FORMULÁRIO

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(p) + \sin(p) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(p) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(p) = 2\cos\left(\frac{p+q}{2}\right)$$

$$\sin(p) - \cos(p) = 2\cos\left(\frac{p+q$$

D(f)	f	D(f')	f'
$]0,+\infty[$	x^{α}	$]0,+\infty[$	$\alpha x^{\alpha-1}$
\mathbb{R}	e^x	\mathbb{R}	e^x
$\mathbb{R}\setminus\{0\}$	$\ln(x)$	$\mathbb{R}\setminus\{0\}$	$\frac{1}{x}$
\mathbb{R}	$\sin(x)$	\mathbb{R}	$\cos(x)$
\mathbb{R}	$\cos(x)$	\mathbb{R}	$-\sin(x)$
$\mathbb{R} - \{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \}$	tan(x)	$\mathbb{R} - \{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \}$	$1 + \tan^2(x)$
[-1, 1]	$\arcsin(x)$]-1,1[$\frac{1}{\sqrt{1-x^2}}$
[-1, 1]	$\arccos(x)$]-1,1[$-\frac{1}{\sqrt{1-x^2}}$
\mathbb{R}	$\arctan(x)$	\mathbb{R}	$\frac{1}{1+x^2}$
\mathbb{R}	sinh(x)	\mathbb{R}	$\cosh(x)$
\mathbb{R}	$\cosh(x)$	\mathbb{R}	$\sinh(x)$
\mathbb{R}	tanh(x)	\mathbb{R}	$1 - \tanh^2(x)$
\mathbb{R}	arg sinh(x)	\mathbb{R}	$\frac{1}{\sqrt{1+x^2}}$
$[1, +\infty]$	$arg \cosh(x)$	$]1,+\infty[$	$\frac{1}{\sqrt{x^2-1}}$
] - 1,1[$\operatorname{arg} \tanh(x)$]-1,1[$\frac{1}{1-x^2}$

$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$x \in \mathbb{R}$
$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = \frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} + \cdots$	$x \in]-1,1]$
$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$	$x \in \mathbb{R}$
$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$	$x \in \mathbb{R}$
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \cdots$	$x \in]-1,1[$