Definition

An integer n is **even** if and only if n = 2k for some integer k. An integer n is **odd** if and only if n = 2k + 1 for some integer k.

Direct Proof (one direction)

Claim: If the sum of two integers is even, then their difference is even.

Proof:

Let $m, n \in \mathbf{Z}$.

Suppose m + n is even.

Then m + n = 2k for some $k \in \mathbf{Z}$,

so
$$m - n = (2k - n) - n = 2(k - n)$$
.

But $k - n \in \mathbf{Z}$,

so m-n is even.

Direct Proof (both directions)

Claim: For any positive real number x, x > 1 if and only if $x^2 > 1$.

Proof:

Consider any positive real number x.

 (\Rightarrow) Suppose x > 1.

Since x is positive,

we have $x \cdot x > x \cdot 1 = x > 1$

i.e. $x^2 > 1$.

 (\Leftarrow) Conversely, suppose $x^2 > 1$.

Then $x^2 - 1 > 0$,

i.e.
$$(x-1)(x+1) > 0$$
,

so x - 1 > 0 and x + 1 > 0

or x - 1 < 0 and x + 1 < 0.

But x > 0, so we can't have x + 1 < 0.

Therefore x - 1 > 0 and x + 1 > 0.

In particular, x - 1 > 0 gives x > 1.

Proof by Cases

 $Claim: x^2 \ge 0$ for every real number x.

Proof:

Case x > 0: Then $x \cdot x > 0 \cdot x$

$$=0,$$

so
$$x^2 > 0$$
.

Case x = 0: Then $x \cdot x = 0 \cdot 0$

so
$$x^2 = 0$$
.

Case x < 0: Then -x > 0,

so
$$0 \cdot (-x) > x \cdot (-x)$$
.

Thus
$$0 > -x^2$$

i.e.
$$x^2 > 0$$
.

Indirect Proof

Claim: Suppose x and y are real numbers.

If
$$xy = 0$$
, then $x = 0$ or $y = 0$.

Proof:

Suppose the claim is false,

so
$$xy = 0$$
 and $x \neq 0$ and $y \neq 0$.
for some $x, y \in \mathbf{R}$.

Since $x \neq 0$, we can

divide both sides of xy = 0 by x,

so
$$y = 0$$
.

This contradicts $y \neq 0$,

so the claim is true.

Constructive (Existence) Proof

Claim: There is a real number between any two different real numbers.

Proof:

Let b and c be real numbers, $b \neq c$.

Without loss of generality, we may assume b < c.

Let
$$d = \frac{b+c}{2}$$
, so $d \in \mathbf{R}$.

Then
$$d = \frac{b+c}{2} > \frac{b+b}{2} = b$$

and
$$d = \frac{b+c}{2} < \frac{c+c}{2} = c$$
,

so b < d and d < c.

Nonconstructive (Existence) Proof

Theorem 1.2 (Pigeonhole Principle): Let B and C be positive integers, B < C. If C cards are distributed among B boxes, then there is a box with more than one card.

Proof:

Let n_i be the number of cards in box i, for i = 1, ..., B.

Then
$$n_1 + \dots + n_B = C$$
 (*)

Suppose $n_i \leq 1$ for all i.

Then
$$n_1 + \cdots + n_B \leq 1 + \cdots + 1$$

$$= B < C$$
,

contradicting (*).

Therefore it is not true that $n_i \leq 1$ for all i i.e. $n_k > 1$ for some k.

Inductive Proof

First Principle of Mathematical Induction (**1PI**) Let P(n) be a predicate, where $n \in \mathbf{Z}$, and $b \in \mathbf{Z}$. If P(b) is true and $P(k) \to P(k+1)$ for all $k \ge b$, then P(n) is true for all $n \ge b$.

How to use 1PI:

Basis: Prove the claim is true for n = b.

Induction Hypothesis: Assume the claim is true if n = k, for some $k \ge b$.

Induction Step: Use the Induction Hypothesis to prove that the claim is true for n = k + 1.

It follows from 1PI that the claim is true for all $n \geq b$.

Claim: Let p_1, p_2, \ldots be statements. Then

$$\sim (p_1 \land p_2 \land \cdots \land p_n) \equiv (\sim p_1) \lor (\sim p_2) \lor \cdots \lor (\sim p_n)$$

for any $n \geq 2$.

Second Principle of Mathematical Induction (2PI)

Basis: Prove the claim is true for $n = b, b + 1, \dots, c$.

Induction Hypothesis: Assume the claim is true if $b \le n \le k$, for some $k \ge c$.

Induction Step: Use the Induction Hypothesis to prove that the claim is true for n = k + 1.

This proves the claim is true for all $n \geq b$.

Definition

Let p be a statement variable; then p and $\sim p$ are literals.

A **clause** is a literal or a Boolean expression of the form $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_r$, where each ℓ_i is a literal.

A Boolean expression is in **Conjunctive Normal Form** (CNF) iff it is a clause or has the form $C_1 \wedge C_2 \wedge \cdots \wedge C_s$, where each C_j is a clause.

Example

$$\left((\sim p) \land (q \lor r) \right) \lor \left(\sim \left(s \lor p \lor (\sim q) \right) \right)$$

Claim: Every Boolean expression is logically equivalent to a Boolean expression in CNF.