XAI for Graphs

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Readings:
 - <u>LIME</u> (local interpretation)
 - **SHAP** (attribution)
 - GNNExplainer
 - GNN Explainability Taxonomy
 - Trustworthy Graph Neural Networks
 - **GraphFramEx** Evaluation

Trustworthy Graph Learning

- Trustworthy AI/GNN includes many components
 - Explainability, fairness, robustness, privacy, ...
 - Algorithms to tackle combination of these aspects

Challenges

- Role of graph topology is previously unexplored in these problems
- Comprehensive quantitative evaluation

Big Picture: Aspects of Trustworthy GNNs

- Robustness
- Explainability
- Privacy
- Fairness
- Accountability
- Environmental well-being
- Others

Each aspect can play a role in gaining trust from users of deep learning models

Challenges in GNN context

- Role of graph topology is previously unexplored in these problems
- Quantiative evaluation is often difficult

Outline of Today's Lecture

1. Explainability and its Problem Settings

2. GNNExplainer

3. Explainability Evaluation

Outline of Today's Lecture

1. Explainability and its Problem Settings Motivation, goals and settings

2. GNNExplainer

3. Explainability Evaluation

Explainability

- The black-box nature of deep learning makes it a major challenge to:
 - Understand what is learned by the ML model
 - Extract insights of the underlying data we are trying to model
- Explainable Artificial Intelligence (XAI) is an umbrella term for any research trying to solve the black-box problem for AI
- Why is it useful?
 - Enable users to understand the decision-making of the model
 - Gain trust from human users of the deep learning system
- Simple-to-read guide: 2004.14545.pdf (arxiv.org)

What was explainable about previous ML models?

Explainable Models: Linear regression

Linear regression

• **Slope is explainable** (how much does one variable affects a prediction)

- Each feature has an associated weights, indicating its importance
 - "A change of Δx amount to feature x_1 will result in increase of prediction by Δy

Explainable Models: Dimension Reduction

Dimension reduction

Dimension reduction allows us to visualize the training data distribution

- Decision boundary can be visualized and understood
 - Instances at the boundary characterizes how different classes are different

Explainable Models: Decision Tree

- Decision trees are very explainable!
- On every node of the decision tree, we understand a criteria for prediction
- We can perform statistics for each decision node
 - E.g. if the condition of the node is met, 80% of the instances will be classified as being positive

Explainable Characteristics

What makes model explainable?

• Importance values (for pixels, features, words, nodes in graphs ...)

• Attributions: straightforward relationships between prediction

and input features

Encourage concepts and prototypes

Example: Computer Vision

Explanation in Computer Vision:

10/30/2023

A particular region of the image **displays the predicted class of objects** (cat / dog in this example)

Importance scores on pixels

computation process of CNN and the prediction

13

Example: Natural Language Processing

10/30/2023

Explanation in Natural Language Processing: important tokens that lead to the prediction

Dunn, Andrew, Diana Inkpen, and Răzvan Andonie. "Context-Sensitive Visualization of Deep Learning Natural Language Processing Models."

Rex Ying, Guest Lecture at Emory

14

Example: Graph Learning

Explanation in Graph Learning: an important **subgraph structure** and a small **subset of node features** that play a crucial role in GNNs prediction

Explanations for prediction at **node** v

A: Import subgraph structure

B: important subset of features

Goal of GNN Explainability

- Model's behavior might be different from the underlying phenomenon
- Explaining ground truth phenomenon

What are the characteristics of toxic molecules?

Explaining model predictions

Why does the model recommend no loan for Person X?

Deep Learning Explainability Methods: Examples

Proxy Model

 Learn an interpretable model that locally approximates the original model. (Example: <u>SHAP</u>)

Saliency Maps

 Compute the gradients of outputs with respect to inputs (example: <u>Grad-CAM</u>)

Attention Mechanisms

 Visualize attention weights in attention models, such as <u>transformer</u> and <u>GAT</u> architectures.

Reasons for Explainability

Why do we need Explainability?

- Trust: Explainability is a prerequisite for humans to trust and accept the model's prediction.
- Causality: Explainability can sometimes imply causality for the target prediction: attribute X causes the data to be Y
- Transferability: The model needs to convey an understanding of decision-making by humans before it can be safely deployed to unseen data.
- Fair and Ethical Decision Making: Knowing the reasons for a certain decision is a societal need, in order to perceive if the prediction conforms to ethical standards.

Explainability Settings (1)

By target:

- Instance-level: a local explanation for a single input x and the prediction \hat{y}
 - identify the important components of individual instances
- Model-level: a global explanation for a specific dataset D or classes of D
 - provide high-level insights into the model's decision-making behaviors

Example: model-level explanations for each class

Engelmann, Justin, Amos Storkey, and Miguel O. Bernabeu. "Global explainability in aligned image modalities."

Explainability Settings (2)

By applicability of the method:

model-specific: the machanism for generating explanation is model-dependent and works only for a specific model.

model-agnostic:

the machanism for generating explnation is **applicable** for many or even all model classes

Outline of Today's Lecture

1. Explainability and its Problem Settings

2. GNNExplainer

The first and very commonly used GNN explainability method Reference: GNNExplainer (NeurIPS 2019)

3. Explainability Evaluation

Example: Financial markets as graphs

GNN Explainability Use Cases

- Questions after training GNNs (post-hoc setting):
 - Why is an item recommended to a user?
 - Why is the molecule mutagenic?
 - Why is the user classified as fraudulent?

Mutagenic Molecule

Fraudulent Detection

Explainability: Motivation (2)

- Example questions after training GNNs:
 - Why is an item recommended to a user?
 - Why is the molecule mutagenic?
 - Why is the user classified as fraudulent?

Mutagenic Molecule

Fraudulent Detection

GNNExplainer Pipeline

Training time:

- Optimize GNN on training graphs
- Save the trained model

Test time:

- Explain predictions made by the GNN
- On unseen instances (nodes, edges, graphs)

Challenges

- Explain predictions for multiple tasks
 - Node classification
 - Graph classification
 - Link prediction
- Model agnostic (post-hoc)
 - Need to be applied to a variety of GNN models: GCN, GraphSAGE, GAT etc.
- Predictions on graphs are induced by a **complex combination** of **nodes**, **edges** between them, and even **motifs** / **subgraph** structures.
- Unlike in CV, gradient is a less reliable signal on real-world graphs due to the discrete nature of edges
 - In many cases (counterfactual explanation, model-level explanations), gradients cannot be used at all

How to explain a GNN

- Consider the general message-passing framework
- The importance of node features

Structural explanation

Feature explanation

GNNExplainer explain both aspects simultaneously

GNNExplainer Input

• Without loss of generality, consider node classification task:

Suppose GNN predicts label \hat{y} for node v

- Input computation graph: $G_c(v)$
- Adjacency matrix of $G_c: A_c(v) \in \{0,1\}^{n \times n}$
- Node Feature: $X_c(v) = \{x_j | v_j \in G_c(v)\}$

GNNExplainer Output

- GNN model ϕ learns $P_{\phi}(Y \mid A_c(v), X_c(v))$
- Y denotes predicted label of v
- GNNExplainer outputs (A_S, X_S^F)
- Graph G_S with adjacency matrix A_S is a subgraph of graph with adjacency matrix $A_c(v)$ (omit v)
- $X_S^F = \{x_j^F | v_j \in G_S\}$ are features for G_S
- Mask F masks out unimportant dimensions

10/30/2023

29

Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurlPS 2019

Rex Ying, Guest Lecture at Emory

Explain by Mutual Information

- Mutual information (MI)
 - A measure of the mutual correlation between the two random variables.
 - Good explanation should have high correlation with model prediction
 - Relation to entropy:

$$MI(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

- GNNExplainer **Objective**:
 - Maximize MI between label and explanation

$$\max_{G_S} MI(Y; (A_S, X_S)) = H(Y) - H(Y|A = A_S, X = X_S^F)$$

Explain by Optimization

• By relation to entropy, the objective is equivalent to minimization of conditional entropy:

$$\max_{A_S} MI(Y|(A_S, X_S)) = \min_{A_S} H(Y|A = A_S, X = X_S^F)$$
Subgraph Feature subset

- Finding A_S that minimizes the conditional entropy is computationally expensive!
 - Issue: Exponentially many possible A_S
- Solution: Treat explanation as a distribution of "plausible explanations", instead of a single graph
 - Optimize the expected explanation
 - Benefit 1: captures multiple possible explanations for the same node
 - Benefit 2: turns discrete optimization to continuous

- Continuous relaxation
 - Optimize the expected adjacency matrix A_S $\min_{\mathcal{A}}\mathbb{E}_{A_S\sim\mathcal{A}}H(Y|A=A_S,X=X_S)\quad \text{expectation of explanations}$
 - View $\mathbb{E}_{A_S \sim \mathcal{A}}$ as an adjacency matrix where entries are continuous
- Approximation

$$\min_{\mathcal{A}} H(Y|A = \mathbb{E}_{\mathcal{A}}[A_S], X = X_S)$$

- Optimize the expectation by masking
 - **Element-wise multiply**
- Use $A_C \odot \operatorname{Mask}$ to represent $\mathbb{E}_{\mathcal{A}}[A_S]$
- If $Mask_{ii}$ close to 1, keep edge (i, j); if close to 0, drop edge (i, j).

10/30/2023

- Let $Mask = \sigma(M)$ be the adjacency mask
 - Continuous relaxation: $\sigma(M) \in \mathbb{R}$ instead of binary
 - **Sigmoid** function σ squashes M into [0,1]
 - Masking: Element-wise multiply $\sigma(M)$ by A_c
- Objective:

$$\min_{M} -H(P_{\phi}(Y=y|G=A_{\mathcal{C}} \odot \sigma(M), X=X_{\mathcal{S}}))$$

• Optimize *M*:

$$\min_{M} -H(P_{\phi}(Y=y|A=A_c \odot \sigma(M), X=X_S))$$

• $A_c \odot \sigma(M)$ is the relaxed adjacency matrix

- Prediction probability distribution by the GNN with parameters ϕ
- Entries are real-values in [0, 1], instead of being binary
- Threshold $A_c \odot \sigma(M)$ to get G_S . Example:

Feature Explanation

Similarly select features by optimizing for feature mask F

$$X_S^F = \{x_j^F | v_j \in G_S\}, \quad x_j^F = [x_{j,t_1}, ..., x_{j,t_k}]$$

For the selected dimensions, $\sigma(F_{t_i}) \to 1$

- Problem: Zero value could be important!
- Solution: Measure feature importance by how much drop in model confidence when features are replaced with explainability baselines.
- Concept: explainability <u>baseline</u> is the "null model" of a feature, such as the mean of the marginal distribution of each feature.

Regularization Constraints

- Optimize feature and adjacency masks jointly with regularization
- Concise explanation
 - Mask size: $Sum(\sigma(M))$
 - Feature size: $Sum(\sigma(F))$
- Final Objective

$$\min_{M} -H(P_{\phi}(Y = y | G = A_c \odot \sigma(M), X = X_S^F) + \lambda_1 \operatorname{Sum}(\sigma(M)) + \lambda_2 \operatorname{Sum}(\sigma(F))$$

 $-\chi_S$ + χ_1 sum($\sigma(M)$) + χ_2 sum($\sigma(I)$)

M, F are learnable Parameters when explaining $G_c(v)$

Sum of entries in feature and adjacency masks

- Threshold $A_c \odot \sigma(M)$ to get the explanation G_s
- The optimization is performed when explaining every instance

Explain different tasks

- Node classification: optimize mask (M, F) on the node's neighborhood (computation graph)
- Link prediction: optimize mask (M, F) on union of 2 node neighborhoods
- Graph classification: optimize mask (M, F) on the entire graph

Can adapt to different architectures

- Graph Attention Networks
- Gated Graph Sequence
- Graph Networks
- GraphSAGE

•

We replace P_{ϕ} with the respective architecture

Experiments: Alternative Approaches (1)

GNN saliency map based on gradients of output score with respect to inputs

- Gradient is a **local approximation** of the slope
- We compute gradient of objective with respect to the edges and features

10/30/2023

Experiments: Alternative Approaches (2)

- Attention values based on Graph Attention Networks (GAT)
 - Edge importance indicated by average attention weights across layers for each edge
 - Attention-based importance is available for edges

Experiments: Datasets (1)

- Synthetic task: is a node part of a given motif?
 - 100 Motifs are randomly attached to nodes in base graphs (500 nodes)
 - Node classification (structural roles)

Experiments: Datasets (2)

- Real-world tasks
 - Social networks (Reddit-binary dataset)
 - Reddit community prediction
 - Chemistry (Mutagenic molecule dataset)
 - Chemical property prediction
 - Graph classification

Results: Quantiative Analysis

- Node classification with ground-truth
- Measures accuracy of explanation with respect to ground-truth

	BA-House	BA-Comm	Tree-Cycle	Tree-Grid
Grad	88.2	73.9	82.4	61.2
Att	81.5	75.0	90.5	66.7
GNN-Explainer	92.5	83.6	94.8	87.5

Results: Qualitative Analysis

Outline of Today's Lecture

1. Explainability and its Problem Settings

2. GNNExplainer

3. Explainability Evaluation

GNN Explainability Taxonomy and Evaluation

Reference: GraphFramEx (LoG 2022)

GNN Post-hoc Explanation Pipeline

• Goal recap: identify important subgraph structures and node features (masks)

Taxonomy of GNN Explainability Methods

Amara, Kenza, et al. "GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks.", LoG 2022

Explainability Method Evaluation

- Challenge: groundtruth might not always be available
- Evaluation is multi-dimensional
- Goal (phenomenon vs. model)
- Masking strategy
- Type (sufficiency vs. necessity)
- GraphFramEx

Benchmarks and evaluation criteria for graph explainability

Explanation Goal

- Phenomenon Explanation
 - Explain the underlying reasons for the ground truth phenomenon

- Model Explanation
 - Explain why model makes a particular prediction

• We will explain the **fidelity** metric in both cases:

Explanation Goal: Fidelity Metric

- Define 2 fidelity metrics: fid_+ and fid_- to capture different aspects of **explanation quality**
- The formula of fidelity depends on the goal:
 - Goal 1: explain phenomenon of the data
 - Goal 2: explain what has the model learned

Goal

$$fid_+ = 1 - rac{1}{N} \sum_{i=1}^N \mathbb{1}(\hat{y}_i^{G_{C \setminus S}} = \hat{y}_i)$$

$$fid_{-} = 1 - rac{1}{N} \sum_{i=1}^{N} \mathbb{1}(\hat{y}_{i}^{G_{S}} = \hat{y}_{i})$$

Fidelity Metric Details

- Characteristics of a good explanation
- fid_+ : removal important subgraph will result in dramatic decrease of the confidence
- fid_- : Using only the important subgraph will result in similar confidence

Phenomenon

$$fid_+ = rac{1}{N} \sum_{i=1}^N \left| \mathbb{1}(\hat{y}_i = y_i) - \mathbb{1}(\hat{y}_i^{G_C \setminus S} = y_i) \right| ext{Removal of important subgraph}$$
 $fid_- = rac{1}{N} \sum_{i=1}^N \left| \mathbb{1}(\hat{y}_i = y_i) - \mathbb{1}(\hat{y}_i^{G_S} = y_i) \right| ext{Keeping only the important subgraph}$

Original prediction probability / confidence

Explanation Evaluation Criteria

- Notably, the explanation evaluation criteria are multi-dimensional
- Explanation quality
 - High fidelity / characterization scores
 - Sufficiency and necessity aspects (see the previous slide)

- Explanation stability
 - Explanations are consistent across random optimization seeds (measure variance)

- Explanation complexity
 - The explanation should be concise and easy to understand by human (measure size)

Types of Explanations

Sufficiency

• An explanation is sufficient if it leads by its own to the initial prediction of the model explanation. $(fid_- \rightarrow 0)$

Necessity

- An explanation is necessary if the model prediction changes when removing it from the initial graph. $(fid_+ \rightarrow 1)$
- Use the Characterization score to summarize the explanation quality

$$charact = \frac{w_{+} + w_{-}}{\frac{w_{+}}{fid_{+}} + \frac{w_{-}}{1 - fid_{-}}} = \frac{(w_{+} + w_{-}) \times fid_{+} \times (1 - fid_{-})}{w_{+} \cdot (1 - fid_{-}) + w_{-} \cdot fid_{+}}$$

Where w_+ and w_- are the weights of both fidelity metrics (commonly set $w_+ = w_- = 1$)

Characterization Score

Characterization score to summarize the explanation quality

$$charact = \frac{w_{+} + w_{-}}{\frac{w_{+}}{fid_{+}} + \frac{w_{-}}{1 - fid_{-}}} = \frac{(w_{+} + w_{-}) \times fid_{+} \times (1 - fid_{-})}{w_{+} \cdot (1 - fid_{-}) + w_{-} \cdot fid_{+}}$$

Necessary AND sufficient

Results: Explain Efficiency vs. Characterization Score

- Multi-dimensional performance comparison of explainability methods
- Explanations have k = 10 edges

Explainability on Large-scale Real-world Graphs

- The conclusion can be very different depending on datasets and tasks
- Experiment on the e-commerce graph at eBay
- GNNExplainer achieves the highest metric in both necessity and sufficiency aspects

Other Types of Explanations (1)

 Counterfactual explanations: what makes an instance belonging to a different class (than the predicted / ground-truth class)?

Useful in understanding distinctions between classes

Example method: <u>CF-GNNExplainer</u>

For example, real-world applications often wants to know what does it take
to convert a user from "inactive / churn" class to "active / premium" class

Other Types of Explanations (2)

 Model-level explanations: what are the general characteristics of ALL instances belonging to a certain class?

Example method: XGNN

• Useful in extracting general insights for all instances of a class

Summary of the Lecture

Trustworthy GNN

 Robustness, explainability, privacy, fairness, accountability, efficiency and environmental well-being,...

GNNExplainer

- Perturbation-based approach
- Optimize for masks that indicate important substructure and node features

Explainability evaluation of GNN

- Explainability evaluation is multi-dimensional in nature
- Fidelity and characterization scores
- Other types of explanations: counterfactual, model-level explanations