CLAIM AMENDMENTS

- 1. (Original) A heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface and a coating provided on the hydrophilic surface, said coating comprising in the order given a first layer containing an oleophilic resin soluble in an aqueous alkaline developer and a second layer capable of preventing the developer from penetrating into the first layer at unexposed areas, said second layer comprising a water-repellent compound selected from the group consisting of
 - a polymer comprising siloxane and/or perfluoroalkyl monomeric units, and
 - a block- or graft-copolymer comprising a poly- or oligo(alkylene oxide) and a polymer or oligomer comprising siloxane and/ or perfluoroalkyl monomeric units, and

wherein the alkali-solubility of said coating increases on heating and said coating comprises an infrared light absorbing dye characterised in that the infrared absorbing dye comprises at least one perfluoroalkyl group.

- 2. (Original) A lithographic printing plate precursor according to claim 1 wherein the perfluoroalkyl group is covalently linked to the infrared light absorbing dye.
- 3. (Original) A lithographic printing plate precursor according to claim 1 wherein the infrared light absorbing dye carries a charge and the perfluoroalkyl group is comprised in a counter ion and contains at least 6 fluorine atoms.
- 4. (Original) A lithographic printing plate precursor according to claim 1 wherein at least one perfluoroalkyl group is covalently linked to the infrared light

absorbing dye and at least one perfluoroalkyl group containing 6 or more fluorine atoms is comprised in a counter ion.

- 5. (Currently Amended) A lithographic printing plate precursor according to any of the preceding claims claim 1 wherein the infrared light absorbing dye is selected from the group consisting of squarylium, croconate, merocyanine, cyanine, indolizine, pyrilium and metal dithioline dyes.
- 6. (Currently Amended) A lithographic printing plate precursor according to any of the preceding claims claim 1 wherein the amount of the water-repellent compound in the coating is between 0.5 and 15 mg/m².
- 7. (Currently Amended) A lithographic printing plate precursor according to any of the preceding claims claim 1 wherein the second layer consists essentially of the water-repellent compound and the infrared light absorbing dye.
- 8. (Currently Amended) A lithographic printing plate precursor according to any of the preceding claims 1-4, 6 or 7 claim 1 wherein the infrared light absorbing dye corresponds to the following formula:

3

```
wherein
```

```
-L<sup>1</sup>- and -L<sup>2</sup>- independently represent a divalent linking;
```

-E¹ and -E² independently represent a neutral, anionic or cationic terminal group selected from

alkyl, -OH, -H, -Cl, -Br, -F (neutral groups);

-SO₃-, -SO₄-, -PO₃²-, -PO₄²-, -COO (anionic groups);

-[NR^aR^bR^c]⁺(cationic group);

Ra, Rb and Rc independently represent a hydrogen atom or an alkyl group;

 $-A^1$ - and $-A^2$ - independently represent $-C_vF_{2v}$ -, $-[(CF_2)_2-O]_w$ -, a long chain alkyl group containing at least four carbon atoms, or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

with p₁ and p₂ are 0 or 1;

with v and w are 2 or an integer greater than 2;

-Y¹- and -Y²- independently represent -CR⁹R¹⁰-, -S-, -Se-, -NR¹¹-, -CH=CH- or -O-;

 R^1 to R^{11} each independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a group selected from a halogen atom, -NO2, -O- R^d , -CO- R^d , -CO- R^d , -CO- R^d ,

-O-CO-R^d, -CO-NR^dR^e, -NR^dR^e, -NR^d-CO-R^e, -NR^d-CO-O-R^e, -NR^d-CO-NR^eR^f, -SR^d, -SO-R^d, -SO₂-R^d, -SO₂-O-R^d, -SO₂NR^dR^e or a perfluoroalkyl group, each of said groups may optionally comprise a terminal group E defined above as -E¹ and -E² and/or wherein two adjacent groups selected from R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, Y¹ and Y² together form an optionally substituted 5- or 6- membered ring;

R^d, R^e and R^f independently represent a hydrogen or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

 Z^1 and Z^3 each independently represent a hydrogen atom, an alkyl group or Z^1 and Z^3 together represent the necessary atoms to complete an optionally substituted 5- or 6-membered ring;

Z² represents a substituent selected from a hydrogen atom, an alkyl group, a halogen atom, an amino group, an arylthio group, an alkylthio group, an aryloxy group, an alkoxy group, a barbituric group or a thiobarbituric group, each of said groups being optionally substituted;

X represents one or more optional counter ions having a total charge opposite to the dye and wherein X optionally comprises a perfluoroalkyl group containing at least 6 fluorine atoms;

with the proviso that at least one of the following substituents contains a perfluoroalkyl group:

$$-A^{1}$$
-, $-A^{2}$ -, R^{1} to R^{11} or X .

- 9. (Currently Amended) A <u>lithographic</u> printing plate precursor according to claim 8 wherein $-Z^1$ and $-Z^3$ together represent $-(CH_2)_2$ or $-(CH_2)_3$ -.
- 10. (Currently Amended) A lithographic printing plate precursor according to claims 8 or 9 claim 8 wherein the IR light absorbing dye corresponds to one of the following formulae:

wherein p_1 , p_2 , $-L^1$ -, $-L^2$ -, $-A^1$ -, $-A^2$ -, $-E^1$, $-E^2$, R^9 , R^{10} , Z^2 and X have the same meaning as defined in claim 8.

11. (Original) A lithographic printing plate precursor according to claim 8 wherein the IR light absorbing dye corresponds to one of the following formulae:

$$\begin{array}{c|c}
R^{12} & R^{13} \\
\hline
\\
R^{14} & R^{14}
\end{array}$$

$$\bigcap_{\mathbb{R}^{14}}^{\mathbb{C}1} \bigcap_{\mathbb{R}^{14}}^{\mathbb{N}}$$

$$CF_3$$
 CF_2 m G

$$CF_3 + CF_2 + MG$$

$$CF_3 - CF_2 - MG$$

$$C1$$
 OH
 OH
 CF_3
 CF_2
 M
 G

wherein

m is 2 or an integer greater than 2;

R¹² and R¹³ independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a perfluoroalkyl group which may optionally comprise a terminal group E defined as -E¹ and -E² in claim 8;

 R^{14} represents $-(CH_2)_2$ -OCO- $(CH_2)_2$ - $(CF_2)_k$ - CF_3 ; with k is 2 or an integer greater than 2;

W represents Cl⁻, Br⁻, I⁻, F⁻, ClO₄⁻, BF₄⁻;

G represents SO3, SO4 or COO.

- 12. (New) A lithographic printing plate precursor according to claim 2 wherein the infrared light absorbing dye is selected from the group consisting of squarylium, croconate, merocyanine, cyanine, indolizine, pyrilium and metal dithioline dyes.
- 13. (New) A lithographic printing plate precursor according to claim 3 wherein the infrared light absorbing dye is selected from the group consisting of squarylium, croconate, merocyanine, cyanine, indolizine, pyrilium and metal dithioline dyes.

10

- 14. (New) A lithographic printing plate precursor according to claim 4 wherein the infrared light absorbing dye is selected from the group consisting of squarylium, croconate, merocyanine, cyanine, indolizine, pyrilium and metal dithioline dyes.
- 15. (New) A lithographic printing plate precursor according to claim 2 wherein the amount of the water-repellent compound in the coating is between 0.5 and 15 mg/m².
- 16. (New) A lithographic printing plate precursor according to claim 3 wherein the amount of the water-repellent compound in the coating is between 0.5 and 15 mg/m².
- 17. (New) A lithographic printing plate precursor according to claim 4 wherein the amount of the water-repellent compound in the coating is between 0.5 and 15 mg/m².
- 18. (New) A lithographic printing plate precursor according to claim 5 wherein the amount of the water-repellent compound in the coating is between 0.5 and 15 mg/m².
- 19. (New) A lithographic printing plate precursor according to claim 2 wherein the second layer consists essentially of the water-repellent compound and the infrared light absorbing dye.
- 20. (New) A lithographic printing plate precursor according to claim 3 wherein the second layer consists essentially of the water-repellent compound and the infrared light absorbing dye.
- 21. (New) A lithographic printing plate precursor according to claim 4 wherein the second layer consists essentially of the water-repellent compound and the infrared light absorbing dye.

11

- 22. (New) A lithographic printing plate precursor according to claim 5 wherein the second layer consists essentially of the water-repellent compound and the infrared light absorbing dye.
- 23. (New) A lithographic printing plate precursor according to claim 6 wherein the second layer consists essentially of the water-repellent compound and the infrared light absorbing dye.
- 24. (New) A lithographic printing plate precursor according to claim 4 wherein the infrared light absorbing dye corresponds to the following formula:

wherein

-L¹- and -L²- independently represent a divalent linking;

-E¹ and -E² independently represent a neutral, anionic or cationic terminal group selected from

alkyl, -OH, -H, -Cl, -Br, -F (neutral groups); -SO₃⁻, -SO₄⁻, -PO₃²⁻, -PO₄²⁻, -COO (anionic groups); -[NR^aR^bR^c]⁺(cationic group);

Ra, Rb and Rc independently represent a hydrogen atom or an alkyl group;

-A¹- and -A²- independently represent $-C_vF_{2v}$ -, -[(CF₂)₂-O]_w-, a long chain alkyl group containing at least four carbon atoms, or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

with p₁ and p₂ are 0 or 1; with v and w are 2 or an integer greater than 2;

 $-Y^1$ - and $-Y^2$ - independently represent $-CR^9R^{10}$ -, -S-, -Se-, $-NR^{11}$ -, -CH=-CH- or -O-;

 R^1 to R^{11} each independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a group selected from a halogen atom, -NO2, -O- R^d , -CO- R^d

-O-CO-R^d, -CO-NR^dR^e, -NR^dR^e, -NR^d-CO-R^e, -NR^d-CO-O-R^e, -NR^d-CO-NR^eR^f, -SR^d, -SO-R^d, -SO₂-R^d, -SO₂-O-R^d, -SO₂NR^dR^e or a perfluoroalkyl group, each of said groups may optionally comprise a terminal group E defined above as -E¹ and -E² and/or wherein two adjacent groups selected from R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, Y¹ and Y² together form an optionally substituted 5- or 6- membered ring;

R^d, R^e and R^f independently represent a hydrogen or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

 Z^1 and Z^3 each independently represent a hydrogen atom, an alkyl group or Z^1 and Z^3 together represent the necessary atoms to complete an optionally substituted 5- or 6-membered ring;

Z² represents a substituent selected from a hydrogen atom, an alkyl group, a halogen atom, an amino group, an arylthio group, an alkylthio group, an aryloxy group, an alkoxy group, a barbituric group or a thiobarbituric group, each of said groups being optionally substituted;

X represents one or more optional counter ions having a total charge opposite to the dye and wherein X optionally comprises a perfluoroalkyl group containing at least 6 fluorine atoms;

with the proviso that at least one of the following substituents contains a perfluoroalkyl group:

$$-A^{1}$$
-, $-A^{2}$ -, R^{1} to R^{11} or X.

25. (New) A lithographic printing plate precursor according to claim 2 wherein the infrared light absorbing dye corresponds to the following formula:

14

wherein

```
-L1- and -L2- independently represent a divalent linking;
```

-E¹ and -E² independently represent a neutral, anionic or cationic terminal group selected from

alkyl, -OH, -H, -Cl, -Br, -F (neutral groups);

-SO₃-, -SO₄-, -PO₃²-, -PO₄²-, -COO (anionic groups);

-[NR^aR^bR^c]⁺(cationic group);

Ra, Rb and Rc independently represent a hydrogen atom or an alkyl group;

-A¹- and -A²- independently represent $-C_vF_{2v}$ -, -[(CF₂)₂-O]_w-, a long chain alkyl group containing at least four carbon atoms, or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

with p₁ and p₂ are 0 or 1; with v and w are 2 or an integer greater than 2;

 $-Y^1$ - and $-Y^2$ - independently represent $-CR^9R^{10}$ -, -S-, -Se-, $-NR^{11}$ -, -CH=-CH- or -O-;

 R^1 to R^{11} each independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a group selected from a halogen atom, -NO2, -O- R^d , -CO- R^d , -CO- R^d , -CO- R^d ,

-O-CO-R^d, -CO-NR^dR^e, -NR^dR^e, -NR^d-CO-R^e, -NR^d-CO-O-R^e, -NR^d-CO-NR^eR^f, -SR^d, -SO-R^d, -SO₂-R^d, -SO₂-O-R^d, -SO₂NR^dR^e or a perfluoroalkyl group, each of said groups may optionally comprise a terminal group E defined above as -E¹ and -E² and/or wherein two adjacent groups selected from R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, Y¹ and Y² together form an optionally substituted 5- or 6- membered ring;

R^d, R^e and R^f independently represent a hydrogen or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

 Z^1 and Z^3 each independently represent a hydrogen atom, an alkyl group or Z^1 and Z^3 together represent the necessary atoms to complete an optionally substituted 5- or 6-membered ring;

 Z^2 represents a substituent selected from a hydrogen atom, an alkyl group, a halogen atom, an amino group, an arylthio group, an alkylthio group, an aryloxy group, an alkoxy group, a barbituric group or a thiobarbituric group, each of said groups being optionally substituted;

X represents one or more optional counter ions having a total charge opposite to the dye and wherein X optionally comprises a perfluoroalkyl group containing at least 6 fluorine atoms;

with the proviso that at least one of the following substituents contains a perfluoroalkyl group:

$$-A^{1}$$
-, $-A^{2}$ -, R^{1} to R^{11} or X .

26. (New) A lithographic printing plate precursor according to claim 3 wherein the infrared light absorbing dye corresponds to the following formula:

16

wherein

```
-L1- and -L2- independently represent a divalent linking;
```

-E¹ and -E² independently represent a neutral, anionic or cationic terminal group selected from

alkyl, -OH, -H, -Cl, -Br, -F (neutral groups);

 $-SO_3^-$, $-SO_4^-$, $-PO_3^{2-}$, $-PO_4^{2-}$, $-COO^-$ (anionic groups);

-[NR^aR^bR^c]⁺(cationic group);

Ra, Rb and Rc independently represent a hydrogen atom or an alkyl group;

-A¹- and -A²- independently represent $-C_vF_{2v}$ -, -[(CF₂)₂-O]_w-, a long chain alkyl group containing at least four carbon atoms, or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

with p_1 and p_2 are 0 or 1;

with v and w are 2 or an integer greater than 2;

 $-Y^1$ - and $-Y^2$ - independently represent $-CR^9R^{10}$ -, -S-, -Se-, $-NR^{11}$ -, -CH=-CH- or -O-;

 R^1 to R^{11} each independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a group selected from a halogen atom, -NO2, -O- R^d , -CO- R^d

-O-CO- R^d , -CO- NR^dR^e , - NR^dR^e , - NR^d -CO- R^e , - NR^d -CO- R^e , - NR^d -CO- NR^eR^f , - SR^d , - SO- R^d , -SO₂- R^d , -SO₂- R^d , -SO₂N R^dR^e or a perfluoroalkyl group, each of said groups may optionally comprise a terminal group E defined above as - E^1 and - E^2 and/or wherein

two adjacent groups selected from R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , Y^1 and Y^2 together form an optionally substituted 5- or 6- membered ring; R^d , R^e and R^f independently represent a hydrogen or an optionally substituted alkyl, alkenyl, aryl or aralkyl group;

 Z^1 and Z^3 each independently represent a hydrogen atom, an alkyl group or Z^1 and Z^3 together represent the necessary atoms to complete an optionally substituted 5- or 6-membered ring;

Z² represents a substituent selected from a hydrogen atom, an alkyl group, a halogen atom, an amino group, an arylthio group, an alkylthio group, an aryloxy group, an alkoxy group, a barbituric group or a thiobarbituric group, each of said groups being optionally substituted;

X represents one or more optional counter ions having a total charge opposite to the dye and wherein X optionally comprises a perfluoroalkyl group containing at least 6 fluorine atoms;

with the proviso that at least one of the following substituents contains a perfluoroalkyl group:

$$-A^{1}$$
-, $-A^{2}$ -, R^{1} to R^{11} or X .

- 27. (New) A lithographic printing plate precursor according to claim 24, wherein $-Z^1$ and $-Z^3$ together represent $-(CH_2)_2$ or $-(CH_2)_3$ -.
- 28. (New) A lithographic printing plate precursor according to claim 25, wherein $-Z^1$ and $-Z^3$ together represent $-(CH_2)_2$ or $-(CH_2)_3$ -.
- 29. (New) A lithographic printing plate precursor according to claim 26, wherein $-Z^1$ and $-Z^3$ together represent $-(CH_2)_2$ or $-(CH_2)_3$ -.

30. (New) A lithographic printing plate precursor according to claim 27 wherein the IR light absorbing dye corresponds to one of the following formulae:

wherein p_1 , p_2 , $-L^1$ -, $-L^2$ -, $-A^1$ -, $-A^2$ -, $-E^1$, $-E^2$, R^9 , R^{10} , Z^2 and X have the same meaning as defined in claim 8.

31. (New) A lithographic printing plate precursor according to claim 28 wherein the IR light absorbing dye corresponds to one of the following formulae:

wherein p_1 , p_2 , $-L^1$ -, $-L^2$ -, $-A^1$ -, $-A^2$ -, $-E^1$, $-E^2$, R^9 , R^{10} , Z^2 and X have the same meaning as defined in claim 8.

32. (New) A lithographic printing plate precursor according to claim 29 wherein the IR light absorbing dye corresponds to one of the following formulae:

wherein p_1 , p_2 , $-L^1$ -, $-L^2$ -, $-A^1$ -, $-A^2$ -, $-E^1$, $-E^2$, R^9 , R^{10} , Z^2 and X have the same meaning as defined in claim 8.

33. (New) A lithographic printing plate precursor according to claim 30 wherein the IR light absorbing dye corresponds to one of the following formulae:

$$\begin{array}{c|c}
R^{12} & R^{13} \\
\hline
N & N & N \\
R^{14} & R^{14}
\end{array}$$

$$\bigcap_{\mathbb{R}^{14}}^{\mathbb{C}1}$$

W

$$CF_3$$
 CF_2 m G

$$CF_3 + CF_2 + MG$$

$$CF_{3}$$
 CF_{2} m G

$$CI$$
 N
 OH
 CF_3
 CF_2
 m
 G

wherein

m is 2 or an integer greater than 2;

R¹² and R¹³ independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a perfluoroalkyl group which may optionally comprise a terminal group E defined as -E¹ and -E² in claim 8;

 R^{14} represents $-(CH_2)_2$ -OCO- $(CH_2)_2$ - $(CF_2)_k$ -CF₃; with k is 2 or an integer greater than 2;

W represents Cl⁻, Br⁻, I⁻, F⁻, ClO₄⁻, BF₄⁻;

G represents SO3⁻, SO4⁻or COO⁻.

34. (New) A lithographic printing plate precursor according to claim 31 wherein the IR light absorbing dye corresponds to one of the following formulae:

$$\begin{array}{c|c}
R^{12} & R^{13} \\
\hline
R^{14} & R^{14}
\end{array}$$

$$\bigcap_{N \in \mathbb{R}^{14}} C1$$

W

$$CF_3$$
 CF_2 m G

$$\bigcap_{\substack{N\\ R^{14}}}^{C1}$$

$$CF_3 + CF_2 + mG$$

$$CF_3 - CF_2 - mG$$

$$CI$$
 N
 OH
 CF_3
 CF_2
 M
 G

wherein

m is 2 or an integer greater than 2;

R¹² and R¹³ independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a perfluoroalkyl group which may optionally comprise a terminal group E defined as -E¹ and -E² in claim 8;

 R^{14} represents $-(CH_2)_2$ -OCO- $(CH_2)_2$ - $(CF_2)_k$ - CF_3 ; with k is 2 or an integer greater than 2;

W represents Cl, Br, I, F, ClO₄, BF₄;

G represents SO3, SO4 or COO.

35. (New) A lithographic printing plate precursor according to claim 32 wherein the IR light absorbing dye corresponds to one of the following formulae:

$$\begin{array}{c|c}
R^{12} & R^{13} \\
\hline
R^{14} & R^{14}
\end{array}$$

$$\bigcap_{N \to \mathbb{R}^{14}} C1$$

W

$$CF_3$$
 CF_2 m G

$$CF_{3} \left(-CF_{2}\right) mG$$

$$CF_{3} \left(-CF_{2} \right) mG$$

$$C1$$
 OH
 OH
 CF_3
 CF_2
 m
 G

wherein

m is 2 or an integer greater than 2;

R¹² and R¹³ independently represent a hydrogen atom, an optionally substituted alkyl, alkenyl, aryl or aralkyl group or a perfluoroalkyl group which may optionally comprise a terminal group E defined as -E¹ and -E² in claim 8;

 R^{14} represents $-(CH_2)_2$ -OCO- $(CH_2)_2$ - $(CF_2)_k$ -CF₃; with k is 2 or an integer greater than 2;

W represents Cl⁻, Br⁻, I⁻, F⁻, ClO₄⁻, BF₄⁻;

'G represents SO3', SO4'or COO'.