Modeling Brier Scores in Behavioral Data: A Beta Solution

Chelsea Parlett-Pelleriti bit.ly/ModelingBrier

Talk Plan

- 1. Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. A Simulated IB Analysis of Sliding Scale Data

Brier Scores

. Brier Scores and Bounded Variables

- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

$$BS = rac{1}{N} \sum_{t=1}^{N} (f_t - o_t)^2$$

Other Bounded Data

- . Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

$$G = \frac{n_s - n_d}{n_s + n_d}$$

Beta Regression

- **Beta Regression**
 - Inflated Models (ZOIB)
 - A ZOIB Analysis of Brier Scores in MetaMemory

Brier Scores and Bounded Variables

An IB Analysis of Sliding Scale Data

bit.ly/ModelingBrier

Beta Regression

- . Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

Distribution		Canonical Link: $\theta = g(\mu)$	Inverse Link: $\mu = g^{-1}(\theta)$
Poisson		log(μ)	$exp(\theta)$
Binomial	logit link:	$\log\left(\frac{\mu}{1-\mu}\right)$	$\frac{\exp(\theta)}{1 + \exp(\theta)}$
	probit link:	$\Phi^{-1}(\mu)$	$\Phi(\theta)$
	clog log link:	$\log(-\log(1-\mu))$	$1 - \exp(-\exp(\theta))$
Normal	-	μ	θ

$$[0,1] \to \mathbb{R}$$

Beta Regression

- 1. Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

bit.ly/ModelingBrier

Inflated Models

Brier Scores and Bounded Variables

2. Beta Regression

3. Inflated Models (ZOIB)

4. A ZOIB Analysis of Brier Scores in MetaMemory

5. An IB Analysis of Sliding Scale Data

ZOIB

- Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

ZOIB

- Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

```
76
77
 78
        if (brier[i] == 0) {
 79
          // likelihood when score is exactly 0
 80
           target += log(lambda[1]);
 81
 82
 83
           // likelihood when score is exactly 1
           target += log(lambda[3]);
 84
 85
 86
 87
            // likelihood when score is between 0-1
 88
 89
           mu = intercept +
 90
            order_b*order[i] +
           binary_pred1_b*binary_pred1[i] +
 91
 92
            continuous_pred1_b*continuous_pred1[i] +
 93
            continuous_pred2_b*continuous_pred2[i] +
 94
           u[id[i]] +
 95
           w[word[i]];
 96
 97
            mu_p = inv_logit(mu); // predicted value
 98
 99
           target += log(lambda[2]) + beta_proportion_lpdf(brier[i] | mu_p, kappa); // using proportion parameterization
100
101
```

A ZOIB Analysis of Brier Scores in MetaMemory

- . Brier Scores and Bounded Variables
- 2. Beta Regression
- Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

A ZOIB Analysis of Brier Scores in MetaMemory

- 1. Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

$$n(\frac{Brier}{1-Brier}) \sim \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n$$

An IB Analysis of Sliding Scale Data

- 1. Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

bit.ly/ModelingBrier

An IB Analysis of Sliding Scale Data

Brier Scores and Bounded Variables

An IB Analysis of Sliding Scale Data

A ZOIB Analysis of Brier Scores in MetaMemory

Beta Regression Inflated Models (ZOIB)

An IB Analysis of Sliding Scale Data

- 1. Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- 4. A ZOIB Analysis of Brier Scores in MetaMemory
- 5. An IB Analysis of Sliding Scale Data

Other Options: Ordered Beta

Talk Plan

- 1. Brier Scores and Bounded Variables
- 2. Beta Regression
- 3. Inflated Models (ZOIB)
- A ZOIB Analysis of Brier Scores in MetaMemory
- 5. A Simulated IB Analysis of Sliding Scale Data
- Alternatives to IB