SUBSETTING PRACTICE WITH ISLANDS

DSC 105 Intro to data science, Lyon College, Fall'24

[yourname] (pledged)

November 2, 2024

Readme

This exercise is very similar to the practice on the Nile data set. Here, we're using another built-in data set, islands. Instead of time, you need to use names to analyze the content of islands, and instead of a line plot, you will draw a dot plot.

10 Problems

Find out what islands contains and what its structure is. Take a look at example(islands), too. Submit the completed file in Canvas for bonus points.

```
str(islands)
```

```
Named num [1:48] 11506 5500 16988 2968 16 ...
- attr(*, "names")= chr [1:48] "Africa" "Antarctica" "Asia" "Australia" ...
```

1. How many elements does the vector islands have?

length(islands)

[1] 48

2. Retrieve the third to fourth, the twelfth to thirty-fifth, and the 48th element of islands with one command, and check that you retrieved 28 elements altogether (with another command)

islands[c(3:5,12:35,48)] length(islands[c(3:5,12:35,48)])

Asia	Australia	Arol Hoiborg	Cuba	Devon
ASIa	Australia	Axel Heiberg	Cuba	Devon
16988	2968	16	43	21
Ellesmere	Europe	Greenland	Hainan	Hispaniola
82	3745	840	13	30
Hokkaido	Honshu	Iceland	Ireland	Java
30	89	40	33	49
Kyushu	Luzon	Madagascar	Melville	Mindanao
14	42	227	16	36
Moluccas	New Britain	New Guinea	New Zealand (N)	New Zealand (S)
29	15	306	44	58
Newfoundland	North America	Victoria		
43	9390	82		
17 20				

[1] 28

3. Create a vector islands_unnamed from islands that is not named and show its structure. Tip: to remove the names of a vector, assign NULL to it.

```
islands_unnamed <- islands
names(islands_unnamed) <- NULL
str(islands_unnamed)</pre>
```

```
num [1:48] 11506 5500 16988 2968 16 ...
```

4. Print the value of islands that belongs to the names(islands) element "Iceland"- which data science question could this answer?

islands[names(islands)=="Iceland"]

Iceland

40

»What is the area of Iceland in thousands of square miles?«

5. Which element of islands corresponds to the greatest area? (Put differently: what is the greatest landmass on Earth?) names(islands)[islands == max(islands)] [1] "Asia" 6. What is the index of the next-to-last element of islands? Use which to answer this question and save the result as index. index <- which(islands == islands[length(islands)-1])</pre> index Vancouver 47 7. Check your answer to the last question by finding the value of islands that belongs to index. islands[index] Vancouver 12 8. How many values of islands are larger than the next-to-last value of islands? length(islands[islands > islands[index]]) [1] 47 9. What is the landmass of all areas listed in islands? paste("Total landmass:", sum(islands), "thousands of square miles.")

- [1] "Total landmass: 60131 thousands of square miles."
- 10. Make a dot plot of all entries in the data set islands using the dotchart function. As its only argument, use the log10-transformed, ordered data set areas <- log10(sort(islands)).

Add a line for the median of this data set, median(areas) and add it to the plot with abline(v=median(areas).

```
areas <- log10(sort(islands))
md_areas <- median(areas)
dotchart(areas)
abline(v=md_areas)</pre>
```


Tip: You can change the appearance of lines with the parameters col, lty, lwd. E.g. col="red, lty=2, lwd=2 for a red, dashed, thick line.

Customized with line type, line width, title, labels and color:

Area of Earth's landmasses (log-transformed)

