

Class 8

Optical Flow

Change Detection

Optical Flow

- Pixel motion between consecutive frames:
 - Caused by camera or object motion
- Introduced by <u>James J. Gibson</u> 1940

What is Moving and How?

Aperture Problem

Optical Flow: Gradient Based

Assumptions:

- The movement is small
- Brightness constancy assumption (BCA):
 - The intensity of a given object point does not change between frames
 - I(x + dx, y + dy, t + dt) = I(x, y, t)

Ambiguity

- I(x + dx, y + dy, t + dt) = I(x, y, t)
- Brightness constancy assumption: insufficient!

Solution of Ambiguity

Local constraint

Assume constant motion in a small local

window

- How to use local constraint?
 - Naïve search: expensive!

Gradient Based Method

- Relates spatial and temporal gradients
- Assumptions:
 - First order approximation of the flow: u(p) and v(p) are small
 - u(p) and v(p) are constant (or smooth) in a small neighborhood of p

An under-determined problem (aperture Problem)

Lucas-Kanade Algorithm

- Optical flow computation
- Gradient based algorithm

Optical Flow Equation

• Taylor Series for a pixel $p = (p_x, p_y)$

$$\begin{split} &I(p_x + dx, p_y + dy, t + dt) \\ &= I(p_x, p_y, t) + \frac{\partial I}{\partial x}(p)dx + \frac{\partial I}{\partial y}(p)dy + \frac{\partial I}{\partial t}(p)dt + \dots \end{split}$$

- Brightness constancy assumption:
 - $I(p_x + dx, p_y + dy, t + dt) = I(p_x, p_y, t)$
 - $\frac{\partial I}{\partial x}(p)dx + \frac{\partial I}{\partial y}(p)dy + \frac{\partial I}{\partial t}(p)dt = 0$
 - Notation: $I_x(p)dx + I_y(p)dy = -I_t(p)dt$

Optical Flow Equation

- $I_x(p)dx + I_y(p)dy = -I_t(p)dt$
- Divide by dt
 - $I_x(p)\frac{dx}{dt} + I_y(p)\frac{dy}{dt} = -I_t(p)$
- Matrix notation: $(I_x(p), I_y(p))\binom{u(p)}{v(p)} = -I_t(p)$

Unknowns

Local Constant Flow

• For each p_i we have:

$$\left(I_x(p_i), I_y(p_i)\right) \binom{u(p_i)}{v(p_i)} = -I_t(p_i)$$

- Let $w(p_0)$ be a small patch around p_0
- Assume constant motion $\forall p_i \in w(p_0)$:

$$\begin{pmatrix} I_{\chi}(p_{1}), I_{y}(p_{1}) \\ I_{\chi}(p_{2}), I_{y}(p_{2}) \\ I_{\chi}(p_{3}), I_{y}(p_{3}) \end{pmatrix} \begin{pmatrix} u(p_{0}) \\ v(p_{0}) \end{pmatrix} = - \begin{pmatrix} I_{t}(p_{1}) \\ I_{t}(p_{2}) \\ \vdots \\ I_{t}(p_{k}) \end{pmatrix}$$

Local Constant Flow

Let $p_1 ... p_k \in w(p_0)$:

$$\begin{pmatrix} I_{x}(p_{1}) & I_{y}(p_{1}) \\ I_{x}(p_{2}) & I_{y}(p_{2}) \\ I_{x}(p_{k}) & I_{y}(p_{k}) \end{pmatrix} \begin{pmatrix} u(p_{0}) \\ v(p_{0}) \end{pmatrix} = -\begin{pmatrix} I_{t}(p_{1}) \\ I_{t}(p_{k}) \end{pmatrix}$$
Is there a problem?

That is: $A \begin{pmatrix} u(p_0) \\ v(p_0) \end{pmatrix} = b$ \longrightarrow $\begin{pmatrix} u(p_0) \\ v(p_0) \end{pmatrix} = A^+ b$

$$\qquad \qquad \begin{pmatrix} u(p_0) \\ v(p_0) \end{pmatrix} = A^+ b$$

$$A^+ = (A^T A)^{-1} A^T$$

Algebra: definition of C

•
$$A = \begin{pmatrix} I_x(p_1) & I_y(p_1) \\ I_x(p_2) & I_y(p_2) \\ \vdots \\ I_x(p_k) & I_y(p_k) \end{pmatrix}$$

$$A^T A = \begin{pmatrix} I_x(p_1) & I_x(p_2) \dots I_x(p_k) \\ I_y(p_1) & I_y(p_2) \dots I_y(p_k) \end{pmatrix} \begin{pmatrix} I_x(p_1) & I_y(p_1) \\ I_x(p_2) & I_y(p_2) \\ \vdots \\ I_x(p_k) & I_y(p_k) \end{pmatrix}$$

$$= \begin{pmatrix} \sum I_x^2(p_i) & \sum I_x(p_i)I_y(p_i) \\ \sum I_x(p_i)I_y(p_i) & \sum I_x^2(p_i) \end{pmatrix}$$

Cases

$$A \begin{pmatrix} u(\mathbf{p_0}) \\ v(\mathbf{p_0}) \end{pmatrix} = b \qquad \longrightarrow \qquad A^T A \begin{pmatrix} u(\mathbf{p_0}) \\ v(\mathbf{p_0}) \end{pmatrix} = A^T b$$

Let
$$C = A^T A = \begin{pmatrix} \sum I_x^2(p_i) & \sum I_x(p_i)I_y(p_i) \\ \sum I_x(p_i)I_y(p_i) & \sum I_y^2(p_i) \end{pmatrix}$$

- rank(C) = 0 blank wall problem
- rank(C) = 1 aperture problem
- rank(C) = 2 enough texture

The Algorithm

- Smooth the image in the special domain
- Smooth the image in the temporal domain (not always necessary)
- For each pixel, p_0 :
 - Compute $A(p_0)$, $b(p_0)$, and $C(p_0)$
 - If $rank(C(p_0)) = 2$, compute $u(p_0)$ and $v(p_0)$ by: $\binom{u(p_0)}{v(p_0)} = A^+b$

Modification

• Replace Σ in $C(p_0) = \begin{pmatrix} \sum I_x^2(p_i) & \sum I_x(p_i)I_y(p_i) \\ \sum I_x(p_i)I_y(p_i) & \sum I_y^2(p_i) \end{pmatrix}$ $p_i \in w(p_0)$

by Convolution with Gaussian:

• E.g., $\sum I_{x}^{2}(p_{i}) \longrightarrow (G * I_{x}^{2})(p_{0})$

$$(G * I_x^2)$$
 is a matrix

$$C(p_0) = \begin{pmatrix} (G * I_x^2)(p_0) & (G * I_x I_y)(p_0) \\ (G * I_x I_y)(p_0) & (G * I_y^2)(p_0) \end{pmatrix}$$

What can go wrong?

- Brightness constancy is **not** satisfied
- The motion is **not** small
- The motion is **not** translation
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Next

- Dealing with large motion
 - Use a pyramid of OF
- More general motion:
 - Affine rather than just translation
- Global solutions

Next

- Dealing with large motion
 - Use a pyramid of OF
- More general motion:
 - Affine rather than just translation
- Global solutions

Large Motion

- Reduce the Resolution
- What may be the problem?

Solution: Use a Pyramid

1D: basic idea

$$v_1 = 2$$
Resize

$$v = v_1 + v_2 = 4 + 1 = 5$$

Back to the original image $v_1 = 4$, warp -4

$$v_2 = 1$$
 $v = 5$, too large!

23

Implementation

- Warp function:
 - Generate a new image based on OF
 - How?

2D Motion Models

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} ig[egin{array}{c c} ig[egin{array}{c c} ig[egin{array}{c c} ig[egin{array}{c c} ig]_{2 imes 3} \end{array}$	3	lengths +···	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are closed under composition and inverse is a member

Example: Affine Motion

- Affine, $p = (x, y)^T$: Ap + T
 - $u(p) = u(x, y) = a_1 + a_2 x + a_3 y$
 - $v(p) = v(x, y) = a_4 + a_5 x + a_6 y$
- Brightness constancy assumption:
 - $I_{x}(p)u(p) + I_{y}(p)v(p) = -I_{t}(p)$
 - $-I_t(x,y) = I_x(x,y)(a_1+a_2x+a_3y) + I_y(x,y)(a_4+a_5x+a_6y)$
- Least Square Minimization: search for a_i

Cont.

$$B\vec{a} = -\vec{I}_t$$

• Search for $\vec{a} = (a_1, ... a_6)$ to minimize the least square of the BC assumption

$$Err(\vec{a}) = \sum ((a_1 + a_2 x + a_3 y)I_x + (a_4 + a_5 x + a_6 y)I_y + I_t)^2$$

Matrix notation:

$$\begin{pmatrix} I_{x}(p_{1}), x_{1}I_{x}(p_{1}), y_{1}I_{x}(p_{1}), I_{y}(p_{1}), x_{1}I_{y}(p_{1}), y_{1}I_{y}(p_{1}) \\ \vdots \\ I_{x}(p_{k}), x_{k}I_{x}(p_{k}), y_{k}I_{x}(p_{k}), I_{y}(p_{k}), x_{k}I_{y}(p_{k}), y_{k}I_{y}(p_{k}) \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{6} \end{pmatrix} = - \begin{pmatrix} I_{t}(p_{1}) \\ I_{t}(p_{2}) \\ \vdots \\ I_{t}(p_{k}) \end{pmatrix}$$

 $k \times 6$

 \vec{a}

 $\vec{I_t}$

Cont.

- We can compute: B and \vec{I}_t
- We want to solve for \vec{a} :

$$\mathbf{B}\vec{a} = -\vec{I}_t$$

 $B^T B \vec{a} = -B^T \vec{I}_t$ 6×6 $6 \times k$

Is there a problem?

Solve it!

$$\vec{a} = -(B^T B)^{-1} B^T \vec{I}_t = -B^+ \vec{I}_t$$

Results: affine motion segmentation

Optical flow

Group 1

Global Solutions

- Knowledge about the scene
 - For example: smooth, piecewise smooth, planar ...
- Knowledge about the motion
 - For example: rigid, piecewise rigid, smooth, piecewise smooth...
- Use global optimization

Example: Global Solutions

• Minimize the functional:

$$\iint\limits_{x,y} (u \cdot I_x + v \cdot I_y + I_t)^2 dx dy + \iint\limits_{x,y} \left(\frac{dv}{dx}\right)^2 + \left(\frac{dv}{dy}\right)^2 + \left(\frac{du}{dx}\right)^2 + \left(\frac{du}{dy}\right)^2 dx dy$$

Brightness Constancy assumption

Smoothness of the optical flow

- Solve u(x,y) and v(x,y) using any optimization method (not in this course)
- See classic paper by Horn & Schunk 1980

Possible Applications

- Segmentation
- Object tracking
- 3D shape reconstruction
- Align images (mosaics)
- MPEG compression
- Super-resolution
- Correct for camera jitter (stabilization)
- Many more...

Summary

- Some psychophysics
- Optical flow:
 - Aperture problem
 - Lucas Kanade algorithm
- Next:
 - Change detection
 - Tracking

Next

Detect changes in natural scenes

Motion/Change Detection

- Surveillance
- Attention
- Pre-processing
 - Segmentation
 - Object recognition
 - Tracking
 - Action recognition
 - ...

Large Scale

Medical Imaging

Object Segmentation

Using background subtraction

Another Application

Making life simple

Simple Change Detection

- Problem: detect the moving regions in the scene
- Input: a sequence of frames taken from a fixed camera (e.g., by a surveillance camera)
- Output: for each pixel determine if it belongs to the foreground or background
- Extension:
 - Moving camera
 - Segmentation
 - Regions rather than pixels

Background Subtraction

Input:

- A sequence of n images: $I_1, I_2, ..., In$
- A threshold: th

Naïve algorithm:

- 1. Learn the background, I_B
- 2. Compute the point wise difference $d_k(p) = |I_B(p) I_k(p)|$
- 3. If $|d_k(p)| > th$ label p as moving

How?

Maybe other measure?

How to define?

Background Model: Pixel

A single image

Which frame to use? When is it enough?

- Statistic on a set of frames
 - Average
 - Median
 - A Gaussian
 - A (weighted) mixture of Gaussians

How to compute? How to update?

Average image

Median Image

Average/Median Image

Background Subtraction

Limitations

- A global threshold
 - Set a different threshold to each pixel
- Setting the threshold
 - Set it automatically
- Changing background
 - Update it
- Cope with multiple modal background
 - Keep multimodal

Background

- Take the median / average of k last frames
- Update every s frames

Parametric Pixel Modeling

Background Distribution

- Let $P_B(x) = P(x|x \in B)$ be the probability distribution function (*pdf*) of the background for a pixel q
- Given a threshold α , and $x_t = I(q, t)$:

$$F(x_t) = \begin{cases} 1 & P_b(x_t) < \alpha \\ 0 & P_b(x_t) \ge \alpha \end{cases}$$
th
$$0 \qquad I_b \qquad 255$$

Background Distribution

- Let q be a pixel, and $x_t = I(q, t)$ be the intensity of q at time t
- Define the probability distribution function (*pdf*) of the background, using $\{I(q,t)\}$:

$$P_B(x) = P(x|x \in B)$$

Background Pixel

Example 2

Model the pdf

- Let $x_t = I(q, t)$
- Regard the histogram of $\{x_t\}_{t=0}^n$ as a *pdf* of *q* background
- Parametric models:
 - 1D/3D Gaussian
 - Multi modal Gaussians
 - Others...
- Non-parametric models

Under which assumption is it true?

Model: 1D Gaussian

- Assume: independent Gaussian noise in the sampling process
- Parameters:
 - μ mean (expectation)
 - σ STD
 - \bullet σ^2 Variance

$$\mu = E(x)$$

$$\sigma^{2}(x) = E[(x - \mu)^{2}]$$

$$G(x,\sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

How to set the threshold α ?

•
$$x_t = I(q, t)$$

$$F(x_t) = \begin{cases} 1 & P_b(x_t) < \alpha \\ 0 & P_b(x_t) \ge \alpha \end{cases}$$

A common choice:

$$\alpha = 2.5\sigma_{i,t}$$

Background probability for a single pixel

Gaussian Mixture Model

(based on Stauffer et. al. 1999)

- Motivation:
 - Moving background e.g., trees
 - Single Gaussian is insufficient
- Use mixture of Gaussian:

$$P(x_t | B) = \sum_{i=1}^{K} w_{i,t} G(x_t, \mu_{i,t}, \sigma_{i,t})$$

K Depends on memory and computational power

- K: number of Gaussians
- w_{i,t}: weight of the ith Gaussian at time t
- $\mu_{i,t}$ and $\sigma_{i,t}$: the *i* Gaussian parameters

Issues

- How to use the set of K Gaussians
- How to initialize the Gaussian parameters:
 For a single Gaussian, i:
 - Average: $\mu_{i,t} = average(\{x_t\})$
 - Variance: $\sigma^2 = E[(x_t \mu)^2]$

- How to update the Gaussian parameters
- Note: we first assume grey-level images

Match x_t with G_i

• Define, x_t match G_i by:

$$M(x_t, Gi) = \begin{cases} 1 & |x_t - \mu_{i,t}| < 2.5\sigma_{i,t} \\ 0 & |x_t - \mu_{i,t}| \ge 2.5\sigma_{i,t} \end{cases}$$

• Assume G_i is a background model of q, and $x_t = I(q,t)$ then we consider x_t to be a background pixel if $M(x_t, G_i) = 1$

Using the set of *K*Gaussians

- Given the set B of dominant Gaussians:
 - x_t is foreground: $M(x_t, G_i) = 0$, $\forall G_i \in B$
 - x_t is background: otherwise

Weight of G_i

- Let w_{it} be the weight of G_i with σ_{it}
- Order the set of *K* Gaussians by : w_{it}/σ_{it}
 - high: more evidence & low variance
- Use it to define the set of dominant Gaussians

(details in the paper)

Update $\mu_i \& \sigma_i$

$$\sigma^2 = E[(x_t - \mu)^2]$$

- Matched: $M(x_t, G_i) = 1$
 - $\mu_{i,t} = (1 \rho)\mu_{i,t-1} + \rho x_t$
 - $\sigma_{i,t}^2 = (1-\rho)\sigma_{i,t-1}^2 + \rho(x_t \mu_{i,t})^2$
 - ρ is the learning rate defined by a parameter α : $\rho = \alpha G(x_t \mid \mu_i, \sigma_i)$
- Unmatched: remains the same

$$M(x_t, G_i) = \begin{cases} 1 & |x_t - \mu_{i,t}| < 2.5\sigma_{i,t} \\ 0 & |x_t - \mu_{i,t}| \ge 2.5\sigma_{i,t} \end{cases}$$

Update Weights

Update weights of all Gaussians:

•
$$w_{i,t} = (1 - \alpha)w_{j,t-1} + \alpha \left(M(x_t, G_{j,t-1})\right)$$

• α is a learning rate parameter

• Renormalize the weights $\sum_{j} w_{j,t} = 1$

$$M(x_t, Gi) = \begin{cases} 1 & |x_t - \mu_{i,t}| < 2.5\sigma_{i,t} \\ 0 & |x_t - \mu_{i,t}| \ge 2.5\sigma_{i,t} \end{cases}$$

When does w_{j,t} increase?

Update the Set G_i

- Given x_t such that $\forall i$, $M(x_t, G_i) = 0$
- Replaced G_i with smallest w_{it}/σ_{it} with a new Gaussian:

 - Set σ_i high

Summary

- Optical Flow:
 - Assumptions
 - Pairs of images
 - Multi scale
- Change Detection
 - Learn and model the background
 - Compare a frame to the BG
 - Mixture of Gaussians