Hackathon Project Phases Template

Project Title:

Audio2Art

Team Name:

Sound Vision

Team Members:

- Ega Sai Charan
- Kethapally Abhishek
- Mohammad Abdus Sami
- Naspuri Aditya
- Mandapalli Shanmukha sai Srinivas

Phase-1: Brainstorming & Ideation

Objective:

Develop an advanced Al-powered tool that converts **audio prompts into visual representations** using transformer models and generative Al. Audio2Art bridges auditory and visual experiences, enabling users to generate images from voice descriptions effortlessly.

Key Points:

1. Problem Statement:

- Many users struggle to translate their imagination or verbal descriptions into visuals.
- Artists, educators, and designers often need quick Al-generated visual content from spoken

ideas.

 Current text-to-image Al models require precise textual input, limiting accessibility for users who prefer voice commands.

2. Proposed Solution:

- Audio2Art is an Al-powered application that processes voice descriptions and generates corresponding images using deep learning and generative Al models.
- The system leverages transformer-based models for speech-to-text conversion and a state-of-the-art image generation model for visual rendering.
- Users can describe an image in their own words, and the Al will interpret, process, and visualize the description accurately.

3. Target Users:

- Artists & Designers For quick concept visualizations.
- Educators & Students For learning through Al-generated images.
- Content Creators To generate visual assets from voice input.
- Accessibility Users For individuals who prefer or require voice-based interactions.

4. Expected Outcome:

- A fully functional Al-powered Audio-to-Image generation tool that takes audio prompts and converts them into high-quality visuals in real time.
- A seamless React/Next.js frontend with a Python-based backend, optimized for VS execution.
- Enhanced user experience with speech recognition, deep learning, and generative AI to create compelling visuals effortlessly.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the **Audio2Art** application.

Key Points:

1. Technical Requirements:

- Programming Language: Python
- Backend: Transformer-based models for speech-to-text processing and image generation
- Frontend: React/Next.js for an interactive and intuitive UI

- **Execution Environment:** vs code(Internal Environment)
- **Database:** Not required initially (real-time AI model execution)

2. Functional Requirements:

- Convert audio descriptions into text using a speech recognition model.
- Process the text prompt using generative AI to create visual representations.
- Provide a **user-friendly interface** for voice input and image generation.
- Offer customization options (e.g., image style, resolution, and artistic filters).
- Ensure fast response times for real-time audio-to-image conversion.

3. Constraints & Challenges:

- Ensuring accurate speech-to-text conversion for diverse accents and languages.
- Handling large model inference times efficiently on Google Colab.
- Optimizing image generation quality while maintaining fast processing.
- Managing cloud execution limits and ensuring smooth user experience.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the Audio2Art application.

Key Points:

1. System Architecture:

- User provides an audio description via the UI.
- Speech-to-text Al model converts the voice input into a text prompt.
- The **text prompt** is processed using a **generative AI model** for image creation.
- The **generated image** is displayed on the frontend, with options for customization.

2. User Flow:

- **Step 1:** User speaks a description of the desired image (e.g., "A futuristic city at sunset with flying cars").
- Step 2: The backend processes the audio using speech recognition and converts it into text.
- Step 3: The Al image generation model creates a visual based on the text prompt.
- Step 4: The frontend displays the generated image with download and customization options.

3. UI/UX Considerations:

- Minimalist, intuitive interface with a clear call to action for voice input.
- Real-time audio processing feedback to show the converted text before image generation.
- Customization controls for adjusting image style, resolution, and artistic filters.
- Dark & light mode options for enhanced accessibility and user experience.

Phase-4: Project Planning (Agile Methodologies)

Objective:

Break down development tasks for efficient completion.

Sprint	Task	Priority	Duratio n	Deadline	Assigned To	Dependencie s	Expected Outcome
Sprint 1	Environment Setup & Model Integration	High	6 hours (Day 1)	End of Day 1	Mandapalli Shanmuka Sai Srinivas	Python, Speech-to-T ext & Image Gen Models	Al models integrated and working
Sprint 1	Frontend UI Development	Medium	2 hours (Day 1)	End of Day 1	Kethapally Abhishek	API response format finalized	Basic UI with audio input & display setup
Sprint 2	Audio Processing & Image Generation	High	3 hours (Day 2)	Mid-Day 2	Ega Sai Charan	Speech-to-Te xt & Image Gen models ready	Functional pipeline for audio-to-image
Sprint 2	Error Handling & Debugging	High	1.5 hours (Day 2)	Mid-Day 2	Mohammad Abdus Sami & Naspuri Aditya	API logs, UI inputs	Stable and optimized Al pipeline
Sprint 3	Testing & UI Enhancements	Medium	1.5 hours (Day 2)	Mid-Day 2	Naspuri Aditya	API response, UI layout completed	Responsive UI, smoother user experience
Sprint 3	Final Presentation & Deployment	Low	1 hour (Day 2)	End of Day 2	Entire Team	Working prototype	Demo-ready project

Sprint Planning with Priorities

Sprint 1 – Setup & Integration (Day 1)

- (High Priority) Set up the development environment & install dependencies.
- (High Priority) Integrate speech-to-text AI and image generation model.
- (Medium Priority) Build a basic UI with audio input fields and image display section.

Sprint 2 – Core Features & Debugging (Day 2)

- (High Priority) Implement audio processing pipeline (convert speech to text & generate images).
- (High Priority) Debug Al processing errors & optimize model response times.

Sprint 3 – Testing, Enhancements & Submission (Day 2)

- (Medium Priority) Test Al model outputs, refine UI, & fix UI-related bugs.
- (Low Priority) Final demo preparation & project deployment.

Phase-5: Project Development

Objective:

Implement the core features of the Audio2Art application.

Key Points:

1. Technology Stack Used:

- Frontend: React/Next.js
- Backend: Python-based Speech-to-Text & Image Generation Models
- Execution Environment: VS Code (Local Development with Virtual Environment)
- Programming Language: Python

2. Development Process:

- Implement speech recognition model for audio-to-text conversion.
- Integrate generative Al model to convert text descriptions into images.
- Develop a user-friendly UI with audio input and image display functionality.

- Optimize **real-time processing** for seamless user experience.
- Utilize Git for version control and team collaboration.

3. Challenges & Fixes:

- Challenge: Slow image generation times.
 - Fix: Optimize model inference using local GPU acceleration (CUDA/TensorFlow optimizations).
- Challenge: Inconsistent speech recognition for different accents.
 - **Fix:** Fine-tune speech-to-text preprocessing to improve accuracy.
- Challenge: High computational cost of AI model execution.
 - **Fix:** Implement **batch processing and result caching** to minimize redundant computations.
- Challenge: Managing dependencies across different team members' setups.
 - Fix: Use virtual environments (venv or conda) and a requirements.txt file for consistent installations.

Phase-6: Functional & Performance Testing

Objective:

Ensure that the **Audio2Art** application works as expected and delivers optimal performance.

Test Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
TC-00 1	Functional Testing	Convert audio description: "A sunset over the ocean with dolphins."	A relevant image should be generated.	✓ Passed	Ega Sai Charan
TC-00 2	Functional Testing	Convert complex audio input: "A futuristic city with neon lights."	Al should interpret and generate the image correctly.	X Failed - Inaccurate image generation	Kethapally Abhishek

TC-00 3	Performan ce Testing	Al model should generate an image in under 5 seconds.	Image should be generated quickly.	Failed - Processing too slow	Mohammad Abdus Sami
TC-00 4	Bug Fixes & Improveme nts	Fix inaccuracies in speech-to-text conversion.	Improved transcription accuracy.	V Fixed	Naspuri Adithya
TC-00 5	Final Validation	Ensure UI is responsive across devices.	UI should work on mobile & desktop.	➤ Failed - UI I on mobile Tester	•
TC-00 6	Deploym ent Testing	Post the web.	App should be accessible online and version-controlled.	Deployed on Git	Entire Team

Final Submission

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link
- 4. Presentation