

Description

The VST25N2200 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =250V, I_D =15A $R_{DS(ON)}$ =220m Ω (typical) @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Application

- LED backlighting
- Ideal for high-frequency switching and synchronous rectification

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST25N2200-T2	VST25N2200	TO-252	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	250	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	15	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	10.6	Α	
Pulsed Drain Current	I _{DM}	60	А	
Maximum Power Dissipation	P _D	140	W	
Derating factor ^(Note 5)		0.93	W/℃	
Avalanche Current (Note 1)	I _{AR}	15	Α	
Single pulse avalanche energy (Note 5)	E _{AS}	80	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Résistance, Junction-to-Case ^(Note 2)	R _{eJC}	1.1	°C/W
--	------------------	-----	------

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			1		•	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	250	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =250V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±30V, V_{DS} =0V	-	-	±100	nA
On Characteristics				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	2.5	3.5	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =7.5A	-	210	230	mΩ
Drain-Source On-State Resistance		V _{GS} =10V, I _D =10A	-	220	240	mΩ
Gate resistance	R _G		-	4.5	-	Ω
Forward Transconductance	G FS	V_{DS} =5 V , I_D =15 A	15	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =125V,V _{GS} =0V,	-	475		PF
Output Capacitance	C _{oss}	V _{DS} -125V,V _{GS} -0V, F=1.0MHz	-	34		PF
Reverse Transfer Capacitance	C _{rss}	F = 1.0WH1Z	-	1.2		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	4	-	nS
Turn-on Rise Time	t _r	V_{DD} =125 V , R_L =8 Ω	-	5	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10 V , R_{G} =3 Ω	-	10	-	nS
Turn-Off Fall Time	t _f		-	2	-	nS
Total Gate Charge	Qg	\/ -105\/ -15	-	8.9	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =125V, I_{D} =15A, V_{GS} =10V	-	3.3	-	nC
Gate-Drain Charge	Q_{gd}	V GS-10 V	-	2.5	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V_{GS} =0 V , I_{S} =15 A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	_	15	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	25	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	110	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}$ C,V_{DD}=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance