Review

Definition

Let V be a vector space with an inner product $\langle .,. \rangle$.Let W be a subspace of V. We define the *orthogonal complement* of W in V to be the set

$$W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0, \ \forall w \in W \}.$$

Proposition

Let V be a vector space with an inner product $\langle .,. \rangle$. Let W be a subspace of V. Then W^{\perp} is a subspace of V and

$$W\cap W^{\perp}=\{0\}$$

Further, if V is finite-dimensional then $V = W + W^{\perp}$ and

$$\dim V = \dim W + \dim W^{\perp}$$

Orthogonal Decomposition Theorem

Theorem

Let V be a finite dimensional vector space with an inner product $\langle .,. \rangle$. Let W be a subspace of V. Then every vector $v \in V$ can be written uniquely in the form

$$\overbrace{v = (w) + \, \widetilde{w}}^{}$$
 where $w \in W$ and $\widetilde{w} \in W^{\perp}$.

Definition

Let V, W, v, w and \tilde{w} be as in the above theorem. We define the orthogonal projection of v onto W to be

$$proj_W v = w$$

and the component of v orthogonal to W to be $\tilde{w} = v - \operatorname{proj}_W v$.

Claim: The expression

V = N + W, where WEW, WEW 15 unique, j.e. if V= W, + W, = W2 + Wz where

 $W_1, W_2 \in W$, and $\widetilde{\omega}_1, \widetilde{w}_2 \in W$.

There $\widetilde{\omega}_1 = \widetilde{\omega}_1$, and $\widetilde{\omega}_2 = \widetilde{\omega}_2$. Suppose $V = W_1 + W_2$, La Some $=) \quad w_1 - w_2 = \widetilde{w}_2 - \widetilde{w}_1 - \widetilde{v}_1$ $|V_{\sigma p}| \quad w_1 - w_2 \in \widetilde{w}_1, \quad \widetilde{w}_2 - \widetilde{w}_1 \in \widetilde{w}_1 - (2)$

 $W_1 - W_2 \in W \cap W = Soy$ ord Wy - W, E W M = Soy

Formula for Orthogonal Projection with respect to a Fixed Orthogonal Basis

Let V be a vector space of dimension n. Let $\langle .,. \rangle$ be an inner product defined on V.

Let W be a subspace of V.

Let $\{w_1, \ldots, w_m\}$ be an orthogonal basis of W and $\{w_{m+1}, \ldots, w_n\}$ be an orthogonal basis of W^{\perp} .

Let $v \in V$. Then

$$\underbrace{\operatorname{proj}_{W} v} = \frac{\langle v, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} + \cdots + \frac{\langle v, w_{m} \rangle}{\langle w_{m}, w_{m} \rangle} w_{m}$$

and

$$v - \operatorname{proj}_{W} v = \frac{\langle v, w_{m+1} \rangle}{\langle w_{m+1}, w_{m+1} \rangle} w_{m+1} + \dots + \frac{\langle v, w_{n} \rangle}{\langle w_{n}, w_{n} \rangle} w_{n}$$

Orthogonal Projection in \mathbb{R}^n

Theorem

If $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

then
$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} + \dots + (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p}$$
If $U = [\mathbf{u}_{1} \quad \mathbf{u}_{2} \quad \dots \quad \mathbf{u}_{p}]$, then
$$\emptyset : (\mathcal{O}_{1} \quad \dots \quad \mathcal{O}_{p})$$

 $\operatorname{proj}_{\mathcal{W}} \mathbf{y} = UU^T \mathbf{y}, \quad \forall \mathbf{y} \in \mathbb{R}^n$ Proof:

$$X = (X_1, \dots, X_n)$$

$$Ay = X_1 A_1 + \dots + X_n$$

4 •

Example

$$U^{\mathsf{T}}V = \mathbf{I}$$

Compute $proj_W \mathbf{y}$, where

$$\mathbf{u}_1 = \begin{bmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -9 \\ 1 \\ 6 \end{bmatrix}$$

and

$$W = \operatorname{\mathsf{Span}}\left\{\mathbf{u}_1,\mathbf{u}_2\right\}.$$

$$UU^{T} = \begin{bmatrix} -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

So $\operatorname{proj}_{W} \mathbf{y} = UU^{T} \mathbf{y} = \begin{bmatrix} -9 \\ \frac{7}{2} \\ \frac{7}{2} \end{bmatrix}$

QR Factorization

Definition

Let A be an $m \times n$ matrix having linearly independent columns. A QR-factorization of A is a matrix factorization of the form

$$A = QR$$

where Q is an $m \times n$ matrix having orthonormal columns and R is an upper triangular $n \times n$ matrix with strictly positive diagonal entries.

QR Algorithm

Let $\mathbf{a}_1, \dots, \mathbf{a}_n$ be the columns of A. Apply the Gram-Schmidt algorithm the the vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ to obtain an orthogonal set $\mathbf{b}_1, \dots, \mathbf{b}_n$, i.e.

$$\mathbf{b}_1 = \mathbf{a}_1$$

$$\mathbf{b}_k = \mathbf{a}_k - \sum_{i=1}^{k-1} \frac{\langle \mathbf{a}_k, \mathbf{b}_i \rangle}{\langle \mathbf{b}_i, \mathbf{b}_i \rangle} \mathbf{b}_i, \quad \text{ for } k = 2, \dots, n.$$

Normalize the vectors \mathbf{b}_k to obtain an orthonormal set,

$$\mathbf{q}_k = \frac{\mathbf{b}_k}{\|\mathbf{b}_k\|}, \quad \text{for } k = 1, \dots, n.$$

Thus we obtain the matrix

$$Q = [\mathbf{q}_1 \quad \dots \quad \mathbf{q}_n]$$

having orthonormal columns. Therefore $Q^TQ = I$. We put $R = Q^TA$, and this is gives us the required matrix factorization.

If time permits on Thursday, we will see a proof of why this works.

Algebra of Linear Transformations; the space L(V, W)

Lemma

Let V and W be vector spaces. Let $\mathcal U$ be the set of all functions from V to W. Then $\mathcal U$ is a vector space under pointwise addition and pointwise scalar multiplication of functions.

Proof: Exercise. Verify all axioms.

Definition

Let V and W be vector spaces. The set of all linear transformations from V to W is called L(V,W).

Proposition

L(V, W) is a vector space under pointwise addition of functions and pointwise multiplication of functions by real numbers.

Proof: Let T, S e L(V,W) Claim: T+S is a linear transformation. - T(V+W) + S(V+W) - T(V) + T(W) + S(V) + S(W)

$$= T(v) + S(v) + T(u) + S(w)$$

$$= (T+S)(v) + (T+S)(v).$$

$$= (T+S)(cv) = T(cv) + S(cv)$$

$$= (T + S)(v)$$

$$= (T + S)(v)$$

$$T + S \in L(V, \omega)$$

$$WMT = (T \in L(V, \omega)) \text{ they } c \in L(V, \omega)$$

$$V \in \mathbb{R}$$

 $T \in L(V, W) \longrightarrow T$

Theorem

Let $\dim V = n$ and $\dim W = m$. Then L(V, W) is isomorphic to the vector space $M_{m \times n}(\mathbb{R})$ of $m \times n$ matrices.

(In other words there exists a bijective linear transformation from L(V,W) to $M_{m\times n}(\mathbb{R})$).

Fix a basis & for V and a basis & for W (he will show, of ! (V, N) -) Myr(R) sending the fitters of the sending of the se Claim: [1+ T2] B, C = [1] B, C = [2] RG

Cet ve V. $\frac{1}{1+1}$ $-\frac{1}{1}\left(v\right) +\frac{1}{2}\left(v\right)$

Verrech adition (II): Scalan multiplication. et wow that dis me. = 7 (V) = 0, = 7 (V) = 0, = 1 (V) = 0, = 1 (V) = 0.

is in the. Claim: « surjective.

 $\frac{1}{2} \frac{1}{2} \frac{1}$

s. Cordinato man tom V m sending Condinate mo Suding

matrix 1- (- Mm xn (R) dolina The state of the state o

$$\begin{array}{c}
\left(T(v)\right) \\
-\left(S_{1}^{2}\left(AS_{1}(v)\right)\right) \\
-\left(S_{2}^{2}\left(AS_{1}(v)\right)\right) \\
-\left(AS_{1}(v)\right) \\
-\left(AS_{1}(v)$$

Theorem

Let U, V and W be finite dimensional vector spaces of dimensions m, n and k respectively, having bases A, B and C respectively.

Let $S \in L(U, V)$ and $T \in L(V, W)$. Then $T \circ S \in L(U, W)$ and

$$[T \circ S]_{\mathcal{A},\mathcal{C}} = [T]_{\mathcal{B},\mathcal{C}}[S]_{\mathcal{A},\mathcal{B}}$$

$$\begin{array}{c}
(1) & U_1, U_2 \in U_1, \\
(1) & (1)$$

 $- \left(\sigma \leq \left(\sigma_{1} \right) + \left(\tau_{0} \leq \right) \left(\sigma_{2} \right) \right)$ Satisfier (m) andition for burns a Ina halotie. \mathcal{A}

0 S (W) - (S (CU) - () - ()

JEWEN-

