Practice Problems

- 1. Find the position vector for the vector that starts at (1,5,1,7) and ends at (9, -3, -1, 11).
- 2. Find the magnitude of the following vectors: $\overrightarrow{a} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, $\overrightarrow{b} = \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$,

$$\overrightarrow{c} = \begin{bmatrix} 0.5\\ 2.4\\ 10.2\\ 8.7 \end{bmatrix}$$

- 3. Let $\overrightarrow{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\overrightarrow{b} = \begin{bmatrix} -6 \\ 4 \end{bmatrix}$, $\overrightarrow{c} = \begin{bmatrix} 1 \\ -8 \end{bmatrix}$. Find \overrightarrow{v} if $\overrightarrow{v} = 2\overrightarrow{a} 3\overrightarrow{b} + 4\overrightarrow{c}$
- 4. Find the unit vector of the following vectors: $\overrightarrow{x} = \begin{bmatrix} 1 \\ -8 \end{bmatrix}$, $\overrightarrow{y} = \begin{bmatrix} -3 \\ 6 \\ 7 \end{bmatrix}$,

$$\overrightarrow{z} = \begin{bmatrix} 10 \\ -2 \\ -8 \\ 2 \end{bmatrix}$$

5. Check whether the following pairs of vectors are orthogonal:

$$\overrightarrow{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $\overrightarrow{b} = \begin{bmatrix} -4 \\ -6 \end{bmatrix}$

$$\overrightarrow{c} = \begin{bmatrix} 12\\4\\-2 \end{bmatrix} \text{ and } \overrightarrow{d} = \begin{bmatrix} 1\\1\\8 \end{bmatrix}$$

$$\overrightarrow{e} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$$
 and $\overrightarrow{f} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

6. Find the transpose and inverse of the following matrix:

$$\mathbf{P} = \begin{pmatrix} 21 & -1 & 43 \\ 91 & -12 & 41 \\ 17 & -26 & -65 \end{pmatrix}$$

7. 6 towns, named A through F, have a series of roads connecting them. If you look at the picture, you can see that there are two roads connecting A and C, for example.

Create a matrix that displays how many roads connect each of the towns. Your matrix should look like

	$\mid A \mid$	B	C	D	E	F
\overline{A} B	0	1	2	0	0	0
B						
C						
D						
E						
F						

The first row is filled out to demonstrate the solution. Fill in the rest of the spaces.

Solutions

$$1. \begin{bmatrix} 8 \\ -8 \\ -2 \\ 4 \end{bmatrix}$$

2.
$$|\overrightarrow{a}| = \sqrt{10}$$
, $|\overrightarrow{a}| = \sqrt{21}$, $|\overrightarrow{a}| = \sqrt{185.74}$

3.
$$\begin{bmatrix} 26 \\ -38 \end{bmatrix}$$

4.
$$\overrightarrow{x}_{u}\begin{bmatrix} \frac{1}{3} \\ \frac{-8}{3} \end{bmatrix}$$
, $\overrightarrow{y}_{u}\begin{bmatrix} \frac{-3}{\sqrt{94}} \\ \frac{6}{\sqrt{94}} \\ \frac{7}{\sqrt{94}} \end{bmatrix}$, $\overrightarrow{z}_{u}\begin{bmatrix} \frac{10}{\sqrt{172}} \\ \frac{-2}{\sqrt{172}} \\ \frac{-8}{\sqrt{172}} \\ \frac{2}{\sqrt{172}} \end{bmatrix}$

5. $\overrightarrow{d} \cdot \overrightarrow{b} = -22$, not orthogonal, $\overrightarrow{c} \cdot \overrightarrow{d} = 0$, orthogonal, $\overrightarrow{e} \cdot \overrightarrow{f} = 0$, orthogonal.

6.
$$\mathbf{P}^T = \begin{pmatrix} 21 & 91 & 17 \\ -1 & -12 & -26 \\ 43 & 41 & -65 \end{pmatrix} \mathbf{P}^{-1} = \begin{pmatrix} -0.0304 & 0.0195 & -0.0078 \\ -0.1087 & 0.0345 & -0.0502 \\ 0.0356 & -0.0087 & 0.0026 \end{pmatrix}$$

7.

	$\mid A \mid$	B	C	D	E	F
\overline{A}	0	1	2	0	0	0
B	1	0	0	1	3	1
C	2	0	0	0	0	0
D	0	1	0	0	1	0
E	0	3	0	1	0	1
F	0	1	0	0 1 0 0 1 0	1	0