Math 357 Expositional homework 06

Assigned: 2024–03–29 (F)

Due:

The goal of this homework is to strengthen our understanding of field theory, through proof and example.

Proofs

- (a) Prove Proposition 13.12:¹ Let $K: K_0$ be a field extension, and let $\alpha \in K$. Then α is algebraic over K_0 if and only if $[K_0(\alpha): K_0] < \infty$.
- (b) Prove Theorem 13.25^2 on the existence of splitting fields: Let K_0 be a field, and let $f \in K_0[t]$. Then there exists an extension field $K: K_0$ such that f splits completely in K[t].
- (c) Let $K: K_0$ be a field extension such that $[K: K_0] < \infty$. Prove that $K: K_0$ is normal if and only if for all irreducible polynomials $f \in K_0[t]$, if there exists an $\alpha \in K$ such that $f(\alpha) = 0$, then f splits completely in K[t].³ (One may take this as the definition of a normal field extension, in which case one can prove the definition we gave in class as a proposition.)
- (d) Let K_0 be a field, and let $f_1, f_2 \in K_0[t]$. Prove that the formal derivative D_t of a polynomial in $K_0[t]$ satisfies the following relations (as does the derivative operator from calculus):⁴

$$D_t(f_1 + f_2) = D_t f_1 + D_t f_2 \qquad \qquad D_t(f_1 f_2) = (D_t f_1) \cdot f_2 + f_1 \cdot (D_t f_2)$$

Examples

- (e) Determine the degree over **Q** of $2 + \sqrt{3}$ and $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- (f) Let $K: K_0$ be a field extension of finite degree n, and let $\alpha \in K$.

¹See DF3e, p 521.

²See DF3e, p 536. If you are up for it, then you can also prove that any two splitting fields for f are isomorphic; see Corollary 13.28, p 542. This will take a little work, but the theory and proof are both accessible and rewarding.

³See DF3e, Exercise 13.4.5, p 545.

⁴See DF3e, Exercise 13.5.1, p 551.

⁵See DF3e, Exercise 13.2.4, p 530.

⁶See DF3e, Exercises 13.2.19(a) and 20, p 531.

(i) Prove that the map

$$T_{\alpha}:K\to K$$

$$\beta\mapsto\alpha\beta$$

which is (left) multiplication by α , is a K_0 -linear transformation of K.

Let $n \in \mathbf{Z}_{>0}$, let M be an $n \times n$ matrix, let I be the $n \times n$ identity matrix, and let t be an indeterminate. The **characteristic polynomial** of M is $det(tI - A) = (-1)^n det(A - tI)$.

- (ii) Let \mathcal{B} be a K_0 -basis of K, and let $M_{\mathcal{B}}(T_{\alpha})$ be the matrix of T_{α} with respect to \mathcal{B} . Prove that α is a zero of the characteristic polynomial of $M_{\mathcal{B}}(T_{\alpha})$.
- (iii) Use this technique to find monic polynomials in $\mathbf{Q}[t]$ of degree 3 satisfied by $\sqrt[3]{2}$ and by $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- (g) Let $\mathfrak{p}\in \mathbf{Z}_{>0}$ be prime, let $\mathbf{F}_{\mathfrak{p}}=\mathbf{Z}/(\mathfrak{p})$ (a finite field of order \mathfrak{p}), let $\mathfrak{a}\in \mathbf{F}_{\mathfrak{p}}$ be nonzero, and let $\mathfrak{f}=\mathfrak{t}^{\mathfrak{p}}-\mathfrak{t}+\mathfrak{a}\in \mathbf{F}_{\mathfrak{p}}[\mathfrak{t}]$. Prove that \mathfrak{f} is irreducible in $\mathbf{F}_{\mathfrak{p}}[\mathfrak{t}]$ and separable.⁷

⁷See DF3e, Exercise 13.5.5, p 551.