Геометрия в компьютерных приложениях

Лекция 3: Геометрия поверхностей и общая топология

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

28 сентября 2017 г.

4. Геометрия поверхностей

4.5. Напоминание.

- ullet канонический базис $\{e_1, \dots, e_N\}$
- ullet Гиперповерхность: dim M=N, где $M\subset \mathbb{R}^{N+1}$.
- вектор **нормали** *п*.
- ullet / квадратичная форма g(x,x): матрица $G=G(e_1,\ldots,e_N)$.
- ullet II квадр. форма b(x,x): матрица $B=(b_{ij})$, где $b_{ij}=\left(\frac{\partial^2 r}{\partial u_i\partial u_i},n\right)$.
- $\tilde{k}(\gamma)$ кривизна нормального сечения со знаком, если нормали кривой и поверхности сонаправлены, то ставим +, иначе -.
- (Теорема Менье) Пусть v вектор скорости в т. P кривой μ на поверхности M, γ нормальное сечение M плоскостью $\langle n, v \rangle$. Пусть $n(\mu)$ вектор главной нормали к μ , $\theta = \angle(n, n(\mu))$. Тогда

$$\tilde{k}(\gamma) = k(\mu)\cos\varphi = \frac{b(v,v)}{g(v,v)}.$$

4.6. Главные кривизны и направления.

Теорема

Существует ортонормированный базис $\{e_1',\ldots,e_N'\}\in T_PM$, в котором матрица I квадр. формы равна E, а матрица I формы — $diag(\lambda_1,\ldots,\lambda_N)$, причем λ_i — корни уравнения $det(B-\lambda G)=0$.

Доказательство.

- \exists ортонормированный базис $\{e_1'',\dots,e_N''\}\in T_PM$: в нем матрица I формы равна E, а у второй какая-то.
- Сделаем ортогональное преобразование, приводящее матрицу II формы к диагональному виду. Тогда матрица первой формы по-прежнему останется равной E.
- Пусть B'' матрица II формы в базисе $\{e_1'',\ldots,e_N''\}$, а C матрица перехода от $\{e_1,\ldots,e_N\}$ к $\{e_1'',\ldots,e_N''\}$. Тогда $B''=C^TBC$, $E=C^TGC$, откуда

$$0 = \det(B'' - \lambda E) = \det(C^T B C - \lambda C^T G C) = (\det C)^2 \det(B - \lambda G).$$

Богачев Н.В. (МФТИ)

Следствие

Столбцы a_1, \ldots, a_N координат векторов e'_1, \ldots, e'_N в базисе $\{e_1, \ldots, e_N\}$ — нуль-векторы матрицы $(B - \lambda_j G)$, то есть $(B - \lambda_j G)a_j = 0$.

Доказательство.

- Пусть q_1, \ldots, q_N столбцы координат векторов e'_1, \ldots, e'_N в базисе $\{e''_1, \ldots, e''_N\}$. Тогда $(B'' \lambda_j E)q_j = 0$.
- ullet Ho $a_j=\mathit{Cq}_j$, откуда

$$0 = (B'' - \lambda_j E)q_j = C^T(B - \lambda_j G)Cq_j = C^T(B - \lambda_j G)a_j.$$

Определение

Главные направления — e_1', \dots, e_N' Главные кривизны — $\lambda_1, \dots, \lambda_N$.

Теорема (об экстремальных значениях нормальных кривизн)

Пусть $k_1=\min_{v\in T_{PM}} \tilde{k}(v)$, $k_2=\max_{v\in T_{PM}} \tilde{k}(v)$, где $\|v\|=1$. Тогда $k_1,k_2\in\{\lambda_1,\ldots,\lambda_N\}$.

Доказательство.

- ullet Пусть $lpha_j := \angle(v, e_j)$, тогда $v = \sum_{j=1}^N e_j \cos lpha_j$.
- ullet Тогда $ilde{k}(v)=rac{b(v,v)}{g(v,v)}=\sum_{j=1}^{N}\lambda_{j}\cos^{2}lpha_{j}$ (формула Эйлера).
- ullet Пусть $\lambda_1 \geq \lambda_j$. Заметим, что $1=(v,v)=\sum_{j=1}^N\cos^2\alpha_j$, откуда $\cos^2\alpha_1=1-\sum_{j=2}^N\cos^2\alpha_j$
- $\tilde{k}(v) = \lambda_1 \sum_{j=2}^{N} (\lambda_1 \lambda_j) \cos^2 \alpha_j \le \lambda_1$
- Причем $\tilde{k}(v)=\lambda_1$ для $\alpha_1=0,\ \alpha_2=\ldots=\alpha_N=\frac{\pi}{2}.$ С минимальной кривизной аналогично.

- Средняя кривизна $H = \lambda_1 + \ldots + \lambda_N$.
- Гауссова кривизна $K = \lambda_1 \cdot \ldots \cdot \lambda_N$.

Предложение

$$H = \operatorname{tr}(BG^{-1}), \quad K = \det(BG^{-1}) = \frac{\det B}{\det G}$$

Доказательство.

$$0 = \det(B - \lambda G) = \det(BG^{-1} - \lambda E) \det G$$

Богачев Н.В. (МФТИ)

5. Элементы общей топологии

5.1. Определения.

Определение

Топологическое пространство — множество X с выделенным семейством au его подмножеств, для которого верно

(1)
$$\emptyset, X \in \tau$$
; (2) $A, B \in \tau \Rightarrow A \cap B \in \tau$; (3) $\forall \alpha \ X_{\alpha} \in \tau \Rightarrow \bigcup_{\alpha} X_{\alpha} \in \tau$.

Множества из au называются **открытыми**, а само au — **топологией.**

Примеры

- (1) $\tau = (\emptyset, X)$ минимальная (тривиальная) топология
- (2) $\tau = 2^X$ максимальная (дискретная) топология
- (3) топология **метрического** пространства (стандартный пример $-\mathbb{R}^n$).

Топологическое пространство (X, τ) называется **отделимым** или **хаусдорфовым**, если для всяких двух различных точек $x, y \in X$ найдутся такие непересекающиеся открытые множества A и B, что $x \in A$, $y \in B$.

Примеры

- (1) $\tau = (\emptyset, X)$ минимальная (тривиальная) топология не является хаусдорфовой
- (2) $au = 2^X$ максимальная (дискретная) топология хаусдорфова
- (3) метрические пространства всегда хаусдорфовы.

Основные понятия, аналогичные понятиям из топологии в \mathbb{R}^n .

- Замкнутое множество дополнение к которому открытое;
- Точка x называется **предельной** для множества $A \subset X$, если во всяком открытом множестве, содержащем эту точку, есть элемент из A, отличный от x;
- Точка $a \in A$ называется **изолированной** точкой множества A, если у нее есть окрестность, в которой нет других точек из A;
- Замыкание \overline{A} множества A есть пересечение всех замкнутых множеств, содержащих A. Ясно, что \overline{A} получается из A добавлением всех предельных точек;
- ullet Если $\overline{A}=X$, то A называют всюду плотным в X.
- Отображение топологических пространств $f: X \to Y$ называется **непрерывным в точке** $x \in X$, если для всякого открытого $V \subset Y$, такого что $f(x) \in V$, найдется такое открытое $U \subset X$, что $f(U) \subset V$.

- $f: X \to Y$ **непрерывно**, если оно непрерывно в каждой точке.
- Отображение $f: X \to Y$ **гомеоморфизм**, если оно биективно, непрерывно и имеет непрерывную обратную функцию.
- Множество в топологическом пространстве называется компактным (или компактом), если из всякого его покрытия открытыми множествами можно выбрать конечное подпокрытие.

- [1] А.О. Иванов, А.А. Тужилин Лекции по классической дифференциальной геометрии, 2009, Москва, Логос. Лекции 4, 10.
- [2] А.И. Шафаревич Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. Лекции 5, 12.
- [3] В.И. Богачев, О.Г. Смолянов Действительный и функциональный анализ: университетский курс, 2-е изд., М-Ижевск, 2011. Глава 1.