NVIDIA Jetson NanoArquiteturas para Sistemas Embutidos

João Gameiro, 93097 Pedro Abreu, 93240

Turma TP1 Grupo 3

31 Março 2022

What is NVIDIA Jetson Nano

- NVIDIA Jetson Nano[™] Developer Kit is a small, powerful computer that lets you run multiple neural networks in parallel for applications like image classification, object detection, segmentation, and speech processing.
- Jetson is a low-power system and is designed for accelerating machine learning applications.

- The Cortex-A57 MPCore processor is a high-performance, low-power processor that implements the ARMv8 architecture.
- It has one to four processors in a single multiprocessor device, or MPCore device, with L1 and L2 cache subsystems.
- Superscalar, variable-length, out-of-order pipeline

 Dynamic branch prediction with Branch Target Buffer (BTB) and Global History Buffer (GHB) RAMs, a return stack, and an indirect predictor.

- Instruction sets supported include A32, T32 and A64.
- Supports execution states AArch32 and AArch64

- Contains the following functional units
 - Instruction Fetch
 - Instruction Decode
 - Instruction Dispatch
 - Integer Execute
 - Advanced SIMD and Floating-Point unit
- Load/Store Units
 - Data cache of 32KB, 2-way set-associative
 - 32-entry fully-associative L1 data TLB with native support for 4KB, 64KB, and 1MB page sizes

- L2 Memory System
 - Services the L1 instruction and data caches misses
 - L2 cache 512KB, 1MB or 2MB, 16-way set-associative cache
 - Duplicate copy of L1 data cache Tag RAMs from each processor
 - Automatic hardware prefetcher
- L1 Memory System
 - Instruction cache 48KB 3-way set-associative
 - Data cache 32KB 2-way set-associative
 - Both with LRU replacement policy

- The **Generic Timer** provides the ability to schedule events and trigger interrupts.
- **Generic Interrupt Controller (GIC)** CPU interface for supporting and managing interrupts.
- Advanced SIMD and Floating-point unit provides support for the ARMv8 Advanced SIMD and Floating-point execution
- The **ETM (Embedded Trace Macrocell)** is a module that performs real-time instruction flow tracing based on the ARM specifications
- PMU Performance Monitor Unit to gather statistics about the operation of the processor and memory system during runtime

- There is also the possibility for an additional cryptography engine that's not included in the A75 Processor
- However FP and Advanced SIMD units provide support for the cryptographic operations of the engine

ARM Cortex-A57 vs ARM Cortex-A72

	Cortex-A57	Cortex-A72
Year of Release	2013	2015
Pipeline	Superscalar, Out-of-order pipeline	Superscalar, Out-of-Order pipeline
InstructionCache	48K	48K
DataCache	32K	32K
CPU Architecture	Armv8	Armv8
DMIPS/MHz	4.6	5.4
Applications	Digital TV wired and wireless network system	High-end digital TV, car driving system

GPU - NVIDIA Maxwell

- The NVIDIA Maxwell GPU is a dedicated hardware block for rasterization, shading, texturing, and computation, of graphics processing.
- Maxwell is NVIDIA's next-generation architecture for CUDA compute applications and introduces an all-new design for the Streaming Multiprocessor (SM) that dramatically improves energy efficiency.
- Improvements to control logic partitioning, workload balancing, clock-gating granularity, compiler-based scheduling, number of instructions issued per clock cycle, and many other enhancements

GPU - NVIDIA Maxwell

- SMM (Streaming Maxwell Multiprocessor)
 - Quadrant-based design with four 32-core processing blocks
 - Each contains a dedicated warp scheduler capable of dispatching two instructions per clock.
 - Each block also contains it's execution units and register files, as well as independent instruction buffers.
 - SFU units to handle transcendental and graphics interpolation instructions

Peripherals

- I2C supports communication with multiple I²C Devices
- SPI In master or slave mode, duplex synchronous and serial communication
- UART controller provides serial data synchronization and data conversion
- PWM, USB and PCIe controllers
- I2S transport streaming audio data between system memory and an audio codec
 - Supports PCM which is a standard method used to digitize audio (particularly voice) patterns for transmission over digital communication channels

Memory

- LPDDR44GB, 64 bit
 - Low-Power Double Data Rate, Volatile Memory
 - Low power consumption
 - Targeted for mobile computers and devices such as mobile phones
 - Offers greater data transfer rates than previous versions
- SD Card Support
 - Since there is no internal storage in Jetson Nano, there is support for an SD card, for loading operating system and data storage

Camera & Display

- MIPI CSI-2 DPHY lanes
 - Implements a Camera Serial
 Interface receiver which receives
 data from an external camera
 module with CSI transmitter
 - Supports 1080p, 4K, 8K, low power, low electromagnetic interference

Camera & Display

- HDMI output port
 - Transmit audio/video from a source to an HDMI compatible device (monitor, video, projector, etc)
- DisplayPort connector
 - Also used to transmit audio/video from source

- 6 HDMI output port
- DisplayPort connector

Connectivity

- 1 Gigabit Ethernet Port
 - Transmission technology based on the Ethernet protocol
 - 1 billion bits per second (1 Gigabit)
- 4 x USB3.0 ports
 - Higher transfer rates that USB 2.0
 - Power consumption of 900 mA

- Gigabit Ethernet port
- (5) USB 3.0 ports (x4)

Connectivity

- NVIDIA Jetson Nano does not contain a WIFI/Bluetooth module
 - However there is a M.2 Key E connector located under the board
 - M.2 is a specification for internal expansion cards on PC mainboards and notebook computers.
 - M.2 Key E is directed to wireless cards
- So for a wireless module is necessary to install a wireless a network card
 - Necessary to have the card itself
 - Antennas for wireless communication
 - M2 Key E Connector

Power

- Via the Micro-USB connector (5 V power)
- DC Barrel jack (5 V power)
 - Electrical connector to supply direct current

- Micro-USB port for 5V power input, or for Device Mode
- 8 DC Barrel jack for 5V power input

Power

- PoE (Power Over Ethernet)
 - PoE Splitter that splits "power" from "data" coming from an ethernet cable
 - o DC barrel jack for power
- Power can also be supplied via GPIO (in the 5V pins)
 - Connect GPIO 5V pins to a 5V source and feed energy directly to the board
 - Can be dangerous because there is no regulation
 - A HAT can be used
- PoE HAT
 - The Jetson contains 4 additional pins for PoE

Power Management

- Jetson contains mechanisms and modules to implement a tiered structure of power and clock gating in a complex environment that optimizes power consumption
- Power Management Controller (PMC)
 - o Provides an interface to an external power managers and controls voltage transitions for the SoC
- Real Time Clock (RTC)
 - Maintains the ability to wake the system based on either a timer event or an external trigger
- Clock and Power Gating
 - The SoC aggressively employs clock and power gating to power-off modules which are idle
- Dynamic Voltage and Frequency Scaling (DVFS)
 - Raises voltages and clock frequencies when demand requires, lowers them when less is sufficient, and removes them when none is needed

Power Management

- The Jetson module operates in three main power modes:
 - **OFF** System is not powered, therefore the Jetson is not operation
 - ON Jetson module is fully functional and operates normally
 - SLEEP allows the Jetson module to quickly resume to an operational state without performing a full boot sequence. Operates in low power with enough circuitry powered to allow the device to resume and re-enter the ON state

 Jetson can enter both in OFF and SLEEP modes if internal temperature exceeds a certain limit unsafe value

Video Encode/Decode

- Supports two codecs for video codification
 - H.265 (HEVC High Efficiency Video Coding)
 - H.264 (AVC Advanced Video Coding)
- H.265 is allows for further reduced file size, and therefore reduced required bandwidth
- Video Decoding formats
 - 4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 30
- Video Encoding formats
 - 4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30

GPIO

- 40 Pin Header
 - o 2 x 3.3 V Power
 - o 2 x 5 V Power
 - o GND
 - o **12S**
 - o SPI
 - UART
 - o CAM
 - o PWM

Sysfs	Name	Pin	Pin	Name	Sysfs
	3.3V DC	1	2	5V DC	
	I2C_2_SDA	3	4	5V DC	
	12C_2_SCL	5	6	GND	
gpio216	AUDIO_MCLK	7	8	UART_2_TX	
	GND	9	10	UART_2_RX	
gpio50	UART_2_RTS	11	12	12S_4_CLK	gpio79
gpio14	SPI_2_SCK	13	14	GND	
gpio194	LCD_TE	15	16	SPI_2_CS1	gpio232
	3.3V DC	17	18	SPI_2_CS0	gpio15
gpio16	SPI_1_MOSI	19	20	GND	
gpio17	SPI_1_MISO	21	22	SPI_2_MISO	gpio13
gpio18	SPI_1_SCK	23	24	SPI_2_CS0	gpio19
	GND	25	26	SPI_2_CS1	gpio20
	IC2_1_SDA	27	28	I2C_1_SCL	
gpio149	CAM_AF_EN	29	30	GND	
gpio200	GPIO_PZO	31	32	LCD_BL_PWM	gpio168
gpio38	GPIO_PE6	33	34	GND	
gpio76	I2S_4_LRCK	35	36	UART_2_CTS	gpio51
gpio12	SPI_2_MOSI	37	38	I2S_4_SDIN	gpio77
	GND	39	40	I2S_4_SDOUT	gpio78

NVIDIA jetPack

Provides a full development environment for hardware-accelerated AI-at-the-edge development. [8]

It includes:

- Ubuntu desktop environment
- Set of libraries for acceleration of GPU computing, multimedia, graphics, and computer vision
- Samples and documentation
- Developer Tools

OS image

NVIDIA Jetson Linux 34.1 with:

- Linux Kernel 5.10
- UEFI based bootloader
- Ubuntu 20.04 based root file system
- NVIDIA drivers
- necessary firmwares
- toolchain

Libraries

- TensorRT and cuDNN for high-performance deep learning applications
- **CUDA** for GPU accelerated applications across multiple domains
- **NVIDIA Container Runtime** for containerized GPU accelerated applications
- Multimédia API provides low level APIs for flexible application development
- **VPI** and **OpenCV** for visual computing applications

Samples

Demonstrating use of JetPack components

JetPack component	Sample locations on reference filesystem	
TensorRT	/usr/src/tensorrt/samples/	
cuDNN	/usr/src/cudnn_samples_ <version>/</version>	
CUDA	/usr/local/cuda- <version>/samples/</version>	
MM API	/usr/src/jetson_multimedia_api	
OpenCV	/usr/share/opencv4/samples/	
VPI	/opt/nvidia/vpi/samples/	

Developer Tools

Tools for application development and debugging:

- **Nsight Eclipse Edition** extension in Eclipse for development of GPU accelerated applications
- CUDA-GDB for application debugging
- **CUDA-MEMCHECK** for debugging application memory errors

Tools for application profiling and optimization:

- Nsight Systems and nvprof for application profiling across GPU and CPU.
- Nsight Graphics for graphics application debugging and profiling

Install OS

- burn JetPack SDK image to usb pen using etcher [11]
- after first boot:
 - finish installation
- boot:
 - display monitor
 - headless mode
 - also possible to use VNC

Support for Upgrades

Updating software using APT (Advanced Packaging Tool)

- **sudo apt update** updates that list of software packages
- **sudo apt upgrade** upgrade those packages
- APT also allows to install and uninstall specific packages

Support for Remote Access

- Access command line with SSH
- Graphical desktop with VNC
- SCP or FTP to transfer files

- Being Jetson Nano capable of supporting Unix distributions, the majority of the traditional ways to access remotely a device are possible
 - All that is necessary is that the tools that allow remote access are installed,

Jetson nano 2G Developer kit

- NVIDIA Jetson module and reference carrier board
- Quick Start / Support Guide
- 802.11ac wireless adapter and extension cable

it doesn't include:

- microSD Card
- USB keyboard and mouse
- HDMI display
- USB-C power supply (5V=3A)

Software Architecture

Community Projects

- Al whiteboard
- real-time human pose estimation
- handwriting ml classifier
- dart score detector
- many more [9]

Bibliography

- [1] NVIDIA Jetson Nano Developer kit
 - https://developer.nvidia.com/embedded/jetson-nano-developer-kit
- [2] ARM® Cortex® -A57 MPCore™ Processor, Technical Reference Manual
 - https://documentation-service.arm.com/static/5e906864c8052b16087605a4
- [3] Jetson Nano DataSheet
 - https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
- [4] The M.2 Interface
 - o https://www.delock.de/infothek/M.2/M.2 e.html
- [5] Jetson Nano + Intel Wifi
 - https://jetsonhacks.com/2019/04/08/jetson-nano-intel-wifi-and-bluetooth/
- [6] Use The Power Jetson Nano
 - https://www.youtube.com/watch?v=jq10qBe267A

Bibliography

- [7] Maxwell: The Most Advanced CUDA GPU Ever Made
 - https://developer.nvidia.com/blog/maxwell-most-advanced-cuda-gpu-ever-made/
- [8] NVIDIA JETPACK
 - https://docs_nvidia.com/jetson/jetpack/introduction/index.html
- [9] jetson Community Projects
 - https://developer.nvidia.com/embedded/community/jetson-projects
- [10] software architecture
 - https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/AR/JetsonSoftwareArchitecture.html
- [11] install OS
 - https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write
- [12] MIPI Camera Serial Interface 2
 - https://www.mipi.org/specifications/csi-2
- [13] How to use GPIO Pins in NVIDIA Jetson Nano Kit
 - https://maker.pro/nvidia-jetson/tutorial/how-to-use-gpio-pins-on-jetson-nano-developer-kit