1

Assignment No.1

Dukkipati Vijay Sai

Get CPP code from

https://github.com/dukkipativijay/Fwciith2022/tree/main/Assignment%201/Codes/src

Get Assembly code from

https://github.com/dukkipativijay/Fwciith2022/tree/main/Assignment%201%20-%20Assembly/Codes

Get GCC code from

https://github.com/dukkipativijay/Fwciith2022/tree/main/Assignment%201%20-%20GCC/codes

and latex-tikz codes from

https://github.com/dukkipativijay/Fwciith2022/blob/main/Assignment%201/Latex%20File.tex

1 Question-2016 Section C Q6(d)

Reduce the following Boolean Expression to its simplest form using k-map $F(X, Y, Z, W) = \sum (2, 6, 7, 8, 9, 10, 11, 13, 14, 15)$

Abstract- This manual shows how to use 7447 BCD-seven segment display encoder to display Boolean Logic

2 Contents

Components	3
Hardware	4
Solution	5

3 Components

Component	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment Display		1
Decoder	7447	1
Jumper Wires	M-M	20
Breadboard		1

Table 3.0

4 Hardware

Make connections between seven segment display and the 7447 ic as per the given table

7447	13	12	11	10	9	15	14
Display	a	b	c	d	e	f	g

Figure 1

Figure 2

7447	D	С	В	A
Arduino	5	4	3	2

Table 4.1

	X	Y	Z	W
Input	0	1	1	0
Arduino	6	7	8	9

Table 4.2

In the above example we are taking number 6 as input in binary format by taking 0,1,1,0 as input to the Arduino digital pins 6,7,8,9 respectively.

5 Solution

Truth Table

X	Y	Z	W	F(X,Y,Z,W)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Table 5.0

XY	W 00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

Table 5.1

The expression from the above k-map is XY'

ZY	W 00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

Table 5.2

The expression from the above k-map is XW

$\setminus Z$	X 7			•
XY	00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

Table 5.3

The expression from the above k-map is XZ

71	117			1
XY	00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

Table 5.4

The expression from the above k-map is YZ

$\setminus Z$	1 1/			•
XY	00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

Table 5.5

The expression from the above k-map is ZW'

- 1. From Table 5.1, we get our first term as XY'
- 2. By solving Table 5.2 we get the second term as XW
- 3. By solving the k-map in Table 5.3, we get the third term as XZ
- 4. By Solving Table 5.3 we get the fourth term as YZ
- 5. From the Table 5.5 we get the last term as ZW'

Finally we get the simplified boolean expression below

$$F = XY' + XW + XZ + YZ + ZW'$$