Use of cell_measures and cell methods in fregrid

Metadata needed to regrid fields is in the NetCDF headers (which can be seen with *ncdump -h file.nc*). The variable attribute *cell_methods* describes whether the field is conserved absolutely (*area: sum*) or conserved with another quantity, area or volume (*area: mean*). The variable attribute *cell_measures* then identifies the related quantity needed to calculate the global integral for the field. 2D fields will have *cell_measures* "area: cell_area" and 3D fields will have *cell_measures* "area: cell_area volume: cell_volume". fregrid requires that the *cell_measures* variable (area or volume) be present when regridding using conservative (conserve_order1 or conserve_order2) algorithms.

```
float LWP(time, grid_yt, grid_xt);
LWP:cell_methods = "time: mean";
LWP:cell_measures = "area: cell_area";
```

cell_methods and cell_meaures are described in the CF Metadata Conventions (https://cfconventions.org/) and are used by fregrid. The related cell area or cell volume variable identified by cell_measures may be in the NetCDF file, or (due to space considerations) it may be stored in a second file. If it is in a second file, fregrid uses an additional, non-standard global attribute associated_files to show where the cell_area or cell_volume variable is located.

In this example, the *cell_area* variable needed for regridding LWP is located in an external file named "19790101.grid_spec.nc". fregrid will fail if a required external variable is not found.

Below is a summary of the part of the function do scalar conserve interp() used by fregrid.

Algorithm Assumptions and Conventions:

- 1. Algorithm below is for 1st order conservative interpolation regridding; this shortened summary version assumes there is only one elevation and only one tile.
- 2. Desired mapping is from $grid_s$ (source) to $grid_t$ (target), and an exchange grid (xgrid) between the two has been calculated. For every cell of $grid_t$, xgrid will have indices into one or more cells of $grid_s$.
- 3. $n_{e'}$, $n_{t'}$, $n_{s'}$ are indices into the exchange, target, and source grids, respectively
- 4. Field/variable *field_s* is mapped onto *grid_t* and to be called *field_t*
- cell_methods are specified as metadata per field. Similarly for cell_measures, but if its specified as *true* for a field, then the input file must also specify an area per grid cell of the corresponding input grid).
- 6. Cell_measures default is *false*; cell_methods default is *cell_methods_mean*, and the alternative is *cell_methods_sum*.

- 7. $field_s. area[n_s]$ defined as "fraction of cell area"
- 8. nx is the number of cells in the longitudinal (X) coordinate. Algorithm:
 - 1. $loop \ over \ n_e$; $n_e \equiv 0, 1, 2, ..., (size(xgrid) 1)$
 - a. $i_t \equiv xgrid.iout[n_e]$; $j_t \equiv xgrid.jout[n_e]$; $n_t = j_t * nx_t + i_t$ $i_s \equiv xgrid.iin[n_e]$; $j_s \equiv xgrid.jin[n_e]$; $n_s = j_s * nx_s + i_s$
 - b. $area = xgrid. area [n_e]$ //(I.e. The area of overlap of cells index by n_s and n_t)
 - i. $if (weight_exist) area = area \times grid_s.weight[n]$
 - i. if (field_s.cell_methods_sum) area = area \div grid_s.cell_area[n_s] elif (field_s.cell_measures) area = area \times field_s.area[n_s] \div grid_s.cell_area[n_s]
 - $\text{C.} \quad field_t. \, val[n_{_t}] \, = \, field_t. \, val[n_{_t}] \, + \, field_s. \, val[n_{_S}] \, \times \, \, area$
 - 2. End of loop over n_{ρ}