NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION IAN GARDNER & JAKE BERBERIAN

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

Analysis

CONCLUSIONS

OVERVIEW

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

Analysis

CONCLUSIONS

NC OVERVIEW

- NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION
- Overview

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

- ► North Carolina and its 100 counties hold 15 electoral college votes.
- ► Give demographic statistics?

DATA

County stats_type vtd_abbrv party_cd race_code ethnic_code sex_code Alamance voter 169 UNA 0 NL F Age 26 - 40 Alamance 263 REP W UN Μ Age 26 - 40 voter Age 26 - 40 Alamance voter 263 REP W UN М Alamance 263 REP W UN Μ Age 26 - 40 voter Alamance voter 263 REP W UN М Age 26 - 40

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

Discriminant Analysis

ONCLUSIONS

BY PARTY AFFILIATION

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

ONCLUSIONS

By County

- ▶ Below are some of the larger counties in NC, by voter turnout.
 - ► Any county that represents over 2% of the data is below.

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

Multinominal Logistic Regression

Discriminant Analysis

ONCLUSIONS

By sex

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

CONCLUSIONS

By race

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

ONCLUSIONS

By age

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

ONCLUSIONS

MULTINOMINAL LOGISTIC REGRESSION

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

Analysis

- Models how multinomial response variable Y depends on a set of k explanatory variables $X = (X_1, X_2, ..., X_k)$.
 - ▶ Is classified as a generalized linear model where the random component assumes that $Y \sim \text{Multinomial}(n, \pi)$.
 - π is a probability success vector for each given Y category.
- ► The link function is generalized logit.
 - ► A link function transforms the probabilities of a categorical variable into a continuous, unbounded scale.
- Since our data is nominal, we must perform nominal regression
 - ► Nominal = unordered
- ► PMF: $\frac{n!}{x_1!,...,x_k!}p_1^{x_1}...p_k^{x_k}$

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

CONCLUSIONS

SOURCES

Considerations

- ▶ Our sample size should be large enough, as multinomial regression uses maximum likelihood estimates. With well over 800,000 observations, our data satisfies this assumption.
- ► Separation between outcome and predictor variables
- ► No NAs
 - All NA observations (0 in here) have been dropped from this dataset.

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

Analysis

1 - - - - - - - - -

APPLICATIONS IN R

- ► To simplify computation, we'll look at strictly Orange County data.
- We'll split this data into training and testing data, through random sampling.
 - ► This allows for cross-validation, or checking the accuracy of our model.

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

ANALYSIS

COURGES

- ▶ Democrat is our baseline level of *party_cd* when the regression is run.
- ► Coefficients of our regression are outputed below.

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

Analysis

ONCLUSIONS

OURCES

	(Intercept)	race_codeB	race_codel	race_codeM	race_codeO	race_codeU	race_codeW	sex_codeM	sex_codeU	ageAge 26 - 40	ageAge 41 - 65	ageAge Over 66
LIB	-3.7861832	-2.3064401	1.5611841	-0.5995370	-0.5383042	1.2909854	0.1959223	1.120241	0.3272172	-0.2947151	-1.8337206	-2.6275935
REP	-3.7835548	-0.5651973	1.5202473	1.4654979	1.6461137	1.2772980	2.0368289	1.244312	1.7593633	0.6095434	0.0988897	-0.5933063
UNA	-0.5086557	-0.9988455	-0.3132486	-0.3736255	0.3662906	0.6834832	-0.1303131	1.156793	1.9507635	0.0804066	0.0477630	-1.1916412

IMPORTANCE OF VARIABLES

- Unlike summary() with linear and generalized linear regression models, multinom() doesn't output the importance of each variable.
 - For small p-values, let's say $\alpha=0.05$, we'll consider the variable to be "important."
 - ► No variables that are entirely insignificant, so we'll keep all of them in there

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

Analysis

ONCLUSIONS

	(Intercept)	race_codeB	race_codel	race_codeM	race_codeO	race_codeU	race_codeW	sex_codeM	sex_codeU	ageAge 26 - 40	ageAge 41 - 65	ageAge Over 66
LIB	0.00e+00	0.0406755	0.1873359	0.5966291	0.6342024	0.0919933	0.7140131	3.78e-05	0.7187970	0.3230317	0.0000032	0.0003778
REP	0.00e+00	0.2081655	0.0788413	0.0022676	0.0002086	0.0067968	0.0000000	0.00e+00	0.0000002	0.0000001	0.3704551	0.0000463
UNA	1.85e-05	0.0000000	0.5468666	0.1165941	0.0533488	0.0005840	0.2678829	0.00e+00	0.0000000	0.3120266	0.5161988	0.0000000

	DEM	LIB	REP	UNA
DEM	5729	49	936	2440
LIB	0	0	0	0
REP	0	0	0	0
UNA	1546	64	1048	3379

Overview

MULTINOMINAL LOGISTIC REGRESSION

ANALISIS

Correano

- ► The above table is our confusion matrix.
 - Horizontal is our testing data results and vertically is our predicted results. Diagonal is correctly classified
- ► Interesting that our model *never* classifies a voter as a Republican or Libertarian.
 - Possibly due to differing demographics amoungst those parties
- ► Our classification rate is 59.96%.

Interpretation of Results

race_codeB

LIB -2.3064401

REP -0.5651973

A one-unit decrease in the variable *race_codeB* is associated with the decrease in the log odds of being a Libertarian vs. a Democrat in the amount of 2.31.

-0.9988455

UNA

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

Analysis

CONCLUSIONS

SOURCES

- ► We can find the corresponding risk ratios, by exponentiation of all of our log odds.
- ► The relative risk ratio for a one unit increase in the variable race codeB is 0.0996 for being a Libertarian vs. a Democrat.

	race_codeB
LIB	0.0996152
REP	0.5682480
UNA	0.3683044

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

Conclusions

- ► Clustering technique that is closely related to PCA.
- ▶ Model the distribution of predictors X separately (opposed to logistic regression) in each of the response classes and use Bayes' theorem to flip these into estimates for Pr(Y = k | X = x)
 - ▶ Bayes' Theorem: $Pr(A|B) = \frac{Pr(B|A)Pr(A)}{Pr(B|A)Pr(A)+Pr(B|A)Pr(A)}$
- ▶ Use it when classes are well-separated, if *n* is small & *Y* is approximately normal, and is popular if there are more than two response classes.
- ► LDA vs QDA
 - LDA attempts to create a linear boundary between classifiers, while QDA creates a non-linear boundary.

Overview

MULTINOMINAL LOGISTIC REGRESSION

DISCRIMINANT ANALYSIS

SOURCES

library(MASS)

► The below output is only the first few terms of the discriminant analysis.

lda pred <- predict(nc lda, test oc)</pre>

	LD1	LD2	LD3
race_codeB	-1.1155547	-0.7498365	-0.6030964
	0.0775070	1 7051077	E E0E0CE4
race_codel	-0.0775873	-1.7851277	5.5858654
race_codeM	-0.2535873	-1.6064455	-0.8746791
race_codeivi	-0.2555675	-1.0004433	-0.6740791
race_codeO	0.5433923	-0.6321081	-1.1507063
race_codeO	0.5455925	-0.0321001	-1.1307003

Multinominal Logistic

DISCRIMINANT ANALYSIS

OURCES

Cross-validation: LDA

- ▶ Again, we see that our model fails to predict any observation to be Republican.
- We see our classification rate on our testing set is just barely smaller than that of our multinomial logistic regression.

	DEM	LIB	REP	UNA
DEM	5718	49	932	2431
LIB	8	2	2	8
REP	0	0	0	0
UNA	1549	62	1050	3380

Classification Rate
0.5990389

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC

DISCRIMINANT ANALYSIS

- We see that linear discriminant analysis does not do a great job either. We would like to see four distinct clusters, one for each party.
- It's safe to conclude that LDA does not perform well and our classification rate is probably misleading and higher than it should be.
- ► There are a ton of overlapping points here.

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

TULTINOMINAL OGISTIC EGRESSION

Discriminant Analysis

ONCLUSIONS

SOURCES

- ► The below output are the prior probabilities necessary for Bayes' Theorem. These are the proportion of training observations from each group.
 - ► For example, there are approximately 48% of the training observations in the Democrat group.
 - ► As expected, these sum to 1.

	Prior Probabilites
DEM	0.4792186
LIB	0.0079979
REP	0.1313754
UNA	0.3814082

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC

DISCRIMINANT ANALYSIS

SOURCES

CROSS-VALIDATION: QDA

- We see that QDA predicts some Republicans, but is still somewhat concentrated in it's prediction. This is to be expected.
- ► However, we see a much lower classification rate. This is probably more accurate too. Less overfitting of the *testing* data.

	DEM	LIB	REP	UNA
DEM	2548	8	230	858
LIB	79	5	16	119
REP	4120	88	1630	3912
UNA	528	12	108	930

Classification Rate 0.3365809

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC

DISCRIMINANT ANALYSIS

Conclusions

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

OVERVIEW

MULTINOMINAL LOGISTIC REGRESSION

Analysis

Conclusions

▶ One thing that hasn't been discussed is that the party code UNA indicates unaffiliated. This could throw off our analyses greatly, as unaffiliated voters generally do not take a certain demographics like the two major parties do.

- ► One of the fastest growing electorates.
- Neither of our predictive techniques performed that well on our data.
 - Could be due to the nature of only looking at one county.
 - ► This is why we poll. If it were this easy, then elections would be no fun.
- If we had to pick a model, we'd likely go with our multinomial logistic regression.
 - ▶ Discriminant analysis usage may not be the best, with a sufficiently large *n* and some colinearity.

)verview

Multinominal Logistic Regression

DISCRIMINANT Analysis

Conclusions

Sources

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

Overview

MULTINOMINAL LOGISTIC REGRESSION

Analysis

Conclusions

Sources

NORTH CAROLINA IN THE 2016 PRESIDENTIAL ELECTION

MULTINOMINAL LOGISTIC REGRESSION

-

- https://stats.idre.ucla.edu/r/dae/multinomial-logisticregression/
- ▶ James, Gareth, et al. An Introduction to Statistical Learning with Applications in R. 7th ed., Springer, 2017.