组会讲解稿:

Social Influence Learning for Recommendation Systems

申健强 2313119

2025年4月6日

Slide 1: 封面

大家好,我是申健强,学号 2313119。今天给大家汇报的论文题目是《Social Influence Learning for Recommendation Systems》,发表在 CIKM 2024。(此页无需解释图片,直接自我介绍并引出题目)【翻页】

Slide 2: 目录

本次汇报分为四个部分:

- 1. 研究动机与挑战
- 2. 模型方法
- 3. 实验结果与分析
- 4. 总结与展望

(介绍结构,帮助听众建立整体框架)【翻页】

Slide 3: 研究动机

- 推荐系统常用用户一物品交互数据,但易出现"冷启动"和"稀疏性"问题。
- 社交推荐利用社交图缓解上述问题,但多将社交图作为静态辅助,忽略深层次的社会影响机制。
- 本文目标: 挖掘并优化潜在的社会影响模式, 以提升推荐质量。

举例说明: 当你看到好友在某电商平台买了一款烤箱,你更倾向于相信他的选择;如果他的朋友也买过,影响可能更强。【**翻页**】

Slide 4: 三大挑战

论文总结了三大关键挑战:

- 1. **社会影响多样性**:不同类型的社交关系(朋友、家人、同事)带来不同的影响模式,却 缺乏标签加以区分。
- 2. 社会影响传播: 图神经网络中, 近邻不一定影响最大, 需根据行为一致性自适应加权。
- 3. **隐式社会影响探索**:从用户—物品交互中挖掘潜在弱连边,补全社交图,但要防止"表示塌陷"。

图 1: 社会影响的多样性、传播与探索示例

(请看图 1.png: 左图展示多种关系; 中图示意不同行为一致性; 右图为隐式邻居示例)【翻页】

Slide 5: EIISRS 方法概览

为应对三大挑战,作者提出了 EIISRS 模型:

- 双塔架构: 并行处理用户—物品二分图和用户社交图, 信息流独立互补。
- 双重掩码预处理: 在每层图卷积前,用掩码矩阵过滤噪声边,只保留有用关系。
- 三大核心组件:
 - 1. Layerwise Graph-Enhanced VAE(模拟社会影响多样性)
 - 2. Layerwise Graph Attention (自适应聚合社交层次信息)
 - 3. Dual Sampling Process(挖掘并筛选隐式邻居,防止表示塌陷)

(请看图 2.png, 整体流程清晰可见: 输入 \rightarrow 掩码 \rightarrow 双塔卷积 \rightarrow 三组件 \rightarrow 融合 \rightarrow 输出)【翻 **页**】

图 2: EIISRS 整体框架示意

Slide 6: 双塔架构与掩码预处理

二分图路径:

• 聚合用户—物品交互, 捕捉协同过滤特征。

• 更新公式:
$$\mathbf{h}_{u}^{(l+1)} = \sigma \left(\sum_{i \in \mathcal{N}_{r}(u)} w_{ui} \mathbf{h}_{i}^{(l)} + b \right)$$
.

社会图路径:

• 聚合社交邻居影响, 捕捉高阶社交特征。

• 更新公式:
$$\mathbf{h}_{u}^{(l+1)} = \sigma \left(\sum_{v \in \mathcal{N}_{c}(u)} w_{uv} \mathbf{h}_{v}^{(l)} + b \right)$$
.

双重掩码: 在每层前分别应用掩码矩阵 $\mathbf{M}_{r}^{(l)}$ 和 $\mathbf{M}_{s}^{(l)}$, 剔除与当前任务无关的边,减少噪声。 **举例:** 只保留与你购买过同一品牌手机的好友边,过滤其他无关社交连接。【**翻页**】

Slide 7: 组件—LGE-VAE

• 目的: 模拟社交影响的多样性。

• **做法:** 对第 l 层社交卷积输出 $P_s^{(l)}$ 编码为高斯分布参数 $(\mu^{(l)},\sigma^{(l)})$ 。

• 采样: $Z_s^{(l)} = \mu^{(l)} + \sigma^{(l)} \odot \epsilon$, $\epsilon \sim \mathcal{N}(0, I)$ 。

• **训练**:结合重构损失与 KL 散度 (β -VAE) 学习分布。

比喻:就像把每个社交层打包成不同风格的"影响包",再随机抽取一种投递给模型,模拟真实世界多样化的社交影响。【翻页】

Slide 8: 组件二-层次图注意力

$$\alpha_l = \frac{\exp(a^\top W_{\text{att}} Z_s^{(l)})}{\sum_j \exp(a^\top W_{\text{att}} Z_s^{(j)})}, \quad \tilde{P}_s = \sum_l \alpha_l Z_s^{(l)}.$$

- 自适应地为每层社交表示分配权重。
- 聚合后得到综合社交影响 \tilde{P}_s 。

举例:如果用户更信任同事的购买决策,那么"同事层"对应的注意力权重会更高。【翻页】

Slide 9: 组件三-Dual Sampling Process

- Gumbel **采样**: 在用户—物品路径表示 P_r 上抽取 K 个隐式邻居候选。
- Bernoulli 采样:将候选与显式邻居合并后,按 Bernoulli 分布随机筛选,更新社交图。

目的:发现潜在影响来源,同时保留一定随机性,避免所有用户表示过度相似。**举例:**你可能不是某博主的粉丝,但因为同样看过他的科普视频而被视为"潜在邻居",双重采样会筛选部分关系,保持多样性。【翻页】

Slide 10: 训练与融合

- **P**inal = $P_r + \sigma(\tilde{P}_s W_{agg})$.
- 损失: 结合 BPR 排序损失与 VAE 重构损失的加权和,端到端训练所有参数。

说明:这样既保留了交互信号,又融合了自适应社交影响。【翻页】

Slide 11: 实验设置

• 数据集: LastFM, Flickr, Yelp

• 对比模型: BPR, SBPR, CDAE, Multi-VAE, NGCF, LightGCN, DiffNet++, ESRF

• 评估指标: Precision@10, Recall@10, F1@10, NDCG@10

(确保评估对所有物品排序, 无偏抽样)【翻页】

Slide 12: 推荐性能对比

实验结果显示, EIISRS 在三数据集上相对次优模型提升 1.8%-9.1%, 效果稳定且显著。【翻页】

Model	LastFM				Flickr				Yelp			
	P@10	R@10	F1@10	N@10	P@10	R@10	F1@10	N@10	P@10	R@10	F1@10	N@10
BPR	0.1157	0.1180	0.1168	0.1452	0.0019	0.0020	0.0019	0.0021	0.0019	0.0071	0.0030	0.0045
SBPR	0.1559	0.1564	0.1561	0.2019	0.0018	0.0018	0.0013	0.0024	0.0032	0.0121	0.0051	0.0074
CDAE	0.0364	0.0755	0.0491	0.0682	0.0013	0.0034	0.0019	0.0026	0.0013	0.0110	0.0023	0.0054
Multi-VAE	0.0950	0.1825	0.1250	0.1607	0.0015	0.0044	0.0022	0.0031	0.0028	0.0232	0.0050	0.0118
NGCF	0.1662	0.1708	0.1685	0.2079	0.0026	0.0034	0.0030	0.0034	0.0041	0.0162	0.0066	0.0098
LightGCN	0.1631	0.1676	0.1653	0.2137	0.0033	0.0039	0.0036	0.0044	0.0061	0.0238	0.0097	0.0149
DiffNet++	0.1722	0.1751	0.1736	0.2069	0.0030	0.0032	0.0031	0.0038	0.0049	0.0179	0.0076	0.0111
ESRF	0.1913	0.1968	0.1940	0.2465	0.0033	0.0046	0.0039	0.0047	0.0055	0.0209	0.0088	0.0130
EIISRS	0.1953	0.2004	0.1978	0.2532	0.0036	0.0047	0.0041	0.0051	0.0066	0.0244	0.0103	0.0153
Improv.	2.1%	1.8%	2.0%	2.7%	9.1%	2.2%	5.1%	7.8%	8.2%	2.5%	6.2%	2.7%

图 3: Precision@10 & NDCG@10 对比

Slide 13: 消融实验

图 4: 移除 SIP/SID/SIE 后性能变化

移除社会影响多样性模拟 (SID) 导致性能下降最大,验证了其在模型中的关键作用。【**翻**页】

Slide 14: 案例分析—表示塌陷

可视化结果表明, EIISRS 的用户表示分布更均匀, 有效缓解了其他模型在稀疏场景下的表示塌陷问题。【翻页】

Slide 15: 结论与展望

结论

- 系统性建模社会影响的多样性、传播和探索三大挑战。
- LGE-VAE、层次注意力与 Dual Sampling 三组件协同提升推荐性能。

图 5: t-SNE 可视化: EIISRS 缓解表示塌陷

• 多场景实验验证, Precision/NDCG 等指标均显著优于基线。

展望

• 自适应超参数:减少手动调参成本。

• 时序与上下文: 引入用户行为时序、内容标签等额外信号。

• 大规模图训练: 优化算法与分布式方案, 支持亿级用户与物品。

结束语:以上就是我的汇报,感谢大家的聆听,欢迎交流与提问!