Fontes principais

- 1. Cormem T. H.; Leiserson C. E.; Rivest R.: Stein C. Introduction to Algorithms, 3^a edição, MIT Press, 2009
- 2. Análise de algoritmo IME/USP (prof. Paulo Feofiloff) http://www.ime.usp.br/~pf/analise_de_algoritmos

Um algoritmo de ordenação baseia-se em comparações se o fluxo do algoritmo para uma entrada de tamanho n depende apenas de comparações do tipo $a_i \leq a_j$. Todos os algoritmos de ordenação que estudamos até o momento baseiam-se em comparações.

Theorem 1. Qualquer algoritmo de ordenação por comparação exige $\Omega(n \lg n)$ comparações no pior caso.

Dem.: Por árvore de decisão.

Dado um vetor com n elementos, o vetor ordenado pode ser qualquer uma das n! permutações.

Um algoritmo de ordenação efetua um número de comparações equivalente a altura da árvore com n! folhas.

Uma árvore binária com altura h tem no máximo 2^h folhas.

Logo, temos:

$$n! \le 2^h \Rightarrow \lg(n!) \le h \quad (a \le b \Rightarrow \lg a \le \lg b)$$

 $h \ge \lg(n!) \Rightarrow h = \Omega(n \lg n)$
 $\lg(n!) \ge \frac{n}{4} \lg n, n \ge 16$

Portanto, $h = \Omega(n \lg n)$

Ordenação em tempo linear

Cada elemento é um inteiro i no intervalo [1..k] Idéia:

- ightharpoonup Contar para cada elemento x da entrada o número de elementos menores que x.
- \triangleright Colocar x diretamente na usa posição no vetor de saída.

Utiliza dois vetores auxiliares para ordenar.

```
custo
Counting-Sort(A, B, n, k)
    para i = 1 até k faça
                                                            \Theta(k)
1
        C[i] = 0
                                                            \Theta(k)
                                                            \Theta(n)
3
    para j = 1 até n faça
                                                            \Theta(n)
        C[A[i]] = C[A[i]] + 1
4
   ▷ C[i] contém núm. de elementos iguais a i
5
   para i = 2 até k faça
                                                            \Theta(k)
6
                                                            \Theta(k)
        C[i] = C[i] + C[i-1]
    ▷ C[i] contém núm. de elementos ≤ i
8
9
    para j = n até 1 faça
                                                            \Theta(n)
        B[C[A[j]]] = A[j]
                                                            \Theta(n)
10
        C[A[j]] = C[A[j]] - 1
                                                            \Theta(n)
11
```

Entrada:

Saída:

Estão na mesma ordem em que aparece em A.

Passo a passo:

Atividade: "Simular" a aplicação do algoritmo Counting-Sort.

Passo a passo:

Perceba a estabilidade do algoritmo

Classificação dos algoritmos de ordenação

Estabilidade

 Um algoritmo é estável se elementos idênticos ocorrem no vetor ordenado na mesma ordem que foram recebidos como entrada

Localidade

 Um algoritmo é local se a quantidade de memória adicional requerida é constante.

Note que Counting Sort é estável mas não local.

Quais são os algoritmos estáveis?

Quais não são estáveis?

- Selection-Sort (Depende do algoritmo)

Radix-Sort

Radix-Sort

- ightharpoonup Números a serem ordenados tem d dígitos
- ▷ Inicia-se pelo dígito menos significativo

```
Radix-Sort(A, n, d)
```

- 1 para i = 1 até d faça
- ordena A[1..n] pelo n-ésimo dígito com um algarismo **estável**

Radix-Sort

329		720		720		329
457		355		329		355
657		436		436		436
839	allijus.	457]]ի-	839	ուսվիր-	457
436		657		355		657
720		329		457		720
355		839		657		839

Complexidade do Radix-Sort

A análise do tempo de execução depende da ordenação estável usada como algoritmo ordenação intermediária.

Usando o Counting-Sort para dígitos na faixa $[0 \cdots k-1]$, a complexidade de pior caso é $\Theta(d(n+k))$

Se
$$k = O(n)$$
 e $d = O(1)$, então $T(n) = \Theta(n)$.

Note que se for utilizada, por exemplo, Insertion-Sort, como algoritmo estável a complexidade de tempo **não será** a linear.

Bucket-Sort (Ordenação por "balde")

Bucket-Sort (Ordenação por "balde")

Os n elementos do vetor são valores reais distribuídos uniformemente em [0,1)

Divide-se o intervalor [0,1) em n buckets de mesmo tamanho e distribui-se os n elementos nos respectivos buckets

Cada bucket é ordenado por um método "qualquer"

Por fim, os buckets ordenados são concatenados em ordem crescente

Baldes

Entrada: 29 25 3 49 9 37 21 43

Saída: 3 9 21 25 29 37 43 49

Bucket-Sort (Ordenação por "balde")

```
Bucket-Sort(A, n)

1 para i = 0 até n - 1

2 faça B[i] = null

3 para i = 1 até n

4 faça insira A[i] na lista B[\lfloor n \cdot A[i] \rfloor]

5 para i = 0 até n - 1

6 faça Insertion-Sort(B[i])

7 Concatene as listas B[0], B[1], \dots, B[n - 1]
```

Exemplo

Complexidade do Bucket-Sort

Pior caso: Supondo Insertion-Sort para ordenar as listas $\Theta(n^2)$

Caso médio: Número de elementos em cada lista é $\Theta(1)$, e o tempo esperado para ordenar uma lista B[i] também é $\Theta(1)$

Melhor caso: $\Theta(n)$

Complexidade de espaço: $\Theta(n)$

Dicas de website

https://www.cs.usfca.edu/~galles/visualization/CountingSort.html
https://www.cs.usfca.edu/~galles/visualization/RadixSort.html
https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

Neste mesmo site tem visualizações de outros algoritmos

Obrigado