Applied Machine Learning

- Explanatory Variables
- Bias and Variance
- Strategies to choose models

Explanatory variables

- What explanatory variables to choose?
 - Some may not be as important
 - Some may be missing
- Predictions may be affected by
 - Irreducible error
 - Error due to bias
 - Error due to variance

Bias and Variance in Regularization

•
$$Y = f(\mathbf{x}) + \xi$$

- x: vector of explanatory variables
- Y: random dependent variable
- $f(\cdot)$: estimation of dataset model
- ξ : noise
- expected value of error in prediction: $\mathbb{E}[(Y \hat{f}(x))^2]$
 - $\hat{f}(\cdot)$: estimation of $f(\cdot)$

- best possible $\hat{f}(\cdot)$
 - perform well on all the possible data (not only on a chosen subset)
 - achieves same predictions as $\mathbb{E}[\hat{f}]$

Bias and Variance in Regularization

- $Y = f(\mathbf{x}) + \xi$
 - x: vector of explanatory variables
 - Y: random dependent variable
 - $f(\cdot)$: estimation of dataset model
 - ξ : noise
- expected value of error in prediction: $\mathbb{E}[(Y \hat{f}(x))^2]$
 - $\hat{f}(\cdot)$: estimation of $f(\cdot)$

•
$$\mathbb{E}[\xi] = 0$$

•
$$\operatorname{var}(Y) = \operatorname{var}(\xi) = \sigma_{\xi}^2$$

•
$$\mathbb{E}[(Y - \hat{f}(x))^2] = \sigma_{\xi}^2 + (f - \mathbb{E}[\hat{f}])^2 + \text{var}(\hat{f})$$

- best model: $\mathbb{E}[\hat{f}]$
- prediction: \hat{f}

Bias and Variance in Regularization

•
$$\mathbb{E}[(Y-\hat{f}(x))^2] = \sigma_{\xi}^2 + (f-\mathbb{E}[\hat{f}])^2 + \text{var}(\hat{f})$$
 • Simple models

- σ_{ξ}^2 : irreducible error
- $(f \mathbb{E}[\hat{f}])^2$: bias
- $var(\hat{f})$: variance
- Choose model parameters
 - small enough to control variance
 - large enough to prevent bias

- Easy to estimate best parameters: low variance
- More specific: high bias
- More complex models
 - Harder to estimate best parameters: high variance
 - More general model: low bias

Choosing Models

- Measure Information criteria to find good model sizes
 - Akaike Information Criterion (AIC)
 - Bayes Information Criterion (BIC)
- Penalty that increases with the number of parameters

Information Criteria

- Model
 - k = d + 1, d explanatory variables
 - \mathscr{L} : log-likelihood
- Akaike Information Criterion (AIC)
 - $2k-2\mathscr{L}$
- Bayes Information Criterion (BIC)
 - $2k \log N 2\mathcal{L}$

Cross-Validation to Choose Models

- F folds:
 - "leave-one-out": F=N
- for each combination of parameters
 - iteratively with F-1 folds as crossvalidation training set
 - find β on Cross-Validation Train Set
 - MSE on held-out Validation set
 - error on held-out data is average on all iterations

Exploration of Parameters

- Forward stagewise regression
 - working set = $\{\phi\}$
 - iterate until no improvement
 - for each explanatory variable not in working set
 - add variable to model, evaluate, keep best score
 - if best score better than score for working set, add variable to working set

Exploration of Parameters

- Backward stagewise regression
 - working set = all the explanatory variables
 - iterate until no improvement
 - for each explanatory variable in working set
 - evaluate without variable, evaluate, keep best score
 - if best score better than score for working set, remove variable from working set

Variable Importance

- Regression coefficients value does not reflect importance
 - Have same units of corresponding explanatory variable
 - Statistical significance
 - Even low coefficients have impact on regression

- Explanatory Variables
- Bias and Variance
- Strategies to choose models

Applied Machine Learning