Loop Invariants

CS242

Lecture 13

Approaches to Proving Properties of Programs

Notation: Hoare Triples

{ Precondition } P { Postcondition}

- Precondition and Postcondition are statements in logic
 - Over program variables
- P is a program
- Read: If the precondition holds on entry to P, then the postcondition holds on exit from P

Examples

$$\{ x > 0 \} x := x + 1 \{ x > 1 \}$$

$$\{ true \} if x then y := 1 else y := 0 \{ y = 0 \lor y = 1 \}$$

$$\{ x = 1 \} for i = 1, k \{ x := x * k \} \{ x = k^k \}$$

A Simple Example

```
X = 0
I = 0
while I < 10 do
X = X + 1
I = I + 1
```

assert(X == 10)

Loop Invariants

• To verify loops, it suffices to find a sufficiently strong loop invariant

- What is a loop invariant?
 - A predicate that holds on every loop iteration
 - (at the same point, usually at loop head)
- What is "sufficiently strong"
 - More in a minute ...

Loop Invariant (1)

```
X = 0
I = 0
while I < 10 do
       { true }
       X = X + 1
       I = I + 1
assert(X == 10)
```

Loop Invariant (2)

```
Z = 42
X = 0
I = 0
while I < 10 do
       {Z = 42}
      X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (3)

```
Z = 42
X = 0
I = 0
while I < 10 do
       { I < 4327 }
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (4)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (5)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X = | \&\& | < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Comments

- Loop invariants aren't hard to compute
 - If you don't care about quality
 - true

- What we want is to prove the assertion at the end of the loop
 - Need an invariant strong enough to do this

Comments

But how can we prove the assertion?

- We need a proof strategy
 - A process that we can apply to reason about any loop

Inductive Invariants

```
Pre \Rightarrow I
while (B)
                                                       I \wedge B
                                                       { code }
 ... code ...
                           Post
                                                       I \wedge \neg B \Rightarrow
                                                        Post
```

Inductive Invariants

• Pre ⇒I

The invariant holds initially

• I ∧ B { code } I

If the invariant and loop condition hold, executing the loop body re-establishes the invariant

• I $\land \neg B \Rightarrow Post$

If the invariant holds and the loop terminates, then the post-condition holds

Loop Invariant (1)

```
X = 0
I = 0
while I < 10 do
       { true }
       X = X + 1
       I = I + 1
assert(X == 10)
```

Loop Invariant (2)

```
Z = 42
X = 0
I = 0
while I < 10 do
       {Z = 42}
      X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (3)

```
Z = 42
X = 0
I = 0
while I < 10 do
       { I < 4327 }
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (4)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

Loop Invariant (5)

```
Z = 42
X = 0
I = 0
while I < 10 do
       \{ X = | \&\& | < 11 \}
       X = X + 1
       | = | + 1|
assert(X == 10)
```

First Question

How do we decide whether these formulas are true?

$$Pre \Rightarrow I \quad I \land B \{ code \} I \quad I \land \neg B \Rightarrow Post$$

- Use SMT solvers
 - Satisfiability Modulo Theories
 - Tools that include decision procedures for a wide variety of logical theories relevant to program verification
 - Boolean satisfiability, theory or arrays, bitvectors, integers, ...
- Simply give an SMT a formula and it may
 - Report it is satisfiable (and give an assignment)
 - Report it is unsatisfiable (and give a counter example)
 - Report "I don't know"
 - Run forever

Second Question

Why focus on loop invariants?

First Answer

• Loop invariants are an important concept in everyday programming

Why is my loop correct?

You can break the problem into the three conditions stated above

Second Answer: Automated Verification

- Consider a loop-free program P
 - With conditionals
 - Memory references
 - Data structures
 - No function calls
- What is the computational complexity of verifying

{ Precondition } P { Postcondition}

Loops

- Now consider the same problem
 - Where P can have one loop
 - But still no function calls
- What is the computational complexity of verifying

{ Precondition } P { Postcondition}

Verification of Loops

- Verifying properties of loops is the hard problem
- Solve this, and everything else is much easier

Invariant Inference

• Find (infer) loop invariants automatically

An old problem

Many algorithms in the literature

We will look at a simple approach

Invariant Inference

- Two ideas:
 - 1. Separate invariant inference from the rest of the verification problem
 - 2. Guess the invariant from executions

Why Use Data From Tests?

Complementary to static reasoning

- "See through" hard analysis problems
 - functionality may be simpler than the code
- Possible to generate many, many tests

Outline

- Guess (many) invariants
 - Run the program
 - Discard candidate invariants that are falsified
 - Attempt to verify the remaining candidates

A Simple Program

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Instrument loop head

 Collect the values of program variables on each iteration

Data Collection Example

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

- Hypothesize
 - s = y
 - s = 2y
- Data

S	у	
0	0	

Data Collection Example

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

• Hypothesize

• Data

S	у
0	0
1	1

Data Collection Example

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Hypothesize

Data

S	у	
0	0	
1	1	
2	2	
3	3	

Another Approach

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Data

S	У
0	0
1	1
2	2
3	3

Arbitrary Linear Invariant

as + by = 0

• Data

S	У	
0	0	
1	1	
2	2	
3	3	

Observation

$$as + by = 0$$

S	У	\	N	
0	0		a	0
1	1		b	0
2	2			
3	3			

Observation

$$as + by = 0$$

 $\{ w \mid Mw = 0 \}$

S	y	
0	0	
1	1	
2	2	
3	3	

Observation

$$as + by = 0$$

NullSpace(M)

S	У	w	
0	0	a	0
1	1	b	0
2	2		
3	3		

Linear Invariants

Construct matrix M of observations of all program variables

Compute NullSpace(M)

All invariants are in the null space

Spurious "Invariants"

- All invariants are in the null space
 - But not all vectors in the null space are invariants
- Consider the matrix

S	У	
0	0	

- Need a check phase
 - Verify the candidate is in fact an invariant

An Algorithm

- Check candidate invariant
 - If an invariant, done
 - If not an invariant, get a *counterexample*
 - Counterexample can be guaranteed to satisfy all invariants
- Add new row to matrix
 - And repeat

Termination

How many times can the solve & verify loop repeat?

 Each counterexample is linearly independent of previous entries in the matrix

- So at most N iterations
 - Where N is the number of columns
 - Upper bound on steps to reach a full rank matrix

Summary

 Superset of all linear invariants can be obtained by a standard matrix calculation

- Counter-example driven improvements to eliminate all but the true invariants
 - Guaranteed to terminate

What About Non-Linear Invariants?

```
s = 0;
y = 0;
while( * )
  print(s,y);
  S := S + y;
  y := y + 1;
```

Idea

Collect data as before

- But add more columns to the matrix
 - For derived quantities
 - For example, y² and s²
- How to limit the number of columns?
 - All monomials up to a chosen degree d

What About Non-Linear Invariants?

```
s = 0;
y = 0;
while( * )
  print(s,y);
  S := S + y;
  y := y + 1;
```

1	S	у	s ²	y ²	sy
1	0	0	0	0	0
1	1	1	1	1	1
1	3	2	9	4	6
1	6	3	36	9	18
1	10	4	100	16	40

Solve for the Null Space

$$a + bs + cy + ds^2 + ey^2 + fsy = 0$$

1	S	У	s ²	y ²	sy	w	
1	0	0	0	0	0	а	0
1	1	1	1	1	1	b	0
1	3	2	9	4	6	С	0
_						d	0
1	6	3	36	9	18	е	0
1	10	4	100	16	40	f	0
						•	

Candidate invariant:
$$-2s + y + y^2 = 0$$

Comments

- Same issues as before
 - Must check candidate is implied by precondition, is inductive, and implies the postcondition on termination
 - Termination of invariant inference guaranteed if the verifier can generate counterexamples
- Solvers do well as checkers!

Experiments

Name	#vars	deg	Data	#and	Guess time (sec)	Check time (sec)	Total time (sec)
Mul2	4	2	75	1	0.0007	0.010	0.0107
LCM/GCD	6	2	329	1	0.004	0.012	0.016
Div	6	2	343	3	0.454	0.134	0.588
Bezout	8	2	362	5	0.765	0.149	0.914
Factor	5	3	100	1	0.002	0.010	0.012
Prod	5	2	84	1	0.0007	0.011	0.0117
Petter	2	6	10	1	0.0003	0.012	0.0123
Dijkstra	6	2	362	1	0.003	0.015	0.018
Cubes	4	3	31	10	0.014	0.062	0.076
geoReihe1	3	2	25	1	0.0003	0.010	0.0103
geoReihe2	3	2	25	1	0.0004	0.017	0.0174
geoReihe3	4	3	125	1	0.001	0.010	0.011
potSumm1	2	1	5	1	0.0002	0.011	0.0112
potSumm2	2	2	5	1	0.0002	0.009	0.0092
potSumm3	2	3	5	1	0.0002	0.012	0.0122
potSumm4	2	4	10	1	0.0002	0.010	0.0102

Summary to This Point

- Algorithm for algebraic invariants
 - Up to a given degree
- Guess and Check
 - Hard part is inference done by matrix solve
 - Check part done by standard SMT solver
 - Simple and fast

What About Disjunctive Invariants?

- Disjunctions are expensive
 - In addition to conjunctions

- Invariant inference techniques tend to severely restrict disjunctions
 - E.g., to a template

What About Non-Numeric Invariants?

- Arrays?
- Lists?
- Other data structures?

- Invariant inference techniques tend to be specialized
 - Particularly to integer invariants

A Search-Based Approach

- All methods for finding invariants are heuristics
 - Can never be complete
- So why not use general but incomplete techniques?

MCMC

- Markov Chain Monte Carlo sampling
- The only known tractable solution method for high dimensional irregular search spaces

MCMC Overview

MCMC Sampling Algorithm for Invariants

1. Select an initial candidate

- 2. Repeat (millions of times)
 - Propose a random modification and evaluate cost
 - If (cost decreased) { accept }
 - If (cost increased){ with some probability accept anyway }

Recall

$$Pre \Rightarrow I$$

$$I(s) \Rightarrow I(t)$$
 if $s \{body\} t$

$$I \land \neg B \Rightarrow Post$$

Data

- Good states G
 - Reachable states
- Pairs Z
 - States (s,t) such that starting the loop body S in state s terminates in state t.
- Bad states **B**
 - States that lead to an assertion violation

Cost Function (Roughly)

- Penalize a candidate invariant C
 - 1 for each good state g in G where C(g) is false.
 - 1 for each bad state b in B where C(b) is true
 - 1 for each pair (s,t) in Z where C(s) and not C(t)
- The cost of C is the sum of the penalties

Overall Algorithm

Run search until a 0-cost candidate C is found

- Use a decision procedure to verify that C is an invariant
 - If yes, done
 - If no, get a counterexample
 - A good state, bad state, or pair
 - Add to the data
 - Repeat

MCMC Sampling Algorithm for Invariants

1. Select an initial candidate

- 2. Repeat (millions of times)
 - Propose a random modification and evaluate cost
 - If (cost decreased) { accept }
 - If (cost increased){ with some probability accept anyway }

Numerical Invariants

Find invariants of the form

$$\bigvee_{i=1}^{\alpha} \bigwedge_{j=1}^{\beta} \sum_{k=1}^{n} w_k^{(i,j)} x_k \le d^{(i,j)}$$

Moves

Replace a coefficient

Replace a constant on the rhs

Replace all coefficients and the constant in a single inequality

$$\bigvee_{i=1}^{\alpha} \bigwedge_{j=1}^{\beta} \sum_{k=1}^{n} w_k^{(i,j)} x_k \le d^{(i,j)}$$

Results

Program	Z3-H	ICE	[50]	[30]	Pure	MCMC	Templ
cgr1 [27]	0.02	0.2	0.2	0.1	0.05	0.03	0.02
cgr2 [27]	0.03	2.1	?	?	0.68	1.49	1.17
ex7 [33]	0.02	1.1	0.4	?	0.08	0.05	0.04
ex11 [3]	0.03	0.5	0.2	0.1	0.04	0.03	0.05
ex14 [33]	0.01	0.2	0.2	?	0.05	0.03	0.02
ex23 [33]	?	7.3	?	?	0.16	0.13	0.11
fig1 [27]	0.02	1.0	?	?	4.42	0.95	1.44
fig3 [24]	0.01	0.5	0.1	0.1	0.23	0.04	0.04
fig9[24]	0.02	0.9	0.2	0.1	0.01	0.02	0.01
monniaux	5.14	0.1	1.0	0.2	0.05	0.01	0.03
nested	0.02	?	1.0	0.04	5.21	0.29	2.12
tacas [34]	TO	4.8	0.5	0.1	0.75	0.52	0.08
w1 [27]	0.02	0.5	0.2	0.1	0.05	0.01	0.02
w2 [27]	0.02	0.4	0.1	0.1	0.09	0.03	0.05
array [3]	0.03	1.3	0.2	?	0.24	0.22	0.29
fil1[3]	0.01	0.2	0.3	0.4	0.01	0.01	0.01
trex01[3]	0.01	0.2	0.4	0.1	0.03	0.01	0.03

And More ...

- Can be extended to
 - Arrays, trees, lists, relations, ...
 - Any data structure for which a corresponding decision procedure exists
- Surprisingly robust and fast
 - But this probably says that the examples in the literature are too easy!
- Not the final word!
 - Invariant inference is an active area of research

Summary

- Loop invariants are an important concept in programming
 - Good to think about invariants for your code!
 - Even without a tool to check or infer invariants
- Automating loop invariant inference is challenging
 - Long-standing research problem
 - Used in practice is still limited