Betriebssysteme

Virtualisierung

Von Prof. Dr. Franz-Karl Schmatzer

Literatur Verzeichnis

- Mandl, Peter; Grundkurs Betriebssysteme; 5.Aufl.
 2020; Springer Verlag
- Baun, Christian, Betriebssysteme kompakt, 2.Aufl.,
 Springer 2020
- W. Stallings; Operating Systems; 9.ed; Pearson 2018

Gliederung

- Einführung
- Terminologien
- Virtuelle Maschinen
- Anwendungsvirtualisierung

Einführung Virtualisierung

Was ist Virtualisierung?

- Allgemeine Definition:
 - Unter Virtualisierung versteht man Methoden zur Abstraktion von Ressourcen mit Hilfe von Software
- Virtuelle Maschine verhält sich wie die reale Maschine
- Diverse Varianten:
 - Virtuelle Computer: Server- und Desktopvirtualisierung (= Betriebssystembzw. Plattformvirtualisierung)
 - Storage Virtualisierung
 - Anwendungsvirtualisierung
 - Virtuelle Prozessumgebungen (Prozessmodell und virtueller Speicher)
 - Virtuelle Prozessoren: Java Virtual Machine (JVM)
 - Netzwerkvirtualisierung (vLAN)

Terminologie zur Betriebssystemvirtualisierung

- Reale Maschine
- Virtuelle Maschine (VM)
- Hostbetriebssystem
 - Synonyme: Wirt, Host, Gastgeberbetriebssystem oder Hostsystem
- Gastbetriebssystem
 - Synonyme: Gast, Guest oder Gastsystem
- Virtual Machine Monitor (VMM)
 - Synonym: Hypervisor

Abgrenzung zur Emulation

- Unterscheidung Emulation Virtualisierung
 - Emulation: Komplette Nachbildung der Hardware in Software
 - Virtualisierung: Geringer Teil der Befehle müssen nachgebildet werden, die meisten Befehle laufen direkt auf der Hardware (direkter Aufruf aus VM aus)

Partitionierung

- In der Mainframe-Welt spricht man von Partitionierung als spezielle und umfassendere Form der Virtualisierung.
- In Mainframe- und Midrange-Systemen wird
 - die CPU,
 - der Hauptspeicher,
 - die Ein- und Ausgabe und
 - der Datenspeicher unterstützt durch Firmware virtualisiert.
- Das ganze Betriebssysteme mit allen Ressourcen kann daher partitioniert werden.
- Änderungen sind im laufenden Betrieb möglich
- Mehrere 100 bis 1000 Linux Instanzen sind möglich

Aufgabe Virtualisierung

 Erläutern Sie die Vor- und Nachteile einer Virtualisierung

Vorteile der Virtualisierung

- Weniger Hardware notwendig,
- bessere Hardwareauslastung durch Serverkonsolidierung
 - Heutige Server sind meist bei weitem nicht ausgelastet
- Weniger Leistungsaufnahme für Rechner und Klimatisierung
- Flexibilität bei Aufbau einer Infrastruktur, schnelle Bereitstellung wird unterstützt, VMs beliebig vervielfältigbar und archivierbar
- Vereinfachte Wartung, Life-Migration, unterbrechungsfrei, auch Technologiewechsel ohne Betriebsunterbrechung
- Unterstützt Verfügbarkeits- und Ausfallsicherheitskonzepte
- Unterstützung auch historischer Anwendungen

Nachteile der Virtualisierung

- Geringere Leistung als reale Hardware,
- Overhead von 5 bis 10 %
- Schwierig bei spezieller Hardwareunterstützung
 - z.B. Hardware-Dongles, spezielle Grafikkarten
- Bei Ausfall eines Serverrechners fallen gleich mehrere virtuelle Rechner aus
 - > hohe Anforderungen an Ausfallkonzepte und Redundanz

Historie zur Virtualisierung

- VM/370 hieß zuerst CP/CMS (1970 Jahre)
 - Herz ist der Virtuelle Machine-Monitor.
 - Es werden mehrere virtuelle Maschinen bereitgestellt.
 - Sind exakte Kopien der zugrunde liegenden Hardware
- Nachfolger z/VM, welches auf den Mainframes der z-Serie von IBM läuft.

Abbildung 1.28: Die Struktur des VM/370-Systems mit CMS

Virtualisierbarkeit der Hardware

- Im Großrecherumfeld werden Prozessoren schon länger so gebaut, dass Virtualisierungen unterstützt werden.
- INTEL und AMD haben dies bis vor kurzem außer bei der virtuellen Speichertechnik nicht getan.
- Um Virtualisierung effizient zu unterstützen müssen einige Hardware-Voraussetzungen erfüllt sein.
 - privilegierte und nicht privilegierte Befehle
 - Sensitive und kritische Befehle

privilegierte und nicht privilegierte Befehle

- Die grundlegenden Anforderungen an die Virtualisierbarkeit ist eng mit dem Konzepten des Zugriffsschutzes von Prozessoren verknüpft.
- Privilegiert heißt:
 - eine Ausnahme und damit einen Trap kann in dem höher privilegierten Modus erzeugt werden, falls er im user-Modus ausgeführt wird.
 - Im Kernel-Modus wird keine Ausnahme generiert.
- Nicht privilegierte Befehle können in allen Modi, ohne eine Ausnahme zu erzeugen, ausgeführt werden.

sensitive und kritische Befehle

Sensitiven Befehle

- Können zustandsverändernd sein oder
- Verhalten sich je nach Modus unterschiedlich.
- Hierzu gehören z. B. Befehle für den Zugriff auf I/O-Geräte oder auf spezielle interne Adress- und Steuerregister.
- Sensitive Befehle sollten eine Teilmenge der privilegierten Befehle sein und bei einem Aufruf in einem nicht privilegierten Betriebsmodus eine Ausnahme und damit einen Sprung in einen privilegierten Betriebsmodus erzwingen.

kritischen Befehle

- sind sensitiv, aber nicht privilegiert
- Sie lösen bei Aufruf im Benutzermodus keinen Trap aus und können somit von einer VMM nicht abgefangen werden.
- Die kritischen Befehle stellen, wie die Bezeichnung schon andeutet, ein Problem dar.

Generelle Hardware-Anforderungen

- Popek und Goldberg untersuchten bereits 1974 die Hardware-Anforderungen für eine effiziente Virtualisierbarkeit.
- Eine Rechnerarchitektur ist virtualisierbar, wenn
 - alle sensitiven Operationen privilegiert sind,
 - alle sensitiven Befehle eine Teilmenge der privilegierten Befehle darstellen
- Unter diesen Bedingungen kann auf jeden Fall ein Hypervisor konstruiert werden.
- Dies ist eine hinreichende, aber nicht notwendige Bedingung.

Virtuelle Maschinen

Hypervisor-1 und Hypervisor-2

Paravirtualisierung

- Paravirtualisierung
 - Gastbetriebssystem verwendet eine abstrakte Verwaltungsschicht, den Hypervisor, um auf die Hardware zuzugreifen.
 - man benötigt drei Schutzringe.
 - Hypervisor auf Schicht o,
 - Betriebssystem auf Schicht 1
 - Betriebssystem kann keine privilegierte Befehle ausführen. Daher werden vom Hypervisor Hypercalls zur Verfügung gestellt.

Paravirtualisierung

Umsetzung der Systemaufrufe

- Beispiele für Paravirtualisierung:
 - Xen, Citrix Xenserver, Virtual Iron und VMware ESX Server.

Aufgabe Virtualisierungsarten

- Erläutern folgende Virtualisierungsarten
 - Hardware-Virtualisierung
 - Betriebssystem-Virtualisierung
 - Speicher-Virtualisierung
 - Netzwerk-Virtualisierung
- Wo finden man diese Form der Virtualisierung und geben Sie auch Beispiele an.

Hardware-Virtualisierung

- Erweiterungen in den aktuellen x86-INTEL und AMD Prozessoren.
- Vorteil ist, dass das Betriebssystem als Gastbetriebssystem ausgeführt werden kann.
 - AMD hat den Secure-Virtual-Machine-Befehlssatz (SVM).
 - Bei Intel heißt die Lösung VT-x.
- Die Überarbeitung modifiziert die Privilegien. Ein neuer Ring -1 für den Hypervisor kommt hinzu.
 - Ring -1 und besitzt jederzeit die volle Kontrolle über den Prozessor und die übrigen Hardwareressourcen
 - Die virtuellen Maschinen laufen in Ring o. Man nennt das auch Hardware Virtual Machine (HVM).
- Vorteil ist, dass Gastsysteme nicht angepasst werden müssen.
- Beispiele
 - Xen seit Version 3, Windows Server ab Version 2008 (Hyper-V), VirtualBox und KVM.

Betriebssystem-Virtualisierung

- mehrere voneinander abgeschottete identische Systemumgebungen (Container)
- Anwendungen, die in einem Container laufen, sehen nur Anwendungen im gleichen Container.
- Isolierte Umgebung mit klar definierten Eigenschaften

Betriebssystem-Virtualisierung

- Vorteile sind
 - der geringe Verwaltungsaufwand.
 - Anwendung läuft in einer isolierten Umgebungen
- Anwendungsfälle
 - Internet-Service-Provider, die (virtuelle) Root-Server oder Webdienste anbieten
 - automatisierte Installation komplexer Anwendungssoftware in einer definierten Umgebung
- Beispiele für Virtualisierungslösungen:
 - Docker,
 - das Betriebssystem Solaris von Oracle (vormals Sun Microsystems),
 - OpenVZ f
 ür Linux,
 - Linux-VServer, das Betriebssystem FreeBSD,
 - Virtuozzo12 und
 - FreeVPS.

Formen der Speichervirtualisierung

