Graphically Characterizing the Equilibrium of the Neoclassical Model

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Spring 2018

Readings

- ▶ GLS Ch. 15
- ▶ GLS Ch. 16
- ► For now, ignore parts related to money supply and nominal variables

Neoclassical Model

- ► The optimizing model of the economy with which we have been working is sometimes called the "neoclassical model" or "real business cycle" model
- ► The model features optimizing agents and frictionless markets
- It emphasizes supply shocks (changes in A_t or θ_t) as the principal drivers of fluctuations in endogenous variables
- ► As written, it abstracts from money and nominal variables. In this model, the "classical dichotomy" holds, so this is okay
- We take the model to be a relevant description of the real world in the "medium run" – frequencies of time between a couple of years and a decade

Equilibrium Conditions

▶ In equilibrium, the following conditions must hold:

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$N_{t} = N^{d}(w_{t}, A_{t}, K_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

- ► First four are optimal decision rules of household and firm; fifth is a technological constraint (production function), and sixth is resource constraint / market-clearing condition
- Exogenous variables: A_t , A_{t+1} , G_t , G_{t+1} , K_t , θ_t , f_t . Endogenous: C_t , N_t , I_t , Y_t , w_t , and r_t
- ▶ Treat Y_{t+1} as "pseudo-exogenous": not affected by I_t , which impacts K_{t+1} . Medium run assumption: treat capital stock as roughly constant

Graphical Analysis

- Want to graphically summarize these equations
- ▶ IS curve: set of (r_t, Y_t) pairs where household and firm behave optimally with respect to consumption and investment demand and income equals expenditure
 - Summarizes consumption function, investment demand function, and resource constraint
- $ightharpoonup Y^s$ curve: set of (r_t, Y_t) pairs where household and firm behave optimally, labor market clears, and production function holds
 - Summarizes labor supply, demand, and production function
- ► General equilibrium: on both *IS* and *Y*^s curves simultaneously

IS Curve

- Same as before, just another expenditure category
- Start by writing total desired expenditure as:

$$Y_t^d = C^d(Y_t - G_t, Y_{t+1} - G_{t+1}, r_t) + I^d(r_t, A_{t+1}, f_t, K_t) + G_t$$

- ▶ Impose that $Y_t^d = Y_t$
- Graph the set of (r_t, Y_t) pairs where this holds

Expenditure vs. Income

Income Equals Expenditure

The IS Curve

IS Curve Shifts

- ► The *IS* curve will shift if any exogenous variable relevant for desired consumption or investment change, as well as changes in government spending
- Shifts:
 - $ightharpoonup \uparrow A_{t+1}$: *IS* shifts right
 - ▶ $\uparrow f_t$: *IS* shifts left
 - $ightharpoonup \uparrow G_t$: *IS* shifts right (via earlier arguments)
 - ▶ $\uparrow G_{t+1}$: *IS* shifts left
 - ▶ $\downarrow K_t$: *IS* shifts right

The Y's Curve

- \blacktriangleright Begin by plotting labor demand and labor supply. Find the N_t where these intersect
- ▶ Given this N_t , determine Y_t from the production function
- r_t irrelevant for labor demand, supply, and the production function under our assumptions: Y^s curve is still vertical as in endowment economy
- Could generate an upward-sloping Y^s curve, and some role for IS shocks, if we considered effect of r_t on labor supply

Labor Market

Production Function

The Y^s Curve

Shifts of the Y^s Curve

- ► The Y^s curve will shift if any exogenous variable relevant for the positions of the labor demand, labor supply, or production functions changes
- Shifts:
 - ▶ $\uparrow A_t$: Y^s shifts right
 - ▶ $\uparrow \theta_t$: Y^s shifts left
 - $ightharpoonup \downarrow K_t$: Y^s shifts left

Bringing it All Together

- In equilibrium, economy must be on both the IS and Y^s curves
- ▶ Intersection jointly determines Y_t , r_t , N_t , and w_t
- ▶ Figure out split between C_t and I_t , given Y_t and r_t , by looking at consumption and investment demand functions

Working Through Effects of Changes in Exogenous Variables

- \triangleright A_t , θ_t , and K_t affect the position of the Y^s curve
- $ightharpoonup A_{t+1}$, f_t , G_t , G_{t+1} , and K_t affect the IS curve
- Figure out how Y^s and IS curve shift, determine new r_t . Use this to figure out how other endogenous variables react
- ▶ A complication arises: changes in I_t affect K_{t+1} , which affects Y_{t+1} , and hence C_t
- We ignore these effects size of capital stock is large relative to investment, and in medium run can treat capital stock as approximately fixed (unlike long run where we study capital accumulation)
- $ightharpoonup Y_{t+1}$ will therefore only be affected by changes in exogenous variables dated t+1: A_{t+1} and G_{t+1} . "Pseudo-exogenous" in sense we will treat it as unaffected by time t exogenous shocks

Supply Shock: $\uparrow A_t$, Pre-Shock Equilibrium $Y_t^d = Y_t$ $$\begin{split} Y_t^d &= C^d \big(Y_t - G_t, Y_{t+1} - G_{t+1}, r_{0,t} \big) \\ &+ I^d \big(r_{0,t}, A_{t+1}, f_t, K_t \big) + G_t \end{split}$$ $N^s(w_t, \theta_t)$ $w_{0,t}$ $N^d(w_t,A_{0,t},K_t)$ $Y_t = Y_t$

 $N_{0,t}$

 $Y_{0,t}$

Supply Shock: $\uparrow A_t$ Y^s Shift

Supply Shock: $\uparrow A_t$ r_t adjustment

Supply Shock: $\uparrow A_t$ New Equilibrium

Demand Shock: $\uparrow f_t$

Demand Shock: $\uparrow f_t$ *IS* Shift

Demand Shock: $\uparrow f_t$

r_t Adjustment

Demand Shock: $\uparrow f_t$

Supply versus Demand

- ▶ With a vertical *Y*^s curve, output is completely supply-determined
- "Demand shocks" (shocks which shift the IS curve) affect composition of output and r_t, but not the level of output
- Neoclassical model thus emphasizes supply shocks (productivity and labor preference) as chief source of fluctuations
- ► Can get demand shocks to impact output if Y^s is upward-sloping (because interest rate affects labor supply), but doesn't change fact that model still needs to be predominantly driven by supply-shocks to make predictions which are more or less consistent with data

Qualitative Effects of Changes in Exogenous Variables

	Exogenous Shock					
Variable	$\uparrow A_t$	$\uparrow heta_t$	$\uparrow f_t$	$\uparrow A_{t+1}$	$\uparrow G_t$	$\uparrow G_{t+1}$
Y_t	+	-	0	0	0	0
C_t	+	-	+	?	-	-
I_t	+	-	-	?	-	+
N_t	+	-	0	0	0	0
w_t	+	+	0	0	0	0
r _t	-	+	_	+	+	-

▶ Do not consider changes in K_t – shifts both Y^s and IS curves, and can only consider reductions in K_t (e.g. natural disasters, wars)