Generalization Error

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

Why Evaluation?

- Estimation of the generalization error
- Increasing of the predictive performance
- Selecting best-suited ML algorithm for our problem

Why Validation?

- Training set error is an optimistically biased estimator of the generalization error
- Test set error is an unbiased estimator of the generalization error

Validation

Types of Validation

- Holdout Validation
- LOOCV (Leave One Out Cross Validation)
- K-Fold Cross Validation

Holdout Validation

- Pros
 - ► Fully independent of data
 - ► Lower computational costs
- Cons
 - higher variance

LOOCV

- Pros
 - Lower bias
- Cons
 - ▶ Higher computational cost

K-Fold Cross Validation

- Pros
 - ► Lower computational compared to LOOCV
 - ► Lower variance campared to Holdout
 - ▶ Reducing both Bias and Variance
- Cons
 - ▶ Higher computational costs in big data state
 - Impact model in imbalanced data state

Hyperparameter Optimization

- Hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorith.
- A hyperparameter is a parameter whose value is used to control the learning process.
- By contrast, the values of other parameters of the model are learned.
- Hyperparameter optimization finds a tuple of hyperparameters that yields an optimal model which minimizes a predefined loss function on given independent data. Various algorithms of hyperparameter optimization:
 - Grid search
 - ▶ Random Search
 - **▶** Bayesian Optimization
 - ► Gradient-based optimization
 - Population-based optimization
- Important hyperparameter tuning packages:
 - ▶ Hyperopt
 - Optuna
 - Skopt

Thank You!

Any Question?