

数学分析 - 陈纪修 - 笔记

作者: 若水

邮箱: ethanmxzhou@163.com 主页: helloethanzhou.github.io

时间: July 18, 2024

致谢

感谢 勇敢的 自己

目录

弗一 草	头数体系的构造	J
1.1	Peano 公理	1
	1.1.1 相等	1
	1.1.2 自然数	1
1.2	加法	1
	1.2.1 加法	1
	1.2.2 自然数的序	2
1.3	乘法	3
1.4	整数	3
	1.4.1 整数	3
	1.4.2 整数的序	4
1.5	比例数	4
	1.5.1 比例数	4
	1.5.2 比例数的四则运算	5
	1.5.3 比例数的序	5
1.6	实数	6
	1.6.1 绝对值	6
	1.6.2 Cauchy 序列	6
	1.6.3 实数	6
	1.6.4 实数的四则运算	7
	1.6.5 实数的序	7
1.7	实数完备性定理	8
给一辛	数列极限	11
	W. Allenand	11
2.1	2.1.1 数列极限	
	2.1.2 数列极限的性质	
	2.1.2 数列极限的压烦	11
2.2	无穷小量与无穷大量	
	Stolz 定理	12
	数列递推	
	数列极限的估计	
2.5	3X/ У (() () () () () () () () ()	17
第三章	函数极限与连续函数	16
3.1	函数极限	16
	3.1.1 函数极限	16
	3.1.2 函数极限的性质	16
	3.1.3 函数极限的四则运算	16
	3.1.4 函数极限与数列极限的关系	17
	3.1.5 单侧极限	17
3.2	连续函数	18
	3.2.1 连续函数的定义	18

	3.2.2 连续函数的四则运算	18
	3.2.3 连续周期函数	18
	3.2.4 间断点类型	18
	3.2.5 复合函数的连续性	19
	3.2.6 反函数连续性定理	19
3.3	无穷小量与无穷大量的阶	19
	3.3.1 无穷小量的比较	19
	3.3.2 无穷大量的比较	
	3.3.3 等价量	21
3.4	闭区间上的连续函数	21
	3.4.1 有界性定理	21
	3.4.2 最值定理	21
	3.4.3 零点存在定理	21
		22
3.5	一致连续函数	22
	3.5.1 一致连续性	22
	3.5.2 连续性与一致连续的关系	23
3.6	凸函数	24
	函数方程	25
3.8	Riemann 函数,Dirichlet 函数,Weierstrass 函数	25
		25
	3.8.2 Dirichlet 函数	28
	3.8.3 Weierstrass 函数	29
第四章	· 微分	32
	微分与导数	32
		32
	4.1.2 微分与导数	
	4.1.3 单侧导数	
4.2	求导法则	
2	4.2.1 导数的四则运算	
	4.2.2 反函数求导定理	
	4.2.3 复合函数求导法则	
4.3	高阶导数	
	导函数的性质	
	微分中值定理	36
5.1		36
	5.1.1 函数极值与 Fermat 引理	
	5.1.2 Rolle 定理	
	5.1.3 Lagrange 定理	36
	5.1.3 Lagrange 定理	3 <i>6</i>
	5.1.3 Lagrange 定理 5.1.4 Cauchy 定理 5.1.5 中值定理	36 37 37
	5.1.3 Lagrange 定理	36 37 37

	录
9.4 任意项级数	58
9.4.1 任意项级数	58
9.4.2 Leibniz 级数	59
9.4.3 Abel 判别法与 Dirichlet 判别法	59
9.4.4 绝对收敛与条件收敛	59
9.4.5 级数的乘法	60
9.4.6 级数问题的反例	60
9.5 无穷乘积	61
第十章 函数项级数	62
	62
	63
	63
·	63
	63
	64
	64
	65
	65
	66
	67
	68
	68
	00
	70
_, , , , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ ,	70
· 2 /2//	70
11.3 连续函数	71
第十二章 多元函数微分学	72
12.1 偏导数与全微分	72
12.2 多元复合函数的求导法则	73
12.3 中值定理和 Taylor 公式	73
12.4 隐函数存在定理	74
12.5 无条件极值	74
12.6 条件极值	75
第十三章 重积分	76
13.1 有界闭区域上的重积分	76
13.2 重积分的性质与计算	76
	77
	78
	78
	78
	79
第十四章 曲线积分与曲面积分	82

			目录	
			104	

A.5.1.2 以两倍区间长度为周期的三角函数的正交性	 104
A.5.2 Fourier 级数	 105
A.5.2.1 以区间长度为周期的 Fourier 级数	 105
A.5.2.2 以两倍区间长度为周期的 Fourier 级数	 106

第一章 实数体系的构造

1.1 Peano 公理

1.1.1 相等

定义 1.1.1 (等价关系)

称关系 \sim 为集合 X 上的等价关系,如果成立如下命题。

- 1. 自反性: $\forall x \in X$, $x \sim x$
- 2. 对称性: $\forall x, y \in X$, $(x \sim y \implies y \sim x)$
- 3. 传递性: $\forall x, y, z \in X$, $((x \sim y) \land (y \sim z) \implies x \sim z)$

定义 1.1.2 (相等)

定义集合X上的相等为一种等价关系,记作=。

1.1.2 自然数

公理 1.1.1 (Peano 公理)

- 1. $0 \in \mathbb{N}$
- 2. $\forall n \in \mathbb{N}, (n \in \mathbb{N} \implies n * \in \mathbb{N})$
- 3. $\forall n \in \mathbb{N}, \quad n* \neq 0$
- 4. $\forall m, n \in \mathbb{N}, \quad (m = n \iff m* = n*)$
- 5. 对于命题 $P: \mathbb{N} \to Bool$,如果

$$P(0) = \text{True}$$

$$\forall n \in \mathbb{N}^*, \quad (P(n) = \text{True} \implies P(n*) = \text{True})$$

那么

$$\forall n \in \mathbb{N}^*, \quad P(n) = \text{True}$$

定义 1.1.3 (自然数集)

称成立 Peano 公理的集合 N 为自然数集。

1.2 加法

1.2.1 加法

定义 1.2.1 (加法)

$$\forall n \in \mathbb{N}, \quad n+0 \coloneqq n$$

$$\forall m, n \in \mathbb{N}, \quad m + (n*) := (m+n)*$$

命题 1.2.1 (加法的性质)

1. 加法交换律:

$$\forall m, n \in \mathbb{N}, \quad m+n=n+m$$

2. 加法结合律:

$$\forall l, m, n \in \mathbb{N}, \quad (l+m)+n=l+(m+n)$$

3. 消去律:

$$\forall l, m, n \in \mathbb{N}, \quad (l+m=l+n \implies m=n)$$

1.2.2 自然数的序

定义 1.2.2 (正自然数)

定义正自然数集为 $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ 。

命题 1.2.2

 $n \in \mathbb{N}^* \iff \exists! m \in \mathbb{N}, m* = n$

定义 1.2.3 (自然数的序)

- 1. 对于自然数 $m, n \in \mathbb{N}$, 称 $m \ge n$, 如果存在自然数 $l \in \mathbb{N}$, 使得成立 m = l + n。
- 2. 对于自然数 $m,n \in \mathbb{N}$, 称 m > n, 如果存在正自然数 $l \in \mathbb{N}^*$, 使得成立 m = l + n。

命题 1.2.3 (序的性质)

- 1. 自反性: $\forall n \in \mathbb{N}, n \geq n$
- 2. 传递性: $\forall l, m, n \in \mathbb{N}$, $(l \ge m) \land (m \ge n) \implies l \ge n$
- 3. 反称性: $\forall m, n \in \mathbb{N}$, $(m \ge n) \wedge (n \ge m) \Longrightarrow m = n$

定理 1.2.1 (序的三歧性)

对于自然数 $n \in \mathbb{N}$,以下三命题有且仅有其一为真。

- 1. n = 0
- 2. n > 0
- 3. *n* < 0

定理 1.2.2 (强数学归纳法)

对于命题 $P: \mathbb{N} \to Bool$,如果

$$P(0) = \text{True}$$

$$\forall n \in \mathbb{N}, \quad ((\forall m \in \mathbb{N}, \quad (m < n \implies P(m) = \text{True})) \implies P(n) = \text{True})$$

那么

$$\forall n \in \mathbb{N}^*, \quad P(n) = \text{True}$$

1.3 乘法

定义 1.3.1 (乘法)

 $\forall n \in \mathbb{N}, \quad n \times 0 \coloneqq 0$

 $\forall m, n \in \mathbb{N}, \quad m \times (n*) := (m \times n) + m$

命题 1.3.1 (乘法的性质)

1. 乘法交换律:

 $\forall m, n \in \mathbb{N}, \quad m \times n = n \times m$

2. 乘法结合律:

 $\forall l, m, n \in \mathbb{N}, \quad (l \times m) \times n = l \times (m \times n)$

3. 保序性:

 $\forall l, m, n \in \mathbb{N}, \quad (m > n) \land (l > 0) \implies l \times m > l \times n$

4. 消去律:

 $\forall l, m, n \in \mathbb{N}, \quad (l \times m = l \times n) \land (l > 0) \implies m = n$

1.4 整数

1.4.1 整数

定义 1.4.1 (整数)

对于 $m,n \in \mathbb{N}$, 定义 $m \ominus n$ 为整数。

定义 1.4.2 (整数的相等)

对于 $a, b, c, d \in \mathbb{N}$, 称 $a \ominus b = c \ominus d$, 如果 a + d = c + b。

定义 1.4.3 (整数集)

整数全体构成整数集 Z。

定义 1.4.4 (整数的加法)

 $\forall a,b,c,d \in \mathbb{N}, \quad (a \ominus b) + (c \ominus d) \coloneqq (a+c) \ominus (b+d)$

定义 1.4.5 (整数的乘法)

 $\forall a, b, c, d \in \mathbb{N}, \quad (a \ominus b) \times (c \ominus d) \coloneqq (a \times c + b \times d) \ominus (a \times d + b \times c)$

定义 1.4.6 (相反数)

对于 $m, n \in \mathbb{N}$, 定义 $m \ominus n$ 的相反数为 $-(m \ominus n) := n \ominus m$ 。

定义 1.4.7 (整数的减法)

 $\forall a, b, c, d \in \mathbb{N}, \quad (a \ominus b) - (c \ominus d) := (a \ominus b) + (-(c \ominus d))$

1.4.2 整数的序

定义 1.4.8 (整数的序)

- 1. 对于整数 $m, n \in \mathbb{Z}$, 称 $m \ge n$, 如果存在自然数 $l \in \mathbb{N}$, 使得成立 m = l + n。
- 2. 对于整数 $m,n \in \mathbb{Z}$, 称 m > n, 如果存在正自然数 $l \in \mathbb{N}^*$, 使得成立 m = l + n。

定义 1.4.9 (正整数, 负整数, 非负整数)

- 1. 称整数 $n \in \mathbb{Z}$ 为正整数,如果 n > 0。
- 2. 称整数 $n \in \mathbb{Z}$ 为负整数,如果 n < 0。
- 3. 称整数 $n \in \mathbb{Z}$ 为非负整数,如果 $n \ge 0$ 。

命题 1.4.1 (序的性质)

- 1. 自反性: $\forall n \in \mathbb{Z}, n \geq n$
- 2. 传递性: $\forall l, m, n \in \mathbb{Z}$, $(l \ge m) \land (m \ge n) \implies l \ge n$
- 3. 反称性: $\forall m, n \in \mathbb{Z}$, $(m \ge n) \land (n \ge m) \implies m = n$

定理 1.4.1 (序的三歧性)

对于整数 $m, n \in \mathbb{Z}$, 以下三命题有且仅有其一为真。

- 1. m = n
- 2. m > n
- 3. m < n

1.5 比例数

1.5.1 比例数

定义 1.5.1 (比例数)

对于 $m,n \in \mathbb{N}$ 且 $n \neq 0$,定义 $m \oslash n$ 为比例数。

定义 1.5.2 (比例数的相等)

对于 $a, b, c, d \in \mathbb{N}$ 且 $b, d \neq 0$, 称 $a \oslash b = c \oslash d$, 如果 $a \times d = b \times c$ 。

定义 1.5.3 (比例数集)

比例数全体构成比例数集◎。

1.5.2 比例数的四则运算

定义 1.5.4 (比例数的加法)

 $\forall (a, b, c, d \in \mathbb{N}) \land (b, d \neq 0), \quad (a \oslash b) + (c \oslash d) \coloneqq (a \times d + b \times c) \oslash (b \times d)$

*

定义 1.5.5 (比例数的乘法)

 $\forall (a, b, c, d \in \mathbb{N}) \land (b, d \neq 0), \quad (a \oslash b) \times (c \oslash d) \coloneqq (a \times c) \oslash (b \times d)$

*

定义 1.5.6 (比例数的负数)

 $\forall (a, b \in \mathbb{N}) \land (b \neq 0), \quad -(a \oslash b) \coloneqq (-a) \oslash b$

*

定义 1.5.7 (比例数的减法)

 $\forall (a,b,c,d \in \mathbb{N}) \land (b,d \neq 0), \quad (a \oslash b) - (c \oslash d) \coloneqq (a \oslash b) + (-(c \oslash d))$

*

定义 1.5.8 (比例数的倒数)

 $\forall (a, b \in \mathbb{N}) \land (a, b \neq 0), \quad (a \oslash b)^{-1} := b \oslash a$

定义 1.5.9 (比例数的除法)

 $\forall (a, b, c, d \in \mathbb{N}) \land (b, c, d \neq 0), \quad (a \oslash b) \div (c \oslash d) \coloneqq (a \oslash b) \times (c \oslash d)^{-1}$

1.5.3 比例数的序

定义 1.5.10 (正比例数)

称比例数 $x \in \mathbb{Q}$ 为正比例数,如果存在正自然数 $m, n \in \mathbb{N}^*$,使得成立 $x = m \oslash n$ 。

定义 1.5.11 (非负比例数)

称比例数 $x \in \mathbb{Q}$ 为非负比例数,如果或 x = 0,或 x 为正比例数。

定义 1.5.12 (比例数的序)

- 1. 对于比例数 $x,y \in \mathbb{Q}$, 称 $x \geq y$, 如果存在非负比例数 $z \in \mathbb{Q}$, 使得成立 x = y + z。
- 2. 对于整数 $x,y \in \mathbb{N}$, 称 x > y, 如果存在正比例数 $z \in \mathbb{Q}$, 使得成立 x = y + z。

*

命题 1.5.1 (序的性质)

- 1. 自反性: $\forall x \in \mathbb{Q}, x > x$
- 2. 传递性: $\forall x, y, z \in \mathbb{Q}$, $(x \ge y) \land (y \ge z) \Longrightarrow x \ge z$
- 3. 反称性: $\forall x, y \in \mathbb{Q}$, $(x \ge y) \land (y \ge x) \implies x = y$

定理 1.5.1 (序的三歧性)

对于比例数 $x,y \in \mathbb{Q}$,以下三命题有且仅有其一为真。

- 1. x = y
- 2. x > y
- 3. x < y

 \bigcirc

1.6 实数

1.6.1 绝对值

定义 1.6.1 (绝对值)

对于比例数x, 其绝对值定义为

$$|x| = \begin{cases} x, & x > 0 \\ -x, & x < 0 \\ 0, & x = 0 \end{cases}$$

1.6.2 Cauchy 序列

定义 1.6.2 (Cauchy 序列)

称比例数序列 $\{x_n\}_{n=0}^{\infty}\subset\mathbb{Q}$ 为 Cauchy 序列,如果对于任意正比例数 $\varepsilon\in\mathbb{Q}^+$,存在正整数 $N\in\mathbb{N}^*$,使得对于任意 $m,n\geq N$,成立

$$|x_m - x_n| \le \varepsilon$$

*

定义 1.6.3 (等价 Cauchy 序列)

称 Cauchy 序列 $\{x_n\}_{n=0}^{\infty}\subset\mathbb{Q}$ 与 $\{y_n\}_{n=0}^{\infty}\subset\mathbb{Q}$ 为等价 Cauchy 序列,如果对于任意正比例数 $\varepsilon\in\mathbb{Q}^+$,存在正整数 $N\in\mathbb{N}^*$,使得对于任意 $n\geq N$,成立

$$|x_n - y_n| \le \varepsilon$$

*

1.6.3 实数

定义 1.6.4 (实数)

对于 Cauchy 序列 $\{x_n\}_{n=0}^{\infty} \subset \mathbb{Q}$,定义 $\mathcal{L}IM(x_n)$ 为实数。

*

定义 1.6.5 (实数的相等)

对于 Cauchy 序列 $\{x_n\}_{n=0}^{\infty}\subset\mathbb{Q}$ 与 $\{y_n\}_{n=0}^{\infty}\subset\mathbb{Q}$,称 $\mathcal{LIM}(x_n)=\mathcal{LIM}(y_n)$,如果 $\{x_n\}_{n=0}^{\infty}\subset\mathbb{Q}$ 与 $\{y_n\}_{n=0}^{\infty}\subset\mathbb{Q}$ 为等价 Cauchy 序列。

定义 1.6.6 (实数集)

实数全体构成实数集 ℝ。

1.6.4 实数的四则运算

定义 1.6.7 (实数的加法)

$$\mathcal{LIM}(x_n) + \mathcal{LIM}(y_n) := \mathcal{LIM}(x_n + y_n)$$

定义 1.6.8 (实数的乘法)

$$\mathcal{LIM}(x_n) \times \mathcal{LIM}(y_n) := \mathcal{LIM}(x_n \times y_n)$$

定义 1.6.9 (实数的负数)

$$-\mathcal{LIM}(x_n) := \mathcal{LIM}(-x_n)$$

定义 1.6.10 (实数的减法)

$$\mathcal{LIM}(x_n) - \mathcal{LIM}(y_n) := \mathcal{LIM}(x_n) + (-\mathcal{LIM}(y_n))$$

定义 1.6.11 (零实数)

称实数 $\mathcal{L}IM(x_n)$ 为零,如果对于任意正比例数 $\varepsilon\in\mathbb{Q}^+$,存在正整数 $N\in\mathbb{N}^*$,使得对于任意 $n\geq N$,成立

$$|x_n| \le \varepsilon$$

定义 1.6.12 (实数的倒数)

$$(\mathcal{LIM}(x_n) \neq 0) \land (\forall n \in \mathbb{N}, x_n \neq 0) \implies (\mathcal{LIM}(x_n))^{-1} := \mathcal{LIM}(x_n^{-1})$$

定义 1.6.13 (实数的除法)

$$(\mathcal{LIM}(y_n) \neq 0) \land (\forall n \in \mathbb{N}, y_n \neq 0) \implies \mathcal{LIM}(x_n) \div \mathcal{LIM}(y_n) \coloneqq \mathcal{LIM}(x_n) \times (\mathcal{LIM}(y_n))^{-1}$$

1.6.5 实数的序

定义 1.6.14 (实数的序)

- 1. 对于实数 $x,y \in \mathbb{R}$, 称 $x \ge y$, 如果存在非负实数 $z \in \mathbb{R}$, 使得成立 x = y + z。
- 2. 对于实数 $x, y \in \mathbb{R}$, 称 x > y, 如果存在正实数 $z \in \mathbb{R}$, 使得成立 x = y + z。

命题 1.6.1 (序的性质)

- 1. 自反性: $\forall x \in \mathbb{R}, x \geq x$
- 2. 传递性: $\forall x, y, z \in \mathbb{R}$, $(x \ge y) \land (y \ge z) \implies x \ge z$
- 3. 反称性: $\forall x, y \in \mathbb{R}$, $(x \ge y) \land (y \ge x) \implies x = y$

定理 1.6.1 (序的三歧性)

对于实数 $x,y \in \mathbb{R}$, 以下三命题有且仅有其一为真。

1. x = y

2. x > y

3. x < y

 \sim

1.7 实数完备性定理

定理 1.7.1 (实数完备性定理)

1. 确界定理: 存在上界的集合存在上确界。

2. 单调有界定理: 单调递增且存在上界的数列存在极限。

3. Cauchy 收敛原理: Cauchy 序列收敛。

4. 致密性原理: 有界数列存在收敛子列。

5. 聚点原理: 有界无穷集合存在聚点。

6. 闭区间套定理: 闭区间套存在且仅存在唯一交点。

7. 有限覆盖定理: 闭区间的开覆盖存在有限子覆盖。

C

定理	步骤 1	步骤 2	步骤 3
致密性定理 ⇒ Cauchy 收敛原理	Cauchy 序列有界	存在收敛子列	子列的极限为原数列极限
Cauchy 收敛原理 ⇒ 闭区间套定理	闭区间套端点为 Cauchy 序列	a_n 与 b_n 存在极限	
闭区间套定理 ⇒ 致密性原理	将数列的界区间迭代二分	每次选择无穷点所在区间	
闭区间套定理 ⇒ 确界定理	选择上界 b_1 与非上界 a_1	将区间迭代二分	每个区间选择为左端点不为上界,右端点为上界
确界定理 ⇒ 单调有界定理	显然		
单调有界定理 ⇒ 闭区间套定理	a_n, b_n 均为单调有界数列		
闭区间套定理 ⇒ 有限覆盖定理	反证: 若 [a,b] 的某开覆盖不存在子覆盖	将区间迭代二分	每次选择不存在子覆盖的区间
有限覆盖定理 ⇒ 聚点定理	反证: 若不存在聚点	构造开覆盖	推出原点集为有限点集
致密性定理 ⇒ 聚点定理	从无穷有界点集中选择数列	存在收敛子列	收敛点即为聚点
聚点定理 ⇒ 致密性定理	有界数列作为无穷点集	聚点即为收敛点	

证明 确界定理 \implies 单调有界定理: 这几乎是显然的!

单调有界定理 ⇒ 闭区间套定理: 由于

$$a_1 \le \cdots a_n \le b_n \le \cdots \le b_1$$

那么 $\{a_n\}_{n=1}^{\infty}$ 与 $\{b_n\}_{n=1}^{\infty}$ 为单调有界数列,从而存在 $\xi \in \mathbb{R}$,使得成立 $a_n \to \xi$,此时

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} ((b_n - a_n) + a_n) = \lim_{n \to \infty} (b_n - a_n) + \lim_{n \to \infty} a_n = \xi$$

从而对于任意 $n \in \mathbb{N}^*$,成立 $\xi \in [a_n, b_n]$,存在性得证! 如果存在 $\eta \in \mathbb{R}$,使得对于任意 $n \in \mathbb{N}^*$,成立 $\xi \in [a_n, b_n]$,那么因为对于任意 $n \in \mathbb{N}^*$,成立

$$a_n \le \eta \le b_n$$

由极限的夹逼性, $\eta = \xi$, 唯一性得证!

闭区间套定理 \Longrightarrow 致密性原理: 设数列 $\{x_n\}_{n=1}^{\infty}$ 为有界数列,那么存在 $a_1,b_1\in\mathbb{R}$,使得对于任意 $n\in\mathbb{N}^*$,成立 $a_1\leq x_n\leq b_1$ 。如果已经得到有限闭区间序列 $\{[a_k,b_k]\}_{k=1}^n$,使得对于任意 $1\leq k\leq n$, $[a_k,b_k]$ 中存在原数列中无穷多项,那么考察 $[a_n,\frac{a_1+b_n}{2}]$ 与 $[\frac{a_n+b_n}{2},b_n]$,其中之一存在原数列中无穷多项,记为 $[a_{n+1},b_{n+1}]$ 。由数学归纳,存在闭区间序列 $\{[a_n,b_n]\}_{n=1}^{\infty}$,使得对于任意 $n\in\mathbb{N}^*$, $[a_n,b_n]$ 中存在原数列中无穷多项。由于 $b_n-a_n=(b_1-a_1)2^{-n}\to 0$,从而存在且存在唯一 $\xi\in\mathbb{R}$,使得对于任意 $n\in\mathbb{N}^*$,成立 $\xi\in[a_n,b_n]$,且 $\xi=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$ 。取 $x_{n_1}=x_1$,如果已经得到有限子列 $\{x_{n_k}\}_{k=1}^m$,那么取 $x_{n_{m+1}}\in[a_{m+1},b_{m+1}]$,使得成立 $n_{m+1}>n_m$ 。由归纳假设,存在子列 $\{x_{n_k}\}_{k=1}^{\infty}\subset\{x_n\}_{n=1}^{\infty}$,使得成立对于任意 $k\in\mathbb{N}^*$,成立

$$a_k \le x_{n_k} \le b_k$$

由极限的夹逼性, $x_{n_k} \to \xi$, 致密性原理得证!

致密性原理 ⇒ Cauchy 收敛原理:

必要性由三角不等式显然! 对于充分性,容易知道 $\{x_n\}_{n=1}^{\infty}$ 为有界数列,进而存在收敛子列 $\{x_{n_k}\}_{k=1}^{\infty}$ \subset $\{x_n\}_{n=1}^{\infty}$,使得成立 $x_{n_k} \to \xi$ 。对于任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $k, n \geq N$,成立

$$|x_{n_k} - x_n| < \frac{\varepsilon}{2}$$

$$|x_n - \xi| \le \frac{\varepsilon}{2} < \varepsilon$$

Cauchy 收敛原理得证!

Cauchy 收敛原理 \Longrightarrow 闭区间套定理: 取闭区间序列 $\{[a_n,b_n]\}_{n=1}^{\infty}$, 成立对于任意 $n \in \mathbb{N}^*$, 有 $[a_{n+1},b_{n+1}] \subset [a_n,b_n]$, 且 $\lim_{n\to\infty} |b_n-a_n|=0$ 。由于当 m>n 时,成立

$$0 \le a_m - a_n \le b_n - a_n \to 0$$

因此 $\{a_n\}_{n=1}^{\infty}$ 为收敛数列,从而存在 $\xi \in \mathbb{R}$,使得成立 $a_n \to \xi$,此时

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} ((b_n - a_n) + a_n) = \lim_{n \to \infty} (b_n - a_n) + \lim_{n \to \infty} a_n = \xi$$

从而对于任意 $n \in \mathbb{N}^*$,成立 $\xi \in [a_n, b_n]$,存在性得证! 如果存在 $\eta \in \mathbb{R}$,使得对于任意 $n \in \mathbb{N}^*$,成立 $\xi \in [a_n, b_n]$,那么因为对于任意 $n \in \mathbb{N}^*$,成立

$$a_n \leq \eta \leq b_n$$

由极限的夹逼性, $\eta = \xi$, 唯一性得证!

闭区间套定理 \Longrightarrow 确界定理: 对于存在上界的非空集合 $S \subset \mathbb{R}$, 不妨 S 为无穷集合,取 a_1 不为 S 的上界, b_1 为 S 的上界,那么 $a_1 < b_1$ 。如果已经得到有限闭区间序列 $\{[a_k,b_k]\}_{k=1}^n$,使得对于任意 $1 \le k \le n$, a_k 不为 S 的上界, b_k 为 S 的上界,那么构造

$$[a_{n+1},b_{n+1}] = \begin{cases} \left[a_n, \frac{a_n + b_n}{2} \right], & \frac{a_n + b_n}{2} \beta S$$
的上界
$$\left[\frac{a_n + b_n}{2}, b_n \right], & \frac{a_n + b_n}{2} \Lambda \beta S$$
的上界

由数学归纳,存在闭区间序列 $\{[a_n,b_n]\}_{n=1}^{\infty}$,使得对于任意 $n \in \mathbb{N}^*$, a_n 不为 S 的上界, b_n 为 S 的上界。由于 $b_n - a_n = (b_1 - a_1)2^{-n} \to 0$,从而存在且存在唯一 $\xi \in \mathbb{R}$,使得对于任意 $n \in \mathbb{N}^*$,成立 $\xi \in [a_n,b_n]$,且 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ 。如果 ξ 不为 S 的上界,那么存在 $x_0 \in S$,使得成立 $\xi < x_0$ 。由于 $\lim_{n \to \infty} b_n = \xi$,从而存在 n_0 ,使得成立 $b_{n_0} < x_0$,与 b_{n_0} 为 S 的上界矛盾! 进而 ξ 为 S 的上界。任取 $\varepsilon > 0$,由于 $\lim_{n \to \infty} x_n = \xi$,从而存在 n_0' ,使得成立 $a_{n_0'} > \xi - \varepsilon$ 。由于 $a_{n_0'}$ 不为上界,从而存在 $x_0' \in S$,使得成立 $x_0' > a_{n_0'} > \xi - \varepsilon$,进而 ξ 为 S 的上确界。确界定理得证!

致密性原理 ⇒ **聚点原理**: 对于有界无穷集合 $S \subset \mathbb{R}$,取任意两项互不相同的数列 $\{x_n\}_{n=1}^{\infty} \subset S$,从而 $\{x_n\}_{n=1}^{\infty}$ 为有界数列,进而存在收敛于子列,不妨仍记为 $\{x_n\}_{n=1}^{\infty}$,且 $x_n \to \xi$ 。对于任意 $\varepsilon > 0$,($\xi - \varepsilon, \xi + \varepsilon$) 存在原数列中无穷多项,进而成立 $(x - \varepsilon, x + \varepsilon) \cap S \setminus \{x\} \neq \emptyset$,聚点原理得证!

聚点原理 \Longrightarrow 致密性原理: 对于有界数列 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$,记 $S = \{x_n : n \in \mathbb{N}^*\}$,如果 S 为有限集合,那么存在 $x \in S$,使得 x 在原数列中存在无穷多项,因此原数列存在收敛子列。如果 S 为无穷集合,那么存在 $\xi \in \mathbb{R}$,使得对于任意 $\varepsilon > 0$,成立 $(\xi - \varepsilon, \xi + \varepsilon) \cap S \setminus \{\xi\} \neq \emptyset$ 。取 $x_{n_1} \in (\xi - \varepsilon, \xi + \varepsilon) \cap S \setminus \{\xi\}$,假设已得到有限数列 $\{x_{n_k}\}_{k=1}^m \subset \{x_n\}_{n=1}^\infty$,使得对于任意 $1 \leq k \leq m$, $a_{n_k} \in (\xi - 1/k, \xi + 1/k) \cap S \setminus \{\xi\}$,考察 $(\xi - 1/(m+1), \xi + 1/(m+1)) \cap S \setminus \{\xi\}$,如果对于任意 $j > n_m$, $x_j \notin (\xi - 1/(m+1), \xi + 1/(m+1)) \cap S \setminus \{\xi\}$,那么取 $\varepsilon = \min\{|\xi - x_j|\}_{j=1}^{n_m}$,于是 $(\xi - \varepsilon, \xi + \varepsilon) \cap S \setminus \{\xi\} = \emptyset$,矛盾! 进而存在 $n_{m+1} > n_m$,使得成立 $x_{n_{m+1}} \in (\xi - 1/(m+1), \xi + 1/(m+1)) \cap S \setminus \{\xi\}$ 。由数学归纳,存在子列 $\{x_{n_k}\}_{k=1}^\infty \subset \{x_n\}_{n=1}^\infty$,使得对于任意 $k \in \mathbb{N}^*$,成立 $a_{n_k} \in (\xi - 1/k, \xi + 1/k) \cap S \setminus \{\xi\}$,从而 $|a_{n_k} - \xi| < 1/k \to 0$,致密性原理得证!

有限覆盖定理 \Longrightarrow 聚点定理: 对于有界无穷点集 S, 令 $S \subset [-M, M]$ 。若 S 不存在聚点,那么对于任意 $x \in [-M, M]$,存在 $\delta_x > 0$,使得成立 $(x - \delta_x, x + \delta_x) \cap S = \{x\}$ 。作 [-M, M] 的开覆盖 $\{(x - \delta_x, x + \delta_x) : |x| < M\}$,于是存在有限子覆盖 $(x_1 - \delta_{x_1}, x_1 + \delta_{x_1}), \cdots, (x_n - \delta_{x_n}, x_n + \delta_{x_n})$,于是

$$S = S \cap [-M, M] = S \cap \bigcup_{k=1}^{n} (x_k - \delta_{x_k}, x_k + \delta_{x_k}) = \bigcup_{k=1}^{n} S \cap (x_k - \delta_{x_k}, x_k + \delta_{x_k}) = \bigcup_{k=1}^{n} \{x_k\} = \{x_1, \dots, x_n\}$$

与 S 为无穷点集矛盾!

闭区间套定理 \Longrightarrow 有限覆盖定理: 假设闭区间 [a,b] 的开覆盖 $\{C_{\lambda}\}_{\lambda\in\Lambda}$ 无有限子覆盖,那么将 [a,b] 二等分,其中之一无有限子覆盖,将其记为 $[a_1,b_1]$ 。如此重复下去,可得比区间套 $\{[a_n,b_n]\}_{n=1}^{\infty}$,使得每一个 $[a_n,b_n]$ 无有限子覆盖。由闭区间套定理,存在且存在唯一 $\xi\in\mathbb{R}$,使得对于任意 $n\in\mathbb{N}^*$,成立 $\xi\in[a_n,b_n]$,且 $\xi=\lim_{\substack{n\to\infty\\n\to\infty}}a_n=\lim_{\substack{n\to\infty\\n\to\infty}}b_n$ 。由于 $\{C_{\lambda}\}_{\lambda\in\Lambda}$ 为 [a,b] 的开覆盖,因此存在 C_{λ_0} ,使得成立 $x\in C_{\lambda_0}$ 。由于 C_{λ_0} 为开集,因此存在开区间 (α,β) ,使得成立 $\xi\in(\alpha,\beta)\subset C_{\lambda_0}$ 。由于 $|a_n-b_n|\to 0$,那么存在 $n_0\in\mathbb{N}^*$,使得成立 $|a_{n_0}-b_{n_0}|<|\alpha-\beta|$,因此 $[a_{n_0},b_{n_0}]\subset[\alpha,\beta]\subset C_{\lambda_0}$,矛盾!

第二章 数列极限

2.1 数列极限

2.1.1 数列极限

定义 2.1.1 (收敛数列)

称数列 $\{x_n\}_{n=1}^\infty\subset\mathbb{R}$ 收敛,如果对于任意 $\varepsilon>0$,存在 $N\in\mathbb{N}^*$,使得对于任意 $m,n\geq N$,成立 $|x_m-x_n|<\varepsilon$ 。

定义 2.1.2 (数列极限)

称数列 $\{x_n\}_{n=1}^\infty\subset\mathbb{R}$ 收敛于 $a\in\mathbb{R}$,如果对于任意 $\varepsilon>0$,存在 $N\in\mathbb{N}^*$,使得对于任意 $n\geq N$,成立 $|x_n-a|<\varepsilon$ 。

2.1.2 数列极限的性质

命题 2.1.1 (数列极限的性质)

- 1. 收敛数列的存在且存在唯一极限。
- 2. 收敛数列的有界性:对于收敛数列 $\{x_n\}_{n=1}^{\infty}\subset\mathbb{R}$,存在 $M\in\mathbb{R}$,使得对于任意 $n\in\mathbb{N}^*$,成立 $|x_n|< M$ 。
- 3. 收敛数列的保序性: 如果 $x_n \to a$, 且 a > 0, 那么存在 $N \in \mathbb{N}^*$, 使得对于任意 $n \ge N$, 成立 $x_n > 0$ 。
- 4. 收敛数列的保序性: 如果 $x_n \to a$, 且 $x_n > 0$, 那么 $a \ge 0$ 。
- 5. 收敛数列的夹逼性:如果 $x_n \leq y_n \leq z_n$,且 $x_n \to a, z_n \to a$,那么 $y_n \to a$ 。

2.1.3 数列极限的四则运算

命题 2.1.2 (数列极限的四则运算)

1. 加法: 如果 x_n 与 y_n 收敛, 那么 $x_n + y_n$ 收敛, 且

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$

2. 数乘: 如果 x_n 收敛, 那么 λx_n 收敛, 且

$$\lim_{n \to \infty} (\lambda x_n) = \lambda \lim_{n \to \infty} x_n$$

3. 乘法: 如果 x_n 与 y_n 收敛, 那么 x_ny_n 收敛, 且

$$\lim_{n \to \infty} (x_n y_n) = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$$

4. 除法: 如果 x_n 与 y_n 收敛, 且 y_n 非收敛于 0, 那么 x_n/y_n 收敛, 且

$$\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

2.2 无穷小量与无穷大量

定义 2.2.1 (无穷小量)

称数列 $\{x_n\}_{n=1}^\infty\subset\mathbb{R}$ 为无穷小量,如果对于任意 $\varepsilon>0$,存在 $N\in\mathbb{N}^*$,使得对于任意 $n\geq N$,成立 $|x_n|<\varepsilon$ 。

定义 2.2.2 (无穷大量)

称数列 $\{x_n\}_{n=1}^\infty\subset\mathbb{R}$ 为无穷大量,如果对于任意 M>0,存在 $N\in\mathbb{N}^*$,使得对于任意 $n\geq N$,成立 $|x_n|>M$ 。

命题 2.2.1 (无穷大量的性质)

1. 对于非零数列 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$, 成立

$$x_n \to \infty \iff \frac{1}{x_n} \to 0$$

2. 如果 $x_n \to \infty$ 且 $|y_n| \ge a > 0$,那么 $x_n y_n \to \infty$ 。

2.3 Stolz 定理

定理 2.3.1 (Stolze 公式)

- 1. $\frac{0}{0}$ 型: 对于数列 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$, 如果成立
 - (a). $\{x_n\}_{n=1}^{\infty}$ 严格单调递减。
 - (b). $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$
 - (c). 存在极限 $\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$

那么存在极限 $\lim \frac{y_n}{x_n}$, 且

$$\lim \frac{y_n}{x_n} = \lim \frac{y_{n+1} - y_n}{x_{n+1} - x_n}$$

- 2. $\frac{*}{\infty}$ 型: 对于数列 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$, 如果成立
 - (a). $\{x_n\}_{n=1}^{\infty}$ 严格单调递增。
 - (b). $\lim_{n\to\infty} x_n = \infty$
 - (c). 存在极限 $\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$

那么存在极限 $\lim \frac{y_n}{x_n}$, 且

$$\lim \frac{y_n}{x_n} = \lim \frac{y_{n+1} - y_n}{x_{n+1} - x_n}$$

Ŷ 笔记

$$\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=\infty \implies \lim_{n\to\infty}\frac{x_n}{y_n}=\infty$$

例如:

$$\{x_n\} = \{0, 2^2, 0, 4^2, 0, 6^2, \dots\}$$
 $y_n = n$

定理 2.3.2 (Toeplitz 定理)

对于 $\{t_k^{(n)}\}_{k,n=1}^{\infty}\subset\mathbb{R}_{\geq0}$, 如果

$$\sum_{k=1}^{n} t_{k}^{(n)} = 1, \qquad \lim_{n \to \infty} t_{k}^{(n)} = 0, \qquad k, n \in \mathbb{N}^{*}$$

那么

$$\lim_{n \to \infty} x_n = x \implies \lim_{n \to \infty} \sum_{k=1}^n t_k^{(n)} x_k = x$$

2.4 数列递推

定理 2.4.1 (单调有界原理)

对干递推公式

$$x_{n+1} = f(x_n)$$

如果 x_n 单调递增且由上界,那么 x_n 存在极限 a,且成立

$$a = f(a)$$

\Diamond

定理 2.4.2 (压缩映像原理)

对于递推公式

$$x_{n+1} = f(x_n)$$

如果存在0 < r < 1, 使得成立

那么 x_n 存在极限a,且成立

$$a = f(a)$$

\sim

定理 2.4.3 (不动点方法)

对于递推公式

$$x_{n+1} = f(x_n)$$

如果 f(x) 连续递增,且 $f(x^*) = x^*$,同时

$$(x_1 - f(x_1))(x_1 - x^*) \ge 0$$

那么 x_n 存在极限a,且成立

$$a = f(a)$$

$^{\circ}$

定理 2.4.4 (一阶递推)

一阶递推

$$x_{n+1} = a_n x_n + b_n$$

的递推公式为

$$x_n = \left(\prod_{k=0}^{n-1} a_k\right) x_0 + \sum_{i=1}^{n-2} \left(\prod_{j=i+1}^{n-1} a_j\right) b_i + b_{n-1}$$

 \Diamond

定理 2.4.5 (二阶递推)

对于二阶递推

$$x_{n+2} = px_{n+1} + qx_n$$

1. 如果特征方程

$$\lambda^2 = p\lambda + q$$

存在两根 α , β , 那么其通项公式为

$$x_n = A\alpha^n + B\beta^n$$

其中 A, B 由 x_0, x_1 确定。

2. 如果特征方程

$$\lambda^2 = p\lambda + q$$

存在重根 γ ,那么其通项公式为

$$x_n = (An + B)\gamma^n$$

其中A,B由 x_0,x_1 确定。

(

定理 2.4.6 (分式线性递推)

对于分式线性递推

$$x_{n+1} = \frac{ax_n + b}{cx_n + d}$$

其中 $ad \neq bc$ 。

1. 如果特征方程

$$\lambda = \frac{a\lambda + b}{c\lambda + d}$$

存在两根 α, β , 那么其通项公式为

$$\frac{x_n - \alpha}{x_n - \beta} = \frac{x_0 - \alpha}{x_0 - \beta} \left(\frac{a - c\alpha}{a - c\beta}\right)^n$$

2. 如果特征方程

$$\lambda = \frac{a\lambda + b}{c\lambda + d}$$

存在重根 γ ,那么其通项公式为

$$\frac{1}{x_n-\gamma}=\frac{1}{x_0-\gamma}+\frac{2c}{a+d}$$

 \circ

2.5 数列极限的估计

命题 2.5.1 (e 的估计)

$$e = \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{\theta_n}{n!}, \qquad \frac{1}{1+n} < \theta_n < \frac{1}{n}$$

命题 2.5.2 (调和函数的估计)

$$\ln n < \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} < \ln(1+n)$$

命题 2.5.3 (Euler 常数)

$$\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} = \ln n + \gamma + \theta_n, \qquad \frac{1}{n^2} < \theta_n < \frac{1}{n}$$

定理 2.5.1 (Stirling 公式)

$$n! = \sqrt{2\pi n} n^n e^{-n + \frac{\theta_n}{12n}}, \qquad \frac{n}{1+n} < \theta_n < 1$$

第三章 函数极限与连续函数

3.1 函数极限

3.1.1 函数极限

定义 3.1.1 (存在极限的函数)

称函数 f(x) 在 $x_0 \in I$ 处存在极限,如果对于任意 $\varepsilon > 0$,存在 $\delta > 0$,使得成立

$$0 < |x - x_0| < \delta, 0 < |y - y_0| < \delta \implies |f(x) - f(y)| < \varepsilon$$

定义 3.1.2 (函数极限)

称函数 f(x) 在 $x_0 \in I$ 处的极限为 A, 并记作

$$f(x_0) = \lim_{x \to x_0} f(x)$$

如果对于任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得成立

$$0 < |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

3.1.2 函数极限的性质

命题 3.1.1 (函数极限的性质)

- 1. 极限的唯一性:如果 A, B 均为函数 f(x) 在 x_0 处的极限,那么 A = B。
- 2. 局部保序性: 如果 A,B 分别为函数 f(x),g(x) 在 x_0 处的极限,且 A>B,那么存在 $\delta>0$,使得成立

$$0 < |x - x_0| < \delta \implies f(x) > g(x)$$

3. 局部有界性: 如果函数 f(x) 在 x_0 处存在极限, 那么 f(x) 在 x_0 去心邻域内有界。

3.1.3 函数极限的四则运算

命题 3.1.2 (函数极限的四则运算)

1. 和: 如果存在极限 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} g(x)$,那么存在极限 $\lim_{x \to x_0} (f(x) + g(x))$,且

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

2. 数乘: 如果存在极限 $\lim_{x\to x_0} f(x)$, 那么存在极限 $\lim_{x\to x_0} (\lambda f(x))$, 且

$$\lim_{x\to x_0}(\lambda f(x))=\lambda \lim_{x\to x_0}f(x)$$

3. 乘法: 如果存在极限 $\lim_{x\to x_0}f(x)$ 与 $\lim_{x\to x_0}g(x)$,那么存在极限 $\lim_{x\to x_0}(f(x)g(x))$,且

$$\lim_{x \to x_0} (f(x)g(x)) = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x)$$

4. 除法: 如果存在极限 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} g(x) \neq 0$, 那么存在极限 $\lim_{x \to x_0} \frac{f(x)}{g(x)}$, 且

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$

3.1.4 函数极限与数列极限的关系

定理 3.1.1 (Heine 定理/归结原理)

$$\lim_{x \to x_0} f(x) = A \iff (x_n \to x_0, \quad x_n \neq x_0 \implies f(x_n) \to A)$$

证明 如果 f(x) 在 x_0 处以 A 为极限,那么任取数列 $\{x_n\}_{n=1}^{\infty}$ 成立 $x_n \to x_0$ 且 $x_n \neq x_0$,对于任意 $\varepsilon > 0$,存在 $\delta > 0$,使得成立

$$0 < |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

对于此 $\delta>0$,存在 $N\in\mathbb{N}^*$,使得对于任意 $n\geq N$,成立 $0<|x_n-x_0|<\delta$,因此 $|f(x_n)-A|<\varepsilon$,从而 $f(x_n)\to A$ 。

如果 f(x) 在 x_0 处不以 A 为极限,那么存在 $\varepsilon_0 > 0$,使得对于任意 $n \in \mathbb{N}^*$,存在 $x_n \in \mathbb{R}$,使得成立 $0 < |x_n - x_0| < 1/n$,且 $|f(x_n) - A| \ge \varepsilon_0$,从而 $x_n \to x_0$,但是 $f(x_n) \not\to A$ 。

笔记 对于必要性,一定要强调 $x_n \neq x_0$,因为 f(x) 在 x_0 处无定义;或者在 x_0 处存在定义,但是在 x_0 处不连续,那么可取 $x_n \equiv x_0$,必要性不成立。

3.1.5 单侧极限

定义 3.1.3 (左极限)

称函数 f(x) 在 $x_0 \in I$ 处的左极限为 A, 并记作

$$f(x_0^-) = \lim_{x \to x_0^-} f(x)$$

如果对于任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得成立

$$0 < x_0 - x < \delta \implies |f(x) - A| < \varepsilon$$

定义 3.1.4 (右极限)

称函数 f(x) 在 $x_0 \in I$ 处的右极限为 A,并记作

$$f(x_0^+) = \lim_{x \to x_0^+} f(x)$$

如果对于任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得成立

$$0 < x - x_0 < \delta \implies |f(x) - A| < \varepsilon$$

3.2 连续函数

3.2.1 连续函数的定义

定义 3.2.1 (连续函数)

1. 称函数 f(x) 在 x_0 处连续, 如果

$$\lim_{x \to x_0} f(x) = f(x_0)$$

2. 称函数 f(x) 在 x_0 处连续, 如果对于任意数列 $\{x_n\}_{n=1}^{\infty}$, 成立

$$\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0)$$

3. 称函数 f(x) 在 x_0 处连续,如果对于任意 $f(x_0)$ 的邻域 U, $f^{-1}(U)$ 为 x_0 的邻域。

定义 3.2.2 (连续函数)

- 1. 称函数 f(x) 在 I 上连续,如果 f(x) 在任意 $x_0 \in I$ 处均连续。
- 2. 称函数 f(x) 在 I 上连续,如果开集的原像为开集。

3.2.2 连续函数的四则运算

命题 3.2.1 (连续函数的四则运算)

- 1. 和: 如果函数 f(x) 与 g(x) 在 x_0 处连续, 那么 f(x) + g(x) 在 x_0 处连续。
- 2. 数乘: 如果函数 f(x) 在 x_0 处连续, 那么 $\lambda f(x)$ 在 x_0 处连续。
- 3. 乘法: 如果函数 f(x) 与 g(x) 在 x_0 处连续, 那么 f(x)g(x) 在 x_0 处连续。
- 4. 除法: 如果函数 f(x) 与 g(x) 在 x_0 处连续, 且 $g(x_0) \neq 0$, 那么 f(x)/g(x) 在 x_0 处连续。

3.2.3 连续周期函数

定理 3.2.1

连续周期非常函数存在最小正周期。

3.2.4 间断点类型

定义 3.2.3 (间断点类型)

- 1. 第一类间断点:函数 f(x) 在 x_0 处存在左右极限。
 - (a). 可去间断点:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0)$$

(b). 跳跃间断点:

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$$

2. 第二类间断点:函数 f(x) 在 x_0 处左右极限之一不存在。

定理 3.2.2 (单调函数的间断点为跳跃间断点)

开区间 (a,b) 上的单调函数的间断点为跳跃间断点。

 \Diamond

3.2.5 复合函数的连续性

定理 3.2.3 (复合函数的连续性)

如果 y=g(x) 在 x_0 处连续,且 $y_0=g(x_0)$,同时 z=f(y) 在 y_0 处连续,那么复合函数 $z=(f\circ g)(x)$ 在 x_0 处连续。

$$g(x) = x \sin \frac{1}{x},$$
 $f(x) = \begin{cases} 0, & x = 0\\ 1, & x \neq 0 \end{cases}$

成立

$$\lim_{x \to 0} g(x) = 0, \qquad \lim_{x \to 0} f(x) = 1$$

但是

$$(f \circ g)(x) = \begin{cases} 0, & x = 1/k\pi, k \in \mathbb{Z} \\ 1, & 其他 \end{cases}$$

在 0 处无极限。

3.2.6 反函数连续性定理

定理 3.2.4 (反函数连续性定理)

如果函数 y=f(x) 在闭区间 [a,b] 上连续且严格单调递增,那么其反函数 $x=f^{-1}(y)$ 在 [f(a),f(b)] 上连续且严格单调递增。

3.3 无穷小量与无穷大量的阶

3.3.1 无穷小量的比较

定义 3.3.1 (无穷小量)

称当 $x \to x_0$ 时 f(x) 为无穷小量,如果 $\lim_{x \to x_0} f(x) = 0$ 。

*

定义 3.3.2 (无穷小量的阶)

1. 高阶无穷小量: 对于 $x \to x_0$ 时的无穷小量 u(x) 与 v(x), 称 u(x) 为关于 v(x) 的高阶无穷小量,并记作

$$u(x) = o(v(x)) \qquad (x \to x_0)$$

如果

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = 0$$

2. 同阶无穷小量:对于 $x \to x_0$ 时的无穷小量u(x)与v(x),称u(x)与v(x)为同阶无穷小量,并记作

$$u(x) = O(v(x)) \qquad (x \to x_0)$$

如果

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} \in \mathbb{R} \setminus \{0\}$$

3. 等价无穷小量: 对于 $x \to x_0$ 时的无穷小量 u(x) 与 v(x), 称 u(x) 与 v(x) 为同阶无穷小量,并记作

$$u(x) \sim v(x) \qquad (x \to x_0)$$

如果

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = 1$$

定理 3.3.1 (等价无穷小)

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln(1+x) \sim e^x - 1 \sim \frac{a^x - 1}{\ln a} \sim \frac{(1+x)^a - 1}{a}$

$$1 - \cos x \sim \frac{1}{2}x^2$$

 \Diamond

3.3.2 无穷大量的比较

定义 3.3.3 (无穷大量)

称当 $x \to x_0$ 时 f(x) 为无穷大量,如果 $\lim_{x \to x_0} f(x) = \infty$ 。

4

定义 3.3.4 (无穷大量的阶)

1. 高阶无穷大量: 对于 $x \to x_0$ 时的无穷大量 u(x) 与 v(x), 称 u(x) 为关于 v(x) 的高阶无穷大量,并记作

$$u(x) = o(v(x)) \qquad (x \to x_0)$$

如果

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = \infty$$

2. 同阶无穷大量: 对于 $x \to x_0$ 时的无穷大量 u(x) 与 v(x), 称 u(x) 与 v(x) 为同阶无穷大量, 并记作

$$u(x) = O(v(x)) \qquad (x \to x_0)$$

如果

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} \in \mathbb{R} \setminus \{0\}$$

3. 等价无穷大量: 对于 $x \to x_0$ 时的无穷大量 u(x) 与 v(x), 称 u(x) 与 v(x) 为同阶无穷大量, 并记作

$$u(x) \sim v(x) \qquad (x \to x_0)$$

如果

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = 1$$

3.3.3 等价量

定理 3.3.2 (等价量代换定理)

如果

$$u(x) \sim v(x) \qquad (x \to x_0)$$

那么

$$\lim_{x \to x_0} f(x)u(x)$$
存在 $\Longrightarrow \lim_{x \to x_0} f(x)v(x)$ 存在且 $\lim_{x \to x_0} f(x)v(x) = \lim_{x \to x_0} f(x)u(x)$
$$\lim_{x \to x_0} \frac{f(x)}{u(x)}$$
存在 $\Longrightarrow \lim_{x \to x_0} \frac{f(x)}{v(x)}$ 存在且 $\lim_{x \to x_0} \frac{f(x)}{v(x)} = \lim_{x \to x_0} \frac{f(x)}{u(x)}$

3.4 闭区间上的连续函数

3.4.1 有界性定理

定理 3.4.1 (有界性定理)

如果函数 f(x) 在闭区间 [a,b] 上连续, 那么其在 [a,b] 上有界。

 \odot

证明 利用二分法,每次选择无界区间,可得唯一点 ξ 。而 f(x) 在 ξ 附近有界,矛盾! 笔记 开区间上的连续函数可能无界,例如 f(x) = 1/x 在 (0,1) 上无界。

3.4.2 最值定理

定理 3.4.2 (最值定理)

如果函数 f(x) 在闭区间 [a,b] 上连续,那么存在 $\xi,\eta\in[a,b]$,使得对于任意 $x\in[a,b]$,成立 $f(\xi)\leq f(x)\leq f(\eta)$

证明 函数 f(x) 的值域为有界集,因此存在上下确界。以下确界 α 为例,存在 x_n ,使得 $f(x_n) \to \alpha$ 。由致密性原理,存在收敛子列,不妨仍记为 x_n 。由于 [a,b] 为闭集,因此 $x_n \to \xi \in [a,b]$ 。由于 f(x) 在 ξ 处连续,因此 $f(\xi) = \alpha$ 。

3.4.3 零点存在定理

定理 3.4.3 (零点存在定理)

如果函数 f(x) 在闭区间 [a,b] 上连续,且 f(a)f(b)<0,那么存在 $\xi\in(a,b)$,使得成立 $f(\xi)=0$ 。

证明 使用二分法,每次选择端点异号的区间,可得唯一点 ξ 。而 f(x) 在 ξ 处连续,因此若 $f(\xi)>0$,那么 f(x) 在 ξ 附近恒正,矛盾!

3.4.4 介值定理

定理 3.4.4 (介值定理)

如果函数 f(x) 在闭区间 [a,b] 上连续,记 $m=\inf_{a\leq x\leq b}f(x), M=\sup_{a\leq x\leq b}f(x)$,那么对于任意 $m\leq \mu\leq M$,存在 $\xi\in[a,b]$,使得成立 $f(\xi)=\mu$ 。

3.5 一致连续函数

3.5.1 一致连续性

定义 3.5.1 (一致连续函数)

称函数 f(x) 一致连续,如果成立如下命题之一。

1. 对于任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得成立

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

2. 对于任意 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$, 成立

$$|x_n - y_n| \to 0 \implies |f(x_n) - f(y_n)| \to 0$$

3. 连续模数成立

$$\lim_{\delta \to 0^+} \sup_{|x-y| < \delta} |f(x) - f(y)| = 0$$

定义 3.5.2 (Lipschitz 连续性)

称函数 f(x)Lipschitz 连续,如果存在 $L \ge 0$,使得对于任意 x, y,成立

$$|f(x) - f(y)| < L|x - y|$$

🕏 笔记 一致连续函数之和一致连续,但是一致连续函数之积不一定一致连续,例如

$$f(x) = g(x) = x, \qquad f(x)g(x) = x^2$$

取

$$x_n = n,$$
 $y_n = n + \frac{1}{n}$

此时

$$|x_n - y_n| = \frac{1}{n} \to 0, \qquad |x_n^2 - y_n^2| = 2 + \frac{1}{n^2} \to 2$$

定理 3.5.1 (Cantor 定理)

如果函数 f(x) 在闭区间 [a,b] 上连续,那么其在 [a,b] 上一致连续。

证明 如果 f(x) 在 [a,b] 上非一致收敛, 那么存在 ε_0 与数列 x_n, y_n , 使得成立

$$|x_n - y_n| < \frac{1}{n}, \qquad |f(x_n) - f(y_n)| \ge \varepsilon_0$$

由致密性定理,存在收敛子列,不妨仍记为 x_n,y_n ,此时

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (x_n - y_n) + y_n = \lim_{n \to \infty} y_n = \xi \in [a, b]$$

由于 f(x) 在 ξ 处连续,那么

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n) = f(\xi)$$

矛盾!

3.5.2 连续性与一致连续的关系

命题 3.5.1 (证明一致连续性的方法论)

1. 证明一致连续性:

导函数有界 ⇒ Lipschitz 连续 ⇒ 一致连续

2. 证明非一致连续性:

 $\exists \varepsilon > 0, \exists x_n, y_n, \text{ s.t. } |x_n - y_n| \to 0, |f(x_n) - f(y_n)| \ge \varepsilon \implies 非一致连续$

定理 3.5.2 (连续性与一致连续性的关系)

1. Cantor 定理:

$$f(x)$$
 在 $[a,b]$ 上连续 \iff $f(x)$ 在 $[a,b]$ 上一致连续

2. 对于 (a,b) 上的连续函数 f(x), 成立

$$f(x)$$
 在 (a,b) 上一致连续 $\iff \lim_{x \to a^+} f(x)$ 与 $\lim_{x \to b^-} f(x)$ 存在且有限

3. 对于 $[a,+\infty)$ 上的连续可微函数 f(x), 如果 $\lim_{x\to+\infty} |f'(x)|$ 存在, 那么

$$f(x)$$
 在 $[a,+\infty)$ 上一致连续 $\iff \lim_{x\to +\infty} |f'(x)| < +\infty$

4. 对于 (a,b) 上的连续可微函数 f(x), 如果 $\lim_{x\to a^+}|f'(x)|$ 与 $\lim_{x\to b^-}|f'(x)|$ 存在,那么

$$f(x)$$
 在 (a,b) 上一致连续 $\iff \lim_{x \to +\infty} |f'(x)| < +\infty$ 且 $\lim_{x \to b^-} |f'(x)| < +\infty$

- 5. 对于 $[a,+\infty)$ 上的连续函数 f(x), 如果 $\lim_{x\to+\infty}f(x)$ 存在且有限,那么 f(x) 在 $[a,+\infty)$ 上一致连续。
- 6. 连续周期函数一致连续。
- 7. 如果 f(x) 在 $[a, +\infty)$ 上连续, $\varphi(x)$ 在 $[a, +\infty)$ 上一致连续, 且 $\lim_{x \to +\infty} |f(x) \varphi(x)| = 0$, 那么 f(x) 在 $[a, +\infty)$ 上一致连续。

定理 3.5.3 (一致连续函数的阶)

对于 \mathbb{R} 上的一致连续函数 f(x), 存在 $a,b \in \mathbb{R}$, 使得对于任意 $x \in \mathbb{R}$, 成立

$$|f(x)| \le a|x| + b$$

定理 3.5.4 (一致连续性与 Lipschitz 连续性的关系)

对于区间 I 上的函数 f(x), f(x) 在 I 上一致连续的充分必要条件为: 对于任意 $\varepsilon>0$,存在 M>0,使得对于任意 $x,y\in I$,成立

$$|f(x) - f(y)| \le M|x - y| + \varepsilon$$

3.6 凸函数

定义 3.6.1 (凸函数)

称定义在(a,b)上的函数f(x)为凸函数,如果成立如下命题之一。

1. 对于任意 $x, y \in (a, b)$ 与 $\lambda \in (0, 1)$, 成立

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

2. 对于任意 $x, y \in (a, b)$, 成立

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x) + f(y)}{2}$$

3. 对于任意 $x_1, \dots, x_n \in (a, b)$, 成立

$$f\left(\frac{x_1+\cdots+x_n}{n}\right) \le \frac{f(x_1)+\cdots+f(x_n)}{n}$$

定理 3.6.1

对于凸函数的定义, 成立

$$1 \implies 2 \iff 3, \qquad 2 + \text{ \& \& \& \& } 1$$

定义 3.6.2 (下凸函数)

称 (a,b) 上的函数 f(x) 为下凸函数,如果对于任意 $x,y\in(a,b)$ 与 $\lambda\in[0,1]$,成立

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

定义 3.6.3 (上凸函数)

称 (a,b) 上的函数 f(x) 为上凸函数,如果对于任意 $x,y \in (a,b)$ 与 $\lambda \in [0,1]$,成立

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

定理 3.6.2

如果函数 f(x) 在 (a,b) 上二阶可导,那么

$$f(x)$$
 在 (a,b) 上为下凸函数 $\iff \forall x \in (a,b), f''(x) \geq 0$

特别的,如果 f'(x) 在 (a,b) 中除有限个点外均成立 f''(x) > 0,那么 f(x) 在 (a,b) 上为下凸函数。

定义 3.6.4 (拐点)

称 x_0 为 f(x) 的拐点,如果 f(x) 在 x_0 两侧凸性改变。

室记 如果 f(x) 在拐点 x_0 附近二阶可导,那么 $f''(x_0) = 0$ 。

 $f''(x_0) = 0 \implies x_0 \$ 为 f(x) 的拐点,例如: $f(x) = x^4$ 。

f(x) 在 x_0 非二阶可导, x_0 也可能为 f(x) 的拐点, 例如: $f(x) = x^{1/3}$ 。

3.7 函数方程

定理 3.7.1

对于函数方程

$$f(x+y) = f(x) + f(y), \qquad x, y \in \mathbb{R}$$

如果 f(x) 在 0 处连续, 那么 f(x) = ax。

0

定理 3.7.2

对于函数方程

$$f(x+y) + f(x-y) = 2f(x)f(y), \qquad x, y \in \mathbb{R}$$

如果 f(x) 连续, 那么或 f(x) = 0, 或 $f(x) = \cos ax$, 或 $f(x) = \cosh ax$.

\sim

定理 3.7.3

对于函数方程

$$f(x+y) = f(x)f(y), \qquad x, y \in \mathbb{R}$$

如果 f(x) 连续, 那么或 f(x) = 0, 或 $f(x) = a^x$ 。

M

定理 3.7.4

对于函数方程

$$f(xy) = f(x) + f(y), \qquad x, y \in \mathbb{R}^+$$

如果 f(x) 连续, 那么或 f(x) = 0, 或 $f(x) = a \ln x$ 。

\sim

3.8 Riemann 函数, Dirichlet 函数, Weierstrass 函数

3.8.1 Riemann 函数

定义 3.8.1 (Riemann 函数)

$$\mathcal{R}(x) = \begin{cases} 1/p, & x = q/p, p \in \mathbb{N}^*, q \in \mathbb{Z}, (p, q) = 1\\ 1, & x = 0\\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

定理 3.8.1 (Riemann 函数的周期性)

Riemann 函数以1为最小正周期。

证明 任取 $x \in \mathbb{R}$, 如果 x = 0, 那么

$$\mathcal{R}(x) = \mathcal{R}(x+1) = 1$$

如果 x=q/p, 其中 $\in \mathbb{N}^*, q \in \mathbb{Z}$ 且 (p,q)=1, 那么

$$\mathcal{R}(x) = \mathcal{R}(x+1) = \frac{1}{n}$$

如果 $x \in \mathbb{R} \setminus \mathbb{Q}$, 那么

$$\mathcal{R}(x) = \mathcal{R}(x+1) = 0$$

因此, Riemann 函数以1为周期。

如果存在0 < T < 1周期,若T = q/p,其中 $\in \mathbb{N}^*, q \in \mathbb{Z}$ 且(p,q) = 1,则

$$\mathcal{R}\left(\frac{1}{p+1}\right) = \frac{1}{p+1}$$

$$\mathcal{R}\left(\frac{1}{p+1} + T\right) = \mathcal{R}\left(\frac{1}{p+1} + \frac{q}{p}\right) = \mathcal{R}\left(\frac{p+q(p+1)}{p(p+1)}\right) \neq \frac{1}{p+1}$$

若 $T \in \mathbb{R} \setminus \mathbb{Q}$,则

$$\mathcal{R}(0) = 1, \qquad \mathcal{R}(T) = 0$$

综上所述, Riemann 函数以1为最小正周期。

定理 3.8.2 (Riemann 函数的连续性)

对于任意 $x_0 \in \mathbb{R}$, 成立

$$\lim_{x \to x_0} \mathcal{R}(x) = 0$$

因此 Riemann 函数以有理点为跳跃间断点, 在无理点连续。

 \sim

证明 由 Riemann 函数的周期性3.8.1,仅考虑定义域 [0,1]。在 [0,1] 中,记分母为 p 的有理数的个数为 $n_p < \infty$ 。对于任意 $\varepsilon > 0$,取 $k = [1/\varepsilon] + 1$,那么 [0,1] 中分母不超过 k 的有理数的个数为 $N_k = n_1 + \cdots + n_k < \infty$,记其为 r_1, \cdots, r_{N_k} 。记 $\delta = \min_{\substack{1 \leq i \leq N_k \\ r_i \neq x_0}} |r_i - x_0|$ 。考察满足 $0 < |x - x_0| < \delta$ 的 x,或 x 为有理数但分母比 k 大,或为无

理数。若 $x \in \mathbb{O}$,则

$$\mathcal{R}(x) \le \frac{1}{k} = \frac{1}{[1/\varepsilon] + 1} < \varepsilon$$

若 $x \in \mathbb{R} \setminus \mathbb{Q}$,则

$$\mathcal{R}(x) = 0 < \varepsilon$$

综上所述,对于任意 $x_0 \in \mathbb{R}$,成立

$$\lim_{x \to x_0} \mathcal{R}(x) = 0$$

因此 Riemann 函数以有理点为跳跃间断点,在无理点连续。

定理 3.8.3 (Riemann 函数的可微性)

Riemann 函数处处不可微。

证明 由 Riemann 函数的周期性3.8.1,仅考虑定义域 [0,1]。由 Riemann 函数的连续性3.8.2,只需考虑 $[0,1]\setminus \mathbb{Q}$ 中的点处的可微性。任取 $x_0 \in [0,1]\setminus \mathbb{Q}$,取 $\{x_n\}_{n=1}^{\infty} \subset [0,1]\setminus \mathbb{Q}$,使得成立 $x_n \to x_0$,于是

$$\lim_{n \to \infty} \frac{\mathcal{R}(x_n) - \mathcal{R}(x_0)}{x_n - x_0} = \lim_{n \to \infty} \frac{0}{x_n - x_0} = 0$$

用无限不循环小数表示 $x_0 = 0.a_1a_2 \cdots$ 。令 $x_n' = 0.a_1a_2 \cdots a_n$,从而 $\{x_n'\}_{n=1}^{\infty} \subset [0,1] \cap \mathbb{Q}$,且 $x_n' \to x_0$ 。由于 x_0 为无理数,那么 $\{a_n\}_{n=1}^{\infty}$ 中存在可数多项不为 0,记第一个不为零的下标为 N,从而当 n > N 时,成立

$$\mathcal{R}(x_n') = \mathcal{R}(0.a_1 a_2 \cdots a_n) = \mathcal{R}(0.0 \cdots 0 a_N \cdots a_n) = \mathcal{R}(a_N \cdots a_n/10^n) \ge \frac{1}{10^n}$$

同时

$$|x'_n - x_0| = 0.0 \cdots 0 a_{n+1} a_{n+2} \cdots \in (0, 1/10^n)$$

从而

$$\left| \frac{\mathcal{R}(x_n') - \mathcal{R}(x_0)}{x_n' - x_0} \right| = \frac{\mathcal{R}(0.a_1 a_2 \cdots a_n)}{0.0 \cdots 0 a_{n+1} a_{n+2} \cdots} \ge 1$$

那么

$$\lim_{n \to \infty} \frac{\mathcal{R}(x_n') - \mathcal{R}(x_0)}{x_n - x_0} \neq 0$$

进而 \mathcal{R} 在 x_0 处不可微, 由此 Riemann 函数处处不可微。

定理 3.8.4 (Riemann 函数的 Riemann 可积性)

Riemann 函数 Riemann 可积,且

$$\int_0^1 \mathcal{R}(x) \mathrm{d}x = 0$$

证明 由 Riemann 函数的周期性3.8.1,仅考虑定义域 [0,1]。对于任意 $\varepsilon \in (0,2)$,若 $\mathcal{R}(x) \geq \varepsilon/2$,则 $x \in [0,1] \cap \mathbb{Q}$ 。而令 x = x = q/p,其中 $q \leq p \in \mathbb{N}$,(p,q) = 1,那么 $\mathcal{R}(x) = 1/p > \varepsilon/2$,即 $p < 2/\varepsilon$,从而使得 $\mathcal{R}(x) \geq \varepsilon/2$ 成立的 x 仅为有限个,设其为 $r_1 < \cdots < r_k$,其中 $r_1 = 0$, $r_k = 1$ 。

构造划分

$$\Delta: 0 = x_0 < x_1 < \dots < x_{2k-1} = 1$$

使得成立

$$x_0 = r_1 < x_1,$$
 $x_{2k-2} < r_k = x_{2k-1},$ $x_{2i-2} < r_i < x_{2i-1},$ $2 \le i \le k-1$
$$\Delta x_{2i-1} < \frac{\varepsilon}{2k},$$
 $1 \le i \le k$

因此

$$\sum_{i=1}^{2k-1} \omega_i \Delta x_i = \sum_{i=1}^k \omega_{2i-1} \Delta x_{2i-1} + \sum_{i=1}^{k-1} \omega_{2i} \Delta x_{2i} < \sum_{i=1}^k 1 \cdot \Delta x_{2i-1} + \sum_{i=1}^{k-1} \frac{\varepsilon}{2} \cdot \Delta x_{2i} < k \frac{\varepsilon}{2k} + \frac{\varepsilon}{2} = \varepsilon$$

因此 Riemann 函数在 [0,1] 上 Riemann 可积。

若 $\int_0^1 \mathcal{R}(x) \mathrm{d}x = I \neq 0$,则对于 [0,1] 的任意划分 Δ ,在每个区间上取无理数 ξ_k ,此时对于任意 $|\Delta|$,成立

$$\left| \sum_{k=1}^{n} f(\xi_k) \Delta x_k - I \right| = |I|$$

矛盾! 进而 $\int_0^1 \mathcal{R}(x) dx = I \neq 0$ 。

定理 3.8.5 (Riemann 函数的 Lebesgue 可积性)

Riemann 函数 Lebesgue 可积,且

$$\int \mathcal{R} = 0$$

<mark>证明</mark> (法一)由 Riemann 函数的 Riemann 可积性3.8.4, R 在 [0, 1] 上 Lebesgue 可积性,且

$$\int_{[0,1]} \mathcal{R} = \int_0^1 \mathcal{R}(x) \mathrm{d}x = 0$$

由 Riemann 函数的周期性3.8.1

$$\int \mathcal{R} = \sum_{n=-\infty}^{+\infty} \int_{[n,n+1]} \mathcal{R} = \sum_{n=-\infty}^{+\infty} \int_{[0,1]} \mathcal{R} = \sum_{n=-\infty}^{+\infty} \int_{0}^{1} \mathcal{R}(x) dx = 0$$

(法二)记

$$\mathbb{Q} = \left\{ \frac{q_n}{p_n} : p_n \in \mathbb{N}^*, q_n \in \mathbb{Z}, (p_n, q_n) = 1, n \in \mathbb{N}^* \right\} \cup \{0\}$$

构造函数

$$\mathcal{R}_n(x) = \frac{1}{p_n} \mathbb{1}_{\frac{q_n}{p_n}} = \begin{cases} \frac{1}{p_n}, & x = \frac{q_n}{p_n} \\ 0, & x \in \mathbb{R} \setminus \{q_n/p_n\} \end{cases}$$

特别的

$$\mathcal{R}_0(x) = \mathbb{1}_0 = \begin{cases} 1, & x = 0 \\ 0, & x \in \mathbb{R} \setminus \{0\} \end{cases}$$

那么

$$\mathcal{R} = \sum_{n=0}^{\infty} \mathcal{R}_n$$

由于对于任意 $n \in \mathbb{N}$, \mathcal{R}_n 为简单函数, 那么 \mathcal{R} Lebesgue 可积。由 Lebesgue 基本定理

$$\int \mathcal{R} = \int \sum_{n=0}^{\infty} \mathcal{R}_n = \sum_{n=0}^{\infty} \int \mathcal{R}_n = 0$$

3.8.2 Dirichlet 函数

定义 3.8.2 (Dirichlet 函数)

$$\mathcal{D}(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

定理 3.8.6 (Dirichlet 函数的周期性)

Dirichlet 函数以任意有理数为周期。

 \sim

证明 任取有理数 $r \in \mathbb{Q}$, 对于任意 $x \in \mathbb{R}$, 如果 $x \in \mathbb{Q}$, 那么

$$\mathcal{D}(x) = \mathcal{D}(x+r) = 1$$

如果 $x \in \mathbb{R} \setminus \mathbb{Q}$, 那么

$$\mathcal{D}(x) = \mathcal{D}(x+r) = 0$$

进而 Dirichlet 函数以任意有理数为周期。

定理 3.8.7 (Dirichlet 函数的连续性)

Dirichlet 函数处处不连续。

 \odot

证明 任取 $x_0 \in \mathbb{R}$,由有理数的稠密性,存在有理数 $\{r_n\}_{n=1}^{\infty} \subset \mathbb{Q}$,使得成立 $r_n \to x$,此时

$$\lim_{n \to \infty} \mathcal{D}(r_n) = 1$$

由无理数的稠密性,存在无理数 $\{s_n\}_{n=1}^\infty\subset\mathbb{Q}$,使得成立 $s_n\to x$,此时

$$\lim_{n \to \infty} \mathcal{D}(s_n) = 0$$

因此不存在极限 $\lim_{x \to x_0} \mathcal{D}(x)$, 进而 Dirichlet 函数处处不连续。

定理 3.8.8 (Dirichlet 函数的可微性)

Dirichlet 函数处处不可微。

 \sim

证明 由 Dirichlet 函数的连续性3.8.7, Dirichlet 函数处处不连续, 因此处处不可微。

定理 3.8.9 (Dirichlet 函数的 Riemann 可积性)

Dirichlet 函数在 [0,1] 上非 Riemann 可积。

 $^{\circ}$

证明 对于任意划分

$$0 < x_0 < x_1 < \dots < x_n = 1$$

取 $\xi_k \in [x_{k-1}, x_k] \cap \mathbb{Q}$ 与 $\eta_k \in [x_{k-1}, x_k] \setminus \mathbb{Q}$, 其中 $1 \le k \le n$, 那么

$$\sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} 1 \cdot (x_k - x_{k-1}) = 1$$

$$\sum_{k=1}^{n} f(\eta_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} 0 \cdot (x_k - x_{k-1}) = 0$$

从而 Dirichlet 函数在 [0,1] 上非 Riemann 可积。

定理 3.8.10 (Dirichlet 函数的 Lebesgue 可积性)

Dirichlet 函数 Lebesgue 可积, 且

$$\int \mathcal{D} = 0$$

证明 由于 Dirichlet 函数为简单函数

$$\mathcal{D} = \mathbb{1}_{\mathbb{O}}$$

那么 Dirichlet 函数 Lebesgue 可积,且

$$\int \mathcal{D} = m(\mathbb{Q}) = 0$$

3.8.3 Weierstrass 函数

定义 3.8.3 (Weierstrass 函数)

定义 Weierstrass 函数为

$$\mathcal{W}(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

其中0 < a < 1, 且 $b \in \mathbb{N}^*$ 为奇数, 同时 $ab > 1 + 3\pi/2$ 。

定义 3.8.4 (锯齿函数)

首先定义周期为1的初始锯齿函数 $s_0: \mathbb{R} \to \mathbb{R}$, 其中

$$s_0(x) = \begin{cases} -x, & -1/2 \le x \le 0 \\ x, & 0 \le x \le 1/2 \end{cases}$$

其次定义函数序列 $\{s_n(x)\}_{n=0}^{\infty}$, 其递推公式为

$$s_{n+1}(x) = \frac{1}{4}s_n(4x), \qquad n \in \mathbb{N}$$

最后定义锯齿函数

$$S(x) = \sum_{n=0}^{\infty} s_n(x)$$

定理 3.8.11 (处处连续但处处不可导函数)

设 $\varphi(x)$ 为x与最邻近整数间的整数的距离,定义

$$f(x) = \sum_{n=0}^{\infty} \frac{\varphi(10^n x)}{10^n}$$

那么 f(x) 为处处连续处处不可导函数。

 \Diamond

证明 容易知道 $\varphi(x)$ 为连续函数,且 $|\varphi(x)| \leq 1/2$,那么

$$|f(x)| = \left| \sum_{n=0}^{\infty} \frac{\varphi(10^n x)}{10^n} \right| \le \sum_{n=0}^{\infty} \frac{|\varphi(10^n x)|}{10^n} \le \sum_{n=0}^{\infty} \frac{1}{2 \times 10^n} = \frac{5}{9}$$

由 Weierstrass 判别法, f(x) 在 \mathbb{R} 上一致收敛, 因此 f(x) 在 \mathbb{R} 上连续。

由于 $\varphi(x)$ 周期为 1, 那么 f(x) 周期为 1。考虑 f(x) 在 x_0 处的可导性, 不妨 $0 \le x_0 < 1$ 。将 x_0 表示为无限 小数形式

$$x_0 = 0.a_1 a_2 a_3 \cdots$$

构造数列 $\{h_m\}_{m=1}^{\infty}$ 如下

$$h_m = \begin{cases} 10^{-m}, & a_m = 0, 1, 2, 3, 5, 6, 7, 8\\ -10^{-m}, & a_m = 4, 9 \end{cases}$$

容易知道 $h_m \to 0$, 且

1. 当 $n \ge m$ 时,成立

$$\varphi(10^n(x+h_m)) = \varphi(10^n x \pm 10^{n-m}) = \varphi(10^n x)$$

2. 当 n < m 时,断言 $10^n(x+h_m)$ 和 $10^n x$ 或同属于 $[k,k+\frac{1}{2}]$,或同属于 $[k+\frac{1}{2},k+1]$ 。进而

$$\varphi(10^n(x+h_m)) - \varphi(10^n x) = \pm 10^n h_m$$

其中符号由x, n, m 唯一确定。

考察

$$\frac{f(x+h_m) - f(x)}{h_m} = \sum_{n=0}^{\infty} \frac{\varphi(10^n (x+h_m)) - \varphi(10^n x)}{10^n h_m}$$

上式右边求和, 当 $n \ge m$ 时, 项为0; 当n < m时, 项为 ± 1 , 因此

$$\frac{f(x+h_m) - f(x)}{h_m} = \sum_{n=0}^{m-1} \pm 1$$

从而不存在极限

$$\lim_{m \to \infty} \frac{f(x + h_m) - f(x)}{h_m}$$

进而 f(x) 在 x_0 处不可导。由 x_0 的任意性与 f(x) 的周期性, f(x) 在 \mathbb{R} 上处处不可导。

使用 MATLAB 绘制 f(x) 的图像。

clear; clc
format longG

定义 phi 函数

phi = @(x) abs(round(x) - x);

定义 f 函数

 $f = @(x) sum(arrayfun(@(n) phi(10^n * x) / 10^n, 0: 300));$

生成 x 值的数组

x = linspace(0, 1, 100000);

计算 f(x) 的值

y = arrayfun(f, x);

绘制图像 plot(x, y); grid on

输出图像如下:

图 3.1: 处处连续处处不可导函数

第四章 微分

4.1 微分与导数

4.1.1 微分的定义

定义 4.1.1 (可微性)

称函数 y=f(x) 在 x_0 处可微,如果与 x_0 有关而与 Δx 无关的数 A,使得当 $\Delta x \to 0$ 时,成立

$$\Delta y = A\Delta x + o(\Delta x)$$

Ŷ 笔记 可微必连续,反之不成立,例如 y=|x| 在 0 处不可微。

4.1.2 微分与导数

定义 4.1.2 (可导性)

称函数 f(x) 在 x_0 处可导, 如果存在极限

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

定理 4.1.1

可微 ⇒ 可导。特别的,对于一元函数,可导与可微等价。

🔮 笔记 可导函数的导函数不一定连续,例如

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}, \qquad f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

4.1.3 单侧导数

定义 4.1.3 (左导数)

称函数 f(x) 在 x_0 处存在左导数,如果存在极限

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$

定义 4.1.4 (右导数)

称函数 f(x) 在 x_0 处存在右导数,如果存在极限

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

4.2 求导法则

4.2.1 导数的四则运算

命题 4.2.1 (导数的四则运算)

1. 和:

$$(f(x) + g(x))' = f'(x) + g'(x)$$

2. 数乘:

$$(\lambda f(x))' = \lambda f'(x)$$

3. 乘法:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

4. 除法:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

4.2.2 反函数求导定理

定理 4.2.1 (反函数求导定理)

如果函数 y=f(x) 在 (a,b) 上连续、严格单调、可导且 $f'(x)\neq 0$,记 $\alpha=\min\{f(a^+),f(b^-)\}$ 与 $\beta=\max\{f(a^+),f(b^-)\}$,则其反函数 $x=f^{-1}(y)$ 在 (α,β) 上可导,且

$$(f^{-1}(y))' = \frac{1}{f'(x)}$$

 \sim

4.2.3 复合函数求导法则

定理 4.2.2 (复合函数求导法则)

如果函数 y=g(x) 在 x_0 处可导,且函数 z=f(y) 在 $y_0=g(x_0)$ 处可导,那么复合函数 $f\circ g(x)$ 在 x_0 处可导,且

$$(f \circ g(x))' = f'(g(x_0))g'(x_0)$$

可表示为链式法则

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x}$$

 \sim

定理 4.2.3 (一阶微分的形式不变性)

复合函数微分公式为

$$d(f(g(x))) = f'(g(x))g'(x)dx$$

若记 y = g(x), 那么

$$\mathrm{d}f(y) = f'(y)\mathrm{d}y$$

(

4.3 高阶导数

定理 4.3.1 (Leibniz 公式)

如果函数 f(x) 与 g(x) 均为 n 阶可导函数, 那么其积函数 f(x)g(x) 为 n 阶可导函数, 且

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x)g^{(n-k)}(x)$$

 \odot

4.4 导函数的性质

定理 4.4.1 (导数极限定理)

如果函数 f(x) 在 x_0 邻域内连续,在 x_0 去心邻域内可导,且存在极限 $\lim_{x\to x_0}f'(x)$,那么 f(x) 在 x_0 处可导, f'(x) 在 x_0 处连续。

证明 考察 f(x) 在 x_0 处的左导数,由 Lagrange 中值定理

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^{-}} f'(\xi), \qquad x < \xi < x_0$$

由于 f'(x) 在 x_0 处存在左极限,那么

$$\lim_{x \to x_0^-} f'(\xi) = f'(x_0^-)$$

因此

$$f'_{-}(x_0) = f'(x_0^{-})$$

同理可得

$$f'_{+}(x_0) = f'(x_0^+)$$

由于存在极限 $\lim_{x\to x_0} f'(x)$, 那么

$$\lim_{x\to x_0}f'(x)=f'(x_0^-)=f'(x_0^+)$$

从而

$$f'_{-}(x_0) = f'_{+}(x_0) = \lim_{x \to x_0} f'(x)$$

进而 f(x) 在 x_0 处可导。而

$$f'(x_0) = \lim_{x \to x_0} f'(x)$$

因此 f'(x) 在 x_0 处连续。

笔记 如果导数存在左极限, 那么存在左导数; 如果导数存在右极限, 那么存在右导数。

定理 4.4.2 (导数无第一类间断点)

如果函数 f(x) 在 (a,b) 内可导,那么对于任意 $x_0 \in (a,b)$,或 x_0 为 f'(x) 的连续点,或 x_0 为 f'(x) 的第二类间断点。

证明 如果 f'(x) 在 x_0 不存在左右极限之一,那么 x_0 为 f'(x) 的第二类间断点。 如果 f'(x) 在 x_0 处存在左右极限,考察 f(x) 在 x_0 处的左导数,由 Lagrange 中值定理

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^{-}} f'(\xi), \qquad x < \xi < x_0$$

由于 f'(x) 在 x_0 处存在左极限,那么

$$\lim_{x \to x_0^-} f'(\xi) = f'(x_0^-)$$

因此

$$f'_{-}(x_0) = f'(x_0^{-})$$

同理可得

$$f'_{+}(x_0) = f'(x_0^+)$$

因为 f(x) 在 x_0 处可导, 所以

$$f'(x_0) = f'_{-}(x_0) = f'_{+}(x_0)$$

从而

$$f'(x_0) = f'(x_0^-) = f'(x_0^+) = \lim_{x \to x_0} f'(x)$$

进而 f'(x) 在 x_0 连续。

定理 4.4.3 (Darboux 定理/导数的介值性定理)

如果函数 f(x) 在 [a,b] 上可导,且 f'(a) < f'(b),那么对于任意 $f'(a) < \mu < f'(b)$,存在 $\xi \in (a,b)$,使得成立 $f'(\xi) = \mu$ 。

证明 作辅助函数

$$\varphi(x) = f(x) - \mu x$$

那么 $\varphi(x)$ 在[a,b]上可导,且

$$\varphi'(a) = f'(a) - \mu < 0, \qquad \varphi'(b) = f'(b) - \mu > 0$$

此时存在 $\eta_a, \eta_b \in (a,b)$, 使得成立

$$g(\eta_a) < g(a), \qquad g(\eta_b) > g(b)$$

于是 g(x) 在端点 a,b 处不取最小值。又因为 g(x) 在 [a,b] 上连续,因此存在 $\xi \in (a,b)$,使得 $g(\xi) = \min_{a \leq x \leq b} g(x)$ 。由 Fermat 定理, $g'(\xi) = 0$,即 $f'(\xi) = \mu$ 。

第五章 微分中值定理

5.1 微分中值定理

5.1.1 函数极值与 Fermat 引理

定义 5.1.1 (极大值点)

称 x_0 为函数 f(x) 的极大值点,如果存在 $\delta > 0$,使得成立

$$|x - x_0| < \delta \implies f(x) \le f(x_0)$$

定义 5.1.2 (极小值点)

称 x_0 为函数 f(x) 的极小值点,如果存在 $\delta > 0$,使得成立

$$|x - x_0| < \delta \implies f(x) \ge f(x_0)$$

定理 5.1.1 (Fermat 引理)

如果 x_0 为函数 f(x) 的极值点,且 f(x) 在 x_0 处可导,那么 $f'(x_0)=0$ 。

证明 不妨 x_0 为 f(x) 的极大值点,因此存在 $\delta > 0$,使得对于任意 $|x - x_0| < \delta$,成立 $f(x) \le f(x_0)$ 。而 f(x) 在 x_0 处可导,因此

$$f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0, \qquad f'(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

进而 $f'(x_0) = 0$ 。

5.1.2 Rolle 定理

定理 5.1.2 (Rolle 定理)

如果函数 f(x) 在 [a,b] 上连续,在 (a,b) 上可导,且 f(a)=f(b),那么存在 $\xi\in(a,b)$,使得成立 $f'(\xi)=0$ 。

5.1.3 Lagrange 定理

定理 5.1.3 (Lagrange 定理)

如果函数 f(x) 在 [a,b] 上连续, 在 (a,b) 上可导, 那么存在 $\xi \in (a,b)$, 使得成立

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

 $^{\circ}$

证明 作辅助函数

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

那么

$$\varphi(a) = \varphi(b) = 0$$

推论 5.1.1

如果函数 f(x) 与 g(x) 在 (a,b) 上可导,且 $f'(x) \equiv 0$,那么 f(x) 在 (a,b) 上为常函数。

 \Diamond

定理 5.1.4

如果函数 f(x) 在 (a,b) 上可导, 那么

$$f(x)$$
 在 (a,b) 上单调递增 $\iff \forall x \in (a,b), f'(x) \ge 0$

特别的,如果 f'(x) 在 (a,b) 中除有限个点外均成立 f'(x) > 0,那么 f(x) 在 (a,b) 上严格单调递增。

က

5.1.4 Cauchy 定理

定理 5.1.5 (Cauchy 定理)

如果函数 f(x) 与 g(x) 在 [a,b] 上连续,在 (a,b) 上可导,且对于任意 $x \in (a,b)$,成立 $g'(x) \neq 0$,那么存在 $\xi \in (a,b)$,使得成立

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

 \odot

5.1.5 中值定理

定理 5.1.6 (中值定理)

如果函数 f(x), g(x), h(x) 在 [a,b] 上连续, 在 (a,b) 上可导, 那么存在 $\xi \in (a,b)$, 使得成立

$$\begin{vmatrix} f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \\ f'(\xi) & g'(\xi) & h'(\xi) \end{vmatrix} = 0$$

 \sim

5.2 L'Hospital 法则

定理 5.2.1 (L'Hospital 法则)

1. $\frac{0}{0}$ 型: 设函数 f(x) 与 g(x) 在 x_0 邻域内可导,且在该邻域内 $g'(x) \neq 0$,如果

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

且极限 $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ 存在,那么

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

2. $\frac{*}{\infty}$ 型: 设函数 f(x) 与 g(x) 在 x_0 邻域内可导,且在该邻域内 $g'(x) \neq 0$,如果

$$\lim_{x \to x_0} g(x) = \infty$$

且极限 $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ 存在,那么

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

 \sim

定理 5.2.2 (Stolz 公式)

- 1. $\frac{0}{0}$ 型:如果T>0为常数,且成立如下条件
 - (a). $0 < g(x+T) < g(x), \forall x \ge a$
 - (b). $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$
 - (c). 存在极限 $\lim_{x\to +\infty} \frac{f(x+T)-f(x)}{g(x+T)-g(x)}$

那么

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)}$$

- 2. $\frac{*}{\infty}$ 型: 如果 T > 0 为常数, 且成立如下条件
 - $\widetilde{\text{(a)}}$. $g(x+T) > g(x), \forall x \ge a$
 - (b). $\lim_{x \to +\infty} g(x) = +\infty$

 - (c). f(x), g(x) 在 $[a, \infty)$ 内闭有界。 (d). 存在极限 $\lim_{x \to +\infty} \frac{f(x+T) f(x)}{g(x+T) g(x)}$

那么

$$\lim_{x\to +\infty}\frac{f(x)}{g(x)}=\lim_{x\to +\infty}\frac{f(x+T)-f(x)}{g(x+T)-g(x)}$$

5.3 Taylor 公式

5.3.1 带 Peano 余项的 Taylor 公式

定理 5.3.1 (带 Peano 余项的 Taylor 公式)

如果函数 f(x) 在 x_0 处 n 阶可导,那么存在 x_0 的邻域,使其中任意一点 x,成立

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

5.3.2 带 Lagrange 余项的 Taylor 公式

定理 5.3.2 (带 Lagrange 余项的 Taylor 公式)

如果函数 f(x) 在 [a,b] 上 n 阶连续可导, 在 (a,b) 上 n+1 阶可导, 那么对于任意 $x,x_0 \in [a,b]$, 成立

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \qquad \xi \not\equiv x \not\ni x_0 \not\gtrsim \exists i$$

5.3.3 初等函数的 Taylor 公式

定理 5.3.3 (Taylor 公式)

$$e^x = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + o(x^n) = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$
 $x \in \mathbb{R}$

$$\ln\left(1+x\right) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1}}{n} x^n + o(x^n) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n, \qquad x \in (-1,1]$$

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + o(x^n) = \sum_{n=0}^{\infty} (-1)^n x^n, \qquad x \in (-1,1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+1}) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \qquad x \in \mathbb{R}$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n}) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \qquad x \in \mathbb{R}$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^{n+1}}{2n-1}x^{2n-1} + o(x^{2n-1}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}x^{2n-1}, \qquad x \in [-1, 1]$$

第六章 不定积分

6.1 不定积分的概念与运算法则

6.1.1 不定积分的概念

定义 6.1.1 (原函数)

称函数 F(x) 为 f(x) 的原函数, 如果

$$d(F(x)) = f(x)dx$$

定义 6.1.2 (不定积分)

称函数 f(x) 的原函数全体为其不定积分,记作

$$\int f(x) \mathrm{d}x$$

6.1.2 不定积分的线性性质

定理 6.1.1 (不定积分的线性性质)

如果函数 f(x) 与 g(x) 存在原函数, 那么对于任意 $\lambda \in \mathbb{R}$, 成立

$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx, \qquad \int \lambda f(x) dx = \lambda \int f(x) dx$$

6.2 换元积分法与分部积分法

6.2.1 换元积分法

定理 6.2.1 (换元积分法)

$$\int f(x)dx = \int f(g(t))dg(t) = \int f(g(t))g'(t)dt$$

6.2.2 分部积分法

定理 6.2.2 (分部积分法)

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

第七章 定积分

7.1 定积分的概念与可积条件

7.1.1 定积分的概念

定义 7.1.1 (Riemann 可积性)

对于 [a,b] 上的有界函数 f(x), 取 [a,b] 的任意划分

$$\Delta : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

记 $|\Delta|=\max_{1\leq k\leq n}|x_k-x_{k-1}|$,与 $\Delta x_k=|x_k-x_{k-1}|$,其中 $1\leq k\leq n$,对于任意 $1\leq k\leq n$,任取 $\xi_k\in[x_{k-1},x_k]$,如果存在极限

$$\lim_{|\Delta| \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

且极限与划分 Δ 与 ξ_k 的选取无关,那么称 f(x) 在 [a,b] 上 Riemann 可积,称该极限为 f(x) 在 [a,b] 上的 定积分,记作

$$\int_{a}^{b} f(x) \mathrm{d}x$$

定义 7.1.2 (定积分)

称 $I\in\mathbb{R}$ 为 [a,b] 上的有界函数 f(x) 的定积分,如果对于任意 $\varepsilon>0$,存在 $\delta>0$,使得对于任意划分

$$\Delta : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

与任意 $\xi_k \in [x_{k-1}, x_k]$, 成立

$$|\Delta| < \delta \implies \left| \sum_{k=1}^{n} f(\xi_k) \Delta x_k - I \right| < \varepsilon$$

其中 $|\Delta| = \max_{1 \le k \le n} \Delta x_k$ 且 $\Delta x_k = |x_k - x_{k-1}|$ 。

7.1.2 Darboux 和

定义 7.1.3 (Darboux 和)

1. 定义 [a,b] 上的有界函数 f(x) 关于划分

$$\Delta : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

的 Darboux 上和为

$$\overline{S}(\Delta) = \sum_{k=1}^{n} M_k \Delta x_k$$

其中
$$M_k = \sup_{x_{k-1} \le x \le x_k} f(x)$$
 且 $\Delta x_k = |x_k - x_{k-1}|$ 。

2. 定义 [a,b] 上的有界函数 f(x) 关于划分

$$\Delta : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

的 Darboux 下和为

$$\underline{S}(\Delta) = \sum_{k=1}^{n} m_k \Delta x_k$$

其中
$$m_k = \inf_{x_{k-1} \le x \le x_k} f(x)$$
 且 $\Delta x_k = |x_k - x_{k-1}|$ 。

命题 7.1.1 (Darboux 和的性质)

1. 对于任意划分 Δ 与 ξ_k 的选取, 成立

$$\underline{S}(\Delta) \le \sum_{k=1}^{n} f(\xi_k) \Delta x_k \le \overline{S}(\Delta)$$

2. 对于划分 Δ_0 的加细 Δ , 成立

$$\underline{S}(\Delta_0) \le \underline{S}(\Delta) \le \overline{S}(\Delta) \le \overline{S}(\Delta_0)$$

3. 对于任意划分 Δ_1 与 Δ_2 , 成立

$$\underline{S}(\Delta_1) \leq \overline{S}(\Delta_2)$$

定义 7.1.4 (上下积分)

1. 定义 [a,b] 上的有界函数 f(x) 的上积分为

$$\overline{\int}_{a}^{b} f(x) dx = \inf_{\Delta} \overline{S}(\Delta) = \lim_{|\Delta| \to 0} \overline{S}(\Delta)$$

2. 定义 [a,b] 上的有界函数 f(x) 的下积分为

$$\underline{\int_{a}^{b}} f(x) dx = \sup_{\Delta} \underline{S}(\Delta) = \lim_{|\Delta| \to 0} \underline{S}(\Delta)$$

定理 7.1.1 (Darboux 定理)

[a,b] 上的有界函数 f(x) Riemann 可积的充分必要条件为如下命题。

1.

$$\overline{\int}_{a}^{b} f(x) dx = \underline{\int}_{a}^{b} f(x) dx$$

2.

$$\lim_{|\Delta| \to 0} \sum_{k=1}^{n} \omega_k \Delta x_k = 0$$

其中
$$\omega_k = M_k - m_k$$
。

3. 对于任意 $\varepsilon > 0$, 存在划分 Δ , 使得成立

$$\sum_{k=1}^{n} \omega_k \Delta x_k < \varepsilon$$

4. 对于任意 $\varepsilon > 0$ 与 $\delta > 0$,存在划分 Δ ,使得成立

$$\sum_{\omega_k \ge \varepsilon} \Delta x_k < \delta$$

定理 7.1.2 (Riemann 可积的方法论)

1. 如果 $\sum_{k=1}^{n} \omega_k$ 有界,那么

$$\sum_{k=1}^{n} \omega_k \Delta x_k \le |\Delta| \sum_{k=1}^{n} \omega_k$$

2. 如果 $\omega_k < \varepsilon$, 那么

$$\sum_{k=1}^{n} \omega_k \Delta x_k \le \varepsilon \sum_{k=1}^{n} \Delta x_k = \varepsilon (b-a)$$

3. 令

$$\sum \omega_k \Delta x_k = \sum' \omega_k \Delta x_k + \sum'' \omega_k \Delta x_k$$

其中

$$\sum_{k}' \omega_k \Delta x_k < \frac{\varepsilon}{2(b-a)}, \qquad \sum_{k}'' \omega_k \Delta x_k < \frac{\varepsilon}{\Omega}$$

这里
$$\Omega = \sup_{a \le x \le b} f(x) - \inf_{a \le x \le b} f(x)$$

 \sim

推论 7.1.1

- 1. 闭区间上的连续函数 Riemann 可积。
- 2. 闭区间上的单调函数 Riemann 可积。
- 3. 闭区间上的仅存在有限个间断点的有界函数 Riemann 可积。
- 4. 如果函数 f(x) 在 [a,b] 上仅存在有限个非零点,那么 Riemann 积分为零。

 \sim

7.2 Riemann 可积性

定理 7.2.1

 \sim

定理 7.2.2 (Riemann 可积的 Lebesgue 准则)

对于 [a,b] 上的有界函数 f, 成立

$$f$$
 Riemann 可积 \iff f 几乎处处连续

证明 对于充分性,记f(x)的不连续点集为

$$D_f = \left\{ x_0 \in [a, b] : \lim_{x \to x_0} f(x) \neq f(x_0) \right\} = \bigcup_{\delta > 0}^{\infty} \left\{ x \in [a, b] : \omega_f(x) > \delta \right\}$$

其中

$$\omega_f(x_0) = \limsup_{x \to x_0} f(x) - \liminf_{x \to x_0} f(x)$$

若要证明 $m(D_f) = 0$, 只需证明对于任意 $\delta > 0$, $m(D_\delta) = 0$, 其中

$$D_{\delta} = \{ x \in [a, b] : \omega_f(x) > \delta \}$$

任取 $\varepsilon > 0$, 由于 f Riemann 可积, 那么存在划分 Δ , 使得成立

$$\sum_{k=1}^{n} \omega_k \Delta x_k < \delta \varepsilon$$

记

$$S = \{1 \le k \le n : (x_{k-1}, x_k) \cap D_{\delta} \ne \emptyset\}$$

任取 $k \in S$, 与 $x_0 \in (x_{k-1}, x_k) \cap D_\delta$, 由于

$$\omega_k = \sup_{x_{k-1} \le x \le x_k} f(x) - \inf_{x_{k-1} \le x \le x_k} f(x)$$

$$\ge \limsup_{x \to x_0} f(x) - \liminf_{x \to x_0} f(x)$$

$$= \omega_f(x_0)$$

$$> \delta$$

那么

$$\delta \varepsilon > \sum_{k=1}^{n} \omega_k \Delta x_k \ge \sum_{k \in S} \omega_k \Delta x_k > \delta \sum_{k \in S} \Delta x_k \implies \sum_{k \in S} \Delta x_k < \varepsilon$$

由于

$$D_{\delta} \subset \bigcup_{k \in S} (x_{k-1}, x_k) \bigcup \bigcup_{k=0}^{n} \{x_k\}$$

那么

$$m(D_{\delta}) \le \sum_{k \in S} \Delta x_k < \varepsilon$$

由 ε 的任意性, $m(D_{\delta})=0$,进而充分性得证! 对于必要性

定理 7.2.3

如果有界函数 f(x) 在 [a,b] 上可积,那么 f(x) 在 [a,b] 上存在连续点;换言之, f(x) 的连续点集在 [a,b] 上稠密。

证明 由于 f(x) 在 [a,b] 上可积, 那么存在划分 Δ , 使得成立

$$\sum \omega_k \Delta x_k < \frac{b-a}{2^1}$$

因此存在区间 $[x_{k-1},x_k]$, 使得 f(x) 在 $[x_{k-1},x_k]$ 上的振幅

$$\omega_f[x_{k-1}, x_k] < \frac{1}{2^1}$$

不妨

$$|x_k - x_{k-1}| < \frac{b-a}{2^1}, \qquad [x_{k-1}, x_k] \subset (a, b)$$

记 $[x_{k-1},x_k]=[a_1,b_1]$ 。重复上述过程,可得闭区间套 $\{[a_n,b_n]\}_{n=1}^\infty$,使得对于任意 $n\in\mathbb{N}^*$,成立

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n], \qquad |a_n - b_n| < \frac{b-a}{2^n}, \qquad \omega_f[a_n, b_n] < \frac{1}{2^n}$$

那么由闭区间套定理,存在且存在唯一 $\xi \in [a,b]$,使得成立

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$$

容易证明 f(x) 在 ξ 处连续。

定理 7.2.4

如果非负函数 f(x) 在 [a,b] 上可积, 那么

$$\int_{a}^{b} f(x) dx = 0 \iff f$$
在连续点上为零

 \Diamond

定理 7.2.5

如果有界函数 f(x) 在 [a,b] 上可积,且几乎处处成立 f(x)=0,那么

$$\int_{a}^{b} f(x) \mathrm{d}x = 0$$

 \odot

7.3 定积分的基本性质

命题 7.3.1 (定积分的基本性质)

1. 和: 如果函数 f(x) 与 g(x) 在 [a,b] 上可积, 那么 f(x) + g(x) 在 [a,b] 上可积, 且

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int g(x) dx$$

2. 数乘: 如果函数 f(x) 在 [a,b] 上可积,那么对于任意 $\lambda \in \mathbb{R}$, $\lambda f(x)$ 在 [a,b] 上可积,且

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

- 3. 积: 如果函数 f(x) 与 g(x) 在 [a,b] 上可积,那么 f(x)g(x) 在 [a,b] 上可积。
- 4. 保序性: 如果函数 f(x) 在 [a,b] 上可积, 且 $f(x) \ge 0$, 那么

$$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$$

5. 可积 \Longrightarrow 绝对可积: 如果函数 f(x) 在 [a,b] 上可积, 那么 |f(x)| 在 [a,b] 上可积, 且

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

6. 区间可加性:对于 [a,b] 上的函数 f(x),以及 $a \le c \le b$,成立

$$f(x)$$
 在 $[a,b]$ 上可积 $\iff f(x)$ 在 $[a,c]$ 与 $[c,b]$ 上均可积

此时成立

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

定理 7.3.1 (积分第一中值定理)

如果 f(x) 与 g(x) 在 [a,b] 上可积, 且 g(x) 不变号, 那么存在 $\eta \in f([a,b])$, 使得成立

$$\int_{a}^{b} f(x)g(x)dx = \eta \int_{a}^{b} g(x)dx$$

特别的, 若 f(x) 在 [a,b] 上连续, 则存在 $\xi \in (a,b)$, 使得成立

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

C

定理 7.3.2 (积分第二中值定理)

如果 f(x) 在 [a,b] 上可积, g(x) 在 [a,b] 上单调,那么存在 $\xi \in [a,b]$,使得成立

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx + g(b) \int_{\xi}^{b} f(x)dx$$

特别的,如果 g(x) 在 [a,b] 上单调增加且 $g(x) \ge 0$,那么存在 $\xi \in [a,b]$,使得成立

$$\int_{a}^{b} f(x)g(x)dx = g(b) \int_{\xi}^{b} f(x)dx$$

如果 g(x) 在 [a,b] 上单调减少且 $g(x) \ge 0$,那么存在 $\xi \in [a,b]$,使得成立

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx$$

定理 7.3.3 (Riemann 引理)

1. 如果函数 f(x) 在 [a,b] 上可积, g(x) 以 T 为周期,且在 [0,T] 上可积,那么

$$\lim_{n \to \infty} \int_a^b f(x)g(nx) dx = \frac{1}{T} \int_a^b f(x) dx \int_0^T g(x) dx$$

2. 如果函数 f(x) 在 \mathbb{R} 上可积, g(x) 以 T 为周期,且在 \mathbb{R} 上可积,那么

$$\lim_{n\to\infty}\int_{-\infty}^{+\infty}f(x)g(nx)\mathrm{d}x=\frac{1}{T}\int_{-\infty}^{+\infty}f(x)\mathrm{d}x\int_{0}^{T}g(x)\mathrm{d}x$$

定理 7.3.4 (积分的连续性)

如果 f(x) 在 [a,b] 的邻域内可积, 那么

$$\lim_{h \to 0} \int_{a}^{b} |f(x+h) - f(x)| dx = 0$$

 \Diamond

命题 7.3.2

如果 f(x) 与 g(x) 在 [a,b] 上存在 2n 阶连续导数,且对于任意 $0 \le k < n$,成立

$$f^{(k)}(a) = f^{(k)}(b) = g^{(k)}(a) = g^{(k)}(b) = 0$$

那么

$$\int_{a}^{b} f^{(2n)}(x)g(x)dx = \int_{a}^{b} f(x)g^{(2n)}(x)dx$$

7.4 微积分基本定理

7.4.1 Newton-Leibniz 公式

定理 7.4.1

如果函数 f(x) 在 [a,b] 上可积,构造函数

$$F(x) = \int_{a}^{x} f(t) dt$$

那么 F(x) 在 [a,b] 上连续, 且若 f(x) 在 [a,b] 上连续, 则 F(x) 在 [a,b] 上可导, 同时

$$F'(x) = f(x)$$

 \odot

定理 7.4.2 (微积分基本定理)

如果函数 f(x) 在 [a,b] 上连续, F(x) 为 f(x) 在 [a,b] 上的原函数, 那么

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

 \Diamond

7.4.2 定积分的分部积分法与换元积分法

定理 7.4.3 (分部积分法)

如果函数 f(x), g(x) 在 [a,b] 连续可导, 那么

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

 \Diamond

定理 7.4.4 (换元积分法)

如果函数 f(x) 在 [a,b] 连续, $\varphi(t)$ 在 α 与 β 之间连续可导,且像含于 [a,b],同时 $\varphi(\alpha)=a$ 与 $\varphi(\beta)=b$,那么

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$

 \sim

7.4.3 定积分的奇偶性与周期性性质

定理 7.4.5

如果偶函数 f(x) 在 [-a,a] 上可积, 那么

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

如果奇函数 f(x) 在 [-a,a] 上可积, 那么

$$\int_{-a}^{a} f(x) \mathrm{d}x = 0$$

~~

定理 7.4.6

如果函数 f(x) 为以 T 为周期的可积函数,那么对于任意 $a \in \mathbb{R}$,成立

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$$

 \sim

7.5 著名不等式

定理 7.5.1 (Cauchy 不等式)

对于 $\{a_k\}_{k=1}^n \subset \mathbb{R}$ 与 $\{b_k\}_{k=1}^n \subset \mathbb{R}$, 成立

$$\left(\sum_{k=1}^n a_k b_k\right)^2 \le \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n b_k^2\right)$$

当且仅当存在 $\alpha \in \mathbb{R}$ 与 $\beta \in \mathbb{R}$, 使得对于任意 $1 \leq k \leq n$, 成立 $\alpha a_k = \beta b_k$ 。

 \odot

定理 7.5.2 (Schwarz 不等式)

对于 [a,b] 上的可积函数 f(x) 与 g(x), 成立

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \le \left(\int_{a}^{b} f^{2}(x)\right)\left(\int_{a}^{b} g^{2}(x)\right)$$

当且仅当存在 α 与 β , 使得对于任意 $a \le x \le b$, 成立 $\alpha f(x) = \beta g(x)$ 。

\Diamond

定理 7.5.3 (基本不等式)

对于正实数 x_1, \dots, x_n 与 $\lambda_1, \dots, \lambda_n$, 其中 $\lambda_1 + \dots + \lambda_n = 1$, 定义 r 阶平均函数

$$M_r(\boldsymbol{x}, \boldsymbol{\lambda}) = \left(\sum_{k=1}^n \lambda_k x_k^r\right)^{1/r}, \qquad r \in \overline{\mathbb{R}}$$

那么 $M_r(x, \lambda)$ 关于 r 单调递增, 其中

$$\lim_{r \to -\infty} M_r(\boldsymbol{x}, \boldsymbol{\lambda}) = \min\{x_1, \cdots, x_n\} \quad M_{-1}(\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{\frac{\lambda_1}{x_1} + \cdots + \frac{\lambda_n}{x_n}} \qquad \lim_{r \to 0} M_r(\boldsymbol{x}, \boldsymbol{\lambda}) = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$$

$$M_1(\boldsymbol{x}, \boldsymbol{\lambda}) = \lambda_1 x_1 + \cdots + \lambda_n x_n \qquad M_2(\boldsymbol{x}, \boldsymbol{\lambda}) = \sqrt{\lambda_1 x_1^2 + \cdots + \lambda_n x_n^2} \qquad \lim_{r \to +\infty} M_r(\boldsymbol{x}, \boldsymbol{\lambda}) = \max\{x_1, \cdots, x_n\}$$

且对于任意 $r \neq s \in \mathbb{R}$,成立

$$M_r(\boldsymbol{x}, \boldsymbol{\lambda}) = M_s(\boldsymbol{x}, \boldsymbol{\lambda}) \iff x_1 = \cdots = x_n$$

\odot

证明 令

$$f(r) = \ln M_r(\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{\ln \sum \lambda_k x_k^r}{r}$$

则

$$f'(r) = \frac{r^{\sum \lambda_k x_k^r \ln x_k} - \ln \sum \lambda_k x_k^r}{\sum \lambda_k x_k^r} - \ln \sum \lambda_k x_k^r}{r^2}$$

令

$$g(r) = r \frac{\sum \lambda_k x_k^r \ln x_k}{\sum \lambda_k x_k^r} - \ln \sum \lambda_k x_k^r$$

则

$$g'(r) = r \frac{\left(\sum \lambda_k x_k^r\right) \left(\sum \lambda_k x_k^r \ln^2 x_k\right) - \left(\sum \lambda_k x_k^r \ln x_k\right)^2}{\left(\sum \lambda_k x_k^r\right)^2}$$

由 Cauchy 不等式7.5.1

$$\left(\sum \lambda_k x_k^r\right) \left(\sum \lambda_k x_k^r \ln^2 x_k\right) \ge \left(\sum \lambda_k x_k^r \ln x_k\right)^2$$

当且仅当 $x_1 = \cdots = x_n$ 时等号成立,则 g'(r) 的符号由 r 决定,从而

$$g(r) \ge g(0) = 0$$

因此

$$f'(r) = \frac{g(r)}{r^2} \ge 0$$

进而 f(r) 关于 r 单调递增。

第八章 反常积分

8.1 反常积分的概念与计算

定义 8.1.1 (反常积分)

1. 对于定义在 $[a,+\infty)$ 上的函数 f(x), 如果 f(x) 在任意区间 [a,A] 上可积,且存在极限

$$\lim_{A \to +\infty} \int_{a}^{A} f(x) \mathrm{d}x$$

那么称反常积分 $\int_{a}^{+\infty} f(x) dx$ 收敛, 其积分值为

$$\int_{a}^{+\infty} f(x) dx = \lim_{A \to +\infty} \int_{a}^{A} f(x) dx$$

2. 对于定义在 [a,b) 上的函数 f(x), 如果 $\lim_{x\to b^-}f(x)=\infty$, 且 f(x) 在任意区间 $[a,b-\eta]$ 上有界可积,同时存在极限

$$\lim_{\eta \to 0^+} \int_a^{b-\eta} f(x) \mathrm{d}x$$

那么称反常积分 $\int_a^b f(x) dx$ 收敛, 其积分值为

$$\int_a^b f(x) \mathrm{d}x = \lim_{\eta \to 0^+} \int_a^{b-\eta} f(x) \mathrm{d}x$$

定理 8.1.1 (p 积分的敛散性)

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1}, & p > 1 \\ +\infty, & p \le 1 \end{cases}, \qquad \int_{0}^{1} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{1-p}, & p < 1 \\ +\infty, & p \ge 1 \end{cases}$$

8.2 反常积分的收敛判别法

8.2.1 Cauchy 收敛原理

定理 8.2.1 (Cauchy 收敛原理)

1. 反常积分 $\int_a^{+\infty} f(x) \mathrm{d}x$ 收敛的充分必要条件为: 对于任意 $\varepsilon>0$,存在 $A\geq a$,使得对于任意 $A_1,A_2\geq A$,成立

$$\left| \int_{A_1}^{A_2} f(x) \mathrm{d}x \right| < \varepsilon$$

2. 反常积分 $\int_a^b f(x) dx$ 收敛的充分必要条件为: 对于任意 $\varepsilon > 0$,存在 $\delta > 0$,使得对于任意 $\eta_1, \eta_2 \in (0, \delta)$,成立

$$\left| \int_{\eta_1}^{\eta_2} f(x) \mathrm{d}x \right| < \varepsilon$$

8.2.2 比较判别法

定理 8.2.2 (比较判别法)

如果在 $[a, +\infty)$ 上成立 $0 \le f(x) \le \varphi(x)$, 那么

1. 若
$$\int_{a}^{+\infty} \varphi(x) dx$$
 收敛,则 $\int_{a}^{+\infty} f(x) dx$ 收敛。

2. 若
$$\int_{a}^{+\infty} f(x) dx$$
 发散,则 $\int_{a}^{+\infty} \varphi(x) dx$ 发散。

定理 8.2.3 (比较判别法的极限形式)

如果在 $[a, +\infty)$ 上成立 $f(x) \ge 0$, 且

$$\lim_{x \to +\infty} \frac{f(x)}{\varphi(x)} = l$$

那么

1. 若
$$0 < l < +\infty$$
,则 $\int_a^{+\infty} \varphi(x) dx$ 与 $\int_a^{+\infty} f(x) dx$ 敛散性相同。

2. 若
$$l=0$$
, 则 $\int_{a}^{+\infty} \varphi(x) dx$ 收敛时 $\int_{a}^{+\infty} f(x) dx$ 收敛。

3. 若
$$l = +\infty$$
, 则 $\int_{a}^{+\infty} \varphi(x) dx$ 发散时 $\int_{a}^{+\infty} f(x) dx$ 发散。

8.2.3 Cauchy 判别法

定理 8.2.4 (Cauchy 判别法)

1. 如果在
$$[a, +\infty)$$
 上成立 $f(x) \ge 0$,那么

(a). 若
$$f(x) \le \frac{1}{x^p}$$
 且 $p > 1$,则 $\int_a^{+\infty} f(x) dx$ 收敛。

(b). 若
$$f(x) \ge \frac{1}{x^p}$$
 且 $p \le 1$,则 $\int_a^{-+\infty} \varphi(x) dx$ 发散。

2. 如果在 [a,b] 上成立 $f(x) \ge 0$,那么

(a). 若
$$f(x) \le \frac{1}{(b-x)^p}$$
 且 $p < 1$,则 $\int_a^b f(x) dx$ 收敛。

(b). 若
$$f(x) \ge \frac{1}{(b-x)^p}$$
 且 $p \ge 1$,则 $\int_a^{+\infty} \varphi(x) dx$ 发散。

定理 8.2.5 (Cauchy 判别法的极限形式)

1. 如果在 $[a,+\infty)$ 上成立 $f(x) \ge 0$,且

$$\lim_{x \to +\infty} x^p f(x) = l$$

那么

(a). 若
$$0 \le l < +\infty$$
 且 $p > 1$,则 $\int_a^{+\infty} f(x) dx$ 收敛。

(b). 若
$$0 < l \le +\infty$$
 且 $p \le 1$,则 $\int_{a}^{+\infty} f(x) dx$ 发散。

2. 如果在 [a,b] 上成立 $f(x) \ge 0$,且

$$\lim_{x \to +\infty} (b - x)^p f(x) = l$$

那么

(a). 若
$$0 \le l < +\infty$$
 且 $p < 1$,则 $\int_{a}^{+\infty} f(x) dx$ 收敛。

(b). 若
$$0 < l \le +\infty$$
 且 $p \ge 1$,则 $\int_a^{+\infty} f(x) dx$ 发散。

\Diamond

8.2.4 Abel 判别法与 Dirichlet 判别法

定理 8.2.6 (Abel 判别法)

1. 如果
$$f(x)$$
 在 $[a, +\infty)$ 上单调有界,且 $\int_a^{+\infty} g(x) dx$ 收敛,那么 $\int_a^{+\infty} f(x)g(x) dx$ 收敛。

2. 如果
$$f(x)$$
 在 $[a,b)$ 上单调有界,且 $\int_a^b g(x) \mathrm{d}x$ 收敛,那么 $\int_a^b f(x)g(x) \mathrm{d}x$ 收敛。

\odot

定理 8.2.7 (Dirichlet 判别法)

1. 如果
$$F(A)=\int_a^A f(x)\mathrm{d}x$$
 在 $[a,+\infty)$ 上有界,且 $g(x)$ 在 $[a,+\infty)$ 上单调,同时 $\lim_{x\to+\infty}g(x)=0$,那 么 $\int_a^{+\infty}f(x)g(x)\mathrm{d}x$ 收敛。

2. 如果
$$F(\eta) = \int_a^{b-\eta} f(x) dx$$
 在 $(0,b-a]$ 上有界,且 $g(x)$ 在 $[a,b)$ 上单调,同时 $\lim_{x \to b^-} g(x) = 0$,那么 $\int_a^b f(x)g(x) dx$ 收敛。

8.3 反常积分的敛散性

定理 8.3.1

对于反常积分

$$I = \int_0^{+\infty} x^{\alpha} \sin x^{\beta} \mathrm{d}x$$

- 1. 若 $\beta \neq 0$ 且 $-1 < \frac{\alpha+1}{\beta} < 0$,则绝对收敛。
- 2. 若 $\beta \neq 0$ 且 $0 \leq \frac{\alpha+1}{\beta} < 1$, 则条件收敛。
- 3. 若为其他情况,则发散。

 \sim

证明 如果 $\beta = 0$, 那么

$$I = \sin 1 \int_0^1 x^{\alpha} dx + \sin 1 \int_1^{+\infty} x^{\alpha} dx$$

此时对于任意 $\alpha \in \mathbb{R}$, 原积分发散。

如果 $\beta \neq 0$, 那么令

$$t = x^{\beta}, \qquad \lambda = \frac{\alpha + 1}{\beta} - 1$$

成立

$$I = \frac{1}{|\beta|} \int_0^{+\infty} t^{\lambda} \sin t dt = \frac{1}{|\beta|} \int_0^1 t^{\lambda} \sin t dt + \frac{1}{|\beta|} \int_1^{+\infty} t^{\lambda} \sin t dt = \frac{1}{|\beta|} (I_1 + I_2)$$

考察 I_1 , 由于

$$\lim_{t\to 0^+}\frac{t^\lambda\sin t}{t^{\lambda+1}}=1$$

因此 I_1 与 $\int_0^1 t^{\lambda+1} dt$ 同具敛散性。又因为

$$\int_0^1 t^{\lambda+1} dt = \begin{cases} \frac{1}{\lambda+2}, & \lambda > -2\\ +\infty, & \lambda \le -2 \end{cases}$$

从而当且仅当 $\lambda > -2$ 时积分 I_1 收敛。又由于被积函数非负,收敛即为绝对收敛。

考察 I_2 , 此时仅需考虑 $\lambda > -2$ 。

i) 当 $-2 < \lambda < -1$ 时,因为

$$|t^{\lambda}\sin t| \le t^{\lambda}, \qquad \int_{1}^{+\infty} t^{\lambda} dt = -\frac{1}{\lambda+1}$$

所以 I_2 绝对收敛。

ii) 当 $-1 \le \lambda < 0$ 时, 因为 t^{λ} 单调递减趋于 0, 且对于任意 $A \ge 1$

$$\left| \int_{1}^{A} \sin t \, \mathrm{d}t \right| = \left| \cos 1 - \cos A \right| \le 2$$

所以由 Dirichlet 判别法, I_2 收敛。

由于

$$|t^{\lambda}\sin t| \ge t^{\lambda}\sin^2 t = \frac{1}{2}(t^{\lambda} - t^{\lambda}\cos 2t)$$

容易知道反常积分 $\int_{1}^{+\infty} t^{\lambda} dt$ 发散。考察积分

$$I_2' = \int_1^{+\infty} t^{\lambda} \cos 2t dt$$

因为 t^{λ} 单调递减趋于0,且对于任意 $A \ge 1$

$$\left| \int_{1}^{A} \cos 2t + \mathrm{d}t \right| = \frac{1}{2} |\sin A - \sin 1| \le 1$$

所以由 Dirichlet 判别法, I_2' 收敛,从而反常积分 $\int_1^{+\infty} |t^{\lambda} \sin t| \mathrm{d}t$ 发散,进而 I_2 条件收敛。

iii) 当 $\mu \ge 0$ 时,由于对于任意 $n \in \mathbb{N}^*$,成立

$$\left| \int_{2n\pi}^{(2n+1)\pi} t^{\lambda} \sin t \mathrm{d}t \right| \ge \int_{2n\pi}^{(2n+1)\pi} |t^{\lambda}| \sin t \mathrm{d}t \ge \int_{2n\pi}^{(2n+1)\pi} \sin t \mathrm{d}t = 2$$

那么由 Cauchy 收敛准则, I_2 发散。

综上所述,原积分当 $\beta \neq 0$ 且 $-1 < \frac{\alpha+1}{\beta} < 0$ 时,绝对收敛;当 $\beta \neq 0$ 且 $0 \leq \frac{\alpha+1}{\beta} < 1$ 时,条件收敛;其他情况发散。

定理 8.3.2 (绝对可积 ⇒ 可积)

如果函数 |f(x)| 在 $[a,+\infty)$ 上可积,那么 f(x) 在 $[a,+\infty)$ 上可积。

定理 8.3.3

如果反常积分
$$\int_a^{+\infty} f(x) \mathrm{d}x$$
 收敛,且 $f(x)$ 在 $[a,+\infty)$ 上一致连续,那么
$$\lim_{x \to +\infty} f(x) = 0$$

 $^{\circ}$

 \Diamond

定理 8.3.4

如果反常积分
$$\int_a^{+\infty} f(x) \mathrm{d}x$$
 收敛,且存在极限 $\lim_{x \to +\infty} f(x)$,那么
$$\lim_{x \to +\infty} f(x) = 0$$

定理 8.3.5

如果反常积分
$$\int_a^{+\infty}f(x)\mathrm{d}x$$
 收敛,且 $f(x)$ 在 $[a,+\infty)$ 上单调递减,那么
$$\lim_{x\to+\infty}xf(x)=0$$

定理 8.3.6

如果反常积分
$$\int_a^{+\infty} f(x) \mathrm{d}x$$
 收敛,且 $xf(x)$ 在 $[a,+\infty)$ 上单调递减,那么
$$\lim_{x \to +\infty} xf(x) \ln x = 0$$

第九章 数项级数

9.1 数项级数

9.1.1 数项级数的收敛性

定义 9.1.1 (数项级数)

称数项级数 $\sum_{n=1}^{\infty} x_n$ 收敛于 S,如果部分和数列 $\{S_n\}_{n=1}^{\infty}$ 收敛于 S,其中 $S_n = \sum_{k=1}^n x_k$ 。

定义 9.1.2 (等比级数)

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \frac{1}{1-q}, & |q| < 1\\ +\infty, & q \ge 1 \end{cases}$$

9.1.2 数项级数的基本性质

定理 9.1.1 (级数收敛的必要条件)

如果数项级数 $\sum_{n=1}^{\infty} x_n$ 收敛, 那么

$$\lim_{n \to \infty} x_n = 0$$

定理 9.1.2 (数项级数的加法结合律)

如果数项级数 $\sum_{n=1}^{\infty} x_n$ 收敛,那么其求和式中任意添加括号后所得级数仍收敛,且和不变。

定理 **9.1.3** (p 级数)

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} < \infty, & p > 1 \\ = \infty, & p \le 1 \end{cases}$$

定义 9.1.3 (Riemann ζ 函数)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

1.
$$\zeta(2) = \pi^2/6$$

2.
$$\zeta(4) = \pi^4/90$$

3.
$$\zeta(6) = \pi^6/945$$

4.
$$\zeta(8) = \pi^8/9450$$

5.
$$\zeta(10) = \pi^{10}/93555$$

9.2 上极限与下极限

定义 9.2.1 (数列的上极限)

对于有界数列 $\{x_n\}_{n=1}^{\infty}$, 定义其上极限如下。

1.

$$\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{m \ge n} x_m = \inf_{n \ge 1} \sup_{m \ge n} x_m$$

- 2. 若 $\overline{\lim}$ $x_n = a$, 则成立
 - 对于任意 $\varepsilon > 0$, 存在 $N \in \mathbb{N}^*$, 使得对于任意 $n \ge N$, 成立 $x_n < a + \varepsilon$.
 - 对于任意 $\varepsilon > 0$ 与 $N \in \mathbb{N}^*$, 存在 $n \ge N$, 使得成立 $x_n > a \varepsilon$.

对于无上界数列 $\{x_n\}_{n=1}^{\infty}$,定义 $\overline{\lim}_{n\to\infty} x_n = +\infty$; 特别的, 如果 $\lim_{n\to\infty} x_n = +\infty$,定义 $\overline{\lim}_{n\to\infty} x_n = \underline{\lim}_{n\to\infty} x_n = +\infty$.

定义 9.2.2 (数列的下极限)

对于有界数列 $\{x_n\}_{n=1}^{\infty}$, 定义其下极限如下。

1.

$$\underline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{m \ge n} x_m = \sup_{n \ge 1} \inf_{m \ge n} x_m$$

- 2. 若 $\lim_{n\to\infty} x_n = a$, 则成立
 - 对于任意 $\varepsilon > 0$, 存在 $N \in \mathbb{N}^*$, 使得对于任意 $n \geq N$, 成立 $x_n > a \varepsilon$.
 - 对于任意 $\varepsilon > 0$ 与 $N \in \mathbb{N}^*$, 存在 $n \ge N$, 使得成立 $x_n < a + \varepsilon$.

对于无下界数列 $\{x_n\}_{n=1}^{\infty}$,定义 $\varliminf_{n\to\infty} x_n = -\infty$;特别的,如果 $\varliminf_{n\to\infty} x_n = -\infty$,定义 $\varlimsup_{n\to\infty} x_n = \varliminf_{n\to\infty} x_n = -\infty$ 。

命题 9.2.1 (数列的上下极限性质)

对于数列 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$, 成立如下命题。

1.

2. 若 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$ 非负,则

 $\underline{\lim_{n\to\infty}} x_n \cdot \underline{\lim_{n\to\infty}} y_n \leq \underline{\lim_{n\to\infty}} x_n y_n \leq \underline{\lim_{n\to\infty}} x_n \cdot \overline{\lim_{n\to\infty}} y_n \leq \overline{\lim_{n\to\infty}} x_n y_n \leq \overline{\lim_{n\to\infty}} x_n \cdot \overline{\lim_{n\to\infty}} y_n$ 其中若 $\{x_n\}_{n=1}^{\infty}$ 或 $\{y_n\}_{n=1}^{\infty}$ 收敛,则等号成立。

3. 若 $\{x_n\}_{n=1}^{\infty}$ 非负,则

$$\varliminf_{n\to\infty}\frac{x_{n+1}}{x_n}\le\varliminf_{n\to\infty}\sqrt[n]{x_n}\le\varlimsup_{n\to\infty}\sqrt[n]{x_n}\le\varlimsup_{n\to\infty}\frac{x_{n+1}}{x_n}$$

4. 存在收敛子列 $\{x_{n_k}\}_{k=1}^{\infty}$,使得成立

$$\lim_{k \to \infty} x_{n_k} = \overline{\lim}_{n \to \infty} x_n$$

5. 存在收敛子列 $\{x_{n_k}\}_{k=1}^{\infty}$, 使得成立

$$\lim_{k \to \infty} x_{n_k} = \underline{\lim}_{n \to \infty} x_n$$

6. 对于任意收敛子列 $\{x_{n_k}\}_{k=1}^{\infty}$, 成立

$$\underline{\lim_{n \to \infty}} x_n \le \lim_{k \to \infty} x_{n_k} \le \overline{\lim_{n \to \infty}} x_n$$

7. 对于任意子列 $\{x_{n_k}\}_{k=1}^{\infty}$, 成立

$$\overline{\lim}_{k \to \infty} x_{n_k} \le \overline{\lim}_{n \to \infty} x_n, \qquad \underline{\lim}_{k \to \infty} x_{n_k} \ge \underline{\lim}_{n \to \infty} x_n$$

9.3 正项级数

9.3.1 正项级数

定义 9.3.1 (正项级数)

称数项级数 $\sum_{n=1}^{\infty} x_n$ 为正项级数,如果对于任意 $n \in \mathbb{N}^*$,成立 $x_n \geq 0$ 。

定理 9.3.1 (正项级数的收敛原理)

正项级数收敛的充分必要条件为其部分和数列存在上界。

\sim

9.3.2 比较判别法

定义 9.3.2 (比较判别法)

对于正项级数 $\sum_{n=1}^{\infty} x_n$ 与 $\sum_{n=1}^{\infty} y_n$, 如果对于任意 $n \in \mathbb{N}^*$, 成立

$$x_n \le y_n$$

那么

1. 若 $\sum_{n=1}^{\infty} y_n$ 收敛,则 $\sum_{n=1}^{\infty} x_n$ 收敛。

2. 若 $\sum_{n=1}^{\infty} x_n$ 发散,则 $\sum_{n=1}^{\infty} y_n$ 发散。

定义 9.3.3 (比较判别法的极限形式)

对于正项级数 $\sum_{n=1}^{\infty} x_n$ 与 $\sum_{n=1}^{\infty} y_n$, 如果

$$\lim_{n \to \infty} \frac{x_n}{y_n} = l$$

那么

1. $0 < l < +\infty$, $M \sum_{n=1}^{\infty} y_n + \sum_{n=1}^{\infty} x_n$ **数**散性相同。

2. 若 l = 0, 则 $\sum_{n=1}^{\infty} y_n$ 收敛时, $\sum_{n=1}^{\infty} x_n$ 收敛。

3. 若 $l = +\infty$, 则 $\sum_{n=1}^{\infty} y_n$ 发散时, $\sum_{n=1}^{\infty} x_n$ 发散。

9.3.3 Cauchy 判别法

定理 9.3.2 (Cauchy 判别法)

对于正项级数 $\sum_{n=1}^{\infty} x_n$,若记

$$r = \overline{\lim}_{n \to \infty} \sqrt[n]{x_n}$$

1.
$$r < 1$$
: 级数 $\sum_{n=1}^{\infty} x_n$ 收敛。
2. $r > 1$: 级数 $\sum_{n=1}^{\infty} x_n$ 发散。

2.
$$r > 1$$
: 级数 $\sum_{n=1}^{\infty} x_n$ 发散。

9.3.4 d'Alembert 判别法

定理 9.3.3 (d'Alembert 判别法)

对于正项级数 $\sum_{n=1}^{\infty} x_n$,若记

$$\overline{r} = \overline{\lim}_{n \to \infty} \frac{x_{n+1}}{x_n}, \qquad \underline{r} = \underline{\lim}_{n \to \infty} \frac{x_{n+1}}{x_n}$$

1.
$$\overline{r} < 1$$
: 级数 $\sum_{n=1}^{\infty} x_n$ 收敛。

2.
$$\underline{r} > 1$$
: 级数 $\sum_{n=1}^{\infty} x_n$ 发散。

9.3.5 Rabbe 判别法

定理 9.3.4 (Rabbe 判别法)

对于级数 $\sum_{n=1}^{\infty} x_n$, 若记

$$r = \lim_{n \to \infty} n \left(\left| \frac{x_n}{x_{n+1}} \right| - 1 \right)$$

1.
$$r > 1$$
: 级数 $\sum_{n=1}^{\infty} x_n$ 绝对收敛。

2.
$$r < 1$$
: $4 \times \sum_{n=1}^{\infty} x_n / 5 \times \sum_{n$

9.3.6 积分判别法

定理 9.3.5 (积分判别法)

对于定义在 $[a,+\infty)$ 上的非负函数 f(x),如果 f(x) 在任意区间 [a,A] 上可积,取单调递增趋于 $+\infty$ 的数列 $\{a_n\}_{n=1}^\infty$,令

$$x_n = \int_{a_n}^{a_{n+1}} f(x) \mathrm{d}x$$

那么反常积分 $\int_a^{+\infty} f(x) dx$ 与正项级数 $\sum_{n=1}^{\infty} x_n$ 同时收敛或同时发散于 $+\infty$, 且

$$\int_{a}^{+\infty} f(x) dx = \sum_{n=1}^{\infty} x_n$$

定理 9.3.6 (Cauchy 积分判别法)

对于定义在 $[0,+\infty)$ 上的非负单调递减函数 f(x), 成立

数项级数
$$\sum_{n=1}^{\infty} f(n)$$
与反常积分 $\int_{0}^{+\infty} f(x) \mathrm{d}x$ 的敛散性相同

C

9.3.7 Cauchy 凝聚判别法

定理 9.3.7 (Cauchy 凝聚判别法)

对于单调递减的正项数列 $\{x_n\}_{n=1}^{\infty}$, 成立

级数
$$\sum_{n=1}^{\infty} x_n$$
与级数 $\sum_{n=1}^{\infty} 2^n x_{2^n}$ 的敛散性相同

 \sim

9.4 任意项级数

9.4.1 任意项级数

定理 9.4.1 (Cauchy 收敛原理)

级数 $\sum_{n=1}^{\infty} x_n$ 收敛的充分必要条件是:对于任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $m \geq n \geq N$ 成立

$$\left| \sum_{k=n}^{m} x_k \right| < \varepsilon$$

 \odot

推论 9.4.1 (级数收敛的必要原理)

如果级数
$$\sum_{n=1}^{\infty} x_n$$
 收敛, 那么 $\lim_{n\to\infty} x_n = 0$ 。

 \Diamond

9.4.2 Leibniz 级数

定理 9.4.2 (Leibniz 判别法)

如果正项级数 $\{x_n\}_{n=1}^{\infty}$ 单调递减趋于 0,那么交错级数 $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ 收敛。

\Diamond

推论 9.4.2

如果 Leibniz 级数 $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ 收敛, 那么对于 $n \in \mathbb{N}^*$, 成立

$$0 \le \sum_{n=1}^{\infty} (-1)^{n+1} x_n \le x_1, \qquad \left| \sum_{k=n}^{\infty} (-1)^{k+1} x_k \right| \le x_n$$

\sim

9.4.3 Abel 判别法与 Dirichlet 判别法

定理 9.4.3 (Abel 变换)

对于数列 $\{a_n\}_{n=1}^{\infty}$ 与 $\{b_n\}_{n=1}^{\infty}$,记 $\Delta a_n = a_{n+1} - a_n$, $B_n = \sum_{k=1}^n b_k$,那么

$$\sum_{k=1}^{n} a_k b_k = a_n B_n - \sum_{k=1}^{n-1} \Delta a_k B_k$$

$^{\circ}$

定理 9.4.4 (Abel 判别法)

如果数列 $\{a_n\}_{n=1}^{\infty}$ 单调且有界,同时级数 $\sum_{n=1}^{\infty} b_n$ 收敛,那么级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛。

定理 9.4.5 (Dirichlet 判别法)

如果数列 $\{a_n\}_{n=1}^\infty$ 单调趋于 0,同时数列 $\left\{\sum_{k=1}^n b_k\right\}_{n=1}^\infty$ 有界,那么级数 $\sum_{n=1}^\infty a_n b_n$ 收敛。

9.4.4 绝对收敛与条件收敛

定义 9.4.1 (绝对收敛)

称级数 $\sum_{n=1}^{\infty} x_n$ 绝对收敛,如果级数 $\sum_{n=1}^{\infty} |x_n|$ 收敛。

定义 9.4.2 (条件收敛)

称级数 $\sum_{n=1}^{\infty} x_n$ 条件收敛,如果级数 $\sum_{n=1}^{\infty} x_n$ 收敛且级数 $\sum_{n=1}^{\infty} |x_n|$ 发散。

定理 9.4.6

如果级数绝对收敛, 那么其任意更序级数均收敛, 且收敛值相等。

 $^{\circ}$

定理 9.4.7 (Riemann 重排定理)

如果级数 $\sum_{n=1}^{\infty}x_n$ 条件收敛,那么对于任意 $a\in\mathbb{R}$,存在更序级数 $\sum_{n=1}^{\infty}x_n'$,使得成立

$$\sum_{n=1}^{\infty} x_n' = a$$

 \Diamond

9.4.5 级数的乘法

定义 9.4.3 (Cauchy 乘积)

定义级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 的 Cauchy 乘积为

$$\sum_{n=1}^{\infty} \sum_{i+j=n} a_i b_j$$

定理 9.4.8

如果级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 均绝对收敛,那么其任意乘积亦绝对收敛,且和为 $\left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right)$ 。

 \sim

9.4.6 级数问题的反例

定理 9.4.9

如果级数 $\sum_{n=1}^{\infty} x_n$ 收敛,且 $x_n > 0$,同时 x_n 单调递减,那么 $\lim_{n \to \infty} n x_n = 0$ 。

 \sim

例题 9.1 去掉 " x_n 单调递减"条件,结论不成立。例如,记

$$x_n = \begin{cases} \frac{1}{n}, & n \to \mathbb{P} \\ \frac{1}{n^2}, & \text{其他} \end{cases}$$

定理 9.4.10 (Leibniz 级数)

对于单调递减的正项数列 $\{x_n\}_{n=1}^{\infty}$, 如果 $\lim_{n\to\infty}x_n=0$, 那么交错级数 $\sum_{n=1}^{\infty}(-1)^nx_n$ 发散。

 $^{\circ}$

例题 9.2 去掉 " x_n 单调递减"条件,结论不成立。例如,记

$$x_n = \begin{cases} \frac{1}{n^2}, & n$$
为奇数
$$\frac{1}{n^2}, & n$$
为偶数

9.5 无穷乘积

定义 9.5.1 (无穷乘积收敛)

称无穷乘积 $\prod_{n=1}^{\infty} p_n$ 收敛,如果

$$\lim_{n\to\infty}\prod_{k=1}^n p_k=a\in\mathbb{R}\setminus\{0\}$$

定理 9.5.1

如果无穷乘积 $\prod_{n=1}^{\infty} p_n$ 收敛,那么

$$\lim_{n \to \infty} p_n = 1, \qquad \lim_{n \to \infty} \prod_{k=n}^{\infty} p_k = 1$$

定理 9.5.2

无穷乘积
$$\prod_{n=1}^{\infty} p_n$$
 收敛 \iff 级数 $\sum_{n=1}^{\infty} \ln p_n$ 收敛

定义 9.5.2 (绝对收敛)

称无穷乘积 $\prod_{n=1}^{\infty} p_n$ 绝对收敛,如果级数 $\sum_{n=1}^{\infty} \ln p_n$ 绝对收敛。

第十章 函数项级数

10.1 函数项级数的一致收敛性

定义 10.1.1 (点态收敛)

1. 对于函数序列 $\{f_n(x)\}_{n=1}^{\infty}$,称 $f_n(x)$ 在 I 上点态收敛于 f(x),并记作 $f_n(x)\to f(x)$,如果对于任意 $x\in I$,成立

$$\lim_{n \to \infty} f_n(x) = f(x)$$

2. 对于函数项级数 $\sum_{n=1}^{\infty} f_n(x)$,称 $\sum_{n=1}^{\infty} f_n(x)$ 在 I 上点态收敛于 f(x),如果对于任意 $x \in I$,成立

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

定义 10.1.2 (一致收敛)

1. 对于函数序列 $\{f_n(x)\}_{n=1}^{\infty}$,称 $f_n(x)$ 在 I 上一致收敛于 f(x),并记作 $f_n(x) \Rightarrow f(x)$,如果成立如下命题之一。

(a).

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$$

(b). 对于任意 $\varepsilon > 0$, 存在 $N \in \mathbb{N}^*$, 使得对于任意 $n \ge N$ 与 $x \in I$, 成立

$$|f_n(x) - f(x)| < \varepsilon$$

(c). 对于任意数列 $\{x_n\}_{n=1}^{\infty}$, 成立

$$\lim_{n \to \infty} |f_n(x_n) - f(x_n)| = 0$$

2. 对于函数项级数 $\sum_{n=1}^{\infty} f_n(x)$, 称 $\sum_{n=1}^{\infty} f_n(x)$ 在 I 上一致收敛于 f(x), 如果成立如下命题之一。

(a).

$$\lim_{n \to \infty} \sup_{x \in I} \left| \sum_{k=1}^{n} f_k(x) - f(x) \right| = 0$$

(b). 对于任意 $\varepsilon > 0$, 存在 $N \in \mathbb{N}^*$, 使得对于任意 $n \ge N$ 与 $x \in I$, 成立

$$\left| \sum_{k=1}^{n} f_k(x) - f(x) \right| < \varepsilon$$

(c). 对于任意数列 $\{x_n\}_{n=1}^{\infty}$, 成立

$$\lim_{n \to \infty} \left| \sum_{k=1}^{n} f_k(x_n) - f(x_n) \right| = 0$$

定理 10.1.1

如果函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 在 I 上一致收敛,那么 $f_n(x)$ 在 I 上一致收敛于 0。

10.2 一致收敛级数的判别

10.2.1 Cauchy 收敛原理

定理 10.2.1 (Cauchy 收敛原理)

1. 函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 在 I 上一致收敛的充分必要条件是: 对于任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $m,n \geq N$ 与 $x \in I$ 成立

$$|f_m(x) - f_n(x)| < \varepsilon$$

2. 函数项级数 $\sum_{n=1}^{\infty}f_n(x)$ 在 I 上一致收敛的充分必要条件是: 对于任意 $\varepsilon>0$,存在 $N\in\mathbb{N}^*$,使得对于任意 m>n>N 与 $x\in I$ 成立

$$\left| \sum_{k=n}^{m} f_k(x) \right| < \varepsilon$$

 \Diamond

10.2.2 Weierstrass 判别法

定理 10.2.2 (Weierstrass 判别法)

对于函数项级数 $\sum_{n=1}^{\infty} f_n(x)$, 如果存在数列 $\{a_n\}_{n=1}^{\infty}$, 使得成立

$$|f_n(x)| \le a_n, \qquad n \in \mathbb{N}^*$$

且数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\sum_{n=1}^{\infty} f_n(x)$ 一致收敛。

 \odot

10.2.3 Abel 判别法与 Dirichlet 判别法

定理 10.2.3 (Abel 判别法)

如果函数序 列 $\{a_n(x)\}_{n=1}^\infty$ 对于任意 $x\in I$,数列 $\{a_n(x)\}_{n=1}^\infty$ 单调,且存在 $M\in\mathbb{R}$,使得成立

$$|a_n(x)| < M, \qquad x \in I, n \in \mathbb{N}^*$$

同时函数项级数 $\sum_{n=1}^{\infty} b_n(x)$ 在 I 上一致收敛,那么 $\sum_{n=1}^{\infty} a_n b_n(x)$ 在 I 上一致收敛。

C

定理 10.2.4 (Dirichlet 判别法)

如果函数序列 $\{a_n(x)\}_{n=1}^\infty$ 对于任意 $x \in I$,数列 $\{a_n(x)\}_{n=1}^\infty$ 单调,且 $\{a_n(x)\}_{n=1}^\infty$ 在 I 上一致收敛于 0,同时存在 $M \in \mathbb{R}$,使得成立

$$\left| \sum_{k=1}^{n} b_k(x) \right| \le M, \qquad x \in I, n \in \mathbb{N}^*$$

那么 $\sum_{n=1}^{\infty} a_n b_n(x)$ 在 I 上一致收敛。

C

10.2.4 Dini 定理

定理 10.2.5 (Dini 定理)

- 1. 如果函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 成立
 - (a). 函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 在 [a,b] 上点态收敛于 f(x),
 - (b). 对于任意 $n \in \mathbb{N}^*$, $f_n(x)$ 在 [a,b] 上连续,
 - (c). f(x) 在 [a,b] 上连续,
 - (d). 对于任意 $x \in [a, b]$, 数列 $\{f_n(x)\}_{n=1}^{\infty}$ 单调,

那么 $f_n(x)$ 在 [a,b] 上一致收敛于 f(x)。

- 2. 如果函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 成立
 - (a). 函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 在 [a,b] 上点态收敛于 f(x),
 - (b). 对于任意 $n \in \mathbb{N}^*$, $f_n(x)$ 在 [a,b] 上连续,
 - (c). f(x) 在 [a,b] 上连续,
 - (d). 对于任意 $x \in [a, b]$, 数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 为正项级数,

那么
$$\sum_{n=1}^{\infty} f_n(x)$$
 在 $[a,b]$ 上一致收敛于 $f(x)$ 。

 \Diamond

10.2.5 等度连续

定义 10.2.1 (等度连续)

称函数族 \mathscr{F} 等度连续,如果对于任意 $\varepsilon > 0$,存在 $\delta > 0$,使得对于任意 $f \in \mathscr{F}$,成立

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

•

定理 10.2.6

如果函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 在 I 上等度连续, 且 $f_n(x)$ 点态收敛于 f(x), 那么 f(x) 在 I 上一致连续。

 \sim

定理 10.2.7

对于 [a,b] 上的连续函数序列 $\{f_n(x)\}_{n=1}^{\infty}$, 如果 $f_n(x)$ 在 [a,b] 上点态收敛于 f(x), 那么 $\{f_n(x)\}_{n=1}^{\infty}$ 在 [a,b] 上等度连续 $\iff f_n(x)$ 在 [a,b] 上一致收敛于 f(x)

定理 10.2.8 (Asscoli 引理)

对于 [a,b] 上的函数族 \mathscr{F} ,如果 \mathscr{F} 在 [a,b] 上一致有界且等度连续,那么存在函数序列 $\{f_n(x)\}_{n=1}^\infty\subset\mathscr{F}$,使得 $f_n(x)$ 在 [a,b] 上一致收敛。

(

10.3 一致收敛级数的性质

10.3.1 一致收敛级数的性质

定理 10.3.1 (连续性定理)

1. 对于 I 上的连续函数序列 $\{f_n(x)\}_{n=1}^{\infty}$, 如果 $f_n(x)$ 在 I 上一致收敛于 f(x), 那么 f(x) 在 I 上连续; 换言之,对于任意 $x_0 \in I$,成立

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$$

2. 对于 I 上的连续函数序列 $\{f_n(x)\}_{n=1}^{\infty}$, 如果函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 在 I 上一致收敛于 f(x), 那么 f(x) 在 I 上连续; 换言之, 对于任意 $x_0 \in I$, 成立

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} f_n(x)$$

定理 10.3.2 (可积性定理)

1. 对于 [a,b] 上的可积函数序列 $\{f_n(x)\}_{n=1}^{\infty}$, 如果 $f_n(x)$ 在 [a,b] 上一致收敛于 f(x), 那么 f(x) 在 [a,b]上可积, 且

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

2. 对于 [a,b] 上的可积函数序列 $\{f_n(x)\}_{n=1}^{\infty}$, 如果函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 在 [a,b] 上一致收敛于 f(x), 那 么 f(x) 在 [a,b] 上可积,且

$$\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx$$

\Diamond

定理 10.3.3 (可导性定理)

- 1. 如果函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 成立
 - 对于任意 $n \in \mathbb{N}^*$, $f_n(x)$ 在 I 上存在连续的导函数 $f'_n(x)$,
 - 函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 在 I 上点态收敛于 f(x), 函数序列 $\{\frac{\mathrm{d}}{\mathrm{d}x}f_n(x)\}_{n=1}^{\infty}$ 在 I 上一致收敛,

那么 f(x) 在 I 上可导, 且

$$\frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x)$$

- 2. 如果函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 成立
 - 对于任意 $n \in \mathbb{N}^*$, $f_n(x)$ 在 I 上存在连续的导函数 $f'_n(x)$,
 - 函数项级数 $\sum_{n=0}^{\infty} f_n(x)$ 在 I 上点态收敛,
 - 函数项级数 $\sum_{i=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x)$ 在 I 上一致收敛,

那么
$$\sum_{i=1}^{\infty} f_n(x)$$
 在 I 上可导,且

$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x)$$

10.3.2 积分与极限交换顺序

定理 10.3.4 (常义积分与极限交换顺序)

对于 [a,b] 上的可积函数序列 $\{f_n(x)\}_{n=1}^{\infty}$,如果 $f_n(x)$ 在 [a,b] 上一致收敛于 f(x),那么 f(x) 在 [a,b] 上可积,且

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

定理 10.3.5 (反常积分与极限交换顺序)

- 1. 对于函数序列 $\{f_n(x)\}_{n=1}^{\infty}$, 如果成立
 - (a). $f_n(x)$ 在 $[a, +\infty)$ 上內闭一致收敛于 f(x)。

(b).
$$\int_{a}^{+\infty} f_n(x) dx$$
 关于 $n \in \mathbb{N}^*$ 一致收敛。

$$\int_{a}^{+\infty} f(x) dx = \lim_{n \to \infty} \int_{a}^{+\infty} f_n(x) dx$$

- 2. 对于二元函数 f(x,y), 如果成立
 - (a). 当 $y \to y_0$ 时, f(x,y) 在 $[a,+\infty)$ 上内闭一致收敛于 $\varphi(x)$ 。

(b).
$$\int_{a}^{+\infty} f_n(x) dx \notin \mathcal{F} y - \mathfrak{D} \psi \mathfrak{D}.$$

(c). $\int_{a}^{a+\infty} \varphi(x) \mathrm{d}x \, \psi \, \mathfrak{G} \, .$ 那么

$$\int_{a}^{+\infty} \varphi(x) \mathrm{d}x = \lim_{y \to y_0} \int_{a}^{+\infty} f(x, y) \mathrm{d}x$$

定理 10.3.6 (Arzela 控制收敛定理)

对于 [a,b] 上的 Riemann 可积函数序列 $\{f_n(x)\}_{n=1}^{\infty}$, 如果成立

- 1. $f_n(x)$ 在 [a,b] 上一致有界。
- 2. $f_n(x)$ 在 [a,b] 上收敛于 f(x)。
- 3. f(x) 在 [a,b] 上 Riemann 可积。

那么

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

定理 10.3.7 (Lebesgue 控制收敛定理)

对于可测集 $E \subset \mathbb{R}^n$ 上的 Lebesgue 可测函数序列 $\{f_n\}_{n=1}^{\infty}$, 如果成立

- 1. 函数 F 在 E 上 Lebesgue 可积。
- 2. 在E上成立 $|f_n| \leq F$ 。
- 3. f_n 在 E 上依测度收敛于 f_o

那么f在E上Lebesgue 可积,且

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_n$$

 $^{\circ}$

10.4 幂级数

定义 10.4.1 (收敛半径)

对于幂级数 $\sum_{n=1}^{\infty} a_n x^n$, 令

$$A = \overline{\lim} \sqrt[n]{|a_n|}$$

定义其收敛半径为

$$R = \begin{cases} +\infty, & A = 0\\ \frac{1}{A}, & 0 < A < +\infty\\ 0, & A = +\infty \end{cases}$$

定理 10.4.1 (d'Alembert 判别法)

如果存在极限

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = A \in \overline{\mathbb{R}}$$

那么幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 R=1/A。

定理 10.4.2 (Cauchy-Hadamard 定理)

对于幂级数 $\sum_{n=1}^{\infty} a_n x^n$, 当 |x| < R 时绝对收敛; 当 |x| > R 时发散。

 \Diamond

定理 10.4.3 (Abel 第一定理)

对于幂级数 $\sum_{n=0}^{\infty}a_nx^n$, 如果其在 ξ 处收敛, 那么当 $|x|<|\xi|$ 时绝对收敛; 如果其在 ξ 处发散, 那么当 $|x| > |\xi|$ 时发散。

定理 10.4.4 (Abel 第二定理)

如果幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 R,那么

- 1. $\sum_{n=1}^{\infty} a_n x^n$ 在 (-R, R) 中内闭一致收敛。
- 2. 若 $\sum_{n=1}^{\infty} a_n x^n$ 在 R 处收敛,则其在 (-R,R] 中内闭一致收敛。
 3. 若 $\sum_{n=1}^{\infty} a_n x^n$ 在 -R 处收敛,则其在 [-R,R) 中内闭一致收敛。

定理 10.4.5 (幂级数的性质)

- 1. 幂级数在其收敛域内连续。
- 2. 幂级数在其收敛域内可逐项求导,且收敛半径不变,但收敛域可能变小。
- 3. 幂级数在其收敛域内的闭区间上可逐项积分, 且收敛半径不变, 但收敛域可能变大。

定理 10.4.6 (Taylor 公式)

$$e^x = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + o(x^n) = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$
 $x \in \mathbb{R}$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1}}{n} x^n + o(x^n) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n, \qquad x \in (-1,1]$$

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + o(x^n) = \sum_{n=0}^{\infty} (-1)^n x^n, \qquad x \in (-1,1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+1}) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \qquad x \in \mathbb{R}$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n}) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \qquad x \in \mathbb{R}$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^{n+1}}{2n-1}x^{2n-1} + o(x^{2n-1}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}x^{2n-1}, \qquad x \in [-1, 1]$$

10.5 Werierstrass 逼近定理

定义 10.5.1 (Bernstein 多项式)

定义 [0,1] 上的函数 f(x) 的 Bernstein 多项式序列为

$$B_n(x) = \sum_{k=0}^{n} f(k/n) C_n^k x^k (1-x)^{n-k}$$

定理 10.5.1 (Werierstrass 逼近定理)

如果 f(x) 在 [a,b] 上连续,那么其 Bernstein 多项式序列 $\{B_n(x)\}_{n=1}^\infty$ 在 [a,b] 上一致收敛于 f。

10.6 三角级数

定理 10.6.1 (和差化积)

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

68

定理 10.6.2 (积化和差)

$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

$$\cos \alpha \sin \beta = \frac{1}{2}(\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta))$$

$$\sin \alpha \sin \beta = -\frac{1}{2}(\cos(\alpha + \beta) - \cos(\alpha - \beta))$$

定理 10.6.3 (三角级数)

$$\sum_{k=1}^{n} \cos k\theta = \frac{\sin \frac{2n+1}{2}\theta - \sin \frac{\theta}{2}}{2\sin \frac{\theta}{2}}$$

$$\sum_{k=1}^{n} \sin k\theta = \frac{\cos \frac{\theta}{2} - \cos \frac{2n+1}{2}\theta}{2\sin \frac{\theta}{2}}$$

$$\sum_{k=1}^{n} (-1)^{k} \cos k\theta = \begin{cases} -\frac{\cos \frac{2n+1}{2}\theta + \cos \frac{\theta}{2}}{2\cos \frac{\theta}{2}}, & n \text{ 为奇数} \\ \frac{\cos \frac{2n+1}{2}\theta - \cos \frac{\theta}{2}}{2\cos \frac{\theta}{2}}, & n \text{ 为禹数} \end{cases}$$

$$\sum_{k=1}^{n} (-1)^{k} \sin k\theta = \begin{cases} -\frac{\sin \frac{2n+1}{2}\theta + \sin \frac{\theta}{2}}{2\cos \frac{\theta}{2}}, & n \text{ 为奇数} \\ \frac{\sin \frac{2n+1}{2}\theta - \sin \frac{\theta}{2}}{2\cos \frac{\theta}{2}}, & n \text{ 为禹数} \end{cases}$$

定理 10.6.4 (Wallis 公式)

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2}, & n \neq 3 \\ \frac{(n-1)!!}{n!!}, & n \neq 5 \end{cases}$$

$$I_{m,n} = \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx = \begin{cases} \frac{(m-1)!!(n-1)!!}{(m+n)!!} \frac{\pi}{2}, & m, n \neq 3 \end{cases}$$

$$\frac{(m-1)!!(n-1)!!}{(m+n)!!}, \quad \text{i.e.}$$

第十一章 Euclid 空间

11.1 Euclid 空间上的基本定理

定理 11.1.1 (Cantor 闭区域套定理)

对于 \mathbb{R}^n 上的单调递减非空闭集序列 $\{F_n\}_{n=1}^{\infty}$, 如果

$$\lim_{n\to\infty} \sup_{x,y\in S_n} |x-y| = 0$$

那么存在且存在唯一 $\xi \in \mathbb{R}^n$, 使得成立

$$\xi \in \bigcap_{n=1}^{\infty} F_n$$

定理 11.1.2 (Bolzano-Weierstrass 定理)

 \mathbb{R}^n 上的有界点列存在收敛子列。

\sim

定理 11.1.3 (Cauchy 收敛原理)

 \mathbb{R}^n 上的点列 $\{x_n\}_{n=1}^{\infty}$ 收敛的充分必要条件是其为 Cauchy 序列。

定理 11.1.4 (Heine-Borel 定理)

 \mathbb{R}^n 上的点集 K 是紧集的充分必要条件是其为有界闭集。

11.2 多元函数

定义 11.2.1 (二重极限)

定义开集 $G \subset \mathbb{R}^2$ 上的函数 f(x,y) 在 (x_0,y_0) 处的二重极限为

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$

笔记 在证明 f(x,y) 在 (x_0,y_0) 处的存在极限时,只需证明: $f(x_0+r\cos\theta,y_0+r\sin\theta)$ 在 $r\to 0$ 时,关于 $0\le\theta\le 2\pi$ 一致收敛。

定义 11.2.2 (二次极限)

定义开集 $G \subset \mathbb{R}^2$ 上的函数 f(x,y) 在 (x_0,y_0) 处的二次极限为

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

例题 11.1 二重极限存在,两个二次极限不存在:

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x} \sin \frac{1}{y}, & x \neq 0 \text{ } \exists y \neq 0 \\ 0, & x = 0 \text{ } \exists y = 0 \end{cases}$$

f(x,y) 在 (0,0) 处的二重极限为 0,但是两个二次极限都不存在。

例题 11.2 二重极限存在,两个二次极限中有一个不存在:

$$f(x,y) = \begin{cases} y \sin \frac{1}{x}, & x \neq 0 \text{ } \exists y \neq 0 \\ 0, & x = 0 \text{ } \exists y = 0 \end{cases}$$

f(x,y) 在 (0,0) 处的二重极限为 0,先对 y 后对 x 的二次极限为 0,但是先对 x 后对 y 不存在二次极限。 **例题 11.3** 两个二次极限均存在,但不相等:

$$f(x,y) = \begin{cases} \frac{x^2(1+x^2) - y^2(1+y^2)}{x^2 + y^2}, & x \neq 0 \text{ } \exists y \neq 0 \\ 0, & x = 0 \text{ } \vec{\boxtimes} y = 0 \end{cases}$$

成立

$$\lim_{y\to 0}\lim_{x\to 0}f(x,y)=-1,\qquad \lim_{x\to 0}\lim_{y\to 0}f(x,y)=1$$

11.3 连续函数

定理 11.3.1

连续函数将紧集映为紧集。

 \bigcirc

定理 11.3.2

如果 f 为紧集 $K \subset \mathbb{R}^n$ 上的连续函数,那么 f 在 K 上有界,且存在 $\xi_1, \xi_2 \in K$,使得对于任意 $x \in K$,成立

$$f(\xi_1) \le f(x) \le f(\xi_2)$$

定理 11.3.3

紧集上的连续函数一致连续。

 \Diamond

第十二章 多元函数微分学

12.1 偏导数与全微分

定义 12.1.1 (偏导数)

称开集 $\Omega \subset \mathbb{R}^2$ 上的函数 f(x,y) 在 (x_0,y_0) 处关于 x 可偏导, 如果存在极限

$$f_x(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

室 笔记对于多元函数可偏导未必连续,例如:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

容易知道 $f_x(0,0) = f_y(0,0) = 0$, 但是 f(x,y) 在 (0,0) 处不连续。

定义 12.1.2 (方向导数)

称开集 $\Omega \subset \mathbb{R}^2$ 上的函数 f(x,y) 在 (x_0,y_0) 处关于方向 $v=(\cos\theta,\sin\theta)$ 存在方向导数,如果存在极限

$$f_{\mathbf{v}}(x_0, y_0) = \lim_{t \to 0^+} \frac{f(x_0 + t\cos\theta, y_0 + t\sin\theta) - f(x_0, y_0)}{t}$$

定理 12.1.1

如果开集 $\Omega \subset \mathbb{R}^2$ 上的函数 f(x,y) 在 (x_0,y_0) 处可微分,那么关于任意方向 $v=(\cos\theta,\sin\theta)$ 存在方向导数,且

$$f_{\mathbf{v}}(x_0, y_0) = f_x(x_0, y_0) \cos \theta + f_y(x_0, y_0) \sin \theta$$

定义 12.1.3 (可微性)

称开集 $\Omega \subset \mathbb{R}^2$ 上的函数 f(x,y) 在 (x_0,y_0) 处可微,如果存在仅与 (x_0,y_0) 有关而与 Δx 和 Δy 无关的常数 $A \to B$,使得成立

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2})$$

- 室记可微必连续,且可微必可偏导。
- 肇记可偏导未必可微,例如:

$$f(x,y) = \begin{cases} \frac{2xy^3}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

在 (0,0) 处可偏导,且 $f_x(0,0) = f_y(0,0) = 0$,但在 (0,0) 处不可微。

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - (f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y)}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$

定理 12.1.2 (全微分公式)

$$\mathrm{d}f = f_x \mathrm{d}x + f_y \mathrm{d}y$$

定理 12.1.3

如果函数 f(x,y) 在 (x_0,y_0) 邻域内连续可偏导,那么 f(x,y) 在 (x_0,y_0) 处可微。

 \Diamond

定义 12.1.4 (梯度)

如果函数 f(x,y,z) 可偏导,那么定义其梯度为

$$\nabla f = (f_x, f_y, f_z)$$

定理 12.1.4

如果函数 f(x,y) 的两个混合偏导数 f_{xy} 和 f_{yx} 在 (x_0,y_0) 处连续, 那么成立等式

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

 \sim

12.2 多元复合函数的求导法则

定理 12.2.1 (链式法则)

如果 z = f(x,y) 可微, x(u,v) 与 y(u,v) 可偏导, 那么

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$
$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

 $^{\circ}$

全 笔记 "f 可微"不能减弱为"f 可偏导",例如:

$$z = f(x,y) = \begin{cases} \frac{2xy^3}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

在 (0,0) 处可偏导,且 $f_x(0,0)=f_y(0,0)=0$,但在 (0,0) 处不可微。 取

$$\begin{cases} x = t^2 \\ y = t \end{cases}$$

那么z=t, 从而

$$\frac{\mathrm{d}z}{\mathrm{d}t}(0) = 1$$

$$f_x(t^2, t)\frac{\mathrm{d}x}{\mathrm{d}t} + f_y(t^2, t)\frac{\mathrm{d}y}{\mathrm{d}t}|_{t=0} = 0$$

12.3 中值定理和 Taylor 公式

定理 12.3.1 (中值定理)

对于凸区域 $\Omega \subset \mathbb{R}^2$ 上可微函数 f(x,y),成立对于任意 (x_0,y_0) 与 $(x_0+\Delta x,y_0+\Delta y)$,存在 $0<\theta<1$,使得成立

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f_x(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + f_y(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y$$

定理 12.3.2 (Taylor 公式)

如果函数 f(x,y) 在 (x_0,y_0) 的邻域内存在 n+1 阶连续偏导数,那么对于其邻域内任意一点 $(x_0+\Delta x,y_0+\Delta y)$,成立

$$f(x_0 + \Delta x, y_0 + \Delta y) = \sum_{k=1}^n \frac{1}{n!} (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y})^n f(x_0, y_0)$$

$$+ \frac{1}{(n+1)!} (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y})^{n+1} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y), \qquad 0 < \theta < 1$$

12.4 隐函数存在定理

定理 12.4.1 (一元隐函数存在定理)

如果二元函数 F(x,y) 成立:

- 1. $F(x_0, y_0) = 0$
- 2. 在 (x_0, y_0) 的邻域内连续且连续可偏导。
- 3. $F_y(x_0, y_0) \neq 0$

那么在 (x_0, y_0) 的邻域内可以由函数方程

$$F(x,y) = 0$$

唯一确定隐函数

$$y = f(x), \qquad x \in B_r(x_0)$$

且成立:

- 1. F(x, f(x)) = 0
- 2. $y_0 = f(x_0)$
- 3. f(x) 在 $B_r(x_0)$ 上连续。
- 4. f(x) 在 $B_r(x_0)$ 上连续可导,且

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x(x,y)}{F_y(x,y)}$$

12.5 无条件极值

定理 12.5.1 (Fermat 引理)

对于区域 $\Omega \subset \mathbb{R}^2$ 上的二元函数 f(x,y), 如果 (x_0,y_0) 为 f(x,y) 的极值点,且 f(x,y) 在 (x_0,y_0) 处可偏导,那么

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$

定理 12.5.2

对于区域 $\Omega \subset \mathbb{R}^2$ 上的二元函数 f(x,y), 如果 f(x,y) 在 (x_0,y_0) 邻域内存在二阶连续偏导数,且

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$

并记

$$H = \begin{pmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{pmatrix}$$

那么

- 1. 若 H 为正定矩阵,则 (x_0,y_0) 为极小值点。
- 2. 若 H 为负定矩阵,则 (x_0,y_0) 为极大值点。
- 3. 否则, (x_0, y_0) 不为极值点。

 \Diamond

12.6 条件极值

定理 12.6.1 (Lagrange 乘数法)

求目标函数 f(x,y,z) 在约束条件

$$\begin{cases} A(x, y, z) = 0 \\ B(x, y, z) = 0 \end{cases}$$

下的极值, 且 f, A, B 具有连续偏导数, 且 Jacobi 矩阵

$$J = \begin{pmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \end{pmatrix}$$

在满足约束条件的点处是满秩的。构造 Lagrange 函数

$$L(x, y, z, \lambda, \mu) = f(x, y, z) - \lambda A(x, y, z) - \mu B(x, y, z)$$

那么条件极值点就在方程组

$$\begin{cases} L_x = f_x - \lambda A_x - \mu A_x = 0 \\ L_y = f_y - \lambda A_y - \mu A_y = 0 \\ L_z = f_z - \lambda A_z - \mu A_z = 0 \\ L_\lambda = -A(x, y, z) = 0 \\ L_\mu = -B(x, y, z) = 0 \end{cases}$$

的解空间内。

(

第十三章 重积分

13.1 有界闭区域上的重积分

定义 13.1.1 (二重积分)

对于零边界闭区域 $\Omega \subset \mathbb{R}^2$, 函数 z = f(x,y) 在 Ω 上有界。作划分

$$\Delta: \Delta\Omega_1, \cdots, \Delta\Omega_n$$

记

$$|\Delta| = \max_{1 \le k \le n} \sup_{x, y \in \Omega_k} |x - y|$$

且 $\Delta \sigma_k$ 为 $\Delta \Omega_k$ 的面积。在每个 Ω_k 上任取一点 (ξ_k, η_k) ,若当 $|\Delta| \to 0$ 时,和式

$$\sum_{k=1}^{n} f(\xi_k, \eta_k) \Delta \sigma_k$$

存在极限,且与区域的划分与点 (ξ_k,η_k) 的取法无关,则称 f(x,y) 在 Ω 上可积,并称次极限为 f(x,y) 在 Ω 上的二重积分,记为

$$\iint\limits_{\Omega} f(x,y) d\sigma = \lim_{|\Delta| \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k) \Delta \sigma_k$$

定义 13.1.2

$$d\sigma = dxdy$$
, $dV = dxdydz$

13.2 重积分的性质与计算

命题 13.2.1 (重积分的性质)

1. 线性性:

$$\int_{\Omega} \lambda f + \mu g = \lambda \int_{\Omega} f + \mu \int_{\Omega} g$$

2. 区域可加性:

$$\int_{\Omega}f=\int_{\Omega_1}f+\int_{\Omega_2}f$$

$$\int_{\Omega}f\leq\int_{\Omega}g$$

4. 绝对可积性, 可积则绝对可积, 且

$$\left| \int_{\Omega} f \right| \leq \int_{\Omega} |f|$$

- 6. 积分中值定理: 如果 f,g 在 Ω 上可积,且 g 在 Ω 上不变号,那么存在 $\mu \in [m,M]$,使得成立

$$\int_{\Omega} fg = \mu \int_{\Omega} g$$

其中m, M分别为f在 Ω 上的上下确界。

 \Diamond

定理 13.2.1 (累次积分)

如果二元函数 f(x,y) 在 $\Omega = [a,b] \times [c,d]$ 上可积, 且对于任意 $x \in [a,b]$ 存在积分

$$\int_{c}^{d} f(x, y) \mathrm{d}y$$

那么

$$\iint\limits_{\Omega} f(x,y) dxdy = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy$$

13.3 重积分的变量代换

定理 13.3.1 (二重积分变量代换公式)

设U为u-v平面上的开集,V为x-y平面上的开集,映射

$$T: \qquad x = x(u, v), \qquad y = (u, v)$$

为 U 到 V 的双射。进一步假设 x=x(u,v) 与 y=y(u,v) 连续可偏导,且 $\frac{\partial(x,y)}{\partial(u,v)}\neq 0$,那么对于边界分段光滑闭区域 $\Omega\subset U$,如果二元函数 f(x,y) 在 $T(\Omega)$ 上连续,那么

$$\iint\limits_{T(\Omega)} f(x,y) \mathrm{d}x \mathrm{d}y = \iint\limits_{\Omega} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \mathrm{d}u \mathrm{d}v$$

命题 13.3.1 (经典变量代换)

1. 极坐标变换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \quad \theta \in [0, 2\pi], \rho \in [0, +\infty), \quad \frac{\partial(x, y)}{\partial(\rho, \theta)} = \rho$$

2. 广义极坐标变换:

$$\begin{cases} x = a\rho\cos\theta \\ y = b\rho\sin\theta \end{cases} \qquad \theta \in [0, 2\pi], \rho \in [0, +\infty), \qquad \frac{\partial(x, y)}{\partial(\rho, \theta)} = ab\rho$$

3. 柱面坐标变换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \quad \theta \in [0, 2\pi], \rho \in [0, +\infty), h \in \mathbb{R}, \quad \frac{\partial(x, y, z)}{\partial(\rho, \theta, h)} = \rho$$

$$z = h$$

4. 广义柱面坐标变换:

$$\begin{cases} x = a\rho\cos\theta \\ y = b\rho\sin\theta & \theta \in [0, 2\pi], \rho \in [0, +\infty), h \in \mathbb{R}, \qquad \frac{\partial(x, y, z)}{\partial(\rho, \theta, h)} = abc\rho \\ z = ch \end{cases}$$

5. 球面坐标变换:

$$\begin{cases} x = \rho \sin \varphi \cos \theta \\ y = \rho \sin \varphi \sin \theta \end{cases} \qquad \rho \in [0, +\infty), \theta \in [0, 2\pi], \varphi \in [0, \pi], \qquad \frac{\partial(x, y, z)}{\partial(\rho, \varphi, \theta)} = \rho^2 \sin \varphi$$
$$z = \rho \cos \varphi$$

6. 广义球面坐标变换:

$$\begin{cases} x = a\rho \sin \varphi \cos \theta \\ y = b\rho \sin \varphi \sin \theta \end{cases} \qquad \rho \in [0, +\infty), \theta \in [0, 2\pi], \varphi \in [0, \pi], \qquad \frac{\partial(x, y, z)}{\partial(\rho, \varphi, \theta)} = abc\rho^2 \sin \varphi \end{cases}$$

$$z = c\rho \cos \varphi$$

13.4 反常重积分

定理 13.4.1

如果 $\Omega \subset \mathbb{R}^2$ 为边界分段光滑的无界区域。那么

定理 13.4.2 (Cauchy 判别法)

1. 如果存在 M>0 与 p>2,使得在区域 Ω 上成立 $|f(x,y)|\leq \dfrac{M}{(x^2+y^2)^{p/2}}$,那么反常重积分 $\iint\limits_{\Omega}f(x,y)\mathrm{d}x\mathrm{d}y$ 收敛。

$$\Omega$$
 2. 如果存在 $M>0$ 与 $p\leq 2$,使得在区域 Ω 上成立 $|f(x,y)|\geq \frac{M}{(x^2+y^2)^{p/2}}$,那么反常重积分
$$\iint\limits_{\Omega}f(x,y)\mathrm{d}x\mathrm{d}y$$
 发散。

13.5 外微分形式

13.5.1 Grassmann 代数

设V为 \mathbb{R} 上的n维向量空间,其基为 e_1, \dots, e_n ,形式的作如下元素

$$egin{align} oldsymbol{e}_i, & 1 \leq i \leq n \ oldsymbol{e}_i \wedge oldsymbol{e}_j, & 1 \leq i < j \leq n \ oldsymbol{e}_i \wedge oldsymbol{e}_j \wedge oldsymbol{e}_k, & 1 \leq i < j < k \leq n \ \dots \ oldsymbol{e}_1 \wedge oldsymbol{e}_2 \wedge \dots \wedge oldsymbol{e}_n \ \end{pmatrix}$$

连同 ℝ中的单位元 1,共有

$$1 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$$

个元素。用此 2^n 个元素作基,作 \mathbb{R}^n 上的 2^n 维向量空间 G(V)。其中以 C_n^p 个元素

$$e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_p}, \qquad 1 \leq i_1 < i_2 < \cdots < i_p \leq n$$

为基的 \mathbb{R} 上的向量空间记为 V^p ,这是 G(V) 的子空间,其中的元素称为 G(V) 的 p 次齐次元素,可表示为

$$\sum_{1 \leq i_1 < i_2 < \dots < i_p \leq n} a_{i_1, \dots, i_p} e_{i_1} \wedge e_{i_2} \wedge \dots \wedge e_{i_p}, \qquad a_{i_1, \dots, i_p} \in \mathbb{R}$$

为方便起见,将 \mathbb{R} 记作 V^0 ,将 V 记作 V^1 ,于是 G(V) 中的任意元素 w 可唯一表示为

$$\boldsymbol{w} = \boldsymbol{w}_0 + \boldsymbol{w}_1 + \dots + \boldsymbol{w}_n, \qquad \boldsymbol{w}_k \in V^p, 1 \le k \le n$$

于是

$$G(V) = V^0 \oplus V^1 \oplus \cdots \oplus V^n$$

注意到

 $V^n \cong \mathbb{R}$

定义 13.5.1 (Grassmann 代数)

定义 G(V) 上的外乘 \land , 使得满足

$$egin{aligned} oldsymbol{e}_i & oldsymbol{e}_i \wedge oldsymbol{e}_j = -oldsymbol{e}_j \wedge oldsymbol{e}_i \ & (oldsymbol{e}_{i_1} \wedge \dots \wedge oldsymbol{e}_{i_p}) \wedge (oldsymbol{e}_{j_1} \wedge \dots \wedge oldsymbol{e}_{j_q}) = oldsymbol{e}_{i_1} \wedge \dots \wedge oldsymbol{e}_{i_p} \wedge oldsymbol{e}_{j_1} \wedge \dots \wedge oldsymbol{e}_{j_q} \ & (oldsymbol{x} \wedge oldsymbol{y}) \wedge oldsymbol{z} = oldsymbol{x} \wedge (oldsymbol{y} \wedge oldsymbol{z}) \\ & (\lambda oldsymbol{x}) \wedge oldsymbol{y} = \lambda (oldsymbol{x} \wedge oldsymbol{y}) \\ & (\lambda oldsymbol{x}) \wedge oldsymbol{y} = \lambda (oldsymbol{x} \wedge oldsymbol{y}) \\ & (\lambda oldsymbol{x}) \wedge oldsymbol{y} = \lambda (oldsymbol{x} \wedge oldsymbol{y}) \\ & (\lambda oldsymbol{x}) \wedge oldsymbol{y} = \lambda (oldsymbol{x} \wedge oldsymbol{y}) \\ & (\lambda oldsymbol{x}) \wedge oldsymbol{y} = \lambda (oldsymbol{x} \wedge oldsymbol{y}) \\ & (\lambda oldsymbol{x}) \otimes oldsymbol{x} \wedge oldsymbol{y} \otimes oldsymbol{x} \otimes oldsymbol{y} \otimes oldsymbol{y} \otimes oldsymbol{x} \otimes oldsymbol{y} \otimes oldsymbol{x} \otimes oldsymbol{y} \otimes oldsymbol{y} \otimes oldsymbol{x} \otimes oldsymbol{y} \otimes oldsymbol{y} \otimes oldsymbol{x} \otimes oldsymbol{y} \otimes oldsymbol{y}$$

定理 13.5.1

1. 对于任意 $x \in V^1$, 成立

$$x \wedge x = 0$$

2. 对于 $x \in V^p$ 与 $x \in V^q$,成立

$$\boldsymbol{x} \wedge \boldsymbol{y} = (-1)^{pq} \boldsymbol{y} \wedge \boldsymbol{x}$$

3. 对于 $x_1, \dots, x_m \in V^1$, 将其表示为

$$\begin{pmatrix} \boldsymbol{x}_1 \\ \vdots \\ \boldsymbol{x}_m \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \boldsymbol{e}_1 \\ \vdots \\ \boldsymbol{e}_n \end{pmatrix}$$

那么

$$egin{aligned} oldsymbol{x}_1 \wedge \dots \wedge oldsymbol{x}_m = \sum_{1 \leq i_1 < \dots < i_m \leq n} \begin{vmatrix} a_{1,i_1} & \dots & a_{1,i_m} \\ \vdots & \ddots & \vdots \\ a_{m,i_1} & \dots & a_{m,i_m} \end{vmatrix} oldsymbol{e}_{i_1} \wedge \dots \wedge oldsymbol{e}_{i_m} \end{aligned}$$

13.5.2 外微分形式

在上一小节中,如果把向量空间 V 的系数域 $\mathbb R$ 换成交换环 K,那么 V 称为环 K 上的**模**。类似于上一小节,从环 K 的模 V 可作模 G(V),且可类似引入外乘。

设 K 为开集 $U \subset \mathbb{R}^n$ 上全体 C^{∞} -函数所构成的环,再设 \mathbb{R}^n 中坐标为 (x^1, \dots, x^n) ,系数为 U 上的 C^{∞} -函数环,以 $(\mathrm{d} x^1, \dots, \mathrm{d} x^n)$ 为基的模为 V,然后作 K 上的模

$$G(V) = V^0 \oplus \cdots \oplus V^n$$

其中

$$V^0 = K \cong V^n, \qquad V^1 = V$$

 V^p 中元素可表示为

$$\omega_p = \sum_{1 \le i_1 < \dots < i_p} a_{i_1, \dots, i_p}(x^1, \dots, x^n) dx^{i_1} \wedge \dots \wedge dx^{i_p}$$

其中 $1 \le p \le n$, 称之为 U 上的 p 次外形式。特别的, $V^1 = V$ 中的元素可表示为

$$\omega_1 = \sum_{i=1}^n a_i(x^1, \cdots, x^n) \mathrm{d}x^i$$

称之为U上的1次外形式,又称为Pfaff形式。

每一个 Pfaff 形式

$$\omega_1 = \sum_{i=1}^n a_i dx^i = a_1 dx^1 + \dots + a_n dx^n$$

对应向量 $\mathbf{a} = (a_1, \dots, a_n)$ 。称一组 Pfaff 形式为**线性无关的**,如果其对应的向量在 U 中每一点均为线性无关的。 **例题 13.1** 对于 n = 1,如果 \mathbb{R} 中的坐标为 x,那么

- 1. 0 次形式为 $\omega_0 = f(x)$ 。
- 2. 1 次形式为 $\omega_1 = \varphi(x) dx$ 。

例题 13.2 对于 n = 2, 如果 \mathbb{R}^2 中的坐标为 (x, y), 那么

- 1. 0 次形式为 $\omega_0 = f(x, y)$ 。
- 2. 1次形式为 $\omega_1 = P(x,y)dx + Q(x,y)dy$ 。
- 3. 2次形式为 $\omega_2 = \varphi(x, y) dx \wedge dy$ 。

例题 13.3 对于 n = 3, 如果 \mathbb{R}^3 中的坐标为 (x, y, z), 那么

- 1. 0 次形式为 $\omega_0 = f(x, y, z)$ 。
- 2. 1 次形式为 $\omega_1 = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$ 。
- 3. 2 次形式为 $\omega_2 = P(x, y, z) dy \wedge dz + Q(x, y, z) dz \wedge dx + R(x, y, z) dx \wedge dy$ 。
- 4. 3 次形式为 $\omega_3 = \varphi(x, y) dx \wedge dy \wedge dz$ 。

在外形式模 G(V) 中引入微分运算,称为**外微分**,称模 G(V) 的元素为 U 上的**外微分形式**, V^p 的元素称为 p 次外微分形式,简称为 p-形式。

定义 13.5.2 (外微分)

外微分为映射

$$\mathbf{d}: V^p \to V^{p+1}$$

对于 $\omega_p \in V^p$

$$\omega_p = \sum_{1 \le i_1 < \dots < i_p} a_{i_1, \dots, i_p}(x^1, \dots, x^n) dx^{i_1} \wedge \dots \wedge dx^{i_p}$$

定义

$$d\omega_p = \sum_{1 \le i_1 < \dots < i_p} da_{i_1, \dots, i_p} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}$$
$$= \sum_{1 \le i_1 < \dots < i_p} \sum_{i=1}^n \frac{\partial a_{i_1, \dots, i_p}}{\partial x^i} dx^i \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}$$

延拓为映射

$$d: G(V) \to G(V)$$

对于 $\omega \in G(V)$

$$\omega = \omega_0 + \dots + \omega_n, \qquad \omega_p \in V^p, 0 \le p \le n$$

定义

$$d\omega = d\omega_0 + \dots + d\omega_n$$

例题 13.4 对于 n=1, 如果 \mathbb{R} 中的坐标为 x, 那么

1. 0 次形式 $\omega_0 = f(x)$ 的外微分为

$$d\omega_0 = f'(x)dx$$

2. 1 次形式 $\omega_1 = \varphi(x) dx$ 的外微分为

$$d\omega_1 = \varphi'(x)dx \wedge dx = 0$$

例题 13.5 对于 n=2, 如果 \mathbb{R}^2 中的坐标为 (x,y), 那么

1. 0 次形式 $\omega_0 = f(x,y)$ 的外微分为

$$d\omega_0 = f_x dx + f_y dy$$

2. 1次形式 $\omega_1 = P(x,y)dx + Q(x,y)dy$ 的外微分为

$$d\omega_1 = (P_x dx + P_y dy) \wedge dx + (Q_x dx + Q_y dy) \wedge dy = (Q_x - P_y) dx \wedge y$$

3. 2 次形式 $\omega_2 = \varphi(x,y) dx \wedge dy$ 的外微分为

$$d\omega_2 = (\varphi_x dx + \varphi_y dy) \wedge dx \wedge dy = 0$$

例题 13.6 对于 n = 3, 如果 \mathbb{R}^3 中的坐标为 (x, y, z), 那么

1. 0 次形式 $\omega_0 = f(x, y, z)$ 的外微分为

$$d\omega_0 = f_x dx + f_y dy + f_z dz$$

2. 1 次形式 $\omega_1 = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$ 的外微分为

$$d\omega_1 = (P_x dx + P_y dy + P_z dz) \wedge x + (Q_x dx + Q_y dy + Q_z dz) \wedge y + (R_x dx + R_y dy + R_z dz) \wedge z$$
$$= (R_y - Q_z) dy \wedge dz + (P_z - R_x) dz \wedge dx + (Q_x - P_y) dx \wedge dy$$

3. 2 次形式 $\omega_2 = P(x, y, z) dy \wedge dz + Q(x, y, z) dz \wedge dx + R(x, y, z) dx \wedge dy$ 的外微分为

$$d\omega_2 = (P_x dx + P_y dy + P_z dz) dy \wedge dz + (Q_x dx + Q_y dy + Q_z dz) dz \wedge dx + (R_x dx + R_y dy + R_z dz) dx \wedge dy$$
$$= (P_x + Q_y + R_z) dx \wedge dy \wedge dz$$

4. 3 次形式 $\omega_3 = \varphi(x,y) dx \wedge dy \wedge dz$ 的外微分为

$$d\omega_3 = (\varphi_x dx + \varphi_y dy + \varphi_z dz) \wedge dx \wedge dy \wedge dz = 0$$

定理 13.5.2 (Stokes 公式)

对于 p 维区域 $\Omega \subset \mathbb{R}^n$, $\partial \Omega$ 存在诱导定向, 如果 ω 为 Ω 上的 (p-1)-形式, 那么

$$\int_{\partial\Omega}\omega=\int_{\Omega}\mathrm{d}\omega$$

 \sim

第十四章 曲线积分与曲面积分

14.1 第一类曲线积分与第一类曲面积分

14.1.1 第一类曲线积分

奎记 第一类曲线积分的物理意义: 求曲线质量。

定义 14.1.1 (第一类曲线微分)

对于光滑曲线 r, 定义第一类曲线微分为

$$ds = \sqrt{\mathbf{r}' \cdot \mathbf{r}'} dt = \sqrt{(x')^2 + (y')^2 + (z')^2} dt$$

定理 14.1.1 (第一类曲线积分)

对于光滑曲线

$$L: \begin{cases} x = x(t) \\ y = y(t) & a \le t \le b \\ z = z(t) \end{cases}$$

定义连续函数 $f: \mathbb{R}^3 \to \mathbb{R}$ 在 L 上的第一类曲线积分为

$$\int_{L} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{(x')^{2} + (y')^{2} + (z')^{2}} dt$$

推论 14.1.1

对干光滑曲线

$$L: \qquad \begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases} \quad a \le x \le b$$

连续函数 $f: \mathbb{R}^3 \to \mathbb{R}$ 在 L 上的第一类曲线积分为

$$\int_L f(x,y,z) \mathrm{d}s = \int_a^b \frac{f(x,y,z)}{\frac{\partial (F,G)}{\partial (y,z)}} \sqrt{\left(\frac{\partial (F,G)}{\partial (x,y)}\right)^2 + \left(\frac{\partial (F,G)}{\partial (y,z)}\right)^2 + \left(\frac{\partial (F,G)}{\partial (z,x)}\right)^2} \mathrm{d}x$$

14.1.2 第一类曲面积分

室记第一类曲面积分的物理意义:求曲面质量。

定义 14.1.2 (第一类基本量)

定义光滑曲面 r 的第一类基本量为

$$E = \mathbf{r}_u \cdot \mathbf{r}_u = x_u^2 + y_u^2 + z_u^2$$

$$F = \mathbf{r}_u \cdot \mathbf{r}_v = x_u x_v + y_u y_v + z_u z_v$$

$$G = \mathbf{r}_v \cdot \mathbf{r}_v = x_v^2 + y_v^2 + z_v^2$$

*

定义 14.1.3 (第一类曲面微分)

对于光滑曲面r,定义第一类曲面微分为

$$dS = \sqrt{EG - F^2} du dv$$

定理 14.1.2 (第一类曲面积分)

对于光滑曲面

$$\Sigma: \begin{cases} x = x(u, v) \\ y = y(u, v) & (u, v) \in D \\ z = z(u, v) \end{cases}$$

定义连续函数 $f: \mathbb{R}^3 \to \mathbb{R}$ 在 Σ 上的第一类曲面积分为

$$\iint\limits_{\Sigma} f(x,y,z) \mathrm{d}S = \iint\limits_{D} f(x(u,v),y(u,v),z(u,v)) \sqrt{EG-F^2} \mathrm{d}u \mathrm{d}v$$

推论 14.1.2 (第一类曲面积分)

对于光滑曲面

$$\Sigma: \qquad z=z(x,y), \qquad (x,y)\in D$$

连续函数 $f: \mathbb{R}^3 \to \mathbb{R}$ 在 Σ 上的第一类曲面积分为

$$\iint\limits_{\Sigma} f(x,y,z) \mathrm{d}S = \iint\limits_{D} f(x,y,z(x,y)) \sqrt{1 + z_x^2(x,y) + z_y^2(x,y)} \mathrm{d}x \mathrm{d}y$$

14.2 第二类曲线积分与第二类曲面积分

14.2.1 第二类曲线积分

Ŷ 笔记 第二类曲线积分的物理意义:求沿曲线做功。

定义 14.2.1 (第二类曲线微分)

对于光滑曲线r,单位切向量为

$$au = rac{m{r}'}{|m{r}'|} = rac{(x', y', z')}{\sqrt{(x')^2 + (y')^2 + (z')^2}}$$

定义第二类曲线微分为

$$ds = \tau ds = (x', y', z')dt = (dx, dy, dz)$$

定理 14.2.1 (第二类曲线积分)

对于光滑曲线

$$L: \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}, a \le t \le b$$

定义连续函数
$$\mathbf{F} = (P,Q,R): \mathbb{R}^3 \to \mathbb{R}^3$$
 在 L 上的第二类曲线积分为
$$\int_L \mathbf{F} \cdot \mathrm{d}\mathbf{s}$$

$$= \int_L P(x,y,z) \mathrm{d}x + Q(x,y,z) \mathrm{d}y + R(x,y,z) \mathrm{d}z$$

$$= \int_a^b \left(P(x(t),y(t),z(t)) x'(t) + Q(x(t),y(t),z(t)) y'(t) + R(x(t),y(t),z(t)) z'(t) \right) \mathrm{d}t$$

14.2.2 第二类曲面积分

Ŷ 笔记 第二类曲面积分的物理意义:求通过曲面的流量。

定义 14.2.2 (第二类曲面微分)

对于光滑曲面r. 单位法向量为

$$m{n} = rac{m{r}_u imes m{r}_v}{|m{r}_u imes m{r}_v|} = rac{\left(rac{\partial(y,z)}{\partial(u,v)}, rac{\partial(z,x)}{\partial(u,v)}, rac{\partial(x,y)}{\partial(u,v)}
ight)}{\sqrt{EG - F^2}}$$

定义第二类曲面微分为

$$\mathrm{d}\boldsymbol{S} = \boldsymbol{n}\mathrm{d}\boldsymbol{S} = \left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v)}\right)\mathrm{d}u\mathrm{d}v = (\mathrm{d}y\mathrm{d}z, \mathrm{d}z\mathrm{d}x, \mathrm{d}x\mathrm{d}y)$$

定理 14.2.2 (第二类曲面积分)

对于光滑曲面

$$\Sigma: \begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases}, (u, v) \in D$$

定义连续函数 $F=(P,Q,R):\mathbb{R}^3\to\mathbb{R}^3$ 在 Σ 上的第二类曲面积分为 $\iint\limits_{\Sigma}\mathbf{F}\cdot\mathrm{d}\mathbf{S}$ $=\iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z+Q(x,y,z)\mathrm{d}z\mathrm{d}x+R(x,y,z)\mathrm{d}x\mathrm{d}y$

$$= \iint\limits_{D} \left(P(x(u,v),y(u,v),z(u,v)) \frac{\partial(y,z)}{\partial(u,v)} + Q(x(u,v),y(u,v),z(u,v)) \frac{\partial(z,x)}{\partial(u,v)} + R(x(u,v),y(u,v),z(u,v)) \frac{\partial(x,y)}{\partial(u,v)} \right) \mathrm{d}u \mathrm{d}v$$

14.3 Green 公式、Gauss 公式与 Stokes 公式

14.3.1 Grenn 公式

定义 14.3.1 (简单闭曲线)

称曲线

$$r(t) = (x(t), y(t), z(t)), \qquad a \le t \le b$$

为简单闭曲线,如果 r(a) = r = (b),且对于任意 $t, s \in (a, b)$,成立

$$r(t) = r(s) \implies t = s$$

定义 14.3.2 (单连通区域)

称一个区域为单连通区域,如果其中任何一条封闭曲线所围成的点集仍属于该区域。

a.

定理 14.3.1 (Green 公式)

对于光滑或分段光滑的简单闭曲线所围的单连通闭区域 $D\subset\mathbb{R}^2$ 。如果函数 P(x,y) 与 Q(x,y) 在 D 上连续可偏导,那么

$$\int_{\partial D} P dx + Q dy = \iint_{D} (Q_x - P_y) dx dy$$

 \Diamond

定理 14.3.2 (Green 定理)

对于单连通区域 $D\subset\mathbb{R}^2$, 如果函数 P(x,y) 与 Q(x,y) 在 D 上连续可偏导, 那么如下命题等价。

1. 对于 D 内任意光滑或分段光滑闭曲线 L, 成立

$$\int_{L} P \mathrm{d}x + Q \mathrm{d}y = 0$$

- 2. 曲线积分 $\int_{L} P dx + Q dy$ 与路径无关。
- 3. Pdx + Qdy 在 D 上存在原函数。
- 4. 在D内成立 $P_y = Q_x$ 。

 \Diamond

14.3.2 Gauss 公式

定义 14.3.3 (二维单连通区域)

空间中称一个区域为二维单连通区域,如果其中任何一张封闭曲面所围成的点集仍属于该区域

定理 14.3.3 (Gauss 公式)

对于由光滑或分片光滑的封闭曲面所围成的二维单连通闭区域 $\Omega\subset\mathbb{R}^3$,如果 P(x,y,z),Q(x,y,z) 与 R(x,y,z) 在 Ω 上连续可偏导,那么

$$\iint\limits_{\partial\Omega}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y=\iiint\limits_{\Omega}\left(P_{x}+Q_{y}+R_{z}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z$$

~

14.3.3 Stokes 公式

定理 14.3.4 (Stokes 公式)

对于由分段光滑曲线围称的光滑曲面 Σ ,如果 P(x,y,z),Q(x,y,z) 与 R(x,y,z) 在 Ω 上连续可偏导,那么

$$\int_{\partial \Sigma} P dx + Q dy + R dz = \iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

C

14.4 场论

定义 14.4.1 (场)

 Λ (Ω, \mathbf{r}) 为场,如果 $\Omega \subset \mathbb{R}^3$ 为区域, $\mathbf{r}: \Omega \to \mathbb{R}^3$ 为映射。

14.4.1 梯度

定义 14.4.2 (梯度)

对于区域 $\Omega \subset \mathbb{R}^3$, 定义连续可偏导函数 $f:\Omega \to \mathbb{R}$ 的梯度为

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

定义 14.4.3 (方向导数)

区域 $\Omega \subset \mathbb{R}^3$ 上的连续可偏导函数 f 关于方向 v 的方向导数为

$$\frac{\partial f}{\partial \boldsymbol{v}} = \nabla f \cdot \boldsymbol{v}$$

定理 14.4.1

沿 ∇f , 函数值增加最快; 沿 $-\nabla f$, 函数值减少最快。

14.4.2 通量与散度

定义 14.4.4 (通量)

对于区域 $\Omega \subset \mathbb{R}^3$,定义连续可偏导函数 $\mathbf{F} = (P,Q,R): \Omega \to \mathbb{R}^3$ 通过定向曲面 Σ 的通量为

$$\iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S} = \iint_{\Sigma} P(x, y, z) dy dz + Q(x, y, z) dz x + R(x, y, z) dx dy$$

定义 14.4.5 (散度)

对于区域 $\Omega \subset \mathbb{R}^3$, 定义连续可偏导函数 $\mathbf{F} = (P,Q,R): \Omega \to \mathbb{R}^3$ 的散度为

$$\nabla \cdot \boldsymbol{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

14.4.3 环量与旋度

定义 14.4.6 (环量)

对于区域 $\Omega \subset \mathbb{R}^3$, 定义连续可偏导函数 $\mathbf{F} = (P, Q, R) : \Omega \to \mathbb{R}^3$ 通过定向曲线 L 的环量为

$$\int_{L} \mathbf{F} \cdot d\mathbf{s} = \int_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

定义 14.4.7 (旋度)

对于区域 $\Omega \subset \mathbb{R}^3$, 定义连续可偏导函数 $\mathbf{F} = (P, Q, R) : \Omega \to \mathbb{R}^3$ 的旋度为

$$\nabla \times \boldsymbol{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

14.4.4 Hamilton 算子

定义 14.4.8 (Hamilton 算子)

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

定义 14.4.9 (Laplace 算子)

$$\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

定理 14.4.2 (Green 第一公式)

$$\iiint_{\Omega} (\nabla f \cdot \nabla g + f \nabla \cdot \nabla g) dV = \iint_{\partial \Omega} f \frac{\nabla g \cdot \nabla g}{|\nabla g|} dS$$

定理 14.4.3 (Green 第二公式)

$$\iiint_{\Omega} (f\Delta g - g\Delta f) dV = \iint_{\partial\Omega} \left(f \frac{\nabla g \cdot \nabla g}{|\nabla g|} - g \frac{\nabla f \cdot \nabla f}{|\nabla f|} \right) dS$$

定理 14.4.4 (Gauss 公式)

$$\iiint\limits_{\Omega} \nabla \cdot \boldsymbol{F} dV = \iint\limits_{\partial \Omega} \boldsymbol{F} \cdot d\boldsymbol{S}$$

定理 14.4.5 (Stokes 公式)

$$\iint\limits_{\Sigma} \nabla \times \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S} = \int_{\partial \Sigma} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{s}$$

定理 14.4.6 (分部积分公式)

$$\iiint_{\Omega} f \nabla \cdot \boldsymbol{v} dV = \iint_{\partial \Omega} f \boldsymbol{v} \cdot d\boldsymbol{S} - \iiint_{\Omega} \nabla f \cdot \boldsymbol{v} dV$$

 \Diamond

第十五章 含参变量积分

15.1 含参变量常义积分

定义 15.1.1 (含参变量常义积分)

对于 $[a,b] \times [c,d]$ 上的连续函数 f(x,y), 定义含参变量常义积为

$$I(y) = \int_{a}^{b} f(x, y) dx, \qquad c \le y \le d$$

命题 15.1.1 (含参变量常义积分的性质)

1. 连续性定理: 如果 f(x,y) 为 $[a,b] \times [c,d]$ 上的连续函数, 那么

$$I(y) = \int_{a}^{b} f(x, y) dx, \qquad c \le y \le d$$

为 [c,d] 上的连续函数。

2. 积分次序交换定理: 如果 f(x,y) 为 $[a,b] \times [c,d]$ 上的连续函数, 那么

$$\int_{c}^{d} \mathrm{d}y \int_{a}^{b} f(x, y) \mathrm{d}x = \int_{a}^{b} \mathrm{d}x \int_{c}^{d} f(x, y) \mathrm{d}y$$

3. 如果 f(x,y) 与 $f_y(x,y)$ 为 $[a,b] \times [c,d]$ 上的连续函数,那么

$$I(y) = \int_{a}^{b} f(x, y) dx, \qquad c \le y \le d$$

在 [c,d] 上可导,且

$$\frac{\mathrm{d}I(y)}{\mathrm{d}y} = \int_{a}^{b} f_{y}(x, y) \mathrm{d}x$$

15.2 含参变量反常积分

15.2.1 含参变量反常积分定义

定义 15.2.1 (一致收敛)

1. 无穷区间上的含参变量反常积分:设定义在 $[a,+\infty) imes[c,d]$ 上的二元函数 f(x,y) 满足对于任意 $y \in [c,d]$,反常积分 $\int_a^{+\infty} f(x,y) dx$ 存在。若对于任意给定的 $\varepsilon > 0$,存在仅与 ε 有关的 $A_0 > a$,使得当 $A > A_0$ 时,对任意 $y \in [c,d]$,成立

$$\left| \int_{A}^{+\infty} f(x, y) \mathrm{d}x \right| < \varepsilon$$

则称积分 $\int_a^{+\infty} f(x,y) \mathrm{d}x$ 关于 $y \in [c,d]$ 为一致收敛。 2. 无界函数的含参变量反常积分:设定义在 $[a,b] \times [c,d]$ 上的二元函数 f(x,y) 满足对于任意 $y \in [c,d]$, 以 b 为奇点的反常积分 $\int_{a}^{b} f(x,y) dx$ 存在。若对于任意给定的 $\varepsilon > 0$,存在仅与 ε 有关的 δ ,使得当 $0 < \xi < \delta$ 时,对任意 $y \in [c,d]$,成立

$$\left| \int_{b-\xi}^{b} f(x,y) \mathrm{d}x \right| < \varepsilon$$

则称积分 $\int_a^b f(x,y) \mathrm{d}x$ 关于 $y \in [c,d]$ 为一致收敛。

4

定理 15.2.1

以下命题等价。

1. 对于任意给定的 $\varepsilon > 0$,存在仅与 ε 有关的 $A_0 > a$,使得当 $A > A_0$ 时,对任意 $y \in [c,d]$,成立

$$\left| \int_{A}^{+\infty} f(x, y) \mathrm{d}x \right| < \varepsilon$$

2. Cauchy 收敛原理: 对于任意给定的 $\varepsilon>0$,存在仅与 ε 有关的 $A_0>a$,使得当 $A',A>A_0$ 时,对任意 $y\in [c,d]$,成立

$$\left| \int_{A}^{A'} f(x, y) \mathrm{d}x \right| < \varepsilon$$

3. 区间收敛原理:

$$\lim_{A \to +\infty} \sup_{y \in [c,d]} \left| \int_A^{+\infty} f(x,y) dx \right| = 0$$

15.2.2 含参变量反常积分判别法

定理 15.2.2 (Weierstrass 判别法)

若存在函数 F(x), 使得成立

1.

$$|f(x,y)| \le F(x), \qquad a \le x < +\infty, c \le y \le d$$

2. 反常积分 $\int_a^{+\infty} F(x) dx$ 收敛。

则含参变量反常积分 $\int_{a}^{+\infty} f(x,y) dx$ 关于 $y \in [c,d]$ 为一致收敛。

\bigcirc

定理 15.2.3 (Abel 判别法)

若函数 f(x,y) 和 g(x,y) 成立

- 1. 含参变量反常积分 $\int_{a}^{+\infty} f(x,y) dx$ 关于 $y \in [c,d]$ 为一致收敛。
- 2. g(x,y) 关于 x 单调。
- 3. g(x,y) 一致有界,即存在 L,使得对于 $a \le x < +\infty, c \le y \le d$,成立 |g(x,y)| < L

则含参变量反常积分 $\int_{a}^{+\infty} f(x,y)g(x,y)\mathrm{d}x$ 关于 $y\in[c,d]$ 为一致收敛。

定理 15.2.4 (Dirichlet 判别法)

若函数 f(x,y) 和 g(x,y) 成立

1. 含参变量积分 $\int_a^A f(x,y) dx$ 一致有界,即存在 K,使得对于 $a \le A < +\infty, c \le y \le d$,成立

$$\left| \int_{a}^{A} f(x, y) \mathrm{d}x \right| < K$$

- 2. g(x,y) 关于 x 单调。
- 3. 当 $x \to +\infty$ 时,g(x,y) 关于 $y \in [c,d]$ 一致趋于零,即对于任意给定的 $\varepsilon > 0$,存在仅与 ε 有关的

 $A_0 > a$, 使得当 $x > A_0$ 时, 对任意 $y \in [c,d]$, 成立 $|g(x,y)| < \varepsilon$ 则含参变量反常积分 $\int^{+\infty} f(x,y)g(x,y)\mathrm{d}x$ 关于 $y\in[c,d]$ 为一致收敛。

 \Diamond

定理 15.2.5 (Dini 定理)

对于 $[a,+\infty) \times [c,d]$ 上连续不变号函数 f(x,y), 如果含参变量反常积分 $\int^{+\infty} f(x,y) \mathrm{d}x$ 在 [c,d] 上连续, 那么含参变量反常积分 $\int^{+\infty} f(x,y) \mathrm{d}x$ 关于 $y \in [c,d]$ 为一致收敛。

15.2.3 含参变量反常积分性质

定理 15.2.6 (连续性定理)

对于 $[a, +\infty) \times [c, d]$ 上的二元函数 f(x, y), 如果

1. f(x,y) 在 $[a,+\infty) \times [c,d]$ 上连续。
2. 含参变量反常积分 $\int_a^{+\infty} f(x,y) \mathrm{d}x$ 关于 $y \in [c,d]$ 一致收敛。

那么含参变量反常积分 $\int_{-\infty}^{+\infty} f(x,y) dx$ 在 $y \in [c,d]$ 上连续,即对于 $y_0 \in [c,d]$,成立

$$\lim_{y \to y_0} \int_a^{+\infty} f(x, y) \mathrm{d}x = \int_a^{+\infty} \lim_{y \to y_0} f(x, y) \mathrm{d}x$$

定理 15.2.7 (积分次序交换定理)

- 1. 对于 $[a, +\infty) \times [c, d]$ 上的二元函数 f(x, y), 如果
 - (a). f(x,y) 在 $[a,+\infty) \times [c,d]$ 上连续。
 - (b). 含参变量反常积分 $\int_{-\infty}^{+\infty} f(x,y) dx$ 关于 $y \in [c,d]$ 一致收敛。

那么

$$\int_{c}^{d} dy \int_{a}^{+\infty} f(x, y) dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x, y) dy$$

- 2. 对于 $[a, +\infty) \times [b, +\infty)$ 上的二元函数 f(x, y), 如果
 - (a). f(x,y) 在 $[a,+\infty) \times [b,+\infty)$ 上连续。
 - (b). 含参变量反常积分 $\int_{-\infty}^{+\infty} f(x,y) dx$ 关于 $y \in [b,+\infty)$ 内闭一致收敛。
 - (c). 含参变量反常积分 $\int_{1}^{1+\infty} f(x,y) dy$ 关于 $x \in [a,+\infty)$ 内闭一致收敛。
 - (d). 或 $\int_{b}^{+\infty} dy \int_{a}^{+\infty} |f(x,y)| dx$ 收敛,或 $\int_{a}^{+\infty} dx \int_{b}^{+\infty} |f(x,y)| dy$ 收敛。

$$\int_{b}^{+\infty} dy \int_{a}^{+\infty} f(x, y) dx = \int_{a}^{+\infty} dx \int_{b}^{+\infty} f(x, y) dy$$

定理 15.2.8 (积分号下求导定理)

对于 $[a, +\infty) \times [c, d]$ 上的二元函数 f(x, y), 如果

- 1. f(x,y) 在 $[a,+\infty) \times [c,d]$ 上连续。
- 2. f(x,y) 在 $[a,+\infty) \times [c,d]$ 关于 y 可偏导。

- 3. $f_y(x,y)$ 在 $[a,+\infty) \times [c,d]$ 上连续。
- 4. 含参变量反常积分 $\int_{-\infty}^{+\infty} f(x,y) dx$ 关于 $y \in [c,d]$ 一致收敛。
- 5. 含参变量反常积分 $\int_a^{+\infty} f_y(x,y) \mathrm{d}x$ 关于 $y \in [c,d]$ 一致收敛。 那么含参变量反常积分 $\int_a^{+\infty} f(x,y) \mathrm{d}x$ 在 [c,d] 上可导,且

$$\frac{\mathrm{d}}{\mathrm{d}y} \int_{a}^{+\infty} f(x,y) \mathrm{d}x = \int_{a}^{+\infty} \frac{\partial}{\partial y} f(x,y) \mathrm{d}x$$

15.3 Euler 积分

15.3.1 Beta 函数

定义 15.3.1 (Beta 函数)

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx, \qquad (p,q) \in (0,+\infty) \times (0,+\infty)$$

定理 15.3.1

1. 特殊值:

$$B(1,1) = 1,$$
 $B(1/2,1/2) = \pi$

- 2. 连续性: B(p,q) 在 $(0,+\infty) \times (0,+\infty)$ 上连续。
- 3. 对称性: B(p,q) = B(q,p)
- 4. 一致收敛性: B(p,q) 在 $(0,+\infty) \times (0,+\infty)$ 中内闭一致收敛。
- 5. 连续性: B(p,q) 在 $(0,+\infty)\times(0,+\infty)$ 内连续。
- 6. 可微性: B(p,q) 在 $(0,+\infty) \times (0,+\infty)$ 内无穷阶可微。
- 7. 递推公式:

$$\begin{split} B(p,q+1) &= \frac{q}{p+q} B(p,q), \qquad (p,q) \in (0,+\infty) \times (0,+\infty) \\ B(p+1,q) &= \frac{p}{p+q} B(p,q), \qquad (p,q) \in (0,+\infty) \times (0,+\infty) \\ B(p+1,q+1) &= \frac{pq}{(p+q+1)(p+q)} B(p,q), \qquad (p,q) \in (0,+\infty) \times (0,+\infty) \\ B(m,n) &= \frac{(m-1)!(n-1)!}{(m+n-1)!}, \qquad m,n \in \mathbb{N}^* \end{split}$$

8. 代换表示:

$$B(p,q) = 2 \int_0^{2\pi} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta, \qquad (p,q) \in (0,+\infty) \times (0,+\infty)$$

$$B(p,q) = \int_0^1 \frac{x^{p-1} + x^{q-1}}{(1+x)^{p+q}} dx, \qquad (p,q) \in (0,+\infty) \times (0,+\infty)$$

9. 余元公式:

$$B(p, 1-p) = \frac{\pi}{\sin \pi p}, \qquad p \in (0, 1)$$

91

*

15.3.2 Gamma 函数

定义 15.3.2 (Gamma 函数)

$$\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx, \qquad s \in (0, +\infty)$$

定理 15.3.2

1. 特殊值:

$$\Gamma(1) = 1, \qquad \Gamma(1/2) = \sqrt{\pi}$$

- 2. 一致收敛性: $\Gamma(s)$ 在 $(0,+\infty)$ 中内闭一致收敛。
- 3. 连续性: $\Gamma(s)$ 在 $(0,+\infty)$ 内连续。
- 4. 可导性: $\Gamma(s)$ 在 $(0,+\infty)$ 内无穷阶可导, 且

$$\Gamma^{(n)}(s) = \int_0^{+\infty} x^{s-1} e^{-x} \ln^n x dx, \qquad s \in (0, +\infty)$$

5. 递推公式:

$$\begin{split} &\Gamma(s+1)=s\Gamma(s), \qquad s\in(0,+\infty)\\ &\Gamma(n+1)=n!, \qquad n\in\mathbb{N}^*\\ &\Gamma(n+1/2)=\frac{(2n-1)!!}{2^n}\sqrt{\pi}, \qquad n\in\mathbb{N}^* \end{split}$$

6. 代换表示:

$$\Gamma(s) = 2 \int_0^{+\infty} x^{2s-1} e^{-x^2} dx, \qquad s \in (0, +\infty)$$

$$\Gamma(s) = a^s \int_0^{+\infty} x^{s-1} e^{-ax} dx, \qquad s \in (0, +\infty), a \in (0, +\infty)$$

$$\Gamma(s) = \int_0^1 (-\ln x)^{s-1} dx, \qquad s \in (0, +\infty)$$

- 7. 定义域的延拓: 利用 $\Gamma(s) = \Gamma(s+1)/s$, 将其定义域延拓至 $\mathbb{R} \setminus -\mathbb{N}^*$
- 8. 余元公式:

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}, \quad s \in (0,1)$$

9. 倍元公式/Legendre 公式:

$$\Gamma(s)\Gamma(s+1/2) = \frac{\sqrt{\pi}}{2^{2s-1}}\Gamma(2s), \qquad s \in (0, +\infty)$$

10. Stirling 公式:

$$\Gamma(s+1) = \sqrt{2\pi s} \left(\frac{s}{e}\right)^s e^{\frac{\theta_s}{12s}}, \qquad \frac{s}{1+s} < \theta_s < 1, \qquad s \in (0, +\infty)$$

11. n 次三角函数的积分:

$$\int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^n x \mathrm{d}x = \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}$$

12. Dirichlet 公式:

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

13. n 维单位球的体积:

$$V_n = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2} + 1\right)}$$

第十六章 Fourier 级数

16.1 Fourier 级数展开

定理 16.1.1 (三角函数的正交性)

$$\begin{split} &\int_{-\pi}^{\pi}\cos nx\mathrm{d}x = \begin{cases} 2\pi, & n=0\\ 0, & n\in\mathbb{Z}\setminus\{0\} \end{cases} \\ &\int_{-\pi}^{\pi}\sin nx\mathrm{d}x = 0, \qquad n\in\mathbb{Z} \\ &\int_{-\pi}^{\pi}\cos mx\cos nx\mathrm{d}x = \begin{cases} 2\pi, & m=n=0\\ \pi, & m=n\mathbb{H}m, n\in\mathbb{N}^*\\ 0, & m\neq n\mathbb{H}m, n\in\mathbb{N}^* \end{cases} \\ &\int_{-\pi}^{\pi}\sin mx\sin nx\mathrm{d}x = \begin{cases} 0, & m=n=0\\ \pi, & m=n\mathbb{H}m, n\in\mathbb{N}^*\\ 0, & m\neq n\mathbb{H}m, n\in\mathbb{N}^* \end{cases} \\ &\int_{-\pi}^{\pi}\cos mx\sin nx\mathrm{d}x = 0, & m, n\in\mathbb{N} \end{cases} \end{split}$$

定理 16.1.2 (Fourier 级数)

 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

定理 16.1.3 (余弦级数)

 $[-\pi,\pi]$ 上的可积或绝对可积的偶函数 f(x) 存在余弦级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

其中

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$$

定理 16.1.4 (正弦级数)

 $[-\pi,\pi]$ 上的可积或绝对可积的奇函数 f(x) 存在正弦级数

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin nx$$

其中

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

定理 16.1.5 (一般周期的 Fourier 级数 Fourier 级数)

[-T,T] 上的可积或绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{T} x + b_n \sin \frac{n\pi}{T} x \right)$$

其中

$$a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi}{T} x dx, \qquad b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi}{T} x dx$$

定理 16.1.6 (一般区间的 Fourier 级数)

[0,a] 上的可积或绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2n\pi}{a} x + b_n \sin \frac{2n\pi}{a} x \right)$$

其中

$$a_n = \frac{2}{a} \int_0^a \left(f(x) \cos \frac{2n\pi}{a} x \right) dx$$
$$b_n = \frac{2}{a} \int_0^a \left(f(x) \sin \frac{2n\pi}{a} x \right) dx$$

定理 16.1.7 (一般区间的 Fourier 级数)

[a,b] 上的可积或绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(n \left(\frac{2\pi}{b-a} x - \frac{b+a}{b-a} \pi \right) \right) + b_n \sin \left(n \left(\frac{2\pi}{b-a} x - \frac{b+a}{b-a} \pi \right) \right) \right)$$

其中

$$a_n = \frac{2}{b-a} \int_a^b \left(f(x) \cos \left(n \left(\frac{2\pi}{b-a} x - \frac{b+a}{b-a} \pi \right) \right) \right) dx$$
$$b_n = \frac{2}{b-a} \int_a^b \left(f(x) \sin \left(n \left(\frac{2\pi}{b-a} x - \frac{b+a}{b-a} \pi \right) \right) \right) dx$$

16.2 Fourier 级数的收敛判别法

定义 16.2.1 (Hölder 条件)

对于函数 f(x) 的连续点或第一类不连续点 x_0 ,称 f(x) 在 x_0 处成立指数 α 的 Hölder 条件,如果对任意 $\varepsilon > 0$,存在 L > 0,使得对于任意 $0 < \delta < \varepsilon$,成立

$$|f(x_0 + \delta - f(x_0^+))| < L\delta^{\alpha}, \qquad |f(x_0 - \delta - f(x_0^-))| < L\delta^{\alpha}$$

定理 16.2.1 (Fourier 级数的收敛判别法)

对于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x),如果成立如下命题之一,那么 f(x) 的 Fourier 级数在 x_0 处 收敛于 $\frac{f(x_0^+)+f(x_0^-)}{2}$ 。

- 1. Dirichlet-Jordan 判别法: f(x) 在 x_0 点附近分段单调有界。
- 2. Dini-Lipschitz 判别法: f(x) 在 x_0 处成立指数 $\alpha \in (0,1]$ 的 Hölder 条件。

推论 16.2.1

对于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x),如果 f(x) 在 x_0 处存在单侧导数 $f'_+(x_0)$ 与 $f'_-(x_0)$,或更进一步,存在拟单侧导数 $\lim_{h\to 0^+} \frac{f(x_0+h)-f(x_0^+)}{h}$ 与 $\lim_{h\to 0^+} \frac{f(x_0-h)-f(x_0^-)}{h}$,那么 f(x) 的 Fourier 级数在 x_0 处收敛于 $\frac{f(x_0^+)+f(x_0^-)}{2}$ 。

16.3 Fourier 级数的性质

16.3.1 Fourier 级数的分析性质

命题 16.3.1

对于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x), 其 Fourier 系数成立

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$$

定理 16.3.1 (逐项积分定理)

对于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x), 其 Fourier 级数可逐项积分,换言之

$$\int_{-\pi}^{x} f(t)dt = \int_{-\pi}^{x} \frac{a_0}{2} dt + \sum_{n=1}^{\infty} \int_{-\pi}^{x} (a_n \cos nt + b_n \sin nt) dt, \qquad x \in [-\pi, \pi]$$

定理 16.3.2 (逐项微分定理)

对于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x), 如果

- 1. $f(-\pi) = f(\pi)$
- 2. 除有限个点外 f(x) 可导。
- 3. f'(x) 在 $[-\pi,\pi]$ 上可积或绝对可积。

那么 f(x) 的 Fourier 级数可逐项微分,换言之

$$f'(x) \sim \sum_{n=1}^{\infty} (-na_n \sin nt + nb_n \cos nt)$$

推论 16.3.1

如果

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

为于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x) 的 Fourier 级数, 那么级数 $\sum_{n=1}^{\infty} \frac{b_n}{n}$ 收敛。

16.3.2 Fourier 级数的逼近性质

定义 16.3.1 (最佳平方逼近)

对于赋范空间 X,与子空间 $Y \subset X$,称 $y \in Y$ 为 $x \in X$ 的最佳平方逼近,如果成立

$$\|x-y\|=\min_{z\in Y}\|x-z\|$$

定理 16.3.3 (Fourier 级数的逼近性质)

对于 $L^2[-\pi,\pi]$, 其范数定义为

$$||f||^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} fg$$

记

$$X_n = \operatorname{span}\{\cos kx, \sin kx\}_{k=0}^n \subset L^2[-\pi, \pi]$$

那么 $f(x) \in L^2[-\pi,\pi]$ 在 X_n 中的最佳平方逼近为

$$S_n = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

且逼近余项为

$$||f - S_n||^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx - \left(\frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2)\right)$$

定理 16.3.4 (Bessel 不等式)

对于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x), 成立

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

定理 16.3.5 (Parseval 等式)

对于 $[-\pi,\pi]$ 上的可积或绝对可积函数 f(x),成立

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

定理 16.3.6 (依范数收敛)

 $f(x) \in L^2[-\pi,\pi]$ 的 Fourier 级数在 $L^2[-\pi,\pi]$ 中依范数收敛于 f(x)。

定理 16.3.7 (Weierstrass 第二逼近定理)

对于周期为 2π 的连续函数 f(x), 存在三角函数序列

$$\varphi_n \in \operatorname{span}\{\cos nx, \sin nx\}_{n=0}^{\infty}$$

使得 $\varphi_n(x)$ 一致收敛于 f(x)。

16.3.3 等周问题

定理 16.3.8 (等周定理)

平面上具有定长的所有简单闭曲线中, 圆周所围的面积最大

16.4 Fourier 变换和 Fourier 积分

16.4.1 Fourier 变换

定理 16.4.1 (Fourier 级数的复数形式)

对于周期为 2T 的函数 f(x), 其 Fourier 级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{T} x + b_n \sin \frac{n\pi}{T} x \right)$$

其中

$$a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi}{T} x dx, \qquad b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi}{T} x dx$$

记

$$\omega_n = \frac{n\pi}{T}, \quad c_0 = a_0, \quad c_n = a_n - ib_n, \quad c_{-n} = a_n + ib_n$$

那么 f(x) 的 Fourier 级数的复数形式为

$$\frac{1}{2} \sum_{n=-\infty}^{+\infty} c_n e^{i\omega_n x}$$

 \sim

定义 16.4.1 (Fourier 变换)

定义函数 f(x) 的 Fourier 变换为

$$\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(x) e^{-i\omega x} dx, \qquad \omega \in \mathbb{R}$$

记作 $\mathscr{F}[f] = \hat{f}$ 。

2

定义 16.4.2 (Fourier 逆变换)

定义函数 $\hat{f}(\omega)$ 的 Fourier 逆变换为

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\omega) e^{i\omega x} d\omega, \qquad x \in \mathbb{R}$$

记作 $\mathcal{F}^{-1}[\hat{f}] = f$ 。

定理 16.4.2 (Fourier 变换的性质)

1. 线性性:

$$\begin{split} \mathscr{F}[f+g] &= \mathscr{F}[f] + \mathscr{F}[g], \qquad \mathscr{F}[\lambda f] = \lambda \mathscr{F}[f] \\ \mathscr{F}^{-1}[f+g] &= \mathscr{F}^{-1}[f] + \mathscr{F}^{-1}[g], \qquad \mathscr{F}^{-1}[\lambda f] = \lambda \mathscr{F}^{-1}[f] \end{split}$$

2. 位移性:

$$\mathscr{F}[f(x+x_0)] = \mathscr{F}[f]e^{i\omega x_0}, \qquad \mathscr{F}^{-1}[\hat{f}(\omega+\omega_0)] = \mathscr{F}^{-1}[\hat{f}]e^{-i\omega_0 x}$$

3. 时间尺度性:

$$\mathscr{F}[f(\lambda x)] = \frac{1}{|\lambda|} \hat{f}\left(\frac{\omega}{\lambda}\right)$$

4. 频率尺度性:

$$\mathscr{F}\left[\frac{1}{\lambda}f\left(\frac{x}{\lambda}\right)\right] = \hat{f}(\lambda\omega)$$

- 5. 微分性:
 - (a). 如果函数 f(x) 在 \mathbb{R} 上连续可导,且 f(x) 与 f'(x) 在 \mathbb{R} 上绝对可积,同时 $\lim_{x\to\infty} f(x)=0$,那么

$$\mathscr{F}[f'] = i\omega F[f]$$

(b). 如果函数 f(x) 与 xf(x) 在 \mathbb{R} 上绝对可积, 那么

$$(\mathscr{F}[f])' = \mathscr{F}[-ixf]$$

6. 积分性: 如果函数 f(x) 与 $\int_{-\infty}^{x} f(t) dt$ 在 \mathbb{R} 上绝对可积,那么

$$\mathscr{F}\left[\int_{-\infty}^{x} f(t) dt\right] = \frac{1}{i\omega} \mathscr{F}[f]$$

 \sim

16.4.2 卷积

定义 16.4.3 (卷积)

对于 \mathbb{R} 上的函数 f(x) 与 g(x), 如果存在积分

$$\int_{-\infty}^{+\infty} f(t)g(x-t), \qquad x \in \mathbb{R}$$

那么定义 f(x) 与 g(x) 的卷积为

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x - t), \qquad x \in \mathbb{R}$$

定理 16.4.3 (卷积的 Fourier 变换)

如果函数 f(x) 与 g(x) 在 \mathbb{R} 上绝对可积, 那么

$$\mathscr{F}[f*g] = \mathscr{F}[f] \cdot \mathscr{F}[g], \qquad \mathscr{F}[f \cdot g] = \frac{1}{2\pi} \mathscr{F}[f] * \mathscr{F}[g]$$

定理 16.4.4 (Parseval 等式)

如果函数 f(x) 在 \mathbb{R} 上绝对可积, 且反常积分 $\int_{-\infty}^{+\infty} f^2(x) dx$ 收敛, 那么

$$\int_{-\infty}^{+\infty} f^2(x) dx == \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}^2(\omega) d\omega$$

 $^{\circ}$

 \Diamond

16.4.3 Fourier 积分

定义 16.4.4 (Fourier 积分)

$$f(x) \sim \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) e^{i\omega(x-t)} dt$$

定理 16.4.5 (Fourier 积分的收敛判别法)

如果函数 f(x) 在 \mathbb{R} 上绝对可积,且在 \mathbb{R} 上分段可导,那么

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) e^{i\omega(x-t)} dt = \frac{f(x^+) + f(x^-)}{2}, \qquad x \in \mathbb{R}$$

附录 A 总结

A.1 实数完备性定理

定理	步骤 1	步骤 2	步骤 3	
致密性定理 ⇒ Cauchy 收敛原理	Cauchy 序列有界	存在收敛子列	子列的极限为原数列极限	
Cauchy 收敛原理 ⇒ 闭区间套定理	闭区间套端点为 Cauchy 序列	a_n 与 b_n 存在极限		
闭区间套定理 ⇒ 致密性原理	将数列的界区间迭代二分	每次选择无穷点所在区间		
闭区间套定理 ⇒ 确界定理	闭区间套定理 \Longrightarrow 确界定理 选择上界 b_1 与非上界 a_1		每个区间选择为左端点不为上界,右端点为上界	
确界定理 ⇒ 单调有界定理				
単调有界定理 ⇒ 闭区间套定理	a_n, b_n 均为单调有界数列			
闭区间套定理 ⇒ 有限覆盖定理	反证:若[a,b]的某开覆盖不存在子覆盖	将区间迭代二分	每次选择不存在子覆盖的区间	
有限覆盖定理 ⇒ 聚点定理	有限覆盖定理 ⇒ 聚点定理 反证:若不存在聚点		推出原点集为有限点集	
致密性定理 ⇒ 聚点定理	致密性定理 → 聚点定理 从无穷有界点集中选择数列		收敛点即为聚点	
聚点定理 ⇒ 致密性定理 有界数列作为无穷点集		聚点即为收敛点		

A.2 Riemann 函数与 Dirichlet 函数

表 A.1: Riemann 函数和 Dirichlet 函数的性质

函数	表达式	周期性	连续性	可微性	Riemann 可积性	Lebesgue 可积性
Riemann 函数	$\mathcal{R}(x) = \begin{cases} 1/p, & x = q/p, p \in \mathbb{N}^*, q \in \mathbb{Z}, (p, q) = 1\\ 1, & x = 0\\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$	以1为最小正周期	$\lim_{x \to x_0} \mathcal{R}(x) = 0$ 以有理点为跳跃间断点 在无理点处连续	处处不可微	$\int_0^1 \mathcal{R}(x) \mathrm{d}x = 0$	$\int \mathcal{R} = 0$
Dirichlet 函数	$\mathcal{D}(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$	以任意有理数为周期	不存在极限 $\lim_{x \to x_0} \mathcal{D}(x)$ 处处不连续	处处不可微	非 Riemann 可积	$\int \mathcal{D} = 0$

A.3 中值定理

表 A.2: 中值定理

名称	连续性	可导性	可积性	其他条件	存在性	使得成立
Rolle 定理	f(x) 在 [a, b] 上连续	f(x) 在 (a,b) 上可导		f(a) = f(b)	$\exists \xi \in (a,b)$	$f'(\xi) = 0$
Lagrange 定理	f(x) 在 [a, b] 上连续	f(x) 在 (a,b) 上可导			$\exists \xi \in (a,b)$	$f'(\xi) = \frac{f(b) - f(a)}{b - a}$
Cauchy 定理	f(x) 与 g(x) 在 [a,b] 上连续	f(x) 与 $g(x)$ 在 (a,b) 上可导		$g'(x) \neq 0$	$\exists \xi \in (a,b)$	$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$
积分第一中值定理			f(x) 与 $g(x)$ 在 $[a,b]$ 上可积	$g(x) \ge 0 \not g(x) \le 0$	$\exists \eta \in f([a,b])$	$\int_{a}^{b} f(x)g(x) dx = \eta \int_{a}^{b} g(x) dx$
积分第二中值定理			f(x)与 $g(x)$ 在 $[a,b]$ 上可积	g(x) 单调	$\exists \xi \in [a,b]$	$\int_a^b f(x)g(x) dx = g(a) \int_a^\xi f(x) dx + g(b) \int_\xi^b f(x) dx$

A.4 Abel 判别法与 Dirichlet 判别法

表 A.3: Abel 判别法

判别	单调性	有界性	收敛性	结论
数项级数的收敛性	$\{a_n\}$ 单调	$\{a_n\}$ 有界	$\sum b_n$ 收敛	$\sum a_n b_n$ 收敛
函数项级数的一致收敛性	$\forall x, \{a_n(x)\}$ 单调	$\{a_n(x)\}$ 一致有界	$\sum b_n(x)$ 一致收敛	$\sum a_n(x)b_n(x)$ 一致收敛
反常积分的收敛性	f(x) 单调	f(x) 有界	$\int_0^\infty g(x)\mathrm{d}x$ 收敛	$\int_0^\infty f(x)g(x)\mathrm{d}x$ 收敛
含参变量反常积分的一致收敛性	$\forall y, f(x,y)$ 单调	f(x,y) 一致有界	$\int_0^\infty f(x,y) \mathrm{d}x 美于 y - 致收敛$	$\int_0^\infty f(x,y)g(x,y)\mathrm{d}x$ 关于 y 一致收敛

表 A.4: Dirichlet 判别法

判别	单调性	极限	有界性	结论
数项级数的收敛性	$\{a_n\}$ 单调	$a_n \to 0$	$\sum_{k=1}^{n} b_k$ 有界	$\sum a_n b_n$ 收敛
函数项级数的一致收敛性	$\forall x, \{a_n(x)\}$ 单调	$a_n(x) \stackrel{x}{\rightrightarrows} 0$	$\sum_{k=1}^{n} b_k(x)$ 一致有界	$\sum a_n(x)b_n(x)$ 一致收敛
反常积分的收敛性	<i>f</i> (<i>x</i>) 单调	$f(x) \to 0$	$\int_0^x g(t) \mathrm{d}t 有界$	$\int_0^\infty f(x)g(x)\mathrm{d}x$ 收敛
含参变量反常积分的一致收敛性	$\forall y, f(x, y)$ 单调	$f(x,y) \stackrel{y}{\Longrightarrow} 0$	$\int_0^x g(t,y) \mathrm{d}t - \mathfrak{Y}$	$\int_0^\infty f(x,y)g(x,y)\mathrm{d}x$ 关于 y 一致收敛

A.5 Fourier 级数

A.5.1 三角函数的正交性

A.5.1.1 以区间长度为周期的三角函数的正交性

定理 A.5.2 ($[-\pi, \pi]$ 上且以 2π 为周期的三角函数的正交性)

$$\int_{-\pi}^{\pi} \cos nx dx = \begin{cases} 2\pi, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

$$\int_{-\pi}^{\pi} \sin nx dx = 0, \qquad n \in \mathbb{Z}$$

$$\int_{-\pi}^{\pi} \cos mx \cos nx dx = \begin{cases} 2\pi, & m = n = 0 \\ \pi, & |m| = |n| \neq 0 \\ 0, & |m| \neq |n| \end{cases}$$

$$\int_{-\pi}^{\pi} \sin mx \sin nx dx = \begin{cases} 0, & m = n = 0 \\ \pi, & m = n \neq 0 \\ -\pi, & m = -n \neq 0 \\ 0, & |m| \neq |n| \end{cases}$$

$$\int_{-\pi}^{\pi} \cos mx \sin nx dx = 0, \qquad m, n \in \mathbb{Z}$$

定理 A.5.3 ([0, a] 上且以 a 为周期的三角函数的正交性)

$$\int_{0}^{a} \cos \frac{2n\pi}{a} x dx = \begin{cases} a, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

$$\int_{0}^{a} \sin \frac{2n\pi}{a} x dx = 0, \qquad n \in \mathbb{Z}$$

$$\int_{0}^{a} \cos \frac{2m\pi}{a} x \cos \frac{2n\pi}{a} x dx = \begin{cases} a, & m = n = 0 \\ a/2, & |m| = |n| \neq 0 \\ 0, & |m| \neq |n| \end{cases}$$

$$\int_{0}^{a} \sin \frac{2m\pi}{a} x \sin \frac{2n\pi}{a} x dx = \begin{cases} 0, & m = n = 0 \\ a/2, & m = n \neq 0 \\ -a/2, & m = -n \neq 0 \\ 0, & |m| \neq |n| \end{cases}$$

$$\int_{0}^{a} \cos \frac{2m\pi}{a} x \sin \frac{2n\pi}{a} x dx = 0, \qquad m, n \in \mathbb{Z}$$

定理 A.5.4 ([a,b] 上且以 b-a 为周期的三角函数的正交性)

$$\int_{a}^{b} \cos\left(\frac{2n\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \mathrm{d}x = \begin{cases} b-a, & n=0\\ 0, & n\neq 0 \end{cases}$$

$$\int_{a}^{b} \sin\left(\frac{2n\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \mathrm{d}x = 0, \quad n \in \mathbb{Z}$$

$$\int_{a}^{b} \cos\left(\frac{2m\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \cos\left(\frac{2n\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \mathrm{d}x = \begin{cases} b-a, & m=n=0\\ (b-a)/2, & |m|=|n|\neq 0\\ 0, & |m|\neq |n| \end{cases}$$

$$\int_{a}^{b} \sin\left(\frac{2m\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \sin\left(\frac{2n\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \mathrm{d}x = \begin{cases} 0, & m=n=0\\ (b-a)/2, & m=n\neq 0\\ -(b-a)/2, & m=n\neq 0\\ 0, & |m|\neq |n| \end{cases}$$

$$\int_{a}^{b} \cos\left(\frac{2m\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \sin\left(\frac{2n\pi}{b-a}\left(x-\frac{a+b}{2}\right)\right) \mathrm{d}x = 0, \quad m,n \in \mathbb{Z}$$

A.5.1.2 以两倍区间长度为周期的三角函数的正交性

定理 **A.5.5** ($[0,\pi]$ 上且以 2π 为周期的三角函数的正交性)

$$\int_{0}^{\pi} \cos nx dx = \begin{cases} \pi, & n = 0 \\ 0, & n \neq 0 \end{cases}
\int_{0}^{\pi} \sin nx dx = \begin{cases} 2/n, & 2 \nmid n \\ 0, & 2 \mid n \end{cases}
\int_{0}^{\pi} \cos mx \cos nx dx = \begin{cases} \pi, & m = n = 0 \\ \pi/2, & |m| = |n| \neq 0 \\ 0, & |m| \neq |n| \end{cases}
\int_{0}^{\pi} \sin mx \sin nx dx = \begin{cases} 0, & m = n = 0 \\ \pi/2, & m = n \neq 0 \\ -\pi/2, & m = n \neq 0 \\ 0, & |m| \neq |n| \end{cases}
\int_{0}^{\pi} \cos mx \sin nx dx = \begin{cases} -\frac{2n}{m^{2} - n^{2}}, & 2 \nmid m - n \\ 0, & 2 \mid m - n \end{cases}$$

定理 A.5.6 ([0,a] 上且以 2a 为周期的三角函数的正交性)

$$\int_{0}^{a} \cos \frac{n\pi}{a} x dx = \begin{cases} a, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

$$\int_{0}^{a} \sin \frac{n\pi}{a} x dx = \begin{cases} 2a/(n\pi), & 2 \nmid n \\ 0, & 2 \mid n \end{cases}$$

$$\int_{0}^{a} \cos \frac{m\pi}{a} x \cos \frac{n\pi}{a} x dx = \begin{cases} a, & m = n = 0 \\ a/2, & |m| = |n| \neq 0 \\ 0, & |m| \neq |n| \end{cases}$$

$$\int_{0}^{a} \sin \frac{m\pi}{a} x \sin \frac{n\pi}{a} x dx = \begin{cases} 0, & m = n = 0 \\ a/2, & m = n \neq 0 \\ -a/2, & m = n \neq 0 \\ 0, & |m| \neq |n| \end{cases}$$

$$\int_{0}^{a} \cos \frac{m\pi}{a} x \sin \frac{n\pi}{a} x dx = \begin{cases} -\frac{2na}{(m^{2} - n^{2})\pi}, & 2 \nmid m - n \\ 0, & 2 \mid m - n \end{cases}$$

A.5.2 Fourier 级数

A.5.2.1 以区间长度为周期的 Fourier 级数

定理 A.5.7 ($[-\pi,\pi]$ 上且以 2π 为周期的 Fourier 级数)

 $[-\pi,\pi]$ 上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

定理 A.5.8 ([-T, T] 上且以 2T 为周期的 Fourier 级数)

[-T,T] 上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{T} x + b_n \sin \frac{n\pi}{T} x \right)$$

其中

$$a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi}{T} x dx, \qquad b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi}{T} x dx$$

定理 **A.5.9** ([0,a] 上且以 a 为周期的 Fourier 级数)

[0,a] 上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2n\pi}{a} x + b_n \sin \frac{2n\pi}{a} x \right)$$

$$a_n = \frac{2}{a} \int_0^a f(x) \cos \frac{2n\pi}{a} x dx, \qquad b_n = \frac{2}{a} \int_0^a f(x) \sin \frac{2n\pi}{a} x dx$$

定理 **A.5.10** ([a,b] 上且以 b-a 为周期的 Fourier 级数)

[a,b]上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right) + b_n \sin\left(\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right) \right)$$

其中

$$a_n = \frac{2}{b-a} \int_a^b f(x) \cos\left(\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right) dx$$
$$b_n = \frac{2}{b-a} \int_a^b f(x) \sin\left(\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right) dx$$

A.5.2.2 以两倍区间长度为周期的 Fourier 级数

定理 A.5.11 ($[0,\pi]$ 上且以 2π 为周期的 Fourier 级数)

1. $[0,\pi]$ 上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

其中

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$$

2. $[0,\pi]$ 上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$

其中

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx$$

定理 A.5.12 ([0, a] 上且以 2a 为周期的 Fourier 级数)

1. [0,a] 上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{a} x$$

其中

$$a_n = \frac{2}{a} \int_0^{\pi} f(x) \cos \frac{n\pi}{a} x \mathrm{d}x$$

2. [0,a] 上的绝对可积函数 f(x) 存在 Fourier 级数

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{a} x$$

其中

$$b_n = \frac{2}{a} \int_0^{\pi} f(x) \sin \frac{n\pi}{a} x dx$$

 \Diamond