Section A

Answer the below Questions

Multiclass Problem

Q1) Using the given dataset carry out **Online Training** with **Multi-Class SVM Criterion**:-

X ₁	0	2	1
X ₂	0	0	1
у	1	2	3

$$W_0 = egin{bmatrix} 1 & -1.5 & 2 \ -1 & 1 & 0.9 \ 1 & 1 & 1 \end{bmatrix}$$

What will be the delta after the first sample?*

1 point

 $\begin{bmatrix} 0.67 & 0 & 0.33 \end{bmatrix}$

A

 $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0.33 & 0.67 \end{bmatrix}$

O C

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

B

None of the above

What will be the Loss after the Second sample? *

1 point

- \bigcirc 2
- 11.2
- \bigcirc
- O I don't know

What will be the weights after the Second sample?*

1 point

$$\begin{bmatrix} 0.3 & 1 & 2 \\ 0.33 & -0.33 & 0.67 \\ 0.67 & -1 & -0.33 \end{bmatrix}$$

Α

 $\begin{bmatrix} 0.33 & 1 & 1.57 \\ 0.33 & 1 & 0.67 \end{bmatrix}$ 0.67 В

C

None of the above

What are the improvements that the Weston-Watkins SVM added to the Multi-Class Perceptron Loss? (Choose all correct answers) *

1 point

- Soft Margin and the ability to not care about some misclassified samples
- The ability to not use the Sign function as an activation function
- Updating all the miss-classified nodes not only the most miss-classified
- Providing probability distribution to the output for better classification

Choose all correct answers *

1 point

Before Normalization the loss is very sensitive to changes in weights matrix and hard to optimize

$$egin{aligned} \mu_j &= rac{1}{N}.\,\Sigma^N\,_{i=1}\,X_{i,j} \ \ \sigma^2 &= rac{1}{N}.\,\Sigma^N\,_{i=1}\left(X_{i,j} - \mu_j
ight)^2 \end{aligned}$$

To get mean and Variance, we use these equations:

- In Batch Normalization , we use the epsilon to avoid division by zero
- In Batch Normalization, Input dimension = Output dimension

What is the loss in the below Question? *

1 point

The following table shows the 5th example in 10 samples-dataset, the label of the example is 2. The scores of each output node is expressed in terms of x, where x is a positive number & (x > 1)

Node#	1	2	3	4
Score	x	2 <i>x</i>	x-5	$x^2 + x$

The loss value for this example is:

$$A. - log(2x)$$

B.
$$-\log(x^2 + x)$$

C.
$$-2x + log(e^x (1 + e^{x^2} + e^{-5} + e^x))$$

D.
$$-x^2 - x + log(e^x (1 + e^{x^2} + e^{-5} + e^x))$$

E.
$$-log(1 - 1/2 + 2x)$$

- A
- B
- O D
- E

Section B

Answer the below Questions

Linear Regression problem

Q2) For the following dataset, Answer the following Questions:-

Х	0	1	2	3
Υ	0	0.81	0.95	0.31

$$W_0 = [0 \quad 0]$$

Use the closed-form solution technique to find the weights * 1 point В Α C

Choose all correct answers *

1 point

We use Regularization term to avoid overfitting

 $W = (D^T D + \lambda I)^{-1} D^T Y$

Adopting the Regularization term we can compute the weights by

We use Regularization term to avoid underfitting

 $L = log(1 + e^{-\hat{y}y}) + \frac{\lambda}{2}||w||^2$

This is the logistic loss with Regularization

This content is neither created nor endorsed by Google.

Google Forms