# Técnicas para Programação Competitiva Algoritmos Envolvendo Grafos

Prof. Andrei Braga



## Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

## Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

# Motivação

- Muitas aplicações computacionais envolvem
  - Itens (dados ou conjuntos de dados)
  - Conexões entre os itens
- Para modelar situações como estas, usamos uma estrutura matemática (ou uma estrutura de dados) chamada de grafos





# Motivação

- Exemplos de aplicações:
  - Problemas de roteamento
  - Estudo de redes sociais
  - Problemas de topologia em redes
  - Problemas de alocação





## Grafo

- Um **grafo** *G* é um par ordenado ( *V*, *E* ) composto por
  - o um conjunto de **vértices** *V* e
  - o um conjunto de **arestas** E, sendo cada aresta um conjunto  $\{v_i, v_i\}$  de dois vértices de G
    - note que  $\{v_i, v_i\} = \{v_i, v_i\}$ , ou seja, não consideramos uma direção para a aresta
- Exemplo:
  - $\circ$  G = (V, E), onde
    - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
    - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$



# Desenho de um grafo

- Um desenho de um grafo é uma representação gráfica do grafo onde
  - pontos (ou círculos) representam os vértices do grafo e
  - linhas conectando os pontos (ou círculos) representam as arestas do grafo
- Um desenho nos dá uma intuição sobre a estrutura do grafo, mas devemos usar esta intuição com cautela, porque o grafo é definido independentemente das suas representações gráficas
- Exemplo:
  - G = (V, E), onde

    - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$   $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \},$  $\{V_1, V_2\}, \{V_1, V_4\}, \{V_2, V_4\},$  $\{ V_3, V_4 \}, \{ V_3, V_5 \} \}$



# Grafo (simples)

- Em um grafo simples,
  - o não podem existir duas ou mais arestas conectando um mesmo par de vértices e
  - o não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:



 A não ser que seja dito o contrário, os grafos que vamos considerar são simples

# Vizinhança

- Por simplicidade, também denotamos uma aresta  $\{v_i, v_j\}$  como  $v_i v_j$
- Dada uma aresta  $v_i v_j$ , os vértices  $v_i$  e  $v_j$  são os **extremos** desta aresta
- Se v<sub>i</sub>v<sub>j</sub> é uma aresta de um grafo G, então
  - o s vértices  $v_i$  e  $v_j$  são **vizinhos** ou **adjacentes** em G,
  - $\circ$   $v_i$  é **vizinho** de  $v_i$  em G (e vice-versa),
  - $\circ$   $v_i$  é adjacente a  $v_i$  em G (e vice-versa) e
  - o a aresta  $v_i v_j$  incide em  $v_i$  e incide em  $v_j$
- Exemplo:
  - No grafo ao lado, v<sub>0</sub> é vizinho de (ou adjacente a)
     v<sub>2</sub> (e vice-versa), os vizinhos de v<sub>3</sub> são v<sub>1</sub>, v<sub>4</sub> e v<sub>5</sub> e a aresta v<sub>1</sub>v<sub>4</sub> incide em v<sub>1</sub> e em v<sub>4</sub>



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

#### Exemplo:



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

#### Exemplo:



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

#### Exemplo:



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

#### Exemplo:



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

#### Exemplo:



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

#### Exemplo:



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

#### Exemplo:



Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

(v2

#### Exemplo:

- Em um passeio, especificamos os vértices, mas as arestas envolvidas também estão implicitamente especificadas
- Por isso, podemos nos referir às arestas de um passeio

Um passeio em um grafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

- Dado um passeio  $v_{i0}v_{i1}...v_{ik-1}v_{ik}$ , dizemos que
  - v<sub>i0</sub> e v<sub>ik</sub> são os extremos do passeio;
  - $v_{i1}, ..., v_{ik-1}$  são os **vértices internos** do passeio;
  - o comprimento do passeio é k, ou seja, a quantidade de arestas percorridas e
  - o passeio é **fechado** se  $v_{i0} = v_{ik}$  e é **aberto** caso contrário

 Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:



 Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:



 Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:



 Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:



 Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:



# Ciclo

• Um **ciclo** em um grafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 3 e onde não existem vértices internos repetidos

### Exemplo:

• A sequência  $v_2v_0v_1v_3v_4v_2$  é um ciclo no grafo ao lado



# Ciclo

• Um **ciclo** em um grafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 3 e onde não existem vértices internos repetidos

## Exemplo:

• A sequência  $v_2v_0v_1v_3v_4v_2$  é um ciclo no grafo ao lado



# Distância

- A distância entre dois vértices  $v_i$  e  $v_j$  em G, denotada por  $d(v_i, v_j)$  é
  - o menor comprimento de um caminho entre  $v_i$  e  $v_j$  em G ou
  - ∞ (infinita) caso não exista um caminho entre v<sub>i</sub> e v<sub>i</sub> em G
- Exemplo:
  - No grafo ao lado,
    - $d(v_2, v_3) = 2,$
    - $d(v_0, v_1) = 1,$
    - $d(v_4, v_4) = 0 e$



# Subgrafo

- Um **subgrafo** de um grafo *G* é um grafo *H* tal que
  - $\circ$   $V(H) \subseteq V(G)$  e
  - $\circ$   $E(H) \subseteq E(G)$
- Exemplo:

G



$$\circ$$
  $V(G) = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$ 



$$O V(H) = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$$

$$E(H) = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_3, v_5 \} \}$$

# Subgrafo

- Um **subgrafo** de um grafo *G* é um grafo *H* tal que
  - $\circ$   $V(H) \subseteq V(G)$  e
  - $\circ$   $E(H) \subseteq E(G)$
- Exemplo:

G



$$\circ V(G) = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$$

$$E(G) = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$$





$$\circ$$
  $V(H) = \{ v_0, v_1, v_4 \} e$ 

$$\begin{array}{ccc}
 & & E(H) = \{ \{ v_0, v_1 \}, \{ v_0, v_4 \}, \\
 & & \{ v_1, v_4 \} \}
\end{array}$$

## Conexidade

Um grafo G é conexo se, para todo par de vértices v<sub>i</sub>, v<sub>j</sub> de G, existe um caminho em G entre v<sub>i</sub> e v<sub>j</sub> (ou seja, um caminho em G cujos extremos são v<sub>i</sub> e v<sub>j</sub>); G é desconexo caso contrário

#### Exemplo:



# Subgrafo conexo

- Um **subgrafo conexo** de um grafo *G* é um subgrafo de *G* que é conexo
- Exemplo:





# Subgrafo conexo

- Um **subgrafo conexo** de um grafo *G* é um subgrafo de *G* que é conexo
- Exemplo:



# Subgrafo conexo

- Um **subgrafo conexo** de um grafo *G* é um subgrafo de *G* que é conexo
- Exemplo:





Subgrafo conexo

# Subgrafo conexo maximal

Um subgrafo conexo maximal de um grafo G é um subgrafo conexo de G
 que não está contido em outro subgrafo conexo de G

Exemplo:



# Componentes conexas

- As componentes conexas (ou apenas componentes) de um grafo G são os subgrafos conexos maximais de G
- Denotamos por c(G) o número de componentes conexas de G
- Exemplo:



Componentes conexas de G



$$c(G) = 2$$

# Componentes conexas

- As componentes conexas (ou apenas componentes) de um grafo G são os subgrafos conexos maximais de G
- Denotamos por c(G) o número de componentes conexas de G
- Exemplo:



#### Componentes conexas de G



$$c(G) = 1$$

# Componentes conexas

- As componentes conexas (ou apenas componentes) de um grafo G são os subgrafos conexos maximais de G
- Denotamos por c(G) o número de componentes conexas de G
- Um grafo conexo (com pelo menos um vértice) tem exatamente uma componente

## Grafo completo

Um grafo G é completo se, para todo par de vértices v<sub>i</sub>, v<sub>j</sub> de G, existe uma aresta em G entre v<sub>i</sub> e v<sub>j</sub>

Exemplo:

Grafo completo ≠ Grafo conexo





## Complemento de um grafo

- Dado um grafo G, o **complemento de** G é o grafo  $\overline{G}$  tal que
  - $\circ V(\overline{G}) = V(G) e$
  - $\circ \quad v_i v_j \in E(\overline{G}) \text{ se e somente se } v_i v_j \notin E(G)$
- Exemplo:





## Grafo bipartido

- Um grafo G é bipartido se V(G) pode ser particionado em dois conjuntos não-vazios de vértices V<sub>1</sub> e V<sub>2</sub> tal que
  - o para todo par de vértices  $v_i$ ,  $v_j$  em  $V_1$ , **não** existe uma aresta entre  $v_i$  e  $v_j$  e
  - o para todo par de vértices  $v_i$ ,  $v_j$  em  $V_2$ , **não** existe uma aresta entre  $v_i$  e  $v_j$

### Exemplo:





## Grafo bipartido

- Um grafo G é bipartido se V(G) pode ser particionado em dois conjuntos não-vazios de vértices V<sub>1</sub> e V<sub>2</sub> tal que
  - o para todo par de vértices  $v_i$ ,  $v_j$  em  $V_1$ , não existe uma aresta entre  $v_i$  e  $v_j$  e
  - o para todo par de vértices  $v_i$ ,  $v_j$  em  $V_2$ , **não** existe uma aresta entre  $v_i$  e  $v_j$

### Exemplo:



### Grafo acíclico

- Um grafo é acíclico se não possui ciclos
- Exemplo:





### Grafo acíclico

- Um grafo é acíclico se não possui ciclos
- Exemplo:



# Árvore

- Uma **árvore** é um grafo conexo acíclico
- Exemplo:



### Propriedades de uma árvore

- Dado um grafo *G* com *n* vértices, as seguintes afirmações são equivalentes:
  - 1. *G* é uma árvore (*G* é um grafo conexo acíclico);
  - 2. *G* é conexo e possui *n* 1 arestas;
  - 3. *G* é acíclico e possui *n* 1 arestas;
  - 4. Existe exatamente um caminho entre quaisquer dois vértices de *G*.

### Árvore enraizada

Uma árvore enraizada é uma árvore em que um dos vértices é especificado

como a raiz

Exemplo:



Árvore enraizada



Árvore não enraizada

# Árvore enraizada - terminologia

 Dada uma árvore com raiz r, se a última aresta do caminho entre o vértice r e um vértice v na árvore é a aresta uv, então dizemos que u é o pai de v e v é um filho de u

### Exemplo:

- o v2 é de v0
- v5 é de v10
- o v13 é de v5
- v6 é de v7



# Árvore enraizada - terminologia

 Dada uma árvore com raiz r, se a última aresta do caminho entre o vértice r e um vértice v na árvore é a aresta uv, então dizemos que u é o pai de v e v é um filho de u

### Exemplo:

- v2 é filho de v0
- v5 é pai de v10
- o v13 é filho de v5
- v6 não é pai de v7 (v6 é irmão de v7)



### Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

### Representação computacional

- A seguir, veremos duas formas comuns de representar um grafo G
- Para isso, vamos considerar que fizemos uma associação dos índices 0, 1, ... |V(G)| - 1 aos vértices de G





- A representação de G como uma matriz de adjacências consiste em uma matriz de |V(G)| linhas, com índices 0, 1, ..., |V(G)| 1, e de |V(G)| colunas, com índices 0, 1, ..., |V(G)| 1, tal que a célula (i, j) da matriz é igual a
  - o 1 se i j é uma aresta de G
  - 0 caso contrário



|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 2 | 1 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 1 | 0 | 0 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |

### Observações:

- Não é possível representar arestas paralelas
- Para grafos simples, todas as células da diagonal principal da matriz são iguais a 0
- Para grafos onde não consideramos uma direção para as arestas, uma aresta i j é representada por duas células da matriz: (i, j) e (j, i)



|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 2 | 1 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 1 | 0 | 0 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |

### Observações:

 Para grafos onde não consideramos uma direção para as arestas, a matriz é simétrica em relação à diagonal principal



|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 2 | 1 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 1 | 0 | 0 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |

Implementação:

```
// n eh o numero de vertices do grafo
vector<vector<int>> matriz_adj(n, vector<int>(n));
```



|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 2 | 1 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 1 | 0 | 0 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |

### Listas de adjacência

• A representação de G como **listas de adjacência** consiste em um vetor de |V(G)| elementos, com índices 0, 1, ..., |V(G)| - 1, tal que o elemento i do vetor armazena uma lista com os vértices adjacentes ao vértice i em G



#### Listas de adjacência de G



### Listas de adjacência

### Observações:

 Para grafos onde não consideramos uma direção para as arestas, uma aresta i j é representada em duas listas de adjacência: o vértice i está na lista do vértice j e o vértice j está na lista do vértice i



Listas de adjacência de G



### Listas de adjacência

• Implementação:

```
// n eh o numero de vertices do grafo
vector<list<int>> listas_adj(n);
```



#### Listas de adjacência de G



### Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

- Em várias situações, queremos percorrer de maneira eficiente os vértices de um grafo
- Vamos ver um algoritmo que faz isto



























Não é possível ir adiante (sem repetir vértices) a partir daqui. Temos que retroceder (**backtrack**) para conseguir considerar outras possibilidades









- Como podemos descrever a estratégia vista antes de uma forma geral?
  - $\circ$  Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex.,  $v_0$



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - $\circ$  Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex.,  $v_0$
  - 1. Comece em  $v_0$



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - $\circ$  Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex.,  $v_0$
  - 1. Comece em  $v_0$
  - 2. Considere os vizinhos de  $v_0$



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex., v<sub>o</sub>
  - 1. Comece em  $v_0$
  - Considere os vizinhos de v<sub>0</sub>
     Observe que, para percorrer os demais vértices do grafo, podemos



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex., v<sub>o</sub>
  - 1. Comece em  $v_0$
  - Considere os vizinhos de v<sub>0</sub>
     Observe que, para percorrer os demais vértices do grafo, podemos percorrer os vértices partindo de v<sub>2</sub>



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - $\circ$  Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex.,  $v_0$
  - 1. Comece em  $v_0$
  - 2. Considere os vizinhos de  $v_0$ Observe que, para
    percorrer os demais
    vértices do grafo, podemos
    percorrer os vértices
    partindo de  $v_2$ ,
    percorrer os vértices
    partindo de  $v_5$



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex., v<sub>o</sub>
  - 1. Comece em  $v_0$
  - 2. Considere os vizinhos de  $v_0$  Observe que, para percorrer os demais vértices do grafo, podemos percorrer os vértices partindo de  $v_2$ , percorrer os vértices partindo de  $v_5$  e percorrer os vértices partindo de  $v_7$



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex., v<sub>o</sub>
  - 1. Comece em  $v_0$
  - 2. Considere os vizinhos de  $v_0$



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - $\circ$  Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex.,  $v_0$
  - 1. Comece em  $v_0$
  - 2. Considere os vizinhos de  $v_0$
  - Percorra recursivamente os vértices do grafo partindo de v<sub>2</sub>



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex., v<sub>o</sub>
  - 1. Comece em  $v_0$
  - 2. Considere os vizinhos de  $v_0$
  - Percorra recursivamente os vértices do grafo partindo de v<sub>2</sub>
  - Percorra recursivamente os vértices do grafo partindo de v<sub>5</sub>



- Como podemos descrever a estratégia vista antes de uma forma geral?
  - $\circ$  Queremos percorrer os vértices do grafo partindo de um vértice especificado; por ex.,  $v_0$
  - 1. Comece em  $v_0$
  - 2. Considere os vizinhos de  $v_0$
  - Percorra recursivamente os vértices do grafo partindo de v<sub>2</sub>
  - 4. Percorra recursivamente os vértices do grafo partindo de  $v_5$  e
  - Percorra recursivamente os vértices do grafo partindo de v<sub>7</sub>



Não queremos visitar novamente vértices já visitados. Por isso, vamos marcar os vértices que vão sendo visitados

```
void percorre(int v) {
}
```



```
void percorre(int v) {
    for (auto u : listas_adj[v])
}
```



```
void percorre(int v) {
    for (auto u : listas_adj[v])
        percorre(u);
}
```



```
// O vetor marcado eh criado e inicializado antes
// da funcao percorre ser chamada
```

```
void percorre(int v, int marcado[]) {
    for (auto u : listas_adj[v])
        percorre(u, marcado);
}
```



```
// O vetor marcado eh criado e inicializado antes
// da funcao percorre ser chamada
```

```
void percorre(int v, int marcado[]) {
    marcado[v] = 1;
    for (auto u : listas_adj[v])
        if (marcado[u] == 0)
            percorre(u, marcado);
}
```



```
// O vetor marcado eh criado e inicializado antes
// da funcao percorre ser chamada
```

```
void percorre(int v, int marcado[]) {
    marcado[v] = 1;
    for (auto u : listas_adj[v])
        if (marcado[u] == 0)
            percorre(u, marcado);
}
```



O processo de percorrer um grafo também é chamado de **busca** 

```
// O vetor marcado eh criado e inicializado antes
// da funcao busca ser chamada
```

```
void busca(int v, int marcado[]) {
   marcado[v] = 1;
   for (auto u : listas_adj[v])
      if (marcado[u] == 0)
            busca(u, marcado);
}
```



O processo de percorrer um grafo também é chamado de **busca** 

## Percorrendo os vértices de um grafo - Dinâmica



A busca segue em **profundidade** até não ser mais possível, para depois retornar

# Percorrendo os vértices de um grafo - Dinâmica





```
// O vetor marcado eh criado e inicializado antes
// da funcao busca ser chamada
```

```
void busca(int v, int marcado[]) {
   marcado[v] = 1;
   for (auto u : listas_adj[v])
      if (marcado[u] == 0)
         busca(u, marcado);
}
```



A busca segue em **profundidade** até não ser mais possível, para depois retornar

```
// O vetor marcado eh criado e inicializado antes
// da funcao busca_prof ser chamada
```

```
void busca_prof(int v, int marcado[]) {
    marcado[v] = 1;
    for (auto u : listas_adj[v])
        if (marcado[u] == 0)
            busca_prof(u, marcado);
}
```



A busca segue em **profundidade** até não ser mais possível, para depois retornar

#### Busca em um grafo

- A estratégia de busca em um grafo vista nos slides anteriores é conhecida como o algoritmo de busca em profundidade
- Ao realizar uma busca em um grafo, conseguimos visitar todo vértice w do grafo tal que existe um caminho entre o vértice inicial da busca e w
- Em outras palavras, conseguimos visitar todos os vértices da componente conexa do grafo que contém o vértice inicial da busca
- Se o grafo é conexo, então conseguimos visitar todos os seus vértices

 Usando o algoritmo de busca em profundidade, como podemos verificar se um grafo é conexo?

- Usando o algoritmo de busca em profundidade, como podemos verificar se um grafo é conexo?
  - Podemos realizar a busca e em seguida verificar se algum vértice do grafo não foi marcado como visitado

 Usando o algoritmo de busca em profundidade, como podemos determinar o número de componentes conexas de um grafo?

 Usando o algoritmo de busca em profundidade, como podemos determinar o número de componentes conexas de um grafo?

```
int conta_comps_conexas() {
    // Criacao e inicializacao do vetor marcado
    int cont = 0;
    for (int v = 0; v < n; v++)
        if (marcado[v] == 0) {
            busca_prof(v, marcado);
            cont++;
        }
    return cont;
}</pre>
```

#### Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

- Considere o seguinte objetivo:
   Dado um grafo, queremos determinar a distância entre um certo vértice e cada um dos vértices do grafo
- Podemos atingir este objetivo através de uma estratégia de busca chamada busca em largura
- Para este objetivo, o algoritmo de busca em profundidade não é útil, pois a estratégia utilizada não tem relação com calcular distâncias
- Em uma busca em largura, vamos percorrer o grafo da seguinte maneira:
   vamos visitar primeiro os vértices mais próximos do vértice inicial



Estrutura de dados:

Partindo do **v0** 



Estrutura de dados:



Partindo do **v0** 



Estrutura de dados:



Partindo do **v0** 



Estrutura de dados:



Partindo do **v0** 



Estrutura de dados:

v2 v5 v7

Partindo do **v0** 



Estrutura de dados:

v5 v7

Partindo do **v0** 



Estrutura de dados:

v5 v7 v6

Partindo do **v0** 



Estrutura de dados:

v7 v6

Partindo do **v0** 



Estrutura de dados:

v7 v6 v3 v4

Partindo do **v0** 



Estrutura de dados:

v6 v3 v4

Partindo do **v0** 



Estrutura de dados:

v6 v3 v4 v1

Partindo do **v0** 



Estrutura de dados:

v3 v4 v1

Partindo do **v0** 



Estrutura de dados:

v4 v1

Partindo do **v0** 



Estrutura de dados:



Partindo do **v0** 



Estrutura de dados:



# Busca em largura - Dinâmica

#### Partindo do **v0**



Estrutura de dados:





A busca segue em **largura** até não ser mais possível, para depois se aprofundar

# Busca em largura - Dinâmica

#### Partindo do **v0**





Estrutura de dados:



## Busca em largura - Implementação

- O que podemos dizer da lógica através da qual os vértices são visitados no algoritmo de busca em largura?
  - É uma lógica de fila
- Então, vamos implementar este algoritmo usando uma fila

# Busca em largura - Implementação

```
void busca_larg(int v) {
    // Criacao e inicialização do vetor marcado
    queue<int> fila;
    marcado[v] = 1;
    fila.push(v);
    while (!fila.empty()) {
        int w = fila.front();
        fila.pop();
        for (auto u : listas_adj[w])
            if (marcado[u] == 0) {
                marcado[u] = 1;
                fila.push(u);
```



 Usando o algoritmo de busca em largura, podemos determinar a distância entre o vértice inicial da busca e cada um dos vértices do grafo

# Busca em largura - Implementação

```
void busca_larg(int v, int dist[]) {
   // Criacao e inicialização do vetor marcado
    // Inicialização do vetor dist
    queue<int> fila;
   marcado[v] = 1;
    dist[v] = 0;
    fila.push(v);
    while (!fila.empty()) {
        int w = fila.front();
        fila.pop();
        for (auto u : listas_adj[w])
            if (marcado[u] == 0) {
                marcado[u] = 1;
                dist[u] = dist[w] + 1;
                fila.push(u);
```



### Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

## Motivação

 Em várias situações que podemos modelar com grafos, faz sentido considerarmos que as arestas têm uma direção (ou orientação ou sentido)

Exemplo:

 Temos um mapa de vias (ruas ou rodovias)
 e estamos interessados nos caminhos que podemos percorrer neste mapa

 Uma via que conecta um ponto x a um ponto y pode ter apenas a mão de x para y, apenas a mão de y para x ou ambas as mãos

 Podemos representar este mapa como um grafo onde cada aresta tem uma direção e representa uma mão de uma via



## Motivação

 Em várias situações que podemos modelar com grafos, faz sentido considerarmos que as arestas têm uma direção (ou orientação ou sentido)

Exemplo:

- Temos um mapa de vias (ruas ou rodovias)
   e estamos interessados nos caminhos que podemos percorrer neste mapa
- Uma via que conecta um ponto x a um ponto y pode ter apenas a mão de x para y, apenas a mão de y para x ou ambas as mãos
- Podemos representar este mapa como um grafo onde cada aresta tem uma direção e representa uma mão de uma via



### Grafo dirigido – Digrafo

- Um grafo dirigido ou digrafo G é um par ordenado (V, E) composto por
  - o um conjunto de **vértices** *V* e
  - o um conjunto de **arestas** E, sendo cada aresta um par ordenado ( $v_i$ ,  $v_i$ ) de vértices de G
    - note que  $(v_i, v_i) \neq (v_i, v_i)$

- Exemplo:
  - $\circ$  G = (V, E), onde
    - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$
    - $E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$



### Grafo dirigido – Digrafo

- Um grafo dirigido ou digrafo G é um par ordenado (V, E) composto por
  - o um conjunto de **vértices** *V* e
  - o um conjunto de **arestas** E, sendo cada aresta um par ordenado ( $v_i$ ,  $v_i$ ) de vértices de G
    - note que  $(v_i, v_i) \neq (v_i, v_i)$ ;
    - lacktriangle denominamos  $v_i$  a **cauda** da aresta e  $v_i$  a **cabeça** da aresta
- Exemplo:
  - $\circ$  G = (V, E), onde
    - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$
    - $E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$



# Digrafo (simples)

- Em um digrafo simples,
  - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e
  - o não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:



 A não ser que seja dito o contrário, os digrafos que vamos considerar são simples

### Vizinhança

- Por simplicidade, também denotamos uma aresta ( $v_i$ ,  $v_j$ ) como  $v_i v_j$
- Dada uma aresta  $v_i v_j$ , os vértices  $v_i$  e  $v_j$  são os **extremos** desta aresta
- Se v<sub>i</sub>v<sub>j</sub> é uma aresta de um digrafo G, então
  - o a aresta  $v_i v_i$  sai de  $v_i$  e entra em  $v_i$ ,
  - o  $v_i$  é **vizinho de entrada** de  $v_i$  em G e
  - $\circ$   $v_i$  é vizinho de saída de  $v_i$  em G

#### Exemplo:

No digrafo ao lado,  $v_1$  é vizinho de saída de  $v_0$  e  $v_0$  é vizinho de entrada de  $v_1$ . Os vizinhos de saída de  $v_5$  são  $v_0$ ,  $v_2$  e  $v_6$ . A aresta  $v_1v_4$  sai de  $v_1$  e entra em  $v_4$ 



Um passeio em um digrafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

#### Exemplo:

 A sequência v<sub>0</sub>v<sub>1</sub>v<sub>4</sub>v<sub>6</sub>v<sub>1</sub>v<sub>4</sub>v<sub>3</sub> é um passeio no digrafo ao lado



Um passeio em um digrafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

#### Exemplo:

 A sequência v<sub>0</sub>v<sub>1</sub>v<sub>4</sub>v<sub>6</sub>v<sub>1</sub>v<sub>4</sub>v<sub>3</sub> é um passeio no digrafo ao lado



Um passeio em um digrafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

#### Exemplo:

 A sequência v<sub>0</sub>v<sub>1</sub>v<sub>4</sub>v<sub>6</sub>v<sub>1</sub>v<sub>4</sub>v<sub>3</sub> é um passeio no digrafo ao lado



- Em um passeio, especificamos os vértices, mas as arestas envolvidas também estão implicitamente especificadas
- Por isso, podemos nos referir às arestas de um passeio

Um passeio em um digrafo G é uma sequência de vértices v<sub>i0</sub>v<sub>i1</sub>...v<sub>ik</sub> de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

- Chamamos um passeio  $v_{i0}v_{i1}...v_{ik-1}v_{ik}$  de um  $v_{i0}v_{ik}$ -passeio e dizemos que
  - $\circ$   $v_{i0}$  e  $v_{ik}$  são os **extremos** do passeio;
  - $v_{i0}$  é a **origem** do passeio e  $v_{ik}$  é o **destino** do passeio;
  - $\circ$   $V_{i1}, ..., V_{ik-1}$  são os **vértices internos** do passeio;
  - o **comprimento** do passeio é *k*, ou seja, a quantidade de arestas percorridas e
  - o passeio é **fechado** se  $v_{i0} = v_{ik}$  e é **aberto** caso contrário

### Caminho

 Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:

 A sequência v<sub>0</sub>v<sub>1</sub>v<sub>4</sub>v<sub>3</sub> é um caminho no digrafo ao lado



### Caminho

 Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:

 A sequência v<sub>0</sub>v<sub>1</sub>v<sub>4</sub>v<sub>3</sub> é um caminho no digrafo ao lado



### Caminho

 Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos

### Exemplo:

A sequência v<sub>0</sub>v<sub>1</sub>v<sub>6</sub>
 não é um caminho no digrafo ao lado



### Ciclo

• Um **ciclo** em um digrafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 1 e onde não existem vértices internos repetidos

### Exemplo:

 A sequência v<sub>0</sub>v<sub>1</sub>v<sub>4</sub>v<sub>3</sub>v<sub>5</sub>v<sub>0</sub> é um ciclo no digrafo ao lado



### Ciclo

• Um **ciclo** em um digrafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 1 e onde não existem vértices internos repetidos

### Exemplo:

 A sequência v<sub>0</sub>v<sub>1</sub>v<sub>4</sub>v<sub>3</sub>v<sub>5</sub>v<sub>0</sub> é um ciclo no digrafo ao lado



### Ciclo

• Um **ciclo** em um digrafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 1 e onde não existem vértices internos repetidos

#### Exemplo:

A sequência v<sub>1</sub>v<sub>4</sub>v<sub>3</sub>v<sub>1</sub>
 não é um ciclo no digrafo ao lado



### Distância

- A distância de um vértice v<sub>i</sub> para um vértice v<sub>j</sub> em um digrafo G, denotada por d(v<sub>i</sub>, v<sub>i</sub>), é
  - o menor comprimento de um  $v_i v_i$ -caminho em G ou
  - ∞ (infinita) caso não exista um v<sub>i</sub>v<sub>i</sub>-caminho em G
- Note que, em geral,  $d(v_i, v_j) \neq d(v_j, v_i)$
- Exemplo:
  - No digrafo ao lado,
    - $d(v_0, v_4) = 2 e d(v_4, v_0) = 3,$
    - $d(v_5, v_6) = 1 e d(v_6, v_5) = 3,$
    - $d(v_4, v_4) = 0 e$
    - $d(v_3, v_2) = 2 e d(v_2, v_3) = \infty$



# Subgrafo

- Um **subgrafo** de um digrafo *G* é um digrafo *H* tal que
  - $\circ$   $V(H) \subseteq V(G)$  e
  - $\circ$   $E(H) \subseteq E(G)$

Exemplo:



$$V(G) = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E(G) = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$$



$$V(H) = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E(H) = \{ (v_0, v_1), (v_1, v_4), (v_3, v_5), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$$

# Subgrafo

- Um **subgrafo** de um digrafo *G* é um digrafo *H* tal que
  - $\circ$   $V(H) \subseteq V(G)$  e
  - $\circ$   $E(H) \subseteq E(G)$



$$V(G) = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E(G) = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$$



$$V(H) = \{ v_0, v_1, v_3, v_4, v_6 \} e$$

$$E(H) = \{ (v_0, v_1), (v_1, v_4), (v_4, v_6), (v_6, v_1) \}$$

Um digrafo G é fortemente conexo se, para todo par de vértices v<sub>i</sub>, v<sub>j</sub> de G, existe em G um v<sub>i</sub>v<sub>j</sub>-caminho (um caminho cuja origem é v<sub>i</sub> e cujo destino é v<sub>j</sub>) e um v<sub>i</sub>v<sub>i</sub>-caminho (um caminho cuja origem é v<sub>i</sub> e cujo destino é v<sub>i</sub>)





Um digrafo G é fortemente conexo se, para todo par de vértices v<sub>i</sub>, v<sub>j</sub> de G, existe em G um v<sub>i</sub>v<sub>j</sub>-caminho (um caminho cuja origem é v<sub>i</sub> e cujo destino é v<sub>j</sub>) e um v<sub>i</sub>v<sub>i</sub>-caminho (um caminho cuja origem é v<sub>i</sub> e cujo destino é v<sub>i</sub>)







 Um subgrafo fortemente conexo de um digrafo G é um subgrafo de G que é fortemente conexo

Exemplo:

G





Subgrafo fortemente conexo

 Um subgrafo fortemente conexo de um digrafo G é um subgrafo de G que é fortemente conexo







 Um subgrafo fortemente conexo de um digrafo G é um subgrafo de G que é fortemente conexo

• Exemplo:









• Um subgrafo fortemente conexo maximal de um digrafo *G* é um subgrafo fortemente conexo de *G* que não está contido em outro subgrafo fortemente conexo de *G* 

Exemplo:

G









Subgrafo fortemente conexo maximal

• As **componentes fortemente conexas** de um digrafo *G* são os subgrafos fortemente conexos maximais de *G* 

Exemplo:



Componentes fortemente conexas de *G* 



3 componentes fortemente conexas

 As componentes fortemente conexas de um digrafo G são os subgrafos fortemente conexos maximais de G

Exemplo:



Componentes fortemente conexas de *G* 



1 componente fortemente conexa

- As componentes fortemente conexas de um digrafo G são os subgrafos fortemente conexos maximais de G
- Um grafo fortemente conexo (com pelo menos um vértice) tem exatamente uma componente fortemente conexa

#### Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

#### Representação computacional

- Anteriormente, vimos duas formas comuns de representar computacionalmente um grafo não-dirigido: matriz de adjacências e listas de adjacência
- A seguir, veremos formas equivalentes de representar computacionalmente um digrafo

#### Matriz de adjacências

- A representação de um digrafo G como uma matriz de adjacências consiste em uma matriz de |V(G)| linhas, com índices 0, 1, ..., |V(G)| - 1, e de |V(G)| colunas, com índices 0, 1, ..., |V(G)| - 1, tal que a célula (i, j) da matriz é igual a
  - 1 se i j é uma aresta de G
  - 0 caso contrário



Matriz de adjacências de G

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 4 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

#### Matriz de adjacências

- Observações:
  - Não é possível representar arestas paralelas
  - Para digrafos simples, todas as células da diagonal principal da matriz são iguais a 0
  - Uma aresta i j é representada por apenas uma célula da matriz: (i, j) a célula (j, i) representa uma aresta diferente, a aresta j i



Matriz de adjacências de G

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 4 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

# Matriz de adjacências

- Observações:
  - o Em geral, a matriz não é simétrica em relação à diagonal principal



Matriz de adjacências de G

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 4 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

#### Listas de adjacência

 A representação de um digrafo G como listas de adjacência consiste em um vetor de |V(G)| elementos, com índices 0, 1, ..., |V(G)| - 1, tal que o elemento i do vetor armazena uma lista com os vizinhos de saída do vértice i em G



Listas de adjacência de G



#### Listas de adjacência

- Observações:
  - Uma aresta *i j* é representada em **apenas uma** lista de adjacência: o vértice *j* está na lista do vértice *i*



#### Listas de adjacência de G



#### Conteúdo

- Grafos Conceitos básicos
- Representação computacional
- Busca em profundidade
- Busca em largura
- Grafos dirigidos Conceitos básicos
- Grafos dirigidos Representação computacional
- Grafos dirigidos Busca em profundidade e em largura
- Referências

#### Busca em profundidade e busca em largura

 Os algoritmos de busca em profundidade e em largura para digrafos são definidos da mesma forma que para grafos não-dirigidos com uma adaptação: os vizinhos considerados nos algoritmos são sempre vizinhos de saída

# Aplicação

- Vimos anteriormente um algoritmo para determinar o número de componentes conexas de um grafo não-dirigido G
- Como podemos fazer para determinar o número de componentes fortemente conexas de um digrafo *G*?

# Aplicação

- Como podemos fazer para determinar o número de componentes fortemente conexas de um digrafo G?
- Ideia:
  - 1. Faça i = 0
  - 2. Enquanto houver vértices não visitados no digrafo G:
  - 3. Execute o algoritmo de busca em profundidade no digrafo G começando por um vértice não visitado; quando um vértice v e seus vizinhos de saída tiverem sido visitados, faça fin(v) = i e i = i + 1
  - 4. Construa o digrafo G' dado pelo digrafo G com as direções das arestas de G invertidas
  - 5. Enquanto houver vértices não visitados no digrafo *G*':
  - 6. Execute o algoritmo de busca em profundidade no digrafo G' começando por um vértice não visitado v para o qual fin(v) seja máximo
- Cada execução do algoritmo de busca em profundidade realizada nos Passos 5-6 determina uma componente fortemente conexa do digrafo G

# Aplicação

- Como podemos fazer para determinar o número de componentes fortemente conexas de um digrafo G?
- Ver
  - a Seção 22.5 do livro
     Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
     3rd. ed. MIT Press, 2009.
  - a Seção 19.8 do livro
     Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed.
     Addison-Wesley, 2002.

#### Referências

- Esta apresentação é baseada nos seguintes materiais:
  - Capítulo 22 do livro
     Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
     3rd. ed. MIT Press, 2009.
  - Capítulos 17 a 19 do livro
     Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed. Addison-Wesley, 2002.