

Inteligencia Artificial

UTN - FRVM

5º Año Ing. en Sistemas de

Información

• • Agenda

Logistic Regression

- Support Vector Machines
 - maximal margin classifier
 - support vector classifier
 - support vector machines

• • An overview of Classification

- Classification problems occur often, perhaps even more so than regression problems. Some examples include:
- A person arrives at the emergency room with a set of symptoms that could possibly be attributed to one of three medical conditions.
 Which of the three conditions does the individual have?
- An online banking service must be able to determine whether or not a transaction being performed on the site is fraudulent, on the basis of the user's IP address, past transaction history, and so forth.
- On the basis of DNA sequence data for a number of patients with and without a given disease, a biologist would like to figure out which DNA mutations are deleterious (disease-causing) and which are not.

Default Dataset

 We are interested in predicting whether an individual will default on his or her credit card payment, on the basis of annual income and monthly credit card balance.

Left: *The annual incomes* The Default data set. and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: **Boxplots** of function of default status. income a as

• • Logistic Regression

- Consider again the Default data set, where the response default falls into one of two categories, Yes or No.
- Rather than modeling this response Y directly, logistic regression models the *probability* that Y belongs to a particular category.

Logistic Regression

- Classification using the Default data.
- Left: Estimated probability of default using linear regression. The orange ticks indicate the 0/1 values coded for default (No or Yes).
- **Right**: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

• • Logistic Regression

- For the Default data, logistic regression models the probability of default.
- For example, the probability of default given balance can be written as Pr(default = Yes|balance), abbreviated as p(balance)
- For example, one might predict default = Yes for any individual for whom p(balance) > 0.5
- Alternatively, if a company wishes to be conservative in predicting individuals who are at risk for default, then they may choose to use a lower threshold, such as p(balance) > 0.1

• • The Logistic Model

- How should we model the relationship between $p(X) = \Pr(Y = 1|X)$ and X? (For convenience we are using the generic 0/1 coding for the response). $p(X) = \beta_0 + \beta_1 X.$
- For balances close to zero we predict a negative probability of default; if we were to predict for very large balances, we would get values bigger than 1.
- These predictions are not sensible, since of course the true probability of default, regardless of credit card balance, must fall between 0 and 1.

• • Logistic Regression

- Any time a straight line is fit to a binary response that is coded as 0 o r 1, in principle we can always predict p(X) < 0 for some values of X and p(X) > 1 for others (unless the range of X is limited).
- To avoid this problem, we must model p(X) using a function that gives outputs between 0 and 1 for all values of X.
- In logistic regression, we use the *logistic function*

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'})).$$

- We seek estimates for β_0 and β_1 such that the predicted probability $\hat{p}(x_i)$ of default for each individual, corresponds as closely as possible to the individual's observed default status.
- We try to find $\hat{\beta}_0$ and $\hat{\beta}_1$ such that plugging these estimates into the model for p(X), yields a number close to one for all individuals who defaulted, and a number close to zero for all individuals who did not.

Making Predictions

- Once the coefficients have been estimated, it is a simple matter to compute the probability of default for any given credit card balance.
- For example, using the coefficient estimates, we predict that the default probability for an individual with a balance of \$1,000 is

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$
 Multiple predictors

Maximal Margin Classifier

- Hyperplane. In a p-dimensional space, a hyperplane is a flat affine subspace of hyperplane dimension p-1.
- In two dimensions, a hyperplane is defined by the equation.

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$$

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$

p-dimensions

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p > 0$$

The example lies under the hyperplane

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) > 0$$

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p < 0.$$

The example lies above the hyperplane

Classification Using a Separating Hyperplane

 Separating hyperplane. Suppose that it is possible to construct a hyperplane that separates the hyperplane training observations perfectly according to their class labels.

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + ... + \beta_p x_p^*$$

- If f(x*) is positive, then we assign the test observation to class 1, and if f(x*) is negative, then we assign it to class −1. We can also make use of the magnitude of f(x*).
- If f(x*) is far from zero, then this means that x* lies far from the hyperplane, and so we can be confident about our class assignment for x*

The Maximal Margin Classifier

- In general, if our data can be perfectly separated using a hyperplane, then there will in fact exist an infinite number of such hyperplanes.
- A natural choice is the *maximal margin hyperplane* (also known as the maximal margin hyperplane or *optimal separating hyperplane*), which is the separating hyperplane that is *farthest* from the training observations.
- We can compute the (perpendicular) distance from each training observation to a given separating hyperplane; the smallest such distance is the minimal distance from the observations to the hyperplane, and is known as the *margin*.
- The maximal margin hyperplane is the separating hyperplane for which the margin is largest.

Support Vectors

 the maximal margin hyperplane represents the mid-line of the widest "slab" that we can insert between the two

classes.

The Non-separable Case

• As we have hinted, in many cases no separating hyperplane exists, and so there is no maximal margin classifier. In this case, the optimization problem showed before has no solution with M > 0.

- That is, it could be worthwhile to misclassify a few training observations inorder to do a better job in classifying the remaining observations.
- The support vector classifier, sometimes called a soft margin classifier, does exactly this. Rather than seeking the largest possible margin so that every observation is not only on the correct side of the hyperplane but also on the correct side of the margin, we instead allow some observations to be on the incorrect side of the margin, or even the incorrect side of the hyperplane. (The margin is soft because it can be violated by some of the training observations.)

Support Vector Classifier

Left: 3. 5. Observations 4, and 6 are on the correct side margin, observation 2 is on the margin, and observation 1 is on the wrong side of Blue observations: Observations 7 and 10 on the correct margin. are margin, observation 9 is on the margin, and observation 8 is on the wrong side the margin. No observations are on the wrong side of the hyperplane. Right. Same as left panel with two additional points, 11 and 12. These two observations are on the wrong side of the hyperplane and the wrong side of the margin.

Support Vector Classifier

$$\max_{\beta_0,\beta_1,...,\beta_p,\epsilon_1,...,\epsilon_n} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$

The slack variable ϵ_i tells us where the *i*th observation is located, relative to the hyperplane and relative to the margin. If $\epsilon_i = 0$ then the *i*th observation is on the correct side of the margin.

If $\epsilon_i > 0$ then the *i*th observation is on the wrong side of the margin, and we say that the *i*th observation has *violated* the margin.

If ϵ_i > 1 then it is on the wrong side of the hyperplane.

C determines the number and severity of the violations to the margin (and to the hyperplane) that we will tolerate, so it is a *budget* for the amount that the margin can be violated by the n observations. If C = 0 then there is no budget for violations to the margin. As the budget C increases, we become more tolerant of violations to the margin, and so the margin will widen. Conversely, as C decreases, we become less tolerant of violations to the margin and so the margin narrows.

Support Vector Classifier

- In practice, C is treated as a tuning parameter that is generally chosen via cross-validation.
- C controls the bias-variance trade-off of the statistical learning technique. When C is small, we seek narrow margins that are rarely violated; this amounts to a classifier that is highly fit to the data, which may have low bias but high variance.
- On the other hand, when *C* is larger, the margin is wider and we allow more violations to it; this amounts to fitting the data less hard and obtaining a classifier that is potentially more biased but may have lower variance.

Support Vector Machines

- The support vector classifier is a natural approach for classification in this setting, if the boundary between the two classes is linear. However, in practice we are sometimes faced with non-linear class boundaries.
- In the case of the support vector classifier, we could address the problem of possibly non-linear boundaries between classes in a similar way, by enlarging the feature space using quadratic, cubic, and even higher-order polynomial functions of the predictors.

$$X_1, X_2, \dots, X_p$$

$$\downarrow$$
 $X_1, X_1^2, X_2, X_2^2, \dots, X_p, X_p^2$

$$\begin{split} & \underset{\beta_0,\beta_{11},\beta_{12},\ldots,\beta_{p1},\beta_{p2},\epsilon_1,\ldots,\epsilon_n}{\text{maximize}} & M \\ & \text{subject to } y_i \left(\beta_0 + \sum_{j=1}^p \beta_{j1} x_{ij} + \sum_{j=1}^p \beta_{j2} x_{ij}^2\right) \geq M(1-\epsilon_i) \\ & \sum_{j=1}^n \epsilon_i \leq C, \quad \epsilon_i \geq 0, \quad \sum_{j=1}^n \sum_{j=1}^n \beta_{jk}^2 = 1. \end{split}$$

The Support Vector Machine

- The support vector machine (SVM) is an extension of the support vector classifier that results from enlarging the feature space in a specific way, using kernels.
- *Kernels* projects the original information to a space of more dimensions, so the input space X is mapped to a new space of a greater dimensionality (Hilbert):

Kernel trick
$$\xrightarrow{x}$$
 \xrightarrow{x} $\xrightarrow{\phi(0)}$ $\xrightarrow{\phi(0)}$ $\xrightarrow{\phi(x)}$ $\xrightarrow{\phi(x)}$ $\xrightarrow{\phi(x)}$ $\xrightarrow{\phi(x)}$

- $F = {\varphi(x)|x \in X}$
- When the support vector classifier is combined with a non-linear kernel, the resulting classifier is known as a support vector machine

• • | SVM

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i K(x, x_i)$$

$$K(x_i, x_{i'}) = (1 + \sum_{j=1}^p x_{ij} x_{i'j})^d$$

$$K(x_i, x_{i'}) = \sum_{j=1}^p x_{ij} x_{i'j}.$$

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^p (x_{ij} - x_{i'j})^2).$$

• Left: An SVM with a polynomial kernel of degree 3. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

SVM's with More than Two Classes

- o One Versus One Classification
- One Versus All
- We fit K SVMs, each time comparing one of all the K classes to the remaining K − 1 classes

• SVM

• • Application Examples

- Spam filtering, a process which tries to discern <u>E-mail spam</u> messages from legitimate emails.
- Email <u>routing</u>, sending an email sent to a general address to a specific address or mailbox depending on topic
- Genre classification, automatically determining the genre of a text
- <u>Readability assessment</u>, automatically determining the degree of readability of a text, either to find suitable materials for different age groups or reader types or as part of a larger <u>text simplification</u> system
- Sentiment analysis, determining the attitude of a speaker or a writer with respect to some topic or the overall contextual polarity of a document.
- Health-related classification using social media in public health surveillance
- Article triage, selecting articles that are relevant for manual literature curation, for example as is being done as the first step to generate manually curated annotation databases in biology.

 Product, Service,

Application Examples

o Classification of images can also be performed using SVM.

ELSEVIER

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines

Diego Sebastián Pérez a,b,*, Facundo Bromberg c, Carlos Ariel Diaz a

- ³ Universidad Tecnológica Nacional, Facultad Regional Mendoza, Laboratorio de Inteligencia Artificial DHARMa, Dpto. de Sistemas de la Información, Rodríguez 273, CP 5500 Mendoza, Argentina
- ^b Universidad Nacional de Cuyo, Instituto universitario para las Tecnologías de la Información y las Comunicaciones, CONICET, Padre Jorge Contreras 1300, CP 5500 Mendoza. Arzentina
- ^cUniversidad Tecnológica Nacional, Facultad Regional Mendoza, CONICET, Laboratorio de Inteligencia Artificial DHARMa, Dpto. de Sistemas de la Información, Rodríguez 273, CP 5500 Mendoza, Argentina

ARTICLE INFO

Article history: Received 30 April 2016 Received in revised form 6 January 2017 Accepted 23 January 2017 Available online 10 February 2017

ABSTRACT

In viticulture, there are several applications where bud detection in vineyard images is a necessary task, susceptible of being automated through the use of computer vision methods. A common and effective family of visual detection algorithms are the scanning-window type, that slide a (usually) fixed size window along the original image, classifying each resulting windowed-patch as containing or not containing the target object. The simplicity of these algorithms finds its most challenging aspect in the classification