

BLANK PAGE

Indian Standard

SPECIFICATION FOR HARD METAL (CARBIDE) WIRE, BAR AND TUBE DRAWING DIES

(First Revision)

- 1. Scope Covers the dimensions and requirements for hard metal dies for drawing ferrous and non-ferrous round and shaped wires, bars and tubes, having code letters of application (A to F, L, N, R and S).
- 1.1 The comparison of bearing and bore dimensions for various types of drawing dies is given in Appendix A.
- 1.2 The dimensions of hard metal rough pellets intended to be used in dies having code letters of application A to F shall be according to IS:9888-1981 'Dimensions for sintered pellets of hard metal (carbide) for wire, bar and tube drawing dies.'

2. Code-Letters of Application

- 2.1 For Wires, Bar and Tube Dies
 - A Wire drawing dies for steel
 - B Wire drawing dies for non-ferrous metal
 - C Bar drawing dies for steel
 - D Bar drawing dies for non-ferrous metal
 - E Tube drawing dies for steel
 - F Tube drawing dies for non-ferrous metal
 - L Shaped drawing dies for steel of square and flat section
 - N Shaped drawing dies for non-ferrous metal of square and flat section
 - R Hexagon bar drawing dies for steel
 - S Hexagon bar drawing dies for non-ferrous metal
- 2.2 For the Shape of Cases
 - Z Cylindrical shape
 - K Conical shape

Adopted 24 July 1981

© January 1982, ISI

Price Rs 10-00 Gr 6

3. Terminology — Shall be as explained in figure below:

 d_1 = diameter of bearing

 d_2 = diameter of pallet

 d_3 = diameter of case

 h_2 = height of pallet

 h_3 = height of case

 I_1 = length of entry angle

 I_2 = length of drawing angle

 I_3 = length of bearing

 I_4 = length of exit angle

 I_5 = length of entry opening of the case

 I_6 = length of exit angle of the case

s = wall thickness of the pallet

 $\mathbf{a} \times \mathbf{b}$ = bore dimensions across flat, $\mathbf{a} > \mathbf{b}$

2α = drawing angle

 2β = angle of entry cone

 $2 \gamma = exit angle$

4. Dimensions — Shall be as given in 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6.

4.1 Dimensions for Wire Drawing Dies for Steel (Code-Letter A) and Wire Drawing Dies for Non-ferrous Metal (Code-Letter B)

CASE Z

CASE K

					Pellet	•						Ca	se	
			Form A			Form B								
d_2	h ₂	d	d ₁			<i>d</i> ₁		14	2 β	2γ	d_3	h ₃	15	/6‡
		Min	Max	Min	Min	Max	Min	Max						
8	4	0.1	1	3.5	0.1	1.5	3.25	1				12		5
10	8	0.5	2	4	0.5	2.5	3.75	2	90°	90°	28	16	3	3
12	10	0.3	3	4.5	0.3	3.5	4.25	2.5				20		7
											28†			
14	4 12	0.4	4	5	0.4	4.5	4·75	3	60°	75°	43	22	3	7
16	13	0.5	5	5.5	0.2	6	5	3.5			43	25	4	8
20	17	1.5	6.5	6.75	1.5	8	6	4 5			43	32		
			_	_					_		53		5	
25 ,	20	2·5	9	8	2.5	10.5	7·25	5	60°,	60°	75†	35		10
30	24	3.5	12	9	3.5	13	8.5	6			75	40	6	

Note 1 — $d_{1Min} = minimum$ and preferable diameter of bearing at the first application.

Note $2-d_{1Max}=$ maximum diameter of bearing which is recommended for drawing steel wire having a tensile strength up to 900 MPa [1 MPa = 0·1 kgf/mm² (approx)] in the drawn condition and for drawing wires of non-ferrous metal having a tensile strength up to 600 MPa in the drawn condition.

Note 3 — The diameter of bearing d_1 required by the user should be chosen within the limits d_{1Max} and d_{1Min} . The tolerance of bearing shall be specified by the user.

Note 4 — The case may be of straight (code-letter Z) or tapered form (code-letter K). When a tapered form is required, an included angle of $2\epsilon=6^\circ$ shall be provided, in which event d_3 is the diameter of the larger end of the taper.

$$*s_{Min} = \frac{d_2 - d_{1Max}}{2}$$
.

†The value 28 instead of 43 is more particularly recommended for wire drawing of copper wire. The value 75 instead of 53 is more recommended for wire drawing of steel wires of higher resistance.

‡Only for information.

IS: 4918 - 1981

4.2 Dimensions for Bar Drawing Dies for Steel (Code-Letter C)

All dimensions in millimetres.

			Pellet						C	Case		
d_2	h ₂	0	'1	s*	1.	<u>4</u> †	d ₃	h ₃	/	5	16	;‡
		Min	Max	Min	Min	Max			Min	Max	Min	Max
30		9	13	8.5								
35	24	12	16	9.5	2.4	4·8	100	45	5	9	12	16
40		15	19	10.5								
45		18	22	11.5	0.5		100					
50	25	21	25	12.5	2.5	5.0		50	5	9	16	20
55	27	24	28	13.5	2.7	5·4	150	55	·		19	23
60		27	31	14 5								
65	27	29	34	15.5	2.7	5·4	150	55	5	9	19	23
70	30	32	37	16·5	3.0	6.0		60			21	25
75		35	41	17.0			150					
80	30	39	45	17:5	3.0	6.0		60	5	9	21	25
85	33	43	49	18.0	3.3	6.6	200	65	į		23	27
90	33	47	53	18.5	3.3	6.6	000				23	27
100	35	51	61	19.5	3.2	7.0	200	65	5	9	21	25

Note 1 — d_{1Min} = minimum and preferable diameter of bearing at the first application.

Note 2 — d_{1Max} — maximum diameter of bearing which is recommended for drawing steel bars having a tensile strength up to 800 MPa in the drawn condition with a drawing angle 2 α up to and including 25°.

Note 3 — Dies for drawing non-ferrous metal bars with d_{1Max} exceeding 72 mm are outside the scope of this International Standard.

Note 4 — The diameter of bearing d_1 required by the user shall be chosen within the limits d_{1Max} and d_{1Min} except when the drawing angle 2α exceeds 20° . The tolerance of bearing shall be specified by the user.

Note 5 — The case may be of straight (code-letter Z) or tapered form (code-letter K). When a tapered form is required, an included angle of $2\epsilon = 10^\circ$ shall be provided, in which event d_3 is the diameter of the larger end of the taper.

Note 6 — For use on multiple draw benches a case diameter d_3 of 125 mm may be supplied for pellet diameter d_2 of 50 and 55 mm and a case diameter d_3 of 175 mm for pellet diameter d_2 of 80 and 85 mm.

$$*s_{Min} = \frac{d_2 - d_{1Max}}{2}.$$

 $\dagger/_4 = 0.1$ up to $0.2 h_2$.

‡Only for information.

4.3 Dimensions for Bar Drawing Dies for Non-ferrous Metal (Code-Letter D)

All dimensions in millimetres.

			Pellet				Case							
d ₂	h ₂	0	1,	s* /4†		1 †	d ₃	h ₃	,	5	/6‡			
		Min	Max	Min	Min	Max			Min	Max	Min	Max		
25	20	9	12	6.5	2.0	4.0	75	40			11	15		
30	24	11 13	14	8·0 8·5	2·4	4.8	100	45	5	9	12	16		
40	24	17	21	9.5	2.4	4.8	 	45			12	16		
45 50	25	20	25 28	10.0	2.5	5.0	100	50	5	9	16	20		
55 60 65	27	30 34	32 36 40	11·5 12·0 12·5	2.7	5·4	150	55	5	9	19	23		
70 75 80	30	38 · 42 46	44 48 52	13·0 13·5 14·0	3.0	6.0	150	60	5	9	21	25		
85 90	33	50 54	56 60	14·5 15·0	3.3	6.6	200	65	5	9	3	27		
95 100 105	35	58 62 65	64 68 72	15·5 16·0 16.5	3.5	7:0	200	65	5	9.	21	25		

Note 1 — $d_{1Min} = Minimum$ and preferable diameter of bearing at the first application.

Note 2 — d_{1Max} = Maximum diameter of bearing which is recommended for drawing non-ferrous metal bars having a tensile strength up to 800 MPa in the drawn condition with a drawing angle 2° (up to and including 25°).

Note 3 — Dies for drawing non-ferrous metal bars with d_{1Max} exceeding 72 mm are outside the scope of this Standard.

Note 4 — The diameter of bearing d_1 required by the user shall be chosen within the limits d_1Max and d_1Min except when the drawing angle 2α exceeds 25° . If the drawing angle is considerably smaller than 25° , the dimension d_1Max can be increased by up to 1 mm. The tolerance of bearing shall be specified by the user.

Note 5 — The case may be of straight (code-letter Z) or tapered form (code-letter K). When a tapered form is required, an included angle of $2\varepsilon=10^\circ$ shall be provided, in which event d_3 is the diameter of the larger end of the taper.

Note 6 — For use on multiple draw benches a case diameter d_3 of 125 mm may be supplied for pellet diameters d_2 of 50 and 55 mm and a case diameter d_3 of 175 mm for pellet diameter d_2 of 80 mm.

$$*s_{Min} = \frac{d_2 - d_{1Max}}{2}.$$

 $\dagger l_4 = 0.1 \text{ up to } 0.2 h_2.$

‡Only for information.

4.4 Dimensions for Tube Drawing Dies for Steel (Code-Letter E) and Tube Drawing Dies for Non-ferrous Metal (Code-Letter F)

All dimensions in millimetres.

			Pellet				Case							
d ₂	h ₂	d	1	s*	1.	i†		h ₃	:	15	/6‡			
		Min	Max	Min	Min	Max			Min	Max	Min	Max		
25	20	10	12	6.5	2.0	4.0	75	40			11	15		
30		11	14	8.0		4.0	400	-	5	9	12	16		
35	24	13	18	8.5	2.4	4.8	100	45						
40	24	17	22	9.0	2.4	4.8	460	45		·	12	16		
45		21	26	9.5	0.5	5.0	100	50	5	9	16	20		
50	25	24	30	10.0	2.5	5.0	150	50			-10			
55		28	34	10.5										
60	27	32	38	11.0	2.7	5.4	150	55	5	9	19	23		
65	Ί.	36	42	11.5			.							
70		40	45				450							
75	30	43	50	12.5	3.0	6.0	150	60	5	9	21	25		
80		48	55		.		200							
85		53	58	13.5						1	İ			
90	33	56	62	14.0	3.3	6.6	200	65	5	9	23	27		
95		60	67		·			.		<u> </u>				
100	35	65	70	15.0	3.5	7.0	200	65			21	25		
105		68	75			1	250		5	9	1			
110	38	73	78	16.0	3.8	7.6		70			23	27		
120	38	74	88	16.0	3.8	7.6	250	70			23	27		
130		84	97	16.5					_					
140	40	93	106	17.0	4.0	8.0	300	75	5	9	26	30		
150	ļ	102	115	17.5	J	J	1	J		I	1			

Note 1 — d_{1Min} = minimum and preferable diameter of bearing at the first application.

Note 2 — d_{1Max} = maximum diameter of bearing which is recommended for drawing steel tubes having tensile strength up to 900 MPa and for drawing non-ferrous tubes having a tensile strength up to 800 MPa in the drawn condition with a drawing angle 2 α up to and including 40°.

Note 3 — Dies for drawing steel tubes with d_{1Max} exceeding 115 mm are outside the scope of this standard.

Note 4 — The diameter of bearing d_1 required by the user shall be chosen within the limits d_1Min and d_1Max except when the drawing angle 2α exceeds 40°. If the drawing angle 2α is considerably smaller than 40°, d_1Max may be increased by up to one millimetre. The tolerance of bearing shall be specified by the user.

Note 5 — The case may be of straight (code-letter Z) or tapered form (code-letter K). When a tapered form is required, an included angle of $2\epsilon = 10^{\circ}$ shall be provided, in which event d_3 is the diameter of larger end of the taper.

Note 6 — For use on multiple draw benches, a case diameter d_3 of 125 mm may be supplied for pellet diameters d_2 of 50, 55, 60 and 65 mm and a case diameter d_3 of 175 mm pellet diameters d_2 of 80, 85, 90, 95 and 100 mm.

$$*s_{Min} = \frac{d_2 = d_{1Max}}{2} .$$

 $\dagger l_4 = 0.1 \text{ up to } 0.2 h_2.$

tonly for information.

4.5 Dimensions for Shaped Drawing Dies for Steel of Square and Flat Section (Code-Letter L) and Hexagon Bar Drawing Dies for Steel (Code-Letter R)

All dimensions in millimetres.

	-			Pell	et							Ca	IS O		
	ī		Forn	n L		Form R					1				
d_2	h_2		a (st	ē	a st		/4‡		d_3	h_3				6§
•	-	Min	Max	Min	Min	Max	Min	Min	Max			Min	Max	Min	Max
16	13	1-1-	5	4.45	1	5	5.10	1.3	2.0	43	25	4			8_
	17	4	6	5.75	4	7_	5.95	1.7	3.4		32	5			10
25	20	5	7	7.50	6	9	7:30	2.0	4.0	75	40	5	9	11	15
30	-	6	9	8.65	8	11	8.65						ĺ		ĺ
35	24	8	11	9.70	10	13_	10.00	2.4	4.8	100	45	5	9	12	16
40	-	10	13	10.80	12	16_	10.75				!		l		
45		12	15	11.90	15	19	11.55	0.5	5.0	100	50			16	20
50	25	14	18	12.25	18	21	12.90	2.5	1	100	30	5	9		20
55	27	17	20	13-35	20	24	13.85	2.7	5.4	100	55			19	23
60		19	22	14.45	23	27	14.40	0.7	5.4		55			10	23
65	- 27	21	24	15.55	26	29	15.75	2.7	5.4	150	33	5	9	19	23
70	30	23	27	15.90	28	32	16.55	3.0	6.0		60	\		21	25
75	-	26	29	17.00	31	35	17:30	2.0	6.0	150	20			21	05
80	- 30	28	31	18:10	34	37	18.65	3.0	6.0	000	60	5	9	21	25
85	33	30	33	19.15	36	40	19:40	3.3	6.6	200	65			23	27
90	33	32	35	20.25	39	43	20.15	3.3	6.6	000		-	_	23	27
100	35	36	40	21.70	42	48	22.30	3.5	7.0	200	65	5	9	21	25

$$\dagger s_{Min} = \frac{d_2 - d_{1Max}}{2}.$$

Note 1 — $a_{Min} = minimum$ and preferable bore dimension at the first application.

Note $2 - a_{Max} =$ maximum bore dimension which is recommended for shaped drawing dies for steel of square and flat section and hexagon bar drawing dies for steel having a tensile strength up to 900 MPa in the drawn condition with a drawing angle 2α up to and including 20° .

 $[\]ddagger I_4 = 0.1 \text{ up to } 0.2 h_2.$

[§]Only for information.

Note 3 — Shaped drawing dies for steel of square and flat section, the dimensions a of which exceed 40 mm, and hexagon bar drawing dies for steel, the dimension a of which exceed 48 mm, are outside the scope of this standard.

Note 4 — The bore dimensions a required by the user should be chosen within the limits a_{Max} and a_{Min} except when the drawing angle 2α exceeds 20° . The tolerance of bearing shall be specified by the user.

Note 5 — The case may be of straight (code-letter Z) or tapered form (code-letter K). When a tapered form is required, an included angle of $2 \epsilon = 10^{\circ}$ shall be provided, in which event d_3 is the diameter of the larger end of the taper.

Note 6 — For use on multiple draw benches, a case diameter d_3 of 125 mm may be supplied for pellet diameters d_2 of 50, 55 and 60 mm and a case diameter d_3 of 175 mm for pellet diameters d_2 of 80 and 55 mm.

4.6 Dimensions for Shaped Drawing Dies for Non-ferrous Metal of Square and Flat Sections (Code-Letter N) and Hexagon Bar Drawing Dies for Non-ferrous Metal (Code-Letter S)

ΔII A	imensions	in mi	Illimat	rac

				Pe	llet							C	ase		
	1	1 .	Forr	n N		Form S				l ——	1	1		<u></u>	
d_2	h_2		3	s†		a	s†	14	. ‡	d ₃	h ₃	/	5	,	6§
	_	Min	Max	Min	Min	Max	Min	Min	Max			Min	Max	Min	Max
16	13	1	5	4.45	1	5	5.10	1.3	2.6		25	4			8
20	17	4	7	5.05	4	7	5.95	1.7	3.4	43	32	5			10
25	20	6	8	6.85	6	10	6.75	2.0	4.0	75	40	5	9	11	15
30		7	_10	7 \$5	9	12	8.10	·							
35	24	9	12	9.00	11	15	8.85	2.4	4.8	100	45	5	6	12	16
40		11	14	10.10	14	18	9.60	-					_		'
45	- 25	13	17	10.50	17	21	10.40			100					
50	- 25	16	19	11.55	20	24	11.15	2.5	5.0	(50	5	9	16	20
55	27	18	22	11.95	23	27	11.90	2.7	5.4	150	55			19	23
60	27	21	25	12.30	26	31	12.10								
65	2/	24	28	12.70	29	34	12.90	2.7	5.4	150	55	5	9	19	23
70	30	27	31	13·10	32	38	13.10	3.0	6.0	100	60			21	25
75	20	30	33	14.15	36	41	13.85			150					
80	- 30	32	36	14.55	39	43	15.15	3.0	6.0		60	5	9	21	25
85	33	34	38	15.60	41	45	16.50	3.3	6.6	200	65			23	27
90	33	36	41	16.00	43	48	17:30	3.3	6.6					23	27
100	35	39	45	18.20	46	53	19.40	3.5	7.0	200	65	5	9 (21	25

 $\dagger s_{Min} = \frac{d_2 - d_{1Max}}{2}$

 $\ddagger l_4 = 0.1$ up to $0.2 h_2$. §Only for information.

IS: 4918 - 1981

- Note $1 a_{Min} = minimum$ and preferable bore dimensions at the first application.
- Note 2 a_{Max} = maximum bore dimensions which is recommended for shaped drawing dies for non-ferrous metal of square and flat section and hexagon bar drawing dies for non-ferrous metal having a tensile strength up to 600 MPa in the drawn condition with a drawing angle 2 α up to and including 25°.
- **Note 3** Shaped drawing dies for non-ferrous metal of square and flat section, the dimensions a of which exceed 45 mm, and hexagon bar drawing dies for non-ferrous metal, the dimensions a of which exceed 53 mm, are outside the scope of this Standard.
- Note 4 The bore dimension a required by the user should be chosen within the limits a_{Max} and a_{Min} except where the drawing angle 2 α exceeds 25°. The tolerance of bearing shall be specified by the user.
- Note 5 The case may be of straight (code-letter Z) or tapered form (code-letter K). When a tapered form is required, an included angle of $2\varepsilon = 10^\circ$ shall be provided, in which event d_3 is the diameter of the larger end of the taper.
- **Note 6** For use on multiple draw benches a case diameter d_3 of 125 mm may be supplied for pellet diameters d_3 of 50, 55 and 60 mm and a case diameter d_3 of 175 mm for pellet diameter d_2 of 80 and 85 mm.

5. Material

5.1 Pellet - Hard metal (carbide).

5.2 Case

For dies using acid free lubricants: Steel having tensile strength not less than 600 MPa
For dies using acidic lubricants: Brass having tensile strength between 580 to 630 MPa
For dies using acidic lubricants and wire of high tensile strength

Bronze having tensile strength between 700 to 950 MPa

6. General Requirements

- **6.1** The pellet shall be positively and permanently fixed in its correct position in the case. The method of fixing shall be such that adequate support is provided to the peripheral face and the base of the pellet.
- **6.2** All surfaces of the pellet bore shall be free from scratches and irregularities, other than those naturally inherent in the finishing process.
- 7. Sampling The sampling and criteria of acceptance shall be in accordance with IS: 7778-1975 'Methods for sampling small tools'.
- 8. Designation Shall be designated by the name, code-letter of die, code-letter of shape of case, diameter of pellet, diameter of case, diameter of bearing, drawing angle and the number of this standard.

Example 1:

A drawing die for steel wire (A) of cylindrical shape (Z) having diameter of pellet $d_2=14$ mm, diameter of case $d_3=28$ mm, diameter of bearing $d_1=3.5$ mm, drawing angle $2\alpha^*=16^\circ$, case made of steel (St) and conforming to this standard, shall be designated as:

Die AZ 14
$$\times$$
 28 \times 3.5 \times 16° IS : 4918-St

When the case is made of brass (Bs) or bronze (Bz), the letters 'St' in the designation shall be replaced by 'Bs' or 'Bz' as appropriate.

Example 2:

A drawing die for non-ferrous metal bars (D), of conical shape (K) having diameter of pellet $d_2=25$ mm, diameter of case $d_3=75$ mm, diameter of bearing $d_1=9$ mm, radius of the generator circle of the toric surface, R^{\dagger} , case made of steel (St) and conforming to this standard, shall be designated as:

Die DK 25
$$\times$$
 75 \times 9 \times 99 \times R IS:4918-St

When the case is made of brass (Bs) or bronze (Bz), the letters 'St' in the designation shall be replaced by 'Bs' or 'Bz' as appropriate.

^{*}Where the bore profile is not specified, the user must specify the details of the material to be drawn together with the method of drawing.

[†]To replace the conical surface of the top angle 2α by a toric surface, angle 2α in the designation shall be replaced by the symbol '99' accompanied by the radius value, in millimetres, of the generator circle of the toric surface.

IS: 4918 - 1981

Example 3:

A drawing die for non-ferrous metal of square and flat section (N), of cylindrical shape (Z) having diameter of pellet $d_2=45$ mm, diameter of case $d_3=100$ mm, boring section $a\times b=15\times 15$ mm, drawing angle $2\alpha=20^\circ$, case made of steel (St) and conforming to this standard, shall be designated as:

Die DZ 45
$$\times$$
 100 \times 15 \times 15 \times 20° IS: 4918

When the case is made of brass (Bs) or bronze (Bz), the letters 'St' in the designation shall be replaced by 'Bs' or 'Bz' as appropriate.

9. Marking

9.1 Wire, bar and tube drawing dies conforming to this standard shall be marked with the following details on their cases, as indicated in the figure below:

9.1.1 On the entry side:

- a) Short designation of the type of die (see 2.1),
- b) Diameter of bearing d_1 ; and
- c) Manufacturer's name or trade-mark.

9.1.2 On the exit side:

- a) Diameter of pellet, d_2 ; and
- b) ISI markt.

9.2 ISI Certification Marking — Details available with the Indian Standards Institution.

10. Protective Coating and Packing

10.1 Each die shall be coated suitably for rust proofing and wrapped in a non-absorbent paper protected by a cover indicating the diameter of bearing, diameter of pellet and manufacturer's name or trade-mark.

10.2 Dies of one size only shall be packed in a carton.

tin case the die is certified by the Indian Standards Institution.

A-1. Comparison — (Figures are same as under 4.2, 4.3, 4.4, 4.5 and 4.6)

All dimensions in millimetres,

d ₂	h ₂	Dies wit	h Code- er C	Dies wit	h Code- er D	Dies wit	th Code- r E/F	Dies with	Code-letter L	Dies with	Code-letter		Code-letter N		Code-letter S
		2 α = 2	20° Max	2 α = 2	5° Max	2 α = 4	10° Max	2 α ==	20° Max	2 a =	25° Max	2α =	25° Max	2α-	25° Max
		d ₁ Max	d ₁ Min	d₁* Max	d ₁ Min	d₁* Max	d ₁ Min	a Max	a Min	a Max	a Min	a Max	a Min	a Max	a Min
16 20 25	13 17 20	=	=	12	9	12	<u>_</u>	5 (7·1) 6 (8·5) 7 (9·9)	1 (1·4) 4 (5·7) 5 (7·1)	5 (5·8) 7 (8·1) 9 (10·4)	1 (1·2) 4 (4·6) 6 (6·9)	5 (7·1) 7 (9·9) 8 (11·3)	1 (1·4) 4 (5·7) 6 (8·5)	5 (5·8) 7 (8·1) 10 (11·5)	1 (1·2) 4 (4·6) 6 (6·8)
30 35 40	24 24 24	13 16 19	9 12 15	14 18 21	11 13 17	11 18 22	11 13 17	9 (12·7) 11 (15·6) 13 (18·4)	6 (8·5) 8 11·3) 10 (14·1)	11 (12·7) 13 (15·0) 16 (18·5)	8 (9·2) 10 (11·5) 12 (13·8)	10 (14·1) 12 (17·0) 14 (19·8)	7 (9·9) 9 (12·7) 11 (15·6)	12 (13·8) 15 (17·3) 18 (20·8)	9 (10·4) 11 (12·7) 14 (16·2)
45 50 55	25 25 27	22 25 28	18 21 24	25 28 32	20 24 27	26 30 34	21 24 28	15 (21·2) 18 (25·5) 20 (28·3)	12 (17·0) 14 (19·8) 17 (24·0)	19 (21·9) 21 (24·2) 24 (27·7)	15 (17·3) 18 (20·8) 20 (23·1)	17 (24·0) 19 (26·9) 22 (31·1)	13 (18·4) 16 (22·7) 18 (25·5)	21 (24 2) 24 (27·7) 27 (31·2)	17 (19·5) 20 (23·1) 23 (26·6)
60 65 70	27 27 30	31 34 37	27 29 32	36 40 44	30 34 33	38 42 45	32 36 40	22 (31·1) 24 (33·9) 27 (38·2)	19 (26·9) 21 (29·7) 23 (32·5)	27 (31·2) 29 (33·5) 32 (36·9)	23 (26·6) 26 (30·0) 28 (32·3)	25 (35·4) 28 (39·6) 31 (43·8)	21 (29·7) 24 (33·9) 27 (38·2)	31 (35·8) 34 (39·2) 38 (43·8)	26 (30·0) 29 (33·5) 32 (36·9)
75 80 85	30 30 33	41 45 49	35 39 43	48 52 56	42 46 50	50 55 58	43 48 53	29 (41·0) 31 (43·8) 33 (46·7)	26 (36·8) 28 (39·6) 30 (42·4)	35 (40·4) 37 (42·7) 40 (46·2)	31 (45-8) 04 (89-2) 36 (41-6)	33 (46·7) 36 (50·9) 38 (53·8)	30 (42·4) 32 (45·3) 34 (48·2)	41 (47·3) 43 (49·7) 45 (52·0)	36 (41·6) 39 (45·0) 41 (47·3)
90 95 100	33 33 35	53 61	47 — 51	60 64 68	54 58 62	62 67 70	56 60 65	35 (49·5) 40 (56·6)	32 (45·4) 	43 (49·7) 	39 (45·0) 	41 (58·0) — 45 (63·6)	36 (50·9) — 39 (55·2)	48 (55·4) 	43 (49·7)
105 110 120	35 38 38	· =	=	72 — —	65 —	75 78 88	68 73 74		=	=	=	_		=	_
130 140 150	40 40 40	=		=	=	97 106 115	84 93 102	=		=	=	=		_	=

Note — The values in brackets for the dies with code-letters L, N, R and S correspond to the diagonal sizes based on the exact calculation.

*If the drawing angle 2 x lies considerably under 25° (dies with code-letter D) and 40° (dies with code-letters E and F), d_1 maximum can be increased up to one millimetre.

EXPLANATORY NOTE

This standard was first published in 1968. This revision is being undertaken to bring it in line with the work done at ISO level. In this revision dies for bars and tubes and also the sectional dies have been included.

In the preparation of this standard considerable assistance has been derived from ISO 1684-1975 'Wire, bar and tube drawing dies — Specifications' issued by International Organization for Standardization.