EECS 388

Introduction to Computer Security

Lecture 4:

Confidentiality

September 7, 2023 Prof. Halderman

Review: Message Integrity

Problem: Integrity of message from Alice to Bob over an *untrusted channel*

Approach: Alice must append bits to message that only Alice (or Bob) can make

Ideal solution: Random functions

Practical solution:

Pseudorandom functions (PRFs)

 $f_{\mathbf{k}}$ () is indistinguishable in practice from random, unless you know \mathbf{k}

The HMAC construction turns a cryptographic hash function (e.g., SHA-256) into a Message authentication code (MAC)

For most practical purposes, we believe we can use **HMAC-SHA-256** as a PRF.

New Goal: Confidentiality

Confidentiality: Keep the content of message **p** secret from an *eavesdropper*

Approach and threat model:

Terminology:

- p plaintext
- **c** ciphertext
- k secret key
- **E**_k() encryption function
- $\mathbf{D}_{\mathbf{k}}$ () decryption function

Passive Eavesdropper

(a kind of passive attacker)

sees everything on the channel but can't change anything

Digression: Historical Cryptography

Caesar cipher

First recorded use: Julius Caesar (100-44 BC)

Replace each plaintext *letter* with one a fixed number of places down the alphabet:

Encryption: $\mathbf{c}_i := (\mathbf{p}_i + \mathbf{k}) \mod 26$ Decryption: $\mathbf{p}_i := (\mathbf{c}_i - \mathbf{k}) \mod 26$

Examples using **k**=3: (that's the key Caesar used!)

[How would you break the Caesar cipher?]

Cryptanalysis of the Caesar cipher

Only 26 possible keys:

Try every possible **k** by "brute force" Practical to do by hand!

How can a computer recognize the right one?

One solution: **Frequency analysis**. English text has characteristic letter frequency distribution:

Recognize with, e.g., **chi-squared** (χ^2) **test**

Digression: Historical Cryptography

Later advance: Vigenère cipher

c. 1553

«le chiffre indéchiffrable» ("the indecipherable cipher")

Encrypts successive letters using a sequence of Caesar ciphers keyed by the letters of a keyword.

For an **n**-letter keyword **k**,

Encryption: $\mathbf{c}_{i} := (\mathbf{p}_{i} + \mathbf{k}_{i \mod n}) \mod 26$

Decryption: $\mathbf{p}_{i} := (\mathbf{c}_{i} - \mathbf{k}_{i \mod n}) \mod 26$

Example: k=ABC (i.e., $k_0=0$, $k_1=1$, $k_2=2$)

p: bbbbbb amazon +k: 012012 012012

=c: bcdbcd anczpp

[Break le chiffre indéchiffrable?]

Cryptanalysis of the Vigenère cipher

Easy, if we know the keyword length, **n**:

- 1. Divide ciphertext into **n** slices
- 2. Solve each slice as a Caesar cipher

How to find n? One way: Kasiski method

Published 1863 by Kasiski (earlier known to Babbage?)

Repeated strings in long plaintext will sometimes, by coincidence, be encrypted with same key letters:

p: CRYPTOISSHORTFORCRYPTOGRAPHY

+k: <u>ABCDABCDABCDABCDABCDABCD</u>

=c: CSASTPKVSIQUTGQUCSASTPIUAQJB

Distance between repeats is (likely) a multiple of key size. (ex: $16 \Rightarrow 16,8,4,2,1$). Use multiple repeats to narrow down

Another way: Iterate over **n** to find best match (e.g., minimize sum of χ^2 for the individual Caesar ciphers)

One-time Pad (OTP)

Back to the present...

How can we achieve confidentiality securely?

One-time pad (OTP)

Alice and Bob share a secret, very long string of random bits (a one-time pad) **k**

Encryption: $\mathbf{c}_i := \mathbf{p}_i \oplus \mathbf{k}_i$ Decryption: $\mathbf{p}_i := \mathbf{c}_i \oplus \mathbf{k}_i$

XOR Facts				
а	b	a ⊕ b		
0	0	0		
0	1	1		
1	0	1		
1	1	0		
a ⊕ k	o ⊕ k) = a		
a⊕k) ⊕ a	a = b		

Caution "one-time" means you must never reuse any part of the pad

If you do: Let \mathbf{k}_i be pad bit. From ciphertexts $(\mathbf{a} \oplus \mathbf{k}_i)$ and $(\mathbf{b} \oplus \mathbf{k}_i)$, attacker learns $\mathbf{a} \oplus \mathbf{b}$. [How's that useful?]

Pro: Provably secure

Information-theoretically secure (no computational complexity assumptions) First proof published by Claude Shannon in 1949 [Show Mallory can't do better than guessing]

Con: Usually impractical [Why?] [Exceptions?]

Stream Cipher: Use a PRG for Confidentiality

More practical approach to confidentiality:

Use a pseudorandom generator (PRG)

instead of a truly random pad

Recall: A PRG $g_{\nu}()$ is practically indistinguishable from a random stream of bits, unless you know k.

Called a stream cipher

Alice and Bob choose PRG $\mathbf{q}()$, share secret key \mathbf{k}

Encryption: $\mathbf{s} := \mathbf{g}_{\iota}(); \mathbf{c}_{\iota} := \mathbf{p}_{\iota} \oplus \mathbf{s}_{\iota}$ Decryption: $\mathbf{s} := \mathbf{g}_{\mathbf{k}}(); \ \mathbf{p}_{\mathbf{i}} := \mathbf{c}_{\mathbf{i}} \oplus \mathbf{s}_{\mathbf{i}}$

Caution!

NEVER reuse keys **NEVER reuse PRG output bits**

Provably secure if g() is a secure PRG, under complexity assumptions

However... we don't know how to prove that secure PRGs even exist!

Best we can do (again): Use well studied functions where we haven't spotted a problem yet

Examples: RC4 ChaCha20

Block Ciphers

Another approach:

Block ciphers

consist of a function that **encrypts** fixed-size (**n**-bit) blocks with a reusable key **k**:

$$\textbf{\textit{E}}_{k}(\textbf{p}):\{0,1\}^{|k|}\times\{0,1\}^{n} \rightarrow \{0,1\}^{n}$$

and an inverse function that **decrypts** the blocks when used with same key:

$$D_{k}(c) = E_{k}^{-1}(c) : \{0,1\}^{|k|} \times \{0,1\}^{n} \rightarrow \{0,1\}^{n}$$

such that $\forall \mathbf{k} : D_{\mathbf{k}}(E_{\mathbf{k}}(\mathbf{p})) = \mathbf{p}$.

In effect, **k** selects one *permutation* from the set of 2ⁿ! possible permutations of E's domain.

A block cipher is *different* from a PRF. [Why?]

What do we want, if not a PRF?

Pseudorandom permutation (PRP)

A secure PRP is a function that cannot practically be distinguished from a truly random permutation unless you know **k**. (Similar to the PRF game)

Annoying question again:

Do PRPs actually exist?

Same annoying answer:

We don't know. :(

Best we can do:

Design a complex function that is invertible if and (hopefully) only if you know **k**

Examples: **DES** AES

AES Block Cipher

Today's most common block cipher:

AES (Advanced Encryption Standard)

aka **Rijndael**, for its designers, Rijmen and Daemen

- Standardized by NIST in 2001 after winning a long, public international design competition
- Efficient in both software and hardware.
 Hardware-accelerated in many modern CPUs
- Widely believed to be a secure PRP (but we don't know how to prove it)

Fixed block size: 128 bits

Variable key size: 128, 192, or 256 bits

10, 12, or 14 rounds (based on key size)

Generates **r** subkeys from **k**, performs same set of operations **r** times, each with diff. subkey

Each AES round

128-bits input

128-bit subkey

128-bit output

picture as operations on

Four steps: a 4×4 grid of 8-bit values

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	S _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

1. Non-linear substitution

Run each byte thru a nonlinear function (lookup table)

2. Shift rows

Circular-shift each row: ith row shifted by i (0-3)

3. Linear-mix columns

Treat each column as a 4-vector; multiply by a constant invertible matrix

4. Key-addition

XOR each byte with corresponding byte of round subkey

To decrypt, just undo the steps, in reverse order

Padding and Block Cipher Modes

Challenge for block ciphers:

How to encrypt arbitrary-sized messages?

Padding: Add bytes to end of message to make it a multiple of block size

Flawed approach: add zeros [What's the issue?]

MM MM MM MM 00 00 00 |

Don't know what to remove after decryption!

Better approach (PKCS7): Add n bytes of value n

MM MM MM MM 03 03 03

Edge case: Message that ends at block boundary?

| MM MM MM MM MM MM MM | 08 08 08 08 08 08 08 08 0

Add an **entire block** of padding

Ensures receiver can *unambiguously* distinguish the padding from the message after decrypting

Cipher modes: Algorithms for applying block ciphers to more than one block

Flawed approach:

[What's the issue?]

Encrypted codebook (ECB) mode

Simply encrypt each block independently: $\mathbf{c}_i := \mathbf{E}_k(\mathbf{p}_i)$

Plaintext

Pseudorandom

ECB mode

More Cipher Modes

Cipher-block chaining (CBC) mode

"Chains" ciphertexts to obscure later ones

Choose a random initialization vector IV

Encrypt: $\mathbf{c}_0 := \mathbf{IV}; \ \mathbf{c}_i := \mathbf{E}_{\mathbf{k}}(\mathbf{p}_i \oplus \mathbf{c}_{i-1})$

Decrypt: $\mathbf{p_i} := \mathbf{D_k}(\mathbf{c_i}) \oplus \mathbf{c_{i-1,i}}$

[Why do we need the IV?]

Have to send IV with ciphertext Can't encrypt blocks in parallel or out of order

Counter (CTR) mode

Turns a block cipher into a stream cipher

Generate **keystream s** for **k** and unique **nonce**:

$$s := E_k(\text{nonce } || 0) || E_k(\text{nonce } || 1) || E_k(\text{nonce } || 2) || \dots$$

Encrypt: $\mathbf{c} := \mathbf{p} \oplus \mathbf{s}$ Decrypt: $\mathbf{p} := \mathbf{c} \oplus \mathbf{s}$

Benefits: Doesn't require padding

Efficient parallelism/random access

Caution: Never reuse nance for same kl

Getting both confidentiality and integrity?

Integrity (tampering)

Let **f**() be a secure PRF. In practice: e.g., **HMAC-SHA-256**

Confidentiality (eavesdropping)

Construct *E*() and *D*() from secure PRG (a stream cipher) *or* secure PRP (a block cipher) with appropriate padding/cipher mode In practice: e.g., AES-128 in CTR mode

What if we want integrity and confidentiality at the same time? (Next lecture!)

Coming Up

Reminders:

Lab Assignment 1 due TODAY at 6 p.m.

Quiz on Canvas after every lecture

Project 1, Part 1 due next Thursday at 6 p.m.

Tuesday

Combining Confidentiality and Integrity

Confidentiality attacks, authenticated encryption

Thursday

Public Key Cryptography

Diffie-Hellman key exchange, RSA encryption, digital signatures