- 1. Use **bp3.m** to train an 8-2-8 autoencoder. Use eye(8) for the set of stimulus patterns (**p8.smat**).
- a. For the targets, use **p8.tmat = eye(8)**
- b. For p8.tmat field, try this: i8 = eye(8); p8.tmat = i8 + i8([2 3 4 5 6 7 8 1], :)
- + i8([8 1 2 3 4 5 6 7],:);

After checking the outputs for accuracy, examine the hidden unit representations.

>> p8.smat=eye(8)	Columns 10 through 16
p8 =	1 0 0 0 0 1
struct with fields:	1 1 0 0 0 0 0 >> act0.stim >> act0.out
smat: [8×8 double]	1 1 1 0 0 0 0 ans = ans =
>> p8.tmat=eye(8)	0 1 1 1 0 0 0 1 0 0 0 0 0 0 Columns 1 through 5
p8 =	0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0.4155 0.6714 0.6620 0.2639 0.7927
struct with fields:	0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0.3269 0.5279 0.6152 0.3965 0.7079
smat: [8×8 double]	0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0.3170 0.6668 0.6012 0.3954 0.7198
tmat: [8×8 double]	0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0.3174 0.5711 0.6067 0.4062 0.7058
>> i8=eye(8);p8.tmat=i8+i8([2 3 4 5 6 7 8 1],:)+i8([8 1 2 3 4 5 6 7],:);	>> p8net0=initnet3(8,2,8,2,2)
>> [p8.smat,p8.tmat]	p8net0 = 0 0 0 0 0 0 1 0 0.3334 0.5321 0.6193 0.3862 0.7141
ans =	struct with fields: 0 0 0 0 0 0 0 1 0.3991 0.7104 0.6504 0.2784 0.7875
Columns 1 through 9	wih: [2×8 double] >> act0.hid 0.3430 0.6975 0.6167 0.3529 0.7459
1 0 0 0 0 0 0 1	hbias: [-0.1565 0.8315] ans = Columns 6 through 8
0 1 0 0 0 0 0 1	whout: [8×2 double] 0.2322 0.6759 0.2038 0.4155 0.3250
0 0 1 0 0 0 0 0	obias: [1×8 double] -0.4229 0.6800 0.1262 0.3596 0.2550
0 0 0 1 0 0 0 0 0	>> act0=forw3(p8net0,p8) 0.0541 0.0133 0.2897 0.4728 0.4450
0 0 0 1 0 0 0 0	act0 = -0.2911 0.4322 0.1696 0.3967 0.3145
0 0 0 0 1 0 0 0	struct with fields: 0.3621 0.7067 0.2178 0.4235 0.3337
0 0 0 0 0 1 0 0	stim: [8×8 double] -0.3975 0.7096 0.1256 0.3587 0.2524
0 0 0 0 0 0 1 1	hid: [8×2 double] 0.3618 0.3809 0.2741 0.4593 0.4022
	out: [8×8 double] 0.2185 0.0576 0.3110 0.4825 0.4560

Columns	6	through 8	
---------	---	-----------	--

>> net20k=bp3(p8net0,p8,20000,.5,0)	0.0000 0.0012 0.9984	>> act10k.out	
net20k =	0.0000 0.0000 0.0019	ans =	>> act10k=forw3(nf,p8)
struct with fields:	0.0000 0.0000 0.0000	Columns 1 through 5	act10k =
wih: [2×8 double]	0.0021 0.0000 0.0000	0.9979 0.9630 0.0406 0.0001 0.0000	struct with fields:
hbias: [-0.1811-0.1394]	0.9984 0.0012 0.0000	0.9601 0.9978 0.9723 0.0501 0.0001	stim: [8×8 double]
whout: [8×2 double]	1.0000 0.9995 0.0020	0.0478 0.9750 0.9977 0.9608 0.0374	hid: [8×2 double]
obias: [1×8 double]	0.9984 0.9996 0.9984	0.0001 0.0367 0.9599 0.9976 0.9744	out: [8×8 double]
>> ac20k=forw3(net20k,p8)	0.0020 0.9994 1.0000	0.0000 0.0001 0.0534 0.9727 0.9980	>> act10k.out
ac20k =	>> n0=initnet3(8,2,8,4,4)	0.0001 0.0000 0.0001 0.0385 0.9633	ans =
struct with fields:	n0 =	0.0375 0.0001 0.0000 0.0001 0.0480	Columns 1 through 5
stim: [8×8 double]	struct with fields:	0.9739 0.0487 0.0001 0.0000 0.0000	0.9998 0.9862 0.0166 0.0000 0.0000
hid: [8×2 double]	wih: [2×8 double]	Columns 6 through 8	0.9833 0.9992 0.9882 0.0174 0.0000
•	hbias: [1.7708 -1.0444]	-	0.0206 0.9908 0.9998 0.9854 0.0159
out: [8×8 double]	-	0.0001 0.0503 0.9745	0.0000 0.0142 0.9831 0.9992 0.9879
>> ac20k.out	whout: [8×2 double]	0.0000 0.0001 0.0395	0.0000 0.0000 0.0228 0.9905 0.9998
ans =	obias: [1×8 double]	0.0001 0.0000 0.0001	0.0000 0.0000 0.0000 0.0155 0.9829
Columns 1 through 5	>> nf=bp3(n0,p8,20000,.02,0)	0.0480 0.0001 0.0000	0.0169 0.0000 0.0000 0.0000 0.0222
0.9996 0.9984 0.0012 0.0000 0.0000	nf =	0.9602 0.0422 0.0001	0.9887 0.0169 0.0000 0.0000 0.0000
0.9994 1.0000 0.9994 0.0020 0.0000	struct with fields:	0.9977 0.9737 0.0494	Columns 6 through 8
0.0012 0.9984 0.9996 0.9983 0.0012	wih: [2×8 double]	0.9737 0.9976 0.9587	0.0000 0.0215 0.9906
0.0000 0.0020 0.9994 1.0000 0.9994	hbias: [0.0712 0.0367]	0.0404 0.9572 0.9976	0.0000 0.0000 0.0144
0.0000 0.0000 0.0012 0.9984 0.9995	whout: [8×2 double]	>> nf=bp3(n0,p8,20000,.05,0)	0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0020 0.9994	obias: [1×8 double]	nf =	0.0177 0.0000 0.0000
0.0012 0.0000 0.0000 0.0000 0.0012	>> act10k=forw3(nf,p8)	struct with fields:	0.9846 0.0176 0.0000
0.9994 0.0021 0.0000 0.0000 0.0000	act10k =	wih: [2×8 double]	0.9991 0.9879 0.0182
	struct with fields:	hbias: [0.0699 0.0325]	0.9900 0.9998 0.9852
	stim: [8×8 double]	whout: [8×2 double]	0.0145 0.9823 0.9991
	hid: [8×2 double]	obias: [1×8 double]	0.0173 0.3023 0.3331
	out: [8×8 double]		

2. Use **bp3.m** to train an 8-3-8 autoencoder. Examine the hidden unit representations using scatter3.

```
>> p83n0=initnet3(8,2,8,4,4)
```

```
>> p83act10k=act10k
p83n0 =
 struct with fields:
                                         p83act10k =
                                          struct with fields:
   wih: [2 × 8 double]
  hbias: [0.3972 -0.4914]
  whout: [8 × 2 double]
                                           stim: [8 × 8 double]
  obias: [1 \times 8 \text{ double}]
                                            hid: [8 × 2 double]
                                            out: [8 × 8 double]
>> p83nf=bp3(p83n0,p8,20000,.05,0)
                                         >> act10k.out
p83nf =
                                         ans =
 struct with fields:
                                          Columns 1 through 5
   wih: [2 × 8 double]
  hbias: [-0.2642 -0.1833]
                                           0.9999
                                                    0.9925
                                                            0.0233
                                                                     0.0000
                                                                             0.0000
  whout: [8 × 2 double]
                                           0.9862
                                                   0.9980
                                                            0.9807
                                                                    0.0152
                                                                            0.0000
  obias: [1 × 8 double]
                                           0.0166
                                                   0.9880 0.9999
                                                                     0.9925 0.0226
                                                    0.0164
                                                            0.9853
                                                                    0.9982 0.9812
                                           0.0000
>> act10k=forw3(p83nf,p8)
                                           0.0000
                                                    0.0000 0.0161
                                                                    0.9890 0.9999
                                                    0.0000
                                                            0.0000
                                                                     0.0156
                                                                             0.9860
act10k =
                                           0.0000
                                                    0.0000
                                                                     0.0000
                                                                            0.0170
                                           0.0217
                                                            0.0000
                                                   0.0142 0.0000
                                                                    0.0000
                                                                            0.0000
 struct with fields:
                                           0.9814
  stim: [8 × 8 double]
                                          Columns 6 through 8
   hid: [8 × 2 double]
   out: [8 × 8 double]
                                           0.0000 0.0187
                                                            0.9881
                                           0.0000
                                                   0.0000 0.0166
                                           0.0000
                                                   0.0000 0.0000
                                                   0.0000 0.0000
                                           0.0146
                                           0.9930
                                                   0.0216 0.0000
                                           0.9983
                                                   0.9805 0.0151
```

0.9887

0.0155

0.9999

0.9859 0.9979

0.9922

3. Use **bp3.m** to train a 12-3-12 autoencoder. Examine the hidden unit representations using scatter3.

>> p12 p12 = struct with fields: smat: [12 × 12 double] tmat: [12 × 12 double] >> p12net0=initnet3(12,3,12,4,4) p12net0 = struct with fields: wih: [3 × 12 double] hbias: [-1.7519 -0.9220 0.8238] whout: [12 × 3 double] obias: [1 × 12 double] >> p12act0=forw3(p12net0,p12) p12act0 = struct with fields: stim: [12 × 12 double] hid: [12 × 3 double] out: [12 × 12 double] vit: [12 × 12 double] >> p12act0.stim; >> p12act0.out; >> p12act0.hid ans = -0.7382 -0.0460 -0.1553 -0.8778 -0.8845 0.7575 -0.8989 -0.6783 0.1984 -0.8471 0.1930 0.3142 -0.9290 -0.8544 0.3879 -0.8594 -0.2849 -0.4730 -0.2881 0.0018 0.6420 -0.8840 -0.1215 0.8179 -0.4321 -0.0243 0.8819	>> p12net20k=bp3(p12net0,p12,20000,.2,0) p12net20k = struct with fields: wih: [3 × 12 double] hbias: [0.0639 0.0655 0.0717] whout: [12 × 3 double] obias: [1 × 12 double] >> p12act20k=forw3(p12net20k,p12) p12act20k = struct with fields: stim: [12 × 12 double] hid: [12 × 3 double] out: [12 × 12 double] hid: [12 × 3 double] out: [12 × 12 double] >> p12act20k.out ans = Columns 1 through 5 0.9992	Columns 6 through 10 0.0003
0.0793	0.9927 0.0107 0.0000 0.0000 0.0000	1 1 0