1 Quantities

- $J \in \mathbb{Z}^+$ = number of scales decomposition
- $T = 2^J = \text{number of time periods}$
- $N \in \mathbb{Z}^+$ = number of cross-section elements
- $K(\leq N)$ = number of common factors

2 Multivariate Locally Stationary Wavelet process (Park et al. (2014))

The vector $(N \times 1)$ of stochastic processes $X_{t:T}$ follows the given decomposition:

$$X_{t;T} = \sum_{j=-J}^{-1} \sum_{k=0}^{T} W_j(k/T) \xi_{j,k} \psi_{j,k}(t)$$
(2.1)

where

• $W_j(z)$ is a lower-triangular $(N \times N)$ matrix. For each (m, n)-element,

$$W_j^{(m,n)}(z)$$
 is a Lipschitz continuous function on $z \in (0,1)$ (2.2)

$$\sum_{j=-\infty}^{-1} \left| W_j^{(m,n)}(z) \right|^2 < \infty, \qquad \forall z \in (0,1)$$
 (finite energy) (2.3)

$$\sum_{j=-\infty}^{-1} 2^{-j} L_j^{(m,n)} < \infty \qquad \text{(uniformly bounded Lipschitz constants } L_j)$$
 (2.4)

• $\xi_{j,k}$ is the vector $(N \times 1)$ of random orthonormal increments.

$$\mathbf{E}\left[\xi_{j,k}^{(u)}\right] = 0, \qquad \forall j, k, u \tag{2.5}$$

$$\operatorname{Cov}\left[\xi_{j,k}^{(u)}, \xi_{j',k'}^{(u')}\right] = \delta_{j,j'}\delta_{k,k'}\delta_{u,u'}, \qquad \forall j, j', k, k', u, u'$$
(2.6)

• $\psi_{j,k}(t) = \psi_{j,k-t}$ is a scalar representing a non-decimated wavelet.

We can define the Cross-Evoluationary Wavelet Spectrum $(N \times N)$ matrix : $S_j(z) = W_j(z)W_j(z)'$. This gives us the ability to express the local autocovariance : $c^{(u,u')}(z,\tau) = \sum_{j=-\infty}^{-1} S_j^{(u,u')}(z)\Psi_j(\tau)$ where $\Psi_j(\tau) = \sum_k \psi_{j,k}(0)\psi_{j,k}(\tau)$, the autocorrelation wavelet. The latter also define the inner product matrix of discrete autocorrelation wavelets : $A_{jl} = \sum_{\tau} \Psi_j(\tau)\Psi_l(\tau)$, $A = \{A_{jl}\}_{j,l\in\mathbb{N}}$ and its inverse : $\bar{A} = A^{-1}$.

Each (m, n)-element of the Cross-Evolutionary Wavelet Spectrum can be expressed as

$$S_j^{(m,n)}(k/T) = \sum_{u=1}^N W_j^{(m,u)}(k/T) W_j^{(u,n)}(k/T), \quad \forall j, k$$

From this definition it is not difficult to extend the CEWS to take into account the dependence structure between different scales and throught time :

$$S_{j,j'}^{m,n}(k/T,k'/T) = \sum_{u=1}^{N} W_j^{(m,u)}(k/T) W_{j'}^{(u,n)}(k'/T), \quad \forall j, j', k, k'$$
(2.7)

We make the following assumption regarding the latter object.

$$S_{j,j'}^{(m,n)}\left(k/T,k/T\right) = \begin{cases} S_j^{(m,n)}\left(k/T\right) & \text{if } j = j'\\ 0 & \text{otherwise} \end{cases}$$
 (2.8)

This assumption (possible improvement : condition similar to Chamberlain ?) imposes no dependence between different scales of decomposition. Notice that we don't restrict the serial dependence.

2.1 Estimation of MvLSW

•
$$\mathrm{E}\left[\boldsymbol{I}_{j,k}\right] = \sum_{l=-J}^{-1} A_{jl} \boldsymbol{S}_l\left(k/T\right) + O(T^{-1})$$
 (biaised estimator)

2.2 Estimation of MvLSW

$$\mathbf{d}_{j,k} = \sum_{t=0}^{T-1} \mathbf{X}_t \psi_{j,k}(t)$$
 (empirical wavelet coefficients) (2.9)

$$I_{j,k} = d_{j,k}d'_{j,k}$$
 (raw wavelet periodogram) (2.10)

$$\bar{I}_{j,k} = \sum_{l=-1}^{-1} \bar{A}_{j,l} I_{l,k}$$
 (corrected periodogram) (2.11)

$$\widetilde{I}_{j,k} = \frac{1}{2M+1} \sum_{M=1}^{M} I_{j,k+m}$$
 (smooth periodogram) (2.12)

$$\widehat{\mathbf{S}}_{j}(k/T) = \sum_{l=-J}^{-1} \bar{A}_{jl} \widetilde{\mathbf{I}}_{l,k}$$

$$= \frac{1}{2M+1} \sum_{m=-M}^{M} \bar{\mathbf{I}}_{j,k+m}$$

$$= \frac{1}{2M+1} \sum_{m=-M}^{M} \sum_{l=-J}^{-1} \bar{A}_{j,l} \mathbf{I}_{l,k+m} \qquad \text{(final estimator of CEWS)}$$

$$(2.13)$$

2.3 Notes

- The dependence structure is entirely in $W_j(z)$, not in $\xi_{j,k}$.
- The lower-triangular form of $W_j(z)$ allows us to use the Cholesky decomposition on $S_j(z)$.

3 Factor Model

• The factor structure is imposed on the following:

$$\mathbf{W}_{i}(k/T)\boldsymbol{\xi}_{i,k} = \boldsymbol{\Lambda}_{i,k}\mathbf{F}_{k} + \boldsymbol{\epsilon}_{i,k} \tag{3.1}$$

, not only on $\xi_{j,k}$ since they are assumed orthonormal.

- Assumptions :
 - 1. $F_k \sim (0, \Sigma_F)$, where Σ_F is a diagonal positive definite $(K \times K)$ matrix.
 - 2. $\mathbf{F}_k \perp \boldsymbol{\epsilon}_{i,k'}, \forall i,k,k'$
 - 3. $\epsilon_{j,k} \sim (0, \Sigma_{\epsilon})$, where Σ_{ϵ} has bounded eigenvalues. Note: make Σ_{ϵ} dependent on time? what about serial dependence?
 - 4. $\mathbf{\Lambda}'_{i,k}\mathbf{\Lambda}_{l,m} = \mathbf{0}, \forall j \neq l, \forall k \neq m.$
- We can then represent the CEWS with the factor structure :

$$\operatorname{Var}\left[\boldsymbol{W}_{j}\left(k/T\right)\boldsymbol{\xi}_{j,k}\right] = \operatorname{Var}\left[\boldsymbol{\Lambda}_{j,k}\boldsymbol{F}_{k}\right] + \operatorname{Var}\left[\boldsymbol{\epsilon}_{j,k}\right]$$

$$\boldsymbol{W}_{j}\left(k/T\right)\operatorname{Var}\left[\boldsymbol{\xi}_{j,k}\right]\boldsymbol{W}_{j}\left(k/T\right)' = \boldsymbol{\Lambda}_{j,k}\operatorname{Var}\left[\boldsymbol{F}_{k}\right]\boldsymbol{\Lambda}_{j,k}' + \operatorname{Var}\left[\boldsymbol{\epsilon}_{j,k}\right]$$

$$\boldsymbol{W}_{j}\left(k/T\right)\boldsymbol{W}_{j}\left(k/T\right)' = \boldsymbol{\Lambda}_{j,k}\boldsymbol{\Sigma}_{F}\boldsymbol{\Lambda}_{j,k}' + \boldsymbol{\Sigma}_{\epsilon} \qquad \text{from (2.6)}$$

$$\boldsymbol{S}_{j}\left(k/T\right) = \boldsymbol{\Lambda}_{j,k}\boldsymbol{\Sigma}_{F}\boldsymbol{\Lambda}_{j,k}' + \boldsymbol{\Sigma}_{\epsilon}$$