Mis-Classified, Binary, Endogenous Regressors: Identification and Inference

Francis J. DiTraglia¹ Camilo García-Jimeno^{2,3}

¹University of Pennsylvania

²Emory University

3NBER

October 11th, 2018

Mis-Classified, Binary, Endogenous Regressors:
Identification and Inference
Francia J. DiTraiglia¹ Camilo Garcia-Jimmop^{2,3}
**Strimmty of Pharmylania
**Strong University
**Massis*
October 11th, 2018

- Thank you for inviting me. Joint work with Camilo Garcia-Jimeno.
- Intro. 'metrics students learn that a valid IV serves double duty: correct for endogeneity and classical measurement error
- Classical measurement error is a special case: requires true value of regressor indep. of or at least uncorrelated with measurement error
- Applied work often involves endogenous binary regressor: smoker/non-smoker or union/non-union. Binary pon-classical error.
 True 0 can only mis-measure upwards as 1; true 1 can only mis-measure downwards as 0. Error negatively correlated with truth.
- To accommodate this, consider non-diff error. Say more later, but roughly non-diff means conditionally classical: condition on truth and controls, remaining component of error unrelated to everything else.
- Today pose simple question: binary, endog. regressor subject to non-diff. error. Can valid IV correct for both measurement error and endog?

What is the effect of T^* ?

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$$

- ▶ y − Outcome of interest
- ▶ T* Unobserved, endogenous binary regressor
- ➤ T Observed, mis-measured binary surrogate for T*
- x Exogenous covariates
- ▶ z Discrete (typically binary) instrumental variable

2018-10-06

Binary Regressors

—What is the effect of T^* ?

What is the effect of T^* ? $y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$ v = Outcome of interest T* – Unobserved, endogenous binary regressor T - Observed, mis-measured binary surrogate for T* x – Exceenous covariates

z – Discrete (typically binary) instrumental variable

- Here is the specific model I will focus on today. Additively separable model, want to learn the causal effect of binary regressor T^* on y. Unfortunately T^* is unobserved. Observe only mis-measured binary surrogate T. To make matters worse, T^* is endogenous, but we have a discrete instrument z.
- Additive separability is an assumption. Allow very general forms of observed heterogeneity through x but restricts unobserved heterogeneity.
- Conditionally linear model. This is without loss of generality since the model is additively separable and T^* is binary.
- Mainly focus on additively separable case today, but will also discuss implications of our results for a LATE model.

Using a discrete IV to learn about $\beta(\mathbf{x})$

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$$

Contributions of This Paper

- Show that only existing point identification result for mis-classified, endogenous T* is incorrect.
- 2. Sharp identified set for β under standard assumptions.
- 3. Point identification of β under slightly stronger assumptions.
- 4. Point out problem of weak identification in mis-classification models, develop identification-robust inference for β .

Using a discrete IV to learn about $\beta(\mathbf{x})$

Using a discrete IV to learn about $\beta(\mathbf{x})$ $\mathbf{y} = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$

Show that only existing point identification result for

- mis-classified, endogenous T^* is incorrect. 2. Sharp identified set for β under standard assumptions
- 3. Point identification of β under slightly stronger assumptions
- Point out problem of weak identification in mis-classification
 models, develop identification physic inference for if

- Here are the main contributions of paper that I will discuss today.
- Many papers consider using IV to identify effect of exog. mis-measured binary regressor, but little work on endog. case. First: show only point identification result for this case incorrect: ident. is an open question.
- Next: use standard assumptions to derive the "sharp identified set" for β.
 This means fully exploit all information in the data and our assumptions to derive tightest possible bounds for β. If bounds contain a single point, β is point identified. Otherwise partially identified.
- Novel and informative bounds for β , but not point identified. Then consider slightly stronger assumptions that allow us to exploit additional features of the data and show that these suffice to point identify β .
- Next consider inference. Show that mis-classification models, suffer from potential weak identification. Propose procedure for robust inference.
- Now a motivating example. . .

Example: Smoking and Birthweight (SNAP Trial)

Coleman et al. (N Engl J Med, 2012)

RCT with pregnant smokers in England: half given nicotine patches, the rest given placebo patches. Some given nicotine fail to quit; some given placebo quit.

- ▶ y Birthweight
- ▶ T* True smoking behavior
- ▶ T Self-reported smoking behavior
- x Mother characteristics
- z Indicator of nicotine patch

Baseline Assumptions I – Model & Instrument

Additively Separable Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon, \quad \mathbb{E}[\varepsilon] = 0$$

Valid & Relevant Instrument: $z \in \{0, 1\}$

- $ightharpoonup \mathbb{P}(T^* = 1 | \mathbf{x}, z = 1) \neq \mathbb{P}(T^* = 1 | \mathbf{x}, z = 0)$
- $\mathbb{E}[\varepsilon|\mathbf{x},z]=0$
- ▶ $0 < \mathbb{P}(z = 1 | \mathbf{x}) < 1$

Baseline Assumptions II – Measurement Error

Notation

- $\qquad \qquad \alpha_0(\mathbf{x}, z) \equiv \mathbb{P}\left(T = 1 | T^* = 0, \mathbf{x}, z\right)$
- $\qquad \qquad \alpha_1(\mathbf{x},z) \equiv \mathbb{P}\left(T = 0 | T^* = 1, \mathbf{x}, z\right)$

Mis-classification unaffected by z

$$\alpha_0(\mathbf{x}, z) = \alpha_0(\mathbf{x}), \quad \alpha_1(\mathbf{x}, z) = \alpha_1(\mathbf{x})$$

Extent of Mis-classification

$$\alpha_0(\mathbf{x}) + \alpha_1(\mathbf{x}) < 1$$
 (T is positively correlated with T^*)

Non-differential Mis-classification

$$\mathbb{E}[\varepsilon|\mathbf{x},z,T^*,T] = \mathbb{E}[\varepsilon|\mathbf{x},z,T^*]$$

Existing Results

Correct: Exogenous *T**

- Mahajan (2006), Frazis & Loewenstein (2003)
- ▶ $\mathbb{E}[\varepsilon|\mathbf{x}, z, T^*] = 0 + \text{"Baseline"} \Rightarrow \beta(\mathbf{x}) \text{ identified.}$

Incorrect: Endogenous T*

- ► Mahajan (2006) A.2
- ▶ $\mathbb{E}[\varepsilon|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon|\mathbf{x}, T^*] + \text{"Baseline"} \Rightarrow \beta(\mathbf{x}) \text{ identified.}$

We show: Mahajan's assumptions imply that the instrument z is uncorrelated with T^* unless T^* is in fact exogenous.

Existing Results Correct: Exogenous T* ► Mahaian (2006). Frazis & Loewenstein (2003) Elc|x, z, T*] = 0 + "Baseline" ⇒ β(x) identified Incorrect: Endogenous T* ► Mahaian (2006) A.2 Elc|x, z, T*, T| = E[c|x, T*] + "Baseline" ⇒ β(x) identified

is uncorrelated with T^* unless T^* is in fact exogen-

Existing Results

- Point out that the FL estimator is a nonlinear GMM rather than IV and note that they require joint exogeneity of T^* and z.
- 1st contribution: show that only existing point identification result for mis-measured, binary, endog. regressor is false
- As mentioned a few minutes ago, main result from Mahajan (2006; Ecta) is for T^* , but paper also contains a result for the endogenous case [READ THE RESULT]
- Exotic-looking assumption is needed to leverage Mahajan's result for the exogenous case. Unfortunately we show that it leads to a contradiction. [READ THE RESULT]
- Identification in this model is an open question: though Mahajan's proof fails, this does not establish that β is unidentified under the baseline assumptions.
- Next step show you two known results: simple bounds for α_0, α_1 , and relationship between IV estimator and α_0, α_1 , yielding bounds for β
- Then our 2nd contribution: sharp identified set for β under baseline

"Weak" Bounds

First-Stage

$$\rho_k(\mathbf{x}) \equiv \mathbb{P}(T=1|\mathbf{x},z=k)$$

IV Estimand

$$\frac{\mathbb{E}[y|\mathbf{x}, z=1] - \mathbb{E}[y|\mathbf{x}, z=0]}{p_1(\mathbf{x}) - p_0(\mathbf{x})} = \frac{\beta(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}$$

Bounds for (α_0, α_1)

$$\alpha_0(\mathbf{x}) \leq \min_k \left\{ p_k(\mathbf{x}) \right\}, \quad \alpha_1(\mathbf{x}) \leq \min_k \left\{ 1 - p_k(\mathbf{x}) \right\}$$
 prove

Bounds for β

 $\beta(\mathbf{x})$ is between IV and Reduced form; same sign as IV. \bullet

Weak! Bounds

First-Stage $\rho_k(\mathbf{x}) = \mathbb{P}(T - 1|\mathbf{x}, \mathbf{z} = \mathbf{k})$ IV Estimand $\mathbb{E}[\mathbf{y}|\mathbf{x}, \mathbf{z} - 1] = \mathbb{E}[\mathbf{y}|\mathbf{x}, \mathbf{z} = 0]$ $\rho_k(\mathbf{x}) = \rho_k(\mathbf{x})$ Bounds for (n_0, n_1) $n_k(\mathbf{y}) \leq \min_{\mathbf{x}} (\rho_k(\mathbf{y})), \quad n_k(\mathbf{x}) \leq \min_{\mathbf{x}} 1 - \rho_k(\mathbf{x})$ Bounds for $\beta_k(\mathbf{x}) = n_k(\mathbf{x}) \leq \min_{\mathbf{x}} 1 - \rho_k(\mathbf{x})$ $\beta_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x})$ $\beta_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x}) \leq n_k(\mathbf{x})$

└─"Weak" Bounds

This doesn't rely on non-diff assumption or additive separability. Mention F&L (2003) and Ura (2016). But the point identification results from the literature rely on non-diff, and these bounds do not in fact impose that. Do these contain any additional information about β ? Perhaps they even point identify it!

(Suppress x for simplicity)

Notation

- \triangleright z_k is shorthand for z = k

Iterated Expectations over T^*

$$\mathbb{E}(y|T=0,z_k) = (1-r_{0k})\mathbb{E}(y|T^*=0,T=0,z_k) + r_{0k}\mathbb{E}(y|T^*=1,T=0,z_k)$$

$$\mathbb{E}(y|T=1,z_k) = (1-r_{1k})\mathbb{E}(y|T^*=0,T=1,z_k) + r_{1k}\mathbb{E}(y|T^*=1,T=1,z_k)$$

(Suppress x for simplicity)

Notation

- \triangleright z_k is shorthand for z = k

Adding Non-differential Assumption

$$\mathbb{E}(y|T = 0, z_k) = (1 - r_{0k})\mathbb{E}(y|T^* = 0, z_k) + r_{0k}\mathbb{E}(y|T^* = 1, z_k)$$

$$\mathbb{E}(y|T = 1, z_k) = (1 - r_{1k})\mathbb{E}(y|T^* = 0, z_k) + r_{1k}\mathbb{E}(y|T^* = 1, z_k)$$

2 equations in 2 unknowns \Rightarrow solve for $\mathbb{E}(y|T^*=t^*,z=k)$ given (r_{0k},r_{1k}) .

Mixture Representation

$$F_{tk} = (1 - r_{tk})F_{tk}^0 + r_{tk}F_{tk}^1$$
$$F_{tk} \equiv y|(T = t, z = k)$$

$$F_{tk}^{t^*} \equiv y | (T^* = t^*, T = t, z = k)$$

Restrictions

- $\mathbb{E}(y|T^*,T,z) = \mathbb{E}(y|T^*,z)$ observable given (α_0,α_1)
- r_{tk} observable given (α_0, α_1)

Question

Given (α_0, α_1) can we always find (F_{tk}^0, F_{tk}^1) to satisfy the mixture model?

Equivalent Problem

Given a specified CDF F, for what values of p and μ do there exist valid CDFs (G, H) with F = (1 - p)G + pH and $\mu = \text{mean}(H)$?

Necessary and Sufficient Condition if F is Continuous

$$\underline{\mu}(F,p) \leq \mu \leq \overline{\mu}(F,p)$$

$$\underline{\mu}(F,p) \equiv \int_{-\infty}^{\infty} x \left[p^{-1} f(x) \mathbf{1} \{ x < F^{-1}(p) \} \right] dx = \int_{-\infty}^{\infty} x \underline{h}(x) dx$$

$$\overline{\mu}(F,p) \equiv \int_{-\infty}^{\infty} x \left[p^{-1} f(x) \mathbf{1} \{ x > F^{-1}(1-p) \} \right] dx = \int_{-\infty}^{\infty} x \overline{h}(x) dx$$

Picture very simple: for given weight p on H, top panel shows the smallest mean that H can have and the bottom shows the largest mean it can take to yield a valid mixture in which H has weight p. As you change p, you change the range of values that the mean of H can take. In this example the observed distribution F is a simple mixture of normals. If it were a different distribution we'd get different restrictions: picture shows how shape of F leads to the upper and lower bounds for μ .

As p approaches 1, the mean of H is more tightly constrained: must be close to the mean of the observed distribution F, namely -0.8. As p approaches zero, it is less and less constrained: since it contributes very little to the overall mixture, it can take on nearly any mean.

Sharp Identified Set under Baseline Assumptions

Theorem

- (i) As long as $\mathbb{E}[y|\mathbf{x}, T=0, z=k] \neq \mathbb{E}[y|\mathbf{x}, T=1, z=k]$ for some k, non-differential measurement error strictly improves the weak bounds for α_0, α_1 , and β .
- (ii) Under the baseline assumptions, β is not point identified, regardless of how many (discrete) values z takes on.

Corollary

Our bounds for α_0, α_1 , and β remain valid in a LATE model, although they may not be sharp, since they do not incorporate the testable implications of the LATE assumptions.

Sharp Identified Set under Baseline

Sharp Identified Set under Baseline Assumptions

- (i) As long as E[y|x, T = 0, z = k] ≠ E[y|x, T = 1, z = k] for some k, non-differential measurement error strictly improves the weak bounds for α₀, α₁, and β.
- (ii) Under the baseline assumptions, β is not point identified, regardless of how many (discrete) values x takes on.

Corollary

Our bounds for α_0, α_1 , and β remain valid in a LATE model, although they may not be sharp, since they do not incorporate the testable irrelinations of the LATE assumetions

Second contribution. Simple bounds I showed you earlier are not sharp: in other words, they're not the best bounds you can get under our assumptions. Even when we get the best bounds (the "sharp" bounds) they're not enough to point identify β . Describe the intuition for why not: no mis-classiciation means r_{tk} is either zero or 1 so it is trivial to form the required mixture in this case. Also point out that the restrictions from non-differential measurement error can be very informative in practice! Now transition to point identification argument. Can we obtain point identification under stronger but credible assumptions?

Point Identification: 1st Ingredient

Reparameterization

$$\theta_{1}(\mathbf{x}) = \beta(\mathbf{x})/\left[1 - \alpha_{0}(\mathbf{x}) - \alpha_{1}(\mathbf{x})\right]$$

$$\theta_{2}(\mathbf{x}) = \left[\theta_{1}(\mathbf{x})\right]^{2} \left[1 + \alpha_{0}(\mathbf{x}) - \alpha_{1}(\mathbf{x})\right]$$

$$\theta_{3}(\mathbf{x}) = \left[\theta_{1}(\mathbf{x})\right]^{3} \left[\left\{1 - \alpha_{0}(\mathbf{x}) - \alpha_{1}(\mathbf{x})\right\}^{2} + 6\alpha_{0}(\mathbf{x})\left\{1 - \alpha_{1}(\mathbf{x})\right\}\right]$$

Lemma

Baseline Assumptions $\implies Cov(y, z|\mathbf{x}) = \theta_1(\mathbf{x})Cov(z, T|\mathbf{x}).$

Reparameterization $\theta_1(\mathbf{x}) = \beta(\mathbf{x})/[1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})]$

Point Identification: 1st Ingredient

 $\theta_2(\mathbf{x}) = [\theta_1(\mathbf{x})]^2 [1 + \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})]$ $\theta_3(\mathbf{x}) = [\theta_1(\mathbf{x})]^3 \left[\{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})\}^2 + 6\alpha_0(\mathbf{x}) \{1 - \alpha_1(\mathbf{x})\} \right]$

Lemma

Baseline Assumptions \Longrightarrow $Cov(y, z|x) = \theta_1(x)Cov(z, T|x)$.

Point Identification: 1st Ingredient

Note that $\beta = 0$ iff $\theta_1 = \theta_2 = \theta_3 = 0$.

Point Identification: 2nd Ingredient

Assumption (II)

$$\mathbb{E}[\varepsilon^2|\mathbf{x},z] = \mathbb{E}[\varepsilon^2|\mathbf{x}]$$

Lemma

(Baseline) + (II)
$$\Longrightarrow$$
 $Cov(y^2, z|\mathbf{x}) = 2Cov(yT, z|\mathbf{x})\theta_1(\mathbf{x}) - Cov(T, z|\mathbf{x})\theta_2(\mathbf{x})$

Corollary

(Baseline) + (II) +
$$[\beta(\mathbf{x}) \neq 0] \implies [\alpha_1(\mathbf{x}) - \alpha_0(\mathbf{x})]$$
 is identified.

Point Identification: 2nd Ingredient Assumption (II) $\mathbb{E}[\varepsilon^2|\mathbf{x}, \mathbf{z}] = \mathbb{E}[\varepsilon^2|\mathbf{x}]$

 $(Baseline) + (II) \implies$ $Cov(y^2, z|\mathbf{x}) = 2Cov(yT, z|\mathbf{x})\theta_1(\mathbf{x}) - Cov(T, z|\mathbf{x})\theta_2(\mathbf{x})$

(Baseline) + (II) + $[\beta(\mathbf{x}) \neq 0] \implies [\alpha_1(\mathbf{x}) - \alpha_0(\mathbf{x})]$ is identified

-Point Identification: 2nd Ingredient

Notice that the corollary implies that β is point identified if mis-classification is one-sided, as it might well be in the smoking example.

Point Identification: 3rd Ingredient

Assumption (III)

- (i) $\mathbb{E}[\varepsilon^2|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon^2|\mathbf{x}, z, T^*]$
- (ii) $\mathbb{E}[\varepsilon^3|\mathbf{x},z] = \mathbb{E}[\varepsilon^3|\mathbf{x}]$

Lemma

$$(Baseline) + (II) + (III) \implies$$

$$Cov(y^3, z|\mathbf{x}) = 3Cov(y^2T, z|\mathbf{x})\theta_1(\mathbf{x}) - 3Cov(yT, z|\mathbf{x})\theta_2(\mathbf{x}) + Cov(T, z|\mathbf{x})\theta_3(\mathbf{x})$$

Point Identification Result

Theorem

(Baseline) + (II) + (III) $\implies \beta(\mathbf{x})$ is point identified. If $\beta(\mathbf{x}) \neq 0$, then $\alpha_0(\mathbf{x})$ and $\alpha_1(\mathbf{x})$ are likewise point identified.

Explicit Solution

$$\beta(\mathbf{x}) = \operatorname{sign} \left[\theta_1(\mathbf{x})\right] \sqrt{3 \left[\theta_2(\mathbf{x})/\theta_1(\mathbf{x})\right]^2 - 2 \left[\theta_3(\mathbf{x})/\theta_1(\mathbf{x})\right]}$$

Sufficient for (II) and (III)

- (a) T is conditionally independent of (ε, z) given (T^*, \mathbf{x})
- (b) z is conditionally independent of ε given ${\bf x}$

Point Identification Result

Thouse

(Ramford + (II) + (III) \rightarrow (I/ α) is part identified. If $|(\alpha)| \neq 0$, then $|\alpha(\beta)| = 0$ in $|(\beta)| \rightarrow$ (III) is the state pairs identified.

Explict Solution $|(\beta)| = -|(\beta)| \sqrt{|\beta|} \sqrt{|\beta|} |(\beta)| \sqrt{|\beta|} - |\beta| |(\alpha)| \sqrt{|\beta|} |(\alpha)|^2}$ Sufficient for (II) and (III)

(a) I is undificately independent of $|(\beta)| = 0$ (IV + a)

is a sufficient for $|(\beta)| = 0$ (IV + a)

Point Identification Result

Comment on the sufficient conditions: say that we really think these are what people have in mind in a natural experiment setting. Explain about reporting results in both logs and levels.

Inference for a Mis-classified Regressor

Weak Identification

- ▶ β small \Rightarrow moment equalities uninformative about (α_0, α_1) \bigcirc more
- (α_0, α_1) could be on the boundary of the parameter space
- ▶ Also true of existing estimators that assume *T** exogenous

Our Approach

- Sharp identified set yields *inequality* moment restrictions that remain informative even if $\beta \approx 0$.
- ▶ Identification-robust inference with equality and inequality MCs.

Inference with Moment Equalities and Inequalities

Moment Conditions

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] \geq 0, \quad j = 1, \cdots, J$$

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] = 0, \quad j = J + 1, \cdots, J + K$$

Test Statistic

$$T_{n}(\vartheta) = \sum_{j=1}^{J} \left[\frac{\sqrt{n} \ \bar{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]_{-}^{2} + \sum_{j=J+1}^{J+K} \left[\frac{\sqrt{n} \ \bar{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]^{2}$$

Critical Value

- $\sqrt{n}\, ar{m}_n(\vartheta_0) o_d$ normal limit with covariance matrix $\Sigma(\vartheta_0)$
- ▶ Use this to bootstrap the limit dist. of $T_n(\vartheta)$ under $H_0: \vartheta = \vartheta_0$

	ent Conditions
	$ \mathbf{w}_i, \vartheta_0 \ge 0, j = 1, \dots, J$
E [m/	$[\mathbf{w}_i, \vartheta_0] = 0, j = J + 1, \dots, J + K$
Test	Statistic
	$T_{\mathbf{s}}(\vartheta) = \sum_{j=1}^{J} \left[\frac{\sqrt{n} \tilde{m}_{\mathbf{s},j}(\vartheta)}{\tilde{\sigma}_{\mathbf{s},j}(\vartheta)} \right]_{-}^{2} + \sum_{j=J+1}^{J+K} \left[\frac{\sqrt{n} \tilde{m}_{\mathbf{s},j}(\vartheta)}{\tilde{\sigma}_{\mathbf{s},j}(\vartheta)} \right]^{2}$
Critic	al Value

Inference with Moment Equalities and Inequalities

-Inference with Moment Equalities and

Explain about the meaning of the m-var, the sigma-hat and the "minus" subscript

Generalized Moment Selection

Andrews & Soares (2010)

Inequalities that don't bind reduce power of test, so eliminate those that are "far from binding" before calculating critical value:

Drop inequality
$$j$$
 if $\frac{\sqrt{n}\,\bar{m}_{n,j}(\vartheta_0)}{\widehat{\sigma}_{n,j}(\vartheta_0)} > \sqrt{\log n}$

- ▶ Uniformly valid test of H_0 : $\vartheta = \vartheta_0$ even if ϑ_0 is not point identified.
- Not asymptotically conservative.

Problem

Joint test for the whole parameter vector but we're only interested in β . Projection is conservative and computationally intensive.

Generalized Moment Selection

Andrews & Soares (2010)

ndrews & Soares

Inequalities that don't bind reduce power of test, so eliminate the that are "far from binding" before calculating critical value:
Drop inequality j if ^{√n m_{m,j}(θ₀)}/_{σ_j(θ₀)} > √log n

Uniformly valid test of H₀: θ = θ₀ even if θ₀ is not point identi
 Not asymptotically conservative.

oblem

Soint test for the whole parameter vector but we're only interested in Projection is conservative and computationally intensive.

Explain what not asymptotically conservative means. Explain what projection is and why it's conservative and computationally intensive.

-Generalized Moment Selection

Our Solution: Bonferroni-Based Inference

Special Structure

- β only enters MCs through $\theta_1 = \beta/(1 \alpha_0 \alpha_1)$
- ▶ Strong instrument \Rightarrow inference for θ_1 is standard.
- ▶ Nuisance pars γ strongly identified under null for (α_0, α_1)

Procedure

- 1. Concentrate out $(\theta_1, \gamma) \Rightarrow$ joint GMS test for (α_0, α_1)
- 2. Invert test \Rightarrow $(1 \delta_1) \times 100\%$ confidence set for (α_0, α_1)
- 3. Project \Rightarrow CI for $(1 \alpha_0 \alpha_1)$
- 4. Construct standard $(1 \delta_2) \times 100\%$ IV CI for θ_1
- 5. Bonferroni \Rightarrow $(1 \delta_1 \delta_2) \times 100\%$ CI for β

-Our Solution: Bonferroni-Based Inference

Our Solution: Bonferroni-Based Inference Special Structure

- ▶ β only enters MCs through $\theta_1 = \beta/(1 \alpha_0 \alpha_1)$ Strong instrument → inference for θ₁ is standard.
- Nuisance pars γ strongly identified under null for (α₀, α₁)

- 1. Concentrate out $(\theta_1, \gamma) \Rightarrow$ joint GMS test for (α_0, α_1) 2. Invert test $\Rightarrow (1 - \delta_1) \times 100\%$ confidence set for (α_0, α_1)
- 3. Project \Rightarrow CI for $(1 \alpha_0 \alpha_1)$
- 4. Construct standard $(1 \delta_2) \times 100\%$ IV CI for θ_1
- 5. Bonferroni \Rightarrow $(1 \delta_1 \delta_2) \times 100\%$ CI for β

Explain that the procedure works well in simulations etc. Possibly add link to simulation here.

Example

(sim data:
$$\beta = 1, \alpha_0 = 0.1, \alpha_1 = 0.2, n = 5000$$
)

97.5% GMS Confidence Region for (α_0, α_1)

Bonferroni Interval

- 1. 97.5% CI for $(1 \alpha_0 \alpha_1) = (0.64, 0.82)$
- 2. 97.5% CI for $\theta_1 = (1.20, 1.47)$
- 3. > 95% CI for β : $(0.64 \times 1.20, 0.82 \times 1.47) = (0.77, 1.21)$

Comparisons

- \triangleright (0.88, 1.04) for IV if T^* were observed
- \blacktriangleright (1.22,1.45) for naive IV interval using T

Conclusion

This Paper

- Partial and point identification results for effect of binary, endogenous regressor using a valid instrument.
- ▶ Identification-robust inference in models with mis-classification

Related Work

- Relaxing Instrument Validity: "A Framework for Eliticing, Incorporating, and Disciplining Identification Beliefs in Linear Models" (with Camilo Garcia-Jimeno)
- Relaxing Non-differential Measurement Error: "Estimating the Returns to Lying" (with Arthur Lewbel)

Simple Bounds for Mis-classification from First-stage

Unobserved Observed
$$ho_k^*(\mathbf{x}) \equiv \mathbb{P}(T^*=1|\mathbf{x},z=k)$$
 $p_k(\mathbf{x}) \equiv \mathbb{P}(T=1|\mathbf{x},z=k)$

Relationship

$$p_k^*(\mathbf{x}) = \frac{p_k(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}, \quad k = 0, 1$$

z does not affect (α_0, α_1) ; denominator $\neq 0$

Bounds for Mis-classification

$$\alpha_0(\mathbf{x}) \leq p_k(\mathbf{x}) \leq 1 - \alpha_1(\mathbf{x}), \quad k = 0, 1$$

$$\alpha_0(\mathbf{x}) + \alpha_1(\mathbf{x}) < 1$$

What does IV estimate under mis-classification?

Unobserved

$$\beta(\mathbf{x}) = \frac{\mathbb{E}[y|\mathbf{x}, z=1] - \mathbb{E}[y|\mathbf{x}, z=0]}{p_1^*(\mathbf{x}) - p_0^*(\mathbf{x})}$$

Wald (Observed)

$$\frac{\mathbb{E}[y|\mathbf{x},z=1] - \mathbb{E}[y|\mathbf{x},z=0]}{p_1(\mathbf{x}) - p_0(\mathbf{x})} = \beta(\mathbf{x}) \left[\frac{p_1^*(\mathbf{x}) - p_0^*(\mathbf{x})}{p_1(\mathbf{x}) - p_0(\mathbf{x})} \right] = \frac{\beta(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}$$

$$p_1^*(\mathbf{x}) - p_0^*(\mathbf{x}) = \frac{p_1(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0 - \alpha_1(\mathbf{x})} - \frac{p_0(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0 - \alpha_1(\mathbf{x})} = \frac{p_1(\mathbf{x}) - p_0(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}$$

Partial Identification Bounds for $\beta(\mathbf{x})$

$$\beta(\mathbf{x}) = [1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})] \left[\frac{\mathbb{E}[y|\mathbf{x}, z = 1] - \mathbb{E}[y|\mathbf{x}, z = 0]}{\rho_1(\mathbf{x}) - \rho_0(\mathbf{x})} \right]$$

$$0 \le \alpha_0 \le \min_k \{ p_k(\mathbf{x}) \}, \quad 0 \le \alpha_1 \le \min_k \{ 1 - p_k(\mathbf{x}) \}$$

No Mis-classification

$$\alpha_0(\mathbf{x}) = \alpha_1(\mathbf{x}) = 0 \implies \beta(\mathbf{x}) = \mathsf{Wald}$$

Maximum Mis-classification

$$\alpha_0(\mathbf{x}) = p_{\min}(\mathbf{x}), \ \alpha_1(\mathbf{x}) = 1 - p_{\max}(\mathbf{x})$$

$$\Rightarrow 1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) = p_{\text{max}}(\mathbf{x}) - p_{\text{min}}(\mathbf{x}) = |p_1(\mathbf{x}) - p_0(\mathbf{x})|$$
$$\Rightarrow \beta(\mathbf{x}) = \text{sign} \{p_1(\mathbf{x}) - p_0(\mathbf{x})\} \times (\text{Reduced Form})$$

Just-Identified System of Moment Equalities

Suppress dependence on x...

$$\mathbb{E}\left[\left\{\mathbf{\Psi}(\boldsymbol{\theta})\mathbf{w}_{i}-\boldsymbol{\kappa}\right\} \otimes \begin{pmatrix} 1\\z \end{pmatrix}\right] = \mathbf{0}$$

$$\mathbf{\Psi}(\boldsymbol{\theta}) \equiv \begin{bmatrix} -\theta_{1} & 1 & 0 & 0 & 0 & 0\\ \theta_{2} & 0 & -2\theta_{1} & 1 & 0 & 0\\ -\theta_{3} & 0 & 3\theta_{2} & 0 & -3\theta_{1} & 1 \end{bmatrix}$$

$$\begin{aligned} \mathbf{w}_{i} &= (T_{i}, y_{i}, y_{i}T_{i}, y_{i}^{2}, y_{i}^{2}T_{i}, y_{i}^{3})' & \theta_{1} &= \beta/(1 - \alpha_{0} - \alpha_{1}) \\ \kappa &= (\kappa_{1}, \kappa_{2}, \kappa_{3})' & \theta_{2} &= \theta_{1}^{2}(1 + \alpha_{0} - \alpha_{1}) \\ \theta_{3} &= \theta_{1}^{3} \left[(1 - \alpha_{0} - \alpha_{1})^{2} + 6\alpha_{0}(1 - \alpha_{1}) \right] \end{aligned}$$

▶ back

Moment Inequalities I – First-stage Probabilities

$$\alpha_0 \leq p_k \leq 1 - \alpha_1$$
 becomes $\mathbb{E}\left[m(\mathbf{w}_i, \boldsymbol{\vartheta})\right] \geq \mathbf{0}$ for all k where

$$m(\mathbf{w}_i, \vartheta) \equiv \left[\begin{array}{c} \mathbf{1}(z_i = k)(T - \alpha_0) \\ \mathbf{1}(z_i = k)(1 - T_i - \alpha_1) \end{array} \right]$$

Moment Inequalities II – Non-differential Assumption

For all k, we have $\mathbb{E}[m(\mathbf{w}_i, \boldsymbol{\vartheta}, \mathbf{q}_k)] \geq 0$ where

$$m(\mathbf{w}_{i}, \boldsymbol{\vartheta}, \mathbf{q}_{k}) \equiv \begin{bmatrix} y_{i} \mathbf{1} \left(z_{i} = k\right) \left\{ \left(T_{i} - \alpha_{0}\right) - \mathbf{1} \left(y_{i} \leq \underline{q}_{0k}\right) \left(1 - T_{i}\right) \left(\frac{1 - \alpha_{0} - \alpha_{1}}{\alpha_{1}}\right) \right\} \\ -y_{i} \mathbf{1} \left(z_{i} = k\right) \left\{ \left(T_{i} - \alpha_{0}\right) - \mathbf{1} \left(y_{i} \geq \overline{q}_{0k}\right) \left(1 - T_{i}\right) \left(\frac{1 - \alpha_{0} - \alpha_{1}}{\alpha_{1}}\right) \right\} \\ y_{i} \mathbf{1} \left(z_{i} = k\right) \left\{ \left(T_{i} - \alpha_{0}\right) - \mathbf{1} \left(y_{i} \leq \underline{q}_{1k}\right) T_{i} \left(\frac{1 - \alpha_{0} - \alpha_{1}}{1 - \alpha_{1}}\right) \right\} \\ -y_{i} \mathbf{1} \left(z_{i} = k\right) \left\{ \left(T_{i} - \alpha_{0}\right) - \mathbf{1} \left(y_{i} \geq \overline{q}_{1k}\right) T_{i} \left(\frac{1 - \alpha_{0} - \alpha_{1}}{1 - \alpha_{1}}\right) \right\} \end{bmatrix}$$

and $\mathbf{q}_k \equiv (\underline{q}_{0k},\,\overline{q}_{0k},\,\underline{q}_{1k},\,\overline{q}_{1k})'$ defined by $\mathbb{E}[h(\mathbf{w}_i,\vartheta,\mathbf{q}_k)]=0$ with

$$h(\mathbf{w}_i, \vartheta, \mathbf{q}_k) = \begin{bmatrix} \mathbf{1}(y_i \leq \underline{q}_{0k}) \mathbf{1}(z_i = k) (1 - T_i) - \left(\frac{\alpha_1}{1 - \alpha_0 - \alpha_1}\right) \mathbf{1}(z_i = k) (T_i - \alpha_0) \\ \mathbf{1}(y_i \leq \overline{q}_{0k}) \mathbf{1}(z_i = k) (1 - T_i) - \left(\frac{1 - \alpha_1}{1 - \alpha_0 - \alpha_1}\right) \mathbf{1}(z_i = k) (1 - T_i - \alpha_1) \\ \mathbf{1}(y_i \leq \underline{q}_{1k}) \mathbf{1}(z_i = k) T_i - \left(\frac{1 - \alpha_1}{1 - \alpha_0 - \alpha_1}\right) \mathbf{1}(z_i = k) (T_i - \alpha_0) \\ \mathbf{1}(y_i \leq \overline{q}_{1k}) \mathbf{1}(z_i = k) T_i - \left(\frac{\alpha_0}{1 - \alpha_0 - \alpha_1}\right) \mathbf{1}(z_i = k) (1 - T_i - \alpha_1) \end{bmatrix}$$

▶ back