Assignment 1

ELEC 442 - Introduction to Robotics

Sondre Myrberg

September 22, 2017

1.

Given the homogenous transformation

$$\begin{bmatrix} \boldsymbol{y} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} Q & \boldsymbol{d} \\ \boldsymbol{0}^\top & 1 \end{bmatrix}}_T \begin{bmatrix} \boldsymbol{x} \\ 1 \end{bmatrix}$$

where Q and \boldsymbol{d} accounts for rotation and translation, respectively. We have that the inverse is on the form

$$T^{-1} = \begin{bmatrix} \tilde{Q} & \tilde{\boldsymbol{d}} \\ \boldsymbol{0}^\top & 1 \end{bmatrix}$$

where we know that $T^{-1}T$ is equal to the 4×4 identity matrix. This yields

$$T^{-1}T = \begin{bmatrix} \tilde{Q} & \tilde{d} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{bmatrix} Q & \mathbf{d} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \tilde{Q}Q & \tilde{Q}\mathbf{d} + \tilde{\mathbf{d}} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} = \mathbf{I}_{4\times4}$$
$$\Longrightarrow \begin{cases} \tilde{Q}Q & = \mathbf{I}_{3\times3} \\ \tilde{Q}\mathbf{d} + \tilde{\mathbf{d}} & = \mathbf{0} \end{cases}$$
$$\Longrightarrow \begin{cases} \tilde{Q} & = Q^{-1} = Q^{\top} \\ \tilde{\mathbf{d}} & = -\tilde{Q}\mathbf{d} = -Q^{\top}\mathbf{d} \end{cases}$$
$$\Longrightarrow T^{-1} = \begin{bmatrix} Q^{\top} & -Q^{\top}\mathbf{d} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$

2.

Considering the homogenous transformation matrix

$$^{0}T_{1} = \begin{bmatrix} Q & \boldsymbol{d} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$

with

$$Q = \underbrace{\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}}_{Q_1} \underbrace{\begin{bmatrix} 1 & 0 & 0\\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2}\\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}}_{Q_2}$$

and

$$\boldsymbol{d} = \begin{bmatrix} -\frac{5}{\sqrt{2}} \\ \frac{5}{\sqrt{2}} \\ 4 \end{bmatrix} \text{cm}$$

2.a).

By obserwing the rotation matrices Q_1 and Q_2 we see that Q_1 is a simple rotation around the k-axis. The angle of this rotation is given by $\theta = \arccos\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$. Q_2 is a simple rotation around the i-axis and the rotation angle is given by $\alpha = \arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$. To determine d_1 and a_1 we recognize that a homogenous transformation matrix can be written ass the product of four transformation matrices; angle, offset, length and twist. This gives us

$${}^{0}T_{1} = \begin{bmatrix} Q & \mathbf{d} \\ 0^{\top} & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} \exp(\theta \mathbf{k} \times) & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}}_{\text{angle}} \underbrace{\begin{bmatrix} \mathbf{I} & d\mathbf{k} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}}_{\text{offset}} \underbrace{\begin{bmatrix} \exp(\alpha \mathbf{i} \times) & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}}_{\text{offset}}$$

$$= \begin{bmatrix} \exp(\theta \mathbf{k} \times + \alpha \mathbf{i} \times) & \exp(\theta \mathbf{k} \times)(a \mathbf{i} + d \mathbf{k}) \\ \mathbf{0}^{\top} & 1 \end{bmatrix} = \begin{bmatrix} Q & \mathbf{d} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$

$$\implies \exp(\theta \mathbf{k} \times)(a \mathbf{i} + d \mathbf{k}) = \begin{bmatrix} -\frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\implies \exp(\theta \mathbf{k} \times) \begin{bmatrix} a \\ 0 \\ d \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ 0 \\ d \end{bmatrix} = \begin{bmatrix} \frac{a}{\sqrt{2}} \\ -\frac{a}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\implies \begin{bmatrix} a \\ d \end{bmatrix} = \begin{bmatrix} -5 \\ 4 \end{bmatrix}$$

And we have numeric values for all our four DH parameters.

2.b).

For the point represented in coordinate system 1 by $\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ cm we get the representation in system 0 given by

$$\begin{bmatrix} {}^{0}\boldsymbol{x} \\ 1 \end{bmatrix} = {}^{0}T_1 \begin{bmatrix} {}^{1}\boldsymbol{x} \\ 1 \end{bmatrix}$$

3.

A MATLAB fuction named DH_homog is implemented with the code shown in Listing 1.

Listing 1: MATLAB code to generate homogenous transformation matrix based on the Denavit-Hartenberg convention

function T = DH_homog(theta, d, a, alpha)

```
2
       i = [1;0;0];
3
      k=[0;0;1];
       angle = [expm(theta*skew(k)) zeros(3,1); zeros(1,3) 1];
4
5
       offset = [eye(3) d*k; zeros(1,3) 1];
       length = [eye(3) a*i; zeros(1,3) 1];
6
7
       twist = [expm(alpha*skew(i)) zeros(3,1); zeros(1,3) 1];
       T = angle*offset*length*twist;
8
9
  \quad \text{end} \quad
```