Semigroups

(1) Back ground:

Consider: $\{u(t) = Au(t), t \ge 0 \ (*) \text{ where} \ u(0) = u_0$

W: [0,00) -> X. Brimch Span. A is a linear operator on X. To let the equation make sense.

Pef: $N = [0, \infty) \longrightarrow X$. n.v.s is differentiable if $u(t) = u(t_0) + V_{t_0}(t - t_0) + o(t - t_0)$. Here e^{-t} .

Denote: V(t) = u'(t).

Rmk: If X = C. Then the unique solution of the equation is $u \cdot e^{tA} = u \cdot (A \in C)$.

Next, we want to prive the unique solution of (*)
is uct) = eth.

O Define: e^{tA} for A is LO:

Note that: $e^{tZ} = \sum_{k=0}^{\infty} \frac{(tZ)^k}{k!}$ for $Z \in C$.

Def: $e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k$ if $I = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^{k}$.

RMK: 11 e + A | 1 = I + 11 A | | = e + 11 A | |

Chark:
$$e^{tA}$$
 μ_0 satisfies (4):

 $\frac{L_{emmn}}{L_{emmn}}$. If $Bc = cB$. Then $e^{Brc} = e^{Brc} = e^{b}$.

 $e^{f} = \frac{E}{L} = \frac{E}{m_1 n_1} = \frac{E}{m_2 n_3} = \frac{E}{m_1 n_1} = \frac{E}{m_2 n_3} = \frac{E}{m_1 n_2} = \frac{E}{m_1 n_2} = \frac{E}{m_2 n_3} = \frac{E}{m_1 n_3} = \frac{E}{m_2 n_3} = \frac{E}{m_1 n_3} = \frac{E}{m_2 n_3} = \frac{E}{m_2 n_3} = \frac{E}{m_1 n$

(2) Un bounder Linear Operator:

Next. We consider linear operator A Lensly

defined on Branch space X. A: D(A) < X

X. Which is closed. CacA) is closed?

Def: $\lambda \in C(A)$ if $\lambda I - A : D(A) \longrightarrow X$ is

bijection. Denote: $R_{\lambda}(A) = (\lambda I - A)^{-1}$ RMA: By Closed Graph 1hm. $R_{\lambda}(A)$ is both

Rrk: Since AOA Noesn't make sense generally.

(RCA) & DCA)). So we can't refine eth

as above!

Def: One-parameter semigroups of operators over V.

Bannoh Space is CPt)terpo C LCV). St.

i) Pt+s = Pt o Ps. Vt. St (Rzo ii) Po = I. identity.

O Co simigroups:

Pef: Semigroups (Pt) is strongly wonth if: $\lim_{t \to \infty} ||Ptx - x|| = 0$ for any $x \in V$. Denote set of such semigroups by Co \underbrace{Rmk} : It's equi with weakly wonth:: $\lim_{t \to \infty} -x^* \cdot P_{t}x > = -x^* \cdot x > 0$ $\lim_{t \to \infty} -x^* \cdot P_{t}x > = -x^* \cdot x > 0$ $\lim_{t \to \infty} -x^* \cdot P_{t}x > = -x^* \cdot x > 0$

Lemma. (Pt) ∈ Co ∃ 8. C>0. D € V. St.

i) Sup 11 Pt 11 € C ii) lim 11 Pt x - x 11 = 0. ∀ x ∈ D.

To. 57

Pf: (\Rightarrow). If $\forall \delta > 0$. Sup $||Pt|| = \infty$. Then: $\exists (tn) \to 0. \quad ||Ptn|| \to \infty.$ By $UBP : \exists X \in V. \quad Sup ||Ptn X|| = \infty.$

It's absorb: Smp Il Pon XII = 11XII + Smp Il Pon XII < 00
(=) It's Youtine.

Cor. Cpt) $\leq C_0 \Rightarrow \exists C. \forall > 0. \ 5t. ||Pt|| \leq CC^{\frac{1}{2}} . \ \forall t \geq 0$ $Pf: \quad Suppose \quad t = n\delta + r. \quad 0 \leq r \leq \delta.$ $||Pt|| \leq ||Ps||^n ||Pr|| \leq C^{\frac{1}{2}} \leq CC^{\frac{1}{2}}.$

Prop. CPt) & Co () Sx: t MPtx is conti. Vx EV.

Pf: 11Pt. 11 = CLto). 11Pto-h 11 = CLYto. Chuck: L.R.

Lemma. (Pt) \in Co. Then for every $x \in U \in V$. S_{x} is differentiable on $R_{30} \in S_{x}$ is right-diff at t=0 $Pf. (\in)$ right side is trivial. It equals $P_{t}S_{x}(0)$ at t $Check: U \stackrel{!}{\vdash} CP_{t+h} X - P_{t} X) - P_{t}S_{x}(0) \parallel \leq Check: U \stackrel{!}{\vdash} CX - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) - P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) + P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) + P_{t}S_{x}(0) \parallel \leq Ce^{\gamma t} \parallel \stackrel{!}{\vdash} (X - P_{p} X) - S_{x}(0) \parallel + \parallel P_{t+h}S_{x}(0) + P_{t}S_{x}(0) + P_{$

3 Infestimal Generators:

Pof: Infestimal generator $Q:D(\alpha) \subseteq V \to V$ of $CPt) \subseteq C$. is $QX = S_X'(0) = \lim_{t \to 0} \frac{P_t X - X}{t}$ where $D(\alpha) = \{X \in V \mid \lim_{t \to 0} CPt X - X)/t \text{ exists in } V\}$.

PMK. $P(Q) \subseteq V$. L.S. And by: Sx is conti. $\forall x \in V$.

Def: $M \neq x = \frac{1}{t} \int_0^t S_{x}(s) ds = \frac{1}{t} \int_0^t P_{S}(x) ds$.

It's easy to chek Frechet Derivate: $\frac{d}{dt} \int_0^t S_{x}(s) ds = Sx(t)$.

7hm. i) Deas is lune in V. invariant under Pt.

ii) $\frac{\Lambda}{\Lambda t} P_{t} X = \Omega P_{t} X = P_{t} \Omega X \cdot \forall X \neq D_{t} \Omega_{0} \cdot t \geq 0$. Therefore. $\forall \Lambda \in D_{t} \Omega^{*}$). $\forall X \neq V \cdot t \mapsto \langle \Lambda \cdot P_{t} X \rangle$ is $\Lambda : ff = 0 \cdot \lambda \cdot \lambda \cdot \lambda \cdot \lambda = \langle \Lambda \cdot P_{t} X \rangle = \langle \Lambda \cdot P_{t} X \rangle$.

iii) Ytzo. XEV. Sot Psx As & DCA)

iv) $P_{t}x - x = a \int_{0}^{t} P_{s}x As$ for $\forall x \in V$ = $\int_{1}^{t} P_{s}ax As$ $\forall x \in D_{ca}$, $\forall t \geq 0$

Pfi i) $\forall x \in V$. Check in $\int_{0}^{t} P_{s}(x) As \in D(a)$.

i.e. $\lim_{h \to 0} \frac{\int_{t}^{t+h} P_{s} \times As - \int_{0}^{t} P_{s}(x) As}{h} = \int_{0}^{t} P_{s}(x) As} = \int_{0}^{t} P_{s}(x) As}{h} = \int_{0}^{t} P_{s}(x) As} = \int_{0}^{t} P$

by continuity of Ps. So we have iii) $\Rightarrow \frac{1}{t} \int_{0}^{t} P_{s}(x) As \xrightarrow{b \to i} X . By Rmk. above.$

ii) is routine. with Lemma. Chark right side.

iv) sup 11 + 6 Ps+ x - Ps - h Ps @x) 11 = sup 11 Ps 11 och)

≥ Lyt och > → o ch → b)

: 11 th (Ph-I) for Psx As - for Ps @x As 11

= 11 St i c Ps+hx - Psx - h Ps ax) As 11 = t Och)

Cor. $\frac{1}{\lambda t}$ It Tt $x = \alpha PtTtx + PtATtx$ where α . A are generators of Co: Pt. Tt. $x \in P(H) \subseteq D(A)$.

Cor. The infestional generator Q of (Pt)

= Co Letermines a unique semigroup (Pt).

i.e. No two distinct semigroups have one

some generator.

1f. If If It. St. { at Ptx = aPtx at Rtx = aRtx

for yxt Dia).

Thun: Consider West = PT-s Rs in CO.T]

⇒ Wissa = 0. is < l. Winx> = 0. V1EV*

Wish X = V. YSE [I.T]. .. Winx = WITIX.

Lemma. Q is generator of $(P^{\pm}) \in C_0$. $Qh = \frac{Ph-I}{h}$.

Then: $\forall x \in V$. $P_{\pm} \times = \lim_{h \to 0} e^{\pm 2h} \times .$ whifernly with $\pm \epsilon k$. $\forall k$ upt subset of $k \neq 0$.

Pf: 11 ε toh 11 5 11 ε - t I/h 11 11 ε t Pr/h 11 ε ε - t/h I t k 11 Prh 11/h k!

5 ε - t/h Σ t κ ε κλη / h κ! Σ ε t γε γ.

Fix s. set Z = t/n. $t \in Co.SJ$. We have: $e^{t\alpha h} - P_t = e^{n\alpha ah} - P_{nz} = (e^{z\alpha h} - P_z) \square$. $|| \square || = || \sum_{\sigma} e^{t\alpha h} P_{Cn-k-1/2} || \sum_{\sigma} h \exp(s\gamma e^{\gamma} + s\gamma)$ $|| Note = x \in D(\alpha)$. $|| Ce^{z\alpha h} x - P_z x i / z || \leq || Ce^{z\alpha h} - I)x_{||}$ $+ || Ce^{z-I}x_{||} \stackrel{n \to \infty}{\longrightarrow} || \alpha h x - \alpha x || \stackrel{h \to \infty}{\longrightarrow} 0$.

KMK: Note for $C\widetilde{O}(t) = (e^{tR})_{t \neq 0}$ Satisfies: $||\widetilde{Q}(t) - \widetilde{Q}(t)|| \to 0$. Call it uniform conti SG. $||\widetilde{Q}(t) - \widetilde{Q}(t)|| \to 0$. Call it uniform conti SG.

prop. Q is generator of SG (Pt)ton. Then i). iii) equi.

i) $D(\alpha) = V$. ii) $\lim_{t \to 0} ||Pt - I|| = 0$. iii) $(a \in L(V))$. $P_t = e^{t\alpha}$. ||Pt - I|| = 0. iii) $(a \in L(V))$. $(a \in$

3 Mille - Yisida 7hm.

Limmn (1t) = Co. For $\lambda \in C$. A > 0. Let: $Tt = e^{\lambda t} P_{at}$. Then: $a \sim cpt$) $\Rightarrow A = \lambda I + Aa \sim cTt$). P(A) = D(a). $\sigma(A) = \tau \sigma(a) + \lambda$. $R_n(A) = \frac{1}{A} R_{n\lambda}(a)$. $\forall M \in \sigma(A)$. $Pf : \frac{\lambda}{at} Tt x = A Tt x \Rightarrow Ax = c\lambda I + ca) x$ Then. cpt $c = Co. St. Hpt H = ce^{yt}$. Then:

i) If $R_{t\lambda} > y$. Then: $\lambda \in e(a)$. and $\forall x \in V$. $R_{\lambda}(a)x = \int_{0}^{\infty} e^{-\lambda t} P_{s} x As$

ii) If $\lambda \in C$, so, $\int_{0}^{\infty} e^{-\lambda s} P_{s} \times ds$ exists for $\forall x \in V$.

Then $\lambda \in C(a)$, $P_{\lambda}(a) \times = \int_{0}^{\infty} e^{-\lambda s} P_{s} \times ds$. $\forall x \in V$.

iii) $||P_{\lambda}(a)|| = \frac{C}{|P_{\lambda}(\lambda) - \gamma|}$, for $\forall P_{\lambda}(\lambda) > \gamma$.

Pfij Zxx=5. e-xs PsxAs converges if Recks>7. So it's well-Auf. YX & V.

Note: $\lim_{h\to 0} \frac{P_h - I}{h} Z_A x = \lim_{h\to 0} \int_0^{\infty} \frac{e^{\lambda s} c P_{sh} x - P_{s} x)}{h} A_s$ $= \lim_{h\to 0} \frac{e^{\lambda h}}{h} \int_0^{\infty} e^{-\lambda s} P_s x A_s = \frac{e^{\lambda h}}{h} \int_0^{k} e^{-\lambda s} P_s x A_s$

 $= \lambda Z_{\lambda}(x) - X \quad \text{i.t.} \quad \partial Z_{\lambda}x = \lambda Z_{\lambda}x - X$ $\Rightarrow (\lambda I - \alpha) Z_{\lambda}X = X \quad \text{Next. Show } \lambda I - \alpha \text{ is injection}$

By untradiction: 3x & D(a)/(0). Qx = Xx

By Uniqueness: Pt x = eth x. contradict!

ii) Set $T_t = e^{-\lambda t} P_t$. Its generator $A = Q - \lambda I$. $\frac{T_{h} - I}{h} \int_{0}^{\infty} T_{S} \times AS = -\frac{i}{h} \int_{0}^{h} T_{S} \times AS \xrightarrow{h + \infty} - X.$

: $\int_{0}^{\infty} T_{S} \times A_{S} \in P(A)$. A $\int_{0}^{\infty} T_{S} \times A_{S} = -\infty. \forall x \in V$ For injection: Note: $\lim_{t \to \infty} \int_{0}^{t} T_{S} \times A_{S} = \int_{0}^{\infty} T_{S} \times A_{S}$.

By A is CLO. $\times \in D(A) \Rightarrow \int_{0}^{\infty} T_{S} A \times A_{S} = A \int_{0}^{\infty} T_{S} \times A_{S} = -X$.

If $\exists \eta \in P(A) / \{signature A \} = 0$ $\Rightarrow \eta = 0$. Contradict! $\exists \theta \in CL(A)$. i.e. $\lambda \in CL(A)$. And Equation holds.

iii) is livert from i).

Lemma. a is generator of cl_t) cl_t . Then be is cl_t .

Pf. If $x_n \to x$, $ax_n = \eta_n \to \eta$, $\exists \lambda \in l(a)$. (Pex: y) $c(\lambda I - a)x_n = \lambda x_n - \eta_n \to \lambda x - \eta$ On the other had, $c(\lambda I - a)^{-1}$ is until $c(\gamma = ax)$.

bemmn. (Resolvent Equations)

If a b & e(A). A is unbal linear operator.

Then: Raca) - Roca) = (6-4) Rocal Raca).

Pf: $\begin{cases} c & \alpha R_{\alpha}(A) - A R_{\alpha}(A) \\ R_{\alpha}(A) & (b R_{b}(A) - A R_{b}(A) \end{cases} = R_{b}(A)$

subtract the two equations.

Check: A Raca) = - Iv+ a Raca)

faca) A = - Iva, + ~ Raca).

Rnk: It menns Raca). Roca) are commutative.

Lemma. $Q:D(A) \rightarrow V$. Rensely Refined CLO. If $\exists y$.

and C > 0 . St. $Ey(x_0) \subset e(A)$. $||\lambda R_{\lambda}(A)|| \leq C$.

for all $\lambda \geq y$. Then:

- i) VXEV. lim 11 XRX (0)x-XII = 0
- ii) Yx + D(a). lim 11 x Rx (a) ax ax 11 = 0

Pf: i) $||\lambda R_{\lambda}(\alpha) x - x|| = ||R_{\lambda}(\alpha) Q_{\lambda} x||$ $\leq \frac{c}{|\lambda|} ||Q_{\lambda}|| \to 0$

It hold for $\forall x \in D(\alpha)$, but $\lambda > \gamma$.

For $\exists \in V$. Since $D(\alpha)$ is Amore. By approxi.

ii) By $\alpha \not\in A(\alpha) \times = R_{\lambda}(\alpha) \propto X$. $\forall x \in D(\alpha)$.

7hm. (Mille - Yosika)

For unbla linear operator L with DCL) = V. Rhk: Replace 166 67 Then L is generator of (St). with 115+11 5 AtiR'. It Still holds Ment. M>0. ntik. 4+30 (=) Lis lensely def. CLO. YXEC. RecX) = a. Then: X + ecl). With: 11 Rx (L)" 11 = M/(Rex) - a)" · m>0. Yr + N". $Pf((\Rightarrow)) \cdot R_{\lambda}^{n}(L) = : R_{\lambda}^{n} = \int_{R_{\lambda}^{n}} e^{-\lambda(t_{1}+\cdots t_{n})} \int_{R_{\lambda}^{n}} e^{-\lambda(t_{1}$ (=) The ideal: (consider & +1R'. Then we proved Rmk) Set Lx = XLRxLL). YosiAn Approxi. prove = Lx -> L xx x - co. Besilus La E LIVI. Correspond e where eth -> St as A -> 0. St. St satisfies the conditions. 1) LRX is uniform bAA for large 1:

for XEDOLD. 11 LRXXII = 11 RXLXII

= 11 () Rx - 1) x 11 = (M) () - 0) - 1 + 1) 11 x 11

So extend LRx from Del) to V.

- 2') $LRXX \xrightarrow{\lambda \to 0} 0$:

 Check $X \in P(L)$: It's from Lemma above
- 3') $L_{\lambda} \times \rightarrow L_{\chi} \cdot \forall \chi \in D(L)$ $||L_{\lambda} \times -L_{\chi}|| = ||C_{\lambda} R_{\lambda} I) L_{\chi}|| = ||L_{k} L_{\chi}|| \cdot B_{\chi} = 2'$
- 4°) Define $S_{\lambda}(t) = e^{L\lambda t}$. Co-semigroup for $L_{\lambda} \in L(v)$.

 (Note: for each $\lambda \neq a$. L_{λ} is bld)
- J°) $||S_{\lambda}(t)|| \leq M e^{\lambda nt/(\lambda n)}$.

 Note $L_{\lambda} = -\lambda + \lambda^{2} R_{\lambda}$ $\leq S_{\lambda}(t) = e^{-\lambda t} e^{\lambda t} R_{\lambda}^{n} ||S_{\lambda}(t)|| \leq e^{-\lambda t} \int \frac{t^{n} \lambda^{2n}}{n!} ||R_{\lambda}^{n}|| \cdot \beta_{\eta} \text{ Condition.}$ So we obtain: $\lim_{\lambda \to \infty} ||S_{\lambda}(t)|| \leq M e^{nt}$.
- 6) $\lim_{\lambda} S_{\lambda}(t) \times exists$. $\forall t \neq 0$. $\times 6V$.

 Let λ . M large enough st. $\max E ||S_{\lambda}(t)||$. $||S_{M}(t)|| \leq 2Me^{nt}$ $||\frac{\partial}{\partial s} S_{\lambda}(t-s) S_{M}(s) \times || = ||S_{\lambda}(t-s) S_{M}(s) C L_{M} L_{\lambda}) \times ||$ $\leq 4M^{2}e^{2nt} ||C L_{M} L_{\lambda}) \times ||$

CNote: $L_{\lambda} = -\lambda + \lambda^{2} R_{\lambda}$. So there commutative.

Since: $\|S_{\lambda}(t)x - S_{m}(t)x\| = \|\int_{0}^{t} ds S_{\lambda}(t-s)S_{m}(s)x\| \leq 4m^{2}t^{2nt} \|CL_{m}-L_{\lambda}(x)\| \to 0$

7') Define $S_{ct}(x) = \lim_{\lambda \to \infty} S_{\lambda}(t) \times .$ $: 11 S_{t} \times 11 \le e^{-t} M. \quad S_{t} \circ S_{r} = S_{t+r} \quad follows \quad from \quad S_{\lambda}(t).$ By Letting $\lambda \to \infty$. It's truly semigroup.

And for & fix x & Del). but interval of t. Shot) X -> Set) X. uniform with to With 11Sctoll = Ment. By Lemma. in 0 => St = Co. 8') gentineor of Set): Î coincides with L. That I to Shess LAX LS. X & Dals set $\lambda \rightarrow \infty$. Then $t \rightarrow 0$ $\hat{L} \times = L \times - P(L) \leq D(\hat{L})$ With Reck)>a. 1-1 and 1-î are bijertion = L=î. FMK: R,(L) is book isn't result of OCL) falls in half-space.

Ly. V = + C . equipped with Eucliden norm L= D Ln. where Ln: C' -> C'. giren by $L_n = \begin{pmatrix} in & n \\ 0 & in \end{pmatrix} \cdot \delta(L_n) = \sum_{i=1}^{n} in \}.$ $\frac{n}{(\lambda-in)^2} \leq || \mathcal{R}_{\lambda}^{(\alpha)}|| = : || (\lambda I_{\lambda}-L_{n})^{-1}|| \leq \frac{\lambda}{|\lambda-in|^2} + \frac{J_{\lambda}}{|\lambda-in|}$ 11 RACL) 11 =: 5ng 11 Rx "11.

Note: $\begin{cases} \sigma(L) = \lim_{n \to \infty} G(L) = \lim_{n \to$

Dingram:

4) Self-nhjoint generators:

Pef:i) A is self adjoint operator with DLA) = M. Hilbert space if $A = A^*$. A is symmetric if $A = A^*$ ii) B: M -> M. densely let on DCB). = M. Mibert span. B is regative definite if (Bx.x)=0. Vx & P(B). Denote it by B so. Similarly for B30.

Rmk: i) A is self adjoint. Then: A so (=) 6(A) = (-10,0].

ii) A is injective sulfabjoint => fcA) is hence. A' is self-majoint. (A=D(A) => R(A)

Pf. i) follows from : OCA) = [m.m]. { m = inf cAn.n)

ii) N(A) = [0] = f(A) => f(A) is love.

AT : RLA) - D(A). Which is well-let on RLA). Then follows by Act: PLA*) = [7 cm: (Axin) is consis

Thm. (Spectral Decomposition)

i) Lis self-adjoint operator on Expanable Milbert Space N. Then: I finite measure space (M.M). k: N = Lim.m). unitary. fr: M -> 'K'. mensurable associated with a

multiplication FL. FLCfocx) = fLcx) fcx). St.

L = K FLK. KCDOLD) = ITI fLcx) gcx) & L cm.m)

(ii) (A, D(A)) is self adjoint on separable Mibert space M with cpt resolvent. Then $\exists (9n) = !k'$. and whitery operator: $U: M \to L^2$. St. $A = U^TA + U$.

Where $A = U^TA + U^$

Thm. C Resolvent (Norlas)

A is self-adjoint on Mibert space M. Then I unique projection-value measure E on $B_{ik'}$. St. supplE) $E \circ (A)$. $E \circ (A) = I$. $A = \int_{\sigma(A)} \lambda \wedge E(\lambda)$.

Moreover. Acnote $E \times q = (E \circ (X \circ Y)) \cdot for \times q \in M$. $E \times q$ is Borel measure. $P(A) = I \times eM \mid \int_{ik'} \lambda^* \wedge E \times x = \infty$. $(A \times q) = \int_{ik'} \lambda \wedge E \times q(\lambda)$. $\forall \times \in D(A)$.

PMK: For $\forall f : IR' \rightarrow C$. B_{IR} -measurable. Def: $f(A) = \int_{G(A)} f(A) A F(A), \quad Def(A) = E \times EMI$ $\int_{IR'} |f(A)|^2 A F_{XX}(A) < \infty \}. \quad Then: We have:$ $f(A) \text{ is } \text{self-adjoint } \iff f \text{ is } \text{real-valued.}$ f(A) g(A) = g(A) f(A) = fg(A). on Defg(A),

7hm. Self-adjoint negative definite operator A on Milbert space is generator of contraction Semigroups St. which is self-adjoint as well.

Amk: Converse is true: generator A of contraction

Semigroup St which is self-adjoint is regarive

Aefinite and self-adjoint.

Pf: Note that $(0, \infty) \in \mathcal{E}(A)$. for $\forall \lambda > 0 :$ $((\lambda Z - A) \gamma, \gamma) \geq \lambda (\gamma, \gamma). \quad \forall \lambda = 1$ $\lambda \| (\lambda Z - A)^{T} \times \|^{T} = \lambda ((\lambda Z - A)^{T} \times (\lambda Z - A)^{T} \times)$ $\leq (\chi, (\lambda Z - A)^{T} \times)$ $\leq \|\chi \| \| (\lambda Z - A)^{T} \times \|.$

for $\forall x \in H$.

: If R_{λ} (A) $\Pi \in 1/\lambda$. Apply Mille-Yosida That.

Note: $A \in \mathcal{E}_{\lambda}(t) = \mathbb{E}^{tA \cdot (I - \mathcal{E}_{\lambda})^{-1}} \xrightarrow{\mathcal{E}_{\lambda}(t)} \mathcal{E}_{\lambda}(t)$ It's self-adjoint. by expansion. (Or Use: $\lambda AR_{\lambda}(t)$) $\Rightarrow (S_{t}(t), \gamma) = \lim_{t \to \infty} (A_{t}(t), \gamma) = \lim_{t \to \infty} (X_{t}, A_{t}(t), \gamma) = (X_{t}(t), \gamma)$

Conversely. 115+11 = 10,00) = 4(A). RX(A) = So e-xt St At self-adjoint Injective. So that II-A is self-najoint. Gr. St = CtA, in sense of resolvent calculus. Pf: Silethi AExix (A) = Som lethilExx E C ELGOAN) X.X) = 11X11. YX EM. => etA = Lin). $\frac{\partial}{\partial t} \mathcal{L}^{tA} = \int_{\mathcal{R}} \lambda \mathcal{L}^{t\lambda} \Lambda E_{x} = A \mathcal{L}^{tA}$ Enke Analogously. Refine Square root of -A = J-A = J-x 1E4). where A is self-nejoint. A so. SolJ-x1 A Exx = Sol - A A Exx + Sol - A A Exx S IIXII + So IXI LExx co => YX & DCA). Then: X & DCJ-A) Busines: J-A J-A X = Sx 1 J-X 1 A E(X) X = - Ax. Vx & DIA). prop. Lis self-adjoint. L = 0. Then et maps 11 to

D(I-L) . Y < 6 1/2. 1 . 3 CT. 5t.

11 (I-1) " et l 11 = Call+ t-T). holds

Pf. $(I-L)^{\tau}$ is well-lef in sum of calmins. $\tau \in \mathbb{Z}$.

With $I-L \in \mathcal{L}(M)$. so $t \in \mathbb{Z}$. $\|(I-L)^{\tau}e^{tL}\| = \|\int_{\sigma(L)} (I-\lambda)^{\tau}e^{t\lambda} \chi E(\lambda)\|$ $\leq \sup_{\lambda \leq 0} (I-\lambda)^{\tau}e^{t\lambda}$ $\lesssim \sup_{\lambda \leq 0} (I+(-\lambda)^{\tau})e^{t\lambda} \leq C_{\tau}(I+t^{-\tau})$ $\lesssim \sup_{\lambda \in 0} (I+(-\lambda)^{\tau})e^{t\lambda} \leq C_{\tau}(I+t^{-\tau})$

(3) A Ljoint Semigroups:

Prop. $St \subseteq Co$ on B. Then: $S^*(t) \subseteq Co$ on $B^{\dagger} = \overline{D(L^{\dagger})}$ in B^* . With generator $L^{\dagger} = L^* |D(L^{\dagger})$ $D(L^{\dagger}) = (X \in D(L^{\dagger}) | L^{\dagger} \times E B^{\dagger}).$

Rmk: generally. Set) $\subseteq C_0 \implies S^{\dagger}(t) \subseteq C_0$.

e.g. $B = C(C_0, 17, 1R')$. Set) is heat semi
group. With Neumann boundary andition.

Monurer. We can l'estrict 5th, on a smaller span.

Pf. 1.) St is bad on 8t. Htwo.

Note: $||St|| = ||S_{+}^{*}||$. And: $S_{+}^{*}: D(L^{*}) \longrightarrow D(L^{*})$. Extent to B^{+} . $C < 1. S_{+} \times S$ is differentiable. $\forall 16 D(L^{*})$ 2) $S_{+}^{*} \times \rightarrow \times$. $\forall \times \in D(L^{+}) \stackrel{\subseteq}{\leftarrow} B^{+}$.

It follows directly: $S_{+}^{*} \times - \times = \int_{0}^{+} S_{+}^{*} L^{*} \times As$ 3') $D(L^{+})$ is given by: $R_{+}^{+} \circ f S_{+}^{*} \circ n B^{+}$ is $R_{+}^{*} l_{B^{+}}$.

prop. $\forall l \in \mathcal{B}^{*}$ $\exists ln \in \mathcal{B}^{\dagger}$. $ln \stackrel{*}{\rightharpoonup} l$. as $n \rightarrow \infty$.

Pf: $ln = n R_{n}^{*} l \Rightarrow ln \in Dil^{*}) \subseteq \mathcal{B}^{\dagger}$.

By $||rR_{n} \times - \times || \stackrel{\sim}{\rightarrow} 0$. $\therefore \langle ln \times \rangle \stackrel{\sim}{\rightarrow} \langle l, \times \rangle$ $||R_{n} \times || ||R_{n} \times - \times || \stackrel{\sim}{\rightarrow} 0$. $||R_{n} \times ||R_{n} \times$

Rmk: It menns Bt is large enough to be dense in B* in week*-topo sense.

(3) Analytic Semigroups:

Def: Simigroups St on B is analytic if $\exists \theta > 0$.

St. $t \mapsto St$ has analytic extension on $\exists \lambda \in Cl$ $\exists \eta \in St$ $\exists \theta \in$

Rmk: Denote Sy (t) = $S(e^{it}t)$. \Rightarrow || $S_{y(t)}|| \in M(y) \in$ Sinn $S_{y(t)} \in C_{o}$.

prop. $\forall \theta' < \theta$. Then there $\exists M.a. St. || Syctill \in Me^{nt}$. $\forall t \geq 0$. $|Y| \leq \theta'$.

If: $te^{iY} = t.e^{i\theta} + t.e^{-i\theta}$, where $0 \leq t... t.e \leq t$.

Prop. $\forall Y. 141 < \theta$. Jenerate Ly of Se is $e^{iY}L$ where L is generator of S.

Pf. $R_{XX} = \int_{-}^{\infty} e^{-\lambda t} S_{t} \times \lambda t$. for $\lambda > R_{LY}$.

By $e^{-\lambda t} S_{t}$ is analytic in $S | Ang t | < \theta$.

See $t = e^{iY} t$. $R_{XX} = e^{iY} \int_{0}^{\infty} e^{-\lambda e^{iY}t} S_{ce^{iY}t} \times \lambda t$ $\therefore R_{X} = e^{iY} R_{Aciv} \Rightarrow L_{Y} = e^{iY}L$.

Thm. (Mille - Yosida)

2 is generator of analytic semigroup S(t) on B $(\Rightarrow) \exists \theta \in (0, \frac{2}{2}), \quad \alpha \geq 0, \quad \beta t. \quad \delta(L) \leq S_{0,\alpha} = \{\lambda \in L\} \text{ argua-}\lambda\}$ $E[-\frac{2}{2}+\theta, \frac{2}{2}-\theta]\}. \quad \text{and}. \quad \exists M > 0. \quad \beta t. \quad ||R_{\lambda}|| \leq \frac{M}{L(\lambda, S_{0,\alpha})}$ $for \lambda \notin S_{0,\alpha}. \quad Besides. \quad L \text{ is Aensuly As follows}$ $e[+] \quad Apply \quad YosiAn \quad Thm \quad in \quad L(S_{\alpha}(t))_{2>0} \int_{||x|| \in B} dx$ $(e[+] \quad S_{0,\alpha} \quad B_{0,\alpha} \quad S_{0,\alpha} \quad S_{0,$

It's well-lef. since IIREII & M. on Ye.6

(X.t) - Sct) X is jointly contilly Sct)

is uniformly convergent on opt set = Elnegolop).

Next. Check Sct) sotisfies simigroup property.

Note: Choice of b is arbitrary since for 6>n. $e^{st}Re$ is analytic among $Y_{V.6}$. $Y_{V.V}$.

Scs) Set) = $\int_{Y_{V.6}}^{S} \int_{Y_{V.6}}^{S} \int_{S}^{S} \int_{S}^{S} \int_{Y_{V.6}}^{S} \int_{S}^{S} \int_{Y_{V.6}}^{S} \int_{S}^{S} \int_{Y_{V.6}}^{S} \int_{S}^{S} \int_{Y_{V.6}}^{S} \int_{S}^{S} \int_{Y_{V.6}}^{S} \int_{S}^{S} \int_{S}^{S} \int_{S}^{S} \int_{Y_{V.6}}^{S} \int_{S}^{S} \int_{$

Thm. c Perturbation)

Lo is generator of analytic semigroup. B: D(B) \rightarrow B.

St. D(B) \rightarrow D(Lo). \rightarrow \rightarrow

A) Salar Sal

Note $\|BR_{\lambda}^{\circ}x\| \in \mathcal{E}\|L_{0}R_{\lambda}^{\circ}x\| + C\|R_{\lambda}^{\circ}x\|$. $\exists S_{7,1} \cdot S_{7} \cdot \|R_{\lambda}^{\circ}\| \in M \Lambda^{\circ}(\lambda, S_{7,1}) \cdot L_{0}R_{\lambda}^{\circ} = \lambda R_{\lambda}^{\circ} - 1.$ $= \|BR_{\lambda}^{\circ}\| \in \frac{(\mathcal{E}|\lambda| + C)M}{\Lambda(\lambda, S_{7,1})} + \varepsilon \cdot F_{1} \wedge \theta \cdot \Lambda.$

2) Grander $p = (\lambda Z - L) \times ... \times \epsilon D(Lo)$. $\exists Z ... \times = R_{\lambda}^{\circ} Z ... \cdot \eta = (I - BR_{\lambda}^{\circ}) Z$ $||R_{\lambda} \eta|| = || \times || = || R_{\lambda}^{\circ} Z || = || R_{\lambda}^{\circ} (I - BR_{\lambda}^{\circ})^{T} \gamma^{T}|$ $\leq ||R_{\lambda}^{\circ}|| \frac{||\gamma^{T}||}{|I - ||BR_{\lambda}^{\circ}||} \approx \frac{||\gamma^{T}||}{|A(\lambda, S_{T,b})|}$ Since $S_{\theta, \theta} = S_{\theta, \theta} = A(\lambda, S_{\theta, h}) = A(\lambda, S_{T,b}) ... \forall \lambda \xi S_{\theta, h}$

(4) Integlation Space:

• Consider analytic semigroup Set) with generative L.

5t. $\exists M. w > 0$. $||Set.|| \le Me^{-wt}$. So $see) \le !peo$ Def: $(-1)^q = \frac{1}{|Ter|} \int_0^\infty t^{q-1} Set$, per delive. fractional power of $(-1)^q = \frac{1}{|Ter|} \int_0^\infty t^{q-1} Set$, per delive. per delive.

Prop. $(-1)^q = (-1)^{-1} (-1)^{-1} = (-1)^{-1}$. Can be checked directly.

Prop. $(-1)^{-1}$ is injurieve. for $\forall q > 0$. $per delive = (-1)^{-n+1} (-1)^{-1}$, $n \in \mathbb{Z}^t$.

But $(-1)^n = (-1)^{-n+1} (-1)^{-1}$, $n \in \mathbb{Z}^t$.

Def: Interplation span Ba is $CD(0-0)^m$). $IIXII_+$) where. $IIXII_+ = II (-1)^m \times II$.

fmk: Actually, we how't and assumption at begin.

Since we can replace -L by 1-L for large fix 1. And 11c-15x11 ~ 11c2-15x11.

prop. i) Bx = Bp. Vx = p. c(-1) is ball. 4p>0)

ii) (-1) X = sin(xz) for +T-1 (+-1) (-1) x 1+ for recoil). X & DLL)

iii) YTE 10.1). AC 20. 5t. 11 (-1) X 11 5 CILXITIXII

holds for YxtPLL).

Pfi i) 116-L) x 11 = 11 50 + 4-P-1 5+ (-L) x 1+11 = 116-L) x 11.

ii) (+-L)" = So e Ses) As. Tranf. Variables.

(ii) Apply ii). Note: (t-L) (-L) = 1-t(t-L)

So = 5 k9 11×11 . Sk = 5 Sk t 3-11Lx11

of the optimize k.

prop. 4 too. KEZt. Sct) maps B to D(LK). And ICK. 5t. 11 L & Sct, x 11 & CK 11 X11. 4 X & B. & E (0.17).

Pf: Note: LRX = XRX-1. Syrib Lt At = 0. Inige1 < 4. LSit) = Syn = IRE Et le = Syn Zzi Z Rz Et le : L* Sits = 1 Sten Zket Rt Rt Rt. Pirerely estimate.

prop. 4 t >0. T>0. Sets maps B to BT. And I Ca. St. 11 (-L) SEX 11 5 to 11x11. 4 to (0.1)

> Pf. In &Zt. Bn = D(L") = Ba. S(B) = ND(L"). ⇒ SCB) = Br. (Moleover SLB) ∈ NBr)

Note: (-L) = (-L) T-[7]-1 (-L)

(r. i) Sut) maps Bar into BB. Har. BER'. BER'.

1. c. | Sut) X | BB = Clare | II X | Bar to P. Vt & 10.1]

ii) $\forall \forall \in R'$. $\forall \beta \in Eq. \forall +1)$. Then $\exists C > 0. St$. $||(t-L)^{T} \times ||_{\mathcal{B}_{\beta}} \in C(|+t)^{\beta-q-1} || \times ||_{\mathcal{B}_{\gamma}}. \forall t \geq 0.$

Pf. i) $(-L)^{V}$ ammitted with S(t).

ii) $\|Rt(L) \times \|P_{B}\| = \|\int_{0}^{\infty} e^{-tS} S_{LST} \times A_{S} \|P_{B}\|$ $\int_{0}^{\infty} e^{-tS} \|S_{LST} \times \|P_{B}\| A_{S}$ Then apply i). Directly.

prop. (Speed of Convergence)

For $\forall x \in (0,1)$. $\exists C_{\tau}$. s_{τ} . $||S_{t+1}x - x|| \leq C_{\tau} t^{\tau} ||x||_{B_{\tau}}$ for every $x \in B_{\tau}$. $t \in (0,1]$. Pf. By Amsity, prove it halds for $x \in D(L)$. $||S_{t+1}x - x|| = ||\int_{0}^{t} S_{t+1}x dx ||x|| = ||\int_{0}^{t} (-L)^{-\tau} S_{t+1}x dx ||x||$ = 11×110+ 10 5 5 1 15 = t 11×110+.

Prop. (Perturbation)

Lo is generator of analytic temigroup Sct) on B.

Denote B_{γ}° its interplation space. Let $B: B_{\gamma}^{\circ} \to B$.

but for some $\gamma \in Co.1$. L = Lo + B.

Then, for interplation B_{γ} of L. $B_{\gamma} = B_{\gamma}^{\circ}$. $4\gamma \in Co.1$.

Pf: 1') $\gamma = 0.1$. is trivial.

2) Next. Show: C'IIC-LOJ'XII = II C-LJ'XII = C IIC-LOJ'XII.

3 C>0. for \(\forall \times \text{P(Lo)}. \(0 < \forall \times \times \text{.}

3) Note: $P(L) = D(L_0)$. BRt is ble. Vt.

ALL $Rt = Rt^{\circ} + Rt^{\circ} BRt$ (Δ) $\|BRt \times \| \le C \|Rt \times \|_{0^{\circ}} \le C \|Rt^{\circ} \times \|_{0^{\circ}} + C \|Rt^{\circ} BRt \times \|B_{0^{\circ}}$ $\le C (1+t)^{N-1} \|X\|_{B_{V}^{\circ}} + C (1+t)^{N-1} \|BRt \times \|$ for $\forall x \in B_{V}^{\circ}$. $\forall x \in A_{V}^{\circ}$.

~ 11 x 11 by + 500 + 41 11 Ble x 11 lt

= 118 110; by (t).

By resolvent equation: 4 k > 0

set k large enough. St. CKT < \frac{1}{2}.

6) For < ≤ y. || BR+× || ≈ (1+t) | || × || By

Sinu Ba = By . by prop.

Note: So +4-1 < 00. So +4-(t+k) -4-1 ~ k

The proof i) - 5) Still holds!

HEREXH E CHAP MANOF -- (X)

1-1-31-1-51 /2 + x + 10