

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

APOLLO 11 - FLIGHT PLAN

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FINAL

APOLLO 11 FLIGHT PLAN

AS-506/CSM-107/LM-5

JULY 1,1969

PREPARED BY FLIGHT PLANNING BRANCH FLIGHT CREW SUPPORT DIVISION

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

NOEXING DATA

Apollo 11 Flight Plan

Final - July 1, 1969

MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

APOLLO 11 APOLLO AS-506/CSM-107/LM-5 FINAL FLIGHT PLAN

JULY 1, 1969

Submitted by:

L. J. Riché

Flight Planning Branch

G. M. Colton

Flight Planning Branch

T. A. Guillorv

Flight Planning Branch

Approved by:

W. J. North

Chief, Flight Crew Support Division

Donald K. Slayton

Director of Flight Crew Operations

Concurrence:

George M. Low

Manager, Apollo Spacecraft Program

Christopher C. Kraft, Jr.

Director of Flight Operations

Any comments or questions on this document should be forwarded to T. A. Guillory, Flight Planning Branch, mail code CF34, extension 4271.

ACKNOWLEDGMENT

Acknowledgment is made to Messrs. Richard Rogers, William Killian and Spencer Gardner for their technical support in the preparation of the Apollo 11 Flight Plan.

Views of the earth and the P52 stars shown in the Flight Plan were taken from the document, "Views from the CM and LM During the Flight of Apollo 11" (Mission G).

The CSM and LM attitude information was taken from the document, "Lunar Orbit Attitude Sequence for Mission G".

TABLE OF CONTENTS

Abbreviations	iii
Introduction	Х
SECTION I - GENERAL	
1. Mission Description	1-1
2. Summary Flight Plan (TLC-TEC)	1-5
3. Summary Flight Plan (Lunar Orbit)	1-6
4. LM Power Descent Profile	1-7
5. CSM Burn Schedule	1-8
6. LM Burn Schedule	1-9
7. Lunar Landing Site Data	1-10
8. Landmark Tracking Data	1-10
9. Flight Plan Notes	1-13
SECTION II - UPDATE FORMS	
1. Update Forms Table	2-1
2. CSM Maneuver Update Pads	2-2
3. LM Maneuver Update Pads	2-27
SECTION III - DETAILED TIMELINE	
1. Launch Phase	3-1
2. TLI-T&D	3-3, 3-4
3. Translunar Coast Activities	
a. Cislunar Navigation	3-7, 3-17
b. LM Familiarization	3-35
c. Lunar Orbit Insertion	3-47
4. Lunar Orbit Activities	
a. Second LM Ingress	3-53
b. LM Activation and C/0	3-63

SECTION III CONT'D

c. Undocking	3-67
d. Touchdown	3-69
e. EVA	3-77
f. LM Liftoff	3-90
g. LM Active Docking	3-94
h. LM Jettison	3-97
5. TEI-TEC	3-101
6. Entry	3-135
SECTION IV DETAILED TEST OBJECTIVES	
1. Detailed Test Objectives	4-1
2. Test Objective/Mission Activity Cross Reference	4-2
3. Test Objectives	4-6
SECTION V - CONSUMABLES	
1. RCS Propellant Usage	5-2
2. SM RCS Budget	5-3
3. CM RCS Budget	5-22
4. SPS Budget	5-23
5. LM RCS Budget	5-25
6. DPS Budget	5-31
7. APS Budget	5-32
8. CSM EPS Budget	5-36
9. LM EPS Budget	5-41
10. LM ECS Budget	5-45
11. PLSS Budget	5-50
SECTION VI - SUMMARY FLIGHT PLAN	
Summary Flight Plan	6-1

ABBREVIATIONS

ACCEL Accelerometer
ACN Ascension
ACT Activation
ACQ Acquisition

AEA Abort Electronics Assembly AGS Abort Guidance Subsystem

AH Ampere Hours

ALSCC Apollo Lunar Surface Close-up Camera

ALT Altitude
AMP or amp Ampere
ANG Antigua
ANT Antenna

AOH Apollo Operations Handbook

AOS Acquisition of Signal or Acquisition of Site

AOT Alignment Optical Telescope
APS Ascent Propulsion Subsystem
ARS Atmosphere Revitalization System

ATT Attitude
AUX Auxiliary
AZ Azimuth

BAT Battery
BDA Bermuda

Bio Bio-Medical Data on Voice Downlink

BP Barber Pole
BT Burn Time
BU Backup
BW Black & White

BRKT Bracket

CAP COM Capsule Communicator CAL Calibration Angle

CAM Camera

CB Circuit Breaker

CDH Constant Delta Altitüde

CDR Commander

CDU Coupling Data Unit
CEX Color External
CIN Color Internal
CIRC Circularization

CK Check

CM Command Module

CMC Command Module Computer

CMD Command

CMP Command Module Pilot

CNTL Control C/O Check out

COAS Crew Optical Alignment Sight

COMM Communications
CONFIG Configuration
CONT Continue
CP Control Point

CRO Carnarvon, Australia

CRYO Cryogenic

CSC Contingency Sample Collection
CSI Coelliptic Sequence Initiation

CSM Command Service Module
C&WS Caution and Warning System

CYI Grand Canary Island

DAP Digital Auto Pilot

DB Deadband

DCA Digital Command Assembly

DEDA Data Entry and Display Assembly

DEGS Degrees
DEPL Depletion

DET Digital Event Timer

DIFF Difference

DOI Descent Orbit Insertion
DPS Descent Propulsion System

DS Documented Sample
DSE Data Storage Equipment
DSKY Display and Keyboard
DTO Detailed Test Objective
DUA Digital Uplink Assembly

DWN Down

E Erasable or Enter

EASEP Early Apollo Scientific Experiment Package

ECS Environmental Control System

ED Explosive Device
EDT Eastern Daylight Time
EFH Earth Far Horizon

EI Earth (atmosphere) Interface

EL Elevation or Electric EMS Entry Monitor System

EMU Extravehicular Mobility Unit

ENH Earth Near Horizon EPO Earth Parking Orbit

EPS Electrical Power Subsystem

EQUIP Equipment

EST Eastern Standard Time
EVA Extravehicular Activity

EVAP Evaporator

EVT Extravehicular Transfer

EXT External

f F Stop FC Fuel Cell

FDAI Flight Director Attitude Indicator

FLT Flight

FM Frequency Modulated FOV Field of View fps or FPS Feet per second

FT or ft Feet

FTO Flight Test Objective FTP Full Throttle Position

GBI Grand Bahama Islands
GBM Grand Bahama (MSFN)
GDC Gyro Display Coupler
GDS Goldstone, California
GET Ground Elapsed Time

GETI Ground Elapsed Time of Ignition

GLY Glycol

GMT Greenwich Mean Time
G&N Guidance and Navigation

GNCS Guidance Navigation Control System

GWM Guam

GYM Guaymas, Mexico

H2 Hydrogen

HA Apogee Altitude

HAW Hawaii

HBR High Bit Rate (TLM)
HD Highly Desirable
HGA High Gain Antenna

HI High

Hp Perigee Altitude

HSK Honeysuckle (Canberra, Australia)

HTR Heater

HTV USNS Huntsville

ICDU Inertial Coupling Data Unit

ID Identification IGA Inner Gimbal Angle

IGN Ignition

IMU Inertial Measurement Unit

INIT Initialization
INT Intervalometer
IP Initial Point

ISA Interim Storage Assembly IU Instrumentation Unit

IVC Intervehicular Communications

IVT Intravehicular Transfer

JETT Jettison

KM Kilometer kwh Kilowatt Hour

LA Launch Azimuth

LAT Latitude

LBR Low Bit Rate (TLM)

LBS or lbs Pounds

LCG Liquid Cooled Garment

LDG Landing LDMK Landmark

LEB Lower Equipment Bay
LEC Lunar Equipment Conveyor
LFH Lunar Far Horizon
LGC LM Guidance Computer

LH Left-hand

L/H Local Horizontal

LHEB Left-hand Equipment Bay

LHFEB Left-hand Forward Equipment Bay LHSSC Left Hand Side Storage Container

LiOH Lithium Hydroxide
LLM Lunar Landing Mission
LLOS Landmark Line of Sight

LM Lunar Module
LMP Lunar Module Pilot
LNH Lunar Near Horizon
LOI Lunar Orbit Insertion

LONG Longitude

LOS Loss of Signal or Loss of Site

LPO Lunar Parking Orbit

LR Landing Radar

LRRR or LR3 Laser Ranging Retro-Reflector

LS Landing Site
LT Light
LTG Lighting
LV Launch Vehicle
L/V Local Vertical

LVPD Launch Vehicle Pressure Display

M Mandatory
MAD Madrid, Spain
MAN Manual
MAX Maximum

MAX Q Maximum Dynamic Pressure MCC Midcourse Correction

MCC-H Mission Control Center - Houston

MCC Mission Control Center MDC Main Display Console

MEAS Measurement
MER USNS Mercury

MESA Modularized Equipment Stowage Assembly

MET Mission Event Timer
MGA Middle Gimbal Angle
M/I Minimum Impulse

MIN Minimum

MLA Merrit Island, Florida

MNVR Maneuver

MPS Main Propulsion System
MSFN Manned Space Flight Network
MTVC Manual Thrust Vector Control

N2 Nitrogen NAV Navigation NM Nautical Miles

MOM Nominal NXX Noun XX

02 Oxygen OBS Observation

O/F Oxidizer to Fuel Ratio Outer Gimbal Angle OGA OMNI Omnidirectional Antenna Oxygen Purge System OPS

Orbital ORB

Orbit Rate Display Earth and Lunar ORDEAL

ORIENT Orientation OVHD Overhead

Pitch or Program Voice Update PAD

PCM Pulse Code Modulation

РC Plane Change

PDI Powered Descent Initiation PGA Pressure Garment Assembly

PGNCS Primary Guidance Navigation Control Section PIPA Pulse Integrating Pendulous Accelerometer

Personal Life Support Systems PLSS

PM Phase Modulated

POL Polarity or Polarizing PRE Pretoria, South Africa

PREF Preferred PREP Preparation PRESS Pressure Primary PRIM Proportional PROP

PSE Passive Seismic Experiment

РΤ Point

Propellant Utilization ΡIJ

PUGS Propellant Utilization and Gaging System

Passive Thermal Control PTC

PWR Power PXX Program XX

Qty Quantity

Roll or Range R&B Red & Blue RAD Radiator RCDR Recorder

RCS Reaction Control System RCU Remote Control Unit

RCV Receiver RED USNS Redstone

REFSMMAT Reference Stable Member Matrix

REG Regulator REQD Required Right-hand RH RING Ringsite

Radius of Landing Site RLS

RNDZ Rendezvous

RR Rendezvous Radar

Roll Stability Indicator Real Time RSI

RT

RTC Real Time Command

RXX Routine XX

Shaft Angle SA S/C Spacecraft

SCE Signal Conditioning Equipment SCS Stabilization Control System

SCT Scanning Telescope SEC Secondary

S-IVB Engine Cut-off SECO

SECS Sequential Events Control System

SEP Separate SEQ Sequence

S-IVB Saturn IV B (Third Stage) SLA Service Module LM Adapter

Star Line-of-Sight SLOS SM Service Module Spot Meter SPOT

SPS Service Propulsion System

Sunrise SR

SRC Sample Return Container SRX S-Band Receiver Mode No. X

SS Sunset

S-Band Transmit Mode No. X STX

S.V. State Vector

SWC Solar Wind Composition

Sw Switch SXT Sextant

Time of Ephemeris Update T EPHEM

Trunnion Angle TA

TAN Tananarive, Madagascar

TB Time Base

TCA Time of Closest Approach

TD&E Transposition Docking & LM Ejection

Trans Earth Coast TEC TEI Transearth Insertion

Temperature TEMP TERM Terminate

TEX Corpus Christi, Texas

TGT Target

TIG Time of Ignition Trans Lunar Coast TLC TLI Translunar Insertion

TLM or TM

Telemetry
Terminal Phase Final
Terminal Phase Initiation TPF TPI TPM Terminal Phase Midcourse T/R Transmitter/Receiver

TRANS Translation TV Television

Thrust Vector Control TVC

TWR Tower

US United States

V Velocity VAN USNS Vanguard

Very High Frequency VHF

VLV Valve

VXX

Inertial Velocity VI VOX Voice Keying

Verb XX

W/O Without

With Respect to WRT USNS Watertown WTN

XFER Transfer

Transmit or Transmitter XMIT

XPONDER Transponder

Υ Yaw $\begin{array}{lll} \Delta \text{V} & \text{Velocity Change (Differential)} \\ \Delta \text{VC} & \text{Velocity Change at Engine Cutoff} \\ \Delta \text{R} & \text{Position Change (Differential)} \end{array}$

8-balls Flight Director Attitude Indicator (FDAI)

CAMERA NOMENCLATURE

EL/250/BW-BRKT

Electric Hasselblad/250mm Lens/Black & White film-Camera Bracket

INT (f5.6, 250, INF)

Intervalometer (f-stop 5.6, shutterspeed=1/250 sec, Infinity)

16mm/18/CEX-BRKT

16mm Camera/18mm Lens/Color Film External-Camera Bracket

MIR (f8,250,INF) 6fps

Mirror(f-stop 8, shutterspeed=1/250 sec, Infinity) 6 frames per sec

SYMBOL NOMENCLATURE

INTRODUCTION

This Flight Plan has been prepared by the Flight Planning Branch, Flight Crew Support Division, with technical support by TRW Systems.

This document schedules the AS-506/CSM-107/LM-5 operations and crew activities to fulfill, when possible, the test objectives defined in the Mission Requirements, G Type Mission Lunar Landing.

The trajectory parameters used in this Flight Plan are for July 16, 1969 launch, with a 72° launch azimuth and were supplied by Mission Planning and Analysis Division as defined by the Apollo Mission G Spacecraft Operational Trajectory.

The Apollo 11 Flight Plan is under the configuration control of the Crew Procedures Control Board (CPCB). All proposed changes to this document that fall in the following categories should be submitted to the CPCB via a Crew Procedures Change Request:

- 1. Items that impose additional crew training or impact crew procedures.
- 2. Items that impact the accomplishment of detailed test objectives.
- 3. Items that result in a significant RCS or EPS budget change.
- 4. Items that result in moving major activities to a different activity day in the Flight Plan.
- 5. Items that require a change to the flight data file.

The Chief, Flight Planning Branch (FCSD) will determine what proposed changes fall in the above categories.

Mr. T. A. Guillory will act as co-ordinator for all proposed changes to the Apollo 11 Flight Plan.

Any requests for additional copies or changes to the distribution lists of this document must be made in writing to Mr. W. J. North, Chief, Flight Crew Support Division, MSC, Houston, Texas.

SECTION I

GENERAL

MISSION DESCRIPTION

- 1. Launch and EPO (Duration 2:44) LIFT OFF 2:44 GET
 - (a) Nominal launch time is 9:32 EDT, July 16, 1969, with a launch window duration of 4 hrs. 24 min,
 - (b) Earth orbit insertion into a 100 nm, circular orbit at 11 min. 43 sec. after lift-off
 - (c) CSM systems C/O in earth orbit
 - (d) Optional IMU realign (P52) to the pad REFSMMAT during the first night period
 - (e) TLI occurs at 2:44:26 GET over the Pacific Ocean during the second revolution. (See Table 1-1 for burn data).
- 2. Translunar Coast (Duration 73:10) 2:44 75:54 GET

After TLI, which places the spacecraft in a free lunar return trajectory, the following major events occur prior to LOI:

- (a) Transposition, docking and LM ejection, including SIVB photography
- (b) Separation from SIVB and a CSM evasive maneuver
- (c) SIVB propulsive venting of propellants (slingshot)
- (d) Two series of P23 cislunar navigation sightings, star/earth horizon, consisting of five sets at 06:00 GET and five sets at 24:30 GET
- (e) Four midcourse corrections which take place at TLI +9, TLI +24, LOI -22 and LOI -5 hours with DV nominally zero (See Table 1-1).
- (f) Passive thermal control (PTC) will be conducted during all periods when other activities do not require different attitudes.
- (g) LM inspection and housekeeping
- (h) LOI_1 , performed at 75:54:28 GET, ends the TLC phase.

3. <u>Lunar Orbit</u> (Duration 59:30) 75:54 - 135:24 GET

<u>LOI Day</u> (Duration 25:00) 69:00 - 94:00

- (a) LOI_1
- (b) Photos of targets of opportunity
- (c) LOI2
- (d) Post LOI2 LM entry and inspection. S-Band/UHF B Voice tests will be conducted.
- (e) Post LOI2 Pseudo landmark tracking (one set of sightings) (See Table 1-4)
- (f) Rest period of 9 hours

DOI and EVA Day (Duration 28:00) 94:00 - 122:00 GET

- (a) Docked LM activation and checkout
- (b) Docked landing site landmark sighting (one set of sightings) (See Table 1-3)
- (c) Undocking and separation
- (d) DOI thru landing (See Figure 1-3 Powered Descent)
- (e) LM post touchdown and simulated liftoff
- (f) Rest period (LM) of 4 hours
- (g) CSM plane change
- (h) Rest period (CSM) of 4 hours
- (i) EVA prep
- (j) EVA for 2 hours 40 minutes
- (k) Post EVA
- (1) Rest period (LM) 4 hours 40 minutes
- (m) Rest period (CSM) 4 hours 50 minutes

Ascent and TEI Day (Duration 25:00) 122:00 - 147:00 GET

- (a) LM Lift-Off and Insertion
- (b) LM active rendezvous

CSI

РC

CDH

TPI

Braking

- (c) Docking
- (d) LM jettison
- (e) TEI
- (f) Rest Period
- 4. Lunar Orbit Particulars (Average Values for a 60 x 60 nm orbit)
 - (a) Revolutions start at 180° longitude
 - (b) Revolution duration 1 hr. 58.2 min.
 - (c) S/C night period duration 47 min.
 - (d) MSFN coverage per rev. 72 min.
 - (e) Orbit inclination 1.25° for July 16, 1969 launch
 - (f) S/C orbital rate $-3^{\circ}/\text{min}$. (.05°/sec)
 - (g) Lighting change at fixed ground point 1°West/Rev.
 - (h) Horizon visibility \pm 20 $^{\circ}$ selenocentric angle on the lunar surface
 - (i) One lunar degree on lunar surface is 16.35 nm
 - (j) Site 2 will be visible (3° sun angle) at REV. 7
 - (k) S/C subvehicle point to horizon 327 nm.
- 5. <u>Transearth Coast and Entry</u> (Duration 59:39) 131:52 195:03 GET

 Transearth coast begins with TEI at 135:24:34 GET and consists of the following major events:
 - (a) Three midcourse corrections are scheduled at TEI +15, EI -23 and EI -3 hours with DV nominally zero.
 - (b) CM/SM separation takes place at 194:51 GET and Entry Interface occurs at 195:03 GET.
 - (c) Splashdown will occur in the Pacific Ocean at a longitude of about 172.4° West at 195:17 GET. This will occur approximately 25 minutes prior to sunrise local time.

FIGURE 1-1
MISSION SUMMARY FLIGHT PLAN

LM POWERED DESCENT

 \sim

TABLE 1-1 CSM BURN SCHEDULE

	TABLE 1-1 COM BORRY SCHLEBOLL								1	
BURN / MANEUVER	GETI	ATTITUE	E (DEG)	LIGHTING	∆V (FPS)	ULLAGE	TVC MODE	REFSMMAT	S/C WT.	REMARKES
	BURN TIME	LH/LV	INERTIAL						RESULTANT HA, HP	
S-IVB TLI	02:44:26 5 MIN 20 SEC			BURNOUT AT SUNRISE	ΔVX: ΔVY: ΔVZ: ΔV REQ: 10,451.2			PAD	WT: HP: HA:	S-IVB BURN
CSM/LM S-IVB EVASIVE MNVR	04:39:44.9 2.8 SEC 15.6 FPS			DAYLIGHT	ΔVX: 5.1 ΔVY: 0.0 ΔVZ: 19.0 ΔV REQ: 19.7	NOT REQUIRED	G&N AUTO	PAD	WT: 96662.3 HP: 123.8 HA: 281953.9	SPS BURN
MIDCOURSE CORRECTIONS MCC ₁ TO MCC ₄	11:45 26:45 53:55 70:55				ΔVX: NOMINALLY ΔVY: ZERO ΔVZ: ΔV REQ:	NOT REQUIRED	G&N AUTO	PAD PTC PTC LDG SITE		TLI +9 TLI +24 LOI -22 LOI -5
LOI	75:54:28.4 5 MIN 58.9 SEC 2914.8 FPS			DAYLIGHT (SS -1 HR 7 MIN)	ΔVX: -2891.8 ΔVY: -433.1 ΔVZ: 20.4 ΔV REQ: 2924.1	NOT REQUIRED	G&N AUTO	LDG SITE	WT: 95207.4 HP: 59.2 HA: 169.8	SPS BURN
LOI ₂	80:09:29.7 16.4 SEC			DAYLIGHT (SR +9 MIN)	ΔVX: 138.3 ΔVY: 0.0 ΔVZ: 75.9 ΔV REQ: 157.8	2 JET 20 SEC	G&N AUTO	LDG SITE	WT: 71320.81bs HP: 53.6 HA: 65.6	SPS BURN
CSM/LM SEP	100:39:50.4 8 SEC			SUNLIGHT (SS -14 MIN)	ΔVX: 0.0 ΔVY: 0.0 ΔVZ: 2.5 ΔV REQ: 2.5		G&N AUTO	LDG SITE	WT: 36407.9 HP: 55.6 HA: 63.1	RCS BURN
*CSM PLANE CHANGE	107:05:33.4 0.8 SEC 5.7 FPS			DARKNESS (SS +17 MIN)	ΔVX: 0.0 ΔVY: 16.6 ΔVZ: 0.0 ΔV REQ: 16.6	2 JET 20 SEC	G&N AUTO	PLANE CHANGE	WT: 36325.4 HP: NO CHANGE HA: NO CHANGE	SPS BURN
LM JETTISON	131:53:04.7 3.1 SEC 0.8 FPS			DAYLIGHT (SR +36 MIN)	ΔVX: -1.0 ΔVY: ΔVZ: ΔV REQ: 1.0		G&N AUTO	LIFT OFF	WT: 36154.7 HP: 58.5 HA: 59.4	RCS BURN
TEI	135:24:33.8 2 MIN 29.4 SEC NOT AVAILABLE			DAYLIGHT (SR +10 MIN)	ΔVX: 3213.3 ΔVY: 705.0 ΔVZ: -138.8 ΔV REQ: 3292.7	2 JET 16 SEC	G&N AUTO	LIFT OFF	WT: 36111.4 HP: HA:	SPS BURN
MIDCOURSE CORRECTIONS MCC ₅ TO MCC ₇	150:24 172:00 192:06				ΔVX: ΔVY: NOMINALLY ΔVZ: ZERO ΔV REQ:		G&N AUTO	PTC PTC ENTRY		TEI +15 EI -23 EI -3

TABLE 1-2 LM BURN SCHEDULE

BURN / MANEUVER	GETI	ATTITUE	E (DEG)	LIGHTING	ΔV (FPS)	ULLAGE	TVC MODE	REFSMMAT	S/C WT.	REMARKES
	BURN TIME ∆VC	LH/LV	INERTIAL						RESULTANT HA, HP	
DOI	101:38:48 28:5 SEC			DARKNESS (SR -4 MIN)	ΔVX: 67.46 ΔVY: -28.68 ΔVZ: -12.51 ΔV REQ: 70	2 JET 7.5 SEC 1.3 FPS	PGNCS AUTO	LDG SITE	WT: 33,404 HP: 8.97 HA: 57.87 nM	DPS BURN
PDI	102:35:13 11 MIN 58 SEC			DAYLIGHT	ΔVX: - ΔVY: - ΔVZ: - ΔV REQ: 6766	2 JET 7.5 SEC 1.3 FPS	PGNCS AUTO	LDG SITE	WT: 16,569 HP: 0 HA: 0	DPS BURN
ASCENT	124:23:26 7 MIN 18 SEC			DAYLIGHT	ΔVX: - ΔVY: - ΔVZ: - ΔV REQ: 6060		PGNCS AUTO	LIFT OFF	WT: 5,894 AT INS HP: 60,000 ft HA: 45 nM	APS BURN
CSI	125:21:19.1 45:0 SEC			DARKNESS (SR -1 MIN)	ΔVX: 49.5 ΔVY: 0.0 ΔVZ: 0.0 ΔV REQ: 49.5		PGNCS AUTO	LIFT OFF	WT: 5875.0 HP: 44.9 HA: 45.0	RCS BURN
PLANE CHANGE	125:50:28			DAYLIGHT (SR +25 MIN)	ΔVX: 0.0 ΔVY: 0.0 ΔVZ: 0.0 ΔV REQ: 0.0		PGNCS AUTO	LIFT OFF	WT: - HP: - HA: -	RCS +Y 2 JET BURN NOMINALLY ZERO
CDH	126:19:37.0 1.9			DAYLIGHT (SS -19 MIN)	ΔVX: -1.1 ΔVY: 0.0 ΔVZ: 4.1 ΔV REQ: 4.3		PGNCS AUTO	LIFT OFF	WT: 5842.9 TIG HP: 43.8 HA: 45.3	RCS BURN
TPI	126:58:08.4 22.4 SEC			DARKNESS (SR -23 MIN)	ΔVX: 22.0 ΔVY: 0.0 ΔVZ: -11.1 ΔV REQ: 24.8		PGNCS AUTO	LIFT OFF	WT: 5840.1 HP: 43.3 HA: 61.7	RCS BURN
MCC ₁	127:13:08			DARKNESS (SR -8 MIN)	ΔVX: 0.0 ΔVY: 0.0 ΔVZ: 0.0 ΔV REQ: 0.0		PGNCS AUTO	LIFT OFF	WT: - HP: - HA: -	RCS +Z 2 JET BURN NOMINALLY ZERO
MCC ₂	127:28:08			DAYLIGHT (SR +7 MIN)	ΔVX: 0.0 ΔVY: 0.0 ΔVZ: 0.0 ΔV REQ: 0.0		PGNCS AUTO	LIFT OFF	WT: - HP: - HA: -	RCS +Z 2 JET BURN NOMINALLY ZERO
1st BRAKING MNVR	127:36:57			DAYLIGHT (SR +15 MIN)	ΔVX: 0.0 ΔVY: 0.0 ΔVZ: 0.0 ΔV REQ: 0.0			LIFT OFF	WT: - HP: - HA: -	RCS -Z 2 JET BURN NOMINALLY ZERO
2nd BRAKING MNVR	127:39:24.5 10.8 SEC			DAYLIGHT (SR +18 MIN)	ΔVX: - ΔVY: - ΔVZ: - ΔV REQ: 12.0		PGNCS AUTO	LIFT OFF	WT: 5824.1 HP: 49.0 HA: 60.7	RCS -Z 2 JET
3rd BRAKING MNVR	127:40:32.8 8.8 SEC			DAYLIGHT (SR +20 MIN)	ΔVX: - ΔVY: - ΔVZ: - ΔV REQ: 9.8		PGNCS AUTO	LIFT OFF	WT: 5816.4 HP: 53.7 HA: 60.3	RCS -Z 2 JET
4th BRAKING MNVR	127:42:16.1 4.3 SEC			DAYLIGHT (SR +21 MIN)	ΔVX: - ΔVY: - ΔVZ: - ΔV REQ: 4.6		PGNCS AUTO	LIFT OFF	WT: 5810.1 HP: 56.2 HA: 60.1	RCS -Z 2 JET
5th BRAKING MNVR	127:43:35.7 4.2 SEC			DAYLIGHT (SR +23 MIN)	ΔVX: - ΔVY: - ΔVZ: - ΔV REO: 4.7		PGNCS AUTO	LIFT OFF	WT: 5807.0 HP: 69.9 HA: 58.9	RCS -Z 2 JET

TABLE 1-3 LUNAR LANDING SITE DATA

DAY	SITE DESIG	LATITUDE	LONGITUDE	¹ LAUNCH AZIMUTH/ SUN ELEVATION	² LAUNCH AZIMUTN/ SUN ELEVATION
JULY 16 0932 EDT	2(IIP6)	00°42'50"N 00.71388889°N (00.6914°N)	23°42'28"E 23.70777778°E (23.7169°E) ³	72°/10.5°	108°/13.5°
JULY 18 1132 EDT	3(IIP8)	00°21'10"N 00.35277778°N	01°17'57"W 01.29916667°W	89.295°/11°	108°/13°
JULY 21 1209 EDT	5(IIP13)	01°40'41"N 01.67805556°N	41°53 ` 57 ` W 41.89916667°W	94.6775°/9.7°	108°/11.7°

Data From TJ memo, Accuracy Estimates, Landing Site Landmarks, May 12, 1969, TJ-69-499.

TABLE 1-4 LANDMARK TRACKING DATA July 16 Launch

LANDMARK DESIG.	LATITUDE	LONGITUDE	DELTA ALTITUDE (nm)	SUN EL
Al (Pseudo)	2°N 2.000°N	65° 30'E 60.500°E	000.00	43°
IP(130)	1°53'N 1.885°N	28°42'E 28.726°E	000.00	
130 (Prime LDG SITE 2)	01°15'56"N 01.26555556°N	23°40'44"E 23.67888889°E	-001.68	8.5°
	(01.24307°N)	(23.6880°E) ¹		
123(Alternate LDG SITE 2)	00°30'19"N 00.50527778°N	24°53'20°E 24.88888889°E	-001.71	
129(Alternate LDG SITE 2)	01°17'06"N 01.28500000°N	23°44'37"E 23.74361111°E	-001.76	
133(Alternate LDG SITE 2)	00°47'14'°N 00.78722222°N	23°30'55"E 23.51527778°E	-001.68	

 $^{^{1}}$ Data from MPAD memo, landing site 2 position, June 20, 1969, 69-FM41-199.

 $^{^{1}}$ Sun Elevation Angles Are For Approximately 27 Hours After LOI, 1st Opportunity TLI.

²Includes 2nd Opportunity TLI.

³Data From MPAD memo, landing site coordinates for G, June 12, 1969, 69-FM41-181.

TABLE 1-4 LANDMARK TRACKING DATA (CONT'D)

July 18 Launch

LANDMARK DESIG.	LATITUDE	LONGITUDE	DELTA ALTITUDE (nm)	SUN EL
IP(G1)	0°16'N 0.267°N	32°19'E 32.317°E		
G1 (129)	01°17'06"N 01.28500000°N	23°44'37"E 23.74361111°E	-001.97	26°
IP(143)	00°18'N 00.300°N	3°23'E 3.383°E		
143(Prime LDG SITE 3)	00°36'51"N 00.61416667°N	01°04'39"W 01.07750000°W	-001.01	9°
150 (Alternate LDG SITE 3)	00°16'59"N 00.28305556°N	01°25'43"W 01.42861111°W	-001.01	
147 (Alternate LDG SITE 3)	00°03'42"N 00.06166667°N	01°16'36"W 01.27666667°W	-000.99	

TABLE 1-4 LANDMARK TRACKING DATA (CONT'D)

July 21 Launch

LANDMARK DESIG.	LATITUDE	LONGITUDE	DELTA ALTITUDE (nm)	SUN EL
IP(G1)	0°30's 0.500°s	26°33'W 26.550°W		
G1	1°42'N 1.696°N	32°10'W 32.162°W	-001.77	8°
IP(180)	0°36'N 0.608'N	36°34'W 36.567°W		
180 (PRIME LDG SITE 5)	01°30'37"N 01.51027778°N	41°49'05"W 41.81805556°W	-001.25	8.9°
171 (Alternate LDG SITE 5)	01°20'04"N 01.33444444	40°47'34"W 40.79271778°W	-001.29	
178 (Alternate LDG SITE 5)	01°45'33"N 01.75916667°N	41°34'12"W 41.57000000°W	-001.22	
184 (Alternate LDG SITE 5)	02°03'10"N 02.05277778°N	42°13'41°'W 42.22805556°W	-001.23	

FLIGHT PLAN NOTES

A. Crew

1. Crew designations are as follows:

Designation	<u>Prime</u>	<u>Backup</u>
Commander (CDR) Command Module Pilot (CMP) Lunar Module Pilot (LMP)	Armstrong Collins Aldrin	Lovell Anders Haise

2. Crew positions during the mission are as follows:

	CSM		LM		
	<u>Left</u>	Center	Right	<u>Left</u>	Right
Launch thru TLI	CDR	LMP	CMP		
T&D thru Entry	CMP	CDR	LMP		
Manned LM	CMP			CDR	LMP

3. The crew will <u>eat and sleep simultaneously</u> throughout the mission. Eat periods will be normally 1-hour duration, with additional activities held to a minimum during this time frame. Sleep periods will normally be 8 to 10 hour duration with two 4 to 5 hour sleep periods while the LM is on the lunar surface.

4. Activity

Launch to insertion Insertion to TLI TLI to evasive mnvr TLC & LOI 1&2 LM activation & checkout

Undocking through touchdown

Touchdown through pre lift-off

Liftoff through LM jettison

LM jettison through splashdown

PGA Configuration

PGA's with helmet & gloves (H&G) PGA's without H&G PGA's with H&G Constant wear garments PGA without H&G (CMP H&G donned for latch cocking & CDR/LMP H&G donned for pressure integrity check and cabin reg check) PGA's with H&G except CMP without H&G after DOI PGA's without H&G except for CDR/LMP simulated countdown & EVA PGA's with H&G (except H&G off after docking) Constant wear garmets

- 5. Two <u>crew status</u> reports via air-to-ground communications will be made by the flight crew during each activity day. The first report will be given after the first meal of the day and will concern the sleep obtained during the previous sleep period. The second report will be given following the final meal of the day and will concern the radiation dose received during the previous 24 hours and medication taken if any. The following information should be logged:
 - a. Food Consumption
 - b. Exercise
 - c. Used fecal bags marked as to crewman and GET
- $6. \, \underline{\text{Negative reporting}}$ will be used in reporting completion of each checklist.
- 7. Continuous $\underline{\text{CSM biomedical}}$ data are automatically transmitted to the ground.
- 8. <u>LM biomedical switching</u> is performed manually by the LMP from undocking to docking as scheduled in the timeline.

9. All onboard gage readings will be read directly from the gages. and will not be corrected by the appropriate calibration factors.

B. Photography

Photographic requirements were derived from the following:

- a. Lunar Surface Operations Plan
- b. Photographic Operations Plan

C. Procedures

1.CSM

Trew procedures called out in the flight plan may be found in the following documents:

- a. Apollo Operations Handbook CSM-107 (AOH), Volume 1/2
- b. Crew Checklist
- c. CSM Rendezvous Procedure
- d. Abort Summary Document
- e. Apollo Entry Summary Document f. Photographic Operations Plan
- g. Descent Procedures Document
- h. Ascent Procedures Document
- i. Lunar Landmark Tracking Attitude Studies
- j. Lunar Orbit Attitude Sequence for Mission G
- k. Data Priority Documents

2.LM

Crew procedures called out in the flight plan may be found in the following documents:

- a. Apollo Operations Handbook LM-5 Volume 1/2
- b. Crew Checklist
- c. LM Rendezvous Procedures d. LM Descent/Ascent Summary Document
- e. Lunar Landing Phase Photographic Operations Plan
- f. Data Priority Documents
- g. EVA Procedures
- h. Apollo Lunar Surface Operations Plan

D. Communications

1. General

- a. CSM and LM HBR data transmissions in lunar orbit will normally require the use of the high gain or steerable antennas
- b. During communications, the spacecraft will be referred to by name (Apollo 11) and MCC-H will be referred to as Houston.
- c. The preferred S-Band communications are:
 - (1) CSM
 - (a) Uplink Mode 6 (Voice, PRN, and Updata)
 - (b) Downlink Mode 2 (Voice, PRN, TLM-HBR)
 - (2) LM
 - (a) Uplink Mode 7 (Voice, Updata)
 - (b) Downlink Mode 1 (Voice, TLM-HBR)
- d. $\underline{\text{LM voice recorder}}$ has a maximum utilization of 10 hours. This recorder will be used during LM operations to record all LM voice data during undocked operations (27 hours 42 minutes). This recorder will be operated in the VOX mode.
- e. A small portable voice recorder will be carried in the CM to be used at the discretion of the crew as a voice recorder backup. This recorder will not be transferred to the LM for use during undocked operations.
- f. The S-band"squelch" will be on during the sleep periods in order to prevent MSFN fade-out noise from disturbing the crew.

2. DSE Operation

- a. The DSE will normally be operated via ground command except for special cases where the operation is time limited. In these cases the crew may be asked to rewind the tape.
- b. During the <u>earth orbit period</u> when the CSM is not over a MSFN station, CSM TLM-LBR data will be recorded on the DSE and will be dumped during the pass over the US and over CRO prior to TLI if possible.
- c.DSE will be used for CSM HBR and voice recording during all $\underline{\text{CSM}}$ engine burns.
- d. DSE data and voice recordings will be made in <u>CSM LBR mode</u> whenver possible in order to minimize the DSE dump time.
- e. $\underline{\text{During PTC}}$ using the HGA REACQ communications mode the DSE will be used to record LBR data when the HGA is not in the MSFN field of view.
- f. <u>During lunar orbit LM operations</u>, the DSE will be used to record <u>LM-TLM-LBR</u> data during all docked LM activites that occur on the lunar farside. For undocked LM activites only DOI will be recorded as VHF ranging is required.
- g. DSE will be used to record all $\underline{\scriptsize HBR}$ entry data during the blackout region.

3. Launch - Earth Orbit Phase

- a.OMNI B and VHF LEFT will be selected for lift off. OMNI D will be selected by the crew during boost phase if the launch azimuth is less than 96° or OMNI C if the launch azimuth is greater than 96°. OMNI D will probably be the best antenna for earth orbit.
- b. VHF Duplex B will be used for $\underline{\text{launch}}$, and $\underline{\text{Simplex A for earth}}$ orbit operations.
- c. $\overline{\text{VHF Simplex A will}}$ be used for $\underline{\text{entry}}$ to be compatible with recovery forces communications.

4. Translunar and Transearth Coast Phase

The translunar and transearth sleep communications mode will be as follows. The CSM x-axis will be placed normal to the ecliptic plane. The CSM will be rolled at a rate of approximately three revolution per hour. During the near earth sleep periods prior to 30 hours GET (range less than 120Knm) omni antennas B and D will be used. During the other sleep periods (beyond 120Knm) the high gain antenna may be required (in the REACQ mode). The REACQ configuration will provide approximately 210 degrees of HGA coverage per CSM/LM revolution or 35 minutes of MSFN coverage per hour. The REACQ configuration will also allow MCC-H to use real time control to select TLM HBR or LBR and to dump the DSE during each spacecraft revolution.

5. Lunar Exploration Phase

- a. Normal CSM communications between MSFN/LM will be by $\underline{\text{S-Band}}$ during the lunar exploration period.
- b. If additional communications capability is required the S-Band erectable antenna will be deployed by the EVA crewman and will be utilized for all LM/MSFN/CSM communications.
- c. During periods when both crewmen are EVA, the "AR" position (Relay Mode) will be the normal communication mode on each of the Extravehicular Communication System (EVCS). The CDR will relay the LMP VHF voice and data to the LM which in turn will relay to MCC-H via S-Band.

E. CSM Notes

1. Electrical Power System and Water Management

- a. Spacecraft lift-off switch positions are listed in the Apollo Operations Handbook (Volume 2) for CSM 107.
- b. The CSM will remain <u>fully powered</u> up throughout the mission (CMC, IMU and SCS in the "operate" configuration and optics power-up as required).
- c. Fuel cell H_2 and O_2 purging is scheduled as follows H_2 approximately every 48 hours and O_2 approximately every 12 hours.

- d. The hydrogen and oxygen VAC ION pumps will be inactive throughout the mission.
- e. Potable water will be chlorinated once a day before each sleep period, starting with the First sleep period (GET 13:30). The POT H_2O inlet valve will be opened prelaunch.
- f. $\underline{\text{FC purges}}$ and $\underline{\text{waste water dumps}}$ will not be scheduled within one hour prior to optical sightings.
- g. Waste H2O dumping will be managed to allow:
 - (1) Maximum QTY: 85-90%
 - (2) Minimum QTY: 25%
 - (3) At LOI: QTY = 75%
 - (4) At CM-SM SEP: QTY = 90% to 100%
 - (5) No dumping after MCC3 until after LOI
 - (6) Dumps will be performed (if required) within 2 hours preceding MCC maneuvers
 - (7) In lunar orbit if dumping is required, dumps will be performed immediately prior to sleep periods
 - (8) The water dump will not be operated in the automatic mode at anytime during the mission
- h. The <u>cryogenic heaters</u> will be in AUTO during the mission and the fans will be operated manually. The fans will be cycled for one minute before and after each sleep cycle.
- i. The batteries will be charged according to the following schedule:

Time	Battery
5:20:00	В
12:20:00	A
48:10:00	В
80:25:00	A
103:30:00	В
148:00:00	A
154:00:00	В

2. Environmental Control System and Cabin Pressurization

- a. One CO₂ odor absorber filter (LiOH canister) is changed $\overline{\text{approximately every 12 hours}}$ or if CO_2 partial pressure is greater than 7.6mm Hg. There are 20 filters (2 in the canisters onboard and 18 stowed).
- b. A Pre TLI/LOI ECS redundant component check including the secondary evaporator operation, is performed prior to TLI and LOI. The secondary evaporator water control valves will be turned "OFF" after the check.
- c. The evaporator operation will be as follows:

 - (1) Launch primary loop operation (2) Earth Orbit primary loop operation and secondary loop test plus redundant operation test prior to TLI.
 - (3) Post TLI deactivate both evaporators
 - (4) Pre LOI-ECS pre TLI/LOI redundant component check and primary evaporator activation
 - (5) Post TEI deactivate primary evaporator
 - (6) Entry interface minus 1 hour activate primary and secondary evaporator.

3. Guidance and Navigation

- a. During lunar orbit, the CSM and LM will utilize the same landing site REFSMMAT such that the gimbal angles would be 0,0,0 at landing with the LM sitting face forward on landing site number two and the CSM over the landing site pitched up 90° from local horizontal "heads up".
- b. During PTC the CSM/LM x-axis is pitched up 90° (North) for TLC and down 90° (South) for TEC with the Y-Z axes in the plane of the ecliptic. This change in x-axis pointing is to enable simultaneous viewing of the earth and moon through the side windows while maintaining a favorable high gain antenna position.
- c. The <u>CSM tracking light</u> will be on continuously from undocking to landing and from LM lift-off to docking.

4. Landmark Tracking

The following ground rules were used for landmark tracking.

- a. $\underline{\text{IMU to be realigned on the dark side}}$ preceding each tracking period.
- b. $\underline{\text{MSFN}}$ is reacquired after each tracking period. The $\overline{\text{trac}}$ king data will be acquired by MSFN after all the marks have been made and while N49 (ΔR , ΔV) is displayed. MSFN will give a GO when data acquisition has been verified.
- c. The <u>pseudo landmark tracking</u> (A1) will be used to determine the altitude of an area in which the LM will be making altitude checks after DOI. The data will be processed during the sleep period after the trackings and relayed to the LM prior to undocking.
- d. In the docked configuration the CSM/LM approaches the landmark in an inertial hold attitude. This inertial attitude places the spacecraft 2° below the local horizontal at the 35° elevation angle point. At 35° elevation angle a pitch down of 0.3°/sec is initiated. Five marks are then taken with the time between marks a minimum of 25 seconds. (See tracking profile)
- e. In the <u>undocked configuration</u> the CSM approaches the landmark in ORB RATE and pitched down 22° from the local horizontal. At 35° elevation angle five marks are taken with the time between marks a minimum of 25 seconds. ORB RATE is continued throughout the marking period.
- f. In the undocked COAS tracking the CSM will approach the LM in ORB RATE heads up and pitched down 40° from the local horizontal. When the LM is centered in the COAS the CSM will initiate a 40° variable pitch rate to keep the LM centered in the COAS.

35°

35

22°

- 5. CSM/LM and CSM attitude maneuvers will normally be at a rate of 0.2°/sec or $0.5^\circ/\text{sec}$. Unless other rates are required. NOTE: At 0.2°/sec, 15 minutes is required to maneuver 180° At 0.5°/sec, 6 minutes is required to maneuver 180°.
- mission (except in lunar orbit) until at least three hours before entry except for interruptions for midcourse corrections, communications orientation (maximum interruption of three hours). PTC will not be initiated before approximately 7:00 GET.
- 7. Service Propulsion System All SPS burns will be initiated on Bank A except LOI1 which will be initiated on Bank B.

F. LM Notes

1. Entries into the LM

- a. Three entries into the LM are scheduled in the timeline at 56:30, 81:30 and 95:52 GET respectively.
- b. The first entry (56:30 GET) will be for LM familiarization and will be performed by the CDR and LMP in the constant wear garments. During this period there will be approximately 5 minutes of VHF-B LBR data which will be recorded by the DSE in the CSM. The LM will remain on CSM power during the crew familiarization period.
- c. The second entry (81:30 GET) will be for LM housekeeping and will be performed by the LMP in constant wear garments. During this period the LM will go to internal power for the S-Band/VHF B voice activation.
- d. The third entry into the LM (95:52 GET) will be performed by the LMP in LCG's to prepare the LM for undocking and descent to the lunar surface. During this period the LMP and CDR initially transfer to the LM in LCG's then return to the CSM for PGA donning.

- 2. Environmental Control System and Cabin Pressurization a. The $\underline{\text{LM cabin}}$ will contain ambient air at lift off and will bleed down to zero pressure psi during the launch.
 - b. The LM will be pressurized for transposition and docking after which it will be isolated and the pressure periodically monitored.
 - c. The LM will be pressurized prior to the first entry (LM familiarization) after which it will be isolated again for the remainder of the TLC period.
 - d. Prior to the second entry (LM housekeeping) it will be pressurized again and will remain pressurized.

3. Guidance and Navigation

- a. Two $\overline{\text{LGC erasable memory}}$ dumps and MCC-H verifications will be accomplished prior to DOI. If a significant number of errors are found, memory correction and re-verification will be performed before DOI.
- b. The LM IMU will be manually aligned to the CSM IMU during the DOI Day LM activation and checkout. P52/AOT alignments will be performed as close to DOI as possible.
- c. All translations during the undocked manned LM operations will be under PGNCS control.
- d. The capability for MCC-H to update the LGC via uplink will normally be blocked by the LMP UP-DATA LINK switch (panel 12).

4. RCS Operation and Interface Constraints

a. During CSM/LM docked checkout operations, the LM steerable and/or RR antennas will not be powered down once they have been activated. The SM B3 and C4 thrusters will be deactivated before the LM steerable and/or RR antennas have been unstowed in order to prevent SM-RCS impingement on these antennas.

- b. The <u>CSM roll jets and LM yaw jets</u> will be disabled when the probe is preloaded (docking latches are cocked) and the tunnel is pressurized prior to undocking. The jets will be activated after tunnel venting.
- c.LM RCS two jet ullage (System B) will be used for unstaged ullage maneuvers in order to prevent asymetrical RCS thrust caused by impingement on the descent stage.
- d. The RCS interconnect will be used during the APS lift-off and ascent, but will not be used during the rendezvous maneuvers.

5. Rendezvous

- a. The rendezvous radar will be pointed away from the sun and will be turned off when no functional use is required to prevent overheating of the antenna.
- b. The <u>LM tracking light</u> will be on continuously between separation and touchdown and between launch and docking except during PGNCS/AOT alignments. During PGNCS/AOT alignments (LM P52), the tracking light would interfere with the alignments. (dark adaption)

FIGURE 1-4

LUNAR EXPLORATION COMMUNICATIONS
ONE CREWMEN EVA
PRIMARY MODE

SECTION II

UPDATE FORMS

UPDATE FORMS

This section contains the update pads which are in the Flight Data File onboard the spacecraft.

The CSM forms are as follows:

- 1. TLI Maneuver 2. P37 Block Data 3. P27 Update
- 4. P30 Maneuver (External Δ V)
- 5. P76
 6. CSM Rendezvous Rescue
 7. Lunar Entry
 8. Earth Orbit Entry

- 9. Earth Orbit Block Data

The LM forms are:

- P27 Update
 AGS State Vector Update
 Phasing P30 LM Maneuver
- 4. P30 LM Maneuver
 5. DOI Data
 6. PDI Data
 7. Lunar Surface
 8. LM Ascent

- 9. CSI Data 10. CDH Data 11. TPI Data

		TLI									
	x	X	ТВ6р	1							
	X X X	X X X	R								
	X X X	X X X	P TLI								
	X X X	X X X	Υ								
	X X X	X X X I	BT								
		<u> </u>	_\ΔVC'								
			VI								
	XXX	XXX	R								
	XXX	XXXX	P SEP								
	XXX	XXX	Y								
	X	XXX	R								
	X	XXX	P EXTRACTION								
	X	X X X	ΙΥ								
APRIL 1, 1969											

TLI PAD PREDICTED TIME OF BEGINNING OF тв бр X:XX:XX (HR:MIN:SEC) S-IVB RESTART PREPARATION FOR TLI (TB6 = TLI IGN -578.6 SEC)XXX (DEG) XXX (DEG) PREDICTED SPACECRAFT IMU GIMBAL ANGLES AT TLI IGNITION Ρ XXX (DEG) Υ ВТ X:XX (MIN:SEC) DURATION OF TLI BURN NOMINAL TLI Δ V SET INTO Δ VC XXXX.X (FPS) EMS Δ V COUNTER VI +XXXXX (FPS) NOMINAL INERTIAL VELOCITY DISPLAYED ON DSKY AT TLI CUTOFF PREDICTED SPACECRAFT IMU GIMBAL R SEP XXX (DEG) XXX (DEG) XXX (DEG) P SEP ANGLES AT COMPLETION OF S-IVB Y SEP MNVR TO CSM/S-IVB SEP ATTITUDE R EXT XXX (DEG) PREDICTED SPACECRAFT IMU P EXT GIMBAL ANGLES AT TIME OF CSM XXX (DEG) Y EXT XXX (DEG) EXTRACTION OF LM FROM S-IVB

P37 BLOCK DATA

DESIRED TIME OF IGNITION GETI XXX:XX

(HR:MIN)

 $\Delta {\rm VT}$ XXXX (FPS) TOTAL VELOCITY OF MNVR

LONGITUDE OF THE LANDING POINT FOR ENTRY GUIDANCE ±XXX (DEG) LONG

GET 400K XXX:XX

TIME OF ENTRY INTERFACE (HR:MIN)

	PURP GET			V		I						_			. –		
	GET								٧					V			
			<u>:</u>		•			<u>:</u>		•							
	304 01	INI	DEX				IN	DΕ>	(INI	DE	(
	02																
	03																
	04	\vdash															
	05																
	06																
P27	07																P27
7	10																_
	11																
	12																
	13																
	14																
	15																
	16																
	17																
	20																
	21																
	22																
	23																
6	24																
96	N34		HR	S	Χ	Χ	Х				Х	Χ	Χ				
١, ١			11M	4	Χ	Χ	Х	Χ			Х	Χ	Χ	Χ			
	NAV CHE				Χ	Χ					Х	Χ					
APRIL 1, 1969	N43		LA			0			•			0					
`		L	10	1G					•								
			ΑĽ	Γ	+	0					+	0					

P27 UPDATE - CSM TYPE OF DATA TO BE RECEIVED PURP XXX (SUCH AS: CMC TIME) V XX (VERB) TYPE OF COMMAND LOAD (70-71-72-73)GET XXX:XX:XX TIME DATA RECORDED (HR:MIN:SEC) 304 01 XX (OCTAL) INDEX NO. OF COMMAND WORDS IN LOAD XX (OCTAL) CORRECTION IDENTIFIERS 02-24 N34 NAV CHECK XXX:XX:XX TIME FOR CONFIRMATION OF (HR:MIN:SEC) GROUNDTRACK N43 LAT XX.XX (DEG) LATITUDE FOR GROUND TRACK CONFIRMATION LONG XXX.XX (DEG) LONGITUDE FOR GROUND TRACK CONFIRMATION XXX.X (DEG) ALTITUDE FOR GROUND TRACK ALT CONFIRMATION

P30 MANEUVER

PURPOSE	XXXXX	TYPE OF MNVR TO BE PERFORMED
PROP/GUID	XXX/XXX	PROPULSION SYSTEM (SPS/RCS) GUIDANCE (SCS/G&N)
WT	+XXXXX (lbs)	PREMANEUVER VEHICLE WEIGHT
P TRIM	±X.XX (DEG)	SPS PITCH GIMBAL OFFSET TO PLACE THRUST THROUGH THE CG
Y TRIM	±X.XX (DEG)	SPS YAW GIMBAL OFFSET TO PLACE THRUST THROUGH THE CG
GETI	XX:XX:XX.XX (HRS:MIN:SEC)	TIME OF MNVR IGNITION
Δ VX Δ VY Δ VZ	±XXXX.X (FPS) ±XXXX.X (FPS) ±XXXX.X (FPS)	P30 VELOCITY TO BE GAINED COMPONENTS IN LOCAL VERTICAL COORDINATES
R P Y	XXX (DEG) XXX (DEG) XXX (DEG)	IMU GIMBAL ANGLES OF MANEUVER ATTITUDE
НА	XXXX.X (NM)	PREDICTED APOGEE ALTITUDE AFTER MANEUVER
HP	±XXXX.X (NM)	PREDICTED PERIGEE ALTITUDE AFTER MANEUVER
Δ VT	+XXXX.X (FPS)	TOTAL VELOCITY OF MANEUVER
BT	X:XX (MIN:SEC)	MANEUVER DURATION
ΔVC	XXXX.X (FPS)	PREMANEUVER Δ V SETTING IN EMS Δ V COUNTER
SXTS	XX (OCTAL)	SEXTANT STAR FOR MANEUVER ATTITUDE CK
SFT	+XXX.X (DEG)	SEXTANT SHAFT SETTING FOR MANEUVER ATTITUDE CK
TRN	+XX.X (DEG)	SEXTANT TRUNNION SETTING FOR MANEUVER ATTITUDE CK
BSS	XX (OCTAL)	BORESIGHT STAR FOR MANEUVER ATTITUDE CK USING THE COAS
SPA	±XX.X (DEG)	BSS PITCH ANGLE ON COAS FOR MANEUVER ATTITUDE CK

SXP	±X.X (DEG)	BSS X POSITION ON COAS FOR MANEUVER ATTITUDE CK
LAT LONG	±XX.XX (DEG) ±XXX.XX (DEG)	LATITUDE AND LONGITUDE OF THE LANDING POINT FOR ENTRY GUIDANCE
RTGO	+XXXX.X (NM)	RANGE TO GO FOR EMS INITIALIZATION
VIO	+XXXXX (FPS)	INERTIAL VELOCITY AT .05G FOR EMS INITIALIZATION
GET (.05G)	XXX:XX:XX.XX (HRS:MIN:SEC)	TIME OF .05G
SET STARS	XX (OCTAL) XX (OCTAL)	STARS FOR BACKUP GDC ALIGN
R, P, Y (ALIGN)	XXX (DEG) XXX (DEG) XXX (DEG)	ATTITUDE TO BE SET IN ATTITUDE SET TW FOR BACKUP GDC ALIGN
ULLAGE	X (JETS) XX.X (SEC)	NO. OF SM RCS JETS USED AND LENGTH OF TIME OF ULLAGE
HORIZON/WINDOW	XX.X (DEG)	WINDOW MARKING AT WHICH HORIZON IS PLACED AT A SPECIFIED TIG (ATT CK)
OTHER		ADDITIONAL REMARKS VOICED UP BY MCC-H

						P7	'6 L	JPD	ATI	E P/	٩D			
												PURPOSE		
	+	0	0			+	0	0				HR	N33	
	+	0	0	0		+	0	0	0			MIN	TIG	
	+	0		•		+	0		•	•		SEC		
					•					,	•	ΔVX	N84	
					•					,	•	ΔVY		
					•					•	<u> </u>	ΔVZ		
P76												PURPOSE		P76
8	+	0	0			+	0	0				HR	N33	-
	+	0	0	0		+	0	0	0			MIN	TIG	
	+	0		•		+	0		•			SEC		
					•					,	•	ΔVX	N84	
					•					,	•	ΔVY		
					•					,	•	ΔVZ		
												PURPOSE		
	+	0	0			+	0	0				HR	N33	
	+	0	0	0		+	0	0	0			MIN	TIG	
	+	0		•		+	0		•			SEC		
					•					,	•	ΔVX	N84	
					•					,	•	ΔVY		
6					•	4				•	<u> </u>	ΔVZ		
961												PURPOSE		-
5, 1969	+	0	0	_		+	0	0				HR	N33	
⊢ ⊒	+	0	0	0		+	0	0	0			MIN	TIG	
APR	+	0		_		+	0		_			SEC		
					<u> </u>					•	<u> </u>	ΔVX	N84	
					<u> </u>	+				,	<u> </u>	ΔVΥ		
					<u> </u>						<u> </u>	ΔVZ		

P76 UPDATE PAD

PURPOSE N33 TIG	XXXXX XX:XX:XX.XX (HR:MIN:SEC)	PURPOSE OF MANEUVER TIME OF IGNITION
N84 Δ VX Δ VY Δ VZ	XXXX.X (FPS) XXXX.X (FPS) XXXX.X (FPS)	COMPONENTS OF Δ V APPLIED ALONG LOCAL VERTICAL AXIS AT TIG (LM)

CSM RENDEVOUS RESCUE PADS

CSM SEP PAD 31 00 000 0. 81 + 0000.0 + 0000.0 - 0002.5 22 XXX XXX XXX

	NOI	MINAL	LM IGNI	TION	TIMES	
CSI 11	00	•	000	•	0	
PC 33	00	•	000	•	0	
TPI 37	00	•	000	•	0	

		С	SI TWO)			
11	00	•	000		•	0	
81							
Ν							

		CS	SI THR	EE			
11	00	•	000	(•	0	
81							
Ν							

CSM SEP PA	<u>AD</u>							
33	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF CSM/LM SEPARATION BURN					
81	DELTA VX DELTA VY DELTA VZ	+XXXX.X (FPS)	LOCAL VERTICAL VELOCITY COMPONENTS OF SEP BURN					
22	R P Y	XXX (DEG) XXX (DEG) XXX (DEG)	SEPARATION BURN INERTIAL GIMBAL ANGLES					
DOI PAD								
84	DELTA VY		LM LOCAL VERTICAL VELOCITY COMPONENTS FOR DOI BURN					
33	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF DOI BURN					
PDI +12 AI	BORT PAD							
84		XXXX.X (FPS)	LM LOCAL VERTICAL VELOCITY COMPONENTS FOR FIRST OPPORTUNITY PDI PLUS 12 MIN ABORT					
33	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF PDI +12 MIN ABORT BURN					
"CSM RESCU	JE" PAD							
PHAS	33 GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF CSM ABORT PHASING BURN					
TPI (PDI 10)	37 GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF TPI FOR LM ABORTS BETWEEN PDI AND PDI +10 MIN					
TPI (PDI 10)	37 GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF TPI FOR LM ABORTS AFTER PDI +10 MIN					
"CSM RESCUE UPDATE" PAD								
PHAS	33 GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF CSM ABORT PHASING BURN FOR 2ND OPPORTUNITY (1 REV DELAY)					
TPI (PDI 14.		XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF TPI FOR LM ABORTS BETWEEN PDI AND PDI +14.5 MIN FOR 2ND OPPORTUNITY					
TPI (T2)	37 GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF PREFERRED LM LIFTOFF TIME					

RESCUE TW	O PAD		
47	WT	XXXX.X (lbs)	PREMANEUVER CSM WEIGHT
48	P TRIM Y TRIM		SPS PITCH & YAW GIMBAL OFFSET TO PLACE THRUST THROUGH THE CG
33	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF RESCUE BURN
81		XXXX.X (FPS)	LOCAL VERTICAL VELOCITY COMPONENTS OF RESCUE BURN
22	R P Y	XXX (DEG) XXX (DEG) XXX (DEG)	RESCUE BURN GIMBAL ANGLES
Δ Vc	Δ Vc	XX.X (FPS)	VELOCITY TO BE SET IN EMS COUNTER FOR RESCUE BURN
11	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF CSI BURN BASED ON RESCUE BURN
37	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF TPI BURN BASED ON RESCUE BURN
N		Х	THE FUTURE APSIDAL CROSSING (APOLUNE OR PERILUNE) OF THE ACTIVE VEHICLE AT WHICH CDH SHOULD OCCUR

CSI ONE			
11	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF CSI ONE BURN
81	DELTA VX DELTA VY DELTA VZ	XXXX.X (FPS) XXXX.X (FPS) XXXX.X (FPS)	LOCAL VERTICAL VELOCITY COMPONENTS OF CSI ONE BURN
N		Х	THE FUTURE APSIDAL CROSSING (APOLUNE OR PERILUNE) OF THE ACTIVE VEHICLE AT WHICH CDH SHOULD OCCUR

CSI TWO, THREE, FOUR

SAME AS ABOVE EXCEPT CSI TWO, THREE, FOUR

CDH			
13	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF CDH BURN
81	DELTA VX DELTA VY DELTA VZ	XXXX.X (FPS) XXXX.X (FPS) XXXX.X (FPS)	LOCAL VERTICAL VELOCITY COMPONENTS OF CDH BURN
TPI			
37	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	GET OF LM TPI BURN
81	DELTA VX DELTA VY DELTA VZ	XXXX (FPS) XXXX (FPS) XXXX (FPS)	LOCAL VERTICAL VELOCITY COMPONENTS OF TPI BURN
59	Δ V (LOS)	XXXX (FPS)	VELOCITY COMPONENTS ALONG THE LINE OF SIGHT TO TARGET
LOS BT		X:XX MIN:SEC	BURN DURATION ALONG THE LINE OF SIGHT

P22 PAD			
T1		XXX:XX:XX.XX (HRS:MIN:SEC)	GET AT WHICH LANDMARK APPEARS ON HORIZON
Т2		XXX:XX:XX.XX (HRS:MIN:SEC)	GET AT WHICH LANDMARK LOS IS 35° ABOVE LOCAL HORIZONTAL
NM (N OR S	S)	XX.X (NM)	DISTANCE OF LANDMARK NORTH OR SOUTH OF ORBITAL TRACK
89	LAT LONG ALT	±XX.X (DEG) ±XX (DEG)	LATITUDE OF LANDMARK LONGITUDE OF LANDMARK ALTITUDE OF LANDMARK ABOVE OR BELOW MEAN LUNAR RADIUS
NOMINAL LI	M IGNITION '	TIMES	
CSI 11	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	NOMINAL GET OF LM CSI BURN
PC 33	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	NOMINAL GET OF LM PLANE CHANGE BURN
TPI 37	GETI	XXX:XX:XX.XX (HRS:MIN:SEC)	NOMINAL GET OF LM TPI BURN

1 1	LUNAR ENTRY															
															AREA	
		Х	Χ	Χ					Х	Χ	Χ				R 0.05G	
		Х	Χ	Χ					Х	Χ	Χ				P 0.05G	
		Х	Χ	Χ					Х	Χ	Χ				Y 0.05G	
					(((GET HOR	
		Χ	Χ	Χ					Х	Χ	Χ				P CK	
			0							0					LAT N61	
															LONG	
		Х	Χ	Χ					Х	Χ	Χ			•	MAX G	
		+							+						V _{400K} N60	
		-	0	0					-	0	0	_ (γ 400Κ	
		+				•			+						RTGO EMS	
		+							+						VI0	
															RRT	
		Х	Χ						Х	Χ					RET 0.05G	
		+	0	0	_ (+	0	0				DL MAX N69	
무드		+	0	0	_ •				+	0	0	_ (ן טר wiii	AR
LUNAR		+							+						V _L MAX	LUNAR ENTRY
~ ~		+							+						V _L MIN	_
		X	X	Х					X	X	Х	-			DO Voine	
		X	X						X	X					RET VCIRC	
		X	X						X	X					RETBBO	
69		X	X			•			X	X		(RETEBO	
1969		X	X	V	V				X	X	V	V			RETDRO	
5,		X	Х	Х	Х				X	Х	Х	Х			SXTS	
APRIL 5,		+			-	_	0		+			-	0	0	SFT TRN	
\(\forall \)		+ X	Χ	X		0	U		+ X	Х	Х		U	U	BSS	
		<u>^</u>	Λ	\bigcap					<u>X</u>	Λ	^				SPA	
		<u>^</u>	X	X		•			X	Х	Х		-		SXP	
		X	X	X	Х	•			X	Х	X	Х	-		LIFT VECTOR	

LUNAR ENTRY PAD

AREA	XXXXX	SPLASHDOWN AREA DEFINED BY TARGET LINE
R .05G P .05G Y .05G	XXX (DEG) XXX (DEG) XXX (DEG)	SPACECRAFT IMU GIMBAL ANGLES REQUIRED FOR AERODYNAMIC TRIM AT .05G
GET (HOR CK)	XXX:XX:XX (HRS:MIN:SEC)	TIME OF ENTRY ATTITUDE HORIZ CHECK AT EI -17 MIN.
P (HOR CK)	XXX (DEG)	PITCH ATTITUDE FOR HORIZON CHECK AT EI -17 MIN.
LAT	±XX.XX (DEG)	LATITUDE OF TARGET POINT
LONG	±XXX.XX (DEG)	LONGITUDE OF TARGET POINT
MAX G	XX.X (G's)	PREDICTED MAXIMUM REENTRY ACCELERATION
V400K	+XXXXX (FPS)	INERTIAL VELOCITY AT ENTRY INTERFACE
γ400Κ	-X.XX (DEG)	INERTIAL FLIGHT PATH ANGLE AT ENTRY INTERFACE
RTGO	+XXXX.X (NM)	RANGE TO GO FROM .05G TO TARGET FOR EMS INITIALIZATION
VIO	+XXXXX (fps)	INERTIAL VELOCITY AT .05G FOR EMS INITIALIZATION
RRT	XXX:XX:XX (HRS:MIN:SEC)	REENTRY REFERENCE TIME BASED ON GET OF PREDICTED 400K (GET START)
RET .05G	XX:XX (MIN:SEC)	TIME OF .05G FROM 400K (RRT)
DL MAX	+X.XX (G's)	MAXIMUM ACCEPTABLE VALUE OF PREDICTED DRAG LEVEL (FROM CMC)
DL MIN	+X.XX (G's)	MINIMUM ACCEPTABLE VALUE OF PREDICTED DRAG LEVEL (FROM CMC)
VL MAX	+XXXXX (FPS)	MAXIMUM ACCEPTABLE VALUE OF EXIT VELOCITY (FROM CMC)
VL MIN	+XXXXX (FPS)	MINIMUM ACCEPTABLE VALUE OF EXIT VELOCITY (FROM CMC)
DO	X.XX (G's)	PLANNED DRAG LEVEL DURING CONSTANT G
RET VCIRC	XX:XX (MIN:SEC)	TIME FROM EI THAT S/C VELOCITY BECOMES CIRCULAR
RETBBO	XX:XX (MIN:SEC)	TIME FROM EI TO THE BEGINNING OF BLACKOUT
RETEBO	XX:XX (MIN:SEC)	TIME FROM EI TO THE END OF BLACKOUT

RETDRO	XX:XX (MIN:SEC)	TIME FROM EI TO DROGUE DEPLOY
SXTS	XX (OCTAL)	SEXTANT STAR FOR ENTRY ATTITUDE CHECK
SFT	+XXX. X (DEG)	SEXTANT SHAFT SETTING FOR ENTRY ATTITUDE CHECK
TRN	+XX. X (DEG)	SEXTANT TRUNNION SETTING FOR ENTRY ATTITUDE CHECK
BSS	XXX (OCTAL)	BORESIGHT STAR FOR ENTRY ATTITUDE CHECK USING THE COAS
SPA	±XX.X (DEG)	BSS PITCH ANGLE ON COAS FOR ENTRY ATTITUDE CHECK
SXP	±X.X (DEG)	BSS X POSITION ON COAS FOR ENTRY ATTITUDE CHECK
LIFT VECTOR	XX (UP/DN)	LIFT VECTOR DESIRED AT .05G's BASED ON ENTRY CORRIDOR

	EARTH ORBIT ENTRY UPDATE											
	Х			I I		Х			-	-	AREA	1
	Х	Χ	-			Х	Х	-			ΔV ΤΟ	1
	Х	Х	Χ			Χ	Х	Χ			R 0.05G EMS	1
	Χ	Х	Χ			Χ	Χ	Χ			P 0.05G	
	Χ	Х	Χ			Χ	Х	Χ			Y 0.05G	
	+					+					RTGO EMS	1
	+					+					VI0	
	Χ	Х		•		Χ	Χ				RET 0.05G	
		0					0				LAT N61	1
											LONG	
6	Х	Х		•		Х	Х				RET 0.2G	
APRIL 16, 1969											DRE (55°) N66	
5, 1	R	R		/		R	R			/	BANK AN	
]	Х	Х		†		Х	Х				RET RB	
PRI	Х	Х		‡		Χ	Х				RETBBO	
⋖	Х	Х		‡		Х	Х				RETEBO	
	Х	Х		‡		Χ	Х				RETDROG	
	Х	Х	Χ			Χ	Χ	Χ			(90°/fps) CHART	
	Χ	Χ				Χ	Χ				DRE (90°) UPDATE	
							РС	ST	BU	RN		
	Χ	Χ	Χ			Χ	Χ	Χ			P 0.05G	
	+					+					RTGO EMS	
	+					+					VI0	
	Χ	Χ		•		Χ	Χ				RET 0.05G	
	Χ	Χ		*		Χ	Χ				RET 0.2G	
₽m											DRE ±100 nm N66	o.∑
ENTRY	R	R		/		R	R			/	BANK AN	E. O. ENTRY
	Χ	Χ		‡		Χ	Χ				RETRB	
	Χ	Χ		•		Χ	Χ				RETBBO	
	Χ	Χ		†		Χ	Χ				RETEBO	
	Χ	Χ		†		Χ	Χ				RETDROG TO MAIN	

EARTH ORBIT ENTRY UPDATE

AREA	XXX-X	RECOVERY AREA - FIRST 3 DIGITS DENOTES REV IN WHICH LANDING OCCURS. LAST DIGIT DENOTES RECOVERY AREA AND SUPPORT CAPABILITIES.
Δ V TO	XX.X (FPS)	Δ V DUE TO ENGINE TAILOFF
EMS		
R 0.05G P 0.05G Y 0.05G		SPACECRAFT IMU GIMBAL ANGLES REQUIRED FOR AERODYNAMIC TRIM AT 0.05G.
EMS		
RTGO	XXXX.X (NM)	RANGE TO GO FROM .05G TO TARGET
VIO	XXXXX (FPS)	INERTIALVELOCITY AT .05G FOR EMS INITIALIZATION
RET 0.05G	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO .05G
N61		
LAT	±XX.XX (DEG)	LATITUDE OF IMPACT LANDING POINT
LONG	±XXX.XX (DEG)	LONGITUDE OF IMPACT LANDING POINT
N66		
RET .2G	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO .2G
DRE (55°)	±XXXX.X (NM)	DOWNRANGE ERROR AT .2G
BANK AN	XX/XX (DEG/DEG)	BACKUP BANK ANGLE FOR SCS ENTRY: ROLL RIGHT/ROLL LEFT
RETRB	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO REVERSE BACKUP BANK ANGLE
RETBBO	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO BEGINNING OF COMMUNICATIONS BLACKOUT
RETEBO	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO END OF COMMUNICATIONS BLACKOUT
RETDROG	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO DROGUE CHUTE DEPLOYMENT
CHART UPDATE		
90°/FPS DRE (90°)	±XX ±XXX	VALUES USED TO RE-PLOT BACKUP ENTRY CHART - Δ V AND DOWNRANGE ERROR (DRE) @ 90° BANK ANGLE

POST BURN		
P 0.05G	XXX (DEG)	PITCH ANGLE @ ENTRY INTERFACE
EMS		
RTGO	+XXXX.X (NM)	RANGE TO GO FROM 0.05G TO TARGET FOR EMS COUNTER
VIO	+XXXXX (FPS)	INERTIAL VELOCITY @ 0.05G
RET 0.05G	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO 0.05G
RET 0.2G	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO 0.2G
DRE	±XXXX.X (NM)	DOWN RANGE ERROR
BANK AN	XX/XX (DEG/DEG)	BACKUP BANK ANGLE FOR SCS ENTRY: ROLL RIGHT/ROLL LEFT
RETRB	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO REVERSE BACKUP BANK ANGLE
RETBBO	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO BEGINNING OF COMMUNICATIONS BLACKOUT
RETEBO	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO END OF COMMUNICATIONS BLACKOUT
RETDROG	XX:XX (MIN:SEC)	TIME FROM RETROFIRE TO DROGUE CHUTE DEPLOYMENT

EARTH ORBIT BLOCK DATA

AREA	XXX-X	RECOVERY AREA FIRST 3 DIGITS - LANDING REVOLUTION LAST DIGIT - RECOVERY AREA AND SUPPORT CAPABILITIES
LAT LONG	±XX.XX (DEG) ±XXX.XX (DEG)	COORDINATES OF THE DESIRED LANDING AREA
GETI	XXX:XX:XX.XX (HR:MIN:SEC)	DEORBIT IGNITION TIME FOR THE DESIRED LANDING AREA
Δ VC	XXX. X (FPS)	DEORBIT MANEUVER Δ V TO BE LOADED INTO THE EMS COUNTER.

	LM P27 UPDATE															
	PURP		٧			V				V						
	GET	•		•		•		•		•			•			
	1174 01	INDE)	X			IN	DEX	(ΙN	DE	(
Ŋ	02															_
P27	03															P27
	04															
	05															
	06															
	07															
	10															
	11															
	12															
	13															
	14															
	15															
	16															
•	17															
596	20															
<u> </u>	21															
APRIL 16, 1969	22															
'n	23															
₹	24															
	N34	HF	RS	Χ	Χ	Х				Х	Χ	Χ				
		MI		Χ	Х	Х	Х			Х	Χ	Х	Х			
	NAV CHE			Χ	Х					Х	Χ					
	N43				0			•			0					
		LOI						•								
		Al	T	+	0					+	0					

P27 UPDATE-LM

PURP	XXX	TYPE OF DATA TO BE RECEIVED (SUCH AS: LDG TIME)
V	XX (VERB)	TYPE OF COMMAND LOAD (70-71-72-73)
GET	XXX:XX:XX (HR:MIN:SEC)	TIME DATA RECORDED
1174 01	XX (OCTAL)	INDEX NO. OF COMMAND WORDS IN LOAD
02-24	XX (OCTAL)	CORRECTION WORD IDENTIFIERS
N34 NAV CHECK TIME	XXX:XX:XX.XX (HR:MIN:SEC)	TIME FOR CONFIRMATION OF GROUNDTRACK
N43		
LAT	XX.XX (DEG)	LATITUDE FOR GROUND TRACK CONFIRMATION
LONG	XXX.XX (DEG)	LONGITUDE FOR GROUND TRACK CONFIRMATION

	AGS STATE VECTOR UP	PDATE	
		PURP	
		240	1
		241	
		242	
		260	
		261	
		262	
	+ + +	254	
		244	
596		245	
APRIL 5, 1969		246	
=		264	
APR		265	
`		266	
	+ + + + + + + + + + + + + + + + + + + +	272	
	REMARKS:		
AGS SV			AGS SV

AGS STATE VECTOR UPDATE

PURP		PURPOSE FOR AGS STATE VECTOR UPDATE
240	±XXXXX (100 FT)	LM STATE VECTOR-POSITION
241	±XXXXX (100 FT)	COMPONENTS
242	±XXXXX (100 FT)	
260	±XXXX.X (FPS)	LM STATE VECTOR-VELOCITY
261	±XXXX.X (FPS)	COMPONENTS
262	±XXXX.X (FPS)	
254	+XXXX.X (MIN)	LM TIME FOR WHICH THE STATE VECTOR IS ACCURATE
244	±XXXXX (100 FT)	CSM STATE VECTOR-POSITION
245	±XXXXX (100 FT)	COMPONENTS
246	±XXXXX (100 FT)	
264	±XXXX.X (FPS)	CSM STATE VECTOR-VELOCITY
265	±XXXX.X (FPS)	COMPONENTS
266	±XXXX.X (FPS)	
272	+XXXX.X (MIN)	CSM TIME FOR WHICH THE STATE VECTOR IS ACCURATE

		PH	IASII	NG		P30 LM MANEUVER							
HR	N33	+	0	0				+	0	0			
MIN	TIG	+	0	0	0			+	0	0	0		
SEC		+	0					+	0				
ΔVX	N81					,							•
ΔVΥ	LOCAL												•
ΔVZ	VERT												
H _A	N42	+						+					
H _P							•						•
ΔVR		+						+					•
BT		Χ	Χ	Χ				Χ	Χ	Χ			
R	FDAI	Х	Х	Χ				Х	Χ	Χ			
P	INER	Х	Х	Х				Χ	Χ	Χ			
ΔVX	AGS N86												
ΔVΥ	AGS												•
ΔVZ	AGS												
BSS		Χ	Χ	Χ				Χ	Χ	Χ			
SPA		Χ	Χ					Χ	Χ				
SXP		Χ	Χ	Χ				Χ	Χ	Χ			

PHASING

N33 PHASING TIG	XXX:XX:XX.XX (HR:MIN:SEC)	IGNITION TIME OF LM MANEUVER
N81 LOCAL VERTICAL Δ	V	
$egin{array}{l} \Delta ext{VX} \ \Delta ext{VY} \ \Delta ext{VZ} \end{array}$	±XXXX.X (FPS) ±XXXX.X (FPS) ±XXXX.X (FPS)	LOCAL VERTICAL Δ V COMPONENTS OF THE MANEUVER
N42 ORBITAL PARAMETE	RS	
НА	+XXXX.X (NM)	PREDICTED APOGEE RESULTING FROM MANEUVER
НР	±XXXX.X (NM)	PREDICTED PERIGEE RESULTING FROM MANEUVER
Δ VR	+XXXX.X (FPS)	TOTAL $\Delta ext{V}$ required for the maneuver
BT	X:XX (MIN:SEC)	DURATION OF THE MANEUVER
FDAI		
R P	XXX (DEG) XXX (DEG)	INERTIAL FDAI ANGLES AT THE BURN ATTITUDE
AGS Δ V		
Δ VX AGS Δ VY AGS Δ VZ AGS	±XXXX.X (FPS) ±XXXX.X (FPS) ±XXXX.X (FPS)	LOCAL VERTICAL Δ V COMPONENTS OF THE MANEUVER TO TARGET THE AGS
BSS	XX (OCTAL)	BSS STAR FOR MANEUVER ATTITUDE CHECK
SPA SXP	±XX.X (DEG) ±XX.X (DEG)	BSS PITCH ANGLE ON COAS, & BSS X POSITION ON COAS FOR MANEUVER ATTITUDE CHECK

P30 LM MANEUVER

PURPOSE	XXXXX	PURPOSE OF MANEUVER (SUCH AS DOI TARGETING)
N33 TIG OF MANEUVER	XXX:XX:XX (HR:MIN:SEC)	IGNITION TIME FOR THE MANEUVER
N81 LOCAL VERTICAL Δ	V	
ΔVX ΔVY ΔVZ	±XXXX.X (FPS) ±XXXX.X (FPS) ±XXXX.X (FPS)	LOCAL VERTICAL Δ V COMPONENTS OF THE MANEUVER
N42 ORBITAL PARAMETE	RS	
НА		PREDICTED APOGEE AND PERIGEE RESULTING FROM MANEUVER
НР	±XXXX.X (NM)	
Δ VR	+XXXX.X (FPS)	TOTAL Δ V REQUIRED FOR THE MANEUVER
ВТ	X:XX (MIN:SEC)	DURATION OF THE MANEUVER
FDAI		
R P	XXX (DEG) XXX (DEG)	INERTIAL FDAI ANGLES AT THE BURN ATTITUDE
N86 AGS Δ V		
Δ VX AGS Δ VY AGS Δ VZ AGS	±XXXX.X (FPS) ±XXXX.X (FPS) ±XXXX.X (FPS)	LOCAL VERTICAL ΔV COMPONENTS OF THE MANEUVER USED TO TARGET THE AGS
BSS	XX (OCTAL)	BSS STAR FOR BURN ATTITUDE CHECK
SPA SXP	±XX.X (DEG) ±XX.X (DEG)	BSS PITCH ANGLE ON COAS, & BSS X POSITION ON COAS FOR MANEUVER ATTITUDE CHECK

ı	1	\)
		I	
ω	(,	ر

				P3	30							LR SELF TEST	
HR	N33	+	0	0				- 0) C			H TM (+7994±30)	
MIN	TIG	+	0	0	0		-	- C) C)		1. 7.4 / 400 ()	
SEC		+	0				Τ-	- ()				
ΔVX	N81					$\overline{}$						N66 SLANTRNG (+08275.±5.0) N67 VX (-00494. ±2.0)	
Δ VY	LOCAL											VY (+01858. ±2.0)	
ΔVZ	VERT										•	VZ (+01329. ±2.0)	
H_A	N42	+					-	-				<u> </u>	
H _P						_	L				_		
ΔVR		+						_					
ВТ		Х	Х	Χ)	()	(X	<u> </u>		RR / TM / VHF	
R	FDAI	Х	Х	Х)	()	(X			R_1 R_2 \mathring{R}	
Р	INER	Х	Х	Χ)	()	(X				
∆VX AGS	N86											N73	
∆VY AGS	;										•	TM	
∆VZ AGS	;											CMC	
BSS		Х	Х	Х)	()	(X			VHF	
SPA		Х	Х					()					
SXP		Х	Χ	Х)	()	(X			P52 STAR 1 3 3	_
												N05 (STAR≮DIFF)	
												N93 (TORQUING ≰) X	
												Y	_
	<u>.</u>	1AN	۸UA	L Sł	HUT.	DOV.	<u>/N</u>					GET: Z	
	OR A	λ. Δ	VG	NE	GAT	IVE (F	٩G١	IS)					
		8. V	T: 2	SEC	201	IDS C	OVE	R Bl	JRN			RESIDUALS	
				۱A -	۱D -							PGNS AGS	
		AG:	S V(X کر	2 FPS	S OVI	-R					ΔVX 500	
						OVE						ΔVY N85 501	
	Α	TT :	±5°	F	PATE	±5°/	/sec					AVZ 502	

DOI DATA CARD

N33 DOI TIG XXX:XX:XX IGNITION TIME OF LM MANEUVER (HR:MIN:SEC)

N81 LOCAL VERTICAL Δ V

±XXXX.X (FPS) LOCAL VERTICAL Δ V COMPONENTS Δ VX

±XXXX.X (FPS) ±XXXX.X (FPS) Δ VY OF THE MANEUVER ΔVZ

N42 ORBITAL PARAMETERS

+XXXX.X (NM) PREDICTED APOGEE RESULTING

FROM MANEUVER

PREDICTED PERIGEE RESULTING ΗP ±XXXX.X (NM)

FROM MANEUVER

 Δ VR +XXXX.X (FPS) TOTAL Δ V REQUIRED FOR THE

MANEUVER

ВТ X:XX (MIN:SEC) DURATION OF THE MANEUVER

FDAI

Ρ

INERTIAL FDAI ANGLES AT THE XXX (DEG) R

XXX (DEG) BURN ATTITUDE

N86 AGS Δ V

 Δ VX AGS ±XXXX.X (FPS) LOCAL VERTICAL Δ V COMPONENTS OF THE MANEUVER TO TARGET THE AGS

 Δ VY AGS ±XXXX.X (FPS) Δ VZ AGS ±XXXX.X (FPS)

BSS XXX (OCTAL) BSS STAR FOR MANEUVER

ATTITUDE CHECK

±XX.X (DEG) ±XX.X (DEG) SPA BSS PITCH ANGLE ON COAS,

& BSS X POSITION ON COAS FOR SXP

MANEUVER ATTITUDE CHECK

PDI DATA CARD

	PDI PAD													
HRS	TIG	+	0	0				+	0	0				
MIN	PDI	+	0	0	0			+	0	0	0			
SEC	+	0			,		+	0						
TGO	N61	Χ	Χ					Χ	Χ					
CROSSRA	NGE											Į,		
R	FDAI	Χ	Χ	Χ				Χ	Χ	Χ				
P	AT TIG	Χ	Χ	Χ				Χ	Х	Х				
Υ		Χ	Χ	Χ				Χ	Χ	Χ				
DEDA 23	1 IF RQD													

	PDI ABORT <10 MIN											
LOG INSERTION GET =::::												
			+			_	5	<u>0:</u>	0	0		
	CSI TIG =											
HRS	N37	+	0	0				+	0	0		
MIN	TPI	+	0	0	0			+	0	0	0	
SEC		+	0					+	0			

	PDI ABORT >10 MIN												
HRS			+	0	0				+	0	0		
MIN			+	0	0	0			+	0	0	0	
SEC	PHASING	TIG	+	0					+	0			
HRS	N37		+	0	0				+	0	0		
MIN	TPI		+	0	0	0			+	0	0	0	
SEC			+	0					+	0			

	1	10	PD	1 +	12	ΑB	OR ⁻	Γ					
HR	N33	+	0	0				+	0	0			
MIN	TIG	+	0	0	0			+	0	0	0		
SEC		+	0		Ī			+	0				
ΔVX	N81						•						
ΔVY	LOCAL						•						
ΔVZ	VERT					Ĺ.,							
H _A	N42	+					•	+					
H _P							•					Ĺ.,	
ΔVR		+				<u> </u>		+				<u>_</u> ,	
ВТ		Χ	Χ	Х				Χ	Χ	Χ	;		
R	FDAI	Х	Χ	Х				Х	Χ	Х			
Р	INER	Χ	Χ	Х				Χ	Χ	Х			
ΔVX AGS	N86						•						
ΔVY AGS							•					<u> </u>	
ΔVZ AGS						,	•						
HRS	N11	+	0	0				+	0	0			
MIN	CSI	+	0	0	0			+	0	0	0		
SEC		+	0					+	0				
HRS	N37	+	0	0				+	0	0			
MIN	TPI	+	0	0	0			+	0	0	0		
SEC		+	0		١.			+	0		l .		

2 SUN	CHECK	
122 _	N20	

2 - 37

PDI DATA CARD

PDI PAD

TIG PDI XXX:XX:XX.XX PDI IGNITION TIME

(HR:MIN:SEC)

TGO XX:XX (MIN:SEC) TIME TO HIGH GATE

CROSSRANGE ±XXXX.X (NM) OUT-OF-PLANE DISTANCE BETWEEN THE

INITIAL LM ORBITAL PLANE AND THE

LANDING SITE

(POSITIVE INDICATES LANDING SITE

IS NORTH OF ORBITAL PLANE)

FDAI AT TIG

R XXX (DEG) INERTIAL FDAI ANGLES AT IGNITION

P XXX (DEG) Y XXX (DEG)

DEDA 231 XXXXX (100 FT) LUNAR RADIUS AT THE LANDING SITE

(IF REQ'D)

PDI ABORT <10 MIN

TPI TIG XXX:XX:XX TPI IGNITION TIME

(HR:MIN:SEC)

PDI ABORT >10 MIN

PHASING TIG XXX:XX:XX.XX TIME OF IGNITION OF

(HR:MIN:SEC) LM PHASING MANEUVER

TPI TIG XXX:XX:XX.XX TPI IGNITION TIME

(HR:MIN:SEC)

NO PDI +12 ABORT

N33 ABORT TIG	XXX:XX:XX (HR:MIN:SEC)	IGNITION TIME OF FOR ABORT BURN
N81 LOCAL VERTICAL Δ	V	
ΔVX ΔVY ΔVZ	±XXXX.X (FPS) ±XXXX.X (FPS) ±XXXX.X (FPS)	LOCAL VERTICAL Δ V COMPONENTS OF THE PHASING MANEUVER
N42 ORBITAL PARAMETE	RS	
НА	+XXXX.X (NM)	PREDICTED APOGEE RESULTING FROM MANEUVER
НР	±XXXX.X (NM)	PREDICTED PERIGEE RESULTING FROM MANEUVER
Δ VR	XXXX.X (FPS)	TOTAL Δ V REQUIRED FOR THE MANEUVER
ВТ	X:XX (MIN:SEC)	DURATION OF THE MANEUVER
FDAI		
R P	XXX (DEG) XXX (DEG)	INERTIAL FDAI ANGLES AT THE BURN ATTITUDE
N86 AGS ΔV		
Δ VX AGS Δ VY AGS Δ VZ AGS	±XXXX.X (FPS) ±XXXX.X (FPS) ±XXXX.X (FPS)	LOCAL VERTICAL Δ V COMPONENTS OF THE MANEUVER TO TARGET THE AGS
N11 CSI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF IGNITION FOR CSI BURN
N37 TPI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF IGNITION FOR TPI BURN

LUNAR SURFACE DATA CARD

	T 2 ABORT											
HRS	T2	+	0	0				+	0	0		
MIN	TIG	+	0	0	0			+	0	0	0	
SEC		+	0			,		+	0			
HRS	N33	+	0	0				+	0	0		
MIN	PHASING	+	0	0	0			+	0	0	0	
SEC	TIG	+	0			,		+	0			
HRS	N11	+	0	0				+	0	0		
MIN	CSI ₁	+	0	0	0			+	0	0	0	
SEC		+	0					+	0			
HRS	N37	+	0	0				+	0	0		
MIN	TPI	+	0	0	0			+	0	0	0	
SEC		+	0			,		+	0			

	P68							
	N43 _			•		LAT		
	_					LONG		
	_				•	ALT		
	P12	7						
_	ГІД							
	N76 _				•	V (HOR)	(5515.2)
	_				•	V (VERT)	(19.6)
	_					CROSSRANGE	(0.0)
	NOTE	: IF	CROSSE	RANGE	/ 8<	N.M., LOAD 8	N.M.	
	N74_				•	YAW		
	_					PITCH		

	T 3 ABORT											
HRS	T3	+	0	0				+	0	0		
MIN	TIG	+	0	0	0			+	0	0	0	
SEC		+	0		Ī			+	0			
HRS	CSM	+	0	0				+	0	0		
MIN	PERIOD	+	0	0	0			+	0	0	0	
SEC		+	0					+	0		,	
HRS		+	0	0				+	0	0		
MIN	$P+\Delta T$	+	0	0	0			+	0	0	0	
SEC		+	0		Ī			+	0			
HRS	N11	+	0	0				+	0	0		
MIN	CSI TIG	+	0	0	0			+	0	0	0	
SEC		+	0		Ţ			+	0		,	
HRS	N37	+	0	0				+	0	0		
MIN	TPI	+	0	0	0			+	0	0	0	
SEC		+	0			,		+	0			

D10			
P12			
N76	•	V (HOR)	(5535.6)
	•	V (VERT)	(32.0)
	•	CROSSRANGE	(0.0)
	11 CKC0010 (110L > 0	IN.M., LOAD O	IN.M.
	IF CROSSRANGE >8		N.M.
N74		YAW PITCH	N.M.

2 - 40

LUNAR SURFACE DATA CARD

T2 ABORT		
T2 TIG	XXX:XX:XX.XX (HR:MIN:SEC)	LIFTOFF TIME - SECOND PREFERRED TIME AFTER TOUCHDOWN (~T.D. +12 MIN.)
N33 PHASING TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF IGNITION FOR PHASING BURN
N11 CSI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF IGNITION FOR CSI BURN
N37 TPI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF IGNITION FOR TPI BURN
T3 ABORT		
T3 TIG	XXX:XX:XX.XX (HR:MIN:SEC)	LIFT OFF TIME AFTER FIRST CSM REVOLUTION
CSM PERIOD	XXX:XX:XX.XX (HR:MIN:SEC)	CSM ORBITAL PERIOD
Ρ + ΔΤ	XXX:XX:XX.XX (HR:MIN:SEC)	CSM PERIOD PLUS THE TIME INTERVAL BETWEEN CLOSEST APPROACH AND LIFTOFF TIMES
N11 CSI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF IGNITION FOR CSI BURN
N37 TPI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF IGNITION FOR TPI BURN

LM ASCENT PAD

+	0	0			+	0	0			HR
+	0	0	0		+	0	0	0		MIN TIG
+	0				+	0				SEC
+					+					V (HOR)
+					+					V (VERT) N76
	0					0				*CROSSRANGE
										DEDA 047
										DEDA 053
										DEDA 225/226
										DEDA 231

*NOTE: LOAD 8 NM IF CROSSRANGE IS GREATER THAN 8 NM COMMENTS:

LM ASCENT PAD

ASCENT TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TIME OF APS IGNITION FOR LM ASCENT					
N76 INSERTION TARGET							
V (HOR)	XXXX.X (FPS)	HORIZONTAL VELOCITY AT ORBIT INSERTION					
V (VERT)	XXXX.X (FPS)	VERTICAL VELOCITY AT ORBIT INSERTION					
CROSSRANGE	±XXX.X (NM)	CROSSRANGE DISTANCE AT ORBITAL INSERTION					
DEDA 047	XXXXXX (OCTAL)	SINE OF LANDING AZIMUTH ANGLE					
DEDA 053	XXXXXX (OCTAL)	COSINE OF LANDING AZIMUTH ANGLE					
DEDA 225	XXXXXX (100 FT)	LOWER LIMIT OF α≮ AT ORBIT INSERTION					
DEDA 226	XXXXXX (100 FT)	UPPER LIMIT OF α≮ AT ORBIT INSERTION					
DEDA 231	XXXXXX (100 FT)	RADIAL DISTANCE OF LAUNCH SITE FROM CENTER OF MOON					

															ci D	4 T 4	CARE								10	1.0	240		
							_								.SI D	AIA	CARE							Jun	e 19,	, 15	769		
HRS	TIG	+	0	0				+	0	0							RES	IDU	JALS	_	P52	2							
MIN	CSI N11	+	0	0	0			+	0	0	0		١			PGI	ΝS		AGS										
SEC		+	0					+	0		Ι.,			ΔVΧ				5	500			STAR	1		2		3 _		
N55			(+0	000	01)	(-	+02	266	0)	(+	130	00)		ΔVΥ	N85			5	501										
HRS	TIG N37	+	0	0				+	0	0			\neg	ΔVΖ		Г		5	502			N05	(S	TAR -	≵ DIF	FF)			
MIN	TPI	+	0	0	0			+	0	0	0											N93	(To	ORQI	IING	41	X		
SEC		+	0					+	0		Ι.											1170	(''	Ongo	311 10	ΓI			
ΔVΧ	N81	+	0					+	0				╗														Υ		
ΔΥΥ			0					Г	0																		Z		
	PITCH	+	Χ	Х			Ĭ	+	Χ	Х		Ť																	
373	(+0321.3)	+						+																					
275		+						+																					
410	+1, 605+0077	7, 4	416	+1			Ÿ																						
ΔVΧ	AGS N86		0	0				Г	0	0			٦																
ΔΥΥ	AGS		0	0					0	0														N8	32				D
ΔVΖ	AGS		0	0					0	0											ΔVX			ΔΥΥ		2	ΔVZ		P
P		N.							Ī					N81				\neg				CDF		,			CD	н	G
		CSI/				CDI						CSI			YD			- 1			(-0.4)		(+0.0	0)	((+0.0)		U
$ \mathbf{G} $	(15.0)	(57:	:58)			(38	:21))			(+:	50.5)				CSI) 0.0)												N
N					_		<u>: </u>		-			•		_															1.4
					_		<u>: </u>		-			•					•					•			•		•	-	\mathbf{C}
$ \mathbf{C} $					_		<u>. </u>		-			•					•					•			•		•	-	
S					_		<u>: </u>		-			•		_ (-) <u> </u>		•	_				•			•		•	-	S
																												+	
$ \mathbf{A} $	<u>402</u> <u>37</u> 2 ΔΗ ΔΤ	<u>2</u> (CSI			26 ۸۷		CSI)		ا 'م	VX (CSI	<u>CSM</u>	<u>۱</u> S	OLU1	<u>10N</u> ^\	<u>/Y</u> C	CSI				<u>371</u> ΔV CE	Н							A
		,001	02	,	۵,	٠, ٠	-0.1		<u>-</u>	.,,							•				_, 02								G
G									Ī	Α,	VX				-N86 ∆VY	(AGS	5) —	_	 ΔVZ	٦١									_
S										Δ	٧٨				ΔVI			Z	7 A T										S
									-									_		- 1									

CSI DATA CARD (P32 LM	MANEUVER)	
N11 CSI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	CSI IGNITION TIME
N37 TPI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	TPI IGNITION TIME
N81		
Δ VX Δ VY	XXX.X (FPS) XXX.X (FPS)	LOCAL VERTICAL Δ V COMPONENTS OF THE CSI MANEUVER
FDAI PITCH	XXX (DEG)	FDAI INERTIAL PITCH ANGLE AT THE CSI BURN ATTITUDE
DEDA 373	XXXX.X (MIN)	AGS IGNITION TIME OF NEXT MANEUVER
DEDA 275	XXXX.X (MIN)	DESIRED TPI TIG (FOR CSI CALCULATION ONLY)
N86 AGS ΔV		
ΔVX AGS ΔVY AGS ΔVZ AGS	` ,	LOCAL VERTICAL Δ V COMPONENTS OF CSI USED TO TARGET AGS EXT Δ V

			CDF	ł PA	νD							CD	H DAT	TA CAR	.D					June I	9, 19	69		
HRS	N13	+ (+	0	0									PLANE	CHAN	GE P3	30, V90	, 410-	+5		
MIN	TIG	+ (0	0		+	0	0	0						TIG		CDH							
SEC	CDH	+ ()			+	0								110		CDIT	— –		··— –	_•	·•		_
ΔVX)				0								TIG		PC			: 3	0:0	0.	0	U
ΔVY	N81)				0								110		10			·	_•	·•		
ΔVZ)				0												YDO	T				
PLM	FDAI	X	(X			Х	Х	Х							С	SM	N90	PC	GNS	N90	A	.GS	2	263
373	(+0379.6)	+				+									(-)		•	(–)		•	(-)			•
ΔVX	N86)				0								(–)		•	(-)		•	(-)			
ΔVY	AGS)				0											` '			' '-			
ΔVZ)				0				╝										DUALS			
								RE	ESIE	UAL	S								PGN	S		AG	S	
						PC	SNS					AGS			ΔVX						500			
		$\Delta V X$								50	0				ΔVY			N85			501			
		ΔVY			N85	Ĺ		١,	_	50	1				ΔVZ						502			
	L	ΔVZ								50	2			╛										
P		ΔVZ	N:	75						50:	2			N81										–
P	ΔН	ΔΤ	TPI/			TPI S			<u></u>	50	•	VX	Y	DOT	N90		ΔVZ	7						
P G	ΔH (15.0)	ΔΤ				TPI S				50	Δ		Y	DOT CDI	N90 H									
G		ΔΤ	TPI/							50	Δ	VX (1.1)		DOT	N90 H		ΔVZ (+4.1)							G
G N		ΔΤ	TPI/							50	Δ	1.1)		′DOT CDI (+0.0	N90 H 0)		(+4.1)							G N
G	(15.0)	ΔΤ	TPI/							50	Δ	1.1)	_	(DOT CDI (+0.0	N90 H 0)		(+4.1)	 - -						G N
G N C	(15.0)	ΔΤ	TPI/							500	Δ	1.1)	((+0.0 (+0.0	N90 H D)		(+4.1)	-						G N C
G N	(15.0)	ΔΤ	TPI/							50	Δ	1.1)	(– (–	(DOT CDI (+0.0	N90 H D)		(+4.1)	- - - -						G N C
G N C	(15.0)	ΔΤ	TPI/								Δ\ (-1	•	(– (–	(+0.0 (+0.0))	N90 H (0)		(+4.1)	- - - -						P G N C S
G N C S		ΔΤ	TPI/v:31)	CDH			452			50	Δ\ (-1	• • • • • • • • • • • • • • • • • • •	((DOT CDI (+0.0	N90 H D)		(+4.1) • • •							G N C S
G N C S	(15.0)	ΔΤ	TPI/v:31)	CDH			•				Δ\ (-1	•	((+0.0 (+0.0))	N90 H D)		(+4.1) • • •							G N C S
G N C S A G		ΔΤ	TPI/v:31)	CDH			452			50	Δ\ (-1	• • • • • • • • • • • • • • • • • • •	((+0.0 (+0.0))	N90 H D)		(+4.1) • • •	-						G N C S A G
G N C S		ΔΤ	TPI/v:31)	CDH			452				Δ\ (-1	• • • • • • • • • • • • • • • • • • •	((DOT CDI (+0.0	N90 H D)		(+4.1) • • •	- - - - -						G N C S

CDH DATA CARD

N13 CDH TIG	XXX:XX:XX.XX (HR:MIN:SEC)	IGNITION TIME FOR CDH MANEUVER
N81 LOCAL VERTICAL Δ	V	
$egin{array}{l} \Delta ext{VX} \ \Delta ext{VY} \ \Delta ext{VZ} \end{array}$	±XXX.X (FPS) ±XXX.X (FPS) ±XXX.X (FPS)	LOCAL VERTICAL Δ V COMPONENTS OF CDH MANEUVER
PLM FDAI	XXX (DEG)	FDAI INERTIAL PITCH ANGLE AT CDH BURN ATTITUDE
DEDA 373	XXXX.X (MIN)	AGS IGNITION TIME OF NEXT MANEUVER
N86 AGS Δ V		
Δ VX AGS Δ VY AGS Δ VZ AGS	±XXX.X (FPS) ±XXX.X (FPS) ±XXX.X (FPS)	LOCAL VERTICAL ΔV COMPONENTS OF CDH USED TO TARGET AGS EXT ΔV

TPI DATA CARD

June 19, 1969

A G		20 Δ	<u>67</u> V TP	'I			<u>71</u> V TI	PI+T			ΔVX			ΔVY	UTION	ΔVΖ	•					·			·	A G
N C S		- -		•	_	- - -		•	• • •		_	•		N90	•		•	 - -	•		_	•	- - -	_	•	N C S
P G	HP ()	<u> </u>	N V T	158 PI)		Δ (V T	PF)			Δ'	νx)		N8 ² ΔVY)	ΔVZ ()		ΔV	F/A ⁻		ΔV I	R/L ⁻		ΔV D)/U-)	PG
BT 307-	+043.00, 314	+0	Х					Χ	Χ																	
D/U	(+/-) LOS		0	0				V	0	0																
F/A R/L	$(+/-)$ N59 $(+/-)$ ΔV	Н	0	0			_	\dashv	0	0																
R TPI			0						0			+														
R TPI	N54	+	0				\dashv	+	0						۵,۲						• 1				•	
RLM PLM		X	X	X				X	X	X					ΔVY ΔVZ			N85	H		\vdash	501 502	H			
ΔVR	N42	+	0	0		•		+	0	0		_			ΔVX				П		\vdash	500	Ц			
ΔVZ			0			j			0			Ť							PGI			J/ (LO	AG	S		
ΔVX ΔVY	N81	Н	0			1			0				_							R	ESIDL	ΙΔΙ S				
N55) IO1	(BLA	4NK	()	(+0	26.0	60)		(+1 0	30.	.00)		4													
SEC	TPI	+	0		_			+	0				1													
MIN	TIG	+	0	0	0			+	0	0	0															

TPI DATA CARD

N37 TPI TIG	XXX:XX:XX.XX (HR:MIN:SEC)	
N81 LOCAL VERTICAL Δ	V	
$egin{array}{l} \Delta extsf{VX} \ \Delta extsf{VY} \ \Delta extsf{VZ} \end{array}$		LOCAL VERTICAL Δ V COMPONENTS OF THE TPI MANEUVER
N42 ΔVR	+XX.X (FPS)	TOTAL Δ V REQUIRED FOR THE MANEUVER
RLM PLM		ROLL AND PITCH FDAI ANGLES AT TPI BURN ATTITUDE
N54 TIG -5		
R TPI	XX.XX (FT)	RANGE AT TPI TIG -5 MIN
R TPI	±XXX.X (FPS)	RANGE RATE AT TPI TIG -5 MIN
N59 Δ V LOS		
F/A R/L D/U	±XX.X (FPS) ±XX.X (FPS) ±XX.X (FPS)	LINE-OF-SIGHT ΔV COMPONENTS OF THE TPI MANEUVER
ВТ	XX:XX (MIN:SEC)	DURATION OF THE MANEUVER

SECTION III

DETAILED TIMELINE

TIME		EVENT	REMAR	RKS
-00:09	LCC: R	EPORT IGNITION	FIRST OPPORTUNITY L	
00:00	LCC: CDR: R	EPORT LIFT-OFF	JULY 16, 0932 EDT, TARGETED FOR LANDIN	·
00:02	CDR: R	EPORT YAW MNVR	LIFT-OFF: 1332 GMT	G SIIE Z.
00:10	LCC: R	EPORT CLEAR OF TOWER		
00:15	CDR: R	EPORT ROLL AND PITCH PROGRAM INIT	riate	
00:32	CDR: R	EPORT ROLL COMPLETE		
00:42	MCC: R	EPORT MARK MODE IB	PROP DUMP TO RCS CM	D
00:51	LMP: R	EPORT CABIN PRESS DECREASING	ALTITUDE 14,000 ft	
01:21	MAX Q			
01:56	MCC: R	EPORT MARK MODE IC	ALTITUDE 100,000 ft	
02:00	MCC: CDR: R	EPORT GO/NO GO FOR STAGING		
02:15	CDR: R	EPORT INBOARD OUT		
02:41	CDR: R	EPORT OUTBOARD OUT		
02:42	CDR: R	EPORT STAGING / S-II IGNITION		
03:12	CDR: S	-II SEP LIGHT OUT		
03:17	CDR: R	EPORT TWR JETT AND MODE II		
03:21	CDR: R	EPORT GUIDANCE		
		T		
MISSION	N G	EDITION FINAL	DATE JULY 1, 1969	PAGE 3-i

TIME	EVENT		REMARKS	3
04:00	MCC: REPORT TRAJECTORY AND GUIDANCE	E GO/NO GO		
04:00	CDR: REPORT S/C GO/NO GO			
05:00	CDR: REPORT S/C GO/NO GO			
05:25	MCC: REPORT S-IVB TO ORBIT CAPABIL	ITY		
06:00	CDR: REPORT S/C GO/NO GO			
07:00	CDR: REPORT S/C GO/NO GO			
08:00	CDR: REPORT S/C GO/NO GO			
08:30	MCC: CDR: REPORT GO/NO GO FOR STAGING			
08:57	MCC: REPORT MODE IV			
	CDR: REPORT S/C GO/NO GO			
	MCC: REPORT TRAJECTORY AND GUIDANCE	E GO/NO GO		
09:11	CDR: REPORT S-II CUTOFF			
09:15	CDR: REPORT S-IVB IGNITION			
10:00	MCC: CDR: <u>REPORT</u> GO/NO GO FOR ORBIT			
	MCC: REPORT PREDICTED SECO			
11:40	CDR: <u>REPORT</u> SECO	$TB_5 = 0$	IMU GIMBAL ANGELS @INSE	RTION R 180° P 340°
	S-IVB MAINTAINS COMMANDED CUTO INTERTIAL ATTITUDE	DFF	H pad 103.3 NM	<u>X 0°</u>
MISSIOI	G EDITION FINAL	DATE	JULY 1, 1969	PAGE 3-ii

FLIGHT PLAN MCC-H 1030 EDT 01:00 TH P52 - CONT'D S Ķ GDC ALIGN TO IMU STOW OPTICS :10 :20 :30 UPLINK CMC SCS ATT REF COMPARISON CK CSM STATE VECTOR EXTEND DOCKING PROBE V66 - TRANS CSM STATE VECTOR TO LM SLOT UPDATE RECORD PAD DATA :40 PAD DATA (TLI, TLI +90 MIN ABORT, AND P37 - TLI +4 HR ABORT) SM RCS HOT FIRE (MIN IMPULSE - ALL JETS) :50 GO/NO GO GO/NO GO FOR PYRO ARM BEGIN TLI PREPARATION (CHECKLIST PG L-2-19) DON HELMETS & GLOVES - ALL EMS ∆V TEST 02:00

NOTES

AS A GENERAL RULE MSFN WILL ALWAYS UPLINK THE STATE VEC-TOR TO THE CSM SLOT AND THE CREW WILL TRANSFER IT VIA V66 TO THE LM SLOT

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	01:00 - 02:00	1 / 1	3-2

MSC Form 29 (May 69)

FLIGHT PLANNING BRANCH

TLI BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
TLI	10°/SEC SHUTDOWN	±45° SHUTDOWN	BT +6 SEC & VI = PAD VALUE	DO NOT TRIM

FLIGHT PLAN MCC-H **NOTES** 1230 EDT 03:00 WASTE STOWAGE VENT VLV - CLOSED PRESS CABIN TO 5.7 PSIA GDC ALIGN TO IMU DAP LOAD FOR SEPARATION CSM, VERIFY AND ACTIVATE RCS DAP 0.5°DB, 2.0°/SEC, B/D ROLL, R1=11103, R2=01111 4 JETS CSM SEP PREPARATION :10 LOAD DOCKING GIMBAL ANGLES START 16mm CAMERA CSM/SIV-B SEP T&D MNVR EL PHOTOS AS CONVENIENT GET = 03:15+X 0.8 FPS AFTER 15 SEC, -X 0.3 FPS DOCKING PHOTOGRAPHY :20 AUTO MNVR TO DOCKING ATT NULL TRANSLATION & RATES +X TO CLOST AT .25 TO .5 FPS DOCK GET = 03:25 STOP 16mm CAMERA M POST DOCKING S S-BAND HGA ANGLES = P___Y___ :30 F N CMP - INITIATE CM/LM PRESS EQUALIZATION CONFIGURE FOR EXTRACTION CHECK LM PRESS STABILIZATION :40 REMOVE AND TEMP STOW TUNNEL HATCH CHECK DOCKING LATCHES VENT DOCKING PROBE CONNECT UMBILICALS - VERIFY PWR TO LM REINSTALL HATCH :50 LM/CM Δ P VALVE - LM/CM Δ P VERIFY TUNNEL EQUALIZATION - CLOSED WASTE STOWAGE VENT VALVE - OPEN (FOR 8 HOURS) DECISION TO END CM CABIN PURGE WILL BE MADE REAL TIME

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	03:00 - 04:00	1 / TLC	3-4

BASED ON LM LEAK RATE

MSC Form 29 (May 69)

EVASIVE MANEUVER BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
EVASIVE MNVR	10°/SEC TAKEOVER	±10° TAKEOVER	BT +1 SEC	DO NOT TRIM

1530 EDT 06:00

:10

:20

:30

:40

:50

FLIGHT PLAN

NOTES

OPTICS CALIBRATION

1. STAR 02 ENH (R3=00110)

2. STAR 40 ENH (R3=00120)

3. STAR 44 ENH (R3=00110)

4. STAR 44 ENH (R3=00110)

5. STAR 45 ENH (R3=00110)

3 MARKS ON EACH STAR

INCORPORATE P23 MARK DATA AND UPDATE ONBOARD STATE VECTOR

TRN BIAS CALIBRATION
REPEATED UNTIL 2 CKS
AGREE TO WITHIN 0.003°
REPEAT CKS EVERY 30 MIN
DURING P23

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	06:00 - 07:00	1 / TLC	3-7

MCC BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
MCC1	10°/SEC TAKEOVER	±10° TAKEOVER	BT +1 SEC	TRIM X AXIS ONLY (UNLESS X > 2 FPS)

MCC-H

FLIGHT PLAN

NOTES

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE	
APOLLO 11	FINAL	JULY 1, 1969	12:00 - 14:00	1 / TLC	3-11	

FLIGHT PLANNING BRANCH

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	24:00 - 25:00	2 / TLC	3-17

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 1	FINAL	JULY 1, 1969	25:00 - 26:00	2 / TLC	3-18

MCC BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
MCC2	10°/SEC TAKEOVER	±10° TAKEOVER	BT +1 SEC	TRIM X AXIS ONLY (UNLESS X > 2 FPS)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	26:00 - 27:00	2 / TLC	3-19

FLIGHT PLANNING BRANCH

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	35:00 - 37:00	2 / TLC	3-24

FLIGHT PLANNING BRANCH

FLIGHT PLANNING BRANCH

MCC BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
MCC3	10°/SEC TAKEOVER	±10° TAKEOVER	BT +1 SEC	TRIM X AXIS ONLY (UNLESS X > 2 FPS)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	54:00 - 56:00	3 / TLC	3-34

MSC Form 2189 (OT) (Nov 68)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	58:00 - 60:00	3 / TLC	3-37

FLIGHT PLAN MCC-H **NOTES** 2130 EDT 60:00 DURING REST PERIOD PRE SLEEP CHECKLIST 2 CREWMEN IN REST CREW STATUS REPORT (RADIATION, MEDICATION) STATION, 1 IN LEFT CYCLES O₂ & H₂ FANS :10 COUCH CHLORINATE POTABLE WATER SELECT NORMAL LUNAR CONFIGURATION :20 EXCEPT: S-BD NORMAL MODE VOICE - OFF S-BD SQUELCH - ENABLE :30 S-BD AUX TAPE - OFF TAPE RCDR FWD - OFF GO TO HGA OR CONTINUE OMNI :40 OPS PER MSFN OMNI OPS :50 S-BD ANT OMNI - OMNI S-BD ANT OMNI - B HI GAIN OPS REST PERIOD 61:00 HI GAIN ANT BEAM - NARROW (9 HOURS) HI GAIN ANT TRACK - REACQ S-BD ANT - HI GAIN :10 VERIFY: WASTE MNGT OVBD DRAIN - OFF WASTE STOW VENT VLV - CLOSED :20 EMERG CABIN PRESS VLV - ON REPRESS PACK O2 VLV - ON LM TUNNEL VENT VLV - LM/CM Δ P :30 POT H₂O HTR - OFF AUTO RCS JET SELECT (16) - OFF :40 :50 MISSION **EDITION** DATE TIME DAY / REV

APOLLO 11 MSC Form 29 (May 69) FINAL

FLIGHT PLANNING BRANCH

JULY 1, 1969

60:00 - 62:00

PAGE

3-38

3 / TLC

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	68:00 - 70:00	3 / TLC	3-42

MCC BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
MCC4	10°/SEC TAKEOVER	±10° TAKEOVER	BT +1 SEC	TRIM X AXIS ONLY (UNLESS X > 2 FPS)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	71:00 - 73:00	4 / TLC	3-44

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	74:00 - 75:00	4 / TLC	3-46

LOI₁ BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
LOI ₁	10°/SEC TAKEOVER	±10° TAKEOVER	BT +10 SEC	DO NOT TRIM

LOI ₁ V _{GO}	BT	TRAJECTORY	ABORT MODE
2924.0 - 2129.0	0 - 110	HYPERBOLIC	MODE I - COAST 2 HR - DPS - P37 (P37 BEYOND SPHERE FOR VGO >2279 AND BT <90)
2129.0 - 1589.0	110 - 180	UNSTABLE	MODE II - COAST 2 HR - 2 DPS BURNS FOR STABILI- ZATION AND WATER OR CLA LANDING
1589.0 - 0	180 - 365	LUNAR ORBIT	MODE III - DPS BURN AFTER ONE REV

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	76:00 - 78:00	4 / 1	3-48

FLIGHT PLANNING BRANCH

NOTES

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	79:00 - 80:00	4 / 2	3-50

LOI₂ BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
LOI ₂	10°/SEC TAKEOVER	±10° TAKEOVER	BT +1 SEC	TRIM X AXIS TO 1 FPS

MSC Form 2189 (OT) (Nov 68)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	83:00 - 84:00	4 / 4	3-54

MSC Form 2189 (OT) (Nov 68)

LUNAR ORBIT REST PERIOD ATTITUDE

FLIGHT PLANNING BRANCH

MSC Form 29 (May 69)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	95:00 - 96:00	5 / 10-11	3-62

MSC Form 29 (May 69)

FLIGHT PLAN **CSM** MCC-H LM 0930 EDT **CMP CDR LMP** 96:00 UNDOCKING PHOTO 16mm/18/CEX-BRKT-MIR (f8, 250, 7) 6 fps DON PGA W/O HELMET AND GLOVES LM FAMILIARIZATION O₂ & H₂ FUEL CELL PURGE 96:22 V64 ACQUIRE MSFN DUMP DSE CREW STATUS REPORT CSM POWER TO LM - OFF LM POWER - ON REPORT DOCKING TUNNEL INDEX (AT LMP REQUEST) 96:30 ANGLE TO MSFN DEACTIVATE B3 & C4 JETS EPS ACTIVATION CONFIGURE DAP 21112 DISCONNECT AND STOW MISSION TIMER ACTIVATION WIDE DB 11001 LM POWER UMBILICAL UPLINK CMC PRIMARY GLYCOL LOOP ACT (FOR LM STEERABLE M CSM STATE VECTOR ANTENNA ACTIVATION) S DESIRED ORIENT F (LS REFSMMAT) CAUTION/WARNING CHECKOUT RECORD LMK 130 PAD DATA UPDATE CSM CB ACTIVATION (SEE GET 98:35) LMK 130 PAD TB VERIFICATION AND CSM DAP DATA BLOCK DATA AND LOAD CSM DAP DATA 96:51 IVT TO LM PGNCS TURN - ON TRANSFER HELMET & GLOVES AND SELF TEST UNSTOW OPTICS ECS ACTIVATION AND C/O P52 - IMU REALIGN CONNECT TO LM ECS BIO MED SWITCH - LEFT OPTION 1 PREFERRED

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	96:00 - 97:00	5 / 11	3-63

MSC Form 2189 (OT) (Nov 68)

FLIGHT PLAN MCC-H **CSM** LM 1030 EDT **CMP CDR LMP** 97:00 REPORT SEC S-BAND T/R AND POWER UPDATE LM P52 - (LDG SITE REFSMMAT) SUIT FAN/H2O SEP CHECK AMPLIFIER CHECK STEERABLE ANTENNA N71: ____, ___ ANGLES (GET: 97:10) NO5: __ __.__ S-BAND STEERABLE GLYCOL PUMP CHECK N93: ANTENNA ACTIVATION P 152, Y -9 VHF-B ACTIVATION M S F E MEMORY DUMP IVT TO CSM VHF CHECKOUT (COMM CHECK WITH CSM) VHF CHECKOUT CSM TIME MARK TO LM UPDATE LM LGC/CMC CLOCK SYNC STOW OPTICS T EPHEM UPDATE STEERABLE ANTENNA DON PGA ANGLES P 187, Y 70 V06N20E 97:30 (GET: 98:55) DOCKED IMU COARSE ALIGN (ON MARK FROM CDR) REPORT GIMBAL ANGLES AND TIME COPY GIMBAL ANGLES TO MSFN 97:34 RECORD LM PCM DATA AND TIME AFT OMNI - LBR DON HELMET AND GLOVES IVT TO LM SLEW STEERABLE ANTENNA PGA PRESSURE INTEGRITY CHECK TRANSFER HELMET & GLOVES P 187, Y 70 INSTALL DROGUE & PROBE, PRELOAD PROBE 97:44 INHIBIT ROLL COMMANDS UNTIL VERIFY DROGUE AND PROBE CONNECT TO LM ECS AND COMM LM/CM Δ P >3.5 PSIA INSTALLATION CLOSE AND COCK LATCHES (12) SECURE HATCH 97:49 INSTALL HATCH VENT TUNNEL ASCENT BATTERY ACTIVATION HATCH INTEGRITY CHECK AND CHECKOUT INSTALL AND ALIGN DOCKING RECORD ED BAT VOLTS REV 12 TARGET 98:00

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	97:00 - 98:00	5 / 11-12	3-64

FLIGHT PLAN **CSM** MCC-H LM 1230 EDT **CMP LMP** UPLINK LGC 99:00 DRIFT CHECK - REPORT GIMBAL LS REFSMMAT STOW FLIGHT PLAN ANGLES & TIME TO MSFN LM & CSM STATE VECTORS UNSTOW SOLO BOOK DEPLOY LANDING GEAR LGC/CMC CLOCK SYNC COPY PADS PIPA BIAS ORDEAL INITIALIZATION LGC ABORT CONSTANT LOAD DAP DATA - 32012 CSM WT _____ UPDATE LM V47 INITIALIZE AGS P TRIM M AGS ABORT CONSTANT Y TRIM S COPY AGS ABORT CONSTANT AGS K FACTOR DON HELMET & GLOVES DPS GIMBAL DRIVE AND F SC CONT - SCS AND K FACTOR THROTTLE TEST UPLINK CMC MIN/MAX DB, LOW/HIGH RATE LM & CSM STATE VECTORS RCS PRESSURIZATION RCS PRESSURIZATION (AT REQUEST OF CDR) UPDATE CSM GO/NO-GO FOR UNDOCKING GO/NO-GO FOR UNDOCKING DISABLE ROLL JETS FOR P30 MNVR PAD RCS CHECKOUT RCS HOT FIRE RCS CHECKOUT (SEPATATION) VERIFY TUNNEL VENT VALVE - OFF GO/NO-GO RECORD LM PCM DATA 99:30 UPDATE LM AFT OMNI - LBR 99:32 STEERABLE ANTENNA SLEW STEERABLE ANTENNA RR ACT & SELF TEST ANGLES (GET: 100:25) ANT P 123, Y -37 R 0, P 287/14, Y 14 99:43 MANEUVER TO ← AGS CALIBRATION ATTITUDE 99:49 RATES <0.1°/SEC DISABLE THRUSTERS FOR 32 SEC REV 13 (AT REQUEST OF LMP) MANEUVER TO UNDOCKING ATTITUDE AGS ACCEL & GYRO CALIBRATION R 0, P 320/14, Y 0 DPS PRESS & CHECKOUT -100:00 MISSION **EDITION** DATE TIME DAY / REV PAGE

FINAL

APOLLO 11

99:00 - 100:00

5 / 12-13

3-66

JULY 1, 1969

FLIGHT PLAN **CSM** MCC-H LM 1630 EDT **CMP** CDR -103:00 REPORT RR TO STANDBY AGS LUNAR SURFACE GYRO REPORT ESTIMATE OF CALIBRATION P52 - (LDG SITE REFSMMAT) COPY AGS AZIMUTH OPTION 3 LANDED LOCATION LOAD AGS ASCENT TARGET N71: _______ CLOSE SHADES, DOFF HELMET H=60,000 FT, H DOT=32 FPS N05: __ __ __ AND GLOVES CLOSE SHADES, DOFF HELMET AND GLOVES N93: P57 - IMU ALIGN (REFSMMAT) BEGIN SIMULATED COUNTDOWN GRAVITY MEASUREMENT S COPY LANDED LOCATION, GRAVITY MEASURE AGS LUNAR ALIGNMENT GET __ :_ :_ _: __ ALIGN GDC, VERIFY ORDEAL P57 - IMU ALIGN (REFSMMAT) 2 CELESTIAL BODIES COPY LM TRACKING PAD NO4: _______ (SEE GET - 104:35) M 103:29 80mm/BW/CHECKLIST S UPDATE CSM -103:30 F 60mm/HCEX/CHECKLIST N71: ________ LM TRACKING PAD N N93: 6 FRAMES FAR FIELD (FOCUS 50') P22 AUTO MNVR TO 6 FRAMES NEAR FIELD (FOCUS 20') TRACKING ATTITUDE WITH EACH CAMERA ORB RATE 103:39 REMOVE MAGS AND STOW N89: INSTALL PROTECTIVE COVER AND COPY P57 DATA R 0, P 338/76, Y 0 STOW CAMERAS LAT COPY AGS AZIMUTH -103:45 LONG/2 ____ .___ ___ ALT ___ .__ _ REV 15 UPLINK LGC INITIALIZE AGS RLS COPY AND LOAD ASCENT PAD DATA CSM STATE VECTOR PHOTOGRAPH LUNAR SURFACE DON HELMET AND GLOVES (TD +1:40)DON HELMET AND GLOVES UPDATE LM VERIFY AGS ASCENT PROGRAM ASCENT PAD -104:00 MISSION TIME **EDITION** DATE DAY / REV PAGE

FINAL

103:00 - 104:00

5 / 14-15

3 - 70

JULY 1, 1969

CSM TYPICAL LANDMARK TRACKING PROFILE

FLIGHT PLAN **CSM** LM 0230 EDT **CMP CDR** 0+30 113:00 PRELIMINARY CHECKS STILL-CAMERA TO SURFACE CK LM STATUS FINAL LM CK CK LIGHTING VISIBILITY EVA GO EVA GO SET UP CAMERA FOR TRACKING INITIAL EVA MONITOR AND PHOTOGRAPH EGRESS 0+40M EL/250/BW-BRKT LMP EGRESS DESCEND TO SURFACE S F INT (f5.6, 250, INF) TV DEPLOYMENT ENVIRONMENT FAMILIARIZATION N CAMERA EQPT FROM MESA CK BALANCE, STABILITY, REACH, CARRY TV TO SITE WALKING, EMU MOUNT TRIPOD, PANORAMA, 113:19 PITCH DOWN 172° TO HEADS DOWN POSITION FOR EVA 0+50 FOR LUNAR SURFACE OBSERVATION, SWC DEPLOYMENT PHOTOGRAPH SWC ORB RATE PHOTO BULK SAMPLE AREA DEPLOY SWC IN SUN BULK SAMPLE COLLECTION EVA AND ENIRON EVAL EVAL EVA CAPABILITY AND CAMERA ON MESA M PREPARE SRC EFFECTS **-**113:30 1+00 COLLECT ROCK FRAGMENTS AND EVAL LIGHTING/VISIBILITY F 113:32 LOOSE MATERIAL AND SURFACE CHARACTERISTICS N WEIGH SAMPLE PHOTO PANORAMA PACK AND SEAL SRC, CONNECT TO LEC 113:38 REST LM INSPECTION REV 20 1+10 PHOTO QUAD I, +Z GEAR PHOTO BULK SAMPLE AREA DEPLOY ALSCC R 180, P 282/44, Y 0 LM INSPECTION PHOTO QUAD IV, +Y GEAR INSPECT QUAD IV, +Y GEAR PHOTO PANORAMA EVAL TERRAIN, VISIBILITY PHOTO QUAD III, -Z GEAR 1+20 INSPECT QUAD III, -Z GEAR CAMERA TO CDR PHOTO QUAD II, EASEP EASEP DEPLOYMENTS OFF LOADING REMOVE EXPERIMENTS INSPECT, PHOTO -Y GEAR PHOTO PANORAMA TAKE CLOSEUP PHOTOS EASEP DEPLOYMENT 1+30

MCC-H

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	113:00 - 114:00	5 / 19-20	3-80

MSC Form 2189 (OT) (Nov 68)

FLIGHT PLAN **CSM** MCC-H LM 0330 EDT **CMP LMP** -114:00 1+30 SELECT DEPLOY SITE SELECT DEPLOY SITE CARRY CAMERAS CARRY EXPERIMENTS DEPLOY LR³ EXPERIMENT DEPLOY PSE 114:06 PHOTO EXPERIMENTS TAKE CLOSEUP PHOTOS DOCUMENTED SAMPLE COLLECTION DOCUMENTED SAMPLE COLLECTION 1+40 EL/250/BW-BRKT, INT REST/PHOTO LMP MOVE BULK SRC TO STRUTS OR (f5.6, 250, INF) CLOSE-UP PHOTOS FOOT PAD DUMP DSE TETHER SAMPLE BAG TO LMP PREPARE DS SRC PHOTO SAMPLING UNSTOW GNOMON COLLECT CORE TUBE SAMPLE PHOTO DS AREA UNSTOW TOOLS 1+50PHOTO SAMPLE COLLECTION COLLECT SAMPLES LM ACQUISITION GET: STOW ALSCC FILM STOW ALSCC FILM IF CONVENIENT CHANGE __ _:__ :__ :__ :__ COLLECT ENVIRONMENTAL SAMPLES COLLECT ENVIRONMENTAL SAMPLES SHUTTER TO 1/125 RETRIEVE AND STOW SWC COLLECT LOOSE MATERIAL PITCH UP 38° M PACK SRC CORE TUBE SAMPLE S ROLL 180° TO HEADS UP -114:30 2+00 CLOSE AND SEAL SRC F R 0, P 320/260, Y 0 REST/PHOTO LMP N PITCH DOWN, PHOTOGRAPH LM WHILE TRACKING THROUGH COAS 114:37 STOP PITCH AND ROLL 180° TO HEADS DOWN ATTITUDE FOR 2+10 SURFACE OBSERVATIONS EVA TERMINATION STOP CAMERA 114:43 WIPE SUIT AND EMU M S WIPE FEET ON LANDING PAD AND LADDER SRC TRANSFER N ASCEND LADDER 2+20 TRANSFER BULK SRC AND STILL INGRESS CABIN CAMERA MAGAZINE CHECK LM PHOTO LMP OPERATE SEO CAMERA REST RECEIVE AND STOW SRC TRANSFER DS SRC AND MAGAZINE R 180, P 282/185, Y 0 2+30 RECEIVE AND STOW SRC HGA P -7, Y 183 **EDITION** MISSION DATE TIME PAGE DAY / REV 114:00 - 115:00 APOLLO 11 JULY 1, 1969 5 / 20 3-81 FINAL

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	119:00 - 121:00	5 / 22-23	3-86

FLIGHT PLAN **CSM** MCC-H LM 1130 EDT CMP **LMP CDR -**122:00 AGS TURN ON, SELF TEST CREW STATUS REPORT (SLEEP) AND SYSTEM TESTS RR - ON, SELF TEST INITIALIZE AGS TIME REPORT BIAS TO MCC-H COPY TIME BIAS REPORT: SELECT COMM: NORMAL LUNAR P57 - GRAVITY AND ONE CONFIGURATION CELESTIAL BODY (REFSMMAT) CREW STATUS REPORT (SLEEP) NO4: _______ N71: ____ N93: M M S F N 122:37 V45 RESET LUNAR SURFACE FLAG EAT PERIOD EAT PERIOD UPLINK LGC (35 MIN) (35 MIN) CSM STATE VECTOR (INSERTION +18 MIN) PGNCS GYRO COMP (IF REQUIRED) UPLINK CMC CSM STATE VECTOR (INSERTION +18 MIN) NOMINAL LM S. V. (INSERTION +18 MIN)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	122:00 - 123:00	6 / 24	3-88

MSC Form 2189 (OT) (Nov 68)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	124:00 - 125:00	6 / 25	3-90

FLIGHT PLAN MCC-H **CSM** LM 1430 EDT **CMP LMP** -125:00 CSM: R 0, P 180/271, Y 0 P20 RENDEZVOUS NAVIGATION V32 - MARKS = 5 ACQUIRE AND TRACK CSM M S V32 - MARKS = 10 MAINTAIN RR VHF RANGING F TRACKING ATTITUDE RCS TEMP/PRESS/OTY CK N SLEW STEERABLE ANT 125:08 AFT OMNI, PCM LBR P40 ANT P 58, Y -38 -125:10 FINAL CSI COMPUTATION SPS CHECKLIST V90 OUT OF PLANE V47 INITIALIZE AGS (PCM-HI) V83 SET ORDEAL CSI DATA TO CSM (PCM-LO) LOAD AGS Δ V P41 RCS THRUSTING CSI, BACKUP RCS, CSI TIG: 125:21:19 125:22 P76 TARGET ∆V BT: 45 SEC LM FDAI: R 0, P 187.8, Y 0 ΔV: 49.5 FPS VERIFY RESIDUALS 125:26 P20 AUTO MANEUVER Z AXIS BORESIGHT V76, V67, VHF RANGING TO SEXTANT TRACK P33 CDH PRETHRUST REV 26 V93 MARKS = 4 125:32 V32 MARKS = 3 VHF RANGING MAINTAIN RR AND V90 OUT OF PLANE VHF TRACKING ATTITUDE V32 MARKS = 10 P30 EXTERNAL ΔV V90 OUT OF PLANE P41 RCS THRUSTING LOAD AGS AV RCS, PLANE CHANGE TIG: 125:50:28 P76 TARGET ∆V ΔV=NOMINALLY ZERO (LM PC BURN DATA) 125:54 V76, P33 CDH PRETHRUST SEXTANT TRACKING VHF RANGING

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	125:00 - 126:00	6 / 25-26	3-91

FLIGHT PLAN **CSM** LM 1630 EDT **CMP CDR LMP** -127:00 P20 AUTO MNVR P35 TPM PRETHRUST SXT AND VHF TRACKING ANT P V76, V93 (BEFORE FIRST MARK) 127:06 P35 TPM PRETHRUST AFT OMNI, PCM LBR P41 COMPUTE MCC1 (TPI +15) P41 RCS THRUSTING MCC1 BACKUP TIG: 127:13:08 RCS, MCC1 P76 TARGET ∆V V76, V93 (BEFORE FIRST MARK) P35 TPM PRETHRUST MAINTAIN LOS CSM SXT AND VHF TRACKING 127:21 P35 TPM PRETHRUST COMPUTE MCC2 (TPI +30) P41 127:27 P41 RCS THRUSTING MCC2 BACKUP RCS, MCC2 TIG: 127:28:08 REV 27 P76 TARGET ∆V 127:30 V89 MANEUVER TO COAS P00 V63 RR SELF TEST TRACKING ATTITUDE P47 THRUST MONITOR DON HELMET & GLOVES RCS BRAKING Δ T FROM $\Delta \nabla$ RANGE RANGE RATE GET TPI BT SEC FT/SEC NM FT/SEC 127:36:57 28:49 NOMINALLY NOT PERFORMED START 16mm CAMERA 127:39:24 41:16 10.8 12.0 2724 -19.7DOCK CHECKLIST 9.8 -9.8 127:40:37 42:29 8.8 1370 LOAD DAP R1 = 61112 4.8 127:42:16 44:08 4.3 469 -4.8 R2 = 111111127:43:35 45:27 4.2 4.7 89 -0.2 FOR LM ASCENT STAGE DOCKING 127:53 CMC - AUTO

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	127:00 - 128:00	6 / 26-27	3-93

MCC-H

MSC Form 2189 (OT) (Nov 68)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	128:00 - 129:00	6 / 27	3-94

MSC Form 2189 (OT) (Nov 68)

FLIGHT PLAN **CSM** MCC-H LM 1830 EDT CMP CDR **LMP** -129:00 V66 - TRANS CSM STATE VECTOR VACUUM BRUSH FWD UPLINK 129:05 TO LM SLOT DUMP VALVE FILTER UNSTOW AND HOLD SRC's CSM STATE VECTOR FOR CLEANING VACUUM SRC's BAG SRC's AND TRANSFER TO CM RETRIEVE SRC's FROM LM AND VACUUM: STOW IN B5 AND B6 129:19 CSC 70mm MAGAZINE HOLD EQUIPMENT FOR CLEANING 129:26 CLOSEUP MAGAZINE **REV 28** -129:30 HELMETS BAG ITEMS AND TRANSFER TO CSM (GLOVES IN HELMETS) GLOVES RETRIEVE BAGGED ITEMS FROM LM AND STOW: VACUUM BRUSH LMP's PGA CSC - A5 CLOSEUP MAGAZINE - A5 70mm MAGAZINES - R13 HELMETS - FOOD CONTAINERS VACUUM BRUSH CDR's PGA 129:51 VACUUM THE BRUSH AND STOW IN ISA

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	129:00 - 130:00	6 / 27-28	3-95

MSC Form 2189 (OT) (Nov 68)

FLIGHT PLAN **CSM** MCC-H LM 1930 EDT CMP **CDR LMP -**130:00 DISCONNECT FROM LM AND TRANSFER TO CM WITH ISA REMOVE ISA CONTENTS AND STOW. PLACE CM JETTISONABLE ITEMS INTO ISA AND TRANSFER ISA TO LM. RETRIEVE ISA AND INSTALL ON PANELS 1 & 2 -130:25 CONFIGURE LM SYSTEMS FOR JETTISON DISCONNECT FROM LM HOSES CLOSE LM HATCH IVT TO CSM UNSTOW AND INSTALL CSM HATCH HATCH INTEGRITY CHECK DEPRESSURIZE TUNNEL

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	130:00 - 131:00	6 / 28	3-96

MSC Form 2189 (OT) (Nov 68)

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	132:00 - 133:00	6 / 29	3-98

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	133:00 - 134:00	6 / 30	3-99

TEI BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
TEI	10°/SEC TAKEOVER	±10° TAKEOVER	BT +2 SEC & $\Delta V_C = -40$ FPS	TRIM X AND Z AXIS TO 0.2 FPS

LOI ₁ V _{GO}	BT	TRAJECTORY	ABORT MODE
3292.7 - 1436.0	0 - 90	LUNAR ORBIT	MODE III - AFTER 1 REV
1436.0 - 1207.0	90 - 100	UNSTABLE	MODE II - 2 SPS BURNS FOR ORBIT STABILIZATION AND WATER OR CLA LANDING.
1207.0 - 0	100 - 149	UNSTABLE/ HYPERBOLIC	MODE I - 1 BURN AT TEI +2HRS P37 AT SPHERE OF INFLUENCE HYPERBOLIC (ΔV 580 TO 0, BT 125-149)

MCC-H

FLIGHT PLAN

NOTES

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	136:00 - 138:00	6 / TEC	3-102

138:00

MCC BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
MCC5	10°/SEC TAKEOVER	10° TAKEOVER	BT +1 SEC	TRIM X AXIS ONLY

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	157:00 - 159:00	7 / TEC	3-113

MCC BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
MCC6	10°/SEC TAKEOVER	10° TAKEOVER	BT +1 SEC	TRIM X AXIS ONLY

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	172:00 - 174:00	8 / TEC	3-121

0830 EDT

FLIGHT PLAN

NOTES

SM RCS MON CK

GDC ALIGN TO IMU

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	191:00 - 192:00	9 / TEC	3-131

MCC BURN CHART

	P OR Y RATES	ATT DEVIATION	SHUTDOWN TIME	RESIDUALS
MCC7	10°/SEC TAKEOVER	10° TAKEOVER	BT +1 SEC	TRIM X AXIS ONLY

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	193:00 - 194:00	9 / TEC	3-133

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	194:00 - 195:00	9 / TEC	3-134

NOTES

MSC Form 29 (May 69)

FLIGHT PLAN

NOTES

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	195:00 - 196:00	9 / TEC	3-135

MSC Form 29 (May 69)

SECTION IV

DETAILED TEST OBJECTIVES

SECTION 4

DETAILED OBJECTIVE ACTIVITIES

This section contains the activity summaries which reflect the test objectives for Mission G as described in "Mission Requirements G Type Mission", SPD9-R-038, Change A dated May 1, 1969. These activity summaries are presented in the approximate sequence in which they are planned to occur during the mission.

Each activity summary provides the following information:

- A. TEST OBJECTIVES. This is the listing of the Functional Test Objectives (complete or partial) which relate to the particular activity;
- B. TEST REQUIREMENTS. Here the special test prerequisites (and mission phase if necessary) are presented in addition to brief statements of the requirements for performing the activity;
- C. TEST PROCEDURES/CHECKLISTS. These are the procedural references for the performance of the activity as far as the test objectives are concerned; and
- D. DATA REQUIREMENTS. This part of the summary identifies the gross data which are needed for evaluation of test results in terms of flight crew and ground support requirements.

Cross references for relating Detailed and Functional Test Objectives with the activity summaries and relating activities to Functional Test Objectives, are provided as the initial part of this section.

The following ground rules are to be used in implementing data requirements:

- A. The collection of highly desirable (HD) data should not constrain the timeline of the crew procedures.
- B. Post-flight debriefing requirements which are fulfilled by real time transmission of data per the DATA REQUIREMENTS sections may be deleted from the post-flight debriefing.

All of the Test Requirements have not been totally implemented into the mission timeline. These items are identified in this section as "Not Implemented" or with the conditions by which they will be implemented.

TABLE 4-1 MISSION ACTIVITY AND TEST OBJECTIVE CROSS REFERENCE

ACTIVITY	FTO
LM Descent	D-1, G-1, G-3, H-1, M-1
Lunar Surface Navigation	G-1, G-2, G-3, L-4, M-2
EVA Preparation and Egress	B-1, B-2, C-1, C-2, C-3, L-1
Surface Sample Collection	A-1, E-1, F-1, F-2, I-3, J-2, J-3, J-4, M-3
External LM Observations and Photography	D-1, D-2, D-3, D-4, L-2, M-3
Lunar Surface Observations and Photography	E-1, E-2, E-3, H-2, J-5, L-3, L-4, M-3
Experiment Deployment/Conduct	S-031, S-078, S-080
Post EVA Operations	B-1, C-1, C-2
Contamination Prevention	I-1, I-2

TABLE 4-2 TEST OBJECTIVE/MISSION ACTIVITY CROSS REFERENCE

DTO/FTO NUMBER	TEST OBJECTIVE	MISSION ACTIVITY	SECTION PAGE NO.
A A-1	Contingency Sample Collection Provide a Contingency Lunar Surface Sample	Surface Sample Collection	4 - 13
B B-1 B-2	Lunar Surface EVA Operations Demonstrate Egress-To/Ingress-From the Lunar Surface Evaluate Crew Lunar Surface EVA Capability	EVA Preparation and Egress Post EVA Operations EVA Preparation and Egress	4 - 10 4 - 21 4 - 10
C C-1 C-2 C-3	EMU Lunar Surface Operations EMU Capability to Provide a Habitable Environment EMU Effects on Crew Mobility, Dexterity & Comfort Demonstrate EVA Data/Voice Communications	EVA Preparation and Egress EVA Preparation and Egress EVA Preparation and Egress	4 - 10 4 - 10 4 - 10
D D-1 D-2 D-3 D-4	Landing Effects on LM LM Landing Gear Performance Under Landing Conditions Effects of Landing on LM Structure and Components Descent Engine Skirt Damage/Clearance After Landing Effects of RCS Plume Impingement on LM Structure & Components	LM Descent External LM Observ/Photo External LM Observ/Photo External LM Observ/Photo External LM Observ/Photo	4 - 6 4 - 15 4 - 15 4 - 15 4 - 15
E E-1 E-2 E-3	Lunar Surface Characteristics Data on Behavior/Characteristics of the Lunar Surface Lunar Soil Erosion from DPS Plume Impingement Effect of DPS Venting on the Lunar Surface	Surface Sample Collection Lunar Surface Observ/Photo Lunar Surface Observ/Photo Lunar Surface Observ/Photo	4 - 13 4 - 17 4 - 17 4 - 17
F F-1 F-2	Bulk Sample Collection Collect Rock Samples and Fine Grained Material Photograph Collection Area of Samples	Surface Sample Collection Surface Sample Collection	4 - 13 4 - 13

TABLE 4-2 TEST OBJECTIVE/MISSION ACTIVITY CROSS REFERENCE

DTO/FTO NUMBER	TEST OBJECTIVE	MISSION ACTIVITY	SECTION PAGE NO.
G G-1 G-2 G-3	Landed LM Location Determine Location of Landed LM from LM Data Determine Location of Landed LM from CSM Data Capability of Locating Landed LM in Real Time	LM Descent Lunar Surface Navigation Lunar Surface Navigation LM Descent Lunar Surface Navigation	4 - 6 4 - 8 4 - 8 4 - 6 4 - 8
H H-1 H-2	Lunar Environment Visibility Data on Landing Aids & Final Approach Visibility Crew Performance of Visual Tasks on Lunar Surface	LM Descent Lunar Surface Observ/Photo	4 - 6 4 - 17
I I-1 I-2 I-3	Assessment of Contamination by Lunar Material Prevent Earth Contamination by Lunar Exposed Materials Minimize Crew/CM Contamination by Lunar Exposed Materials Lunar Sample for Quarantine Testing	Contamination Prevention Contamination Prevention Surface Sample Collection	4 - 22 4 - 22 4 - 13
J J-1 J-2 J-3 J-4 J-5	Documented Sample Collection Obtain an Asceptic Sample of the Lunar Surface Obtain a Core Sample of the Lunar Surface Collect Lunar Geologic Samples Collect a Lunar Environment Sample Study and Describe Lunar Topography Features Lunar Surface Structure Photograph (Objective Deleted)	Deleted Surface Sample Collection Surface Sample Collection Surface Sample Collection Lunar Surface Observ/Photo Deleted	4 - 13 4 - 13 4 - 13 4 - 17

TABLE 4-2
TEST OBJECTIVE/MISSION ACTIVITY
CROSS REFERENCE

DTO/FTO NUMBER	TEST OBJECTIVE	MISSION ACTIVITY	SECTION PAGE NO.
L L-1 L-2 L-3 L-4	Television Coverage TV Coverage of Astronaut Descending to the Lunar Surface TV Coverage of External Landed LM TV Coverage of Lunar Surface Near LM TV Panoramic Coverage of Distant Terrain Features TV Coverage of Astronaut Activities on the Lunar Surface	EVA Preparation and Egress External LM Observ/Photo Lunar Surface Observ/Photo Lunar Surface Navigation Lunar Surface Observ/Photo Lunar Surface Observ/Photo	4 - 10 4 - 15 4 - 17 4 - 8 4 - 17 4 - 17
M M-1 M-2 M-3	Photographic Coverage Photograph Lunar Surface During LM Descent Photograph Lunar Surface Post Touchdown/Pre EVA Obtain Photographs During EVA	LM Descent Lunar Surface Navigation Surface Sample Collections External LM Observ/Photo Lunar Surface Observ/Photo	4 - 6 4 - 8 4 - 13 4 - 15 4 - 17
S-031 S-078 S-080	Lunar Passive Seismology Laser Ranging Retro-Reflector Solar Wind Composition	Experiment Deployment/Conduct Experiment Deployment/Conduct Experiment Deployment/Conduct	4 - 20 4 - 20 4 - 20

LM DESCENT

A. Test Objective

- D-1 LM Landing Gear Performance Under Landing Conditions
- G-1 Location of the Landed LM from LM Data G-3 Capability of Locating the Landed LM in Real Time from LM/CSM/MSFN Data
- H-1 Data on Landing Aids and Final Approach Visibility
- M-1 Photograph Lunar Surface During LM Descent

B. Test Requirements

- 1. Determine landing site visibility, extent of washout and visibility of landing site landmarks. [H]
- 2. Photograph the landing site during the approach through the LM pilot's window with the data acquisition camera. [G, H, M]
- 3. Evaluate landing aids, i.e., Landing Point Designator, maps, photographs. [G, H]
- 4. Assess visual phenomena during LM landing which are significantly different from expected. [H]
- 5. Voice anotate location and identity of features during final descent. [G]
- 6. Determine landing location in real time by description of terrain features during descent. [G]
- 7. Assess LM landing conditions on the lunar surface. [D]

C. Procedures/Checklist

- 1. Photographic and Television Operations Plan.
- 2. Descent Procedures Document.

D. Data Requirements

- 1. Flight Crew Reports/Logs/Photographs
 - a.LM crew comments on landing site visibility during final approach and landing phases and on effectiveness of the Landing Point Designator and landing site recognition aids. [H] (M)
 - b. GET at start of data acquisition camera photographs during LM final approach. [H] (M)
 - c. Voice track regarding observations of surface features during the descent phase. [G] (M)
 - d. Photographs of the landing site and surrounding lunar surface features taken through a LM window during descent. [G, M] (M)
 - e. Data Acquisition Camera photographs of the landing site from high gate to touchdown. [H, M] (M)
 - f. Photographs of the landing site and surrounding lunar surface features taken through a LM window during descent. [G, M] (N)
 - g. Comments on any lunar dust observed during the final approach, the severity of the landing and vehicle stability after touchdown. [D] (M)

- a. LM TM HBR. [D, G, H] (M)
- b. LM TM LBR. [D, G] (M)

- c.LM BET from DOI through touchdown. [G, H] (M)
- d.MSFN tracking data of LM from acquisition of signal through touchdown. $\ensuremath{[\mathsf{G}]}$ (F4)

LUNAR SURFACE NAVIGATION

A. Test Objectives

- G-1 Determine the Location of the Landed LM from LM Data
- G-2 Determine the Location of the Landed LM from CSM Data
- $\mbox{G-3}$ Determine Capability of Locating the Landed LM in Real Time from LM/CSM/MSFN Data
- L-4 Panoramic Coverage of Distant Terrain Features
- M-2 Photograph Lunar Surface Post Touchdown/Pre EVA

B. Test Requirements

- 1. Correlate lunar surface features surrounding the landing site with photomaps and mark the LM location. [G, L, M]
- 2. Photograph terrain features thru the LM window to correlate LM location. $[\mathsf{G},\ \mathsf{M}]$
- 3. Obtain two sets of LM IMU alignments after landing [G]
- 4. Provide TV coverage of prominent terrain features. [G, L]
- 5. Track the landed LM from the CSM during two orbital passes. Mark on a landmark near the landed LM. [G] (Only one pass is implemented.)
- 6. Track the CSM with LM RR during one pass. [G] (Not Implemented.)
- 7. Obtain 70 MM photographs of the landed LM or its shadow and the surrounding lunar features. [G]
- 8. Assist MCCH in determining the landing LM location in real time. [G, L]

C. Procedures/Checklist

- 1. Photographic and Television Operations Plan.
- 2. LM AOH, "PGNCS Lunar Surface Align Program (P57)".
- 3. LM AOH, "Lunar Surface Navigation Program (P22)"
- 4. CSM AOH, "Orbital Navigation (P22)".

D. Data Requirements

- 1. Flight Crew Reports/Logs/Photographs
 - a. Estimate of the landed LM location on lunar photomaps. [G] (M)
 - b. Comments by LM crew regarding any difficulties encountered in estimating the location of the LM with respect to lunar surface features. [G] (HD)
 - c. Comments by LM crewman on location of landed LM with respect to prominent terrain features. [G] (M)
 - d. Obtain high resolution photographs of the landing area from the CSM. $[\mathsf{G}]$ (M)
 - e. Photographs of the landing site and surrounding lunar surface features taken through a LM window after landing. [G, M] (M)
 - f. Provide TV coverage of the lunar surface as viewed from the LM. [G, L] (M)

- a.LM TLM HBR. [G] (M)
- b.LM TLM LBR. [G] (M)

- c.BET of CSM during the lunar surface phase. [G] (M)
- d. BET of LM from DOI through touchdown. [G] (M)
- e.Photographs of the landing area obtained during previous lunar missions. [G] $(\mbox{\scriptsize M})$
- f. Post-scan conversion video tape of all TV coverage. [L] (M)
- g. Estimate solar illumination established by mission geometry. [L] (M)
- h.Reflectivity and geometry of surfaces contributing to indirect illumination. [L] (HD) $\,$

EVA PREPARATION AND EGRESS

A. Test Objectives

- $\ensuremath{\mathtt{B-1}}$ Demonstrate Egress-to/Ingress-from the Lunar Surface
- B-2 Evaluate Crew Lunar Surface EVA Capability
- C-1 EMU Capability to Provide a Habitable Environment
- C-2 EMU Effects on Crew Mobility/Dexterity/Comfort
- C-3 Data/Voice Communications Capability During EVA
- L-1 TV Coverage of an Astronaut Descending to the Lunar Surface

B. Test Requirements

- 1. Perform EVA preparations. [C]
- 2. Release the MESA pallet with pre-mounted TV camera and turn camera power on prior to descent to the lunar surface. [L]
- 3. Egress to the lunar surface. [B, C]
- 4. Deploy and set the TV camera to provide TV coverage of the lunar surface EVA. [L]
- 5. During EVA, communicate with MSFN via the EVA-LM-MSFN two way voice relay. [C]
- 6. Two-way voice communications to be performed between two EVA crewmen. [C]
- 7. EMU and biomedical data from two EVA crewmen will be simultaneously transmitted to MSFN via EVA-LM-MSFN one-way relay. [C]

C. Procedures/Checklist

- 1. EVA Procedures Document.
- 2. Lunar Surface Operations Plan.

D. Data Requirements

- 1. Flight Crew Reports/Logs/Photographs
 - a. Notify MSFN of the initial and final positions of the PLSS water diverter valve, primary oxygen shutoff valve and water shutoff/relief valve each time they are changed. [C] (M)
 - b. Notify MSFN when PLSS; High O2 flowrate, low vent flow, low feed water pressure or PGA pressure low remote control unit status indicators and audible warning tone come on. [C] (M)
 - c. Record EMU radiation dosimeter readings just prior to the EVA. [C] (M)
 - d. Notify MSFN if noxious odors occur or any condensation on the visor assembly. [C] (HD)
 - e. Comment on the adequacy of procedures and difficulties encountered during donning of EMU equipment. [C] (HD)
 - f. Comment on time required and adequacy of the EMU checkout procedures. [C] (MD)
 - g.Comment on the adequacy of EMU thermal environment when walking from a sunlit area to shadow and vice versa. [C] (M)
 - h. Comment on estimated energy expenditure and comfort as compared to simulation experience. [C] (HD)
 - i. Provide data on the adequacy of hardware and procedures, and the time required to perform the egress from the LM. [B] (M)

- j.Comment on voice quality for EVA-EVA and EVA-LM-MSFN communications. [C] (M)
- k. Provide sequence camera coverage and TV camera coverage of: $[B,\ M]$ (M)
 - 1) A crew member descending to the lunar surface.
 - 2) A crew member walking on the lunar surface.
 - 3) A crew member performing lunar surface EVA operations.
- 2. Ground Support
 - a.LM TM FM. [B, C] (M)
 - b. Ground recorded TV signals. [B] (HD)
 - c.LM TM LBR. [L] (HD)
 - d. Post-scan conversion video tape of all TV coverage. [L] (M)
 - e. Record of S-band signal strength during video transmission. [L] (HD)
 - f. GET at beginning and end of TV transmission. [L]
 - g. Time period, if any, when LBR TM (in lieu of HBR TM) transmitted simultaneously with TV data. [L] (M) $\,$
 - h. Identity of ground station(s) used to record video transmission from LM. [L] (M) $\,$
 - i. Time period, if any, when erectable antenna used to transmit TV data. [L] (M)
 - j. Estimate of incident illumination. [L] (M)
 - k.LM position on lunar surface. [H] (HD)
 - 1. MSFN recording of EVA-LM-MSFN voice. [C] (M)

SURFACE SAMPLE COLLECTION

A. Test Objectives

- A-1 Provide a Contingency Lunar Surface Sample
- E-1 Behavior and Characteristics of the Lunar Surface
- F-1 Collect Rock Samples and Fine Grained Material
- F-2 Photograph Collection Area of Samples
- I-3 Obtain a Lunar Sample for Quarantine Testing
- J-2 Obtain a Core Sample of the Lunar Surface
- J-3 Collect Lunar Geologic Samples
- J-4 Collect a Lunar Environment Sample
- M-3 Obtain Photographs of Geologic Inspection & Sampling

B. Test Requirements

- 1. Contingency Sample Obtain upon first descending to the lunar surface. [A]
- 2. Bulk Material Obtain 30 pounds consisting of 1/3 fragmentary and 2/3 loose samples. [F]
- 3. Core Sample Obtain with the drive tube. [I, J]
- 4. Geologic Samples Obtain using tools stowed in the MESA. Photograph sample areas. $[\mathsf{J},\;\mathsf{M}]$
- 5. Lunar Environment Sample Seal in gas analysis container. [J]

C. Procedures/Checklist

- 1. Lunar Landing Mission Flight Plan.
- 2. Lunar Surface Operations Plan.
- 3. Photographic and Television Operations Plan.

D. Data Requirements

- 1. Flight Crew Reports/Logs/Photographs
 - a. Record areas in relation to LM where samples were collected. [A, F, J] (M)
 - b. Record unusual lunar surface observations. [A, F, J] (M)
 - c. Comment on soil behavior during collection of Bulk Sample. [E] (M)
 - d. Comment on soil behavior during collection of Documented Sample. [E] (HD)
 - e. Estimates of volume of fine grained material collected in one bag of the Documented Sample. [E] (HD)
 - f. Take photographs during sample collection. [A, F] (HD)
 - g. Photograph the lunar surface sample areas and of the samples as defined in the Photographic Operations Plan. [J] (M)

- a. LM position on lunar surface. [J] (M)
- b. MSFN recordings of all MSFN/EVA voice conferences. [J] (M)

EXTERNAL LM OBSERVATIONS AND PHOTOGRAPHY

A. Test Objectives

- D-1 Effects of Landing on LM Landing Gear
- $\mbox{D--2}\ \mbox{Effects}$ of Landing on LM Structure and Components
- D-3 Descent Engine Skirt Damage and Clearance After Landing
- D-4 Effects of RCS Plume Impingement on LM Structure and Components
- L-2 TV Coverage of External Landed LM
- M-3 Obtain Photographs of Landed LM

B. Test Requirements

- 1. Operate the TV camera to provide an external view of the LM. [L]
- 2. Photograph any observed LM external structural damage. [D, M]
- 3. Determine descent engine skirt ground clearance. [D, M]
- 4. Photograph any effects of RCS plume impingement observed. [D, M]
- 5. Obtain photographs of any lunar material collected on the LM. [D, M]

C. Procedures/Checklist

1. Mission G Photographic and Television Operations Plan.

D. Data Requirements

- 1. Flight Crew Reports/Logs/Photographs
 - a. Comment on any LM component damage to include any visible discoloration or lunar soil accumulation. [D] (M)
 - b. Comments describing any descent engine skirt damage and estimate of any skirt ground clearance. [D] (M)
 - c. If the landing gear strut assembly photographs cannot be obtained,
 estimate the amount of stroking of each primary and secondary strut
 assembly. [D] (M)
 - d. Photograph the landing gear to show the stroking of the primary and secondary strut assemblies. [D, M] (M)
 - e. Photograph the LM exterior showing any structural damage. [D, M] (M)
 - f. Photograph each landing gear assembly along the Z axis and the Y axis. [D, M] (HD) $\,$
 - g. Photograph the descent engine skirt. [D, M] (HD)
 - h. Photograph the LM base heat shield. [D, M] (HD)
 - i. Photograph the LM exterior, i.e., structure antenna, RCS jets, windows and foot pads. [D, M] (HD)
 - j. Photograph soil accumulation on the LM. [D, M] (HD)
 - k. Photographs by the close up stereo camera of lunar material adhering to LM surfaces. [M] (HD)

- a.LM TM HBR. [D] (M), [L] (HD)
- b. LM Mass, center of gravity and mass moment of inertia calculations. $\[\mathbf{E}\]$ $\[\mathbf{M}\]$
- c. Video tape of all TV coverage. [L] (M)

- d.Record of S-band signal strength during TV coverage. [L] (HD)
- e. GET at beginning and end of TV operations.
- f. Time period of simultaneous LBR TM and TV transmission. $\left[\text{L} \right]$ (M)
- g.Identification of ground station(s) used to record video transmission. [L] (M)
- h. Time period when erectable antenna was used to transmit from lunar surface. [L] (M) $\,$

LUNAR SURFACE OBSERVATIONS AND PHOTOGRAPHY

A. Test Objectives

- E-1 Behavior and Characteristics of the Lunar Surface
- E-2 Erosion of Lunar Surface by DPS Plume Impingement
- E-3 Effect of Any DPS Venting on the Lunar Surface
- H-2 Crew Performance of Visual Tasks on the Lunar Surface
- J-5 Study and Description of Lunar Topography Features
- L-3 TV Coverage of Lunar Surface Near LM
- L-4 TV Panoramic Coverage of Distant Terrain Features L-5 Coverage of Astronaut Activities on the Lunar Surface
- M-3 Obtain Photographs During EVA

B. Test Requirements

- 1. Provide TV coverage of the lunar surface in the vicinity of the LM and panoramic scenes of distant terrain features. [L]
- 2. Photograph the lunar terrain at various azimuths with respect to the sun including 9, 90 and 180 degrees. Comment on ability to see terrain features in these areas. [H, M]
- 3. Estimate the distance to prominent terrain features within the field of view of photographs taken. [H]
- 4. Observe lunar surface characteristics including texture, consistency, compressibility, cohesiveness, adhesiveness, density and color. [E]
- 5. Study and photograph the mechanical behavior of the lunar surface from interactions of astronauts boots and equipment with the lunar soil, erosion by DPS plume impingement and DPS venting. [E, M]
- 6. Describe and photograph field relationships such as shape, size, range, pattern of alignment or distribution of all accessible types of lunar topographic features. [J,M]
- 7. Photograph the structure of lunar surface material in its natural state. [M]

C. Procedures/Checklist

1. Mission G Photographic and Television Operations Plan.

D. Data Requirements

- 1. Flight Crew Report/Logs/Photographs
 - a. Report condition of the temperature indicator viewing ports on the TV camera at the beginning and the end of the TV operations. [L] (M)
 - b. Position of the TV camera scan rate switch at start of TV operation. [L] (M)
 - c. Comments describing the interaction between astronaut boots and lunar surface while walking. [E] (M)
 - d. Comments on slope and roughness characteristics of the landing terrain to include descriptions of craters, depressions, embankments or other obstacles. [E] (M)
 - e. Comments on the color and texture of both undisturbed and mechanically disturbed areas of the lunar surface. [E] (M)
 - f. Comments on lunar soil conditions adjacent to DPS vents to include any discoloration. [E] (M)
 - q. Comments describing the lunar surface penetration by the Solar Wind Composition Staff and core sample tool under their own weight and the

- estimated force. [E] (Mandatory for either the staff or the core sample tool: highly desirable for the other.)
- h. Comments on lunar soil erosion as caused by the DPS plume impingement during landing. [E] (M)
- i. Record vent valves opened. [E] (M)
- j. Photograph the lunar surface showing DPS plume impingement erosive effects. $[E,\ M]$ (M)
- k. Photograph the lunar surface adjacent to DPS vents if soil discoloration is observed. [E, M] (M)
- 1. Photograph an astronaut footprint showing interaction between astronaut boots and lunar surface. [E, M] (M)
- m. Photograph the Solar Wind Composition Experiment Staff and core sampling tool after being inserted to their maximum depth as penetrometers. [E, M] (HD)
- n. Photograph the natural slopes, crater walls and embankments in the vicinity of the landing site. [E,M] (M)
- o. Photograph from the CSM of the lunar surface surrounding the LM. [E, M] (HD)
- p. Comments on the visibility of the lunar terrain as a function of the sun/viewing angle and on their ability to perform visual tasks while on the lunar surface. [H] (M)
- q. Comments on color/contrast perception. [H] (M)
- r. Comments on and significant unexpected visual phenomena. [H] (M)
- s. Estimate of distance to at least one prominent terrain feature within the field of view of the photographs in item $x \in \mathbb{R}$ (M)
- t. Photograph the lunar terrain at various sun azimuths to include 0 degrees, 90 degrees and 180 degrees. [H, M] (M)
- u. Photograph any unexpected visual phenomena. [H, M] (HD)
- v. Photograph a representative depression caused by use of the scoop in collecting fine grained fragmental material. [E, M] (M)
- w. Photograph one scoop of fine grained fragmental material placed in one of the pre-numbered bags. [E, M] (HD)
- x. Photograph of each LM foot pad and surrounding lunar soil exhibiting evidence of LM foot pad lunar soil interaction. [M] (HD)

- a.LM TM HBR. [E, L] (HD)
- b. Estimate of incident illumination. [D] (M)
- c. Video tape of all TV coverage. [L] (M)
- d. Record of S-band signal strength during TV transmission. [L] (M)
- e.GET at beginning and end of TV transmission. [L] (M)
- f. Time period when LBR TM was transmitted simultaneously with TV. [L] (M)
- g. Identity of ground station(s) used to record LM video transmission. [L] (M)
- h. Time period when erectable antenna was used to transmit from the lunar surface. [L] (M) $\,$

EXPERIMENT DEPLOYMENT/CONDUCT

A. Test Objectives

- S-031 Deploy the Passive Seismic Experiment Package
 S-078 Deploy the Laser Ranging Retro-Reflector Experiment
 S-080 Conduct the Solar Wind Composition Experiment
- B. Test Requirements
 - 1. Emplace, level and orient the Passive Seismic Experiment Package (PSEP). Deploy the solar panels and aim the antenna at the earth. [S-031]
 - 2. Photograph the deployed PSEP and deployment area. [S-031]
 - 3. Remove the Laser Ranging Retro-Reflector (LRRR) from the descent stage and carry it to the deployment site. [S-078]
 - 4. Emplace, level and orient the LRRR to the alignment marks corresponding to she landing site. [S-078]
 - 5. Remove the Solar Wind Composition Experiment from the LM MESA and deploy it on the lunar surface. [S-080]
 - 6. After one hour operation, disassemble the Solar Wind Composition Experiment, place the reel and foil in a teflon bag and store in a sample return container. [S-080]
- C. Procedures/Checklist

None

- D. Data Requirements
 - 1. Flight Crew Reports/Logs/Photographs
 - a. Comment on deployment of experiment. [S-031] (M)
 - b. Photograph deployment area. [S-031, S-078, S-080] (HD)
 - c. Comment on location of deployed experiment with respect to the LM, attitude of deployed foil with respect to the sun and total time foil was deployed. [S-080] (M)
 - d. Retrieve reel and foil from the Solar Wind Composition Experiment. $[S-080]\ (M)$
 - e. Comments on orientation and elevation setting used for deployment. [S-078] (HD)
 - 2. Ground Support
 - a. Experiment TLM Data [S-031] (M)

POST EVA OPERATIONS

A. Test Objectives

- B-1 Demonstrate Egress-to/Ingress-from the Lunar Surface
- C-1 EMU Capability to Provide a Habitable Environment
- C-2 EMU Effects on Crew Mobility, Dexterity/Comfort

B. Test Requirements

- 1. Perform post EVA preparations and ingress. [B]
- 2. Perform PLSS shutdown. [C]
- C. Procedures/Checklist
 - 1. EVA Procedures Document.
- D. Data Requirements
 - 1. Flight Crew Reports/Logs/Photographs
 - a. Notify MSFN of the initial and final positions of the PLSS water diverter valve, primary oxygen shutoff valve and water shutoff/ relief valve each time they are changed. [C] (M)
 - b. Notify MSFN when PLSS; High O2 flowrate, low vent flow, low feed water pressure or PGA pressure low remote control unit status indicators and audible warning tone come on. [C] (M)
 - c. Provide data on the adequacy of hardware and procedures, and the time required to perform the ingress to the LM. [B] (M)
 - d. Comment on the adequacy of procedures and difficulties encountered during doffing of EMU equipment. [C] (HD)
 - e. Record quantity of water drained from PLSS at end of EVA period. [C] (M)
 - f. Record EMU radiation dosimeter readings after completion of the EVA. [C] (M)
 - g. Provide sequence camera coverage and TV camera coverage of a crew member ascending the LM ladder. [B] (M)

CONTAMINATION PREVENTION

A. Test Objectives

- I-1 Prevent Earth Contamination by Lunar Exposed Materials I-2 Minimize Crew/CM Contamination by Lunar Exposed Materials
- B. Test Requirements
 - 1. All contamination related operations from the initial astronaut egress to the lunar surface until postflight crew/cm quarantine will be completed per procedures contained in the documents listed below. [I]
- C. Procedures/Checklist
 - 1. Lunar Surface Operations Plan
 - 2. EVA Procedures Document
 - 3. Quarantine Procedures
- D. Data Requirements
 - 1. Flight Crew Reports/Logs/Photographs
 - a. Crew comments on the adequacy of Biological Isolation Garment, sample return containers, Mobile Quarantine Facility and related equipment and procedures used to prevent back contamination. [I] (M)
 - b. Photograph boots, clothing and equipment showing adhesion of particles. [I, M] (HD)
 - 2. Ground Support
 - a. Deliver samples, CM and Mobile Quarantine Facility to the Lunar Receiving Laboratory. [I] (M)
 - b. Comment on ground procedures and hardware used for retrieval, biological isolation and CM transfer to the Lunar Receiving Laboratory. [I] (M)
 - c. Report on the existence of contamination of the crew on CM. [I] (M)

SECTION V

CONSUMABLES ANALYSIS

NOTE

Acknowledgement is made to the Consumables Analysis Section (CAS) of the Mission Planning and Analysis Division (MPAD) for their work in the preparation of the consumable analysis presented herein and to the Crew Systems Division for the PLSS Consumables.

5 - i

CSM-107/LM5 PROPELLANT BUDGET

The results of the Propellant Budget Analysis are summarized in the following Tables and Figures:

TABLE 5-1	SM RCS Propellant Loading And Usage Summary
TABLE 5-2	SM RCS Budget
TABLE 5-3	CM RCS Propellant Summary
TABLE 5-4	SPS Propellant Summary
TABLE 5-5	SPS Assumptions
TABLE 5-6	LM RCS Propellant Loading And Usage Summary
TABLE 5-7	LM RCS Budget
TABLE 5-8	DPS Propellant Summary
TABLE 5-9	DPS Assumptions
TABLE 5-10	APS Propellant Summary
TABLE 5-11	APS Assumptions
FIGURE 5-1	Total SM RCS Propellant Profile
FIGURE 5-2	Quad A SM RCS Propellant Profile
FIGURE 5-3	Quad B SM RCS Propellant Profile
FIGURE 5-4	Quad C SM RCS Propellant Profile
FIGURE 5-5	Quad D SM RCS Propellant Profile
FIGURE 5-6	Total LM RCS Propellant Profile

SM-RCS BUDGET GROUND RULES and ASSUMPTIONS

- 1. The transposition and docking phase of the mission includes an SPS evasive maneuver.
- 2. The first and third midcourse corrections (translunar) are executed as SPS burns with the third MCC followed by an RCS trim.
- 3. No SM RCS propellant is required during PTC or lunar orbit coast.
- 4. The sixth midcourse correction (transearth) is executed as an RCS burn of 5 fps.
- 5. The individual quad plots are included for reference only as quad management is determined by the flight controllers during the mission.

TABLE 5-1 SM RCS PROPELLANT LOADING AND USAGE SUMMARY

Nominal loaded	1342.4 1b					
Initial outage due to loaded mixture ratio	15.6					
Total trapped	26.4					
Gauging inaccuracy	80.4					
Deliverable SM-RCS propellant 1220.0						
Nominal usage	590					
Translunar phase (through LOI-2)	204					
Lunar orbit phase	311					
Transearth phase (includes TEI) 75						
Nominal remaining	630 1b					

TABLE 5-2

	SM-RCS PROPELLANT BUDGET (a) (b) (b					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)	
.0	MISSION G	63457.	.0	1220.0	100.	
.0	INITIALIZE PROP LOADING	63457.	.0	1220.0	100.	
1.7	SM RCS CHECKOUT	63451.	5.8	1214.2	100.	
3.2	TRANSPOSITION AND DOCKING +X 0.8 FPS	63445.	6.1	1208.1	99.	
3.2	-X 0.3 FPS	63443.	2.4	1205.7	99.	
3.2	PITCH TO ACQUIRE S-IVB PITCH 180 DEG AT 1.5 DEG/SEC	63440.	2.3	1203.4	99.	
3.2	ROLL CSM 60 DEG 2 DEG/SEC	63439.	1.3	1202.1	99.	
3.2	NULL RELATIVE DEL V 0.5 FPS	63435.	4.0	1198.1	98.	
3.5	INDEX AND DOCK	63409.	26.0	1172.1	96.	
4.2	LM EJECTION -X 5 SEC 4 JET	96717.	7.4	1164.6	95.	
4.5	SPS BURN TO EVADE S-IVB ORIENT AT 0.2 DEG/SEC	96712.	4.4	1160.2	95.	
4.5	ATTITUDE HOLD 0.5 DEG DB PGNCS	96712.	.8	1159.4	95.	
4.5	START TRANSIENT CONTROL	96710.	1.3	1158.1	95.	
4.5	SPS BURN BUILD UP	96707.	.0	1158.1	95.	
4.5	STEADY STATE BURN	96508.	.3	1157.8	95.	
4.5	TAILOFF	96467.	.7	1157.2	95.	
4.5	DAMP SHUTDOWN TRANSIENT	96466.	1.1	1156.1	95.	
5.5	P52 IMU ALIGN	96466.	.2	1155.9	95.	
5.9	NAVIGATION SIGHTINGS ORIENT AT 0.2 DEG/SEC	96461.	4.4	1151.5	94.	

⁽a) Spacecraft weights are approximate and are included for reference only. (b) Note: These refer to usable SM RCS propellant.

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BUDGET					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)	
6.1	NAVIGATION SIGHTINGS ORIENT AT 0.2 DEG/SEC	96457.	4.4	1147.1	94.	
7.0	ORIENT FOR PTC 3-AXIS 0.2 DEG/SEC	96453.	4.1	1143.0	94.	
7.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	96452.	.8	1142.2	94.	
7.0	ROLL 0.3 DEG/SEC	96451.	. 4	1141.8	94.	
10.6	TERMINATE PTC DAMP RATES	96447.	4.4	1137.4	93.	
10.7	P52 IMU ALIGN	96447.	.2	1137.1	93.	
11.5	MIDCOURSE CORRECTION NO 1 3-AXIS ORIENT PGNCS	96442.	4.4	1132.7	93.	
11.5	ATTITUDE HOLD 0.5 DEG DB PGNCS	96442.	.8	1131.9	93.	
11.5	START TRANSIENT CONTROL	96440.	1.3	1130.6	93.	
11.5	SPS BURN BUILD UP	96437.	.0	1130.6	93.	
11.5	STEADY STATE BURN 3 FPS PGNCS	96402.	.1	1130.5	93.	
11.5	TAILOFF	96361.	.8	1129.7	93.	
11.5	DAMP SHUTDOWN TRANSIENT	96359.	1.1	1128.6	93.	
12.0	P52 IMU ALIGN	96359.	.2	1128.4	92.	
12.5	ORIENT FOR PTC 3-AXIS 0.2 DEG/SEC	96355.	4.1	1124.3	92.	
12.5		96354.	.8	1123.5	92.	
12.5	ROLL 0.3 DEG/SEC	96354.	. 4	1123.1	92.	
24.2	TERMINATE PTC DAMP RATES	96349.	4.4	1118.7	92.	
24.3		96349.	.2	1118.5	92.	

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BUDGET					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)	
24.5	CISLUNAR NAVIGATION STAR/EARTH HORIZON ORIENT	96345.	4.4	1114.2	91.	
24.7	NAVIGATION SIGHTINGS ORIENT AT 0.2 DEG/SEC	96341.	4.4	1109.8	91.	
26.6	MIDCOURSE CORRECTION NO 2 MNVR TO BURN ATT	96336.	4.4	1105.4	91.	
26.6	ATTITUDE HOLD 0.5 DEG DB PGNCS	96335.	.8	1104.7	91.	
26.7	DELTA VEL = NOMINALLY ZERO	96335.	.0	1104.7	91.	
27.0	ORIENT FOR PTC 3-AXIS 0.2 DEG/SEC	96331.	4.2	1100.5	90.	
27.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	96330.	.8	1099.7	90.	
27.0	ROLL 0.3 DEG/SEC	96330.	. 4	1099.3	90.	
52.8	TERMINATE PTC DAMP RATES	96326.	4.4	1094.9	90.	
53.0	P52 IMU ALIGN	96325.	.2	1094.7	90.	
53.6	MIDCOURSE CORRECTION NO 3 MNVR TO BURN ATT	96321.	4.4	1090.3	89.	
53.6	ATTITUDE HOLD 0.5 DEG DB PGNCS	96320.	.8	1089.5	89.	
53.6	START TRANSIENT CONTROL	96319.	1.3	1088.2	89.	
53.6	SPS BURN BUILD UP	96318.	.0	1088.2	89.	
53.6	STEADY STATE BURN 3 FPS	96281.	.1	1088.1	89.	
53.6	TAILOFF	96239.	.8	1087.3	89.	
53.6	DAMP SHUTDOWN TRANSIENT	96238.	1.1	1086.2	89.	
53.6	RCS TRIM 1 FPS	96227.	11.2	1075.0	88.	
54.0	ORIENT FOR PTC 3-AXIS 0.2 DEG/SEC	96223.	4.1	1070.9	88.	

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BUDGET					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)	
54.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	96222.	.8	1070.1	88.	
54.0	ROLL 0.3 DEG/SEC	96222.	. 4	1069.8	88.	
69.5	TERMINATE PTC DAMP RATES	96217.	4.4	1065.3	87.	
70.0	P52 IMU ALIGN	96217.	.2	1065.1	87.	
70.5	MIDCOURSE CORRECTION NO 4 MNVR TO BURN ATT	96213.	4.4	1060.7	87.	
70.5	ATTITUDE HOLD 0.5 DEG DB PGNCS	96212.	.8	1059.9	87.	
70.5	DELTA VEL = NOMINALLY ZERO	96212.	.0	1059.9	87.	
72.7	P52 IMU ALIGN	96212.	.2	1059.7	87.	
74.0	ORIENT AND SXT STAR CHECK	96207.	4.4	1055.2	86.	
74.5	ORIENT AND OBSERVE LUNAR SURFACE	96203.	4.4	1050.8	86.	
75.5	LUNAR ORBIT INSERTION BURN 1 3-AXIS ORIENT PGNCS	96198.	4.4	1046.5	86.	
75.5	ATTITUDE HOLD 0.5 DEG DB PGNCS	96198.	.8	1045.7	86.	
75.5	START TRANSIENT CONTROL	96196.	1.3	1044.4	86.	
75.9	LOI BURN BUILD UP	96193.	.0	1044.4	86.	
75.9	STEADY STATE BURN	72357.	.5	1043.9	86.	
75.9	TAILOFF	72316.	.0	1043.9	86.	
75.9	DAMP SHUTDOWN TRANSIENT	72315.	1.1	1042.8	85.	
76.2	REV 1 ATTITUDE HOLD WIDE DEADBAND	72312.	3.0	1039.8	85.	
77.5	P52 IMU ALIGN	72312.	.1	1039.6	85.	

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BUDGET					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)	
78.2	REV 2 ATTITUDE HOLD	72309.	3.0	1036.6	85.	
79.2	P52 IMU ALIGN	72309.	.1	1036.5	85.	
80.0	LOI 2 LPO CIRC MNVR TO BURN ATT	72306.	3.5	1033.0	85.	
80.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	72305.	.8	1032.2	85.	
80.0	B-D ULLAGE	72290.	15.1	1017.1	83.	
80.1	SPS BURN BUILD UP	72287.	.0	1017.1	83.	
80.1	STEADY STATE BURN	71316.	.2	1017.0	83.	
80.1	TAILOFF	71276.	.0	1017.0	83.	
80.1	DAMP SHUTDOWN TRANSIENT	71275.	1.1	1015.9	83.	
80.2	REV 3 ATTITUDE HOLD	71272.	3.0	1012.9	83.	
80.4	REACQUIRE MSFN ROLL 0.2 DEG/SEC	71272.	.1	1012.8	83.	
82.2	REV 4 ATTITUDE HOLD	71269.	3.0	1009.8	83.	
82.3	MNVR TO LDG SITE OBS ATT	71265.	3.5	1006.3	82.	
82.3	LDG SITE OBSERVATION	71265.	. 4	1005.8	82.	
82.3	REORIENT	71261.	3.5	1002.3	82.	
82.3	REACQUIRE MSFN	71261.	.2	1002.1	82.	
84.2	MANEUVER TO SLEEP ATTITUDE 3 AXIS 0.2 DEG/SEC	71258.	3.5	998.6	82.	
94.4	DAMP RATES	71254.	3.5	995.0	82.	
94.5	REACQUIRE MSFN	71254.	.1	994.9	82.	

TABLE 5-2 (CONT'D)

SM-RCS PROPELLANT BUDGET					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)
95.1	MNVR TO ALIGN ATT	71250.	3.5	991.4	81.
96.2	REV 11 ATTITUDE HOLD	71247.	3.0	988.4	81.
98.2	REV 12 ATTITUDE HOLD	71244.	3.0	985.4	81.
98.5	MNVR TO LDG SITE OBS ATT	71241.	3.5	981.8	80.
98.5	LDG SITE OBSERVATION	71240.	.4	981.4	80.
98.9	REACQUIRE MSFN ROLL 0.2 DEG/SEC	71240.	.2	981.3	80.
99.8	MANEUVER TO AGS CAL ATTITUDE	71237.	3.5	977.7	80.
100.0	PRE UNDOCKING ALLOCATION	71213.	24.0	953.7	78.
100.0	ORIENT TO UNDOCKING ATTITUDE ROLL 0.2 DEG/SEC	71212.	.2	953.6	78.
100.2	CSM ACTIVE UNDOCK SEP AND NULL VEL 0.5 FPS	37893.	4.5	949.0	78.
100.2	FORMATION FLYING	37883.	10.0	939.0	77.
100.2	REACQUIRE MSFN	37883.	.1	938.9	77.
100.6	ORIENT FOR SEP BURN	37880.	3.1	935.8	77.
100.7	RCS SEPATATION BURN 2.5 FPS	37868.	11.2	924.6	76.
100.7	REV 13 ATTITUDE HOLD	37865.	3.0	921.6	76.
101.5	MANEUVER TO SXT TRACKING	37862.	3.1	918.6	75.
102.6	MANEUVER TO SXT TRACKING	37859.	3.1	915.5	75.
104.4	REACQUIRE MSFN ROLL 0.5 DEG/SEC	37859.	.3	915.5	75.
104.5	MANEUVER TO SXT TRACKING	37856.	3.1	912.2	75.

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BUDGET					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)	
104.6	REV 14 ATTITUDE HOLD	37853.	3.0	909.2	75.	
104.6	MNVR TO LDG SITE OBS ATT	37850.	3.1	906.1	74.	
104.6	SDG SITE OBS	37850.	.4	905.7	74.	
104.7	TRACK LM	37846.	3.1	902.6	74.	
104.9	REACQUIRE MSFN ROLL 0.5 DEG/SEC	37846.	.3	902.3	74.	
105.0	REV 15 ATTITUDE HOLD	37843.	3.0	899.3	74.	
105.0	REACQUIRE MSFN ROLL 0.5 DEG/SEC	37843.	.3	899.1	74.	
107.0	PLANE CHANGE MNVR TO BURN ATT	37840.	3.1	896.0	73.	
107.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	37839.	.8	895.2	73.	
107.0	ULLAGE	37825.	14.3	880.9	72.	
107.0	SPS BURN BUILD UP	37822.	.0	880.9	72.	
107.0	STEADY STATE	37754.	.1	880.8	72.	
107.0	TAILOFF	37713.	1.0	879.8	72.	
107.0	DAMP SHUTDOWN TRANSIENT	37712.	1.1	878.7	72.	
107.2	P52 IMU ALIGN	37712.	.1	878.6	72.	
107.2	MANEUVER TO SLEEP ATTITUDE	37710.	1.7	876.9	72.	
111.5	DAMP RATES	37707.	3.1	873.9	72.	
112.2	REV 19 ATTITUDE HOLD	37704.	3.0	870.9	71.	
114.2	REV 20 ATTITUDE HOLD	37701.	3.0	867.9	71.	

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BU	DGET			
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)
114.3	ORIENT FOR SEXTANT TRACKING	37698.	3.1	864.8	71.
115.0	MANEUVER TO SLEEP ATT	37697.	.7	864.1	71.
120.0	DAMP RATES	37697.	.7	863.5	71.
120.0	SEXTANT TRACKING	37695.	1.3	862.2	71.
120.0	REACQUIRE MSFN	37695.	.1	862.1	71.
120.2	REV 23 ATTITUDE HOLD	37692.	3.0	859.1	70.
122.2	REV 24 ATTITUDE HOLD NARROW DEADBAND	37687.	5.2	853.9	70.
124.5	SUPPORT LM LIFT OFF	37669.	18.0	835.9	69.
124.6	MANEUVER TO TRACK LM POST LIFTOFF	37666.	3.1	832.8	68.
125.5	MANEUVER TO SUPPORT LM CSI BURN	37663.	3.1	829.7	68.
125.6	MANEUVER TO TRACK LM POLST CSI	37660.	3.1	826.6	68.
125.6	REV 25 ATTITUDE HOLD NARROW DEADBAND	37654.	5.2	821.4	67.
126.5	MANEUVER TO SUPPORT LM CDH BURN	37651.	3.0	818.4	67.
126.6	MANEUVER TO TRACK LM POST CDH	37648.	3.1	815.3	67.
126.6	RNDZ NAV	37645.	3.1	812.2	67.
126.6	REINITIATE RNDZ NAV	37642.	3.1	809.1	66.
127.0	MANEUVER TO SUPPORT LM TPI BURN	37639.	3.1	806.1	66.
127.1	MANEUVER TO TRACK LM POST TPI	37636.	3.1	803.0	66.
127.1	MANEUVER TO COAS TRACK	37633.	3.1	799.9	66.

TABLE 5-2 (CONT'D)

SM-RCS PROPELLANT BUDGET					
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)
127.1	MANEUVER TO SXT TRACKING	37630.	3.1	796.9	65.
127.2	MANEUVER TO SUPPORT LM MCC1 BURN	37627.	3.1	793.8	65.
127.2	MANEUVER TO SXT TRACKING	37624.	3.1	790.8	65.
127.5	MANEUVER TO SUPPORT LM MCC2 BURN	37621.	3.1	787.7	65.
127.5	MANEUVER TO SUPPORT LM TPF BURN	37618.	3.0	784.7	64.
127.5	MANEUVER TO SXT TRACKING	37615.	3.1	781.6	64.
127.8	ORIENT TO DOCKING ATTITUDE	37612.	3.1	778.5	64.
127.8	ALLOCATION FOR TERMINAL RDZ USAGE FROM POSTFLIGHT	37577.	35.0	743.5	61.
127.9	MAINTAIN BORESIGHT	37574.	3.1	740.5	61.
128.0	DOCKING	43212.	26.0	714.5	59.
131.5	MNVR TO JETTISON ATT	43210.	1.1	713.3	58.
132.0	JETTISON LM 1 FPS	37542.	4.7	708.6	58.
132.0	ORIENT TO TRACKING ATT	37540.	1.6	707.0	58.
132.0	TRACK LM	37540.	.4	706.6	58.
132.6	HOLD INERTIAL ATT	37539.	.4	706.1	58.
132.6	P52 IMU ALIGN	37539.	.7	705.5	58.
134.5	P52 IMU ALIGN	37538.	.7	704.8	58.
134.5	SXT STAR CHECK	37537.	. 4	704.4	58.
135.0	TRANS-EARTH INJECTION MNVR TO BURN ATT	37536.	1.6	702.7	58.

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BUDGET				
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)
135.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	37535.	.8	702.0	58.
135.0	ULLAGE	37521.	14.3	687.6	56.
135.5	SPS BURN BUILD UP	37518.	.0	687.6	56.
135.5	STEADY STATE SPS BURN	27478.	.2	687.4	56.
135.5	TAILOFF	27437.	.0	687.4	56.
135.5	DAMP SHUTDOWN TRANSIENT	27436.	1.1	686.3	56.
136.0	P52 IMU ALIGN	27436.	.6	685.7	56.
136.0	ORIENT FOR PTC	27435.	1.1	684.6	56.
136.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	27434.	.8	683.8	56.
136.0	ROLL 0.3 DEG/SEC	27434.	.1	683.7	56.
147.5	TERMINATE PTC DAMP RATES	27432.	1.3	682.3	56.
147.6	P52 IMU ALIGN	27432.	.6	681.8	56.
150.0	MIDCOURSE CORRECTION NO 5 MANVR TO BURN ATT	27430.	1.3	680.5	56.
150.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	27430.	.8	679.7	56.
150.0	DEL VEL = NOM ZERO	27430.	.0	679.7	56.
150.5	ORIENT FOR PTC	27428.	1.1	678.5	56.
150.5	ATTITUDE HOLD 0.5 DEG DB PGNCS	27428.	.8	677.8	56.
150.5	ROLL 0.3 DEG/SEC	27428.	.1	677.6	56.
171.0	TERMINATE PTC	27426.	1.3	676.3	55.

TABLE 5-2 (CONT'D)

	SM-RCS PROPELLANT BUDGET				
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)
172.0	P52 IMU ALIGN	27426.	.6	675.8	55.
172.5	MIDCOURSE CORRECTION NO & MANVR TO BURN ATT	27424.	1.3	674.5	55.
172.5	ATTITUDE HOLD 0.5 DEG DB PGNCS	27424.	.8	673.7	55.
172.5	RCS -X TRANS 5 FPS	27408.	15.9	657.8	54.
173.0	ORIENT FOR PTC	27407.	1.1	656.6	54.
173.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	27406.	.8	655.8	54.
173.0	ROLL 0.3 DEG/SEC	27406.	.1	655.7	54.
190.0	TERMINATE PTC	27404.	1.3	654.4	54.
191.2	P52 IMU ALIGN	27404.	.6	653.8	54.
192.0	MIDCOURSE CORRECTION NO 7 MNVR TO BURN ATT	27402.	1.3	652.5	53.
192.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	27402.	.8	651.7	53.
192.0	DEL VEL = NOM ZERO	27402.	.0	651.7	53.
192.0	STAR CHECK MIN IMPULSE	27401.	. 4	651.3	53.
193.0	MANEUVER TO REENTRY ATTITUDE	27399.	2.6	648.7	53.
193.0	ATTITUDE HOLD 0.5 DEG DB PGNCS	27390.	8.6	640.1	52.
194.8	MANEUVER TO SEP ATTITUDE	27387.	2.6	637.4	52.
194.8	CM/SM SEPARATION DELTA VEL = 3 FPS	15001.	7.9	629.6	52.

Figure 5-1
SM RCS propellant profile - total

Figure 5-2
SM RCS propellant profile - quad A

Figure 5-3
SM RCS propellant profile - quad B

Figure 5-4
SM RCS propellant profile - quad C

Figure 5-5
SM RCS propellant profile - quad D

TABLE 5-3

CM RCS Propellant Summary

<u>Item</u>	Propellant required, lb.	Propellant remaining, lb.
Loaded		245.0
Trapped	36.4	208.6
Available for mission planning		208.6
Nominal usage	39.3	169.3
Nominal remaining		169.3

SERVICE PROPULSION SYSTEM

SERVICE PROPULSION SYSTEM (SPS). – The budget presented in table 5-4 is for a July 16 launch, 72 degree launch azimuth, first opportunity injection, 59.5 hour lunar parking orbit, and fast earth return. The assumptions used in preparing this budget are presented in table 5-5. Δ V requirements were coordinated with LMAB in MPAD.

It should be noted that the mission flexibility allowance of 900 fps has been used in addition to the fast return. In real time however, it is highly likely that a slower earth return would be performed in the mission flexibiblity ΔV had already been used (e.g., for LM rescue). Table 5-4 shows 3906 lbs of propellant remaining nominally and a total propellant margin (accounting both for the flexibility ΔV and the fast return) of 1268 lb.

Table 5-4 - APOLLO 11 SPS PROPELLANT SUMMARY

<u>ITEM</u>	PROPELLANT REQUIRED, LB	PROPELLANT REMAINING, LB
Loaded ^a		40803.0
Trapped and unavailable	441.4	40361.6
Outage	59.5	40302.1
Unbalance meter	100.0	40202.1
Available for $\Delta ext{V}$		40202.1
Required for $\Delta extsf{V}$		
TLMC (120 fps) ^b	1166.4	39035.7
LOI-1 (2924 fps, 5 min. 59 sec.)	23862.4	15173.3
LOI-2 (157.8 fps, 16.4 sec.)	1115.4	14057.9
LOPC (16.6 fps, .9 sec.)	73.8	13984.1
TEI (3292.7 fps, 149 sec.)	10077.8	3906.3
Nominal remaining		3906.3
Mission flexibility (900 fps)	2212.4	1693.9
Dispersions (-3 σ)	426.0	1267.9
Propellant margin		1267.9

 $^{^{\}rm a}$ 15712.0 lb of fuel and 25091.0 lb of oxidizer; this is loaded on CSM-107. b Includes 19.7 fps for evasive maneuver.

TABLE 5-5 - ASSUMPTIONS FOR THE APOLLO 11 SPS PROPELLANT BUDGET

- 1. There is a non-propulsive propellant loss of $14.4~{\rm lb}$ for each engine start. LM rescue assumed three engine starts.
- 2. A mission flexibility ?V of 900 fps has been included in the SPS budget to provide the capability to perform a worst case LM rescue, or to handle several other contingencies (such as loss of PGNCS), or to perform a quicker earth return.
- 3. Spacecraft weight:

```
CM 12 280.0 lb
SM 10 551.3 lb
SLA Ring 98.0 lb
Tanked SPS 40 600.7 lb
LM (unmanned) 33 278.3 lb
Total 96 808.3 lb
```

4. Lunar Orbit Activity

```
Total weight transfer (CSM to LM) = 436.7 lb
Total weight transfer (LM to CSM) = 284.0 lb
```

5. SM RCS, EPS and ECS weight losses:

Mission Period	Incremental Weight Loss,	lb
EL to TLMC	151.8	
TLMC to LOI-1	327.1	
LOI-1 to LOI-2	32.0	
LOI-2 to LOPC	146.5	
LOPC to TEI	216.1	

6. SM RCS usage (above nominal rendezvous requirement) for LM rescue was 216 lb.

LM RCS BUDGET

Ground Rules and Assumptions

- 1. Data for the LM RCS engine performance and propellant requirements were obtained from the Spacecraft Operational Data Book and postflight analysis from Apollo 9 and Apollo 10.
- 2. All orientation maneuvers were assumed to be made at $2.0^{\circ}/\text{sec}$.
- 3. All orientation maneuvers were assumed to be three-axis maneuvers.

TABLE 5-6

LM RCS Propellant Loading and Usage Summary

Loaded	633.0
Trapped	40.6
Nominal deliverable	592.4
Gaging inaccuracy and loading tolerance	39.5
Mixture ratio uncertainty	17.0
Usable	535.9
Nominal mission requirement	252.7
Nominal remaining	283.2

TABLE 5-7

	LM-RCS PROPELLANT BU	DGET (a	ι)	(b)	(b)
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)
0 00	OUTPUT PROPELLANT LOADINGS	33714.	.0	633.0	100.
99 25	RCS HOT FIRE	33709.	5.0	628.0	99.2
100 15	UNDOCKING	33709.	.0	628.0	99.2
100 15	NULL UNDOCKING VELOCITY	33707.	1.9	626.1	98.9
100 20	LM MNVR FOR INSPECTION YAW	33705.	1.7	624.4	98.6
100 20	LM MNVR FOR INSPECTION PITCH	33703.	2.0	622.4	98.3
100 25	LM MNVR FOR INSPECTION YAW	33702.	.8	621.6	98.2
100 25	FORMATION FLYING	33690.	2.0	619.6	97.9
100 50	RR LOCK ON MNVR	33687.	3.6	616.0	97.3
101 00	IMU REALIGN STAR 1	33683.	3.6	612.4	96.7
101 00	IMU REALIGN STAR 2	33680.	3.6	608.8	96.2
101 00	IMU REALIGN STAR 3	33676.	3.6	605.2	95.6
101 32	MNVR TO DOI BURN ATTITUDE	33672.	3.6	601.6	95.0
101 32	ATTITUDE HOLD	33672.	.1	601.5	95.0
101 38	2 JET ULLAGE	33667.	5.9	595.6	94.1
101 38	DOI BURN	33419.	.0	595.6	94.1
101 38	MOMENT CONTROL DOI BURN	33414.	5.0	590.6	93.3
101 38	TRIM HORIZONTAL RESIDUAL	33407.	7.6	583.0	92.1
101 38	ATTITUDE HOLD	33407.	.3	582.8	92.1
101 38	PITCH DOWN	33406.	1.0	581.8	91.9
101 42	RR LOCK ON MNVR	33402.	3.6	578.2	91.3
101 55	PITCH DOWN	33401.	.6	577.6	91.3
101 55	YAW LEFT	33401.	.6	577.0	91.2
102 00	ALIGNMENT CHECK	33400.	1.2	575.8	91.0
102 10	RR LOCK ON MNVR	33396.	3.6	572.2	90.4
102 14	MNVR TO PDI ATTITUDE	33392.	3.6	568.6	89.8
102 14	MAINTAIN LOS	33391.	1.0	567.6	89.7
102 29	ATTITUDE HOLD	33391.	.1	567.5	89.7
102 35	2 JET ULLAGE	33385.	5.9	561.7	88.7
102 35	PDI BURN	16753.	.0	561.7	88.7
102 35	POWERED DESCENT	16710.	34.1	527.5	83.3
102 47	TOUCHDOWN	16710.	.0	527.5	83.3

a These weights were used for analysis only and do not reflect the actual weight after consumables loading.
b RCS propellant remaining of total loaded.

TABLE 5-7 (CONT'D)

	LM-RCS PROPELLANT BUDGET (a) (b) (k				
TIME (HR)	EVENT	S/C WT (LBS)	S/C RCS USED (LBS)	S/C RCS LEFT (LBS)	S/C RCS LEFT (%)
112 40	ADD LUNAR SAMPLES	16580.	.0	527.5	83.3
124 23	LUNAR LIFT OFF	10840.	.0	527.5	83.3
124 23	POWERED ASCENT PHASE WITH RCS/APS INTERCONNECT	6087.	.0	527.5	83.3
124 23	POWERED ASCENT PHASE WITHOUT RCS/APS INTERCONNECT	5969.	.9	526.7	83.2
124 25	RR LOCK ON MNVR	5969.	. 4	526.2	83.1
124 30	INSERTION BURN CONTROL	5967.	1.8	524.4	82.8
124 30	TRIM OUT OF PLANE ERROR	5964.	3.3	521.2	82.3
124 30	ATTITUDE HOLD	5962.	1.3	519.9	82.1
124 37	IMU REALIHN STAR 1	5962.	. 4	519.5	82.1
124 37	IMU REALIHN STAR 2	5961.	. 4	519.0	82.0
124 37	IMU REALIHN STAR 3	5961.	. 4	518.6	81.9
124 55	RR LOCK ON MNVR	5961.	. 4	518.1	81.9
124 55	MAINTAIN LOS	5958.	2.7	515.5	81.4
125 15	ATTITUDE HOLD	5957.	1.3	514.2	81.2
125 21	CSI BURN RCS +2	5923.	33.6	480.6	75.9
125 26	MAINTAIN LOS	5920.	3.3	477.2	75.4
125 44	MNVR TO PLANE CHANGE ATTITUDE	5919.	. 4	476.8	75.3
125 45	ATTITUDE HOLD	5918.	1.3	475.5	75.1
125 50	RCS PLANE CHANGE BURN	5914.	4.1	471.4	74.5
126 00	RR LOCK ON MNVR	5913.	. 4	471.0	74.4
126 00	MAINTAIN LOS	5911.	2.0	469.0	74.1
126 15	ATTITUDE HOLD	5910.	1.3	467.7	73.9
126 19	CDH RCS BURN	5906.	4.0	463.7	73.3
126 19	MAINTAIN LOS	5902.	4.0	459.7	72.6
126 53	ATTITUDE HOLD	5901.	1.3	458.4	72.4
126 58	RCS TPI BURN	5884.	17.0	441.4	69.7
126 58	MAINTIN LOS	5883.	1.3	440.1	69.5
127 36	MCC AND BRAKING	5849.	33.9	406.3	64.2
127 36	ATTITUDE AND LOS CONTROL	5833.	16.0	390.3	61.7
128 00	LM CONTROL CSM ACTIVE DOCKING	5823.	10.0	380.3	60.1
3 mb a	se weights were used for analysis only a		<u> </u>		

These weights were used for analysis only and do not reflect the actual weight after consumables loading.
b RCS propellant remaining of total loaded.

Figure 5-6
LM RCS propellant profile

DESCENT PROPULSION SYSTEM PROPELLANT BUDGET

DESCENT PROPULSION SUBSYSTEM (DPS) - The DPS budget is shown in table 5-8 and the ground rules and assumptions in table 5-9.

Previously, the uncertainty in the low-level sensor (68.7 lb) has been shown as a contingency allowance. This is now included as part of the unusables. Also, there has previously been a contingency allowance for manual hover to allow for 2 minutes of burn time from 500 feet to touchdown. The present budget shows a nominal ΔV which includes a manual allowance of 477 fps (90 sec) from 500 feet to touchdown. Any additional hover time will be used from the propellant margin (unassigned capability). The rate of use for hover is approximately 9.1 lb/sec.

Propellant loads are those actually loaded on LM-5, and trapped and residual propellants are from Volume III, SODB. Engine performance data and ΔV requirements have been coordinated with LAB in MPAD.

Three sigma dispersions represent total propellant cost due to 3 s uncertainties in propellant loading, trapped, $I_{\rm Sp}$, ΔV , separation weight, non- ΔV consumables weight, and mixture ratio. There is a total propellant margin of 669 lb or approximately 73 seconds of hover time.

Table 5-8 - APOLLO 11 DPS PROPELLANT SUMMARY

ITEM	PROPELLANT REQUIRED, LB	PROPELLANT REMAINING, LB
Loaded ^a		18184.2
Trapped and unavailable	223.5	17960.7
Outage	14.0	17946.7
Low-Level Sensor Uncertainty	68.7	17878.0
Available for ΔV		17878.0
Nominal Required for ?V of 6728.6 fps	16799.7	1078.3
Dispersions (-3 σ)	224.7	853.6
Contingencies		
Engine Valve-Pair Malfunction (Δ MR=±.0	16) 81.1	772.5
Redesignation (60 fps)	104.0	668.5
Margin (73 sec. hover)		668.5

 $^{^{\}rm a}$ 6974.8 lb of fuel and 11209.4 lb of oxidizer; this is loaded on the LM-5 spacecraft.

Table 5-9 - ASSUMPTIONS FOR THE APOLLO 11 DPS PROPELLANT BUDGET

- 1. Integrated average $I_{sp} = 301.9 \pm 3.54$ seconds
- 2. LM separation weight = 33746. lb
- 3. Mixture ratio = 1.596 ± 0.0108
- 4. Nominal $\Delta V = 6728.6 \pm 96$ fps
- 5. Non- Δ V consumables of 47.4 lb from separation to DOI and 106.1 lb from DOI to touchdown.

ASCENT PROPULSION SYSTEM PROPELLANT BUDGET

ASCENT PROPULSION SUBSYSTEM (APS) - Tables 5-10 and 5-11 present the ascent propellant budget for the current mission. Propellant loads are those actually on LM-5. Mission ΔV was coordinated with LAB in MPAD. The budget shown in table 5-10 accounts for an engine valve-pair malfunction, a PGNCS to AGS switchover, and a touchdown abort. There is a total propellant margin of 68 lb or about 6 seconds of burn time.

Table 5-10 - APOLLO 11 APS PROPELLANT SUMMARY

<u>ITEM</u>	PROPELLANT REQUIRED, LB	PROPELLANT REMAINING, LB
Loaded ^a		5238.4
Trapped and unavailable	48.9	5189.5
Outage	17.5	5172.0
Available for ΔV		5172.0
Nominal Required for ΔV of 6072.5 fps	4965.8	206.2
Dispersions (-3 σ)	57.8	148.4
Contingencies		
Engine Valve-Pair Malfunction (Δ MR=±.0	16) 19.6	128.8
PGNCS to AGS Switchover (40 fps)	23.8	105.0
Touchdown Abort (Δ W=+99.9 lb, Δ Δ V=-15fg	os) 36.8	68.2
Margin (6 seconds)		68.2

a Includes 2019.9 lb fuel and 3218.5 lb oxidizer; this is loaded on the LM-5 spacecraft.

Table 5-11 - ASSUMPTIONS FOR THE APOLLO 11 APS PROPELLANT BUDGET

- 1. $I_{SD} = 308.97 \pm 3.553$ seconds
- 2. Mixture ratio = 1.602 ± 0.0225
- 3. Nominal $\Delta V = 6072.5 \pm 33.5 \text{ fps}$
- 4. Ascent stage lift-of weight = 10873.6 lb

CSM-107/LM5 CRYOGENIC/EPS AND ECS BUDGET

The results of the Cryogenic, EPS, and ECS analysis are summarized in the following tables and figures:

TABLE 5-11	CSM Cryogenic Loading And Usage Summary
TABLE 5-13	LM EPS Summary
TABLE 5-14	LM ECS Summary
FIGURE 5-7	CSM O2 PROFILE
FIGURE 5-8	CSM H2 PROFILE
FIGURE 5-9	CSM POWER PROFILE
FIGURE 5-10	CSM BUS VOLTAGE VS TIME
FIGURE 5-11	LM DESCENT POWER PROFILE
FIGURE 5-12	LM ASCENT POWER PROFILE
FIGURE 5-13	LM TOTAL CURRENT PROFILE
FIGURE 5-14	LM DESCENT O2 PROFILE
FIGURE 5-15	LM ASCENT O2 PROFILE
FIGURE 5-16	LM DESCENT H2O PROFILE
FIGURE 5-17	LM ASCENT H2O PROFILE

CSM EPS BUDGET

ASSUMPTIONS AND GROUND RULES

- 1. The system was assumed to operate with three fuel cells and two inverters.
- 2. Fuel cell purging is included in the EPS requirements.
- 3.100% fill for both H_2 and O_2 .
- 4. Three entry and postlanding batteries were considered available to supply the total spacecraft power required for entry, parachute descent, and postlanding time. Each battery was assumed to have a 40 A-h capacity until splashdown, at which time the capacity was uprated to 45 A-h.
- 5. Two batteries were considered to be in parallel with the fuel cells during ascent and for each SPS maneuver.
- 6. No cryogenic venting was assumed in flight.
- 7. The EPS hydrogen consumption rate (lb/hr) = $0.00257 \times I_{fC}$
- 8. The EPS oxygen consumption rate (lb/hr) = $7.936 \times H_2$
- 9. Six battery charges were assumed: three on battery A and three on battery B.

TABLE 5-12

APOLLO 11 CRYOGENIC SUMMARY

I.	Planning Allowance	H_2 , lb	0 ₂ , lb
	A. Total Loaded	58.60	660.20
	B. Less Residual	2.32	13.00
	C. Less Instrumentation Error	1.50	17.50
	Available for Mission Planning	54.78	629.70
II.	Predicted Usages		
	A. Prelaunch ¹		
	<pre>1. Inline HTR + Pressure Relief (T-28 to T-3 (Incl 12.5 hr hold))</pre>	1.61	18.60
	2. Power Production (plus ECS O_2) (T-3 to liftoff)	57	6.96
	Total Prelaunch requirements	2.18	25.50
	B. Flight		
	1. EPS Requirements (Incl FC Purge)	36.60	288.33
	2. CM ECS (Incl Cabin Purge)	-	72.40
	3. LM Pressurizations	-	10.35
	Total Flight Requirements	36.60	371.08
III. Nominal Reserves (RSS)			
	EPS Uncertainty (5 percent)	1.83	14.42
	ECS Uncertainty (.08 lb/hr)	-	15.60
	Tank Unbalance (AOH)	.80	12.90
	Launch Window	.86	10.20
	RSS Subtotal	2.17	26.87
IV.	Operational Reserves		
	A. Available for Mission Planning	54.78	629.70
	B. Less Nominal Predicted Usage	38.78	396.58
	C. Less Nominal Reserves	2.17	26.87
	Operational Reserve	13.83	206.25

¹ KSC Supplied Data

Oxygen remaining for mission for one tank versus time

Figure 5-8 Hydrogen remaining for mission for one tank versus time

Figure 5-9
CSM total spacecraft current profile

Figure 5-10 CSM bus voltage versus time

LM EPS ANALYSIS

GROUND RULES AND ASSUMPTIONS

- 1. The descent stage batteries go on the line 30 minutes prior to earth liftoff.
- 2. A 3.8 hour checkout was assumed for lunar orbit.
- 3. Ascent and descent batteries were paralleled for the powered descent burn and prior to liftoff from the lunar surface.
- 4. The S-band equipment was assumed on 100 percent from initial activation in lunar orbit until completion of the mission.
- 5. The rendezvous radar electronics was assumed to be operational for the period of time dictated by the current G Mission flight plan.
- $6.\,\mathrm{The}$ primary navigation and guidance subsystem (PGNCS) was left in the operate mode for the entire lunar stay.
- 7. The forward window heaters were left off for the entire mission.

Figure 5-11 LM-5 total spacecraft current

Figure 5-12

Descent stage amp hours remaining

Figure 5-13
Ascent stage amp hours remaining

LM ECS BUDGET

GROUND RULES AND ASSUMPTIONS

- 1. Cabin O_2 leakage rate was 0.2 lb/hr while pressurized
- 2. Metabolic rates were varied according to Volume 2 of the Spacecraft Operational Data Book
- 3. Metabolic O_2 consumed was (1.643 x 10^{-4}) x (metabolic rate)
- 4. LM pressurization requires 6.62 lb of O_2
- 5. Cabin pressure regulator check requires 2.65 lb of ${\rm O}_2$
- 6. $\rm H_2O$ consumed because of sublimator cooling was total heat removed divided by 1040 (btu per lb) of $\rm H_2O$
- 7. ${\rm H}_2{\rm O}$ lost due to urination was 0.11 lb/hr per man
- 8. Cabin temperature control was set to 72° F
- 9. Average glycol flow rate was 250 lb/hr
- 10. Budget was performed on the operational trajectory and may change when the revision 1 is analyzed.

TABLE 5-13 LM ECS Summary

(a) Descent Stage

Description	<u>0</u> 2, 1b	$\underline{\text{H}}_2\underline{\text{O, lb}}$
Loaded	48.00	210.6
Unusable	3.40	16.4
Available for mission	44.60	194.2
Required for mission	26.17	142.4
Usable remaining in tanks	18.43	51.8
	(b) Ascent Sta	<u>ge</u>
Loaded	(b) Ascent Sta 4.86	<u>ge</u> 85.00
Loaded Unusable		<u></u>
	4.86	85.00
Unusable	4.86	85.00 4.20

Figure 5-14
Descent oxygen tank quantities as a function of mission time

Figure 5-15
Ascent oxygen tank quantities as a function of mission time

Figure 5-16
Descent water tank quantities as a function of mission time

 $\begin{array}{c} {\tt Figure} \ \ 5\text{--}17 \\ {\tt Ascent water tank quantities as a function of mission time} \end{array}$

MISSION G PLSS CONSUMABLE ANALYSIS

THE RESULTS OF THE PLSS BATTERY, OXYGEN, WATER AND LIOH CONSUMABLE ANALYSIS ARE SUMMARIZED IN THE FOLLOWING FIGURES:

FIGURE5-18 LMP	AND CDR PLSS BATTERY PROFILE
FIGURE5-19 CDR	OXYGEN PROFILE
FIGURE5-20 LMP	OXYGEN PROFILE
FIGURE5-21 CDR	H2O PROFILE
FIGURE5-22 LMP	H2O PROFILE
FIGURE5-23 LMP	AND CDR LiOH CO2 PROFILE

NOMINAL LUNAR SURFACE EVA

FIGURE 5-19 CDR - OXYGEN

NOMINAL LUNAR SURFACE EVA

FIGURE 5-20 LMP-OXYGEN

 $^{\circ}$

SECTION VI

SUMMARY FLIGHT PLAN

MSC Form 845D (Jan 69)

FLIGHT PLANNING BRANCH

MSC Form 845D (Jan 69)

FLIGHT PLANNING BRANCH

MSC Form 845D (Jan 69)

FLIGHT PLANNING BRANCH

FLIGHT PLAN **CSM** LM 120:00 -132:00 M M S F S REST PERIOD F REST PERIOD (4 HR 50 MIN) EAT PERIOD N N (4 HR 40 MIN) REV 24 EAT PERIOD M M 122:00 -134:00 S S P57 IMU REALIGN F P52 IMU REALIGN F N N EAT PERIOD TEI 135:24:34 REV 25 P57 IMU REALIGN P52 IMU REALIGN (PULSE TORQUE) M 124:00 136:00 S LIFT-OFF 124:23:26 ORBIT INSERTION 124:30:44 F EAT PERIOD P52 IMU REALIGN-Ε N CSI - 125:21:19 Ν D PLANE CHANGE - 125:50:28 REV 26 Е M 126:00 138:00 CDH - 126:19:37 S F V TPI - 126:58:08 N 0 MCC1 - 127:13:08 M U MCC2 - 127:28:08 S REV 27 S F PTC M 128:00 -140:00 DOCKING S REST PERIOD F (10 HOURS) N BACK DECONTAMINATION PROCEDURES REV 28 130:00 -M 142:00 S F CDR & LMP IVT TO CSM N LM JETTISON 132:00 -144:00 MISSION DATE TIME DAY / REV **EDITION** PAGE 120:00 - 144:00 APOLLO 11 FINAL JULY 1, 1969 6 / LPO 6-6

FLIGHT PLANNING BRANCH

MSC Form 845D (Jan 69)

FLIGHT PLANNING BRANCH

MISSION	EDITION	DATE	TIME	DAY / REV	PAGE
APOLLO 11	FINAL	JULY 1, 1969	192:00 - 196:00	9	6-9

MSC Form 845D (Jan 69)

FLIGHT PLANNING BRANCH