# STAT 3355 Introduction to Data Analysis

Lecture 04: R Basics III

Created by Dr. Qiwei Li Presented by Dr. Octavious Smiley

Department of Mathematical Sciences The University of Texas at Dallas



### Last Class

- Data in R
  - Basic data modes: numeric, integer, character, logical
  - Basic data classes: data vector, data matrix, data frame
- Difference among (), [], and {}
- Structured data vector
  - Simple sequence via :
  - Repeated sequence via rep()
  - Arithmetic sequence via seq()
- Loop statements
  - for(){}
  - while(){}

# Learning Goals

- Know basic R data classes
  - A single variable
  - Data vector
  - Data matrix
  - Data frame
- Know basic data types in mathematics/statistics

■ A 2-dimension array of variables that have the same type

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$

- Input a matrix via the function matrix()
  - $X \leftarrow \text{matrix}(c(x_{11}, x_{21}, ..., x_{n1}, ..., x_{1p}, x_{2p}, ..., x_{np}), \text{ nrow } = n, \text{ ncol } = p, \text{ byrow } = \text{FALSE})$
  - $\blacksquare$  Number of rows is n
  - $\blacksquare$  Number of columns is p
  - Each entry is a numeric, integer, character, or logical
  - If mixing the type, it will be coerced into one type

- Obtain a matrix from multiple vectors via the function rbind() or cbind()
  - $\blacksquare X \leftarrow \text{rbind}(x, y, \ldots) \text{ or } X \leftarrow \text{cbind}(x, y, \ldots)$
  - If mixing the type, it will be coerced into one type
- Can contain only one entry, one row, or one column
  - $X \leftarrow \text{matrix}(x, \text{nrow} = 1, \text{ncol} = 1)$
  - $X \leftarrow \text{matrix}(c(x_1, x_2 \ldots, x_p), \text{nrow} = 1, \text{ncol} = p)$
  - $\blacksquare X \leftarrow \text{matrix}(c(x_1, x_2 ..., x_n), \text{nrow} = n, \text{ncol} = 1)$
- Bind all columns in X to a vector via the function c(X) or as.vector(X)

```
# Inputting whales data
whales_tx <- c(74, 122, 235, 111, 292, 111,
   211, 133, 156, 79)
names(whales tx) <- 1990:1999
whales_fl <- c(89, 254, 306, 292, 274, 233,
   294, 204, 204, 90)
names(whales_fl) <- 1990:1999
# Create a whale matrix
whales <- rbind(whales_tx, whales_fl)</pre>
whales <- cbind(whales_tx, whales_fl)</pre>
```

## Matrix Name

- Name the matrix via the function rownames(X) and colnames(X)
  - Automatic coercion to character
  - Always ensure the completeness of the data

## Matrix Name

```
whales <- cbind(whales_tx, whales_fl)
colnames(whales) <- c("texas", "florida")
rownames(whales)

whales <- rbind(whales_tx, whales_fl)
rownames(whales) <- c("texas", "florida")
colnames(whales)</pre>
```

## Single Entry Access

- Access a specified entry via
  - X[i, j], where i is an integer between 1 and n, and j is an integer between 1 and p
  - X [-i, -j], negative indices return all entries of the matrix but the i-th row and the j-th column, which is also called (i,j) minor or first minor of the matrix X if it is square
  - X[a, b], where a is an entry in rownames(X), and b is an entry in colnames(X)
  - X[k], the k-th entry in c(X)
    - X[k] == X[1 + (k-1)%p, 1 + (k-1)%/p]
- X [] is equivalent to X

### Row and Column Access

- Access a row via
  - lacksquare X[i,], where i is an integer between 1 and n
  - X[-i,], negative index returns all rows of the matrix but the i-th row
  - $\blacksquare X[a,]$ , where a is an entry in rownames (X)
- Access a column via
  - X[, j], where j is an integer between 1 and p
  - X[, -j], negative index returns all columns of the matrix but the j-th column
  - $\blacksquare X[, b]$ , where b is an entry in colnames (X)

# Example

#### Data

```
# Input the number of whales beachings per
   year in Texas during the 1990s
whales_tx <- c(74, 122, 235, 111, 292, 111,
   211, 133, 156, 79)
names(whales tx) <- 1990:1999
# Input the number of whales beachings per
   year in Florida during the 1990s
whales_fl <- c(89, 254, 306, 292, 274, 233,
   294, 204, 204, 90)
names(whales_fl) <- 1990:1999
whales <- rbind(whales_tx, whales_fl)</pre>
```

## You Turn

- Work on the matrix of whale, where rows correspond to states and columns correspond to years, and answer the following questions
  - What is the number of whales in Florida in 1998?
  - What are the numbers of whales in Texas between 1995 and 1998?
  - What are the numbers of whales in Florida between 1990 and 1999 excluding the year of 1998?

## Your Turn

#### Solutions

```
whales <- rbind(whales_tx, whales_fl)</pre>
rownames(whales) <- c("texas", "florida")</pre>
# First question
whales ["florida", "1998"]
# Second question
whales ["texas", as.character (1995:1998)]
# Third quesiton
whales["florida", -which(colnames(whales) ==
    "1998")]
```

- Common functions for a numeric matrix
  - $\square$  sum(X) and mean(X)
  - $= \min(X), \max(X), \operatorname{range}(X)$
  - $\blacksquare$  sort(X) and sort(X, decreasing = TRUE)
  - which.min(X) and which.max(X)
- $\blacksquare$  All the above functions treat X as a numeric vector  $\mathbf{c}(X)$

- Basic matrix operations for a numeric matrix
  - $\blacksquare$  Transpose: t(X)
  - Addition and subtraction: X + Y and X Y, where X and Y should have the same dimension
  - Scalar multiplication: c\*X, where  $c \in \mathbb{R}$
  - Multiplication: X \*\*\* Y, where the number of columns in X should equal to the number of rows in Y
  - **E**xponentiation:  $X^c$ , where  $c \in \mathbb{R}$
  - Diagonal matrix: diag(c( $x_1$ , ...,  $x_n$ ))
  - lacktriangle Determinant: det(X), where X is a square matrix
  - Inverse: solve(X), where X is a square matrix, of which determinant is not zero
  - **E**igendecomposition: eigen(X), where X is a square matrix

- Common functions to summarize a numeric matrix column-wise or row-wise
  - $\blacksquare$  rowSums(X) and colSums(X)
  - $\blacksquare$  rowMeans(X) and colMeans(X)
  - apply(X, MARGIN = 1, function) and apply(X, MARGIN = 2, function)
- Mathematical operators and functions are applied entry-wise

```
# Use the whale matrix where rows correspond
    to years and columns corrspond to states
whales <- t(whales)

colMeans(whales)

colSums(whales)

apply(whales, MARGIN = 2, median)
apply(whales, 2, median)</pre>
```

#### Other functions

- dim()
- mode()
- class()
- is.matrix() and as.matrix()
- which(, arr.ind = TRUE)

```
mode(whales)
class(whales)

which(whales == max(whales))
which(whales == max(whales), arr.ind = TRUE)
```

### Data Frame

 A 2-dimension array of variables that have the same type within each column

$$\textbf{X} = \begin{bmatrix} \text{Variable 1} & \text{Variable 2} & \cdots & \text{Variable } p \\ \text{Sample 1} & x_{11} & x_{12} & \ldots & x_{1p} \\ \text{Sample 2} & x_{21} & x_{22} & \ldots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \text{Sample } n & x_{n1} & x_{n2} & \ldots & x_{np} \end{bmatrix}$$

■ The fundamental data structure by most of R functions

### Data Frame

$$\boldsymbol{X} = \begin{bmatrix} & \mathsf{Variable}\,1 & \mathsf{Variable}\,2 & \cdots & \mathsf{Variable}\,p \\ \mathsf{Sample}\,1 & x_{11} & x_{12} & \ldots & x_{1p} \\ \mathsf{Sample}\,2 & x_{21} & x_{22} & \ldots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Sample}\,n & x_{n1} & x_{n2} & \ldots & x_{np} \end{bmatrix}$$

- Number of rows is n, also called the number of observations/samples/subjects
- Number of columns is p, also called the number of features/variables/attributes
- Each column is a numeric, integer, character, factor, or logical vector

## Data Frame Assignment

- Input the data.frame via the function data.frame(x\_name = x, y\_name = y, z\_name = z, ...)
- Convert a matrix X into a data frame via the function
  - $\blacksquare$  data.frame(X)
  - melt(X) in the package reshape2

# Data Frame Assignment

```
X <- data.frame(whales)
install.packages("reshape2")
library(reshape2)

X <- melt(whales)
X <- melt(t(whales))</pre>
```

### Data Frame Name

- Name the variables in a data frame via the function names(X) and colnames(X)
- Name the samples in a data frame via the function rownames (X)
  - Not recommended
  - Let the sample identity number be a variable
- Automatic coercion to character
- Always ensure the completeness of the data

## Data Frame

```
data_whales <- melt(whales)
names(data_whales) <- c("year", "state", "
    amount")</pre>
```

### Data Frame Entries Access

- Single entry access: As the same as matrix
- Row access: As the same as matrix
- Column access: As the same as matrix, and
  - X\$variable\_name
  - Access a single entry of a specific variable via X\$variable\_name[i], where i is an integer between 1 and n

# Data Frame Management

- Sample
  - Delete a sample via  $X \leftarrow X[-i,]$
  - Add a sample via  $X \leftarrow \text{rbind}(X, x)$
- Variable
  - Delete a variable via  $X \leftarrow X[, -j]$
  - Add a variable via  $X \leftarrow cbind(X, x)$  or  $X$x_name \leftarrow x$

- Common functions for summarize a data frame
  - $\blacksquare$  str(X)
  - summary(X)
  - $\blacksquare$  head(X)
  - tail(X)
- Most functions for a matrix will be also applicable for a data frame
  - Be aware of data type

## Data Frame

```
str(data_whales)
summary(data_whales)
head(data_whales)
tail(data_whales)
```

### Dataset

- A set of numbers, characters, and logical values after a data collection process
- A variable is some measurement or characteristic of an item of interest

# Number System

- Data is information in digital form that can be transmitted or processed
- The number system



# Complex Numbers

- The set of  $\{a+bi\}$ , where  $a,b \in \mathbb{R}$  and  $i^2=-1$ 
  - Real part: a
  - Imaginary part: b
- If b=0, then the complex number reduces to a real number, of which value is a
- Define a compelx number in R via
  - a + bi
  - The function complex(real = a, imaginary = b)
- Common functions: is.complex(), as.complex(), Re(), Im()

## Real Numbers

- The set of all rational numbers  $(\mathbb{Q})$  and irrational numbers
  - Rational numbers: The numbers constructed from ratios (or fractions) of integers
  - Irrational numbers: All the real numbers that are not rational numbers, e.g.  $e, \pi, \sqrt{2}$
- Since all values are stored as groupings of bits in a computer, all real numbers in R are their approximate rational numbers with finite decimal representations
- Examine the range of a whole real number in R via
  - .Machine\$double.xmax, which is 2<sup>1024</sup>
  - The infinity: Inf
- Common functions: is.numeric(), as.numeric()

### Continuous Data

- Numeric data: Measurable information that is always collected in number form
- $lue{}$  Continuous data: Can only be described on  $\Bbb R$
- Examples
  - The height of a person in cm
  - The weight of a person in kg or lb
  - Body mass index (BMI): The ratio of the weight to the squared height
  - The age of a person in year, month, day, etc.
  - The learning time for this course per week in minute

# Integer Numbers

- The set of all natural numbers (denoted by  $\mathbb{N}$ ) and their additive inverses
  - Natural numbers:  $\{0, 1, 2, ...\}$ , which is countable
- Examine the range of an integer number in R via
  - .Machine\$integer.max, which is 2<sup>31</sup>
- Common functions: is.integer(), as.integer()

### Discrete Data

- Discrete data
  - Can be counted
  - Can be turned from continuous data by truncating
- For discrete data we expect that samples share values, whereas for continuous data this will be unlikely
- Examples
  - The whole number of age of a person in year
  - The whole number of learning hours for this course per week

## Binary Numbers

- The set of two natural numbers  $\{0,1\}$
- Binary data can take on only two possible states
  - Traditionally labeled as 0 and 1
- Logical data can be viewed as binary data
  - Labeled as false (0) and true (1)
  - as.numeric(TRUE) == 1 and as.logical(1) == TRUE
  - as.numeric(FALSE) == 0 and as.logical(0) == FALSE

## Binary Data

#### Examples

- Adult or Nonadult of a person
- The outcome of an experiment: Failure or success
- The response to a yes-no question: No or yes
- The presence or absence of some feature: Absent or present
- The truth or falsehood of a proposition: False or true

## Categorical Data

- Data that records categories
- Take on exactly K possible states, where  $K \ge 2$
- Assigned numeric indices, e.g.  $\{0, 1, \dots, K-1\}$ 
  - May not be meaningfully ordered
  - Cannot be manipulated as numbers
- A character vector x can be viewed as categorical data
  - The possible states can be obtained via the function unique(x)
  - The number of states K can be obtained via length(unique(x))
- lacksquare A numeric vector x can be turned into as categorical data by binning

## Categorical Data

#### Examples

- The political party that a person vote for: Democratic, republican, etc.
- The blood type of a person: A, B, AB, or O
- The state that a person was born in: One of the 50 states
- The age stages of a person: infant (0,1], toddler [1,3), Preschooler [3,5), Gradeschooler [5,12), teen [12,18), youth [18,30), thirties [30,40), middle-aged [40,60), elderly  $[60,\infty)$

### Ordinal Data

- A special categorical data
  - The categories are naturally ordered
  - The distance between the categories may be unknown
- Take on exactly K possible states, where  $K \ge 2$
- Assigned numeric indices, e.g.  $\{0, 1, \dots, K-1\}$ 
  - Meaningfully ordered
  - May not be manipulated as numbers
- Encode a vector x into a factor vector via the function factor(x, levels = , labels = )
  - Levels: a vector of the unique values (in order) that x might have taken
  - Labels: an optional character vector for the levels

### Ordinal Data

### Examples

- The age stages of a person: Infant (0,1], toddler [1,3), Preschooler [3,5), Gradeschooler [5,12), teen [12,18), youth [18,30), thirties [30,40), middle-aged [40,60), elderly  $[60,\infty)$
- The response to a typical survey question: Dislike, dislike somewhat, neutral, like somewhat, like
- Education levels: Less than 9th grade, high school graduate, associate degree, bachelor's degree, master's degree, doctoral degree

### Ordinal Data

■ Difference between character, factor, and ordered factor

|                | Possible values  | Order                   |
|----------------|------------------|-------------------------|
| Character      | Anything         | Alphabetical            |
| Factor         | Fixed and finite | Fixed with alphabetical |
| Ordered factor | Fixed and finite | Fixed and meaningful    |

## Which Data Type to Choose

- The age of a person:
  - Numeric: In year with finite decimal presentations, e.g. x=20.333
  - Integer: In year with whole numbers, e.g. x = 20
  - Categorical: elderly, gradeschooler, middle-aged, preschooler, stage of infant, teen, thirties, toddler, youth, e.g. x = `youth'
  - Ordinal: Stage of infant, toddler, preschooler, gradeschooler, teen, youth, thirties, middle-aged, elderly, e.g. x = 6
  - Binary: Adult or not, e.g. x = TRUE
- Research subjects
- Data privacy

## Quiz 2

- Decide which data type is most appropriate for each of the following variables collected in a medical experiment:
  - Subject ID, Name, Treatment, Gender, Number of siblings, Address, Race, Eye color, Birth city

## Quiz 2

#### Answers:

- Subject ID: character
- Name: character
- Treatment: (ordered) factor
- Gender: (unordered) factor or logical
- Number of siblings: integer
- Address: character
- Race: (unordered) factor
- Eye color: (unordered) factor
- Birth city: character

## Which Data Type to Use

- What is the average value?
  - Yes: Continuous numeric
  - Make sense but not be an answer: Discrete numeric
  - Make no sense: Are the values naturally ordered?
    - Yes: Ordinal or logical
    - No: Categorical

# Which Data Type to Use in R

- What is the average value?
  - Yes: Numeric
  - Make sense but not be an answer: Integer
  - Make no sense: Are the values naturally ordered?
    - Yes: Factor or logical
    - No: Character