Proof. Let $a, b \in \mathbb{Z}$ be two fixed integers and let

$$S(d,t) = \{(x,y) \in I \times I \mid ax + by \equiv td \pmod{n}\}.$$

Then the union of S(d,t) for all such d and t is a subset of $I \times I$. This union indeed contains all elements of $I \times I$. To see this, let $(x,y) \in I \times I$ and let d = (ax + by, n). Pick $1 \le t \le \frac{n}{d}$ such that $t \equiv \frac{ax + by}{d} \pmod{\frac{n}{d}}$. Then $(t, \frac{n}{d}) = 1$ and $ax + by \equiv td \pmod{n}$. Thus, $(x,y) \in S(d,t)$. Finally, if $S(d,t) \cap S(d',t') \ne \emptyset$, then choose one pair (x,y) in this intersection. We obtain d = (ax + by, n) = d'. Furthermore, $td \equiv t'd \pmod{n}$ implies that $t \equiv t' \pmod{\frac{n}{d}}$. Since $1 \le t, t' \le \frac{n}{d}$, we have t = t'.

4. Proof of the Main Result

Recall that we aim at showing the following sum

$$N(q, \ell) = \sum_{\substack{1 \le t \le q-1, \\ (t, q-1) = 1}} N_{g^t}$$

is not equal to zero where g is a fixed generator of \mathbb{F}_q^{\times} . It's not hard to see that if $g^t L = g^s L$ then $N_{g^t} = N_{g^s}$. We have the following reduction for $N(q, \ell)$.

Proposition 4.1. Let g be generator of \mathbb{F}_q^{\times} and $\ell \mid q-1$. Then

$$N(q,\ell) = rac{oldsymbol{arphi}(q-1)}{oldsymbol{arphi}(\ell)} \sum_{\substack{1 \leq t \leq \ell, \ (t,\ell)=1}} N_{g^t}.$$

Proof. By the definition of $N(q,\ell)$, it is a sum indexed by all elements of $(\mathbb{Z}/(q-1)\mathbb{Z})^{\times}$. Recall that $(\mathbb{Z}/(q-1)\mathbb{Z})^{\times} = M \cdot N$ where M and N are given in Lemma 3.1 for n = q-1 and $d = \ell$. Note that if $t_1 \in N$, then $t_1 \equiv 1 \pmod{\ell}$ and $g^{t_1}L = gL$. It follows that $N_{g^{t_1t_2}} = N_{g^{t_2}}$ for any integer t_2 . Hence,

$$N(q,\ell) = \sum_{t \in (\mathbb{Z}/(q-1)\mathbb{Z})^{\times}} N_{g^t} = \sum_{t_1 \in N} \sum_{t_2 \in M} N_{g^{t_1 t_2}} = |N| \sum_{t_2 \in M} N_{g^{t_2}}.$$

The result follows since $|N| = \frac{\varphi(q-1)}{\varphi(\ell)}$ and $M \simeq (\mathbb{Z}/\ell\mathbb{Z})^{\times}$.

Recall from (5) that

$$N_{g^t} = q + \sum_{1 \leq j,k \leq \ell-1} \chi^j(-g^{-2t}) \chi^k(-g^{-t}) J(\chi^j,\chi^k)$$

where χ is a nontrivial character of \mathbb{F}_q of order ℓ . We can rewrite N_{q^t} as follows.

Lemma 4.2. For $1 \le t \le \ell$ and $(t, \ell) = 1$,

$$N_{g^t} = q + 1 + \sum_{\substack{1 \leq j, k \leq \ell - 1, \ j + k \neq \ell}} \chi(-1)^{j+k} \chi(g^{-1})^{(2j+k)t} J(\chi^j, \chi^k).$$