

Edge

CS172 Computer Vision I Instructor: Jiayuan Gu

Agenda

- Edge
 - Image gradient
 - Derivatives with convolution
 - Gaussian derivative filter

Texture

Edge Detection

Winter in Kraków photographed by Marcin Ryczek

Edge Detection

- Goal: Identify sudden changes (discontinuities) in an image.
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Origin of Edges

Edges are caused by a variety of factors:

Source: Steve Seitz

Characterizing Edge

An edge is a place of rapid change in the image intensity function

Derivatives with Convolution

For 2D function f(x, y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement the above as convolution, what would be the associated filter?

Partial Derivatives of an Image

Which shows changes with respect to x?

Gradient Magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of Noise

Consider a single row or column of the image

Where is the edge?

Solution: Smooth First

To find edges, look for peaks in $\frac{d}{dx}(f * g)$

Derivative Theorem of Convolution

• Differentiation is convolution, and convolution is associative:

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

This saves us one operation:

Source: S. Seitz

Derivative of Gaussian Filters

Which one finds horizontal/vertical edges?
Are these filters separable?

Scale of Gaussian Derivative Filter

Smoothed derivative removes noise, but blurs edge.
Also finds edges at different "scales"

Source: D. Forsyth

Review: Smoothing vs. Derivative Filters

Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - **Zero:** no response in constant regions

Sobel Operator

$$g_x = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} * \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$g = \sqrt{g_x^2 + g_y^2}$$

An example image from wiki

The Sobel operator applied to that image

Canny Edge Detection

Algorithm:

- 1. Smooth image (only want "real" edges, not noise)
- 2. Calculate gradient direction and magnitude
- 3. Non-maximum suppression perpendicular to edge
- 4. Threshold into strong, weak, no edge
- 5. Connect together components

Canny Edge Detection: Smooth

Gaussian filter

Canny Edge Detection: Gradient

Sobel operator

Canny Edge Detection: Non-Maximum Suppression

- -Want single pixel edges, not thick blurry lines
- -Need to check nearby pixels
- -See if response is highest

Texture

An image texture is the small-scale structure perceived on an image, based on the spatial arrangement of color or intensities.

Kernels to Detect Texture

Describe what kind of pattern should be detected

Response of One Kernel

Response of One Kernel

Feature: Response Pattern

Feature can be Used for Recognition

More Kernels

•••

48