Supervised Learning

Week 1

Supervised Learning Problem

Given a set of **input/output** pairs (**tranning set**) we wish to compute the functional relationship between the input and the output.

Learning approach

- Stable: finds something that is not chance part of set of examples.
- Efficient: infers(推断) solution in time polynomial in the size of the data
- Robust: should not be too sensitive to mislabelled/noisy examples

Supervised Learning Model

• Goal: Given training data(pattern, target) pairs

$$\mathcal{S} = \{(x_1,y_1),\ldots,(x_m,y_m)\}$$

infer a function f_s such that

$$f_{\mathcal{S}}(x_i) pprox y_i$$

for the future data

$$S' = \{(x_{m+1}, y_{m+1}), (x_{m+2}, y_{x+2}, \dots \}$$

- ullet \mathcal{X} : input space (eg, $\mathcal{X} \subseteq \mathbb{R}^d$), with elements x, x', x_i, \ldots
- \mathcal{Y} : output space, with elements y,y',y_i,\ldots

Learning Algorithm

- ullet Traning set: $\mathcal{S} = \{(x_i, y_i)_{i=1}^m\} \subseteq \mathcal{X} imes \mathcal{Y}$
- ullet A **learning algorithm** is a mapping $\mathcal{S} o f_{\mathcal{S}}$
- A new input x is predicted as $f_{\mathcal{S}}(x)$

Learning Regression

$$Xw = y$$

the linear predictor

$$\hat{y} = \mathbf{w} \cdot \mathbf{x}$$

Note: $\mathbf{A} \cdot \mathbf{B} = A^T B$

Find a linear predictor $\hat{\mathbf{y}} = \mathbf{w} \cdot \mathbf{x}$ to minimize the square error over the data $\mathcal{S} = \{(x_1, y_1), \dots, (x_m, y_m)\}$ thus

$$\mathbf{Minimize}: \sum_{i=1}^m (y_i - \hat{y_i})^2 = \sum_{i=1}^m (y_i - \mathbf{w} \cdot \mathbf{x})$$

Thus in martix notation **empirical**(经验主义的) **mean (sqaure) error** of the linear predictor $\hat{y} = \mathbf{w} \cdot \mathbf{x}$ on the data sequence \mathcal{S} is

$$egin{aligned} arepsilon_{emp}(\mathcal{S},\mathbf{w}) &= rac{1}{m} \sum_{i=1}^m (y_i - \hat{y_i})^2 \ &= rac{1}{m} \sum_{i=1}^m (y_i - \hat{y_i})^2 \ &= \sum_{i=1}^m (y_i - \mathbf{w} \cdot \mathbf{x})^2 \ &= rac{1}{m} \sum_{i=1}^m (y_i - \hat{y_i})^2 \ &= \sum_{i=1}^m (y_i - \sum_{j=1}^n w_j x_{i,j})^2 \ &= rac{1}{m} (\mathbf{X} \mathbf{w} - \mathbf{y})^{ op} (\mathbf{X} \mathbf{w} - \mathbf{y}) \end{aligned}$$

To compute the minimum we solve for

$$abla_{\mathbf{w}}arepsilon_{emp}(\mathcal{S},\mathbf{w})=0$$

So we conclude that

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

K-nearest neighbours (KNN)

• Algorithm Let $N(\mathbf{x};k)$ be the set of k nearest training inputs to \mathbf{x} and

$$I_{\mathbf{x}} = \{i: \mathbf{x_i} \in N(\mathbf{x}; k)\}$$

the coresponding index set

$$f(\mathbf{x}) = egin{cases} red & ext{if } rac{1}{k} \sum_{i \in I_{\mathbf{x}}} y_i > rac{1}{2} \ green & ext{if } rac{1}{k} \sum_{i \in I_{\mathbf{x}}} y_i \leq rac{1}{2} \end{cases}$$

Perspectives(观点, 前景) on supervised learning

Optimal Supervised Learning

• **Model**: We assume that the data is obatined by sampling from a **fixed but unknown** probability density $P(\mathbf{x}, y)$

Expected error:

$$arepsilon(f) = E[(y - f(\mathbf{x})^2] = \int (y - f(\mathbf{x}))^2 dP(\mathbf{x}, y)$$

Our goal is to minimize arepsilon

- Optimal solution: $f^* := \operatorname{argmin}_f \varepsilon(f)$ (Called Bayes estimator)
- Bayes estimator for square loss:

Let us compute the optimal solution f^* for regression $\mathcal{Y} = \mathbb{R}$..

Using the decomposition $P(y, \mathbf{x}) = P(y|\mathbf{x})P(\mathbf{x})$, we have

$$arepsilon(f) = \int_{\mathcal{X}} \{ \int_{\mathcal{Y}} (y - f(\mathbf{x}))^2 dP(y|\mathbf{x}) \} dP(\mathbf{x})$$

So we may see that f^* is

WHY?

$$f^{\star}(x) = \int_{\mathcal{Y}} y dP(y|\mathbf{x})$$

Deriving f^* with lighter notation

$$f^\star(x) = \sum_{y \in Y} y p(y|x) = E[y|x]$$

We now additionally assume there exist some underlying function F such that

$$y = F(x) + \epsilon$$

where ϵ is white noise, i.e., $E[\epsilon]=0$ and finite variance.

Thus the optimal prediction is

$$f^\star(x) := E[y|x] = F(x)$$

with square loss.

We would like to understand the expected error by an arbitrary learner $A_{\mathcal{S}}(x)$

Our goal will be to understand the expected error at x'

$$arepsilon(A(x')) = E[(y' - A(x'))^2]$$

where y' is a sample from P(Y|x')

$$egin{split} E[(y'-A(x'))^2] &= E[(y'-f^\star(x'))^2] + \ & (f^\star(x)-E[A(x')]^2) + \ & E[(A(x')-E[A(x')])^2] \end{split}$$

 \circ Bayes error: $E[(y'-f^\star(x'))^2]$

is the irreducible noise

- o Bias: $(f^{\star}(x) E[A(x')]^2)$ describes the discrepancy(差异) between the algorithm and "truth"
- \circ Variance: $E[(A(x')-E[A(x')])^2]$ capture the variance of the algorithm between training sets.
- Bias and Variance Dilemma
 - The bias and variance tend to trade off against one another
 - Many parameters better flexibility to fit the data thus low bias but high variance
 - Few parameters give high bias but the fit between different data sets will not change much thus low variance
 - This exact decomposition only holds for the square loss.

Asymptoitic(渐近的) Optimality of k-NN

• As the number samples goes to infinity the error rate is no more than twice the Bayes error rate.

TBC

Hypothesis Space

We introduce a **restricted** space of functions \mathcal{H} called **hypothesis space**.

We minimize $\varepsilon_{emp}(\mathcal{S}, f)$ with \mathcal{H} . That is, our learning algorithm is:

$$f_{\mathcal{S}} = \operatorname{argmin}_{f \in \mathcal{H}} arepsilon_{emp}(\mathcal{S}, f)$$

This approach is usually called **empirical error(risk) minimization**

For example (Least Squares):

$$\mathcal{H} = \{f(\mathbf{x}) = \mathbf{w}^{ op}\mathbf{x}: \mathbf{w} \in \mathbb{R}^n\}$$

Summary

- ullet Data ${\cal S}$ sampled i.i.d from ${\cal P}$ (fixed but unknown)
- f^* is what we want, f_S is what we get
- Different approaches to attempt to estimate/approximate f^* :
 - o Minimize $arepsilon_{\it emp}$ in some restricted space of functions (eg, linear)
 - Compute local approximation of f^* (k-NN)
 - Estimate **P** and then use Bayes rule...

Model selection