Modeling Hurricane Impact on Texas Electrical Infrastructure

Diego Garcia-Camargo & Vishnu Iyengar

Advisor Dr. Anamika Dubey

Date: 8-20-2021

Department of Electrical Engineering and Computer Science Pullman, Washington

Outline

• Introduction

- Model Description
 - Hurricane Modeling
 - Impact Modeling
 - Outage Probability
- Results and Analysis

Conclusion

Introduction: Hurricane Risk Assessment

- Hurricanes have devastated the eastern seaboard causing severe structural damage to electrical infrastructure
- Severe outages caused by lack of preparedness highlight the necessity for early risk assessment [1]
- Computational modeling can be used to analyze potential hurricane's impact on the electrical grid
 - Improves resilience efforts and helps develop faster restoration processes

[1]

Introduction: Hurricane Wind Threat

- The scope of our model focuses on the threat that high-speed hurricane winds pose for electrical grids
- US DOE hurricane Sandy & Irene report identifies extreme hurricane winds as primary threats
 - "Devastating" wind damage in both hurricanes, collectively causing significant harm to 22,815 transmission poles and 191 electrical substations [2]
- NERC report on hurricane Harvey similarly identifies significant damage caused by high hurricane wind speeds across Texas' electrical grid [3]

^[2] Office of Electricity Delivery and Energy Reliability. "Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure." U.S. Department of Energy, Apr. 2013.

Model Overview

- •Meteorological model implemented
- •Distribution and hurricane models combined for impact assesment
- •Outage probabilities are calculated
- •Resiliency gaps are identified

Spatiotemporal Windstorm Model: Static Wind Field

• Create static wind field at a singular point in time

• Once these three values are known, wind speed at any distance 'x' from the center of the hurricane can be approximated. Assumed that K=1.14 and $\beta=10$. (see top figure and (a)) [4]

$$\xi = K \times w_m; \quad \psi = \frac{1}{r_{mw}} \ln \left(\frac{K}{K - 1} \right), \qquad K = 1.14$$

(c)

Hurricane Katrina (2005)

[4]

 $[\]mathbf{W}(\mathbf{x}) = \begin{cases} \xi(1 - \exp[-\psi x]) & 0 \le x < r_{mw} \\ w_m \exp[-\left(\frac{\ln(\beta)}{r_s - r_{mw}}\right)(x - r_{mw}) & r_{mw} \le x \le r_s \\ 0 & x > r_s \end{cases}$ [4]

^[4] P. Javanbakht and S. Mohagheghi, "A risk-averse security-constrained potential power flow for a power grid subject to hurricanes," Electric Power Systems Research, vol. 116, pp. 408–418, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779614002727

Static Wind Field Model

- Left: purely represents hurricane without latitudinal/longitudinal representation
- Right: latitudes and longitudes are introduced to model hurricane progression over time (dynamic wind field)

Spatiotemporal Windstorm Model: Dynamic Model

- Convert the static wind field model to dynamic wind field model by modeling hurricane path
- Dynamic wind field can be modeled if the path of the hurricane (lat, long) and the land decay factor (α) is known, as well as the initial values of the three parameters (rmw, rs, and wm) [4]
 - Each point in the path is every 2 hours for a total of 12 hours
 - Assumed that α =0.04
- Once these two values are known, the dynamic wind field can be modeled through generating a static wind field for every point in the path
 - New values of rs, rmw, and wm are generated for each time step

• Hurricane size varies with each timestep and is based on KDE of \mathbf{r}_{s}

Spatiotemporal Windstorm Model: Multiple Tracks, Scenarios

• Third step is to generate different possible scenarios for the hurricane and dynamically mod each scenario

- Generated 10 scenarios per track with 3 tracks for a total of 30 scenarios
- Can generate different scenarios by randomly sampling from the KDEs because the three variables are not correlated with each other [4]

	ohrs	2 hrs	4 hrs	6hrs	8 hrs	10 hrs	12 hrs
Track 1 (N,W)	(28.9, 95.2)	(29.14, 95.3)	(29.39,954)	(29.63,95.51)	(29.88, 95.61)	(30.12, 95.71)	(30.37, 95.82)
Track 2 (N,W)	(28.9, 95.2)	(29.13, 95.35)	(29.35, 95.5)	(29.58, 95.65)	(29.8, 95.8)	(30.03, 95.95)	(30.25, 95.10)
Track 3 (N,W)	(28.9, 95.2)	(29.1, 95.39)	(29.3,95.58)	(29.5, 95.78)	(29.7, 95.97)	(29.89, 96.17)	(30.09,96.36)

Impact Modeling

• Model Texas electrical grid with meteorological simulations to assess impact on electrical infrastructure

Hurricane Impact Matrix

- Hurricane Impact Matrix proposed in [4] can be applied to generate maximum windspeed values for each transmission line in the electrical grid
 - Applied for each transmission line 'j' and hurricane scenario 'h'

$$him_{j,h} = \begin{cases} w_{m_h} & d_{min}(j,h) \le r_{mw_h} \le d_{max}(j,h) \\ max \begin{pmatrix} w_{d_h}(d_{min}(j,h,)|m_h) \\ w_{d_h}(d_{max}(j,h,)|m_h \end{pmatrix} & otherwise \end{cases}$$
[4]

 d_{min} and d_{max} are defined as the minimum and maximum distances from any point on transmission line 'j' to the eye of the hurricane

Impact Matrix Illustration

$$him_{j,h} = \begin{cases} w_{m_h} & d_{min}(j,h) \le r_{mw_h} \le d_{max}(j,h) \\ max \begin{pmatrix} w_{d_h}(d_{min}(j,h,)|m_h) \\ w_{d_h}(d_{max}(j,h,)|m_h \end{pmatrix} & otherwise \end{cases}$$

[4]

Power Distribution Model: Texas Electrical Grid

- Substations represented as Coordinate points
- Transmission lines are assumed to be straight-line connections
- If a single point on a transmission line is affected, the entirety of a line is treated as such 267

Single Timestep Initial Impact assessment

- Assuming the landfall at (-95.2, 28.9) Hurricane Impact Matrix can be applied
- Transmission lines are separated into bins based on w_m (maximum windspeed)
- Future analysis is done on each transmission line

Power Distribution Model w/ Spatiotemporal Windstorm Model

Outage Probability

- The hurricane impact matrix creates a multidimensional array in the format to the right for each line
 - An array is generated for each track (3 tracks)
- A KDE of windspeeds for each transmission line (total of 10*7 = 70 pts) and an expected value is generated from the KDE (g)
 - 70x1918 array is shortened to a 1x1918 array
- Outage probability is calculated according to formulas proposed in [4] (h)

(g)
$$\hat{\mathbf{w}}_j = \sum_{p=1}^{Np} Pr_p * \hat{\mathbf{w}}_{j,p} = \sum_{p=1}^{Np} Pr_p \int_0^\infty u * f_{j,p}(u) du$$

$$(\mathbf{h}) \begin{cases} \Pr\{out_j\} = \begin{cases} 0 & \hat{\mathbf{w}}_j \le w_1 \\ \frac{\hat{\mathbf{w}}_j - w_1}{w_2 - w_1} & w_1 \le \hat{\mathbf{w}}_j \le w_2 \\ 1 & \hat{\mathbf{w}}_j \ge w_2 \end{cases}$$

Example of PDF for a Transmission Line

• Example of PDF for transmission line #1724 for 3 different tracks, along with its expected wind speed value.

Results: Outage Probability – Case 1

• Case 1: Assumed the constant wind speeds which led to line outage were w1 = 110 mph and w2 = 155 mph. Calculated expected wind speed value from PDF. This case was modeled from the paper.

[JNIVERSITY

Results: Outage Probability – Case 2

• Case 2: Assumed the constant wind speeds which led to line outage were w1 = 110 mph and w2 = 155 mph. Instead of calculating expected wind speed value from PDF, calculated a random sample from the PDF.

[JNIVERSITY

Results: Outage Probability – Case 3

• Case 3: Assumed the constant wind speeds which led to line outage were w1 = 50 mph and w2 = 70 mph

Analysis of Results

- Obviously, this might seem a bit suspicious
- The algorithm conflates different timesteps (e.g. the values of t=12 when the hurricane is basically harmless get averaged into the windspeed affecting a transmission line, which lowers the value substantially)
 - •This reason is supported by the graphs above

