

Fonte da imagem: https://cutt.ly/Szukaj_w_Google

Elementos do Sistema Computacional!

Reforçando alguns conceitos para uma melhor compreensão dos componentes importantes do computador.

Elementos do Sistema Computacional! - **DEFINIÇÃO**

A Organização de Computadores procura analisar as unidades operacionais e suas interconexões conforme são especificados pela arquitetura proposta, estabelecendo as instruções necessárias à implementação em uma unidade de multiplicação ou mecanismo de repetição.

Prof. Celso Candido

Elementos do Sistema Computacional!

ESTRUTURA E FUNÇÃO

Os sistemas computacionais são **sistemas complexos**, com milhões de componentes eletrônicos elementares em sua elaboração e programação.

Então, como descrevê-los com clareza?

Esses sistemas são tratados através de uma hierarquia de sistemas ou como um conjunto de subsistemas inter-relacionados, cada um com suas regras e hierarquias, até o nível mais elementar de um subsistema.

Como assim!!!!

Ao ser projetado, o programador ou projetista estará lidando com um **nível** do sistema de cada vez, parte a parte, entre os diversos conjuntos de componentes e seus níveis e subníveis da hierarquia de comunicações, até alcançar os níveis mais baixos.

Elementos do Sistema Computacional! – ESTRUTURA E FUNÇÃO

No geral a "Estrutura" seria o modo como os componentes estão interrelacionados com os seus quatro componentes principais:

- **1. Unidade Central de Processamento (CPU):** Controlar as operações computacionais e realizar os processamento de dados.
- 2. Memória Principal (MP): Armazenar dos dados e facilitar a troca de informações entre o sistema operacional e o processador.
- **3. E/S (Entrada e Saída)**: Prover a interação *humano-máquina* com o ambiente externo e interno do sistema.
- **4. Placa Mãe ou Sistema de Interconexão:** Fazer a comunicação entre a CPU, a MP, os sistemas de E/S e demais interligações.

Elementos do Sistema Computacional! – ESTRUTURA E FUNÇÃO

Para auxiliar em todos os processos estruturas temos a **Função** de cada componente como uma operação individual, estando dividido em **quatro funções básicas**:

- **1. Processamento de Dados:** Formas de como assumir as informações dos dados e seus intervalos de requisitos, também conhecido de *tempo de processamento total*.
- 2. Armazenamento de Dados: Seria o armazenamento temporário dos dados que estão sendo processados em um dado momento, de curto prazo ou longo prazo, e possibilitar a recuperação e a atualização desses dados.
- 3. E/S de Dados são os processos realizados entre a máquina e o mundo exterior.
- 4. Controle dos Dados: Controlar os dados relacionados as três funções anteriores através da Unidade de Controle, gerenciando e coordenando os recursos do computador.

Vamos a um exemplo!

Elementos do Sistema Computacional! – ESTRUTURA E FUNÇÃO

- → Quando os dados são recebidos ou entregues a um dispositivo conectado diretamente ao computador, temos um processo de E/S e o dispositivo é considerado um periférico.
- → Quando os dados estão sendo movimentados por **grandes distâncias**, como para um dispositivo remoto, **então** temos um processo conhecido como **comunicação de dados**, seja através de uma rede interna ou nuvem.

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL

Temos a memória principal como a responsável por armazenar os programas e os dados, e que sua unidade básica de memória o dígito binário ou *bit*.

Em resumo:

- A memória assim como os registradores são formados por um conjunto de localizações de armazenamento, cada uma dessas localizações possui um identificador único que é chamado de endereço.
- Os **Dados** são transferidos para dentro e fora dessas memórias em grupos de *bits* chamados de **palavras**, onde:
 - → Uma palavra seria um grupo de 8, 16, 32, 64 bits.
 - → Podemos ter um **tamanho de palavra** de 8 *bits* (1 *Byte*) ou mais, com até 64 *bits* (8 *Bytes*).

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL – ENDEREÇO

Então, no acesso a memória cada palavra (8, 16, 32 ou 64 bits) é identificada por um endereço, representados por números inteiros positivos, nunca negativo, por número de localizações exclusivas e identificáveis na memória ao qual damos o nome de espaço de endereçamento.

Por padrão o espaço de endereçamento de uma memória com 64 Kb (*quilobytes*) e com um tamanho de palavra igual a 1 *Byte* ou 8 *bits* podendo variar entre 0 a 65.535, então se um computador possuir 64 Kb de memória e palavra igual a 1 *Byte*, possuirá um padrão binário de 16 *bits* ou 2 *Bytes* para definir seu endereço.

Assim, com base na informação acima:

- → O grupo de palavras será igual 16 bits ou 2 Bytes;
- → Cada tamanho da palavra equivale a 1 Byte ou 8 bits, com um total de duas palavras;

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL – ENDEREÇO

Vamos ver uma frase em Binário: "O computador é uma máquina capaz de sistematicamente coletar, manipular e fornecer os resultados da manipulação de informações para um ou mais objetivos".

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL – TIPOS

Já vimos que temos apenas dois modelos de memórias e cada uma com tipos de leitura e armazenamento distintos:

1. RAM (Random Access Memory ou memória de acesso aleatório).

2. ROM (Read-Only Memory ou memória somente de leitura).

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL – TIPOS

Tipos de RAM:

1. SRAM (Static Random Access Memory):

- → Muito rápida, volátil e com o conteúdo zerado ao ser desligado o computador;
- → O tempo de acesso é de um nanossegundo ou menos;
- → Utilizada como memória cache para armazenar dados e instruções processados pela em seus CPU, auxiliando em seus níveis de processamento, contribuindo para diminuir a ociosidade do tempo de trabalho.

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL – TIPOS

2. DRAM (Dynamic Random Access Memory):

- → Possui velocidade de leitura baixa;
- → Seus capacitores permitem ser carregados ou descarregados ao armazenamento de zeros e uns;
- → Responsável por efetuar a renovação de dados no processador usando um sinal de controle, e solicitar prioridade ao processador, conhecido como pedido de interrupção;
- → Sua interface é mais complexas que as SRAM.

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL – TIPOS

3. Memória ROM:

- Sabemos que a ROM não pode ser alterada nem apagada, contém a BIOS com os dados do fabricante para iniciar o sistema computacional, HD, vídeo, rede, etc.
- A falta de energia não apaga os seus dados.
- Tipos:
 - → PROM (*Programmable Read-Only Memory*) ou ROM programável.
 - → EPROM (Erasable Programmable Read-Only Memory) ou ROM programável e apagável: Pode ser programada e apagada, mas a remoção é física, necessitando a reinstalação da EPROM.
 - → EEPROM (*Electrically Erasable Programmable Read-Only Memory*) ou ROM eletricamente programável e apagável: Pode ser programada e apagada sem precisar ser removida.

Elementos do Sistema Computacional! – MEMÓRIA PRINCIPAL – TIPOS

Memória CACHE - Detalhes:

Considerada uma memória pequena, **muito rápida** e com **alto custo**, localizada dentro da CPU e da memória principal, mas qual seria a sua principal função?

Seria de verificar **as palavras** de memória mais utilizadas e mantê-las no dispositivo, mas porquê?

Á resposta é simples, seria o **primeiro local** procurado pela CPU e dar condições de acelerar as informações a serem processadas.

Elementos do Sistema Computacional!

CICLO DE MÁQUINA

O ciclo de máquina é usado para a CPU executar as instruções do programa através de seus registradores, dividido em três fases:

- **1.** A Busca: o sistema copia a próximo endereço de instrução no registrador de instruções, o qual permanece no registrador contador dos programa até ser solicitado.
- 2. A Decodificação: a unidade de controle decodifica a instrução que está no registrador de instrução, e que resulta ao código binário para a operação que o sistema irá realizar.
- 3. A Execução: a ordem da tarefa armazenada registrador contador é enviada pela unidade de controle que poderá, por exemplo dizer à ULA (Unidade Lógica e Aritmética) para somar o conteúdo de dois registradores de entrada e colocar o resultado em um registrador de saída.

Detalhes da ULA!

Elementos do Sistema Computacional!

CICLO DE MÁQUINA - Detalhes da ULA

- A Unidade Lógica e Aritmética (ULA) é um circuito digital que realiza todas as tarefas relacionadas às operações lógicas da Álgebra de Boole (OR, AND, NOT, XOR, etc.) e aritméticas (adições, subtrações, etc...) a serem realizadas.
- A ULA deverá ser capaz de determinar se uma quantidade de dados é menor, maior ou iguais para prosseguir e executar as funções lógicas necessárias com letras e números ou ambos.

Esquema de uma ULA, onde:

- ▶ "A" e "B" são os operandos (OR, AND, NOT, XOR, etc.);
- "F" é à entrada da unidade de controle;
- "D" é a saída de status;
- "R" é a saída ou resultante.

Elementos do Sistema Computacional!

CICLO DE MÁQUINA – Etapas de um Ciclo

Elementos do Sistema Computacional!

Operação de entrada e saída

A transferência de dados dos **dispositivos de E/S a CPU e a memória** acontecem por comandos **sincronizados** pela CPU e pela **baixa** velocidade que operam em três formatos:

- 1. Programada: É método mais simples de E/S, utilizada por microprocessadores de baixa tecnologia e uma única instrução de entrada e saída.
- **2. Por interrupção**: A CPU **informa** o dispositivo de E/S que uma transferência **ocorrerá** sem se preocupar com testes contínuos do **status**, uma vez que o processo é finalizado, a CPU é informada que o processo finalizou e iniciar outra interrupção.
- **3. Por DMA (***Direct Memory Access***)**: Para grandes quantidades de dados de transferência entre um dispositivo de **E/S de alta velocidade e a memória**.
 - Na transferência de processos por DMA a CPU é ignorada através de um controlador de **DMA**, o qual libera a CPU de algumas funções, mantendo nos **registradores um bloco de dados** sobre antes e depois da transferência para a Memória Principal (MP).

Elementos do Sistema Computacional!

Multiprocessadores

- » São sistemas com duas ou mais CPUs que compartilham um único espaço de endereçamento de memória e capaz de executar processos de forma autônoma;
- » Não possuem uma unidade central de controle, cada processador contém uma unidade de controle própria;
- » Cada CPU pode ler ou escrever em qualquer parte da memória se coordenando com as demais CPUs através de softwares específicos para controle;
- » O sistema de hardware é gerenciado por um único sistema operacional.
- » A vantagem de seu uso sobre os computadores mais populares é poder trabalhar de forma mais simples com os modelos de programação e por usarem uma única memória que está sendo compartilhada pelo sistema.

Elementos do Sistema Computacional! - Multiprocessadores

Os sistemas de multiprocessamento podem ser fortemente ou moderadamente acoplados:

- » Fortemente Acoplados Conectados em nível de barramento, dividem a mesma memória principal, mas dependendo do uso em alguns casos poderão possuir uma memória local para um processamento mais rápido.
- » Moderadamente Acoplados Sistemas independentes e interligados através de comunicações de alto desempenho e dividir o processamento dos dados entre si, mas possuem algumas desvantagens:
 - é menos eficiente do que sistemas fortemente acoplados;
 - d Alto gasto de energia por trabalhar com uma quantidade de máquinas maior;
 - Costumam trabalhar a execução dos processos com sistemas operacionais diferentes em cada máquina, isso poderá elevar o tempo de execução.

Elementos do Sistema Computacional! - Multiprocessadores

Formas de possíveis implementações de multiprocessadores, seguem dois exemplos:

- **1. Barramento único (a)** Sistema simples, possui várias CPUs com apenas uma memória compartilhada.
- 2. Memórias locais (b) Cada processador possui uma memória local exclusiva, podendo ser utilizada para o código de programa e para os itens de dados que não precisam ser compartilhados, e por não utilizar o barramento principal consegue reduzir o tráfego no barramento.

Elementos do Sistema Computacional! – MULTICOMPUTADORES

Multicomputadores – Topologias de Redes

- » Devido ser dificultoso conectar todos os processadores à memória, uma das soluções encontrada foi a de construir sistemas que permitiriam grandes números de computadores interconectados, modelo usado pela NASA, Google e outras, cada um com a própria memória privada, chamados de sistema de "multicomputadores".
- » O sistema permite uma comunicação mais rápida entre as CPUs.
- » Possuem a desvantagem de serem sistemas grandes não sendo prático, mas para tornar a tecnologia viável costuma-se utilizar topologias de redes como malhas: em 2D, em Árvores e em Anéis, sendo a mais comum em "Anéis".

TOPOLOGIAS

Sistemas de "redes", estudado em redes de computadores, que interligam diversos sistemas computacionais em uma organização para oferecer uma comunicação.

Bibliografia Básica

TANENBAUM, A. S. Organização estruturada de computadores. 6. ed. São Paulo: Pearson Prentice Hall, 2013 (e-book).

MONTEIRO, M. A. Introdução à organização de computadores. 4. ed. Rio de Janeiro: LTC, 2002.

STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 5. ed. São Paulo: Prentice-Hall, 2002.

Bibliografia Complementar

CORRÊA, A. G. D. [org.]. Organização e arquitetura de computadores. São Paulo: Pearson Education do Brasil, 2016 (e-book).

DELGADO, J.; RIBEIRO, C. Arquitetura de computadores. 5. ed. Rio de Janeiro: LTC, 2017 (e-book).

PAIXÃO, R. R. Arquitetura de computadores - PCs. São Paulo: Érica, 2014 (e-book).

WEBER, R. F. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012 (e-book).

WIDMER, N. S.; MOSS, G. L.; TOCCI, R. J. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo: Pearson Education do Brasil, 2018 (e-book).

Conteúdo elaborado por:

Prof. Ms. Celso Candido celsoc@unicid.edu.br

OneDrive: https://cutt.ly/Alunos_Unicid_Aulas

Fim da Apresentação