[13] Interior-Point Method for Nuclear Norm Approximation with Application to System Identification

Author: Zhang Liu and Lieven Vandenberghe, 2009 Presentation by: Martin Hellkvist

May 9, 2019

Summary

- Nuclear Norm: $||X||_* = \text{sum of singular values}$
- ightharpoonup min $||X||_*$ typically has low rank solutions
 - Can be cast as Semidefinite Program (SDP)
- min rank(X) is NP-hard
 - System Identification
 - ► Machine Learning
 - Computer Vision
- Contribution:
 - Describe a more efficient interior-point method for high order problems with the structure that follows $||\cdot||_*$

Nuclear Norm Approximation Problem

minimize
$$||\mathcal{A}(x) - B||_*$$

 $B \in \mathbb{R}^{p \times q}$ (1)
 $\mathcal{A}(x) = x_1 A_1 + x_2 A_2 + \dots + x_n A_n$

is convex:

Nuclear Norm Approximation Problem

minimize
$$||A(x) - B||_*$$

 $B \in \mathbb{R}^{p \times q}$ (1)
 $A(x) = x_1 A_1 + x_2 A_2 + \dots + x_n A_n$

is convex:

$$||\mathcal{A}(\alpha x + (1 - \alpha)y) - B||_{*} =$$

$$||\alpha(\mathcal{A}(x) - B) + (1 - \alpha)(\mathcal{A}(y) - B)||_{*} \leq$$

$$||\alpha(\mathcal{A}(x) - B)||_{*} + ||(1 - \alpha)(\mathcal{A}(y) - B)||_{*} =$$

$$\alpha||\mathcal{A}(x) - B||_{*} + (1 - \alpha)||\mathcal{A}(y) - B||_{*}$$
(2)

Nuclear Norm Approximation Problem

Can be cast as

minimize
$$(\mathbf{tr}U + \mathbf{tr}V)/2$$

subject to $\begin{bmatrix} U & (A(x) - B)^T \\ A(x) - B & V \end{bmatrix} \succeq 0$ (3)

Where $U=U^T\in\mathbb{R}^{q\times q}$ and $V=V^T\in\mathbb{R}^{p\times p}$ are new variables, and the problem is an SDP which is very difficult to solve for $q\approx 100$ and $p\approx 100$ for general purpose interior-point methods where $\mathcal{O}(p^2q^2n)$

Custom Interior-Point Method

Exploiting the structure of

minimize
$$(\mathbf{tr}U + \mathbf{tr}V)/2$$

subject to $\begin{bmatrix} U & (A(x) - B)^T \\ A(x) - B & V \end{bmatrix} \succeq 0$ (4)

We need to solve the following linear equation system

$$\mathcal{A}_{\mathrm{adj}}(\Delta Z) = r, \quad \begin{bmatrix} \Delta U & \mathcal{A}(\Delta x)^{T} \\ \mathcal{A}(\Delta x) & \Delta V \end{bmatrix} + T \begin{bmatrix} 0 & \Delta Z^{T} \\ \Delta Z & 0 \end{bmatrix} T = R$$
(5)

which can be solved by first finding Δx

$$\tilde{\mathcal{A}}_{\mathsf{adj}}(\mathcal{S}^{-1}(\tilde{\mathcal{A}}(\Delta x))) = \tilde{\mathcal{A}}_{\mathsf{adj}}(\mathcal{S}^{-1}(\tilde{\mathcal{R}}_{21})) - r \tag{6}$$

which gives ΔZ and in turn ΔU and ΔV

Key step

Solving for Δx looks complicated

$$\tilde{\mathcal{A}}_{\mathsf{adj}}(\mathcal{S}^{-1}(\tilde{\mathcal{A}}(\Delta x))) = \tilde{\mathcal{A}}_{\mathsf{adj}}(\mathcal{S}^{-1}(\tilde{R}_{21})) - r \tag{7}$$

However,

$$S(X) = \mathcal{L}(\mathcal{L}_{\mathsf{adj}}(X)) \tag{8}$$

Key step

Solving for Δx looks complicated

$$\tilde{\mathcal{A}}_{\mathrm{adj}}(\mathcal{S}^{-1}(\tilde{\mathcal{A}}(\Delta x))) = \tilde{\mathcal{A}}_{\mathrm{adj}}(\mathcal{S}^{-1}(\tilde{R}_{21})) - r \tag{7}$$

However,

$$S(X) = \mathcal{L}(\mathcal{L}_{\mathsf{adj}}(X)) \tag{8}$$

where the inverses is "simply" defined as:

$$\mathcal{L}^{-1}(X)_{ij} = \begin{cases} (X_{ij} - \sigma_i \sigma_j X_{ji}) / \sqrt{1 - \sigma_i^2 \sigma_j^2}, & i < j \\ X_{ii} / \sqrt{1 + \sigma_i^2}, & i = j \\ X_{ij}, & i > j \end{cases}$$
(9)

and its adjoint $\mathcal{L}_{\mathsf{adj}}^{-1}$ in a similar fashion

Complexity reduction

- From $\mathcal{O}(p^2q^2n)$ to $\mathcal{O}(pqn^2)$
- ► Works for large problems

Figure: Solving randomly generated problems for p = q = n

Subspace Identification

Given inputs u(t) and output measurements $y_{meas}(t)$ we can find low rank state space representation by

$$\min ||YU^{\perp}||_* + \gamma \sum_{t=0}^{N} ||y(t) - y_{\text{meas}}(t)||_2^2$$
 (10)

Subspace Identification

Given inputs u(t) and output measurements $y_{\text{meas}}(t)$ we can find low rank state space representation by

$$\min ||YU^{\perp}||_* + \gamma \sum_{t=0}^{N} ||y(t) - y_{\text{meas}}(t)||_2^2$$
 (10)

Subspace Identification

Given inputs u(t) and output measurements $y_{\text{meas}}(t)$ we can find low rank state space representation by

$$\min ||YU^{\perp}||_* + \gamma \sum_{t=0}^{N} ||y(t) - y_{\text{meas}}(t)||_2^2$$
 (10)

Shortcomings and Extensions

Shortcomings

- Lackluster comments on numerical results
- Unclear what is "the trick"

Extensions

- How does quadratic terms affect the equations?
- ▶ Least Norm Problem (adds $\mathcal{F}(X) = g$ to SDP constraints)