Contrôle continu n⁰3

Durée 1h20

Tous documents, calculatrices et téléphones sont interdits. Une rédaction précise et concise sera récompensée.

Exercice 1 (cours, 4p)

Soit E un \mathbb{R} -espace vectoriel de dimension 4. Soit u un endomorphisme de E ayant une valeur propre λ de multiplicité 4.

- A) Justifiez que u est trigonalisable. (1p)
- B) Soit $\mathcal{B} = (\vec{i}, \vec{j}, \vec{k}, \vec{l})$ une base de E telle que la matrice A de u dans \mathcal{B} est triangulaire de Jordan. Donner toutes les formes possibles de A en précisant pour chaque forme (dans l'ordre désiré) :
 - 1. L'image par u de chaque vecteur de \mathcal{B} (en fonction des vecteurs de \mathcal{B}), (1**p**)
 - 2. Le polynome minimal de u (justifier), (1p)
 - 3. La dimension de $\ker[(u-\lambda Id_E)^j]$, pour $j\in\mathbb{N}$. (1p)

Exercice 2 (10p)

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans le base canonique \mathcal{B} est

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{array}\right)$$

- 1. Calculer le polynôme caractéristique de u. u est-il trigonalisable? $(\mathbf{1p}+\mathbf{0.5p})$
- 2. Calculer le polynôme minimal de u. u est-il diagonalisable ? $(\mathbf{1p+0.5p})$
- 3. Trouver une base C de \mathbb{R}^3 dans laquelle la matrice B de u a une forme triangulaire de Jordan. (3p)
- 4. Si P est la matrice de passage de \mathcal{B} à \mathcal{C} , quelle relation relie A, B et P? $(\mathbf{0.5p})$

- 5. En déduire, pour $n \in \mathbb{N}$, une relation simple entre A^n , B^n et P. (0.5p)
- 6. En remarquant que

$$C := \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) = I_2 + N,$$

avec $N^2 = 0$, calculer C^n et en déduire B^n puis A^n . (3p)

Exercice 3 (8p)

Soit $n \geq 2$ un entier naturel et A une matrice de $M_n(\mathbb{C})$. Soit $B \in M_n(\mathbb{C})$ qui commute avec A (c-à-d AB = BA). Soient a et b les endomorphismes de \mathbb{C}^n canoniquement associés respectivement à A et à B.

- 1. Montrer que tout sous-espace propre de a est stable par b. (1p)
- 2. En déduire que a et b ont au moins un vecteur propre en commun. $(2\mathbf{p})$
- 3. Soit V_1 un vecteur propre commun. On considère une base de \mathbb{C}^n de la forme : $(V_1, V_2, ..., V_n)$. Montrer que les endomorphismes a et b ont, dans cette nouvelle base, des matrices de la forme :

$$A' = \begin{pmatrix} \alpha & * \\ 0 & A_1 \end{pmatrix} , \quad B' = \begin{pmatrix} \beta & * \\ 0 & B_1 \end{pmatrix}$$

où A_1 et B_1 sont des matrices de $M_{n-1}(\mathbb{C})$ (1**p**), qui commutent. (2**p**)

4. Déduire que a et b sont simultanément trigonalisables (c-à-d tous deux trigonalisables dans la même base). (2p)