

RNA-Seq Module 2: **FASTQ/SAM/BAM/BED file formats**

Arpad Danos, Felicia Gomez, Obi Griffith, Malachi Griffith, My Hoang, Mariam Khanfar, Chris Miller, Kartik Singhal Advanced Sequencing Technologies & Bioinformatics Analysis November 10-23, 2024

Outline

- What is a sequence read?
- Unaligned read
- Aligned read
- Difference between the stored aligned reads file formats

Reads are the sequencer's best guess at what it saw for a given DNA molecule.

It's the "raw" data.

Alignment is central to most genomics applications

Alignment is central to most genomics applications

The FASTQ format

A "standard" format for storing and defining sequences from next-generation sequencing technologies.

```
Sequence ID
Sequence
Sequence
Sequence
Separator>
Quality scores
Sequence
SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

- FASTQ files are generally used to store short-read data from high-throughput sequencing experiments
- The sequence and quality scores are usually put into a single line

Sequence IDs

@HWUSI-EAS100R:6:73:941:1973#0/1

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	'y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read is filtered, N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

Quality scores

Quality scores

ASCII is inferred by the probability of error ~ Q score (Phred score)

Quality scores

Qualities are based on the Phred scale and are encoded

$$Q = -10*log_{10}(P_{err})$$

 $Q = -10*log_{10}(0.01)$
 $Q = 20$ (Q is the Phred score)

- FASTQ files encodes phred scores as ASCII characters
- Phred quality scores characterize the quality of DNA sequences these scores are assigned by the sequencer
- A quality score of 20 (Q20) represents an error rate of 1 in 100 (meaning every 100 bp sequencing read may contain an error); call accuracy of 99% courtesy of Andrew Farrell

Quality score encoding

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	I 33	21	1	65	41	A	97	61	a
2	02	Start of text	34	22		66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	I 69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	£
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	I 73	49	Ι	105	69	i
10	0A	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	4 3	2 B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2 C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	р
17	11	Device control 1	49	31	1	81	51	Q	113	71	đ
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	ន	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	I
29	1D	Group separator	61	3 D	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

Formula for getting PHRED quality from encoded quality:

10

- ASCII = American
 Standard Code for
 Information
 Interchange
- Every text symbol must have an integer value representing it inside the computer
- An ASCII code is the numerical representation of a character such as 'a' or '@'

Image courtesy of Andrew Farrell

$Q=-10Log_{10}(P_{error})$

Probability	of Error	Q	 Higher Q scores indicate a smaller probability of
1/1,000,000	0.00001	60	error.
1/100,000	0.000010	50	• Lower Q scores indicate
1/10,000	0.000100	40	lower confidence in the called base.
1/1,000	0.001000	30	 Increased false-positive variant calls
1/100	0.010000	20	 Q30 is a standard a benchmark for quality in
1/10	0.100000	10	benchmark for quality in next-generation sequencing
1/1	1.000000	0	

FASTQ Report Summary

№FastQC Report

Tue 12 Jan 2016 2009-08_lib324_miseq_r0030_251bp_R1.fastq.gz

Summary

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

Kmer Content

Basic Statistics

Measure	Value
Filename	2009-08_lib324_miseq_r0030_251bp_R1.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	503810
Sequences flagged as poor quality	0
Sequence length	35-251
%GC	66

②Per base sequence quality

FASTA format

We start with a reference genome to map to

The reference sequence (chromosome)

Sequence description

http://en.wikipedia.org/wiki/FASTA_format

Aligning to a reference genome; the crucial first step

Could fit here - but there are differences

Could fit here as well.

Single-end alignment

One mate maps uniquely, the other is unmapped

What needs to be stored?

Where did the read map? How confident are we that we are correct?

Which strand does the read come from?

Are there any differences with the reference?

What is the DNA sequence?

What are the quality scores for each base in the read?

What do we know about the mate?

Which read group does the read belong to?

http://samtools.github.io/hts-specs/SAMv1.pdf

What needs to be stored?

Where did the read map?
How confident are we that we are correct?

Which strand does the read come from?

Are there any differences with the reference?

What is the DNA sequence?

What are the quality scores for each base in the read?

What do we know about the mate?

Which read group does the read belong to?

http://samtools.github.io/hts-specs/SAMv1.pdf

Slide courtesy of Andrew Farrell

25

What needs to be stored?

Where did the read map?
How confident are we that we are correct? Which strand does the read come from?

Are there any differences with the reference?
What is the DNA sequence?
What are the quality scores for each base in the read?
What do we know about the mate?
Which read group does the read belong to?

26

http://samtools.github.io/hts-specs/SAMv1.pdf

Store the alignment

Standardize alignment formats

SAM : Sequence Alignment/Map

BAM: Binary Alignment/Map

- Can be indexed allowing fast access of regions
- Simple format

27

- Can represent single and paired end reads
- Many toolkits now available to process data

http://samtools.github.io/hts-specs/SAMv1.pdf

SAM/BAM format

Aspect	SAM	BAM
Format	Plain text (human-readable)	Binary (compressed)
File Size	Larger, less efficient	Smaller, more efficient
Access Speed	Slower for large files	Faster, especially with indexing
Readability	Directly readable	Needs tools (e.g., samtools)

- BAM is a compressed version of SAM; lossless BGZF format
- BAM files are usually 'indexed'
 - A '.bai' file will be found beside the '.bam' file
 - Indexing provides fast retrieval of alignments overlapping a specified region without going through all alignments.
 - BAM must be sorted by the reference ID and then the leftmost coordinate before indexing

http://samtools.sourceforge.net/SAM1.pdf

Example of SAM/BAM file format

Example SAM/BAM/CRAM header section (abbreviated)

```
mgriffit@linus270 >> samtools view -H /qscmnt/qc13001/info/model data/2891632684/build136494552/alignments/136080019.bam | grep -P "SN\:22|HD|RG|PG"
        VN:1.4 SO:coordinate
                                UR:ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa.gz AS:GRCh37-lite M5:a718acaa6135fdca8357d5bfe9
        SN:22 LN:51304566
4211dd SP:Homo sapiens
                                                                                                   PI:365 DS:paired end DT:2012-10-03T19:00:00-0500
       ID:2888721359
                        PL:illumina
                                         PU:D1BA4ACXX.3 LB:H KA-452198-0817007-cDNA-3-lib1
                                                                                                                                                             SM:H_KA-452198-0817007 CN:WUGSC
        ID: 2888721359
                       VN:2.0.8
                                         CL:tophat --library-type fr-secondstrand --bowtie-version=2.1.0
       ID:MarkDuplicates
                                                         PP:2888721359 WN:1.85(exported)
                                 PN:MarkDuplicates
                                                                                                   CL:net.sf.picard.sam.MarkDuplicates INPUT=[/gscmnt/gc13001/info/build merged alignments/merged-alignment-blad
e10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300.bam] OUTPUT=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300.bam]
alker-15434-136080019/scratch-ILq6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300-post_dup.bam METRICS_FILE=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-1543
4-136080019/staging-liuJS/H KA-452198-0817007-cDNA-3-lib1-2888360300.metrics REMOVE DUPLICATES=false ASSUME SORTED=true MAX FILE HANDLES FOR READ ENDS MAP=9500 TMP DIR=[/gscmnt/gc13001/info/build merged al
ignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y] VALIDATION STRINGENCY=SILENT MAX RECORDS IN RAM=500000 PROGRAM RECORD ID=MarkDuplicates PROGRAM GROUP NAME=Mark
Duplicates MAX SEQUENCES FOR DISK READ ENDS MAP=50000 SORTING COLLECTION SIZE RATIO=0.25 READ NAME REGEX=[a-zA-Z0-9]+:[0-9]+):([0-9]+):([0-9]+):([0-9]+):* OPTICAL DUPLICATE PIXEL DISTANCE=100 VERBOSITY=INFO
QUIET=false COMPRESSION LEVEL=5 CREATE INDEX=false CREATE MD5 FILE=false
mgriffit@linus270 ~>
```

Example SAM/BAM/CRAM alignment section (only 10 alignments shown)

```
mgriffit@linus270 ->> samtools view -f 3 -F 1804 /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam | head
HWI-ST495 129147882:3:2114:15769:38646 99
                                           11306 3
                                                       100M
                                                                               ACTGCGGGGCCCTCTTGCTTACTGTATAGTGGTGGCACGCCGCCTGCTGGCAGCTAGGGACATTGCAGGGTCCTCTTGCTCAAGGTGTAGTGGCAGCACGC
CC: Z: 15 MD: Z: 5A94
                                                                                                  PG:Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
      XN:i:0 X0:i:0 CP:i:102519765 AS:i:-5 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:2114:15769:38646 147
                                           11508 3
                                                                   11306
                                                                               ;5:CDCDCDECEFCD@9E=?7EEIIIIHCEGGIJJJJIIJJIHF@?00IHHFFGG?*JJJIJGHGEIJJIJJJJJJIHHCIEJJJHFHHGHFFEDFCCB
                                                                               CC:Z:15 MD:Z:34A65
                                                                                                  PG: Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
      XN:i:0 X0:i:0 CP:i:102519563 AS:i:-6 XS:A:+ YT:Z:UU
HWI-ST495 129147882:3:1210:1257:16203 163
                                          11810 3
                                                                               CCFFFFFHFHAFGGIIIJJJEEHGIGGGIJIJJGI?@EHIGIJDGHIHIGGIJJJJJJJJJJJJJGHHHGHFFFCDDDDDDCDCCCCCA;>@>@AA@:AA>AA
                                                                               CC: Z: 15 MD: Z: 100
                                                                                                  PG:Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:102519261 AS:i:0 XS:A:- YT:Z:UU
HWI-ST495 129147882:3:1210:1257:16203 83
                                          12055 3
                                                                               GAGCACTGGAGTGGAGTTTTCCTGTGGAGAGGAGCCATGCCTAGAGTGGGATGGGCCCATTGTTCATCTTCTGGCCCCCTGTTGTCTGCATGTAACTTAATAC
                                   1
                                                                   11810
CC:Z:15 MD:Z:100
                                                                                                  PG:Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:102519016 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:2111:3117:78828 163
                                           12634 3
                                                       100M
                                                                   12746
                                                                               CC:Z:15 MD:Z:85G14
                                                                                                  PG:Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
      XN:i:0 X0:i:0 CP:i:102518437 AS:i:-5 XS:A:- YT:Z:UU
                                                                               {\tt GGGAGTGGCGTCGCCCCTAGGGCTCTACGGGGCCGGCATCTCCTGTCTCCTGGAGAGGCTTCGATGCCCCTCCACACCCTCTTGATCTTCCCTGTGATGTD}
HWI-ST495_129147882:3:2111:3117:78828 83
                                           12746 3
                                                                   12634 -212
DCABDBDDDDDDDDDDDDDDDDBDB@BDDDB@; CCCCCDEFD@; .?<HIGGEIGEHIGJJJJIIGIGIIHEGFEHFJIIIIIGJJJJHHHHHFFFFFC@
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
                                                                               CC:Z:15 MD:Z:37G62
                                                                                                  PG:Z:MarkDuplicates
      XN:i:0 X0:i:0 CP:i:102518325 AS:i:-5 XS:A:- YT:Z:UU
HWI-ST495_129147882:3:1102:4242:26638 99
                                          13503 3
                                                                   13779 376
                                                                               CGCTGTGCCCTTCCTTTGCTCTGCCCGCTGGAGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAC
CC: Z:2 MD: Z: 100
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
                                                                                                  PG:Z:MarkDuplicates
     XN:i:0 X0:i:0 CP:i:114357414 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:1309:15328:74082 99
                                          13534 3
                                                                   13780
                                                                               AGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAGTCCAGAGTGTTGCCAGGACCCAGGCACAGG@
CC: Z: 2 MD: Z: 100
                                                                                                  PG:Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:114357383 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:1308:10126:19636 99
                                           13779 3
                                                                   14027
                                                                               CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCCCATCTGCTACTGCCCTTTCTATAATAACTAAAGTTAGCTGC
CC:Z:2 MD:Z:100
                                                                                                  PG:Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495 129147882:3:1102:4242:26638 147
                                                                               CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCAGACCCATCTGCTACTGCCCCTTTCTATAATAACTAAAGTTAGCTG#
                                          13779 3
                                                                   13503
##DCCDDDCCBBBABCCDDDCBDDBBDHC?=GIIJIIIIJJGIIIIJJHJJJJJJGCIIJJJJJJIGHGJJIJJJJJJJJIIIIGGFGHHHHFFFFFCCC
                                                                               CC: Z:2 MD: Z: 100
                                                                                                  PG:Z:MarkDuplicates
                                                                                                                    RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU
mgriffit@linus270 ~>
```

A SAM/BAM file is divided in header & alignment sections Example SAM/BAM header section (abbreviated)

```
mgriffit@linus270 >> samtools view -H /gscmnt/gc13001/info/model data/2891632684/build136494552/alignments/136080019.bam | grep -P "SN\:22|HD|RG|PG"
       VN:1.4 SO:coordinate
       SN:22 LN:51304566
                             UR:ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa.gz AS:GRCh37-lite M5:a718acaa6135fdca8357d5bfe9
4211dd SP: Homo sapiens
       ID:2888721359 PL:illumina
                                                                                         PI:365 DS:paired end
                                     PU:D1BA4ACXX.3 LB:H_KA-452198-0817007-cDNA-3-lib1
                                                                                                               DT:2012-10-03T19:00:00-0500
                                                                                                                                             SM:H KA-452198-0817007 CN:WUGSC
      ID:2888721359 VN:2.0.8
                                     CL:tophat --library-type fr-secondstrand --bowtie-version=2.1.0
                                                                                         CL:net.sf.picard.sam.MarkDuplicates INPUT=[/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blad
       ID:MarkDuplicates
                             PN:MarkDuplicates
                                                    PP:2888721359 WN:1.85(exported)
e10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300.bam] OUTPUT=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jw
alker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300-post_dup.bam METRICS_FILE=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-1543
4-136080019/staging-liuJS/H_KA-452198-0817007-cDNA-3-lib1-2888360300.metrics REMOVE_DUPLICATES=false ASSUME_SORTED=true MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=9500 TMP_DIR=[/gscmnt/gc13001/info/build_merged_al
ignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y] VALIDATION STRINGENCY=SILENT MAX RECORDS IN RAM=5000000 PROGRAM RECORD ID=MarkDuplicates PROGRAM GROUP NAME=Mark
Duplicates MAX_SEQUENCES_FOR_DISK_READ_ENDS_MAP=50000 SORTING_COLLECTION_SIZE_RATIO=0.25 READ_NAME_REGEX=[a-zA-Z0-9]+:[0-9]+):([0-9]+):([0-9]+):([0-9]+).* OPTICAL_DUPLICATE_PIXEL_DISTANCE=100 VERBOSITY=INFO
QUIET=false COMPRESSION LEVEL=5 CREATE INDEX=false CREATE MD5 FILE=false
mgriffit@linus270 ~>
                                          Version (VN) and sort order
                                          (SO) - Important!
                                                                                                                                   Reference sequence (SQ)
                                                                                                                                   and sequence length (LN)
                      @HD
                                              SO:coordinate
                      @SQ
                                  SN:20
                                             LN:63025520
                      @RG
                                  ID: HG00096
                                                         SM: HG00096
                                  ID: HG00096
                                                                     CL:/Users/AlistairNWard/Work/gkno/gkno launcher/tools/bwa/bwa mem -t
                          Read group (RG) and sample
                                                                      Programs (PG) that have
                           (SM)
                                                                      been run on the data
                                                                                                                                                               Slide courtesy of Andrew Farrell
```

SAM/BAM header section

- Used to describe source of data, reference sequence, method of alignment, etc.
- Each section begins with character '@' followed by a two-letter record type code. These are followed by two-letter tags and values:
 - @HD The header line
 - VN: format version
 - SO: Sorting order of alignments
 - @SQ Reference sequence dictionary
 - SN: reference sequence name
 - LN: reference sequence length
 - SP: species

- @RG Read group
 - ID: read group identifier
 - CN: name of sequencing center
 - SM: sample name
- @PG Program
 - PN: program name
 - VN: program version

A BAM file is divided in header and alignment sections Example SAM/BAM alignment section (only 10 alignments shown)

```
mgriffit@linus270 >> samtools view -f 3 -F 1804 /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam | head
HWI-ST495 129147882:3:2114:15769:38646 99
                                             11306 3
                                                          100M =
                                                                       11508 302
                                                                                    ACTGCGGGGCCCTCTTGCTTACTGTATAGTGGTGGCACGCCGCCTGCTGGCAGCTAGGGACATTGCAGGGTCCTCTTGCTCAAGGTGTAGTGGCAGCACGC
CC: Z: 15 MD: Z: 5A94
                                                                                                       PG: Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
      XN:i:0 X0:i:0 CP:i:102519765 AS:i:-5 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:2114:15769:38646 147
                                             11508 3
                                                                                    -302
;5:CDCDCDECEFCD@9E=?7EEIIIIHCEGGIJJJJIIJJIHF@?00IHHFFGG?*JJJIJJGHGEIJJIJJJJJJIHHCIEJJJHFHHGHFFEDFCCB
                                                                                    CC:Z:15 MD:Z:34A65
                                                                                                       PG:Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
      XN:i:0 X0:i:0 CP:i:102519563 AS:i:-6 XS:A:+ YT:Z:UU
HWI-ST495 129147882:3:1210:1257:16203 163
                                             11810 3
                                                          100M
                                                                       12055
                                                                                    345
CCFFFFFHFHAFGGIIIJJJEEHGIGGGIJIJJGI?@EHIGIJDGHIHIGGIJJJJJJJJJJJJJGHHHGHFFFCDDDDDDCDCCCCCA;>@>@AA@:AA>AA
                                                                                    CC: Z: 15 MD: Z: 100
                                                                                                       PG:Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:102519261 AS:i:0 XS:A:- YT:Z:UU
HWI-ST495 129147882:3:1210:1257:16203 83
                                             12055 3
                                                                                    GAGCACTGGAGTGGAGTTTTCCTGTGGAGAGGAGCCATGCCTAGAGTGGGATGGGCCATTGTTCATCTTCTGGCCCCCTGTTGTCTGCATGTAACTTAATAC
CC: Z: 15 MD: Z: 100
                                                                                                       PG:Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:102519016 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495 129147882:3:2111:3117:78828
                                             12634 3
                                                                            212
                                                                                    163
@GFFFFFDHHHH9FHGIIFGAFDHEGII>GHIIIIIIIIIIIIIIIIIIIFHDDFFEEECEECCCACCCCC:AADCCBCC>CAC<CCCCC:@CB@@BAB##
                                                                                    CC: Z:15 MD: Z:85G14
                                                                                                       PG:Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
      XN:i:0 X0:i:0 CP:i:102518437 AS:i:-5 XS:A:- YT:Z:UU
HWI-ST495 129147882:3:2111:3117:78828 83
                                             12746 3
                                                                       12634
                                                                             -212
                                                                                    GGGAGTGGCGTCGCCCTAGGGCTCTACGGGGCCGGCATCTCCTGTCTCCTGGAGAGGCTTCGATGCCCCTCCACACCCTCTTGATCTTCCCTGTGATGTD
DCABDBDDDDDDDDDDDDDDDDBDB@BDDDB@;CCCCCDEFD@;.?<HIGGEIGEHIGJJJIIGIGIIHEGFEHFJIIIIIGJJJJHHHHHFFFFFC@@
                                                                                    CC: Z:15 MD: Z:37G62
                                                                                                       PG:Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
      XN:i:0 X0:i:0 CP:i:102518325 AS:i:-5 XS:A:- YT:Z:UU
HWI-ST495 129147882:3:1102:4242:26638 99
                                             13503 3
                                                                                    CGCTGTGCCCTTCCTTTGCTCTGCCCGCTGGAGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAC
CCFFFFFHHHHHJJJIJJJJJJJJJJJJJJJGIIIIJJFHGGIJGIJJJJEGIJIJJHHIHHGHFFEFDEEECCCAACDDACDCDDDDDB?8?<B>A@CDC
                                                                                    CC: Z:2 MD: Z:100
                                                                                                       PG: Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:114357414 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495 129147882:3:1309:15328:74082 99
                                             13534 3
                                                                                    AGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAGTCCAGAGTGTTGCCAGGACCCAGGCACAGG
CC:Z:2 MD:Z:100
                                                                                                       PG: Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:114357383 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495 129147882:3:1308:10126:19636 99
                                                                             348
                                                                                    CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCAGACCCATCTGCTACTGCCCTTTCTATAATAACTAAAGTTAGCTGC
CC:Z:2 MD:Z:100
                                                                                                       PG: Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495 129147882:3:1102:4242:26638
                               147
                                             13779 3
                                                                                    CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCAGACCCATCTGCTACTGCCCTTTCTATAATAACTAAAGTTAGCTG#
##DCCDDDCCBBBABCCDDDCBDDBBDHC?=GIIJIIIIJIGIIIIJJHJJIJJIGCIIJJJJJJIGHGJJIJJJJJJJIIIIGGFGHHHHFFFFFCCC
                                                                                    CC:Z:2 MD:Z:100
                                                                                                       PG:Z:MarkDuplicates
                                                                                                                           RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
      XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU
mgriffit@linus270 ~>
                                                                                                                            Slide courtesy of Obi and Malachi Griffith
```

SAM/BAM alignment section

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	$[0,2^{29}-1]$	1-based leftmost mapping POSition
5	MAPQ	Int	$[0,2^8-1]$	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next segment
8	PNEXT	\mathbf{Int}	$[0,2^{29}-1]$	Position of the mate/next segment
9	TLEN	Int	$[-2^{29}+1,2^{29}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

RR062634	.14576120	163	20	899919	60	100M	=	900037	218	TTCCCCAGTAGCTGGGATTACAGGCATACGCCACC
1	QNAME	e.g. HWI-ST49	95 1291	47882 : 1:230	2:102	69 : 12362				
2	FLAG	e.g. 163	_							
3	RNAME	e.g. 20								
4	POS	e.g. 899919								
5	MAPQ	e.g. 60								
6	CIGAR	e.g. 100M								
7	RNEXT	e.g. =								
8	PNEXT	e.g. 900037								
9	TLEN	e.g. 218								
10	SEQ	e.g. CCTGTTTC	CTCCACA	AAGTGTTTACT	TTTGG	ATTTTTGCCAG	TCTA	CAGGTGAAGCCC	TGGAGA'	TTCTTATTAGTGATTTGGGCTGGGGCCTGGCCATGT
11	QUAL	e.g. CCCFFFF	ГНННННЈ.	JIJFIJJJJJJ	JJJJJI	HIJJJJJJJIJ	JJJJG	GHIJHIJJJJJJ	JJJGHG	GIJJJJJJIJEEHHHHFFFFCDCDDDDDDDB@ACDD

SAM/BAM flags explained

- 12 bitwise flags describing the alignment
- Stored as a binary string of length 12 instead of 12 columns of data
- Value of '1' indicates the flag is set. e.g. 001000000000
- All combinations can be represented as a number from 0 to 4095 (i.e. 2¹²-1). This number is used in the BAM/SAM file.
- You can specify 'required' or 'filter' flags in samtools view using the '-f' and '-F' options respectively

Bit		Description					
1	0x1	template having multiple segments in sequencing					
2	0x2	each segment properly aligned according to the aligner					
4	0x4	segment unmapped					
8	0x8	next segment in the template unmapped					
16	0x10	SEQ being reverse complemented					
32	0x20	SEQ of the next segment in the template being reverse complemented					
64	0x40	the first segment in the template					
128	0x80	the last segment in the template					
256	0x100	secondary alignment					
512	0x200	not passing filters, such as platform/vendor quality controls					
1024	0x400	PCR or optical duplicate					
2048	0x800	supplementary alignment					

Note that to maximize confusion, each bit is described in the SAM specification using its hexadecimal representation (i.e., 0x10' = 16 and 0x40' = 64).

http://broadinstitute.github.io/picard/explain-flags.html

CIGAR strings explained

- •The 'CIGAR' (**C**ompact **I**diosyncratic **G**apped **A**lignment **R**eport)
- •The CIGAR string is a sequence of base lengths and associated 'operations' indicating which bases align to the reference (either a match or mismatch), are deleted, are inserted, represent introns, etc.

Op	BAM	Description							
M	0	alignment match (can be a sequence match or mismatch)							
I	1	insertion to the reference							
D	2	deletion from the reference							
N	3	skipped region from the reference							
S	4	soft clipping (clipped sequences present in SEQ)							
H	5	hard clipping (clipped sequences NOT present in SEQ)							
P	6	padding (silent deletion from padded reference)							
=	7	sequence match							
X	8	sequence mismatch							
Refe	erence:	ACTTTTCATCCCTAAACAACCCTGTGTTTTCCC							
San	nple:	ACCGGTCATTAAATTTCAACCCTTCTGTGAAATCCC							
		9M3D4M3I5M3I12							

rence: ACTTTTCATCCCTAAA---CAACC---CTGTGTTTTCCC
ple: ACCGGTCAT---TAAATTTCAACCCTTCTGTGAAATCCC
9M3D4M3I5M3I12M
2M3X4M

36

CRAM files

- CRAM is an ultra-compressed version of a BAM

 Usually between 30-60% smaller than the
 corresponding BAM
- Stores "diffs" from the reference genome
 - requires the matching reference genome to restore original data!
- Base quality binning may be used as well
- Some tools still require conversion back to bam

SAM > BAM > CRAM

Quality Score Bins	Example of Empirically Mapped Quality Scores*
N (no call)	N (no call)
2–9	6
10–19	15
20–24	22
25–29	27
30–34	33
35–39	37
≥ 40	40

By replacing the quality scores between 19 and 25 with a new score of 22, data storage space is conserved.

^{*}The mapped quality score of each bin (except "N") is subject to change depending on individual Q-tables.

Introduction to the BED format

- When working with BAM files, it is very common to want to examine a focused subset of the reference genome, e.g. the exons of a gene
- These subsets are commonly specified in 'BED' files (Browser Extensible Data)
 https://genome.ucsc.edu/FAQ/FAQformat.html#format1
- Many BAM manipulation tools accept regions of interest in BED format
- Basic BED format (tab separated):
 - Chromosome name, start position, end position (BED3)
 - Coordinates in BED format are 0 based:

Start position (the 0-based start coordinate)

End position (the 1-based end coordinate)

Introduction to the BED format

- There are several flavors of BED format: BED3, BED4, BED6, BED8, etc.
- First 3 fields always required: chr, start, stop
- Followed by up to 9 additional optional fields: name, score, strand, thickStart, thickEnd, itemRGB, blockCount, blockSizes, blockStarts

chr7	127471196	127472363	Pos1	0	+
chr7	127472363	127473530	Pos2	0	+
chr7	127473530	127474697	Pos3	0	+
chr7	127474697	127475864	Pos4	0	+
chr7	127475864	127477031	Neg1	0	-
chr7	127477031	127478198	Neg2	0	-
chr7	127478198	127479365	Neg3	0	-
chr7	127479365	127480532	Pos5	0	+
chr7	127480532	127481699	Neg4	0	-

Manipulation of SAM/BAM and BED files

 Several tools are used ubiquitously in sequence analysis to manipulate these files

- SAM/BAM files
 - samtools
 - bamtools
 - Picard
- BED files
 - bedtools
 - bedops

Common sources of confusion

Genomic coordinate systems

Genome builds

Variant representation

Genomic coordinates - 1 vs 0 based

chr1		Т	Α		С	G		Т	С		Α	
1-based		1 1	2		3	4		5	6		7	
0-based	0		1	2		3	4	Ţ	5	6		7

	1-based	0-based
Indicate a single nucleotide	chr1:4-4 G	chr1:3-4 G
Indicate a range of nucleotides	chr1:2-4 ACG	chr1:1-4 ACG
Indicate a single nucleotide variant	chr1:5-5 T/A	chr1:4-5 T/A

- 1-based: Single nucleotides, variant positions, or ranges are specified directly by their corresponding nucleotide numbers
 - GFF, SAM, VCF, Ensembl browser, ...
- O-based: Single nucleotides, variant positions, or ranges are specified by the coordinates that flank them
 - BED, BAM, UCSC browser, ...

Reference Genome builds

Lift-over

Current human: GRCh38, hg38, b38

alternates: GRCh38v2_ccdg,

GRCh38_full_analysis_set_plus_decoy_hla

Previous human: GRCh37, hg19, b37

Current mouse: mm11

Still used mouse:GRCm38, mm10

For a detailed discussion of various human reference genome flavors refer here: https://pmbio.org/module-02-inputs/0002/02/01/Reference Genome/

Variant shifting (alignment) and parsimony/trimming

Parsimony: representing variant in as few nucleotides as possible without reducing the length of any allele to 0

Left (right) aligning =
shifting the start position of
a variant as far to the left
(right) as possible

How should I sort my SAM/BAM file?

- Generally BAM files are sorted by <u>position</u>
 - This is for performance reasons
 - When sorted and indexed, arbitrary positions in a massive BAM file can be accessed rapidly
- Certain tools require a BAM sorted by <u>read name</u>
 - Usually this is when we need to easily identify both reads of a pair

45

- The insert size between two reads may be large
- In fusion detection we are interested in read pairs that map to different chromosomes

Unaligned

FASTQ (seq + quality) FASTA(seq reads only)

Aligned

SAM (human readable, everything, HUGE)

BAM (binary, everything)

CRAM (smaller, loss of info)

BED (smallest, text, coordinates only

size

We are on a Coffee Break & Networking Session