Foundations of Mathematics – **Proof Practice**

Jiuru Lyu

January 25, 2023

Side Notes

 $Class\ Handout,\ Chapter\ 1.3,\ Implications.$

Let a, b, and c be integers, with a and b non-zero. If $(ab) \mid (ac)$, then $b \mid c$.

Proof.

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$.

Suppose $(ab) \mid (ac)$. Then $\exists k \in \mathbb{Z} \text{ s.t. } ac = (ab)k$.

Divide both sides of the equation by a:

c = bk.

Since $k \in \mathbb{Z}$, by definition of divides, $b \mid c$.

Class Handout, Chapter 1.4, Contrapositive and Converse

Prove that for all real numbers a and b, if $a \in \mathbb{Q}$ and $ab \notin \mathbb{Q}$, then $n \notin Q$.

Proof.

proof