Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 7 B

Lösungshinweise

Aufgabe 1: Es sei $\sum_{k=1}^{\infty} a_k$ eine konvergente Reihe reeller Zahlen. Zeigen Sie, dass für alle $n \in \mathbb{N}$ auch die Reihe $\sum_{k=n+1}^{\infty} a_k$ konvergent ist und dass

$$\lim_{n \to \infty} \sum_{k=n+1}^{\infty} a_k = 0.$$

Lösung: Für alle $n \in \mathbb{N}$ bezeichnen wir mit s_n die n-te Partialsumme der Reihe $\sum_{k=1}^{\infty} a_k$, d. h. $s_n := \sum_{k=1}^n a_k$. Für alle $m, n \in \mathbb{N}$ mit $m \ge n+1$ gilt dann $s_m - s_n = \sum_{k=n+1}^m a_k$, und weil die Reihe $\sum_{k=1}^{\infty} a_k$ konvergent ist, gilt definitionsgemäß $s_m \to \sum_{k=1}^{\infty} a_k$ für $m \to \infty$. Zusammenfassend sehen wir, dass die Folge $(\sum_{k=n+1}^m a_k)_{n+1 \le m \in \mathbb{N}}$ der Partialsummen der Reihe $\sum_{k=n+1}^{\infty} a_k$ konvergent ist mit

$$\sum_{k=n+1}^{\infty} a_k = \lim_{m \to \infty} \sum_{k=n+1}^{m} a_k = \lim_{m \to \infty} (s_m - s_n) = \left(\sum_{k=1}^{\infty} a_k\right) - s_n.$$

Nutzen wir nun erneut aus, dass die Folge $(s_n)_{n\in\mathbb{N}}$ gegen $\sum_{k=1}^{\infty} a_k$ konvergiert, so erhalten wir damit wie behauptet

$$\lim_{n \to \infty} \sum_{k=n+1}^{\infty} a_k = \left(\sum_{k=1}^{\infty} a_k\right) - \lim_{n \to \infty} s_n = 0.$$

Aufgabe 2:

(a) Es sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge reeller Zahlen. Zeigen Sie, dass die sogenannte Teleskopreihe $\sum_{n=1}^{\infty} (a_n - a_{n+1})$ konvergiert und dass

$$\sum_{n=1}^{\infty} (a_n - a_{n+1}) = a_1 - \lim_{n \to \infty} a_n.$$

(b) Zeigen Sie mithilfe von Aufgabenteil (a), dass

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Lösung:

(a) Wir betrachten zunächst die Partialsummen $s_k := \sum_{n=1}^k (a_n - a_{n+1})$ für $k \in \mathbb{N}$. (Summen dieser Form werden auch als *Teleskopsummen* bezeichnet.) Wir überlegen uns zunächst, dass $s_k = a_1 - a_{k+1}$ für alle $k \in \mathbb{N}$ gilt. Tatsächlich haben wir:

$$s_1 = a_1 - a_2$$

$$s_2 = (a_1 - a_2) + (a_2 - a_3) = a_1 - a_3$$

$$s_3 = (a_1 - a_2) + (a_2 - a_3) + (a_3 - a_4) = a_1 - a_4$$

$$s_4 = (a_1 - a_2) + (a_2 - a_3) + (a_3 - a_4) + (a_4 - a_5) = a_1 - a_5$$

$$\vdots$$

(Dieses "Zusammenziehen" benachbarter Summanden ist namensgebend für Teleskopsummen.) Den formalen Beweis unserer Behauptung erbringen wir mittels vollständiger Induktion. Der $Induktionsanfang\ k=1$ ist mit unseren Überlegungen oben bereits gezeigt. Für den Induktionsschritt nehmen wir nun die Gültigkeit der behaupteten Formel für ein $k\in\mathbb{N}$ an und zeigen, dass diese auch für k+1 richtig ist. In der Tat haben wir

$$s_{k+1} = s_k + (a_{k+1} - a_{k+2}) \stackrel{\text{I.V.}}{=} (a_1 - a_{k+1}) + (a_{k+1} - a_{k+2}) = a_1 - a_{(k+1)+1},$$

womit der Induktionsschritt bewiesen ist.

Da die Folge $(a_n)_{n\in\mathbb{N}}$ als konvergent angenommen ist, folgt somit die Konvergenz der Folge $(s_k)_{k\in\mathbb{N}}$ gegen $a_1 - \lim_{n\to\infty} a_n$. Definitionsgemäß haben wir also wie behauptet

$$\sum_{n=1}^{\infty} (a_n - a_{n+1}) = a_1 - \lim_{n \to \infty} a_n.$$

(b) Wir stellen fest, dass $\frac{1}{n(n+1)} = \frac{(n+1)-n}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ für alle $n \in \mathbb{N}$ gilt. Somit handelt es sich bei der Reihe $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ in der Tat um eine Teleskopreihe, nämlich zu der Folge $(\frac{1}{n})_{n \in \mathbb{N}}$. Wegen $\lim_{n \to \infty} \frac{1}{n} = 0$ liefert uns Aufgabenteil (a), dass

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{1} - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

Aufgabe 3: Für $k \in \mathbb{N}$ bezeichnen wir mit $s_k := \sum_{n=1}^k \frac{1}{n^2}$ die k-te Partialsumme der Reihe $\sum_{n=1}^\infty \frac{1}{n^2}$. Zeigen Sie, dass $(s_k)_{k \in \mathbb{N}}$ eine monoton wachsende Folge ist, die nach oben durch 2 beschränkt ist. Folgern Sie daraus die Konvergenz der Reihe $\sum_{n=1}^\infty \frac{1}{n^2}$.

Hinweis: Für den Nachweis der Beschränktheit von $(s_k)_{k\in\mathbb{N}}$ zeigen Sie zunächst, dass

$$s_k \le 1 + \sum_{n=2}^k \frac{1}{(n-1)n} = 1 + \sum_{n=1}^{k-1} \frac{1}{n(n+1)}$$
 für alle $k \in \mathbb{N}$ mit $k \ge 2$

gilt, und verwenden Sie anschließend das Resultat aus Aufgabe 2 (b).

Lösung: Wir stellen fest, dass $\frac{1}{n^2} \leq \frac{1}{(n-1)n}$ für alle $n \in \mathbb{N}$ mit $n \geq 2$ gilt. Somit können wir für jedes $k \in \mathbb{N}$ mit $k \geq 2$ die Partialsumme s_k wie folgt abschätzen:

$$s_k = \sum_{n=1}^k \frac{1}{n^2} = 1 + \sum_{n=2}^k \frac{1}{n^2} \le 1 + \sum_{n=2}^k \frac{1}{(n-1)n} = 1 + \sum_{n=1}^{k-1} \frac{1}{n(n+1)}$$

In Aufgabe 2 (b) haben wir $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ bestimmt, und weil die Summanden der Reihe alle positiv sind, ist die Folge $(\sum_{n=1}^{k} \frac{1}{n(n+1)})_{k \in \mathbb{N}}$ ihrer Partialsummen monoton wachsend und somit durch ihren Grenzwert 1 nach oben beschränkt. Es gilt also $\sum_{n=1}^{k-1} \frac{1}{n(n+1)} \leq 1$ für alle $k \in \mathbb{N}$ mit $k \geq 2$.

Zusammenfassend erhalten wir damit, dass $s_k \leq 1 + \sum_{n=1}^{k-1} \frac{1}{n(n+1)} \leq 1 + 1 = 2$ für alle $k \in \mathbb{N}$ mit $k \geq 2$ gilt. Weil ferner $s_1 = 1$, ist die gesamte Folge der Partialsummen $(s_k)_{k \in \mathbb{N}}$ wie behauptet nach oben durch 2 beschränkt.

Da die Summanden der Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ alle positiv sind, ist die Folge der Partialsummen $(s_k)_{k\in\mathbb{N}}$ zudem (streng) monoton wachsend. Da diese nach oben beschränkt ist, folgt schließlich aus dem Monotoniekriterium die Konvergenz der Folge $(s_k)_{k\in\mathbb{N}}$ und damit die Konvergenz der Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Bemerkung: Die Bestimmung des genauen Wertes der Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist ein ungleich schwierigeres Problem, bemerkenswerterweise ist dies aber tatsächlich möglich; es ergibt sich der Wert $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Um dies einzusehen, sind jedoch Werkzeuge nötig, die in der Vorlesung noch nicht behandelt wurden.