LISTA 3. CONJUNTOS FINITOS E INFINITOS

Exercício 1. Seja X um conjunto com n elementos. Use indução para provar que o conjunto de bijeções (ou permutações) $f: X \to X$ tem n! elementos.

Exercício 2. Sejam X e Y conjuntos finitos. Prove que

$$\operatorname{card}(X \cup Y) = \operatorname{card}(X) + \operatorname{card}(Y) - \operatorname{card}(X \cap Y).$$

Exercício 3. Prove que se X é infinito enumerável, o conjunto das partes finitas de X também é infinito enumerável.

Exercício 4. Prove que a função $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$,

$$f(n,k) = \frac{(n+k)(n+k+1)}{2} + (k+1)$$

é uma bijeção.

Exercício 5. Seja X um conjunto de referência. Para todo subconjunto $A \subset X$, define sua função indicadora (ou característica)

$$\mathbf{1}_A: X \to \mathbb{N}, \quad \mathbf{1}_A(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{se } x \notin A. \end{cases}$$

Prove as seguintes propriedades:

- (i) Se $A \subset B$ então $\mathbf{1}_A(x) \leq \mathbf{1}_B(x)$ para todo $x \in X$,
- (ii) $\mathbf{1}_{A^c} = 1 \mathbf{1}_A$,
- (iii) $\mathbf{1}_{A\cap B} = \mathbf{1}_A \cdot \mathbf{1}_B$,
- (iv) Se $A \cap B = \emptyset$ então $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B$.