Методические указания к практическим работам по машинному обучению

Ксемидов Б.С.

27 ноября 2019 г.

Оглавление

1 Введение		едение		2
2	Практическое работа №1			3
	2.1	Задан	ие	3
	2.2 Теоретический материал			. 3
		2.2.1	Алгоритм ближайшего соседа	3
		2.2.2	Алгоритм к ближайших соседей	3
		2.2.3	Методы оценки модели машинного обучения	4
		2.2.4	Алгоритм подбора оптимального параметра k	5
		2.2.5	Метрики	5
3	Kp	итерии	и оценки	6
Рекомендуемая литература				7

1. Введение

Данные методические указания предназначены для усвоения теоретического материала по машинному обучению на практике. Здесь рассматриваются базовые методы, необходимые для решения задач машинного обучения. Предполагается, что в результате ознакомления с содержимым данной методической разработки читатель научится анализировать поставленную задачу, выбирать наилучший метод решения для неё и реализовывать соответствующую модель машинного обучения.

2. Практическое работа №1

2.1 Задание

Реализовать алгоритм k ближайших соседей, подобрав оптимальный параметр k, использовав для этого кросс-валидацию leave-one-out.

2.2 Теоретический материал

2.2.1 Алгоритм ближайшего соседа

Алгоритм ближайшего соседа - метрический способ классификации объектов, являющийся методом "ленивого обучения" (lazy learning), так как для его использования необходимо постоянно хранить всю выборку данных в памяти для последующей классификации новых объектов.

Пусть задана некоторая выборка X^l , где l - размер выборки.

- 1. Для нового классифицируемого объекта считается его расстояние до всех уже известных объектов из выборки X^l , используя выбранную метрику (см. 2.2.5)
- 2. Объекты упорядочиваются по возрастанию расстояния
- 3. Выбирается первый объект
- 4. Классифицируемому объекту присваивается тот же класс

2.2.2 Алгоритм к ближайших соседей

Алгоритм k ближайших соседей является модификацией предыдущего алгоритма. Идея модификации проста - вместо использования для классификации одного самого близкого соседа берутся первые k соседей, так вероятность ошибки классификации может быть снижена.

Сам алгоритм описывается следующим образом:

- 1. Для нового классифицируемого объекта считается его расстояние до всех уже известных объектов из выборки X^l , используя выбранную метрику (см. 2.2.5)
- 2. Объекты упорядочиваются по возрастанию расстояния
- 3. Выбираются первые к объектов

4. Среди данных k объектов выбирается тот класс, который встречается чаше

2.2.3 Методы оценки модели машинного обучения

Существует два способа оценки качества классификации модели машинного обучения:

- На отложенных данных
- Кросс-валидация

Алгоритм оценки модели на отложенных данных:

- 1. Исходная выборка (X^l) делится на две части обучающую и контрольную
- 2. Производится обучение модели машинного обучения с помощью обучающей части исходной выборки
- 3. Производится оценка полученной модели с помощью контрольной части выборки (например, в виде количества/доли правильных ответов)

Алгоритм оценки модели с помощью кросс-валидации leave-one-out:

- 1. Выборка делится на заданное количество частей
- 2. Каждая часть по очереди участвует в оценке качества модели машинного обучения (см. рисунок 2.1)
- 3. Для общей оценки можно взять среднее арифметическое от долей правильных ответов за каждую часть

Рис. 2.1: Кросс-валидация

2.2.4 Алгоритм подбора оптимального параметра k

- 1. Задаются различные возможные значения k (например, 1, 2, 4, 8, 16, 32)
- 2. Для всех k
 - (а) Производится кросс-валидация (см. алгоритм в 2.2.3). Выборка разбивается на заданное количество частей.
 - (b) Объекты каждой из частей (контрольной выборки) классифицируются с помощью других частей (обучающей выборки) и для каждого случая считается доля правильных ответов.
 - (c) Считается среднее арифметическое всех долей (AV_k)
- 3. Среди AV_k для каждого k ищется максимальное (это и будет оптимальным значением)

2.2.5 Метрики

- $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$ евклидово расстояние
- ullet $d(x,y) = \sum_{i=1}^n |x_i y_i|$ расстояние городских кварталов
- $d(x,y) = (\sum_{i=1}^n |x_i y_i|^p)^{\frac{1}{p}}$ расстояние Минковского (p выбирается самостоятельно, p > 0)

3. Критерии оценки

Работа считается выполненной, если частота правильных ответов модели машинного обучения больше вероятности случайного угадывания. В частности, для набора данных ирисов Фишера необходимо получить не менее 90% правильных ответов.

Рекомендуемая литература

[1] Курс лекций К.В. Воронцова. — URL: https://bit.ly/1bCmE3Z (дата обращения: 26.11.2019). - Текст: электронный.