

SECURITY CLASSIFICATION OF THIS PAGE (Moon Gate Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. SOVT ASCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
THE DEPENDENCE OF MAGNETIC PROPERTIES ON	S. TYPE OF REPORT & PERIOD COVERED
STRUCTURE IN THE SYSTEM Fe ₂ Ge _x Si _{1-x} O ₄	6. PERFORMING ORG. REPORT NUMBER 21
AUTHOR(s)	S. CONTRACT OR GRANT NUMBER(*)
M. Tellefsen, R. Kershaw, K. Dwight, and A. Wold	N00014-77-C-0387
PERFORMING ORGANIZATION NAME AND ADDRESS Professor Aaron Wold	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Brown University, Department of Chemistry Providence, R.I. 02912	NR-359-653
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Dr. David Nelson, Code 472	August 20, 1982
Office of Naval Research	13. NUMBER OF PAGES
Arlington, Virginia 22217	27
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	15. DECLASSIFICATION DOWNGRADING SCHEDULE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

SUBMITTED TO THE JOURNAL OF SOLID STATE CHEMISTRY

DTIC ELECTE AUG 23 1982

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

olivine-spinel transformation

magnetic characterization

E

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)

Members of the system $\text{Fe}_2\text{Ge}_x\text{Si}_{1-x}\text{O}_4$ were prepared and their magnetic susceptibilities were measured. The μ_{cff} values for all compositions were consistent with high-spin $\text{Fe}_2^{2+}(3d^6)$. The olivine Fe_2SiO_4 and the spinel Fe_2GeO_4 showed θ values of -87(1)K and -32(1)K, respectively. At ambient pressure, up to 20 mole percent of germanium could be substituted for silicon in the olivine Fe_2SiO_4 , and the value for θ remained very close to that of pure Fe_2SiO_4 .

(over)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (WHAT EMPLOYED)

THE RESERVE TO SERVE THE PARTY OF THE PARTY

TIC FILE COPY

20. ABSTRACT (Continued)

When the nominal composition $Fe_2Ge_{0.3}Si_{0.7}O_4$ was pressed at 50 kb, the resulting product was predominantly a spinel phase. The magnetic properties for each composition crystallizing with the olivine structure were found to be consistent with the presence of strong antiferromagnetic $\sim 120^{\circ}$ B-O-B nearest-neighbor interactions. Both the spinel and the olivine structures have weaker $\sim 90^{\circ}$ B-O-B interactions.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

THE RESERVE TO SERVE THE PARTY OF THE PARTY

OFFICE OF NAVAL RESEARCH

Contract N00014-77-C-0387

Task No. NR-359-653

TECHNICAL REPORT NO. 21

The Dependence of Magnetic Properties on Structure in the System $Fe_2Ge_xSi_{1-x}O_4$

by

M. Tellefsen, R. Kershaw, K. Dwight, and A. Wold

Department of Chemistry

Brown University

Providence, Rhode Island 02912

Prepared for Publication

in the

Journal of Solid State Chemistry

August 20, 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

INTRODUCTION

The orthosilicates of manganese, iron, cobalt, and nickel and manganese orthogermanates crystallize with the olivine structure, whereas the orthogermanates of iron, cobalt, and nickel crystallize with the normal spinel structure. In addition, the orthosilicates of iron, cobalt, and nickel have been reported to transform to the spinel structure at high pressure (1-3). The relationship between the olivine and spinel structure-types is of geological interest, and this has motivated several studies dealing with solid solutions between orthosilicate olivines and orthogermanate spinels (4-12). The solubility of the olivine Mg_2SiO_4 in the spinel Ni₂GeO₄ has been determined as a function of pressure (4,5). Extrapolation of the data from these studies gave the transformation pressure of pure ${\rm Mg}_2{\rm SiO}_4$. At ambient pressure, ${\rm Mg}_2{\rm GeO}_4$, which crystallizes with the olivine structure, can substitute to a large degree into the iron, cobalt, and nickel orthogermanate spinels (6-9). The compounds MnFeGeO₄ and MnCoGeO₄ have been reported to form olivines at ambient pressure and to undergo transformation to spinels at high pressure (10).

There have been several studies involving solid solution of orthosilicate olivines with the corresponding orthogermanate spinels of the same transition metal. Under ambient pressure, it has been reported that 20 mole percent of the olivine Ni₂SiO₄ can be substituted into the spinel Ni₂GeO₄ and 25 mole percent of the spinel will substitute into the olivine;

at 30 kb, complete solid solution in the spinel phase has been shown (11). Similarly, up to 50 mole percent of Fe_2SiO_4 has been reported to substitute into Fe_2GeO_4 at 40 kb (12).

Both the olivine $\mathrm{Fe_2SiO_4}$ and the spinel $\mathrm{Fe_2GeO_4}$ are reported to be antiferromagnetic, with low Néel temperatures (T_N) and negative Weiss constants (0) (13-17). The reported values of 0 for $\mathrm{Fe_2SiO_4}$ (-150 and -125 K) were more negative than the values for $\mathrm{Fe_2GeO_4}$ (-25 and -15 K). In this study, both the substitution of germanium for silicon in the olivine $\mathrm{Fe_2SiO_4}$ and the substitution of silicon for germanium in the spinel $\mathrm{Fe_2GeO_4}$ at high pressure were examined with respect to the effect upon the magnetic properties. For both the olivine and spinel compositions, it was anticipated that the physical properties may be related to the structure as well as to the extent of substitution.

EXPERIMENTAL

Sample Preparation. Polycrystalline samples of members of the system $Fe_2Ge_xSi_{1-x}O_4$ were prepared by the solid state reaction of stoichiometric mixtures of iron (Leico, 99.999%), Fe_2O_3 (Mapico Red, Columbian Carbon Co.), GeO_2 (Alfa Products, Ultrapure) and/or SiO_2 (General Electric Co., Type 214 Silica, 99.99%). Silicon dioxide powder was obtained from the pulverized silica tubing dried under vacuum at 800° C. Reaction mixtures were heated in evacuated silica tubes at 800° C for 48 hr, followed by two or more 48 hr intervals at 1000° C with intermittent grinding under N_2 atmosphere. Silica reaction tubes were presoftened before use to minimize attack.

High pressure synthesis was performed with the use of a belted anvil press described by Hall (18). Samples were ground thoroughly, moistened with water, and squeezed in Teflon holders with the application of full pressure before heating. At the end of a run, sample heating was stopped 15 min before the pressure was released. Pyrex holders were used when temperatures exceeded 500°C.

Sample Characterization. Powder diffraction patterns were obtained with the use of a Norelco diffractometer, employing monochromatic high-intensity $\text{CuK}\alpha_1$ radiation ($\lambda=1.5405\text{Å}$). Fast scans at 1° (20)/min were examined for the presence of impurity phases. Lattice parameters were determined by least-squares analysis of slow scans at 0.25° (20)/min in the range from 12 to 72° (20). Debye-Scherrer photographs were obtained for small samples, using FeK α radiation ($\lambda=1.9360\text{Å}$).

Magnetic susceptibility measurements were performed from 77 to 300 K using a Faraday balance described elsewhere (19). Magnetic field strengths between 6.22 and 10.40 kOe were employed, and the balance was calibrated with Pt wire ($\chi_g = 0.991 \times 10^{-6}$ emu/g at 275 K).

RESULTS AND DISCUSSION

The olivine $\mathrm{Fe}_2\mathrm{SiO}_4$ and the spinel $\mathrm{Fe}_2\mathrm{GeO}_4$ have the following equivalent site occupancies: silicon or germanium cations occupy tetrahedral A-sites and iron cations occupy octahedral B-sites. The structure-types can be described by the way AO_4 tetrahedra and BO_6 octahedra join together (20). The spinel structure consists of a three-dimensional network of straight

chains of edge-shared octahedra. Tetrahedra are isolated from each other, sharing only corners with octahedra. Figure 1 shows the arrangement of B-sites between and above two close-packed planes of 0^{2-} anions in the spinel structure. Across shared edges, the B-O-B angle is nearly 90° , and the iron-iron distance in Fe₂GeO₄ is 2.97Å.

In the olivine structure, edge-shared octahedra form serrated chains. Independent tetrahedra share edges and corners with octahedra and are aligned in rows which isolate the serrated octahedral chains within a given plane. Corner-shared octahedra link serrated chains in planes above and below. Figure 2 shows the arrangement of B-sites between and below two close-packed planes of 0²⁻ anions in the olivine structure. The Fe-O-Fe angles across shared edges (within a chain) range from 92 to 98° in Fe₂SiO₄, and the Fe-Fe distances across shared edges range from 3.05 to 3.31Å. The Fe-O-Fe angles at shared corners (between chains) range from 114 to 128° (14).

For the antiferromagnetic compounds $\operatorname{Fe}_2\operatorname{SiO}_4$ and $\operatorname{Fe}_2\operatorname{GeO}_4$, the Weiss constant (0) may be considered a measure of the strength of the octahedral (B-site) interactions. The magnetic exchange contribution from a covalent B-O-A-O-B interaction involving diamagnetic A-site cations (16,21) is expected to be negligible. Likewise, the direct overlap of Fe^{2+} t_{2g} orbitals across shared octahedral edges is expected to be small (22). For the t_{2g} e_g configuration of Fe^{2+} , both weak ferromagnetic and antiferromagnetic 90° B-O-B nearest-neighbor interactions are possible (23). For example, ferromagnetic coupling can occur via t_{2g}-pm to po-e_g bonds. In the olivine, ~120° B-O-B nearest-neighbor interactions are expected to be largely of po-e_g character and, therefore, strongly antiferromagnetic.

The Compounds Fe₂SiO₄ and Fe₂GeO₄. Fe₂SiO₄ and Fe₂GeO₄ were prepared under evacuated sealed tube conditions. Fe_2SiO_4 was a pale golden brown powder which crystallized with the olivine structure (space group Pbnm). The observed cell parameters listed in Table I compare well with the values in the literature (2,14). Fe₂GeO₄ was a dark brown powder which crystallized with the spinel structure (space group Fd3m). The observed cell constant is given in Table I and agrees with the values reported in the literature (9,17). The magnetic susceptibility data for both Fe_2SiO_4 and Fe_2GeO_4 (Figure 3) obey the Curie-Weiss law in the region of 90 to 300K. The Curie-Weiss parameters given in Table II were determined from least-squares fits. The $\mu_{\mbox{\scriptsize eff}}$ values of 5.22(2) μ_B and 5.39(4) μ_B for Fe $_2$ SiO $_4$ and Fe $_2$ CeO $_4$, respectively, are slightly higher than the spin-only moment of $4.90\mu_{\textrm{R}}\text{,}$ but lie well within the usual range of 5.2-5.5 μ_B for high-spin Fe²⁺ (24). The value of μ_{eff} for Fe₂GeO₄ agrees with those reported previously (15-17); the value for Fe_2SiO_4 differs from the $6.05\mu_R$ reported by Kondo et al. (13) and Santoro et al. (14) for their samples. The Weiss constant (0) of -87(1)K for Fe_2SiO_4 olivine is significantly more negative than the value of -32(1)K for Fe₂GeO₄ spinel. This indicates that the antiferromagnetic interactions are stronger in Fe₂SiO₄ olivine than in Fe₂GeO₄ spinel.

The Solid Solution Series $Fe_2Ge_xSi_{1-x}O_4$. To determine the extent of solubility between Fe_2SiO_4 and Fe_2GeO_4 , mixed compositions were prepared under evacuated sealed tube conditions. The solubility of the olivine Fe_2SiO_4 in the spinel Fe_2GeO_4 was less than 10 mole percent. X-ray analysis indicated

that 20 mole percent of the spinel $\operatorname{Fe_2GeO_4}$ could be substituted into the olivine $\operatorname{Fe_2SiO_4}$; the 30 mole percent germanium composition resulted in a spinel-olivine mixture. Microscopic examination of all samples containing germanium revealed the presence of small dark brown particles, which are probably $\operatorname{Fe_2GeO_4}$ spinel; the quantity present was too small to be detected by x-ray analysis. The orthorhombic cell parameters measured for the olivine solid solution series $\operatorname{Fe_2Ge_3i_{1-x}O_4}$ (where $\operatorname{O_6x_6O.2}$) are listed in Table I. The cell volume (V) increases linearly with the germanium content, which indicates the existence of solid solutions.

The Curie-Weiss parameters for the Fe₂Ge_xSi_{1-x}O₄ system, listed in Table II, show a small increase in the magnitude of the Weiss constant upon substitution. The Curie-Weiss plot for the olivine Fe₂Ge_{0.2}Si_{0.8}O₄ is compared with those for the olivine Fe₂SiO₄ and the spinel Fe₂GeO₄ in Figure 4. Upon substitution of 20 mole percent germanium for silicon within the olivine structure, θ has a value of -96(1)K, remaining very close to -87(1)K for pure Fe₂SiO₄. This result agrees with the data reported in the literature for the olivines Mn₂SiO₄ and ln₂GeO₄. These compounds have identical Curie-Weiss parameters with μ_{eff} = 5.85 μ_{B} and θ = -163K (13,14,25). For the $t_{2g}^{3}e_{g}^{2}$ configuration of Mn²⁺, only antiferromagnetic nearest-neighbor interactions are expected. These antiferromagnetic interactions do not appear to be sensitive to A-site substitution in the manganese and iron-containing olivines. This is consistent with the presence in the olivine structure of strong ~120° B-O-B nearest-neighbor interactions which dominate the weaker ~90° interactions.

High Pressure. Ringwood (1) reported the formation of the spinel

Fe₂SiO₄ by pressing Fe, Fe₂O₃, and SiO₂·H₂O at 450°C and 55 kb. Akimoto
et al. (2,26) have since studied the transformation of the olivine Fe₂SiO₄
to the spinel as a function of temperature and pressure; complete transformations were reported at conditions ranging from 760°C and 46 kb to 1500°C
and 75 kb. Under the conditions of this study, it was found that crystalline olivine Fe₂SiO₄ did not transform to the spinel. Attempts were made
to carry out the transformation in the presence of water at 50 kb and at
temperatures in the range of 400 to 700°C. In addition, transformation was
attempted at 50 kb and temperatures up to 1500°C in the absence of water.
Failure to obtain a transformation may be a consequence of the high purity
of the olivine used. However, transformation was achieved when the samples
contained nucleation centers in the form of Fe₂GeO₄ spinel and were squeezed
at 400°C and 50 kb for 90 min.

A sample containing the nominal composition $\operatorname{Fe}_2\operatorname{Ge}_{0.3}\operatorname{Si}_{0.7}O_4$ was chosen for characterization before and after squeezing. The prereacted sample was found to be an olivine-spinel mixture before squeezing. The olivine phase may be assigned the composition $\operatorname{Fe}_2\operatorname{Ge}_{0.2}\operatorname{Si}_{0.8}O_4$ from the solubility limit of 20 mole percent of the spinel $\operatorname{Fe}_2\operatorname{GeO}_4$ in the olivine $\operatorname{Fe}_2\operatorname{SiO}_4$. Likewise, the spinel phase may be assigned the composition $\operatorname{Fe}_2\operatorname{GeO}_4$ since less than 10 mole percent of the olivine $\operatorname{Fe}_2\operatorname{SiO}_4$ is soluble in the spinel $\operatorname{Fe}_2\operatorname{GeO}_4$. The Weiss constant of a phase mixture in this system can be shown to be equivalent to the sum of the individual products of the Weiss constants with the mole fractions for each component. The above phase assignment for the mixture $\operatorname{Fe}_2\operatorname{Ge}_{0.3}\operatorname{Si}_{0.7}O_4$ predicts a value for 0 of -88K, which agrees with the observed 0 value.

Pressing this sample with the nominal composition $Fe_2Ge_{0.3}Si_{0.7}O_4$ resulted in a dark green product. X-ray examination indicated that the product consisted mostly of a spinel phase corresponding to transformed olivine, some small amounts of Fe_2GeO_4 spinel, and untransformed olivine. Cubic cell parameters were determined for the high pressure spinel phase from both Debye-Scherrer and diffractometer patterns. Good agreement between techniques was obtained with an average value of $a_0 = 8.292(3) \text{Å}$. This cell parameter lies between $a_0 = 8.406(1) \text{Å}$ for Fe_2GeO_4 spinel and $a_0 = 8.234(1) \text{Å}$ reported for Fe_2SiO_4 spinel (1,2).

The Curie-Weiss plots for the nominal composition $Fe_2Ge_{0.3}Si_{0.7}O_4$ before and after squeezing are shown in Figure 5. The data for the sample after squeezing show curvature at low temperatures, such that the Curie-Weiss parameters (listed in Table II) were determined in the temperature range of 170 to 300K. The values of θ for this sample before and after squeezing are -88(1)K and +34(4)K, respectively. In the unpressed sample of $Fe_2Ge_{0.3}Si_{0.7}O_4$, which contains mostly olivine, the antiferromagnetic interactions are stronger than the ferromagnetic interactions; in the pressed sample, which contains mostly spinel, the ferromagnetic interactions are stronger. This is consistent with the presence of strong $\sim 120^\circ$ B-O-B nearest-neighbor interactions in the olivine structure which are not present in the spinel structure. The θ value of 34(4)K for the pressed sample of $Fe_2Ge_{0.3}Si_{0.7}O_4$ is 66K more positive than the value of -32(1)K for unsubstituted Fe_2GeO_4 spinel. Upon substitution of silicon for germanium in Fe_2GeO_4 spinel, the ferromagnetic interactions apparently become stronger

than the antiferromagnetic interactions. This is consistent with the presence of both weak ferromagnetic and antiferromagnetic $\sim 90^\circ$ B-O-B interactions of comparable strengths in the spinel structure.

SUMMARY AND CONCLUSIONS

Members of the system $\operatorname{Fe_2Ge_XSi_{1-X}O_4}$ were prepared and their magnetic susceptibilities were measured. The μ_{eff} values for all compositions were consistent with high-spin $\operatorname{Fe^{2+}}(\operatorname{3d^6})$, and θ values were found to be dependent upon the structure and the extent of substitution. The olivine $\operatorname{Fe_2SiO_4}$ showed a θ value of -87(1)K, which was more negative than -32(1)K for the spinel $\operatorname{Fe_2GeO_4}$, indicating that the antiferromagnetic interactions are stronger in $\operatorname{Fe_2SiO_4}$ olivine than in $\operatorname{Fe_2GeO_4}$ spinel. At ambient pressure, up to 20 mole percent of germanium was substituted for silicon in the olivine $\operatorname{Fe_2SiO_4}$. The antiferromagnetic interactions appeared to be insensitive to the substitution of germanium for silicon in the olivine structure, in agreement with the presence of strong $\sim 120^\circ$ antiferromagnetic B-O-B nearest-neighbor interactions which dominate the weaker $\sim 90^\circ$ B-O-B interactions.

When the nominal composition $Fe_2Ge_{0.3}Si_{0.7}O_4$, containing mostly olivine, was pressed at 50 kb, the resulting product was predominantly a spinel phase. The values of θ for this composition before and after pressing were -88(1)K and +34(4)K, respectively. This is consistent with the presence of strong antiferromagnetic $\sim 120^{\circ}$ B-O-B nearest-neighbor interactions in the olivine

structure, which are not present in the spinel structure. The Weiss constant θ was found to be sensitive to the substitution of silicon for germanium within the spinel structure, in agreement with the presence of both weak ferromagnetic and antiferromagnetic $\sim 90^{\circ}$ B-O-B interactions of comparable strengths.

ACKNOWLEDGMENTS

Acknowledgment is made to the Office of Naval Research, Arlington,
Virginia, for the support of Mark Tellefsen and Kirby Dwight, and to Brown
University's Materials Research program for the use of its laboratory
facilities.

TABLE I
Structural Data for Fe₂Ge_xSi_{1-x}O₄

Composition	Structure	a _o (Å)	b _o (Å)	c _o (Å)	v (Å ³)
Fe ₂ SiO ₄	Olivine	4.821(1)	10.480(1)	6.090(1)	307.7(1)
Fe ₂ Ge _{0.1} Si _{0.9} O ₄	Olivine	4.837(1)	10.489(1)	6.094(1)	309.2(1)
Fe ₂ Ge _{0.2} Si _{0.8} O ₄	Olivine	4.853(1)	10.499(1)	6.099(1)	310.8(1)
Fe ₂ GeO ₄	Spinel	8.406(1)			
Fe ₂ Ge _{0.3} Si _{0.7} O ₄ a	Spinel	8.292(3)			

a) Nominal Composition

TABLE II $\label{eq:magnetic} \mbox{Magnetic Susceptibility Data for $\mbox{Fe}_2\mbox{Ge}_x\mbox{Si}_{1-x}\mbox{O}_4$}$

Composition	Structure	$\frac{\mu_{\tt eff}(\mu_{\tt B})}{}$	θ (K)
Fe ₂ SiO ₄	Olivine	5.22(2)	-87(1)
Fe ₂ Ge _{0.1} Si _{0.9} O ₄	Olivine	5.29(2)	-93(1)
Fe ₂ Ge _{0.2} Si _{0.8} O ₄	Olivine	5.26(1)	-96(1)
Fe ₂ Ge _{0.3} Si _{0.7} O ₄ a	Olivine	5.16(1)	-88(1)
Fe ₂ GeO ₄	Spinel	5.39(4)	-32(2)
Fe ₂ Ge _{0.3} Si _{0.7} O ₄ a	Spinel	5.24(3)	+34(4)

a) Nominal Composition

REFERENCES:

- 1. A.E. Ringwood; Geochim. Cosmochim. Acta 15, 18 (1958).
- 2. S. Akimoto, H. Fujisawa, and T. Katsura; J. Geophys. Res. <u>70</u>, 1969 (1965).
- 3. A.E. Ringwood; Nature 198, 79 (1963).
- 4. A.E. Ringwood; Nature 178, 1303 (1956).
- 5. A.E. Ringwood and M. Seabrook; Nature 193, 158 (1962).
- 6. A.E. Ringwood; Australian J. Sci. 23, 378 (1961).
- 7. A. Navrotsky, J. Solid State Chem. 16, 185 (1976).
- 8. M. Inagaki, T. Ozeki, H. Furuhashi, and S. Naka, J. Solid State Chem. 20, 169 (1977).
- 9. A. Durif-Varambon, E.F. Bertaut, and R. Pauthenet; Ann. Chim. (Paris) 13, 526 (1956).
- 10. A.E. Ringwood and A.F. Reid; J. Phys. Chem. Solids 31, 2791 (1970).
- 11. A.E. Ringwood; Geochim. Cosmochim. Acta 26, 457 (1962).
- V. Hariya and C.M. Wai; J. Fac. Sci., Hokkaido Univ., Ser. 1, 14, 355 (1970).
- 13. H. Kondo and S. Miyahara, J. Phys. Soc. Japan 18, 305 (1963).
- 14. R.P. Santoro, R.E. Newnham, and S. Nomura; J. Phys. Chem. Solids 27, 655 (1966).
- 15. F. Hartmann-Boutron; C.R. Acad. Sci. Paris. 263B, 188 (1966).
- 16. G. Blasse and J.F. Fast; Philips Res. Repts. 18, 393 (1963).
- 17. P. Strobel, F.P. Koffyberg, and A. Wold; J. Solid St. Chem. 31, 209 (1980).
- 18. H.T. Hall; Rev. Sci. Instrum. 31, 125 (1960).
- 19. B.L. Morris and A. Wold; Rev. Sci. Instrum. 89, 1937 (1968).
- 20. C.M. Sung and R.G. Burns; Phys. Chem. Miner. 2, 177 (1978).
- 21. G. Blasse; Bull. Soc. Chim. France 4, 1212 (1965).

REFERENCES (Continued)

- 22. J.B. Goodenough; Phys. Rev. <u>117</u>, 1442 (1960).
- 23. J.B. Goodenough; "Magnetism and the Chemical Bond," Krieger, New York 1976.
- 24. P.W. Selwood, 'Magnetochemistry," 2nd ed., Interscience, New York, 1956.
- 25. J.G. Creer and J.G.F. Troup; Solid St. Commun. 8, 1183 (1970).
- 26. T. Yagi, F. Marumo, and S. Akimoto; Am. Miner. <u>59</u>, 486 (1974).

FIGURE CAPTIONS

Figure 1	The spinel structure. The arrangment of B-sites above and between two layers of close-packed 0^{2} anions, projected along [111]. $n = \sqrt{3} a_0/6$ is the distance between layers.
Figure 2	The olivine structure. The arrangement of B-sites below and between two layers of close-packed 0^{2-} anions, projected along [100].
Figure 3	Inverse magnetic susceptibility versus temperature for the olivine Fe ₂ SiO ₄ and the spinel Fe ₂ GeO ₄ .
Figure 4	Inverse magnetic susceptibility versus temperature for the olivines Fe ₂ SiO ₄ and Fe ₂ GeO ₄ .
Figure 5	Inverse magnetic susceptibility versus temperature for the nominal composition $\text{Fe}_2\text{Ge}_{0.3}\text{Si}_{0.7}\text{O}_4$ in both its predominantly olivine and spinel forms.

$$Fe^{2+}\begin{cases} \bullet & n = 1\frac{1}{2} \\ \emptyset & n = \frac{1}{2} \end{cases}$$

$$O^{2} = \begin{cases} O & n = 1 \\ O & n = 0 \end{cases}$$

$$Fe^{2^{+}}\begin{cases} \bullet & x = 0.5 \\ \emptyset & x = 0.0 \end{cases}$$

$$0^{2} = \begin{cases} 0 \times = 0.75 \\ 0 \times = 0.25 \end{cases}$$

The Wallson of

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No.		No.
	Copies	•	Copies
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Western Regional Office		Naval Ocean Systems Center	
Attn: Dr. R. J. Marcus		Attn: Mr. Joe McCartney	
1030 East Green Street		San Diego, California 92152	1
Pasadena, California 91106	1		
		Naval Weapons Center	
ONR Eastern Regional Office		Attn: Dr. A. B. Amster,	
Attn: Dr. L. H. Peebles		Chemistry Division	
Building 114, Section D		China Lake, California 93555	1
666 Summer Street	_		
Boston, Massachusetts 02210	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko	
Director, Naval Research Laboratory		Port Hueneme, California 93401	1
Attn: Code 6100			
Washington, D.C. 20390	1	Department of Physics & Chemistry	
		Naval Postgraduate School	_
The Assistant Secretary of the Navy (RE&S)		Monterey, California 93940	1
Department of the Navy		Scientific Advisor	
Room 4E736, Pentagon		Commandant of the Marine Corps	
Washington, D.C. 20350	1	(Code RD-1)	
		Washington, D.C. 20380	ı
Commander, Naval Air Systems Command			
Attn: Code 310C (H. Rosenwasser)		Naval Ship Research and Development	
Department of the Navy		Center	
Washington, D.C. 20360	1	Attn: Dr. G. Bosmajian, Applied	
		Chemistry Division	
Defense Technical Information Center		Annapolis, Maryland 21401	1
Building 5, Cameron Station	12	Name I Ocean Customs Company	
Alexandria, Virginia 22314	12	Naval Ocean Systems Center Attn: Dr. S. Yamamoto, Marine	
Dr. Fred Saalfeld		Sciences Division	
Chemistry Division, Code 6100		San Diego, California 91232	1
Naval Research Laboratory		oun preze, correcting tree.	•
Washington, D.C. 20375	1	Mr. John Boyle	
	-	Materials Branch	
		Naval Ship Engineering Center	
		Philadelphia, Pennsylvania 19112	i
		• •	

472:GAN:716:ddc 78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, 359

	No. Copies	•	No. Copies
Dr. A. B. Ellis		Dr. R. P. Van Duyne	
Chemistry Department		Department of Chemistry	
University of Wisconsin		Northwestern University	
Madison, Wisconsin 53706	1 🔩	Evenston, Illinois 60201	1
Dr. M. Wrighton		Dr. B. Stanley Pons	
Chemistry Department		Department of Chemistry	
Massachusetts Institute		University of Alberta	_
of Technology	,	Edmonton, Alberta	
Cambridge, Massachusetts 02139	1	CANADA T6G 2G2	1
Larry E. Plew		Dr. Michael J. Weaver	
Naval Weapons Support Center		Department of Chemistry	
Code 30736, Building 2906	_	Michigan State University	,
Crane, Indiana 475%2	1	East Lansing, Michigan 48824	1
S. Rubv		Dr. R. David Rauh	
DOE (STOR)		EIC Corporation	
600 E Street		55 Chapel Street	
Washington, D.C. 20545	1	Newton, Massachusetts 02158	1
Dr. Aaron Wold		Dr. J. David Margerum	
Brown University		Research Laboratories Division	
Department of Chemistry	•	Hughes Aircraft Company	
Providence, Rhode Island 02192	1	3011 Malibu Canyon Road Malibu, California 90265	1
Dr. R. C. Chudacek		Mariba, Carronnia 90209	•
McGraw-Edison Company		Dr. Martin Fleischmann	
Edison Battery Division		Department of Chemistry	
Post Office Box 28		University of Southampton	
Bloomfield, New Jersey 07003	1	Southampton 509 5NH England	1
Dr. A. J. Bard		Dr. Janet Osteryoung	
University of Texas		Department of Chemistry	
Department of Chemistry		State University of New	
Austin, Texas 78712	1	York at Buffalo	
		Buffalo, New York 14214	1
Dr. M. M. Nicholson			
Electronics Research Center		Dr. R. A. Osteryoung	
Rockwell International		Department of Chemistry	
3370 Miraloma Avenue	_	State University of New	
Anaheim, California	1	York at Buffalo Buffalo, New York 14214	1
Dr. Donald W. Ernst			-
Naval Surface Weapons Center		Mr. James R. Moden	
Code R-33		Naval Underwater Systems	
White Oak Laboratory		Center	
Silver Spring, Maryland 20910	1	Code 3632	
		Newport, Rhode Island 02840	1

TECHNICAL REPORT DISTRIBUTION LIST, 359

	No. Copies		No . Copies
Dr. R. Nowak		Dr. Bernard Spielvogel	
Naval Research Laboratory		U.S. Army Research Office	
Code 6130		P.O. Box 12211	
Washington, D.C. 20375	1	Research Triangle Park, NC 27709	1
Dr. John F. Houlihan		Dr. Denton Elliott	
Shenango Valley Campus		Air Force Office of	
Pennsylvania State University	_	Scientific Research	
Sharon, Pennsylvania 16146	1	Bolling AFB Washington, DC 20332	1
Dr. D. F. Shriver		•	
Department of Chemistry		Dr. David Aikens	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	Rensselaer Polytechnic Institute	1
Dr. D. H. Whitmore		Troy, NY 12181	1
Department of Materials Science		Dr. A. P. B. Lever	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	York University	
	•	Downsview, Ontario M3J1P3	1
Dr. Alan Bewick		Canada	•
Department of Chemistry		,	
The University		Mr. Maurice F. Murphy	
Southampton, SO9 5NH England	1	Naval Sea Systems Command 63R32	
Dr. A. Himy		2221 Jefferson Davis Highway	
NAVSEA-5433		Arlington, VA 20360	1
NC #4		3	_
2541 Jefferson Davis Highway		Dr. Stanislaw Szpak	
Arlington, Virginia 20362	1	Naval Ocean Systems Center Code 6343	
Dr. John Kincaid		San Diego, CA 95152	1
Department of the Navy			-
Stategic Systems Project Office		Dr. Gregory Farrington	
Room 901		Department of Materials Science &	
Washington, DC 20376	1	Engineering	
		University of Pennsylvania	
M. L. Robertson		Philadelphia, PA 19104	1
Manager, Electrochemical		•	
Power Sonices Division		Dr. Bruce Dunn	
Naval Weapons Support Center		Department of Engineering &	
Crane, Indiana 47522	1	Applied Science	
De Elter Calana		University of California	_
Dr. Elton Cairns		Los Angeles, CA 90024	1
Energy & Environment Division			
Lawrence Berkeley Laboratory University of California			
Berkeley, California 94720	1		
Duriday, Valle Ville Ville	•		

A ST STATE OF STATE O

TECHNICAL REPORT DISTRIBUTION LIST, 359

	No. Copies		No. Copies
n not beleken		Dr. P. J. Hendra	
Dr. Paul Delahay		Department of Chemistry	
Department of Chemistry		University of Southhampton	
New York University	1	Southhampton SO9 5NH	
New York, New York 10003	• .	United Kingdom	1
Dr. E. Yeager			
Department of Chemistry		Dr. Sam Perone	
Case Western Reserve University	_	Department of Chemistry	•
Cleveland, Ohio 41106	1	Purdue University	,
		West Lafayette, Indiana 47907	1
Dr. D. N. Bennion			
Department of Chemical Engineering		Dr. Royce W. Murray	
Brigham Young University	_	Department of Chemistry	
Provo, Utah 84602	1	University of North Carolina	•
		Chapel Hill, North Carolina 27514	1
Dr. R. A. Marcus			
Department of Chemistry		Naval Ocean Systems Center	
California Institute of Technology	_	Attn: Technical Library	1
Pasadena, California 91125	1	San Diego, Californía 92152	1
Dr. J. J. Auborn		Dr. C. E. Mueller	
Rell Laboratories		The Electrochemistry Branch	
Murray Hill, New Jersey 07974	1	Materials Division, Research	
nutray mili, new bulbs,		& Technology Department	
Dr. Adam Heller		Naval Surface Weapons Center	
Bell Laboratories		White Oak Laboratory	
Murray Hill, New Jersey 07974	1	Silver Spring, Maryland 20910	1
nutray niii, new octob			
Dr. T. Katan		Dr. G. Goodman	
Lockheed Missiles & Space		Globe-Union Incorporated	
Co, Inc.		5757 North Green Bay Avenue	•
P.O. Box 504		Milwaukee, Wisconsin 53201	1
Sunnyvale, California 94088	1	•	
Summy vale, bullioning the		Dr. J. Boechler	
Dr. Joseph Singer, Code 302-1		Electrochimica Corporation	
NASA-Lewis		Attention: Technical Library	
21000 Brookpark Road		2485 Charleston Road	
	1	Mountain View, California 94040	1
Cleveland, Ohio 44135	-		
Dr. B. Brummer		Dr. P. P. Schmidt	
EIC Incorporated		Department of Chemistry	
55 Chapel Street		Oakland University	
Newton, Massachusetts 02158	1	Rochester, Michigan 48063	1
Newton, Massachasetts 0200			
Library		Dr. H. Richtol	
P. R. Mallory and Company, Inc.		Chemistry Department	
Northwest Industrial Park	_	Rensselaer Polytechnic Institute	
Burlington, Massachusetts 01803	1	Tr , New York 12181	1

العالم المحارجة المحكور الراو

TECHNICAL REPORT DISTRIBUTION LIST, 359

No. Copies

1

Dr. Micha Tomkiewicz Department of Physics Brooklyn College Brooklyn, NY 11210 1 . Dr. Lesser Blum Department of Physics University of Puerto Rico Rio Piedras, PR 00931 1 Dr. Joseph Gordon II IBM Corporation K33/281 5600 Cottle Road San Jose, CA 95193 1 Dr. Robert Somoano Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91103

The state of the s