Universidade de São Paulo

Instituto de Ciências Matemáticas e Computação - ICMC

Relatório do trabalho 1

Alunos: Augusto Ildefonso, Renan Trofino

Professor: Marcelo Garcia Manzato

Monitor: Lucas Padilha Modesto de Araujo

Universidade de São Paulo

Instituto de Ciências Matemáticas e Computação - ICMC

Relatório

Relatório do trabalho de Introdução à Ciência da Computação II.

Alunos: Augusto Ildefonso, Renan Trofino

Professor: Marcelo Garcia Manzato

Monitor: Lucas Padilha Modesto de Araujo

Sumário

1	Resum	o	1				
2	Força Bruta 2						
		algoritmo	2				
		aálise					
3	Guloso		3				
	3.1 O	algoritmo	3				
		iálise					
4	Dinâmico						
	4.1 O	algoritmo	4				
		iálise					
5	Análise dos Resultados 5						
	5.1 An	aálise de Complexidade	5				
		nálise Empírica					
\mathbf{A}	nexo		8				
	5.3 Có	digo do Algoritmo de Força Bruta	8				
		digo do Algoritmo Guloso					
		digo do Algoritmo de Programação Dinâmica					

1 Resumo

O presente relatório tem como objetivo explicar, implementar e comparar os algoritmos mais comuns para a solução do Problema da Mochila 0/1. Por meio de pesquisa e discussão de ideias, foram criadas soluções usando a linguagem C que resolvem o problema de forma eficiente e eficaz. As três soluções requisitadas envolvem algoritmo de força bruta (I), algoritmo guloso (II) e algoritmo com programação dinâmica (III).

2 Força Bruta

2.1 O algoritmo

Um algoritmo de força bruta é caracterizado por sua fácil implementação e elevada complexidade para grandes entradas. Ele se baseia na própria declaração do problema e nos conceitos envolvidos nele para resolvê-lo de forma simples.

Nesse problema, o algoritmo de força bruta gera todas as possíveis combinações de itens na mochila e compara o resultado dos valores obtidos, salvando o maior valor que se adequa ao peso máximo da mochila. Apesar de funcional, esse método é pouco eficiente para grandes entradas devido a alta possibilidade de combinações possíveis.

É importante ressaltar, até por questóes de comparações com os outros algoritmos, que esse método gera todos os casos, o que o torna preciso. Além disso, o algoritmo implementado não faz uso de recursão, por isso não foi calculada a análise de recorrência.

2.2 Análise

A alta complexidade desse algoritmo decorre da geração de todas as possibilidades. Isso é expresso na implementação através dos loops for's. Fazendo a análise do algoritmo, percebe-se que a função T(n) é $T(n) = 2^n$, pois ela possui dois loops for aninhados, o mais interno, no pior caso, será executado N vezes, já o mais externo será executado 2^N (resultado da operação shift left aplicada para gerar o número de combinações).

Desse modo, tem-se a função $T(n) = N \times 2^N$, mas como N é de ordem inferior à 2^N , pode-se ignorá-lo, obtendo $T(n) = 2^n$. Assim, pode representar a complexidade do algortimo por $T(n) = O(2^n)$.

3 Guloso

3.1 O algoritmo

Um algoritmo guloso encontra ótimas soluções locais, na esperança de encontrar uma ótima solução global. O uso desse algoritmo torna o resultado aproximado, podendo ser ótimo.

Nesse processo, o algoritmo compara a importância de cada objeto, que é representada pela equação $imp=\frac{valor}{peso}$. O vetor de entrada será ordenado com base nesse cálculo, e irá mover os items de maior importância para o início da lista. Com a ordenação devidamente feita, basta adicionar na mochila o máximo de itens que for possível, sempre respeitando o peso máximo e ordem estabelecida para os itens.

Percebe-se que o algoritmo não avalia todos os casos, o que o torna impreciso em certos casos.

3.2 Análise

Para esse algoritmo, o processo mais custoso não envolve as ações da mochila, mas sim a ordenação do vetor que ocorre a priori dessa função. Dentro da organização da mochila existe apenas um laço, responsável por percorrer o vetor de itens.

Então, dependendo do tipo de algoritmo de ordenação, a complexidade pode variar. Para essa implementação (e por simplicidade) foi utilizado o bubble sort, que possui complexidade $O(n^2)$. Embora as melhorias estejam aplicadas, os casos beneficiados não estão nos extremos (melhor/pior caso), e sim nos valores intermediários.

4 Dinâmico

4.1 O algoritmo

Programação dinâmica é um método de desenvolvimento que envolve o uso de uma tabela para armazenar valores entre os diferentes paços da execução.

No problema da mochila, a tabela irá armazenar os valores de instâncias menores do problema, os sub problemas. A abordagem visa, justamente, entender e resolver os problemas menores para então chegar à solução desejada, o problema completo.

A tabela construída depende da capacidade C da mochila e do número N de items disponíveis. Usando dois laços aninhados, deve-se percorrer a tabela e realizar as comparações, retendo o valor resultante na posição correspondente de cada índice. A solução final será dada na última lacuna da tabela, quando os índices estiverem em sua última posição.

4.2 Análise

O algoritmo depende da tabela de N linhas e C colunas para operar, o que torna o uso de dois laços aninhados necessário.

A mais custosa na execução é, não coincidentemente, o bloco com os laços, que apresenta uma complexidade O(NC).

Ressalta-se que não foi calculada a equação de recorrência, pois o algoritmo não faz o uso da recursão.

5 Análise dos Resultados

5.1 Análise de Complexidade

A análise de complexidade dos algoritmos será feita usando a notação O (Big-Oh).

Para o algoritmo de força bruta, temos, como foi calculado anteriormente (já desprezando as tarefas de tempo constante), que a função T(n) era $T(n) = 2^n$. Como a notação O engloba casos em que os valores são menores ou iguais, pode-se usá-la sem maiores problemas. Então, supondo que $T(n) = O(2^n)$, verifica-se:

$$2^n < c \, 2^n$$

Dividindo-se ambos os lados por 2^n , isso pode ser feito pois não há valor de n que zere essa potência:

$$1 \le c$$

Assim, temos que para $\forall c \geq 1$, a igualdade a válida, o que permite afimar que $T(n) = O(2^n)$.

Com base nas análises de complexidade, percebe-se que o algoritmo de força bruta é o mais custoso, o que já era esperado por ser o que gera todas as possibilidades (através de um laço for que é executado 2^n o que é extremamente custoso).

O mais eficiente é o algoritmo de programação dinâmica, que constrói uma tabela de valores para depois encontrar o caso especificado no problema. A matriz possui dimensões variáveis, que dependem da quantidade de items N e da capacidade de peso da mochila C. Por percorrer a tabela com dois laços, a complexidade depende do tamanho de cada laço (até N e até C). Aqui, a complexidade será dada por T(n,c) = nc. Então têm-se O(nc).

Por fim, o algoritmo guloso é o que apresenta resultados intermediários. Como não realiza todas as comparações entre items, tende a ser mais rápido. Porém, pelo mesmo motivo, seus resultados serão aproximados. O processo mais custoso é a ordenação dos items, que precede a criação da mochila (ação principal). Por questões de simplicidade, o algoritmo bubble sort foi utilizado para ordenar o vetor; Sua complexidade é $O(n^2)$ por conta de dois laços aninhados que percorrem o vetor em sua totalidade.

No ponto de vista das implementações, é clara a diferença das complexidades. Pelo laço mais complexo, o algoritmo de força bruta apresenta a maior complexidade, seguido do algoritmo guloso e por último, com menor complexidade, o algoritmo dinâmico. Então, a ordem decrescente de complexidade dos algoritmos é força bruta, guloso e programação dinâmica. Ou então: $O(2^n) > O(n^2) > O(n c)$.

5.2 Análise Empírica

Figura 1: Comparação do tempos de execução dos algoritmos

10	100	1000	5000	10000	Algoritmo
0.000334	0.000044	0.003519	0.015023	3.258980	Força Bruta
0.000005	0.000141	0.010365	0.094830	0.343151	Guloso
0.000068	0.000494	0.005352	0.017810	0.025452	Dinâmico

Tabela 1: Tempos de execução (em segundos) nos diferentes casos teste

A partir dos dados acima, conclui-se que os algoritmos se comportam como o previsto, mantendo a ordem esperada de complexidade. Ou seja, o algoritmo menos eficiente é o da força bruta e o mais eficiente é o de programação dinâmica $(O(2^n) > O(n^2) > O(n c))$.

Ademais, a análise empírica permite notar que para entradas pequenas o algoritmo guloso foi o mais eficiente, o que faz sentido visto que a análise local dele serve perfeitamente para a análise geral, dado que a quantidade de dados pequena torna a região local próxima da geral.

É notória a mudança na execução dos algoritmos conforme o aumento do número de entradas. Como previsto, o algoritmo que utiliza programação dinâmica é, para casos grandes, o mais eficiente. Não existem saltos em seu tempo, o que mostra um aumento controlado e proporcional às entradas.

Anexo

Todos os algoritmos, casos de teste e script para gerar gráficos estão disponíveis no repositório do projeto no Github (Disponível em https://github.com/renan823/Trabalho-ICC2/).

5.3 Código do Algoritmo de Força Bruta

```
/**
 * Código para resolver o problema da mochila com o método da força bruta
 * @author Augusto Fernandes Ildefonso
 * @date 17/09/2024
 */
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#define TAM_MAX 1000000 // Definindo o tamanho máximo da mochila
/**
 * Protótipos das funções
 */
int* forca_bruta(int peso[], int valor[], int N, int W, int mochila[]);
void zera_vetor(int** aux, int N);
void copia_vetor(int** mochila, int** aux, int N);
/**
 * Função que zera o vetor, é usada para gerar todas as possibilidades
 * de combinações dos itens
 * @param aux Ponteiro para o vetor auxiliar
 * @param N Tamanho da mochila
 */
void zera_vetor(int** aux, int N){
    for(int i = 0; i < N; i++){
        (*aux)[i] = 0;
    }
}
/**
```

```
* Função que copia o vetor aux para o vetor mochila
 * @param mochila Ponteiro para o vetor mochila
 * Oparam aux Ponteiro para o vetor aux
 * Oparam N Tamanho da mochila
 */
void copia_vetor(int** mochila, int** aux, int N){
    for(int i = 0; i < N; i++){
        (*mochila)[i] = (*aux)[i];
}
 * Função que resolve o problema da mochila usando o método da força dupla
 * Cparam peso Vetor que contém os pesos dos itens
 * Oparam valor Vetor que contém os valores dos itens
 * Oparam N Tamanho da mochila
 * @param W Peso máximo que a mochila suporta
 * Oparam mochila Vetor que representa a mochila
 * @return Retorna a mochila que contém o maior valor, dentro do peso máximo
 */
int* forca_bruta(int peso[], int valor[], int N, int W, int mochila[]){
    int total_combinacoes = 1 << N;</pre>
    int peso_atual = 0, valor_atual = 0, maior_valor = 0;
    int peso_maior_valor;
    int* aux;
    aux = (int*) malloc(sizeof(int) * N);
    for(int i = 0; i < total_combinacoes; i++){</pre>
        zera_vetor(&aux, N);
        peso_atual = 0;
        valor_atual = 0;
        for(int j = 0; j < N; j++){
            if(i & (1 << j)){
                peso_atual += peso[j];
                valor_atual += valor[j];
                aux[j] = 1;
            }
```

```
}
        if((peso_atual <= W) && (valor_atual > maior_valor)){
            maior_valor = valor_atual;
            peso_maior_valor = peso_atual;
            copia_vetor(&mochila, &aux, N);
        }
    }
    printf("\n\nValor total: %d\nPeso atual: %d\n", maior_valor,
    peso_maior_valor);
    return mochila;
}
int main(void){
    int N, W;
    int peso[TAM_MAX], valor[TAM_MAX], *mochila;
    scanf("%d %d", &N, &W);
    mochila = (int*) calloc(sizeof(int), N);
    for(int i = 0; i < N; i++){
        scanf("%d %d", &peso[i], &valor[i]);
    }
    //inicar contagem
    clock_t inicio = clock();
    mochila = forca_bruta(peso, valor, N, W, mochila);
    //fim da execução
    clock_t fim = clock();
    printf("Tempo decorrido: %lf segundos\n",
    (double)(fim - inicio) / CLOCKS_PER_SEC);
    printf("Mochila: (");
    for(int i = 0; i < N; i++){
        printf("%d", mochila[i]);
        if(i != N-1){
```

```
}
    }
    printf(")\n");
    return(0);
}
      Código do Algoritmo Guloso
/**
 * Código para resolver o problema da mochila usando programação dinâmica
 * @author Renan Trofino Silva
 * @date 20/09/2024
*/
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct item {
    int id;
    int valor;
    int peso;
} ITEM;
void bubble_sort(ITEM items[], int n) {
 ITEM aux;
 int trocas = 1;
 for (int i = 0; i < n && trocas > 0; i++) {
  trocas = 0;
  for (int j = 0; j < n-1-i; j++) {
            float valor1 = (float) items[j].valor/items[j].peso;
            float valor2 = (float) items[j+1].valor/items[j+1].peso;
   if (valor1 < valor2) {</pre>
    aux = items[j];
```

printf(", ");

```
items[j] = items[j+1];
    items[j+1] = aux;
    trocas++;
   }
  }
}
}
/*
O algoritmo guloso tenta encontrar a melhor solução local.
Nesse caso, irá analisar a importância de cada objeto.
Ordenando o vetor de items pela importância.
Enquanto a mochila estiver vazia, coloque items.
E assim sucessivamente, até a mochila estar cheia.
*/
void mochila(ITEM items[], int n, int c, int* total, ITEM resultado[]) {
    int restante = c;
    //ordenar vetor
    bubble_sort(items, n);
    for (int i = 0; i < n; i++) {
        if (items[i].peso <= restante) {</pre>
            resultado[*total] = items[i];
            (*total)++;
            restante -= items[i].peso;
        }
    }
}
int main(void) {
    int N, C, pi, vi;
    scanf("%d %d", &N, &C);
    ITEM* items = (ITEM*) malloc(N * sizeof(ITEM)); //vetor de importância
    for (int i = 0; i < N; i++) {
        scanf("%d %d", &pi, &vi);
        items[i] = (ITEM){i, vi, pi};
    }
```

```
ITEM* resultado = (ITEM*) malloc(N * sizeof(ITEM)); // Resultado
    int total = 0;
    //inicar contagem
    clock_t inicio = clock();
    mochila(items, N, C, &total, resultado);
    //fim da execução
    clock_t fim = clock();
    printf("Tempo decorrido: %lf segundos\n",
    (double)(fim - inicio) / CLOCKS_PER_SEC);
    printf("Mochila:\n");
    for (int i = 0; i < total; i++) {</pre>
        printf("Item %d: Valor = %d, Peso = %d\n", resultado[i].id,
        resultado[i].valor, resultado[i].peso);
    }
    free(items);
    free(resultado);
    return(0);
}
```

5.5 Código do Algoritmo de Programação Dinâmica

```
/**
 * Código para resolver o problema da mochila usando programação dinâmica
 *
 * @author Renan Trofino Silva
 * @date 17/09/2024
 */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
/*
```

```
A matriz possui ponteiros para ponteiros para int.
As dimensões são passadas por parâmetro (colunas e linhas, respectivamente)
A matriz alocada é retornada.
Em caso de erro, o porgrama é encerrado.
int** criar_matriz(int n, int c) {
    int** matriz = (int**) malloc(n * sizeof(int*));
    if (matriz == NULL) {
        exit(1);
    }
    for (int i = 0; i < n; i++) {
        matriz[i] = (int*) calloc(c, sizeof(int)); //já inicia tudo zerado!
        if (matriz[i] == NULL) {
            exit(1);
        }
    }
    return(matriz);
}
Aloca um vetor dinâmicamente.
O número de items e o tamanho (sizeof) do item são parâmetros.
O vetor é retornado.
*/
void* criar_vetor(int items, int tamanho) {
    void* vetor = (void*) malloc(items * tamanho);
    if (vetor == NULL) {
        exit(1);
    }
    return(vetor);
}
Libera a memória de uma matriz alocada.
Antes de liberar os ponteiros para ponteiros,
```

Cria uma matriz de inteiros usando os tamanhos especificados.

```
libera-se os ponteiros que representam as linhas.
void apagar_matriz(int*** matriz, int n) {
    for (int i = 0; i < n; i++) {
        free((*matriz)[i]);
        (*matriz)[i] = NULL;
    }
    free(*matriz);
    *matriz = NULL;
}
/*
Exibe uma matriz, linha por linha
void matriz_print(int** matriz, int n, int c) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < c; j++) {
            printf("%d ", matriz[i][j]);
        printf("\n");
    }
}
int max(int v1, int v2) {
    if (v1 > v2) {
        return(v1);
    return(v2);
}
/*
Os números são naturais (isso é muito importante)
Uma matriz (tabela) com N linhas e C colunas guarda
os valores de cada sub problema (uma parte menor)
N -> número de items
C -> peso máximo
```

```
O vetor P armazena os pesos
O vetor V armazena os valores
Usando índices i e j, pode-se definir o item matriz[i][j]
como o sub problema evolvendo P, V i e j.
O item matriz[i][j] representa os priemiros "i" items
cujo peso somado não ultrapassa "j".
Para matriz[0][j] (nenhum item) => matriz[0][j] = 0
Existem dois casos para analisar matriz[i][j]:
    Se o peso P[i] > j:
        matriz[i][j] = matriz[i-1][j]
    Senão:
        O valor matriz[i][j] será o valor máximo
        envolvendo matriz[i-1][j] e V[i] + matriz[i-1][j-P[i]]
O primeiro caso ocorre quando o peso do novo item é maior que o limite.
Encontrar a carga máxima, ou seja, maximizar a os valores, é encontrar o item
da matriz que seja matriz[N][C]
Esse algoritmo é relativamente parecido com o algoritmo de otimização de troco!
A complexidade do algoritmo não depende só de N, mas também de C (capaciade).
Isso ocorre pois a tabela é a principal ação, e a tabela tem formato N * C.
O acesso i-1 é usada pois i = 1 e j = 1 no laço (mas não nos vetores P e V)
*/
void mochila(int p[], int v[], int n, int c, int** resultado, int* total) {
    int** matriz = criar_matriz(n+1, c+1);
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j \le c; j++) {
            if (p[i-1] > j) {
                matriz[i][j] = matriz[i-1][j]; //não cabe
                matriz[i][j] = max(matriz[i-1][j],
                v[i-1] + matriz[i-1][j-p[i-1]]);
```

Se N = 0 ou C = 0 \Rightarrow Nada será feito

```
}
        }
    }
    int j = c;
    for (int i = n; i > 0; i--) {
        if (matriz[i][j] == matriz[i-1][j]) {
            //caso oposto ao de cima (não cabe)
            (*resultado)[i-1] = 0;
        } else {
            (*resultado)[i-1] = 1;
            j = p[i-1];
            //foi usado -> coloque no resultado
        }
    }
    *total = matriz[n][c];
    apagar_matriz(&matriz, n+1);
}
int main(void) {
    int N, C;
    scanf("%d %d", &N, &C);
    int* P = (int*) malloc(N * sizeof(int)); //vetor pesos
    int* V = (int*) malloc(N * sizeof(int)); //vetor valores
    for (int i = 0; i < N; i++) {
        scanf("%d %d", &P[i], &V[i]); //inserir peso e valor de cada item
    }
    int vTotal = 0;
    int pTotal = 0;
    int *res = (int*) criar_vetor(N, sizeof(int));
    //inicar contagem
    clock_t inicio = clock();
    mochila(P, V, N, C, &res, &vTotal);
```

```
//fim da execução
    clock_t fim = clock();
    printf("Tempo decorrido: %lf segundos\n",
    (double)(fim - inicio) / CLOCKS_PER_SEC);
    printf("Mochila: (");
    for(int i = 0; i < N; i++){
        printf("%d", res[i]);
        if(i != N-1){
            printf(", ");
        }
        if (res[i] == 1) {
            pTotal += P[i];
        }
    }
    printf(")\n");
    printf("Valor total: %d\n", vTotal);
    printf("Peso total: %d\n", pTotal);
    free(P);
    free(V);
    free(res);
    return(0);
}
```

Referências

- [1] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. *Introduction to algorithms*. MIT press, 2022.
- [2] Feofillof, P. Algoritmos: Em Liguagem C. Elsevier Brasil, 2013.
- [3] Feofiloff, P. Análise de algoritmos. *Internet: http://www. ime. usp. br/pf/analise_de_algoritmos 2009* (1999).