# Investigating Scale Independent UCT Exploration Factor Strategies

Robin Schmöcker - Leibniz Universität Hannover - schmoecker@tnt.uni-hannover.de
Christoph Schnell - Leibniz Universität Hannover - schnell@tnt.uni-hannover.de
Alexander Dockhorn - University of Southern Denmark - adoc@mmmi.sdu.dk

Abstract—The Upper Confidence Bounds For Trees (UCT) algorithm is not agnostic to the reward scale of the game it is applied to. For zero-sum games with the sparse rewards of  $\{-1,0,1\}$  at the end of the game, this is not a problem, but many games often feature dense rewards with hand-picked reward scales, causing a node's Q-value to span different magnitudes across different games. In this paper, we evaluate various strategies for adaptively choosing the UCT exploration constant  $\lambda$ , called  $\lambda$ -strategies, that are agnostic to the game's reward scale. These  $\lambda$ -strategies include those proposed in the literature as well as five new strategies. Given our experimental results, we recommend using one of our newly suggested  $\lambda$ -strategies, which is to choose  $\lambda$  as  $2 \cdot \sigma$  where  $\sigma$  is the empirical standard deviation of all stateaction pairs' Q-values of the search tree. This method outperforms existing  $\lambda$ -strategies across a wide range of tasks both in terms of a single parameter value and the peak performances obtained by optimizing all available parameters.

*Index Terms*—Games, Artificial Intelligence, MCTS, UCT, Sequential Decision-making.

# I. INTRODUCTION

Monte Carlo Tree Search (MCTS) [7], [8] is a popular model-based decision-making algorithm that is applicable to a wide range of games. A selection strategy within MCTS that is nowadays synonymously used with MCTS is Upper Confidence Bounds For Trees (UCT) [16], which balances exploration and exploitation by employing the Upper Confidence Bounds (UCB) algorithm for multi-armed bandits as the tree policy [16].

UCT, however, introduces one parameter, the exploration constant  $\lambda>0$  used for the UCB formula whose choice can significantly impact performance (see Section IV). While a single value for  $\lambda$  may perform well across a variety of games with a similar scale for the Q-values, if  $\lambda$  is not on the same scale as the node's Q-value, UCT may either degrade to uniformly picking actions during the tree policy (when  $\lambda\gg|Q|$ ) or to the greedy policy (when  $\lambda\ll|Q|$ ). This is problematic as the scale of the score which the agent tries to maximize is oftentimes arbitrarily chosen. The games that are later used for evaluation prove this point as they encompass scores ranging from one to four digits.

While several works discuss methods for choosing a  $\lambda$  that adapts to the problem's scale [2], [6], [5], [11], [22] these works, however, most treat this choice as an implementation detail.

In this paper, we evaluate the performance of several of these strategies as well as propose new strategies for adaptively choosing  $\lambda$  on a variety of single-player and two-player games and show that the methods suggested in the literature are

outperformed by the methods introduced here. From here, we refer to any method for choosing  $\lambda$  as a  $\lambda$ -strategy. Since the goal of this paper is to recommend a drop-in  $\lambda$ -strategy replacement for Vanilla UCT (i.e., using a fixed  $\lambda$  value), the method had to fulfill four criteria, which are all satisfied by our newly proposed **Global Std** strategy that chooses  $\lambda$  as  $C \cdot \sigma$  where  $C \in \mathbb{R}^+$  and  $\sigma$  is the empirical standard deviation of all state-action pairs' Q-values.

- 1) Scale independence: If the reward function of a problem is multiplied by a constant  $\mu > 0$ , then this must not affect the policy induced by UCT.
- 2) The strategy must have little to no computational overhead.
- 3) There should be a single parameter of the  $\lambda$ -strategy that outperforms any single Vanilla UCT exploration constant choice across games. For Global Std, this is the case for C=2.
- 4) Optimizing over the parameters of the  $\lambda$ -strategy (if any parameters are introduced) on a per-task-level should outperform UCT when its exploration constant is also optimized.

Our contributions can be summarized as follows.

- We conducted a large-scale study on several  $\lambda$ -strategies from the literature as well as newly proposed ones by evaluating them on a plethora of single-player and two-player decision-making tasks with varying reward scales.
- One strategy that we proposed, namely Global Std, outperforms all methods from the literature both in terms of generalization and peak performance, whilst simultaneously satisfying the above-mentioned criteria.
- In particular, we show that Vanilla UCT, i.e., using a fixed exploration constant, performs poorly across the problems considered here that have vastly different reward scales.

The rest of this paper is structured as follows. Firstly, we present related work in **Section II**. Then, in **Section III**, we introduce three  $\lambda$ -strategies from the literature and propose five new ones, including the above-mentioned Global Std strategy. Given the theoretical foundations, in **Section IV**, we describe our experiment setup and then evaluate UCT with the different  $\lambda$ -strategies on six problems. Lastly, in **Section V**, we briefly summarize our findings and give an outlook for future work.

### II. RELATED WORK

Surprisingly, there is very little research conducted on dynamically choosing the exploration constant  $\lambda$  in MCTS (or equivalently normalizing Q-values, see Section III) [7]

on-the-fly. Even less research has been conducted on scaleinvariant exploration strategies. We suspect this to be the case since this is only a minor detail in MCTS, mostly not worthy of spending dedicated research effort on. Further, we also assume that there are numerous papers we are not aware of that employed some adaptive  $\lambda$ -strategy for their UCT. We assume this because authors may not have advertised their  $\lambda$ -strategy as it was only considered a minor implementation detail.

Tomáš Kozelek [17] suggested two  $\lambda$ -strategies, one where  $\lambda$  decays proportional to  $\frac{1}{\sqrt{n}}$  and one where  $\lambda$  is proportional to the empirical variance of the current node's returns. In both strategies,  $\lambda$  is clipped within a fixed range. Both Auer et al. [4] and later Audibert et al. [3] also proposed reward-variancebased  $\lambda$ -strategies called UCB-tuned and  $\beta$ -UCB. For each action, they use the variance of the state-action pair's returns instead of the entire node's returns. Yet another  $\lambda$ -strategy paradigm was introduced by Moerland et al. [19] who used a  $\lambda$ value that directly reflects the size of the current node's subtree, which quantifies uncertainty, thus improving exploration. Even without clipping, none of these strategies are independent of the scale of the Q-values.

One of the few documented scale-independent tuning approaches is choosing  $\lambda = Q_a$  [5], [6], [11] where  $Q_a$  is the Q-value of the action a under consideration at this node. However, a big flaw of this approach is that any actions with negative Q-values are always ignored no matter the visit count, when there is at least one action with a positive Q-value. This issue can be avoided by using  $\lambda = |Q_a|$  as done by Anand et al in OGA-UCT [2]. However, this comes with the problem that there is a bias towards actions with  $Q_a \ll 0$ . This difficulty can be circumvented with a  $\lambda$ -stratey proposed by Schrittwieser et al. [22] who choose  $\lambda = Q_{\max}^{\mathcal{T}} - Q_{\min}^{\mathcal{T}}$  where  $Q_{\max}^{\mathcal{T}}, Q_{\min}^{\mathcal{T}}$ are the highest and lowest Q values of the current search tree T. Yet another scale-independent approach that is also rewardvariance-based is given by Gray et al.'s [13] strategy called Poly-UCB1 with derived C that considers different confidence levels of the Student's t-distribution. In contrast to our Global Std method, Gray et al. build the variance from the returns of a single Q-value, while Global Std uses the variance of the different Q values.

In a broader scope, there exists a plethora of techniques to improve MCTS [7], some of which directly target the tree policy, such as work by Galván et al. [12], who use evolutionary algorithms to find alternatives for the entire UCB formula or techniques that only partially affect the exploration term, such as work by Sironi et al. [24] who propose and review several online parameter tuning techniques that interleave UCT iterations and parameter selection. Aside from MCTS, parameters in a more general reinforcement learning setting can also be scale-dependent, such as the temperature in Soft Actor Critic, for which automatic tuning methods exist [10].

# III. METHOD

### A. Problem model and optimization objective

Firstly, we use finite Stochastic Games (SG) as the model for the environments/tasks/problems considered here, which UCT formally operates on. This subsequent definition is a slight modification of Shapley's original definition [23]. In the following,  $\Delta(X) \subseteq \mathbb{R}^n$  denotes the probability simplex for any non-empty set X with |X| = n.

**Definition III.1.** A SG is an 8-tuple M $(S, n_p, \mu_0, T, I, \mathbb{A}, \mathbb{P}_t, R)$  where the components are

- $S \neq \emptyset$  is the finite set of states,  $n_p \in \mathbb{N}$  is the number of players,  $\mu_0 \in \Delta(S)$  is the probability distribution for the initial state, and  $T \subseteq S$  is the (possibly empty) set of terminal states.
- $I: (S \setminus T) \mapsto \{1, \dots, n_p\}$  maps each non-terminal state to which of the  $n_p$  players is at turn.
- A:  $(S \setminus T) \mapsto A$  maps each state s to the available actions  $\emptyset \neq \mathbb{A}(s) \subseteq A$  at state s where  $|A| < \infty$ . Again, we denote the set of permissible state-action pairs by  $P_M = \{(s, a) \mid s \in (S \setminus T), a \in \mathbb{A}(s)\}.$
- $\mathbb{P}_t \colon P_M \mapsto \Delta(S)$  is the stochastic transition function where we use  $\mathbb{P}_{t}(s'|s,a)$  to denote the probability of transitioning from  $s \in S$  to  $s' \in S$  after taking action  $a \in \mathbb{A}(s)$  in s.
- $R: P_M \mapsto \mathbb{R}^{n_p}$  is the reward function that outputs the reward of each player.

In particular, note that we assume that the immediate reward deterministically depends on the current state and chosen action only, and that each state has exactly one player who may choose the next action. Furthermore, if we choose  $n_{\rm p}=1$ , then one obtains an MDP [25].

From hereon, let  $M = (S, \mu_0, \mathbb{A}, \mathbb{P}, R, T)$  be a SG. The goal is to find an agent  $\pi \colon S \mapsto \Delta(A)$  that is modelled as a mapping from states to action distributions such that  $\pi$  maximizes the expected episode's return for player  $1 \le i \le n_p$  where the (discounted) return for of episode  $s_0, a_0, r_0, \ldots, s_n, a_n, r_n, s_{n+1}$ with  $s_{n+1} \in T$  is given by  $\gamma^0(r_0)_i + \ldots + \gamma^n(r_n)_i$ .

# B. MCTS foundation and equivalences between normalization and $\lambda$ -strategies

The tree policy in UCT for fully expanded nodes is given by selecting the action with the highest UCB value, with random tie-breaking at each node. The UCB value at a node  $\mathcal{N}$  of an action  $a \in A$  with  $N_a \in \mathbb{N}$  visits and an estimated Q-value  $Q_a \in \mathbb{R}$  (i.e. accumulated reward divided by the number of visits) with  $\mathcal{N}$  having  $n \in \mathbb{N}$  total visits is given by  $Q_a + \lambda \cdot \sqrt{\frac{\log n}{N_a}}$ , where  $\lambda \in \mathbb{R}^+$  is the exploration constant. In this paper, we only discuss strategies for picking  $\lambda$ , however, this is equivalent to any Q-value normalizing strategies, since it holds that

$$\underset{a \in A}{\operatorname{argmax}} \ Q_a + \lambda \cdot \sqrt{\frac{\log n}{N_a}} = \tag{1}$$

$$\underset{a \in A}{\operatorname{argmax}} \ Q_a + \lambda \cdot \sqrt{\frac{\log n}{N_a}} = \tag{1}$$

$$\underset{a \in A}{\operatorname{argmax}} \ \frac{Q_a - Q_{\text{lower}}}{Q_{\text{upper}} - Q_{\text{lower}}} + \sqrt{\frac{\log n}{N_a}} \tag{2}$$

with  $Q_{\text{lower}}, Q_{\text{upper}} \in \mathbb{R}$  being some normalizing constants,  $0 \neq \lambda = Q_{\text{upper}} - Q_{\text{lower}}$ .

### C. Introduction of $\lambda$ -strategies

Instead of  $\lambda$  being constant, we treat it as a function of the current search tree  $\mathcal{T}$ , the tree policy decision node  $\mathcal{N}$ , and the considered action a to allow for information flow between all nodes and not just those on the same path to the root.

Next, we denote the different variants for  $\lambda \coloneqq \lambda(\mathcal{T},\mathcal{N},a)$  that we considered where we assume  $\lambda$  to have the form  $\lambda = C \cdot \hat{\lambda}, \ C \in \mathbb{R}$ . Even though this form still contains a parameter, this one will be by construction scale independent and less sensitive to the specific environment as we shall see later. After we introduce the  $\hat{\lambda}$  variants, we will give additional reasoning for why this C is necessary. The variants with the names {Global Abs, Global Std, Layer Range, Layer Abs, Layer Std, Local Range, Local Std} are introduced by us, while the others have already been used throughout the literature.

**Vanilla UCT**:  $\hat{\lambda} = \hat{\lambda}_0$  is constant. This strategy was originally proposed by Kocsis and Szepesvari[16] and does not perform any dynamic adjustment of  $\hat{\lambda}$ .

Global Range:  $\hat{\lambda} = Q_{max}^{\mathcal{T}} - Q_{min}^{\mathcal{T}}$  where  $Q_{max}^{\mathcal{T}}, Q_{min}^{\mathcal{T}}$  denote the maximum and minimum Q-value of all state-action pairs in  $\mathcal{T}$ . This strategy was proposed by Schrittwieser et al. [22] and does arguably not satisfy the no-computational-overhead requirement as one either has to regularly iterate the entire tree or rearrange a sorted list of all Q values to know the min and max Q value. However, we still included it for comparison purposes and as we shall see later it performs worse than our Global Std method.

**Global Abs**:  $\hat{\lambda}$  is set to the average absolute Q-value of all state-action pairs in  $\tau$ .

**Global Std**:  $\hat{\lambda} = \sigma^{\mathcal{T}}$ , where  $\sigma^{\mathcal{T}}$  denotes the empirical standard deviation of the Q-values of all state-action pairs in  $\mathcal{T}$ . Hence, if  $\mathcal{T}$  contains n state-action pairs,  $\sigma^{\tau}$  is the standard deviation of n data points.

**Layer Range**:  $\hat{\lambda} = Q_{max}^l - Q_{min}^l$  where  $Q_{max}^l$ ,  $Q_{min}^l$  denote the maximum and minimum Q-value of all state-action pairs in the same layer as  $\mathcal{N}_a$ . As with Global Range, this method also brings a computational overhead with it, however, as we shall see later, Global Std outperforms it nonetheless.

**Layer Abs**:  $\hat{\lambda}$  is set to the average absolute value of all stateaction pairs in the same layer as  $\mathcal{N}$ .

**Layer Std**:  $\hat{\lambda} = \sigma^l$ , where  $\sigma^l$  denotes the empirical standard deviation of the Q-values of all state-action pairs in the same layer as  $\mathcal{N}_a$ .

**Local Range**:  $\hat{\lambda} = Q_{max}^{\mathcal{N}} - Q_{min}^{\mathcal{N}}$  where  $Q_{max}^{\mathcal{N}}, Q_{min}^{\mathcal{N}}$  denote the maximum and minimum Q-value of all state-action pairs of  $\mathcal{N}$ .

**Local Std**:  $\hat{\lambda} = \sigma^{\mathcal{N}}$ , where  $\sigma^{\mathcal{N}}$  denotes the empirical standard deviation of the Q-values of all state-action pairs of  $\mathcal{N}$ .

**Local Abs Q**:  $\hat{\lambda} = |Q_a|$  where  $Q_a$  denotes the Q-value of action a at  $\mathcal{N}$ . This strategy was used by Anand et al. [2]. **Local Q**:  $\hat{\lambda} = Q_a$  where  $Q_a$  denotes the Q-value of action a at  $\mathcal{N}$ . This strategy is the most common in literature [5], [6], [11].

**Poly-UCB1**:  $\hat{\lambda} = \frac{\sigma_a \cdot \varphi(N_a)}{\log n}$  where n is the number of visits of node  $\mathcal{N}, \ N_a$  is the number of times action a has been visited at node  $\mathcal{N}, \ \varphi(N_a)$  is the 99% quantile of the Student's t-distribution with  $N_a-1$  degrees of freedom, and  $\sigma_a$  is the empirical standard deviation for the state-action pair  $(\mathcal{N},a)$ . Note that  $\sigma_a$  is not the same as  $\sigma^{\mathcal{N}}$  as the latter considers different Q values, while  $\sigma_a$  considers individual returns of a single Q-value.

### D. Theoretical discussion of the $\lambda$ -strategies

Why the parameter C is necessary: Even though the abovementioned  $\lambda$ -strategies are reward scale independent, some problems may favor more explorative tree-policies while other favor more exploitative ones. Hence, we still need the parameter C to control this.

Also note that since the different scopes (e.g. global, layer, local) form a hierarchy of nodes, it follows that  $Q_{max}^{\mathcal{T}} - Q_{min}^{\mathcal{T}} \geq Q_{max}^{l} - Q_{min}^{l} \geq Q_{max}^{\mathcal{N}} - Q_{min}^{\mathcal{N}}$ . Even though all of these compute the same quantity in principle, their scale differs which can be fixed by the multiplication with C depending on the strategy used.

**Fulfilment of scale independence**: Observe that these  $\lambda$ -strategies satisfy the scale independence condition posed in the introduction as all presented variants for  $\lambda$  use functions f (namely:  $|\cdot|$ ,  $\sigma$ , max – min, id) with the homogeneity property that for any  $\mu > 0$  and input x it holds that  $f(\mu x) = \mu f(x)$ .

The validity of achieving reward scale independence by choosing homogenous function is supported by reconsidering the convergence analysis of the original UCT paper [16] where Kocsis and Szepesvári assumed all cumulative rewards to lie in the interval [0,1]. If one were to preserve their results for arbitrary bounds [a,b], one simply needs to scale the exploration constant with b-a. This is because their analysis builds on bounds obtained by Hoeffding's inequality [15] which states for any independent random variables  $a \leq X_1, \ldots, X_n \leq b$  and any t>0 it holds that

$$\mathbb{P}\left(\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \ge t\right) \le e^{-\frac{2nt^2}{(b-a)^2}}.$$
 (3)

Without further specifying what the  $X_i$  are, Kocsis and Szepesvári insert the exploration constant for t. Hence, to obtain the same bounds as for (a,b) = (0,1) one has to replace t (and subsequently the exploration constant) with (b-a)t.

Fulfilment of low computational overhead: The  $\lambda$ -strategies introduced here, except for the range strategies, also fulfill the remaining two conditions posed in the introduction. For calculating the standard deviation, one only needs to keep track of the number of Q-values in consideration, their sum, and their squared sum and then make use of the identity  $\mathrm{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$  for a random variable X. The bookkeeping needed for all strategies can be computed during the backpropagation phase of MCTS: The old Q- and squared Q-value is subtracted from the statistics under consideration and the updated ones are added back.

Additive invariance of std and range: Lastly, note that the std and range strategies do not change their output when a constant is added to all Q-values their computation is based on.

This property is desirable for MDPs with fixed episode lengths as the optimal policy in these cases is invariant to adding a constant to the reward function.

Convergence of std strategies: While both the std and range strategies fulfill all of the above-mentioned properties, range strategies are not guaranteed to converge. Imagine an MCTS search tree where the Q-values are sampled from a Gaussian. While the std strategies will eventually converge to a unique value, all range strategies will diverge to positive infinity with an increase in the search tree size as more outliers are sampled. In general, the range strategies are vulnerable to outlier values. Localities: Most methods can be grouped by their locality, i.e. global, versus layerwise, versus local. Each comes with a different theoretical tradeoff: The larger the scope, the more values can be aggregated to compute the desired quantity (i.e., standard deviation, absolute value, or range) but the less accurate these estimates are for the current node  $\mathcal N$  in question. Fig. 1 visualizes the different localities.



Fig. 1: A visualization of which state-action pairs are taken into consideration when determining the exploration factor  $\lambda$  for the bottom-left state-action pair that is marked in red. The four images all depict a search tree with five nodes where arrows represent deterministic actions. The state-action pairs used to determine the corresponding exploration constant all intersect a red ellipse. Each subfigure's caption lists the  $\lambda$ -strategies that use the marked set of state-action pairs for the  $\lambda$  calculation.

### IV. EXPERIMENTS

### A. Experiment setup

In this section, we describe the experiment setup for the subsequent experiments.

**Problem models:** For this paper, we ran our experiments on 17 MDPs and 11 two-player games, all of which are either from the International Probabilistic Planning Conference [14], or are well-known board or strategy games.

List of MDPS: Academic Advising, Cooperative Recon, Crossing Traffic, Earth Observation, Elevators, Game of Life, Manufacturer, Navigation, Push Your Luck, Racetrack, Red Finned

Blue Eye, Sailing Wind, Skill Teaching, Saving, SysAdmin, Tamarisk, Traffic, Triangle Tireworld, Wildfire, and Wildlife Preserve.

*List of two-player games*: Chess, Constrictor, Connect 4, Numbers Race, Othello, Quarto, Pylos, Capture the Flag, Kill the King, Pusher, and Tic Tac Toe.

In the supplementary materials in Section V-H, we provide a description of all the above-mentioned problems. All experiments were run on the finite horizon versions of the considered MDPs with a default horizon of 50 steps and 200 for the two-player SGs with a planning horizon of 50 and a discount factor  $\gamma=1$ . On SGs, agents were evaluated versus the fixed 500 iterations Global Std agent with C=4. In particular, these tasks cover different reward scales, for example the two-player zero-sum games' episode returns are either 1,-1, or 0, Game of Life's episodes' returns lie in the positive 3-digit region while Sailing Wind's returns are each within the negative 2-digit region.

**Evaluation:** Each data point that we denote in the remaining sections of this paper (e.g. agent returns) is the average of at least 2000 runs. For the two-player games, we ran 2000 games where the agent-to-be-evaluated has the first move and 2000 where the agent does not. Whenever we denote a confidence interval for a data point, then this is always a confidence interval with a confidence level of 99% provided by  $\approx 2.33$  times the standard error.

Normalized pairings score: Mostly, performance margins will be rather small. To be able to appropriately rank the  $\lambda$ strategies without manually reviewing over 1000 individual performances, we will later construct so-called normalized pairings-score matrices and the normalized pairings score that is constructed as follows. Let  $\{\pi_1, \ldots, \pi_n\}$  be n agents (e.g., parameter-optimized  $\lambda$ -strategies, or individual  $\lambda$ -strategyparameter pairs) where each agent was evaluated on m tasks (later, a task will be a given MCTS iteration budget and an environment). The corresponding normalized pairings score matrix is of size  $n \times n$  and the entry (i, j) is equal to the number of tasks where  $\pi_i$  performed better than agent  $\pi_i$ subtracted by the number of times it performed worse, divided by m. The normalized pairings score  $s_i$ ,  $1 \le i \le n$  is given by averaging over the *i*-th row when excluding the *i*-th column. Reproducibility: For reproducibility, we released our implementation which is available at https://github.com/codebro634/ DynamicExplorationFactorUCT. Our code was compiled with g++ version 13.1.0 using the -O3 flag (i.e. aggressive optimization). For reproducibility purposes, we seeded all components of our program that require RNG. The RNG engine was reset for every Agent-Domain-Map triplet with the seed 42.

# B. Experimental results

Using the previously described setup, we measured the mean episode return for each  $\lambda$ -strategy-environment pair using  $n \in \{100,500,2500\}$  MCTS iterations and  $C \in \{0.125,0.25,0.5,1,2,4,8,16,32,64\}$  for all  $\lambda$ -strategies except for Vanilla UCT for which we used  $C \in \{0.125,0.25,0.5,1,2,4,8,16,32,64,256,1000\}$  to account for environments which high-magnitude reward scales. In



Fig. 2: The normalized pairings score for all considered  $\lambda$ -strategies. The score was constructed by considering all iteration budgets and all environments. Per pairing, the maximum performance over all C values (i.e.  $\{0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64\}$  for all strategies and additionally 256 and 1000 for Vanilla UCT) was used per iteration-environment pair. One of our methods, Global Std, performs best overall.



Fig. 3: The best 6 normalized pairings score for all considered  $\lambda$ -strategy and exploration constant C pairs as well the best UCT parameter. The score was constructed by considering all iteration budgets and all environments. One of our methods, Global Std with C=2, performs best overall, while standard UCT is far worse than any of these methods, proving that scale-invariant methods are necessary. The score for all  $\lambda$ -strategy-C-pairs is found in the last column of Tab. VIII in the supplementary materials.

the following, we will only be presenting a summary of these experiments. The ful data table(s) can be found in the supplementary materials in Subsection V-I.

Investigating peak performances: First, we tested which of the strategies introduced here performs best when considering the best performing C value for each iteration budget-model pair. Bar chart 2 shows the normalized pairings score (see Section IV-A) for all 12 parameter-optimized  $\lambda$ -strategies across all iteration budgets. Firstly, our newly proposed strategy, Global Std, performed best overall, followed by a significant gap by Global range. This lead is kept for all the iteration budgets considered here. In the supplementary materials, we list the normalized pairing scores for each iteration budget in

Tab. VII. Furthermore, in Tab. III, we denote the normalized pairings score matrix for all iteration budgets combined. Tables IV, V, and VI show the normalized pairings score matrices for the individual iteration budgets.

One can also make another key observation from this bar chart: Global strategies, that use all Q nodes as samples, perform best overall, while the most local strategies, namely Local Q, Poly-UCB1, and Local Abs, perform worst overall.

Lastly, it has to be noted that while Global Std's pairings score far exceeds that of Vanilla UCT, this does not take the magnitude of performance improvements into account. Tab. I in the supplementary materials shows the exact performances for each individual environment of Global Std, Vanilla UCT, and the strategy that performed best in the corresponding environment. Expectedly, the relative performance improvement over Vanilla UCT is rather small (on average 4%), as optimizing Vanilla UCT per environment does not have any issues with varying reward scales.

Investigating generalization capabilities: Next, we investigate the generalization capabilities to determine which single parameter combination performs best overall. Bar chart 3 shows the top 6 normalized pairings scores for all  $\lambda$ -strategy, exploration constant C pairs as well as the best performing Vanilla UCT variant for comparison. Though with a smaller lead, our method Global Std performs best overall using the parameter C=2. The second-best  $\lambda$ -strategy is Global Range with C = 0.5. Note that the best Vanilla UCT variant (C=16) performs far worse than these scale-invariant methods, showing that fixed-parameter UCT can not deal with varying reward scales, as Vanilla UCT dropped from third place in the parameter-optimized setting to some middle-of-the-pack place in the generalization setting. To emphasize the reward scale sensitivity, Fig. 4 in the supplementary materials shows the performances of Global Std and Vanilla UCT with fixed C values but varying reward scales for the environments considered here.

Again, the results are not dependent on the concrete MCTS

iteration budget: The parameter C=2 for Global Std performs best for all iteration budgets. Furthermore, except for the 100 setting where Global Std is nearly equal to Global range, Global Std always performs best. In the supplementary materials in Tab. VIII, we list the normalized pairings score for all iteration budgets.

Additionally, in contrast to the parameter-optimized setting, a single C value for Vanilla UCT is rarely adapted to the problem's reward scale. Tab. II in the supplementary materials shows the exact performances on each environment of Global Std using C=2 and Vanilla UCT using C=16. In this case, Global Std has an on average 40% higher performance than Vanilla UCT.

Lastly, to test whether the performance improvements Global Std has over Vanilla UCT stem solely from Global Std being reward scale invariant, the pairings score for both the parameter-optimized and single-parameter setting was calculated when restricted to the two-player zero-sum games, which all have the same reward scale. The results are shown in Fig. 5 and Fig. 6 in the supplementary materials. Unsurprisingly, Vanilla UCT performs far better in this setting; however, in direct comparison, Global Std still has a notable lead over Vanilla UCT. This suggests that Global Std has effects beneficial to the performance that go beyond adapting the reward scale. We believe the global Q variance is a proxy for uncertainty and thus the amount of exploration required.

### V. CONCLUSION AND FUTURE WORK

In this paper, we evaluated 12 different  $\lambda$ -strategies (5 from the literature and 7 from us) on a plethora of sequential-decision making problems with varying reward scales, showing that Vanilla UCT (i.e., using a fixed exploration constant) is not only highly scale dependent, even with a properly adjusted  $\lambda$ , Vanilla UCT is still outperformed by some of the suggested strategies. In particular, one of our newly proposed strategies, namely Global Std using C=2, generalized best across the environments considered here and also has the best overall parameter-optimized performance, decisively beating Vanilla UCT in both regards. Finally, we came to the conclusion that the Global Std strategy is a good, easy-to-implement replacement for Vanilla UCT.

For future work, we think that one can expand this work in two dimensions. Firstly, propose and evaluate more  $\lambda$ -strategies, for example, by taking a convex combination of the already introduced strategies or dynamically switching between strategies, as though Global Std performs best overall, it doesn't do so for every single environment. Secondly, the evaluation may be conducted on a much larger suite of environments. For example, we did not include partially observable or deterministic single-agent environments, and we are far from exhausting the IPPC problem list.

# REFERENCES

- [1] "What is Battlesnake?" docs.battlesnake.com/. Accessed: Jun. 3, 2025. [Online] Available: 'https://docs.battlesnake.com/.
- [2] Ankit Anand, Ritesh Noothigattu, Mausam, and Parag Singla. OGA-UCT: on-the-go abstractions in UCT. In Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling, ICAPS'16, page 29–37. AAAI Press, 2016.

- [3] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. Use of variance estimation in the multi-armed bandit problem, 2006. NIPS Workshop on On-line Trading of Exploration and ExploitationWorkshop.
- [4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Mach. Learn., 47(2-3):235–256, 2002.
- [5] Radha-Krishna Balla and Alan Fern. UCT for Tactical Assault Planning in Real-Time Strategy Games. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 40–45, 2009
- [6] Blai Bonet and Hector Geffner. Action Selection for MDPs: Anytime AO\* Versus UCT. In Jörg Hoffmann and Bart Selman, editors, Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada, pages 1749–1755. AAAI Press, 2012.
- [7] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon Colton. A Survey of Monte Carlo Tree Search Methods. *IEEE Trans. Comput. Intell. AI Games*, 4(1):1–43, 2012.
- [8] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M. Donkers, editors, Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, volume 4630 of Lecture Notes in Computer Science, pages 72–83. Springer, 2006.
- [9] Alexander Dockhorn, Jorge Hurtado Grueso, Dominik Jeurissen, and Diego Perez Liebana. STRATEGA: A General Strategy Games Framework. In Joseph C. Osborn, editor, Joint Proceedings of the AIIDE 2020 Workshops co-located with 16th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2020), Worcester, MA, USA, October 19-23, 2020 (online), volume 2862 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.
- [10] Tuomas Haarnoja et al. Soft actor-critic algorithms and applications. CoRR, abs/1812.05905, 2018.
- [11] Patrick Eyerich, Thomas Keller, and Malte Helmert. High-Quality Policies for the Canadian Traveler's Problem. In Maria Fox and David Poole, editors, *Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15*, 2010, pages 51–58. AAAI Press, 2010.
- [12] Edgar Galván, Gavin Simpson, and Fred Valdez Ameneyro. Evolving the MCTS upper confidence bounds for trees using a semantic-inspired evolutionary algorithm in the game of carcassonne. *IEEE Trans. Games*, 15(3):420–429, 2023.
- [13] Robert C. Gray, Jichen Zhu, and Santiago Ontañón. Beyond uct: Mab exploration improvements for monte carlo tree search. In 2023 IEEE Conference on Games (CoG), 2023.
- [14] Marek Grzes, Jesse Hoey, and Scott Sanner. International Probabilistic Planning Competition (IPPC) 2014. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 2014.
- [15] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13–30, 1963.
- [16] Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings, volume 4212 of Lecture Notes in Computer Science, pages 282–293. Springer, 2006.
- [17] Tomáš Kozelek. Methods of MCTS and the game Arimaa. Master's thesis, Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic, 2009.
- [18] Diego Perez Liebana, Alexander Dockhorn, Jorge Hurtado Grueso, and Dominik Jeurissen. The Design Of "Stratega": A General Strategy Games Framework. CoRR, abs/2009.05643, 2020.
- [19] Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. The second type of uncertainty in monte carlo tree search. CoRR, abs/2005.09645, 2020.
- [20] Scott Sanner and Sungwook Yoon. International Probabilistic Planning Competition (IPPC) 2011. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 2011.
- [21] Robin Schmöcker and Alexander Dockhorn. A survey of non-learning-based abstractions for sequential decision-making. *IEEE Access*, 13:100808–100830, 2025.
- [22] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap, and David Silver. Mastering Atari, Go, chess and shogi by planning with a learned model. *Nat.*, 588(7839):604–609, 2020.

- [23] Lloyd S. Shapley. Stochastic games. *Proceedings of the National Academy of Sciences of the United States of America*, 39(10):1095–1100, October 1953.
- [24] Chiara F. Sironi, Jialin Liu, Diego Perez Liebana, Raluca D. Gaina, Ivan Bravi, Simon M. Lucas, and Mark H. M. Winands. Self-adaptive MCTS for General Video Game Playing. In Kevin Sim and Paul Kaufmann, editors, Applications of Evolutionary Computation 21st International Conference, EvoApplications 2018, Parma, Italy, April 4-6, 2018, Proceedings, volume 10784 of Lecture Notes in Computer Science, pages 358–375. Springer, 2018.
- [25] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 2nd edition, 2018.

### SUPPLEMENTARY MATERIALS

### A. Performances for fixed environments with varying reward scales



Fig. 4: Global Std is invariant to the reward scale of the environment, and scaling an environment's reward function by  $\mu$  is equivalent to dividing the exploration constant by  $\mu$  in Vanilla UCT. Using this fact, the hypothetical performances of Global Std and Vanilla UCT for 500 iterations are shown for three different environments when their respective reward function is scaled by a constant  $\mu$ . To better compare performances, if the reward function is scaled by  $\mu$ , then the average return is divided by  $\mu$ . For all environments, the value C=8 was used for Vanilla UCT, and for Global Std, the best performing C value for the non-scaled environment (i.e.,  $\mu=1$ ) was used. Note that by construction, Global Std is invariant to the reward scale, while any fixed exploration constant, as in Vanilla UCT, is highly scale dependent.

### B. Pairings scores for the two-player games



Fig. 5: The normalized pairings score for all considered  $\lambda$ -strategies. The score was constructed by considering all iteration budgets and all **two-player games**. Per pairing, the maximum performance over all C values (i.e.  $\{0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64\}$  for all strategies and additionally 256 and 1000 for Vanilla UCT) was used per iteration-environment pair. One of our methods, Global Std, performs best overall.



# Strategy-Exploration constant pair

Fig. 6: The best 6 normalized pairings score for all considered  $\lambda$ -strategy and exploration constant C pairs. The score was constructed by considering all iteration budgets and all **two-player games**. One of our methods, Global Std with C=1, performs best overall, showing that Global Std even yields a small performance boost over Vanilla UCT in a constant reward scale setting.

# C. Parameter-optimized performances for each environment

|                    |             | 100 ite    | erations |               |             | 500 ite    | erations |               |             | 2500 it    | terations |               |
|--------------------|-------------|------------|----------|---------------|-------------|------------|----------|---------------|-------------|------------|-----------|---------------|
| Domain             | Vanilla UCT | Global Std | Best     | Best strategy | Vanilla UCT | Global Std | Best     | Best strategy | Vanilla UCT | Global Std | Best      | Best strategy |
| Academic Advising  | -106.87     | -105.29    | -105.29  | Global Std    | -75.54      | -72.76     | -71.45   | Local Std     | -64.09      | -62.67     | -62.17    | Local Range   |
| Connect4           | -0.55       | -0.58      | -0.55    | Vanilla UCT   | 0.24        | 0.25       | 0.25     | Global Std    | 0.74        | 0.73       | 0.74      | Global Range  |
| Chess              | -0.44       | -0.39      | -0.34    | Local Q       | 0.64        | 0.65       | 0.67     | Global Abs    | 0.99        | 0.99       | 1.00      | Layer Abs     |
| Constrictor        | -0.38       | -0.39      | -0.37    | Global Abs    | 0.05        | 0.04       | 0.06     | Global Abs    | 0.38        | 0.38       | 0.41      | Global Range  |
| Crossing Traffic   | -24.84      | -24.72     | -24.46   | Poly-UCB1     | -25.38      | -25.41     | -24.42   | Local Std     | -24.63      | -24.90     | -24.21    | Poly-UCB1     |
| CaptureTheFlag     | 0.00        | 0.00       | 0.00     | Layer Abs     | 0.00        | 0.00       | 0.00     | Layer Abs     | 0.00        | 0.00       | 0.00      | Global Std    |
| Earth Observation  | -14.21      | -13.97     | -13.49   | Local Std     | -8.53       | -8.65      | -8.50    | Poly-UCB1     | -7.91       | -7.79      | -7.61     | Poly-UCB1     |
| Game of Life       | 484.55      | 486.76     | 488.48   | Poly-UCB1     | 530.36      | 533.52     | 533.52   | Global Std    | 568.00      | 569.28     | 569.93    | Local Std     |
| KillTheKing        | -0.16       | -0.14      | -0.14    | Global Std    | 0.01        | 0.02       | 0.02     | Global Std    | 0.14        | 0.15       | 0.15      | Global Std    |
| Manufacturer       | -1586.81    | -1564.31   | -1553.79 | Poly-UCB1     | -1329.48    | -1325.67   | -1325.67 | Global Std    | -1106.05    | -1107.08   | -1106.05  | Vanilla UCT   |
| Navigation         | -29.78      | -29.91     | -29.42   | Layer Abs     | -23.38      | -23.55     | -23.23   | Layer Abs     | -21.57      | -21.18     | -19.95    | Poly-UCB1     |
| NumbersRace        | -0.06       | -0.06      | -0.00    | Local Q       | 0.83        | 0.83       | 0.83     | Vanilla UCT   | 0.97        | 0.97       | 0.97      | Global Abs    |
| Othello            | -0.46       | -0.46      | -0.44    | Global Range  | 0.38        | 0.37       | 0.38     | Vanilla UCT   | 0.88        | 0.88       | 0.88      | Vanilla UCT   |
| Pusher             | -0.00       | 0.00       | 0.00     | Layer Abs     | 0.00        | 0.00       | 0.00     | Vanilla UCT   | 0.00        | 0.00       | 0.00      | Global Range  |
| Push Your Luck     | 54.19       | 54.05      | 54.31    | Local Std     | 55.55       | 55.49      | 55.55    | Vanilla UCT   | 54.96       | 54.90      | 55.98     | Poly-UCB1     |
| Pylos              | -0.46       | -0.47      | -0.46    | Vanilla UCT   | 0.27        | 0.26       | 0.28     | Global Range  | 0.69        | 0.69       | 0.70      | Global Range  |
| Quarto             | -0.30       | -0.31      | -0.30    | Vanilla UCT   | 0.29        | 0.23       | 0.29     | Vanilla UCT   | 0.51        | 0.49       | 0.52      | Global Range  |
| Cooperative Recon  | 5.15        | 5.18       | 5.37     | Global Abs    | 6.37        | 6.40       | 6.40     | Global Std    | 12.79       | 11.63      | 12.79     | Vanilla UCT   |
| Racetrack          | -13.88      | -13.79     | -13.79   | Global Std    | -9.69       | -9.16      | -9.16    | Global Std    | -8.33       | -8.18      | -8.12     | Local Range   |
| SysAdmin           | 327.42      | 327.08     | 328.46   | Layer Range   | 381.99      | 382.79     | 383.96   | Layer Std     | 402.23      | 402.48     | 403.66    | Local Range   |
| Saving             | 44.42       | 44.34      | 44.56    | Global Range  | 49.89       | 50.18      | 50.18    | Global Std    | 52.52       | 52.25      | 52.52     | Vanilla UCT   |
| Skills Teaching    | -109.05     | -107.20    | -100.68  | Global Range  | 27.03       | 26.34      | 28.27    | Global Range  | 60.21       | 70.82      | 73.91     | Local Range   |
| Sailing Wind       | -81.09      | -80.49     | -80.42   | Local Std     | -66.00      | -65.26     | -65.05   | Poly-UCB1     | -62.02      | -61.87     | -61.28    | Local Abs     |
| Tamarisk           | -843.70     | -842.21    | -840.26  | Local Std     | -612.42     | -612.12    | -607.43  | Layer Range   | -522.57     | -520.38    | -516.79   | Local Range   |
| Traffic            | -22.08      | -21.83     | -21.68   | Poly-UCB1     | -15.38      | -15.02     | -15.02   | Global Std    | -12.72      | -12.76     | -12.67    | Local Std     |
| Triangle Tireworld | 50.23       | 49.45      | 50.23    | Vanilla UCT   | 76.58       | 77.29      | 77.29    | Global Std    | 82.36       | 82.59      | 82.59     | Global Std    |
| TicTacToe          | -0.12       | -0.13      | -0.12    | Global Range  | 0.01        | 0.01       | 0.02     | Global Range  | 0.05        | 0.05       | 0.05      | Vanilla UCT   |
| Wildlife Preserve  | 1201.99     | 1197.90    | 1209.23  | Poly-UCB1     | 1352.84     | 1354.70    | 1360.14  | Poly-UCB1     | 1377.81     | 1378.01    | 1378.01   | Global Std    |

TABLE I: Performance comparisons between the parameter-optimized versions of Vanilla UCT, Global Std, and the best  $\lambda$ -strategy out of all  $\lambda$ -strategies considered here. Global Std has an average 4% performance increase over Vanilla UCT in this setting.

# D. Single parameter performances for each environment

|                    | 100 itera                | tions             | 500 itera                | tions             | 2500 iter                | ations            |
|--------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|
| Domain             | Vanilla UCT ( $C = 16$ ) | Global $Std(C=2)$ | Vanilla UCT ( $C = 16$ ) | Global $Std(C=2)$ | Vanilla UCT ( $C = 16$ ) | Global $Std(C=2)$ |
| Academic Advising  | -108.04                  | -107.91           | -84.23                   | -74.09            | -77.90                   | -63.03            |
| Connect4           | -0.82                    | -0.61             | -0.24                    | 0.14              | 0.22                     | 0.66              |
| Chess              | -0.56                    | -0.48             | -0.10                    | 0.15              | 0.71                     | 0.98              |
| Constrictor        | -0.43                    | -0.39             | -0.09                    | 0.04              | 0.08                     | 0.37              |
| Crossing Traffic   | -25.99                   | -25.71            | -26.02                   | -26.04            | -25.58                   | -25.64            |
| CaptureTheFlag     | 0.00                     | 0.00              | 0.00                     | 0.00              | 0.00                     | 0.00              |
| Earth Observation  | -14.26                   | -15.59            | -8.75                    | -8.65             | -7.97                    | -7.95             |
| Game of Life       | 483.01                   | 484.34            | 522.21                   | 527.96            | 544.08                   | 566.44            |
| KillTheKing        | -0.19                    | -0.16             | -0.01                    | 0.01              | 0.08                     | 0.13              |
| Manufacturer       | -1901.80                 | -1564.31          | -1836.22                 | -1325.67          | -1802.45                 | -1107.08          |
| Navigation         | -29.78                   | -31.05            | -23.38                   | -24.14            | -22.19                   | -21.96            |
| NumbersRace        | -0.46                    | -0.23             | -0.28                    | 0.34              | -0.62                    | 0.96              |
| Othello            | -0.67                    | -0.50             | -0.23                    | 0.19              | 0.12                     | 0.80              |
| Pusher             | -0.00                    | -0.00             | 0.00                     | 0.00              | 0.00                     | 0.00              |
| Push Your Luck     | 53.91                    | 53.91             | 54.94                    | 54.69             | 53.51                    | 53.98             |
| Pylos              | -0.72                    | -0.53             | -0.25                    | 0.19              | 0.17                     | 0.65              |
| Quarto             | -0.69                    | -0.41             | -0.41                    | 0.21              | -0.06                    | 0.47              |
| Cooperative Recon  | 5.08                     | 4.90              | 4.38                     | 6.05              | 2.80                     | 11.63             |
| Racetrack          | -13.88                   | -13.79            | -9.69                    | -9.16             | -8.40                    | -8.27             |
| SysAdmin           | 327.42                   | 321.87            | 377.52                   | 380.58            | 391.39                   | 401.75            |
| Saving             | 44.42                    | 44.31             | 49.80                    | 50.18             | 51.70                    | 52.25             |
| Skills Teaching    | -127.93                  | -107.20           | -83.43                   | 26.34             | -84.15                   | 70.82             |
| Sailing Wind       | -82.40                   | -81.17            | -66.00                   | -65.26            | -62.23                   | -61.87            |
| Tamarisk           | -868.88                  | -855.06           | -756.94                  | -624.15           | -730.61                  | -520.38           |
| Traffic            | -23.01                   | -23.50            | -15.48                   | -15.91            | -12.72                   | -12.86            |
| Triangle Tireworld | 28.53                    | 49.45             | 36.18                    | 77.29             | 34.42                    | 82.59             |
| TicTacToe          | -0.30                    | -0.14             | -0.24                    | 0.01              | -0.11                    | 0.02              |
| Wildlife Preserve  | 1193.52                  | 1177.04           | 1349.91                  | 1332.29           | 1375.04                  | 1376.04           |

TABLE II: Performance comparisons between the Vanilla UCT and Global Std parameter settings with the highest pairings score in Tab. 3. Global Std has an average 40% performance increase over Vanilla UCT in this setting.

# E. Normalized pairing score matrices for all $\lambda$ -strategies

TABLE III: The normalized pairings score matrix for each parameter-optimized  $\lambda$ -strategy pairing when constructed over all model-iteration budget pairs. Note that Global Std (our method) outperforms all other methods.

|              | Global Abs | Global Range | Global Std | Layer Abs | Layer Range | Layer Std | Local Q | Local Abs | Local Range | Local Std | Poly-UCB1 | Vanilla UCT |
|--------------|------------|--------------|------------|-----------|-------------|-----------|---------|-----------|-------------|-----------|-----------|-------------|
| Global Abs   | 0.00       | -0.30        | -0.31      | 0.14      | 0.13        | 0.33      | 0.81    | 0.49      | 0.19        | 0.07      | 0.42      | -0.18       |
| Global Range | 0.30       | 0.00         | -0.24      | 0.38      | 0.25        | 0.31      | 0.81    | 0.65      | 0.26        | 0.10      | 0.49      | 0.00        |
| Global Std   | 0.31       | 0.24         | 0.00       | 0.48      | 0.44        | 0.48      | 0.83    | 0.65      | 0.50        | 0.29      | 0.58      | 0.18        |
| Layer Abs    | -0.14      | -0.38        | -0.48      | 0.00      | 0.14        | 0.20      | 0.77    | 0.50      | 0.13        | 0.08      | 0.50      | -0.35       |
| Layer Range  | -0.13      | -0.25        | -0.44      | -0.14     | 0.00        | -0.19     | 0.88    | 0.35      | -0.21       | -0.52     | 0.54      | -0.18       |
| Layer Std    | -0.33      | -0.31        | -0.48      | -0.20     | 0.19        | 0.00      | 0.89    | 0.30      | -0.30       | -0.49     | 0.57      | -0.20       |
| Local Q      | -0.81      | -0.81        | -0.83      | -0.77     | -0.88       | -0.89     | 0.00    | -0.73     | -0.85       | -0.87     | -0.56     | -0.80       |
| Local Abs    | -0.49      | -0.65        | -0.65      | -0.50     | -0.35       | -0.30     | 0.73    | 0.00      | -0.45       | -0.54     | 0.40      | -0.55       |
| Local Range  | -0.19      | -0.26        | -0.50      | -0.13     | 0.21        | 0.30      | 0.85    | 0.45      | 0.00        | -0.20     | 0.57      | -0.17       |
| Local Std    | -0.07      | -0.10        | -0.29      | -0.08     | 0.52        | 0.49      | 0.87    | 0.54      | 0.20        | 0.00      | 0.60      | -0.15       |
| Poly-UCB1    | -0.42      | -0.49        | -0.58      | -0.50     | -0.54       | -0.57     | 0.56    | -0.40     | -0.57       | -0.60     | 0.00      | -0.50       |
| Vanilla UCT  | 0.18       | 0.00         | -0.18      | 0.35      | 0.18        | 0.20      | 0.80    | 0.55      | 0.17        | 0.15      | 0.50      | 0.00        |

TABLE IV: The normalized pairings score matrix for each parameter-optimized  $\lambda$ -strategy pairing when constructed over all models using 100 MCTS iterations. Note that Global Std (our method) outperforms all other methods.

|              | Global Abs | Global Range | Global Std | Layer Abs | Layer Range | Layer Std | Local Q | Local Abs | Local Range | Local Std | Poly-UCB1 | Vanilla UCT |
|--------------|------------|--------------|------------|-----------|-------------|-----------|---------|-----------|-------------|-----------|-----------|-------------|
| Global Abs   | 0.00       | -0.25        | -0.21      | 0.00      | 0.07        | 0.21      | 0.64    | 0.46      | 0.25        | 0.07      | 0.25      | -0.11       |
| Global Range | 0.25       | 0.00         | -0.18      | 0.11      | 0.18        | 0.25      | 0.68    | 0.64      | 0.36        | 0.04      | 0.21      | 0.14        |
| Global Std   | 0.21       | 0.18         | 0.00       | 0.29      | 0.36        | 0.36      | 0.64    | 0.54      | 0.54        | 0.14      | 0.39      | 0.18        |
| Layer Abs    | 0.00       | -0.11        | -0.29      | 0.00      | 0.00        | 0.14      | 0.64    | 0.61      | 0.11        | 0.07      | 0.39      | -0.18       |
| Layer Range  | -0.07      | -0.18        | -0.36      | 0.00      | 0.00        | -0.21     | 0.79    | 0.39      | 0.21        | -0.36     | 0.25      | -0.04       |
| Layer Std    | -0.21      | -0.25        | -0.36      | -0.14     | 0.21        | 0.00      | 0.79    | 0.25      | 0.04        | -0.29     | 0.39      | 0.04        |
| Local Q      | -0.64      | -0.68        | -0.64      | -0.64     | -0.79       | -0.79     | 0.00    | -0.61     | -0.68       | -0.79     | -0.46     | -0.61       |
| Local Abs    | -0.46      | -0.64        | -0.54      | -0.61     | -0.39       | -0.25     | 0.61    | 0.00      | -0.29       | -0.43     | 0.21      | -0.36       |
| Local Range  | -0.25      | -0.36        | -0.54      | -0.11     | -0.21       | -0.04     | 0.68    | 0.29      | 0.00        | -0.32     | 0.36      | -0.14       |
| Local Std    | -0.07      | -0.04        | -0.14      | -0.07     | 0.36        | 0.29      | 0.79    | 0.43      | 0.32        | 0.00      | 0.39      | 0.04        |
| Poly-UCB1    | -0.25      | -0.21        | -0.39      | -0.39     | -0.25       | -0.39     | 0.46    | -0.21     | -0.36       | -0.39     | 0.00      | -0.21       |
| Vanilla UCT  | 0.11       | -0.14        | -0.18      | 0.18      | 0.04        | -0.04     | 0.61    | 0.36      | 0.14        | -0.04     | 0.21      | 0.00        |

TABLE V: The normalized pairings score matrix for each parameter-optimized  $\lambda$ -strategy pairing when constructed over all models using 500 MCTS iterations. Note that Global Std (our method) outperforms all other methods.

|              | Global Abs | Global Range | Global Std | Layer Abs | Layer Range | Layer Std | Local Q | Local Abs | Local Range | Local Std | Poly-UCB1 | Vanilla UCT |
|--------------|------------|--------------|------------|-----------|-------------|-----------|---------|-----------|-------------|-----------|-----------|-------------|
| Global Abs   | 0.00       | -0.25        | -0.39      | 0.18      | 0.14        | 0.32      | 0.89    | 0.61      | 0.14        | -0.04     | 0.46      | -0.32       |
| Global Range | 0.25       | 0.00         | -0.43      | 0.57      | 0.18        | 0.29      | 0.93    | 0.71      | 0.11        | 0.07      | 0.64      | -0.32       |
| Global Std   | 0.39       | 0.43         | 0.00       | 0.64      | 0.54        | 0.50      | 0.93    | 0.79      | 0.46        | 0.43      | 0.64      | 0.18        |
| Layer Abs    | -0.18      | -0.57        | -0.64      | 0.00      | 0.32        | 0.21      | 0.86    | 0.50      | 0.18        | 0.00      | 0.57      | -0.39       |
| Layer Range  | -0.14      | -0.18        | -0.54      | -0.32     | 0.00        | -0.32     | 0.89    | 0.25      | -0.39       | -0.68     | 0.75      | -0.25       |
| Layer Std    | -0.32      | -0.29        | -0.50      | -0.21     | 0.32        | 0.00      | 0.93    | 0.43      | -0.32       | -0.50     | 0.71      | -0.18       |
| Local Q      | -0.89      | -0.93        | -0.93      | -0.86     | -0.89       | -0.93     | 0.00    | -0.79     | -0.96       | -0.93     | -0.50     | -0.96       |
| Local Abs    | -0.61      | -0.71        | -0.79      | -0.50     | -0.25       | -0.43     | 0.79    | 0.00      | -0.54       | -0.64     | 0.50      | -0.82       |
| Local Range  | -0.14      | -0.11        | -0.46      | -0.18     | 0.39        | 0.32      | 0.96    | 0.54      | 0.00        | -0.32     | 0.68      | -0.11       |
| Local Std    | 0.04       | -0.07        | -0.43      | 0.00      | 0.68        | 0.50      | 0.93    | 0.64      | 0.32        | 0.00      | 0.71      | -0.25       |
| Poly-UCB1    | -0.46      | -0.64        | -0.64      | -0.57     | -0.75       | -0.71     | 0.50    | -0.50     | -0.68       | -0.71     | 0.00      | -0.61       |
| Vanilla UCT  | 0.32       | 0.32         | -0.18      | 0.39      | 0.25        | 0.18      | 0.96    | 0.82      | 0.11        | 0.25      | 0.61      | 0.00        |

TABLE VI: The normalized pairings score matrix for each parameter-optimized  $\lambda$ -strategy pairing when constructed over all models using 2500 MCTS iterations. Note that Global Std (our method) outperforms all other methods.

|              | Global Abs | Global Range | Global Std | Layer Abs | Layer Range | Layer Std | Local Q | Local Abs | Local Range | Local Std | Poly-UCB1 | Vanilla UCT |
|--------------|------------|--------------|------------|-----------|-------------|-----------|---------|-----------|-------------|-----------|-----------|-------------|
| Global Abs   | 0.00       | -0.39        | -0.32      | 0.25      | 0.18        | 0.46      | 0.89    | 0.39      | 0.18        | 0.18      | 0.54      | -0.11       |
| Global Range | 0.39       | 0.00         | -0.11      | 0.46      | 0.39        | 0.39      | 0.82    | 0.61      | 0.32        | 0.18      | 0.61      | 0.18        |
| Global Std   | 0.32       | 0.11         | 0.00       | 0.50      | 0.43        | 0.57      | 0.93    | 0.64      | 0.50        | 0.29      | 0.71      | 0.18        |
| Layer Abs    | -0.25      | -0.46        | -0.50      | 0.00      | 0.11        | 0.25      | 0.82    | 0.39      | 0.11        | 0.18      | 0.54      | -0.46       |
| Layer Range  | -0.18      | -0.39        | -0.43      | -0.11     | 0.00        | -0.04     | 0.96    | 0.39      | -0.46       | -0.54     | 0.61      | -0.25       |
| Layer Std    | -0.46      | -0.39        | -0.57      | -0.25     | 0.04        | 0.00      | 0.96    | 0.21      | -0.61       | -0.68     | 0.61      | -0.46       |
| Local Q      | -0.89      | -0.82        | -0.93      | -0.82     | -0.96       | -0.96     | 0.00    | -0.79     | -0.89       | -0.89     | -0.71     | -0.82       |
| Local Abs    | -0.39      | -0.61        | -0.64      | -0.39     | -0.39       | -0.21     | 0.79    | 0.00      | -0.54       | -0.54     | 0.50      | -0.46       |
| Local Range  | -0.18      | -0.32        | -0.50      | -0.11     | 0.46        | 0.61      | 0.89    | 0.54      | 0.00        | 0.04      | 0.68      | -0.25       |
| Local Std    | -0.18      | -0.18        | -0.29      | -0.18     | 0.54        | 0.68      | 0.89    | 0.54      | -0.04       | 0.00      | 0.68      | -0.25       |
| Poly-UCB1    | -0.54      | -0.61        | -0.71      | -0.54     | -0.61       | -0.61     | 0.71    | -0.50     | -0.68       | -0.68     | 0.00      | -0.68       |
| Vanilla UCT  | 0.11       | -0.18        | -0.18      | 0.46      | 0.25        | 0.46      | 0.82    | 0.46      | 0.25        | 0.25      | 0.68      | 0.00        |

### F. Parameter-optimized performances for individual iteration budgets

.

TABLE VII: The pairings score for each parameter-optimized  $\lambda$ -strategy for each MCTS iteration budget setting sorted by the performances in the 2500 iterations setting. Note that our newly proposed method Global Std performs best overall, followed by Global Range and Vanilla UCT.

| $\lambda$ -strategy | 100 iterations | 500 iterations | 2500 iterations |
|---------------------|----------------|----------------|-----------------|
| Global Std          | 0.35           | 0.54           | 0.47            |
| Global Range        | 0.24           | 0.27           | 0.39            |
| Vanilla UCT         | 0.11           | 0.37           | 0.31            |
| Global Abs          | 0.13           | 0.16           | 0.20            |
| Local Std           | 0.21           | 0.28           | 0.20            |
| Local Range         | -0.06          | 0.14           | 0.17            |
| Layer Abs           | 0.13           | 0.08           | 0.06            |
| Layer Range         | 0.04           | -0.08          | -0.04           |
| Layer Std           | 0.04           | 0.01           | -0.15           |
| Local Abs           | -0.29          | -0.36          | -0.26           |
| Poly-UCB1           | -0.24          | -0.53          | -0.49           |
| Local Q             | -0.67          | -0.87          | -0.86           |

# G. Normalized pairings score for all $\lambda$ -strategy exploration factor pairs

TABLE VIII: The normalized pairings score for each  $\lambda$ -strategy exploration constant C pair for each MCTS iteration budget setting as well as the all-iterations settings sorted by the performances in the all-iterations setting. Note that our newly proposed method Global Std performs best overall in the 500, 2500, and all-iterations setting and only slightly worse than Global Range for 100 iterations.

| $(\lambda$ -strategy, $C$ ) | 100           | 500            | 2500           | All-iterations | · - | $(\lambda$ -strategy, $C$ )  | 100            | 500            | 2500          | All-iterations |
|-----------------------------|---------------|----------------|----------------|----------------|-----|------------------------------|----------------|----------------|---------------|----------------|
| (Global Std,2)              | 0.53          | 0.65           | 0.74           | 0.64           | _   | (Vanilla UCT,4)              | 0.21           | -0.03          | -0.12         | 0.02           |
| (Global Std,1)              | 0.53          | 0.58           | 0.68           | 0.60           |     | (Layer Abs, 0.125)           | 0.17           | 0.01           | -0.15         | 0.01           |
| (Global Range, 0.5)         | 0.55          | 0.61           | 0.61           | 0.59           |     | (Global Abs, 0.125)          | 0.11           | -0.01          | -0.15         | -0.02          |
| (Global Range, 0.25)        | 0.53          | 0.56           | 0.58           | 0.56           |     | (Layer Std,1)                | -0.00          | -0.02          | -0.04         | -0.02          |
| (Global Abs,1)              | 0.42          | 0.49           | 0.55           | 0.49           |     | (Local Abs, 0.125)           | 0.09           | -0.02          | -0.13         | -0.03          |
| (Global Std,4)              | 0.41          | 0.48           | 0.54           | 0.48           |     | (Global Range,8)             | -0.10          | 0.01           | -0.01         | -0.03          |
| (Global Range,1)            | 0.41          | 0.40           | 0.34 $0.42$    | 0.44           |     | (Layer Range,32)             | -0.10 $-0.13$  | 0.01           | -0.01         | -0.03 $-0.04$  |
| (Global Abs,2)              | 0.38          | 0.43           | 0.42 $0.49$    | 0.43           |     | (Global Abs,32)              | -0.13 $-0.14$  | -0.02          | 0.02          | -0.04 $-0.04$  |
| (Layer Abs,1)               | 0.41          | 0.43 $0.41$    | 0.43 $0.47$    | 0.43           |     | (Layer Abs,32)               | -0.14 $-0.17$  | -0.01          | 0.02          | -0.04<br>-0.05 |
| (Local Std,8)               | 0.41 $0.36$   | $0.41 \\ 0.48$ | 0.44           | 0.43           |     | (Global Range, 16)           | -0.17<br>-0.08 | -0.01 $-0.04$  | -0.04         | -0.05 $-0.05$  |
| (Local Range,2)             | 0.30          | 0.48           | 0.44 $0.43$    | 0.43           |     | (Local Range,32)             | -0.03 $-0.25$  | 0.04           | 0.02          | -0.05 $-0.05$  |
| (Local Std,4)               | 0.40          | 0.43 $0.44$    | $0.45 \\ 0.39$ | 0.43           |     | (Local Std,1)                | 0.00           | -0.07          | -0.12         | -0.06          |
| (Global Abs, 0.5)           | 0.40          | 0.44 $0.41$    | 0.39 $0.40$    | 0.41           |     | (Local Range,64)             | -0.21          | -0.07 $-0.00$  | 0.01          | -0.07          |
|                             |               |                | 0.40 $0.39$    |                |     |                              |                |                |               |                |
| (Layer Std,4)               | 0.41          | 0.40           |                | 0.40           |     | (Global Std,32)              | -0.12          | -0.07          | -0.02         | -0.07          |
| (Layer Std,8)               | 0.38          | 0.41           | 0.39           | 0.39           |     | (Layer Abs,64)               | -0.16          | -0.06          | -0.02         | -0.08          |
| (Local Abs,0.5)             | 0.40          | 0.37           | 0.33           | 0.37           |     | (Vanilla UCT,0.5)            | -0.03          | -0.10          | -0.11         | -0.08          |
| (Local Range,4)             | 0.26          | 0.40           | 0.44           | 0.37           |     | (Global Std,0.25)            | 0.03           | -0.14          | -0.15         | -0.09          |
| (Layer Abs,2)               | 0.31          | 0.36           | 0.40           | 0.36           |     | (Poly-UCB1,4)                | 0.07           | -0.12          | -0.22         | -0.09          |
| (Layer Abs, 0.5)            | 0.35          | 0.33           | 0.38           | 0.35           |     | (Vanilla UCT,1000)           | -0.17          | -0.08          | -0.03         | -0.09          |
| (Local Range,1)             | 0.41          | 0.35           | 0.30           | 0.35           |     | (Layer Range,64)             | -0.22          | -0.10          | -0.01         | -0.11          |
| (Local Std,16)              | 0.16          | 0.42           | 0.46           | 0.35           |     | (Global Std,64)              | -0.14          | -0.15          | -0.08         | -0.12          |
| (Layer Range,2)             | 0.33          | 0.37           | 0.29           | 0.33           |     | (Global Range,32)            | -0.21          | -0.12          | -0.07         | -0.13          |
| (Layer Std,2)               | 0.42          | 0.32           | 0.21           | 0.32           |     | (Global Range,64)            | -0.25          | -0.10          | -0.08         | -0.14          |
| (Local Std,2)               | 0.42          | 0.30           | 0.19           | 0.30           |     | (Poly-UCB1,8)                | -0.26          | -0.12          | -0.06         | -0.14          |
| (Layer Std,16)              | 0.19          | 0.34           | 0.37           | 0.30           |     | (Global Abs,64)              | -0.21          | -0.13          | -0.12         | -0.15          |
| (Layer Abs,0.25)            | 0.38          | 0.27           | 0.24           | 0.30           |     | (Layer Range, 0.25)          | -0.12          | -0.21          | -0.23         | -0.19          |
| (Layer Range,1)             | 0.36          | 0.27           | 0.26           | 0.30           |     | (Poly-UCB1,2)                | 0.01           | -0.31          | -0.30         | -0.20          |
| (Local Abs,1)               | 0.26          | 0.25           | 0.37           | 0.29           |     | (Local Range, 0.25)          | -0.11          | -0.23          | -0.26         | -0.20          |
| (Layer Range,4)             | 0.27          | 0.31           | 0.30           | 0.29           |     | (Vanilla UCT,0.25)           | -0.16          | -0.21          | -0.27         | -0.21          |
| (Layer Abs,4)               | 0.18          | 0.31           | 0.36           | 0.28           |     | (Layer Std,0.5)              | -0.12          | -0.29          | -0.33         | -0.25          |
| (Local Abs, 0.25)           | 0.36          | 0.21           | 0.20           | 0.26           |     | (Local Abs,4)                | -0.37          | -0.31          | -0.08         | -0.26          |
| (Local Range,8)             | 0.08          | 0.28           | 0.40           | 0.25           |     | (Global Std,0.125)           | -0.15          | -0.29          | -0.36         | -0.26          |
| (Global Abs,4)              | 0.14          | 0.31           | 0.31           | 0.25           |     | (Poly-UCB1,16)               | -0.34          | -0.37          | -0.10         | -0.27          |
| (Global Range, 0.125)       | 0.28          | 0.22           | 0.25           | 0.25           |     | (Poly-UCB1,1)                | -0.07          | -0.38          | -0.43         | -0.29          |
| (Global Std,8)              | 0.17          | 0.33           | 0.25           | 0.25           |     | (Local Std,0.5)              | -0.18          | -0.37          | -0.39         | -0.31          |
| (Global Abs, 0.25)          | 0.27          | 0.24           | 0.21           | 0.24           |     | (Layer Range, 0.125)         | -0.22          | -0.36          | -0.39         | -0.32          |
| (Layer Range,8)             | 0.15          | 0.24           | 0.28           | 0.22           |     | (Vanilla UCT,0.125)          | -0.24          | -0.33          | -0.39         | -0.32          |
| (Global Range,2)            | 0.20          | 0.23           | 0.21           | 0.21           |     | (Local Range, 0.125)         | -0.21          | -0.41          | -0.46         | -0.36          |
| (Global Std,0.5)            | 0.32          | 0.15           | 0.15           | 0.21           |     | (Poly-UCB1,0.5)              | -0.17          | -0.44          | -0.51         | -0.37          |
| (Local Std,32)              | 0.00          | 0.28           | 0.30           | 0.20           |     | (Local Abs,8)                | -0.46          | -0.42          | -0.24         | -0.37          |
| (Vanilla UCT,32)            | 0.16          | 0.24           | 0.05           | 0.15           |     | (Layer Std, 0.25)            | -0.24          | -0.39          | -0.50         | -0.37          |
| (Vanilla UCT,16)            | 0.27          | 0.14           | 0.02           | 0.14           |     | (Poly-UCB1,32)               | -0.40          | -0.47          | -0.26         | -0.38          |
| (Layer Std,32)              | -0.01         | 0.16           | 0.28           | 0.14           |     | (Local Abs,16)               | -0.45          | -0.46          | -0.33         | -0.41          |
| (Layer Range, 16)           | 0.00          | 0.21           | 0.15           | 0.12           |     | (Poly-UCB1,0.25)             | -0.24          | -0.46          | -0.53         | -0.41          |
| (Vanilla UCT,64)            | 0.09          | 0.24           | 0.01           | 0.12           |     | (Local Std, 0.25)            | -0.29          | -0.40          | -0.55         | -0.41          |
| (Layer Range, 0.5)          | 0.11          | 0.18           | 0.05           | 0.11           |     | (Local Abs,64)               | -0.46          | -0.47          | -0.35         | -0.43          |
| (Layer Abs,8)               | 0.04          | 0.17           | 0.09           | 0.10           |     | (Local Abs,32)               | -0.43          | -0.48          | -0.39         | -0.43          |
| (Local Range,16)            | -0.03         | 0.15           | 0.18           | 0.10           |     | (Layer Std, 0.125)           | -0.29          | -0.48          | -0.57         | -0.45          |
| (Global Std,16)             | 0.05          | 0.11           | 0.13           | 0.09           |     | (Local Std.0.125)            | -0.31          | -0.46          | -0.58         | -0.45          |
| (Global Abs,8)              | -0.04         | 0.10           | 0.19           | 0.09           |     | (Poly-UCB1,64)               | -0.44          | -0.53          | -0.40         | -0.46          |
| (Global Range,4)            | -0.02         | 0.07           | 0.15           | 0.07           |     | (Local Q,0.25)               | -0.41          | -0.50          | -0.50         | -0.47          |
| (Vanilla UCT,8)             | 0.19          | 0.03           | -0.04          | 0.06           |     | (Poly-UCB1,0.125)            | -0.29          | -0.53          | -0.59         | -0.47          |
| (Layer Std,64)              | -0.11         | 0.15           | 0.14           | 0.06           |     | (Local Q,0.5)                | -0.41          | -0.53          | -0.48         | -0.47          |
| (Local Range, 0.5)          | 0.06          | 0.10           | -0.01          | 0.05           |     | (Local Q,1)                  | -0.42          | -0.53          | -0.52         | -0.49          |
| (Layer Abs, 16)             | -0.01         | 0.10           | 0.10           | 0.04           |     | (Local Q,0.125)              | -0.42          | -0.54          | -0.56         | -0.51          |
| (Vanilla UCT,1)             | 0.09          | 0.04           | 0.10           | 0.04           |     | (Local Q,0.123)              | -0.42 $-0.45$  | -0.54          | -0.57         | -0.51 $-0.52$  |
| (Local Abs,2)               | -0.16         | 0.02 $0.01$    | $0.01 \\ 0.25$ | 0.04 $0.04$    |     | (Local Q,2)<br>(Local Q,4)   | -0.45 $-0.47$  | -0.61          | -0.60         | -0.52 $-0.56$  |
| (Vanilla UCT,2)             | 0.10          | -0.01          | -0.02          | 0.04 $0.03$    |     | (Local Q,4)<br>(Local Q,32)  | -0.47<br>-0.52 | -0.61<br>-0.57 | -0.60 $-0.61$ | -0.56 $-0.57$  |
| (Local Std,64)              | -0.12         | 0.10           | 0.02           | 0.03           |     | (Local Q,32)                 | -0.52 $-0.55$  | -0.57<br>-0.56 | -0.60         | -0.57 $-0.57$  |
| (Vanilla UCT,256)           | -0.12 $-0.12$ | 0.10 $0.07$    | 0.09 $0.11$    | 0.02 $0.02$    |     | (Local Q,8)<br>(Local Q,16)  | -0.53 $-0.52$  | -0.60          | -0.60 $-0.61$ | -0.57<br>-0.58 |
| (Global Abs,16)             | -0.12 $-0.09$ | 0.07 $0.04$    | $0.11 \\ 0.11$ | 0.02 $0.02$    |     | (Local Q,10)<br>(Local Q,64) | -0.52 $-0.52$  | -0.60 $-0.63$  | -0.63         | -0.59          |
| (Giouai Aus,10)             | -0.09         | 0.04           | 0.11           | 0.02           | _   | (Lucai Q,04)                 | -0.5∠          | -0.03          | -0.03         | -0.09          |

# H. Problem descriptions

The environments over which the pairings score matrices in the main section were constructed are the following.

- MDPs: Academic Advising, Cooperative Recon, Crossing Traffic, Earth Observation, Elevators, Game of Life, Manufacturer, Navigation, Push Your Luck, Racetrack, Sailing Wind, Saving, Skill Teaching, SysAdmin, Tamarisk, Traffic, Triangle Tireworld, Wildlife Preserve.
- Two-player SGs: Capture the Flag, Chess, Connect 4, Constrictor, Kill the King, Numbers Race, Othello, Pusher, Pylos, Quarto, Tic Tac Toe.

Some of these environments can be parametrized (e.g., choosing a concrete race map for Racetrack). The concrete parameter settings can be found in the *ExperimentConfigs* folder in our publicly available GitHub repository accessible at https://github.com/codebro634/DynamicExplorationFactorUCT. Most of the environments are already well-described in a survey paper by Schmöcker et al. [21]. In the following, we give a description for those not contained in this survey. Each environment is either a problem from the International Probabilistic Planning Competition (IPPC) [20], or a board game with only three exceptions. Constrictor is a game mode from Battlesnake [1], Numbers Race is a toy problem developed by us, and Pusher is a mode from the Stratega framework [18], [9].

- **Constrictor**: Constrictor is played on an n times n grid. Players take turns moving to any of the neighboring (4-neighborhood) grid cells that neither moves the player out of bounds nor hits any cell that has already been visited by any of the two players. The game ends when one player has nowhere left to move.
- Connect 4: Connect 4 is played on grid with 7 columns and 6 rows. Each turn, one player places a stone of its color in one of the columns that is not yet filled with stones. The stone occupies the first cell in the chosen column that is not yet occupied.
- Cooperative Recon: This domain models a robot having to prove the existence of life on a foreign planet. The robot is modeled as moving on a 2-dimensional grid which contains a number of objects of interest and a base. If the agent is at an object of interest, it can survey the object for the existence of water and life. The probability of a positive result of the latter is dependent on whether water has been detected. If life has been detected, the agent may photograph the object of interest which is the only way to gain a reward. Each detector may break on usage making it either unusable or decreasing its chance of working. The detectors can be repaired at the base.
- Earth Observation: This problem models a satellite orbiting earth. Formally, each state is a position on a 2-dimensional grid, representing the satellite's longitudinal position and the latitude the camera is aimed at as well as weather levels for some designated cells. At each step, the weather levels stochastically change independent of the agent's actions which are to idle, to take a photo of the current position, or increment/decrement the current cells y-position (i.e. shifting the camera focus). A reward is obtained if one of the designated cells is photographed with an amount depending on the cell's current weather condition.
- Elevators: By Elevators we refer to the Elevators-Management domain scriped in [21].
- Manufacturer: In this domain, the agent manages a manufacturing company. The agent's ultimate goal is to sell goods to customers. However, to sell a good, the agent has to first produce the good, which may require building factories and acquiring the necessary goods required for production. Additional difficulty comes from the fact that the goods' price levels vary stochastically.
- Navigation: In Navigation, the goal is to move a robot on an  $n \times m$  grid from (n,1) to (n,m) in the least number of steps. The robot may move to any of the four adjacent tiles, however, each tile is assigned a unique probability with which the robot is reset back to (n,1).
- Numbers Race: In Numbers Race, players take turns choosing an integer between 1 and  $n \in \mathbb{N}$ . The goal is to choose a number  $m \le n$  such that the sum of all previous numbers is equal to some goal number  $g \in \mathbb{N}$ . If this sum exceeds g, then the player that overshot, loses.
- **Push Your Luck**: In Push Your Luck the agent has to decide which of n, m-sided, not-necessarily fair dice or cash-out. If cashed-out, the agent receives a reward dependent on all dice faces that are marked. Faces are marked if they have been rolled (each face is shared by all n dice). However, if the agent rolls an already marked face, or rolls two unmarked faces at the same time, all markings are removed.
- Quarto: Quarto is played on a 4x4 grid. The goal is to complete a vertical, horizontal, or diagonal line of length 4 with stones that all share a common property. There are initially 16 stones that can be placed on the board. The set of stones is given by  $S = \{0, 1\}^4$  where the *i*-th component of a stone is referred to as a property. Players take turns placing a stone and then choosing one of the remaining, not yet placed stones which the opponent must place in the next turn (the game starts with one player selecting a stone for the opponent).
- **Pylos**: Pylos is played on an initially empty 4x4x4-dimensional grid on which players take turns placing stones of their own color. Each player starts with 15 stones, which can be placed at any empty cell that is either at the bottom or contains exactly 4 stones in the layer beneath it (i.e., the stone requires a foundation). Instead of placing one of one's remaining stones, one may also move a stone of one's color any number of layers upward as long as they are not part of the foundation for another stone. The game ends when one player runs out of stones or when one player completes the pyramid (bottom layer is 4x4, then 3x3, ..., 1x1).
- Red Finned Blue Eye: In this environment, the agent is tasked with preserving and restoring the Red Finned Blue Eye

- (RFBE) fish population which is being threatened by an invasive species of Gambusian fish. The ecosystem is being modelled as springs that are connected in a directed graph, however, the connections' accessibility is dependent on the current global water level which changes stochastically. Gambusian spreads aggressively between connected springs.
- Skill Teaching In Skill Teaching, the agent takes the role of a tutor that is tasked with increasing the proficiency level of a student at various skills. The student can have one of three proficiency levels at each skill: Low, medium, and high. The skills from a prerequisite graph, giving the student higher chances of learning a new skill the higher the prerequisites' levels of proficiency. Difficulty arises from the proficiency levels decaying if the corresponding skill wasn't practised. This decay is deterministic for skills at medium proficiency and stochastic for those at high proficiency.
- **Pusher**: In Pusher, one controls several units with the goal of pushing the opponent's units into holes that are spread around the map.
- **Tic Tac Toe**: Tic Tac Toe is played on a grid of width and height 3. Each player is assigned a color and places one stone of its color in one of the empty grid cells. The first player to create a vertical, horizontal, or diagonal row of three same-colored stones wins.
- Traffic: In this environment, the agent is tasked with simultaneously controlling a number of traffic lights with the goal of minimizing traffic jams. This traffic is modelled as a directed graph, however, some edges are only available depending on the state of a traffic light. Each vertex may either contain a car or not.
- Triangle Tireworld: Triangle Tireworld refers to Tireword in [21].
- Wildfire: Wildfire models the spread of a fire on a grid. Each grid cell is either untouched, burning, or out-of-fuel meaning that no new fire can ignite at this cell. If a cell is untouched it can at each time step randomly ignite with the probability increasing exponentially in the number of neighboring burning cells. The neighborhood is defined on an instance level with most instances choosing the 8-neighborhood and manually cutting a handful of neighborhood connections between individual cells. The agent is tasked with controlling the spread of the fire.
- Wildlife Preserve: In Wildlife Preserve, the agent manages rangers to defend areas from poachers. If a ranger was sent to defend an area, and a poacher decided to attack, the poacher is caught and can not attack the area in the next step. Each poacher has different area preferences and remembers how often which area was defended in the last couple of steps.

### I. Full data tables

TABLE IX: Part 1/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 100 MCTS iterations..

| Check   Page   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999                                                                                                                                                                                                                                                                                                       |                                     | Cooperative Recon                  | Crossing Traffic                   | Game of Life                       | Manufacturer                             | Navigation                         | Racetrack                          | Skills Teaching                      | Tamarisk                             | Triangle Tireworld               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|
| General Analog   1944   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979                                                                                                                                                                                                                                                                                                     |                                     |                                    |                                    |                                    |                                          |                                    |                                    |                                      |                                      |                                  |
| General Acade   C.   C.   C.   C.   C.   C.   C.   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Global Abs, 0.5)                   | $3.94 \pm 0.23$                    | $-26.0 \pm 0.9$                    | $482.9 \pm 2.1$                    | $-1558.1 \pm 15.6$                       | $-29.7 \pm 0.6$                    | $-14.2 \pm 0.2$                    | $-119.4 \pm 5.4$                     | $-883.2 \pm 5.5$                     | $34.3 \pm 2.3$                   |
| Gillard Albard   22.4   6.05   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15   6.15                                                                                                                                                                                                                                                                                                     |                                     |                                    |                                    | $478.9 \pm 2.1$<br>$473.6 \pm 2.2$ |                                          |                                    |                                    |                                      |                                      |                                  |
| Gebal Askab.  Ge                                                                                                                                                                                                                                                                                                   | (Global Abs,2)                      | $5.28 \pm 0.26$                    | $-25.2 \pm 0.9$                    | $476.3 \pm 2.2$                    | $-1585.1 \pm 16.4$                       | $-30.3 \pm 0.6$                    | $-14.7 \pm 0.2$                    | $-127.0 \pm 5.6$                     | $-902.3 \pm 5.3$                     | $49.1 \pm 2.1$                   |
| Gebes Abasy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Global Abs,4)                      | $5.37 \pm 0.26$                    | $-25.2 \pm 0.9$                    | $475.2 \pm 2.1$                    | $-1600.3 \pm 16.6$                       | $-30.2 \pm 0.6$                    | $-14.8 \pm 0.2$                    | $-136.1 \pm 5.4$                     | $-906.1 \pm 5.2$                     | $46.5 \pm 2.1$                   |
| (Gheb Bings)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Global Abs,8)                      | $4.94 \pm 0.24$                    | $-26.1 \pm 0.9$                    | $475.7 \pm 2.1$                    | $-1605.3 \pm 17.1$                       | $-30.5 \pm 0.6$                    | $-15.0 \pm 0.2$                    | $-133.3 \pm 5.5$                     | $-903.9 \pm 5.2$                     | $44.1 \pm 2.2$                   |
| (Chele Regue) 5. 09 ± 05 - 981 ± 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                    |                                    |                                    |                                          |                                    | $-14.2 \pm 0.2$                    |                                      | $-845.6 \pm 5.6$                     |                                  |
| (Chelle Mangel, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Global Range, 0.5)                 | $5.09 \pm 0.25$                    | $-26.1 \pm 0.9$                    | $483.7 \pm 2.1$                    | $-1555.0 \pm 15.9$                       | $-30.4 \pm 0.6$                    | $-13.9 \pm 0.2$                    | $-112.5 \pm 5.4$                     | $-856.3 \pm 5.4$                     | $48.3 \pm 2.1$                   |
| Chank Bung-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Global Range,16)                   | $5.19 \pm 0.24$                    | $-25.1 \pm 0.9$                    | $475.9 \pm 2.2$                    | $-1601.6 \pm 16.8$                       | $-30.7 \pm 0.6$                    | $-14.7 \pm 0.2$                    | $-133.1 \pm 5.5$                     | $-903.6 \pm 5.3$                     | $41.5 \pm 2.2$                   |
| Gebel Emga-Gebel 1902 - 2004 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 -                                                                                                                                                                                                                                                                                                   | (Global Range,32)                   | $4.98 \pm 0.24$                    | $-26.0 \pm 0.9$                    | $476.0 \pm 2.1$                    | $-1605.3 \pm 16.8$                       | $-30.3 \pm 0.6$                    | $-15.0 \pm 0.2$                    | $-138.1 \pm 5.4$                     | $-905.7 \pm 5.2$                     | $40.2 \pm 2.2$                   |
| (Glade Sand.)  (Glade                                                                                                                                                                                                                                                                                                   | (Global Range,64)                   | $5.02 \pm 0.24$                    | $-25.5 \pm 0.9$                    | $473.7 \pm 2.2$                    | $-1621.4 \pm 17.3$                       | $-30.1 \pm 0.6$                    | $-15.0 \pm 0.2$                    | $-138.1 \pm 5.4$                     | $-905.7 \pm 5.2$                     | $40.6 \pm 2.2$                   |
| Global Sallo, 300 - 202 - 203 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100                                                                                                                                                                                                                                                                                                    |                                     |                                    | $-25.4 \pm 0.9$<br>$-24.7 \pm 0.8$ |                                    |                                          | $-30.3 \pm 0.6$<br>$-37.2 \pm 0.5$ |                                    | $-133.7 \pm 5.4$<br>$-166.8 \pm 5.6$ | $-903.8 \pm 5.3$<br>$-905.4 \pm 5.1$ |                                  |
| Glabal Scale)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Global Std, 0.25)                  | $3.29 \pm 0.21$                    |                                    | $482.3 \pm 2.2$                    | $-1748.3 \pm 20.8$                       | $-36.1 \pm 0.5$                    | $-20.2 \pm 0.3$                    | $-148.6 \pm 5.4$                     |                                      | $20.0 \pm 2.3$                   |
| Global Sal.) 400 a 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Global Std,1)                      | $4.47 \pm 0.25$                    | $-26.4 \pm 0.9$                    | $486.8 \pm 2.1$                    | $-1575.2 \pm 16.6$                       | $-32.6 \pm 0.6$                    | $-14.6 \pm 0.2$                    | $-108.9 \pm 5.4$                     | $-842.2 \pm 5.6$                     | $48.1 \pm 2.1$                   |
| Global Staft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Global Std,2)                      | $4.90 \pm 0.26$                    | $-25.7 \pm 0.9$                    | $484.3 \pm 2.1$                    | $-1564.3 \pm 15.9$                       | $-31.1 \pm 0.6$                    | $-13.8\pm0.2$                      | $-107.2 \pm 5.3$                     | $-855.1 \pm 5.5$                     | $49.4 \pm 2.1$                   |
| Geben Sada)  4.996 A.24  4.996 A.20  4.996                                                                                                                                                                                                                                                                                                   |                                     |                                    |                                    | $480.6 \pm 2.2$                    | $-1590.7 \pm 16.5$<br>$-1576.1 \pm 16.0$ |                                    | $-14.1 \pm 0.2$                    | $-132.7 \pm 5.4$<br>$-120.6 \pm 5.5$ |                                      | $42.9 \pm 2.2$                   |
| Caper Manch   1909   2002   1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                    |                                    | $474.0 \pm 2.3$<br>$477.7 \pm 2.1$ | $-1598.6 \pm 16.6$<br>$-1590.8 \pm 16.7$ |                                    |                                    |                                      |                                      |                                  |
| Clayer Abs.   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Layer Abs,0.125)                   | $2.92 \pm 0.19$                    | $-25.8 \pm 0.9$                    | $485.4 \pm 2.1$                    | $-1617.4 \pm 17.9$                       | $-31.2 \pm 0.6$                    | $-14.6 \pm 0.2$                    | $-121.1 \pm 5.2$                     | $-853.3 \pm 5.5$                     | $19.9 \pm 2.4$                   |
| (Layer Abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Layer Abs,0.5)                     | $3.80 \pm 0.22$                    | $-27.1 \pm 0.9$                    | $480.7 \pm 2.1$                    | $-1564.2 \pm 16.1$                       | $-30.4 \pm 0.6$                    | $-14.2 \pm 0.2$                    | $-116.4 \pm 5.5$                     | $-887.5 \pm 5.5$                     | $30.0 \pm 2.3$                   |
| (Layer Aha, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Layer Abs,16)                      | $4.93 \pm 0.24$                    | $-25.4 \pm 0.9$                    | $474.8 \pm 2.1$                    | $-1591.8 \pm 16.5$                       | $-30.3 \pm 0.6$                    | $-15.0 \pm 0.2$                    | $-129.8 \pm 5.5$                     | $-902.3 \pm 5.4$                     | $42.9 \pm 2.2$                   |
| (Layer Mangel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                    |                                    | $474.7 \pm 2.2$                    |                                          |                                    |                                    |                                      |                                      |                                  |
| (Layer Rangel) 3.31±0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Layer Abs,4)                       | $5.30 \pm 0.26$                    | $-25.7 \pm 0.9$                    | $477.5 \pm 2.1$                    | $-1594.6 \pm 16.7$                       | $-30.2 \pm 0.6$                    | $-14.8 \pm 0.2$                    | $-138.1 \pm 5.5$                     | $-905.3 \pm 5.3$                     | $47.3 \pm 2.1$                   |
| Clayer Range-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Layer Abs,8)                       | $5.21 \pm 0.25$                    | $-25.3 \pm 0.9$                    | $474.8 \pm 2.1$                    | $-1591.3 \pm 16.6$                       | $-30.7 \pm 0.6$                    | $-14.8 \pm 0.2$                    | $-134.7 \pm 5.3$                     | $-904.4 \pm 5.3$                     | $45.6 \pm 2.1$                   |
| (Layer Ranges)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Layer Range, 0.25)                 | $3.70 \pm 0.22$                    | $-26.1 \pm 0.8$                    | $482.6 \pm 2.3$                    | $-1728.7 \pm 20.1$                       | $-38.3 \pm 0.5$                    | $-23.9 \pm 0.4$                    | $-132.8 \pm 5.6$                     | $-872.1 \pm 5.5$                     | $18.7 \pm 2.4$                   |
| (Layer Ranges)   472   0.05   -25.5   1.00   485.0 ± 2.1   -1561.0 ± 1.04   -13.4 ± 0.0   -11.18 ± 5.0   -85.7 ± 5.0   4.6 ± 2.2     (Layer Ranges)   472   0.02   -25.5 ± 1.00   475.4 ± 2.1   -1601.1 ± 1.09   -29.8 ± 0.0   -11.4 ± 0.2   -12.0 ± 1.4   -80.5 ± 5.3     (Layer Ranges)   410   -0.24   -20.1 ± 1.00   475.4 ± 2.1   -1601.1 ± 1.09   -29.8 ± 0.0   -11.4 ± 0.2   -13.0 ± 5.4   -805.7 ± 5.2     (Layer Ranges)   410   -0.24   -20.1 ± 0.0   475.4 ± 2.1   -1601.1 ± 1.09   -29.8 ± 0.0   -11.4 ± 0.2   -13.0 ± 5.4   -805.7 ± 5.2     (Layer Sal.0.5)   3.1 ± 0.29   -25.5 ± 0.0   480.1 ± 2.2   -1504.6 ± 1.00   -30.2 ± 0.0     (Layer Sal.0.5)   3.7 ± 0.21   -25.5 ± 0.0   480.1 ± 2.3   -1601.1 ± 1.09   -29.8 ± 0.0   -14.4 ± 0.2   -13.0 ± 5.4   -805.7 ± 5.2     (Layer Sal.0.1)   3.5 ± 0.23   -25.5 ± 0.0   480.1 ± 2.3   -1607.1 ± 1.06   -30.2 ± 0.0     (Layer Sal.0.1)   3.5 ± 0.23   -25.5 ± 0.0   481.5 ± 2.2   -1607.1 ± 1.06   -30.4 ± 0.0     (Layer Sal.0.1)   4.5 ± 0.23   -25.5 ± 0.0   481.5 ± 2.2   -1607.1 ± 1.06   -30.4 ± 0.0     (Layer Sal.0.1)   4.5 ± 0.23   -25.5 ± 0.0   481.5 ± 2.1   -1607.1 ± 1.06   -30.4 ± 0.0     (Layer Sal.0.1)   4.5 ± 0.24   -25.5 ± 0.0   475.8 ± 2.1   -1507.1 ± 1.06   -30.4 ± 0.0     (Layer Sal.0.1)   4.7 ± 0.25   -25.5 ± 0.0     (Layer Sal.0.1)   4.7                                                                                                                                                                                                                                                                                                    | (Layer Range,1)                     | $4.52 \pm 0.25$                    | $-25.7 \pm 0.9$                    | $485.9 \pm 2.1$                    | $-1568.2 \pm 15.9$                       | $-36.4 \pm 0.5$                    | $-16.6 \pm 0.3$                    | $-106.8 \pm 5.4$                     | $-841.1 \pm 5.6$                     | $44.5 \pm 2.2$                   |
| Layer Range-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Layer Range,16)<br>(Layer Range,2) |                                    |                                    |                                    |                                          |                                    |                                    |                                      | $-853.7 \pm 5.6$                     |                                  |
| (Layer Stage) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Layer Range,32)                    | $4.96 \pm 0.24$                    | $-25.4 \pm 0.9$                    | $473.3 \pm 2.2$                    | $-1591.4 \pm 16.9$                       | $-30.4 \pm 0.6$                    | $-14.9 \pm 0.2$                    | $-135.0 \pm 5.4$                     | $-905.7 \pm 5.2$                     | $41.2 \pm 2.2$                   |
| (Layer Std.) 28.5 ± 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Layer Range,64)                    | $5.11 \pm 0.24$                    | $-26.1 \pm 0.9$                    | $475.4 \pm 2.1$                    | $-1601.1 \pm 16.9$                       | $-29.8 \pm 0.6$                    | $-14.9 \pm 0.2$                    | $-135.0 \pm 5.4$                     | $-905.7 \pm 5.2$                     | $42.2 \pm 2.2$                   |
| (Layer Sal.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Layer Std, 0.125)                  | $2.85 \pm 0.19$                    | $-24.8 \pm 0.8$                    | $478.7 \pm 2.2$                    | $-1888.8 \pm 23.9$                       | $-38.0 \pm 0.5$                    | $-23.9 \pm 0.4$                    | $-173.4 \pm 5.6$                     | $-918.0 \pm 5.0$                     | $17.2 \pm 2.4$                   |
| (Layer Sal.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Layer Std,0.5)                     | $3.27 \pm 0.21$                    | $-25.2 \pm 0.8$                    | $480.1 \pm 2.3$<br>$481.3 \pm 2.2$ | $-1833.9 \pm 22.7$<br>$-1764.7 \pm 21.3$ | $-38.4 \pm 0.5$                    | $-23.9 \pm 0.4$                    | $-149.6 \pm 5.6$                     | $-891.3 \pm 5.3$                     | $21.4 \pm 2.3$                   |
| (Layer Sd.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                    |                                    | $486.5 \pm 2.2$                    |                                          |                                    |                                    |                                      |                                      |                                  |
| (Layer Sdd) 4 93 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Layer Std,2)                       | $4.53 \pm 0.25$                    | $-25.1 \pm 0.8$                    | $485.2 \pm 2.1$                    | $-1575.0 \pm 16.6$                       | $-36.3 \pm 0.5$                    | $-18.9 \pm 0.3$                    | $-103.8 \pm 5.4$                     | $-840.8 \pm 5.7$                     | $41.8 \pm 2.2$                   |
| (Local Qo.129) 3.22 ± 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Layer Std,4)                       | $4.77 \pm 0.25$                    | $-25.3 \pm 0.9$                    | $483.6 \pm 2.1$                    | $-1573.2 \pm 16.6$                       | $-34.1 \pm 0.6$                    | $-15.1 \pm 0.2$                    | $-108.0 \pm 5.4$                     | $-848.5 \pm 5.6$                     | $46.5 \pm 2.1$                   |
| (Local Q0.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Layer Std,8)                       | $4.80 \pm 0.25$                    | $-25.6 \pm 0.9$                    | $481.5 \pm 2.1$                    | $-1563.4 \pm 16.2$                       | $-31.2 \pm 0.6$                    | $-14.2 \pm 0.2$                    | $-122.8 \pm 5.4$                     | $-866.5 \pm 5.5$                     | $46.5 \pm 2.1$                   |
| (Local Q.1) ( $A07\pm0.20$ ) $-26.9\pm0.8$ $481.8\pm2.1$ $-3937.6\pm4.82$ $-44.7\pm0.4$ $-383.\pm0.5$ $-330.9\pm5.5$ $-1099.5\pm3.1$ $15.9\pm2.4$ (Local Q.2) $3.99\pm0.20$ $-20.20\pm0.8$ $477.8\pm2.2$ $-3928.0\pm4.85$ $-45.1\pm0.4$ $-383.\pm0.5$ $-332.1\pm5.5$ $-332.1\pm5.5$ $-1092.5\pm3.1$ $15.9\pm2.4$ (Local Q.2) $3.99\pm0.20$ $-20.7\pm0.8$ $478.8\pm2.1$ $-3878.9\pm4.86$ $-45.0\pm0.4$ $-383.8\pm0.5$ $-332.1\pm5.5$ $-332.1\pm5.5$ $-100.2\pm3.1$ $16.9\pm2.4$ (Local Q.4) $4.01\pm0.20$ $-20.7\pm0.8$ $478.8\pm2.1$ $-3878.9\pm4.86$ $-45.0\pm0.4$ $-383.8\pm0.5$ $-332.1\pm5.5$ $-1102.3\pm3.0$ $10.9\pm2.4$ (Local Q.8) $3.99\pm0.20$ $-26.7\pm0.8$ $476.2\pm2.2$ $-3961.8\pm4.86$ $-45.0\pm0.4$ $-333.6\pm0.5$ $-333.4\pm5.4$ $-1110.7\pm3.1$ $16.9\pm2.4$ (Local Abs.0.125) $3.88\pm0.20$ $-26.7\pm0.09$ $485.2\pm2.2$ $-1606.7\pm10.7$ $-310.0\pm0.6$ $-14.4\pm0.2$ $-118.5\pm5.2$ $-8871.\pm5.7$ $193.1\pm2.4$ (Local Abs.0.125) $3.88\pm0.30$ $-230.1\pm0.09$ $485.2\pm2.2$ $-1606.7\pm10.7$ $-310.0\pm0.6$ $-14.4\pm0.2$ $-118.5\pm5.2$ $-8871.1\pm5.7$ $193.1\pm2.4$ (Local Abs.1) $4.46\pm0.23$ $-25.2\pm0.8$ $477.9\pm2.2$ $-1603.8\pm1.7$ $-30.9\pm0.6$ $-14.8\pm0.2$ $-18.8\pm5.2$ $-8771.1\pm5.7$ $-933.9\pm5.8$ (Local Abs.1) $4.53\pm0.2$ $-25.9\pm0.8$ $477.9\pm2.2$ $-1610.3\pm1.72$ $-311.1\pm0.6$ $-15.1\pm0.2$ $-138.7\pm5.5$ $-993.9\pm5.8$ $427.1\pm2.3$ (Local Abs.2) $4.66\pm0.21$ $-25.3\pm0.8$ $476.8\pm2.1$ $-1610.3\pm1.74$ $-311.1\pm0.6$ $-15.1\pm0.2$ $-138.7\pm5.5$ $-993.9\pm5.8$ $427.1\pm2.2$ (Local Abs.2) $4.66\pm0.21$ $-25.3\pm0.8$ $476.3\pm2.1$ $-1610.3\pm1.74$ $-311.1\pm0.6$ $-15.1\pm0.2$ $-138.9\pm5.5$ $-910.3\pm5.3$ $411.1\pm2.2$ (Local Abs.3) $4.66\pm0.21$ $-25.3\pm0.8$ $476.3\pm2.1$ $-1610.3\pm1.74$ $-311.1\pm0.6$ $-15.1\pm0.2$ $-138.9\pm5.5$ $-910.3\pm5.3$ $411.1\pm2.2$ (Local Abs.3) $4.66\pm0.21$ $-25.3\pm0.8$ $476.3\pm2.1$ $-1610.3\pm1.74$ $-311.1\pm0.6$ $-15.1\pm0.2$ $-138.9\pm5.5$ $-910.3\pm5.3$ $411.1\pm2.2$ (Local Abs.3) $4.66\pm0.21$ $-25.3\pm0.8$ $476.3\pm2.1$ $-1610.3\pm1.74$ $-311.1\pm0.6$ $-15.1\pm0.2$ $-138.9\pm5.5$ $-910.3\pm5.3$ $411.1\pm2.2$ (Local Abs.2) $4.95.9\pm0.2$ $-90.2\pm0.8$ $476.3\pm2.1$ $-1610.3\pm1.74$ $-311.1\pm0.6$ $-15.1\pm0.2$ $-138.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9\pm0.3$ $-193.9$ | (Local Q,0.25)                      | $3.64 \pm 0.20$                    | $-26.6 \pm 0.8$                    | $485.2 \pm 2.2$                    | $-3705.4 \pm 41.7$                       | $-44.7 \pm 0.4$                    | $-33.1 \pm 0.5$                    | $-299.7 \pm 6.0$                     | $-1104.0 \pm 3.1$                    | $14.3 \pm 2.4$                   |
| (Local Q.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                    |                                    |                                    |                                          | $-44.7 \pm 0.4$<br>$-44.7 \pm 0.4$ | $-33.1 \pm 0.5$<br>$-33.6 \pm 0.5$ |                                      |                                      |                                  |
| (Local Q.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                    |                                    |                                    |                                          |                                    |                                    |                                      |                                      |                                  |
| (Local QA64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Local Q,32)                        | $3.93 \pm 0.20$                    | $-26.9 \pm 0.8$                    | $476.5 \pm 2.1$                    | $-3978.2 \pm 43.4$                       | $-44.8 \pm 0.4$                    | $-33.9 \pm 0.5$                    | $-339.1 \pm 5.3$                     | $-1098.9 \pm 3.1$                    | $16.7 \pm 2.4$                   |
| (Local Abs.0.125) 3.30±0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Local Q,64)                        | $3.96 \pm 0.20$                    | $-26.4 \pm 0.8$                    | $475.7 \pm 2.2$                    | $-3961.8 \pm 43.6$                       | $-45.0 \pm 0.4$                    | $-33.6 \pm 0.5$                    | $-339.4 \pm 5.4$                     | $-1101.3 \pm 3.1$                    | $17.8 \pm 2.4$                   |
| (Local Abs.0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Local Abs, 0.125)                  | $3.02 \pm 0.19$                    | $-25.8 \pm 0.9$                    | $485.0 \pm 2.2$                    | $-1606.7 \pm 16.7$                       | $-31.0 \pm 0.6$                    | $-14.4 \pm 0.2$                    | $-118.5 \pm 5.2$                     | $-857.1 \pm 5.7$                     | $19.3 \pm 2.4$                   |
| (Local Abs.16) (4.53 ± 0.21) $-25.9 \pm 0.8$ $477.9 \pm 2.2$ $-1610.3 \pm 17.2$ $-31.7 \pm 0.6$ $-16.4 \pm 0.2$ $-18.79 \pm 5.1$ $-916.8 \pm 5.0$ $31.0 \pm 2.3$ (Local Abs.2) $4.66 \pm 0.21$ $-25.3 \pm 0.8$ $478.5 \pm 2.1$ $-1613.0 \pm 17.4$ $-31.1 \pm 0.6$ $-15.1 \pm 0.2$ $-15.92 \pm 5.2$ $-910.5 \pm 5.3$ $41.1 \pm 2.2$ (Local Abs.4) $4.57 \pm 0.21$ $-25.9 \pm 0.8$ $478.5 \pm 2.1$ $-1613.0 \pm 17.4$ $-161.1 \pm 0.6$ $-15.1 \pm 0.2$ $-178.6 \pm 5.0$ $-919.7 \pm 5.0$ $31.3 \pm 2.3$ (Local Abs.4) $4.57 \pm 0.21$ $-25.2 \pm 0.8$ $476.5 \pm 2.1$ $-1620.3 \pm 17.0$ $-32.0 \pm 0.6$ $-16.2 \pm 0.2$ $-18.8 \pm 5.0$ $-919.7 \pm 5.0$ $31.3 \pm 2.3$ (Local Abs.4) $4.57 \pm 0.21$ $-25.2 \pm 0.8$ $476.7 \pm 2.2$ $-1605.9 \pm 17.0$ $-32.3 \pm 0.6$ $-16.4 \pm 0.2$ $-18.79 \pm 5.1$ $-918.4 \pm 5.1$ $34.2 \pm 2.3$ (Local Abs.4) $4.80 \pm 0.21$ $-25.2 \pm 0.8$ $476.7 \pm 2.2$ $-1615.1 \pm 17.9$ $-32.2 \pm 0.6$ $-16.2 \pm 0.2$ $-18.3 \pm 5.1$ $-916.2 \pm 5.0$ $31.8 \pm 2.3$ (Local Range.0.125) (Local Range.0.25) $3.17 \pm 0.20$ $-25.5 \pm 0.8$ $481.6 \pm 2.3$ $-1813.5 \pm 22.2$ $-6.6$ $-16.2 \pm 0.2$ $-18.3 \pm 0.5$ $-1.019.3 \pm 5.2$ (Local Range.0.5) $4.56 \pm 0.25$ $-25.2 \pm 0.8$ $481.8 \pm 2.2$ $-1615.4 \pm 17.2$ $-38.5 \pm 0.5$ $-24.2 \pm 0.4$ $-15.17 \pm 5.6$ $-901.9 \pm 5.2$ $19.6 \pm 2.2$ (Local Range.0.5) $4.56 \pm 0.25$ $-2.45 \pm 0.9$ $481.8 \pm 2.2$ $-1615.4 \pm 17.2$ $-38.5 \pm 0.5$ $-24.9 \pm 0.4$ $-10.077 \pm 5.4$ $-48.50 \pm 5.6$ $-22.2 \pm 2.3$ $4.56 \pm 0.25$ $-4.6 \pm 0.9$ $4.83 \pm 0.2$ $-4.2 \pm 0.9$ $-4.18 \pm 0.0$ $-4.18 \pm$                             | (Local Abs, 0.5)                    | $4.07 \pm 0.22$                    | $-25.5 \pm 0.9$                    | $482.2 \pm 2.1$                    | $-1573.1 \pm 16.4$                       | $-30.0 \pm 0.6$                    | $-14.3 \pm 0.2$                    | $-120.8 \pm 5.4$                     | $-891.3 \pm 5.4$                     | $34.1 \pm 2.3$                   |
| $ \begin{array}{c} (\text{Local Abs.2}) & 3.94 \pm 0.22 \\ (\text{Local Abs.4}) & 4.66 \pm 0.21 \\ (\text{Local Abs.4}) & 4.65 \pm 0.21 \\ (\text{Local Abs.4}) & 4.57 \pm 0.21 \\ (\text{Local Abs.4}) & 4.52 \pm 0.21 \\ (\text{Local Abs.4}) & 4.52 \pm 0.21 \\ (\text{Local Abs.4}) & 4.52 \pm 0.21 \\ (\text{Local Cal Abs.4}) & 4.52 \pm 0.21 \\ (\text{Local Cal Abs.4}) & 4.52 \pm 0.21 \\ (Local Cal Cal Cal Cal Cal Cal Cal Cal Cal C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                    |                                    |                                    |                                          |                                    |                                    |                                      |                                      |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Local Abs,2)                       | $3.94 \pm 0.22$                    | $-25.3 \pm 0.8$                    | $478.8 \pm 2.1$                    |                                          | $-31.1 \pm 0.6$                    | $-15.1 \pm 0.2$                    | $-159.2 \pm 5.2$                     |                                      | $41.1 \pm 2.2$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Local Abs,4)                       | $4.57 \pm 0.21$                    | $-25.9 \pm 0.8$                    | $478.3 \pm 2.2$                    | $-1604.7 \pm 17.1$                       | $-31.6 \pm 0.6$                    | $-15.7 \pm 0.2$                    | $-177.3 \pm 5.1$                     | $-918.4 \pm 5.1$                     | $34.2 \pm 2.3$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Local Abs,8)                       | $4.52 \pm 0.21$                    | $-26.2 \pm 0.8$                    | $476.2 \pm 2.2$                    | $-1631.1 \pm 17.9$                       | $-32.2 \pm 0.6$                    | $-16.2 \pm 0.2$                    | $-183.0 \pm 5.1$                     | $-916.2 \pm 5.0$                     | $31.8 \pm 2.3$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | $3.60 \pm 0.22$                    | $-25.3 \pm 0.8$                    | $483.4 \pm 2.3$                    | $-1696.2 \pm 19.8$                       | $-38.1 \pm 0.5$                    | $-24.0 \pm 0.4$                    | $-136.1 \pm 5.5$                     | $-870.1 \pm 5.4$                     | $18.5 \pm 2.4$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | $4.56 \pm 0.25$<br>$4.61 \pm 0.25$ | $-25.2 \pm 0.8$<br>$-24.6 \pm 0.9$ | $484.8 \pm 2.2$<br>$483.3 \pm 2.1$ | $-1615.4 \pm 17.2$<br>$-1570.7 \pm 16.0$ | $-38.5 \pm 0.5$<br>$-36.0 \pm 0.5$ | $-23.9 \pm 0.4$<br>$-16.6 \pm 0.3$ | $-109.7 \pm 5.4$<br>$-107.3 \pm 5.4$ | $-845.0 \pm 5.6$<br>$-842.6 \pm 5.5$ | $22.2 \pm 2.3$<br>$43.3 \pm 2.2$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | $4.91 \pm 0.24$<br>$4.48 \pm 0.24$ |                                    | $473.6 \pm 2.2$<br>$483.6 \pm 2.1$ | $-1594.0 \pm 16.5$<br>$-1571.6 \pm 16.3$ | $-30.0 \pm 0.6$<br>$-33.4 \pm 0.6$ |                                    | $-130.6 \pm 5.4$<br>$-118.0 \pm 5.5$ |                                      | $42.7 \pm 2.2$<br>$46.7 \pm 2.1$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Local Range,32)                    | $5.01 \pm 0.24$                    | $-26.2 \pm 0.9$                    | $474.4 \pm 2.2$ $480.1 \pm 2.1$    | $-1591.4 \pm 16.9$<br>$-1565.9 \pm 16.0$ | $-30.6 \pm 0.6$                    | $-14.8 \pm 0.2$                    | $-133.9 \pm 5.4$                     | $-905.7 \pm 5.2$                     | $41.2 \pm 2.2$ $44.9 \pm 2.2$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Local Range,64)                    | $4.94 \pm 0.24$                    | $-25.7 \pm 0.9$                    | $473.6 \pm 2.2$                    | $-1601.1 \pm 16.9$                       | $-30.0 \pm 0.6$                    | $-14.8 \pm 0.2$                    | $-133.9 \pm 5.4$                     | $-905.7 \pm 5.2$                     | $40.1 \pm 2.2$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Local Std, 0.125)                  | $2.84 \pm 0.19$                    | $-24.8 \pm 0.8$                    | $479.9 \pm 2.3$                    | $-1888.7 \pm 24.3$                       | $-38.4 \pm 0.5$                    | $-24.1 \pm 0.4$                    | $-179.9 \pm 5.7$                     | $-916.4 \pm 5.2$                     | $18.8 \pm 2.3$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | $3.24 \pm 0.21$                    | $-24.7 \pm 0.8$<br>$-25.4 \pm 0.8$ | $481.1 \pm 2.2$<br>$482.8 \pm 2.2$ | $-1826.3 \pm 22.2$<br>$-1762.2 \pm 20.8$ |                                    | $-24.0 \pm 0.4$                    | $-167.2 \pm 5.5$<br>$-157.0 \pm 5.7$ |                                      |                                  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                    |                                    |                                    |                                          |                                    |                                    |                                      |                                      |                                  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Local Std,2)                       | $4.45 \pm 0.25$                    | $-25.0 \pm 0.8$                    | $485.4 \pm 2.1$                    | $-1582.2 \pm 16.7$                       | $-36.4 \pm 0.5$                    | $-18.8 \pm 0.3$                    | $-105.8 \pm 5.3$                     | $-840.3 \pm 5.6$                     | $40.8 \pm 2.2$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Local Std,4)                       | $4.66 \pm 0.25$                    | $-25.3 \pm 0.9$                    | $483.3 \pm 2.1$                    | $-1561.8 \pm 16.0$                       | $-34.2 \pm 0.6$                    | $-15.2 \pm 0.2$                    | $-113.4 \pm 5.4$                     | $-845.8 \pm 5.5$                     | $46.7 \pm 2.1$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Local Std,8)                       | $4.76 \pm 0.25$                    | $-25.7 \pm 0.9$                    | $480.4 \pm 2.1$                    | $-1564.0 \pm 15.6$                       | $-31.7 \pm 0.6$                    | $-14.3 \pm 0.2$                    | $-115.6 \pm 5.3$                     | $-865.4 \pm 5.4$                     | $46.3 \pm 2.1$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Poly-UCB1,0.25)                    | $2.92 \pm 0.26$                    | $-24.7 \pm 1.2$                    | $479.5 \pm 3.2$                    | $-1838.2 \pm 32.8$                       | $-34.3 \pm 0.8$                    | $-19.4 \pm 0.4$                    | $-171.9 \pm 7.6$                     | $-899.0 \pm 7.0$                     | $18.3 \pm 3.3$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | $2.93 \pm 0.25$                    | $-25.6 \pm 1.2$                    | $479.4 \pm 3.3$                    | $-1600.0 \pm 24.2$                       |                                    | $-16.4 \pm 0.3$                    | $-145.6 \pm 7.5$                     |                                      | $19.4 \pm 3.3$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Poly-UCB1,16)                      | $2.36 \pm 0.20$                    | $-24.5\pm1.2$                      | $486.3 \pm 3.1$<br>$484.4 \pm 3.1$ | $-2879.7 \pm 52.6$<br>$-1579.4 \pm 23.5$ | $-32.5 \pm 0.8$                    | $-21.7 \pm 0.4$                    | $-310.9 \pm 7.5$                     | $-1016.8 \pm 5.2$                    | $23.1 \pm 3.3$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Poly-UCB1,32)                      | $2.22 \pm 0.19$                    | $-24.6 \pm 1.2$                    | $483.8 \pm 3.1$                    | $-3053.3 \pm 54.5$                       | $-33.4 \pm 0.8$                    | $-22.5 \pm 0.4$                    | $-320.2 \pm 7.8$                     | $-1060.4 \pm 4.8$                    | $23.1 \pm 3.3$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Poly-UCB1,64)                      | $2.32 \pm 0.19$                    | $-25.5 \pm 1.2$                    | $486.6 \pm 3.0$                    | $-3056.6 \pm 53.2$                       | $-33.0 \pm 0.8$                    | $-22.7 \pm 0.5$                    | $-324.2 \pm 7.6$                     | $-1070.6 \pm 4.6$                    | $24.9 \pm 3.3$                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Vanilla UCT,0.125)                 | $3.10 \pm 0.20$                    | $-25.7 \pm 1.2$<br>$-25.1 \pm 0.8$ | $488.5 \pm 3.1$<br>$477.1 \pm 2.2$ | $-1624.4 \pm 25.2$<br>$-1929.3 \pm 24.6$ | $-37.5 \pm 0.5$                    | $-23.0 \pm 0.3$                    | $-183.5 \pm 5.5$                     | $-926.9 \pm 5.0$                     | $20.3 \pm 3.3$<br>$16.6 \pm 2.4$ |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | $4.28 \pm 0.25$                    | $-26.2 \pm 0.8$<br>$-25.2 \pm 0.8$ | $477.5 \pm 2.3$<br>$476.9 \pm 2.3$ | $-1908.3 \pm 24.2$<br>$-1925.9 \pm 24.1$ | $-35.4 \pm 0.5$                    | $-19.7 \pm 0.3$                    |                                      |                                      | $19.3 \pm 2.3$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Vanilla UCT,1)                     | $4.91 \pm 0.26$                    | $-24.9 \pm 0.8$                    | $478.8 \pm 2.3$                    | $-1945.9 \pm 25.1$<br>$-1586.8 \pm 16.8$ | $-34.2 \pm 0.5$                    | $-17.7 \pm 0.2$                    | $-174.6 \pm 5.6$                     | $-927.0 \pm 4.9$                     | $17.8 \pm 2.4$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Vanilla UCT,16)                    | $5.08 \pm 0.24$                    | $-26.0 \pm 0.9$<br>$-24.8 \pm 0.9$ | $483.0 \pm 2.2$<br>$478.3 \pm 2.2$ | $-1901.8 \pm 24.6$                       | $-29.8 \pm 0.6$                    | $-13.9 \pm 0.2$                    | $-127.9 \pm 5.4$                     | $-868.9 \pm 5.2$                     | 28.5 ± 2.3                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Vanilla UCT,256)                   | $5.01 \pm 0.24$                    | $-26.2 \pm 0.9$                    | $476.8 \pm 2.2$                    | $-1721.6 \pm 20.0$                       | $-30.3 \pm 0.6$                    | $-14.9 \pm 0.2$                    | $-125.3 \pm 5.5$                     | $-881.0 \pm 5.5$                     | $43.7 \pm 2.2$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Vanilla UCT,4)                     | $5.15 \pm 0.25$                    | $-25.4 \pm 0.9$                    | $404.0 \pm 2.1$<br>$481.7 \pm 2.3$ | $-1910.0 \pm 24.1$<br>$-1939.7 \pm 25.0$ | $-31.5 \pm 0.6$                    | $-14.4 \pm 0.2$<br>$-14.7 \pm 0.2$ | $-161.4 \pm 5.5$                     | $-904.8 \pm 5.0$                     | $19.5 \pm 2.4$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | $5.12 \pm 0.24$ $4.99 \pm 0.24$    | $-26.2 \pm 0.9$<br>$-25.3 \pm 0.9$ | $484.2 \pm 2.0$<br>$482.3 \pm 2.2$ | $-1857.1 \pm 23.1$<br>$-1919.7 \pm 24.5$ | $-30.1 \pm 0.6$<br>$-30.4 \pm 0.6$ | $-14.6 \pm 0.2$<br>$-14.0 \pm 0.2$ | $-111.2 \pm 5.5$<br>$-151.9 \pm 5.3$ | $-844.8 \pm 5.6$<br>$-893.1 \pm 5.0$ | 19.0 ± 2.4                       |

TABLE X: Part 2/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 100 MCTS iterations..

|                                           | Academic Advising                    | Earth Observation                  | Push Your Luck                   | Saving                                             | SysAdmin                           | TicTacToe                            | Traffic                                               | Wildlife Preserve                    |
|-------------------------------------------|--------------------------------------|------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------|--------------------------------------|-------------------------------------------------------|--------------------------------------|
| (Global Abs,0.125)                        | $-107.0 \pm 1.0$                     | $-15.4 \pm 0.3$                    | $52.7 \pm 0.4$                   | $36.3 \pm 0.2$                                     | $325.8 \pm 1.9$                    | $-0.30 \pm 0.01$                     | $-22.1 \pm 0.3$                                       | $1176.3 \pm 3.0$                     |
| (Global Abs, 0.25)                        | $-107.0 \pm 1.0$                     | $-13.8 \pm 0.3$                    | $53.4 \pm 0.4$                   | $37.8 \pm 0.2$                                     | $327.0 \pm 2.0$                    | $-0.20 \pm 0.01$                     | $-22.5 \pm 0.3$                                       | $1163.5 \pm 2.8$                     |
| (Global Abs, 0.5)                         | $-109.4 \pm 1.1$                     | $-13.9 \pm 0.3$                    | $54.2 \pm 0.4$                   | $40.6 \pm 0.2$                                     | $320.8 \pm 2.0$                    | $-0.14 \pm 0.01$                     | $-23.4 \pm 0.3$                                       | $1158.3 \pm 2.7$                     |
| (Global Abs,1)                            | $-112.9 \pm 1.1$                     | $-14.1 \pm 0.2$                    | $53.8 \pm 0.4$                   | $43.7 \pm 0.2$                                     | $313.3 \pm 2.0$                    | $-0.12 \pm 0.01$                     | $-25.1 \pm 0.3$                                       | $1150.9 \pm 2.6$                     |
| (Global Abs,16)                           | $-117.2 \pm 1.1$                     | $-14.5 \pm 0.3$                    | $52.5 \pm 0.5$                   | $44.0 \pm 0.2$                                     | $305.9 \pm 2.0$                    | $-0.30 \pm 0.01$                     | $-26.1 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Global Abs,2)                            | $-116.3 \pm 1.2$                     | $-14.5 \pm 0.3$                    | $53.2 \pm 0.4$                   | $44.4 \pm 0.2$                                     | $308.8 \pm 2.0$                    | $-0.16 \pm 0.01$                     | $-25.7 \pm 0.3$                                       | $1153.0 \pm 2.6$                     |
| (Global Abs,32)                           | $-117.7 \pm 1.1$                     | $-14.5 \pm 0.3$                    | $52.1 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.31 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Global Abs,4)                            | $-117.4 \pm 1.1$                     | $-14.4 \pm 0.3$                    | $52.6 \pm 0.4$                   | $44.3 \pm 0.2$                                     | $308.5 \pm 2.0$                    | $-0.23 \pm 0.01$                     | $-26.5 \pm 0.3$                                       | $1150.4 \pm 2.5$                     |
| (Global Abs,64)                           | $-117.9 \pm 1.1$                     | $-14.8 \pm 0.3$                    | $52.6 \pm 0.5$                   | $43.9 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.34 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Global Abs,8)                            | $-118.2 \pm 1.1$                     | $-14.6 \pm 0.3$                    | $52.8 \pm 0.4$                   | $44.1 \pm 0.2$                                     | $306.8 \pm 2.0$                    | $-0.29 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1148.5 \pm 2.6$                     |
| (Global Range,0.125)                      | $-107.9 \pm 1.0$<br>$-106.2 \pm 1.0$ | $-27.9 \pm 0.4$<br>$-21.6 \pm 0.3$ | $54.0 \pm 0.4$<br>$54.2 \pm 0.4$ | $40.5 \pm 0.2$                                     | $326.9 \pm 1.9$                    | $-0.18 \pm 0.01$                     | $-22.0 \pm 0.3$                                       | $1195.7 \pm 3.3$<br>$1188.9 \pm 3.3$ |
| (Global Range,0.25)<br>(Global Range,0.5) | $-108.3 \pm 1.0$                     | $-17.3 \pm 0.3$                    | $53.6 \pm 0.4$                   | $43.5 \pm 0.2$<br>$44.6 \pm 0.2$                   | $325.9 \pm 1.9$<br>$322.4 \pm 2.0$ | $-0.12 \pm 0.01$<br>$-0.13 \pm 0.01$ | $-22.8 \pm 0.3$<br>$-24.0 \pm 0.3$                    | $1173.9 \pm 2.9$                     |
| (Global Range,1)                          | $-112.0 \pm 1.1$                     | $-14.9 \pm 0.3$                    | $53.1 \pm 0.4$                   | $44.3 \pm 0.2$                                     | $315.6 \pm 2.0$                    | $-0.20 \pm 0.01$                     | $-25.3 \pm 0.3$                                       | $1162.2 \pm 2.8$                     |
| (Global Range,16)                         | $-118.1 \pm 1.2$                     | $-14.3 \pm 0.3$                    | $52.9 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $306.8 \pm 2.0$                    | $-0.33 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1150.0 \pm 2.6$                     |
| (Global Range,2)                          | $-115.0 \pm 1.1$                     | $-14.1 \pm 0.3$                    | $53.1 \pm 0.5$                   | $44.2 \pm 0.2$                                     | $311.8 \pm 2.0$                    | $-0.25 \pm 0.01$                     | $-26.1 \pm 0.3$                                       | $1155.5 \pm 2.6$                     |
| (Global Range,32)                         | $-118.1 \pm 1.2$                     | $-14.3 \pm 0.3$                    | $52.1 \pm 0.5$                   | $44.0 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.35 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1150.0 \pm 2.6$                     |
| (Global Range,4)                          | $-117.2 \pm 1.1$                     | $-14.1 \pm 0.3$<br>$-14.5 \pm 0.3$ | $52.9 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $307.7 \pm 2.0$                    | $-0.29 \pm 0.01$                     | $-26.1 \pm 0.3$                                       | $1151.5 \pm 2.5$                     |
| (Global Range,64)                         | $-118.1 \pm 1.2$                     | $-14.1 \pm 0.3$                    | $52.1 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.35 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1150.0 \pm 2.6$                     |
| (Global Range,8)                          | $-117.8 \pm 1.2$                     |                                    | $52.5 \pm 0.5$                   | $44.0 \pm 0.2$                                     | $306.5 \pm 2.0$                    | $-0.31 \pm 0.01$                     | $-26.5 \pm 0.3$                                       | $1150.0 \pm 2.6$                     |
| (Global Std,0.125)                        | $-113.3 \pm 1.0$                     | $-32.5 \pm 0.5$                    | $52.2 \pm 0.6$                   | $36.1 \pm 0.2$                                     | $315.5 \pm 2.0$                    | $-0.31 \pm 0.02$                     | $-21.8 \pm 0.3$                                       | $1197.9 \pm 3.4$                     |
| (Global Std,0.25)                         | $-111.4 \pm 1.0$                     | $-30.3 \pm 0.4$                    | $52.9 \pm 0.6$                   | $37.3 \pm 0.2$                                     | $318.9 \pm 2.0$                    | $-0.23 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1196.8 \pm 3.3$                     |
| (Global Std,0.5)                          | $-106.3 \pm 1.0$                     | $-25.0 \pm 0.4$                    | $53.8 \pm 0.5$                   | $39.9 \pm 0.2$                                     | $325.7 \pm 1.9$                    | $-0.13 \pm 0.02$                     | $-22.1 \pm 0.3$                                       | $1195.1 \pm 3.3$                     |
| (Global Std,1)                            | $-105.3 \pm 1.0$                     | $-19.1 \pm 0.3$                    | $54.0 \pm 0.6$                   | $43.1 \pm 0.2$                                     | $327.1 \pm 1.9$                    | $-0.13 \pm 0.02$                     | $-22.5 \pm 0.3$                                       | $1191.3 \pm 3.3$                     |
| (Global Std,16)                           | $-117.7 \pm 1.1$                     | $-14.0 \pm 0.2$                    | $52.9 \pm 0.7$                   | $44.1 \pm 0.2$                                     | $310.3 \pm 2.0$                    | $-0.30 \pm 0.02$                     | $-26.4 \pm 0.3$                                       | $1152.0 \pm 2.6$                     |
| (Global Std,2)                            | $-107.9 \pm 1.0$                     | $-15.6 \pm 0.3$                    | $53.9 \pm 0.6$                   | $44.3 \pm 0.2$                                     | $321.9 \pm 2.0$                    | $-0.14 \pm 0.02$                     | $-23.5 \pm 0.3$                                       | $1177.0 \pm 3.0$                     |
| (Global Std,32)                           | $-117.1 \pm 1.1$                     | $-14.2 \pm 0.3$                    | $52.7 \pm 0.6$                   | $44.0 \pm 0.2$                                     | $307.0 \pm 2.0$                    | $-0.31 \pm 0.02$                     | $-26.2 \pm 0.3$                                       | $1150.0 \pm 2.5$                     |
| (Global Std,4)                            | $-111.5 \pm 1.1$                     | $-14.0 \pm 0.3$                    | $53.2 \pm 0.6$                   | $44.3 \pm 0.2$                                     | $317.0 \pm 2.0$                    | $-0.23 \pm 0.02$                     | $-25.1 \pm 0.3$                                       | $1165.0 \pm 2.8$                     |
| (Global Std,64)                           | $-117.5 \pm 1.1$                     | $-14.6 \pm 0.3$                    | $52.8 \pm 0.7$                   | $44.1 \pm 0.2$                                     | $307.2 \pm 2.0$                    | $-0.34 \pm 0.02$                     | $-26.3 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Global Std,8)                            | $-115.6 \pm 1.1$                     | $-14.1 \pm 0.3$                    | $53.0 \pm 0.6$                   | $44.1 \pm 0.2$                                     | $310.7 \pm 2.0$                    | $-0.28 \pm 0.02$                     | $-26.3 \pm 0.3$                                       | $1159.6 \pm 2.7$                     |
| (Layer Abs,0.125)                         | $-105.7 \pm 1.0$                     | $-15.2 \pm 0.3$                    | $52.9 \pm 0.4$                   | $36.2 \pm 0.2$                                     | $327.9 \pm 1.9$                    | $-0.29 \pm 0.01$                     | $-22.2 \pm 0.3$                                       | $1176.4 \pm 3.0$                     |
| (Layer Abs,0.25)                          | $-106.0 \pm 1.0$                     | $-13.8 \pm 0.3$<br>$-13.9 \pm 0.2$ | $53.3 \pm 0.4$                   | $37.3 \pm 0.2$<br>$39.3 \pm 0.2$                   | $328.1 \pm 1.9$<br>$322.6 \pm 1.9$ | $-0.20 \pm 0.01$<br>$-0.14 \pm 0.01$ | $-22.5 \pm 0.3$<br>$-23.7 \pm 0.3$                    | $1163.6 \pm 2.8$                     |
| (Layer Abs,0.5)<br>(Layer Abs,1)          | $-109.0 \pm 1.0$<br>$-113.0 \pm 1.1$ | $-14.1 \pm 0.2$                    | $53.9 \pm 0.4$<br>$53.5 \pm 0.4$ | $41.7 \pm 0.2$                                     | $315.9 \pm 2.0$                    | $-0.12 \pm 0.01$                     | $-25.0 \pm 0.3$                                       | $1156.5 \pm 2.6$<br>$1150.6 \pm 2.5$ |
| (Layer Abs,16)                            | $-117.5 \pm 1.2$                     | $-14.6 \pm 0.3$                    | $52.6 \pm 0.5$                   | $44.2 \pm 0.2$                                     | $305.6 \pm 2.0$                    | $-0.30 \pm 0.01$                     | $-26.2 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Layer Abs,2)                             | $-115.8 \pm 1.1$                     | $-14.3 \pm 0.3$                    | $53.4 \pm 0.4$                   | $44.2 \pm 0.2$                                     | $308.4 \pm 2.0$                    | $-0.14 \pm 0.01$                     | $-25.9 \pm 0.3$                                       | $1151.0 \pm 2.5$                     |
| (Layer Abs,32)                            | $-117.7 \pm 1.1$                     | $-14.6 \pm 0.3$                    | $52.6 \pm 0.5$                   | $44.0 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.32 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Layer Abs,4)                             | $-117.3 \pm 1.1$                     | $-14.6 \pm 0.3$                    | $53.1 \pm 0.4$                   | $44.2 \pm 0.2$                                     | $307.3 \pm 2.0$                    | $-0.23 \pm 0.01$                     | $-26.5 \pm 0.3$                                       | $1149.8 \pm 2.5$                     |
| (Layer Abs,64)                            | $-117.9 \pm 1.1$                     | $-14.7 \pm 0.3$                    | $52.8 \pm 0.5$                   | $44.0 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.36 \pm 0.01$                     | $-26.2 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Layer Abs,8)                             | $-117.9 \pm 1.2$                     | $-14.6 \pm 0.3$                    | $52.7 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $306.5 \pm 2.0$                    | $-0.27 \pm 0.01$                     | $-26.2 \pm 0.3$                                       | $1148.5 \pm 2.6$                     |
| (Layer Range,0.125)                       | $-113.9 \pm 1.1$                     | $-32.2 \pm 0.4$                    | $52.6 \pm 0.4$                   | $35.4 \pm 0.2$                                     | $317.1 \pm 2.0$                    | $-0.41 \pm 0.01$                     | $-22.2 \pm 0.3$                                       | $1199.8 \pm 3.3$                     |
| (Layer Range,0.25)                        | $-110.8 \pm 1.1$                     | $-30.7 \pm 0.4$                    | $53.9 \pm 0.4$                   | $36.2 \pm 0.2$                                     | $323.8 \pm 1.9$                    | $-0.39 \pm 0.01$                     | $-22.1 \pm 0.3$                                       | $1197.0 \pm 3.3$                     |
| (Layer Range,0.5)                         | $-107.2 \pm 1.0$                     | $-25.2 \pm 0.3$                    | $53.6 \pm 0.4$                   | $37.5 \pm 0.2$                                     | $328.5 \pm 1.9$                    | $-0.39 \pm 0.01$                     | $-22.9 \pm 0.3$                                       | $1185.6 \pm 3.1$                     |
| (Layer Range,1)                           | $-106.4 \pm 1.0$                     | $-17.7 \pm 0.3$                    | $54.3 \pm 0.4$                   | $41.3 \pm 0.2$                                     | $325.1 \pm 2.0$                    | $-0.20 \pm 0.01$                     | $-23.7 \pm 0.3$                                       | $1174.3 \pm 3.1$                     |
|                                           | $-117.5 \pm 1.1$                     | $-14.1 \pm 0.3$                    | $53.0 \pm 0.5$                   | $44.2 \pm 0.2$                                     | $308.6 \pm 2.0$                    | $-0.32 \pm 0.01$                     | $-26.4 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Layer Range,16)<br>(Layer Range,2)       | $-109.8 \pm 1.1$                     | $-14.6 \pm 0.3$                    | $53.8 \pm 0.4$                   | $43.4 \pm 0.2$                                     | $321.1 \pm 1.9$                    | $-0.24 \pm 0.01$                     | $-24.8 \pm 0.3$                                       | $1163.3 \pm 2.8$                     |
| (Layer Range,32)                          | $-118.6 \pm 1.2$                     | $-14.4 \pm 0.3$                    | $52.4 \pm 0.5$                   | $44.2 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.35 \pm 0.01$                     | $-26.5 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Layer Range,4)                           | $-113.0 \pm 1.1$                     | $-13.6 \pm 0.2$                    | $53.5 \pm 0.4$                   | $44.2 \pm 0.2$                                     | $315.4 \pm 2.0$                    | $-0.28 \pm 0.01$                     | $-25.7 \pm 0.3$                                       | $1160.2 \pm 2.8$                     |
| (Layer Range,64)                          | $-118.6 \pm 1.2$                     | $-14.4 \pm 0.3$                    | $52.1 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.36 \pm 0.01$                     | $-26.4 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Layer Range,8)                           | $-116.1 \pm 1.1$                     | $-13.7 \pm 0.2$                    | $52.9 \pm 0.5$                   | $44.3 \pm 0.2$                                     | $310.1 \pm 2.0$                    | $-0.32 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Layer Std,0.125)                         | $-115.7 \pm 1.1$                     | $-33.6 \pm 0.5$                    | $52.7 \pm 0.6$                   | $35.2 \pm 0.2$                                     | $312.4 \pm 2.0$                    | $-0.41 \pm 0.02$                     | $-22.4 \pm 0.3$                                       | $1202.2 \pm 3.4$                     |
| (Layer Std,0.25)                          | $-113.3 \pm 1.1$                     | $-32.6 \pm 0.5$                    | $52.4 \pm 0.6$                   | $35.3 \pm 0.2$                                     |                                    | $-0.40 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1201.5 \pm 3.4$                     |
| (Layer Std, 0.5)                          | $-112.8 \pm 1.1$                     | $-31.4 \pm 0.4$                    | $52.8 \pm 0.6$                   | $35.8 \pm 0.2$                                     | $314.2 \pm 2.0$<br>$318.6 \pm 2.0$ | $-0.40 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1197.3 \pm 3.3$                     |
| (Layer Std,1)                             | $-110.7 \pm 1.0$                     | $-27.2 \pm 0.4$                    | $53.3 \pm 0.6$                   | $37.2 \pm 0.2$                                     | $327.1 \pm 1.9$                    | $-0.40 \pm 0.02$                     | $-22.3 \pm 0.3$                                       | $1195.6 \pm 3.4$                     |
| (Layer Std,16)                            | $-114.4 \pm 1.1$                     | $-13.9 \pm 0.3$                    | $53.2 \pm 0.6$                   | $44.1 \pm 0.2$                                     | $312.3 \pm 2.0$                    | $-0.27 \pm 0.02$                     | $-26.2 \pm 0.3$                                       | $1159.0 \pm 2.7$                     |
| (Layer Std,2)                             | $-106.3 \pm 1.0$                     | $-18.9 \pm 0.3$                    | $54.3 \pm 0.6$                   | $41.3 \pm 0.2$                                     | $328.4 \pm 1.9$                    | $-0.20 \pm 0.02$                     | $-23.1 \pm 0.3$                                       | $1182.2 \pm 3.1$                     |
| (Layer Std,32)                            | $-117.5 \pm 1.1$                     | $-14.1 \pm 0.3$                    | $53.3 \pm 0.7$                   | $44.2 \pm 0.2$                                     | $309.5 \pm 2.0$                    | $-0.32 \pm 0.02$                     | $-26.4 \pm 0.3$                                       | $1149.2 \pm 2.5$                     |
| (Layer Std,4)<br>(Layer Std,64)           | $-107.2 \pm 1.0$<br>$-118.7 \pm 1.1$ | $-15.2 \pm 0.3$<br>$-14.6 \pm 0.3$ | $54.3 \pm 0.6$<br>$52.7 \pm 0.6$ | $44.2 \pm 0.2$<br>$43.3 \pm 0.2$<br>$44.1 \pm 0.2$ | $324.7 \pm 1.9$<br>$308.2 \pm 2.0$ | $-0.20 \pm 0.02$<br>$-0.34 \pm 0.02$ | $-24.0 \pm 0.3$<br>$-26.4 \pm 0.3$                    | $1173.5 \pm 2.9$<br>$1148.7 \pm 2.6$ |
| (Layer Std,8)                             | $-111.1 \pm 1.1$                     | $-13.9 \pm 0.3$                    | $54.2 \pm 0.6$                   | $44.1 \pm 0.2$                                     | $319.8 \pm 2.0$                    | $-0.25 \pm 0.02$                     | $-25.0 \pm 0.3$                                       | $1161.5 \pm 2.7$                     |
| (Local Q,0.125)                           | $-166.7 \pm 1.7$                     | $-42.8 \pm 0.5$                    | $52.5 \pm 0.6$                   | $36.0 \pm 0.2$                                     | $327.5 \pm 1.9$                    | $-0.45 \pm 0.02$                     | $-53.3 \pm 0.6$                                       | $1177.6 \pm 3.0$                     |
| (Local Q,0.25)                            | $-187.5 \pm 1.8$                     | $-45.3 \pm 0.5$                    | $53.4 \pm 0.6$                   | $36.7 \pm 0.2$                                     | $326.8 \pm 2.0$                    | $-0.45 \pm 0.02$                     | $-57.3 \pm 0.6$                                       | $1167.4 \pm 2.8$                     |
| (Local Q,0.5)                             | $-202.8 \pm 1.9$                     | $-47.0 \pm 0.5$                    | $54.0 \pm 0.6$                   | $38.0 \pm 0.2$                                     | $326.2 \pm 2.0$                    | $-0.46 \pm 0.02$                     | $-56.7 \pm 0.6$                                       | $1162.6 \pm 2.7$                     |
| (Local Q,1)                               | $-214.5 \pm 1.9$                     | $-47.8 \pm 0.6$                    | $54.1 \pm 0.6$                   | $39.3 \pm 0.2$                                     | $319.7 \pm 1.9$                    | $-0.47 \pm 0.02$                     | $-55.1 \pm 0.6$                                       | $1160.9 \pm 2.7$                     |
| (Local Q,16)                              | $-219.1 \pm 2.0$                     | $-48.5 \pm 0.6$                    | $53.6 \pm 0.6$                   | $41.4 \pm 0.2$                                     | $312.2 \pm 2.0$                    | $-0.49 \pm 0.02$                     | $-52.7 \pm 0.6$                                       | $1152.6 \pm 2.6$                     |
| (Local Q,2)                               | $-219.9 \pm 2.0$                     | $-48.3 \pm 0.6$                    | $53.6 \pm 0.6$                   | $40.5 \pm 0.2$                                     | $317.6 \pm 2.0$                    | $-0.47 \pm 0.02$                     | $-54.0 \pm 0.6$                                       | $1156.6 \pm 2.7$                     |
| (Local Q,32)                              | $-221.8 \pm 2.0$                     | $-48.2 \pm 0.5$                    | $53.3 \pm 0.6$                   | $41.6 \pm 0.2$                                     | $312.6 \pm 2.0$                    | $-0.48 \pm 0.02$                     | $-53.0 \pm 0.6$                                       | $1153.8 \pm 2.6$                     |
| (Local Q,4)                               | $-219.7 \pm 2.0$                     | $-48.2 \pm 0.6$                    | $53.9 \pm 0.6$                   | $41.1 \pm 0.2$                                     | $315.0 \pm 2.0$                    | $-0.48 \pm 0.02$                     | $-53.2 \pm 0.6$                                       | $1153.7 \pm 2.6$                     |
| (Local Q,64)                              | $-219.4 \pm 2.0$                     | $-48.3 \pm 0.5$                    | $53.3 \pm 0.6$                   | $41.5 \pm 0.2$                                     | $311.4 \pm 2.0$                    | $-0.49 \pm 0.02$                     | $-52.6 \pm 0.6$                                       | $1152.2 \pm 2.5$                     |
| (Local Q,8)                               | $-220.0 \pm 2.0$                     | $-48.4 \pm 0.6$                    | $53.7 \pm 0.6$                   | $41.3 \pm 0.2$                                     | $314.2 \pm 2.0$                    | $-0.48 \pm 0.02$                     | $-52.6 \pm 0.6$                                       | $1152.7 \pm 2.5$                     |
| (Local Abs,0.125)                         | $-106.8 \pm 1.0$                     | $-14.8 \pm 0.3$                    | $52.5 \pm 0.6$                   | $36.2 \pm 0.2$                                     | $327.5 \pm 1.9$                    | $-0.27 \pm 0.02$                     | $-22.4 \pm 0.3$                                       | $1177.6 \pm 3.0$                     |
| (Local Abs,0.25)                          | $-107.7 \pm 1.0$                     | $-13.8 \pm 0.3$                    | $53.4 \pm 0.6$                   | $37.0 \pm 0.2$                                     | $326.8 \pm 2.0$                    | $-0.16 \pm 0.02$                     | $-22.9 \pm 0.3$                                       | $1167.4 \pm 2.8$                     |
| (Local Abs,0.5)                           | $-111.8 \pm 1.1$                     | $-14.2 \pm 0.3$                    | $54.0 \pm 0.6$                   | $38.3 \pm 0.2$                                     | $326.2 \pm 2.0$                    | $-0.12 \pm 0.02$                     | $-24.5 \pm 0.3$                                       | $1162.6 \pm 2.7$                     |
| (Local Abs,1)                             | $-116.9 \pm 1.1$                     | $-14.4 \pm 0.3$                    | $54.1 \pm 0.6$                   | $40.2 \pm 0.2$                                     | $319.7 \pm 1.9$                    | $-0.13 \pm 0.02$                     | $-26.3 \pm 0.3$                                       | $1160.9 \pm 2.7$                     |
| (Local Abs,16)                            | $-128.9 \pm 1.2$                     | $-14.8 \pm 0.3$                    | $53.6 \pm 0.6$                   | $42.9 \pm 0.2$                                     | $312.2 \pm 2.0$                    | $-0.67 \pm 0.02$                     | $-32.2 \pm 0.4$                                       | $1152.6 \pm 2.6$                     |
| (Local Abs,2)                             | $-122.4 \pm 1.2$                     | $-14.6 \pm 0.3$                    | $53.6 \pm 0.6$                   | $41.4 \pm 0.2$                                     | $317.4 \pm 2.0$                    | $-0.36 \pm 0.02$                     | $-28.8 \pm 0.4$                                       | $1156.6 \pm 2.7$                     |
| (Local Abs,32)                            | $-127.8 \pm 1.2$                     | $-14.7 \pm 0.3$                    | $53.3 \pm 0.6$                   | $43.1 \pm 0.2$                                     | $312.6 \pm 2.0$                    | $-0.66 \pm 0.02$                     | $-32.7 \pm 0.4$                                       | $1153.8 \pm 2.6$                     |
| (Local Abs,4)                             | $-125.1 \pm 1.2$                     | $-14.7 \pm 0.3$                    | $53.9 \pm 0.6$                   | $42.2 \pm 0.2$                                     | $315.0 \pm 2.0$                    | $-0.59 \pm 0.02$                     | $-30.6 \pm 0.4$                                       | $1153.7 \pm 2.6$                     |
| (Local Abs,64)                            | $-128.8 \pm 1.2$                     | $-14.8 \pm 0.3$                    | $53.3 \pm 0.6$                   | $43.0 \pm 0.2$                                     | $311.4 \pm 2.0$                    | $-0.67 \pm 0.02$                     | $-32.6 \pm 0.4$                                       | $1152.2 \pm 2.5$                     |
| (Local Abs,8)                             | $-127.0 \pm 1.2$                     | $-14.9 \pm 0.3$                    | $53.7 \pm 0.6$                   | $42.6 \pm 0.2$                                     | $314.2 \pm 2.0$                    | $-0.67 \pm 0.02$                     | $-31.5 \pm 0.4$                                       | $1152.7 \pm 2.5$                     |
| (Local Range, 0.125)                      | $-113.5 \pm 1.1$                     | $-32.3 \pm 0.5$                    | $52.5 \pm 0.4$                   | $35.6 \pm 0.2$                                     | $318.6 \pm 2.0$                    | $-0.41 \pm 0.01$                     | $-22.1 \pm 0.3$                                       | $1199.3 \pm 3.3$                     |
| (Local Range,0.25)                        | $-111.4 \pm 1.1$                     | $-30.3 \pm 0.4$                    | $53.6 \pm 0.4$                   | $36.1 \pm 0.2$                                     | $323.6 \pm 1.9$                    | $-0.41 \pm 0.01$                     | $-22.3 \pm 0.3$                                       | $1196.0 \pm 3.4$                     |
| (Local Range,0.5)                         | $-107.8 \pm 1.1$                     | $-25.7 \pm 0.4$                    | $53.8 \pm 0.4$                   | $37.5 \pm 0.2$                                     | $328.2 \pm 1.9$                    | $-0.41 \pm 0.01$                     | $-22.8 \pm 0.3$                                       | $1185.6 \pm 3.1$                     |
| (Local Range,1)                           | $-105.5 \pm 1.0$                     | $-17.7 \pm 0.3$                    | $54.1 \pm 0.4$                   | $41.4 \pm 0.2$                                     | $325.5 \pm 2.0$                    | $-0.19 \pm 0.01$                     | $-23.7 \pm 0.3$                                       | $1174.3 \pm 3.1$                     |
| (Local Range,16)                          | $-117.5 \pm 1.1$                     | $-14.1 \pm 0.3$                    | $53.0 \pm 0.5$                   | $44.3 \pm 0.2$                                     | $308.6 \pm 2.0$                    | $-0.33 \pm 0.01$                     | $-26.4 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Local Range,2)                           | $-109.4 \pm 1.1$                     | $-14.8 \pm 0.3$                    | $53.9 \pm 0.4$                   | $43.4 \pm 0.2$                                     | $321.6 \pm 1.9$                    | $-0.23 \pm 0.01$                     | $-24.8 \pm 0.3$                                       | $1163.3 \pm 2.8$                     |
| (Local Range,32)                          | $-118.6 \pm 1.2$                     | $-14.4 \pm 0.3$                    | $52.4 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.35 \pm 0.01$                     | $-26.5 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Local Range,4)                           | $-113.0 \pm 1.1$                     | $-13.6 \pm 0.2$                    | $53.7 \pm 0.4$                   | $44.1 \pm 0.2$                                     | $315.4 \pm 2.0$                    | $-0.28 \pm 0.01$                     | $-25.7 \pm 0.3$                                       | $1160.2 \pm 2.8$                     |
| (Local Range,8)                           | $-118.6 \pm 1.2$                     | $-14.4 \pm 0.3$                    | $52.1 \pm 0.5$                   | $44.1 \pm 0.2$                                     | $305.7 \pm 2.0$                    | $-0.35 \pm 0.01$                     | $-26.4 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Local Range,8)                           | $-116.1 \pm 1.1$                     | $-13.7 \pm 0.2$                    | $52.9 \pm 0.5$                   | $44.2 \pm 0.2$                                     | $310.1 \pm 2.0$                    | $-0.31 \pm 0.01$                     | $-26.3 \pm 0.3$                                       | $1149.7 \pm 2.6$                     |
| (Local Std,0.125)                         | $-115.7 \pm 1.1$                     | $-33.1 \pm 0.5$                    | $52.3 \pm 0.6$                   | $35.3 \pm 0.2$                                     | $312.1 \pm 2.0$                    | $-0.43 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1201.3 \pm 3.4$                     |
| (Local Std,0.25)                          | $-113.9 \pm 1.1$                     | $-32.8 \pm 0.5$                    | $52.4 \pm 0.6$                   | $35.3 \pm 0.2$                                     | $314.0 \pm 2.0$                    | $-0.41 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1200.0 \pm 3.3$                     |
| (Local Std,0.5)                           | $-112.8 \pm 1.1$                     | $-31.3 \pm 0.4$                    | $52.7 \pm 0.6$                   | $35.8 \pm 0.2$                                     | $320.3 \pm 2.0$                    | $-0.41 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1195.3 \pm 3.2$                     |
| (Local Std,1)                             | $-110.2 \pm 1.0$                     | $-27.7 \pm 0.4$                    | $54.0 \pm 0.6$                   | $37.1 \pm 0.2$                                     | $327.0 \pm 1.9$                    | $-0.41 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1193.5 \pm 3.3$                     |
| (Local Std,16)                            | $-114.4 \pm 1.1$                     | $-14.0 \pm 0.3$                    | $53.2 \pm 0.6$                   | $44.2 \pm 0.2$                                     | $312.3 \pm 2.0$                    | $-0.29 \pm 0.02$                     | $-26.2 \pm 0.3$                                       | $1159.0 \pm 2.7$                     |
| (Local Std,2)                             | $-105.9 \pm 1.0$                     | $-18.7 \pm 0.3$                    | $54.2 \pm 0.6$                   | $41.1 \pm 0.2$                                     | $327.8 \pm 1.9$                    | $-0.21 \pm 0.02$                     | $-23.0 \pm 0.3$                                       | $1182.2 \pm 3.1$                     |
| (Local Std,32)                            | $-117.5 \pm 1.1$                     | $-14.1 \pm 0.2$                    | $53.3 \pm 0.7$                   | $44.2 \pm 0.2$                                     | $309.5 \pm 2.0$                    | $-0.33 \pm 0.02$                     | $-26.4 \pm 0.3$                                       | $1149.2 \pm 2.5$                     |
| (Local Std,4)                             | $-106.6 \pm 1.0$                     | $-15.2 \pm 0.3$                    | $54.3 \pm 0.6$                   | $43.2 \pm 0.2$                                     | $325.1 \pm 2.0$                    | $-0.20 \pm 0.02$                     | $-24.0 \pm 0.3$                                       | $1173.5 \pm 2.9$                     |
| (Local Std,64)                            | $-118.7 \pm 1.1$                     | $-14.4 \pm 0.3$                    | $52.7 \pm 0.6$                   | $44.2 \pm 0.2$                                     | $308.2 \pm 2.0$                    | $-0.35 \pm 0.02$                     | $-26.4 \pm 0.3$                                       | $1148.7 \pm 2.6$                     |
| (Local Std,8)                             | $-110.1 \pm 1.1$                     | $-13.5 \pm 0.2$                    | $53.8 \pm 0.6$                   | $44.0 \pm 0.2$                                     | $319.5 \pm 2.0$                    | $-0.26 \pm 0.02$                     | $-25.0 \pm 0.3$                                       | $1161.5 \pm 2.7$                     |
| (Poly-UCB1,0.125)                         | $-115.0 \pm 1.5$                     | $-30.9 \pm 0.6$                    | $51.7 \pm 0.7$                   | $35.2 \pm 0.3$                                     | $310.6 \pm 2.8$                    | $-0.43 \pm 0.02$                     | $-22.3 \pm 0.4$                                       | $1202.3 \pm 4.8$                     |
| (Poly-UCB1,0.25)                          | $-114.0 \pm 1.5$                     | $-28.3 \pm 0.6$                    | $51.5 \pm 0.6$                   | $35.1 \pm 0.3$                                     | $310.4 \pm 2.8$                    | $-0.41 \pm 0.02$                     | $-22.0 \pm 0.4$                                       | $1202.8 \pm 4.9$                     |
| (Poly-UCB1,0.5)                           | $-111.2 \pm 1.5$                     | $-22.4 \pm 0.5$                    | $51.7 \pm 0.6$                   | $35.1 \pm 0.3$                                     | $313.2 \pm 2.8$                    | $-0.43 \pm 0.02$                     | $-21.8 \pm 0.4$                                       | $1208.4 \pm 4.9$                     |
| (Poly-UCB1,1)                             | $-110.2 \pm 1.5$                     | $-16.7 \pm 0.4$                    | $51.6 \pm 0.6$                   | $35.3 \pm 0.3$                                     | $315.0 \pm 2.8$                    | $-0.40 \pm 0.02$                     | $-22.1 \pm 0.4$                                       | $1208.4 \pm 4.9$                     |
| (Poly-UCB1,16)                            | $-154.2 \pm 2.2$                     | $-16.8 \pm 0.4$                    | $51.4 \pm 0.6$                   | $36.9 \pm 0.3$                                     | $323.8 \pm 2.8$                    | $-0.53 \pm 0.02$                     | $-43.4 \pm 0.7$                                       | $1205.8 \pm 4.9$                     |
| (Poly-UCB1,2)                             | $-108.7 \pm 1.5$                     | $-14.1 \pm 0.4$                    | $51.7 \pm 0.6$                   | $35.4 \pm 0.3$                                     | $316.8 \pm 2.8$                    | $-0.38 \pm 0.02$                     | -21.7 $\pm$ 0.4                                       | $1209.2 \pm 5.1$                     |
| (Poly-UCB1,32)                            | $-155.3 \pm 2.2$                     | $-20.3 \pm 0.5$                    | $51.4 \pm 0.6$                   | $37.2 \pm 0.3$                                     | $324.9 \pm 2.8$                    | $-0.58 \pm 0.02$                     | $-43.6 \pm 0.7$                                       | $1199.8 \pm 4.8$                     |
| (Poly-UCB1,4)                             | $-106.4 \pm 1.3$                     | $-14.0 \pm 0.4$                    | $51.7 \pm 0.6$                   | $35.8 \pm 0.3$                                     | $321.4 \pm 2.8$                    | $-0.37 \pm 0.02$                     | $-22.6 \pm 0.4$                                       | $1208.8 \pm 5.0$                     |
| (Poly-UCB1,64)                            | $-156.9 \pm 2.3$                     | $-21.6 \pm 0.5$                    | $51.8 \pm 0.7$                   | $37.2 \pm 0.3$                                     | $326.6 \pm 2.7$                    | $-0.65 \pm 0.02$                     | $-43.3 \pm 0.7$                                       | $1197.2 \pm 4.7$                     |
| (Poly-UCB1,8)                             | $-150.5 \pm 2.0$                     | $-14.5 \pm 0.4$                    | $51.6 \pm 0.6$                   | $36.2 \pm 0.3$                                     | $322.8 \pm 2.7$                    | $-0.45 \pm 0.02$                     | $-39.4 \pm 0.6$                                       | $1203.3 \pm 4.9$                     |
| (Vanilla UCT,0.125)                       | $-116.4 \pm 1.1$                     | $-33.0 \pm 0.5$                    | $51.9 \pm 0.6$                   | $35.4 \pm 0.2$                                     | $308.7 \pm 2.0$                    | $-0.27 \pm 0.02$                     | $-22.6 \pm 0.3$                                       | $1192.1 \pm 3.2$                     |
| (Vanilla UCT,0.25)                        | $-115.3 \pm 1.1$                     | $-32.0 \pm 0.5$                    | $52.1 \pm 0.6$                   | $35.6 \pm 0.2$                                     | $310.8 \pm 2.0$                    | $-0.16 \pm 0.02$                     | $-22.3 \pm 0.3$                                       | $1193.4 \pm 3.2$                     |
| (Vanilla UCT,0.5)                         | $-114.3 \pm 1.1$                     | $-30.7 \pm 0.5$                    | $52.0 \pm 0.6$                   | $36.0 \pm 0.2$                                     | $311.0 \pm 2.0$                    | $-0.12 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1198.2 \pm 3.3$                     |
| (Vanilla UCT,1)                           | $-113.3 \pm 1.1$                     | $-27.4 \pm 0.5$                    | $52.7 \pm 0.6$                   | $36.7 \pm 0.2$                                     | $312.4 \pm 2.0$                    | $-0.13 \pm 0.02$                     | $-22.3 \pm 0.3$                                       | $1199.8 \pm 3.4$                     |
| (Vanilla UCT,1000)                        | $-117.2 \pm 1.1$                     | $-14.6 \pm 0.3$                    | $52.2 \pm 0.7$                   | $44.0 \pm 0.2$                                     | $305.4 \pm 2.0$                    | $-0.34 \pm 0.02$                     | $-26.2 \pm 0.3$                                       | $1150.7 \pm 2.5$                     |
| (Vanilla UCT,16)                          | $-108.0 \pm 1.0$                     | $-14.3 \pm 0.3$                    | $53.9 \pm 0.6$                   | $44.4 \pm 0.2$                                     | $327.4 \pm 1.9$                    | $-0.30 \pm 0.02$                     | $-23.0 \pm 0.3$                                       | $1193.5 \pm 3.3$                     |
| (Vanilla UCT,2)                           | $-111.1 \pm 1.1$                     | $-23.2 \pm 0.4$                    | $53.8 \pm 0.6$                   | $38.7 \pm 0.2$                                     | $315.1 \pm 1.9$                    | $-0.20 \pm 0.02$                     | $-22.2 \pm 0.3$                                       | $1201.8 \pm 3.3$                     |
| (Vanilla UCT,256)                         | $-114.2 \pm 1.1$                     | $-14.5 \pm 0.3$                    | $52.8 \pm 0.6$                   | $43.9 \pm 0.2$                                     | $309.4 \pm 2.0$                    | $-0.34 \pm 0.02$                     | $-26.2 \pm 0.3$                                       | $1160.6 \pm 2.8$                     |
| (Vanilla UCT,32)                          | $-106.9 \pm 1.0$                     | $-14.2 \pm 0.3$                    | $53.3 \pm 0.7$                   | $44.1 \pm 0.2$                                     | $326.0 \pm 2.0$                    | $-0.33 \pm 0.02$                     | $-24.1 \pm 0.3$                                       | $1192.4 \pm 3.3$                     |
| (Vanilla UCT,4)                           | $-111.4 \pm 1.1$                     | $-19.0 \pm 0.4$                    | $54.2 \pm 0.6$                   | $41.6 \pm 0.2$                                     | $321.0 \pm 1.9$                    | $-0.27 \pm 0.02$                     | $-22.1 \pm 0.3$                                       | $1202.0 \pm 3.4$                     |
| (Vanilla UCT,64)                          | $-107.7 \pm 1.0$                     | $-14.3 \pm 0.3$                    | $52.8 \pm 0.6$                   | $44.1 \pm 0.2$<br>$44.0 \pm 0.2$                   | $319.8 \pm 2.0$                    | $-0.36 \pm 0.02$                     | $-25.4 \pm 0.3$<br>$-25.4 \pm 0.3$<br>$-22.3 \pm 0.3$ | $1183.6 \pm 3.2$<br>$1199.3 \pm 3.3$ |
| (Vanilla UCT,8)                           | $-108.8 \pm 1.1$                     | $-15.6 \pm 0.3$                    | $54.0 \pm 0.6$                   | 44.0 ± 0.2                                         | $324.1 \pm 1.9$                    | $-0.29 \pm 0.02$                     | -22.3 ± 0.3                                           | 1109.3 ± 3.3                         |

TABLE XI: Part 3/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 100 MCTS iterations..

|                                        | CaptureTheFlag                                        | Chess                                                    | Connect4                                                 | Constrictor                                              | KillTheKing                                              | NumbersRace                                              | Othello                                                  | Pusher                                                          | Pylos                                                    | Quarto                                                   |
|----------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| (Global Abs, 0.125)                    | 0.00 ± 0.00                                           | $-0.37 \pm 0.02$                                         | $-0.88 \pm 0.01$                                         | $-0.75 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | -0.09 ± 0.03                                             | $-0.69 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.80 \pm 0.02$                                         | $-0.47 \pm 0.02$                                         |
| (Global Abs,0.25)<br>(Global Abs,0.5)  | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.38 \pm 0.02$<br>$-0.42 \pm 0.02$                     | $-0.81 \pm 0.01$<br>$-0.69 \pm 0.02$                     | $-0.71 \pm 0.02$<br>$-0.58 \pm 0.02$                     | $-0.20 \pm 0.01$<br>$-0.18 \pm 0.01$                     | $-0.10 \pm 0.03$<br>$-0.13 \pm 0.03$                     | $-0.64 \pm 0.02$<br>$-0.52 \pm 0.02$                     | $\begin{array}{c} -0.00 \pm 0.00 \\ -0.00 \pm 0.00 \end{array}$ | $-0.73 \pm 0.02$<br>$-0.62 \pm 0.02$                     | $-0.39 \pm 0.02$<br>$-0.31 \pm 0.02$                     |
| (Global Abs,1)                         | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.46 \pm 0.02$                                         | $-0.59 \pm 0.02$                                         | $-0.44 \pm 0.02$<br>$-0.45 \pm 0.02$                     | $-0.16 \pm 0.01$                                         | $-0.25 \pm 0.03$                                         | $-0.44 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.48 \pm 0.02$                                         | $-0.33 \pm 0.02$                                         |
| (Global Abs,16)<br>(Global Abs,2)      | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$<br>$-0.46 \pm 0.02$                     | $-0.83 \pm 0.01$<br>$-0.61 \pm 0.02$                     | $-0.37\pm0.02$                                           | $-0.20 \pm 0.01$<br>$-0.16 \pm 0.01$                     | $-0.46 \pm 0.02$<br>$-0.25 \pm 0.03$                     | $-0.69 \pm 0.02$<br>$-0.50 \pm 0.02$                     | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                             | $-0.69 \pm 0.02$<br>$-0.52 \pm 0.02$                     | $-0.68 \pm 0.02$<br>$-0.40 \pm 0.02$                     |
| (Global Abs,32)                        | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.83 \pm 0.01$                                         | $-0.47 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | $-0.51 \pm 0.02$                                         | $-0.67 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.71 \pm 0.02$                                         | $-0.70 \pm 0.02$                                         |
| (Global Abs,4)                         | $0.00 \pm 0.00$                                       | $-0.48 \pm 0.02$                                         | $-0.73 \pm 0.02$                                         | $-0.40 \pm 0.02$                                         | $-0.17 \pm 0.01$                                         | $-0.31 \pm 0.02$                                         | $-0.60 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.62 \pm 0.02$                                         | $-0.56 \pm 0.02$                                         |
| (Global Abs,64)                        | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.58 \pm 0.02$                                         | $-0.85 \pm 0.01$                                         | $-0.47 \pm 0.02$                                         | $-0.21 \pm 0.01$                                         | $-0.53 \pm 0.02$                                         | $-0.67 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         |
| (Global Abs,8)                         |                                                       | $-0.52 \pm 0.02$                                         | $-0.79 \pm 0.02$                                         | $-0.44 \pm 0.02$                                         | $-0.18 \pm 0.01$                                         | $-0.40 \pm 0.02$                                         | $-0.65 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.66 \pm 0.02$                                         | $-0.64 \pm 0.02$                                         |
| (Global Range, 0.125)                  | $0.00 \pm 0.00$                                       | $-0.43 \pm 0.02$                                         | $-0.79 \pm 0.02$                                         | $-0.70 \pm 0.02$                                         | $-0.18 \pm 0.01$                                         | $-0.07 \pm 0.03$                                         | $-0.61 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.02$                                         | $-0.38 \pm 0.02$                                         |
| (Global Range,0.25)                    | $0.00 \pm 0.00$                                       | $-0.45 \pm 0.02$                                         | $-0.66 \pm 0.02$                                         | $-0.56 \pm 0.02$                                         | $-0.17 \pm 0.01$                                         | $-0.11 \pm 0.03$                                         | $-0.49 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.57 \pm 0.02$                                         | $-0.30 \pm 0.02$                                         |
| (Global Range,0.5)                     | $0.00 \pm 0.00$                                       | $-0.49 \pm 0.02$                                         | $-0.57 \pm 0.02$                                         | $-0.39 \pm 0.02$                                         | $-0.16 \pm 0.01$                                         | $-0.26 \pm 0.03$                                         | -0.44 $\pm$ 0.02                                         | $-0.00 \pm 0.00$                                                | $-0.47 \pm 0.02$                                         | $-0.33 \pm 0.02$                                         |
| (Global Range,1)                       | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.55 \pm 0.02$                                         | $-0.63 \pm 0.02$                                         | $-0.38 \pm 0.02$                                         | $-0.17 \pm 0.01$                                         | $-0.26 \pm 0.03$                                         | $-0.56 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.53 \pm 0.02$                                         | $-0.46 \pm 0.02$                                         |
| (Global Range,16)                      |                                                       | $-0.56 \pm 0.02$                                         | $-0.84 \pm 0.01$                                         | $-0.46 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.68 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         |
| (Global Range,2)                       | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.55 \pm 0.02$                                         | $-0.74 \pm 0.02$                                         | $-0.41 \pm 0.02$                                         | $-0.18 \pm 0.01$                                         | $-0.30 \pm 0.02$                                         | $-0.62 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.64 \pm 0.02$                                         | $-0.62 \pm 0.02$                                         |
| (Global Range,32)                      |                                                       | $-0.56 \pm 0.02$                                         | $-0.84 \pm 0.01$                                         | $-0.47 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.70 \pm 0.02$                                         | $-0.70 \pm 0.02$                                         |
| (Global Range,4)                       | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.02$                                         | $-0.81 \pm 0.01$                                         | $-0.45 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.41 \pm 0.02$                                         | $-0.65 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.67 \pm 0.02$                                         | $-0.67 \pm 0.02$                                         |
| (Global Range,64)                      | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.84 \pm 0.01$                                         | $-0.48 \pm 0.02$                                         | $-0.21 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.70 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         |
| (Global Range,8)<br>(Global Std,0.125) | $0.00 \pm 0.00$ $0.00 \pm 0.00$ $0.00 \pm 0.00$       | $-0.56 \pm 0.02$<br>$-0.56 \pm 0.03$<br>$-0.39 \pm 0.03$ | $-0.83 \pm 0.01$<br>$-0.83 \pm 0.02$                     | $-0.45 \pm 0.02$<br>$-0.45 \pm 0.02$<br>$-0.77 \pm 0.02$ | $-0.19 \pm 0.01$<br>$-0.20 \pm 0.02$                     | $-0.47 \pm 0.02$<br>$-0.47 \pm 0.02$<br>$-0.08 \pm 0.04$ | $-0.69 \pm 0.02$<br>$-0.72 \pm 0.03$                     | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$        | $-0.71 \pm 0.02$<br>$-0.71 \pm 0.02$<br>$-0.81 \pm 0.02$ | $-0.69 \pm 0.02$<br>$-0.49 \pm 0.03$                     |
| (Global Std, 0.25)                     | $0.00 \pm 0.00$                                       | $-0.43 \pm 0.03$                                         | $-0.82 \pm 0.02$                                         | $-0.74 \pm 0.02$                                         | $-0.20 \pm 0.02$                                         | $-0.06 \pm 0.04$                                         | $-0.68 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.78 \pm 0.02$                                         | $-0.41 \pm 0.03$                                         |
| (Global Std,0.5)<br>(Global Std,1)     | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.47 \pm 0.03$<br>$-0.45 \pm 0.03$                     | $-0.68 \pm 0.03$<br>$-0.58 \pm 0.03$                     | $-0.65 \pm 0.03$<br>$-0.46 \pm 0.03$                     | $-0.18 \pm 0.02 \\ -0.14 \pm 0.02$                       | $-0.13 \pm 0.04$<br>$-0.25 \pm 0.04$                     | $-0.53 \pm 0.03$<br>$-0.46 \pm 0.03$                     | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                                | $-0.62 \pm 0.03$<br>$-0.47 \pm 0.03$                     | $-0.31 \pm 0.03$<br>$-0.35 \pm 0.03$                     |
| (Global Std,16)                        | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.54 \pm 0.03$                                         | $-0.82 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.20 \pm 0.02$                                         | $-0.48 \pm 0.03$                                         | $-0.67 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.71 \pm 0.03$                                         | $-0.70 \pm 0.02$                                         |
| (Global Std,2)                         |                                                       | $-0.48 \pm 0.03$                                         | $-0.61 \pm 0.03$                                         | $-0.39 \pm 0.03$                                         | $-0.16 \pm 0.02$                                         | $-0.23 \pm 0.04$                                         | $-0.50 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.53 \pm 0.03$                                         | $-0.41 \pm 0.03$                                         |
| (Global Std,32)<br>(Global Std,4)      | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.58 \pm 0.03$                                         | $-0.84 \pm 0.02$                                         | $-0.45 \pm 0.03$<br>$-0.40 \pm 0.03$                     | $-0.21 \pm 0.02$<br>$-0.19 \pm 0.02$                     | $-0.52 \pm 0.03$<br>$-0.29 \pm 0.04$                     | $-0.70 \pm 0.03$<br>$-0.60 \pm 0.03$                     | $-0.00 \pm 0.00$<br>$0.00 \pm 0.00$                             | $-0.70 \pm 0.03$<br>$-0.62 \pm 0.03$                     | $-0.68 \pm 0.03$<br>$-0.57 \pm 0.03$                     |
| (Global Std,64)                        | $0.00 \pm 0.00$                                       | $-0.51 \pm 0.03$<br>$-0.55 \pm 0.03$                     | $-0.73 \pm 0.02$<br>$-0.83 \pm 0.02$                     | $-0.48 \pm 0.03$                                         | $-0.19 \pm 0.02$                                         | $-0.52 \pm 0.03$                                         | $-0.68 \pm 0.03$                                         | $0.00 \pm 0.00$                                                 | $-0.72 \pm 0.03$                                         | $-0.68 \pm 0.03$                                         |
| (Global Std,8)                         | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.03$                                         | $-0.81 \pm 0.02$                                         | $-0.44 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.43 \pm 0.03$                                         | $-0.64 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.67 \pm 0.03$                                         | $-0.66 \pm 0.03$                                         |
| (Layer Abs,0.125)                      | $0.00 \pm 0.00$                                       | $-0.35 \pm 0.02$                                         | $-0.87 \pm 0.01$                                         | $-0.75 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.07 \pm 0.03$                                         | $-0.70 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.80 \pm 0.02$                                         | $-0.49 \pm 0.02$                                         |
| (Layer Abs,0.25)                       | $0.00 \pm 0.00$                                       | $-0.38 \pm 0.02$                                         | $-0.81 \pm 0.01$                                         | $-0.71 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | $-0.05 \pm 0.03$                                         | $-0.64 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.78 \pm 0.02$                                         | $-0.40 \pm 0.02$                                         |
| (Layer Abs,0.5)                        | $0.00 \pm 0.00$                                       | $-0.40 \pm 0.02$                                         | $-0.71 \pm 0.02$                                         | $-0.62 \pm 0.02$                                         | $-0.18 \pm 0.01$                                         | $-0.11 \pm 0.03$                                         | $-0.55 \pm 0.02$                                         | $0.00 \pm 0.00$                                                 | $-0.65 \pm 0.02$                                         | $-0.32 \pm 0.02$                                         |
| (Layer Abs,1)                          | $0.00 \pm 0.00$                                       | $-0.43 \pm 0.02$                                         | $-0.60 \pm 0.02$                                         | $-0.49 \pm 0.02$                                         | $-0.17 \pm 0.01$                                         | $-0.16 \pm 0.03$                                         | $-0.47 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.51 \pm 0.02$                                         | $-0.30 \pm 0.02$                                         |
| (Layer Abs,16)                         | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.02$                                         | $-0.79 \pm 0.02$                                         | $-0.41 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | $-0.48 \pm 0.02$                                         | $-0.64 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.67 \pm 0.02$                                         | $-0.65 \pm 0.02$                                         |
| (Layer Abs,2)                          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.45 \pm 0.02$                                         | $-0.59 \pm 0.02$                                         | $-0.43 \pm 0.02$<br>$-0.46 \pm 0.02$                     | $-0.18 \pm 0.01$                                         | $-0.25 \pm 0.03$                                         | $-0.49 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.50 \pm 0.02$                                         | $-0.34 \pm 0.02$                                         |
| (Layer Abs,32)<br>(Layer Abs,4)        | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.02$<br>$-0.48 \pm 0.02$                     | $-0.82 \pm 0.01$<br>$-0.67 \pm 0.02$                     | $-0.41 \pm 0.02$                                         | $-0.19 \pm 0.01$<br>$-0.17 \pm 0.01$                     | $-0.49 \pm 0.02$<br>$-0.32 \pm 0.02$                     | $-0.68 \pm 0.02$<br>$-0.55 \pm 0.02$                     | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                            | $-0.69 \pm 0.02$<br>$-0.56 \pm 0.02$                     | $-0.65 \pm 0.02$<br>$-0.50 \pm 0.02$                     |
| (Layer Abs,64)<br>(Layer Abs,8)        | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.57 \pm 0.02$<br>$-0.53 \pm 0.02$                     | $-0.82 \pm 0.01$<br>$-0.74 \pm 0.02$                     | $-0.47 \pm 0.02$<br>$-0.43 \pm 0.02$                     | $-0.20 \pm 0.01$<br>$-0.18 \pm 0.01$                     | $-0.53 \pm 0.02$<br>$-0.41 \pm 0.02$                     | $-0.68 \pm 0.02$<br>$-0.60 \pm 0.02$                     | $\begin{array}{c} -0.00 \pm 0.00 \\ -0.00 \pm 0.00 \end{array}$ | $-0.70 \pm 0.02$<br>$-0.63 \pm 0.02$                     | $-0.69 \pm 0.02$<br>$-0.61 \pm 0.02$                     |
| (Layer Range,0.125)                    | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.43 \pm 0.02$                                         | $-0.91 \pm 0.01$                                         | $-0.79 \pm 0.02$                                         | $-0.21 \pm 0.01$                                         | $-0.06 \pm 0.03$                                         | $-0.74 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.81 \pm 0.02$                                         | $-0.55 \pm 0.02$                                         |
| (Layer Range,0.25)                     |                                                       | $-0.44 \pm 0.02$                                         | $-0.89 \pm 0.01$                                         | $-0.79 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.07 \pm 0.03$                                         | $-0.72 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.80 \pm 0.02$                                         | $-0.56 \pm 0.02$                                         |
| (Layer Range,0.5)                      | $0.00 \pm 0.00$                                       | $-0.45 \pm 0.02$                                         | $-0.88 \pm 0.01$                                         | $-0.77 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.13 \pm 0.03$                                         | $-0.69 \pm 0.02$                                         | $0.00 \pm 0.00$                                                 | $-0.76 \pm 0.02$                                         | $-0.56 \pm 0.02$                                         |
| (Layer Range,1)                        | $0.00 \pm 0.00$                                       | $-0.51 \pm 0.02$                                         | $-0.65 \pm 0.02$                                         | $-0.59 \pm 0.02$                                         | $-0.16 \pm 0.01$                                         | $-0.26 \pm 0.03$                                         | $-0.55 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.58 \pm 0.02$                                         | $-0.42 \pm 0.02$                                         |
| (Layer Range,16)                       | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.83 \pm 0.01$                                         | $-0.45 \pm 0.02$                                         | $-0.17 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.67 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.69 \pm 0.02$                                         | $-0.68 \pm 0.02$                                         |
| (Layer Range,2)                        | $0.00 \pm 0.00$                                       | $-0.55 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         | $-0.49 \pm 0.02$                                         | $-0.16 \pm 0.01$                                         | $-0.31 \pm 0.02$                                         | $-0.57 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.59 \pm 0.02$                                         | $-0.55 \pm 0.02$                                         |
| (Layer Range,32)                       | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.84 \pm 0.01$                                         | $-0.45 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.71 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         |
| (Layer Range,4)                        | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.56 \pm 0.02$                                         | $-0.76 \pm 0.02$                                         | $-0.45 \pm 0.02$                                         | $-0.16 \pm 0.01$                                         | $-0.43 \pm 0.02$                                         | $-0.61 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.65 \pm 0.02$                                         | $-0.63 \pm 0.02$                                         |
| (Layer Range,64)                       |                                                       | $-0.58 \pm 0.02$                                         | $-0.85 \pm 0.01$                                         | $-0.47 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.02$                                         | $-0.70 \pm 0.02$                                         |
| (Layer Range,8)                        | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.80 \pm 0.02$                                         | $-0.43 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | $-0.48 \pm 0.02$                                         | $-0.65 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.67 \pm 0.02$                                         | $-0.67 \pm 0.02$                                         |
| (Layer Std,0.125)                      | $0.00 \pm 0.00$                                       | $-0.40 \pm 0.03$                                         | $-0.91 \pm 0.01$                                         | $-0.79 \pm 0.02$                                         | $-0.20 \pm 0.02$                                         | $-0.04 \pm 0.04$                                         | $-0.73 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.83 \pm 0.02$                                         | $-0.55 \pm 0.03$                                         |
| (Layer Std,0.25)                       | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.41 \pm 0.03$                                         | $-0.92 \pm 0.01$                                         | $-0.78 \pm 0.02$                                         | $-0.20 \pm 0.02$                                         | $-0.07 \pm 0.04$                                         | $-0.73 \pm 0.02$                                         | $0.00 \pm 0.00$                                                 | $-0.82 \pm 0.02$                                         | $-0.55 \pm 0.03$                                         |
| (Layer Std,0.5)                        |                                                       | $-0.44 \pm 0.03$                                         | $-0.89 \pm 0.02$                                         | $-0.77 \pm 0.02$                                         | $-0.19 \pm 0.02$                                         | $-0.07 \pm 0.04$                                         | $-0.71 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.79 \pm 0.02$                                         | $-0.53 \pm 0.03$                                         |
| (Layer Std,1)                          | $0.00 \pm 0.00$                                       | $-0.46 \pm 0.03$                                         | $-0.88 \pm 0.02$                                         | $-0.78 \pm 0.02$                                         | $-0.19 \pm 0.02$                                         | $-0.10 \pm 0.04$                                         | $-0.70 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.77 \pm 0.02$                                         | $-0.57 \pm 0.03$                                         |
| (Layer Std,16)                         | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.03$                                         | $-0.79 \pm 0.02$                                         | $-0.45 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.63 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.65 \pm 0.03$                                         | $-0.65 \pm 0.03$                                         |
| (Layer Std,2)                          | $0.00 \pm 0.00$                                       | $-0.46 \pm 0.03$                                         | $-0.69 \pm 0.03$                                         | $-0.59 \pm 0.03$                                         | $-0.17 \pm 0.02$                                         | $-0.22 \pm 0.04$                                         | $-0.52 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.57 \pm 0.03$                                         | $-0.43 \pm 0.03$                                         |
| (Layer Std,32)                         | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.03$                                         | $-0.79 \pm 0.02$                                         | $-0.44 \pm 0.03$                                         | $-0.19 \pm 0.02$                                         | $-0.51 \pm 0.03$                                         | $-0.65 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.68 \pm 0.03$                                         | $-0.69 \pm 0.02$                                         |
| (Layer Std,4)                          | $0.00 \pm 0.00$                                       | $-0.50 \pm 0.03$                                         | $-0.69 \pm 0.03$                                         | $-0.48 \pm 0.03$                                         | $-0.17 \pm 0.02$                                         | $-0.29 \pm 0.04$                                         | $-0.54 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.56 \pm 0.03$                                         | $-0.52 \pm 0.03$                                         |
| (Layer Std,64)                         | $0.00 \pm 0.00$                                       | $-0.58 \pm 0.03$                                         | $-0.84 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.19 \pm 0.02$                                         | $-0.52 \pm 0.03$                                         | $-0.68 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.70 \pm 0.03$                                         | $-0.71 \pm 0.02$                                         |
| (Layer Std,8)                          | $0.00 \pm 0.00$                                       | $-0.52 \pm 0.03$                                         | $-0.73 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.39 \pm 0.03$                                         | $-0.60 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.60 \pm 0.03$                                         | $-0.61 \pm 0.03$                                         |
| (Local Q,0.125)                        | $0.00 \pm 0.00$                                       | $-0.39 \pm 0.03$                                         | $-0.92 \pm 0.01$                                         | $-0.83 \pm 0.02$                                         | $-0.22 \pm 0.02$                                         | $-0.06 \pm 0.04$                                         | $-0.79 \pm 0.02$                                         | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                                | $-0.84 \pm 0.02$                                         | $-0.57 \pm 0.03$                                         |
| (Local Q,0.25)                         | $0.00 \pm 0.00$                                       | $-0.39 \pm 0.03$                                         | $-0.92 \pm 0.01$                                         | $-0.83 \pm 0.02$                                         | $-0.21 \pm 0.02$                                         | $-0.01 \pm 0.04$                                         | $-0.78 \pm 0.02$                                         |                                                                 | $-0.85 \pm 0.02$                                         | $-0.60 \pm 0.03$                                         |
| (Local Q,0.5)                          | $0.00 \pm 0.00$ $0.00 \pm 0.00$ $0.00 \pm 0.00$       | $-0.36 \pm 0.03$                                         | $-0.94 \pm 0.01$                                         | $-0.85 \pm 0.02$                                         | $-0.23 \pm 0.02$                                         | $-0.00 \pm 0.04$                                         | $-0.78 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.86 \pm 0.02$                                         | $-0.56 \pm 0.03$                                         |
| (Local Q,1)                            |                                                       | $-0.39 \pm 0.03$                                         | $-0.93 \pm 0.01$                                         | $-0.84 \pm 0.02$                                         | $-0.22 \pm 0.02$                                         | $-0.01 \pm 0.04$                                         | $-0.79 \pm 0.02$                                         | $0.00 \pm 0.00$                                                 | $-0.85 \pm 0.02$                                         | $-0.58 \pm 0.03$                                         |
| (Local Q,16)                           | $0.00 \pm 0.00$                                       | $-0.39 \pm 0.03$                                         | $-0.94 \pm 0.01$                                         | $-0.85 \pm 0.02$                                         | $-0.24 \pm 0.02$                                         | $-0.04 \pm 0.04$                                         | $-0.79 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.86 \pm 0.02$                                         | $-0.60 \pm 0.03$                                         |
| (Local Q,2)                            | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.34 \pm 0.03$                                         | $-0.93 \pm 0.01$                                         | $-0.84 \pm 0.02$                                         | $-0.21 \pm 0.02$                                         | $-0.02 \pm 0.04$                                         | $-0.80 \pm 0.02$                                         | $0.00 \pm 0.00$                                                 | $-0.85 \pm 0.02$                                         | $-0.58 \pm 0.03$                                         |
| (Local Q,32)                           |                                                       | $-0.37 \pm 0.03$                                         | $-0.93 \pm 0.01$                                         | $-0.84 \pm 0.02$                                         | $-0.24 \pm 0.02$                                         | $-0.04 \pm 0.04$                                         | $-0.79 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.84 \pm 0.02$                                         | $-0.61 \pm 0.03$                                         |
| (Local Q,4)                            | $0.00 \pm 0.00$                                       | $-0.38 \pm 0.03$                                         | $-0.93 \pm 0.01$                                         | $-0.85 \pm 0.02$                                         | $-0.23 \pm 0.02$                                         | $-0.01 \pm 0.04$                                         | $-0.79 \pm 0.02$                                         | $0.00 \pm 0.00$                                                 | $-0.86 \pm 0.02$                                         | $-0.60 \pm 0.03$                                         |
| (Local Q,64)                           | $0.00 \pm 0.00$                                       | $-0.38 \pm 0.03$                                         | $-0.93 \pm 0.01$                                         | $-0.82 \pm 0.02$                                         | $-0.23 \pm 0.02$                                         | $-0.03 \pm 0.04$                                         | $-0.78 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.85 \pm 0.02$                                         | $-0.59 \pm 0.03$                                         |
| (Local Q,8)                            | $0.00 \pm 0.00$                                       | $-0.36 \pm 0.03$                                         | $-0.92 \pm 0.01$                                         | $-0.86 \pm 0.02$                                         | $-0.21 \pm 0.02$                                         | $-0.03 \pm 0.04$                                         | $-0.79 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.86 \pm 0.02$                                         | $-0.59 \pm 0.03$                                         |
| (Local Abs,0.125)                      | $0.00 \pm 0.00$                                       | $-0.40 \pm 0.03$                                         | $-0.88 \pm 0.02$                                         | $-0.75 \pm 0.02$                                         | $-0.21 \pm 0.02$                                         | $-0.03 \pm 0.04$                                         | $-0.71 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.80 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         |
| (Local Abs, 0.25)                      | $0.00 \pm 0.00$                                       | $-0.38 \pm 0.03$                                         | $-0.80 \pm 0.02$                                         | $-0.70 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.03 \pm 0.04$                                         | $-0.64 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.03$                                         | $-0.35 \pm 0.03$                                         |
|                                        | $0.00 \pm 0.00$                                       | $-0.39 \pm 0.03$                                         | $-0.65 \pm 0.03$                                         | $-0.58 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.09 \pm 0.04$                                         | $-0.52 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.59 \pm 0.03$                                         | $-0.32 \pm 0.03$                                         |
| (Local Abs,0.5)<br>(Local Abs,1)       | $0.00 \pm 0.00$                                       | $-0.43 \pm 0.03$                                         | $-0.60 \pm 0.03$                                         | $-0.46 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.14 \pm 0.04$                                         | $-0.53 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.55 \pm 0.03$                                         | $-0.35 \pm 0.03$                                         |
| (Local Abs,16)                         | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.51 \pm 0.03$                                         | $-0.96 \pm 0.01$                                         | $-0.71 \pm 0.03$                                         | $-0.35 \pm 0.02$                                         | $-0.42 \pm 0.03$                                         | $-0.84 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.88 \pm 0.02$                                         | $-0.79 \pm 0.02$                                         |
| (Local Abs,2)                          |                                                       | $-0.47 \pm 0.03$                                         | $-0.85 \pm 0.02$                                         | $-0.47 \pm 0.03$                                         | $-0.22 \pm 0.02$                                         | $-0.13 \pm 0.04$                                         | $-0.73 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.73 \pm 0.03$                                         | $-0.60 \pm 0.03$                                         |
| (Local Abs,32)                         | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.52 \pm 0.03$                                         | $-0.96 \pm 0.01$                                         | $-0.73 \pm 0.03$                                         | $-0.34 \pm 0.02$                                         | $-0.47 \pm 0.03$                                         | $-0.86 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.86 \pm 0.02$                                         | $-0.78 \pm 0.02$                                         |
| (Local Abs,4)                          |                                                       | $-0.50 \pm 0.03$                                         | $-0.96 \pm 0.01$                                         | $-0.65 \pm 0.03$                                         | $-0.32 \pm 0.02$                                         | $-0.23 \pm 0.04$                                         | $-0.84 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.84 \pm 0.02$                                         | $-0.76 \pm 0.02$                                         |
| (Local Abs,64)                         | $0.00 \pm 0.00$                                       | $-0.55 \pm 0.03$                                         | $-0.96 \pm 0.01$                                         | $-0.74 \pm 0.02$                                         | $-0.35 \pm 0.02$                                         | $-0.48 \pm 0.03$                                         | $-0.85 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.87 \pm 0.02$                                         | $-0.78 \pm 0.02$                                         |
| (Local Abs,8)                          | $0.00 \pm 0.00$                                       | $-0.53 \pm 0.03$                                         | $-0.95 \pm 0.01$                                         | $-0.71 \pm 0.03$                                         | $-0.34 \pm 0.02$                                         | $-0.31 \pm 0.04$                                         | $-0.84 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.87 \pm 0.02$                                         | $-0.80 \pm 0.02$                                         |
| (Local Range,0.125)                    | $0.00 \pm 0.00$                                       | $-0.43 \pm 0.02$                                         | $-0.92 \pm 0.01$                                         | $-0.79 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.05 \pm 0.03$                                         | $-0.74 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.82 \pm 0.01$                                         | $-0.55 \pm 0.02$                                         |
| (Local Range,0.25)                     | $0.00 \pm 0.00$                                       | $-0.44 \pm 0.02$                                         | $-0.90 \pm 0.01$                                         | $-0.80 \pm 0.02$                                         | $-0.21 \pm 0.01$                                         | $-0.07 \pm 0.03$                                         | $-0.74 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.81 \pm 0.02$                                         | $-0.54 \pm 0.02$                                         |
| (Local Range, 0.5)                     | $0.00 \pm 0.00$                                       | $-0.47 \pm 0.02$                                         | $-0.90 \pm 0.01$                                         | $-0.80 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | $-0.13 \pm 0.03$                                         | $-0.70 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.81 \pm 0.02$                                         | $-0.56 \pm 0.02$                                         |
| (Local Range,1)                        | $0.00 \pm 0.00$                                       | $-0.51 \pm 0.02$                                         | $-0.67 \pm 0.02$                                         | $-0.56 \pm 0.02$                                         | $-0.16 \pm 0.01$                                         | $-0.25 \pm 0.03$                                         | $-0.54 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.59 \pm 0.02$                                         | $-0.42 \pm 0.02$                                         |
| (Local Range,16)                       | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.83 \pm 0.01$                                         | $-0.46 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.70 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         |
| (Local Range,2)                        | $0.00 \pm 0.00$                                       | $-0.55 \pm 0.02$                                         | $-0.68 \pm 0.02$                                         | $-0.47 \pm 0.02$                                         | $-0.17 \pm 0.01$                                         | $-0.32 \pm 0.02$                                         | $-0.56 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.56 \pm 0.02$                                         | $-0.53 \pm 0.02$                                         |
| (Local Range,32)                       | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.83 \pm 0.01$                                         | $-0.48 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.71 \pm 0.02$                                         | $-0.68 \pm 0.02$                                         |
| (Local Range,4)                        | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.75 \pm 0.02$                                         | $-0.45 \pm 0.02$                                         | $-0.18 \pm 0.01$                                         | $-0.43 \pm 0.02$                                         | $-0.61 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.63 \pm 0.02$                                         | $-0.64 \pm 0.02$                                         |
| (Local Range,64)                       | $0.00 \pm 0.00$                                       | $-0.58 \pm 0.02$                                         | $-0.85 \pm 0.01$                                         | $-0.47 \pm 0.02$                                         | $-0.20 \pm 0.01$                                         | $-0.52 \pm 0.02$                                         | $-0.70 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.70 \pm 0.02$                                         | $-0.69 \pm 0.02$                                         |
| (Local Range,8)                        | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.02$                                         | $-0.79 \pm 0.02$                                         | $-0.46 \pm 0.02$                                         | $-0.19 \pm 0.01$                                         | $-0.48 \pm 0.02$                                         | $-0.66 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.65 \pm 0.02$                                         | $-0.66 \pm 0.02$                                         |
| (Local Std,0.125)                      | $0.00 \pm 0.00$                                       | $-0.37 \pm 0.03$                                         | $-0.91 \pm 0.01$                                         | $-0.80 \pm 0.02$                                         | $-0.20 \pm 0.02$                                         | $-0.06 \pm 0.04$                                         | $-0.75 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.83 \pm 0.02$                                         | $-0.56 \pm 0.03$                                         |
| (Local Std,0.25)<br>(Local Std,0.5)    | $0.00 \pm 0.00$ $0.00 \pm 0.00$ $0.00 \pm 0.00$       | $-0.38 \pm 0.03$<br>$-0.40 \pm 0.03$                     | $-0.92 \pm 0.01$<br>$-0.92 \pm 0.02$                     | $-0.78 \pm 0.02$<br>$-0.79 \pm 0.02$                     | $-0.20 \pm 0.02$<br>$-0.22 \pm 0.02$<br>$-0.20 \pm 0.02$ | $-0.05 \pm 0.04$<br>$-0.05 \pm 0.04$<br>$-0.08 \pm 0.04$ | $-0.74 \pm 0.02$<br>$-0.74 \pm 0.02$<br>$-0.74 \pm 0.02$ | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$        | $-0.84 \pm 0.02$<br>$-0.81 \pm 0.02$                     | $-0.57 \pm 0.03$<br>$-0.57 \pm 0.03$<br>$-0.55 \pm 0.03$ |
| (Local Std,1)                          | $0.00 \pm 0.00$                                       | $-0.43 \pm 0.03$                                         | $-0.89 \pm 0.02$                                         | $-0.81 \pm 0.02$                                         | $-0.19 \pm 0.02$                                         | $-0.11 \pm 0.04$                                         | $-0.73 \pm 0.02$                                         | $0.00 \pm 0.00$                                                 | $-0.81 \pm 0.02$                                         | $-0.56 \pm 0.03$                                         |
| (Local Std,16)                         | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.56 \pm 0.03$                                         | $-0.79 \pm 0.02$                                         | $-0.41 \pm 0.03$                                         | $-0.17 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.65 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.67 \pm 0.03$                                         | $-0.66 \pm 0.03$                                         |
| (Local Std,2)                          |                                                       | $-0.46 \pm 0.03$                                         | $-0.70 \pm 0.03$                                         | $-0.60 \pm 0.03$                                         | $-0.16 \pm 0.02$                                         | $-0.24 \pm 0.04$                                         | $-0.54 \pm 0.03$                                         | $0.00 \pm 0.00$                                                 | $-0.60 \pm 0.03$                                         | $-0.37 \pm 0.03$                                         |
| (Local Std,32)                         | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.03$                                         | $-0.80 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.51 \pm 0.03$                                         | $-0.68 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.70 \pm 0.03$                                         | $-0.67 \pm 0.03$                                         |
| (Local Std,4)                          | $0.00 \pm 0.00$                                       | $-0.51 \pm 0.03$                                         | $-0.63 \pm 0.03$                                         | $-0.52 \pm 0.03$                                         | $-0.17 \pm 0.02$                                         | $-0.27 \pm 0.04$                                         | $-0.52 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.57 \pm 0.03$                                         | $-0.50 \pm 0.03$                                         |
| (Local Std,64)                         | $0.00 \pm 0.00$                                       | $-0.58 \pm 0.03$                                         | $-0.83 \pm 0.02$                                         | $-0.45 \pm 0.03$                                         | $-0.21 \pm 0.02$                                         | $-0.52 \pm 0.03$                                         | $-0.68 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.71 \pm 0.03$                                         | $-0.71 \pm 0.02$                                         |
| (Local Std,8)                          | $0.00 \pm 0.00$                                       | $-0.52 \pm 0.03$                                         | $-0.73 \pm 0.02$                                         | $-0.44 \pm 0.03$                                         | $-0.16 \pm 0.02$                                         | $-0.39 \pm 0.03$                                         | $-0.59 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.60 \pm 0.03$                                         | $-0.60 \pm 0.03$                                         |
| (Poly-UCB1,0.125)                      | $0.00 \pm 0.00$                                       | $-0.39 \pm 0.03$                                         | $-0.91 \pm 0.02$                                         | $-0.78 \pm 0.02$                                         | $-0.20 \pm 0.02$                                         | $-0.04 \pm 0.04$                                         | $-0.75 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.83 \pm 0.02$                                         | $-0.56 \pm 0.03$                                         |
| (Poly-UCB1,0.25)                       | $0.00 \pm 0.00$                                       | $-0.37 \pm 0.03$                                         | $-0.92 \pm 0.01$                                         | $-0.78 \pm 0.02$                                         | $-0.21 \pm 0.02$                                         | $-0.04 \pm 0.04$                                         | $-0.77 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.83 \pm 0.02$                                         | $-0.57 \pm 0.03$                                         |
| (Poly-UCB1,0.5)                        | $0.00 \pm 0.00$                                       | $-0.40 \pm 0.03$                                         | $-0.92 \pm 0.01$                                         | $-0.78 \pm 0.02$                                         | $-0.20 \pm 0.02$                                         | $-0.05 \pm 0.04$                                         | $-0.74 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.81 \pm 0.02$                                         | $-0.55 \pm 0.03$                                         |
| (Poly-UCB1,1)                          | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $-0.40 \pm 0.03$                                         | $-0.91 \pm 0.02$                                         | $-0.76 \pm 0.02$                                         | $-0.21 \pm 0.02$                                         | $-0.03 \pm 0.04$                                         | $-0.75 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.84 \pm 0.02$                                         | $-0.56 \pm 0.03$                                         |
| (Poly-UCB1,16)                         |                                                       | $-0.59 \pm 0.03$                                         | $-0.90 \pm 0.02$                                         | $-0.68 \pm 0.03$                                         | $-0.36 \pm 0.02$                                         | $-0.05 \pm 0.04$                                         | $-0.75 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.76 \pm 0.02$                                         | $-0.57 \pm 0.03$                                         |
| (Poly-UCB1,2)                          | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.48 \pm 0.03$                                         | $-0.91 \pm 0.01$                                         | $-0.76 \pm 0.02$                                         | $-0.24 \pm 0.02$                                         | $-0.05 \pm 0.04$                                         | $-0.74 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.83 \pm 0.02$                                         | $-0.54 \pm 0.03$                                         |
| (Poly-UCB1,32)                         |                                                       | $-0.62 \pm 0.03$                                         | $-0.91 \pm 0.02$                                         | $-0.67 \pm 0.03$                                         | $-0.33 \pm 0.02$                                         | $-0.04 \pm 0.04$                                         | $-0.78 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.73 \pm 0.03$                                         | $-0.67 \pm 0.03$                                         |
| (Poly-UCB1,4)                          | $0.00 \pm 0.00$                                       | $-0.52 \pm 0.03$                                         | $-0.89 \pm 0.02$                                         | $-0.74 \pm 0.02$                                         | $-0.29 \pm 0.02$                                         | $-0.03 \pm 0.04$                                         | $-0.74 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.79 \pm 0.02$                                         | $-0.51 \pm 0.03$                                         |
| (Poly-UCB1,64)                         | $0.00 \pm 0.00$                                       | $-0.63 \pm 0.03$                                         | $-0.90 \pm 0.02$                                         | $-0.66 \pm 0.03$                                         | $-0.35 \pm 0.02$                                         | $-0.05 \pm 0.04$                                         | $-0.80 \pm 0.02$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.03$                                         | $-0.74 \pm 0.02$                                         |
| (Poly-UCB1,8)<br>(Vanilla UCT,0.125)   | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.56 \pm 0.03$<br>$-0.44 \pm 0.03$                     | $-0.80 \pm 0.02$<br>$-0.88 \pm 0.02$<br>$-0.87 \pm 0.02$ | $-0.00 \pm 0.03$<br>$-0.71 \pm 0.03$<br>$-0.75 \pm 0.02$ | $-0.36 \pm 0.02$<br>$-0.36 \pm 0.02$<br>$-0.19 \pm 0.02$ | $-0.03 \pm 0.04$<br>$-0.03 \pm 0.04$<br>$-0.06 \pm 0.04$ | $-0.74 \pm 0.02$<br>$-0.74 \pm 0.03$<br>$-0.70 \pm 0.03$ | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$        | $-0.72 \pm 0.03$<br>$-0.80 \pm 0.02$<br>$-0.80 \pm 0.02$ | $-0.74 \pm 0.02$<br>$-0.52 \pm 0.03$<br>$-0.47 \pm 0.03$ |
| (Vanilla UCT,0.25)                     | $0.00 \pm 0.00$                                       | $-0.44 \pm 0.03$                                         | $-0.79 \pm 0.02$                                         | $-0.68 \pm 0.03$                                         | $-0.18 \pm 0.02$                                         | $-0.08 \pm 0.04$                                         | $-0.62 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.03$                                         | $-0.38 \pm 0.03$                                         |
| (Vanilla UCT,0.5)                      | $0.00 \pm 0.00$                                       | $-0.46 \pm 0.03$                                         | $-0.64 \pm 0.03$                                         | $-0.55 \pm 0.03$                                         | $-0.17 \pm 0.02$                                         | $-0.14 \pm 0.04$                                         | $-0.51 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.60 \pm 0.03$                                         | $-0.30 \pm 0.03$                                         |
| (Vanilla UCT,1)                        | $0.00 \pm 0.00$                                       | $-0.47 \pm 0.03$                                         | $-0.55 \pm 0.03$                                         | $-0.40 \pm 0.03$                                         | $-0.16 \pm 0.02$                                         | $-0.24 \pm 0.04$                                         | $-0.46 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.46 \pm 0.03$                                         | $-0.34 \pm 0.03$                                         |
| (Vanilla UCT,1000)                     | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.03$                                         | $-0.82 \pm 0.02$                                         | $-0.48 \pm 0.03$                                         | $-0.19 \pm 0.02$                                         | $-0.51 \pm 0.03$                                         | $-0.70 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.03$                                         | $-0.70 \pm 0.02$                                         |
| (Vanilla UCT,16)                       | $0.00 \pm 0.00$                                       | $-0.56 \pm 0.03$                                         | $-0.82 \pm 0.02$                                         | $-0.43 \pm 0.03$                                         | $-0.19 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.67 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.03$                                         | $-0.69 \pm 0.02$                                         |
| (Vanilla UCT,2)                        | $0.00 \pm 0.00$                                       | $-0.53 \pm 0.03$                                         | $-0.64 \pm 0.03$                                         | $-0.38 \pm 0.03$                                         | $-0.20 \pm 0.02$                                         | $-0.22 \pm 0.04$                                         | $-0.55 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.54 \pm 0.03$                                         | $-0.41 \pm 0.03$                                         |
| (Vanilla UCT,256)                      | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.03$                                         | $-0.85 \pm 0.02$                                         | $-0.49 \pm 0.03$                                         | $-0.19 \pm 0.02$                                         | $-0.52 \pm 0.03$                                         | $-0.70 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.71 \pm 0.03$                                         | $-0.70 \pm 0.02$                                         |
| (Vanilla UCT,32)<br>(Vanilla UCT,4)    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.57 \pm 0.03$<br>$-0.57 \pm 0.03$<br>$-0.56 \pm 0.03$ | $-0.85 \pm 0.02$                                         | $-0.45 \pm 0.03$<br>$-0.45 \pm 0.03$<br>$-0.43 \pm 0.03$ | $-0.19 \pm 0.02$<br>$-0.21 \pm 0.02$<br>$-0.19 \pm 0.02$ | $-0.52 \pm 0.03$<br>$-0.52 \pm 0.03$<br>$-0.31 \pm 0.04$ | $-0.70 \pm 0.03$                                         | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$        | $-0.72 \pm 0.03$<br>$-0.65 \pm 0.03$                     | $-0.71 \pm 0.02$<br>$-0.58 \pm 0.03$                     |
| (Vanilla UCT,64)                       | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.03$                                         | $-0.74 \pm 0.02$<br>$-0.85 \pm 0.02$                     | $-0.46 \pm 0.03$                                         | $-0.20 \pm 0.02$                                         | $-0.52 \pm 0.03$                                         | $-0.58 \pm 0.03$<br>$-0.70 \pm 0.03$                     | $-0.00 \pm 0.00$                                                | $-0.72 \pm 0.03$                                         | $-0.70 \pm 0.02$                                         |
| (Vanilla UCT,8)                        | $0.00 \pm 0.00$                                       | $-0.57 \pm 0.03$                                         | $-0.81 \pm 0.02$                                         | $-0.46 \pm 0.03$                                         | $-0.20 \pm 0.02$                                         | $-0.38 \pm 0.03$                                         | $-0.66 \pm 0.03$                                         | $-0.00 \pm 0.00$                                                | $-0.69 \pm 0.03$                                         | $-0.66 \pm 0.03$                                         |

TABLE XII: Part 1/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 500 MCTS iterations..

|                                     | Cooperative Recon                  | Crossing Traffic                                      | Game of Life                                          | Manufacturer                                                                 | Navigation                                            | Racetrack                                               | Skills Teaching                                        | Tamarisk                               | Triangle Tireworld                                 |
|-------------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------|----------------------------------------------------|
| (Global Abs,0.125)                  | $3.26 \pm 0.20$                    | $-25.5 \pm 0.9$                                       | $528.2 \pm 1.9$                                       | $-1420.5 \pm 11.9$                                                           | $-25.3 \pm 0.5$                                       | $-10.7 \pm 0.1$                                         | $-55.2 \pm 5.1$                                        | $-630.5 \pm 6.0$                       | $21.5 \pm 2.4$                                     |
| (Global Abs,0.25)                   | $4.07 \pm 0.22$                    | $-26.7 \pm 0.9$                                       | $531.0 \pm 1.7$                                       | $-1344.6 \pm 10.7$                                                           | $-24.3 \pm 0.5$                                       | $-9.96 \pm 0.07$                                        | $-20.5 \pm 5.3$                                        | $-632.2 \pm 6.1$                       | $26.6 \pm 2.3$                                     |
| (Global Abs, 0.5)                   | $5.26 \pm 0.25$                    | $-25.8 \pm 0.9$                                       | $526.2 \pm 1.7$                                       | $-1347.5 \pm 11.0$                                                           | $-23.8 \pm 0.5$                                       | $-9.72 \pm 0.07$                                        | $5.20 \pm 5.42$                                        | $-646.4 \pm 6.1$                       | $46.8 \pm 2.1$                                     |
| (Global Abs,1)                      | $5.92 \pm 0.28$                    | $-25.5 \pm 0.9$                                       | $522.3 \pm 1.8$                                       | $-1350.3 \pm 11.4$                                                           | $-23.2 \pm 0.5$                                       | $-9.82 \pm 0.08$                                        | $2.83 \pm 5.65$                                        | $-654.3 \pm 6.2$                       | $72.2 \pm 1.3$                                     |
| (Global Abs,16)                     | $4.40 \pm 0.27$                    | $-25.9 \pm 0.9$                                       | $518.1 \pm 1.8$                                       | $-1370.2 \pm 12.3$                                                           | $-23.7 \pm 0.5$                                       | $-10.2 \pm 0.1$                                         | $-33.3 \pm 5.4$                                        | $-674.0 \pm 6.1$                       | $70.0 \pm 1.5$                                     |
| (Global Abs,2)                      | $5.35 \pm 0.29$                    | $-25.5 \pm 0.9$                                       | $520.0 \pm 1.8$                                       | $-1371.6 \pm 12.1$                                                           | $-23.7 \pm 0.5$                                       | $-9.94 \pm 0.08$                                        | $-10.2 \pm 5.5$                                        | $-672.6 \pm 6.1$                       | $76.5 \pm 1.1$                                     |
| (Global Abs,32)                     | $4.57 \pm 0.27$                    | $-26.2 \pm 0.9$                                       | $517.2 \pm 1.8$                                       | $-1379.0 \pm 12.2$                                                           | $-23.8 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-31.2 \pm 5.5$                                        | $-671.7 \pm 6.1$                       | $68.2 \pm 1.5$                                     |
| (Global Abs,4)                      | $4.85 \pm 0.28$                    | $-25.8 \pm 0.9$                                       | $518.0 \pm 1.8$                                       | $-1362.2 \pm 11.7$                                                           | $-23.8 \pm 0.5$                                       | $-10.0 \pm 0.1$                                         | $-24.6 \pm 5.5$                                        | $-671.7 \pm 6.1$                       | $74.4 \pm 1.3$                                     |
| (Global Abs,64)                     | $4.24 \pm 0.26$                    | $-26.4 \pm 0.9$                                       | $516.7 \pm 1.8$                                       | $-1378.4 \pm 12.1$                                                           | $-24.3 \pm 0.5$                                       | $-10.0 \pm 0.1$                                         | $-33.6 \pm 5.5$                                        | $-675.6 \pm 6.2$                       | $68.9 \pm 1.5$                                     |
| (Global Abs,8)                      | $4.46 \pm 0.27$                    | $-26.1 \pm 0.9$                                       | $517.3 \pm 1.8$                                       | $-1372.7 \pm 12.3$                                                           | $-23.8 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-31.0 \pm 5.5$                                        | $-668.7 \pm 6.2$                       | $71.0 \pm 1.4$                                     |
| (Global Range,0.125)                | $6.25 \pm 0.28$                    | $-26.3 \pm 0.9$                                       | $529.9 \pm 1.8$                                       | $-1396.1 \pm 11.8$                                                           | $-25.8 \pm 0.5$                                       | $-10.7 \pm 0.1$                                         | $2.36 \pm 5.58$                                        | $-632.3 \pm 6.1$                       | $34.6 \pm 2.3$                                     |
| (Global Range, 0.25)                | $6.01 \pm 0.30$                    | $-26.0 \pm 0.9$                                       | $531.3 \pm 1.7$                                       | $-1333.1 \pm 10.9$                                                           | $-24.6 \pm 0.5$                                       | $-9.64 \pm 0.06$                                        | $28.3 \pm 5.4$                                         | $-613.7 \pm 6.1$                       | $64.7 \pm 1.6$                                     |
| (Global Range, 0.5)                 | $5.14 \pm 0.29$                    | $-26.1 \pm 0.9$                                       | $525.8 \pm 1.8$                                       | $-1339.9 \pm 11.1$                                                           | $-23.9 \pm 0.5$                                       | $-9.55 \pm 0.07$                                        | $8.13 \pm 5.41$                                        | $-635.5 \pm 6.0$                       | $76.1 \pm 1.2$                                     |
| (Global Range,1)                    | $4.83 \pm 0.28$                    | $-26.3 \pm 0.9$                                       | $523.2 \pm 1.8$                                       | $-1357.5 \pm 11.7$                                                           | $-23.7 \pm 0.5$                                       | $-9.75 \pm 0.07$                                        | $-10.5 \pm 5.3$                                        | $-647.7 \pm 6.1$                       | $75.4 \pm 1.2$                                     |
| (Global Range,16)                   | $4.42 \pm 0.27$                    | $-25.6 \pm 0.9$                                       | $518.3 \pm 1.7$                                       | $-1373.9 \pm 12.5$                                                           | $-23.8 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-36.6 \pm 5.4$                                        | $-673.7 \pm 6.2$                       | $69.2 \pm 1.5$                                     |
| (Global Range,2)                    | $4.67 \pm 0.27$                    | $-26.5 \pm 0.9$                                       | $521.7 \pm 1.7$                                       | $-1370.6 \pm 12.0$<br>$-1370.6 \pm 12.0$<br>$-1378.8 \pm 12.4$               | $-23.6 \pm 0.5$                                       | $-9.93 \pm 0.08$                                        | $-27.1 \pm 5.4$                                        | $-663.5 \pm 6.2$                       | $72.8 \pm 1.3$                                     |
| (Global Range, 32)                  | $4.47 \pm 0.27$                    | $-26.2 \pm 0.9$                                       | $518.3 \pm 1.7$                                       | $-1377.7 \pm 12.2$                                                           | $-24.0 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-30.2 \pm 5.4$                                        | $-671.8 \pm 6.1$                       | $68.4 \pm 1.5$                                     |
| (Global Range, 4)                   | $4.47 \pm 0.27$                    | $-25.5 \pm 0.9$                                       | $518.8 \pm 1.8$                                       |                                                                              | $-23.9 \pm 0.5$                                       | $-10.0 \pm 0.1$                                         | $-32.9 \pm 5.5$                                        | $-671.9 \pm 6.1$                       | $69.7 \pm 1.5$                                     |
| (Global Range,64)                   | $4.56 \pm 0.27$                    | $-26.3 \pm 0.9$                                       | $516.6 \pm 1.8$                                       | $-1368.7 \pm 11.9$                                                           | $-24.0 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-36.8 \pm 5.4$                                        | $-679.7 \pm 6.2$                       | $68.3 \pm 1.5$                                     |
| (Global Range,8)                    | $4.55 \pm 0.27$                    | $-26.5 \pm 0.9$                                       | $518.5 \pm 1.8$                                       | $-1371.2 \pm 12.0$                                                           | $-23.7 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-29.0 \pm 5.4$                                        | $-673.7 \pm 6.2$                       | $69.0 \pm 1.5$                                     |
| (Global Std,0.125)                  | $3.16 \pm 0.20$                    | $-25.6 \pm 0.8$                                       | $504.8 \pm 2.2$                                       | $-1698.3 \pm 19.6$                                                           | $-35.2 \pm 0.5$                                       | $-20.4 \pm 0.3$                                         | $-144.5 \pm 5.8$                                       | $-847.8 \pm 5.7$                       | $20.9 \pm 2.3$                                     |
| (Global Std,0.25)                   | $3.52 \pm 0.21$                    | $-25.4 \pm 0.8$                                       | $513.7 \pm 2.0$                                       | $-1580.8 \pm 16.5$                                                           | $-32.7 \pm 0.5$                                       | $-17.3 \pm 0.2$                                         | $-120.9 \pm 5.7$                                       | $-774.9 \pm 6.1$                       | $22.9 \pm 2.3$                                     |
| (Global Std,0.5)                    | $4.77 \pm 0.25$                    | $-26.1 \pm 0.9$                                       | $524.3 \pm 1.9$                                       | $-1428.1 \pm 12.5$                                                           | $-29.9 \pm 0.5$                                       | $-13.1 \pm 0.1$                                         | $-46.5 \pm 5.6$                                        | $-673.1 \pm 6.2$                       | $40.7 \pm 2.2$                                     |
| (Global Std,1)                      | $6.40 \pm 0.30$                    | $-26.1 \pm 0.9$                                       | $533.5 \pm 1.6$                                       | $-1334.5 \pm 10.7$                                                           | $-26.4 \pm 0.5$                                       | $-10.2 \pm 0.1$                                         | $20.6 \pm 5.5$                                         | $-612.1 \pm 6.0$                       | $70.4 \pm 1.4$                                     |
| (Global Std,16)                     | $4.61 \pm 0.27$                    | $-25.6 \pm 0.9$                                       | $518.0 \pm 1.8$                                       | $\begin{array}{c} -1374.2 \pm 12.0 \\ \mathbf{-1325.7} \pm 10.8 \end{array}$ | $-23.5 \pm 0.5$                                       | $-10.0 \pm 0.1$                                         | $-27.1 \pm 5.4$                                        | $-661.3 \pm 6.1$                       | $68.1 \pm 1.6$                                     |
| (Global Std,2)                      | $6.05 \pm 0.30$                    | $-26.0 \pm 0.9$                                       | $528.0 \pm 1.8$                                       |                                                                              | $-24.1 \pm 0.5$                                       | -9.16 $\pm$ 0.05                                        | $26.3 \pm 5.4$                                         | $-624.2 \pm 6.0$                       | <b>77.3</b> $\pm$ <b>1.1</b>                       |
| (Global Std,32)<br>(Global Std,4)   | $4.26 \pm 0.26$<br>$4.88 \pm 0.28$ | $-26.0 \pm 0.9$<br>$-26.0 \pm 0.9$                    | $517.8 \pm 1.8$<br>$523.6 \pm 1.8$                    | $-1376.8 \pm 12.2$<br>$-1351.0 \pm 11.2$                                     | $-23.8 \pm 0.5$<br>$-23.9 \pm 0.5$                    | $-10.1 \pm 0.1$                                         | $-33.6 \pm 5.5$<br>$0.24 \pm 5.33$                     | $-671.0 \pm 6.1$<br>$-640.9 \pm 6.1$   | $68.9 \pm 1.5$                                     |
| (Global Std,64)<br>(Global Std,8)   | $4.43 \pm 0.27$<br>$4.74 \pm 0.28$ | $-26.5 \pm 0.9$<br>$-25.8 \pm 0.9$                    | $517.3 \pm 1.8$<br>$520.8 \pm 1.8$                    | $-1370.8 \pm 11.6$<br>$-1355.3 \pm 11.5$                                     | $-24.3 \pm 0.5$<br>$-23.7 \pm 0.5$                    | $-9.47 \pm 0.06$<br>$-10.1 \pm 0.1$<br>$-9.82 \pm 0.07$ | $-31.9 \pm 5.5$<br>$-15.7 \pm 5.3$                     | $-678.9 \pm 6.2$<br>$-658.2 \pm 6.1$   | $73.7 \pm 1.3$<br>$67.7 \pm 1.6$<br>$70.0 \pm 1.5$ |
| (Layer Abs,0.125)                   | $3.37 \pm 0.20$<br>$4.36 \pm 0.23$ | $-25.6 \pm 0.9$                                       | $527.5 \pm 1.9$                                       | $-1401.8 \pm 11.4$                                                           | $-25.0 \pm 0.5$                                       | $-10.6 \pm 0.1$                                         | $-47.0 \pm 5.0$                                        | $-634.4 \pm 6.0$                       | $18.3 \pm 2.4$                                     |
| (Layer Abs,0.25)                    | $5.57 \pm 0.25$                    | $-26.3 \pm 0.9$                                       | $531.9 \pm 1.7$                                       | $-1352.5 \pm 10.5$                                                           | $-24.2 \pm 0.5$                                       | $-9.92 \pm 0.07$                                        | $-9.98 \pm 5.14$                                       | $-630.4 \pm 6.3$                       | $23.4 \pm 2.4$                                     |
| (Layer Abs,0.5)                     |                                    | $-26.5 \pm 0.9$                                       | $526.5 \pm 1.7$                                       | $-1339.7 \pm 10.7$                                                           | $-23.8 \pm 0.5$                                       | $-9.80 \pm 0.08$                                        | $3.60 \pm 5.41$                                        | $-651.5 \pm 6.2$                       | $38.0 \pm 2.2$                                     |
| (Layer Abs,1)                       | $5.62 \pm 0.27$                    | $-26.2 \pm 0.9$                                       | $521.4 \pm 1.8$                                       | $-1347.4 \pm 11.3$                                                           | $-23.2 \pm 0.5$ $-24.0 \pm 0.5$                       | $-9.79 \pm 0.08$                                        | $1.86 \pm 5.70$                                        | $-660.1 \pm 6.2$                       | $60.5 \pm 1.8$                                     |
| (Layer Abs,16)                      | $4.63 \pm 0.28$                    | $-26.8 \pm 0.9$                                       | $516.9 \pm 1.8$                                       | $-1371.5 \pm 11.7$                                                           |                                                       | $-10.0 \pm 0.1$                                         | $-32.7 \pm 5.5$                                        | $-675.6 \pm 6.2$                       | $70.8 \pm 1.4$                                     |
| (Layer Abs,2)                       | $5.37 \pm 0.29$                    | $-26.1 \pm 0.9$                                       | $520.0 \pm 1.8$                                       | $-1365.8 \pm 12.1$                                                           | $-23.9 \pm 0.5$                                       | $-10.0 \pm 0.1$                                         | $-9.28 \pm 5.62$                                       | $-666.5 \pm 6.2$                       | $74.2 \pm 1.2$                                     |
| (Layer Abs,32)                      | $4.61 \pm 0.27$                    | $-25.7 \pm 0.9$                                       | $516.3 \pm 1.9$                                       | $-1374.3 \pm 11.9$                                                           | $-24.0 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-29.2 \pm 5.4$                                        | $-677.8 \pm 6.0$                       | $69.5 \pm 1.5$                                     |
| (Layer Abs,4)                       | $5.04 \pm 0.29$                    | $-25.3 \pm 0.9$                                       | $518.7 \pm 1.8$                                       | $-1368.0 \pm 12.0$                                                           | $-23.9 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-23.7 \pm 5.6$                                        | $-668.8 \pm 6.2$                       | $75.5 \pm 1.2$                                     |
| (Layer Abs,64)                      | $4.48 \pm 0.27$                    | $-25.8 \pm 0.9$                                       | $515.8 \pm 1.8$                                       | $-1377.7 \pm 12.1$                                                           | $-23.8 \pm 0.5$                                       | $-10.2 \pm 0.1$                                         | $-34.2 \pm 5.4$                                        | $-675.7 \pm 6.1$                       | $67.8 \pm 1.6$                                     |
| (Layer Abs,8)                       | $4.67 \pm 0.28$                    | $-26.2 \pm 0.9$                                       | $515.8 \pm 1.8$                                       | $-1368.0 \pm 11.9$                                                           | $-23.9 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-26.7 \pm 5.4$                                        | $-672.4 \pm 6.2$                       | $73.1 \pm 1.3$                                     |
| (Layer Range,0.125)                 | $3.49 \pm 0.21$                    | $-25.3 \pm 0.8$                                       | $510.6 \pm 2.1$                                       | $-1692.0 \pm 19.8$                                                           | $-38.1 \pm 0.5$                                       | $-23.7 \pm 0.4$                                         | $-116.1 \pm 6.1$                                       | $-828.3 \pm 5.9$                       | $20.8 \pm 2.3$                                     |
| (Layer Range,0.25)                  | $4.28 \pm 0.24$                    | $-25.2 \pm 0.8$                                       | $524.2 \pm 1.9$                                       | $-1541.4 \pm 15.4$                                                           | $-38.2 \pm 0.5$                                       | $-23.5 \pm 0.4$                                         | $-61.9 \pm 6.1$                                        | $-738.3 \pm 6.2$                       | $22.9 \pm 2.3$                                     |
| (Layer Range,0.5)                   | $4.49 \pm 0.27$                    | $-25.0 \pm 0.8$                                       | $530.5 \pm 1.8$                                       | $-1399.7 \pm 12.5$                                                           | $-36.9 \pm 0.5$                                       | $-19.4 \pm 0.3$                                         | $6.62 \pm 5.55$                                        | $-650.7 \pm 6.2$                       | $46.4 \pm 2.1$                                     |
| (Layer Range,1)                     | $3.96 \pm 0.27$                    | $-25.9 \pm 0.9$                                       | $530.7 \pm 1.8$                                       | $-1372.9 \pm 12.0$                                                           | $-34.6 \pm 0.6$                                       | $-11.6 \pm 0.2$                                         | $7.41 \pm 5.40$                                        | $-616.0 \pm 6.0$                       | $67.4 \pm 1.6$                                     |
| (Layer Range,16)                    | $4.28 \pm 0.27$                    | $-26.0 \pm 0.9$                                       | $521.7 \pm 1.7$                                       | $-1365.5 \pm 11.9$                                                           | $-23.7 \pm 0.5$                                       | $-9.89 \pm 0.07$                                        | -32.6 ± 5.5                                            | $-653.9 \pm 6.0$                       | $69.8 \pm 1.5$                                     |
| (Layer Range,2)                     | $3.94 \pm 0.26$<br>$4.29 \pm 0.26$ | $-26.0 \pm 0.9$<br>$-26.2 \pm 0.9$<br>$-25.9 \pm 0.9$ | $521.7 \pm 1.7$<br>$531.2 \pm 1.8$<br>$517.6 \pm 1.8$ | $-1357.6 \pm 12.1$<br>$-1383.7 \pm 12.1$                                     | $-23.7 \pm 0.5$<br>$-29.0 \pm 0.6$<br>$-24.1 \pm 0.5$ | $-9.38 \pm 0.06$                                        | $-2.71 \pm 5.33$                                       | $-607.4 \pm 6.0$<br>$-664.8 \pm 6.2$   | $71.7 \pm 1.4$<br>$70.2 \pm 1.5$                   |
| (Layer Range,32)<br>(Layer Range,4) | $3.94 \pm 0.26$                    | $-26.5 \pm 0.9$                                       | $527.5 \pm 1.7$                                       | $-1355.6 \pm 12.0$                                                           | $-24.9 \pm 0.5$                                       | $-10.1 \pm 0.1$<br>$-9.47 \pm 0.06$                     | $-33.2 \pm 5.5$<br>$-23.0 \pm 5.4$                     | $-624.3 \pm 6.1$<br>$-669.1 \pm 6.2$   | $73.5 \pm 1.3$                                     |
| (Layer Range,64)                    | $4.32 \pm 0.26$                    | $-26.6 \pm 0.9$                                       | $517.5 \pm 1.8$                                       | $-1366.4 \pm 11.7$                                                           | $-24.0 \pm 0.5$                                       | $-10.0 \pm 0.1$                                         | $-35.5 \pm 5.5$                                        | $-642.1\pm6.1$                         | $69.5 \pm 1.5$                                     |
| (Layer Range,8)                     | $4.09 \pm 0.26$                    | $-26.4 \pm 0.9$                                       | $523.5 \pm 1.8$                                       | $-1364.8 \pm 11.8$                                                           | $-23.5 \pm 0.5$                                       | $-9.74 \pm 0.07$                                        | $-27.6 \pm 5.4$                                        |                                        | $71.6 \pm 1.4$                                     |
| (Layer Std,0.125)                   | $3.09 \pm 0.19$                    | $-25.0 \pm 0.8$                                       | $498.2 \pm 2.2$                                       | $-1764.4 \pm 21.1$                                                           | $-37.6 \pm 0.5$                                       | $-23.6 \pm 0.4$                                         | $-156.5 \pm 5.8$                                       | $-878.0 \pm 5.5$                       | $20.0 \pm 2.3$                                     |
| (Layer Std,0.25)                    | $3.30 \pm 0.20$                    | $-25.5 \pm 0.8$                                       | $506.1 \pm 2.1$                                       | $-1723.8 \pm 20.7$                                                           | $-37.7 \pm 0.5$                                       | $-23.8 \pm 0.4$                                         | $-145.6 \pm 5.8$                                       | $-855.5 \pm 5.6$                       | $21.2 \pm 2.3$                                     |
| (Layer Std,0.5)                     | $3.81 \pm 0.22$                    | $-25.4 \pm 0.8$                                       | $516.4 \pm 1.9$                                       | $-1605.9 \pm 17.7$                                                           | $-37.8 \pm 0.5$                                       | $-23.7 \pm 0.4$                                         | $-108.0 \pm 6.0$                                       | $-801.3 \pm 6.0$                       | $23.5 \pm 2.3$                                     |
| (Layer Std,1)                       | $5.12 \pm 0.26$                    | $-24.8 \pm 0.8$                                       | $526.6 \pm 1.9$                                       | $-1446.8 \pm 13.4$                                                           | $-37.2 \pm 0.5$                                       | $-23.4 \pm 0.4$                                         | $-48.6 \pm 6.1$                                        | $-692.0 \pm 6.3$                       | $33.0 \pm 2.3$                                     |
| (Layer Std,16)                      | $4.10 \pm 0.27$                    | $-26.0 \pm 0.9$                                       | $525.8 \pm 1.8$                                       | $-1358.6 \pm 11.8$                                                           | $-23.9 \pm 0.5$                                       | $-9.54 \pm 0.07$                                        | $-14.3 \pm 5.4$                                        | $-630.5 \pm 6.0$                       | $73.0 \pm 1.3$                                     |
| (Layer Std,2)                       | $5.15 \pm 0.28$                    | $-25.1 \pm 0.9$                                       | $530.5 \pm 1.8$                                       | $-1375.1 \pm 12.2$                                                           | $-35.0 \pm 0.6$                                       | $-16.3 \pm 0.3$                                         | $11.1 \pm 5.5$                                         | $-626.8 \pm 6.2$                       | $61.7 \pm 1.7$                                     |
| (Layer Std,32)                      | $4.14 \pm 0.26$                    | $-26.5 \pm 0.9$                                       | $522.1 \pm 1.7$                                       | $-1370.9 \pm 12.0$                                                           | $-23.8 \pm 0.5$                                       | $-9.79 \pm 0.07$                                        | $-28.0 \pm 5.5$                                        | $-646.8 \pm 6.2$                       | $71.1 \pm 1.4$                                     |
| (Layer Std,4)                       | $4.90 \pm 0.28$                    | $-26.2 \pm 0.9$                                       | $530.1 \pm 1.8$                                       | $-1354.9 \pm 11.5$                                                           | $-30.7 \pm 0.6$                                       | $-10.1 \pm 0.1$                                         | $15.2 \pm 5.4$                                         | $-611.9 \pm 6.1$                       | $72.7 \pm 1.3$                                     |
| (Layer Std,64)                      | $4.34 \pm 0.27$                    | $-26.0 \pm 0.9$                                       | $518.9 \pm 1.8$                                       | $-1360.6 \pm 11.5$                                                           | $-23.8 \pm 0.5$                                       | $-10.0 \pm 0.1$                                         | $-28.9 \pm 5.5$                                        | $-663.6 \pm 6.1$                       | $68.4 \pm 1.5$                                     |
| (Layer Std,8)                       | $4.34 \pm 0.27$                    | $-26.3 \pm 0.9$                                       | $529.0 \pm 1.7$                                       | $-1356.0 \pm 11.9$                                                           | $-25.6 \pm 0.5$                                       | $-9.26 \pm 0.06$                                        | $-0.27 \pm 5.35$                                       | $-613.1 \pm 6.1$                       | $73.3 \pm 1.3$                                     |
| (Local Q,0.125)                     | $3.61 \pm 0.20$                    | $-26.7 \pm 0.8$                                       | $526.9 \pm 1.9$                                       | $-3223.9 \pm 39.0$                                                           | $-45.2 \pm 0.4$                                       | $-32.2 \pm 0.5$                                         | $-254.7 \pm 6.3$                                       | $-1096.8 \pm 3.2$                      | $16.4 \pm 2.4$                                     |
| (Local Q,0.25)                      | $3.74 \pm 0.20$                    | $-26.8 \pm 0.8$                                       | $529.5 \pm 1.8$                                       | $-3609.6 \pm 41.7$                                                           | $-44.7 \pm 0.4$                                       | $-32.5 \pm 0.5$                                         | $-281.0 \pm 6.1$                                       | $-1101.1 \pm 3.0$                      | $18.1 \pm 2.4$                                     |
| (Local Q,0.5)                       | $4.30 \pm 0.21$                    | $-26.8 \pm 0.8$                                       | $527.6 \pm 1.8$                                       | $-3792.7 \pm 42.0$                                                           | $-45.0 \pm 0.4$                                       | $-33.3 \pm 0.5$                                         | $-301.9 \pm 6.2$                                       | $-1100.6 \pm 3.0$                      | $19.2 \pm 2.4$ $18.8 \pm 2.4$                      |
| (Local Q,1)                         | $4.66 \pm 0.21$                    | $-27.2 \pm 0.8$                                       | $524.3 \pm 1.7$                                       | $-3864.9 \pm 43.2$                                                           | $-45.1 \pm 0.4$                                       | $-33.8 \pm 0.5$                                         | $-311.1 \pm 6.0$                                       | $-1102.0 \pm 3.0$                      |                                                    |
| (Local Q,16)                        | $4.84 \pm 0.21$<br>$4.73 \pm 0.21$ | $-26.9 \pm 0.8$<br>$-26.7 \pm 0.8$                    | $518.3 \pm 1.8$                                       | $-3892.8 \pm 42.5$<br>$-3884.2 \pm 42.9$                                     | $-44.9 \pm 0.4$<br>$-45.1 \pm 0.4$                    | $-33.7 \pm 0.5$<br>$-33.3 \pm 0.5$                      | $-316.6 \pm 5.9$<br>$-312.9 \pm 5.9$                   | $-1101.1\pm3.0$                        | $18.9 \pm 2.4$<br>$19.4 \pm 2.4$                   |
| (Local Q,2)<br>(Local Q,32)         | $4.75 \pm 0.21$                    | $-26.5 \pm 0.8$                                       | $523.1 \pm 1.7$<br>$518.5 \pm 1.8$                    | $-3892.4 \pm 42.8$                                                           | $-44.8 \pm 0.4$                                       | $-33.4 \pm 0.5$                                         | $-315.3 \pm 5.8$                                       | $-1099.0 \pm 3.0$<br>$-1099.9 \pm 3.1$ | $22.6 \pm 2.4$<br>$20.7 \pm 2.4$                   |
| (Local Q,4)                         | $4.70 \pm 0.21$                    | $-26.5 \pm 0.8$                                       | $520.2 \pm 1.7$                                       | $-3931.4 \pm 43.5$                                                           | $-45.1 \pm 0.4$                                       | $-33.3 \pm 0.5$                                         | $-319.4 \pm 5.8$                                       | $-1100.0 \pm 3.1$                      | $20.8 \pm 2.4$                                     |
| (Local Q,64)                        | $4.83 \pm 0.21$                    | $-27.0 \pm 0.8$                                       | $518.5 \pm 1.8$                                       | $-3921.0 \pm 43.0$                                                           | $-45.4 \pm 0.4$                                       | $-33.7 \pm 0.5$                                         | $-312.5 \pm 5.8$                                       | $-1101.2 \pm 3.0$                      |                                                    |
| (Local Q,8)                         | $4.81 \pm 0.21$                    | $-26.8 \pm 0.8$                                       | $520.5 \pm 1.8$                                       | $-3900.1 \pm 42.8$                                                           | $-44.8 \pm 0.4$                                       | $-33.4 \pm 0.5$                                         | $-319.8 \pm 5.8$                                       | $-1100.8 \pm 3.0$                      | $19.4 \pm 2.4$                                     |
| (Local Abs,0.125)                   | $3.17 \pm 0.20$                    | $-25.9 \pm 0.9$                                       | $526.9 \pm 1.9$                                       | $-1396.6 \pm 11.1$                                                           | $-24.8 \pm 0.5$                                       | $-10.5 \pm 0.1$                                         | $-49.7 \pm 5.0$                                        | $-626.3 \pm 5.9$                       | $19.1 \pm 2.4$                                     |
| (Local Abs,0.25)                    | $4.15 \pm 0.22$                    | $-26.5 \pm 0.9$                                       | $529.5 \pm 1.8$                                       | $-1351.2 \pm 10.6$                                                           | $-24.3 \pm 0.5$                                       | $-9.77 \pm 0.07$                                        | $-16.8 \pm 5.2$                                        | $-631.4 \pm 6.1$                       | $27.1 \pm 2.3$                                     |
| (Local Abs,0.5)                     | $4.98 \pm 0.24$                    | $-25.8 \pm 0.9$                                       | $527.6 \pm 1.8$                                       | $-1341.3 \pm 11.2$                                                           | $-23.5 \pm 0.5$                                       | $-9.79 \pm 0.07$                                        | $-9.38 \pm 5.46$                                       | $-645.0 \pm 6.3$                       | $43.4 \pm 2.1$                                     |
| (Local Abs,1)                       | $4.27 \pm 0.25$                    | $-26.0 \pm 0.9$                                       | $524.3 \pm 1.7$                                       | $-1366.7 \pm 12.4$                                                           | $-23.5 \pm 0.5$                                       | $-9.93 \pm 0.08$                                        | $-36.2 \pm 5.7$                                        | $-662.2 \pm 6.1$                       | $61.2 \pm 1.7$                                     |
| (Local Abs,16)                      | $4.22 \pm 0.21$                    | $-28.5 \pm 0.8$                                       | $518.3 \pm 1.8$                                       | $-1391.6 \pm 12.5$                                                           | $-27.6 \pm 0.5$                                       | $-10.6 \pm 0.1$                                         | $-87.2 \pm 5.3$                                        | $-681.6 \pm 6.1$                       | $44.1 \pm 2.2$                                     |
| (Local Abs,2)                       | $3.04 \pm 0.23$                    | $-30.0 \pm 0.7$                                       | $523.1 \pm 1.7$                                       | $-1371.2 \pm 12.2$                                                           | $-25.7 \pm 0.5$                                       | $-10.5 \pm 0.1$                                         | $-45.5 \pm 5.8$                                        | $-676.1 \pm 6.1$                       | $65.9 \pm 1.6$                                     |
| (Local Abs,32)                      | $4.19 \pm 0.21$                    | $-27.9 \pm 0.8$                                       | $518.5 \pm 1.8$                                       | $-1418.8 \pm 13.3$                                                           | $-27.3 \pm 0.5$                                       | $-10.7 \pm 0.1$                                         | $-91.5 \pm 5.4$                                        | $-688.4 \pm 6.1$                       | $44.0 \pm 2.2$                                     |
| (Local Abs,4)                       | $3.31 \pm 0.22$                    | $-31.9 \pm 0.7$                                       | $520.2 \pm 1.7$                                       | $-1394.9 \pm 12.7$                                                           | $-26.8 \pm 0.5$                                       | $-10.6 \pm 0.1$                                         | $-73.0 \pm 5.5$                                        | $-675.3 \pm 6.2$                       | $63.5 \pm 1.7$                                     |
| (Local Abs,64)                      | $4.14 \pm 0.21$                    | $-27.7 \pm 0.8$                                       | $518.5 \pm 1.8$                                       | $-1403.7 \pm 13.0$                                                           | $-27.5 \pm 0.5$                                       | $-10.7 \pm 0.1$                                         | $-88.0 \pm 5.3$                                        | $-681.9 \pm 6.0$                       | $42.2 \pm 2.2$                                     |
| (Local Abs,8)                       | $4.12 \pm 0.22$                    | $-30.7 \pm 0.7$                                       | $520.5 \pm 1.8$                                       | $-1399.7 \pm 13.2$                                                           | $-28.0 \pm 0.5$                                       | $-10.6 \pm 0.1$                                         | $-82.4 \pm 5.5$                                        | $-680.9 \pm 6.1$                       | $49.4 \pm 2.1$                                     |
| (Local Range,0.125)                 | $3.81 \pm 0.22$                    | $-25.5 \pm 0.8$                                       | $511.5 \pm 2.1$                                       | $-1683.3 \pm 19.5$                                                           | $-37.9 \pm 0.5$                                       | $-23.5 \pm 0.4$                                         | $-120.6 \pm 5.9$                                       | $-830.7 \pm 5.9$                       | $20.9 \pm 2.3$                                     |
| (Local Range,0.25)                  | $4.65 \pm 0.24$                    | $-25.2 \pm 0.8$                                       | $523.5 \pm 1.9$                                       | $-1542.6 \pm 15.5$                                                           | $-37.7 \pm 0.5$                                       | $-23.6 \pm 0.4$                                         | $-74.6 \pm 6.0$                                        | $-740.6 \pm 6.4$                       | $23.4 \pm 2.3$                                     |
| (Local Range,0.5)                   | $5.75 \pm 0.28$                    | $-25.2 \pm 0.8$                                       | $530.2 \pm 1.9$                                       | $-1396.2 \pm 12.4$                                                           | $-37.4 \pm 0.5$                                       | $-19.6 \pm 0.3$                                         | $4.52 \pm 5.66$                                        | $-650.0 \pm 6.2$                       | $40.7 \pm 2.2$                                     |
| (Local Range,1)                     | $5.41 \pm 0.29$                    | $-25.5 \pm 0.9$                                       | $531.8 \pm 1.8$                                       | $-1357.0 \pm 11.3$                                                           | $-34.5 \pm 0.6$                                       | $-12.1 \pm 0.2$                                         | $27.6 \pm 5.4$                                         | $-613.1 \pm 6.1$                       | $65.8 \pm 1.6$                                     |
| (Local Range,16)                    | $4.18 \pm 0.26$                    | $-26.3 \pm 0.9$                                       | $520.6 \pm 1.7$                                       | $-1379.7 \pm 12.5$                                                           | $-23.7 \pm 0.5$                                       | $-9.91 \pm 0.08$                                        |                                                        | $-653.9 \pm 6.0$                       | $72.2 \pm 1.4$                                     |
| (Local Range,2)                     | $4.77 \pm 0.28$<br>$4.41 \pm 0.27$ | $-25.8 \pm 0.9$                                       | $530.4 \pm 1.8$<br>$520.0 \pm 1.8$                    | $-1373.7 \pm 12.0$<br>$-1341.6 \pm 11.5$<br>$-1373.7 \pm 11.9$               | $-29.3 \pm 0.6$<br>$-23.7 \pm 0.5$                    | $-9.38 \pm 0.07$                                        | $-31.5 \pm 5.6$<br>$10.5 \pm 5.3$                      | $-609.2 \pm 6.0$                       | $73.7 \pm 1.3$<br>$69.6 \pm 1.5$                   |
| (Local Range,32)<br>(Local Range,4) | $4.42 \pm 0.27$                    | $-25.6 \pm 0.9$<br>$-25.8 \pm 0.9$                    | $528.0 \pm 1.7$                                       | $-1360.6 \pm 12.3$                                                           | $-24.9 \pm 0.5$                                       | $-10.0 \pm 0.1$<br>$-9.46 \pm 0.06$                     | $-33.3 \pm 5.5$<br>$-10.3 \pm 5.5$                     | $-664.8 \pm 6.2$<br>$-623.5 \pm 6.1$   | $74.5 \pm 1.2$                                     |
| (Local Range,64)                    | $4.43 \pm 0.27$                    | $-26.1 \pm 0.9$                                       | $518.0 \pm 1.8$                                       | $-1363.9 \pm 11.5$                                                           | $-23.7 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-29.2 \pm 5.4$                                        | $-669.1 \pm 6.2$                       | $68.0 \pm 1.6$                                     |
| (Local Range,8)                     | $4.30 \pm 0.27$                    | $-25.9 \pm 0.9$                                       | $523.9 \pm 1.7$                                       | $-1358.5 \pm 11.4$                                                           | $-23.4 \pm 0.5$                                       | $-9.76 \pm 0.07$                                        | $-26.9 \pm 5.4$                                        | $-641.4 \pm 6.1$                       | $72.0 \pm 1.4$                                     |
| (Local Std,0.125)                   | $2.94 \pm 0.19$                    | $-24.9 \pm 0.8$                                       | $499.7 \pm 2.2$                                       | $-1766.1 \pm 21.0$                                                           | $-37.6 \pm 0.5$                                       | $-23.7 \pm 0.4$                                         | $-152.6 \pm 5.7$                                       | $-871.4 \pm 5.7$                       | $19.1 \pm 2.3$                                     |
| (Local Std,0.25)                    | $3.29 \pm 0.20$                    | $-24.4 \pm 0.8$                                       | $506.5 \pm 2.1$                                       | $-1725.9 \pm 20.3$                                                           | $-37.6 \pm 0.5$                                       | $-23.5 \pm 0.4$                                         | $-139.1 \pm 5.8$                                       | $-855.0 \pm 5.7$                       | $20.0 \pm 2.4$                                     |
| (Local Std,0.5)                     | $3.82 \pm 0.22$                    | $-24.7 \pm 0.8$                                       | $514.5 \pm 2.1$                                       | $-1611.8 \pm 17.9$                                                           | $-38.0 \pm 0.5$                                       | $-23.5 \pm 0.4$                                         | $-110.4 \pm 6.1$                                       | $-800.7 \pm 6.1$                       | $21.3 \pm 2.3$                                     |
| (Local Std,1)                       | $5.35 \pm 0.26$                    | $-25.2 \pm 0.8$                                       | $526.1 \pm 1.8$                                       | $-1438.5 \pm 13.1$                                                           | $-37.0 \pm 0.5$                                       | $-23.3 \pm 0.4$                                         | $-59.9 \pm 6.0$                                        | $-697.1 \pm 6.3$                       | $32.0 \pm 2.3$                                     |
| (Local Std,16)                      | $4.33 \pm 0.27$                    | $-25.5 \pm 0.9$                                       | $524.6 \pm 1.8$                                       | $-1349.2 \pm 11.4$                                                           | $-23.6 \pm 0.5$                                       | $-9.56 \pm 0.06$                                        | $-17.0 \pm 5.4$                                        | $-636.9 \pm 6.1$                       | $73.1 \pm 1.3$                                     |
| (Local Std,2)                       | $5.73 \pm 0.29$                    | $-25.2 \pm 0.9$                                       | $532.2 \pm 1.7$                                       | $-1371.6 \pm 11.9$                                                           | $-35.1 \pm 0.5$                                       | $-16.3 \pm 0.3$                                         | $13.4 \pm 5.6$                                         | $-633.9 \pm 6.0$                       | $60.6 \pm 1.8$                                     |
| (Local Std,32)<br>(Local Std,4)     | $4.52 \pm 0.27$<br>$5.19 \pm 0.29$ | $-25.5 \pm 0.9$<br>$-25.7 \pm 0.9$                    | $532.2 \pm 1.7$<br>$522.3 \pm 1.7$<br>$530.5 \pm 1.8$ | $-1361.7 \pm 11.7$<br>$-1345.5 \pm 11.3$                                     | $-23.5 \pm 0.5$<br>$-30.5 \pm 0.6$                    | $-9.86 \pm 0.07$<br>$-9.95 \pm 0.08$                    | $-26.6 \pm 5.4$<br>$23.5 \pm 5.3$                      | $-648.3 \pm 6.2$<br>$-609.6 \pm 6.1$   | $70.4 \pm 1.5$<br>$71.3 \pm 1.4$                   |
| (Local Std,64)                      | $4.23 \pm 0.26$                    | $-25.8 \pm 0.9$                                       | $519.5 \pm 1.8$                                       | $-1365.5 \pm 12.0$                                                           | $-24.2 \pm 0.5$                                       | $-10.00 \pm 0.08$                                       | $-29.1 \pm 5.5$                                        | $-663.6 \pm 6.1$                       | $70.3 \pm 1.5$                                     |
| (Local Std,8)                       | $4.71 \pm 0.28$                    | $-25.7 \pm 0.9$                                       | $528.2 \pm 1.7$                                       | $-1340.4 \pm 11.2$                                                           | $-25.3 \pm 0.5$                                       | $-9.34 \pm 0.06$                                        | $2.26 \pm 5.42$                                        | $-612.0 \pm 6.1$                       | $74.8 \pm 1.2$                                     |
| (Poly-UCB1,0.125)                   | $2.99 \pm 0.26$                    | $-25.9 \pm 1.2$                                       | $496.5 \pm 3.0$                                       | $-1799.0 \pm 30.7$                                                           | $-35.1 \pm 0.7$                                       | $-20.5 \pm 0.4$                                         | $-166.3 \pm 7.9$                                       | $-866.3 \pm 7.7$                       | $18.9 \pm 3.3$                                     |
| (Poly-UCB1,0.25)                    | $2.99 \pm 0.26$                    | $-25.3 \pm 1.2$                                       | $495.1 \pm 3.1$                                       | $-1741.9 \pm 28.9$                                                           | $-32.0 \pm 0.8$                                       | $-18.3 \pm 0.3$                                         | $-158.7 \pm 8.0$                                       | $-843.6 \pm 7.6$                       | $20.2 \pm 3.3$                                     |
| (Poly-UCB1,0.5)                     | $2.91 \pm 0.26$                    | $-25.8 \pm 1.2$                                       | $499.6 \pm 2.9$                                       | $-1634.9 \pm 25.9$                                                           | $-28.5 \pm 0.7$                                       | $-15.9 \pm 0.3$                                         | $-148.6\pm7.8$                                         | $-803.6 \pm 7.8$                       | $19.5 \pm 3.3$                                     |
| (Poly-UCB1,1)                       | $3.24 \pm 0.27$                    | $-25.4 \pm 1.2$                                       | $505.5 \pm 2.9$                                       | $-1487.0 \pm 19.8$                                                           | $-25.9 \pm 0.8$                                       | $-13.6 \pm 0.2$                                         | $-132.7 \pm 7.6$                                       | $-764.8 \pm 8.1$                       | $18.9 \pm 3.3$                                     |
| (Poly-UCB1,16)                      | $3.11 \pm 0.21$                    | $-33.8 \pm 0.9$                                       | $521.4 \pm 2.6$                                       | $-1449.2 \pm 23.2$                                                           | $-26.3 \pm 0.8$                                       | $-10.8 \pm 0.1$                                         | $-118.0 \pm 6.9$                                       | $-653.8 \pm 8.7$                       | $21.6 \pm 3.4$                                     |
| (Poly-UCB1,2)                       | $3.35 \pm 0.26$                    | $-25.8 \pm 1.2$                                       | $509.4 \pm 3.0$                                       | $-1400.2 \pm 16.7$                                                           | $-24.1 \pm 0.8$                                       | $-11.4 \pm 0.1$                                         | $-111.0 \pm 7.4$                                       | $-692.0 \pm 8.4$                       | $15.9 \pm 3.4$                                     |
| (Poly-UCB1,32)                      | $2.71 \pm 0.19$                    | $-26.6 \pm 1.1$                                       | $523.9 \pm 2.5$                                       | $-2243.9 \pm 46.4$                                                           | $-27.9 \pm 0.8$                                       | $-16.5 \pm 0.3$                                         | $-271.8 \pm 7.2$                                       | $-842.8 \pm 5.9$                       | $26.6 \pm 3.3$                                     |
| (Poly-UCB1,4)                       | $3.66 \pm 0.26$                    | $-25.3 \pm 1.2$                                       | $517.0 \pm 2.8$                                       | $-1356.1 \pm 15.8$                                                           | $-24.7 \pm 0.7$                                       | $-9.91 \pm 0.09$                                        | $-53.0 \pm 6.9$                                        | $-641.5 \pm 8.5$                       | $18.7 \pm 3.4$                                     |
| (Poly-UCB1,64)                      | $2.19 \pm 0.17$                    | $-26.1 \pm 1.1$                                       | $523.8 \pm 2.6$                                       | $-2930.4 \pm 54.1$                                                           | $-28.8 \pm 0.7$                                       | $-19.6 \pm 0.3$                                         | $-304.4 \pm 7.8$                                       | $-986.1 \pm 5.5$                       | $28.1 \pm 3.3$                                     |
| (Poly-UCB1,8)                       | $3.88 \pm 0.24$                    | $-29.8 \pm 0.9$                                       | $522.9 \pm 2.6$                                       | $-1401.4 \pm 20.5$                                                           | $-25.4 \pm 0.8$                                       | $-9.71 \pm 0.09$                                        | $-62.9 \pm 6.9$                                        | $-629.4 \pm 8.7$                       | $21.1 \pm 3.4$                                     |
| (Vanilla UCT,0.125)                 | $3.56 \pm 0.21$                    | $-25.5 \pm 0.8$                                       | $493.7 \pm 2.2$                                       | $-1849.4 \pm 23.3$                                                           | $-36.8 \pm 0.5$                                       | $-22.0 \pm 0.3$                                         | $-169.9 \pm 5.7$                                       | $-897.9 \pm 5.4$                       | $17.6 \pm 2.3$                                     |
| (Vanilla UCT,0.25)                  | $4.47 \pm 0.24$                    | $-25.4 \pm 0.8$                                       | $494.9 \pm 2.2$                                       | $-1857.3 \pm 23.5$                                                           | $-35.3 \pm 0.5$                                       | $-20.3 \pm 0.3$                                         | $-170.5 \pm 5.6$                                       | $-894.8 \pm 5.4$                       | $21.1 \pm 2.3$                                     |
| (Vanilla UCT,0.5)                   | $5.98 \pm 0.28$                    | $-25.6 \pm 0.8$                                       | $492.5 \pm 2.2$                                       | $-1848.5 \pm 23.6$                                                           | $-33.4 \pm 0.5$                                       | $-17.7 \pm 0.2$                                         | $-169.6 \pm 5.7$                                       | $-896.7 \pm 5.3$                       | $18.2 \pm 2.4$                                     |
| (Vanilla UCT,1)                     | $6.37 \pm 0.30$                    | $-25.6 \pm 0.8$                                       | $495.7 \pm 2.2$                                       | $-1838.2 \pm 22.9$                                                           | $-30.2 \pm 0.5$                                       | $-15.1 \pm 0.2$                                         | $-164.1 \pm 5.7$                                       | $-889.4 \pm 5.4$                       | $19.5 \pm 2.3$                                     |
| (Vanilla UCT,1000)                  | $4.57 \pm 0.27$                    | $-26.2 \pm 0.9$                                       | $518.4 \pm 1.8$                                       | $-1329.5 \pm 10.6$                                                           | $-24.2 \pm 0.5$                                       | $-10.2 \pm 0.1$                                         |                                                        | $-664.0 \pm 6.1$                       | $68.4 \pm 1.5$                                     |
| (Vanilla UCT,16)<br>(Vanilla UCT,2) | $4.38 \pm 0.27$<br>$5.38 \pm 0.29$ | $-26.0 \pm 0.9$<br>$-25.7 \pm 0.8$                    | $522.2 \pm 1.9$<br>$498.0 \pm 2.2$                    | $-1836.2 \pm 22.8$<br>$-1847.8 \pm 22.7$                                     | $-23.4 \pm 0.5$<br>$-27.6 \pm 0.5$                    | $-9.69 \pm 0.07$<br>$-12.6 \pm 0.1$                     | $-31.6 \pm 5.5$<br>$-83.4 \pm 5.5$<br>$-154.8 \pm 5.7$ | $-756.9 \pm 5.4$<br>$-875.1 \pm 5.5$   | $36.2 \pm 2.2$<br>$19.4 \pm 2.4$                   |
| (Vanilla UCT,256)                   | $4.62 \pm 0.27$                    | $-25.9 \pm 0.9$                                       | $522.5 \pm 1.8$                                       | $-1541.3 \pm 15.4$                                                           | $-23.6 \pm 0.5$                                       | $-10.1 \pm 0.1$                                         | $-4.05 \pm 5.47$                                       | $-641.2 \pm 6.2$                       | $71.1 \pm 1.4$ $64.0 \pm 1.6$                      |
| (Vanilla UCT,32)                    | $4.57 \pm 0.27$                    | $-25.9 \pm 0.9$                                       | $530.0 \pm 1.8$                                       | $-1799.8 \pm 22.5$                                                           | $-24.1 \pm 0.5$                                       | $-9.74 \pm 0.07$                                        | $-23.1 \pm 5.3$                                        | $-671.1 \pm 5.5$                       |                                                    |
| (Vanilla UCT,4)<br>(Vanilla UCT,64) | $4.93 \pm 0.28$<br>$4.62 \pm 0.27$ | $-25.4 \pm 0.9$<br>$-25.4 \pm 0.9$<br>$-26.0 \pm 0.9$ | $505.7 \pm 2.1$<br>$530.4 \pm 1.7$                    | $-1799.8 \pm 22.3$<br>$-1859.7 \pm 23.3$<br>$-1765.3 \pm 21.5$               | $-24.1 \pm 0.5$<br>$-25.5 \pm 0.5$<br>$-23.6 \pm 0.5$ | $-9.74 \pm 0.07$<br>$-11.0 \pm 0.1$<br>$-9.89 \pm 0.08$ | $-23.1 \pm 3.3$<br>$-146.9 \pm 5.6$<br>$27.0 \pm 5.3$  | $-856.9 \pm 5.5$<br>$-612.4 \pm 5.9$   | $20.3 \pm 2.4$<br>$76.6 \pm 1.1$                   |
| (Vanilla UCT,8)                     | $4.69 \pm 0.28$                    | $-26.0 \pm 0.9$<br>$-26.2 \pm 0.9$                    | $512.4 \pm 2.1$                                       | $-1765.5 \pm 21.5$<br>$-1826.5 \pm 22.5$                                     | $-23.0 \pm 0.5$<br>$-23.9 \pm 0.5$                    | $-9.89 \pm 0.08$<br>$-9.93 \pm 0.06$                    | $-123.4 \pm 5.6$                                       | $-819.5 \pm 5.3$                       | $20.4 \pm 2.4$                                     |

TABLE XIII: Part 2/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 500 MCTS iterations..

|                                               | Academic Advising                    | g Earth Observation                  | Push Your Luck                   | Saving                           | SysAdmin                           | TicTacToe                            | Traffic                            | Wildlife Preserve                    |
|-----------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| (Global Abs, 0.125)                           | $-78.7 \pm 0.7$                      | $-10.0 \pm 0.2$                      | $53.4 \pm 0.4$                   | $37.1 \pm 0.2$                   | $374.1 \pm 1.6$                    | $-0.08 \pm 0.01$                     | $-15.5 \pm 0.2$                    | $1330.8 \pm 3.1$                     |
| (Global Abs,0.25)<br>(Global Abs,0.5)         | $-74.8 \pm 0.7$<br>$-75.2 \pm 0.7$   | $-8.59 \pm 0.18$<br>$-8.67 \pm 0.19$ | $54.0 \pm 0.4$<br>$54.0 \pm 0.3$ | $39.5 \pm 0.2$<br>$44.4 \pm 0.2$ | $382.4 \pm 1.5$<br>$380.0 \pm 1.5$ | $-0.03 \pm 0.01$<br>$-0.00 \pm 0.01$ | $-15.3 \pm 0.2$<br>$-15.8 \pm 0.2$ | $1311.0 \pm 3.5$<br>$1298.3 \pm 3.7$ |
| (Global Abs,1)                                | $-77.6 \pm 0.7$                      | $-8.72 \pm 0.19$                     | $54.1 \pm 0.3$                   | $49.3 \pm 0.1$                   | $376.1 \pm 1.5$                    | $0.01 \pm 0.01$                      | $-16.6 \pm 0.2$                    | $1291.9 \pm 3.8$                     |
| (Global Abs,16)<br>(Global Abs,2)             | $-80.3 \pm 0.8$<br>$-78.8 \pm 0.7$   | $-8.72 \pm 0.19$<br>$-8.81 \pm 0.19$ | $55.2 \pm 0.4$<br>$54.7 \pm 0.3$ | $48.8 \pm 0.1$<br>$49.8 \pm 0.1$ | $367.3 \pm 1.6$<br>$372.7 \pm 1.6$ | $-0.23 \pm 0.01$<br>$0.01 \pm 0.01$  | $-17.7 \pm 0.3$<br>$-16.9 \pm 0.2$ | $1285.2 \pm 3.8$<br>$1288.4 \pm 3.8$ |
| (Global Abs,32)                               | $-78.8 \pm 0.7$<br>$-80.2 \pm 0.7$   | $-8.87 \pm 0.19$                     | $55.4 \pm 0.4$                   | $48.7 \pm 0.1$                   | $368.0 \pm 1.6$                    | $-0.24 \pm 0.01$                     | $-17.5 \pm 0.2$                    | $1286.9 \pm 3.8$                     |
| (Global Abs,4)<br>(Global Abs,64)             | $-79.6 \pm 0.7$<br>$-80.7 \pm 0.8$   | $-8.82 \pm 0.19$<br>$-8.81 \pm 0.19$ | $55.0 \pm 0.3$<br>$55.2 \pm 0.4$ | $49.3 \pm 0.1$<br>$48.8 \pm 0.1$ | $368.6 \pm 1.6$<br>$367.7 \pm 1.6$ | $0.00 \pm 0.01$<br>$-0.26 \pm 0.01$  | $-17.4 \pm 0.2$<br>$-17.8 \pm 0.2$ | $1286.7 \pm 3.8$<br>$1284.3 \pm 3.8$ |
| (Global Abs,8)                                | $-80.4 \pm 0.7$                      | $-8.97 \pm 0.19$                     | $55.0 \pm 0.3$                   | $48.9 \pm 0.1$                   | $368.5 \pm 1.6$                    | $-0.12 \pm 0.01$                     | $-17.4 \pm 0.2$                    | $1284.0 \pm 3.8$                     |
| (Global Range, 0.125)<br>(Global Range, 0.25) | $-78.1 \pm 0.7$<br>$-73.4 \pm 0.7$   | $-14.8 \pm 0.2$<br>$-9.20 \pm 0.19$  | $53.9 \pm 0.3$<br>$54.6 \pm 0.3$ | $46.4 \pm 0.2$<br>$50.1 \pm 0.1$ | $380.1 \pm 1.5$<br>$382.4 \pm 1.4$ | $-0.02 \pm 0.01$<br>$0.00 \pm 0.01$  | $-15.0 \pm 0.2$<br>$-15.6 \pm 0.2$ | $1342.9 \pm 2.7$<br>$1342.1 \pm 2.8$ |
| (Global Range,0.5)                            | $-74.8 \pm 0.7$                      | $-8.63 \pm 0.18$                     | $54.8 \pm 0.3$                   | $49.8 \pm 0.1$                   | $377.5 \pm 1.5$                    | $0.02 \pm 0.01$                      | $-16.3 \pm 0.2$                    | $1319.2 \pm 3.4$                     |
| (Global Range,1)<br>(Global Range,16)         | $-77.4 \pm 0.7$<br>$-80.2 \pm 0.7$   | $-8.62 \pm 0.18$<br>$-8.91 \pm 0.19$ | $55.4 \pm 0.3$<br>$55.2 \pm 0.3$ | $49.2 \pm 0.1$<br>$48.8 \pm 0.1$ | $375.1 \pm 1.5$<br>$368.7 \pm 1.6$ | $0.00 \pm 0.01$<br>$-0.26 \pm 0.01$  | $-16.9 \pm 0.2$<br>$-17.7 \pm 0.2$ | $1306.0 \pm 3.6$<br>$1286.1 \pm 3.8$ |
| (Global Range,2)                              | $-77.7 \pm 0.7$<br>$-80.4 \pm 0.7$   | $-8.84 \pm 0.19$                     | $55.2 \pm 0.3$                   | $48.9 \pm 0.1$                   | $369.8 \pm 1.6$<br>$368.1 \pm 1.6$ | $-0.02 \pm 0.01$                     | $-17.3 \pm 0.2$                    | $1295.5 \pm 3.8$                     |
| (Global Range,32)<br>(Global Range,4)         | $-80.4 \pm 0.7$<br>$-79.2 \pm 0.7$   | $-8.96 \pm 0.20$<br>$-8.88 \pm 0.19$ | $55.0 \pm 0.4$<br>$55.2 \pm 0.4$ | $48.7 \pm 0.1$<br>$48.8 \pm 0.1$ | $368.1 \pm 1.6$<br>$369.7 \pm 1.6$ | $-0.27 \pm 0.01$<br>$-0.20 \pm 0.01$ | $-17.7 \pm 0.2$<br>$-17.6 \pm 0.2$ | $1288.3 \pm 3.8$<br>$1287.9 \pm 3.8$ |
| (Global Range,64)                             | $-79.9 \pm 0.7$                      | $-8.71 \pm 0.19$                     | $55.5 \pm 0.4$                   | $48.6 \pm 0.1$                   | $367.9 \pm 1.6$                    | $-0.26 \pm 0.01$                     | $-17.6\pm0.3$                      | $1286.7 \pm 3.8$                     |
| (Global Range,8)<br>(Global Std,0.125)        | $-79.8 \pm 0.7$<br>$-101.9 \pm 1.0$  | $-8.77 \pm 0.19$<br>$-29.6 \pm 0.4$  | $55.2 \pm 0.4$<br>$53.0 \pm 0.6$ | $48.7 \pm 0.1$<br>$36.8 \pm 0.2$ | $366.9 \pm 1.6$<br>$337.5 \pm 1.9$ | $-0.24 \pm 0.01$<br>$-0.10 \pm 0.02$ | $-17.7 \pm 0.3$<br>$-17.0 \pm 0.2$ | $1288.7 \pm 3.8$<br>$1354.7 \pm 2.2$ |
| (Global Std,0.25)                             | $-93.7 \pm 0.9$                      | $-24.4 \pm 0.3$                      | $53.5 \pm 0.5$                   | $38.8 \pm 0.2$                   | $351.4 \pm 1.8$                    | $-0.03\pm0.01$                       | $-16.2 \pm 0.2$                    | $1353.6 \pm 2.3$                     |
| (Global Std,0.5)<br>(Global Std,1)            | $-79.0 \pm 0.7$<br>$-72.8 \pm 0.7$   | $-14.4 \pm 0.2$<br>$-8.91 \pm 0.18$  | $53.1 \pm 0.4$<br>$54.1 \pm 0.4$ | $43.1 \pm 0.2$<br>$48.8 \pm 0.1$ | $372.3 \pm 1.6$<br>$382.8 \pm 1.5$ | $-0.00 \pm 0.01$<br>$0.01 \pm 0.01$  | $-15.1 \pm 0.2$<br>-15.0 $\pm$ 0.2 | $1345.8 \pm 2.6$<br>$1345.4 \pm 2.6$ |
| (Global Std,16)                               | $-78.7 \pm 0.7$                      | $-8.76 \pm 0.19$                     | $55.1 \pm 0.5$                   | $48.9 \pm 0.1$                   | $369.8 \pm 1.6$                    | $-0.23 \pm 0.02$                     | $-17.4 \pm 0.2$                    | $1294.2 \pm 3.7$                     |
| (Global Std,2)<br>(Global Std,32)             | $-74.1 \pm 0.7$<br>$-80.2 \pm 0.7$   | $-8.65 \pm 0.19$<br>$-8.92 \pm 0.19$ | $54.7 \pm 0.5$<br>$55.4 \pm 0.5$ | $50.2 \pm 0.1$<br>$48.8 \pm 0.1$ | $380.6 \pm 1.5$<br>$369.1 \pm 1.6$ | $0.01 \pm 0.01$<br>$-0.25 \pm 0.02$  | $-15.9 \pm 0.2$<br>$-17.4 \pm 0.2$ | $1332.3 \pm 3.1$<br>$1289.2 \pm 3.8$ |
| (Global Std,4)                                | $-75.8 \pm 0.7$                      | $-8.67 \pm 0.18$                     | $54.7 \pm 0.5$                   | $49.6 \pm 0.1$                   | $375.3 \pm 1.6$                    | $0.00 \pm 0.01$                      | $-16.6 \pm 0.2$                    | $1314.3 \pm 3.5$                     |
| (Global Std,64)<br>(Global Std,8)             | $-80.2 \pm 0.7$<br>$-77.8 \pm 0.7$   | $-8.74 \pm 0.19$<br>$-8.72 \pm 0.19$ | $55.5 \pm 0.5$<br>$55.5 \pm 0.5$ | $48.7 \pm 0.1$<br>$49.1 \pm 0.1$ | $368.3 \pm 1.6$<br>$371.3 \pm 1.6$ | $-0.26 \pm 0.02$<br>$-0.08 \pm 0.01$ | $-17.6 \pm 0.2$<br>$-17.0 \pm 0.2$ | $1283.7 \pm 3.9$<br>$1304.9 \pm 3.6$ |
| (Layer Abs,0.125)                             | $-77.0 \pm 0.7$                      | $-9.66 \pm 0.20$                     | $53.0 \pm 0.4$                   | $36.9 \pm 0.2$                   | $373.0 \pm 1.6$                    | $-0.08 \pm 0.01$                     | $-15.3 \pm 0.2$                    | $1330.6 \pm 3.1$                     |
| (Layer Abs,0.25)<br>(Layer Abs,0.5)           | $-74.7 \pm 0.7$<br>$-75.8 \pm 0.7$   | $-8.69 \pm 0.19$<br>$-8.77 \pm 0.19$ | $54.0 \pm 0.4$<br>$54.6 \pm 0.3$ | $38.9 \pm 0.2$<br>$42.4 \pm 0.2$ | $383.5 \pm 1.5$<br>$380.3 \pm 1.5$ | $-0.03 \pm 0.01$<br>$-0.01 \pm 0.01$ | $-15.1 \pm 0.2$<br>$-15.8 \pm 0.2$ | $1313.0 \pm 3.5$<br>$1296.9 \pm 3.7$ |
| (Layer Abs,1)                                 | $-77.3 \pm 0.7$                      | $-8.69 \pm 0.18$                     | $54.4 \pm 0.3$                   | $48.4 \pm 0.2$                   | $373.6 \pm 1.5$                    | $0.01 \pm 0.01$                      | $-16.3 \pm 0.2$                    | $1295.3 \pm 3.7$                     |
| (Layer Abs,16)<br>(Layer Abs,2)               | $-80.3 \pm 0.7$<br>$-79.7 \pm 0.7$   | $-8.78 \pm 0.19$<br>$-8.72 \pm 0.19$ | $55.3 \pm 0.4$<br>$54.3 \pm 0.3$ | $48.8 \pm 0.1$<br>$49.8 \pm 0.1$ | $367.4 \pm 1.6$<br>$371.8 \pm 1.6$ | $-0.22 \pm 0.01$<br>$0.01 \pm 0.01$  | $-17.5 \pm 0.2$<br>$-17.0 \pm 0.2$ | $1284.2 \pm 3.8$<br>$1287.8 \pm 3.8$ |
| (Layer Abs,32)                                | $-79.9 \pm 0.7$                      | $-8.91 \pm 0.20$                     | $55.1 \pm 0.4$                   | $48.7 \pm 0.1$                   | $367.0 \pm 1.6$                    | $-0.24 \pm 0.01$                     | $-17.7 \pm 0.2$                    | $1286.1 \pm 3.8$                     |
| (Layer Abs,4)<br>(Layer Abs,64)               | $-79.8 \pm 0.7$<br>$-80.1 \pm 0.7$   | $-8.89 \pm 0.19$<br>$-8.88 \pm 0.19$ | $54.9 \pm 0.3$<br>$55.3 \pm 0.3$ | $49.2 \pm 0.1$<br>$48.7 \pm 0.1$ | $369.3 \pm 1.6$<br>$366.0 \pm 1.6$ | $0.00 \pm 0.01$<br>$-0.26 \pm 0.01$  | $-17.2 \pm 0.2$<br>$-17.5 \pm 0.2$ | $1283.7 \pm 3.8$<br>$1284.3 \pm 3.8$ |
| (Layer Abs,8)                                 | $-80.0 \pm 0.7$                      | $-8.68 \pm 0.18$                     | $55.2 \pm 0.3$                   | $49.0 \pm 0.1$                   | $368.5 \pm 1.6$                    | $-0.05 \pm 0.01$                     | $-17.6 \pm 0.2$                    | $1283.2 \pm 3.9$                     |
| (Layer Range,0.125)<br>(Layer Range,0.25)     | $-102.0 \pm 1.0$<br>$-93.7 \pm 0.9$  | $-30.7 \pm 0.4$<br>$-28.0 \pm 0.4$   | $53.3 \pm 0.4$<br>$54.0 \pm 0.4$ | $36.0 \pm 0.2$<br>$37.1 \pm 0.2$ | $346.1 \pm 1.8$<br>$365.8 \pm 1.6$ | $-0.36 \pm 0.01$<br>$-0.35 \pm 0.01$ | $-15.9 \pm 0.2$<br>$-15.2 \pm 0.2$ | $1350.3 \pm 2.4$<br>$1345.8 \pm 2.6$ |
| (Layer Range,0.5)                             | $-76.3 \pm 0.7$                      | $-17.7 \pm 0.3$                      | $54.5 \pm 0.3$                   | $41.6 \pm 0.2$                   | $380.6 \pm 1.5$                    | $-0.16\pm0.01$                       | $-15.3 \pm 0.2$                    | $1344.4 \pm 2.7$                     |
| (Layer Range,1)<br>(Layer Range,16)           | $-72.0 \pm 0.7$<br>$-78.6 \pm 0.7$   | $-12.6 \pm 0.2$<br>$-8.71 \pm 0.19$  | $54.6 \pm 0.3$<br>$55.3 \pm 0.3$ | $45.3 \pm 0.2$<br>$49.0 \pm 0.1$ | $382.0 \pm 1.5$<br>$372.0 \pm 1.6$ | $-0.01 \pm 0.01$<br>$-0.27 \pm 0.01$ | $-15.5 \pm 0.2$<br>$-17.1 \pm 0.2$ | $1340.0 \pm 2.9$<br>$1294.7 \pm 3.7$ |
| (Layer Range,2)                               | $-78.6 \pm 0.7$<br>$-72.2 \pm 0.7$   | $-9.75 \pm 0.20$                     | $54.8 \pm 0.3$                   | $47.7 \pm 0.1$                   | $383.2 \pm 1.5$                    | $-0.00 \pm 0.01$                     | $-15.9 \pm 0.2$                    | $1328.6 \pm 3.2$                     |
| (Layer Range,32)<br>(Layer Range,4)           | $-79.6 \pm 0.7$<br>$-75.0 \pm 0.7$   | $-8.75 \pm 0.19$<br>$-8.91 \pm 0.19$ | $55.3 \pm 0.3$<br>$54.8 \pm 0.3$ | $48.9 \pm 0.1$<br>$48.7 \pm 0.1$ | $371.5 \pm 1.6$<br>$379.8 \pm 1.5$ | $-0.28 \pm 0.01$<br>$-0.04 \pm 0.01$ | $-17.6 \pm 0.2$<br>$-16.3 \pm 0.2$ | $1290.9 \pm 3.8$<br>$1312.7 \pm 3.5$ |
| (Layer Range,64)                              | $-80.5 \pm 0.7$                      | $-8.76 \pm 0.19$                     | $55.1 \pm 0.3$                   | $48.8 \pm 0.1$                   | $369.5 \pm 1.6$                    | $-0.28\pm0.01$                       | $-17.5 \pm 0.2$                    | $1289.1 \pm 3.8$                     |
| (Layer Range,8)<br>(Layer Std,0.125)          | $-76.7 \pm 0.7$<br>$-106.7 \pm 1.0$  | $-8.70 \pm 0.20$<br>$-32.3 \pm 0.5$  | $55.2 \pm 0.3$<br>$52.0 \pm 0.6$ | $49.1 \pm 0.1$<br>$35.7 \pm 0.2$ | $374.7 \pm 1.5$<br>$328.0 \pm 1.9$ | $-0.24 \pm 0.01$<br>$-0.38 \pm 0.02$ | $-17.0 \pm 0.2$<br>$-17.3 \pm 0.3$ | $1300.4 \pm 3.7$<br>$1352.3 \pm 2.3$ |
| (Layer Std,0.25)                              | $-104.4 \pm 1.0$                     | $-31.0 \pm 0.4$                      | $53.0 \pm 0.6$                   | $35.9 \pm 0.2$                   | $336.9 \pm 1.9$                    | $-0.36 \pm 0.02$                     | $-16.7 \pm 0.2$                    | $1353.2 \pm 2.3$                     |
| (Layer Std,0.5)<br>(Layer Std,1)              | $-99.4 \pm 0.9$<br>$-89.9 \pm 0.8$   | $-29.0 \pm 0.4$<br>$-21.0 \pm 0.3$   | $53.7 \pm 0.6$<br>$54.3 \pm 0.5$ | $36.8 \pm 0.2$<br>$40.7 \pm 0.2$ | $350.5 \pm 1.7$<br>$371.4 \pm 1.6$ | $-0.35 \pm 0.02$<br>$-0.26 \pm 0.02$ | $-15.9 \pm 0.2$<br>$-15.1 \pm 0.2$ | $1351.2 \pm 2.4$<br>$1344.3 \pm 2.6$ |
| (Layer Std,16)                                | $-75.4 \pm 0.7$                      | $-8.72 \pm 0.19$                     | $55.1 \pm 0.5$                   | $49.1 \pm 0.1$                   | $376.7 \pm 1.5$                    | $-0.12 \pm 0.01$                     | $-16.7 \pm 0.2$                    | $1312.4 \pm 3.5$                     |
| (Layer Std,2)<br>(Layer Std,32)               | $-74.6 \pm 0.7$<br>$-77.2 \pm 0.7$   | $-13.6 \pm 0.2$<br>$-8.75 \pm 0.19$  | $54.7 \pm 0.4$<br>$55.2 \pm 0.5$ | $44.8 \pm 0.2$<br>$49.1 \pm 0.1$ | $380.6 \pm 1.5$<br>$373.9 \pm 1.6$ | $-0.03 \pm 0.01$<br>$-0.24 \pm 0.02$ | $-15.3 \pm 0.2$<br>$-17.0 \pm 0.2$ | $1344.6 \pm 2.7$<br>$1300.9 \pm 3.7$ |
| (Layer Std,4)                                 | $-72.2 \pm 0.7$                      | $-10.1 \pm 0.2$                      | $54.6 \pm 0.4$                   | $47.6 \pm 0.1$                   | $384.0 \pm 1.4$                    | $-0.00\pm0.01$                       | $-15.6 \pm 0.2$                    | $1340.5 \pm 2.9$                     |
| (Layer Std,64)<br>(Layer Std,8)               | $-78.6 \pm 0.7$<br>$-73.2 \pm 0.7$   | $-8.71 \pm 0.18$<br>$-8.93 \pm 0.19$ | $55.1 \pm 0.5$<br>$54.9 \pm 0.4$ | $49.0 \pm 0.1$<br>$48.8 \pm 0.1$ | $369.7 \pm 1.6$<br>$380.9 \pm 1.5$ | $-0.26 \pm 0.02$<br>$0.01 \pm 0.01$  | $-17.4 \pm 0.3$<br>$-15.9 \pm 0.2$ | $1292.0 \pm 3.8$<br>$1328.1 \pm 3.2$ |
| (Local Q,0.125)                               | $-144.0 \pm 1.4$                     | $-42.8 \pm 0.5$                      | $53.6 \pm 0.6$                   | $36.8 \pm 0.2$                   | $370.6 \pm 1.6$                    | $-0.45 \pm 0.02$                     | $-50.1 \pm 0.6$                    | $1331.6 \pm 3.1$                     |
| (Local Q,0.25)<br>(Local Q,0.5)               | $-161.0 \pm 1.6$<br>$-175.6 \pm 1.7$ | $-45.3 \pm 0.5$<br>$-47.2 \pm 0.6$   | $54.3 \pm 0.5$<br>$54.4 \pm 0.5$ | $38.4 \pm 0.2$<br>$40.9 \pm 0.2$ | $381.1 \pm 1.4$<br>$379.2 \pm 1.5$ | $-0.47 \pm 0.02$<br>$-0.45 \pm 0.02$ | $-54.7 \pm 0.6$<br>$-55.3 \pm 0.6$ | $1314.3 \pm 3.5$<br>$1301.8 \pm 3.7$ |
| (Local Q,1)                                   | $-185.6 \pm 1.8$                     | $-47.6 \pm 0.6$                      | $54.2 \pm 0.4$                   | $44.0 \pm 0.2$                   | $376.3 \pm 1.5$                    | $-0.46 \pm 0.02$                     | $-54.3 \pm 0.6$                    | $1294.7 \pm 3.7$                     |
| (Local Q,16)<br>(Local Q,2)                   | $-192.3 \pm 1.9$<br>$-190.6 \pm 1.8$ | $-48.1 \pm 0.6$<br>$-47.9 \pm 0.6$   | $54.1 \pm 0.4$<br>$54.0 \pm 0.4$ | $47.4 \pm 0.2$<br>$45.9 \pm 0.2$ | $370.3 \pm 1.6$<br>$372.8 \pm 1.5$ | $-0.48 \pm 0.02$<br>$-0.48 \pm 0.02$ | $-52.5 \pm 0.6$<br>$-53.3 \pm 0.6$ | $1288.4 \pm 3.8$<br>$1293.4 \pm 3.8$ |
| (Local Q,32)                                  | $-192.1 \pm 1.9$                     | $-48.4 \pm 0.6$                      | $53.8 \pm 0.4$                   | $47.4 \pm 0.2$                   | $370.1 \pm 1.6$                    | $-0.49 \pm 0.02$                     | $-52.4 \pm 0.6$                    | $1290.4 \pm 3.8$                     |
| (Local Q,4)<br>(Local Q,64)                   | $-192.6 \pm 1.9$<br>$-192.8 \pm 1.9$ | $-48.8 \pm 0.6$<br>$-48.5 \pm 0.6$   | $53.8 \pm 0.4$<br>$54.3 \pm 0.4$ | $46.9 \pm 0.2$<br>$47.5 \pm 0.2$ | $371.2 \pm 1.6$<br>$369.4 \pm 1.6$ | $-0.47 \pm 0.02$<br>$-0.49 \pm 0.02$ | $-52.9 \pm 0.6$<br>$-52.0 \pm 0.6$ | $1287.7 \pm 3.8$<br>$1289.8 \pm 3.8$ |
| (Local Q,8)                                   | $-192.2 \pm 1.9$                     | $-48.3 \pm 0.6$                      | $54.4 \pm 0.4$                   | $47.3 \pm 0.2$                   | $371.4 \pm 1.6$                    | $-0.48 \pm 0.02$                     | $-52.7 \pm 0.6$                    | $1289.6 \pm 3.7$                     |
| (Local Abs,0.125)<br>(Local Abs,0.25)         | $-76.2 \pm 0.7$<br>$-74.4 \pm 0.7$   | $-9.52 \pm 0.20$<br>$-8.60 \pm 0.19$ | $53.6 \pm 0.6$<br>$54.3 \pm 0.5$ | $36.9 \pm 0.2$<br>$38.4 \pm 0.2$ | $370.6 \pm 1.6$<br>$381.1 \pm 1.4$ | $-0.07 \pm 0.01$<br>$-0.03 \pm 0.01$ | $-15.4 \pm 0.2$<br>$-15.4 \pm 0.2$ | $1331.6 \pm 3.1$<br>$1314.3 \pm 3.5$ |
| (Local Abs, 0.5)                              | $-76.2 \pm 0.7$                      | $-8.72 \pm 0.18$                     | $54.4 \pm 0.5$                   | $41.2 \pm 0.2$                   | $379.2 \pm 1.5$                    | $-0.02 \pm 0.01$                     | $-16.2 \pm 0.2$                    | $1301.8 \pm 3.7$                     |
| (Local Abs,1)<br>(Local Abs,16)               | $-78.4 \pm 0.7$<br>$-82.9 \pm 0.8$   | $-8.73 \pm 0.18$<br>$-8.85 \pm 0.19$ | $54.2 \pm 0.4$<br>$54.1 \pm 0.4$ | $44.5 \pm 0.2$<br>$49.1 \pm 0.2$ | $376.3 \pm 1.5$<br>$370.3 \pm 1.6$ | $0.00 \pm 0.01$<br>$-0.65 \pm 0.02$  | $-16.9 \pm 0.2$<br>$-19.1 \pm 0.3$ | $1294.7 \pm 3.7$<br>$1288.4 \pm 3.8$ |
| (Local Abs,2)                                 | $-79.9 \pm 0.7$                      | $-8.76 \pm 0.19$                     | $54.0 \pm 0.4$                   | $47.0 \pm 0.2$                   | $372.8 \pm 1.5$                    | $-0.03 \pm 0.01$                     | $-17.8 \pm 0.2$                    | $1293.4 \pm 3.8$                     |
| (Local Abs,32)<br>(Local Abs,4)               | $-83.4 \pm 0.8$<br>$-81.4 \pm 0.7$   | $-8.96 \pm 0.20$<br>$-8.86 \pm 0.19$ | $53.8 \pm 0.4$<br>$53.8 \pm 0.4$ | $49.2 \pm 0.1$<br>$48.4 \pm 0.2$ | $370.1 \pm 1.6$<br>$371.2 \pm 1.6$ | $-0.66 \pm 0.02$<br>$-0.37 \pm 0.02$ | $-19.0 \pm 0.3$<br>$-18.4 \pm 0.3$ | $1290.4 \pm 3.8$<br>$1287.7 \pm 3.8$ |
| (Local Abs,64)                                | $-82.8 \pm 0.7$                      | $-8.78 \pm 0.19$                     | $54.3 \pm 0.4$                   | $49.2 \pm 0.1$                   | $369.4 \pm 1.6$                    | $-0.65 \pm 0.02$                     | $-19.1 \pm 0.3$                    | $1289.8 \pm 3.8$                     |
| (Local Abs,8)<br>(Local Range,0.125)          | $-82.5 \pm 0.8$<br>$-102.5 \pm 1.0$  | $-8.96 \pm 0.20$<br>$-30.9 \pm 0.4$  | $54.4 \pm 0.4$<br>$53.3 \pm 0.4$ | $48.9 \pm 0.2$<br>$36.1 \pm 0.2$ | $371.4 \pm 1.6$<br>$344.9 \pm 1.8$ | $-0.59 \pm 0.02$<br>$-0.40 \pm 0.01$ | $-18.7 \pm 0.3$<br>$-15.9 \pm 0.2$ | $1289.6 \pm 3.7$<br>$1352.9 \pm 2.3$ |
| (Local Range,0.25)                            | $-95.7 \pm 0.9$                      | $-28.0 \pm 0.4$                      | $53.9 \pm 0.4$                   | $37.1 \pm 0.2$                   | $363.6 \pm 1.7$                    | $-0.41 \pm 0.01$                     | $-15.4\pm0.2$                      | $1347.9 \pm 2.5$                     |
| (Local Range,0.5)<br>(Local Range,1)          | $-77.9 \pm 0.8$<br>$-72.2 \pm 0.7$   | $-17.7 \pm 0.3$<br>$-12.9 \pm 0.2$   | $54.3 \pm 0.3$<br>$54.3 \pm 0.3$ | $41.5 \pm 0.2$<br>$45.3 \pm 0.2$ | $378.5 \pm 1.5$<br>$382.9 \pm 1.5$ | $-0.24 \pm 0.01$<br>$-0.02 \pm 0.01$ | $-15.4 \pm 0.2$<br>$-15.5 \pm 0.2$ | $1347.4 \pm 2.6$<br>$1339.5 \pm 2.9$ |
| (Local Range,16)                              | $-78.7 \pm 0.7$                      | $-8.74 \pm 0.19$                     | $55.2 \pm 0.3$                   | $49.1 \pm 0.1$                   | $372.0 \pm 1.6$                    | $-0.27 \pm 0.01$                     | $-17.2 \pm 0.2$                    | $1294.7 \pm 3.7$                     |
| (Local Range,2)<br>(Local Range,32)           | $-72.9 \pm 0.7$<br>$-80.2 \pm 0.7$   | $-9.67 \pm 0.20$<br>$-8.73 \pm 0.19$ | $54.4 \pm 0.3$<br>$55.3 \pm 0.3$ | $47.9 \pm 0.1$<br>$48.9 \pm 0.1$ | $382.9 \pm 1.5$<br>$371.5 \pm 1.6$ | $0.01 \pm 0.01$<br>$-0.27 \pm 0.01$  | $-15.8 \pm 0.2$<br>$-17.8 \pm 0.2$ | $1328.4 \pm 3.2$<br>$1290.9 \pm 3.8$ |
| (Local Range,4)                               | $-74.5 \pm 0.7$                      | $-8.77 \pm 0.18$                     | $54.8 \pm 0.3$                   | $49.0 \pm 0.1$                   | $380.1 \pm 1.5$                    | $-0.06 \pm 0.01$                     | $-16.4 \pm 0.2$                    | $1311.6 \pm 3.5$                     |
| (Local Range,64)<br>(Local Range,8)           | $-79.8 \pm 0.7$<br>$-77.3 \pm 0.7$   | $-8.86 \pm 0.19$<br>$-8.65 \pm 0.18$ | $55.1 \pm 0.3$<br>$55.2 \pm 0.3$ | $48.8 \pm 0.1$<br>$49.1 \pm 0.1$ | $369.5 \pm 1.6$<br>$375.9 \pm 1.5$ | $-0.27 \pm 0.01$<br>$-0.23 \pm 0.01$ | $-17.6 \pm 0.2$<br>$-16.9 \pm 0.2$ | $1289.1 \pm 3.8$<br>$1300.4 \pm 3.7$ |
| (Local Std, 0.125)                            | $-107.1 \pm 1.0$                     | $-31.9 \pm 0.4$                      | $52.1 \pm 0.6$                   | $35.7 \pm 0.2$                   | $327.6 \pm 1.9$                    | $-0.42 \pm 0.02$                     | $-17.4 \pm 0.2$                    | $1352.0 \pm 2.3$                     |
| (Local Std,0.25)<br>(Local Std,0.5)           | $-104.7 \pm 1.0$<br>$-99.8 \pm 0.9$  | $-30.8 \pm 0.4$<br>$-28.9 \pm 0.4$   | $53.0 \pm 0.6$<br>$53.4 \pm 0.6$ | $36.1 \pm 0.2$<br>$36.9 \pm 0.2$ | $336.3 \pm 1.9$<br>$349.6 \pm 1.8$ | $-0.41 \pm 0.02$<br>$-0.41 \pm 0.02$ | $-16.7 \pm 0.2$<br>$-15.7 \pm 0.2$ | $1352.8 \pm 2.3$<br>$1350.8 \pm 2.4$ |
| (Local Std,1)                                 | $-91.4 \pm 0.9$                      | $-21.1 \pm 0.3$<br>$-8.56 \pm 0.18$  | $54.4 \pm 0.5$                   | $40.7 \pm 0.2$                   | $370.0 \pm 1.6$                    | $-0.33 \pm 0.02$                     | $-15.2 \pm 0.2$<br>$-16.5 \pm 0.2$ | $1346.3 \pm 2.6$                     |
| (Local Std,16)<br>(Local Std,2)               | $-75.2 \pm 0.7$<br>$-75.5 \pm 0.7$   | $-8.56 \pm 0.18$<br>$-13.6 \pm 0.2$  | $55.2 \pm 0.5$<br>$54.3 \pm 0.4$ | $49.2 \pm 0.1$<br>$44.8 \pm 0.2$ | $377.6 \pm 1.5$<br>$381.6 \pm 1.5$ | $-0.19 \pm 0.02$<br>$-0.06 \pm 0.01$ | $-16.5 \pm 0.2$<br>$-15.4 \pm 0.2$ | $1311.1 \pm 3.5$<br>$1347.3 \pm 2.6$ |
| (Local Std,32)                                | $-77.9 \pm 0.7$                      | $-8.58 \pm 0.17$<br>$-10.2 \pm 0.2$  | $55.3 \pm 0.5$                   | $49.1 \pm 0.1$                   | $373.2 \pm 1.6$                    | $-0.25 \pm 0.02$                     | $-17.1 \pm 0.2$                    | $1299.2 \pm 3.7$<br>$1340.3 \pm 2.8$ |
| (Local Std,4)<br>(Local Std,64)               | $-71.4 \pm 0.7$<br>$-79.0 \pm 0.7$   | $-8.86 \pm 0.20$                     | $54.1 \pm 0.4$<br>$55.4 \pm 0.5$ | $47.7 \pm 0.1$<br>$48.9 \pm 0.1$ | $383.2 \pm 1.5$<br>$369.7 \pm 1.6$ | $-0.00 \pm 0.01$<br>$-0.27 \pm 0.02$ | $-15.6 \pm 0.2$<br>$-17.2 \pm 0.2$ | $1293.6 \pm 3.8$                     |
| (Local Std,8)<br>(Poly-UCB1,0.125)            | $-73.4 \pm 0.7$<br>$-107.4 \pm 1.4$  | $-8.90 \pm 0.20$                     | $54.7 \pm 0.4$<br>$51.6 \pm 0.6$ | $49.1 \pm 0.1$<br>$35.6 \pm 0.3$ | $381.0 \pm 1.5$<br>$324.8 \pm 2.7$ | $0.00 \pm 0.01$<br>$-0.41 \pm 0.02$  | $-15.9 \pm 0.2$<br>$-18.0 \pm 0.4$ | $1324.8 \pm 3.2$<br>$1351.2 \pm 3.4$ |
| (Poly-UCB1,0.25)                              | $-104.0 \pm 1.4$                     | $-30.1 \pm 0.6$<br>$-27.0 \pm 0.6$   | $52.0 \pm 0.6$                   | $35.8 \pm 0.3$                   | $326.6 \pm 2.7$                    | $-0.41 \pm 0.02$                     | $-17.9 \pm 0.4$                    | $1354.8 \pm 3.2$                     |
| (Poly-UCB1,0.5)<br>(Poly-UCB1,1)              | $-99.8 \pm 1.3$<br>$-95.7 \pm 1.3$   | $-20.2 \pm 0.4$<br>$-13.9 \pm 0.3$   | $51.9 \pm 0.6$<br>$52.1 \pm 0.6$ | $35.5 \pm 0.3$<br>$35.6 \pm 0.3$ | $329.6 \pm 2.7$<br>$338.2 \pm 2.7$ | $-0.38 \pm 0.02$<br>$-0.36 \pm 0.02$ | $-17.8 \pm 0.4$<br>$-17.0 \pm 0.3$ | $1357.7 \pm 2.9$<br>$1358.1 \pm 2.9$ |
| (Poly-UCB1,16)                                | $-83.7 \pm 1.0$                      | $-9.07 \pm 0.30$                     | $53.4 \pm 0.6$                   | $39.0 \pm 0.3$                   | $359.2 \pm 2.5$                    | $-0.34 \pm 0.02$                     | $-18.1 \pm 0.3$                    | $1353.1 \pm 3.3$                     |
| (Poly-UCB1,2)<br>(Poly-UCB1,32)               | $-90.1 \pm 1.2$<br>$-149.8 \pm 2.2$  | $-10.3 \pm 0.3$<br>$-8.79 \pm 0.28$  | $52.2 \pm 0.6$<br>$53.4 \pm 0.6$ | $35.8 \pm 0.3$<br>$39.7 \pm 0.3$ | $342.1 \pm 2.6$<br>$359.9 \pm 2.5$ | $-0.33 \pm 0.02$<br>$-0.51 \pm 0.02$ | $-16.4 \pm 0.3$                    | $1360.1 \pm 2.8$ $1351.5 \pm 3.4$    |
| (Poly-UCB1,4)                                 | $-79.0 \pm 1.0$                      | $-8.79 \pm 0.28$<br>$-8.96 \pm 0.27$ | $53.4 \pm 0.6$<br>$53.1 \pm 0.6$ | $39.7 \pm 0.3$<br>$36.5 \pm 0.3$ | $359.9 \pm 2.5$<br>$350.7 \pm 2.5$ | $-0.51 \pm 0.02$<br>$-0.28 \pm 0.02$ | $-43.5 \pm 0.7$<br>$-15.5 \pm 0.3$ | $1351.5 \pm 3.4$<br>$1357.8 \pm 3.0$ |
| (Poly-UCB1,64)<br>(Poly-UCB1,8)               | $-152.7 \pm 2.2$<br>$-76.5 \pm 0.9$  | $-13.9 \pm 0.4$<br>$-8.50 \pm 0.25$  | $53.5 \pm 0.6$<br>$52.5 \pm 0.6$ | $40.3 \pm 0.3$<br>$38.1 \pm 0.3$ | $363.0 \pm 2.3$<br>$352.0 \pm 2.6$ | $-0.56 \pm 0.02$<br>$-0.29 \pm 0.02$ | $-43.7 \pm 0.7$<br>$-15.3 \pm 0.3$ | $1344.5 \pm 3.8$<br>$1357.0 \pm 3.0$ |
| (Vanilla UCT,0.125)                           | $-107.8 \pm 1.0$                     | $-31.7 \pm 0.5$                      | $52.3 \pm 0.6$<br>$52.3 \pm 0.6$ | $35.8 \pm 0.2$                   | $352.0 \pm 2.6$<br>$323.3 \pm 1.9$ | $-0.06\pm0.01$                       | $-18.1 \pm 0.3$                    | $1344.5 \pm 2.6$                     |
| (Vanilla UCT,0.25)                            | $-107.0 \pm 1.0$                     | $-30.4 \pm 0.5$                      | $52.3 \pm 0.6$                   | $36.0 \pm 0.2$<br>$36.6 \pm 0.2$ | $323.4 \pm 1.9$                    | $-0.02 \pm 0.01$<br>$0.00 \pm 0.01$  | $-18.0 \pm 0.3$<br>$-17.8 \pm 0.3$ | $1345.2 \pm 2.6$<br>$1348.4 \pm 2.5$ |
| (Vanilla UCT,0.5)<br>(Vanilla UCT,1)          | $-104.5 \pm 1.0$<br>$-100.9 \pm 1.0$ | $-28.4 \pm 0.5$<br>$-24.5 \pm 0.5$   | $52.9 \pm 0.6$<br>$53.0 \pm 0.6$ | $38.2 \pm 0.2$                   | $324.9 \pm 1.9$<br>$327.7 \pm 1.9$ | $0.01 \pm 0.01$                      | $-17.2 \pm 0.2$                    | $1346.7 \pm 2.6$                     |
| (Vanilla UCT,1000)                            | $-80.1 \pm 0.7$                      | $-8.72 \pm 0.18$                     | $55.4 \pm 0.5$                   | $48.7 \pm 0.1$                   | $367.6 \pm 1.6$                    | $-0.29 \pm 0.02$                     | $-17.7 \pm 0.2$                    | $1291.0 \pm 3.8$                     |
| (Vanilla UCT,16)<br>(Vanilla UCT,2)           | $-84.2 \pm 0.8$<br>$-97.0 \pm 1.0$   | $-8.75 \pm 0.19$<br>$-19.8 \pm 0.4$  | $54.9 \pm 0.5$<br>$53.3 \pm 0.5$ | $49.8 \pm 0.1$<br>$40.7 \pm 0.2$ | $377.5 \pm 1.5$<br>$335.5 \pm 1.8$ | $-0.24 \pm 0.02$<br>$0.01 \pm 0.01$  | $-15.5 \pm 0.2$<br>$-16.5 \pm 0.2$ | $1349.9 \pm 2.4$<br>$1349.1 \pm 2.5$ |
| (Vanilla UCT,256)                             | $-78.2 \pm 0.7$                      | $-8.61 \pm 0.18$                     | $55.4 \pm 0.5$                   | $48.7 \pm 0.1$<br>$49.4 \pm 0.1$ | $369.7 \pm 1.6$                    | $-0.29 \pm 0.02$                     | $-17.5 \pm 0.2$                    | $1306.5 \pm 3.6$                     |
| (Vanilla UCT,32)<br>(Vanilla UCT,4)           | $-77.5 \pm 0.7$<br>$-92.9 \pm 0.9$   | $-8.53 \pm 0.18$<br>$-14.9 \pm 0.3$  | $55.6 \pm 0.5$<br>$54.0 \pm 0.4$ | $49.4 \pm 0.1$<br>$46.1 \pm 0.2$ | $382.0 \pm 1.5$<br>$344.5 \pm 1.8$ | $-0.26 \pm 0.02$<br>$-0.01 \pm 0.01$ | $-16.2 \pm 0.2$<br>$-15.6 \pm 0.2$ | $1349.2 \pm 2.5$<br>$1350.9 \pm 2.4$ |
| (Vanilla UCT,64)<br>(Vanilla UCT,8)           | $-75.5 \pm 0.7$<br>$-88.7 \pm 0.9$   | $-8.54 \pm 0.17$                     | $55.4 \pm 0.5$                   | $49.0 \pm 0.1$                   | $379.7 \pm 1.5$                    | $-0.27 \pm 0.02$<br>$-0.19 \pm 0.02$ | $-16.7 \pm 0.2$                    | $1344.3 \pm 2.7$                     |
| ( vanind UC 1,0)                              | -00.7 ± 0.9                          | $-10.5 \pm 0.2$                      | $54.3 \pm 0.4$                   | $49.9 \pm 0.1$                   | $360.4 \pm 1.7$                    | 0.10 ± 0.02                          | $-15.4 \pm 0.2$                    | $1352.8 \pm 2.3$                     |

TABLE XIV: Part 3/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 500 MCTS iterations..

|                                           | CaptureTheFlag                                        | Chess                                                          | Connect4                                                        | Constrictor                                                     | KillTheKing                                                     | NumbersRace                                              | Othello                                                                           | Pusher                                                          | Pylos                                                           | Quarto                               |
|-------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
| (Global Abs, 0.125)<br>(Global Abs, 0.25) | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.65 \pm 0.02$<br>$0.67 \pm 0.02$                             | $-0.62 \pm 0.02$<br>$-0.47 \pm 0.02$                            | $-0.63 \pm 0.02$<br>$-0.56 \pm 0.02$                            | $-0.09 \pm 0.01$<br>$-0.08 \pm 0.01$                            | $0.75 \pm 0.02$<br>$0.82 \pm 0.01$                       | $-0.44 \pm 0.02$<br>$-0.27 \pm 0.02$                                              | $-0.00 \pm 0.00$<br>$0.00 \pm 0.00$                             | $-0.61 \pm 0.02$<br>$-0.43 \pm 0.02$                            | $-0.02 \pm 0.02$<br>$0.08 \pm 0.02$  |
| (Global Abs, 0.5)                         | $0.00 \pm 0.00$                                       | $0.64 \pm 0.02$                                                | $-0.15 \pm 0.02$                                                | $-0.38\pm0.02$                                                  | $-0.05\pm0.01$                                                  | $0.79 \pm 0.02$                                          | $0.08 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                                 | $-0.08 \pm 0.03$                                                | $0.17 \pm 0.02$                      |
| (Global Abs,1)<br>(Global Abs,16)         | $0.00 \pm 0.00$ $0.00 \pm 0.00$                       | $0.58 \pm 0.02$<br>$-0.06 \pm 0.03$                            | $0.25 \pm 0.02$<br>$-0.21 \pm 0.02$                             | $-0.02 \pm 0.03$<br>$-0.10 \pm 0.03$                            | $-0.02 \pm 0.01$<br>$0.00 \pm 0.01$                             | $0.75 \pm 0.02$<br>$-0.27 \pm 0.03$                      | $0.36 \pm 0.02$<br>$-0.21 \pm 0.03$                                               | $-0.00 \pm 0.00$<br>$0.00 \pm 0.00$                             | $0.26 \pm 0.03$<br>$-0.22 \pm 0.03$                             | $0.24 \pm 0.02$<br>$-0.35 \pm 0.02$  |
| (Global Abs,2)<br>(Global Abs,32)         | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.35 \pm 0.02$<br>$-0.08 \pm 0.03$                            | $0.17 \pm 0.03$<br>$-0.24 \pm 0.02$                             | $0.06 \pm 0.03$<br>$-0.11 \pm 0.03$                             | $-0.00 \pm 0.01$<br>$-0.01 \pm 0.01$                            | $0.35 \pm 0.02$<br>$-0.29 \pm 0.02$                      | $0.21 \pm 0.03$<br>$-0.26 \pm 0.02$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.20 \pm 0.03$<br>$-0.24 \pm 0.03$                             | $0.21 \pm 0.02$<br>$-0.40 \pm 0.02$  |
| (Global Abs,4)                            | $0.00 \pm 0.00$                                       | $0.12 \pm 0.03$                                                | $-0.00 \pm 0.03$                                                | $-0.01\pm0.03$                                                  | $0.01 \pm 0.01$                                                 | $-0.01 \pm 0.03$                                         | $-0.00\pm0.03$                                                                    | $0.00 \pm 0.00$                                                 | $0.01 \pm 0.03$                                                 | $0.04 \pm 0.02$                      |
| (Global Abs,64)<br>(Global Abs,8)         | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.12 \pm 0.03$<br>$-0.01 \pm 0.03$                           | $-0.28 \pm 0.02$<br>$-0.11 \pm 0.03$                            | $-0.14 \pm 0.03$<br>$-0.06 \pm 0.03$                            | $-0.01 \pm 0.01$<br>$0.01 \pm 0.01$                             | $-0.32 \pm 0.02$<br>$-0.20 \pm 0.03$                     | $-0.26 \pm 0.02$<br>$-0.14 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.25 \pm 0.03$<br>$-0.14 \pm 0.03$                            | $-0.47 \pm 0.02$<br>$-0.20 \pm 0.02$ |
| (Global Range, 0.125)                     | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.62 \pm 0.02$<br>$0.42 \pm 0.02$                             | $\begin{array}{c} -0.42 \pm 0.02 \\ -0.05 \pm 0.03 \end{array}$ | $-0.52 \pm 0.02$<br>$-0.23 \pm 0.03$                            | $-0.01\pm0.01$                                                  | $0.83 \pm 0.01$                                          | $-0.18\pm0.02$                                                                    | $0.00 \pm 0.00$                                                 | $-0.40 \pm 0.02$                                                | $0.11 \pm 0.02$<br>$0.24 \pm 0.02$   |
| (Global Range,0.25)<br>(Global Range,0.5) | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.42 \pm 0.02$<br>$0.14 \pm 0.03$                             | $-0.05 \pm 0.03$<br>$0.23 \pm 0.02$                             | $-0.23 \pm 0.03$<br>$0.01 \pm 0.03$                             | $0.00 \pm 0.01$<br>$0.00 \pm 0.01$                              | $0.78 \pm 0.02$<br>$0.76 \pm 0.02$                       | $0.20 \pm 0.02$<br>$0.37 \pm 0.02$                                                | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.03 \pm 0.03$<br>$\mathbf{0.28 \pm 0.03}$                     | $0.24 \pm 0.02$<br>$0.27 \pm 0.02$   |
| (Global Range,1)<br>(Global Range,16)     | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.00 \pm 0.03$<br>$-0.12 \pm 0.03$                            | $0.13 \pm 0.03$<br>$-0.25 \pm 0.02$                             | $0.04 \pm 0.03$<br>$-0.12 \pm 0.03$                             | $\begin{array}{c} -0.00 \pm 0.01 \\ -0.01 \pm 0.01 \end{array}$ | $0.24 \pm 0.03$<br>$-0.31 \pm 0.02$                      | $\begin{array}{c} 0.15 \pm 0.03 \\ -0.26 \pm 0.02 \end{array}$                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.15 \pm 0.03$<br>$-0.24 \pm 0.03$                             | $0.18 \pm 0.02$<br>$-0.45 \pm 0.02$  |
| (Global Range,2)                          | $0.00 \pm 0.00$                                       | $-0.07 \pm 0.03$                                               | $-0.05 \pm 0.03$                                                | $-0.05\pm0.03$                                                  | $-0.01 \pm 0.01$<br>$-0.01 \pm 0.01$<br>$-0.01 \pm 0.01$        | $-0.31 \pm 0.02$<br>$-0.11 \pm 0.03$<br>$-0.33 \pm 0.02$ | $-0.08 \pm 0.03$                                                                  | $-0.00\pm0.00$                                                  | $-0.05 \pm 0.03$                                                | $-0.05 \pm 0.02$                     |
| (Global Range,32)<br>(Global Range,4)     | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.15 \pm 0.03$<br>$-0.11 \pm 0.03$                           | $-0.26 \pm 0.02$<br>$-0.14 \pm 0.03$                            | $-0.14 \pm 0.03$<br>$-0.09 \pm 0.03$                            | $-0.01 \pm 0.01$<br>$-0.01 \pm 0.01$                            | $-0.33 \pm 0.02$<br>$-0.24 \pm 0.03$                     | $\begin{array}{c} -0.28 \pm 0.02 \\ -0.17 \pm 0.03 \end{array}$                   | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                             | $\begin{array}{c} -0.27 \pm 0.03 \\ -0.15 \pm 0.03 \end{array}$ | $-0.47 \pm 0.02$<br>$-0.26 \pm 0.02$ |
| (Global Range,64)                         | $0.00 \pm 0.00$                                       | $-0.11 \pm 0.03$                                               | $-0.29\pm0.02$                                                  | $-0.15 \pm 0.03$                                                | $-0.02 \pm 0.01$                                                | $-0.31 \pm 0.02$                                         | $-0.31\pm0.02$                                                                    | $0.00 \pm 0.00$                                                 | $-0.25 \pm 0.03$                                                | $-0.45\pm0.02$                       |
| (Global Range,8)<br>(Global Std,0.125)    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.11 \pm 0.03$<br>$0.65 \pm 0.03$                            | $-0.20 \pm 0.03$<br>$-0.62 \pm 0.03$                            | $\begin{array}{c} -0.10 \pm 0.03 \\ -0.66 \pm 0.03 \end{array}$ | $\begin{array}{c} -0.01 \pm 0.01 \\ -0.08 \pm 0.02 \end{array}$ | $-0.28 \pm 0.03$<br>$0.76 \pm 0.02$                      | $-0.22 \pm 0.03$<br>$-0.54 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $\begin{array}{c} -0.22 \pm 0.03 \\ -0.67 \pm 0.03 \end{array}$ | $-0.38 \pm 0.02$<br>$-0.01 \pm 0.03$ |
| (Global Std,0.25)<br>(Global Std,0.5)     | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.65 \pm 0.03$<br>$0.60 \pm 0.03$                             | $-0.49 \pm 0.03$<br>$-0.13 \pm 0.04$                            | $-0.57 \pm 0.03$<br>$-0.35 \pm 0.03$                            | $-0.04 \pm 0.02$<br>$0.00 \pm 0.02$                             | $0.83 \pm 0.02$<br>$0.78 \pm 0.02$                       | $\begin{array}{c} -0.33 \pm 0.03 \\ 0.08 \pm 0.04 \end{array}$                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $\begin{array}{c} -0.50 \pm 0.03 \\ -0.08 \pm 0.04 \end{array}$ | $0.13 \pm 0.03$<br>$0.19 \pm 0.03$   |
| (Global Std,1)                            | $0.00 \pm 0.00$                                       | $0.42 \pm 0.03$                                                | $0.25 \pm 0.03$                                                 | $0.00 \pm 0.04$                                                 | $0.02 \pm 0.02$                                                 | $0.74 \pm 0.02$                                          | $0.37 \pm 0.03$                                                                   | $0.00\pm0.00$                                                   | $0.26 \pm 0.04$                                                 | $0.23 \pm 0.03$                      |
| (Global Std,16)<br>(Global Std,2)         | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.12 \pm 0.04$<br>$0.15 \pm 0.04$                            | $-0.19 \pm 0.04$<br>$0.14 \pm 0.04$                             | $-0.12 \pm 0.04$<br>$0.04 \pm 0.04$                             | $-0.02 \pm 0.02$<br>$0.01 \pm 0.02$                             | $-0.28 \pm 0.04$<br>$0.34 \pm 0.03$                      | $-0.23 \pm 0.04$<br>$0.19 \pm 0.04$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.22 \pm 0.04$<br>$0.19 \pm 0.04$                             | $-0.36 \pm 0.03$<br>$0.21 \pm 0.03$  |
| (Global Std,32)                           | $0.00 \pm 0.00$                                       | $-0.11 \pm 0.04$                                               | $-0.24 \pm 0.03$                                                | $-0.13\pm0.04$                                                  | $-0.02\pm0.02$                                                  | $-0.33 \pm 0.03$                                         | $-0.24\pm0.04$                                                                    | $-0.00\pm0.00$                                                  | $-0.26\pm0.04$                                                  | $-0.40 \pm 0.03$                     |
| (Global Std,4)<br>(Global Std,64)         | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.01 \pm 0.04$<br>$-0.13 \pm 0.04$                           | $-0.02 \pm 0.04$<br>$-0.29 \pm 0.03$                            | $0.01 \pm 0.04$<br>$-0.15 \pm 0.04$                             | $0.01 \pm 0.02$<br>$-0.02 \pm 0.02$                             | $-0.00 \pm 0.04$<br>$-0.30 \pm 0.04$                     | $-0.00 \pm 0.04$<br>$-0.30 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                             | $0.00 \pm 0.04$<br>$-0.24 \pm 0.04$                             | $0.00 \pm 0.03$<br>$-0.45 \pm 0.03$  |
| (Global Std,8)<br>(Layer Abs,0.125)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.06 \pm 0.04$<br>$0.65 \pm 0.02$                            | $-0.13 \pm 0.04$<br>$-0.60 \pm 0.02$                            | $-0.04 \pm 0.04$<br>$-0.65 \pm 0.02$                            |                                                                 | $-0.21 \pm 0.04$<br>$0.75 \pm 0.02$                      | $\begin{array}{c} -0.12 \pm 0.04 \\ -0.45 \pm 0.02 \end{array}$                   | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.12 \pm 0.04$<br>$-0.61 \pm 0.02$                            | $-0.21 \pm 0.03$<br>$-0.01 \pm 0.02$ |
| (Layer Abs, 0.25)                         | $0.00 \pm 0.00$                                       | $0.65 \pm 0.02$                                                | $-0.48 \pm 0.02$                                                | $-0.56\pm0.02$                                                  | $-0.07\pm0.01$                                                  | $0.80 \pm 0.02$                                          | $-0.29\pm0.02$                                                                    | $0.00 \pm 0.00$                                                 | $-0.49 \pm 0.02$                                                | $0.08 \pm 0.02$                      |
| (Layer Abs,0.5)<br>(Layer Abs,1)          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.62 \pm 0.02$<br>$0.54 \pm 0.02$                             | $-0.25 \pm 0.02$<br>$0.09 \pm 0.03$                             | $-0.43 \pm 0.02$<br>$-0.18 \pm 0.03$                            | $-0.05 \pm 0.01$<br>$-0.05 \pm 0.01$                            | $0.82 \pm 0.01$<br>$0.79 \pm 0.02$                       | $-0.03 \pm 0.03$<br>$0.26 \pm 0.02$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.19 \pm 0.03$<br>$0.17 \pm 0.03$                             | $0.19 \pm 0.02$<br>$0.23 \pm 0.02$   |
| (Layer Abs,16)                            | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.01 \pm 0.03$                                               | $-0.07 \pm 0.03$                                                | $-0.09\pm0.03$                                                  | $-0.01 \pm 0.01$                                                | $-0.43\pm0.02$                                           | $-0.15\pm0.03$                                                                    | $0.00 \pm 0.00$                                                 | $-0.10\pm0.03$                                                  | $-0.20 \pm 0.02$                     |
| (Layer Abs,2)<br>(Layer Abs,32)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.41 \pm 0.02$<br>$-0.04 \pm 0.03$                            | $0.20 \pm 0.02$<br>-0.18 ± 0.03                                 | $-0.06 \pm 0.03$<br>$-0.11 \pm 0.03$                            | $-0.04 \pm 0.01$<br>$-0.01 \pm 0.01$                            | $0.51 \pm 0.02$<br>$-0.36 \pm 0.02$                      | $0.27 \pm 0.02$<br>$-0.20 \pm 0.03$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.23 \pm 0.03$<br>$-0.18 \pm 0.03$                             | $0.23 \pm 0.02$<br>$-0.34 \pm 0.02$  |
| (Layer Abs,4)                             | $0.00 \pm 0.00$                                       | $0.23 \pm 0.03$                                                | $0.16 \pm 0.03$                                                 | $-0.03\pm0.03$                                                  | $-0.02 \pm 0.01$                                                | $0.05 \pm 0.03$                                          | $0.12 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                                 | $0.13 \pm 0.03$                                                 | $0.13 \pm 0.02$                      |
| (Layer Abs,64)<br>(Layer Abs,8)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.12 \pm 0.03$<br>$0.10 \pm 0.03$                            | $-0.23 \pm 0.02$<br>$0.06 \pm 0.03$                             | $-0.14 \pm 0.03$<br>$-0.03 \pm 0.03$                            | $-0.02 \pm 0.01$<br>$-0.02 \pm 0.01$                            | $-0.27 \pm 0.03$<br>$-0.29 \pm 0.02$                     | $-0.25 \pm 0.02$<br>$0.01 \pm 0.03$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.23 \pm 0.03$<br>$-0.01 \pm 0.03$                            | $-0.41 \pm 0.02$<br>$-0.02 \pm 0.02$ |
| (Layer Range, 0.125)                      | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.65 \pm 0.02$                                                | $-0.85 \pm 0.01$<br>$-0.79 \pm 0.02$                            | $-0.77 \pm 0.02$                                                | $-0.09 \pm 0.01$<br>$-0.08 \pm 0.01$                            | $0.72 \pm 0.02$                                          | $-0.58\pm0.02$                                                                    | $0.00 \pm 0.00$                                                 | $-0.01 \pm 0.03$<br>$-0.69 \pm 0.02$<br>$-0.56 \pm 0.02$        | $-0.43 \pm 0.02$<br>$-0.44 \pm 0.02$ |
| (Layer Range,0.25)<br>(Layer Range,0.5)   | $0.00 \pm 0.00$                                       | $0.62 \pm 0.02$<br>$0.40 \pm 0.02$                             | $-0.27 \pm 0.02$                                                | $\begin{array}{c} -0.75 \pm 0.02 \\ -0.54 \pm 0.02 \end{array}$ | $-0.05\pm0.01$                                                  | $0.71 \pm 0.02$<br>$0.76 \pm 0.02$                       | $\begin{array}{c} -0.49 \pm 0.02 \\ -0.03 \pm 0.03 \end{array}$                   | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.14\pm0.03$                                                  | $-0.06\pm0.02$                       |
| (Layer Range,1)<br>(Layer Range,16)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.22 \pm 0.03$<br>$-0.09 \pm 0.03$                            | $0.07 \pm 0.03$<br>$-0.20 \pm 0.02$                             | $-0.34 \pm 0.02$<br>$-0.14 \pm 0.03$                            | $\begin{array}{c} -0.02 \pm 0.01 \\ -0.01 \pm 0.01 \end{array}$ | $0.42 \pm 0.02$<br>-0.26 ± 0.03                          | $0.06 \pm 0.03$<br>$-0.21 \pm 0.03$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.05 \pm 0.03$<br>$-0.19 \pm 0.03$                             | $0.11 \pm 0.02$<br>$-0.40 \pm 0.02$  |
| (Layer Range,2)                           | $0.00 \pm 0.00$                                       | $0.10 \pm 0.03$                                                | $0.05 \pm 0.03$                                                 | $-0.19 \pm 0.03$                                                | $-0.01 \pm 0.01$                                                | $-0.13 \pm 0.03$                                         | $\begin{array}{c} -0.21 \pm 0.03 \\ -0.01 \pm 0.03 \end{array}$                   | $0.00 \pm 0.00$                                                 | $0.01 \pm 0.03$                                                 | $0.00 \pm 0.02$                      |
| (Layer Range,32)<br>(Layer Range,4)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.13 \pm 0.03$<br>$-0.00 \pm 0.03$                           | $-0.24 \pm 0.02$<br>$-0.02 \pm 0.03$                            | $-0.11 \pm 0.03$<br>$-0.15 \pm 0.03$                            | $-0.01 \pm 0.01$<br>$0.01 \pm 0.01$                             | $-0.29 \pm 0.02$<br>$-0.31 \pm 0.02$                     | $-0.26 \pm 0.02$<br>$-0.09 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.22 \pm 0.03$<br>$-0.07 \pm 0.03$                            | $-0.43 \pm 0.02$<br>$-0.17 \pm 0.02$ |
| (Layer Range,64)                          | $0.00 \pm 0.00$                                       | $-0.13 \pm 0.03$                                               | $-0.29 \pm 0.02$                                                | $-0.13\pm0.03$                                                  | $-0.01\pm0.01$                                                  | $-0.31 \pm 0.02$                                         | $-0.28\pm0.02$                                                                    | $-0.00\pm0.00$                                                  | $-0.23 \pm 0.03$                                                | $-0.45 \pm 0.02$                     |
| (Layer Range,8)<br>(Layer Std,0.125)      | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.06 \pm 0.03$<br>$0.66 \pm 0.03$                            | $-0.12 \pm 0.03$<br>$-0.87 \pm 0.02$                            | $-0.12 \pm 0.03$<br>$-0.76 \pm 0.02$                            | $0.00 \pm 0.01$<br>$-0.09 \pm 0.02$                             | $-0.34 \pm 0.02$<br>$0.73 \pm 0.03$                      | $-0.16 \pm 0.03$<br>$-0.66 \pm 0.03$                                              | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                            | $-0.16 \pm 0.03$<br>$-0.77 \pm 0.02$                            | $-0.30 \pm 0.02$<br>$-0.45 \pm 0.03$ |
| (Layer Std,0.25)                          | $0.00 \pm 0.00$                                       | $0.65 \pm 0.03$                                                | $-0.87 \pm 0.02$                                                | $-0.77\pm0.02$                                                  | $-0.07\pm0.02$                                                  | $0.74 \pm 0.02$                                          | $-0.59 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                                 | $-0.71\pm0.03$                                                  | $-0.44 \pm 0.03$                     |
| (Layer Std,0.5)<br>(Layer Std,1)          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.63 \pm 0.03$<br>$0.56 \pm 0.03$                             | $-0.82 \pm 0.02$<br>$-0.60 \pm 0.03$                            | $-0.56\pm0.03$                                                  | $-0.08 \pm 0.02$<br>$-0.06 \pm 0.02$                            | $0.74 \pm 0.02$<br>$0.77 \pm 0.02$                       | $-0.51 \pm 0.03$<br>$-0.27 \pm 0.04$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.33 \pm 0.03$                                                | $-0.44 \pm 0.03$<br>$-0.24 \pm 0.03$ |
| (Layer Std,16)<br>(Layer Std,2)           | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.01 \pm 0.04$<br>$0.38 \pm 0.03$                            | $-0.04 \pm 0.04$<br>$0.06 \pm 0.04$                             | $-0.13 \pm 0.04$<br>$-0.33 \pm 0.03$                            | $0.01 \pm 0.02$<br>$-0.03 \pm 0.02$                             | $-0.44 \pm 0.03$<br>$0.54 \pm 0.03$                      | $-0.11 \pm 0.04$<br>$0.13 \pm 0.04$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.09 \pm 0.04$<br>$0.08 \pm 0.04$                             | $-0.22 \pm 0.03$<br>$0.12 \pm 0.03$  |
| (Layer Std,32)                            | $0.00 \pm 0.00$                                       | $-0.08 \pm 0.04$                                               | $-0.13 \pm 0.04$                                                | $-0.10\pm0.04$                                                  | $-0.01\pm0.02$                                                  | $-0.31\pm0.04$                                           | $-0.20\pm0.04$                                                                    | $-0.00\pm0.00$                                                  | $-0.17\pm0.04$                                                  | $-0.34 \pm 0.03$                     |
| (Layer Std,4)<br>(Layer Std,64)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.24 \pm 0.04$<br>$-0.09 \pm 0.04$                            | $0.10 \pm 0.04$<br>$-0.22 \pm 0.04$                             | $-0.15 \pm 0.04$<br>$-0.11 \pm 0.04$                            | $-0.02 \pm 0.02$<br>$-0.01 \pm 0.02$                            | $0.05 \pm 0.04$<br>$-0.25 \pm 0.04$                      | $0.08 \pm 0.04$<br>$-0.22 \pm 0.04$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.09 \pm 0.04$<br>$-0.20 \pm 0.04$                             | $0.06 \pm 0.03$<br>$-0.40 \pm 0.03$  |
| (Layer Std,8)<br>(Local Q,0.125)          | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.09 \pm 0.04$<br>$0.58 \pm 0.03$                             | $0.07 \pm 0.04$<br>$-0.91 \pm 0.02$                             | $\begin{array}{c} -0.13 \pm 0.04 \\ -0.84 \pm 0.02 \end{array}$ | $\begin{array}{c} 0.01 \pm 0.02 \\ -0.10 \pm 0.02 \end{array}$  | $-0.30 \pm 0.04$<br>$0.70 \pm 0.03$                      | $\begin{array}{c} 0.01 \pm 0.04 \\ -0.74 \pm 0.02 \end{array}$                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $\begin{array}{c} -0.00 \pm 0.04 \\ -0.81 \pm 0.02 \end{array}$ | $-0.06 \pm 0.03$<br>$-0.53 \pm 0.03$ |
| (Local Q,0.25)                            | $0.00 \pm 0.00$                                       | $0.57 \pm 0.03$                                                | $-0.91 \pm 0.01$                                                | $-0.83 \pm 0.02$                                                | $-0.11 \pm 0.02$                                                | $0.67 \pm 0.03$                                          | $-0.72 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                                 | $-0.82 \pm 0.02$                                                | $-0.58\pm0.03$                       |
| (Local Q,0.5)<br>(Local Q,1)              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.59 \pm 0.03$<br>$0.51 \pm 0.03$                             | $-0.93 \pm 0.01$<br>$-0.94 \pm 0.01$                            | $-0.84 \pm 0.02$<br>$-0.83 \pm 0.02$                            | $-0.12 \pm 0.02$<br>$-0.12 \pm 0.02$                            | $0.65 \pm 0.03$<br>$0.59 \pm 0.03$                       | $-0.74 \pm 0.02$<br>$-0.75 \pm 0.02$                                              | $-0.00 \pm 0.00$<br>$0.00 \pm 0.00$                             | $-0.82 \pm 0.02$<br>$-0.83 \pm 0.02$                            | $-0.59 \pm 0.03$<br>$-0.59 \pm 0.03$ |
| (Local Q,16)<br>(Local Q,2)               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.42 \pm 0.03$<br>$0.51 \pm 0.03$                             | $\begin{array}{c} -0.94 \pm 0.01 \\ -0.92 \pm 0.01 \end{array}$ | $-0.86 \pm 0.02$<br>$-0.85 \pm 0.02$                            | $-0.13 \pm 0.02$<br>$-0.10 \pm 0.02$                            | $0.45 \pm 0.03$<br>$0.55 \pm 0.03$                       | $\begin{array}{c} -0.75 \pm 0.02 \\ -0.78 \pm 0.02 \\ -0.76 \pm 0.02 \end{array}$ | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.85 \pm 0.02$                                                | $-0.64 \pm 0.03$<br>$-0.63 \pm 0.03$ |
| (Local Q,32)                              | $0.00 \pm 0.00$                                       | $0.46 \pm 0.03$                                                | $-0.94 \pm 0.01$                                                | $-0.83\pm0.02$                                                  | $-0.12\pm0.02$                                                  | $0.42 \pm 0.03$                                          | $-0.77 \pm 0.02$                                                                  | $0.00 \pm 0.00$                                                 | $-0.83 \pm 0.02$                                                | $-0.67 \pm 0.03$                     |
| (Local Q,4)<br>(Local Q,64)               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.48 \pm 0.03$<br>$0.43 \pm 0.03$                             | $-0.93 \pm 0.01$<br>$-0.95 \pm 0.01$                            | $-0.83 \pm 0.02$<br>$-0.84 \pm 0.02$                            | $-0.13 \pm 0.02$<br>$-0.13 \pm 0.02$                            | $0.53 \pm 0.03$<br>$0.42 \pm 0.03$                       | $-0.76 \pm 0.02$<br>$-0.78 \pm 0.02$                                              | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                            | $-0.84 \pm 0.02$<br>$-0.84 \pm 0.02$                            | $-0.62 \pm 0.03$<br>$-0.66 \pm 0.03$ |
| (Local Q,8)                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.45 \pm 0.03$                                                | $-0.93 \pm 0.01$                                                | $-0.85\pm0.02$                                                  | $-0.12 \pm 0.02$                                                | $0.44 \pm 0.03$                                          | $-0.78 \pm 0.02$<br>$-0.79 \pm 0.02$                                              | $0.00 \pm 0.00$                                                 | $-0.84 \pm 0.02$                                                | $-0.64 \pm 0.03$                     |
| (Local Abs,0.125)<br>(Local Abs,0.25)     | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.61 \pm 0.03$<br>$0.62 \pm 0.03$                             | $-0.61 \pm 0.03$<br>$-0.46 \pm 0.03$                            | $\begin{array}{c} -0.63 \pm 0.03 \\ -0.53 \pm 0.03 \end{array}$ | $-0.09 \pm 0.02$                                                | $0.74 \pm 0.02$<br>$0.82 \pm 0.02$                       | $\begin{array}{c} -0.45 \pm 0.03 \\ -0.29 \pm 0.03 \end{array}$                   | $\begin{array}{c} -0.00 \pm 0.00 \\ -0.00 \pm 0.00 \end{array}$ | $\begin{array}{c} -0.60 \pm 0.03 \\ -0.48 \pm 0.03 \end{array}$ | $0.03 \pm 0.03$<br>$0.10 \pm 0.03$   |
| (Local Abs,0.5)<br>(Local Abs,1)          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.58 \pm 0.03$<br>$0.40 \pm 0.03$                             | $-0.19 \pm 0.04$<br>$0.01 \pm 0.04$                             | $-0.32 \pm 0.03$<br>$-0.08 \pm 0.04$                            | $-0.06 \pm 0.02$<br>$-0.05 \pm 0.02$                            | $0.81 \pm 0.02$<br>$0.76 \pm 0.02$                       | $-0.00 \pm 0.04$<br>$0.13 \pm 0.04$                                               | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                             | $-0.09 \pm 0.04$<br>$0.05 \pm 0.04$                             | $0.20 \pm 0.03$<br>$0.20 \pm 0.03$   |
| (Local Abs,16)                            | $0.00 \pm 0.00$                                       | $-0.33\pm0.03$                                                 | $-0.94 \pm 0.01$                                                | $-0.71\pm0.03$                                                  | $-0.31 \pm 0.02$                                                | $-0.29\pm0.04$                                           | $-0.81 \pm 0.02$                                                                  | $-0.00\pm0.00$                                                  | $-0.81\pm0.02$                                                  | $-0.79\pm0.02$                       |
| (Local Abs,2)<br>(Local Abs,32)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.00 \pm 0.04$<br>$-0.34 \pm 0.03$                           | $-0.05 \pm 0.04$<br>$-0.94 \pm 0.01$                            | $-0.06 \pm 0.04$<br>$-0.74 \pm 0.02$                            | $-0.05 \pm 0.02$<br>$-0.33 \pm 0.02$                            | $0.30 \pm 0.04$<br>$-0.29 \pm 0.04$                      | $\begin{array}{c} -0.05 \pm 0.04 \\ -0.81 \pm 0.02 \end{array}$                   | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                             | $-0.12 \pm 0.04$<br>$-0.79 \pm 0.02$                            | $0.10 \pm 0.03$<br>$-0.79 \pm 0.02$  |
| (Local Abs,4)                             | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.21\pm0.04$                                                 | $-0.73 \pm 0.02$                                                | $-0.36\pm0.03$                                                  | $-0.13\pm0.02$                                                  | $-0.16\pm0.04$                                           | $-0.52\pm0.03$                                                                    | $0.00 \pm 0.00$                                                 | $-0.58\pm0.03$                                                  | $-0.38 \pm 0.03$                     |
| (Local Abs,64)<br>(Local Abs,8)           | $0.00 \pm 0.00$                                       | $-0.34 \pm 0.03$<br>$-0.30 \pm 0.04$                           | $-0.93 \pm 0.01$<br>$-0.92 \pm 0.01$                            | $-0.73 \pm 0.03$<br>$-0.58 \pm 0.03$                            | $-0.32 \pm 0.02$<br>$-0.29 \pm 0.02$                            | $-0.29 \pm 0.04$<br>$-0.26 \pm 0.04$<br>$0.72 \pm 0.02$  | $-0.82 \pm 0.02$<br>$-0.77 \pm 0.02$                                              | $-0.00\pm0.00$                                                  | $-0.80 \pm 0.02$<br>$-0.76 \pm 0.02$                            | $-0.70 \pm 0.02$                     |
| (Local Range,0.125)<br>(Local Range,0.25) | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.64 \pm 0.02$<br>$0.63 \pm 0.02$                             |                                                                 | $-0.78 \pm 0.02$<br>$-0.78 \pm 0.02$                            |                                                                 | $0.72 \pm 0.02$<br>$0.73 \pm 0.02$                       | $-0.65 \pm 0.02$<br>$-0.61 \pm 0.02$                                              | $-0.00 \pm 0.00$<br>$0.00 \pm 0.00$                             | $-0.76 \pm 0.02$<br>$-0.73 \pm 0.02$                            | $-0.46 \pm 0.02$                     |
| (Local Range, 0.5)                        | $0.00 \pm 0.00$                                       | $0.40 \pm 0.02$                                                | $-0.55 \pm 0.02$                                                | $-0.57 \pm 0.02$                                                | $-0.06\pm0.01$                                                  | $0.79 \pm 0.02$                                          | $-0.20 \pm 0.03$                                                                  | $-0.00\pm0.00$                                                  | $-0.42 \pm 0.02$                                                | $-0.14 \pm 0.02$                     |
| (Local Range,1)<br>(Local Range,16)       | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.22 \pm 0.03$<br>$-0.12 \pm 0.03$                            | $0.08 \pm 0.03$<br>$-0.17 \pm 0.03$                             | $-0.31 \pm 0.02$<br>$-0.10 \pm 0.03$                            | $-0.02 \pm 0.01$<br>$-0.01 \pm 0.01$                            | $0.42 \pm 0.02$<br>$-0.27 \pm 0.03$                      | $\begin{array}{c} 0.16 \pm 0.03 \\ -0.21 \pm 0.03 \end{array}$                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.04 \pm 0.03$<br>$-0.20 \pm 0.03$                             | $0.13 \pm 0.02$<br>$-0.40 \pm 0.02$  |
| (Local Range,2)<br>(Local Range,32)       | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $\begin{array}{c} 0.11 \pm 0.03 \\ -0.10 \pm 0.03 \end{array}$ | $0.16 \pm 0.03$                                                 | $\begin{array}{c} -0.13 \pm 0.03 \\ -0.13 \pm 0.03 \end{array}$ |                                                                 | $-0.13 \pm 0.03$<br>$-0.28 \pm 0.02$                     | $\begin{array}{c} 0.12 \pm 0.03 \\ -0.26 \pm 0.02 \end{array}$                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $\begin{array}{c} 0.13 \pm 0.03 \\ -0.23 \pm 0.03 \end{array}$  | $0.08 \pm 0.02$<br>-0.43 ± 0.02      |
| (Local Range,4)                           | $0.00 \pm 0.00$                                       | $-0.00 \pm 0.03$                                               | $0.04 \pm 0.03$                                                 | $-0.09 \pm 0.03$                                                | $0.00 \pm 0.01$                                                 | $-0.33 \pm 0.02$                                         | $-0.01\pm0.03$                                                                    | $0.00 \pm 0.00$                                                 | $0.00 \pm 0.03$                                                 | $-0.12 \pm 0.02$                     |
| (Local Range,64)<br>(Local Range,8)       | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $-0.13 \pm 0.03$<br>$-0.09 \pm 0.03$                           | $-0.29 \pm 0.02$<br>$-0.09 \pm 0.03$                            | $-0.16 \pm 0.03$<br>$-0.11 \pm 0.03$                            | $-0.01 \pm 0.01$<br>$0.01 \pm 0.01$                             | $-0.32 \pm 0.02$<br>$-0.36 \pm 0.02$                     | $\begin{array}{c} -0.27 \pm 0.02 \\ -0.15 \pm 0.03 \end{array}$                   | $\begin{array}{c} 0.00 \pm 0.00 \\ -0.00 \pm 0.00 \end{array}$  | $-0.24 \pm 0.03$<br>$-0.12 \pm 0.03$                            | $-0.45 \pm 0.02$<br>$-0.29 \pm 0.02$ |
| (Local Std, 0.125)                        | $0.00 \pm 0.00$                                       | $0.66 \pm 0.03$                                                | $-0.89 \pm 0.02$                                                | $-0.76\pm0.02$                                                  | $-0.09\pm0.02$                                                  | $0.73 \pm 0.03$                                          | $-0.66 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                                 | $-0.78\pm0.02$                                                  | $-0.47 \pm 0.03$                     |
| (Local Std,0.25)<br>(Local Std,0.5)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.66 \pm 0.03$<br>$0.63 \pm 0.03$                             | $-0.89 \pm 0.02$<br>$-0.88 \pm 0.02$                            | $-0.78 \pm 0.02$<br>$-0.76 \pm 0.02$                            | $-0.08 \pm 0.02$<br>$-0.08 \pm 0.02$                            | $0.74 \pm 0.02$<br>$0.72 \pm 0.03$                       | $-0.66 \pm 0.03$<br>$-0.62 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                             | $-0.78 \pm 0.02$<br>$-0.76 \pm 0.02$                            |                                      |
| (Local Std,1)                             | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.57 \pm 0.03$                                                | $-0.76 \pm 0.02$<br>$-0.04 \pm 0.04$                            | $-0.59 \pm 0.03$<br>$-0.08 \pm 0.04$                            | $-0.07 \pm 0.02$                                                | $0.79 \pm 0.02$                                          | $\begin{array}{c} -0.47 \pm 0.03 \\ -0.09 \pm 0.04 \end{array}$                   | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.65 \pm 0.03$                                                | $-0.29 \pm 0.03$                     |
| (Local Std,16)<br>(Local Std,2)           | $0.00 \pm 0.00$                                       | $0.36 \pm 0.03$                                                | $-0.04 \pm 0.04$                                                | $-0.34\pm0.03$                                                  | $-0.03\pm0.02$                                                  | $-0.44 \pm 0.03$<br>$0.59 \pm 0.03$                      | $0.13 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                                 | $-0.01\pm0.04$                                                  | $-0.25 \pm 0.03$<br>$0.14 \pm 0.03$  |
| (Local Std,32)<br>(Local Std,4)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.09 \pm 0.04$<br>$0.22 \pm 0.04$                            | $-0.12 \pm 0.04$<br>$0.16 \pm 0.04$                             | $-0.10 \pm 0.04$<br>$-0.18 \pm 0.04$                            | $-0.01 \pm 0.02$<br>$-0.02 \pm 0.02$                            | $-0.35 \pm 0.03$<br>$0.02 \pm 0.04$                      | $-0.19 \pm 0.04$<br>$0.21 \pm 0.04$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.17 \pm 0.04$<br>$0.15 \pm 0.04$                             | $-0.35 \pm 0.03$<br>$0.12 \pm 0.03$  |
| (Local Std,64)                            | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.10\pm0.04$                                                 | $-0.23 \pm 0.04$                                                | $-0.12 \pm 0.04$                                                | $-0.02 \pm 0.02$<br>$-0.00 \pm 0.02$                            | $-0.25 \pm 0.04$                                         | $-0.25\pm0.04$                                                                    | $0.00 \pm 0.00$                                                 | $-0.20 \pm 0.04$                                                | $-0.43 \pm 0.03$                     |
| (Local Std,8)<br>(Poly-UCB1,0.125)        | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.10 \pm 0.04$<br>$0.57 \pm 0.03$                             | $0.10 \pm 0.04$<br>$-0.89 \pm 0.02$                             | $-0.76 \pm 0.02$                                                |                                                                 | $-0.31 \pm 0.04$<br>$0.71 \pm 0.03$                      | $\begin{array}{c} 0.07 \pm 0.04 \\ -0.68 \pm 0.03 \end{array}$                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $\begin{array}{c} 0.07 \pm 0.04 \\ -0.80 \pm 0.02 \end{array}$  |                                      |
| (Poly-UCB1,0.25)<br>(Poly-UCB1,0.5)       | $0.00 \pm 0.00$                                       | $0.58 \pm 0.03$                                                | $-0.89 \pm 0.02$                                                | $-0.77 \pm 0.02$                                                | $-0.11 \pm 0.02$                                                | $0.73 \pm 0.03$                                          | $-0.65\pm0.03$                                                                    | $0.00 \pm 0.00$                                                 | $-0.79\pm0.02$                                                  | $-0.49 \pm 0.03$                     |
| (Poly-UCB1,1)                             | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.55 \pm 0.03$<br>$0.48 \pm 0.03$                             | $-0.89 \pm 0.02$<br>$-0.85 \pm 0.02$                            | $\begin{array}{c} -0.76 \pm 0.02 \\ -0.74 \pm 0.02 \end{array}$ | $-0.10 \pm 0.02$<br>$-0.09 \pm 0.02$                            | $0.70 \pm 0.03$<br>$0.73 \pm 0.03$                       | $\begin{array}{c} -0.65 \pm 0.03 \\ -0.63 \pm 0.03 \end{array}$                   | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                             | $-0.78 \pm 0.02$<br>$-0.78 \pm 0.02$                            | $-0.42 \pm 0.03$                     |
| (Poly-UCB1,16)<br>(Poly-UCB1,2)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.25 \pm 0.04$<br>$0.27 \pm 0.04$                            |                                                                 | $-0.60 \pm 0.03$<br>$-0.72 \pm 0.03$                            | $-0.29 \pm 0.02$                                                | $0.67 \pm 0.03$<br>$0.72 \pm 0.03$                       | $\begin{array}{c} -0.54 \pm 0.03 \\ -0.61 \pm 0.03 \end{array}$                   | $-0.00 \pm 0.00$<br>$0.00 \pm 0.00$                             | $-0.65 \pm 0.03$<br>$-0.74 \pm 0.02$                            |                                      |
| (Poly-UCB1,32)                            | $0.00 \pm 0.00$                                       | $-0.23 \pm 0.04$                                               | $-0.85 \pm 0.02$                                                | $-0.61\pm0.03$                                                  | $-0.33 \pm 0.02$                                                | $0.62 \pm 0.03$                                          | $-0.57\pm0.03$                                                                    | $-0.00\pm0.00$                                                  | $-0.60 \pm 0.03$                                                | $-0.43 \pm 0.03$                     |
| (Poly-UCB1,4)<br>(Poly-UCB1,64)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.02 \pm 0.04$<br>$-0.28 \pm 0.04$                            | $-0.84 \pm 0.02$<br>$-0.81 \pm 0.02$                            | $-0.69 \pm 0.03$<br>$-0.58 \pm 0.03$                            |                                                                 | $0.73 \pm 0.03$<br>$0.58 \pm 0.03$                       | $-0.57 \pm 0.03$<br>$-0.65 \pm 0.03$                                              | $-0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                            | $-0.73 \pm 0.03$<br>$-0.52 \pm 0.03$                            |                                      |
| (Poly-UCB1,8)                             | $0.00 \pm 0.00$                                       | $-0.16 \pm 0.04$                                               | $-0.80 \pm 0.02$                                                | $-0.64\pm0.03$                                                  | $-0.19\pm0.02$                                                  | $0.72 \pm 0.03$                                          | $-0.53\pm0.03$                                                                    | $-0.00\pm0.00$                                                  | $-0.70\pm0.03$                                                  | $-0.32 \pm 0.03$                     |
| (Vanilla UCT,0.125)<br>(Vanilla UCT,0.25) | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.64 \pm 0.03$<br>$0.60 \pm 0.03$                             | $-0.41 \pm 0.03$                                                | $-0.61 \pm 0.03$<br>$-0.54 \pm 0.03$                            | $0.01 \pm 0.02$                                                 | $0.75 \pm 0.02$<br>$0.83 \pm 0.02$                       | $-0.42 \pm 0.03$<br>$-0.19 \pm 0.03$                                              | $0.00 \pm 0.00$                                                 | $-0.38\pm0.03$                                                  | $0.02 \pm 0.03$<br>$0.12 \pm 0.03$   |
| (Vanilla UCT,0.5)<br>(Vanilla UCT,1)      | $0.00 \pm 0.00 \\ 0.00 \pm 0.00$                      | $0.44 \pm 0.03$<br>$0.15 \pm 0.04$                             | $-0.01 \pm 0.04$<br>$0.24 \pm 0.03$                             | $\begin{array}{c} -0.21 \pm 0.04 \\ 0.05 \pm 0.04 \end{array}$  | $0.00 \pm 0.02$<br>$0.00 \pm 0.02$                              | $0.78 \pm 0.02$<br>$0.75 \pm 0.02$                       | $0.20 \pm 0.04$<br>$0.38 \pm 0.03$                                                | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $0.02 \pm 0.04$<br>$0.27 \pm 0.04$                              | $0.22 \pm 0.03$<br>$0.29 \pm 0.03$   |
| (Vanilla UCT,1000)                        | $0.00 \pm 0.00$                                       | $-0.15 \pm 0.04$                                               | $-0.28 \pm 0.03$                                                | $-0.16\pm0.04$                                                  | $-0.02\pm0.02$                                                  | $-0.35\pm0.03$                                           | $-0.24\pm0.04$                                                                    | $-0.00\pm0.00$                                                  | $-0.23\pm0.04$                                                  | $-0.49 \pm 0.03$                     |
| (Vanilla UCT,16)<br>(Vanilla UCT,2)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.10 \pm 0.04$<br>$0.02 \pm 0.04$                            | $-0.24 \pm 0.04$<br>$0.15 \pm 0.04$                             | $-0.09 \pm 0.04$<br>$0.05 \pm 0.04$                             | $-0.01 \pm 0.02$<br>$-0.00 \pm 0.02$                            | $-0.28 \pm 0.04$<br>$0.24 \pm 0.04$                      | $-0.23 \pm 0.04$<br>$0.12 \pm 0.04$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.25 \pm 0.04$<br>$0.15 \pm 0.04$                             | $-0.41 \pm 0.03$<br>$0.17 \pm 0.03$  |
| (Vanilla UCT,256)                         | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.14 \pm 0.04$                                               | $-0.31 \pm 0.03$<br>$-0.25 \pm 0.03$                            | $-0.14 \pm 0.04$                                                | $-0.01 \pm 0.02$                                                | $-0.31 \pm 0.04$<br>$-0.29 \pm 0.04$                     | $-0.30\pm0.03$                                                                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.26 \pm 0.04$<br>$-0.25 \pm 0.04$                            | $-0.45 \pm 0.03$                     |
| (Vanilla UCT,32)<br>(Vanilla UCT,4)       | $0.00 \pm 0.00$                                       | $-0.08 \pm 0.04$                                               | $-0.01 \pm 0.04$                                                | $-0.01\pm0.04$                                                  | $-0.01\pm0.02$                                                  | $-0.11\pm0.04$                                           | $-0.05\pm0.04$                                                                    | $0.00 \pm 0.00$                                                 | $-0.03\pm0.04$                                                  | $-0.04 \pm 0.03$                     |
| (Vanilla UCT,64)<br>(Vanilla UCT,8)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.14 \pm 0.04$<br>$-0.09 \pm 0.04$                           | $-0.29 \pm 0.03$<br>$-0.14 \pm 0.04$                            | $-0.15 \pm 0.04$<br>$-0.10 \pm 0.04$                            | $-0.02 \pm 0.02$<br>$-0.01 \pm 0.02$                            | $-0.33 \pm 0.03$<br>$-0.24 \pm 0.04$                     | $-0.28 \pm 0.03$<br>$-0.19 \pm 0.04$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                              | $-0.25 \pm 0.04$<br>$-0.14 \pm 0.04$                            | $-0.44 \pm 0.03$<br>$-0.27 \pm 0.03$ |
|                                           | 0                                                     | = 0.04                                                         |                                                                 |                                                                 | =2                                                              | . =                                                      | =                                                                                 |                                                                 |                                                                 |                                      |

TABLE XV: Part 1/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 2500 MCTS iterations..

|                                         | Cooperative Records 3.33 ± 0.20    | n Crossing Traffic $-25.5 \pm 0.9$ |                                    | Manufacturer<br>-1297.6 ± 8.5            | Navigation                         | Racetrack                            | Skills Teaching                     | Tamarisk                             | Triangle Tireworld               |
|-----------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|----------------------------------|
| (Global Abs,0.125)<br>(Global Abs,0.25) | $4.52 \pm 0.23$                    | $-25.4 \pm 0.9$                    | $559.1 \pm 1.8$<br>$569.0 \pm 1.5$ | $-1172.2 \pm 6.0$                        | $-23.7 \pm 0.5$<br>$-22.4 \pm 0.5$ | $-9.78 \pm 0.06$<br>$-8.78 \pm 0.03$ | $-51.6 \pm 5.0$<br>$-10.7 \pm 5.2$  | $-554.6 \pm 5.6$<br>$-533.0 \pm 5.7$ | $18.7 \pm 2.4$<br>$26.8 \pm 2.3$ |
| (Global Abs,0.5)                        | $8.45 \pm 0.26$                    | $-26.2 \pm 0.9$                    | $564.3 \pm 1.5$                    | $-1146.3 \pm 6.5$                        | $-22.2 \pm 0.5$                    | $-8.43 \pm 0.03$                     | $28.8 \pm 5.4$                      | $-526.1 \pm 5.8$                     | $49.4 \pm 2.0$                   |
| (Global Abs,1)                          | $12.1 \pm 0.3$                     | $-25.7 \pm 0.9$                    | $562.1 \pm 1.5$                    | $-1165.5 \pm 7.7$                        | $-24.8 \pm 0.6$                    | $-8.40 \pm 0.03$                     | $57.7 \pm 5.8$                      | $-531.7 \pm 5.8$                     | $74.2 \pm 1.2$                   |
| (Global Abs,16)                         | $2.62 \pm 0.23$                    | $-25.7 \pm 0.9$                    | $557.4 \pm 1.5$                    | $-1220.9 \pm 10.0$                       | $-21.5 \pm 0.5$                    | $-8.53 \pm 0.03$                     | $30.6 \pm 5.4$                      | $-537.7 \pm 5.9$                     | $80.2 \pm 0.9$                   |
| (Global Abs,2)                          | $8.40 \pm 0.32$                    | $-26.3 \pm 0.9$                    | $559.5 \pm 1.5$                    | $-1179.9 \pm 8.4$                        | $-24.6 \pm 0.6$                    | $-8.45 \pm 0.03$                     | $64.4 \pm 5.5$                      | $-533.0 \pm 5.7$                     | $82.0 \pm 0.8$                   |
| (Global Abs,32)                         | $2.42 \pm 0.22$                    | $-25.7 \pm 0.9$                    | $557.2 \pm 1.6$                    | $-1215.9 \pm 9.7$                        | $-21.7 \pm 0.5$                    | $-8.55 \pm 0.03$                     | $29.3 \pm 5.4$                      | $-536.7 \pm 5.8$                     | $80.2 \pm 0.9$                   |
| (Global Abs,4)                          | $4.10 \pm 0.27$                    | $-26.2 \pm 0.9$                    | $558.6 \pm 1.5$                    | $-1196.4 \pm 9.2$                        | $-21.6 \pm 0.5$                    | $-8.47 \pm 0.03$                     | $46.6 \pm 5.5$                      | $-530.8 \pm 5.7$                     | $82.4 \pm 0.8$                   |
| (Global Abs,64)                         | $2.31 \pm 0.22$                    | $-26.3 \pm 0.9$                    | $557.0 \pm 1.5$                    | $-1226.4 \pm 9.9$                        | $-21.7 \pm 0.5$                    | $-8.56 \pm 0.03$                     | $30.6 \pm 5.4$                      | $-534.1 \pm 5.8$                     | $79.6 \pm 0.9$                   |
| (Global Abs,8)                          | $2.89 \pm 0.24$                    | $-25.7 \pm 0.9$                    | $557.8 \pm 1.5$                    | $-1209.4 \pm 9.6$                        | $-21.8 \pm 0.5$                    | $-8.54 \pm 0.03$                     | $38.5 \pm 5.5$                      | $-537.9 \pm 5.9$                     | $81.6 \pm 0.8$                   |
| (Global Range, 0.125)                   | $11.7 \pm 0.3$                     | $-26.1 \pm 0.9$                    | $564.5 \pm 1.6$                    | $-1187.7 \pm 6.6$                        | $-23.3 \pm 0.5$                    | $-9.95 \pm 0.06$                     | $14.2 \pm 5.6$                      | $-533.2 \pm 5.7$                     | $36.4 \pm 2.2$                   |
| (Global Range, 0.25)                    | $9.63 \pm 0.32$                    | $-26.1 \pm 0.9$                    | $567.5 \pm 1.6$                    | $-1114.8 \pm 6.0$                        | $-21.5 \pm 0.5$                    | $-8.65 \pm 0.03$                     | $67.8 \pm 5.8$                      | $-520.5 \pm 5.7$                     | $67.0 \pm 1.5$                   |
| (Global Range,0.5)                      | $4.42 \pm 0.28$                    | $-26.6 \pm 0.9$                    | $564.8 \pm 1.5$                    | $-1122.6 \pm 6.8$                        | $-22.5 \pm 0.6$                    | $-8.32 \pm 0.02$                     | $66.0 \pm 5.6$                      | $-523.1 \pm 5.8$                     | $81.1 \pm 0.8$                   |
| (Global Range,1)                        | $3.17 \pm 0.25$                    | $-25.8 \pm 0.9$                    | $561.0 \pm 1.5$                    | $-1164.7 \pm 8.1$                        | $-25.9 \pm 0.6$                    | $-8.36 \pm 0.03$                     | $55.5 \pm 5.3$                      | $-531.6 \pm 5.8$                     | $82.3 \pm 0.8$                   |
| (Global Range,16)                       | $2.29 \pm 0.22$                    | $-26.2 \pm 0.9$                    | $556.8 \pm 1.5$                    | $-1218.2 \pm 9.9$                        | $-21.5 \pm 0.5$                    | $-8.54 \pm 0.03$                     | $26.5 \pm 5.5$                      | $-532.1 \pm 5.8$                     | $79.9 \pm 0.9$                   |
| (Global Range,2)                        | $2.68 \pm 0.23$                    | $-26.0 \pm 0.9$                    | $557.9 \pm 1.6$                    | $-1192.0 \pm 8.7$                        | $-23.6 \pm 0.6$                    | $-8.42 \pm 0.03$                     | $37.5 \pm 5.5$                      | $-535.5 \pm 5.8$                     | $82.2 \pm 0.8$                   |
| (Global Range,32)                       | $2.39 \pm 0.22$                    | $-25.8 \pm 0.9$                    | $557.4 \pm 1.5$                    | $-1219.4 \pm 9.8$                        | $-21.5 \pm 0.5$                    | $-8.55 \pm 0.03$                     | $28.0 \pm 5.4$                      | $-539.6 \pm 5.8$                     | $79.3 \pm 0.9$                   |
| (Global Range,4)                        | $2.40 \pm 0.22$                    | $-25.2 \pm 0.9$                    | $558.4 \pm 1.5$                    | $-1202.8 \pm 9.4$                        | $-21.4 \pm 0.5$                    | $-8.50 \pm 0.03$                     | $35.8 \pm 5.4$                      | $-531.2 \pm 5.8$                     | $81.2 \pm 0.8$                   |
| (Global Range,64)                       | $2.37 \pm 0.22$                    | $-25.4 \pm 0.9$                    | $556.3 \pm 1.5$                    | $-1214.5 \pm 9.3$                        | $-21.3 \pm 0.5$                    | $-8.54 \pm 0.03$                     | $26.8 \pm 5.5$                      | $-536.7 \pm 5.8$                     | $79.7 \pm 0.9$                   |
| (Global Range,8)                        | $2.35 \pm 0.22$                    | $-26.0 \pm 0.9$                    | $557.9 \pm 1.6$                    | $-1223.6 \pm 9.9$                        | $-21.8 \pm 0.5$                    | $-8.52 \pm 0.03$                     | $31.6 \pm 5.3$                      | $-538.4 \pm 5.8$                     | $80.9 \pm 0.8$                   |
| (Global Std,0.125)                      | $3.15 \pm 0.20$                    | $-24.9 \pm 0.8$                    | $513.1 \pm 2.0$                    | $-1661.4 \pm 18.3$                       | $-34.5 \pm 0.5$                    | $-20.1 \pm 0.3$                      | $-144.1 \pm 5.8$                    | $-836.8 \pm 5.8$                     | $20.2 \pm 2.3$                   |
| (Global Std,0.25)                       | $3.85 \pm 0.22$                    | $-25.1 \pm 0.8$                    | $531.6 \pm 1.9$                    | $-1505.7 \pm 14.2$                       | $-31.8 \pm 0.5$                    | $-16.8 \pm 0.2$                      | $-112.5 \pm 5.7$                    | $-739.8 \pm 6.2$                     | $24.6 \pm 2.3$                   |
| (Global Std,0.5)                        | $6.11 \pm 0.27$                    | $-25.3 \pm 0.9$                    | $554.4 \pm 1.7$                    | $-1288.0 \pm 8.4$                        | $-28.5 \pm 0.5$                    | $-12.8 \pm 0.1$                      | $-46.6 \pm 5.7$                     | $-607.0 \pm 6.2$                     | $44.6 \pm 2.1$                   |
| (Global Std,1)                          | $11.6 \pm 0.3$                     | $-25.5 \pm 0.9$                    | $569.3 \pm 1.5$                    | $-1132.2 \pm 5.9$                        | $-24.7 \pm 0.5$                    | $-9.73 \pm 0.06$                     | $29.0 \pm 5.6$                      | $-525.1 \pm 5.8$                     | $73.8 \pm 1.2$                   |
| (Global Std,16)                         | $2.69 \pm 0.23$                    | $-26.3 \pm 0.9$                    | $558.1 \pm 1.5$                    | $-1200.8 \pm 9.0$                        | $-26.1 \pm 0.6$                    | $-8.44 \pm 0.03$                     | $38.7 \pm 5.4$                      | $-535.1 \pm 5.8$                     | $81.0 \pm 0.8$                   |
| (Global Std,2)                          | $11.6 \pm 0.3$                     | $-25.6 \pm 0.9$                    | $566.4 \pm 1.5$                    | $-1107.1 \pm 6.4$                        | $-22.0 \pm 0.5$                    | $-8.27 \pm 0.02$                     | $70.8 \pm 5.7$                      | $-520.4 \pm 5.7$                     | $82.6 \pm 0.7$                   |
| (Global Std,32)                         | $2.54 \pm 0.23$                    | $-26.4 \pm 0.9$                    | $557.9 \pm 1.6$                    | $-1206.5 \pm 9.2$                        | $-22.9 \pm 0.6$                    | $-8.49 \pm 0.03$                     | $34.5 \pm 5.4$                      | $-531.4 \pm 5.7$                     | $80.3 \pm 0.8$                   |
| (Global Std,4)                          | $5.42 \pm 0.30$                    | $-26.1 \pm 0.9$                    | $562.7 \pm 1.5$                    | $-1139.1 \pm 7.3$                        | $-21.2 \pm 0.5$                    | $-8.18 \pm 0.02$                     | $67.6 \pm 5.7$                      | $-523.7 \pm 5.7$                     | $82.0 \pm 0.8$                   |
| (Global Std,64)                         | $2.46 \pm 0.22$                    | $-26.2 \pm 0.9$                    | $557.9 \pm 1.5$                    | $-1216.8 \pm 9.9$                        | $-21.3 \pm 0.5$                    | $-8.54 \pm 0.03$                     | $30.2 \pm 5.4$                      | $-535.5 \pm 5.8$                     | $80.3 \pm 0.9$                   |
| (Global Std,8)                          | $3.33 \pm 0.25$                    | $-25.9 \pm 0.9$                    | $559.3 \pm 1.6$                    | $-1176.7 \pm 8.5$                        | $-22.8 \pm 0.6$                    | $-8.35 \pm 0.02$                     | $55.3 \pm 5.5$                      | $-527.5 \pm 5.7$                     | $82.0 \pm 0.7$                   |
| (Layer Abs,0.125)                       | $3.76 \pm 0.21$                    | $-26.3 \pm 0.9$                    | $559.7 \pm 1.7$                    | $-1266.4 \pm 7.5$                        | $-23.1 \pm 0.5$                    | $-9.61 \pm 0.06$                     | $-48.0 \pm 5.0$                     | $-548.0 \pm 5.6$                     | $20.8 \pm 2.4$                   |
| (Layer Abs, 0.25)                       | $5.52 \pm 0.24$                    | $-24.8 \pm 0.9$                    | $567.6 \pm 1.5$                    | $-1153.8 \pm 5.7$                        | $-21.9 \pm 0.5$                    | $-8.75 \pm 0.03$                     | $-2.50 \pm 5.20$                    | $-530.1 \pm 5.8$                     | $23.8 \pm 2.4$                   |
| (Layer Abs, 0.5)                        | $9.01 \pm 0.25$                    | $-25.7 \pm 0.9$                    | $564.8 \pm 1.5$                    | $-1133.9 \pm 6.4$                        | $-22.7 \pm 0.5$                    | $-8.40 \pm 0.03$                     | $37.1 \pm 5.4$                      | $-529.0 \pm 5.8$                     | $37.3 \pm 2.2$                   |
| (Layer Abs,1)                           | $11.2 \pm 0.3$                     | $-25.7 \pm 0.9$                    | $561.3 \pm 1.5$                    | $-1152.5 \pm 7.7$                        | $-25.4 \pm 0.6$                    | $-8.39 \pm 0.03$                     | $57.0 \pm 5.6$                      | $-531.8 \pm 5.8$                     | $61.1 \pm 1.7$                   |
| (Layer Abs,16)                          | $2.60 \pm 0.23$                    | $-25.8 \pm 0.9$                    | $557.7 \pm 1.6$                    | $-1215.7 \pm 10.0$                       | $-21.6 \pm 0.5$                    | $-8.56 \pm 0.03$                     | $35.9 \pm 5.3$                      | $-537.5 \pm 5.8$                     | $80.9 \pm 0.9$                   |
| (Layer Abs,2)                           | $7.91 \pm 0.31$                    | $-25.9 \pm 0.9$                    | $559.4 \pm 1.5$                    | $-1173.9 \pm 8.2$                        | $-24.0 \pm 0.6$                    | $-8.46 \pm 0.03$                     | $55.4 \pm 5.6$                      | $-533.1 \pm 5.8$                     | $76.7 \pm 1.1$                   |
| (Layer Abs,32)                          | $2.24 \pm 0.22$                    | $-26.2 \pm 0.9$                    | $557.8 \pm 1.5$                    | $-1215.8 \pm 9.7$<br>$-1198.1 \pm 9.1$   | $-21.0 \pm 0.5$<br>$-21.9 \pm 0.5$ | $-8.56 \pm 0.03$                     | $27.4 \pm 5.4$                      | $-535.2 \pm 5.8$                     | $80.0 \pm 0.9$                   |
| (Layer Abs,4)<br>(Layer Abs,64)         | $4.19 \pm 0.27$<br>$2.52 \pm 0.23$ | $-25.9 \pm 0.9$<br>$-26.7 \pm 0.9$ | $557.1 \pm 1.6$<br>$557.8 \pm 1.5$ | $-1219.1 \pm 9.5$                        | $-21.6 \pm 0.5$                    | $-8.51 \pm 0.03$<br>$-8.57 \pm 0.03$ | $44.6 \pm 5.5$<br>$31.4 \pm 5.3$    | $-535.4 \pm 5.8$<br>$-531.8 \pm 5.8$ | $80.8 \pm 0.9$<br>$80.6 \pm 0.8$ |
| (Layer Abs,8)                           | $2.93 \pm 0.24$                    | $-26.7 \pm 0.9$                    | $557.2 \pm 1.6$                    | $-1214.6 \pm 10.1$                       | $-21.8 \pm 0.5$                    | $-8.54 \pm 0.03$                     | $39.1 \pm 5.5$                      | $-538.3 \pm 5.8$                     | $81.7 \pm 0.8$                   |
| (Layer Range,0.125)                     | $3.73 \pm 0.22$                    | $-24.5 \pm 0.8$                    | $528.2 \pm 2.0$                    | $-1640.1 \pm 18.9$                       | $-37.3 \pm 0.5$                    | $-23.8 \pm 0.4$                      | $-116.9 \pm 6.0$                    | $-811.7 \pm 6.0$                     | $20.8 \pm 2.3$                   |
| (Layer Range,0.25)                      | $5.75 \pm 0.26$                    | $-25.2 \pm 0.8$                    | $549.9 \pm 1.8$                    | $-1458.5 \pm 13.7$                       | $-37.9 \pm 0.5$                    | $-23.4 \pm 0.4$                      | $-54.4 \pm 6.3$                     | $-683.3 \pm 6.3$                     | $22.2 \pm 2.3$                   |
| (Layer Range,0.5)                       | $6.15 \pm 0.30$                    | $-25.3 \pm 0.8$                    | $561.7 \pm 1.6$                    | $-1286.4 \pm 10.1$                       | $-37.0 \pm 0.5$                    | $-19.1 \pm 0.3$                      | $28.7 \pm 5.8$                      | $-572.0 \pm 6.0$                     | $45.2 \pm 2.1$                   |
| (Layer Range,1)                         | $3.61 \pm 0.26$                    | $-25.2 \pm 0.9$                    | $566.6 \pm 1.6$                    | $-1211.5 \pm 9.8$                        | $-33.9 \pm 0.6$                    | $-10.6 \pm 0.1$                      | $56.0 \pm 5.7$                      | $-537.8 \pm 5.8$                     | $73.7 \pm 1.3$                   |
| (Layer Range, 16)                       | $1.90 \pm 0.20$                    | $-25.7 \pm 0.9$                    | $561.4 \pm 1.5$                    | $-1202.8 \pm 9.5$                        | $-22.1 \pm 0.5$                    | $-8.37 \pm 0.02$                     | $38.2 \pm 5.4$                      | $-524.1 \pm 5.7$                     | $80.5 \pm 0.9$                   |
|                                         | $2.13 \pm 0.21$                    | $-26.7 \pm 0.9$                    | $569.3 \pm 1.6$                    | $-1189.7 \pm 9.6$                        | $-27.6 \pm 0.6$                    | $-8.28 \pm 0.02$                     | $57.5 \pm 5.5$                      | $-522.5 \pm 5.7$                     | $79.9 \pm 0.9$                   |
| (Layer Range,2)<br>(Layer Range,32)     | $1.95 \pm 0.20$                    | $-26.1 \pm 0.9$                    | $560.3 \pm 1.5$                    | $-1205.9 \pm 9.3$                        | $-21.6 \pm 0.5$                    | $-8.45 \pm 0.03$                     | $31.3 \pm 5.4$                      | $-530.9 \pm 5.9$                     | $80.1 \pm 0.9$                   |
| (Layer Range,4)                         | $1.75 \pm 0.19$                    | $-25.9 \pm 0.9$                    | $568.5 \pm 1.5$                    | $-1189.4 \pm 9.4$                        | $-22.3 \pm 0.5$                    | $-8.15 \pm 0.01$                     | $52.5 \pm 5.5$                      | $-519.4 \pm 5.8$                     | $80.4 \pm 0.9$                   |
| (Layer Range,64)                        | $2.08 \pm 0.21$                    | $-26.1 \pm 0.9$                    | $559.1 \pm 1.5$                    | $-1213.6 \pm 9.8$                        | $-21.4 \pm 0.5$                    | $-8.53 \pm 0.03$                     | $28.4 \pm 5.5$                      | $-532.4 \pm 5.8$                     | $80.0 \pm 0.9$                   |
| (Layer Range,8)                         | $1.76 \pm 0.19$                    | $-26.2 \pm 0.9$                    | $564.7 \pm 1.5$                    | $-1195.6 \pm 9.4$                        | $-22.9 \pm 0.5$                    | $-8.24 \pm 0.02$                     | $45.4 \pm 5.4$                      | $-521.9 \pm 5.8$                     | $81.3 \pm 0.8$                   |
| (Layer Std,0.125)                       | $3.15 \pm 0.20$                    | $-25.7 \pm 0.8$                    | $504.7 \pm 2.2$                    | $-1781.1 \pm 21.7$                       | $-38.1 \pm 0.5$                    | $-23.6 \pm 0.4$                      | $-156.8 \pm 5.8$                    | $-867.2 \pm 5.7$                     | $19.3 \pm 2.4$                   |
| (Layer Std,0.25)                        | $3.58 \pm 0.21$                    | $-25.2 \pm 0.8$                    | $515.4 \pm 2.1$                    | $-1691.4 \pm 19.8$                       | $-38.0 \pm 0.5$                    | $-23.8 \pm 0.4$                      | $-143.1 \pm 6.0$                    | $-844.2 \pm 5.9$                     | $19.0 \pm 2.4$                   |
| (Layer Std,0.5)                         | $4.38 \pm 0.23$<br>$7.79 \pm 0.28$ | $-25.4 \pm 0.8$<br>$-25.4 \pm 0.8$ | $533.8 \pm 2.0$<br>$558.1 \pm 1.7$ | $-1550.0 \pm 15.9$                       | $-37.8 \pm 0.5$                    | $-23.5 \pm 0.4$                      | $-114.7 \pm 6.0$<br>$-47.1 \pm 6.2$ | $-776.3 \pm 6.4$                     | $22.1 \pm 2.3$<br>$36.7 \pm 2.2$ |
| (Layer Std,1)<br>(Layer Std,16)         | $2.55 \pm 0.23$                    | $-26.0 \pm 0.9$                    | $566.7 \pm 1.5$                    | $-1319.3 \pm 10.3$<br>$-1184.1 \pm 8.8$  | $-37.0 \pm 0.5$<br>$-22.0 \pm 0.5$ | $-23.3 \pm 0.4$<br>$-8.14 \pm 0.01$  | $58.2 \pm 5.5$                      | $-639.5 \pm 6.3$<br>$-520.6 \pm 5.8$ | $80.2 \pm 0.9$                   |
| (Layer Std,2)                           | $8.69 \pm 0.31$                    | $-25.3 \pm 0.9$                    | $563.7 \pm 1.6$                    | $-1224.7 \pm 9.0$                        | $-34.5 \pm 0.6$                    | $-16.2 \pm 0.3$                      | $34.9 \pm 5.7$                      | $-555.5 \pm 5.9$                     | $66.3 \pm 1.6$                   |
| (Layer Std,32)                          | $2.10 \pm 0.21$                    | $-25.4 \pm 0.9$                    | $564.0 \pm 1.5$                    | $-1194.9 \pm 9.2$                        | $-23.7 \pm 0.6$                    | $-8.27 \pm 0.02$                     | $45.1 \pm 5.5$                      | $-523.2 \pm 5.7$                     | $80.9 \pm 0.8$                   |
| (Layer Std,4)                           | $6.51 \pm 0.31$                    | $-25.8 \pm 0.9$                    | $567.9 \pm 1.6$                    | $-1174.9 \pm 8.7$                        | $-29.3 \pm 0.6$                    | $-9.57 \pm 0.07$                     | $54.6 \pm 5.7$                      | $-528.4 \pm 5.8$                     | $76.7 \pm 1.1$                   |
| (Layer Std,64)                          | $2.01 \pm 0.21$                    | $-26.4 \pm 0.9$                    | $561.6 \pm 1.5$                    | $-1204.4 \pm 9.5$                        | $-22.4 \pm 0.5$                    | $-8.39 \pm 0.03$                     | $38.0 \pm 5.3$                      | $-529.5 \pm 5.8$                     | $80.3 \pm 0.9$                   |
| (Layer Std,8)                           | $3.86 \pm 0.27$                    | $-26.3 \pm 0.9$                    | $567.9 \pm 1.6$                    | $-1177.9 \pm 8.8$                        | $-23.3 \pm 0.5$                    | $-8.19 \pm 0.02$                     | $60.1 \pm 5.5$                      | $-517.1 \pm 5.8$                     | $81.4 \pm 0.8$                   |
| (Local Q,0.125)                         | $3.21 \pm 0.19$                    | $-26.6 \pm 0.8$                    | $560.5 \pm 1.7$                    | $-3059.6 \pm 37.4$                       | $-44.9 \pm 0.4$                    | $-32.6 \pm 0.5$                      | $-256.9 \pm 6.3$                    | $-1096.2 \pm 3.1$                    | $14.9 \pm 2.4$                   |
| (Local Q,0.25)                          | $3.45 \pm 0.20$                    | $-26.2 \pm 0.8$                    | $566.2 \pm 1.6$                    | $-3471.2 \pm 40.3$                       | $-45.0 \pm 0.4$                    | $-32.9 \pm 0.5$                      | $-279.7 \pm 6.4$                    | $-1099.3 \pm 3.1$                    | $16.1 \pm 2.4$                   |
| (Local Q,0.5)                           | $3.76 \pm 0.20$                    | $-26.4 \pm 0.8$                    | $564.9 \pm 1.6$                    | $-3661.8 \pm 41.6$                       | $-45.1 \pm 0.4$                    | $-32.9 \pm 0.5$                      | $-298.5 \pm 6.1$                    | $-1097.5 \pm 3.0$                    | $18.5 \pm 2.4$                   |
| (Local Q,1)                             | $4.17 \pm 0.21$                    | $-26.6 \pm 0.8$                    | $560.5 \pm 1.6$                    | $-3785.0 \pm 42.4$                       | $-45.4 \pm 0.4$                    | $-33.5 \pm 0.5$                      | $-306.4 \pm 6.0$                    | $-1099.9 \pm 3.0$                    | $17.9 \pm 2.4$                   |
| (Local Q,16)                            | $4.28 \pm 0.20$                    | $-27.0 \pm 0.8$                    | $558.8 \pm 1.6$                    | $-3832.3 \pm 42.7$                       | $-45.2 \pm 0.4$                    | $-33.4 \pm 0.5$                      | $-309.6 \pm 6.0$                    | $-1099.0 \pm 3.1$                    | $20.2 \pm 2.4$                   |
| (Local Q,2)                             | $4.20 \pm 0.21$                    | $-27.1 \pm 0.8$                    | $558.7 \pm 1.5$                    | $-3808.8 \pm 42.9$                       | $-45.1 \pm 0.4$                    | $-33.5 \pm 0.5$                      | $-308.8 \pm 6.2$                    | $-1096.8 \pm 3.1$                    | $19.0 \pm 2.4$                   |
| (Local Q,32)                            | $4.48 \pm 0.21$                    | $-26.7 \pm 0.8$                    | $558.2 \pm 1.5$                    | $-3789.0 \pm 42.2$                       | $-45.0 \pm 0.4$                    | $-33.6 \pm 0.5$                      | $-306.4 \pm 6.0$                    | $-1098.6 \pm 3.1$                    | $21.5 \pm 2.4$                   |
| (Local Q,4)                             | $4.42 \pm 0.21$                    | $-27.4 \pm 0.8$                    | $557.7 \pm 1.5$                    | $-3794.9 \pm 42.2$                       | $-45.2 \pm 0.4$                    | $-33.6 \pm 0.5$                      | $-310.2 \pm 6.1$                    | $-1095.5 \pm 3.1$                    | $20.0 \pm 2.4$                   |
| (Local Q,64)                            | $4.34 \pm 0.21$                    | $-26.6 \pm 0.8$                    | $558.5 \pm 1.5$                    | $-3826.6 \pm 42.8$                       | $-45.3 \pm 0.4$                    | $-33.7 \pm 0.5$                      | $-309.3 \pm 6.1$                    | $-1098.6 \pm 3.0$                    | $20.5 \pm 2.4$                   |
| (Local Q,8)                             | $4.30 \pm 0.20$                    | $-26.7 \pm 0.8$                    | $558.0 \pm 1.5$                    | $-3806.1 \pm 42.5$                       | $-45.2 \pm 0.4$                    | $-33.7 \pm 0.5$                      | $-306.5 \pm 6.0$                    | $-1098.3 \pm 3.1$                    | $22.0 \pm 2.4$                   |
| (Local Abs, 0.125)                      | $3.57 \pm 0.20$                    | $-26.0 \pm 0.9$                    | $560.5 \pm 1.7$                    | $-1258.9 \pm 7.4$                        | $-22.6 \pm 0.5$                    | $-9.56 \pm 0.06$                     | $-47.6 \pm 5.0$                     | $-544.5\pm5.7$                       | $19.1 \pm 2.4$                   |
| (Local Abs,0.25)                        | $5.05 \pm 0.23$                    | $-24.8 \pm 0.9$                    | $566.2 \pm 1.6$                    | $-1157.3 \pm 5.8$                        | $-22.4 \pm 0.5$                    | $-8.61 \pm 0.03$                     | $-6.74 \pm 5.14$                    | $-524.2 \pm 5.9$                     | $26.2 \pm 2.3$                   |
| (Local Abs,0.5)                         | $8.80 \pm 0.25$                    | $-25.7 \pm 0.9$                    | $564.9 \pm 1.6$                    | $-1153.6 \pm 7.2$                        | $-24.2 \pm 0.6$                    | $-8.37 \pm 0.02$                     | $27.1 \pm 5.3$                      | $-523.9 \pm 5.7$                     | $44.9 \pm 2.1$                   |
| (Local Abs,1)                           | $8.03 \pm 0.28$                    | $-25.7 \pm 0.9$                    | $560.5 \pm 1.6$                    | $-1184.8 \pm 8.9$                        | $-22.3 \pm 0.5$                    | $-8.46 \pm 0.03$                     | $39.6 \pm 5.6$                      | $-531.4 \pm 5.9$                     | $60.8 \pm 1.8$                   |
| (Local Abs,16)                          | $2.43 \pm 0.18$                    | $-47.3 \pm 0.1$                    | $558.8 \pm 1.6$                    | $-1303.0 \pm 14.4$                       | $-28.3 \pm 0.4$                    | $-9.16 \pm 0.04$                     | $-20.7 \pm 5.3$                     | $-540.9 \pm 5.9$                     | $53.9 \pm 2.0$                   |
| (Local Abs,2)                           | $1.65 \pm 0.18$                    | $-25.3 \pm 0.9$                    | $558.7 \pm 1.5$                    | $-1226.7 \pm 11.0$                       | $-20.6 \pm 0.5$                    | $-8.60 \pm 0.03$                     | $30.8 \pm 5.5$                      | $-534.6 \pm 5.7$                     | $69.2 \pm 1.5$                   |
| (Local Abs,32)                          | $2.70 \pm 0.19$                    | $-47.5 \pm 0.1$                    | $558.2 \pm 1.5$                    | $-1317.9 \pm 14.5$                       | $-28.4 \pm 0.4$                    | $-9.16 \pm 0.04$                     | $-29.2 \pm 5.4$                     | $-541.0 \pm 5.8$                     | $50.5 \pm 2.1$                   |
| (Local Abs,4)                           | $0.50 \pm 0.10$                    | $-44.5 \pm 0.2$                    | $557.7 \pm 1.5$                    | $-1265.6 \pm 12.0$                       | $-21.5 \pm 0.5$                    | $-9.00 \pm 0.04$                     | $12.4 \pm 5.5$                      | $-537.5 \pm 5.9$                     | $70.7 \pm 1.4$                   |
| (Local Abs,64)                          | $2.53 \pm 0.18$                    | $-45.9 \pm 0.3$                    | $558.5 \pm 1.5$                    | $-1317.4 \pm 15.0$                       | $-27.9 \pm 0.5$                    | $-9.12 \pm 0.04$                     | $-31.9 \pm 5.3$                     | $-537.3 \pm 5.9$                     | $50.1 \pm 2.1$                   |
| (Local Abs,8)                           | $1.58 \pm 0.17$                    | $-46.9 \pm 0.2$                    | $558.0 \pm 1.5$                    | $-1280.0 \pm 12.6$                       | $-27.3 \pm 0.4$                    | $-9.14 \pm 0.04$                     | $-7.00 \pm 5.47$                    | $-540.3 \pm 5.8$                     | $64.4 \pm 1.7$                   |
| (Local Range,0.125)                     | $3.78 \pm 0.22$                    | $-25.6 \pm 0.8$                    | $526.0 \pm 2.1$                    | $-1650.6 \pm 18.5$                       | $-37.5 \pm 0.5$                    | $-23.4 \pm 0.4$                      | $-127.0 \pm 6.1$                    | $-811.6 \pm 6.1$                     | $20.5 \pm 2.3$                   |
| (Local Range, 0.25)                     | $5.95 \pm 0.26$                    | $-24.8 \pm 0.8$                    | $549.8 \pm 1.9$                    | $-1448.7 \pm 13.6$                       | $-37.7 \pm 0.5$                    | $-23.5 \pm 0.4$                      | $-78.4 \pm 6.1$                     | $-702.7 \pm 6.5$                     | $22.0 \pm 2.3$                   |
| (Local Range, 0.5)                      | $8.76 \pm 0.30$                    | $-25.2 \pm 0.8$                    | $562.0 \pm 1.6$                    | $-1280.9 \pm 9.6$                        | $-36.8 \pm 0.5$                    | $-19.9 \pm 0.3$                      | $11.0 \pm 5.7$                      | $-586.8 \pm 6.0$                     | $43.4 \pm 2.1$                   |
| (Local Range,1)                         | $9.61 \pm 0.32$                    | $-25.7 \pm 0.9$                    | $565.5 \pm 1.6$                    | $-1181.7 \pm 8.1$                        | $-33.8 \pm 0.6$                    | $-11.4 \pm 0.1$                      | $52.8 \pm 5.6$                      | $-544.0 \pm 5.8$                     | $67.7 \pm 1.5$                   |
| (Local Range,16)                        | $2.43 \pm 0.22$                    | $-25.9 \pm 0.9$                    | $563.1 \pm 1.5$                    | $-1188.0 \pm 8.8$                        | $-20.6 \pm 0.5$                    | $-8.38 \pm 0.02$                     | $38.5 \pm 5.5$                      | $-527.6 \pm 5.8$                     | $81.5 \pm 0.8$                   |
| (Local Range,2)                         | $8.36 \pm 0.32$                    | $-25.7 \pm 0.9$                    | $568.1 \pm 1.6$                    | $-1136.2 \pm 7.5$                        | $-27.8 \pm 0.6$                    | $-8.42 \pm 0.03$                     | $67.8 \pm 5.5$                      | $-524.2 \pm 5.7$                     | $77.3 \pm 1.1$                   |
| (Local Range,32)                        | $2.26 \pm 0.22$                    | $-25.9 \pm 0.9$                    | $560.1 \pm 1.5$                    | $-1196.6 \pm 9.2$                        | $-20.9 \pm 0.5$                    | $-8.47 \pm 0.03$                     | $40.0 \pm 5.3$                      | $-532.6 \pm 5.8$                     | $81.2 \pm 0.8$                   |
| (Local Range,4)                         | $4.59 \pm 0.28$                    | $-26.4 \pm 0.9$                    | $568.9 \pm 1.5$                    | $-1149.8 \pm 7.6$                        | $-22.8 \pm 0.5$                    | $-8.12 \pm 0.01$                     | <b>73.9</b> $\pm$ <b>5.3</b>        | -516.8 $\pm$ 5.8                     | $81.1 \pm 0.9$                   |
| (Local Range,64)                        | $2.24 \pm 0.22$                    | $-25.7 \pm 0.9$                    | $557.3 \pm 1.6$                    | $-1214.2 \pm 9.8$                        | $-21.3 \pm 0.5$                    | $-8.53 \pm 0.03$                     | $31.0 \pm 5.3$                      | $-532.4 \pm 5.8$                     | $81.0 \pm 0.8$                   |
| (Local Range,8)                         | $2.71 \pm 0.23$                    | $-26.1 \pm 0.9$                    | $565.6 \pm 1.5$                    | $-1159.3 \pm 8.0$                        | $-20.5 \pm 0.5$                    | $-8.22 \pm 0.02$                     | $52.0 \pm 5.5$                      | $-523.7 \pm 5.8$                     | $81.8 \pm 0.8$                   |
| (Local Std,0.125)                       | $3.23 \pm 0.20$                    | $-25.2 \pm 0.8$                    | $506.4 \pm 2.2$                    | $-1763.0 \pm 21.0$                       | $-37.7 \pm 0.5$                    | $-23.6 \pm 0.4$                      | -156.3 ± 5.9                        | $-871.1 \pm 5.6$                     | $18.9 \pm 2.3$                   |
| (Local Std, 0.25)                       | $3.33 \pm 0.20$                    | $-25.4 \pm 0.8$                    | $515.4 \pm 2.1$                    | $-1707.6 \pm 19.6$                       | $-38.1 \pm 0.5$                    | $-23.6 \pm 0.4$                      | $-144.2 \pm 5.8$                    | $-846.5 \pm 5.8$                     | $19.6 \pm 2.3$                   |
| (Local Std,0.5)                         | $4.34 \pm 0.23$                    | $-25.1 \pm 0.8$                    | $533.4 \pm 1.9$                    | $-1543.3 \pm 15.5$                       | $-37.9 \pm 0.5$                    | $-23.6 \pm 0.4$                      | $-112.7 \pm 5.9$                    | $-784.8 \pm 6.2$                     | $19.9 \pm 2.3$                   |
| (Local Std,1)                           | $7.75 \pm 0.28$                    | $-25.3 \pm 0.8$                    | $558.4 \pm 1.7$                    | $-1311.6 \pm 9.9$                        | $-37.5 \pm 0.5$                    | $-23.2 \pm 0.4$                      | $-50.4 \pm 6.1$                     | $-646.9 \pm 6.5$                     | $36.7 \pm 2.2$                   |
| (Local Std,16)                          | $3.91 \pm 0.27$                    | $-25.9 \pm 0.9$                    | $566.1 \pm 1.5$                    | $-1150.3 \pm 7.9$                        | $-20.7 \pm 0.5$                    | $-8.14 \pm 0.01$                     | $72.3 \pm 5.4$                      | $-517.9 \pm 5.7$                     | $81.4 \pm 0.9$                   |
| (Local Std,2)                           | $9.44 \pm 0.31$                    | $-25.3 \pm 0.9$                    | $564.4 \pm 1.6$                    | $-1215.4 \pm 8.6$                        | $-34.6 \pm 0.6$                    | $-16.2 \pm 0.3$                      | $24.1 \pm 5.7$                      | $-566.1 \pm 6.0$                     | $63.4 \pm 1.7$                   |
| (Local Std,32)                          | $2.58 \pm 0.23$                    | $-25.7 \pm 0.9$                    | $564.2 \pm 1.5$                    | $-1173.6 \pm 8.4$                        | $-20.8 \pm 0.5$                    | $-8.28 \pm 0.02$                     | $47.5 \pm 5.4$                      | $-528.8 \pm 5.9$                     | $81.6 \pm 0.8$                   |
| (Local Std,4)                           | $9.77 \pm 0.32$                    | $-26.0 \pm 0.9$                    | $569.5 \pm 1.5$                    | $-1155.2 \pm 7.7$                        | $-29.5 \pm 0.6$                    | $-9.40 \pm 0.06$                     | $56.0 \pm 5.5$                      | $-530.3 \pm 5.7$                     | $74.7 \pm 1.2$                   |
| (Local Std,64)                          | $2.43 \pm 0.22$                    | $-26.4 \pm 0.9$                    | $561.2 \pm 1.5$                    | $-1198.1 \pm 9.2$                        | $-21.1 \pm 0.5$                    | $-8.41 \pm 0.03$                     | $39.8 \pm 5.4$                      | $-527.6 \pm 5.8$                     | $81.6 \pm 0.8$                   |
| (Local Std,8)                           | $7.79 \pm 0.32$                    | $-26.7 \pm 0.9$                    | $569.9 \pm 1.5$                    | $-1138.9 \pm 7.5$                        | $-23.1 \pm 0.5$                    | $-8.23 \pm 0.02$                     | $70.3 \pm 5.6$                      | $-522.0 \pm 5.8$                     | $80.1 \pm 0.9$                   |
| (Poly-UCB1,0.125)                       | $2.97 \pm 0.27$                    | $-25.1 \pm 1.2$                    | $499.3 \pm 3.1$                    | $-1785.7 \pm 30.3$                       | $-35.1 \pm 0.7$                    | $-20.6 \pm 0.4$                      | $-160.8 \pm 8.0$                    | $-864.0 \pm 7.7$                     | $17.6 \pm 3.3$                   |
| (Poly-UCB1,0.25)                        | $3.01 \pm 0.26$                    | $-24.2 \pm 1.2$                    | $500.1 \pm 3.1$                    | $-1716.9 \pm 28.8$                       | $-32.1 \pm 0.7$                    | $-18.4 \pm 0.3$                      | $-158.6 \pm 7.9$                    | $-834.9 \pm 7.9$                     | $19.0 \pm 3.3$                   |
| (Poly-UCB1,0.5)                         | $2.94 \pm 0.26$                    | $-25.9 \pm 1.2$                    | $506.2 \pm 3.0$                    | $^{-1616.2\pm24.7}_{-1444.7\pm17.9}$     | $-27.8 \pm 0.7$                    | $-15.9 \pm 0.3$                      | $-144.1 \pm 7.8$                    | $-797.0 \pm 7.9$                     | $18.8 \pm 3.3$                   |
| (Poly-UCB1,1)                           | $3.00 \pm 0.26$                    | $-25.8 \pm 1.2$                    | $512.6 \pm 3.0$                    |                                          | $-22.4 \pm 0.7$                    | $-13.7 \pm 0.2$                      | $-130.8 \pm 7.6$                    | $-752.1 \pm 8.3$                     | $18.1 \pm 3.3$                   |
| (Poly-UCB1,16)                          | $4.72 \pm 0.22$                    | $-39.4 \pm 0.6$                    | $543.1 \pm 2.6$                    | $-1331.6 \pm 24.8$                       | $-21.2 \pm 0.7$                    | $-8.49 \pm 0.04$                     | $-34.4 \pm 6.7$                     | $-523.4 \pm 8.1$                     | $21.0 \pm 3.4$                   |
| (Poly-UCB1,2)                           | $3.50 \pm 0.27$                    | $-24.4 \pm 1.2$                    | $525.3 \pm 2.7$                    | $-1282.5 \pm 12.0$                       | $-20.3 \pm 0.7$                    | $-11.1 \pm 0.1$                      | $-105.6 \pm 7.2$                    | $-665.0 \pm 8.5$                     | $20.5 \pm 3.3$                   |
| (Poly-UCB1,32)                          | $4.43 \pm 0.20$                    | $-48.1 \pm 0.2$                    | $547.0 \pm 2.4$                    | $-1574.7 \pm 49.0$                       | $-22.3 \pm 0.7$                    | $-9.53 \pm 0.07$                     | $-86.7 \pm 7.0$                     | $-535.2 \pm 8.2$                     | $23.6 \pm 3.4$                   |
| (Poly-UCB1,4)                           | $3.84 \pm 0.26$                    | $-25.3 \pm 1.2$<br>$-39.5 \pm 0.9$ | $532.4 \pm 2.6$                    | $-1204.8 \pm 10.6$                       | $-20.8 \pm 0.7$                    | $-9.14 \pm 0.06$                     | $-44.6 \pm 7.0$                     | $-583.0 \pm 8.2$                     | $22.9 \pm 3.3$                   |
| (Poly-UCB1,64)                          | $3.15 \pm 0.18$                    | $-24.6 \pm 1.2$                    | $548.1 \pm 2.4$                    | $-1727.9 \pm 55.1$                       | $-29.7 \pm 0.6$                    | $-12.1 \pm 0.2$                      | $-186.4 \pm 6.4$                    | $-630.6 \pm 6.6$                     | $26.7 \pm 3.3$                   |
| (Poly-UCB1,8)                           | $4.51 \pm 0.25$                    |                                    | $539.0 \pm 2.5$                    | $-1212.1 \pm 13.8$                       | $-19.9 \pm 0.6$                    | $-8.41 \pm 0.03$                     | $-27.1 \pm 6.8$                     | $-541.2 \pm 8.1$                     | $20.4 \pm 3.3$                   |
| (Vanilla UCT,0.125)                     | $3.55 \pm 0.21$                    | $-25.8 \pm 0.8$                    | $496.0 \pm 2.2$                    | $-1840.0 \pm 23.0$                       | $-36.2 \pm 0.5$                    | $-21.9 \pm 0.3$                      | $-166.4 \pm 5.6$                    | $-897.9 \pm 5.3$                     | $17.8 \pm 2.3$                   |
| (Vanilla UCT,0.25)                      | $5.12 \pm 0.25$                    | $-25.3 \pm 0.8$                    | $497.2 \pm 2.2$                    | $-1845.2 \pm 23.2$                       | $-35.3 \pm 0.5$                    | $-20.0 \pm 0.3$                      | $-166.2 \pm 5.7$                    | $-890.7 \pm 5.4$                     | $19.7 \pm 2.3$                   |
| (Vanilla UCT,0.5)                       | $9.17 \pm 0.29$                    | $-25.1 \pm 0.8$                    | $498.4 \pm 2.2$                    | $-1852.5 \pm 22.8$                       | $-33.3 \pm 0.5$                    | $-17.8 \pm 0.2$                      | $-171.0 \pm 5.7$                    | $-887.3 \pm 5.3$                     | $19.5 \pm 2.3$                   |
| (Vanilla UCT,1)                         | $12.8 \pm 0.3$                     | $-24.6 \pm 0.8$                    | $499.9 \pm 2.2$                    | $-1826.6 \pm 22.5$                       | $-30.1 \pm 0.5$                    | $-14.9 \pm 0.2$                      | $-167.6 \pm 5.6$                    | $-884.3 \pm 5.4$                     | $19.5 \pm 2.3$                   |
| (Vanilla UCT,1000)                      | $2.41 \pm 0.22$                    | $-25.7 \pm 0.9$                    | $558.6 \pm 1.6$                    | -1106.0 $\pm$ 6.3                        | $-21.7 \pm 0.5$                    | $-8.56 \pm 0.03$                     | $44.9 \pm 5.4$                      | $-532.6 \pm 5.7$                     | $80.4 \pm 0.9$                   |
| (Vanilla UCT,16)<br>(Vanilla UCT,2)     | $2.80 \pm 0.24$<br>$9.13 \pm 0.32$ | $-25.6 \pm 0.9$<br>$-25.6 \pm 0.8$ | $544.1 \pm 1.9$                    | $-1802.4 \pm 22.1$                       | $-22.2 \pm 0.6$<br>$-26.6 \pm 0.5$ | $-8.40 \pm 0.02$                     | $-84.2 \pm 5.4$<br>$-157.8 \pm 5.7$ | $-730.6 \pm 5.5$                     | $34.4 \pm 2.3$<br>$19.3 \pm 2.4$ |
| (Vanilla UCT,256)                       | $2.49 \pm 0.22$                    | $-26.4 \pm 0.9$                    | $503.5 \pm 2.2$<br>$562.8 \pm 1.5$ | $-1833.6 \pm 22.7$<br>$-1494.4 \pm 15.2$ | $-21.6 \pm 0.5$                    | $-12.3 \pm 0.1$<br>$-8.52 \pm 0.03$  | $60.2 \pm 5.7$                      | $-875.3 \pm 5.3$<br>$-522.6 \pm 5.7$ | $82.4 \pm 0.7$                   |
| (Vanilla UCT,32)                        | $2.55 \pm 0.23$                    | $-25.7 \pm 0.9$                    | $563.4 \pm 1.7$                    | $-1796.6 \pm 21.9$                       | $-25.4 \pm 0.6$                    | $-8.33 \pm 0.02$                     | $-14.5 \pm 5.3$                     | $-624.9 \pm 5.5$                     | $65.9 \pm 1.6$                   |
| (Vanilla UCT,4)                         | $4.22 \pm 0.28$                    | $-25.4 \pm 0.9$                    | $511.8 \pm 2.1$                    | $-1842.6 \pm 22.9$                       | $-23.4 \pm 0.5$                    | $-10.4 \pm 0.1$                      | $-144.3 \pm 5.7$                    | $-851.6 \pm 5.5$                     | $19.5 \pm 2.4$                   |
| (Vanilla UCT,64)                        | $2.38 \pm 0.22$                    | $-26.2 \pm 0.9$                    | $568.0 \pm 1.4$                    | $-1737.3 \pm 20.3$                       | $-24.9 \pm 0.6$                    | $-8.42 \pm 0.03$                     | $38.3 \pm 5.5$                      | $-538.2 \pm 5.5$                     | $80.1 \pm 0.9$                   |
| (Vanilla UCT,8)                         | $3.05 \pm 0.24$                    | $-25.8 \pm 0.9$                    | $524.2 \pm 2.1$                    | $-1836.2 \pm 22.8$                       | $-22.2 \pm 0.5$                    | $-8.96 \pm 0.04$                     | $-115.6 \pm 5.5$                    | $-807.6 \pm 5.5$                     | $24.1 \pm 2.3$                   |

TABLE XVI: Part 2/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 2500 MCTS iterations..

|                                         | •                                                     |                                                          |                                  |                                                    |                                                               |                                                                 |                                    |                                      |
|-----------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------------------------------|
| (Global Abs () 125)                     | Academic Advising $-70.7 \pm 0.7$                     | Earth Observation $-8.69 \pm 0.18$                       | Push Your Luck<br>53.5 ± 0.4     | Saving 37.6 ± 0.2                                  | SysAdmin<br>388.3 ± 1.4                                       | TicTacToe<br>0.01 ± 0.01                                        | Traffic $-13.8 \pm 0.2$            | Wildlife Preserve<br>1376.3 ± 0.6    |
| (Global Abs,0.125)<br>(Global Abs,0.25) | $-64.7 \pm 0.6$                                       | $-7.97 \pm 0.16$                                         | $55.1 \pm 0.4$                   | $40.1 \pm 0.2$                                     | $402.5 \pm 1.3$                                               | $0.03 \pm 0.01$                                                 | $-12.7 \pm 0.2$                    | $1373.5 \pm 1.0$                     |
| (Global Abs,0.5)                        | $-64.2 \pm 0.6$                                       | $-7.79 \pm 0.15$                                         | $55.1 \pm 0.3$                   | $46.3 \pm 0.2$                                     | $403.3 \pm 1.2$                                               | $0.05 \pm 0.01$                                                 | $-13.1 \pm 0.2$                    | $1372.4 \pm 1.1$                     |
| (Global Abs,1)                          | $-64.1 \pm 0.6$                                       | $-7.94 \pm 0.15$                                         | $54.5 \pm 0.2$                   | $51.7 \pm 0.1$                                     | $400.6 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.2 \pm 0.2$                    | $1370.8 \pm 1.2$                     |
| (Global Abs,16)                         | $-64.4 \pm 0.6$                                       | $-7.91 \pm 0.15$                                         | $53.5 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.5 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.7 \pm 0.2$                    | $1370.1 \pm 1.3$                     |
|                                         | $-64.5 \pm 0.6$                                       | $-7.93 \pm 0.15$                                         | $53.7 \pm 0.2$                   | $51.6 \pm 0.1$                                     | $399.4 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.5 \pm 0.2$                    | $1370.6 \pm 1.3$                     |
| (Global Abs,2)<br>(Global Abs,32)       | $-64.6 \pm 0.6$                                       | $-7.74 \pm 0.14$                                         | $53.6 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.0 \pm 1.3$                                               | $-0.27 \pm 0.01$                                                | $-13.6 \pm 0.2$                    | $1369.7 \pm 1.3$                     |
| (Global Abs,4)                          | $-64.4 \pm 0.6$                                       | $-7.95 \pm 0.16$                                         | $53.2 \pm 0.2$                   | $51.1 \pm 0.0$                                     | $399.8 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.4 \pm 0.2$                    | $1370.5 \pm 1.3$                     |
| (Global Abs,64)                         | $-64.8 \pm 0.6$                                       | $-7.81 \pm 0.15$                                         | $53.5 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.0 \pm 1.3$                                               | $-0.28 \pm 0.01$                                                | $-13.8 \pm 0.2$                    | $1369.6 \pm 1.3$                     |
| (Global Abs,8)                          | $-64.2 \pm 0.6$                                       | $-7.80 \pm 0.15$                                         | $53.3 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.4 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.6 \pm 0.2$                    | $1369.1 \pm 1.4$                     |
| (Global Range,0.125)                    | $-70.1 \pm 0.7$                                       | $-10.2 \pm 0.2$                                          | $54.9 \pm 0.3$                   | $50.6 \pm 0.1$                                     | $397.7 \pm 1.3$                                               | $0.04 \pm 0.01$                                                 | $-12.7 \pm 0.2$                    | $1377.4 \pm 0.5$                     |
| (Global Range, 0.25)                    | $-63.4 \pm 0.6$                                       | $-8.03 \pm 0.16$                                         | $54.2 \pm 0.2$                   | $52.4 \pm 0.1$                                     | $402.2 \pm 1.3$                                               | $0.05 \pm 0.01$                                                 | $-13.0 \pm 0.2$                    | $1376.5 \pm 0.6$                     |
| (Global Range,0.5)                      | $-63.7 \pm 0.6$                                       | $-7.81 \pm 0.14$                                         | $53.3 \pm 0.2$                   | $51.3 \pm 0.0$                                     | $400.7 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.2 \pm 0.2$                    | $1374.5 \pm 0.9$                     |
| (Global Range,1)                        | $-64.3 \pm 0.6$                                       | $-7.87 \pm 0.15$                                         | $53.3 \pm 0.2$                   | $51.1 \pm 0.0$                                     | $400.4 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.4 \pm 0.2$                    | $1373.3 \pm 1.0$                     |
| (Global Range,16)<br>(Global Range,2)   | $-64.7 \pm 0.6$<br>$-64.3 \pm 0.6$                    | $-7.87 \pm 0.15$<br>$-7.75 \pm 0.14$<br>$-7.91 \pm 0.15$ | $53.6 \pm 0.2$<br>$53.5 \pm 0.2$ | $51.1 \pm 0.0$<br>$51.0 \pm 0.0$<br>$51.0 \pm 0.0$ | $400.4 \pm 1.3$<br>$400.2 \pm 1.3$<br>$399.5 \pm 1.3$         | $-0.27 \pm 0.01$<br>$0.02 \pm 0.00$                             | $-13.6 \pm 0.2$<br>$-13.7 \pm 0.2$ | $1370.0 \pm 1.3$<br>$1371.6 \pm 1.2$ |
| (Global Range,32)                       | $-64.4 \pm 0.6$                                       | $-7.77 \pm 0.15$                                         | $53.5 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $400.2 \pm 1.3$                                               | $-0.28 \pm 0.01$                                                | $-13.7 \pm 0.2$                    | $1370.4 \pm 1.3$                     |
| (Global Range,4)<br>(Global Range,64)   | $-64.9 \pm 0.6$<br>$-64.3 \pm 0.6$                    | $-7.95 \pm 0.16$<br>$-7.91 \pm 0.15$                     | $53.4 \pm 0.2$<br>$53.6 \pm 0.2$ | $51.0 \pm 0.0$<br>$51.0 \pm 0.0$                   | $399.8 \pm 1.3$<br>$399.2 \pm 1.3$<br>$399.6 \pm 1.3$         | $0.02 \pm 0.00$<br>$-0.28 \pm 0.01$                             | $-13.6 \pm 0.2$<br>$-13.7 \pm 0.2$ | $1370.3 \pm 1.3$<br>$1369.5 \pm 1.3$ |
| (Global Range,8)                        | $-65.1 \pm 0.6$                                       | $-7.85 \pm 0.15$                                         | $53.5 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.6 \pm 1.3$                                               | $-0.11 \pm 0.01$                                                | $-13.7 \pm 0.2$                    | $1370.3 \pm 1.3$                     |
| (Global Std,0.125)                      | $-101.2 \pm 0.9$                                      | $-29.1 \pm 0.4$                                          | $52.9 \pm 0.6$                   | $36.9 \pm 0.2$                                     | $338.7 \pm 1.8$                                               | $0.01 \pm 0.01$                                                 | $-16.4 \pm 0.2$                    | $1366.6 \pm 1.5$                     |
| (Global Std,0.25)<br>(Global Std,0.5)   | $-91.4 \pm 0.8$                                       | $-22.6 \pm 0.3$                                          | $53.7 \pm 0.5$                   | $39.1 \pm 0.2$                                     | $357.9 \pm 1.7$                                               | $0.03 \pm 0.01$                                                 | $-14.9 \pm 0.2$                    | $1374.0 \pm 0.8$                     |
| (Global Std,1)                          | $-74.4 \pm 0.7$                                       | $-11.9 \pm 0.2$                                          | $54.7 \pm 0.4$                   | $44.3 \pm 0.2$                                     | $386.3 \pm 1.4$                                               | $0.05 \pm 0.01$                                                 | $-13.5 \pm 0.2$                    | $1378.0 \pm 0.3$                     |
|                                         | $-62.7 \pm 0.6$                                       | $-7.97 \pm 0.15$                                         | $54.9 \pm 0.4$                   | $51.7 \pm 0.1$                                     | $402.5 \pm 1.2$                                               | $0.03 \pm 0.01$                                                 | $-12.8 \pm 0.2$                    | $1377.6 \pm 0.5$                     |
| (Global Std,16)                         | $-64.4 \pm 0.6$                                       | $-7.90 \pm 0.15$                                         | $53.3 \pm 0.3$                   | $51.0 \pm 0.0$                                     | $399.2 \pm 1.3$                                               | $0.02 \pm 0.01$                                                 | $-13.6 \pm 0.2$                    | $1371.6 \pm 1.2$                     |
| (Global Std,2)                          | $-63.0 \pm 0.6$                                       | $-7.95 \pm 0.15$                                         | $54.0 \pm 0.3$                   | $52.3 \pm 0.1$                                     | $401.8 \pm 1.2$                                               | $0.02 \pm 0.01$                                                 | $-12.9 \pm 0.2$                    | $1376.0 \pm 0.7$                     |
| (Global Std,32)                         | $-65.0 \pm 0.6$                                       | $-7.95 \pm 0.15$                                         | $53.2 \pm 0.3$                   | $51.0 \pm 0.0$                                     | $398.6 \pm 1.3$                                               | $-0.27 \pm 0.02$                                                | $-13.8 \pm 0.2$                    | $1371.1 \pm 1.2$                     |
| (Global Std,4)                          | $-63.7 \pm 0.6$                                       | $-7.79 \pm 0.15$                                         | $53.4 \pm 0.3$                   | $51.2 \pm 0.0$                                     | $400.6 \pm 1.3$                                               | $0.02 \pm 0.01$                                                 | $-13.1 \pm 0.2$                    | $1374.1 \pm 0.9$                     |
| (Global Std,64)                         | $-64.9 \pm 0.6$<br>$-64.1 \pm 0.6$                    | $-7.86 \pm 0.15$                                         | $53.5 \pm 0.3$                   | $51.0 \pm 0.0$                                     | $399.1 \pm 1.3$<br>$400.1 \pm 1.3$                            | $-0.28 \pm 0.02$                                                | $-13.8 \pm 0.2$                    | $1370.0 \pm 1.3$                     |
| (Global Std,8)<br>(Layer Abs,0.125)     | $-69.4 \pm 0.7$                                       | $-7.82 \pm 0.15$<br>$-8.56 \pm 0.18$                     | $53.1 \pm 0.3$<br>$53.3 \pm 0.4$ | $51.1 \pm 0.0$<br>$37.1 \pm 0.2$                   | $387.8 \pm 1.4$                                               | $0.02 \pm 0.00$<br>$0.01 \pm 0.01$                              | $-13.3 \pm 0.2$<br>$-13.5 \pm 0.2$ | $1372.6 \pm 1.1$<br>$1375.5 \pm 0.7$ |
| (Layer Abs,0.25)                        | $-65.2 \pm 0.6$                                       | $-7.83 \pm 0.15$                                         | $54.4 \pm 0.4$                   | $39.3 \pm 0.2$                                     | $401.5 \pm 1.3$                                               | $0.03 \pm 0.01$                                                 | $-12.8 \pm 0.2$                    | $1373.6 \pm 1.0$                     |
| (Layer Abs,0.5)                         | $-63.7 \pm 0.6$                                       | $-7.85 \pm 0.15$                                         | $55.5 \pm 0.3$                   | $44.5 \pm 0.2$                                     | $401.8 \pm 1.3$                                               | $0.05 \pm 0.01$                                                 | $-13.0 \pm 0.2$                    | $1371.9 \pm 1.1$                     |
| (Layer Abs,1)                           | $-64.0 \pm 0.6$                                       | $-7.83 \pm 0.15$                                         | $54.6 \pm 0.2$                   | $51.6 \pm 0.1$                                     | $400.8 \pm 1.3$                                               | $0.04 \pm 0.01$                                                 | $-13.3 \pm 0.2$                    | $1370.7 \pm 1.2$                     |
|                                         | $-64.8 \pm 0.6$                                       | $-7.95 \pm 0.16$                                         | $53.2 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $398.4 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.5 \pm 0.2$                    | $1370.0 \pm 1.3$                     |
| (Layer Abs,16)<br>(Layer Abs,2)         | $-64.4 \pm 0.6$                                       | $-7.80 \pm 0.15$                                         | $53.7 \pm 0.2$                   | $51.7 \pm 0.1$                                     | $399.7 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.5 \pm 0.2$                    | $1370.2 \pm 1.3$                     |
| (Layer Abs,32)                          | $-64.6 \pm 0.6$                                       | $-7.95 \pm 0.15$                                         | $53.5 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.0 \pm 1.3$                                               | $-0.17 \pm 0.01$                                                | $-13.7 \pm 0.2$                    | $1369.3 \pm 1.4$                     |
| (Layer Abs,4)                           | $-64.8 \pm 0.6$                                       | $-7.75 \pm 0.15$                                         | $53.3 \pm 0.2$                   | $51.2 \pm 0.0$                                     | $400.7 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.6 \pm 0.2$                    | $1369.9 \pm 1.3$                     |
| (Layer Abs,64)                          | $-64.7 \pm 0.6$                                       | $-7.94 \pm 0.16$                                         | $53.6 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.0 \pm 1.3$                                               | $-0.28 \pm 0.01$                                                | $-13.7 \pm 0.2$                    | $1369.2 \pm 1.4$                     |
| (Layer Abs,8)                           | $-64.9 \pm 0.6$                                       | $-7.93 \pm 0.16$                                         | $53.3 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $398.4 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.7 \pm 0.2$                    | $1370.0 \pm 1.3$                     |
| (Layer Range, 0.125)                    | $-101.1 \pm 1.0$                                      | $-30.4 \pm 0.4$                                          | $53.5 \pm 0.4$                   | $36.3 \pm 0.2$                                     | $351.3 \pm 1.8$                                               | $-0.34\pm0.01$                                                  | $-14.4 \pm 0.2$                    | $1375.1 \pm 0.8$                     |
| (Layer Range,0.25)<br>(Layer Range,0.5) | $-90.7 \pm 0.9$<br>$-68.8 \pm 0.7$                    | $-26.6 \pm 0.4$<br>$-16.3 \pm 0.2$                       | $54.8 \pm 0.4$<br>$55.7 \pm 0.3$ | $37.6 \pm 0.2$<br>$42.4 \pm 0.2$<br>$47.6 \pm 0.2$ | $378.9 \pm 1.5$<br>$396.9 \pm 1.3$                            | $-0.34 \pm 0.01$<br>$-0.14 \pm 0.01$                            | $-13.2 \pm 0.2$<br>$-12.9 \pm 0.2$ | $1377.0 \pm 0.6$<br>$1377.2 \pm 0.5$ |
| (Layer Range,1)                         | $-63.2 \pm 0.6$                                       | $-10.8 \pm 0.2$                                          | $53.6 \pm 0.2$                   | $47.6 \pm 0.2$                                     | $400.2 \pm 1.3$                                               | $0.01 \pm 0.00$                                                 | $-12.8 \pm 0.2$                    | $1377.2 \pm 0.5$                     |
| (Layer Range,16)                        | $-64.0 \pm 0.6$                                       | $-7.70 \pm 0.14$                                         | $52.7 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $401.2 \pm 1.3$                                               | $-0.26 \pm 0.01$                                                | $-13.4 \pm 0.2$                    | $1371.3 \pm 1.2$                     |
| (Layer Range,2)                         | $-62.5 \pm 0.6$                                       | $-8.62 \pm 0.18$                                         | $52.4 \pm 0.2$                   | $50.0 \pm 0.1$                                     | $403.0 \pm 1.2$                                               | $0.02 \pm 0.00$                                                 | $-12.9 \pm 0.2$                    | $1376.5 \pm 0.6$                     |
| (Layer Range,32)                        | $-64.6 \pm 0.6$                                       | $-7.91 \pm 0.15$                                         | $53.0 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.8 \pm 1.3$                                               | $-0.29 \pm 0.01$                                                | $-13.5 \pm 0.2$                    | $1371.0 \pm 1.2$                     |
| (Layer Range,4)                         | $-62.3 \pm 0.6$                                       | $-8.03 \pm 0.17$                                         | $51.9 \pm 0.2$                   | $50.7 \pm 0.1$                                     | $403.0 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.0 \pm 0.2$                    | $1375.6 \pm 0.7$                     |
| (Layer Range,64)                        | $-64.5 \pm 0.6$                                       | $-7.83 \pm 0.15$                                         | $53.5 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $400.1 \pm 1.3$                                               | $-0.28 \pm 0.01$                                                | $-13.7 \pm 0.2$                    | $1369.9 \pm 1.3$                     |
| (Layer Range,8)                         | $-63.4 \pm 0.6$                                       | $-7.85 \pm 0.15$                                         | $52.1 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $402.3 \pm 1.2$                                               | $0.02 \pm 0.00$                                                 | $-13.2 \pm 0.2$                    | $1373.0 \pm 1.0$                     |
| (Layer Std,0.125)                       | $-107.0 \pm 1.0$                                      | $-31.9 \pm 0.4$                                          | $52.7 \pm 0.6$                   | $35.9 \pm 0.2$                                     | $331.1 \pm 1.9$                                               | $-0.35 \pm 0.02$                                                | $-17.0 \pm 0.2$                    | $1362.0 \pm 1.8$                     |
| (Layer Std,0.25)                        | $-103.8 \pm 1.0$                                      | $-31.2 \pm 0.4$                                          | $53.4 \pm 0.6$                   | $36.0 \pm 0.2$                                     | $337.7 \pm 1.9$                                               | $-0.37 \pm 0.02$                                                | $-15.9 \pm 0.2$                    | $1369.1 \pm 1.3$                     |
| (Layer Std,0.5)                         | $-98.6 \pm 0.9$                                       | $-28.6 \pm 0.4$                                          | $53.6 \pm 0.6$                   | $36.9 \pm 0.2$                                     | $357.1 \pm 1.7$                                               | $-0.35 \pm 0.02$                                                | $-14.4 \pm 0.2$                    | $1375.4 \pm 0.7$                     |
| (Layer Std,1)                           | $-86.8 \pm 0.8$                                       | $-17.5 \pm 0.3$                                          | $55.1 \pm 0.5$                   | $42.0 \pm 0.2$                                     | $387.2 \pm 1.4$                                               | $-0.17 \pm 0.02$                                                | $-13.1 \pm 0.2$                    | $1377.6 \pm 0.5$                     |
| (Layer Std,16)                          | $-62.5 \pm 0.6$                                       | $-7.79 \pm 0.14$                                         | $51.9 \pm 0.2$                   | $51.1 \pm 0.0$                                     | $402.5 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.1 \pm 0.2$                    | $1375.2 \pm 0.8$                     |
| (Layer Std,2)                           | $-66.9 \pm 0.6$                                       | $-11.8 \pm 0.2$                                          | $55.6 \pm 0.4$                   | $46.6 \pm 0.2$                                     | $399.4 \pm 1.3$                                               | $-0.00 \pm 0.01$                                                | $-12.8 \pm 0.2$                    | $1377.6 \pm 0.4$                     |
| (Layer Std,32)                          | $-63.5 \pm 0.6$                                       | $-7.84 \pm 0.15$                                         | $52.4 \pm 0.3$                   | $51.0 \pm 0.0$                                     | $401.6 \pm 1.2$                                               | $0.02 \pm 0.00$                                                 | $-13.2 \pm 0.2$                    | $1374.1 \pm 0.9$                     |
| (Layer Std,4)                           | $-62.5 \pm 0.6$                                       | $-9.00 \pm 0.18$                                         | $54.0 \pm 0.3$                   | $50.1 \pm 0.1$                                     | $402.2 \pm 1.3$                                               | $0.02 \pm 0.01$                                                 | $-12.8 \pm 0.2$                    | $1377.2 \pm 0.5$                     |
| (Layer Std,64)                          | $-63.6 \pm 0.6$                                       | $-7.91 \pm 0.15$                                         | $53.1 \pm 0.3$                   | $51.0 \pm 0.0$                                     | $401.5 \pm 1.3$                                               | $-0.28 \pm 0.02$                                                | $-13.5 \pm 0.2$                    | $1372.1 \pm 1.1$                     |
| (Layer Std,8)                           | $-62.6 \pm 0.6$                                       | $-7.96 \pm 0.15$                                         | $52.1 \pm 0.2$                   | $51.1 \pm 0.1$                                     | $402.0 \pm 1.2$                                               | $0.02 \pm 0.00$                                                 | $-12.9 \pm 0.2$                    | $1376.4 \pm 0.6$                     |
| (Local Q,0.125)                         | $-133.8 \pm 1.3$                                      | $-42.2 \pm 0.5$                                          | $53.6 \pm 0.6$                   | $37.0 \pm 0.2$                                     | $386.0 \pm 1.5$                                               | $-0.46 \pm 0.02$                                                | $-43.2 \pm 0.5$                    | $1375.8 \pm 0.7$                     |
| (Local Q,0.25)                          | $-146.5 \pm 1.4$                                      | $-44.5 \pm 0.5$                                          | $54.5 \pm 0.5$                   | $38.7 \pm 0.2$                                     | $400.7 \pm 1.3$                                               | $-0.46\pm0.02$                                                  | $-50.9 \pm 0.6$                    | $1374.3 \pm 0.9$                     |
| (Local Q,0.5)                           | $-158.8 \pm 1.5$                                      | $-46.4 \pm 0.5$                                          | $55.5 \pm 0.5$                   | $42.4 \pm 0.2$                                     | $402.4 \pm 1.2$                                               | $-0.47 \pm 0.02$                                                | $-52.5 \pm 0.6$                    | $1372.8 \pm 1.0$                     |
| (Local Q,1)                             | $-169.9 \pm 1.7$                                      | $-47.7 \pm 0.5$                                          | $55.4 \pm 0.4$                   | $46.7 \pm 0.2$                                     | $401.6 \pm 1.3$                                               | $-0.46 \pm 0.02$                                                | $-52.5 \pm 0.6$                    | $1371.8 \pm 1.1$                     |
| (Local Q,16)                            | $-172.7 \pm 1.7$                                      | $-48.1 \pm 0.5$                                          | $54.6 \pm 0.4$                   | $50.4 \pm 0.1$                                     | $400.6 \pm 1.3$                                               | $-0.49 \pm 0.02$                                                | $-51.5 \pm 0.5$                    | $1370.0 \pm 1.3$                     |
| (Local Q,2)                             | $-172.4 \pm 1.7$                                      | $-47.7 \pm 0.5$                                          | $54.8 \pm 0.4$                   | $49.2 \pm 0.2$                                     | $400.1 \pm 1.3$                                               | $-0.47 \pm 0.02$                                                | $-51.7 \pm 0.5$                    | $1370.7 \pm 1.3$                     |
| (Local Q,32)                            | $-172.0 \pm 1.7$                                      | $-47.9 \pm 0.5$                                          | $54.5 \pm 0.3$                   | $50.2 \pm 0.1$                                     | $400.2 \pm 1.3$                                               | $-0.49 \pm 0.02$                                                | $-51.2 \pm 0.6$                    | $1370.1 \pm 1.3$                     |
| (Local Q,4)                             | $-173.1 \pm 1.7$                                      | $-48.5 \pm 0.6$                                          | $54.6 \pm 0.3$                   | $50.2 \pm 0.2$                                     | $400.5 \pm 1.3$                                               | $-0.48 \pm 0.02$                                                | $-51.7 \pm 0.6$                    | $1369.8 \pm 1.3$                     |
| (Local Q,64)                            | $-172.1 \pm 1.7$                                      | $-48.1 \pm 0.6$                                          | $54.5 \pm 0.4$                   | $50.2 \pm 0.1$                                     | $399.3 \pm 1.3$                                               | $-0.49 \pm 0.02$                                                | $-51.4 \pm 0.6$                    | $1370.4 \pm 1.3$                     |
| (Local Q,8)                             | $-173.2 \pm 1.7$                                      | $-47.9 \pm 0.6$                                          | $54.4 \pm 0.4$                   | $50.4 \pm 0.1$                                     | $399.7 \pm 1.3$                                               | $-0.48 \pm 0.02$                                                | $-51.5 \pm 0.6$                    | $1370.6 \pm 1.3$                     |
| (Local Abs, 0.125)                      | $-69.1 \pm 0.7$                                       | $-8.41 \pm 0.17$                                         | $53.6 \pm 0.6$                   | $37.1 \pm 0.2$                                     | $386.0 \pm 1.5$                                               | $-0.02\pm0.01$                                                  | $-13.5 \pm 0.2$                    | $1375.8 \pm 0.7$                     |
| (Local Abs,0.25)                        | $-64.2 \pm 0.6$                                       | $-7.95 \pm 0.15$                                         | $54.5 \pm 0.5$                   | $38.8 \pm 0.2$                                     | $\begin{array}{c} 400.7 \pm 1.3 \\ 402.4 \pm 1.2 \end{array}$ | $-0.01 \pm 0.01$                                                | $-12.9 \pm 0.2$                    | $1374.3 \pm 0.9$                     |
| (Local Abs,0.5)                         | $-64.0 \pm 0.6$                                       | $-7.91 \pm 0.16$                                         | $55.5 \pm 0.5$                   | $42.6 \pm 0.2$                                     |                                                               | $-0.00 \pm 0.01$                                                | $-13.0 \pm 0.2$                    | $1372.8 \pm 1.0$                     |
| (Local Abs,1)                           | $-64.6 \pm 0.6$                                       | $-7.85 \pm 0.15$                                         | $55.4 \pm 0.4$                   | $47.3 \pm 0.2$                                     | $401.6 \pm 1.3$                                               | $0.02 \pm 0.01$                                                 | $-13.3 \pm 0.2$                    | $1371.8 \pm 1.1$                     |
| (Local Abs,16)                          | $-64.7 \pm 0.6$                                       | $-7.87 \pm 0.15$                                         | $54.6 \pm 0.4$                   | $51.8 \pm 0.1$                                     | $400.5 \pm 1.3$                                               | $-0.62 \pm 0.02$                                                | $-14.4 \pm 0.2$                    | $1370.0 \pm 1.3$                     |
| (Local Abs,2)                           | $-64.0 \pm 0.6$                                       | $-7.79 \pm 0.14$                                         | $54.8 \pm 0.4$                   | $50.5 \pm 0.2$                                     | $399.8 \pm 1.3$                                               | $-0.01 \pm 0.01$                                                | $-13.5 \pm 0.2$                    | $1370.7 \pm 1.3$                     |
| (Local Abs,32)                          | $-64.9 \pm 0.6$                                       | $-7.96 \pm 0.16$                                         | $54.5 \pm 0.3$                   |                                                    | $400.3 \pm 1.3$                                               | $-0.70 \pm 0.02$                                                | $-14.5 \pm 0.2$                    | $1370.1 \pm 1.3$                     |
| (Local Abs,4)                           | $-64.7 \pm 0.6$                                       | $-7.77 \pm 0.14$                                         | $54.6 \pm 0.3$                   | $51.8 \pm 0.1$<br>$51.7 \pm 0.1$                   | $399.8 \pm 1.3$                                               | $-0.18 \pm 0.02$                                                | $-13.9 \pm 0.2$                    | $1369.8 \pm 1.3$                     |
| (Local Abs,64)                          | $-64.8 \pm 0.6$                                       | $-7.83 \pm 0.15$                                         | $54.5 \pm 0.4$                   | $51.7 \pm 0.1$                                     | $400.4 \pm 1.3$                                               | $-0.70 \pm 0.02$                                                | $-14.4 \pm 0.2$                    | $1370.4 \pm 1.3$                     |
| (Local Abs,8)                           | $-64.8 \pm 0.6$                                       | $-7.78 \pm 0.15$                                         | $54.4 \pm 0.4$                   | $51.9 \pm 0.1$                                     | $399.8 \pm 1.3$                                               | $-0.39 \pm 0.02$                                                | $-14.1 \pm 0.2$                    | $1370.6 \pm 1.3$                     |
| (Local Range,0.125)                     | $-102.6 \pm 1.0$                                      | $-30.2 \pm 0.4$                                          | $53.3 \pm 0.4$                   | $36.2 \pm 0.2$                                     | $348.2 \pm 1.8$                                               | $-0.40 \pm 0.01$                                                | $-14.5 \pm 0.2$                    | $1374.3 \pm 0.8$                     |
| (Local Range,0.25)                      | $-94.3 \pm 0.9$                                       | $-26.3 \pm 0.4$                                          | $54.8 \pm 0.4$                   | $37.5 \pm 0.2$                                     | $375.2 \pm 1.5$                                               | $-0.40 \pm 0.01$                                                | $-13.2 \pm 0.2$                    | $1377.7 \pm 0.4$                     |
| (Local Range, 0.5)                      | $-73.9 \pm 0.7$                                       | $-16.6 \pm 0.2$                                          | $54.8 \pm 0.3$                   | $42.5 \pm 0.2$                                     | $395.4 \pm 1.3$                                               | $-0.19 \pm 0.01$                                                | $-12.9 \pm 0.2$                    | $1378.0 \pm 0.4$                     |
|                                         | $-63.4 \pm 0.6$                                       | $-10.8 \pm 0.2$                                          | $53.9 \pm 0.2$                   | $47.4 \pm 0.2$                                     | $400.9 \pm 1.3$                                               | $0.02 \pm 0.01$                                                 | $-12.8 \pm 0.2$                    | $1377.5 \pm 0.4$                     |
| (Local Range,1)<br>(Local Range,16)     | $-64.0 \pm 0.6$                                       | $-7.88 \pm 0.15$                                         | $52.8 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $400.3 \pm 1.3$                                               | $-0.28\pm0.01$                                                  | $-13.5 \pm 0.2$                    | $1372.5 \pm 1.1$                     |
| (Local Range,2)                         | $-62.2 \pm 0.6$                                       | $-8.63 \pm 0.18$                                         | $52.3 \pm 0.2$                   | $50.3 \pm 0.1$                                     | $403.7 \pm 1.2$                                               | $0.02 \pm 0.00$                                                 | $-12.9 \pm 0.2$                    | $1377.2 \pm 0.5$                     |
| (Local Range,32)                        | $-64.2 \pm 0.6$                                       | $-7.84 \pm 0.15$                                         | $53.1 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $399.1 \pm 1.3$                                               | $-0.28 \pm 0.01$                                                | $-13.6 \pm 0.2$                    | $1370.4 \pm 1.3$                     |
| (Local Range,4)                         | $-62.6 \pm 0.6$                                       | $-7.87 \pm 0.15$                                         | $51.7 \pm 0.2$                   | $51.2 \pm 0.1$                                     | $402.1 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.0 \pm 0.2$                    | $1375.1 \pm 0.8$                     |
| (Local Range,64)                        | $-64.4 \pm 0.6$                                       | $-7.91 \pm 0.15$                                         | $53.3 \pm 0.2$                   | $51.0 \pm 0.0$                                     | $400.6 \pm 1.2$                                               | $-0.28 \pm 0.01$                                                | $-13.6 \pm 0.2$                    | $1370.3 \pm 1.3$                     |
| (Local Range,8)<br>(Local Std,0.125)    | $-63.3 \pm 0.6$<br>$-107.4 \pm 1.1$                   | $-7.81 \pm 0.15$<br>$-31.9 \pm 0.5$                      | $52.0 \pm 0.2$<br>$52.6 \pm 0.6$ | $51.0 \pm 0.0$                                     | $402.1 \pm 1.3$<br>$331.0 \pm 1.9$                            | $0.02 \pm 0.00$                                                 | $-13.3 \pm 0.2$<br>$-17.0 \pm 0.2$ | $1373.9 \pm 0.9$<br>$1362.3 \pm 1.8$ |
| (Local Std, 0.25)                       | $-104.2 \pm 1.0$                                      | $-31.0 \pm 0.4$                                          | $52.8 \pm 0.6$                   | $35.5 \pm 0.2$<br>$36.0 \pm 0.2$                   | $338.2 \pm 1.9$                                               | $-0.39 \pm 0.02$<br>$-0.40 \pm 0.02$                            | $-16.0 \pm 0.2$                    | $1367.6 \pm 1.4$                     |
| (Local Std,0.5)                         | $-99.6 \pm 0.9$                                       | $-28.5 \pm 0.4$                                          | $54.1 \pm 0.6$                   | $36.9 \pm 0.2$                                     | $356.5 \pm 1.7$                                               | $-0.40 \pm 0.02$                                                | $-14.5 \pm 0.2$                    | $1375.6 \pm 0.7$                     |
| (Local Std,1)                           | $-89.3 \pm 0.8$                                       | $-17.6 \pm 0.3$                                          | $54.9 \pm 0.5$                   | $41.9 \pm 0.2$                                     | $385.8 \pm 1.4$                                               | $-0.25 \pm 0.02$                                                | $-13.1 \pm 0.2$                    | $1377.9 \pm 0.4$                     |
| (Local Std,16)                          | $-62.8 \pm 0.6$                                       | $-7.96 \pm 0.15$                                         | $51.8 \pm 0.2$                   | $51.1 \pm 0.0$                                     | $402.5 \pm 1.3$                                               | $0.02 \pm 0.01$                                                 | $-13.3 \pm 0.2$                    | $1375.4 \pm 0.8$                     |
| (Local Std,2)                           | $-69.1 \pm 0.7$                                       | $-12.0 \pm 0.2$                                          | $54.7 \pm 0.4$                   | $46.6 \pm 0.2$                                     | $397.4 \pm 1.3$                                               | $0.03 \pm 0.01$                                                 | $-13.0 \pm 0.2$                    | $1378.0 \pm 0.4$                     |
| (Local Std,32)                          | $-63.4 \pm 0.6$<br>$-62.7 \pm 0.6$                    | $-7.76 \pm 0.14$<br>$-8.92 \pm 0.18$                     | $52.7 \pm 0.3$<br>$53.2 \pm 0.3$ | $51.0 \pm 0.0$                                     | $402.1 \pm 1.3$                                               | $-0.25 \pm 0.01$<br>$-0.25 \pm 0.02$<br>$0.02 \pm 0.01$         | $-13.2 \pm 0.2$                    | $1373.6 \pm 1.0$                     |
| (Local Std,4)<br>(Local Std,64)         | $-64.1 \pm 0.6$                                       | $-7.88 \pm 0.15$                                         | $52.8 \pm 0.3$                   | $50.1 \pm 0.1$<br>$51.0 \pm 0.0$                   | $401.6 \pm 1.3$<br>$400.7 \pm 1.3$                            | $-0.29 \pm 0.02$                                                | $-12.7 \pm 0.2$<br>$-13.6 \pm 0.2$ | $1377.5 \pm 0.5$<br>$1371.7 \pm 1.2$ |
| (Local Std,8)                           | $-62.2 \pm 0.6$                                       | $-7.96 \pm 0.15$                                         | $51.7 \pm 0.2$                   | $51.2 \pm 0.1$                                     | $403.0 \pm 1.3$                                               | $0.02 \pm 0.00$                                                 | $-13.0 \pm 0.2$                    | $1376.5 \pm 0.6$                     |
| (Poly-UCB1,0.125)                       | $-105.9 \pm 1.4$                                      | $-30.0 \pm 0.6$                                          | $51.8 \pm 0.6$                   | $35.4 \pm 0.3$                                     | $323.5 \pm 2.7$                                               | $-0.39 \pm 0.02$                                                | $-18.1 \pm 0.4$                    | $1356.4 \pm 3.2$                     |
| (Poly-UCB1,0.25)<br>(Poly-UCB1,0.5)     | $-102.6 \pm 1.4$<br>$-98.9 \pm 1.3$                   | $-27.6 \pm 0.6$<br>$-19.9 \pm 0.4$                       | $52.2 \pm 0.6$<br>$52.1 \pm 0.6$ | $35.5 \pm 0.3$<br>$35.4 \pm 0.3$                   | $323.5 \pm 2.7$<br>$328.6 \pm 2.8$<br>$333.6 \pm 2.7$         | $-0.37 \pm 0.02$<br>$-0.34 \pm 0.02$                            | $-17.8 \pm 0.4$<br>$-17.5 \pm 0.3$ | $1366.2 \pm 2.3$<br>$1370.1 \pm 1.8$ |
| (Poly-UCB1,1)                           | $-94.4 \pm 1.3$                                       | $-13.4 \pm 0.3$                                          | $52.2 \pm 0.6$                   | $35.5 \pm 0.3$                                     | $338.4 \pm 2.7$                                               | $-0.32 \pm 0.02$                                                | $-16.7 \pm 0.3$                    | $1374.8 \pm 1.1$                     |
| (Poly-UCB1,16)<br>(Poly-UCB1,2)         | $-64.4 \pm 0.9$<br>$-87.8 \pm 1.2$<br>$-73.6 \pm 0.9$ | $-7.61 \pm 0.20$<br>$-9.95 \pm 0.29$                     | $54.5 \pm 0.7$<br>$52.5 \pm 0.6$ | $39.8 \pm 0.3$<br>$36.0 \pm 0.3$                   | $368.3 \pm 2.2$<br>$347.3 \pm 2.6$<br>$370.3 \pm 2.3$         | $-0.22 \pm 0.02$<br>$-0.27 \pm 0.02$                            | $-13.2 \pm 0.3$<br>$-15.8 \pm 0.3$ | $1377.3 \pm 0.6$<br>$1377.0 \pm 0.7$ |
| (Poly-UCB1,32)<br>(Poly-UCB1,4)         | $-72.7 \pm 0.9$                                       | $-8.16 \pm 0.24$<br>$-8.34 \pm 0.23$                     | $55.3 \pm 0.7$<br>$52.9 \pm 0.6$ | $41.0 \pm 0.3$<br>$36.6 \pm 0.3$                   | $354.8 \pm 2.4$                                               | $\begin{array}{c} -0.31 \pm 0.02 \\ -0.21 \pm 0.02 \end{array}$ | $-13.7 \pm 0.3$<br>$-14.2 \pm 0.3$ | $1377.5 \pm 0.6$<br>$1377.8 \pm 0.5$ |
| (Poly-UCB1,64)                          | $-135.2 \pm 2.0$                                      | $-7.68 \pm 0.20$                                         | $56.0 \pm 0.7$                   | $41.9 \pm 0.3$                                     | $374.3 \pm 2.2$                                               | $\begin{array}{c} -0.47 \pm 0.02 \\ -0.20 \pm 0.02 \end{array}$ | $-43.4 \pm 0.7$                    | $1376.3 \pm 0.9$                     |
| (Poly-UCB1,8)                           | $-64.4 \pm 0.8$                                       | $-7.80 \pm 0.21$                                         | $53.1 \pm 0.6$                   | $38.1 \pm 0.3$                                     | $363.6 \pm 2.3$                                               |                                                                 | $-13.4 \pm 0.3$                    | $1377.8 \pm 0.4$                     |
| (Vanilla UCT,0.125)                     | $-107.0 \pm 1.0$                                      | $-32.1 \pm 0.5$                                          | $52.4 \pm 0.6$                   | $35.5 \pm 0.2$                                     | $323.5 \pm 1.9$<br>$326.4 \pm 1.9$                            | $0.03 \pm 0.01$                                                 | $-18.2 \pm 0.3$                    | $1353.7 \pm 2.2$                     |
| (Vanilla UCT,0.25)                      | $-106.6 \pm 1.0$                                      | $-30.5 \pm 0.4$                                          | $52.2 \pm 0.6$                   | $36.0 \pm 0.2$                                     | $328.7 \pm 1.9$                                               | $0.04 \pm 0.01$                                                 | $-17.9 \pm 0.3$                    | $1354.4 \pm 2.2$                     |
| (Vanilla UCT,0.5)                       | $-103.5 \pm 1.0$                                      | $-27.5 \pm 0.4$                                          | $52.6 \pm 0.6$                   | $36.6 \pm 0.2$                                     |                                                               | $0.05 \pm 0.01$                                                 | $-17.5 \pm 0.3$                    | $1354.1 \pm 2.2$                     |
| (Vanilla UCT,1)                         | $-99.0 \pm 0.9$                                       | $-23.2 \pm 0.4$                                          | $53.0 \pm 0.6$                   | $38.1 \pm 0.2$                                     | $331.2 \pm 1.9$                                               | $0.02 \pm 0.01$                                                 | $-16.8 \pm 0.2$                    | $1354.8 \pm 2.2$                     |
| (Vanilla UCT,1000)                      | $-64.4 \pm 0.6$                                       | $-7.93 \pm 0.16$                                         | $53.5 \pm 0.3$                   | $51.0 \pm 0.0$                                     | $399.4 \pm 1.3$                                               | $-0.29 \pm 0.02$                                                | $-13.7 \pm 0.2$                    | $1370.6 \pm 1.3$                     |
| (Vanilla UCT,16)                        | $-77.9 \pm 0.8$                                       | $-7.97 \pm 0.16$                                         | $53.5 \pm 0.3$                   | $51.7 \pm 0.1$                                     | $391.4 \pm 1.3$                                               | $-0.11 \pm 0.01$                                                | $-12.7 \pm 0.2$                    | $1375.0 \pm 0.7$                     |
| (Vanilla UCT,2)                         | $-93.8 \pm 0.9$                                       | $-19.2 \pm 0.4$                                          | $54.1 \pm 0.5$                   | $41.5 \pm 0.2$                                     | $335.9 \pm 1.9$                                               | $0.02 \pm 0.00$                                                 | $-15.9 \pm 0.2$                    | $1357.8 \pm 2.0$                     |
| (Vanilla UCT,256)<br>(Vanilla UCT,32)   | $-64.1 \pm 0.6$                                       | $-7.91 \pm 0.15$                                         | $53.5 \pm 0.3$                   | $51.0 \pm 0.0$                                     | $400.3 \pm 1.3$                                               | $-0.27 \pm 0.02$<br>$-0.27 \pm 0.02$<br>$-0.29 \pm 0.02$        | $-13.5 \pm 0.2$                    | $1373.5 \pm 1.0$                     |
| (Vanilla UCT,4)                         | $-68.6 \pm 0.6$<br>$-87.6 \pm 0.9$                    | $-7.91 \pm 0.15$<br>$-13.9 \pm 0.3$                      | $53.2 \pm 0.3$<br>$55.0 \pm 0.4$ | $51.1 \pm 0.0$<br>$48.2 \pm 0.2$                   | $402.2 \pm 1.2$<br>$347.6 \pm 1.8$                            | $0.02 \pm 0.00$                                                 | $-13.1 \pm 0.2$<br>$-14.3 \pm 0.2$ | $1377.6 \pm 0.4$<br>$1360.5 \pm 1.8$ |
| (Vanilla UCT,64)                        | $-64.3 \pm 0.6$                                       | $-7.97 \pm 0.15$                                         | $53.1 \pm 0.3$                   | $51.1 \pm 0.0$                                     | $401.7 \pm 1.3$                                               | $-0.28 \pm 0.02$                                                | $-13.3 \pm 0.2$                    | $1377.8 \pm 0.4$                     |
| (Vanilla UCT,8)                         | $-83.2 \pm 0.9$                                       | $-9.24 \pm 0.19$                                         | $54.9 \pm 0.3$                   | $52.5 \pm 0.1$                                     | $367.3 \pm 1.6$                                               | $0.02 \pm 0.01$                                                 | $-13.2 \pm 0.2$                    | $1367.6 \pm 1.4$                     |
|                                         |                                                       |                                                          |                                  |                                                    |                                                               |                                                                 |                                    |                                      |

TABLE XVII: Part 3/3 of the full experimental data table containing the average return and 99% confidence interval for each exploration constant-strategy-model triple with 2500 MCTS iterations..

|                                           | CaptureTheFlag                                        | Chess                                                          | Connect4                                                        | Constrictor                                                     | KillTheKing                                                     | NumbersRace                                                    | Othello                                                                           | Pusher                                                | Pylos                                                           | Quarto                                                   |
|-------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|
| (Global Abs,0.125)                        | $0.00 \pm 0.00$                                       | $0.96 \pm 0.01$                                                | $-0.41 \pm 0.02$                                                | $-0.51 \pm 0.02$                                                | $-0.02 \pm 0.02$                                                | $0.96 \pm 0.01$                                                | $-0.17 \pm 0.02$                                                                  | $0.00 \pm 0.00$                                       | $-0.41 \pm 0.02$                                                | $0.22 \pm 0.02$                                          |
| (Global Abs,0.25)                         | $0.00 \pm 0.00$                                       | $0.97 \pm 0.01$                                                | $-0.22 \pm 0.02$                                                | $-0.39 \pm 0.02$                                                | $-0.02 \pm 0.02$                                                | $0.96 \pm 0.01$                                                | $0.09 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $-0.14 \pm 0.03$                                                | $0.25 \pm 0.02$                                          |
| (Global Abs,0.5)                          | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $0.26 \pm 0.02$                                                 | $-0.24 \pm 0.03$                                                | $0.03 \pm 0.02$                                                 | $0.96 \pm 0.01$                                                | $0.54 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.37 \pm 0.02$                                                 | $0.32 \pm 0.02$                                          |
| (Global Abs,1)                            | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $0.73 \pm 0.02$                                                 | $0.32 \pm 0.02$                                                 | $0.08 \pm 0.02$                                                 | $0.97 \pm 0.01$                                                | $0.86 \pm 0.01$                                                                   | $0.00 \pm 0.00$                                       | $0.69 \pm 0.02$                                                 | $0.45 \pm 0.02$                                          |
| (Global Abs,16)                           | $0.00 \pm 0.00$                                       | $0.77 \pm 0.02$                                                | $0.20 \pm 0.02$                                                 | $0.10 \pm 0.03$                                                 | $0.12 \pm 0.02$                                                 | $-0.59 \pm 0.02$                                               | $0.16 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.16 \pm 0.03$                                                 | $-0.02 \pm 0.02$                                         |
| (Global Abs,2)                            | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $0.68 \pm 0.02$                                                 | $0.39 \pm 0.02$                                                 | $0.12 \pm 0.02$                                                 | $0.97 \pm 0.01$                                                | $0.78 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.64 \pm 0.02$                                                 | $0.48 \pm 0.02$                                          |
| (Global Abs,32)                           | $0.00 \pm 0.00$                                       | $0.74 \pm 0.02$                                                | $0.16 \pm 0.03$                                                 | $0.04 \pm 0.03$                                                 | $0.10 \pm 0.02$                                                 | $-0.70 \pm 0.02$                                               | $0.06 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.10 \pm 0.03$                                                 | $-0.13 \pm 0.02$                                         |
| (Global Abs,4)                            | $0.00 \pm 0.00$                                       | $0.97 \pm 0.01$                                                | $0.45 \pm 0.02$                                                 | $0.29 \pm 0.02$                                                 | $0.12 \pm 0.02$                                                 | $0.58 \pm 0.02$                                                | $0.56 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.50 \pm 0.02$                                                 | $0.39 \pm 0.02$                                          |
| (Global Abs,64)                           | $0.00 \pm 0.00$                                       | $0.68 \pm 0.02$                                                | $0.13 \pm 0.03$                                                 | $-0.02 \pm 0.03$                                                | $0.09 \pm 0.02$                                                 | -0.71 ± 0.02                                                   | $0.02 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.07 \pm 0.03$                                                 | -0.21 ± 0.02                                             |
| (Global Abs,8)                            | $0.00 \pm 0.00$                                       | $0.85 \pm 0.01$                                                | $0.29 \pm 0.02$                                                 | $0.19 \pm 0.03$                                                 | $0.12 \pm 0.02$                                                 | $-0.43 \pm 0.02$                                               | $0.33 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.26 \pm 0.03$                                                 | $0.18 \pm 0.02$                                          |
| (Global Range,0.125)                      | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $-0.13 \pm 0.02$                                                | $-0.36 \pm 0.03$                                                | $0.12 \pm 0.02$                                                 | $0.97 \pm 0.01$                                                | $0.18 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $-0.07 \pm 0.03$                                                | $0.27 \pm 0.02$                                          |
| (Global Range,0.25)<br>(Global Range,0.5) | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $1.00 \pm 0.00$<br>$0.99 \pm 0.01$                             | $0.46 \pm 0.02$<br>$0.74 \pm 0.02$                              | $0.04 \pm 0.03$<br>$0.41 \pm 0.03$                              | $0.15 \pm 0.02$<br>$0.15 \pm 0.03$                              | $0.97 \pm 0.01$<br>$0.97 \pm 0.01$<br>$0.97 \pm 0.01$          | $0.72 \pm 0.02$<br>$0.87 \pm 0.01$                                                | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.49 \pm 0.02$<br>$0.70 \pm 0.02$                              | $0.41 \pm 0.02$<br>$0.52 \pm 0.02$                       |
| (Global Range,1)                          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.88 \pm 0.02$<br>$0.72 \pm 0.03$                             | $0.62 \pm 0.02$<br>$0.15 \pm 0.03$                              | $0.33 \pm 0.03$<br>$0.03 \pm 0.03$                              | $0.11 \pm 0.03$<br>$0.11 \pm 0.02$<br>$0.09 \pm 0.03$           | $0.96 \pm 0.01$<br>-0.69 ± 0.02                                | $0.73 \pm 0.02$<br>$0.73 \pm 0.02$<br>$0.07 \pm 0.03$                             | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.61 \pm 0.02$<br>$0.09 \pm 0.03$                              | $0.45 \pm 0.02$<br>$-0.18 \pm 0.02$                      |
| (Global Range,16)<br>(Global Range,2)     | $0.00 \pm 0.00$                                       | $0.76 \pm 0.03$                                                | $0.40 \pm 0.02$                                                 | $0.25 \pm 0.03$                                                 | $0.12 \pm 0.03$                                                 | $0.50 \pm 0.02$                                                | $0.48 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.43 \pm 0.02$                                                 | $0.31 \pm 0.02$                                          |
| (Global Range,32)                         | $0.00 \pm 0.00$                                       | $0.71 \pm 0.02$                                                | $0.12 \pm 0.03$                                                 | $-0.03 \pm 0.03$                                                | $0.08 \pm 0.03$                                                 | $-0.71 \pm 0.02$                                               | $0.02 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.06 \pm 0.03$                                                 | $-0.22 \pm 0.02$                                         |
| (Global Range,4)                          | $0.00 \pm 0.00$                                       | $0.73 \pm 0.02$                                                | $0.29 \pm 0.02$                                                 | $0.14 \pm 0.03$                                                 | $0.11 \pm 0.03$                                                 | $-0.48 \pm 0.02$                                               | $0.25 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.24 \pm 0.03$                                                 | $0.09 \pm 0.02$                                          |
| (Global Range,64)                         | $0.00 \pm 0.00$                                       | $0.67 \pm 0.03$                                                | $0.10 \pm 0.03$                                                 | $-0.02 \pm 0.03$                                                | $0.11 \pm 0.02$                                                 | $-0.72 \pm 0.02$                                               | $0.01 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.05 \pm 0.03$                                                 | $-0.24 \pm 0.02$                                         |
| (Global Range,8)                          | $0.00 \pm 0.00$                                       | $0.71 \pm 0.03$                                                | $0.21 \pm 0.02$                                                 | $0.08 \pm 0.03$                                                 | $0.10 \pm 0.02$                                                 | $-0.60 \pm 0.02$                                               | $0.14 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.13 \pm 0.03$                                                 | $-0.07 \pm 0.02$                                         |
| (Global Std,0.125)                        | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $-0.41 \pm 0.03$                                                | $-0.55 \pm 0.03$                                                | $0.03 \pm 0.02$                                                 | $0.95 \pm 0.01$                                                | $-0.30 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                       | $-0.48 \pm 0.03$                                                | $0.21 \pm 0.03$                                          |
| (Global Std,0.25)                         | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $-0.20 \pm 0.03$                                                | $-0.42 \pm 0.03$                                                | $0.08 \pm 0.02$                                                 | $0.96 \pm 0.01$                                                | $0.01 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $-0.20 \pm 0.04$                                                | $0.27 \pm 0.03$                                          |
| (Global Std,0.5)                          | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $0.31 \pm 0.03$                                                 | $-0.18 \pm 0.04$                                                | $0.15 \pm 0.02$                                                 | $0.97 \pm 0.01$                                                | $0.61 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.38 \pm 0.03$                                                 | $0.36 \pm 0.03$                                          |
| (Global Std,1)                            | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $0.73 \pm 0.02$                                                 | $0.38 \pm 0.03$                                                 | $0.15 \pm 0.02$                                                 | $0.97 \pm 0.01$                                                | $0.88 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.69 \pm 0.03$                                                 | $0.49 \pm 0.02$                                          |
| (Global Std,16)                           | $0.00 \pm 0.00$                                       | $0.72 \pm 0.03$                                                | $0.18 \pm 0.04$                                                 | $0.08 \pm 0.04$                                                 | $0.11 \pm 0.02$                                                 | $-0.60 \pm 0.03$                                               | $0.17 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.15 \pm 0.04$                                                 | $-0.01 \pm 0.03$                                         |
| (Global Std,2)                            | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $0.66 \pm 0.03$                                                 | $0.37 \pm 0.03$                                                 | $0.13 \pm 0.02$                                                 | $0.96 \pm 0.01$                                                | $0.80 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.65 \pm 0.03$                                                 | $0.47 \pm 0.03$                                          |
| (Global Std,32)                           | $0.00 \pm 0.00$                                       | $0.70 \pm 0.03$                                                | $0.15 \pm 0.04$                                                 | $0.02 \pm 0.04$                                                 | $0.11 \pm 0.02$                                                 | $-0.69 \pm 0.03$                                               | $0.08 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.11 \pm 0.04$                                                 | $-0.13 \pm 0.03$                                         |
| (Global Std,4)                            | $0.00 \pm 0.00$                                       | $0.89 \pm 0.02$                                                | $0.43 \pm 0.03$                                                 | $0.29 \pm 0.04$                                                 | $0.12 \pm 0.02$                                                 | $0.66 \pm 0.03$                                                | $0.56 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.47 \pm 0.03$                                                 | $0.35 \pm 0.03$                                          |
| (Global Std,64)<br>(Global Std,8)         | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.89 \pm 0.02$<br>$0.70 \pm 0.03$<br>$0.78 \pm 0.02$          | $0.12 \pm 0.04$<br>$0.30 \pm 0.03$                              | $0.00 \pm 0.04$<br>$0.18 \pm 0.04$                              | $0.12 \pm 0.02$<br>$0.09 \pm 0.02$<br>$0.10 \pm 0.02$           | $-0.73 \pm 0.03$<br>$-0.42 \pm 0.03$                           | $0.56 \pm 0.03$<br>$0.02 \pm 0.04$<br>$0.32 \pm 0.03$                             | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.47 \pm 0.03$<br>$0.07 \pm 0.04$<br>$0.29 \pm 0.04$           | $-0.17 \pm 0.03$<br>$0.14 \pm 0.03$                      |
| (Layer Abs,0.125)<br>(Layer Abs,0.25)     | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.97 \pm 0.01$<br>$0.98 \pm 0.01$                             | $\begin{array}{c} -0.40 \pm 0.02 \\ -0.27 \pm 0.02 \end{array}$ | $\begin{array}{c} -0.52 \pm 0.02 \\ -0.43 \pm 0.02 \end{array}$ | $-0.00 \pm 0.02$<br>$0.01 \pm 0.02$                             | $0.95 \pm 0.01$<br>$0.96 \pm 0.01$                             | $\begin{array}{c} -0.17 \pm 0.02 \\ 0.00 \pm 0.02 \end{array}$                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $\begin{array}{c} -0.43 \pm 0.02 \\ -0.22 \pm 0.03 \end{array}$ | $0.21 \pm 0.02$<br>$0.26 \pm 0.02$                       |
| (Layer Abs,0.5)<br>(Layer Abs,1)          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.99 \pm 0.00$<br>$0.99 \pm 0.00$                             | $0.01 \pm 0.03$<br>$0.52 \pm 0.02$                              | $-0.24 \pm 0.03$<br>$0.08 \pm 0.03$                             | $0.00 \pm 0.02$<br>$0.01 \pm 0.02$<br>$0.01 \pm 0.02$           | $0.96 \pm 0.01$<br>$0.97 \pm 0.01$                             | $0.38 \pm 0.02$<br>$0.75 \pm 0.02$                                                | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.19 \pm 0.03$<br>$0.62 \pm 0.02$                              | $0.30 \pm 0.02$<br>$0.40 \pm 0.02$                       |
| (Layer Abs,16)                            | $0.00 \pm 0.00$                                       | $0.86 \pm 0.01$                                                | $0.35 \pm 0.02$                                                 | $0.19 \pm 0.03$                                                 | $0.01 \pm 0.02$<br>$0.11 \pm 0.02$<br>$0.04 \pm 0.02$           | $-0.18\pm0.03$                                                 | $0.38 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.02 \pm 0.02$<br>$0.32 \pm 0.02$<br>$0.65 \pm 0.02$           | $0.14 \pm 0.02$                                          |
| (Layer Abs,2)<br>(Layer Abs,32)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $1.00 \pm 0.00$<br>$0.79 \pm 0.02$                             | $0.65 \pm 0.02$<br>$0.24 \pm 0.02$                              | $0.26 \pm 0.03$<br>$0.13 \pm 0.03$                              | $0.11 \pm 0.02$                                                 | $0.96 \pm 0.01$<br>$-0.65 \pm 0.02$                            | $0.81 \pm 0.01$<br>$0.22 \pm 0.03$<br>$0.71 \pm 0.02$                             | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.18 \pm 0.03$                                                 | $0.45 \pm 0.02$<br>-0.01 ± 0.02                          |
| (Layer Abs,4)                             | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $0.64 \pm 0.02$                                                 | $0.26 \pm 0.03$                                                 | $0.07 \pm 0.02$                                                 | $0.87 \pm 0.01$                                                | $0.09 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.61 \pm 0.02$                                                 | $0.40 \pm 0.02$                                          |
| (Layer Abs,64)                            | $0.00 \pm 0.00$                                       | $0.74 \pm 0.02$                                                | $0.19 \pm 0.03$                                                 | $0.06 \pm 0.03$                                                 | $0.11 \pm 0.02$                                                 | $-0.70 \pm 0.02$                                               |                                                                                   | $0.00 \pm 0.00$                                       | $0.11 \pm 0.03$                                                 | $-0.11 \pm 0.02$                                         |
| (Layer Abs,8)                             | $0.00 \pm 0.00$                                       | $0.94 \pm 0.01$                                                | $0.54 \pm 0.02$                                                 | $0.23 \pm 0.03$                                                 | $0.08 \pm 0.02$                                                 | $0.36 \pm 0.02$                                                | $\begin{array}{c} 0.55 \pm 0.02 \\ -0.47 \pm 0.02 \end{array}$                    | $0.00 \pm 0.00$                                       | $0.46 \pm 0.02$                                                 | $0.28 \pm 0.02$                                          |
| (Layer Range,0.125)                       | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $-0.81 \pm 0.02$                                                | $-0.75 \pm 0.02$                                                | $-0.00 \pm 0.02$                                                | $0.79 \pm 0.02$                                                |                                                                                   | $0.00 \pm 0.00$                                       | $-0.59 \pm 0.02$                                                | $-0.42 \pm 0.02$                                         |
| (Layer Range,0.25)                        | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $-0.70 \pm 0.02$                                                | $-0.75 \pm 0.02$                                                | $-0.01 \pm 0.02$                                                | $0.76 \pm 0.02$                                                | $-0.31 \pm 0.02$                                                                  | $0.00 \pm 0.00$                                       | $-0.41 \pm 0.02$                                                | $-0.41 \pm 0.02$                                         |
| (Layer Range,0.5)                         | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $0.11 \pm 0.03$                                                 | $-0.44 \pm 0.03$                                                | $0.02 \pm 0.02$                                                 | $0.91 \pm 0.01$                                                | $0.44 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.23 \pm 0.03$                                                 | $0.05 \pm 0.02$                                          |
| (Layer Range,1)                           | $0.00 \pm 0.00$                                       | $0.97 \pm 0.01$                                                | $0.57 \pm 0.02$                                                 | $-0.08 \pm 0.03$                                                | $0.07 \pm 0.02$                                                 | $0.93 \pm 0.01$                                                | $0.59 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.52 \pm 0.02$                                                 | $0.37 \pm 0.02$                                          |
| (Layer Range,16)                          | $0.00 \pm 0.00$                                       | $0.75 \pm 0.02$                                                | $0.21 \pm 0.02$                                                 | $0.05 \pm 0.03$                                                 | $0.13 \pm 0.03$                                                 | -0.71 ± 0.02                                                   | $0.14 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.16 \pm 0.03$                                                 | -0.09 ± 0.02                                             |
| (Layer Range,2)                           | $0.00 \pm 0.00$                                       | $0.93 \pm 0.01$                                                | $0.46 \pm 0.02$                                                 | $0.04 \pm 0.03$                                                 | $0.10 \pm 0.03$                                                 | $\begin{array}{c} 0.68 \pm 0.02 \\ -0.72 \pm 0.02 \end{array}$ | $0.51 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.49 \pm 0.02$                                                 | $0.28 \pm 0.02$                                          |
| (Layer Range,32)                          | $0.00 \pm 0.00$                                       | $0.71 \pm 0.03$                                                | $0.17 \pm 0.03$                                                 | $0.01 \pm 0.03$                                                 | $0.10 \pm 0.03$                                                 |                                                                | $0.06 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.10 \pm 0.03$                                                 | $-0.19 \pm 0.02$                                         |
| (Layer Range,4)                           | $0.00 \pm 0.00$                                       | $0.86 \pm 0.02$                                                | $0.39 \pm 0.02$                                                 | $\begin{array}{c} 0.10 \pm 0.03 \\ -0.01 \pm 0.03 \end{array}$  | $0.11 \pm 0.03$                                                 | $-0.11 \pm 0.03$                                               | $0.42 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.35 \pm 0.02$                                                 | $0.17 \pm 0.02$                                          |
| (Layer Range,64)                          | $0.00 \pm 0.00$                                       | $0.69 \pm 0.03$                                                | $0.14 \pm 0.03$                                                 |                                                                 | $0.10 \pm 0.03$                                                 | $-0.73 \pm 0.02$                                               | $0.04 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.08 \pm 0.03$                                                 | $-0.23 \pm 0.02$                                         |
| (Layer Range,8)<br>(Layer Std,0.125)      | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.79 \pm 0.02$<br>$0.96 \pm 0.01$                             | $0.29 \pm 0.02$<br>-0.84 ± 0.02                                 | $0.09 \pm 0.03$<br>$-0.75 \pm 0.02$                             | $0.12 \pm 0.03$<br>-0.01 ± 0.02                                 | $-0.62 \pm 0.02$<br>$0.78 \pm 0.02$                            | $0.27 \pm 0.02$<br>-0.55 ± 0.03                                                   | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.23 \pm 0.03$<br>$-0.70 \pm 0.03$                             | $0.01 \pm 0.02$<br>$-0.43 \pm 0.03$                      |
| (Layer Std,0.25)                          | $0.00 \pm 0.00$                                       | $0.97 \pm 0.01$<br>$0.97 \pm 0.01$                             | $-0.82 \pm 0.02$<br>$-0.76 \pm 0.02$                            | $-0.76 \pm 0.02$                                                | $0.00 \pm 0.02$                                                 | $0.79 \pm 0.02$<br>$0.79 \pm 0.02$<br>$0.77 \pm 0.02$          | $-0.48 \pm 0.03$<br>$-0.40 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.63\pm0.03$                                                  | $-0.43 \pm 0.03$<br>$-0.44 \pm 0.03$<br>$-0.42 \pm 0.03$ |
| (Layer Std,0.5)<br>(Layer Std,1)          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.98 \pm 0.01$                                                | $-0.20 \pm 0.04$                                                | $-0.73 \pm 0.03$<br>$-0.46 \pm 0.03$                            | $0.00 \pm 0.02$<br>$0.01 \pm 0.02$                              | $0.90 \pm 0.02$                                                | $0.29 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $-0.51 \pm 0.03$<br>$0.11 \pm 0.04$                             | $0.00 \pm 0.03$                                          |
| (Layer Std,16)                            | $0.00 \pm 0.00$                                       | $0.87 \pm 0.02$                                                | $0.43 \pm 0.03$                                                 | $\begin{array}{c} 0.11 \pm 0.04 \\ -0.06 \pm 0.04 \end{array}$  | $0.11 \pm 0.02$                                                 | $-0.26 \pm 0.04$                                               | $0.45 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.32 \pm 0.03$                                                 | $0.13 \pm 0.03$                                          |
| (Layer Std,2)                             | $0.00 \pm 0.00$                                       | $0.99 \pm 0.01$                                                | $0.57 \pm 0.03$                                                 |                                                                 | $0.05 \pm 0.02$                                                 | $0.93 \pm 0.01$                                                | $0.66 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.54 \pm 0.03$                                                 | $0.36 \pm 0.03$                                          |
| (Layer Std,32)                            | $0.00 \pm 0.00$                                       | $0.80 \pm 0.02$                                                | $0.31 \pm 0.03$                                                 | $0.09 \pm 0.04$                                                 | $0.11 \pm 0.02$                                                 | $-0.69 \pm 0.03$                                               | $0.28 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.24 \pm 0.04$                                                 | $-0.00 \pm 0.03$                                         |
| (Layer Std,4)                             | $0.00 \pm 0.00$                                       | $0.97 \pm 0.01$                                                | $0.60 \pm 0.03$                                                 | $0.07 \pm 0.04$                                                 | $0.08 \pm 0.02$                                                 | $0.81 \pm 0.02$                                                | $0.66 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.54 \pm 0.03$                                                 | $0.35 \pm 0.03$                                          |
| (Layer Std,64)                            | $0.00 \pm 0.00$                                       | $0.75 \pm 0.02$                                                | $0.23 \pm 0.04$                                                 | $0.04 \pm 0.04$                                                 | $0.10 \pm 0.02$                                                 | $-0.70 \pm 0.03$                                               | $0.16 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.13 \pm 0.04$                                                 | $-0.12 \pm 0.03$                                         |
| (Layer Std,8)                             | $0.00 \pm 0.00$                                       | $0.93 \pm 0.01$                                                | $0.53 \pm 0.03$                                                 | $0.11 \pm 0.04$                                                 | $0.11 \pm 0.02$                                                 | $0.26 \pm 0.04$                                                | $0.55 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.46 \pm 0.03$                                                 | $0.24 \pm 0.03$                                          |
| (Local Q,0.125)                           | $0.00 \pm 0.00$                                       | $0.94 \pm 0.01$                                                | $-0.92 \pm 0.01$                                                | $-0.82 \pm 0.02$                                                | $-0.05 \pm 0.02$                                                | $0.63 \pm 0.03$                                                | $-0.71 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                       | $-0.81 \pm 0.02$                                                | $-0.58 \pm 0.03$                                         |
| (Local Q,0.25)                            | $0.00 \pm 0.00$                                       | $0.91 \pm 0.02$                                                | $-0.92 \pm 0.01$                                                | $-0.83 \pm 0.02$                                                | $-0.05 \pm 0.02$                                                | $0.63 \pm 0.03$                                                | $-0.72 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                       | $-0.81 \pm 0.02$                                                | $-0.59 \pm 0.03$                                         |
| (Local Q,0.5)                             | $0.00 \pm 0.00$                                       | $0.90 \pm 0.02$                                                | $-0.92 \pm 0.01$                                                | $-0.83 \pm 0.02$                                                | $-0.04 \pm 0.02$                                                | $0.62 \pm 0.03$                                                | $\begin{array}{c} -0.72 \pm 0.03 \\ -0.71 \pm 0.03 \\ -0.75 \pm 0.02 \end{array}$ | $0.00 \pm 0.00$                                       | $-0.81 \pm 0.02$                                                | $-0.61 \pm 0.03$                                         |
| (Local Q,1)                               | $0.00 \pm 0.00$                                       | $0.84 \pm 0.02$                                                | $-0.93 \pm 0.01$                                                | $-0.82 \pm 0.02$                                                | $-0.04 \pm 0.02$                                                | $0.59 \pm 0.03$                                                |                                                                                   | $0.00 \pm 0.00$                                       | $-0.82 \pm 0.02$                                                | $-0.62 \pm 0.03$                                         |
| (Local Q,16)<br>(Local Q,2)               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.68 \pm 0.03$<br>$0.81 \pm 0.02$                             | $\begin{array}{c} -0.94 \pm 0.01 \\ -0.93 \pm 0.01 \end{array}$ | $\begin{array}{c} -0.84 \pm 0.02 \\ -0.83 \pm 0.02 \end{array}$ | $\begin{array}{c} -0.07 \pm 0.02 \\ -0.05 \pm 0.02 \end{array}$ | $0.42 \pm 0.03$<br>$0.56 \pm 0.03$                             | $\begin{array}{c} -0.80 \pm 0.02 \\ -0.75 \pm 0.02 \end{array}$                   | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $\begin{array}{c} -0.86 \pm 0.02 \\ -0.83 \pm 0.02 \end{array}$ | $-0.67 \pm 0.03$<br>$-0.62 \pm 0.03$                     |
| (Local Q,32)                              | $0.00 \pm 0.00$                                       | $0.68 \pm 0.03$                                                | $-0.94 \pm 0.01$                                                | $-0.84 \pm 0.02$                                                | $-0.06 \pm 0.02$                                                | $0.38 \pm 0.03$                                                | $-0.79 \pm 0.02$                                                                  | $0.00 \pm 0.00$                                       | $-0.86 \pm 0.02$                                                | $-0.68 \pm 0.03$                                         |
| (Local Q,4)                               | $0.00 \pm 0.00$                                       | $0.74 \pm 0.02$                                                | $-0.93 \pm 0.01$                                                | $-0.83 \pm 0.02$                                                | $-0.06 \pm 0.02$                                                | $0.50 \pm 0.03$                                                | $-0.77 \pm 0.02$                                                                  | $0.00 \pm 0.00$                                       | $-0.83 \pm 0.02$                                                | $-0.64 \pm 0.03$                                         |
| (Local Q,64)<br>(Local Q,8)               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.67 \pm 0.02$<br>$0.67 \pm 0.03$<br>$0.72 \pm 0.03$          | $-0.95 \pm 0.01$<br>$-0.94 \pm 0.01$                            | $-0.84 \pm 0.02$<br>$-0.84 \pm 0.02$                            | $-0.06 \pm 0.02$                                                | $0.38 \pm 0.03$<br>$0.42 \pm 0.03$                             | $-0.81 \pm 0.02$<br>$-0.80 \pm 0.02$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.87 \pm 0.02$<br>$-0.85 \pm 0.02$                            | $-0.68 \pm 0.03$                                         |
| (Local Abs, 0.125)<br>(Local Abs, 0.25)   | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.96 \pm 0.01$<br>$0.98 \pm 0.01$                             | $-0.34 \pm 0.01$<br>$-0.41 \pm 0.03$<br>$-0.26 \pm 0.03$        | $-0.51 \pm 0.02$<br>$-0.51 \pm 0.03$<br>$-0.39 \pm 0.03$        |                                                                 | $0.96 \pm 0.01$<br>$0.95 \pm 0.01$                             | $-0.00 \pm 0.02$<br>$-0.18 \pm 0.03$<br>$-0.04 \pm 0.03$                          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.38 \pm 0.02$<br>$-0.38 \pm 0.03$<br>$-0.19 \pm 0.04$        | $0.20 \pm 0.03$<br>$0.26 \pm 0.03$                       |
| (Local Abs,0.5)                           | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $0.03 \pm 0.04$                                                 | $-0.18\pm0.04$                                                  | $-0.00\pm0.02$                                                  | $0.96 \pm 0.01$                                                | $0.30 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.22 \pm 0.04$                                                 | $0.30 \pm 0.03$                                          |
| (Local Abs,1)                             | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $0.35 \pm 0.03$                                                 | $0.10 \pm 0.04$                                                 | $0.02 \pm 0.02$                                                 | $0.97 \pm 0.01$                                                | $0.53 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.49 \pm 0.03$                                                 | $0.33 \pm 0.03$                                          |
| (Local Abs,16)                            | $0.00 \pm 0.00$                                       | $-0.22 \pm 0.04$                                               | $-0.94 \pm 0.01$                                                | $-0.62 \pm 0.03$                                                | $-0.26 \pm 0.02$                                                | $-0.35 \pm 0.03$                                               | $-0.77 \pm 0.02$                                                                  | $-0.00 \pm 0.00$                                      | $-0.77 \pm 0.02$                                                | $-0.68 \pm 0.03$                                         |
| (Local Abs,2)<br>(Local Abs,32)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $\begin{array}{c} 0.98 \pm 0.01 \\ -0.24 \pm 0.04 \end{array}$ | $0.38 \pm 0.03$<br>$-0.95 \pm 0.01$                             | $0.24 \pm 0.04$<br>$-0.71 \pm 0.03$                             | $0.02 \pm 0.02$<br>$-0.29 \pm 0.02$                             | $0.94 \pm 0.01$<br>$-0.32 \pm 0.03$                            | $\begin{array}{c} 0.54 \pm 0.03 \\ -0.83 \pm 0.02 \end{array}$                    | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                   | $0.43 \pm 0.03$<br>$-0.80 \pm 0.02$                             | $0.38 \pm 0.03$<br>$-0.79 \pm 0.02$                      |
| (Local Abs,4)<br>(Local Abs,64)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    |                                                                | $0.00 \pm 0.04$<br>$-0.95 \pm 0.01$                             | $0.05 \pm 0.04$<br>$-0.73 \pm 0.03$                             |                                                                 |                                                                |                                                                                   | $0.00 \pm 0.00$<br>$-0.00 \pm 0.00$                   | $0.01 \pm 0.04$<br>$-0.80 \pm 0.02$                             |                                                          |
| (Local Abs,8)<br>(Local Range,0.125)      | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.01 \pm 0.04$<br>$0.97 \pm 0.01$                            | $-0.74 \pm 0.02$<br>$-0.87 \pm 0.01$                            | $-0.39 \pm 0.03$<br>$-0.76 \pm 0.02$                            | $-0.03 \pm 0.02$                                                | $0.80 \pm 0.02$                                                | $-0.60\pm0.02$                                                                    | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $-0.55 \pm 0.03$<br>$-0.74 \pm 0.02$                            | $-0.46 \pm 0.02$                                         |
| (Local Range, 0.25)                       | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $-0.86 \pm 0.01$                                                | $-0.77 \pm 0.02$                                                | $-0.01 \pm 0.02$                                                | $0.81 \pm 0.02$                                                | $-0.56 \pm 0.02$                                                                  | $0.00 \pm 0.00$                                       | $-0.71 \pm 0.02$                                                | $-0.45 \pm 0.02$                                         |
| (Local Range, 0.5)                        | $0.00 \pm 0.00$                                       | $0.99 \pm 0.01$                                                | $-0.36 \pm 0.02$                                                | $-0.51 \pm 0.02$                                                | $0.00 \pm 0.01$                                                 | $0.91 \pm 0.01$                                                | $0.09 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $-0.20 \pm 0.03$                                                | $-0.06 \pm 0.02$                                         |
| (Local Range,1)                           | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $0.55 \pm 0.02$                                                 | $-0.07 \pm 0.03$                                                | $0.07 \pm 0.02$                                                 | $0.94 \pm 0.01$                                                | $0.67 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.48 \pm 0.02$                                                 | $0.39 \pm 0.02$                                          |
| (Local Range,16)                          | $0.00 \pm 0.00$                                       | $0.76 \pm 0.02$                                                | $0.24 \pm 0.02$                                                 | $0.14 \pm 0.03$                                                 | $0.10 \pm 0.02$                                                 | $-0.70 \pm 0.02$                                               | $0.16 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.17 \pm 0.03$                                                 | $-0.10 \pm 0.02$                                         |
| (Local Range,2)                           | $0.00 \pm 0.00$                                       | $0.93 \pm 0.01$                                                | $0.67 \pm 0.02$                                                 | $0.17 \pm 0.03$                                                 | $0.09 \pm 0.02$                                                 | $0.64 \pm 0.02$                                                | $0.74 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.62 \pm 0.02$                                                 | $0.42 \pm 0.02$                                          |
| (Local Range,32)                          | $0.00 \pm 0.00$                                       | $0.71 \pm 0.03$                                                | $0.17 \pm 0.03$                                                 | $0.04 \pm 0.03$                                                 | $0.11 \pm 0.02$                                                 | -0.74 ± 0.02                                                   | $0.08 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.11 \pm 0.03$                                                 | -0.20 ± 0.02                                             |
| (Local Range,4)<br>(Local Range,64)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.86 \pm 0.01$<br>$0.72 \pm 0.02$                             | $0.54 \pm 0.02$<br>$0.16 \pm 0.03$                              | $0.22 \pm 0.03$<br>-0.01 ± 0.03                                 | $0.13 \pm 0.02$<br>$0.13 \pm 0.02$<br>$0.10 \pm 0.02$           | $-0.18 \pm 0.03$<br>$-0.73 \pm 0.02$                           | $0.57 \pm 0.02$<br>$0.03 \pm 0.03$                                                | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.50 \pm 0.02$<br>$0.06 \pm 0.03$                              | $0.31 \pm 0.02$<br>$-0.23 \pm 0.02$                      |
| (Local Range,8)<br>(Local Std,0.125)      | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.72 \pm 0.02$<br>$0.80 \pm 0.02$<br>$0.96 \pm 0.01$          | $0.36 \pm 0.02$<br>$-0.88 \pm 0.02$                             | $0.19 \pm 0.03$<br>$-0.77 \pm 0.02$                             | $0.10 \pm 0.02$<br>$0.12 \pm 0.02$<br>$-0.03 \pm 0.02$          | $-0.73 \pm 0.02$<br>$-0.61 \pm 0.02$<br>$0.79 \pm 0.02$        | $0.03 \pm 0.03$<br>$0.33 \pm 0.02$<br>$-0.60 \pm 0.03$                            | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.30 \pm 0.02$<br>$-0.77 \pm 0.02$                             | $0.05 \pm 0.02$<br>$-0.44 \pm 0.03$                      |
| (Local Std,0.25)<br>(Local Std,0.5)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.97 \pm 0.01$<br>$0.97 \pm 0.01$<br>$0.97 \pm 0.01$          | $-0.88 \pm 0.02$<br>$-0.87 \pm 0.02$<br>$-0.87 \pm 0.02$        | $-0.77 \pm 0.02$<br>$-0.77 \pm 0.02$<br>$-0.77 \pm 0.02$        | $-0.03 \pm 0.02$<br>$-0.03 \pm 0.02$<br>$-0.01 \pm 0.02$        | $0.79 \pm 0.02$<br>$0.78 \pm 0.02$<br>$0.79 \pm 0.02$          | $-0.60 \pm 0.03$<br>$-0.60 \pm 0.03$<br>$-0.59 \pm 0.03$                          | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.71 \pm 0.02$<br>$-0.74 \pm 0.02$<br>$-0.71 \pm 0.03$        | $-0.44 \pm 0.03$<br>$-0.45 \pm 0.03$<br>$-0.47 \pm 0.03$ |
| (Local Std,1)                             | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $-0.63 \pm 0.03$                                                | $-0.52\pm0.03$                                                  | $0.01 \pm 0.02$                                                 | $0.90 \pm 0.02$                                                | $-0.18\pm0.04$                                                                    | $0.00 \pm 0.00$                                       | $-0.43\pm0.03$                                                  | $-0.13 \pm 0.03$                                         |
| (Local Std,16)                            | $0.00 \pm 0.00$                                       | $0.85 \pm 0.02$                                                | $0.47 \pm 0.03$                                                 | $0.24 \pm 0.04$                                                 | $0.12 \pm 0.02$                                                 | $-0.52 \pm 0.03$                                               | $0.48 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.40 \pm 0.03$                                                 | $0.14 \pm 0.03$                                          |
| (Local Std,2)                             | $0.00 \pm 0.00$                                       | $0.99 \pm 0.01$                                                | $0.41 \pm 0.03$                                                 | $-0.10 \pm 0.04$                                                | $0.05 \pm 0.02$                                                 | $0.94 \pm 0.01$                                                | $0.60 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.42 \pm 0.03$                                                 | $0.35 \pm 0.03$                                          |
| (Local Std,32)                            | $0.00 \pm 0.00$                                       | $0.80 \pm 0.02$                                                | $0.28 \pm 0.03$                                                 | $0.15 \pm 0.04$                                                 | $0.10 \pm 0.02$                                                 | $-0.71 \pm 0.03$                                               | $0.23 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.21 \pm 0.04$                                                 | $-0.09 \pm 0.03$                                         |
| (Local Std,4)                             | $0.00 \pm 0.00$                                       | $0.98 \pm 0.01$                                                | $0.68 \pm 0.03$                                                 | $0.15 \pm 0.04$                                                 | $0.08 \pm 0.02$                                                 | $0.86 \pm 0.02$                                                | $0.77 \pm 0.02$                                                                   | $0.00 \pm 0.00$                                       | $0.63 \pm 0.03$                                                 | $0.43 \pm 0.03$                                          |
| (Local Std,64)                            | $0.00 \pm 0.00$                                       | $0.75 \pm 0.02$                                                | $0.17 \pm 0.04$                                                 | $0.02 \pm 0.04$                                                 | $0.11 \pm 0.02$                                                 | $-0.72 \pm 0.03$                                               | $0.13 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.14 \pm 0.04$                                                 | $-0.16 \pm 0.03$                                         |
| (Local Std,8)                             | $0.00 \pm 0.00$                                       | $0.95 \pm 0.01$                                                | $0.68 \pm 0.03$                                                 | $0.25 \pm 0.04$                                                 | $0.11 \pm 0.02$                                                 | $0.03 \pm 0.04$                                                | $0.72 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.59 \pm 0.03$                                                 | $0.37 \pm 0.03$                                          |
| (Poly-UCB1,0.125)                         | $0.00 \pm 0.00$                                       | $0.93 \pm 0.02$                                                | $-0.88 \pm 0.02$                                                | $-0.76 \pm 0.02$                                                | $-0.04 \pm 0.03$                                                | $0.81 \pm 0.02$                                                | $-0.61 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                       | $-0.77 \pm 0.02$                                                | $-0.44 \pm 0.03$                                         |
| (Poly-UCB1,0.25)                          | $0.00 \pm 0.00$                                       | $0.95 \pm 0.02$                                                | $-0.86 \pm 0.02$                                                | $-0.76 \pm 0.02$                                                | $-0.04 \pm 0.03$                                                | $0.81 \pm 0.02$                                                | $-0.60 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                       | $-0.78 \pm 0.02$                                                | $-0.44 \pm 0.03$                                         |
| (Poly-UCB1,0.5)                           | $0.00 \pm 0.00$                                       | $0.94 \pm 0.02$                                                | $-0.84 \pm 0.02$                                                | $-0.72 \pm 0.03$                                                | $0.00 \pm 0.03$                                                 | $0.81 \pm 0.02$                                                | $\begin{array}{c} -0.58 \pm 0.03 \\ -0.56 \pm 0.03 \end{array}$                   | $0.00 \pm 0.00$                                       | $-0.75 \pm 0.02$                                                | $-0.35 \pm 0.03$                                         |
| (Poly-UCB1,1)                             | $0.00 \pm 0.00$                                       | $0.89 \pm 0.02$                                                | $-0.81 \pm 0.02$                                                | $-0.71 \pm 0.03$                                                | $-0.02 \pm 0.03$                                                | $0.80 \pm 0.02$                                                |                                                                                   | $0.00 \pm 0.00$                                       | $-0.74 \pm 0.02$                                                | $-0.34 \pm 0.03$                                         |
| (Poly-UCB1,16)                            | $0.00 \pm 0.00$                                       | $-0.02 \pm 0.05$                                               | $-0.72 \pm 0.03$                                                | $-0.55 \pm 0.03$                                                | $-0.10 \pm 0.04$                                                | $0.80 \pm 0.02$                                                | $-0.32 \pm 0.03$                                                                  | $-0.00 \pm 0.00$                                      | $-0.61 \pm 0.03$                                                | $-0.10 \pm 0.03$                                         |
| (Poly-UCB1,2)                             | $0.00 \pm 0.00$                                       | $0.81 \pm 0.03$                                                | $-0.82 \pm 0.02$                                                | $-0.67 \pm 0.03$                                                | $-0.05 \pm 0.03$                                                | $0.81 \pm 0.02$                                                | $-0.51 \pm 0.03$                                                                  | $0.00 \pm 0.00$                                       | $-0.71 \pm 0.03$                                                |                                                          |
| (Poly-UCB1,32)<br>(Poly-UCB1,4)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.05 \pm 0.05$<br>$0.63 \pm 0.05$                            | $-0.73 \pm 0.02$<br>$-0.77 \pm 0.02$                            |                                                                 | $-0.14\pm0.04$                                                  | $0.80 \pm 0.02$<br>$0.80 \pm 0.02$<br>$0.80 \pm 0.02$          | $-0.32 \pm 0.03$<br>$-0.49 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.55 \pm 0.03$<br>$-0.70 \pm 0.03$                            | $-0.21 \pm 0.03$                                         |
| (Poly-UCB1,64)<br>(Poly-UCB1,8)           | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.08 \pm 0.04$                                               | $-0.73 \pm 0.02$                                                |                                                                 |                                                                 | $0.76 \pm 0.02$                                                | $-0.35 \pm 0.03$                                                                  | $-0.00 \pm 0.00$                                      | $-0.50 \pm 0.03$<br>$-0.66 \pm 0.03$                            |                                                          |
| (Vanilla UCT,0.125)                       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $0.25 \pm 0.06$<br>$0.98 \pm 0.01$<br>$0.99 \pm 0.00$          | $-0.70 \pm 0.03$<br>$-0.36 \pm 0.03$<br>$-0.13 \pm 0.04$        | $-0.61 \pm 0.03$<br>$-0.50 \pm 0.03$<br>$-0.38 \pm 0.03$        | $0.11 \pm 0.02$<br>$0.14 \pm 0.02$                              | $0.81 \pm 0.02$<br>$0.96 \pm 0.01$<br>$0.97 \pm 0.01$          | $-0.40 \pm 0.03$<br>$-0.15 \pm 0.03$                                              | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$<br>$0.00 \pm 0.00$ | $-0.66 \pm 0.03$<br>$-0.40 \pm 0.03$<br>$-0.10 \pm 0.04$        | $0.25 \pm 0.03$<br>$0.28 \pm 0.03$                       |
| (Vanilla UCT,0.25)<br>(Vanilla UCT,0.5)   | $0.00 \pm 0.00$                                       | $0.99 \pm 0.00$                                                | $0.42 \pm 0.03$                                                 | $0.06 \pm 0.04$                                                 | $0.10 \pm 0.02$                                                 | $0.96 \pm 0.01$                                                | $0.19 \pm 0.03$<br>$0.69 \pm 0.03$                                                | $0.00 \pm 0.00$                                       | $0.49 \pm 0.03$                                                 | $0.41 \pm 0.03$                                          |
| (Vanilla UCT,1)<br>(Vanilla UCT,1000)     | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.99 \pm 0.01$<br>$0.69 \pm 0.03$<br>$0.71 \pm 0.03$          | $0.74 \pm 0.02$<br>$0.11 \pm 0.04$<br>$0.22 \pm 0.04$           | $0.38 \pm 0.03$<br>$-0.08 \pm 0.04$                             | $0.11 \pm 0.02$<br>$0.10 \pm 0.02$                              | $0.97 \pm 0.01$<br>$-0.72 \pm 0.03$<br>$-0.62 \pm 0.03$        | $0.88 \pm 0.02$<br>$-0.02 \pm 0.04$                                               | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.69 \pm 0.03$<br>$0.04 \pm 0.04$                              | $0.51 \pm 0.02$<br>$-0.25 \pm 0.03$                      |
| (Vanilla UCT,16)<br>(Vanilla UCT,2)       | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.89 \pm 0.02$                                                | $0.61 \pm 0.03$                                                 | $0.08 \pm 0.04$<br>$0.33 \pm 0.03$                              | $0.08 \pm 0.02$<br>$0.11 \pm 0.02$                              | $0.96 \pm 0.01$                                                | $0.12 \pm 0.04$<br>$0.72 \pm 0.03$                                                | $0.00 \pm 0.00$<br>$0.00 \pm 0.00$                    | $0.17 \pm 0.04$<br>$0.62 \pm 0.03$                              | $-0.06 \pm 0.03$<br>$0.46 \pm 0.03$                      |
| (Vanilla UCT,256)                         | $0.00 \pm 0.00$                                       | $0.68 \pm 0.03$                                                | $0.12 \pm 0.04$                                                 | $-0.02 \pm 0.04$                                                | $0.12 \pm 0.02$                                                 | $-0.72 \pm 0.03$                                               | $0.00 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.04 \pm 0.04$                                                 | $-0.24 \pm 0.03$                                         |
| (Vanilla UCT,32)                          | $0.00 \pm 0.00$                                       | $0.69 \pm 0.03$                                                | $0.15 \pm 0.04$                                                 | $0.01 \pm 0.04$                                                 | $0.09 \pm 0.02$                                                 | $-0.69 \pm 0.03$                                               | $0.04 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.09 \pm 0.04$                                                 | $-0.16 \pm 0.03$                                         |
| (Vanilla UCT,4)                           | $0.00 \pm 0.00$                                       | $0.76 \pm 0.02$                                                | $0.38 \pm 0.03$                                                 | $0.23 \pm 0.04$                                                 | $0.10 \pm 0.02$                                                 | $0.48 \pm 0.03$                                                | $0.45 \pm 0.03$                                                                   | $0.00 \pm 0.00$                                       | $0.44 \pm 0.03$                                                 | $0.36 \pm 0.03$                                          |
| (Vanilla UCT,64)                          | $0.00 \pm 0.00$                                       | $0.67 \pm 0.03$                                                | $0.14 \pm 0.04$                                                 | $0.00 \pm 0.04$                                                 | $0.09 \pm 0.02$                                                 | $-0.72 \pm 0.03$                                               | $0.02 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.07 \pm 0.04$                                                 | $-0.20 \pm 0.03$                                         |
| (Vanilla UCT,8)                           | $0.00 \pm 0.00$                                       | $0.73 \pm 0.03$                                                | $0.29 \pm 0.03$                                                 | $0.14 \pm 0.04$                                                 | $0.10 \pm 0.02$                                                 | $-0.49 \pm 0.03$                                               | $0.26 \pm 0.04$                                                                   | $0.00 \pm 0.00$                                       | $0.24 \pm 0.04$                                                 | $0.07 \pm 0.03$                                          |