互评作业1:数据探索性分析与数据预处理-1

3120215523 金玉卿

1. 问题描述

自行选择2个数据集进行探索性分析与预处理

所选数据集: Wine Reviews

2. 数据集

wine reviews

包含2个csv文件

winemag-data_first150k.csv包含10列和15万条葡萄酒评论

winemag-data-130k-v2.csv

包含10列和13万行葡萄酒评论

导入库

In [5]:

- 1 import matplotlib
- 2 import numpy as np
- 3 import pandas as pd
- 4 %matplotlib inline

载入数据

In [6]:

```
path_15k = "data/wine reviews/winemag-data_first150k.csv"

path_13k = "data/wine reviews/winemag-data-130k-v2.csv"

data_15k = pd. read_csv(path_15k)
```

数据属性

In [7]:

1 data_15k. head (5)

Out[7]:

	Unnamed: 0	country	description	designation	points	price	province	region_1	region	
0	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	Na	
1	1	Spain	Ripe aromas of fig, blackberry and cassis are	Carodorum Selección Especial Reserva	96	110.0	Northern Spain	Toro	Nέ	
2	2	US	Mac Watson honors the memory of a wine once ma	Special Selected Late Harvest	96	90.0	California	Knights Valley	Sonor	
3	3	US	This spent 20 months in 30% new French oak, an	Reserve	96	65.0	Oregon	Willamette Valley	Willame Vall	
4	4	France	This is the top wine from La Bégude, named aft	La Brûlade	95	66.0	Provence	Bandol	Na	
4									+	

In [8]:

1 data_15k.dtypes

Out[8]:

Unnamed: 0 int64 country object description object ${\tt designation}$ object points int64 price float64 object province region_1 object $region_2$ object variety object winery object dtype: object

- - country 国家desprition 描述
 - designation 葡萄酒庄

- points 得分
- price 价格
- province 省份
- region_1 区域1
- region_2 区域2
- variety 葡萄种类
- winery 酿酒厂

3. 数据分析

3.1 数据可视化和摘要

3.1.1 country属性

```
In [9]:
```

```
1 attri = "country"
2 data_15k[attri].value_counts(dropna=False)
```

Out[9]:

US	62397
Italy	23478
France	21098
Spain	8268
Chile	5816
Argentina	5631
Portugal	5322
Australia	4957
New Zealand	3320
Austria	3057
Germany	2452
South Africa	2258
Greece	884
Israel	630
Hungary	231
Canada	196
Romania	139
Slovenia	94
Uruguay	92
Croatia	89
Bulgaria	77
Moldova	71
Mexico	63
Turkey	52
Georgia	43
Lebanon	37
Cyprus	31
Brazil	25
Macedonia	16
Serbia	14
Morocco	12
Luxembourg	9
England	9
India	8
Lithuania	8
Czech Republic	6
NaN	5
Ukraine	5
Bosnia and Herzegovina	4
South Korea	4
Switzerland	4
Slovakia	3
Egypt	3
China	3
Tunisia	2
Montenegro	2 2
Albania	2
Japan	2
US-France	1
Name: country, dtype: inte	64

In [10]:

```
data_15k[attri].value_counts(dropna = False).plot(kind="bar", figsize=(15, 4))
```

Out[10]:

<AxesSubplot:>

3.1.2 designation属性

标称属性,给出每个可能取值的频数

In [11]:

```
1 attri = "designation"
2 data_15k[attri].value_counts(dropna = False)
```

Out[11]:

NaN	45735
Reserve	2752
Reserva	1810
Estate	1571
Barrel sample	1326
Extra Dry Rosè	1
Meredith Estate Méthode a l'Ancienne	1
Mythos	1
Taberner	1
Flying Rooster Vineyard	1
Name: designation, Length: 30622, dtype:	int64

使用直方图可视化,只显示前50项

In [12]:

```
data_15k[attri].value_counts(dropna = False)[:50].plot(kind="bar", figsize=(15,4))
```

Out[12]:

<AxesSubplot:>

3.1.3 province属性

标称属性,给出每个可能取值的频数

In [13]:

```
1 attri = "province"
2 data_15k[attri].value_counts(dropna = False)
```

Out[13]:

California	44508	
Washington	9750	
Tuscany	7281	
Bordeaux	6111	
Northern Spain	4892	
Viile Timis	1	
Pannon	1	
Colchagua Costa	1	
Valais	1	
Neuchâtel	1	

Name: province, Length: 456, dtype: int64

使用直方图可视化,只显示前50项

In [14]:

```
1 data_15k[attri].value_counts(dropna = False)[:50].plot(kind="bar", figsize=(15,4))
```

Out[14]:

<AxesSubplot:>

3.1.4 region_1属性

标称属性,给出每个可能取值的频数

In [15]:

```
1 attri = "region_1"
2 data_15k[attri].value_counts(dropna = False)
```

Out[15]:

NaN	25060
Napa Valley	6209
Columbia Valley (WA)	4975
Mendoza	3586
Russian River Valley	3571
Mitterberg	1
Mazoyeres-Chambertin	1
Monterey County-Napa County-Sonoma County	1
Prince Edward County	1
Mâcon-Mancey	1
Name: region_1, Length: 1237, dtype: int64	

使用直方图可视化,只显示前50项

In [16]:

data_15k[attri].value_counts(dropna = False)[:50].plot(kind="bar", figsize=(15,4))

Out[16]:

<AxesSubplot:>

3.1.5 region_2属性

In [17]:

```
1 attri = "region_2"
2 data_15k[attri].value_counts(dropna = False)
```

Out[17]:

NaN	89977
Central Coast	13057
Sonoma	11258
Columbia Valley	9157
Napa	8801
California Other	3516
Willamette Valley	3181
Mendocino/Lake Counties	2389
Sierra Foothills	1660
Napa-Sonoma	1645
Finger Lakes	1510
Central Valley	1115
Long Island	771
Southern Oregon	662
Oregon Other	661
North Coast	632
Washington Other	593
South Coast	198
New York Other	147
Name: region_2, dtype:	int64

使用直方图可视化

In [18]:

```
data_15k[attri].value_counts(dropna = False).plot(kind="bar",figsize=(15,4))
```

Out[18]:

<AxesSubplot:>

3.1.6 variety属性

In [19]:

```
1 attri = "variety"
2 data_15k[attri].value_counts(dropna = False)
```

Out[19]:

Chardonnay 14482 Pinot Noir 14291 Cabernet Sauvignon 12800 Red Blend 10062 Bordeaux-style Red Blend 7347 Jacquez 1 Moscato di Noto Moscatel de Alejandría Forcallà Syrah-Carignan Name: variety, Length: 632, dtype: int64

使用直方图可视化,只显示前80项

In [20]:

```
data_15k[attri].value_counts(dropna = False)[:80].plot(kind="bar", figsize=(15,4))
```

Out[20]:

<AxesSubplot:>

3.1.7 winery属性

In [21]:

```
1 attri = "winery"
2 data_15k[attri].value_counts(dropna = False)
```

Out[21]:

Williams Selyem	374	
Testarossa	274	
DFJ Vinhos	258	
Chateau Ste. Michelle	225	
Columbia Crest	217	
	• • •	
Château Capbern	1	
Dovev	1	
Poggioventoso	1	
Château d'Estoublon	1	
Costa del Sol	1	
Name: winery, Length:	14810, dtype:	int64

使用直方图可视化,只显示前80项

In [22]:

```
data_15k[attri].value_counts(dropna = False)[:80].plot(kind="bar", figsize=(15, 4))
```

Out[22]:

<AxesSubplot:>

3.1.8 points属性

数值属性,给出五数概括

In [23]:

```
1 attri = "points"
2 for i in range(0,5):
3          q = i * 0.25
4          print("Q%d:"%(i), end=" ")
5          print(data_15k[attri]. quantile(q))
```

Q0: 80.0 Q1: 86.0 Q2: 88.0 Q3: 90.0 Q4: 100.0

给出缺失值个数

In [24]:

```
1 print(data_15k[attri].isnull().sum(axis=0))
```

0

绘制盒图

In [25]:

```
1 p = data_15k.boxplot([attri], return_type='dict')
```


检查离群点

```
print(p['fliers'][0].get ydata())
   2 print("MIN: ", end="")
   3 print (min(p['fliers'][0].get ydata()))
Γ100
      99
           98
                98
                     98
                          97
                              97
                                   97
                                        97
                                             97
                                                 97
                                                      97
                                                           97
                                                                97
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
  97
      97
           97
                97
                     97
                          98
                              97
                                   98
                                        97
                                             97
                                                 97
                                                      97
                                                           97
                                                                97
                                                                    98
                                                                         97
                                                                              97
                                                                                   97
  97
       97
           97
                98
                     97
                          97
                              97
                                   97
                                        97
                                             97
                                                 97
                                                      97 100 100
                                                                    99
                                                                         99
                                                                              98
                                                                                   98
  98
       98
           98
                98
                     97
                          97
                              97
                                   97
                                        97
                                             97
                                                 98
                                                      98
                                                           98
                                                                98
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
  97
       97
           97
                98
                     97
                          97
                              97
                                   97
                                       100
                                             99
                                                 99
                                                      98
                                                           98
                                                                98
                                                                    98
                                                                         98
                                                                              98
                                                                                   97
  97
      97
           97 100
                     99
                          98
                              97
                                   97
                                        97
                                             97
                                                 97
                                                      97
                                                           97
                                                                97
                                                                    97
                                                                         99
                                                                              97
                                                                                   98
           97
                          97 100
                                        98
                                             97
                                                 97
                                                      97
                                                           97
                                                                97
                                                                    97
  97
       97
                97
                     97
                                   98
                                                                         97
                                                                              97
                                                                                   97
  97
       97
           97
                97
                     97
                          97
                              97
                                   97
                                        97
                                             99
                                                 97
                                                      97
                                                           99
                                                                99
                                                                    99
                                                                         98
                                                                              98
                                                                                   98
  98
       98
           97
                97
                     97
                          97
                              97
                                   97
                                        99
                                             97
                                                 97
                                                      97
                                                           97
                                                                97
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
           99
                                                 97
                                                                              98
                                                                                   97
 100
       99
                98
                     98
                          98
                              98
                                   98
                                        98
                                             97
                                                      97
                                                           97
                                                                97
                                                                    99
                                                                         99
  97
       97
           97
                97
                     98
                          98
                              97
                                   97
                                        97
                                             97
                                                 97 100
                                                           99
                                                                98
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
           98
                97
                     97
                          97
                              97
                                   97
                                        97
                                             97
                                                 99
                                                      99
                                                           99
                                                                    98
                                                                              98
                                                                                   97
  97
      97
                                                                98
                                                                         98
  97
      97
           97
                97
                     97
                          97
                              97
                                   97
                                        97
                                             97
                                                 97
                                                      97
                                                           98
                                                                97
                                                                    97
                                                                         97
                                                                              98
                                                                                   98
       98
           99
                          97
                                   97
                                        97
                                             97
                                                 99
                                                      98
                                                           97
                                                                97
                                                                    97
  97
                98
                     98
                              97
                                                                         97
                                                                              98
                                                                                   97
  97
       97
           97
                97
                     97
                          97
                              97
                                   97
                                        97
                                             97 100
                                                      98
                                                           98
                                                                97
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
       97
           97
                     97
                          97
                              97
                                   99
                                        99
                                             99
                                                 98
                                                      98
                                                           97
                                                                97
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
  97
                97
 100
       99
           98
                97
                     97
                          97
                              97
                                   97
                                        97 100 100
                                                      99
                                                           99
                                                                98
                                                                    98
                                                                         98
                                                                              98
                                                                                   98
  98
       97
           97
                97
                     97
                          97
                              98
                                   98
                                        97
                                             97
                                                 97
                                                      97
                                                           97 100
                                                                    98
                                                                         97
                                                                              97
                                                                                   97
  97
       99
           99
                98
                     97
                          97
                              97
                                   98
                                        97 100
                                                 98
                                                      97
                                                           97
                                                                97
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
                              97
  97
      97
           97
                98
                     97
                          97
                                   97
                                        98
                                             97
                                                 97
                                                      97
                                                          100
                                                                98
                                                                    98
                                                                         97
                                                                              97
                                                                                   97
           98
                97
                     97
                          97
                              99
                                        97
                                             97
                                                 98
                                                      98
                                                                98
                                                                    97
                                                                         97
                                                                                   98
  97
      97
                                   98
                                                           98
                                                                              98
  97
       97
           97
                97
                     98
                          97
                              97
                                   97
                                        97
                                             99
                                                 99
                                                      99
                                                           98
                                                                98
                                                                    98
                                                                         98
                                                                              97
                                                                                   97
  97
      97
           97
                97
                     97
                          97
                                   97
                                        97
                                             97
                                                 97
                                                      97
                                                           97
                                                                98
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
                              98
  97
       97
           98 100
                     97
                          97
                              97
                                   99
                                        98
                                             97
                                                 97 100
                                                           99
                                                                98
                                                                    98
                                                                         97
                                                                              97
                                                                                   97
           97
                     99
                          98
                              98
                                   97
                                        97
                                             97
                                                 97
                                                      97 100 100
                                                                    99
                                                                         99
                                                                              98
                                                                                   98
  97
      97
                97
           98
                98
                                        97
                                             97 100
                                                      99
  98
      98
                     97
                          97
                              97
                                   97
                                                           99
                                                                98
                                                                    98
                                                                         98
                                                                              98
                                                                                   98
  98
      97
           97
                97
                     97
                          98
                              97
                                   97
                                        97
                                             99
                                                 98
                                                      98
                                                           97
                                                                97
                                                                    97
                                                                         97
                                                                              97
                                                                                  100
  98
      98
           97
                97
                     97
                          97
                              98
                                   97
                                        99
                                             97
                                                 97
                                                      97
                                                           97
                                                                97
                                                                    97
                                                                         97
                                                                              97
                                                                                   97
       98
           97
                     98
                          97
                                   97
                                        97
                                             99
                                                 99
                                                      99
                                                           98
                                                                98
                                                                    98
                                                                         98
                                                                              97
                                                                                   97
  99
                97
                              97
  97
       97
           97
                97
                     97
                          97
                              97
                                   97
                                        97
                                             97
                                                 97
                                                      99
                                                           98
                                                                97
                                                                    97
                                                                         97 100
                                                                                   98
                          97
                                        97
                                                      97
  97
       97
           97
                97 100
                              98
                                   98
                                             97
                                                 97
                                                           99
                                                                98
                                                                    98
                                                                         98
                                                                              97 100
           98
                97
                     97
                          97
                              97
                                   97
                                        97
                                             97
                                                 97
                                                      97]
  99
      98
MIN: 97
```

因此, points中大于等于97的项被识别为离群点。

3.1.9 price属性

数值属性,给出五数概括

In [27]:

```
1 attri = "price"
2 for i in range(0,5):
3          q = i * 0.25
4          print("Q\d:"\%(i), end=" ")
5          print(data_15k[attri]. quantile(q))
```

Q0: 4.0 Q1: 16.0 Q2: 24.0 Q3: 40.0 Q4: 2300.0

给出缺失值个数

In [28]:

```
1 print(data_15k[attri].isnull().sum(axis=0))
```

13695

绘制盒图

In [29]:

```
1 p = data_15k.boxplot([attri], return_type='dict', figsize=(5,10))
```


检查离群点

In [30]:

```
print(p['fliers'][0].get_ydata())
print("MIN: ",end="")
print(min(p['fliers'][0].get_ydata()))
```

```
[235. 110. 90. ... 83. 100. 87.]
MIN: 77.0
```

因此,price中大于等于77的项被识别为离群点。

3.2 处理数据缺失

首先统计所有属性的缺失值

In [31]:

```
1 print(data_15k.isnull().sum(axis=0))
                   0
Unnamed: 0
country
                   5
description
                   0
designation
              45735
points
                   0
               13695
price
province
                   5
               25060
region_1
region_2
               89977
variety
                   0
                   0
winery
dtype: int64
```

3.2.1 处理country属性缺失

可能原因是人为失误,通过属性的相关关系来填补缺失值,使用designation的属性来判断所属国家

根据空值的分布,定义一个从designation到country的转换字典

In [32]:

处理缺失

```
In [33]:
```

```
data_15k_new = data_15k.iloc[:,:]
for i in range(0, len(data_15k_new)):
    tmp = data_15k_new.iloc[i,1]
    if pd.isnull(tmp):
        designation = data_15k_new.iloc[i,3]
        data_15k_new.iloc[i,1] = designation2country[designation]
data_15k_new[attri].value_counts(dropna = False)
```

Out[33]:

Out[33]:	
US	62398
Italy	23478
France	21098
Spain	8268
Chile	5819
Argentina	5631
Portugal	5322
Australia	4957
New Zealand	3320
Austria	3057
Germany	2452
South Africa	2258
Greece	885
Israel	630
Hungary	231
Canada	196
Romania	139
Slovenia	94
Uruguay	92
Croatia	89
Bulgaria	77
Moldova	71
Mexico	63
Turkey	52
Georgia	43
Lebanon	37
Cyprus	31
Brazil	25
Macedonia	16
Serbia	14
Morocco	12
Luxembourg	9
England	9
Lithuania	8
India	8
Czech Republic	6
Ukraine	5
South Korea	4
Bosnia and Herzegovina	4
Switzerland	4
Slovakia	3
China	3
Egypt	3
Tunisia	2
Montenegro	
Albania	2 2
Japan	2
US-France	1
Name: country, dtype: in	t64

可视化对比

In [*]:

```
attri = "country"

matplotlib.pyplot.subplot(2,1,1)

data_15k[attri].value_counts(dropna = False).plot(kind='bar',figsize=(20,8))

matplotlib.pyplot.subplot(2,1,2)

data_15k_new[attri].value_counts(dropna = False).plot(kind='bar',figsize=(20,8))
```

Out[34]:

<AxesSubplot:>

3.2.2处理designation属性缺失

将缺失部分剔除

In [29]:

```
1 attri = "designation"
2 d = data_15k.dropna(subset=[attri])
```

Out[29]:

	Unnamed: 0	country	description	designation	points	price	province	region_1
0	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley
1	1	Spain	Ripe aromas of fig, blackberry and cassis are	Carodorum Selección Especial Reserva	96	110.0	Northern Spain	Torc
2	2	US	Mac Watson honors the memory of a wine once ma	Special Selected Late Harvest	96	90.0	California	Knights Valley
3	3	US	This spent 20 months in 30% new French oak, an	Reserve	96	65.0	Oregon	Willamette Valley
4	4	France	This is the top wine from La Bégude, named aft	La Brûlade	95	66.0	Provence	Bando
150923	150923	France	Rich and toasty, with tiny bubbles. The bouque	Demi-Sec	91	30.0	Champagne	Champagne
150924	150924	France	Really fine for a low- acid vintage, there's an	Diamant Bleu	91	70.0	Champagne	Champagne
150926	150926	France	Offers an intriguing nose with ginger, lime an	Cuvée Prestige	91	27.0	Champagne	Champagne
150927	150927	Italy	This classic example comes from a cru vineyard	Terre di Dora	91	20.0	Southern Italy	Fiano d Avellinc

	Unnamed: 0	country	description	designation	points	price	province	region_1	l
150928	150928	France	A perfect salmon shade, with scents of peaches	Grand Brut Rosé	90	52.0	Champagne	Champagne	:
105195 ı	rows × 11 co	olumns							~
4								•	

可视化对比,直方图中只显示前50项

In [30]:

```
attri = "designation"
matplotlib.pyplot.subplot(2,1,1)
data_15k[attri].value_counts(dropna = False)[:50].plot(kind='bar',figsize=(20,10))
matplotlib.pyplot.subplot(2,1,2)
d[attri].value_counts(dropna = False)[:50].plot(kind='bar',figsize=(20,10))
```

Out[30]:

<matplotlib.axes._subplots.AxesSubplot at 0x13c65ca0>

1 #### 3.2.3 处理price属性缺失

可能原因是该种葡萄酒的价格无法获取,用最高频率值来填补缺失值

```
In [31]:
```

```
1 attri = "price"
2 mode = data_15k[attri].mode()
3 f = data_15k[attri].fillna(int(mode))
4 print(f)
```

0	235.0			
1	110.0			
2	90.0			
3	65.0			
4	66.0			
150925	20.0			
150926	27.0			
150927	20.0			
150928	52.0			
150929	15.0			
			_	

Name: price, Length: 150930, dtype: float64

可视化对比

In [32]:

```
1 data_15k.boxplot([attri], vert=False, figsize=(20, 3))
```

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x13fa3298>

In [33]:

```
matplotlib.pyplot.figure(figsize=(20,3))
matplotlib.pyplot.boxplot(f,vert=False)
```

Out[33]:

```
{'whiskers': [<matplotlib.lines.Line2D at 0x1506c0b8>, <matplotlib.lines.Line2D at 0x1506c268>],
'caps': [<matplotlib.lines.Line2D at 0x1506c418>, <matplotlib.lines.Line2D at 0x1506c5c8>],
'boxes': [<matplotlib.lines.Line2D at 0x1505fee0>],
'medians': [<matplotlib.lines.Line2D at 0x1506c778>],
'fliers': [<matplotlib.lines.Line2D at 0x1506c8f8>],
'means': []}
```


3.2.4 处理region_1属性缺失

可能原因是在数据收集阶段无法获取到region_1,用最高频率值来填补缺失值

In [34]:

```
1 attri = "region_1"
2 mode = data_15k[attri].mode()
3 f = data_15k[attri].fillna(str(mode))
4 print(f)
```

```
0
                Napa Valley
1
                       Toro
2
             Knights Valley
3
          Willamette Valley
4
                     Bando1
          Fiano di Avellino
150925
150926
                  Champagne
          Fiano di Avellino
150927
150928
                  Champagne
150929
                 Alto Adige
Name: region_1, Length: 150930, dtype: object
```

可视化对比,直方图只显示前50项

In [35]:

```
1 attri = "region_1"
2 matplotlib.pyplot.subplot(2,1,1)
3 data_15k[attri].value_counts(dropna = False)[:50].plot(kind='bar',figsize=(20,15))
4 matplotlib.pyplot.subplot(2,1,2)
5 f.value_counts(dropna = False)[:50].plot(kind='bar',figsize=(20,15))
```

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x1509f190>

3.2.5 处理region_2属性缺失

可能原因是部分数据不存在region_2的属性

这里, 将缺失部分剔除

In [36]:

```
1 attri = "region_2"
2 new_region_2 = data_15k.dropna(subset=[attri])
3 print(new_region_2[attri].value_counts(dropna = False))
4 new_region_2
```

Central Coast	13057
Sonoma	11258
Columbia Valley	9157
Napa	8801
California Other	3516
Willamette Valley	3181
Mendocino/Lake Counties	2389
Sierra Foothills	1660
Napa-Sonoma	1645
Finger Lakes	1510
Central Valley	1115
Long Island	771
Southern Oregon	662
Oregon Other	661
North Coast	632
Washington Other	593
South Coast	198
New York Other	147
Name: region_2, dtype:	int64

Out[36]:

	Unnamed: 0	country	description	designation	points	price	province	region_1	
0	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	
2	2	US	Mac Watson honors the memory of a wine once ma	Special Selected Late Harvest	96	90.0	California	Knights Valley	
3	3	US	This spent 20 months in 30% new French oak, an	Reserve	96	65.0	Oregon	Willamette Valley	
8	8	US	This re- named vineyard was formerly bottled as	Silice	95	65.0	Oregon	Chehalem Mountains	
9	9	US	The producer sources from two blocks of the vi	Gap's Crown Vineyard	95	60.0	California	Sonoma Coast	

	Unnamed: 0	country	description	designation	points	price	province	region_1	
150892	150892	US	A light, earthy wine, with violet, berry and t	Coastal	82	10.0	California	California	Calif
150896	150896	US	Some raspberry fruit in the aroma, but things	NaN	82	10.0	California	California	Calif
150914	150914	US	Old-gold in color, and thick and syrupy. The a	Late Harvest Cluster Select	94	25.0	California	Anderson Valley	Mend
150915	150915	US	Decades ago, Beringer's then- winemaker Myron N	Nightingale	93	30.0	California	North Coast	Ν
150916	150916	US	An impressive wine that presents a full bouque	J. Schram	93	65.0	California	Napa Valley	
60953 rows × 11 columns									
4									•

可视化对比

In [37]:

```
1 attri = "region_2"
2 matplotlib.pyplot.subplot(2,1,1)
3 data_15k[attri].value_counts(dropna = False).plot(kind='bar',figsize=(20,10))
4 matplotlib.pyplot.subplot(2,1,2)
5 new_region_2[attri].value_counts(dropna = False).plot(kind='bar',figsize=(20,10))
```

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x137a7d30>

