TROUVER LA FORME NORMALE DISJONCTIVE CANONIQUE de F puis LA FORME NORMALE CONJONCTIVE CANONIQUE de F à partir du Tableau de Vérité de F

I. TROUVER LA FORME NORMALE DISJONCTIVE CANONIQUE de ${\cal F}$

0. Notation:

Soit ϵ élément de $\{0,1\}$ et F une formule propositionnelle. Alors :

- ϵF désigne la formule $\neg F$, si $\epsilon = 0$,
- ϵF désigne la formule F, si $\epsilon = 1$.

1. Construction de la LA FORME NORMALE DISJONCTIVE CANONIQUE de ${\it F}$ - FNDC

p_1	p_2	• • •	p_n	F
:	:		:	:
ϵ_1	ϵ_1	• • •	ϵ_n	1
:	:			:

Etape 1: On scrute le tableau de vérité de F. Pour chaque ligne contenant 1 comme valeur de vérité pour F, on y considère la distribution des valeurs de vérité $(\epsilon_1, \ldots, \epsilon_n)$ sur (p_1, \ldots, p_n) et on fabrique la formule $(\epsilon_1 p_1 \wedge \epsilon_2 p_2 \wedge \ldots \wedge \epsilon_n p_n)$.

Etape 2 : La FNDC de F est la disjonction de toutes les formules construites à l'étape 1.

Exemple:

	p	q	r	$(\neg p \land q)$	$(r \Longrightarrow (\neg p \land q))$	$(r \wedge p)$	F	
	0	0	0	0	1	0	0	
L_2	0	0	1	0	0	0	1	\leftarrow
	0	1	0	1	1	0	0	
	0	1	1	1	1	0	0	
	1	0	0	0	1	0	0	
L_6	1	0	1	0	0	1	1	\leftarrow
	1	1	0	0	1	0	0	

 $F = ((r \Longrightarrow (\neg p \land q)) \Longrightarrow (r \land p))$

Les distributions des valeurs de vérité sur $\{p, q, r\}$ des lignes L_2 , L_6 et L_8 donnent à F la valeur 1.

Etape 1:

- Les valeurs de vérité attribués à (p,q,r) dans la ligne $L_2:(0,0,1)$. D'où la conjonction à construire : $(0p \wedge 0q \wedge 1r)$ c'est-à-dire :

$$(\neg p \land \neg q \land r)$$

- Les valeurs de vérité attribués à (p,q,r) dans la ligne L_6 : (1,0,1). D'où la conjonction à construire: $(1p \land 0q \land 1r)$ c'est-à-dire:

$$(p \land \neg q \land r)$$

- Les valeurs de vérité attribués à (p,q,r) dans la ligne L_8 : (1,1,1). D'où la conjonction à construire : $(1p \land 1q \land 1r)$ c'est-à-dire :

$$(p \wedge q \wedge r)$$

Etape 2: La FNDC de F est la disjonction de toutes les formules construites à l'étape 1.

La FNDC de F:

$$\boxed{((\neg p \land \neg q \land r) \bigvee (p \land \neg q \land r) \bigvee (p \land q \land r))}$$

II. TROUVER LA FORME NORMALE CONJONCTIVE CANONIQUE de ${\cal F}$ - FNCC

- **0.** Notation : La relation d'équivalence F logiquement équivalente à G (c-à-d $F \Leftrightarrow G$ est une tautologie) est noté $F \sim G$.
 - 1. Règle de Morgan :

$$\neg \neg p \sim p$$
 , $\neg (p \land q) \sim (\neg p \lor \neg q)$, $\neg (p \lor q) \sim (\neg p \land \neg q)$

LA FORME NORMALE CONJONCTIVE CANONIQUE DE F S'OBTIENT A PARTIR DE LA FORME NORMALE DISJONCTIVE CANONIQUE de $\neg F$

<u>Procédure</u>: En remplaçant dans la FNDC de $\neg F$, toute disjonction par une conjonction, toute conjonction par une disjonction, toute sous-formule $\neg p$ par p et toute sous-formule p, non précédée par une négation, par $\neg p$, alors on obtient la FNCC de F

3. Procédure pour trouver la FNCC de F

Le procédé utilisant le tableau de vérité de F pour trouver la FNCC de F:

- Etape 1 : Etablir le tableau de F,
- Etape 2 : rajouter une colonne $\neg F$, d'où le tableau de $\neg F$,
- Etape 3: on en déduit la FNDC de $\neg F$, (Méthode expliquée dans I.1)
- Etape $\overline{4}$: enfin, remplacer dans la FNDC de $\neg F$, toute disjonction par une conjonction, toute conjonction par une disjonction, toute sous-formule $\neg p$ par p et toute sous-formule p, non précédée par une négation, par $\neg p$

La formule ainsi obtenue est la FNCC de F

Exemple : Reprenons l'exemple ci-dessus. $F = ((r \Longrightarrow (\neg p \land q)) \Longrightarrow (r \land p))).$

 $F = ((r \Longrightarrow (\neg p \land q)) \Longrightarrow (r \land p))$

Cherchons la forme normale conjonctive canonique (FNCC) de F.

Etape 1 : On commence par établir le tableau de F, ce qui est déjà fait.

 $\overline{\text{Etape 2}}$: On rajoute une colonne $\neg F$. D'où le tableau de $\neg F$:

			, ,	(2 2//	` - //			J
p	q	r	$(\neg p \land q)$	$(r \Longrightarrow (\neg p \land q))$	$(r \wedge p)$	F	$\neg F$	
0	0	0	0	1	0	0	1	\leftarrow
0	0	1	0	0	0	1	0	
0	1	0	1	1	0	0	1	\leftarrow
0	1	1	1	1	0	0	1	\leftarrow
1	0	0	0	1	0	0	1	\leftarrow
1	0	1	0	0	1	1	0	
1	1	0	0	1	0	0	1	\leftarrow
1	1	1	0	0	1	1	0	

Etape 3 : On construit la FNDC de $\neg F$. Pour celà on utilise la méthode expliquée au **I.1** appliquée à $\neg F$.

En considérant les lignes du tableau ci-dessus qui contiennent 1 comme valeur de vérité pour $\neg F$, alors :

la FNDC de
$$\neg F$$
:

$$((\neg p \land \neg q \land \neg r) \bigvee (\neg p \land q \land \neg r) \bigvee (\neg p \land q \land r) \bigvee (p \land \neg q \land \neg r) \bigvee (p \land q \land \neg r)).$$

Etape 4: Enfin, en remplaçant dans cette dernière formule (la FNDC de $\neg F$) toute disjonction par une conjonction, toute conjonction par une disjonction, toute sous-formule $\neg p$ par p et toute sous-formule p, non précédée par une négation, par $\neg p$, on obtient

la FNCC de F:

$$\boxed{((p \lor q \lor r) \bigwedge (p \lor \neg q \lor r) \bigwedge (p \lor \neg q \lor \neg r) \bigwedge (\neg p \lor q \lor r) \bigwedge (\neg p \lor \neg q \lor r)).}$$