ЛАБорАторнАя №2

АНТОНОВА АЛЁНА, КУДАЙБЕРДИЕВА ДИАНА, МАНДРОЩЕНКО ЕКАТЕРИНА, ПОВАРОВА СОФЬЯ, ПЕНСКАЯ ТАИСИЯ

1. МЕТОД ГРАДИЕНТОГО СПУСКА

2. МЕТОД СОПРЯЖЕННЫХ НАПРАВЛЕНИЙ

В методе сопряженных направлений используется итерационный процесс $x_k = x_{k-1} + h_k * p_k$, где величина шага h_k ищется с помощью одномерной минимизации, а направление спуска p_k находится по формуле $p_k = w_k + \gamma_k * p_{k-1}$. При чем коэффициенты γ_k подбираются таким способом, чтобы вектора $p_1..p_k$ являлись последовательностью ортогональных векторов. В данной лабароторной мы используем метод Флетчера - Ривса для подсчета коэфицентов гамма, то есть $\gamma_k = norm(w_k)^2/norm(w_{k-1}^2)$.

3. Метод Ньютона

Если функция f(x) дважды дифференцируема, то эффективность функции можно повысить за счет использования не только градиента, но и матрицы Гессе – матрица вторых производных функции. Тогда шаг в методе спуска будет следующим: $x_{k+1} = x_k - H(x_k)^{-1} * g(x_k)$. Однако важно, чтобы матрица являлась положительно определенной, потому что иначе вектор $p_k = -H(x_k)^{-1} * g(x_k)$ может не соответствовать направлению спуска, вдоль которого эта функция убывает. Эту проблему решаем добавлением единичной матрицы I_n к матрицы Гессе $H(x_k)$ до того момента, как их сумма не станет положительно определенной.

4. Сравнение методов

5. Полезные ссылки

- Ссылка на наше решение
- Условие лабораторной