Assignment 7

OPTI 570 Quantum Mechanics University of Arizona

Nicolás Hernández Alegría

October 14, 2025 Total time: 15 hours

Problem I

- a) sagasg
- b) asgasg
- c) asgag
- d) gasgas
- e) asgagasga

Problem II

Problem III

- a) sagasg
- b) asgasg
- c) asgag
- d) gasgas
- e) asgagasga
- f) asgasg
- g) asgag
- h) asgasg
- i) asgasgasgasg
- j) asgasgasgasg
- k) asgag
- l) asgasg
- m) asfas

Problem IV

a) We plot the function $\operatorname{sech}(x)$ to verify its parity. We can see that it is **even**.

This fact will facilitate us when computing ΔX , as we must integrate over $|\phi(x)|^2$ which therefore, is also even. We then have,

$$\begin{split} \langle X \rangle &= \int_{-\infty}^{\infty} x |\phi(x)|^2 \ dx = \frac{1}{2\beta} \int_{-\infty}^{\infty} x \ \mathrm{sech}(x/\beta) \ dx = 0 \\ \langle X^2 \rangle &= \int_{-\infty}^{\infty} x^2 |\phi(x)|^2 \ dx = \frac{1}{2\beta} \int_{-\infty}^{\infty} x^2 \mathrm{sech}(x/\beta) \ dx = \frac{\beta^2}{2} \int_{-\infty}^{\infty} u^2 \mathrm{sech}^2(u) \ du = \frac{\pi^2 \beta^2}{12}. \end{split}$$

The X uncertainty is

$$\Delta X = \sqrt{\langle X^2 \rangle - \langle X \rangle^2} = \frac{\pi \beta}{2\sqrt{3}}.$$

Similarly, for the Fourier transform we have:

$$\langle P \rangle = \int_{-\infty}^{\infty} p |\bar{\phi}(p)|^2 dp = \frac{\pi \beta}{4\hbar} \int_{-\infty}^{\infty} p \operatorname{sech}^2(\frac{\pi \beta p}{2\hbar}) dp = 0$$

$$\langle P^2 \rangle = \int_{-\infty}^{\infty} p^2 |\bar{\phi}(p)|^2 dp = \frac{\pi \beta}{4\hbar} \int_{-\infty}^{\infty} p^2 \operatorname{sech}^2(\frac{\pi \beta p}{2\hbar}) dp = \frac{2\hbar^2}{\pi^2 \beta^2} \int_{-\infty}^{\infty} u^2 \operatorname{sech}^2(u) du = \frac{\hbar^2}{\beta^2 3}$$

Thus

$$\Delta P = \sqrt{\langle P^2 \rangle - \langle P \rangle^2} = \frac{\hbar}{\beta \sqrt{3}}.$$

The uncertainty product is

$$\Delta X \Delta P = \frac{\pi \beta}{2\sqrt{3}} \frac{\hbar}{\beta \sqrt{3}} = \frac{\hbar \pi}{6}.$$

b) The evolution in $\pi/2\omega$ gives a well-known quantity, a scaled Fourier transform of the wavefunction.

$$\Phi(x, \frac{\pi}{2\omega}) = U(\frac{\pi}{2\omega}, 0)\Phi(x, 0) = e^{-i\pi/4} \sqrt{\frac{\hbar}{\sigma^2}} \mathcal{F}\{\Phi(x, 0)\}\big|_{p=\hbar x/\sigma^2}$$

We can see that the function to be computed its Fourier transform is spatially shifted by x_0 so we could directly use the respective property of Fourier transform of a shifter function:

$$\mathcal{F}\{\Phi(x,0)\} = \bar{\Phi}(p,0) \Longrightarrow \mathcal{F}\{\Phi(x-x_0,0)\} = e^{-ipx_0/\hbar}\bar{\Phi}(p,0).$$

So,

$$\Phi(x,\frac{\pi}{2\omega}) = -e^{-i\pi/4}\sqrt{\frac{\hbar}{\sigma^2}}\left[e^{-ipx_0/\hbar}\bar{\Phi}(p,0)\right]\bigg|_{p=\hbar x/\sigma^2} = -\sqrt{\frac{\pi\beta}{4\sigma^2}}e^{-i\pi/4}e^{-i\frac{xx_0}{\sigma^2}}\operatorname{sech}(\frac{\pi\beta x}{2\sigma^2}).$$

c) To maintain the width $\Delta X = \frac{\pi \beta}{2\sqrt{3}}$, we compute ΔX for $\Phi(0, \pi/2\omega)$ and equate it to the uncertainty at t=0:

Equating it with the uncertainty of the wavefunction at t = 0:

$$\frac{\pi\beta}{2\sqrt{3}} = \frac{\sigma^2}{\sqrt{3}\beta} \longrightarrow \beta = \sqrt{\frac{2\sigma^2}{\pi}}.$$

Problem V