Université de Picardie Jules Verne

UFR sciences. Année 2024-2025.

Master de Mathématiques : M1-Analyse Fonctionnelle

Correctiondevoir N.2

Exercice 1

On considère la suite de $L^2(]0,1[)$ définie par $u_n(x) := \sin(2\pi nx)$. L'objectif est de montrer que (u_n) converge faiblement vers 0 dans $L^2(]0,1[)$. On admettra le très important résultat suivant : $C^{\infty}(]0,1[)$ est dense dans

On admettra le très important résultat suivant : $C_c^{\infty}(]0,1[)$ est dense dans $(L^p(]0,1[),\|.\|_{L^p})$ pour tout $p \geq 1$.

1. Effectuons une intégration par partie :

$$\int_0^1 u_n(t)\phi(t)dt = \left[-\frac{1}{2\pi n}\cos(2\pi nx)\phi(x) \right]_0^1 + \int_0^1 \frac{1}{2\pi n}\cos(2\pi nx)\phi'(x)dx.$$

On en déduit l'inégalité

$$\left| \int_0^1 u_n(t)\phi(t)dt \right| \le \frac{\|\phi'\|_{\infty}}{2\pi n},$$

d'où le résultat.

2. On effectue un raisonnement **par densité** (c'est très utilisé en analyse!). Soient $\epsilon > 0$ et $v \in L^2(]0,1[)$. Il existe $\phi \in C_c^{\infty}(]0,1[)$ telle que

$$||v - \phi||_{L^2} < \epsilon/2.$$

On a pour tout n

$$|(u_n, v)_{L^2}| = |(u_n, v - \phi + \phi)_{L^2}| \le |(u_n, \phi)| + ||u_n||_{L^2} ||v - \phi||_{L^2}.$$
 (1)

Or, pour tout n (en effectuant le changement de variable $u = 2\pi nx$

$$||u_n||_{L^2}^2 = \int_0^1 \sin^2(2\pi nt)dt = \frac{1}{2\pi n} \int_0^{2\pi n} \sin^2(u)du = \frac{n}{2\pi n} \int_0^{2\pi} \sin^2(u)du,$$

d'où

$$||u_n||_{L^2}^2 = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 + \cos(2u)}{2} du = \frac{1}{2}.$$
 (2)

On déduit alors de la question 1 et de (1) et (2), qu'il existe n_0 tel que pour tout $n \ge n_0$, pour tout v

$$|(u_n, v)_{L^2}| < \epsilon.$$

On vient de prouver que (u_n) converge faiblement vers 0.

- 3. Si la suite (u_n) converge fortement dans $L^2(]0,1[)$, alors, d'après la question 2, elle converge fortement vers 0 (la convergence forte de (u_n) vers u entraı̂ne la convergence faible de (u_n) vers u et on a montré que (u_n) converge faiblement vers 0, donc par unicité de la limite, u=0). Mais pour tout n, on a $||u_n||_{L^2} = \frac{1}{\sqrt{2}}$. Conclusion: la suite (u_n) ne converge pas vers 0.
- 4. Cette question est sans rapport avec les précédentes. Il faut replacer la question dans un contexte d'analyse hilbertienne. On considère l'espace de Hilbert $H := H^1([0,1])$ muni de la norme induite par le produit scalaire $(u,v)_{H^1} := \int_0^1 u'v' + uvdx$ (voir le TD 7 pour plus d'explications), et on pose $C = \mathbb{R}_1[X]$. Le convexe non vide C est inclus dans $H^1([0,1])$. En effet, posons p(x) = ax + b. Alors, pour tout $\phi \in C_c^{\infty}(]0,1[)$, on obtient en effectuant une intégration par parties

$$\int_0^1 p(x)\phi'(x)dx = [p(x)\phi(x)]_0^1 - \int_0^1 a\phi'(x) = -\int_0^1 a\phi'(x)dx.$$

Ce calcul prouve que $p \in H^1([0,1])$ et que p'(x) = a (on prouve de façon générale que si f est de classe C^1 , sa dérivée au sens usuelle coïncide avec sa dérivée au sens des distributions).

Le polynôme x^2 appartient à H. Remarquons que

$$I(a,b) = ||x^2 - p||_{H^1}^2.$$

Minimiser I sur \mathbb{R}^2 revient à déterminer

$$\inf_{p \in C} \|x^2 - p\|_{H^1}^2.$$

On peut appliquer le théorème de projection sur un convexe fermé (C est un espace vectoriel de dimension finie, donc c'est un fermé). Il existe un unique $p_0 \in C$ tel que

$$||x^2 - p_0||_{H^1}^2 = \inf_{p \in C} ||x^2 - p||_{H^1}^2.$$

De plus, $p_0 := ax + b$ est caractérisé par la relation

$$(x^2 - p_0, v)_{H^1} = 0, \quad \forall \ v \in C.$$

Comme $1 \in C$ et $x \in C$, en particulier, on a $(x^2-p_0, 1)_{H^1} = (x^2-p_0, x)_{H^1} = 0$. On obtient ainsi un système linéaire de deux équations à deux inconnues, donné par

$$\begin{cases} -\frac{a}{2} - b + \frac{1}{3} = 0, \\ -\frac{4}{3}a - \frac{b}{2} + \frac{5}{4} = 0. \end{cases}$$

dont la solution est $(a,b)=(1,-\frac{1}{6})$. On obtient finalement

$$I(1, -\frac{1}{6}) = \inf_{a,b} I(a, b) = \frac{61}{180}.$$

Exercice 2

On suppose ici $\Omega =]0, 1[$.Pour $(u, v) \in H^1(\Omega) \times H^1(\Omega)$, on pose

$$a(u,v) = \int_0^1 u'v'dx + \int_0^1 u(x)dx \int_0^1 v(x)dx.$$

1. Remarquons que a(.,.) est une forme bilinéaire et symétrique. Il est clair que a est symétrique, pour prouver qu'elle est bilinéaire, il suffit de montrer que $a(\lambda u + v, w) = \lambda a(u, w) + a(v, w)$ pour tout $\lambda \in \mathbb{R}$ et $u, v \in H^1$. On a

$$a(\lambda u + v, w) = \int_0^1 (\lambda u + v)' w' dx + \int_0^1 (\lambda u + v)(x) dx \int_0^1 w(x) dx.$$

d'où en utilisant la linéarité de l'intégral et de la dérivation, on obtient

$$a(\lambda u + v, w) = \lambda a(u, w) + a(v, w).$$

Pour montrer que a est continue, o doit trouver une constante M>0 telle que

$$|a(u,v)| < M||u||_{H^1}||v||_{H^1}, \quad \forall u,v,w.$$

Remarquons que pour tout $u \in L^2$,

$$\left| \int_{0}^{1} u(x)dx \right| \le \int_{0}^{1} |u(x)|dx \le ||u||_{L^{2}}$$

Il en résulte que

$$\left| \int_0^1 u(x)dx \int_0^1 v(x)dx \right| \le \|u\|_{L^2} \|v\|_{L^2}. \tag{3}$$

On obtient alors l'inégalité (appliquer l'inégalité de Hölder avec p=2 et l'inégalité triangulaire, ainsi que (3))

$$|a(u,v)| \le ||u'||_{L^2} ||v'||_{L^2} + ||u||_{L^2} ||v||_{L^2}.$$

En remarquant les inégalités évidentes $||u||_{L^2} \leq ||u||_{H^1}$ et $||u'||_{L^2} \leq ||u||_{H^1}$ pour tout $u \in H^1$, on obtient pour tout $u, v \in H^1([0,1])$

$$|a(u,v)| \le 2||u||_{H^1}||v||_{H^1}.$$

a(.,.) est bien continue.

- 2. On doit prouver que pour tout $f \in F'$, la suite $(f(T(u_n)))$ converge vers 0. Or, $foT \in E'$ puisque T est continue (la composée de deux applications continues est continue). Comme (u_n) une suite qui converge faiblement vers 0 dans E, on a $foT(u_n)$ qui tend vers 0 quand n tend vers l'infini. C'est ce qu'on voulait prouver.
- 3. On suppose que a(.,.) n'est pas coercive. Cela signifie que quelque soit $\alpha>0$, il existe $u\in H^1(\Omega)$ tel que

$$a(u,u) < \alpha ||u||_{H^1}^2.$$

Posons $\alpha = \frac{1}{n}$, $n \in \mathbb{N}^*$. Puisque que a n'est pas coercive, il existe (u_n) tel que

$$a(\frac{u_n}{\|u_n\|_{H^1}}, \frac{u_n}{\|u_n\|_{H^1}}) < \frac{1}{n}.$$

Posons $v_n = \frac{u_n}{\|u_n\|_{H^1}}$. (v_n) est la suite recherchée.

4. L'espace $H^1(\Omega)$ est un espace de Hilbert, donc de toute suite bornée dans $H^1(\Omega)$, on peut extraire une sous-suite qui converge faiblement. Par ailleurs, l'injection de $L^2(\Omega)$ dans $H^1(\Omega)$ étant compact, toute suite bornée de $H^1(\Omega)$ admet une sous-suite qui converge fortement dans $L^2(\Omega)$.

De ces deux faits on déduit qu'il existe une sous-suite $(v_{n'})$ qui converge faiblement vers v dans H^1 (puisque (v_n) est bornée) et fortement vers w dans L^2 . Mais l'injection de H^1 dans L^2 est continue, et d'après la question 2, on a que $(v_{n'})$ converge faiblement vers v dans L^2 , donc par unicité de la limite, v = w.

- 5. D'après la question 3., la suite $a(v_n,v_n)$ tend vers 0 quand n tend vers l'infini. Compte tenu de la définition de a, cela implique que $\int_0^1 v_{n'}(x)dx \to 0$ et $\|v'_{n'}\|_{L^2(\Omega)} \to 0$.
- 6. On note la suite $(v_{n'})$ par (v_n) pour simplifier les notations. D'après la question 5, la suite (v'_n) converge vers 0 dans $L^2(\Omega)$, donc elle est de Cauchy dans $L^2(\Omega)$ et d'après la question 4., (v_n) est aussi de Cauchy dans $L^2(\Omega)$ puisqu'elle converge dans cet espace. (v_n) étant alors de cauchy dans $H^1(\Omega)$, espace complet, donc elle converge vers v.

7. Comme $||v_{n'}||_{H^1(\Omega)} = 1$ pour tout n, il en résulte que $||v||_{H^1(\Omega)} = 1$, donc $v \neq 0$. Montrons que v = 0 (on obtient ainsi une contradiction, ce qui entraı̂ne que a est coercive).

D'après la question 5, on a $\int_0^1 v(x)dx = 0$. En effet, (v_n) tend vers v dans L^2 , donc, on peut en extraire une sous-suite $(v_{n'})$ telle que $(v_{n'})$ tend vers v p.p. et il existe une fonction $h \in L^2(\Omega) \subset L^1(\Omega)$) tel que $|v_{n'}(x)| \leq h(x)$ p.p. D'après le théorème de convergence dominée

$$\lim_{n \to +\infty} \int_0^1 v_{n'}(x) dx = \int_0^1 \lim_{n \to +\infty} v_{n'}(x) dx = \int_0^1 v(x) dx = 0.$$

Mais on a aussi $||v'_{n'}||_{L^2(\Omega)} \to ||v'||_{L^2(\Omega)} = 0$. Par conséquent, on en déduit que v = C p.p. où C est une constante. Mais alors

$$\int_0^1 C.dx = 0,$$

donc C = 0. On a obtenu la contradiction annoncée.

8. Soit $f \in L^2(\Omega)$. L'application l définie par $v \mapsto \int_0^1 f(x)v(x)dx$ est linéaire et continue puisque

$$\left| \int_{0}^{1} f(x)v(x)dx \right| \leq \|f\|_{L^{2}} \|v\|_{L^{2}} \leq \|f\|_{L^{2}} \|v\|_{H^{1}}.$$

La forme bilinéaire a est continue et coercive d'après ce qui précède. On peut donc appliquer le théorème de Lax-Milgram. Il existe un unique élément $u \in H^1(\Omega)$ tel que

$$a(u, v) = l(v), \quad \forall v \in H^1(\Omega).$$

Remarque : puisque a est symétrique, l'élément u est la solution du problème d'optimisation : trouver $u \in H^1(\Omega)$ tel que

$$J(u) = \inf_{v \in H^1(\Omega)} J(v),$$

οù

$$J(v) := \frac{1}{2} \left(\int_0^1 v'(t)^2 + v(t)^2 dt + \left(\int_0^1 v(x) dx \right)^2 - \int_0^1 f(x) v(x) dx \right).$$

Exercice 3

1. Soit $p \ge 1$. On considère la suite de fonctions

$$u_n(t) = \sqrt{2n} I_{\left[-\frac{1}{n}, \frac{1}{n}\right]}(t).$$

Si (u_n) converge faiblement dans L^p , alors elle est bornée dans L^p . Remarquons que

 $||u_n||_{L^p}^p = 2^{1+p/2} n^{\frac{p}{2}-1}, \ \forall n \in \mathbb{N}^*.$ (4)

Il en résulte que si p > 2, la suite est non bornée. Elle ne peut converger ni faiblement, ni fortement dans ce cas.

On suppose dans la suite que $p \in [1, 2]$. Dans ce cas, (u_n) est bornée et on a

$$||u_n||_{L^p} \le 2^{\frac{1}{p}+1/2}, \ \forall n \in \mathbb{N}^*.$$

Le Dual de L^p s'identifie à $L^{p'}$ où p' est l'exposant conjugué de p. Montrer que (u_n) converge faiblement vers 0 dans L^p équivaut à montrer que

$$\lim_{n \to \infty} \int_{\mathbb{R}} u_n(t) f(t) dt = 0, \quad \forall f \in L^{p'}.$$
 (5)

On va, dans un premier temps, établir (5) pour des fonctions de classe C^{∞} à support compact, espace noté $C_c^{\infty}(\mathbb{R})$, puis on utilisera la densité de cette espace dans L^p pour conclure.

Cas 1. Soit $\phi \in C_c^{\infty}(\mathbb{R})$. On a

$$\left| \int_{\mathbb{R}} u_n(t)\phi(t)dt \right| = \left| \int_{-\frac{1}{n}}^{\frac{1}{n}} \sqrt{2n} \,\phi(t)dt \right| \le \sqrt{2n} \frac{2}{n} \|\phi\|_{\infty} \to 0,$$

guand $n \to +\infty$.

Cas 2. Soient $f \in L^{p'}$ et $\epsilon > 0$. Par densité de $C_c^{\infty}(I\!\! R)$ dans L^p , il existe $\phi \in C_c^{\infty}(I\!\! R)$ tel que

$$||f - \phi||_{L^{p'}} < \frac{\epsilon}{2^{\frac{1}{p} + 1/2}}.$$

D'après le 1., il existe $n_0(\epsilon)$ tel que pour tout $n \geq n_0(\epsilon)$, on a $\left| \int_{\mathbb{R}} u_n(t)\phi(t)dt \right| \leq \frac{\epsilon}{4}$. On a alors

$$\begin{split} &|\int_{\mathbb{R}} u_n(t)f(t)dt| = |\int_{\mathbb{R}} u_n(t)(f(t) - \phi(t) + \phi(t)dt| \\ &\leq |\int_{\mathbb{R}} u_n(t)(f(t) - \phi(t))dt| + |\int_{\mathbb{R}} u_n(t)\phi(t)dt| \\ &\leq ||f - \phi||_{L^{p'}} ||u_n||_{L^p} + \frac{\epsilon}{2} < \epsilon. \end{split}$$

Conclusion: (u_n) converge faiblement vers 0 dans L^2 .

Étude de la convergence forte. Si p=2, on a d'après (4) $||u_n||_{L^p}=2$ pour tout n. Donc la suite ne converge pas fortement vers 0, puisque si elle

converge vers x, on doit avoir x=0 car la convergence forte vers x implique la convergence faible vers x et on a montré que la suite converge faiblement vers 0.

Si $p \neq 2$, alors d'après (4), $||u_n||_{L^p}$ tend vers 0 avec n: la suite converge fortement vers 0 dans ce cas.

2. Même question avec la suite de fonctions

$$u_n(t) = I_{[n,n+1]}(t).$$

On procède de la même façon que dans la question 1.

Cas 1. Soit $\phi \in C_c^{\infty}(\mathbb{R})$. Notons S le support de ϕ . Comme le support de ϕ est compact, pour n assez grand, $S \cap [n, n+1] = \emptyset$. On a donc

$$\lim_{n \to +\infty} \int_{\mathbb{R}} \phi(t) 1_{]n,n+1[}(t) dt = 0.$$

Cas 2. Soient $f \in L^{p'}$ et $\epsilon > 0$. On procède comme dans l'exemple précédent en utilisant le fait que $||u_n||_{L^p} = 1$ pour tout n et pour tout $p \ge 1$ (donc, contrairement à l'exemple précédent, la suite est bornée pour tout p). On en déduit que (u_n) converge faiblement vers 0 dans L^p pour tout p. En revanche, la suite (u_n) ne converge pas fortement dans L^p vers 0 (et vers quoi que ce soit d'autre, puisque la convergence forte vers x entraîne la convergence faible vers x) puisque $||u_n||_{L^p} = 1$ pour tout n.