

数据结构与算法设计

周可

Mail: zhke@hust.edu.cn

华中科技大学, 武汉光电国家研究中心

NP-Completeness

1. Polynomial time

 $\rightarrow P$

2. Polynomial time verification

 \rightarrow NP

3. NP-Completeness

 \rightarrow NPC

4. NP-hard

引入: 千禧难题

P=NP? 是千禧年大奖难题(世界七大数学难题)之首。

TSP,即旅行商问题,是数学领域著名问题之一,也是 NP问题。

10个城市为例:

10! = 3628800

贪心算法求解

算法简单,时间/空间 复杂度低

时间复杂度的简单分类

- (1) 多项式时间 —— 2n, nlogn, 3n²+4n
- (2) 非多项式时间 2ⁿ, n!, nⁿ

已知: 2n, 2ⁿ, nlogn, n!, 3n²+4n

Q1: 该如何归类?

Q2: 多项式时间算法一定比非多项式时间算法快吗? 为什么?

Background

Almost all the problem we have studied thus far have been tractable or easy problem that are solvable by *polynomial-time* algorithms.

- (1) How to determine whether a problem is easy or not, and tractable or not?
- (2) Whether all problems can be solved in polynomial time?

- A concrete problem is *polynomial-time* solvable if there exists an algorithm to solve it in time $O(n^k)$ for some constant k.
- ☐ *The complexity class P* is the set of concrete decision problems that are polynomial-time solvable.

Q: how to describe a concrete problem and a concrete decision problem.

Before describe a concrete problem, define an abstract problem first.

Abstract problem
$$Q = \langle I, S \rangle$$

$$Q = \langle I, S \rangle$$
Problem solution

For example

An instance for SHORTEST-PATH is a triple consisting of a graph and two vertices.

$$I_{SHORTEST-PATH} = \langle G, u, v \rangle$$

A solution for SHORTEST-PATH is a sequence of vertices in the graph, with perhaps the empty sequence denoting that no path exists.

$$S_{SHORTEST-PATH} = \begin{cases} (u, ...x_i, ...v) & x_i \in G \\ \emptyset & no \ path \ exists \end{cases}$$

□ *Optimization problem*: those require some value to minimized or maximized.

e.g. Given undirected graph G and vertices u and v, find a path from u to v that uses the fewest edges.

easy to recast

□ *Decision problem*: those having a yes/no solution.

e.g. Given a undirected graph G, vertices u and v and an integer k, does a path exist from u to v consisting at most k edges?

For example (Optimization problem)

An instance for SHORTEST-PATH is a triple consisting of a graph and two vertices.

$$I_{SHORTEST-PATH} = \langle G, u, v \rangle$$

A solution for SHORTEST-PATH is a sequence of vertices in the graph, with perhaps the empty sequence denoting that no path exists.

$$S_{SHORTEST-PATH} = \begin{cases} (u, ...x_i, ...v) & x_i \in G \\ \emptyset & no \ path \ exists \end{cases}$$

For example (Decision problem)

An instance for SHORTEST-PATH decision problem.

$$I_{SHORTEST-PATH} = \langle G, u, v, k \rangle$$

A solution for SHORTEST-PATH decision problem.

$$S_{SHORTEST-PATH} = \begin{cases} 1 & yes \\ 0 & no \end{cases}$$

- □ *A concrete problem* is a problem whose instance set is the set of binary string.
- ☐ An abstract problem can be represented into a concrete problem with *encoding*.
- \square An encoding of a set S of abstract object is a mapping e from S to the set of binary.

e.g.
$$N = \{0,1,2,3...\}$$

String = $\{0,1,10,11,100,...\}$ $e(17) = 10001$

Tips

- ■With different encoding, the algorithm runs in either polynomial or superpolynomial time.
- e.g. Support that an integer k is to be provided as the sole input to an algorithm and suppose that the running time of the algorithm is O(k).

Input way	Input size	Running time
Unary	n	O(n)
Binary	$N = \lfloor \lg k \rfloor + 1$	$O(2^n)$

standard encoding: assume that the encoding of an integer is polynomially related to its binary representation.

e.g. <G> denotes the standard encoding of a graph G.

Summary

- An algorithm solves a concrete problem in time O(T(n)), if when it is provided an instance i length of n = |i|, the algorithm can produce the solution in O(T(n)) time.
- \square A concrete problem is polynomial-time solvable, if there exists an algorithm to solve it in time $O(n^k)$ for some constant k.

Optional—formal-language Definition

□ Define any decision problem Q as a language L over $\Sigma = \{0, 1\}$, where

$$L = \{ x \in \sum^* : Q(x) = 1 \}$$

e.g. SHORTES-PATH= $\{\langle G, u, v, k \rangle : G = (V, E) \text{ is an undirected graph, } u, v \in V, k \geq 0 \text{ is an integer, and there exists a path from u to v in consisting of at most k edges}$

□ Define the complexity class P:

 $P = \{L \subseteq \{0,1\}^* : \text{ there exists an algorithm } A \text{ that decides } L \text{ in polynomial time} \}$

Chapter 10 NP-Completeness

- 1. Polynomial time
- 2. Polynomial time verification
- 3. NP-Completeness
- 4. NP-hard

Background—Hamiltonian cycles

It is NP problem.

A Hamiltonian cycle is a simple cycle that contains each vertex in an undirected graph.

It's name honors W.R. Hamilton, who described a mathematical game on the dodecahedron in which one player sticks five pins in any five consecutive vertices and other player must complete the path to form a cycle containing all the vertices.

HAM-CYCLE = $\{ \langle G \rangle : G \text{ is a Hamiltonian graph} \}$.

Hamiltonian cycles

HAM-CYCLE = $\{ \langle G \rangle : G \text{ is a Hamiltonian graph} \}$.

- 1. Choose encoding: adjacency matrix (input size is *n*)
- 2. Get vertices number: $m = \sqrt{n}$
- 3. Get possible permutations of the vertices: *m*!
- 4. Calculate running time: $\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}})$

$$\Omega(2^{\sqrt{n}}) >> O(n^k)$$

HAM-CYCLE isn't P problem but can be verified in polynomial time. It's NP problem.

 \Box The language verified by a *verification* algorithm A is:

$$L = \{x \in \{0,1\}^* : \text{ there exists } y \in \{0,1\}^* \}$$
such that $A(x, y) = 1\}$

$$certificate$$

An algorithm A verifies a language L if for any string $x \in L$, there exists a *certificate* y that A can use to prove that $x \in L$.

For example

Verification algorithm of Hamiltonian cycles.

Step 1: checking whether **certificate** *y* is a permutation of vertices of *V*.

Step 2: checking whether each of consecutive edges along the **certificate** *y* is exists in the graph.

Certificate y = {1,2,3,4...20}

- ☐ The complexity class NP of languages that can be verified by a polynomial-time algorithm.
- \square (optional) A language L belong to NP if and only if exist a two-input polynomial-time algorithm A and a constant c such that:

 $L = \{x \in \{0,1\}^* : \text{ there exists a certificate } y \}$ with $|y| = O(|x|^c)$ such that $A(x, y) = 1\}$

Q: P = NP?

Obviously, $P \subseteq NP$, but it is unknown whether P = NP.

- ☐ Intuitively, P problems can be solved quickly, NP problems can be verified quickly.
- □ the existence of NP-complete problems show compelling evidence that $P \neq NP$.

What is a NP-complete problem? What is the relationship between P and NP?

NP-Completeness

- 1. Polynomial time
- 2. Polynomial time verification
- 3. NP-Completeness
- 4. NP-hard

Background

Why theoretical computer scientists believe that P≠NP come from the existence of the class of *NP-complete problems*.

- (1) If any NP-complete problem can be solved in polynomial time, then every NP problem has a polynomial time solution.
- (2)Despite years of study, **no polynomialtime algorithm** has ever been discovered for any NP-complete problem.

A language $L \subseteq \{0,1\}^*$ is **NP-complete** if

- 1. $L \in NP$, and
- 2. $L' \leq_{\mathbb{P}} L$ for every $L' \in \mathbb{NP}$.

Polynomial-time reducible

Reducibility is tools to make decision.

Tips: if a language L satisfies property 2, but not meets 1, we say that L is **NP-hard**.

Reducibility

Intuitively, a problem Q can be *reduced* to another problem Q, if any instance of Q can be *easily rephrased* as an instance of Q, the solution to which provides a solution to the instance of Q.

$$ax + b = 0$$
 \longrightarrow $0x^2 + ax + b = 0$

A language L_1 is **polynomial-time reducible** to a language to L_2 , written $L_1 \leq_P L_2$, if there exists a polynomial-time function $f:\{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0,1\}^*$,

 $x \in L_1$ if and only if $f(x) \in L_2$

For any input $x \in \{0,1\}$, the question of whether $x \in L_1$ has the same answer as the question of whether $f(x) \in L_2$.

Lemma

If $L_1, L_2 \subseteq \{0,1\}^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in P$ implies $L_1 \in P$.

Proof Let A_2 be a polynomial-time algorithm that decides L_2 , and let F be a polynomial-time reduction algorithm that computes the reduction function f. We shall construct a polynomial-time algorithm A_1 that decides L_1 .

Practice:

Please write the meaning of the following figure.

算法F是一个规约算法,它在多项式时间内计算出从 L_1 到 L_2 的规约函数f, A_2 是一个能判定 L_2 的多项式时间算法。

算法 A_1 利用F将任何输入X转换为f(x),再利用 A_2 来判定是否有 $f(x) \in L_2$,最终判定是否有 $x \in L_1$.

Practice:

Please write the meaning of the following figure.

(多项式时间) 判定L₁?□ 规约 + (多项式时间) 判定L2

Lemma

IF any NP-complete problem is polynomial-time solvable, then P = NP. Equivalently, if any problem in NP is not polynomial-time solvable, then no NP-complete problem is polynomial-time solvable.

It is for this reason that research into the $P \neq NP$ question centers around the NP-complete problems.

For all we known, someone may yet come up with a polynomial-time algorithm for an NP-complete problem, thus proving P = NP.

Circuit satisfiability

☐ A *truth assignment* for a Boolean combinational circuit is a set of Boolean input values.

A one-output *Boolean combinational circuit* is *satisfiable* if it has a *satisfying assignment*: a truth assignment that cases the output of the

circuit to be 1.

Circuit satisfiability has the historical honor of being the first problem ever shown to NPC.

NP-completeness Proofs

Lemma

If L is a language such that $L \subseteq_P L$ for some $L \subseteq NPC$, then L is NP-hard. In addition, $L \subseteq NP$, then $L \subseteq NPC$.

- ① Prove $L \in NP$.
- ② Select a known NP-complete language L`.
- ③ Describe an algorithm that computes a function f mapping every instance $x \in \{0,1\}^*$ of L' to an instance f(x) of L.
- ④ Prove that the function f satisfies $x \in L$ and only if $f(x) \in L$ for all $x \in \{0,1\}^*$.
- 5 Prove that the algorithm computing f runs in polynomial time.

NPC部分问题

- 1. P <u></u>NP
- 2. NP-hard问题,不一定是NP问题
- 2. NPC问题: 是NP问题, 且是NP-hard问题

- 1. P <u></u>NP
- 2. NP-hard问题,不一定是NP问题
- 2. NPC问题: 是NP问题, 且是NP-hard问题

拓展:量子计算机

国际最新进展

62比特的超导量子计算原型机 "祖冲之号" (2021.5,中科大) (2021.10, "祖冲之二号" ,66比特) 求解数学算法 高斯玻色取样 只需要两百秒 ,比用目前世 界上最快的 SC"富岳" 要快一百万亿 倍。

量子计算关键词: 量子叠加态, 并行,概率性...

76个光子的量子计算原型机"九章" (2020.12,中国在全球第二个实现量子霸权) (2021,"九章二号" ,113个光子)

- ▶ 发展三阶段:
 - 量子计算(量子优越性/量子霸权)→量子模拟机→可编程通用量子计算机
- ▶ <u>指数增长复杂度</u>(电子计算机) → <u>多项式增长复杂度</u>(量子计算机)

Thank You! Q&A