MATH411-22S2 Topics in Algebra Homework 3:

- **3.1.** Let E/F be a Galois extension of fields and $f(x) \in F[x]$ be an irreducible polynomial. Prove that Gal(E/F) acts transitively on the set of irreducible factors of f(x) in E[x].
- **3.2.** Let E/F be an extension of fields. Show that for any subgroup $H < \operatorname{Aut}(E|F)$ the fixed subset E^H is a field.
- **3.3.** Suppose that E/F is an algebraic extension, $\theta \in E$ and $g(x) \in F[x]$ is the minimal polynomial of θ . Show that any $\sigma \in \operatorname{Aut}(E|F)$ must send θ to a root of g(x) in E. Deduce that there is a group action of $\operatorname{Gal}(f)$ on the set of roots of f in its splitting field.
- **3.4.** Let $f \in F[x]$ and E/F the splitting field of F and suppose f factors over E as $f = (x \theta_1) \cdots (x \theta_n)$. Show that the homomorphism $Gal(f) \hookrightarrow Sym\{\theta_1, \ldots, \theta_n\}$ describing the action of Gal(f) on its roots $\theta_1, \ldots, \theta_n$ is injective.
- **3.5.** The splitting field of $f = x^3 2$ over \mathbb{Q} is $E = \mathbb{Q}(\theta, \eta)$ where θ is a cube root of 2 and η is a primitive cube root of unity. Let $\phi \in \operatorname{Gal}(f) = \operatorname{Aut}(E|F)$ be the automorphism whose action on the roots of f is given by $\phi(\eta^i\theta) = \eta^{i+1}\theta$. Write down the matrix for the \mathbb{Q} -linear map $\phi : E \to E$ with respect to the ordered basis $(1, \theta, \theta^2, \eta, \eta\theta, \eta\theta^2)$ of E over \mathbb{Q} . Find the 1-eigenspace of this matrix.
- **3.6.** Construct a splitting field for x^5-2 over \mathbb{Q} . What is its degree over \mathbb{Q} ? How many quadratic subfields does it contain (i.e., subfields that have degree 2 over \mathbb{Q})?
- **3.7.** Let E be a finite Galois extension of F with Galois group G, and let $L = E^H$ be the fixed field of a subgroup H < G. Show that $\operatorname{Aut}(L|F) \simeq N/H$ where N is the normalizer of H in G, i.e., $N = \{g \in G : gHg^{-1} = H\}$.