Artificial Neural networks for the prediction of phage protein function

Adrian Cantu

San Diego State University Computational Science Research Center

May 21th 2019

BacterioPhage

A. Cantu 05/21/2019 State of the lab - 2019

Databases

Class	Raw sequences	After manual	After 90%	
Class		curation	dereplication	
Major capsid	112,987	105,653	13,172	
Minor capsid	2,901	1,903	656	
Baseplate	75,599	19,293	2,090	
Major tail	66,513	35,030	3,249	
Minor tail	94,628	80,467	3,886	
Portal	210,064	189,143	18,622	
Tail fiber	29,132	18,514	3,191	
Tail shaft	37,885	35,570	4,933	
Collar	4,224	3,709	1,262	
Head-Tail	60,270	E0 6E0	6 712	
joining	00,270	58,658	6,713	
Other	733,006	-	162,709	

Table: The classes database by the numbers

A. Cantu 05/21/2019 State of the lab - 2019 3 /

Protein Sequences

- 1 >AAA32580_1
 MFGATAGGIASALAGGAMSKLFGGGQKAASGGIQGDVLATDNNTVGMGDAGIKSAIQGSNVPNPDEAAPS
 FVSGAMAKAGKGLLEGTLQAGTSAVSDKLLDLVGLGGKSAADKGKDTRDYLAAAFPELNAWERAGADASS
 AGMVDAGFENOKELTKHOLDNOKEIAEMONETOKEIAGIOSATSRONTKDOVYAONEMLAYOOKESTARV
- ASIMENTNISQQQQVSEIMRQMLTQAQTAGQYFTNDQIKEMTRKVSAEVDLVHQQTQNQRYGSSHIGATA
- 6 KDISNVVTDAASGVVDIFHGIDKAVADTWNNFWKDGKADGIGSNLSRK
- 7 >AAA32580_2
- 8 MFGAIAGGIASALAGGAMSKLFGGGQKAASGGIQGDVLATDNNTVGMGDAGIKSAIQGSNVPNPDEAAPS
- 9 FVSGAMAKAGKGLLEGTLQAGTSAVSDKLLDLVGLGGKSAADKGKDTRDYLAAAFPELNAWERAGADASS
- ${\tt 10} \quad {\tt AGMVDAGFENQKELTKMQLDNQKEIAEMQNETQKEIAGIQSATSRQNTKDQVYAQNEMLAYQQKESTARV}$
- 11 ASIMENTNLSKQQQVSEIMRQMLTQAQTAGQYFTNDQIKEMTRKVSAEVDLVHQQTQNQRYGSSHIGATA
- 12 KDISNVVTDAASGVVDIFHGIDKAVADTWNNFWKDGKADGIGSNLSRK
- 13 >AAA32580 3
- 14 MFGAIAGGIASALAGGAMSKLFGGGOKAASGGIOGDVLATDNNTVGMGDAGIKSAIOGSNVPNPDEAAPS
- 5 FVSGAMAKAGKGLLEGTLOAGTSAVSDKLLDLVGLGGKSAADKGKDTRDYLAAAFPELNAWERAGADASS
- 16 AGMVDAGFENOKELTKMOLDNOKE IAEMONETOKE IAGIOSATSRONTKDOVYAONEMLAYOOKESTARV
- 17 ASIMENTNLSKQQQVSEIMRQMLTQAQTAGQYFTNDQIKEMTRKVVAEVDLVHQQTQNQRYGSSHIGATA
- 18 KDISNVVTDAASGVVDIFHGIDKAVADTWNNFWKDGKADGIGSNLSRK
- 19 >AAA32580 4
- 20 MFGAIAGGIASALAGGAMSKLFGGGQKAASGGIQGDVLATDNNTVGMGDAGIKSAIQGSNVPNPDEAAPS
- 21 FVSGAMAKAGKGLLEGTLQAGTSAVSDKLLDLVGLGGKSAADKGKDTRDYLAAAFPELNAWERAGADASS
- 22 AGMVDAGFENTKELTKMQLDNQKEIAEMQNETQKEIAGIQSATSRQNTKDQVYAQNEMLAYQQKESTARV
- 23 ASIMENTNLSKQQQVSEIMRQMLTQAQTAGQYFTNDQIKEMTRKVSAEVDLVHQQTQNQRYGSSHIGATA
 - 24 KDISNVVTDAASGVVDIFHGIDKAVADTWNNFWKDGKADGIGSNLSRK

A. Cantu 05/21/2019 State of the lab - 2019

4 / 15

F:Sequence -> Function

A. Cantu 05/21/2019 State of the lab - 2019 5 /

Artificial Neural Networks

ANN have been shown to be universal approximators of continuous functions in \mathbb{R}^n

$$d = \left(\int_0^{2\pi} |f_1(t) - f_2(t)|^p dt
ight)^{rac{1}{p}}$$
 where 1

A. Cantu 05/21/2019 State of the lab - 2019 6 / 15

Artificial Neural Networks

$$\begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ Z_{410} \end{pmatrix} = X$$

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_5 \\ Y_6 \\ Y_7 \\ Y_8 \\ Y_9 \\ Y_{10} \end{pmatrix} = Y$$

$$\text{where } \sum_{n=1}^{10} Y_n = 1$$

A. Cantu 05/21/2019 State of the lab - 2019 7 / 1

The 'black box' function

$$F(X) = \underbrace{[10*200]}_{W_3} \left(\underbrace{[200*200]}_{W_2} \left(\underbrace{[200*407]}_{W_1} \underbrace{[407*1]}_{X} + \underbrace{[200*1]}_{\delta_1} \right) + \underbrace{[200*10]}_{\delta_2} \right) + \underbrace{[10*1]}_{\delta_1}$$

289,866 Trainable parameters

8 / 15

	Precision	Recall	f1 − score	Support
Major capsid	0.88	0.92	0.90	1232
Minor capsid	0.27	0.57	0.36	51
Baseplate	0.54	0.87	0.67	180
Major tail	0.82	0.88	0.85	289
Minor Tail	0.65	0.77	0.70	345
Portal	0.87	0.90	0.88	1640
Tail Fiber	0.54	0.67	0.60	272
Tail shaft	0.91	0.94	0.93	444
Collar	0.75	0.80	0.77	129
Head — Tail Joining	0.74	0.84	0.79	647
Other	0.97	0.93	0.95	15254
weighted avg	0.82	0.79	0.79	675

A. Cantu

Results Confusion matrix

A. Cantu 05/21/2019 State of the lab - 2019 10 / 15

Weighted average model metrics

Per class f1-score

A. Cantu 05/21/2019 State of the lab - 2019

Per class f1-score

A. Cantu 05/21/2019 State of the lab - 2019 13 /

http://edwards.sdsu.edu/PhANNies/

Conclusions

- ANN is slow to train but fast to run.
- Robots will rule the world

A. Cantu 05/21/2019 State of the lab - 2019 15 /