P. Maurer ENS Rennes

Leçon 161 : Distances et isométries d'un espace affine euclidien

Devs:

- Table de S^4 et isométries du cube
- Le groupe $SO_3(\mathbb{R})$ est simple

Référence :

- 1. Audin, Géométrie
- 2. Combes, Algèbre et géométrie
- 3. Perrin, Cours d'algèbre
- 4. Gourdon, Algèbre
- 5. Caldero, H2G2
- 6. Peyré, L'algèbre discrète de la transformée de Fourier

1 Espaces affines euclidiens. Notion de distance.

1.1 Applications affines, généralités.

 $\mathcal E$ et $\mathcal F$ désignent des espaces affines, dirigés respectivement par E et par F des espaces vectoriels sur un corps k.

Définition 1. Une application $\varphi: \mathcal{E} \to \mathcal{F}$ est dite affine si il existe $O \in \mathcal{E}$ et une application linéaire $f \in \mathcal{L}(E, F)$ tel que :

$$\forall M \in \mathcal{E} \quad \varphi(\overrightarrow{OM}) = \overrightarrow{\varphi(O)\varphi(M)}$$

On dit que f est la partie linéaire de φ , et on note $f =: \vec{\varphi}$.

Proposition 2. Soit \mathcal{H} un espace affine dirigé par \mathcal{H} . Si $f: \mathcal{E} \to \mathcal{F}$ est affine et $g: \mathcal{F} \to \mathcal{H}$ est affine, alors leur composée $g \circ f: \mathcal{E} \to \mathcal{H}$ est encore affine, de partie linéaire $\overrightarrow{fog} = \overrightarrow{f} \circ \overrightarrow{g}$. Une application affine φ est bijective si et seulement si sa partie linéaire $\overrightarrow{\varphi}$ l'est. Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $\mathrm{GA}(\mathcal{E})$.

Théorème 3. L'application $\begin{cases} GA(\mathcal{E}) \to GL(E) \\ \varphi \mapsto \vec{\varphi} \end{cases}$ est un morphisme surjectif de groupes. Son noyau est le groupe des translations de \mathcal{E} , isomorphe au groupe (E, +).

Théorème 4. Soit $f \in \mathcal{L}(E, F)$. Pour tout couple $(O, O') \in \mathcal{E} \times \mathcal{F}$, il existe une unique application affine $\varphi \colon \mathcal{E} \to \mathcal{F}$ qui envoie O sur O' et qui vérifie $\vec{\varphi} = f$.

Corollaire 5. Soit $O \in \mathcal{E}$. Alors toute application affine $\varphi \colon \mathcal{E} \to \mathcal{E}$ s'écrit de manière unique sous la forme $\varphi = t_u \circ \psi$, où t_u est une translation de vecteur $u \in E$ et ψ est une application affine fixant O.

Théorème 6. Soit $\varphi: \mathcal{E} \to \mathcal{E}$ une application affine. On suppose que $E = \operatorname{Ker}(\vec{\varphi} - \operatorname{Id}) \oplus \operatorname{Im}(\vec{\varphi} - \operatorname{Id})$. Alors il existe un unique $v \in E$ et une unique application affine $\psi: \mathcal{E} \to \mathcal{E}$ avec un point fixe tels que :

$$\vec{\varphi}(v) = v \quad et \quad \varphi = t_v \circ \psi$$

De plus, t_v et ψ commutent.

1.2 Isométries affines

 $(E, \|.\|_E)$ et $(F, \|.\|_F)$ désignent des espaces euclidiens.

Définition 7. On appelle espace affine euclidien sur l'espace euclidien $(E, ||.||_E)$ un espace affine \mathcal{E} dirigé par E.

 \mathcal{E} est muni d'une distance donnée par $d_{\mathcal{E}}(A,B) = \|\overrightarrow{AB}\|_{E}$ pour tout $A,B \in \mathcal{E}$.

Dorénavent, $\mathcal E$ et $\mathcal F$ désignent des espaces affines euclidiens, dirigés respectivement par E et par F.

Définition 8.

On dit qu'une application $f: E \to F$ est une isométrie vectorielle si $||f(x)||_F = ||x||_E$ pour tout $x \in E$. On note O(E) l'ensemble des isométries vectorielles de $E \to E$.

On dit qu'une application $f: \mathcal{E} \to \mathcal{F}$ est une isométrie affine si $\|\varphi(A)\varphi(B)\|_F = \|\overrightarrow{AB}\|_E$ pour tout $A, B \in \mathcal{E}$. On note Isom (\mathcal{E}) l'ensemble des isométries affines de $\mathcal{E} \to \mathcal{E}$.

Exemple 9. Une translation est une isométrie affine.

Une homothétie est une isométrie affine si et seulement si son rapport est 1 ou -1. Une symétrie est une isométrie si et seulement si c'est une symétrie orthogonale.

Proposition 10. O(E) est un sous-groupe de GL(E), et Isom(E) est un sous-groupe de GA(E).

Si φ est une isométrie vectorielle, sont déterminant vaut -1 ou 1.

Proposition 11. Soit $\varphi \colon \mathcal{E} \to \mathcal{E}$ une application qui préserve les distances. Alors $\varphi \in \mathrm{Isom}(\mathcal{E})$.

Définition 12. On appelle groupe spécial orthogonal de E, et on note SO(E), le noyau du morphisme det: $E \to \{-1,1\}$. C'est un sous-groupe distingué de O(E).

On appelle sous-groupe des déplacements de \mathcal{E} , et on note Isom⁺(\mathcal{E}) le noyau du morphisme det: $\mathcal{E} \to \{-1,1\}$ défini par $\det(\varphi) = \det(\vec{\varphi})$. C'est un sous-groupe distingué de Isom(\mathcal{E}).

2 Section 2

Une isométrie affine qui n'est pas un déplacement est appelée un anti-déplacement.

1.3 Distance. Matrices et déterminants de GRAM.

E désigne un espace préhilbertien (réel ou complexe) de dimension $n \in \mathbb{N}^*$.

Définition 13. On appelle matrice de Gram de $(x_1, \ldots, x_n) \in E^n$ la matrice $(\langle x_i, x_j \rangle)_{1 \leq i,j \leq n}$ et déterminant de Gram le déterminant de cette matrice, noté $G(x_1, \ldots, x_n)$.

Exemple 14. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. On muni $L^2(\Omega, \mathcal{F}, \mathbb{P})$ du produit scalaire $\langle f, g \rangle = \mathbb{E}[fg]$.

Si $X: L^2(\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ est un vecteur aléatoire, sa matrice de variance-covariance, donnée par $(C_X)_{ij} = \text{Cov}(X_i, X_j) = \langle X_i - \mathbb{E}[X_i], X_j - \mathbb{E}[X_j] \rangle$ est une matrice de Gram.

Son déterminant de Gram est appelé variance généralisée du vecteur X.

Proposition 15. Toute matrice de Gram est hermitienne positive. Réciproquement, toute matrice hermitienne positive est une matrice de Gram. De plus, la matrice de Gram de n vecteurs x_1, \ldots, x_n est définie si et seulement si (x_1, \ldots, x_n) est une famille libre.

Théorème 16. Soit $V \subset E$ un sous-espace vectoriel, muni d'une base (e_1, \ldots, e_k) , et $x \in E$. Alors :

$$d^2 = \frac{G(e_1, \dots, e_k, x)}{G(e_1, \dots, e_k)}$$
 où $d = \inf_{v \in V} ||x - v||$

Application 17. Soit $\varphi: \mathbb{R}^n \to \mathbb{R}$ donnée par $\varphi(a_1, ..., a_n) = \int_0^1 (1 + a_1 x + \dots + a_n x^n)^2 dx$. Alors φ admet un minimum μ , atteint en un unique point de \mathbb{R}^n et $\mu = \frac{1}{(n+1)^2}$.

2 Etude du groupe orthogonal

On se place dans l'espace euclidien \mathbb{R}^n , muni de son produit scalaire standard.

2.1 Générateurs et réduction

Définition 18. On note $O_n(\mathbb{R})$ l'ensemble des matrices orthogonales : ce sont les matrices carrées de taille n pour lesquelles l'endomorphisme de $\mathcal{L}(\mathbb{R}^n)$ canoniquement associé est une isométrie vectorielle de $O(\mathbb{R}^n)$.

On note $SO_n(\mathbb{R})$ le noyau de det dans $O_n(\mathbb{R})$: ce sont les matrices carrées de taille n pour lesquelles l'endomorphisme canoniquement associé est un élément de $SO(\mathbb{R}^n)$.

Proposition 19. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On a $A \in O_n(\mathbb{R}) \iff AA^T = I_n$.

Proposition 20. Soit $A \in \mathcal{M}_n(\mathbb{R})$. $A \in \mathcal{O}_n(\mathbb{R})$ si et seulement si l'endomorphisme canoniquement associé à A transforme toute base orthonormée de \mathbb{R}^n en base orthonormée de \mathbb{R}^n .

Théorème 21. Le centre de $O_n(\mathbb{R})$ est $\mathcal{Z} = \{I_n, -I_n\}$. En particulier, pour $n \geq 2$, $O_n(\mathbb{R})$ n'est pas commutatif. Pour $n \geq 3$, le centre de $SO_n(\mathbb{R})$ est $\mathcal{Z} \cap SO_n(\mathbb{R})$, c'est-à-dire $\{I_n\}$ si n est impair, $\{I_n, -I_n\}$ si n est pair.

Proposition 22. $O_n(\mathbb{R})$ est engendré par les réflexions orthogonales. Plus précisément, si $A \in O_n(\mathbb{R})$, alors A est produit d'au moins n réflexions.

Proposition 23. Pour $n \ge 3$, $SO_n(\mathbb{R})$ est engendré par les renversements, plus précisément, tout élément $A \in SO_n(\mathbb{R})$ est produit d'au plus n renversements.

Proposition 24. Les valeurs propres d'une matrice orthogonale sont de module 1.

Théorème 25. (Réduction des isométries vectorielles)

Soit f un endomorphisme orthogonal. Il existe une base orthonormale dans laquelle la matrice de f est :

$$\begin{pmatrix} R(\theta_1) & & & & \\ & \ddots & & & (0) & \\ & & R(\theta_r) & & \\ & & & \varepsilon_1 & \\ & & & (0) & & \ddots \\ & & & & \varepsilon_s \end{pmatrix}$$

$$O\grave{u}\ R(\theta_i) = \left(\begin{array}{cc} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{array}\right)\ et\ \varepsilon_i \in \{-1,1\},\ avec\ \theta_i \in \mathbb{R}\ et\ \theta_i \not\equiv 0\ [\pi].$$

2.2 Topologie

Théorème 26. $O_n(\mathbb{R})$ est compact dans $\mathcal{M}_n(\mathbb{R})$. Plus précisément, c'est un sous-groupe compact maximal de $GL_n(\mathbb{R})$.

Proposition 27. Le groupe $O_n(\mathbb{R})$ a deux composantes connexes (par arc) : $SO_n(\mathbb{R})$ et $O_n(\mathbb{R}) \setminus SO_n(\mathbb{R})$. En particulier, $SO_n(\mathbb{R})$ est connexe.

Développement 1 :

Théorème 28. Le groupe $SO_3(\mathbb{R})$ est simple.

Proposition 29. On a un homéomorphisme $O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R}) \simeq GL_n(\mathbb{R})$, donné par la multiplication des matrices.

Isométries d'un solide. Applications.

3 Classification des isométries

3.1 Généralités

 \mathcal{E} est un espace affine euclidien, dirigé par l'espace vectoriel euclidien E.

Théorème 30. Soit $v \in O(E)$. Alors $Ker(v - Id_E) = (Im(v - Id_E))^{\perp}$. En particulier, $E = Ker(v - Id_E) \oplus Im(v - Id_E)$.

Corollaire 31. Soit $f \in \text{Isom}(\mathcal{E})$. Il existe une isométrie $g \in \text{Isom}(\mathcal{E})$ admettant un point fixe, et $x \in \text{Ker}(v - \text{Id}_E)$ uniques, tels que $f = t_x \circ g$. De plus, g commute avec t_x . L'expression (unique) $f = t_x \circ g$ de l'isométrie f est appelé la forme canonique de f.

Application 32. Soit $f \in \text{Isom}(\mathcal{E})$. On suppose qu'il existe $n \ge 2$ tel que f^n ait un point fixe. Alors f a un point fixe.

3.2 Isométries du plan

Définition 33. Soit D une droite affine de E. On appelle symétrie glissée d'axe D une application de la forme $f = t_u \circ s_D$ où u est un vecteur directeur de D, et s_D est la symétrie orthogonale d'axe D.

Proposition 34. Les déplacements du plan sont constitués des translations et des rotations. Un déplacement a un point fixe si et seulement si c'est une rotation.

Proposition 35. Les antidéplacements du plan sont constitués des symétries orthogonales par rapport à une droite et des symétries glissées. Un antidéplacement a un point fixe si et seulement si c'est une symétrie orthogonale par rapport à une droite.

En annexe, on donne le tableau récapitulatif des isométries du plan.

3.3 Isométries de l'esapce

Définition 36. Soit \mathcal{P} un plan de l'espace passant par $A \in \mathbb{R}^3$, dirigé par $P \subset \mathbb{R}^3$, de base (u, v), complétée en (u, v, w) base orthonormée de \mathbb{R}^3 .

Pour $M \in \mathcal{E}$, $\overrightarrow{AM} = xu + yv + zw$. On défini alors la symétrie orthogonale $s_{\mathcal{P}}$ par rapport à \mathcal{P} par $\overrightarrow{As_{\mathcal{P}}(M)} := xu + yv - zw$.

 $s_{\mathcal{P}}$ est une application affine, et sa partie linéaire a pour matrice :

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

Théorème 37. Soit \mathcal{P} et \mathcal{P}' deux plans de l'espace. Alors la composée $s_{\mathcal{P}} \circ s_{\mathcal{P}'}$ est :

- Une translation si \mathcal{P} et \mathcal{P}' sont parallèles.
- Une rotation si $\mathcal{P} \cap \mathcal{P}'$ est une droite.

Remarque 38. Réciproquement, toute rotation de l'espace peut s'écrire comme composée de deux symétries orthogonales.

Définition 39. On appelle vissage toute isométrie de l'espace de la forme :

$$f = r_D \circ t_u$$

Où r_D est une rotation d'axe une droite D, et t_u une translation de vecteur u.

Soit $f \in \text{Isom}(\mathbb{R}^3)$. On raisonne sur la dimension de Ker(f - Id):

Proposition 40. Si dim(Ker(f - Id)) = 3, f est une translation.

Proposition 41. Si dim(Ker(f - Id)) = 2, f est:

- Une symétrie orthogonale par rapport à un plan s_P dirigé par P = Ker(f Id) si f a un point fixe.
- Une symétrie glissée si f n'a pas de point fixe.

Proposition 42. Si dim(Ker(f - Id)) = 1, f est:

- Une rotation d'axe D = Ker(f Id) si f a un point fixe.
- Un vissage si f n'a pas de point fixe.

Proposition 43. $Si \dim(\text{Ker}(f-\text{Id})) = 0$, f est une antirotation, i.e la composée d'une rotation d'axe une droite et d'une symétrie orthogonale par rapport à un plan.

4 Isométries d'un solide. Applications.

Définition 44. Soit X une partie de \mathcal{E} . Le groupe d'isométries de X, note $\mathrm{Is}(X)$, est constitué des isométries affines qui laissent X invariant. C'est un sous-groupe de $\mathrm{GA}(\mathcal{E})$. Le groupe des déplacements de X, noté $\mathrm{Is}^+(X)$, est le sous-groupe des appications de $\mathrm{Is}(X)$ dont le déterminant de la partie linéaire vaut 1.

Section 5

Exemple 45. On considère $\mathcal{E} = \mathbb{R}^2$ en tant qu'espace affine euclidien.

Le groupe diédral $D_n = \{1, R, \dots, R^{n-1}, S, SR, \dots, SR^{n-1}\}$ est le groupe d'isométries d'un polygône régulier à n côtés.

Lemme 46. Le groupe d'isométries d'un ensemble convexe laisse stable ses points extrémaux.

Développement 2 :

Théorème 47. On considère $\mathcal{E} = \mathbb{R}^3$ en tant qu'espace affine euclidien.

Le groupe d'isométries du tétraèdre Δ_4 est isomorphe à \mathcal{S}_4 , et son groupe des déplacements est isomorphe à \mathcal{A}_4

Le groupe d'isométries du cube C_6 est isomorphe au produit $\mathcal{S}_4 \times \mathbb{Z}/2\mathbb{Z}$, et son groupe des déplacements est isomorphe à \mathcal{S}_4 .

Application 48. La table de caractère de S_4 est donnée par :

	[1]	[2]	[2, 2]	[3]	[4]
id	1	1	1	1	1
ε	1	-1	1	1	-1
χ_S	3	1	-1	0	-1
χ_C	3	-1	-1	0	1
χ_V	2	0	2	0	-1

5 Annexe

5.1 Isométries du plan

f (réduite)	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	$ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 0 $		
			Point fixe	Sans point fixe
Classe	Translation	Rotation	Symétrie orthogonale	Symétrie glissée
Ensemble invariant	Ø	Un point	Une droite	Ø

5.2 Isométries de l'espace

$\dim(\operatorname{Ker}(f-\operatorname{Id}))$	Nature de φ				
0	$\varphi = s_{\mathcal{P}} \circ r_{\mathcal{D}}$				
1	Point fixe	e Sans point fixe : $\varphi = t_{\vec{u}} \circ \psi$			
	$\varphi = r_{D,\theta}$	$\vec{u} \in D$	$\vec{u} \notin D$		
		$\varphi = t_{\vec{u}} \circ r_D$	$\varphi = t_{\vec{u'}} \circ r_D$		
2	Point fixe	Sans point fixe : $\varphi = t_{\vec{u}} \circ \psi$			
	$s_{\mathcal{P}}$	$\vec{u} \in P^\perp$	$\vec{u} \notin P^{\perp}$		
		$\varphi = s_{\mathcal{P}}$	$\varphi = t_{\vec{u'}} \circ s_{\mathcal{P''}}$		
3	$\varphi = t_{\vec{u}}$	•			