# Feature Engineering

# What is Feature Engineering?

Feature engineering is the process of **using** domain knowledge to create or transform variables (features) from raw data into formats that help machine learning models learn better.

#### Goal

- 1. **Improve model performance** and interpretability.
- 2. **Reduce complexity** by transforming or encoding data more effectively.
- 3. **Leverage domain insights** so that the features *best capture underlying patterns*.



## Why is Feature Engineering Important?

#### 1. Enhances Model Performance

Good features can significantly improve accuracy and reduce error.

#### 2. Reduces Data Complexity

Proper transformations can help algorithms converge faster and more reliably.

#### 3. Domain Knowledge

Adds "expert insight" that purely algorithmic approaches might miss.

| DATE   | TIME  |   |
|--------|-------|---|
| 2-14   | 4:00  |   |
| 2-7    | 18:30 |   |
| 3-21   | 21:45 | ⊳ |
| 4-5    | 8:30  |   |
| 4 - 10 | 9:00  |   |

| DATE   | TIME  | WEEKEND | MORNING |  |
|--------|-------|---------|---------|--|
| 2-14   | 4:00  | ı       | 1       |  |
| 2-7    | 18:30 | 1       | 0       |  |
| 3-21   | 21:45 | 1       | 0       |  |
| 4-5    | 8:30  | 0       | 1       |  |
| 4 - 10 | 9:00  | 0       | 1       |  |

| BEDS | BATHS | Saft |
|------|-------|------|
| - 1  | 1     | 450  |
| 2    | t     | 1100 |
| 5    | 3     | 4000 |
| 0    | 1     | 350  |
| 3    | 2     | 1500 |

|    | Α   | D   |
|----|-----|-----|
|    | 0.2 | 0.1 |
|    | 0.4 | 0.3 |
| 7/ | 1   | 1   |
|    | 0   | 0   |
| ,  | 0.7 | 0.4 |

## Polynomial Features

## Polynomial Transformation

Create new features by raising existing numeric features to a power (e.g.,  $x^2$ ,  $x^3$ ).

#### **Interaction Term**

Multiply or combine features (e.g.,  $x_1 \times x_2$ ,  $x_1/x_2$ ).

```
from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly.fit_transform(X)
```

We've already seen something similar to this in Mean Squared Error. The polynomial degree is the same concept, but applied to the features themselves.

## Interaction Features

Combine features in pairs or more to capture potential relationships.

## Examples

- Multiplying two features:  $x_1 \times x_2$
- Dividing features:  $x_1/x_2$
- Combining text-based features (e.g., bigrams, trigrams in NLP).

## Real-World Examples

- price\_per\_sqft = price / sqft
- BMI = weight / height  $^2$
- force = mass × acceleration

| AGE | HEIGHT(M) | WEIGHT (KG) |   | BMI   |
|-----|-----------|-------------|---|-------|
| 21  | 1.38      | 74.84       |   | 21.18 |
| 32  | 1.83      | 33.91       |   | 25.09 |
| 27  | 1.63      | 61.23       | + | 23.17 |
| 40  | 1.78      | 79.38       |   | 25.11 |
| 35  | 1.8       | 102.06      |   | 31.38 |

# Normalization & Standardization

#### Normalization

Scale features to a fixed range. Useful for algorithms that rely on distances or magnitude (e.g., KNN, neural networks)

$$x_{norm} = rac{x - x_{\min}}{x_{\max} - x_{\min}}$$

#### Standardization

Transform features to have mean 0 and variance 1. Useful for linear models, logistic regression, SVM.

$$x_{std} = rac{x - \mu}{\sigma}$$



## De-Skewing & Transformation

Reduce skewness, handle outliers, or stabilize variance.

## Log Transform

$$x' = \log(x+1)$$

("+1" to handle zero or near-zero values)

## Box-Cox / Yeo-Johnson

More general transformations that handle negative and zero values gracefully.

```
from sklearn.preprocessing import PowerTransformer

pt = PowerTransformer(method='yeo-johnson')
X_trans = pt.fit_transform(X)
```

## One-Hot Encoding (Categorical Data)

Converts each category into a separate binary feature (0 or 1) so numerical algorithms can process them.

This is closely related to bag-of-words in NLP.

## Binning (Discretization)

Converting continuous features into categories by splitting the range into intervals (bins).

## Example

Age  $\rightarrow$  0-18, 19-35, 36-50, 51+.

## Usage

- Helps capture *non-linear relationships* or reduce outlier impact.
- But can cause loss of granularity.

## Dealing with Missing Data

## Simple Methods

Replace missing values with mean, median, or mode.

#### **Advanced Methods**

KNN imputation, iterative imputer, or domain-specific rules.

#### **Indicator Variables**

Create a binary feature "was\_missing" to capture whether data was missing.



## Date/Time Feature Engineering

## **Extract Components**

Day of week, month, hour, whether it's a holiday, etc.

## Cyclical Encoding

When dealing with periodic data (hours in a day, days in a week, months in a year), transform them into sine/cosine pairs.

$$x_{sin} = \sin \, rac{2\pi imes ext{hour}}{24} \; , \quad x_{cos} = \cos \, rac{2\pi imes ext{hour}}{24}$$

| <pre>df['hour_sin'] =</pre> | np.sin(2 ★ | np.pi ⋆ | df['hour']/24) |
|-----------------------------|------------|---------|----------------|
| <pre>df['hour_cos'] =</pre> | np.cos(2 * | np.pi * | df['hour']/24) |

| DATE   | TIME  |   |
|--------|-------|---|
| 2-14   | 4:00  | 1 |
| 2-7    | 18:30 |   |
| 3-21   | 21:45 | D |
| 4-5    | 8:30  |   |
| 4 - 10 | 9:00  |   |

| DATE   | TIME  | NEEKEND | MORNING |
|--------|-------|---------|---------|
| 2-14   | 4:00  | l       |         |
| 2-7    | 18:30 | 1       | 0       |
| 3-21   | 21:45 | 1       | 0       |
| 4-5    | 8:30  | 0       | 1       |
| 4 - 10 | 9:00  | 0       | 1       |
|        |       |         |         |

## Text Feature Engineering

As we saw in NLP, text data has multiple transformations into numerical features.

## Bag-of-Words

Converts text into counts of each word.

### TF-IDF

Accounts for frequency across documents.

## **Embeddings**

Word2Vec / GloVe / BERT embeddings for deeper semantic representation.





# Exercise: Classify That Pokemon

bigd103.link/classify-pokemon