Introduction & Algèbre Relationnelle Langage et sécurité des bases de données S5 L3 MIAGE Classique

Rafael Angarita Basé sur les cours de Thibault Anani Agondja et Sonia Guehis

> Nanterre Université Année 2023-2024

Table des matières

Introduction aux bases de données

- 2 Algèbre relationnelle
 - Les opérateurs fondamentaux
 - Les opérateurs dérivés

Table des matières

Introduction aux bases de données

- Algèbre relationnelle
 - Les opérateurs fondamentaux
 - Les opérateurs dérivés

Les bases de données et les SGBD

Problème central : comment manipuler et stocker les données?

Base de données

Grand ensemble de données structurées et organisées sur un support permanent (papier, fichier, disque dur, etc) afin d'en faciliter l'exploitation

Système de gestion de base de données (SGBD)

Logiciel de haut niveau d'abstraction qui permet de manipuler ces informations

Exemples de Base de données

Annuaire téléphonique

Ensemble d'enregistrements, et chaque enregistrement regroupe trois champs : nom, adresse et numéro de téléphone des particuliers

Bibliothèque

Ensemble d'enregistrements sur les livres, les emprunts, les emprunteurs, etc.

Emprunt de livres par les emprunteurs ce qui permet de savoir quels sont les livres à l'intérieur et à l'extérieur à un instant t

Université

Ensemble d'enregistrements sur les étudiants, les cours, les enseignants, etc.

Les étudiants vont participer à des cours donnés par les professeurs

Système de gestion de Bases de données

« Ensemble de logiciels systèmes permettant aux utilisateurs d'insérer, de modifier, et de rechercher efficacement des données spécifiques dans une grande masse d'informations (pouvant atteindre plusieurs milliards d'octets) partagée par de multiples utilisateurs » [Gardarin]

Diversité et complexité

Diversité des utilisateurs, des interfaces et des architectures

- Diversité des utilisateurs : administrateurs, programmeurs, non informaticiens, ...
- Diversité des interfaces : langages BD, menus, saisies, rapports, formulaires, ...
- Diversité des architectures : client-serveur/pair à pair, centralisé/distribué

Architecture typique d'un SGBD

Abstraction des données

Niveau physique ou interne

Niveau le plus bas. Organisation physique des données de manière à les stocker et d'y accéder le plus rapidement possible. Décrit comment elles sont stockées dans la mémoire physique e.g. sur des disques durs

Niveau conceptuel ou logique

Niveau intermédiaire. Schéma conceptuel de données. Décrit l'ensemble des données stockées dans la base et les relations qui existent entre elles

Niveau externe ou vue

Niveau le plus haut. Les utilisateurs auront des données partielles ou complètes en fonction des données qu'ils ont le droit de manipuler (des vues) e.g. un étudiant ne peut pas accéder au salaire de son professeur

Abstraction des données

Les langages d'un SGBD

Langage de définition des données [LDD]

- Description de la structure des données
- Définition du schéma de la base
- Typage des colonnes, contraintes

Langage de manipulation des données [LMD]

- Permet la manipulation des données
- Lecture et mise à jour
- Ajout, modification, suppression

Chronologie des modèles SGBD

A chaque génération correspond un modèle logique

- avant 60 : Systèmes de gestions de fichiers (e.g. COBOL)
- mi 60 : Hiérarchique IMS (IBM)
- 73-80 : Relationnel
- fin 80 : Orienté-objet
- fin 90 : XML
- 2009 : NoSQL avec le phénomène Big Data

Les types d'opérations

4 types d'opérations

- création (ou insertion)
- modification (ou mise à jour)
- destruction (ou suppression)
- recherche (ou requêtes)

Ces opérations correspondent à des commandes du LMD et du LDD. La plus complexe est la recherche en raison de la variété des critères

Définition

Un tableau dans lequel chaque ligne représente des objets de la même nature est appelé relation sous la forme : [Nom de la relation](Attr₁, Attr₂, ...)

Attribut et n-uplet

Les attributs sont les colonnes d'une relation et ne peuvent pas porter le même nom. Les n-uplets sont les lignes, les différents enregistrements d'une relation

Clé primaire

Attribut ou ensemble d'attribut dont le contenu permet de caractériser de façon unique une relation. Garantit la propriété d'unicité d'une relation

Descriptif(Personne, Age, Sexe)

Personne	Age	Sexe
Pascal	40	М
Marie	20	F
Leo	18	М
Zoe	2	F
Clara	27	F
Marcel	60	М
Raymond	40	М
Johnny	65	М

- Personne, Age et Sexe sont les attributs
- [Clara, 27, F] est un n-uplet de la relation
- Personne est la clé primaire

Clé artificielle (ou de remplacement)

Attribut ajouté à la relation sans signification réelle et sa seule fonction est d'identifier de manière unique les n-uplets

Descriptif(NumPersonne, Personne, Age, Sexe)

NumPersonne	Personne	Age	Sexe
1	Pascal	40	М
2	Marie	20	F
3	Leo	18	М
4	Zoe	2	F
5	Clara	27	F
6	Marcel	60	М
7	Raymond	40	М
8	Johnny	65	М

NumPersonne est la clé primaire (artificielle) de la relation

Clé étrangère

Attribut qui permet de décrire des liens entre les différentes relations

Descriptif(NumPersonne, Parent, Age, Sexe)
Adresse(Numéro, Rue, Ville, Code Postal NumPersonne)

NumPersonne	Personne	Age	Sexe
1	Pascal	40	М
2	Marie	20	F
3	Leo	18	М
4	Zoe	2	F
5	Clara	27	F
6	Marcel	60	М
7	Raymond	40	М
8	Johnny	65	М

Numéro	Rue	Ville	Code Postal	NumPersonne				
3	Impasse de Barre	Robin-la-Forêt	69677	1				
20	Rue de Guyon	Gaudin	25766	6				
Adresse								

Descriptif

NumPersonne est la clé étrangère qui référence la colonne du même nom de la relation Descriptif

Exemples d'opérations : création

Insérer des informations concernant un employé nommé Jean

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Beauchamp	Patrice	07/04/1961	54 rue Ernest	Comptabilité	Employé	40 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000
Delarue	Bruno	25/07/1978	9 rue Orange	Marketing	Employé	39 000

Employé

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Beauchamp	Patrice	07/04/1961	54 rue Ernest	Comptabilité	Employé	40 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000
Delarue	Bruno	25/07/1978	9 rue Orange	Marketing	Employé	39 000
Beaudoin	Jean	12/11/1985	43 rue Michel	Logistique	Cadre	56 000

Exemples d'opérations : modification

Augmenter le salaire de Jean de 10%

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Beauchamp	Patrice	07/04/1961	54 rue Ernest	Comptabilité	Employé	40 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000
Delarue	Bruno	25/07/1978	9 rue Orange	Marketing	Employé	39 000
Beaudoin	Jean	12/11/1985	43 rue Michel	Logistique	Cadre	56 000

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Beauchamp	Patrice	07/04/1961	54 rue Ernest	Comptabilité	Employé	40 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000
Delarue	Bruno	25/07/1978	9 rue Orange	Marketing	Employé	39 000
Beaudoin	Jean	12/11/1985	43 rue Michel	Logistique	Cadre	61 600

Exemples d'opérations : destruction

Retirer les informations concernant Jean

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Beauchamp	Patrice	07/04/1961	54 rue Ernest	Comptabilité	Employé	40 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000
Delarue	Bruno	25/07/1978	9 rue Orange	Marketing	Employé	39 000
Beaudoin	Jean	12/11/1985	43 rue Michel	Logistique	Cadre	61 600

Employé

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Beauchamp	Patrice	07/04/1961	54 rue Ernest	Comptabilité	Employé	40 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000
Delarue	Bruno	25/07/1978	9 rue Orange	Marketing	Employé	39 000

Exemples d'opérations : recherche

Chercher les employés cadres

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Beauchamp	Patrice	07/04/1961	54 rue Ernest	Comptabilité	Employé	40 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000
Delarue	Bruno	25/07/1978	9 rue Orange	Marketing	Employé	39 000

Employé

Nom	Prénom	Date de Naissance	Adresse	Département	Statut	Salaire
Didier	Denis	21/01/1993	60 rue Chopin	Logistique	Cadre	56 000
Cantina	Clémentine	12/08/1976	51 rue l'Epeule	Comptabilité	Cadre	49 000

Langages de requêtes relationnelles

Pouvoir d'expression

Représente ce qu'il est possible de calculer et les opérations qu'il est possible de faire

Algèbre relationnelle

- Langage procédural : langage qui décrit explicitement comment trouver le résultat en une suite d'instructions
- Langage de bas niveau difficile à manipuler proche des langages de programmation
- Notation algébrique

Calcul relationnel

- Langage déclaratif: langage qui décrit les propriétés que devra avoir le résultat plutôt que les procédures
- Langage de haut niveau facile d'accès proche du langage naturel
- Notation logique

Les deux langages possèdent le même pouvoir d'expression

Table des matières

Introduction aux bases de données

- 2 Algèbre relationnelle
 - Les opérateurs fondamentaux
 - Les opérateurs dérivés

Algèbre relationnelle

Algèbre

Branche des mathématiques ayant pour objet de simplifier et de résoudre au moyen d'opérateurs des problèmes et d'en généraliser les résultats

Algèbre relationnelle

Présente l'ensemble des opérations de base du modèle relationnel. Définit l'ordre des opérations dans la requête en utilisant des opérateurs qui vont spécifier comment manipuler les expressions relationnelles pour extraire le résultat d'une requête

La composition des opérateurs est une requête d'algèbre relationnelle et le résultat est l'évaluation de la requête

Algèbre relationnelle

Langage procédural

Indique comment construire une nouvelle relation à partir d'une ou plusieurs relations déjà existantes

Langage abstrait

Des opérations qui travaillent sur une (ou plusieurs) relation(s) pour définir une nouvelle relation sans changer la (ou les) relation(s) originale(s)

Le résultat de toute opération est une relation

Expression relationnelle

Un schéma de relation est une expression relationnelle Si

- Op_1 : un opérateur relationnel unaire
- *Exp* : une expression relationnelle
- $Op_1(Exp)$ est une expression relationnelle

Si

- Op₂: un opérateur relationnel binaire
- Exp_1 et Exp_2 : des expressions relationnelles
- $Op_2(Exp_1, Exp_2)$ est une expression relationnelle

Schéma et instance : exemples

Parenté(Parent, Enfant)
Descriptif(Parent, Age, Sexe, Ville)
Scolarité(Enfant, Ecole)

Parent	Enfant
Pascal	Marie
Pascal	Leo
Raymond	Zoe
Clara	Zoe
Marcel	Raymond

rei	nte

Personne	Age	Sexe	Ville
Pascal	40	М	Paris
Marie	20	F	Paris
Leo	18	М	Paris
Zoe	2	F	Nice
Clara	27	F	Nice
Marcel	60	М	Marseille
Raymond	40	М	Nice
Johnny	65	М	Lyon

Descriptif

Enfant	Ecole
Zoe	Α
Marie	В
Leo	Α

Scolarité

Les opérateurs fondamentaux

L'algèbre relationnelle est principalement composée par cinq opérateurs relationnels fondamentaux

Deux opérateurs unaires

- La sélection
- La projection

Trois opérateurs binaires (ou ensemblistes)

- Le produit cartésien
- L'union
- La différence

La Sélection

Définition

Définit une relation qui ne contient que les n-uplets de *Exp* qui vérifient la condition spécifiée ou aussi appelé prédicat

$$\sigma_F(Exp)$$

Où F est une formule logique de premier ordre formée de :

- Constantes
- Attributs figurant dans Exp
- Comparateurs : =, <, >, \neq , \leq , \geq
- Connecteurs logiques : ∨ (ou), ∧ (et), ¬ (non)

Le résultat de $\sigma_F(Exp)$ contient tous les n-uplets de Exp tels que F est vraie

4 D > 4 A > 4 B > 4 B > B

La Sélection

Requête

Liste des personnes de sexe féminin

Algèbre relationnelle

$$\sigma_{Sexe='F'}(Descriptif)$$

Personne	Age	Sexe	Ville
Marie	20	F	Paris
Zoe	2	F	Nice
Clara	27	F	Nice

La Sélection

Requête

Les personnes de plus de 40 ans

Algèbre relationnelle

$$\sigma_{Age>40}(Descriptif)$$

Personne	Age	Sexe	Ville
Marcel	60	М	Marseille
Johnny	65	М	Lyon

La Projection

Définition

Définit une relation restreinte à un sous-ensemble des attributs de *Exp* en extrayant les valeurs des attributs spécifiés et en supprimant les doublons

$$\pi_{Attr_1,Attr_2,Attr_3,...}(Exp)$$

Où $Attr_1$, $Attr_2$, $Attr_3$ sont des attributs de l'expression relationnelle de Exp

Le résultat de $\pi_{Attr_1,Attr_2,Attr_3,...}(Exp)$ contient les mêmes n-uplets que Exp, tronqués des attributs ne figurant pas dans la liste de projection

La Projection

Requête

Liste des parents de la base

Algèbre relationnelle

 $\pi_{Parent}(Parenté)$

Parent
Pascal
Raymond
Clara
Marcel

Remarque

Le doublon du n-uplet Pascal a été supprimé

La Projection

Requête

Qui sont les enfants de Raymond?

Algèbre relationnelle

$$\pi_{Enfant}(\sigma_{Parent='Raymond'}(Parenté))$$

Enfant

Zoe

Remarque

Possibilité d'utiliser plusieurs opérateurs en même temps

Exercices : Sélection et Projection

Comment écrire ces requêtes en algèbre relationnelle?

- Les personnes qui habitent à Paris ou Nice
- Les personnes qui n'habitent pas à Nice
- La ville où habite Raymond
- L'âge de Marcel
- Les personnes qui habitent à Paris et qui ont plus de 18 ans

Exercices : Sélection et Projection

Les personnes qui habitent à Paris ou Nice

$$\sigma_{Ville='Paris' \lor Ville='Nice'}(Descriptif)$$

Les personnes qui n'habitent pas à Nice

$$\sigma_{Ville \neq 'Nice'}(Descriptif)$$

La ville où habite Raymond

$$\pi_{Ville}(\sigma_{Personne='Raymond'}(Descriptif))$$

L'âge de Marcel

$$\pi_{Age}(\sigma_{Personne='Marcel'}(Descriptif))$$

Les personnes qui habitent à Paris et qui ont plus de 18 ans

$$\sigma_{Ville='Paris' \land Age > 18}(Descriptif)$$

Le Produit cartésien

Définition

Définit une relation composée de la concaténation de tous les n-uplets de la relation Exp_1 avec tous ceux de la relation Exp_2 . Les deux relations n'ont pas forcément le même schéma

$$Exp_1 \times Exp_2$$

Où le résultat est une relation dont le schéma est l'union des schémas et le résultat contient $Card(Exp_1) \times Card(Exp_2)$ n-uplets

Х

Le Produit cartésien

Parent	Enfant
Pascal	Marie
Pascal	Leo
Raymond	Zoe
Clara	Zoe
Marcel	Raymond

Parenté

4					
3					
Leo A					
Leo A Scolarité					

Parenté. Scolarité. Parent **Ecole** Enfant Enfant Pascal Marie 7oe Α Marie Pascal Marie Pascal Marie Leo Α Pascal Leo 7oe Α Pascal Leo Marie Pascal Leo Leo Raymond Zoe 70e Raymond Zoe Marie Raymond Zoe Leo Clara 7_{oe} 7oe Clara Zoe Marie В Clara 7_{oe} Leo Α Marcel Raymond Zoe Marcel Raymond Zoe Marcel Raymond Leo Α

Parente × Scolarité

Remarque

La relation *Parent* × *Scolarité* est composée de tous les couples possibles entre les n-uplets de Parenté et ceux de Scolarité

Exercices: Produit cartésien

Soient les relation suivantes :

Α	В	С
1	6	4
7	2	8
5	9	3
	_	

 $E \times p_1$ $E \times$

Quelle requête en algèbre relationnelle permet d'obtenir la relation ci-dessous ?

В	С	D	Ε	F
B 6	4	4	1	2
6	4	0	5	1
6	4	3	0	6
2	8	4	1	2
2	8	3	5	1
2	8	3	0	6

Exercices: Produit cartésien

$$Exp'_1 = \pi_{B,C}(\sigma_{A\neq 5}(Exp_1))$$

 $Exp'_1 \times Exp_2$

						,
В	C		D	E	F	
	4		4	1	2	,
6	4	×	0	5	1	\rightarrow
2	8		3	0	6	
Ex	p_1'					
		Exp_2				

В	С	D	E	F
6	4	4	1	2
6	4	0	5	1
6	4	3	0	6
2	8	4	1	2
2	8	0	5	1
2	8	3	0	6

L'Union

Définition

L'union de deux relations Exp_1 et Exp_2 définit une relation qui contient tous les n-uplets de Exp_1 , de Exp_2 ou à la fois de Exp_1 et Exp_2 , les doublons sont éliminés de la relation

$Exp_1 \cup Exp_2$

Où soit Exp_1 et Exp_2 possèdent le même schéma ou soit $schéma(Exp_1)$ et $schéma(Exp_2)$ sont compatibles i.e. avec des attributs qui sont 2 à 2 compatibles

Propriétés

Commutativité : $Exp_1 \cup Exp_2 \Leftrightarrow Exp_2 \cup Exp_1$

Associativité : $(Exp_1 \cup Exp_2) \cup Exp_3 \Leftrightarrow Exp_2 \cup (Exp_1 \cup Exp_3)$

L'Union

Requête

Les enfants de Raymond ou de Pascal

L'Union

Requête

Les enfants de Raymond ou de Pascal

Algèbre relationnelle

 $\pi_{Enfant}(\sigma_{Parent='Raymond'}(Parent\acute{e})) \cup \pi_{Enfant}(\sigma_{Parent='Pascal'}(Parent\acute{e}))$

Définition

La différence d'ensemble définit une relation qui comporte les n-uplets qui existent dans la relation Exp_1 et non dans la relation Exp_2

$$Exp_1 - Exp_2$$

Où soit Exp_1 et Exp_2 possèdent le même schéma ou soit $schéma(Exp_1)$ et $schéma(Exp_2)$ sont compatibles i.e. avec des attributs qui sont 2 à 2 compatibles

Propriétés

Définition

La différence d'ensemble définit une relation qui comporte les n-uplets qui existent dans la relation Exp_1 et non dans la relation Exp_2

$$Exp_1 - Exp_2$$

Où soit Exp_1 et Exp_2 possèdent le même schéma ou soit $schéma(Exp_1)$ et $schéma(Exp_2)$ sont compatibles i.e. avec des attributs qui sont 2 à 2 compatibles

Propriétés

Non commutatif : $Exp_1 - Exp_2 \neq Exp_2 - Exp_1$

Non associatif: $(Exp_1 - Exp_2) - Exp_3 \neq Exp_2 - (Exp_1 - Exp_3)$

Requête

Les enfants non scolarisés

Requête

Les enfants non scolarisés

Algèbre relationnelle

$$\pi_{Enfant}(Parenté) - \pi_{Enfant}(Scolarité)$$

Enfant			1	
Marie		Enfant		
Ivianc		Zoe		Enfant
Leo	_	Marie	\Rightarrow	Raymond
Zoe		ivialie		Raymond
Paymand		Leo		
Raymond			-	

Exercices: Union et Différence

Comment écrire ces requêtes en algèbre relationnelle?

- 1 Les parents de Marie ou de Raymond
- 2 Les personnes qui ne sont ni parisiens ni marseillais

Exercices : Union et Différence

Les parents de Marie ou de Raymond

 $\pi_{\textit{Parent}}(\sigma_{\textit{Enfant}='\textit{Marie'}}(\textit{Parent}\acute{e})) \cup \pi_{\textit{Parent}}(\sigma_{\textit{Enfant}='\textit{Raymond'}}(\textit{Parent}\acute{e}))$

Les personnes qui ne sont ni parisiens ni marseillais

 $Descriptif - (\sigma_{Ville='Paris' \lor Ville='Marseille'}(Descriptif))$

Les opérateurs dérivés

Déduits des 5 opérateurs fondamentaux

- L'intersection
- La jointure
- La division
- Le renommage

Définition

Définit une relation constituée de l'ensemble de tous les n-uplets à la fois dans Exp_1 et dans Exp_2

$Exp_1 \cap Exp_2$

Où les expressions possèdent les mêmes propriétés que l'union et la différence sur leurs schémas

Propriétés

Équivalence : $Exp_1 \cap Exp_2 \Leftrightarrow Exp_1 - (Exp_1 - Exp_2)$

Commutativité : $Exp_1 \cap Exp_2 \Leftrightarrow Exp_2 \cap Exp_1$

Associativité : $(Exp_1 \cap Exp_2) \cap Exp_3 \Leftrightarrow Exp_2 \cap (Exp_1 \cap Exp_3)$

Requête

Les enfants de Raymond et Clara

Requête

Les enfants de Raymond et Clara

Algèbre relationnelle

 $\pi_{Enfant}(\sigma_{Parent='Raymond'}(Parenté)) \cap \pi_{Enfant}(\sigma_{Parent='Clara'}(Parenté))$

$$\cap$$

$$\Rightarrow$$

Requête

Les personnes de sexe féminin de plus de 20 ans

Requête

Les personnes de sexe féminin de plus de 20 ans

Algèbre relationnelle

 $\pi_{Personne}(\sigma_{Age>20}(Descriptif)) \cap \pi_{Personne}(\sigma_{Sexe='F'}(Descriptif))$

Personne
Pascal
Clara
Marcel
Raymond
Johnny

Exercices: Intersection

Comment écrire ces requêtes en algèbre relationnelle?

- 1 Les personnes de sexe masculin qui habitent à Paris
- 2 Les personnes de sexe féminin qui habitent Nice qui ont 20 ans ou plus
- Les Parisiens de moins de 40 ans

Exercices: Intersection

Les personnes de sexe masculin qui habitent à Paris

$$\sigma_{Sexe='M'}(Descriptif) \cap \sigma_{Ville='Paris'}(Descriptif)$$

Les personnes de sexe féminin qui habitent Nice qui ont 20 ans ou plus

$$\sigma_{Sexe='F'}(Descriptif) \cap \sigma_{Ville='Nice'}(Descriptif) \cap \sigma_{Age>20}(Descriptif)$$

Les Parisiens de moins de 40 ans

$$\sigma_{Ville='Paris'}(Descriptif) \cap \sigma_{Age<40}(Descriptif)$$

Définition

Définit une relation qui contient les n-uplets qui vérifient le prédicat F du produit cartésien de Exp_1 et Exp_2 . Elle permet de combiner une paire de n-uplets de deux relations différentes en un seul n-uplet

$Exp_1 \bowtie Exp_2$

Où F est généralement une condition d'égalité entre un (des) atrribut(s) de Exp_1 et un (des) atrribut(s) de Exp_2

Propriété

Équivalence :

Définition

Définit une relation qui contient les n-uplets qui vérifient le prédicat F du produit cartésien de Exp_1 et Exp_2 . Elle permet de combiner une paire de n-uplets de deux relations différentes en un seul n-uplet

$Exp_1 \bowtie Exp_2$

Où F est généralement une condition d'égalité entre un (des) atrribut(s) de Exp_1 et un (des) atrribut(s) de Exp_2

Propriété

Équivalence : $Exp_1 \bowtie_E Exp_2 \Leftrightarrow \sigma_F(Exp_1 \times Exp_2)$

Jointure naturelle

Si F n'est pas précisé alors la condition est construite à partir des attributs communs à Exp_1 et Exp_2 on parle alors de jointure naturelle

Requête

Liste des parents et de l'école de leurs enfants

Requête

Liste des parents et de l'école de leurs enfants

Algèbre relationnelle

 $\pi_{Parent, Ecole}(Parenté \bowtie Scolarité)$

Parent	Enfant	Ecole
Pascal	Marie	В
Pascal	Leo	А
Raymond	Zoe	Α
Clara	Zoe	Α

 \Rightarrow

Parent	Ecole
Pascal	B
Pascal	A
Clara	Α
Raymond	Α

Parenté ⋈ Scolarité

Exercices: Jointure

Soient les relations suivantes

Personne(<u>CIN</u>, Nom, Prenom, Adresse) **Voiture**(NCarteGrise, <u>CIN</u>, Modele) **Moto**(NCarteGrise, <u>CIN</u>, Modele)

Comment écrire ces requêtes en algèbre relationnelle?

- 1 Le modèle des voitures au nom de Cristophe Martin
- 2 Le nom des personnes qui possèdent une voiture mais pas de moto
- Le prénom des personnes qui possèdent une voiture et une moto
- 4 L'adresse des personnes qui ne possèdent ni voiture ni moto

Exercices: Jointure

Le modèle des voitures au nom de Cristophe Martin

$$\pi_{Modele}(\sigma_{Nom='Martin' \land Prenom='Cristophe'}(Personne \bowtie Voiture))$$

Le nom des personnes qui possèdent une voiture mais pas de moto

$$\pi_{Nom}((\pi_{CIN}(Voiture) - \pi_{CIN}(Moto)) \bowtie Personne)$$

Le prénom des personnes qui possèdent une voiture et une moto

$$\pi_{Pr\acute{e}nom}((\pi_{CIN}(Voiture) \cap \pi_{CIN}(Moto)) \bowtie Personne)$$

L'adresse des personnes qui ne possèdent ni voiture ni moto

$$\pi_{Adresse}((\pi_{CIN}(Personne) - (\pi_{CIN}(Voiture) \cup \pi_{CIN}(Moto)) \bowtie Personne)$$

La Division

Définition

La division de Exp_1 par Exp_2 , sachant que Exp_1 et Exp_2 ont au moins un attribut commun produit une relation Exp_3 qui comporte les attributs appartenant à Exp_1 mais n'appartenant pas à Exp_2 donnent toujours un n-uplet de Exp_1

$Exp_1 \div Exp_2$

- Au moins un attribut de Exp2 est un attribut de Exp1 i.e. avec le même nom
- Exp₁ a au moins un attribut de plus que Exp₂
- Exp₃ comporte les attributs appartenant à Exp₁ mais pas à Exp₂

Propriété

Équivalence :

La Division

Définition

La division de Exp_1 par Exp_2 , sachant que Exp_1 et Exp_2 ont au moins un attribut commun produit une relation Exp_3 qui comporte les attributs appartenant à Exp_1 mais n'appartenant pas à Exp_2 donnent toujours un n-uplet de Exp_1

$$Exp_1 \div Exp_2$$

- Au moins un attribut de Exp2 est un attribut de Exp1 i.e. avec le même nom
- Exp₁ a au moins un attribut de plus que Exp₂
- Exp₃ comporte les attributs appartenant à Exp₁ mais pas à Exp₂

Propriété

Équivalence :

$$R_{1} = \pi_{Exp_{1}-Exp_{2}}(Exp_{1})$$

$$R_{2} = \pi_{Exp_{1}-Exp_{2}}[(R_{1} \times Exp_{2}) - Exp_{1}]$$

$$Exp_{1} \div Exp_{2} \Leftrightarrow R_{1} - R_{2}$$

La division permet d'établir des requêtes du type : "Quels sont les athlètes qui ont participé à $\overline{\text{TOUTES}}$ les épreuves?"

Les opérateurs fondamentaux Les opérateurs dérivés

La Division

Requête

Les parents scolarisant leurs enfants dans toutes les écoles

La Division

Requête

Les parents scolarisant leurs enfants dans toutes les écoles

Algèbre relationnelle

$$\pi_{Parent,Ecole}(Parenté \bowtie Scolarité) \div \pi_{Ecole}(Scolarité)$$

Parent	Ecole				
Pascal	В		Ecole		Parent
Pascal	Α	÷	Α	\Rightarrow	Pascal
Raymond	Α		В		Fascai
Clara	А		Diviseur	•	
Divider	nde				

Pascal est la seule personne inclus dans au moins un des n-uplets retournés peu importe la valeur du n-uplet du diviseur. Pascal est donc la seule personne qui a un enfant dans toutes les écoles

Exercices: Division

Soient les relation suivantes :

Personne	Age	Métier
Dupont	20	Ingénieur
Dupont	20	Professeur
Durand	30	Professeur
Martin	40	Ingénieur
Martin	40	Professeur
Delarue	25	Ingénieur
Duchamp	28	Professeur
Duchamp	28	Ingénieur
Didier	20	Apprenti

Métier
Ingénieur
Professeur
Apprenti

Employé

Quel est le résultat de la requête ci dessous?

 $\pi_{Personne,M\acute{e}tier}(Employ\acute{e}) \div \pi_{M\acute{e}tier}(\sigma_{M\acute{e}tier \neq' Apprenti'}(M\acute{e}tier))$

Exercices: Division

```
\pi_{Personne,Mcute{e}tier}(Employ\acute{e})\div\pi_{Mcute{e}tier}(\sigma_{Mcute{e}tier
eq'Apprenti'}(Mcute{e}tier)) \ Exp_1=\pi_{Personne,Mcute{e}tier}(Employ\acute{e}) \ Exp_2=\pi_{Mcute{e}tier}(\sigma_{Mcute{e}tier
eq'Apprenti'}(Mcute{e}tier))
```

Personne	Métier
Dupont	Ingénieur
Dupont	Professeur
Durand	Professeur
Martin	Ingénieur
Martin	Professeur
Delarue	Ingénieur
Duchamp	Professeur
Duchamp	Ingénieur
Didier	Apprenti

 Exp_1

Le Renommage

Définition

Permet de changer le nom d'un ou plusieurs attributs d'une relation et ainsi de résoudre des problèmes de compatibilité entre noms d'attributs de deux relations d'une opération binaire à la seule précondition que le nouveau nom ne soit pas déjà présent dans la table

$$\pi_{Attr'_1,Attr'_2,...}(Exp_{Attr_1 \rightarrow Attr'_1,Attr_2 \rightarrow Attr'_2,...})$$

Le Renommage

Requête

Renommez Enfant en Étudiant et École en Université puis donnez la liste des étudiants et des universités

Le Renommage

Requête

Renommez Enfant en Étudiant et École en Université puis donnez la liste des étudiants et des universités

Algèbre relationnelle

 $\pi_{Etudiant,Universite}(Scolarit\acute{e}_{Enfant} \rightarrow Etudiant,Ecole \rightarrow Universite})$

Enfant	Ecole
Zoe	Α
Marie	В
Leo	Α

Etudiant	Université
Zoe	A
Marie	В
Leo	Α