

L Number	Hits	Search Text	DB	Time stamp
1	9578	plasminogen near3 (activator or activation)	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:53
7	3581	streptokinase	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:54
13	7832	fibronectin	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:54
19	967	fibrin near4 (bind or binding)	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:55
25	119	(plasminogen near3 (activator or activation)) and streptokinase and fibronectin and (fibrin near4 (bind or binding))	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:56
31	119	((plasminogen near3 (activator or activation)) and streptokinase and fibronectin and (fibrin near4 (bind or binding))) and (fusion protein)	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:57
37	0	streptokinase near5 fibronectin and "129"	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:58
43	3	streptokinase near5 fibronectin and (fibrin near4 (bind or binding))	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:59
49	19	streptokinase near8 fibronectin	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:59
55	2	(streptokinase near8 fibronectin) near8 (fibrin near4 (bind or binding))	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/12/22 21:59

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: ssspta1653sxs

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * * * * * * * * Welcome to STN International * * * * * * * * * * * * * * *

NEWS 1 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 Apr 08 "Ask CAS" for self-help around the clock
NEWS 3 Apr 09 BEILSTEIN: Reload and Implementation of a New Subject Area
NEWS 4 Apr 09 ZDB will be removed from STN
NEWS 5 Apr 19 US Patent Applications available in IFICDB, IFIPAT, and IFIUDB
NEWS 6 Apr 22 Records from IP.com available in CAPLUS, HCAPLUS, and ZCAPLUS
NEWS 7 Apr 22 BIOSIS Gene Names now available in TOXCENTER
NEWS 8 Apr 22 Federal Research in Progress (FEDRIP) now available
NEWS 9 Jun 03 New e-mail delivery for search results now available
NEWS 10 Jun 10 MEDLINE Reload
NEWS 11 Jun 10 PCTFULL has been reloaded
NEWS 12 Jul 02 FOREGE no longer contains STANDARDS file segment
NEWS 13 Jul 22 USAN to be reloaded July 28, 2002;
saved answer sets no longer valid
NEWS 14 Jul 29 Enhanced polymer searching in REGISTRY
NEWS 15 Jul 30 NETFIRST to be removed from STN
NEWS 16 Aug 08 CANCERLIT reload
NEWS 17 Aug 08 PHARMAMarketLetter(PHARMAML) - new on STN
NEWS 18 Aug 08 NTIS has been reloaded and enhanced
NEWS 19 Aug 19 Aquatic Toxicity Information Retrieval (AQUIRE)
now available on STN
NEWS 20 Aug 19 IFIPAT, IFICDB, and IFIUDB have been reloaded
NEWS 21 Aug 19 The MEDLINE file segment of TOXCENTER has been reloaded
NEWS 22 Aug 26 Sequence searching in REGISTRY enhanced
NEWS 23 Sep 03 JAPIO has been reloaded and enhanced
NEWS 24 Sep 16 Experimental properties added to the REGISTRY file
NEWS 25 Sep 16 Indexing added to some pre-1967 records in CA/CAPLUS
NEWS 26 Sep 16 CA Section Thesaurus available in CAPLUS and CA
NEWS 27 Oct 01 CASREACT Enriched with Reactions from 1907 to 1985
NEWS 28 Oct 21 EVENTLINE has been reloaded
NEWS 29 Oct 24 BEILSTEIN adds new search fields
NEWS 30 Oct 24 Nutraceuticals International (NUTRACEUT) now available on STN
NEWS 31 Oct 25 MEDLINE SDI run of October 8, 2002
NEWS 32 Nov 18 DKILIT has been renamed APOLLIT
NEWS 33 Nov 25 More calculated properties added to REGISTRY
NEWS 34 Dec 02 TIBKAT will be removed from STN
NEWS 35 Dec 04 CSA files on STN
NEWS 36 Dec 17 PCTFULL now covers WP/PCT Applications from 1978 to date
NEWS 37 Dec 17 TOXCENTER enhanced with additional content
NEWS 38 Dec 17 Adis Clinical Trials Insight now available on STN

NEWS EXPRESS October 14 CURRENT WINDOWS VERSION IS V6.01,
CURRENT MACINTOSH VERSION IS V6.0a(ENG) AND V6.0Ja(JP),
AND CURRENT DISCOVER FILE IS DATED 01 OCTOBER 2002
NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS INTER General Internet Information

| | |
|------------|---|
| NEWS LOGIN | Welcome Banner and News Items |
| NEWS PHONE | Direct Dial and Telecommunication Network Access to STN |
| NEWS WWW | CAS World Wide Web Site (general information) |

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 22:03:42 ON 22 DEC 2002

=> File bioscience health medicine meetings pharmacology research toxicology
FILE 'DRUGMONOG' ACCESS NOT AUTHORIZED

| COST IN U.S. DOLLARS | SINCE FILE
ENTRY | TOTAL
SESSION |
|----------------------|---------------------|------------------|
| FULL ESTIMATED COST | 0.21 | 0.21 |

FILE 'ADISCTI' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Adis International Ltd. (ADIS)

FILE 'ADISINSIGHT' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Adis International Ltd. (ADIS)

FILE 'ADISNEWS' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Adis International Ltd. (ADIS)

FILE 'AGRICOLA' ENTERED AT 22:03:49 ON 22 DEC 2002

FILE ANESTR ENTERED AT 22:05:19 ON 22 DEC 2002
COPYRIGHT (c) 2002 THE ROYAL SOCIETY OF CHEMISTRY

(c) 2002 FAO (on behalf of the ASFA Advisory Board) All rights reserved.

FILE 'BIOBUSINESS' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Biological Abstracts, Inc. (BIOSIS)

FILED - BIOCOPMERC - ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 BioCommerce Beta Ltd. Biocommod Supply

FILE 'BIOSIS' ENTERED AT 22:03:49 ON 22 DEC 2002

FILE 'BIOTECHARS' ENTERED AT 22:03:49 ON 22 DEC

FILE PROTECTED! ACCESS NOT AUTHORIZED

COPYRIGHT (C) 2002 Elsevier Science B.V., Amsterdam. All rights reserved.

COPYRIGHT (C) 2002 CAB INTERNATIONAL (CABI)

FILE 'CANCERLIT' ENTERED AT 22:03:49 ON 22 DEC 2002

FILE 'CAPLUS' ENTERED AT 22:03:49 ON 22 DEC 2002

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'CEABA-VTB' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (c) 2002 DECHHEMA eV

FILE 'CEN' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 American Chemical Society (ACS)

FILE 'CIN' ENTERED AT 22:03:49 ON 22 DEC 2002

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2002 American Chemical Society (ACS)

FILE 'CONFSCI' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'CROPB' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'CROPU' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'DDFB' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'DDFU' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'DGENE' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'DRUGB' ACCESS NOT AUTHORIZED

FILE 'DRUGLAUNCH' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 IMSWORLD Publications Ltd

FILE 'DRUGMONOG2' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 IMSWORLD Publications Ltd

FILE 'DRUGNL' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 IMSWORLD Publications Ltd

FILE 'DRUGU' ACCESS NOT AUTHORIZED

FILE 'DRUGUPDATES' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 IMSWORLD Publications Ltd

FILE 'EMBAL' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Elsevier Science B.V. All rights reserved.

FILE 'EMBASE' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Elsevier Science B.V. All rights reserved.

FILE 'ESBIOBASE' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Elsevier Science B.V., Amsterdam. All rights reserved.

FILE 'FEDRIP' ENTERED AT 22:03:49 ON 22 DEC 2002

FILE 'FOMAD' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Leatherhead Food Research Association

FILE 'FOREGE' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Leatherhead Food Research Association

FILE 'FROSTI' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Leatherhead Food Research Association

FILE 'FSTA' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 International Food Information Service

FILE 'GENBANK' ENTERED AT 22:03:49 ON 22 DEC 2002

FILE 'HEALSAFE' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'IFIPAT' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 IFI CLAIMS(R) Patent Services (IFI)

FILE 'JICST-EPLUS' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Japan Science and Technology Corporation (JST)

FILE 'KOSMET' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 International Federation of the Societies of Cosmetics Chemists

FILE 'LIFESCI' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'MEDICONF' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (c) 2002 FAIRBASE Datenbank GmbH, Hannover, Germany

FILE 'MEDLINE' ENTERED AT 22:03:49 ON 22 DEC 2002

FILE 'NIOSHTIC' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 U.S. Secretary of Commerce on Behalf of the U.S. Government

FILE 'NTIS' ENTERED AT 22:03:49 ON 22 DEC 2002

Compiled and distributed by the NTIS, U.S. Department of Commerce.

It contains copyrighted material.

All rights reserved. (2002)

FILE 'OCEAN' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'PASCAL' ENTERED AT 22:03:49 ON 22 DEC 2002

Any reproduction or dissemination in part or in full,

by means of any process and on any support whatsoever

is prohibited without the prior written agreement of INIST-CNRS.

COPYRIGHT (C) 2002 INIST-CNRS. All rights reserved.

FILE 'PHAR' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 PJB Publications Ltd. (PJB)

FILE 'PHARMAML' ENTERED AT 22:03:49 ON 22 DEC 2002

Copyright 2002 (c) MARKETLETTER Publications Ltd. All rights reserved.

FILE 'PHIC' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 PJB Publications Ltd. (PJB)

FILE 'PHIN' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 PJB Publications Ltd. (PJB)

FILE 'PROMT' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Gale Group. All rights reserved.

FILE 'SCISEARCH' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Institute for Scientific Information (ISI) (R)

FILE 'SYNTHLINE' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Prous Science

FILE 'TOXCENTER' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 ACS

FILE 'USPATFULL' ENTERED AT 22:03:49 ON 22 DEC 2002
CA INDEXING COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'USPAT2' ENTERED AT 22:03:49 ON 22 DEC 2002
CA INDEXING COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'VETB' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'VETU' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'WPIDS' ACCESS NOT AUTHORIZED

FILE 'WPINDEX' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 THOMSON DERWENT

FILE 'CBNB' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (c) 2002 ELSEVIER ENGINEERING INFORMATION, INC.

FILE 'CHEMLIST' ENTERED AT 22:03:49 ON 22 DEC 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 American Chemical Society (ACS)

FILE 'CSNB' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (c) 2002 THE ROYAL SOCIETY OF CHEMISTRY (RSC)

FILE 'ENERGY' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (c) 2002 USDOE for the IEA-Energy Technology Data Exchange (ETDE)

FILE 'HSDB' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 NATIONAL LIBRARY OF MEDICINE

FILE 'INIS' ACCESS NOT AUTHORIZED

FILE 'IPA' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 American Society of Hospital Pharmacists (ASHP)

FILE 'MSDS-CCOHS' ENTERED AT 22:03:49 ON 22 DEC 2002
Copyright Notice: Permission to copy is not required for this file

FILE 'MSDS-OHS' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 MDL INFORMATION SYSTEMS (MDL)

FILE 'NAPRALERT' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Board of Trustees of the University of Illinois,
University of Illinois at Chicago.

FILE 'NLDB' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Gale Group. All rights reserved.

FILE 'POLLUAB' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'RTECS' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 U.S. Secretary of Commerce on Behalf of the U.S. Government (DOC)

FILE 'IMOBILITY' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Society of Automotive Engineers, Inc.

FILE 'COMPENDEX' ENTERED AT 22:03:49 ON 22 DEC 2002
Compendex Compilation and Indexing (C) 2002
Elsevier Engineering Information Inc (EEI). All rights reserved.
Compendex (R) is a registered Trademark of Elsevier Engineering Information Inc.

FILE 'COMPUAB' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'CONF' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (c) 2002 FIZ Karlsruhe

FILE 'ELCOM' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'EVENTLINE' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 EXCERPTA MEDICA MEDICAL COMMUNICATIONS B.V. (EMMC)

FILE 'IMSDRUGCONF' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 IMSWORLD Publications Ltd.

FILE 'PAPERCHEM2' ENTERED AT 22:03:49 ON 22 DEC 2002
Paperchem2 compilation and indexing (C) 2002
Elsevier Engineering Information Inc. All rights reserved.

FILE 'SOLIDSTATE' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Cambridge Scientific Abstracts (CSA)

FILE 'BABS' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (c) 2002 Beilstein-Institut zur Foerderung der Chemischen Wissenschaften
licensed to Beilstein Chemiedaten & Software GmbH and MDL Information Systems GmbH

FILE 'DIOGENES' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 FOI Services, Inc. (FOI)

FILE 'INVESTTEXT' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 Thomson Financial Services, Inc. (TFS)

FILE 'USAN' ENTERED AT 22:03:49 ON 22 DEC 2002
COPYRIGHT (C) 2002 U.S. Pharmacopeial Convention, Inc. (USPC)

FILE 'DKF' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Dokumentation Kraftfahrwesen e.V., Germany

FILE 'FORIS' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Informationszentrum Sozialwissenschaften, Bonn (IZS)

FILE 'FORKAT' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Bundesministerium fuer Bildung,
Wissenschaft, Forschung und Technologie (bmb+f)

FILE 'RUSSCI' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Andrigal Ltd.

FILE 'SOLIS' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Informationszentrum Sozialwissenschaften, Bonn (IZS)

FILE 'UFORDAT' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Umweltbundesamt, D-14191 Berlin (UBA)

FILE 'AQUIRE' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 US Environmental Protection Agency (EPA)

FILE 'ULIDAT' ENTERED AT 22:03:49 ON 22 DEC 2002

COPYRIGHT (C) 2002 Umweltbundesamt, D-14191 Berlin (UBA)

=> s streptokinase (8A) fibronectin

41 FILES SEARCHED...

80 FILES SEARCHED...

L1 112 STREPTOKINASE (8A) FIBRONECTIN

=> s fibrin (4A) (bind or binding)

23 FILES SEARCHED...

53 FILES SEARCHED...

90 FILES SEARCHED...

L2 8002 FIBRIN (4A) (BIND OR BINDING)

=> s 11 (8A) 12

58 FILES SEARCHED...

L3 33 L1 (8A) L2

=> duplicate

ENTER REMOVE, IDENTIFY, ONLY, OR (?) :remove

ENTER L# LIST OR (END) :13

DUPLICATE IS NOT AVAILABLE IN 'ADISINSIGHT, ADISNEWS, BIOCOMMERCE, DGENE,
DRUGLAUNCH, DRUGMONOG2, DRUGUPDATES, FEDRIP, FOREGE, GENBANK, KOSMET,
MEDICONF, PHAR, PHARMAML, SYNTHLINE, CHEMLIST, HSDB, MSDS-CCOHS, MSDS-OHS,
RTECS, CONF, EVENTLINE, IMSDRUGCONF, DIOGENES, INVESTTEXT, USAN, FORIS, FORKAT,
UFORDAT, AQUIRE'.

ANSWERS FROM THESE FILES WILL BE CONSIDERED UNIQUE

DUPLICATE PREFERENCE IS 'BIOTECHABS, CAPLUS, DGENE, USPATFULL, WPINDEX'

KEEP DUPLICATES FROM MORE THAN ONE FILE? Y/(N) :n

PROCESSING COMPLETED FOR L3

L4 31 DUPLICATE REMOVE L3 (2 DUPLICATES REMOVED)

=> s 14 (10A) streptokinase

PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH

FIELD CODE - 'AND' OPERATOR ASSUMED 'L284 (10A) STREPTOKI'

PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH

FIELD CODE - 'AND' OPERATOR ASSUMED 'L286 (10A) STREPTOKI'

PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH

FIELD CODE - 'AND' OPERATOR ASSUMED 'L288 (10A) STREPTOKI'

PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH

FIELD CODE - 'AND' OPERATOR ASSUMED 'L290 (10A) STREPTOKI'

31 FILES SEARCHED...

PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L346 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L348 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L350 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L352 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L354 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L356 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH

FIELD CODE - 'AND' OPERATOR ASSUMED 'L358 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L360 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L362 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L364 (10A) STREPTOKI'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'L366 (10A) STREPTOKI'
<-----User Break----->

SEARCH ENDED BY USER

=> s 14 and streptokinase
32 FILES SEARCHED...
59 FILES SEARCHED...
L5 31 L4 AND STREPTOKINASE

=> d 15 1-31 bib ab

L5 ANSWER 1 OF 31 BIOTECHABS COPYRIGHT 2002 THOMSON DERWENT AND ISI
AN 2000-13074 BIOTECHABS
TI Hybrid **streptokinase**-fibrin binding domain proteins useful for
thrombolytic therapy comprises a **streptokinae** fused with fibrin binding
domains of human fibronectin having independent fibrin binding domains of
human fibronectin;
vector-mediated gene transfer and expression in host cell
AU Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA CSIR-New-Delhi
LO New Delhi, India.
PI EP 1024192 2 Aug 2000
AI EP 1999-310541 23 Dec 1999
PRAI IN 1998-382598 24 Dec 1998
DT Patent
LA English
OS WPI: 2000-516032 [47]
AB A hybrid plasminogen activator (PA) containing a **streptokinase**
fused with **fibrin binding** domains of human
fibronectin having independent **fibrin binding**
ability and delayed plasminogen activation. The hybrid PA possess the
ability to bind with fibrin independently and also characteristically
retains a PG activation ability which becomes evident only after a
pronounced duration or lag after exposure of the PA to a suitable animal
or human PG. Also claimed are: a DNA segment encoding the hybrid PA; an
expression vector; and prokaryotic or eukaryotic cells, transfrome or
transfected with the vector. The hybrid **streptokinase**-fibrin
binding domain proteins are useful in thrombolytic therapy for various
kinds of cardiovascular disorders. (58pp)

L5 ANSWER 2 OF 31 CAPLUS COPYRIGHT 2002 ACS
AN 1992:443664 CAPLUS
DN 117:43664
TI Polypeptides containing the fibrin-binding domain of fibronectin, their
recombinant production, and their use in imaging and therapy
IN Vogel, Tikva; Levanon, Avigdor; Werber, Moshe; Guy, Rachel; Panet, Amos;
Hartman, Jacob; Shaked, Hadassa
PA Bio-Technology General Corp., USA
SO PCT Int. Appl., 192 pp.
CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 2

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|---|------|----------|-----------------|----------|
| PI | WO 9117765 | A1 | 19911128 | WO 1991-US3584 | 19910521 |
| | W: AU, BR, CA, FI, HU, JP, KR, NO, SU
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE | | | | |
| | US 5270030 | A | 19931214 | US 1990-526397 | 19900521 |
| | AU 9180760 | A1 | 19911210 | AU 1991-80760 | 19910521 |
| | AU 660618 | B2 | 19950706 | | |
| | JP 05508766 | T2 | 19931209 | JP 1991-511197 | 19910521 |
| | HU 66189 | A2 | 19941028 | HU 1992-3516 | 19910521 |
| | HU 216302 | B | 19990628 | | |
| | EP 651799 | A1 | 19950510 | EP 1991-911888 | 19910521 |
| | EP 651799 | B1 | 19990818 | | |
| | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE | | | | |
| | RU 2109750 | C1 | 19980427 | RU 1992-16360 | 19910521 |
| | AT 183545 | E | 19990915 | AT 1991-911888 | 19910521 |
| | ES 2137928 | T3 | 20000101 | ES 1991-911888 | 19910521 |
| | NO 9204405 | A | 19930113 | NO 1992-4405 | 19921113 |
| | US 5455158 | A | 19951003 | US 1993-58241 | 19930504 |
| | US 5679320 | A | 19971021 | US 1994-259569 | 19940614 |
| | US 5965383 | A | 19991012 | US 1995-409750 | 19950324 |
| | US 5869616 | A | 19990209 | US 1997-826885 | 19970408 |
| | US 6121426 | A | 20000919 | US 1997-909140 | 19970811 |
| PRAI | US 1990-526397 | A | 19900521 | | |
| | US 1988-291951 | B2 | 19881229 | | |
| | US 1989-345952 | B2 | 19890428 | | |
| | CA 1989-2006929 | A | 19891229 | | |
| | US 1991-703842 | B1 | 19910521 | | |
| | WO 1991-US3584 | A | 19910521 | | |
| | US 1993-58241 | A1 | 19930504 | | |
| | US 1994-259569 | A3 | 19940614 | | |
| | US 1995-409750 | A3 | 19950324 | | |

AB Polypeptides having amino acid sequences substantially present in the fibrin-binding domain (FBD) of human fibronectin are labeled with an imageable marker and used in imaging a thrombus or atherosclerotic plaque. Thrombolytic agents bound to the FBD polypeptides are also claimed. Wounds are treated with fusion products of the FBD polypeptide and a polypeptide comprising the cell-binding domain of human fibronectin. A human fibronectin cDNA library was prep'd. and used in cloning and making various FBD polypeptides. The polypeptides were modified with DTPA and radiolabeled with 111In and shown to bind to preformed thrombi and thrombi in vivo. They gave a high thrombus:blood ratio of 80-200 after 24 h. The bacterial binding domain of fibronectin was shown to be sepd. from the FBD since a 31-kDa recombinant FBD polypeptide contg. the entire FBD (residues 1-262 of fibronectin) bound to *Staphylococcus aureus*, while 18.5 kDa and 12 kDa polypeptides contg. the 1st 154 and 109 amino acid residues of fibronectin, resp., did not. The 18.5 and 12 kDa polypeptides had a high covalent binding specificity for fibrin together with a narrower spectrum of activities and lower specificity for other ligands such as vascular components and bacteria than the 31 kDa protein which is advantageous for thrombus imaging.

L5 ANSWER 3 OF 31 DGENE (C) 2002 THOMSON DERWENT
 AN AAY90282 Protein DGENE
 TI Hybrid **streptokinase-fibrin binding** domain
 polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
 domains of human **fibronectin** -
 IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
 PA (COUL) CSIR COUNCIL SCI IND RES.
 PI EP 1024192 A2 20000802 58p
 AI EP 1999-310541 19991223

PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents the human *Streptococcus equisimilus streptokinase* protein sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 4 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAY90281 Protein DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a human fibronectin fragment, containing fibrin binding domains. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use

of streptokinase.

L5 ANSWER 5 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAY90280 Peptide DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents the intergenic region of a chimeric streptokinase-fibrin binding domain (SK-FBD) protein sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin binding domain** polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 6 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37644 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident

only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 7 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37643 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 8 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37642 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223

PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 9 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37641 DNA DGENE
TI Hybrid **streptokinase**-**fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence is a PCR primer used in the construction of a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This

overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 10 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37640 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence is a PCR primer used in the construction of a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin binding** domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 11 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37639 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence is a PCR primer used in the construction of a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin

independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin binding domain polypeptides** are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 12 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37638 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence is a PCR primer used in the construction of a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin binding domain polypeptides** are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 13 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37637 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M

PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a chimeric streptokinase-fibrin binding domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 14 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37636 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajgopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without

significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 15 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37635 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin** binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 16 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37634 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA

possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin** binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 17 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37633 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192. A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents the human Streptococcus equisimilus **streptokinase** coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin** binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 18 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37632 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.

PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a human fibronectin coding sequence fragment, containing fibrin binding domains. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 19 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37631 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the human fibrin binding domain coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the

plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 20 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37630 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the human fibrin binding domain coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin binding** domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 21 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37629 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents the intergenic region of a chimeric **streptokinase-fibrin binding** domain (SK-FBD) protein coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin

independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin binding domain** polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 22 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37628 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a **streptokinase-NTR** (SK-NTR) gene (where NTR stands for N-terminally repaired with native sequence). The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin binding domain** polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 23 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37627 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M

PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis streptokinase* (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 24 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37626 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a fragment of the *Streptococcus equisimilis streptokinase* (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without

significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 25 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37625 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a fragment of the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin** binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 26 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37624 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain
polypeptides useful for thrombolytic therapy comprises a
streptokinase fused with **fibrin binding**
domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA

possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 27 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37623 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 28 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37622 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.

PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a **streptokinase**-NTRN (SK-NTRN) gene (where NTRN stands for N-terminally repaired with native sequence). The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 29 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37621 DNA DGENE
TI Hybrid **streptokinase**-**fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase**-fibrin binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without

significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 30 OF 31 DGENE (C) 2002 THOMSON DERWENT
AN AAA37620 DNA DGENE
TI Hybrid **streptokinase-fibrin binding** domain polypeptides useful for thrombolytic therapy comprises a **streptokinase** fused with **fibrin binding** domains of human **fibronectin** -
IN Sahni G; Kumar R; Roy C; Rajogopal K; Nihalani D; Sundaram V; Yadav M
PA (COUL) CSIR COUNCIL SCI IND RES.
PI EP 1024192 A2 20000802 58p
AI EP 1999-310541 19991223
PRAI IN 1998-3825 19981224
DT Patent
LA English
OS 2000-516032 [47]
AB This sequence represents a PCR primer for the *Streptococcus equisimilis* **streptokinase** (SK) coding sequence. The invention relates to a hybrid plasminogen activator (PA) comprises a polypeptide fusion between **streptokinase** (SK), which are capable of plasminogen (PG) activation, and fibrin binding regions of human fibronectin, which are from fibrin binding domains (FBD) 4 and 5 or 1 and 2. The hybrid PA possesses the ability to bind with fibrin independently and also characteristically retains a PG activation ability which becomes evident only after a pronounced duration, or lag, after exposure of the PA to a suitable animal or human PG. The hybrid **streptokinase-fibrin** binding domain polypeptides are useful in thrombolytic therapy for various kinds of cardiovascular disorders. The hybrids have enhanced fibrin selectivity as well as kinetics of plasminogen activation that are distinct from that of natural **streptokinase** in being characterised by a temporary delay, or lag of several minutes in the natural rate of the catalytic conversion of plasminogen to plasmin (i.e. delayed-action thrombolysis). The proteins can bind tightly with fibrin in blood clots soon after introduction into the vascular system without significantly activating the circulating blood plasminogen to plasmin, thus aiding in the localisation of the plasminogen activation process to the site of pathological thrombus. This overcomes systemic plasminogen activation encountered during clinical use of **streptokinase**.

L5 ANSWER 31 OF 31 USPATFULL
AN 92:80812 USPATFULL
TI Pharmaceutically active conjugates having improved body tissue binding specificity
IN Brown, Robert A., St. Albans, Great Britain
PA Central Blood Laboratories Authority, Borehamwood, Great Britain (non-U.S. corporation)
PI US 5151412 19920929
WO 8803810 19880602
AI US 1989-359662 19890721 (7)
WO 1987-GB854 19871127
19890721 PCT 371 date
19890721 PCT 102(e) date
PRAI GB 1986-28398 19861127
DT Utility
FS Granted
EXNAM Primary Examiner: Nucker, Christine M.; Assistant Examiner: Kim, Kay K.
LREP Foley & Lardner
CLMN Number of Claims: 18
ECL Exemplary Claim: 1

DRWN 3 Drawing Figure(s); 3 Drawing Page(s)

LN.CNT 1358

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Pharmaceutically active conjugates comprising a pharmaceutically active substance for treating a disorder of the body that involves a specified body tissue conjugated directly or indirectly with at least one fragment of an adhesive glycoprotein such as fibronectin, the said glycoprotein fragment(s) having improved binding specificity compared with the parent protein for the said body tissue.