Name + Kanan Singh Brist See 2) Koll No 2 14 lutoriALS - 1. 2). A Symptotic Notations: Asymptotic Notations are the mathematical notations used to describe the running time of an algorithm when the imput tends towards a particular of a particular Value or a iliniting Value. dig 0, dig 0, dig 2 ane different types of asympototic notations i = 4 i = 8 2 K (K timers). form Valuer. 80 2K = n log 2k = log n K log 2 = log n K = logan Hence, the time lompterity is O(logn).

Let
$$n = n-1$$
 $T(n-1) = 3T(n-1)$
 $T(n-1) = 3T(n-2)$
 $T(n) = 3 [3T(n-3)] - (3)$

Let $n = n-1$
 $T(n) = 3 [3.37(n-3)] - (3)$

So, from above $3 = 2^{n}$ is we should ablosh a Relate.

 $T(n) = 3^{k}T(n-k)$

Let $n-k=0$
 $n=k$
 $T(n) = 3^{k}T(0)$

Live $T(0) = 4$

So time lomplishly to $3^{m} = 0(3^{m})$
 $T(n) = 2T(n-1) - 1$
 $T(n-1) = 2T(n-2) - 1$

T(n) = 3T(n-1)

T(m) = 2* [(n-k) - \(\) + \(\) 2 \(\) + 2 \(\) + 2 \(\) + 2 \(\) + 2 \(\) + 2 \(\) + 2 \(\) = 2 \(\) \(

5). Here Si=Si-1+i

the value of i incuesses they I for each Iteration

the Value lantagned in 's' at the iteration

is the Sum of the first i positive it sutegers.

If 'k' is the total no, of iterations touren by trogram

then loop like

() () () () () () () ()

 $\frac{1+2+3+--K}{2} > n$

Hence the time louplenity is O(JIN)

T(+1) = 8 T (+-3) -7

So, (m) x(logn) x (logn) as Constante Can be squosed.

Here for each value of it Itrevater & check the Candition for K. Loughezity in Bre
(n. logn. logn) O(n log²n) n n timen (n) (n) times ture n=n-3 (M-3) (M-3) 0 (n'+9-6n) = O(nr) is the time Complexity.

for (j=1; j <= m; j=j+i) pn'at (" * "); i = 1 i = 2 j = 2 j = 2 j = 3 j =i = 3, j = 4, 5, 6 = - (n-1) i = 4, j = (n+1) = - (n-1)for each Value of i, n Hiterator through (n+) times for n (n-1) time. = (n^-n) = 0 (n²) Henre the thur Complexity to O(n logn).