jméno a příjmení	login

IMA1, zadání K

1	9	3	1 1	5	6	Σ	
1	4	9	'	9	0		

Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek. Každý příklad je za 15 bodů. V případě, že 3 nebo více příkladů bude hodnoceno 0 body, bude celá písemka hodnocena 0 body bez ohledu na ostatní příklady.

Povolená pomůcka je jeden list papíru formátu A4 popsaný jakkoli a čímkoli (tento list neodevzdávejte). Jiné pomůcky (např. kalkulačka) nejsou povoleny.

- 1. Funkce f je dána předpisem $f(x) = \sqrt{x} 2$.
 - a) Určete funkční předpis a definiční obor inverzní funkce $f^{-1}(x)$.
 - **b)** Určete $f((0,2)), f^{-1}(\{2\}).$
 - c) Nakreslete grafy funkcí f(x), $f^{-1}(x)$, f(-x), f(|x|), |f(x)|.
- **2.** Nakreslete grafy funkcí f a g, pro které platí:
 - a) $D(f) = \mathbb{R}$, f je lichá, asymptota v ∞ má předpis x 2y = 2, $\lim_{x \to 0^+} f(x) = 1$, $f'_+(0) = 1$, f(2) = -1, $\lim_{x \to 2^+} f(x) = -\infty$, $f'_-(2) = -\infty$.
 - **b)** $\forall \varepsilon > 0 \colon \exists \delta > 0 \colon \forall x \in \mathbb{R} \colon 0 < |x 2| < \delta \implies |g(x) 3| < \varepsilon.$
- 3. Najděte lokální extrémy funkce $f(x) = \frac{5x+1}{\sqrt{x^2-1}}$.
- **4.** Vypočtěte integrál $\int e^{-4x} (3x e^x) dx$.
- **5.** Určete obsah plochy ohraničené křivkami xy = 6 a x + y = -7.
- **6. a)** Načrtněte funkci, pro kterou neplatí následující tvrzení: Jestliže má funkce f v bodě c lokální minimum, potom f'(c) = 0.
 - b) Napište, jakou vlastnost funkce g popisuje následující tvrzení, a tvrzení znegujte: $\forall x \in D(g) \colon g(x) = g(-x).$
 - c) Rozhodněte o pravdivosti následujícího tvrzení (v případě nepravdivého tvrzení udejte protipříklad, v případě pravdivého tvrzení uveďte stručné zdůvodnění): Jestliže je funkce f spojitá na intervalu $\langle a,b\rangle$ a platí $f(a)\cdot f(b)<0$, potom na intervalu $\langle a,b\rangle$ existuje právě jedno řešení rovnice f(x)=0.