Theoretical Computer Science Lab Session 3

February 11, 2021

innoborie

Agenda

► Exercises on Finite State Automaton (FSA)

Exercises

Exercises (first part)

Build complete FSAs that recognize the following languages: Let Σ be the alphabet $\Sigma=\{0,1\}$

- ▶ $L_0 = \{x \in \Sigma^* \mid x \text{ starts with } 1\};$
- ▶ $L_1 = \{x \in \Sigma^* \mid x \text{ does not begin with } 1\};$
- ▶ $L_2 = \{x \in \Sigma^* \mid \text{ any 0 in } x \text{ is followed by at least a 1} \}$. Strings example: 010111, 1111, 01110111011.
- ▶ $L_3 = \{x \in \Sigma^* \mid x \text{ ends with } 00\};$
- ▶ $L_4 = \{x \in \Sigma^* \mid x \text{ contains exactly 3 zeros}\};$

Solution (0)

Let Σ be the alphabet $\Sigma = \{0,1\}$

▶ $L_0 = \{x \in \Sigma^* \mid x \text{ starts with } 1\};$

Solution (1)

Let Σ be the alphabet $\Sigma = \{0, 1\}$

▶ $L_1 = \{x \in \Sigma^* \mid x \text{ does not begin with } 1\};$

Solution (2)

Let Σ be the alphabet $\Sigma = \{0, 1\}$

▶ $L_2 = \{x \in \Sigma^* \mid \text{ any 0 in } x \text{ is followed by at least a 1} \}$. Strings example: 010111, 1111, 01110111011.

Solution (3)

Let Σ be the alphabet $\Sigma = \{0, 1\}$

▶ $L_3 = \{x \in \Sigma^* \mid x \text{ ends with } 00\};$

Solution (4)

Let Σ be the alphabet $\Sigma = \{0, 1\}$

▶ $L_4 = \{x \in \Sigma^* \mid x \text{ contains exactly 3 zeros}\};$

Exercises (second part)

Build complete FSAs that recognize the following languages: Let Σ be the alphabet $\Sigma = \{a, b\}$

- ▶ $L_5 = \{x \in \Sigma^* \mid \text{every } a \text{ in } x \text{ (if there are any) is followed immediately by } bb\}.$
- ▶ $L_6 = \{x \in \Sigma^* \mid x \text{ ends with } b \text{ and does not contain the substring } aa\}.$
- ▶ $L_7 = \{x \in \Sigma^* \mid x \text{ contains the substring } abbaab\};$
- ► $L_8 = \{x \in \Sigma^* \mid x \text{ has an even number of } a \text{'s and an even number of } b \text{'s} \};$

Solution (5)

Let Σ be the alphabet $\Sigma = \{a, b\}$

▶ $L_5 = \{x \in \Sigma^* \mid \text{every } a \text{ in } x \text{ (if there are any) is followed immediately by } bb\}.$

Solution (6)

Let Σ be the alphabet $\Sigma = \{a, b\}$

► $L_6 = \{x \in \Sigma^* \mid x \text{ ends with } b \text{ and does not contain the substring } aa\}.$

Solution (7)

Let Σ be the alphabet $\Sigma = \{a, b\}$

▶ $L_7 = \{x \in \Sigma^* \mid x \text{ contains the substring } abbaab\};$

Solution (8)

Let Σ be the alphabet $\Sigma = \{a, b\}$

► $L_8 = \{x \in \Sigma^* \mid x \text{ has an even number of } a\text{'s and an even number of } b\text{'s}\};$

Exercises - Part 3

Build complete FSAs accepting the following languages over the alphabet $\Sigma = \{0,1\}$

- ▶ $L_a = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1};$
- ▶ $L_b = \{x \in \Sigma^* \mid |x| \ge 2 \land \text{ final two symbols are the same}\};$

Build a complete FSA accepting the following language over the alphabet $\Sigma = \{a, b, c\}$

▶ $L_c = \{x \in \Sigma^* \mid$ the substring abc in x occurs an odd number of times $\}$.

Solution - Part 3 L_a - starts with 1 and divisible by 5

Solution - Part 3 $L_b - |x| \ge 2$, final two symbols are same

Solution - Part 3 L_c - abc occurs odd number of times

Exercises - Part 4

The figure is a marble toy. A marble is dropped at A or B. Levers x1, x2, and x3 cause the marble to fall either to the left of to the right. Whenever a marble encounters a lever, it causes the lever to reverse after the marble passes, so the next marble will take the opposite branch.

Exercises - Part 4

Model this toy by a complete FSA. Let the inputs A and B represent the input into which the marble is dropped. Let acceptance correspond to the marble exiting at D; nonacceptance represents a marble exiting at C.