Lab 4

PSTAT 115, Fall 2019

October 24, 2019

Objectives

- Predictive Posterior Distribution
- Monte Carlo Method

Posterior Predictive Distribution

Notation

- 1. y_{obs} : observed data y_1, y_2, \dots, y_n .
- 2. y^{rep} : replicated data that could have been observed. y^{rep} is from the same model that produced y_{obs} and related to a posterior distribution.
- 3. predicative value of y: any future observable value.

Difference: y^{rep} is a special case of the predicative value. Example, if the model has explanatory variables x, then y^{rep} is generated by the same x as y^{obs} , whereas a predictive value of y might have its own new x.

PPD

Posterior predictive distribution:

$$p(y^{rep}|y_{obs}) = \int p(y^{rep}|\theta)p(\theta|y_{obs})d\theta.$$

It has both uncertainty from the sampling of θ , and the uncertainty from y^{rep} if θ is known.

Monte Carlo

Monte Carlo is a simulation method that uses random numbers to solve many computational problems.

Monte Carlo Method for Computing Integrals

•
$$ar{ heta} = \sum_{s=1}^S heta^{(s)}/S o \mathrm{E}[heta|y_1,\ldots,y_n]$$

$$ullet \sum_{s=1}^S \Big(heta^{(s)} - ar{ heta}\Big)^2/(S-1) o \mathrm{Var}[heta|y_1, \ldots, y_n]$$

$$ullet \ \# \left(heta^{(s)} \leq c
ight)/S
ightarrow \Pr(heta \leq c|y_1,\ldots,y_n)$$

• the
$$lpha$$
-percentile of $\left\{ heta^{(1)},\dots, heta^{(S)}
ight\} o heta_lpha$

Monte Carlo integration

We can approximate integrals through simulation!

- Want to estimate the integral: $I = \int_a^b f(x) dx$
- Make an estimate: $\tilde{I} = \frac{f(x)}{p(x)}$, where p(x) is a density function on [a,b].

• So,
$$I = \int_a^b \tilde{I}p(x)dx = E_{p(x)}(\tilde{I}) \approx \frac{1}{N} \sum_1^N \tilde{I}(x_j)$$