

boat

Language: zh TW

Boat

在首爾市,Han 河是一條東西向的河流。在河流的北岸有 N 所划船學校,這些學校從西向東依序編號為 1 到 N。同一所學校的船的顏色都正好相同,因此很難以區別。而不同學校的船的顏色都不相同,所以總是能分辨是哪所學校的船。編號為 i 的學校可以選擇不派遣任何船隻到慶典;如果學校選擇派遣船隻慶祝慶典,派遣的船的數量為 a_i 到 b_i 任意一個值,包含 a_i 和 b_i 。 $(a_i \leq b_i)$

如果編號為i的學校決定派遣船隻,派遣的數量必須比任何編號小於i的學校所派遣的數量還要多。

Task

給你所有學校的 a_i 及 b_i ,請計算所有可能的派遣方法的數量,必須至少有一所學校有派遣船隻慶祝慶典。

Input

輸入的第一行包含一個正整數 N,代表學校的數量。接下來的 N 行每行會有 2 個整數 a_i 及 b_i $(1 \le a_i \le b_i \le 10^9)$,代表第 i 所學校能派遣的船隻的數量範圍。

Output

請輸出一行,包含一個整數代表划船學校所有可能的派遣方法的數量除以 1,000,000,007 的餘數。

Example

Input	Output	Comments
2 12 23	7	只有一所學校派遣船隻時有 4 種方法,而兩所學校 都派遣船隻則有 3 種方法,因此答案為 7。

Scoring

Subtask 1 (9 points): $1 \le N \le 500$ and for all $1 \le i \le N$, $a_i = b_i$.

Subtask 2 (22 points): $1 \le N \le 500$ and $\sum_{1 \le i \le N} (b_i - a_i) \le 10^6$.

Subtask 3 (27 points): $1 \le N \le 100$.

Subtask 4 (42 points): $1 \le N \le 500$.