SECURE HASH ALGORITHM 1

Presented by 16IT133 – Ritvik Arya 16IT138 – Shreyas Shankar 16IT148 – Siddhant Waghjale 16IT232 – Nihar Chitnis

Secure Hash Algorithm (SHA)

- Secure Hash Algorithm (SHA) was developedby NIST along with NSA.
- ☐ In 1993, SHA was published as a Federal Information Processing Standard.
- ☐ It has following versions-
 - □ SHA-0
 - □ SHA-1
 - ☐ SHA-2
 - □ SHA-3

SHA-1

- \Box It works for any input message that is less than 2 ⁶⁴ bits.
- \square The output of SHA is a message digest of 160 bits in length.
- ☐ This is designed to be computationally infeasible to:
 - a) Obtain the original message, given its message digest.
 - b) Find two messages producing the same message digest.

How SHA-1 works?

Step 1: Padding of Bits

- ☐ Step 2: Append Length
- ☐ *Step 3: Divide the input into 512-bit blocks*

☐ Step 4: Initialize chaining variables

Chaining Variables	Hex values
A	01 23 45 67
В	89 AB CD EF
С	FE DC BA 98
D	76 54 32 10
E	C3 D2 E1 F0

☐ *Step 5: Process Blocks*- Now the actual algorithm begins....

- ☐ *Step 5.1*: Copy chaining variables A-E into variables a-e.
- ☐ *Step 5.2*: Divide current 512-bit block into 16 sub-blocks of 32-bits.
- ☐ *Step 5.3 :* SHA has 4 rounds, each consisting of 20 steps. Each round takes 3 inputs-
 - 512-bit block,
 - The register abcde
 - A constant K[t] (where t= 0 to 79)

Round	Value of t between	
1	1 and 19	
2	20 and 39	
3	40 and 59	
4	60 and 79	

☐ *Step 5.4* : SHA has a total of 80 iterations (4 rounds X 20 -iterations). Each iteration consists of following operations:-

abcde =
$$(e + Process P + S^{5}(a) + W[t] + K[t])$$
, a, $S^{30}(b)$, c, d

Where,

abcde = The register made up of 5 variables a, b, c, d, e.

Process P = The logic operation.

S^t = Circular-left shift of 32-bit sub-block by t bits.

W[t] = A 32-bit derived from the current 32-bit sub-block.

K[t] = One of the five additive constants.

Process P in each SHA round

Round	Process P
1	(b AND c) OR ((NOT b) AND (d))
2	b XOR c XOR d
3	(b AND c) OR (b AND d) OR (c AND d)
4	b XOR c XOR d

- \Box The values of W[t] are calculated as follows:
 - For the first 16 words of W (i.e. t=0 to 15), the contents of the input message sub-block M[t] become the contents of W[t].
 - ☐ For the remaining 64 values of W are derived using the equation

 $W[t] = s^1 (W[t-16] XOR W[t-14] XOR W[t-8] XOR W[t-3])$

Comparison between MD5 and SHA-1

Point of discussion	MD5	SHA-1
Message digest length in bits	128	160
Attack to try and find the original message given a message digest	Requires 2 ¹²⁸ operations to break in.	Requires 2 ¹⁶⁰ operations to break in, therefore more secure.
Attack to try and find two messages producing same message digest	Requires 2 ⁶⁴ operations to break in.	Requires 2 ⁸⁰ operations to break in.
Speed	Faster	Slower
Successful attempts so far	There have been reported attempts to some extent.	No such claims so far.

Conclusion

- Developing Secure Hash Algorithm was initially major concern for defense authorities.
- ☐ SHA produces message digest which has an application in digital signature.
- ☐ In this way, this technique took a contributed in secure and robust encryption.