UNIVERSIDADE FEDERAL DO PARANÁ

ANDRÉ LUIZ BRITO

ANALYSIS OF THE MONETARY POLICY IMPACT ON REGIONAL GROSS DOMESTIC PRODUCT: A REGIONAL DSGE MODEL

Dissertation presented to the Postgraduate Program in Economic Development - PPGDE, Department of Applied Social Sciences, Federal University of Paraná, as a partial requirement for the attainment of the Master's degree in Economic Development.

Advisor: Prof. Dr. Armando Vaz Sampaio

CURITIBA 2023

Brito, André Luiz
Analysis of the Monetary Police Impact on regional Gross Domestic Product: A Regional DSGE Model / André Luiz Brito; orientador Armando Vaz Sampaio – Curitiba, 2023.
100 p.
Dissertação (Mestrado - Programa de Pós-Graduação em Desenvolvimento Econômico) – Setor de Ciências Sociais Aplicadas, Universidade Federal do Paraná, 2023.

1. Macroeconomia, 2. Economia Regional, 3. Política Monetária, 4. DSGE

Approval Form here.

To my mother, Diva, and to my guardian angel, Kellen.

Agradecimentos

Esta dissertação é a reta final de uma longa jornada chamada mestrado. Impossível chegar aqui sozinho: somente com o apoio da família, amigos, professores e instituições é que conseguimos dar este importante passo na vida acadêmica. Só tenho a agradecer:

À CAPES, pele bolsa de estudos que permite aos alunos terem dedicação exclusiva durante o mestrado. À Universidade Federal do Paraná, professores e servidores, pela excelência do ensino e administração do curso, em especial, professor José Felipe Araujo de Almeida, professora Kênia Barreiro de Souza e Laís de Lima Rocha.

A cada um dos professores do PPGDE, pela dedicação incondicional ao ensino, em especial aqueles que tive o privilégio de ser aluno: professores Armando Vaz Sampaio, Marcos Minoru Hasegawa, Maurício Vaz Lobo Bittencourt, Fernando Motta Correia, Victor Rodrigues de Oliveira, Kênia Barreiro de Souza, Terciane Sabadini Carvalho, Vinicius de Almeida Vale. Aos professores que, mesmo longe, não hesitaram em responder os emails de um aluno desconhecido: professores Mario Solis-Garcia e Celso José Costa Junior. Aos professores que não poupam esforços em manter o aplicativo e o fórum do Dynare: professores Willi Mutschler e Johannes Pfeifer.

Ao meu orientador Armando Vaz Sampaio, pela atenção, entusiasmo e sugestões que fizeram diferença na construção desta dissertação. Aos integrantes da banca de qualificação e de defesa, professores Celso José Costa Junior e Fernando Motta Correia, pelas importantes sugestões para melhoria e continuidade desta pesquisa.

Ao meu chefe Greisson Almeida Pereira, por acreditar neste projeto desde a primeira versão e pelas importantes sugestões que enriqueceram a pesquisa.

Aos meus colegas do mestrado, em especial Felipe Duplat e Matheus Canhete, pela companhia, pelo apoio moral e questionamentos que enriqueceram este trabalho.

Ao meu mentor Flávio von der Osten, por todos os conselhos e cobranças.

À minha heroína Kellen, pela confiança e pelo apoio incondicional.

À minha mãe, pelo exemplo de força e perseverança.

A todos que acompanharam esta jornada e me deram apoio e coragem, meu muito obrigado.

Been a long journey for you, hasn't it? Lot of running, lot of pain.

And you, you're a flea on the back of a dragon in for one hell of a ride, but you did manage to hang on. I guess that counts for something.

— He Who Remains

Resumo

O presente projeto de pesquisa propõe criar um modelo DSGE (*Dynamic and Stochastic General Equilibrium* ou Equilíbrio Geral Dinâmico e Estocástico) para investigar os impactos da taxa de juros nominal sobre o produto interno bruto de uma região brasileira.

Abstract

The present research project aims to develop a Dynamic and Stochastic General Equilibrium (DSGE) model to investigate the effects of the nominal interest rate on the Gross Domestic Product (GDP) of a Brazilian region.

List of Figures

1	Model Diagram	25
2	Productivity Shock Impulse Response Functions	71
3	Monetary Shock Impulse Response Functions	72

List of Tables

1	Brazilian GDP in 2021	67
2	Parameter Calibration	68
3	Variables at Steady State	69

list of abbreviations (glossary)

List fo Variables

Contents

1	Introduction							
2	Literature Review							
3	Methodology							
	3.1	Regional New Keynesian Model	23					
	3.2	Steady State	43					
	3.3	Log-linearization	51					
	3.4	Calibration	66					
4	Rest	alts	70					
	4.1	Impulse Response Functions	71					
	4.2	Parametrization	73					
5		l Remarks	74					
	5.1	Future Challenges	74					
Re	ferer	aces	75					
A	App	pendix	79					
	A.1	Table of the Literature Review	80					
	A.2	Definitions and Lemmas	81					
	A.3	Dynare mod file	85					
		ToDo List	86					
To	do lie	s†	86					

1 Introduction

Context

The importance of macroeconomic modeling as a tool for studying the connections between monetary economy and the outcomes of a country's aggregates is undeniable, as stated by Galí (2015). Considering as well that Brazilian regions possess heterogeneous economic matrices and sectors that respond in different ways to monetary authority decisions, as indicated by Bertanha and Haddad (2008), the need for a structural model capable of relating macroeconomic variables to regional variables becomes evident.

In this context, the present research proposes the development of a macroeconomic model with regional extensions, using the DSGE methodology¹, which can demonstrate the existing relationships among the various considered variables and present impulse response functions that illustrate these relationships. With this model, we aim to investigate the existing relationship between the nominal interest rate of the Brazilian economy and the level of regional gross domestic product.

Problem and Justification

The main issue to be investigated is the impact of monetary authority decisions — especially changes in the nominal interest rate — on regional macroeconomic variables, particularly the Gross Domestic Product (GDP) of a given Brazilian region (such as a State, for example).

Given that Brazilian regions have distinct economic matrices (agriculture, industry, extraction, etc.), and within each of these specializations, some sectors are more labor-intensive while others are more capital-intensive, it is plausible to assume that regional diversity allows each region to react differently to changes in the interest rate.

Given the problem, we need to determine how the study will be conducted. As this is a topic that combines knowledge from Macroeconomics and Regional Economics, it will be necessary to address the main concepts from both areas to then determine a methodology capable of integrating this content.

¹ Dynamic and Stochastic General Equilibrium.

Regional Economics investigations often employ tools borrowed from Macroeconomics, as highlighted by Rickman (2010). Examples include the Leontief input-output model, the Walrasian general equilibrium applied model, and the system of macroeconometric equations. These instances demonstrate how models from one field can be adapted and utilized by the other.

In line with this notion, the objective of this work is to utilize a DSGE model (derived from Macroeconomics) to establish relationships between macro variables and regional variables. Subsequently, Brazilian economic data will be employed to ascertain the degree of correlation between these variables.

Contributions

Numerous studies address the effects of national aggregates on regional variables, and these will be appropriately presented in section 2. However, in these studies, we have not found one that specifically investigates the relationship between the national nominal interest rate and regional GDP.

The significance of this work can be identified by recognizing that, given the diversity of Brazilian regions, it is not plausible that a single macroeconomic variable will have the same effect in each of them (or at least not with the same intensity). Thus, a tool capable of quantifying the regional effect of a macroeconomic variable is an important addition to economic literature, as it investigates the transmission mechanisms of monetary policy to the regional aggregates. Additionally, it also adds to the array of policy evaluation instruments, such that various economic agents can use this tool to determine the conduct of their own internal policies. For example, banks can quantify the credit interest rate for a specific region based on the projected interest rate, considering the needs and potential development of each region separately from the rest of the country.

Objectives

The main objective is to create a DSGE model capable of relating a macroeconomic variable (the nominal interest rate) to a regional variable (the Gross Domestic Product of a Brazilian region), in order to assess the impact of an expansionary (or contractionary) monetary policy on a specific Brazilian region and the magnitude of that impact. The specific objectives are (1) elaborate a New Keynesian DSGE model with households, firms, monetary authority, price stickiness, productivity and monetary shocks and two regions (the main region and the rest of the country) to verify if the nominal interest rate determined by the monetary authority influences the regional GDP; (2) produce the impulse response functions (IRF) and analyse the results of the regional model.

Organization

The other sections are organized as follows. Section 2 summarizes the related literature. Section 3 describes the proposed regional DSGE model. Section 4 presents the results and discussion. Finally, Section 5 provides a summary of what was learned and outlines the next challenges. Additionally, I have included an appendix where some details and results are clarified.

2 Literature Review

This section provides a literature review, exploring the intersection between Regional Economics and Macroeconomics, emphasizing the importance of monetary policy, and delving into the applicability of DSGE models to address diverse economic challenges, including regional and monetary dilemmas. The discussion also underscores the need for a clear definition and methodological framework in utilizing DSGE models.

Macroeconomics and Regional Economics

The assessment by Rickman (2010) on the importance of the link between Macroeconomics and Regional Economics was made at a time when the use of DSGE models to investigate regional issues was not yet common. Since then, several studies have addressed this connection.

Initially, we present two works that served as inspiration for the present research. The first, developed by Costa Junior et al. (2022), investigates the impacts of fiscal policy on the state of Goiás, considering the other states of the nation. In this work, the authors develop a regionalized and open structure, individualizing a Brazilian state from the rest, considering both a national and a state fiscal authority; state expenses and revenues are disaggregated, and thus, the authors seek to identify whether there are differences between the impacts of a tax exemption in the state under study compared to the others. With the model calibrated to data from 2003 to 2019, the authors demonstrate that there is indeed a difference in state performance due to the distinction of the tax exemption occurring in the state or in the rest of the country.

The second work also presents a DSGE model, but with the objective of evaluating whether there are differences in the effects of Foreign Direct Investment (FDI), considering its location. The model developed by Mora and Costa Junior (2019) encompasses an open economy with the main region (Bogotá, 25% of the national GDP) and the rest of the country (Colombia), two types of households², habit formation, capital adjustment costs, as well as typical elements of a New Keynesian (NK) model³. With the model calibrated to data from 2002 to 2015, the authors demonstrate that there

² Ricardian and non-Ricardian agents.

³ nominal price rigidity, monopolistic competition, non-neutrality of monetary policy in the short term.

is indeed a difference in the effects of FDI depending on the region where it is applied, such that when applied in the rest of the country, there are growth effects that spread throughout the country through spillovers, including to the main region.

Both works aim to, despite dealing with distinct causes (fiscal policy and FDI), verify whether differences exist when the cause occurs in one of the two different modeled regions. Additionally, they share the same modeling approach, that of a Dynamic and Stochastic General Equilibrium (DSGE). And this was the advancement that Rickman (2010) wanted to see happen: the use of DSGE models to address regional questions.

Monetary Policy

DSGE models are widely employed within the macroeconomic literature to examine the effects of monetary policy on macroeconomic aggregates, as pointed by Galí (2015). In this context, it is important to add to the review the papers that develop models describing the monetary policy.

Smets and Wouters (2003) and Smets and Wouters (2007) present models that evaluate various types of shocks in the Eurozone and the United States, respectively. Walque et al. (2010) assess the role of the banking sector in market liquidity recovery, considering the endogenous possibilities of agent default.

Vinhado and Divino (2016) employ a model with financial frictions to examine the transmission of monetary policy to the banking sector and economic activity. The results demonstrate that the banking sector plays a significant role in economic activity and impacts the outcomes of monetary policy by having to adjust the bank spread in response to changes in the interest rate or reserve requirements.

Soltani et al. (2021) investigate financial and monetary shocks on macroeconomic variables, with special attention to the role of banks. For this analysis, the model considers an economy with a banking sector. The results indicate that banking activity can influence the effects of economic policies.

Holm et al. (2021) study the transmission of monetary policy to household consumption, estimating the response of consumption, income, and savings. They utilize a heterogeneous agent New Keynesian model (HANK). The results demonstrate that a restrictive monetary policy prompts households with lower liquidity to reduce consumption as disposable income starts to decline, while households with average liquidity save less or borrow more. The study also highlights the differences in consump-

tion changes between savers and borrowers in the face of a monetary policy alteration.

Capeleti et al. (2022) evaluate the effects of pro-cyclical and counter-cyclical credit expansions by public banks on economic growth. The model implements a banking sector with public and private banks competing in a Cournot oligopoly. The results show that the supply of public credit has a stronger effect when the policy is counter-cyclical.

Macroeconomic Modeling

The literature on DSGE modeling is extensive, as this methodology allows the formulation of various questions and their answers through a general equilibrium model. This includes the aforementioned topics and, also, labor market, as explored by Ribeiro (2023); the real estate market, as studied by Albuquerquemello (2018); and even deforestation, as investigated by Pereira and Góes (2013). As remarked by Solis-Garcia (2022): *if you have a cohesive economic idea, you can put it in terms of a DSGE model*.

The works of Costa Junior (2016), Solis-Garcia (2022), Bergholt (2012), and Galí (2015), between others, are essential materials for macroeconomic modeling theory, as they guide the reader in developing a DSGE model step-by-step. Costa Junior (2016) starts from a Real Business Cycles (RBC) model and chapter by chapter adds elements of New Keynesian (NK) theory to the model. Solis-Garcia (2022) focuses on the mathematical details necessary to develop a DSGE model, beginning with a RBC model and turning it into a canonical NK model. Bergholt (2012) discusses the key elements of a New Keynesian model and also demonstrates the necessary programming to run the model using the Dynare software. Galí (2015) shows the evolution from an RBC model to an NK model, adding complexity with each chapter.

Macroeconomic Modeling with Regions

Among the works employing DSGE modeling with regions, beside the already mentioned before, there is the study by Tamegawa (2012), which assesses the effects of fiscal policy on two regions using a model featuring two types of households, firms, banks, a national government, and a regional government. Using literature parameters to calibrate the model, the results indicate that indeed there are differences in the effects of fiscal policy depending on which region implements it. It is important to note that the difference between a macroeconomic model and a regional one lies in the fact that

in the former, aggregate variables are considered only at the national level, whereas in the latter, both national and regional variables are considered, and depending on the size of the region, the latter might not be able to affect the former, as explained by Tamegawa (2013). A framework to assess the economic evolution of a region in Japan is constructed by Okano et al. (2015), with the aim of identifying the causes of stagnation in the Kansai region.

In a similar vein of demonstrating regional relationships, Pytlarczyk (2005) investigates aspects of the European Monetary Union (EMU), focusing on the German economy, using a structural model with two regions; Galí and Monacelli (2005) also evaluates the functioning of the EMU, but with a model where regions form a unitary continuum, such that one region cannot affect the entire economy. Alpanda and Aysun (2014) utilize a two-region model to assess the effects of US financial shocks on the euro area economy.

More recently, the article by Croitorov et al. (2020) seeks to identify spillovers between regions, building a model with three regions: the Euro area, the US, and the rest of the world. Similarly investigating spillovers, Corbo and Strid (2020) present a regional model encompassing Sweden and the rest of the world.⁴"

DSGE Methodology

The DSGE methodology, as the name implies, involves the utilization of a Dynamic and Stochastic General Equilibrium model. This model outlines the problem to be addressed, requiring the definition of agents, variables, and parameters. In this research, the objective is to assess the impact of monetary policy on regional gross domestic product using the Canonical New Keynesian structure, as proposed by Solis-Garcia (2022). The structure comprises four representative agents: a household, a retail firm, a continuum of wholesale firms, and a monetary authority. It incorporates key elements of the New Keynesian theory, including monopolistic competition among wholesale firms, the price stickiness they encounter, and the consequential role of monetary policy in the short run. The role of each agent, variable and parameter will be discussed in detail in the next section.

⁴ Spillovers: effects that are transmitted from one region to another due to an exogenous factor, such as being neighboring regions.

3 Methodology

Contents

3.1	Regio	nal New Keynesian Model	23
	3.1.1	Household	26
	3.1.2	Final-Goods Firm	30
	3.1.3	Intermediate-Goods Firms	31
	3.1.4	Monetary Authority	37
	3.1.5	Stochastic Shocks	38
	3.1.6	Equilibrium Conditions	38
	3.1.7	Model Structure	40
3.2	Stead	y State	43
	3.2.1	Variables at Steady State	46
	3.2.2	Steady State Solution	50
3.3	Log-li	inearization	51
	3.3.1	Log-linear Model Structure	63
	3.3.2	Eigenvalues and Forward Looking Variables	65
3.4	Calib	ration	66
	3.4.1	Brazilian GDP in 2021	67
	3.4.2	Parameter Calibration	68
	3.4.3	Variables at Steady State	69

3.1 Regional New Keynesian Model

The model is populated by four agents: (1) a representative household, (2) a continuum of firms producing intermediate-goods, (3) a firm producing final-goods, and (4) the monetary authority.

The representative household maximizes utility based on consumption and labor, subject to a budget constraint composed of wages, capital rental rates, and firm profits.

The final-goods firm produces the final-good consumed by households: it aggregates all intermediate-goods produced by intermediate firms, operates under perfect competition and seeks to maximize profit subject to the bundle technology.

Each intermediate-goods firm produces a single intermediate-good, all exhibiting imperfect substitution, thus operating in monopolistic competition. Intermediate-goods firms have two problems to solve: minimize costs subject to the production technology available and choose an optimal price to maximize the intertemporal profit flow.

Periodically, a portion of intermediate-goods firms have the opportunity to adjust prices, while others miss this chance, following a Calvo (1983) rule. This mechanism generates nominal price rigidities, altering equilibrium relationships in the system. These rigidities lead to the non-neutrality of money in the short term, as explained by Costa Junior (2016, p.191).

The monetary authority determines the nominal interest rate in response to fluctuations in previous period's inflation and production, aiming to control price levels and growth, following a Taylor (1993) rule.

Stochastic shocks will be present in the intermediate-goods firms' productivity and in the monetary policy.

These elements define a canonical NK DSGE model, as presented by (SOLIS-GARCIA, 2022). The model will be adapted to accommodate two distinct regions: the main region and the rest of the country, replacing the single aggregated region. To achieve this, an index will differentiate the studied region from the rest of the country, resulting in separate households, intermediate- and final-goods firms for each region. Households lack mobility between regions. The link connecting the two regions is established through the final-goods, allowing households to consume from both regions.

Then, equilibrium conditions of the system will be determined. Assuming the system tends toward long-term equilibrium, a steady state will be reached where vari-

ables cease to change. Thus, for a given $t \to \infty$, there is a $X_t = X_{t+1} = X_{ss} \implies \dot{X} = 0$, where X denotes the vector of system variables, the subscript ss indicates the steady state and $\dot{X} = \partial X/\partial t$.

After that, the log-linearization method proposed by Uhlig (1999) will be employed to convert the system of equations into a linear system, so that this linear system can be solved by the program Dynare, which computes the solution and produces impulse-response graphs based on the stochastic shocks.

Regions

Regions will be indexed by $\eta \in \{1, 2, ..., n\}$, representing the variables of each region. Whenever necessary, a second region index, $v \in \{1, 2, ..., n\}$, will be used. For example, the variable C_t represents the total consumption (the aggregate of all regions), $C_{\eta t}$ represents the consumption composition of region η , and $C_{\eta vt}$ represents the consumption of the final good produced in region v and consumed in region η (with the first index indicating the destination and the second one indicating the origin of the goods). Without loss of generality, the model will consider two regions: the main region labeled as 1 and the rest of the country as 2, so that $\eta, v \in \{1, 2\}$.

Model Diagram

Figure (1) illustrates the model's mechanics. In this diagram, black arrows depict the real economy, while green arrows represent the nominal economy. The representative household supplies labor and capital to intermediate-goods firms in exchange for wages and capital rent, respectively. Using these resources, intermediate-goods firms produce goods, which are then sold to the final-goods firm. The final-goods firm aggregates all intermediate-goods into a final product, sold back to the household. Operating under a monetary rule, the monetary authority determines the nominal interest rate to achieve output growth and price stability.

Figure 1: Model Diagram

Source: created by the author.

In the next section, the mathematical structure of the model is presented.

3.1.1 Household

The household problem is divided into two steps: first, the household must minimize the consumption costs, and then maximize the utility, which is subject to a budget constraint.

Cost Minimization Problem

Considering that the representative household must decide to consume goods from both regions, there must be a consumption bundle index $C_{\eta t}$ and a consumption price index $Q_{\eta t}$ that minimize the total consumption cost $Q_{\eta t}C_{\eta t}$, as demonstrated by Walsh (2017, p.424):

$$\min_{C_{\eta_{1t}}, C_{\eta_{2t}}} : \quad Q_{\eta t} C_{\eta t} = P_{1t} C_{\eta_{1t}} + P_{2t} C_{\eta_{2t}}$$
(3.1)

s.t.:
$$C_{\eta t} = C_{\eta 1t}^{\omega_{\eta 1}} C_{\eta 2t}^{1-\omega_{\eta 1}}$$
 (3.2) $C_{\eta t} > 0$

where P_{1t} and P_{2t} are the prices of goods 1 and 2, respectively, $C_{\eta 1t}$ and $C_{\eta 2t}$ are the goods produced in region 1 and 2, respectively, and consumed in region η . In the consumption aggregation, $\omega_{\eta 1}$ and $(1 - \omega_{\eta 1})$ are the weights of goods $C_{\eta 1t}$ and $C_{\eta 2t}$, respectively, in the consumption bundle $C_{\eta t}$.

Lagrangian

The minimization problem with a constraint can be reformulated into one without a constraint by applying the Lagrangian function:

$$\mathcal{L} = P_{1t}C_{\eta 1t} + P_{2t}C_{\eta 2t} - Q_{\eta t}(C_{\eta 1t}^{\omega_{\eta 1}}C_{\eta 2t}^{1-\omega_{\eta 1}} - C_{\eta t})$$
(3.3)

First Order Conditions

The first order conditions are:

$$C_{\eta 1t}: P_{1t} - Q_{\eta t} \omega_{\eta 1} C_{\eta 1t}^{\omega_{\eta 1} - 1} C_{\eta 2t}^{1 - \omega_{\eta 1}} = 0 \implies C_{\eta 1t} = \frac{\omega_{\eta 1} Q_{\eta t} C_{\eta t}}{P_{1t}}$$
(3.4)

$$C_{\eta 2t}: P_{2t} - Q_{\eta t} (1 - \omega_{\eta 1}) C_{\eta 1t}^{\omega_{\eta 1}} C_{\eta 2t}^{-\omega_{\eta 1}} = 0 \implies C_{\eta 2t} = \frac{(1 - \omega_{\eta 1}) Q_{\eta t} C_{\eta t}}{P_{2t}}$$
(3.5)

$$Q_{\eta t}: \quad C_{\eta t} = C_{\eta 1 t}^{\omega_{\eta 1}} C_{\eta 2 t}^{1 - \omega_{\eta 1}} \tag{3.2}$$

Solutions

Divide 3.5 by 3.4:

$$\frac{C_{\eta 2t}}{C_{\eta 1t}} = \frac{(1 - \omega_{\eta 1})Q_{\eta t}C_{\eta t}/P_{2t}}{\omega_{\eta 1}Q_{\eta t}C_{\eta t}/P_{1t}} \Longrightarrow
C_{\eta 2t} = C_{\eta 1t} \frac{(1 - \omega_{\eta 1})P_{1t}}{\omega_{\eta 1}P_{2t}} \tag{3.6}$$

Substitute 3.6 in 3.2:

$$C_{\eta t} = C_{\eta 1 t}^{\omega_{\eta 1}} \left[C_{\eta 1 t} \frac{(1 - \omega_{\eta 1}) P_{1 t}}{\omega_{\eta 1} P_{2 t}} \right]^{1 - \omega_{\eta 1}} \Longrightarrow$$

$$C_{\eta 1 t} = C_{\eta t} \left(\frac{P_{2 t} \omega_{\eta 1}}{P_{1 t} (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}} \tag{3.7}$$

Substitute 3.4 and 3.5 in 3.2:

$$C_{\eta t} = \left(\frac{\omega_{\eta 1} Q_{\eta t} C_{\eta t}}{P_{1t}}\right)^{\omega_{\eta 1}} \left(\frac{(1 - \omega_{\eta 1}) Q_{\eta t} C_{\eta t}}{P_{2t}}\right)^{1 - \omega_{\eta 1}} \Longrightarrow$$

$$Q_{\eta t} = \left(\frac{P_{1t}}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_{2t}}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \tag{3.8}$$

Therefore, there is a consumption bundle $C_{\eta t}$ and a consumption price index $Q_{\eta t}$ that minimize the total consumption cost $Q_{\eta t}C_{\eta t}$ for the household in region η . Notice

that the cost problems of both regions are (must be) related, as the consumption level in one region influences the demand for goods in both regions. Now, this result will be used in the next problem that the household faces.

Utility Maximization Problem

Following the models presented by Costa Junior (2016) and Solis-Garcia (2022), the representative household next problem is to maximize an intertemporal utility function U_{η} with respect to consumption $C_{\eta t}$ and labor $L_{\eta t}$, subject to a budget constraint, a capital accumulation rule and the non-negativity of real variables:

$$\max_{C_{\eta t}, L_{\eta t}, K_{\eta, t+1}} : U_{\eta}(C_{\eta t}, L_{\eta t}) = \mathbb{E}_{t} \sum_{t=0}^{\infty} \beta^{t} \left(\frac{C_{\eta t}^{1-\sigma}}{1-\sigma} - \phi \frac{L_{\eta t}^{1+\varphi}}{1+\varphi} \right)$$
(3.9)

s.t.:
$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = W_{\eta t}L_{\eta t} + R_t K_{\eta t} + \Pi_{\eta t}$$
 (3.10)

$$K_{\eta,t+1} = (1 - \delta)K_{\eta t} + I_{\eta t} \tag{3.11}$$

$$C_{\eta t}, L_{\eta t}, K_{\eta t} > 0$$

where \mathbb{E}_t is the expectation operator, β is the intertemporal discount factor, σ is the relative risk aversion coefficient, ϕ is the relative labor weight in utility, ϕ is the marginal disutility of labor supply. In the budget constraint, $I_{\eta t}$ is the investment, $W_{\eta t}$ is the wage level, $K_{\eta t}$ is the capital, R_t is the return on capital, and $\Pi_{\eta t}$ is the firm profit. In the capital accumulation rule, δ is the capital depreciation rate.

Isolate $I_{\eta t}$ in 3.11 and substitute in 3.10:

$$I_{nt} = K_{n,t+1} - (1 - \delta)K_{nt} \tag{3.12}$$

$$Q_{\eta t}C_{\eta t} + P_{\eta t}(K_{\eta,t+1} - (1-\delta)K_{\eta t}) = W_{\eta t}L_{\eta t} + R_t K_{\eta t} + \Pi_{\eta t}$$
(3.13)

Lagrangian

The maximization problem with restrictions can be transformed into one without restriction using the Lagrangian function \mathcal{L} formed by 3.9 and 3.13:

$$\mathcal{Z} = \mathbb{E}_{t} \sum_{t=0}^{\infty} \beta^{t} \left\{ \left(\frac{C_{\eta t}^{1-\sigma}}{1-\sigma} - \phi \frac{L_{\eta t}^{1+\varphi}}{1+\varphi} \right) - \mu_{\eta t} \left[Q_{\eta t} C_{\eta t} + P_{\eta t} (K_{\eta,t+1} - (1-\delta)K_{\eta t}) - (W_{\eta t} L_{\eta t} + R_{t} K_{\eta t} + \Pi_{\eta t}) \right] \right\}$$
(3.14)

First Order Conditions

The first order conditions are:

$$C_{\eta t}: \quad \beta^{t} \left\{ \frac{(1-\sigma)C_{\eta t}^{-\sigma}}{1-\sigma} - \mu_{\eta t} \left[Q_{\eta t} \right] \right\} = 0 \implies$$

$$\mu_{\eta t} = \frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} \qquad (3.15)$$

$$L_{\eta t}: \quad \beta^{t} \left\{ -\phi \frac{(1+\varphi)L_{\eta t}^{1+\varphi}}{1+\varphi} - \mu_{\eta t} \left[-W_{\eta t} \right] \right\} = 0 \implies$$

$$\mu_{\eta t} = \frac{\phi L_{\eta t}^{\varphi}}{W_{\eta t}} \qquad (3.16)$$

$$K_{\eta,t+1}: \quad \beta^{t} \left\{ -\mu_{\eta t} [P_{\eta t}] \right\} + \mathbb{E}_{t} \beta^{t+1} \left\{ -\mu_{\eta,t+1} [-(P_{\eta,t+1}(1-\delta) + R_{t+1})] \right\} = 0 \implies$$

$$\mu_{\eta t} P_{\eta t} = \beta \mathbb{E}_{t} \left\{ \mu_{\eta,t+1} [P_{\eta,t+1}(1-\delta) + R_{t+1}] \right\} \qquad (3.17)$$

$$\mu_{\eta t}: \quad Q_{\eta t} C_{\eta t} + P_{\eta t} (K_{\eta,t+1} - (1-\delta)K_{\eta t}) = W_{\eta t} L_{\eta t} + R_{t} K_{\eta t} + \Pi_{\eta t} \qquad (3.13)$$

Solutions

Match 3.15 and 3.16:

$$\mu_{\eta t} = \frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} = \frac{\phi L_{\eta t}^{\varphi}}{W_{\eta t}} \Longrightarrow$$

$$\frac{\phi L_{\eta t}^{\varphi}}{C_{\eta t}^{-\sigma}} = \frac{W_{\eta t}}{Q_{\eta t}} \tag{3.18}$$

Equation 3.18 is the Household Labor Supply and shows that the marginal rate of substitution (MRS) of labor for consumption is equal to the real wage, which is the relative price between labor and goods.

Substitute $\mu_{\eta t}$ and $\mu_{\eta,t+1}$ from equation 3.15 in 3.17:

$$\frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} P_{\eta t} = \beta \mathbb{E}_{t} \left\{ \frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} [P_{\eta,t+1}(1-\delta) + R_{t+1}] \right\} \implies \frac{\mathbb{E}_{t} \left\{ Q_{\eta,t+1} C_{\eta,t+1}^{\sigma} \right\}}{Q_{\eta t} C_{\eta t}^{\sigma}} = \beta \frac{\mathbb{E}_{t} \left\{ P_{\eta,t+1}(1-\delta) + R_{t+1} \right\}}{P_{\eta t}} \tag{3.19}$$

Equation 3.19 is the Euler equation for the return on capital.

Firms

Consider two types of firms: (1) a continuum of intermediate-goods firms, which operate in monopolistic competition and each produce one variety with imperfect substitution level between each other and (2) the final-goods firm, which aggregates all these varieties into a final bundle and operates in perfect competition.

3.1.2 Final-Goods Firm

Profit Maximization Problem

The role of the final-goods firm is to aggregate all the varieties $Y_{\eta jt}$ produced by the intermediate-goods firms in each region $\eta \in \{1,2\}$, so that the representative consumer can buy only one good $Y_{\eta t}$, the bundle good, from each region.

The final-goods firm problem is to maximize its profit, considering that its output is the bundle $Y_{\eta t}$ formed by a continuum $j \in [0,1]$ of intermediate-goods $Y_{\eta jt}$, with elasticity of substitution between intermediate-goods ψ :

$$\max_{Y_{\eta j t}}: P_{\eta t} Y_{\eta t} - \int_{0}^{1} P_{\eta j t} Y_{\eta j t} \, \mathrm{d} \, j \tag{3.20}$$

s.t.:
$$Y_{\eta t} = \left(\int_0^1 Y_{\eta j t}^{\frac{\psi - 1}{\psi}} dj \right)^{\frac{\psi}{\psi - 1}}$$
 (3.21)

Substitute 3.21 in 3.20:

$$\max_{Y_{\eta j t}}: \quad \Pi_{\eta t} = P_{\eta t} \left(\int_{0}^{1} Y_{\eta j t}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} \, j \right)^{\frac{\psi}{\psi - 1}} - \int_{0}^{1} P_{\eta j t} Y_{\eta j t} \, \mathrm{d} \, j$$
 (3.22)

First Order Condition and Solutions

The first order condition is:

$$Y_{\eta jt}: P_{\eta t} \left(\frac{\psi}{\psi - 1}\right) \left(\int_{0}^{1} Y_{\eta jt}^{\frac{\psi - 1}{\psi}} dj\right)^{\frac{\psi}{\psi - 1} - 1} \left(\frac{\psi - 1}{\psi}\right) Y_{\eta jt}^{\frac{\psi - 1}{\psi} - 1} - P_{\eta jt} = 0 \Longrightarrow$$

$$Y_{\eta jt} = Y_{t} \left(\frac{P_{\eta t}}{P_{\eta jt}}\right)^{\psi} \tag{3.23}$$

Equation 3.23 shows that the demand for variety *j* depends on its relative price.

Substitute 3.23 in 3.21:

$$Y_{\eta t} = \left(\int_{0}^{1} Y_{\eta j t}^{\frac{\psi - 1}{\psi}} dj\right)^{\frac{\psi}{\psi - 1}} \Longrightarrow$$

$$Y_{\eta t} = \left(\int_{0}^{1} \left[Y_{\eta t} \left(\frac{P_{\eta t}}{P_{\eta j t}}\right)^{\psi}\right]^{\frac{\psi - 1}{\psi}} dj\right)^{\frac{\psi}{\psi - 1}} \Longrightarrow$$

$$P_{\eta t} = \left[\int_{0}^{1} P_{\eta j t}^{1 - \psi} dj\right]^{\frac{1}{1 - \psi}} \tag{3.24}$$

Equation 3.24 is the final-goods firm's markup.

3.1.3 Intermediate-Goods Firms

Cost Minimization Problem

The intermediate-goods firms, denoted by $j \in [0,1]$, produce varieties of a representative good with a certain level of substitutability. Each of these firms has to choose

labor $L_{\eta jt}$ to minimize production costs, subject to a technology rule.

$$\min_{K_{\eta jt}, L_{\eta jt}} : R_{Kt} K_{\eta jt} + W_t L_{\eta jt} \tag{3.25}$$

$$s.t.: Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}}$$

$$(3.26)$$

where $Y_{\eta jt}$ is the output obtained by the production technology level $Z_{A\eta t}$ that transforms capital $K_{\eta jt}$ and labor $L_{\eta jt}$ in proportions α_{η} and $(1 - \alpha_{\eta})$, respectively, into intermediate goods.⁵

Lagrangian

Transform the minimization problem with restriction into one without restriction applying the Lagrangian function \mathcal{L} :

$$\mathcal{L} = (R_{Kt}K_{\eta jt} + W_tL_{\eta jt}) - \Lambda_{\eta jt}(Z_{A\eta t}K_{\eta jt}^{\alpha_{\eta}}L_{\eta jt}^{1-\alpha_{\eta}} - Y_{\eta jt})$$
(3.27)

where the Lagrangian multiplier $\Lambda_{\eta jt}$ is the marginal cost.⁶

First Order Condition

The first-order conditions are:

$$K_{\eta jt}: R_{Kt} - \Lambda_{\eta jt} Z_{A\eta t} \alpha_{\eta} K_{\eta jt}^{\alpha_{\eta} - 1} L_{\eta jt}^{1 - \alpha_{\eta}} = 0 \qquad \Longrightarrow$$

$$K_{\eta jt} = \alpha_{\eta} Y_{\eta jt} \frac{\Lambda_{\eta jt}}{R_{Kt}}$$

$$(3.28)$$

$$L_{\eta jt}: W_t - \Lambda_{\eta jt} Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} (1 - \alpha_{\eta}) L_{\eta jt}^{-\alpha_{\eta}} = 0 \Longrightarrow$$

$$L_{\eta jt} = (1 - \alpha_{\eta}) Y_{\eta jt} \frac{\Lambda_{\eta jt}}{W_t}$$
(3.29)

$$\Lambda_{\eta jt}: \quad Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}} \tag{3.26}$$

⁵ the production technology level $Z_{A\eta t}$ will be submitted to a productivity shock, detailed in section 3.1.5.

⁶ see Lemma A.1

Solutions

Divide equation 3.28 by 3.29:

$$\frac{K_{\eta jt}}{L_{\eta jt}} = \frac{\alpha_{\eta} Y_{\eta jt} \Lambda_{\eta jt} / R_{Kt}}{(1 - \alpha_{\eta}) Y_{\eta jt} \Lambda_{\eta jt} / W_{\eta t}} \implies \frac{K_{\eta jt}}{L_{\eta jt}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}}$$
(3.30)

Equation 3.30 demonstrates the relationship between the technical marginal rate of substitution (TMRS) and the economic marginal rate of substitution (EMRS).

Substitute $L_{\eta jt}$ from equation 3.30 in 3.26:

$$Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}} \Longrightarrow$$

$$Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} \left[\left(\frac{1-\alpha_{\eta}}{\alpha_{\eta}} \right) \frac{R_{Kt} K_{\eta jt}}{W_{\eta t}} \right]^{1-\alpha_{\eta}} \Longrightarrow$$

$$K_{\eta jt} = \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1-\alpha_{\eta}} \right) \frac{W_{\eta t}}{R_{Kt}} \right]^{1-\alpha_{\eta}}$$

$$(3.31)$$

Equation 3.31 is the intermediate-goods firm demand for capital.

Substitute 3.31 in 3.30:

$$L_{\eta jt} = \left(\frac{1 - \alpha_{\eta}}{\alpha_{\eta}}\right) \frac{R_{Kt} K_{\eta jt}}{W_{\eta t}} \Longrightarrow$$

$$L_{\eta jt} = \left(\frac{1 - \alpha_{\eta}}{\alpha_{\eta}}\right) \frac{R_{Kt}}{W_{\eta t}} \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}}\right]^{1 - \alpha_{\eta}} \Longrightarrow$$

$$L_{\eta jt} = \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}}\right]^{-\alpha_{\eta}} \tag{3.32}$$

Equation 3.32 is the intermediate-goods firm demand for labor.

Total and Marginal Costs

Calculate the total cost *TC* using 3.31 and 3.32:

$$TC_{\eta jt} = W_{\eta t} L_{\eta jt} + R_{Kt} K_{\eta jt} \Longrightarrow TC_{\eta jt} = W_{\eta t} \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta t}}{R_{Kt}} \right]^{-\alpha_{\eta}} + R_{Kt} \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta t}}{R_{Kt}} \right]^{1 - \alpha_{\eta}} \Longrightarrow TC_{\eta jt} = \frac{Y_{\eta jt}}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}} \right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}} \right)^{1 - \alpha_{\eta}}$$

$$(3.33)$$

Calculate the marginal cost Λ using 3.33:

$$\Lambda_{\eta j t} = \frac{\partial TC_{\eta j t}}{\partial Y_{\eta j t}} \implies \Lambda_{\eta j t} = \frac{1}{Z_{A \eta t}} \left(\frac{R_{K t}}{\alpha_{\eta}}\right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}}\right)^{1 - \alpha_{\eta}}$$
(3.34)

The marginal cost depends on the technological level $Z_{A\eta t}$, the nominal interest rate R_{Kt} and the nominal wage level $W_{\eta t}$, which are the same for all intermediate-goods firms, and because of that, the index j may be dropped:

$$\Lambda_{\eta t} = \frac{1}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}}\right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}}\right)^{1 - \alpha_{\eta}} \tag{3.35}$$

notice that:

$$\Lambda_{\eta t} = \frac{TC_{\eta jt}}{Y_{\eta jt}} \implies TC_{\eta jt} = \Lambda_{\eta t} Y_{\eta jt}$$
(3.36)

Optimal Price Problem

Consider an economy with price stickiness, following the Calvo Rule (CALVO, 1983): each firm has a probability $(0 < \theta < 1)$ of keeping its price in the next period $(P_{\eta j,t+1} = P_{\eta jt})$, and a probability $(1 - \theta)$ of setting a new optimal price $P_{\eta jt}^*$ that maximizes its profits. Therefore, each firm must take this uncertainty into account when deciding the optimal price: the intertemporal profit flow, given the nominal interest rate R_t of each period, is calculated considering the probability θ of keeping the previ-

ous price:

$$\max_{P_{\eta j t}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t} Y_{\eta j, t+s} - T C_{\eta j, t+s} \right]}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\}$$
(3.37)

s.t.:
$$Y_{\eta jt} = Y_{\eta t} \left(\frac{P_{\eta t}}{P_{\eta jt}}\right)^{\psi}$$
 (3.23)

where s is the period in time when the decision must be made; t is the last period in time when the price was updated and k is the period in the future when the interest rate applies.

Substitute 3.36 in 3.37:

$$\max_{P_{\eta j t}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t} Y_{\eta j, t+s} - \Lambda_{\eta, t+s} Y_{\eta j, t+s} \right]}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\}$$
(3.38)

Substitute 3.23 in 3.38 and rearrange the variables:

$$\begin{aligned} & \underset{P_{\eta j t}}{\text{max}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t} Y_{\eta t+s} \left(\frac{P_{\eta,t+s}}{P_{\eta j t}} \right)^{\psi} - \Lambda_{\eta,t+s} Y_{\eta t+s} \left(\frac{P_{\eta,t+s}}{P_{\eta j t}} \right)^{\psi} \right]}{\prod_{k=0}^{s-1} (1+R_{t+k})} \right\} \implies \\ & \underset{P_{\eta j t}}{\text{max}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t}^{1-\psi} P_{\eta,t+s}^{\psi} Y_{\eta t+s} - P_{\eta j t}^{-\psi} P_{\eta,t+s}^{\psi} Y_{\eta t+s} \Lambda_{\eta,t+s} \right]}{\prod_{k=0}^{s-1} (1+R_{t+k})} \right\} \end{aligned}$$

First Order Condition

The first order condition with respect to $P_{\eta jt}$ is:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[(1-\psi) P_{\eta j t}^{-\psi} P_{\eta j t}^{\psi} Y_{\eta t+s} - (-\psi) P_{\eta j t}^{-\psi-1} P_{\eta j t}^{\psi} Y_{\eta t+s} \Lambda_{\eta,t+s} \right]}{\prod_{k=0}^{s-1} (1+R_{t+k})} \right\} = 0$$

Separate the summations and rearrange the variables:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s}(\psi - 1) \left(\frac{P_{\eta,t+s}}{P_{\eta jt}}\right)^{\psi} Y_{\eta t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} =$$

$$= \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \psi P_{\eta j t}^{-1} \left(\frac{P_{\eta,t+s}}{P_{\eta j t}}\right)^{\psi} Y_{\eta t+s} \Lambda_{\eta,t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\}$$
(3.39)

Substitute 3.23 in 3.39:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s}(\psi - 1)Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \psi P_{\eta j t}^{-1} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \Longrightarrow$$

$$(\psi - 1)\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \psi P_{\eta j t}^{-1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \Longrightarrow$$

$$P_{\eta j t} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \frac{\psi}{\psi - 1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \Longrightarrow$$

$$P_{\eta j t}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}} \tag{3.40}$$

Equation 3.40 represents the optimal price that firm j will choose. Since all firms that are able to choose will opt for the highest possible price, they will all select the same price. As a result, the index j can be omitted:

$$P_{\eta t}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}$$
(3.41)

Final-Goods Firm, part II

The process of fixing prices is random: in each period, θ firms will maintain the price from the previous period, while $(1 - \theta)$ firms will choose a new optimal price. The price level for each period will be a composition of these two prices. Use this

information in 3.24 to determine the aggregate price level:

$$P_{\eta t} = \left[\int_{0}^{\theta} P_{\eta, t-1}^{1-\psi} \, \mathrm{d} \, j + \int_{\theta}^{1} P_{\eta t}^{*1-\psi} \, \mathrm{d} \, j \right]^{\frac{1}{1-\psi}} \implies$$

$$P_{\eta t} = \left[\theta P_{\eta, t-1}^{1-\psi} + (1-\theta) P_{\eta t}^{*1-\psi} \right]^{\frac{1}{1-\psi}} \tag{3.42}$$

Equation 3.42 is the aggregate price level.

Regional Inflation

In each region, the price level $P_{\eta t}$ generates a regional inflation rate:

$$\pi_{\eta t} = \frac{P_{\eta t}}{P_{\eta, t-1}} \tag{3.43}$$

3.1.4 Monetary Authority

The objective of the monetary authority is to conduct the economy to price stability and economic growth, using a Taylor rule (TAYLOR, 1993) to determine the nominal interest rate:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\gamma_\pi} \left(\frac{Y_t}{Y}\right)^{\gamma_Y} \right]^{1-\gamma_R} Z_{Mt}$$
(3.44)

where R, π , Y are the nominal interest rate, gross inflation rate and the production level in steady state, respectively; γ_R is the smoothing parameter for the interest rate R_{Kt} , γ_{π} and γ_{Y} are the interest-rate sensitivities in relation to inflation and product, respectively, Z_{Mt} is the monetary shock and π_t is the gross inflation rate, defined by:⁷

$$\pi_t = \pi_{1t}^{\theta_{\pi}} \pi_{2t}^{1-\theta_{\pi}} \tag{3.45}$$

where:
$$\theta_{\pi} = \frac{P_{1t}Y_{1t}}{P_{1t}Y_{1t} + P_{2t}Y_{2t}}$$
 (3.46)

⁷ for the monetary shock definition, see section 3.1.5.

3.1.5 Stochastic Shocks

Productivity Shock

The production technology level $Z_{A\eta t}$ will be submitted to a productivity shock defined by a first-order autoregressive process AR(1):

$$\ln Z_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta,t-1} + \varepsilon_{A\eta t}$$
(3.47)

where
$$\rho_{A\eta} \in [0,1]$$
 and $\varepsilon_{A\eta t} \sim \mathcal{N}(0,\sigma_{A\eta})$.

Monetary Shock

The monetary policy will also be submitted to a shock, through the variable Z_{Mt} , defined by a first-order autoregressive process AR(1):

$$\ln Z_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_{M,t-1} + \varepsilon_{Mt}$$
(3.48)

where $\rho_M \in [0,1]$ and $\varepsilon_{Mt} \sim \mathcal{N}(0,\sigma_M)$.

3.1.6 Equilibrium Conditions

A Competitive Equilibrium consists of sequences of prices $\{P_{\eta t}^*, R_t^*, W_{\eta t}^*\}$, allocations for households $\mathcal{A}_H := \{C_{\eta 1t}^*, C_{\eta 2t}^*, L_{\eta t}^*, I_{\eta t}^*, K_{\eta,t+1}^*\}$ and allocations for firms $\mathcal{A}_F := \{K_{\eta jt}^*, L_{\eta jt}^*, Y_{\eta jt}^*, Y_{\eta t}^*\}$. In such an equilibrium, given the set of exogenous variables $\{K_0, Z_{A\eta t}, Z_{Mt}\}$, the elements in \mathcal{A}_H solve the household problem, while the elements in \mathcal{A}_F solve the firms' problems, and the markets for goods and labor clear:

$$Y_t = Y_{1t} + Y_{2t} (3.49)$$

where:
$$Y_{\eta t} = C_{\eta t} + I_{\eta t}$$
 (3.50)

$$L_{\eta t} = \int_0^1 L_{\eta j t} \,\mathrm{d}\,j \tag{3.51}$$

Intermediate-Goods Firm Profit

For the sake of closure, the intermediate-goods firm profit must be defined:

$$\Pi_{\eta t} = \int_0^1 \Pi_{\eta j t} \,\mathrm{d}j \tag{3.52}$$

$$\Pi_{\eta jt} = P_{\eta t} Y_{\eta jt} - W_{\eta t} L_{\eta jt} \tag{3.53}$$

Substitute 3.53 and 3.51 in 3.52:

$$\Pi_{\eta t} = P_{\eta t} \int_0^1 Y_{\eta j t} \, \mathrm{d}j - W_{\eta t} L_{\eta t} \tag{3.54}$$

Substitute 3.54 in 3.10:

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = W_{\eta t}L_{\eta t} + R_{t}K_{\eta t} + P_{\eta t}\int_{0}^{1} Y_{\eta j t} \,\mathrm{d}\,j - W_{\eta t}L_{\eta t} \implies$$

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = R_{t}K_{\eta t} + P_{\eta t}\int_{0}^{1} Y_{\eta j t} \,\mathrm{d}\,j \qquad (3.55)$$

3.1.7 Model Structure

The model is composed of the preview solutions, forming a square system of 38 variables and equations, summarized as follows:

- Variables:
 - from the household problem: $\langle C_{\eta} \ L_{\eta} \ K_{\eta} \ I_{\eta} \ C_{\eta 1} \ C_{\eta 2} \ Q_{\eta} \rangle$;
 - from the final-goods firm problem: $\langle Y_{\eta j} \ Y_{\eta} \ P_{\eta} \rangle$;
 - from the intermediate-goods firm problems: $\langle L_{\eta j} \ K_{\eta j} \ P_{\eta}^* \rangle$;
 - from the monetary policy: $\langle R \mid \pi \mid Y \rangle$;
 - prices: $\langle W_{\eta} \quad \Lambda_{\eta} \quad \pi_{\eta} \rangle$;
 - shocks: $\langle Z_{A\eta} \ Z_M \rangle$.
- Equations:
 - 1. Regional Consumption Weight:

$$C_{\eta 2t} = C_{\eta 1t} \frac{(1 - \omega_{\eta 1}) P_{1t}}{\omega_{\eta 1} P_{2t}} \tag{3.6}$$

2. Regional Consumption of Good 1:

$$C_{\eta 1t} = C_{\eta t} \left(\frac{P_{2t} \omega_{\eta 1}}{P_{1t} (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}}$$
(3.7)

3. Regional Price Index:

$$Q_{\eta t} = \left(\frac{P_{1t}}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_{2t}}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \tag{3.8}$$

4. Labor Supply:

$$\frac{\phi L_{\eta t}^{\Psi}}{C_{\eta t}^{-\sigma}} = \frac{W_{\eta t}}{Q_{\eta t}} \tag{3.18}$$

5. Law of motion for capital:

$$K_{n,t+1} = (1 - \delta)K_{nt} + I_{nt} \tag{3.11}$$

6. Euler equation for the return on capital:

$$\frac{\mathbb{E}_{t}\{Q_{\eta,t+1}C_{\eta,t+1}^{\sigma}\}}{Q_{\eta t}C_{\eta t}^{\sigma}} = \beta \frac{\mathbb{E}_{t}\{P_{\eta,t+1}(1-\delta) + R_{t+1}\}}{P_{\eta t}}$$
(3.19)

7. Bundle Technology:

$$Y_{\eta t} = \left(\int_0^1 Y_{\eta jt}^{\frac{\psi - 1}{\psi}} \,\mathrm{d}\,j\right)^{\frac{\psi}{\psi - 1}} \tag{3.21}$$

8. Production Function:

$$Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}}$$
(3.26)

9. Technical and Economic Marginal Rates of Substitution:

$$\frac{K_{\eta jt}}{L_{\eta jt}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}} \tag{3.30}$$

10. Marginal Cost:

$$\Lambda_{\eta t} = \frac{1}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}}\right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}}\right)^{1 - \alpha_{\eta}} \tag{3.35}$$

11. Optimal Price:

$$P_{\eta t}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}$$
(3.41)

12. Regional Price Level:

$$P_{\eta t} = \left[\theta P_{\eta, t-1}^{1-\psi} + (1-\theta) P_{\eta t}^{*1-\psi}\right]^{\frac{1}{1-\psi}}$$
(3.42)

13. Regional Gross Inflation Rate:

$$\pi_{\eta t} = \frac{P_{\eta t}}{P_{\eta, t-1}} \tag{3.43}$$

14. Monetary Policy:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\gamma_\pi} \left(\frac{Y_t}{Y}\right)^{\gamma_Y} \right]^{1-\gamma_R} Z_{Mt}$$
(3.44)

15. National Gross Inflation Rate:

$$\pi_t = \pi_{1t}^{\theta_{\pi}} \pi_{2t}^{1-\theta_{\pi}} \tag{3.45}$$

16. Productivity Shock:

$$\ln Z_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta,t-1} + \varepsilon_{A\eta t}$$
(3.47)

17. Monetary Shock:

$$\ln Z_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_{M,t-1} + \varepsilon_{Mt}$$
(3.48)

18. Goods-Market Clearing Condition:

$$Y_t = Y_{1t} + Y_{2t} (3.49)$$

19. Regional Goods-Market Clearing Condition:

$$Y_{\eta t} = C_{\eta t} + I_{\eta t} \tag{3.50}$$

20. Regional Labor-Market Clearing Condition:

$$L_{\eta t} = \int_0^1 L_{\eta j t} \,\mathrm{d}\,j \tag{3.51}$$

21. Budget Constraint:

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = R_t K_{\eta t} + P_{\eta t} \int_0^1 Y_{\eta j t} \, \mathrm{d}j$$
 (3.55)

3.2 Steady State

The steady state of a variable is defined by its constancy through time. For any given variable X_t , it is in steady state if $t \to \infty \implies \mathbb{E}_t X_{t+1} = X_t = X_{t-1} = X_{ss}$ (COSTA JUNIOR, 2016, p.41). For conciseness, the ss index representing the steady state will be omitted, so that $X := X_{ss}$. The model in steady state is:

1. Regional Consumption Weight:

$$C_{\eta 2} = C_{\eta 1} \frac{(1 - \omega_{\eta 1}) P_1}{\omega_{\eta 1} P_2} \tag{3.56}$$

2. Regional Consumption of Good 1:

$$C_{\eta 1} = C_{\eta} \left(\frac{P_2 \omega_{\eta 1}}{P_1 (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}}$$
(3.57)

Regional Price Index:

$$Q_{\eta} = \left(\frac{P_1}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_2}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \tag{3.58}$$

4. Labor Supply:

$$\frac{\phi L_{\eta}^{\varphi}}{C_{\eta}^{-\sigma}} = \frac{W_{\eta}}{Q_{\eta}} \tag{3.59}$$

5. Law of motion for capital:

$$I_{\eta} = \delta K_{\eta} \tag{3.60}$$

6. Euler equation for the return on capital:

$$1 = \beta \left[(1 - \delta) + \frac{R}{P_{\eta}} \right] \tag{3.61}$$

7. Bundle Technology:

$$Y_{\eta} = \left(\int_{0}^{1} Y_{\eta j}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} j \right)^{\frac{\psi}{\psi - 1}} \tag{3.62}$$

8. Production Function:

$$Y_{\eta j} = Z_{A\eta} K_{\eta j}^{\alpha_{\eta}} L_{\eta j}^{1 - \alpha_{\eta}} \tag{3.63}$$

9. Technical and Economic Marginal Rates of Substitution:

$$\frac{K_{\eta j}}{L_{\eta j}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R_K} \tag{3.64}$$

10. Marginal Cost:

$$\Lambda_{\eta} = \frac{1}{Z_{A\eta}} \left(\frac{R_K}{\alpha_{\eta}} \right)^{\alpha_{\eta}} \left(\frac{W_{\eta}}{1 - \alpha_{\eta}} \right)^{1 - \alpha_{\eta}} \tag{3.65}$$

11. Optimal Price:

$$P_{\eta}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j} \Lambda_{\eta} / \prod_{k=0}^{s-1} (1+R) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j} / \prod_{k=0}^{s-1} (1+R) \right\}} \Longrightarrow$$

$$P_{\eta}^{*} = \frac{\psi}{\psi - 1} \Lambda_{\eta}$$
(3.66)

12. Regional Price Level:

$$P_{\eta} = \left[\theta P_{\eta}^{1-\psi} + (1-\theta)P_{\eta}^{*1-\psi}\right]^{\frac{1}{1-\psi}} \Longrightarrow$$

$$P_{\eta} = P_{\eta}^{*} \tag{3.67}$$

13. Regional Gross Inflation Rate:

$$\pi_{\eta} = \frac{P_{\eta}}{P_{\eta}} = 1 \tag{3.68}$$

14. Monetary Policy:

$$\frac{R}{R} = \left(\frac{R}{R}\right)^{\gamma_R} \left[\left(\frac{\pi}{\pi}\right)^{\gamma_\pi} \left(\frac{Y}{Y}\right)^{\gamma_Y}\right]^{1-\gamma_R} Z_M \implies Z_M = 1$$
(3.69)

15. National Gross Inflation Rate:

$$\pi = \pi_1^{\theta_{\pi}} \pi_2^{1 - \theta_{\pi}} = 1 \tag{3.70}$$

16. Productivity Shock:

$$\ln Z_{A\eta} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta} + \varepsilon_{A\eta} \implies$$

$$\varepsilon_{A\eta} = 0 \tag{3.71}$$

17. Monetary Shock:

$$\ln Z_M = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_M + \varepsilon_M \implies$$

$$\varepsilon_M = 0 \tag{3.72}$$

18. Goods-Market Clearing Condition:

$$Y = Y_1 + Y_2 (3.73)$$

19. Regional Goods-Market Clearing Condition:

$$Y_{\eta} = C_{\eta} + I_{\eta} \tag{3.74}$$

20. Regional Labor-Market Clearing Condition:

$$L_{\eta} = \int_{0}^{1} L_{\eta j} \, \mathrm{d} j \tag{3.75}$$

21. Budget Constraint:

$$Q_{\eta}C_{\eta} + P_{\eta}I_{\eta} = RK_{\eta} + P_{\eta} \int_{0}^{1} Y_{\eta j} \, \mathrm{d}j$$
 (3.76)

3.2.1 Variables at Steady State

For the steady-state solution, all endogenous variables will be determined with respect to the parameters. It is assumed that the price level and the productivity level of region 1 are equal to one. For region 2, it is assumed that these levels are in proportion to the corresponding values in the first region by factors $\langle \theta_P \mid \theta_Z \rangle$:⁸

$$\langle P_1 \quad Z_{A1} \rangle = \vec{\mathbf{1}} \tag{3.77}$$

$$\langle P_2 \mid Z_{A2} \rangle = \langle \theta_P P_1 \mid \theta_Z Z_{A1} \rangle$$
 (3.78)

From 3.68, 3.69 and 3.70, the monetary shock, the national and regional gross inflation rates are:

$$\langle Z_M \quad \pi \quad \pi_1 \quad \pi_2 \rangle = \vec{\mathbf{1}} \tag{3.79}$$

From 3.71 and 3.72, the productivity and monetary shocks are:

$$\langle \varepsilon_{A1} \quad \varepsilon_{A2} \quad \varepsilon_{M} \rangle = \vec{\mathbf{0}}$$
 (3.80)

From 3.61, the return on capital is:

$$1 = \beta \left[(1 - \delta) + \frac{R}{P} \right] \implies (3.61)$$

$$R = P_{\eta} \left[\frac{1}{\beta} - (1 - \delta) \right] \tag{3.81}$$

Divide 3.81 for one region by the other region:

$$\frac{R}{R} = \frac{P_1 \left[\frac{1}{\beta} - (1 - \delta) \right]}{P_2 \left[\frac{1}{\beta} - (1 - \delta) \right]} \Longrightarrow$$

$$P_1 = P_2 \tag{3.82}$$

⁸ where $\vec{1}$ is the unit vector.

Substitute 3.82 in 3.78:

$$\langle P_2 \mid Z_{A2} \rangle = \langle P_1 \mid \theta_Z Z_{A1} \rangle$$
 (3.83)

From 3.67, 3.77 and 3.82, the regional optimal price P_{η}^* is:

$$P_{\eta}^* = P_{\eta} \implies \langle P_1^* \quad P_2^* \rangle = \langle P_1 \quad P_2 \rangle = \langle P_1 \quad P_1 \rangle \tag{3.84}$$

Substitute 3.82 in 3.58 for the price composition of consumption bundle Q_n :

$$Q_{\eta} = \left(\frac{P_1}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_2}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \Longrightarrow \tag{3.58}$$

$$Q_{\eta} = \frac{P_1}{\omega_{\eta 1}^{\omega_{\eta 1}} (1 - \omega_{\eta 1})^{1 - \omega_{\eta 1}}}$$
(3.85)

Substitute 3.84 in 3.66 for the marginal cost Λ_{η} :

$$P_{\eta}^* = \frac{\psi}{\psi - 1} \Lambda_{\eta} \implies (3.66)$$

$$\Lambda_{\eta} = P_{\eta} \frac{\psi - 1}{\psi} \tag{3.86}$$

From 3.65, the nominal wage W_{η} is:

$$\Lambda_{\eta} = \frac{1}{Z_{A\eta}} \left(\frac{R_K}{\alpha_{\eta}} \right)^{\alpha_{\eta}} \left(\frac{W_{\eta}}{1 - \alpha_{\eta}} \right)^{1 - \alpha_{\eta}} \implies (3.65)$$

$$W_{\eta} = \left(1 - \alpha_{\eta}\right) \left[\Lambda_{\eta} Z_{A\eta} \left(\frac{\alpha_{\eta}}{R}\right)^{\alpha_{\eta}}\right]^{\frac{1}{1 - \alpha_{\eta}}} \tag{3.87}$$

Due to price parity in steady state, where prices are identical $(P_{\eta} = P_{\eta}^*)$ and resulting in a gross inflation level of one $(\pi_{\eta} = 1)$, all firms produce the same output level $(\forall i, j \in [0,1], Y_{\eta j} = Y_{\eta i}, i \neq j)$ (SOLIS-GARCIA, 2022, Lecture 13, p.12). As a consequence, they uniformly demand the same amount of factors $(\forall j \in [0,1], L_{\eta j} = 1)$

 $L_{\eta i}$, $j \neq i$), and 3.62, 3.63, 3.64, 3.75, and 3.76 become:

$$Y_{\eta} = Y_{\eta j} \tag{3.88}$$

$$Y_{\eta} = Z_{A\eta} K_{\eta}^{\alpha_{\eta}} L_{\eta}^{1-\alpha_{\eta}} \tag{3.89}$$

$$\frac{K_{\eta}}{L_{\eta}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R_{K}} \tag{3.90}$$

$$L_{\eta} = L_{\eta j} \tag{3.91}$$

$$Q_{\eta}C_{\eta} + P_{\eta}I_{\eta} = RK_{\eta} + P_{\eta}Y_{\eta} \tag{3.92}$$

Isolate K_{η} in 3.90 and substitute in 3.89:

$$K_{\eta} = L_{\eta} \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R_{K}}$$

$$Y_{\eta} = Z_{A\eta} \left[L_{\eta} \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R_{K}} \right]^{\alpha_{\eta}} L_{\eta}^{1 - \alpha_{\eta}} \implies$$

$$L_{\eta} = \frac{Y_{\eta}}{Z_{A\eta}} \left[\left(\frac{1 - \alpha_{\eta}}{\alpha_{\eta}} \right) \frac{R}{W_{\eta}} \right]^{\alpha_{\eta}} \iff \frac{1}{L_{\eta}} = \frac{Z_{A\eta}}{Y_{\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{\alpha_{\eta}}$$
(3.93)

Substitute 3.93 in 3.90:

$$\frac{K_{\eta}}{L_{\eta}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R_{K}} \Longrightarrow \tag{3.90}$$

$$K_{\eta} \frac{Z_{A\eta}}{Y_{\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{\alpha_{\eta}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R_{K}} \implies$$

$$K_{\eta} = \frac{Y_{\eta}}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}} \tag{3.94}$$

Substitute 3.94 in 3.60:

$$I_{\eta} = \delta K_{\eta} \implies (3.60)$$

$$I_{\eta} = \delta \frac{Y_{\eta}}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}} \implies (3.95)$$

$$I_{\eta} = b_{\eta} Y_{\eta} \tag{3.96}$$

where:
$$b_{\eta} = \frac{\delta}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}}$$
 (3.97)

Isolate C_{η} in 3.59 and then substitute L_{η} from 3.93:

$$\frac{\phi L_{\eta}^{\varphi}}{C_{\eta}^{-\sigma}} = \frac{W_{\eta}}{Q_{\eta}} \implies C_{\eta}^{\sigma} = \frac{W_{\eta}}{\phi Q_{\eta}} \cdot \frac{1}{L_{\eta}^{\varphi}} \implies C_{\eta} = a_{\eta} Y_{\eta}^{\frac{-\varphi}{\sigma}} \tag{3.98}$$

where:
$$a_{\eta} = \left[\frac{W_{\eta}}{\phi Q_{\eta}} \left[Z_{A\eta} \left(\frac{\alpha_{\eta} W_{\eta}}{(1 - \alpha_{\eta}) R} \right)^{\alpha_{\eta}} \right]^{\varphi} \right]^{\frac{1}{\sigma}}$$
 (3.99)

Substitute 3.98 and 3.96 in 3.74:

$$Y_{\eta} = C_{\eta} + I_{\eta} \qquad \Longrightarrow \qquad (3.74)$$

$$Y_{\eta} = a_{\eta} Y_{\eta}^{\frac{-\varphi}{\sigma}} + b_{\eta} Y_{\eta} \Longrightarrow$$

$$Y_{\eta} = \left(\frac{a_{\eta}}{1 - b_{\eta}}\right)^{\frac{\sigma}{\sigma + \varphi}} \tag{3.100}$$

The result of 3.100 determines Y, C_{η} , I_{η} , K_{η} , L_{η} , $C_{\eta 1}$, $C_{\eta 2}$ in 3.73, 3.98, 3.60, 3.94, 3.57, 3.56, 3.93, respectively.

3.2.2 Steady State Solution

$$\vec{\mathbf{I}} = \langle P_1 \ Z_{A1} \rangle \qquad (3.77)$$

$$\langle P_2 \ Z_{A2} \rangle = \langle P_1 \ \theta_Z Z_{A1} \rangle \qquad (3.83)$$

$$\vec{\mathbf{I}} = \langle Z_M \ \pi \ \pi_1 \ \pi_2 \rangle \qquad (3.79)$$

$$\vec{\mathbf{0}} = \langle \varepsilon_{A1} \ \varepsilon_{A2} \ \varepsilon_M \rangle \qquad (3.80)$$

$$R = P_{\eta} \left[\frac{1}{\beta} - (1 - \delta) \right] \qquad (3.81)$$

$$P_{\eta}^* = P_{\eta} \qquad (3.84)$$

$$Q_{\eta} = \frac{P_1}{\omega_{\eta 1}^{\omega_{\eta 1}} (1 - \omega_{\eta 1})^{1 - \omega_{\eta 1}}} \qquad (3.85)$$

$$\Lambda_{\eta} = P_{\eta} \frac{\psi - 1}{\psi} \qquad (3.86)$$

$$W_{\eta} = (1 - \alpha_{\eta}) \left[\Lambda_{\eta} Z_{A\eta} \left(\frac{\alpha_{\eta}}{R} \right)^{\alpha_{\eta}} \right]^{\frac{1}{1 - \alpha_{\eta}}} \qquad (3.87)$$

$$a_{\eta} = \left[\frac{W_{\eta}}{\psi Q_{\eta}} \left[Z_{A\eta} \left(\frac{\alpha_{\eta} W_{\eta}}{(1 - \alpha_{\eta})R} \right)^{\alpha_{\eta}} \right]^{\varphi} \right]^{\frac{1}{\varphi}} \qquad (3.99)$$

$$b_{\eta} = \frac{\delta}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}} \qquad (3.97)$$

$$Y_{\eta} = \left(\frac{a_{\eta}}{1 - b_{\eta}} \right)^{\frac{\sigma}{\varphi + \varphi}} \qquad (3.100)$$

$$Y = Y_1 + Y_2 \qquad (3.73)$$

$$C_{\eta} = a_{\eta} Y_{\eta}^{\frac{-\varphi}{\varphi}} \qquad (3.98)$$

$$I_{\eta} = b_{\eta} Y_{\eta} \qquad (3.96)$$

$$K_{\eta} = \frac{I_{\eta}}{\delta} \qquad (3.60)$$

$$C_{\eta 1} = C_{\eta} \left(\frac{P_2 \omega_{\eta 1}}{P_1 (1 - \omega_{\pi 1})} \right)^{1 - \omega_{\eta 1}} \qquad (3.57)$$

$$L_{\eta} = \frac{Y_{\eta}}{Z_{\Lambda \eta}} \left[\left(\frac{1 - \alpha_{\eta}}{\alpha_{\eta}} \right) \frac{R}{W_{\eta}} \right]^{\alpha_{\eta}} \tag{3.93}$$

(3.56)

 $C_{\eta 2} = C_{\eta 1} \frac{(1 - \omega_{\eta 1}) P_1}{\omega_{\eta 1} P_2}$

3.3 Log-linearization

Due to the number of variables and equations to be solved, computational brute force will be necessary. Dynare is specialized software for macroeconomic modeling, commonly used for solving DSGE models. Before the model can be processed by the software, it must undergo linearization to eliminate the infinite sum in Equation 3.41. For this purpose, Uhlig's rules of log-linearization (UHLIG, 1999) will be applied to all equations in the model. For any given variable X_t , its deviation will be represented with a hat, \hat{X}_t .

Regional Gross Inflation Rate

Log-linearize 3.43 and define the level deviation of regional inflation rate $\hat{\pi}_{\eta t}$:

$$\pi_{\eta t} = \frac{P_{\eta t}}{P_{\eta, t-1}} \tag{3.43}$$

$$\hat{\pi}_{\eta t} = \hat{P}_{\eta t} - \hat{P}_{\eta, t-1} \tag{3.101}$$

Regional Price Level

Log-linearize equation 3.42:

$$P_{\eta t}^{1-\psi} = \theta P_{\eta,t-1}^{1-\psi} + (1-\theta) P_{\eta t}^{*1-\psi} \implies (3.42)$$

$$P^{1-\psi}(1+(1-\psi)\hat{P}_{\eta t}) = \theta P^{1-\psi}(1+(1-\psi)\hat{P}_{\eta,t-1}) + (1-\theta) P^{1-\psi}(1+(1-\psi)\hat{P}_{\eta t}^{*}) \implies \hat{P}_{\eta t} = \theta \hat{P}_{\eta,t-1} + (1-\theta)\hat{P}_{\eta t}^{*} \qquad (3.102)$$

⁹ see lemma A.3 for details.

New Keynesian Phillips Curve

In order to log-linearize equation 3.41, it is necessary to eliminate both the summation and the product operators. To handle the product operator, apply lemma A.5:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} P_{\eta t}^{*} Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \frac{\psi}{\psi - 1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \implies (3.41)$$

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} P_{\eta t}^{*} Y_{\eta j, t+s}}{(1+R)^{s} \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\} =$$

$$= \frac{\psi}{\psi - 1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{(1+R)^{s} \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\}$$
(3.103)

First, log-linearize the left hand side of equation 3.103 with respect to $P_{\eta t}^*$, $Y_{\eta j t}$, \widetilde{R}_t :

$$\begin{split} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} P_{\eta t}^{*} Y_{\eta j,t+s}}{(1+R)^{s} \left(1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\} & \Longrightarrow \\ \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \frac{P_{\eta}^{*} Y_{\eta j} \left(1+\hat{P}_{\eta t}^{*}+\hat{Y}_{\eta j,t+s}\right)}{1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}} \right\} & \Longrightarrow \\ P_{\eta}^{*} Y_{\eta j} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(1+\hat{P}_{\eta t}^{*}+\hat{Y}_{\eta j,t+s}-\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right) \right\} \end{split}$$

Separate the terms not dependent on *s*:

$$\begin{split} P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^{s} \right\} + \\ + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^{s} \left(\hat{Y}_{\eta j,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right) \right\} \implies \end{split}$$

Apply definition A.9 on the first term:

$$\frac{P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})}{1-\theta/(1+R)} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t}\sum_{s=0}^{\infty}\left\{\left(\frac{\theta}{1+R}\right)^{s}\left(\hat{Y}_{\eta j,t+s} - \frac{1}{1+R}\sum_{k=0}^{s-1}\widetilde{R}_{t+k}\right)\right\}$$

Second, log-linearize the left hand side of 3.103 with respect to $\Lambda_{\eta t}^*$, $Y_{\eta j t}$, \widetilde{R}_t :

$$\begin{split} \frac{\psi}{\psi-1} \mathbb{E}_t \sum_{s=0}^{\infty} \left\{ \frac{\theta^s Y_{\eta j,t+s} \Lambda_{\eta,t+s}}{(1+R)^s \left(1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\} & \Longrightarrow \\ \frac{\psi}{\psi-1} \mathbb{E}_t \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^s \frac{Y_{\eta j} \Lambda_{\eta} (1+\hat{Y}_{\eta j,t+s}+\hat{\Lambda}_{\eta,t+s})}{1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}} \right\} & \Longrightarrow \\ \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_t \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^s \left(1+\hat{Y}_{\eta j,t+s}+\hat{\Lambda}_{\eta,t+s}-\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right) \right\} \end{split}$$

Separate the terms not dependent on *s*:

$$\begin{split} \frac{\psi}{\psi - 1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1 + R} \right)^{s} \right\} + \\ + \frac{\psi}{\psi - 1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1 + R} \right)^{s} \left(\hat{Y}_{\eta j, t+s} + \hat{\Lambda}_{\eta, t+s} - \frac{1}{1 + R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} \end{split}$$

Apply definition A.9 on the first term:

$$\begin{split} \frac{\psi}{\psi-1} \cdot \frac{Y_{\eta j} \Lambda_{\eta}}{1-\theta/(1+R)} + \\ + \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} + \hat{\Lambda}_{\eta,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} \end{split}$$

Join both sides of the equation again:

$$\frac{P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})}{1-\theta/(1+R)} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} = \\
= \frac{\psi}{\psi-1} \cdot \frac{Y_{\eta j} \Lambda_{\eta}}{1-\theta/(1+R)} + \\
+ \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} + \hat{\Lambda}_{\eta,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} \quad (3.104)$$

Define a discount rate ϱ :

$$\varrho = \frac{1}{(1+R)} \tag{3.105}$$

Substitute 3.105 in 3.104:

$$\frac{P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})}{1-\theta\varrho} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta\varrho)^{s} \left(\hat{Y}_{\eta j,t+s} - \varrho \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} =$$

$$= \frac{\psi}{\psi-1} \cdot \frac{Y_{\eta j}\Lambda_{\eta}}{1-\theta\varrho} +$$

$$+ \frac{\psi}{\psi-1}Y_{\eta j}\Lambda_{\eta}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta\varrho)^{s} \left(\hat{Y}_{\eta j,t+s} + \hat{\Lambda}_{\eta,t+s} - \varrho \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\}$$
(3.106)

Substitute 3.86 in 3.106 and simplify all common terms:

$$\frac{P_{\eta}^{*}Y_{\eta j}}{1-\theta \varrho} + \frac{P_{\eta}^{*}Y_{\eta j}\hat{P}_{\eta t}^{*}}{1-\theta \varrho} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta \varrho)^{s} \left(\hat{Y}_{\eta j,t+s} - \varrho \sum_{k=0}^{s-1} \hat{R}_{t+k} \right) \right\} =$$

$$= \frac{P_{\eta}^{*}Y_{\eta j}}{1-\theta \varrho} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta \varrho)^{s} \left(\hat{Y}_{\eta j,t+s} - \varrho \sum_{k=0}^{s-1} \hat{R}_{t+k} + \hat{\Lambda}_{\eta,t+s} \right) \right\} \Longrightarrow$$

$$\frac{\hat{P}_{\eta t}^{*}}{1-\theta \varrho} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta \varrho)^{s} \left(\hat{\Lambda}_{\eta,t+s} \right) \right\} \tag{3.107}$$

Define the real marginal cost $\lambda_{\eta t}$ and log-linearize it:

$$\lambda_{\eta t} = \frac{\Lambda_{\eta t}}{P_{\eta t}} \implies \Lambda_{\eta t} = P_{\eta t} \lambda_{\eta t} \implies (3.108)$$

$$\hat{\Lambda}_{\eta t} = \hat{P}_{\eta t} + \hat{\lambda}_{\eta t} \tag{3.109}$$

Substitute 3.109 in 3.107:

$$\hat{P}_{\eta t}^* = (1 - \theta \varrho) \mathbb{E}_t \sum_{s=0}^{\infty} (\theta \varrho)^s \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s} \right)$$
(3.110)

Substitute 3.110 in 3.102:

$$\hat{P}_{\eta t} = \theta \hat{P}_{\eta, t-1} + (1 - \theta) \hat{P}_{\eta t}^* \tag{3.102}$$

$$\hat{P}_{\eta t} = \theta \hat{P}_{\eta, t-1} + (1 - \theta)(1 - \theta \varrho) \mathbb{E}_t \sum_{s=0}^{\infty} (\theta \varrho)^s \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s} \right)$$
(3.111)

Finally, to eliminate the summation, apply the lead operator $(1 - \theta \varrho \mathbb{L}^{-1})$ in

 $3.111:^{10}$

$$(1 - \theta \varrho \mathbb{L}^{-1})\hat{P}_{\eta t} = (1 - \theta \varrho \mathbb{L}^{-1}) \left[\theta \hat{P}_{\eta, t-1} + + (1 - \theta)(1 - \theta \varrho)\mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s}\right)\right] \Longrightarrow$$

$$\hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta, t-1} - \theta \varrho \theta \hat{P}_{\eta t} +$$

$$(1 - \theta)(1 - \theta \varrho)\mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s}\right) -$$

$$- \theta \varrho (1 - \theta)(1 - \theta \varrho)\mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} \left(\hat{P}_{t+s+1} + \hat{\lambda}_{\eta, t+s+1}\right)$$

$$(3.112)$$

In the first summation, factor out the first term and in the second summation, include the term $\theta\varrho$ within the operator. Then, cancel the summations and rearrange the terms:

$$\hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta,t-1} - \theta \varrho \theta \hat{P}_{\eta t} + (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} (\hat{P}_{\eta,t+s} + \hat{\lambda}_{\eta,t+s}) - \theta \varrho (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} (\hat{P}_{t+s+1} + \hat{\lambda}_{\eta,t+s+1}) \Longrightarrow \hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta,t-1} - \theta \varrho \theta \hat{P}_{\eta t} + (1 - \theta)(1 - \theta \varrho)(\hat{P}_{\eta t} + \hat{\lambda}_{\eta t}) + (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s+1} (\hat{P}_{t+s+1} + \hat{\lambda}_{\eta,t+s+1}) - (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s+1} (\hat{P}_{t+s+1} + \hat{\lambda}_{\eta,t+s+1}) \Longrightarrow \hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta,t-1} - \theta^{2} \varrho \hat{P}_{\eta t} + (1 - \theta)(1 - \theta \varrho)\hat{\lambda}_{\eta t} \Longrightarrow (\hat{P}_{\eta t} - \hat{P}_{\eta,t-1}) = \varrho (\mathbb{E}_{t} \hat{P}_{t+1} - \hat{P}_{\eta t}) + \frac{(1 - \theta)(1 - \theta \varrho)}{\theta} \hat{\lambda}_{\eta t} \qquad (3.113)$$

Substitute 3.101 in 3.113:

$$\hat{\pi}_{\eta t} = \varrho \mathbb{E}_t \hat{\pi}_{\eta, t+1} + \frac{(1-\theta)(1-\theta\varrho)}{\theta} \hat{\lambda}_{\eta t}$$
(3.114)

¹⁰ see definition A.10.

Equation 3.114 is the New Keynesian Phillips Curve in terms of the real marginal cost. It illustrates that the deviation of inflation depends on both the expectation of future inflation deviation and the present marginal cost deviation.

Regional Consumption Weight

Log-linearize 3.6:

$$C_{\eta 2t} = C_{\eta 1t} \frac{(1 - \omega_{\eta 1}) P_{1t}}{\omega_{\eta 1} P_{2t}} \Longrightarrow$$
 (3.6)

$$\hat{C}_{\eta 2t} - \hat{C}_{\eta 1t} = \hat{P}_{1t} - \hat{P}_{2t} \tag{3.115}$$

Regional Consumption of Good 1

Log-linearize 3.7:

$$C_{\eta 1t} = C_{\eta t} \left(\frac{P_{2t} \omega_{\eta 1}}{P_{1t} (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}} \Longrightarrow$$
 (3.7)

$$\hat{C}_{\eta t} - \hat{C}_{\eta 1t} = (1 - \omega_{\eta 1})(\hat{P}_{1t} - \hat{P}_{2t}) \tag{3.116}$$

Regional Price Index

Log-linearize 3.8:

$$Q_{\eta t} = \left(\frac{P_{1t}}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_{2t}}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \Longrightarrow \tag{3.8}$$

$$\hat{Q}_{\eta t} = \omega_{\eta 1} \hat{P}_{1t} + (1 - \omega_{\eta 1}) \hat{P}_{2t} \tag{3.117}$$

Labor Supply

Log-linearize 3.18:

$$\frac{\phi L_{\eta t}^{\varphi}}{C_{\eta t}^{-\sigma}} = \frac{W_{\eta t}}{Q_{\eta t}} \qquad \Longrightarrow \tag{3.18}$$

$$\varphi \hat{L}_{\eta t} + \sigma \hat{C}_{\eta t} = \hat{W}_{\eta t} - \hat{Q}_{\eta t} \tag{3.118}$$

Law of Motion for Capital

Log-linearize 3.11:

$$K_{\eta,t+1} = (1-\delta)K_{\eta t} + I_{\eta t} \qquad \Longrightarrow \qquad (3.11)$$

$$K_{\eta}(1 + \hat{K}_{\eta,t+1}) = (1 - \delta)K_{\eta}(1 + \hat{K}_{\eta t}) + I_{\eta}(1 + \hat{I}_{\eta t}) \Longrightarrow \hat{K}_{\eta,t+1} = (1 - \delta)\hat{K}_{\eta t} + \delta\hat{I}_{\eta t}$$
(3.119)

Euler equation for capital return

Log-linearize 3.19:

$$\frac{\mathbb{E}_{t}\{Q_{\eta,t+1}C_{\eta,t+1}^{\sigma}\}}{Q_{\eta t}C_{\eta t}^{\sigma}} = \beta \frac{\mathbb{E}_{t}\{P_{\eta,t+1}(1-\delta) + R_{t+1}\}}{P_{\eta t}} \iff (3.19)$$

$$\mathbb{E}_{t}\left\{\frac{Q_{\eta,t+1}C_{\eta,t+1}^{\sigma}}{P_{\eta,t+1}}\right\} \cdot \frac{P_{\eta t}}{Q_{\eta t}C_{\eta t}^{\sigma}} = \beta \mathbb{E}_{t}\left\{(1-\delta) + \frac{R_{t+1}}{P_{\eta,t+1}}\right\} \implies$$

$$(\hat{Q}_{\eta,t+1} - \hat{Q}_{\eta t}) + \sigma(\hat{C}_{\eta,t+1} - \hat{C}_{\eta t}) - (\hat{P}_{\eta,t+1} - \hat{P}_{\eta,t}) = \beta r(\hat{R}_{\eta,t+1} - \hat{P}_{\eta,t+1})$$
(3.120)

where:
$$r = \frac{R_K}{P_{\eta}}$$
 (3.121)

Bundle Technology

Apply the natural logarithm to 3.21:

$$Y_{\eta t} = \left(\int_0^1 Y_{\eta j t}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} j\right)^{\frac{\psi}{\psi - 1}} \Longrightarrow$$

$$\ln Y_{\eta t} = \frac{\psi}{\psi - 1} \ln \left(\int_0^1 Y_{\eta j t}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} j\right)$$
(3.21)

Log-linearize using corollary A.3.1:

$$\ln Y_{\eta} + \hat{Y}_{\eta t} = \frac{\psi}{\psi - 1} \left[\ln \left(\int_{0}^{1} Y_{\eta j}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} \, j \right) + \frac{\psi - 1}{\psi} \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} \, j \right] \implies \\
\ln Y_{\eta} + \hat{Y}_{\eta t} = \frac{\psi}{\psi - 1} \left[\ln \left(Y_{\eta j}^{\frac{\psi - 1}{\psi}} \int_{0}^{1} \, \mathrm{d} \, j \right) + \frac{\psi - 1}{\psi} \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} \, j \right] \implies \\
\ln Y_{\eta} + \hat{Y}_{\eta t} = \frac{\psi}{\psi - 1} \left[\frac{\psi - \mathcal{X}}{\psi} \ln Y_{\eta j} + \ln \mathcal{X} + \frac{\psi - \mathcal{X}}{\psi} \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} \, j \right] \implies \\
\ln Y_{\eta} + \hat{Y}_{\eta t} = \ln Y_{\eta j} + \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} \, j$$

Apply corollary A.2.1:

$$\ln Y_{\eta} + \hat{Y}_{\eta t} = \ln Y_{\eta j} + \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \implies$$

$$\hat{Y}_{\eta t} = \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \qquad (3.122)$$

Production Function

Log-linearize 3.26:

$$Y_{\eta j t} = Z_{A \eta t} K_{\eta j t}^{\alpha_{\eta}} L_{\eta j t}^{1 - \alpha_{\eta}} \qquad \Longrightarrow \qquad (3.26)$$

$$Y_{\eta j} (1 + \hat{Y}_{\eta j t}) = Z_{A \eta} K_{\eta j}^{\alpha_{\eta}} L_{\eta j}^{1 - \alpha_{\eta}} (1 + \hat{Z}_{A \eta t} + \alpha_{\eta} \hat{K}_{\eta j t} + (1 - \alpha_{\eta}) \hat{L}_{\eta j t}) \Longrightarrow$$

$$\hat{Y}_{\eta j t} = \hat{Z}_{A \eta t} + \alpha_{\eta} \hat{K}_{\eta j t} + (1 - \alpha_{\eta}) \hat{L}_{\eta j t} \qquad (3.123)$$

Substitute 3.123 in 3.122:

$$\hat{Y}_{\eta t} = \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \qquad \Longrightarrow \qquad (3.122)$$

$$\hat{Y}_{\eta t} = \int_{0}^{1} \left[\hat{Z}_{A \eta t} + \alpha_{\eta} \hat{K}_{\eta j t} + (1 - \alpha_{\eta}) \hat{L}_{\eta j t} \right] \, \mathrm{d} j \qquad \Longrightarrow$$

$$\hat{Y}_{\eta t} = \hat{Z}_{A \eta t} + \alpha_{\eta} \int_{0}^{1} \hat{K}_{\eta j t} \, \mathrm{d} j + (1 - \alpha_{\eta}) \int_{0}^{1} \hat{L}_{\eta j t} \, \mathrm{d} j \qquad (3.124)$$

Apply the natural logarithm and then log-linearize 3.51:

$$L_{\eta t} = \int_{0}^{1} L_{\eta j t} \, \mathrm{d} \, j \qquad \Longrightarrow \qquad (3.51)$$

$$\ln L_{\eta t} = \ln \left[\int_{0}^{1} L_{\eta j t} \, \mathrm{d} \, j \right] \qquad \Longrightarrow$$

$$\ln L + \hat{L}_{\eta t} = \ln \left[\int_{0}^{1} L_{\eta j} \, \mathrm{d} \, j \right] + \int_{0}^{1} \hat{L}_{\eta j t} \, \mathrm{d} \, j \qquad \Longrightarrow$$

$$\ln L + \hat{L}_{\eta t} = \ln L_{\eta j} + \ln 1 + \int_{0}^{1} \hat{L}_{\eta j t} \, \mathrm{d} \, j$$

Apply corollary A.2.1:

$$\implies \hat{L}_{\eta t} = \int_0^1 \hat{L}_{\eta j t} \, \mathrm{d} j \tag{3.125}$$

By analogy, the total capital deviation is the sum of all firm's deviations:

$$\hat{K}_{\eta t} = \int_0^1 \hat{K}_{\eta j t} \,\mathrm{d}\,j \tag{3.126}$$

Substitute 3.125 and 3.126 in 3.124:

$$\hat{Y}_{\eta t} = \hat{Z}_{A\eta t} + \alpha_{\eta} \hat{K}_{\eta t} + (1 - \alpha_{\eta}) \hat{L}_{\eta t}$$
(3.127)

Technical and Economic Marginal Rates of Substitution (TMRS and EMRS)

Log-linearize 3.30 and then apply 3.125 and 3.126:

$$\frac{K_{\eta jt}}{L_{\eta jt}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}} \tag{3.30}$$

$$\hat{K}_{\eta t} - \hat{L}_{\eta t} = \hat{W}_{\eta t} - \hat{R}_{Kt} \tag{3.128}$$

Marginal Cost

Log-linearize 3.35:

$$\Lambda_{\eta t} = \frac{1}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}} \right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}} \right)^{1 - \alpha_{\eta}} \implies (3.35)$$

$$\hat{\Lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} \tag{3.129}$$

Substitute 3.109 in 3.129:

$$\hat{\Lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} \Longrightarrow
\hat{P}_{\eta t} + \hat{\lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} \Longrightarrow
\hat{\lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} - \hat{P}_{\eta t}$$
(3.130)

Monetary Policy

Log-linearize 3.44:

$$\frac{R_t}{R} = \frac{R_{t-1}^{\gamma_R} (\pi_t^{\gamma_R} Y_t^{\gamma_Y})^{(1-\gamma_R)} Z_{Mt}}{R^{\gamma_R} (\pi^{\gamma_R} Y_t^{\gamma_Y})^{(1-\gamma_R)}} \Longrightarrow$$
(3.44)

$$\frac{R(1+\hat{R}_t)}{R} = \frac{R^{\gamma_R}(\pi^{\gamma_\pi}Y^{\gamma_Y})^{(1-\gamma_R)}Z_M}{R^{\gamma_R}(\pi^{\gamma_\pi}Y^{\gamma_Y})^{(1-\gamma_R)}}$$

$$\cdot \left[1 + \gamma_R \hat{R}_{t-1} + (1 - \gamma_R)(\gamma_\pi \hat{\pi}_t + \gamma_Y \hat{Y}_t) + \hat{Z}_{Mt} \right] \Longrightarrow
\hat{R}_t = \gamma_R \hat{R}_{t-1} + (1 - \gamma_R)(\gamma_\pi \hat{\pi}_t + \gamma_Y \hat{Y}_t) + \hat{Z}_{Mt}$$
(3.131)

National Gross Inflation Rate

Log-linearize 3.45:

$$\pi_t = \pi_{1t}^{\theta_{\pi}} \pi_{2t}^{1-\theta_{\pi}} \implies (3.45)$$

$$\hat{\pi}_t = \theta_\pi \hat{\pi}_{1t} + (1 - \theta_\pi) \hat{\pi}_{2t} \tag{3.132}$$

Productivity Shock

Log-linearize 3.47:

$$\ln Z_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta,t-1} + \varepsilon_{A\eta t} \qquad \Longrightarrow \qquad (3.47)$$

$$\ln Z_{A\eta} + \hat{Z}_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} (\ln Z_{A\eta} + \hat{Z}_{A\eta, t-1}) + \varepsilon_{A\eta} \Longrightarrow$$

$$\hat{Z}_{A\eta t} = \rho_{A\eta} \hat{Z}_{A\eta, t-1} + \varepsilon_{A\eta}$$
(3.133)

Monetary Shock

Log-linearize 3.48:

$$\ln Z_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_{M,t-1} + \varepsilon_{Mt} \qquad \Longrightarrow \qquad (3.48)$$

$$\ln Z_M + \hat{Z}_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M (\ln Z_M + \hat{Z}_{M,t-1}) + \varepsilon_M \implies$$

$$\hat{Z}_{Mt} = \rho_M \hat{Z}_{M,t-1} + \varepsilon_M$$
(3.134)

Goods-Market Clearing Condition

Log-linearize 3.49:

$$Y_t = Y_{1t} + Y_{2t} (3.49)$$

$$Y(1+\hat{Y}_t) = Y_1(1+\hat{Y}_{1t}) + Y_2(1+\hat{Y}_{2t}) \implies$$

$$\hat{Y}_t = \frac{Y_1}{Y}\hat{Y}_{1t} + \frac{Y_2}{Y}\hat{Y}_{2t}$$
(3.135)

Define the regional weights $\langle \theta_Y \ (1 - \theta_Y) \rangle$ in the production total:

$$\left\langle \theta_{Y} \quad (1 - \theta_{Y}) \right\rangle \coloneqq \left\langle \frac{Y_{1}}{Y} \quad \frac{Y_{2}}{Y} \right\rangle$$
 (3.136)

Substitute 3.136 in 3.135:

$$\hat{Y}_t = \theta_Y \hat{Y}_{1t} + (1 - \theta_Y) \hat{Y}_{2t} \tag{3.137}$$

Regional Goods-Market Clearing Condition

Log-linearize 3.50:

$$Y_{\eta t} = C_{\eta t} + I_{\eta t} \implies \tag{3.50}$$

$$Y_{\eta}(1+\hat{Y}_{\eta t}) = C_{\eta}(1+\hat{C}_{\eta t}) + I_{\eta}(1+\hat{I}_{\eta t}) \implies$$

$$\hat{Y}_{\eta t} = \frac{C_{\eta}}{Y_{\eta}} \hat{C}_{\eta 1 t} + \frac{I_{\eta}}{Y_{\eta}} \hat{I}_{\eta t} \tag{3.138}$$

Define the consumption and investment weights $\left\langle \theta_{C\eta} \right| \left(1 - \theta_{C\eta}\right) \right\rangle$ in the regional production:

$$\left\langle \theta_{C\eta} \ \left(1 - \theta_{C\eta} \right) \right\rangle \coloneqq \left\langle \frac{C_{\eta}}{Y_{\eta}} \ \frac{I_{\eta}}{Y_{\eta}} \right\rangle$$
 (3.139)

Substitute 3.139 in 3.138:

$$\hat{Y}_{\eta t} = \theta_{C\eta} \hat{C}_{\eta t} + (1 - \theta_{C\eta}) \hat{I}_{\eta t} \tag{3.140}$$

Budget Constraint

Log-linearize 3.55: and then apply 3.88 and 3.122:

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = R_{t}K_{\eta t} + P_{\eta t} \int_{0}^{1} Y_{\eta j t} \, \mathrm{d} \, j \implies$$

$$Q_{\eta}C_{\eta}(1 + \hat{Q}_{\eta t} + \hat{C}_{\eta t}) + P_{\eta}I_{\eta}(1 + \hat{P}_{\eta t} + \hat{I}_{\eta t}) =$$

$$= RK_{\eta}(1 + \hat{R}_{t} + \hat{K}_{\eta t}) + P_{\eta} \int_{0}^{1} Y_{\eta j} \, \mathrm{d} \, j(1 + \hat{P}_{\eta t} + \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} \, j) \implies$$
(3.55)

$$Q_{\eta}C_{\eta}(\hat{Q}_{\eta t} + \hat{C}_{\eta t}) + P_{\eta}I_{\eta}(\hat{P}_{\eta t} + \hat{I}_{\eta t}) =$$

$$= RK_{\eta}(\hat{R}_{t} + \hat{K}_{\eta t}) + P_{\eta}Y_{\eta}(\hat{P}_{\eta t} + \hat{Y}_{\eta t})$$
(3.141)

3.3.1 Log-linear Model Structure

The log-linear model is a square system of 30 variables and equations, summarized as follows:

- Variables:
 - Real Variables: $\langle \hat{C}_{\eta} \quad \hat{L}_{\eta} \quad \hat{K}_{\eta} \quad \hat{I}_{\eta} \quad \hat{C}_{\eta 1} \quad \hat{C}_{\eta 2} \quad \hat{Y}_{\eta} \quad \hat{Y} \quad \hat{Z}_{A\eta} \quad \hat{Z}_{M} \rangle$;
 - Nominal Variables: $\langle \hat{Q}_{\eta} \quad \hat{P}_{\eta} \quad \hat{R} \quad \hat{\pi} \quad \hat{W}_{\eta} \quad \hat{\lambda}_{\eta} \quad \hat{\pi}_{\eta} \rangle$.
- Equations:
 - 1. Regional Gross Inflation Rate

$$\hat{\pi}_{\eta t} = \hat{P}_{\eta t} - \hat{P}_{\eta, t-1} \tag{3.101}$$

2. New Keynesian Phillips Curve

$$\hat{\pi}_{\eta t} = \beta \mathbb{E}_t \hat{\pi}_{\eta, t+1} + \frac{(1-\theta)(1-\theta\beta)}{\theta} \hat{\lambda}_{\eta t}$$
(3.114)

3. Regional Consumption Weight

$$\hat{C}_{\eta 2t} - \hat{C}_{\eta 1t} = \hat{P}_{1t} - \hat{P}_{2t} \tag{3.115}$$

4. Regional Consumption of Good 1

$$\hat{C}_{\eta t} - \hat{C}_{\eta 1t} = (1 - \omega_{\eta 1})(\hat{P}_{1t} - \hat{P}_{2t}) \tag{3.116}$$

5. Regional Price Index

$$\hat{Q}_{\eta t} = \omega_{\eta 1} \hat{P}_{1t} + (1 - \omega_{\eta 1}) \hat{P}_{2t} \tag{3.117}$$

6. Labor Supply

$$\varphi \hat{L}_{\eta t} + \sigma \hat{C}_{\eta t} = \hat{W}_{\eta t} - \hat{Q}_{\eta t} \tag{3.118}$$

7. Law of Motion for Capital

$$\hat{K}_{\eta,t+1} = (1-\delta)\hat{K}_{\eta t} + \delta\hat{I}_{\eta t} \tag{3.119}$$

8. Euler equation for capital return

$$(\hat{Q}_{\eta,t+1} - \hat{Q}_{\eta t}) + \sigma(\hat{C}_{\eta,t+1} - \hat{C}_{\eta t}) - (\hat{P}_{\eta,t+1} - \hat{P}_{\eta,t}) = = \beta r(\hat{R}_{\eta,t+1} - \hat{P}_{\eta,t+1})$$
(3.120)

9. Production Function

$$\hat{Y}_{\eta t} = \hat{Z}_{A\eta t} + \alpha_{\eta} \hat{K}_{\eta t} + (1 - \alpha_{\eta}) \hat{L}_{\eta t}$$
(3.127)

10. Technical and Economic Marginal Rates of Substitution

$$\hat{K}_{\eta t} - \hat{L}_{\eta t} = \hat{W}_{\eta t} - \hat{R}_{Kt} \tag{3.128}$$

11. Marginal Cost

$$\hat{\lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} - \hat{P}_{\eta t}$$
(3.130)

12. Monetary Policy

$$\hat{R}_{t} = \gamma_{R} \hat{R}_{t-1} + (1 - \gamma_{R})(\gamma_{\pi} \hat{\pi}_{t} + \gamma_{Y} \hat{Y}_{t}) + \hat{Z}_{Mt}$$
(3.131)

13. National Gross Inflation Rate

$$\hat{\pi}_t = \theta_\pi \hat{\pi}_{1t} + (1 - \theta_\pi) \hat{\pi}_{2t} \tag{3.132}$$

14. Productivity Shock

$$\hat{Z}_{Ant} = \rho_{An} \hat{Z}_{An,t-1} + \varepsilon_{An} \tag{3.133}$$

15. Monetary Shock

$$\hat{Z}_{Mt} = \rho_M \hat{Z}_{M,t-1} + \varepsilon_M \tag{3.134}$$

16. Goods-Market Clearing Condition

$$\hat{Y}_t = \theta_Y \hat{Y}_{1t} + (1 - \theta_Y) \hat{Y}_{2t} \tag{3.137}$$

17. Regional Goods-Market Clearing Condition

$$\hat{Y}_{\eta t} = \theta_{C\eta} \hat{C}_{\eta t} + (1 - \theta_{C\eta}) \hat{I}_{\eta t}$$
(3.140)

3.3.2 Eigenvalues and Forward Looking Variables

As it stands, the model has more forward-looking variables than eigenvalues greater than one, indicating that the model is indeterminate. To transform the model into one with a single solution, the number of eigenvalues and forward-looking variables must be equal. To address this, Farmer et al. (2015) employs a method where excess forward-looking variables are substituted with an expectational variable at time t, along with a expectational shock $sunspot_{\eta}$, representing the deviation between the expected and the realized values. For the present model, the variables created are the expected regional gross inflation rates $\pi_{\eta t}^{X}$ and the expected capital deviation $K_{\eta t}^{X}$:

$$\pi_{\eta t}^{X} = \mathbb{E}_{t} \hat{\pi}_{\eta, t+1} \tag{3.142}$$

$$sunspot_{\eta} = \hat{\pi}_{\eta t} - \pi_{\eta, t-1}^{X} \tag{3.143}$$

$$K_{\eta t}^{X} = \hat{K}_{\eta, t+1} \tag{3.144}$$

$$sunspot_{K\eta} = \hat{K}_{\eta t} - K_{\eta, t-1}^{X}$$
 (3.145)

3.4 Calibration

In this section, we outline the calibration process to replicate Brazilian economic characteristics, utilizing both literature and datasets. First, a region must be selected: in this study, region 1 corresponds to the State of São Paulo, which contributes 30% to the national GDP, as reported by IBGE (2024). While other regions or groupings are viable options, such as groups of States or Cities, the limitation is that the smallest region cannot be less than 0.03 of the total, ensuring model stability, as emphasized by Konôpková (2019).

To characterize region 1 as more capital-intensive, the capital elasticity of production α_1 is set at 0.36, compared to the commonly used value of 0.30, which is used for region 2. Various parameters, such as the intertemporal discount factor β ; interest-rate smoothing parameter γ_R ; interest-rate sensitivity in relation to inflation γ_π ; interest-rate sensitivity in relation to product γ_Y ; capital depreciation rate δ ; price stickness parameter θ ; autoregressive parameter of productivity in region 1 ρ_{A1} ; autoregressive parameter of productivity in region 2 ρ_{A2} ; autoregressive parameter of monetary policy ρ_M ; relative risk aversion coefficient σ ; relative labor weight in utility ϕ ; marginal disutility of labor supply φ ; elasticity of substitution between intermediate goods ψ ; standard deviation of productivity shock $\sigma_{A\eta}$; standard deviation of monetary shock σ_M , are drawn from existing literature, as documented in Costa Junior (2016) and Pereira (2021).

The weight of region 1 in total production, θ_Y , is determined by the São Paulo GDP to Brazil GDP ratio, as presented in Table (1). Additionally, the productivity ratio θ_Z quantifies the relative productivity of region 2 compared to region 1, utilizing GDP per hours worked as a measure (KRUGMAN, 1997).

3.4.1 Brazilian GDP in 2021

Table 1: Brazilian GDP in 2021

State	GPD (R\$)	Participation (%)
São Paulo	2.719.751.231	30,2
Rio de Janeiro	949.300.770	10,5
Minas Gerais	857.593.214	9,5
Rio Grande do Sul	581.283.677	6,5
Paraná	549.973.062	6,1
Santa Catarina	428.570.889	4,8
Bahia	352.617.852	3,9
Distrito Federal	286.943.782	3,2
Goiás	269.627.874	3,0
Pará	262.904.979	2,9
Mato Grosso	233.390.203	2,6
Pernambuco	220.813.522	2,5
Ceará	194.884.802	2,2
Espírito Santo	186.336.505	2,1
Mato Grosso do Sul	142.203.766	1,6
Amazonas	131.531.038	1,5
Maranhão	124.980.720	1,4
Rio Grande do Norte	80.180.733	0,9
Paraíba	77.470.331	0,9
Alagoas	76.265.620	0,8
Piauí	64.028.303	0,7
Rondônia	58.170.096	0,6
Sergipe	51.861.397	0,6
Tocantins	51.780.764	0,6
Acre	21.374.440	0,2
Amapá	20.099.851	0,2
Roraima	18.202.579	0,2
Brasil	9.012.142.000	100,0

Source: IBGE (2024)

3.4.2 Parameter Calibration

Table 2: Parameter Calibration

Parameter	Definition	Calibration
α_1	capital elasticity of production in region 1	0.4
α_2	capital elasticity of production in region 2	0.3
β	intertemporal discount factor	0.985
γ_R	interest-rate smoothing parameter	0.79
γ_π	interest-rate sensitivity in relation to inflation	2.43
$\gamma_{ m Y}$	interest-rate sensitivity in relation to product	0.16
δ	capital depreciation rate	0.025
θ	price stickness parameter	0.8
$ heta_Y$	weight of region 1 in total production	0.3
θ_Z	productivity proportion between regions	0.7
ρ_{A1}	autoregressive parameter of productivity in region 1	0.95
ρ_{A2}	autoregressive parameter of productivity in region 2	0.95
$ ho_M$	autoregressive parameter of monetary policy	0.9
σ	relative risk aversion coefficient	2
φ	relative labor weight in utility	1
φ	marginal disutility of labor supply	1.5
ψ	elasticity of substitution between intermediate goods	8
$\sigma_{A\eta}$	standard deviation of productivity shock	0.01
σ_{M}	standard deviation of monetary shock	0.01
ω_{11}	weight of good 1 in consumption composition of region 1	0.7
ω_{21}	weight of good 1 in consumption composition of region 2	0.4

Sources: The Author and Costa Junior (2016)

3.4.3 Variables at Steady State

Table 3: Variables at Steady State

Variable	Steady State Value
$\langle P_1 Z_{A1} \rangle$	$\vec{1}$
$\overline{\langle P_2 \mid Z_{A2} \rangle}$	⟨1 .7⟩
$\overline{\langle Z_M \ \pi \ \pi_1 \ \pi_2 \rangle}$	$ec{1}$
R	.0402
$\overline{\langle \Lambda_1 \mid \Lambda_2 \rangle}$	⟨.875 .875⟩
$\overline{\hspace{1cm}}\langle W_1 \hspace{1cm} W_2 \rangle$	⟨2.2208 .8221⟩
$\overline{\langle a_1 \ a_2 \rangle}$	⟨4.3957 1.3514⟩
	⟨.2175 .1631⟩
$\overline{\langle Y_1 \mid Y_2 \rangle}$	(2.6811 1.315)
$\overline{\langle I_1 \mid I_2 \rangle}$	⟨.5832 .2145⟩
$\overline{\langle K_1 \mid K_2 \rangle}$	(23.3263 8.5808)
C_1 C_2	(2.0979 1.1005)
Q_1 Q_2	⟨1.842 1.9601⟩
$\langle C_{11} C_{12} \rangle$	(2.7051 1.1593)
$\langle C_{21} C_{22} \rangle$	⟨.8628 1.2943⟩
$\langle L_1 L_2 \rangle$	⟨.6338 .9797⟩

Source: The Author.

4 Results

Following the data, a Bayesian estimation will be performed to estimate the model parameters.

In due time, a thorough analysis of the results will be conducted.

4.1 Impulse Response Functions

4.1.1 Productivity Shock

Figure 2: Productivity Shock Impulse Response Functions

4.1.2 Monetary Shock

Figure 3: Monetary Shock Impulse Response Functions

4.2 Parametrization

To be done.

5 Final Remarks

This section will summarize and discuss the main findings, implications, and potential future work related to your research.

5.1 Future Challenges

References

ALBUQUERQUEMELLO, V. P. d. Mercado imobiliário, crédito e o Ciclo Real de Negócios: evidências a partir de um modelo DSGE para a economia estadunidense. 2018. PhD thesis. Cit. on p. 20.

ALPANDA, S.; AYSUN, U. International transmission of financial shocks in an estimated DSGE model. **Journal of International Money and Finance**, v. 47, Oct. 2014. DOI: 10.1016/j.jimonfin.2014.04.007. Cit. on p. 21.

BERGHOLT, D. The Basic New Keynesian Model. [S.l.], 2012. Available from: https://bergholt.weebly.com/uploads/1/1/8/4/11843961/the_basic_new_keynesian_model_-_drago_bergholt.pdf>. Cit. on p. 20.

BERTANHA, M.; HADDAD, E. A. Efeitos regionais da política monetária no Brasil: impactos e transbordamentos espaciais. **Revista Brasileira de Economia**, Mar. 2008. DOI: 10.1590/S0034-71402008000100001. Cit. on p. 15.

CALVO, G. A. Staggered Prices In a Utility-maximizing Framework. **Journal of Monetary Economics**, Sept. 1983. DOI: 10.1016/0304-3932(83)90060-0. Cit. on pp. 23, 34.

CAPELETI, P.; GARCIA, M.; MIESSI SANCHES, F. Countercyclical credit policies and banking concentration: Evidence from Brazil. **Journal of Banking & Finance**, Oct. 2022. DOI: 10.1016/j.jbankfin.2022.106589. Cit. on p. 20.

CORBO, V.; STRID, I. MAJA A two-region DSGE model for Sweden and its main trading partners. [S.l.]: Sveriges Riksbank Working Paper Series, 2020. Available from: https://www.econstor.eu/handle/10419/232594. Cit. on p. 21.

COSTA JUNIOR, C. J. **Understanding DSGE**. Wilmington, Delaware: Vernon Press, 2016. (Vernon series in economic methodology). Cit. on pp. 20, 23, 28, 43, 66, 68.

COSTA JUNIOR, C. J.; TEIXEIRA, A. M.; SILVA, M. F. d. DSGE para Macroeconomia Regional: Uma Aplicação para o Estado de Goiás. In: ENCONTRO ANPEC. Cit. on p. 18.

CROITOROV, O.; GIOVANNINI, M.; HOHBERGER, S.; RATTO, M.; VOGEL, L. Financial spillover and global risk in a multi-region model of the world economy. **Journal of Economic Behavior & Organization**, Sept. 2020. DOI: 10.1016/j.jebo.2020.05.024. Cit. on p. 21.

FARMER, R. E.; KHRAMOV, V.; NICOLÒ, G. Solving and estimating indeterminate DSGE models. **Journal of Economic Dynamics and Control**, v. 54, 2015. DOI: 10.1016/j.jedc.2015.02.012. Cit. on p. 65.

GALÍ, J. Monetary Policy, Inflation, And The Business Cycle: An Introduction To The New Keynesian Framework And Its Applications. Second edition. Princeton; Oxford: Princeton University Press, 2015. Cit. on pp. 15, 19, 20, 84.

GALÍ, J.; MONACELLI, T. Optimal Fiscal Policy in a Monetary Union. **Proceedings**, 2005. Publisher: Federal Reserve Bank of San Francisco. Cit. on p. 21.

HOLM, M. B.; PAUL, P.; TISCHBIREK, A. The Transmission of Monetary Policy under the Microscope. **Journal of Political Economy**, v. 129, n. 10, p. 2861–2904, Oct. 2021. DOI: 10.1086/715416. Visited on: 21 Dec. 2022. Cit. on p. 19.

IBGE. **Produto Interno Bruto (PIB) 2021**. [S.l.: s.n.]. Available from: https://sidra.ibge.gov.br/tabela/5938#resultado. Visited on: 24 Jan. 2024. Cit. on pp. 66, 67.

INADA, K.-i. On a Two-Sector Model of Economic Growth: Comments and a Generalization. **The Review of Economic Studies**, v. 30, 1 June 1963. DOI: 10.2307/2295809. Cit. on p. 81.

KONÔPKOVÁ, Z. Pitfalls of DSGE Model Approach in Monetary Union. **DANUBE**, v. 10, n. 4, p. 369–382, 2019. DOI: 10.2478/danb-2019-0019. Visited on: 10 Nov. 2023. Cit. on p. 66.

KRUGMAN, P. Defining and Measuring Productivity. In: THE age of diminished expectations: U.S. economic policy in the 1990s. [S.l.: s.n.], 1997. Cit. on p. 66.

MORA, J. U.; COSTA JUNIOR, C. J. FDI Asymmetries in Emerging Economies: The Case of Colombia. **International Journal of Economics and Finance**, v. 11, n. 8, 25 June 2019. DOI: 10.5539/ijef.v11n8p35. Cit. on p. 18.

OKANO, M.; IDA, D.; KITANO, S.; MATSUBAYASHI, Y. Development of a Regional DSGE Model in Japan: Empirical Evidence of Economic Stagnation in the Kansai Economy. **APIR Discussion Paper Series**, Apr. 2015. Cit. on p. 21.

PEREIRA, R. M. An RBC model of the Brazilian economy with stylized fiscal shocks. **Revista Brasileira de Economia**, v. 75, n. 4, 2021. DOI: 10.5935/0034-7140.20210024. Visited on: 15 Oct. 2023. Cit. on p. 66.

PEREIRA, R. M.; GÓES, G. S. O Desmatamento amazônico e o ciclo econômico no Brasil. http://www.ipea.gov.br, Instituto de Pesquisa Econômica Aplicada (Ipea), June 2013. Cit. on p. 20.

PYTLARCZYK, E. An Estimated DSGE Model for the German Economy within the Euro Area. **SSRN Electronic Journal**, 2005. DOI: 10.2139/ssrn.2785216. Cit. on p. 21.

RIBEIRO, G. M. **Alongamento dos Ciclos Econômicos - O Preço da Estabilidade**. 2023. Dissertação – UFPR, Curitiba. Cit. on p. 20.

RICKMAN, D. S. Modern Macroeconomics and Regional Economic Modeling. **Journal of Regional Science**, 2010. DOI: 10.1111/j.1467-9787.2009.00647.x. Cit. on pp. 16, 18, 19.

SIMON, C. P.; BLUME, L. E. **Mathematics for Economists**. First edition, international student edition. New York London: W. W. Norton, 1994. Cit. on p. 81.

SMETS, F.; WOUTERS, R. An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area. **Journal of the European Economic Association**, 1 Sept. 2003. DOI: 10.1162/154247603770383415. Cit. on p. 19.

SMETS, F.; WOUTERS, R. Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach. **American Economic Review**, v. 97, June 2007. DOI: 10.1257/aer.97.3.586. Cit. on p. 19.

SOLIS-GARCIA, M. **UCB Macro Modeling Course**. 2022. Available from:

https://sites.google.com/a/macalester.edu/solis-garcia/home/teaching/ucb-macro-modeling-course. Visited on: 13 Jan. 2023. Cit. on pp. 20, 21, 23, 28, 47, 81-84.

SOLTANI, S.; FALIHI, N.; MEHRABIYAN, A.; AMIRI, H. Investigating the Effects of Monetary and Financial Shocks on the Key Macroeconomic Variables, Focusing on the Intermediary Role of Banks Using DSGE Models. **Journal of Money and Economy**, v. 16, 1 Dec. 2021. DOI: 10.52547/jme.16.4.477. Available from: http://jme.mbri.ac.ir/article-1-541-en.html>. Cit. on p. 19.

TAMEGAWA, K. Two-Region DSGE Analysis of Regionally Targeted Fiscal Policy. **Review of Regional Studies**, v. 42, 13 Dec. 2012. DOI: 10.52324/001c.8103. Cit. on p. 20.

_____. Constructing a Small-Region DSGE Model. **ISRN Economics**, 11 Mar. 2013. DOI: 10.1155/2013/825862. Cit. on p. 21.

TAYLOR, J. B. Discretion Versus Policy Rules In Practice. **Carnegie-Rochester Conference Series on Public Policy**, Dec. 1993. DOI: 10.1016/0167-2231(93)90009-L. Cit. on pp. 23, 37.

UHLIG, H. A Toolkit For Analysing Nonlinear Dynamic Stochastic Models Easily. In: COMPUTATIONAL Methods for the Study of Dynamic Economies. Oxford: Oxford University Press, 1999. P. 30–61. Cit. on pp. 24, 51.

VINHADO, F. d. S.; DIVINO, J. A. Política Monetária, Macroprudencial E Bancos: Análise Da Transmissão Por Meio De Um Modelo DSGE. In: 44ř ENCONTRO NACIONAL DE ECONOMIA. Available from:

https://en.anpec.org.br/previous-editions.php?r=encontro-2016>. Cit. on p. 19.

WALQUE, G. D.; PIERRARD, O.; ROUABAH, A. Financial (In)Stability, Supervision and Liquidity Injections: A Dynamic General Equilibrium Approach. **The Economic Journal**, 1 Dec. 2010. DOI: 10.1111/j.1468-0297.2010.02383.x. Cit. on p. 19.

WALSH, C. E. **Monetary Theory and Policy**. Fourth edition. London, England; Cambridge, Massachusetts: MIT Press, 2017. Cit. on p. 26.

A Appendix

A.1 Table of the Literature Review

A table of the literature review will be presented here, in order to compare the elements of each DSGE model discussed in the text.

A.2 Definitions and Lemmas

The objective of this appendix is to present the definitions and lemmas used throughout the text.

Household

Definition A.1 (Discount Factor β). Other things the same, a unit of consumption enjoyed tomorrow is less valuable (yields less utility) than a unit of consumption enjoyed today (SOLIS-GARCIA, 2022, Lecture 2, p.1).

Definition A.2 (Inada Condition). The Inada conditions (INADA, 1963) avoid corner solutions. For this purpose, it is assumed that the partial derivatives u_C and u_L of the function u(C, L) satisfy the following rules:

$$\lim_{C \to 0} u_C(C, L^*) = \infty \quad \text{and} \quad \lim_{C \to \infty} u_C(C, L^*) = 0$$

$$\lim_{L \to 0} u_C(C^*, L) = \infty \quad \text{and} \quad \lim_{L \to \infty} u_C(C^*, L) = 0$$
(A.1)

where C^* , $L^* \in \mathbb{R}_{++}$ and u_j is the partial derivative of the utility function with respect to j = C, L (SOLIS-GARCIA, 2022, Lecture 1, p.2)

Definition A.3 (Transversality Condition). (SOLIS-GARCIA, 2022, Lecture 4, p.4)

Firms

Lemma A.1 (Marginal Cost). The Lagrangian multiplier Λ_t is the nominal marginal cost of the intermediate-good firm:

$$MC_t := \frac{\partial TC_t}{\partial Y_t} = \Lambda_t$$
 (A.2)

Proof. Simon and Blume (1994, p.449).

Definition A.4 (Constant Returns to Scale). (SOLIS-GARCIA, 2022, Lecture 1, p.5)

Definition A.5 (Homogeneous Function of Degree *k*). (SOLIS-GARCIA, 2022, Lecture 1, p.5)

Monetary Authority

Shocks

Equilibrium Conditions

Definition A.6 (Competitive Equilibrium). (SOLIS-GARCIA, 2022, Lecture 1, p.6)

Steady State

Lemma A.2 (Steady State Inflation). In steady state, prices are stable $P_t = P_{t-1} = P$ and the gross inflation rate is one.

Corollary A.2.1. In steady state, all firms have the same level of production Y and therefore demand the same amount of factors, capital K and labor L.

$$P_t = P_{t-1} = P \implies (Y_j \quad K_j \quad L_j) = (Y \quad K \quad L)$$

Log-linearization

Definition A.7 (PERCENTAGE DEVIATION). The percentage deviation of a variable x_t from its steady state is given by (SOLIS-GARCIA, 2022, Lecture 6, p.2):

$$\hat{x}_t := \frac{x_t - x}{x} \tag{A.3}$$

Lemma A.3 (UHLIG'S RULES). The Uhlig's rules are a set of approximations used to log-linearize equations (SOLIS-GARCIA, 2022, Lecture 6, p.2).

• *Rule 1:*

$$x_t = x(1 + \hat{x}_t)$$

- Rule 2 (Product):
- *Rule 3 (Exponential):*

Corollary A.3.1 (Logarithm Rule).

$$\ln x_t \approx \ln x + \hat{x}_t$$

Definition A.8 (LEVEL DEVIATION). The level deviation of a variable u_t from its steady state is given by: (SOLIS-GARCIA, 2022, Lecture 9, p.9)

$$\widetilde{u}_t \coloneqq u_t - u$$
 (A.4)

Lemma A.4 (UHLIG'S RULES FOR LEVEL DEVIATIONS). *Uhlig's rules can be applied to level deviations in order to log-linearize equations (SOLIS-GARCIA, 2022, Lecture 9, p.9).*

• Rule 1:

$$u_t = u + \widetilde{u}_t \tag{A.5}$$

$$u_t = u\left(1 + \frac{\widetilde{u}_t}{u}\right) \tag{A.6}$$

- Rule 2 (Product):
- Rule 3 (Exponential):
- Rule 4 (Logarithm):
- Rule 5 (Percentage and Level Deviations)

Lemma A.5 (LEVEL DEVIATION OF THE PRESENT VALUE DISCOUNT FACTOR). The level deviation of the present value discount factor is equivalent to (SOLIS-GARCIA, 2022, Lecture 13, p.6):

$$\prod_{k=0}^{s-1} (1+R_{t+k}) = (1+R)^s \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)$$
(A.7)

Proof. Substitute the interest rate by the gross interest rate $GR_t = 1 + R_t$ and apply rule A.6:

$$\prod_{k=0}^{s-1} (1 + R_{t+k}) = \prod_{k=0}^{s-1} (GR_{t+k}) \qquad \Longrightarrow
GR \times \dots \times GR \left(1 + \frac{1}{GR} \widetilde{GR}_t + \frac{1}{GR} \widetilde{GR}_{t+1} + \dots + \frac{1}{GR} \widetilde{GR}_{t+s-1} \right) \qquad \Longrightarrow
GR^s \left(1 + \frac{1}{GR} \sum_{k=0}^{s-1} \widetilde{GR}_{t+k} \right) \qquad \Longrightarrow
(1 + R)^s \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right)$$

Definition A.9 (Geometric Series). A geometric series is the sum of the terms of a geometric sequence.

$$S_{\infty} = \sum_{i=0}^{\infty} ar^i \implies S_{\infty} = \frac{a}{1-r}, |r| < 1$$

Definition A.10 (LAG AND LEAD OPERATORS). The lag operator L is a mathematical operator that represents the backshift or lag of a time series (SOLIS-GARCIA, 2022, Lecture 13, p.9):

$$\mathbb{L}x_t = x_{t-1}$$

$$(1 + a\mathbb{L})y_{t+2} = y_{t+2} + ay_{t+1}$$

Analogously, the lead operator \mathbb{L}^{-1} (or inverse lag operator) yields a variable's lead (SOLIS-GARCIA, 2022, Lecture 13, p.9):

$$\mathbb{L}^{-1}x_t = x_{t+1}$$
$$(1 + a\mathbb{L}^{-1})y_{t+2} = y_{t+2} + ay_{t+3}$$

Canonical NK Model

Definition A.11 (Medium Scale DSGE Model). A Medium Scale DSGE Model has habit formation, capital accumulation, indexation, etc. (GALÍ, 2015, p.208).

See Galí, Smets, and Wouters (2012) for an analysis of the sources of unemployment fluctuations in an estimated medium-scale version of the present model.

Definition A.12 (Stochastic Process). (SOLIS-GARCIA, 2022, Lecture 5, p.3).

Definition A.13 (Markov Process). (SOLIS-GARCIA, 2022, Lecture 5, p.4).

Definition A.14 (first-order autoregressive process AR(1)). the first-order autoregressive process AR(1) (SOLIS-GARCIA, 2022, Lecture 5, p.4).

Definition A.15 (Blanchard-Kahn Conditions). (SOLIS-GARCIA, 2022, Hands on 5, p.14).

A.3 Dynare Mod File

The Dynare mod file for the model discussed in this thesis is available on my GitHub repository:

https://github.com/andrlb/masterthesis

This file is provided to facilitate replication of the model and exploration of its implementation. The code is compatible with Dynare 5.5, and the commit history on GitHub provides details about the evolution of the codebase.

A.4 ToDo List

Todo list