Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2009/2010

AL2 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 4 - 28 Ottobre 2009 Matteo Acclavio, Luca Dell'Anna

www.matematica3.com

Esercizio 1.

- Determinare gli elementi del gruppo degli automorfismi del gruppo dei quaternioni
- Determinare gli elementi del gruppo degli automorfismi interni del gruppo dei quaternioni

Esercizio 2.

Determinare, qualora esista, un isomorfismo tra $\mathbb{Z}_3 \times \mathbb{Z}_2$ e un sottogruppo di S_6 .

Esercizio 3.

Siano (G, +) e (G', +) due gruppi abeliani. Sia Hom(G, G') l'insieme degli omomorfismi da G in G'. Si consideri l'applicazione

$$+: Hom(G, G') \times Hom(G, G') \longrightarrow Hom(G, G')$$

tale che $(\varphi + \psi)(x) := \varphi(x) + \psi(x)$.

- a) Dimostrare che + è effettivamente un'operazione binaria.
- **b)** Dimostrare che (Hom(G, G'), +) è un gruppo abeliano.

Sia $\varphi \in Hom(\mathbb{Z}_n, \mathbb{Z}_m)$. Mostrare che:

- c) l'ordine di $\varphi([1]_n)$ divide n e quindi anche il MCD(m,n)
- d) $Im(\varphi)$ è generato da $\varphi([1]_n)$ e che in particolare φ è suriettivo se e solo se $\varphi([1]_n) \in U(\mathbb{Z}_m)$
- e) se $[a]_m \in \mathbb{Z}_m$ è t.c. $o([a]_m) \mid n$ allora $\psi_a : \mathbb{Z}_n \to \mathbb{Z}_m$, definita come $\psi_a([x]_n) := [ax]_m$, è un omomorfismo.

Si consideri ora l'applicazione $f: (Hom(Z_n, Z_m), +) \to (Z_m, +)$ definita come $f(\varphi) := \varphi([1]_n)$.

- \mathbf{f}) Dimostrare che f è un omomorfismo iniettivo di gruppi.
- g) Trovare l'immagine di f e dire a quale gruppo è isomorfo $Hom(Z_n, Z_m)$.

- h) Trovare tutti gli omomorfismi da \mathbb{Z}_{18} a \mathbb{Z}_{12}
- i) Trovare tutti gli omomorfismi da \mathbb{Z}_6 a \mathbb{Z}_{15}

Sia ora $Aut(\mathbb{Z}_n)$ l'insieme degli automorfismi di \mathbb{Z}_n . Mostrare che:

- **j**) $(Aut(\mathbb{Z}_n), +) \subseteq (Hom(\mathbb{Z}_n, \mathbb{Z}_n), +)$ non è un sottogruppo
- **k)** $(Aut(\mathbb{Z}_n), \circ)$ è un gruppo
- l) $(Aut(\mathbb{Z}_n), \circ)$ è isomorfo a $(U(\mathbb{Z}_n), \cdot)$.
- m) Trovare tutti gli automorfismi di Z_{16}

Si consideri infine il gruppo degli endomorfismi di \mathbb{Z} . Sia $\nu_a : \mathbb{Z} \to \mathbb{Z}$ la moltiplicazione per a, i.e. $\nu_a(x) = ax$.

- n) Dimostrare che per ogni $a \in \mathbb{Z}, \nu_a \in Hom(\mathbb{Z}, \mathbb{Z})$
- o) A cosa è isomorfo $Hom(\mathbb{Z},\mathbb{Z})$?

Esercizio 4.

Si immerga \mathbb{Z}_p in un opportuno S_n tramite l'applicazione di Cayley ϕ . Determinare la struttura ciclica degli elementi di $\phi(\mathbb{Z}_p)$ e dire quali tra gli elementi di $\phi(\mathbb{Z}_p)$ sono coniugati in:

- $\phi(\mathbb{Z}_p)$
- \bullet S_n

Esercizio 5.

Sia G un gruppo e sia $\varphi: G \longrightarrow G$ l'applicazione che manda ogni elemnto nel suo inverso. Dimostrare che φ è biiettiva e che φ è un automorfismo se e solo se G è commutativo.

Esercizio 6.

Sia G un gruppo finito e sia φ un endomorfismo tale che più della metà degli elementi di G sia mandato nell'elemento neutro. Dimostrare che φ manda tutto G nell'elemento neutro.