Trigonometry

Definitions

$$\tan A = \frac{\sin A}{\cos A}$$
 $\cot A = \frac{1}{\tan A}$
 $\sec A = \frac{1}{\cos A}$ $\csc A = \frac{1}{\sin A}$

$$\cot A = \frac{1}{\tan A}$$

$$\sec A = \frac{1}{\cos A}$$

$$\csc A = \frac{1}{\sin A}$$

Trigonometric ratios of certain angles

A (degrees)	0°	90°	180°	270°	30°	45°	60°
A (radians)	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos A$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
sin A	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
tan A	0	not defined	0	not defined	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Basic identities

$$\cos^2 A + \sin^2 A = 1$$
$$\cos(-A) = \cos A$$
$$\sin(-A) = -\sin A$$
$$\tan(-A) = -\tan A$$

Compound angle formulae

$$cos(A+B) = cos A cos B - sin A sin B$$

$$cos(A - B) = cos A cos B + sin A sin B$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Double angle formulae

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\sin 2A = 2\sin A\cos A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$$

$$\cos^2 A = \frac{1}{2} (1 + \cos 2A)$$

$$\sin^2 A = \frac{1}{2} \left(1 - \cos 2A \right)$$

Products to sums and differences

 $2\cos A\cos B = \cos(A+B) + \cos(A-B)$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

Sums and differences to products

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

Trigonometry of the triangle

Area = $\frac{1}{2}ab\sin C$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$

In a right-angled triangle,

$$\sin = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$tan = \frac{opposite}{adjacent}$$

Algebra

Roots of quadratic equation: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Binomial theorem:
$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \cdots + \binom{n}{r} x^{n-r} y^r + \cdots + \binom{n}{n} y^n$$

De Moivre's theorem: $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta) = r^n e^{in\theta}$ or $(r\cos\theta)^n = r^n \cos(n\theta)$

Inverse of matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
: $\frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, where $\det A = ad - bc$

Sequences and series

Arithmetic sequence or series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric sequence or series

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
, where $|r| < 1$

Number sets - notation

Natural numbers: $N = \{1, 2, 3, 4, \cdots\}$ $W = \{0, 1, 2, 3, 4, \cdots\}$ Whole numbers:

 $\mathbf{Z} = \{\cdots -3, -2, -1, 0, 1, 2, 3, \cdots\}$ Integers:

 $\mathbf{Q} = \left\{ \frac{p}{q} \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0 \right\}$ Rational numbers:

Real numbers:

 $\mathbf{C} = \{ a + bi \mid a \in \mathbf{R}, b \in \mathbf{R}, i^2 = -1 \}$ Complex numbers:

Calculus

Differentiation

f(x)	f'(x)
χ^n	nx^{n-1}
$\ln x$	$\frac{1}{x}$
e^x	e ^x
e^{ax}	ae ^{ax}
a^x	$a^x \ln a$
cos x	$-\sin x$
sin x	cos x
tan x	sec ² x
$\cos^{-1}\frac{x}{a}$	$-\frac{1}{\sqrt{a^2-x^2}}$
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$

Product rule

Chain rule

$$y = uv \implies \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

y =
$$uv \Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$
 $y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

y = u(v(x)) $\Rightarrow \frac{dy}{dx} = \frac{du}{dy} \frac{dv}{dx}$

Newton-Raphson Iteration

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Maclaurin series

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(r)}(0)}{r!}x^r + \dots$$

Taylor series

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \dots + \frac{h^r}{r!}f^{(r)}(x) + \dots$$

Integration

Constants of integration omitted.

Constants of integration	omittee.		
f(x)	$\int f(x)dx$		
$x^n, (n \neq -1)$	$\frac{x^{n+1}}{n+1}$		
$\frac{1}{x}$	$\ln x $		
e^x	e^x		
e^{ax}	$\frac{1}{a}e^{ax}$		
a^x $(a > 0)$	$\frac{a^x}{\ln a}$		
$\cos x$	$\sin x$		
sin x	$-\cos x$		
tan x	$\ln \sec x $		
$\frac{1}{\sqrt{a^2 - x^2}} (a > 0)$	$\sin^{-1}\frac{x}{a}$		
$\frac{1}{x^2 + a^2} (a > 0)$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$		

Integration by parts

$$\int u dv = uv - \int v du$$

Solid of revolution about x-axis

$$Volume = \int_{x=a}^{x=b} y^2 dx$$

Standard Taylor Series about 0

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9 + \dots, \quad \text{for } x \in \mathbf{R}$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8 - \dots, \quad \text{for } x \in \mathbf{R}$$

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \dots, \quad \text{for } x \in \mathbf{R}$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots, \quad \text{for } -1 < x < 1$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots, \quad \text{for } -1 < x < 1$$

$$(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots,$$

 $\text{for } -1 < x < 1 \text{ and for any } \alpha \in \mathbf{R}.$