Lecture 11

The future of Bitcoin?

Decentralize everything!

decentralization

Lecture 11.1:

The block chain as a vehicle for

Motivating example: smart property

Step 1: car controlled by a cryptographic key

Car has public key hard-coded

Activated upon receiving message signed by corresponding private key

Motivating example: smart property

Step 2: public key is dynamically updated based on Bitcoin block chain

Alice owns the car because she controls private key of green Tx output

Now Bob's key activates car

Motivating example: smart property

Step 3: Create a single transaction that combines Bob's payment to Alice and Alice's ownership transfer to Bob

Alice and Bob sign separately, then broadcast

Decentralized property ownership

Representation and atomicity

Representation:

How to encode complex transactions into the block chain?

Atomicity:

How to couple the actions of the various parties?

Questions

What else can we decentralize this way?

 Can these be done on Bitcoin or do they require a separate block chain?

Are there alternatives to atomicity?

Is it a good idea to do commerce like this?

Lecture 11.2:

Routes to block chain integration

Route 1: Directly on Bitcoin

Advantage: easy to deploy

Disadvantages: limited representation and atomicity

Example: crowd funding

Single Tx with arbitrary number of inputs and 1 output

Spendable only if $\Sigma(\text{inputs}) \geq \text{output}$

Each funder signs only her own input and the output

Example: pay for proof

• Alice knows x such that H(x) = c

- Bob would like to pay Alice in exchange for x
- Bob's Payment should be atomically coupled with Alice's publication of x on block chain

Possible but unwieldy

Route 2: Embedding

Recall: Colored coins

Similar to representation of car ownership, but relies on entire history

Recall: Mastercoin

Route 2: Embedding

Advantages:

Complex representations possible Security of Bitcoin block chain

Disadvantages:

Limited scripting and atomicity
Results in unwanted Tx's in block chain

Route 3: Side chains

Recall: merge-mined, 1-1 pegged Bitcoin testbed

Advantage:
Avoids polluting the block chain

Disadvantage:
Requires Bitcoin modifications

Route 4: Altcoins

Example: Ethereum

General framework for ledger-based consensus

Turing-complete scripts

Pay for miner computation using "gas"

Which approach to use?

Conceptually, any of the four can implement smart property

Differences in power and flexibility

Practical differences, e.g. SPV feasibility

Back to the car sale example

What about a dispute?

Recall: 2-out-of-3 escrow

Comparison to legal remedy

Advantage(?):

Alice and Bob have <u>freedom to choose</u> mediator Judy

→ competition between intermediaries

Disadvantage:

Funds tied up during mediation

Competing intermediaries

Recall: decentralized prediction market achieved by allowing anyone to start a market

Levels of (de)centralization

Single mandatory intermediary Multiple competing intermediaries

"Threshold" of intermediaries

No intermediary

Improving security

- Reputation
- Escrow & dispute mediation | Seen so far
- Atomic exchange
- Trusted hardware

Limitations due to lack of real-world enforcement: no debt or punitive measures

Security: vocabulary

Trust minimization

Lack of trust is (unfortunate) starting point, not a goal!

A generic decentralization template

- What is being decentralized
- Type of block chain integration
- Level of decentralization
- How security is achieved

Seen so far

Allows succinctly representing almost any proposal for block chain based decentralization

Example: smart property

Decentralizes property ownership and trading in the sense of disintermediation using Bitcoin via atomicity

Example: decentralized prediction markets

Decentralizes prediction markets in the sense of competition using an Altcoin via atomicity

Example: StorJ

"Agent" that lives in the cloud

Pay to store a file for fixed period (say 1 day)

Has other aspects such as reproduction (ignore for now)

Example: StorJ

```
Decentralizes file storage and retrieval in the sense of competition using Bitcoin via reputation
```

Example: Zerocoin

Decentralizes mixing in the sense of disintermediation using an Altcoin via atomicity

What can we decentralize?

Lecture 11.3:

1. Purely digital things

- Name mapping
- Storage
- Pay for proof
- Random number generation
- Lotteries

2. Things that can be represented digitally

Real-world currencies

Stocks

Other assets

3. Property ownership and trade

Smart property and atomic exchange

4. Complex contracts

Crowd funding

Financial derivatives
 Requires price data feed unless
 underlying asset is traded on block chain

5. Markets and auctions

Centralized markets:

- Used bike store buys your bike, sells it later
- EBay matches participants, routes payments
- PayPal processes payments, (some) dispute mediation
- Craigslist matches participants

How to decentralize markets

Payment Bitcoin

Transfer of goods smart property, atomicity

Dispute handling escrow

Matching participants ??

Decentralized matching

- Broadcast partially complete transaction to P2P network
- Counterparty finds it, completes, signs, broadcasts

Variant: use block chain instead of P2P network

Variant: auction

Counterparty can't complete directly, must return to auction creator

Variant: double auction (order book)

Both sides simultaneously broadcast partial transactions

 Miners match orders, keep bid-ask spread (Avoids miner front-running)

6. Data feeds

Recall:

data feeds allow arbiters to assert facts about the world into the block chain

Examples:

price movements, outcomes of events...

Big incentives to lie!

Decentralization by voting

Centralized version:

Tx corresponds to event E with outcomes X, Y, Z

Transfer to pk_x if outcome X happens Signed by arbiter A

Decentralization by voting

Decentralized version:

E is a 2-out-of-3 multi-sig address controlled by A, B, C

Levels of (de)centralization

Single mandatory intermediary Multiple competing intermediaries

"Threshold" of intermediaries

No intermediary

7. Autonomous agents

Key features

- Contracts
- Data feeds
- Voting as a way to change the rules
- Some variants: reproduction

Challenges

- Keeping private state
- Hostile takeover

Autonomous agents: terminology

Decentralized Autonomous Corporation

Preserves few of the salient features of corporations

8. Exchanges

The problem:

- Alice would like USD for BTC
- Carol would like BTC for USD
- They don't trust each other

Luckily, they have a mutual friend Bob

Let's make this more efficient

And scale it up

Pairs of friends pre-declare how much debt they're willing to extend

Triangular debt cancellation means actual settlement may be rare

Ripple

Decentralizes currency exchange in the sense of disintermediation using an Altcoin via transitive trust

When is decentralization a good idea?

Lecture 11.4:

What we're really talking about:

Technological alternatives to human institutions — legal, social and financial

Recall: Cypherpunk roots

Back to the car example

What are the problems with car ownership and trade?

- Security (theft)
- Disputes about sale terms

What happens in a smart property model?

Security is complex

Preventive, detective and corrective controls

Real-world solution relies on law enforcement

Bitcoin security

Unsolved problem for the foreseeable future

Software security is partly a human problem

Excessive reliance can cause serious problems Loss of key \rightarrow car turns into brick?

Dispute mediation is complex

Fundamentally a human problem

Real-world solution: court system, especially small-claims courts

Crowd funding security

Also fundamentally a human problem

Entrepreneur can take the money and run

Smart property model

Didn't solve existing (social) problems

In fact, made them harder to solve

Introduced new problems

Possible benefits of smart property

Efficiency for small transactions

Anonymity & privacy

Freedom to choose mediator

Crypto and the state

The state is one way to scale society past small groups where everyone trusts each other

Crypto is another

Dismantling the state is not an option

How can the two work together?

The big opportunity

Find compelling use-cases for decentralization

Integrate into existing systems

Co-opt legal and regulatory practices

Next steps

Assignments, eventually

Message boards, research groups