Leet me #4

In last lecture me discussed 180' conduction (Squeese) Space Vector

										. space	
State#	Suntel	hing	Statis	Vab	Vbc	Vca	Van	Vbn	Ven	Linevoltage	Phone voltages.
1	1	0	0	Vs	0	-Vs	3 Vdc	-/34	-1/3 47	2 130°	2/3/100
2		1	0	0	+45	100000000000000000000000000000000000000	1/3 8 0 6		-2 Vdc		2/3 /60°
3	0	1	0	-Vs	Vs	0	-1/3	2/3	-1/3		2/3/120°
4	0	1	1	-Vs	0	VS	-43	1/3	1/3	2/13 /210	2/3/180
5	0	0	1	0	_Vs	Vs	-1/3	-1/3	2/3	2/13 /270	2/3 (240
	-		7	111.	_Vs	1	1/3	-2/3	1/3	2/13 /330°	2/3 1300
6		0		-Vs	_ vs	10	13	13	-		
7	1	1	1	0	0	0	0	0	0	0	0
8	0	(0 0	0	0	0	0	0	0	0	0.

State 1: (100)
$$Q_{s=\frac{2}{3}}[1+0+1e^{j4\pi/3}]$$

$$=\frac{2}{3}[3/30] \cdot \frac{2}{\sqrt{3}}/30$$

$$Qs = \frac{2}{3} \left[-1 + e^{j2\pi/3} \right]$$

$$\frac{9n \text{ general}}{V_{k} = \begin{cases} \frac{2}{3} e^{\frac{3}{2}} (v-1)^{\frac{7}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu} = \begin{cases} \frac{2}{3} e^{\frac{3}{3}} \\ 0 \end{cases} \quad v_{\mu}$$

vector representation for phase So the space 3 Wc [100] 3 vdc[001] 340[10] Ked Colores shows the position of space reclu of line voltage. (higher magnitude le phone différence of 30° mithrespect to phone voltage space vectur) Space vector is based upon balancing of rolt second product of reference vector with adjacent vectors of the sectors.

from eq 2

$$T_{i} = \overline{S} \cdot \alpha \left[\frac{Sin(\overline{h}/3 - \alpha)}{Sin \overline{h}/3} \right] - \overline{4}$$

NAW

$$T_0 = T_S - (T_1 + T_2)$$
 - \overline{S}

@ Looking at figure in sectors we can generalize the

Frem figne 1 to 6 it can be mitten as

$$T_1 = Ts. a. Sin \left(\frac{Ty_3 - \lambda + \frac{m-1}{3} \pi}{\sin \frac{\pi}{3}} \right)$$

$$T_1 = T_S \cdot \frac{|V_2|}{\frac{2}{3} \text{Vde}} \cdot \frac{\sin \left(\frac{\tau_3}{3} - \alpha + \frac{n\tau}{3} - \frac{\tau_3}{3}\right)}{\frac{\tau_3}{2}}$$

$$T_1 = \frac{\sqrt{3} \, T_s \, |V_1|}{\sqrt{3}} \, \sin\left(\frac{n\pi}{3} - \alpha\right) \qquad G$$

Similarly

$$T_2 = T_5 \cdot \alpha \cdot \frac{\sin(\alpha - \frac{n-1}{3}\pi)}{\sin(3)}$$

$$T_2 = \frac{\lceil 3 \, \text{Ts} \, |V_2|}{\text{Vde}} \cdot \text{Sun} \left(\alpha - \frac{n+7}{3} \pi \right) - \frac{7}{7}$$

Sector 2

$$V_{2} \rightarrow (110) \rightarrow T_{1}$$

$$V_{3} \rightarrow (010) \rightarrow T_{2}$$

$$V_{0} \rightarrow (000) \rightarrow T_{0}/2$$

$$V_{\phi} \rightarrow (111) \rightarrow T_{0}/2$$

Sector 3

$$V_{3} \rightarrow (010) \rightarrow T_{1}$$

$$V_{4} \rightarrow (011) \rightarrow T_{2}$$

$$V_{0} \rightarrow (000) \rightarrow T_{0}/2$$

$$V_{7} \rightarrow (111) \rightarrow T_{0}/2$$

Sector 4

$$\begin{array}{c} V_4 \longrightarrow (011) \longrightarrow T_1 \\ V_5 \longrightarrow (001) \longrightarrow T_2 \\ V_0 \longrightarrow (000) \longrightarrow T_0/2 \\ V_7 \longrightarrow (111) \longrightarrow T_0/2 \end{array}$$

Sector 5

$$V_{5} \longrightarrow (001) \longrightarrow T_{1}$$

$$V_{6} \longrightarrow (101) \longrightarrow T_{2}$$

$$V_{0} \longrightarrow (000) \longrightarrow T_{0}/2$$

$$V_{7} \longrightarrow (111) \longrightarrow T_{0}/2$$

Sector 6

$$V_{6} \longrightarrow (101) \longrightarrow T_{1}$$

$$V_{1} \longrightarrow (100) \longrightarrow T_{2}$$

$$V_{0} \longrightarrow (000) \longrightarrow T_{0}/2$$

$$V_{4} \longrightarrow (111) \longrightarrow T_{0}/2$$

Average Pole voltages

Sequence for sector 1 is given as

- Similarly we can plot for every sector tooking at the above waveforms.

$$V_{ao}(ang) = \frac{V_{bc}/2}{T_{s}} \left[-\frac{T_{o}}{2} + T_{1} + T_{2} + \frac{T_{o}}{2} \right] = \frac{V_{bc}/2}{T_{s}} \left[T_{1} + T_{2} \right]$$

$$V_{bo}(ang) = \frac{V_{bc}/2}{T_{s}} \left[-\frac{T_{o}}{2} - T_{1} + T_{2} + \frac{T_{o}}{2} \right] = \frac{V_{bc}/2}{T_{s}} \left[-T_{1} + T_{2} \right]$$

$$V_{co}(ang) = \frac{V_{bc}/2}{T_{s}} \left[-\frac{T_{o}}{2} - T_{1} - T_{2} + \frac{T_{o}}{2} \right] = \frac{V_{bc}/2}{T_{s}} \left[-T_{1} - T_{2} \right]$$

Sector	Ayle b/w starting vector & lef	Angle b/w lef Ep Endigretter
1	0	7/3-0
2	0-7/3	27/3-00
3	0-27/3	37/3-0
4	0-37/3	47/3-0
5	0-42/3	57/3-0
6	0-57/3	67/3-0

In general
$$\left[0-\frac{n-1}{3}\pi\right]$$
 $\left[\frac{n\pi}{3}-0\right]$

We calculated the times of vectors in last lecture

Comparing & axis components.

In general.

Comparing 'a' axis components we get.

Tg. Weef and = = Vdc. Ti + = Vdc as x/3. T2

using the value of T2 and Simplifying above expression one can eged

Ti = T3. To VM Sim (7/3-4)

and in general

TI= 13 To Vsef Sin (n To -a)

Time of zero/null vectors can be calculated

To = T3 -T1-T2

