Terminology in ontologies and other lexicographic resources

Dra. Guadalupe Aguado de Cea

lupe@fi.upm.es

http://www.oeg-upm.net
Ontological Engineering Group
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

Outline

- What is terminology?
- Object of study and working methods in terminology
- The insights of terminology
- Concepts and their relations
- Terms and their formation
- Linguistic resources and ontologies
- Reusing non ontological resources
- Comparative analysis of resources

What is terminology?

The term terminology is polysemic:

- As a product: set of terms from a given subject field.
- As a discipline: set of fundamental principles and conceptual bases that govern the study of specialized terms, their description, analysis and relations.
- As a practice: set of principles oriented towards term compilation

The object of study of terminology

Working methods of Terminology

- Identifying terminological units (TUs)
 - Conceptual perspective: their relations with the other terms of the conceptual system and their distinctive features.
 - Functional perspective: specialized phraseological units (SPUs):
 - to set up a loom, (montar un telar),
 - to produce cloth, (construir un tejido),
 - to download a file (bajarse un fichero, descargar un fichero),
 - to run a program (ejecutar un programa).
- Contextual Analysis: Analysing terms in context and the terminological variants according to degrees of specialization: *ordenador*, *computador*, *ordenata*, *máquina*, *PC*,
- Creation of new terms: (a) new terms are needed to describe new process, devices, phenomena, (b) lack of suitable terms when translating neologisms from another language: folksonomies, servlet, applet, widget, snippet
- Normalization

Theoretical and descriptive goals of terminology

- Concepts
- Terms
- Relation between terms and concepts
- Definitions (not included in this lesson)

Definition of a concept

- *In general*: Unit of knowledge created by a unique combination of characteristics. ISO 1087-1 (2000)
- In terminology: Concepts shall be considered mental representation of objects within a specialized context or field ISO/DIS 704 (2006)
- BUT concepts are influenced by social and cultural circumstances given at a certain moment, and this can lead to different classifications in the conceptual system
- From a socio-communicative perspective: Concepts can be seen as:
 - Units of **thought**: represent and recognize the object mentally
 - Units of **knowledge**: represent knowledge in each subject field
 - Units of communication: transmit knowledge by means of linguistic symbols

Semantic triangle by Ogden & Richards

Description of a concept

• Concepts are described according to their common features, properties or characteristics, either by intension or extension

Intension

- Set of characteristics which makes up the concept (ISO 1087-1: 2000)
- The bigger the number of common characteristics, the more restricted is the intension.
- The intension of the concept winter in polar countries includes: low temperatures, ice, wind, snow, etc.

Extension

- Totality of objects to which a concept corresponds (ISO 1087-1: 2000)
- A general concept has a wide extension as it includes two or more objects by reason of common properties.
- The extension of the concept planet includes: *Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.*

Characteristic of a concept

- "Abstraction of a property of an object or of a set of objects" (ISO 1087-1:2000)
- According to the importance in forming a concept
 - essential: indispensable to understand and distinguish a concept
 - The back of a seat distinguishes a stool and a chair.
 - complementary: colour, material, shape, ...

- According to the relation with the object represented
 - intrinsic, which are observable properties:
 - Shape: oval, round, narrow, wide, ...
 - **Material**: wooden, stone, metalic, ...
 - Colour: red, blue, green, orange...
 - **Position:** vertical, hanging, slanting
 - extrinsic, relation of the object with others
 - Mode of employement or application: analogic, digital, hybrid.
 - **Origin** or how an object comes into existence: producer, inventor, provider, the place of its production, (town, country), ...

Subject field Computer hardware	Object (visual representation)	Concept Abstraction based on the set of all mechanical mice	Term: mechanical mouse	ISO /DIS
Category	Property	Characteristic	Degree of essentiality	704, 2006
Level of abstraction	concreteness	1. concreteness	essential	
Type of object	Input device	2. input device	essential	
colour	Ivory-coloured	3. Any colour	Non-essential	
usage	Hand-manoeuvred along a hard, flat-surface	4. Has a ball on its underside on which the device rolls	essential	
composition	Has a metal ball on its underside on which the device rolls	5. Has a ball on its underside on which the device rolls	essential	
composition	Has three buttons	6. Has at least one button	essential	
connection	Connected to a computer of a connecting wire	y 7. May be connected to a computer by a wire	Non-essential	
function	Rollers detect the movement of the ball	8. Rollers (mechanical sensors) detect the movement of the ball	essential	
function	The ball controls the movement of a cursor on a	9. Ball movement controls the movement of a pointer on a	e essential	_
11	computer display screen	computer display screen	Ontolog Enginer ing G roi	ly er ip

Relations between concepts: hierarchical relations

Close relation between a concept and its characteristics

A. GENERIC RELATIONS (genus-species relation) IS_A

- One of the concepts includes another concept
 - **vertical:** hypernym- hyponym; superordinate –subordinate
 - **horizontal:** two specific ideas of the same generic concept with some distinguishing characteristics
- In thesaurus
 - Broader than (BT)
 - Narrower than (NT)
 - Associated to (AT)

B. PARTITIVE RELATIONS (part-whole relation) PART_OF

- These relations are also called meronimic (HAS_PART)
 - Car: wheels, seats, doors, boot, stearing wheel, gearbox...
- Different types of meronimic relations

Vertical Relation

Horizontal Relation: co-hyponyms

Other Meronimic Relations

Relación	Ejemplo	
componente - objeto	pedal - bicicleta	
miembro - colección	barco - flota	
porción - masa	rebanada - pan	
material - objeto	acero - coche	
fase - actividad	pagar - comprar	
lugar - área	oasis - desierto	

Tabla II.2: Modelo de Winston et al. (1987)

Climent, S. 1999 Individuación e información parte-todo. Representación para el procesamiento computacional del lenguaje

Non-hierarchical relations (ad-hoc relations)

- Caused by : (acid rain- nuclear explosion)
- *Product of:* (paper- wood pulp)
- Property of (compressibility -gas)
- Quantitative measure (temperature-heat)
- *Instrument for* (computer- data processing)
- Counter-agent for (insecticide-insects)
- Container of (toolbox- tools)
- Method of (diamond drilling- drilling)
- *Material for* (iron-bridge building)
- *Place for* (coal mine- coal exploitation)
- Associated with (production-consumption)

How do we express concepts?

- In natural language:
 - Terms (one-word or multi-word units) that denote or refer to a concept in a subject field
 - Definitions
 - Glosses, etc.
- In artificial language
 - Codes
 - Formulas
- In a multimedia resource:
 - Icons
 - Photos
 - Diagrams
 - Graphs
 - Video-clips
 - Audio-clips
 - Other multimedia representations

Term formation

- According to its **origin**:
 - Borrowings from other languages: hardware, software, football, cookies, folksonomies
 - Adapted borrowings: formatear, inicializar, fútbol, etc.
 - Loans of structure : inteligencia artificial, lógica difusa, programación orientada a objetos, anotación social
 - Semantic loans: aplicación, utilidades, editar, icono, ratón, menú,
- According to its **formation**:
 - One-word lexical units or terminological units : Programa, aplicación, icono, menú, ratón
 - Multiword lexical units : lenguaje de programación, lenguaje de alto nivel, programación orientada a objetos
- According to its components:
 - Suffixation:
 - teca/tica: animática, burórica, indumática, ofimática, robótica, telemática, turismática
 - - itis: a) inflamación: bronquitis, faringitis, amigdalitis, otitis
 - b) obsesión: madriditis, mamitis, futbolitis
 - Prefixation: ciber: cibercafé, cibernauta, cibermedicina, ciberdelito, etc
 - Composition: salvapantallas, reposapiés, sujetamanos, radiotelevisión,
 - Abbreviation (acronyms): PC, PDF, TCP/IP, MS-DOS, MP3, wysiwyg,
 - Conversion: : download, input, output,
 - Neologization: autoedición, "gustomizar",
 - Metaphorization: paquete de mejoras salariales, navegar, autopistas de la información, papelera, escritorio, bajar de la red, machacar un fichero, caerse el sistema, etc

Terminology in technical & scientific domains

- No professional communication can exist without terminology
- No knowledge transfer can exist without terminology
- Without terminology there is not
 - -Intelectual and material development
 - -Professional research and training
- As a consequence,
 - -no further development would take place
 - A country would isolate from the rest of developed countries

(Picht, 1979)

Linguistic and ontological resources: terminological chaos?

Some definitions

• Thesaurus: Organized controlled vocabulary of terms and their relations (hierarchical,

a subject domain. ec word-sense-entry →

• C [- ORTHOGRAPHY : string iformation developed by several

at - WORD-MEANING: word-meaning-id+

• I SYNONYMS: word-meaning-id* data model that allows the storage,

re NEAR-SYNONYMS: word-meaning-id*

• St HYPONYMS: hyponym*

HYPERONYMS: hyperonym*

• T ANTONYMS : antonym*

in MERONYMS: meronym*

• **(HOLONYMS : holonym***

QUANTIFICATION: quantification*

COLLOCATIONS: collocation*

SEMANTIC-FRAME: sem-frame

ACTIONALITY: actionality

ENTRY-CREATOR: (HUMAN | MACHINE)

IS VALIDATED: Boolean]

emantic relations between concepts

and scopes thet may exist in some

the semantics of the grammatical units other kinds of information

(phonologic, morphologic, syntactic, semantic and p matic)

What is an ontology?

- "An ontology is similar to a dictionary or glossary, but with greater detail and structure that enables computers to process its content. (IEEE Standard Upper Ontology Working Group)
- "An ontology consists of a set of concepts, axioms, and relationships that describe a domain of interest." SUMO ontology http://ontology.teknowledge.com/

Ontology classification (Lassila & McGuinness)

• Gómez-Pérez, A., Fernandez-Lopez, M., Corcho, O. (2003) Ontological engineering: with examples from the areas of knowledge management, e-commerce and the Semantic Web. Londres: Springer Verlag London Ltd.

Glossaries

- List of terms, generally with definitions.
- Terms usually belong to a concrete field
- Terms are defined according to the meaning in that domain
- Goal: to avoid polisemy.

CINDOC Glossary

Tesauros

<u>Inicio</u>

Alfabético

<u>Búsquedas</u>

Glosario de Máquinas Herramienta

ABCDEFGHIJKLMNÑOPQRSTUVWXYZ

Listado alfabetido de terminos [#1] (no-descriptores en cursiva)

1 2 3 4 5 6 [Siguiente] [Fin]

a prueba de empleo incorrecto

abrazadera para tubos

accionamiento de la mesa

accionamiento del avance

accionamiento eléctrico

accionamiento forzado

accionamiento hidráulico

accionamiento individual

accionamiento neumático

accionamiento por cuerda

accionamiento por fricción

accionamiento por grupos

accionamiento por poleas escalonadas

accionamiento por trinquete

aceleración

acoplador roscado para tuberías

acoplamiento de desembrague

acoplamiento de ejes

Semantic network

- Concepts structure with nodes and relations, not hierarchically organized
- Can include BT, NT, RT relations or other associative relations

A Thesaurus: Example

- Conceptual structure
- Semantically related terms by means of
 - Explicitly defined conceptual relations
 - Restricted definition of the terms

INSPEC Thesaurus

Types of data included

```
THESAURUS search words: natural languages
UF natural language processing (UF=used for natural language processing)
BT languages (BT=broader term is languages)
TT languages (TT=top term in a hierarchy of terms)
RT artificial intelligence (RT=related term/s)
     computational linguistic
     formal languages
     programming languages
     query languages
     specification languages
     speech recognition
     user interfaces
CC C4210L; C6140D; C6180N; C7820(CC classification code)
DI January 1985(DI=date [1985])
PT high level languages (PT=prior term to natural languages)
```


An excerpt from INSPEC Thesaurus

Cellular radio	used for (UF): cellular communication cellular telephones Groupe Speciale Mobile (GSM) microcellular radio pan-european radio vodafone
Land mobile radio Radiotelephony	These twp terms are broader terms (BT) to "cellular radio". If you searched under these terms, you will retrieve a larger set of documents
Radio applications Telecommunication	These terms are top terms (TT) in the hierarchy
Channel allocation Land mobile radio Personal communication networks Radio access networking Space division multiple access	All these terms are related terms (RT) to "cellular radio"
DI January 1985	Date when "cellular radio" was added
mobile radio systems	previous term (PT) used before 1985
B6250F; D4045	class codes

Table 1: Inspec Thesaurus (1999) -- an excerpt on cellular phones

Components

nouns round object that is hit or thrown or kicked in games; "the ball travelled 90 mph on his serve"; "the mayor threw out the first ball"; "the ball rolled into the corner pocket* Hypernyms (... is kind af) Hyponyms (kinds of ...) Antonyms (opposites of ...) Meronyms (parts of ...) Holonyms (... is part of) Related Verbs Related Adjectives a solid ball shot by a musket; "they had to carry a ramrod as well as powder and ball* an object with a spherical shape; "a ball of fire" verbs adjectives

supported by the lexical reference system: nouns, verbs, and adjectives.

Thus, three different tabs are presented to you. A simple click opens a certain tab, and, offers its content: a list of meaning, each representing a certain synset of the search term. In order to find out which element of the web reto which meaning or synset, please click on it. Two thing happen:

The meaning gets marked (with red color) and so do the corresponding elements of the web. A certain circle or sphere, representing a specific synset, becomes marked red, and also all of the edges that point to the set of synonyms (representing the synset). In addition, the 'meaning' opens its content and presents a list of lexical pointers associated with the selected part of speech. A click on one of these pointers, e.g. hypernym, lets you explore the broader terms associated with the selected synset.

SMART THESAURUS MUSIC supports the following lexical relationships:

Noun

- [1] Hypernym or broader term (...is a kind of)
- [2] Hyponym or narrower term (kinds of ...)
- [3] Antonym (opposites of ...)
- [4] Meronym (parts of ...)
- [5] Holonym (... is a part of)
- [6] Related verbs
- [7] Related Adjectives

Types of relations

Verb

- [1] Hypernym or broader term (...is a kind of)
- [2] Hyponym or narrower term (kinds of ...)
- [3] Related verbs
- [4] Related nouns

Lexicons

Generally, of two types

- general
 - -contain language used in all/general contexts
- specific
 - -contain the language used in a specific domain of knowledge

Implications of both types of lexicons

- –Quantity and quality of information (granularity)
- -Complexity of the design
- -Complexity in the development process

How are lexicons used in NLP?

• They contain the necessary linguistic information to construct meaning representations

Lexico Went vpast GO Account *n*. Domain [financial] Go v. (NP_SUNJ ((role AGENT) (sem + animate)) Account v. ... (VP ((verb GO) Bank 1 *n domain* [financial] (PP ((prep TO) Bank 2 *n domain* [geography] (NP ((role TARGET) (sem +loc)))) John n. sem: human Money n. domain [financial] Store n. sem: loc bank John went to the storeaccount **Topic=** GO financial money..... field AGENT John TARGET store Adapted from Nancy Ide

Types of lexicons

• Various types:

– Morphosyntactic Information :

http://www.mat.upm.es/~aries/description.html

http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/CQP-HTMLDemo/PennTreebankTS.html

- Semantic Information:
 - Semantic features: human being, animate, human, physical object, mental object
 - Different entries for different senses
 - Semantic relations: synonyms, quasi-synonyms, antonyms, etc.
 - Hierarchical relations: part_of, kind_of, etc...
- Syntactic-semantic Information : colocations

- Information about a domain
- Definitions

Lexicon about "Existence" (Faber and Mairal, 1999)

1.1	General: To exist / to continue to exist.				
1.2	To begin	To begin to exist [be, live]			
	1.2.1	To cause something to exist [create, make]			
1.3	To exist in the perception of others [appear]				
	1.3.1	To cause something to exist in the perception of others [show]			
1.4	To exist in time (becoming real) [happen]				
	1.4.1	To cause something to exist in time [induce, provoke]			
		1.4.1.1. To cause something to exist in time in a particular way [precipitate, hasten]			
		1.4.1.2 . To cause something to happen, making it possible [allow, permit]			
		1.4.1.3. To cause something not to happen [prevent, avoid, stifle, smother]			
1.5	To exist a	s something			
	1.5.1 To exist as the representation of something else [represent, express]				
		1.5.1.1 To cause something to exist as a representation of something [copy, reproduce			
	1.5.2 To exist as a part of something [comprise, constitute]				
1.6	To begin to exist [start, commence, be born]				
	1.6.1 To c	1.6.1 To cause to begin to exist [start, commence]			
		1.6.1.1 To cause to be born [abort]			
	1.6.2 To begin to exist in the perception of others [arise, form]				
	1.6.3	To begin to exist in time (becoming real) [start, originate]			
		1.6.3.1 To cause something to begin to exist in time [start, initiate]			
1.7	To contin	ue to exist [last, endure]			
	1.7.1	To stop something from continuing [interrupt]			
1.8	To stop ex	xisting [die]			
	1.8.1	To cause somebody/something to stop existing [kill, murder]			
	1.8.2	To stop existing in the perception of others [disappear, vanish]			
		1.8.2.1 To cause something to stop existing in the perception of others [erase, delete]			
		1.8.2.2 To stop existing in time [end, finish, cease]			
		1.8.2.3 To cause something to stop existing in time [end. finish, cease]			

ARIES Natural Language Tools

The ARIES Natural Language Tools make up a lexical platform for the Spanish language. These tools can be integrated into NLP applications. They include: a large Spanish lexicon, lexical maintenance and access tools and morphological analyser/generator.

Non-exclusive, non-transferable licenses are available for the following components:

The Prolog GRAMPAL analyser/generator

A public domain demonstration system written in Prolog of our morphological treatment and lexicon. It includes a small demo lexicon, a DCG grammar for word formation and some predicates to test both analysis and generation. It runs under Sicstus Prolog 2.1.9.

The Prolog GRAMPAL dictionary

A collection of Prolog predicates suitable for use with the public domain GRAMPAL DCG grammar. It is capable of generating/recognizing well formed inflected forms for verbs, nouns and adjectives. It has no adverbs, determiners, conjunction, prepositions, etc. It does not treat clitic pronoun attachment nor derivatives.

The expanded ARIES dictionary

A collection of expanded entries (allomorphs) with morphological information. It contains a full set of morphemes dealing with clitic pronoun attachment (but without verb marking for correct attachments). It includes information about some derivative morphological processes (inflected adjectives from past participles and adverbs ended in "-mente" from adjectives).

The source ARIES lexical base

A collection of inflectional models, rules for off-line computing of allomorphs, unexpanded lemma entries, lexicalized irregular words. It is the most complete source of information we have available and the most useful for dictionary maintenance. A tool for expanding the source dictionary to the expanded dictionary is also provided. The current size of this lexicon is 38,500 lemma entries (21,000 nouns, 10,000 adjectives, 7,500 verbs and 500 auxiliary words) plus more than 600 inflectional morphemes.

Access tools

The C/C++ programming interface for lexical access to the ARIES dictionary: It is a set of tools and libraries to build trie indexes to the allomorph dictionary and to retrieve them by an application.

Morphological analyser

The C/C++ morphological analyzer that makes use of the lexical interface mentioned above. This permits to improve efficiency by integrating word segmentation with lexical access also. By now, it is a (pseudo)-unification chart based parser for context-free morphological grammars.

Transforming NOR into ontologies SKOS

- Simple Knowledge Organization System
 - Goal: to enable easy publication of controlled structured vocabularies for the semantic web
 - Thesauri
 - Classification schemes
 - Subject heading systems
 - Taxonomies
 - Other 'controlled language'
 - How: by using a common data model for sharing and linking knowledge organization systems
 - Simple, flexible, extensible, machine-understandable representation for sharing KOS
 - -BUT SKOS is **not** a formal knowledge representation language.

Elements in SKOS

Graph from SKOS Example in RDF

Applications and tools

Applications

- AGROVOC and GEMET
- SWAD-Europe project framework. (Semantic web environmental directory)
- MeSH (converting the sauri to SKOS)
- used to represent geographical feature types in the GeoNames ontology.

• Tools

- ThManager[:] Java open-source application for creating and visualizing SKOS vocabularies.
- W3C provides an experimental on-line validation service.
- Protege or Swoop

Transforming NOR into ontologies García-Silva, Gómez-Pérez, Suárez-Figueroa, Villazón-Terrazas

Re-engineering available resources

Introduction (II)

Introduction (II)

Introduction (II)

Knowledge Resources

•Non-Ontological Resource (NOR) is an existing knowledge resource whose semantics has not yet been formalized by means of an ontology.

•Non-Ontological Resource Re-engineering refers to the process of taking an existing non-ontological resource and transforming it into an ontology.

Motivation

resource

How?

I want to transform my nonontological resource into an ontology

Types of Non-Ontological Resources

Maedche et al. 2001

Text
Dictionary
Knowledge base
Relational schemata

Sabou et al. 2007

Semi-structured
Structured
Structured

Hodge 2000

Gangemi et al. 1998

Catalogue of normalized terms
Glossed Catalogue
Taxonomy

■ Terms Lists

- Authority files
- Glossaries
 - Dictionaries
 - Gazetteers
 - Lexicons
- Classification and categories
 - Subject headings
 - Classification schemes,
 - taxonomies and
 - categorization schemes
- Relationship lists
 - Thesauri

They do not take into account the **Non-Ontological Resource** data model, an important artifact in the re-engineering process.

Non-Ontological Resource Re-engineering Approaches

Approaches focused on the NOR type

Approach	NOR Type	Data Model	Re-engineering Patterns	Tool
Heep et al. 2007	Classification schemes, thesauri	No	No	SKOS2GenTax
Mochol et al. 2006	Classification schemes	No	No	-
Sabou et al. 2007	Folksonomies	No	No	-
Sabou et al. 2007	Lexica	No	No	-
van Assem et al. 2004	Thesauri	No	No	-

Approaches focused on the NOR Implementation

Approach	NOR Implementation	Data Model	Re-engineering Patterns	Tool
Stojanovic et al. 2002	Relational Database	No	No	KAON REVERSE
Barrasa et al. 2004	Relational Database	No	No	R2O, ODEMapster
García et al. 2005	XML Files	No	No	XSD2OWL,XML2RDF
Han et al. 2006	SpreadSheet	No	No	RDF123

They do not take into account the **Non-Ontological Resource** data model, an important artifact in the re-engineering process.

None of the approaches propose a set of re-engineering patterns to guide the re-engineering process.

Software Re-engineering

General Model for Software Reengineering

- 1) The conceptual level describes in general terms the functional characteristics of the system;
- 2) The requirement level is the specification of the problem being solved;
- 3) The design level is the specification of the solution; and
- 1) The implementation level refers to the coding, testing and delivery of the operational system

Example - FAO Water Areas Classification Scheme

Classification Scheme

Adjacency List

ID	CSI_Name	Parent
20000	Water area	
21000	Environmental area	20000
24020	Jurisdiction area	20000
22000	Fishing Statistical area	20000
21001	Inland/marine	21000
21002	Ocean	21000
21003	North/South/Equatorial	21000
22001	FAO statistical area	22000
22002	Areal grid system	22000

```
<Classification>
  <Category>
    <NodeId>20000</NodeId>
    <WaterCategory>Water Area</WaterCategory>
    <parentNodeId>1</parentNodeId>
  </Category>
  <Category>
    <NodeId>21000</NodeId>
    <WaterCategory>Environmental area</WaterCategory>
    <parentNodeId>20000</parentNodeId>
  </Category>
  <Category>
    <NodeId>22000</NodeId>
    <WaterCategory>Fishing statistical area/WaterCategory>
    <parentNodeId>20000</parentNodeId>
  </Category>
  <Category>
    <NodeId>24020</NodeId>
    <WaterCategory>Jurisdiction area</WaterCategory>
    <parentNodeId>20000</parentNodeId>
  </Category>
  <Category>
    <NodeId>21001</NodeId>
    <WaterCategory>inland/marine</WaterCategory>
    <parentNodeId>21000</parentNodeId>
  </Category>
</Classification>
```


Classification Scheme

• A classification scheme¹ is the descriptive information for an arrangement or division of objects into groups based on characteristics, which the objects have in common. E.g. water area classification scheme².

^{1.} International Standard Organization (ISO). Information technology - Metadata registries - Part 1: Framework, 2004. Report ISO/IEC FDIS 11179-1.

^{2.} http://www.fao.org/figis/servlet/RefServlet

Data Models (I)

• Path Enumeration Data Model is defined as a model that stores for each node the path (as a string) from the root to the node.

ID	CSI_Name
20000	Water area
20000.21000	Environmental area
20000.24020	Jurisdiction area
20000.22000	Fishing Statistical area
20000.21000.21001	Inland/marine
20000.21000.21002	Ocean
20000.21000.21003	North/South/Equatorial
20000.22000.22001	FAO statistical area
20000.22000.22002	Areal grid system

Adjacency List is a recursive structure for hierarchy representations that comprises a list of nodes with a linking column to their parent nodes.

ID	CSI_Name	Parent	
20000	Water area		
21000	Environmental area	20000	•
24020	Jurisdiction area	20000	
22000	Fishing Statistical area	20000	
21001	Inland/marine	21000	
21002	Ocean	21000	
21003	North/South/Equatorial	21000	•
22001	FAO statistical area	22000	
22002	Areal grid system	22000	

Data Models (II)

• Snowflake Data Model is a normalized structure for hierarchy representations. For each hierarchy level a entity is created. In this model each hierarchy node has a column linked to its parent node.

NeOn Approach for Re-engineering NORs

http://ontologydesignpatterns.org/

PR-NOR Template

Slot	Value		
	General Information		
Name	Name of the component		
Identifier	An acronym composed of: component type + abbreviated name of the component + number		
Component Type	Pattern for Re-engineering Non-Ontological Resource (PR-NOR)		
	Use Case		
General	Description in natural language of the re-engineering problem addressed by the pattern for re-engineering non-ontological resources.		
Example	Description in natural language of an example of the re-engineering problem.		
	Pattern for Re-engineering Non-Ontological Resource.		
	Resource to be Re-engineered		
General	Description in natural language of the non-ontological resource.		
Example	Description in natural language of an example of the non-ontological resource.		
	Graphical Representation		
General	Graphical representation of the non-ontological resource		
Example	Graphical representation of the example of non-ontological resource.		
	De signed Ontology		
General	Description in natural language of the ontology created after applying the pattern for re-engineering the non-ontological resource.		
	Graphical Representation		
(UML)General Solution Ontology	Graphical representation, using the UML profile [BH06], of the ontology created for the non-ontological resource being re-engineered.		
(UML)Example Solution Ontology	Example showing a graphical representation, using the UML profile BH06, of the ontology created for the non-ontological resource being used.		
	How to Re-engineer		
General	Description in natural language of the general re-engineering process, using a sequence of activities.		
Example	Description in natural language of the re-engineering process applied to the non-ontological resource example, using the above sequence of activities.		
Implementation (Optional)	Link to a website which holds the code for an implementation, in a particular programming language, of the re-engineering process.		
Relationships (Optional)			
Relations to other modelling components	Description of any relation to other PR-NOR patterns or other design patterns.		

INPUT: Non-Ontological Resource

OUTPUT: Ontology

PROCESS: How

PR-NOR Template

INPUT: Resource to be Re-engineered			
General	Description in natural language of the non-ontological resource.		
Example	Description in natural language of an example of the non-ontological resource.		
Graphical Representation			
General	Graphical representation of the non-ontological resource.		
Example	Graphical representation of the example of non-ontological resource.		

OUTPUT: Designed Ontology				
General	Description in natural language of the ontology created after applying the pattern for re-engineering the non-ontological resource.			
Graphical Representation				
(UML) General Solution Ontology	Graphical representation, using the UML profile [BH06], of the ontology created for the non-ontological resource being re-engineered.			
(UML) Example Solution Ontology	Example showing a graphical representation, using the UML profile [BH06], of the ontology created for the non-ontological resource being used.			

PROCESS: How to Re-engineer		
General	Description in natural language of the general re-engineering process, using a sequence of activities.	
Example	Description in natural language of the re-engineering process applied to the non-ontological resource example, using the above sequence of activities.	

Non-Ontological Resource Re-engineering Process (I)

Activity 1 Non-Ontological Resource Reverse Engineering

Activity 2
Non-Ontological Resource
Transformation

Activity 3
Ontology
Forward Engineering

Classification Scheme Example

resource

ISO 3166-1 Country		
Code	Name	
GB	UNITED KINGDOM	
ES	SPAIN	
173		

ISO 3166-2 Subdivision			
Code Name ISO 31 Code		ISO 3166-1 Code	
GB-NI	Northern Ireland	GB	
GB-EA	East Anglia	GB	

- 1. Create a COUNTRY class for the ISO 3166-1 Countries entity and a REGION class for the ISO 3166-2 Subdivisions entity.
- 2. Create the *Has_region* binary relation with COUNTRY as domain and REGION as range.
- 3. Create a LOCATION class and assert that COUNTRY and RE-GION are subClassOf LOCATION.
- 4. For each record on the ISO 3166-1 Countries entity create an instance of the COUNTRY class.
- 5. For each COUNTRY instance look for its REGION on the ISO 3166-2 Subdivisions entity and create an instance of REGION for each subdivision found. Also create an instance of the *Has_region* relation associated to the current country instance and related to the current region instance.

I want to transform my snowflake-based classification scheme into an ontology

(UML) LOCATION -Name Example Solution -Code Ontology «subclass» «subclass» Has_region COUNTRY REGION <<Rdfs:Domain>> <<Rdfs:Range>> <<Rdf:property>> Instances Has_region has_region UNITED KINGDOM GB: COUNTRY Northern Ireland : REGION

Terminology and ontologies

- Terminology helps in the knowledge organization by establishing relations between terms and concepts
- An ontology is a conceptualization or representation of a domain, agreed by experts and readable by a machine
- Approach oriented to the communication among users of an organization
- Terminological change: from terminological data bases to terminological and knowledge/ontological data bases: terms in context and with relations among them
- Terms retrieved form texts can be the starting point in the development of ontologies

Ontologies in the terminological field

- Technologies that allow:
 - Acquiring and modelling knowledge
 - Browsing and recovering information
 - Representing and visualizing information
 - Interpreting and sharing knowledge
- Systems that include semantics and context by means of ontologies and textual corpora (Termontography)
- Current tools make interoperability and semantic web applications easier

Comparison factors

	Terminology	Ontologies
Level of formality in the definition	Text in NL	Formal language without ambiguities
Computer support	Terminological bases with few relations among concepts	Sound knowledge representation languages with relations among concepts
Users	Translators Domain experts Linguistic mediators Text editors	Information interchange between people and machines
Language	NL for expressing knowledge with precision	Labels for naming concepts have less importance

Collaboration between terminologists and ontologists

Ontology developers	Terminologists		
Requirements specification	Requirements specification		
Knowledge extraction	Knowledge extraction		
Knowledge conceptualization	Knowledge conceptualization		
Formalization with SRC based on frames or descriptive logic	Description in controlled NL to satisfy ontology engineering requirements		
	Multilingual analysis		

Comparison of lexical resources

CLASSIFICATION CRITERIA	GLOSSARY	DATABASE	DICTIONARY	THESAURUS	LEXICON	ONTOLOGY
Organization	alphabetical order	alphabetical order	alphabetical order	semantically + generically related lexical entries	semantically related lexical entries	semantically related lexical entries
Semantic information	definition in NL	definition + other kinds of info. in NL	definition + pos + etymologies + derivation + usage examples in NL	hierarchical, associative, equivalent relationships	explicit hierarchy (synonymy, antonymy, meronymy) + grammatical + contextual information	explicitly defined hierarchy relationships around a unique concept
Physical format	paper + electronic format	electronic format	paper + electronic format	paper + electronic format	electronic format	electronic format (readable also by machines)
Domain of knowledge	general + specific	general + specific	general + specific	specific	general + specific	general + specific (agreed by domain experts)

Recommended papers Terminology and ontologies, March 2009

- Van Assem, Malaisé, Miles & Schreiber: "A method to convert a thesaurus to SKOS".
 http://www.cs.vu.nl/~guus/papers/Assem06b.pdf
- Van Assem, Menken, Schreiber, Wielemaker & Wielinga: "A method for converting thesauri to RDF/OWL
- http://www.cs.vu.nl/~guus/papers/Assem04a.pdf
- Lauser, Sini, Lian, Keizer and Katz
- ftp://ftp.fao.org/docrep/fao/009/ah801e/ah801e00.pdf
- Campbell, Oliver, Packman & Shortliffe "Representing thoughts, words and things in UMLS.
- http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=613
 23

Terminology in ontologies and other lexicographic resources

Dra. Guadalupe Aguado de Cea

lupe@fi.upm.es

http://www.oeg-upm.net
Ontological Engineering Group
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

