QUESTION 1

(a)
$$x = \frac{3x4 + 1x(-5)}{3+1}$$

= $\frac{7}{4}$
 $y = \frac{3x(-3) + 1x6}{4}$
= $-\frac{3}{4}$
the point is $(\frac{7}{4}, -\frac{3}{4})$

(b)
$$m_1 = -\frac{1}{2}$$
, $m_2 = \frac{1}{3}$
let θ be the ecutioning to
$$ta \theta = \left| \frac{-\frac{1}{2} - \frac{1}{2}}{1 + \left(-\frac{1}{2}\right)\left(+\frac{1}{2}\right)} \right|$$

$$\theta = 45^{\circ}$$

(C) (1) the angle at the centre is equal to twice the angle of at the circumference when they are subtended by the rame are.

(11) LOBC = 60° (alternate angles, AO 1/BC)

X = 90° (angle sum of ABCD)

(d)
$$P(x) = x^3 - x^2 - 10x - 8$$

(i) $P(-1) = -1 - 1 + 10 - 8 = 0$
So $x = -1$ is a zero of $P(x)$
(ii) $(x+1)$ is a feator of $P(x)$
 $x^2 - 2x^2 - 2$
 $x^3 - x^2$
 $-2x^2 - 10x - 8$

$$\frac{x^{3}-x^{2}}{-2x^{2}-10x}$$

$$\frac{-2x^{2}-2x}{-2x-3}$$

$$\frac{-2x^{2}-2x-3}{-2x-3}$$

$$= (x+1)(x^{2}-2x-3)$$

$$= (x+1)(x-4)(x+2)$$

QUESTION 3

$$\frac{\lim_{x\to 0} \frac{\sin 4x}{\tan 2x} = \lim_{x\to 0} \frac{\sin 4x}{4x} \times \lim_{x\to 0} \frac{2x \times 2}{\tan 2x}}{\cos 2}$$

Hence the term is 9C6=84

(c)
$$\frac{dV}{dt} = 72$$

$$V = \frac{4}{3}\pi x^{3}, \quad S = 4\pi x^{2}$$

$$\frac{dV}{dt} = 4\pi x^{2}, \quad \frac{dS}{dt} = 8\pi$$

$$\frac{dS}{dt} = \frac{dS}{dt} \times \frac{dV}{dt} \times \frac{dA}{dV}$$

$$= \frac{8\pi x \times 72}{4\pi x^{2}}$$

$$= \frac{2x^{72}}{4}$$

$$2 \ln x = 12 \quad \frac{dS}{dt} = 12 \text{ m}^{2}/5$$

(d)(1) Consider
$$f(x) = \sin x - x + \frac{1}{2}$$

 $f(.5) > 0$
 $f(1.8) < 0$

so there is a soot between x=0.5 and x=1.8

(1)
$$f'(x) = \cos x - 1$$

$$5x = 5x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$= 1.56 \quad (2 decimal places)$$

QUESTION 4

(a)
$$3 \sin \pi + \sqrt{3} \cos \pi = R \sin (\pi + \alpha)$$

$$= R \sin \pi \cos \alpha + R \cos \pi \sin \alpha$$

$$R \sin \alpha = \sqrt{3}$$

$$R \cos \alpha = 3$$

$$\tan \alpha = \sqrt{3}$$

$$\alpha = \frac{\pi}{6}$$

$$R : \sqrt{3^{*}+3^{*}}$$

$$= 2\sqrt{3}$$

3 pm x + 13 com x = 0 (3 pm (x+ #)

(c)(1) In ALMP: tan 200 = Lm

PM = 50 cot 20° metres

(i)
$$PQ^{\perp} = Pm^{\perp} + Qm^{\perp} - \partial_{\perp} PM_{\parallel} Qm_{\parallel} cospma$$
 (comin table)
= $50^{+} cot^{+} 20^{\circ} + 50^{\circ} cot^{+} 12^{\circ} - \partial_{\perp} 50^{\circ} cot^{+} 20^{\circ} cot^{+} 12^{\circ} cos^{+} 65^{\circ}$ \(\sigma \)

50, $PQ = 50 \int cot^{+} 20^{\circ} + cot^{+} 12^{\circ} - \partial_{\perp} cot^{+} 20^{\circ} cot^{+} 12^{\circ} cos^{+} 65^{\circ}$ \(\sigma \)

(n) Speed =
$$\frac{PQ}{10\times60}$$

= 0.36 m/s (2 ng. fig.)

QUESTION S

2) (i)
$$\frac{d}{dx} \left(x \cos^{3} x - \sqrt{1-x^{2}} \right)$$

$$= \cos^{3} x - \frac{x}{\sqrt{1-x^{2}}} - \frac{\sqrt{2} 2x}{\sqrt{1-x^{2}}}$$

$$= \cos^{3} x$$
(ii) $\int \cos^{3} x \, dx = \left[x \cos^{3} x - \sqrt{1-x^{2}} \right]_{0}^{1}$

(b)
$$u = 1-x \Rightarrow x = 1-u$$
 $du = -dx$
 $u = 0 \quad u = 1$

$$I = \int_{0}^{1} \frac{1-u}{\sqrt{u}} - du$$

$$= \left[2u^{2}x - \frac{1}{2}u^{2}x\right]_{0}^{1}$$

$$= \left(4 - \frac{1}{2}u^{2}x + x + 2\right) - \left(2 - \frac{1}{2}u^{2}\right)$$

(c) for $(1+x)^{2}$

the coefficient of x^n is $\binom{2n}{n}$ $= \left[\binom{n}{0} + \binom{n}{1}x + \binom{n}{1}x^{2} + \cdots + \binom{n}{n}x^{n}\right] \binom{n}{0} + \binom{n}{1}x + \binom{n}{1}x^{2} + \cdots + \binom{n}{n}x^{n}$ the coefficient of x^n is: $\binom{n}{0}\binom{n}{n} + \binom{n}{1}\binom{n}{n-1} + \binom{n}{1}\binom{n}{n-1} + \cdots + \binom{n}{n}\binom{n}{0}$ Since $\binom{n}{1} = \binom{n-1}{n-1}$ then the coefficient of x^n is $\binom{n}{0} + \binom{n}{1}x + \binom{n}{1}x + \cdots + \binom{n}{n}x$ Equating the coefficients of x^n gives $\binom{n}{0}x + \binom{n}{1}x + \binom{n}{1}x + \cdots + \binom{n}{n}x = \binom{2n}{n}$

QUESTION 6

(a) (1) $(3+2x)^{20} = \sum_{r=0}^{20} (x^{20} - x^{20} - x^{20})^{r}$ 40, $a_r = x^{20} - x^{20} - x^{20}$ 40, $a_r = x^{20} - x^{20} - x^{20}$ $40 - x^{20}$

So the greatest conefficient is ag = 20 (3 3 28 V

(ii) If $S \in PQ = \frac{1}{2}$ Equation of $PQ : y - ap^{-2} = \frac{1}{2}(x - 3ap)$ (ii) If $S \in PQ + pa = \frac{1}{2}(x - app)$ So, $y = \frac{p+p}{2}x - app$ So, pq = -1(iii) His $(a(p+q)), ap^{+} = a^{-}$ The become of T is $(a(p+q)), ap^{+} = a^{-}$ The become of T is $(a(p+q)), ap^{+} = a^{-}$ Fig. $(a(p+q)), ap^{+} = a^{-}$ $(a(p+q)), ap^{+} = a^{-}$ Four (i) $pq = -1, y = a^{-}$ $pq = a^{-}$

(a)(i) 180 km/h = 50 m/s

Merid -

QUESTION 1

x = 50t wolletc,

x = 50 cm2

when the , x = 0 ye, x = 50t con 12° y = -10 t + Cr sole t=0 y = -50 sin 12° \$0, y = -5t - -50 t sin 12° + Cs Sol, y = -5t - 50 t sin 12° + 2.5 (1) when x = 6 t = 50 cost2° So the ball clean the net by 15cm. 50 it lands 7.35 metres from the bone his

(ii) the sums/min = 8π and/min so, $\frac{d\theta}{dk} = 8\pi$ (iii) then $\theta = \frac{\pi}{3}$ $x = 3 then \theta$ $\frac{dx}{dk} = 3 anx \theta$ $\frac{dx}{dk} = \frac{3}{3} anx \theta$ (iii) $a \ln x = 2$, $co = \theta = \frac{3}{3}$ $\frac{dx}{dk} = \frac{3}{3} anx \theta$ $\frac{dx}{dk} = \frac{3}$