Math 114 - Fall 2016 - Assignment 2

Due: Friday, October 7 at 4:30PM in dropbox 7 outside of MC 4066

Dot Product

- 1. Find the angle between the vectors $\begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix}$.
- 2. The Triangle Inequality states that any two vectors \vec{x} and \vec{y} in \mathbb{R}^n satisfy

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|. \tag{1}$$

- (a) Show that $\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ satisfy the Triangle Inequality.
- (b) Show that the left and right sides of the inequality are the same for $\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 3 \\ -6 \end{bmatrix}$. Why is this? (Hint: Sketch the vectors and think about what the inequality is saying geometrically.)
- 3. Alex pushes a car with a constant force of 100 N at an angle of 30° (or $\pi/6$ rad) to the horizontal. In doing so, Alex moves the car a distance of 10 m. The work (energy) that Alex does is given by the dot product of the force and displacement, $W = \vec{F} \cdot \vec{d}$. How much work does Alex do in total? (Note: Work is measured in units of Joules and 1 J is equal to 1 N·m.)

Projections

4. Elena pulls a box with force \vec{F} at an angle θ relative to the horizontal. Compute the projection and perpendicular of \vec{F} with respect to the horizontal. What do these represent physically?

- 5. Consider the line defined by y = -3/2x + 2 and the point P = (5, 5).
 - (a) Find a vector equation representing the line. Do vectors satisfying this equation form a subspace of \mathbb{R}^2 ? Why/Why not?
 - (b) Q = (4, -4) and R = (0, 2) are two points falling on the line. Let \vec{x} be the vector joining Q to P and \vec{y} be the vector joining Q to R. Find all of $||\vec{x}||$, $proj_{\vec{y}}\vec{x}$, and $perp_{\vec{y}}\vec{x}$. Is one of the projections the same as before?
 - (c) Let \vec{x} be the vector joining R to P and \vec{y} be the vector joining Q to R. Find all of $||\vec{x}||$, $proj_{\vec{y}}\vec{x}$, and $perp_{\vec{y}}\vec{x}$.
 - (d) Based on the above, which vector could we use to describe the minimum distance between P and a point on the line?

1

(e) Find the point on the line closest to P.

Cross Product

6. Determine the scalar equation of the plane that contains the points P = (1, 5, 3), Q = (2, 6, -1), and R(1, 0, 1).

7. Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$.

- (a) Compute $\vec{w} = \vec{x} \times \vec{y}$. Using the definition of length, find $||\vec{w}||$.
- (b) Compute the *product* of the following two scalars: $||\vec{x}||$ and $||perp_{\vec{x}}\vec{y}||$. You should get the same answer as part (a). Why?
- (c) Given new vectors $\vec{a} = \begin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}$, \vec{b} (components unknown) and the information that the angle between \vec{a} and \vec{b} is $\theta = \pi/4$, find $||proj_{\vec{b}}\vec{a}||$. Hint: You may find the diagram on p.53 helpful.
- 8. Suppose $\vec{w} = \vec{u} \times \vec{v}, \ \vec{u}, \vec{v} \in \mathbb{R}^3$.
 - (a) If $\vec{u} \cdot \vec{v} = 0$, must $\vec{w} = \vec{0}$? Under what circumstances will $\vec{w} = \vec{0}$?
 - (b) Find a vector \vec{r} orthogonal to $\vec{u}, \vec{v}, \vec{w}$ as defined above when $\vec{u}, \vec{v}, \vec{w} \neq \vec{0}$. (Hint: No calculation required.)

2

Complex Numbers

9. Simplify the following in standard form:

(a)
$$(1+i\sqrt{3})(1+i)$$
, (b) $\frac{\pi+i\pi}{1-\sqrt{3}i}$

10. Given the provided root, find the remaining roots of the polynomial.

(a)
$$y = x^3 - 2x^2 + 4x - 3, x = 1$$

(b)
$$y = x^3 - 4x^2 + 2x + 4, x = 2$$