9平面向量的運算

1. 向量的內積:

當兩個非零向量 $\overrightarrow{a} = (a_1, a_2)$ 與 $\overrightarrow{b} = (b_1, b_2)$ 的夾角為 $\theta (0^{\circ} \le \theta \le 180^{\circ})$ 時,定義 \overrightarrow{a} 與 \overrightarrow{b} 的內積為 $|\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$,以 $|\overrightarrow{a} \cdot \overrightarrow{b}|$ 表示。

(1)
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 \circ$$

(2)
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right|} \circ$$

註: $\overrightarrow{a} \cdot \overrightarrow{b}$ 並不是向量, 而是實數。

2. 向量的平行與垂直:

設兩非零向量 $\overrightarrow{a}=(a_1,a_2)$, $\overrightarrow{b}=(b_1,b_2)$,且 $b_1b_2\neq 0$ 。

(1)若
$$\overrightarrow{a}$$
 \bot \overrightarrow{b} ,則 $\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2 = 0$ 。

(2)若
$$\overrightarrow{a}$$
// \overrightarrow{b} ,則 $\overrightarrow{a} = r\overrightarrow{b} \Rightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2}$ (各分量成比例)。

4. 柯西不等式:

設
$$a_1$$
、 a_2 、 b_1 、 b_2 為實數,則 $\left(a_1^2+a_2^2\right)\left(b_1^2+b_2^2\right) \ge \left(a_1b_1+a_2b_2\right)^2$,當等號成立時, $a_1b_2=a_2b_1$,又若 $b_1b_2\ne 0$,則 $\frac{a_1}{b_1}=\frac{a_2}{b_2}$ 。

70 單元 9 平面向量的運算

5. 面積與二階行列式:

(1) 二階行列式:
$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \circ$$

(2) 設
$$\overrightarrow{a} = (a_1, a_2)$$
、 $\overrightarrow{b} = (b_1, b_2)$,則以 \overrightarrow{a} 、 \overrightarrow{b} 所決定的

①三角形面積為
$$\frac{1}{2}\sqrt{\left|\overrightarrow{a}\right|^2\left|\overrightarrow{b}\right|^2-\left(\overrightarrow{a}\cdot\overrightarrow{b}\right)^2}=\frac{1}{2}\left|\begin{vmatrix}a_1 & a_2\\b_1 & b_2\end{vmatrix}\right|$$

②平行四邊形面積為
$$\sqrt{\left|\overrightarrow{a}\right|^2\left|\overrightarrow{b}\right|^2-\left(\overrightarrow{a}\cdot\overrightarrow{b}\right)^2}=\left|\begin{vmatrix}a_1 & a_2\\b_1 & b_2\end{vmatrix}\right|$$
。

6. 兩直線的夾角:

- (1) 直線的法向量:向量 $\overrightarrow{n} = (a,b)$ 為直線 L: ax + by + c = 0 的一個法向量。
- (2) 二直線的夾角: 只要求得兩法向量的夾角,就可求得兩直線的其中一個夾角。 因為 $\theta_1 + \theta_2 = 180^\circ$,所以只需求出其中任一個夾角, 另一個夾角就可求出。

7. 三角不等式:

- (1) 代數觀點: ① $|a|+|b| \ge |a+b|$,當等號成立時, $ab \ge 0$ 。
 - ② $||a|-|b|| \le |a+b|$,當等號成立時, $ab \le 0$ 。
- (2) 幾何觀點: ①已知平面上兩非零向量 \overrightarrow{a} 、 \overrightarrow{b} , 則 $|\overrightarrow{a}|$ + $|\overrightarrow{b}| \ge |\overrightarrow{a} + \overrightarrow{b}|$,

當等號成立時, \overline{a} 與 \overline{b} 同向。

②已知平面上兩非零向量 \overrightarrow{a} 、 \overrightarrow{b} ,則 $|\overrightarrow{a}| - |\overrightarrow{b}| \le |\overrightarrow{a} + \overrightarrow{b}|$,

當等號成立時, \overline{a} 與 \overline{b} 反向。

觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

- (\times) **1.** 正 $\triangle ABC$ 中, \overrightarrow{AB} 與 \overrightarrow{BC} 的夾角為 60° 。
 - 爾 向量的夾角必須滿足始點相接,故 \overrightarrow{AB} 與 \overrightarrow{BC} 的夾角為 120° 。
- () **2.** 正六邊形 *ABCDEF* 中, $\overrightarrow{AB} \cdot \overrightarrow{AC} > \overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AB} \cdot \overrightarrow{AB} > \overrightarrow{AB} \cdot \overrightarrow{AE} > \overrightarrow{AB} \cdot \overrightarrow{AF}$

- 由 \overrightarrow{AB} 、 \overrightarrow{AC} 、 \overrightarrow{AD} 、 \overrightarrow{AE} 、 \overrightarrow{AF} 在 \overrightarrow{AB} 上的正射影量 得知 $\overrightarrow{AB} \cdot \overrightarrow{AC}$ 最大 , $\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AB} \cdot \overrightarrow{AB} > 0$, $\overrightarrow{AB} \cdot \overrightarrow{AE} = 0$, $\overrightarrow{AB} \cdot \overrightarrow{AF} < 0$
- (\times) 3. 若 $\overrightarrow{a} \neq 0$,目 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$,則 $\overrightarrow{b} = \overrightarrow{c}$ 。
 - 解 反例: $\Rightarrow \overrightarrow{a} = (1,0)$ 、 $\overrightarrow{b} = (2,3)$ 、 $\overrightarrow{c} = (2,4)$, $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c} = 2$,但 $\overrightarrow{b} \neq \overrightarrow{c}$ 。
- (\bigcirc) **4.** 若非零向量 \overrightarrow{a} 、 \overrightarrow{b} 滿足 $|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|$,則 $\overrightarrow{a}\perp\overrightarrow{b}$ 。
 - $\boxplus \left| \overrightarrow{a} + \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \overrightarrow{b} \right|^2 \Rightarrow \left| \overrightarrow{a} \right|^2 + 2 \overrightarrow{a} \cdot \overrightarrow{b} + \left| \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \right|^2 2 \overrightarrow{a} \cdot \overrightarrow{b} + \left| \overrightarrow{b} \right|^2 ,$ 得 $\overrightarrow{a} \cdot \overrightarrow{b} = 0$,因此, $\overrightarrow{a} \perp \overrightarrow{b}$ 。
- (\times) **5.** 由向量 $\overrightarrow{a} = (2,3)$ 與 $\overrightarrow{b} = (5,1)$ 所決定的平行四邊形面積為 $\begin{vmatrix} 2 & 3 \\ 5 & 1 \end{vmatrix}$ 。
 - 解 由向量 $\overrightarrow{a} = (2,3)$ 與 $\overrightarrow{b} = (5,1)$ 所決定的平行四邊形面積為 $\begin{vmatrix} 2 & 3 \\ 5 & 1 \end{vmatrix}$ | 。

一、填充題(每題7分,共70分)

- **1.** 平行四邊形 ABCD中, $\overline{AB} = 5$, $\overline{BC} = 8$,則 $\overline{AC} \cdot \overline{BD} =$ 39
- $\overrightarrow{AC} \cdot \overrightarrow{BD} = \left(\overrightarrow{AB} + \overrightarrow{AD}\right) \cdot \left(\overrightarrow{AD} \overrightarrow{AB}\right) = \left|\overrightarrow{AD}\right|^2 \left|\overrightarrow{AB}\right|^2 = 8^2 5^2 = 39 \circ$

- **2.** 設 $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$, $|\overrightarrow{a}|$ 與 $|\overrightarrow{b}|$ 的夾角 $|\overrightarrow{a}|$ 的夾角 $|\overrightarrow{a}|$ 的 $|\overrightarrow{AP}| = |\overrightarrow{a}| + 2|\overrightarrow{b}|$, $|\overrightarrow{AQ}| = 2|\overrightarrow{a}| + |\overrightarrow{b}|$, $|\overrightarrow{AQ}| = 2|\overrightarrow{a}| + |\overrightarrow{b}|$,

- **3.** 若 \overrightarrow{a} = (1,-3)與 \overrightarrow{b} = (k,2)的夾角為135°,則實數k的值為____4或1___。
- 解 $\cos 135^{\circ} = \frac{k-6}{\sqrt{10} \times \sqrt{k^2+4}} \Rightarrow -\frac{1}{\sqrt{2}} = \frac{k-6}{\sqrt{10} \times \sqrt{k^2+4}}$, 平方後,整理得 $k^2+3k-4=0$,解得k=-4或1(均成立,因為代入k-6<0)。

4. 如圖,在梯形 ABCD中,若 $\overline{AB}//\overline{CD}$, $\overline{AB} = \overline{BC} = 4$ 、 $\overline{CD} = 9$ 、 $\overline{AD} = 6$,則 $\overline{AD} \cdot \overline{BC} = \frac{27}{2}$ 。

爾 過B點作 \overline{AD} 的平行線交 \overline{CD} 於E點,

如圖所示,得 $\overrightarrow{AD} = \overrightarrow{BE}$,

所求
$$\overrightarrow{AD} \cdot \overrightarrow{BC} = \overrightarrow{BE} \cdot \overrightarrow{BC} = 6 \times 4 \times \frac{6^2 + 4^2 - 5^2}{2 \times 6 \times 4} = \frac{27}{2}$$
 °

- **5.** 若 \overline{a} 與 \overline{b} 為兩非零向量,已知 $2\overline{a}$ + \overline{b} 與 $2\overline{a}$ \overline{b} 垂直,且 \overline{a} 與 \overline{a} \overline{b} 垂直,則 \overline{a} 與 \overline{b} 的夾角為 _____。
- \mathfrak{p} $\Rightarrow \overline{a} \cdot \overline{b}$ 的夾角為 θ ,

$$\left(2\overrightarrow{a} + \overrightarrow{b}\right) \perp \left(2\overrightarrow{a} - \overrightarrow{b}\right) \Rightarrow \left(2\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(2\overrightarrow{a} - \overrightarrow{b}\right) = 0 \Rightarrow 4 \left|\overrightarrow{a}\right|^2 - \left|\overrightarrow{b}\right|^2 = 0$$

$$\Rightarrow 4 \left|\overrightarrow{a}\right|^2 = \left|\overrightarrow{b}\right|^2 \Rightarrow 2 \left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| \circ$$

$$\overrightarrow{a} \perp \left(\overrightarrow{a} - \overrightarrow{b}\right) \Rightarrow \overrightarrow{a} \cdot \left(\overrightarrow{a} - \overrightarrow{b}\right) = 0 \Rightarrow \left|\overrightarrow{a}\right|^2 - \overrightarrow{a} \cdot \overrightarrow{b} = 0 \Rightarrow \left|\overrightarrow{a}\right|^2 = \overrightarrow{a} \cdot \overrightarrow{b} \circ$$

$$\boxtimes \stackrel{\triangle}{\Rightarrow} \left|\overrightarrow{a}\right|^2 = \overrightarrow{a} \cdot \overrightarrow{b} \Rightarrow \left|\overrightarrow{a}\right|^2 = \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right| \cos \theta = \left|\overrightarrow{a}\right| \times 2 \left|\overrightarrow{a}\right| \cos \theta \Rightarrow \left|\overrightarrow{a}\right|^2 = 2 \left|\overrightarrow{a}\right|^2 \cos \theta$$

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^\circ \circ$$

6. 如圖,三個拉力 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 同時施力於 P 點,並達到三力平 衡。已知 $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 3$,且 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為 60° , 則 $|\overrightarrow{c}| = \underline{7}$ 。

解 三力平衡表示
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
 ,

則
$$\overrightarrow{c} = -\overrightarrow{a} - \overrightarrow{b}$$
 \Rightarrow $\left| \overrightarrow{c} \right|^2 = \left| -\overrightarrow{a} - \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \right|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} + \left| \overrightarrow{b} \right|^2$
= $5^2 + 2 \times 5 \times 3 \times \cos 60^\circ + 3^2 = 49$, 故 $\left| \overrightarrow{c} \right| = 7$ \circ

7. 設
$$\overrightarrow{a} = (x,y)$$
, $\overrightarrow{b} = (-2,1)$, $\overrightarrow{c} = (1,1)$,若 $\left(\overrightarrow{a} + 2\overrightarrow{c}\right) \perp \overrightarrow{b}$,且 $\left(\overrightarrow{a} - \overrightarrow{c}\right) / / \overrightarrow{b}$,
則數對 $(x,y) = \left(-\frac{1}{5}, \frac{8}{5}\right)$ 。

解
$$\left(\overrightarrow{a}+2\overrightarrow{c}\right)\perp\overrightarrow{b}\Rightarrow\left(\overrightarrow{a}+2\overrightarrow{c}\right)\cdot\overrightarrow{b}=0\Rightarrow(x+2\times1,y+2\times1)\cdot(-2,1)=0$$

$$\Rightarrow(x+2,y+2)\cdot(-2,1)=0\Rightarrow-2x-4+y+2=0\Rightarrow2x-y=-2\cdot\cdot\cdot\cdot\cdot1$$

$$\left(\overrightarrow{a}-\overrightarrow{c}\right)//\overrightarrow{b}\Rightarrow(x-1,y-1)//(-2,1)$$

$$\Rightarrow\frac{x-1}{-2}=\frac{y-1}{1}\Rightarrow x-1=-2y+2\Rightarrow x+2y=3\cdot\cdot\cdot\cdot\cdot\cdot2$$

$$\Rightarrow\left(\frac{2x-y=-2}{x+2y=3}\right)\Rightarrow$$
對 $\left(x,y\right)=\left(-\frac{1}{5},\frac{8}{5}\right)$

8. 設
$$\overrightarrow{p} = (-11,2)$$
、 $\overrightarrow{a} = (-4,3)$ 。若 $\overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v}$,其中 \overrightarrow{u} // \overrightarrow{a} , $\overrightarrow{v} \perp \overrightarrow{a}$,则 $\overrightarrow{v} = (-3,-4)$ 。

解 依 $\overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v}$,其中 $\overrightarrow{u} / \overrightarrow{a}$, $\overrightarrow{v} \perp \overrightarrow{a}$,繪出如圖所示。 由圖知 \overrightarrow{u} 為 \overrightarrow{p} 在 \overrightarrow{a} 上的正射影,

$$\nabla \overrightarrow{v} = \overrightarrow{p} - \overrightarrow{u} = (-11,2) - (-8,6) = (-3,-4)$$

- 因為 $\overrightarrow{a} \cdot \overrightarrow{b} = (x,-2) \cdot (1,y) = x 2y$,又 $x^2 + y^2 = 5$,
 所以利用柯西不等式,得 $(x^2 + y^2)(1^2 + (-2)^2) \ge (x 2y)^2 \Rightarrow 5 \times 5 \ge (x 2y)^2$,
 即 $-5 \le x 2y \le 5$ 。故 $\overrightarrow{a} \cdot \overrightarrow{b}$ 的最大值為 5。

10. 如圖,一圓形花圃的半徑為 2 公尺,內建步道 \overline{AB} 、 \overline{EF} 、 \overline{CD} ,其中 $\overline{AB} = \overline{CD}$,試求: $\overline{AB} + \overline{CD} + \overline{EF}$ 總長的最大值為 $4\sqrt{5}$ 公尺。

(請化為最簡根式)

爵 設 $\overline{AE} = x$, $\overline{OE} = y$,則 $x^2 + y^2 = 2^2$, $\overline{AB} + \overline{CD} + \overline{EF} = 2x + 2x + 2y = 4x + 2y = 2(2x + y)$,

利用柯西不等式:

$$(x^2 + y^2)(2^2 + 1^2) \ge (2x + y)^2$$

$$\Rightarrow -2\sqrt{5} \le 2x + y \le 2\sqrt{5} \Rightarrow 4x + 2y \le 4\sqrt{5} \circ$$
故最大值為 $4\sqrt{5}$ (公尺)。

二、素養混合題(共20分)

第 11 至 13 題為題組

為了提醒同學某臺自動販賣機會「吃錢」,班聯會想在機上漆一個小圓與一個缺六分之一圓的大圓相切的圖案,如圖所示。基於空間考量,圖形的寬度要恰好 24 單位長,而且小圓必須與直線 PQ 有兩相異交點。漆大圓的油漆,每平方單位需要 6 元;漆小圓的油漆,每平方單位需要 45 元。設小圓的半徑為x,大圓的半徑為y。

- **11.** 已知 $x \cdot y$ 滿足 ax + by = 24,求數對 (a,b) = (3,1) (填充題,8分)
- **12.** 求油漆總費用 (以 $x \cdot y$ 表示)。(非選擇題,4分)
- **13.** 當 $x \times y$ 為何時,油漆費用最少? (非選擇題,8分)
- 解 11. 設小圓圓心A,大圓圓心B,C是切點,如圖所示。 由 $\overline{AC} = x$, $\angle ABC = 30^{\circ}$,得 $\overline{AB} = 2x$ 。 所以 $x + 2x + y = 24 \Rightarrow 3x + y = 24$ 。 故 (a,b) = (3,1)。

- 12. 油漆總費用為 $45 \times x^2 \pi + 6 \times \frac{5}{6} y^2 \pi = 5\pi \left(9x^2 + y^2\right)$ 。
- 13. 利用柯西不等式,得 $((3x)^2 + y^2)(1^2 + 1^2) \ge (3x + y)^2$ 。 代入3x + y = 24,得 $(9x^2 + y^2) \times 2 \ge 24^2 \Rightarrow 9x^2 + y^2 \ge 288$ 。 且等號成立的條件為 $\frac{3x}{1} = \frac{y}{1} \Rightarrow 3x = y$ 。 將3x = y代入3x + y = 24,解得x = 4,y = 12。 故當小圓半徑 4,大圓半徑 12 時,油漆費用最少。