附录一 可编程串行通信接口 8251A

8251A 是美国 Inter 公司的产品,它是 8251 的改进型。具有同步、异步接收或发送(USART)功能,使用单一+5V 电源和单相时钟,双列直插 28 脚封装形式。

(一) 8251A 的基本性能

- 1. 可以工作在同步或异步方式下,两种方式下的字符位数 5-8 个;
- 2. 同步方式时传输速率可达 0-64K, 异步方式时传输速率可达 0-19.2K;
- 3. 异步传输时,可自动产生一个起始位,程控产生1个、1.5个、2个停止位;
- 4. 具有奇偶错、数据丢失和帧错误和检测能力;
- 5. 同步方式时,可自动检测,插入同步字符。

(二) 8251A 内部结构

8251A 内部结构框图如图 9-22 所示。

它共由 7 个方框组成,即接收缓冲器、接收控制电路、发送缓冲器、发送控制电路、调制/解调控制电路、读/写控制逻辑和数据总线缓冲器。

图 9-22 8251A 内部结构原理图

1. 数据总线缓冲器

这是 8251A 与 CPU 之间的一条数据通道,来自 CPU 的各种控制命令和待发送的字符信息经该通道到达 8251A 的内部,由 8251A 从发送设备处接收到的各种字符信息经该通道到达 CPU 的内部。

2. 读/写控制逻辑电路

它是接收来自 CPU 的各种控制信息,从而确定本次操作的方式。如果 \overline{WR} =0,表示 CPU 向8251A 写入数据或控制字;如果 \overline{RD} =0,表示 CPU 读取 8251A 的数据信息或状态信息;而 $\overline{C/D}$ 则表示读写对象是 8251A 内部的控制/数据寄存器, $\overline{C/D}$ =1 表示对控制寄存器操作, $\overline{C/D}$ =0 表示对数据寄存器操作; CLK 是时钟信号,提供给 8251A 作为内部定时器使用,RESTE 则是使8251A 处于空闲状态。总之,读/写控制逻辑电路提供的各种信号的组合,构成了 8251A 操作命令。

3. 调制/解调控制电路

当计算机进行远程通信时,要用调制器将串行接口送来的数字信号变成模拟信号,再通过电话线发送出去。接收器则是将接受到的模拟信号经解调器变成数字信号,再由串行接口送入计算机。在全双工通信情况下,每个收发站都需连接调制/解调器。8251A 提供的调制/解调控制电路,就是提供一组通用的控制信号,使8251A 可以直接与调制/解调器相连,以完成远程通信的任务。

4. 发送缓冲器

由数据发送缓冲器和并→串移位寄存器组成。当要发送数据时,按照发送的要求,将发送数据变成串行数据,经 TXD 引脚发送出去。

5. 发送控制电路

它是协调发送缓冲器工作的。同时也为同步或异步方式传送提供必需的识别控制位信息,如: 起始位、同步字符等等。

6. 接收缓冲器

它与发送缓冲器的功能相反,将接收到的串行数据转换成与计算机处理的数据格式相同的并 行数据。

7. 接收控制电路

协调接收缓冲器工作的。

(三) 8251A 的工作原理

1. 异步接收方式

当 8251A 工作于异步方式且允许接收和准备好接收数据时,它监视 RXD 线。在没有字符信息时,RxD 为高电平。一旦 8251A 检测到 RxD 线为低电平,即认为是起始位(Space)到达,便启动内部计数器开始计数。假设接收时钟频率为波特率的 16 倍频,8251A 的内部寄存器计数接收始终的第 8 个脉冲时,又一次采样 RXD 线,看两次采样的信号是否一致。如果相同,即都为低,则表示一个起始位的到来。此后,每隔一位的时间,在每个数据中间的一个接收时钟 RxC 的上升沿采样一次 RxD 线作为输入信号,送至串→并移位寄存器。在移位寄存器中数据被转换成并行,并且进行奇偶校验并去除停止位后,经 8251A 内部数据总线送至接收缓冲器,同时发出 RxRDY 信号,表示一个字符的接收和转换全部完成。

如果在第二次采样 RxD 线发现为高电平,则可能是一个干扰噪声。于是 8251A 将不予理会, 重新进行下一次的采样。

2. 异步发送方式

异步发送时,首先必须由程序设置 TxEN(Transmitter Enable——发送允许)和 $\overline{\text{CTS}}$ (Clear To Send——由外设发来的对 CPU 请求发送信号的响应信号)有效后,方可发送。发送时,发送器为每个字符自动地加上 1 位起始位,并按照程序的要求加上 1 位奇偶校验位,1、1.5、或 2 位停止位,在发送时钟 $\overline{\text{TxC}}$ 的下降沿经发送移位寄存器从 $\overline{\text{TxD}}$ 线发出。

3. 同步接收方式

常用的串行同步通信数据格式分为单、双、外同步和 SDLC/HDLC 四种格式。

单同步数据格式的串行同步通信方式,在内同步方式允许接收后,8251A 由编程命令进入搜索方式。它监视 RxD 线,每出现一个数据位就把它移一位,然后把接收寄存器与含有同步字符(由程序给定)的寄存器相比较,如果相同,表示接收和发送方已同步,接收方便使 SYNDET 信号输出为高。如果不同,则接收下一个数据并重新进行比较过程。

如果采用双同步数据格式传送,则在比较第一个同步字符相同后,进行第二个同步字符的比较,若相等,则表示已同步。如果不相等,则重新比较输入移位寄存器和第一个同步字符寄存器的内容,相等,已同步。否则重新进行下一个数据的比较过程。

对于外同步的情况,则有所区别。它是由外加同步信号使同步输入端 SYNDET 变为高电平实现的。在数据格式中没有同步字符。SYNDET 加上高电位以后,立即发送相应字符数据。

SDLC/HDLC 的情况与其它同步接收方式有所区别,但也是以同步字符(称为标志)作为数据同步的。其同步字符格式固定为01111110。当接收方收到该标志时,进入同步,从而完成相应的 SDLC/HDLC 操作。

在实现同步以后,通信双方即进行数据的传输,8251A 利用接收时钟采样和移位 RxD 线上的数据位,且按规定的位数,把它送至接收数据缓冲器,并在 RxRDY 线上发出一个信号,告知 CPU 接收到一个有效的字符。

4. 同步发送方式

与一步发送方式一样,同步发送方式是在 TxEN 和 CTS 有效后开始的。首先发送的是用以同步的一个或两个字符,随后就是有效数据位,在数据中可能含有一个奇/偶校验位,也可能没有,由程序设定。对 SDLC/HDLC 在发完同步字符后,还要发送地址、控制两个场的规定信息,然后才是有效数据信息。

在传送过程中,可能会出现 CPU 来不及将新的字符数据输出给 8251A 的情况。为此,8251A 能自动地在 TxD 线上插入同步字符,从而使字符之间没有间隙存在。

(四)8251A的引脚特性和外部连接

8251A 的作用是串行通信接口,连接 CPU 与外设(或调制解调器)。因此其引脚从功能上分成五组两大部分。

一部分是与 CPU 相连的数据总线组、控制总线组,另一部分是与外设或调制解调器相连的 发送控制组、接收控制组以及外设/调制解调器控制组。每组信号的具体定义如图 9-23 所示。8251A 与 8086CPU 和外部设备的连接如图 9-24 所示。

1. 数据总线组

D7—D0:数据总线信号,双向三态。这是 8251A 与 CPU 之间的数据通道。传送各种数据控制命令和状态信息。

2. 控制总线组

该组由8个信号组成,均为输入。

①+5V 和 GND: 电源和地。8251A 使用单一+5V 电源工作。

图 9-24 8251A 与 CPU 及外设的连接图

- ②RESET 信号: 复位信号。当 RESET 有效,8251A 的所有功能复位,从头开始。
- ③CLK: 系统时钟信号。CLK 为 8251A 内部提供定时信号。在同步方式时,CLK 的频率必须大于发送器输入时钟 \overline{TxC} 和接收器输入时钟 \overline{RxC} 的 30 倍;在异步方式时,必须大于发送和接收时钟的 4.5 倍。
 - (4) \overline{RD} : CPU 读信号。当 \overline{RD} = 0 时,表示此时 CPU 正从 8251A 中读入数据或状态信息。
- ⑤ \overline{WR} : CPU 写信号。当 \overline{WR} =0 时,表示此时 CPU 正向 8251A 的控制寄存器或数据寄存器中写入控制命令或数据。
- ⑥ C/\overline{D} : 控制/数据寄存器的选择信号。由于 8251A 内部具有完全独立的控制或数据寄存器,在对它们进行操作时,以不同的地址加以区别。当 $\overline{WR}=0$, $C/\overline{D}=0$ 时,表示本次操作选中数据寄存器;而当 $\overline{WR}=0$, $C/\overline{D}=1$ 时,表示选中控制寄存器。
- ⑦ CS: 片选信号。与 8255A 可编程并行接口芯片相同,8251A 在工作时, CS 必须有效。通常 CS 是经过译码器与 CPU 的地址总线相连。这样,就构成了 8251A 的芯片地址(也称端口地址)。

欲使 8251A 工作, 首先由 CPU 向地址总线送去相应的地址信息, 使 $\overline{CS} = 0$, 然后, $\overline{WR} \setminus \overline{RD} \setminus C/\overline{D}$

上的信号才有效。 $CS 与 \overline{WR} \setminus \overline{RD} \setminus C/\overline{D}$ 之间构成的编码和对应操作,如表 9-5 所示。

CS	C/\overline{D}	RD	WR	功能
0	0	0	1	CPU 从 8251A 读数据
0	1	0	1	CPU 从 8251A 读状态
0	0	1	0	CPU 写数据到 8251A
0	1	1	0	CPU 写命令到 8251A
0	X	1	1	8251A 数据总线三态
1	X	X	X	8251A 数据总线三态

表 9-5 8251A 的编码和对应的操作

3. 发送控制组

该组有四个信号, 表明 8251A 工作于发送器时所处的状态和输出的数据。

①TxRDY (Transmitter Ready): 发送器准备好信号,高电平有效,输出 TxRDY 表示当前 8251A 的状态处于发送缓冲器空,且 TxE 和 CTS 有效。实际使用时,常将 TxRDY 信号作为中断申请信号与 CPU 的 INT 端相连。当 8251A 发送缓冲器空时,TxRDY=1,向 CPU 发出中断申请,CPU 在执行中断服务程序时,向 8251A 送出一个字符数据。当该数据到达 8251A 之后,TxRDY=0。同样,CPU 也可以采用查询的方式获取 TxRDY 的状态。如果 TxRDY=1,表示发送缓冲器已空,CPU 发出一个字符数据给 8251A。否则,继续查询。

②TxE (Transmitter Empty): 发送器空信号,输出高电平有效。当 TxE 输出有效时,表明发送器中并 \rightarrow 串转换器已空。TxE 与 TxRDY 是不同的。TxRDY 表示的是发送数据缓冲器的状态,而 TxE 表示的是发送数据缓冲器后的并 \rightarrow 串转换器的状态。它们之间的关系是,TxRDY 较 TxE 之前有效。

TxE 有效,必定 TxRDY 有效,而 TxRDY 有效则不一定 TxE 有效。只要 CPU 向发送器输出一个数据,TxE 和 TxRDY 必然都无效。

在同步方式工作时,若 CPU 来不及输出一个字符,则 TxE 输出变高,同时在发送器的输出线上将自动插入同步字符,以填补传送空隙。在插入同步字符时,TxE 的输出仍为高,表示发送器此时在发送同步字符,而非数据字符。

③TxD (Transmitter Data): 发送器数据信号,输出。由 CPU 送给 8251A 的并行数据在 TxD 线上串行发出。

④ $\overline{\text{TxC}}$ (Transmitter Clock): 发送器时钟,输入。发送器时钟控制发送字符的速度。在同步方式下, $\overline{\text{TxC}}$ 的频率等于字符传输的波特率,在异步方式下, $\overline{\text{TxC}}$ 的频率可以是字符传输波特率的 1 倍、16 倍、32 倍或 64 倍,具体由程序控制设定。

例如:

波特率=300Band,则

TxC = 300Hz (1 倍频)

TxC = 4800Hz (16 倍频)

TxC = 19.2kHz (64 倍频)

波特率=2400Band,则

TxC = 2400Hz (1 倍频)

TxC = 38.4kHz (16 倍频)

TxC = 153.6kHz (64 倍频)

8251A 要求 $\overline{\text{TxC}}$ 时钟频率在 1 倍频方式最大不超过 64kHz,在 16 倍频方式小于等于 310kHz,在 64 倍频时,小于等于 615kHz。

8251A 在 TxC 的上升沿采样数据。如果发、收两方的波特率相同,通常可以使用同一时钟发生器为 TxC 和 RxC 时钟信号。

4. 接收控制组

①RxRDY(Receiver Ready):接收器准备好信号,输出,高电平有效。接收器准备好信号有效表示此时已经接收了一个字符数据。这个信号可以作为中断申请信号与CPU的INT信号相接,也可以作为状态信号为CPU查询所用。当CPU得知RxRDY=1时,将从接收数据缓冲器中读取数据,一旦CPU读取一个字符之后,RxRDY信号自动复位。

注意,如果 RxRDY 信号和 TxRDY 信号同时接到 CPU 的 INT 端,须经过相应的逻辑组合,当 CPU 相应中断请求时,能够区分是 RxRDY 信号有效还是 TxRDY 信号有效。

②SYNDET (Synchorous Detect): 同步检测信号,双向,高电平有效。该信号仅用于同步方式。其输入/输出由程序控制。

当 8251A 工作于内同步方式时,SYNDET 输出。如果 8251A 检测到所要求的同步字符时,该信号输出有效高电平,表示此刻接收、发送端同步。若为双同步字符格式数据,此信号在第二个同步字符的最后一位的中间变高。当 CPU 执行一次读状态操作时,SYNDET 复位。

当 8251A 工作在外同步方式时,SYNDET 为输入。从这个输入端输入的一个正跳变沿使 8251A 在下一个接收时钟 RxC 的下降沿开始接收数据。SYNDET 输入的高电平至少应维持一个 RxC 周期,

直到 RxC 出现一个下降沿方可变低。对于 8251A 而言,某一时刻由程序设定为内或外同步方式。

- ③RxD (Receiver Data):接收器数据,输入线。8251A 经过 RxD 线接收来自发送方的串行数据。
- ④ RxC (Receiver Clock):接收器时钟,输入。控制 8251A 接收数据的速度。其它与 TxC 相同。

5. 外设/调制解调器控制组

- ① DTR (Data Terminal Ready):数据终端准备好。这是一个通用的输出信号,低电平有效。该信号受 CPU 的控制,当 CPU 通过指令使 DTR = 0 时,告知外设,CPU 当前已经准备就绪。
- ② \overline{DSR} (Data Set Ready): 数据装置准备好,是一个通用输入信号,低电平有效。该信号是外设通过 8251A 传送给 CPU 的状态信号,当外设和 \overline{DSR} 端相连时,CPU 可以由软件查询 8251A 状态寄存器的 \overline{DSR} 位,得到 \overline{DSR} 的状态。 \overline{DSR} =0 表示外设已经准备好。
- ③ $\overline{\text{RTS}}$ (Request To Send): 发送请求,由 8251A 送往外设的,低电平有效。当 CPU 准备好发送数据时,使 $\overline{\text{RTS}}$ = 0,通知外设,CPU 将发送数据。
- ④ $\overline{\text{CTS}}$ (Cleat to Send): 发送清除也成为发送允许,输入,低电平有效。这是外设对 8251A 的 $\overline{\text{RTS}}$ 信号的应答信号。当 CPU 发送请求信号有效后,一旦外设发来 $\overline{\text{CTS}}$ = 0,则发送器开始发送。在发送过程中,如果 $\overline{\text{CTS}}$ 无效,发送器将在已经写入的数据全部发完之后,停止发送。

(五) 8251A 的编程

8251A 是可编程串行接口,在使用之前必须由程序对其工作状态进行设置(称为初始化),

其中包括: 同步方式还是异步方式、传输波特率、字符代码位数、校验方式、停止位位数等。如果是同步方式。, 还要设定是内同步还是外同步。

8251A 经过初始化编程后,即可执行通信操作。

在初始化编程时,向 8251A 发的控制字分为两类:方式控制字和命令控制字。

1. 方式控制字

由于同步和异步方式在操作上区别很大,所以方式控制字的基本格式为:异步方式控制字格式和同步方式控制字格式。CPU 向其设置时,用的端口地址是相同的,都是 $C/\bar{D}=1$ 。两种方式控制字的区别在最低两位:低两位为00是同步方式控制字;否则是异步方式控制字。

方式控制字的基本格式如图 9-25 所示。从图中可知:

图 9-25 8251A 方式控制字格式

D0D1: 首先区分发送方式,其次是在异步条件下的输入时钟频率与波特率之间的系数。接收和发送的波特率可以不同,接收时钟和发送时钟的频率也可以不同,但是接收和发送的波特率系数只能是同一个。

D3D2:确定每个字符的位数。字符长度值可以从 5 位到 8 位不等。当程序制定字符位数小于 8 位时,有效数据位右对齐,高位以 0 补充。

D4: 决定是否使用奇偶校验位, D5 表示校验的方式。注意, 校验位仅仅是提供传送过程中是否有出错的判定, 当正确接收到有效数据后, 检验位的作用完成。因此, 从 RxD 上接收的奇偶校验信号是不会进入 CPU 的。

D7D6: 与采用的传输方式有关。当 D1D0 \neq 00 为异步方式时,表示停止位的个数,其中 D7D6 = 00 时无效。当 D1D0=00 为同步方式时,D6=1 为外同步,D6=1 为内同步。D7 表示同步字符的个数,D7=1 为单同步,D7=0 为双同步。如果为外同步方式,则 D7 无效。

2. 命令控制字

CPU 向 8251A 发命令控制字,控制 8251A 的实际操作。发命令控制字时用的端口地址与方式控制字的地址相同,它们的区别是靠发送的前后顺序。其格式如图 9-26 所示。

图 9-26 8251A 命令控制字格式

格式中,TxEN 和 RxE 位分别是发送允许和接收允许位,在发送和接收之前应发相应位为"1"的命令字,当然两位也可同时为"1"。 DTR 和 RTS 位分别控制 DTR 和 RTS 端的输出状态,要根据通信是否受这些信号的控制来选择这两位的值。SBRK 位为 1 时将使 TxD 输出低电平作为"间断"信号。ER 位为"1"将使状态信息中的错误标志 PE、OE 清除为 0。IR 位为"1"的命令字用于使 8251A 复位,与 RESET 端加高电平作用一样。8251A 复位以后,等待设置方式控制字。在设置为同步方式后,第一个命令字的 EH 为应该为 1,称为 ENTER HUNT(进入搜索方式)命令。这个命令之后,8251A 进入测试同步字符的操作状态。

3. 状态字

8251A 内部设有状态寄存器,CPU 可由读指令 IN 获取状态寄存器的内容,判定 8251A 当前的工作状态。状态寄存器各位的定义如图 9-27 所示。

D1(RxRDY)、D0(TxRDY)位可供 CPU 查询。状态位 TxRDY 和输出引脚 TxRDY 有所不同。状态位 TxRDY 并不受命令控制字中允许发送位 TxEN 和输入的允许发送引脚 CTS 的控制,它只反映发送命令/数据缓冲器的状态,只要数据缓冲器一空就置位;而输出引脚 TxRDY 却要受到上述内部和外部两个条件限制,它不只反映发送过程中数据缓冲器的状态。

图 9-27 8251A 状态字格式

在发送前和发送后 TxRDY 的状态位和输出引脚的状态可能不一致,在发送过程中二者总是一致的。前者可供 CPU 查询,后者可作为向 CPU 发出的中断申请信号。

状态位的置位比状态的出现总是要滞迟后,最坏情况下要延迟 28 个时钟脉冲(CLK 端)。在读状态的操作过程中,状态位是不变的。

注意:各种控制字发送后,由于内部操作需要一定的时间,因此最好设置几条空操作指令,然后再设置其它指令。

4. 8251A 初始化编程方法

由上所知,8251A 要工作在规定的状态中,必须进行初始化。 初始化的过程就是按照方式和命令控制字的格式,向方式寄存器和 命令寄存器中写入控制字。由于方式或命令控制字均没有表示其标 志的信息位,因此只能依靠不同的端口地址进行区别。但是有的端 口地址含有一个不同内容的寄存器,如方式控制字端口地址中还有 同步字符寄存器等。这时写入8251A的控制字的顺序是非常重要的。 对8251A 初始化流程图如图 9-28 所示。

8251A 初始化编程总是从设置方式控制字开始,随后是命令控制字。方式控制字必须紧跟在复位之后设置。

由图 9-28 可见,当硬件复位或者通过软件编程对 8251A 复位后,便向方式寄存器中写入方式控制字,设置 8251A 工作在同步或异步方式。如果是同步方式,则必须指出同步字符的个数,并随后将同步字符送入 8251A 的同步字符寄存器中。

无论是异步方式还是同步方式,在设置方式控制字之后,应该写命令控制字。命令控制字中包括 8251A 操作的各种控制命令。其中如果 D6 位(IR)为 1,即使 8251A 复位,则 8251A 将回到初始化状态,重新进入方式字、命令字的设置。否则将进入数据传送阶段。当数据传送完毕之后,8251A 回到写入命令字状态(注意,

图 9-28 8251A 初始化流程图

不是方式字状态),可以通过改变命令字的值,改变 8251A 的操作。

由于命令指令和发送的数据共同发送数据/命令缓冲器,因此,在发送数据过程中,如果 CPU 向 8251A 输出一个命令控制字,将会覆盖存在数据缓冲器中等待发送的任何字符。这就要求 CPU 必须等到 TxRDY 输出上升沿或出现 TxRDY 状态位置位时,即确保缓冲器中已空,才能输出,以免破坏了原有的数据字符。同时,在命令控制字输出以后,必须不等发送缓冲器空立即输出下一个要发送的数据。

在由两个独立的程序控制一个 8251A 时,可能会出现当 8251A 等待装入同步字符时,一个内部复位命令来了。这时,这个命令将被视作一个同步字符而不是进行复位。解决的方法:在发送复位命令前线发送三个全"0"的命令给 8251A,使其避开这种可能性。

使用 8251A 时应该注意: 8251A 具有发送连续的 Space 电平的能力。因此 8251A 只能靠接收到一连串字符连续出现帧错误(无停止位)来识别终止符。如果在终止符之后接着接收有效字符,就需要特别注意识别终止符的最后一个字符。

(六) 8251A 的应用举例

[例 9.3] 用 8251A 作为串行通信接口,完成 8086CPU 对 CRT 的控制。电路如图 9-29 所示。

图 9-29 用 8251A 作为 CRT 接口

1. 对图 9-29 的说明

8251A 的主时钟 CLK 是系统时钟 8MHz,8251A 的发送时钟 TxC 和 RxC 由可编程计数器/定时器 8253 的计数器 2 的输出供给。8251A 的片选信号 \overline{CS} 由译码器供给。读信号 \overline{RD} 和写信号 \overline{WR} 分别由控制总线上的 \overline{IOR} 和 \overline{IOW} 供给。8251A 的数据线 D0—D7 和 8086CPU 的 16 位数据总线的低 8 位 D0—D7 相连。

由于 8251A 的输入输出均为 TTL 电平, 而 CRT 的信号电平是 RS-232-C 的 EIA 电平。所以,

两者之间需有1488和1489作为电平转换。

2. 程序说明

因为 CRT 是一个输出设备,因此 8251A 是单方向的,即完成由 CPU 送来的数据传输到 CRT 显示。这种传输的方式是一步串行。波特率因子设为 16,8 位数据、1 位停止位。字符数据的传 输采用状态查询方式,即每次从8251A的状态寄存器中读状态字,判断TxRDY状态位的值,如 果 TxRDY=1,说明当前数据输出缓冲区为空,CPU 即可向 8251A 发送一个字符。否则,继续测 试。

设 8251A 的控制端口地址为 DAH,数据端口地址为 D8H。

程序结构: 首先初始化 8251A, 其步骤按图 9-28 的顺序进行。当初始化完成后, 8251A 的 发送器和接收器启动,即可执行字符输出程序。

字符输出程序由状态查询和字符输出两步分组成,当查询到满足传输条件的 TxRDY 状态时, 输出一个字符。

注意: 在对 8251A 初始化时应首先用硬件或软件复位。这里采用软件复位方法。

3. 程序

①8251A 初始化程序段

INIT: :AX 清 0 MOV AX,AX

> MOV CX,0003

MOV DX,00DAH ;往 8251A 的控制口送 3 个 00

OUT1: CALL KKK

LOOP OUT1

MOV :往8251A 的控制口送40H, 使它复位 AL,40H

CALL KKK

MOV ;往8251A的控制口送方式字,异步方式, AL,4EH

CALL KKK

;波特率因子为16,8位数据,1位停止位

MOV ; 往 8251A 的控制口送命令字启动发送器和 AL,27H

CALL KKK ;接收器

.

KKK: OUT DX,AL ;输出子程序,将 AL 中数据输出到 DX 制定的端口

PUSH

MOV CX.0002 ;等待输出操作完成

ABC: LOOP ABC

POP CX ;恢复 CX 的内容,并返回

RET

②CPU 查询 82251A 的状态字,并发送字符程序段。

CHAROUT: MOV DX,0DAH :从状态口 DAAH 读入状态字

STATE: IN AL,DX

> :测试状态位 TxRDY=1? 不是, 再测 TEST AL,01

JZ STATE

;

MOV DX,0D8H ;DX 指向数据口 0D8H POP AX ;AX 中为要输出的字符 OUT DX,AL ;往端口中送出一个字符

该例子仅说明一种最基本的查询方式下的 8251A 的使用方法。程序中仅给出了核心部分。读者可以根据需要将该程序补充上必须的内容,形成一个完整的符合汇编程序格式要求的程序。

此外,读者还可以根据前面的介绍和该例的思想,设计出采用中断方式下的字符输出程序(电路稍加改动即可),和能够控制字符的输出个数的程序。

附录二 中断向量地址一览表

	中断向量	类型	功能
_	8088 中断向量		
`	0-3	0	除以零
	4-7	1	单步(用于 DEBUG)
	8-B	2	非屏蔽中断
	С—F	3	断点指令(用于 DEBUG)
	10-13	4	溢出
	14-17	5	打印屏幕
	18-1F	6,7	保留
Ξ,	8259 中断向量	0,7	水 田
_,	20-23	8	定时器
	24-27	9	键盘
	28-2B	A	彩色/图形
	2C—2F	В	异步通讯(Secondary)
	30-33	С	异步通讯(Primary)
	34-37	D	硬磁盘
	38-3B	Е	软磁盘
	3C—3F	F	并行打印机
三、	BIOS 中断		
	40-43	10	屏幕显示
	44-47	11	设备检验
	48-4B	12	测定存储器容量
	4C—4F	13	磁盘 I/O
	50-53	14	串行通讯口 I/O
	54-57	15	盒式磁带 I/O
	58-5B	16	键盘输入
	5C—5F	17	打印机输出
	60-63	18	BASIC 入口代码
	64-67	19	引导装入程序
	68-6B	1A	日时钟
四、	提供给用户的中断		
	6C—6F	1B	Ctrl-Break 控制的软中断
	70—73	1C	定时器控制的软中断
五、	数据表指针		
	74—77	1D	显示器参量表
	78—7B	1E	软盘参量表
	7C—7F	1F	图形表
六、	DOS 中断		
	80-83	20	程序结束

84 - 87	21	DOS 功能调用
88 - 8B	22	结束退出
8C—8F	23	Ctrl-Break 退出
90-93	24	严重错误处理
94-97	25	绝对磁盘读功能
98-9B	26	绝对磁盘写功能
9C—9F	27	驻留退出
A0-BB	28—2E	DOS 保留
BC-BF	2F	打印机
CO—FF	30—3F	DOS 保留
七、 BASIC 中断		
100-17F	40—5F	保留
180—19F	60—67	用户软中断
1A0—1FF	68—7F	保留
200—217	80—85	由 BASIC 保留
218—3C3	86—F0	BASIC 中断
3C4—3FF	F1—FF	保留

附录三 DOS 功能调用(INT 21H)

功能号	功能	入口参数	出口参数
00	程序终止	CS=程序段前缀	
	(同 INT 20H)		
01	键盘输入并回显		AL=输入字符
02	显示输出	DL= 输出字符	
03	异步通讯输入		AL=输入字符
04	异步通讯输出	DL=输出数据	
05	打印机输出	DL=输出字符	
06	直接控制台 I/O	DL=FF(输入)	AL=输入字符
		DL=字符(输出)	
07	键盘输入 (无回显)		AL=输入字符
08	键盘输入 (无回显)		AL=输入字符
	检测 Ctrl-Break		
09	显示字符串	DS: SS=串首地址	
		\$'结束字符串	
0A	键盘输入到缓冲区	DS: SS=缓冲区首地址	
		(DS: SS)=缓冲区最大字符数	DS:(DX+1)=实际输入的字符数
0B	检验键盘状态		AL=00 无键入
			AL=FF 有键入
0C	清除输入缓冲区并请	AL=输入功能号	
	求指定的输入功能	(1, 6, 7, 8, A)	
0D	磁盘复位		清除文件缓冲区
0E	指定当前缺省的磁盘	DL=驱动器号	AL=驱动器数
	驱动器	0 = A, 1 = B,	
0F	打开文件	DS:DX=FCB 首地址	AL=00 文件找到
			AL=FF 文件未找到
10	关闭文件	DS:DX=FCB 首地址	AL=00 目录修改成功
			AL=FF 目录中未找到文件
11	查找第一个目录项	DS:DX=FCB 首地址	AL=00 找到
			AL=FF 未找到
12	查找下一个目录项	DS:DX=FCB 首地址	AL=00 找到
		(文件名中带*或?)	AL=FF 未找到
13	删除文件	DS:DX=FCB 首地址	AL=00 删除成功
			AL=FF 未找到
14	顺序读	DS:DX=FCB 首地址	AL=00 读成功
			=01 文件结束,记录中无数据
			=02 DTA 空间不够
			=03 文件结束,记录不完整
15	顺序写	DS:DX=FCB 首地址	AL=00 写成功

功能号	功能	入口参数	出口参数
			=01 盘满
			=02 DTA 空间不够
16	建文件	DS:DX=FCB 首地址	AL=00 建立成功
			=FF 无磁盘空间
17	文件改名	DS:DX=FCB 首地址	AL=00 成功
		DS:(DX+1)=旧文件名	=FF 未成功
		DS:(DX+17)=新文件名	
19	取当前缺省		AL=缺少的驱动器号
	磁盘驱动号		0 = A, 1 = B, 2 = C
1A	置 DTA 地址	DS:DX=DTA 地址	
1B	取缺省驱动器		AL=每簇的扇区数
	FAT 信息		DS:BX=FAT 标识字节
			CX=物理扇区的大小
			DX=缺少驱动器的簇数
1C	任取一驱动器	DL=驱动器号	
	FAT 信息		同上
21	随机读	DS:DX=FCB 首地址	AL=00 读成功
			=01 文件结束
			=02 缓冲区溢出
	nt la et	www.Wish.H	=03 缓冲区不满
22	随机写	DS:DX=FCB 首地址	AL=00 写成功
			=01 盘满
22		DG DV EGD ** 11/11	=02 缓冲区溢出
23	测定文件大小	DS:DX=FCB 首地址	AL=00 成功
2.4	25. 黑际和27.3.0	DG DV EGD 关州州	文件长度填入 FCB
24	设置随机记录号 设置中断向量	DS:DX=FCB 首地址 DS:DX=中断向量	
25	以且中 例问里	D3:DX=中断回重	
26	建立程序段前缀	DX=新的程序段的段前缀	
27	随机分块读	DS:DX=FCB 首地址	AL=00 读成功
		CX=记录数	=01 文件结束
			=02 缓冲区太小,传输结束
			=03 缓冲区不满
			CX=读取的记录数
28	随机分块写	DS:DX=FCB 首地址	AL=00 写成功
		CX=记录数	AL=01 盘数
			=02 缓冲区溢出
29	分析文件名	ES:DI=FCB 首地址	AL=00 标准文件
		DS:SI=ASCIIZ 串	=01 多义文件
		AL=控制分析标志	=FF 非法盘符
2A	取日期		CX=年
			DH:DL=月: 日(二进制)

功能号	功能	入口参数	出口参数
2B	设置日期	CX:DH:DL=年: 月: 日	AL=00 成功
			=FF 无效
2C	取时间		CH:CL=时:分
			DH:DL=秒: 1/100 秒
2D	设置时间	CH:CL=时:分	AL=00 成功
		DH:DL=秒: 1/100 秒	AL=FF 无效
2E	置磁盘自动	AL=00 关闭标志	
		AL=01 打开标志	
2F	取磁盘缓冲区的首地址		ES:BX=缓冲区首地址
30	取 DOS 版本号	\\	AH=发型号,AL=版号
31	结束并驻留	AL=返回码	
	G 1 D 1 IA YEU	DX=驻留区大小	
33	Ctrl-Break 检测	AL=00 取状态	DL=00 关闭 Ctrl-Break 检测
		AL=01 置状态(DL)	=01 打开 Ctrl-Break 检测
		DL=00 关闭检测 =01 打开检测	
25	取力帐点是		ES:BX=中断向量
35 36	取中断向量 取空闲磁盘空间	AL=中断类型 DL=驱动器号	成功: AX=每簇扇区数
30	以工	DL=驱纠命与	BX=有效簇数
			CX=每扇区字节数
			DX=总簇数
			失败: AX=FFFF
38	置/取国家信息	DS:DX=信息区首地址	BX=国家码(国际电话前缀码)
	T. (173, 183)	- 14.6.E. H. 6.E.	AX=错误码
39	建立子目录(MKDIR)	DS:DX=ASCIIZ 串地址	AX=错误码
3A	删除子目录(RMDIR)	DS:DX=ASCIIZ 串地址	AX=错误码
3B	改变当前目录	DS:DX=ASCIIZ 串地址	AX=错误码
	(CHDIR)		
3C	建立文件	DS:DX=ASCIIZ 串地址	成功: AX=文件代码
		CX=文件属性	失败: AX=错误码
3D	打开文件	DS:DX=ASCIIZ 串地址	成功: AX=文件代码
		AL=0 读	失败: AX=错误码
		=2 写	
		=3 读/写	
3E	关闭文件	BX=文件号	失败: AX=错误码
3F	读文件或设备	DS:DX=数据缓冲区地址	读成功
		BX=文件代号	AX=实际读入的字节数
		CX=读取的字节数	AX=0 已到文件尾
			读出错: AX=错误代码
40	写文件或设备	DS:DX=数据缓冲区地址	写成功:
		BX=文件代号	AX=实际写入的字节数
		CX=写入的字节数	写出错: AX=错误代码

功能号	功能	入口参数	出口参数
41	删除文件	DS:DX= ASCIIZ 串地址	成功: AX=0
			出错: AX=错误码(2,5)
42	移动文件指针	BX=文件代号	成功: DX:AX=新指针位置
		CX:DX=位移量	出错: AX=错误码
		AL=移动方式(0, 1, 2)	
43	置/取文件属性	DS:DX=ASCIIZ 串地址	成功: CX=文件属性
		AL=0 取文件属性	失败: AX=错误码
		AL=1 置文件属性	
		CX=文件属性	
44	设备文件 I/O 控制	BX=文件代号	DX=设备信息
		AL=0 取状态	
		=1 置状态 DX	
		=2 读数据	
		=3 写数据	
		=6 取输入状态	
		=7 取输出状态	
45	复制文件代号	BX=文件代号 1	成功: AX=文件代号 2
			失败: AX=错误码
46	人工复制文件代号	BX=文件代号 1	失败: AX=错误码
		CX=文件代号 2	
47	取当前目录路径名	DL=驱动器号	(DS:SI)=ASCIIZ 串
		DS:SI=ASCIIZ 串地址	失败: AX=错误码
48	分配内存空间	BX=申请内存容量	成功: AX=分配内存首地址
			失败: BX=最大可用空间
49	释放内存空间	ES=内存起始段地址	失败: AX=错误码
4A	调整已分配的存储块	ES=原内存起始地址	失败: BX=最大可用空间
		BX=再申请的容量	AX=错误码
4B	装配/执行程序	DS:DX=ASCIIZ 串地址	失败: AX=错误码
		ES:BX=参数区首地址	
		AL=0 装入执行	
40	带返回码结束	AL=3 装入不执行	
4C 4D		AL=返回码	AX=返回代码
	取返回代码 查找第一个区配文件	DS:DX= ASCIIZ 串地址	AX=返回代码 AX=出错代码(02, 18)
4E	担 权第一个色化文件	CX=属性	AA=山钼气阿(02,18)
4F	查找下一个区配文件	DS:DX= ASCIIZ 串地址 (文件名中带?或*)	AX=出错代码(18)
54	取盘自动读写标志		AL=当前标志值
56	文件改名	DS:DX=ASCIIZ 串(旧)	AX=出错码(03,05,17)
		ES:DI= ASCIIZ 串(新)	
57	置/取文件日期时间	BX=文件代号	
		AL=0 读取	DX:CX=日期和时间

功能号	功能	入口参数	出口参数
		AL=1 设置(DX:CX)	失败: AX=错误码
58	置/取分配策略码	AL=0 取码	成功: AX=策略码
		=1 置码(BX)	失败: AX=错误码
59	取扩充错误码		AX=扩充错误码
			BH=错误类型
			BL=建议的操作
			CH=错误场所
5A	建立临时文件	CX=文件属性	成功: AX=文件代号
		DS:DX=ASCIIZ 串地址	失败: AX=错误码
5B	建立新文件	CX=文件属性	成功: AX=文件代号
		DS:DX= ASCIIZ 串地址	失败: AX=错误码
5C	控制文件存取	AL=00 封锁	失败: AX=错误码
		=01 开启	
		BX=文件代号	
		CX:DX=文件位移	
		SI:DI=文件长度	
62	取程序段前缀地址		BX=PSP 地址

^{*}AH=1-2E 使用 DOS1.0 以上版本;

AH=1-2E 使用 DOS1.0 以上版本;

AH=1-2E 使用 DOS1.0 以上版本;

ASCII 串表示文件路径名(包括盘符)。

ASCII 串表示存放文件路径名的缓冲区首地址。

附录四 BIOS 中断调用

INT	AH	功能	入口参数	出口参数
10	0	设置显示方式	AL=00 40×25 黑白方式	
			=01 40×25 彩色方式	
			=02 80×25 黑白方式	
			=03 80×25 彩色方式	
			=04 320×200 彩色图形方式	
			=05 320×200 黑白图形方式	
			=06 640×200 黑白图形方式	
			=07 80×25 单色文本方式	
			=08 160×200 16 色图形(PCjr)	
			=09 320×200 16 色图形(PCjr)	
			=0A 640×200 16 色图形(PCjr)	
			=0B 保留(EGA)	
			=0C 保留(EGA)	
			=0D 320×200 彩色图形(EGA)	
			=0E 640×200 彩色图形(EGA)	
			=0F 640×350 黑白图形(EGA)	
			=10 640×350 彩色图形(EGA)	
			=11 640×480 单色图形(EGA)	
			=12 640×480 16 色图形(EGA)	
			=13 320×200 256 色图形(EGA)	
			=40 80×30 彩色文本(CGE400)	
			=41 80×50 彩色文本(CGE400)	
			=42 640×400 彩色文本(CGE400)	1
10	1	置光标类型	(CH)0-3=光标起始行	
			(CL)0-3=光标起始行	
10	2	置光标位置	BH=页号	
			DH,DL=行,列	
10	3	读光标位置	BH=页号	CH=光标起始行
				DH,DL=行,列
10	4	读光笔位置		AH=0 光笔未触发
				=1 光笔触发
				CH=象素行
				BX=象素列
				DH=字符行
				DL=字符列
10	5	置显示页	AL=页号	
10	6	屏幕初始化或上卷	AL=上卷行数	
			AL=0 整个窗口空白	

INT	АН	功能	入口参数	出口参数
			BH=卷入行属性	
			CH=左上角行号	
			CL=左上角列号	
			DH=右下角行号	
			DL=右下角列号	
10	7	屏幕初始化或下卷	AL=下卷行数	
			AL=0 整个窗口空白	
			BH=卷入行属性	
			CH=左上角行号	
			CL=左上角列号	
			DH=右下角行号	
			DL=右下角列号	
10	8	读光标位置的字符	BH=显示页	AL=属性
		和属性		AL=字符
10	9	在光标位置显示字	BH=显示页	
		符及其属性	AL=字符	
			BL=属性	
			CX=字符重复次数	
10	A	在光标位置显示字	BH=显示页	
		符	AL=字符	
			CX=字符重复次数	
10	В	置彩色调板	BH=彩色调板 ID	
		(320×200 图形)	BL=和 ID 配套使用的颜色	
10	С	写象素	DX=行(0-199)	
			CX=列(0-639)(640 个数)	
			AL=象素值	
10	D	读象素	DX=行(0-199)	
		>	CX=列(0-639)	
10	Е	显示字符	AL=字符	
		(光标前移)	BL=前景色	No destroyed 1 Met
10	F	取当前显示方式		AH=字符列数
				AL=显示方式
10	13	显示字符串	ES:BP=串地址	
		(适用 AT)	CX=串长度	
			DH,DL=起始行,列	
			BH=页号	
			AL=0,BL=属性	业长近同和协位署
			串: char,char,	光标返回起始位置
			AL=1,BL=属性 串:char,char,	光标跟随移动
			中: cnar,cnar, AL=2	来程护回起护位置
				光标返回起始位置
			串: char,attr,char,attr	

INT	AH	功能	入口参数	出口参数
			AL=3	光标跟随移动
			串: char,attr,char,attr	
11		设备检验		AX=返回值
				bit0=1,配有磁盘
				bit0=1,80287 协处理器
				bit4,5=01,40×25BW(彩色
				板)
				=10,80×25BW(彩色板)
				=11,80×25BW(黑白板)
				bit6,7=软盘驱动器号
				bit9,10,11=RS-232 板号
				bit12=游戏适配器
				bit13=串行打印机
				bit14,15=打印机号
12		测定存储器容量		AX=字节数(KB)
13	0	软盘系统复位		
13	1	读软盘状态		AL=状态字节
13	2	读磁盘	AL=扇区数	读成功: AH=0
			CH,CL=磁道号,扇区号	AL=读取的扇区数
			DH,DL=磁头号,驱动器号	读失败:
			ES:BX=数据缓冲区地址	AH=出错代码
13	3	写磁盘	同上	写成功: AH=0
				AL=写取的扇区数
				写失败:
		ᇇᇌᄽᄷᇊᆮ		AH=出错代码
13	4	检验磁盘扇区	同上(ES:BX 不设置)	成功: AH=0
				AL=检验的扇区数
1.2	~	地子小戏点学	EC DV 1共,关中 門	失败: AH=出错代码
13	5	格式化磁盘道	ES:BX=磁道地址	成功: AH=0 失败: AH=出错代码
1.4	0	初始化串行通信口	AL=初始化参数	AH=通讯口状态
14	0	例如化中11 旭信口	AL=初始化参数 DX=通讯口号(0,1)	AL=调制解调器状态
15	0	启动盒式磁带马达	DA=地 讯口 与(0,1)	AL= 炯 門 胖 炯 奋 4八 心
15	1	停止盒式磁带马达		
15	2	磁带分块读	ES:BX=数据传输区地址	AH=状态字节
13	2	城市万头庆	CX=字节数	AH=00 读成功
			CV-1 120	=01 冗余校验错
				=02 无数据传输
				=04 无引导
				=08 非法命令
15	3	磁带分块写	DS:BX=数据传输区地址	AH=状态字节
10	5	14 77 97 -J	CX=字节数	(同上)
			4 1:20	(14/

INT	AH	功能	入口参数	出口参数
16	0	从键盘读字符		AL=字符码 AH=扫描码
16	1	读键盘缓冲区字符		ZF=0 AL=字符码 AH=扫描码
				ZF=1 缓冲区空
16	2	取键盘状态字节		AL=键盘状态字节
17	0	打印字符,	AL=字符	
		回送状态字节	DX=打印机号	AH=打印机状态字节
17	1	初始化打印机回送	DX=打印机号	
		状态字节		AH=打印机状态字节
17	2	取状态字节	DX=打印机号	AH=打印机状态字节
1A	0	读时钟		CH:CL=时:分
				DH:DL=秒: 1/100 秒
1A	1	置时钟	CH:CL=时:分	
			DH:DL=秒: 1/100 秒	CH:CL=时:分(BCD)
1A	2	读实时钟		DH:DL=秒: 1/100 秒
		(适用 AT)		(BCD)
1A	6	置报警时间	CH:CL=时:分(BCD)	
		(适用 AT)	DH:DL=秒: 1/100 秒(BCD)	
1A	7	清除报警		
		(适用 AT)		

附录六 IBM PC ASCII 码字符表

