Short Project.

Table of Contents

Sketching the environment of the robotics work cell.	1
Working points.	4
Computing motor torques for the static forces.co	8

After atending the Laboratory session and Theory classes you must be able to answer the following questions. Add the necessary matlab and RTB sentences to this script for reporting your result. I strongly recoment to use as a reference help for the RTB the file 'robot.pdf' http://petercorke.com/wordpress/toolboxes/robotics-toolbox

Sketching the environment of the robotics work cell.

It is spected: main reference frames. Plot the robot Puma, draw the working table and the torus in working position. Give different points of view of the scenary: Top, Front, Lateral and isometrics view

```
F1 = [0 \ 2.5 \ 2.5 \ 0; \ 0 \ 0 \ 0.75 \ 0.75; \ 0 \ 0 \ 0; \ 1 \ 1 \ 1];
F1 = trotx(90)*F1;
F2 = [0 \ 2.5 \ 2.5 \ 0; \ 0 \ 0 \ 0.6; \ 0 \ 0 \ 0; \ 1 \ 1 \ 1];
F2 = transl(0,0,0.75) * trotx(20) * F2;
F3 = [0 \ 0.75 \ 0.75 \ -\sin(pi/9)*0.6; \ 0 \ 0 \ \cos(pi/9)*0.6 \ \cos(pi/9)*0.6; \ 0 \ 0
 0 0; 1 1 1 1];
F3 = transl(0,0,0.75) * troty(90)*F3;
F4 = transl(2.5,0,0) * F3;
F5 = [0 \ 2.5 \ 2.5 \ 0; \ 0 \ 0 \ \sin(pi/9)*0.6+0.75 \ \sin(pi/9)*0.6+0.75; \ 0 \ 0 \ 0;
 1 1 1 11;
F5 = transl(0,0.6*cos(pi/9),0) * trotx(90) * F5;
figure
xlabel('x');
ylabel('y');
zlabel('z');
axis 'equal';
fill3(F1(1,:),F1(2,:),F1(3,:),'r',F2(1,:),F2(2,:),F2(3,:),'r',
 F3(1,:),F3(2,:),F3(3,:),'r', F4(1,:),F4(2,:),F4(3,:),'r',
 F5(1,:), F5(2,:), F5(3,:), 'r');
alpha 0.3
fv=stlread('Torus.stl');% fv is a struct with faces and vertices
fv.vertices=fv.vertices;
ma=max(fv.vertices); mi=min(fv.vertices); dmami=ma-mi;
scale = 0.3/dmami(2);
fv.vertices = scale .* fv.vertices
```

 $[n, \sim] = size(fv.vertices);$

```
fv.vertices = [transpose(fv.vertices); ones(1,n)];
% fv.vertices = scale .* fv.vertices (Scale torus solution)
fv.vertices = transl(0.6, 0.3*cos(pi/9), (0.75+sin(pi/9)*0.3)) *
 trotx(-160) * fv.vertices;
[m,~] = size(fv.vertices);
fv.vertices(m,:)=[];
fv.vertices = transpose(fv.vertices);
SS=patch(fv,'FaceColor',
                             [0.8 0.8 1.0], ...
                        'none',
         'EdgeColor',
        'FaceLighting', 'gouraud',
                                          . . .
         'AmbientStrength', 0.15);
% Add a camera light, and tone down the specular highlighting
camlight('headlight');
material('dull');
alpha (SS, 0.2)
view(30,30)
% Fix the axes scaling, and set a nice view angle
axis('image');
axis 'equal'
mdl puma560
p560.base = transl(1.3, cos(pi/9)*0.3+0.5, 1.65)*trotx(20);
p560.links(1, 2).a=1
p560.links(1, 3).a=0.8
p560.plot(qz);
hold on;
axis([0 5 0 5 0 5]);
fv =
  struct with fields:
       faces: [668×3 double]
    vertices: [2004x3 double]
p560 =
Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, fastRNE
 - viscous friction; params of 8/95;
+--+---+----+
                        d | a | alpha | offset |
        theta |
| j |
+--+----+----+-----+

    q1/
    0/
    0/
    1.5708/

    q2/
    0/
    1/
    0/

    q3/
    0.15005/
    0.0203/
    -1.5708/

    q4/
    0.4318/
    0/
    1.5708/

/ 1/
                                                              0 |
| 2|
                                                              0 |
| 3|
                                                              0 |
            q4 | 0.4318 |
  4 |
                                                              0 |
                                     0 | -1.5708 |
| 5|
             q5
                         0 |
```

p560 =

Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, fastRNE
- viscous friction; params of 8/95;

++ j	theta	d d	a	 alpha 	offset
1 2 3 4 5	q1 q2 q3 q4 q5 q6	0	0 / 1 / 0 . 8 / 0 / 0 /	1.5708 0 -1.5708 1.5708 -1.5708	0 0 0 0 0 0

base: t = (1.3, 0.782, 1.65), RPY/xyz = (0, 0, 20) deg

Warning: floor tiles too small, making them $2.000000 \times \text{bigger}$ - change the size

or disable them

Warning: arrow option requires arrow3 from FileExchange

Working points.

Give here your code to get the variables to locate: a) The reference frame for all drills holes, such that z-axis is orthogonal to the surface of the torus and the x-axis is in the direction of minimun curvature. Draw in scale the frames b) Repeat the obove operation for the center of the milling groove. Draw this frames. c) The reference frames for all welding points, such that z-axis of the tool is orthogonal to the surface of the torus and the x-axis is in the direction of spiral trajectory. Draw in scale the frames

```
n=8; m=8; px=-0.8; py=0; pz=0; r=0.15;
    for i=0:m
        for j=1:n
            if (i \sim = 8)
                Ptos_spiral(:,:,i*n+j)=transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(180*(i*n+j)/
(n*m))*transl(px,py,pz)*trotz(360*j/n)*transl(r,0,0);
                Ptos_spiral_welding(:,:,i*n*3+(3*j)-2)=transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(180*(i*n+j)/
(n*m))*transl(px,py,pz)*trotz(360*j/n)*transl(r*3,0,0);
                Ptos_spiral_welding(:,:,i*n*3+(3*j)-1)=transl(0.6-
px,0.3*cos(pi/9),0.75+sin(pi/9)*0.3)*trotx(20)*troty(180*(i*n+j)/
(n*m))*transl(px,py,pz)*trotz(360*j/n)*transl(r,0,0);
                Ptos spiral welding(:,:,i*n*3+(3*j))=transl(0.6-
px,0.3*cos(pi/9),0.75+sin(pi/9)*0.3)*trotx(20)*troty(180*(i*n+j)/
(n*m))*transl(px,py,pz)*trotz(360*j/n)*transl(r*3,0,0);
            end
        end
    end
    coor_circle=transl(Ptos_spiral)';
 plot3(coor_circle(1,:),coor_circle(2,:),coor_circle(3,:),'g','LineWidth',2);
 scatter3(coor circle(1,:),coor circle(2,:),coor circle(3,:),'r','fillet');
    axis equal
     for i=0:m-1
        for j=1:4
            if (j==1)
                Q = p560.ikine6s(transl(Ptos spiral welding(:,:,(i*3*m
+1):(3*i*m+1)+3*2*j)), 'run');
            elseif (j==2)
                Q = p560.ikine6s(transl(Ptos_spiral_welding(:,:,(i*3*m
+1)+6:(3*i*m+1)+3*2*j-3)), 'run');
            elseif (j==3)
              Q = p560.ikine6s(transl(Ptos_spiral_welding(:,:,(i*3*m
+1)+12-3:(3*i*m+1)+3*2*j+3)), 'lun');
            else
                Q = p560.ikine6s(transl(Ptos_spiral_welding(:,:,(i*3*m
+1)+18+3:(3*i*m+1)+3*2*j-1)), 'ldn');
            p560.plot(Q);
        end
```

```
end
                  (3*(m-1)*m+1)+3*2*4
                 s=8; c=20; r=0.01; l=0.08; offset=15;
                 for i=0:s
                              if(i~=s)
                                                   for j=1:c
                                                                    if(j==c)
                                                                                     Ptos_groove(:,:,i*c+j)=Ptos_groove(:,:,i*c+1);
                                                                    elseif (j<c/2)</pre>
                                                                                     Ptos_groove(:,:,i*c+j)=transl(0.6-
px,0.3*cos(pi/9),0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtora
s))*0.95,0,sin(degtorad(-90+180*i/s))*0.95)*troty(180*i/s))
 s)*trotz(90)*trotz(360*j/c)*transl(r,0,0);
                                                                    else
                                                                                     Ptos groove(:,:,i*c+j)= transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtora
s))*0.95,0,sin(degtorad(-90+180*i/s))*0.95)*troty(180*i/
 s)*trotz(90)*transl(0,-1,0)*trotz(360*j/c)*transl(r,0,0);
                                                                    end
                                                    end
                                  Ptos_groove_mill(:,:,(4*i)+1) = transl(0.6-
px,0.3*cos(pi/9),0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtora
 s))*1.2,0,sin(degtorad(-90+180*i/s))*1.2)*troty(180*i/s)*trotz(90);
                                   Ptos groove mill(:,:,(4*i)+2) = transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtora
 s) *0.95,0,sin(deqtorad(-90+180*i/s))*0.95)*troty(180*i/s)*trotz(90);
                                  Ptos_groove_mill(:,:,(4*i)+3) = transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtora
 s))*0.95,0,sin(degtorad(-90+180*i/s))*0.95)*troty(180*i/
 s)*trotz(90)*transl(0,-1,0);
                                   Ptos_groove_mill(:,:,(4*i)+4) = transl(0.6-
px,0.3*cos(pi/9),0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtora
 s))*1.2,0,sin(degtorad(-90+180*i/s))*1.2)*troty(180*i/
 s)*trotz(90)*transl(0,-1,0);
                              end
                 end
                 coor_groove = transl(Ptos_groove)';
                 coor_groove_mill = transl(Ptos_groove_mill)';
                  for i=0:7
                              plot3(coor_groove(1,i*c+1:(i+1)*c),coor_groove(2,i*c+1:(i
 +1)*c),coor_groove(3,i*c+1:(i+1)*c),'b','LineWidth',1);
                 end
                 for i=0:7
                                   if (i < 4)
                                                   Q = p560.ikine6s(transl(Ptos groove mill(:,:,(i*4+1):(i
 +1)*4)), 'run');
                                  else
                                                    Q = p560.ikine6s(transl(Ptos_groove_mill(:,:,(i*4+1):(i
 +1)*4)), 'luf');
                                  end
                                  p560.plot(Q);
```

```
end
                      s=8; c=40; r=0.02; offset=13.5;
                      for i=0:s
                                       if(i~=s)
                                                                   for j=1:c
                                                                                              Ptos_circle(:,:,i*c+j)=transl(0.6-
px,0.3*cos(pi/9),0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtora
 s))*0.8,0.15,sin(degtorad(-90+180*i/s))*0.8)*trotx(90)*trotz(360*j/
 c)*transl(r,0,0);
                                                                   end
                                             Ptos circle drill(:,:,(3*i)+1) = transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtora
 s) *0.8,0.2, sin(deqtorad(-90+180*i/s))*0.8)*trotx(90);
                                             Ptos_circle_drill(:,:,(3*i)+2) = transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtora
s))*0.8,0.15,sin(degtorad(-90+180*i/s))*0.8)*trotx(90);
                                            Ptos_circle_drill(:,:,(3*i)+3) = transl(0.6-
px, 0.3*cos(pi/9), 0.75+sin(pi/9)*0.3)*trotx(20)*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*troty(90+offset)*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtoral))*transl(cos(degtora
 s))*0.8,0.2,sin(degtorad(-90+180*i/s))*0.8)*trotx(90);
                                       end
                      end
                      coor_circle = transl(Ptos_circle)';
                       % coor circle drill = transl(Ptos circle drill)';
                      for i=0:7
                                       plot3(coor_circle(1,i*c+1:(i+1)*c),coor_circle(2,i*c+1:(i
 +1)*c),coor_circle(3,i*c+1:(i+1)*c),'b');
                      end
                      for i=0:7
                                             if (i < 4)
                                                                   Q = p560.ikine6s(transl(Ptos_circle_drill(:,:,(i*3+1):(i
 +1)*3)), 'run')
                                                                    Q = p560.ikine6s(transl(Ptos_circle_drill(:,:,(i*3+1):(i
 +1)*3)), 'run')
                                             end
                                             p560.plot(Q);
                       end
           %scatter3(coor_circle_drill(1,:),coor_circle_drill(2,:),coor_circle_drill(3,:),'
                      axis equal
 ans =
                 193
```

Q =					
	0 = 4.40	0 4700			0 45 45
-2.2929	0.5440	3.6730	0.3104	2.3084	2.4747
-2.2558 -2.2929	0.5433 0.5440	3.7091 3.6730	0.2903 0.3104	2.2843 2.3084	2.4186 2.4747
-2.2929	0.5440	3.0/30	0.3104	2.3004	2.4/4/
Q =					
Q –					
-2.1645	0.9105	3.4644	0.2368	2.1879	2.2748
-2.1293	0.9019	3.5063	0.2202	2.1629	2.2260
-2.1645	0.9105	3.4644	0.2368	2.1879	2.2748
Q =					
-1.8600	1.2726	3.3010	0.1097	2.0428	1.8935
-1.8383	1.2469	3.3507	0.1006	2.0212	1.8668
-1.8600	1.2726	3.3010	0.1097	2.0428	1.8935
O =					
Q -					
-1.3372	1.5055	3.2384	-0.0832	1.8786	1.3256
-1.3574	1.4603	3.2922	-0.0759	1.8716	1.3474
-1.3372	1.5055	3.2384	-0.0832	1.8786	1.3256
Q =					
0 0276	1 4050	2 2101	0 0076	1 0054	0 0100
-0.8376 -0.8901	1.4253 1.3891	3.3101 3.3593	-0.2376 -0.2231	1.8054 1.8047	0.8122 0.8678
-0.8376	1.4253	3.3101	-0.2376	1.8054	0.8122
	_,				
Q =					
-0.5687	1.1365	3.4784	-0.3044	1.8492	0.5112
-0.6211	1.1175	3.5199	-0.2929	1.8430	0.5699
-0.5687	1.1365	3.4784	-0.3044	1.8492	0.5112
Q =					
~					
-0.4482	0.7981	3.6887	-0.3360	1.9333	0.3498
-0.4949	0.7886	3.7245	-0.3265	1.9233	0.4049
-0.4482	0.7981	3.6887	-0.3360	1.9333	0.3498
Q =					
0 4030	0 4610	2 00/0	0 2507	2 0202	0 2011
-0.4030	0.4619	3.9062	-0.3587	2.0302	0.2611

-0.4465	0.4573	3.9388	-0.3492	2.0183	0.3150
-0.4030	0.4619	3.9062	-0.3587	2.0302	0.2611

Computing motor torques for the static forces.co

Give here your code to fill two tables with the motor torque at each robot pose: Table 1 (6x16): Rows are the motor torques (6x1). Columns (1x16) are the labeled drills including the initial drill before milling. Table 2 (6x8): Rows are the motor torques (6x1). Columns (1x8) are the labeled milling of the groove.

Published with MATLAB® R2016b