

Sponsored by Dr. Peter Chen and Erik Dorthe, Shiley Center for Orthopedic Research

Cellxercise Machine:

Growing Synthetic Musculoskeletal Tissues

Justin Dang, Kaustubh Kanagalekar, Jason Liu, Sheen Shaji, Alexander Haken Department of Mechanical and Aerospace Engineering University of California San Diego

UC San Diego

Mechanical and Aerospace Engineering JACOBS SCHOOL OF ENGINEERING

What Is Needed?

- Provide ≥ 10% strain
- Run at 1 Hz cycles
- 20 N of force
- Sterilizable
- Easier nutrient feeding

Check Out the Comparison!

orteen out the compartson.				
Shellpa Pro	Our Machine			
Tension Loading Only	Tension and Compression Loading			
20 N Max Force	41.5 N Max Continuous Force			
Disposable Stretchy Silicone Tubs	Affordable Rigid Petri Dishes			
Difficult Refeeding	Easy Access Refeeding			
Clamps Restricted by Silicon Bed Design	Modular clamp Design			

Impact on Society

This project enables researchers to explore novel techniques and breakthroughs in orthopedic repair, more specifically in the formation of tissues. Further applications of this research can result in new surgical procedures with faster recovery times

Acknowledgements

Dr. Nathan Delson Jackie Chen Tom Chalfant Stephen Mercsak David Lesser Mark Liu

Overview

Dr. Peter Chen and Erik Dorthé from the Shiley Center for Orthopedic Research and Education Lab primarily oversee experiments and research pertaining to musculoskeletal tissue development such as tendons and meniscus tissues. Tendon and/or meniscus tissues that are artificially cultured, which is a big focus of the lab, need cyclic strain to promote growth and alignment of the cells. This is a machine that achieves just that!

Moment about bearing and rail contact point: $0.009 \text{ mm} \times 40 \text{ N} + 0.025$

Rails are rated for 9.08 Nm \geq 1.36 Nm as found in theoretical calculations

mm \times 40 N = 1.36 Nm in total \rightarrow 0.68 Nm per bearing

Added bearing friction of 45.33 N $\times 2 \times 0.001 = 0.091$ N

Added normal forces of: $\frac{0.68}{0.015} = 45.33 \text{ N}$

Quick Release Fasteners

Tensile Clamp

Experiment Workflow

- 1. Insert fresh petri dish into tray holder
- 2. Detach lift plate from actuator
- 3. Fill petri dish with solution
- 4. Clamp cell strip, close lid
- 5. Move to incubator
- 6. Attach actuator to removable tray
- 7. Set actuator "zero"
- 8. Start strain cycle
- 9. Wait 3 days
- 10. Detach lift plate from actuator, and move to fume hood
- 11. Lift lid, and change solution
- 12. Move back to incubator
- 13. Re-attach gantry to actuator
- 14. Re-zero
- 15. Repeat
- 16. After experiment concludes, disassemble machine and autoclave clamps, sterilize everything else with ethanol wipes

Future Improvements

- Potential auto-feeding implementation
- Load measurement on individual clamps