

FCC Test Report

FCC Part 15.247 for FHSS systems

FOR:

ShotSpotter, Inc 1060 Terra Bella Ave Mountain view, CA 94043

FCC ID: WLI-L3ALV900

TEST REPORT #: EMC_SHOTS_001_08001_15.247

DATE: 2008-11-11

FCC listed
A2LA Accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686

Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

EMC_SHOTS_001_08001_15.247

Date of Report :

2008-11-04

Page 2 of 29

TABLE OF CONTENTS

I	ASS	essment	4
2	Adı	ministrative Data	5
	2.1	Identification of the Testing Laboratory Issuing the EMC Test Report	
	2.2	Identification of the Client	
3		uipment under Test (EUT)	
,	_		
	3.1	Specification of the Equipment under Test	
	3.2	Identification of the Equipment Under Test (EUT)	
	3.3	Identification of Accessory equipment	
4	Sub	bject Of Investigation	7
5	Me	asurements (Radiated)	8
	5.1 5.1.1	MAXIMUM PEAK OUTPUT POWER	
	5.2 5.2.	TRANSMITTER SPURIOUS EMISSIONS RADIATED § 15.247/15.205/15.209	15
		2 RESULTS	
6	Me	asurements (Conducted)	20
	6.1	MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)	
	6.1.	1 LIMIT SUB CLAUSE § 15.247 (b) (1)	20
	6.1.2	2 RESULTS:	20
	6.2	20dB BANDWIDTH	20
	6.2.1 6.2.2		
	6.3	CARRIER FREQUENCY SEPARATION	
	6.3.	1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)	21
	6.3.2		
	6.4 6.4.		21 21
	6.4.2		
	6.5	TIME OF OCCUPANCY (DWELL TIME)	
	6.5.	1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)	22
	6.5.2		22
	6.6 6.6.1	CONDUCTED SPURIOUS EMISSION	22
	6.6.2	0 (/	22
	6.7	AC POWER LINE CONDUCTED EMISSIONS § 15.107/207	23
	6.7.	1 LIMITS	23
	6.7.2		24
7	TE	ST EQUIPMENT AND ANCILLARIES USED FOR TESTS	26

Test Report #:	EMC_SHOTS_001_0	08001_15.247	
Date of Report :	2008-11-04	Page 3 of 29	CETECOM™
8 BLOCK DIAG	FRAMS		27
9 REPORT HIS	TORY		29

EMC_SHOTS_001_08001_15.247

Date of Report:

2008-11-04

Page 4 of 29

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Part 15.247 of the Code of Federal Regulations.

Company	Model #
ShotSpotter, Inc	L3-ALV900

This report is reviewed by:

EMC & Radio

2008-11-11

Lothar Schmidt (Director Regulatory and Antenna Services)

Date Section Name Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

This report is prepared by:

Peter Mu
2008-11-11 EMC & Radio (EMC Project Engineer)

Date Section Name Signature

Date of Report: 2008-11-04 Page 5 of 29

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Peter Mu
Date of test:	2008-8-1 to 2008-11-10

2.2 Identification of the Client

APPLICANT			
Applicant (Company Name)	ShotSpotter, Inc.		
Street Address	1060 Terra Bella Ave		
City/Zip Code	Mountain View, CA 94043		
Country	USA		
Contact Person	Gouglas McFarlin		
Telephone	650-960-9200		
Fax			
e-mail	dmcfarlin@shotspotter.com		

Date of Report: 2008-11-04 Page 6 of 29

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name:	L3ALV900	
Model No:	L3ALV900	
Antenna Type:	External Panel MT-263006/N, 12.5dBi External Panel WRP900-100, 10.0dBi	
Type(s) of Modulation:	GFSK DTS/FHSS hybrid	
Frequency Band(s) of Operation:	904.0 - 926.0MHz	
Equipment Classification: (CLASS)	■FIXED □VEHICULAR □PORTABLE □MODULE	
Equipment Classification: (POWER(AC MAINS))	□110VAC (GROUND) ■ 110VAC (NO GROUND) □12VDC	

3.2 Identification of the Equipment Under Test (EUT)

EUT#	TYPE	MODEL	SERIAL#
1	EUT	L3ALV900	L3B-00-B36-0556

3.3 Identification of Accessory equipment

AE # TYPE		MODEL	
1 AC Adapt Power Sup		MDR-20-12	

Date of Report: 2008-11-04 Page 7 of 29

4 Subject Of Investigation

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations. The maximization of portable equipment is conducted in accordance with ANSI C63.4.

All testing was performed on the product referred to in Section 3 as EUT. This test report contains full radiated and conducted testing results as per FCC15.247.

During the testing process the EUT was tested with manufacture' testing software in normal modulation with carrier placed on the first, middle, and the last transmitting channels in the band. Maximum output power is used for all testing. All data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

From the test data collected this device complies with applicable FCC rules in Part 15.247.

Date of Report: 2008-11-04 Page 8 of 29

5 Measurements (Radiated)

5.1 MAXIMUM PEAK OUTPUT POWER

5.1.1 Test Result:

EIRP with 10 dBi antenna:

TEST CONDITIONS Frequency (MHz)		MAXIMUM PEAK OUTPUT POWER (dBm)		
		904	915	926
T _{nom} (23)°C	V _{nom} VDC	31.24	30.60	31.73
Measurement uncertainty			±0.5dBm	

EIRP with 12.5 dBi antenna:

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		904	915	926
T _{nom} (23)°C	V _{nom} VDC	34.93	34.23	35.64
Measurement uncertainty			±0.5dBm	

Note: End users are cautioned to only use the supplied external panel antennae and RF cable assembly to ensure that the power output meets applicable FCC requirements. For detail see users manual.

Test conducted with EUT operating at 1.5dBm higher than normal operation as a built-in safety margin per applicant's request. Thus EIRP under normal operation can only be lower than what is measured and all emission should also comply with applicable FCC requirements.

2008-11-04 Date of Report: Page 9 of 29

EIRP LOW CHANNEL

900MHz Acoustic Sensor

Customer:: Shotspotter
Test Mode: 904MHz ANT Orientation: V

EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "EIRP 904MHz V"

Start Detector Meas. IF Transducer Stop

Frequency Frequency 899.0 MHz 909.0 MHz MaxPeak Time Bandw. Time Bandw. Coupled 3 MHz

DUMMY-DBM

2008-11-04 Date of Report: Page 10 of 29

EIRP MIDDLE CHANNEL

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter Test Mode: 915MHz

ANT Orientation: V EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "EIRP 915MHz V"

Start Stop Meas. ΙF Transducer Detector

Frequency Frequency Time Bandw.

910.0 MHz 920.0 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

2008-11-04 Date of Report: Page 11 of 29

EIRP HIGH CHANNEL

900MHz Acoustic Sensor

Customer:: Shotspotter
Test Mode: 926MHz ANT Orientation: V

EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "EIRP 926MHz V"

Start Detector Meas. IF Transducer Stop

Frequency Frequency 921.0 MHz 931.0 MHz MaxPeak Time Bandw. Time Bandw. Coupled 3 MHz

DUMMY-DBM

2008-11-04 Date of Report: Page 12 of 29

EIRP LOW CHANNEL

EUT: sensor Customer:: shotspotter Test Mode: 904mhz

ANT Orientation: v EUT Orientation: H Test Engineer: peter Voltage: AC

Comments:

SWEEP TABLE: "EIRP 904MHz V"

IF Detector Meas. Transducer Start Stop

Frequency Frequency Time Bandw.

899.0 MHz 909.0 MHz MaxPeak 100.0 ms 3 MHz DUMMY-DBM

Date of Report: 2008-11-04 Page 13 of 29

EIRP MID CHANNEL

EUT: sensor Customer:: shotspotter Test Mode: 915mhz

ANT Orientation: v EUT Orientation: H Test Engineer: peter Voltage: AC

Comments:

SWEEP TABLE: "EIRP 915MHz V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

910.0 MHz 920.0 MHz MaxPeak 100.0 ms 3 MHz DUMMY-DBM

2008-11-04 Date of Report: Page 14 of 29

EIRP HIGH CHANNEL

EUT: sensor Customer:: shotspotter Test Mode: 926mhz

ANT Orientation: v EUT Orientation: H Test Engineer: peter Voltage: AC

Comments:

SWEEP TABLE: "EIRP 926MHz V"

Start Stop Detector Meas. IF Transducer

Bandw. Frequency Frequency Time

921.0 MHz 931.0 MHz MaxPeak DUMMY-DBM Coupled 3 MHz

 ${\tt MaxPeak}$

Date of Report: 2008-11-04 Page 15 of 29

5.2 TRANSMITTER SPURIOUS EMISSIONS RADIATED § 15.247/15.205/15.209

5.2.1 LIMITS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m

NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit, unless specified with the plots.

Results for the radiated measurements below 30MHz according § 15.33

Frequency	Measured values	Remarks
9KHz – 30MHz	No emissions found, caused by the EUT	This is valid for all the tested channels

^{*}AVG. LIMIT= 54dBuV/m

Date of Report: 2008-11-04 Page 16 of 29

700M

1G

500M

5.2.2 RESULTS 30MHz – 1GHz Antenna: vertical

Note: This plot shows worse case emission for low, mid, and high channel.

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter

Test Mode: 915MHz
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter

Comments:

30M

QuasiPeak @ 70.82MHz 36.62 dBuV/m QuasiPeak @ 72.77MHz 35.09 dBuV/m QuasiPeak @ 74.71MHz 36.87 dBuV/m QuasiPeak @ 84.43MHz 38.85 dBuV/m QuasiPeak @ 86.37MHz 34.77 dBuV/m

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

70M

50M

100M

Frequency [Hz]

3141-#1186_Vert 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz Marker: 72.765531 MHz 41.39 dBµV/m Level [dBµV/m] 90 80 70 60 50 40 30 20 10 0

200M

300M

Date of Report: 2008-11-04 Page 17 of 29

30MHz – 1GHz Antenna: horizontal.

Note: This plot shows worse case emission for low, mid, and high channel.

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter Test Mode: 915MHz

ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter

Comments:

QuasiPeak @ 177.74 37.73 dBuV/m

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Date of Report: 2008-11-04 Page 18 of 29

1-3**GHz**

Note: Peak Reading vs. Average limit

Note: This plot shows worse case emission for low, mid, and high channel.

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter
Test Mode: 926MHz
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

2008-11-04 Date of Report: Page 19 of 29

3-18GHz

Note: Peak Reading vs. Average limit

Note: This plot shows worse case emission for low, mid, and high channel.

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter Test Mode: 926MHz ANT Orientation: V EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

IF Transducer Stop Detector Meas. Frequency Frequency Bandw. Time

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

EMC_SHOTS_001_08001_15.247

Date of Report:

2008-11-04

Page 20 of 29

6 Measurements (Conducted)

6.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)

6.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1)

Frequency range	RF power output	
2400-2483.5 MHz	30dBm	

^{*}limit is based upon antenna gain of less than or equal to 6dBi.

6.1.2 RESULTS:

Test not conducted

6.2 20dB BANDWIDTH

6.2.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.2.2 RESULTS:

Test not conducted

EMC_SHOTS_001_08001_15.247

Date of Report:

2008-11-04

6.3 CARRIER FREQUENCY SEPARATION

6.3.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

SEPARATION		
> 25 KHz or > 2/3 * 20 dB BANDWIDTH = 839kHz		

6.3.2 RESULTS:

Test not conducted.

6.4 NUMBER OF HOPPING CHANNELS

6.4.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (iii)

NUMBER OF CHANNELS	
> 15	

6.4.2 RESULTS:

Test not conducted.

EMC_SHOTS_001_08001_15.247

Date of Report:

2008-11-04

6.5 TIME OF OCCUPANCY (DWELL TIME)

6.5.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

FREQUENCY RANGE	AVERAGE TIME OF	
	OCCUPANCY PER	
	31.6 SECONDS (LIMIT)	
2400-2483.5	0.4 SECONDS	

6.5.2 RESULTS:

T _{nom} (23)°C	V _{nom} VDC
-------------------------	----------------------

Test not conducted.

6.6 CONDUCTED SPURIOUS EMISSION

6.6.1 LIMIT SUB CLAUSE § 15.247 (d)

FREQUENCY RANGE	limit	
30M-25GHz	-20dBc	

6.6.2 RESULTS: Tnom(23)°C VnomVDC

Test not conducted.

Date of Report : 2008-11-04 Page 23 of 29

6.7 AC POWER LINE CONDUCTED EMISSIONS § 15.107/207

6.7.1 LIMITS

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

Limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-Peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 – 30	60	50	
* Decreases with logarithm of the frequency			

ANALYZER SETTINGS: RBW = 10KHz

VBW = 10KHz

Date of Report: 2008-11-04 Page 24 of 29

6.7.2 Test Results:

Results TX Line

EUT: 900MHz Acoustic Sensor

Manufacturer: Shotspotter
Test Mode: 904 MHz
ANT Orientation:: LISN
EUT Orientation:: H
Test Engineer:: Marc
Power Supply: 120V
Comments: Line

Marker: 5 MHz 56 dBμV

Level [dBµV]

- + MES 55022 V AV Avg1
 - MES 55022 cond MaxPk
 - MES 55022 cond AvgLIM EN 55022 V QP
 - LIM EN 55022 V AV

Voltage QP Limit Voltage AV Limit

Date of Report: 2008-11-04 Page 25 of 29

Results TX Neutral

EUT: 900MHz Acoustic Sensor

Manufacturer: Shotspotter
Test Mode: 904 MHz
ANT Orientation:: LISN
EUT Orientation:: H
Test Engineer: Marg

Test Engineer:: Marc
Power Supply:: 120V
Comments:: Neutral

Marker: 5 MHz 56 dBµV

Level [dBµV]

- - MES 55022 cond Avg
- LIM EN 55022 V QP Voltage QP Limit
 Voltage AV Limit

Date of Report : 2008-11-04 Page 26 of 29

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillar	Type	Manufacturer	Serial No.	Cal Due	Interval
	${f y}$					
01	Spectrum Analyzer	ESIB 40	Rohde &	100107	May 2009	1 year
			Schwarz			
02	Spectrum Analyzer	FSEM 30	Rohde &	100017	May 2009	1 year
			Schwarz			
03	Signal Generator	SMY02	Rohde &	836878/011	May 2009	1 year
			Schwarz			
04	Power-Meter	NRVD	Rohde &	0857.8008.02	May 2009	1 year
			Schwarz			
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2009	1 year
06	Horn Antenna (1-	SAS-	AH Systems	325	June 2009	1 year
	18GHz)	200/571				
07	Horn Antenna (18-	3160-09	EMCO	1240	June 2009	1 year
	26.5GHz)					
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2009	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4-	Miteq	00616	May 2009	1 year
		00102600				
13	Power Sensor	URV5-Z2	Rohde &	DE30807	May 2009	1 year
13			Schwarz			
14	Digital Radio Comm.	CMD-55	Rohde &	847958/008	May 2009	1 year
	Tester	CMD-33	Schwarz	04/930/000		
15	Universal Radio	CMU 200	Rohde &	832221/06	May 2009	1 year
	Comm. Tester	CIVIU 200	Schwarz	032221/00		
16	LISN	ESH3-Z5	Rohde &	836679/003	May 2009	1 year
			Schwarz	030077/003		
17	Loop Antenna	6512	EMCO	00049838	July 2010	2 years

EMC_SHOTS_001_08001_15.247

Date of Report:

2008-11-04

Page 27 of 29

8 BLOCK DIAGRAMS

Conducted Testing

EMC_SHOTS_001_08001_15.247

Date of Report :

2008-11-04

Page 28 of 29

Radiated Testing

ANECHOIC CHAMBER

Date of Report : 2008-11-04 Page 29 of 29

9 REPORT HISTORY

2008-11-11: First issue.