

Mise en contexte

NEAT = NeuroEvolution of Augmenting Topologies

Fonctionnement approches NE : choix topologie, recherche à optimiser les poids de connexions inter-noeuds

Population initiale -> (Boucle) : Evaluation -> Sélection -> Croisement -> Mutation -> (Fin boucle) Sortie

Problématique: faire varier SIMULTANÉMENT la topologie des réseaux et les poids des connexions pour améliorer les performances de NE.

Plusieurs méthodes: TWEANNs (Topology and Weight Evolving Artificial Neural Networks) et NEAT

Implémentation génétique

- Représentation du génome
- Mutation
 - Création de noeud : ajout des connexions
 - Création de connexions

Suivi des gènes

- Solution au problème de permutations = multitude de façon d'exprimer une solution
 - Endommagement des enfants, perte d'information
 - Homologie -> alignement des gènes
 - Nombre d'innovation global

- Croisement
 - o gènes disjoints ou en excès
 - o parent le plus fit

Spéciation et Minimisation

 But : conservation de la diversité topologique, protection de l'innovation topologique

Fonctionnement:

- Création d'espèce
- Notion de distance, représentant de l'espèce
- Nouvelle génération: ajout/création espèces + suppression le moins fit
- Minimisation des dimensions de l'espace de recherche par choix d'initialisation de la population : population uniforme (pas de noeud caché) + ajout de nouvelles structures à chaque génération

Mise en pratique

Exemple de crossover et de mutation


```
def crossover(gen1, gen2):
import graphviz
import matplotlib.pyplot as plt
import matplotlibplay import Image
import numny as no
import numny as
                                         gz=yenzi:,

crossed_gen=[[[],[]],[[],[],
for k in gen1[1][0]:

if k :

gen2[1][0] or np
   import numpy as np
               def mutate(Gen,innov_max):
                                                               sed_gen[1][0]+=[
                     mut_bound=np.random.randint(le
                     while Gen[1][3][mut_bound]==0:
                           mut bound=np.random.randir
                     next_Gen=Gen[:]
                      random muta-nn random random()
```

NEAT peut-il construire les structures nécessaires ?

Test du XOR

Sur 100 simulations

Nombre de noeuds cachés	2,35 (σ = 1,11)	
Nombre de connections	7,48	
Nombre de générations	32	
Succès	100	

 NEAT trouve-t-il des solutions plus efficaces que les autres algorithmes de NeuroEvolution ?

Problème du Double Pole balancing avec connaissance des Vitesses (DPV)

Method	Evaluations	Generations	No. Nets
Ev. Programming	307,200	150	2048
Conventional NE	80,000	800	100
SANE	12,600	63	200
ESP	3,800	19	200
NEAT	3,600	24	150

- Significativement plus efficace
- Structure optimale

Problème du Double Pole balancing sans connaissance des Vitesses (DPNV)

Method	Evaluations	Generalization	No. Nets
CE	840,000	300	16,384
ESP	169,466	289	1,000
NEAT	33,184	286	1,000

- 25 fois plus rapide que CE : meilleure optimisation structurelle
- 5 fois plus rapide que ESP ESP : moins de chances d'être bloqué

Analyse de l'algorithme

Suppressions de caractéristiques de NEAT sur le problème du DPV

Method	Evaluations	Failure Rate
No-Growth NEAT (Fixed-Topologies)	30,239	80%
Non-speciated NEAT	25,600	25%
Initial Random NEAT	23,033	5%
Nonmating NEAT	5,557	0
Full NEAT	3,600	0

Mise en pratique

Exemple complet sur une ségrégation de points

Contexte

NEAT s'inscrit dans le thème des Algorithmes Évolutionnaires

Diversité du génotype/phénotype vs diversité du comportement

Applications variées

