Angular

v2,v4,v5, v6,v7,v8 (avec npm et typescript)

Table des matières

I - Présentation de Angular	4
Présentation du framework web Angular	4
II - Environnement de développement Angular	13
Environnement de développement pour Angular	13
III - Langage typescript	24
Bases syntaxiques du langage typescript (ts)	24
2. Programmation objet avec typescript (ts)	
Lambda et generics et modules	
4. Précautions/pièges "js" (et "ts")	
IV - Essentiel sur templates , bindings , events	43
1. Templates bindings (property , event)	43

V - Contrôles de forr	mulaires , composants GUI5	1
1. Contrôle des formulaire	es5	51
VI - Components (ar	ngular)58	8
1. Vue d'ensemble sur la	structure du code Angular25	58
Les modules applicatifs		
	oplication (@Component)6	
4. Cycle de vie sur compo	osants (et directives)6	58
VII - Directives, serv	vices et injections70	0
1. Service		70
	emble un peu à Promise<> et se consomme via7	
	esOfClientObservable(this.clientId)7	
	s.comptes = comptes ,	
	·));	′1
` /	étudié de façon plus détaillée au sein d'un chapitre	71
	7 ces7	
	es (angular2)7	
J. Aperçu sur les unective	s (angularz)	_
VIII - Switch et routir	ng (navigations)78	8
1. Navigation via ngSwitch	h et router de angular7	78
2. Aperçu sur le routing ar	ngular avancé8	33
IX - Appels de W.S.	REST (Observable,)8	5
Angular et dialogues H		35
	t (depuis Angular 4.3)8	37
	· · · · · · · · · · · · · · · · · · ·	
X - Aspects divers d	le angular (pipes,)9	1
1. BenaviorSubject		11
2. Autres aspects divers	g) 5
XI - Packaging et dé	ploiement d'appli. angular98	8
	ans "bundle"9	
2. Angular-CLI en mode d	léveloppement	<u>9</u>
	·Time)10	
	9) [′] 10	
	/	

XII - Tests unitaires (et) av	ec angular106
1. Différent types de tests autour de ar	ngular106
XIII - Sécurité – application "A	Angular2"107
1. Sécurisation d'une application "angi	ular"107
2. Sécurisation des appels aux Web-s	ervices REST108
3. Migration "AngularJs/v1.x" et Angula	ar 2+114
	nise115
5. Simulation d'appels HTTP via angul	ar-in-memory-web-api119
XIV - Annexe - Ancien Http (avant HttpClient)121
1. Utilisation du service Http avec Obs	ervable (rxjs)121
•	curité (v2,v4,v5)126
XV - Annexe – RxJs	127
1. introduction à RxJs	127
	nmations)128
3. Réorganisation de RxJs (avant et a	orès v5,v6)128
i e	Observables"130
• • • • • • • • • • • • • • • • • • • •	via pipe)132
6. Passerelles entre "Observable" et "l	Promise"134
XVI - Annexe - ngx-bootstrap)135
1. Extension "ngx-bootstrap" pour ang	ular135
	140
3. IndexedDB et idb	141
4. Socket.io	145
XVII - Annexe - Web Service	s REST (coté serveur)153
	T153
2. Limitations Ajax sans CORS	160
3. CORS (Cross Origin Resource Sha	ring)161

I - Présentation de Angular

1. Présentation du framework web Angular

1.1. Positionnement du framework "Angular"

Angular est un framework web de Google qui s'exécute entièrement du coté navigateur et dont la programmation est basée sur les langages typescript et javascript (es6, es5). Les récupérations de données s'effectue via des services (à programmer) et dont la responsabilité est souvent d'appeler des web services REST (transfert de données JSON via HTTP).

Les principaux intérêts de la technologie angular sont les suivants :

- une grande partie des traitements web s'effectue coté client (dans le navigateur) et le serveur se voit alors déchargé d'une lourde tâche (refabriquer des pages, gérer les sessions utilisateurs, ...) ---> bien pour tenir la charge.
- meilleurs performances/réactivités du coté affichage/présentation web (navigateur) : c'est directement l'arbre DOM qui est réactualisé/rendu à partir des modifications apportées sur le modèle typescript/javascript (plus de html à transférer/ré-analyser).
- séparation claire entre la partie "présentation" (js) et la partie "services métiers" (java ou ".net" ou ".php" ou "nodejs" ou ...) . Google présente d'ailleurs parfois angularJs ou Angular2 comme un framework MVW (Model-View-Whatever) .

1.2. Contexte architectural

Ancienne architecture web prédominante (années 1995-2015) :

Pages HTML générées coté serveur (ex : java/JEE, php, asp, ...) et sessions HTTP coté serveur.

Ancienne architecture web

Nouvelle architecture web prédominante (depuis 2015 environ) :

Front-end (ex : Angular, Vue-Js , react, ...) en HTML5/CSS3/JS invoquant (via ajax) des Web services REST d'un "backend" serveur quelconque (nodeJs, php , java/JEE/spring , ...) .

Env exécution NodeJs

souvent SPA (Single Page Application)

--> avantages : meilleurs performances (si grand nombre de clients simultanés) et meilleur séparation font-end (affichage standard HTML5/CSS3) / back-end (api rest).

1.3. Evolution du framework "angular" (versions)

Evolution de angular (versions)

angularJs (1.x) 2012 - 2016 ____ javascript, composant

angular 2 (fin 2016) — typescript, composants, avec bugs

angular 4.0 à 4.2 (début 2017) ___ moins bugs, angular-cli

angular 4.3 et 5.x (fin 2017) — http --> httpClient

angular 6, 7, 8 (2018, 2019) — RxJs et angular enfin stable

NB:

- L'ancienne version 1.x s'appelait AngularJs
- Depuis la v2, le framework à été renommé **Angular** (sans js car typescript)
- La v2 comportait plein de bugs . la v3 n'a jamais existé .
- Les v4 et v5 étaient utilisables (sans bug) mais depuis certaines parties ont été grandement restructurées (http --> httpClient, rxjs, ...)
- Le framework "angular" s'est enfin stabilisé à partir de la version 6 (les v7 et v8 apportent quelques améliorations sans grand chamboulement).

1.4. Binding angular

En s'étant inspiré du design pattern "MVVM" (*Model-View-ViewModel*) proche de MVC , le framework Angular gère automatiquement une mise à jour de la vue HTML qui s'affiche dans le navigateur en effectuant (quasi-automatiquement) des synchronisations par rapports aux valeurs d'un modèle orienté objet (compatible JSON) qui est géré en mémoire par une **hiérarchie de composants** .

Quelque soit la version d'angular (1, 2, 4 ou +), le **binding automatique** entre valeurs saisies ou affichées et les valeurs des objets "javascript" constitue **la principale valeur ajoutée du framework**.

C'est le principal apport d'Angular par rapport à une application simplement basé sur jquery.

<u>NB</u>: AngularJs (v1.x) utilisait un binding systématiquement bidirectionnel et assez peu performant. Angular (v2, v4, ...) utilise maintenant un binding mieux contrôlé (soit unidirectionnel , soit bidirectionnel) et est plus performant.

1.5. Structure "Single Page" et routage angular

De façon à ce que le code javascript (librairies angular + code de l'application) soit conversé en mémoire sur le long terme, une application Angular est constitué d'une seule grande page "index.html" qui est elle même décomposée en une hiérarchie de composants (ex : header, footer, content,). On parle généralement en terme de "SPA: Single Page Application" pour désigner cette architecture web (très classique).

Le composant principal ("main.component", ".ts", ".html") comporte très souvent une balise spéciale <router-outlet></router-outlet> (fonctionnellement proche de <div />) dont le contenu (interchangeable) sera automatiquement remplacé par un des sous composants importants de l'application.

Le switch de sous composants sera associé à des navigations généralement paramétrées dans un module de routage .

En pouvant associer une speudo-URL relative à l'affichage contrôlé d'un certain sous composant précis , il est ainsi possible de mémoriser des "bookmarks / favoris / marques-pages" dans un navigateur .

1.6. Particularités du framework "Angular" (v2, v4, ..., v6, ...)

- le code d'une application angular est bien structuré (orienté objet / syntaxe rigoureuse grâce à typescript) et est "à peu près maintenable" .
- le framework "angular" est dès le départ très complet (rendu, binding, routage, appels ajax/http, ...), ce qui n'est volontairement pas le cas de certains autres frameworks concurrents (backbone, react, knockout-is, ...)
- l'environnement de développement est basé (depuis la v2) sur **npm** et @angular/cli et est maintenant très complet (tests, génération de bundles, ...)

NB:

- Angular Js (1.x) n'était basé que sur javascript/es5 et ne nécessitait aucun environnement de développement sophistiqué (un simple "notepad++" suffisait").
 En contre partie de cet environnement de développement simpliste, le code d'une application "Angular Js / 1.x" était assez rapidement complexe à maintenir (pas adapté aux applications de grandes tailles).
- Depuis la v2, "Angular" n'est plus qualifié de "Js" et s'appuie sur un environnement de développement beaucoup plus sophistiqué (npm + @angular/cli + typescript) et très complet (tests, générations de "bundles",).
- Depuis la V2 d'angular les composants sont codés en typescript "typé et orienté objet" (.ts)
- A court terme les fichiers ".ts" sont traduits en ".js" (es5) de façon à pouvoir être interprétés par presque tous les navigateurs des années 2010-2018.

1.7. Orientation "composants"

Contrairement à l'ancienne version 1.x, les nouvelles versions 2,4,6,... du framework angular sont clairement orientées "composants". Il s'agit là d'une évolution récente des technologies web.

Web Component:

"Web Component" est une spécification (en cours de normalisation) du "W3C".

"Web components" est un ensemble d'API WEB permettant de programmer et utiliser des composants personnalisés au sein de pages (ou applications) HTML.

Les 4 api fondamentales des "web component" sont :

- Custom elements (pour créer et enregistrer de nouveaux éléments HTML et les faire reconnaître par le navigateur)
- **shawdow dom** (encapsulation (private/public) de "js et css")
- es module / html imports (modularité / packaging)
- html template (squelettes/modèles de nouveau éléments HTML instanciables)

Shadow DOM:

- Fragment d'un arbre dom (isolé de l'arbre DOM principal).

Nouvelles balises "html" associées aux "Web Component":

<template>
<slot>
...

NB:

Ceci n'est pas encore définitivement normalisé.

C'est supporté (à titre expérimental) que par certains navigateurs très récents.

Quelques URLs pour approfondir le sujet :

https://css-tricks.com/an-introduction-to-web-components/ https://developer.mozilla.org/fr/docs/Web/Web_Components

https://www.webcomponents.org/introduction

https://developers.google.com/web/fundamentals/web-components/

...

Le framework "Angular" met en oeuvre (à sa façon, sans tenir compte des futures normes) la plupart des fonctionnalités des "web component".

1.8. Eventuelles extensions pour angular

primeNg, @angular/material et ngx-bootstrap sont trois extensions concurrentes qui sont constituées d'un ensemble homogène de nouveaux composants graphiques réutilisables (ex : tabs/onglets, menus déroulants, panels, ...)

material2 est obsolète et remplacé par @angular/material.

@angular/material est souvent accompagné de flex-layout (pour l'aspect "responsive").

ng2-bootstrap est obsolète et remplacé par ngx-bootstrap (ng-bootstrap est encore une autre variante, cependant moins utilisée).

<u>Attention</u>: certains jolis thèmes de primeNg sont des extensions payantes et la programmation de nouveaux thèmes pour "primeNg" n'est pas simple.

En utilisant une de ces bibliothèques additionnelles , le développement concret d'une application angular 4+ s'appuie sur de nouvelles balises prêtes à l'emploi et facilement paramétrables .

- --> avantage : code plus compact et intégration naturelle dans le reste du code applicatif angular.
- --> petit inconvénient : balisages et paramétrages assez spécifiques (moins portables que du classique "html5+css3") .

<u>NB</u>: Angular 1.x s'appuyait en interne sur "jquery lite". Depuis la v2, Angular ne s'appuie plus du tout sur jquery. Il est vivement déconseillé d'utiliser "jquery" avec angular 2,4,6+

ionic 3+ est une extension de angular 4+ qui s'appuie en interne sur "apache cordova" et qui permet de développer des applications mobiles hybrides (en partie "web", en partie native) pour les smartphones "ios/iphone", "android", "windows", ...

II - Environnement de développement Angular

1. Environnement de développement pour Angular

1.1. Environnement de développement minimum (depuis v2)

Bien que Angular soit une technologie qui s'exécute "coté navigateur", l'environnement de développement s'appuie sur la sous partie "**npm**" de nodeJs.

L' éco-système "npm" sert essentiellement à télécharger et exécuter les technologies de développement nécessaires pour angular ("tsc", "@angular/cli", ...").

A l'époque des premières "v2" de Angular , le mode de développement préconisé consistait à directement partir d'un fichier "package.json" récupéré par copier/coller et éventuellement adapté pour ensuite lancer "npm install" , etc ...

Bien qu'encore possible actuellement, ce mode de développement basique et direct est de moins en moins utilisé au profit de l'utilitaire en ligne de commande "@angular/cli" (exposé au sein du prochain paragraphe).

1.2. Développement Angular basé sur @angular/cli (ng)

incontournable @angular/cli

S'installant via *npm install -g @angular/cli*, angular CLI est un *utilitaire en ligne de commandes* (s'appuyant sur npm et webpack) permettant de gérer toutes les phases d'un projet angular :

```
ng new my-app -- création d'une nouvelle appli angular4+

ng g component cxy -- génération d'un nouveau composant
ng g service sa -- génération d'un nouveau service
ng g ...

ng serve -- build en mémoire + démarrage serveur de test
ng build --prod -- construction de bundles (pour déploiement)
ng ...
```

Angular-CLI est maintenant officiellement préconisé sur le site officiel de Angular. Autant faire comme tout le monde et utiliser cette façon de structurer et construire une application angular.

Installation (en mode global) de angular-cli via npm : npm install -g @angular/cli

NB : si besoin , upgrade préalable de npm via npm install npm@latest -g
ou bien carrément désinstaller nodeJs et réinstaller une version plus récente.

La création d'une nouvelle application s'effectue via la ligne de commande "**ng new** *my-app*". Cette commande met pas mal de temps à s'exécuter (beaucoup de fichiers sont téléchargés).

Au sein de l'arborescence des répertoires et fichiers créés (voir ci-après) :

^{*} src/assets est prévu pour contenir des ressources annexes (images,) qui seront automatiquement recopiées/packagées avec l'application construite.

^{*} e2e correspond à "end to end tests" (lancés via ng e2e et protractor).

/	dans src	dans src/app
dist e2e node_modules src e.editorconfig angular.json package.json package-lock.json proxy.conf.json README.md tsconfig.json tslint.json	assets environments browserslist favicon.ico index.html karma.conf.js main.ts polyfills.ts styles.scss test.ts tsconfig.app.json tsconfig.spec.json tslint.json	app.component.html app.component.scss app.component.spec.ts app.component.ts app.module.ts app-routing.module.ts

Principales lignes de commandes de **ng** (angular-cli):

rincipales lighes de commandes de lig (angui	
ng new <i>my-app</i> , <i>cd my-app</i>	Création d'une nouvelle application " <i>my-app</i> ".
ng serve	Lancement de l'application en mode développement (watch & compile file , launch server,) → URL par défaut : http://localhost:4200
ng build ng buildprod (outarget=productionenvironment=prod)	Construction de l'application (par défaut en modedev)
ng help	Affiche les commandes et options possibles
ng generate (ou ng g)	Génère un début de code pour un composant, un service ou autre (selon argument précisé)
ng test	Lance les tests unitaires (via karma)
ng e2e	Lance les tests "end to end" / "intégration" (après un ng server à lancer au préalable)

Type de composants que l'on peut générer (début de code) :

Scaffold (échafaudage)	Usage (ligne de commande)
Component	ng g component my-new-component
Directive	ng g directive my-new-directive
Pipe	ng g pipe my-new-pipe
Service	ng g service my-new-service
Class	ng g class my-new-class
Interface	ng g interface my-new-interface
Enum	ng g enum my-new-enum
Module	ng g module my-module

<u>NB</u>: principales options utiles pour **ng g component** sont les suivantes :

```
--style css (ou --style scss ) ou ...
--flat (pas de sous répertoire)
--skip-tests (ne génère pas de fichier ...spec.ts)
--inline-template (ne génère pas de fichier .html)
--inline-style (ne génère pas de fichier .css , possible en css seulement)
```

<u>NB</u>: pour que ng g component génère par défaut des fichiers ".scss" (et pas .sass ou autres) on peut ajuster la partie "schematics" au sein de angular.json comme suit :

```
"schematics": {
    "@schematics/angular:component": {
        "style": "scss"
      }
}
```

<u>NB</u>: **ng serve construit l'application entièrement en mémoire** pour des raisons d'efficacité / performance (on ne voit aucun fichier temporaire écrit sur le disque).

ng build génère quant à lui des fichiers dans le répertoire my-app/dist.

Contenu du répertoire my-app/dist après la commande "ng build" (par défaut en mode --dev) :

ng build --prod est quelquefois accompagné de quelques "bugs" avec certaines versions de angular-cli (encore en version bêta).

Lorsque le mode "--prod" fonctionne , les fichiers "bundle" générés sont compressés au format ".gz".

ng build --watch existe (au cas où) mais c'est généralement ng serve qui déclenche automatiquement l'option --watch (pour recompiler automatiquement dès qu'un fichier a changé)

Migration globale de angular-cli vers version plus récente :

```
npm uninstall -g angular-cli
npm cache clean or npm cache verify (if npm > 5)
npm install -g @angular/cli@latest
```

Migration locale du seul projet courant vers version plus récente :

```
ng update @angular/cli @angular/core [ --to=7.2.0 ]
```

Ajout de bibliothèque(s) javascript :

<u>NB</u>: si l'on souhaite utiliser conjointement certains fichiers javascripts complémentaires (exemple très conseillé mais quelquefois compatible : "iguery...js" et "bootstrap.min.js") on peut :

- 1) placer un répertoire "js" a coté de node-modules (ou bien utiliser un jquery récupéré par npm)
- 2) adapter le fichier angular-cli.json ou angular.json de la façon suivante :

NB : bien que techniquement possible , l'ajout de jquery.js à un projet angular est **très** déconseillé !!!

1.3. IDE et éditeurs de code pour angular

1.4. Configuration "npm" et "@angular/cli" pour Angular

Voici un exemple de fichier "package.json" généré par "ng new my-app" :

```
"name": "my-app",
"version": "0.0.0",
"scripts": {
 "ng": "ng",
 "start": "ng serve",
 "build": "ng build",
 "test": "ng test",
 "lint": "ng lint",
 "e2e": "ng e2e"
"private": true,
"dependencies": {
 "@angular/animations": "~8.2.0",
 "@angular/common": "~8.2.0",
 "@angular/compiler": "~8.2.0",
 "@angular/core": "~8.2.0",
 "@angular/forms": "~8.2.0",
 "@angular/platform-browser": "~8.2.0",
 "@angular/platform-browser-dynamic": "~8.2.0",
 "@angular/router": "~8.2.0",
 "rxjs": "~6.4.0",
 "tslib": "^1.10.0".
 "zone.js": "~0.9.1"
"devDependencies": {
 "@angular-devkit/build-angular": "~0.802.1",
 "@angular/cli": "~8.2.1",
 "@angular/compiler-cli": "~8.2.0",
 "@angular/language-service": "~8.2.0",
 "@types/node": "~8.9.4",
 "@types/jasmine": "~3.3.8".
 "@types/jasminewd2": "~2.0.3",
 "codelyzer": "^5.0.0",
 "jasmine-core": "~3.4.0",
 "jasmine-spec-reporter": "~4.2.1",
 "karma": "~4.1.0",
 "karma-chrome-launcher": "~2.2.0",
 "karma-coverage-istanbul-reporter": "~2.0.1",
 "karma-jasmine": "~2.0.1",
 "karma-jasmine-html-reporter": "^1.4.0",
 "protractor": "~5.4.0",
 "ts-node": "~7.0.0",
 "tslint": "~5.15.0",
 "typescript": "~3.5.3"
```

NB: angular 8 nécessite un upgrade de typescript en version 3.4 ou supérieur.

Voici un exemple de fichier **tsconfig.json** généré :

Ce fichier servira à paramétrer le comportement du pré-processeur (ou pré-compilateur) "tsc" permettant de transformer des fichiers ".ts" en fichiers ".js".

Fichier "main.ts" (généré et ré-exploité par @angular/cli) pour charger et démarrer le code de l'application :

```
import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app/app.module';
import { environment } from './environments/environment';

if (environment.production) {
  enableProdMode();
}
platformBrowserDynamic().bootstrapModule(AppModule)
  .catch(err => console.log(err));
```

Page principale index.html (qui sera retraitée/enrichie via ng serve ou ng build)

```
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>myApp</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-scale=1">
link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
<app-root></app-root>
</body>
</html>
```

NB : les fichiers index.html et styles.css peuvent être un petit peu personnalisés mais le gros du code de l'application sera placé dans les sous-répertoires "app" et autres .

1.5. Exemple de code élémentaire pour une application angular

app/app.component.ts

```
My First Angular 2 App ..
import {Component} from '@angular/core';
@Component({
                                     11
 selector: 'app-root',
                                    24
39
 template: `<h1>My First {{message}} .. </h1>
   416
    i i*i 
                                    525
636
   {{i}}}{{i*i}}}
                                     749
   864
   981
export class AppComponent {
     message: string;
    values: number[] = [1,2,3,4,5,6,7,8,9];
    constructor(){
      this.message = "Angular 2 App";
```

```
NB: dans @Component(),
```

- soit templateUrl: 'app.component.html' (template html dans fichier annexe)
- soit template: `<h1>... {{message}} </h1>
 - ...` (contenu direct d'un petit template html entre quotes inverses)

app/app.module.ts

```
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppComponent } from './app.component';

@NgModule({
  imports: [ BrowserModule ],
  declarations: [ AppComponent ],
  providers: [ ],
  bootstrap: [ AppComponent ]
})
export class AppModule { }
```

```
à lancer et tester via ng serve et http://localhost:4200
```

1.6. Styles css globaux et styles spécifiques à un composant.

xyz.component.ts

```
...

@Component({
    selector: 'xyz',
    templateUrl: './xyz.component.html',
    styleUrls: ['./xyz.component.css']
})
export class XyzComponent implements OnInit {
    ...
}
```

xyz.component.css

```
input.ng-valid[required] {
        border-left: 5px solid #42A948; /* green */
}
input.ng-invalid {
        border-left: 5px solid #a94442; /* red */
}
.errMsg{
        font-style: italic;
}
```

Ces classes de styles css ne sont utilisées que par le composant "xyz". Il n'y aura pas d'effet de bord (pas d'éventuels conflits ou perturbations) avec d'autres composants.

Pour utiliser des styles css au niveau global (toute l'application), on peut dans un contexte "angular-cli" les référencer dans la partie "styles" de .angular.json

```
"styles": [
    "src/styles.css", "src/assets/css/xyz.css"
    ],
...
```

<u>NB</u>: Les chemins sont à exprimer de façon relative à *la racine de l'appli angular* (la où est placé *package.json*).

1.7. Lien classique entre angular 4+ et bootstrap-css 3 ou 4

Avertissement préalable :

Bootstrap-css vient assez récemment de basculer de la version 3.x à la toute nouvelle version 4.0.0 Il y a beaucoup de changements ("panel" --> "card", ...)

Etant donné que bootstrap4 n'est plus livré/accompagné de glyphicons, on peut utiliser les styles *font-awesome* à la place (restant partiellement gratuit/open-source).

<u>Téléchargement (et installation dans l'appli) de bootstrap-css via npm</u> :

```
npm install bootstrap --save
npm install font-awesome --save
  ou bien
npm install --save @fortawesome/fontawesome-free
```

NB: par défaut, la dernière version stable de bootrap-css est téléchargée (actuellement 4). on peut (si besoin) préciser la version de bootstrap souhaitée lors du "npm isntall".

dans angular.json:

```
"styles": [
    "src/styles.css",
    "./node_modules/bootstrap/dist/css/bootstrap.min.css",
    "./node_modules/font-awesome/css/font-awesome.min.css" ou bien
    "./node_modules/@fortawesome/fontawesome-free/css/all.min.css"
],
```

NB:

- Dans anciennes versions 4 et 5 : angular-cli.json et chemins relatifs (de src) vers des styles préalablement récupérés via npm : "../node_modules/.../bootstrap..min.css" , "../node_modules/..." .
- Depuis angular6, angular.json et chemins relatifs depuis la racine du projet.

Petit test dans un ...component.html:

```
...
<input type="button" value="ok" class="btn btn-primary" />
<i class="fa fa-heart" aria-hidden="true" style="color: red;"></i>
...
```

<u>NB</u>: ne pas ajouter jquery.js ni bootstrap.min.js mais ajouter éventuellement ng-bootstrap (ou mieux encore ngx-bootstrap) .

III - Langage typescript

1. Bases syntaxiques du langage typescript (ts)

1.1. Rappel: Version de javascript (ES5 ou ES6/es2015)

Les versions standardisées/normalisées de javascript sont appelées **ES** (**E**cma**S**cript) . Les versions modernes sont :

- ES5 (de 2009) supporté par quasiment tous les navigateurs actuels ("mobiles" ou "desktop")
- ES6 (renommé ES2015 car normalisé en 2015). ES6/es2015 n'est pour l'instant supporté que par quelques navigateurs "desktop" récents. ES6/ES2015 apporte quelques nouvelles syntaxes et mots clefs (class, let, ...) et gère des modules dits "statics" via "import { ComponentName } from 'moduleName'; " et export.

En 2016, 2017, 2018, ..., une application basée sur "typescript" doit être compilée/transpilée en ES5 de façon à pouvoir s'exécuter sur n'importe quel navigateur.

1.2. TypeScript / ts en tant qu'évolution de ES6

Le langage "typescript" est une évolution de ES6 (ECMAScript 6) avec un typage fort et éventuellement des décorations (@...) .

Ce langage (à l'origine créé par Microsoft) s'utilise concrètement en écrivant des fichiers ".ts" qui sont transformés en fichiers ".js" via un pré-processeur "tsc" (typescript compiler).

Cette phase de transcription (".ts → .js") s'effectue généralement durant la phase de développement.

<u>NB</u>: tant que l'on ajoute pas de spécificités "typescript", le fichier ".js" généré est identique au fichier ".ts".

Si par contre on ajoute des précisions sur les types de données au sein du fichier ".ts" alors :

- le fichier ".js" est bien généré (par simplification ou développement) si aucune erreur bloquante est détectée.
- des messages d'erreurs sont émis par "tsc" si des valeurs sont incompatibles avec les types des paramètres des fonctions appelées ou des affectations de variables programmées.

La version 2.3.2 est l'une des versions les plus récentes de typescript (mi 2017).

1.3. utilisation concrète de tcs

Après une installation globale effectuée par "npm install -g typescript ", une ligne de commande en "tsc" ou "tsc -w" lancée depuis le répertoire d'un projet où est présent le fichier tsconfig.json suffit à lancer toute une série de compilations "typescipt" :

```
tsconfig.json
                                                               tp-typescript
                                                                    dist
"compileOnSave": true,
                                                                      out-tsc
"compilerOptions": {
  "baseUrl": "".
                                                                      > 🛅 web
  "declaration": false.
                                                                       Client.js
  "emitDecoratorMetadata": false,
                                                                       Client.js.map
  "experimentalDecorators": false,
  "outDir": "dist/out-tsc",
                                                                       hello-world.js
  "sourceMap": true,
                                                                       hello-world.js.map
  "target": "es5",
  "noEmitOnError": false
                                                                       svg-fig.js
                                                                       svg-fig.js.map
 "include": [
                                                                       xyz.js
    "src/**/*"
                                                                       xyz.js.map
  "exclude": [
    "node modules",
                                                                     Client.ts
    "**/*.spec.ts",
    "dist"
                                                                     hello-world.ts
 1
                                                                     svg-fig.ts
                                                                     xyz.ts
                                                                  tsconfig.json
```

Lorsque l'option "noEmitOnError": true est fixée, le fichier ".js" n'est pas généré en car d'erreur (pourtant ordinairement non bloquante) soulevée par tsc.

Avec l'option "sourceMap": true, le compilateur/transpilateur "tsc" génère des fichiers ".map" à coté des fichiers ".js".

Ces fichiers dénommés "**source map**" servent à effectuer des correspondances entre le code source original ".ts" et le code transformé ".js".

Les fichiers ".map" sont quelquefois chargés et interprétés par des débogueurs sophistiqués (ex : debug de certains IDE, ...). Ces fichiers ".map" ne sont pas indispensables pour l'interprétation du code ".js" généré et peuvent (éventuellement) être omis en production.

Quelques Bons éditeurs de code (pour langage "typescript"):

- * Visual Studio Code
- * Atom
- * WebStorm

1.4. précision des types de données

boolean	var isDone: boolean = false;
number	var height: number = 6; var size : number = 1.83;
string	<pre>var name: string = "bob"; name = 'smith';</pre>
array	<pre>var list1 : number[] = [1, 2, 3]; var list2 : Array<number> = [1, 2, 3];</number></pre>
enum	<pre>enum Color {Red, Green, Blue}; // start at 0 by default // enum Color {Red = 1, Green, Blue}; var c: Color = Color.Green; //display as "1" by default var colorName: string = Color[1]; // "Green" if "Red" is at [0]</pre>
any	<pre>var notSure: any = 4; notSure = "maybe a string instead"; notSure = false;</pre>
void	<pre>function warnUser(): void { alert("This is my warning message"); }</pre>

hello_world.ts

```
function greeterString(person: string) {
    return "Hello, " + person;
}

var userName = "Power User";

//i=0; //manque var (erreur détectée par tsc)

var msg = "";

//msg = greeterString(123456); //123456 incompatible avec type string (erreur détectée par tsc)

msg = greeterString(userName);

console.log(msg);
```

values: number[] = [1,2,3,4,5,6,7,8,9];

1.5. Tableaux (construction et parcours)

```
var tableau : string[] = new Array<string>();

//tableau.push("abc");

//tableau.push("def");

tableau[0] = "abc";
tableau[1] = "def";

Au moins 3 parcours possibles:

var n : number = tableau.length;
for(let i = 0; i<n; i++) {
    console.log(">> at index " + i + " value = " + tableau[i] );
}
```

```
for(let i in tableau) {
   console.log("** at index " + i + " value = " + tableau[i] );
}
```

```
for( let s of tableau) {
    console.log("## val = " + s);
}
```

1.6. Portées (var , let) et constantes (const)

Depuis longtemps (en javascript), le mot clef "var" permet de déclarer explicitement une variable dont la portée dépend de l'endroit de sa déclaration (globale ou dans une fonction).

Sans aucune déclaration, une variable (affectée à la volée) est globale et cela risque d'engendrer des effets de bords (incontrôlés). Ceci est maintenant interdit en "typescript".

Introduits depuis es6/es2015 et typescript 1.4, les mots clefs **let** et **const** apportent de nouveaux comportements :

- Une variable déclarée via le mot clef **let** a une *portée limité au bloc local* (exemple boucle for). Il n'y a alors pas de collision avec une éventuelle autre variable de même nom déclarée quelques ligne au dessus du bloc d'instructions (entre {}}, de la boucle).
- Une variable déclarée via le mot clef **const** ne peut plus changer de valeur après la première affectation. Il s'agit d'une constante.

Exemple:

```
const PISur2 = Math.PI / 2:
//PISur2 = 2; // Error, can't assign to a `const`
console.log("PISur2 = " + PISur2);
var tableau : string[] = new Array<string>();
tableau[0] = "abc";
tableau[1] = "def";
var i: number = 5;
var j : number = 5;
//for(let i in tableau) {
for(let i=0; i<tableau.length; i++) {
  console.log("*** at index " + i + " value = " + tableau[i]);
}
//for(j=0; j < tableau.length; j++) {
for(var j=0; j<tableau.length; j++) {
  console.log("### at index " + j +" value = " + tableau[j]);
}
console.log("i=" + i); //affiche i=5
console.log("j="+j); //affiche j=2
```

2. Programmation objet avec typescript (ts)

2.1. Classe et instances

```
class Compte {
    numero : number;
    label: string;
    solde : number;

    debiter(montant : number) : void {
        this.solde -= montant; // this.solde = this.solde - montant;
    }

    crediter(montant : number) : void {
        this.solde += montant; // this.solde = this.solde + montant;
    }
}
```

```
var c1 = new Compte(); //instance (exemplaire) 1
console.log("numero et label de c1: " + c1.numero + " " + c1.label);
console.log("solde de c1: " + c1.solde);
var c2 = new Compte(); //instance (exemplaire) 2
c2.solde = 100.0;
c2.crediter(50.0);
console.log("solde de c2: " + c2.solde); //150.0
```

NB: Sans initialisation explicite (via constructeur ou autre), les propriétés internes d'un objet sont par défaut à la valeur "**undefined**".

2.2. constructor

Un constructeur est une méthode qui sert à initialiser les valeurs internes d'une instance dès sa construction (dès l'appel à new).

En langage typescript le constructeur se programme comme la méthode spéciale "constructor" (mot clef du langage) :

```
class Compte {
    numero : number;
    label: string;
    solde : number;

    constructor(numero:number, libelle:string, soldeInitial:number) {
        this.numero = numero;
        this.label = libelle;
        this.solde = soldeInitial;
    }

//...
}
```

```
var c1 = new Compte(1,"compte 1",100.0);
c1.crediter(50.0);
console.log("solde de c1: " + c1.solde);
```

NB: il n'est pas possible d'écrire plusieurs versions du constructeur :

Il faut donc <u>quasi systématiquement</u> utiliser la syntaxe = *valeur_par_defaut* sur les arguments d'un constructeur pour pouvoir créer une nouvelle instance en précisant plus ou moins d'informations lors de la construction :

```
class Compte {
    numero : number;
    label: string;
    solde : number;

constructor(numero:number=0, libelle:string="?", soldeInitial:number=0.0) {
        this.numero = numero;
    }
}
```

```
this.label = libelle;
this.solde = soldeInitial;
}//...
}
```

```
var c1 = new Compte(1,"compte 1",100.0);
var c2 = new Compte(2,"compte 2");
var c3 = new Compte(3);
var c4 = new Compte();
```

<u>Remarque</u>: en plaçant le mot clef (récent) "**readonly**" devant un attribut (propriété), la valeur de celui ci doit absolument être initialisée dès le constructeur et ne pourra plus changer par la suite.

2.3. Propriété "private"

```
class Animal {
    private _ size : number;
    name:string;
    constructor(theName: string = "default animal name") {
        this.name = theName;
        this._size = 100; //by default
        }
    move(meters: number = 0) {
        console.log(this.name + " moved " + meters + "m." + " size=" + this._size);
    }
}
```

var al = new Animal("favorite animal");

al._size=120; //erreur détectée '_size' est privée et seulement accessible depuis classe 'Animal'.

al.move();

Remarques importantes:

- public par défaut.
- En cas d'erreur détectée sur "private / not accessible", le fichier ".js" est (par défaut) tout de même généré par "tsc" et l'accès à ".size" est tout de même autorisé / effectué au runtime.

 ⇒ private génère donc des messages d'erreurs qu'il faut consulter (pas ignorer) !!!

2.4. Accesseurs automatiques get xxx() /set xxx()

```
class Animal {
    private _ size : number;
    public get size() : number { return this._ size;
    }
    public set size(newSize : number) {
        if(newSize >=0) this._ size = newSize;
            else console.log("negative size is invalid");
    }
    ...} //NB : le mot clef public est facultatif devant "get" et "set" (public par défaut)
```

```
var a1 = new Animal("favorite animal");

a1.size = -5; // calling set size() → negative size is invalid (at runtime), _size still at 100

a1.size = 120; // calling set size()

console.log("size=" + a1.size); // calling get size() → affiche size=120
```

<u>NB</u>: get ... et set ... nécessitent l'option -t ES5 de tsc

2.5. Mixage "structure & constructor" avec public ou private

```
var c1 = new Compte(1,"compte 1",100.0);
c1.solde = 250.0; console.log(c1.numero + ' ' + c1.label + ' ' + c1.solde );
```

<u>Remarque importante</u>: via le mof clef "public" ou "private" ou "protected" (au niveau des paramètres du constructeur), certains paramètres passés au niveau du constructeur sont automatiquement transformés en attributs/propriétés de la classe.

Autrement dit, toutes les lignes "barrées" de l'exemple précédent sont alors générées implicitement (automatiquement).

2.6. mot clef "static"

Le la même façon que dans beaucoup d'autres langages orientés objets (c++, java, ...), le mot clef *static* permet de déclarer des variables/attributs de classes (plutôt que des variables/attributs d'instances).

La valeur d'un attribut "static" est partagée par toutes les instances d'une même classe et l'accès s'effectue avec le prefixe "NomDeClasse." plutôt que "this.".

Exemple:

```
class CompteEpargne {
    static taux: number= 1.5;
    constructor(public numero: number , public solde :number = 0){
    }
    calculerInteret() {
      return this.solde * CompteEpargne.taux / 100;
    }
}

var compteEpargne = new CompteEpargne(1,200.0);
console.log("interet="+compteEpargne.calculerInteret());
```

2.7. héritage et valeurs par défaut pour arguments:

```
class Animal {
    name:string;
    constructor(theName: string ="default animal name") { this.name= theName;}
    move(meters: number = 0) {
        console.log(this.name + " moved " + meters + "m.");
    }
}
```

```
class Snake extends Animal {
    constructor(name: string) { super(name); }
    move(meters = 5) {
        console.log("Slithering...");
        super.move(meters);
    }
}
```

```
class Horse extends Animal {
    constructor(name: string) { super(name); }
    move(meters = 45) {
        console.log("Galloping...");
        super.move(meters);
    }
}
```

```
var a = new Animal(); //var a = new Animal("animal");
var sam = new Snake("Sammy the Python"); //var sam = new Snake();
var tom: Animal = new Horse("Tommy the Palomino");
a.move(); // default animal name moved 0m.
sam.move(); // Slithering... Sammy the Python moved 5m.

tom.move(34); //avec polymorphisme (for Horse)
// Galloping... Tommy the Palomino moved 34m.
```

<u>NB</u>: depuis la version 1.3 de typescript, le mot clef "**protected**" peut être utilisé dans une classe de base à la place de private et les méthodes des sous classes (qui hériteront de la classe de base) pourront alors accéder directement au attributs/propriétés "*protected*".

2.8. Classes abstraites (avec opérations abstraites)

```
// classe abstraite (avec au moins une méthode abstraite / sans code):
abstract class Fig2D {
 constructor(public lineColor : string = "black",
        public lineWidth: number = 1,
        public fillColor : string = null){
         -performVisit(visitor : FigVisitor) : void {}
 abstract perform Visit(visitor : FigVisitor) : void;
// classe concrète (avec du code d'implémentation pour chaque opération):
class Line extends Fig2D {
 constructor(public x1:number = 0, public y1:number = 0,
        public x2:number = 0, public y2:number = 0,
        lineColor: string = "black",
        lineWidth : number = 1){
          super(lineColor,lineWidth);
performVisit(visitor : FigVisitor) : void {
  visitor.doActionForLine(this);
```

```
var tabFig: Fig2D[] = new Array<Fig2D>();
tabFig.push( new Fig2D("blue") ); //impossible d'instancier une classe abstraite
tabFig.push( new Line(20,20,180,200,"red") ); //on ne peut instancier que des classes concrètes
```

2.9. Interfaces

person.ts

```
interface Person {
  firstname: string;
  lastname: string;
function greeterPerson(person: Person) {
  return "Hello, " + person.firstname + " " + person.lastname;
}
//var user = {name: "James Bond", comment: "top secret"};
//incompatible avec l'interface Person (erreur détectée par tsc)
var user = {firstname: "James", lastname: "Bond", country: "UK"};
//ok : compatible avec interface Person
msg = greeterPerson(user);
console.log(msg);
class Student {
  fullname: string;
  constructor(public firstname, public lastname, public schoolClass) {
    this.fullname = firstname + " " + lastname + "[" + schoolClass + "]";
  }
var s1 = new Student("cancre", "Ducobu", "Terminale"); //compatible avec interface Person
msg = greeterPerson(s1);
console.log(msg);
```

Rappel important : via le mof clef "public" ou "private" (au niveau des paramètres du constructeur) , certains paramètres passés au niveau du constructeur sont automatiquement transformés en attributs/propriétés de la classe (ici "Student") qui devient donc compatible avec l'interface "Person" .

Au sein du langage "typescript", une interface correspond à la notion de "structural subtyping". Le véritable objet qui sera compatible avec le type de l'interface pourra avoir une structure plus grande.

Interface simple/classique:

```
interface LabelledValue {
  label: string;
}
```

```
function printLabel(labelledObj: LabelledValue) {
  console.log(labelledObj.label);
}

var myObj = {size: 10, label: "Size 10 Object"};
printLabel(myObj);
```

Interface avec propriété(s) facultative(s) (suffixée(s) par?)

```
interface LabelledValue {
  label : string;
  size? : number ;
}
```

```
function printLabel(labelledObj: LabelledValue) {
  console.log(labelledObj.label);
  if( labelledObj.size ) {
    console.log(labelledObj.size);
  }
}

var myObj = {size: 10, label: "Size 10 Object"};
printLabel(myObj);

var myObj2 = { label: "Unknown Size Object"};
printLabel(myObj2);
```

Interface pour type précis de fonctions :

```
interface SearchFunc {
  (source: string, subString: string): boolean;
}
```

→ deux paramètres d'entrée de type "string" et valeur de retour de type "boolean"

```
var mySearch: SearchFunc;

mySearch = function(src: string, sub: string) {
   var result = src.search(sub);
   if (result == -1) {
      return false;
   }
   else {
      return true;
   }
} //ok
```

Interface pour type précis de tableaux :

```
interface StringArray {
   [index: number]: string;
}
```

```
var myArray: StringArray;
myArray = ["Bob", "Fred"];
```

Interface pour type précis d'objets:

```
interface ClockInterface {
    currentTime: Date;
    setTime(d: Date);
}
```

```
class Clock implements ClockInterface {
    currentTime: Date;
    setTime(d: Date) {
        this.currentTime = d;
    }
    //...
}
```

3. Lambda et generics et modules

3.1. Programmation fonctionnelle (lambda, ...)

Rappels (2 syntaxes "javascript" ordinaires) valables en "typescript" :

```
//Named function:
function add(x, y) {
    return x+y;
}

//Anonymous function:
var myAdd = function(x, y) { return x+y; };
```

Versions avec paramètres et valeur de retour typés (typescript) :

```
function add(x: number, y: number): number {
    return x+y;
}
var myAdd = function(x: number, y: number): number { return x+y; };
```

Type complet de fonctions:

```
var myAdd : (a:number, b:number) => number =
  function(x: number, y: number): number { return x+y; };
```

<u>NB</u>: les noms des paramètres (ici "a" et "b") ne sont pas significatifs dans la partie "type de fonction". Ils ne sont renseignés que pour la lisibilité .

Le type de retour de la fonction est préfixé par => . Si la fonction de retourne rien alors => void .

Inférences/déduction de types (pour paramètres et valeur de retour du code effectif):

```
var myAdd: (a:number, b:number)=>number =
  function(x, y) { return x+y; };
```

Paramètre de fonction optionnel (suffixé par ?)

```
function buildName(firstName: string, lastName?: string) {
   if (lastName)
      return firstName + " " + lastName;
   else
      return firstName;
}

var result1 = buildName("Bob"); //ok
var result2 = buildName("Bob", "Adams", "Sr."); //error, too many parameters
var result3 = buildName("Bob", "Adams"); //ok
```

Valeur par défaut pour paramètre de fonction

```
function buildName(firstName: string, lastName = "Smith") {
```

```
return firstName + " " + lastName;
}

var result1 = buildName("Bob");  //ok : Bob Smith
var result2 = buildName("Bob", "Adams", "Sr.");  //error, too many parameters
var result3 = buildName("Bob", "Adams");  //ok
```

Derniers paramètres facultatifs (...[])

```
function buildName(firstName: string, ...restOfName: string[]) {
    return firstName + " " + restOfName.join(" ");
}
var employeeName = buildName("Joseph", "Samuel", "Lucas", "MacKinzie");
```

Lambda expressions

Une "lambda expression" est syntaxiquement introduite via () => { } Il s'agit d'une syntaxe épurée/simplifiée d'une fonction anonyme où les parenthèses englobent d'éventuels paramètres et les accolades englobent le code.

Subtilité de "typescript":

La valeur du mot clef "this" est habituellement évaluée lors de l'invocation d'une fonction . Dans le cas d'une "lambda expression", le mot clef this est évalué dès la création de la fonction.

Exemples de "lambda expressions":

```
var myFct : ( tabNum : number[]) => number ;

myFct = (tab) => { var taille = tab.length; return taille; }

//ou plus simplement:
myFct = (tab) => { return tab.length; }

//ou encore plus simplement:
myFct = (tab) => tab.length;

//ou encore plus simplement:
myFct = tab => tab.length;
```

```
var numRes = myFct([12,58,69]);
console.log("numRes=" + numRes);
```

```
var myFct2 : ( x : number , y: number ) => number ;
myFct2 = (x,y) => { return (x+y) / 2; }
//ou plus simplement:
myFct2 = (x,y) => (x+y) / 2;
```

NB: la technologie "RxJs" utilisée par angular2 utilise beaucoup de "lambda expressions".

3.2. Generics

Fonctions génériques :

```
function identity<T>(arg: T): T {
    return arg;
}
```

T sera remplacé par un type de données (ex : string , number , ...) selon les valeurs passées en paramètres lors de l'invocation (Analyse et transcription "ts" → "js") .

```
var output = identity<string>("myString"); // type of output will be 'string'
```

```
var output = identity("myString"); // type of output will be 'string' (par inférence/déduction) var output2 = identity(58.6); // type of output will be 'number' (par inférence/déduction)
```

Classes génériques :

```
class GenericNumber<T> {
    zeroValue: T;
    add: (x: T, y: T) => T;
}

var myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function(x, y) { return x + y; };

var stringNumeric = new GenericNumber<string>();
stringNumeric.zeroValue = "";
stringNumeric.add = function(x, y) { return x + y; };
```

```
interface Lengthwise {
    length: number;
}

function loggingIdentity <T extends Lengthwise>(arg: T): T {
    console.log(arg.length); // we know it has a .length property, so no error return arg;
}
```

3.3. Modules "typescript"

Le langage typescript	t gère deux sortes	de modules "i	internes/logiques"	et "externes":
-----------------------	--------------------	---------------	--------------------	----------------

internes/logiques (rarement utilisés)	Via mot clef <i>module ModuleName</i> { } englobant plusieurs " <i>export</i> " (<i>sémantique de "namespace"</i> et utilisation via préfixe " <i>ModuleName</i> ."	Dans un seul fichier ou réparti dans plusieurs fichiers (à regrouper), peu importe.
externes	Via (au moins un) mot clef export au <i>premier niveau d'un fichier</i> et utilisation via mot clef import .	Toujours un fichier par module externe (nom du module = nom du fichier) Selon contexte (nodeJs ou)

Précision importante :

Beaucoup de technologies javascript modernes s'exécutent dans un environnement prenant en charge des modules (bien délimités) de code (avec import/export).

Les principales technologies de "modules javascript" sont les suivantes :

- CommonJS (cjs) modules "synchrones", syntaxe "var xyz = requires('xyz')" NB: node (nodeJs) utilise partiellement les idées et syntaxes de CommonJS.
- AMD (Asynchronous Module Definition) avec chargements asynchrones
- **ES2015 Modules**: syntaxiquement standardisé, mots clef "import {...} from '...' " et export pour la gestion statique des modules et System.import("....") possible pour liaisons dynamiques.
- SystemJS (très récent et pas encore complètement stabilisé) supporte en théorie les 3 technologies de modules précédentes (cjs , amd, es2015) et c'est pour cette raison que le tutorial "Angular 2 / Tour of Heroes" s'appuie dessus pour charger le code en mémoire au niveau du navigateur et de la page d'accueil index.html.

 SystemJS est à priori capable de gérer une compilation/transpilation "typescript → javascript" au dernier moment (juste à temps) mais l'opération est lente et donc rarement retenue.

Il existe aussi les formats de modules suivants :

- **umd** (**u**niversal **m**odule **d**efinition) *fichiers xyz.umd.js*
- iife (immediately-invoked function expression) fonctions anonymes auto-exécutées

3.4. Modules (externes) "es2015" vs modules "cjs" :

L'un des principaux atouts de la structure des "modules es2015" tient dans les imports statiques et précis qui peuvent ainsi être analysés pour une génération optimisée des bundles à déployer en production.

Au lieu d'écrire *var/const xyModule = requires('xyModule')* comme en "cjs", la syntaxe plus précise de es2015 permet d'écrire

import { Composant1, ..., ComposantN } from 'xyModule'.

Ainsi l'optimisation dite "**Tree-Shaking**" (de webpack ou rollup ou ...) permet d'exclure tous les composants jamais utilisés de certaines librairies et la taille des bundles générés est ainsi beaucoup plus petite.

4. Précautions/pièges "js" (et "ts")

La programmation en javascript (ou typescript) peut quelquefois être déroutante (non intuitive, piégeuse, ...) et essentiellement sur les points suivants :

- exécution en différé (en mode asynchrone) des callbacks
- variables javascripts référençant quelquefois des éléments "mutable" ou "immutable".

NB:

- * une valeur atomique (number , string , boolean , ...) sera re-créée en tant que nouvelle instance ailleurs en mémoire (avec nouvelle valeur) à la suite d'une demande de modification.
- --> sémantique proche d'un passage par valeur (au niveau d'un paramètre de fonction) comportement de type "copy on write" .
- * un objet javascript évolué (avec sous parties) pourra généralement être modifié sans changer de position en mémoire
- --> sémantique d'un véritable passage par référence (au niveau d'un paramètre de fonction) comportement de type copie d'un "accès" partagé en mode lecture/écriture

à comprendre, expérimenter et ne pas perdre de vue ... sinon ... beaucoup de bugs non maîtrisés ...

IV - Essentiel sur templates , bindings , events

1. Templates bindings (property, event)

1.1. Binding Angular

Le principal intérêt du framework angular réside dans les liaisons automatiques établies entre les parties d'un modèle de vue HTML (template) et les données d'un modèle orienté objet en mémoire dans le composant.

Ce "mapping" ou "binding" peut soit être unidirectionnel ($\{\{...\}\}$ ou [...]="...") ou bien bi-directionnel via [(...)]="....".

Le déclenchement de méthodes événementielles via la syntaxe (evtName) = "....(\$event)" constitue également un paramétrage du mapping angular.

1.2. Syntaxe des liaisons entre vue/template et modèle objet

Syntaxes (template HTML)	Effets/comportements
Hello {{ponyName}}	Affiche Hello poney I si ponyName vaut poney I
Employer:	Pas exception (affichage ignoré) si l'objet
{{employer?.companyName}}	(facultatif/optionnel) est un "undefined"
Card No.: {{cardNumber myCreditCardNumberFormatter}}	Pipe(s) pour préciser un ou plusieurs(s) traitement(s) avant affichage
<pre><input [value]="firstName"/></pre>	Affecte la valeur de l'expression firstName à la propriété value (one-way)
<pre><div title="Hello {{ponyName}}"></div></pre>	équivalent à:
	<div [title]="'Hello' + ponyName"></div>
<pre><div [style.width.px]="mySize"></div></pre>	Affecte la valeur de l'expression mySize à une partie de style css (ici width.px)
<button (click)="</td"><td>Appelle la méthode readRainbow () en</td></button>	Appelle la méthode readRainbow () en
"readRainbow(\$event) ">	passant l'objet \$event en paramètre lorsque l'événement click est déclenché sur le
	composant courant (ou un de ses sous composants)
<pre><input [(ngmodel)]="userName"/></pre>	Liaison dans les 2 sens (lecture/écriture).
	NB : ngModel est ici une directive d'attribut prédéfinie dans le module FormsModule.
<my-cmp [(title)]="name"></my-cmp>	"two-way data binding" sur (sous-)composant.
possible mais très rare	<pre>équivalent à: <my-cmp (titlechange)="name=\$event" [title]="name"></my-cmp></pre>

1.3. Exemples d'interpolations / expressions {{ }}

```
My current hero is {{currentHero.firstName}}
The sum of 1 + 1 is {{a + b}}
The sum of 1 + 1 is not {{a + b + computeXy()}}
< !-- computeXy() appelé sur composant courant associé au template →</p>
```

1.4. Principales directives prédéfinies (angular2/common)

<pre><section *ngif="showSection"></section></pre>	Rendu conditionnel (si expression à true). Très pratique pour éviter exception {{obj.prop}} lorsque obj est encore à "undefined" (pas encore chargé)
*ngFor="let item of list">	Elément répété en boucle (forEach)
<pre><div [ngclass]="{active: isActiv e, disabled: isDisabled}"></div></pre>	Associe (ou pas) certaines classes de styles CSS selon les expressions booléennes .

1.5. Exemples

Cercle qui va bien

```
      (x,y)=(15,9), r = 60

      x: 15
      with [value]="c1.x" attribute synchronisation

      x: 15
      bi-directional via directive [(ngModel)]="c1.x"

      y: 9
      with (input)="onNewY($event)" event fuction

      y: 9
      with (input)="c1.y = $event.target.value;" event fuction

      r: 60
      bi-directional via directive [(ngModel)]="c1.r"
```

app.component.ts

```
import {Component} from 'angular2/core';
interface Circle {
 x: number;
 y: number;
r: number;
@Component({
 selector: 'my-app',
 template:`
  <h2>{{title}}</h2>
  <div>(x,y)=<b>({{c1.x}}, {{c1.y}})</b>, r =<b>{{c1.r}} </b></div>
  <div>
       <label>x: </label> <input [value]="c1.x" placeholder="x"/> <br/>
       <label>x: </label> <input [(ngModel)]="c1.x" placeholder="x"/> <br/>
       <label>y: </label> <input (input)="onNewY($event)" placeholder="y"/><br/>
       <label>y: </label> <input (input)="c1.y = $event.target.value;" placeholder="y"/> <br/>
        <label>r: </label> <input [(ngModel)]="c1.r" placeholder="r"/> <br/>
  </div>
```

```
export class AppComponent {
  public title = 'Cercle qui va bien';
  public c1: Circle = {
    x: 10,
    y: 20,
    r: 50
  };
  onNewY = function (evt : any) {
    this.c1.y = evt.target.value;
  }
}
```

Remarques: un template sur plusieurs lignes peut être encadré par des quotes inverses `...`.

version fortement typée:

```
onNewY = function (evt : KeyboardEvent){
  this.c1.y = (<HTMLInputElement> evt.target).value;
}
```

NB : 'l'utilisation de [(ngModel)] nécessite l'importation de FormsModule dans app.module.ts :

```
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { AppComponent } from './app.component';

@NgModule({
  imports: [ BrowserModule , FormsModule],
  declarations: [ AppComponent ],
  bootstrap: [ AppComponent ]
})
export class AppModule { }
```

Autre exemple:

```
@Component({
    selector: 'key-up3',
    template: ` <input #box (keyup.enter)="values=box.value">
    {{values}} `
})
    export class KeyUpComponent_v3 {
    values=";
}
```

<u>NB</u>: dans l'exemple précédent '.enter' est un filtrage sur l'événement "keyup" (seul un relâchement de la touche "enter" est traité).

1.6. Précision (vocabulaire) "attribut HTML, propriété DOM"

<input type="text" value="Bob"> est une syntaxe HTML au sein de laquelle l'attribut
value correspond à la valeur initiale de la zone de saisie.

Lorsque cette balise HTML sera interprétée, elle sera transformée en sous arbre DOM puis affichée/rendue par le navigateur internet.

Lorsque l'utilisateur saisira une nouvelle valeur (ex : "toto") :

- la valeur de l'attribut HTML *value* sera inchangée (toujours même valeur initiale/par défaut) .
- La valeur de la propriété "value" attachée à l'élément de l'arbre DOM aura la nouvelle valeur "toto".

Autrement dit, un attribut HTML ne change pas de valeur, tandis qu'une propriété de l'arbre DOM peut changer de valeur et pourra être mise en correspondance avec une partie d'un composant "angular2".

<u>NB</u>: Au sein de l'exemple ci-dessous , la propriété "*disabled*" de l'élément de l'arbre DOM est valuée à partir de la propriété "*isUnchanged*" du composant courant .

```
<button [disabled]="isUnchanged">Save</button>
```

et la propriété "disabled" de l'élément DOM a (par coïncidence non systématique) le même nom que l'attribut "disabled" de la balise HTML button .

Exception qui confirme la règle :

Dans le cas, très rare, où une propriété d'un composant "angular" doit être associé à la valeur d'un attribut d'une balise HTML, la syntaxe prévue est [attr.nomAttributHtml]="expression".

Exemple: One-Two

1.7. Style binding

```
<button [style.color] = "isSpecial?'red': 'green'">Red</button>
<button [style.backgroundColor]="canSave?'cyan': 'grey'" >Save</button>
```

Au sein des exemples ci-dessus, un seul style css n'était dynamiquement contrôlé à la fois.

De façon à contrôler dynamiquement d'un seul coup les valeurs de plusieurs styles css on pourra préférer l'utilisation de la directive **ngStyle** :

1.8. CSS Class binding

La classe CSS "special" (.special { ... }) est dans l'exemple ci dessous associée à l'élément <div> de l'arbre DOM si et seulement si l'expression "isSpecial" est à true au sein du composant .

```
<div [class.special]="isSpecial">The class binding is special</div>
```

Cette syntaxe est appropriée et conseillée pour contrôler l'application conditionnée d'une seule classe de style CSS.

De façon à contrôler dynamiquement l'application de plusieurs classe CSS, on préférera la directive **ngClass** spécialement prévue à cet effet :

```
setClasses() {
  return {
    saveable: this.canSave, // true
    modified: !this.isUnchanged, // false
    special: this.isSpecial, // true
  }
}
```

pour un paramétrage selon la syntaxe suivante :

```
<div [ngClass]="setClasses()">This div is saveable and special</div>
```

1.9. Bindings particuliers

Cas particulier [ngValue] pour une liste de sélection d'objet :

Pour une cache à cocher (input de type=checkbox), le binding unidirectionnel (ts ---> template) peut s'effectuer via [checked]="nomProprieteBooleene".

V - Contrôles de formulaires , composants GUI

1. Contrôle des formulaires

1.1. les différentes approches (template-driven, model-driven,...)

Approches	Caractéristiques
template-driven	Simples paramétrages dans le templates HTML, pas ou très peu de code typescript/ javascript
model-driven (alias reactive-forms)	Meilleur façon de paramétrer le comportement (moins de paramétrages coté HTML), plus de code typescript
via <i>Form-builder API</i>	Variante sophistiquée de model-driven / reative-forms

L'approche la plus simple et la plus classique est "template-driven".

Rappel (configuration nécessaire dans le module) :

app.module.ts

1.2. Exemples de paramétrages HTML (ngForm), template-driven

<form #formXy="ngForm" > piste les changements qui peuvent avoir lieu sur les champs d'un
formulaire.

<u>NB</u>: lorsqu'un template est pris en charge par angular, la directive ngForm est automatiquement appliquée sur la balise <form>. Le seul intérêt d'écrire explicitement

<form #formXy="ngForm" > est de pouvoir ecrire <button type="submit" class="btn btn-default"

[disabled]="!formXy.form.valid">Submit</button>

<u>NB</u>: dans cet exemple *btn*, *btn-default*, *form-group*, *form-control* sont des classes de styles "bootstrap-css" et sont *facultatives* (pas du tout obligatoire pour les mécanismes d'angular).

Un des effets de **ngForm** sur un formulaire consiste à automatiquement associer des classes de styles css au champ de saisie :

Etat	flag (booléen)	Css class si true	Css class si false
Champ visité (souris entrée et sortie)	touched	ng-touched	ng-untouched
Valeur du champ modifiée	dirty	ng-dirty	ng-pristine
Valeur du champ valide	valid	ng-valid	ng-invalid

Exemples de styles.css

```
.ng-valid[required] {
  border-left: 5px solid #42A948; /* green */
}
.ng-invalid {
  border-left: 5px solid #a94442; /* red */
}
```


Messages d'erreurs:

En déclarant une variable locale de référence associée à l'objet du champ de saisie via la syntaxe #nameFormCtrl="ngModel", on peut afficher de façon conditionnée certains messages d'erreurs :

nameFormCtrl.valid (true or false)
nameFormCtrl.dirty (true or false)
nameFormCtrl.touched (true or false)

Soumission d'un formulaire:

```
import {Component} from '@angular/core';
import { Coords } from './coords';
@Component({
    moduleId: module.id,
    selector: 'coords-form',
    templateUrl: 'coords-form.component.html'
})
export class CoordsFormComponent {
    titles = ['Mr', 'Ms'];
    model = new Coords(1,this.titles[0], 'PowerUser', '1969-07-11', 'good level');
    submitted = false;
    onSubmit() { this.submitted = true; // ou autre }
    get diagnostic() { return JSON.stringify(this.model); }
}
```

<u>NB</u>: *moduleId*: *module.id* permet d'interpréter templateUrl en relatif par rapport au module courant (ici HeroFormComponent).

==> le bouton "submit" du formulaire est automatiquement désactivé lorsque le formulaire comporte au moins un champ invalide .

Configuration de contrôles de saisies spécifiques:

<u>NB</u>: pour configurer des contrôles de saisies plus sophistiqués/spécifiques, on peut (entre autres solutions) adopter ce style de code (qui deviendra plus limpide après avoir lu le paragraphe suivant).

```
import { NgForm, Validators } from "@angular/forms";
export class XyzComponent implements OnInit {
@ViewChild('formXy') form: NgForm; //pour accéder/manipuler < form #formXy="ngForm"
 < form #formXy="ngForm" [hidden]="submitted"
  (mouseenter)="onFormInit()" ....>
 onFormInit(){
  console.log("onFormInit() called")
  //NB: dans ngOnInit(): trop tôt, this.form.controls['...'] undefined
  // l'événement (mouseenter) peut convenir (entre autres solutions).
  this.form.controls['age'].setValidators(
   [Validators.required,
    Validators.min(0),
    Validators.max(150)]);
   this.form.controls['email'].setValidators(
   [Validators.email]);
 }
```

1.3. Aperçu sur approche "model-driven" / "reactive-form"

dans composant angular:

dans module:

```
import { ReactiveFormsModule } from '@angular/forms';
```

dans template HTML:

```
<form novalidate [formGroup]="myform">
    <fieldset formGroupName="name">
         <div class="form-group">
             <label>First Name</label>
             <input type="text" class="form-control"</pre>
                 formControlName="firstName" >
         </div>
         <div class="form-group">
             <label>Last Name</label>
             <input type="text" class="form-control"
                 formControlName="lastName" >
         </div>
    </fieldset>
    <div class="form-group">
         <label>Email</label>
         <input type="email" class="form-control"
             formControlName="email" >
    </div>
</form>
```

NB:

- novalidate (dans < form ...>) signifie pas de validation HTML5 automatiquement effectuée par le navigateur mais simplement par l'application angular .
- en mode "model-driven" / "reactive-form", pas besoin de [(ngModel)]="xxx.yyy" mais on récupère (dans onSubmit() ou ...) les données saisies au sein de myform.value.

Accès aux détails d'un champ d'un formulaire contrôlé par angular :

```
myForm.get('formControlName').errors // .dirty , .valid , ...
```

1.4. Aperçu avec l'aide de FormBuilder

En mode *model-driven / reactiveForm*, de façon à construire plus simplement le paramétrage d'un FormGroup avec FormControl et Validateurs imbriqués, on peut éventuellement s'appuyer sur FormBuilder:

Exemple:

```
import { Component, OnInit } from '@angular/core';
import { FormBuilder, FormGroup, Validators } from '@angular/forms';

@Component({ ...})
export class AppComponent implements OnInit {
    myForm: FormGroup;
    constructor(private _formBuilder: FormBuilder) {}

    ngOnInit() {
    this.myForm = this._formBuilder.group({
        name: ['default_name', Validators.required],
        email: [", [Validators.required, Validators.pattern('[a-z0-9.@]*')]],
        message: [", [Validators.required, Validators.minLength(15)]]
    });
    }
}
```

1.5. Exemple de Validateur personnalisé / spécifique :

url.validator.ts

```
import { AbstractControl } from '@angular/forms';

export function ValidateUrl(control: AbstractControl) {
  if (!control.value.startsWith('https') || !control.value.includes('.io')) {
    return { invalidUrl: true }; //return { errorKeyname : true } if invalid
    }
    return null; //return null if ok (no error)
}
```

Utilisation:

```
this.myForm = this._formBuilder.group({
    userName: [", Validators.required],
    websiteUrl: [", [Validators.required, ValidateUrl]],
});
```

VI - Components (angular)

1. Vue d'ensemble sur la structure du code Angular2

1.1. Deux niveaux de modularité : fichiers/classes et modules

Une **classe** (composant visuel, directive, service, ...) est un composant de petite taille (généralement de niveau **fichier**).

Un module *important* (correspondant généralement à un répertoire ou sous répertoire) est un gros composant d'une application Angular. Chaque module comporte un fichier principal *xyz.module.ts* comportant la décoration @NgModule.

Dans certains cas techniques , un **module (secondaire ou annexe)** correspond à un seul fichier (comportant une décoration @NgModule) : module auxiliaire pour configurer le routage (approuting.module.ts , ...)

Une petite application peut comporter un seul grand module fonctionnel (ex : "app") . Une grosse application peut comporter plusieurs grands modules complémentaires (ex : partie principale publique "app" , partie réservée à l'administrateur "admin" , partie/espace réservé(e) à un utilisateur connecté et ayant tel rôle .

Un module peut également permettre de rassembler un ensemble de services communs spécifiques à l'application (ex : Authentification , Session , SharedData , ...)

Finalement, un module peut rassembler un ensemble de composants réutilisables (à la manière des extensions "material" , "ionic" ou "primeNG") .

1.2. Programmation "orientée objet" et "modularité par classe"

Selon une logique proche de celle de nodeJs, une application "Angular" peut s'appuyer sur les mots clefs "export" et "import" (de TypeScipt et de ES2015) de façon à être construite sur une base modulaire.

Chaque composant élémentaire est un fichier à part. (dans le cas d'un composant visuel, il pourra y avoir des fichiers annexes ".html", ".css"). Il exporte quelque-chose (classe, interface, données, ...).

Un composant angular doit importer un ou plusieurs autre(s) module(s) ou classe(s) / composant(s) s'il souhaite avoir accès aux éléments exportés et les utiliser. Le référencement d'un autre module s'effectue généralement via un chemin relatif commençant par "./".

Exemple:

app/app.component.ts ...

```
export class AppComponent { ... }
```

app/app.module.ts

```
import {AppComponent} from './app.component'
...
@NgModule({
    ...
    bootstrap: [AppComponent]
})
...
```

Le cœur d'angular est codé à l'intérieur de librairies de composants prédéfinis regroupés en modules.

Les modules des "librairies" prédéfinies d'angular sont par convention préfixés par "@angular".

Exemples:

1.3. Principaux types de composants "angular":

Module fonctionnel (répertoire)	Ensemble de composants et/ou de services (généralement placés dans un même répertoire) et chapeauté par une classe décorée via @NgModule .	
Module auxiliaire (paramétrages / config.)	Simple fichier auxiliaire de paramétrage (ex : approuting.module.ts) regroupant certains éléments de configuration.	
Component (composant visuel)	Composant visuel de l'application graphique (associé à une vue basée elle même sur un template) – généralement spécifique à une application	
Directive	élément souvent réutilisable permettant de générer dynamiquement une partie de l'arbre DOM (structure de code proche d'un composant) mais plutôt associé à un élément générique paramétrable d'une interface graphique (ex : onglet , histogramme ,) .	
	Une directive s'utilise souvent comme une nouvelle balise ou un nouvel attribut.	
	2 types de directives : "structurelles" , "attribut"	
Service (invisible , potentiellement partagé)	Un service est un élément invisible de l'application (qui rend un certain service) en arrière plan (ex : accès aux données , configuration, calculateur ,)	

<u>NB 1</u>: Un @Component est également associé à un tag (selector) et est techniquement un cas particulier de @Directive .

NB 2: Les services sont reliés aux composants via des injections de dépendances:

2. Les modules applicatifs

Attention: Entre les premières versions (alpha, bêta) d'angular2 et la première version finale d'angular2, les modules ont changés plusieurs fois de configuration (syntaxe, structure, ...). il faut donc se méfier des documents "Angular2" antérieurs à octobre 2016.

La classe principale d'un module Angular doit être (par convention) placée dans un fichier xyz/xyz.module.ts où xyz est le nom du module (ex : "app").

Cette classe principale doit être décorée par @NgModule.

```
providers : liste des "composants services"
                                             import { NgModule }
                                                                     from '@angular/core';
qui seront rendus accessible à l'ensemble des
                                             import { BrowserModule } from
composants de l'application
                                                            '@angular/platform-browser';
                                             @NgModule({
                                              imports:
                                                          [BrowserModule],
declarations : liste des classes visuelles
                                              providers: [Logger],
(composants, directives, pipes) appartenant au
                                              declarations: [AppComponent],
module
                                                         [ AppComponent ],
                                              exports:
                                              bootstrap: [AppComponent]
exports : sous ensemble des "déclarations"
                                             export class XyzModule { }
qui seront visibles par d'autres modules
bootstrap: vue principale ("root", "main",
...) (pour module principal seulement)
```

3. Les composants de l'application (@Component)

3.1. Anatomie d'un composant de angular 2

Un composant "angular 2" est essentiellement constitué d'une classe codant le la structure et le comportement de celui ci (par exemple : réactions aux événements).

Les **métadonnées** sont introduites par une ou plusieurs **décorations** placées au dessus de la classe (ex : @Component). <u>Vocabulaire</u> : décoration plutôt qu'annotation .

La vue graphique gérée par un composant est essentiellement structurée via un **template** HTML/CSS comportant des syntaxes spécifiques "angular 2" (*ngFor, {{ }}).

Les liaisons/correspondances gérées par le framework angular2 entre les éléments du composant "orienté objet" et les éléments de la vue "web/HTML/DOM" issue du template sont appelées "*data binding*".

Nuances:

```
[ propertyBinding ]
( eventBinding )
[( two-way data binding )]
```

```
[property] = "value" COMPONENT

(event) = "handler" NT

I(ng-model)] = "property"
```

3.2. @Input et @Output

@Input (du coté sous-composant) permet de récupérer des valeurs (fixes ou varaibles) qui sont spécifiées par un composant parent/englobant.

Exemple élémentaire :

myheader.component.ts

```
this.date = new Date();
}
}
```

<u>Utilisation depuis un composant parent</u>:

app.component.ts

MyHeader titre1 .. **

date:Mon Dec 12 2016 11:54:09 GMT+0100 (CET)

My First Angular 2 App ..

Eventuelles variantes:

```
@Input('title') // pour < myheader title='titre 1' /> (vue externe)
titre: string; //pour this.titre en interne dans le sous composant
```

@Attribute dans constructeur ressemble un peu à @Input

```
export class Child {
  isChecked;
  constructor(@Attribute("checked") checked) {
    this.isChecked = !(checked === null);
  }
}
```

avec cette utilisation potentielle:

```
<child checked></child>
<child checked='true'></child>
<child></child>
```

@Output (au niveau d'un sous-composant) permet d'indiquer un **événement** qui sera potentiellement remonté et géré par un composant parent/englobant.

Exemple élémentaire:

myheader.component.ts

Gestion de l'événement au niveau du composant parent/englobant :

MyHeader titre1 .. **

date:Mon Dec 12 2016 15:18:58 GMT+0100 (CET) - evt

My First Angular 2 App ..

MyHeader titre1 .. ** date:Mon Dec 12 2016 15:18:58 GMT+0100 (CET) - evt

My First Angular 2 App .. texte evement

3.3. Projection des éléments imbriqués

Un composant angular peut (en tant que nouvelle balise), incorporer à son tour certains sous éléments (ex: <div...> ou autre sous-sous composant angular).

Au sein du template HTML d'un composant le (ou le paquet de) sous-composant(s)/sous-balises sera vu via la balise spéciale <ng-content></ng-content>.

Cette fonctionnalité était appelée "transclusion" au sein des directives "angular Js 1.x", elle est maintenant appelée "*projection*" au sein des composants angular 2+.

Exemple concret : composant réutilisable "togglePanel" basé sur des styles et fontes bootstrap-css :

```
import { Component, Input } from '@angular/core';
@Component({
    selector: 'toggle-panel',
    templateUrl: './toggle-panel.component.html',
    styleUrls: ['./toggle-panel.component.css']
})
export class TogglePanelComponent {
    toggleP: boolean = false;
    @Input()
    title: string = 'default panel title';
    constructor() { }
}
```

```
</div>
```

Exemple d'utilisation:

3.4. logique et structure arborescente d'une application Angular 2

Une application "angular2" est structurée comme un arbre de composants.

<u>Chaque composant englobe</u>:

- un sous template HTML
- une classe (propriétés, méthodes événementielles,..., plus du \$cope d'angular1 mais "this")
- métadonnées (paramètres du décorateur @Component)

Cette structure arborescente (finalement très classique pour une technologie d'interface graphique – comme DOM, comme JSF) permet au framework angular d'automatiser les points fondamentaux suivants :

- rendus HTML/DOM via un parcours de l'arbre en profondeur d'abord .
- détection des changements (..., ...)
- ...

4. Cycle de vie sur composants (et directives)

Interfaces (à facultativement implémenter)	Méthodes (une par interface)	Moment où la méthode est appelée automatiquement par angular2
OnChanges	ngOnChanges()	Dès changement de valeur d'un "input binding" (exemple : "propriété initialisée selon niveau parent")
OnInit	ngOnInit()	A l'initialisation du composant et après
		les premiers éventuels ngOnChanges()
		et après constructeur et injections
DoCheck	ngDoCheck()	pour cas très pointus avec détection
AfterContentInit	ngAfterContentInit()	spécifique des changements à afficher ou pas,
AfterContentChecked	ngAfterContentChecked()	Pas,
AfterViewInit	ngAfterViewInit()	
AfterViewCkecked	ngAfterViewCkecked()	
OnDestroy	ngOnDestroy()	Juste avant destruction du composant

Exemples:

liste-comptes.component.ts

```
import {Component, OnInit } from '@angular/core';
import { ActivatedRoute, Params } from '@angular/router';
import {Compte} from '../compte';
import {CompteService} from '../compte.service';
@Component({
 selector: 'liste-comptes',
 template:`
   <div id="divListeComptes"</pre>
       style="background-color:rgb(160,250,160); margin:3px; padding:3px;">
    <h3> liste des comptes </h3>
             numero   label   solde  
                 <td style='color : blue'
                        (click)="displayLastOperations(cpt.numero)"> {{cpt.numero}} 
                      {{cpt.label}} 
                      {{cpt.solde}} 
           <i>Un click sur un numero de compte permet de obtenir la liste des dernieres operations</i>
   </div>
export class ListeComptesComponent implements OnInit{
```

```
@Output()
public selectedCompteEvent : EventEmitter<{value:number}> =
                                                   new EventEmitter<{value:number}>();
clientId: number = 0;
comptes : Compte[] = null;
constructor(private compteService: CompteService,
       private route: ActivatedRoute){
}
ngOnInit() {
  this.route.params.subscribe((params: Params) => {
    this.clientId = Number(params['clientId']);
     this.fetchComptes(); //refresh
    });
 }
 fetchComptes() {
 this. compteService.getComptesOfClientObservable(this.clientId)
    .subscribe(comptes =>this.comptes = comptes,
          error => console.log(error));
}
 displayLastOperations(numCpt : number){
     console.log("affichage des operations du compte selectionne : " + numCpt);
   this.selectedCompteEvent.emit({value:numCpt}); // fire event with data
 }
```

VII - Directives, services et injections

1. Service

Un service est un module de code "invisible" comportant des traitements "ré-utilisables" et souvent "partagés" tels que :

- des accès aux données (indirectement via ajax/http et ws rest/json)
- des mises à jours de données (indirectement via ajax/http et ws rest/json)
- données partagées (par plusieurs composants) en mémoire dans l'appli angular (coté navigateur)
- gestion de la session utilisateur (authentification, ...)
- traitements réutilisables (calculs, traductions, ...)

- ...

<u>NB</u>: Pour synchroniser plusieurs composants visuels sur l'affichage de données communes/partagées on pourra :

- éventuellement injecter (publiquement) un même service dans ces différents composants visuels puis utiliser des expressions telles que {{serviceDataXy.subData.pXy}}
- et/ou utiliser "**BehaviorSubject**" (cas particulier de "**Observable**") (voir autre chapitre "aspect divers et avancés").

Exemple simplifié (en version "mocked" sans accès http):

compte.service.ts

```
import { Injectable } from '@angular/core';
//import {Headers, Http, Response} from '@angular/http';
import { Observable, of } from 'rxjs'; // _http.get() return Observable < Response > !!
import { filter, flatMap, toArray } from 'rxjs/operators'
import { Compte, Operation, Virement } from './compte';

@Injectable()
export class CompteService {

public getComptesOfClientObservable(numCli: number) : Observable < Compte[] > {
    return of(this.sampleComptes); //simulation sans tenir compte de numCli
}

//pour test temporaire (sans base):
private sampleComptes : Compte[] = [
    { "numero" : 1, "label" : "compte 1 (courant, mock)", "solde" : 600.0 },
    { "numero" : 2, "label" : "compte 2 (LDD, mock)", "solde" : 3200.0},
    { "numero" : 3, "label" : "compte 3 (PEL, mock)", "solde" : 6500.0 } ];
}
```

```
NB: Observable<...> ressemble un peu à Promise<...> et se consomme via compteService.getComptesOfClientObservable(this.clientId) .subscribe(comptes =>this.comptes = comptes , error => console.log(error));
```

Observable (de rxjs) sera étudié de façon plus détaillée au sein d'un chapitre ultérieur (HTTP, ...).

2. Injection de dépendances

A l'époque du framework "angular 1", l'injection de dépendances consistait à automatiquement relier entre eux deux composants via des correspondances entre "nom de service" et nom d'un paramètre d'une fonction "contrôleur".

Angular 2+ gère l'injection de dépendances de manière plus typée et plus orientée objet.

2.1. Enregistrement des éléments qui pourront être injectés:

L'injection de dépendances gérée par Angular2+ passe par un enregistrement des fournisseurs de choses à potentiellement injecter.

Ceci s'effectue généralement au moment du "bootstrap" et se configure au niveau de la partie ("providers :") de la décoration @NgModule d'un module applicatif.

<u>Exemples</u>:

```
...

@NgModule({
    ...
    providers: [ ConfigService, ClientService ],
    bootstrap: [ AppComponent ]
})
export class AppModule {
```

Si un élément potentiellement injectable n'est pas, globalement, enregistré au niveau global (@NgModule), il pourra éventuellement être déclaré, localement, au niveau des "providers" spécifiques d'un composant :

```
@Component({
    selector: 'my-app',
    template:`...`,
    providers: [HeroService]
})
export class AppComponent{ ...
}
```

La documentation officielle d'Angular 2+ parle en terme de "**root_injector**" (pour de niveau @NgModule) et de "**child injector**" (pour les sous niveaux : @Component , ...)

2.2. Nouveauté/évolution à partir de la version 6

A partir de la version 6 d'angular, la décoration @Injectable() comporte un paramètre important nommé "providedIn'.

```
@Injectable({
    providedIn: 'root'
})
export class XyService {...
}
```

La valeur de **providedIn** correspond souvent à '**root**' (au sens "root injector" de niveau module) et dans ce cas le service "XyService" sera automatiquement considéré comme fourni par le module (app.module.ts ou autre).

Autrement dit, via ce nouveau paramétrage, plus absolument besoin de placer XyService dans la partie providers: [] de @NgModule(), le service XyService sera automatiquement fourni à tous les composants du module qui en auront besoin (ceux qui auront paramétré une injection de dépendance).

2.3. <u>Injection de dépendance via constructeur</u>

```
@Component({
    selector: 'my-app',
    template:`...` /*,
    providers: [HeroService] nécessaire que si pas déjà enregistré globalement dès le NgModule() */
})
export class AppComponent {
    ...
    constructor(private _heroService: HeroService) {
    // this._heroService (de type HeroService) est automatiquement initialisé
    // par injection si métadonnées introduites via @Component ou @Injectable ou ...
};
...
}
```

Angular2+ initialise automatiquement les éléments passés en argument des constructeurs lorsqu'il le peut (ici par injection du service de type HeroService). Cet automatisme n'est déclenché que si la classe du composant est décorée par @Component() ou @Injectable() ou ...

Pour que des injections de dépendances puissent être gérées au niveau du constructeur de la classe courante :

- au minimum @Injectable() (au sens "sous-composants, sous-services automatiquement injectables")
- assez souvent @Component() (qui peut plus peut moins)

si paramètre du constructeur pas typé alors @Inject(ClassComponent) permet de préciser le type de composant à injecter

3. Aperçu sur les directives (angular2)

3.1. Les 3 types/niveaux de directives d'angular2:

Attribute Directive	Change l'apparence ou le comportement d'un (souvent seul) élément de l'arbre DOM (exemple ngStyle)
Structural Directive	Change la structure de l'arbre DOM (et donc des éléments affichés) en ajoutant ou supprimant des sous éléments dans l'arbre DOM (exemple : ngIf, ngFor, ngSwitch)
Component	élément composite de l'arbre DOM (selon structure du template HTML associé)

Au final, @Component peut être vu comme un cas particulier (et assez fréquent) de directive.

3.2. Directive (de niveau "attribut")

Exemple (tiré du "tutoriel officiel"):

app/highlight.directive.ts

Le paramétrage le plus important est la décoration @Directive.

Le nom du sélecteur CSS doit être encadré par des crochets lorsqu' il s'agit d'une directive.

el de type *ElementRef* correspond à un élément de l'arbre DOM dont il faut mettre à jour le rendu.

Exemple d'utilisation:

app/app.module.ts

```
import { NgModule } from '@angular/core';
...
```

```
import {HighlightDirective} from './highlight.directive'

@NgModule({
  imports: [ BrowserModule , FormsModule ],
  declarations: [ AppComponent , MyHeaderComponent , HighlightDirective ],
  providers: [ ],
  bootstrap: [ AppComponent ]
})
export class AppModule { }
```

app/app.component.ts

```
import {Component} from 'angular2/core';

@Component({
    selector: 'my-app',
    template: ' ... <span myHighlight>Highlight me!</span>'
})

export class AppComponent { }
```

Résultat:

My First Angular 2 App

Highlight me!

Version améliorée (avec paramètre via @Input et gestion d'événements):

```
import {Directive, ElementRef, HostListener, Input} from '@angular/core';
@Directive({ selector: '[myHighlight]'})
export class HighlightDirective {
  @Input('myHighlight')
public highlightColor: string;

private _defaultColor = 'red';

@Input() set defaultColor(colorName:string){
  this._defaultColor = colorName || this._defaultColor;
}

constructor(private el: ElementRef) {
  }
  @HostListener('mouseenter')
  onMouseEnter() { this. highlight(this.highlightColor || this. defaultColor); }
```

NB:

Sans argument, @Input() fait que la propriété exposée a le même nom que celle de la classe (public ou get / set).

Avec un argument, @Input permet de préciser un alias sur la propriété exposée (ex : 'myHighlight' plutôt que highlightColor).

@HostListener permet d'associer des noms d'événements (déclenchés sur l'élément DOM courant) à une méthode événementielle.

Utilisation:

```
Highlight me!
ou bien (plus simplement) :
Highlight me!
```

Oreen Yellow Cyan

ou bien (avec un choix dynamique):

3.3. Directive structurelle

Une directive structurelle (ajoutant ou retirant des sous éléments dans l'arbre DOM) se programme de façon très semblable à une directive d'attribut (même décoration @Directive, même syntaxe (avec crochets) pour le sélecteur CSS). La principale différence tient dans les éléments injectés dans le constructeur :

- TemplateRef correspond à la branche des sous éléments imbriqués (à supprimer ou ajouter ou ...)
- ViewContainerRef permet de contrôler dynamiquement le contenu via des méthodes prédéfinies telles que .clear() ou .createEmbeddedView()

Exemple "myUnless" (tiré du tutoriel officiel) :

<u>Utilisation (comme *ngIf)</u>:

```
age: <input type='text' [(ngModel)]="age" /><br/>
=18">
condition "age>=18" is false and myUnless is true.
 <br/>
=18)">
condition "age>=18" is true and myUnless is false.
```

VIII - Switch et routing (navigations)

1. Navigation via ngSwitch et router de angular

1.1. Paramétrage dans index.html

1.2. Switch (local) de sous-templates (sous-composants):

```
<div [ngSwitch]="variableXy">
  <composant1 *ngSwitchCase="'case1Exp'">...</composant1>
  <composant2 *ngSwitchCase="'case2LiteralString'">...</composant2>
  <div_ou_composant3 *ngSwitchDefault>...</div_ou_composant3>
  </div>
```

NB: Attention à bien placer des "simples quotes" dans les "doubles quotes".

Ceci permet simplement de switcher de "détails à afficher" (et donc souvent de sous-composant). On reste dans un même composant parent principal . Pas de changement d'URL .

<u>Attention</u>: Le switch/basculement de composant s'effectue par remplacement d'instance (et éventuelle perte de l'état de l'ancien composant remplacé).

--> pas de show/hide ni display none/block mais rechargement complet d'un nouveau composant !!!

1.3. pseudo switch visuel (en apparence)

On peut éventuellement se bricoler facilement un "pseudo switch visuel" en jouant sur le style display de plusieurs $\leq div \dots \geq$ dont une seule est active à l'instant t :

--> dans ce cas l'instance développée ou pas (visible ou pas) d'un sous composant est conservée (ainsi que l'état de ses variables d'instance).

1.4. navigation avec changement d'url

De façon à naviguer efficacement (tout en pouvant enregistrer des "bookmarks" sur une des parties de l'application), il faut utiliser le "routeur" d'angular 4+ qui sert à basculer de composants (ou sous composant) tout en gérant bien les URLs/Paths relatifs .

Le service de routage est prise en charge par le mode "*RouterModule*" que l'on peut directement enregistrer dans le fichier app.module.ts en même temps qu'une définition simple de route(s) via la syntaxe *RouterModule.forRoot(arrayOfPaths)*:

Ceci dit, lorsque sur une application sérieuse, la définition des routes devient plus complexe, il est alors conseillé (et habituel) d'externaliser cela dans un fichier ad-hoc "app-routing.module.ts" :

app-routing.module.ts

et d'un point de vue routage, dans le fichier principal du module app.module.ts il ne reste plus que :

```
import { AppRoutingModule } from './app-routing.module';
....
@NgModule({
  imports: [ BrowserModule , FormsModule , HttpModule, AppRoutingModule , ... ],
  ....})
export class AppModule { }
```

1.5. router-outlet

router-outlet = partie d'un template qui changera de contenu selon la route courante.

Exemple:

Dans la plupart des cas simple/ordinaire comme celui-ci, un seul router-outlet (sans nom) suffit.

Dans certains cas sophistiqués et bien structurés , il est possible qu'un des sous-composants comporte en lui un autre <routeur-outlet> (à un niveau imbriqué) pour ainsi pouvoir switcher de sous-sous-composant .

Dans des cas très complexes, il est possible de configurer des "router-outlet" annexes (avec des noms) et de leurs associer des contenus variables selon un suffixe particulier placé en fin d'URL.

1.6. Routage simple (sans paramètres)

Au sein de app-routing.module.js

```
const routes: Routes = [
    { path: 'welcome', component: WelcomeComponent },
    { path: '', redirectTo: '/welcome', pathMatch: 'full'},
    { path: 'identification', component: IdentificationComponent },
];
```

suffit pour se retrouver automatiquement redirigé de index.html vers l'URL .../welcome (d'après la seconde règle avec redirectTo:).

La première route associe le composant "WelcomeComponent" à la fin d'url "welcome" et dans ce cas la balise <router-outlet></router-outlet> sera remplacé par le contenu (template) du composant "WelcomeComponent".

Finalement un click sur un lien hypertexte dont l'url relative est "identification" (ou bien une navigation équivalente) déclenchera automatiquement un basculement de sous composant (le template de "IdentificationComponent" sera affiché au niveau de <router-outlet></router-outlet>).

1.7. Déclenchement d'une navigation avec ou sans paramètre

Solution 1 (par méthode événementielle):

```
Solution 2 (via paramètre de la directive routerLink) :
```

```
<a [routerLink]="['/yy', numYy]" ...> vers yy </a>
```

```
<a [routerLink]="['/xx']" ...> vers xx </a>
```

1.8. Récupération du paramètre accompagnant la navigation :

```
import {Component, OnInit} from '@angular/core';
import { ActivatedRoute, Params} from '@angular/router';
import { Location } from '@angular/common';
export class YyComponent implements OnInit {
 message : string = "...";
 yId: number;
 y: Yy;
  constructor(private _yyService : YyService,
             private route: ActivatedRoute,
             private location: Location){
  }
  ngOnInit() {
     this. route.params.subscribe(
          (params: Params) => {
             this.yId = Number(params['yyId']); //où 'yyId' est le nom du paramètre
                                           // dans l'expression de la route
                                         // (fichier app-routing.module.js)
              this.fetchYv();
        );
   fetchYy(){
      this. yyService.getYyObservable(this.yId).subscribe(yy=>this.y = yy,
                                                        error => this.message = <any>error);
 goBack(): void {
                   this. location.back(); /* retour arrière dans historique des navigations */ }
```

Remarque très importante (pour comprendre et ne pas devenir fou):

- (Cas "a") Suite à la série de navigation suivante :
 aaa/yyy , aaa/xxx , aaa/yyy , des composants des classes Yyy , Xxx et Yxx seront réinstanciés à chaque changement d'URL (et l'état des variables d'instance sera perdu) .
- (Cas "b") Suite à la série de navigation suivante :

 bbb/detail_produit/1, bbb/detail_produit/2, bbb/detail_produit/3 (où seule change la valeur du paramètre en fin d'url), l'instance de la classe DetailProduit est conservée et la callback enregistrée (via subscribe) sur this_route.params est automatiquement réappelée pour prendre en compte le changement de numéro de produit à détailler.

NB:

Dans le cas "a", où les instances ne sont pas conservées, on peut simplifier l'unique récupération d'un paramètre en fin de route activée via la notion de snapshot (valeurs à l'instant t):

Exemple:

```
class MyComponent {
  constructor(route: ActivatedRoute) {
    const yyId: number = Number(route.snapshot.params['yyId']);
    ...
  }
```

2. Aperçu sur le routing angular avancé

2.1. Sous niveau de routage (children)

Une application de grande taille peut comporter plusieurs niveaux de composants et sous composants.

Un <router-outlet> dans un composant main permet par exemple de switcher de sous composants Xxx, Yyy, Zzz et un de ces sous composants (par exemple Yyy) peut à son tour comporter une balise <router-outlet> pour switcher de sous-sous-composants.

Exemple d'url avec sous niveaux :

```
xxx/
yyy/1
yyy/1/details_prod/3
yyy/1/details_prod/4
```

ZZZ/

yyy sera intitulé subspace-main (sous espace principal) dans l'exemple qui suit .

Exemple de configuration de routes avec sous niveau:

2.2. Autres aspects avancés du "routing angular"

router-outlet annexe/secondaire	A un niveau donné, il peut exister d'autres <router-outlet> secondaires avec des noms. Ceci permet de changer le contenu de plusieurs <div> d'un seul coup (ex : contenu et menu latéral)</div></router-outlet>	
RouteGard (CanActivate)	Il est possible de créer (et enregistrer dans un module) des services techniques (ex : CanActivateRouteGuard) et implémentant une interface "Can" (ex : CanActivate) pour contrôler si une route peut ou pas être activée selon (par exemple) une authentification utilisateur effectuée ou pas	
LazyLoading	Au lieu de charger dès le démarrage (dans le navigateur) tous les composants de l'application (ce qui peut quelquefois être long/lent), on peut organiser la structure du code en différents modules qui ne seront chargés (en différé) que lors d'une navigation (ex : activation d'un lien hypertexte associé au routage)	

IX - Appels de W.S. REST (Observable, ...)

1. Angular et dialogues HTTP/REST

1.1. Contexte des appels HTTP/REST et CORS

Une application Angular s'exécute au sein d'un navigateur Web . Lorsque celle-ci doit effectuer un appel HTTP/ajax , elle est soumise aux restrictions habituelles du navigateur :

- appels en file:/ pas toujours autorisés (ok avec firefox , par défaut refusés avec chrome)
- les URLs des WS-REST appelés doivent commencer par le même nom de domaine que celui qui a servi à télécharger index.html (ex : http://localhost:4200 ou http://www.xyz.com ou ...). Dans le cas contraire des autorisations "CORS" sont nécessaire du coté serveur (java ou php ou nodeJs/express ou ...).

<u>Rappel important</u>: si les appels HTTP/ajax sont effectués vers au autre nom de domaine il faudra prévoir des autorisations "**CORS**" du coté des web-services REST coté serveur (ex : nodeJs/Express ou Java/JEE/JaxRS ou SpringMvc).

D'autre part, beaucoup de web-services REST nécessitent des paramètres de sécurité pour pouvoir être invoqués (ex : jetons/tokens, ...) . Une adaptation au cas par cas sera souvent à prévoir.


```
// Exemple : CORS enabled with express/node-js :
app.use(function(req, res, next) {
    res.header("Access-Control-Allow-Origin", "*"); //"*" ou "xy.com , ..."
    res.header("Access-Control-Allow-Methods", "POST, GET, PUT, DELETE,
    OPTIONS"); //default: GET, ...
    res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type,
    Accept , Authorization");
    next();
});
```

1.2. Configuration d'un reverse-proxy http

De façon à écrire et tester du code simple, stable et portable (de la phase de développement/test jusqu'à la phase de production), on aura intérêt à :

- utiliser des URLs relatives
- **configurer un reverse proxy http** (option *--proxy-config* de *ng serve* développée dans le chapitre "packaging / déploiement")

1.3. Promise ou Observable?

Les habitués de AngularJs (1.x) connaissent bien les "Promise". Celles-ci sont encore utilisables avec Angular 2, 4 ou 5 (avec quelques adaptations).

Pour des développements nouveaux, on pourra cependant préférer la nouvelle api "Observable" de rxjs qui est par certains cotés plus évoluée que les "Promise" et qui s'utilise de manière très similaire.

"Promise" ou "Observable" est un choix pour notre code de haut niveau. Le service Http de Angular peut s'adapter aux deux modes et les appels de bas niveaux seront effectués de la même façon.

NB: Dans la suite de ce chapitre, l'api RxJs et les "Observable" seront mis en avant Les "Promises" sont placées dans une des annexes

Le service prédéfini Http de angular >=2 retourne des "Observable<Response>" que l'on peut éventuellement transformer en Promise<...> via la méthode .toPromise().

1.4. Simulation d'invocation de WS REST via of() de rxjs

of(...) permet de retourner immédiatement un jeu de données (en tant que simulation d'une réponse à un appel HTTP en mode get) .

D'autres solutions sont disponibles pour simuler des appels HTTP ... (voir chapitre/annexe sur test unitaire)

1.5. Ancien service Http de Angular 2 à 4.2

NB: de la version 2.0 à 4.2 le framework angular ne proposait que le service Http pour appeler des Web Services REST.

Depuis la version 4.3 le nouveau service HttpClient rend obsolète l'ancien service Http. D'autre part, les nouveautés syntaxiques apportées par RxJs 6 et Angular 6 augmente encore l'écart entre ancien et nouveau style concernant les appels http.

L'ancienne façon d'appeler les WS-REST via Http (et pas HttpClient) a maintenant été déplacé dans une annexe de ce support de cours .

2. Nouvelle Api HttpClient (depuis Angular 4.3)

La nouvelle api **HttpClient** de la partie @angular/common/http de Angular >= 4.3 est une version améliorée (avec meilleur typage, généricité, code d'utilisation plus compacte, ...) du service technique **Http** disponible depuis Angular 2.

2.1. Configuration du module HttpClientModule

Pour utiliser HttpClient à la place de Http, il faut commencer par importer le module technique "**HttpClientModule**" à la place de l'ancien "HttpModule" dans un module fonctionnel de l'application (ex : app.module.ts) :

2.2. Utilisation du service technique HttpClient dans un service :

(ou éventuellement directement depuis un composant) :

```
import { HttpClient } from '@angular/common/http';
// à la place de l'ancien import { Http } from '@angular/http';
...
constructor(private http: HttpClient){ } //injection de dépendance
...
```

==> En mode "HttpClient" l'appel à http.get() retourne directement les données de la réponse Http au format Observable<any> et non pas un Observable<Response> brute à analyser/décortiquer.

```
Autrement dit, les anciennes lignes de code

.map(response => <Client[]> response.json())

.catch(e => { return Observable.throw('error:' + e);});

qui suivaient aussitôt les anciens appels à http.get() ne sont donc plus systématiquement

nécessaires.
```

Récupération fine des causes d'erreurs via second paramètre facultatif de subscribe :

```
this.http.get('https://api.github.com/users/didier-tp)
    .subscribe(
    data => {         console.log(data);      } ,
        (err: HttpErrorResponse) => {
        if (err.error instanceof Error) {
            console.log("Client-side error occured.");
        } else {
            console.log("Server-side error occured.");
        }
    });
```

2.3. Appels typés :

Plus rigoureusement , un appel à http.get<DataClass> (url , ...) retourne des données au format Observable<DataClass> plutôt qu'au format Observable<any>

Exemple:

```
public getTabInscriptionsObservable(): Observable< Client[] > {
    let inscriptionUrl : string = null;
    inscriptionUrl = this._inscriptionUrlBase;
    console.log( "inscriptionUrl = " + inscriptionUrl);
    return this.http.get<Client[]>(inscriptionUrl );
}
```

2.4. Mode post avec header http personnalisé :

```
import { HttpClient , HttpHeaders} from "@angular/common/http";
import { Observable } from "rxjs";
```

Autre exemple (avec post-traitement annexe via .pipe() et tap from 'rxjs/operators'):

```
postAuth(auth : AuthRequest):Observable<AuthResponse>{
    return this._http.post<AuthResponse>(this._authBaseUrl ,auth, {headers: this._headers})
    .pipe(
    //tap( other async task without transforming result)
    tap( (authResponse) => { this.storeAuthResponseAndToken(authResponse); })
    );
}
```

Mode "put" (variante du mode "post") :

```
putDevise(dev : Devise):Observable<Devise>{
    return this.http.put<Devise>(this.basePrivateUrl ,dev,{headers: this._headers} );
}
```

Rappel:

- les conventions "api REST" recommande le mode "PUT" pour les mises à jour (update) d'entités/ressources existantes.
- En pratique, le mode "POST" peut assez souvent être employé avec une sémantique de "saveOrUpdate" (et donc pas absolument besoin de .put() dans ce cas).

2.5. Exemple de suppression (delete):

```
public deleteDeviseServerSide(deviseCode):Observable<any>{
    let deleteUrl: string = this.basePrivateUrl + "/" + deviseCode;
    console.log("deleteUrl=" + deleteUrl");
    return this.http.delete(deleteUrl");
}
```

2.6. intercepteurs:

Disponible à partir de la version 4.3, les intercepteurs sont surtout utiles pour renvoyer un jeton d'authentification :

avec la déclaration suivante dans app.module.ts :

```
import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { HttpClientModule } from '@angular/common/http';
import { HTTP_INTERCEPTORS } from '@angular/common/http';
import { AppComponent } from './app.component';
import { MyAuthInterceptor } from './myauth.interceptor';
@NgModule({
  declarations: [
                     AppComponent
  imports: [
    BrowserModule,
                      HttpClientModule ],
  providers: [{
    provide: HTTP_INTERCEPTORS,
    useClass: MyAuthInterceptor,
    multi: true
  bootstrap: [AppComponent]
})
export class AppModule { }
```

X - Aspects divers de angular (pipes, ...)

1. BehaviorSubject

<u>NB</u>: un objet de type **BehaviorSubject**<...> doit avoir une valeur initiale dès sa construction. C'est une chose "*Observable*" depuis plusieurs composants de l'application. **Dès que la valeur sera modifiée**, tous les observateurs seront automatiquement synchronisés.

Exemple:

caddy.service.ts

```
import { Injectable } from '@angular/core';
import { BehaviorSubject } from 'rxis/BehaviorSubject';
@Injectable()
export class CaddyService {
private compteur : number = 0;
 private caddyContent : string[] = [];
 public bsCompteur: BehaviorSubject<number>
             = new BehaviorSubject<number>(this. compteur);
 public bsCaddyContent : BehaviorSubject<string[]>
              = new BehaviorSubject<string[]>(this. caddyContent);
 constructor() {
  //....subscribe(callBackOnNext(nextValue), callBackOnError(err), callBackOnCompleted());
  this.bsCompteur.subscribe(
             nextValueOfCompteur => this. compteur = nextValueOfCompteur);
 public addElementInCaddy(productName : string){
  this. caddyContent.push(productName);
  this.bsCaddyContent.next(this. caddyContent);
  this. compteur++;
  this.bsCompteur.next(this. compteur);
 public clearCaddy(){
  this. caddyContent = [];
  this.bsCaddyContent.next(this. caddyContent);
  this. compteur=0:
  this.bsCompteur.next(this. compteur);
 }
```


dans my-header.component.html

```
.... caddySize: {{caddySize}} ....
```

dans my-header.component.ts

selection.component.html

```
 selection of product(s)  product : <input [(ngModel)]="productName" /> <button (click)="onAddInCaddy($event)" >add in caddy</button>
```

selection.component.ts

```
import { Component, OnInit } from '@angular/core';
import { CaddyService } from "app/caddy.service";
...
export class SelectionComponent implements OnInit {
```

```
productName : string = "?";

constructor(private caddyService : CaddyService ){ }

ngOnInit() { }

onAddInCaddy(evt){
  //appel indirect de bsCompteur.next(++....); et donc déclenchement de tous les subscribe(...)
  this.caddyService.addElementInCaddy(this.productName);
  }
}
```

commande.component.html

commande.component.ts

Eventuelle combinaison "BehaviorSubject + LocalStorage"

En cas de "refresh" déclenché (quelquefois involontairement) pas l'utilisateur (via F5 ou autre), tout le contenu en mémoire de l'application angular est réinitialisé et potentiellement perdu.

Pour ne pas perdre le contenu (caddy ou autre) dans un tel cas , le "localStorage" d'HTML5 peut éventuellement être une solution.

caddy.service.ts

```
import { Injectable } from '@angular/core';
import { BehaviorSubject } from 'rxjs/BehaviorSubject';
@Injectable()
export class CaddyService {
 private compteur : number = 0;
                                   private caddyContent : string[] = [];
 public bsCompteur : BehaviorSubject<number>
             = new BehaviorSubject<number>(this. compteur);
 public bsCaddyContent : BehaviorSubject<string[]>
              = new BehaviorSubject<string[]>(this. caddyContent);
 constructor() {
  this.bsCompteur.subscribe( nextValueOfCompteur => this. compteur = nextValueOfCompteur);
  this.trvReloadCaddyContentFromLocalStorage();
  this.subscribeCaddyStoringInLocalStorage();
 }
 //Attention: localStorage = movennement securisé / confidentiel
 private subscribeCaddyStoringInLocalStorage(){
   this.bsCompteur.subscribe( nextValueOfCompteur =>
                  localStorage.setItem("caddySize",""+nextValueOfCompteur ));
   this.bsCaddyContent.subscribe( caddyContent =>
                  localStorage.setItem("caddyContent",JSON.stringify(caddyContent)));
 }
 private tryReloadCaddyContentFromLocalStorage(){
  // code à améliorer (en tenant compte des exceptions):
   let caddySizeAsString = localStorage.getItem("caddySize");
   if(caddySizeAsString) {
     this. compteur = Number(caddySizeAsString);
     this.bsCompteur.next( this._compteur );
   let caddyContentAsString = localStorage.getItem("caddyContent");
   if(caddyContentAsString){
    this. caddyContent = JSON.parse(caddyContentAsString);
    this.bsCaddyContent.next( this. caddyContent);
 }
```

2. Autres aspects divers

2.1. Formatage des valeurs à afficher avec des "pipes"

```
Exemples:
{{ montant | number:'1.0-2' }} <!-- arrondi à 2 chiffres après virgule
                       number: 'minIntegerDigit.minFractionDigit-maxFractionDigit' -->
<div> {{ birthday | date: "MM/dd/yy" }} </div>
<!-- pipe with configuration argument => "February 25, 1970" -->
<div>Birthdate: {{currentHero?.birthdate | date:'longDate'}}</div>
<div>{{ title | uppercase }}</div>
\{\{\text{taux} \mid \text{percent}\}\}\ <!-- affiche 5% si taux vaut 0.05 -->
{{ birthday | date | uppercase }}
{{ birthday | date: 'fullDate' | uppercase }}
                                                        €240.27
{{ tva | currency: 'EUR': 'symbol': '1.0-2' }}
il existe encore d'autres pipes prédéfinis: ....
"json pipe" pour (temporairement) déboguer un "binding":
<div>{{ currentHero | json }}</div>
<!-- Output:
  { "firstName": "Hercules", "lastName": "Son of Zeus",
    "birthdate": "1970-02-25T08:00:00.000Z",
     "url": "http://www.imdb.com/title/tt0065832/",
    "rate": 325, "id": 1 }
```

NB: Dans une application angular >=2, les tris et filtrages ne sont généralement pas effectués par des pipes "angular" (pas de | sort ni de |filter) mais par des opérateurs de RxJs (à placer coté .ts dans .pipe() avant .subscribe()) --> voir annexe "RxJs".

Custom pipe:

app/exponential-strength.pipe.ts

```
import {Pipe} from 'angular2/core';
/* Raise the value exponentially
* Takes an exponent argument that defaults to 1.
* Usage:
* value | exponentialStrength:exponent
* Example:
* {{ 2 | exponentialStrength:10}}
* formats to: 1024
*/
@ Pipe({name: 'exponentialStrength'})
export class ExponentialStrengthPipe {
    transform(value:number, args:string[]) : any {
        return Math.pow(value, parseInt(args[0] || '1', 10));
        }
}
```

Composant utilisant le pipe personnalisé :

app/power-booster.component.ts

Power Booster

Super power boost: 1024

Angular v6-7-8 Didier Defrance Page 96

2.2. Syntaxes alternatives :

2.3. Divers

```
Rappel:
```

```
The null or not hero's name is {{nullHero?.firstName}} {{a?.b?.c?.d}} is ok if a or b or c is null or undefined
```

Possibilité d'externaliser le template dans un fichier html à part :

```
@Component({
    selector: 'hero-list',
    templateUrl: 'app/hero-list.component.html'
})
export class HeroesComponent { ... }
```

2.4. <u>logs</u> , ...

console.log("...") standard de javascript

XI - Packaging et déploiement d'appli. angular

1. <u>déploiement avec ou sans "bundle"</u>

1.1. Rappel du contexte d'un développement angular

- Le code source d'une application angular est en typescript (.ts), lui même une évolution de es 2015.
- Les modules d'angular sont basés sur la technologie des modules es2015 (syntaxiquement standardisé, mots clef "import {...} from '...' " et export pour la gestion statique des modules).
- Le code compilé/transpilé doit idéalement être généré au format .js (es5) de façon à être interprété de façon compréhensible par presque tous les navigateurs.
- Le développement d'une application "Angular+" est basée sur npm et nodeJs. La plupart des bundles d'angular (@angular/core, ...) sont au format "umd.js" et en es5. Il existe également une distribution parallèle au format "es2015 ou +" des librairies d'angular et RxJs dans le répertoire node-modules récupéré par npm..

1.2. Déploiement (théorique ou rare) sans bundle

Il serait possible d'extraire (par copie) les librairies fondamentales de angular et de RxJs de la branche node_modules (de nodeJs) dans un répertoire "dist/lib".

Ce répertoire "dist" comportera également :

'reflect-metadata/Reflect.js'

- les templates html et les styles css de l'application.
- le résultat des transpilations (".ts \rightarrow .js") des composants de notre application.

Au final, ce répertoire "dist" comportera tous les fichiers nécessaires de l'application "angular" et son contenu pourra être recopié "tel quel" vers n'importe quel serveur HTTP (ex : htdocs de apache2). On pourra également recopier cet ensemble de fichiers "angular" pour les intégrer en tant que sous partie "html+js+css" d'une application Java/JEE, Php ou autre.

Bien que possible, un déploiement sans bundle va induire un très grand nombre de microtéléchargements lorsqu'un utilisateur va utiliser l'application depuis son navigateur. --> pas rapide, pas performant !!!!

Voici la liste des principales librairies à récupérer (par extraction/copie):

```
'zone.js/dist/zone.js'

'core-js/client/shim.min.js',
'systemjs/dist/system-polyfills.js',
'systemjs/dist/system.src.js',
'rxjs/**',
'@angular/core/bundles/core.umd.js',
'@angular/common/bundles/common.umd.js',
'@angular/compiler/bundles/compiler.umd.js',
'@angular/platform-browser/bundles/platform-browser.umd.js',
'@angular/platform-browser-dynamic/bundles/platform-browser-dynamic.umd.js',
```

- '@angular/http/bundles/http.umd.js',
- '@angular/router/bundles/router.umd.js',
- '@angular/forms/bundles/forms.umd.js',
- '@angular/upgrade/bundles/upgrade.umd.js',

1.3. Déploiement via webpack et angular-cli

Le projet "Angular-CLI" utilise maintenant en interne la technologie "webpack" pour générer les bundles à déployer.

On peut ainsi en quelques lignes de commandes :

- créer un nouveau projet ayant la structure et la configuration attendues par webpack et angular-cli.
- créer des débuts de composants (Component, Service, ...)
- *générer des bundles* en mode "dev" (développement) ou bien en mode "prod" (production) : avec uglify / compression en plus.

2. Angular-CLI en mode développement

L'essentiel de @angular/cli a déjà été présenté en début du cours.

Rappel des principales lignes de commandes de **ng** (@angular/cli) :

ng new my-app , cd my-app	Création d'une nouvelle application "my-app".	
ng serve	Lancement de l'application en mode développement (watch & compile file , launch server,) → URL par défaut : http://localhost:4200	
ng generate (ou ng g)	Génère un début de code pour un composant, un service ou autre (selon argument précisé)	
ng test	Lance les tests unitaires (via karma)	
ng e2e	Lance les tests "end to end" / "intégration" (après un ng server à lancer au préalable)	

<u>NB</u>: **ng serve construit l'application entièrement en mémoire** pour des raisons d'efficacité / performance (on ne voit aucun fichier temporaire écrit sur le disque).

2.1. proxy http pour appels ajax/WS-REST en mode dev

Il serait possible (durant la phase de développement) de :

- utiliser des URLs absolues (ex : http://localhost:8282/xxx/yyy) pour appeler des Web services "REST" (java ou php ou nodeJs/express ou ...) via angular et ajax
- paramétrer des autorisations "CORS" du coté serveur (code java ou js/express ou ...)
- configurer des switchs d'URL coté angular

De façon à éviter toutes ces choses (aujourd'hui déconseillées), on peut :

- toujours utiliser des URLs relatives (ex : xxx/yyy) pour appeler des Web services "REST" (java ou php ou nodeJs/express ou ...) via angular et ajax dès la phase de développement
- ne pas systématiquement avoir besoin de configurer des autorisations "CORS" du coté serveur
- configurer un proxy http au sein d'angular-CLI (uniquement exploitable avec ng serve).

ng serve --proxy-config proxy.conf.json

```
avec proxy.conf.json
```

pour que les requêtes d'urls relatives *apixy*/.. soient redirigées vers une application java/tomcat.

ou bien

avec proxy.conf.json

pour que les requêtes d'urls relatives apixy/.. soient redirigées vers une appli. nodeJs/express.

Ne fonctionnant qu'en mode "développement" (via ng serve), certains équivalents de *proxy-config* en mode "production" seront exposés au sein des paragraphes ci-après.

3. JIT vs AOT (Ahead-Of-Time)

Une application angular est principalement constituée de fichier ".ts" et ".html". Au moment de l'exécution du code au sein d'un navigateur, même les templates ".html" sont transformés en code javascript au niveau des mécanismes internes.

Cette "compilation/transpilation" (.ts + .html) => "..bundle.js" peut être effectuée de 2 manières :

- par le compilateur "jit" (just in time)
 par le compilateur "aot" (ahead-of-time)

Le choix du mode de compilation peut s'effectuer en plaçant ou pas l'option --aot au niveau de ng serve ou ng build:

```
Lancement par défaut avec "jit":
ng serve
ng build
Lancement avec "aot":
ng serve --aot
ng build --aot
Nb: avec l'option --prod, ng build utilise par défaut --aot:
lancement avec -- aot implicite:
ng build --prod
```

Effets/comportements:

	avec jit	avec aot
bundle .js construit	comporte le code de "jit" pour transformer ".html" juste avant exécution	ne comporte par "jit" mais le ".js" déjà construit à partir des ".html"
temps de compilation	assez rapide	beaucoup plus lent
temps d'exécution	moyen	plus rapide
taille des bundles à télécharger	gros	petit

aot offre également plus de sécurité (via à vis de l'injection de code ".js" rendue plus difficile).

Restrictions (rigueurs ajoutées) par "aot":

La compilation en mode "aot" des templates ".html" s'effectue de manière rigoureuse (avec quelques restrictions "typescript"). Voir éventuellement la documentation officielle (https://angular.io/guide/aot-compiler) pour approfondir le sujet.

Beaucoup de petites erreurs (de cohérence ".html" / ".ts") passées comme inapercues lors du développement ordinaire (avec ng serve) sont révélées lors d'un lancement de ng serve --aot ou bien ng build --prod. C'est alors le moment de peaufiner encore un peu le code de l'application.

4. <u>ivy (à partir de angular 9)</u>

En version "preview" au sein de angular8 et maintenant bien intégré dans angular 9 et 10, ivy est le nom de code du nouveau moteur de compilation et de rendu d'Angular.

Principaux apports de ivy

- compilation plus rapide en aot (gain d'environ 40%)
- poids des bundles "js" générés réduit d'environ 15 % (grâce au "Tree shaking").
- plus de rapidité au niveau des tests
- **debug plus facile** (car code généré plus clair)

Impacts de Ivy sur le développement "angular" (v9, v10, ...)

- certaines fonctionnalités avancées (angular-universal, ...) ont mis du temps à s'adapter à ivy (utiliser les versions les plus récentes possibles)
- réels gains de tous les cotés en production
- étant donné que le temps de compilation "aot" a été réduit de 40 %, le "ng serve" des versions 9 et 10 d'angular utilise maintenant "aot" par défaut plutôt de "jit".

 Avantages: moins d'incohérences laissées inaperçues, compilation plus rigoureuse

 Inconvénients: "ng serve" plus lent (surtout au premier lancement) et un peu plus besoin de arrêter et relancer "ng serve" suite à des modifications importantes de l'application.

Depuis v9, "aot" par défaut (avec ng serve et avec ng build).

Pour un lancement *quelquefois* un petit plus rapide (en mode "*jit*") de "ng serve" en V9, v10, il faut lancer:

ng serve --aot=false

5. Mise en production d'une application angular

ng build (et ng build --prod) génère des fichiers dans le répertoire my-app/dist.

Contenu du répertoire my-app/dist après la commande "ng build" (par défaut en mode --dev) :

ng build --prod est quelquefois accompagné de quelques "bugs" avec certaines anciennes versions de angular-cli .

Lorsque le mode "--prod" fonctionne, les fichiers "bundle" générés sont compressés au format ".gz".

NB:

- le code généré dans le répertoire dist ne fonctionne qu'avec un accès "http" (pas file:).
- il est possible de recopier le code du répertoire "dist" vers le répertoire d'une application simple nodeJs/express pour effectuer une sorte de mixage compatible (code nodeJs/express pour WS-REST et code "angular" recopié dans sous répertoire "front-end" servi statiquement par nodeJs/express via app.use(express.static('front-end');
- Une mise en production évoluée passera souvent par l'utilisateur d'un véritable serveur http (tel que apache 2.x ou nginx). On pourra déposer le code "static" angular à cet endroit et configurer des "reverse-proxy" vers des WS-REST java ou php ou nodeJs/express.

5.1. Configuration nginx pour angular et redirection WS-REST.

Le démarrage de **nginx** sous windows s'effectue sans aucune option *(double click sur nginx.exe)* L'arrêt du serveur s'effectue via **nginx -s stop**

répertoire par défaut des pages statiques : **html** (ou l'on peut placer un sous répertoire my-angular-app)

configuration par défaut (sous windows) : **conf/nginx.conf** (avec copie de sauvegarde conseillée dans *original.nginx.conf.txt*)

Configuration importante au sein de **conf/nginx.conf**:

```
server {
    listen 80;
    server_name localhost;

# NB1: dans nginx.conf, l'ordre des règles est important
# et selon ~ ou = ou ^~ les autres règles sont utilisées ou pas
# NB2: les "location" sont exprimés avec des expressions
# régulières ^AuDebut, aLaFin$, contenu de() recupéré par $1,...
```

```
# REMARQUE IMPORTANTE pour APPLI ANGULAR:
  # on peut déposer le code d'une appli angular (contenu du répertoire "dist")
  # dans un sous répertoire "my-angular-app" ou "appxy" de nginx/html
  # que si la valeur de <base href="/"> est ajustée en <base href="/appxy/"> ou ...
  # proxy mvc/api part of my-java-app to tomcat on 127.0.0.1:8080
  # virtualy seen as a "api" subpart of /my-angular-app (in html)
location \sim ^{\text{my-angular-app/api/(.*)}}
  proxy pass http://127.0.0.1:8080/my-java-app/mvc/api/$1?$args;
  # proxy minibank api part of nodeJs app to 127.0.0.1:8282
  # virtualy seen as a "minibank" subpart of /appxy (in html)
location \sim ^{\text{appxy/minibank/(.*)}}
  proxy pass http://127.0.0.1:8282/minibank/$1?$args;
location / {
  root html;
  index index.html index.htm:
}
```

<u>Attention</u>, <u>Attention</u>: il faut absolument placer 127.0.0.1 (ou autre ip ou) dans la config mais pas localhost pour que ça fonctionne partout (sous windows, sous linux, ...)!!!!

XII - Tests unitaires (et ...) avec angular

1. <u>Différent types de tests autour de angular</u>

1.1. Vue d'ensemble / différents types et technologies de tests

<u>Rappel du contexte</u>: une application "Angular2+" correspond avant tout à la partie "Interface graphique" d'une architecture n-tiers et s'exécute au sein d'un navigateur web avec interprétation d'un code "typescript" transformé en "javascript".

Les principales fonctionnalités à tester sont les suivantes :

- test unitaire d'un service (avec éventuel "mock" sur accès aux données)
- test unitaire d'un composant graphique (avec éventuel mock sur "service")
- test d'intégration complet (end to end) englobant un dialogue HTTP/ajax/XHR avec des web services REST en arrière plan et sans avoir à connaître la structure interne de l'application (vue comme un boîte noire, vue de la même façon que depuis l'utilisateur final).

Pour tester du code javascript, la technologie de référence est "**jasmine**". Avec quelques extensions pour angularJs ou Angular2+, cette technologie pourrait suffire à mettre en place des tests unitaires simples.

Etant donné que l'on souhaite également tester unitairement des composants graphiques (en javascript) qui s'exécutent dans un navigateur, on a également besoin d'une technologie de test qui puisse interagir avec un navigateur (chrome, firefox, ...) et c'est là qu'intervient "karma".

Pour effectuer des tests globaux en mode "end-to-end" / "boîte noire", on peut utiliser la technologie spécifique "protractor" qui permet d'intégrer ensemble "selenium" et "angular" à travers des tests faciles à lancer.

On a souvent besoin d'automatiser certaines étapes lors du lancement des tests. Une technologie annexe de script telle que "**Grunt**" ou "**gulp**" peut alors être intéressante (nb: dans le cas particulier de "angular CLI", beaucoup de choses sont déjà automatisées derrière le lancement de "ng test" et "grunt" ou "gulp" n'est pas indispensable).

Dans la plupart des cas, le coeur de la configuration du projet est basé sur npm / package.json (avec éventuellement "angular cli") et la configuration autour des tests est globalement la suivante :

```
package.json (npm)

→ grunt ou gulp ou angular_cli (scripts)

→ karma ou protractor (interaction navigateur)

→ jasmine (tests codés en javascript)

et extensions pour angular
```

A titre de comparaison, dans le monde "java" : l'équivalent de "npm" + "grunt" ou "gulp" correspond à "maven", "ant" ou "graddle" l'équivalent de "karma" ou "protractor" correspond à "selenium_driver" ou autre l'équivalent de "jasmine" correspond à "JUnit" (+ extensions "mockito", "...").

XIII - Sécurité – application "Angular2"

1. Sécurisation d'une application "angular"

1.1. Quelques considérations générales sur la sécurité

Même transformé de ".ts" en "js" , une application Angular n'est pas véritablement compilé , son code source est accessible et éventuellement sujet à interception / modification .

- --> jamais d'éléments confidentiels dans le code de l'application (pas de "salt " , pas de "default_password" , ...)
- --> le coté serveur ne doit avoir qu'une confiance limitée aux requêtes angular . Il est bon de revérifier fréquemment "token" et autres .

1.2. Conseils sur la structure d'une application angular sécurisée

- HTTPS / SSL dès qu'il faut échanger des informations confidentielles (username, password) , ...
- Un service d'authentification
- Des gardiens pour certaines routes

2. Sécurisation des appels aux Web-services REST

2.1. Pseudo session avec "token" plutôt que cookie :

Une application cliente qui appelle une série de WS-REST peut être développée avec des technologies très diverses :

- java standalone (swing, java-fx,)
- java/jee (JSF+....) ou (Spring-web-mvc +)
- HTML + js (jquery ou angular ou react ou) au sein d'un navigateur avec appels ajax
- PHP , C++ , .net/C# , ...

De même , l'application serveur qui gère le WS-REST ne gère pas systématiquement une session HTTP.

Des jetons de sécurité ("token") sont généralement employés pour gérer l'authentification d'un utilisateur et d'une application dans le cadre d'une communication sous forme de WS-REST.

Le jeton de sécurité est généré si le couple (username,password) transmis est correctement vérifié coté serveur.

Ce "token" (véhiculé au format "string") pourra prendre la forme d'un uuid (universal unique id, exemple: e51cd176-a522-454c-9c0a-36ca74cdb2d0) ou bien être conforme au format JWT (Json Web Token).

Dans le cas d'un token de type uuid, le coté serveur doit maintenir une liste ou une map des "tokens générés et valides" (éventuellement associés à certaines infos (username, role,).

Dans le cas d'un token sophistiqué de type jwt, le token généré comporte déjà en lui (de manière cryptée/extractible) certaines informations utiles (subject, roles,) et donc pas besoin de map coté serveur.

Le protocole HTTP a normalisé la façon dont le token doit être retransmis au sein des requêtes émises du client vers le serveur (après l'authentification préalablement effectuée) :

Il faut pour cela utiliser le champ "Authorization :" de l'entête HTTP pas en mode "Basic" mais en mode "Bearer" (signifiant "au porteur" en français).

exemple (postman):

Authorization •	Headers (1)	Body	Pre-requ	est Script Tests
Key				Value
Authorization	on			Bearer e51cd176-a522-454c-9c0a-36ca74cdb2d0
Nowkow				Value

exemple (javascript / jquery) :

2.2. Responsabilités techniques coté serveur :

Composants	Responsabilités techniques
AuthManager (gestionnaire d'authentification)	vérifier login/credential via dataBase ou autre
TokenManager (gestionnaire de "token")	Gérer (générer, vérifier,) une sorte de jeton (uuid, jwt,)
WsRestAuth (ws de login/authentification)	WS REST vérifiant login/credential et retournant token dans message de réponse global (ex : AuthResponse retourné au format JSON)
MyTokenInterceptor	Intercepteur technique (selon techno : Springmyc ou jax-rs ou) permettant de vérifier la validité du jeton véhiculée par une requête.
WsRestXy	WS REST fonctionnel avec partie en accès restreint annotée via @AuthTokenRequired

2.3. Service d'authentification / génération token

<u>exemple (postman) :</u>


```
Authorization Headers (1) Body Pre-request Script Tests

form-data x-www-form-urlencoded raw binary JSON (application/json) 

[ "username": "toto", "password": "pwd_toto" }

{ "authToken": "e51cd176-a522-454c-9c0a-36ca74cdb2d0", "authOk": true, "message": "authentification reussie" }
```

2.4. Intercepteur et vérification d'un jeton

Status: 200 OK si ok

ou bien

Status: 403 Forbidden

si faux jeton (invalid token)

Status: 401 Unauthorized

ou bien

si pas de jeton

ANNEXES

3. Migration "AngularJs/v1.x" et Angular 2+

3.1. Evolutions de AngularJs (V1) à Angular (V2)

Basé sur un modèle à base de composants (à la syntaxe plus rigoureuse), le framework "Angular 2" reprend les fonctionnalités fondamentales de la version 1 ("sorte de MVC" coté client/navigateur, appels de Web-services "REST") tout en supportant mieux les points suivants :

- liaison (binding) entre modèle et vue mieux contrôlé (plus performant, plus prédictible)
- meilleur adaptation à l'environnement cible (grands écrans, mobiles, ...)
- moins de conflits entre les librairies, ...

Le langage de développement préconisé à changé (javascript pour angular1, typescript pour Angular2). Plus fortement typé et plus expressif, le langage typescipt permet d'écrire du code plus lisible, plus compact et plus facile à maintenir.

Après une longue période de gestation, la première version "finale" d'angular 2 se nomme en fait "Angular" tout court (sans JS). AngularJs étant le nom des anciennes versions 1.x.

AngularJs (V1)	Angular (V2)
Code javascript (ES5)	Code TypeScript compilé/transpilé en JS/ES5
	ou bien DART ou bien
Logique structurelle : "parties de page" (contrôleur , \$scope ,)	Logique structurelle : "composant et sous- composant" (orienté objet)
Binding bidirectionnel quelquefois pas performant (trop coûteux en opérations CPU)	Binding plus fin (dans un sens ou les deux)
Environnement de développement complètement libre (notepad++ peut suffir) .	environnement de développement et il faut gérer
	une compilation/transpilation "ts \rightarrow js".
Plutôt orienté "single page" / application simple	Utilisable sur des applications évoluées

Au final, le développement "Angular" (V2) est très différent de celui d'une application AngularJs.

<u>NB</u>: La notion de @Component de Angular >=2 correspond à une combinaison simplifiée de 2 composants complémentaires d'angular 1.x "Contrôleur + Directive".

D'une manière générale, les syntaxes angular2 sont beaucoup plus compactes et lisibles/maintenables que celles d'angular 1.x

4. Utilisation du service Http avec Promise

4.1. Promise via http en lecture/recherche (get)

Exemple élémentaire en lecture (inspiré du tutoriel officiel et un peu adapté):

hero.service.ts

```
import {Injectable} from '@angular/core';
import {Hero} from './hero';
//import {HEROES} from './mock-heroes'; //old version without http , without in-memory-web-api
import { Headers, Http } from '@angular/http';
@Injectable()
export class HeroService {
 private headers = new Headers({'Content-Type': 'application/json'});
 private heroesUrl = 'app/heroes'; //URL to web api ou bien http://localhost:8080/xyzApp/heroes
 constructor(private http: Http) { }
 public getHeroPromise(id: number): Promise<Hero> {
   return this.getHeroesPromise()
        .then(heroes => heroes.find(hero => hero.id === id));
 public getHeroesPromise() : Promise< Hero[] > {
  //return this.getHeroesPromiseQuickly();
  //return this.getHeroesPromiseSlowly();
  return this.getHeroesPromiseViaHttp();
private getHeroesPromiseViaHttp(): Promise<Hero[]> {
  return this.http.get(this.heroesUrl)
         .toPromise()
         .then(response => response.json().data as Hero[])
         .catch(this.handleError);
 }
private handleError(error: any): Promise<any> {
     console.error('An error occurred', error); // for demo purposes only
    return Promise.reject(error.message || error);
  }
```

Configuration requise au niveau du module:

app.module.ts

```
import './rxjs-extensions';
import { NgModule } from '@angular/core';
import { HttpModule } from '@angular/http';
import { HeroService } from './hero.service';
...
@NgModule({
  imports: [..., HttpModule ],
  declarations: [AppComponent , ... ],
  providers: [HeroService ],
  bootstrap: [AppComponent ]
})
export class AppModule { }
```

rxjs-extensions.ts

```
// Observable class extensions
import 'rxjs/add/observable/of'; import 'rxjs/add/observable/throw';

// Observable operators
import 'rxjs/add/operator/catch'; import 'rxjs/add/operator/debounceTime';
import 'rxjs/add/operator/distinctUntilChanged';
import 'rxjs/add/operator/do'; import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/map'; import 'rxjs/add/operator/switchMap';

// convert observable to promise:
import 'rxjs/add/operator/toPromise';
```

<u>Utilisation depuis un composant de l'application</u>:

```
...
export class HeroesComponent implements OnInit {
  public heroes : Hero[];
...
constructor( private heroService: HeroService) { }
  ngOnInit(): void { this.getHeroes(); }
  getHeroes(): void {
    this.heroService.getHeroesPromise().then(heroes => this.heroes = heroes );
  }
...
}
```

4.2. Simulation de Promise (sans appel HTTP)

mock-heroes.ts

```
import {Hero} from './hero';

export var HEROES: Hero[] = [

{ "id": 11, "name": "Mr. Nice" },

{ "id": 12, "name": "Narco" },

{ "id": 13, "name": "Bombasto" },

{ "id": 14, "name": "Celeritas" },

{ "id": 15, "name": "Magneta" },

{ "id": 16, "name": "RubberMan" },

{ "id": 17, "name": "Dynama" },

{ "id": 18, "name": "Dr IQ" },

{ "id": 19, "name": "Magma" },

{ "id": 20, "name": "Tornado" }

];
```

hero-service.ts

4.3. Http/Promise en mode put, post, delete

Exemple élémentaire (inspiré du tutoriel officiel) :

hero.service.ts

```
import {Injectable} from '@angular/core';
import { Headers, Http } from '@angular/http';
@Injectable()
export class HeroService {
 private headers = new Headers({'Content-Type': 'application/json'});
 private heroesUrl = 'app/heroes'; //URL to web api ou bien http://localhost:8080/xvzApp/heroes
 constructor(private http: Http) { }
public updatePromise(hero: Hero): Promise<Hero> {
   const url = `${this.heroesUrl}/${hero.id}`;
   return this.http
    .put(url, JSON.stringify(hero), {headers: this.headers})
    .toPromise()
    .then(() \Rightarrow hero)
    .catch(this.handleError);
  }
 public createPromise(name: string): Promise<Hero> {
   return this.http
    .post(this.heroesUrl, JSON.stringify({name: name}), {headers: this.headers})
    .toPromise()
    .then(res => res.json().data) // return new (created) Hero with (auto incr) id
    .catch(this.handleError);
public deletePromise(id: number): Promise<void> {
   const url = `${this.heroesUrl}/${id}`;
   return this.http.delete(url, {headers: this.headers})
    .toPromise()
    .then(() => null)
    .catch(this.handleError);
```

Exemples d'utilisation depuis un composant :

```
this.heroService.createPromise(name)
.then(hero => { this.heroes.push(hero); this.selectedHero = null; });
```

```
this.heroService.updatePromise(this.hero)
.then(() => this.msg="updated");
```

```
this.heroService
.deletePromise(hero.id)
.then(() => {
    this.heroes = this.heroes.filter(h => h !== hero);
    if (this.selectedHero === hero) { this.selectedHero = null; }
});
```

5. <u>Simulation d'appels HTTP via angular-in-memory-web-api</u>

Angular (v2) propose une api prédéfinie nommée "angular-in-memory-web-api" qui permet de simuler un dialogue HTTP/REST avec un service web.

Avantages:

- * possibilité d'effectuer des tests avec angular2 seulement (pas besoin de nodeJs ou autre)
- * documenté (avec exemples) sur le site officiel de Angular2
- * tests possibles en écriture/mise à jour, suppression

Inconvénients (à court terme, version actuelle):

- * quelques limitations importantes (structures de données, ...)
- * La valeur de retour est encapsulée par un niveau intermédiaire ".data" . Ce qui n'est pas toujours transposable avec un réel web service existant.
- * il faudra restructurer (de façon non négligeable) la configuration du module pour basculer sur l'appel de véritables services web externes
- * en connaissant bien une technologie serveur (ex : nodeJs/express/Mongoose ou Java/Jee/Jax-Rs) on va presque aussi vite à développer un véritable service externe.

Configuration nécessaire au niveau de app.module.ts

```
import './rxjs-extensions';
import { NgModule }
                       from '@angular/core';
import { HttpModule }
                       from '@angular/http';
// Imports for loading & configuring the in-memory web api
import { InMemoryWebApiModule } from 'angular-in-memory-web-api';
import { InMemoryDataService } from './in-memory-data.service';
import { HeroService }
                          from './hero.service';
import { AppComponent } from './app.component';
@NgModule({
imports: [..., HttpModule, InMemoryWebApiModule.forRoot(InMemoryDataService)],
 ...
})
export class AppModule { }
```

Définition de la structure du jeu de données servant à définir la simulation du service web (en mode CRUD):

in-memory-data.service.ts

```
import { InMemoryDbService } from 'angular-in-memory-web-api';
export class InMemoryDataService implements InMemoryDbService {
 createDb() {
  let heroes = [
   {id: 11, name: 'Mr. Nice'},
   {id: 12, name: 'Narco'},
   {id: 13, name: 'Bombasto'},
   {id: 14, name: 'Celeritas'},
   {id: 15, name: 'Magneta'},
   {id: 16, name: 'RubberMan'},
   {id: 17, name: 'Dynama'},
   {id: 18, name: 'Dr IQ'},
   {id: 19, name: 'Magma'},
   {id: 20, name: 'Tornado'},
   {id: 21, name: 'Didier'}
  ];
  return {heroes};
 }
```

Ce service "*InMemoryDataService*" étant associé à la racine de la configuration de InMemoryWebApiModule (au sein de app.module.ts), l'URL relative de ce "speudo service" sera

"app" (le nom du module courant).

De façon cohérente vis à vis de l'exemple précédent , l'accès en mode CRUD à la partie "heroes" se fera via l'URL relative "app/heroes" .

```
→ d'où la valeur

private heroesUrl = 'app/heroes'; //URL to web api

que l'on retrouvait dans les exemples précédents de ce chapitre.
```

XIV - Annexe – Ancien Http (avant HttpClient)

1. <u>Utilisation du service Http avec Observable (rxjs)</u>

1.1. Ancien service Http de Angular 2 à 4.2

NB: de la version 2.0 à 4.2 le framework angular ne proposait que le service Http pour appeler des Web Services REST.

Depuis la version 4.3 le nouveau service HttpClient rend obsolète l'ancien service Http. D'autre part, les nouveautés syntaxiques apportées par RxJs 6 et Angular 6 augmente encore l'écart entre ancien et nouveau style concernant les appels http.

1.2. Observable (premières versions de rxjs, avant v6)

Angular (v2,v4,v5) met clairement en avant la nouvelle api tierce-partie rxjs et "Observable".

Plus évoluée que l'api "Promise", **rxjs/Observable** est cependant aussi simple d'utilisation et apporte (au sein d'angular v2.x) les **avantages suivants**:

- * possibilité d'effectuer plusieurs traitements lorqu'un sujet "Observable" est prêt (d'un point de vue asynchrone)
- * "Observable" est le format "par défaut" de l'api "Http" de angular (v2.x) http.get() retourne Observable<Response>!!!
- * l'api "rxjs" offre tout un tas de combinaisons (programmation fonctionnelle asynchrone avec "lambda expression"), est extensible et existe même au dehors de js/javascript (il existe une version "java").

Configuration nécessaire pour rxjs/Observable au niveau du module :

app.module.ts

```
import './rxjs-extensions';
import { NgModule } from '@angular/core';
import { HttpModule } from '@angular/http';

import { ClientService } from './client.service';
import { CompteService } from './compte.service';

@NgModule({
  imports: [..., HttpModule, AppRoutingModule ],
  declarations: [ AppComponent , ... ],
  providers: [ ClientService , CompteService ],
  bootstrap: [ AppComponent ]
})
export class AppModule { }
```

<u>NB</u>: Le fichier *rxjs-extensions.ts* (rassemblant plein de import) est facultatif mais conseillé pour la ré-utilisabilité simple et rapide "des nombreux petits import" . ..

rxjs-extensions.ts

```
// Observable class extensions
import 'rxjs/add/observable/of'; import 'rxjs/add/observable/throw';

// Observable operators
import 'rxjs/add/operator/catch'; import 'rxjs/add/operator/toPromise';
import 'rxjs/add/operator/do'; import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/map'; import 'rxjs/add/operator/switchMap';
```

1.3. Appel Http/get et réponse Observable (v2,v4,v5)

compte.service.ts

```
import {Injectable,Inject} from '@angular/core';
import './rxjs-extensions';
import {Headers, Http, Response} from '@angular/http';
import {Observable} from 'rxjs/Observable'; // http.get() return Observable<Response>!!!
import {Compte, Operation, Virement} from './compte';
@Injectable()
export class CompteService {
 private headers = new Headers({'Content-Type': 'application/json'});
 // NB: my-api est à configurer dans proxy.conf.json (ng serve --proxy-config proxy.conf.json)
 private compteUrlBase:string = "./my-api/comptes"; // + ?numClient=...'; // REST call
 constructor (private http: Http ) {
 }
public getComptesOfClientObservable(numCli: number) : Observable< Compte[] > {
  let comptesUrl : string = null;
  comptesUrl = this. compteUrlBase + "?numClient=" + numCli;
  console.log( "comptesUrl = " + comptesUrl);
  return this. http.get(comptesUrl)
            .map(response => <Compte[]> response.json() )
            .catch(e \Rightarrow \{ return Observable.throw('error:' + <math>e);\} );
```

```
} ... }
```

Exemple d'appel:

1.4. Modes post, ... avec Observable (v2,v4,v5)

```
//demande de Virement (POST)

export class Virement {
    constructor(
    public montant : number,
    public numCptDeb: number,
    public numCptCred : number,
    public ok: boolean
    ) {}
```

```
}
...
}
```

Exemple appel:

param-virement.component.ts

```
import {Component, Output, EventEmitter} from '@angular/core';
import {Virement} from '../compte';
import {CompteService} from '../compte.service';
@Component({
 selector: 'param-virement',
 template: \( \langle \text{div id="divVirement" style="...." > \( \langle \text{h3} \rangle \text{ parametrage virement } \langle \text{h3} \)
        ... <input id="montant" [(ngModel)]="transfert.montant" /> <br/>
        ...<input id="numCptDeb" [(ngModel)]="transfert.numCptDeb" /> <br/>
      ... <input id="numCptCred" [(ngModel)]="transfert.numCptCred" /> <br/>
     <br/>
<button (click)="doVirementAndRefresh()">effectuer le virement</br>
  </div> ` })
export class ParamVirementComponent {
 @Output()
 public virementOk: EventEmitter<{value:string}> = new EventEmitter<{value:string}>();
 message: string;
 transfert: Virement = { "montant": 0, "numCptDeb": 1, "numCptCred": 2, "ok":false};
 constructor(private compteService : CompteService){
 }
 private setAndLogMessage( virementOk : boolean){
    if(virementOk){ this.message = "le montant de " + this.transfert.montant +
            " a bien ete transfere du compte " + this.transfert.numCptDeb +
             " vers le compte " + this.transfert.numCptCred; }
    else {this.message = "echec virement"; }
   console.log(this.message);
 }
 doVirementAndRefresh(){
  console.log("doVirementAndRefresh(): " + this.transfert.montant );
```

2. Retransmission des éléments de sécurité (v2,v4,v5)

Un ensemble de Web services "REST" (ou "API Rest" ou "Restful Api") est généralement sécurisé sur les bases suivantes :

- HTTPS
- jeton (token) d'authentification véhiculé en mode "Bearer" ou autre et au format uuid ou jwt ou autre
- éventuels autre(s) champ(s) de l'entête HTTP (ex : csrf, X-XSRF-TOKEN, ...)

La documentation officielle du framework Angular (v2, v4, ...) indique que certains champs de l'entête HTTP sont automatiquement / implicitement retransmis au sein des requêtes ultérieures.

Il peut cependant être nécessaire de retransmettre explicitement certaines informations reçues (ex : jeton/token).

Exemple (à adapter au contexte et peaufiner) :

A la réception de la réponse d'un WS d'authentification retournant ici un token dans une structure/classe "VerifAuth" spécifique à une certaine Api REST :

```
...
storeTokenInLocalStorage(va:VerifAuth){
    if(va && va.token){
        console.log('received token='+va.token);
        localStorage.setItem('token',va.token); //ici stockage du jeton dans localStorage HTML5
        //alternative : stockage du jeton en mémoire dans un (sous-)service commun.
    }
}
```

Retransmission standardisé du jeton en mode "Bearer" dans le champ "Authorization" :

```
...

private _headers = new Headers({'Content-Type': 'application/json'});

loadTokenFromLocalStorage() {
    var token = localStorage.getItem('token');
    if(token) {
        this._headers.set('Authorization','Bearer ' + token);
    }
}

...

this.loadTokenFromLocalStorage();
    return this._http.get(urlWsRest,{headers: this._headers})
        .map(response => response.json()).catch(e => Observable.throw(e));
...
```

XV - Annexe - RxJs

1. introduction à RxJs

1.1. Principes de la programmation réactive

La programmation réactive consiste essentiellement à programmer un enchaînement de traitements asynchrones pour réagir à un flux de données entrantes .

Un des intérêts de la programmation réactive réside dans la souplesse et la flexibilité des traitements fonctionnels mis en place :

- En entrée, on pourra faire librement varier la source des données (jeux de données statiques , réponses http , input "web-socket" , événement DOM/js ,)
- En sortie, on pourra éventuellement enregistrer plusieurs observateurs/consommateurs (si besoin de traitement en parallèles . par exemple : affichages multiples synchronisés) .

1.2. RxJs (présentation / évolution)

RxJs est une bibliothèque **javascript** (assimilable à un mini framework) spécialisée dans la programmation réactive .

Il existe des variantes dans d'autres langages de programmation (ex : RxJava, ...).

RxJs s'est largement inspiré de certains éléments de programmation fonctionnelle issus du langage "scala" (map ,flatMap , filter , reduce , ...) et a été à son tour une source d'inspiration pour "Reactor" utilisable au sein de Spring 5 .

RxJs a été dès 2015/2016 mis en avant par le framework Angular qui à fait le choix d'utiliser "Observable" de RxJs plutôt que "Promise" dès la version 2.0 (Angular 2) .

Depuis, le framework "Angular" a continuer d'exploiter à fond la bibliothèque RxJs. Cependant, les 2 frameworks ont beaucoup évolué depuis 2015/2016.

La version **4.3** de **Angular** a apporter de grandes simplifications dans les appels de WS-REST via le service **HttpClient** (rendant *obsolète* l'ancien service *Http*).

La version 6 de Angular a de son coté été *restructurée* pour intégrer les gros changements de **RxJs 6**. Heureusement, pas de bouleversement en V7 (tranquille continuité).

La version 6 de RxJs s'est restructurée en profondeur sur les points suivants :

- changement des éléments à importer (nouvelles syntaxes pour les import { } from "")
- changements au niveau des opérateurs à enchaîner (plus de préfixe, pipe(), ...).

1.3. Principales fonctionnalités d'un "Observable"

Observable est la structure de données principale de l'api "RxJs".

- Par certains cotés , un "Observable" ressemble beaucoup à un objet "Promise" et permet d'enregistrer élégamment une suite de traitements à effectuer de manière asynchrone .
- En plus de cela , un "Observable" peut facilement être manipulé / transformé via tout un tas d'opérateurs fonctionnels prédéfinis (ex : map , filter , sort , ...)
- En outre, comme son nom l'indique, un "Observable" correspond à une mise en oeuvre possible du design pattern "observateur" (différents observateurs synchronisés autour d'un même sujet observable).

2. Fonctionnement (sources et consommations)

```
Source_configurée_et_initialisée
.pipe(
    callback_fonctionnelle_1 ,
    callback_fonctionnelle_2 ,
    ....
) .subscribe(callback_success , callback_error , callback_terminate)
```

NB : les paramètres callback_error et callback_terminate de .subscribe() sont facultatifs et peuvent donc être omis s'ils ne sont pas utiles en fonction du contexte.

NB : il faut (en règle général, sauf cas particulier/indication contraire) appeler .subscribe() pour que la chaîne de traitement puisse commencer à s'exécuter.

3. Réorganisation de RxJs (avant et après v5,v6)

```
La version 6 de RxJs a été beaucoup restructurée :
```

- -plus de préfixe "Observable." devant of() et autres fonctions
- -pipe() nécessaire pour enchaîner une série d'opérateurs (ex : map, filter, ...)
- -réorganisation des éléments à importer

Quelques correspondances "avant/après" pour une éventuelle migration :

anciennes versions de RxJs (ex : v4)	versions récentes de RxJs (ex : v6)
Observable.of(data);	of(data);
import { } from "";	<pre>import { Observable, of } from "rxjs"; import { map , flatMap ,toArray ,filter} from 'rxjs/operators';</pre>

3.1. Imports dans projet Angular / typescrit

```
import { Observable , of } from 'rxjs';
import { map , flatMap ,toArray ,filter} from 'rxjs/operators';
exemple d'utilisation (dans classe de Service) :
```

3.2. Imports "umd" dans fichier js (navigateur récent)

EssaiRxjs.html

avec <u>rxjs.umd.min.js</u> récupéré via <u>https://unpkg.com/rxjs/bundles/rxjs.umd.min.js</u> ou bien via une URL externe directe (CDN) <script src="https://unpkg.com/rxjs/bundles/rxjs.umd.min.js"></script>

NB: "The global namespace for rxis is rxis"

essaiRxJs.js

```
console.log('essai rxjs');

const { range } = rxjs;

const { map, filter } = rxjs.operators;

range(1, 10).pipe(
filter(x => x \ge 5),
map(x => x * x)
).subscribe(x => console.log(x));
```


4. Sources classiques générant des "Observables"

4.1. Données statiques (tests temporaires, cas très simples)

```
let jsObject = { p1 : "val1" , p2 : "val2" } ;
of(jsObject)...subscribe(...);
let tabObj = [ { ...} , { ... } ];
of(tabObj)...subscribe(...);
of(value1 , value2 , ... , valueN)...subscribe(...);
```

4.2. Données numériques : range(startValue,endValue)

```
range(1, 10).subscribe(x => console.log(x));

1
2
...
10
```

4.3. source périodique en tant que compteur d'occurence

```
const obsvI1 = interval(1000 /*ms*/);
//subscriptionObjsvI1 is the result of .subscribe() call
const subscriptionObjsvI1 = obsvI1.subscribe(n =>
    { console.log(`the number of interval occurrence (starting at 0) is ${n} `);
    if(n>=5) {
        subscriptionObjsvI1.unsubscribe(); //stop if n>=5
    }
});
```

4.4. source en tant qu'événement js/DOM

```
import { fromEvent } from 'rxjs';

const el = document.getElementById('my-element');

// Create an Observable that will publish mouse movements
const mouseMoves = fromEvent(el, 'mousemove');

// Subscribe to start listening for mouse-move events
const subscription = mouseMoves.subscribe((evt /*: MouseEvent */) => {
    // Log coords of mouse movements
    console.log(`Coords: ${evt.clientX} X ${evt.clientY}`);

// When the mouse is over the upper-left of the screen,
    // unsubscribe to stop listening for mouse movements
    if (evt.clientX < 40 && evt.clientY < 40) {
        subscription.unsubscribe();
    }
});</pre>
```

4.5. source en tant que réponse http (sans angular HttpClient)

```
import { ajax } from 'rxjs/ajax';

// Create an Observable that will create an AJAX request
const apiData = ajax('/api/data');

// Subscribe to create the request
apiData.subscribe(res => console.log(res.status, res.response));
```

4.6. source en tant que données reçues sur canal web-socket

. . .

5. Principaux opérateurs (à enchaîner via pipe)

Rappel (syntaxe générale des enchaînements):

```
Source_configurée_et_initialisée
.pipe(
    callback_fonctionnelle_1 ,
    callback_fonctionnelle_2 ,
    ....
) .subscribe(callback_success , callback_error , callback_terminate)
```

avec plein de variantes possibles

Exemple:

Principaux opérateurs:

map	Transformations quelconques (calculs, majuscules, tri,)
flatMap	
toArray	
filter	Filtrages (selon comparaison,)

5.1. map(): transformations

En sortie, résultat (retourné via return) d'une modification effectuée sur l'entrée.

Exemple 1:

```
const obsNums = of(1, 2, 3, 4, 5);
const squareValuesFunctionOnObs = map((val) => val * val);
const obsSquaredNums = squareValuesFunctionOnObs(obsNums);
obsSquaredNums.subscribe(x => console.log(x));
// affiche 1 4 9 16 25
```

Exemple 2:

```
const obsStrs = of("un", "deux", "trois");
obsStrs.pipe(
```

```
map((s) => s.toUpperCase())
)
.subscribe(s => console.log(s));
// affiche UN DEUX TROIS
```

5.2. flatMap() et toArray()

De façon à itérer une séquence d'opérateurs sur chaque élément d'un tableau tout en évitant une imbrication complexe et peu lisible de ce type :

on pourra placer une séquence d'opérateurs qui agiront sur chacun des éléments du tableau entre flatMap() et toArray() :

```
observableSurUnTableau
.pipe(
    flatMap(itemInTab=>itemInTab),
    map(( itemInTab )=>{ ... }),
    filter((itemInTab) => itemInTab.prix <= 300),
    toArray()
).subscribe((tableau) => { ... });
```

5.3. <u>filter()</u>

5.4. map with sort on array

```
{numero:4,label:'produit4',prix:15.0},
{numero:5,label:'produit5',prix:35.0}
]);
obsTab.pipe(
map( (tab) => tab.sort( (p1,p2) => (p1.prix > p2.prix) ) )
.subscribe(t => console.log( JSON.stringify(t)) );
```

6. Passerelles entre "Observable" et "Promise"

6.1. Source "Observable" initiée depuis une "Promise" :

```
import { from } from 'rxjs';

// Create an Observable out of a promise :
const observableResponse = from(fetch('/api/endpoint'));

observableResponse.subscribe({
  next(response) { console.log(response); },
  error(err) { console.error('Error: ' + err); },
  complete() { console.log('Completed'); }
});
```

6.2. Convertir un "Observable" en "Promise"

```
observableXy.toPromise()
.then(...)
.catch(...)
```

XVI - Annexe – ngx-bootstrap

1. Extension "ngx-bootstrap" pour angular

1.1. Présentation de ngx-bootstrap

L'extension "**ngx-bootstrap**" (principalement développée par "*Valor Software*") permet de bien intégrer **bootstrap-css** (3 ou 4) au sein d'une application angular 4,6 ou + .

Rappel:

- Une grande partie de bootstrap-css correspond essentiellement à des styles css prédéfinis et ne nécessite pas absolument de code javascript (un *npm install bootstrap* pourrait suffire dans de tel cas).
- Certains aspects de bootstrap-css sont dynamiques (ex : menus déroulants , popups, basculement d'onglets,) et nécessitent un peu de code javascript pour fonctionner. A l'origine bootstrap-css était très souvent accompagné par jquery et du plugin "bootstrap/jquery".
- Une application "angular" à sa propre dynamique et n'est normalement pas accompagnée par jquery. On a donc besoin d'une adaptation particulière "angular" pour les aspects dynamiques de bootstrap-css et c'est principalement à cela que sert l'extension ngx-bootstrap

NB: initialement nommé "ng2-bootstrap" (à l'époque angular 2 et 4), le projet a été ensuite renommé ngx-bootstrap. Il existe également un projet concurrent (et très ressemblant) intitulé "ng-bootstrap" (sans x) qui est beaucoup moins téléchargé/utilisé. Autant donc suivre la plus grande communauté de développeurs et utiliser "ngx-bootstrap".

1.2. Intégration de ngx-bootstrap dans un projet angular :

Pour les relativement anciennes versions d'angular (v5, ...), il est nécessaire de :

- 1. télécharger "ngx-bootstrap" via "npm install -s"
- 2. ajuster le fichier angular json (anciennement angular-cli.json) de façon à configurer les css
- 3. ajuster le fichier app.module.ts (ou un autre module)

package.json

```
"dependencies": {
    "@angular/core": "~8.2.0",
    ...,
    "bootstrap": "4.1.1",
    "chart.js": "^2.8.0",
    "font-awesome": "^4.7.0",
    "ng2-charts": "^2.3.0",
    "ngx-bootstrap": "^5.1.1",
    ...
}
```

angular.json

...

src/app/app.module.ts

```
import { TabsModule } from 'ngx-bootstrap/tabs';
import { BsDatepickerModule } from 'ngx-bootstrap/datepicker';
import { CarouselModule } from 'ngx-bootstrap/carousel';
...
imports: [
    BrowserModule, FormsModule, HttpClientModule, AppRoutingModule, ChartsModule,
    BrowserAnimationsModule,
    TabsModule.forRoot(), BsDatepickerModule.forRoot(), CarouselModule.forRoot()
    ]
...
```

Avec une version récente d'angular (ex : v7 , v8) , la commande "ng add ..." convient parfaitement pour automatiser tout cela:

```
ng add ngx-bootstrap
```

```
puis (selon les besoins):

ng add ngx-bootstrap --component componentName

exemple-of-componentName: accordion, alerts, buttons, ..., tabs, ...
```

1.3. Site de référence pour ngx-bootstrap

https://valor-software.com/ngx-bootstrap/#/

https://valor-software.com/ngx-bootstrap/#/documentation

https://valor-software.com/ngx-bootstrap/#/documentation#getting-started

1.4. Quelques composants de ngx-bootstrap

Onglets (tabs):

```
<tab heading="calcul tva">
    <app-tva></app-tva>
    </tab>
    <tab heading="simulation emprunt">
        <app-simu-emprunt></app-simu-emprunt>
        </tab>
    <tab heading="conversion de devise">
        <app-conversion></app-conversion>
        </tab>
    </tab>
</tab>
</tab>
</tab>
</tab>
</tab>
</tab>
```

<u>Calendrier javascript (datePicker)</u>:

```
<input placeholder="yyyy-mm-dd" name="date"
        [(ngModel)]="datePublication" bsDatepicker
        [bsConfig]="{ dateInputFormat: 'YYYY-MM-DD' }" />
avec datePublication : Date = new Date(); du coté .ts
Date:

2019-09-17
```


Carousel (slide-show, défilement d'images)

1.5. <u>Exemples de composants personnalisés s'appuyant sur bootstrap-css</u>

En plus des composants prédéfinis de "ngx-bootstrap", il est assez facile de mettre en oeuvre un paquet de composants personnalisés réutilisables basés sur bootstrap-css (et un peu sur ngx-bootstrap).

L'exemple suivant correspond à des extraits d'un module (nommé "bs-util") de composants réutilisables :

Dans **src/bs-util** (à coté de **src/app**) :

bs-util.module.ts

```
import { BsDropdownModule } from 'ngx-bootstrap/dropdown';
import { CollapseModule } from 'ngx-bootstrap/collapse';
import { ModalModule } from 'ngx-bootstrap/modal';
@NgModule({
imports: [
  CommonModule, FormsModule, RouterModule, BrowserAnimationsModule,
  CollapseModule.forRoot(), BsDropdownModule.forRoot(), ModalModule.forRoot()
 ],
 exports:
  BsuTogglePanelComponent,
  BsuMyFormGroupWithLabelComponent, BsuNavBarComponent,
  BsuOverviewCardComponent, BsuModalComponent
 declarations: [BsuTogglePanelComponent,
  BsuMyFormGroupWithLabelComponent, BsuNavBarComponent, BsuNavItemComponent,
  BsuDropdownMenuComponent
  BsuOverviewCardComponent,BsuModalComponent
})
export class BsUtilModule { }
```

Ce module pourra ensuite être globalement importé par un module applicatif :

```
import { BsUtilModule } from 'src/bs-util.module';
...
@NgModule({
...
imports: [
    BrowserModule, FormsModule, BsUtilModule
],
...})
export class AppModule { }
```

code complet au bout de l'URL suivante : https://github.com/didier-mycontrib/angular8plus (partie ng-bs4-app/src/bs-util).

2. Mode "offLine" et indexed-db

2.1. Gestion de online/offline par les navigateurs

La plupart des navigateurs détectent et gère le mode "déconnecté" de la manière suivante :

- la <u>propriété</u> booléen **window.navigator.onLine** est automatiquement fixée par le navigateur pour indiquer si la connexion à internet est établie ou coupée .

Les <u>événements</u> "online" et "offline" sont automatiquement déclenchés par le navigateur en cas de basculement / changement d'état .

2.2. exemple de service angular "OnlineOfflineService"

```
...
@Injectable({ providedIn: 'root'})
export class OnlineOfflineService {
public connectionChanged = new BehaviorSubject < boolean > (window.navigator.onLine);
get isOnline() { return window.navigator.onLine;
}
constructor() {
window.addEventListener('online', () => this.updateOnlineStatus());
window.addEventListener('offline', () => this.updateOnlineStatus());
}
private updateOnlineStatus() {
console.log("onLine="+window.navigator.onLine);
this.connectionChanged.next(window.navigator.onLine);
}
```

Exemple d'utilisation:

et onLine={{onLine}} coté .html

3. IndexedDB et idb

3.1. Présentation de IndexDB, idb et liens webs (documentations)

Tout comme WebSQL/SQLite et localStorage, IndexedDB est une technologie de persistance (base de données) intégrée dans les navigateurs récents (html5).

LocalStorage est basique et fonctionne en mode "key-value pairs".

Depuis 2010 WebSQL/SQLite est considéré comme "déconseillé/obsolète" car moins bien que IndexedDB.

IndexedDB permet de directement stocker et recharger des objets "javascript" depuis une zone de stockage persistante gérée par le navigateur .

Documentations sur IndexedDB (de base) fourni sans "Promise" par un navigateur:

- https://developer.mozilla.org/fr/docs/Web/API/API IndexedDB/Using IndexedDB
- https://javascript.info/indexeddb

Bibliothèque "idb" (pour code avec "Promise"):

- https://www.npmjs.com/package/idb
- https://github.com/jakearchibald/idb

<u>NB</u>: **idb** est une **api d'un peu plus haut niveau** (basée sur des "**Promise**") qui permet de manipuler plus simplement l'api de bas niveau "IndexedDB" (fourni de façon normalisée par les navigateurs).

<u>Documentation sur IndexedDB (avec api supplémentaire "idb" retournant "Promise") et concepts</u>

bien expliqués:

- https://developers.google.com/web/ilt/pwa/working-with-indexeddb (attention: ancienne version)

Exemple IndexedDB avec Promises et async/await:

- https://medium.com/@filipvitas/indexeddb-with-promises-and-async-await-3d047dddd313

3.2. Structure de IndexedDB

3.3. <u>Utilisation de IndexedDB via idb (avec "Promise")</u>:

```
if (!('indexedDB' in window)) {
  console.log('This browser doesn\'t support IndexedDB');
  return;
}
```

```
npm install -s idb
```

(ex : *version 4.0.4*)

Les exemples de code (partiels) ci-après seront en typescript et intégrés au framework "angular".

```
import { Observable, of , from} from 'rxjs';
import { openDB , IDBPDatabase} from 'idb';

@Injectable({ providedIn: 'root'})
export class ProductService {

private currentIdb : IDBPDatabase = null;

//méthode asynchrone pour ouvrir la base 'my-idb'
//en créant si besoin l' objectStore 'products' avec options :

private openMyIDB() : Promise<IDBPDatabase>{
  var dbPromise = openDB('my-idb', 1 /* version */, {
    upgrade(upgradeDb, oldVersion, newVersion, transaction) {
    if (!upgradeDb.objectStoreNames.contains('products')) {
        upgradeDb.createObjectStore('products', {keyPath: '_id', autoIncrement: false});
    }
    },
    });
    return dbPromise;
```

```
private getAllProductsPromise() : Promise<Product[]>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
    var tx = db.transaction('products', 'readonly');
    var store = tx.objectStore('products');
    return store.getAll();
  });
```

```
public getProducts() : Observable<Product[]> {
  return from(this.getAllProductsPromise()); //from() to convert Promise to Observable
private addProductInMyIDbPromise(p:Product):Promise<any>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
   let tx = db.transaction('products', 'readwrite');
   let store = tx.objectStore('products');
   store.add(p);
   return tx.done:
  });
 private updateProductInMyIDbPromise(p:Product):Promise<any>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
   let tx = db.transaction('products', 'readwrite');
   let store = tx.objectStore('products');
   store.put(p);
   return tx.done;
  });
 private deleteProductInMyIDbPromise(id:string):Promise<any>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
   let tx = db.transaction('products', 'readwrite');
   let store = tx.objectStore('products');
   store.delete(id):
   return tx.done;
  });
 private memProductlist : Product[] =
 [\quad \{ \_id: "p1" \ , \ category: "divers" \ , \ price: 1.3 \ , label: "gomme" \ , \ description: "gomme \ blanche" \ \},
  { id : "p10", category : "livres", price : 12.1, label : "A la recherche du temps perdu",
  description: "Marcel Proust" \ ];
 private async initMyIdbSampleContent(){
  let db = await this.openMyIDB();//not accessMyIDB() since .close() at the end of this aync function
  let tx = db.transaction('products', 'readwrite');
  let store = tx.objectStore('products');
  for(let p of this.memProductlist){
      let exitingProdWithSameKey = await store.get(p. id);
      if(exitingProdWithSameKey==null){
         await store.add(p);//reject Promise and tx if p already in store
  await tx.done; db.close();
```

}

4. Socket.io

4.1. Présentation de Socket.io

Socket.io est une api javascript qui encapsule et améliore la prise en charge des "websockets".

<u>Rappel</u>: les **websockets** sont une technologie permettant d'établir des *communications bidirectionnelles* via un **canal construit au dessus du protocole HTTP** et cela permet au coté serveur d'envoyer spontanément des informations (ou événements) au client (fonctionnant dans un navigateur). C'est une des technologies de "**push**".

Valeurs ajoutés par la bibliothèque javascript "socket.io":

websocket (utilisé seul)	socket.io
protocole (lui même basé sur tcp et http) maintenant géré par la plupart des navigateurs et pouvant être manipulé en code javascript de bas niveau	librairie javascript complémentaire (à télécharger et utiliser)
fourni un <u>canal de communication full-duplex</u> <u>de bas niveau</u>	fourni un <u>canal abstrait de communication</u> <u>full-duplex</u> (de plus haut niveau) <u>basé sur des</u> <u>événements</u> .
proxy http et load-balancer ne sont pas gérés par les websockets ===> gros problème / limitation	les communications peuvent êtres établies même en présence de proxy http et de load- balancer (en mettant en oeuvre des mécanismes supplémentaires pour compenser les limitations des "websockets" généralement utilisées en interne)
ne gère pas le broadcasting	gère (si besoin) le broadcasting
pas d'option pour le "fallback"	comporte des options pour le "fallback"

documentation sur site officiel de Socket.io (présentation, concepts):

- https://socket.io/docs/

bibliothèque socket.io:

- https://www.npmjs.com/package/socket.io-client
- https://www.npmjs.com/package/@types/socket.io-client

4.2. chat-socket.io coté serveur (en version "typescript")

```
package.json
  "name": "chat-socket-io",
  "version": "0.1.0",
  "dependencies": {
     "ent": "^2.2.0",
     "express": "^4.17.1",
     "socket.io": "^2.2.0"
  "description": "Chat temps réel avec socket.io",
  "devDependencies": {
     "@types/ent": "^2.2.1",
     "@types/express": "^4.17.0",
     "@types/socket.io": "^2.1.2"
```

chat-socket-io/src/app.ts

```
import express, { Request, Response } from 'express';
import * as http from 'http';
import * as ent from 'ent';// Permet de bloquer les caractères HTML
import * as sio from 'socket.io';
const app :express.Application = express();
const server = http.createServer(app);
const io = sio.listen(server);
//les routes en /html/... seront gérées par express
//par de simples renvois des fichiers statiques du répertoire "/html"
app.use('/html', express.static( dirname+"/html"));
app.get('/', function(req :Request, res : Response ) {
  res.redirect('/html/index.html');
 });
//events: connection, message, disconnect and custom event like nouveau client
io.sockets.on('connection', function (socket:any) {
  // Dès qu'on nous donne un pseudo,
  // on le stocke en variable de session/socket et on informe les autres personnes :
  socket.on('nouveau client', function(pseudo:string) {
    pseudo = ent.encode(pseudo);
    socket.pseudo = pseudo;
    socket.broadcast.emit('nouveau client', pseudo);
  });
  // Dès qu'on reçoit un message, on récupère le pseudo de son auteur
  //et on le transmet aux autres personnes
  socket.on('message', function (message:string) {
    message = ent.encode(message);
```

```
socket.broadcast.emit('message', {pseudo: socket.pseudo, message: message});
});
server.listen(8383,function () {
   console.log("http://localhost:8383");
});
```

4.3. chat-socket-io coté client (html/js)

chat-socket-io/dist/lib/socket.io.js (à télécharger)

```
chat-socket-io/dist/html/index.html
<html>
  <head>
    <meta charset="utf-8" />
    <title>Chat temps réel avec socket.io</title>
       #zone chat strong { color: white; background-color: black; padding: 2px; }
    </style>
  </head>
  <body>
    <h1>Chat temps réel avec socket.io (websocket)</h1>
    <i>(version adaptée de https://openclassrooms.com/fr/courses/1056721-des-applications-
ultra-rapides-avec-node-js/1057959-tp-le-super-chat)</i>
    message:<input type="text" name="message" id="message" size="50" autofocus />
    <input type="button" id="envoi message" value="Envoyer" />
    <div id="zone chat"></div>
    <script src="lib/socket.io.js"></script>
    <script>
       var zoneChat = document.querySelector('#zone chat');
       var zoneMessage = document.querySelector('#message');
       // Connexion au serveur socket.io :
       var socket = io.connect('http://localhost:8383');
       // On demande le pseudo, on l'envoie au serveur et on l'affiche dans le titre
       var pseudo = prompt('Quel est votre pseudo ?');
       socket.emit('nouveau client', pseudo);
       document.title = pseudo + ' - ' + document.title;
       // Quand on reçoit un message, on l'insère dans la page
       socket.on('message', function(data) {
         insereMessage(data.pseudo, data.message)
       })
       // Quand un nouveau client se connecte, on affiche l'information :
       socket.on('nouveau client', function(pseudo) {
```

```
zoneChat.innerHTML='<em>' + pseudo + ' a rejoint le Chat !</em>'
                                +zoneChat.innerHTML:
       })
      // Lorsqu'on click sur le bouton, on transmet le message et on l'affiche sur la page
      document.querySelector('#envoi message').addEventListener('click',function () {
         var message = zoneMessage.value;
         socket.emit('message', message); // Transmet le message aux autres
         insereMessage(pseudo, message); // Affiche le message aussi sur notre page
         zoneMessage.value="; zoneMessage.focus(); // Vide la zone de Chat et remet le focus dessus
         return false; // Permet de bloquer l'envoi "classique" du formulaire
       });
      // fonction utilitaire pour ajouter un message dans la page :
      function insereMessage(pseudo, message) {
         zoneChat.innerHTML='<strong>' + pseudo + '</strong> ' + message
                                 + ''+zoneChat.innerHTML;
    </script>
 </body>
</html>
localhost:8383 indique
Quel est votre pseudo?
 toto
                                      Annuler
   titi - Chat temps réel avec socket.io 🗶
← → ℃ む
               ① (i) loc
                        150 %
                               ··· ☑ ☆ »
                                                   Chat temps réel avec
                                                Chat temps réel avec socket.io
socket.io (websocket)
                                                (websocket)
                                                (version adaptée de
(version adaptée de https://openclassrooms.com
                                                https://openclassrooms.com/fr/courses/1056721-des-applications-
/fr/courses/1056721-des-applications-ultra-
                                                ultra-rapides-avec-node-js/1057959-tp-le-super-chat)
rapides-avec-node-js/1057959-tp-le-super-chat)
                                                message:
                                                 Envoyer
message:
                                                toto cc
 Envoyer
                                                titi bb
toto cc
                                                toto aa
titi bb
toto aa
toto a rejoint le Chat!
```

4.4. Socket.io coté client (intégré dans Angular)

npm install socket.io-client -- save

src/app/common/service/chat.service.ts

```
import { Injectable } from '@angular/core';
import * as sio from 'socket.io-client';
import { Observable } from 'rxis';
@Injectable({ providedIn: 'root'})
export class ChatService {
private url : string = 'http://localhost:8383';
//https://github.com/didier-mycontrib/tp node js (chat-socket-io)
 private socket;
 constructor() {
  this.socket = sio(this.url);
 public sendMessage(message:string, eventName:string="message") {
  this.socket.emit(eventName, message);
 public getMessagesObservable(eventName :string="message") : Observable<any>{
  return Observable.create((observer) => {
    this.socket.on(eventName, (message) => {
       observer.next(message);
    });
  });
```

chat.component.ts

```
import { Component, OnInit } from '@angular/core';
import { ChatService } from 'src/app/common/service/chat.service';

interface EventMessagewithPseudo {
    pseudo : string;
    message : string;
}

@Component( {
    selector: 'app-chat',
    templateUrl: './chat.component.html',
    styleUrls: ['./chat.component.scss']
})

export class ChatComponent implements OnInit {
    pseudo:string;//undefined by default
    pseudoSent : boolean = false;
    newMessage: string;
    messages: EventMessagewithPseudo[] = [];
```

```
constructor(private chatService : ChatService) { }
onSetPseudo() {
 this.chatService.sendMessage(this.pseudo,"nouveau client");
 this.pseudoSent = true:
onSendMessage() {
 this.chatService.sendMessage(this.newMessage); //envoi du message (pour diffusion)
 //push() ajoute à la fin, unshift() ajoute au début :
 this.messages.unshift({pseudo:this.pseudo,
                        message:this.newMessage});// pour affichage local du message envoyé
 this.newMessage = ";
}
ngOnInit() {
 this.chatService
  .getMessagesObservable("nouveau client")
  .subscribe((username: string) => {
   this.messages.unshift({pseudo:username, message: 'a rejoint le Chat !'});
  });
 this.chatService
  .getMessagesObservable("message")
  .subscribe((evtMsgWithPseudo: any) => {
   this.messages.unshift(evtMsgWithPseudo);
  });
```

chat.component.html

```
chat.component.css
```

```
.pseudo_chat { color: white; background-color: black; padding: 2px;}
```

XVII - Annexe – Web Services REST (coté serveur)

1. Généralités sur Web-Services REST

2 grands types de services WEB: SOAP/XML et REST/HTTP

WS-* (SOAP / XML)

- "Payload" systématiquement en XML (sauf pièces attachées / HTTP)
- Enveloppe SOAP en XML (header facultatif pour extensions)
- Protocole de transport au choix (HTTP, JMS, ...)
- Sémantique quelconque (appels méthodes), description WSDL
- Plutôt orienté Middleware SOA (arrière plan)

REST (HTTP)

- "Payload" au choix (XML, HTML, JSON, ...)
- Pas d'enveloppe imposée
- Protocole de transport = toujours HTTP.
- Sémantique "CRUD" (modes http PUT,GET,POST,DELETE)
- Plutôt orienté IHM Web/Web2 (avant plan)

Points clefs des Web services "REST"

Retournant des données dans un format quelconque ("XML", "JSON" et éventuellement "txt" ou "html") les web-services "REST" offrent des résultats qui nécessitent généralement peu de re-traitements pour être mis en forme au sein d'une IHM web.

Le format "au cas par cas" des données retournées par les services REST permet peu d'automatisme(s) sur les niveaux intermédiaires.

Souvent associés au format <u>"JSON"</u> les web-services "REST" conviennent parfaitement à des appels (ou implémentations) au sein du langage javascript.

La relative simplicité des URLs d'invocation des services "REST" permet des appels plus immédiats (un simple href="..." suffit en mode GET pour les recherches de données).

La compacité/simplicité des messages "JSON" souvent associés à "REST" permet d'obtenir d'assez bonnes performances.

REST = style d'architecture (conventions)

REST est l'acronyme de Representational State Transfert.

C'est un **style d'architecture** qui a été décrit par *Roy Thomas Fielding* dans sa thèse «*Architectural Styles and the Design of Network-based Software Architectures*».

L'information de base, dans une architecture REST, est appelée **ressource**. Toute information (à sémantique stable) qui peut être nommée est une ressource: un article, une photo, une personne, un service ou n'importe quel concept.

Une ressource est identifiée par un **identificateur de ressource**. Sur le web ces identificateurs sont les **URI** (Uniform Resource Identifier).

<u>NB</u>: dans la plupart des cas, une ressource REST correspond indirectement à un enregistrement en base (avec la *clef primaire* comme partie finale de l'uri "identifiant").

Les composants de l'architecture REST manipulent ces ressources en **transférant** à travers le réseau (via HTTP) des représentations de ces ressources. Sur le web, on trouve aujourd'hui le plus souvent des représentations au format HTML, XML ou JSON.

REST et principaux formats (xml, json)

Une invocation d'URL de service REST peut être accompagnée de données (en entrée ou en sortie) pouvant prendre des formats quelconques : text/plain, text/html, application/xml, application/json, ...

Dans le cas d'une lecture/recherche d'informations, le format du résultat retourné pourra (selon les cas) être :

- imposé (en dur) par le code du service REST .
- au choix (xml, json) et précisé par une partie de l'url
- au choix (xml, json) et précisé par le <u>champ "Accept :" de l'entête HTTP</u> de la requête. (<u>exemple</u>: Accept: application/json).

Dans tous les cas, la réponse HTTP devra avoir son format précisé via le champ habituel *Content-Type:* application/json de l'entête.

Format JSON (JSON = JavaScript Object Notation)

<u>Les 2 principales caractéristiques</u> de JS0N sont :

- Le principe de clé / valeur (map)
- L'organisation des données sous forme de tableau

```
"nom": "article a",
    "prix": 3.05,
    "disponible": false,
    "descriptif": "article1"
},
{
    "nom": "article b",
    "prix": 13.05,
    "disponible": true,
    "descriptif": null
}
```

Les types de données valables sont :

- tableau
- objet
- chaîne de caractères
- valeur numérique (entier, double)
- booléen (true/false)
- null

une liste d'articles

une personne

```
{
   "nom": "xxxx",
   "prenom": "yyyy",
   "age": 25
}
```

REST et méthodes HTTP (verbes)

Les <u>méthodes HTTP</u> sont utilisées pour indiquer la <u>sémantique des actions</u> demandées :

• GET : lecture/recherche d'information

POST : envoi d'informationPUT : mise à jour d'information

• **DELETE** : **suppression** d'information

Par exemple, pour récupérer la liste des adhérents d'un club, on peut effectuer une requête de type GET vers la ressource http://monsite.com/adherents

Pour obtenir que les adhérents ayant plus de 20 ans, la requête devient http://monsite.com/adherents?ageMinimum=20

Pour supprimer numéro 4, on peut employer une requête de type **DELETE** telle que http://monsite.com/adherents/4

Pour envoyer des informations, on utilise **POST** ou **PUT** en passant les informations dans le corps (invisible) du message HTTP avec comme URL celle de la ressource web que l'on veut créer ou mettre à jour.

Exemple concret de service REST : "Elevation API"

L'entreprise "*Google*" fourni gratuitement certains services WEB de type REST.

"*Elevation API*" est un service REST de Google qui renvoie l'altitude d'un point de la planète selon ses coordonnées (latitude ,longitude).

La documentation complète se trouve au bout de l'URL suivante :

https://developers.google.com/maps/documentation/elevation/?hl=fr

Sachant que les coordonnées du Mont blanc sont :

Lat/Lon: 45.8325 N / 6.86417 E (GPS: 32T 334120 5077656)

Les invocations suivantes (du service web rest "api/elevation")

http://maps.googleapis.com/maps/api/elevation/json?locations=45.8325,6.86417 http://maps.googleapis.com/maps/api/elevation/xml?locations=45.8325,6.86417 donne les résultats suivants "json" ou "xml":

```
?xml version="1.0" encoding="UTF-8"?>
<ElevationResponse>
<status>OK</status>
<result>
<location>
<lat>45.8325000</lat>
<lng>6.8641700</lng>
</location>
<elevation>4766.4667969</elevation>
<resolution>152.7032318</resolution>
</result>
</ElevationResponse>
```

2. Limitations Ajax sans CORS

3. CORS (Cross Origin Resource Sharing)

CORS=Cross Origin Resource Sharing

CORS est une norme du W3C qui précise certains champs à placer dans une entête HTTP qui serviront à échanger entre le navigateur et le serveur des informations qui serviront à décider si une requête sera ou pas acceptée.

(utile si domaines différents), dans requête simple ou bien dans prééchange préliminaire quelquefois déclenché en plus :

Au sein d'une requête "demande autorisation" envoyée du client vers le serveur :

Origin: http://www.xy.com

Dans la "réponse à demande d'autorisation" renvoyée par le serveur :

Access-Control-Allow-Origin: http://www.xy.com

Ou bien

Access-Control-Allow-Origin: * (si public)

→ requête acceptée

Si absence de "Access-Control-Allow-Origin :" ou bien valeur différente ---> requête refusée

CORS=Cross Origin Resource Sharing (2)

<u>NB1</u>: toute requête "CORS" valide doit absolument comporter le champ "*Origin*:" dans l'entête http. Ce champ est <u>toujours</u> construit automatiquement par le navigateur et jamais renseigné par programmation javascript.

Ceci ne protège que partiellement l'accès à certains serveurs car un "méchant hacker" utilise un "navigateur trafiqué".

Les mécanismes "CORS" protège un peu le client ordinaire (utilisant un vrai navigateur) que dans la mesure ou la page d'origine n'a pas été interceptée ni trafiquée (l'utilisation conjointe de "https" est primordiale).

NB2: Dans le cas (très classique/fréquent), où la requête comporte "Content-Type: application/json" (ou application/xml ou ...), la norme "CORS" (considérant la requête comme étant "pas si simple") impose un pré-échange préliminaire appelé "Preflighted request/response".

Paramétrages CORS à effectuer coté serveur

L'application qui coté serveur, fourni quelques Web Services REST, peut (et généralement doit) autoriser les requêtes "Ajax / CORS" issues d'autres domaines ("*" ou "www.xy.com").

Attention: ce n'est pas une "sécurité coté serveur" mais juste un paramétrage autorisant ou pas à rendre service à d'autres domaines et en devant gérer la charge induite (taille du cluster, consommation électrique, ...).

Paramétrage "CORS" avec Spring-mvc

et

```
@Configuration
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(final HttpSecurity http) throws Exception {
        http.authorizeRequests()
             .antMatchers("/", "/favicon.ico", "/**/*.png",
                     "/**/*.gif", "/**/*.svg", "/**/*.jpg",
                              "/**/*.html", "/**/*.css", "/**/*.js").permitAll()
             .antMatchers("/devise-api/public/**").permitAll()
             .antMatchers("/devise-api/private/**").authenticated()
              .and().cors() //enable CORS (avec @CrossOrigin sur class @RestController)
             .and().csrf().disable()
             .exceptionHandling().authenticationEntryPoint(unauthorizedHandler)
             .and()
             .sessionManagement().sessionCreationPolicy(SessionCreationPolicy.STATELESS)
             .and()
             .addFilterBefore(jwtAuthenticationFilter,
                              UsernamePasswordAuthenticationFilter.class);
         }
```