```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

df=pd.read_excel('/content/python_dashboard.xlsx')
df = df.iloc[:, :-2]

df

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Appli
0	LP001015	Male	True	0.0	Graduate	0.0	
1	LP001022	Male	True	1.0	Graduate	0.0	
2	LP001031	Male	True	2.0	Graduate	0.0	
3	LP001035	Male	True	2.0	Graduate	0.0	
4	LP001051	Male	False	0.0	FALSEt Graduate	0.0	
367	LP34545	Male	False	4.0	Graduate	0.0	
368	LP456889	Male	False	2.0	Graduate	0.0	
369	LP45667898	Male	False	1.0	NaN	0.0	
370	dh9099	Female	False	2.0	Graguate	0.0	
371	LP2099745	Female	False	3.0	Graduate	1.0	

372 rows × 12 columns

```
import seaborn as sb
plt.figure(figsize=(19,10))
sb.heatmap(df.corr(),annot=True,linewidth=1,cmap='Blues')
```

<ipython-input-4-536d1fcf2680>:3: FutureWarning: The default value of numer
sb.heatmap(df.corr(),annot=True,linewidth=1,cmap='Blues')

<Axes: >


```
import numpy as np
import pandas as pd
df = df.dropna(subset=['ApplicantIncome', 'LoanAmount'])
df = df[(df['ApplicantIncome'].apply(lambda x: isinstance(x, (int, float)))) & (
input = df['ApplicantIncome']
output = df['LoanAmount']
def weights(input,output):
    mean_x=np.mean(input)
    mean y=np.mean(output)
    #compute theta_1
    theta_1= (np.sum((input-mean_x)*(output-mean_y)))/(np.sum((input-mean_x)**2)
    #compute theta_0
    theta_0=mean_y-theta_1*mean_x
    print("Theta_0 and Theta_1 are {} and {} respectively".format(theta_0,theta_
    return [theta_0, theta_1]
coeff = weights(np.array(input),np.array(output))
```

Theta_0 and Theta_1 are -132904.0796551439 and 120.5684588974 respectively

Colab paid products - Cancel contracts here

