CIS 770: Formal Language Theory

Pavithra Prabhakar

Kansas State University

Spring 2015

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty? Solution: Check if the start symbol S is generating. How long does that take?

Determining generating symbols

Algorithm

```
\begin{array}{l} \texttt{Gen = \{}\} \\ \texttt{for every rule } A \to x \texttt{ where } x \in \Sigma^* \\ \texttt{Gen = Gen } \cup \ \{A\} \\ \texttt{repeat} \\ \texttt{for every rule } A \to \gamma \\ \texttt{ if all variables in } \gamma \texttt{ are generating then } \\ \texttt{Gen = Gen } \cup \ \{A\} \\ \texttt{until Gen does not change} \end{array}
```

- Both for-loops take O(n) time where n = |G|.
- Each iteration of repeat-until loop discovers a new variable. So number of iterations is O(n). And total is $O(n^2)$.

Membership Problem

Given a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^*$, is $w \in L(G)$? Central question in parsing.

"Simple" Solution

- Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n 1 iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- Number of parse trees of size 2n-1 is k^{2n-1} where k is the number of variables in G. So algorithm is exponential in n!
- We will see an algorithm that runs in $O(n^3)$ time (the constant will depend on k).

First Ideas

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n$, $j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1,n} = w$; thus, we will solve the membership problem.

How do we determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$ for every A, i, j?

Base Case

Substrings of length 1

Observation

For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

• Since G is in Chomsky Normal Form, G does not have any ϵ -rules, nor any unit rules.

Thus, for each A and i, one can determine if $A \stackrel{*}{\Rightarrow} w_{i,1}$.

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

- $A \stackrel{*}{\Rightarrow} w_{i,j}$ iff there are variables B and C and some k < j such that $A \to BC$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k,j-k}$
- Since k and j-k are both less than j, we can inductively determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Cocke-Younger-Kasami (CYK) Algorithm

```
Algorithm maintains X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.
Initialize: X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}
for j = 2 to n do
for i = 1 to n - j + 1 do
X_{i,j} = \emptyset
for k = 1 to j - 1 do
X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, \ B \in X_{i,k}, \ C \in X_{i+k,j-k}\}
```

Correctness: After each iteration of the outermost loop, $X_{i,j}$ contains exactly the set of variables A that can derive $w_{i,j}$, for each i. Time $= O(n^3)$.

Example

Example

Consider grammar

$$S \rightarrow AB \mid BC, \ A \rightarrow BA \mid a, \ B \rightarrow CC \mid b, \ C \rightarrow AB \mid a \text{ Let } w = baaba. \text{ The sets } X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}:$$

More Decision Problems

Given a CFGs G_1 and G_2

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?
- Is $L(G_1) = L(G_2)$?
- Is G_1 ambiguous?
- Is $L(G_1)$ inherently ambiguous?

All these problems are undecidable.