D. Multipliers

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Ayrat has number n, represented as it's prime factorization p_i of size m, i.e. $n = p_1 \cdot p_2 \cdot ... \cdot p_m$. Ayrat got secret information that that the product of all divisors of n taken modulo $10^9 + 7$ is the password to the secret data base. Now he wants to calculate this value.

Input

The first line of the input contains a single integer m ($1 \le m \le 200\ 000$) — the number of primes in factorization of n.

The second line contains m primes numbers p_i ($2 \le p_i \le 200\ 000$).

Output

Print one integer — the product of all divisors of n modulo $10^9 + 7$.

Examples

input	
2 2 3	
output	
36	

input		
3 2 3 2		
output		
1728		

Note

In the first sample $n = 2 \cdot 3 = 6$. The divisors of 6 are 1, 2, 3 and 6, their product is equal to $1 \cdot 2 \cdot 3 \cdot 6 = 36$.

In the second sample $2 \cdot 3 \cdot 2 = 12$. The divisors of 12 are 1, 2, 3, 4, 6 and $12. 1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 12 = 1728$.