3.1

```
In [1]: | setwd('/Users/Mitchell.Ramey/Desktop')
         d0 = read.table('credit card data-headers.txt', header=TRUE)
         head(d0)
         Α1
               A2
                     Α3
                          A8 A9 A10 A11 A12 A14 A15 R1
             30.83 0.000
                        1.25
                                    0
                                                 202
                                                       0
                                                           1
          0 58.67 4.460 3.04
                                    0
                                         6
                                              1
                                                 43
                                                     560
                                                           1
          0 24.50 0.500 1.50
                                    1
                                         0
                                              1
                                                280
                                                     824
                                                           1
           1 27.83 1.540 3.75
                                                100
                                                           1
          1 20.17 5.625 1.71
                                         0
                                              1
                                                120
                                                       0
                                                           1
          1 32.08 4.000 2.50
                                         0
                                             0
                                                360
                                                       0
In [7]: library(kknn)
         model1 <- train.kknn(d0$R1~., d0, kmax = 100, distance = 0.25, kernel = c("opt</pre>
         imal", "rectangular", "inv", "gaussian", "triangular"), sclae = TRUE)
         model1
        Call:
        train.kknn(formula = d0$R1 ~ ., data = d0, kmax = 100, distance = 0.25,
                                                                                         k
         ernel = c("optimal", "rectangular", "inv", "gaussian", "triangular"),
                                                                                       scl
         ae = TRUE)
         Type of response variable: continuous
        minimal mean absolute error: 0.184007
        Minimal mean squared error: 0.1023529
        Best kernel: inv
         Best k: 33
```

I tested a few different models using multiple distance values. A distance value of 0.25 gave the lowest mean squared error. The best kernel is inv and best k is 33.

```
In [8]: plot(model1)
```



```
In [9]: # Splitting the data into training, test, and validation sets
# assigns a train, validate, or test label to each row of a data frame and the
n splits based on the label of each row
spec = c(train = .6, test = .2, validate = .2)
x = sample(cut(seq(nrow(d0)), nrow(d0)*cumsum(c(0,spec)), labels = names(spec
)))
d = split(d0, x)
```

```
In [13]: # Leave-one-out cross validation model using the test data to determine optima
         L K, distance and kernel
         train_model = train.kknn(R1 ~ ., data = d$train, kmax = 100, distance = 0.25,
         kernel = c("optimal", "rectangular", "inv", "gaussian", "triangular"), scale =
         TRUE)
         train_model
         Call:
         train.kknn(formula = R1 ~ ., data = d$train, kmax = 100, distance = 0.25,
         kernel = c("optimal", "rectangular", "inv", "gaussian", "triangular"),
                                                                                     sc
         ale = TRUE)
         Type of response variable: continuous
         minimal mean absolute error: 0.2015306
         Minimal mean squared error: 0.1031371
         Best kernel: rectangular
         Best k: 11
```

After performing leave-one-out cross validation with a distance value of 0.25, the best kernel is rectangular and the best k = 11

```
In [14]: plot(train_model)
```

```
*
                                                                                o optimal
                                                                                rectangular
                                                                                + inv
                                                                                × gaussian
                                                                                triangular
               0
mean squared error
     0.14
             0
                             20
                                              40
                                                              60
                                                                               80
                                                                                               100
                                                       k
```

```
In [15]: # Testing the model using the test data
    pred <- predict(train_model, d$test)
    pred_bin <- round(pred)
    pred_accuracy <- table(pred_bin, d$test$R1)
    pred_accuracy

pred_bin 0 1
    0 60 7
    1 11 53

In [16]: sum(pred_bin==d$test$R1)/length(d$test$R1)</pre>
```

0.862595419847328

Performing a prediction using the test data on the trained model, the accuracy is 86%

```
In [17]: # Validating the model using the validation data set
  val <- predict(train_model, d$validate)
  pred_bin <- round(val)
  pred_accuracy <- table(pred_bin, d$validate$R1)
  sum(pred_bin==d$validate$R1)/length(d$validate$R1)</pre>
```

0.885496183206107

Performing a prediction using the validation data on the trained model, the accuracy is 89%

4.1

I am currently a data analyst for a tele-communications client. I could leverage clustering to find out the best location to build new data centers by clustering the locations of the customers.

4.2

```
In [3]: library(datasets)
    data(iris)
    head(iris)
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

```
In [4]: #Split the data
    iris.pred<- iris[,c(1,2,3,4)]
    iris.class<- iris[,"Species"]
    head(iris.pred)</pre>
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2
5.4	3.9	1.7	0.4

```
In [5]: #Normalize the values of the predictors to values between 0 and 1

normalize <- function(x){
    return ((x-min(x))/(max(x)-min(x)))
}

iris.pred$Sepal.Length<- normalize(iris.pred$Sepal.Length)
    iris.pred$Sepal.Width<- normalize(iris.pred$Sepal.Width)
    iris.pred$Petal.Length<- normalize(iris.pred$Petal.Length)
    iris.pred$Petal.Width<- normalize(iris.pred$Petal.Width)
    head(iris.pred)</pre>
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
                0.6250000
                                         0.04166667
 0.2222222
                            0.06779661
 0.16666667
               0.4166667
                            0.06779661
                                         0.04166667
  0.11111111
               0.5000000
                            0.05084746
                                         0.04166667
 0.08333333
                            0.08474576
                                         0.04166667
                0.4583333
 0.19444444
                0.6666667
                            0.06779661
                                         0.04166667
 0.30555556
               0.7916667
                            0.11864407
                                         0.12500000
```

61 39 50

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
0.4412568	0.3073770	0.57571548	0.54918033
0.7072650	0.4508547	0.79704476	0.82478632
0.1961111	0.5950000	0.07830508	0.06083333

```
In [19]: par(mfrow=c(2,2), mar=c(5,4,2,2))
# Plot to see how Sepal.Length and Sepal.Width data points have been distribut
ed in clusters
plot(iris.pred[c(1,2)], col=clstr$cluster)
# Plot to see how Sepal.Length and Sepal.Width data points have been distribut
ed originally as per "class" attribute in dataset
plot(iris.pred[c(1,2)], col=iris.class)
# Plot to see how Petal.Length and Petal.Width data points have been distribut
ed in clusters
plot(iris.pred[c(3,4)], col=clstr$cluster)
plot(iris.pred[c(3,4)], col=iris.class)
```


In [20]: table(clstr\$cluster,iris.class)

iris.class					
	setosa	versicolor	virginica		
1	0	47	14		
2	0	3	36		
3	50	0	0		

Table results show that Cluster 1 belongs to Versicolor, Cluster 2 belongs to Virginica, and Cluster 3 belongs to Setoso