest większy niż przewodników (metali) oraz mniejszy niż izolatorów (dielektryków) [Marciniak:1987].

Na przykład rezystywność miedzi wynosi około $1 \cdot 10^{-8} \,\Omega$ m, miki około $1 \cdot 10^{14} \,\Omega$ m, a czystego krzemu około $2 \cdot 10^3 \,\Omega m$ (rys. 1).

Rys. 1: Podział materiałów ze względu na ich rezystywność

Półprzewodniki

Istnieje jakościowa różnica między właściwościami elektrofizycznymi przewodników i półprzewodników.

Dielektryki można natomiast odróżnić od półprzewodników tylko na podstawie umownego kryterium ilościowego, a nie na podstawie różnic jakościowych.

Podstawowe różnice jakościowe (przewodnik – półprzewodnik) są następujące:

- właściwości elektryczne półprzewodników są silnie zależne od bardzo małych ilości zanieczyszczeń (te wprowadzane celowo nazywa się domieszkami)
- na rezystywność półprzewodników duży wpływ ma różnego typu promieniowanie zewnetrzne
- temperaturowy współczynnik oporu dla półprzewodników ma duże ujemne wartości (ze wzrostem temperatury rezystywność maleje), podczas gdy dla przewodników ma małe i na ogół dodatnie wartości.

Diody

http://www.electronicsandyou.com/uses-of-silicon-in-electronics.html

Wstęp

Diody

https://www.elprocus.com/what-are-the-reasons-behind-silicon-uses-in-electronics/

 $https://www.researchgate.net/publication/262881501_Future_trends_in_high-power_bipolar_metal-oxide_semi-conductor_controlled_power_semi-conductors/figures?lo=1$

Półprzewodniki

- Przewodniki wszystkie elektrony walencyjne są nośnikami swobodnymi ładunków i w każdej temperaturze mogą brać udział w przepływie prądu.
- Półprzewodniki i izolatory elektrony walencyjne są związane z atomami i tylko część
 z nich, po wyrwaniu z orbit walencyjnych (na skutek energii dostarczonej z zewnątrz),
 bierze udział w przepływie prądu.

Podstawowa różnica ilościowa (izolator – półprzewodnik):

- wartość energii (tzw. energii aktywacji) niezbędnej do wyrwania elektronu z orbity walencyjnej – większe wartości dla dielektryków
- w czystym materiale wartość tej energii jest tożsama z szerokością pasma zabronionego w tzw. energetycznym modelu pasmowym
- arbitralne kryterium wartości tej energii 2 eV (1 elektronovolt to energia uzyskana przez elektron pod wpływem różnicy potencjałów równej 1 V, 1 eV=1,602 · 10^{-19} J).

Model wiązań walencyjnych

- Interpretacja zjawisk elektrofizycznych jakościowy model wiązań walencyjnych lub energetyczny model pasmowy.
- Najbardziej uproszczony opis budowy atomu (precyzyjne wyjaśnienie jest przedmiotem badań fizyki kwantowej) – prezentacji w postaci ciężkiego jądra, zbudowanego z neutralnych elektrycznie neutronów i dodatnio naładowanych protonów w środku oraz krażących wokół niego, po orbitach, lekkich elektronów (o ładunku ujemnym).
- Elektrony poruszają się po ściśle określonych dozwolonych orbitach tworzących tzw. powłoki elektronowe, oznaczane literami K, L, M, N,....
- Liczba elektronów na poszczególnych powłokach jest ściśle określona (np. na powłoce K - 2, na L - 8, M - 18, itd).

Model wiązań walencyjnych

Krzem (Si) – 14 elektronów (na powłoce K – 2, na L – 8, M – 4) **german** (Ge) posiada 32 elektrony (na powłoce K – 2, na L – 8, M – 18, N – 4).

Rys. 2: Struktura atomu krzemu – ilustracja poglądowa

Model wiązań walencyjnych

- Elektrony walencyjne elektrony na zewnętrznej powłoce najsłabiej związane z jądrem biora udział we wszystkich wiazaniach atomu z innymi atomami.
- Elektrony walencyjne mają największy wpływ na właściwości chemiczne, fizyczne i elektryczne pierwiastka.
- **Krzem i german** cztery elektrony walencyjne właściwości podobne.

Model wiązań walencyjnych

- Duże siły wzajemnego oddziaływania sprawiają, że atomy większości ciał stałych tworzą regularną sieć (tzw. sieć krystaliczną) o powtarzalnych, w przestrzeni, komórkach.
- Atomy krzemu tworzą sieć krystaliczną typu diamentu.
- Jednolite uporządkowanie w całej bryle materiału **monokryształ**. (rys. 3(a)).
- Chaotycznie ułożone bloki w bryle materiału o uporządkowanej budowie krystalicznej (w ramach każdego bloku) – polikryształ (rys. 3(b)).
- Ciała stałe o budowie amorficznej, np. szkło nie występuje regularna struktura wewnętrzna (rys. 3(c)).

(a)

(b)

Model wiązań walencyjnych

- Fizyka ciała stałego wiązania jonowe, atomowe (kowalencyjne), metaliczne, molekularne i wodorowe.
- Niemal we wszystkich materiałach półprzewodnikowych występują wiązania kowalencyjne – rys. 4.
- Atom wewnętrzny uzyskuje najbardziej korzystną energetycznie strukturę ośmioelektronową (cztery elektrony własne i cztery wspólne z sąsiednimi atomami).

Rys. 4: Model wiązań kowalencyjnych atomu krzemu – ilustracja poglądowa

Model wiązań walencyjnych

- W celu wyrwania elektronu walencyjnego z tego typu wiązania konieczne jest dostarczenie odpowiedniej energii (1,1 eV dla Si) w postaci ciepła, promieniowania itp.
- Efekt elektron staje się nośnikiem swobodnym ładunku, który może przemieszczać się w objętości kryształu pod wpływem zewnętrznego pola elektrycznego.
- Oderwanie elektronu z wiązania powstaje luka (nazywaną **dziurą**) i dochodzi do cześciowej jonizacji dwu atomów.
- Powstający ładunek dodatni należy kojarzyć z wiązaniem (a nie którymś z atomów).

- Ponieważ poszczególnym orbitom elektronów odpowiadają określone wartości energii (suma energii kinetycznej i potencjalnej) wprowadza się pojecie poziomów (stanów) energetycznych.
- Elektrony mogą zajmować tylko ściśle określone dozwolone poziomy energetyczne, a im większy jest promień orbity elektronu tym większa jest jego energia.
- Każdy atom można scharakteryzować za pomocą widma energetycznego.
- Punkt odniesienia (tzw. poziom jonizacji) przyjmuje się poziom energetyczny elektronu nieskończenie odległego od jądra (zanikają oddziaływania elektrostatyczne jadra i elektronu).

- Najwyższy zajęty poziom poziom walencyjny, kolejny wolny poziom o większej (dozwolonej) energii – poziom wzbudzenia.
- Elektrony w atomie dążą do zajęcia jak najniższych poziomów energetycznych struktura o mniejszej energii jest bardziej stabilna.
- Atom w stanie normalnym wszystkie elektrony zajmują najniższe z możliwych poziomów energetycznych.
- Atom w stanie wzbudzenia pod wpływem dostarczonej z zewnątrz energii elektron lub kilka elektronów zwiększa swoją energię
- Przedstawiony opis jest uproszczony (m. in. zasada Pauliego, pojęcie spinu, liczby kwantowe) – ale wystarczający do zilustrowania podstawowych zjawisk zachodzących w półprzewodnikach.

- Widma energetyczne atomów jednego pierwiastka są identyczne jednak struktura energetyczna kryształu jest inna niż dla pojedynczego atomu, gdyż z poszczególnych pojedynczych poziomów energetycznych odosobnionego atomu tworzy się tyle różnych poziomów, ile jest atomów w krysztale.
- Rozszczepienie poziomów energetycznych różnice energetyczne między poziomami powstałymi z rozszczepienia sa znikomo małe.
- Zamiast modelu złożonego z dyskretnych poziomów energetycznych w atomie energetyczny model pasmowy kryształu.

- Przerwa energetyczna (pasmo zabronione) odstęp W_g (ang. gap) między wierzchołkiem pasma walencyjnego W_{ν} (ang. valence) oraz dnem pasma przewodnictwa W_c (ang. conduction).
- W temperaturze 0 K pasmo walencyjne jest całkowicie zapełnione elektronami, a pasmo przewodnictwa jest całkowicie puste.
- Wzrost temperatury sprawia, że część elektronów przeskakuje do pasma przewodnictwa pozostawiając w paśmie walencyjnym wolne miejsca zwane dziurami (tzw. generacja par elektron-dziura).

Rys. 5: Model pasmowy półprzewodnika - uproszczona wersja

- Szerokość pasma zabronionego określa wartość energii niezbędnej do uwolnienia elektronu z wiązania kowalencyjnego.
- W energetycznej strukturze metali nie ma w ogóle pasma zabronionego, a półprzewodniki od dielektryków różnią się wartością W_g (rys. 6).

Rys. 6: Energetyczny model pasmowy: metalu, półprzewodnika i dielektryka

Dziura

- **Dziura** zerwane wiązanie kowalencyjne dwu atomów.
- Duże prawdopodobieństwo przejścia elektronu z jednego z sasiednich wiazań kowalencyjnych do luki utworzonej w zerwanym wiązaniu – odpowiada temu przesuniecie dziury w kierunku przeciwnym.
- W przypadku działania pola elektrycznego następują kolejne przesunięcia elektronów do kolejnych luk, w przypadku braku pola ruch jest chaotyczny.
- W związku z trudnością opisu ruchu wielu elektronów zajmujących kolejno puste miejsce zwykle opisuje się ruch dziury, przyporządkowując jej ładunek dodatni o wartości bezwględnej równej ładunkowi elektronu oraz określona mase.

Półprzewodnik samoistny i domieszkowany

Półprzewodnik samoistny

- Półprzewodnik samoistny półprzewodnik idealnie czysty, nie mający żadnych domieszek ani defektów sieci krystalicznej.
- Z punktu widzenia technicznego przypadek abstrakcyjny.
- Nośniki swobodne ładunku powstają wskutek zrywania wiązań w sieci krystalicznej (przeskoku elektronów z pasma walencyjnego do pasma przewodzenia).
- W wyniku przeskoku generowana jest para elektron-dziura, liczba elektronów jest zatem równa liczbie dziur, $n_i = p_i$, gdzie: n, p koncentracja odpowiednio elektronów i dziur (liczba ładunków w 1 m³), i oznacza półprzewodnik samoistny (ang. intrinsic).
- Koncentracja nośników zwiększa się wraz ze wzrostem energii drgań atomów (a więc ze wzrostem temperatury) $n_i = p_i \sim \exp\left(-\frac{W_g}{2kT}\right)$, gdzie: k stała Boltzmanna, T temperatura.

- Materiały półprzewodnikowe nie mają idealnej struktury krystalicznej podczas ich wytwarzania powstają wewnątrz pewne zanieczyszczenia innymi pierwiastkami oraz zakłócenia w strukturze sieci krystalicznej.
- Domieszki wprowadzone w procesie produkcji celowe zanieczyszczenia –
 półprzewodnik nosi nazwę półprzewodnika domieszkowanego wykorzystywany przy
 produkcji przyrządów półprzewodnikowych..
- Istotną rolę w takim półprzewodniku odgrywają mechanizmy powstawania ładunków swobodnych (obok charakterystycznego dla półprzewodnika samoistnego mechanizmu generacji par elektron-dziura).
- Dwa rodzaje domieszek: donorowe i akceptorowe.

- Domieszki donorowe głównie pierwiastki piętnastej (piątej według starej nomenklatury) grupy układu okresowego (atomy mają pięć elektronów walencyjnych).
- Krzem głównie fosfor, rzadziej arsen i antymon.
- Atom pierwiastka domieszki zajmuje położenie w węźle sieci krystalicznej krzemu zamiast atomu krzemu (rys. 7(a)).

Rys. 7: Domieszkowanie donorowe krzemu – model wiązań kowalencyjnych (a), model pasmowy (b)

- Cztery elektrony walencyjne fosforu uczestniczą w wiązaniach kowalencyjnych z czterema sąsiadującymi atomami krzemu
- Piąty elektron walencyjny może zostać łatwo oderwany od atomu fosforu i znaleźć się w paśmie przewodnictwa (stąd nazwa domieszka donorowa – dostarczająca elektrony).
- W węźle sieci pozostaje zjonizowany atom fosforu.
- Energia jonizacji ma bardzo małą wartość w porównaniu do wartości W_g (np. dla domieszki fosforu w krzemie – 0,044 eV).
- Przyjmuje się, że w temperaturze pokojowej wszystkie atomy domieszki są zjonizowane.
- Jeżeli $N_D \gg n_i (N_D$ koncentracja atomów domieszki), to koncentracja elektronów w paśmie przewodnictwa jest w przybliżeniu równa koncentracji domieszki, $n \approx N_D$.
- Większa koncentracja elektronów niż dziur półprzewodnik donorowy nazywany jest półprzewodnikiem typu n (ang. negative).

- Domieszki akceptorowe głównie pierwiastki trzynastej (trzeciej według starej nomenklatury) grupy układu okresowego (atomy o trzech elektronach walencyjnych).
- Krzem głównie bor, rzadziej aluminium, ind lub gal.
- Atom pierwiastka domieszki zajmuje położenie w węźle sieci krystalicznej krzemu zamiast atomu krzemu (rys. 8(a)).

Rys. 8: Domieszkowanie akceptorowe krzemu – model wiązań kowalencyjnych (a), model pasmowy (b)

- Do stabilnego wiązania atomu boru z czterema sąsiadującymi atomami krzemu brak jest jednego elektronu, który łatwo może być uzupełniony po wyrwaniu z sąsiedniego wiązania Si-Si.
- Odpowiada to zabraniu elektronu z pasma walencyjnego, stąd nazwa domieszka akceptorowa (przyjmująca elektrony).
- W efekcie w paśmie walencyjnym powstaje dziura, a atom boru jonizuje się ujemnie.
- Energia jonizacji ma bardzo małą wartość w porównaniu do wartości W_g (np. dla domieszki boru w krzemie – 0,045 eV).
- Przyjmuje się, że w temperaturze pokojowej wszystkie atomy domieszki są zjonizowane.
- Jeżeli $N_A \gg n_i$ (N_A koncentracja atomów domieszki), to koncentracja dziur w paśmie walencyjnym jest w przybliżeniu równa koncentracji domieszki, czyli $p \approx N_A$.
- Większa koncentracja dziur niż elektronów półprzewodnik akceptorowy nazywany jest półprzewodnikiem typu p (ang. positive).

- Najbardziej realny przypadek oba rodzaje domieszek.
- Rodzaj przewodnictwa jest określony tymi domieszkami, których koncentracja jest większa ($N_D > N_A$ półprzewodnik typu n, w przeciwnym przypadku typu p).
- Można wykazać, że w danym półprzewodniku, w określonej temperaturze, iloczyn koncentracji dziur i elektronów jest wielkością stałą i wynosi $np = n_i^2$.
- $N_D > N_A$ zostaje $N_D N_A$ atomów donorowych zdolnych do oddania elektronów.

- $n \approx N_D N_A$ półprzewodnik typu n
- $p \approx N_A N_D$ półprzewodnik typu p
- $N_A = N_D$ półprzewodnik ma taką sama koncentrację nośników jak półprzewodnik samoistny ($n_i = p_i$) **półprzewodnik skompensowany**, nie samoistny.
- Nośniki o większej koncentracji w danym materiale nośniki większościowe, a nośniki przeciwnego rodzaju – nośniki mniejszościowe.
- Koncentracja nośników zależy od temperatury dla temperatury wyższej niż 100-150 K domieszki są całkowicie zjonizowane i koncentracja jest prawie stała. Powyżej 450 K istotną rolę zaczyna odgrywać wzrost koncentracji samoistnej n_i, wskutek generacji par elektron-dziura.

Transport nośników w półprzewodniku

Transport nośników w półprzewodniku

- Z teorii pola elektromagnetycznego gęstość prądu elektrycznego można zapisać jako sumę gęstości prądu przewodzenia (ruch nośników ładunku) J oraz prądu przesunięcia J, który w metalach i półprzewodnikach nie odgrywa istotnej roli w szerokim zakresie częstotliwości sygnałów.
- Gęstość prądu przewodzenia $\overrightarrow{\mathbf{J}}$ suma dwóch składników, związanych z dwoma mechanizmami transportu nośników: unoszenia i dyfuzji, tj. $\overrightarrow{\mathbf{J}} = \overrightarrow{\mathbf{J}}_u + \overrightarrow{\mathbf{J}}_d$, gdzie: $\overrightarrow{\mathbf{J}}_u$ gęstość prądu unoszenia, $\overrightarrow{\mathbf{J}}_d$ gęstość prądu dyfuzji.
- W przypadku równomiernego rozkładu koncentracji nośników w półprzewodniku prąd przewodzenia jest w całości prądem unoszenia.
- Składowa dyfuzyjna występuje wówczas, gdy rozkład koncentracji nośników prądu jest nierównomierny. Wówczas wskutek chaotycznego ruchu cieplnego nośników następuje proces wyrównywania się ich koncentracji.

Rodzaje złącz

Rodzaje złącz

Trzy podstawowe rodzaje kontaktów (złączy):

- kontakt półprzewodnik-półprzewodnik tego samego rodzaju (np. Si), przy czym graniczące obszary różnią się rodzajem domieszkowania – złącze p-n
- kontakt dwóch półprzewodników różnego rodzaju (np. Ge-Si) jest to heterozłącze
- kontakt metal-półprzewodnik złącze m-s.

Ze względu na zakres przedmiotu rozpatrywane będzie tylko złącze p-n.

- **Złącze p-n** bryła półprzewodnika monokrystalicznego, utworzona przez dwie graniczące ze sobą warstwy typu *n* oraz *p*, niekiedy nieprecyzyjnie nazywane jest diodą.
- **Dioda** element układu, konstrukcyjne wykończony, a więc zawierający wyprowadzenia oraz zwykle również obudowę i wykorzystujący niekoniecznie złącze p-n (może np. zawierać złącze m-s).

Złącze p-n

Wyidealizowany model złącza do analizy jednowymiarowej – rys. 9.

Rys. 9: Przekrój struktury fizycznej rzeczywistego złącza p-n (a) i jej model (b) [Marciniak:1987]

- Płaszczyzna A dzieli monokryształ na dwie warstwy P oraz N założono równomierny rozkład koncentracji domieszek (donorów w warstwie N, akceptorów w warstwie P).
- Rysunek 10 uproszczony (płaski) model rozkładu ładunków przed i po połączeniu warstw P oraz N.

Rys. 10: Model rozkładu ładunków przed i po połączeniu warstw P oraz N [Marciniak:1987]

- W warstwie N, przed połączeniem, występują dodatnie, nieruchome ładunki zjonizowanych atomów domieszki donorowej oraz ujemne ładunki elektronów swobodnych (w przybliżeniu o tej samej koncentracji).
- Ponadto występują również nośniki mniejszościowe, czyli dziury, w niewielkiej ilości.
- W warstwie P występują ujemne, nieruchome ładunki zjonizowanych atomów domieszki akceptorowej oraz dodatnie ładunki związane z dziurami (w przybliżeniu o tej samej koncentracji).
- Ponadto, w niewielkiej ilości, występują również nośniki mniejszościowe, czyli elektrony.
- W ujęciu makroskopowym obie warstwy przed połączeniem zachowują obojętność elektryczną.

- Po zetknięciu warstw¹, wobec dużej koncentracji ruchomych nośników ładunku, zachodzi proces dyfuzji elektronów z warstwy N do warstwy P oraz dziur w przeciwnym kierunku.
- W obszarze granicznym pozostają nieskompensowane ładunki centrów donorowych (dodatnie) i akceptorowych (ujemne) co prowadzi do wytworzenia pola elektrycznego przeciwdziałającego dyfuzji nośników większościowych.
- Warstwa ta warstwa zaporowa (warstwa ładunku przestrzennego),
- Bariera potencjału (napięcie dyfuzyjne) wytworzone w obszarze granicznym napięcie.

¹Jest to model, a nie realna metoda tworzenia złącza, gdyż złącze musi stanowić monokryształ z zachowaniem ciągłości budowy krystalicznej w płaszczyźnie styku.

- Napięcie dyfuzyjne wywołuje proces unoszenia elektronów i dziur w kierunku przeciwnym do ich dyfuzji.
- Dziury w warstwie N oraz elektrony w warstwie P, które wskutek ruchu cieplnego zbliżą się do granicy warstwy zaporowej zostają uniesione do obszaru odpowiednio P oraz N, zgodnie z kierunkiem pola elektrycznego
- Powstają dwa strumienie prądów unoszenia nośników mniejszościowych $(\overrightarrow{J_{pu}}, \overrightarrow{J_{nu}} gestość prądu unoszenia dziur oraz elektronów), skierowane przeciwnie do strumieni prądów dyfuzji nośników większościowych <math>(\overrightarrow{J_{pd}}, \overrightarrow{J_{nd}} gestość prądu dyfuzji dziur oraz elektronów).$

- Uproszczona ilustracja składowych prądu w niepolaryzowanym złączu p-n rys. 11.
- W złączu takim sumaryczny prąd musi mieć wartość równą zeru, a ładunek przestrzenny wartość ustaloną.
- Jest to spełnione jeżeli, oddzielnie dla dziur i elektronów, prąd dyfuzji jest równy prądowi unoszenia.

Analiza działania złącza p-n w stanie nierównowagi (przy zasilaniu napięciem zewnętrznym)

- podział struktury na trzy obszary o różnych właściwościach elektrofizycznych: obojętne elektrycznie (dokładniej quasiobojętne) obszary typu n i p oraz obszar ładunku przestrzennego (tzw. warstwa zaporowa, zubożona).
- Ze względu na małą koncentrację ruchomych nośników ładunku rezystancja warstwy zaporowej (nieliniowa rezystancja) w dużym zakresie pracy złącza jest znacznie większa niż rezystancja pozostałych obszarów i ma dominujący wpływ na kształt charakterystyki prądowo-napięciowej złącza.
- W zależności od biegunowości dołączonego źródła (polaryzacji napięcia zewnętrznego) rozpatruje się dwa przypadki:
 - polaryzacja w kierunku zaporowym,
 - polaryzacja w kierunku przewodzenia.

Polaryzacja w kierunku zaporowym

Polaryzacja w kierunku zaporowym

Polaryzacja w kierunku zaporowym:

- zewnętrzne źródło połączone jest biegunem dodatnim z warstwą N, a ujemnym z warstwą P
- polaryzacja zewnętrzna jest zgodna z biegunowością napięcia dyfuzyjnego -> bariera potencjału zwiększa się o wartość napięcia zewnętrznego
- efekt 1 wzrasta szerokość warstwy zaporowej i maleje prawdopodobieństwo przejścia nośników większościowych – maleją składowe dyfuzyjne
- efekt 2 napięcie zewnętrzne praktycznie w całości odkłada się na warstwie zaporowej
 -> praktycznie nie ma pola elektrycznego w obszarach obojętnych i ruch nośników mniejszościowych jest tak samo chaotyczny jak w stanie równowagi termodynamicznej
 prąd unoszenia nie zmienia się w porównaniu do stanu równowagi (bez polaryzacji).

Polaryzacja w kierunku zaporowym

Polaryzacja w kierunku zaporowym

Podsumowanie – składowe prądu dyfuzji maleją do zera, nie zmieniają się składowe prądu unoszenia nośników mniejszościowych – **w kierunku zaporowym płynie przez złącze** niewielki prąd nasycenia.

Rys. 12: Przepływ prądu przez złącze p-n w kierunku zaporowym (a), przewodzenia (b) oraz charakterystyka prądowo-napięciowa (c) [Marciniak:1987]

Polaryzacja w kierunku przewodzenia

Polaryzacja w kierunku przewodzenia

Polaryzacja w kierunku przewodzenia:

- zewnętrzne źródło połączone jest biegunem ujemnym z warstwą N, a dodatnim z warstwą P
- polaryzacja zewnętrzna jest przeciwna w stosunku do biegunowości napięcia dyfuzyjnego -> bariera potencjału zmniejsza się o wartość napięcia zewnętrznego
- efekt 1 zmniejsza się szerokość warstwy zaporowej, i rośnie prawdopodobieństwo
 przejścia nośników większościowych rośnie rosną składowe dyfuzyjne
- efekt 2 składowe prądu unoszenia nie zmieniają się w porównaniu do stanu równowagi (bez polaryzacji)
- efekt 3 przy odpowiednio dużych wartościach napięcia polaryzacji gęstość prądu dyfuzji wyraźnie przewyższa gęstość prądu unoszenia.

Polaryzacja w kierunku przewodzenia

Polaryzacja w kierunku przewodzenia

Podsumowanie – przy polaryzacji w kierunku przewodzenia płynie prąd dyfuzji nośników większościowych znacznie większy niż prąd unoszenia nośników mniejszościowych.

Podsumowanie

Całkowity prąd jest różnicą składowych prądu dyfuzji i unoszenia, określony jest zależnością, której wykres pokazano na rys. (c).

Rys. 13: Przepływ prądu przez złącze p-n w kierunku zaporowym (a), przewodzenia (b) oraz charakterystyka prądowo-napięciowa (c) [Marciniak:1987]

Charakterystyka prądowo-napięciowa złącza p-n

Charakterystyka prądowo-napięciowa złącza p-n

Ilościowa analiza pozwala określić charakterystykę prądowo-napięciową złącza p-n
– przybliżenie pierwszego stopnia¹

$$i = I_s(\exp\frac{u}{V_T} - 1),\tag{1}$$

gdzie: I_s – prąd nasycenia, $V_T = \frac{kT}{q}$ – potencjał elektrokinetyczny, k – stała Boltzmanna, q – ładunek jednostkowy, T – temperatura w K.

 W dokładniejszych rozważaniach uwzględnia m.in. proces generacji-rekombinacji nośników w obszarze warstwy zaporowej (rys. 14).

¹Przy założeniach, że pole elektryczne istnieje tylko w warstwie zaporowej i poziom wstrzykiwania nośników jest mały oraz pominięciu zjawiska generacji-rekombinacji w warstwie zaporowej oraz zjawiska przebicia.

Charakterystyka prądowo-napięciowa złącza p-n

Rys. 14: Ilustracja wszystkich składowych prądu w złączu p-n [Marciniak:1987]

Przebicie złącza p-n

Przebicie złącza p-n

Przebicie złącza p-n:

- zjawisko gwałtownego wzrostu prądu przy polaryzacji zaporowej złącza napięciem większym niż pewna, charakterystyczna dla danego złącza wartość, zwana napięciem przebicia
- dwie podstawowe przyczyny tego zjawiska: tzw. przebicie Zenera oraz przebicie lawinowe
- przy zaporowej polaryzacji złącza natężenie pola w cienkiej warstwie zaporowej może osiągnąć tak duże wartości, że możliwe staje się wyrwanie elektronu z wiązania kowalencyjnego – emisja wewnętrzna (zjawisko Zenera)
- w modelu energetycznym przejście tunelowe elektronu z pasma walencyjnego przez barierę potencjału do pasma przewodnictwa.

Przebicie złącza p-n

Przebicie złącza p-n

Przebicie złącza p-n:

- zjawisko precyzyjnie wyjaśnia się na drodze fizyki kwantowej.
- prawdopodobieństwo przejścia tunelowego jest tym większe im niższa i węższa jest bariera -> przejście Zenera może występować w złączach silnie domieszkowanych.
- pole elektryczne w cienkich warstwach osiąga wartości natężenia ponad 10⁸ V/m (takie wartości są wymagane do powstania zjawiska Zenera)
- zjawisko Zenera charakteryzuje mała wartość napięcia przebicia $u_{pZ} < 4 \frac{W_g}{q}$, co dla krzemu prowadzi do ograniczenia $u_{pZ} < 5$ V.
- przebicie przy napięciu wyższym niż $6\frac{W_g}{q}$ (dla Si 7 V) gwałtowny wzrost prądu powodowany innym zjawiskiem **lawinowa jonizacja zderzeniowa**
- w zakresie pośrednim występują jednocześnie przebicia lawinowe i Zenera.

Przebicie złącza p-n

Przebicie złącza p-n

Przebicie złącza p-n:

- jonizacja zderzeniowa rozerwanie wiązania atomów w sieci krystalicznej poprzez dostarczenie energii przez swobodny nośnik ładunku rozpędzony w silnym polu elektrycznym
- powstaje para nośników elektron-dziura, które poruszając się ruchem przyspieszonym mogą uzyskać energię kinetyczną wystarczającą do jonizacji zderzeniowej
- powstaje powielenie liczby nośników w obszarze silnego pola elektrycznego w warstwie zaporowej
- jeżeli szerokość tej warstwy jest znacznie większa niż droga swobodna nośnika (czyli droga pomiędzy dwoma kolejnymi zderzeniami) to mówimy o lawinowym powielaniu nośników, prowadzącym do wzrostu wartości prądu
- przebicie Zenera oraz lawinowe nie powodują bezpośrednio uszkodzenia złącza
 o ile w obwodzie zewnętrznym jest odpowiednie ograniczenie prądu brak
 ograniczenia prowadzi do przebicia cieplnego i zniszczenia złącza.

Diody

 $https://www.researchgate.net/publication/250308373_Fabrication_electrical_characterization_and_modeling_of_fully-porous_pn_junctions/figures?lo=1$

Wprowadzenie

Wprowadzenie

- Rezystor nieliniowy jest elementem, który ma nieliniowy związek algebraiczny między chwilowym prądem, a chwilowym napięciem zaciskowym.
- Jednym z podstawowych elementów nieliniowych jest dioda.
- Rozważane będą **diody prostownicze, krzemowe**, o symbolu pokazanym na rys. 15.
- Dioda jest dwójnikiem, którego prąd zależy wykładniczo od napięcia na zaciskach.
- Analityczna zależność pomiędzy prądem a napięciem

$$i_D = I_s \left(e^{\frac{u_D}{n \cdot V_T}} - 1 \right), \tag{2}$$

gdzie: I_s oznacza prąd nasycenia diody (typowo 1 fA – 1 nA, n – współczynnik emisji (typowo 1 – 2.5), V_T =25.86 mV dla temperatury 300 K.

Rys. 15: Symbol diody

Diody

Diody

Rys. 16 – charakterystyki diod należących do różnych klas.

Rys. 16: Charakterystyki *i-u* diod (1 - prostowniczej germanowej (bez zakresu przebicia), 2 - prostowniczej krzemowej (bez zakresu przebicia), 3 - diody LED, 4 - diody Zenera, 5 - diody tunelowej)

Elementy nieliniowe

Doda

Przykładowa charakterystyka diody, wykreślona w skali (I_s =1 pA).

Rys. 17: Przykładowa charakterystyka diody

Warystor

Warystor opisany zależnością

$$i_N = 0.1 u_N^3 (3)$$

Rys. 18: Przykładowa charakterystyka elementu nieliniowego

Element nieliniowy o charakterystyce kwadratowej

Element nieliniowy o charakterystyce kwadratowej

Element półprzewodnikowy, którego prąd zależy od kwadratu napięcia

$$i_{DS} = \begin{cases} \frac{K(u_{DS} - u_{f0})^2}{2} & \text{dla} \quad u_{DS} \geqslant u_{f0} \\ 0 & \text{dla} \quad u_{DS} < u_{f0} \end{cases}$$
 (4)

Rys. 19: Charakterystyka elementu nieliniowego o kwadratowej zależności prądowo-napięciowej

Metody analityczne

Analiza układu z jednym elementem nieliniowym pokazanego na rys. 20 metodą analityczną.

Rys. 20: Prosty układ nieliniowy

Załóżmy, że charakterystyka opornika nieliniowego opisana jest zależnością

$$i_D = \begin{cases} Ku_D^2 & \text{dla} \quad u_D > 0\\ 0 & \text{dla} \quad u_D \leqslant 0 \end{cases}$$
 (5)

gdzie K – pewna dodatnia stała.

Metody analityczne

 Do opisu obwodu możemy wykorzystać metodę węzłową, wprowadzając węzeł odniesienia jak na rys. 21 lub formułując NPK.

Rys. 21: Prosty układ nieliniowy

Obie metody prowadzą do tego samego równania

$$u_D - e + Ri_D = 0, (6)$$

- dwie niewiadome u_D oraz i_D . - należy rozpatrzyć dwa przypadki $i_D > 0$ oraz $i_D = 0$.

Jeżeli e < 0 ($u_D < 0$) to ponieważ $i_D = 0$ z prawa Ohma na rezystorze napięcie jest równe zero oraz $u_D = e$.

• $e > 0 \rightarrow u_D > 0 \rightarrow i_D > 0$ i do równania (6) podstawia się Ku_D^2

$$u_D - e + RKu_D^2 = 0. (7)$$

 Równanie kwadratowe ma dwa rozwiązania:

$$u_D^{(1)} = \frac{-1 - \sqrt{1 + 4RKe}}{2RK}, \quad (8)$$

$$u_D^{(2)} = \frac{-1 + \sqrt{1 + 4RKe}}{2RK}.$$

Rys. 22: Interpretacja graficzna rozwiązań układu z rys. 20

 $u_D^{(1)}$ odrzucamy jako rozwiązanie wirtualne (nie fizyczne), gdyż $u_D < 0$, a wówczas przestaje obowiązywać zależność kwadratowa Ku_D^2 .

Metody analityczne

Podobną procedurę analizy można wykonać w przypadku każdego układu nieliniowego zawierającego jeden element nieliniowy (np. obwód na rys. 23).

Rys. 23: Przykładowy obwód nieliniowy

Metody analityczne

Możliwe jest bowiem wyznaczenie obwodu równoważnego Thevenina (lub Nortona) z punktu widzenia zacisków elementu nieliniowego (rysunki 24, 25, 26), ponieważ ta część obwodu jest liniowa.

Rys. 24: Przykładowy obwód nieliniowy z zaznaczoną częścią liniowa

Rys. 25: Układ liniowy do wyznaczenia napięcia e_z dwójnika Theyenina

Rys. 26: Układ liniowy do wyznaczenia rezystancji R_z dwójnika Thevenina

Metody analityczne

W rezultacie analiza sprowadza się do analizy układu pokazanego na rys. 27, czyli przypadku analogicznego jak w przykładzie wcześniejszym.

Rys. 27: Układ z rys. 23 po zastosowaniu twierdzenia Thevenina

Analiza układu z diodą

Nie zawsze możliwe jest jednak ręczne rozwiązanie otrzymanych równań nieliniowych – rys. 28 –> równanie

$$u_D - e + RI_s(e^{\frac{u_D}{n \cdot V_T}} - 1) = 0.$$
 (10)

Rys. 28: Układ nieliniowy z diodą

- równanie nieliniowe (transcendentalne),
- rozwiązania można wyznaczyć czasochłonną metodą prób i błędów lub stosując iteracyjną metodę numeryczną (np. Newtona-Raphsona).
- problem znacznie się komplikuje w przypadku większej liczby elementów nieliniowych
- zwykle wykorzystujemy komputer

- Istnieje wiele układów nieliniowych, których nie da się rozwiązać analitycznie.
- Zazwyczaj musimy korzystać z iteracyjnych metod zaimplementowanych na komputerze, dzięki którym jesteśmy w stanie wyznaczyć rozwiązania, ale zazwyczaj dostarczają projektantowi mało informacji o działaniu układu i samym projekcie.
- Rozwiązania graficzne zapewniają taką informację kosztem dokładności.
- Rozwiązania układu nieliniowego zasilanego źródłami napięcia i prądu stałego punkty pracy (ang. operating points).
- Ich wyznaczanie podstawowe zagadnienie z zakresu analizy układów nieliniowych.
- Dla prostych układów punkty pracy można wyznaczyć metodą graficzną.

Metoda graficzna - punkt pracy

W układzie z rys. 29 spełnione jest prawo NPK

$$u_b = e + Ri_b. (11)$$

Rys. 29: Układ nieliniowy

Rys. 30: Analiza graficzna układu

- wykreślamy układzie współrzędnych *i_a* – *u_a* zależność *i_b* – *u_b*
- $u_b = u_a$, $i_b = -i_a \rightarrow u_a = e Ri_a -$ jest to linia prosta.
- punkt przecięcia (\hat{i}_a, \hat{u}_a) wyznacza punkt pracy obwodu nieliniowego
- i jest rozwiązaniem układu

$$u_a = f(i_a) \tag{12}$$

$$u_a = e - Ri_a, \tag{13}$$

Rys. 31: Analiza graficzna – układ nieliniowy z jedną diodą

- zał. $R = 19 \Omega$, e = 1,5 V, n = 1, $V_T = 25.86 \text{ mV}$, $I_s = 1 \text{ pA}$.
- $z NPK u_D e + Ri_D = 0$,
- po przekształceniach

$$i_D = -\frac{u_D - e}{R}. (14)$$

- równanie diody $i_D = I_s(e^{\frac{u_D}{n \cdot V_T}} 1)$
- punkt przecięcia rozwiązanie

- Ograniczenie liniowe (14) nazywa się zwykle, ze względów historycznych wynikających z projektowania wzmacniaczy, prostą obciążenia, prostą pracy.
- Równanie (14) jest linią prostą o nachyleniu -1/R przecinającą oś u_D , ($i_D=0$) dla $u_D=e$.
- Odczytując współrzędne punktu przecięcia widzimy, że i_D wynosi około 40 mA, a u_D około 0,63 V.
- Wiedząc, że $i_D = 40 \text{ mA}$ z prawa Ohma znajdujemy $u_R = i_D R = 0.75 \text{ V}$.
- Wykonując powyższą konstrukcję łatwo zauważyć, że jeżeli wartość e byłaby trzy razy większa, napięcie na diodzie wzrosłoby tylko nieznacznie.
- To ilustruje zaletę spojrzenia na układ z perspektywy analizy graficznej.

Wstęp

- Aproksymacja odcinkowo-liniowa zastępuje charakterystykę elementu nieliniowego funkcją przedziałami liniową.
- W sensie graficznym krzywa reprezentująca charakterystykę elementu nieliniowego zostaje zastąpiona przez krzywą utworzoną z pewnej liczby odcinków linii prostych, zwanych segmentami.
- Metoda analizy odcinkowo-liniowej polega na przeprowadzeniu obliczeń dla każdej kombinacji segmentów reprezentujących różne elementy nieliniowe przy użyciu znanych narzędzi analizy obwodów liniowych.

Połączenie szeregowe oporników nieliniowych

 $Z NPK u = u_1 + u_2$

Połączenie szeregowe $i_1 = i_2 = i$

Rys. 33: Graficzna konstrukcja charakterystyki u - i

Połączenie równoległe oporników nieliniowych

Z PPK mamy
$$i = i_1 + i_2$$

$$u_1 = u_2 = u$$

Rys. 34: Połączenie równoległe

Rys. 35: Graficzna konstrukcja charakterystyki i - u

Wstęp

Najprostsze przybliżenie odcinkowo-liniowe diody charakterystyka pokazana na rys. 36: dwa segmenty liniowe

Dioda modelowaną w ten sposób – *dioda idealna* – symbol na rys. 37.

Rys. 37: Symbol diody idealnej

Rys. 36: Odcinkowo-liniowa charakterystyka diody idealnej

- dioda włączona (ON) zwarcie: $u_D = 0$ dla każdego dodatniego prądu i_D ,
- dioda wyłączona (OFF) przerwa: $i_D = 0$ dla każdego ujemnego napięcia u_D .

Wstęp

Zastosowanie modelu diody idealnej do analizy układu pokazanego na rys. 28 pokazano na rys. 38 – wyznacz napięcia na rezystorze i prąd przez opornik: $R = 470 \Omega$, (a) $e = e_1 = 4 \text{ V}$ oraz (b) $e = e_1 = -2 \text{ V}$.

Rys. 38: Zastosowanie diody idealnej do analizy prostego układu

- z rys. 38(b) $\rightarrow i_D = e/R$ oraz $u_R = i_D R = e$; $i_D = e_1/R = 8.51$ mA; $u_R = 4$ V.
- z rys. $38(c) \rightarrow i_D = 0$ oraz $u_R = i_D R = 0$.

Analiza małosygnałowa

- Istnieje wiele zastosowań układów elektronicznych, w których elementy nieliniowe pracują tylko w bardzo ograniczonym zakresie napięć lub prądów (np. czujniki, wzmacniacze audio).
- W takim przypadkach celowe jest wyznaczenie odcinkowo-liniowego modelu elementu nieliniowego w sposób zapewniający maksymalną dokładność dopasowania modelu do tego wąskiego zakresu pracy.
- Analiza małosygnałowa (przyrostowa) proces linearyzacji modeli elementów w wąskim zakresie działania elementu nieliniowego.

Analiza małosygnałowa na przykładzie diody prostowniczej

Chcemy określić wartość prądu diody i_D w obwodzie pokazanym na rys. 39.

Rys. 39: Schemat do analizy małosygnałowej

- dwa źródła napięcia, źródło napięcia stałego E = 0.7 V i sinusoidalne e(t) o amplitudzie $E_m = 1 \text{ mV}$.
- podejście analityczne i rozwiązanie układu przy obu pobudzeniach jest możliwe

$$i_D = I_s \left(e^{\frac{0.7 + 0.001 \sin(\omega t)}{n \cdot V_T}} - 1 \right), \quad (15)$$

ale prowadzi to skomplikowanych obliczeń numerycznych

Rys. 40: Ilustracja idei analizy małosygnałowej

- z podanych wartości wymuszeń -> dioda pracować będzie tylko w bardzo niewielkim obszarze jej charakterystyki nieliniowej i_D-u_D.
- na diodzie będzie zawsze określona duża wartość napięcia (UD) określona przez wartość źródła stałoprądowego (DC), a prąd diody będzie się zmieniał się o niewielką (małą) wartość wokół wartości określonej przez ID (jak pokazano na rys. 40), ze względu na mały sygnał e(t) nałożony na napięcie stałe E.

Analiza małosygnałowa

- podejście polega na dokładnym odwzorowaniu charakterystyki diody w pobliżu **punktu pracy** określonego przez U_D (lub I_D) i pominięciu reszty charakterystyki.
- narzędzie matematyczne rozwinięcie w szereg Taylora funkcji nieliniowej
- można wykazać, że wartości napięcia i prądu na diodzie w dowolnej chwili: $u_D = U_D + \Delta u_D$, $i_D = I_D + \Delta i_D$, gdzie

$$I_D = I_s \left(e^{\frac{U_D}{V_T}} - 1 \right), \tag{16}$$

$$\Delta i_D = \left(I_s e^{\frac{U_D}{V_T}} \right) \left[\frac{1}{V_T} \Delta u_D \right] = \frac{\mathrm{d}f}{\mathrm{d}u_D} \bigg|_{U_D} \Delta u_D = g_d \Delta u_D = \frac{1}{r_d} \Delta u_D. \tag{17}$$

Model małosygnałowy pokazany na rys. 41 reprezentuje zależność pomiędzy Δu_D oraz Δi_D i jest używany do wyznaczenia Δi_D .

Rys. 41: Model małosygnałowy układu z rys. 39

- w wielu sytuacjach interesujący jest przebieg tylko składowej małosygnałowej.
- aby wyznaczyć całkowitą wartość prądu (lub napięcia) należy do otrzymanego wyniku z analizy małosygnałowej dodać rezultat analizy stałoprądowej.

Analiza małosygnałowa

Systematyczna procedura określania wartości małosygnałowych napięć i prądów w układach zawierających element nieliniowy o charakterystyce $i_N = f(u_N)$.

- wyznacz punkt pracy (rozwiązanie stałoprądowe) I_N i U_N , w obwodzie utworzonym z obwodu oryginalnego, ustawiając wszystkie źródła małosygnałowe na zero oraz stosując jedną z omawianych metod analizy nieliniowych.
- wyznacz przyrostowe (małosygnałowe) napięcia i prądy poprzez utworzenie obwodu małosygnałowego, w którym element nieliniowy zastąpiono przez rezystor o wartości r_d, a wszystkie źródła stałoprądowe ustawiono na zero. (Oznacza to, że źródła napięcia DC zastępuje się zwarciem, a źródła prądu przerwą). Obwód małosygnałowy jest liniowy, więc napięcia i prądy można obliczyć za pomocą dowolnej metody analizy układów liniowych.