

Supplementary Materials for

Emergence and global spread of *Listeria monocytogenes* main clinical clonal complex

Alexandra Moura*, Noémie Lefrancq, Thierry Wirth, Alexandre Leclercq, Vítor Borges, Brent Gilpin, Timothy J. Dallman, Joachim Frey, Eelco Franz, Eva M. Nielsen, Juno Thomas, Arthur Pightling, Benjamin P. Howden, Cheryl L. Tarr, Peter Gerner-Smidt, Simon Cauchemez, Henrik Salje, Sylvain Brisse, Marc Lecuit*, *Listeria* CC1 Study Group

*Corresponding author. Email: amoura@pasteur.fr (A.M.); marc.lecuit@pasteur.fr (M.L.)

Published 1 December 2021, *Sci. Adv.* 7, eabj9805 (2021) DOI: 10.1126/sciadv.abj9805

The PDF file includes:

The *Listeria* CC1 Study Group Tables S1 to S5 Figs. S1 to S13

Other Supplementary Material for this manuscript includes the following:

Dataset S1

1. The Listeria CC1 Study Group

Caroline Charlier, Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France; Institut Pasteur, Biology of Infection Unit, Paris-France; Inserm U1117, Paris, France; Université de Paris, Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, AP-HP, Paris, France

Guillaume Vales, Institut Pasteur, French National Reference Center and WHO Collaborating Center *Listeria*, Paris, France

Hélène Bracq-Dieye, Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France

Nathalie Tessaud-Rita, Institut Pasteur, French National Reference Center and WHO Collaborating Center *Listeria*, Paris, France

Pierre Thouvenot, Institut Pasteur, French National Reference Center and WHO Collaborating Center *Listeria*, Paris, France

Viviane Chenal-Francisque, Institut Pasteur, French National Reference Center and WHO Collaborating Center *Listeria*, Paris, France

Zuzana Kucerova, Centers for Disease Control and Prevention, Atlanta, Georgia, United States

Heather Carleton, Centers for Disease Control and Prevention, Atlanta, Georgia, United States

Steven Stroika, Centers for Disease Control and Prevention, Atlanta, Georgia, United States

Anders Gonçalves da Silva, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia

Karolina Mercoulia, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia

Anthony Marius Smith, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa.

Jonas T. Björkman, Statens Serum Institut, Copenhagen, Denmark

Anna Oevermann, Division of Neurological Diseases, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Lisandra Aguillar-Bultet, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Thijs Bosch, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, Netherland

Sjoerd Kuiling, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands

Maaike van den Beld, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands

Anaïs Painset, Public Health England, London, United Kingdom

Kathie Grant, Public Health England, London, United Kingdom

Leonor Silveira, National Institute of Health Dr. Ricardo Jorge, Department of Infectious Diseases, Lisbon, Portugal

Ângela Pista, National Institute of Health Dr. Ricardo Jorge, Department of Infectious Diseases, Lisbon, Portugal

Mónica Oleastro, National Institute of Health Dr. Ricardo Jorge, Department of Infectious Diseases, Lisbon, Portugal

Sven Halbedel, Consultant Laboratory for *Listeria monocytogenes*, FG11, Robert Koch Institute, Wernigerode, Germany

2. Supplementary tables

Table S1. Genetic characteristics of CC1 sublineages and SL1 genetic clades and statistics by world region

			cgMLST allelic distances	cg1748 SNP distances (1.29 Mb, 11,976 ATGC sites)			wgF2365 SNP distances (2.28 M, 29,108 ATGC sites)					tes)			
		n	mean ± stdev	mean ± stdev	Tajima's D	Fu & Li's D	Fu & Li's F	nucleotide diversity	haplotype diversity	mean ± stdev	Tajima's D	Fu & Li's D	Fu & Li's F	nucleotide diversity	haplotype diversity
Clade	SL1	2002	68 ± 23.27	38 ± 14.8	-2.69	-22.40	-11.24	4.33	0.966	80 ± 27.4	-2.77	-26.84	-12.04	63.31	0.999
	SL404	2	57	50	nd	nd	nd	50.00	1.000	107	nd	nd	nd	107.00	1.000
	SL150	17	42 ± 16.90	38 ± 16.8	-1.46	-1.41	-1.50	33.41	1.000	86 ± 30.9	-1.70	-1.86	-1.93	79.62	1.000
	GC1	710	39 ± 11.16	32 ± 9.5	-2.78	-16.87	-9.79	10.13	0.992	67 ± 15.9	-2.82	-18.41	-10.29	49.05	0.997
	GC2	684	51 ± 18.03	45 ± 16.4	-2.70	-17.18	-9.92	14.92	0.991	92 ± 30.6	-2.80	-17.98	-10.14	48.27	0.997
	GC3	282	47 ± 17.41	38 ± 14.8	-2.63	-11.92	-8.32	12.79	0.991	85 ± 25.8	-2.77	-12.43	-8.51	65.25	0.999
	GC4	142	46 ± 19.97	39 ± 17.3	-2.59	-7.73	-6.29	24.68	0.990	100 ± 29.9	-2.73	-8.80	-7.00	86.73	0.992
	GC5	63	34 ± 13.23	28 ± 11.3	-2.38	-5.66	-5.13	22.38	0.995	73 ± 23.5	-2.51	-5.95	-5.38	68.35	0.999
	GC6	47	45 ± 16.00	36 ± 13.6	-2.22	-4.33	-4.13	32.66	0.988	79 ± 25.6	-2.29	-4.63	-4.37	73.67	0.990
	GC7	46	28 ± 24.28	24 ± 20.8	-1.60	-2.77	-2.71	19.97	0.966	63 ± 51.7	-2.03	-4.09	-3.86	58.94	0.998
	GC8	28	29 ± 7.94	25 ± 6.7	-2.39	-3.32	-3.41	23.18	0.997	50 ± 10.5	-2.47	-3.85	-3.85	45.31	1.000
World Region	Africa	54	66 ± 91.55	64 ± 148.7	-2.72	-7.02	-6.28	41.06	0.962	146 ± 220.0	-2.62	-6.59	-5.92	119.17	0.997
	Asia	25	85 ± 119.86	100 ± 204.3	-2.55	-4.41	-4.29	67.85	0.990	187 ± 332.3	-2.49	-4.38	-4.24	180.76	1.000
	Europe	1236	61 ± 24.50	53 ± 28.9	-2.74	-20.39	-10.50	13.42	0.995	110 ± 44.9	-2.78	-22.24	-11.05	59.04	0.999
	North America	513	92 ± 92.77	96 ± 160.3	-2.58	-11.41	-7.34	28.06	0.992	194 ± 232.0	-2.68	-14.20	-8.64	164.93	0.998
	South America	22	63 ± 31.91	52 ± 27.6	-1.39	-1.66	-1.72	47.01	0.987	117 ± 55.0	-1.57	-2.19	-2.19	114.57	0.996
	Oceania	22	63 ± 31.91	52 ± 27.6	-1.39	-1.66	-1.72	47.01	0.987	117 ± 55.0	-1.57	-2.19	-2.19	114.57	0.996

Table S2. Sublineage-specific genes present in at least 50% of isolates

Gene families were determined using a 95% amino acid identity cut-off. Gray shades highlight genes within the same genomic context.

Remarks	Roary family	Reference locus	Ortholog	Annotation	Length (nt)	No. isolate:	s % Isolates (in SL)	#Order in contig
exclusively in SL1	group_2369	ID32421_02477	lmo0671	hypothetical protein	293	1852	93%	
analysis alvis SLAGA	7052	1024552 04740	l	hakhakian lauskain	476	2	100%	1057
exclusively in SL404	group_7853	ID31663_01719	Imo0804	hypothetical protein	176		50%	1067
	group_7852	1031663_01117	LMOf2365_0494	hypothetical protein	2150	1	50%	6972
exclusively in SL150	group_897	ID32037_02878	not found	hypothetical protein	260	16	94%	1226
	group_6423	ID32037_02875	LMOSA_10	hypothetical protein	467	16	94%	1229
	group_5149	ID32037_02874	LMOSA_20	replication-associated protein	305	14	82%	1230
	group_6471	ID32037_02873	LMOf2365_0352	hypothetical protein	284	12	71%	1231
	group_6421	ID32037_02872	HG964404_5465	hypothetical protein	314	16	94%	1232
	group_5148	ID32037_02871	LMOSA_12420	hypothetical protein	116	12	71%	1233
	group_6420	ID32037_02870	lmo0339	inorganic pyrophosphatase	371	16	94%	1234
	group_6409	ID32037_00117	LMOSA_3400	hypothetical protein	290	14	82%	3282
	group_2611	ID32037_00115	lmo2044	peptide ABC transporter substrate-binding protein	1664	13	76%	3284
	group_6408	ID32037_00121	lmo2749	glutamine amidotransferase	572	16	94%	3302
	group_6406	ID32037_00123	lmo2375	hypothetical protein	395	16	94%	3304
	group_6417	ID32037_01337	not found	hypothetical protein	110	16	94%	4171
	group_6418	ID32037_01335	lmo2688	cell division protein FtsW	1130	16	94%	4175
exclusively in SL150 &	recD	ID32037_02916	LMOSA_12110	DNA helicase; RecBCD enzyme subunit RecD	1355-3608	18	95%	2391
SL404	group_5134	ID32037_02915	not found	hypothetical protein	1061-1340	18	95%	2392
(absent in SL1)	group_6411	- ID32037_02914	lmo0303	putative secreted, lysin rich protein	551	18	95%	2393
	group_6412	ID32037 02912	lmo0305	L-allo-threonine aldolase	1082	18	95%	2395
	group_6413	ID32037_02911	Imo0306	hypothetical protein	467	18	95%	2396
	group_6415	ID32037_02907	lmo0310	hypothetical protein	1076	17	89%	2400
exclusively in SL1 &	group_152	ID32421_02841	LMOf2365_0349	cell wall surface anchor family protein (LPxTG motif)	293-3221	1380	69%	2433
SL404	group_1481	ID32421_01841	LMOf2365_2341	aminotransferase, class I	221-1166	1936	97%	3295
(absent in SL150)	group_4436	ID32421_01836	lmo2375	hypothetical protein	263-392	2004	100%	3309
	group_378	ID32421_01835	1586_01601	reverse transcriptase	302-1385	1977	99%	3310
	group_1844	ID32421_00303	lmo2688	cell division protein FtsW	758-1130	1009	50%	4177
	group_1501	ID32421_00308	LMOf2365_2670	N-acetylmuramoyl-L-alanine amidase, family 4	1100-1775	1450	72%	4183
exclusively in SL1 &	group_1153	ID32421_02877	lmo0297	transcriptional antiterminator BglG	593-1871	1991	99%	2373
SL150	sau3AIR	ID32421_02872	AJX001000022_949	Type-2 restriction enzyme Sau3Al	152-1667	1990	99%	2379
(absent in SL404)	group_4596	ID32421_02871	LMOf2365_0326	transcriptional regulator	164-206	2000	99%	2382
	group_1899	ID32421_02870	LMOf2365_0327	cytosine-specific methyltransferase	131-1409	1988	98%	2384
	group_1900	ID32421_02869	LMOf2365_0328	hypothetical protein	236-854	1952	97%	2386
	group_1572	ID32421_02868	LMOf2365_0329	putative lipoprotein	197-554	1993	99%	2387
	group_1901	ID32421_02867	LMOf2365_0330	threonine aldolase	305-1079	2000	99%	2388
	group_3681	ID32421_02866	LMOf2365_0331	peptidase, M48 family	464-920	2001	99%	2389
	group_1342	ID32421_02360	lmo0804	hypothetical protein	155-959	1997	99%	3058
	group_5703	ID32037_01341	not found	hypothetical protein	89	1021	51%	4167
	group_2203	ID32421_00342	_	hypothetical protein	329-632	1999	99%	4215
	group_596	ID32421_00343		hypothetical protein	248-1286	1837	91%	4216
	group_791	ID32421_00344		hypothetical protein	455-983	1787	89%	4218
	group_5708	_		hypothetical protein	299	1991	99%	4222
	group_5709	ID32421_00346		hypothetical protein	359-359	1995	99%	4223
	group_2733	ID32421_00347		hypothetical protein	407-773	1999	99%	4224
	group_3456	ID32421_00351		3-demethylubiquinone-9 3-methyltransferase	323-443	1986	98%	4229
	group_2255	_	LMOf2365_0239	dihydrouridine synthase family protein	209-995	1585	79%	4765
	group_81	_	LMOf2365_0495	putative lipoprotein	155-2159	1244	62%	6967
	group_2830	ID32421_00615		aminoglycoside phosphotransferase	455-476	1862	92%	7056
	group_3057	ID32421_01316	Imo1343 LMOf2365_1365	competence protein ComGE	284-284 797-1088	2004 2009	99%	8031 8039
	group_1982		-	glycine cleavage system T protein GcvT transcriptional regulator	797-1088	1943	96%	8039
	group_555 group_2258	ID32421_02213	Imo1721 LMOf2365_1741	transcriptional regulator transcriptional regulator, TetR family	188-584	1943	95%	8392 8398
		ID32037_00061 ID32421_02218		methyltransferase	188-584	1950	96%	8398
	group_1540 group_1048	ID32421_02218 ID32421_00984	Imo1715 Imo0738	PTS beta-glucoside transporter subunit IIABC	698-1448	1879	93%	8654
	group_1048 group_5905			hypothetical protein_lmaC_phageA118	167	2015	100%	8657
	group_3903 group_1669	ID32421_00989		vanZ-like protein	128-563	1889	94%	9030
	P100h_1003	.532421_00369	01033	vane like process	120-303	1002	5-170	2030

Table S3. SL1 genetic clades-specific genes present in at least 50% of isolates Clades-specific genes were only found in GC3 and GC7. Gray shadows highlight genes within the same genomic context.

Remarks	Roary_family	Reference locus	Ortholog	Annotation	Length (nt)	No. isolates	% Isolates (in GC)	#Order in contig
exclusively in GC3	group_1376	ID106_01313	lmo1115	fibrinogen-binding protein	1562-2693	215	76%	7335
	group_5934	ID106_01309	lmo1111	hypothetical protein	1301	271	96%	7345
	group_5933	ID106_01308	lmo1108	hypothetical protein	485	271	96%	7346
	group_4885	ID106_01307	JQLU01000002_899	hypothetical protein	212-374	271	96%	7347
	group_5932	ID106_01306	JQLU01000002_900	hypothetical protein	1019	271	96%	7348
	group_5931	ID106_01305	LMOSA_2380	hypothetical protein	338	271	96%	7349
	group_4884	ID106_01304	JQLU01000002_902	hypothetical protein	269-686	271	96%	7350
	group_3147	ID106_01302	lmo1105	hypothetical protein	1253-1769	269	95%	7356
	group_3146	ID106_01301	lmo1104	P60 protein	812-1025	271	96%	7358
	group_2504	ID106_01300	lmo1100	cadmium resistance protein CadA	1403-2105	268	95%	7359
	group_4029	ID106_01299	lmo1102	cadmium efflux system accessory protein CadC	236-356	267	95%	7360
	group_5930	ID106_01298	LMOf2365_0702	ABC transporter- permease protein	770	270	96%	7361
	group_4883	ID106_01297	LMOf2365_0701	ABC transporter- ATP-binding protein	278-935	271	96%	7362
	group_5929	ID106_01296	ATXL01000015_1806	hypothetical protein	173	269	95%	7363
	group_5928	ID106_01295	LMOf2365_1076	dihydrolipoamide dehydrogenase	1673	271	96%	7364
	acr3_2	ID106_01293	AEDB02000104_3834	Arsenical-resistance protein Acr3	1076	271	96%	7370
	group_5926	ID106_01291	Imo2493	ArsR family transcriptional regulator	365	271	96%	7379
	arsD_1	ID106_01290	HMPREF9320_1672	Arsenical resistance operon trans-acting repressor ArsD	371	271	96%	7380
	group_5924	ID106_01289	lmo1102	cadmium efflux system accessory protein CadC	293	271	96%	7381
	arsA_2	ID106_01288	LMOSA_2220	Arsenical pump-driving ATPase	263-1739	271	96%	7382
	arsD_2	ID106_01287	ADIAL_0134	Arsenical resistance operon trans-acting repressor ArsD	311	270	96%	7383
	group_5922	ID106_01286	Imo1679	cystathionine beta-lyase	1142-1142	270	96%	7384
	group_5921	ID106_01285	LMOSA_2200	hypothetical protein	458	254	90%	7385
	group_4882	ID106_01284	LMOSA_2190	hypothetical protein	302-404	256	91%	7386
exclusively in GC7	group_8396	ID32182_02420	LMOf2365_0506	hypothetical protein	326	42	91%	1150

Table S4. Human-associated significant loci Determined using treeWAS, using with a significance threshold of $p < 10^{-5}$. Gray backgrounds highlight groups of adjacent genes.

Association	Roary family		Ortholog		#Order in		treeWAS	No. is olates			
type		Reference locus		Annotation	contig	Length (nt)	score	G1P1	G0P0	G1P0	G0P1
Positive	group_1527	ID32421_02693	not found	hypothetical protein	2637	281-305	24	1007	186	382	446
	group_1926	ID32421_02503	LMOSA_15540	transcriptional regulator	2878	407-647	25	1024	193	375	429
	group_706	ID32421_02501	LMOSA_15560	hypothetical protein	2883	977	25	1020	191	377	433
	group_497	ID32421_02498	ATXL01000015_1796	hypothetical protein	2886	560	24	1029	190	378	424
	group_209	ID32421_00679	LMOSA_130	hypothetical protein	6973	1530	24	866	254	314	587
	group_10387	ID31663_01231	-	tRNA-Glu(ttc)	7202	72	25	1041	181	387	412
	group_1038	ID32421_01586	LMOSA_19640	N-acetyl muramoyl-L-alanine amidase	7651	218	26	1265	96	472	188
	group_1361	ID32421_01563	1571_03072	hypothetical protein	7720	870	24	1303	88	480	150
	group_619	ID32421_01561	1580_00527	hypothetical protein	7722	1262-1313	23	1175	138	430	278
	group_2465	ID32421_01095	LMOSA_24740	valyl-tRNA synthetase valS	9148	2649	22	1300	89	479	153
Negative	group_6404	ID31019_03121	MGMO_205c00040	hypothetical protein	9	116	-22	36	518	50	1417
	group_533	ID31797_00694	LMOSA_22340	hypothetical protein	20	245-1199	-22	74	508	60	1379
	group_499	ID31663_02416	ATXL01000015_1796	hypothetical protein	1102	539-2138	-23	404	397	171	1049
	group_10094	ID31663_01817	LMOSA_13730	hypothetical protein	1157	485	-28	492	362	206	961
	group_10662	ID31663_01818	LMOSA_13720	hypothetical protein	1156	473	-30	479	358	210	974
	group_60	ID31663_01819	Imo0460	putative lipoprotein	1155	206-2231	-27	188	476	92	1265
	group_1927	ID31663_01829	LMOSA_15540	transcriptional regulator	2879	209-647	-25	430	375	193	1023
	group_10488	ID31019_00426	-	5S ribosomal RNA	3190	109	-41	282	399	169	1171
	group_10162	ID31019_00425	-	tRNA-Asn(gtt)	3195	75	-29	461	309	259	992
	group_10390	ID31663_02352	-	tRNA-Glu(ttc)	3605	72	-33	532	276	292	921
	group_6398	ID31663_02351	-	tRNA-Val(tac)	3606	75	-25	611	246	322	842
	group_4211	ID31019_03012	-	5S ribosomal RNA (partial)	8331	85	-37	227	398	170	1226
	group_10476	ID31797_01719	-	5S ribosomal RNA	8587	108	-31	520	253	315	933
	group_10432	ID31797_01722		tRNA-Lys (ttt)	8593	73	-35	499	289	279	954

G, genome; P, phenotype; 0 absent, 1 present.

Table S5. Time and geographic origin of the most recent common ancestors (MRCA) of CC1 clades estimated in this study

The 95% high posterior density (HDP) confidence intervals of the time of MRCA estimates and the ancestral state probabilities for the most probable origin (Nam, North America, Eur, Europe) are provided in brackets. g200 and g1972 refer to the number of CC1 genomes used in each analysis (n=200 and n=1,972, respectively). Stars denote clades with different ancestral states depending the reconstruction method (BEAST vs PastML).

Clade	MRCA [95% HPD]	Most probable ancestor state (probabability)					
Clade	(year)	g200.BEAST	g200.PastML	g1972.PastML			
CC1 (root)	197 [860 BC - 1045 AD]	NAm (0.26)	NAm (0.57)	NAm (0.58)			
Sublineage							
SL1*	1857 [1821-1888]	Eur (0.94)	NAm (0.89)	NAm (0.55)			
SL150	1823 [1749-1884]	NAm (0.96)	NAm (0.59)	NAm (0.95)			
SL404	1927 [1873-1968]	NAm Eur (0.5)	NAm Eur (0.5)	NAm Eur (0.5)			
SL1 clade							
GC1	1920 [1893-1940]	Eur (1.00)	Eur (0.99)	Eur (0.85)			
GC2*	1885 [1853-1909]	Eur (0.86)	NAm (0.93)	NAm (0.93)			
GC3	1904 [1838-1905]	Eur (0.71)	Eur (0.96)	Eur (0.98)			
GC4*	1888 [1848-1910]	Eur (0.98)	NAm (0.81)	NAm (1.00)			
GC5*	1934 [1911-1950]	Eur (0.99)	NAm (0.43)	NAm (0.75)			
GC6	1891 [1873-1908]	Eur (1.00)	Eur (0.82)	Eur (1.00)			
GC7	1917 [1882-1948]	NAm (0.84)	NAm (0.96)	NAm (1.00)			
GC8	1934 [1906-1956]	Eur (1.00)	Eur (0.98)	Eur (1.00)			

2. Supplementary figures

Figure S1. Listeria monocytogenes clonal complex 1 (CC1) placement within the species population diversity

Minimum spanning tree based on the allelic profiles of the 7-locus multilocus sequence typing scheme (Ragon *et al.*, 2008) obtained in previous published work (Moura et *al.*, 2016). Sequence types are represented by circles proportional to the number of isolates, colored by serogroup. Sequence types comprising more than 2 isolates and belonging to the same clonal complex (CC) are delimited by gray zones and labeled. Numbers in connecting lines denote the number of allelic differences between profiles. For simplicity, allelic differences of 1 (thick branches) and 6 (dotted branches) were omitted.

Figure S2. Frequency of most prevalent clonal complexes among different environments

Data collected based on 29,349 *L. monocytogenes* genomes with associated source metadata available on NCBI Sequence Read Archive (as of October 23^{rd} , 2020). MLST typing was performed from reads using the srst2 v.0.1.5 software (http://katholt.github.io/srst2) and the BIGSdb-*Lm* profiles database (https://bigsdb.pasteur.fr/listeria). The prevalence of *Lm*-CC1 in human clinical isolates and animal environments was significantly higher as compared to food and natural environments (p<1.69x10⁻¹⁷, Bonferroni-adjusted pairwise comparisons of proportions).

Figure S3. Distribution of Lm-CC1 isolates per clade, world regions and source types (N=2,021)

Figure S4. Genome metrics of isolates included in this study
(A) Distribution of isolates per sequence read length (left) and distribution of sequencing coverages after reads quality trimming (right). (B) Assembly metrics per CC1 sublineages, based on the number of contigs, N50 and N95 contig lengths, genome size, G+C content and cgMLST loci detected.

Figure S5. Core genome multilocus sequence typing (cgMLST) analyses(A) Rarefaction analysis of cgMLST types sampled per sublineage. (B) Number of SL1 cgMLST types per number of different world regions in which they were observed (*n*=860 types with world region information). (C) Number of SL1 cgMLST types per number of different countries in which they were observed (*n*=857 types with country information).

Figure S6. Phylogenetic analysis based on whole genome SNP analyses

(A) Unrooted maximum-likelihood phylogeny (GTR+F+G4 model, 1,000 ultra-fast bootstraps, using IQ-Tree) of 2,021 CC1 genomes based on the recombination-purged whole genome SNP alignment of 2.28 Mb. (B) Midpoint rooted maximum-likelihood phylogenetic tree of 2,002 SL1 genomes based on based on the recombination-purged whole genome SNP alignment of 2.28 Mb. The four external rings indicate the world region, year, type of infection and source type, respectively. The two inner rings indicate ST1 isolates and the 8 SL1 genetic clades identified in this study, respectively. The black star highlights the phylogenetic placement of isolate F2365 (accession no. NC_002973.6), used as reference in whole genome read mapping. Circles represent bootstrap branch support values higher than 90%, based on 1,000 replicates.

Figure S7. Genetic diversity among *Lm*-CC1 isolates

Pairwise isolate distances within CC1 phylogroups (top) and world regions (bottom): (**A, D**) pairwise cgMLST allelic distances; (**B, E**) pairwise SNP distances in recombination-purged *Lm* core genome alignment and (**C, F**) recombination-purged CC1 whole genome alignment. Uncalled alleles, Ns and gap alignment positions were ignored in pairwise comparisons. Each box denotes the 25% and 75% quartiles and lines represent the medians. Inter-SL, inter CC1 sublineages; GC#, within SL1 genetic clades; Afr, Africa; Asi, Asia; Eur, Europe; NAm, North America; Sam, South America; Oce, Oceania.

Figure S8. Temporal analyses on a representative dataset of 200 isolates of *Lm*-CC1

To control for the over representation of recent isolates, sensitivity analyses were also performed on normalized subsets, allowing only up to a maximum of 10 isolates per bin of 10 years. a) Maximum likelihood (GTR+F+G4) phylogeny of the representative 200 isolates selected randomly across the CC1 phylogeny. Tips are colored by sublineage and SL1 genetic clades as indicated in the legend. b) Regression analyses showing the root-to-tip genetic distance against sampling date (year). Statistical significance was assessed using the F-test. c) Bayesian molecular clock estimations based on real dates (run on 3 and 10 replicates, for the 200 and the normalized datasets, respectively) and randomized tip dates (10 replicates per dataset). Stars denote statistical significance of p < 0.0001, assessed using t-test; n.s., not significant.

Figure S9. Benchmarking of dating methods
Cophenetic distances between isolates dated with BEAST and alternative large-scale methods: a) BactDating v.1.0.1³⁴, b) TreeTime v.0.5.2³⁵ and c) Treedater v.0.3.0³⁶, using the CC1 estimated rate of $1.954 \times 10^{-7} \pm 2.0152 \times 10^{-8}$ substitutions/site/year obtained with BEAST. g200 and g1972 refer to the number of CC1 genomes used in each analyse (n=200 and n=1,972, respectively). Red lines denote perfect positive correlation coefficients (R²=1).

Figure S10. Phylogeography inference of *Lm***-CC1 based on 1,972 dated genomes**Pies at the nodes represent the probability of ancestral geographical locations, estimate using PastML using the MPPA method with an F81-like model. The detailed view of SL1 can be found in Figure 4.

Figure S11. Cattle demographics

(A) Cattle population per world region; (B) Dairy cows per world region. Data available for 1961-2018; source: Food and Agriculture Organization of the United Nations; www.fao.org/faostat). Vertical dashed bars mark the estimated date of the stabilization of Lm-CC1 population size.

Figure S12. French administrative departments (*départements*) Source: Global Administrative Areas, gadm.org.

Figure S13. SL1 transmission dynamics within country (France)Relative risk for a pair of isolates to have a MRCA within a defined period when coming from the same Department in France *versus* different ones.