

FIG.-1A

1 CCCACGGTC CGCATAAAC AGCACCGCCC CGGAGAACCC CGCAATCTCT GCGCCCCACAA AATACACCGA CGATGCCGA TCTACTTAA GGGCTGAAC
 GGTGGCAG GGTATTAG TCGTGGCCG GCCTCTGGG GCGTTAGAGA CGCGGGTGT TTATGTGGT GCTACGGGT AGATGAATT CCCGACTTTC

 101 CCACGGGCCT GAGAGACTAT AAGAGCGTTC CCTAACGGCCA TGGAACACAG GGGACAGAAC GCCCCGGCG CTTGGGGGC CGGAAAAGG CACGGCCAG
 GGTGGCGGA CTCTCTGATA TTCTCGAAG GGATGGGGT ACCTTGTGTC CCCCTGTCTG CGGGGGC GAAGGGCCG GGCCTTTTC GTGCCGGTC
 1 M etGluGlnAr gGlyGlnAsn AlaProAlaA laSerGlyAl aArgLysArg HisGlyProGly

201 GACCCAGGGA GGGGGGGGA GCCAGGGCTG GGTCCGGGT CCCAAGAAC CTTGTGCTG TTGTGCGCCG GGTCTGCTG TTGGTCTCAG CTGAGTCTGC
 CTGGGTCCCT CGGGGCCCCCT CGGTGGGAC CCGAGGGCCA GGGGTTCTGG AACACCGAGC AACAGGGGG CCAGGACGAC ACCAGAGTC GACTCAGACG
 22 ProArgG1 uAlaArgGly AlaArgProG lyeuArgVa 1ProLysThr LeuValLeuV alValAlaAl aValLeuLeu LeuValSerA laGluSerAla

301 TCTGATCACC CAACAAGAC TAGCTCCCCA GCAAGAGGGC GCCCCCACAC AAAAGAGGGTC CAGCCCCCTCA GAGGGATTGT GTCCACCTGG ACACCATATC
 AGACTAGTGG GTGTGTTCTGG ATCGAGGGGT CGTCTCTCGC CGGGGTCTTG TTTTCTCCAG GTGGAGTGACC TTACTGGGG AAAAGACGAA CAGGTGGACC TGTGGTATAG
 55 LeuIleThr GlnglnAspl euAlaProG1 nGlnArgAla AlaProGlnG InLysArgSe rSerProSer GluGlyLeuC ysProProG1 yHishisIle

401 TCAGAAGACG GTAGAGATTG CATCTCTGC AAAATATGGAC AGGACTATAG CACTCACTGG AATGACCTCC TTTTCTGCTT GGGTGGACCC AGGTGGATT
 AGTCTCTGC CATCTCTAAC GTAGAGGACG TTATACCTG TCCTGTATATC GTGGAGTGACC TTACTGGGG AAAAGACGAA CGGACGTGG TCCACACTAA

88 SerGluAspG lyArgAspCv sileSerCys LysTyrGlyG InAspTyrSe rThrHisTrp AsnAspLeuL eupHeCysLe wArgCysThr ArgCysAspSer

501 CAGGTGAAGT GGAGCTAAGT CCCCTGACCA CGMCCAGAAA CACAGTGTGT CAGTGGCAAG AAGGCACCTT CCGGGAAAGAA GATTCTCTG AGATGTGCCG
 GTCCACTTCA CCTCGATTCA GGGACGGGT GCTGGTCTTT GTGTACACA GTCACGCTTC TTCCGTGAA GGCCCTTCTT TAAGAGGAC TCTACACGGC
 122 GlyGluVa 1GluLeuSer ProCysThrT hrThrArgAs nThrValCys GlnCysGluG luGlyThrPh eArgGluGlu AspSerProG lumMetCysArg

601 GAAGTGGCC ACAGGGTGTG CCAGAGGGAT GGTCAAGGGTC GGTGATTGTA CACCTGGAG TGACATGCAA AGAAATCAGG CATCATCATA
 CTTCAAGGGG TTGCCCCACAG GGTCTCCCTA CCAGTTCCAG CCACTAACAT GTGGGACCTC ACTGTAGCTT ACACAGGTGT TTCTTAGTCC GTAGTAGTAT
 155 LysCysArg ThrglycysP roArgGlyMe tvallysVal GlyAspCysT hrProTrpSe rasPileGlu CysValHisL ysGluSerG1 yIleIleIle

701 GGAGTCACAG TTGGAGCCGT AGTCTTGATT GTGGCTGTGT TTGTTTACTG TGAAGAAAG TCCTTCCTTA CCTGAAAGGC ATCTGCTCAG
 CCTCAGTGTC AACGTCGGCA TCAGAACTAA CACCGACACCA AACAAACTT CAGAAATGAC ACCTTCTTC AGGAAGGAAT GGACTTCCG TAGACGAGTC
 188 GlyValThrV alalaAlaVa 1valleuile ValAlaValP heValCysLy sSerLeuLeu TrPlysLysV alleuProTy rleuLysGly IleCysSerGly

801 GGGGGGGG GGACCCCTGAG CGTGTGGACA GAAGCTCACA ACCGACCTGGG CCTGAGGACA ATGTCCTCAA TGAGATCGTG AGTATCTTGC AGCCCACCCA
 CACCACCACT CCTGGGACTC GCACACCTGT CTTGAGTGT TCGTGGACCC CGACTCCTGT TAGAGAGTT ACTCTAGCAC TCATAGAACG TCGGGGGGT
 222 GlyGlyG1 YasProGlu ArgValAspA rgSerSerG1 nArgProGly AlaGluAspA snValLeuAs nGluIleVal SerIleLeuG InProThrGln

901 GGTCCCTGAG CAGGAAATGG AAGTCCAGGA GCCAGCAGAG CCAACAGGTG TCAACATGTT GTCCCCCGGG GACTCAGAGC ATCTGCTGGA ACCGGCAGAA
 CCAGGGACTC GTCTCTTACCC TTCAAGGTCTC CGGTGCTCAG GTTGTCTCAC AGTGTACAA CAGTGTACAA CAGGGGGCCC CTCAGTCTCG TAGACGACCT TGGCCGCTCTT
 255 ValProGlu GlnGluMetG luValGlnG1 uProAlaGlu ProThrGlyV alAsnMetLe uSerProGly GluSerGluH isLeuLeuG1 uProAlaGlu

1001 GCTGAAAGGT CTCAGAGGAG GAGGCTGCTG GTTCCAGCAA ATGAAAGGTGA TCCCAGTGA ACTCTGAGAC AGTGGCTCGA TGACTTTGCA GACTTGGTGC
 CGACTTCCA GAGTCTCCTC CTCCGACGAC CAAGGTCTGTT TACTTCCACT AGGGTGACTCTG TGAGACTCTG TCACCGAAGCT ACTGAAACGT CTGAAACCACG
 288 AlaGluArgS erglnArgAr gArgLeuLeu ValProAlaA snGluGlyAs pProThrGlu ThrLeuArg lncysPheAs paspPheAla AspLeuValPro

1101 CCTTTGACTC CTGGGAGCCG CTCATGAGGA AGTITGGCCT CATGGACAAAT GAGATAAAGG TGCTTAAGC TGAGGCAGCG GCCACAGGG ACACCTTGTAA
 GGAAACTGAG GACCCTCGGC GAGTACTCCT TCAACCCGGA GTACCTGTTA CTCTATTCC ACCGATTTCG ACTCTCGTCC CGGGTGTCCC TGTGGAACAT
 322 PheAspSe rrrpGluPro LeuMetArgL ySleuGlyLe uMetAspAsn GluIleLyV alAlaLySAl agluIalaAla GlyHisArgA spThrLeuTyR

1201 CACCATGCTG ATAAAAGTGGG TCAACAAAC CGGGCGAGAT GGCTCTGTCC ACACCCCTGCT GGATGCCTTG GAGAGAGACT TGCCAAGCAG
 GTGCTACGAC TATTTCACCC AGTTGTGTTTG GCCCGCTCTA CGGAGACAGG TGTGGGACGA CCTACGGAAC CTCAGCGACC CTCTCTCTGA ACGGTGTGTC
 355 ThrMetLeu IleLysTrpV alAsnLysTh rGlyArgAsp AlaSerValH isThrLeuLe uAspAlaLeu GluThrLeuG lyGluArgLe uAlaLysGln

1301 AAGATGAGG ACCACTTGTGAGCTCTGAA AAGTTCTGAA TAATGAGAC TCTGCCWTTGT CCTAAGTGTG ATTCTCTTCA GGAAGTGAGA
 TTCTTACTCC TGTGAAACAA CTCGAGACCT TTCAAGTACA TAGATCTCC ATTACGTCAG AGACGGACA GGATTCACAC TAAGAGAGT CCTTCACTCT
 388 LysIleGlu spHisLeuLe uSerSerGly LysPheMetT yrLeuGluL yAsnAlaAsp SerAlaXaa eroC*

1401 CCTTCCTGG TTACCTTTT TTCTGGAAA AGCCCAAATG GACTCCAGTC AGTAGGAAAG TGCCACAMTT GTCACATGAC CGGTACTGGA AGAAACTCTC
 GGAAGGGACC AAATGGAAA AAGACCTTT TCGGGTTGAC CTGAGGTAG TCATCCCTTC ACGGTGTAA CAGTGTACTG GCCATGACCT TCTTTGAGAG

1501 CCATCAACA TCAACCCAGTG GATGGAACAT CCTGTAACCTT TTGTCACCTGAC TTGTCACCTT TTTATAAGC TGAATGTGAT ATAAGGACA CTATGAAAT
 GGTAGGGTGT AGTGGGTCACTACCTACCTGAA AACCGTAATA AAAATATTG ACTTACACTA TTATTCCTGT GATACTTTA

FIG.- 1B

1601 GTCTGGATCA TTCGTTTGT GCGTACTTGT AGATTGGTT TGGGATGTCATCTACAC ACCACTAGT AACCCGATGT AACATTCTAG CAGACCTAGT AAGGCACAAAC CGCATGAAC TCTAAACCA ACCCTACAGT AACAAAGTG TCGTGAAGAA ATTAGGATTAC ATTACGAA TAATAAATA

1701 TTGGGCTACA TTGTAAGATC CATCTACAAA AAAAAGGGGGCGCG ACTCTAGAGT CGACCTGAGT CGACCTGAG AAGCTTGGCC GCCATGGCC TCGTGAAGAA ATTAGGATTAC ATTACGAA TAATAAATA

FIG._1C

1 MEQRQONAPAASGGARKRHPGPREARGARPGRLRVPKTLVIVVAIPLLVSaesALITQQD
 61 LAPOQRAAPQQKRSRSPSEGCLCPGHHISEDGRDCISCKYGDYSTHWNLDLFLRCRCD
 121 SGEVELSPC~~T~~TRNTV~~C~~Q~~C~~EGTFREEDSPEMCRKCRTGC~~P~~RGMV~~K~~VGD~~C~~TPWSDI~~E~~CYH
 181 KESGI~~I~~IGTV~~A~~VVLIVAYFVCKSILMKVLPYLKGICSGGGDPERVDRSSQRPGQAED
 241 NVLNEIVSILQOPTQVPEQEMEVQEPAEPTGVNM~~L~~SPGESEHLLPEAEAERSQRRRLVPA
 301 NEGDPTE~~T~~LRQC~~F~~DDFADLVPPFD~~S~~WEPLMRKLQMDNEIKVAKAEAGHRDTLYTM~~I~~IKW
 361 YNKTGRDASVHTLDALETGLERLAKQKTEDHILLSSGKFMYLEGNA~~D~~SA~~L~~S

FIG._2A

Apo2	FADLVPFD S WEPLM R KIGL M DNE T IKVAKAEAA	-GHRDTI
DR4	FANIVPFD S W D Q L M R Q D I T KNE I D V RAGTA	-GP G DAI
APO3/DR3	VMDAVPARRWKEFVR T LG R EAE I EA V E I GR - -FRDQQ	
TNFR1	VVENV P PLRWKEFVR R LG L SDHEIDR E LQNGR - CLRFAQ	
Fas/Apo1	IA G VMTLSQVKG F VR R KG N VE A RI D E I KND N VQDTAEQKV	

Apo2	X T MLIKWVNKTGRD-A S VHTTLD A LE T LG E R L A K Q K I E D
DR4	YAMLMKWWVNKTGRN-A S IHTTLD A LE M E R H A K E K I Q D
APO3/DR3	YEMLIKR W RQQP--A G GAVYAA L ERV G L D G C VEDLRS
TNFR1	YSMELATW R RR T PR R REAT T EL E GRV I R D M D L G C I E D TE
Fas/Apo1	-QLERNW H Q L H G K K KEY-D T L I K D L K K A N I C T LA E K I Q T

FIG._2B

FIG._3

FIG._4A

FIG._4B

FIG._4C

FIG._4D

FIG._4E

FIG._5C

FIG._5A

FIG._5B

FIG._6A

FIG._6B

FIG._7

FIG._8

% APOPTOSIS COMPARED WITH Apo2L (1 μg)

FIG._9

FIG._10

FIG._ 12A

© 1995 International Society for Tissue Transplantation

FIG._ 12B

200 400 600 800 1000 1200 1400 1600

FIG.-12C

FIG.- 13A

FIG._ 13B

FIG._ 13C

scFv 20E6		
	VALUE	ERROR
m1	1.2948	0.038022
m2	1.3318	0.22832
m3	8.6124	1.2249
m4	0.077139	0.068356
Chisq	0.017679	NA
R	0.99565	NA

Apo-2L		
	VALUE	ERROR
m1	1.2216	0.028142
m2	1.6356	0.17759
m3	0.0780	0.00529
m4	-0.025859	0.033322
Chisq	0.0058166	NA
R	0.99864	NA

FIG.- 14A

FIG.- 14B

FIG.-14C

ATGACCATGA	TTACGCCAAG	CTTTGGAGCC	TTTTTTTGG	AGATTTCAAA	50
CGTGAAAAAA	TTATTATTTCG	CAATTCCCTT	AGTTGTTCCCT	TTCTATGCGG	100
CCCAGCCGGC	CATGGCCGAG	GTGCAGCTGG	TGCAGTCTGG	GGGAGGTGTG	150
GAACGGCCGG	GGGGGTCCCT	GAGACTCTCC	TGTGCAGCCT	CTGGATTACAC	200
CTTTGATGAT	TATGGCATGA	GCTGGGTCCG	CCAAGCTCCA	GGGAAGGGGC	250
TGGAGTGGGT	CTCTGGTATT	AATTGGAATG	GTGGTAGCAC	AGGATATGCA	300
GAECTGTGA	AGGGCCGAGT	CACCATCTCC	AGAGACAACG	CCAAGAACTC	350
CCTGTATCTG	CAAATGAACA	GCCTGAGAGC	CGAGGACACG	GCCGTATATT	400
ACTGTGCGAA	AATCCTGGGT	GCCGGACGGG	GCTGGTACTT	CGATCTCTGG	450
GGGAAGGGGA	CCACGGTCAC	CGTCTCGAGT	GGTGGAGGCG	GTTCAGGCGG	500
AGGTGGCAGC	GGCGGTGGCG	GATCGTCTGA	GCTGACTCAG	GACCCTGCTG	550
TGTCTGTGGC	CTTGGGACAG	ACAGTCAGGA	TCACATGCCA	AGGAGACAGC	600
CTCAGAAGCT	ATTATGCAAG	CTGGTACCAAG	CAGAACCCAG	GACAGGCCCC	650
TGTACTTGTGTC	ATCTATGGTA	AAAACAACCG	GCCCTCAGGG	ATCCCAGACC	700
GATTCTCTGG	CTCCAGCTCA	GGAAACACAG	CTTCCTTGAC	CATCACTGGG	750
GCTCAGGCAGG	AAGATGAGGC	TGACTATTAC	TGTAACCTCCC	GGGACAGCAG	800
TGGTAACCAT	GTGGTATTTCG	GC GGAGGGAC	CAAGCTGACC	GTCCTAGGTG	850
CGGCCGCACA	TCATCATCAC	CATCACGGGG	CCGCAGAACAA	AAAACATC	900
TCAGAAAGAGG	ATCTGAATGG	GGCCGCATAG	930		

FIG._15A

ATGACCATGA	TTACGCCAAG	CTTGAGGCC	TTTTTTTGG	AGATTTCAA	50
CGTGAAAAAA	TTATTATTCTG	CAATTCTTT	AGTTGTCCT	TTCTATGCGG	100
CCCAGCCGGC	CATGGCCGGG	GTGCAGCTGG	TGGAGTCTGG	GGGAGGCTTG	150
GTCCAGCCTG	GGGGGTCCCT	GAGACTCTCC	TGTGCAGCCT	CTGGATTAC	200
CTTTAGTAGC	TATTGGATGA	GCTGGGTCCG	CCAGGCTCCA	GGGAAGGGC	250
TGGAGTGGGT	GGCCAACATA	AAGCAAGATG	GAAGTGAGAA	ATACTATGTG	300
GAECTCTGTGA	AGGGCCGATT	CACCATCTCC	AGAGACAACG	CCAAGAACTC	350
ACTGTATCTG	CAAATGAACA	GCCTGAGAGC	CGAGGGACACG	GCTGTGTATT	400
ACTGTGCGAG	AGATCTTTA	AAGGTCAAGG	GCAGCTCGTC	TGGGTGGTTC	450
GACCCCTGGG	GGAGAGGGAC	CACGGTCACC	GTCTCGAGTG	GTGGAGGCGG	500
TTCAGGCGGA	GGTGGTAGCG	GCGGTGGCGG	ATCGTCTGAG	CTGACTCAGG	550
ACCCTGCTGT	GTCTGTGGCC	TTGGGACAGA	CAGTCAGGAT	CACATGCCAA	600
GGAGACAGCC	TCAGAACGTA	TTATGCAAGC	TGGTACCAAGC	AGAACGCCAGG	650
ACAGGCCCT	GTACTTGTCA	TCTATGGTAA	AAACAACCGG	CCCTCAGGGA	700
TCCCAGACCG	ATTCTCTGGC	TCCAGCTCAG	GAAACACAGC	TTCTTGACC	750
ATCACTGGGG	CTCAGGCGGA	AGATGAGGCT	GAATATTACT	GTAACTCCCG	800
GGACAGCAGT	GGTAACCATG	TGGTATTCTGG	CGGAGGGACC	AAGCTGACCG	850
TCCTAGGTGC	GGCCGCACAT	CATCATCACC	ATCACGGGGC	CGCAGAACAA	900
AAACTCATCT	CAGAACAGGA	TCTGAATGGG	GCCGCATAG	939	

FIG. 15B

ATGACCATGA TTACGCCAAG CTTGGAGCC TTTTTTTGG AGATTTCAA 50
CGTGAAAAAA TTATTATTAG CAATTCTTT AGTTGTCCT TTCTATGCGG 100
CCCAGCCGGC CATGGCCCAG GTGCAGCTGG TGCAGTCTGG GGGAGGCGTG 150
GTCCAGCCTG GGCGGTCCCT GAGACTCTCC TGTGCAGCTT CTGGGTTCAT 200
TTTCAGTAGT TATGGGATGC ACTGGGTCCG CCAGGCTCCA GGCAAGGGC 250
TGGAGTGGGT GGCAGGTATT TTTTATGATG GAGGTAATAA ATACTATGCA 300
GACTCCGTGA AGGGCCGATT CACCATCTCC AGAGACAATT CCAAGAACAC 350
GCTGTATCTG CAAATGAACA GCCTGAGAGC TGAGGACACG GCTGTGTATT 400
ACTGTGCGAG AGATAGGGC TACTACTACA TGGACGTCTG GGGCAAAGGG 450
ACCACGGTCA CCGTCTCCTC AGGTGGAGGC GGTCAGGCG GAGGTGGCTC 500
TGGCGGTGGC GGATCGCAGT CTGTGTTGAC GCAGCCGCC TCAGTGTCTG 550
GGGCCCCAGG ACAGAGGGTC ACCATCTCCT GCACTGGGAG AAGCTCCAAC 600
ATCGGGGCAG GTCATGATGT ACACTGGTAC CAGCAACTTC CAGGAACAGC 650
CCCCAAACTC CTCATCTATG ATGACAGCAA TCGGCCCTCA GGGGTCCCTG 700
ACCGATTCTC TGGCTCCAGG TCTGGCACCT CAGCCTCCCT GGCCATCACT 750
GGGCTCCAGG CTGAAGATGA GGCTGATTAT TACTGCCAGT CCTATGACAG 800
CAGCCTGAGG GGTCGGTAT TCGGCGGAGG GACCAAGGTC ACTGTCCTAG 850
GTGCGGCCGC ACATCATCAT CACCATCACG GGGCCGCAGA ACAAAAACTC 900
ATCTCAGAAG AGGATCTGAA TGGGGCCGCA TAG 933

FIG._ 15C

	Heavy chain		
signal	1	MTMITPSFGAFFLEIFNVKKLLFAIPLVVVFYAAQPAMAEVQLVQSGGGV	
Apo-2.16E2.his	51	ERPGGSLRLSCAASGFTFDDYGMSSWVRQAPGKGLEWVSGINWNGSTGYA	CDR1
Apo-2.20E6.his	51	VQPGGSLRLSCAASGFTFSSYWMSSWVRQAPGKGLEWVANIKQDGSEKYYV	
Apo-2.24C4.his	51	VQPGRSLRLSCAASGFIFSSYGMHWWVRQAPGKGLEWAGIFYDGGNKYYA	
			CDR2
Apo-2.16E2.his	101	DSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYCAKIL-----GAGRGY	
Apo-2.20E6.his	101	DSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYCARDLLKVKGSSSGW-	
Apo-2.24C4.his	101	DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYCARD-----RGYY	
			CDR3
Apo-2.16E2.his	147	F-DLWGKGTTTVTSSGGGGSGGGSGGGSGGGSGGGSGGGSGGGSGGGSG	
Apo-2.20E6.his	150	F-DPWGRGTTTVTSSGGGGSGGGSGGGSGGGSGGGSGGGSGGGSGGGSG	
Apo-2.24C4.his	143	YMDVWGKGTTTVTSSGGGGSGGGSGGGSGGGSGGGSGGGSGGGSGGGSG	
			Light chain
Apo-2.16E2.his	195	TCQGDSSLR---SYYASWYQQKPGQAPVLTIVYGKNNRPSGIPDRFGSSSG	CDR1
Apo-2.20E6.his	198	TCQGDSSLR---SYYASWYQQKPGQAPVLTIVYGKNNRPSGIPDRFGSSSG	
Apo-2.24C4.his	193	SCTGRSSNIGAGHDVHWYQQLPGTAPKLIIYDDSNRPSGVPDFFSGSRSG	
			CDR2
Apo-2.16E2.his	242	NTASILITITGAQAEDADYYCNSRDISSSGNHVVFGGGTKLTVLGAAAHHHH	
Apo-2.20E6.his	245	NTASILITITGAQAEDADYYCNSRDISSSGNHVVFGGGTKLTVLGAAAHHHH	
Apo-2.24C4.his	243	TSASILITITGLQAEDADYYCOSYDSSLRGSVFGGGTKTVLGAAAHHHH	
			CDR3
Apo-2.16E2.his	292	HGAAEQKLISEEDLN	
Apo-2.20E6.his	295	HGAAEQKLISEEDLN	
Apo-2.24C4.his	293	HGAAEQKLISEEDLN	

FIG.- 16