Value of Visualization

Yannet Interian -- USF

Agenda

- Introduction: Why Visualize
- Data types
- Basic Charts
- Course Admin
- Lab: Advanced ggplot2 (tricks)

http://en.wikipedia.org/wiki/File:Snow-cholera-map-1.jpg

Recreated map with modern tools

http://www.theguardian.com/news/datablog/interactive/2013/mar/15/cholera-map-john-snow-recreated

1854 Cholera Outbreak

- Tens of thousands people in England were dying of cholera between 1831 and 1854
- Many assumed cholera was caused by breathing vapors or "miasma in the atmosphere"
- People did not have running water or modern toilets
- Terrible cholera outbreak in 1854 in Soho, near where physician John Snow lived
- Tracked down data from hospitals and public records
- Created simple plot of where victims lived and location of water pumps

http://www.ph.ucla.edu/epi/snow/snowcricketarticle.html and http://www.bbc.co.uk/history/historic figures/snow john.shtml

1854 Cholera Outbreak

- John Snow Identified contaminated water pump
- Eventually able to trace many cases to "sherbert" a bubbly drink with a fizzy powder mixed in, served from water coming from the Broad Street area pump
- Pioneered the field of epidemiology

Napoleon's March on Moscow depicted by M. Minard. Width indicates the number of soldiers. Temperature during the retreat is presented below the map. https://en.wikipedia.org/wiki/Charles Joseph Minard

Napoleon March on Moscow

- Depicts Napoleon's army departing the Polish-Russian border.
- The band illustrates the size of his army at specific geographic points during their advance and retreat.
- It displays six types of data in two dimensions:
 - the number of Napoleon's troops; the distance traveled; temperature; latitude and longitude; direction of travel; and location relative to specific dates.
- This type of band graph for illustration of flows was later called a Sankey diagram.

Sequences sunburst demo

https://bl.ocks.org/kerryrodden/7090426

What is visualization?

What is visualization?

- "Transformation of the symbolic into the geometric" [McCormick et al. 1987]
- "... finding the artificial memory that best supports our natural means of perception." [Bertin 1967]
- "Information visualization utilizes computer graphics and interaction to assist humans in solving problems."[Purchase et al., 2008]
- "The use of computer-generated, interactive, visual representations of data to amplify cognition." [Card, Mackinlay, & Shneiderman 1999]

I		II		III		IV	
X	y	X	у	X	y	X	\mathbf{y}
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Four datasets with different values and the same statistical profile

mean(x) = 9.0 mean(y) = 7.5 std(x) = 3.317 std(y) = 2.03

Also same regression line.

[Anscombe 73]

Visualization is much more effective than statistics

ARO

Follow us

An Interactive Visualization of NYC Street Trees

Using data provided by NYC Open Data, this visualization shows the variety and quantity of street trees in all five New York City boroughs.

http://www.nytimes.com/interactive/2014/08/13/upshot/where-people-in-each-state-were-born. html?abt=0002&abg=0

http://sanfrancisco.crimespotting.org/

Why do we create visualizations?

Why do we create visualizations

- Answer questions (or discover them)
- Make decisions
- See data in context
- Expand memory
- Support graphical calculation
- Find patterns
- Present argument or tell a story
- Inspire

Three functions of visualizations

- Record: store information
 - Photographs, blueprints, ...
- Analyze: support reasoning about information
 - Process and calculate
 - Reason about data
 - Feedback and interaction
- Communicate: convey information to others
 - Share and persuade
 - Collaborate and revise
 - Emphasize important aspects of data

In order to visualize data

- 1. Classify data types
- 2. Determine which type of plots represent the data types more effectively

- Nominal (categorical)
- Ordinal (categorical)
- Quantitative (numerical)
 - Interval
 - Ratio

- Nominal (categorical)
 - o Fruits, apple, bananas
- Ordinal (categorical)
 - Shirt size (XS, S, M, L)
 - Phone call quality (bad, good, excellent)
- Quantitative (numerical)
 - Interval (Zero is arbitrary)
 - Dates, locations
 - Differences can be compared
 - Ratio (Zero is fixed)
 - Zero indicates that there is none of that variable
 - Measurements
 - Counts and amounts

Nominal, Ordinal, Quantitative

- Nominal
 - Operations: ==, !=
- Ordinal
 - Operations: ==, !=, <, >
- Quantitative
 - Interval (Zero is arbitrary)
 - Operations: ==, !=, <, >, -
 - Ratio (Zero is fixed)
 - Operations: ==, !=, <, >, -, +, /

Dataset: diamonds (ggplot2)

```
color
                                               clarity
    carat
                       cut
       :0.200
                         : 1610
                                  D: 6775
                                                    :13065
Min.
                Fair
                                            SI1
1st Ou.:0.400
                Good
                         : 4906
                                  E: 9797
                                            VS2
                                                   :12258
Median :0.700
                Very Good:12082
                                  F: 9542
                                            SI2
                                                   : 9194
       :0.798
                Premium :13791
                                  G:11292
                                            VS1
                                                  : 8171
Mean
3rd Qu.:1.040
                         :21551
                                  H: 8304
                                                  : 5066
                Ideal
                                            VVS2
       :5.010
                                                    : 3655
Max.
                                  I: 5422
                                            VVS1
                                  J: 2808
                                            (Other): 2531
                   table
    depth
                                  price
                                                    x
Min.
       :43.0
               Min.
                      :43.0
                              Min.
                                        326
                                              Min.
                                                     : 0.00
                              1st Ou.: 950
1st Ou.:61.0
               1st Ou.:56.0
                                              1st Ou.: 4.71
Median :61.8
               Median :57.0
                              Median: 2401
                                              Median: 5.70
Mean
       :61.8
               Mean
                      :57.5
                                     : 3933
                                              Mean
                                                    : 5.73
                              Mean
3rd Qu.: 62.5
               3rd Qu.:59.0
                              3rd Qu.: 5324
                                              3rd Qu.: 6.54
       :79.0
                      :95.0
                                     :18823
                                                      :10.74
Max.
               Max.
                              Max.
                                              Max.
       : 0.00
Min.
                Min.
                       : 0.00
1st Qu.: 4.72
                1st Qu.: 2.91
Median: 5.71
                Median: 3.53
Mean
     : 5.73
                Mean
                     : 3.54
3rd Qu.: 6.54
                3rd Ou.: 4.04
       :58.90
                       :31.80
Max.
                Max.
```

- Prices and quality information of 54k diamonds.
- Diamond quality: carat, cut, color, clarity
- Physical measurements: depth, table, x,y,z
 What type of variables?

Dataset: Email spam

What type of variables?

	spam	num_char	line_breaks	format	number
1	no	21,705	551	html	small
2	no	7,011	183	html	big
3	yes	631	28	text	none
:	•		:		:
50	no	15,829	242	html	small

Table 1.3: Four rows from the email 50 data matrix.

variable	description				
spam	Specifies whether the message was spam				
num_char	The number of characters in the email				
line_breaks	tks The number of line breaks in the email (not including text wrapping)				
format	Indicates if the email contained special formatting, such as bolding, table or links, which would indicate the message is in HTML format				
number	Indicates whether the email contained no number, a small number (under 1 million), or a large number				

Basic Charts (ggplot2)

Basic Charts

- Scatterplot
- Line Chart
- Area Chart
- Bar Chart
- Box Plot

- Multi-Line Chart
- Small Multiples Chart
- Histogram
- Stacked Bar Chart
- Stacked Area Chart

What type of variables can be encoded with each chart?

Scatterplot using R and ggplot2 with the economics dataset

Line chart using R and ggplot2 with the economics dataset

How to use line charts

When to use them

- Time series (chronological), dates, months, sequence of stages of a project, sequence of meters along on a gas pipeline,
- b. To detect trends and patterns, not to give people exact quantitative readings.
- c. Don't use line charts with categorical data on the x-axis

Scale

- a. As line charts are not really intended to give people exact numbers, forcing zero scaling is not necessary and can make it considerably more difficult to detect said trends and patterns.
- Dimension order:
 - a. There should be some logical order to the dimensions on the x-axis

Area chart using R and ggplot2 with the economics dataset

Bar chart using R and ggplot2 with the economics dataset

How to use Bar Charts

- When to use them:
 - a. Bar charts should be used for comparing specific x-axis values
- Orientation:
 - a. Use horizontal labels
 - b. If needed use horizontal bar chart, so the text can read left-to-right
- Start the Y-Axis value at 0
- Space between bars should be ½ bar width.
- Order categories alphabetically, sequentially, or by value.

How to lie with bar charts: Truncated Y-Axis

Same Data, Different Y-Axis

Box plot using R and ggplot2 with the economics dataset

Multi-line chart using R and ggplot2 with the economics dataset

Small multiples chart using R and ggplot2 with the economics dataset

Histogram using R and ggplot2 with the movies dataset

Stacked area chart using R and ggplot2 with the movies dataset

Demo: https://research.google.com/bigpicture/music/#

Stacked bar chart using R and ggplot2 with the movies dataset

Can you identify each type of chart?

http://www.nytimes.com/imagepages/2009/09/19/business/20090920EFFICIENCY-graphic-ready.html

Course Admin

Course Topics (approx)

- 1. Value of Visualization. Advanced ggplot2. Visualization Design.
- 2. Intro to Shiny. Visual Perception and Principles of Design.
- 3. Tableau. Multivariate Data Visualization.
- 4. Interaction. Text Data Visualization.
- 5. Design and Evaluation. Temporal Data.
- 6. Geospatial Data. Hierarchical Data.
- 7. Redesign Contest, Prototype Demonstrations.
- 8. Final Project Presentations.

Work

Participation (20%)

- Weekly participation assignments
- In-class discussions, exercises, commenting on prototypes from other students
- Graded on a pass / fail basis

Homework (30%)

- 4-5 homework assignments
- Project (50%)
 - Groups of 2
 - You can select your team

Project

- Select a data set and multiple visualization techniques, develop prototypes
- Rework the prototypes based on peer evaluations
- Students will demonstrate their final projects during a presentation or poster session
- Projects in Shiny
 - You can use D3 but you have to learn it on your own

ggplot2 Lab

