1. Concept of Score Matching

Score Matching 學習未歸一化機率模型 (unnormalized models)的方法

MLE需要計算 $\log p_{\theta}(x)$ 的 **歸一化常數(partition function)**,但在能量模型或擴散模型中,這個常數往往無法直接求得

Score Matching 的想法是:與其學習整個機率密度,不如直接學習 分布的梯度方向(score function):

$$\psi(x; heta) =
abla_x \log p_{ heta}(x)$$

這個梯度描述了資料點在特徵空間中指向高機率區域的方向 若模型的 score 與真實資料的 score 相符,代表模型分布與真實分布一致

2. Explicit vs. Implicit Score Matching

2.1 Explicit Score Matching (ESM)

ESM 的目標是直接最小化模型 score 與真實 score 的 L2 距離期望:

$$J_{ESM_q}(heta) = \mathbb{E}_{q(x)}\left[rac{1}{2}\|\psi(x; heta) -
abla_x \log q(x)\|^2
ight]$$

然而,真實分布的 $abla_x \log q(x)$ 是未知的,導致此式 無法直接計算

2.2 Implicit Score Matching (ISM)

Hyvärinen(2005)提出 **Implicit Score Matching (ISM)**,透過積分轉換避免直接出現 $abla_x \log q(x)$,得到可計算的形式:

$$J_{ISM_q}(heta) = \mathbb{E}_{q(x)}\left[ext{tr}(
abla_x\psi(x; heta)) + rac{1}{2}\|\psi(x; heta)\|^2
ight]$$

其中

 ${
m tr}(
abla_x\psi)$ 為 Jacobian 的跡(trace of the Jacobian) ISM 的優點是只需模型 $\psi(x; heta)$ 的一階與二階導數,而不需真實資料分布的梯度

⇒ 3. Proof of Equivalence (ESM ⇔ ISM)

為證明兩者等價,只需證明它們在 heta 上的差異僅為常數 C

Step 1. 展開 ESM

$$J_{ESM_q}(heta) = \mathbb{E}_{q(x)} \left[rac{1}{2} \|\psi(x; heta)\|^2 - \psi(x; heta)^ op
abla_x \log q(x) + rac{1}{2} \|
abla_x \log q(x)\|^2
ight]$$

Step 2. 拆分

- (a) $\mathbb{E}_{q(x)}\left[rac{1}{2}\|\psi(x; heta)\|^2
 ight]$
- (b) $-\mathbb{E}_{q(x)}\left[\psi(x; heta)^{ op}
 abla_x \log q(x)
 ight]$
- © $\mathbb{E}_{q(x)}\left[\frac{1}{2}\|\nabla_x \log q(x)\|^2\right]$

其中 \odot 與模型參數 heta 無關,因此可略去

Step 3. 處理 (b)

 $abla_x \log q(x) = rac{
abla_x q(x)}{q(x)}$:

$$(b) = -\int q(x) \psi(x; heta)^ op rac{
abla_x q(x)}{q(x)} dx = -\int \psi(x; heta)^ op
abla_x q(x) dx$$

根據高斯散度定理(Gaussian divergence theorem):

$$(b) = \mathbb{E}_{q(x)}[\operatorname{tr}(
abla_x \psi(x; heta))]$$

Step 4. 合併結果

 $J_{ESM_q}(heta) = \mathbb{E}_{q(x)} \left[\operatorname{tr}(
abla_x \psi(x; heta)) + rac{1}{2} \|\psi(x; heta)\|^2
ight] + C$

即:

$$J_{ESM_c}(heta) = J_{ISM_c}(heta) + C$$

因此,最小化 J_{ESM_q} 等價於最小化 J_{ISM_q}

4. Denoising Score Matching (DSM)

Introduction

在實際應用中,ISM 雖然可行,但在高維度或資料稀疏時會有數值不穩定問題 Denoising Score Matching (DSM) 是 Vincent (2011) 提出的改進方法,透過對資料加上隨機噪

聲後學習 denoising score

DSM Loss — Noisy Score Function

Notation:

• x_0 : original (clean) data

• $p_0(x_0)$: data distribution

• x: noisy version of x_0

• $p(x|x_0)$: conditional noisy data distribution

• $p_{\sigma}(x)$: marginal noisy data distribution

且有

且有

$$p_\sigma(x) = \int_{\mathbb{R}^d} p(x|x_0) p_0(x_0)\, dx_0$$

DSM 要學習的 noisy score function 定義為:

$$S_{\sigma}(x; heta) =
abla_x \log p_{\sigma}(x)$$

5. Application in Diffusion (Score-based Generative Models)

在 $score-based\ diffusion\ models\$ 中, $Score\ Matching\ 用來學習時間依賴的\ score\ function:$

$$s_{ heta}(x_t,t) pprox
abla_{x_t} \log p_t(x_t)$$

模型不直接生成資料,而是學習如何從噪聲中逐步「逆轉」擴散過程 Sampling 階段則從高斯分布開始,利用學得的 score 函數逐步去噪 (denoise) 還原資料

6. Unanswered or Open Questions

在 diffusion 過程中,時間依賴的 score 是否唯一?

7. Summary

方法	形式	是否需 $ abla_x \log q(x)$	可計算性	應用
ESM	$\mathbb{E}_{q(x)}[rac{1}{2} \psi- abla_x\log q ^2]$	▼ 需要	無法直接計算	理論分析
ISM	$\mathbb{E}_{q(x)}[\operatorname{tr}(abla_x\psi)+rac{1}{2} \psi ^2]$	🗙 不需要	☑ 可計算	實際訓練
DSM	加噪後估計 score	×	☑ 高維穩定	Diffusion models

本文件之文獻整理與內容編排由 GPT 協助完成