

プロジェクト最終発表 日本人の生活データを用いた コーヒーの短期的及び長期的効果の統計的分析

> 武蔵野大学 工学部 数理工学科 カフェイんず(仮) 阿辻颯姫 白川桃子 田口冬佳 村田滉希

目次

- 1. 前回のあらすじ
- 2. 重回帰分析とは
- 3. コーヒーとガン
 - -先行研究
 - -仮説
 - -結果
 - -まとめ

前回のあらすじ

【概要】

コーヒーの持つ短期的効果(覚醒効果や集中度を高める効果)及び、長期的効果(がんなどの疾患の予防効果)について、それぞれが及ぼす日本人の生活行動(趣味・スポーツ)への影響を統計的に明らかにすることを目的として、**コーヒー購入量と、スポーツや趣**味などの生活行動との関係を調べた

【分析方法】

重回帰分析

	変数名	内容
目的変数	コーヒー数量	年間のコーヒー購入量(都道府県別)
説明変数	趣味	過去1年間に趣味の活動をした人の割合 (都道府県別)
	スポーツ	過去1年間にそのスポーツをした人の割 合(都道府県別)

重回帰分析結果 - スポーツ・趣味

1.000 演芸・演劇・舞踊鑑賞(テレビ・スマートフォン・パソコンなどは除く), 0.1112 陶芸·工芸, 0.1527 0.100 茶道,0.0672 編み物・手芸,0.0324 0.05 値 写真の撮影・プリント,0.0463 0.010 CD・スマートフォンなどによる音楽鑑賞, 0.0334 将棋,0.0055 0.001 (0.7) (0.6) (0.5) (0.4) (0.3) (0.2) (0.1) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 重回帰係数

スポーツ

趣味

P値が0.05以下だとより統計的に有意な変数であると言える

前回のあらすじ

【結論】

コーヒー数量と、

趣味・娯楽間に正の相関がある項目:「バドミントン」「剣道」「ボウリング」「野球」 スポーツ間に正の相関がある項目:「将棋」「茶道」「音楽鑑賞」「編み物」「陶芸」

- →どの項目も「集中力」を要する項目
- →カフェインには眠気の解消と集中力を高める効果があるからかも?

【今回の発表について】

今回は前回発表しきれなかった、**コーヒー数量とがんとの死亡率**の関係について 発表する

先行研究について

多目的コホート研究

コーヒーの摂取が日本人の総死亡率やがん罹患、心疾患、 脳血管疾患、呼吸器疾患の<u>リスク低下と有意な関連</u>があること が示唆されている。

これらのメカニズムについては、まだ解明されていないが、 コーヒーの**炎症を和らげる作用**やカフェインの**抗酸化作用**など が、**がん化を防御している可能性**が議論されている

既存の研究結果と私たちの**分析結果を比較**してみる

重回帰分析の補足-重回帰分析とは

【数理工学科の成績データ】

No	GPA	PJ成績	出席日数
	У	x1	x2
1	3.2	2	8
2	2.4	3	18
3	1.8	3	21
4	3.9	5	30
5	2.2	2	16
6	1.5	1	20
7	3.3	1	10
8	2	2	27
9	2.9	3	19
10	3.8	5	11

説明変数(x1,x2)

x1:成績

x2:出席日数

目的変数(y)

y:GPA

 $r_{x1x2} = 0.275$

やや弱い正の相関あり

 $r_{yx1} = 0.605$

やや強い正の相関あり

このデータからGPAは 成績, 出席日数から**予測可能**か?

どちらの変数の方が説明する際に **説得力**がある?

予測精度は?

$r_{yx2} = -0.247$

やや弱い負の相関あり

重回帰分析の補足-重回帰分析とは

$$Y_i = \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

$$\widehat{Y} = \widehat{\beta_1} + \widehat{\beta_2} X_{2i} + \dots + \widehat{\beta_k} X_{ki}$$

	生活行動(前回)	がん(今回)
Y_i :目的変数	コーヒー数量	各がんの死亡率
X_{ni} :説明変数	趣味・スポーツに かけた時間	コーヒー購入量 食品摂取量 喫煙率 など

 $i=1,2,\cdots,n$

n:データ数

k:説明変数の個数

β : 回帰係数

Ŷ:予測した回帰係数。

重回帰分析の補足-重回帰分析とは

対立仮説

「コーヒー数量とガン死亡率は 関係が**ある** |

帰無仮説

「コーヒー数量とガン死亡率は 関係が**ない**」

コホート研究で

関連ありとされていたがん

コホート研究の結果においても, リスク増加や低下に関係がある可能性が示唆された

コホート研究の**裏付けができた**部位

本研究でもリスク低下が示唆

コホート研究と異なる結果が出た部位

本研究ではリスク増大が示唆

コホート研究で

関連なしとされていたがん

コホート研究の結果, <u>リスク増加や低下に関係がある可能性が示唆された</u>

コホート研究では関連がないとされていた部位

リスク低下が示唆

コホート研究では関連がないとされていた部位

<u>リスク増大が示唆</u>

各がんの死亡率とコーヒー数量のp値

P値が全て0.2以上(=0.05以下のものがない) → 統計学的に優位な結果でない

- ・<u>摂取量が比較的少なく</u>,効果が見えにくい
- ・摂取の効果が**長期の蓄積**が影響するのでは

各国の1人あたり年間コーヒー杯数

2844杯

577杯

ルクセンブルク

イタリア

340杯

625.2杯

日本

年間杯数top30の平均値

結果と考察

【結果】

コーヒー数量とがんの死亡率は、p値が有意ではなかった

→関係があるとは言えない

(表) 各種がんの死亡率とコーヒー購入量(摂取量)の関係について結果比較

がんの種類	コホート研究	本研究
肺がん 子宮がん 大腸がん(男性)	リスク低下	リスク低下
膀胱がん	リスク低下	リスク増大
全がん 胆道がん 大腸がん(男性)	関連無し	リスク低下
膵がん(女性)	関連無し	リスク増大

結果と考察

【考察】

なぜがんの死亡率とコーヒー購入量の間に関係があると言えなかったのか?

- 日本人のコーヒー摂取量は他国に比べて少ない
- コホート研究は約18~21年、本研究では14年分のデータを活用

さらに長期的にみると異なる結果が得られる可能性あり

[1] マイボイスコム株式会社(2020)日常生活とコーヒーに関するアンケート結果(第7回)

(https://myel.myvoice.jp/products/detail.php?product id=28802)最終閲覧日: 2023-08-31

[2] Sridhar Ramakrishnan(2014) Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation

(https://www.sciencedirect.com/science/article/abs/pii/S0022519314002884) 最終閱覧日: 2023-08-30

[3] 矢島潤平. 賀二郎(2014) コーヒー摂取による作業成績の向上とストレス反応の軽減

(http://repo.beppu-u.ac.ip/modules/xoonips/download.php/gk01608.pdf?file_id=7085)

最終閲覧日:2023-08-30

[4] チャンバーコーヒー(2021)プロ棋十中村太地様インタビュー

(https://chamber-coffee.com/column01)最終閱覧日:2023-08-31

[5] 全日本コーヒー協会(2016)田中壮【元プロ野球選手】

(https://coffee.ajca.or.jp/webmagazine/interview/84taguchi/)最終閲覧日:2023-08-31

[6] 木村俊博, 伏脇裕一(2019) コーヒーの成分と発がん抑制作用

(https://www.istage.ist.go.ip/article/safety/58/5/58 310/ pdf/-char/ia)最終閲覧日:2023-08-30 (「世界のコーヒー消費量」を図解、一番たくさん飲む国と日本との差は?-GIGAZINE)最終閲覧日:2024-01-19

[7] 斎藤栄子, 津金祥一郎(2015) Association of coffee intake with total and cause-specific mortality in a Japanese population: the Japan Public Health Center-based Prospective Study

(https://www.sciencedirect.com/science/article/pii/S0002916523273876?via%3Dihub) 最終閲覧 □ 2023-08-31

[8] 福山平成大学 多重共線性の意味について

(https://www.heisei-u.ac.jp/ba/fukui/tips/tip006.pdf) 最終閲覧日:2023-08-31

[9] ト田太一郎(1997) 相関があるかを見つける簡便法

(https://orsj.org/wp-content/or-archives50/pdf/bul/Vol.42 07 493.pdf)

最終閲覧日:2023-08-31

[10] 芳賀敏郎(1976) 重回帰分析における変数選択の新しい規準

(https://www.istage.ist.go.ip/article/quality/6/2/6 KJ00003206666/ article/-char/ia/)

最終閲覧日:2023-08-31

[11] 赤池 弘次(1973)."Information theory and an extension of the maximum likelihood principle" (1973).

(https://link.springer.com/chapter/10.1007/978-1-4612-1694-0 15)

[12] 現在までの成果 | 多目的コホート研究 | 国立がん研究センター がん対策研究所

(https://epi.ncc.go.ip/cgi-bin/cms/public/index.cgi/nccepi/iphc/outcome/index) 最終閱覧日: 2023-08-31

[13] 「世界のコーヒー消費量」を図解、一番たくさん飲む国と日本との差は?

Thank you for listening

