

Task:

Estimation of constant c, observed under the influence of noise e_k

$$x_k = c + e_k$$

Assumptions:

- Noise is normally distributed with mean 0 and variance σ_e^2
- Constant c is a random variable with zero mean and variance σ_c^2

Given

- Prior knowledge of c (μ_c , σ_c) and noise e (μ_e , σ_e)
- n observations of $x_k \rightarrow$ training data

Goal:

"Good" estimation of c, taking into account the available knowledge sources.

Given

- Prior knowledge of $c o p(c|\mu_c,\sigma_c^2)$
- Prior knowledge of $e o p(e|\mu_e,\sigma_e^2)$

$$p(c|\mu_c=0,\sigma_c^2=5)$$

$$p(e|\mu_e = 0, \sigma_e^2 = 20)$$

Task:

Estimation of constant c, observed under the influence of noise e_k

$$x_k = c + e_k$$

Assumptions:

- Noise is normally distributed with mean 0 and variance σ_e^2
- Constant c is a random variable with zero mean and variance σ_c^2

Given

- Prior knowledge of c (μ_c , σ_c) and noise e (μ_e , σ_e)
- n observations of x_k --> training data

Goal:

"Good" estimation of $c_{\rm r}$ taking into account the available knowledge sources.

Generation of training data

- Constant is assumed to have a fixed value: $c=30\,$
 - --> prior knowledge is quite wrong!
- For different n ({1 2 4 8 16 32 64 128 256 512 1024}) Generate n training samples using $x_k = c + e_k$
- For each training set with n samples:

Estimate and plot

- Log (likelihood): $log(p(D|\mu))$
- Log (likelihood * prior): $log(p(D|\mu) \cdot p(\mu))$

Maximized for MAP parameter estimation

For each training set with n samples:

Estimate and plot log (likelihood), log (likelihood * prior):

$$1. n = 1$$

e =

24.4132

For each training set with n samples:

Estimate and plot log (likelihood), log (likelihood * prior):

2.
$$n = 2$$

e = 34.0240

28.8097

For each training set with n samples:

Estimate and plot log (likelihood), log (likelihood * prior):

2.
$$n = 4$$

e =

34.5851

30.2318

26.8810

28.0725

For each training set with n samples:

2.
$$n = 8$$

For each training set with n samples:

2.
$$n = 16$$

For each training set with n samples:

2.
$$n = 32$$

For each training set with n samples:

Estimate and plot log (likelihood), log (likelihood * prior):

2. n = 64

For each training set with n samples:

$$2. n = 128$$

For each training set with n samples:

Estimate and plot log (likelihood), log (likelihood * prior):

2. n = 256

For each training set with n samples:

2.
$$n = 512$$

For each training set with n samples:

Estimate and plot log (likelihood), log (likelihood * prior):

$$2. n = 1024$$

e =

28.3212
30.5653
33.1773
27.8407
21.0703
26.5033
26.0548

Result:

Both techniques have successfully estimated the "unknown" parameter c (which has been set to 30 for generation of the training data - see above).

