Processamento de Sinais Multimídia 1º bim

Prof. Thiago Raposo Milhomem

Filtros e Análise Espectral

Prof. Thiago Raposo Milhomem

- Analógicos ou Digitais
- Manipulação de sinais
 - Extrair características
 - Evidenciar características
 - Atenuar características
 - "Adicionar" características, efeitos etc.

- Filtros Digitais
- Implementados em hardware ou software
 - FPGA Field-programmable gate array
 - MATLAB, SciLAB

- Lineares e invariantes ao deslocamento
 - Aplicações diversas
- Não lineares ou invariantes ao deslocamento
 - Filtros adaptativos
 - Efeitos em áudio (distorção, etc.)
 - Aplicações em imagens (binarização, safe colors etc.)

Filtros LTI ou SLID

 Filtros LTI (ou SLIDs) possuem os elementos básicos

$$x_1[n]$$
 \xrightarrow{a} $y[n] = a.x_1[n]$

Multiplicador por escalar (Amplificação/Ganho)

Exemplo

$$y[n] = a_1.y[n-1] + a_2.y[n-2] + b.x[n]$$

Exemplo (filtro digital com realimentação)

$$y[n] = a_1.y[n-1] + a_2.y[n-2] + b.x[n]$$

• Outra forma de representá-lo

- Caso geral
 - No domínio do tempo

$$y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]$$

- Caso geral
 - Função de transferência

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}} = \frac{Y(z)}{X(z)}$$

- Caso geral
 - Diagrama de Blocos

$$v[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$y[n] = v[n] + \sum_{k=1}^{N} a_k y[n-k]$$

- Caso geral
 - Diagrama de Blocos

$$v[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$y[n] = v[n] + \sum_{k=1}^{N} a_k y[n-k]$$

Forma Direta I

- Caso geral
 - Diagrama de Blocos

Forma Direta II

- Caso geral
 - Diagrama de Blocos

menos elementos de atraso unitário

Forma Direta II

Resposta ao impulso

- Classificação do filtro quanto à resposta ao impulso h[n]
 - FIR
 - Resposta ao impulso finita
 - O filtro possui uma quantidade finita de coeficientes não nulos
 - IIR
 - Resposta ao impulso infinita
 - O filtro possui uma quantidade **infinita** de coeficientes não nulos

- Chamados também de feed-forward
- Pode ser representado listando diretamente os coeficientes da resposta ao impulso h[n]
- Possuem espectro de frequências suave

- Caso geral
 - Descrição no domínio do tempo (eq. diferenças)

$$y[n] = \sum_{k=0}^{N} b_k x[n-k]$$

- Descrição pela função de transferência

$$H(z) = \sum_{k=0}^{N} b_k z^{-k}$$

- Caso geral
 - Descrição no domínio do tempo (eq. diferenças)

$$y[n] = \sum_{k=0}^{N} b_k x[n-k]$$

- Descrição pela função de transferência

$$H(z) = \sum_{k=0}^{N} b_k z^{-k} \begin{array}{c} \text{Polinômio em z^-1} \\ \text{(sem denominador envolvendo z^-1)} \end{array}$$

 Filtros FIR causais têm resposta ao impulso na forma:

$$h[n] = \begin{cases} b_n & 0 \le n \le N - 1 \\ 0 & sen\tilde{a}o \end{cases}$$

• Sua equação de diferenças se resume a:

$$y[n] = b_0x[n] + b_1x[n-1] + ... + b_{N-1}x[n-N+1]$$

 Filtros FIR causais têm resposta ao impulso na forma:

$$h[n] = \begin{cases} b_n & 0 \le n \le N - 1 \\ 0 & sen\tilde{a}o \end{cases}$$

• Sua equação de diferenças se resume a:

$$y[n] = b_0x[n] + b_1x[n-1] + ... + b_{N-1}x[n-N+1]$$

Não há versões atrasadas da saída y[n] na equação

Exemplo

— Qual a saída y[n] deste filtro (causal) para uma entrada x[n] = $[1\ 0\ 0\ 0\ ...]$?

Exemplo

- Qual a saída y[n] deste filtro (causal) para uma entrada x[n] = $[1\ 0\ 0\ 0\ ...]$?
 - $y[n] = [0,5 \ 0,5 \ 0 \ 0 \ 0 \ ...]$

Em outras palavras, realizamos a soma de convolução

$$y[n] = 0,5.x[n] + 0,5.x[n - 1]$$

$$y[0] = 0,5.x[0] + 0,5.x[-1]$$

$$y[1] = 0,5.x[1] + 0,5.x[0]$$
.

- Outra maneira comum de representar filtros FIR
 - Explicitando seus coeficientes no diagrama de blocos
 - Usando o exemplo anterior:

- Outra forma de determinar a saída
 - Considere um filtro dado por [6 7 8] ao qual uma entrada [1 2 3 4 5] é submetida

- Outra forma de determinar a saída
 - Considere um filtro dado por [6 7 8] ao qual uma entrada [1 2 3 4 5] é submetida

Soma de convolução!

• Exemplo de soma de convolução (vista como soma de sinais)

y[n] = x[n]*h[n]

• Exemplo de soma de convolução (vista como soma de sinais)

$$y[n] = x[n]*h[n] = \sum_{k} x[k]h[n-k] = x[0]h[n-0] + x[1]h[n-1] + x[2]h[n-2]$$

 $y[n] = x[n]*h[n] = \sum_{k} x[k]h[n-k] = x[0]h[n-0] + x[1]h[n-1] + x[2]h[n-2]$

Centro Universitário IESB / prof. Thiago Raposo Milhomem

Filtros ideais

Filtros ideais

- Transição instantânea
 - Banda passante -> banda de rejeição
- Não realizáveis
 - Não causais
- Resposta ao impulso infinita (IIR) Centro Universitário IESB / prof. Thiago

- Filtros práticos
 - Transição suave
 - Oscilações

Transição, ripples etc.

Análise do comportamento de um filtro

- Resposta em frequência H(e^jΩ)
 - Transformada de Fourier dos coeficientes h[n]
 - · Absoluta ou em dB
 - Amplitude e Fase
 - Interpretação visual direta

- Resposta ao impulso
 - Coeficientes do filtro
 - Interpretação não tão direta

- Exemplos básicos
- Filtro de Média (passa-baixa)

$$-h_{LP} = [0.5 \ 0.5]$$

$$-y[n] = 0.5.x[n] + 0.5.x[n-1] = (x[n]+x[n-1])/2$$

Filtro de diferença (passa-alta)

$$-h_{HP} = [0.5 - 0.5]$$

$$-y[n] = 0.5.x[n] - 0.5.x[n-1] = (x[n]-x[n-1])/2$$