Email training, N3 September 25 - October 1

Problem 3.1. Let S(x) be the sum of digits of x. Solve the equation

$$x + S(x) + S(S(x)) = 2023.$$

Problem 3.2. Find the maximum possible value of $x^6 + y^6$ if it's known that $x^2 + y^2 = 1$.

Problem 3.3. Solve the inequality

$$\frac{2x^2 - 5x - 2}{3x - x^2 - 7} \le 1.$$

Problem 3.4. Let S(n) be the sum of divisors of n (for example S(6) = 1 + 2 + 3 + 6 = 12). Find all n for which S(2n) = 3S(n).

Problem 3.5. Is it possible to write numbers (each once) from 1 to 10 on edges and vertices of triangular pyramid in such a way, that any number on the edge is the arithmetical mean of the numbers written on the endpoints of that edge.

Problem 3.6. Let numbers (1, 2, 3, 4) are given. On each step one chooses 2 neighboring numbers (first and fourth numbers are considered as neighboring) and increases by 1. Is it possible after some steps get numbers (2021, 2022, 2023, 2022)?

Problem 3.7. -

$$P$$
 النقطة O_1,O_2 النقطة O_1,O_2

Problem 3.8. -

لدينا
$$ABCD$$
 رباعيا. B هي نقطة تقاطع المستقيمين B . DC,AB إذا كان B هي نقطة تقاطع المستقيمين $ABCD$. أثبت أن $AB = 2 \angle BEC$.

Solution submission deadline October 1, 2022