Digital Logic Design

4190.201

2014 Spring Semester

6. Case Studies in Combinational Logic Design

Naehyuck Chang
Dept. of CSE
Seoul National University
naehyuck@snu.ac.kr

Combinational logic design case studies

- General design procedure
- Case studies
 - BCD to 7-segment display controller
 - logical function unit
 - process line controller
 - calendar subsystem
- Arithmetic circuits
 - integer representations
 - addition/subtraction
 - arithmetic/logic units

General design procedure for combinational logic

- Step 1. Understand the problem
 - What is the circuit supposed to do?
 - Write down inputs (data, control) and outputs
 - Draw block diagram or other picture
- Step 2. Formulate the problem using a suitable design representation
 - Truth table or waveform diagram are typical
 - May require encoding of symbolic inputs and outputs
- Step 3. Choose implementation target
 - ROM, PAL, PLA
 - Mux, decoder and OR-gate
 - Discrete gates
- Step 4. Follow implementation procedure
 - K-maps for two-level, multi-level
 - Design tools and hardware description language (e.g., Verilog)

- Two-level implementation
 - Same speed regardless of the Boolean function as far as it can be fit
 - Fixed delay
 - Programmable logic device
- Organization
 - AND plane
 - OR plane
- Programmable AND plane
 - Generate selective product terms
- Fixed AND plane
 - Generate all the product terms
- Programmable OR plane
 - OR generated product terms selectively
- Fixed AND plane
 - OR all the generated product terms

- ROM
 - Fixed AND plane
 - Programmable OR plane
 - How to program?
 - Determine 1 or 0 of each address
 - Select wanted product terms

Word lines (only one is active – decoder is just right for this)

Internal organization

Bit lines (normally pulled to 1 through resistor – selectively connected to 0 by word line controlled switches?

- PAL
 - Programmable AND plane
 - Fixed OR plane
 - How to program?
 - Generate wanted product terms

- PLA
 - Programmable AND plane
 - Programmable OR plane
 - How to program?
 - Generate wanted product terms
 - Select wanted product terms

BCD to 7-segment display controller

- Understanding the problem
 - input is a 4 bit bcd digit (A, B, C, D)
 - output is the control signalsfor the display (7 outputs C0 C6)
- Block diagram

Formalize the problem

- Truth table
 - show don't cares
- Choose implementation target
 - if ROM, we are done
 - don't cares imply PAL/PLA may be attractive
- Follow implementation procedure
 - minimization using K-maps

				_						
Α	В	C	D	C0	C1	C2	C 3	C4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	_	_	-	_	_	+1	-	_
1	1	_	_	_	-	_	-	_	-	_

Implementation as minimized sum-of-products

15 unique product terms when minimized individually

Implementation as minimized S-o-P (cont'd)

- Can do better
 - 9 unique product terms (instead of 15)
 - share terms among outputs
 - each output not necessarily in minimized form

				A	
C2	1	1	X	1	
	1	1	Χ	1	D
С	1	1	Χ	X	
	0	1	X	Х	
•			3		,

PLA implementation

PAL implementation vs. Discrete gate implementation

- Limit of 4 product terms per output
 - Decomposition of functions with larger number of terms
 - Do not share terms in PAL anyway
 (although there are some with some shared terms)

```
C2 = B + C' + D

C2 = B' D + B C' D + C' D' + C D + B C D'

C2 = B' D + B C' D + C' D' + W need another input and another output

W = C D + B C D'
```

- Decompose into multi-level logic (hopefully with CAD support)
 - Find common sub-expressions among functions

```
C0 = C3 + A' B X' + A D Y

C1 = Y + A' C5' + C' D' C6

C2 = C5 + A' B' D + A' C D

C3 = C4 + B D C5 + A' B' X'

C4 = D' Y + A' C D'

C5 = C' C4 + A Y + A' B X

C6 = A C4 + C C5 + C4' C5 + A' B' C
```


Logical function unit

- Multi-purpose function block
 - 3 control inputs to specify operation to perform on operands
 - 2 data inputs for operands
 - 1 output of the same bit-width as operands

C0	C1	C2	Function	Comments	
0	0	0	1	always 1	
0	0	1	A + B	logical OR	2
0	1	0	(A • B)'	logical NAND	3 control inputs: C0, C1, C2
0	1	1	A xor B	logical xor	2 data inputs: A, B
1	0	0	A xnor B	logical xnor	1 output: F
1	0	1	A • B	logical AND	
1	1	0	(A + B)'	logical NOR	
1	1	1	0	always 0	

Formalize the problem

C0	C1	C2	Α	В	F
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1 1	0	0	0 1
0	0	1	0	1	1
0	0	1 1	1	0	1
0	0	1	1	1	1
0	1	0	1 0	0	1 1
0	1	0	0	1	1
0	0 1 1 1	0	1	0	1
0		0	1	1	1 0
0	1	1	0	0	0
0	1	1	0	1	0 1
0	1 1 1 1	0 1 1 1	1	0	1 0 1
0		1	1	1	0
1	0	0	0 0	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1 1 1	0	1	0
1	0	1	1	0	0
1	0	1	1	1	1
1	1	0	0	0	1
1	1 1	0	0	1	0
1	1	0	1	0	0
1	1	0	1	1	0
1	1	1	0	0	0
1 1	1 1	1 1 1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	0

Choose implementation technology 5-variable K-map to discrete gates multiplexor implementation

74LS247

SN54/74LS247 • SN54/74LS248 • SN54/74LS249

Production line control

- Rods of varying length (+/-10%) travel on conveyor belt
 - mechanical arm pushes rods within spec (+/-5%) to one side
 - second arm pushes rods too long to other side
 - rods that are too short stay on belt
 - 3 light barriers (light source + photocell) as sensors
 - design combinational logic to activate the arms
- Understanding the problem
 - inputs are three sensors
 - outputs are two arm control signals
 - assume sensor reads "1" when tripped, "0" otherwise
 - call sensors A, B, C

Sketch of problem

- Position of sensors
 - A to B distance = specification − 5%
 - A to C distance = specification + 5%

Formalize the problem

- Truth table
 - Show don't cares

Α	В	С	Function
0	0	0	do nothing
0	0	1	do nothing
0	1	0	do nothing
0	1	1	do nothing
1	0	0	too short
1	0	1	don't care
1	1	0	in spec
1	1	1	too long

Logic implementation now straightforward just use three 3-input AND gates

```
"too short" = AB'C'
(only first sensor tripped)
```

```
"in spec" = A B C'
(first two sensors tripped)
```

"too long" = A B C
(all three sensors tripped)

Calendar subsystem

- Determine number of days in a month (to control watch display)
 - used in controlling the display of a wrist-watch LCD screen
 - inputs: month, leap year flag
 - outputs: number of days
- Use software implementation to help understand the problem

```
integer number of days ( month, leap year flag)
    switch (month) {
         case 1: return (31);
         case 2: if (leap year flag == 1)
                      then return (29)
                      else return (28);
         case 3: return (31);
         case 4: return (30);
         case 5: return (31);
         case 6: return (30);
         case 7: return (31);
         case 8: return (31);
               9: return (30);
         case
         case 10: return (31);
         case 11: return (30);
         case 12: return (31);
         default: return (0);
```


Formalize the problem

- Encoding:
 - binary number for month: 4 bits
 - 4 wires for 28, 29, 30, and 31 one-hot only one true at any time
- Block diagram:

month	leap	28	29	30	31
0000	_	_	_	_	
0001	_	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	_	0	0	0	1
0100	_	0	0	1	0
0101	_	0	0	0	1
0110	_	0	0	1	0
0111		0	0	0	1
1000	-	0	0	0	1
1001	- (0	0	1	0
1010	_	0	0	0	1
1011	_	0	0	1	0
1100	_	0	0	0	1
1101	_	_	_	_	_
111-	_	_	_	_	_

Choose implementation target and perform mapping

Discrete gates

```
28 = m8' m4' m2 m1' leap'
```

$$9 mtext{ 30 = } mtext{ m8' m4 m1' + m8 m1}$$

$$9 31 = m8' m1 + m8 m1'$$

Can translate to S-o-P or P-o-S

month	leap	28	29	30	31
0000	_	_	_	_	- /
0001	_	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	_	0	0	0	1
0100	_	0	0	1	0
0101	_	0	0	0	1
0110	_	0	0	1	0
0111	_	0	0	0	1
1000	_	0	0	0	1
1001	_	0	0	1	0
1010		0	0	0	1
1011	-	0	0	1	0
1100	_	0	0	0	1
1101	_	_	_	_	_
111-	-	_	_	-	_

Leap year flag

- Determine value of leap year flag given the year
 - For years after 1582 (Gregorian calendar reformation),
 - leap years are all the years divisible by 4,
 - except that years divisible by 100 are not leap years,
 - but years divisible by 400 are leap years.
- Encoding the year:
 - binary easy for divisible by 4, but difficult for 100 and 400 (not powers of 2)
 - BCD easy for 100, but more difficult for 4, what about 400?
- Parts:
 - construct a circuit that determines if the year is divisible by 4
 - construct a circuit that determines if the year is divisible by 100
 - construct a circuit that determines if the year is divisible by 400
 - combine the results of the previous three steps to yield the leap year flag

Activity: divisible-by-4 circuit

- BCD coded year
 - YM8 YM4 YM2 YM1 YH8 YH4 YH2 YH1 YT8 YT4 YT2 YT1 YO8 YO4 YO2 YO1
- Only need to look at low-order two digits of the year all years ending in 00, 04, 08, 12, 16, 20, etc. are divisible by 4
 - if tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8
 - if tens digit is odd, then divisible by 4 if the ones digit is 2 or 6.
- Translates into the following Boolean expression (where YT1 is the year's tens digit low-order bit, YO8 is the high-order bit of year's ones digit, etc.):
 - YT1' (Y08' Y04' Y02' Y01' + Y08' Y04 Y02' Y01' + Y08 Y04' Y02' Y01')
 + YT1 (Y08' Y04' Y02 Y01' + Y08' Y04 Y02 Y01')
- Digits with values of 10 to 15 will never occur, simplify further to yield:
 - YT1' YO2' YO1' + YT1 YO2 YO1'

Divisible-by-100 and divisible-by-400 circuits

- Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:
 - YT8' YT4' YT2' YT1' YO8' YO4' YO2' YO1'
- Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds digits) and divisible-by-100 circuits
 - (YM1' YH2' YH1' + YM1 YH2 YH1') (YT8' YT4' YT2' YT1' YO8' YO4' YO2' YO1')

Combining to determine leap year flag

Label results of previous three circuits: D4, D100, and D400

Implementation of leap year flag

Arithmetic circuits

- Excellent examples of combinational logic design
- Time vs. space trade-offs
 - doing things fast may require more logic and thus more space
 - example: carry lookahead logic
- Arithmetic and logic units
 - general-purpose building blocks
 - critical components of processor datapaths
 - used within most computer instructions

Number systems

- Representation of positive numbers is the same in most systems
- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
 - sign and magnitude
 - 1s complement
 - 2s complement
- Assumptions
 - we'll assume a 4 bit machine word
 - □ 16 different values can be represented
 - roughly half are positive, half are negative

Sign and magnitude

- One bit dedicate to sign (positive or negative)
 - sign: 0 = positive (or zero), 1 = negative
- Rest represent the absolute value or magnitude
 - three low order bits: 0 (000) thru 7 (111)
- Range for n bits
 - +/-2n-1-1 (two representations for 0)
- Cumbersome addition/subtraction
 - must compare magnitudes to determine sign of result

$$0\ 100 = +4$$
 $1\ 100 = -4$

1s complement

- If N is a positive number, then the negative of N (its 1s complement or N') is $N' = (2^n 1) N$
 - Example: 1s complement of 7

$$2^{4} = 10000$$
 $1 = 00001$
 $2^{4}-1 = 1111$
 $7 = 0111$
 $1000 = -7 \text{ in 1s complement form}$

Shortcut: simply compute bit-wise complement (0111 -> 1000)

1s complement (cont'd)

- Subtraction implemented by 1s complement and then addition
- Two representations of 0
 - causes some complexities in addition
- High-order bit can act as sign bit

$$0\ 100 = +4$$

$$1011 = -4$$

2s complement

- 1s complement with negative numbers shifted one position clockwise
 - only one representation for 0
 - one more negative number than positive numbers
 - high-order bit can act as sign bit

$$0\ 100 = +4$$

$$1\ 100 = -4$$

2s complement (cont'd)

- If N is a positive number, then the negative of N (its 2s complement or N^*) is $N^* = 2n N$
 - Example: 2s complement of 7

$$2^4 = 10000$$

subtract $7 = 0111$
 $1001 = \text{repr. of } -7$

$$2^{4} = 10000$$

subtract $-7 = 1001$
 $0111 = \text{repr. of } 7$

- Shortcut: 2s complement = bit-wise complement + 1
 - 0111 -> 1000 + 1 -> 1001 (representation of -7)
 - □ 1001 -> 0110 + 1 -> 0111 (representation of 7)

2s complement addition and subtraction

- Simple addition and subtraction
 - simple scheme makes 2s complement the virtually unanimous choice for integer number systems in computers

Why can the carry-out be ignored?

- Can't ignore it completely
 - Needed to check for overflow (see next two slides)
- When there is no overflow, carry-out may be true but can be ignored
 - -M + N when N > M:

$$M^* + N = (2n - M) + N = 2n + (N - M)$$

ignoring carry-out is just like subtracting 2n

$$-M + -N$$
 where $N + M \le 2n-1$

$$(-M) + (-N) = M^* + N^* = (2n-M) + (2n-N) = 2n - (M+N) + 2n$$

ignoring the carry, it is just the 2s complement representation for -(M + N)

Overflow in 2s complement addition/subtraction

- Overflow conditions
 - add two positive numbers to get a negative number
 - add two negative numbers to get a positive number

Overflow conditions

Overflow when carry into sign bit position is not equal to carry-out

overflow

$$\begin{array}{r}
0 \ 0 \ 0 \ 0 \\
0 \ 1 \ 0 \ 1 \\
\underline{0} \ 0 \ 1 \ 0 \\
\underline{2} \ 7
\end{array}$$

no overflow

$$\begin{array}{r}
1 \ 0 \ 0 \ 0 \\
1 \ 0 \ 0 \ 1 \\
-7 \ \underline{\qquad 1110} \\
7 \ \end{array}$$

overflow

$$\begin{array}{r}
1 & 1 & 1 & 1 \\
 & 1 & 1 & 0 & 1 \\
 & -3 & & & & & \\
 & -5 & & & & & & \\
 & -8 & & & & & & & \\
\end{array}$$

no overflow

Circuits for binary addition

Half adder (add 2 1-bit numbers)

- Full adder (carry-in to cascade for multi-bit adders)
 - Sum = Ci xor A xor B
 - \bigcirc Cout = B Ci + A Ci + A B = Ci (A + B) + A B

Ai	Bi	Sum	Cout	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	1	1	

Ai	Bi	Cin	Sum	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
			I		

Full adder implementations

- Standard approach
 - 6 gates
 - 2 XORs, 2 ANDs, 2 ORs

- Alternative implementation
 - 5 gates
 - Half adder is an XOR gate and AND gate
 - 2 XORs, 2 ANDs, 1 OR

$$Cout = A B + Cin (A xor B) = A B + B Cin + A Cin$$

Cin-

Cin

В

Cout

Adder/subtractor

- Use an adder to do subtraction thanks to 2s complement representation
 - Θ A-B = A+(-B) = A+B'+1
 - Control signal selects B or 2s complement of B

Overflow

Ripple-carry adders

- Critical delay
 - The propagation of carry from low to high order stages

Ripple-carry adders (cont'd)

- Critical delay
 - the propagation of carry from low to high order stages
 - □ 1111 + 0001 is the worst case addition
 - carry must propagate through all bits

Carry-lookahead logic

- Carry generate: Gi = Ai Bi
 - Must generate carry when A = B = 1
- Carry propagate: Pi = Ai xor Bi
 - Carry-in will equal carry-out here
- Sum and Cout can be re-expressed in terms of generate/propagate:
 - Si = Ai xor Bi xor Ci= Pi xor Ci

Carry-lookahead logic (cont'd)

- Re-express the carry logic as follows:
 - \bigcirc C1 = G0 + P0 C0
 - \bigcirc C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
 - \bigcirc C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
 - \bigcirc C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0
- - All inputs are now directly derived from data inputs and not from intermediate carries
 - This allows computation of all sum outputs to proceed in parallel

Carry-lookahead implementation

Adder with propagate and generate outputs

Carry-lookahead implementation (cont'd)

- Carry-lookahead logic generates individual carries
 - sums computed much more quickly in parallel
 - however, cost of carry logic increases with more stages

Carry-lookahead adder with cascaded carry-lookahead logic

Carry-lookahead adder

4 four-bit adders with internal carry lookahead

G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0second level carry lookahead unit P = P3 P2 P1 P0extends lookahead to 16 bits 4 4 **BI3-0** A|11-8| B|11-8| B|7-4| A 3-01 A 15-12 B 15-12 A 7-4 I **C4** C0 C12 **C8** 4-bit Adder 4-bit Adder 4-bit Adder 4-bit Adder (a)() P G G SI 15-12 | S[11-8] SI 7-41 S[3-0]@8<u>a</u>7 <u>@</u>4 **@8** (03)@2 **(a)**2 @2 @2 (03) ω_3 (a)**a**5 **a**5 **a**4 **P**3 P2 G₂ G1 P0 Ġ0 G3 C16 C₀ Lookahead Carry Unit (a)() P3-0 G3-0 @3 @5C1 = G0 + P0 C0C2 = G1 + P1 G0 + P1 P0 C0

Carry-select adder

- Redundant hardware to make carry calculation go faster
 - compute two high-order sums in parallel while waiting for carry-in
 - one assuming carry-in is 0 and another assuming carry-in is 1
 - select correct result once carry-in is finally computed

Arithmetic logic unit design specification

M = 0, logical bitwise operations

S1 S0	Function	Comment
0 0	Fi = Ai	input Ai transferred to output
0 1	Fi = not Ai	complement of Ai transferred to output
1 0	Fi = Ai xor Bi	compute XOR of Ai, Bi
1 1	Fi = Ai xnor Bi	compute XNOR of Ai, Bi

$$M = 1$$
, $CO = 0$, arithmetic operations

$$M = 1$$
, $C0 = 1$, arithmetic operations

0	0	F = A plus 1	increment A
0	1	F = (not A) plus 1	twos complement of A
1	0	F = A plus B plus 1	increment sum of A and B
1	1	F = (not A) plus B plus 1	B minus A

logical and arithmetic operations not all operations appear useful, but "fall out" of internal logic

Arithmetic logic unit design (cont'd)

Sample ALU – truth table

М	S1 0	S0 0	l Ci	Ai	Bi	Fi	Ci+1
0	0	0	X	0	X	0	X
	0	1	ŷ	0	X	1	ŷ
	1	0	X	0	0	0	X
			X	1	0	1	X
	1	1	X	Ö	0	1	Ŷ
			X	1	0	0	X
1	0	0	Ô	0	X	<u>0</u>	X
	0	1	0	į	Ŷ	1	ŝ
	1	0	0	0	X 0	0	X 0
	1	1	CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ai 0100110011 0100110011001110011100111	BIXXXX01010101 XXXX01010101 XXXX0101010101	011001101001100110011001110010111001011100101	Ci+1 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1	0	0	0	1	1 X	1	0
_	0	1	1	1	X	Ō	1
			1	1	X	1	Ö
	1	0	1	Į Į	1	0	1
	1	1	1 1 1 1	1 1 0 0	0 1 0 1	0 1 0 1 1	1 1 1 1 0
			1	$\bar{1}$	ĺ	0	1

Embedded Low-Power

aboratory

Arithmetic logic unit design (cont'd)

Sample ALU – multi-level discrete gate logic implementation

12 gates

Arithmetic logic unit design (cont'd)

Sample ALU – clever multi-level implementation


```
First-level gates
 use S0 to complement Ai
     S0 = 0
                 causes gate X1 to pass Ai
     S0 = 1
                 causes gate X1 to pass Ai'
 use S1 to block Bi
     S1 = 0
                 causes gate A1 to make Bi go forward as 0
                 (don't want Bi for operations with just A)
                 causes gate A1 to pass Bi
     S1 = 1
 use M to block Ci
     M = 0
                 causes gate A2 to make Ci go forward as 0
                 (don't want Ci for logical operations)
     M = 1
                 causes gate A2 to pass Ci
Other gates
 for M=0 (logical operations, Ci is ignored)
   Fi = S1 Bi xor (S0 xor Ai)
     = S1'S0' (Ai) + S1'S0 (Ai') +
        S1 S0' ( Ai Bi' + Ai' Bi ) + S1 S0 ( Ai' Bi' + Ai Bi )
 for M=1 (arithmetic operations)
   Fi = S1 Bi xor ( (S0 xor Ai) xor Ci ) =
   Ci+1 = Ci (S0 xor Ai) + S1 Bi ((S0 xor Ai) xor Ci) =
  just a full adder with inputs S0 xor Ai, S1 Bi, and Ci
```


Summary for examples of combinational logic

- Combinational logic design process
 - formalize problem: encodings, truth-table, equations
 - choose implementation technology (ROM, PAL, PLA, discrete gates)
 - implement by following the design procedure for that technology
- Binary number representation
 - positive numbers the same
 - difference is in how negative numbers are represented
 - 2s complement easiest to handle: one representation for zero, slightly complicated complementation, simple addition
- Circuits for binary addition
 - basic half-adder and full-adder
 - carry lookahead logic
 - carry-select
- ALU Design
 - specification, implementation

