EES216: Circuit Analysis Final Mock Exam

curated by The Peanuts

N.T.	ID	α	N.T.	
Name	11)	Section	INO.	
1 1 COLLIC				

Conditions: Semi-Closed Book (A3 Both Sides)

Directions:

- 1. This exam has 10 pages (including this page).
- 2. Calculators (Casio 991 Series) are allowed.
- 3. Write your name clearly at the top of each page.
- 4. Please check to make sure that there are 6 problems in your exam paper. (It's a PDF, I know)
- 5. Red color is reserved for grading. Do not write in red.
- 6. Do not cheat. Do not panic.
- 7. Good Luck + Warm Wish for a bright and joyful coming new year.

For solution, click here.

The voltage v(t) in a network is defined by the equation.

$$\frac{d^2v_1(t)}{dt^2} + 8\frac{dv_1(t)}{dt} + 10v_1(t) = 0.$$

Identify the type of this second-order system:

Calculate the rms value of the waveform

Solve for $v_o(t)$ in the circuit using the superposition principle.

a) Find v_{o_1} due to 10 V voltage source. $v_{o_1} =$

b) Find v_{o_2} due to $12\cos 3t$ V source. $v_{o_2} =$

c) Find v_{o_3} due to $4\sin 2t$ A source. $v_{o_3} =$

d) Find $v_o =$

frequency?			
Voltage =	volts, Frequency =	Hz	
State three bene	fits of a three-phase electrical s	system	
1			
1			
2			
3			

In Thailand, the electricity system operates at what standard voltage and

Find the equivalent impedance, ${\bf Z}$, for the circuit.

Find v(t) in the following integrodifferential equations using the phasor approach:

$$\frac{dv}{dt} + 5v(t) + 4 \int v dt = 20\sin(4t + 10^{\circ})$$

For the following circuit, the switch opens at t = 0:

a) Find $I_L(0) =$ _____ and $V_c(0) =$ _____

b) Find $\frac{dI_L(0)}{dt} =$ _____ and $\frac{dV_c(0)}{dt} =$ ____

c) Find $I_L(\infty) = \underline{\hspace{1cm}}$ and $V_c(\infty) = \underline{\hspace{1cm}}$

d) Find $I_{L_n}(t) =$ ______ in term of two unknown constants.

Find the load impedance $\mathbf{Z}_L =$ _____ for maximum average power transfer

Formula for finding the maximum average power is _____

The value of the maximum average power transferred to \mathbf{Z}_L is = ______

A source supplies power through a line with impedance $0.1+j0.3~\Omega$ to two parallel loads. The first load absorbs 36 kW at 0.82 power factor lagging, and the second load absorbs 48 kW at 0.88 power factor lagging. The load voltage is $240 \angle 0^{\circ}$ V rms.

Find the total complex power at the load \mathbf{S}_L , the total current \mathbf{I}_L , and the equivalent load impedance \mathbf{Z}_L .

Determine the complex power at the source S_s .

Indicate the source voltage V_S and the generator power factor.

A balanced three-phase delta-connected source supplies power to a load consisting of a balanced delta in parallel with a balanced wye. The phase impedance of the delta is $27 + j16 \Omega$, and the phase impedance of the wye is $12 + j8 \Omega$. The *abc*-phase-sequence source voltage is $\mathbf{V}_{ab} = 330 \angle 60^{\circ} V_{\rm rms}$, and the line impedance per phase is $1 + j0.08 \Omega$. Find the line currents and the power absorbed by the wye-connected load.