2.4 선형 연립방정식과 역행렬

선형 예측모형은 입력 데이터 벡터와 가중치 벡터의 내적으로 계산된 예측값이 실제 출력 데이터와 유사한 값을 출력하도록 하는 모형이다. 그럼 올바른 가중치 벡터는 어떻게 구할 수 있을까? 여기에서는 연립방정식과 역행렬을 이용하여 선형 예측모형의 가중치 벡터를 구하는 방법을 알아본다.

선형 연립방정식

복수의 미지수를 포함하는 복수의 선형 방정식을 **선형 연립방정식(system of linear equations)** 또는 연립일 차방정식이라고 한다.

다음은 3개의 미지수와 3개의 선형 방정식을 가지는 선형 연립방정식의 한 예다.

 x_1,x_2,\cdots,x_M 이라는 M 개의 미지수를 가지는 N개의 선형 연립방정식은 일반적으로 다음과 같은 형태가 된다. 이 식에서 a와 b는 방정식의 계수다.

행렬과 벡터의 곱셈을 이용하면 위 선형 연립방정식은 다음처럼 간단하게 쓸 수 있다.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1M} \\ a_{21} & a_{22} & \cdots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NM} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_M \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix}$$

$$(2.4.3)$$

이 식에서

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1M} \ a_{21} & a_{22} & \cdots & a_{2M} \ dots & dots & \ddots & dots \ a_{N1} & a_{N2} & \cdots & a_{NM} \ \end{pmatrix}, \quad x = egin{bmatrix} x_1 \ x_2 \ dots \ x_M \ \end{bmatrix}, \quad b = egin{bmatrix} b_1 \ b_2 \ dots \ b_N \ \end{bmatrix}$$

라고 하면 다음처럼 쓸 수 있다.

$$Ax = b (2.4.5)$$

A, x, b는 각각 계수행렬(coefficient matrix), 미지수벡터(unknown vector), 상수벡터(constant vector)라고 부른다.

이 표현을 따르면 앞에서 예로 든 선형 연립방정식은 다음처럼 표현할 수 있다.

$$Ax = b (2.4.6)$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
 (2.4.7)

만약 A,x,b가 행렬이 아닌 스칼라 실수라면 이 방정식은 나눗셈을 사용하여 다음처럼 쉽게 풀 수도 있을 것이다.

$$x = \frac{b}{A} \tag{2.4.8}$$

그러나 행렬에서는 나눗셈이 정의되지 않으므로 이 방법은 사용할 수 없다. 행렬에서는 나눗셈 대신 역행렬이라는 것을 사용한다.

역행렬

정방 행렬 A에 대한 **역행렬(inverse matrix)** A^{-1} 은 원래의 행렬 A와 다음 관계를 만족하는 정방 행렬을 말 한다. I는 항등 행렬(identity matrix)이다.

$$A^{-1}A = AA^{-1} = I (2.4.9)$$

역행렬은 항상 존재하는 것이 아니라 **행렬 A에 따라서는 존재하지 않을 수도 있다**. 역행렬이 존재하는 행렬을 가역행렬(invertible matrix), 정칙행렬(regular matrix) 또는 비특이행렬(non-singular matrix)이라고 한다. 반대 로 역행렬이 존재하지 않는 행렬을 비가역행렬(non-invertible matrix) 또는 특이행렬(singular matrix), 퇴화행 렬(degenerate matrix)이라고 한다.

연습 문제 2.4.1

대각행렬의 역행렬은 각 대각성분의 역수로 이루어진 대각행렬과 같다.

$$\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{N} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_{N}} \end{bmatrix}$$
(2.4.10)

N=3일 때 위 식을 증명하라.

역행렬의 성질

역행렬은 다음 성질을 만족한다. 이 식에서 행렬 A, B, C는 모두 각각 역행렬 A^{-1}, B^{-1}, C^{-1} 이 존재한다고 가정한다.

• 전치 행렬의 역행렬은 역행렬의 전치 행렬과 같다. 따라서 대칭 행렬의 역행렬도 대칭 행렬이다.

$$(A^T)^{-1} = (A^{-1})^T (2.4.11)$$

• 두 개 이상의 정방 행렬의 곱은 같은 크기의 정방 행렬이 되는데 이러한 행렬의 곱의 역행렬은 다음 성질 이 성립한다.

$$(AB)^{-1} = B^{-1}A^{-1} (2.4.12)$$

$$(AB)^{-1} = B^{-1}A^{-1}$$
 (2.4.12)
 $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ (2.4.13)

역행렬의 계산

역행렬은 행렬식을 이용하여 다음처럼 계산할 수 있다. 증명은 생략한다.

$$A^{-1} = rac{1}{\det(A)}C^T = rac{1}{\det(A)} egin{bmatrix} C_{1,1} & \cdots & C_{N,1} \ dots & \ddots & dots \ C_{1,N} & \cdots & C_{N,N} \end{bmatrix}$$
 (2.4.14)

이 식에서 $C_{i,j}$ 는 A의 i,j번째 원소에 대해 정의한 코팩터(cofactor)다.

코팩터로 이루어진 행렬 C을 **여인수행렬(matrix of cofactors, 또는 cofactor matrix, comatrix)**이라고 한다. 또 여인수행렬의 전치행렬 C^T 를 **어드조인트행렬(adjoint matrix, adjugate matrix**, 수반행렬)이라고 하며 adj(A)로 표기하기도 한다.

위 식에서 $\det(A)=0$ 이면 역수가 존재하지 않으므로 **역행렬은 행렬식이 0이 아닌 경우에만 존재한다**는 것을 알 수 있다.

연습 문제 2.4.2

코팩터 식을 사용하여 다음 공식을 증명하라.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$
(2.4.15)

연습 문제 2.4.3

다음 역행렬을 계산하라.

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \tag{2.4.16}$$

(2)

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^{-1}$$
 (2.4.17)

(3)

$$\begin{bmatrix} \frac{3}{\sqrt{13}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{13}} & \frac{1}{\sqrt{2}} \end{bmatrix}^{-1}$$
 (2.4.18)

(4)

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \tag{2.4.19}$$

연습 문제 2.4.4

두 정방행렬 A,B에 대해서 AB=I이면 BA=I임을 증명하라. $AB=I \quad \rightarrow \quad BA=I \qquad \qquad (2.4.20)$

역행렬에 대한 정리

역행렬에 대한 몇 가지 정리를 알아두면 도움이 된다.

셔먼-모리슨(Sherman-Morrison) 공식

정방행렬 A와 벡터 u, v에 대해 다음 공식이 성립한다.

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$
 (2.4.21)

우드베리(Woodbury) 공식

정방행렬 A와 이에 대응하는 적절한 크기의 행렬 U,V,C에 대해 다음 공식이 성립한다.

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$
 (2.4.22)

분할행렬의 역행렬

4개 블록(block)으로 분할된 행렬(partitioned matrix)의 역행렬은 각 분할행렬을 이용하여 계산할 수 있다.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1}(I + A_{12}FA_{11}^{-1}) & -A_{11}^{-1}A_{12}F \\ -FA_{21}A_{11}^{-1} & F \end{bmatrix}$$
(2.4.23)

이 식에서 F는 다음과 같이 주어진다.

$$F = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} (2.4.24)$$

또는

$$F = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} (2.4.25)$$

넘파이를 사용한 역행렬 계산

넘파이의 linalg 서브패키지에는 역행렬을 구하는 inv() 라는 명령어가 존재한다. 앞에서 예로 든 선형 연립 방정식의 행렬 A의 역행렬은 다음처럼 구할 수 있다.

In [1]:

```
import numpy as np
A = np.array([[1, 1, 0], [0, 1, 1], [1, 1, 1]])
A
```

Out[1]:

```
array([[1, 1, 0],
[0, 1, 1],
[1, 1, 1]])
```

In [2]:

```
Ainv = np.linalg.inv(A)
Ainv
```

Out[2]:

역행렬과 선형 연립방정식의 해

선형 연립방정식에서 미지수의 수와 방정식의 수가 같다면 계수행렬 A는 정방행렬이 된다. 만약 행렬 A의 역 행렬 A^{-1} 이 존재한다면 역행렬의 정의로부터 선형 연립방정식의 해는 다음처럼 구할 수 있다. 행렬과 벡터의 순서에 주의하라.

$$Ax = b (2.4.26)$$

$$A^{-1}Ax = A^{-1}b (2.4.27)$$

$$Ix = A^{-1}b (2.4.28)$$

$$x = A^{-1}b {(2.4.29)}$$

넘파이를 이용하여 앞에서 예로 든 선형 연립방정식의 해x를 구하는 방법은 다음과 같다.

In [3]:

```
b = np.array([[2], [3]])
b
```

Out[3]:

```
array([[2],
[2],
[3]])
```

In [4]:

```
x = Ainv @ b
x
```

Out[4]:

```
array([[1.],
[1.],
[1.]])
```

이 벡터를 원래의 연립방정식에 대입하여 상수벡터 b와 값이 일치하는지 확인해보자.

In [5]:

```
A @ x - b
```

Out [5]:

```
array([[0.],
[0.],
[0.]])
```

Istsq() 명령은 행렬 A와 b를 모두 인수로 받고 뒤에서 설명할 최소자승문제(least square problem)의 답 x, 잔차제곱합(residual sum of squares) resid, 랭크(rank) rank, 특잇값(singular value) s 를 반환한다. 미지수와 방정식의 개수가 같고 행렬 A의 역행렬이 존재하면 최소자승문제의 답과 선형 연립방정식의 답이 같으므로 Istsq() 명령으로 선형 연립방정식을 풀 수도 있다. 최소자승문제, 랭크, 특잇값에 대해서는 뒤에서 자세히 설명할 것이다.

다음 코드에서 Istsq() 명령으로 구한 답이 inv() 명령으로 구한 답과 같음을 알 수 있다.

In [6]:

```
x, resid, rank, s = np.linalg.lstsq(A, b)
x
```

Out[6]:

```
array([[1.],
[1.],
[1.]])
```

Istsq() 명령을 사용하는 것이 inv() 명령을 사용하는 것보다 수치오차가 적고 코드도 간단하므로 선형 연립방정식의 해를 구할 때도 Istsq() 명령을 사용하는 것을 권장한다.

선형 연립방정식과 선형 예측모형

선형 예측모형의 가중치벡터를 구하는 문제는 선형 연립방정식을 푸는 것과 같다. 예를 들어 N개의 입력차원을 가지는 특징벡터 N개를 입력 데이터로 이용하고 이 입력에 대응하는 목푯값벡터를 출력하는 선형 예측모형을 생각하자.

즉,

$$Xw = y \tag{2.4.31}$$

이 예측 모형의 가중치벡터 w를 찾는 것은 계수행렬이 X, 미지수벡터가 w, 상수벡터가 y인 선형 연립방정식의 답을 찾는 것과 같다. 그리고 만약 계수행렬, 여기에서는 특징행렬 X의 역행렬 X^{-1} 이 존재하면 다음처럼 가중치벡터를 구할 수 있다.

$$w = X^{-1}y (2.4.32)$$

연습 문제 2.4.5

보스턴 집값 문제는 미국 보스턴내 각 지역(town)의 주택 가격을 그 지역의 범죄율이나 공기 오염도 등의 특징을 사용하여 예측하는 문제다. Scikit-Learn 패키지에서 임포트할 수 있다. 보스턴 집값 문제를 선형 예측모형 $Ax=\hat{b}$ 로 풀었을 때의 가중치 벡터 x를 구하라. 행렬과 벡터 데이터는 다음과 같이 얻을 수 있다. 여기에서는 문제를 간단하게 하기 위해 입력 데이터를 범죄율(CRIM), 공기 오염도(NOX), 방의 개수(RM), 오래된 정도 (AGE)의 4종류로 제한했고 데이터도 4개만 사용했다.

```
from sklearn.datasets import load_boston
boston = load_boston()
X = boston.data
y = boston.target
A = X[:4, [0, 4, 5, 6]] # 'CRIM', 'NOX', 'RM', 'AGE'
b = y[:4]
```

이렇게 구한 가중치의 크기나 부호가 우리의 직관이나 경험과 일치하는지 살펴보라.

미지수의 수와 방정식의 수

지금까지는 미지수의 수와 방정식의 수가 같은 선형 연립방정식에 대해서만 생각했다. 그런데 만약 미지수의 수와 방정식의 수가 다르다면 어떻게 해야 할까?

미지수의 수와 방정식의 수를 고려해 볼 때 연립방정식에는 다음과 같은 세 종류가 있을 수 있다.

- 1. 방정식의 수가 미지수의 수와 같다. (N = M)
- 2. 방정식의 수가 미지수의 수보다 적다. (N < M)
- 3. 방정식의 수가 미지수의 수보다 많다. (N > M)

1번의 경우, 즉 방정식의 수가 미지수의 수와 같은 경우는 앞에서 다루었다.

2번의 경우, 즉 방정식의 수가 미지수의 수보다 적을 때는 무수히 많은 해가 존재할 수 있다. 예를 들어 다음 선형 연립방정식을 생각해보자. 미지수는 3개지만 방정식은 2개뿐이다.

이때는 x_2 가 어떤 값이 되더라도 $x_1=x_3=2-x_2$ 만 만족하면 되므로 무한히 많은 해가 존재한다. 예들 들어 다음 x 벡터는 모두 위 선형 연립방정식의 해다.

$$x = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad x = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \quad \cdots$$
 (2.4.34)

3번의 경우, 즉 방정식의 수가 미지수의 수보다 많을 때는 2번과 반대로 모든 조건을 만족하는 해가 하나도 존재할 수 없을 수 있다. 예를 들어 다음 선형 연립방정식을 생각해보자. 미지수는 3개지만 방정식은 4개다.

$$x_1 + x_2 = 2$$
 $x_2 + x_3 = 2$
 $x_1 + x_2 + x_3 = 3$
 $x_1 + x_2 + 2x_3 = 5$
 $(2.4.35)$

위의 3개 방정식을 동시에 만족하는 해는 $x_1=x_2=x_3=1$ 인데 이 값은 4번째 방정식을 만족하지 못한다. $x_1+x_2+2x_3=4$ (2.4.36)

따라서 4개의 방정식을 모두 만족하는 해는 존재하지 않는다.

선형 예측모형을 구하는 문제는 계수행렬이 특징행렬 X, 미지수벡터가 가중치벡터 w인 선형 연립방정식 문제이다. 그런데 보통 데이터의 수는 입력차원보다 큰 경우가 많다. 예를 들어 면적, 층수, 한강이 보이는지의 여부로 집값을 결정하는 모형을 만들기 위해서 딱 3가구의 아파트 가격만 조사하는 경우는 없을 것이다. 보통은 10 가구 혹은 100 가구의 아파트 가격을 수집하여 이용하는 것이 일반적이다. 다시 말해 선형 예측모형을 구할때는 3번과 같은 경우가 많다는 것을 알 수 있다.

이때는 선형 연립방정식의 해가 존재하지 않으므로 선형 연립방정식을 푸는 방식으로는 선형 예측모형의 가중치벡터를 구할 수 없다.

최소자승문제

이렇게 선형 연립방정식의 해가 존재하지 않는다면 선형 예측모형은 어떻게 구할까? 모형을 구하는 것을 포기해야 하는가? 그럴 필요는 없다. 이 문제에 대한 힌트를 얻기 위해 다음과 같은 선형 연립방정식을 생각해보자.

$$x_1 + x_2 = 2$$
 $x_2 + x_3 = 2$
 $x_1 + x_2 + x_3 = 3$
 $x_1 + x_2 + 2x_3 = 4.1$
 $(2.4.37)$

위에서 보았듯이 이 선형 연립방정식의 해는 존재하지 않는다.

하지만 꼭 양변이 **정확하게 똑같지 않아도 된다면** 어떨까? $x_1=x_2=x_3=1$ 를 위 방정식에 대입하면 결과는 다음과 같다.

$$x_1 + x_2 = 2$$
 $x_2 + x_3 = 2$
 $x_1 + x_2 + x_3 = 3$
 $x_1 + x_2 + 2x_3 = 4 \approx 4.1$
 $(2.4.38)$

선형 예측모형에서 좌변을 예측값, 우변을 목푯값이라고 생각한다면 100% 정확히 예측하지는 못했지만 상당히 비슷하게 예측한 값이라고 할 수 있다.

따라서 미지수의 개수보다 방정식의 개수가 많아서 선형 연립방정식으로 풀수 없는 문제는 좌변과 우변의 차이를 최소화하는 문제로 바꾸어 풀 수 있다. 앞서 예측값과 목푯값의 차이를 잔차(residual)라고 한다고 했다.

$$e = Ax - b \tag{2.4.39}$$

잔차는 벡터이므로 최소자승문제에서는 벡터의 크기 중에서 **벡터의 놈(norm)을 최소화**하는 문제를 푼다. 앞절에서 놈을 최소화하는 것은 놈의 제곱을 최소화하는 것과 같다고 했다. 여기에서는 잔차제곱합이 놈의 제곱이 된다.

$$e^{T}e = ||e||^{2} = (Ax - b)^{T}(Ax - b)$$
 (2.4.40)

이 값을 최소화하는 x값은 수식으로 다음처럼 표현한다.

$$x = \arg\min_{x} e^{T} e = \arg\min_{x} (Ax - b)^{T} (Ax - b)$$
 (2.4.41)

위 식에서 $\arg\min_x f(x)$ 는 함수 f(x)를 가장 작게 만드는 x값을 의미한다. 이러한 문제를 최소자승문제 (least square problem)라고 한다.

 A^TA 가 항상 정방 행렬이 된다는 점을 이용하여 다음과 같이 최소 자승 문제의 답이 어떤 형태가 되는지 살펴보자. 여기에서는 답의 형태만 살펴보고 엄밀한 증명은 하지 않을 것이다.

$$Ax \approx b$$
 (2.4.42)

이 식의 양변에 A^T 를 곱하면 각각 A^TAx 와 A^Tb 가 된다. 이 두 개의 벡터의 값이 같다고 일단 가정하자.

$$A^T A x = A^T b (2.4.43)$$

만약 정방 행렬 A^TA 의 역행렬 $(A^TA)^{-1}$ 이 존재한다면

$$(A^T A)^{-1} (A^T A) x = (A^T A)^{-1} A^T b$$
 (2.4.44)

이 식을 정리하면 다음과 같다.

$$x = ((A^T A)^{-1} A^T) b (2.4.45)$$

위에서 보인 것은 수학적 증명이라고 할 수 없지만 엄밀한 수학적 증명을 통해 최소자승문제의 해를 구해도 위와 같은 결과를 얻을 수 있다. 자세한 내용은 행렬의 미분과 최적화를 공부한 뒤에 다루도록 한다.

여기에서 행렬 $(A^TA)^{-1}A^T$ 를 행렬 A의 **의사역행렬(pseudo inverse)**이라고 하며 다음처럼 A^+ 로 표기한다.

$$A^{+} = (A^{T}A)^{-1}A^{T} (2.4.46)$$

 $x = A^+b \tag{2.4.47}$

넘파이의 Istsq() 명령은 사실 이러한 최소자승문제를 푸는 명령이다.

위에서 예로 든 선형 연립방정식을 넘파이를 사용하여 풀어보자.

In [7]:

```
A = np.array([[1, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 2]])
A
```

Out[7]:

```
array([[1, 1, 0],
[0, 1, 1],
[1, 1, 1],
[1, 1, 2]])
```

In [8]:

```
b = np.array([[2], [2], [3], [4.1]])
b
```

Out[8]:

```
array([[2.],
[2.],
[3.],
[4.1]])
```

우선 의사역행렬을 직접 계산하여 해를 구해보자.

In [9]:

```
Apinv = np.linalg.inv(A.T @ A) @ A.T
Apinv
```

Out [9]:

In [10]:

```
x = Apinv @ b
```

Out[10]:

이 해를 이용하여 b값을 구하면 다음처럼 우변과 소수점 아래 한자리 오차내에 있는 것을 볼 수 있다.

```
In [11]:
A @ x
Out[11]:
array([[1.98333333],
      [2.
      [3.03333333],
      [4.08333333]])
Istsq() 명령으로 바로 구해도 같은 값이 나온다.
In [12]:
x, resid, rank, s = np.linalg.lstsq(A, b)
Χ
Out[12]:
array([[1.03333333],
      [0.95
                ],
      [1.05
                ]])
위 코드에서 resid 는 잔차벡터의 e=Ax-b의 제곱합, 즉 놈의 제곱이다.
In [13]:
resid, np.linalg.norm(A @ x - b) ** 2
Out[13]:
```

(array([0.00166667]), 0.00166666666666655)

연습 문제 2.4.6

보스턴 집값 문제를 선형 예측모형 $Xw=\hat{y}$ 로 풀었을 때의 가중치벡터 w를 최소 자승 방법으로 구하라. 행렬과 벡터 데이터는 다음과 같이 얻을 수 있다.

from sklearn.datasets import load_boston
boston = load_boston()
X = boston.data
y = boston.target

행렬 X의 각 열이 의미하는 바는 다음과 같다.

1. CRIM: 범죄율

2. INDUS: 비소매상업지역 면적 비율

3. NOX: 일산화질소 농도

4. RM: 주택당 방 수

5. LSTAT: 인구 중 하위 계층 비율

6. B: 인구 중 흑인 비율

7. PTRATIO: 학생/교사 비율

8. ZN: 25,000 평방피트를 초과 거주지역 비율

9. CHAS: 찰스강의 경계에 위치한 경우는 1, 아니면 0

10. AGE: 1940년 이전에 건축된 주택의 비율

11. RAD: 방사형 고속도로까지의 거리

12. DIS: 보스톤 직업 센터 5곳까지의 가중평균거리

13. TAX: 재산세율

이렇게 구한 가중치 벡터의 각 원소의 부호가 우리의 직관이나 경험과 일치하는지 살펴보라. 또 연습문제 2.4.5에서 구한 값과 어떻게 달라지는지 살펴보라.