Problem Set 8

1. Let Σ be a finite alphabet. The atomic formulae in MSO defined over Σ^* are x = y, x < y, S(x, y), X(x) and $Q_a(x), a \in \Sigma$. Consider the following logic called MSO₀ having atomic formulae of the following forms:

$$Sing(X), X \subseteq Y, X < Y, S(X, Y), Q_a(X)$$

where

- -Sing(X) means that X is a SO variable of cardinality 1;
- $-X\subseteq Y$ means that every element of the SO variable X is contained in the SO variable Y:
- -X < Y means that SO variables X, Y have cardinality 1, and that the element in Y is greater than the element in X;
- -S(X,Y) means that SO variables X, Y have cardinality 1, and Y contains the successor of the element in X; and,
- $-Q_a(X)$ means that all positions in X are decorated by $a \in \Sigma$.

If φ is an atomic formula in MSO, then $\varphi \wedge \varphi, \neg \varphi, \varphi \vee \varphi, \forall x \varphi$ and $\forall X \varphi$ are formulae in MSO. Similarly, if φ is an atomic formula in MSO₀, then, $\varphi \wedge \varphi, \neg \varphi, \varphi \vee \varphi$ and $\forall X \varphi$ are formulae in MSO₀.

Compare the expressiveness of MSO and MSO_0 .

- 2. For the formula $\exists x \forall y (x < y \rightarrow Q_a(y))$ give an equivalent MSO₀ formula.
- 3. Consider the following NFA $N = (\{0, 1, 2, 3\}, \{a, b\}, \Delta, \{0\}, \{1\})$ with $\Delta(0, b) =$ $\{1\}, \Delta(1,a) = \{2\}, \Delta(2,a) = \{2\}, \Delta(2,b) = \{3\} \text{ and } \Delta(3,b) = \{0\}.$ Write an MSO formula with two SO variables that characterizes L(N).
- 4. Prove or disprove: Every MSO formula $\varphi(X_1,\ldots,X_n)$ over words is equivalent to an EMSO formula, that is a formula of the form

$$\exists Y_1 \dots \exists Y_m \psi(X_1, \dots, X_n, Y_1, \dots, Y_m)$$

where ψ is an MSO formula.

5. Formulas in Presburger Arithmetic (PA) use first-order variables x, y, \dots that are evaluated over the structure $\mathcal{A} = (N, +)$, where $N = \{0, 1, \ldots\}$ is the set of natural numbers, and, + is the ternary addition predicate. Here is a valid sentence in this logic:

$$\forall x \forall y \exists z [(x+z=y) \lor (y+z=x)]$$

Show that the relations x < y, S(x, y) can be defined in PA.

As future work, think about the satisfiability problem of PA: given a formula φ in PA, can you decide if φ is satisfiable?