Оглавление

0.1	О мультииндексах	1
0.2	Классы гладкости	1
0.3	Φ ормулы для производной порядка r одной сложной функции	3
0.4	Формула Тейлора с остатком в форме Лагранжа для функции n переменных	5

0.1 О мультииндексах

Определение 1. Мультииндексом называется $\alpha=(\alpha_1,...,\alpha_n)\in\mathbb{R}^{n\geq 2}, \qquad \alpha_j\in\mathbb{N}\setminus\{0\}$

Определение 2 (норма мультииндекса). $|\alpha| \coloneqq \alpha_1 + ... + \alpha_n, \qquad |\alpha| > 0$

Обозначение. $\alpha! \coloneqq \alpha_1! \cdot ... \cdot \alpha_n!$

Обозначение.
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

$$x^{\alpha} \coloneqq x_1^{\alpha_1} \cdot \dots \cdot x_n^{\alpha_n}, \qquad 0^0 \coloneqq 1$$

Обозначение.

$$C_n^{\alpha} = \frac{n!}{\alpha!} = \frac{n!}{\alpha_1! \cdot \dots \cdot \alpha_n!}$$

Обозначение. $\{v_{\alpha}(x)\}_{\alpha \in T}$

$$\sum_{\alpha \in T} v_{\alpha}(x)$$

0.2 Классы гладкости

Определение 3 $(\mathcal{C}^r(E)).$ $r\in\mathbb{N},\qquad E\subset\mathbb{R}^{n\geq 2},\qquad E$ открыто, $f\in\mathcal{C}\Big(E\Big)$

$$\forall x_1, ..., x_n \quad \forall X \in E \quad \exists f'_{x_j}(X)$$

•
$$f'_{x_j}(X) \in \mathcal{C}\left(E\right) \implies f \in \mathcal{C}^1\left(E\right)$$

• Пусть $f \in \mathcal{C}^1(E)$

$$\forall 1 \leq k \leq r \quad \forall x_{i_1}, ..., x_{i_k} \quad \forall X \in E \quad \exists f_{x_{i_1}...x_{i_k}}^{(k)}(X) \in \mathcal{C}\left(E\right)$$

Тогда говорят, что $f \in \mathcal{C}^r \bigg(E \bigg)$

Теорема 1. $r \geq 2, \qquad E \subset \mathbb{R}^{n \geq 2}, \qquad E$ открытое, $f \in \mathcal{C}^r\bigg(E\bigg), \qquad i_1,...,i_r, \quad j_1,...,j_r$

$$\forall X \in E \quad f_{x_{i_1}, \dots x_{i_n}}^{(r)}(X) = f_{x_{i_1}, \dots x_{i_n}}^{(r)}(X) \tag{1}$$

Доказательство. Докажем по индукции

- ullet База. r=2 доказано в конце прошлой лекции
- Переход. Пусть $f \in \mathcal{C}^{r+1}\Big(E\Big)$

 $j_k \neq j_{k+1}$

Рассмотрим частные производные:

$$f_{x_{j_1}...x_{j_k}x_{j_{k+1}}...x_{j_{r+1}}}^{(r+1)}(X), \qquad f_{x_{j_1}...x_{j_{k+1}}x_{j_k}...x_{j_{r+1}}}^{(r+1)}(X)$$

Обозначим $g(X)\coloneqq f_{x_{j_1}\dots x_{j_{k-1}}}^{(k-1)}(X)$

$$f_{x_{j_1}...x_{j_{k-1}}x_{j_k}x_{j_{k+1}}}^{(k+1)}(X) = g_{x_{j_k}x_{j_{k+1}}}''(X)$$
(2)

$$f_{x_{j_1}...x_{j_{k+1}}x_{j_k}}^{(k+1)}(X) = g_{x_{j_{x+1}}x_{j_k}}''(X)$$
(3)

По следствию к теореме о смешанных производных, получаем

$$(2),(3) \implies g_{x_{j_k}x_{j_{k+1}}} = g''_{x_{j_{k+1}}x_{j_k}}(X) \tag{4}$$

$$(2) \implies f_{x_{j_1} \dots x_{j_k} x_{j_{k+1}} \dots x_{j_{r+1}}}^{(r+1)}(X) = g_{x_{j_k} x_{j_{k+1}} \dots x_{j_{r+1}}}^{(r-k+2)} \quad \forall X \in E$$
 (5)

$$(3) \implies f_{x_{j_1} \dots x_{j_{k+1}} x_{j_k} \dots x_{j_{r+1}}}^{(r+1)}(X) = g_{x_{j_{k+1}} x_{j_k} \dots x_{j_{r+1}}}^{(r-k+2)} \quad \forall X \in E$$

$$(4), (5), (6) \implies f_{x_{j_1} \dots x_{j_k} x_{j_{k+1}} \dots x_{j_{r+1}}}^{(r+1)}(X) = f_{x_{j_1} \dots x_{j_{k+1}} x_{j_k} \dots x_{j_{r+1}}}^{(r+1)}(X) \quad \forall X \in E$$
 (7)

 $i_1,...,i_n, \qquad j_k=i_1, \qquad j_k$ – минимальный Рассмотрим две ситуации:

- k = 1

$$i_1, ..., i_{r+1}$$

 $i_1, j_2, ..., j_{r+1}$

Тогда индексы $i_2,...,i_{r+1}$ и $j_2,...,j_{r+1}$ получаются друг из друга перестановкой. А тогда, по индукции,

$$f_{x_{i_1}x_{i_2}...x_{i_{r+1}}}^{(r+1)}(X) = \left(f_{x_{i_1}}'\right)_{x_{i_2}...x_{i_{r+1}}}^{(r)} = \left(f_{x_{i_1}}'\right)_{x_{j_2}...x_{j_{r+1}}}^{(r)}(X) = f_{x_{j_1}x_{j_2}...x_{j_{r+1}}}^{(r+1)}(X)$$

$$(8)$$

- k > 1

Тогда $j_1, ..., j_{k-1} \neq i_1$

Тогда,

$$(7) \implies f_{\dots x_{j_k-1} x_{j_k}}^{(r+1)} = f_{\dots x_{j_k} x_{j_{k-1}}}^{(r+1)} = f_{\dots x_{j_k} x_{j_{k-2}} x_{j_{k-1}}}^{(r+1)} = \dots = f_{x_{j_k} x_{j_2} \dots}^{(r+1)}$$

Теперь можно перименить первый случай

Обозначение. $i_1,...,i_r, \qquad 1 \le i_k \le n$ Среди них есть:

- l_1 равных 1
- l_2 равных 2

.

• l_n равных n

$$l_1 + \dots + l_n = r$$

Можно получить перестановку этих индексов:

$$\underbrace{1,\ldots,1}_{l_1},\underbrace{2,\ldots,2}_{l_2},\ldots,\underbrace{n,\ldots,n}_{l_n}$$

 $f \in \mathcal{C}^r \Big(E \Big)$

Тогда, по доказанной теореме,

$$f_{x_{i_1}...x_{i_r}}^{(r)}(X) = f_{\underbrace{x_1...x_1}_{l_1}}^{(r)}...\underbrace{x_n...x_n}_{l_n}(X) \tag{9}$$

Определим мультииндекс $\alpha \coloneqq (l_1,...,l_n), \quad |\alpha| = r$ Введём обозначение для частной производной:

 $(9) := \partial^{\alpha} f(X)$

0.3 Формулы для производной порядка r одной сложной функции

Теорема 2. $E \subset \mathbb{R}^{n \geq 2}$ – открытое, $f \in \mathcal{C}^{r \geq 1}\bigg(E\bigg), \qquad Y \in E, \qquad \underset{H \neq \mathbb{O}_n}{H \in \mathbb{R}^n}, \qquad t \in (-a,a)$

 $Y + tH \in E \quad \forall t \in (-a, a)$

$$g(t) := f(Y + tH) \tag{10}$$

$$\implies g^{(r)}(0) = \sum_{\alpha: |\alpha| = r} C_r^{\alpha} \partial^{\alpha} f(Y) H^{\alpha}$$
(11)

Доказательство. Докажем по индукции:

• База. r = 1

To есть, $|\alpha| = 1$

Если $\alpha=(\alpha_1,...,\alpha_n),$ то $\alpha_1+...+\alpha_n=1,$ $\alpha_i\in\mathbb{Z},$ $\alpha_i\geq 0$ Значит

$$\exists \nu : \begin{cases} \alpha_{\nu} = 1\\ \alpha_{j} = 0, \quad j \neq \nu \end{cases}$$

$$\alpha = (0, ..., 1, ..., 0) := e_{\nu}, \qquad 1 \le \nu \le n$$

$$C_1^{e_{\nu}} = \frac{1!}{0! \cdot \dots \cdot 1! \cdot \dots \cdot 0} = 1 \tag{12}$$

$$\partial^{e_{\nu}} f(X) = f'_{x_{\nu}}(X) \tag{13}$$

Если
$$H = \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix}$$
, то

$$H^{e_{\nu}} = h_{\nu} \tag{14}$$

$$(11), (12), (13), (14) \implies g'(0) = \sum_{\nu=1}^{n} f'_{x_{\nu}}(Y) h_{\nu}$$

$$(15)$$

По условию, $f \in \mathcal{C}^1(E)$, а значит, применяя теорему о достаточном условии дифференцируемости, f дифф. в X $\forall X \in E$

Рассмотрим отображение

$$\Psi: (-a, a) \to \mathbb{R}^n, \qquad \Psi(t) = Y + tH$$
 (16)

$$g(t) \stackrel{\text{def}}{=} = f(\Psi(t)), \qquad f: E \to \mathbb{R}^1$$
 (17)

То есть, $g:(-a,a)\to\mathbb{R}^1$ и можно применить теорему о дифференцируемости суперпозиции дифференцируемых отображений:

$$\mathcal{D}g(t) = \mathcal{D}f(V) \bigg|_{V=Y+tH} \cdot \mathcal{D}\Psi(t)$$
(18)

Матрица Якоби для отображения $\mathbb{R}^1 \to \mathbb{R}^1$ – матрица 1×1 :

$$\mathcal{D}g(t) = g'(t) \tag{19}$$

 $f:\mathbb{R}^n \to \mathbb{R}^1$, значит, её матрица Якоби – это вектор-строка:

$$\mathcal{D}f(V)\Big|_{V=Y+tH} = \left(f'_{x_1}(Y+tH), ..., f'_{x_n}(Y+tH)\right)$$
(20)

$$\mathcal{D}\Psi(t) = \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} \tag{21}$$

$$(18), (19), (20), (21) \implies g'(t) = \sum_{\nu=1}^{n} f'_{x_{\nu}}(Y + tH)h_{\nu}, \qquad t \in (-a, a)$$
(22)

Подставляя t = 0, получаем (15)

• Переход.

$$f \in \mathcal{C}^{r+1}(E)$$

Рассмотрим мультииндекс $\beta = (\beta_1, ..., \beta_n), \qquad |\beta| = r + 1$

$$\beta = (0, ..., \beta_{i_1}, 0, ..., \beta_{i_l}, ..., 0), \qquad \beta_{i_k} \neq 0, \qquad 1 \leq k \leq l$$

То есть, некоторые члены не равны нулю, остальные – нули Π усть

$$\alpha^{(1)} = (0, ..., 0, \beta_{i_1} - 1, \beta_{i_2}, ..., \beta_{i_l}, ..., 0)$$

$$\alpha^{(2)} = (0, ..., \beta_{i_1}, 0, ..., \beta_{i_2} - 1, ..., \beta_{i_l}, ..., 0)$$

$$\alpha^{(l)} = (0,, \beta_{i_1}, 0, ..., \beta_{i_2}, ..., \beta_{i_l} - 1, ..., 0)$$

 $|\alpha| = r$, $\alpha + e_{\nu} = \beta$ для некоторого ν

$$\nu \in \{i_1, ..., i_l\}$$
 (иначе на месте одного из нулей была бы 1) (23)

По индукционному предположению,

$$g^{(r)}(Y+tH) = \sum_{|\alpha|=r} C_r^{(\alpha)} \partial^{\alpha} f(Y+tH) H^{\alpha}$$
 (24)

$$(22), (24) \implies g^{(r+1)}(Y + tH) = \sum_{|\alpha| = r} C_r^{\alpha} H^{\alpha} \left(\underbrace{\partial^{\alpha} f(Y + tH)}_{:= f_{\alpha} \in \mathcal{C}^{1}\left(E\right)} \right)' := F$$

$$(25)$$

Воспользуемся базой индукции для f_{α} :

$$(25) = \sum_{|\alpha|=r} C_r^{\alpha} H^{\alpha} \left(\sum_{\nu=1}^n f'_{\alpha x_{\nu}} (Y + tH) h_{\nu} \right) = \sum_{|\alpha|=1}^n \sum_{\nu=1}^n C_r^{\alpha} H^{\alpha} h_{\nu} \left(\partial^{\alpha} f(Y + tH) \right)'_{x_{\nu}}$$
(26)

$$\alpha = (l_1, ..., l_{\nu}, ..., l_n)$$

$$\left(\partial^{\alpha} f(X)\right)_{x_{\nu}}' \stackrel{\text{def}}{=} f_{\underbrace{x_{1} \dots x_{1}}_{l_{1}}}^{(r+1)} \dots \underbrace{x_{\nu} \dots x_{\nu}}_{l_{\nu}} \dots \underbrace{x_{n} \dots x_{n}}_{l_{n}} x_{\nu}(X) \underset{\text{T. O KJaccax } \mathcal{C}^{r}}{=} f_{\underbrace{x_{1} \dots x_{1}}_{l_{\nu}}}^{(r+1)} \dots \underbrace{x_{\nu} \dots x_{\nu}}_{l_{\nu} + 1} \dots \underbrace{x_{n} \dots x_{n}}_{l_{n}} (X) \stackrel{\text{def}}{=} \partial^{\alpha + e_{\nu}} f(X) \quad (27)$$

$$H^{\alpha}h_{\nu} = h_1^{e_1}...h_{\nu}^{e_{\nu}}...h_n^{e_n}\mathbf{h}_{\nu} = h_1^{e_1}...h_{\nu}^{e_{\nu}+1}...h_n^{e_n} = H^{\alpha+e_{\nu}}$$
(28)

(26)
$$= \sum_{|\alpha|=r} \sum_{\nu=1}^{n} C_r^{\alpha} H^{\alpha+e_{\nu}} \partial^{\alpha+e_{\nu}} f(Y+tH)$$
 (29)

При этом, $\alpha + e_{\nu} = \beta$, $|\beta| = r + 1$

$$(29) = \sum_{|\beta|=r+1} \partial^{\beta} f(Y+tH) H^{\beta} \sum_{\alpha,\nu:\alpha+e_{\nu}=\beta} C_r^{\alpha}$$
(30)

$$\alpha^{(\mu)} := (0, ..., \beta_{i_1}, 0, ..., \beta_{i_{\mu}} - 1, 0, ..., \beta_{i_l}, 0, ...)$$

$$\alpha^{(\mu)} + e_{i_{\mu}} = \beta, \qquad 1 \le \mu \le l$$
(31)

$$(31) \implies \sum_{\alpha+e_{\nu}=\beta} C_{r}^{\alpha} = \sum_{\mu=1}^{l} C_{r}^{\alpha^{(\mu)}} \stackrel{\text{def}}{=} \sum_{\mu=1}^{l} \frac{r!}{\beta_{i_{1}}!...(\beta_{i_{\mu}}-1)!...\beta_{i_{l}}!} = \frac{r!}{\beta_{i_{1}}!...\beta_{i_{l}}!} \sum_{\mu=1}^{l} \beta_{i_{\mu}} \stackrel{\text{def}}{=}$$

$$= \frac{r!}{\beta!} |\beta| = \frac{r!}{\beta!} (r+1) = \frac{(r+1)!}{\beta!} = C_{r+1}^{\beta}$$

$$(30) \underset{(32)}{=} g^{(r+1)}(t) = \sum_{|\beta|=r+1} \partial^{\beta} f(Y+tH) H^{\beta} C_{r+1}^{\beta}$$

0.4 Формула Тейлора с остатком в форме Лагранжа для функции n переменных

Теорема 3.
$$E \subset \mathbb{R}^{n \geq 2}$$
 – открытое, $X_0 \in E$, $B_{\delta}(X_0) \subset E$, $f \in \mathcal{C}^{r+1}\Big(E\Big)$ $H \in \mathbb{R}^n$, $\|H\| < \delta$

$$\implies \exists 0 < c < 1: f(X_0 + H) = f(X_0) + \sum_{k=1}^r \sum_{|\alpha| = k} \frac{1}{\alpha!} \partial^{\alpha} f(X_0) H^{\alpha} + \sum_{|\alpha| = r+1} \frac{1}{\alpha!} \partial^{\alpha} f(X_0 + cH) H^{\alpha}$$
 (33)

Доказательство. Рассмотрим $g(t) \coloneqq f(X_0 + tH)$

$$g(1) = f(X_0 + H),$$
 $g(0) = f(X_0)$

$$g \in \mathcal{C}^{r+1}\Big((-a,a)\Big), \qquad a > 1$$

так как $\|H\| < \delta \implies$ для некоторого $a > 1 \quad \|aH\| = a \, \|H\| < \delta$

Для функции g можно применить теорему Лагранжа для одной переменной:

$$\begin{split} g(1) &= g(0) + \sum_{k=1}^r \frac{g^{(k)}(0)}{k!} \cdot 1^k + \frac{1}{(r+1)!} g^{(r+1)}(c) \cdot 1^{r+1} = \\ &= g(0) + \sum_{k=1}^r \frac{1}{k!} g^{(k)}(0) + \frac{1}{(r+1)!} g^{(r+1)}(c) \underset{\text{формула для k-й производной}}{= f(X_0) + \sum_{k=1}^r \frac{1}{k!} \sum_{|\alpha| = k} C_k^\alpha \partial^\alpha f(X_0) H^\alpha + \frac{1}{(r+1)!} \sum_{|\alpha| = r+1} C_{r+1}^\alpha \partial^\alpha f(X_0 + cH) H^\alpha = \\ &= f(X_0) + \sum_{k=1}^r \sum_{|\alpha| = k} \frac{1}{\alpha!} \partial^\alpha f(X_0) H^\alpha + \sum_{|\alpha| = r+1} \frac{1}{\alpha!} \partial^\alpha f(X_0 + cH) H^\alpha \end{split}$$