MATH3404 Week 9

Simon Thomas

September 22, 2025

Slides at https://simonnthomasmaths.github.io/teaching/

The optimal control problem

Let $x(t) \in \mathbb{R}^n$ be a vector which describes the state of a system at time t. Let u(t) be an admissible (piecewise consinuous and restricted to a bounded domain) control. We are given:

- State equations: $\dot{x}_i = f_i(\mathbf{x}, u)$, where $i = 1, 2, \dots, n$.
- An initial state $x(t_0) = x^0$ at a given time t_0 .
- A target state $x(t_1) = x^1$ which should be reached at time t_1 .
- A cost functional

$$J=\int_{t_0}^{t_1}f_0(\boldsymbol{x},u)dt$$

Our aim is to find an optimal control $u^*(t)$ with a corresponding path $x^*(t)$ which transfers the system from x^0 to x^1 in such a way that J is minimised.

Pontryagin maximum principle

Theorem

Let $u^*(t)$ be an admissible control with path $x^* = (x_1^*, x_2^*)$ that transfers the system from x^0 at time $t = t_0$ to x^1 at an unspecified time t_1 . If u^* and x^* are optimal (minimize J), then there exists a non-trivial $\psi = (\psi_0, \psi_1, \psi_2)^T$ satisfying

$$\dot{\psi}_i = -\frac{\partial H}{\partial x_i}, \quad i = 0, 1, 2,$$
 (1)

and a function

$$H(\psi, x, u) = \psi_0 f_0(x, u) + \psi_1 f_1(x, u) + \psi_2 f_2(x, u)$$

such that

- For all $t \in [t_0, t_1]$, H attains its maximum with respect to u at $u = u^*(t)$,
- $H(\psi^*, \mathbf{x}^*, \mathbf{u}^*) = 0$ and $\psi_0 \le 0$ at $t = t_1$, where $\psi^*(t)$ is the solution of (1) for $u = u^*(t)$.

Here, x_0 is defined to be the solution of the differential equation

$$\dot{x}_0 = f_0(x_1, x_2, u)$$

with initial condition $x_0(t_0)$.

Reading recommendation

This material is challenging when you first encounter it. I recommend reading through chapter 4 of Optimal Control and the Calculus of Variations, by Enid R. Pinch.