Problem J Longest Shortest Path

Input: Standard Input
Time Limit: See AtCoder

You are given a directed graph and two nodes s and t. The given graph may contain multiple edges between the same node pair but not self loops. Each edge e has its initial length d_e and the cost c_e . You can extend an edge by paying a cost. Formally, it costs $x \cdot c_e$ to change the length of an edge e from d_e to $d_e + x$. (Note that x can be a non-integer.) Edges cannot be shortened.

Your task is to maximize the length of the shortest path from node s to node t by lengthening some edges within cost P. You can assume that there is at least one path from s to t.

Input

The input consists of a single test case formatted as follows.

The first line contains five integers N, M, P, s, and t: N ($2 \le N \le 200$) and M ($1 \le M \le 2,000$) are the number of the nodes and the edges of the given graph respectively, P ($0 \le P \le 10^6$) is the cost limit that you can pay, and s and t ($1 \le s, t \le N, s \ne t$) are the start and the end node of objective path respectively. Each of the following M lines contains four integers v_i, u_i, d_i , and c_i , which mean there is an edge from v_i to u_i ($1 \le v_i, u_i \le N, v_i \ne u_i$) with the initial length d_i ($1 \le d_i \le 10$) and the cost c_i ($1 \le c_i \le 10$).

Output

Output the maximum length of the shortest path from node s to node t by lengthening some edges within cost P. The output can contain an absolute or a relative error no more than 10^{-6} .

a	1	т		4
Sam	ole	inp	ut	1

3 2 3 1 3 1 2 2 1 2 3 1 2

Output for the Sample Input 1

6.0000000

Sample Input 2

3 3 2 1 3 1 2 1 1 2 3 1 1 1 3 1 1

Output for the Sample Input 2

2.5000000

Sample Input 3

Output for the Sample Input 3

4.2500000