

ESTRUCTURA DE LA CLASE

INTRODUCCIÓN

Presentación del tema de la clase Repaso sobre procesamiento de audio

RECONOCIMIENTO DE VOZ

Métodos de reconocimiento de sonido Conversión de texto a voz Funcionamiento de Whisper Uso de Whisper

SÍNTESIS DE VOZ

Métodos de síntesis de sonido y voz

Tipos de modelos Clonación de voz Presentación de Coqui-TTS

ACTIVIDAD PRÁCTICA

Chatbot voz a voz

CONCLUSIONES

Recapitulación de los puntos clave de la clase

PROCESAMIENTO DE AUDIO

MODELOS ACÚSTICOS

Hidden Markov Model

Son el modelo más clásico de SST y su representante principal son los modelos de estado oculto

Las HMM o las NNs entrenan una red con voz y transcripciones para aprender a predecir la palabra que corresponde a una secuencia de sonidos

MODELOS DE LENGUAJE

A través de una red neural la red extrae features y dependencias de la voz

Pueden ser basados en n-gramas, redes recurrentes como LSTMs, o basados en contexto como GPTs.

FUNCIONAMIENTO DE WHISPER

USO DE WHISPER

MODELOS CONCATENATIVOS

Son los más antiguos y sintetizan la voz a través de la asignación previa de sonidos a determinados tokens

Los más avanzados son capaces de extraer features y parámetros para mejorar las predicciones

MODELOS POR PARÁMETROS

Figure 1. Training and inference procedures of Glow-TTS.

El modelo aprender a generar las ondas de sonido de una fuente base

Puede generar ondas sinusoidales a partir del origen (SWS) o a través de features melspectrales (Vocoder).

Permite alcanzar una voz natural e incluso clonar la voz

MODELOS TTS

ESPECTROGRAMA

Aprende las relaciones entre el texto y su espectrograma

WAVEFORM Y E2E

Toman la fuente de audio, pudiendo o no convertirla en un espectrograma, y aprende a generar sonido a partir del texto dado

ENCODERS Y VOCODERS

A partir del audio (o espectrogramas) aprenden las características del habla del locutor

VOICE CONVERTION

Haciendo uso de uno o más modelos anteriores, este modelo busca cambiar la voz del locutor

CLONACIÓN DE VOZ

Un encoder toma las características de la voz de un locutor de referencia y se las suministra a un codificador de voz cuyos outpus son usados por el sintetizador

COQUI-TTS

⊗TTS

Coqui dispone de varios modelos TTS que permite la sintetización de voces y la clonación a la vez que entrenar los modelos existentes para lograr mejores resultados

USO DE COQUI-TTS

```
import torch
from TTS.api import TTS
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Listar todos los modelos disponibles
print(TTS().list_models())
# Inicializar TTS
tts = TTS(<modelo_escogido>).to(device)
# Generar array
wav = tts.tts(text=<texto>, speaker_wav=<voz a clonar>, language=
<idioma>)
tts.tts_to_file(text=<texto>, speaker_wav=<voz a clonar>, language=
<idioma>)
```

CONCLUSIONES

VOZ A TEXTO

La IA codifica el lenguaje y un decodificador genera una secuencia de texto a partir de esa codificación. Whisper es el modelo más importante a la fecha.

TEXTO A VOZ

El texto se codifica y es pasado a un sintetizador que genera la voz para el conjunto de caracteres dado. CoquiTTS es una de las soluciones OpenSource más populares.