

ML²Tuner: Efficient Code Tuning via Multi-Level Machine Learning Models

JooHyoung Cha¹, Munyoung Lee², Jinse Kwon², Jubin Lee³, Jemin Lee², Yongin Kwon²

- ¹University of Science of Technology
- ²Electronics and Telecommunications Research Institute
- ³Neubility

Motivation

Challenges in ML Code Auto-tuning

- Need to explore a vast search space
- Runtime errors in HW requires manual reset or system reboots.
- Aggressive optimization increases the chance of the runtime errors.

Non-Reliable in Search Space

Example of Runtime Error in HW

<u>Proposal</u>

Methology for Efficient Code Tuning via Multi Level

Level 1 (Model P):

- Finding the Highest Performance

Level 2 (Model V):

- Validate "Level 1"

Level 3 (Model A):

- Finding the Highest Performance
 w/ Hidden Feature from Compiler
- Feature Extractor:
 - Compile Code from Configuration
 - Collecting Hidden Feature

*Configuration : Tiling, Kernel, Layer Information

*Hidden Feature:

Flow Decision, Tiling Strategy, Weight Stationery, etc

Experimental Setting

- Hardware Platform: VTA on XXILINX ZCU102

Model: ResNet 18 trained with ImageNet 2012

- Optimizer: CBOOST (v2.1.1)

Hyperparameters for **CBOOST** Models

Parameter	Model P
objective	reg:squarederror
boost round	300
max depth	14
min child weight	3
gamma	0.0
subsample	1.0
colsample bytree	1.0
learning rate	0.01
reg alpha	1×10^{-5}

Level 1

Model V	Model A
binary:hinge	reg:squarederror
300	300
5	14
3	3
0.0	0.0
0.6	1.0
0.6	1.0
0.1	0.01
1×10^{-2}	1×10^{-5}

Level 2 Level 3

Experimental Result

Impact of Model V: Validity Model

- Equivalent performance with 12.3% fewer Samples
- Reducing the invalidity ratio to 60.8%
- Provide increased opportunities for exploration

Result for Conv1, Conv3 and Conv5 of ResNet18 on VTA

Experimental Result

Impact of Model A: Advanced Performance Prediction

- Each RMSE value was calculated as the average over 10 repeated iterations.
- Model A's average RMSE achives 91.6% of Model P's from XGBoost.
- Leverage the compiler's information to optimize tuning faster than Model P.

Set Boost Round of XGBoost to 100

Set Boost Round of XGBoost to 300

Evaluate Robustness Model P and Model A

Summary

Our Contribution:

- Error-Aware Search Refinement using Multi Level
- Reducing the invalidity ratio and Equivalent performance with fewer Samples
- Hidden feature in Compiler improves tuning outcomes about 9.17%.

What did we skip?

1. Validate Evaluation on Diverse Environment

- Testing Diverse hardware to assess generalizability.
- Testing Algorithm to further refine the tuning process.

2. Auto-identifying features from binaries

- Study on improved accuracy and probabilistic error detection systems.

Thank you for your attention.