Lista 02 de Teoria da Computação

Alecsander Augusto Paixão Almeida Ryan Araújo Ribeiro

3 de abril de 2025

Questão 01

a)

Vamos demonstrar que todo Autômato Finito Não Determinístico (AFN) pode ser convertido em um AFN equivalente com um único estado de aceitação.

Definição do AFN original

Seja um AFN A definido por:

- Q: conjunto de estados;
- Σ : alfabeto;
- δ : função de transição;
- q_0 : estado inicial;
- F: conjunto de estados de aceitação.

Construção do novo AFN equivalente

Agora, construímos um novo AFN A', tal que:

- $Q' = Q \cup \{q_f\}$, onde q_f é um novo estado de aceitação;
- $\Sigma' = \Sigma$;
- $q_0' = q_0;$
- $F' = \{q_f\}$, ou seja, apenas um estado final;
- A nova função de transição δ' é definida como:
 - $-\delta'(q,a) = \delta(q,a)$ para todo $q \in Q$ e $a \in \Sigma$;
 - Para todo estado $q \in F$, adicionamos uma transição vazia para o novo estado final:

$$\delta'(q,\varepsilon) = q_f$$

Prova de equivalência

Agora, verificamos que o novo AFN A' aceita exatamente a mesma linguagem que A.

- Se uma palavra w era aceita em A:
 - Isso significa que, ao processar w, o autômato chegava a um estado $q \in F$.
 - Como adicionamos uma transição vazia de cada estado de aceitação original para q_f , agora w também levará A' ao estado q_f .

- Logo, w continua sendo aceita.
- Se uma palavra w não era aceita em A:
 - Isso significa que o processamento de w não terminava em um estado $q \in F$.
 - No novo autômato A', as transições vazias apenas levam estados de F para q_f , mas como w nunca atinge um estado de aceitação em A, também não atingirá q_f .
 - Logo, \boldsymbol{w} continua sendo rejeitada.

Conclusão

Como mostramos que a linguagem reconhecida por A' é exatamente a mesma que a reconhecida por A, concluímos que todo AFN pode ser convertido em um AFN equivalente com um único estado de aceitação.