

Deep Learning

Chapter 9: Specific AEs and Applications

Mina Rezaei

Department of Statistics – LMU Munich Winter Semester 2020

LECTURE OUTLINE

Specific AEs and applications

Specific AEs and applications

CONVOLUTIONAL AUTOENCODER (CONVAE)

- For the image domain, using convolutions is advantageous. Can we also make use of them in AEs?
- In a ConvAE, the encoder consists of convolutional layers. The decoder, on the other hand, consists of transpose convolution layers or simple upsampling operations.

CONVOLUTIONAL AUTOENCODER (CONVAE)

Figure: Potential architecture of a convolutional autoencoder.

We now apply this architecture to denoise MNIST.

CONVOLUTIONAL AUTOENCODER (CONVAE)

Figure: Top row: noised data, second row: AE with dim(z) = 32 (roughly 50k params), third row: ConvAE (roughly 25k params), fourth row: ground truth.

REAL-WORLD APPLICATIONS

Today, autoencoders are still used for tasks such as:

- data de-noising,
- compression,
- and dimensionality reduction for the purpose of visualization.

REAL-WORLD APPLICATIONS

Medical image denoising using convolutional denoising autoencoders

Figure: Top row: real image, second row: noisy version, third row: results of a (convolutional) denoising autoencoder and fourth row: results of a median filter (Lovedeep Gondara (2016))

REAL-WORLD APPLICATIONS

AE-based image compression.

Figure: from Theis et al.