13.1) Let V be an n-dimensional vector space over and Ta Herintian operator with matrix A in some basis. Then there are n orthonormal signivectors that span V. Lenna Let A be Hermetten. Then $Ax=\lambda x$ if $\overline{x}^TA=\lambda \overline{x}^T$ Proof: Let $A = \{a_i\} = \{b_{ij} + c_{ij}i\}$ and $x = [x_i] = [u_i + x_ji]$ (we need on) $Ax = \begin{bmatrix} b_{ij} + c_{ij} i \end{bmatrix} \begin{bmatrix} u_{ij} + v_{ij} i \end{bmatrix} = \begin{bmatrix} \sum (b_{ij} u_{j} - c_{ij} v_{ij}) \\ + \sum (b_{ij} v_{j} + c_{ij} u_{ij}) \end{bmatrix} i$ $\lambda x = [\lambda u_j] + [\lambda N_j]i$. Thus $A x = \lambda x \Leftrightarrow \begin{cases} \frac{1}{2} (b_1 u_1 - c_1 N_1) = \lambda u_1 \text{ and } \sum_{i} (b_i N_i + c_i U_i) = \lambda N_i \end{cases}$ Ais Hermittan & ais=aji. $\overline{x}^T = [\overline{x}_e] = [u_e + v_j i]$ (now neeton) $\overline{A}^{T} = \left(\overline{a_{ji}}\right) = \left(\overline{a_{ij}}\right) = A, \quad \overline{a_{jk}} = b_{jk} - c_{jk}i = b_{kj} + c_{ij}i \Rightarrow_{\Lambda} b_{jk} = b_{kj} \text{ and } c_{jk} = -c_{kj}.$ $\overline{\mathcal{A}}^{T} A = \left[u_{i} - N_{j} i \right] \left[b_{ij} + c_{ij} i \right] = \left[\sum_{i} \left(b_{ij} u_{i} + c_{ij} N_{i} \right) + \sum_{i} \left(c_{ij} u_{i} - b_{ij} N_{i} \right) \right]$ $\tilde{\chi}^{T}A = \tilde{\chi}\tilde{\chi}^{T} \iff \begin{cases} \frac{1}{2} (b_{ij}u_{ij} + c_{ij}N_{ij}) = \tilde{\chi}u_{ij} \text{ and } \tilde{\chi}(c_{ij}u_{ij} - b_{ij}N_{ij}) = -\tilde{\chi}N_{ij} \\ \frac{1}{2} (b_{ij}u_{ij} + c_{ij}N_{ij}) = \tilde{\chi}u_{ij} \text{ and } \tilde{\chi}(c_{ij}u_{ij} - b_{ij}N_{ij}) = -\tilde{\chi}N_{ij} \end{cases}$ (1) $\begin{cases} \vdots \\ \sum (b_{i,j}u_j - C_{i,j}N_j) = \lambda u_j \text{ and } \sum (C_{i,j}u_j + b_{i,j}N_j) = \lambda N_j \end{cases}$ $\Leftrightarrow \begin{cases} \sum (b_{i,j}u_j - C_{i,j}N_j) = \lambda u_j \text{ and } \sum (C_{i,j}u_j + b_{i,j}N_j) = \lambda N_j \end{cases}$

Bro-ket Version of Liebning 3. Let A be Hermitian atten $A(x) = \lambda(x) + \lambda(x) \lambda(x)$

Lamin 4. Let A be Hermitian and 2, a root of the chan poly PA(7) having multipliety m = 2. Then I m orthonormal againstors corresp to 2's Proof: To has at least one argumenter which can be taken to be a unit vector. That is I xx =0 s.t. (1) $\overline{\chi}_{i}^{T}\chi_{i}=1$ and (2) $A\chi_{i}=\chi_{i}\chi_{i}$. By lamma, (3) $\overline{\chi}_{i}^{T}A=\chi_{i}\overline{\chi}_{i}$ let $\gamma=\{y_{2},...,y_{n}\}$ where γ_{i}^{T} are orthogonal unit column vectors and set $B=[\chi_{i},\chi_{i}]$. B+ = [x1], a matrix with row rectors x1 + \$ y2 }. Since 8 has orthonormical column Nectors, Bis orthogonal; i.e. L4) B' = B'. AB = A[x,y] = [Ax, Ax] = [x,x,Ay]. Note Ax, is a column vector and AY is an (n-1)xn array. Now Where (Y) $B^{\dagger}AB = \begin{bmatrix} \overline{x}_{1}^{T} \end{bmatrix} \begin{bmatrix} \overline{x}_{1}x_{1} & AY \end{bmatrix} = \begin{bmatrix} \overline{x}_{1}^{T}x_{1} & \overline{x}_{1}^{T}AY \end{bmatrix} = \begin{bmatrix} \overline{x}_{1}^{T} & \overline{$ (i) $\chi_{i}^{T}\chi_{i}^{(1)}=1$, (ii) $\chi_{i}^{T}A\gamma^{(2)}$ $\lambda_{i}\chi_{i}\gamma=0$ because $\chi_{i}\perp g_{k}$ γke , and (iii) 7. YTx =0, again because x, + yx xk. B'AB is similar to A hence it has some eigenvalues. The characteristic polynomial is $P_{A}(\lambda) = P_{B^{-}AB}(\lambda) = det \left[B^{-}AB - \lambda I_{n} \right] = det \left[O \gamma^{\dagger}A\gamma - \lambda I_{n-1} \right].$ = $(x_1 - x)$ det $(Y^{\dagger}AY - \lambda I_{n-1})$ (expansion by minors) = $(\lambda_1 - \lambda)^m g(\lambda)$ (because λ has multiplicity m) (det (YTAY-7) Ini) = () = () = Det (YTAY-) In.) = 0. The null space of a matrix Cx is NCC) = 5x cx = 03 and has dimension n-rank (c). Set (= BAB: - A. In. Then dim [NCC] = n-rank(c) = n-(n-m) = m. We now proceed by induction. Let m=2. $Dim[N(C)]=2 \Rightarrow \exists pair of orthonormel orectors <math>x_1$ and x_2 that open N(C). So, for R=1,2, $C \times R_{LR}=0$ on $BAB' \times R_{R}=\lambda_1 \times R_{LR}$. Thus x, and x, are eigenvectors of A corresp to 7: Let m=3. Starting with X, and X, we can find another (N-2) Nectors 43, ", yn 5.t. $3x_{1,1}, x_{12}, 43, \dots, 4n5$ forms an orthonormal basis for V. Repeating the process we generate 3 orthonormal vectors that span c and are thus organizations of A corners to 71. Continuing by induction we generate in orthonormal eigenvectors of A that correspe to ?; We now prove 301.

λεc is an eigenvalue of A ⇔ Aλ=λν for some o≠NEV

⇔ A-ZI is singular (i.e., dim A(V)<n)

PA(R) is an n th order polynomial in the noviable 2. By the Fundamental Theorem of algebra, $P(\lambda) = K(\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2} \cdot (\lambda - \lambda_2)^{m_2}$ for some constant K. That is, the n roots of PAIN are all eigenvalues of A.

By Lemma 4 there are my extremormal experimentary corresponding to the the lay terrimia; (in Notes). is carthogonal to any experients corresponding to some other to by terrimia; (in Notes). Thus the entire collection consists of n orthonormal vectors which constitutes.

a basis for V.