Tracking objects in videos

Luis Cossio

Master in Engineering sciences, mention in Electrical Engineering

Images

- As computational objects, images are represented as 3 matrices of color.
 - o Each matrix/channel represent the intensity of a color.
 - Representation Red, Green and Blue (RGB)

Images

- As computational objects, images are represented as 3 matrices of color.
 - Each matrix/channel represent the intensity of a color.
 - Representation Red, Green and Blue (RGB)
 - o Individual pixel have values in a given range
 - Unsigned Int scale: [0,255]
 - Float scale: [0.0,1.0]
 - Each value in the image can be accessed by a triplet of indices (i,j,k)

Images

- As computational objects, images are represented as 3 matrices of color.
 - o Each matrix/channel represent the intensity of a color.
 - Representation Red, Green and Blue (RGB)
 - o Individual pixel have values in a given range
 - Unsigned Int scale: [0,255]
 - Float scale: [0.0,1.0]
 - Each value in the image can be accessed by a triplet of indices (i,j,k)
 - Lower values represent darker colors, while higher intensity represent light color

Detection

- Detection consist of 3 tasks
 - Separating target objects from background
 - Locating objects
 - Often using a Bounding box
 - Classifying objects in each class

- Surveillance
 - Anomaly Detection

- Simple Robotic Picking
 - Pose estimation
 - Stable setup

- Temperature checking
 - Face Detection
 - Thermal camera

- Crowd-surveillance
 - Detection
 - Tracking
 - Counting

- Sports tracking
 - Detection
 - Tracking
 - o 3D triangulation

- Self-Driving
 - Detection
 - o Tracking
 - Trajectory prediction
 - o 3D pose estimation

- Perform object detection and identification of targets
- Requires pose and visual matching of multiple objects
 - Multi Object Tracking (MOT)

• Very simple task

Very simple task

- Very simple task
 - Objects don't change their appearance instantaneously
 - The position of objects changes slowly and predictable

- Very simple task
 - Objects don't change their appearance instantaneously
 - The position of objects changes slowly and predictable
- In practice is hard to automate
 - several types of error can occur

- Positional Metrics
 - Distance L2

Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. 2007

- Positional Metrics
 - Distance L2
- Identity Metrics
 - o True Positives TP

- Positional Metrics
 - Distance L2
- Identity Metrics
 - o True Positives TP

Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. 2007

- Positional Metrics
 - Distance L2
- Identity Metrics
 - o True Positives TP

- Positional Metrics
 - Distance L2
- Identity Metrics
 - o True Positives TP

- Positional Metrics
 - o IoU
 - Distance L2
 - Multi object tracking precision (MOTP)
- Identity Metrics
 - True Positives TP
 - Mismatched

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.

Real Object

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object

- Real Object
- Observation

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals

Real Object

Kalman Estimation

Observation

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Previous position in k-1

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Dynamic of the system

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Prior/ expected next step

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C \hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Prior variance/uncertainty (NxN)

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = A P_{k-1|k-1} A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R \right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Observation

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Error between expected position / prior and the Observation

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Posterior/predicted position

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Posterior variance

1.
$$\hat{X}_{k|k-1} = A\hat{X}_{k-1|k-1} + Bu_k$$

2.
$$P_{k|k-1} = AP_{k-1|k-1}A^T + Q$$

3.
$$J_k = P_{k|k-1}C^T \left(CP_{k|k-1}C^T + R\right)^{-1}$$

4.
$$\hat{X}_{k|k} = \hat{X}_{k|k-1} + J_k \left(Y_k - C\hat{X}_{k|k-1} \right)$$

5.
$$P_{k|k} = (I - J_k C) P_{k|k-1}$$

- Control algorithm to estimate position of an object
- One their first uses was the development of a guiding mechanism for the apollo mission.
- Estimate the position and overall direction of an object using sparse observations.
- The system is model as:
 - The real unknown location of the track object
 - There are sparse observation in stable intervals
 - There is a predicted location of the object using the dynamic of the system and the observations.
 - We model the uncertainty of the measurements and the model with a range of confidence/variance.

Detection + Kalman Filtering

Detection + Kalman Filtering

Detection + Kalman Filtering

