数值分析实验报告 - Code 7

Chase Young

2024年4月15日

1 实验目的

编写利用复化梯形公式和复化 3 点 Gauss 积分公式计算积分的通用程序,并计算下列积分:

(1)
$$I_1 = \int_0^1 e^{-x^2} dx$$

(2)
$$I_2 = \int_0^4 \frac{1}{1+x^2} \mathrm{d}x$$

(3)
$$I_3 = \int_0^{2\pi} \frac{1}{2 + \cos x} dx$$

取节点 x_i , i = 1, 2, ..., N, N 为 2^k , k = 1, 2, ..., 7, 给出误差表格, 并计算收敛阶。

2 实验方法

对于一般区间 [a,b] 上的复化梯形公式为:

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{1}{2} \sum_{i=1}^{N} (x_i - x_{i-1}) [f(x_{i-1}) + f(x_i)]$$

复化 3 点 Gauss 积分公式为:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{9} \sum_{k=0}^{2n-1} \left(5 \left(f\left(\frac{x_{k} + x_{k+1}}{2} - h\sqrt{\frac{3}{5}} \right) + f\left(\frac{x_{k} + x_{k+1}}{2} + h\sqrt{\frac{3}{5}} \right) \right) + 8f\left(\frac{x_{k} + x_{k+1}}{2} \right) \right)$$

利用上述公式即可计算上述积分的近似值。

3 实验结果

使用复化梯形公式计算得到的误差以及收敛阶如表 1, 2, 3所示。 观察上述结果,可知

- (1) 复化梯形公式的收敛阶数为 2;
- (2) 相比复化梯形公式,复化 Gauss 积分公式具有更高的收敛阶。其中收敛阶在 N 较大时的混乱情况是由已经达到机器精度导致的。

\overline{N}	复化梯形公式误差	收敛阶	复化 Gauss 公式	收敛阶
2	1.54539 e-02	-	3.61106e-08	-
4	3.84004 e-03	2.00878	4.02153 e-10	6.48853
8	9.58518e-04	2.00224	5.74241e-12	6.12994
16	2.39536e-04	2.00056	8.75966e-14	6.03464
32	5.98782 e- 05	2.00014	1.44329e-15	5.92344
64	1.49692 e-05	2.00004	3.33067e-16	2.11548
128	3.74227e-06	2.00001	5.55112e-16	-0.73697

表 1: 复化梯形公式和复化 Gauss 积分公式计算 I_1

\overline{N}	复化梯形公式误差	收敛阶	复化 Gauss 公式	收敛阶
2	5.53307e-02	-	1.22378e-03	-
4	3.37104 e-05	10.68067	7.57142e-07	10.65849
8	5.62127 e-09	12.55001	5.30381e-12	17.12317
16	1.62798e-09	1.78781	1.05915 e-13	5.64605
32	4.24848e-10	1.93807	1.77636e-15	5.89785
64	1.07406e-10	1.98388	0.00000e+00	Inf
128	2.69275 e-11	1.99592	1.11022e-16	-Inf

表 2: 复化梯形公式和复化 Gauss 积分公式计算 I_2

\overline{N}	复化梯形公式误差	收敛阶	复化 Gauss 公式	收敛阶
2	5.61191e-01	-	6.11656 e-03	-
4	3.75927e-02	3.89997	7.38328e-04	3.05039
8	1.92788e-04	7.60729	4.32607 e-06	7.41506
16	5.12258e-09	15.19979	1.15024 e-10	15.19884
32	0.00000e+00	Inf	2.66454 e-15	15.39769
64	2.22045 e-15	-Inf	1.33227 e-15	1.00000
128	8.88178e-16	1.32193	5.32907 e-15	-2.00000

表 3: 复化梯形公式和复化 Gauss 积分公式计算 I_3