Morfismi

Def

- Morfismo di gruppi > $(G,\cdot),(H,\cdot)$ gruppi > $f:G\to H$ > f morfismo di gruppi $\iff f(x\cdot y)=f(x)\cdot f(y) \quad \forall x,y\in G$
- Morfismo di anelli > $(A, +, \cdot), (B, +, \cdot)$ anelli > $f: A \to B >$ f morfismo di anelli $\iff f(x+y) = f(x) + f(y)$ e $f(x \cdot y) = f(x) \cdot f(y)$ $\forall x, y \in A >$ la stessa definizione si applica per morfismo di campi

Oss

```
    Hp

            (G,·), (H,·) gruppi
            1<sub>G</sub> neutro per G
            1<sub>H</sub> neutro per H
            f: G → H morfismo

    Th

            f(1<sub>G</sub>) = 1<sub>H</sub>

    Dim

            ∀g ∈ G f(g) = f(1<sub>G</sub> · g) = f(1<sub>G</sub>) · f(g) poiché f morfismo
            quindi f(g) = f(1<sub>G</sub>) · f(g) ⇒ f(g) · f(g)<sup>-1</sup> = f(1<sub>G</sub>) · f(g) · f(g)<sup>-1</sup> ⇒ 1<sub>H</sub> = f(1<sub>G</sub>) · 1<sub>H</sub> ⇒ 1<sub>H</sub> = f(1<sub>G</sub>) (poiché f(g), f(g)<sup>-1</sup> ∈ H per definizione di f)
```

Oss

• **Hp** $-(G,\cdot),(H,\cdot) \text{ gruppi}$ $-1_G \text{ neutro per } G$ $-1_H \text{ neutro per } H$ $-f:G\to H \text{ morfismo}$ • **Th** $-f(g^{-1})=f(g)^{-1}$ • **Dim** $-\text{ per dimostrazione precedente, } 1_H=f(1_G)=f(g\cdot g^{-1})=f(g)\cdot f(g^{-1})\implies 1_H=f(g)\cdot f(g^{-1})\implies f(g)^{-1}=f(g^{-1})$

Isomorfismi

Def

• Isomorfismo > - f isomorfismo $\iff f$ morfismo e f biiettiva

Oss

• Hp $- \ f: G \to H \ {\rm isomorfismo}$ • Th

$$-f^{-1}: H \to G$$
 isomorfismo

• Dim

$$\begin{array}{l} \text{DIM} \\
- \forall g \in G, h \in H \quad \exists! f^{-1} \mid \begin{cases} f^{-1}(f(g)) = g \\ f\left(f^{-1}(h)\right) = h \end{cases} \\
- \forall h, h' \in H \quad f^{-1}\left(hh'\right) = f^{-1}(h) \cdot f^{-1}\left(h'\right) \iff hh' = f\left(f^{-1}\left(hh'\right)\right) = f(f^{-1}(h) \cdot f^{-1}(h')) = f(f^{-1}(h)) \cdot f^{-1}(h') \cdot f^{-1$$

 $\mathbf{E}\mathbf{x}$

• Hp
$$\begin{array}{l} -z\in\mathbb{C}\mid z^n=1 \text{ sono le radici } n \text{ -esime di 1} \\ -\zeta:=e^{i\frac{2\pi}{n}} \\ -H:=\{\zeta^0,\zeta^1,\zeta^k,\ldots,\zeta^{n-1}\} \text{ è l'insieme delle radici } n \text{-esime di 1} \end{array}$$

• Th $-(H,\cdot)\subset (\mathbb{C}-\{0\},\cdot)$ è un sottogruppo

• Dim

$$\begin{array}{l} \dots \\ -\zeta^0=1 \implies 1 \in H \\ -z, w \in H \iff z^n=w^n=1, \text{ allora } 1=z^n \cdot w^n=(z \cdot w)^n=1 \implies z \cdot w \in H \text{ per definizione di } H \\ -z^n=1 \implies \frac{1}{z^n}=1 \iff (z^{-1})^n=1 \implies z^{-1} \in H \text{ per definizione di } H \end{array}$$

 $\mathbf{E}\mathbf{x}$

• Hp
$$-f: \mathbb{Z}_n \to H: [k] \to \zeta^k$$
• Th
$$-f \text{ isomorfismo di gruppi } (\mathbb{Z}_n, +) \text{ e } (H, \cdot)$$
• Dim
$$-f \text{ è biiettiva per costruzione di } \mathbb{Z}_n := \{[0], [1], \dots, [n-1]\} \text{ e } H := \{\zeta^0, \zeta^1, \dots, \zeta^{n-1}\}$$

$$-f \text{ morfismo}$$

$$*f([i] + [j]) = f([i]) \cdot f([j])$$

$$\cdot [i] + [j] = [k] \text{ per un certo } k \in \mathbb{Z}_n \implies \exists h \in \mathbb{Z} \mid i+j=k+hn$$

$$\cdot f([i] + [j]) = f([k]) = \zeta^k$$

$$\cdot f([i]) \cdot f([j]) = \zeta^i \cdot \zeta^j = \zeta^{i+j}, \text{ ma per osservazione precedente } \zeta^{i+j} = \zeta^{k+nh} = \zeta^k \cdot (\zeta^n)^h$$

$$\cdot \zeta^n = 1 \text{ per definzione di } \zeta \implies \text{entrambe i membri dell'equazione sono pari a}$$

 $\mathbf{E}\mathbf{x}$

Oss

- Hp
 !!! MANCA UN TEOREMA CHE NON HO CAPITO NIENTE
- Th
- Dim

$\mathbf{E}\mathbf{x}$

- Hp $f: \mathbb{Z} \to \mathbb{Z}_n : k \to [k]$
- Th
 - -f morfismo di anelli $(\mathbb{Z},+,\cdot)$ e $(\mathbb{Z}_n,+,\cdot)$
- Dim
 - per come le operazioni + e · sono state definite, f([x+y]) = f([x]) + f([y]) e $f([x \cdot y]) = f([x]) \cdot f([y])$

$\mathbf{E}\mathbf{x}$

- Hp $\begin{array}{ccc}
 & n \mid m \\
 & f : \mathbb{Z}_m \to \mathbb{Z}_n : x \pmod{m} \to x \pmod{n}
 \end{array}$
- Th
 f morfismo di anelli $(\mathbb{Z}_m, +, \cdot)$ e $(\mathbb{Z}_n, +, \cdot)$
- Dim
 - $-x \pmod{m} + y \pmod{m} = x + y \pmod{m}$
 - $f(x + y \pmod{m}) = x + y \pmod{n}$
 - $-x + y \pmod{n} = x \pmod{n} + y \pmod{n}$
 - il ragionamento è analogo per l'operazione ⋅, e dunque segue la tesi

$\mathbf{E}\mathbf{x}$

- Hp
 - G gruppo $f:G\to G:h\to g\cdot h\cdot g^{-1}$ per qualche $g\in G$
- Th
 - -f morfismo di gruppi (G,\cdot) e (G,\cdot)
- Dim

$$-\forall h, h' \in G \quad f(h) \cdot f(h') = \left(ghg^{-1}\right) \cdot \left(gh'g^{-1}\right) = gh(g^{-1} \cdot g)h'g^{-1} = ghh'g^{-1} = f\left(hh'\right)$$

Kernel e Immagine

Def

- Kernel e Immagine di gruppi > G, H gruppi > f: $G \to H$ morfismo > $\operatorname{Ker}(f) := \{g \in G \mid f(g) = 1_H\}$ > $\operatorname{Im}(f) := \{h \in H \mid \exists g \in G : f(g) = h\}$
- Kernel e Immagine di anelli > A, B gruppi > $f: A \to B$ morfismo > $\mathrm{Ker}(f) := \{a \in A \mid f(a) = 0_B\}$ > $\mathrm{Im}(f) := \{b \in B \mid \exists a \in A: f(a) = b\}$

Oss

- Hp -G, H gruppi $-f:G\to H$ morfismo $-\operatorname{Ker}(f) \subset G$ è sottogruppo • Dim
 - per dimostrazione precedente, $f(1_G) = 1_H \implies 1_G \in \text{Ker}(f)$ per definizione $-x,y \in \text{Ker}(f) \implies f(x) = f(y) = 1_H$ per definizione, dunque $f(x) \cdot f(y) = 1_H \cdot 1_H = f(x)$ 1_H , e $f(x) \cdot f(y) = f(x \cdot y) = 1_H$ perché f morfismo, quindi $x \cdot y \in \text{Ker}(f)$ per definizione $-g \in \text{Ker}(f) \implies f(g) = 1_H \implies f(g)^{-1} = 1_H^{-1} = 1_H$, ma poiché per dimostrazione precedente $f(g)^{-1} = f(g^{-1}) \implies f(g^{-1}) = 1_H \implies g^{-1} \in \text{Ker}(f)$ per definizione

Oss

- Hp -G, H gruppi $-f:G\to H$ morfismo
- $-\operatorname{Im}(f)\subset G$ è sottogruppo • Dim - per dimostrazione precedente $f(1_G) = 1_H \implies 1_H \in \text{Im}(f)$ per definizione $-x, y \in \operatorname{Im}(f) \implies \exists g, g' \in G \mid x = f(g) \land y = f(g') \implies x \cdot y = f(g) \cdot f(g') = f(g \cdot g')$ perché fmorfismo, quindi $x\cdot y\in \mathrm{Im}(f)$ per definizione $-x \in \text{Im}(f) \implies \exists g \in G \mid f(g) = x \implies x^{-1} = f(g)^{-1} = f(g^{-1}) \text{ per dimostrazione}$ precedente, quindi $x^{-1} \in \text{Im}(f)$ per definizione

Oss

- Hp -G, H gruppi $-f:G\to H$ morfismo • Th -f iniettiva \iff Ker $(f) = \{1_G\}$ • Dim -f iniettiva $\Longrightarrow \operatorname{Ker}(f) = \{1_G\}$ * $f(1_G) = 1_H$ per dimostrazione precedente, dunque $1_G \in \text{Ker}(f)$ per definizione * f iniettiva $\implies \nexists x, y \in G \mid x \neq y \implies f(x) = f(y)$, di conseguenza è unico $1_G \in G \mid f(1_G) = 1_H$, dunque Ker(f) conterrà esclusivamente 1_G per definizione -f iniettiva $\iff \operatorname{Ker}(f) = \{1_G\}$
 - $* \ \forall g,g' \in G \quad f(g) = f(g') \iff f(g)^{-1} \cdot f(g) = f(g)^{-1} \cdot f(g') \iff 1_H = f(g)^{-1} \cdot f(g')$ $f(g) \cdot f(g') = f(g \cdot g')$
 - * $\operatorname{Ker}(f) = \{1_G\} \implies f(1_G) = 1_H \text{ per definizione, allora } f(g \cdot g') = 1_H \implies g \cdot g' = 1_H$ 1_G necessariamente, e $g \cdot g' = 1_G \iff g = g' \implies f(g) = f(g') \implies g = g' \implies$ f iniettiva

Oss

• Hp

```
-A, B anelli
```

 $-\ f:A\to B$ morfismo di anelli

• Th

 $- \operatorname{Ker}(f) ideale$

• Dim

- $-(\mathrm{Ker}(f),+)\subset (A,+)$ sottogruppo per dimostrazione precedente
- per analogia con dimostrazione precedente, $f(0_A) = 0_B$
- $-x \in \text{Ker}(f) \implies f(x) = 0_B$ per definizione, quindi $\forall x \in \text{Ker}(f), y \in A$ $f(x \cdot y) = f(x) \cdot f(y) = 0_B \cdot f(y) = 0_B \implies x \cdot y \in \text{Ker}(f)$ per definizione, quindi $\text{Ker}(f) \cdot A \subset \text{Ker}(f)$

Oss

- Hp
 - -A, B anelli
 - $-f:A\to B$ morfismo di anelli
- Th
 - $-\operatorname{Im}(f)$ sottoanello
- Dim
 - $-(\operatorname{Im}(f),+)\subset (A,+)$ sottogruppo per dimostrazione precedente
 - $-x, y \in \text{Im}(f) \implies \exists a, a' \mid x = f(a) \land y = f(a') \implies x \cdot y = f(a) \cdot f(a') = f(a \cdot a') \text{ perche } f \text{ morfismo, quindi } \exists a \cdot a' \mid x \cdot y = f(a \cdot a') \implies x \cdot y \in \text{Im}(f) \implies \text{Im}(f) \cdot \text{Im}(f) \subset \text{Im}(f)$

Oss

- Hp
 - $-f: \mathbb{Z} \to \mathbb{C} \{0\}: k \to \zeta^k$
 - fmorfismo di gruppi $(\mathbb{Z},+)$ e $(\mathbb{C}-\{0\},\cdot)$
 - -I(n) ideale generato da n !!! CHI È N

• Th

$$-\operatorname{Ker}(f) = I(n)$$

- Dim
 - pass

Oss

• !!! coso finale su H che non ho capito niente

Oss

- Hp
 - -G, H gruppi
 - $-f:G\to H$ morfismo
- Th
 - $\operatorname{Ker}(f)$ è sottogruppo normale
- Dim
 - per la formulazione 2 della definizione di sottogruppo normale, $\forall g \in G, h \in \text{Ker}(f) \implies ghg^{-1} \in \text{Ker}(f)$
 - $f(ghg^{-1}) = f(g) \cdot f(h) \cdot f(g^{-1})$
 - $-h \in \operatorname{Ker}(f) \implies f(h) = 1_H \text{ per definizione}$

- per dimostrazione precedente $f(g^{-1}) = f(g)^{-1}$ $f(ghg^{-1}) = f(g) \cdot 1_H \cdot f(g)^{-1} = 1_H \implies ghg^{-1} \in \text{Ker}(f)$ per definizione