AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/G 1/2
THE EFFECTS OF THE DIRECTION OF CONTROL LOADING ON A ONE-DIMENS--ETC()
MAR 80 J M CARLIN
AFIT-CI-80-10T NI AD-A092 459 UNCLASSIFIED 1001 2002450 Ĺ END

THE EFFECTS OF THE DIRECTION OF CONTROL LOADING ON A ONE-DIMENSIONAL TRACKING TASK

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

Вy

James Michael Carlin

E

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Industrial Engineering

Georgia Institute of Technology

March, 1980

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. A D- A 09 1.	456
4. TITLE (and Substitio) The Effects of the Direction of Control Loading	THESIS/PISSERTATION
on a One-Dimensional Tracking Task•	6 PERFORMING ORG. REPORT NUMBER
// James Michael Carlin, Capt USAF //) '	6. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
AFIT STUDENT AT: Georgia Institute of Technology	AREA & WORK UNIT NOMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS AFIT/NR	12. REPORT DATE
WPAFB OH 45433	March 1980 13. NUMBER OF PAGES.
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
14) AFIT-SI-SY-YDT	UNCLASS
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
18. SUPPLEMÊNTARY NOTES	
APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 PLANCE C. LYNCH Major, USAE	Air Force Institute of Technology (ATC) Wright-Patterson AFB, OH 45433
is set of Public Affairs 19. If necessary and identify by block number 19. KEY WORDS (Continue on Teverse side if necessary and identify by block number	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
ATTACHED	
DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE	UNCLASS (j) // //

THE EFFECTS OF THE DIRECTION OF CONTROL LOADING ON A ONE-DIMENSIONAL TRACKING TASK

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

Ву

James Michael Carlin

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Industrial Engineering

Accession for

A

Georgia Institute of Technology

March, 1980

AFTI RESURRCH ASSESSMENT

SUNOT H the purpose of this questionnaire is to ascertain the value and/or contribution of research accomplished by students or faculty of the Air Force Institute of Icchnology (ATC). It would be greatly appreciated if you would complete the following questionnaire and return it to:

> AFIT/NR wright-Patterson AFB OH 45433

Research	Title: _	The Effec	ts of the D	irection	of Contro	Loading	
on a On	e-Dimen	sional Tr	acking Task				
Author: _	Capt	James Mic	hael Carlin				
Research	Аьвсььше	nt Question	115 :				
l. bid t	his resc	arch contr.	ibute to a cur	rent Air	Force proje	ct?	
i4 •	Yes		ь.	No			
2. Do yo have been if AFIT h	rescare	e this resoned (or con	carch topic is ntracted) by y	s signifi /our orga	cant enough on italiant	that it would another agency	
a.	Yes		ь.	No			
value tha research, been acco	t your a Can yo mplished	igency actificate u estimate	search can oft eved/received what this res tract or if it	by virtu search wo	e of AFIT pe uld have cos	rforming the tif it had	
ä.	Man-ye	ars	b.	\$			
although not you w	the resu	lts of the to establ	research may	in fact ent valu	, be importan	es to research, nt. Whether or esearch (3 above	:),
	ighly ignifica		Significant		lightly ignificant	d. Of No Significa	nce
or any ad	ditional value of	details co this resea	oncerning the	current	application,	ove questions, future potentia questionnaire	1,
N AME	GRADE	POSITION		· · · · · · · · · · · · · · · · · · ·			
ORGANIZAT	ION	LOCATION				USAF SCN 75-2	OB

ACKNOWLEDGEMENTS

Many people provided me with valuable assistance during this study. Dr. Thomas L. Sadosky, Chairman of my thesis committee, contributed his time, knowledge, and encouragement.

Dr. Russell G. Heikes helped immeasurably with the statistical aspects and Dr. Leslie G. Callahan provided valuable advice for arrangement of the final thesis form. Dr. Douglas C. Montgomery, although not a member of the committee, contributed much to my knowledge of time series.

The United States Army Human Engineering Laboratory, Aberdeen Proving Ground, Maryland, provided the equipment required to perform this experiment.

There were twenty-four subjects who deserve special credit for the donation of their valuable time and constructive comments. Mrs. Jacqueline Smith did an excellent job typing the manuscript and reassuring the author.

My wife, Barbara, and children, Catherine, Mary, and Amy contributed their patience, prayers, and understanding.

To all these people I extend my heartfelt thanks.

Damie Muchael Carlin James Michael Carlin

TABLE OF CONTENTS

ACKNOWLED	Pag OGEMENTS
LIST OF T	ABLES v
LIST OF 1	LLUSTRATIONS
SUMMARY	
Chapter	
I.	INTRODUCTION
	Background Purpose
II.	HISTORICAL OVERVIEW
	Transfer of Learning Sine Wave Tracks Preview Tracking Near the Edge of a Display Upper Limit on Human Response Scoring Preliminary Study
III.	EXPERIMENTAL DESIGN
	Task Description Equipment Description and Set Up Conduct of Experiment Subjects Sampling Rate and Performance Measures Chosen
IV.	DATA ANALYSIS: METHODOLOGY AND RESULTS 17
V.	CONCLUSIONS AND RECOMMENDATIONS 28
APPENDICE	CS CONTRACTOR OF THE CONTRACTO
Α.	POOLED DATA
В.	PLOTS OF POOLED STATISTICS
c.	SUBJECT DEMOGRAPHIC DATA

D.	CORRELATION OF STATISTICS							Page 38
Е.	TRACK DESCRIPTIONS			•			•	40
F.	INDIVIDUAL SUBJECT AND TRIAL STATISTICS	•	•		•	•		44
BIBLIOGR	АРНУ		_	_		_		58

LIST OF TABLES

Table			Page
3-1.	Equipment Summary		11
3-2.	Order of Experimentation		13
4-1.	Linear Regression Results		20
4-2.	ANOVA Table		21
4-3.	Distribution of Q Statistics by Class Interval	•	25
A-1.	Pooled Modulus Mean Errors	•	31
A-2.	Pooled Standard Deviations	•	31
A-3.	Pooled Standard Errors of the Residuals from		
	AR(2) Mode1	•	32
C-1.	Subject Demographic Data	•	37
F-1.	Subject A Statistics	•	46
F-2.	Subject B Statistics		46
F-3.	Subject C Statistics	•	47
F-4.	Subject D Statistics	•	47
F-5.	Subject E Statistics		48
F-6.	Subject F Statistics		48
F-7.	Subject G Statistics		49
F-8.	Subject H Statistics		49
F-9.	Subject I Statistics	•	50
F-10	Subject J Statistics	•	50
F-11	Subject K Statistics		51
F-12	Subject L Statistics		51

LIST OF ILLUSTRATIONS

Figure	,	P	age
1-1.	Error Measurements		6
3-1.	Block Diagram of the Closed Loop Pursuit Tracking System	•	9
3-2.	Modified School Desk Utilized as Tracking System	•	15
3-3.	Paper Drive with Pen and Paper Track	•	15
3-4.	Overall Equipment Set Up	•	16
4-1.	Histogram of 238 Q Statistics	•	27
B-1.	Pooled Modulus Mean Errors Versus Trial Number	•	34
B-2.	Pooled Standard Errors of the Residuals Versus Trial Number		35
E-1.	Single Sine Wave Program		42
E-2.	Irregular Sine Wave Program		43

SUMMARY

Twenty-four subjects were used to assess the effects of the direction of control loading on a one-dimensional closed-loop pursuit tracking task. A zero order (position control) joystick which was free to move only in the fore and aft directions was loaded with either fore, aft, or zero pressure. The track was an irregular sine wave track (random appearing) produced by the addition of five sine waves. It was viewed by the subject on a seventeen inch diagonal black and white television monitor. The video screen presented the subject with a vertical slit through which to view the vertical components of the track movements.

Subjects were instructed to keep an ink pen (also visible on the monitor) superimposed with the track. Control configuration was standard for a joystick in that aft movement of the joystick resulted in an upward movement of the pen tip.

Subjects were randomly assigned to three groups of eight. Each subject performed one familiarization trial and ten scored trials. Group 1 subjects performed five consecutive trials with forward loading and then changed to aft loading. Group 2 started with aft loading and then used forward loading. Group 3 began with a seris of five trials with zero loading and were then randomly assigned one-half to forward and one-half to aft loading for the remaining five trials.

Asymmetrical transfer was present between the forward and aft loading conditions. This necessitated restricting the analysis to the first five trials. Loading was not a statistically significant effect on tracking performance as measured by modulus mean error. Trials were highly significant, however, indicating that learning was the dominant effect.

Time series analysis was employed to obtain an estimate of the noise in the response. An AR(2) (second order autoregressive) model provided a good fit to the data (errors). Pooled estimates of noise exhibited a gradual decrease over trials similar to that generated by modulus mean error.

Future studies of this nature should guard more carefully against asymmetrical transfer by restricting groups to the same loading condition throughout the experiment. Learning should be allowed to stabilize. Stress could be induced in order to accentuate the differences between conditions.

CHAPTER I

INTRODUCTION

Background

Modern fighter aircraft flight controls are activated by the pilot through a joystick. Because of heavy loads on the control surfaces, the flight controls are finally actuated by powerful hydraulic actuators. Artificial feel systems of varying complexity are utilized to give some feedback to the pilot to aid in control.

Regardless of the system, virtually all are equipped with thumb-actuated pitch and roll trim. This feature allows the pilot to quickly and easily change the fore and aft or lateral stick force required to control the pitch and roll of the aircraft. The roll trim is usually set and left at a position of near zero lateral force required for level flight. Pitch trim, however, is used throughout flight for the relatively large changes in pitch control required during changes of airspeed and configuration.

During precise tracking tasks such as flying close formation maneuvers, or tracking an air or ground target in an aiming device, many pilots desire to trim the stick forward. A smaller proportion constantly strive for zero pressure in a precise tracking situation. Virtually none trim aft stick pressure in this environment.

The majority of technical literature that addresses control loading is concerned with friction, inertia, viscous damping, and spring centering (elastic) forces. These are all bi-directional

forces. This study is strictly concerned with uni-directional control loading.

Purpose

The purpose of this study was to determine the effects of the direction of control loading (fore, aft, or zero) on tracking performance, when the target tracked is an irregular (unpredictable) sine wave track.

CHAPTER II

HISTORICAL OVERVIEW

Transfer of Learning

Learning which takes place in a given situation is transferred in a large extent to similar but not identical situations when they are encountered. This is the premise upon which much of our education is based. If this transfer of learning benefits performance in the second situation encountered, it is termed positive transfer. On the other hand, if performance suffers because of the previous learning, the transfer is referred to as negative transfer.

When two conditions A and B are compared using two groups of subjects, it is common practice for one group to perform under condition A and then under B. The second group would perform B first and then A. If the effect on B of performing A first is equal to the effect on A of performing B first, the transfer is symmetrical. However, if one switch results in negative transfer and the other in positive transfer, or if the transfers are in the same direction but not equal, asymmetrical transfer is present.

Asymmetrical transfer has been frequently ignored in tracking studies. It should be noted, that in the presence of asymmetrical transfer, only results of the first trials are valid. The results of the two sets of trials may not be combined (Poulton, 1974, 13-14).

When transfer of learning is asymmetrical, the differences

between experimental conditions are influenced by an unknown extent. There is always a risk of asymmetrical transfer when groups perform under more than one condition and to avoid this risk it is necessary to use a separate group of subjects for each experimental condition (Poulton, 1974, 16-19).

Sine Wave Tracks

Sine waves represent the most common tracking problems encountered in the real world. They present the tracker with constantly changing velocities and accelerations. In contrast, a constantly sloping line (ramp track) would represent a target with a constant angular velocity.

A singular sine wave track is easily learned by a subject and is therefore not suitable except in studies of precognitive tracking. Some subjects will quickly learn the characteristics of the track and "lock in" to frequency and amplitude (Poulton, 1974, 115-117).

It has been shown that a track consisting of a single sine wave can be tracked reasonably well during periods of display blackout for up to three seconds. Practiced subjects will continue to respond at about the correct frequency and amplitude (Poulton, 1974, 229).

Irregular (random appearing) sine wave tracks present a different situation. With track frequencies below about 20 cycles per minute, a subject may continue to respond at about the correct rate, but if the frequencies are higher, he will usually stop responding until the display appears again (Poulton, 1974, 230).

Preview

Changes in performance can occur when preview is increased beyond 0.5 seconds (Poulton, 1974, 187). Targets typically tracked using a joystick present no preview.

Tracking Near the Edge of a Display

When a track approaches the edge of a display, there is obviously only one direction that it may take. For this reason, subjects tend to overshoot reversals in the track less often near the edge than at the center of the display (Poulton, 1974, 25-26).

Upper Limit on Human Response

The upper limit on human response is in the range of 3 corrections per second with most people giving 2 responses per second (Poulton, 1974, 98; Welford, 1976, 89). Sampling rates should be established with this in mind.

Scoring

Overall Measures of Performance

Four of the most commonly used overall measures of performance used in assessing tracking adequacy are:

- 1) Average Error (AE)
- 2) Modulus Mean Error (MME)
- 3) Root Mean Squared Error (RMSE)
- 4) Standard Deviation of the Error (SD)

The equations for these measures are as follows:

$$AE = \frac{\sum_{i=1}^{n} e_{i}}{n} = \bar{e}$$

$$MME = \frac{\sum |e_i|}{n}$$

$$RMSE = \sqrt{\frac{\sum_{i}^{2}}{n}}$$

$$SD = \sqrt{\frac{\sum (e_i - \bar{e})^2}{n-1}}$$

where \mathbf{e}_{i} is the vertical deviation of the response from the track as measured at n distinct points on the tracking record. Figure 1-1 diagrams the measurements which are recorded to calculate these statistics.

a \circ negative signed error

b \circ positive signed error

Figure 1-1. Error Measurements

Average error in this case has little information because positive and negative errors tend to offset each other and thus average error will usually converge toward zero. It is not a valid measure of lead or lag in this instance because negative error on a rising segment of track is lag, and negative error on a downward bound portion of track is lead. The reverse is true for errors which are positive in sign.

Modulus Mean Error is the average absolute error. This measure has considerable intuitive appeal and is highly representative of tracking adequacy.

Root mean Squared Error is highly correlated with MME. If errors are distributed normally, the correlation is +1.0 and experiments have produced correlations of +.9996 between average RMSE's and MME's. A fairly accurate estimate of average MME can be calculated by multiplying average RMSE by 0.77 (Poulton, 1974, 36).

The difference in the two measures is that RMSE penalizes according to the squared error thereby assigning a heavier penalty to a mixture of large and small errors than it does to a set of average sized errors. MME penalizes only according to the average size of error.

A disadvantage of RMSE is that if the errors are large and always on one side of the track, combining RMSE's underestimates overall error (Poulton, 1974, 37).

Standard Deviation of the Error is the usual unbiased estimate.

It, as well as RMSE and MME, are measures of dispersion of the

response about the track (we assume that the mean of the error distribution is zero) (Kelley, 1969). Correlation of MME and SD are presented in Appendix D.

To obtain an estimate of the noise in the response, a measure which has been referred to as the "standard deviation corrected for autocorrelation" (Robinson, 1978) could be used. This statistic is the standard error of the residuals which result from the fitting of a time series model to the response. It can be thought of as an indicator of the variability of the response about itself or the smoothness of the response. Small values of the statistic correspond to a smooth response. This measure will be referred to as the Residual Standard Error (RSE) in this study.

Preliminary Study

A preliminary study was conducted with nine subjects performing one trial with each loading condition, for a total of 27 trials. This experiment demonstrated a lower modulus mean error for forward loading than for aft or zero loading. The stick loading utilized was 4.78 pounds measured at the stick grip center.

CHAPTER III

EXPERIMENTAL DESIGN

Task Description

Subjects were required to perform one-dimensional closed-loop pursuit tracking of an irregular (random appearing) sine wave track using a zero order (position control) joystick that was free to move only fore and aft. (See block diagram Figure 3-1.) Forward movement of the joystick caused the pen to move in the down direction as seen by the subject on the video screen. Aft stick travel resulted in upward pen movement. The track traveled alternately up and down with reversals at irregular (unpredictable) intervals. Subjects attempted to keep the pen tip superimposed with the track.

Figure 3-1. Block Diagram of the Closed Loop Pursuit Tracking System

It was undesirable for the tracks to possess easily learned characteristics because tracks with unpredictable traits are more often encountered in reality. A track was selected which is the sum of five

sine waves and is described in detail in Appendix E. In order to reduce the effects of the temptation to anticipate track movements near the display edge, subjects were instructed to not wait on the track but to strive for constant superimposition of the pen and the track. Preview was set at seven millimeters corresponding to 0.28 seconds. Postview was also seven millimeters to present a symmetrical display.

Equipment Description and Set Up

Subjects were seated at a distance of 60 inches from the viewing screen to the eye. The position of the joystick was adjusted so that the neutral position of the joystick corresponded to the knuckles of the right hand when the arm was resting on the arm rest.

The joystick was loaded with 4.78 pounds measured at grip center in either the fore or aft direction for the groups with loading. This loading was chosen because the preliminary study referred to in Chapter II indicated an effect at that stick load. The stick was not loaded for the zero loading condition. Loads were imposed using a 26 pound weight and a pair of pulleys. Friction was negligible in both the loaded and unloaded conditions.

As a convention, forward loading was the condition of load such that when the stick was released it would move full travel away from the subject causing the pen tip to move in the downward direction. The opposite was true for aft loading.

Movement of the joystick caused an electrical signal to

be sent to the x-y recorder via a potentiometer and a power supply. The resulting movements of the recorder were transmitted to the pen by a direct mechanical link. The pen marked the moving track with ink thereby providing a permanent record of a subject's performance.

A closed circuit television camera focused on the track and pen through a 14 millimeter slit. The camera was set to view the full range of track and pen movement and this setting corresponded to a magnification of 1.17 measured at the black and white monitor screen.

Pertinent equipment information is summarized in Table 3-1.

Table 3-1. Equipment Summary

Component	Description
Joystick	O order (position control)
x-y Recorder	Houston Omnigraphic Model HR-97
Paper Drive	Sanborn Model 154-100B
TV Camera	Panasonic Model WV-1100
TV Monitor	Electrohome Model EVM-1710 Black and White 17" Diagonal Screen

Conduct of Experiment

Twenty-four subjects were recruited and randomly assigned to three groups of eight. The subject was seated at the tracking

station, and the stick position was adjusted for that particular subject. This stick position was recorded in order to expedite future trials. The following standardized instructions were given to each subject on their training session.

Moving the control stick back causes the pen to move up. Similarly, moving the stick forward causes the pen to move down. Note that the joystick is free to move only in the fore and aft directions.

Please move the stick between its limits to get the feel of it, and note the corresponding pen movement on the video screen.

Your task is to keep the pen tip <u>superimposed</u> on the track. The track will move up and down. At first the track will move fairly slowly. After a short period, I will stop the machine in order to change to a higher speed.

Do you have any questions?

At this point, questions were answered, if necessary, and the familiarization trial was run. This trial consisted of tracking a regular sine wave. The track was run at one centimeter per second for one minute and then at 2.5 centimeters per second for one minute providing a total of two minutes familiarization. Each subject utilized the loading condition that his group was to begin with. These first tracks were discarded and were not analyzed.

The next ten trials consisted of tracking the random appearing sine wave track. Each group of subjects performed five consecutive trials with the initial loading condition for the group. After five trials with this initial loading condition, the group which started with forward loading changed to aft loading for five additional trials. The group which started with aft loading was switched to forward loading and the group which began with zero loading was randomly

assigned four to forward loading and four to aft loading. Table 3-2 summarizes this information.

Table 3-2. Order of Experimentation

	Familiarization	1	2	3	4	5	6 7 8 9 10 (Trial #)		
Group 1	Forward Load						Aft Load		
Group 2	Aft Load					Forward Load			
Group 3	Zero Load						Four Subjects Forward Load and Four Subjects Aft Load by Random Assign- ment		

Segregation of the groups in this manner was done to determine if asymmetrical transfer was present between different loading conditions. Because it was expected that loading would somewhat stabilize a subject's tracking (Fogel, 1963, 404; McCormick, 1976, 230), the loaded conditions were concentrated upon and none of the subjects in Group 1 or Group 2 were allowed to perform trials with zero loading.

During a single trial, a subject tracked for 30 seconds. The random appearing sine wave was run at 2.5 centimeters per second. The first 10 seconds were used to allow the subject to stabilize somewhat, and the last 20 seconds of track were scored.

Subjects were not allowed to study the results of their tracking, in order to prevent the possibility of learning the general "shape" of the track and, hence, induce a bias into the results. Strategies and techniques were not suggested to the

subjects; however, they were instructed to try to maintain the pen tip superimposed with the track rather than wait for the track to return to the pen.

Subjects

Subjects were recruited primarily from students of the School of Industrial and Systems Engineering at the Georgia Institute of Technology and those who were enrolled in classes in that department. Since each volunteer was required to run 11 trials (one familiarization and 10 scored) it was necessary to use subjects who regularly frequented the location of the laboratory.

Four of the subjects were pilots (two private pilot fixed wing and two U.S. Army helicopter). None of these subjects had performed pilot duties in the previous 12 months. There was one female subject involved in the study.

Sampling Rate and Performance Measures Chosen

With the upper limit on human response in mind, a sampling rate of five samples per second was utilized in order to capture as much meaningful information as possible without the burden of excessive sampling. Modulus mean error and residual standard error were chosen as overall measures of performance. These statistics are not independent, however, and Appendix D presents the correlation between them.

Figure 3-2. Modified School Desk Utilized as Tracking Station

Figure 3-3. Paper Drives with Pen and Paper Track

Figure 3-4. Overall Equipment Set Up

CHAPTER IV

DATA ANALYSIS: METHODOLOGY AND RESULTS

All tracks were scored using a Science Accessories Corporation (SAC) Model GP-6-50 sonic digitizer. This equipment consisted of a stylus, an L-frame containing sensors and a microprocessor. Digitizing was accomplished by placing a tracking record overlayed with a clear sheet of plastic within the sensitive area of the L-frame. The plastic sheet was etched with vertical lines equally spaced at five millimeter intervals representing a rate of five samples per second. Successive points were digitized alternating between track and response. Operation was accomplished by actuating the stylus over the point to be digitized. The stylus would emit a supersonic energy pulse (spark) which would be detected by strip-type microphones imbedded in the L-frame. The microprocessor would then compute x and y coordinates of the point and send this information to a data file in the CYBER computer system. A total of 200 points were digitized on each track. This permitted the computation of 100 error measurements with a simple FORTRAN program which calculated the differences between successive pairs of y ordinates and discarded the x values.

The resulting data was then used to calculate modulus mean error and the usual standard deviation for each trial. Time series

analysis was performed using a University of Wisconsin (1970)
Box-Jenkins computer program. This analysis concentrated on
identification of the correct model and estimation of the model
parameters with the standard errors of the residuals being of
particular interest.

Modulus Mean Error was pooled over the eight subjects in each group for each of the ten trials. These results are shown in Table A-1 and are plotted in Figure B-1. Simple linear regression equations were formed for Group 1 and Group 2 using pooled MME as the dependent variable and trial number as the independent variable. Three regressions were performed for each group. One through the first five trials, one through the second five, and one through all 10 points.

A procedure to test the equality between sets of coefficients in two linear regressions (Chow, 1960) was used to determine if there was a discontinuity present at five trials where the load changed direction in these two groups.

The general procedure as set forth by Chow follows.

- n Observations are used to estimate a regression with p parameters (p-1 coefficients plus an intercept).
- m Additional observations are available and it is of interest to determine whether or not they are generated by the same regression model as the first observations.

- A Is the residual sum of squares of the dependent variable from the regression using n+m observations and having n+m-p degrees of freedom.
- B Is the residual sum of squares of the dependent variable from the regression using n observations and having n-p degrees of freedom.
- C Is the residual sum of squares of the dependent variable from the regression with m observations having m-p degrees of freedom.

The null hypothesis is that the structure is the same in the two sets. In other words, that a single linear regression gives as good a fit to the data as two separate regressions.

Under this null hypothesis, Chow showed that the statistic

$$R = \frac{(A - B - C)/p}{(B + C)/(n + m - 2p)}$$

will be distributed as F with numerator degrees of freedom equal to p and denominator degrees of freedom equal to n+m-2p.

The null hypothesis is rejected when

$$R > F_{\alpha,p,n+m-2p}$$

The regressions gave the results recorded in Table 4-1.

Table 4-1. Linear Regression Results

Group	Trials	Load	Slope	Intercept	SS Residual
1	1-5	Forward	0343	.8201	.0286588
1	6-10	Aft	0343	.8694	.0735323
1	1-10	Both	02683	.7768	.0876186
2	1-5	Aft	0506	.9180	.0266708
2	6-10	Forward	0258	.7702	.0072528
2	1-10	Both	0399	.8447	.1363383

Calculating R for the Group 1 data gives R = 2.227 which is not significant at the 0.10 level.

On the other hand the Group 2 data produces, R = 9.057 which is significant at the 0.025 level.

For Group 1 the hypothesis of the same structure existing in the two groups of 5 trials cannot be rejected. In Group 2, however, there is a high probability that the two sets do not belong to the same regression and the hypothesis of sameness is rejected at a high level of significance.

These results are evidence of asymmetrical transfer. This means that only the first five trials in each group may be tested for the effects of control loading.

The first five trials in each of the three groups of subjects was then compared on the basis of MME. A BMDP program (2V) was utilized which grouped subjects according to loading condition and considered the effects of the five trials. There

were a total of 118 values of MME available from the first five trials. (Trial number 3 for subject C and trial number 4 for Subject H were lost.) The missing values were estimated by simple linear regression using each subject's four available scores of MME. The BMDP2V output is contained in the ANOVA table in Table 4-2 below.

Table 4-2. ANOVA Table

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Prob. F Exceeded
Mean	63.39876	1	63.39876	549.74134	000
Loading	.10327	2	.05163	.44773	.645
Error	2.42182	21	.11532		
	Sum of Squares	Degrees of Freedom	Mean Square	F	Prob. F Exceeded
Trials	.64769	4	.16192	8.78794	.000
Trial Loadin Interaction	.12851	8	.01606	.87185	. 544
Error	1.54775	84	.01843		

Inspection of these results indicate that loading did not have a significant effect on performance as measured by MME; trials were highly significant, however. Learning appears to be the major factor affecting tracking proficiency during the first five trials.

The error degrees of freedom should be reduced because of the two missing values that were estimated. However, the results of the analysis of variance would remain practically unchanged.

Time series analysis was necessary to obtain estimates of

the noise in the response. This analysis was performed in three stages: (1) Model Identification, (2) Estimation of Parameters, and (3) Diagnosis of Model Adequacy. The first stage was accomplished by choosing one trial at random from each of the 24 subjects for examination using the Box-Jenkins identification program. Correlograms of both the autocorrelation function (ACF) and the partial autocorrelation function (PACF) were produced by this program. The ACF plots exhibited a mixture of damped exponentials and damped sinusoidal patterns. The plots of PACF had spikes at lags one and two which exceeded two standard error limits. These patterns are characteristic of an autoregressive process of order two (an AR(2) model). If we let et denote the error at time t and at a random shock at time t, the AR(2) model can be written

$$(e_t - \mu) = \phi_1 (e_{t-1} - \mu) + \phi_2 (e_{t-2} - \mu) + a_t$$

where ϕ_1 and ϕ_2 are the two autoregressive parameters and μ is the mean of the errors. The model hypothesizes that the error at time t is dependent on the error at time t-1 and at time t-2 plus some random shock. If the average error is zero the model becomes,

$$e_t = \phi_1 e_{t-1} + \phi_2 e_{t-2} + a_t$$

Using the AR(2) as a tentative model, the parameter estimation phase of the Box-Jenkins computer routine was run on

each of the 238 trials with 100 observations per trial. The estimation phase uses a special non-linear program to obtain estimates of the autoregressive parameters. It then fits the model to the data and calculates as well as plots residuals. The ACF and PACF of the residuals are then calculated and plotted in correlograms. If model fit is adequate, these correlograms should exhibit white noise behavior and there should not be a significant spike (beyond two standard error limits) at lag one in either of the plots. Residual plots should also exhibit no structure.

An approximate lack of fit test (Box and Jenkins, 1976 290-293) can be performed with the statistic

$$Q = n \sum_{k=1}^{K} r_k^2$$

where n = the number of observations used to fit the model, r_k = the estimated autocorrelation of the residuals lag k and K = the number of autocorrelations used to calculate Q (usually K = n/20 or n/25). If the fitted model is appropriate, Q is distributed as Chi Square with degrees of freedom equal to K less the number of parameters estimated.

The parameters estimated were ϕ_1 , ϕ_2 , and μ the mean of the process. These parameters were estimated along with 95 percent confidence bounds on each of them. Only thirteen (5.46%) values of the mean were significantly different than zero. That is the

95% confidence interval on estimates of the mean included the value of zero in all but 5.46% of the series. Similarly, every estimate of ϕ_1 , was significantly different than zero and only four estimates (1.7%) of ψ_2 were not significantly different than zero. These results imply that parameters of the AR(2) model with zero mean are generally significant at the 5% level when fit to the tracking errors of this study.

All three of these diagnostic checks are part of the output of the estimation phase of the program. The residual plots showed no readily discernible patterns. Only a small percentage of the results showed the possibility of violating white noise requirements in the correlograms and these generally had inflated values of Q.

Among 238 separate time series analyses it is reasonable to assume that some of them will exhibit an invalid fit because of random chance. A Chi Square Goodness of Fit test was performed on the $238\ Q$ statistics.

It was hypothesized that the Q statistics are distributed as Chi Square with 22 degrees of freedom. Class intervals were formed based on percentage points available in a Chi Square tabulation in (Box and Jenkins, 1976).

The first three class intervals were combined to obtain an expected frequency of at least five. The same was done for the last four class intervals. This resulted in 10 class intervals.

Table 4-3. Distribution of Q Statistics by Class Intervals

Class Interval	р	Expected	Observed
<u><</u> 8.64	.005	1.19	3
$8.64 \le Q \le 9.54$.005	1.19 5.95	3 > 9
$9.54 < Q \le 11.0$.015	3.57	3
11.0 $< Q \le 12.3$.025	5.95	6
12.3 $< Q \le 14.0$.05	11.9	14
14.0 $< Q \le 17.2$.15	35.7	36
17.2 $< Q \le 21.3$.25	59.5	65
$21.3 < Q \le 26.0$.25	59.5	49
$26.0 < Q \le 30.8$.15	35.7	32
$30.8 < Q \le 33.9$.05	11.9	14
$33.9 < Q \le 36.8$.025	5.95	6
$36.8 < Q \le 40.3$.015	3.57	3
$40.3 < Q \le 42.8$.005	1.19	3 7
$42.8 < Q \le 48.3$.004	.952	1
48.3 < Q	.001	.238	o /

The test statistic

$$\chi_0^2 = \sum_{i=1}^{10} \frac{(0_i - E_i)^2}{E_i} = 5.24$$

is not significant when compared to a Chi Square random variable with 9 degrees of freedom

$$P(\chi_9^2 > 5.24) = 0.81$$

The histogram in this chapter also shows a good fit of the Q statistics to the theoretical Chi Square distribution.

At this point the AR(2) model with zero mean was concluded to be a good fit to the response and was chosen as the final model.

The estimation stage of the Box-Jenkins program provides estimates of the standard errors of the residuals. These can be considered a measure which is inversely proportional to the "smoothness" of the response. Responsibility for the noise rests with such factors as equipment jitter, muscle tremor and certain nonlinear strategies that the subject may have been using. A graph of these standard errors is included in Appendix B It evidences no discernible difference with control loading but rather a gradual improvement over the course of 10 trials.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Asymmetrical transfer exists between forward loading and aft loading. This is evidenced by the regressions of MME against trials. Group 1 experienced a change in intercept but no change in slope when transferring from forward loading to aft loading. Group 2 regressions produced both a change in slope and intercept when they switched from an aft load condition to a forward load condition. Chow's procedure showed that a single regression through all ten trials was as good a fit as two separate regressions on five trials each for Group 1 data. For Group 2, however, the opposite was true; a better fit was obtained with two regressions.

The presence of asymmetrical transfer means that only the results of the first five trials may be analyzed for the effects of the direction of control loading on tracking performance.

The effects of control loading are not statistically significant during these first five trials. The effect of trials is highly significant, indicating that learning is the dominant effect. Inspection of a plot of pooled MME against trial number indicates that learning has not leveled off even by trial number 10.

An AR(2) model adequately provides a good fit to the data for the purpose of estimating the noise in the response. This

model is valid under the experimental conditions of this study and is subject to change if any of the track or control characteristics are altered. Sampling rate should also have an effect on the selection of an appropriate time series model.

Recommendations

When similar studies are conducted in the future, groups should remain with one loading condition. Learning should be allowed to stabilize. This could be accomplished by having the subject perform at least ten trials during a training phase, after which scored trials would be accomplished. The initial eight to ten trails need not be scored if the purpose was to assess the effects of control loading, as in this study.

Conditions which exhibit negligible differences under laboratory conditions are nearly always differentiated more significantly under stress conditions (Poulton, 1974, 22). If a stress situation is induced into the trials it could be beneficial in that it may magnify the differences between groups.

APPENDIX A

POOLED DATA

Table A-1. Pooled Modulus Mean Error

Tria1	Group 1	Group 2	Group 3		
1	.800	.885	.878		
2	.799	.790	.684		
3	.603	.771	.693		
4	.712	.716	.593		
5	.672	.669	.633	Gp 3 (FWD)	Gp 3 (Aft)
6	.696	.625		.627	.562
7	.635	.578		.584	.625
8	.508	•554		.551	.524
9	.588	.554		.530	.524
10	.548	.508		.512	.593

Table A-2. Pooled Standard Deviations (Usual Unbiased Statistic)

Trial	Group 1	Group 2	Group 3	3	
1	1.18	1.27	1.22		
2	1.17	1.16	.96		
3	.86	1.13	.97		
4	.98	• 99	.83		
5	.94	.99	.87	Gp 3 (FWD)	Gp 3 (AFT)
6	1.01	.85		.89	.76
7	.89	.84		.78	.89
8	.71	.78		.73	.70
9	.80	.79		.79	.78
10	.79	.70		.70	.83

Table A-3. Pooled Standard Error of the Residuals from AR(2) Model

Trial	Group 1	Group 2	Group 3		
1	.567	.588	.633		
2	.558	.574	.540		
3	.491	.588	.523		
4	.542	.514	.499		
5	.499	.501	.520 <u>Gp 3</u>	(FWD)	Gp 3 (AFT)
6	.520	.486		.627	.435
7	.495	.454		448	.484
8	.412	.440		435	.453
9	.430	.447		426	.415
10	.400	.420		460	.414

APPENDIX B

PLOTS OF POOLED STATISTICS

APPENDIX C

SUBJECT DEMOGRAPHIC DATA

Table C-1. Subject Demographic Data

Subject	Ht.	Wt.	Age	0ccu	pation		
Α	5'-11"	180	28	I.E.	Grad S	Student	
В	5'-7.5"	158	25	I.E.	Grad S	Student	
С	6'-5"	227	28	I.E.	Grad S	Student	(Private pilot)
D	6'-2"	175	23	I.E.	Grad S	Student	
E	5'-11"	160	40	I.E.	Profes	ssor	
F	5'-11"	156	23	I.E.	Underg	grad	
G	5'-8.5"	150	21	I.E.	Underg	grad	
Н	6'-2"	160	28	M.E.	Grad S	Student	
I	5'-10.5'	' 190	44	I.E.	Grad S	Student	
J	5'-11"	180	32	I.E.	Grad S	Student	
K	5'-10"	160	28	I.E.	Grad S	Student	(A.F. Navigator)
L	5'-8"	155	20	I.E.	Under	grad	
М	5'-8"	140	31	I.E.	Grad S	Student	(Army Helicopter
N	6'-0"	180	31	11	11	11	Pilot, Both M & N)
0	6'-2.5"	175	23	I.E.	Under	grad	2,
P	5'-9"	168	25	I.E.	Grad S	Student	
Q	5'-8.5"	168	27	I.E.	Grad S	Student	
R	6'-1.5"	192	27	I.E.	Grad S	Student	(Private Pilot)
S	5'-10.5'	' 155	25	I.E.	Grad S	Student	
T	5'-6"	130	29	I.E.	Grad S	Student	
U	5'-7.5"	165	33	I.E.	Profes	ssor	
v	5'-10.7	5" 162	22	I.E.	Under	grad	
W	5'-10"	175	24	I.E.	Grad S	Student	
X	5'-4"	115	21	EE G	rad Stu	udent (I	Pemale)

APPENDIX D

CORRELATION OF STATISTICS

Modulus Mean Error (MME) and Standard Deviation (SD)

It has been shown (Montgomery and Johnson, 1976) that

$$MME = \sqrt{\frac{2}{\pi}} SD \approx 0.8SD$$

where the errors are assumed distributed normally with constant mean and variance $(SD)^2$. (The relationship holds well for nonnormal errors also.)

Modulus Mean Error and Standard Error of Residuals (σ_a)

$$sp^{2} = \frac{1 - \phi_{2}}{1 + \phi_{2}} = \frac{\sigma_{a}^{2}}{\{(1 - \phi_{2})^{2} - \phi_{1}^{2}\}} = \frac{\pi}{2} MME^{2}$$

(Box and Jenkins, 1976).

It follows algebraicly that

$$\sigma_a^2 = \{(1 - \phi_2)^2 - \phi_1^2\} \frac{1 + \phi_2}{1 - \phi_2} \frac{\pi}{2} \text{MME}^2$$
.

APPENDIX E

DESCRIPTION OF TRACKS

 $\label{thm:continuous} The \ regular \ sine \ wave \ used \ for \ familiarization \ was \ a$ single sine wave with

period =
$$40.0$$
 cm. and amplitude = 6.325 cm.

This track was driven at one centimeter per second for one minute and at 2.5 centimeters per second for the last minute of the familiarization.

The irregular (random appearing) sine wave track was produced by summing five sine waves. The distance before repetition of the pattern was 79.8 centimeters and the maximum vertical travel of the track was 17.0 centimeters. There were 17 reversals in 79.8 centimeters. If we let

X = horizontal distance in centimeters

R = X/6.3050282539 (radians) and

Y = vertical distance in centimeters

then the equation for the track is

$$Y = 2.540005$$
 {SIN (5R) + SIN (3.5R) + SIN (2.5R) + SIN(R) + SIN(0.5R)}

The computer programs which were used to plot these tracks on the VERSATEC plotter at the Georgia Tech Computing Center are included for reference on the following pages.

```
PROGRAM PLT (INPUT, OUTPUT)
DIMENSION X(3002), Y(3002), IBUF(512)
X(1)=0
Y(1)=0
D=2*3.1415926/299
DO 50 I=2,3000
X(I)=D*(I-1)
Y(I)=SIN(X(I))
CONTINUE
CALL PLOTS (IBUF,512,8,00)
CALL PLOTMX(200.)
CALL SCALE(X,200.,3000,1)
CALL SCALE(Y,8.,3000,1)
CALL LINE(X,Y,3000,1,0,0)
CALL PLOT(0.,0.,999)
STOP
END
```

Figure E-1. Single Sine Wave Program

This program generates the single sine wave track on the VERSATEC plotter at the Georgia Institute of Technology computing center.

```
PROGRAM PLT (INPUT, OUTPUT)
    DIMENSION X(3002), Y(3002), IBUF(512)
    X(1)=0
    Y(1)=0
    D=2*3.1415926/299
    DO 50 I=2,3000
    X(I)=D*(I-1)
    Y(I)=SIN(5*X(I))+SIN(3.5*X(I))+SIN(2.5*X(I))
   1+SIN(X(I))+SIN(0.5*X(I))
50
   CONTINUE
    CALL PLOTS (IBUF, 512, 8,00)
    CALL PLOTMX(200.)
    CALL SCALE(X,200,,3000,1)
    CALL SCALE(Y,8.,3000,1)
    CALL LINE(X,Y,3000,1,0,0)
    CALL FLOT(0.,0.,999)
    STOP
   END
```

Figure E-2. Irregular Sine Wave Program

APPENDIX F

INDIVIDUAL SUBJECT AND TRIAL STATISTICS

The abbreviations in the tables of this section are as follows:

MME = Modulus Mean Error

SD = Standard Deviation (usual unbiased form)

Q = Chi Square Lack of Fit Statistic

 ϕ_1 = First Order Autoregressive Parameter

 ϕ_2 = Second Order Autoregressive Parameter

Table F-1. Subject A Statistics

Trial	MME	SD	SER	Q	Ф1	ф2
1	.497	.697	.478	14.972	.94457	37509
2	.543	.619	.432	33.749	.83898	20693
3	.416	.573	.365	22.543	1.0399	46982
4	.549	.791	.450	5.5997	1.0551	30179
5	.575	.726	.360	33.766	1.2098	44344
6	.631	.924	.519	22.485	1.1566	49854
7	.578	.805	.355	28.197	1.2774	43045
8	.396	.505	.378	13.54	.77394	1784
9	.434	.570	.320	12.117	1.1482	53804
10	.414	.594	.329	30.384	1.1739	51557

Table F-2. Subject B Statistics

Trial	MME	SD	SER	Q	φ ₁	Φ ₂
1	.655	.905	.404	16.948	1.3353	49269
2	.798	1.022	.389	20.003	1.2909	49161
3	.652	.930	.415	21.012	1.1748	33028
4	.719	1.043	.401	14.474	1.3915	57158
5	.482	.623	.389	10.675	1.0399	38572
6	.659	.868	.487	18.858	1.1131	40306
7	.588	.796	.331	23.068	1.3083	4792
8	.567	.792	.392	14.492	1.2117	43733
9	.561	.702	.399	22.173	1.0683	30736
10	.390	.518	.338	24.348	.94772	29833

Table F-3. Subject C Statistics

Trial	MME	SD	SER	()	; 1	÷ ₂
1	1.156	1.377	.611	21.651	1.2733	48886
2	1.073	1.460	.522	19.716	1.3662	49337
3	-	-	-	-	-	-
4	.673	.872	.473	16.658	1.1594	43748
5	.978	1.289	.498	18.18	1.3078	46732
6	.969	1.357	.435	21.031	1.485	6225
7	.598	.797	.409	21.906	1.1819	42011
8	.597	.740	.471	24.195	1.0477	50152
9	.594	.765	.397	42.215	1.1999	46349
10	.760	.928	•463	17.525	1.2159	45574

Table F-4. Subject D Statistics

Trial	MME	SD	SER	Q	ϕ_1	Φ ₂
1	1.344	1.876	.715	17.231	1.2827	43322
2	1.140	1.585	.763	24.692	1.2575	49929
3	.743	.984	.651	15.688	.92393	43539
4	1.058	1.341	.711	15.590	1.2005	49536
5	.911	1.215	.573	22.166	1.283	54373
6	.866	1.208	.682	32.093	1.1590	53511
7	.867	1.174	.656	19.83	1.1666	60079
8	.670	.873	.503	14.836	1.1294	61459
9	.989	1.258	.647	11.79	1.2177	50503
10	.609	.774	.438	11.767	1.1026	39540

Table F-5. Subject E Statistics

Trial	MME	SD	SER	Q	$^{\phi_1}$	Ф2
1	.689	1.161	.556	16.407	1.252	48234
2	.757	1.200	.546	20.864	1.2376	4278
3	.723	1.004	.490	32.794	1.2107	43135
4	.677	.905	.619	17.174	.95882	.42306
5	.668	.882	.539	21.563	1.0816	48611
6	.516	.662	.489	18.398	.82914	24345
7	.643	.866	.455	28.303	1.1898	47745
8	.478	.718	.403	38.431	1.1267	42434
9	.503	.700	.372	22.402	1.2005	53345
10	.409	.590	.348	28.059	.98527	28843

Table F-6. Subject F Statistics

Trial	MME	SD	SER	Q	Ф1	^ф 2	
1	1.011	1.424	.700	36.436	1.235	47436	
2	1.008	1.534	.630	15.314	1.350	53995	
3	.842	1.161	.645	17.305	1.1427	47547	
4	.544	.793	.568	27.038	.84579	21608	
5	.917	1.260	.696	18.432	1.0335	27397	
6	.889	1.328	.590	17.957	1.2256	38857	
7	.738	1.019	.513	42.761	1.1793	41119	
8	.701	.983	.429	19.618	1.281	46378	
9	.696	.993	.436	19.26	1.2912	48449	
10	1.035	1.432	.505	27.85	1.3965	53009	

Table F-7. Subject G Statistics

Trial	MME	SD	SER	Q	$\phi_{f 1}$	Φ2
1	.523	.746	.471	15.507	1.0341	41641
2	.605	.803	.508	18.164	.95761	25197
3	.431	.558	.319	22.153	1.0012	25054
4	.766	.999	.511	12.538	1.1486	36632
5	.495	.664	.444	32.237	.99493	42626
6	.581	.832	.499	26.52	1.0962	53543
7	.610	.917	.692	12.925	.83232	34646
8	.390	.505	.401	13.465	.74791	35355
9	.422	.513	.358	22.396	.87723	32697
10	.426	.547	.387	18.321	.88639	2725

Table F-8. Subject H Statistics

Trial	MME	SD	SER	Q	Ф1	Φ2
1	.526	.683	.520	24.204	.79596	45727
2	.470	.696	.586	22.931	.5927	37291
3	.415	.578	.450	30.02	.77719	39015
4	-	-	-	-	-	-
5	.346	.521	.405	14.821	.76278	23201
6	.460	.572	.411	17.894	.84775	27569
7	.456	.599	.425	20.592	.88729	30753
8	.266	.356	.285	28.65	.72078	31434
9	.505	.670	.430	24.489	1.0001	49745
10	.342	.462	.356	16.976	.79898	35819

Table F-9. Subject I Statistics

Trial	MME	SD	SER	Q	ϕ_1	Φ ₂
1	.831	1.227	.595	16.275	1.2186	43274
2	.736	1.174	.580	19.484	1.1391	32631
3	1.103	1.729	.921	9.3327	1.1632	41926
4	.703	.927	.577	22.068	1.065	48038
5	.935	1.465	.795	13.793	.88836	29261
6	.644	.897	.664	11.906	.85762	37610
7	.701	1.107	.598	14.08	1.1164	35413
8	.777	1.030	.532	19.883	.99339	15775
9	.575	.812	.551	18.974	.95775	44734
10	.502	.625	.412	13.564	.9423	35672

Table F-10. Subject J Statistics

Trial	MME	SD	SER	Q	Φ ₁	φ ₂
1	.787	1.047	.557	27.277	1.1596	42886
2	.545	.696	.512	25.779	.85979	36523
3	.666	.858	.579	25.206	.95569	48422
4	.702	.946	.523	27.329	1.1474	42675
5	.481	.670	.361	28.452	1.078	53322
6	.588	.768	.523	21.979	.96689	44007
7	.465	.624	.376	8.6581	1.094	45583
8	.392	.510	.373	18.603	.86118	34638
9	.370	.506	.360	21.256	.90716	45414
10	.453	.599	.364	24.599	1.0774	~.57908

Table F-11. Subject K Statistics

Trial	MME	SD	SER	Q	‡ 1	φ ₂
1	1.335	1.787	.864	11.63	1.2495	48650
2	.777	1.084	.614	18.236	1.0658	42695
3	.782	1.046	.528	29.228	1.1307	33218
4	.779	1.082	.564	32.053	1.1525	38336
5	.843	1.101	.556	14.792	1.2046	41294
6	.716	.946	.547	25.718	1.1022	45500
7	.730	1.011	.544	20.75	1.1038	3323
8	.603	.859	.533	19.035	1.0291	38779
9	.553	.705	.460	18.963	.98484	34855
10	.683	.900	.550	13.813	1.0719	46752

Table F-12. Subject L Statistics

MME	SD	SER	Q	Ф1	φ ₂
.987	1.396	.573	25.264	1.3205	49786
.798	1.198	.654	14.277	1.0908	32172
.681	.978	.480	18.364	1.1704	3849
.651	.881	.455	24.599	1.1298	33566
.566	.818	.411	30.044	1.1991	43492
.582	.794	.427	27.036	1.0932	31543
.534	.745	.374	18.917	1.2335	49193
.506	.680	.433	25.741	.96052	26691
.528	.731	.374	19.625	1.1908	44284
.497	.717	.391	13.296	1.1546	43971
	.987 .798 .681 .651 .566 .582 .534 .506	.987 1.396 .798 1.198 .681 .978 .651 .881 .566 .818 .582 .794 .534 .745 .506 .680 .528 .731	.987 1.396 .573 .798 1.198 .654 .681 .978 .480 .651 .881 .455 .566 .818 .411 .582 .794 .427 .534 .745 .374 .506 .680 .433 .528 .731 .374	.987 1.396 .573 25.264 .798 1.198 .654 14.277 .681 .978 .480 18.364 .651 .881 .455 24.599 .566 .818 .411 30.044 .582 .794 .427 27.036 .534 .745 .374 18.917 .506 .680 .433 25.741 .528 .731 .374 19.625	.987 1.396 .573 25.264 1.3205 .798 1.198 .654 14.277 1.0908 .681 .978 .480 18.364 1.1704 .651 .881 .455 24.599 1.1298 .566 .818 .411 30.044 1.1991 .582 .794 .427 27.036 1.0932 .534 .745 .374 18.917 1.2335 .506 .680 .433 25.741 .96052 .528 .731 .374 19.625 1.1908

Table F-13. Subject M Statistics

Trial	MME	SD	SER	Q	Ф1	Φ2
1	.810	1.019	.408	14.373	1.3306	49046
2	.653	.976	.427	33.885	1.2158	37368
3	.715	1.050	.457	15.201	1.289	4812
4	.674	1.007	.415	17.402	1.3327	50955
5	.625	.939	.357	25.199	1.3728	52516
6	.615	.831	.430	17.916	1.0986	2960
7	.480	.622	.392	12.333	.95836	24855
8	.476	.635	.414	22.571	.97007	32693
9	.408	.550	.357	25.136	.99585	36377
10	.459	.644	.427	6.9251	.93849	28257

Table F-14. Subject N Statistics

Trial	MME	SD	SER	Q	φ ₁	φ ₂
1	.974	1.476	.549	12.54	1.3374	50207
2	1.283	1.726	.566	22.543	1.461	58962
3	.782	1.198	.496	34.914	1.2826	50050
4	.717	.969	.425	42.655	1.2851	48531
5	.701	1.010	.432	19.695	1.3271	54720
6	.691	.899	.390	21.976	1.3418	5767
7	.647	1.097	.392	20.658	1.3754	50596
8	.586	.949	.387	27.812	1.296	47200
9	.843	1.163	.513	17.278	1.3186	54647
10	.529	.809	.404	19.57	1.2235	50088

Table F-15. Subject O Statistics

Trial	MME	SD	SER	Q	Ф1	Ф2
1	.518	.694	.488	21.01	.87504	27619
2	.690	1.013	.655	26.448	1.0129	35707
3	.667	.840	.633	27.68	.78681	38605
4	.614	.830	.596	18.74	.89594	42206
5	.504	.674	.513	28.676	.72307	53606
6	.461	.593	.480	15.187	.63611	45486
7	.552	.705	.525	16.327	.8340	41058
8	.448	.558	.412	27.825	.77707	53272
9	.508	.612	.439	18.944	.83656	45238
_10	.408	.545	.387	18.923	.89642	36080

Table F-16. Subject P Statistics

Trial	MME	SD	SER	Q	$^{\phi}1$	Φ2
1	.840	1.187	.566	22.96	1.1921	38566
2	.838	1.122	.550	9.1066	1.1199	29716
3	.771	1.052	.468	20.256	1.2135	39246
4	.889	1.197	.525	22.486	1.3097	50738
5	.700	.987	.437	14.952	1.1648	39561
6	.705	1.038	.358	17.461	1.4298	59276
7	.516	.639	.365	26.541	1.0613	31128
8	.647	.833	.407	14.757	1.2960	52655
9	.644	1.013	.481	14.018	1.2584	48528
10	.533	.707	.401	15.387	1.0996	35443

Table F-17. Subject Q Statistics

Trial	MME	SD	SER	Q	Ф1	φ ₂
1	1.063	1.451	. 594	17.753	1.2737	38643
2	.670	.879	.447	35.282	1.1349	36782
3	.828	1.066	.608	24.603	1.0187	25245
4	.682	.87.	.489	23.821	1.1358	44256
5	.653	.926	.532	15.851	1.1183	43303
6	.517	.709	.452	19.001	.99913	35286
7	.641	.848	.477	16.222	1.0736	31787
8	.664	.882	.487	18.933	1.1517	47075
9	.517	.774	.430	16.739	1.2663	64464
10	. 545	.758	.451	23.098	1.0792	39621

Table F-18. Subject R Statistics

Trial	MME	SD	SER	Q	Ф1	Φ2
1	.699	.902	.492	32.998	1.2202	53756
2	.839	1.211	.460	28.108	1.3739	53209
3	•553	.734	.545	19.085	.82920	47438
4	.453	.622	.456	14.704	.8717	43962
5	.676	.861	.682	18.717	.71673	43500
6	.919	1.285	•979	10.621	.75292	52704
7	.519	.692	.507	15.462	.82295	51882
8	.469	.572	.432	27.647	.80151	40208
9	.513	.726	.450	19.767	1.0520	55289
10	.420	. 544	.435	23.343	.73908	37643

Table F-19. Subject 8 Statistics

Trial	MME	SD	SER	Q.	†1	; 2	
1	.838	1.124	.798	20.774	.83164	41195	
2	.603	.731	.524	20.844	.78923	36645	
3	.451	.589	. 391	30.679	.87105	17868	
4	.710	.942	.639	6.5444	.93513	30798	
)	.502	.698	.550	21.703	.82539	32430	
6	.512	.655	.443	10.129	.95755	42388	
7	.471	. 593	.408	22.849	.94334	46066	
8	.451	.591	.458	32.569	.69051	20899	
9	.416	.523	.382	17.478	.78333	~.49869	
10	.579	.710	.465	23.773	.99345	38378	

Table F-20. Subject T Statistics

Trial	MME	SD	SER	Q	Ф1	Φ2
1	1.078	1.508	.498	36.011	1.3992	52902
2	.802	1.121	.491	33.214	1.3138	51416
3	.762	1.114	.485	32.382	1.2684	43686
4	.470	.673	.403	25.358	1.0857	44691
5	.679	.964	.474	27.129	1.2385	4922
6	.433	.566	.378	41.998	.96869	38457
7	.790	1.094	. 5 34	17.937	1.1859	39958
8	.556	.720	.456	30.896	.97162	27038
9	.459	.673	.398	29.535	1.0774	39431
10	.434	.567	.341	24.362	.95861	31486

Table F-21. Subject U Statistics

Trial	MME	SD	SER	Q	ф1	Φ2
1	.826	1.220	.608	18.864	1.1207	32501
2	.560	.785	.518	26.992	.9889	39084
3	.638	1.095	.711	15.669	.92807	22642
4	.510	.720	.486	21.278	.95784	37489
5	.471	.627	.400	27.561	1.0198	42643
6	.548	.760	.368	12.532	1.1593	36018
7	.758	1.074	.535	19.521	1.1768	39008
8	.431	.637	.348	11.539	1.1330	3912
9	.546	.743	.391	39.355	1.1999	49120
10	.575	.855	.394	18.484	1.3513	61039

Table F-22. Subject V Statistics

Trial	MME	SD	SER	Q	$^{\phi_1}$	Φ ₂
1	.873	1.141	.791	37.682	.90789	43414
2	.810	1.163	.802	22.575	.92422	31999
3	.592	.773	,509	30.350	.96755	3400
4	.551	.702	,470	18.192	.97803	49425
5	.592	.740	, 505	20.802	.96173	42692
6	.568	.745	.509	19.934	.95898	43695
7	.570	.703	.447	21.357	1.0298	36574
8	.624	.830	,457	27.655	1.0643	31008
9	.544	.731	.451	21.416	.9940	33574
10	.628	.841	.539	14.349	1.0014	35837

Table F-23. Subject W Statistics

Trial	MME	SD	SER	Q	^ф 1	[‡] 2
1	.854	1.166	,610	27.13	1.119	32749
2	.598	.785	.474	28.777	1.0674	40466
3	.622	.784	.369	21.556	1.2192	46021
4	.519	.697	.407	14.148	.95020	1691
5	.668	.877	.473	13.524	1.1808	47913
6	.504	.662	.389	31.445	1.1097	4733
7	.604	.847	. 345	12.488	1.3524	55134
8	.446	.591	.352	22.809	1.1749	54733
9	.544	.926	.369	22.47	1.3973	50161
10	.454	.613	.405	15.78	.99049	42892

Table F-24. Subject X Statistics

Trial	MME	SD	SER	Q	Φ1	Ф2
1	.793	1.152	. 599	32.752	1.1947	4652
2	.592	.868	.517	20.294	1.0169	29332
3	1.094	1.387	.481	34.812	1.4416	59747
4	.849	1.216	.596	22.014	1.1825	38043
5	.819	1.168	.502	34.705	1.2196	36617
6	.753	.989	.532	19.192	1.1142	34712
7	.480	.664	.445	18.905	.98567	40539
8	.659	.817	.532	13.86	.9744	31852
9	.673	1.063	.482	16.319	1.2079	37979
10	.783	1.103	.444	19.777	1.3184	47916

BIBLIOGRAPHY

- 1. Bowker, A.H. and G.J. Lieberman, Engineering Statistics, Prentice-Hall, Inc., (1959), Englewood Cliffs, N.J.
- Box, G.E.P. and G.M. Jenkins, <u>Time Series Analysis</u>: Forecasting and Control, Holden Day, (1976), San Francisco.
- 3. Chow, G.C., "Tests of Equality Between Sets of Coefficients in Two Linear Regressions," <u>Econimetrica</u>, Vol. 28, No. 3, (1960), 591-605.
- 4. Cook, T.D. and D.T. Campbell, <u>Quasi-Experimentation</u>: <u>Design</u> and <u>Analysis Issues for Field Settings</u>, Rand McNally College Publishing Company, (1979), Chicago.
- Dixon, W.J. and M.B. Brown, <u>Biomedical Computer Programs</u>
 <u>P-Series 1979</u>, University of California Press, (1979),
 Los Angeles.
- 6. Fogel, L.J., <u>Biotechnology: Concepts and Applications</u>
 Prentice-Hall, (1963), Englewood Cliffs, N.J.
- 7. Hines, W.W. and D.C. Montgomery, <u>Probability and Statistics in Engineering and Management Science</u>, John Wiley & Sons, (1972), New York.
- 8. Kelley, C.R., "The Measurement of Tracking Proficiency," Human Factors, (1969), Vol. 11, No. 1, 43-64.
- 9. Lindgren, B.W., <u>Statistical Theory</u>, 3rd Edition, Macmillan Publishing Company, (1976), New York.
- 10. McCormick, E.J., <u>Human Factors in Engineering Design</u>, McGraw-Hill Book Company, (1976), New York.
- 11. Montgomery, D.C., <u>Design and Analysis of Experiments</u>, John Wiley & Sons, (1976), New York.
- 12. Montgomery, D.C. and L.A. Johnson, <u>Forecasting and Time Series</u>
 Analysis, McGraw-Hill Book Company, (1976), New York.
- 13. Poulton, E.C., <u>Tracking Skill and Manual Control</u>, Academic Press, (1974), New York.
- 14. Robinson, F.A., "A Study of Learning in the Operations of A Viscous Damped Traversing Unit," Thesis, Georgia Institute of Technology.

- 15. Sheridan, T.B. and W.R. Ferrell, Man-Machine Systems:

 Information, Control, and Decision Models of Human
 Performance, The MIT Press, (1974), Cambridge,
 Massachusetts.
- 16. Van Cott, H.P. and R.G. Kincade, <u>Human Engineering Guide</u>
 to Equipment Design, McGraw-Hill Book Company, (1972),
 New York.
- 17. Welford, A.T., <u>Skilled Performance</u>: <u>Perceptual and Motor Skills</u>, Scott, Foresman and Company, (1976), Glenview, Illinois.

