Assignment 2: Data Visualization and Preprocessing

TEAM MEMBER-NANDHINI.M (Roll No: 821019104027)

In [1]:

import matplotlib.pyplot as plt import pandas as pd
import numpy as np import tensorflow as tf import
seaborn as sns from sklearn.compose import
ColumnTransformer from sklearn.pipeline import
Pipeline from sklearn.preprocessing import
OneHotEncoder from sklearn.preprocessing import
StandardScaler from sklearn.model_selection import
train_test_split

```
df = pd.read_csv(r"./Churn_Modelling.csv")
```

```
Bala df. head ()
```

RowNumber CustomerId Surname CreditScore Geograp Gend Ag Tenur hy er e e ce

2. Load the data set

In [4]:

In [5]:

Out[5]:**N**

0		1	15634602	Hargrave	619	France Female 42	2		0.00
1		2	15647311	Hill	608	Spain Female 41	1	83807	.86
2		3	15619304	Onio	502	France Female 42	8	15966	0.80
3		4	15701354	Boni	699	France Female 39	1		0.00
4		5	15737888	Mitchell	850	Spain Female 43	2	12551	0.82
	4								

3. Data Visualizations

3.1. Univariate Analysis In

[6]:

```
sns.displot(df['Age'], kde=True)
```

<seaborn.axisgrid.FacetGrid at 0x1f63a02fa30> Out[6]:

3.2. Bi - Variate Analysis

```
In [7]:
```

```
sns.relplot(x='CreditScore', y='Age', data=df)
```

<seaborn.axisgrid.FacetGrid at 0x1f63a024160> Out[7]:


```
sns.catplot(x='Gender', y='Age', hue='HasCrCard', data=df)
```

<seaborn.axisgrid.FacetGrid at 0x1f647affeb0> Out[8]:

3.3. Multi - Variate Analysis In

```
[9]:
   sns.pairplot(df)
```

<seaborn.axisgrid.PairGrid at 0x1f6483b69a0> Out[9]:

In [10]: sns.regplot(x='Balance', y='EstimatedSalary', data=df)

<AxesSubplot:xlabel='Balance', ylabel='EstimatedSalary'> Out[10]:

4. Descriptive Statistics

In [11]: df.describe()

		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance NumOf	
Out[11]:								
	count	10000.00000 1.0	000000e+04 10	0000.000000 10000	0.000000 10000	.000000 10000.00	00000	100
	mean	5000.50000 1	1.569094e+07	650.528800	38.921800	5.012800 76	485.889288	
	std	2886.89568 7	7.193619e+04	96.653299	10.487806	2.892174 62	397.405202	
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	
	25%	2500.75000 1	1.562853e+07	584.000000	32.000000	3.000000	0.000000	
			5.000000 97198.5		198.540000			
	50%	5000.50000 1	l.569074e+07	652.000000	37.000000			
	75%	7500.25000 1	l.575323e+07	718.000000	44.000000			
						7.00000	127644.240000	
	max	10000.00000 1.5	581569e+07	850.000000	92.000000	10.000000 25	0898.090000	
	4							•

5. Handle the Missing values

```
In [12]:
  df.isnull().sum()
                                                                  RowNumber
                                                                                     0
Out[12]:
         CustomerId
                             0
         Surname
         CreditScore
         Geography
                             0
         Gender
                             0
         Age
         Tenure
                             0
         Balance
                             0
         NumOfProducts
         HasCrCard
                             0
         IsActiveMember
         EstimatedSalary
                             0 Exited
         0 dtype: int64
```

6. Find the outliers and replace the outliers


```
In [14]:

Q1 = df['CreditScore'].quantile(0.25)
Q3 = df['CreditScore'].quantile(0.75) IQR
= Q3 - Q1 whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR) upper_whisker = Q3 + (whisker_width*IQR)
df['CreditScore']=np.where(df['CreditScore']>upper_whisker,upper_whisker,np.where(df)
```

```
In [15]:
sns.boxplot(x='CreditScore',data=df)
```


7. Check for Categorical columns and perform encoding

8. Split the data into dependent and independent variables.

```
[2, 15647311, 'Hill', 608.0, 'Spain', 'Female', 41, 1, 83807.86,
                 1, 0, 1],
                [3, 15619304, 'Onio', 502.0, 'France', 'Female', 42, 8, 159660.8,
         3, 1, 0],
                [4, 15701354, 'Boni', 699.0, 'France', 'Female', 39, 1, 0.0, 2, 0,
                [5, 15737888, 'Mitchell', 850.0, 'Spain', 'Female', 43, 2,
                 125510.82, 1, 1, 1]], dtype=object)
     In [18]:
               x=ct.fit_transform(
               x)
     #INDEPENDENT VARIABLES
     x[0:5,:]
         array([[1.0, 0.0, 0.0, 1, 15634602, 'Hargrave', 619.0, 'Female', 42, 2,
Out[18]:
                 0.0, 1, 1, 1],
                [0.0, 0.0, 1.0, 2, 15647311, 'Hill', 608.0, 'Female', 41, 1,
         83807.86, 1, 0, 1],
                [1.0, 0.0, 0.0, 3, 15619304, 'Onio', 502.0, 'Female', 42, 8,
                 159660.8, 3, 1, 0],
                [1.0, 0.0, 0.0, 4, 15701354, 'Boni', 699.0, 'Female', 39, 1, 0.0,
         2, 0, 0],
                [0.0, 0.0, 1.0, 5, 15737888, 'Mitchell', 850.0, 'Female', 43, 2,
                 125510.82, 1, 1, 1]], dtype=object)
In [19]:
          #DEPENDENT VARIABLES
          y[0:5,:]
         array([[1.0134888e+05, 1.0000000e+00],
Out[19]:
                [1.1254258e+05, 0.0000000e+00],
                                                       [1.1393157e+05,
         1.0000000e+00],
                [9.3826630e+04, 0.0000000e+00],
                                                      [7.9084100e+04,
         0.0000000e+00]])
          sc= StandardScaler()
          x[:,8:12]=sc.fit_transform(x[:,8:12]) x[0:5,:]
        9. Scale the independent variables
In [20]:
         array([[1.0, 0.0, 0.0, 1, 15634602, 'Hargrave', 619.0, 'Female',
Out[20]:
                 0.29351742289674765, -1.041759679225302, -1.2258476714090163,
                 -0.911583494040172, 1, 1],
                [0.0, 0.0, 1.0, 2, 15647311, 'Hill', 608.0, 'Female',
         0.19816383219544578, -1.387537586562431, 0.11735002143511637,
                 -0.911583494040172, 0, 1],
                [1.0, 0.0, 0.0, 3, 15619304, 'Onio', 502.0, 'Female',
         0.29351742289674765, 1.0329077647974714, 1.333053345722891,
                 2.5270566192762067, 1, 0],
                [1.0, 0.0, 0.0, 4, 15701354, 'Boni', 699.0, 'Female',
                 0.007456650792842043, -1.387537586562431, -1.2258476714090163,
```

```
0.8077365626180174, 0, 0], [0.0, 0.0, 1.0, 5, 15737888,
          'Mitchell', 850.0, 'Female',
                 0.3888710135980495, -1.041759679225302, 0.7857278997960621,
                  -0.911583494040172, 1, 1]], dtype=object)
          x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state=
         10. Split the data into training and testing
            x_train
In [22]:
         array([[1.0, 0.0, 0.0, ..., 0.8077365626180174, 1, 1],
Out[22]:
                 [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 0],
         [1.0, 0.0, 0.0, \ldots, -0.911583494040172, 0, 1],
                 [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 0],
                 [0.0, 0.0, 1.0, \ldots, 0.8077365626180174, 1, 1],
                 [0.0, 1.0, 0.0, ..., -0.911583494040172, 1, 0]], dtype=object) In
   x test
                               array([[0.0, 1.0, 0.0, ..., -0.911583494040172, 1, 1],
                [1.0, 0.0, 0.0, \ldots, -0.911583494040172, 1, 0],
         [0.0, 0.0, 1.0, \ldots, -0.911583494040172, 1, 1],
                [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 1],
                 [1.0, 0.0, 0.0, \ldots, -0.911583494040172, 1, 1],
                 [0.0, 1.0, 0.0, ..., -0.911583494040172, 1, 1]], dtype=object) In
  y_train
                                               array([[5.5796830e+04, 1.0000000e+00],
Out[24]:
                 [1.9823020e+04, 0.0000000e+00],
         [1.3848580e+04, 0.0000000e+00],
                 [1.8142987e+05, 0.0000000e+00],
                                                       [1.4875016e+05,
         0.0000000e+00],
                [1.1885526e+05, 1.0000000e+00]])
In [25]:
  y_test
                                               array([[1.9285267e+05, 0.0000000e+00],
Out[25]:
                 [1.2870210e+05, 1.0000000e+00],
         [7.5732250e+04, 0.0000000e+00],
          . . . ,
```

In [21]:

[23]:

Out[23]:

[24]:

[1.6740029e+05, 0.0000000e+00], [7.0849470e+04, 0.0000000e+00], [3.3759410e+04, 1.0000000e+00]])