Theorem Let
$$\mathcal{G}$$
 be an isomorphism $F_1 \longrightarrow F_2$.

Let $f_1 \in F_1(x)$ be ineducible, let $f_2 = \mathcal{G}(f_1) \in F_2(x)$.

Let α_i be a root of f_i (in some κ_i/F_i)

Let α_2 be a root of f_2 (in some κ_2/F_2).

Then \mathcal{G} extends to an isomorphism

$$F_{1}(\alpha_{1}) \longrightarrow F_{2}(\alpha_{2})$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{1} \longrightarrow F_{2}$$

$$(.t. \quad \varphi(\alpha_{1}) = \alpha_{2}.$$

Proof:
$$F_{1}(x_{1}) \cong F_{1}(x_{2})/(f_{1})$$
 with $\alpha_{1} \longleftrightarrow x \mod f_{1}$.

$$F_{2}(\alpha_{2}) \cong F_{2}(x_{2})/(f_{2})$$
 with $\alpha_{2} \longleftrightarrow x \mod f_{2}$.

$$\varphi: F_{1}(x_{2}) \xrightarrow{\sim} F_{2}(x_{2})/(f_{2})$$
 with $\alpha_{2} \longleftrightarrow x \mod f_{2}$.

$$F_{1}(x_{2})/(f_{1}) \xrightarrow{\sim} F_{2}(x_{2})/(f_{2})$$

$$F_{2}(x_{2})/(f_{2}) \xrightarrow{\sim} F_{2}(x_{2})/(f_{2})$$

Page 1

Deta Let K/F be an extension, α_1 , $\alpha_2 \in K$ are Said to be conjugate over F if $M_{M,F} = M_{\alpha_2,F}$ (this is so if α_1,α_2 are voots of the same irr. poly).

Examples: i cms -i. (OVer (A) JZ and JZ

 $\sqrt[3]{2}$, ω^{2} , $\sqrt[3]{2}$, ω^{2} . $\sqrt[3]{2}$ (where $\omega = e^{2\pi i/3}$).

& has at most deg & conjugates in K/F (including itself).

Let K/L/F, $\alpha \in K$.

{ Conjugates of α over L} \subseteq { Conjugates of α over F}. Since $m_{\alpha,F} \mid m_{\alpha,F}$.

Example F = Q, $L = Q(\sqrt{z})$, $\alpha = \sqrt[4]{2}$.

Conjugates of x over F one roots of $x^{4}-2$ so they're $\{\pm\sqrt[4]{2}, \pm i\sqrt[4]{2}\}$.

Page 2

Conjugates of x over L ore roots of $\chi^2 - \sqrt{2}$ So truey're $\{\pm \sqrt[4]{2}\}$.

Splitting freld of f.

Det let $f \in F(x)$. An extension K/F is a Splitting field of f if f completely splits in K: $f(x) = \alpha(x-\alpha_1)\cdots(x-\alpha_n) \quad \text{where} \quad \alpha_i \in K$ and $K = F(\alpha_1, \ldots, \alpha_n)$.

If so, and E/k is an extension of K, then
my root of f in E is in K as well.

(K contains "all rooks of f").

Theorem: $\forall f \in F(x)$, a splitting field K/F exists and is unique up to isomorphism of extensions (that is, Id_F on F and maps roots of f to roots of f). [K:F] = n! where $n = \deg f$.

Example a Splitting field $f(x^2+1) \in \mathbb{R}[x]$ is $\mathbb{C} = \mathbb{R}(c)$. $\chi^2 - 2 \in \mathbb{Q}(x)$ is $\mathbb{Q}(\sqrt{z})$.

- $\exists f = \chi^n 1 \in \mathbb{Q}(\chi) . \quad \text{roote of} \quad f \text{ are } e^{2\pi i k_n} \quad \text{for } k = 0, \dots, n-1 \\ \omega^{k} \quad \text{where} \quad \omega = e^{2\pi i / n} .$ Splitting field is $\mathbb{Q}(\omega)$.
- (5) $f = (x^n 2)(x^n 3)$ Splitting field is $\mathbb{Q}(\sqrt[n]{2}, \sqrt[n]{3}, \omega)$.

<u>proof</u>: Let $f = g_1, \dots, g_k$ where $g_i \in F(x)$ are irreduable.

Let a, be a root of g. (in some extension of F).

Then over $F(x_i)$, $f(x) = (\chi - x_i) f_i(x)$, $\deg f_i = \deg f - 1$.

By induction on degf, ∃a splitting field K of f, ∈ F(a,) [x].

Over K, $f_1(x) = \alpha(\chi - \alpha_2) \cdot \cdots (\chi - \alpha_n)$, so $f(x) = \alpha(\chi - \alpha_1) \cdot \cdots (\chi - \alpha_n)$.

 $K = F(\alpha_1)(\alpha_2,...,\alpha_n) = F(\alpha_1,...,\alpha_n)$.

So K i's a splitting field of f.

Let K1, K2 be splitting field of f (over F).

let a,,..., on be roots of fink, $\beta_1,...,\beta_n$ be roots of finkz.

$$f(x) = \alpha (x - \alpha_1) \cdots (x - \alpha_n)$$

$$= g_1(x) \cdots g_k(x) = irr. \text{ over } F.$$

$$= \alpha (x - \beta_1) \cdots (x - \beta_n)$$

Assume d, is a root of g,

then $\exists \varphi : F(\alpha_i) \xrightarrow{\sim} F(\beta_i)$ s.l. $\alpha_i \xrightarrow{\varphi} \beta_i$.

Let $f(x) = (x-x_i) f_i(x)$, $f_i \in F(x_i) [x]$. $f(x) = (x-\beta_i) \hat{f}_i(x), \quad \hat{f}_i \in F(\beta_i) [x].$

Then $f_i = \frac{f}{\chi - \alpha_i}$, $\hat{f}_i = \frac{f}{\chi - \beta_i}$,

So $\varphi: f_{\iota} \longrightarrow \tilde{f}_{\iota}$.

over $F(\alpha_i)$, $f_i = h_i \cdots h_i$ over $F(\beta_i)$, $\tilde{f}_i = \tilde{h}_i \cdots \tilde{h}_i$ s.t. $\tilde{h}_i = \varphi(h_i)$.

•

000 00. C

Let
$$\varphi: F_1 \xrightarrow{\sim} F_2$$
, $f_1 \in F_1(x)$, $f_2 = \varphi(f) \in F_2[x]$, K_1 is a splitting field of f_1 .

 K_2 is a splitting field of f_2 .

Then
$$K_1 \cong K_2$$
 s.t. $K_1 \longrightarrow K_2$ is commutative
$$| \qquad \qquad | \qquad \qquad |$$

$$F_1 \longrightarrow F_2$$

e roots of Fi go to roots of Fz.

Use induction on deg f with the generalization. I

Page 6