BD2 - Katering

Jakub Mazurkiewicz, Damian Piotrowski, Konrad Wojewódzki, Przemysław Wieczorkowski

Semestr 21L

1 Wstęp

1.1 Przedsiębiorstwo

1.1.1 Historia

Przedsiębiorstwo "Cabbage Catering" zajmuje się dostarczaniem smacznych i pożywnych posiłków na imprezy okolicznościowe. Przedsiębiorstwo zostało założone w 2015 roku przez Przemysława Kapustkę, którego celem było stworzenie dobrze prosperującej firmy kateringowej. Nie spodziewał się on jednak, że firma urośnie do rozmiarów kateringowego królestwa i będzie realizowała bardzo duże ilości zamówień dla zróżnicowanych grup klientów. Z tego też powodu pojawiła się potrzeba stworzenia systemu komputerowego, który będzie wspomagał przedsiębiorstwo w sprawnym realizowaniu zamówień.

1.1.2 Zasoby firmy

Siedziba firmy umiejscowiona jest przy ulicy Urzędniczej 2 w Toruniu. W budynku znajduje się biuro, kuchnia, chłodnia oraz magazyn. W firmie są zatrudnieni: 8 kucharzy w tym 2 szefów kuchni, 3 cukierników, 2 dostawców oraz 15 kelnerów obsługujących gości na wydarzeniach. Przedsiębiorstwo dysponuje dwoma pojazdami transportowymi typu Mercedes Sprinter oraz dwoma pojazdami typu Mercedes AMG G63 dla przedstawicieli. Firma nabywa produkty spożywcze w sieci hurtowni Makro. Dzięki naszej infrastrukturze jesteśmy w stanie obsłużyć wydarzenia nawet do 400 osób. W ofercie znajduje się szeroki wybór dań, w tym dania wegańskie, wegetariańskie, bezglutenowe i tym podobne.

1.2 Cel projektu

Celem projektu jest stworzenie relacyjnej bazy danych do wspomagania obsługi klientów oraz logistyki przedsiębiorstwa. Powstanie także aplikacja, która wspomoże harmonogramowanie zamówień oraz monitorowanie stanu magazynu.

2 Etap pierwszy

2.1 Model behavioralny

2.1.1 Aktorzy i ich przypadki użycia

- 1. **Pracownik recepcjonista** przyjmuje od klientów zamówienia na dostarczanie usług kateringowych (za pośrednictwem telefonu) i wprowadza za pośrednictwem SZBD zlecenie do systemu. W razie wypadku informuje klienta o braku możliwości realizacji zamówienia. Przypadki użycia:
 - Sprawdzenie dostępności terminu sprawdzane przez aplikację,
 - Dodanie zamówienia do terminarza,
 - Usunięcie zamówienia z systemu,
 - Zmiana szczegółów zamówienia,
 - Przypisywanie kelnera do wydarzenia,
 - Przypisywanie dostawcy do wydarzenia,
 - Zatrudnianie nowych pracowników,
 - Aktualizacja informacji o pracowniku.
- 2. Szef kuchni pobiera z bazy danych informacje o zbliżających się wydarzeniach, sprawdza dostępność produktów na stanie (w magazynie/chłodni) i, w razie potrzeby, zamawia produkty niezbędne do przygotowania potraw. Sprawdza przepisy na zamówione potrawy. Może dodać własne przepisy i modyfikować menu. Przypadki użycia:
 - Pobieranie listy dań do zamówienia,
 - Edycja menu,
 - Sprawdzanie dostępności produktów w magazynie,
 - Pobranie listy produktów potrzebnych do wykonania dania,
 - Edycja listy produktów potrzebnych do wykonania dania,
 - Zamawianie potrzebnych produktów.
- 3. Kucharz sprawdza dostępność produktów i przepisy. Przypadki użycia:
 - Sprawdzanie dostępności produktów w magazynie,
 - Pobranie listy produktów potrzebnych do wykonania dania.
- 4. **Pracownik dostawca** odczytuje z systemu harmonogram wydarzeń i ustala trasę przejazdu, odbiera produkty z hurtowni i weryfikuje zgodność zamówień ze stanem faktycznym. Przypadki użycia:
 - Sprawdzanie grafiku,
 - Sprawdzanie listy dań do załadowania do pojazdu,

- Sprawdzanie listy dostępnych pojazdów,
- Sprawdzanie miejsce wydarzenia, do którego należy dostarczyć jedzenie.
- Pracownik kelner sprawdza harmonogram wydarzeń i obsługuje wydarzenie. Przypadki użycia:
 - Akceptuje zaproponowany mu w systemie termin (w przypadku pracownika okresowego),
 - Uwzględnianie dodatkowych kosztów (np. zniszczenia asortymentu) w trakcie wydarzenia
- 6. Klient sprawdza dostępność wolnych terminów oraz koszt świadczonych usług i ew. składa zamówienie na wybrane menu (albo samodzielnie ustala listę potraw), określa liczbę gości, datę wydarzenia i lokalizację (ew. precyzuje rodzaj wydarzenia). Podaje podstawowe dane kontaktowe (imię, nazwisko, telefon, ew. e-mail). Dodatkowo może zrezygnować z korzystania z usług firmy/odwołać zaplanowane wydarzenie (najpóźniej na 2 tygodnie przed). Przypadki użycia:
 - Przeglądanie dostępnych dań.
 - Przeglądanie informacji o alergenach.

2.1.2 Rozszerzone przypadki użycia

Złożenie zamówienia

- 1. Klient składa zamówienie telefonicznie lub osobiście na recepcji co najmniej tydzień przed wydarzeniem
- 2. Pracownik wprowadza zlecenie do SZBD
- 3. System weryfikuje dostępność terminu
- 4. Jeśli termin jest wolny wydarzenie zostaje zapisane w systemie
- 5. Dane klienta, adres dostawy i lista dań są zapisywane w systemie

Sprawdzenie dostępności produktów

- 1. Szef kuchni sprawdza w systemie czy w magazynie znajdują się produkty potrzebne do wykonania zlecenia
- 2. Jeśli wszystkie produkty znajdują się na stanie zlecenie jest przekazywane do kuchni

Alternatywa:

1. Punkt pierwszy z przypadku podstawowego

- 2. Punkt drugi z przypadku podstawowego
- 3. Jeśli brakuje produktów zostaje złożone zamówienie w hurtowni

Przeprowadzenie dostawy:

- 1. Kurier pobiera z systemu adres i datę dostawy
- 2. System oblicza ile samochodów potrzeba do realizacji zamówienia
- 3. Pracownik sprawdza kompletność zamówienia
- 4. Jeśli zamówienie jest kompletne pracownik dostarcza posiłki

Alternatywa:

- 1. Punkt pierwszy z przypadku podstawowego
- 2. Punkt drugi z przypadku podstawowego
- 3. Punkt trzeci z przypadku podstawowego
- 4. Jeśli zamówienie nie jest kompletne pracownik informuje kuchnię o brakach w zamówieniu

2.2 Model strukturalny

2.2.1 Słownik pojeć

- Produkt pojedynczy składnik przechowywany w magazynie lub w chłodni.
- Pozycja na karcie posiłek lub napój do wyboru z naszej karty menu. Może składać się z wielu produktów oraz być różnej wielkości zgodnie z wolą klienta. Jest też udostępniona informacja o alergenach.
- Informacje o daniu wszelkie przydatne dla klienta informacje o konkretnym daniu (np. czy danie jest wegańskie).
- Przechowalnie miejsce, w którym przechowywane są nasze produkty spożywcze. Jest to magazyn lub chłodnia zależnie od rodzaju artykułu.
- Zamówienie proces wyboru konkretnych dań z naszego menu przez klienta (możliwe są modyfikacje dania). Zamówienie musi zostać złożone co najmniej tydzień przed data wydarzenia.
- Klient podmiot składający zamówienie w naszej firmie. Może to być osoba fizyczna lub zarejestrowana firma.
- Miejsce zamówienia lokalizacja, którą klient wybrał do dostarczenia zamówienia.
- Pracownik osoba, do której należy obsługa wydarzenia.

- Grafik pracownika grafik zawierający wydarzenia z określonymi ramami czasowymi. Wydarzenia przypisane są do konkretnego pracownika.
- Dostawa proces dostarczenia zamówienia na miejsce.
- Samochód pojazd używany do realizacji dostawy.

2.2.2 Model ER

LINK DO MODELU ER

2.2.3 Macierz CRUD

LINK DO MACIERZY CRUD

2.3 Wybór narzędzi

Element	Narzędzie		
Storyboard/UML	Miro		
Dokumentacja	ĿŦĿX		
System zarządzania bazą danych	MS SQL		
Język programowania aplikacji	Python		
Chmura	Microsoft Azure		

3 Etap 2

3.1 Model logiczny

LINK DO MODELU LOGICZNEGO

3.2 Opis więzów integralności

LINK DO OPISU WIĘZÓW INTEGRALNOŚCI

3.3 Projekt aplikacji

Projekt aplikacji znajduje się w pliku app.pdf (app.tex).

3.4 Opis wymagań funkcjonalnych

3.4.1 Bezpieczeństwo

Każdy użytkownik bazy danych ma generowane swój własny login i hasło do logowania do aplikacji oraz do bazy danych. Każdemu użytkownikowi nadawana jest rola i idą za nią uprawnienia. Oprócz tego konta administratorów są chronione "firewallem" i niezbędne jest podanie swojego adresu IP i wprowadzenie go w panelu administratora na stronie Microsoft Azure.

3.4.2 Szybkość

W aplikacji obsługującej harmonogram dostaw i układanie jadłospisów prędkość nie jest kluczowa. Pewne opóźnienia w działaniu zarówno aplikacji jak i bazy danych nie są krytyczne i w prawie żaden sposób nie wpływają na jakość usługi. Drobne opóźnienia wystąpią ze względu na to, że baza danych znajduje się w chmurze i synchronizacja zachodzących zmian nie jest natychmiastowa, w niektórych przypadkach może zająć to nawet kilka minut.

3.4.3 Wolumetria

3.5 Scenariusze testowe

- Ładujemy poprawnie wygenerowane dane w ilości zgodnej z wymaganiami
- Przeprowadzenie testów jednostkowych sprawdzających poprawność działania wyzwalaczy i checków:
 - Dodanie wydarzenia na konkretny dzień i godzinę;
 - Dodanie wydarzenia na zarezerwowany wcześniej termin;
 - Usunięcie nieistniejącego wydarzenia (o zadanej porze);
 - Zmiana daty wydarzenia na inny, wolny termin;
 - Zmiana daty wydarzenia na zajęty termin;

- Próba wprowadzenia błędnej daty;
- Próba ponownego zatrudnienia zatrudnionego pracownika o identycznych danych osobowych;
- Próba ponownego dodania produktu o tej samej nazwie;
- Sprawdzanie dostępności nieistniejących w magazynie produktów;
- Próba ponownego dodania potrawy o tej samej nazwie i z tą samą listą produktów;
- Wstawienie danych w złym formacie daty (wydarzenia), kodu pocztowego, numeru telefonu, adresu e-mail, numeru NIP, numeru PE-SEL, numer konta
- bankowego, wstawienie złego typu danych do określonego pola;
- Próba dodania danych o nieprawidłowych kluczach obcych dla każdej z tabel

Testy przeprowadzane są z pomocą skryptu w języku Python.

3.6 Raporty analityczne

3.6.1 Analiza ilości zamawianych produktów

Chcemy przeanalizować ilość zamawianych z hurtowni produktów pod kątem realnego zapotrzebowania na nie. Pozwoli to lepiej oszacować zapotrzebowanie na produkty, zaplanować dostawy i ograniczyć straty związane z upłynięciem terminu przydatności. W tym celu odpytujemy naszą bazę danych o wszystkie posiłki wykonane w zadanym przez użytkownika przedziale czasowym (miesiąc, tydzień etc.) i na podstawie tego szacujemy odsetek wykorzystanych produktów.

\mathbf{Nr}	Produkt	Zakupiono	Wykorzystano	Jednostka	Procent
1	Ser_żółty	102	57	kg	55.9%
2	Twaróg	50	42	kg	84.0%
3	Jajka	200	170	szt	85.0%
4	Mleko	205	121	L	59.0%
5	Kalafior	10	7	kg	70.0%
6	Por	20	5	kg	25.0%
7	Marchew	20	10	kg	50.0%
8	Ziemniaki	222	217	kg	97.7%
9	Koperek	3000	2731	g	91.0%

3.6.2 Analiza opłacalności świadczonych usług

Chcemy przeanalizować świadczone przez firmę usługi pod kątem opłacalności - które wydarzenia przynoszą największe zyski przy jak najmniejszym nakładzie finansowym. W ten sposób możemy traktować priorytetowo niektóre formy działalności. Dzielimy zatem świadczone przez nas usługi na kategorie (urodziny, imieniny, chrzciny etc.) i analizujemy koszty związane z organizacją posiłków (koszty produktów, liczba kelnerów i ich wynagrodzenie, liczba potrzebnych samochodów dostawczych etc.) i porównujemy ze stawką którą zgodził się zapłacić klient.

\mathbf{Nr}	Rodzaj	Przychody	Koszty	Zysk proc.
1	Cat.Rodzinny	31232	21212	32.1%
2	Cat.Dieta	30123	22543	25.2%
3	Chrzciny	11222	10579	5.73%
4	Komunie	45631	31672	30.6%
5	Urodziny	23001	21521	6.43%
6	Firmowe	67123	59999	10.6%