1 Maschinen

1.1 Turingmaschinen

Aufgabe 1.1 Klausur 2012

Gebe eine 1-Band-Turingmaschine M an, die die Funktion $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mit

$$f(x,y) = \begin{cases} x, & \text{falls } x \text{ gerade} \\ y, & \text{falls } x \text{ ungerade} \end{cases}$$

berechnet.

Zur Erinnerung: Die Zahl n wird durch das Unärwort 0^{n+1} dargestellt.

Aufgabe 1.2 Klausur 2014

Gebe eine 2-Band-Turingmaschine M an, die die durch $f(w) = 0^{\#_0(w)} 1^{\#_1(w)}$ gegebene Funktion $f: \{0,1\}^* \to \{0,1\}^*$ berechnet.

Aufgabe 1.3 Klausur 2015

Gebe einen totalen (deterministischen) 2-Band-Turingakzeptor M an, der die Sprache $L = \{w2w \colon w \in \{0,1\}^*\}$ (über dem Alphabet $\{0,1,2\}$) erkennt.

Aufgabe 1.4 Blatt 13, 2015

Gebe eine 1-Band-Turingmaschine M an, welche die Menge

$$A = \{w \in \{0,1\}^* : \#_0(w) \text{ gerade}\}\$$

erkennt.

1.2 Registermaschinen

Aufgabe 1.5 Klausur 2015

Die Funktion $f: \mathbb{N} \to \mathbb{N}$ sei durch

$$f(x) = \begin{cases} 1, & \text{falls } x \text{ ungerade} \\ 0, & \text{falls } x \text{ gerade} \end{cases}$$

definiert. Gebe einen Registeroperator P an, der f konservativ berechnet.

Aufgabe 1.6 Nachklausur 2015

Gebe einen konservativen Registeroperator an, der die Gleichheitsrelation erkennt, d.h. die Funktion

$$c_{=}(x,y) = 1 \Leftrightarrow x = y$$

berechnet.

Aufgabe 1.7 Blatt 13, 2015

Gebe eine Registermaschine Ran, welche die Funktion $f:\mathbb{N}^2\to\mathbb{N}$ mit

$$f(x,y) = \begin{cases} \frac{x}{3}, & \text{falls } x \text{ durch drei teilbar} \\ y, & \text{sonst} \end{cases}$$

berechnet.

2 Funktionen

Aufgabe 2.1

Zeige nur unter Verwendung der Definition der primitiv rekursiven Funktionen, dass folgende Funktionen primitiv rekursiv sind:

- (a) $f: \mathbb{N} \to \mathbb{N}$ mit $f(x) = x^2 + 2x + 1$
- (b) $g: \mathbb{N}^2 \to \mathbb{N}$ mit $g(x,y) = 2^x + 2^y$ (Nachklausur 2015) Du darfst verwenden, dass die Addition add(x,y) = x + y primitiv rekursiv ist. Hinweis: Zeige zunächst, dass die Funktion $\hat{f}(x) = 2^x$ primitiv rekursiv ist.
- (c) $h: \mathbb{N}^3 \to \mathbb{N}$ mit h(x, y, z) = 3x + z

Aufgabe 2.2 Nachklausur 2013

Eine natürliche Zahl heißt Mersenne-Primzahl, falls sie von der Form 2^n-1 (für ein $n \in \mathbb{N}$) und eine Primzahl ist.

Zeige, dass die Menge

$$M = \{x : x \text{ ist Mersenne-Primzahl}\}$$

primitiv rekursiv ist.

Du darfst dabei neben der Definition der primitiv rekursiven Funktionen die aus der Vorlesung bekannten Abschlusseigenschaften sowie die primitive Rekursivität der Multiplikation \cdot , der modifizierten Subtraktion $\dot{-}$, der Potenzfunktion $n \mapsto 2^n$ und der Gleichheitsrelation verwenden.

Aufgabe 2.3 Blatt 13, 2015

Sei $f: \mathbb{N} \to \mathbb{N}^2$ gegeben durch

$$f(0) = 0$$

$$f(x+1) = \begin{cases} f(x) + 1, & \text{falls } x \text{ gerade} \\ f(x) + 2, & \text{falls } x \text{ ungerade} \end{cases}$$

Zeige, dass f primitiv rekursiv ist.

3 Mengen

3.1 Rekursiv aufzählbare Mengen

Aufgabe 3.1

Welche der folgenden Aussagen sind wahr? Begründe deine Antworten und gebe für falsche Aussagen ein Gegenbeispiel an.

- (a) Jede unendliche rekursive Menge enthält eine nichtrekursive Teilmenge.
- (b) Für zwei rekursiv aufzählbare Mengen A und B ist auch $A \setminus B$ rekursiv aufzählbar.
- (c) Seien A und B zwei disjunkte rekursiv aufzählbare Mengen, sodass $A \cup B$ rekursiv ist. Dann sind auch A und B rekursiv.
- (d) Sind sowohl A als auch \overline{A} rekursiv aufzählbar, so gilt $A =_m \overline{A}$.

Hinweis: Du darfst alle Resultate der Vorlesung inklusive der Church-Turing-These verwenden.

Aufgabe 3.2

Die symmetrische Differenz zweier Mengen A und B ist

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Zeige:

- (a) Ist $A \triangle B$ endlich, so gilt $A =_m B$.
- (b) Die symmetrische Differenz zweier rekursiv aufzählbarer Sprachen ist nicht notwendig rekursiv aufzählbar.
- (c) Seien A und B rekursiv aufzählbar. Wenn $A \triangle B$ rekursiv ist, dann sind auch $A \setminus B$ und $B \setminus A$ rekursiv.

Hinweis: Du darfst alle Resultate der Vorlesung inklusive der Church-Turing-These verwenden.

Aufgabe 3.3

Zeige mithilfe der Diagonalisierungsmethode, dass die Menge

$$K' = \{e \in \mathbb{N} : \varphi(e, x) \downarrow \text{ für alle } x \leq e\}$$

nicht rekursiv ist.

Aufgabe 3.4 Klausur 2015

Beweise oder widerlege die folgenden Aussagen:

(a) Für alle rekursiv aufzählbaren Mengen A_0, A_1, A_2 ist die zugehörige Menge

 $B = \{x : x \text{ ist Element von } mindestens \text{ zwei der Mengen } A_0, A_1, A_2\}$

wiederum rekursiv aufzählbar.

(b) Für alle rekursiv aufzählbaren Mengen A_0, A_1, A_2 ist die zugehörige Menge

 $C = \{x : x \text{ ist Element von } h\ddot{o}chstens \text{ zwei der Mengen } A_0, A_1, A_2\}$

wiederum rekursiv aufzählbar.

Du darfst hierbei alle Ergebnisse aus der Vorlesung verwenden, nicht aber die Church-Turing-These.

Aufgabe 3.5 Blatt 13, 2015

- (a) Zeige, dass für eine Menge $A \subseteq \mathbb{N}$ folgende Aussagen äquivalent sind:
 - (i) A ist rekursiv.
 - (ii) A und \overline{A} sind rekursiv aufzählbar.
 - (iii) A ist leer oder der Wertebereich einer schwach monotonen, rekursiven Funktion. Hierbei heißt $g: \mathbb{N} \to \mathbb{N}$ schwach monoton, falls für alle $x \leq y$ folgt dass $g(x) \leq g(y)$.
 - (iv) A ist endlich oder der Wertebereich einer streng monotonen, rekursiven Funktion. Hierbei heißt $g: \mathbb{N} \to \mathbb{N}$ streng monoton, falls für alle x < y folgt, dass g(x) < g(y).
- (b) Zeige:
 - (i) Ist $A \subseteq \mathbb{N}$ unendlich und rekursiv aufzählbar, so ist A der Wertebereich einer totalen, injektiven, rekursiven Funktion.
 - (ii) Ist $A \subseteq \mathbb{N}$ unendlich und rekursiv aufzählbar, so enthält A eine unendliche, rekursive Teilmenge B.
 - (iii) Ist A rekursiv aufzählbar, so ist A der Definitions- und Wertebereich einer partiell rekursiven Funktion ψ .

3.2 Reduktionsmethode

Aufgabe 3.6 Nachklausur 2012

(a) Zeige, dass die Mengen

$$A = \{ \langle x, y \rangle \colon \varphi_x(y) \downarrow \text{ und } \varphi_y(x) \downarrow \}$$

und

$$B = \{ \langle x, y \rangle \colon \varphi_x(y) \uparrow \text{ oder } \varphi_y(x) \uparrow \}$$

nicht rekursiv sind.

(b) Sind A und B rekursiv aufzählbar?

Aufgabe 3.7

Seien FIN und INF die Indizes der endlichen bzw. unendlichen rekursiv aufzählbaren Mengen:

FIN =
$$\{e \in \mathbb{N} : W_e \text{ ist endlich}\}\$$

INF = $\{e \in \mathbb{N} : W_e \text{ ist unendlich}\}\$

Sei TOT die Menge der Indizes aller rekursiven Funktionen:

$$TOT = \{e \in \mathbb{N} \colon W_e = \mathbb{N}\}\$$

Hinweis: Wie in der Vorlesung definiert, ist W_e der Definitionsbereich der e-ten partiell rekursiven Funktion, also $W_e = Db(\varphi_e) = \{x \in \mathbb{N} : \varphi_e(x) \downarrow \}.$

- (a) Zeige, dass die Menge FIN \oplus INF = $\{2e \colon e \in \text{FIN}\} \cup \{2e+1 \colon e \in \text{INF}\}$ nicht rekursiv aufzählbar ist.
- (b) Zeige, dass das Komplement von TOT auf FIN many-one-reduzierbar ist, also dass $\overline{\text{TOT}} \leq_m \text{FIN gilt.}$
- (c) Zeige, dass FIN nicht rekursiv aufzählbar ist. Hinweis: Entweder zeigst du dies direkt, oder du zeigst durch geeignete m-Reduzierung, dass $\overline{\text{TOT}}$ nicht rekursiv aufzählbar ist.

Aufgabe 3.8 Klausur 2012

Sei

$$Id = \{ e \in \mathbb{N} \colon \forall n \ (\varphi_e(n) = n) \}.$$

- (a) Zeige, dass das Halteproblem m-reduzierbar auf Id ist, das heißt, dass $K \leq_m Id$ gilt.
- (b) Gebe für die folgenden Aussagen jeweils an, ob sie wahr oder falsch sind. Begründe deine Antworten!
 - (i) Id ist rekursiv.
 - (ii) $\overline{\mathrm{Id}}$ ist rekursiv.
 - (iii) Id ist rekursiv aufzählbar.

Aufgabe 3.9 Blatt 13, 2015

(a) Sei $W_e = Db(\varphi_e)$ die e-te rekursiv aufzählbare Menge und $W = \{e \in \mathbb{N} : 0, 1 \in W_e\}$. Zeige $K_d \leq_m W$, indem du eine rekursive Funktion $f : \mathbb{N} \to \mathbb{N}$ angibst mit

$$\forall e : e \in K_d \Leftrightarrow f(e) \in W$$

Ist W rekursiv aufzählbar?

- (b) Folgere aus (a), dass W vollständig für die Klasse der rekursiv aufzählbaren Mengen ist.
- (c) Sei nun $I = \{e \in \mathbb{N} : W_e \text{ ist nichttriviale Indexmenge}\}$. Ist I eine Idexmenge? Ist sie nichttrivial?
- (d) Wahr oder falsch? Begründe deine Antwort und gebe gegebenenfalls Gegenbeispiele an!
 - (i) Ist B rekursiv aufzählbar und $A \leq_m B$, so ist auch A rekursiv aufzählbar.
 - (ii) Man kann den kleinsten Index einer partiell rekursiven Funktion bestimmen. Genauer: Die Funktion min, die jedem Index e die kleinste Zahl e' mit $\varphi_e = \varphi_{e'}$ zuordnet, ist rekursiv
 - (iii) Es gibt eine abzählbare Klasse C, die keine vollständige Menge besitzt.

4 Formale Sprachen

Aufgabe 4.1

Zeige, dass die folgenden Sprachen nicht kontextfrei sind:

$$L_{1} = \{ w \in \{a, b, c\}^{*} : \#_{a}(w) = \#_{b}(w) = \#_{c}(w) \}$$

$$L_{2} = \{ a^{n}b^{2n}c^{3n} : n \ge 1 \}$$

$$L_{3} = \{ 0^{n^{2}} : n \ge 0 \}$$
(Klausur 2015)
(Nachklausur 2015)

Aufgabe 4.2

Wahr oder falsch?

- (a) Die Sprache $L_1 = \{vw : v, w \in \{0,1\}^*, |v| = |w|\}$ ist regulär.
- (b) Die Sprache $L_2 = \{w_0 \circ \ldots \circ w_n : n \in \mathbb{N}, |w_k| = k \ \forall k \in \mathbb{N}\}$ ist kontextfrei.
- (c) Sei $L \subseteq \{0,1\}^*$ eine Sprache mit |L| = n für ein $n \in \mathbb{N}$. Dann ist L regulär.

Aufgabe 4.3

Zeige, dass die Sprache

$$L = \{w \in \{0,1\}^* \colon w = Bin(n) \text{ für ein } n \in \mathbb{N}\}$$

der Binärzahlen regulär ist.

Aufgabe 4.4

Sei L die Sprache über dem Alphabet $\{a,b,c\}$, die genau die Wörter enthält, in denen das Teilwort abc genau einmal vorkommt.

- (a) Gebe eine rechtslineare Grammatik an, die L erzeugt.
- (b) Gebe einen deterministischen endlichen Automaten an, der L erkennt.

Aufgabe 4.5

Sei L die reguläre Sprache

$$L = \{w \in \{0, 1, 2\}^* : \#_0(w) = 0 \text{ oder } \#_1(w) = 0 \text{ oder } \#_2(w) = 0\}.$$

Gebe einen deterministischen endlichen Automaten an, der L erkennt.