Exercice 1. Racines carrées matricielles.

1. Racines carrées d'une matrice diagonale.

Dans cette question, on considère la matrice $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$.

- (a) On a $DM = \begin{pmatrix} a & b \\ 4c & 4d \end{pmatrix}$ et $MD = \begin{pmatrix} a & 4b \\ c & 4d \end{pmatrix}$. Supposons que DM = MD. En égalant les coefficients non diagonaux, on obtient b = 4b et 4c = c, ce qui amène b = c = 0 et montre que M est diagonale. La réciproque est vraie car deux matrices diagonales commutent toujours.
- (b) On l'a compris à la question précédente, il suffit de prouver que X commute avec D. Et c'est le cas, puisque X commute avec X^2 , et donc avec D.
- (c) Analyse. Soit $X \in M_n(\mathbb{R})$ une matrice telle que $X^2 = D$.

 D'après (b), X est diagonale, de la forme $X = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$.

 L'équation $X^2 = D$ c'équit $\begin{pmatrix} x^2 & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & y \end{pmatrix}$ et amère $x^2 = D$ c'équit $\begin{pmatrix} x^2 & 0 \\ 0 & y \end{pmatrix}$

L'équation $X^2 = D$ s'écrit $\begin{pmatrix} x^2 & 0 \\ 0 & y^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ et amène $x^2 = 1$ et $y^2 = 4$, soit $x = \pm 1$ et $y = \pm 2$.

Synthèse : il est clair que si $(x, y) \in \{(1, 2), (-1, 2), (1, -2), (-1, -2)\}$, alors

$$\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}.$$

 $\underline{\text{Conclusion}}$: l'équation $X^2=D$ possède quatre solutions dans $M_2(\mathbb{R})$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}.$$

2. Racines carrées d'une matrice diagonalisable.

Dans cette question, on considère les matrices $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$.

(a) On pouvait utiliser le pivot de Gauss pour répondre à cette question. On peut aussi profiter du fait qu'il s'agit d'une matrice de taille 2. On a $\det(P) = 1 \neq 0$, ce qui donne que P est inversible et que $P^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$. Un calcul permet de vérifier que $A = PDP^{-1}$.

(b) On a

$$X^{2} = A \iff X^{2} = PDP^{-1}$$

$$\iff P^{-1}X^{2}P = D$$

$$\iff (P^{-1}XP)(P^{-1}XP) = D \quad (\operatorname{car} PP^{-1} = I_{2})$$

$$\iff (P^{-1}XP)^{2} = D.$$

(c) Notons $\Delta_1, \Delta_2, \Delta_3, \Delta_4$ les quatre solutions de $X^2 = D$ (dans l'ordre où on les a écrites à la question 1). D'après la question précédente, pour $X \in M_2(\mathbb{R})$, on a

$$X^2 = A \quad \Longleftrightarrow \quad \exists i \in \llbracket 1, 4 \rrbracket \ P^{-1}XP = \Delta_i \quad \Longleftrightarrow \quad \exists i \in \llbracket 1, 4 \rrbracket \ X = P\Delta_i P^{-1}.$$

L'équation $X^2 = A$ possède donc les quatre solutions $\{P\Delta_i P^{-1} \mid i \in [1, 4]\}$. On les calcule, ce sont les matrices

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} -2 & -3 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -2 & -1 \\ 0 & -1 \end{pmatrix}.$$

Exercice 2. Matrices de permutations.

- 1. (a) $P_{\gamma} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (b) $P_{id} = I_n$.
 - (c) Soit $\sigma \in S_n$. Par définition de la trace, $\operatorname{tr}(P_{\sigma}) = \sum_{i=1}^n \delta_{i,\sigma(i)}$. Pour $i \in [1, n]$, on a $\delta_{i,\sigma(i)} = 1$ ssi $\sigma(i) = i$. Ainsi, la trace de P_{σ} est le nombre des *points fixes* de la permutation σ .
- 2. Pour M dans $M_n(\mathbb{R})$ et $(i,j) \in [1,n]^2$, on note $[M]_{i,j}$ le coefficient de M à la positions (i,j). Soit $(\sigma,\sigma') \in (S_n)^2$ et $(i,j) \in [1,n]^2$.

$$[P_{\sigma}P_{\sigma'}]_{i,j} = \sum_{k=1}^{n} [P_{\sigma}]_{i,k} [P_{\sigma'}]_{k,j}$$
$$= \sum_{k=1}^{n} \delta_{i,\sigma(k)} \delta_{k,\sigma'(j)}$$
$$= \delta_{i,\sigma(\sigma'(j))}$$

À la dernière ligne on a seulement gardé le terme « $k=\sigma'(j)$ » car les autres termes sont nuls. Ceci démontre donc que

$$[P_{\sigma}P_{\sigma'}]_{i,j} = \delta_{i,\sigma\circ\sigma'(j)} = [P_{\sigma\circ\sigma'}]_{i,j} ,$$

et achève donc de démontrer que

$$P_{\sigma}P_{\sigma'}=P_{\sigma\circ\sigma'}.$$

3. Soit $\sigma \in S_n$. Sa réciproque σ^{-1} existe, ainsi que la matrice $P_{\sigma^{-1}}$ associée. On calcule

$$P_{\sigma}P_{\sigma^{-1}} = P_{\sigma \circ \sigma^{-1}} = P_{\mathrm{id}} = I_n.$$

$$P_{\sigma^{-1}}P_{\sigma} = P_{\sigma^{-1}\circ\sigma} = P_{\mathrm{id}} = I_n.$$

Ceci nous donne que

$$P_{\sigma} \in GL_n(\mathbb{K})$$
 et $(P_{\sigma})^{-1} = P_{\sigma^{-1}}$

4. Posons

$$\varphi: \left\{ \begin{array}{ccc} S_n & \to & GL_n(\mathbb{R}) \\ \sigma & \mapsto & P_{\sigma} \end{array} \right. .$$

L'application φ est bien définie sur S_n et prend bien ses valeurs dans $GL_n(\mathbb{R})$ d'après la question précédente. Il s'agit d'un morphisme de groupes de (S_n, \circ) dans $(GL_n(\mathbb{R}), \times)$. En effet, d'après la question 2,

$$\forall (\sigma, \sigma') \in (S_n)^2 \quad \varphi(\sigma \circ \sigma') = P_{\sigma \circ \sigma'} = P_{\sigma} P_{\sigma'} = \varphi(\sigma) \times \varphi(\sigma').$$

L'ensemble $P_n(\mathbb{R})$ est par définition l'image de S_n par φ . C'est donc un sous-groupe de $GL_n(\mathbb{R})$ comme image directe d'un (sous-)groupe par un morphisme de groupes. Notons donc

$$\widetilde{\varphi}: \left\{ \begin{array}{ccc} S_n & \to & P_n(\mathbb{R}) \\ \sigma & \mapsto & P_{\sigma} \end{array} \right.$$

Il s'agit encore d'un morphisme de groupes, surjectif par définition.

Soit $\sigma \in S_n$ tel que $\widetilde{\varphi} = I_n$. On a donc $P_{\sigma} = I_n$. En lisant les coefficients diagonaux de P_{σ} , on obtient que

$$\forall i \in [1, n] \quad \delta_{i, \sigma(i)} = 1 \quad \text{soit} \quad \sigma(i) = i.$$

On a donc que $\sigma=\mathrm{id}$. Le noyau de $\widetilde{\varphi}$ est trivial : $\widetilde{\varphi}$ est donc injectif.

L'application $\widetilde{\varphi}$ est donc un isomorphisme : $P_n(\mathbb{R})$ est isomorphe à S_n

Problème 2 : Entiers sommes de deux carrés.

Partie I : Présentation de l'anneau de $\mathbb{Z}[i]$.

- 1. Propriétés générales.
 - (a) C'est un exemple du cours. On vérifie facilement que

 - $-1 \in \mathbb{Z}[i].$
 - (b) i. Soit $u \in \mathbb{Z}[i]$, qui s'écrit u = a + ib, avec a et b deux entiers relatifs. On a $N(u) = u\overline{u} = |u|^2 = a^2 + b^2$ et donc $N(u) \in \mathbb{N}$.
 - ii. Soit $(u, v) \in (\mathbb{Z}[i])^2$. On calcule

$$N(uv) = |uv|^2 = |u|^2 |v|^2 = N(u)N(v).$$

(c) Supposons que u est inversible dans $\mathbb{Z}[i]$. Alors il existe $v \in \mathbb{Z}[i]$ tel que uv = 1. On applique N: on obtient N(uv) = N(1), soit N(u)N(v) = 1. On obtient donc que N(u) est un inversible de \mathbb{Z} . Puisqu'il est positif, il vaut nécessairement 1. Si on écrit u = a + ib, avec a et b entiers, on obtient $a^2 + b^2 = 1$, ce qui donne $(a^2, b^2) = (1, 0)$ ou $(a^2, b^2) = (0, 1)$. On obtient donc que (a, b) vaut (1, 0) ou (-1, 0), ou (0, 1), ou (0, -1) et donc que

$$u \in \{1, -1, i, -i\}$$
.

Réciproquement, ces quatre éléments sont inversibles dans $\mathbb{Z}[i]$: les deux premiers sont leur propre inverse, et les suivants sont inverses l'un de l'autre.

2. Divisibilité dans l'anneau $\mathbb{Z}[i]$.

On s'est donné u et v deux éléments de $\mathbb{Z}[i]$.

- (a) Tout ça s'écrit bien, de la même façon que dans \mathbb{Z} .
- (b) Idem, il suffit d'écrire ça tranquillement.
- (c) Supposons que $u \mid v$ et $v \mid u$. Il existe donc s et t dans $\mathbb{Z}[i]$ tels que v = us et u = vt. Ceci amène v = vst, soit v(1 st) = 0. On travaille dans \mathbb{C} , anneau intègre : on obtient donc v = 0 ou st = 1. Dans le premier cas, v = 0 puis u = vt = 0. On a bien $u = \pm v$. Dans le deuxième cas, st = 1, ce qui amène que $t \in U$ puis que $t = \pm 1$ ou $t = \pm i$ d'après 1-(c). On obtient bien que alors $u = \pm v$ ou $u = \pm iv$.

- (d) Supposons que $u \mid v$. Il existe donc s dans $\mathbb{Z}[i]$ tels que v = us. Appliquons N: on obtient N(v) = N(u)N(s). Puisque les trois images par N sont des entiers, on a bien que N(u) divise N(v) dans \mathbb{Z} .
- (e) Soit u=a+ib un diviseur de 1+i. Alors N(d) divise N(1+i), donc divise 2. On obtient donc N(d)=1 ou N(d)=2. Dans le premier cas, on a $a^2+b^2=1$, qui conduit à $d\in U$. Il est facile de vérifier réciproquement que ces nombres dans U sont des diviseurs de 1+i. Dans le second cas, N(d)=2, ce qui conduit à $a^2=b^2=1$, soit $a=\pm 1$ et $b=\pm 1$, et donc d=1+i, ou d=1-i, ou d=-1+i ou d=-1-i. Il est facile de vérifier réciproquement que ce sont là des diviseurs de 1+i dans $\mathbb{Z}[i]$. Par exemple $1-i=(-i)\times(1+i)$. La liste des diviseurs de 1+i est donc

$$1, -1, i, -i \quad 1+i, \quad 1-i \quad -1+i \quad -1-i.$$

- 3. Division euclidienne dans $\mathbb{Z}[i]$.
 - (a) Soit $z \in \mathbb{C}$; on note x et y respectivement ses parties réelles et imaginaires. Soit a l'entier le plus proche de x (en choisissant le plus grand si x est la moyenne de deux entiers).

$$a = \left\{ \begin{array}{ll} \lfloor x \rfloor & \text{si } \lfloor x \rfloor \le x < \lfloor x \rfloor + \frac{1}{2} \\ \lfloor x \rfloor + 1 & \text{si } \lfloor x \rfloor + \frac{1}{2} \le x < \lfloor x \rfloor + 1 \end{array} \right.$$

De même on note b l'entier le plus proche de y. On pose alors u = a + ib et on a

$$N(z-u) = (x-a)^2 + (y-b)^2 \le \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 \le \frac{1}{2} < 1.$$

Le nombre u qu'on vient de définir n'est pas unique : par exemple $\frac{1}{2} + \frac{1}{2}i$ est à équidistance des quatre nombres 0, 1, i, 1+i.

(b) Soit $u \in \mathbb{Z}[i]$ et $v \in \mathbb{Z}[i]^*$. D'après la question précédente, il existe un élément q dans $\mathbb{Z}[i]$ tel que $N\left(\frac{u}{v}-q\right) < 1$. Posons r=u-vq. On a donc $r=v\left(\frac{u}{v}-q\right)$, ce qui donne, en appliquant N,

$$N(r) = N(v)N\left(\frac{u}{v} - q\right) < N(v) \cdot 1.$$

L'inégalité stricte s'obtient car N(v)>0 puisque $v\neq 0$. On a bien défini (q,r) tel que

$$u = vq + r$$
 et $N(r) < N(v)$.

Partie II : Arithmétique dans $\mathbb{Z}[i]$.

4. Il est clair que $\delta \mathbb{Z}[i] \subset \mathbb{Z}[i]$.

Puisque $0 \in \mathbb{Z}[i]$, on voit que $0 \in \delta \mathbb{Z}[i]$ en écrivant $0 = \delta \times 0$.

Soient u' et v' deux éléments de $\delta \mathbb{Z}[i]$. Ils s'écrivent $u' = \delta u$ et $v' = \delta v$, avec u et v dans $\mathbb{Z}[i]$. On a donc $u' - v' = \delta(u - v)$, ce qui donne $u' - v' \in \delta \mathbb{Z}[i]$ puisque $u - v \in \mathbb{Z}[i]$. Par caractérisation, $\delta \mathbb{Z}[i]$ est un sous-groupe de $(\mathbb{Z}[i], +)$.

- 5. Soit $u, v \in \mathbb{Z}[i]$ avec $u \neq 0$ ou $v \neq 0$. On note $I(u, v) = \{uz + vz' \mid z, z' \in \mathbb{Z}[i]\}$.
 - (a) $u = u \times 1 + v \times 0$ et $v = u \times 0 + v \times 1$: puisque 0 et 1 sont dans $\mathbb{Z}[i]$, on a u et v dans I(u, v).
 - (b) Puisque $u \in I(u, v)$, l'ensemble A contient N(u), qui est non nul. L'ensemble A est donc une partie non vide de \mathbb{N}^* : elle a un plus petit élément d > 0.
 - (c) L'inclusion $\delta \mathbb{Z}[i] \subset I(u,v)$ est simple : elle vient du fait que $\delta \in I(u,v)$ et que (I(u,v),+) est un sous-groupe de $\mathbb{Z}[i]$. Soit $z \in I(u,v)$. Puisque $\delta \neq 0$, on déduit de 3(b) l'existence d'un couple (q,r) d'éléments de $\mathbb{Z}[i]$ tels que $z = \delta q + r$ avec $N(r) < N(\delta)$. Puisque $r = z \delta q$ et que z et δ sont dans I(u,v), alors $r \in I(u,v)$ par propriété de sous-groupe. Si r est non nul, l'inégalité $N(r) < N(\delta)$ contredit la minimalité dans la définition de δ . On en déduit que r = 0 et donc que δ divise $z : z \in \delta \mathbb{Z}[i]$. Par double inclusion, $I(u,v) = \delta \mathbb{Z}[i]$.
 - (d) Puisque u et v sont dans I(u, v), ils sont donc dans δZ[i] : δ divise u et v.
 Soit w ∈ Z[i].
 Si w divise δ, puisque δ divise u et v, alors w divise u et v par transitivité.
 Si réciproquement w divise u et v, il divise toute combinaison uz + vz' avec z et z' deux éléments de Z[i] (voir question 2-(b)). Puisque δ est une de ces combinaisons, w divise δ.
- 6. On a supposé que u et v sont premiers entre eux, soit
 - (a) Par définition de δ , il existe z et z' dans $\mathbb{Z}[i]$ tels que $uz + vz' = \delta$.
 - Si $\delta = 1$, on a le résultat voulu.
 - Si $\delta = -1$, on remplace (z, z') par (-z, -z') (qui est encore dans $(\mathbb{Z}[i])^2$) et on a encore uz + vz' = 1.
 - Si $\delta=i,$ on remplace (z,z') par (-iz,-iz') et on a encore uz+vz'=1.
 - Si $\delta = -i$, on remplace (z, z') par (iz, iz') et on a encore uz + vz' = 1.
 - (b) Soit $w \in \mathbb{Z}[i]$.

En utilisant les nombres z et z' introduits dans la question précédente, on a w = uwz + vwz'.

Puisque u divise uwz et divise vwz', il divise leur somme w.

- 7. (a) Soit δ un PGCD de u et v. Puisque δ divise u qui est irréductible, δ vaut ± 1 , $\pm i$, $\pm i$, $\pm i$. Si δ vaut $\pm u$ ou $\pm iu$, puisque δ divise v, on aurait u divise v ce qui n'est pas. Ceci prouve que $\delta \in U$: u et v sont premiers entre eux.
 - (b) Supposons que u, qui est irréductible, ne divise pas v. La question précédente donne que u et v sont premiers entre eux. Puisque u divise vw, il divise w d'après la question 6-(b), qui est une sorte un « lemme de Gauss dans $\mathbb{Z}[i]$ ».

Partie III : Nombres premiers sommes de deux carrés.

- 8. Supposons que p est somme de deux carrés : $p = a^2 + b^2$, avec $(a, b) \in \mathbb{Z}^2$. On a donc p = (a + ib)(a ib), et a + ib n'est pas un élément de U (on aurait sinon p = 1 en appliquant N). Ceci prouve que p n'est pas irréductible dans $\mathbb{Z}[i]$.
 - Supposons que p n'est pas irréductible dans $\mathbb{Z}[i]$. Alors, il existe $(a,b) \in \mathbb{Z}^2$ et $(c,d) \in \mathbb{Z}^2$ tels que p = (a+ib)(c+id), avec a+ib et c+id qui ne sont pas dans U. Appliquons N: on obtient

$$p^2 = (a^2 + b^2)(c^2 + d^2).$$

Puisque a+ib n'est pas dans U, $a^2+b^2\neq 1$. De même $c^2+d^2\neq 1$. Les deux facteurs valent donc p ou p^2 puisque p est premier. Puisque leur produit vaut p^2 , ils valent p tous les deux : $p=a^2+b^2$.

9. (a) Soit $x \in [1, p-1]$.

<u>Existence</u> : Puisque p (premier) ne divise pas x, il est premier avec x. D'après le théorème de Bézout, il existe deux entiers relatifs r et s tels que

$$xr + ps = 1.$$

Passons modulo p: on obtient $xr\equiv 1$ [p]. On peut supposer que $r\in [\![0,p-1]\!]$, quitte à remplacer r par le reste dans la division euclidienne de r par p. Puisque xr vaut 1 modulo p, r ne vaut pas 0. On peut donc poser y=r: ce nombre appartient à $[\![1,p-1]\!]$.

<u>Unicité</u>. Soient y et y' dans [1, p-1] tels que $xy \equiv 1$ [p] et $xy' \equiv 1$ [p]. Par différence, x(y-y')=0 [p] donc p divise x(y-y'). Puisque x et p sont premiers entre eux, p divise y-y'. Or, la différence y-y' est entre p-1 et son opposé : et le seul multiple de p dans cet intervalle est 0: on a y=y'.

- (b) Il est clair que $1^2 \equiv 1$ [p]. De même $p-1 \equiv -1$ [p] donc $(p-1)^2 \equiv 1$ [p]. Réciproquement, si x est un entier de $[\![1,p-1]\!]$ tel que $x^2 \equiv 1$ [p], alors p divise $x^2-1=(x+1)(x-1)$, et puisque p est premier, p divise x+1 ou p divise x-1. Puisque $x+1 \in [\![2,p]\!]$ et $x+1 \in [\![0,p-2]\!]$, on a nécessairement x+1=p ou x-1=0, soit x=p-1 ou x=1.
- (c) On veut évaluer modulo p le produit

$$1 \times 2 \times \cdots \times (p-1)$$
.

Nous avons montré en question (a) que tous ces entiers ont un inverse modulo p entre 1 et p-1. Et comme 1 et p-1 sont les seuls facteurs qui sont leur propre inverse (question (b)) chaque facteur du produit

$$2 \times 3 \times \cdots (p-2)$$

est présents avec son inverse (distinct de lui-même) : ce produit vaut 1. Ainsi,

$$(p-1)! \equiv 1 \times (p-1) \times 1 \ [p] \quad donc \quad (p-1)! \equiv -1 \ [p]$$

- 10. Supposons que $p \neq 2$ et que p est somme de deux carrés. Il existe a et b deux entiers tels que $p = a^2 + b^2$. Les entiers a et b sont de parité contraire, sinon p serait pair, ce qui n'est pas puisque p est premier et différent de 2. Sans perte de généralité, supposons que a est pair. Il s'écrit alors a = 2a' avec a' entier, et donc $a^2 = 4a'^2$, soit $a^2 \equiv 0 \pmod{4}$. Puisque b est impair, on a $b \equiv 1$ [4] ou $b \equiv 3$ [4]. Or, 1^2 et 3^2 valent tous les deux 1 modulo 4: on a bien $p \equiv 1 \pmod{4}$.
- 11. Supposons que $p \equiv 1$ [4].
 - (a) Puisque p-1 est ici un multiple de 4, il est en particulier pair. On peut écrire

$$(p-1)! = \left(\prod_{k=1}^{\frac{p-1}{2}} k\right) \left(\prod_{k=\frac{p-1}{2}+1}^{p-1} k\right) = \left(\prod_{k=1}^{\frac{p-1}{2}} k\right) \left(\prod_{k=1}^{\frac{p-1}{2}} (p-k)\right)$$

Modulo p, p-k est l'opposé de k, c'est-à-dire que $p-k \equiv k$ [p]. De plus, d'après le théorème de Wilson, $(p-1)! \equiv -1$ [p]. En passant modulo p, on obtient donc

$$-1 = \left(\prod_{k=1}^{\frac{p-1}{2}} k\right) \left(\prod_{k=1}^{\frac{p-1}{2}} - k\right) [p] \quad \text{soit encore} \quad -1 = (-1)^{\frac{p-1}{2}} \left(\prod_{k=1}^{\frac{p-1}{2}} k\right)^2 [p].$$

Or, puisque p-1 est un multiple de 4, on sait que $\frac{p-1}{2}$ est pair, de sorte que $(-1)^{\frac{p-1}{2}} = 1$, ce qui laisse le résultat demandé.

- (b) On s'est donné un entier a tel que $a^2 = -1$ [p], c'est-à-dire tel que p divise $a^2 + 1 = (a+i)(a-i)$. Si on suppose que p est irréductible dans $\mathbb{Z}[i]$, alors p divise a+i ou a-i. Dans le premier cas, cela implique l'existence de deux entiers c et d tels que p(c+id) = a+i. On a donc pd = 1 et donc p divise 1, ce qui est absurde. La contradiction est la même dans l'autre cas. Ceci démontre que p n'est pas irréductible. Et donc que p est une somme de deux carrés.
- 12. D'après la question 10, si p est somme de deux carrés, alors il vaut 2 ou bien est congru à 1 modulo 4. Réciproquement, on remarque que $2 = 1^2 + 1^2$ est somme de deux carrés. De plus, d'après la question 11, tout nombre premier congru à 1 modulo 4 est somme de deux carrés. La conclusion mérite le nom de théorème.

Théorème (de Fermat de Noël) Les nombres premiers sommes de deux carrés sont le nombre 2 ainsi que tous ceux congrus à 1 modulo 4.

Partie IV: Nombres sommes de deux carrés.

13. (a) Soient $n, n' \in \Sigma$. Il existe u et u' dans $\mathbb{Z}[i]$ tels que n = N(u) et n' = N'(u'). On a nn' = N(u)N(u') = N(uu'), ce qui amène $nn' \in \Sigma$ puisque $uu' \in \mathbb{Z}[i]$. Plus précisément, si on écrit u = a + ib et u' = c + id, alors uu' = (ac - bd) + idi(ad + bc). L'égalité N(u)N(u') = N(uu') s'écrit donc

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$
. (identité de Diophante)

(b) Soit $n\in\Upsilon$. On écrit $n=\prod_{p\in\mathbb{P}}p^{v_p(n)}$. Considérons p un diviseur premier de n $(v_p(n)\geq 1)$

- Si p=2, puisque $2 \in \Sigma$, on a $2^{v_2(n)} \in \Sigma$ puisque Σ est stable par produit.
- Si $p \equiv 1$ [4], puisque $p \in \Sigma$ (d'après la partie III), on a $p^{v_p(n)} \in \Sigma$ puisque Σ est stable par produit.

— Si $p \equiv 3$ [4], puisque par hypothèse $v_p(n)$ est paire, on peut écrire

$$p^{v_p(n)} = \left(p^{v_p(n)/2}\right)^2 + 0^2.$$

Ce qui précède prouve que n est un produit de facteurs tous dans Σ , ce qui démontre que $n \in \Sigma$, et puisque Υ ne contient pas 0, on a bien $\Sigma \setminus \{0\} = \Upsilon$

- 14. p est un nombre premier congru à 3 modulo 4 et divisant $n=a^2+b^2$.
 - (a) Puisque p n'est pas congru à 1 modulo 4, il n'appartient pas à Σ (d'après 10-(a) par contraposée), et donc p est irréductible dans $\mathbb{Z}[i]$ (d'après 8). Par hypothèse, p divise $a^2 + b^2$ dans \mathbb{Z} , a fortiori dans $\mathbb{Z}[i]$, ce qu'on peut écrire

$$p \mid (a+ib)(a-ib)$$

Par irréductibilité, $p \mid a + ib$ ou $p \mid a - ib$. Dans le second cas, on peut écrire a - ib = pz avec $z \in \mathbb{Z}[i]$

En conjuguant, on a $a + ib = p\overline{z}$. Ceci prouve que p divise a + ib.

(b) Puisque p divise a+ib, il existe $(a',b') \in \mathbb{Z}^2$ tel que a+ib=p(a'+ib'), ce qui donne pa' = a et pb' = b. Ainsi p divise a et p divise b dans \mathbb{Z} . On a donc $a' = \frac{a}{n}$ et $b' = \frac{b}{n}$ puis

$$n = (a+ib)(a-ib) = p^{2}(a'+ib')(a'-ib') = p^{2}(a'^{2}+b'^{2}).$$

Ceci démontre que p^2 divise n et que $\frac{n}{n^2} = a'^2 + b'^2 \in \Sigma$.

- (c) Supposons que $v_p(n)$ est impaire. On l'écrit alors $v_p(n) = 2k + 1$ avec $k \in \mathbb{N}$. D'après la question précédente, $\frac{n}{v^2} \in \Sigma$. En itérant, on obtient que $\frac{n}{n^{2k}} \in \Sigma$. Or, $v_p\left(\frac{n}{p^{2k}}\right) = v_p(n) - 2k = 1$. Ceci est absurde car si on applique le résultat de la question précédente à $\frac{n}{p^{2k}}$ (qui est dans Σ), on obtient que sa valuation p-adique est supérieure à 2. Čette contradiction amène que $v_p(n)$ est paire.
- 15. Voici le théorème établi par ce problème :

Théorème Les entiers sommes de deux carrés sont 0, 2, et tous ceux dont les diviseurs premiers congrus à 3 modulo 4 sont associés à une valuation paire.

Application. 1789 est premier, et congru à 1 modulo 4 : il est somme de deux carrés, ainsi que $3578 = 2 \times 1789$ puisque 2 est aussi somme de deux carrés. En revanche, $5367 = 3 \times 1789$ n'est pas somme de deux carrés car $3 \equiv 3$ [4] et ce nombre premier a une valuation impaire dans la décomposition primaire de 5367.