Module 3, Lecture 7

Structure and Reactions of Organic Molecules

Introduction to reaction mechanisms Substitution

James Crowley

jcrowley@chemistry.otago.ac.nz

Dr. Bill Hawkins bhawkins@chemistry.otago.ac.nz

References to Brown et al text shown in BLUE

1

Learning Objectives:

- to have an understanding of "curved" arrow notation
- to have an understanding of nucleophilic substitution reactions
- to be able to identify and write an S_N1 reaction mechanism
- to have an understanding of the factors that lead to S_N1 or S_N2 reaction pathways

Textbook: Chapter 25, sections 25.4-25.5, Brown

Nucleophilic Substitution - OPTION 1 S_N2

bromomethane + NaOH --> methanol + NaBr rate = $k [CH_3Br][HO^-]$

transition state
$$\begin{bmatrix} \delta - & H & \delta - \\ HO - - C - - Br \\ H & H \end{bmatrix}^{\ddagger}$$

Nucleophile OH⁻ approaches and attaches opposite to the leaving group Br.

3

Nucleophilic Substitution

Possible Reaction Sequences for nucleophilic substitution:

X⁻ leaves as Nu:- attaches: OPTION 1

$$N\ddot{u}$$
 + $-\ddot{C}$ $-\ddot{X}$ \rightarrow $Nu-\ddot{C}$ + X^- rate = k [C-X] [Nu:-]

X leaves and then Nu: attaches: OPTION 2

$$N\ddot{u}^{-} + -\overset{|}{C}_{C}^{-}X \longrightarrow -\overset{|}{C}_{C}^{+} + X^{-}$$

$$-\overset{|}{C}_{C}^{+} + N\ddot{u}^{-} \longrightarrow -\overset{|}{C}_{C}^{-}Nu$$

If 1st step is rate determining: rate = k [C-X]

Nucleophilic Substitution - OPTION 2

rate = *k* [C-X]

2 step reaction

X leaves in slow step followed by fast attachment of Nu:-

5

Nucleophilic Substitution - OPTION 2

rate = *k* [C-X]

2 step reaction

X leaves in slow step followed by fast attachment of Nu:-

1st order reaction - mechanism is called **S_N1** (25.7)

Substitution Nucleophilic 1st order

Nucleophilic Substitution - OPTION 2 S_N1

Slow step - removal of leaving group:

$$C - X \qquad slow \qquad C + \qquad + \qquad X$$

- · Independent of nucleophile
- Bond stretched to breaking point transition state:

$$C_{\delta^+}$$

7

Nucleophilic Substitution - OPTION 2 S_N1

Slow step - removal of leaving group:

$$C-X$$
 $slow$ $C+$ X

Fast step – addition of the nucleophile:

$$C + + :Nu^{-} \xrightarrow{fast} C - Nu$$

Nucleophilic Substitution - OPTION 2 S_N1

- · Carbocation has a definite lifetime
 - reaction intermediate (25.7)
- Very reactive reacts with any nucleophile it collides with
- Major product from reaction with most abundant nucleophile

9

Nucleophilic Substitution - OPTION 2 S_N1

The most abundant nucleophile in the system is H₂O:

$$CH_3$$

 $C+$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

Note:

- Nucleophile is neutral (not charged)
- Product has +ve charge on O

Lose H⁺ (deprotonate) to complete reaction - an extra step

What would the energy profile of this reaction look like?

13

Stereochemistry of S_N1 and S_N2 reactions

Can be used to distinguish between an $S_N 1$ and an $S_N 2$ mechanism.

Inversion of configuration

Stereochemistry of S_N1 and S_N2 reactions

Rationalised by the S_N2 mechanism: OH^- approaches opposite to the leaving group

 S_N 2 reaction is stereospecific.

Product from reaction with the (R)-bromide???

15

Stereochemistry of S_N1 and S_N2 reactions

$$\begin{array}{c|c} & H_2O \\ \hline & (-HCI) \end{array} \qquad \begin{array}{c} + \\ \hline & OH \end{array}$$

(R)-3-chloro-3-methylhexane

(S)-3-methylhexan-3-ol (R)-3-methylhexan-3-ol

Reaction occurs with inversion **and** retention of configuration.

Stereochemistry of S_N1 and S_N2 reactions

Rationalised by an S_N1 mechanism:

Nucleophile H₂O can approach and attach to a planar reaction intermediate (carbocation) from either side.

Et Pr
$$\xrightarrow{-Cl^-}$$
 H₂O: Me $\xrightarrow{H_2O}$:

Planar (flat) carbocation

17

Stereochemistry of S_N1 and S_N2 reactions

Previous example

To determine the mechanism of this reaction an experiment was conducted using a chiral methyl group (featuring the tritium and deuterium isotopes of hydrogen).

What is the mechanism of this nucleophilic substitution reaction?

19

What determines whether a reaction goes via S_N1 or S_N2 ?

Experimental observations:

H".C—X	H C—X H	R' C—X R H	R'C—X
methyl	1º primary	2° secondary	3° tertiary
Usually S _N 2	Usually S _N 2	S _N 1 or S _N 2	Usually S _N 1

What determines whether a reaction goes via S_N1 or S_N2 ?

S_N1 is fast if charges in first transition state can be delocalized (*stabilized*)

$$-c^{\delta^+}$$

21

What determines whether a reaction goes via S_N1 or S_N2 ?

S_N1 is fast if charges in first transition state can be delocalized (stabilized)

- Alkyl groups e donating (see 17.1, 706)
- · Diminishes charge on central C

$$\begin{array}{c|c} H & |_{\delta^+} & \delta^- \\ \downarrow^{\delta^+} C - C - - - X \\ H & | \end{array}$$

Effect increases with no. of alkyl groups - rate of S_N1 reaction increases: methyl < 1 $^\circ~<2^\circ~<3$

Not all carbocations are equal

• Lone pairs stabilize adjacent carbocations, electron withdrawing groups destabilize adjacent carbocations :

$$X: \rightarrow \bigoplus_{\oplus} \rightarrow \bigoplus_{\oplus}$$

23

What determines whether a reaction goes via S_N1 or S_N2 ?

eg.

$$RBr + H_2O \longrightarrow ROH + HBr$$
 (S_N1)

Alkyl halide	Туре	Relative Rate
CH ₃ Br	methyl	1
CH ₃ CH ₂ Br	1°	1
(CH ₃) ₂ CHBr	2°	12
(CH ₃) ₃ CBr	3°	1.2 x 10 ⁶

Increasing delocalization and stabilization of TS

What determines whether a reaction goes via S_N1 or S_N2 ?

S_N2 is fast if approach of nucleophile is not sterically hindered

- Nu: collides with C atom from side opposite to leaving group
- Easy if groups attached to C are small (methyl or 1°)

25

What determines whether a reaction goes via S_N1 or S_N2 ?

$$RBr + :CI^- \longrightarrow RCI + :Br^-$$
 (S_N2)

Alkyl Bromide (RBr)	Туре	Relative Rate	
CH ₃ Br	methyl	4 x 10 ³	
CH₃CH₂Br	1°	80	
(CH ₃) ₂ CHBr	2°	1	
(CH ₃) ₃ CBr	3°	~0	

Decreasing steric hindrance to attack at C

Question

Provide a reaction mechanism for the following reaction.

27

Question

Provide a reaction mechanism for the following reaction.

* Homework *

Chemistry – the central science 15th Ed

Brown et al.

Problems 27.31, 27.73, 27.88 (a)

Answers on Blackboard