第二周工作汇报

Shilong Zhang

8.27至 9.2

1.因为最后张老师决定做动作迁移,读了几篇与此相关的文章。 2.,因为要用GAN,看了一些台大李弘毅的GAN相关的课程。 3.学习了一些机器学习理论。

1 Paper Reading

1.1 Everybody Dance Now

1.1.1 Abstreact

Transfer motion between human subjects in dierent videos.

1.1.2 Method overview

pose detection \rightarrow global pose normalization \rightarrow mapping from normalized pose stick figures to the target subject.

Pose detection Using a pretrained pose detector to get the representation of resulting pose stick figure.

Global pose normalization calculate the scale and translation in the y direction (具体细节?)

Adversarial Training of image to image Translation

1. pix2pixHD framework

D由三个不同规模的描述符构成,其应该趋向于真实的x与y打高分,x与G(x)打低分,即最大化 L_{GAN}

G则希望以假乱真,其希望D给G(x)打高分,同时最小化两个损失 L_{FM} ,D给出的一个feathre—matching loss,以及一个VGGNET给出的重建误差。

2. Temporal smoothing

改进G,其input变为这一次的pose stick figure (x_{t-1}) + 上次的 $G(x_{t-1})$ 来生成下一帧,而D则两帧一起评分。

3.Face GAN

To add more detail and realism to the face region. 有一点类似于残差网络的思想,加一个恒等映射,那么经过与D的对抗,生成的至少不会比映射前的差。

1.1.3 Experiments

质量评价中是让生成的图像用Detector检测出关键点,算这些关键点与 原始pose的距离,为了避免有些关键点没有检测到的问题,只算全检测到 的。

1.2 Dense Pose Transfer

Abstract

Surface-based pose estimation + deep generative models, a two-stream architecture

warping module(基于UV贴图,包含较多纹理细节) + predictive module (Data drive),具有互补的优点。

两个并行部分最开始都使用一个叫做Densopose的网络,他可以先把pixel分类到24个预先设定的身体表面模块,之后回归精确坐标•

1. Predictive stream

a conditional generative model,

1.3 机器学习理论

PAC ((Probably Approximately Correct)Learning

The learner: the strategy to select hypothesis from the hypothesis set ML Pipline: 如何根据Data Sampling 在 Hypothesis Set里面选择一个去逼近target fuction,这三个因素也是决定机器学习效果的最主要的三个因素。注意越多的采样点可以让我们向target fuction有一个高概率的逼近。

PAC learnability H是否可以在多项式时间内,找到一个高概率的target function 的高精确度估计。

Sample complexity 保证 PAC Solution 的最少训练样本。

Consistent Learner 选择的假设完美的符合训练数据。

PAC Bound - consistent Learner Version space 里面,至少出现一个在真实分布上的错误率小于 ϵ 的概率。

Agnostic Learning 不知道target fuction 是否在hypothesis set里面的情况下使用最小训练误差学习。

PAC Bound - Agnostic Learner 讲述了训练误差与泛化误差在概率上相近的水平与样本数的关系。

VC-dimension 对于 infinite Hypotheses Spasce 的复杂度的度量,使用VC-dimension的度量在许多情况下可以得到sample复杂度的一个更紧致的下界,其定义为H能shatter的最大样本数。

Growth Function H空间可以给与sample的lable种类个数最大值。

shettering the instanses 所有的lable可能都会有一些hypothesis与之对应。