Zusammenfassung Geometrie

Geometrie von Kurven

Notation. Sei im Folgenden I ein Intervall, d. h. eine zusammenhängende Teilmenge von \mathbb{R} .

Definition. Eine Abbildung $c: I \to \mathbb{R}^n$ heißt **reguläre Kurve**, wenn c beliebig oft differenzierbar ist und $c'(t) \neq 0$ für alle $t \in I$ gilt. Der affine Unterraum $\tau_{c,t} \coloneqq c(t) + \mathbb{R}(c'(t))$ heißt **Tangente** an c im Punkt c(t) bzw. Tangente an c zum Zeitpunkt t.

Definition. Die Bogenlänge (BL) einer regulären Kurve $c:[a,b] \to \mathbb{R}^n$ ist

$$L(c) \coloneqq \int_{a}^{b} ||c'(t)|| dt.$$

Satz. Die Bogenlänge ist invariant unter Umparametrisierung, d. h. sei $c: [a_2,b_2] \to \mathbb{R}^n$ eine reguläre Kurve und $\phi: [a_1,b_1] \to [a_2,b_2]$ ein Diffeomorphismus, dann gilt $L(c) = L(c \circ \phi)$.

Definition. Eine reguläre Kurve $c: I \to \mathbb{R}^n$ heißt nach Bogenlänge parametrisiert, wenn ||c'(t)|| = 1 für alle $t \in I$.

Satz. Jede reguläre Kurve $c:I\to\mathbb{R}$ lässt sich nach BL parametrisieren, d. h. es existiert ein Intervall J und ein Diffeomorphismus $\phi:J\to I$, welcher sogar orientierungserhaltend ist, sodass $\tilde{c}:=c\circ\phi$ nach BL parametrisiert ist.

Definition. Zwei Vektoren $a,b\in\mathbb{R}^n$ heißen gleichgerichtet, falls $a=\lambda b$ für ein $\lambda>0$.

Satz. Sei $v:[a,b]\to\mathbb{R}^n$ stetig, dann gilt

$$\|\int_{a}^{b} v(t) dt\| \le \int_{a}^{b} \|v(t)\| dt,$$

wobei Gleichheit genau dann gilt, falls alle v(t) gleichgerichtet sind.

Satz. Sei $c: [a, b] \to \mathbb{R}^n$ eine reguläre Kurve und x := c(a), y := c(b). Dann gilt $L(c) \ge d(x, y)$. Wenn L(c) = d(x, y), dann gibt es einen Diffeomorphismus $\phi: [a, b] \to [0, 1]$, sodass

$$c = c_{xy} \circ \phi$$
,

wobei $c_{xy}: [0,1] \to \mathbb{R}^n, t \mapsto x + t(y-x).$

Definition. Sei $c : [a, b] \to \mathbb{R}^n$ eine stetige Kurve und $a = t_0 < t_1 < ... < t_k = b$ eine Zerteilung von [a, b]. Dann ist die Länge des **Polygonzugs** durch die Punkte $c(t_i)$ gegeben durch

$$\hat{L}_c(t_0, ..., t_k) = \sum_{j=1}^k ||c(t_j) - c(t_{j-1})||.$$

Definition. Eine stetige Kurve c heißt **rektifizierbar** von Länge \hat{L}_c , wenn gilt: Für alle $\epsilon>0$ gibt es ein $\delta>0$, sodass für alle Unterteilungen $a=t_0< t1< \ldots < t_k=b$ der Feinheit mindestens δ gilt:

$$\|\hat{L}_c - \hat{L}_c(t_0, t_1, ..., t_k)\| < \epsilon.$$

Definition. Sei $c: I \to \mathbb{R}^n$ regulär und nach BL parametrisiert. Dann heißt der Vektor c''(t) **Krümmungsvektor** von c in $t \in I$ und die Abbildung $\kappa: I \to \mathbb{R}, \quad t \mapsto \|c''(t)\|$ heißt **Krümmung** der nach BL parametrisierten Kurve.

Definition. Eine Kurve $c: I \to \mathbb{R}^2$ wird **ebene Kurve** genannt.

Definition. Sei c eine reguläre, nach BL parametrisierte, ebene Kurve. Dann heißt

$$n = n_c : I \to \mathbb{R}^2, \quad t \mapsto J \cdot c'(t) \text{ mit } J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

das Normalenfeld von c.

Bemerkung. Für alle $t \in I$ bildet $(c'(t), n_c(t))$ eine positiv orientierte Orthonormalbasis des \mathbb{R}^2 . Es gilt außerdem $c''(t) \perp c'(t)$, also $c''(t) = \kappa(t) \cdot n_c(t)$, d. h. die Krümmung ist im \mathbb{R}^2 vorzeichenbehaftet.

Satz (Frenet-Gleichungen ebener Kurven). Sei $c: I \to \mathbb{R}^2$ regulär, nach BL parametrisiert und v = c', dann gilt

$$c'' = \kappa \cdot n$$
 und $n' = -\kappa \cdot v$.

Beispiel. Die nach BL parametrisierte gegen den UZS durchlaufene Kreislinie mit Mittelpunkt $m \in \mathbb{R}^2$ und Radius r>0

$$c: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto m + r \begin{pmatrix} \cos(t/r) \\ \sin(t/r) \end{pmatrix}$$

hat konstante Krümmung $\kappa(t) = \frac{1}{r}$.

Satz. Sei $c:I\to\mathbb{R}^2$ glatte, nach BL parametrisiert mit konstanter Krümmung $\kappa(t)=R\neq 0$. Dann ist c Teil eines Kreisbogens mit Radius $\frac{1}{|R|}$.

Definition. Für $c: I \to \mathbb{R}^2$ regulär, nicht notwendigerweiße nach BL parametrisiert, ist die Krümmung zur Zeit t definiert als

$$\frac{\det(c'(t), c''(t))}{\|c'(t)\|^3}$$

Bemerkung. Obige Definition ist invariant unter orientierungserhaltenden Umparametrisierungen, und stimmt für nach BL parametrisierte Kurven mit der vorhergehenden Definition überein.

Satz (Hauptsatz der lokalen ebenen Kurventheorie). Sei $\kappa: I \to \mathbb{R}$ eine stetige Funktion und $t_0 \in I$ und $x_0, v_0 \in \mathbb{R}^2$ mit $||v_0|| = 1$. Dann gibt es ganu eine nach BL parametrisierte zweimal stetig differenzierbare Kurve $c: I \to \mathbb{R}^2$ mit Krümmung κ , $c(t_0) = x_0$ und $c'(t_0) = v(t_0) = v_0$.

Definition. Eine reguläre Kurve $c:[a,b]\to\mathbb{R}^n$ heißt **geschlossen**, falls c(a)=c(b) und c'(a)=c'(b). Eine reguläre geschlossene Kurve c heißt **einfach geschlossen**, wenn $c|_{[a,b]}$ injektiv ist.

Definition. Für eine geschlossene reguläre ebene Kurve $c:[a,b]\to\mathbb{R}^2$ heißt die Zahl

$$\overline{\kappa}(c) := \int_{a}^{b} \kappa(t) \|c'(t)\| \, \mathrm{d}t$$

Totalkrümmung von c.

Bemerkung. Ist c nach BL parametrisiert, so ist $\overline{\kappa}(c) = \int_{a}^{b} \kappa(t) dt$.

Satz. Die Totalkrümmung ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $c: [a_2,b_2] \to \mathbb{R}^2$ eine reguläre Kurve und $\phi: [a_1,b_1] \to [a_2,b_2]$ eine Diffeomorphismus mit $\phi' > 0$, dann gilt $\overline{\kappa}(c) = \overline{\kappa}(c \circ \phi)$.

Satz (Polarwinkelfunktion). Sei $\gamma = {\gamma_1 \choose \gamma_2} : [a, b] \to S^1$ stetig (glatt) und $\omega_a \in \mathbb{R}$, sodass $\gamma(a) = e^{i\omega_a}$. Dann gibt es eine eindeutige stetige (glatte) Abbildung $\omega : [a, b] \to \mathbb{R}$, genannt Polarwinkelfunktion von γ mit $\omega(a) = \omega_a$ und

$$\gamma(t) = e^{i\omega(t)} = \begin{pmatrix} \cos(\omega(t)) \\ \sin(\omega(t)) \end{pmatrix} \text{ für alle } t \in [a,b].$$

Satz. Seien ω und $\tilde{\omega}$ zwei stetige Polarwinkelfunktionen zu einer stetigen Abbildung $\gamma: [a,b] \to S^1$. Dann gibt es ein $k \in \mathbb{Z}$, sodass $\omega(t) - \tilde{\omega}(t) = 2\pi k$ für alle $t \in [a,b]$.

 $\mathbf{Satz.}\;$ Sei $c:[a,b]\to\mathbb{R}^2$ eine ebene reguläre geschlossene Kurve, dann heißt die ganze Zahl

$$U_c := \frac{1}{2\pi} \overline{\kappa}(c) = \frac{1}{2\pi} \int_a^b \kappa(t) \|c'(t)\| dt$$

Tangentendrehzahl oder Umlaufzahl von c.

Satz (Umlaufsatz von Hopf). Die Tangentendrehzahl einer einfach geschlossenen regulären Kurve ist ± 1 .

Satz. Für die Absolutkrümmung einer einfach geschlossenen regulären Kurve $c:[a,b]\to\mathbb{R}^2$ gilt $\kappa_{\rm abs}\geq 2\pi$, wobei Gleichheit genau dann gilt, wenn κ_c das Vorzeichen nicht wechselt.

Satz (Whitney-Graustein). Für zwei glatte reguläre geschlossene ebene Kurven $c, d: [0,1] \to \mathbb{R}^2$ sind folgende Aussagen äquivalent: (i) c ist zu d regulär homotop (ii) $U_c = U_d$

Definition. Eine glatte reguläre Kurve $c: I \to \mathbb{R}^n \ (n \geq 3)$ heißt **Frenet-Kurve**, wenn für alle $t \in I$ die Ableitungen $c'(t), c''(t), ..., c^{(n-1)}(t)$ linear unabhängig sind.

Definition. Sei $c: I \to \mathbb{R}^n$ eine Frenet-Kurve und $t \in I$. Wende das Gram-Schmidtsche Orthogonalisierungsverfahren auf $\{c'(t), c''(t), ..., c^{(n-1)}(t)\}$ an und ergänze das resultierende Orthonormalsystem $(b_1(t), ..., b_{n-1}(t))$ mit einem passenden Vektor $b_n(t)$ zu einer Orthonormalbasis, die positiv orientiert ist. Die so definierten Funktionen $b_1, ..., b_n: I \to \mathbb{R}^n$ sind stetig und werden zusammen das **Frenet**-n-Bein von c genannt.

Definition. Sei $(b_1,...,b_n)$ das Frenet-n-Bein einer Frenet-Kurve c. Dann gilt:

$$A := (\langle b'_j, b_k \rangle)_{jk} = \begin{pmatrix} 0 & \kappa_1 & & & 0 \\ -\kappa_1 & 0 & \kappa_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & -\kappa_{n-2} & 0 & \kappa_{n-1} \\ 0 & & & -\kappa_{n-1} & 0 \end{pmatrix}$$

Die Funktion $\kappa_j:I\to\mathbb{R},t\mapsto \langle b'_j(t),b_{j+1}(t)\rangle,j=1,...,n-1$ heißt j-te Frenet-Krümmung von c.

Satz (Hauptsatz der lokalen Raumkurventheorie). Seien $\kappa_1,...,\kappa_{n-1}:I\to\mathbb{R}$ glatte Funktionen mit $\kappa_1,...,\kappa_{n-2}>0$ und $t_0\in I$ und $\{v_1,...,v_n\}$ eine positiv orientierte Orthonormalbasis, sowie $x_0\in\mathbb{R}^n$. Dann gibt es genau eine nach BL parametrisierte Frenet-Kurve $c:I\to\mathbb{R}^n$, sodass gilt

- $c(t_0) = x_0$,
- das Frenet-*n*-Bein von c in t_0 ist $\{v_1, ..., v_n\}$ und
- die j-te Frenet-Krümmung von c ist κ_i .

Definition (Frenet-Kurven im \mathbb{R}^3). Sei $c: I \to \mathbb{R}^3$ eine nach BL parametrisierte Frenet-Kurve und $t \in I$. Dann heißt

- $b_1(t) = v(t) = c'(t)$ der **Tangentenvektor** an c in t,
- $b_2(t) = \frac{c''(t)}{\|c''(t)\|}$ Normalenvektor an c in t,
- span $(b_1(t), b_2(t))$ Schmiegebene an c in t,
- $b_3(t) = b_1(t) \times b_2(t)$ Binormalenvektor an c in t,
- $\tau_c(t) = \tau(t) := \kappa_2(t) = \langle b_2'(t), b_3(t) \rangle$ Torsion o. Windung von c.

Bemerkung. Die Frenet-Gleichungen für nach BL parametrisierte Frenet-Kurven im \mathbb{R}^3 lauten

$$b_1' = \kappa_2 b_2, \quad b_2' = -\kappa_c b_1 + \tau_c b_3, \quad b_3' = -\tau_c b_2$$

Bemerkung. Für eine nicht nach BL parametrisierte Frenet-Kurve $c:I\to\mathbb{R}^3$ gilt für Krümmung und Torsion

$$\kappa_c := \frac{\|c' \times c''\|}{\|c'\|^3} \quad \text{und} \quad \tau_c := \frac{\det(c', c'', c''')}{\|c' \times c''\|^2}.$$

Definition. Für eine glatte geschlossene reguläre Kurve $c:[a,b] \to \mathbb{R}^n$ ist die **Totalkrümmung** definiert durch

$$\overline{\kappa}(c) := \int_{a}^{b} \kappa_{c}(t) \cdot \|c'(t)\| \, \mathrm{d}t.$$

Hierbei ist die Krümmung einer regulären Raumkurve $c: I \to \mathbb{R}^n$ wie folgt definiert: Sei $\phi: I \to J$ orientierungserhaltend (d. h. $\phi' > 0$) und so gewählt, dass $\tilde{c} := c \circ \phi^{-1}: J \to \mathbb{R}^n$ nach BL parametrisiert ist, dann definieren wir $\kappa_c(t) := \kappa_{\tilde{c}}(\phi(t))$.

Satz (Fenchel). Für eine geschlossene reguläre glatte (oder C^2) Kurve $c:[a,b]\to\mathbb{R}^3$ gilt

$$\overline{\kappa}(c) > 2\pi$$
.

Gleichheit tritt genau dann ein, wenn c eine einfach geschlossene konvexe reguläre glatte (oder \mathcal{C}^2) Kurve ist, die in einer affinen Ebene des \mathbb{R}^3 liegt.

Satz. Sei $v:[0,b]\to S^2\subset\mathbb{R}^3$ eine stetige rektifizierbare Kurve der Länge $L<2\pi$ mit c(0)=c(b), so liegt das Bild von v ganz in einer offenen Hemisphäre.

Lokale Flächentheorie

Notation. Sei im Folgenden $m \in \mathbb{N}$ und $U \subset \mathbb{R}^m$ offen.

Definition. Sei $f: U \to \mathbb{R}^n$ eine Abbildung und $v \in \mathbb{R}^m \setminus \{0\}$. Dann heißt

$$\partial_v f(u) := \lim_{h \to 0} \frac{f(u+hv) - f(u)}{h}$$

Richtungsableitung von f im Punkt u (falls der Limes existiert). Für $v = e_i$ heißt

$$\partial_j f(u) := \partial_{e_j} f(u)$$

partielle Ableitung nach der *j*-ten Variable. Falls die partielle Ableitung für alle $u \in U$ existiert, erhalten wir eine Funktion $\partial_j : U \to \mathbb{R}^n, u \mapsto \partial_j f(u)$. Definiere

$$\partial_{j_1,j_2,...,j_k} f \coloneqq \partial_{j_1} (\partial_{j_2} (... (\partial_{j_k} f)))$$

Definition. Eine Abbildung $f: U \to \mathbb{R}^n$ heißt \mathbb{C}^k -Abbildung, wenn alle k-ten partiellen Ableitungen von f existieren und stetig sind. Wenn $f \in \mathbb{C}^k$ für beliebiges $k \in \mathbb{N}$, so heißt f glatt.

Satz (Schwarz). Ist f eine \mathcal{C}^k -Abbildung, so kommt es bei allen l-ten partiellen Ableitungen mit $l \leq k$ nicht auf die Reihenfolge der partiellen Ableitungen an.

Definition. Eine Abbildung $f: U \to \mathbb{R}^n$ heißt in $u \in U$ total differenzierbar, wenn gilt: Es gibt eine lineare Abbildung $D_u f = \partial f_u : \mathbb{R}^m \to \mathbb{R}^n$, genannt das totale Differential von f in u, sodass für genügend kleine $h \in \mathbb{R}^n$ gilt:

$$f(u+h) = f(u) + \partial f_u(h) + o(h)$$

für eine in einer Umgebung von 0 definierten Funktion $o: \mathbb{R}^n \to \mathbb{R}^m$ mit $\lim_{h\to 0} \frac{o(h)}{\|h\|} = 0$.

Definition. Für eine total differenzierbare Funktion f heißt die Matrix $J_u f = (D_u f(e_1), ..., D_u f(e_n))$ **Jacobi-Matrix** von f in u.

Bemerkung. Es gelten folgende Implikationen:

- f ist stetig partiell differenzierbar
- $\implies f$ ist total differenzierbar ($\implies f$ ist stetig)
- $\implies f$ ist partiell differenzierbar

Definition. Eine total differenzierbare Abbildung $f:U\to\mathbb{R}^n$ heißt regulär oder Immersion, wenn für alle $u\in U$ gilt: $\mathrm{Rang}(J_uf)=m,$ d. h. alle partiellen Ableitungen sind in jedem Punkt linear unabhängig und J_uf ist injektiv. Insbesondere muss $m\leq n$ gelten.

Definition. Sei $X: U \to \mathbb{R}^n$ eine (glatte) Immersion. Dann heißt das Bild f(U) **immergierte Fläche**, immersierte Fläche oder parametrisiertes Flächenstück. Sei \tilde{U} offen in \mathbb{R}^n und $\phi: \tilde{U} \to U$ ein Diffeomorphismus, dann heißt $\tilde{X} := X \circ \phi: \tilde{U} \to \mathbb{R}^n$ **Umparametrisierung** von X.

Notation. Sei im folgenden $X: U \to \mathbb{R}^n$ eine Immersion.

Definition. Für $u \in U$ heißt der Untervektorraum

$$T_u X := \operatorname{span}(\partial_1 X(u), ..., \partial_m X(u)) = \operatorname{Bild}(D_u X) \subset \mathbb{R}^n$$

Tangentialraum von X in u und sein orthogonales Komplement $N_u X := (T_u X)^{\perp} \subset \mathbb{R}^n$ **Normalraum** an X in u.

Bemerkung. Für $u \in U$ definiert

$$\langle v, w \rangle_u := \langle D_u X(v), D_u X(w) \rangle_{\text{eukl}}$$

ein Skalarprodukt auf dem \mathbb{R}^m . Die Positiv-Definitheit folgt dabei aus der Injektivität von D_u .

Bemerkung. Bezeichne mit SymBil(\mathbb{R}^m) die Menge der symmetrischen Bilinearformen auf \mathbb{R}^m .

Definition. Die erste Fundamentalform (FF) einer Immersion X ist die Abbildung

$$I: U \to SymBil(\mathbb{R}^m), \quad u \mapsto I_u := \langle \cdot, \cdot \rangle_u.$$

Äquivalent dazu wird auch die Abbildung

$$g: U \to \mathbb{R}^{m \times m}, \quad u \mapsto g_u := (J_u X)^T (J_u X)$$

manchmal als erste Fundamentalform bezeichnet.

Definition. Sei $c:[a,b]\to\mathbb{R}^n$ eine glatte Kurve. Wir nennen c eine Kurve auf X, wenn es eine glatte Kurve $\alpha:[a,b]\to U$ gibt, sodass $c=X\circ\alpha$

Bemerkung. Im obigen Fall gilt

$$L(c) := \int_{a}^{b} ||c'(t)|| dt = \int_{a}^{b} ||D_{\alpha(t)}X(\alpha'(t))|| dt.$$

Bemerkung. Seien $c_1 = X \circ \alpha_1$ und $c_2 = X \circ \alpha_2$ zwei reguläre Kurven auf X, die sich in einem Punkt schneiden, d. h. $\alpha_1(t_1) = \alpha_2(t_2) =: u$. Dann ist der Schnittwinkel $\angle(c_1'(t), c_2'(t))$ von c_1 und c_2 in X(u) gegeben durch:

$$\cos(\angle(c'_1(t), c'_2(t))) = \frac{\langle c'_1(t_1), c'_2(t_2) \rangle}{\|c'_1(t_1)\| \cdot \|c'_2(t_2)\|}$$
$$= \frac{I_u(\alpha'_1(t_1), \alpha'_2(t_2))}{\sqrt{I_u(\alpha'_1(t_1), \alpha'_1(t_1)) \cdot I_u(\alpha'_2(t_2), \alpha'_2(t_2))}}$$

Definition. Sei $C\subset U$ eine kompakte messbare Teilmenge, dann heißt

$$A(X(C)) := \int_{C} \sqrt{\det(g_u)} \, \mathrm{d}u$$

der Flächeninhalt von X(C).

Satz (Transformation der ersten FF). Sei $\tilde{X} = X \circ \phi$ eine Umparametrisierung von X mit einem Diffeo $\phi: \tilde{U} \to U$, dann gilt für $\tilde{q}_{\tilde{u}} = (J_{\tilde{u}}\tilde{X})^T(J_{\tilde{u}}\tilde{X})$:

$$\tilde{g}_{\tilde{u}} = (J_{\tilde{u}}(\phi))^T \cdot g_{\phi(\tilde{u})} \cdot J_{\tilde{u}}(\phi).$$

Beispiel (Drehfläche). Sei $c:I\to\mathbb{R}_{>0}\times\mathbb{R},t\mapsto (r(t),z(t))$ eine reguläre glatte Kurve. Dann heißt

$$X: I \times \mathbb{R} \to \mathbb{R}^3, \quad (t, s) \mapsto (r(t)\cos(s), r(t)\sin(s), z(t))$$

Drehfläche mit Profilkurve c. Es gilt:

$$g_{(t,s)} = \begin{pmatrix} \|c'(t)\|^2 & 0\\ 0 & r(t)^2 \end{pmatrix}$$

Beispiel (Kugelfläche). Die Einheitssphäre im \mathbb{R}^3 ist

$$X: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(s,t) \mapsto (-\sin(t)\cos(t), \cos^2(t), \sin(t))$.

Definition. Zwei Immersionen $X:U\to\mathbb{R}^n$ und $\tilde{X}:\tilde{U}\to\mathbb{R}^k$ heißen **lokal isometrisch**, wenn es eine Umparametrisierung $\phi:U\to\tilde{U}$ gibt, sodass die ersten Fundamentalformen von X und $\tilde{X}\circ\phi$ übereinstimmen. Ist eine Immersion X isometrisch zu einer Immersion, deren Bild eine offene Teilmenge einer affinen Ebene ist, so heißt X abwickelbar.

Definition. Sei $X: U \to \mathbb{R}^n$ eine Immersion mit $U \subset \mathbb{R}^{n-1}$ offen. Dann heißt X Hyperfläche im \mathbb{R}^n .

Bemerkung. Es gilt in diesem Fall offenbar dim $T_u = n - 1$ und dim $N_u = 1$ für $u \in U$ und für einen Vektor $\nu_u \in N_u X \setminus \{0\}$ gilt $N_u X = \mathbb{R} \cdot v_u$.

Definition.
$$v_u := \sum_{i=1}^n \det(\partial_1 X(u), ..., \partial_{n-1} X(u), e_j) e_j$$

Bemerkung. Es gilt:

- $v_u \in N_u X \setminus \{0\}$
- $\det(\partial_1 X(u), ..., \partial_{n-1} X(u), v_u) > 0$

Bemerkung. Für n=3 und m=2 gilt $v_u=\partial_1 X(u)\times\partial_2 X(u)$.

Definition. Für eine Hyperfläche $X: U \to \mathbb{R}^n$ heißt

$$\nu: U \to S^{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}, \quad u \mapsto \nu_u \coloneqq \frac{v_u}{||v_u||}$$

Gaußabbildung.

Satz. Die Gaußabbildung einer Hyperfläche ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $\phi: \tilde{U} \to U$ ein Diffeo mit $\det(J_{\tilde{u}}\phi) > 0$ für alle $\tilde{u} \in \tilde{U}$, dann ist $\tilde{\nu} = \nu \circ \phi$.

Notation. Bil($\mathbb{R}^m, \mathbb{R}^n$) := { $B : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^n \mid B \text{ bilinear } }$

Definition. Die vektorwertige zweite Fundamentalform ist die Abbildung einer Immersion X ist die Abbildung

$$II: U \to Bil(\mathbb{R}^m, \mathbb{R}^n), \quad u \mapsto II(u) = II_u, \text{ mit}$$

$$\mathbb{I}_u : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^n, \quad (v, w) \mapsto \mathbb{I}_u(v, w) := (\partial_v \partial_w X(u))^{N_u},$$

wobei $(\cdot)^{N_u}$ die orthogonale Projektion auf den Normalenraum bezeichnet.

Bemerkung. Nach dem Satz von Armandus Schwarz ist \mathbb{I}_u eine symmetrische Bilinearform.

Bemerkung. Für eine Hyperfläche $X:U\to\mathbb{R}^n,\,(U\Subset\mathbb{R}^{n-1})$ gilt

$$\mathbf{II}_{u}(v, w) = h_{u}(v, w)\nu_{u} \quad \text{mit} \quad h_{u}(v, w) = \langle \mathbf{II}_{u}(v, w), \nu_{u} \rangle.$$

Definition. Die Abbildung

$$h: U \to \operatorname{SymBil}(\mathbb{R}^{n-1}), u \mapsto h_u = h(u)$$

mit $h_u(v,w) = \langle \mathbb{I}_u(v,w), \nu_u \rangle = \langle \partial_v \partial_w X(u), \nu_u \rangle$ heißt zweite Fundamentalform der Hyperfläche X.

 $Bemerkung.\ Man$ kann die zweite FF auch als matrixwertige Abbildung

$$h: U \to \mathbb{R}^{(n-1)\times(n-1)}, \quad u \mapsto (h_{jk}(u)) = \langle \partial_j \partial_k X(u), \nu_u \rangle$$

aufassen.

Satz. Für die Gaussabbildung ν einer Hyperfläche $X:U\to\mathbb{R}^n$ gilt für alle $j,k\in\{1,...,m\}$

$$\langle \partial_j \nu, \partial_k X \langle = -h_{jk} \text{ und } \langle \partial_j \nu, \nu \rangle = 0.$$

Definition. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche und $u \in U$, dann heißt die lineare Abbildung

$$W_u := -D_u \nu \circ (D_u X)^{-1} : T_u X \to T_u X$$

Weingartenabbildung von X im Punkt u.

Bemerkung. Es gilt $W_{ii}(\partial_i X(u)) = -\partial_i \nu(u)$.

Satz. • W_u ist selbstadjungiert bzgl. der Einschränkung $\langle \cdot, \cdot \rangle_{T_u}$.

- $h_{ik}(u) = \langle W_u(\partial_i X(u)), \partial_k X(u) \rangle$
- Die Weingartenabbildung ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $\phi: \tilde{U} \to U$ ein Diffeo mit $\det(J\phi) > 0$, dann gilt für $\tilde{X} := X \circ \phi$ und alle $\tilde{u} \in \tilde{U} \colon W_{\phi(\tilde{u})} = \tilde{W}_{\tilde{u}}$.

Satz. Sei $g_u = (g_{jk}(u))$ die Matrix der ersten und $h_u = (h_{jk}(u))$ die Matrix der zweiten FF einer Hyperfläche X, dann gilt für die Matrix $w_u = (w_{jk}(u))$ von W_u bzgl. der Basis $\{\partial_1 X(u), ..., \partial_{n-1} X(u)\}$ von $T_u X$:

$$w_u = g_u^{-1} \cdot h_u$$

Bemerkung. Die Weingartenabbildung ist als selbstadjungierter Endo reell diagonalisierbar (Spektralsatz).

Definition. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche.

- Die Eigenwerte κ₁(u), ..., κ_{n-1}(u) mit Vielfachheiten von W_u
 heißen Hauptkrümmungen von X in u und die dazugehörigen
 Eigenvektoren Hauptkrümmungsrichtungen von X in u.
- Die **mittlere Krümmung** von X ist definiert als

$$H: U \to \mathbb{R}, \quad u \mapsto \frac{1}{n-1} \operatorname{spur}(W_u) = \frac{1}{n-1} \sum_{j=1}^{n-1} \kappa_j(u).$$

• Die Gauß-(Kronecker-)Krümmung von X ist die Abbildung

$$K: U \to \mathbb{R}, \quad u \mapsto \det(W_u) = \frac{\det(h_u)}{\det g_u} = \prod_{j=1}^{n-1} \kappa_j(u).$$

Satz. Die Hauptkrümmungen, die mittlere Krümmung und die Gauß-Kronecker-Krümmung sind invariant unter orientierungserhaltenden Umparametrisiserungen.

Satz. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche und $u_0 \in U$ ein Punkt. Dann gibt es eine offene Umgebung $U_0 \odot U$ von u_0 und eine Umparametrisierung $\phi: U_0 \to \tilde{U}$, sodass für $\tilde{X} := X \circ \phi^{-1}$ gilt:

Es gibt eine glatte (bzw. \mathcal{C}^2) Funktion $f: \tilde{U} \to \mathbb{R}$ mit $D_{\phi(u_0)}f = 0$, sodass $\tilde{X} = \text{Graph}(f)$, d. h. es gilt für alle $\tilde{u} \in \tilde{U}$:

$$\tilde{X}(\tilde{u}) = (\tilde{u}, f(\tilde{u})).$$

Notation. $\nabla f = (\partial_1 f, ..., \partial_k f)$ heißt **Gradient** von $f : \mathbb{R}^k \to \mathbb{R}^m$.

Satz. Sei $U \subseteq \mathbb{R}^{n-1}$ und $f: U \to \mathbb{R}$ glatt. Dann ist die zweite FF der Graphen-Hyperfläche $X: U \to \mathbb{R}^n, u \mapsto (u, f(n))$

$$h_{jk}(u) = \frac{\partial_{jk} f(u)}{\sqrt{1 + |\nabla f(u)|^2}}.$$

Satz. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche, $u_0 \in U$, sowie $E_{u_0} := X(u_0) + T_{u_0}X$ die affine Tangentialebene an X in u_0 . Dann gilt:

- Ist K(u₀) > 0, so liegt für eine kleine offene Umgebung U₀ ⊂ U von u₀ das Bild X(U₀) ganz auf einer Seite von E_{u₀}.
- Ist $K(u_0) < 0$, so trifft für jede Umgebung $U_0 \subset U$ von u_0 das Bild $X(U_0)$ beide Seiten von E_{u_0} .