

The Best Angle of 3-point shoots Based on Stephen Curry

Kelvin Chan

Department of Mathematics University of Macau

May 20, 2024

Contents

- Introduction
- 2 Approaches
- Solution
- 4 Conclusion

Introduction

Introduction

Find the best shooting angle for Curry in this model.

Figure: Stephen Curry

Figure: Ball trajectory

Approaches

Approaches

Resolving the initial velocity:

$$v_H = v_0 cos(\theta_0)$$
 $u_V = v_0 sin(\theta_0)$

Find the horizontal distance and vertical distance of motion:

$$l = x(t) = v_0 cos(\theta_0)t, \quad h = v_0 sin(\theta_0) + \frac{1}{2}gt^2$$

Find the initial velocity:

$$v_0 = \frac{l}{\cos(\theta_0)} \sqrt{\frac{-g}{2(l\tan(\theta_0) - h)}}$$

Figure: The conceptualization of shooting

Two criteria

- The basketball does not touch the front of rim
- The basketball hit the back of the rim

Figure: Two Criteria

Error Analysis

- Discretization
- Implemented Eular's Method : Track of the minimum distance
- Stability: Convergent and bound by Lipschitz condition

$$|f(t,y) - f(t,z)| \le L|y-z|$$

Figure: Discretization

Figure: Eular's method

Solution

Solution

Figure: The Error About θ_0 For Which The Basketball Still Goes In (discretization)

Figure: Result without discretiztion

Conclusion

Conclusion

- Good demonstration: Hard-working, keep learning
- One by Successful: Runnable Code, correct graph
- Challenges: Error Analysis(New), Messy function
- Improvement: More variables, Classification, Accuracy

Thank you!