

Exercise 9B

Question 12:



We know that diagonals of a rectangle are equal and bisect each other.

So,in AAOB

$$AO = OB$$

i.e. 
$$\angle OBA = 35^{\circ}$$
 [:  $\angle OAB = 35^{\circ}$ , given]

$$\angle AOB = 180^{0} - 35^{0} - 35^{0} = 110^{0}$$

and, 
$$\angle DOC = y^0 = \angle AOB = 110^0$$

[Vertically opp. angles]

Consider the right triangle,  $\triangle ABC$ , right angled at B.

So, 
$$\angle ABC = 90^{\circ}$$

[: ABCD is a rectangle]

Now, consider the  $\Delta OBC$ 

So, 
$$\angle OBC = x^0 = \angle ABC - \angle OBA$$
  
=  $90^0 - 35^0$   
=  $55^0$ 

$$x = 55^{\circ}$$
 and  $y = 110^{\circ}$ .

(ii) We know that diagonals of a rectangle are equal and bisect each other.



So, in 
$$\triangle AOB$$
,  $OA = OB$ 

Again in  $\triangle AOB$ ,

$$\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$$

$$\Rightarrow$$
 110<sup>0</sup> +  $\angle$ OAB +  $\angle$ OBA = 180<sup>0</sup>

$$\Rightarrow$$
 2 $\angle$ OAB =  $180^{\circ} - 110^{\circ} = 70^{\circ}$ 

$$\Rightarrow \angle OAB + \angle OBA = \frac{70}{2} = 35^{\circ}$$

Since AB  $\parallel$  CD and AC is a transversal,  $\angle$ DCA and  $\angle$ CAB are alternate angles, and thus they are equal.

So, 
$$\angle DCA = y^0 = \angle CAB$$
 and  $\angle CAB = 35^0$  .....(1)  
 $\Rightarrow y^0 = 35^0$ 

Now consider the right triangle, △ABC

$$\angle ACB = x^0 = 90^0 - \angle CAB$$
  
=  $90^0 - 35^0$  [from (1)]  
=  $55^0$ 

$$x = 55^{\circ}$$
 and  $y = 35^{\circ}$ .

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*