Topic Segmentation

Regina Barzilay

February 11, 2004

Example

```
05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
         1 111 1 1
     form
8 scientist
                   11
                      1 1
5
    space 11 1 1
25
    star
                                            11 22 111112 1 1 1 11 1111
         1
    binary
                                            11 1
                                                      1
   trinary
                                             1 1
                                                     1
                                            1 1
8 astronomer 1
                                                     1 1 1 1
                                              12 1 1
    orbit 1
    pull
                            1 1
                                                 1 1
6
        1 1 11
16
    planet
                          1 1
                                              21 11111
                                          1
                                                     1 11 1
    galaxy
         1
                                                                   1
            1 1 1 1
    lunar
    life 1 1 1
19
                                  11 1 11 1
                                            1 1 1 1 1 1 1 1
                              21
           13 1111 1 1 22 21 21
                                      11 1
     moon
     move
7 continent
                                2 1 1 2 1
  shoreline
                                   12
                            1 1 1 1
   time
                    1
3
                            11
    water
                               1 11
                            1 1
    say
   species
                                1 1 1
          05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
```

Segmentation Algorithm

- Preprocessing and Initial segmentation
- Similarity Computation
- Boundary Detection

Evaluation Results

Methods	Precision	Recall
Baseline 33%	0.44	0.37
Baseline 41%	0.43	0.42
Chains	0.64	0.58
Blocks	0.66	0.61
Judges	0.81	0.71

More Results

- High sensitivity to change in parameter values
- Thesaural information does not help
- Most of the mistakes are "close misses"

Today's Topics

- Hierarchical segmentation
- HMM-based segmentation
- Supervised segmentation

Agglomerative Clustering

- First, each data point is a singleton cluster
- Next, closest points are merged until all points are combined

Agglomerative Clustering

- Complete-link merge the two clusters whose merger has the smallest diameter
- Single-link merge the two clusters whose two closest members have the smallest distance
- Average-link merges in each iteration the pair of clusters with the highest cohesion.

Hierarchical Segmentation

(Yaari, 1997)

- Partition the text into elementary segments
- While more than one segment left do
 - Find closest adjacent segments s_i , s_{i+1} (based on cosine measure)
 - Merge s_i, s_{i+1} into one segment

Broadcast News Segmentation

- Goal: divide news stream into stories
- Assumption: news stories typically belong to one of several categories (sports, politics, . . .)

HMM-based Segmentation: Construction

van Mulbregt&Carp&Gillick&Lowe'99:

- Each state of HMM represents a topic
- Topics are derived via story clustering
- Emission probabilities for a state are computed based on a unigram language model

HMM-based Segmentation: Decoding

- Transitions are controlled by switch penalty
- Segmentation via Viterbi-style decoding

TDT Segmentation Results

- Data: 384 shows, 6,000 stories and 2.2 million words
- Sources: ABC, CNN, ...
- TDT Evaluation Measure:

$$C_{Seg} = \alpha * P_{Miss} + (1 - \alpha) * P_{FalseAlarm}$$

TDT Performance

Input Type	$C_S eg$ for ABC	
ASR	0.1723	
Closed Captions	0.1515	
Transcripts	0.1356	
	ASR!	

Note the impact for

Meeting Segmentation

- Motivation: Facilitate information Access
- Challenges:
 - High error rate in transcription
 - Multi-thread structure

Algorithm for Feature Segmentation

Supervised ML (Galley&McKeown&Fosler-Lussier&Jing'03)

- Combines multiple knowledge source:
 - cue phrases
 - silences
 - overlaps
 - speaker change
 - lexical cohesion
- Uses probabilistic classifier (decision tree) to combine them

Cue Word Selection

Automatic computation of cue words:

- Compute word probability to appear in boundary position
- Select words with the highest probability
- Remove non-cues.

Selected Cue Words

OKAY	93.05	
shall	0.44	
anyway	0.43	
alright	0.64	
let's	0.66	
good	0.81	

Silences

- Pauses speaker silence in the middle of her speech
- Gap silences not attributable to any party

Topic boundaries are typically preceded by gaps

<u>Overlaps</u>

• Average overlap rate within some window

Little overlap in the beginning of segments

Determination of Window Size

Feature	Tag	Size(sec)	Side
Cue phrases	CUE	5	both
Silence (gaps)	SIL	30	left
Overlap	OVR	30	right
Speaker activity	ACT	5	both
Lexical cohesion	LC	30	both

Examples of Derived Rules

Condition	Decision	Conf.
LC≤0.67, CUE≥1,		
OVR≤1.20, SIL≤3.42	yes	94.1
LC≤0.35, SIL>3.42,		
OVR≤4.55	yes	92.2
CUE≥1, ACT>0.1768,		
OVR≤1.20, LC≤0.67	yes	91.6
•••		
default	no	

Results

Method	P_k	WD
Feature-based	23.00	25.47
Cohesion-based	31.91	35.88