[dpq]beta(x, a=3, b=1)

[dpq]beta(x, a=2, b=4)

[dpq]beta(x, a=3, b=7)

[dpq]beta(x, a=3, b=7)

[dpq]beta(x, a=0, b=0)

Χ

[dpq]beta(x, a=0, b=2)

[dpq]beta(x, a=1, b=Inf)

Χ

[dpq]beta(x, a=Inf, b=2)

[dpq]beta(x, a=3, b=0)

[dpq]beta(x, a=Inf, b=Inf)

dbinom(*, log=TRUE) is better than log(dbinom(*))

Holt-Winters filtering

negative binomial density(x,s, pr = 0.4) vs. x & s

log [negative binomial density(x,s, pr = 0.4) vs. x & s]

 ϕ_2

Parameters in the SSasympOff model $\varphi_1 = Asym, \ \varphi_2 = Irc, \ \varphi_3 = c0$

Components of the SSbiexp model

XX

SSgompertz() fit to DNase.1

SSweibull() fit to Chick.6

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

UK gas consumption

Non-central t - Probabilities

Non-central t - Probabilities

Non-central t - Density

Distribution of Wilcoxon-Statist.(n=6, m=4)

Χ

Histogram of $U \leftarrow rwilcox(N, m = 4, n = 6)$

N * f(x), f() = true "density"

Frequency

$$U <- rwilcox(N, m = 4, n = 6)$$

 $N = 200$

Q-Q-Plot of empirical and theoretical quantiles Wilcoxon Statistic, (m=4, n=6)

Series Ih

Series Ih

Series Ih

Series Ideaths

Series Ideaths

mdeaths & fdeaths

Series presidents

Series presidents

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

density.default(x = precip, n = 1000)

cmdscale(eurodist)

Using convolve(.) for Hanning filters

Cluster Dendrogram

d0 hclust (*, "average")

Series: Ideaths

Decomposition of additive time series

Arizona 🕨

New Mexico ▶

_ouisiana ⊳ Illinois ⊳ New York ⊳ Michigan ⊳

Alabama ⊳ Delaware D

Alaska ⊳ Mississippi ⊳ outh Carolina ▶

150

100

20

0

40

30

20

10

0

merge(d1, d2, d3, d4) |-> dendrogram with a 4-split

R's density() kernels with bw = 1

R's density() kernels with width = 1

same sd bandwidths, 7 different kernels

equivalent bandwidths, 7 different kernels

dd hclust (*, "complete")

dist(USArrests)
hclust (*, "average")

dist(USArrests)
hclust (*, "average")

dist(USArrests)^2 hclust (*, "centroid")

dist(cent)^2 hclust (*, "centroid")

Seattle

SanFrancisco

LosAngeles

Chicago

Washington.DC

NewYork

Denver

Atlanta

Houston

Miami

UScitiesD hclust (*, "ward.D") UScitiesD hclust (*, "ward.D2")

specification variables

specification variables

xlab

$heatmap(*, NA, NA) \sim image(t(x))$

'esoph' Data

agegp
function(x) mean(x, na.rm=TRUE)

Isotonic regression isoreg(x = c(1, 0, 4, 3, 3, 5, 4, 2, 0))

Average Temperatures in New Haven

New Haven Temperatures

New Haven Temperatures

New Haven Temperatures

lm(weight ~ group)

Normal Q-Q Plot

lm(weight ~ group)

lm(weight ~ group)

Squared Mahalanobis distances, n=100, p=3

Tukey Additivity Plot

nls(*), data, true function and fit, n=100

Χ

P-value adjustments

Isotonic regression isoreg(x = c(1, 0, 4, 3, 3, 5, 4, 2, 0))

Isotonic regression isoreg(x = $2^{(1:9)}$, y = c(1, 0, 4, 3, 3, 5, 4, 2, 0))

Isotonic regression isoreg(x = y3 < -c(1, 0, 4, 3, 3, 5, 4, 2, 3))

Isotonic regression isoreg(x = y3 - 4)

Isotonic regression isoreg(x = 1:10, y = y4 < -c(5, 9, 1:2, 5:8, 3, 8))

Isotonic regression isoreg(x = sample(9), y = y3)

Isotonic regression isoreg(x = sample(9), y = y3)

Cumulative Data and Convex Minora help("plot.isoreg cumsum(x\$y) **x**\$⁄ \sim x0 x0

Isotonic regression isoreg(x = sample(10), y = sample(10, replace = TRUE)) help("plot.isoreg' ∞ 2 0 6 8 10 x0 **Cumulative Data and Convex Minorant** 0 cumsum(x\$y) 2 10 x0

plot(stepfun(*), xlim= . , ylim = .)

plot(ts(..), axes=FALSE, ann=FALSE, frame.plot=TRUE, mar..., oma...)

Time

Lag plot of New Haven temperatures

lag(SMI, 1)

pn

ppoints(n = 10)

pn

pn

ppoints(n = 21)

ppoints(n = 8)

Holt-Winters filtering

BOD data and fitted first-order curve

s'(x)

Normal Q-Q Plot

Cluster Dendrogram

dist(USArrests) hclust (*, "complete")

random dendrogram 'dd'

reorder(dd, 10:1)

reorder(dd, 10:1, mean)

InsectSprays data

help("runmed")

Running Medians Example

'cars' data and runmed(dist, 3)

Index

speed

smooth(presidents0, *): 3R and default 3RS3R

Χ

Vectorize(.nknots.smspl) (n)

Running Medians -- runmed(*, k=7, end.rule = X)

Series: Ih AR (3) spectrum

Series: Ideaths AR (10) spectrum 2e+06 help("spec.ar") 2e+05 5e+05 spectrum 2e+04 5e+04 5e+03 2e+03 5 0 2 3 4 6

frequency

Series: Ideaths AR (13) spectrum

Series: log(lynx) AR (11) spectrum

Series: x Raw Periodogram

Series: x Smoothed Periodogram

Series: x Smoothed Periodogram

Series: x Smoothed Periodogram

Series: ts.union(mdeaths, fdeaths)
Smoothed Periodogram

Series: ts.union(mdeaths, fdeaths) -- Squared Coherency

Series: ts.intersect(mdeaths, lag(fdeaths, 4)) -- Phase spectrum

Series: x Smoothed Periodogram

Series: x -- Squared Coherency

Series: x -- Phase spectrum

Series: x Smoothed Periodogram

frequency

spline[fun](.) through 9 points help("splinefun" y 0.5 -0.5 2 6 8 Χ

Χ

spline(x,y, ties=list("ordered", mean) for when x has ties

Χ

х.

Difference monoH.FC - hyman

 $f''(x)^2$ for the three 'splines'

stl(mdeaths, s.w = "per", robust = FALSE / TRUE)

Im(weight ~ group)

group

termplot(glm(formula = $y \sim ns(x, 6) + z$) . termplot(glm(formula = $y \sim ns(x, 6) + z$) . help("termplot") Partial for ns(x, 6) 0.5 0.5 Partial for z -0.5 -0.5 -1.5 -1.5 0 20 40 60 80 100 Α В С D Χ Z 1.5 Partial for ns(x, 6) 0.5 0.5 Partial for z -0.5 -0.5 -1.5 -1.5

0

20

40

Χ

60

80

100

Α

В

Z

С

D

Lag plot of New Haven temperatures

X

Im(weight ~ group)

