

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

PRACTICA 6 CIRCUITOS ARITMETICOS Y LOGICOS 2

Subtema:

DISPOSITIVOS DE ENTRADA Y SALIDA SERIAL Y PARALELO

Presenta:

AMELI REYES HERNANDEZ 22620050

ANA KIMBERLY HERNANDEZ PEREZ 22620053

Asignatura:

ARQUITECTURA DE COMPUTADORAS

Carrera:

INGENIERIA EN SISTEMAS COMPUTACIONALES.

Docente:

EDWARD OSORIO SALINAS.

Tlaxiaco, Oax., 28 de noviembre de 2024. "educación, ciencia y tecnología, progresos día con día"

OBJETIVO

Diseñar, analizar e implementar circuitos aritméticos y lógicos de nivel básico e intermedio, como sumadores, restadores, comparadores y multiplicadores, utilizando principios de electrónica digital para resolver problemas matemáticos y lógicos en sistemas digitales.

MATERIALES

- Software y versión del simulador de circuitos.
- Laptop.

DESARROLLO

4.1 Circuito Sumador

Un circuito sumador es un componente fundamental en la electrónica digital, diseñado para realizar operaciones aritméticas de suma.

4.1.1 Implementación

Los circuitos sumadores se implementan generalmente como:

Sumador de 1 bit: Utiliza compuertas lógicas básicas como XOR, AND y OR. Este tipo de sumador realiza la suma de dos bits de entrada y genera un bit de salida y un acarreo.

Sumador completo: Combina múltiples sumadores de 1 bit para manejar tanto la suma como el acarreo entrante.

Sumador en serie o paralelo: Se pueden conectar varios sumadores completos para sumar números binarios más grandes.

4.1.2 Tabla de Verdad

La tabla de verdad de un sumador de 1 bit incluye dos entradas AA y B B, un acarreo de entrada (CinC in) y dos salidas: la suma (SS) y el acarreo de salida (Cout C out).

A	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4.2.3 Simulación

La simulación de restadores sigue un proceso similar al de los sumadores, comprobando las salidas en base a las combinaciones de entradas.

4.3 Circuito Comparador

El circuito comparador determina la relación entre dos números binarios, como igualdad, mayor o menor.

4.3.1 Implementación

Se implementa utilizando compuertas lógicas básicas para calcular tres condiciones:

4.3.2 Tabla de Verdad

La tabla depende del número de bits y las condiciones a evaluar.

4.3.3 Simulación

La simulación incluye conectar las entradas AA y BB al circuito y verificar las salidas para las tres condiciones.

4.4 Circuito Multiplicador

Un multiplicador realiza operaciones de multiplicación binaria, usando métodos como sumadores o matrices de productos parciales.

4.4.1 Implementación

Puede implementarse usando:

Sumadores en serie.

Lógica combinacional para productos parciales.

4.4.2 Tabla de Verdad

Incluye entradas A A y BB y una salida del producto P P, dependiendo de la longitud de los operandos.

A	В	B_{in}	D	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

4.4.3 Simulación

La simulación verifica los productos para diferentes combinaciones de entradas, especialmente en sistemas digitales avanzados.

CONCLUSION

El estudio e implementación de circuitos aritméticos y lógicos son fundamentales para comprender y desarrollar sistemas digitales eficientes. Los circuitos como sumadores, restadores, comparadores y multiplicadores permiten realizar operaciones matemáticas básicas y lógicas esenciales en aplicaciones electrónicas y computacionales.

A través de su diseño y simulación, se fortalecen habilidades prácticas en electrónica digital, como la interpretación de tablas de verdad, la utilización de compuertas lógicas y el análisis de rendimiento. Además, el desarrollo de estos circuitos fomenta la optimización de recursos y el diseño de sistemas más compactos y funcionales, sentando las bases para proyectos más complejos en tecnología digital.

REFERENCIAS

- Tocci, R. J., Widmer, N. S., & Moss, G. L. (2011)
- Flores, J. (2015). Electrónica Digital: Principios y aplicaciones.