Biomass_Regression_All_Data_two_vars

May 24, 2017

This script builds a regression model to predict biomass based on lidar metrics. Data points at all scan angles are used.

```
In [1]: %matplotlib inline
    import pandas, statsmodels, numpy, math, scipy.stats
    from matplotlib import pyplot as plt
    #from __future__ import division
    from numpy import log as ln
    import warnings
    warnings.filterwarnings('ignore')
```

Data Prep Notes: The clipped las files were imported into ArcMap and converted to point shapefiles. The point shapefiles were each joined to the plot discs to add columns for plot ID and biomass. The joined points were then exported to .csvs in the directory CSVs_ClippedAndJoined. The order of fields should run: x, y, z(height), angle, plotID, biomass. Points from discs with no associated biomass were dropped.

```
In [2]: firstfile = r"D:\Users\jkelly\CSVs_ClippedAndJoined\first_all_clipped_and_;
        first = pandas.read_csv(firstfile, header=0)
        lastfile = r"D:\Users\jkelly\CSVs_ClippedAndJoined\last_all_clipped_and_jo
        last = pandas.read_csv(lastfile, header=0)
        groundfile = r"D:\Users\jkelly\\CSVs_ClippedAndJoined\Grounds_clipped_and_;
        ground = pandas.read_csv(groundfile, header=0)
In [3]: first.columns=['X1','Y1','X','Y','height','angle','PlotID','biomass']
        del first['X1']
        del first['Y1']
        last.columns=['X1','Y1','X','Y','height','angle','PlotID','biomass']
        del last['X1']
        del last['Y1']
        ground.columns=['X1','Y1','X','Y','height','angle','PlotID','biomass']
        del ground['X1']
        del ground['Y1']
In [4]: first=first.sort('PlotID')
        last=last.sort('PlotID')
        ground=ground.sort('PlotID')
```

The following function produces a series of metrics summarizing the lidar height measurements on each inventory plot for first, last and ground returns: mean, coefficient of variation, 10th, 50th and 90th deciles for height and density fraction, following Gobakken et al, 2012.

```
In [5]: def heightstats(SERIES, I):
            # function to compute "cloud metrics" on a height or elevation series
            totalechoes = len(SERIES)
            MEAN = numpy.mean(SERIES)
            CV = scipy.stats.variation(SERIES)
            #coeff of var (ratio of biased standard dev to mean)
            H10 = numpy.percentile(SERIES, 10)
            H10series = SERIES[SERIES > H10]
            H10count = len(H10series)
            D10 = H10count/totalechoes
            # "canopy density" = the proportion of laser
            # hits above fraction to total # of echoes
            # described in Gobakken et al. 2012, p. 447
            H50 = numpy.percentile(SERIES, 50)
            H50series = SERIES[SERIES > H50]
            H50count = len(H50series)
            D50 = H50count/totalechoes
            H90 = numpy.percentile(SERIES, 90)
            H90series = SERIES[SERIES > H90]
            H90count = len(H90series)
            D90 = H90count/totalechoes
            outlist = [I, MEAN, CV, H10, H50, H90, D10, D50, D90]
            return(outlist)
```

The next section builds a dataframe associating each plot with its biomass, elevation, and computed summary statistics. The plot-level biomass numbers given in the data are in units of Mg/ha, which are here converted to the actual mass on a the 0.04 ha plots.

```
# ^^^ gets rid of empty height series
                # fetch "cloud metrics"
               Last_stats = heightstats(Last_heightseries, i)
               First stats = heightstats(First heightseries, i)
               if len(elevseries) > 0:
                   Gmean = numpy.mean(elevseries)
               else: Gmean = -1
                # build a list for next row in dataframe
               stats = Last\_stats
               for item in First_stats:
                   stats.append(item)
               b = numpy.mean(biomass)
               stats.append(b)
               stats.append(Gmean)
               if b>0: heightlist.append(stats) #gets rid of NaN
       heightarray = numpy.array(heightlist)
                                                # build the dataframe
       df = pandas.DataFrame(heightarray)
       columnlist = ['PlotID', 'L_mean', 'L_cv', 'L_h10', 'L_h50',
                     'L_h90', 'L_d10', 'L_d50', 'L_d90', 'PlotID_again',
                     'F_mean', 'F_cv', 'F_h10', 'F_h50', 'F_h90', 'F_d10',
                     'F_d50', 'F_d90', 'Biomass', 'elev']
       df.columns = columnlist
        # delete duplicate columns
       del df['PlotID_again']
In [7]: df.describe()
Out [7]:
                  PlotID
                                            L_cv
                                                       L_h10
                                                                   L_h50
                                                                               L_{-}
                              L_mean
              154.000000 154.000000 154.000000 154.000000 154.000000 154.0000
       count
                           2.882272
                                       1.508728
                                                    0.002792
                                                               0.931591
                                                                            8.772
       mean
              93.116883
       std
               50.724934
                            1.713424
                                        0.433447
                                                    0.012153
                                                                1.381876
                                                                            4.3586
                           0.206482
                                        0.666363
                                                    0.000000
                                                               0.040000
                                                                            0.2400
       min
                2.000000
       2.5%
               55.250000
                           1.588867
                                        1.202409
                                                  0.000000
                                                               0.140000
                                                                            5.4925
       50%
              96.000000
                           2.550631
                                       1.426635
                                                    0.000000
                                                               0.270000
                                                                           8.3850
       75%
                                        1.715680
                                                                           11.7165
              135.750000
                            4.170365
                                                    0.000000
                                                               0.993750
             178.000000
                           7.915523
                                        2.857065
                                                    0.120000
                                                                6.380000
                                                                           19.8040
       max
                               L_d50
                                           L_d90
                                                                               F_h
                   L_d10
                                                      F_mean
                                                                    F_cv
              154.000000
                         154.000000
                                      154.000000 154.000000 154.000000
                                                                          154.0000
       count
                                                                            3.7304
              0.842814
                          0.496161
                                      0.100046
       mean
                                                   11.446377
                                                                0.504331
```

if len(Last_heightseries)>=1 and len(First_heightseries)>=1:

0.039673	0.005197	0.000534	3.564578	0.289637	4.2103
0.729089	0.468468	0.098137	1.220464	0.166920	0.0000
0.820128	0.494567	0.099872	9.087133	0.348159	0.1017
0.847703	0.498274	0.100080	10.943383	0.431127	1.9790
0.873282	0.499613	0.100323	13.433398	0.584139	6.4945
0.899889	0.500000	0.102804	21.774059	2.199853	16.2100
F_h50	F_h90	F_d10	F_d50	F_d90	Bioma
154.000000	154.000000	154.000000	154.000000	154.000000	154.0000
12.367338	17.210695	0.896085	0.499204	0.099676	5.7529
4.041083	3.812580	0.013928	0.002669	0.000431	2.8232
0.070000	4.961000	0.789216	0.468215	0.097949	0.9120
9.820000	14.464000	0.898350	0.499200	0.099473	3.6420
12.105000	16.930000	0.899754	0.499585	0.099782	5.1960
15.020000	19.537500	0.899880	0.499881	0.100000	6.9258
23.000000	26.640000	0.900173	0.500000	0.100654	17.4634
elev					
	0.729089 0.820128 0.847703 0.873282 0.899889 F_h50 154.000000 12.367338 4.041083 0.070000 9.820000 12.105000 15.020000 23.000000	0.729089	0.729089 0.468468 0.098137 0.820128 0.494567 0.099872 0.847703 0.498274 0.100080 0.873282 0.499613 0.100323 0.899889 0.500000 0.102804 F_h50 F_h90 F_d10 154.000000 154.000000 154.000000 12.367338 17.210695 0.896085 4.041083 3.812580 0.013928 0.070000 4.961000 0.789216 9.820000 14.464000 0.898350 12.105000 16.930000 0.899754 15.020000 19.537500 0.899880 23.000000 26.640000 0.900173	0.729089 0.468468 0.098137 1.220464 0.820128 0.494567 0.099872 9.087133 0.847703 0.498274 0.100080 10.943383 0.873282 0.499613 0.100323 13.433398 0.899889 0.500000 0.102804 21.774059 F_h50 F_h90 F_d10 F_d50 154.000000 154.000000 154.000000 154.000000 12.367338 17.210695 0.896085 0.499204 4.041083 3.812580 0.013928 0.002669 0.070000 4.961000 0.789216 0.468215 9.820000 14.464000 0.898350 0.499200 12.105000 16.930000 0.899754 0.499585 15.020000 19.537500 0.899880 0.499881 23.000000 26.640000 0.900173 0.500000	0.729089 0.468468 0.098137 1.220464 0.166920 0.820128 0.494567 0.099872 9.087133 0.348159 0.847703 0.498274 0.100080 10.943383 0.431127 0.873282 0.499613 0.100323 13.433398 0.584139 0.899889 0.500000 0.102804 21.774059 2.199853 F_h50 F_h90 F_d10 F_d50 F_d90 154.000000 154.000000 154.000000 154.000000 154.000000 12.367338 17.210695 0.896085 0.499204 0.099676 4.041083 3.812580 0.013928 0.002669 0.000431 0.070000 4.961000 0.789216 0.468215 0.097949 9.820000 14.464000 0.898350 0.499200 0.099473 12.105000 16.930000 0.899880 0.499881 0.100000 23.000000 26.640000 0.900173 0.500000 0.100654

Then a regression model is developed and its statistics are displayed. Though Gobakken et al developed different models for different forest classes, in each case both the response and explanatory variables were log-transformed. However, an exhaustive trial of all one-, two- and three-variable combinations revealed the "best" two-variable model –in terms of \mathbb{R}^2 , as well as AIC compared on identical variables – to be one which log-transforms the 50th percentile cutoff for height of first returns and also includes the untransformed value for first-return mean. To rule out (multi) collinearity, models with a condition number greater than 50 were excluded from consideration.

count 154.000000

mean std

min

25%

50%

75%

max

3.118651

1.874205

0.194529

1.573210

2.635528

4.435760 8.226820

```
# one variable log (not a contender)
                 \#Formula = "ln(Y) \sim 1 + ln(" + VAR1 + ")"
                 # two variables two logs (not a contender)
                 \#Formula = "ln(Y) \sim 1 + ln(" + VAR1 + ") + " + "ln(" + VAR2 + ")
                 #two variables one log -- not bad
                 Formula = "ln(Y) \sim 1 + ln(" + VAR1 + ") + " + VAR2
                 result = sm.ols(formula=Formula, data=df).fit()
                 if result.condition_number < 50 and result.rsquared>0.7:
                     return(result.rsquared, result.aic, VAR1, VAR2)
                     #return(result.rsquared, result.aic, VAR1, VAR2) #two variable
                 else:
                     return()
             except:
                 return()
In [20]: import statsmodels.formula.api as sm
         Y = df['Biomass']
         variable_list = ["df['F_mean']","df['L_mean']","df['F_cv']","df['L_cv']",
                          "df['F_h10']", "df['L_h10']", "df['F_h50']", "df['L_h50']",
                          "df['F_h90']","df['L_h90']","df['F_d10']","df['L_d10']",
                          "df['F_d50']","df['L_d50']","df['F_d90']","df['L_d90']",
                          "df['elev']"]
         regression_parameters_list = []
         for variable1 in variable_list:
             for variable2 in variable_list:
                 regression_parameters_list.append(formula_tester(variable1, variable)
             parameters = formula_tester(variable1, variable2)
             #remove empty tuples and report best r-squareds
             if len(parameters) > 1 and parameters[0]>0.7:
                 regression_parameters_list.append(parameters)
         sorted(filter(lambda a: a != (), regression_parameters_list))
         #regression_parameters_list
Out[20]: [(0.7136724104353942, 25.914568617848545, "df['L_h90']", "df['F_mean']"),
          (0.71536310143767801, 25.002542806256713, "df['F_cv']", "df['F_mean']"),
          (0.71811908422823867, 23.504179693283731, "df['elev']", "df['F_mean']"),
          (0.71849397496043177, 23.299229322244571, "df['L_mean']", "df['F_mean']")
          (0.76808072198590027, -6.5405004686309667, "df['F_h50']", "df['F_mean']")
          (0.77657977233883646, -12.290081906506089, "df['F_h50']", "df['F_h50']")
```

This was the second best regression model with 2 independent variables, condition number < 50.

The best model produced unacceptable overestimates on non-forested areas.

In [21]: var1 = df['F_h50']

```
var2 = df['F_mean']
      var1str = "ln(df['F_h50'])"
      var2str = "df['F_mean']"
      Formula = "ln(Y) \sim 1 + " + var1str + " + " + var2str
      result = sm.ols(formula=Formula, data=df).fit()
      print(result.summary())
                   OLS Regression Results
______
Dep. Variable:
                      ln(Y) R-squared:
                                                  0.768
Model:
                       OLS Adj. R-squared:
                                                  0.765
               Least Squares F-statistic:
Method:
                                                  250.0
            Wed, 24 May 2017 Prob (F-statistic): 1.21e-48
Date:
Time:
                    10:45:24 Log-Likelihood:
                                                 6.2703
No. Observations:
                                                  -6.541
                       154 AIC:
Df Residuals:
                       151 BIC:
                                                  2.570
Df Model:
Covariance Type:
                  nonrobust
______
              coef std err t P>|t| [95.0% Conf. Int.]
_____
Intercept 0.4665 0.068 6.857 0.000 ln(df['F_h50']) -0.2049 0.034 -5.998 0.000 df['F_mean'] 0.1449 0.007 19.755 0.000
                                              0.332
                                                     0.601
                                             -0.272 -0.13
                                              0.130 0.159
______
                     39.687 Durbin-Watson:
Omnibus:
                                                  1.609
Prob(Omnibus):
                     0.000 Jarque-Bera (JB):
                                                206.187
Skew:
                     -0.761 Prob(JB):
                                               1.69e-45
                     8.460 Cond. No.
Kurtosis:
                                                   45.0
______
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly sp

In [22]: result.bse

Out[22]: Intercept 0.068035 ln(df['F_h50']) 0.034156 df['F_mean'] 0.007336 dtype: float64

Inspecting the data and residuals:

```
In [29]: R = result.resid
    plt.plot(Y, R, '.')
    plt.hlines(0,0, 20,colors=u'r')
    plt.show()
```


L_cv	1.508728
L_h10	0.002792
L_h50	0.931591
L_h90	8.772786
L_d10	0.842814
L_d50	0.496161
L_d90	0.100046
F_mean	11.446377
F_cv	0.504331
F_h10	3.730494
F_h50	12.367338
F_h90	17.210695
F_d10	0.896085
F_d50	0.499204
F_d90	0.099676
Biomass	5.752972
elev	3.118651
-1 E1	L C 1

dtype: float64

In [31]: #df.to_csv("ALL_plots_yhat")

In [33]: df.describe()

Out[33]:		PlotID	L_mean	L_cv	L_h10	L_h50	$_{ m L}$
	count	154.000000	154.000000	154.000000	154.000000	154.000000	154.000
	mean	93.116883	2.882272	1.508728	0.002792	0.931591	8.772
	std	50.724934	1.713424	0.433447	0.012153	1.381876	4.358
	min	2.000000	0.206482	0.666363	0.000000	0.040000	0.240
	25%	55.250000	1.588867	1.202409	0.000000	0.140000	5.492
	50%	96.000000	2.550631	1.426635	0.000000	0.270000	8.385
	75%	135.750000	4.170365	1.715680	0.000000	0.993750	11.716
	max	178.000000	7.915523	2.857065	0.120000	6.380000	19.804
		L_d10	L_d50	L_d90	F_mean	F_cv	F_
	count	154.000000	154.000000	154.000000	154.000000	154.000000	154.000
	mean	0.842814	0.496161	0.100046	11.446377	0.504331	3.730
	std	0.039673	0.005197	0.000534	3.564578	0.289637	4.210
	min	0.729089	0.468468	0.098137	1.220464	0.166920	0.000
	25%	0.820128	0.494567	0.099872	9.087133	0.348159	0.101
	50%	0.847703	0.498274	0.100080	10.943383	0.431127	1.979
	75%	0.873282	0.499613	0.100323	13.433398	0.584139	6.494
	max	0.899889	0.500000	0.102804	21.774059	2.199853	16.210
		F_h50	F_h90	F_d10	F_d50	F_d90	Bior
	count	154.000000	154.000000	154.000000	154.000000	154.000000	154.000
	mean	12.367338	17.210695	0.896085	0.499204	0.099676	5.752
	std	4.041083	3.812580	0.013928	0.002669	0.000431	2.823
	min	0.070000	4.961000	0.789216	0.468215	0.097949	0.912

25%	9.820000	14.464000	0.898350	0.499200	0.099473	3.642
50%	12.105000	16.930000	0.899754	0.499585	0.099782	5.196
75%	15.020000	19.537500	0.899880	0.499881	0.100000	6.925
max	23.000000	26.640000	0.900173	0.500000	0.100654	17.463

elev 154.000000 count 3.118651 mean 1.874205 std min 0.194529 25% 1.573210 50% 2.635528 75% 4.435760 8.226820 max

In []: