CDA3201	Intro to	Logic	Design	
	-4110 (0	Logic	Decian	_

Lab Assignment

5

Name:

Grade:

/20

- Solution Selow is a Moore sequential circuit which monitors two inputs X1X2. When the two inputs X1X2 are 00, the output Z toggles at every clock. When the two inputs X1X2 are 11, the output Z toggles at every other clock. When the two inputs X1X2 are different, the output Z holds its state and would not changes until the inputs are equal again. The state diagram of the circuit is given to you.
- 5.a) [2] Fill in the next state table and the transition table using the indicated binary assignment below.

Present	Next State	Output
State	X1X2 = 00 01 11 10	Z
A	CABA	0
В	OBCB	ŏ
C	ACDC	1
D	0010	1

Q1 Q2	Q1+ Q2+	Output
	$X1X2 = 00 \ 01 \ 11 \ 10$	z
00	11 00 0100	^
01	1001 1101	0
11	50 11 10 11	1
10	01100010	Î

- 5.b) [2] Fill the next-state map for each of the two JK flip-flops below.
- 5.c) [2] Fill the JK input maps for each of the two flip-flops.
- 5.d) [2] Write the JK inputs and Z output expressions in a minimized form:

$$J1 = \frac{\overline{\chi}, \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}, \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}} \qquad K1 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}, \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}$$

$$Z = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1} \overline{\chi}_{0} + Q_{0} \chi_{1} \chi_{0}}{\overline{\chi}_{1}} \qquad K2 = \frac{\overline{\chi}_{1}$$