

Introduzione e strumenti

Schemi a blocchi

Schemi a blocchi

- Convenzioni generali ed elementi di base
- Dall'equazione alla rappresentazione grafica
- L'algebra dei blocchi
- Calcolo di funzioni di trasferimento di schemi interconnessi

Schemi a blocchi

Convenzioni generali ed elementi di base

Convenzioni generali

- Gli schemi a blocchi costituiscono un semplice ed efficace metodo di rappresentazione grafica del modello di un sistema dinamico
- Si costruiscono dalle equazioni del corrispondente modello matematico, formulato introducendo opportune variabili di ingresso, di uscita ed interne, ed espresso nel dominio del tempo oppure in quello della variabile complessa s
- I quattro elementi base costitutivi degli schemi a blocchi sono: i rami, i blocchi, i punti di derivazione ed i sommatori

Elementi base: rami e blocchi

Ai rami, rappresentati da archi orientati, sono associate le variabili di ingresso, di uscita ed interne

Elementi base: rami e blocchi

- Ai rami, rappresentati da archi orientati, sono associate le variabili di ingresso, di uscita ed interne
- A ciascun blocco è associata la funzione di trasferimento (fdt) fra la variabile entrante e quella uscente dal blocco stesso

$$y(s) = G(s)e(s)$$

Elementi base: punti di derivazione

Un punto di derivazione permette di trasferire una medesima variabile su diversi rami di uscita, senza apportare modifiche

Elementi base: sommatori

La variabile associata al ramo di uscita di un sommatore (o nodo di somma) è data dalla somma algebrica delle variabili associate ai rami entranti

$$e(s) = y_{des}(s) - y(s)$$

Estensione ai sistemi MIMO

- Gli schemi a blocchi possono essere utilizzati anche per rappresentare sistemi multivariabili (MIMO)
- Nel caso di sistemi MIMO ad ogni ramo è associata la corrispondente variabile vettoriale e ad ogni blocco la matrice di trasferimento fra il vettore di ingresso e quello di uscita

In questa trattazione si farà riferimento solo a sistemi ad un ingresso ed un'uscita (SISO)

Schemi a blocchi

Dall'equazione alla rappresentazione grafica

Dall'equazione allo schema a blocchi

È possibile associare alle equazioni del modello di un sistema dinamico il corrispondente schema a blocchi, realizzando le operazioni richieste per mezzo degli elementi base introdotti e mantenendo inalterate le relazioni esistenti fra le variabili di ingresso, di uscita ed interne

Esempio: il motore in c.c. (1/2)

Il modello dinamico di un motore in corrente continua comandato in tensione d'armatura può essere approssimato nel dominio della variabile complessa s dalle seguenti equazioni:

Coppia
$$V_a(s) - K_m\Omega(s) = (sL + R_a)I_a(s)$$
 Tensione f.c.e.m. motrice $K_mI_a(s) = (sJ + \beta)\Omega(s)$

 V_a , I_a = tensione, corrente di armatura

 K_m = costante del motore

 Ω = velocità angolare dell'albero motore

J, β = momento di inerzia e coefficiente di attrito viscoso

Esempio: il motore in c.c. (2/2)

Dalle equazioni è possibile ricavare lo schema a blocchi equivalente:

Esempio: il motore in c.c. (2/2)

Dalle equazioni è possibile ricavare lo schema a blocchi equivalente:

Esempio: il motore in c.c. (2/2)

Dalle equazioni è possibile ricavare lo schema a blocchi equivalente:

$$V_a(s) - K_m\Omega(s) = (sL + R_a)I_a(s)$$

$$K_mI_a(s) = (sJ + \beta)\Omega(s)$$

Schemi a blocchi

L'algebra dei blocchi

Elaborazione di schemi interconnessi

- Esistono regole di algebra dei blocchi che permettono di ridurre schemi complessi a strutture più semplici
 - Tale riduzione permette di calcolare agevolmente la funzione di trasferimento fra la variabile assunta come ingresso del sistema e quella d'interesse considerata come uscita
- Le regole, trasformazioni ed equivalenze dell'algebra dei blocchi di seguito illustrate possono essere applicate singolarmente o combinate fra loro

Cascata di blocchi

La funzione di trasferimento di due (o più) blocchi in cascata è data dal prodotto delle funzioni di trasferimento dei blocchi

$$G_1(s) \xrightarrow{V(s)} G_2(s) \xrightarrow{y(s)} = \underbrace{u(s)} G_2(s) G_1(s) \xrightarrow{y(s)}$$

$$y(s) = G_2(s)v(s) = G_2(s)G_1(s)u(s)$$

Parallelo di blocchi

La funzione di trasferimento di due (o più) blocchi in parallelo è data dalla somma delle funzioni di trasferimento dei blocchi

$$y(s) = \pm y_1(s) \pm y_2(s) = \pm G_1(s) u(s) \pm G_2(s) u(s)$$

Parallelo di blocchi

La funzione di trasferimento di due (o più) blocchi in parallelo è data dalla somma delle funzioni di trasferimento dei blocchi

$$y(s) = \pm y_1(s) \pm y_2(s) = \pm G_1(s) u(s) \pm G_2(s) u(s)$$

= $[\pm G_1(s) \pm G_2(s)] u(s)$

Spostamento rispetto ad un sommatore

È possibile spostare un blocco rispetto ad un nodo di somma

Da monte a valle

Si **dividono** tutti i rami entranti nel sommatore per la fdt del blocco da spostare

$$y(s) = \pm G_1(s) u_1(s) \pm G_2(s) u_2(s)$$

Spostamento rispetto ad un sommatore

È possibile spostare un blocco rispetto ad un nodo di somma

Da valle a monte

Si **moltiplicano** tutti i rami entranti nel sommatore per la fdt del blocco da spostare

$$y(s) = \pm G_a(s) u_1(s) \pm G_a(s) G_b(s) u_2(s)$$

Spostamento rispetto ad un punto

È possibile spostare un blocco rispetto ad un punto di derivazione

Da monte a valle

Si **moltiplicano** tutti i rami uscenti dal punto di derivazione per la fdt del blocco da spostare

y(s) = G(s) u(s) su entrambi i rami

Spostamento rispetto ad un punto

È possibile spostare un blocco rispetto ad un punto di derivazione

Da valle a monte

Si **dividono** tutti i rami uscenti dal punto di derivazione per la fdt del blocco da spostare

$$y_1(s) = G_1(s) u(s); y_2(s) = G_2(s) u(s)$$

Schemi a blocchi

Calcolo di funzioni di trasferimento di schemi interconnessi

La funzione di trasferimento ad anello chiuso W_y(s) di un sistema in retroazione è data da:

$$W_{y}(s) = \frac{y(s)}{y_{des}(s)}$$

La funzione di trasferimento ad anello chiuso W_y(s) di un sistema in retroazione è data da:

$$\begin{array}{c|c}
y_{des}(s) & e(s) \\
+ & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\$$

$$W_{y}(s) = \frac{y(s)}{y_{des}(s)}$$

$$y(s) = G(s)e(s)$$

= $G(s)[y_{des}(s) \pm y_h(s)]$

Tale funzione può essere calcolata a partire dall'espressione di y(s) ricavabile dallo schema a blocchi

La funzione di trasferimento ad anello chiuso W_y(s) di un sistema in retroazione è data da:

$$\begin{array}{c|c} y_{des}(s) & e(s) \\ + & + \\ & \pm \\ y_h(s) & \\ & & H(s) \end{array}$$

$$W_{y}(s) = \frac{y(s)}{y_{des}(s)}$$

Tale funzione può = G() = G() = G() = G() = G()
essere calcolata a partire dall'espressione di y(s) ricavabile dallo schema a blocchi

$$y(s) = G(s) e(s)$$

$$= G(s) [y_{des}(s) \pm y_h(s)]$$

$$= G(s) [y_{des}(s) \pm H(s)y(s)]$$

La funzione di trasferimento ad anello chiuso W_y(s) di un sistema in retroazione è data da:

$$W_{y}(s) = \frac{y(s)}{y_{des}(s)}$$

Si ottiene così:

$$y(s) = G(s) e(s)$$

= $G(s) [y_{des}(s) \pm y_h(s)]$
= $G(s) [y_{des}(s) \pm H(s)y(s)]$

$$W_{y}(s) = \frac{G(s)}{1 \mp G(s)H(s)}$$

$$W_y(s) = \frac{G(s)}{1 \mp G(s)H(s)}$$

▶ G(s) è la fdt del ramo diretto

$$W_{y}(s) = \frac{G(s)}{1 \mp G(s)H(s)}$$

- G(s) è la fdt del ramo diretto
- ➤ H(s) è la fdt del ramo in retroazione

$$W_{y}(s) = \frac{G(s)}{1 \mp G(s)H(s)}$$

- G(s) è la fdt del ramo diretto
- ➤ H(s) è la fdt del ramo in retroazione
- G(s)H(s) := G_a(s) è la funzione di trasferimento d'anello data dal prodotto delle fdt di tutti i blocchi presenti sull'anello

$$W_{y}(s) = \frac{G(s)}{1 + G(s)H(s)}$$

Segno **opposto** a quello della retroazione

- G(s) è la fdt del ramo diretto
- ➤ H(s) è la fdt del ramo in retroazione
- G(s)H(s) := G_a(s) è la funzione di trasferimento d'anello data dal prodotto delle fdt di tutti i blocchi presenti sull'anello

Il risultato ottenuto può essere utilizzato per calcolare velocemente le fdt fra altre variabili ritenute di interesse, come ad esempio fra il disturbo d(s) posto sull'uscita e l'uscita y(s), per y_{des} = 0

$$W_d(s) = \frac{y(s)}{d(s)}$$

$$W_d(s) = \frac{1}{1 + G(s)H(s)}$$

Il segno risultante della retroazione è **negativo** Segno opposto a quello della retroazione

$$W_{d}(s) = \frac{1}{1 + G(s)H(s)}$$

Funzione di trasferimento d'anello

