

What is claimed is:

1. A method of providing electrostatic discharge protection
for an integrated circuit, comprising:

2 mounting an integrated circuit die on a lead frame;
3 encapsulating at least part of the integrated circuit die
4 with a plastic or epoxy material; and

5 folding a portion of the lead frame around sides of the
6 encapsulated integrated circuit die and over or adjacent to a
7 peripheral upper surface of the plastic or epoxy material.

8

1. The method of claim 1, further comprising:

2 connecting the portion of the lead frame folded around
3 the sides of the encapsulated integrated circuit die and over
4 or adjacent to the peripheral upper surface of the plastic or
5 epoxy material to a ground voltage.

6

3. The method of claim 1, wherein the step of encapsulating
7 at least part of the integrated circuit die with a plastic or
8 epoxy material further comprising:

1 after mounting the integrated circuit die on the lead
2 frame, encapsulating exposed surfaces of the integrated
3 circuit die except for a sensing surface; and
4 encapsulating wire bonds connecting the integrated
5 circuit die to portions of the lead frame.

6

4. The method of claim 1, wherein the step of folding a
7 portion of the lead frame around sides of the encapsulated
8 integrated circuit die and over or adjacent to a peripheral
upper surface of the plastic or epoxy material further
comprising:

1 folding portions of the lead frame around each side of
2 the encapsulated integrated circuit die.

1 5. The method of claim 1, wherein the step of folding a
2 portion of the lead frame around sides of the encapsulated
3 integrated circuit die and over or adjacent to a peripheral
4 upper surface of the plastic or epoxy material further
5 comprising:

6 folding a first portion of the lead frame around a first
7 side of the encapsulated integrated circuit die, wherein the
8 first portion includes an opening providing access for a
9 connector to pins electrically connected to the integrated
10 circuit die.

1 6. The method of claim 1, wherein the step of folding a
2 portion of the lead frame around sides of the encapsulated
3 integrated circuit die and over or adjacent to a peripheral
4 upper surface of the plastic or epoxy material further
5 comprising:

6 folding portions of the lead frame around edges of the
7 encapsulated integrated circuit die not including leads
8 electrically connected to the integrated circuit die.

1 7. The method of claim 1, wherein the step of folding a
2 portion of the lead frame around sides of the encapsulated
3 integrated circuit die and over or adjacent to a peripheral
4 upper surface of the plastic or epoxy material further
5 comprising:

6 folding a first portion of the lead frame around a side
7 of the encapsulated integrated circuit die; and

8 folding a second portion of the lead frame extending from
9 the first portion over a peripheral upper surface of the
10 encapsulated integrated circuit die.

1 8. The method of claim 1, wherein the step of folding a
2 portion of the lead frame around sides of the encapsulated
3 integrated circuit die and over or adjacent to a peripheral

4 upper surface of the plastic or epoxy material further
5 comprising:
6 folding a first portion of the lead frame around a side
7 of the encapsulated integrated circuit die; and
8 folding a second portion of the lead frame extending from
9 the first portion adjacent to and level with a peripheral
10 upper surface of the encapsulated integrated circuit die.

0002700-959684-00000

- 1 9. An integrated circuit package, comprising:
2 an integrated circuit die mounted on a lead frame; and
3 a plastic or epoxy material encapsulating at least part
4 of the integrated circuit die,
5 wherein a portion of the lead frame is folded around
6 sides of the encapsulated integrated circuit die and over or
7 adjacent to a peripheral upper surface of the plastic or epoxy
8 material.
- 1 10. The integrated circuit package of claim 9, further
2 comprising:
3 a connection between a ground voltage and the portion of
4 the lead frame folded around the sides of the encapsulated
5 integrated circuit die and over or adjacent to the peripheral
6 upper surface of the plastic or epoxy material.
- 1 11. The integrated circuit package of claim 9, wherein the
2 plastic or epoxy material encapsulates exposed surfaces of the
3 integrated circuit die except for a sensing surface and wire
4 bonds connecting the integrated circuit die to portions of the
5 lead frame.
- 1 12. The integrated circuit package of claim 9, wherein
2 portions of the lead frame are folded around each side of the
3 encapsulated integrated circuit die.
- 1 13. The integrated circuit package of claim 9, wherein a
2 first portion of the lead frame folded around a first side of
3 the encapsulated integrated circuit die includes an opening
4 providing access for a connector to pins electrically
5 connected to the integrated circuit die.
- 1 14. The integrated circuit package of claim 9, wherein
2 portions of the lead frame are folded only around edges of the

3 encapsulated integrated circuit die not including leads
4 electrically connected to the integrated circuit die.

1 15. The integrated circuit package of claim 9, wherein:
2 a first portion of the lead frame is folded around a side
3 of the encapsulated integrated circuit die; and
4 a second portion of the lead frame extending from the
5 first portion is folded over a peripheral upper surface of the
6 encapsulated integrated circuit die.

1 16. The integrated circuit package of claim 9, wherein:
2 a first portion of the lead frame is folded around a side
3 of the encapsulated integrated circuit die; and
4 a second portion of the lead frame extending from the
5 first portion is folded adjacent to and level with a
6 peripheral upper surface of the encapsulated integrated
 circuit die.

000000000000000000000000

- 1 17. An integrated circuit package, comprising:
2 a lead frame including a die paddle and portions
3 extending from the die paddle;
4 an integrated circuit die mounted on the die paddle;
5 a plastic or epoxy material encapsulating exposed
6 surfaces of the integrated circuit die except for a sensing
7 surface,
8 wherein the portions of the lead frame extending from the
9 die paddle ~~are~~ folded around sides of the encapsulated
10 integrated circuit die and over or adjacent to peripheral
11 upper surfaces of the encapsulated integrated circuit die.
- 1 18. The integrated circuit package of claim 17, wherein the
2 lead frame includes pins or leads and the portions extending
3 from the die paddle include openings around the pins or leads.
- 1 19. The integrated circuit package of claim 17, wherein the
2 lead frame includes pins or leads and the portions extending
3 from the die paddle project from peripheral edges of the die
4 paddle not adjacent to the pins or leads.

1 20. A lead frame strip for an integrated circuit package,
2 comprising:
3 at least one lead frame, the lead frame including:
4 a die paddle on which an integrated circuit will be
5 mounted;
6 a plurality of structures which will be formed into
7 pins or leads for the integrated circuit package; and
8 portions extending from the die paddle which will be
9 folded around sides of the integrated circuit package and
10 over or adjacent to a peripheral upper surface of the
11 integrated circuit package to form an electrostatic
12 discharge ring.

0007004-0007000