Chapter 1

Combinatorial Analysis

Jingchen (Monika) Hu

Vassar College

MATH 241

Outline

- 1 The basic rule of counting
- Permutations
- Combinations
- Multinomial coefficients
- 6 Recap

Outline

- The basic rule of counting
- 2 Permutations
- Combinations
- Multinomial coefficients
- 6 Recap

The generalized rule of counting

Suppose an experiment consists r different outcomes, with the i-th outcome having n_i possibilities, then together there are

$$n_1 \times n_2 \times \dots \times n_r = \prod_{i=1}^r n_i$$

possibilities for the experiment.

The generalized rule of counting

Suppose an experiment consists r different outcomes, with the i-th outcome having n_i possibilities, then together there are

$$n_1 \times n_2 \times \dots \times n_r = \prod_{i=1}^r n_i$$

possibilities for the experiment.

Question

How many different 4-digit pins?

letter or number letter or number letter or number letter or number

The generalized rule of counting

Suppose an experiment consists r different outcomes, with the i-th outcome having n_i possibilities, then together there are

$$n_1 \times n_2 \times \dots \times n_r = \prod_{i=1}^r n_i$$

possibilities for the experiment.

Question

How many different 4-digit pins?

letter or number letter or number letter or number letter or number

$$(26+10) \times (26+10) \times (26+10) \times (26+10) = 1,679,616$$

Outline

- The basic rule of counting
- 2 Permutations
- 3 Combinations
- Multinomial coefficients
- 5 Recap

Permutations

Our example: how many different arrangements of the letters a, b, c?

- Each of these arrangements is a *permutation*
- The order matters!
- ightharpoonup Number of permutations of n different objects

$$n \times (n-1) \times \cdots \times 1 = n!$$

Permutations of r groups of n objects

Among n objects, if n_1 are alike, n_2 are alike, . . . , n_r are alike, then there are

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

different permutations.

Permutations of r groups of n objects

Among n objects, if n_1 are alike, n_2 are alike, . . . , n_r are alike, then there are

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

different permutations.

Question

Number of permutations of the letters in the word "Vassar"?

- **a** 6!/2
- **b** 5!/2
- **6**!/4
- **a** 6!

Permutations of r groups of n objects

Among n objects, if n_1 are alike, n_2 are alike, . . . , n_r are alike, then there are

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

different permutations.

Question

Number of permutations of the letters in the word "Vassar"?

- **a** 6!/2
- **b** 5!/2
- **a** 6!

If we have n items and want to select r of them,

$$\#(\mathsf{permutations}) = n \times (n-1) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!}$$

Question

- 3!
- \bullet 3³
- **9** 8!
- $\mathbf{0}$ $8 \times 7 \times 6$

If we have n items and want to select r of them,

$$\#(\mathsf{permutations}) = n \times (n-1) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!}$$

Question

- **a** 3!
- \bullet 3³
- **9** 8!
- $\mathbf{0}$ $8 \times 7 \times 6$

If we have n items and want to select r of them,

$$\#(\text{permutations}) = n \times (n-1) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!}$$

Question

- **a** 3!
- \bullet 3³
- 8!
- $\mathbf{0}$ $8 \times 7 \times 6$

$$\frac{}{8} \times \frac{}{7} \times \frac{}{6} = 8!/(8-3)!$$

If we have n items and want to select r of them,

$$\#(\text{permutations}) = n \times (n-1) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!}$$

Question

- **a** 3!
- \bullet 3³
- 8!
- $\mathbf{0}$ $8 \times 7 \times 6$

$$\frac{}{8} \times \frac{}{7} \times \frac{}{6} = 8!/(8-3)!$$

If we have n items and want to select r of them,

$$\#(\text{permutations}) = n \times (n-1) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!}$$

Question

Suppose you have 3 distinctive gifts to give to 8 friends. How many permutations of gift giving strategy do you have?

- **a** 3!
- \bullet 3³
- 8!
- $\mathbf{0}$ $8 \times 7 \times 6$

$$\frac{}{8} \times \frac{}{7} \times \frac{}{6} = 8!/(8-3)!$$

What if the order doesn't matter? e.g. handshakes.

- (a) In how many ways can 4 married couples line up?
- (b) What if couples must stand together?

- (a) In how many ways can 4 married couples line up?
- (b) What if couples must stand together?

Part (a): 8 different people

$$8! = 40320$$

- (a) In how many ways can 4 married couples line up?
- (b) What if couples must stand together?

Part (a): 8 different people

$$8! = 40320$$

Part (b): there are 4!=24 ways that the couples can be arranged, and each couple can be arranged in 2!=2 ways. So the answer is

- (a) In how many ways can 4 married couples line up?
- (b) What if couples must stand together?

Part (a): 8 different people

$$8! = 40320$$

Part (b): there are 4! = 24 ways that the couples can be arranged, and each couple can be arranged in 2! = 2 ways. So the answer is

$$(4!) \times (2!) \times (2!) \times (2!) \times (2!) = 384.$$

- (a) In how many ways can 4 married couples line up?
- (b) What if couples must stand together?

Part (a): 8 different people

$$8! = 40320$$

Part (b): there are 4! = 24 ways that the couples can be arranged, and each couple can be arranged in 2! = 2 ways. So the answer is

$$(4!) \times (2!) \times (2!) \times (2!) \times (2!) = 384.$$

Another way to look at the problem:

For the first position, there are 8 choices. For the next position, only one, because the first person's spouse needs to take that position. The next one has 6, next 1 again, etc.. So the answer is

$$8 \times 1 \times 6 \times 1 \times 4 \times 1 \times 2 \times 1 = 384$$
.

Recap

The basic rule of counting

ullet r different outcomes; the i-th outcome having n_i possibilities, then the number of possibilities is

$$\prod_{i=1}^{r} n_i$$

Permutations

- Number of permutations of n different objects is n!.
- Number of permutations of n objects, if n_1 are alike, n_2 are alike, ..., n_r are alike, is

$$rac{n!}{n_1!n_2!\cdots n_r!}$$

• Number of permutations of selecting r items from n objects

$$\frac{n!}{(n-r)!}$$

Outline

- The basic rule of counting
- 2 Permutations
- Combinations
- 4 Multinomial coefficients
- 5 Recap

When order matters, there are r! different orderings of the r items selected.

If we have n items and want to select r of them,

$$\#(\mathsf{combinations}) = \frac{n \times (n-1) \times \dots \times (n-r+1)}{r!} = \frac{n!}{(n-r)!r!}$$

When order matters, there are r! different orderings of the r items selected.

If we have n items and want to select r of them,

$$\#(\mathsf{combinations}) = \frac{n \times (n-1) \times \dots \times (n-r+1)}{r!} = \frac{n!}{(n-r)!r!}$$

Define choose

$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$

When order matters, there are r! different orderings of the r items selected.

If we have n items and want to select r of them,

$$\#(\mathsf{combinations}) = \frac{n \times (n-1) \times \dots \times (n-r+1)}{r!} = \frac{n!}{(n-r)!r!}$$

■ Define choose

$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$

- The number $\binom{n}{r}$ is pronounced as n choose r, it is the number of ways to pick r objects from a set of n distinct objects.
- $0 \le r \le n$, otherwise 0

When order matters, there are r! different orderings of the r items selected.

If we have n items and want to select r of them,

$$\#(\mathsf{combinations}) = \frac{n \times (n-1) \times \dots \times (n-r+1)}{r!} = \frac{n!}{(n-r)!r!}$$

Define choose

$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$

- The number $\binom{n}{r}$ is pronounced as n choose r, it is the number of ways to pick r objects from a set of n distinct objects.
- $0 \le r \le n$, otherwise 0
- 0! = 1

Example: Poker hand. A standard poker deck has 52 cards, in four suits (clubs, diamonds, hearts, spades) of thirteen cards each (2, 3, ..., 10, Jack, Queen, King, Ace).

Question

How many distinct hands of "four of a kind" (four of the five cards are of the same rank)?

Example: Poker hand. A standard poker deck has 52 cards, in four suits (clubs, diamonds, hearts, spades) of thirteen cards each (2, 3, ..., 10, Jack, Queen, King, Ace).

Question

How many distinct hands of "four of a kind" (four of the five cards are of the same rank)?

$$\binom{13}{1} \qquad \times \qquad \binom{4}{4} \qquad \times \qquad \binom{48}{1}$$
 the same rank
$$\qquad \text{suits for the same rank} \qquad \text{the rest 1 card}$$

Related to the previous question...

Question

How many distinct hands of "four of a suit" (four of the five cards are of the same suit)?

Related to the previous question...

Question

How many distinct hands of "four of a suit" (four of the five cards are of the same suit)?

$$\binom{4}{1}$$
 \times $\binom{13}{4}$ \times $\binom{39}{1}$ the suit 4 cards in the same suit the rest 1 card

Related to the previous question...

Question

How many distinct hands of "four of a suit" (four of the five cards are of the same suit)?

$$\binom{4}{1}$$
 $imes$ $\binom{13}{4}$ $imes$ \times $\binom{39}{1}$ the suit 4 cards in the same suit the rest 1 card

Note that the number of possible ways to get "four of a kind" $\binom{13}{1} \times \binom{4}{4} \times \binom{48}{1}$ is smaller than the number of possible ways to get "four of a suit" $\binom{4}{1} \times \binom{13}{4} \times \binom{39}{1}$, that means it is less possible to get "four of a kind". In a game, "four of a kind" wins over "four of a suit" because of its smaller probability.

Among 4 married couples, we want to select a group of 3 people that is not allowed to contain a married couple. How many choices are there?

Among 4 married couples, we want to select a group of 3 people that is not allowed to contain a married couple. How many choices are there?

Number of choices if the group can contain married couple(s):

$$N_1 = \binom{8}{3} = \frac{8!}{3! \times 5!} = 56$$

Among 4 married couples, we want to select a group of 3 people that is not allowed to contain a married couple. How many choices are there?

Number of choices if the group can contain married couple(s):

$$N_1 = \binom{8}{3} = \frac{8!}{3! \times 5!} = 56$$

Number of choices if the group contains married couple(s)? Then it can only contain one couple.

$$N_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 6 \\ 1 \end{pmatrix} = 24$$

Among 4 married couples, we want to select a group of 3 people that is not allowed to contain a married couple. How many choices are there?

Number of choices if the group can contain married couple(s):

$$N_1 = \binom{8}{3} = \frac{8!}{3! \times 5!} = 56$$

Number of choices if the group contains married couple(s)? Then it can only contain one couple.

$$N_2 = \binom{4}{1} \times \binom{6}{1} = 24$$

The number of choices that the group does not have a couple:

$$N_1 - N_2 = 32$$

Among 4 married couples, we want to select a group of 3 people that is not allowed to contain a married couple. How many choices are there?

Number of choices if the group can contain married couple(s):

$$N_1 = \binom{8}{3} = \frac{8!}{3! \times 5!} = 56$$

Number of choices if the group contains married couple(s)? Then it can only contain one couple.

$$N_2 = \binom{4}{1} \times \binom{6}{1} = 24$$

The number of choices that the group does not have a couple:

$$N_1 - N_2 = 32$$

Alternatively: there are $8\times 6\times 4$ ways of permuting 3 people where no married couple is contained. However, the order plays a role in this calculation, which we do not want. Therefore, there are $\frac{8\times 6\times 4}{3!}=32$ number of choices that the group does not have a couple.

Properties of combinations
$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$

1

$$\binom{n}{1} = n$$

$$\binom{n}{n} = 1$$

Properties of combinations $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

1

$$\binom{n}{1} = n$$

$$\binom{n}{n} = 1$$

2

$$\binom{n}{r} = \binom{n}{n-r}$$

Properties of combinations $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

1

$$\binom{n}{1} = n \qquad \qquad \binom{n}{n} = 1$$

2

$$\binom{n}{r} = \binom{n}{n-r}$$

3

$$\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad 1 \le r \le n$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proof: 1) mathematical induction or 2) combinatorial consideration.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proof: 1) mathematical induction or 2) combinatorial consideration. Think about license plates that are formed by n digits, where each digit can be a letter or a number. a=26,b=10.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proof: 1) mathematical induction or 2) combinatorial consideration. Think about license plates that are formed by n digits, where each digit can be a letter or a number. a=26,b=10.

Total number of distinct plates:

$$N = (a+b)^n = N_0 + N_1 + \dots + N_n,$$

where N_k is the number of distinct plates that contains exactly k number of letters.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proof: 1) mathematical induction or 2) combinatorial consideration. Think about license plates that are formed by n digits, where each digit can be a letter or a number. a=26,b=10.

Total number of distinct plates:

$$N = (a+b)^n = N_0 + N_1 + \dots + N_n,$$

where N_k is the number of distinct plates that contains exactly k number of letters.

$$N_k = \binom{n}{k} \times a^k \times b^{n-k}$$

How many subsets are there of the set $\{1, 2, \dots, n\}$?

How many subsets are there of the set $\{1, 2, \dots, n\}$?

For each $0 \le k \le n$, there are $\binom{n}{k}$ different subsets of size k. Then

$$\#(\mathsf{subsets}) = \sum_{k=0}^{n} \binom{n}{k}$$

How many subsets are there of the set $\{1, 2, \dots, n\}$?

For each $0 \le k \le n$, there are $\binom{n}{k}$ different subsets of size k. Then

$$\#(\mathsf{subsets}) = \sum_{k=0}^{n} \binom{n}{k}$$

Use the Binomial Theorem to simplify

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}$$

How many subsets are there of the set $\{1, 2, \dots, n\}$?

For each $0 \le k \le n$, there are $\binom{n}{k}$ different subsets of size k. Then

$$\#(\mathsf{subsets}) = \sum_{k=0}^{n} \binom{n}{k}$$

Use the Binomial Theorem to simplify

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}$$

Any other way to solve this question?

How many subsets are there of the set $\{1, 2, \dots, n\}$?

For each $0 \le k \le n$, there are $\binom{n}{k}$ different subsets of size k. Then

$$\#(\mathsf{subsets}) = \sum_{k=0}^{n} \binom{n}{k}$$

Use the Binomial Theorem to simplify

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}$$

Any other way to solve this question?

Each element can be either in the subset or out of the subset (2 choices); there are n elements; therefore the number of subsets is 2^n (basic rule of counting).

Outline

- The basic rule of counting
- Permutations
- 3 Combinations
- Multinomial coefficients
- 5 Recap

Multinomial coefficients

Multinomial coefficient: a set of n distinct items is to be divided into r distinct groups of respective sizes n_1, \ldots, n_r , where $n_1 + n_2 + \cdots + n_r = n$. Number of possible divisions is

$$\binom{n}{n_1, n_2, \dots, n_r} \stackrel{\text{def}}{=} \frac{n!}{n_1! n_2! \cdots n_r!}$$

$$\binom{n}{n_1, n_2, \dots, n_r} = \binom{n}{n_1} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n_r}{n_r}$$

$$\binom{n}{n_1, n_2, \dots, n_r} = \binom{n}{n_1} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n_r}{n_r}$$

• When r = 2, becomes binomial coefficient (choose function)

$$\binom{n}{n_1, n_2} = \binom{n}{n_1}$$

Note that $n_1 + n_2 = n$

$$\binom{n}{n_1, n_2, \dots, n_r} = \binom{n}{n_1} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n_r}{n_r}$$

• When r=2, becomes binomial coefficient (choose function)

$$\binom{n}{n_1, n_2} = \binom{n}{n_1}$$

Note that $n_1 + n_2 = n$

Multinomial Theorem

$$(a_1 + a_2 + \dots + a_r)^n = \sum_{n_1 + \dots + n_r = n} {n \choose n_1, n_2, \dots, n_r} a_1^{n_1} a_2^{n_2} \cdots a_r^{n_r}$$

$$\binom{n}{n_1, n_2, \dots, n_r} = \binom{n}{n_1} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n_r}{n_r}$$

• When r=2, becomes binomial coefficient (choose function)

$$\binom{n}{n_1, n_2} = \binom{n}{n_1}$$

Note that $n_1 + n_2 = n$

Multinomial Theorem

$$(a_1 + a_2 + \dots + a_r)^n = \sum_{n_1 + \dots + n_r = n} {n \choose n_1, n_2, \dots, n_r} a_1^{n_1} a_2^{n_2} \cdots a_r^{n_r}$$

• The Binomial theorem is a special case when r=2.

Outline

- The basic rule of counting
- 2 Permutations
- 3 Combinations
- Multinomial coefficients
- 6 Recap

ullet From n distinct items, number of ways to draw r of them

	without replacement	with replacement
order matters	n!/(n-r)!	n^r
order doesn't matter	$\binom{n}{r} = n!/(n-r)!r!$	see Ch1.6*

Order matters or not?

Order matters or not?

ullet Textbook Example 5b: Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league and the B team in another. How many different divisions are possible?

Order matters or not?

ullet Textbook Example 5b: Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league and the B team in another. How many different divisions are possible?

$$\binom{10}{5} = \frac{10!}{5! \times 5!} = 252.$$

Order matters or not?

ullet Textbook Example 5b: Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league and the B team in another. How many different divisions are possible?

$$\binom{10}{5} = \frac{10!}{5! \times 5!} = 252.$$

• Textbook Example 5c: In order to play a game of basketball, 10 children at a playground divide themselves into two teams of 5 each. How many different divisions are possible?

Order matters or not?

ullet Textbook Example 5b: Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league and the B team in another. How many different divisions are possible?

$$\binom{10}{5} = \frac{10!}{5! \times 5!} = 252.$$

• Textbook Example 5c: In order to play a game of basketball, 10 children at a playground divide themselves into two teams of 5 each. How many different divisions are possible?

$$\frac{\binom{10}{5}}{2!} = \frac{10!}{5! \times 5! \times 2!} = 126.$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

License plate problem?

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

License plate problem?

Multinomial coefficient

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Connection?

$$1,1,\cdots,1,2,2,\cdots 2,\cdots,r,r,\cdots r$$
 (n_1 of $1,\ n_2$ of $2,\ ...,\ n_r$ of $r.$)

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

License plate problem?

Multinomial coefficient

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Connection?

$$1, 1, \dots, 1, 2, 2, \dots 2, \dots, r, r, \dots r$$

 $(n_1 \text{ of } 1, n_2 \text{ of } 2, ..., n_r \text{ of } r.)$

Each permutation yields a division of the items \rightarrow multinomial.

In a well shuffled deck of 52 cards, how many ways can the 4 Aces to be together?

In a well shuffled deck of 52 cards, how many ways can the 4 Aces to be together?

Treat the 4 Aces together as one object, then the total number of objects are 49.

Also consider the number of permutations among the four aces: 4!

In a well shuffled deck of 52 cards, how many ways can the 4 Aces to be together?

Treat the 4 Aces together as one object, then the total number of objects are 49.

Also consider the number of permutations among the four aces: 4!

$$N = 49! \times 4!$$