Just Enough Spectral Theory

Ng Yen Kaow

Notations (Important)

- A vector is by default a column
 - For vectors x and y, their inner (or dot) product, $\langle x, y \rangle = x^{\top}y$
 - Beware: some texts use row vectors and $\langle x, y \rangle = xy^{\top}$
- For a matrix an example is a row
 - An example (or datapoint) is a row x_i while each feature is a columns
 - Features are like fixed columns in a spreadsheet
 - For matrices X and Y, $\langle X, Y \rangle = XY^{\top}$ or $\sum_{i} (x_{i}y_{i}^{\top})$
 - Beware: some texts use column for examples and let $\langle X, Y \rangle = X^{T}Y$
- \square So it's $x^{\top}x$, $x^{\top}Mx$, but XX^{\top} and $Q\Lambda Q^{\top}$

Outer product

The outer product of two vectors x and y is a matrix M where the $M_{ij} = x_i y_i$

e.g.
$$\binom{a}{b}(c \quad d) = \binom{ac \quad ad}{bc \quad bd}$$

- □ The outer product (or Kronecker product) of two matrices is a tensor
 - We don't deal with tensors yet
- Common uses of outer products

Denote pairwise inner product matrix,
$$xx^{\top} = \begin{pmatrix} x_1x_1 & x_1x_2 & \dots \\ x_2x_1 & x_2x_2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Denote matrix of all ones, $\mathbf{11}^{\mathsf{T}} = \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \end{bmatrix}$

More notations

- Conventions
 - \mathbf{x}_i from a matrix is by default a row vector
 - \mathbf{x}_i from a vector is a scalar
 - \mathbf{x}_{ij} from a matrix is a scalar
 - \mathbf{x} , u_i (all other vectors) are by default column vectors
- Common expansions

$$xy^{\top} = \sum_{i} x_{i} y_{i} \qquad (XY)_{ij} = \sum_{k} x_{ik} y_{kj}$$

$$(x^{\top}y)_{ij} = x_{i} y_{j} \qquad (XY^{\top})_{ij} = x_{i} y_{j}^{\top} = \sum_{k} x_{ik} y_{jk}$$

$$x^{\top}My = \sum_{ij} m_{ij} x_{i} y_{j} \qquad (X^{\top}Y)_{ij} = \sum_{k} x_{ki} y_{kj}$$

$$X^{\top}X = \sum_{i} x_{i}^{\top} x_{i} \text{ (used in kernel PCA)}$$

Python call for inner product

- □ Inner products are performed with np. dot()
 - When called on two arrays, the arrays are
 automatically oriented to perform inner product
 Note that [[1], [1]] is a 1 × 2 matrix
 - When called on an array x and a matrix X, the array is automatically read as a row for np. dot(x, X), and column for np. dot(X, x) to perform inner product
 - When called on two matrices, make sure that the matrices are oriented correctly, or you will get X^TX when you want XX^T
 - Impossible to get outer product with np. dot()
- If you write x*y or X*Y, what you get is an element-wise multiplication

Eigenvectors and eigenvalues

- Only concerned with square matrices
 - Most matrices we consider are furthermore symmetric and of only real values
- \square A eigenvector for a square matrix M is vector u where $Mu = \lambda u$
 - u is invariant under transformation M
 - The scaling factor λ is a eigenvalue
 - Use u to denote a column vector even when multiple u_i are collected into a matrix $U = [u_1 \quad ... \quad u_k]$

$Mu = \lambda u$ is a system of equations

- □ An equation such as $Mu = \lambda u$ actually states n linear equations, namely $\forall i, \sum_i m_i u_i = \lambda u_i$
 - For example

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

states the two equations

$$m_{11}u_1 + m_{12}u_2 = \lambda u_1$$

$$m_{21}u_1 + m_{22}u_2 = \lambda u_2$$

- This is important when manipulating equation by multiplying with other matrix/vector
 - For example when $Mu = \lambda u$ is multiplied from the left by u^{T} , the resultant $u^{\mathsf{T}}Mu = \lambda u^{\mathsf{T}}u$ becomes only one equation, that is, $\sum_{ij} u_i m_{ij} u_j = \lambda \sum_{ij} u_i u_j$

Eigendecomposition

□ A eigendecomposition of matrix M is $M = Q\Lambda Q^{-1}$

where Λ is diagonal, and Q contains (not necessarily orthogonal) eigenvectors of M

- Any normal M can be eigendecomposed
- The set of eigenvalues for *M* is unique
- There can be different eigenvectors of the same eigenvalue (hence not unique)
 - For real symmetric M, eigenvectors that correspond to distinct eigenvalues are (chosen to be) orthogonal

Orthogonal eigendecomposition

- \square For real symmetric M, can choose Q to be orthogonal matrix (proof omitted)
- \Box For square matrix Q, the following are equivalent (proof next slide)
 - 1. *Q* is an orthogonal matrix
 - 2. $Q^{T}Q = I$
 - 3. $QQ^{T} = I$
 - Corollary. $Q^{T}Q = I \Rightarrow Q^{T}QQ^{-1} = Q^{-1}$ $\Rightarrow Q^{T} = Q^{-1}$

□ By default the eigendecomposition of real symmetric matrix M is $M = Q\Lambda Q^{\top}$

Orthogonal matrix property

- \Box For square matrix Q, the following are equivalent
 - 1. *Q* is orthogonal matrix
 - 2. $Q^{T}Q = I$
 - 3. $QQ^{\mathsf{T}} = I$
 - 2⇔1 Let u_i be the column vectors of A

$$Q^{\mathsf{T}}Q = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix} = \begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix}$$

$$\begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix} = I \text{ implies } u_iu_j = 0 \text{ for } i \neq j$$

Eigenspace

- □ The eigenspace of a matrix M is the set of all the vectors u that fulfills $Mu = \lambda u$
 - The rank of M is its number of non-zero λ
- A eigenbasis of a n × n matrix M is a set of n orthogonal eigenvectors of M (including those with zero eigenvalues)
 - Any datapoint x_i in M can be written as a linear combination of the eigenbasis, $x_i = \sum_i \langle x_i, u_j \rangle u_j$
 - Any eigenvector u_i for M can be written as a linear combination of the datapoints x_i , by solving the system of equations $x_i = \sum_i \langle x_i, u_i \rangle u_i$

Rayleigh Quotient

- $\Box \frac{u^{\mathsf{T}} M u}{u^{\mathsf{T}} u}$ is called the **Rayleigh quotient**
- □ Let $\lambda_1,...,\lambda_n$ where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ be the eigenvalues of M
- Min-max Theorem (simplified)
 - Maximum of the Rayleigh quotient,

$$\max_{\|u\|=1} \frac{u^{\mathsf{T}} M u}{u^{\mathsf{T}} u} = \lambda_1$$

Minimum of the Rayleigh quotient,

$$\min_{\|u\|=1} \frac{u^{\mathsf{T}} M u}{u^{\mathsf{T}} u} = \lambda_n$$

Proof of min-max theorem

- □ Find stationary points of $\frac{u^T M u}{u^T u}$
- □ Letting u' = cu does not change $\frac{u^{\mathsf{T}}Mu}{u^{\mathsf{T}}u} \left(= \frac{u'^{\mathsf{T}}Mu'}{u'^{\mathsf{T}}u'} \right)$
 - Hence consider only unit u
 - Maximize $u^{\mathsf{T}} M u$ subject to $u^{\mathsf{T}} u = 1$
- □ Use Lagrangian to add $u^Tu = 1$ constraint

$$\mathcal{L}(u,\lambda) = u^{\mathsf{T}} M u + \lambda (u^{\mathsf{T}} u - 1)$$

$$\frac{\partial \mathcal{L}}{\partial u} = u^{\mathsf{T}} (M + M^{\mathsf{T}}) + 2\lambda u^{\mathsf{T}} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = u^{\mathsf{T}} u - 1 = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = u^{\mathsf{T}} u - 1 = 0$$
Matrix differentiation*
$$\frac{\partial x^{\mathsf{T}} M x}{\partial x} = x^{\mathsf{T}} (M + M^{\mathsf{T}})$$

$$\frac{\partial x^{\mathsf{T}} M x}{\partial x} = 2x^{\mathsf{T}}$$

$$u^{\mathsf{T}}(M + M^{\mathsf{T}}) = -2\lambda u^{\mathsf{T}} \Rightarrow (M + M^{\mathsf{T}})u = -2\lambda u$$

Since *M* is symmetric, $2Mu = -2\lambda u$

$$\Rightarrow Mu = \tilde{\lambda}u \text{ where } \tilde{\lambda} = -2\lambda$$

□ Stationary points are solutions of $Mu = \tilde{\lambda}u$

Eigendecomposition applications

- Matrix inverse
- Matrix approximation
- Matrix factorization
 - Multidimensional Scaling
- Minimizing/maximizing Rayleigh Quotient
 - PCA
 - Max of covariance matrix
 - Spectral clustering
 - Min of graph Laplacian

Singular Value Decomposition

- Any matrix can be singular value decomposed
- \square $M = USV^*$
 - lacksquare M is $m \times n$ matrix
 - lacksquare U is an $m \times m$ unitary matrix
 - lacksquare S is an $m \times n$ diagonal matrix
 - lacksquare V is an $n \times n$ unitary matrix
- □ For a real M, $V^* = V^\top$ (and $U = U^\top$) hence $M = USV^\top$

For unitary matrix U, $UU^* = U^*U = I$

SVD applications

- Solving linear equations
- Linear regression
- Pseudoinverse
- Kabsch algorithm
- Matrix approximation
- As a eigendecomposition (see next slide)

SVD and eigendecomposition

- □ SVD of matrix M simultaneously performs a eigendecomposition of M^TM and MM^T
 - $M^{T}M$ and MM^{T} are important matrices (next slide)
 - Given SVD of $M = USV^{T}$, since V and U are unitary
 - $\square M^{\mathsf{T}}M = VS^{\mathsf{T}}U^{\mathsf{T}}USV^{\mathsf{T}} = V(S^{\mathsf{T}}S)V^{\mathsf{T}} = VS^{2}V^{\mathsf{T}}$
 - $\square MM^{\mathsf{T}} = USV^{\mathsf{T}}VS^{\mathsf{T}}U^{\mathsf{T}} = U(S^{\mathsf{T}}S)U^{\mathsf{T}} = US^{2}U^{\mathsf{T}}$
 - \Rightarrow V is the eigenbasis of $M^{\top}M$ and U is the eigenbasis of MM^{\top} respectively
 - $\Rightarrow M^{\top}M$ and MM^{\top} have the same eigenvalues, namely S^2

Special Matrices

- Three types of matrices lead to many results
 - Covariance $(A^TA \text{ for column centered } A)$
 - ⇒ Principal Component Analysis
 - Gramian $(AA^{\mathsf{T}}$ for column centered A)
 - ⇒ Multidimensional Scaling
 - ⇒ Kernel Method
 - Graph Laplacian (AA^{T}) for incidence matrix A)
 - ⇒ Spectral Clustering