Uniform Bounds for the Best Sobolev Trace Constant

Julián Fernández Bonder*

Departamento de Matemática, Universidad de Buenos Aires Ciudad Universitaria (1428), Buenos Aires, Argentina e-mail: jfbonder@dm.uba.ar

Julio D. Rossi[†]

Departamento de Matemática Universidad de Buenos Aires
Ciudad Universitaria (1428), Buenos Aires, Argentina
Current address: Departamento de Matemática, Universidad Católica,
Casilla 306, correo 22, Santiago, Chile
e-mail: jrossi@riemann.mat.puc.cl

Raúl Ferreira[‡]

Departamento de Matemáticas,
Universidad Autónoma de Madrid, Madrid, España
Current address: Departamento de Matemticas, U. Carlos III de Madrid,
28911 Legans, Spain
e-mail: rferreir@math.uc3m.es

Received 29 August 2002 Communicated by Jean Mawhin

^{*}The author acknowledges the support of ANPCyT PICT No. 03-05009

 $^{^\}dagger \mathrm{The}$ author acknowledges the support of ANPCyT PICT No. 03-05009, Fundación Antorchas and CONICET

 $^{{}^{\}ddagger}\mathrm{The}$ author acknowledges the support of AECI

Abstract

We study the Sobolev trace embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$, looking at the dependence of the best constant and the extremals on p and q. We prove that there exists a uniform bound (independent of (p,q)) for the best constant if and only if (p,q) lies far from (N,∞) . Also we study some limit cases, $q=\infty$ with p>N or $p=\infty$ with $1\leq q\leq \infty$.

2000 Mathematics Subject Classification. 35J65, 35J20, 35P30, 35P15. Key words. Sobolev trace constants, p-Laplacian, nonlinear boundary conditions

1 Introduction

Sobolev inequalities are very popular in the study of partial differential equations or in the calculus of variations and have been investigated by a great number of authors. Among them are the Sobolev trace inequalities. Let Ω be a smooth bounded domain in \mathbb{R}^N , $N \geq 2$. For any $1 \leq p \leq \infty$, we define the Sobolev trace conjugate as

$$p^* = \begin{cases} \frac{p(N-1)}{N-p} & \text{if } p < N, \\ \infty & \text{if } p \ge N. \end{cases}$$

If $1 \leq q \leq p^*$ (with strict second inequality if p = N), we have the immersion $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ and hence the following inequality holds:

$$S||u||_{L^q(\partial\Omega)} \le ||u||_{W^{1,p}(\Omega)}$$

for all $u \in W^{1,p}(\Omega)$. This is known as the Sobolev trace embedding Theorem. The best constant for this embedding is the largest S such that the above inequality holds, that is,

$$S_{p,q} = \inf_{u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega)} \frac{\left(\int_{\Omega} |\nabla u|^p + |u|^p \, dx\right)^{1/p}}{\left(\int_{\partial \Omega} |u|^q \, d\sigma\right)^{1/q}} = \inf_{u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega)} Q_{p,q}(u).$$
(1.1)

Moreover, if $1 \leq q < p^*$ the embedding is compact and as a consequence we have the existence of extremals, i.e. functions where the infimum is attained, see [8]. These extremals are weak solutions of the following problem

$$\begin{cases}
\Delta_p u = |u|^{p-2} u & \text{in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^{q-2} u & \text{on } \partial \Omega,
\end{cases}$$
(1.2)

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian and $\frac{\partial}{\partial \nu}$ is the outer unit normal derivative. Using [13] and [14] we can assume that the extremals are positive, u > 0,

in Ω . In the special case p=q, problem (1.2) becomes a nonlinear eigenvalue problem, that was studied in [8], [12]. For p=2, this eigenvalue problem is known as the *Steklov* problem, [1]. From now on, let us call $u_{p,q}$ an extremal corresponding to the exponents (p,q).

The main purposes of this work are to study the possibility of a uniform bound (independent of (p,q)) on $S_{p,q}$ and to study the limit behavior of the best Sobolev trace constants $S_{p,q}$ as $p \to +\infty$ and as $q \to +\infty$ and look at the limit cases $p = \infty$, $1 \le q \le \infty$ and $N , <math>q = \infty$. Our main result is the following.

Theorem 1.1 Given A a set of admissible (p,q),

$$A \subset \{(p,q) : 1 \le p \le \infty, 1 \le q \le p^*\}$$

there exist constants C_1 and C_2 independent of $(p,q) \in A$ such that

$$C_1 \leq S_{p,q} \leq C_2$$

if and only if A verifies the following property, there is no sequence $(p_n, q_n) \in A$ with $p_n \to N$ and $q_n \to \infty$.

Notice that Theorem 1.1 says that we can obtain a uniform bound for $S_{p,q}$ on A as long as $(p,q) \in A$ stays away from the point (N,∞) . Observe that the upper bound, $S_{p,q} \leq C_2$, follows easily by taking $u \equiv 1$ in (1.1) and holds even if we are close to (N,∞) . The main difficulty arises in the proof of the lower bound. As we will explain below, this is due to the fact that there exist functions in $W^{1,N}(\Omega)$ that do not belong to $L^{\infty}(\partial\Omega)$.

As we mentioned before, one of our concerns is to analyze the case $p=\infty$ with $1 \leq q \leq \infty$, i.e., the immersion $W^{1,\infty}(\Omega) \hookrightarrow L^q(\partial\Omega)$. The best constant is given by

$$S_{\infty,q} = \inf_{u \in W^{1,\infty}(\Omega) \setminus \{0\}} \frac{\|\nabla u\|_{L^{\infty}(\Omega)} + \|u\|_{L^{\infty}(\Omega)}}{\|u\|_{L^{q}(\partial\Omega)}}.$$

From this expression it is easy to see that $S_{\infty,q}=1/|\partial\Omega|^{1/q}$ and $S_{\infty,\infty}=1$, with extremal $u_{\infty,q}=u_{\infty,\infty}\equiv 1$ in both cases (we normalize the extremals according to $\|u_{\infty,q}\|_{L^{\infty}(\partial\Omega)}=\|u_{\infty,\infty}\|_{L^{\infty}(\partial\Omega)}=1$). We prove that $S_{\infty,\infty}=1$ is the limit of $S_{p,q}$ as $p,q\to\infty$ and also $S_{\infty,q}$ is the limit of $S_{p,q}$ when $p\to\infty$.

Theorem 1.2 Let $S_{p,q}$ be the best Sobolev trace constant and $u_{p,q}$ be any extremal normalized such that $||u_{p,q}||_{L^{\infty}(\partial\Omega)} = 1$. Then

$$\lim_{p,q\to\infty} S_{p,q} = S_{\infty,\infty} = 1,$$

and, for any $1 < r < \infty$, as $p, q \to \infty$,

$$u_{p,q} \rightharpoonup u_{\infty,\infty} \equiv 1,$$
 weakly in $W^{1,r}(\Omega)$, $u_{p,q} \rightarrow u_{\infty,\infty} \equiv 1,$ strongly in $C^{\alpha}(\overline{\Omega})$.

Moreover, for fixed $1 \leq q < \infty$,

$$\lim_{p \to \infty} S_{p,q} = S_{\infty,q} = \frac{1}{|\partial \Omega|^{1/q}},$$

and, for any $1 < r < \infty$, as $p \to \infty$,

$$u_{p,q} \rightharpoonup u_{\infty,q} \equiv 1,$$
 weakly in $W^{1,r}(\Omega)$,
 $u_{p,q} \rightarrow u_{\infty,q} \equiv 1,$ strongly in $C^{\alpha}(\overline{\Omega})$.

The limit $q \to \infty$ with p > N fixed is more subtle since we do not know a priori which is the extremal for the limit case. However we find an equation for the limit extremal.

Theorem 1.3 Let p > N, then

$$\lim_{q \to \infty} S_{p,q} = S_{p,\infty},$$

and, up to subsequences, as $q \to \infty$,

$$u_{p,q} \rightharpoonup u_{p,\infty}$$
 weakly in $W^{1,p}(\Omega)$,
 $u_{p,q} \rightarrow u_{p,\infty}$ strongly in $C^{\alpha}(\overline{\Omega})$.

Moreover, there exists a measure $\mu \in C(\partial\Omega)^*$ with $\mu(\{u_{p,\infty}=1\})=1$ such that $u_{p,\infty}$ is a weak solution of

$$\begin{cases} \Delta_p u = |u|^{p-2}u & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = S_{p,\infty}^p \mu \chi_{\{u \equiv 1\}} & \text{on } \partial \Omega. \end{cases}$$

We observe that $W^{1,N}(\Omega) \not\hookrightarrow L^{\infty}(\partial\Omega)$. Hence we expect that the best constant $S_{p,q}$ goes to zero as $(p,q) \to (N,\infty)$. This is the content of our next result.

Theorem 1.4 The best constant $S_{p,q}$ goes to zero as $(p,q) \to (N,\infty)$ and moreover for any $\alpha < (N-1)/N$, there exists a constant C such that

$$S_{p,q} \le C \max \left\{ (p-N)_+, \frac{1}{q} \right\}^{\alpha}.$$

For the dependence of $S_{p,q}(\Omega)$ with respect to the domain, see [4] and [9] for a detailed analysis of the behavior of extremals and best Sobolev constants in expanding and contracting domains. In [5] a related problem in the half-space \mathbb{R}^N_+ for the critical exponent is studied. See also [6], [7] for other geometric problems that lead to nonlinear boundary conditions, like the ones that appear in (1.2). The best constant in the Sobolev immersion, $W_0^{1,p}(\Omega) \hookrightarrow L^r(\Omega)$, has been studied by many authors, see for example [10]. More recently in [11] the authors analyze the limit as $p \to \infty$ of the related Dirichlet eigenvalue problem for the p-Laplacian.

The paper is organized as follows: first we deal with the limit cases. In sections 2 and 3 we prove Theorem 1.2 and Theorem 1.3 respectively, in section 4 we find estimates for $S_{p,q}$ near (N,∞) , Theorem 1.4, and finally in section 5 we deal with the proof of our main result, Theorem 1.1.

2 Limit as $p \to +\infty$

In this section we prove Theorem 1.2.

Proof. First, we study the limit $p, q \to \infty$. In this case the natural limit problem is

$$S_{\infty,\infty} = \inf_{u \in W^{1,\infty}(\Omega)} \frac{\|\nabla u\|_{L^\infty(\Omega)} + \|u\|_{L^\infty(\Omega)}}{\|u\|_{L^\infty(\partial\Omega)}}.$$

As we mentioned in the introduction $S_{\infty,\infty} = 1$ and the extremal is $u_{\infty,\infty} \equiv 1$ (normalized such that $||u||_{L^{\infty}(\partial\Omega)} = 1$). Now, taking u = 1 in (1.1), we get

$$S_{p,q} = \inf_{u \in W^{1,p}(\Omega)} Q_{p,q}(u) \le \frac{|\Omega|^{1/p}}{|\partial \Omega|^{1/q}},$$
(2.1)

from where it follows that

$$\limsup_{p,q \to \infty} S_{p,q} \le 1.$$
(2.2)

For p > N, let us denote by $u_{p,q}$ one extremal for (1.1) normalized such that $||u_{p,q}||_{L^{\infty}(\partial\Omega)} = 1$. Hence

$$||u_{p,q}||_{W^{1,p}(\Omega)} = S_{p,q}||u_{p,q}||_{L^q(\partial\Omega)} \le S_{p,q}|\partial\Omega|^{1/q} \le C,$$

with C independent of p, q. On the other hand, if N < r < p,

$$||u_{p,q}||_{W^{1,r}(\Omega)} \le |\Omega|^{(p-r)/pr} ||u_{p,q}||_{W^{1,p}(\Omega)} \le C.$$

Hence, there exists $u \in W^{1,r}(\Omega)$ such that, up to a subsequence,

$$u_{p,q} \to u$$
 weakly in $W^{1,r}(\Omega)$, $u_{p,q} \to u$ strongly in $C^{\alpha}(\overline{\Omega})$.

Observe that we can assume that the limit u does not depend on r. In fact, we can choose a sequence $r_j \to \infty$ and in each W^{1,r_j} we can extract a subsequence of $u_{p,q}$ that converges weakly. By a standard diagonal argument we obtain a subsequence that converges strongly in C^{α} and weakly in W^{1,r_j} for every j (and hence in $W^{1,r}$ for every r) to a limit function u.

In particular, $||u||_{L^{\infty}(\partial\Omega)} = 1$ and

$$S_{p,q} = Q_{p,q}(u_{p,q}) \geq \frac{|\Omega|^{-(p-r)/pr} \|u_{p,q}\|_{W^{1,r}(\Omega)}}{\|u_{p,q}\|_{L^q(\partial\Omega)}} \geq \frac{|\Omega|^{-(p-r)/pr} \|u_{p,q}\|_{W^{1,r}(\Omega)}}{|\partial\Omega|^{1/q}}.$$

Hence

$$1 \geq \limsup_{p,q \to \infty} \frac{|\Omega|^{-(p-r)/pr} \|u_{p,q}\|_{W^{1,r}(\Omega)}}{|\partial \Omega|^{1/q}} \geq |\Omega|^{-1/r} \|u\|_{W^{1,r}(\Omega)},$$

and therefore, taking the limit as $r \to \infty$, we get

$$1 \ge ||u||_{W^{1,\infty}(\Omega)}.$$

We conclude that $u \in W^{1,\infty}(\Omega)$ and that u is an extremal for $S_{\infty,\infty}$ that satisfies $||u||_{L^{\infty}(\partial\Omega)} = 1$, and hence $u \equiv 1$.

Next, we focus on the case $p \to +\infty$ with fixed $1 \le q < \infty$. We consider the natural limit problem

$$S_{\infty,q} = \inf_{u \in W^{1,\infty}(\Omega)} \frac{\|\nabla u\|_{L^{\infty}(\Omega)} + \|u\|_{L^{\infty}(\Omega)}}{\|u\|_{L^{q}(\partial\Omega)}},$$

and we note that the extremal is $u_{\infty,q} \equiv 1$ (normalized such that $||u_{\infty,q}||_{L^{\infty}(\partial\Omega)} = 1$) and then the best constant is given by $S_{\infty,q} = 1/|\partial\Omega|^{1/q}$.

Following the same argument given above we get that there exists $u \in W^{1,r}(\Omega)$ such that, up to a subsequence,

$$u_{p,q} \to u$$
 weakly in $W^{1,r}(\Omega)$, $u_{p,q} \to u$ strongly in $C^{\alpha}(\overline{\Omega})$.

Moreover, we have the following inequalities,

$$\frac{|\Omega|^{1/p}}{|\partial\Omega|^{1/q}} \ge S_{p,q} = Q_{p,q}(u_{p,q}) \ge \frac{|\Omega|^{-(p-r)/pr} ||u_{p,q}||_{W^{1,r}(\Omega)}}{||u_{p,q}||_{L^q(\partial\Omega)}}.$$

First we take the limit as $p \to \infty$, and then the limit as $r \to \infty$, to obtain

$$\frac{1}{|\partial\Omega|^{1/q}} \ge S_{\infty,q} \ge \frac{\|u\|_{W^{1,\infty}(\Omega)}}{\|u\|_{L^q(\partial\Omega)}}.$$

Therefore, we can conclude that $u \in W^{1,\infty}(\Omega)$ and that it is an extremal for $S_{\infty,q}$ which satisfies $||u||_{L^{\infty}(\partial\Omega)} = 1$. Hence $u = u_{\infty,q} \equiv 1$ and $S_{\infty,q} = 1/|\partial\Omega|^{1/q}$.

3 Limit as $q \to +\infty$ for fixed p > N

In this section we fix p > N and consider the limit of $S_{p,q}$ and $u_{p,q}$ when $q \to \infty$. In order to clarify the exposition we divide the proof of Theorem 1.3 in two lemmas.

Lemma 3.1 Let p > N be fixed. Then

$$\lim_{q \to \infty} S_{p,q} = S_{p,\infty},$$

and, up to subsequences, as $q \to \infty$,

$$u_{p,q} \rightharpoonup u_{p,\infty}$$
 weakly in $W^{1,p}(\Omega)$,
 $u_{p,q} \to u_{p,\infty}$ strongly in $C^{\alpha}(\overline{\Omega})$.

Proof. Let $u_{p,q}$ be an extremal for (1.1) normalized such that $||u_{p,q}||_{L^{\infty}(\partial\Omega)} = 1$. Then we have

$$S_{p,q} = \frac{\|u_{p,q}\|_{W^{1,p}(\Omega)}}{\|u_{p,q}\|_{L^q(\partial\Omega)}} \ge \frac{\|u_{p,q}\|_{W^{1,p}(\Omega)}}{|\partial\Omega|^{1/q}}.$$
(3.1)

Therefore, using (2.1), we have $||u_{p,q}||_{W^{1,p}(\Omega)} \leq |\Omega|^{1/p}$. Hence, there exists a function $u \in W^{1,p}(\Omega)$ such that, up to a subsequence,

$$u_{p,q} \rightharpoonup u$$
 weakly in $W^{1,p}(\Omega)$,
 $u_{p,q} \to u$ strongly in $L^{\infty}(\partial \Omega)$.

Hence $||u||_{L^{\infty}(\partial\Omega)} = 1$, and from (3.1) we get

$$\liminf_{q \to \infty} S_{p,q} \ge \liminf_{q \to \infty} \|u_{p,q}\|_{W^{1,p}(\Omega)} \ge \|u\|_{W^{1,p}(\Omega)} \ge S_{p,\infty}.$$

Now, let us see that u is an extremal for $S_{p,\infty}$. We argue by contradiction. Assume that there exists $v \in W^{1,p}(\Omega)$ such that

$$Q_{p,\infty}(v) < Q_{p,\infty}(u).$$

Then, for large q we have,

$$Q_{p,q}(v) < Q_{p,q}(u),$$

but as

$$S_{p,q} \ge \frac{\|u_{p,q}\|_{W^{1,p}(\Omega)}}{|\partial\Omega|^{1/q}} \ge \frac{\|u\|_{W^{1,p}(\Omega)} - \varepsilon_q}{|\partial\Omega|^{1/q}}$$

$$\ge \left(\frac{\|u\|_{L^q(\partial\Omega)}}{|\partial\Omega|^{1/q}}\right) \frac{\|u\|_{W^{1,p}(\Omega)} - \varepsilon_q}{\|u\|_{L^q(\partial\Omega)}} > \frac{\|v\|_{W^{1,p}(\Omega)}}{\|v\|_{L^q(\partial\Omega)}}$$

for some ε_q that goes to zero as $q \to \infty$, we arrive to a contradiction.

To finish the proof of the Lemma, we observe that

$$S_{p,q} \le Q_{p,q}(u) \to Q_{p,\infty}(u) = S_{p,\infty}.$$

Therefore, $\limsup_{q\to\infty} S_{p,q} \leq S_{p,\infty}$.

Lemma 3.2 Let p > N be fixed and let $u_{p,\infty}$ be an extremal for (1.1) obtained as limit of a sequence of extremals $u_{p,q}$, as $q \to \infty$. Then there exists a measure $\mu \in C(\partial\Omega)^*$, with $\mu(\{u_{p,\infty} \equiv 1\}) = 1$, such that $u_{p,\infty}$ is a weak solution of

$$\begin{cases} \Delta_p u = |u|^{p-2}u & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = S_{p,\infty}^p \mu \chi_{\{u \equiv 1\}} & \text{on } \partial \Omega. \end{cases}$$
 (3.2)

Proof. Let $u_{p,q}$ be as in Lemma 3.1. As $u_{p,q}$ is a weak solution of (1.2), we have that for every $\phi \in W^{1,p}(\Omega)$,

$$\int_{\Omega} (|\nabla u_{p,q}|^{p-2} \nabla u_{p,q} \nabla \phi + |u_{p,q}|^{p-2} u_{p,q} \phi) dx =$$

$$S_{p,q}^p \left(\int_{\partial \Omega} |u_{p,q}|^q \, d\sigma \right)^{(p-q)/q} \int_{\partial \Omega} |u_{p,q}|^{q-2} u_{p,q} \phi \, d\sigma.$$

Let us define $\Psi_q \in L^{\infty}(\partial\Omega)^*$ as

$$\Psi_q(\phi) = \left(\int_{\partial\Omega} |u_{p,q}|^q \, d\sigma\right)^{(p-q)/q} \int_{\partial\Omega} |u_{p,q}|^{q-2} u_{p,q} \phi \, d\sigma.$$

By Hölder inequality, we get

$$|\Psi_q(\phi)| \leq \|u_{p,q}\|_{L^q(\partial\Omega)}^{p-1} \|\phi\|_{L^q(\partial\Omega)} \leq |\partial\Omega|^{p/q} \|u_{p,q}\|_{L^\infty(\partial\Omega)}^{p-1} \|\phi\|_{L^\infty(\partial\Omega)} \leq C \|\phi\|_{L^\infty(\partial\Omega)}$$

with C independent of q. Therefore, $\|\Psi_q\| \leq C$ and hence if we call

$$v_q = \left(\int_{\partial\Omega} |u_{p,q}|^q d\sigma\right)^{(p-q)/q} |u_{p,q}|^{q-2} u_{p,q},$$

we have that v_q is uniformly bounded in $L^1(\partial\Omega)$ and then, up to a subsequence, $v_q \stackrel{*}{\rightharpoonup} \mu$ weakly-* in the sense of measures.

In order to finish the proof, we will see that $\operatorname{supp}(\mu) \subset \{u_{p,\infty} = 1\}$. To prove this, we consider a point $x_0 \in \partial\Omega$ such that $u_{p,\infty}(x_0) < 1 - 2\delta$ for some δ small enough. Hence, for q large enough we have that $u_{p,q}(x_0) < 1 - \delta$. On the other hand, as $\|u_{p,\infty}\|_{L^{\infty}(\partial\Omega)} = 1$, and by the C^{α} convergence of $u_{p,q}$ to $u_{p,\infty}$ there exists a point $x_1 \in \partial\Omega$ and r independent of q such that $B_r(x_1) \cap \partial\Omega \subset \{x \in \partial\Omega : u_{p,q}(x) > 1 - \delta/2\}$. Therefore

$$|\partial\Omega|^{1/q} \ge \left(\int_{\partial\Omega} |u_{p,q}|^q d\sigma\right)^{1/q} \ge (1 - \delta/2)|B_r(x_1) \cap \partial\Omega|^{1/q},$$

where the first inequality follows from the fact that $||u_{p,q}||_{L^{\infty}(\partial\Omega)} = 1$. Now, we rewrite v_q as follows,

$$v_{q}(x_{0}) = \left(\frac{u_{p,q}(x_{0})}{\|u_{p,q}\|_{L^{q}(\partial\Omega)}}\right)^{q-1} \|u_{p,q}\|_{L^{q}(\partial\Omega)}^{p-1}$$

$$\leq \left(\frac{1-\delta}{(1-\delta/2)|B_{r}(x_{0})\cap\partial\Omega|^{1/q}}\right)^{q-1} |\partial\Omega|^{(p-1)/q}.$$

Hence, we conclude that $v_q(x_0) \to 0$, and we get that the measure is supported in $\{x \in \partial\Omega : u(x) = 1\}$. Moreover, if we take $u_{p,\infty}$ as test function in the weak form of (3.2), we get

$$\int_{\Omega} (|\nabla u_{p,\infty}|^p + |u_{p,\infty}|^p) \, dx = S_{p,\infty}^p \int_{\partial \Omega \cap \{u_{p,\infty} = 1\}} d\mu.$$

As $u_{p,\infty}$ is an extremal and verifies $||u_{p,\infty}||_{L^{\infty}(\partial\Omega)} = 1$ we have that

$$\int_{\Omega} (|\nabla u_{p,\infty}|^p + |u_{p,\infty}|^p) \, dx = S_{p,\infty}^p.$$

Therefore $\mu(\partial\Omega\cap\{u_{p,\infty}=1\})=1$. This completes the proof.

4 Estimates for (p,q) near (N,∞)

In this section we find an upper bound for the vanishing rate of $S_{p,q}$ as (p,q) approaches (N,∞) , that is we prove Theorem 1.4.

Proof. If p < N, using Holder inequality we have that there exist a constant C such that

$$S_{p,q} \le CS_{N,q},$$
 for $p < N$.

Hence, we can assume that $p \geq N$. In order to obtain a upper bound on the decay rate, we suppose that $0 \in \partial\Omega$, $\alpha < (N-1)/N$, and we consider the function

$$u_{\varepsilon}(x) = \left(\ln(1 + \frac{1}{|x| + \varepsilon})\right)^{\alpha} \in W^{1,p}(\Omega).$$

Then we obtain a bound for $||u_{\varepsilon}||_{L^{q}(\partial\Omega)}$ as follows, given $M < ||u_{\varepsilon}||_{L^{\infty}(\partial\Omega)}$,

$$||u_{\varepsilon}||_{L^{q}(\partial\Omega)} \ge \left(\int_{\{x\in\partial\Omega: u_{\varepsilon}(x)\geq M\}} |u_{\varepsilon}|^{q}\right)^{1/q} \ge M|\{x\in\partial\Omega: u_{\varepsilon}(x)\geq M\}|^{1/q}.$$

On the other hand, let us compute

$$|\nabla u_{\varepsilon}|^p \le \alpha^p \left(\ln(1+\frac{1}{|x|+\varepsilon})\right)^{(\alpha-1)p} \left(\frac{1}{|x|+\varepsilon}\right)^p.$$

Hence,

$$\int_{\Omega} |\nabla u_{\varepsilon}|^{p} \leq C \int_{0}^{C} \frac{r^{N-1}}{(r+\varepsilon)^{p}} \left(\ln(1+\frac{1}{r+\varepsilon}) \right)^{(\alpha-1)p} dr$$

$$\leq C \int_{\varepsilon}^{C} w^{N-p-1} (\ln w)^{(\alpha-1)p} dw \leq \frac{C}{\varepsilon^{p-N}}.$$

Moreover,

$$\int_{\Omega} |u_{\varepsilon}|^p \le C.$$

Summing up, we obtain that

$$S_{p,\infty} \leq \frac{C}{\varepsilon^{p-N} M |\{x \in \partial \Omega : u_{\varepsilon}(x) \geq M\}|^{1/q}}.$$

If $q(p-N) \ge 1$, we take $M \sim 1/(p-N)^{\alpha}$ and $\varepsilon \sim e^{-1/(p-N)}$ and if $q(p-N) \le 1$, $M \sim q^{\alpha}$ and $\varepsilon \sim e^{-q}$. With this choice, we obtain

$$S_{p,q} \le C \max \left\{ (p-N)_+, \frac{1}{q} \right\}^{\alpha} \to 0, \quad \text{as } (p,q) \to (N,\infty).$$

This ends the proof.

5 Uniform bounds for $S_{p,q}$

In this section we prove our main result, Theorem 1.1.

Proof. From Theorem 1.4 we get that the best constant $S_{p,q}$ degenerates as $(p,q) \to (N,\infty)$, hence to obtain uniform bounds we have to stay far from that point.

A uniform upper bound for $S_{p,q}$ follows from (2.1), namely,

$$S_{p,q} \le \frac{|\Omega|^{1/p}}{|\partial\Omega|^{1/q}} \le C_2,\tag{5.1}$$

for $1 \leq p, q \leq \infty$. The lower bound is more subtle. First we observe that, by Hölder's inequality, we have

$$||u||_{L^{q_1}(\partial\Omega)} \le |\partial\Omega|^{\frac{1}{q_1} - \frac{1}{q_2}} ||u||_{L^{q_2}(\partial\Omega)}$$

for $1 \leq q_1 \leq q_2$, and

$$||u||_{W^{1,p_2}(\Omega)} \le |\Omega|^{\frac{1}{p_2} - \frac{1}{p_1}} ||u||_{W^{1,p_1}(\Omega)}$$

for $1 \le p_2 \le p_1$. Therefore, there exists a constant C independent of $1 \le p \le \infty$ and $1 \le q \le p^*$ such that

$$S_{p_1,q_1} \ge CS_{p_2,q_2},\tag{5.2}$$

for any $1 \leq q_1 \leq q_2$ and $1 \leq p_2 \leq p_1$. Inequality (5.2) says that in order to obtain lower bounds for $S_{p,q}$ we can enlarge q and decrease p. Therefore, in order to get uniform bounds for $S_{p,q}$ in sets A that are far from the point (N,∞) we can proceed as follows. From our assumptions on A we have that there exists s < N < r such that

 $A \subset \{(p,q) : p > r\} \cup \{(p,q) : 1 \le p \le r \text{ and } 1 \le q \le \min\{p^*, s^*\}\} = A_1 \cup A_2$, see Figure 1 below.

Figure 1.

From our previous estimate (5.2) we get that

$$S_{p,q} \ge CS_{r,\infty} \tag{5.3}$$

for $(p,q) \in A_1$, and

$$S_{p,q} \ge C \min_{1 \le p \le s} S_{p,p^*}$$

for $(p,q) \in A_2$. To estimate the value of the best Sobolev trace constant along the critical curve (p,p^*) with $1 \leq p \leq s$, we use interpolation theory, see [2], [3]. We have, for the trace operator T

$$T: W^{1,1}(\Omega) \to L^1(\partial\Omega), \qquad S_{1,1} \| Tu \|_{L^1(\partial\Omega)} \le \| u \|_{W^{1,1}(\Omega)},$$

and

$$T: W^{1,s}(\Omega) \to L^{s^*}(\partial \Omega), \qquad S_{s,s^*} ||Tu||_{L^{s^*}(\partial \Omega)} \le ||u||_{W^{1,s}(\Omega)}.$$

Therefore,

$$T: W^{1,p}(\Omega) \to L^q(\partial\Omega), \qquad S_{p,q} \|Tu\|_{L^q(\partial\Omega)} \le \|u\|_{W^{1,p}(\Omega)},$$

with

$$\frac{1}{p} = \theta + \frac{1-\theta}{s}, \qquad \frac{1}{q} = \theta + \frac{1-\theta}{s^*},$$
 (5.4)

and

$$S_{p,q} \ge S_{1,1}^{\theta} S_{s,s^*}^{1-\theta},$$

for any $0 < \theta < 1$. We observe that if (p, q) are given by (5.4) we have $q = p^*$ hence there exists a constant C that only depends on s such that

$$\min_{1 \le p \le s} S_{p,p^*} \ge \min\{S_{1,1}, S_{s,s^*}\} \ge C.$$

Hence we have a uniform lower bound

$$S_{p,q} \ge C,\tag{5.5}$$

for $(p,q) \in A_2$. From (5.1), (5.3) and (5.5) we conclude the desired result.

Acknowledgements. We want to thank R. Duran and P. Groisman for their valuable help.

References

- I. Babuska and J. Osborn, Eigenvalue Problems, Handbook of Numer. Anal., Vol. II (1991). North-Holland.
- [2] A. P. Calderon, Intermediate sapces and interpolation, Stud. Math. 24 (1964), 113-190.
- [3] C. P. Calderon and M. Milman, Interpolation of Sobolev spaces. The real method, Indiana Univ. Math. J. 32 (1983), 801-809.

- [4] C. Flores and M. del Pino, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Comm. Partial Differential Equations 26, no.11-12 (2001), 2189-2210.
- [5] J. F. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. **37** (1988), 687-698.
- [6] J. F. Escobar, Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate, Comm. Pure Appl. Math. 43 (1990), 857-883.
- [7] J. F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature, Ann. of Math. 136 (1992), 1-50.
- [8] J. Fernández Bonder and J.D. Rossi, Existence results for the p-Laplacian with non-linear boundary conditions, J. Math. Anal., Appl. 263 (2001), 195-223.
- [9] J. Fernández Bonder and J.D. Rossi, Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains, Comm. Pure Appl. Anal. 1, no.3 (2002), 359-378.
- [10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, NY (1983).
- [11] P. Juutinen, P. Lindqvist and J. J. Manfredi, The ∞ -eigenvalue problem, Arch. Rat. Mech. Anal. 148 (1999), 89-105.
- [12] S. Martinez and J.D. Rossi, Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition, Abst. Appl. Anal. 7 (5) (2002), 287-293.
- [13] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, **51** (1984), 126-150.
- [14] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (3) (1984), 191-202.