The Osmanthus Ring Tensor A Self-Similar Frobenius Tower

Ethan G. Appleby

July 6, 2025

Abstract

We introduce the Osmanthus Ring Tensor: a finite, commutative Frobenius algebra with generator O obeying $O^8=1$, parity idempotent $P_\Theta:=O^4$, and trace identity tr $P_\Theta=0$. Iterating "take the span of basis elements again" yields an infinite tower $\{R^{(n)}\}_{n\geq 0}$ in which the same three identities persist at every level, giving a self-similar algebraic object well suited to graded tensor-network constructions.

1 Level 0: the base ring

Definition 1 (Osmanthus ring $R^{(0)}$). Let $R^{(0)}$ be the complex vector space with basis $\{O^k \mid k = 0, \ldots, 7\}$ and multiplication $O^i \cdot O^j = O^{i+j \pmod 8}$.

Proposition 1. $R^{(0)}$ is a commutative, separable Frobenius algebra. The element $P_{\Theta} := O^4$ satisfies $P_{\Theta}^2 = 1$ and $\operatorname{tr}_{R^{(0)}}(P_{\Theta}) = 0$.

2 Level 1: ring of the ring

For each basis element of $R^{(0)}$ introduce a symbol $[O^k]$; let $R^{(1)} := \operatorname{span}[O^k]$ with $[O^i] \cdot [O^j] = [O^{i+j \pmod 8}]$. Define $P_{\Theta}^{(1)} := [P_{\Theta}]$.

Proposition 2. $R^{(1)}$ is again a commutative, separable Frobenius algebra with $(P_{\Theta}^{(1)})^2 = 1$ and $\operatorname{tr}_{R^{(1)}} P_{\Theta}^{(1)} = 0$.

3 The Frobenius tower

Inductively, set $R^{(n+1)} := \operatorname{span}\{[x] \mid x \in \text{basis of } R^{(n)}\}$ with identical multiplication rule. Each level inherits a parity element $P_{\Theta}^{(n)}$ and trace cancellation $\operatorname{tr} P_{\Theta}^{(n)} = 0$. Thus:

Proposition 3. For every $n \ge 0$

$$O^8 = 1,$$
 $(P_{\Theta}^{(n)})^2 = 1,$ $\operatorname{tr}_{R^{(n)}} P_{\Theta}^{(n)} = 0.$

4 Outlook

The self-similarity suggests applications to graded tensor networks, built-in Koszul signs, and higher-form differentials realised as iterated commutators ad^k $(P_{\Theta}^{(n)})$.