Graphs - Maximum Flow

Fundamental Algorithms

Rodica Potolea, Camelia Lemnaru and Ciprian Oprișa

Technical University of Cluj-Napoca Computer Science Department

Agenda

- Maximum Flow concepts
- The Ford-Fulkerson method
- Maximum bipartite matching
- Graphs recap
- Exam info

Agenda

- Maximum Flow concepts
- 2 The Ford-Fulkerson method
- Maximum bipartite matching
- Graphs recap
- Exam info

• a directed graph G = (V, E)

- a directed graph G = (V, E)
- a capacity function

$$c: E \to [0, \infty)$$

- $c(u, v) \ge 0$
- if $(u, v) \notin E$, then c(u, v) = 0

- a directed graph G = (V, E)
- a **capacity** function $c: E \to [0, \infty)$
 - $c(u, v) \geq 0$
 - if $(u, v) \notin E$, then c(u, v) = 0
- no antiparallel edges (if $(u, v) \in E$ then $(v, u) \notin E$)
- no self-loops

- a directed graph G = (V, E)
- a **capacity** function

$$c: E \to [0, \infty)$$

- $c(u, v) \ge 0$
- if $(u, v) \notin E$, then c(u, v) = 0
- no antiparallel edges (if $(u, v) \in E$ then $(v, u) \notin E$)
- no self-loops
- two special vertices:
 - a source s
 - a target/sink t

- a directed graph G = (V, E)
- a **capacity** function

$$c: E \to [0, \infty)$$

- $c(u, v) \ge 0$
- if $(u, v) \notin E$, then c(u, v) = 0
- no antiparallel edges (if $(u, v) \in E$ then $(v, u) \notin E$)
- no self-loops
 - two special vertices:
 - a source s
 - a target/sink t
 - all other nodes $v \in V$ are on a path from s to $t (s \rightsquigarrow v \rightsquigarrow t)$

$$f: V \times V \rightarrow \mathbb{R}$$

 $f: V \times V \rightarrow \mathbb{R}$

Capacity constraint:

 $\forall u, v \in V, 0 \leq f(u, v) \leq c(u, v)$

 $f: V \times V \rightarrow \mathbb{R}$

Capacity constraint:

$$\forall u, v \in V, \ 0 \le f(u, v) \le c(u, v)$$

Flow conservation: $\forall u \in V \setminus \{s, t\}$,

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

 $f: V \times V \to \mathbb{R}$

Capacity constraint:

$$\forall u, v \in V, 0 \leq f(u, v) \leq c(u, v)$$

Flow conservation: $\forall u \in V \setminus \{s, t\}$,

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

Flow value:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

$$f: V \times V \to \mathbb{R}$$

Capacity constraint:

$$\forall u, v \in V, 0 \leq f(u, v) \leq c(u, v)$$

Flow conservation: $\forall u \in V \setminus \{s, t\},\$

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

Flow value:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Maximum-flow problem

Given a directed graph G = (V, E), a source s, a sink t and a capacity function $c : E \to [0, \infty)$, find the flow f with the maximum value.

$$f: V \times V \to \mathbb{R}$$

Capacity constraint:

$$\forall u, v \in V, 0 \le f(u, v) \le c(u, v)$$

Flow conservation:
$$\forall u \in V \setminus \{s, t\}$$
, $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$

Flow value:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Maximum-flow problem

Given a directed graph G = (V, E), a source s, a sink t and a capacity function $c : E \to [0, \infty)$, find the flow f with the maximum value.

Real world applications

- water pipes
- electrical networks

Agenda

- Maximum Flow concepts
- The Ford-Fulkerson method
- Maximum bipartite matching
- Graphs recap
- Exam info

- define the remaining capacity after some flow f passes
 - subtract the flow from each edge capacity
 - add reversed edges (so we can decrease the flow later)

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}$$

use all the edges with a positive remaining flow

$$G_f = (V, E_f), \quad E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$

- define the remaining capacity after some flow f passes
 - subtract the flow from each edge capacity
 - add reversed edges (so we can decrease the flow later)

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}$$

• use all the edges with a positive remaining flow $G_f = (V, E_f), \quad E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$

- define the remaining capacity after some flow f passes
 - subtract the flow from each edge capacity
 - add reversed edges (so we can decrease the flow later)

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}$$

• use all the edges with a positive remaining flow $G_f = (V, E_f), E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$

- define the remaining capacity after some flow f passes
 - subtract the flow from each edge capacity
 - add reversed edges (so we can decrease the flow later)

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}$$

• use all the edges with a positive remaining flow $G_{s} = (V, F_{s}) \quad F_{s} = \{(u, v) \in V \times V : G_{s}(u) \in V \}$

$$G_f = (V, E_f), \quad E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$

Flow augmentation

- let f be a flow in the network G
- let f' be a flow in the residual network G_f

Flow augmentation

- let f be a flow in the network G
- let f' be a flow in the residual network G_f
- we define $f \uparrow f'$ the **augmentation** of flow f by f'

$$(f \uparrow f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Flow augmentation

- let f be a flow in the network G
- let f' be a flow in the residual network G_f
- we define $f \uparrow f'$ the **augmentation** of flow f by f'

$$(f \uparrow f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Lemma 26.1

The function $f \uparrow f'$ is a flow in G with the value $|f \uparrow f'| = |f| + |f'|$.

- let f be a flow in the network G
- let p be a simple path $s \rightsquigarrow t$ in the residual network G_f
- the **residual capacity** of p is $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
- f_p is a flow in G_f with the value $|f_p| = c_f(p) > 0$

$$f_p(u,v) = \left\{ egin{array}{ll} c_f(p) & ext{if } (u,v) \in p \\ 0 & ext{otherwise} \end{array}
ight.$$

- let f be a flow in the network G
- let p be a simple path $s \rightsquigarrow t$ in the residual network G_f
- the **residual capacity** of p is $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
- f_p is a flow in G_f with the value $|f_p| = c_f(p) > 0$

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \in p \\ 0 & \text{otherwise} \end{cases}$$

- let f be a flow in the network G
- let p be a simple path $s \rightsquigarrow t$ in the residual network G_f
- the **residual capacity** of p is $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
- f_p is a flow in G_f with the value $|f_p| = c_f(p) > 0$

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \in p \\ 0 & \text{otherwise} \end{cases}$$

•
$$|f| = 11 + 8 = 19$$

- let f be a flow in the network G
- let p be a simple path $s \rightsquigarrow t$ in the residual network G_f
- the **residual capacity** of p is $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
- f_p is a flow in G_f with the value $|f_p| = c_f(p) > 0$

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \in p \\ 0 & \text{otherwise} \end{cases}$$

- |f| = 11 + 8 = 19
- $p = \langle s, v_2, v_3, t \rangle$

- let f be a flow in the network G
- let p be a simple path $s \rightsquigarrow t$ in the residual network G_f
- the **residual capacity** of p is $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
- f_p is a flow in G_f with the value $|f_p| = c_f(p) > 0$

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \in p \\ 0 & \text{otherwise} \end{cases}$$

- |f| = 11 + 8 = 19
- $p = \langle s, v_2, v_3, t \rangle, c_f(p) = 4$

- let f be a flow in the network G
- let p be a simple path $s \rightsquigarrow t$ in the residual network G_f
- the **residual capacity** of p is $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
- f_p is a flow in G_f with the value $|f_p| = c_f(p) > 0$

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \in p \\ 0 & \text{otherwise} \end{cases}$$

- |f| = 11 + 8 = 19
- $p = \langle s, v_2, v_3, t \rangle, c_f(p) = 4$
- G with augmented flow $f \uparrow f_p$:

- let f be a flow in the network G
- let p be a simple path $s \rightsquigarrow t$ in the residual network G_f
- the **residual capacity** of p is $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
- f_p is a flow in G_f with the value $|f_p| = c_f(p) > 0$

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \in p \\ 0 & \text{otherwise} \end{cases}$$

$$|f| = 11 + 8 = 19$$

•
$$p = \langle s, v_2, v_3, t \rangle, c_f(p) = 4$$

• G with augmented flow $f \uparrow f_p$:

•
$$|f \uparrow f_p| = 11 + 12 = 19 + 4 = 23$$


```
FORD-FULKERSON-METHOD (G, s, t)
```

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- **2 while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- while \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return *f*

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- while \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- **2 while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return *f*

- 1 initialize flow f to 0
- while \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return *f*

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- while \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return *f*

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- 1 initialize flow f to 0
- while \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return *f*

- 1 initialize flow f to 0
- 2 **while** \exists augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

- Ford-Fulkerson is a method, not an algorithm
 - it does not specify how the augmenting path p is selected

- Ford-Fulkerson is a method, not an algorithm
 - it does not specify how the augmenting path p is selected
- termination

- Ford-Fulkerson is a method, not an algorithm
 - it does not specify how the augmenting path p is selected
- termination
 - if all capacities are integers, each iteration increases the flow value by at least 1
 - the maximum flow is finite \Rightarrow the flow cannot increase forever

- Ford-Fulkerson is a method, not an algorithm
 - it does not specify how the augmenting path p is selected
- termination
 - if all capacities are integers, each iteration increases the flow value by at least 1
 - the maximum flow is finite ⇒ the flow cannot increase forever
 - if all capacities are rational, we can scale with the least common multiple of all denominators and work with integer capacities

- Ford-Fulkerson is a method, not an algorithm
 - it does not specify how the augmenting path p is selected
- termination
 - if all capacities are integers, each iteration increases the flow value by at least 1
 - the maximum flow is finite ⇒ the flow cannot increase forever
 - if all capacities are rational, we can scale with the least common multiple of all denominators and work with integer capacities
 - with irrational capacities and a poor choice of augmenting paths, the algorithm might not terminate (the flow value increases with smaller and smaller values)
 - see the link below for a pathological example where the algorithm doesn't terminate:

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/07DemoFordFulkersonPathological.pdf

- correctness
 - ullet no augmenting paths in $G_f o f$ is a maximum flow (from the max-flow min-cut theorem, that will follow)

- correctness
 - no augmenting paths in $G_f o f$ is a maximum flow (from the max-flow min-cut theorem, that will follow)
- complexity
 - finding an augmenting path and augmenting the flow: O(V + E) = O(E)
 - for integer capacities, if the maximum flow is f^* , the number of iterations is at most $|f^*|$
 - total running time: $O(E \cdot |f^*|)$

(S, T) is a **cut** of the flow network G = (V, E) if

- $S \cup T = V$
- $S \cap T = \emptyset$
- $s \in S$, $t \in T$

(S, T) is a **cut** of the flow network G = (V, E) if

- $S \cup T = V$
- $S \cap T = \emptyset$
- $s \in S$, $t \in T$

(S, T) is a **cut** of the flow network G = (V, E) if

•
$$S \cup T = V$$

•
$$S \cap T = \emptyset$$

•
$$s \in S$$
, $t \in T$

(S, T) is a **cut** of the flow network G = (V, E) if

•
$$S \cup T = V$$

•
$$S \cap T = \emptyset$$

•
$$s \in S$$
, $t \in T$

The **net flow** f(S, T) across the cut is $f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$.

(S, T) is a **cut** of the flow network G = (V, E) if

•
$$S \cup T = V$$

•
$$S \cap T = \emptyset$$

•
$$s \in S$$
, $t \in T$

$$f(S, T) = 12 + 11 - 4 = 19$$

The **net flow**
$$f(S, T)$$
 across the cut is $f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$.

(S, T) is a **cut** of the flow network G = (V, E) if

•
$$S \cup T = V$$

•
$$S \cap T = \emptyset$$

•
$$s \in S$$
, $t \in T$

$$f(S, T) = 12 + 11 - 4 = 19$$

The **net flow** f(S,T) across the cut is

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u).$$

The **capacity** of the cut (S,T) is $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$.

(S, T) is a **cut** of the flow network G = (V, E) if

•
$$S \cup T = V$$

•
$$S \cap T = \emptyset$$

•
$$s \in S$$
, $t \in T$

$$f(S, T) = 12 + 11 - 4 = 19$$

 $c(S, T) = 12 + 14 = 26$

The **net flow** f(S,T) across the cut is

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u).$$

The **capacity** of the cut (S, T) is $c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$.

Lemma 26.4

Let f be a flow in the network G with source s and sink t. $\forall (S, T)$ a cut of G, the flow across (S, T) is f(S, T) = |f|.

Lemma 26.4

Let f be a flow in the network G with source s and sink t. $\forall (S, T)$ a cut of G, the flow across (S, T) is f(S, T) = |f|.

Corollary 26.5

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

Theorem 26.6

If f is a flow in a network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- \bullet f is a maximum flow in G
- |f| = c(S, T) for some cut (S, T) of G

Theorem 26.6

If f is a flow in a network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- ② the residual network G_f contains no augmenting paths
- |f| = c(S, T) for some cut (S, T) of G

Proof:

• (1)
$$\Rightarrow$$
 (2) : contradiction $|f \uparrow f_p| = |f| + |f_p| > |f|$

Theorem 26.6

If f is a flow in a network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- ② the residual network G_f contains no augmenting paths
- |f| = c(S, T) for some cut (S, T) of G

Proof:

- (1) \Rightarrow (2) : contradiction $|f \uparrow f_p| = |f| + |f_p| > |f|$
- (2) \Rightarrow (3) : let $S = \{v \in V : \exists s \leadsto v \text{ in } G_f\}, T = V \setminus S \Rightarrow |f| \stackrel{\mathsf{Lemma}}{=} {}^{26.4} f(S, T) = c(S, T)$

Theorem 26.6

If f is a flow in a network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- |f| = c(S, T) for some cut (S, T) of G

Proof:

- (1) \Rightarrow (2) : contradiction $|f \uparrow f_p| = |f| + |f_p| > |f|$
- (2) \Rightarrow (3) : let $S = \{v \in V : \exists s \leadsto v \text{ in } G_f\}, T = V \setminus S$ $\Rightarrow |f| \stackrel{\mathsf{Lemma}}{=} {}^{26.4} f(S, T) = c(S, T)$
- $(3) \Rightarrow (1)$: from Corollary 26.5

The Edmonds-Karp algorithm - approach

- based on the Ford-Fulkerson method
- finds the augmenting path in G_f using the BFS algorithm

The Edmonds-Karp algorithm

```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
10
                         (u, v).f = (u, v).f + c_f(p)
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
```


The Edmonds-Karp algorithm

0/14

```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
 2
          (u, v).f = 0
     repeat
 4
5
6
7
8
9
           G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
                c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
                for each edge (u, v) \in p
                    if (u, v) \in E
10
                          (u, v).f = (u, v).f + c_f(p)
                     else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        0/12
    G :
  |f| = 0
```


0/14

```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                                                                          12
                        0/12
    G :
```

|f| = 0


```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                                                                          12
                        0/12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        0/12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u,v) : (u,v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                         (u, v).f = (u, v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u,v) : (u,v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                         (u, v).f = (u, v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u,v) : (u,v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                         (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
                                                                          12
```



```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
 2
          (u, v).f = 0
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
```


11/14

```
EDMONDS-KARP(G, s, t)
     for each edge (u, v) \in G.E
          (u, v).f = 0
 3
     repeat
 4
5
6
7
8
9
          G_f = \text{Compute-Residual-Network}(G, s, t)
          p = BFS-PATH(G_f, s, t) // call BFS(G_f, s) and find path to t
          if p \neq NIL
               c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
               for each edge (u, v) \in p
                    if (u, v) \in E
                          (u,v).f = (u,v).f + c_f(p)
10
                    else (v, u).f = (v, u).f - c_f(p)
11
12
     until p == NIL
                        12/12
                                                                          12
```


G: |f|=23

•
$$c(S, T) = 13 + 9 + 20 = 42$$

any cut has the same net flow

- f(S, T) = 11 + 0 + 19 0 7 = 23
- c(S, T) = 13 + 9 + 20 = 42
- any cut has the same net flow

- f(S,T) = 12 + 7 + 4 0 = 23
- c(S, T) = 12 + 7 + 4 = 23
- $f(S,T) = c(S,T) \Rightarrow \text{min-cut}$

The Edmonds-Karp algorithm - analysis

Theorem 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is $O(V \cdot E)$.

The Edmonds-Karp algorithm - analysis

Theorem 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is $O(V \cdot E)$.

• since each BFS takes O(V + E) = O(E), the total running time is $O(V \cdot E^2)$

The Edmonds-Karp algorithm - analysis

Theorem 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is $O(V \cdot E)$.

- since each BFS takes O(V + E) = O(E), the total running time is $O(V \cdot E^2)$
- there exist $O(V^3)$ algorithms for computing the maximum flow (see textbook) and even faster ones

- we didn't allow anti-parallel edges so we can add them in the residual network
- in real-world problems we can avoid anti-parallel edges by adding an extra vertex

- we didn't allow anti-parallel edges so we can add them in the residual network
- in real-world problems we can avoid anti-parallel edges by adding an extra vertex

- we didn't allow anti-parallel edges so we can add them in the residual network
- in real-world problems we can avoid anti-parallel edges by adding an extra vertex

- we didn't allow anti-parallel edges so we can add them in the residual network
- in real-world problems we can avoid anti-parallel edges by adding an extra vertex

Networks with multiple sources and sinks

• the problem is more generic

Networks with multiple sources and sinks

- the problem is more generic
- we can reduce it to the single source single sink problem by adding two extra vertices
 - source s with infinite-capacity edges to previous sources
 - sink t with infinite-capacity edges from previous sinks

Agenda

- Maximum Flow concepts
- 2 The Ford-Fulkerson method
- Maximum bipartite matching
- Graphs recap
- Exam info

Intuition

- we are given a team of people L and a set of jobs R
- each person can perform a specific set of jobs
- assign at most one job to each person in order to perform as many jobs as possible

Intuition

- we are given a team of people L and a set of jobs R
- each person can perform a specific set of jobs
- assign at most one job to each person in order to perform as many jobs as possible
- we can model the problem as a graph G = (V, E) where $V = L \cup R$ and $E = \{(I_i, r_j) : \text{person } I_i \text{ can perform job } r_j\}$

- Given a graph G = (V, E), a **matching** is a subset of edges $M \subseteq$ such that $\forall v \in V$, at most one edge of M is incident on v.
- A maximum matching is a matching of maximum cardinality.

- Given a graph G = (V, E), a **matching** is a subset of edges $M \subseteq$ such that $\forall v \in V$, at most one edge of M is incident on v.
- A maximum matching is a matching of maximum cardinality.

- Given a graph G = (V, E), a **matching** is a subset of edges $M \subseteq$ such that $\forall v \in V$, at most one edge of M is incident on v.
- A maximum matching is a matching of maximum cardinality.

- Given a graph G = (V, E), a **matching** is a subset of edges $M \subseteq$ such that $\forall v \in V$, at most one edge of M is incident on v.
- A maximum matching is a matching of maximum cardinality.

- Given a graph G = (V, E), a **matching** is a subset of edges $M \subseteq$ such that $\forall v \in V$, at most one edge of M is incident on v.
- A maximum matching is a matching of maximum cardinality.

• We are interested in finding the maximum matching in bipartite graphs.

Formalism

- Given a graph G = (V, E), a **matching** is a subset of edges $M \subseteq$ such that $\forall v \in V$, at most one edge of M is incident on v.
- A maximum matching is a matching of maximum cardinality.

- We are interested in finding the maximum matching in bipartite graphs.
- Greedy approach doesn't work (see the figure on the left).

• define the corresponding flow network G' = (V', E')

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\}$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\}$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

- define the corresponding flow network G' = (V', E')
 - $V' = V \cup \{s, t\}$
 - $E' = \{(u, v) : (u, v) \in E\} \cup \{(s, u) : u \in L\} \cup \{(v, t) : t \in R\}$
 - $c(u, v) = 1, \forall (u, v) \in E'$

 $\bullet \ \ \text{maximum bipartite matching} \leftrightarrow \text{maximum flow} \\$

- ullet maximum bipartite matching \leftrightarrow maximum flow
- Ford-Fulkerson algorithm complexity: $O(E \cdot |f^*|)$

- $\bullet \ \ \text{maximum bipartite matching} \leftrightarrow \text{maximum flow}$
- Ford-Fulkerson algorithm complexity: $O(E \cdot |f^*|)$
- $|f^*| \le \min(|L|, |R|) \le \frac{|V|}{2}$ (at best, we find a match for all people or for all jobs)

- ullet maximum bipartite matching \leftrightarrow maximum flow
- Ford-Fulkerson algorithm complexity: $O(E \cdot |f^*|)$
- $|f^*| \le \min(|L|, |R|) \le \frac{|V|}{2}$ (at best, we find a match for all people or for all jobs)
- complexity for maximum bipartite matching: $O(V \cdot E)$

Agenda

- Maximum Flow concepts
- 2 The Ford-Fulkerson method
- Maximum bipartite matching
- Graphs recap
- Exam info

graph

Agenda

- Maximum Flow concepts
- 2 The Ford-Fulkerson method
- Maximum bipartite matching
- Graphs recap
- Exam info

Location

- Romanian series A: https://moodle1.cs.utcluj.ro/course/view.php?id=292
- Romanian series B: https://moodle2.cs.utcluj.ro/course/view.php?id=292
- English series: https://moodle3.cs.utcluj.ro/course/view.php?id=292

- the three server will be clones of the main moodle server
 - make sure your login works on them 48h before the exam

Format

- several Moodle quizes
 - multiple choice automatically graded
 - short answer automatically graded
 - fill in the gaps automatically graded
 - essay (text/images) manually graded
- for each question/part you will have a fixed time interval
- sequential access (once you answer or skip a question, you won't be able to return to it)

Structure and grading

- 30% lab grade
- 20% course quizzes
- 50% final exam
 - 30% part 1 questions resembling the course quizzes
 - 40% part 2 questions focused on tracing the studied algorithms
 - 40% part 3 questions focused on designing and analyzing algorithms
 - explain the solution and (informally) justify the correctness
 - write the pseudocode (without defining data structures)
 - analyze the algorithm complexity

Bibliography

• Cormen, Thomas H., et al., "Introduction to algorithms.", MIT press, 2009, cap. 26