

Situation

Commuter traffic

Impact

20% of traffic caused by commuters

74% commuting distance covered by private car

Chances

Plannable, repeating trips

Efficient services, stable profit and impact

Interests from sub-urban/rural regions and companies

Accessibility and utilisation of PT, incentives for employees

Network effects from high trip density and cooperation with companies

➤ High efficiency pooling and public transport options due to same commuting time (and destination)

Problem: "Unlimited" possibilities

Multiple different Mobility Modes

Multimodal and **Intermodal use** of mobility modes

Existing Infrastructure and Policy measures

Constraints and Objectives

Methodology

Long Distance Commuter Mobility Service

Methodology

Contribution

Enable or disable (predefined) modes in the target region

Usage of Local Modes:

- direct trips
- access / egress within the service area

Long Distance Mode:

Public transport

Contribution

Optimization

Importance

Large search spaces

Problems

- Long exploration phase
- Restricted changes possible once the controller is running

Approach

Terminate the simulation when equilibrium is reached, use this as a starting point for the next simulation

Intermodal Trips

Importance

- Enables more efficient transportation
- Essential for rural public transport
- Individual trip planning enabled by agent-based

Problems

- Private vehicle (chain-based modes) can not be used for intermodal transport
- No specific intermodal scoring function

Approach

- Check for vehicle availability during replanning
- Filter feasible trips
- Weight scoring constants based on trip distance

Optimization

Methodology

• Travel time

Equilibrium Recognition:

- Utilize best score derivative to identify equilibrium
- Alternatively, prune non-promising trials
- Shutdown controller

Parameter Adjustment:

Generate next parameter set

Simulation Database:

Find the previous simulation that has the closest parameters

Simulation Execution:

(Re-)start the simulation using data from previous simulations

Contribution

Optimization

Importance

Large search spaces

Problems

- Long exploration phase
- Restricted changes possible once the controller is running

Approach

 Terminate the simulation when equilibrium is reached, use this as a starting point for the next simulation

Intermodal Trips

Importance

- Enables more efficient transportation
- Essential for rural public transport
- Individual trip planning enabled by agent-based simulation approach

Problems

- Private vehicles (chain-based modes) can not be used for intermodal transport
- No specific intermodal scoring function

Approach

- Allow chain-based modes everywhere
- Check for vehicle availability
- Filter feasible trips
- Weight scoring constants based on trip distance share

Methodology

Label Transit Stops:

Identify and label stops for Park & Ride and Bike & Ride.

2. Intermodal Public Transport Routing:

Enable access and egress with all modes.

3. Tracking Vehicle Availability:

- Monitor vehicle position according to the agents' plan.
- Ensure vehicles are available within a predefined radius.
- Check vehicle availability during mobility simulation.

4. Filter Access and Egress:

Select feasible trips for accessing and departing public transit.

5. Scoring:

Penalize agents when vehicles are left behind.

6. Optimize Routing Times:

Use caching techniques to speed up PT routing.

Results

Vectors of access (blue) and egress (red) trips.

Public transport stations (black markers) within the Open Berlin Scenario (focus on Commuters from and to Oranienburg). Darker color represents trips that depart later in the day. Car trips on the left, bike trips on the right.

Key takeaways:

- Car is used for longer trips than the bike. Bike is used by more agents.
- Access trips have a corresponding egress trip. Egress always happens later in the day.
- Few agents have unfeasible trips in their memory. Those trips should be filtered before innovation fadeout.

Urban Mobility System Optimization

Scenario and Preliminary Results

Visulisation of Commutes in Oranienburg

Commuting flows from and to Oranienburg (extracted from open Berlin scenario).

Bad PT in Oranienburg, good PT in commuter regions makes it a promising region for new mobility services.

Vectors of ridepooling access and egress trips in the Oranienburg scenario.

Urban Mobility System Optimization

Preliminary Results

Average values of mode (intermodal) and distance (PT and car) shares for combinations where the modes are activated. Error bars mark the min and max values that can be reached in different configurations with or without the other modes.

Base

Key takeaways from Simulation results:

- Ridepooling has the chance the improve the mobility system in all target criteria. It is also used as an access and egress mode to the PT network. Ridehailing performs slightly worst, still with improvements over the base scenario
- Sharing services do not improve the objectives. Reasons need to be examined.

Summary

Optimization

Enhancements

- Faster exploration of large search spaces
- "Limitless" optimization targets
- Reuse computation heavy initialization

Intermodal Mobility

Enhancements

- More realistic public transport and competition for new mobility modes
- More realistic intermodal scoring
- Base for more complex intermodal trips

Urban Mobility System Optimization

Enhancements

- Tool to derive first design of mobility services and estimate impacts on different objectives
- Enables more detailed research (pricing, competition, cooperation, policy measures)

Next steps:

- Examination of simulation results
- Within Simulation dynamic fleet adaptations
- Inclusion of policy measures
- Inclusion of a long-distance Ridepooling service

12