Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018821

International filing date: 16 December 2004 (16.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-432213

Filing date: 26 December 2003 (26.12.2003)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

04.01.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2003年12月26日

出 願 番 号 Application Number:

特願2003-432213

[ST. 10/C]:

出 願 人
Applicant(s):

株式会社安川電機

特許庁長官 Commissioner, Japan Patent Office 2005年 2月18日

【書類名】 特許願 【整理番号】 M0311015M 特許庁長官殿 【あて先】 B25T 9/10 【国際特許分類】 【発明者】 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 【住所又は居所】 萩原 淳 【氏名】 【特許出願人】 000006622 【識別番号】 株式会社安川電機 【氏名又は名称】 【代理人】 100099508 【識別番号】 【弁理士】 【氏名又は名称】 加藤久 092-413-5378 【電話番号】 【選任した代理人】 100116296 【識別番号】 【弁理士】 【氏名又は名称】 堀田 幹生 092-413-5378 【電話番号】 【手数料の表示】 【予納台帳番号】 013930 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 【包括委任状番号】 0212037

【請求項1】

互いに干渉する複数軸から構成されるロボットであって、モータと、前記モータに減速 機等を介して結合されたアームと、前記モータの位置を検出するモータ位置検出器とから 構成された各軸を、各軸毎の指令通りに動作させるための位置制御部および速度制御部を 備えたロボットの制御装置において、

自軸の指令から他軸に作用する干渉力を計算で求める干渉力計算部と、

他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータトルク指 令信号を、自軸の指令と他軸から作用する干渉力の計算値から求める非干渉トルク信号作 成部と、

他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータ位置信号 を、自軸の指令と他軸から作用する干渉力の計算値から求める非干渉位置信号作成部と を備えたことを特徴とするロボットの制御装置。

【請求項2】

軸が2軸である場合の干渉について、

前記干渉力計算部における干渉力は、次式

 $d_{is1} = B * x_{ref1} * s^2$

 $d_{is2} = A * x_{ref2} * s^2$

によって計算し、

前記非干渉トルク信号作成部における非干渉トルク信号は、次式

 $t_{ref_ff1} = (J_{m1} * J_{L1} / K1 * s^4 + (J_{m1} + J_{L1}) s^2) * x_{ref1}$

 $- (J_{m1}/K1*s^2+1) *d_{is2}$

 $t_{ref_ff2} = (J_{m2} * J_{L2} / K2 * s^4 + (J_{m2} + J_{L2}) s^2) * x_{ref2}$ $- (J_{m2}/K2*s^2+1) *d_{is1}$

によって計算し、

前記非干渉位置信号作成部における非干渉位置信号は、次式

 $x_{ref_f1} = (J_{L1}/K1*s^2+1) *x_{ref1}-1/K1*d_{is2}$

 $x_{ref_f12} = (J_{L2} / K2 * s^2 + 1) * x_{ref2} - 1 / K2 * d_{is1}$

によって計算することを特徴とする請求項1記載のロボットの制御装置。

但し、Jm1:1軸目モータ慣性モーメント

J_{L1}: 1軸目アーム慣性モーメント

K1:1軸目減速機ばね定数

Jm2:2軸目モータ慣性モーメント

J_{L2}: 2軸目アーム慣性モーメント

K2:2軸目減速機ばね定数

A (=B): 2軸の構成、成す角度、幾何学的関係から求まる係数

s:ラプラス演算子

disl:1軸目から2軸目に作用する干渉力

dis2: 2軸目から1軸目に作用する干渉力

Xref1: 1軸目位置指令

Xref2: 2軸目位置指令

【請求項3】

前記、非干渉トルク信号作成部および非干渉位置信号作成部の処理で使用する、他軸か ら作用する干渉力の計算値は、軸が2軸を超える場合、各軸から自軸へ作用する干渉力計 算値の総和であることを特徴とする請求項1記載のロボットの制御装置。

【発明の名称】ロボットの制御装置

【技術分野】

[0001]

本発明は、互いに干渉する複数軸で構成されるロボットを、干渉力が作用しても各軸が 指令どおり動作するように、制御を行うロボットの制御装置に関する。

【背景技術】

[0002]

従来のロボット制御装置は、モデル制御器を有し、モデル制御器内部では、擬似モデル と、擬似モデル用の制御部と、干渉トルクを相殺するためにモデル補償トルクを算出する 補正量算出部とを有し、モデル補償トルクが加算されたモデルフィードフォワード指令を 、フィードフォワード信号として出力することで、非干渉化を行っている(例えば、特許 文献1参照)。

図5は特許文献1に開示された従来の実施の一形態のロボット制御装置の構成を示す制 御ブロック図であり、図6は、図5のモデル制御器の構成を示す制御ブロック図である。 図5では、各軸ごとに2慣性系(電動機+減速機等のバネ+アーム)に近似した2軸のロ ボット制御系の基本構成を示している。図5および図6では、2軸をL軸、U軸とし、L 軸に関する指令や量についてはそのサフィックスに "_L"付加し、U軸に関する指令や 量についてはそのサフィックスに "__U" を付加している。

[0003]

このロボット制御装置は、各軸ごとの電動機位置指令Xref_L, Xref_Uに基づいてL軸 及びU軸の制御を行うものであり、2軸のフィードバック制御系(フィードバック制御器) 53L, 53Uと制御対象(電動機、減速機、ロボットアーム)との擬似モデルである モデル制御器 5 1 を有している。モデル制御器 5 1 は、電動機位置指令 X_{ref_L} , X_{ref_U} を入力とし、ロボットのダイナミクスを考慮して各軸のフィードフォワード指令Uff_L, $\mathbf{U}_{\mathtt{FF}}$ _Uを計算し、各軸の電動機の加速度項へのフィードフォワード補償を行うとともに、 規範となるモデルにおける各軸の電動機位置 θ Mm_L, θ Mm_U、電動機速度

【数1】

ねじれ角 θ_{Ms_L} , θ_{Ms_U} 、ねじれ角速度 【数2】

を算出して出力する。

[0004]

以下、モデル制御器51の出力である各要素には、接頭語「モデル」を付加する。 一方、フィードバック制御系(フィードバック制御器)53L,53Uにおいて、各軸 の位置ゲインは K_{p_L} , K_{p_U} 、速度ゲインは K_{v_L} , K_{v_U} 、トルク定数は K_{t_L} , K_{t_U} で あり、電動機に与えられる最終的な加速度指令はそれぞれ U_{ref_L} , U_{ref_U} である。また 、各軸の電動機の慣性モーメントはそれぞれJm_L, Jm_L、電流指令はIref_L, Iref_U である。電動機の実際の位置は θ m_L, θ m_U であり、電動機の実際の速度は

【数3】

$$\dot{\theta}_{\mathrm{m}}$$
 L, $\dot{\theta}_{\mathrm{m}}$ U

であり、電動機の実際の加速度は 【数4】

$$\dot{\theta}_{\mathrm{m_L}}$$
, $\dot{\theta}_{\mathrm{m_U}}$

である。

さらに減速機での減速比が $N_{\tt L}$, $N_{\tt U}$ 、減速機のバネ定数が $K_{\tt c_L}$, $K_{\tt c_U}$ 、アームの慣 性モーメントが J_{L_L} , J_{L_L} , J_{L_L} 、アームの実際の位置が θ_{L_L} , θ_{L_L} 、アームの加速度(負 荷加速度)が

【数5】

$$\ddot{\theta}_{\mathrm{L},\mathrm{L}}, \ddot{\theta}_{\mathrm{L},\mathrm{U}}$$

で表わされている。そして、両軸間の干渉を表わすために、ロボットアームの質量や両軸 間の角度により決定される $M_{L\,\,U}\,/M_{\circ}^{\,\,2}\,$ の値がL軸の負荷トルクに乗じられてU軸の負 荷加速度に作用し、同様に、 M_{UL}/M_{\circ}^{2} の値がU軸の負荷トルクに乗じられてL軸の 負荷加速度に作用する構成となっている。

[0005]

このロボット制御系には、L軸、U軸のそれぞれごとに、電動機への最終的な加速度指 令 $\mathbf{U}_{\mathrm{ref}_{-L}}$, $\mathbf{U}_{\mathrm{ref}_{-U}}$ と電動機の実際の位置 $\theta_{\mathrm{m}_{-L}}$, $\theta_{\mathrm{m}_{-U}}$ を入力として、実際のねじれ角 θ s_L , θs_U とその角速度

【数6】

とを推定する状態観測器52L,52Uが設けられている。さて、このフィードバック制 御器では、モデル制御器 5 1 から出力されるモデル電動機位置 θ Mm_L, θ Mm_U と実際の電 動機位置 θ_{m_L} , θ_{m_U} との偏差に対して位置ゲイン K_{p_L} , K_{p_U} を乗算して、それぞれの 軸の速度指令としている。

このように得られた各速度指令に、モデル電動機速度

【数7】

$$\dot{\theta}_{sL}, \dot{\theta}_{sU}$$

と実際の電動機速度

【数8】

$$\dot{\theta}_{\mathrm{m_L}}$$
, $\dot{\theta}_{\mathrm{m_U}}$

との偏差を加算し、速度ゲイン K_{v_L} , K_{v_U} を乗算して、それぞれ、加速度指令としてい る。

[0006]

このような加速度指令に対して、(a)モデル制御器51からのフィードフォワード指 出証特2005-3012119

【数9】

$$\dot{\theta}_{ ext{Ms L'}},\,\dot{\theta}_{ ext{Ms_U}}$$

と状態観測器52L,52Uから出力されるねじれ角速度

【数10】

との偏差にフィードバックゲイン K_{2_L} , K_{2_U} を乗じたものとを加算し、それぞれ、各軸 に対する最終的な電動機加速度指令Uref_L, Uref_Uとしている。

このロボット制御系では、このように得られた最終的な電動機加速度指令Uref_L, Ur $_{
m ef_U}$ により各軸の電動機が駆動され、減速比がそれぞれ $m N_{_L}$, $m N_{_U}$ である減速機を介して 、各軸のアームが駆動される。その際、上述したように、軸間の干渉力が各軸の負荷加速 度に作用する。

[0007]

次に、モデル制御器51の構成を説明する。図6は、フィードバック制御系や電動機、 減速機、ロボットアームを表す擬似モデルからなるモデル制御器51の構成の詳細を示し ている。擬似モデルにおける各軸の位置ゲインと速度ゲインがそれぞれモデル位置ゲイン K_{pM_L} , K_{pM_U} とモデル速度ゲイン K_{vM_L} , K_{vM_U} である。同様に、モデル電動機慣性モ ーメント J m M_L, J m M_U、モデルアーム慣性モーメント J L M_L, J L M_U、モデル減速比 N $_{ extsf{M_LL}}$, $_{ extsf{N_M_U}}$ 、モデルパラメータとして定められ ている。

モデル制御器51は、各軸の電動機位置指令Xref_L, Xref_Uを入力とし、この電動機 位置指令 X_{ref_L} , X_{ref_U} とモデル電動機位置 θ_{Mm_L} , θ_{Mm_U} との偏差にモデル位置ゲイ 度指令から各軸のモデル電動機速度

【数11】

ė nm L. e nm u

を減算した値にモデル速度ゲイン K_{vM_L} , K_{vM_L} で乗算して、それぞれ各軸のモデル加速 度指令としている。

[0008]

このモデル加速度指令に、モデル減速機から得られるモデルねじれ角 heta $_{ exttt{M s_L}}$, heta $_{ exttt{M s_L}}$ に モデルフィードバックゲイン K_{1M_L} , K_{1M_U} を乗じて得られる値と、モデルねじれ角 θ_{Ms} $_{_{
m L}}$, $heta_{
m Ms}_{
m U}$ を微分して得られるモデルねじれ角速度

【数12】

ė nm L. ė nm u

にモデルフィードバックゲイン K_{2M_L} , K_{2M_U} を乗じて得られる値とを減算し、モデル加 速度指令Umref_L, Umref_Lとしている。このモデル加速度指令Umref_L, Umref_Uが、

したがって、モデル加速度指令Umref_L, Umref_Uは、 【数13】

$$U_{\text{Mref_L}} = K_{\text{pM_L}} \cdot K_{\text{vM_L}} (X_{\text{ref_L}} - \theta_{\text{Mm_L}}) - K_{\text{vM_L}} \cdot \dot{\theta}_{\text{Mm_L}}$$
$$- K_{\text{1M_L}} \cdot \theta_{\text{Ms_L}} - K_{\text{2M_L}} \cdot \dot{\theta}_{\text{Ms_L}}$$
(1)

$$U_{\text{Mref_U}} = K_{\text{pM_U}} \cdot K_{\text{vM_U}} (X_{\text{ref_U}} - \theta_{\text{Mm_U}}) - K_{\text{vM_U}} \cdot \dot{\theta}_{\text{Mrn_U}}$$
$$- K_{1\text{M_U}} \cdot \theta_{\text{Ms_U}} - K_{2\text{M_U}} \cdot \dot{\theta}_{\text{Ms_U}}$$
(2)

と表わすことができる。

しかし、ここで想定している 2 軸ロボットでは、干渉により、 L 軸の負荷トルクに、ロボットアームの質量や両軸間の角度により決定される値 M_{LUM}/M_{oM}^2 が乗じられて、 U 軸の負荷加速度に作用する。同様に、U 軸の負荷トルクに、値 M_{ULM}/M_{oM}^2 が乗じられて、 L 軸の負荷加速度に作用する。

[0009]

このような干渉をアーム側に作用する外乱としてとらえると、L軸に関しては、下式に示すモデル補正トルク T_{comp_L} をモデル電動機加速度指令 U_{Mref_L} に加算すれば、干渉によるアームの振動を軽減することができる。

【数14】

$$T_{comp_L} = -\frac{K_{pM_L} \cdot K_{vM_L} \cdot N_{M_L} \cdot D_{is_UL}}{K_{cM_L}} - \frac{K_{vM_L} \cdot N_{M_L} \cdot \dot{D}_{is_UL}}{K_{cM_L}} - \frac{K_{1M_L} \cdot \dot{D}_{is_UL}}{K_{cM_L}} - \frac{K_{1M_L} \cdot \dot{D}_{is_UL}}{K_{cM_L}} - \frac{K_{2M_L} \cdot \dot{D}_{is_UL}}{K_{cM_L}} - \frac{N_{M_L} \cdot \ddot{D}_{is_UL}}{K_{cM_L}} - \frac{N_{M_L} \cdot \ddot{D}_{is_UL}}{K_{cM_L}}$$
(3)

ここで、Dis_ULは、U軸からL軸に作用する干渉トルクであって、

【数15】

$$\mathbf{D}_{\text{is_UL}} = \mathbf{J}_{\text{LM_L}} \cdot \mathbf{K}_{\text{cM_U}} \cdot \frac{\mathbf{M}_{\text{ULM}}}{\mathbf{M}_{\text{oM}}^2} \cdot \boldsymbol{\theta}_{\text{Ms_U}}$$
(4)

と表わすことができる。よって、最終的なモデル電動機加速度指令UFF_Lを

 $U_{FFL} = U_{Mref_L} + T_{comp_L}$ (5)

[0010]

-同様に、U軸についても、モデル補正トルクTcomp_Uを

$$T_{comp_U} = -\frac{K_{pM_U} \cdot K_{vM_U} \cdot N_{M_U} \cdot D_{is_LU}}{K_{cM_U}} - \frac{K_{vM_U} \cdot N_{M_U} \cdot \dot{D}_{is_LU}}{K_{cM_U}} - \frac{K_{1M_U} \cdot D_{is_LU}}{K_{cM_U}}$$

$$-\frac{K_{2M_U} \cdot \dot{D}_{is_LU}}{K_{cM_U}} - \frac{D_{is_LU}}{J_{mM_U} \cdot N_{M_U}} - \frac{N_{M_U} \cdot \ddot{D}_{is_LU}}{K_{cM_U}}$$
(6)

のように定める。ここでDis_Luは、L軸からU軸に作用する干渉トルクであって、 【数17】

$$D_{is_LU} = J_{LM_U} \cdot K_{cM_L} \cdot \frac{M_{LUM}}{M_{oM}^2} \cdot \theta_{Ms_L}$$
(7)

である。モデルねじれ角 $\theta_{\,\,\mathrm{Ms}\,\,\mathrm{L}}$ を入力として式(6),(7)に基づきモデル補正トルク Tcomp_Uを求める補正量演算部54Uが設けられている。その結果、最終的なモデル電動 機加速度指令UFF_Uは、

$$U_{FF_U} = U_{Mref_U} + T_{comp_U}$$
 (8)
となる。

[0011]

以上のように、特許文献1に開示された従来技術においては、このようにモデル制御器 51により干渉トルク補正を行った上で、規範となる各状態量を指令としてフィードバッ ク制御系に入力するので、各ロボットアームは、他軸からの干渉による影響を受けなくな る。

このように、従来のロボット制御装置は、他軸から受ける干渉力をモデル制御器で補正 し、それを基に規範となる各状態量をフィードバック制御器に入力することにより、補正 トルクにノイズ成分が重畳することがなくなり、ロボットアームは干渉による振動を受け ずにツール先端の軌跡精度を向上させるのである。

$[0\ 0\ 1\ 2\]$

【特許文献1】特開平10-329063号公報(第2-5頁、図1、図2)

【発明の開示】

【発明が解決しようとする課題】

[0013]

しかしながら、従来のロボット制御装置は、この制御器を実現するために、フィードバ ック制御部の演算以外に、モデル制御器51内で、制御周期毎に、ねじれ角の計算など擬 似モデルの計算を行う必要があり各軸毎の計算量が膨大になるという問題があった。

また、モデル制御器51内で、フィードバック制御部の演算以外に、制御周期毎に、擬 似モデルを制御するためのモデル用のフィードバック制御の計算を行う必要があり各軸毎 の計算量がさらに増えるという問題がある。

また、非干渉化をトルクの補正のみで行うため、モデル補正トルクTcompの計算にモデ ル位置ゲイン K_{pM} やモデル速度ゲイン K_{vM} の値まで必要となり、さらに計算が複雑になる という問題もある。

そして、結果として、各軸毎の計算量が膨大になり、制御演算時間が長くなり、本制御 装置を実現するために高速なCPUを必要とするという問題がある。

本発明はこのような問題点に鑑みてなされたものであり、計算量を大幅に低減してCP Uの負担を軽減することのできるロボットの制御装置を提供することを目的とする。

【課題を解決するための手段】

[0014]

上記問題を解決するため、本発明の第1の構成は、互いに干渉する複数軸から構成され るロボットであって、モータと、前記モータに減速機等を介して結合されたアームと、前 記モータの位置を検出するモータ位置検出器とから構成された各軸を、各軸毎の指令通り に動作させるための位置制御部および速度制御部を備えたロボットの制御装置において、 自軸の指令から他軸に作用する干渉力を計算で求める干渉力計算部と、他軸から作用する 干渉力がある場合も自軸が指令どおり動作するようなモータトルク指令信号を、自軸の指 令と他軸から作用する干渉力の計算値から求める非干渉トルク信号作成部と、他軸から作 用する干渉力がある場合も自軸が指令どおり動作するようなモータ位置信号を、自軸の指 令と他軸から作用する干渉力の計算値から求める非干渉位置信号作成部とを備えたことを 特徴とするものである。

この第1の構成においては、干渉力計算部と非干渉トルク信号作成部と非干渉位置信号 作成部を有し、擬似モデルの計算と擬似モデル用の制御の計算は行わず、且つ、モータト ルク信号だけではなく、モータ位置信号を干渉を考慮して作成することで、計算量が大幅 に低減する。

[0015]

本発明の第2の構成は、軸が2軸である場合の干渉について、前記干渉力計算部におけ る干渉力は、次式

 $d_{is1} = B * x_{ref1} * s^2$

 $d_{is2} = A * x_{ref2} * s^2$

によって計算し、

前記非干渉トルク信号作成部における非干渉トルク信号は、次式

 $t_{ref_ff1} = (J_{m1} * J_{L1} / K1 * s^4 + (J_{m1} + J_{L1}) s^2) * x_{ref1}$

 $- (J_{m1}/K1*s^2+1) *d_{is2}$

 $t_{ref_ff2} = (J_{m2} * J_{L2} / K2 * s^4 + (J_{m2} + J_{L2}) s^2) * x_{ref2}$ - (J $_{m2}$ / $K2*s^2+1$) * d_{is1}

によって計算し、

前記非干渉位置信号作成部における非干渉位置信号は、次式

 $x_{ref_f1} = (J_{L1}/K1*s^2+1) *x_{ref1}-1/K1*d_{is2}$

 $x_{ref_f12} = (J_{L2} / K2 * s^2 + 1) * x_{ref2} - 1 / K2 * d_{is1}$

によって計算することを特徴とする。

但し、Jm1:1軸目モータ慣性モーメント

J_{L1}: 1軸目アーム慣性モーメント

K1:1軸目減速機ばね定数

Jm2:2軸目モータ慣性モーメント

J_{L2}: 2軸目アーム慣性モーメント

K2:2軸目減速機ばね定数

A (=B): 2軸の構成、成す角度、幾何学的関係から求まる係数

s:ラプラス演算子

dis1:1軸目から2軸目に作用する干渉力

dis2: 2軸目から1軸目に作用する干渉力

Xref1: 1軸目位置指令

Xref2: 2軸目位置指令

この第2の構成においては、干渉力、非干渉トルク信号、および非干渉位置信号を計算 する数式が特定される。

[0016]

また、本発明の第3の構成は、前記、非干渉トルク信号作成部および非干渉位置信号作 成部の処理で使用する、他軸から作用する干渉力の計算値は、軸が2軸を超える場合、各 軸から自軸へ作用する干渉力計算値の総和であることを特徴とするものである。

この第3の構成においては、複数軸間に干渉力が作用する場合に、自軸に対しても複数 の軸から干渉力を受ける。その場合、2軸間の干渉力の総和を計算することにより、自軸

に作用する干渉力を求めることができる。

【発明の効果】

[0017]

本発明の第1の構成によれば、他軸から作用する干渉力がある場合も自軸が指令どおり動作するようにモータを動作させることができ、結果として干渉の影響を受けないで、指令どおりロボットアームを動作させることができる。また、非干渉化を実現するための計算を非常に少なくできる。その結果、CPUの計算量を大幅に低減することができるため、安価なCPUを用いることができる。

本発明の第2の構成によれば、干渉力、非干渉トルク信号、および非干渉位置信号を計算する数式を特定することにより、ロボット制御を具体化することができる。

また、第3の構成によれば、自軸に対し複数の軸からの干渉力が作用する場合も、複数軸の関係を考慮して複雑な計算をすることなく、各軸から自軸へ作用する干渉力の合計値を計算する処理を行うだけで、後は2軸間の非干渉化と同様の処理を行うのみでよく、簡単に複数軸間の非干渉化が可能になる。

また、考慮していなかった軸間の干渉を追加する場合などもプログラム修正はほとんどなく、各軸から作用する干渉力の合計値を計算する処理を追加するだけで簡単に全ての軸の非干渉化を実現することができる。

【発明を実施するための最良の形態】

[0018]

以下、本発明の実施の形態について図を参照して説明する。

【実施例1】

[0019]

図1は、本発明のロボットの制御装置を説明する全体構成図である。図において、100は1軸目ロボットの制御装置、200は2軸目ロボットの制御装置を表している。

1軸目ロボットの制御装置100は、1軸目位置指令 x_{ref1} と1軸目モータ位置検出値 x_{fb1} と2軸目から1軸目に作用する干渉力計算値 d_{is2} を入力し、制御対象が指令通り動作するよう制御演算を行い、1軸目トルク指令 t_{ref1} を出力する。8は1軸目モータを表し1軸目ロボットの制御装置100から出力される1軸目トルク指令 t_{ref1} により動作する。9は1軸目アームであり、モータ8と減速機等を介して結合されている。10は1軸目モータ8の位置 x_{fb1} を検出する1軸目モータ位置検出器である。

2軸目ロボットの制御装置 200 は、2軸目位置指令 x_{ref2} と 2 軸目モータ位置検出値 x_{fb2} と 1 軸目から 2 軸目に作用する干渉力計算値 d_{is1} を入力し、制御対象が指令通り動作するよう制御演算を行い、 2 軸目トルク指令 t_{ref2} を出力する。 18 は 2 軸目モータを表し 2 軸目ロボットの制御装置 200 から出力される 2 軸目トルク指令 t_{ref2} により動作する。 19 は 2 軸目アームであり、 2 軸目モータ 18 と減速機等を介して結合されている。 20 は 2 軸目モータ 18 の位置 x_{fb2} を検出する 2 軸目モータ位置検出器である。

また、両軸とも、通常、出力されたトルク指令値 tref は電流指令値に変換され電流アンプを経てモータが動作するが、その応答は無視できるほど十分に速く、また本発明では特に関係がないため省略している。

[0020]

ここで、モータ8,18とアーム9,19を結合する減速機は、ばね要素を有するため、ロボットの制御装置100およびロボットの制御装置200の制御対象は、どちらも、モータ慣性モーメントとアーム慣性モーメントが、ばね要素で結合された2慣性系と考えられる。

本実施例では、単軸ごとの制御対象を2慣性系とし、互いの軸間の干渉を考えた図4に 示す伝達関数で表される構成を考える。

図4中、各記号の意味は以下の通りである。

Jm1: 1軸目モータ慣性モーメント

J_{L1}: 1軸目アーム慣性モーメント

K1:1軸目減速機ばね定数

Jm2: 2軸目モータ慣性モーメント JL2: 2軸目アーム慣性モーメント

K2:2軸目減速機ばね定数

A, B:2軸の構成、成す角度、幾何学的関係から求まる係数

s:ラプラス演算子

disl:1軸目から2軸目に作用する干渉力 dis2:2軸目から1軸目に作用する干渉力

x 1: アーム 1 の位置 x 2: アーム 2 の位置

また、上記A、Bは力学計算で求めることが可能である。

例えば2つの軸が図3に示すような関係の場合を考える。1軸目と2軸目の成す角度を θ とし、1軸目と2軸目の軸間の距離をLで表し、各軸、回転中心から質量中心までの距 離をL1、L2で表し、それぞれの質量をM1, M2とすると、A, Bは式(9)のようにな

 $A = B = M2 * L2 * L * c o s (\theta) + M2 * L2^{2} \cdot \cdot \cdot (9)$

[0021]

以下、実際に1軸目ロボットの制御装置100内部の構成を説明する。

図1において、1は1軸目の位置制御部であり、1軸目非干渉位置信号 x ref_ff1と1 軸目位置検出値 x fb1が一致するよう、それらの差である 1 軸目位置偏差 e r r 1を入力 し、制御演算を行い、1軸目速度指令 V reflを出力する。

位置制御部1内の処理はどのように行っても良いが、例えば式(10)に示すように1 軸目位置ループ比例ゲインKp1を用いて比例制御を行えばよい。

 \cdots (10) $v_{refl} = K_{pl} * e r r l$

2は1軸目速度制御部であり、1軸目非干渉速度信号 V ref_ff1と1軸目の速度検出値 Vfb1が一致するように、式(11)で計算される1軸目速度偏差 Verr1を入力し、制御 演算を行い、1軸目トルク指令値 tref_fb1を出力する。

 \cdots (11) Verr1 = Vref_ff1 + Vref1 - Vfb1

[0022]

速度制御部2内の処理はどのように行っても良いが、例えば式(12)に示すように1 軸目速度ループ比例ゲインK_{v1}および1軸目速度ループ積分ゲインK_{i1}を用いて比例積分 制御を行えばよい。

 $t_{ref_fbl} = K_{vl} * (1 + K_{il} / s) * v_{errl} \cdot \cdot \cdot (12)$

3と4は微分器を表す。

5は1軸目非干渉位置信号作成部であり、1軸目位置指令 xref1と2軸目から1軸目へ 作用する干渉力計算値 dis2を入力し、干渉力 dis2が作用しても、1軸目位置指令 Xref1 通りにアーム9先端x1が動作するための1軸目モータ位置信号を図4に示す2軸の干渉 モデルの関係を用いて作成し、1軸目非干渉位置信号 X ref_ffl として出力する。 X ref_f f1の計算式を式(13)に示す。

 $x_{ref_ff1} = (J_{L1}/K1*s^2+1) *x_{ref1}-1/K1*d_{is2}$

[0023]6は1軸目非干渉トルク信号作成部であり、1軸目位置指令 Xref1と2軸目から1軸目 へ作用する干渉力計算値 d i s 2 を入力し、干渉力 d i s 2 の影響が作用しても、 1 軸目位置指 令xref1通りにアーム9先端x1が動作するための1軸目モータトルク指令信号を図4に 示す2軸の干渉モデルの関係を用いて作成し、1軸目非干渉トルク信号tref_ff1として 出力する。 t_{ref_ff1} の計算式を式(14)に示す。

 $t_{ref_ff1} = (J_{m1} * J_{L1} / K1 * s^4 + (J_{m1} + J_{L1}) s^2) * x_{ref1}$ $- (J_{m1}/K1*s^2+1) *d_{is2} \cdot \cdot \cdot (14)$

7は1軸目干渉力計算部であり、1軸目位置指令xreflを入力し、1軸目から2軸目へ 作用する干渉力 dis1を計算し出力する。図4から分かるように、dis1は式(15)で計 算される。

 $d_{is1} = B * x_{ref1} * s^2 \cdot \cdot \cdot (15)$

最終的に1軸目ロボットの制御装置100からモータ8へ出力される1軸目トルク指令値 t_{ref1} は以下の式(16)で計算される。

 $t_{ref1} = t_{ref_ff1} + t_{ref_fb1} \cdot \cdot \cdot \cdot (16)$

[0024]

次に、2軸目ロボットの制御装置200内部の構成を説明する。

図において、11は2軸目の位置制御部であり、2軸目非干渉位置信号 xref_ff2と2軸目位置検出値 xfb2が一致するよう、それらの差である2軸目位置偏差err2を入力し、制御演算を行い、2軸目速度指令 vref2を出力する。

位置制御部 1 1内の処理はどのように行っても良いが、例えば式(1 7)に示すように 2 軸目位置ループ比例ゲイン K_{p2} を用いて比例制御を行えばよい。

 $v_{ref2} = K_{p2} * e r r 2 \qquad \cdot \cdot \cdot (17)$

12は2軸目速度制御部であり、2軸目非干渉速度信号 Vref_ff2と2軸目の速度検出値 Vfb2が一致するように、式(18)で計算される2軸目速度偏差 Verr2を入力し、制御演算を行い、2軸目トルク指令値 tref_fb2を出力する。

 $v_{err2} = v_{ref_f12} + v_{ref2} v_{fb2} \cdot \cdot \cdot (18)$

[0025]

速度制御部 1 2内の処理はどのように行っても良いが、例えば式(1 9)に示すように 2 軸目速度ループ比例ゲイン K_{v2} および 2 軸目速度ループ積分ゲイン K_{i2} を用いて比例積分制御を行えばよい。

 $t_{ref_fb2} = K_{v2} * (1 + K_{i2} / s) * v_{err2} \cdot \cdot \cdot (19)$

13と14は微分器を表す。

15は2軸目非干渉位置信号作成部であり、2軸目位置指令 x_{ref2} と1軸目から2軸目へ作用する干渉力計算値 d_{is1} を入力し、干渉力 d_{is1} が作用しても、2軸目位置指令 x_{ref2} 通りにアーム19先端 x_{is1} 2が動作するための2軸目モータ位置信号を図4に示す2軸の干渉モデルの関係を用いて作成し、2軸目非干渉位置信号 x_{ref_f2} 2として出力する。 x_{ref_f2} 2の計算式を式(20)に示す。

 $x_{ref_ff2} = (J_{L2}/K2*s^2+1) * x_{ref2} - 1/K2*d_{is1} \cdot \cdot \cdot (20)$

[0026]

16 は 2 軸目非干渉トルク信号作成部であり、 2 軸目位置指令 x_{ref2} と 1 軸目から 2 軸目へ作用する干渉力計算値 d_{is1} を入力し、干渉力 d_{is1} の影響が作用しても、 2 軸目位置指令 x_{ref2} 通りにアーム 19 先端 x_{is1} 2 が動作するための 2 軸目モータトルク指令信号を図4に示す 2 軸の干渉モデルの関係を用いて作成し、 2 軸目非干渉トルク信号 t_{ref_f2} として出力する。 t_{ref_ff2} の計算式を式(21)に示す。

 $t_{ref_f_2} = (J_{m2} * J_{L2} / K2 * s^4 + (J_{m2} + J_{L2}) s^2) * x_{ref_2} - (J_{m2} / K2 * s^2 + 1) * d_{is1} \cdot \cdot \cdot (21)$

17は2軸目干渉力計算部であり、2軸目位置指令 x_{ref2} を入力し、2軸目から1軸目へ作用する干渉力 d_{is2} を計算し出力する。図4から分かるように、 d_{is2} は式(22)で計算される。

 $d_{is2} = A * x_{ref2} * s^2 \cdot \cdot \cdot (2 \ 2)$

最終的に 2 軸目ロボットの制御装置 2 0 0 からモータ 1 8 へ出力される 2 軸目トルク指令値 t_{ref2} は以下の式(2 3)で計算される。

 $t_{ref2} = t_{ref_ff2} + t_{ref_fb2} \cdot \cdot \cdot \cdot (2 3)$

[0027]

このように、干渉力が作用しても、各軸アーム9,19が各軸指令通りに動作するように、モータ位置信号と、モータトルク指令信号を作成し、それらの通りモータ8,18が動作するようにフィードバック制御を行う構成にしているので、軸間干渉があった場合も、各軸アーム9,19は自軸の指令通りに動作することができる。

本発明が特許文献1と異なる部分は、擬似モデルやモデル用の制御器を有さず、非干渉 位置信号作成部と非干渉トルク信号作成部とを備え、モータトルク補正信号だけではなく

、モータ位置信号も干渉を考慮して作成する部分である。

【実施例2】

[0028]

図2は第2実施例の構成を示す図である。本実施例が実施例1と異なる点は、実施例1では2軸の干渉を考慮していたのに対し、本実施例では複数軸間に干渉力が作用する場合を考慮している点である。

図2に示すように、n軸で構成されたロボットに関して考える。ここでは、2軸目からn軸目それぞれから1軸目へ干渉が作用している場合の1軸目の非干渉化を例に取り説明するが、他の軸間の干渉に関しても全く同様に実現できる。

図中、38はn軸目モータを表しn軸目ロボットの制御装置300から出力されるn軸目トルク指令trefnにより動作する。39はn軸目アームであり、モータ38と減速機等を介して結合されている。30はn軸目モータ38の位置xfbnを検出するn軸目モータ位置検出器である。

500 は干渉力加算器であり、2 軸目から 1 軸目に作用する干渉力計算値 d_{is2} から n 軸目から 1 軸目に作用する干渉力計算値 d_{isn} までの干渉力の総和 d_{is_all} を求める処理を式(24)に示すように行う。

 $d_{is_all} = d_{is2} + d_{is3} + \cdots + d_{isn} \cdot \cdots (2 4)$

ここで、 d_{is2} から d_{isn} までは、実施例 1 で図 3 を用いて説明したのと同様に、1 軸目から n 軸目までの各軸の構成、成す角度、幾何学的関係から求まる。

[0029]

このように、複数軸間に干渉が作用する場合でも、それぞれの軸から自軸へ作用する干渉力計算値の合計値を入力とし、後は、実施例1と同様の処理を行うだけで、簡単な構成で計算量も少なくすべての軸間の非干渉化を行うことが可能である。

また、軸が増えた場合や、考慮していなかった干渉を新たに考慮する場合なども、各軸の処理は全く変更することなく、各軸間の干渉力計算値の和を計算する部分を追加修正するだけなので、簡単に対応できる。

【産業上の利用可能性】

[0030]

本発明は、複数軸間で干渉力が作用しても、計算量は少なく、ロボットの非干渉化が実現できるため、軸数の多いロボットの非干渉化制御や、安価なCPUを用いたロボットの制御装置などの用途にも使用できる。

【図面の簡単な説明】

[0031]

- 【図1】本発明の第1実施例の構成を示すブロック図である。
- 【図2】本発明の第2実施例の構成を示すブロック図である。
- 【図3】干渉力の計算に必要な係数A,Bを求める際の力学モデルである。
- 【図4】単軸を2慣性系とし、互いの干渉力を考慮した制御対象モデルである。
- 【図5】従来のロボット制御装置の構成を示すブロック図である。
- 【図6】従来のロボット制御装置のモデル制御器内部の処理を示すブロック図である

【符号の説明】

[0032]

- 1 位置制御部
- 2 速度制御部
- 3 微分器
- 4 微分器
- 5 非干涉位置信号作成部。
- 6 非干渉トルク信号作成部
- 7 干渉力計算部
- 8 モータ

- 9 アーム
- 10 位置検出器
- 11 位置制御部
- 12 速度制御部
- 13 微分器
- 1 4 微分器
- 15 非干涉位置信号作成部
- 16 非干渉トルク信号作成部
- 17 干渉力計算部
- 18 モータ
- 19 アーム
- 20 位置検出器
- 38 モータ
- 39 アーム
- 30 位置検出器
- 100 1軸目ロボットの制御装置
- 200 2軸目ロボットの制御装置
- 300 n軸目ロボットの制御装置
- 500 干渉力加算器
- 51 モデル制御器

出証特2005-3012119

【図2】

【図3】

【図4】

【書類名】要約書

【要約】

【課題】計算量を大幅に低減してCPUの負担を軽減することのできるロボットの制御装 置を提供する。

【解決手段】互いに干渉する複数軸から構成されるロボットであって、モータ8,18と 、モータ8,18に減速機等を介して結合されたアーム9,19と、モータ位置検出器1 0,20とから構成され、各軸を各軸毎の指令通りに動作させるための位置制御部1,1 1および速度制御部2,12を備えたロボットの制御装置において、自軸の指令から他軸 に作用する干渉力を計算で求める干渉力計算部7,17と、他軸から作用する干渉力があ る場合も自軸が指令どおり動作するようなモータトルク指令信号を求める非干渉トルク信 号作成部6,16と、他軸から作用する干渉力がある場合も自軸が指令どおり動作するよ うなモータ位置信号を求める非干渉位置信号作成部5,15とを備えた。

【選択図】 図1

特願2003-432213

認定・付加情報

特許出願の番号

特願2003-432213

受付番号

5 0 3 0 2 1 4 2 9 3 9

書類名

特許願

担当官

第三担当上席

0092

作成日

平成16年 1月 5日

<認定情報・付加情報>

【提出日】

平成15年12月26日

出願人履歴情報

識別番号

[000006622]

1. 変更年月日 [変更理由]

1991年 9月27日

名称変更 住所変更

住 所

福岡県北九州市八幡西区黒崎城石2番1号

氏 名 株式会社安川電機