How to fit a nonlinear mixed model?

Page Piccinini & Eric Kramer

Data from California Data Exchange Center, Department of Water Resources (http://cdec.water.ca.gov)

Data from California Data Exchange Center, Department of Water Resources (http://cdec.water.ca.gov)

Data from California Data Exchange Center, Department of Water Resources (http://cdec.water.ca.gov)

Data from California Data Exchange Center, Department of Water Resources (http://cdec.water.ca.gov)

Data from California Data Exchange Center, Department of Water Resources (http://cdec.water.ca.gov)

Nonlinear Models

Percipitation in California January 2014 to December 2014 20 15 Percipitation (inches) Month

January 2014 to December 2014

 $y = \beta_0 + \beta_1 x + \beta_2 x^2$

$$lm(y \sim x + I(x^2))$$

 $I(x^2) +$

 $I(x^3)$

 $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$

$$lm(y \sim x + I(x^2) + I(x^3) + I(x^4) + ...$$

Generalization

Questions

How do I choose n ?

Try several values. Balance goodness-of-fit with generalizability

How do I choose $f_i(x)$?

Use thin plate splines or cubic splines -- don't use polynomials!

Should I do this manually with 1m?

No! Use gam from the mgcv package

Generalized Additive Model

Linear Mixed Effects Models


```
m = gam(y \sim s(x, k=10, bs="tp"))
```

Percipitation in California

Percipitation in California
January 2014 to December 2014

January 2014 to December 2014

$$y = \beta_0 + \beta_{r_0} + (\beta_1 + \beta_{r_1})x$$

$$lmer(y \sim x + (1|r))$$

library(lme4)

January 2014 to December 2014

$$y = \beta_0 + \beta_{r_0} + (\beta_1 + \beta_{r_1})x$$

$$lmer(y \sim x + (1+x|r))$$

th library(lme4)

Non-Linear Mixed Effects Models

Percipitation in California
January 2014 to December 2014

 $Random \; \textbf{slope} \to Random \; \textbf{smooth}$


```
m = gam(y \sim s(x, k=10, bs="tp") +
```


Random intercept for r


```
m = gam(y \sim s(x, k=10, bs="tp") + s(r, bs="re") + s(r, x, bs="re"))
```

library(mgcv)

Random smooth for r by x NOTE! Order of vars switched

Detailed Resources

- GENERALISED ADDITIVE MIXED MODELS FOR DYNAMIC ANALYSIS IN LINGUISTICS:
 A PRACTICAL INTRODUCTION by Márton Sóskuthy
- Wood, S. (2006). Generalized additive models: an introduction with R. Boca Raton: CRC Press.
- Baayen, R. H., van Rij, J., de Cat, C., & Wood, S. N. (2016). Autocorrelated errors in experimental data in the language sciences: Some solutions offered by generalized additive mixed models. arXiv preprint arXiv:1601.02043.
- Kelly, R. (2014). Extending linear models: Non-linearity.
 https://rstudio-pubs-static.s3.amazonaws.com/24589_7552e489485b4c2790ea6634e1afd68d

 https://rstudio-pubs-static.s3.amazonaws.com/24589_7552e489485b4c2790ea6634e1afd68d
- Simpson, G. (2014). Modelling seasonal data with GAMs.
 http://www.fromthebottomoftheheap.net/2014/05/09/modelling-seasonal-data-with-gam/.