MA227 (Assignment-4)

An experiment has been performed where the following data has been collected

$$x_i$$
 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0 y_i 0.0 0.0 1.0 1.5 2.5 3.5 4.5 5.0 6.5 8.0 10.0

- 1. Find a best fit line $f(x) = c_1 x + c_0$ that approximate the data
 - (i) By using the function LSSNEqn.m (of Assignment 3). Plot the obtained line f(x) and also plot the points (x_i, y_i) in the same window and then save this plot as Figure 1.
 - (ii) By using the function GramSelf.m (of Assignment 3). Plot the obtained line f(x) and also plot the points (x_i, y_i) in the same window and then save this plot as Figure 2.
 - (iii) By using the function HouseSelf.m (of Assignment 3). Plot the obtained line f(x) and also plot the points (x_i, y_i) in the same window and then save this plot as Figure 3.
 - (iv) By using the MP-inverse of the associated matrix. Use the built-in function **svd** to find the MP-inverse. Plot the obtained line f(x) and also plot the points (x_i, y_i) in the same window and then save this plot as Figure 4.
- 2. Repeat all parts of Problem 1 to find a best fit curve $f(x) = c_2x^2 + c_1x + c_0$ that approximate the data. Save the figures as Figure 5, 6, 7, and 8, respectively.