

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

ஐந்தாம் தவணைப் பரீட்சை - 2021

Conducted by Field Work Centre, Thondaimanaru. 5th Term Examination - 2021

தரம் :- 13 (2021)

இணைந்த கணிதம் I - A

நேரம் : முன்றுமணித்தியாலம் பத்து நிமிடம்

சுட்டெண்			
----------	--	--	--

அநிவுநுத்தல்கள்

- A இன் எல்லா வினாக்களுக்கும் ഖിഥെ ஒவ்வொரு வினாவுக்கும் எழுதுக. கரப்பட்ட இடத்தில் மேலதிக தேவைப்படுமெனின், எழுதுக. இடம் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட A ஆனது பகுதி B யிற்கு மேலே நேரம் முடிவடைந்ததும் பகுதி இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சைமண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த கணிதம் I					
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்				
	1					
	2					
	3					
	4					
A	5					
A	6	- 00				
	7					
	8					
	9					
	10					
	11					
	12					
	13					
В	14					
	15					
	16					
	17					
வினாத்தாஎ்	т I இன் மொத்தம்					

, இணைந்த கணிதம் I	
இணைந்த கணிதம்II	
இறுதிப் புள்ளிகள்	

			பகுதி	– I A				
கணிதத் 🤇	தொகுத்தறிவ	_{பு} க் கோட்ட	பாட்டைப் ப	யன்படுத்தி,	, எல்லா	$n \in Z^+$	இற்கும்	$n^3 - n$
ஆனது 6	இன் ஒரு நி	ிறைவென	ர் மடங்கென	நிறுவுக.				
				•••••				
								• • • • • • • • • • • • • • • • • • • •
	•••••							
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	,	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	
						• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	•••••							
			XXXXX					• • • • • • • • • • • • • • • • • • • •
								• • • • • • • • • • • • • • • • • • • •
			<u> </u>					
			ஐத் தி இதிலிருந்த					மெய்ப் க்கும் <i>x</i>
					x	سې ج	م ن	O
அன் எல		பறுமானங	ங்களையும் க	ப 6001க.				
	•••••							• • • • • • • • • • • • • • • • • • • •
	•••••			• • • • • • • • • • • • • • • • • • • •				
•••••				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
•••••				•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
						• • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •				
						• • • • • • • • • •		
			,					

(8	நிக்கும் புள்	ளிகளின் ஒ	ஒழுக்கைப்	பரும்படியாக	வரைக.			Z ஐ வகை
						வாகுமாறும் ப	உள்ள சிக்க	லெண் Z ஐ
r	$(\cos\theta + i\sin\theta)$	$_1 heta$) ഖഥുഖ്	ர்ல் எடுத்த <u>ு</u>	ரைக்க; இக்கு	<i>r</i> > 0, 0 <	$ heta < rac{\pi}{2}$ ஆகும்	b.	
••								
• •								
				•••••	•••••		• • • • • • • • • • • • • • • • • • • •	
••								
••				(D) E			• • • • • • • • • • • • • • • • • • • •	•••••
••	•••••						• • • • • • • • • • • • • • • • • • • •	••••••
••								
••								• • • • • • • • • • • • • • • • • • • •
					<i></i>			
	, <i>b</i> ∈ R இற்					-2) இல் ஓ	ர் விபத்திப்	புள்ளியை
	_					ண்க. மேலும ிடைகளையும்	_	
	_					_	_	
	_					_	_	
	_					_	_	
	_					_	_	
	_					_	_	
	_					_	_	
	_					_	_	
	_					_	_	
	_					_	_	

$\lim_{x \to 0}$	$\frac{\left(\sqrt{5}-\sqrt{4+\cos x^3}\right)}{x^3}$	$\frac{(sx)\sin x}{\sin x} =$	$=\frac{1}{4\sqrt{5}} 6$	ானக் கா	ட்டுக.				
						<u> </u>			
					.,				
$y = e^x$	$+e^{-x}$, $x=$	= 0, x =	ℓn2, y	= 0	என்னும்	ഖതബ	பிகளினா	ல் உள்ள	ாடைக்கப்ப து. இவ்வ
y = e ^x - பிரதேசம்	$+e^{-x}$, $x=$	= 0, <i>x</i> = சைப் பற்	ℓn2, y ති 2π	= 0 ஆரை	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப
y = e ^x - பிரதேசம்	+ e ^{−x} ,x = ந் x அச்ன	= 0, <i>x</i> = சப் பற் திண்மத்தி	ℓn2, y றி 2π பின் கன	= 0 ஆரை எவளவு	என்னும் ாயன்களி	வளை னூடாகச்	பிகளினா - சுழற்று	ல் உள்ள ப்படுகின்ற	ாடைக்கப்ப

7.	அதிபரவளைவு $\frac{x^2}{9} - \frac{y^2}{4} = 1$ இற்கு அதன் மீது இருக்கும் புள்ளி $P \equiv (3\sec\theta, 2\tan\theta);$
	இங்கு $0< heta<rac{\pi}{2}$, இல் உள்ள செவ்வனின் சமன்பாடு.
	$(3 \tan \theta)x + (2 \sec \theta)y = 13 \tan \theta \sec \theta$ எனக் காட்டுக.
	மேலே தரப்பட்ட அதிபரவளைவுக்கு அதன் மீது இருக்கும் புள்ளி $(3\sqrt{2},2)$ இல்
	வரையப்பட்ட செவ்வன் கோட்டின் y — வெட்டுத் துண்டைக் காண்க.
	வெள்ளும்பட்ட இனேவின் கொட்டின் <i>y</i> வெட்டுத் துணைடக் காண்க்.
8.	புள்ளி A $(2,-1)$ இனூடு செல்வதும் படித்திறன் 2 ஐ உடையதுமான நேர்கோடு l
	மீதுள்ள யாதாயினும் ஒரு புள்ளியின் ஆள்கூறுகளை வடிவம் $(t+2,2t-1)$ இல்
	எழுதப்படலாம் எனக் காட்டுக; இங்கு $t\in R$ இதிலிருந்து, $AB=AC=\sqrt{5}$ அலகுகள்
	ஆகுமாறு l இல் உள்ள புள்ளிகள் B, C இன் ஆள்கூறுகளைக் காண்க.

9.	வட்டம் \mathbf{s} ஆனது x அச்சைபுள்ளி $(1,0)$ இல் தொடுவதுடன் அதன் மையம் முதலாம் கால்
	வட்டத்திலும் உள்ளது. மேலும் வட்டம் s இன் பரிதியை வட்டம் $S'\equiv x^2+y^2-9=0$
	ஆனது இருசம கூறிடுகின்றது. s இன் சமன்பாட்டைக் காண்க.
10	$\cos \alpha + \sin 2\alpha = \sin \alpha = 1$
10.	$\cos x + \sin 2x - \sin x = 1$ ஐத் தீர்க்க.

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் ஐந்தாம் தவணைப் பரீட்சை - 2021

Conducted by Field Work Centre, Thondaimanaru. 5th Term Examination - 2021

தரம் :-	13	(2021))
---------	----	--------	---

இணைந்த கணிதம் I - B

- 11. a) பூச்சியமல்லாத மெய்யெண்கள் a,b,c இற்கு $f(x)=x^2+ax+b$ எனவும் $g(x)=x^2+acx+bc^2$ எனவும் கொள்வோம். f(x)=0 இன் மூலங்கள் α,β எனவும் g(x)=0 இன் மூலங்கள் γ,δ எனவும் கொள்வோம்.
 - i) f(x) = 0 இன் மூலங்கள் மெய்யானவை எனின் மாத்திரம் g(x) = 0 இன் மூலகங்களும் மெய்யானவை எனக் காட்டுக.
 - ii) $\alpha \gamma + \beta \delta$, $\alpha \delta + \beta \gamma$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச்சமன்பாடு. $x^2 a^2 c x + 2c^2 b (a^2 2b) = 0$ எனக்காட்டுக.
 - iii) $c \neq 1$ எனவும் $\alpha = \gamma$ எனவும் தரப்படின் $b(1+c)^2 = ca^2$ எனக் காட்டுக.
 - b) $k \in R$ எனவும் $(x-k)^2$ ஆனது பல்லுறுப்பி h(x) இன் ஒரு காரணி எனவும் கொள்வோம்.

h(k)=h'(k)=0 எனக் காட்டுக.

 $a,b\in R$ இற்கு $h(x)=x^4+ax^3+bx^2+cx+2$ எனவும் $(x-1)^2$ ஆனது h(x) இன் ஒரு காரணி எனவும் தரப்பட்டுள்ளன. b=-2 எனக் காட்டுக.

மேலும் h(x) ஆனது x^2+2x இனால் வகுக்கப்படும்போது வரும் மீதியில் உள்ள x இன் குணகம் 1 எனவும் தரப்படின் a,c இன் பெறுமானங்களைக் காண்க.

h(x) ஐ $(x-1)^2 (x+\lambda)(x+\mu)$ வடிவில் எழுதலாம் எனக் காட்டுக; இங்கு $\lambda,\mu\in R$.

- 12. a) போட்டியொன்றில் 5 கலவன் பாடசாலைகள் பங்குகொள்கின்றன. ஒவ்வொரு பாடசாலையும் ஓர் ஆண் பிள்ளையையும் ஒரு பெண் பிள்ளையையும் போட்டிக்கு அனுப்புகின்றது. 10 போட்டியாளர்களில் இருந்து 4 பேர்களைக் கொண்ட குழுவொன்றைத் தெரிவு செய்ய வேண்டியுள்ளது. குழுவைத் தெரிவு செய்யத்தக்க வழிகளின் எண்ணிக்கையைப் பின்வரும் ஒவ்வொரு சந்தர்ப்பத்திலும் காண்க.
 - i) 2 ஆண்பிள்ளைகளும் 2 பெண் பிள்ளைகளும் இடம்பெற வேண்டிய போது.
 - ii) குறைந்தது ஒரு பெண் பிள்ளையாவது இடம்பெற வேண்டிய போது.
 - iii) ஒரு பாடசாலையில் இருவரும் இரு பாடசாலைகளில் ஒருவர் வீதமும் இடம்பெற வேண்டிய போது.
 - iv) எந்த ஒரு பாடசாலையின் இரு பிள்ளைகள் ஒன்றாக இடம்பெற முடியாதபோது.

எயகு இணையக்களக்கிற்கு 🖣

b)
$$r \in Z^+$$
 இற்கு $\mathrm{U_r} = \frac{1}{\mathrm{r^2(r+1)\,(r+2)^2}}$ எனவும் $\mathrm{V_r} = \frac{\mathrm{A}}{r^2(\mathrm{r+1})^2}$ எனவும் கொள்வோம்.

$$r\in Z^+$$
இற்கு $\mathrm{U_r}=\mathrm{V_r}-\mathrm{V_{r+1}}$ ஆகுமாறு A இன் பெறுமானத்தைக் காண்க.

இதிலிருந்து,
$$\mathbf{n} \in Z^+$$
இற்கு $\sum_{r=1}^n \mathbf{U}_r = \frac{1}{16} - \frac{1}{4(n+1)^2 \ (n+2)^2}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^{\infty}$ $\mathbf{U_r}$ ஒருங்குகின்றதெனக் காட்டி, அதன் கூட்டுத்தொகையைக் காண்க.

இப்போது
$$r\in Z^+$$
 இற்கு $\mathrm{W_r}\equiv \mathrm{U_r}+\mathrm{U_{r+1}}$ எனக் கொள்வோம். $\displaystyle\sum_{r=1}^{}\mathrm{W_r}$ ஒருங்குகின்றதென உய்த்தறிந்து, அதன் கூட்டுத்தொகையைக் காண்க.

- 13. a) z=a+ib எனக் கொள்வோம்; இங்கு $a,b\in R$ ஆகும். z இன் மட்டு |z| ஐயும் உடன்புணரி \overline{z} ஐயும் வரையறுக்க.
 - i) $z \overline{z} = |z|^2$ எனவும்.
 - ii) $z + \overline{z} = 2 Re(z)$ எனவும் காட்டுக.

 $z_1, z_2 \in \mathbb{C}$ எனக் கொள்வோம்.

$$|z_1 - z_2|^2 = |z_1|^2 - 2Re(z_1 \overline{z}_2) + |z_2|^2$$
 எனவும் காட்டுக.

இதிலிருந்து, $|1-z_1\,\overline{z}_2|<|z_1-z_2|$ எனின் எனின்

மாத்திரம்
$$(1-|z_1|)(1-|z_2|)<0$$
 எனக் காட்டுக.

 z_1 , z_2 இற்குப் பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி $Z\in\mathbb{C}$, $z\neq 2i$ இற்கு

$$\left|rac{1+2iz}{z-2i}
ight| < 1$$
 எனின் எனின் மாத்திரம் $|z| < 1$ எனக் காட்டுக.

$$\left| \frac{1+2iz}{z-2i} \right| < 1$$
 ஆகவும் $Arg(z) = \frac{\pi}{4}$ ஆகவும் உள்ள சிக்கலெண்கள் z ஐ ஆகண் வரிப்படத்தில் குறித்துக் காட்டுக.

b)
$$\frac{\cos \alpha + i \sin \alpha}{\cos \beta + i \sin \beta} = \cos(\alpha - \beta) + i \sin(\alpha - \beta)$$
 எனக் காட்டுக.

m, n என்பன $1 \le m \le 9$, $1 \le n \le 9$ ஆகுமாறுள்ள நேர்நிறைவெண்கள் எனக் கொள்வோம்.

$$\frac{\left(\cos\frac{\pi}{9}+i\sin\frac{\pi}{9}\right)^n}{\left(\cos\frac{\pi}{4}-i\sin\frac{\pi}{4}\right)^m}=i$$
 எனின் தமோய்வரின் தேற்றத்தைப் பயன்படுத்தி $m=6$ எனவும்

n=9 எனவும் காட்டுக.

14) a)
$$x \neq -1$$
 இற்கு $f(x) = \frac{x}{(x+1)^3}$ எனக் கொள்வோம்.

$$x \neq -1$$
 இற்கு $f(x)$ இன் பெறுதி $f'(x)$ ஆனது

$$f'(x) = \frac{1-2x}{(x+1)^4}$$
 இனால் தரப்படுகின்றது எனக்காட்டுக.

இதிலிருந்து f(x) அதிகரிக்கின்ற ஆயிடையையும் f(x) குறைகின்ற ஆயிடையையும் காண்க.

$$x \neq -1$$
 இற்கு $f''(x) = \frac{6(x-1)}{(x+1)^5}$ எனத்தரப்பட்டுள்ளது.

y = f(x) இன் வரைபின் விபத்திப் புள்ளியின் ஆள்கூறுகளைக் காண்க.

y = f(x) இன் வரைபை அணுகுகோடுகள் திரும்பற் புள்ளி, விபத்திப்புள்ளி ஆகியவற்றைக் காட்டி பரும்படியாக வரைக.

b) செங்கோண முக்கோண குறுக்கு வெட்டுடைய செவ்வரியத் திண்மம் ஒன்றை அருகில் உள்ள உரு காட்டுகின்றது. சென்ரிமீற்றரில் அதன் பரிமாணங்கள் உருவில் காட்டப்பட்டுள்ளன. அதன் கனவளவு $1500cm^3$ எனத் தரப்பட்டுள்ளது. $x^2y=250$ எனக்காட்டுக. அதன் மேற்பரப்பின் பரப்பளவு $S\ cm^2$ ஆனது $S=12\left\{x^2+\frac{250}{x}\right\}$ இனால்

தரப்படும் எனக்காட்டுக. x=5cm ஆக இருக்கும் போது s குறைந்த பட்சமாகும் எனக்காட்டுக.

- 15) a) எல்லா $x \in |R|$ இற்கும் $8x^3 + x^2 + 18x 1 = A(x+1)(4x^2+9) + B(x-1)(4x^2+9) + x^2 1$ ஆகுமாறு A, B மாறிலிகள் உள்ளனவெனத் தரப்பட்டுள்ளது. A, B ஆகியவற்றின் பெறுமானங்களைக் காண்க. இதிலிருந்து $\frac{8x^3 + x^2 + 18x 1}{(x^2 1)(4x^2 + 9)}$ ஐப் பகுதிப்பின்னங்களில் எழுதி $\int \frac{8x^3 + x^2 + 18x 1}{(x^2 1)(4x^2 + 9)} dx$ ஐக் காண்க.
 - b) $\frac{d}{dx}(2^x) = 2^x (ln2)$ எனக்காட்டுக. மேலேயுள்ள முடிவையும் பகுதிகளாக தொகையிடலையும் பயன்படுத்தி $\int 2^x \sin x \, dx$ ஐக் காண்க.
 - c) a ஒரு மாறிலியாக இருக்கும் சூத்திரம் $\int_{o}^{a}f(x)dx=\int_{o}^{a}f(a-x)dx$ ஐப் பயன்படுத்தி $\int_{o}^{\pi}\frac{x\sin x}{1+\cos^{2}x}dx=\frac{\pi}{2}\int_{0}^{\pi}\frac{\sin x}{1+\cos^{2}x}dx$ எனக்காட்டுக. இதிலிருந்து $\int_{o}^{\pi}\frac{x\sin x}{1+\cos^{2}x}dx=\frac{\pi^{2}}{4}$ எனக் காட்டுக.
- 16) a) $A \equiv (2,-4), B \equiv (0,2), \ C \equiv (14,0)$ எனக் கொள்வோம் A,B ஆகிய புள்ளிகளினூடு செல்லும் நேர்கோடு ℓ_1 எனவும் A,C ஆகிய புள்ளிகளினூடு செல்லும் நேர்கோடு ℓ_2 எனவும் கொள்வோம். $i) \ \ell_1 \ , \ell_2 \$ ஆகிய நேர்கோடுகளின் சமன்பாடுகளைக் காண்க.

- ii) ℓ_1 , ℓ_2 என்பன இடைவெட்டும் கோணங்களின் இரு கூறாக்கிகளின் சமன்பாடுகளைக் கண்டு புள்ளிகள் B(0,2) C(14,0) என்பன எதிர்பக்கங்களில் இருக்கும் இருகூறாக்கி ℓ இன் சமன்பாடு 2x-y-8=0 எனக் காட்டுக.
- (iii) $\ell \equiv 2x y 8 = 0$ மீதுள்ள யாதாயினும் ஒருபுள்ளியின் ஆள்கூறுகள் வடிவம். (t+2,2t-4) இல் எழுதப்படலாம் எனக் காட்டுக; இங்கு $t\in R$.
- iv) மையமானது முதலாம் கால்வட்டத்தில் ℓ மீது உள்ளதும் ஆரை $\frac{3\sqrt{10}}{2}$ ஐ உடையதும் ℓ_1 , ℓ_2 ஆகிய இரண்டையும் தொடுவதுமான வட்டம் \mathcal{C}_1 இன் சமன்பாடு

$$x^2 + y^2 - 10x - 4y + \frac{13}{2} = 0$$
 எனக்காட்டுக.

- v) B(0,2) ஐ மையமாகக் கொண்டதும் $C_1 \equiv x^2 + y^2 10x 4y + \frac{13}{2} = 0$ நிமிர்கோண முறையாக வெட்டும் வட்டம் \mathcal{C}_2 இன் சமன்பாட்டைக் காண்க.
- a) an(lpha+eta) இற்கான திரிகோண கணிதச் சமன்பாட்டை anlpha, aneta ஆகியவற்றின் சார்பில் எழுதுக. $\tan 2\theta$ ஐ $\tan \theta$ இன் சார்பில் பெற்று $\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$ எனக்காட்டுக. இறுதிச் சமன்பாட்டில் $\theta=rac{\pi}{12}$ எனப்பிரதியிட்டு $anrac{\pi}{12}$ ஆனது $x^3 - 3x^2 - 3x + 1 - 0$ இன் ஒரு தீர்வு என்பதை வாய்ப்புப் பார்க்க. $x^3 - 3x^2 - 3x + 1 = (x+1)(x^2 - 4x + 1)$ என மேலும் தரப்படும் போது $\tan \frac{\pi}{12} = 2 - \sqrt{3}$ என உய்த்தறிக.
 - b) வழக்கமான குறிப்பீட்டில் ஒரு முக்கோணி ABC இற்கு சைன் நெறியைக் கூறுக.

உருவில் காட்டப்பட்டுள்ள முக்கோணி ABC இல் $\operatorname{A\widehat{B}C}$ விரிகோணமாகும். AC மீது புள்ளி D, AD = BC ஆகுமாறு அமைந்துள்ளது.

 $\widehat{BCD} = eta$, $\widehat{CBD} = 2eta$, $\widehat{BAC} = lpha$ எனவும் கொள்வோம். உகந்த முக்கோணிகளுக்கு சைன் நெறியைப் பயன்படுத்தி $\sin \beta \sin(\alpha + 3\beta) = \sin \alpha \sin 3\beta$ எனக்காட்டுக. $\sin(\alpha + 3\beta) = \sin \alpha (3 - 4\sin^2 \beta)$ என்பதை உய்தறிக.

c) $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ எனக்காட்டுக.

தொ**ண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்** ஐந்தாம் தவணைப் பரீட்சை - 2021 Conducted by Field Work Centre, Thondaimanaru,

Conducted by Field Work Centre, Thondaimanaru. 5th Term Examination - 2021

தரம் :- 13 (2021)

இணைந்த கணிதம் II - A

நேரம் : மூன்நு மணித்தியாலம் பத்து நிமிடம்

சுட்டெண <u>்</u>			

அநிவுநுத்தல்கள்

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்குமாத்திரம் விடைஎழுதுக.
- ஒதுக்கப்பட்டநேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- ullet வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பகுதி	வினாஎண்	கிடைத்த புள்ளிகள்
	1	
•	2	
	3	V WARD
	4	
	5	
A	6	
	7	7-4 (0)
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
 பினாக்காள்	I இன் மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

	பகுதி — II A
1)	முறையே $m,2m$ திணிவுகளை உடைய சம ஆரையுள்ள இரு ஒப்பமான கோளங்கள் $P,\ Q$ என்பன ஒப்பமான கிடை மேசை மீது வைக்கப்பட்டு துணிக்கை P க்கு Q ஐ நோக்கி $\frac{2nv}{m}$ கணத்தாக்கு கொடுக்கப்படுகின்றது. P ஆனது Q உடன் மோதுகையின் பின் இரு துணிக்கைகளின் கதிர்கள் முறையே. $2:5$ வீதத்தில் எதிர் எதிர் திசையில் இயங்கின் இரு துணிக்கைகளுக்கு இடையிலான மீளமைவுக் குணகத்தையும் இரு துணிக்கைகளின் கதிகளையும் காண்க.
	·····························//········
2)	கிடைத்தரையில் இருந்து $3i+\mathrm{V}$ ர் வேகத்துடன் நிலைக்குத்து தளத்தில் எறியப்படும்
	துணிக்கை. $\frac{8}{g}$ மீற்றர் உயரமான கம்பம் ஒன்றை கிடையாக மட்டுமட்டாக கடந்து
	செல்கின்றது எனில் V ஐ கண்டு துணிக்கையின் எறியற்புள்ளி ஊடான கிடை வீச்சைக் காண்க.

3)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	ை இ ஆ ஆ உ ந	டான கிடைத்தரை ஒன்றின் மீது முறையே 2kg , 3kg திணிவுள்ள P, Q துணிக்கைகள் வக்கப்பட்டு படத்தில் காட்டப்பட்டவாறு ஒரு இலேசான நீளா இழையால் ணைக்கப்பட்டு இழை இறுக்கமாக உள்ளவாறு வைக்கப்பட்டு 30N மாறா விசை ஆனது ணிக்கை Q இற்கு 3 செக்கன்களுக்கு பிரயோகிக்கப்படும் போது துணிக்கை Q ஆனது ந்நேர இடைவெளியில் 6m தூரம் இயங்கியது. இரு துணிக்கைகளுக்கும் தரைக்குமான நாய்வுக் குணகம் μ ஆகும். விசை பிரயோக்கும் போது துணிக்கை Q இன் ந்முடுகல், உராய்வுக் குணகம் μ, இழையில் உள்ள இழுவை T என்பவற்றைக் ண்பதற்கு சமன்பாடுகளைப் பெறுக.
4)		00kg திணிவுள்ள ஓர் கார் ஆனது மாறாத் தடை விசை 1350N இற்கு எதிராக ் ೧
		பங்குகின்றது. ெ
	a)	காரானது கிடையான பாதையில் $32ms^{-1}$ சீரான வேகத்துடன் இயங்கும் போது காரின் இஞ்சின் இயங்கும் வலுவைக் காண்க.
	b)	காரானது கிடையுடன் $\sin^{-1}\left(\frac{1}{20}\right)$ சரிவான பாதையில் கீழ்நோக்கி சீரான வேகத்துடன்
	- /	இயங்கும் போது காரின் இஞ்சின் இயங்கும் வலு 31.5 kw எனின் காரின் கதியைக்
		காண்க. $(g=10ms^{-2})$

5)	Q 2m 2m P	படத்தில் காட்டப்பட்டவாறு ஒரு இலேசான நீளா இழையானது உயரமான சீலிங்கில் நிலைப்படுத்தப்பட்ட ஒப்பமான கப்பியின் மேலாகச் சென்று இரு நுனிகளிலும் 2m திணிவுள்ள P, Q துணிக்கைகளை தாங்கி இழை இறுக்கமாக இருக்க ஒரே மட்டத்தில் சமநிலையில் உள்ள போது துணிக்கை P இற்கு நிலைக்குத்தாக கீழ்நோக்கி ஓர் கணத்தாக்கு I கொடுக்கப்படுகின்றது. இழையில் ஏற்படும் கணத்தாக்கையும் துணிக்கை Q இயங்கத் தொடங்கும் வேகத்தையும் காண்க.
6)	2α நீளமும் w நிறையுமுடைய சீர	ரான கோல் AB இன் முனை A ஒப்பமான நிலைக்குத்து
,		ழனை B இல் கட்டப்பட்ட இலேசான இழையின் மறு
		ாக மேலே உள்ள புள்ளி C இல் கட்டப்பட்டு தொகுதி
		வருடன் அமைக்கும் கோணம் 60° ஆகும். இழை
		பும் இழையிலுள்ள இழுவையையும் காண்க.

7)	$ a = \left \underline{b} \right = \left \underline{a} + \underline{b} \right $ எனின் பயன்படுத்திக் காண்க.	<u>a</u> , <u>b</u>	க்கிடையான	கோணத்தை	எண்ணிப்பெருக்கத்தைப்
8)	கரடான கிடைத்தளத்தில்				கை உள்ளது. A யை
	நிறையுள்ள துணிக்கைன கோணத்திலுள்ளது. துணிக்	ய கா க்கை எ	ரவுகின்றது. ல்லைச் சமன	A இலிருந்து	
	நிறையுள்ள துணிக்கைன	ய கா க்கை எ	ரவுகின்றது. ல்லைச் சமன	A இலிருந்து	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைன கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா க்கை எ	ரவுகின்றது. ல்லைச் சமன	A இலிருந்து	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைன கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ல்லைச் சமன	A இலிருந்து ரிலையிலிருப்பில	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்
	நிறையுள்ள துணிக்கைை கோணத்திலுள்ளது. துணிக் எனக் காட்டுக. இங்கு λ உ	ய கா ந்கை எ ராய்வுக்	ரவுகின்றது. ஸ்லைச் சமன கோணம்.	A இலிருந்து ரிலையிலிருப்பில்	கப்பி α ஏற்றக்

9)	A,B என்ற நிகழ்ச்சிகள் சாராதவை எனின் $P(A)=rac{1}{2}$, $P(A\cup B)=rac{2}{3}$ ஆகும் போது		
	-		
	i) $P(B)$ ii) $P\left(A'/_{B}\right)$ என்பவற்றைக் காண்க.		
10)	$A \cap B = \emptyset$ எனின் $Pig(B/_A ig) = 0$ எனவும்		
10)			
	$ii)$ $A \subset B$ எனின் $Pig(B/Aig) = 1$ எனவும்		
	iii) $P(A/B) + P(A'/B) = 1$ எனவும் காட்டுக.		

தொண்டையானாறு வெளிக்கள நிலையம் நடாத்தும் ஐந்தாம் தவணைப் பரீட்சை - 2021

Conducted by Field Work Centre, Thondaimanaru. 5th Term Examination - 2021

தரம் :- 13 (2021)

இணைந்த கணிதம் II - B

- 11) a) ஒரு துணிக்கை P ஆனது கிடைத்தரையில் இருந்து நிலைக்குத்தாக மேல்நோக்கி புவியீர்பின் கீழ் 8.4 ms⁻¹ வேகத்துடன் எறியப்படுகிறது. இன்னோர் துணிக்கை Q கிடைத்தரையில் இருந்து 2m உயரத்தில் உள்ள ஒரு புள்ளியில் இருந்து u ms⁻¹ வேகத்துடன் மேல்நோக்கி எறியப்படும் துணிக்கை கிடைத்தரையில் இருந்து 3.6m உயரத்தில் கணநிலை ஓய்வடைகின்றது. (g = 9.8 ms⁻²)
 - i) P, Q இன் இயக்கங்களுக்கான வேக நேர வரைபுகளை தனித்தனியாக வரைக. வரைபிலிருந்து
 - ii) P தரையில் இருந்து எவ்வளவு உயரத்தில் கணநிலை ஓய்வடைகின்றது எனக் காண்க.
 - iii) u ஐக் காண்க
 - iv) P, Q ஒரே நேரத்தில் எறியப்படுகின்றன எனக்கொண்டு இரு துணிக்கைகளும் தரையை அடையும் வரை அவற்றின் வேக நேர வரைபுகளை ஒரே வரிப்படத்தில் வரைக.
 - v) வரைபிலிருந்து P, Q ஒரு குறித்த கணத்தில் தரையில் இருந்து ஒரே உயரத்தில் உள்ள போது அவற்றின் வேகங்களைக் காண்க.
 - கிழக்கு திசையில் $15 \, km / h$ என்னும் b) S_1 ஆனது பயணிக்கும் போது அது குறித்த ஒரு புள்ளி O ஐ சரியாக நண்பகல் தாண்டிச் செல்கின்றது. இன்னோர் கப்பல் S_2 வடக்கு நோக்கி $15\sqrt{3} \, km/h$ <u>ஆனது</u> வேகத்தில் பயணிக்கும் அதேவேளை S_2 ஆனது புள்ளி 0 ஐ பிற்பகல் 1.30 இற்கு தாண்டிச் செல்கின்றது. இரு கப்பல்களின் இயக்கத்திற்கு சார்பு வேக கோட்பாட்டை பயன்படுத்துவதன் முலம் வேக முக்கோணியையும் S_2 சார்பாக S_1 இன் பாதையையும் வரைக.

அவற்றில் இருந்து.

- i) S_2 சார்பாக S_1 இன் வேகத்தையும்
- ii) S_1 , S_2 க்கு இடைப்பட்ட மிகக் குறுகிய தூரத்தையும்.
- iii) மிகக் குறுகிய தூரத்தில் உள்ள போது நேரத்தையும் காண்க.

உருவில் காட்டப்பட்டவாறு $D\hat{A}B = \alpha$ ஆக இருக்குமாறு ABCD ஆனது திணிவு 3m ஐ உடைய ஓர் சரிவக வடிவிலான ஒப்பமான ஆப்பின் புவியீர்ப்பு மையத்தின் ஊடான. நிலைக்குத்து குறுக்கு வெட்டாகும். AB ஆனது அதனை கொண்டுள்ள முகத்தின் அதி உயர் சரிவுக்கோடு ஆகும். E F G H ஆனது EF, GH என்பன கிடையாகவும் FG ஆனது சாய்வாகவும் இருக்குமாறு தரையில் இருந்து உயரத்தில் அமைந்த ஓர் ஒப்பமான தளம் ஆகும்.

படத்தில் காட்டப்பட்டவாறு AB ஐ கொண்ட முகம். தளம் GH இல் இருக்குமாறு வைக்கப்பட்டு m திணிவுள்ள துணிக்கை P ஆனது இலேசான நீளா இழையின் ஒரு நுனிக்கு இணைக்கப்பட்டு P ஆனது AB இன் சரிவுக்கோட்டில் அதி உயர் B, C, D, G, F ஆகியவற்றில் நிலைப்படுத்தப்பட்ட இருக்குமா<u>று</u> வைக்கப்பட்டு இலேசான ஒப்பமான கப்பிகள் மேலாக இழையானது சென்று EF இல் வைக்கப்பட்ட 2m திணிவுள்ள ஒப்பமான துணிக்கை Q உடன் இணைக்கப்படும் அதேவேளை வேறோர் இலேசான நீளா இழையின் நுனி Q இற்கு இணைக்கப்பட்டு ஒரு இழையானது E இல் நிலைப்படுத்தப்பட்ட ஒப்பமான இலேசான கப்பியின் மேலாகச் சென்று 6m திணிவுள்ள துணிக்கை R உடன் இணைப்பட்டு உள்ளது. ஆரம்பத்தில் இளையின் பகுதிகள் யாவும் இறுக்கமாக இருக்குமாறு பிடிக்கப்பட்டு தொகுதி மெதுவாக விடுவிக்கப்படுகின்றது.

- i) ஆப்பு, துணிக்கைகளில் தாக்கும் விசைகளையும், அவற்றின் ஆர்முடுகல்களையும் தெளிவாக குறிக்க.
- ii) ஆப்பு, துணிக்கைகளின் ஆர்முடுகல்களையும் இழைகளில் உள்ள இழுவைகளையும் துணிவதற்கு போதுமான சமன்பாடுகளை பெறுக.

12)

b)

படத்தில் காட்டப்பட்டவாறு மையம் O இல் 150° கோணத்தை எதிரமைக்கும் 2a ஆரையுடைய வட்டவடிவ ஒப்பமான குழாய் BCD ஆனது OB கிடையாக இருக்குமாறு கிடைத்தரை ஒன்றில் நிலைக்குத்தாக நிலைப்படுத்தப்பட்டு முனை B உடன் படத்தில் காட்டப்பட்டவாறு சம ஆரையும் α நீளமும் உள்ள AB என்னும் ஒப்பமான குழாய் இணைக்கப்பட்டு m திணிவுள்ள துணிக்கை ஒன்று A இல் இருந்து குழாயினுள் மெதுவாக விடப்படுகின்றது. தொடரும் இயக்கத்தில் துணிக்கை OB க்கு கீழே OB உடன் θ கோணத்தில் உள்ள போது (i) துணிக்கையின் வேகத்தையும் துணிக்கை மீதான மறுதாக்கத்தையும் காண்க.

- i) துணிக்கை D இன் ஊடு வெளியேறும் கதியைக் காண்க.
- ii) துணிக்கை D இன் ஊடாக வெளியேறி C இல் இருந்து $\sqrt{3}a + x$ தூரத்தில் தரையை அடிக்கும் எனின் $x^2 2\sqrt{3}ax 2a^2 = 0$ காட்டுக.
- ஐ உடைய ஓர் இலேசான மீள்தன்மை இழையின் ஒரு 13) இயற்கை நீளம் 2*a* நுனி ஒருபுள்ளி O இற்கு கட்டப்பட்டு மறு நுனியில் உயரமான சீலிங்கில் உள்ள 2mதிணிவுள்ள துணிக்கை P ஆனது இணைக்கப்பட்டு துணிக்கை P ஆனது O இற்கு அருகே படிக்கப்பட்டு மெதுவாக விடப்படுகிறது. O இற்கு கீழே 6a ஆழத்தில் கணநிலை எனக் <u>ഒ</u>ய்வடைகிறது எனில் இழையின் மீள்தன்மை மட்டு 3mgஇனி காட்டுக. துணிக்கை $\mathrm P$ உடன் 4m திணிவுள்ள துணிக்கை $\mathrm Q$ ஆனது இணைக்கப்பட்டு இரு துணிக்கைகளும் நாப்பத்தில் உள்ளது. எனக் கொள்வோம்
 - i) P, Q என்பன நாப்பத்தில் உள்ள போது O இற்கு கீழே எவ்வளவு ஆழத்தில் இருக்கும்.
 - ii) Q ஆனது கழட்டி விடப்படின் பின் தொடரும் இயக்கத்தில் இழையின் நீளம் x (x > 2a) ஆக உள்ள போது துணிக்கை P ஆனது $\ddot{y} = -\frac{3g}{4a}y$ என்னும் எளிமை இசை இயக்கச் சமன்பாட்டை திருப்தி ஆக்கும் எனக் காட்டுக. இங்கு $y = x \frac{10a}{3}$ ஆகும்.
 - iii) மேலே உள்ள இயக்கச்சமன்பாட்டின் தீர்வு $x=\frac{10a}{3}+A\,\cos wt+B\,\sin wt$ என தாப்படின் A,B,w ஐ காண்க.

- iv) (iii) ஐ பயன்படுத்தி எளிமை இசை இயக்கத்தின் அலைவு மையம், வீச்சத்தைக் காண்க.
- v) துணிக்கை Q கழட்டி விடப்பட்ட பின் துணிக்கை P க்கும் O இற்கும் இடையிலான மிகக்குறுகிய துாரத்தை கண்டு அதற்கு எடுக்கும் நேரத்தைக் காண்க.
- (14) a) i) O என்ற உற்பத்தி குறித்து A,B என்ற புள்ளிகளின் தானக்காவிகள் முறையே \underline{a} , \underline{b} எனின் AB இலுள்ள ஒரு புள்ளி C இன் தானக்காவி \underline{c} யை $\underline{c} = \lambda \, \underline{a} + (1 \lambda) \, \underline{b}$ என்ற வடிவில் எழுதலாம் எனக்காட்டுக.
 - ii) புள்ளி M இன் தானக்காவி $\frac{1}{2}$ <u>a</u> ஆகவும் N இன் தானக்காவி $\frac{3}{4}$ <u>b</u> ஆகவும் உள்ளன. AN, BM என்பன Y இல் இடைவெட்டுகின்றன.

முதற்பகுதியை உபயோகித்து Y ன் தானக்காவியை

- 1) A, N என்பவற்றின் தானக்காவி சார்பாக ஒருபரமானம் λ ஐ உபயோகி<u>த்து</u>ம்
- B, M என்பவற்றின் தானக்காவி சார்பாக ஒருபரமானம் μ ஐ உபயோகித்து எழுதுக.

இவற்றிலிருந்து λ,μ ஐக் காண்க.

AY : YN ஐ உய்த்தறிக.

- b) ABC ஆனது 2m பக்கங்களையுடைய சமபக்க முக்கோணி M என்பது BC இன் நடுப்புள்ளி \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} , \overrightarrow{AM} வழியே முறையே $6,10,6,4\sqrt{3}$ N விசைகள் தாக்குகின்றன.
 - i) தொகுதியின் விளையுளின் பருமனையும் திசையையும் காண்க.
 - ii) விளையுளின் தாக்கக் கோடு, BC யை வெட்டும்புள்ளியைக் காண்க.
 - iii) விளையுளை C ஊடாக தாக்குமாறு செய்வதற்கு சேர்க்கப்படவேண்டிய இணையின் பருமனையும் போக்கையும் காண்க.

AB, BC என்பன சம நீளமும் முறையே 2w, wநிறைவுடையதுமான சீரான கோல்கள் Bοί மூட்டப்பட்டு படத்திலுள்ளவாறு நிலத்தில் Α பிணைத்திருக்க \mathbf{C} இல் விசை பிரயோகிக்கப்பட BC கிடையாக இருக்க தொகுதி சமநிலையிலுள்ளது

- α , β என்பவற்றையும் மூட்டு B ல் உள்ள மறுதாக்கத்தையும் காண்க.
- ii) A இல் உள்ள மறுதாக்கத்தின் கிடை நிலைக்குத்து கூறுகளைக்காண்க.

படத்தில் காட்டப்பட்ட சட்டப்படல் AB, BC, CD, DA, BD ஆகிய இலேசான கோல்களால் ஆக்கப்பட்டு A இல் பிணைக்கப்பட்டும் D ல் CD திசையில் விசை P பிரயோகிக்கப்பட்டும் B, C யில் முறையே 150,50 N சுமைகளையும் காவுகின்றது. BC கிடையானது

- i) போவின் குறியீட்டு முறையில் தகைப்பு வரிப்படத்தை வரைந்து அவற்றை வகைப்படுத்தி பெறுமானங்களைக் காண்க.
- ii) விசை P யையும் பிணையலிலுள்ள மறுதாக்கத்தையும் காண்க.
- 16) a) i) α ஆரையும்

 அரை உச்சிக்கோணமும் உடைய பொட்கூம்பின் திணிவு
 மையத்தை அதன் உச்சியிலிருந்து காண்க.
 - ii) α ஆரையுடைய பொள் அரைக்கோளத்தின் திணிவு மையத்தை விளிம்பிலிருந்து காண்க.
 - b) 2a ஆரையும் அரை உச்சிக்கோணம் 30° வும் உடைய பொட் கூம்பிலிருந்து a ஆரையும் 30° அரை உச்சிக் கோணமும் உடைய கூம்பு வெட்டியகற்றப்பட்டு a, 2a ஆரைகளுடைய அடித்துண்டு பெறப்பட்டு a ஆரையுடைய அடி a ஆரையுடைய வட்டத்தட்டால் மூடப்படுகிறது. 2a ஆரையுடைய விளிம்பு 2a ஆரையுடைய பொள் அரைக்கோளத்தால் மூடப்பட்டு ஒரு பாத்திரம் படத்திலுள்ளவாறு ஆக்கப்படுகிறது. கூம்பின் அடர்த்தி ρ கோளம் தட்டின் அடர்த்தி σ
 - i) பாத்திரத்தின் திணிவு மையத்தை அரைக்கோள விளிம்பிலிருந்து காண்க.
 - ii) இப்பாத்திரம் அரைக்கோண வளைபரப்பிலுள்ள எப்புள்ளி படிவும் சமனிலையடையின் $8\rho = (8\sqrt{3} 3)\sigma$ எனக்காட்டுக.

 $\overline{2a}$

- 17) a) பிள்ளைகளைக் கொண்ட குடும்பங்களில் இருந்து பின்வரும் நிகழ்ச்சிகள் A, B வரையறுக்கப்படுகிறது.
 - A = {ஆண், பெண் பிள்ளைகளை கொண்டிருத்தல்}
 - $B = \{$ கூடியது ஒரு ஆண் பிள்ளை இருத்தல் $\}$
 - i) மூன்று பிள்ளைகளைக் கொண்ட குடும்பம் ஒன்றிற்கான மாதிரிவெளி S, A, B என்ற நிகழ்ச்சிகளை வரையறை செய்து A, B சாராதவை எனக் காட்டுக.
 - ii) இரண்டு பிள்ளைகளைக் கொண்ட குடும்பத்தில் A, B என்ற நிகழ்ச்சிகள் சாராதவையா? காரணம் தருக.
 - b) ஒரு பெட்டியில் 10 நாணயங்கள் உள்ளன. அவற்றுள் 2 நாணயங்கள் கோடாதவை, 3 நாணயங்களில் இருபக்கமும் பூ உள்ளது. 5 நாணயங்களில் இல் தலைதோன்றும் நிகழ்தகவு ¹/₃ ஆகும். பெட்டியிலிருந்து ஒரு நாணயம் எழுமாறாக எடுக்கப்பட்டு சுண்டப்படுகிறது.
 - i) தலைதோன்றும் நிகழ்தகவு யாது?
 - ii) தலை தோன்றும் எனதரப்ப<mark>டின் எடுக்கப்பட்ட நா</mark>ணயம் கோடாததாக இருக்கும் நிகழ்தகவு யாது?

Biology

C.Maths

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

