Let \mathcal{M} be an infinite σ -algebra. Then show the following:

a. \mathcal{M} contains an infinite sequence of disjoint sets.

b. card $(\mathcal{M}) \geq \mathfrak{c}$.

Solution. a. Since \mathcal{M} is infinite, there exists a countable collection $\{E_n\}_1^{\infty} \subset \mathcal{M}$ comprised of distinct sets. If this collection is already pairwise disjoint we are done. If $F_k = E_k \setminus \left(\bigcup_{n=1}^{k-1} E_n\right) \neq \emptyset$ for all $k \geq 1$ (it's fine if $E_1 = F_1 = \emptyset$), then we are also done, as the collection $\{F_k\}$ will be a subset of \mathcal{M} and pairwise disjoint. So suppose there is at least one such F_k with $k \geq 1$ which is empty, and that $E_1 \neq \emptyset$. Note that $F_2 = E_1 \setminus E_2$ is never empty, since the E_n are distinct. We prove that $F_k = \emptyset \implies F_{k+1} \neq \emptyset$ for all k. If

$$F_k = E_k \setminus \left(\bigcup_{n=1}^{k-1} E_n\right) = \emptyset,$$

then $E_k = \bigcup_{n=1}^{k-1} E_n$. Then if

$$F_{k+1} = E_{k+1} \setminus \left(\bigcup_{n=1}^k E_n\right) = E_{k+1} \setminus \left(E_k \cup \bigcup_{n=1}^{k-1} E_n\right) = E_{k+1} \setminus E_k = \emptyset,$$

then $E_{k+1} = E_k$, contradicting the distinctness of the collection. Now, if there are only finitely many non-empty F_k , then there exists $K \in \mathbb{N}$ so that $F_k = \emptyset$ for all $k \geq K$. But this is a contradiction since there cannot be consecutive empty F_k 's. Thus there is a countably infinite sub-collection $\{F_{k_j}\}_{j=1}^{\infty}$ of disjoint sets. Finally, each $F_k \in \mathcal{M}$ since σ -algebras are closed under finite unions and set differences.

b. Suppose \mathcal{M} were countable. Then suppose $\mathcal{M} = \{E_n\}_1^{\infty}$ is a distinct labelling of all the elements of \mathcal{M} . If all the E_n are disjoint, then $E_1 \cup E_2 \in \mathcal{M}$ and is not equal to any E_n for $n \geq 3$. This contradicts that we have labelled all elements of \mathcal{M} . If not all the elements of E_n are disjoint, then by part \mathbf{a} ., we can construct a disjoint sequence $\{F_k\}_1^{\infty}$ from the E_n 's. At least one of these F_k 's must be distinct from all the E_n 's as otherwise the original labelling would be disjoint and we are in the first case. Thus the original labelling cannot be complete. So \mathcal{M} is uncountable.