Phys 2010 (NSCC), Fall 2007 Problem Set #1

1. Convert $19.6 \frac{m}{s}$ to units of $\frac{mi}{hr}$.

2. For the triangle shown here, find the missing side y and the angle $\theta.$

3. For the two adjoined right triangles shown here, find the missing length x and the angle θ .

4. Vector **A** has magnitude 85.0 and points in the direction shown. Find A_x and A_y .

5. The the components of the vector \mathbf{A} are

$$A_x = -2.30$$
 and $A_y = +5.60$.

Find the magnitude and direction of A.

6. The vectors \mathbf{A} and \mathbf{B} have the magnitudes and directions shown at the right. Find the x and y components of the two vectors.

7	In	problem	6	find	the	magnitude	and	direction	of \mathbf{A} -	$\perp \mathbf{R}$

8. A car moves in a straight line; it starts from rest and after 12.0 s it has traveled 66.0 m and its velocity is $+35.0 \, \frac{\rm m}{\rm s}$. Find: (a) The average velocity of the car and (b) the average acceleration of the car for the given period.