Exam #3 Cheat Sheet

Derivatives

$$1. \ \frac{d}{dx}[c] = 0$$

$$2. \ \frac{d}{dx}[x^c] = cx^{c-1}$$

3.
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

4.
$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

5.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x)$$

6.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - g'(x)f(x)}{[g(x)]^2}$$

7.
$$\frac{d}{dx}[f(u(x))] = f'(u)u'(x)$$

8.
$$\frac{d}{dx}[e^x] = e^x$$

9.
$$\frac{d}{dx}[\ln(x)] = \frac{1}{x}$$

Integrals

1.
$$\int kdx = kx + C$$

2.
$$\int x^k dx = \frac{1}{k+1} x^{k+1} + C$$

3.
$$\int kf(x)dx = k \int f(x)dx$$

4.
$$\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$$

$$5. \int_a^a f(x)dx = 0$$

6.
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx = 0$$

7.
$$\int_{a}^{b} f(x)dx + - \int_{b}^{a} f(x)dx$$

8.
$$\int e^x dx = e^x + C$$

9.
$$\int \frac{dx}{x} = \ln(x) + C$$

Second Partial Derivative Test

$$f_x = 0$$
 and $f_y = 0$
$$d = f_{xx}f_{yy} - [f_{xy}]^2$$

d	f_{xx}	result
> 0	> 0	relative minimum
> 0	< 0	relative maximum
< 0		saddle point
=0		inconclusive

Lagrange Multiplier

$$F(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

$$f_x = \lambda g_x$$

$$f_y = \lambda g_y$$

$$g(x,y) = 0$$