Apoorva Kethamaranahalli (001090928)

Program Structures & Algorithms Fall 2021

Assignment No. 1

Task:

Imagine a drunken man who, starting out leaning against a lamp post in the middle of an open space, takes a series of steps of the same length: 1 meter. The direction of these steps is randomly chosen from North, South, East, or West. **After n steps, how far (d) is the man from the lamp post?** Note that *d* is the Euclidean distance of the man from the lamppost.

Task list:

- 1. implement the code for the experiment
- 2. To deduce the relationship between the distance(d) of the drunken man from the pole, and the number of steps he takes(n)

Relationship Conclusion:

On running the main method in the RandomWalk.java class multiple times, I established the following conclusion between number of steps(n) and distance(d) after analysis in an excel sheet by plotting the values of distance and square root of the number of steps.

 $d = \sqrt{n} + V$ where V = variance

<mark>∴ d ∝ √n</mark>

i.e.,

The distance (d) is directly proportional to the square root of the number of steps(n) the drunken man takes.

Evidence to support Conclusion:

1.Output

In order to test different values of n(steps) along with varying the experiments, I have made changes to the main function to run the different values in a single run. The following 3 experiments are shown below:

a) Experiment 1: Number of experiments = 50 with 10 different values of n

```
m = steps;
           > 🗖 reduction
                                                               for (int <u>i</u> = 1; <u>i</u> <= 10; <u>i</u>++) {
                                                                if (args.length > 1) n = Integer.parseInt(args[1]);
           > b symbolTable
                                                                   double meanDistance = randomWalkMulti(m, n);
          > 🖿 union_find
       Enter the number of steps :
       Enter the number of experiments to run:
       23 steps: 4.263610093557 over 50 experiments
   ± 28 steps: 4.6058724740754355 over 50 experiments
   ₹ 33 steps: 5.302390248903541 over 50 experiments
    1 38 steps: 5.523417312810784 over 50 experiments
       43 steps: 6.211317316064619 over 50 experiments
48 steps: 5.950077540284729 over 50 experiments
       53 steps: 5.909525788407153 over 50 experiments
       58 steps: 6.608604818725629 over 50 experiments
       63 steps: 7.7675268695274164 over 50 experiments
       68 steps: 7.733125744839904 over 50 experiments
        Process finished with exit code \boldsymbol{\theta}
```

b) Experiment 2: Number of experiments = 100 with 20 different values of n

c) Experiment 3: Number of experiments= 100 with 10 different values of n

```
n = exps;
                                                          if (args.length > 1) n = Integer.parseInt(args[1]);
                                                          double meanDistance = randomWalkMulti(m, n);
   > 🗖 sort
   > In threesum
Enter the number of steps :
Enter the number of experiments to run:
50 steps: 5.463764285566255 over 100 experiments
250 steps: 14.873023572232812 over 100 experiments
350 steps: 16.62976123996525 over 100 experiments
450 steps: 17.62556048570808 over 100 experiments
550 steps: 21.12373592327517 over 100 experiments
650 steps: 23.11396621443269 over 100 experiments
750 steps: 24.005297735957416 over 100 experiments
850 steps: 25.049565663869508 over 100 experiments
950 steps: 28.465671861888396 over 100 experiments
Process finished with exit code 0
```

2. Graphical Representation:

The graphical representations shown below are for three different experiments, as detailed in the excel file attached.

a) Experiment 1 :Number of experiments = 50 ;10 different values of n

Steps (n)	Distance (d)	sq.root(n)	
23	4.263610094	4.79583152	
28	4.605872474	5.29150262	
33	5.302390249	5.74456265	
38	5.523417313	6.164414	
43	6.211317316	6.55743852	
48	5.95007754	6.92820323	
53	5.909525788	7.28010989	
58	6.608604819	7.61577311	
63	7.76752687	7.93725393	
68	7.733125745	8.24621125	

b) Experiment 2:Number of experiments = 100;20 different values of n

Steps(n)	Distance (d)	Sq.root(n)	
50	6.136191268	7.07106781	
52	6.873862451	7.21110255	
54	6.71999247	7.34846923	
56	6.641421368	7.48331477	
58	7.024240548	7.61577311	
60	6.658472695	7.74596669	
62	7.064217778	7.87400787	
64	7.193199905	8	
66	6.862762774	8.12403841	
68	7.433595605	8.24621125	
70	6.726607465	8.36660027	
72	7.714880422	8.48528137	
74	8.213535365	8.60232527	
76	7.932064558	8.71779789	
78	7.305749537	8.83176087	
80	7.686958913	8.94427191	
82	7.31350194	9.05538514	
84	7.978219466	9.16515139	
86	8.461067248	9.2736185	
88	8.531966022	9.38083152	

c) Experiment 3:Number of experiments = 100;10 different values of n

Steps(n)	Distance(d)		Sq.root(n)
50		5.463764286	7.07106781
150		11.02756631	12.2474487
250		14.87302357	15.8113883
350		16.62976124	18.7082869
450		17.62556049	21.2132034
550		21.12373592	23.4520788
650		23.11396621	25.4950976
750		24.00529774	27.3861279
850		25.04956566	29.1547595
950		28.46567186	30.82207

• Unit tests result:

