Effective Approaches to Attention-based Neural Machine Translation

Minh-Thang Luong, Hieu Pham, Christopher D. Manning

arxiv.org/abs/1508.04025

Vanilla Encoder-Decoder

Sentence probability:
$$\log p(y|x) = \sum_{j=1}^{m} \log p\left(y_{j}|y_{< j}, \boldsymbol{s}\right)$$

Training loss:
$$J_t = \sum_{(x,y) \in \mathbb{D}} -\log p(y|x)$$

BiRNN Encoder-Decoder

Alignment

Ich weiß nicht, ob er heute abends zu unserer Weihnachtsparty kommt.

I don't know if he's-coming to our Christmas party tonight.

Problem:

Vanishing gradients, long term dependencies.

Idea:

Tell the network where to look in the input.

Global Attention

Attention relevance between the current decoder state and input state s

$$a_t(s) = \operatorname{align}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)$$

$$= \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)\right)}{\sum_{s'} \exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_{s'})\right)}$$

Context & state concatenation

$$\tilde{\boldsymbol{h}}_t = anh(\boldsymbol{W_c}[\boldsymbol{c}_t; \boldsymbol{h}_t])$$

Word output

$$p(y_t|y_{< t}, x) = \operatorname{softmax}(\boldsymbol{W_s}\tilde{\boldsymbol{h}}_t)$$

Computing Score (Globally)

$$a_t(s) = \operatorname{align}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)$$

$$= \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)\right)}{\sum_{s'} \exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_{s'})\right)}$$

Attention score, not attention!
$$\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) = \begin{cases} \boldsymbol{h}_t^{\top} \bar{\boldsymbol{h}}_s & dot \\ \boldsymbol{h}_t^{\top} \boldsymbol{W_a} \bar{\boldsymbol{h}}_s & general \\ \boldsymbol{v}_a^{\top} \tanh \left(\boldsymbol{W_a} [\boldsymbol{h}_t; \bar{\boldsymbol{h}}_s] \right) & concat \end{cases}$$

Attention, not attention score!
$$oldsymbol{a}_t = \operatorname{softmax}(oldsymbol{W_a}oldsymbol{h}_t)$$

Local Attention (local-m, local-p)

Diagonal alignment:

$$p_t = t$$

Considered window of input tokens:

$$[p_t-D, p_t+D]$$

Let the network predict the alignment itself:

$$p_t = S \cdot \operatorname{sigmoid}(\boldsymbol{v}_p^{\top} \tanh(\boldsymbol{W}_p \boldsymbol{h}_t)),$$

Force it to focus on tokens around the predicted location:

$$\boldsymbol{a}_t(s) = \operatorname{align}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) \exp\left(-\frac{(s-p_t)^2}{2\sigma^2}\right)$$

Input-feeding Approach

Also add the previous hidden state (not the generated word) to the current decoding computation.

Experiments

System	Ppl	BLEU
Winning WMT'14 system – phrase-based + large LM (Buck et al., 2014)		20.7
Existing NMT systems		
RNNsearch (Jean et al., 2015)		16.5
RNNsearch + unk replace (Jean et al., 2015)		19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)		21.6
Our NMT systems		
Base	10.6	11.3
Base + reverse	9.9	12.6 (+ <i>1</i> .3)
Base + reverse + dropout	8.1	14.0 (+1.4)
Base + reverse + dropout + global attention (<i>location</i>)	7.3	16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input	6.4	18.1 (+ <i>1.3</i>)
Base + reverse + dropout + local-p attention (general) + feed input	5.0	19.0 (+0.9)
Base + reverse + dropout + local-p attention (general) + feed input + unk replace	5.9	20.9 (+1.9)
Ensemble 8 models + unk replace		23.0 (+2.1)

Sentence Length

Attention saves long sentences, especially compared to vanilla RNN.

Attention Note #1

Why is alignment off by one?

Attention Note #2

Attention heads encode linguistic structures.

Heads from Transformer self-attention resemble linguistic dependency.

Attention Note #3

Append less performant MT output as an input to attention based MT

Summary

- vanilla RNN suffers from vanishing gradients

- attention brings input closer to the output

- global attention whole sentence
- local attention window of tokens

Resources

- Effective Approaches to Attention-based Neural Machine Translation, Minh-Thang Luong, Hieu Pham, Christopher D. Manning https://arxiv.org/abs/1508.04025
- Class on Statistical Machine Translation
 Ondřej Bojar
 http://ufal.mff.cuni.cz/courses/npfl087
- Enabling Outbound Machine Translation
 - My bachelor thesis
 - https://dspace.cuni.cz/bitstream/handle/20.500.11956/119400/130284419.pdf
- Six Challenges for Neural Machine Translation Philipp Koehn, Rebecca Knowles
 - https://arxiv.org/abs/1706.03872
- A Multiscale Visualization of Attention in the Transformer Model Jesse Vig
 - https://github.com/jessevig/bertviz
- Slow Align https://vilda.net/s/slowalign/