CH. 5: Multivariate Methods

-- Methods for dealing with multivariate data.

5.1 Multivariate Data

- There are various types of data:
 - i) Numerical data: length, width, height, size, volume, weight, speed, temperature,
 - ii) Symbolic data: tag, label, index, name, title, .
 - iii) Abstract data: concept, idea, knowledge, thought, sensation, expression, feeling, ...
 - iv) Entity data: human, animal, car, building,

- □ There are diverse media of data: text, graph, figure, voice, image, video,
- Data are often represented in the form of multivariate format, e.g., vector, matrix, tensor, collectively called pattern.

```
Example: \mathbf{x} = (x_1, x_2, \dots, x_d)^T: d-D data vector where x_1, x_2, \dots, x_d: attributes/features

e.g., patient = (age, gender, height, weight, blood presure, blood sugar, cholesterol, \dots)<sup>T</sup>

customer = (age, marage, income, saving, installment payment, \dots)<sup>T</sup>
```

Graphical representation (visualization)

A pattern $\mathbf{x} = (x_1, x_2, \dots, x_d)^T$ can be represented as a point in a d-D space. A sample $X = \{\mathbf{x}_i\}_{i=1}^N$ can be represented as a set of points in the space.

Matrix representation (computation)

A sample $X = \{x_i\}_{i=1}^N$ can be represented

as a matrix.
$$X = [x_{1}, x_{2}, \dots, x_{N}]^{T} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1d} \\ x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & & & & \\ x_{N1} & x_{N2} & \dots & x_{Nd} \end{bmatrix}$$
e.g., Rotation

$$RX = R \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & & & & \\ x_{N1} & x_{N2} & \cdots & x_{Nd} \end{bmatrix}$$

5.2 Data Cleaning

Data may have noise, error, missing value,
 repetition, different formats.

- Cleaning methods for compensating for shortcomings of data
 - (a) Noisy and error data -- smoothing

Linear smoothing

Nonlinear smoothing

Median filter

• *K*-nearest neighbors (K-NN)

(b) Missing values -- imputation

Mean imputation: Substitute the mean of the available data of the missing attribute

Imputation by regression: Predict based on other attributes

$$egin{bmatrix} oldsymbol{x}_{11} & oldsymbol{x}_{12} & \cdots & oldsymbol{x}_{1d} \ oldsymbol{x}_{21} & oldsymbol{x}_{22} & \cdots & oldsymbol{x}_{2d} \ dots & dots \ oldsymbol{x}_{N1} & oldsymbol{x}_{N2} & \cdots & oldsymbol{x}_{Nd} \end{bmatrix}$$

(c) Different formats -- quantization

e.g.,

5.3 Linear vs Nonlinear Space

Data vector: $\mathbf{x} = (x_1, x_2, \dots, x_n)$

- Linear space
- Nonlinear space

- (a) Different scales of attributes
- (b) Correlated attributes
- (c) Curvilineal attributes

(a) Different Scales -- Normalization

Normalization: $x_i = \frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)}$

Example: $\mathbf{x}_1 = (2, 3, 4, 2, 1, 15)^T$,

$$\mathbf{x}_2 = (1, 2, 2, 4, 3, 51)^T, \quad \mathbf{x}_3 = (1, 4, 3, 2, 2, 35)^T.$$

$$d(x_1,x_2) = \sqrt{(2-1)^2 + (3-2)^2 + (4-2)^2 + (2-4)^2 + (1-3)^2 + (15-51)^2} \approx |15-51|$$

$$d(\mathbf{x}_2,\mathbf{x}_3) = \sqrt{(1-1)^2 + (2-4)^2 + (2-3)^2 + (4-2)^2 + (3-2)^2 + (51-35)^2} \approx |51-35|$$

$$d(x_3,x_1) = \sqrt{(1-2)^2 + (4-3)^2 + (3-4)^2 + (2-2)^2 + (2-1)^2 + (35-15)^2} \approx |35-15|$$

 $d(\mathbf{x}_1,\mathbf{x}_2),\ d(\mathbf{x}_2,\mathbf{x}_3),\ d(\mathbf{x}_3,\mathbf{x}_1)$ are dominated by feature x_6

Normalization:
$$x_i = \frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)}, i = 1, \dots, 6$$

$$\mathbf{x}_{1}' = (1, 0.5, 1, 0, 0, 0), \quad \mathbf{x}_{2}' = (0, 0, 0, 1, 1, 1),$$

$$d(\mathbf{x}_1',\mathbf{x}_2') = \sqrt{(1-0)^2 + (0.5-0)^2 + (1-0)^2 + (0-1)^2 + (0-1)^2 + (0-1)^2}$$

Z-normalization:

$$x'_{i} = \frac{x_{i} - \mu_{x_{i}}}{\sigma_{x_{i}}} \sim Z(0,1)$$

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & & & & \\ x_{N1} & x_{N2} & \cdots & x_{Nd} \end{bmatrix}$$

(b) Correlated attributes -- PCA

Principal Component Analysis

- -- Linearly transforms a number of correlated features $\{x_1, \dots, x_n\}$ into the same number of uncorrelated features $\{y_1, \dots, y_n\}$.
- Correlation coefficient: $\rho(x_i, x_j) = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$ Uncorrelation: $\rho = 0 \Rightarrow \sigma_{ij} = \text{Cov}(x_i, x_j) = 0$. Graphically, the axes corresponding to x_2 uncorelated x_i and x_j are orthogonal.

• The transformation from an oblique to an orthogonal space is accomplished through a transformation matrix T.

• PCA derive T

Data vectors $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})^T$, $x_i, i = 1, 2, \dots, N$ $i = 1, 2, \dots, N$ Mean vectors: $\boldsymbol{\mu}_x = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$,

Covariance matrix:

$$C_{x} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} - \boldsymbol{\mu}_{x}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{x})^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} \mathbf{x}_{i}^{T} - \mathbf{x}_{i} \boldsymbol{\mu}_{x}^{T} - \boldsymbol{\mu}_{x} \mathbf{x}_{i}^{T} + \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{T})$$

$$= \frac{1}{N} [\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \sum_{i=1}^{N} \mathbf{x}_{i} \boldsymbol{\mu}_{x}^{T} - \boldsymbol{\mu}_{x} \sum_{i=1}^{N} \mathbf{x}_{i}^{T} + \sum_{i=1}^{N} \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{T}]$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} + \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{T} - \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{T} - \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{T} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{T}$$

Let λ_i and e_i , $i = 1, \dots, d$, be the eigenvalues and eigenvectors of C_x , i.e., $C_x e_i = \lambda_i e_i$.

e's: principal components

Suppose
$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$$
.

Let
$$A = [\boldsymbol{e}_1 \ \boldsymbol{e}_2 \ \cdots \ \boldsymbol{e}_d],$$

and
$$\mathbf{y}_i = A^T (\mathbf{x}_i - \boldsymbol{\mu}_x)$$
.

y-axes corresponding to eigenvectors e's are orthogonal, i.e., uncorrelated.

$$y_{i} \longleftrightarrow y_{3} e_{3}$$

$$y_{2} e_{2}$$

$$\mu_{y} = \frac{1}{N} \sum_{i=1}^{N} y_{i} = \frac{1}{N} \sum_{i=1}^{N} A^{T} (x_{i} - \mu_{x}) = \frac{1}{N} A^{T} \left(\sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} \mu_{x} \right)$$

$$= \frac{1}{N} A^{T} \left(N \frac{1}{N} \sum_{i=1}^{N} x_{i} - N \mu_{x} \right) = \frac{1}{N} A^{T} \left(N \mu_{x} - N \mu_{x} \right) = \mathbf{0}$$

(c) Curvilineal attributes – Manifold Learning

Euclidean vs Geodesic distance

Manifold

Without knowing the manifold, on which data points lied, their distances are meaningless.

Manifold Learning – Isometric Feature Mapping

-- Approximates the manifold by defining a graph whose nodes correspond to data points and whose edges connect neighboring points.

For neighboring points that are close in the input space (those with i, distance less than some \mathcal{E} or ii, one of the n nearest), Euclidean distance is used. For faraway points, geodesic distance is calculated by summing the distances between the points along the way over the manifold.

Once the distance matrix $D = \begin{bmatrix} d_{ij} \end{bmatrix}_{N \times N}$ is formed, use multidimensional scaling (MDS) technique to place the N points in any selected space s.t. the Euclidean distances between them is as close possible to D.

A Global Geometric Framework for Nonlinear Dimensionality Reduction, J.B. Tenenbaum, V. de Silva and J.C. Langford, Science, Vol 290, 2000.

MDS Algorithm:

Given matrix $D = [d_{rs}]$, where d_{rs} is the distance between data points r and s in the p-D space.

Suppose data points have been centered at the origin.

1. Calculate $B = [b_{rs}]$, where

$$b_{rs} = \frac{1}{2} (d_{r \cdot}^2 + d_{\cdot s}^2 - d_{\cdot \cdot}^2 - d_{rs}^2)$$

$$d_{r \cdot}^2 = \frac{1}{N} \sum_{s} d_{rs}^2, \quad d_{\cdot s}^2 = \frac{1}{N} \sum_{r} d_{rs}^2, \quad d_{\cdot \cdot}^2 = \frac{1}{N^2} \sum_{r} \sum_{s} d_{rs}^2$$

2. Find the spectral decomposition of B, $B = E\Lambda E^T$.

- 3. Discard from Λ the N-p small eigenvalues and from E the corresponding eigenvectors to form Λ' and E', respectively.
- 4. Find $Z = E' \Lambda'^{1/2}$.

The coordinates of the points are the rows of Z.

See Appendix for the detail of MDS.

Multidimensional Scaling, Michael A.A. Cox and T.E. Cox, 2006.

Spectral Decomposition

Let *E* be a $n \times n$ matrix whose *i*th column is the unit eigenvector e_i of square real matrix $A_{n \times n}$.

$$A = AEE^{T} = A(\mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{n})E^{T} = (A\mathbf{e}_{1}, A\mathbf{e}_{2}, \dots, A\mathbf{e}_{n})E^{T}$$

$$= (\lambda_{1}\mathbf{e}_{1}, \lambda_{2}\mathbf{e}_{2}, \dots, \lambda_{n}\mathbf{e}_{n})E^{T} = \lambda_{1}\mathbf{e}_{1}\mathbf{e}_{1}^{T} + \lambda_{2}\mathbf{e}_{2}\mathbf{e}_{2}^{T} + \dots + \lambda_{n}\mathbf{e}_{n}\mathbf{e}_{n}^{T}$$

$$= \mathbf{e}_{1}\lambda_{1}\mathbf{e}_{1}^{T} + \mathbf{e}_{2}\lambda_{2}\mathbf{e}_{2}^{T} + \dots + \mathbf{e}_{n}\lambda_{n}\mathbf{e}_{n}^{T}$$

$$= E\Lambda E^{T}$$

$$\text{where } \Lambda = \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & \ddots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \ddots & 0 \end{bmatrix}$$

$$A = E\Lambda E^{T}$$
:

spectral decomposition of matrix A.

Singular Value Decomposition

• $A_{m \times n}$: $m \times n$ real matrix (m > n)

Let $U_{m \times m}$ contain eigenvectors of $(AA^T)_{m \times m}$

Let $V_{n \times n}$ contain eigenvectors of $(A^T A)_{n \times n}$

s.t.
$$A = UWV^T$$

where
$$W_{m \times n} = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_n)$$

$$\sigma_1, \sigma_2, \dots, \sigma_n$$
: singular values of A

•
$$A^{T}A = (UWV^{T})^{T}UWV^{T} = VW^{T}(U^{T}U)WV^{T}$$

$$= VW^{T}IWV^{T} = VW^{T}WV^{T} = V\operatorname{diag}(\sigma_{1}^{2}, \sigma_{2}^{2}, \dots, \sigma_{n}^{2})V^{T}$$

• Let the spectral decomposition of $(A^T A)_{n \times n}$

$$A^{T} A = [\mathbf{e}_{1} \cdots \mathbf{e}_{n}] \operatorname{diag}(\lambda_{1}, \cdots, \lambda_{n}) [\mathbf{e}_{1} \cdots \mathbf{e}_{n}]^{T}$$
$$= V \operatorname{diag}(\lambda_{1}, \cdots, \lambda_{n}) V^{T}$$

$$A^{T}A = V \operatorname{diag}(\sigma_{1}^{2}, \sigma_{2}^{2}, \dots, \sigma_{n}^{2})V^{T} = V \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})V^{T}$$

The eigenvalues λ_i of A^TA correspond to the singular values σ_i of A.

5.4 Multivariate Normal Distribution

Suppose data vector $\mathbf{x} = (x_1, x_2, \dots, x_d)^T \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

i.e.,
$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

where $(x - \mu)^T \Sigma^{-1} (x - \mu)$: Mahalanobis distance

measures the distance

from x to μ and \sum normalizes for different variances.

e.g.,
$$d = 1$$
,

$$p(x) = \frac{1}{(2\pi)^{1/2} \sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$\frac{(x-\mu)^2}{\sigma^2} = \left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1}(x-\mu):$$

the square distance from x to μ in σ unit.

- Σ^{-1} normalizes all variables to unit variance
- If a variable has a larger variance than another, it contributes less weight in the Mahalanobis distance.

 $(x - \mu)^T \Sigma^{-1} (x - \mu) = c^2: \text{ hyperellipsoid centered at } \mu. \text{ Both its shape and orientation are governed by } \Sigma.$

e.g.,
$$d = 2$$
, $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$

$$\Sigma^{-1} = \begin{bmatrix} \sigma_2^2 & -\rho\sigma_1\sigma_2 \\ -\rho\sigma_1\sigma_2 & \sigma_1^2 \end{bmatrix} / \begin{bmatrix} \sigma_2^2 & -\rho\sigma_1\sigma_2 \\ -\rho\sigma_1\sigma_2 & \sigma_1^2 \end{bmatrix}$$

$$\begin{vmatrix} \boldsymbol{\sigma}_1^2 & \rho \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 \\ \rho \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 & \boldsymbol{\sigma}_2^2 \end{vmatrix} = \boldsymbol{\sigma}_1^2 \boldsymbol{\sigma}_2^2 - \rho^2 \boldsymbol{\sigma}_1^2 \boldsymbol{\sigma}_2^2 = (1 - \rho^2) \boldsymbol{\sigma}_1^2 \boldsymbol{\sigma}_2^2$$

$$\Sigma^{-1} = \frac{\begin{bmatrix} \sigma_{2}^{2} & -\rho\sigma_{1}\sigma_{2} \\ -\rho\sigma_{1}\sigma_{2} & \sigma_{1}^{2} \end{bmatrix}}{(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}} = \frac{1}{1-\rho^{2}} \begin{bmatrix} \frac{1}{\sigma_{1}^{2}} & -\frac{\rho}{\sigma_{1}\sigma_{2}} \\ -\frac{\rho}{\sigma_{1}\sigma_{2}} & \frac{1}{\sigma_{2}^{2}} \end{bmatrix}$$
$$(x-\mu)^{T} \Sigma^{-1}(x-\mu)$$
$$= \frac{1}{1-\rho^{2}} (x_{1}-\mu_{1} x_{2}-\mu_{2}) \begin{bmatrix} \frac{1}{\sigma_{1}^{2}} & -\frac{\rho}{\sigma_{1}\sigma_{2}} \\ -\frac{\rho}{\sigma_{1}\sigma_{2}} & \frac{1}{\sigma_{2}^{2}} \end{bmatrix} (x_{1}-\mu_{1})$$
$$= \frac{1}{1-\rho^{2}} \left(\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}} \right)^{2} - 2\rho \frac{x_{1}-\mu_{1}}{\sigma_{1}} \frac{x_{2}-\mu_{2}}{\sigma_{2}} + \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}} \right)^{2} \right)$$

Let
$$z_i = \frac{x_i - \mu_i}{\sigma_i} \sim N(0,1), i = 1,2$$
 (z-normalization)

$$\Rightarrow (x-\mu)^T \Sigma^{-1} (x-\mu) = -\frac{1}{1-\rho^2} (z_1^2 - 2\rho z_1 z_2 + z_2^2)$$

Consider
$$z_1^2 - 2\rho z_1 z_2 + z_2^2 = c^2$$
, $-1 \le \rho \le 1$

which expresses an ellipse.

- When z_1 and z_2 are independent, the major axes of the density are parallel to the input axes.
- The density becomes an ellipse if the variances of z_1 and z_2 are different.

- The density rotates depending on the sign of the correlation.
 - i) When $\rho > 0$, the major axis of the ellipse has a positive slop.
 - ii) When ρ < 0, the major axis of the ellipse has a negative slop.

Let
$$\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{w} \in R^d \Rightarrow \boldsymbol{w}^T \boldsymbol{x} \sim N(\boldsymbol{w}^T \boldsymbol{\mu}, \boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w})$$

$$\therefore \boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right]$$

$$p(\boldsymbol{w}^T \boldsymbol{x}) = \frac{1}{\sqrt{2\pi} (\operatorname{Var}(\boldsymbol{w}^T \boldsymbol{x}))^{1/2}}.$$

$$\exp \left[-\frac{\left(\mathbf{w}^T \mathbf{x} - E[\mathbf{w}^T \mathbf{x}] \right)^T \left(\mathbf{w}^T \mathbf{x} - E[\mathbf{w}^T \mathbf{x}] \right)}{2 \operatorname{Var}(\mathbf{w}^T \mathbf{x})} \right]$$

$$E[\mathbf{w}^T \mathbf{x}] = \mathbf{w}^T E[\mathbf{x}] = \mathbf{w}^T \boldsymbol{\mu}.$$

$$Var(\mathbf{w}^{T} \mathbf{x}) = E[(\mathbf{w}^{T} \mathbf{x} - E[\mathbf{w}^{T} \mathbf{x}])^{2}]$$

$$= E[(\mathbf{w}^{T} \mathbf{x} - \mathbf{w}^{T} \boldsymbol{\mu})^{2}] = E[(\mathbf{w}^{T} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{T} \mathbf{w}]$$

$$= \mathbf{w}^{T} E[(\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{T}] \mathbf{w} = \mathbf{w}^{T} \Sigma \mathbf{w}$$

$$p(\mathbf{w}^{T} \mathbf{x}) = \frac{1}{\sqrt{2\pi} \sqrt{\mathbf{w}^{T} \Sigma \mathbf{w}}} \cdot \frac{1}{2\mathbf{w}^{T} \Sigma \mathbf{w}}$$

$$exp\left[-\frac{(\mathbf{w}^{T} \mathbf{x} - \mathbf{w}^{T} \boldsymbol{\mu})^{T} (\mathbf{w}^{T} \mathbf{x} - \mathbf{w}^{T} \boldsymbol{\mu})}{2\mathbf{w}^{T} \Sigma \mathbf{w}} \right]$$
i.e., $\mathbf{w}^{T} \mathbf{x} \sim N(\mathbf{w}^{T} \boldsymbol{\mu}, \mathbf{w}^{T} \Sigma \mathbf{w})$

The projection of a *d*-D normal on a vector *w* is univariate (i.e., 1-D) normal.

 \Box Let W be a $d \times k$ matrix.

Then
$$W^T x \sim N(W^T \mu, W^T \Sigma W)$$

5.5 Multivariate Classification

From the Bayes' rule, the posterior probability of C_i

$$P(C_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_i)p(C_i)}{p(\mathbf{x})}, \quad i = 1, \dots, K$$

Define discriminant function of C_i as

$$g_i(\mathbf{x}) = \log p(\mathbf{x}|C_i) + \log P(C_i).$$

Assume

$$p(\mathbf{x}|C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right]_{3}$$

$$g_{i}(\mathbf{x}) = -\frac{d}{2}\log 2\pi - \frac{1}{2}\log |\Sigma_{i}| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) + \log P(C_{i})$$

Ignore
$$-\frac{d}{2}\log 2\pi$$

$$g_{i}(x) = -\frac{1}{2}\log |\Sigma_{i}| - \frac{1}{2}(x - \mu_{i})^{T} \Sigma_{i}^{-1}(x - \mu_{i})$$
$$+ \log P(C_{i}) - - - - - (A)$$

Given a sample $X = \{x^t, r^t\}_{t=1}^N$, where

$$\boldsymbol{x} = \{x_1, \dots, x_d\}, \quad \boldsymbol{r} = \{r_1, \dots, r_K\}, \quad r_i = \begin{cases} 1 & \boldsymbol{x} \in C_i \\ 0 & \text{otherwise} \end{cases}$$

Let $\hat{P}(C_i)$, \mathbf{m}_i , S_i be the estimators of $P(C_i)$, μ_i , Σ_i from the sample.

$$\hat{P}(C_i) = \frac{\sum_{t} r_i^t}{N}, \quad m_i = \frac{\sum_{t} r_i^t x^t}{\sum_{t} r_i^t}, \quad S_i = \frac{\sum_{t} r_i^t (x^t - m_i)(x^t - m_i)^T}{\sum_{t} r_i^t}$$

Substituting into (A)

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log|S_{i}| - \frac{1}{2}(\mathbf{x} - \mathbf{m}_{i})^{T} S_{i}^{-1}(\mathbf{x} - \mathbf{m}_{i}) + \log \hat{P}(C_{i})$$

$$= -\frac{1}{2}\log|S_{i}| - \frac{1}{2}(\mathbf{x}^{T} S_{i}^{-1} \mathbf{x} - 2\mathbf{x}^{T} S_{i}^{-1} \mathbf{m}_{i} + \mathbf{m}_{i}^{T} S_{i}^{-1} \mathbf{m}_{i})$$

$$+ \log \hat{P}(C_{i})$$

$$= -\frac{1}{2} \mathbf{x}^{T} S_{i}^{-1} \mathbf{x} + (S_{i}^{-1} \mathbf{m}_{i})^{T} \mathbf{x} - \frac{1}{2} \mathbf{m}_{i}^{T} S_{i}^{-1} \mathbf{m}_{i} - \frac{1}{2} \log |S_{i}|$$
$$+ \log \hat{P}(C_{i}) \qquad ----- \text{(B)}$$

i) Quadratic discriminant:

$$g_{i}(\mathbf{x}) = \mathbf{x}^{T} W_{i} \mathbf{x} + \mathbf{w}_{i}^{T} \mathbf{x} + w_{i0}$$
where $W_{i} = -\frac{1}{2} S_{i}^{-1}$, $\mathbf{w}_{i} = S_{i}^{-1} \mathbf{m}_{i}$

$$w_{i0} = -\frac{1}{2} \mathbf{m}_{i}^{T} S_{i}^{-1} \mathbf{m}_{i} - \frac{1}{2} \log |S_{i}| + \log \hat{P}(C_{i})$$

The number of parameters to be estimated is $K \cdot d$

for means
$$\mathbf{m}_i = (m_1, m_2, \dots, m_d)$$
 and $Kd(d+1)/2$

for covariance matrices
$$S_i = [s_{mn}]_{d \times d}, i = 1, \dots, K$$
.

Share common sample covariance, i.e., $\forall i \ S_i = S$, and ignore $-\frac{1}{2}\log |S|$. (B) is reduced to

$$g_{i}(x) = -\frac{1}{2} (x^{T} S^{-1} x - 2x^{T} S^{-1} m_{i} + m_{i}^{T} S^{-1} m_{i}) + \log \hat{P}(C_{i})$$

$$= -\frac{1}{2} (x - m_{i})^{T} S^{-1} (x - m_{i}) + \log \hat{P}(C_{i}) - - (C)$$

Ignoring quadratic term $x^T S^{-1}x$, (C) reduces to

$$g_i(x) = x^T S^{-1} m_i - \frac{1}{2} m_i^T S^{-1} m_i + \log \hat{P}(C_i)$$
 ---- (D)

ii) Linear discriminant: $g_i(x) = \mathbf{w}_i^T x + \mathbf{w}_{i0}$, where

$$\mathbf{w}_{i} = S^{-1}\mathbf{m}_{i}, \ \mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}S^{-1}\mathbf{m}_{i} + \log \hat{P}(C_{i})$$

The numbers of parameters to be estimated: $K \cdot d$ for means and d(d+1)/2 for covariance matrices.

 \square Assuming off-diagonals of S to be 0,

$$S = \begin{bmatrix} s_1^2 & 0 & \cdot & 0 \\ 0 & s_2^2 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 0 \\ 0 & \cdot & 0 & s_d^2 \end{bmatrix} \text{ and } S^{-1} = \begin{bmatrix} 1/s_1^2 & 0 & \cdot & 0 \\ 0 & 1/s_2^2 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 0 \\ 0 & \cdot & 0 & 1/s_d^2 \end{bmatrix}$$

Substitute into
$$-\frac{1}{2}(x-m_i)^T S^{-1}(x-m_i)$$

$$= -\frac{1}{2}(x_{1} - m_{1i}, x_{2} - m_{2i}, \dots, x_{d} - m_{di}) \cdot \begin{bmatrix} 1/s_{1}^{2} & 0 & \cdot & 0 \\ 0 & 1/s_{2}^{2} & \cdot & \cdot \\ \cdot & \cdot & \cdot & 0 \\ 0 & \cdot & 0 & 1/s_{d}^{2} \end{bmatrix} \cdot \begin{bmatrix} x_{1} - m_{1i} \\ x_{2} - m_{2i} \\ \cdot \\ x_{d} - m_{di} \end{bmatrix} = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_{j} - m_{ij}}{s_{j}} \right)^{2} \text{Substitute this into (C)}$$

$$\begin{vmatrix} x_1 - m_{1i} \\ x_2 - m_{2i} \\ \cdot \end{vmatrix} = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j - m_{ij}}{s_j} \right)^2$$
Substitute this into (C)

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i) - \dots (E)$$

The number of parameters to be estimated is $K \cdot d$ for means and d for covariance matrices.

iii) Naive Bayes' classifier

 \square Assuming all variances to be equal, i.e., $\forall j \ s_j = s$

(E)
$$\Rightarrow g_i(x) = -\frac{1}{2s^2} \sum_{j=1}^{d} (x_j^t - m_{ij})^2 + \log \hat{P}(C_i)$$

Assuming equal priors $\hat{P}(C_i)$ and ignore s,

$$g_i(\mathbf{x}) = -\sum_{j=1}^{d} (x_j^t - m_{ij})^2 = -\|\mathbf{x} - \mathbf{m}_i\|^2$$

The number of parameters to be estimated is $K \cdot d$ for means

iv) Nearest mean classifier

 $g_i(x) = -\|x - m_i\|^2 = -(x - m_i)^T (x - m_i)$ $= -(xx^T - 2m_i^T x + m_i^T m_i)$

Ignore the common term xx^T

$$g_i(\mathbf{x}) = \mathbf{m}_i^T \mathbf{x} - \frac{1}{2} \mathbf{m}_i^T \mathbf{m}_i = \mathbf{m}_i^T \mathbf{x} - \frac{1}{2} \|\mathbf{m}_i\|^2$$

Assuming equal $\|\boldsymbol{m}_i\|$,

The number of parameters to be estimated is $K \cdot d$ for means

Example: 2 classes

Given two classes of data points marked by red and green colors, respectively:

The mean points of these two groups of data points are (3.0, 6.3) and (6.8, 3.8), respectively.

The new point (4,2) has distances of

$$\sqrt{(4.0-3.0)^2 + (2.0-6.3)^2} = 4.4$$
 (to the red center)

$$\sqrt{(4.0-6.8)^2 + (2.0-3.8)^2} = 3.4$$
 (to the green center).

(4,2) is classified as belonging to the green class.

• N(N > 2) Classes

The black point is classified as belonging to the brown class.

K Nearest Neighbor (K-NN) Classifier

According to SD classifier, point (4,3) will be classified as the **green**

class. However, (4,3)
has the nearest red
neighbor (3,4). It
is desirable to be
classified as the
red class.

The K-NN classifier assigns a point x the label most frequently present among its K nearest neighbors.

Let $N_x = \{x_1, x_2, \dots, x_K\}$: the K nearest neighbors of point x

 n_i : the number of points in N_x , which

belong to class
$$C_i$$
, $\sum_{i=1}^{c} n_i = K$.

Decision rule:

Assign
$$x$$
 to C_k if $\max_{1 \le i \le c} n_i = n_k$

Example: 5-NN classifier

The green point has two blue neighbors and three orange neighbors. The green point is classified as belonging to the orange class.

v) Inner product classifier: $g_i(x) = m_i^T x$

Tuning Complexity

Assumption	Covariance matrix	No of parameters
Different, Hyperellipsoidal	S_i	K d(d+1)/2
Shared, Hyperellipsoidal	$S_i = S$	d(d+1)/2
Shared, Axis-aligned	$S_i = S$, with $s_{ij} = 0$	d
Shared, Hyperspheric	$S_i = S = S^2 I$	1

5.6 Discrete Attributes

□ Binary pattern: $\mathbf{x} = (x_1, x_2, \dots, x_d), x_j \in \{0, 1\}$

Let
$$p_{ij} = p(x_j = 1|C_i)$$
. $p(x_j|C_i) = p_{ij}^{x_j} (1-p_{ij})^{(1-x_j)}$

If x_i 's are independent,

$$p(\mathbf{x}|C_i) = \prod_{j=1}^{d} p(x_j|C_i) = \prod_{j=1}^{d} p_{ij}^{x_j} (1-p_{ij})^{(1-x_j)}$$

The discriminant function:

$$g_{i}(x) = \log p(x|C_{i}) + \log P(C_{i})$$

$$= \log \prod_{j=1}^{d} p_{ij}^{x_{j}} (1 - p_{ij})^{(1 - x_{j})} + \log P(C_{i})$$

$$= \sum_{j} \left[x_{j} \log p_{ij} + (1 - x_{j}) \log (1 - p_{ij}) \right] + \log P(C_{i})$$

□ Multinomial pattern: $\mathbf{x} = (x_1, x_2, \dots, x_d)$,

Define
$$z_{jk} = \begin{cases} 1 & \text{if } x_j = v_k \\ 0 & \text{otherwise} \end{cases}$$
 $x_j \in \{v_1, v_2, \dots, v_{n_j}\}$

Let p_{ijk} : the probability that $x_j \in C_i$ takes value v_k ,

i.e.,
$$p_{ijk} = p(z_{jk} = 1|C_i)$$
. $p(x_j|C_i) = \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$

If
$$x_j$$
's are independent, $p(x|C_i) = \prod_{j=1}^{d} p(x_j|C_i) = \prod_{j=1}^{d} \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$

The discriminant function:

$$g_{i}(x) = \log p(x|C_{i}) + \log P(C_{i}) = \log \prod_{j=1}^{d} \prod_{k=1}^{n_{j}} p_{ijk}^{z_{jk}} + \log P(C_{i})$$
$$= \sum_{i} \sum_{k} z_{jk} \log p_{ijk} + \log P(C_{i})$$

5.7 Generalizing the linear model:

i) A polynomial model

$$f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_n x^n$$

can lead to a linear multivariate model by

letting
$$x = x_1, x^2 = x_2, \dots, x^n = x_n$$

$$f(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Example: Find a quadratic model of two variables x_1 and x_2 , i.e.,

$$f(x_1, x_2) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + w_5 x_2^2$$

Let
$$z_1 = x_1$$
, $z_2 = x_2$, $z_3 = x_1 x_2$, $z_4 = x_1^2$, $z_5 = x_2^2$
 \Rightarrow

$$f(x_1, x_2) = w_0 + w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5$$

Use linear regression to learn w_i , i = 1, ..., 5.

ii) Let $\sin x = x_1$, $\exp x^2 = x_2$, \cdots

A nonlinear model can lead to a linear multivariate model.

Appendix A - Multidimensional Scaling (MDS)

Given pairwise distances d_{ij} of a set of points, MDS places these points in a low space s.t. the Euclidean distances between them is as close as possible to d_{ii} .

Let $X = \{x^t\}_{t=1}^N$: a sample, where $x^t \in \mathbb{R}^d$

Two points: r and s, their squared Euclidean distance

$$d_{rs}^{2} = \|\mathbf{x}^{r} - \mathbf{x}^{s}\|^{2} = \sum_{j=1}^{d} (x_{j}^{r} - x_{j}^{s})^{2}$$

$$= \sum_{j=1}^{d} (x_{j}^{r})^{2} - 2\sum_{j=1}^{d} x_{j}^{r} x_{j}^{s} + \sum_{j=1}^{d} (x_{j}^{s})^{2} = b_{rr} - 2b_{rs} + b_{ss} - (A)$$
where $b_{rr} = \sum_{j=1}^{d} (x_{j}^{r})^{2}$, $b_{rs} = \sum_{j=1}^{d} x_{j}^{r} x_{j}^{s}$, $b_{ss} = \sum_{j=1}^{d} (x_{j}^{s})^{2}$

$$\sum_{r=1}^{N} d_{rs}^{2} = \sum_{r=1}^{N} b_{rr} + \sum_{r=1}^{N} b_{ss} - 2 \sum_{r=1}^{N} b_{rs} = \sum_{r=1}^{N} b_{rr} + N b_{ss} - 2 \sum_{r=1}^{N} b_{rs}$$

$$\text{Let } T = \sum_{r=1}^{N} b_{rr}. \quad \sum_{r=1}^{N} d_{rs}^{2} = T + N b_{ss} - 2 \sum_{r=1}^{N} b_{rs} - (B)$$

$$\therefore \quad \sum_{r=1}^{N} b_{rs} = \sum_{r=1}^{N} \sum_{j=1}^{d} x_{j}^{r} x_{j}^{s} = \sum_{j=1}^{d} x_{j}^{1} x_{j}^{s} + \sum_{j=1}^{d} x_{j}^{2} x_{j}^{s} + \dots + \sum_{j=1}^{d} x_{j}^{N} x_{j}^{s}$$

$$= x_{1}^{1} x_{1}^{s} + x_{2}^{1} x_{2}^{s} + \dots + x_{d}^{1} x_{d}^{s} + x_{1}^{2} x_{1}^{s} + x_{2}^{2} x_{2}^{s} + \dots + x_{d}^{2} x_{d}^{s}$$

$$+ \dots + x_{1}^{N} x_{1}^{s} + x_{2}^{N} x_{2}^{s} + \dots + x_{d}^{N} x_{d}^{s}$$

$$= x_{1}^{s} \sum_{r=1}^{N} x_{1}^{r} + x_{2}^{s} \sum_{r=1}^{N} x_{2}^{r} + \dots + x_{d}^{s} \sum_{r=1}^{N} x_{d}^{r}$$

Suppose data have been centered at the origin so that

$$\sum_{r=1}^{N} x_{j}^{r} = 0, \quad j = 1, \dots, d. \quad \therefore \sum_{r=1}^{N} b_{rs} = 0, \quad \sum_{r=1}^{N} d_{rs}^{2} = T + Nb_{ss} - (C)$$

Likewise,
$$\sum_{s=1}^{N} d_{rs}^2 = T + Nb_{rr}$$
--- (D)

$$\sum_{r=1}^{N} \sum_{s=1}^{N} d_{rs}^{2} = \sum_{r=1}^{N} (T + Nb_{rr}) = NT + N \sum_{r=1}^{N} b_{rr} = NT + NT = 2NT - (E)$$

From (C)
$$\sum_{r} d_{rs}^2 = T + Nb_{ss}, \ b_{ss} = \frac{1}{N} \left(\sum_{r} d_{rs}^2 - T \right)$$

From (D)
$$\sum_{s} d_{rs}^2 = T + Nb_{rr}, \ b_{rr} = \frac{1}{N} \left(\sum_{s} d_{rs}^2 - T \right)$$

From (A)
$$d_{rs}^2 = b_{rr} - 2b_{rs} + b_{ss}$$
,

$$b_{rs} = \frac{1}{2} \left(b_{rr} + b_{ss} - d_{rs}^2 \right) = \frac{1}{2} \left(\frac{1}{N} \sum_{s} d_{rs}^2 + \frac{1}{N} \sum_{r} d_{rs}^2 - \frac{2T}{N} - d_{rs}^2 \right)$$
---- (F)

From (E)
$$\frac{1}{N^2} \sum_{r} \sum_{s} d_{rs}^2 = \frac{2NT}{N^2} = \frac{2T}{N}$$

$$b_{rs} = \frac{1}{2} \left(\frac{1}{N} \sum_{s} d_{rs}^2 + \frac{1}{N} \sum_{r} d_{rs}^2 - \frac{1}{N^2} \sum_{r} \sum_{s} d_{rs}^2 - d_{rs}^2 \right)$$

Let
$$d_{r.}^2 = \frac{1}{N} \sum_{s} d_{rs}^2$$
, $d_{.s}^2 = \frac{1}{N} \sum_{r} d_{rs}^2$, $d_{.s}^2 = \frac{1}{N^2} \sum_{r} \sum_{s} d_{rs}^2$

$$b_{rs} = \frac{1}{2}(d_{r \cdot}^2 + d_{\cdot s}^2 - d_{\cdot \cdot}^2 - d_{rs}^2)$$

 d_{r}^2 , d_{s}^2 , d_{s}^2 , d_{rs}^2 can all be calculated from the given

$$D = [d_{rs}].$$
 $b_{rs} = \frac{1}{2}(d_{r*}^2 + d_{*s}^2 - d_{*s}^2 - d_{rs}^2)$ is known.

From (A),
$$b_{rs} = \sum_{j=1}^{d} x_j^r x_j^s = (\mathbf{x}^r)^T \mathbf{x}^s$$
, $r, s = 1, \dots, N$.

In matrix form,
$$B = [b_{rs}] = XX^T$$

Spectral decomposition of $B = E\Lambda E^T = E\Lambda^{1/2}(E\Lambda^{1/2})^T$

where
$$E = [\mathbf{e}_1 \cdot \cdot \cdot \mathbf{e}_N]^T$$
, $\Lambda = \operatorname{diag}(\lambda_1 \cdot \cdot \cdot \lambda_N)$

 λ_i , e_i : eigenvalues and eigenvectors of B

$$B = XX^{T} = E\Lambda^{1/2}(E\Lambda^{1/2})^{T}$$

Decide a dimensionality k (< d) based on λ_i .

Let
$$E_k = [\boldsymbol{e}_1 \cdot \cdot \cdot \boldsymbol{e}_k]^T$$
, $\Lambda_k = \operatorname{diag}(\lambda_1 \cdot \cdot \cdot \lambda_k)$.

$$E_k \Lambda_k^{1/2} (E_k \Lambda_k^{1/2})^T = ZZ^T.$$

The new coordinates $z^T = (z_1, z_2, \dots, z_k)^T$ of point

$$\mathbf{x}^T = (x_1, x_2, \dots, x_d)^T$$
 are given by

$$z_j^t = \sqrt{\lambda_j} e_j^t, \quad j = 1, \dots, k; \quad t = 1, \dots, N.$$