Solved selected problems of Real Analysis - Carothers

Franco Zacco

Chapter 8 - Compactness

Proof. 1 If K is a non-empty compact subset of \mathbb{R} then K is bounded and closed therefore the $\sup K \in K$ and $\inf K \in K$.

Proof. 2 Let $E = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$ then the complement on \mathbb{Q} is

$$E^c = \{x \in \mathbb{Q} : x > 0 \text{ and } x^2 > 3\} \cup \{x \in \mathbb{Q} : x < 0 \text{ and } x^2 > 3\} \cup \{x \in \mathbb{Q} : x^2 < 2\}$$

We see that $\{x\in\mathbb{Q}:x>0 \text{ and } x^2>3\}=(\sqrt{3},\infty)\cap\mathbb{Q}$ where $(\sqrt{3},\infty)$ and \mathbb{Q} are open sets hence $\{x\in\mathbb{Q}:x>0 \text{ and } x^2>3\}$ is open. Also, we see that $\{x\in\mathbb{Q}:x<0 \text{ and } x^2>3\}=(-\infty,-\sqrt{3})\cap\mathbb{Q}$ and that $\{x\in\mathbb{Q}:x^2<2\}=(-\sqrt{2},\sqrt{2})\cap\mathbb{Q}$ so both $\{x\in\mathbb{Q}:x<0 \text{ and } x^2>3\}$ and $\{x\in\mathbb{Q}:x^2<2\}$ are open sets. Therefore since E^c is the union of open sets it's also an open set hence E is closed.

On the other hand, if $x \in E$ then $x \in (\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ or $x \in (-\sqrt{2}, -\sqrt{3}) \cap \mathbb{Q}$ hence -2 < x < 2 which implies that E is bounded.

Let us call the sup E (that we know exists) as $\sqrt{3}$ we want to prove that there is a sequence in E that tends to it. Let us form a sequence (x_n) where each element $x_n \in B_{1/n}(\sqrt{3}) = (\sqrt{3} - 1/n, \sqrt{3} + 1/n)$ then we see that $\sqrt{3} - 1/n < x_n < \sqrt{3}$ for every $n \in \mathbb{N}$ which implies that $x_n \to \sqrt{3}$ therefore we have a Cauchy sequence that converges to a point that is not in E hence E is neither complete nor compact.

Proof. **3** Let A be compact in M then A is totally bounded so given $\epsilon > 0$ there are finitely many sets $A_1, ..., A_n \subset A$ with $\operatorname{diam}(A_i) < \epsilon$ such that $A \subset \bigcup_{i=1}^n A_i$ so let $B = \bigcup_{i=1}^n A_i$ we see that $\operatorname{diam}(B) < \infty$ since every set is of diameter at most ϵ also we have that $\operatorname{diam}(A) \leq \operatorname{diam}(B) < \infty$ which implies that $\operatorname{diam}(A)$ is finite.

On the other hand, we know that $\operatorname{diam}(A) = \sup\{d(a,b) : a,b \in A\}$. Let us define $(x_n) \subseteq A$ and $(y_n) \subseteq A$ where each x_n and y_n is defined such that $\operatorname{diam}(A) - 1/n < d(x_n, y_n) \le \operatorname{diam}(A)$ which we know it exists because otherwise $\operatorname{diam}(A) - 1/n$ would be an upper bound which is smaller than $\operatorname{diam}(A) = \sup\{d(a,b) : a,b \in A\}$, implying a contradiction. This in turn implies that $d(x_n, y_n) \to \operatorname{diam}(A)$.

Since A is compact from Theorem 8.2 we have that every sequence in A has a subsequence that converges to a point in A hence there is a subsequence $(x_{n_k}) \subset A$ from (x_n) such that $x_{n_k} \to x$ where $x \in A$ also from (y_n) we can select a subsequence $(y_{n_k}) \subset A$ where we took the n_k 's from the (x_{n_k}) subsequence this implies that (y_{n_k}) might not converge but we know there is a subsequence $(y_{n_{k_t}})$ that converges to a point $y \in A$ hence we can take $(x_{n_{k_t}})$ from (x_{n_k}) that also converges to $x \in A$. This implies that $d(x_{n_{k_t}}, y_{n_{k_t}}) \to d(x,y)$. Finally, since every subsequence must converge to the same limit as the main sequence therefore we have that $d(x,y) = \operatorname{diam}(A)$.

Proof. 4 Let A and B be compact in M, we want to show that $A \cup B$ is compact. Let $(x_n) \subseteq A \cup B$ be a sequence then either $(x_n) \subset A$ or $(x_n) \subset B$ or in both for infinitely many points in any case we can take a subsequence (x_{n_k}) that converges to a point in A and/or in B since they are compact. Therefore since (x_n) has a convergent subsequence $(x_{n_k}) \subset A \cup B$ we get from Theorem 8.2 that $A \cup B$ is compact.

Proof. **6** Let $(a_n) \subset A$ and $(b_n) \subset B$ be sequences, since A is compact then there is $(a_{n_k}) \subset A$ such that it converges to $a \in A$. We can also take a sequence $(b_{n_k}) \subset (b_n) \subset B$ which has a convergent subsequence $(b_{n_{k_t}}) \subset B$ that converges to $b \in B$ since B is compact, hence we can also take $(a_{n_k}) \subset A$ which still converges to $a \in A$.

On the other hand, let us also define a sequence $(a_n, b_n) \subset A \times B$. We know because of problem 3.46 that the subsequence $(a_{n_{k_t}}, b_{n_{k_t}}) \subset A \times B$ also converges in $A \times B$ because each subsequence converges separately in A and B. Therefore $A \times B$ is compact as well.

Proof. 8 Let $K = \{x \in \mathbb{R}^n : ||x||_1 = 1\}$ since K is a subset of \mathbb{R}^n to show K is compact in \mathbb{R}^n under the Euclidean norm we need to show that K is closed and bounded under the Euclidean norm.

Let $x \in K$ we know that $0 \le ||x||_2 \le ||x||_1 = 1$ hence K is bounded under the Euclidean norm.

Now let us define $f(x) = \|x\|_1$ we see that $K = f^{-1}(\{1\})$ since $\{1\}$ is a closed set and f is cotinuous in \mathbb{R}^n under the 1-norm we see that K must be closed under the 1-norm. This implies that for some $\epsilon > 0$ there is some $N \in \mathbb{N}$ such that when $n \geq N$ we have that $\|x_n - x\|_1 < \epsilon$ but also we know that $\|x_n - x\|_2 \leq \|x_n - x\|_1 < \epsilon$ hence K is also closed under the Euclidean norm.

Therefore K is compact in \mathbb{R}^n under the Euclidean norm.

Proof. 21 Let $f:[a,b] \to \mathbb{R}$ be a continuous function, since [a,b] is a closed and bounded subset of \mathbb{R} we know that [a,b] is compact hence $f([a,b]) \in \mathbb{R}$ is compact because of Theorem 8.4. then f([a,b]) is bounded and closed so there is $c,d \in \mathbb{R}$ such that $c \leq f(x) \leq d$ for every $f(x) \in f([a,b])$ or $f([a,b]) \subset [c,d]$ moreover there is $x_1,x_2 \in [a,b]$ such that $f(x_1) = c$ and $f(x_2) = d$.

Let us take $J = [x_1, x_2]$ if $x_1 \leq x_2$ or $J = [x_2, x_1]$ if $x_1 > x_2$ where $J \subset [a, b]$. Since f is continuous and because of the Intermediate Value Theorem we know that f takes any value between $f(x_1)$ and $f(x_2)$ which implies that $[f(x_1), f(x_2)] = [c, d] \subset f([a, b])$. Therefore f([a, b]) = [c, d].

Proof. **22** Let $E \subseteq M$ be a closed set (hence compact because of Corollary 8.3) and let us take a convergent sequence $(y_n) \subseteq f(E)$ such that it converges to $y \in N$ we want to prove that also $y \in f(E)$ which would imply that f(E) is a closed set.

By definition, there is $x_n \in E$ such that $f(x_n) = y_n$ hence we can form a sequence $(x_n) \subseteq E$, but E is compact so there is $(x_{n_k}) \subseteq E$ such that $x_{n_k} \to x$ where $x \in E$. Also, f is continuous so $f(x_{n_k}) \to f(x)$ or $y_{n_k} \to f(x)$ but we knew that $y_n \to y$ so by unicity of limits we have that $y = f(x) \in f(E)$. Therefore f(E) is closed and f is a closed map. \square

Proof. **23** Let E be a closed set from M since M is compact and $f: M \to N$ is continuous then from proof 22 we know that f is a closed map hence f(E) is closed in N but also we know that $f(E) = (f^{-1})^{-1}(E)$ since f is bijective therefore f^{-1} is continuous and f is a homeomorphism.

Proof. **25** Let V be a normed vector space and let a function $f:[0,1] \to V$ defined as f(t) = x + t(y - x) where $x \neq y \in V$.

First, we want to prove that f is continuous. Let $\epsilon > 0$ and let $s, t \in [0, 1]$ if $|s - t| < \delta$ where $\delta = \epsilon / ||y - x||$ (we can do this since $x \neq y$) we have that

$$\begin{split} |s-t| < \frac{\epsilon}{\|y-x\|} \\ \|(s-t)(y-x)\| < \epsilon \\ \|s(y-x)-t(y-x)\| < \epsilon \\ \|x+s(y-x)-(x+t(y-x))\| < \epsilon \\ \|f(s)-f(t)\| < \epsilon \end{split}$$

Therefore f is continuous.

Now we want to prove that f is one-to-one and onto (i.e. bijective). Suppose f(t) = f(s) for some $t, s \in [0, 1]$ hence

$$x + t(y - x) = x + s(y - x)$$
$$t(y - x) = s(y - x)$$
$$t = s$$

Therefore f is one-to-one.

To prove that f is onto suppose $z \in V$ we want to prove that there is $t \in [0,1]$ such that f(t) = z let us take t = (z-x)/(y-x) hence

$$f(t) = x + \frac{z - x}{y - x}(y - x) = z$$

Therefore f is onto as we wanted.

Finally, since [0,1] is compact in \mathbb{R} because it's closed and bounded and f is continuous and bijective from proof 23 we have that f is a homeomorphism from [0,1] to V.

Proof. **30** We want to prove first that (a) is equivalent to (b). Let \mathcal{F} be a collection of closed sets in M such that $\bigcap_{i=1}^n F_i \neq \emptyset$ for all choices of finitely many sets $F_1, ..., F_n$ let us suppose $\bigcap \{F : F \in \mathcal{F}\} = \emptyset$ we want to arrive at a contradiction.

Now let us define $\mathcal{G} = \{F^c : F \in \mathcal{F}\}$ we see that $(\bigcap \{F : F \in \mathcal{F}\})^c = M$ also from De Morgan's law, we have that $(\bigcap \{F : F \in \mathcal{F}\})^c = \bigcup \{F^c : F \in \mathcal{F}\}$ hence $M \subseteq \bigcup \{G : G \in \mathcal{G}\}$ then from (a) we have that there are finitely many sets $G_1, ..., G_n \in \mathcal{G}$ such that $M \subseteq \bigcup_{i=1}^n G_i$ where $G_i = (F_i)^c$ then $(\bigcup_{i=1}^n (F_i)^c)^c = \emptyset$ but we know that $(\bigcup_{i=1}^n (F_i)^c)^c = \bigcap_{i=1}^n ((F_i)^c)^c = \bigcap_{i=1}^n F_i$ hence $\bigcap_{i=1}^n F_i = \emptyset$ but we know that $\bigcap_{i=1}^n F_i \neq \emptyset$ then we have a contradiction therefore it must be that $\bigcap \{F : F \in \mathcal{F}\} \neq \emptyset$.

Finally, we want to prove that (b) is equivalent to (a). Let \mathcal{G} be a collection of open sets in M such that $M \subseteq \bigcup \{G : G \in \mathcal{G}\}$ and let us suppose that for every combination of finitely many sets $G_1, ..., G_n \in \mathcal{G}$ we have that $M \not\subseteq \bigcup_{i=1}^n G_i$ we want to arrive at a contradiction.

Let us define $\mathcal{F} = \{(G_i)^c : G_i \in \mathcal{G}\}$ for $1 \leq i \leq n$ such that $\bigcap_{i=1}^n (G_i)^c \neq \emptyset$ which we know it exists because if $\bigcap_{i=1}^n (G_i)^c = \emptyset$ then $\bigcap_{i=1}^n (G_i)^c = (\bigcup_{i=1}^n G_i)^c = \emptyset$ which implies that $\bigcup_{i=1}^n G_i = M$ but we said that $M \not\subseteq \bigcup_{i=1}^n G_i$. Then because of (b) we have that $\bigcap \{(G)^c : G \in \mathcal{G}\} \neq \emptyset$ but also from De Morgan's law, we have that $(\bigcap \{(G)^c : G \in \mathcal{G}\})^c = \bigcup \{G : G \in \mathcal{G}\}$ so $M \subseteq (\bigcap \{(G)^c : G \in \mathcal{G}\})^c$ hence it must happen that $\bigcap \{(G)^c : G \in \mathcal{G}\} = \emptyset$ which is a contradiction to what we've got from (b), therefore it must happen that there are finitely many sets $G_1, ..., G_n \in \mathcal{G}$ such that $M \subseteq \bigcup_{i=1}^n G_i$. \square

Proof. **36** Let us suppose that $d(F,K) = \inf\{d(x,y) : x \in F, y \in K\} = 0$ we want to arrive at a contradiction. Let us take $(x_n) \subseteq F$ and $(y_n) \subseteq K$ such that $d(x_n, y_n) \to 0$. Since K is compact then (y_n) has a subsequence such that $y_{n_k} \to y$ where $y \in K$. Also, let us take a subsequence $(x_{n_k}) \subseteq (x_n)$ so we have that

$$0 \le d(x_{n_k}, y) \le d(x_{n_k}, y_{n_k}) + d(y_{n_k}, y)$$

We see that $d(x_{n_k}, y_{n_k}) \to 0$ since it is a subsequence of $d(x_n, y_n)$ hence both have the same limit and $d(y_{n_k}, y) \to 0$ because K is compact as we just saw therefore $x_{n_k} \to y$ but we know F is closed then $y \in F$ but also $K \cap F = \emptyset$ hence we have a contradiction and must be that $d(F, K) = \inf\{d(x, y) : x \in F, y \in K\} > 0$.

Finally, let $F = \{(x, y) : y = 0\}$ and $K = \{(x, y) : y = 1/x\}$ we see that both F and K are closed sets and disjoint but $d(F, K) = \inf\{d(x, y) : x \in F, y \in K\} = 0$.

Proof. **44** Let $f:(M,d) \to (N,\rho)$ be a Lipschitz map then there is $K < \infty$ such that $\rho(f(x),f(y)) \leq Kd(x,y)$ for all $x,y \in M$ hence given $\epsilon > 0$ there is $\delta = \epsilon/K$ such that when $d(x,y) < \delta = \epsilon/K$ we have that

$$\rho(f(x), f(y)) \le Kd(x, y) < \epsilon$$

Therefore f is uniformly continuous.

Let us suppose now that f is isometric then we know that $\rho(f(x), f(y)) = d(x, y)$ hence given $\epsilon > 0$ if we take $\delta = \epsilon$ we have that whenever $d(x, y) < \delta = \epsilon$ we get that $\rho(f(x), f(y)) = d(x, y) < \epsilon$. Therefore an isometry is also uniformly continuous.

Proof. **45** Let $f: \mathbb{N} \to \mathbb{R}$ and if we take $\delta = 1/2$ we have that |n-m| < 1/2 for every $n, m \in \mathbb{N}$ hence n = m so $|f(n) - f(m)| < \epsilon$ no mater which $\epsilon > 0$ we take since f(n) = f(m). Therefore f is uniformly continuous.

Proof. **46** First, we want to prove that $|d(x,z) - d(y,z)| \le d(x,y)$. From the triangle inequality we know that

$$d(x,z) \le d(x,y) + d(y,z)$$

$$d(x,z) - d(y,z) \le d(x,y)$$

and that

$$d(y,z) \le d(y,x) + d(x,z)$$

$$d(y,z) - d(x,z) \le d(x,y)$$

$$-d(x,y) \le d(x,z) - d(y,z)$$

Hence this implies that $|d(x,z) - d(y,z)| \le d(x,y)$ as we wanted to show.

Now we will prove that the map $x \to d(x,z)$ for some fixed $z \in M$ is a uniformly continuous map in M. Given some $\epsilon > 0$, let us take $\delta = \epsilon$ then when $d(x,y) < \delta = \epsilon$ from what we proved earlier we have that

$$|d(x,z) - d(y,z)| \le d(x,y) < \delta = \epsilon$$

Therefore the map $x \to d(x,z)$ is uniformly continuous.

Proof. 47 First, we want to prove that $|d(x, A) - d(y, A)| \le d(x, y)$. From the triangle inequality for any $a \in A$ we know that

$$d(x, A) = \inf\{d(x, a) : a \in A\} \le d(x, a) \le d(x, y) + d(y, a)$$
$$d(x, A) - d(x, y) \le d(y, a)$$

So we see that d(x,A) - d(x,y) is a lower bound for d(y,a) hence we have that

$$d(x, A) - d(x, y) \le \inf\{d(y, a) : a \in A\} = d(y, A)$$

$$d(x, A) - d(y, A) \le d(x, y)$$

Similarly, we have that

$$d(y, A) = \inf\{d(y, a) : a \in A\} \le d(y, a) \le d(y, x) + d(x, a)$$
$$d(y, A) - d(x, y) \le d(x, a)$$

So we see that d(y,A) - d(x,y) is a lower bound for d(x,a) hence we have that

$$d(y, A) - d(x, y) \le \inf\{d(x, a) : a \in A\} = d(x, A)$$

$$d(y, A) - d(x, A) \le d(x, y)$$

$$-d(x, y) \le d(x, A) - d(y, A)$$

Hence this implies that $|d(x,A) - d(y,A)| \le d(x,y)$ as we wanted to show.

Now we will prove that the map $x \to d(x,A)$ is a uniformly continuous map in M. Given some $\epsilon > 0$, let us take $\delta = \epsilon$ then when $d(x,y) < \delta = \epsilon$ from what we proved earlier we have that

$$|d(x, A) - d(y, A)| \le d(x, y) < \delta = \epsilon$$

Therefore the map $x \to d(x, A)$ is uniformly continuous.

Proof. **48** Let $f:(M,d) \to (N,\rho)$ be a uniformly continuous map and let $(x_n) \subseteq M$ be a Cauchy sequence. We want to prove that $f((x_n))$ is also a Cauchy sequence.

Since f is uniformly continuous given some $\epsilon > 0$ there is some $\delta > 0$ (which depends on ϵ and/or f) such that $\rho(f(x_n), f(x_m)) < \epsilon$ whenever $x_n, x_m \in (x_n)$ satisfy $d(x_n, x_m) < \delta$ but since (x_n) is Cauchy there is $N \in \mathbb{N}$ where this will be satisfied for every $n, m \geq N$ hence we have that $\rho(f(x_n), f(x_m)) < \epsilon$ is also satisfied for every $n, m \geq N$ which implies that $f((x_n))$ is also a Cauchy sequence.

Proof. 49 Let $f: M \to \mathbb{R}$ and $g: M \to \mathbb{R}$ be two uniformly continuous maps hence for every $\epsilon > 0$ there is $\delta_f > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $x, y \in M$ satisfy $d(x, y) < \delta_f$ and there is $\delta_g > 0$ such that $|g(x) - g(y)| < \epsilon$ whenever $x, y \in M$ satisfy $d(x, y) < \delta_g$. We want to prove that $f + g: M \to \mathbb{R}$ is also a uniformly continuous map. Let us take $\delta = \min(\delta_f, \delta_g)$ and let's notice that |(f(x) + g(x)) - (f(y) + g(y))| = |f(x) - f(y) + g(x) - g(y)| and by triangle inequality, we have that

$$|f(x) - f(y) + g(x) - g(y)| < |f(x) - g(x)| + |g(x) - g(y)|$$

If $x,y\in M$ satisfy that $d(x,y)<\delta$ then $d(x,y)<\delta_g$ and $d(x,y)<\delta_f$ so we can claim that

$$|f(x) - f(y) + g(x) - g(y)| < |f(x) - g(x)| + |g(x) - g(y)| < 2\epsilon$$

This implies that f + g is uniformly continuous too.

Lastly, we will give a counterexample of why the product of a uniformly continuous map is not a uniformly continuous map. Let $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = x we see that taking $\delta = \epsilon$ we have that $|x-y| = |f(x)-f(y)| < \delta = \epsilon$ hence f is a uniformly continuous map.

Now, if we take $h(x) = f(x)f(x) = x^2$ we see that only taking $\delta = \epsilon/|x+y|$ when $|x-y| < \delta$ we have that

$$|x - y| < \frac{\epsilon}{|x + y|}$$

$$|x^2 - y^2| = |x - y||x + y| < \epsilon$$

Therefore h is not a uniformly continuous map.

Proof. **51** Let $(x_n) \subseteq (0,1)$ be a Cauchy sequence that converges to 0 since f is uniformly continuous we know that $f((x_n))$ is also a Cauchy sequence in \mathbb{R} hence $f((x_n))$ converges to some $L \in \mathbb{R}$ this implies that $\lim_{x\to 0^+} f(x) = L$.

Let us suppose now that (x_n) and (y_n) are two Cauchy sequences converging to 0 since f is uniformly continuous we know that $f((x_n))$ and $f((y_n))$ are also Cauchy sequences in \mathbb{R} we want to show that both of them converge to the same limit. Let us build another sequence (z_n) such that $z_{2n} = x_n$ and $z_{2n+1} = y_n$ where (z_n) is also a Cauchy sequence that converges to 0 hence $f((z_n))$ is a convergent Cauchy sequence. We see that $f((x_n))$ and $f((y_n))$ are subsequences of the convergent sequence $f((z_n))$ therefore they must converge to the same limit i.e. $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(y_n)$.

What we did for 0 can also be applied to 1 hence both limits $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 1^-} f(x)$ exists so we have extended f to a continuous function $f:[0,1]\to\mathbb{R}$ and since [0,1] is a compact set then by the Corollary 8.5. we have that f is bounded.

Proof. **53** We know that given some $\epsilon > 0$ there is R > 0 such that $|f(x)| < \epsilon$ whenever |x| > R.

Let us consider the closed interval [-R,R] we know that this closed interval is compact in $\mathbb R$ and also f is continuous here hence because of Theorem 8.15 we have that f is uniformly continuous in [-R,R]. This implies that given $\epsilon>0$ there is $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $x,y\in [-R,R]$ satisfy that $|x-y|<\delta$.

Let us preserve the $\delta > 0$ we found and let us take $x, y \in \mathbb{R}$ such that $|x - y| < \delta$. Also, let |x| > R and |y| > R then we have that $|f(x)| < \epsilon$ and $|f(y)| < \epsilon$ since $f(x) \to 0$ therefore $|f(x) - f(y)| \le |f(x)| + |f(y)| < 2\epsilon$.

Finally, we want to check the case where we still have that $x, y \in \mathbb{R}$ such that $|x - y| < \delta$ but now |x| < R and |y| > R then

$$|f(x) - f(y)| \le |f(x) - f(R)| + |f(R) - f(y)| < \epsilon + 2\epsilon = 3\epsilon$$

Where we used that $|f(x) - f(R)| < \epsilon$ since $x, R \in [-R, R]$ and $|f(R) - f(y)| \le |f(R)| + |f(y)| < 2\epsilon$ since $y, R \in [R, \infty)$.

Therefore f is uniformly continuous in every condition as we wanted. \square

Proof. **56**

 (\Rightarrow) Let $f:(M,d)\to (N,\rho)$ be uniformly continuous and let (x_n) and (y_n) be two sequences of M such that $d(x_n,y_n)\to 0$.

Since f is uniformly continuous we have that given $\epsilon > 0$ there is $\delta > 0$ such that $\rho(f(x), f(y)) < \epsilon$ whenever $x, y \in M$ satisfy $d(x, y) < \delta$. Let us grab this $\delta > 0$ then we know there is x_n and y_n such that $d(x_n, y_n) < \delta$ since $d(x_n, y_n) \to 0$ but this implies that $\rho(f(x_n), f(y_n)) < \epsilon$ which implies that $\rho(f(x_n), f(y_n)) \to 0$.

 (\Leftarrow) Let us suppose $f:(M,d)\to (N,\rho)$ is not a uniformly continuous map we want to arrive at a contradiction. If f is not a uniformly continuous map then there is some $\epsilon_0>0$ where it doesn't matter which $\delta>0$ we take we can always find $x,y\in M$ such that $d(x,y)<\delta$ but we always have that $\rho(f(x),f(y))>\epsilon_0$.

Let us take two sequences (x_n) and (y_n) of M such that $d(x_n, y_n) \to 0$ then we know that $\rho(f(x_n), f(y_n)) \to 0$ which implies that if we take $\epsilon_0 > 0$ there is $N \in \mathbb{N}$ such that when $n \geq N$ we have that $\rho(f(x_n), f(y_n)) < \epsilon_0$ so there must be some $\delta_0 > 0$ such that $d(x_n, y_n) < \delta_0$ which is a contradiction to the first statement. Therefore f is a uniformly continuous map.

Proof. 58 Let $f: \mathbb{R} \to \mathbb{R}$ be some function where we know that for any $x \in \mathbb{R}$ we have that $|f'(x)| \leq K$ where K > 0 since f' is bounded.

On the other hand, from the mean value theorem, let us take an interval $(x,y) \subset \mathbb{R}$ where there must be $c \in (x,y)$ such that f'(c) = (f(y)-f(x))/(y-x) then it must also happen that

$$|f'(c)| = \left| \frac{f(y) - f(x)}{y - x} \right| \le K$$

which implies that

$$|f(x) - f(y)| \le K|x - y|$$

Therefore f is Lipschitz of order 1.

Proof. **61** Let $f:(M,d)\to (N,\rho)$ be a uniform homeomorphism we want to prove that if M is complete then N is also complete.

Given that f is one-to-one and onto let $(f(x_n)) \subseteq N$ be a Cauchy sequence. Since f^{-1} is a uniformly continuous map it sends Cauchy sequences to Cauchy sequences hence we know that $(f^{-1}(f(x_n))) = (x_n) \subseteq M$ must be a Cauchy sequence and since M is complete we have that (x_n) must converge to some $x \in M$. On the other hand, since f is a uniform homeomorphism and x_n converges to x then $(f(x_n)) \subseteq N$ converges to f(x).

Therefore a Cauchy sequence $(f(x_n)) \subseteq N$ converges to $f(x) \in N$ which implies that N is a complete space.

Proof. **62** Let $i:(M,d) \to (M,\rho)$ be the identity map between (M,d) and (M,ρ) , we want to prove it's uniformly continuous knowing that there are constants $0 < c, C < \infty$ such that $c\rho(x,y) \le d(x,y) \le C\rho(x,y)$ for every point $x,y \in M$. Let $\epsilon > 0$, let us take $\delta = c\epsilon$ and let us suppose that $d(x,y) < \delta = c\epsilon$ then because $c\rho(x,y) \le d(x,y)$ we have that $\rho(x,y) < \epsilon$ as we wanted. Therefore i is a uniformly continuous map.

On the other hand, let $i^{-1}:(M,\rho)\to (M,d)$ be the identity map between (M,ρ) and (M,d), we want to prove it's uniformly continuous knowing that there are constants $0< c, C<\infty$ such that $c\rho(x,y)\leq d(x,y)\leq C\rho(x,y)$ for every point $x,y\in M$. Let $\epsilon>0$, let us take $\delta=C\epsilon$ and let us suppose that $\rho(x,y)<\delta=C\epsilon$ then because $d(x,y)\leq C\rho(x,y)$ we have that $d(x,y)<\epsilon$ as we wanted. Therefore i^{-1} is a uniformly continuous map.

Finally, since the identity map $i:(M,d)\to (M,\rho)$ is a uniform homeomorphism then d and ρ are uniformly equivalent.

Proof. **65** Let $F:[0,1]\to\mathbb{R}$ be defined as F(0)=f(0+), F(1)=f(1-) and F(x)=f(x). We know that F is continuous on (0,1) since f is continuous there, we want to prove that F is also continuous at 0 and 1. By definition, we know that $f(0+)=\lim_{x\to 0+}f(x)$ hence $F(0)=\lim_{x\to 0}F(x)$ which implies that F is continuous at 0. In the same way, we can get that F is continuous at 1.

Therefore, F is continuous on [0,1] and since [0,1] is compact because of Theorem 8.15. we have that F is also uniformly continuous.

Proof. 77 Let $k \geq 1$ and let us define $f: l_{\infty} \to \mathbb{R}$ by $f(x) = x_k$. We want to show first that f is linear.

Let us consider f(x+y) where $x, y \in l_{\infty}$ and $x+y \in l_{\infty}$ then we have that $f(x+y) = (x+k)_k = x_k + y_k = f(x) + f(y)$ where we used that the sum of two sequences is applied coordinate by coordinate.

On the other hand, let us consider $f(\alpha x)$ where $\alpha \in \mathbb{R}$ then $f(\alpha x) = \alpha x_k = \alpha f(x)$, thus we have proven that f is linear. Finally, we want to prove there is a constant $C < \infty$ such that $||f(x)||_1 \le C||x||_\infty$ for every $x \in l_\infty$. Let us take C = 1 then we have that $|f(x)| = |x_k| \le \sup_n |x_n|$ which is true because of the supremum definition.

Now let us suppose we take C < 1 and let us build a sequence $(x_n) \in l_{\infty}$ such that $x_n = 2$ for all $n \in \mathbb{N}$ then $\sup_n |x_n| = 2$ then for any $k \ge 1$ happens that $|x_k| = 2 > C \cdot 2 = C \sup_n |x_n|$.

Therefore we have that

$$||f|| = \inf\{C : ||f(x)||_1 \le C||x||_{\infty}\} = 1$$

as we wanted.

Proof. **80** Let $I(f) = \int_a^b f(t)dt$ we know I(f) is linear and monotone. We want to prove it's continuous, for this, we want to find a constant $C < \infty$ such that $||I(f)|| \le C||f||$ for every $f \in C[a,b]$. Let us note that

$$\left| \int_a^b f(t)dt \right| \leq \int_a^b |f(t)|dt \leq \int_a^b \max_{x \in [a,b]} |f(x)|dt$$

Hence we have that

$$\left| \int_{a}^{b} f(t)dt \right| \le (b-a) \max_{x \in [a,b]} |f(x)|$$

so if we take C = b - a we are done. Therefore I(f) is continuous. Finally, we want to find

$$||I|| = \inf\{C : ||I(f)|| \le C||f|| \text{ for all } f \in C[a,b]\}$$

Let us consider f(x) = 1 for all $x \in [a, b]$ then we have that

$$\left| \int_{a}^{b} 1 \cdot dt \right| = (b - a) = (b - a) \max_{x \in [a,b]} |1|$$

Since we are looking for the infimum value of C such that $||I(f)|| \le C||f||$ for all $f \in C[a,b]$ therefore it must happen because of what we showed for f(x) = 1 that ||I|| = (b-a).

Proof. **85** First, we want to check $S = \{x \in V : ||x|| = 1\}$ is compact in $(V, ||\cdot||)$. There is a correspondence between a set of scalars $\alpha_1, ..., \alpha_n \in \mathbb{R}^n$ and $x \in V$ since $x = \sum_{i=1}^n \alpha_i x_i$ so $||x|| = \sum_{i=1}^n |\alpha_i| = 1$ implies that it is enough to show that $B = \{\alpha \in \mathbb{R}^n : \sum_{i=1}^n |\alpha_i| = 1\}$ is compact in \mathbb{R}^n which we know it is since B is a closed ball on \mathbb{R}^n and they are compact.

Lastly, we want to prove that if $|||x||| \ge c$ whenever ||x|| = 1 and this minimum c is actually attained then it must be that c > 0. Since $||| \cdot |||$ is a norm by definition we have that $|||x||| \ge 0$ for any $x \in V$ so must be at least that $c \ge 0$ but also by definition |||x||| = 0 if and only if x = 0 which we know cannot be since ||x|| = 1 therefore must be that c > 0.

Proof. **86** Let V be an n-dimensional vector space with basis $x_1, ..., x_n$ then if $x \in V$ we can write $x = \sum_{i=1}^n \alpha_i x_i$ for some $\alpha_1, ..., \alpha_n \in \mathbb{R}^n$ so we can define $T: V \to \mathbb{R}^n$ such that $T(x) = (\alpha_1, ..., \alpha_n)$ i.e. T is a map that sends some $x \in V$ to an n-tuple in \mathbb{R}^n . Let us show now T is linear. Let $c \in \mathbb{R}$ be some constant then we see that

$$T(cx) = (c\alpha_1, ..., c\alpha_n) = c(\alpha_1, ..., \alpha_n)$$

Also, let $y \in V$ we have that

$$T(x+y) = (\alpha_1 + \beta_1, ..., \alpha_n + \beta_n) = (\alpha_1, ..., \alpha_n) + (\beta_1, ..., \beta_n)$$

where $(\beta_1, ..., \beta_n)$ is the n-tuple of y. Hence T is linear.

On the other hand, let $y \in \mathbb{R}^n$ and let us define $|||y||| = ||T^{-1}(y)||$ we want to prove this is a norm.

Since T is a bijection we have that T^{-1} is a function so for every $y \in \mathbb{R}^n$ there is $x \in V$ such that $||y|| = ||T^{-1}(y)|| = ||x||$ and hence $0 \le |||y||| < \infty$.

Let ||y|| = 0 then $||T^{-1}(y)|| = ||x|| = 0$ which implies that x = 0 then y = T(x) = T(0) = 0.

If y = 0 then we have that $x = T^{-1}(y) = T^{-1}(0) = 0$ hence this implies that ||x|| = 0 so $||T^{-1}(y)|| = |||y||| = 0$.

Let us consider $|\|\beta y\|| = \|\beta T^{-1}(y)\| = \|\beta x\|$ for some scalar β then we have that

Finally, let $y, z \in \mathbb{R}^n$ then we have that

$$|||y + z||| = ||T^{-1}(y + z)|| = ||T^{-1}(y) + T^{-1}(z)|| = ||x + w||$$

$$\leq ||x|| + ||w|| = ||T^{-1}(y)|| + ||T^{-1}(z)|| = |||y||| + |||z|||$$

where we used that T^{-1} is also linear.

Therefore $|\|\cdot\||$ as defined above is also a norm on \mathbb{R}^n and T is linearly isometric. \Box

Proof. 87 Let V and W be two normed n-dimensional vector spaces and let $T:V\to W$ be a linear isomorphism which exists since V and W are finite-dimensional. By Corollary 8.23 we know that T is uniformly continuous since V is finite-dimensional. In the same way $T^{-1}:W\to V$ since W is finite-dimensional we have that T^{-1} is also uniformly continuous. Finally, T is a bijection so T is a uniform homeomorphism between V and W. \square

Proof. 88 Let V be a normed finite-dimensional vector space with a basis $v_1,...,v_n$. Let $x\in V$ then $x=\sum_{i=1}^n\alpha_iv_i$. Also, let us define a norm for V as $\|x\|_1=\sum_{i=1}^n|\alpha_i|$ which we know is a norm because this was shown in Theorem 8.22 proof. Finally, let $(x_n)\subseteq V$ be a Cauchy sequence with respect to a norm $\|\cdot\|$ we want to prove $x_n\to x$ where $x\in V$.

Since any two norms on a finite-dimensional vector space are equivalent then there is $0 < c, C < \infty$ such that

$$c||x_n - x_m||_1 \le ||x_n - x_m|| \le C||x_n - x_m||_1$$

Where $x_m = \sum_{i=1}^n \alpha_{i,m} v_i \in V$, but also since (x_n) is Cauchy with respect to $\|\cdot\|$ then given $\epsilon > 0$ there is $N \in \mathbb{N}$ such that when $n, m \geq N$ we see that

$$c\sum_{i=1}^{n} |\alpha_{i,n} - \alpha_{i,m}| \le ||x_n - x_m|| < \epsilon$$

If we take $\epsilon' = \epsilon/c$ we see that $\sum_{i=1}^{n} |\alpha_{i,n} - \alpha_{i,m}| < \epsilon'$ which implies that a sequence $(\alpha_n) \subseteq \mathbb{R}^n$ is also Cauchy with respect to $\|\cdot\|_1$ and we know that \mathbb{R}^n is complete so there is some $\beta \in \mathbb{R}^n$ such that $\alpha_n \to \beta$ then given some $\epsilon' = \epsilon/C > 0$ there must be some $N \in \mathbb{N}$ such that when $n \geq N$ we have that

$$\sum_{i=1}^{n} |\alpha_{i,n} - \beta_i| < \epsilon'$$

$$C \sum_{i=1}^{n} |\alpha_{i,n} - \beta_i| < \epsilon$$

Also, there must be some $x \in V$ such that $x = \sum_{i=1}^{n} \beta_i v_i$ hence by using the equivalence between metrics, we have that

$$||x_i - x|| \le C \sum_{i=1}^n |\alpha_{i,n} - \beta_i| < \epsilon$$

Therefore we have shown that (x_n) converges to $x \in V$ and thus V is complete.