```
1/9/1
DIALOG(R) File 351: Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.
013476061
             **Image available**
WPI Acc No: 2000-648004/200063
XRPX Acc No: N00-480272
  Component transporter system esp. for transfer press for large components
  has stationary drive motor for pivot/transporter arm, and toothed rack
  transmitter parts
Patent Assignee: MUELLER WEINGARTEN AG (MUEL-N)
Inventor: HARSCH E; REICHENBACH R
Number of Countries: 021 Number of Patents: 002
Patent Family:
Patent No
              Kind
                     Date
                             Applicat No
                                            Kind
DE 10010079
              A1 20000921 DE 1010079
                                                 20000302 200063 B
                                             Α
WO 200054904 A1 20000921 WO 2000DE651
                                             Α
                                                 20000302 200063
Priority Applications (No Type Date): DE 1011796 A 19990317
Patent Details:
Patent No Kind Lan Pg
                       Main IPC
                                     Filing Notes
DE 10010079 A1 11 B21D-043/05 WO 200054904 A1 G B21D-043/10
   Designated States (National): CA CN US
   Designated States (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LU
   MC NL PT SE
Abstract (Basic): DE 10010079 A1
        NOVELTY - A press etc. has a processing station with independent
    transporter for a component. The transporter has a drive system for a
   pivot resp. transporter arm (13). The system has one or more stationary
    drive motors (8,9), each acting on a movement transmitter part (10,11).
    Regulation of direction and RPM resp. standstill of the motors generate
    a coordinated movement of the transmitter parts, and a movement
    superposition is used to adjust a programmable movement curve of the
   pivot/transporter arm. The arm is born on a slide (23) with linear
    guide (24), and has a drive lever. The transmitter parts consist of a
    toothed rack drive (8-12).
        USE - Workpiece transportation between processing stations in
    press, press train, etc.
        ADVANTAGE - Simple means to create highly flexible and precise
    transportation system, even safe support for generated forces and
    momentum.
        DESCRIPTION OF DRAWING(S) - Figure shows transporter system.
        drive motors (8,9)
        transmitter parts (10,11)
        transporter arm (13)
        slide (23)
        linear guide (24)
        pp; 11 DwgNo 3/6
Title Terms: COMPONENT; TRANSPORT; SYSTEM; TRANSFER; PRESS; COMPONENT;
  STATIONARY; DRIVE; MOTOR; PIVOT; TRANSPORT; ARM; TOOTH; RACK; TRANSMIT;
Derwent Class: P52; P56; P71; Q35
International Patent Class (Main): B21D-043/05; B21D-043/10
International Patent Class (Additional): B23Q-007/00; B30B-015/30;
 B65G-047/90
File Segment: EngPI
```


B 30 B 15/30 B 65 G 47/90 B 23 Q 7/00

DEUTSCHES
PATENT- UND
MARKENAMT

② Aktenzeichen: 100 10 079.1
 ② Anmeldetag: 2. 3. 2000
 ③ Offenlegungstag: 21. 9. 2000

(66) Innere Priorität:

199 11 796.9

17.03.1999

Müller Weingarten AG, 88250 Weingarten, DE

(74) Vertreter:

Patentanwälte Eisele, Dr. Otten, Dr. Roth & Dr. Dobler, 88212 Ravensburg

© Erfinder

Harsch, Erich, 88250 Weingarten, DE; Reichenbach, Rainer, 88281 Schlier, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- ⑤ Transportsystem
- (3) Eine insbesondere für Großteilstufenpressen vorgesehenes Transportsystem zeichnet sich durch eine Bauform geringer Breite aus und ermöglicht trotzdem große Transportschritte. Durch die Regelung von 2 Antrieben im Drehsinn zueinander können alle beliebigen Fahrkurven in einer Ebene realisiert werden. Durch einen einfachen Aufbau wird eine kostengünstige Lösung erreicht für ein hochdynamisches Transportsystem.

10

Beschreibung

Die Erfindung betrifft ein Transportsystem zum Transportieren von Werkstücken aus einer Bearbeitungsstation in die nachfolgende Bearbeitungsstation einer Presse, Pressenstraße oder dergleichen nach dem Oberbegriff des Anspru-

Stand der Technik

Erfordert die Herstellung eines Werkstückes mehrere Arbeitsoperationen, so werden zur wirtschaftlichen Fertigung des Blechteils die erforderlichen Einzeloperationen in einer sogenannten Transferpresse oder Pressenstraße durchgeführt. Die Anzahl der Werkzeuge entspricht dann der Anzahl der Arbeitsstufen, die zur Herstellung erforderlich sind. Derartige Stufen- oder Transferpressen besitzen eine Transporteinrichtung, mit welcher die Werkstücke von einer Arbeitsstation zur nächsten weitertransportiert werden.

Im Regelfall sind heute solche Transporteinrichtungen 20 mit Tragschienen ausgerüstet die sich durch die gesamte Länge der Umformmaschine erstrecken. Zum Transport der Teile sind die Tragschienen mit Greifer- oder Halteelementen bestückt. Unterschieden wird dabei, je nach Bewegungsablauf, zwischen einem mit Saugertraversen bestückten 25 Zwei-Achstransfer oder einem mit Greiferelementen versehenen Drei-Achstransfer. Als Zusatzbewegung kann auch cine Verschwenkung zur Lageveränderung des Teiles während dem Transportschritt erforderlich sein.

Die Transferbewegung wird über Kurven eingeleitet, die 30 über Bewegungsübertragungselemente mit dem Stößelantrieb zwangssynchronisiert sind. Die Herstellung von insbesonders großflächigen Teilen führte zur Entwicklung der Großteilstufenpressen in immer größeren Dimensionen bezogen auf die Umformkraft und die Transportwege. Werk- 35 zeugabstände in einer Größenordnung von 3000 mm sind heute durchaus üblich und damit sind auch entsprechende Transportschritte erforderlich.

Als Ergebnis dieser Entwicklung stehen die zu beschleunigenden und abzubremsenden Massen der Transfersysteme in einem völligen Gegensatz zu den geringen Massen der zu transportierenden Teile.

Ein weiterer Nachteil ist der starre Bewegungsablauf der durch die Kurvenantriebe vorgegeben wird. Bei Umrüstung auf ein neues Werkstück müßten in der Regel auch die 45 Transferkurven angepaßt werden.

Um diese aufgezeigten Nachteile zu vermeiden befassen sich jetzt Schutzrechtsanmeldungen mit der Ablösung des bisherigen Transfersystems durch eine entsprechende Anzahl von zwischen den Bearbeitungsstufen angeordnete, mit 50 Eigenantrieb ausgerüstete Transfersysteme. Eine solche Anordnung ist in der EP 0 672 480 B1 offenbart. An den Ständern angeordnete Transfersysteme sind mit einer Anzahl von Antrieben ausgerüstet, die in Wirkverbindung mit den Bewegungsübertragungsmitteln den Teiletransport ausfüh- 55 schen Welle- erfolgen. ren. Als Besonderheit ist das System sowohl als Zwei-Ach-Stransfer mit Saugerbalken, als auch als Drei-Achstransfer mit Greifern umrüstbar. Allerdings erfordert dieser universelle Einsatz einen entsprechenden baulichen Aufwand.

Ebenfalls in jedem Ständerbereich angeordnet ist eine in 60 der DE 196 54 475 A1 offenbarte Transfereinrichtung. In dieser Anmeldung werden für den Antrieb Elemente die als -Parallelkinematik- bekannt sind verwendet. In Abwandlung dieser bekannten Bewegungselemente wird jedoch keine teleskopartige Verlängerung der Antriebsstäbe vorge- 65 nommen, sondern bei konstanter Stablänge werden die Anlenkpunkte verändert und damit die Transportbewegungen erreicht. Die die Kräfte bzw. Drehmomente aufnehmenden

Anlenkpunkte sind im Abstand zueinander nicht konstant und insbesondere wenn diese Punkte aufgrund der gewünschten Fahrkurve dicht beieinander liegen können Abstützungsprobleme auftreten. Zur Erhöhung der Systemsteifigkeit werden auch weitere zueinander parallele Lenker vorgeschlagen die untereinander mit Quertraversen verbunden werden. Zur Erreichung eines funktionssicheren Transportes von großflächigen Teilen wird das vorgeschlagene System entsprechend aufwendig.

Aufgabe und Vorteil der Erfindung

Der Erfindung liegt die Aufgabe zugrunde mit einfachen Maßnahmen ein hochflexibles und präzises Transportsystem zu schaffen, welches unabhängig von der jeweiligen Transportlage eine gleichmäßig sichere Abstützung der auftretenden Kräfte und Momente gewährleistet.

Diese Aufgabe wird ausgehend von einem Transportsystem nach dem Oberbegriff des Anspruch 1, durch die kennzeichnenden Merkmale des Anspruch 1 gelöst. In den Unteransprüchen sind vorteilhafte und zweckmäßige Weiterbildungen des Transportsystems angegeben.

Der Erfindung liegt der Gedanke zugrunde, daß durch Drehzahl- und Drehsinnregelung von 2 Antrieben zueinander und in Wirkverbindung mit Bewegungsübertragungsmittel beliebige zweiachsige Bewegungen in horizontaler und/oder vertikaler Richtung möglich sind. 2 hochdynamische Antriebe werden dabei durch einfache Regelvorgänge, die den Drehsinn und die Drehzahl beeinflussen, geregelt. Diese Regelung erzeugt durch Bewegungsüberlagerung in der X- und Y-Achse jede programmierte Fahrkurve in einer

Wird als Bewegungsübertragungsmittel ein Zahnstangenoder Zahnriementrieb verwendet, wobei die Einleitung der Fahrkurve auf einen Schwenk- bzw. Transportarm über ein Zahnrad erfolgt, so ist damit auch durch den unveränderbaren Zahnraddurchmesser eine gleichmäßige Drehmomentenabstützung gewährleistet. Die jeweilige Bewegungsposition führt zu keinerlei Veränderung des wirksamen Hebelarms zur Drehmomenteneinleitung bzw. Abstützung und gewährleistet damit einen sicheren und präzisen Teiletrans-

Je nach Aufgabenstellung kann das Transportsystem in einfacher Ausführung oder in zweifacher Ausführung spiegelbildlich zueinander jeweils quer zur Pressentransportrichtung im Ständerbereich angebracht werden. Bei paarweisem Einsatz sind die beiden Transportsysteme z. B. mit einem die Teile tragenden Saugerbalken verbunden. Natürlich kann bei einer Doppelteilfertigung auch jede Transporteinrichtung über einen eigenen einseitig abgestützten Saugerbalken verfügen und die Transportsysteme unabhängig voneinander angetrieben werden. Eine Synchronisation der Teiletransporteinrichtung mit dem Pressenstößel kann mit bekannten elektronischen Mitteln wie der sog. -elektroni-

Im z. B. Simulationsbetrieb ermittelten Fahrkurven der einzelnen Transportstufen können flexibel gestaltet werden, insbesondere in Abhängigkeit der Teileumformung und der Stößellage. Als Vorteil ergeben sich daraus eine optimale Nutzung der Freiheitsgrade und durch zeitversetztes Umformen in den einzelnen Pressenstufen eine günstige Verteilung

der Pressenantriebsenergie.

Bei Verzicht auf eine Zwischenablage oder aus Teiletransportgründen kann als zusätzliche Bewegung ein schwenken der Saugertraverse vorgesehen werden. Durch den einfachen Aufbau der vorgeschlagenen Transporteinrichtung ist der Einbau der zusätzlichen Schwenkbewegung ohne Probleme und bei nur geringer Masseveränderung

Die Anbaulage des Transportsystem ist variabel und kann z. B. oberhalb, als auch unterhalb der Teiletransportebene erfolgen. Maßnahmen zum Gewichtsausgleich, z. B. durch den Anbau von Zylindern, sowohl an dem eigentlichen Fahrschlitten, als auch am Transportarm führen zu einer Entlastung der Antriebe und der Bewegungsübertragungsmittel. Der durch den konstruktiven Aufbau der Presse vorgegebene Abstand der Umformstufen wird durch die schmale Bauform des Transportsystems nicht vergrößert. 10 Anderseits können trotz dieser platzsparenden Bauform große Transportwege problemlos mit geringer Masse und großer Präzision ausgeführt werden.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer Prinzipdar- 15 stellung und von Ausführungsbeispielen:

Die 7 Figuren zeigen:

Fig. 1 Teilansicht einer Großteilstufenpresse mit in Ständerbereich angeordnete Transfercinrichtungen

Fig. 2 Prinzipbild des Transportsystems mit zugeordneter 20 Bewegungstabelle

Fig. 3 Ausführungsbeispiel des Transportsystem

Fig. 4 Variante von Fig. 3 mit anderem Anlenkpunkt

Fig. 5 Ein weiteres Ausführungsbeispiel mit Verzahnungsgetriebe

Fig. 6 Ein Ausführungsbeispiel mit Zahnriementrieb

Fig. 7 Variante von Fig. 5

Beschreibung der Ausführungsbeispiele

In Fig. 1 sind Bearbeitungsstationen bzw. Umformstufen einer Großteilstufenpresse 1 dargestellt. Die erfindungsgemäße Transporteinrichtung 2 ist am Pressenständer 3 angeordnet. Beispielhaft ist das Transportsystem sowohl oberhalb als auch unterhalb der Transportebene montiert. In ver- 35 einfachter Darstellung sind unterschiedliche Transportstellungen erkennbar. So findet in Umformstufe 4 die Teileentnahme statt während in Umformstufe 5 der das Werkzeugoberteil 6 tragende Stößel 7 nach erfolgter Umformung vertikal aufwärts fährt. Das zugeordnete Transportsystem 2 befindet sich in seiner Parkstellung. Die Ausführung des Schwenk- bzw. Transportarmes 13 kann in den verschiedensten Formen erfolgen, wie z. B. in der EP 0693 334 A1 des Anmelders angegeben ist.

Die Bewegungsabläufe des Transportsystems sind aus 45 Fig. 3 beschriebenen Ausführungsbeispiel. Fig. 2 zu ersehen. Das Prinzipbild zeigt 2 Antriche A1, A2 die Zahnräder 8, 9 in eine Drehbewegung versetzen oder in Ruhestellung halten. Diese Zahnräder 8, 9 wirken auf Zahnstangen 10, 11 die durch den Zahnradantrieb verursacht eine entsprechende vertikale Bewegung ausführen.

Der untere Teil der Zahnstangen 10, 11 wirkt gemeinsam auf das Zahnrad 12. Mit diesem Zahnrad 12 ist der Transportarm 13 verbunden mit dem gemeinsamen Bewegungsmittelpunkt 26. Die Bewegungsabläufe des Transportarmes 13 sind aus Tabelle 14 zu ersehen. Dargestellt sind jedoch 55 nur die Bewegungen die sich im Antriebsfall durch gleiche Drehzahlen der Antriebe A1, A2 ergeben.

Wenn z. B. beide Antriebe A1, A2 mit gleicher Drehzahl rechts drehen, so bewirkt dieses über den Antriebsstrang (8, 9, 10, 11) ein rechts drehen des Zahnrades 12 und damit 60 auch eine rechtsgerichtete Schwenkbewegung des mit Zahnrad 12 besestigten Transportarm 13. In der vertikalen (Y-)Achse findet in diesem Fall keine Bewegung statt. Eine Bewegungsüberlagerung, d. h. schwenken und vertikale Bewegung, wird z. B. durch Stillstand von A1 und drehen von A2 65 erreicht. Wie aus der Tabelle 14 zu ersehen, ist durch entsprechende Drehung oder Stillstand nur der Antriche A1, A2 jede beliebige programmierbare Fahrkurve in einer

3 *

Ebene erreichbar. Große Transportwege sind mit dem Vorgeschlagenen problemlos ausführbar. Die identischen Bewegungsabläufe sind natürlich auch mit anderen Antriebskomponenten erreichbar. Werden z. B. Zahnräder 8, 9 und Zahnstangen 10, 11 durch getrennt angetriebene Zahnriemen mit entsprechenden Zahnriemenscheiben ersetzt, so können exakt die gleichen Bewegungen gefahren werden.

Ein Ausführungsbeispiel zeigt Fig. 3.

Der aus Fig. 2 bekannte Antriebsstrang ist mit gleichen Positionsnummern versehen. Als weiterer Antrieb ist ein Schwenkantrieb 15 vorgesehen der über Parallelogrammgelenke 16 die am Ende des Transportarmes 13 befestigte Saugertraverse 17 um die Mittelachse 18 schwenken kann. Diese Bewegung ist dann erforderlich, wenn das durch die Saugnäpfe 19 gehaltene Teil 20 während der Transportbewegung in Pressendurchlaufrichtung 21 eine Lageveränderung erhalten soll. Diese Lageänderung dient dazu unterschiedliche Situationen bei Teileentnahme und Teileeinlegen zu ermöglichen. Statt einer Gelenkeinheit können natürlich auch andere Bewegungsübertragungsmittel wie z. B. ein Zahnriementrieb verwendet werden. Zur Reduzierung der bewegten Massen kann der Schwenkantrieb 15 auch stationär, z. B., zwischen den Antrieben A1, A2 angebracht werden. Die gewünschten Bewegungen der Saugertraverse 17 würden dann über eine Zahnstange auf ein Zahnritzel im Bewegungsmittelpunkt 26 eingeleitet. Ist keine zusätzliche Verschwenkung der Saugertraverse 17 vorgesehen, kann der Schwenkantrieb 15 entfallen.

Zur Entlastung der Antriebselemente ist mit dem Transportarm 13 ein Gewichtsausgleichszylinder 22 vorgesehen. Alle dem Transportarm 13 angehörigen Bauteile sind gemeinsam auf einem Schlitten 23 montiert. Der Schlitten 23 ist in einem Linearführungssystem 24 geführt und gelagert. Im Schlitten 23 befindet sich auch eine nicht näher dargestellte Lagerung der Zahnstangen 10, 11.

Durch die vorgeschlagene Anbauform ist es möglich Schlitten 23 und Führung 24 in gewünschter Steifigkeit und Länge auszuführen, ohne den Abstand der Umformstufen und damit den Transportschritt zu vergrößern. Zur Reduzierung der Antriebsleistung der Antriebe A1, A2 und zur Entlastung der zugehörigen Getriebeelemente kann Gewichtsausgleichszylinder 25 dienen der mit Schlitten 23 verbunden ist.

Fig. 4 zeigt eine Variante der Darstellung von dem unter

Geändert wurde insbesondere der Transport- bzw. Schwenkarm 13 der jetzt ausgehend von dem Bewegungsmittelpunkt 26 im Punkt 27 des Parallelogramms 16 angreift. Bevorzugt liegt der Punkt 27 auf der halben Strecke der Parallelogrammgelenke 16 und auch die Strecke 26-27 entspricht dieser halben Strecke. Durch diese Geometrie liegt die Mitte von Punkt 26 und die Mitte der Parallelogramm Querstrebe 20 auf einer waagerechten Linie, wodurch auch ein waagerechter Fahrweg gewährleistet bzw. möglich ist. Wie bereits in der Prinzipfigur 2 dargestellt sind mit dem Antriebssystem jedoch auch alle beliebigen Fahrkurven in der Ebene realisierbar. Der Hubweg des Schlitten 23 entspricht bei dieser Anordnung dem Hebehub der jeweiligen Fahrkurve.

Im dargestellten Beispiel wirkt der Transportarm 13 wie ein Schwenkantrich auf das die Saugertraverse 17 tragende Parallelogramm 16.

Zur Erzielung der gewünschten Freiheitsgrade ist eine weitere Linearführung 29 vorgesehen in dem der Schlitten eine Vertikalbewegung aussührt. Am Schlitten 30 ist der obere Teil 31 des Parallelogramm 16 angelenkt. In Wirkverbindung mit Anlenkpunkt 31 kann ein Antrich 32 vorgesehen werden der durch eine Schwenkbewegung, die über das

Parallelogramm 16 auf Saugertraverse 17 übertragen wird, eine Teileverschwenkung ermöglicht. An Stelle des Parallelogramm 16 kann auch ein Einfachhebel verwendet werden und die Lage der Saugertraverse 17 würde über einen Schwenkantrieb in Verbindung mit einem Zahnriemenantrieb entsprechend geregelt.

Die in Fig. 4 dargestellte Lösung kann mit geringen Massen ausgeführt werden und führt gegebenenfalls durch Auftrennung der Vertikalbewegung für Zahnstangentrieb und Parallelogramm zu einer günstigen Anbausituation. Die vor- 10 geschlagenen Hebelverhältnisse ergeben sehr einfach zu programmierende Fahrkurven.

Fig. 5 zeigt ein Ausführungsbeispiel mit einem Linearantrieb 40. Auf diese Zahnstange 33 wirkt ein Antrieb 34 durch ein Zahnrad 35. Die Zahnstange 33 ist mit Schlitten 15 36 verbunden und bei einer Drehbewegung des Antriebes 34 führt der Schlitten 36 eine Vertikalbewegung aus. Auf dem Schlitten 36 befindet sich eine Schwenkeinheit bestehend aus Antrieb 37, Ritzel 38 und Zahnsegment 39. Aufgrund der gewünschten und programmierten Fahrkurve findet die 20 5 Umformstufe erforderliche Regelung von Linearantrieb 40 und Schwenkantrieb 37 statt. Eine zusätzliche Teileverschwenkung während dem Transportschritt kann durch Schwenkantrieb 41 durch Einwirkung auf das Parallelogramm in bereits erläuterter Weise erfolgen. Insbesondere die Ausführung des Li- 25 nearantriebes ist bei Fig. 5 nur beispielhaft dargestellt und kann durch andere handelsübliche Komponenten wie Kugelrollspindel, Linearmotor usw. ersetzt werden.

Anstelle der Zahnstangentriebe ist in Fig. 6 die bereits unter Fig. 2 erwähnte Ausführung mit Zahnriementriebe dar- 30 gestellt. Mit den Antrieben A1, A2 sind Zahnriemenscheiben 42, 43 verbunden, die als Bewegungsübertragung auf Zahnriemen 44, 45 wirken. Die Zahnriemen 44, 45 tragen doppelseitig das Zahnprofil, wodurch das äußere Zahnprofil dann auf Zahnrad 12 einwirkt. Der komplette Zahnriemen- 35 trieb besteht dann noch aus Umlenk- und Führungszahnriemenscheiben 46, 47 und 48.

Der durch die Antriebe A1, A2 in Wirkverbindung mit dem Zahnriementrieb auf den Transportarm 13 erreichte Bewegungsablauf ist völlig identisch, wie insbesondere unter 40 Fig. 2 dargestellt.

Eine weitere Ausführungsvariante wird in Fig. 7 vorgeschlagen. Zur Erzielung der gewünschten Fahrkurven ist ein Hebeantrieb 49 und ein Schwenkantrieb 50 in gemeinsamer bewegungsüberlagerter Funktion oder als einzel angetrie- 45 bene Bewegung vorgesehen. In günstiger Anordnung ist der Hebeantrieb 49 stationär, z. B. am Pressenständer, angebracht, wodurch die zu beschleunigenden Massen reduziert werden. Beispielhaft wirkt der Hebeantrieb 49 über ein Zahnritzel 51 auf eine Zahnstange 52. Die translatorische 50 Bewegung überträgt die Zahnstange 52 auf einen Schlitten 53. Schlitten 53 ist über Führungselemente 54 in Führung 55 vertikal verschiebbar gelagert.

Auf Schlitten 53 ist Schwenkantrieb 50 befestigt der über Zahnritzel 56 und Zahnrad 57 den Schwenkhebel 13 an- 55 treibt. Der Schwenkhebel 13 ist ähnlich wie in Fig. 4 an dem Antriebshebel 59 angelenkt und es gelten auch die in Fig. 4 beschriebenen bevorzugten geometrischen und kinematischen Verhältnisse.

Die Aufnahme für das eigentliche Werkstückspannsystem, z. B. Saugerbalken oder Greifer, ist mit 60 bezeichnet. Sollte eine Lageveränderung des Werkstückes, aufgrund unterschiedlicher Entnahme- und Einlegepositionen, erforderlich sein ist die Aufnahme 60 um den Drehpunkt 61 schwenkbar. Die Schwenkbarkeit wird geregelt über den 65 Antrieb 62 der in Wirkverbindung mit Riemenscheibe 63 und Zahnriemen 64 die mit der Schwenkachse verbundene Riemenscheibe 65 antreibt. Der in Führungen 55 vertikal

verfahrbare Schlitten 66 dient zur Lagerung des Antriebshe bels 59 und des Antriebes 62.

Die Erfindung ist nicht auf das beschriebene und darge stellte Ausführungsbeispiel beschränkt. Sie umfaßt auch all fachmännischen Ausgestaltungen im Rahmen des geltende Anspruches 1.

Möglich ist auch die Verwendung von Verbindungswel len, ausgehend von den jeweiligen Antriebsdrehpunkter quer zur Teiletransportrichtung um 2 Transportsysteme me chanisch miteinander zu kuppeln zum Zwecke der Synchro nisation und/oder der Möglichkeit die Zahl der Antriebe z reduzieren.

Bezugszeichenliste

- 1 Großteilstufenpresse
- 2 Transportsystem
- 3 Pressenständer
- 4 Umformstufe
- 6 Werkzeugoberteil
- 7 Stößel
- 8 Zahnrad links
- 9 Zahnrad rechts
- 10 Zahnstange links 11 Zahnstange rechts
- 12 Zahnrad
- 13 Transportarm
- 14 Tabelle
- 15 Schwenkantrieb
 - 16 Parallelogrammgelenk
 - 17 Saugertraverse
 - 18 Drehpunkt
 - 19 Saugnäpfe
- 20 Teil
 - 21 Pressendurchlaufrichtung
 - 22 Gewichtsausgleich
 - 23 Schlitten
 - 24 Linearführungssystem
- 25 Gewichtsausgleichzylinder
 - 26 Bewegungsmittelpunkt
 - 27 Parallelogrammpunkt
 - 28 Parallelogramm Querstrebe
 - 29 Linearführung
- 30 Schlitten
- 31 Parallelogramm
- 32 Schwenkantrieb
- 33 Zahnstange
- 34 Antrieb
- 35 Zahnrad
 - 36 Schlitten
 - 37 Schwenkantrieb
 - 38 Ritzel
- 39 Zahnsegment
- 40 Lincarantrieb
 - 41 Schwenkantrieb
 - 42 Zahnriemenscheibe
 - 43 Zahnriemenscheibe
 - 44 Zahnriemen
- 45 Zahnriemen
- 46 Zahnriemenscheibe
- 47 Zahnriemenscheibe
- 48 Zahnriemenscheibe
- 49 Hebeanurieb
- 50 Schwenkantrieb
- 51 Zahnritzel
- 52 Zahnstange
- 53 Schlitten

5

10

15

54 Führungselemente

55 Führungen 56 Zahnritzel

57 Zahnrad

le

n

l-

a,

3-

JL.

59 Antriebshebel

60 Aufnahme

61 Drehpunkt

62 Antrieb

63 Riemenscheibe

64 Zahnriementrieb

65 Riemenscheibe

66 Schlitten

Patentansprüche

1. Einrichtung zum Transportieren von Werkstücken in einer Presse, Pressenstraße, Großteil-Stufenpresse oder dergleichen, wobei eine Bearbeitungsstation (4, 5) wenigstens eine, das Werkstück transportierende unabhängige Transporteinrichtung (2) zur Durchführung ei- 20 ner zweiachsigen Transportbewegung aufweist, dadurch gekennzeichnet, daß die Transporteinrichtung (2) ein Antriebssystem für einen Schwenk- bzw. Transportarm (13) umfaßt, welches wenigstens einen stationären Antriebsmotor (A1, A2, 8, 9, 34, 49) besitzt, die 25 jeweils auf ein Bewegungsübertragungsmittel (10, 11, 33, 39, 44, 45, 52, 57) einwirken, wobei eine Regelung der Drehrichtung und der Drehgeschwindigkeit bzw. Stillstand der Antriebsmotoren eine abgestimmte Bewegung der Bewegungsübertragungsmittel (10, 11, 33, 30 39, 44, 45, 52, 57) bewirken und mittels einer Bewegungsüberlagerung eine beliebige programmierbare Fahrkurve des Schwenk- bzw. Transportarms (13, 16, 58, 59) einstellbar ist.

2. Einrichtung nach Anspruch 1, dadurch gekenn- 35 zeichnet, daß der Schwenk-bzw. Transportarm (13) an einem Schlitten (23, 36, 53) mit Linearführungen (24, 54, 55) gelagert und mit einem Parallelogrammgelenkarın (16) oder Antriebshebel (59) versehen ist.

3. Einrichtung nach Anspruch 1 und 2, dadurch ge- 40 kennzeichnet, das die Bewegungsübertragungsmittel (10, 11, 33, 39, 52, 57) zur Durchführung einer Längsbewegung und insbesondere einer Hub- bzw. Senkbewegung eines Lagerschlittens (23, 53) für den Schwenk- bzw. Transportarm (13) als Zahnstangenan- 45 trieb (8-12, 33-35, 37-39, 51, 52, 56, 57) ausgebildet

4. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Längsbewegung und insbesondere eine Hub- bzw. Senkbewe- 50 gung des Lagerschlittens (23) für den Schwenk- bzw. Transportarm (13) mittels zwei parallel angeordneten Zahnstangen (10, 11) erfolgt, die von den stationären Antriebsmotoren (A1, A2) antreibbar sind.

5. Einrichtung nach einem der vorhergehenden An- 55 sprüche, dadurch gekennzeichnet, daß zwei parallel angeordnete Zahnstangen (10, 11) oder dergleichen gemeinsam auf ein Antriebszahnrad (12) für den Schwenk- bzw. Transportarm (13) einwirken, derart, daß eine Hub- bzw. Senkbewegung eines Tragschlit- 60 tens (23) und/oder eine Drehbewegung eines an dem Tragschlitten (23) gelagerten Schwenk- bzw. Transportarms (13) cinstellbar ist.

6. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schwenk- 65 bzw. Transportarm (13) ein Parallelogrammgelenk (16) umfaßt, welches vorzugsweise endseitig eine vorzugsweise schwenkbare Saugertraverse (17) zur Werk-

5 126 A.

stückhalterung aufweist.

7. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schwenkbewegung des Schwenk- bzw. Transportarms (13) auf einen Parallelogrammgelenkarm (16) übertragbar ist. Welches seinerseits endseitig einen Führungsschlitten (30) in einer vertikalen Linearführung (29) aufweist und welches gegenüberliegend zum Führungsschlitten (30) eine Saugertraverse (17) für eine Teilaufnahme trägt, wobei der Schwenk-bzw. Transportarm (13) vorzugsweise mittig am Parallelogrammgelenkarm (16) angelenkt ist und wobei vorzugsweise die Länge des Transportarms (13) etwa die halbe Länge des Gelenkarms (16) aufweist.

8. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß dem Parallelogrammgelenkarm (16) oder Antriebshebel (59) ein Verstellantrieb (15, 32, 62-65) als Schwenkantrieb für die Saugertraverse (17) zuge-

9. Einrichtung nach einem der verwendeten Ansprüche, dadurch gekennzeichnet, daß die Hub- bzw. Senkbewegung des Lagerschlittens (23, 36) für den Schwenk- bzw. Transportarm (13) und/oder die Verstellbewegung des Parallelogrammgelenkarms (13, 16) mittels wenigstens eines Gewichtsausgleichszylinders (22, 25) unterstützt ist.

10. Die Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bewegung des Lagerschlittens (36, 53) für den Schwenkbzw. Transportarm (13) mittels eines Zahnrad/Zahnstangenantrieb (33-35, 49, 51, 52) erfolgt, wobei die Schwenkbewegung des Schwenk- bzw. Transportarms (13) mittels eines separaten Schwenkantriebs (37-39, 50, 56, 57) erfolgt.

11. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zahnstangen-Zahnradantrieb durch einen Spindelantrieb mit Gewindespindel und Übersetzungsgetriebe ersetzt ist. 12. Einrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Bewegungsübertragungsmittel (10, 11, 33, 39) zur Durchführung einer Längsbewegung und insbesondere einer Hub- bzw. Senkbewegung eines Lagerschlittens (23) für den Schwenk- bzw. Transportarm (13) als Zahnriemen (42-48) ausgebildet ist. 13. Einrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß zwei parallel angeordnete Zahnriementriebe (42-48) oder dergleichen gemeinsam auf ein Antriebszahnrad (12) für den Schwenk- bzw. Transportarm (13) einwirken, derart, daß eine Hubbzw. Senkbewegung eines Tragschlittens (23) und/oder eine Drehbewegung eines an dem Tragschlitten (23) gelagerten Schwenk- bzw. Transportarms (13) einstellbar ist.

Hierzu 7 Seite(n) Zeichnungen

DE 10C 10 079 A1 B 21 D 43/05 21. September 2000

Fig. 2

Fig. 3

21 -

DE 100 10 079 A1 B 21 D 43/05 21. September 2000

Fig. 4

Fig. 6

DE 100 10 079 A1 B 21 D 43/05 21. September 2000

002 038/64

. Ā

DE 100 10 079 A1 B 21 D 43/05

21. September 2000

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
	□ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	\

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.