Computer Graphics

Ray tracing VS rasterization

Achille Peternier, lecturer

Offline rendering VS real-time

Offline rendering:

- F
- Used to generate images with the highest achievable quality:
 - "Take all the time you need to do a good job"-philosophy.
- Time required is not critical.
- Typical scenarios: movies, photorealism, architectural rendering, etc.
- Real-time rendering:
 - Several images generated per second:
 - Frames per second (fps), or framerate.

- Real-time requires at least 24 fps:
 - interactive rendering is about 1-5 fps.
- Typical scenarios: simulation, Computer Aided Design (CAD), games,
 Augmented Reality (AR), any human-interactive application, etc.

3D modeling

- Mathematical representation of the surface of an object:
 - Using formulae for well-defined objects, e.g., lines, planes, spheres, etc.
 - Using a series of polygons (mainly triangles or quadrilaterals) to reconstruct the original shape.

Volume =
$$\frac{4}{3}\pi r^3$$

A. Peternier

Polygon mesh

"A **polygon mesh** is a collection of vertices, edges and faces that defines the shape of a polyhedral object in 3D computer graphics and solid modeling. The faces usually consist of triangles (triangle mesh), quadrilaterals, or other simple convex polygons, since this simplifies rendering, but may also be composed of more general concave polygons, or polygons with holes."

(Wikipedia)

- Synonyms (or equivalent, depending on the context) are:
 - Mesh.
 - Object.
 - Model.
 - Primitive.

A. Peternier

Ray tracing

- Rays are casted from the camera into the scene:
 - Unlike reality, where photons enter the camera:
 - Light-tracing VS eye-tracing.
 - More efficient:
 - It reduces the number of wasted photons.
- For each ray, multiple intersection tests are performed:
 - Ray/plane, ray/sphere, ray/triangle, etc.
 - Each time you hit an object, cast one or more new rays:
 - Recursive approach.
 - · Give-up after N iterations.

Rendering pipeline

Ray tracing

- Ray tracing is actually a generic term covering several different techniques, such as:
 - Ray casting (Appel, 1968):
 - one ray from eye into the scene.
 - Stops at the first intersection.
 - Recursive ray tracing (Whitted, 1979):
 - For each collision, three new rays are recursively generated (refraction, reflection, shadow).
 - Path tracing (Kajiya, 1986):
 - Multiple pseudo-random (Monte Carlo) simulations of the way photons propagate into the scene to approximate the rendering equation.

Control Panel - FPS: 53.3

Rendering pipeline Projection type Quality Ray casting Perspective Full

Recursive ray casting

Ray tracing

- Advantages:
 - High level of realism.
 - Realistic simulation of the way light works.
 - Correct transparency, reflections and shadows are automatically generated.
 - Easy to parallelize.
 - Intuitive and easy to implement.

Ultra-compact ray tracer example

- See Andrew Kensler's card ray tracer: http://www.cs.utah.edu/~aek/
- To compile and run it (under Linux):

wget http://www.cs.utah.edu/~aek/code/card.cpp

g++ -O3 -o card card.cpp ./card > card.ppm

A. Peternier

Ray tracing

- Disadvantages:
 - Computationally expensive → slow!
 - Not GPU-friendly:
 - Not because of ray tracing per se but because GPUs have been optimized for a different technique.
 - Things are changing?
 - Nvidia OptiX ray tracing engine:
 - » GPGPU, programmable GPUs, OpenCL, etc.
 - OpenRL, DirectX Raytracing (DXR):
 - » API (kind of OpenGL for ray tracing).
 - Hybrid approaches (e.g., for global illumination).

Ray tracing

- Popular ray tracers:
 - POV-Ray.
 - Pixar's RenderMan (hybrid since "Cars").
- Real-time ray tracing examples:
 - REMRT/RT (1986).
 - Intel's Quake Wars: Ray Traced (2008):
 - 15-20 fps on server-level machines:
 - dual/quad-CPU models.
 - priced higher than 15.000 CHF.
 - Nvidia RTX (2018).

EVENT COVERAGE

F

Rasterization

- 3D scenes are designed using points, lines, triangles and other primitives:
 - Vertices are processed independently.
- These primitives are projected into pixels to obtain a 2D image.

(OpenGL 4.5 pipeline)

Rendering pipeline

(30, 15)

30 Pixels/

X-axis

С

30

Rasterization

- Advantages:
 - Very fast:

- Efficient way to map primitives into 2D pixels.
- · Local, coherent information.
- Primitives can be streamed to reduce memory consumption.
- Hardware-friendly:
 - GPUs were originally 2D-accelerators to improve performance in the final rasterization step only.
- Disadvantages:
 - Less intuitive than ray tracing.
 - Some effects are difficult to simulate (refractions, shadows).

"Rasterization is fast, but needs cleverness to support complex visual effects. Ray tracing supports complex visual effects, but needs cleverness to be fast."

David Luebke, Nvidia