

Description

TheVSM60N20uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =200V, I_{D} =60A $R_{DS(ON)}$ <32m Ω @ V_{GS} =10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM60N20-TC	VSM60N20	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	200	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	60	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	42	Α
Pulsed Drain Current	I _{DM}	280	Α
Maximum Power Dissipation	P _D	285	W
Derating factor		1.9	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	225	mJ
Operating Junction and Storage Temperature Range	T_{J},T_{STG}	-55 To 175	$^{\circ}$

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	0.53	°C/W	
---	------------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	200	220	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3.2	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	24	32	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =30A	40	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V,	-	6200	-	PF
Output Capacitance	C _{oss}		-	950	-	PF
Reverse Transfer Capacitance	C_{rss}	F=1.0MHz	-	460	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	33	-	nS
Turn-on Rise Time	t _r	V_{DD} =100V, R_{L} =15 Ω V_{GS} =10V, R_{G} =2.5 Ω	-	20	-	nS
Turn-Off Delay Time	$t_{d(off)}$		-	21	-	nS
Turn-Off Fall Time	t _f		-	31	-	nS
Total Gate Charge	Qg	V _{DS} =100V,I _D =30A,	-	130		nC
Gate-Source Charge	Q _{gs}		-	36		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	46		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =30A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	60	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 30A	-	42		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	66		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- 5. E_{AS} condition: j=25 $^{\circ}\text{C}\,\text{,V}_{DD}\text{=}50\text{V},\text{V}_{G}\text{=}10\text{V},\text{L=}0.5\text{mH,Rg=}25\Omega$

Test Circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance