A Book of Abstract Algebra (2nd Edition)

Problem
Let F be any field.
Prove part:
If $c \neq 0$ and c is algebraic over F , so is $1/c$.
Step-by-step solution
Step 1 of 3 A
Consider the arbitrary field F . Objective is to show that if $c \neq 0$ and c is algebraic over F , so is $1/c$.
Consider the following result:
If $a(x) = a_0 + a_1 x + \dots + a_n x^n$, $\hat{a}(x) = a_n + a_{n-1} x + \dots + a_0 x^n \in F(x)$, then $a(c) = 0$ if and only if $\hat{a}(1/c) = 0$, where $c \in F$.
Comment
Step 2 of 3 ^
The number c is algebraic over F , if it is the root of some polynomial in $F[x]$. Suppose that
$p(x) = a_0 + a_1 x + \dots + a_n x^n \in F[x]$
such that $p(c) = 0$. That is,
$a_0 + a_1 c + \dots + a_n c^n = 0.$
Now, by the above if and only if result, if $a_0 + a_1c + \cdots + a_nc^n = 0$ then there is a polynomial, namely $\hat{a}(x) = a_n + a_{n-1}x + \cdots + a_0x^n \in F(x)$ such that $\hat{a}(1/c) = 0$.
Since $\hat{a}(x) \in F(x)$ and $\hat{a}(1/c) = 0$, therefore by the definition it implies that $1/c$ is also algebraic over F .
Comment
Step 3 of 3 ^
Hence, if $c \neq 0$ and c is algebraic over F, so is $1/c$.
Comment

2 4 B