Name: Hemos ID:

CSE-321 Programming Languages 2010 Final

	Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Prob 6	Total
Score							
Max	18	28	16	12	36	40	150

- There are six problems on 16 pages, including two work sheets, in this exam.
- The maximum score for this exam is 150 points, and there is an extracredit problem.
- Be sure to write your name and Hemos ID.
- You have three hours for this exam.

Instructor-Thank-Students-Problem [Extracredit]

State "Yes" if you attended all the lectures in this course, without missing a single lecture.

PL 2010 $^{\lambda}$ [Extracredit]	
State "Yes" if you wear the PL $~2010^{\lambda}$ T-shirt.	
PL 2010 Tekken Match [Extracredit]	
State "Yes" if you played in PL 2010 Tekken Match.	
Who did you beat in PL 2010 Tekken Match?	

1 Mutable references [18 pts]

Consider the following simply-typed λ -calculus extended with mutable references.

```
\begin{array}{lll} & \text{type} & A & ::= & P \mid A \rightarrow A \mid \text{int} \mid \text{ref } A \\ & \text{expression} & e & ::= & x \mid \lambda x \colon A.\ e \mid e\ e \mid \text{let } x = e\ \text{in } e \mid \text{ref } e \mid !e \mid e := e \mid 0 \mid 1 \mid \cdots \\ & \text{value} & v & ::= & \lambda x \colon A.\ e \mid l \mid 0 \mid 1 \mid \cdots \\ & \text{store} & \psi & ::= & \cdot \mid \psi, l \mapsto v \\ & \text{typing context} & \Gamma & ::= & \cdot \mid \Gamma, x \colon A \\ & \text{store typing context} & \Psi & ::= & \cdot \mid \Psi, l \mapsto A \end{array}
```

Question 1. [8 pts] We want to represent an array of integers as a function taking an index (of type int) and returning a corresponding elements of the array. We choose a functional representation of arrays by defining type iarray for arrays of integers as follows:

$$\mathsf{iarray} = \mathsf{ref} \; (\mathsf{int} \! \to \! \mathsf{int})$$

We need the following constructs for arrays:

- new: unit→iarray for creating a new array.
 new () returns a new array of indefinite size; all elements are initialized as 0.
- access : iarray \rightarrow int \rightarrow int for accessing an array. access a i returns the i-th element of array a.
- update: iarray \rightarrow int \rightarrow int \rightarrow unit for updating an array. update a i n updates the i-the element of array a with integer n.

Exploit the constructs for mutable references to implement new, access and update. Fill in the blank:

```
\begin{array}{rcl} {\rm new} &=& \lambda_-{:} {\rm unit.\, ref} \ \lambda i{:} {\rm int.\, } 0 \\ \\ {\rm access} &=& \lambda a{:} {\rm iarray.\,} \lambda i{:} {\rm int.\,} (!a) \ i \\ \\ {\rm update} &=& \lambda a{:} {\rm iarray.\,} \lambda i{:} {\rm int.\,} \lambda n{:} {\rm int.\,} \\ \\ &&&&&\\ \end{array}
```

Question 2. [10 pts] State progress and type preservation theorems. In your statements, use the following judgments:

- A typing judgment $\Gamma \mid \Psi \vdash e : A$ means that expression e has type A under typing context Γ and store typing context Ψ .
- A reduction judgment $e \mid \psi \mapsto e' \mid \psi'$ means that e with store ψ reduces to e' with ψ' .
- A store judgment $\psi :: \Psi$ means that Ψ corresponds to ψ .

Theorem (Progress). Suppose that expression e satisfies $\cdot \mid \Psi \vdash e : A$ for some store typing context Ψ and type A. Then either:

(1)	pr	
(2) for any	such that	
h	J	

Theorem (Type preservation). $Suppose \left\{ \begin{array}{l} \Gamma \mid \Psi \vdash e : A \\ \psi :: \Psi \\ e \mid \psi \mapsto e' \mid \psi' \end{array} \right. .$

2 Evaluation context and environment [28 pts]

Consider the following fragment of the simply-typed λ -calculus.

 $\begin{array}{lll} \text{type} & A & ::= & P \mid A \rightarrow A \\ \text{base type} & P & ::= & \text{bool} \\ \text{expression} & e & ::= & x \mid \lambda x \colon A.\ e \mid e\ e \mid \text{true} \mid \text{false} \mid \text{if}\ e \ \text{then}\ e \ \text{else}\ e \end{array}$

Question 1. [5 pts] Give the definition of evaluation contexts for the call-by-value strategy.

evaluation context $\kappa ::=$

Question 2. [5 pts] Give the definition of evaluation contexts for the call-by-name strategy.

evaluation context $\kappa ::=$

Question 3. [5 pts] Under the call-by-value strategy, give an expression e such that

- $e = \kappa \llbracket e' \rrbracket$ where e' is the redex, and
- e reduces to e_0 that is decomposed to $\kappa \llbracket e'' \rrbracket$ where e'' is the redex for the next reduction.

Question 4. [5 pts] Under the call-by-value strategy, give an expression e such that

- $e = \kappa \llbracket e' \rrbracket$ where e' is the redex, and
- e reduces to e_0 that is decomposed to $\kappa'[e'']$ where e'' is the redex for the next reduction and $\kappa \neq \kappa'$.

Question 5. [8 pts] The key idea behind the environment semantics is to postpone a substitution [v/x]e by storing a pair of value v and variable x in an *environment*. We use the following definition of environment:

environment
$$\eta ::= \cdot \mid \eta, x \hookrightarrow v$$

· denotes an empty environment, and $x \hookrightarrow v$ means that variable x is to be replaced by value v. We use an *environment evaluation judgment* of the form $\eta \vdash e \hookrightarrow v$:

$$\eta \vdash e \hookrightarrow v \qquad \Leftrightarrow \quad e \ evaluates \ to \ v \ under \ environment \ \eta$$

Give the definition of values for the simply-typed λ -calculus given in the beginning of this section.

value
$$v :=$$

Complete the following three rules for the environment evaluation judgment $\eta \vdash e \hookrightarrow v$ corresponding to the call-by-value strategy.

$$\eta \vdash x \hookrightarrow$$

$$\eta \vdash \lambda x : A. \, e \hookrightarrow$$

$$\eta \vdash e_1 \ e_2 \hookrightarrow$$

3 Subtyping [16 pts]

Question 1. [6 pts] Complete subtyping rules for function and reference types.

$$A \rightarrow B \leq A' \rightarrow B'$$

$$Fun_{\leq}$$

$$ref \ A \leq ref \ B$$

$$Ref_{\leq}$$

Question 2. [10 pts] The Java language adopts the following subtyping rule for array types:

$$\frac{A \leq B}{\text{array } A \leq \text{array } B} \ Array_{\leq}{'}$$

While it is controversial whether the rule $Array \leq'$ is a flaw in the design of the Java language, using the rule $Array \leq'$ for subtyping on array types incurs a runtime overhead which would otherwise be unnecessary. State specifically when and why such runtime overhead occurs in terms of dynamic tag-checks which inspect type information of each object at runtime. You may write in Korean.

4 Recursive types [12 pts]

Consider the following simply-typed λ -calculus extended with recursive types:

$$\begin{array}{lll} \text{type} & A & ::= & \text{unit} \mid A \rightarrow A \mid A + A \mid \alpha \mid \mu\alpha.A \\ \text{expression} & e & ::= & x \mid \lambda x \colon A.\,e \mid e\,e\mid \\ & & \text{inl}_A\,\,e \mid \text{inr}_A\,\,e \mid \text{case}\,\,e\,\,\text{of}\,\,\text{inl}\,\,x.\,e \mid \text{inr}\,\,y.\,e\mid \\ & & \text{fold}_C\,\,e \mid \text{unfold}_C\,\,e \\ \\ \text{typing context} & \Gamma & ::= & \cdot \mid \Gamma, x \colon A \mid \Gamma, \alpha \text{ type} \end{array}$$

Question 1. [6 pts] Give typing rules for fold_C e and unfold_C e.

$$\frac{C = \mu \alpha. A}{\Gamma \vdash \operatorname{fold}_C e} : \qquad \qquad \Gamma \vdash C \text{ type}$$

$$\frac{C = \mu \alpha. A}{\Gamma \vdash \operatorname{unfold}_C e} : \qquad \qquad \operatorname{Unfold}$$

Question 2. [6 pts] Consider the following recursive datatype for natural numbers:

Using a recursive type, we encode type nat as $\mu\alpha$.unit+ α . Encode Zero and Succ e.

Question 3. [Extracredit] We want to translate an expression e in the untyped λ -calculus into an expression e° in the simply typed λ -calculus extended with recursive types. We treat all expressions in the untyped λ -calculus alike by assigning a unique type Ω (i.e., e° is to have type Ω). If every expression is assigned type Ω , we may think that $\lambda x. e$ is assigned type $\Omega \to \Omega$ as well as type Ω . Or, in order for e_1 e_2 to be assigned type Ω , e_1 must be assigned not only type Ω but also type $\Omega \to \Omega$ because e_2 is assigned type Ω . Thus Ω must be identified with $\Omega \to \Omega$.

Use recursive types and their constructs to complete the definition of Ω and e° . Fill in the blank:

$$\Omega =$$

$$x^{\circ} = x$$

$$(\lambda x. e)^{\circ} =$$

$$(e_1 e_2)^{\circ} =$$

5 Polymorphism (36 pts)

The following shows the abstract syntax for System F:

$$\begin{array}{lll} \text{type} & A & ::= & A \rightarrow A \mid \alpha \mid \forall \alpha.A \\ \text{expression} & e & ::= & x \mid \lambda x \colon\! A.\, e \mid e \mid\! e \mid\! \mid \Lambda \alpha.\, e \mid e \mid\! \mid A \rfloor \end{array}$$

Below we define an *erasure* function $erase(\cdot)$ which takes an expression in System F and erases all type annotations in it to produce a corresponding expression in untyped λ -calculus:

$$\begin{array}{lll} erase(x) & = & x \\ erase(\lambda x \colon A \colon e) & = & \lambda x \colon erase(e) \\ erase(e_1 \ e_2) & = & erase(e_1) \ erase(\Delta \alpha \colon e) \\ erase(\Lambda \alpha \colon e) & = & erase(e) \\ erase(e \ \|A\|) & = & erase(e) \end{array}$$

Question 1. [5 pts] Give a well-typed closed expression e in System F such that $erase(e) = \lambda x. x x$. If there is no such expression, state so.

Question 2. [5 pts] Give a well-typed closed expression e in System F such that $erase(e) = (\lambda x. x \ x) \ (\lambda x. x \ x)$. If there is no such expression, state so.

Question 3. [6 pts] A Church numeral \hat{n} takes a function f and returns another function f^n which applies f exactly n times. In order for f^n to be well-typed, its argument type and return type must be identical. Hence we define the base type nat in System F as follows:

$$\mathsf{nat} = \forall \alpha. (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$$

Encode a zero zero of type nat and a successor function succ of type nat \rightarrow nat:

The following shows the abstract syntax for the let-polymorphism system:

Below we define an erasure function $erase(\cdot)$ which takes an expression in the let-polymorphism system and erases all type annotations in it to produce a corresponding expression in the implicit let-polymorphism system:

```
\begin{array}{lll} erase(x) & = & x \\ erase(\lambda x : A . e) & = & \lambda x . \, erase(e) \\ erase(e_1 \ e_2) & = & erase(e_1) \, \, erase(e_2) \\ erase(\Lambda \alpha . e) & = & erase(e) \\ erase(e \ \llbracket A \rrbracket) & = & erase(e) \\ erase(\text{let } x : U = e \text{ in } e') & = & \text{let } x = erase(e) \text{ in } erase(e') \end{array}
```

Question 4. [5 pts] Give a well-typed closed expression e in the let-polymorphism system such that $erase(e) = \text{let } f = \lambda x. x$ in (f true, f 0). Assume two monotypes bool for boolean values and int for integers.

Question 5. [10 pts] Explain value restriction. You may write in Korean.

Question 6. [5 pts] Give a well-typed closed expression e in the let-polymorphism system with value restriction such that $erase(e) = \text{let } f = (\lambda x. x) \ (\lambda y. y) \ \text{in } (f \text{ true}, f 1)$. If there is no such expression, explain why. You may write in Korean.

6 Type reconstruction [40 pts]

Consider the implicit let-polymorphic type system given in the Course Notes.

 $\begin{array}{lll} \text{monotype} & A & ::= & A \rightarrow A \mid \alpha \\ & \text{polytype} & U & ::= & A \mid \forall \alpha.U \\ & \text{expression} & e & ::= & x \mid \lambda x. \ e \mid e \ e \mid \text{let} \ x = e \ \text{in} \ e \\ & \text{typing context} & \Gamma & ::= & \cdot \mid \Gamma, x : U \\ & \text{type substitution} & S & ::= & \text{id} \mid \{A/\alpha\} \mid S \circ S \\ & \text{type equations} & E & ::= & \cdot \mid E, A = A \end{array}$

- $S \cdot U$ and $S \cdot \Gamma$ denote applications of S to U and Γ , respectively.
- $ftv(\Gamma)$ denotes the set of free type variables in Γ ; ftv(U) denotes the set of free type variables in U.
- We write $\Gamma + x : U$ for $\Gamma \{x : U'\}, x : U$ if $x : U' \in \Gamma$, and for $\Gamma, x : U$ if Γ contains no type binding for variable x.

Question 1. [6 pts] The type reconstruction algorithm, called W, takes a typing context Γ and an expression e as input, and returns a pair of a type substitution S and a monotype A as output. State the soundness theorem of the algorithm W. Use the typing judgment of the form $\Gamma \triangleright x : U$ in your statement.

(Soundness of W). If $W(\Gamma, e) = (S, A)$,

then

Question 2. [14 pts] Assume that you are given the unification algorithm $\mathsf{Unify}(E)$ and an auxiliary function $\mathsf{Gen}_{\Gamma}(A)$ which generalizes monotype A to a polytype after taking into account free type variables in typing context Γ . The following specifies the algorithm \mathcal{W} . Complete the specification:

$$\mathcal{W}(\Gamma,x) = (\mathrm{id},\{\vec{\beta}/\vec{\alpha}\} \cdot A) \qquad x : \forall \vec{\alpha}.A \in \Gamma \text{ and fresh } \vec{\beta}$$

$$\mathcal{W}(\Gamma,\lambda x.e) = \mathrm{let}\,(S,A) = \mathcal{W}(\Gamma+x:\alpha,e) \text{ in}$$

$$\mathcal{W}(\Gamma,e_1\,e_2) = \mathrm{let}\,(S_1,A_1) = \mathcal{W}(\Gamma,e_1) \text{ in}$$

$$\mathrm{let}\, \underline{\hspace{2cm}}$$

$$\mathrm{let}\, \underline{\hspace{2cm}}$$

Question 3. [6 pts] Given an application e_1 e_2 , the algorithm \mathcal{W} reconstructs first the type of e_1 and then the type of e_2 . Modify the algorithm \mathcal{W} so that it reconstructs first the type of e_2 and then the type of e_1 .

Question 4. [6 pts] Now we add a product type $A_1 \times A_2$ and an untyped pair construct (e_1, e_2) . The typing rule for (e_1, e_2) is as follows:

$$\frac{\Gamma \rhd e_1 : A_1 \quad \Gamma \rhd e_2 : A_2}{\Gamma \rhd (e_1, e_2) : A_1 \times A_2} \ \times \mathbf{I}$$

Complete the case for (e_1, e_2) in the algorithm \mathcal{W} :

$$\mathcal{W}(\Gamma,(e_1,e_2))$$
 =

Substitution —				
Substitution = .				
Type = 1				
For each type variable	e in the resultant type	pe substitution, ind	licate where it is prod	uced.

Question 5. [8 pts] What is the result of $W(\cdot, \text{let } f = \lambda x. x \text{ in } (f \ 0, f \text{ true}))$? Assume two

monotypes bool for boolean values and int for integers.

Work sheet

Work sheet