Project 3: Code Concatenation

Course: Practical Quantum Computing – C3260

Professor: Alexandru

Paler

Developer: Mahtab Hosseini-Dolama

Introduction

- Code concatenation in quantum error correction:
 - Achieve lower logical error rates by concatenating error correcting codes.
 - Encode logical qubits multiple times, using layers of error correcting codes.
 - Correcting code at multiple levels → Reducing overall probability of error propagation.
 - Exponential suppression of logical error rates.
 - · Threshold Theorem.

- Shor's code:
 - Suggested by Peter Shor in 1995.
 - 1 logical qubit → 9 physical qubits.
 - Capable of correcting any single-qubit error.

Project Goals

- Implement Shor code and concatenate it with itself (Qualtran).
- Draw the circuit diagrams for the resulting concatenation (Cirq).
- Plot logical error rates for Shor code without concatenation (Cirq).

Shor Code in Qualtran

- 9 Physical Qubits
- 8 Ancillary Qubits
- Required Blogs:
 - Encoder
 - Syndrome "Measurements"
 - Recovery → Principle of Deferred Measurement
 - Decoder
 - Main Function

```
unconcatenated) Shor code
      code "logical" is the Soquet with the 9 qubits, and "qubits" is the form of "logical" that's modified du
   norCodeAll(Blog):
   operty
   signature(self):
   return Signature.build(logical=9, ancilla=8)
def build_composite_bloq(self, bb: BloqBuilder, *, logical: SoquetT, ancilla: SoquetT) -> Dict[str, SoquetT]:
   # Initialize the data qubit to |+> state
   qubits = bb.split(logical)
   qubits[0] = bb.add(Hadamard(), q=qubits[0])
   qubits = bb.join(qubits)
    # Encoding
   qubits= bb.add_from(ShorEncode(), logical=qubits)[0]
    # syndrome measurements
   qubits, a = bb.add_from(ShorSyndrome(), logical=qubits, ancilla=ancilla)
    # recovery
   qubits, a = bb.add_from(ShorRecovery(), logical=qubits, ancilla=a)
   # decoding step
   qubits= bb.add_from(ShorDecode(), logical=qubits)[0]
    # return the error corrected qubits
   return {'logical': qubits, 'ancilla': a}
rs frozen
 ShorEncode(Blog):
 property
  f signature(self):
   return Signature.build(logical=9)
     vild_composite_blog(self, bb: BlogBuilder, *, logical: SoquetT) -> Dict[str, SoquetT]:
```

Encoder and Decoder Circuits

Syndrome "Measurements"

• $S_{[[9,1,3]]} = \{Z_0Z_1, Z_1Z_2, Z_3Z_4, Z_4Z_5, Z_6Z_7, Z_7Z_8, X_0X_1X_2X_3X_4X_5, X_3X_4X_5X_6X_7X_8\}$

Error	Syndrome S	Error	Syndrome S
X_0	10000000	Z_0	00000010
X_1	11000000	Z_1	00000010
X_2	01000000	Z_2	00000010
<i>X</i> ₃	00100000	Z_3	00000011
X_4	00110000	Z_4	00000011
X_5	00010000	Z_5	00000011
<i>X</i> ₆	00001000	Z_6	00000001
X_7	00001100	Z_7	0000001
<i>X</i> ₈	00000100	Z_8	00000001

Recovery

• Principle of Deferred Measurement:

"Delaying measurements until the end of a quantum computation does not affect the probability distribution of outcomes".

Multi-control Toffoli gates were used.

Concatenated Shor Code

- 81 Physical Qubits (9 Logical Qubits)
- 80 Ancillary Qubits
- Required Bloqs:
 - Logical Encoder
 - Logical Syndrome "Measurements"→ same syndromes as the nine-qubit Shor code
 - Logical Recovery → Principle of Deferred Measurement

- Logical Decoder
- Main Function
- Custom Logical Gates (e.g. Logical X, H, CNOT Gate etc.)

Simulation and Logical Error Rates

- Cirq's pure state simulator.
- Depolarizing channel with error probability range of [0.01, 0.05] with 50 linearly spaced points.
- 100 simulation runs for each physical error rate.
- Logical error rate was computed for each physical error rate.
- Two types of simulations: $\begin{cases} \text{Errors occurring only between encode and syndrome} \\ \text{Errors occuring everywhere in the circuit} \end{cases}$

Conclusion

- The plots demonstrate lower logical error rates on average (and maximum logical error rate) for the situation when the error occurs only after encoding, as is expected.
- Under both conditions logical error rates increase linearly as the physical error rates increase.
- Shor code offers some degree of robustness to error channels acting on all qubits, despite only correcting for single-qubit errors.
- According to the non-negligible logical error rates resulting from high depolarizing error rates, it is expected that the concatenated scheme would show increased robustness against logical errors with a similar linearly increasing trend.