Homework o6

Due Date: 111/03/30

Instruction. Do not submit part B.

A Homework Problems

1. Let

$$A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix}.$$

Find $U \in M_2(\mathbb{C})$ such that U^*AU is a diagonal matrix.

Definition A.1. Let $A \in M_n(\mathbb{C})$. A **square root** of A is a matrix $P \in M_n(\mathbb{C})$ such that $P^2 = A$.

- 2. Let $A, B \in M_n(\mathbb{C})$ be positive definite.
 - (a) Prove that A has a positive definite square root.
 - (b) For $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$, find a positive definite square root for A.
 - (c) Find an example that AB is not positive definite.
 - (d) Show that $tr(AB) \ge 0$. (*Hint*. Use (2a) to get a square root of A, say \sqrt{A} , then observe $tr(AB) = tr(\sqrt{A}B\sqrt{A})$).
- 3. Let W be a finite-dimensional subspace of an inner product space V. We know that $V=W\oplus W^\perp$. Define $U:V\to V$ by

$$U(v_1 + v_2) = v_1 - v_2,$$

where $v_1 \in W$ and $v_2 \in W^{\perp}$. Prove that U is a self-adjoint unitary operator. **Remark.** Such U is called the reflection of V about the subspace W.

4. Let T be a linear operator on a finite-dimensional inner product space V. Suppose that T is a projection such that $||T(x)|| \le ||x||$ for all $x \in V$. Prove that T is an orthogonal projection.

1

B Supplementary Problems

Definition B.1. Let V be a finite dimensional inner product space and $u \in V$ be a unit vector. Define an operator $H_u: V \to V$ by

$$H_u(x) = x - 2 \langle x, u \rangle u.$$

Geometrically, H_u is the reflection across the hyperplane span $\{u\}^{\perp}$. This operator is called **Householder operator**.

- 5. Let V be a finite dimensional inner product space.
 - (a) Let $u \in V$ be a unit vector. Show that H_u is self-adjoint, and $H_u^2 = I$. (Hence H_u is unitary [orthogonal]).
 - (b) Let $x, y \in V$ be linearly independent in V and ||x|| = ||y||.
 - i. If $F = \mathbb{C}$, prove that there exist a unit vector $u \in V$ and $\theta \in \mathbb{C}$ with $|\theta| = 1$ such that $H_u(x) = \theta y$. (*Hint*. Choose θ so that $\langle x, \theta y \rangle$ is real and set $u = \frac{x \theta y}{\|x \theta y\|}$.)
 - ii. If $F = \mathbb{R}$, prove that there exist a unit vector $u \in V$ such that $H_u(x) = y$.
- 6. (Cayley transform) Let $A \in M_n(\mathbb{R})$ be skew-symmetric, that is, $A^t = -A$.
 - (a) Show that the eigenvalues of A are either zero or purely-imaginary (that is, the real part is o). (*Hint*. Mimic the proof of "self-adjoint operators have real eigenvalues" given in class.)
 - (b) Show that I + A is invertible.
 - (c) Prove that (I A) and $(I + A)^{-1}$ commute.
 - (d) Put $Q = (I A)(I + A)^{-1}$. Show that Q is orthogonal.
 - (e) Prove that I + Q is invertible and $A = (I + Q)^{-1}(I Q)$.

Remark. This problem gives a bijection between skew-symmetric real matrices and orthogonal matrices without eigenvalue -1.

- 7. (**QR factorization**) Let $F = \mathbb{R}$ or \mathbb{C} , $A \in M_n(F)$ be an invertible matrix and denote the k-th column vector of A by w_k . Since A is invertible, we know that $\{w_1, w_2, ..., w_n\}$ forms a basis for F^n . Suppose $\{v_1, v_2, ..., v_n\}$ is the orthogonal set obtained by performing Gram-Schmidt process to $\{w_1, w_2, ..., w_n\}$ (with respect to the standard inner product), and let $u_k = \frac{v_k}{\|v_k\|}$ be the normalization of v_k for $1 \le k \le n$.
 - (a) For $1 \le k \le n$, show that

$$w_k = ||v_k|| u_k + \sum_{j=1}^{k-1} \langle w_k, u_j \rangle u_j.$$

Deduce that A = QR, where $Q \in M_n(F)$ is the matrix with k-th column equals to u_k , and $R \in M_n(F)$ is defined by

$$R_{jk} = \begin{cases} ||v_j||, & j = k \\ \langle w_k, u_j \rangle, & j < k \\ 0, & j > k \end{cases}$$

This is called the **QR factorization** of A. Note that Q is unitary [orthogonal] and R is upper-triangular.

(b) Suppose $A=Q_1R_1=Q_2R_2$, where Q_1,Q_2 are unitary [orthogonal], R_1,R_2 are upper-triangular. Prove that $R_2R_1^{-1}$ is diagonal.

Remark. This factorization could be used to solve linear systems in numerical analysis. The system Ax = b is equivalent to $Rx = Q^*b$, and since R is upper-triangular, solving this system is more convenient than the original one.

8. (Hadamard Product of Definite Matrices) Let $A, B \in M_n(\mathbb{C})$ be two matrices, the Hadamard product of A and B is a matrix $A \circ B \in M_n(\mathbb{C})$ defined to be

$$(A \circ B)_{ij} = A_{ij}B_{ij}$$
.

(a) Compute the identity of these product, that is, find $J \in M_n(\mathbb{C})$ such that

$$A \circ J = J \circ A = A.$$

- (b) Show that if A, B are positive semidefinite, then $A \circ B$ is positive semidefinite. (*Hint*: Consider the spectral decomposition of A and B)
- (c) Show that if A, B are positive definite, then $A \circ B$ is positive definite.
- 9. If all eigenvalues of $A \in M_n(\mathbb{C})$ have absolute value 1 and $||Ax|| \le 1$ for all unit vectors $x \in \mathbb{C}^n$, show that A is unitary.

Definition B.2. The following three 2×2 matrices are called the *Pauli matrices*:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

One sees immediately that these matrices are unitary, and their eigenvalues are all ± 1 .

10. Show that X, Y, Z form a basis for the set

$${A \in M_2(\mathbb{C})|A^* = -A, \text{tr}(A) = 0}.$$

This set is called the *Lie algebra* $\mathfrak{su}(2)$.

11. For $\vec{n} = (n_x, n_y, n_z) \in \mathbb{R}^3$ and $\theta \in \mathbb{R}$, define the 2×2 complex matrix

$$R_{\vec{n}}(\theta) := \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)(n_xX + n_yY + n_zZ).$$

Let U be a 2×2 unitary matrix.

(a) Prove that there exist $\alpha, \theta \in \mathbb{R}$ and $\vec{n} \in \mathbb{R}^3$ such that

$$U = e^{i\alpha} R_{\vec{n}}(\theta).$$

(b) (**ZY decomposition**) Let $\vec{y} = (0, 1, 0), \vec{z} = (0, 0, 1) \in \mathbb{R}^3$. Prove that there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$U = e^{i\alpha} R_{\vec{z}}(\beta) R_{\vec{y}}(\gamma) R_{\vec{z}}(\delta).$$

- (c) Show that there exist unitary matrices A,B,C and $\alpha \in \mathbb{R}$ such that ABC=I and $U=e^{i\alpha}AXBXC$.
 - (*Hint*. First write U in the form in (b), then choose A, B, C to be suitable matrices constructed by $R_{\vec{u}}$ and $R_{\vec{z}}$.)
- (d) Let $\vec{n_1}, \vec{n_2} \in \mathbb{R}^3$ be two orthogonal vectors (with respect to the standard inner product). Prove the result in (b) with \vec{y}, \vec{z} replaced by $\vec{n_1}, \vec{n_2}$. What if $\vec{n_1}, \vec{n_2}$ are not orthogonal?

Remark. 2×2 unitary matrix can be realized as rotations in \mathbb{R}^3 . Check out "Euler angles" and "3D rotation group" for further information.

Definition B.3. Let $V = \mathbb{C}^n$ equipped with standard inner product and let $m \in \mathbb{N}$. Let $p_1, p_2, ..., p_m$ be m non-negative real numbers and $\sum_k p_k = 1$, and $v_1, v_2, ..., v_m$ be m unit vectors in V. We call the set of pairs $\{(p_k, v_k)\}_k$ an **ensemble of pure states**. For an ensemble of pure states, we define its **density operator** ρ to be the linear transformation $\sum_k p_k \Pr_{v_k}$, where \Pr_{v_k} is the orthogonal projection onto the 1-dimensional subspace spanned by v_k , namely $\Pr_{v_k}(v) = \langle v, v_k \rangle v_k$.

- 12. Using the notations in the previous definition, do the followings.
 - (a) Prove that if ρ is the density operator of an ensemble $\{(p_k, v_k)\}_k$, then $tr(\rho) = 1$ and ρ is positive semidefinite.
 - (b) Conversely, prove that if ρ is any positive semidefinite linear transformation satisfying $\operatorname{tr}(\rho)=1$ then ρ is the density operator of some ensemble of pure states $\{(p_k,v_k)\}_k$. (Hint. Spectral decomposition theorem.) Hence from now on, we say ρ is a density operator if it meets these two conditions. We will denote the set of all density operators on V by D(V).
 - (c) If ρ is a density operator, prove that $tr(\rho^2) \leq 1$. When does the equality holds? We call ρ *pure* when the equality holds.
 - (d) Let $m \in \mathbb{N}$ and let $\{(p_i, v_i)\}_{i=1}^m$ and $\{(q_j, w_j)\}_{j=1}^m$ be two ensembles consisting of m pairs. Prove that they have the same density operator if and only if there is an unitary matrix U of size m such that $v_i = \sum_j U_{ij} w_j$ for all i. What if the two ensembles have different numbers of pairs?
- 13. Let ρ, σ be density operators on $V = \mathbb{C}^n$. Their *fidelity* is defined to be

$$F(\rho,\sigma) := \left(\operatorname{tr} \left(\sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}} \right) \right)^2.$$

- (a) Prove that $F(\rho, \sigma) \in [0, 1]$ and $F(\rho, \sigma) = F(\sigma, \rho)$.
- (b) Prove that $F(\rho, \sigma) = 1$ if and only if $\rho = \sigma$, and $F(\rho, \sigma) = 0$ if and only if $\rho \perp \sigma$ (with respect to the Frobenius inner product)
- (c) Prove that $F(U\rho U^*, U\sigma U^*) = F(\rho, \sigma)$ for any unitary U.

Definition B.4. For $V=\mathbb{C}^n$, A **Quantum operation** on V is a map $\mathcal{E}:D(V)\to D(V)$ taking the form

$$\mathcal{E}(\rho) = \sum_{k=1}^{r} E_k \rho E_k^*,$$

where $\{E_k\}_{k=1}^r$ is a set of linear transformations $V \to V$ satisfying $\sum_k (E_k^* E_k) = I$, and $r \ge 1$ is a positive integer. The E_k 's are called the **Kraus operators** of \mathcal{E} .

14. Let $V = \mathbb{C}^n$.

- (a) Show that a quantum operation \mathcal{E} on V is trace-preserving, namely $\operatorname{tr}(\mathcal{E}(\rho)) = \operatorname{tr}(\rho) = 1$. Also prove that it is convex-linear: $\mathcal{E}(\sum_i p_i \rho_i) = \sum_i p_i \mathcal{E}(\rho_i)$ where $\{p_i\}$ is a finite set of non-negative real numbers summing to 1, and $\{\rho_i\}$ is a collection of density operators on V.
- (b) Show that if \mathcal{E} and \mathcal{F} are two quantum operations on V, then $\mathcal{F} \circ \mathcal{E}$ is still a quantum operation on V.
- (c) Let \mathcal{E} and \mathcal{F} be two quantum operations on V and $\{E_i\}_{i=1}^m$, $\{F_j\}_{j=1}^k$ be their Kraus operators respectively. By appending zero operators to the smaller set, we may assume m=k. Show that $\mathcal{E}=\mathcal{F}$ if and only if there exist an unitary $U\in M_m(\mathbb{C})$ such that $E_i=\sum_i U_{ij}F_j$ for all i.
- (d) Let $\mathcal E$ be a quantum operation on $V=\mathbb C^n$ given by $\{E_i\}_{i=1}^m$. Prove that there exists another set of operation elements $\left\{\widetilde E_j\right\}$ consisting of **at most** n^2 **elements** such that $\left\{\widetilde E_j\right\}$ defines the same quantum operation $\mathcal E$. That is to say,

$$\sum_{i=1}^{m} E_i \rho E_i^* = \sum_{j=1}^{n^2} \widetilde{E_j} \rho \widetilde{E_j}^*$$

for all $\rho \in D(V)$.