The Valuation of Storage

Long Zhao
McCombs School of Business, University of Texas - Austin

Joint work with Kumar Muthuraman and Stathis Tompaidis

October 29, 2015

Examples of Storage

- Silos Agricultural Commodities
- Tanks Oil
- Caverns Natural Gas
- \bullet Lake Reservoirs and Dams Water \Rightarrow Electricity.

Value of Storage

Production and Consumption of Natural Gas

Prices

Data comes from NYMEX.

Method

- Continuous Time Singular Control ⇒ HJB equation.
- HJB equation (free boundary problem) is very hard to solve.
- Moving boundary method is used in 1 dimension.

1 Dimension VS 2 Dimensions

Bibliography

- Commodity price.
 - Mean reversion: Gibson and Schwartz (1990); Brennan and Hughes (1991); Cortazar and Schwartz (1994); Bessembinder, Coughenour, Seguin, Smoller (1995);
 - Price Dyanmics: Schwartz (1997); Schwartz and Smith (2000);
- Valuation of storage: Fackler and Livingston (2002); Manoliu (2004); Hodges (2004); Chen and Forsyth (2008, 2010); Boogert and Jong (2008); Matt, Davison and Rasmussen (2009); Secomandi (2010, 2014); Zhao and Wijnbergen (2015)
- Moving boundary method: Muthuraman and Kumar (2006);
 Chockalingam and Muthuraman (2007, 2010, 2014); Muthuraman and Zha (2008); Feng and Muthuraman (2010);

One factor model

$$dS_t = \kappa(\mu - \ln S_t)S_t dt + \sigma S_t dW_t$$

• By Ito's formula, $X_t = \ln(S_t)$ is an Ornstein-Uhlenbeck process,

$$dX_t = \kappa(\alpha - X_t)dt + \sigma dW_t.$$

where $\alpha = \gamma - \sigma^2/(2\kappa)$.

• Storage level at time t is Q_t . L_t , U_t represent cumulative injections and withdrawals at time t.

$$dQ_t = dL_t - dU_t$$

- Admissible if $Q_t \in (Q_{min}, Q_{max}) \ \forall t \geq 0$.
- Costs of injection and withdrawal, $\lambda(X_t, Q_t)$ and $\mu(X_t, Q_t)$, are continuous and bounded.

• Objective: to maximize discounted infinite-horizon cash flows.

$$V(x,q) = \max_{(L,U)\in\mathcal{U}} \mathbb{E}_{x,q} \left(\int_0^\infty e^{-\beta t} (e^{X_t} - \mu(Q_t^1)) dU_t - \int_0^\infty e^{-\beta t} (e^{X_t} + \lambda(Q_t^2)) dL_t \right)$$
(1)

where $X_0 = x$ and $Q_0 = q$.

The Hamilton-Jacobi-Bellman Equation

 Dynamic programming arguments and Ito's formula yield the Hamilton-Jacobi-Bellman (HJB) equation.

$$\max\left(\mathcal{L}V, \frac{\partial V}{\partial q} - (e^{x} + \lambda(q)), -\frac{\partial V}{\partial q} + (e^{x} - \mu(q))\right) = 0$$

with
$$\mathcal{L}V = \frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2} + \alpha(\kappa - x)\frac{\partial V}{\partial x} - \beta V$$
.

 A verification theorem assures us that a function that solves the HJB equation is the value function for the original control problem and a policy that achieves this value function is the optimal policy.

• Assume V is known and the change of policy at one point (x_0, q_0) won't affect it. Now at (x_0, q_0) , ϵ is bought at price e^{x_0} . The average buying profit is

$$\frac{[V(x_0, q_0 + \epsilon) - V(x_0, q_0)] - \epsilon(e^x + \lambda(q))}{\epsilon} \xrightarrow{\epsilon \to 0} \frac{\partial V}{\partial q} - (e^x + \lambda(q))$$

- $\mathcal{L}V(x,q)$: holding profit at (x,q).
- $\frac{\partial V}{\partial q}(x,q) (e^x + \lambda(q))$: selling profit at (x,q).
- $-\frac{\partial V}{\partial q}(x,q) + (e^x \mu(q))$: buying profit at (x,q).
- HJB equation.

$$\max\left(\mathcal{L}V, rac{\partial V}{\partial q} - (e^{x} + \lambda(q)), -rac{\partial V}{\partial q} + (e^{x} - \mu(q))
ight) = 0$$

Holding, Selling and Buying Regions

- The state space $(x, q) \in \mathbb{R}^2_+$ is divided into three kinds of regions.
- Holding region H^* : holding profit = 0, selling & buying profit < 0
- Selling region S^* : selling profit = 0, holding & buying profit < 0
- Buying region B^* : buying profit = 0, holding & selling profit < 0

Moving Boundary Method

- Start with an initial guess and iteratively improve it until convergence.
- ullet A sequence of fixed boundary problems o free boundary problem

Moving Boundary Method

- Initial guess.
- How to solve fixed boundary problems efficiently.
- How to improve boundary.

Initial Guess

Theorem

When the price is high enough, regardless of storage, selling is the optimal strategy.

In the holding region

$$\frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2} + \alpha(\kappa - x) \frac{\partial V}{\partial x} - \beta V = 0$$

• Defining $y = \kappa (x - \alpha)^2 / \sigma^2$, we have

$$y\frac{\partial^2 V}{\partial y^2} + (0.5 - y)\frac{\partial V}{\partial y} - \frac{\beta}{2\kappa}V = 0$$

which is the Kummer Equation. The solution is the sum of hypergeometric1F1 and the hypergeometricU functions.

$$V(x,q) = A(q)$$
HyperGeoU $\left(\frac{\beta}{2\kappa}, \frac{1}{2}, \frac{\kappa}{\sigma^2}(x-\alpha)^2\right)$
+ $B(q)$ HyperGeo1F1 $\left(\frac{\beta}{2\kappa}, \frac{1}{2}, \frac{\kappa}{\sigma^2}(x-\alpha)^2\right)$

Boundary conditions can determine A(q) and B(q)

Boundary Movement

- Direction.
- Distance.

Boundary Movement

- Direction.
- Distance.

Figure: Initial Guess

Boundary Movement

- Direction.
- Distance.

Figure: Initial Guess

Distance

Sell

Figure: Current Policy

Distance

Sell

Figure : Current Policy

Figure : Selling Profit

Distance

Sell

Figure : Current Policy

Figure : After Movement

Figure: Current Policy

Moving Boundary Method

Buy

Figure : Current Policy

Figure : Buying Profit

Buy

Figure : Current Policy

Figure: After Movement

Algorithm

- **1** Begin with selling at very high price for all q > 0.
- Move selling (buying) boundary along price x to local maximal selling (buying) profit points until convergence.

Theorem

Each movement improves value function.

Theorem

Each movement improves value function.

$$\begin{array}{lll} \mathcal{L}V^{n+1}(x,q) = 0 & H^{n+1} \\ -V_q^{n+1}(x,q) + e^x - \mu(q) = 0 & S^n \\ -V_q^{n+1}(x,q) + e^x - \mu(q) = 0 & S^{n+1}/S^n \\ V_q^{n+1}(x,q) - e^x - \lambda(q) = 0 & B^n \\ V_q^{n+1}(x,q) - e^x - \lambda(q) = 0 & B^{n+1}/B^n \end{array}$$

$\mathsf{Theorem}$

Each movement improves value function.

Model

$$\begin{split} \mathcal{L}\Delta V^{n+1}(x,q) &= 0 \quad H^{n+1} \\ \Delta V_q^{n+1}(x,q) &= 0 \quad S^n \\ \Delta V_q^{n+1}(x,q) &> 0 \quad S^{n+1}/S^n \\ \Delta V_q^{n+1}(x,q) &= 0 \quad B^n \\ \Delta V_q^{n+1}(x,q) &< 0 \quad B^{n+1}/B^n \end{split}$$

$\mathsf{Theorem}$

The boundaries can be kept moving.

$$\mathcal{L}\Delta V^{n+1}(x,q) = 0$$
 H^{n+1}
 $\Delta V_q^{n+1}(x,q) = 0$ S^n
 $\Delta V_q^{n+1}(x,q) > 0$ S^{n+1}/S^n
 $\Delta V_q^{n+1}(x,q) = 0$ B^n
 $\Delta V_q^{n+1}(x,q) < 0$ B^{n+1}/B^n

Theorem

The boundaries can be kept moving.

At upper point

$$(\Delta V_q^{n+1}(x,q))_x \le 0$$

$$(-V_q^n(x,q) + (e^x - \mu(q)))_x = 0$$

$$\Rightarrow (-V_q^{n+1}(x,q) + (e^x - \mu(q)))_x \le 0$$

Extensions

• Seasonality.