Чисельні методи в інформатиці Лабораторна робота №3

Грищенко Юрій, ІПС-32, 2020

Нагадаємо постановку алгебричних задач на власні значення: для матриці Λ знайти такі λ й $\vec{x} \neq \vec{0}$, що $\Lambda \vec{x} - \lambda \vec{x} = 0$. Відшукання λ зводиться до розв'язання алгебричного рівняння $P_n(\lambda) \equiv \det \left(A - \lambda E\right) = 0$. Воно має n коренів λ_i $i = \overline{1, n}$, яким відновідають власні вектори \vec{x}_i : $A\vec{x}_i = \lambda_i \vec{x}_i$. Задачу пошуку всіх власних значень і векторів називають повною проблемою власних значень. Якщо ж потрібно знайти тільки деякі з власних значень (паприклад, $\lambda_{\max}(A) = \max_{i=1,n} |\lambda_i|$, $\lambda_{\min}(A) = \min_{i=1,n} |\lambda_i|$ та інші), то її називають частковою проблемою власних значень.

$$A = \begin{pmatrix} 5.18 + \alpha & 1.12 & 0.95 & 1.32 & 0.83 \\ 1.12 & 4.28 - \alpha & 2.12 & 0.57 & 0.91 \\ 0.95 & 2.12 & 6.13 + \alpha & 1.29 & 1.57 \\ 1.32 & 0.57 & 1.29 & 4.57 - \alpha & 1.25 \\ 0.83 & 0.91 & 1.57 & 1.25 & 5.21 + \alpha \end{pmatrix}$$

Для мого варіанту α =1,5.

Завдання 1.

Степеневим методом з точністю $\varepsilon=10^{-4}$ знайти максимальне та мінімальне за модулем власні значення та відповідні власні вектори заданої матриці.

Нехай власні значення впорядковано за зростанням їх модулів:

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n|$$
.

мації (underflow). Тому потрюно пормувати вектори д

Алгоритм відшукання λ_i , \vec{x}_i степеневим методом за формулою скалярних добутків (6.1) із нормуванням \vec{x}'' має такий вигляд:

1) задати \vec{x}^{0} ;

2) для
$$k=0,\ 1,\ \dots$$
 обчислити $\vec{e}^k=\frac{\vec{x}^k}{\left\|\vec{x}^k\right\|},\ \vec{x}^{k+1}=A\vec{e}^k,\ \mu_k=\left(\vec{x}^{k+1},\ \vec{e}^k\right).$

3) продовжити процес до виконання умови $|\mu_N - \mu_{N-1}| < \epsilon$, де ϵ — задана точність.

Тоді
$$\lambda_1 \approx \mu_N$$
, $\vec{x}_1 \approx \vec{e}^N$.

Цей алгоритм реалізували на мові Python, використовуючи бібліотеку NumPy.

За 6 ітерацій знаходимо найбільше за модулем власне число та відповідний власний вектор:

10.880243244420626

[0.41548174 0.3021174 0.65540119 0.27759217 0.4790531]

Що приблизно співпадає з результатами алгоритму np.linalg.eig (наведені нижче)

Є декілька способів знаходження найменшого власного числа:

Якщо відоме $\lambda_{\max}(A) = \lambda_1$, то утворимо матрицю $B = \lambda_1 E - A$, де E — одинична матриця. За допомогою степенсвого метода знайде-

мо
$$\lambda_{\max}(B)$$
. Тоді $\lambda_{\max}(B) = \lambda_{\max}(A) - \lambda_{\min}(A)$ й $\lambda_{\min}(A) = \lambda_{\max}(A) - \lambda_{\max}(A)$

За 26 ітерацій знаходимо $\lambda_{\min} = 1.8418565770988433$

Якщо
$$\lambda_{\max}(A) = \lambda_1$$
 невідоме, то утворимо матрицю $B = \|A\|_{\infty} E - A$, де $\|A\|_{\infty} = \max_i \sum_j |a_{ij}|$. Оскільки $\lambda_1 \leq \|A\|_{\infty}$, то $\lambda_{\min}(A) = \|A\|_{\infty} - \lambda_{\max}(B)$.

За 19 ітерацій знаходимо $\lambda_{\min} = 1.8393337241812056$

Також найменше власне число та відповідний власний вектор можна знайти, використавши обернену матрицю:

спектрального кольца). Для этого достаточно степенной метод применить к обратной матрице A^{-1} , т.е. получить $|\lambda_{\max}(A^{-1})|$ и взять обратную величину:

$$\lambda_{\min}(A) = \frac{1}{\lambda_{\max}(A^{-1})}.$$

Соответствующий собственный вектор x^n будет

$$x^n \approx (A^{-1})^k y^{(0)} [\lambda_{\min}(A)]^k, \quad (y^{(0)})^T = (11 \dots 1),$$

За 8 ітерацій знаходимо λ_{min} = **1.838038567946642** та відповідний власний вектор:

 $[-0.\overline{1874288} \quad 0.89981521 \quad -0.3218449 \quad 0.2101469 \quad -0.08635491]$

Завдання 2.

Методом обертання Якобі з точністю ε = 10^{-4} знайти всі власні значення та відповідні власні вектори заданої симетричної матриці.

Розв'язання новної проблеми власних значень. Для симстричної матриці $A = A^{\mathsf{T}}$ можна застосовувати ітераційний метод обертання (Якобі). Він полягає у виконанні ортогональних перетворень вихідної матриці A, які зводять її до діагонального вигляду $\Lambda = UAU^{\mathsf{T}}$, $\Lambda = \mathrm{diag}(\lambda_i)$. $U^{\mathsf{T}} = U^{-\mathsf{T}}$, де λ_i — власні значення матриці A.

Побудуємо послідовність матриць $\{A_k\}$, що збітається до Λ , за правилом $A_{t+1} = U_k A_k U_k^{\dagger}$, $A_0 = A$, де

$$U_{k} = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \cos \varphi & \dots & \sin \varphi & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} j$$

елементарна матриця обертання. Її будують за таким алгоритмом. Виберемо в матриці A_k найбільший за модулем недіагональний елемент a_{ii}^k . Тоді

$$a_{ij}^{k+1} = a_{ij}^{k} \cos(2\varphi_{k}) + \frac{1}{2}(a_{,ij}^{k} - a_{ii}^{k}) \sin(2\varphi_{k}).$$

Виберемо φ_k так, щоб $a_{ij}^{k+1}=0$. Тоді $\operatorname{tg}\left(2\varphi_k\right)=\frac{2a_{ij}^k}{a_{ii}^k-a_{ji}^k}\equiv h_k$. Отже, $\varphi_k=\frac{1}{2}\operatorname{arctg}h_k$. Якщо $a_{ii}^k=a_{jj}^k$, то $\varphi_k=\frac{\pi}{4}$.

Нехай
$$t(A_k) = \sum_{\substack{i,j=1\\i\neq j}}^n a_{ii}^2$$
. Виконується рівність $t(A_{k+1}) = t(A_k) - 2(a_{ij}^k)^2$.

Отже, ітераційний метод Якобі збігається зі швидкістю геометричної прогресії, знаменник якої q залежить від n. Ітераційний процес прининяється, якщо виконано умову $t(A_N) \le \varepsilon$, де ε — точність обчислення власних значень. j-й стовпець помера матриці $\bar{U} = \prod^N U_k$

дає наближення до власного вектора, що відновідає λ_j .

За 16 кроків знаходимо такі власні числа:

[-0.11631909 -0.08619722

[6.1626021 1.83487542 10.88064944 2.38310941 5.60876362]

I відповідні власні вектори (по стовпчиках):
[[0.85940814 -0.18737756 0.4104302 -0.17382114 -0.16625452]
[-0.03144835 0.90045447 0.30354031 -0.2775756 -0.13786882]
[-0.48412205 -0.32278437 0.65815557 -0.03590845 -0.476422]
[0.11191231 0.20603806 0.27796048 0.92956339 0.06061219]

Результати, отримані в обох завданнях, приблизно співпадають з результатами вбудованого в NumPy алгоритму np.linalg.eig:

0.47851808 -0.16541008

0.85011756]]

[10.88067536 1.83485572 2.38309792 6.16260149 5.60876952]

```
[[ 0.41116707
              0.18677373
                          0.17366132 -0.85925229 -0.16608574]
 [ 0.30244399 -0.90087132
                          0.27770445
                                      0.03156313 -0.137268
 [ 0.65850416  0.32171141
                          0.03592527
                                      0.48438034 -0.47640225]
 [ 0.27692596 -0.2066338
                         -0.92982757 -0.11181509
                                                  0.05943531]
 [ 0.47869986  0.08573614
                          0.16386593
                                      0.11645752
                                                  0.85034191]]
```