Package 'SmoothTensor'

November 14, 2021

Type Package

Title A Collection of Smooth Tensor Estimation Methods
Version 0.1.1
Imports methods, Matrix, rTensor
Description A list of methods for estimating a smooth tensor with an unknown permutation. It also contains several multi-variate functions for generating permuted signal tensors and corresponding observed tensors. For a detailed introduction for the model and estimation techniques, see the paper by Chanwoo Lee and Miaoyan Wang (2021) "Smooth tensor estimation with unknown permutations" <arxiv:2111.04681>.</arxiv:2111.04681>
URL https://arxiv.org/abs/2111.04681
License GPL-3
Depends R (>= $3.5.0$)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
R topics documented:
Borda_count
LSE
ltns
mode_info
simulation
simulation_asym
simulation_bin
Spectral
Index 9

2 Borda_count

Borda_count	Borda count algorithm for nonparametric tensor estimation with unknown permutation.

Description

Estimate a signal tensor and permutation from a noisy and incomplete data tensor using Borda count estimation method.

Usage

```
Borda_count(A, 1, kvec, sym = FALSE)
```

Arguments

A	A given (possibly noisy and incomplete) data tensor. Missing value should be encoded as NA.
1	Degree of polynomial approximation.
kvec	A vector of the number of groups for each mode.
sym	Boolean variables representing symmetricity of the signal tensor. Non-symmetric tensor (sym = FALSE) is default.

Value

The returned object is a list of components.

Theta - An estimated signal tensor based on Borda count estimation.

permutation - An estimated permutation based on Borda count estimation.

References

C. Lee and M. Wang. Smooth tensor estimation with unknown permutations. arXiv:2111.04681, 2021.

```
# Generate the noisy observation from smooth tensor and permutation
d = 20
sim1 = simulation(d,mode = 1)
signal_T = sim1$signal
observe_T = sim1$observe
permutation = sim1$permutation

# Estimate signal tensor and permutation
kvec = c(3,3,3)
result = Borda_count(observe_T,2,kvec,sym = TRUE)

# Calculate MSE
hatTheta = result$Theta
mean((hatTheta-signal_T)^2)
```

LSE 3

LSE	The least squares estimation for nonparametric tensor estimation with unknown permutation.

Description

Estimate a permuted signal tensor from a noisy data tensor based on the least squares estimation with constant block approximation.

Usage

```
LSE(A, kvec, sym = FALSE, mode = 3)
```

Arguments

A given noisy data tensor.

A vector of the number of groups for each mode.

sym

Boolean variables representing symmetricity of the signal tensor. Non-symmetric tensor (sym = FALSE) is default.

mode

An integer from 1 to 3 representing a type of methods for estimating the clustering functions. Higher-order spectral clustering method is default.

mode = 1: k-means algorithm applied on unfolded matrices.

mode = 2: k-means algorithm for community detection in stocahstic block model (only availble on binary observation).

mode = 3: higher-order spectral clustering algorithm.

Value

An estimated permuted signal tensor based on the least squares estimation.

References

C. Gao, Y. Lu, and H. H. Zhou. Rate-optimal graphon estimation. The Annals of Statistics, 2015.

K. Balasubramanian. Nonparametric modeling of higher-order interactions via hypergraphons. Journal of Machine Learning Research, 2021.

R. Han, Y. Luo, M. Wang, and A. R. Zhang. Exact clustering in tensor block model: Statistical optimality and computational limit. arXiv:2012.09996, 2020.

```
# Generate the noisy observation from smooth tensor and permutation
d = 20
sim1 = simulation(d, mode = 1)
signal_T = sim1$signal
observe_T = sim1$observe
permutation = sim1$permutation
psignal_T = signal_T[permutation,permutation,permutation]
# Estimate permuted signal tensor
kvec = c(10,10,10)
hatpTheta = LSE(observe_T,kvec,sym = TRUE)
```

4 mode_info

```
# Calculate MSE
mean((hatpTheta-psignal_T)^2)
```

ltns

Chicago crime tensor dataset

Description

Chicago crime dataset consists of crime counts reported in the city of Chicago, ranging from January 1st, 2001 to December 11th, 2017.

Usage

ltns

Format

An order-3 tensor with entries representing the log counts of crimes from 24 hours, 77 community areas, and 32 crime types.

Source

http://frostt.io/tensors/chicago-crime/

mode_info

A list of mode information of the Chicago crime tensor dataset

Description

A list of mode information of order-3 tensor dataset 1tns.

Usage

mode_info

Format

A list consisting of crime areas, crime hours, and crime types:

```
hour_map 24 hours of crimes
area_map 77 areas of crimes
crimetype_map 32 types of crimes
```

Source

http://frostt.io/tensors/chicago-crime/

simulation 5

simulation	Generate a symmetric tensor observation from the smooth signal tensor, Gaussian noise tensor, and permutation.
	sor, Gaussian noise tensor, and permutation.

Description

Generate a symmetric tensor observation from the smooth signal tensor, Gaussian noise tensor, and permutation. Users can select one of 5 different smooth signal tensors generated from functions specified in Table 4 of the reference given below.

Usage

```
simulation(d, mode = 1, sigma = 0.5, signal_level=5)
```

Arguments

d Dimension of a tensor to be generate
--

mode An integer from 1 to 5 corresponding to models specified. Default model is 1.

sigma Standard deviation of the Gaussian noise tensor. Default value is 0.5.

signal_level A scale of the magnitude of the signal tensor to be generated.

Value

The returned object is a list of components.

signal - A true signal tensor generated from a function specified.

observe - A noisy observation generated from the smooth signal tensor, Gaussian noise tensor, and permutation.

permutation - A true permutation.

References

C. Lee and M. Wang. Smooth tensor estimation with unknown permutations. arXiv:2111.04681, 2021.

```
d = 20
# Generate 20 by 20 by 20 observed tesnor generated from model 1
sim1 = simulation(d,mode = 1)
observed_tensor = sim1$observe
signal_tensor = sim1$signal
permutation = sim1$permutation
```

6 simulation_asym

simulation_asym	Generate a non-symmetric tensor observation from the smooth signal tensor, Gaussian noise tensor, and permutation.
	tensor, Gaussian noise tensor, and permutation.

Description

Generate a non-symmetric tensor observation from the smooth signal tensor, Gaussian noise tensor, and permutation. Users can select one of 5 different smooth signal tensors generated from functions specified in Table 5 of the reference given below.

Usage

```
simulation_asym(d, mode = 1, sigma = 0.5, signal_level=5)
```

Arguments

d A vector of dimensions of a tensor to be generated.

mode An integer from 1 to 5 corresponding to models specified. Default model is 1.

sigma Standard deviation of the Gaussian noise tensor. Default value is 0.5.

signal_level A scale of the magnitude of the signal tensor to be generated.

Value

The returned object is a list of components.

signal - A true non-symmetric signal tensor generated from a function specified.

observe - A noisy observation generated from the smooth signal tensor, Gaussian noise tensor, and permutation.

permutation - A list of true permutation for each mode.

References

C. Lee and M. Wang. Smooth tensor estimation with unknown permutations. arXiv:2111.04681, 2021.

```
d = c(10,20,30)
# Generate 10 by 20 by 30 observed tesnor generated from model 1
sim1 = simulation_asym(d,mode = 1)
observed_tensor = sim1$observe
signal_tensor = sim1$signal
permutation = sim1$permutation
```

simulation_bin 7

simulation_bin Generate a symmetric binary tensor from the probability tensor and permutation.	simulation_bin	Generate a symmetric binary tensor from the probability tensor and permutation.	
--	----------------	---	--

Description

Generate a symmetric binary tensor from the probability tensor and permutation. Users can select one of 5 different smooth probability tensor generated from functions specified in Table 4 of the reference given below.

Usage

```
simulation_bin(d, mode = 1)
```

Arguments

d Dimension of a tensor to be generated.

mode An integer from 1 to 5 corresponding to models specified. Default model is 1.

Value

The returned object is a list of components.

signal - A true probability tensor generated from a function specified.

observe - A binary tensor generated by Bernoulli trials given the probability tensor and permutation.

permutation - A true permutation.

References

C. Lee and M. Wang. Smooth tensor estimation with unknown permutations. arXiv:2111.04681, 2021.

```
d = 20
# Generate 20 by 20 by 20 binary-valued tensor generated from model 1
sim1 = simulation_bin(d, mode = 1)
observed_tensor = sim1$observe
signal_tensor = sim1$signal
permutation = sim1$permutation
```

8 Spectral

Spectral method for nonpara- permutation.	metric tensor estimation with unknown
--	---------------------------------------

Description

Estimate a permuted signal tensor from a noisy data tensor using spectral method, which performs universal singualr value thresholding on the unfolded tensor.

Usage

```
Spectral(A, row_idx, col_idx, threshold = NULL)
```

Arguments

Α	A given noisy data tensor.
row_idx	The indices of the modes that map onto the row space
col_idx	The indices of the modes that map onto the column space
threshold	A threshold to disregard singular values. Default value is the square root of unfolded matrix dimension.

Value

An estimated permuted signal tensor based on Spectral method.

References

- J. Xu. Rates of convergence of spectral methods for graphon estimation. International Conference on Machine Learning, 2018.
- C. Lee and M. Wang. Smooth tensor estimation with unknown permutations. arXiv:2111.04681, 2021.

```
# Generate the noisy observation from smooth tensor and permutation
d = 20
sim1 = simulation(d,mode = 1)
signal_T = sim1$signal
observe_T = sim1$observe
permutation = sim1$permutation
psignal_T = signal_T[permutation,permutation,permutation]
# Estimate permuted signal tensor
hatpTheta = Spectral(observe_T,1,c(2,3))
# Calculate MSE
mean((hatpTheta-psignal_T)^2)
```

Index

```
* datasets
    ltns, 4
    mode_info, 4

Borda_count, 2

LSE, 3
ltns, 4

mode_info, 4

simulation, 5
simulation_asym, 6
simulation_bin, 7
Spectral, 8
```