

实验报告书

课程名称:	路由技术原理与应用							
	计算机							
专 业:	网络工程							
•	2020级							
	2 班							
	潘玥 学号: 202010420211							
子上紅石 <u> </u>								
	, :=							
廾诛时间 :	2022 至 2023 学年第1学期							

成都大学

年 月 日

实验成绩统计表

实验项目序号	实验项目成绩	占实验总成绩比例
实验 1		
实验 2		
实验3		
实验 4		
实验 5		
实验 6		
实验 7		
实验 8		
实验 9		
实验 10		
实验 11		
实验 12		
总成绩		教师签名

成都大学实验报告单

	,					
课程名称	路由技术原理 与应用	任课教师	程琨	学院	计算机学院	
学生姓名/学号 (小组成员)	潘玗	∄ 202010420	211	专 业 班 级	网络工程 20-2	
实验室及地点		10318		实验日期	22. 10. 14	
实验项目名称	RIP 的应用					
实验类型	□认知性 □验证性 □综合性 □设计性 □研究性 □创新性					
实 验 目 的 及要求	本实验在前面学习过配置静态路由等 1、理解路由器的 2、掌握静态路由 3、掌握使用路由	实现路由转发 工作原理; 的配置方法;		构建更为复	杂的园区网,并通	
实验仪器、材料	eNSP、 Wireshark					
字验内容及过程记录 — 、任务 1: 在 eNSP 中部署园区网 在 eNSP 中的网络拓扑如图 1-1 所示: R-1 GE0/0/0, 10.0.0.6/30 GE0/0/1, 10.0.0.9/30 GE0/0/1, 10.0.0.9/30 GE0/0/1, 10.0.0.1/30 GE0/0/2, 10.0.1.5/30 GE0/0/3, 10.0.1.5/30 GE0/0/4, 10.0.0.5/30 GE0/0/4						
图 1−1 在 eNSP 中的网络拓扑图						

二、任务 2: 主机与交换机配置

2.1 配置主机网络参数

启动主机 Host-1~Host-8, 进入 CLI 界面。 根据实验规划中关于主机 IP 地址的规划,输入 IP 地址等信息,完成对主机的配置。

2.2 配置交换机 SW-1

2.2.1 启动交换机 SW-1, 进入 CLI 界面

```
1 <Huawei>system-view
      Enter system view, return user view with Ctrl+Z.
3 // 关闭信息中心
      [Huawei]undo info-center enable
 4
 5 Info: Information center is disabled.
      //将设备名改为 SW-1
 7 [Huawei]sysname SW-1
      //创建 VLAN11 和 VLAN12
8
    [SW-1]vlan batch 11 12
      Info: This operation may take a few seconds. Please wait for a moment...done.
10
   //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式,分别划入 VLAN11、VLAN12
11
12
      [SW-1]interface Ethernet 0/0/1
    [SW-1-Ethernet0/0/1]port link-type access
13
      [SW-1-Ethernet0/0/1]port default vlan 11
14
   [SW-1-Ethernet0/0/1]quit
15
      [SW-1]interface Ethernet 0/0/2
16
      [SW-1-Ethernet0/0/2]port link-type access
17
      [SW-1-Ethernet0/0/2]port default vlan 12
18
   [SW-1-Ethernet0/0/2]quit
19
      //将上联 RS-1 的接口设为 Trunk 类型,并允许 VLAN11 和 VLAN12 的数据帧通过
20
      [SW-1]interface GigabitEthernet 0/0/1
21
      [SW-1-GigabitEthernet0/0/1]port link-type trunk
22
23
      [SW-1-GigabitEthernet0/0/1]port trunk allow-pass vlan 11 12
24
      [SW-1-GigabitEthernet0/0/1]quit
25
    [SW-1]quit
26
      <SW-1>save
```

2.2.2 查看交换机 SW-1 的 VLAN 信息

图 2-1 SW-1 的 VLAN 信息

2.3 配置交换机 SW-2、SW-3、SW-4

2.3.1 配置交换机 SW-2

■ 按照实验规划配置交换机 SW-2,注意在 SW-2 上创建的是 VLAN13 和 VLAN14

```
[Huawei]undo info-center enable
 1
 2 Info: Information center is disabled.
      //将设备名改为 SW-2
    [Huawei]sysname SW-2
 4
      //创建 VLAN13 和 VLAN14
    [SW-2]vlan batch 13 14
      Info: This operation may take a few seconds. Please wait for a moment...done.
      //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式, 分别划入 VLAN13、VLAN14
      [SW-2]interface Ethernet 0/0/1
      [SW-2-Ethernet0/0/1]port link-type access
10
      [SW-2-Ethernet0/0/1]port default vlan 13
11
      [SW-2-Ethernet0/0/1]quit
12
      [SW-2]interface Ethernet 0/0/2
13
14
      [SW-2-Ethernet0/0/2]port link-type access
      [SW-2-Ethernet0/0/2]port default vlan 14
15
    [SW-<mark>2</mark>-Ethernet0/<mark>0</mark>/2]quit
      //将 GE0/0/1 接口设为 Trunk 模式, 并允许 VLAN13 和 VLAN14 的数据帧通过
17
18
      [SW-2]interface GigabitEthernet 0/0/1
19
      [SW-2-GigabitEthernet0/0/1]port link-type trunk
      [SW-2-GigabitEthernet0/0/1]port trunk allow-pass vlan 13 14
20
21
      [SW-2-GigabitEthernet0/0/1]quit
```

```
22 [SW-2]quit
```

23 <SW-2>save

■ 查看 SW-2 的 VLAN 信息:

图 2-2 SW-2 的 VLAN 信息

2.3.2 配置交换机 SW-3

■ 按照实验规划配置交换机 SW-3,注意在 SW-3 上创建的是 VLAN15 和 VLAN16

```
1 [Huawei]undo info-center enable
      Info: Information center is disabled.
 2
    //将设备名改为 SW-3
      [Huawei]sysname SW-3
 4
    //创建 VLAN15 和 VLAN16
      [SW-3]vlan batch 15 16
 6
    Info: This operation may take a few seconds. Please wait for a moment...done.
      //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式,分别划入 VLAN15、VLAN16
 8
 9
   [SW-3]interface Ethernet 0/0/1
10
      [SW-3-Ethernet0/0/1]port link-type access
    [SW-3-Ethernet0/0/1]port default vlan 15
11
      [SW-3-Ethernet0/0/1]quit
12
   [SW-3]interface Ethernet 0/0/2
13
      [SW-3-Ethernet0/0/2]port link-type access
14
      [SW-3-Ethernet0/0/2]port default vlan 16
15
      [SW-3-Ethernet0/0/2]quit
16
    //将 GEO/0/1 接口设为 Trunk 模式, 并允许 VLAN15 和 VLAN16 的数据帧通过
17
      [SW-3]interface GigabitEthernet 0/0/1
18
      [SW-3-GigabitEthernet0/0/1]port link-type trunk
19
20
      [SW-3-GigabitEthernet0/0/1]port trunk allow-pass vlan 15 16
      [SW-3-GigabitEthernet0/0/1]quit
21
22
      [SW-3]quit
      <SW-3>save
```

■ 查看 SW-3 的 VLAN 信息:

图 2-3 SW-3 的 VLAN 信息

2.3.3 配置交换机 SW-4

■ 按照实验规划配置交换机 SW-4,注意在 SW-4 上创建的是 VLAN17 和 VLAN18

```
1 [Huawei]undo info-center enable
      Info: Information center is disabled.
 2
    //将设备名改为 SW-4
      [Huawei]sysname SW-4
 4
   //创建 VLAN17 和 VLAN18
      [SW-4]vlan batch 17 18
 6
    Info: This operation may take a few seconds. Please wait for a moment...done.
 7
      //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式, 分别划入 VLAN17、VLAN18
 8
 9
   [SW-4]interface Ethernet 0/0/1
10
      [SW-4-Ethernet0/0/1]port link-type access
    [SW-4-Ethernet0/0/1]port default vlan 17
11
      [SW-4-Ethernet0/0/1]quit
12
   [SW-4]interface Ethernet 0/0/2
13
14
      [SW-4-Ethernet0/0/2]port link-type access
      [SW-4-Ethernet0/0/2]port default vlan 18
15
      [SW-4-Ethernet0/0/2]quit
16
   //将 GEO/0/1 接口设为 Trunk 模式,并允许 VLAN17 和 VLAN18 的数据帧通过
17
      [SW-4]interface GigabitEthernet 0/0/1
18
      [SW-4-GigabitEthernet0/0/1]port link-type trunk
19
      [SW-4-GigabitEthernet0/0/1]port trunk allow-pass vlan 17 18
20
      [SW-4-GigabitEthernet0/0/1]quit
21
22
      [SW-4]quit
      <SW-4>save
```

■ 查看 SW-4 的 VLAN 信息:

图 2-4 SW-4 的 VLAN 信息

三、任务 3: 配置路由交换机并进行通信测试

3.1 配置主机网络参数

3.1.1 配置交换机 RS-1

■ 按照实验规划配置路由交换机 RS-1。

```
1 [Huawei]undo info-center enable
      Info: Information center is disabled.
 2
   //将设备名改为 RS-1
 3
      [Huawei]sysname RS-1
 4
    //创建 VLAN11 和 VLAN12
 5
      [RS-1]vlan batch 11 12
   Info: This operation may take a few seconds. Please wait for a moment...done.
      //将下联交换机 SW-1 的接口配置从 Trunk 类型,并允许 VLAN11、VLAN12 通过接口
    [RS-1]interface GigabitEthernet 0/0/24
9
      [RS-1-GigabitEthernet0/0/24]port link-type trunk
10
      [RS-1-GigabitEthernet0/0/24]port trunk allow-pass vlan 11 12
11
      [RS-1-GigabitEthernet0/0/24]quit
12
   // 创建虚拟接口 VLanif11, 并配置 IP 地址
13
      [RS-1]interface vlanif 11
14
    [RS-1-vlanif11]ip address 192.168.64.254 24
      [RS-1-vlanif11]quit
16
      // 创建虚拟接口 Vlanif12, 并配置 IP 地址
```

■ 查看 RS-1 的路由表:

图 3-1 RS-1 的路由表

■ 查看 RS-1 的 VLAN 信息:

图 3-2 RS-1 的 VLAN 信息

3.1.2 配置交换机 RS-2

■ 按照实验规划配置路由交换机 RS-2 (暂不考虑 RS-1 上联路由器的接口配置)

```
1  [Huawei]undo info-center enable
2  Info: Information center is disabled.
3  //将设备名改为 RS-2
4  [Huawei]sysname RS-2
5  //创建 VLAN13 和 VLAN14
6  [RS-2]vlan batch 13 14
7  Info: This operation may take a few seconds. Please wait for a moment...done.
8  //将下联交换机 SW-2 的接口配置从 Trunk 类型,并允许 VLAN13、VLAN14 通过接口
```

```
[RS-2]interface GigabitEthernet 0/0/24
10
      [RS-2-GigabitEthernet0/0/24]port link-type trunk
      [RS-2-GigabitEthernet0/0/24]port trunk allow-pass vlan 13 14
11
      [RS-2-GigabitEthernet0/0/24]quit
12
    // 创建虚拟接口 VLanif13, 并配置 IP 地址
      [RS-2]interface vlanif 13
14
      [RS-2-vlanif13]ip address 192.168.66.254 24
16
      [RS-2-vlanif13]quit
    // 创建虚拟接口 Vlanif14, 并配置 IP 地址
17
      [RS-2]interface vlanif 14
18
19
   [RS-2-vlanif14]ip address 192.168.67.254 24
      [RS-2-vlanif14]quit
20
21 [RS-2]quit
      <RS-2>save
22
```

■ 查看 RS-2 的路由表:

图 3-3 RS-2 的路由表

■ 查看 RS-2 的 VLAN 信息:

图 3-4 RS-2 的 VLAN 信息

3.1.3 配置交换机 RS-3

■按照实验规划配置路由交换机 RS-3 (暂不考虑 RS-3 上联路由器的接口配置)

```
[Huawei]undo info-center enable
      Info: Information center is disabled.
 2
 3 //将设备名改为 RS-3
      [Huawei]sysname RS-3
 4
   //创建 VLAN15 和 VLAN16
      [RS-3]vlan batch 15 16
 6
 7 Info: This operation may take a few seconds. Please wait for a moment...done.
      //将下联交换机 SW-3 的接口配置从 Trunk 类型,并允许 VLAN15、VLAN16 通过接口
8
9 [RS-3]interface GigabitEthernet 0/0/24
      [RS-3-GigabitEthernet0/0/24]port link-type trunk
10
11 [RS-3-GigabitEthernet0/0/24]port trunk allow-pass vlan 15 16
      [RS-3-GigabitEthernet0/0/24]quit
12
    // 创建虚拟接口 VLanif15,并配置 IP 地址
13
      [RS-3]interface vlanif 15
   [RS-3-vlanif15]ip address 192.168.68.254 24
15
16
      [RS-3-vlanif15]quit
17 // 创建虚拟接口 VLanif16, 并配置 IP 地址
      [RS-3]interface vlanif 16
18
   [RS-3-vlanif16]ip address 192.168.69.254 24
19
20
      [RS-3-vlanif16]quit
21 [RS-<mark>3</mark>]quit
22
      <RS-3>save
```

■ 查看 RS-3 的路由表:

图 3-5 RS-3 的路由表

■ 查看 RS-3 的 VLAN 信息:

图 3-6 RS-3 的 VLAN 信息

3.1.4 配置交换机 RS-4

■按照实验规划配置路由交换机 RS-4(暂不考虑 RS-4 上联路由器的接口配置)

```
1 [Huawei]undo info-center enable
      Info: Information center is disabled.
 2
   //将设备名改为 RS-4
      [Huawei]sysname RS-4
 4
    //创建 VLAN17 和 VLAN18
 5
      [RS-4]vlan batch 17 18
   Info: This operation may take a few seconds. Please wait for a moment...done.
 7
      //将下联交换机 SW-4 的接口配置从 Trunk 类型,并允许 VLAN15、VLAN16 通过接口
9 [RS-4]interface GigabitEthernet 0/0/24
      [RS-4-GigabitEthernet0/0/24]port link-type trunk
10
   [RS-4-GigabitEthernet0/0/24]port trunk allow-pass vlan 17 18
11
12
      [RS-4-GigabitEthernet0/0/24]quit
    // 创建虚拟接口 Vlanif17,并配置 IP 地址
13
      [RS-4]interface vlanif 17
14
      [RS-4-vlanif17]ip address 192.168.70.254 24
15
      [RS-4-vlanif17]quit
16
   // 创建虚拟接口 VLanif18,并配置 IP 地址
17
      [RS-4]interface vlanif 18
18
19
      [RS-4-vlanif18]ip address 192.168.71.254 24
      [RS-4-vlanif18]quit
20
    [RS-4]quit
21
22
      <RS-4>save
      ■ 查看 RS-4 的路由表:
```

图 3-7 RS-4 的路由表

■ 查看 RS-4 的 VLAN 信息:

图 3-8 RS-4 的 VLAN 信息

3.2 通信测试

■ 通信测试结果如表 3-1 所示,可见路由交换机下联的 VLAN 之间已经可以相互通信

序号 源主机 目的主机 通信结果 1 Host-1Host-2 通 2 Host-3 Host-4 通 3 Host-5 Host-6 通 通 4 Host-7 Host-8 不通 5 Host-1Host-3 6 Host−1 Host-5 不通 7 Host-1Host-7不通

表 3-1 配置路由交换机之后通信测试结果

四、任务 4: 配置路由接口地址

4.1 配置路由交换机

4.1.1 配置路由交换机 RS-1

■ 在本实验规划中,路由交换机上联路由器的接口属于路由接口,在通信中实现路由转发。

```
1  [RS-1]vlan 100
2  [RS-1-vlan100]interface vlanif 100
3  [RS-1-Vlanif100]ip address 10.0.1.2 30
4  [RS-1-Vlanif100]quit
5  [RS-1]interface GigabitEthernet 0/0/1
6  [RS-1-GigabitEthernet0/0/1]port link-type access
7  [RS-1-GigabitEthernet0/0/1]port default vlan 100
8  [RS-1-GigabitEthernet0/0/1]quit
9  [RS-1]quit

  (RS-1)save
```

■ 查看 RS-1 的路由表:

图 4-1 RS-1 的路由表

4.1.2 配置路由交换机 RS-2

■ 按照实验规划,配置路由交换机 RS-2 上联路由器的接口:

```
1  [RS-2]vlan 100
2  [RS-2-vlan100]interface vlanif 100
3  [RS-2-Vlanif100]ip address 10.0.2.2 30
4  [RS-2-Vlanif100]quit
5  [RS-2]interface GigabitEthernet 0/0/1
6  [RS-2-GigabitEthernet0/0/1]port link-type access
7  [RS-2-GigabitEthernet0/0/1]port default vlan 100
8  [RS-2-GigabitEthernet0/0/1]quit
9  [RS-2]quit
10  <RS-2>save
```

■ 查看 RS-2 的路由表:

图 4-2 路由器 R-2 的路由表

4.1.3 配置路由交换机 RS-3

■ 按照实验规划,配置路由交换机 RS-3 上联路由器的接口:

```
1  [RS-3]vlan 100
2  [RS-3-vlan100]interface vlanif 100
3  [RS-3-Vlanif100]ip address 10.0.3.2 30
4  [RS-3-Vlanif100]quit
5  [RS-3]interface GigabitEthernet 0/0/1
6  [RS-3-GigabitEthernet0/0/1]port link-type access
7  [RS-3-GigabitEthernet0/0/1]port default vlan 100
8  [RS-3-GigabitEthernet0/0/1]quit
9  [RS-3]quit
0  <RS-3>save
```

■ 查看 RS-3 的路由表:

图 4-3 路由器 R-3 的路由表

4.1.4 配置路由交换机 RS-4

■ 按照实验规划,配置路由交换机 RS-4 上联路由器的接口:

```
1  [RS-4]vlan 100
2  [RS-4-vlan100]interface vlanif 100
3  [RS-4-Vlanif100]ip address 10.0.4.2 30
4  [RS-4-Vlanif100]quit
```

```
[RS-4]interface GigabitEthernet 0/0/1
[RS-4-GigabitEthernet0/0/1]port link-type access
[RS-4-GigabitEthernet0/0/1]port default vlan 100
[RS-4-GigabitEthernet0/0/1]quit
[RS-4]quit
(RS-4)save
```

■ 查看 RS-4 的路由表:

图 4-4 路由器 R-4 的路由表

4.2 配置路由器

4.2.1 配置路由器 R-1

■ 路由器的接口可直接配置 IP 地址。按照实验规划,配置路由器 R-1 的各接口地址。

```
1 [Huawei]undo info-center enable
 2
      Info: Information center is disabled.
 3 [Huawei]sysname R-1
 4
      [R-1]interface GigabitEthernet 0/0/0
 5 [R-1-GigabitEthernet0/0/0]ip address 10.0.0.1 30
      [R-1-GigabitEthernet0/0/0]quit
 6
    [R-1]interface GigabitEthernet 0/0/1
 7
      [R-1-GigabitEthernet0/0/1]ip address 10.0.0.9 30
 9 [R-1-GigabitEthernet0/0/1]quit
      [R-1]interface GigabitEthernet 0/0/2
10
    [R-1-GigabitEthernet0/0/2]ip address 10.0.1.1 30
11
      [R-1-GigabitEthernet0/0/2]quit
12
   [R-1]interface GigabitEthernet 0/0/3
13
      [R-1-GigabitEthernet0/0/3]ip address 10.0.2.1 30
14
      [R-1-GigabitEthernet0/0/3]quit
15
16
    [R-1]quit
17
      <R-1>save
```

4.2.2 配置路由器 R-2

■ 路由器的接口可直接配置 IP 地址。按照实验规划,配置路由器 R-2 的各接口地址。

```
1 [Huawei]undo info-center enable
 2
      Info: Information center is disabled.
      [Huawei]sysname R-2
 3
      [R-2]interface GigabitEthernet 0/0/0
 4
      [R-2-GigabitEthernet0/0/0]ip address 10.0.0.2 30
      [R-2-GigabitEthernet0/0/0]quit
   [R-2]interface GigabitEthernet 0/0/1
      [R-2-GigabitEthernet0/0/1]ip address 10.0.1.6 30
 8
    [R-2-GigabitEthernet0/<mark>0</mark>/1]quit
 9
      [R-2]quit
10
11
      <R-2>save
```

4.2.3 配置路由器 R-3

■ 路由器的接口可直接配置 IP 地址。按照实验规划,配置路由器 R-3 的各接口地址。

```
1 [Huawei]undo info-center enable
      Info: Information center is disabled.
 2
      [Huawei]sysname R-3
 3
 4
      [R-3]interface GigabitEthernet 0/0/0
      [RS-3-GigabitEthernet0/0/0]ip address 10.0.0.5 30
      [RS-3-GigabitEthernet0/0/0]quit
 6
    [R-3]interface GigabitEthernet 0/0/1
 7
      [RS-3-GigabitEthernet0/0/1]ip address 10.0.0.10 30
 8
   [RS-3-GigabitEthernet0/0/1]quit
 9
      [R-3]interface GigabitEthernet 0/0/2
10
      [RS-3-GigabitEthernet0/0/2]ip address 10.0.3.1 30
      [RS-3-GigabitEthernet0/0/2]quit
12
      [R-3]interface GigabitEthernet 0/0/3
13
      [R-3-GigabitEthernet0/0/3]ip address 10.0.4.1 30
14
      [R-3-GigabitEthernet0/0/3]quit
15
16
    [R-3]quit
17
      <R-3>save
```

五、任务 5: 配置 RIP 并进行全网通信测试

5.1 配置路由交换机 RIP

5.1.1 配置路由交换机 RS-1 的 RIP

■ 按照实验规划,在路由交换机 RS-1 上创建 RIP,并配置网络信息。

```
1 <RS-1>system-view
     //创建 RIP 进程1
3 [RS-1]rip 1
     //启用 RIP 版本 2
5 [RS-1-rip-1]version 2
6
     //宣告RS-1 的直连网络
 7 [RS-1-rip-1]network 192.168.64.0
     [RS-1-rip-1]network 192.168.65.0
8
9 [RS-1-rip-1]network 10.0.0.0
10
      [RS-1-rip-1]quit
11 [RS-1]quit
12
     <RS-1>save
```

■ 查看配置:

```
[RS-1-rip-1]display this
#
rip 1
version 2
network 192.168.64.0
network 192.168.65.0
network 10.0.0.0
#
return
```

图 5-1 交换机 RS-1 的 RIP

5.1.2 配置路由交换机 RS-2 的 RIP

■ 按照实验规划,在路由交换机 RS-2 上创建 RIP,并配置网络信息。

```
11 [RS-2]quit
12 <RS-2>save
```

■ 查看配置:

```
[RS-2-rip-1]display THIS

#

rip 1

version 2

network 192.168.66.0

network 192.168.67.0

network 10.0.0.0
```

图 5-2 交换机 RS-2 的 RIP

5.1.3 配置路由交换机 RS-3 的 RIP

■ 按照实验规划,在路由交换机 RS-3 上创建 RIP,并配置网络信息。

```
1 <RS-3>system-view
2
     //创建 RIP 进程1
3 [RS-3]rip 1
     //启用 RIP 版本 2
4
5 [RS-3-rip-1]version 2
     //宣告RS-3 的直连网络
6
   [RS-3-rip-1]network 192.168.68.0
7
      [RS-3-rip-1]network 192.168.69.0
8
9
     [RS-3-rip-1]network 10.0.0.0
10
     [RS-3-rip-1]quit
11 [RS-3]quit
     <RS-3>save
12
```

■ 查看配置:

```
[RS-3-rip-1]display this
#
rip 1
version 2
network 192.168.68.0
network 192.168.69.0
network 10.0.0.0
#
return
```

图 5-3 交换机 RS-3 的 RIP

5.1.4 配置路由交换机 RS-4 的 RIP

■ 按照实验规划,在路由交换机 RS-4 上创建 RIP,并配置网络信息。

```
1 <RS-4>system-view
     //创建 RIP 进程1
2
3 [RS-4]rip 1
     //启用 RIP 版本 2
4
5 [RS-4-rip-1]version 2
     //宣告RS-4 的直连网络
6
7 [RS-4-rip-1]network 192.168.70.0
8
     [RS-4-rip-1]network 192.168.71.0
9 [RS-4-rip-1]network 10.0.0.0
10
     [RS-4-rip-1]quit
11 [RS-4]quit
    <RS-4>save
12
```

■ 查看配置:

```
[RS-4-rip-1]display this
#
rip 1
  version 2
  network 192.168.70.0
  network 192.168.71.0
  network 10.0.0.0
#
return
```

图 5-4 交换机 RS-4 的 RIP

5.2 配置路由器 RIP

查看配置:

5.2.1 配置路由器 R-1 的 RIP

■ 按照实验规划,在路由器 RS-1 上创建 RIP,并配置网络信息。

```
[R-1-rip-1]display this

#

rip 1

version 2

network 10.0.0.0

#

return
```

图 5-5 路由器 R-1 的 RIP

5.2.2 配置路由器 R-2 的 RIP

■ 按照实验规划,在路由器 RS-2 上创建 RIP,并配置网络信息。

■ 查看配置:

```
[R-2-rip-1]display this
#
rip 1
version 2
network 10.0.0.0
#
return
```

图 5-6 路由器 R-2 的 RIP

5.2.3 配置路由器 R-3 的 RIP

■ 按照实验规划,在路由器 RS-3 上创建 RIP,并配置网络信息。

■ 查看配置:

```
[R-3-rip-1]display this
#
rip 1
  version 2
  network 10.0.0.0
#
return
```

图 5-7 路由器 R-3 的 RIP

5.3 查看路由器路由表

5.3.1 显示路由器 R-1 的 路由表

Routing Tables: Pub Destination	Routes : 22					
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
10.0.0.0/30	Direct				10.0.0.1	GigabitEthernet
0/0/0 10.0.0.1/32	Direct				127.0.0.1	GigabitEthernet
0/0/0 10.0.0.4/30	RIP	100			10.0.0.10	GigabitEthernet
0/0/1	RIP	100			10.0.0.2	GigabitEthernet
0/0/0	Direct				10.0.0.9	GigabitEthernet
0/0/1 10.0.0.9/32	Direct				127.0.0.1	GigabitEthernet
0/0/1 10.0.1.0/30	Direct				10.0.1.1	GigabitEthernet
0/0/2 10.0.1.1/32	Direct				127.0.0.1	GigabitEthernet
0/0/2 10.0.2.0/30 0/0/3	Direct				10.0.2.1	GigabitEthernet
10.0.2.1/32	Direct				127.0.0.1	GigabitEthernet
10.0.3.0/30	RIP	100			10.0.0.10	GigabitEthernet
10.0.4.0/30	RIP	100			10.0.0.10	GigabitEthernet
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct	ō	ō	D	127.0.0.1	InLoopBack0
192.168.64.0/24	RIP	100		D	10.0.1.2	GigabitEthernet
0/0/2						
192.168.65.0/24 0/0/2	RIP	100			10.0.1.2	GigabitEthernet
192.168.66.0/24 0/0/3	RIP	100			10.0.2.2	GigabitEthernet
192.168.67.0/24 0/0/3	RIP	100			10.0.2.2	GigabitEthernet
192.168.68.0/24 0/0/1	RIP	100			10.0.0.10	GigabitEthernet
192.168.69.0/24 0/0/1	RIP	100			10.0.0.10	GigabitEthernet
192.168.70.0/24 0/0/1	RIP	100			10.0.0.10	GigabitEthernet
192.168.71.0/24	RIP	100			10.0.0.10	GigabitEthernet

图 5-8 路由器 R-1 的 路由表

5.3.2 分析路由器 R-1 的 路由表

■ 如图 5-9,可以看出路由器 R-1 通过动态路由协议 RIP 已经获取了到达其他非直连网络的路由:

5.4 通信测试

■ 通信测试结果如表 5-1 所示

表 5-1 配置 RIP 后 PING 测试主机通信结果

	* * * * * * * * * * * * * * * * * * * *		
序号	源主机	目的主机	通信结果
1	Host-1	Host-2	通
2	Host−1	Host-3	通
3	Host−1	Host-4	通
4	Host−1	Host-5	通
5	Host−1	Host-6	通
6	Host−1	Host-7	通
7	Host−1	Host-8	通

六、任务 6: 抓包分析 RIP 协议工作过程

6.1 设置抓包位置并启动抓包程序

6.1.1 设置抓包位置

■ 如图所示,将抓包地点设置在①(R-2的GE 0/0/0接口)处和②(R-2的GE 0/0/1接口)处。

图 6-1 抓包位置设置

6.1.2 启动抓包程序并设置报文过滤条件

■ 在整个园区正常通信后,在①处启动抓包程序查看 RIP 报文。 为了方便查看,在 Wireshark 中设置 抓包条件,只查看 RIP 报文

图 6-2 设置过滤条件

6.1.3 查看获取的 RIP 报文

■ 在①处获取到的 RIP 报文如下图所示:

图 6-3 抓包获取的 OSPF 报文

6.1.4 分析报文首部的基本信息

■ 以图 6-3 中的 3 号报文为例,这是从 R-2 (10.0.0.2)发出的一条 RIP 报文,其基本信息如下表 所示:

序号 名称 内容/值 备注 1 报文序号 3 R-2 GE 0/0/0 接口的 MAC 地址 2 源 MAC 地址 54:89:98:18:0d:7c 目的 MAC 地址 组播 MAC 地址 3 01:00:5e:00:00:09 源 IP 地址 R-2 的 0/0/0 接口的 IP 地址 4 10. 0. 0. 2 目的 IP 地址 224.0.0.9 组播 IP 地址 5 6 运输层协议 UDP 7 源端口 520 8 目的端口 520 9 报文类型 RIP2

表 6-1 报文首部基本信息

6.1.5 分析报文内容

■ 如图 6-4 所示,可以看到 3 号报文的内容。

图 6-4 3号报文的基本内容

■ 3号报文的主要内容是:路由器 R-2的路由表信息,包括命令类型、协议版本,还有具体的路由条目。例如,点击路由条目中的"IP Address: 192.168.64.0, Metric: 4",即可看到该条路由的具体内容,主要包括:目的网络 192.168.64.0、子网掩码 255.255.255.0、下一跳地址 0.0.0.0、度量值 4

6.2 抓包分析 RIP 路由信息的定期更新

- 将从 10.0.0.2 发出的 RIP2 报文中的时间(Time)值(图 6-4)整理成表 6-2.
- 可以看出, R-2 以相对固定的时间周期(约 30 秒)发送 RIP 报文,与相邻路由设备交换路由信息。

图 6-4 RIP 路由信息的定期更新

表 6-2 源地址位 10.0.0.2 的报文时间分析

编号	时间/s	距上次发送报文的时间间隔/s
1	0.0	_
2	30. 234	30. 234
3	56. 375	26. 141
4	83. 547	27. 172
5	117.359	33.812
6	148. 515	31. 156
7	173.719	25. 204

6.3 抓包分析 RIP 路由信息的更新方式

■ 从图 6-5 中的 2 号报文可以看出, 从路由器 R-2 发出的 RIP 报文中有到达 192.168.68.0/24 网络的路由, 其下一跳是 R-2 本身 (0.0.0.0), 度量值 (Metric) 是 3。

图 6-5 R-2 发来的 RIP 报文

■ 从图 6-6 中的 2 号报文可以看出,从路由器 R-3 发出的 RIP 报文中,也有到达 192.168.68.0/24 网络的路由,其下一跳是 R-3 本身 (0.0.0.0),度量值 (Metric) 是 2。

图 6-6 R-3 发来的 RIP 报文

■ 接下来查看路由器 R-1 在收到 R-2 和 R-3 发来的 RIP 报文后,对自己的路由表的更新结果。进入路由器 R-1 的 CLI 界面,查看路由表信息:

如图 6-7 所示,到达 192.168.68.0/24 的 cost 为 2,说明 R-1 使用 R-3 发来的 RIP 报文更新了自己的路由表,即 RIR 协议选择的是一条具有较少路由器的路由。

图 6-7 R-1 到达 192. 168. 68. 0/24

- 6.4 验证 RIP 路由信息的更新方式
 - 6.4.1 查看当前 Host-1 到 Host-5 的通信路径
 - 如图 6-8 所示,可知当前 Host-1 到 Host-5 的通信路径为:

 $\text{Host-1} \rightarrow \text{RS-1} \rightarrow \text{R-1} \rightarrow \text{R-3} \rightarrow \text{RS-3} \rightarrow \text{Host-5}$

```
PC>tracert 192.168.68.1

traceroute to 192.168.68.1, 8 hops max
(ICMP), press Ctrl+C to stop
1 192.168.64.254 47 ms 47 ms 31 ms
2 10.0.1.1 94 ms 63 ms 62 ms
3 10.0.0.10 94 ms 94 ms 78 ms
4 10.0.3.2 172 ms 109 ms 109 ms
5 192.168.68.1 157 ms 156 ms 141 ms
```

图 6-8 Host-1 到 Host-5 的通信路径

6.4.2 删除 R-1 和 R-3 之间的链路 L-3

■ 此时在 Host-1 中使用 ping 命令访问 Host-5,发现网络中断

```
PC>ping 192.168.68.1

Ping 192.168.68.1: 32 data bytes, Press Ctrl_C to break Request timeout!

Request timeout!

Request timeout!
```

图 6-9 删除 L-3 之后 Host-1 到 Host-5

■ 查看 R-1 路由表,发现到达 192.168.68.1/24 的路由信息没有了

6.4.3 再次查看 Host-1 到 Host-5 的通信路径

- 再次在 Host-1 中使用 Ping 命令访问 Host-5 发现 Host-1 能够再次 Ping 通 Host-5。
- 此时在 Host-1 上执行命令 "tracert 192.168.68.1"结果如下图:

图 6-11 再次查看 Host-1 到 Host-5 的通信路径

■ 可知通信路径变为 Host-1 → RS-1 → R-1 → R-2 → R-3 → RS-3 → Host-5。

实验总结与体会							
半个多小时 caifaxia 我是先做的 OSPF z 适用于中小型网络,	an 是这个原因 扩做的 RIP, 没有区域、 。 OSPF 占用	因。 战个人感 边界等概 l的实际银	觉比较起 念,适用 连路带宽	已来还是能收]于简单和非 比 RIP 少;	文获不少,很明显 E分层的小型网约 OSPF 使用的 CPU	战那个端口少配了,找 显 RIP 协议的拓扑简单 各。而 OSPF 协议最适 时间比 RIP 少; OSPF	ė, 合
教师评语							
实验成绩	□优	□良	□中	□及格	□不及格	得分:	