Une méthode en deux étapes pour la prédiction du niveau d'anglais.

Alexandre Garcia CAP2018 shared task

English level prediction - Problem

- Goal: predict a « score » (A1,A2,B1,...,C2)
- Inputs: text + grammatical / structural descriptors
- Loss minimization:

Predicted Real	A1	A2	B1	B2	C1	C2
A1	0	1	2	3	4	6
A2	1	0	1	4	5	8
B1	3	2	0	3	5	8
B2	10	7	5	0	2	7
C1	20	16	12	4	0	8
C2	44	38	32	19	13	0

$$\forall i, j, j' \in \big\{1, \dots, 6\big\}; \mid i - j' \mid < \mid i - j \mid \Rightarrow C_{i, j'} \leq C_{i, j}$$

English level prediction - Solution

Loss property:

$$\forall i, j, j' \in \{1, \dots, 6\}; |i - j'| < |i - j| \Longrightarrow C_{i,j'} \le C_{i,j}$$

 Minimize an objective of the form :

$$\left(\min_{f} \sum_{k=1}^{n} |y_k - f(x_k)|^2 + \Omega(f)\right)$$

- (Ordinal regression seen as a least square regression problem)
- -> Many predictors available (Random forest, gradient boosting trees, ...)

Model structure

Model structure

1) Sparse input representation

1) Sparse input representation

Standard pipeline

stop words give information on the english level

Top features sparse

C2 -> thematic imbalance? (robot, humans, symbol, ufos) + (eiffel tower, french revolution)

Structure du modèle

1) Dense input fusion

- xgboost implementation (small parameter grid based on depth essentially)
- Features importance (Top 10):
 - Distance to decision function
 - text,sentences,words,letters.all

Scores with different feature sets

- · C.V. SCOres
 - all features -> 7.8
 - top 10 features -> 7.5
 - sparse only -> 16.1
 - dense only -> 47

- private set scores (averaged 10 times predictions)
 - all features -> 7.28
 - dense only -> 47.23

Possible improvements

- Orthographic faults dedicated treatment
- Use external ressources (pre-trained word embeddings, pos tagger, ...)
- Use word tf-idf based on word occurrences in big corpora with varying english level (Reddit - Wlkipedia, 20News)
- Take into account domain knowledge (pre-classification of known low-level english faults.
- Etc ...

Questions

