32-bit FLOATING POINT MULTIPLIER IMPLEMENTATION

Version 1.0 (Wednesday, April 17, 2019)

Preface:

We¹ have created this multiplier to handle the multiplication process of two 32-bit *IEEE 754* based numbers as a part of *FPU project*².

¹ Team members:

- Hussien Mostafa
- Abdulrahman Ragab
- Abdullah Khaled
- Abdallah Mohamed
- Mahmoud Hassan

Supervisor:

- Dr. Muhammad Mahmoud Muhammad Ibrahim
- ² **FPU project:** the floating point unit to be used in our implementation of MIPS based processor

CONTENT:

1.	IEEE 754 REPRESENTATION	1
2.	THE IMPLEMENTATION JOURNY	2
	2.1 CALCULATING FRACTION	2
	2.2 CALCULATING EXPONENT	
	2.3 THE REASEONS WHY WE WERE SO LUCKY IMPLEMETING THIS	
3.	SPECIAL CASES	
4.	VERILOG CODE	
5.	SHARING THE HAPPINESS OF A WORKING CODE (RESULTS)	
ΑP	PPENDEX A. OUR TOOLKIT	
ΑP	PPENDEX B. REFERENCES	

CHAPTER 1:

"IEEE 754" REPRESENTATION

"This kind of refreshing part for the sake of comprehension."

FLOATING-POINT REPRESENTATION:

Floating-point numbers are usually a *multiple of the size of a word*. The representation of a MIPS floating-point number is shown below, where s is the sign of the floating-point number (1 meaning negative), exponent is the value of the 8-bit exponent field (including the sign of the exponent), and fraction is the 23-bit number.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	s exponent							fraction															50 8								
1 bit		8 bits															23	3 bit	s												

In general, floating-point numbers are of the form

$$(-1)^{S} \times F \times 2^{E}$$

These formats go beyond MIPS. They are part of the IEEE 754 floating-point standard, found in virtually every computer invented since 1980. This standard has greatly improved both the ease of porting floating-point programs and the quality of computer arithmetic.

Before we go on board we have to take these notes with us:

- 1- Number must be normalized in an understandable language (1.01000 * 2^E not 101.000* 2^E-3)
- 2- Exponents are biased by 127 which means 0 = 127 to get the the real exponent form IEEE754 one subtract 127 from it.

CHAPTER 2: OUR IMPLEMENTATION JOURNEY