Decision TreeClassification

predictors

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

First let's look at "low pressure"

- When we have Low pressure, there are 1 case having rain, and 2 cases do not have rain
- When we don't have low pressure, there are 1 case having rain, and 1 case don't have rain

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

Low pressur e	High Tempe ature	r	High humidi ty	Rain
No	No		No	No
Yes	Yes		Yes	Yes
Yes	Yes		No	No
Yes	No		Yes	No
No	No		Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

In order to determine which predictor has the highest correlation, we use the metric called "Gini"

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

In order to determine which predictor has the highest correlation, we use the metric called "Gini"

$$G = 1 - P_{yes}^2 - P_{no}^2$$

Where

 P_{ves} is the probability of "yes" in a leaf

 P_{no} is the probability of "no" in a leaf

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

In order to determine which predictor has the highest correlation, we use the metric called "Gini"

$$G = 1 - P_{yes}^2 - P_{no}^2$$

$$G = 1 - P_{asian}^2 - P_{european}^2 - P_{maori}^2$$

Where

 P_{yes} is the probability of "yes" in a leaf

 P_{no} is the probability of "no" in a leaf

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

$$G = 1 - P_{yes}^2 - P_{no}^2$$

 P_{yes} is the probability of "yes" in a leaf

 P_{no} is the probability of "no" in a leaf

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

$$G = 1 - P_{ves}^2 - P_{no}^2$$

 $\overline{P_{yes}}$ is the probability of "yes" in a leaf

 P_{no} is the probability of "no" in a leaf

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

$$G = 1 - P_{yes}^2 - P_{no}^2$$

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

First let's look at "low pressure"

Second let's look at "High temp"

Third let's look at "High humidity"

So, the average Gini for "Low pressure" can be calculated by

$$G = 0.444 \times \left(\frac{3}{5}\right) + 0.5 \times \left(\frac{2}{5}\right)$$

 $\overline{P_{yes}}$ is the probability of "yes" in a leaf

 P_{no} is the probability of "no" in a leaf pressure" is **0.4664**

Thus, the average Gini for "Low pressure" is 0.4664

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

$$G = 1 - P_{ves}^2 - P_{no}^2$$

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

First let's look at "low pressure"

Second let's look at "High temp"

Third let's look at "High humidity"

So, the average Gini for "Low pressure" can be calculated by

$$G = 0.444 \times \left(\frac{3}{5}\right) + 0.5 \times \left(\frac{2}{5}\right)$$
Total 5 leafs, 3 of the from Yes (low pressure and 2 from No

is the probability of "yes" in a leaf

is the probability of "no" in a leaf pressure" is 0.4664

Thus, the average Gini for "Low

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

Second let's look at "High temp"

First let's look at "low pressure"

Third let's look at "High humidity"

So, the average Gini for "Low pressure" can be calculated by

$$G = 0.444 \times \left(\frac{3}{5}\right) + 0.5 \times \left(\frac{2}{5}\right)$$
$$G = 0.4664$$

Thus, the average Gini for "Low pressure" is 0.4664

Similarly, we can the average Gini for "High Temp" as 0.512

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

First let's look at "low pressure"

$$G = 0.444$$
 $G = 0.5$

Second let's look at "High temp"

So, the average Gini for "Low pressure" can be calculated by

$$G = 0.444 \times \left(\frac{3}{5}\right) + 0.5 \times \left(\frac{2}{5}\right)$$
$$G = 0.4664$$

Thus, the average Gini for "Low pressure" is **0.4664**

Similarly, we can the average Gini for "High Temp" as 0.512 Similarly, we can the average Gini for "High Humidity" as 0.733

Low pressur e	High Temper ature	High humidi ty	Rain
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	Yes	No
No	No	Yes	Yes

We need to determine whether "low pressure", "high temperature" or "high humidity" should be on the top of the tree (root)

In order to do so, we check the correlation for each predictor individually

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Now let's look at a more complicated example, in predictor, we have wind speed, which is not marked as "Yes/No", instead it has a series of values.

We want to see how the Gini impurity can be calculated

0. 512

Low pressu re	High Tempe	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Wind Speed	Rain
10.0	No
20.0	No
30.0	Yes
50.0	No
70.0	Yes

First step, we sort the "wind speed" from smallest to biggest

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Wind Speed	Rain
10.0	No
20.0	No
30.0	Yes
50.0	No
70.0	Yes

	Wind Speed	Rain
15.0	10.0	No
25.0	20.0	No
	30.0	Yes
40.0	50.0	No
60.0	70.0	Yes

First step, we sort the "wind speed" from smallest to biggest Second step, calculate all adjacent wind speed

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Wind Speed	Rain
10.0	No
20.0	No
30.0	Yes
50.0	No
70.0	Yes

First step, we sort the "wind speed" from smallest to biggest

 $G = 1 - P_{ves}^2 - P_{no}^2$

 P_{yes} is the probability of "yes" in a leaf P_{no} is the probability of "no" in a leaf

Second step, calculate all adjacent average wind speed

Yes

70.0

Then we create tree for each adjacent averaged wind speed, e.g., for wind speed of 15.0, we have average Gini as ?

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

	Wind Speed	Rain
	10.0	No
	20.0	No
	30.0	Yes
1	50.0	No
	70.0	Yes

First step, we sort the "wind speed" from smallest to biggest

$$G=1-{P_{yes}}^2-{P_{no}}^2$$
 P_{yes} is the probability of "yes" in a leaf P_{no} is the probability of "no" in a leaf

	Wind Speed	Rain
15.0	10.0	No
25.0	20.0	No
40.0	30.0	Yes
	50.0	No
60.0	70.0	Yes

Second step, calculate all adjacent average wind speed

Then we create tree for each adjacent averaged wind speed, e.g., for wind speed of 15.0, we have average Gini as ?

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Wind Speed	Rain
10.0	No
20.0	No
30.0	Yes
50.0	No
70.0	Yes

First step, we sort the "wind speed" from smallest to biggest

	$G = 1 - P_{yes}^{2} - P_{no}^{2}$
yes	is the probability of "yes" in a leaf
o 🔥	is the probability of "no" in a leaf

	Wind Speed	Rain
15.0	10.0	No
25.0	20.0	No
	30.0	Yes
40.0	50.0	No
60.0	70.0	Yes

Second step, calculate all adjacent average wind speed

Wind Speed >

 $G = 0.5 \times \left(\frac{4}{5}\right) + 0.0 \times \left(\frac{1}{5}\right)$

G = 0.4

Then we create tree for each adjacent averaged wind speed, e.g., for wind speed of 15.0, we have average Gini as 0.4

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Wind Speed	Rain
10.0	No
20.0	No
30.0	Yes
50.0	No
70.0	Yes

30.0 Yes

50.0 No

70.0 Yes

Second step,
calculate all
adjacent average

wind speed

Wind

Speed

10.0

20.0

15.0

25.0

Rain

No

No G = 0.4In this case, the threshold of 25.0 gives the smallest Gini, so it is picked up to represent "wind speed"

We can have the Gini impurity for all the adjacent average wind speed

First step, we sort the "wind speed" from smallest to biggest

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

So apparently now we have Gini impurity for all predictors

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

So apparently now we have Gini impurity for all predictors

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

So apparently now we have Gini impurity for all predictors

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Low pressu re	High Tempe rature	High humidi ty	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Since wind speed > 25.0 has the smallest Gini, so the top of the tree starts from wind speed > 25.0, e.g.

By doing this over and over (going through all predictors) until we reach to the level that we are not able to split anymore (e.g., "0/1" or "impure" situation)