Manifolds I

• September 26, 2024

Class Organization

- 1 Takehome Midterm
- 1 Takehome Final

Homeworks assigned, but not graded.

https://ginzburg.math.ucsc.edu/teaching/208manifolds1-2024/syl.html

Definition: Topological Manifolds

For M a topological space, M is a topological manifold if $\forall x \in M, \exists M \supset U \ni x$ and homeomorphism $\phi : U \to V \subset \mathbb{R}^n$ for V open.

To avoid problems (see below), further assume that M is Hausdorff and second countable.

Exercise

We can require V to be an open ball.

Problems

• M need not be Hausdorff.

With $(\mathbb{R} \times 0 \coprod \mathbb{R} \times 1)/\sim$.

• *M* need not be second countable.

Take $\coprod_{S} \mathbb{R}_{S}$ where S is an uncountable index.

Examples

Example 1

If $N \simeq M$, this implies N is a manifold.

Example 2

IMAGE 3

Example 3

An open subset of a manifold is a manifold.

Example 4

M, N manifolds implies $M \times N$ is a manifold.

Example 5

Take \mathbb{R}/\mathbb{Z} by the equivalence relation $t \sim t'$ iff $t' - t \in \mathbb{Z}$.

IMAGE 4

Then $C^0(S^1)$ relates to periodic functions with period 1.

Example 6

$$\mathbb{T}^n = S^1 \times \cdots \times S^1$$
.

Counterexample 1

[0,1] is not a manifold.

IMAGE 5

Since 0 must map somewhere in the open interval, its deletion results in a connected space in the former case but a disconnected one in the latter. Similarly, the following breaks into three and two connected components respectively.

IMAGE 6

Definition: Manifold with Boundary

There exists a neighborhood $\forall x \in M$ homeomorphic to either the open ball or the half-closed half-ball.

IMAGE 7

Exercise

A connected manifold is path-connected.

Examples

Example 7

Take $f: \mathbb{R}^n \stackrel{C^0}{\to} \mathbb{R}$ with graph $\Gamma_f = \{(x, f(x)) : x \in \mathbb{R}^n\} \subset \mathbb{R}^n \times \mathbb{R}$.

IMAGE 8

Example 8

Take $f: M \to N$ between manfiolds, then $M \simeq \Gamma_f \subseteq M \times N$.

Example 9

 $S^n \subset \mathbb{R}^{n+1}$.

IMAGE 9

Definition: Real Projective Spaces

Take $\mathbb{RP}^n = \mathbb{R}^{n+1} \setminus \{0\} / \sim \text{ where } x \sim y \iff x = \lambda y \text{ for } \lambda \neq 0.$

Informally, the collection of lines through the origin.

Alternatively, $\mathbb{RP}^n = S^n / \sim \text{ where } x \sim -x$.

That is, identifying the antipodal points of the unit sphere.

We may also consider $\mathbb{RP}^n = SO(n+1)/SO(n)$.

Claim

 \mathbb{RP}^n is a manifold.

IMAGE 10

 $\mathbb{RP}^1 \setminus \{x \text{-axis}\} \stackrel{\text{homeo}}{\to} \mathbb{R}.$

IMAGE 11

$$\mathbb{RP}^2 \setminus \mathbb{RP}^1 \xrightarrow{\text{homeo}} \mathbb{R}^2$$

We have that \mathbb{RP}^1 is homeomorphic to the circle, and $\mathbb{RP}^n = \mathbb{RP}^{n-1} \cup B^n$.

Take $x = (x_0, ..., x_n), y = (y_0, ..., y_n) = (\lambda x_0, ..., \lambda x_n)$ and $[x] = [x_0 : x_1 : ... : x_n]$.

Then for $U_k \subset \mathbb{RP}^n$ with $U_k = \{[x] : x_k \neq 0\}$, we have that U_0, \ldots, U_n covers \mathbb{RP}^n . Then define $U_k \to \mathbb{R}^n$ by $[x_0 : \cdots : x_n] \to \left(\frac{x_0}{x_k}, \ldots, \frac{x_k}{x_k}, \ldots, \frac{x_n}{x_k}\right)$.

Connected Sum of Manfiolds

IMAGE 12

$$M \setminus B^n \mid \mid N \setminus B^n$$

IMAGE 13

M#N.