Motion Tracking with Core Motion Framework

Session 612
Andy Pham
Engineer

Sunny Chow Engineer

(2) How Can I Use it?

2 How Can I Use it?

(3) Deep Dive

(2) How Can I Use it?

(3) Deep Dive

(4) Let's Code

Motion Coprocessor

Motion Coprocessor

Always-On Motion Processing

Always-On Motion Processing

Energy Efficient Motion Processing

Minimal cost to user

Energy Efficient Motion Processing

Minimal cost to user

24-Hr
Motion Activity
Pedometer

Energy Efficient Motion Processing

Minimal cost to user

Pedometer

Mobile Context

Performance is fairly insensitive to location

Performance is fairly insensitive to location

• Detection can be suppressed when device is in hand

Performance is fairly insensitive to location

Detection can be suppressed when device is in hand

Relatively low latency

Performance is fairly insensitive to location

Detection can be suppressed when device is in hand

Relatively low latency

Very accurate, on average

Performance is fairly insensitive to location

Detection can be suppressed when device is in hand

Relatively low latency

Very accurate, on average

• Expect intermittent transitions into and out of walking state

Completely insensitive to location

Completely insensitive to location Shortest latency

Completely insensitive to location
Shortest latency
Most accurate classification

Motion Activity

Automotive

Performance is sensitive to location

Performance is sensitive to location

 Works best if device is mounted, or placed in dash or in cup holder

Performance is sensitive to location

 Works best if device is mounted, or placed in dash or in cup holder

Variable latency

Performance is sensitive to location

 Works best if device is mounted, or placed in dash or in cup holder

Variable latency

Relies on other information sources when available

Performance is very sensitive to location

Performance is very sensitive to location

Works best if device is worn on upper arm

Performance is very sensitive to location

Works best if device is worn on upper arm
 Longest latency

Performance is very sensitive to location

- Works best if device is worn on upper arm
 Longest latency
- Best for retrospective use cases

Health and Fitness

Step counting

Provides measure of user's activity level

Health and Fitness

Step counting

Provides measure of user's activity level

Steps per day	Physical activity level
5,000	Sedentary
5,000-7,499	Underactive
7,500–9,999	Somewhat active
10,000–12,499	Active
12,500+	Highly active

Health and Fitness

Step counting

Provides measure of user's activity level

Stride estimation

Indicates intensity of user's workout

Consistent performance across body locations

Consistent performance across body locations Extremely accurate

Consistent performance across body locations

Extremely accurate

Robust to extraneous motions

Consistent performance across body locations

Consistent performance across body locations

Consistent performance across pace

Consistent performance across body locations

Consistent performance across pace

Extremely accurate

Consistent performance across body locations

Consistent performance across pace

Extremely accurate

Adapts to the user over time

How Can I Use Motion Activity?

Push vs. pull

Push vs. pull

Push interface

Push vs. pull

Push interface

Apps receive event notifications with minimal latency

Push vs. pull

Push interface

- Apps receive event notifications with minimal latency
 - Motion state transitions as they happen

Push vs. pull

Push interface

- Apps receive event notifications with minimal latency
 - Motion state transitions as they happen
 - New step count and stride distance every 2.5s

Push vs. pull

Push interface

- Apps receive event notifications with minimal latency
 - Motion state transitions as they happen
 - New step count and stride distance every 2.5s

Pull interface

Push vs. pull

Push interface

- Apps receive event notifications with minimal latency
 - Motion state transitions as they happen
 - New step count and stride distance every 2.5s

Pull interface

Apps query for motion information

Push vs. pull

Push interface

- Apps receive event notifications with minimal latency
 - Motion state transitions as they happen
 - New step count and stride distance every 2.5s

Pull interface

- Apps query for motion information
 - Motion state transitions through a sequence of callbacks

Push vs. pull

Push interface

- Apps receive event notifications with minimal latency
 - Motion state transitions as they happen
 - New step count and stride distance every 2.5s

Pull interface

- Apps query for motion information
 - Motion state transitions through a sequence of callbacks
 - Single pedometer record containing cumulative step counts and distance

T=~2.5s

Push Interface

Running app example

What I would want in a running app

What I would want in a running app

Automatically change my experience throughout workout

What I would want in a running app

- Automatically change my experience throughout workout
- Provide real-time feedback to me as I run

What I would want in a running app

- Automatically change my experience throughout workout
- Provide real-time feedback to me as I run
- Summarize my performance when I complete

Running App Warm up

Running App Warm up

Running App

Exercise

Running App Exercise

Running App Cool-down

Running App Cool-down

Running App

Cool-down

Pull Interface

Journaling app example

What I would want in a journaling app

What I would want in a journaling app

Do most of my work for me

What I would want in a journaling app

- Do most of my work for me
- Correlate my motion activity with other sources of information

What I would want in a journaling app

- Do most of my work for me
- Correlate my motion activity with other sources of information
- Profile my physical activity

Get the location context

Get the location context

 Query Visit Monitoring to get list of places visited throughout day

Get the location context

 Query Visit Monitoring to get list of places visited throughout day

Get the transport context

Get the transport context

Query Motion Activity to obtain the travel mode between locations

Get the transport context

Query Motion Activity to obtain the travel mode between locations

Get the transport context

- Query Motion Activity to obtain the travel mode between locations
- Where appropriate, query Pedometer to get
 - Distance traveled between two locations
 - Steps taken at each location

Get the transport context

- Query Motion Activity to obtain the travel mode between locations
- Where appropriate, query Pedometer to get
 - Distance traveled between two locations
 - Steps taken at each location

Deep Dive

User needs to opt in

User needs to opt in

User needs to opt in

Data availability from seven days prior

User needs to opt in

Data availability from seven days prior
 User can opt out at any time

Activity Classifier API Checking for availability

NSObject CMMotionActivityManager

• + (BOOL)isActivityAvailable

Practice good hygiene

Activity Classifier API Checking for availability

NSObject CMMotionActivityManager

• + (BOOL)isActivityAvailable

Practice good hygiene

Activity Classifier API

Push interface

NSObject CMMotionActivityManager

- (void)stopActivityUpdates
- 1. An update with current activity will arrive first
- 2. Handler will be called on subsequent activity changes

Activity Classifier API

Push interface

NSObject CMMotionActivityManager

- (void)stopActivityUpdates
- 1. An update with current activity will arrive first
- 2. Handler will be called on subsequent activity changes

Activity Classifier API Pull interface

NSObject CMMotionActivityManager

• - (void)queryActivityStartingFromDate:(NSDate *)start

toDate:(NSDate *)end

toQueue:(NSOperationQueue *)queue

withHandler:(CMMotionActivityQueryHandler)

Queries for activity transitions that have occurred during the specified time range. Results are returned to the handler on the provided queue.

- 1. First activity returned may have a start-date before the specified start.
- 2. This activity represents what the state was at the start time.

Activity Classifier API

Pull interface

NSObject CMMotionActivityManager

```
    - (void)queryActivityStartingFromDate:(NSDate *)start
    toDate:(NSDate *)end
```

toQueue:(NSOperationQueue *)queue

withHandler:(CMMotionActivityQueryHandler)

Queries for activity transitions that have occurred during the specified time range. Results are returned to the handler on the provided queue.

- 1. First activity returned may have a start-date before the specified start.
- 2. This activity represents what the state was at the start time.

Activity Classifier API Activity transition start

NSObject CMMotionActivity

NSDate *startDate

The time at which the activity started

Activity Classifier API Activity transition start

NSObject CMMotionActivity

• NSDate *startDate

The time at which the activity started

Activity Classifier API Confidence level

NSObject CMMotionActivity

- NSDate *startDate
- CMMotionActivityConfidence confidence

```
enum CMMotionACtivityConfidence {
    CMMotionActivityConfidenceLow,
    CMMotionActivityConfidenceMedium,
    CMMotionActivityConfidenceHigh }
```

Confidence allows you to trade off accuracy for responsiveness

Activity Classifier API Confidence level

NSObject CMMotionActivity

- NSDate *startDate
- CMMotionActivityConfidence confidence

```
enum CMMotionACtivityConfidence {
    CMMotionActivityConfidenceLow,
    CMMotionActivityConfidenceMedium,
    CMMotionActivityConfidenceHigh }
```

Confidence allows you to trade off accuracy for responsiveness

Activity Classifier API Stationary device

NSObject CMMotionActivity

• BOOL stationary

TRUE if device is **not** moving

Activity Classifier API Stationary device

NSObject CMMotionActivity

• BOOL stationary

TRUE if device is **not** moving

Activity Classifier API Activity types

NSObject CMMotionActivity

- BOOL stationary
- BOOL walking
- BOOL running
- BOOL automotive
- BOOL cycling
- B00L unknown

Mutually exclusive motion activity types

Activity Classifier API Activity types

NSObject CMMotionActivity

- BOOL stationary
- BOOL walking
- BOOL running
- BOOL automotive
- B00L cycling
- B00L unknown

Mutually exclusive motion activity types

Device scenarios stationary walking running automotive

cycling

unknown

Device scenarios	stationary	walking	running	automotive	cycling	unknown
On table	true	false	false	false	false	false

Device scenarios	stationary	walking	running	automotive	cycling	unknown
On table	true	false	false	false	false	false
On runner's upper arm	false	false	true	false	false	false

Device scenarios	stationary	walking	running	automotive	cycling	unknown
On table	true	false	false	false	false	false
On runner's upper arm	false	false	true	false	false	false
In dash of idling vehicle	true	false	false	true	false	false

Device scenarios	stationary	walking	running	automotive	cycling	unknown
On table	true	false	false	false	false	false
On runner's upper arm	false	false	true	false	false	false
In dash of idling vehicle	true	false	false	true	false	false
In dash of moving vehicle	false	false	false	true	false	false

Device scenarios	stationary	walking	running	automotive	cycling	unknown
On table	true	false	false	false	false	false
On runner's upper arm	false	false	true	false	false	false
In dash of idling vehicle	true	false	false	true	false	false
In dash of moving vehicle	false	false	false	true	false	false
Passenger checking email	false	false	false	false	false	false

Device scenarios	stationary	walking	running	automotive	cycling	unknown
On table	true	false	false	false	false	false
On runner's upper arm	false	false	true	false	false	false
In dash of idling vehicle	true	false	false	true	false	false
In dash of moving vehicle	false	false	false	true	false	false
Passenger checking email	false	false	false	false	false	false
Immediately after reboot	false	false	false	false	false	true

Device scenarios	stationary	walking	running	automotive	cycling	unknown
On table	true	false	false	false	false	false
On runner's upper arm	false	false	true	false	false	false
In dash of idling vehicle	true	false	false	true	false	false
In dash of moving vehicle	false	false	false	true	false	false
Passenger checking email	false	false	false	false	false	false
Immediately after reboot	false	false	false	false	false	true
In zumba class	false	false	false	false	false	false

walking=true

walking=true

walking=true

walking=true

<empty set>

stationary=true

automotive=true

Stop at light

automotive=true
stationary=true

walking=true

walking=true

Checking for step-counting availability

NSObject CMPedometer

- + (BOOL)isStepCountingAvailable
- + (BOOL)isDistanceAvailable

Pedometer API Checking for step-counting availability

NSObject CMPedometer

- + (BOOL)isStepCountingAvailable
- + (BOOL)isDistanceAvailable

Push interface

NSObject CMPedometer

-(void)startPedometerUpdatesFromDate:(NSDate *)start
 withHandler:(CMPedometerHandler)handler

• -(void)stopPedometerUpdates

Starts a series of regular pedometer updates to the handler on a serial queue

- 1. Each update contains cumulative pedestrian activity since the specified start date
- 2. Update is sent every 2.5s if steps have changed
- 3. After app is resumed from the background, it will immediately receive an update

Push interface

NSObject CMPedometer

- -(void)startPedometerUpdatesFromDate:(NSDate *)start withHandler:(CMPedometerHandler)handler
- -(void)stopPedometerUpdates

Starts a series of regular pedometer updates to the handler on a serial queue

- 1. Each update contains cumulative pedestrian activity since the specified start date
- 2. Update is sent every 2.5s if steps have changed
- 3. After app is resumed from the background, it will immediately receive an update

Pull interface

NSObject CMPedometer

• -(void)queryPedometerDataFromDate:(NSDate *)start

toDate:(NSDate *)end

withHandler: (CMPedometerHandler) handler

Queries for user's pedestrian activity in specified time range

1. App will receive a single record containing entire pedometer activity between start and end dates

Pull interface

NSObject CMPedometer

-(void)queryPedometerDataFromDate:(NSDate *)start

toDate:(NSDate *)end

withHandler: (CMPedometerHandler) handler

Queries for user's pedestrian activity in specified time range

1. App will receive a single record containing entire pedometer activity between start and end dates

Pedometer API Pedometer record timestamp

NSObject CMPedometerData

- NSDate *startDate
- NSDate *endDate

Pedometer record timestamp

NSObject CMPedometerData

- NSDate *startDate
- NSDate *endDate

Cumulative number of steps

NSObject CMPedometerData

- NSDate *startDate
- NSDate *endDate
- NSNumber *numberOfSteps

Number of steps taken between startDate and endDate

Cumulative number of steps

NSObject CMPedometerData

- NSDate *startDate
- NSDate *endDate
- NSNumber *numberOfSteps

Number of steps taken between startDate and endDate

Cumulative distance

NSObject CMPedometerData

- NSDate *startDate
- NSDate *endDate
- NSNumber *numberOfSteps
- NSNumber *distance

Total distance (in meters) traveled by the user between startDate and endDate

Cumulative distance

NSObject CMPedometerData

- NSDate *startDate
- NSDate *endDate
- NSNumber *numberOfSteps
- NSNumber *distance

Total distance (in meters) traveled by the user between startDate and endDate

Demo Let's code!

Sunny Chow Engineer

Demo Topics

```
CMMotionActivityManager (iOS 7.0+)
CMPedometer (iOS 8.0+)
Coding sample is available now!
```

More Information

Allan Schaffer Graphics and Game Technologies Evangelist aschaffer@apple.com

Apple Developer Forums http://devforums.apple.com

Related Sessions

 Introducing HealthKit 	Mission	Tuesday 10:15AM
 What's New in Core Location 	Marina	Tuesday 2:00PM

Labs

Core Motion Lab

Graphics and Games Lab A Friday 12:45PM

WWDC14