TABLE OF CONTENTS

▶ SKIP REVIEW OF INVERSE FUNCTIONS AND LOGARITHMS

► A function y = f(x) is known to both players

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)
- ▶ Player A tells Player B what f(x) is

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)
- ▶ Player A tells Player B what f(x) is
- ► Player B tries to guess Player A's *x*-value.

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)
- ▶ Player A tells Player B what f(x) is
- ► Player B tries to guess Player A's *x*-value.

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)
- ▶ Player A tells Player B what f(x) is
- ► Player B tries to guess Player A's *x*-value.

Round 1:
$$f(x) = 2x$$

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)
- ▶ Player A tells Player B what f(x) is
- ► Player B tries to guess Player A's *x*-value.

Round 1:
$$f(x) = 2x$$

Round 2:
$$f(x) = \sqrt[3]{x}$$

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)
- ▶ Player A tells Player B what f(x) is
- ► Player B tries to guess Player A's *x*-value.

Round 1:
$$f(x) = 2x$$

Round 2:
$$f(x) = \sqrt[3]{x}$$

Round 3:
$$f(x) = |x|$$

- ► A function y = f(x) is known to both players
- ▶ Player A chooses a secret value x in the domain of f(x)
- ▶ Player A tells Player B what f(x) is
- ► Player B tries to guess Player A's *x*-value.

Round 1:
$$f(x) = 2x$$

Round 2:
$$f(x) = \sqrt[3]{x}$$

Round 3:
$$f(x) = |x|$$

Round 4:
$$f(x) = \sin x$$

A. invertible

B. not invertible

Definition 0.6.2

A. invertible

B. not invertible

A. invertible

B. not invertible

RELATIONSHIP BETWEEN f(x) AND $f^{-1}(x)$

Let f be an invertible function.

What is $f^{-1}(f(x))$?

A. *χ*

B. 1

C. 0

D. not sure

RELATIONSHIP BETWEEN f(x) AND $f^{-1}(x)$

Let f be an invertible function.

What is $f^{-1}(f(x))$?

A. *x*

B. 1

C. 0

D. not sure

RELATIONSHIP BETWEEN f(x) AND $f^{-1}(x)$

Let f be an invertible function.

What is $f^{-1}(f(x))$?

A. *χ*

B. 1

C. 0

D. not sure

In order for a function to be invertible

In order for a function to be invertible , different \boldsymbol{x} values cannot map to the same \boldsymbol{y} value.

In order for a function to be invertible , different \boldsymbol{x} values cannot map to the same \boldsymbol{y} value.

We call such a function **one-to-one**, or **injective**.

In order for a function to be invertible , different *x* values cannot map to the same *y* value.

We call such a function **one-to-one**, or **injective**.

Suppose $f(x) = \sqrt[3]{19 + x^3}$. What is $f^{-1}(3)$? (simplify your answer)

In order for a function to be invertible , different *x* values cannot map to the same *y* value.

We call such a function **one-to-one**, or **injective**.

Suppose
$$f(x) = \sqrt[3]{19 + x^3}$$
. What is $f^{-1}(3)$? (simplify your answer)

What is $f^{-1}(10)$? (do not simplify)

In order for a function to be invertible , different x values cannot map to the same y value.

We call such a function **one-to-one**, or **injective**.

Suppose $f(x) = \sqrt[3]{19 + x^3}$. What is $f^{-1}(3)$? (simplify your answer)

What is $f^{-1}(10)$? (do not simplify)

What is $f^{-1}(x)$?

In order for a function to be invertible , different *x* values cannot map to the same *y* value.

We call such a function **one-to-one**, or **injective**.

Suppose
$$f(x) = \sqrt[3]{19 + x^3}$$
. What is $f^{-1}(3)$? (simplify your answer) $f(2) = 3$, so $f^{-1}(3) = 2$

What is
$$f^{-1}(10)$$
? (do not simplify)
 $\sqrt[3]{19 + y^3} = 10$ tells us $f^{-1}(10) = \sqrt[3]{10^3 - 19}$

What is
$$f^{-1}(x)$$
?
 $\sqrt[3]{19 + y^3} = x$ tells us $f^{-1}(x) = \sqrt[3]{x^3 - 19}$

Let
$$f(x) = x^2 - x$$
.

- 1. Sketch a graph of f(x), and choose a (large) domain over which it is invertible.
- 2. For the domain you chose, evaluate $f^{-1}(20)$.
- 3. For the domain you chose, evaluate $f^{-1}(x)$.
- 4. What are the domain and range of $f^{-1}(x)$? What are the (restricted) domain and range of f(x)?

39/125

 $f^{-1}(20) =$

$$f^{-1}(20) = 5$$

$$20 = x^{2} - x$$

$$0 = x^{2} - x - 20 = (x - 5)(x + 4)$$

$$x = 5$$

$$f^{-1}(x) =$$

$$f^{-1}(x) =$$

$$f^{-1}(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$

$$a^{2} - a = x, \text{ find } a$$

$$a^{2} - a - x = 0$$

$$a = \frac{1 \pm \sqrt{1 + 4x}}{2}$$

$$f^{-1}(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$

$$f(x) = x^2 - x$$
, domain: $\left[\frac{1}{2}, \infty\right)$

$$f(x) = x^2 - x$$
, domain: $\left[\frac{1}{2}, \infty\right)$

$$f(x) = x^2 - x$$
, domain: $\left[\frac{1}{2}, \infty\right)$

$$f(x) = x^2 - x$$
, domain: $\left[\frac{1}{2}, \infty\right)$

$$f^{-1}(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$

▶ I'm thinking of an x. Your clue: f(x) = e. What is my x?

- ► I'm thinking of an x. Your clue: f(x) = e. What is my x?
- ▶ I'm thinking of an x. Your clue: f(x) = 1. What is my x?

- ▶ I'm thinking of an x. Your clue: f(x) = e. What is my x?
- ▶ I'm thinking of an x. Your clue: f(x) = 1. What is my x?
- ► I'm thinking of an x. Your clue: $f(x) = \frac{1}{e}$. What is my x?

- ► I'm thinking of an x. Your clue: f(x) = e. What is my x?
- ▶ I'm thinking of an x. Your clue: f(x) = 1. What is my x?
- ► I'm thinking of an x. Your clue: $f(x) = \frac{1}{e}$. What is my x?
- ► I'm thinking of an x. Your clue: $f(x) = e^3$. What is my x?

- ► I'm thinking of an x. Your clue: f(x) = e. What is my x?
- ▶ I'm thinking of an x. Your clue: f(x) = 1. What is my x?
- ► I'm thinking of an x. Your clue: $f(x) = \frac{1}{e}$. What is my x?
- ► I'm thinking of an x. Your clue: $f(x) = e^3$. What is my x?
- ▶ I'm thinking of an x. Your clue: f(x) = 0. What is my x?

- ► I'm thinking of an x. Your clue: f(x) = e. What is my x? x = 1
- ► I'm thinking of an x. Your clue: f(x) = 1. What is my x? x = 0
- ► I'm thinking of an x. Your clue: $f(x) = \frac{1}{e}$. What is my x? x = -1
- ► I'm thinking of an x. Your clue: $f(x) = e^3$. What is my x? x = 3
- ► I'm thinking of an x. Your clue: f(x) = 0. What is my x? Trick question: no x gives f(x) = 0.

$$f^{-1}(x) = \log_e x$$

- ► I'm thinking of an x. Your clue: f(x) = e. What is my x? x = 1
- ► I'm thinking of an x. Your clue: f(x) = 1. What is my x? x = 0
- ► I'm thinking of an x. Your clue: $f(x) = \frac{1}{e}$. What is my x? x = -1
- ► I'm thinking of an x. Your clue: $f(x) = e^3$. What is my x? x = 3
- ▶ I'm thinking of an x. Your clue: f(x) = 0. What is my x? Trick question: no x gives f(x) = 0.

Invertibility game: $f(x) = e^x$

$$f^{-1}(x) = \log_e x$$

- ► I'm thinking of an x. Your clue: f(x) = e. What is my x? $\frac{x}{x} = 1$ $\log_e(e) = 1$
- ► I'm thinking of an x. Your clue: f(x) = 1. What is my x? $\frac{x}{x} = 0$ $\log_{e}(1) = 0$
- ► I'm thinking of an x. Your clue: $f(x) = \frac{1}{e}$. What is my x? $\frac{x}{x} = -1$ $\log_e \left(\frac{1}{e}\right) = -1$
- ► I'm thinking of an x. Your clue: $f(x) = e^3$. What is my x? x = 3 $\log_e(e^3) = 3$
- ► I'm thinking of an x. Your clue: f(x) = 0. What is my x? Trick question: no x gives f(x) = 0.
 - $\log_e(x)$ is undefined at x = 0

1. Suppose 0 < x < 1. Then $\log_e(x)$ is...

2. Suppose -1 < x < 0. Then $\log_{e}(x)$ is...

3. Suppose e < x. Then $\log_e(x)$ is...

A. positiveB. negativeC. greater than oneD. less than oneE. undefined

$$f(x) = e^x$$
 $f^{-1}(x) = \log_e(x) = \ln(x) = \log(x)$

$$f(x) = e^x$$
 $f^{-1}(x) = \log_e(x) = \ln(x) = \log(x)$

$\boldsymbol{\chi}$	e^{x}	
0	1	
1	e	
-1	$\frac{1}{e}$	
n	e^n	

$$f(x) = e^x$$
 $f^{-1}(x) = \log_e(x) = \ln(x) = \log(x)$

\boldsymbol{x}	e^{x}	$e ext{ fact} \leftrightarrow \log_e ext{fact}$	x	$\log_e(x)$
0	1			
1	е			
-1	$\frac{1}{e}$			
n	e^n			

$$f(x) = e^x$$
 $f^{-1}(x) = \log_e(x) = \ln(x) = \log(x)$

\boldsymbol{x}	e^{x}	$e ext{ fact} \leftrightarrow \log_e ext{fact}$	x	$\log_e(x)$
0	1	$e^0 = 1 \leftrightarrow \log_e(1) = 0$	1	0
1	е			
-1	$\frac{1}{e}$			
n	e^n			

$$f(x) = e^x$$
 $f^{-1}(x) = \log_e(x) = \ln(x) = \log(x)$

	\boldsymbol{x}	e^{x}	$e \ fact \leftrightarrow \log_e fact$	x	$\log_e(x)$
_	0	1	$e^0 = 1 \leftrightarrow \log_e(1) = 0$	1	0
	1	е	$e^{1} = e \leftrightarrow \log_{e}(e) = 1$	e	1
	-1	$\frac{1}{a}$,	'	
	n	e^n			

$$f(x) = e^x$$
 $f^{-1}(x) = \log_e(x) = \ln(x) = \log(x)$

$\boldsymbol{\chi}$	e^{x}	$e ext{ fact} \leftrightarrow \log_e ext{fact}$	x	$\log_e(x)$
0	1	$e^0 = 1 \leftrightarrow \log_e(1) = 0$	1	0
1	е	$e^1 = e \leftrightarrow \log_e(e) = 1$	е	1
-1	$\frac{1}{e}$	$e^{-1} = \frac{1}{e} \leftrightarrow \log_e(\frac{1}{e}) = -1$	$\frac{1}{e}$	-1
n	e^n			

$$f(x) = e^x$$
 $f^{-1}(x) = \log_e(x) = \ln(x) = \log(x)$

\boldsymbol{x}	e^{x}	$e ext{ fact} \leftrightarrow \log_e ext{fact}$	x	$\log_e(x)$
0	1	$e^0 = 1 \leftrightarrow \log_e(1) = 0$	1	0
1	е	$e^{1} = e \leftrightarrow \log_{e}(e) = 1$	e	1
-1	$\frac{1}{e}$	$e^{-1} = \frac{1}{e} \leftrightarrow \log_e(\frac{1}{e}) = -1$	$\frac{1}{e}$	-1
n	e^n	$e^n = e^n \leftrightarrow \log_e(e^n) = n$	e^n	n

 $\log_{10} 10^8 =$

A. 0

B. 8

C. 10

D. other

 $\log_{10} 10^8 =$

A. 0

B. 8 ✓

C. 10

D. other

```
\log_{10} 10^8 =
```

- A. 0
- B. 8 ✓
- C. 10
- D. other

 $\log_2 16 =$

- A. 1
- B. 2
- C. 3
- D. other

```
\log_{10} 10^8 =
```

- A. 0
- B. 8 ✓
- C. 10
- D. other

$$\log_2 16 =$$

- A. 1
- B. 2
- C. 3
- D. other $\sqrt{2^4} = 16 \text{ so } \log_2 16 = 4$

Let *A* and *B* be positive, and let *n* be any real number. $log(A \cdot B) =$

$$\log(A \cdot B) = \log(A) + \log(B)$$

Proof:
$$\log(A \cdot B) = \log(e^{\log A}e^{\log B}) = \log(e^{\log A + \log B}) = \log(A) + \log(B)$$

$$\log(A \cdot B) = \log(A) + \log(B)$$

Proof:
$$\log(A \cdot B) = \log(e^{\log A}e^{\log B}) = \log(e^{\log A + \log B}) = \log(A) + \log(B)$$

$$\log(A/B) =$$

$$\log(A \cdot B) = \log(A) + \log(B)$$
Proof:
$$\log(A \cdot B) = \log(e^{\log A} e^{\log B}) = \log(e^{\log A + \log B}) = \log(A) + \log(B)$$

$$\log(A/B) = \log(A) - \log(B)$$

Proof:
$$\log(A/B) = \log\left(\frac{e^{\log A}}{e^{\log B}}\right) = \log(e^{\log A - \log B}) = \log A - \log B$$

$$\log(A \cdot B) = \log(A) + \log(B)$$
Proof:
$$\log(A \cdot B) = \log(e^{\log A} e^{\log B}) = \log(e^{\log A + \log B}) = \log(A) + \log(B)$$

$$\log(A/B) = \log(A) - \log(B)$$
Proof:
$$\log(A/B) = \log\left(\frac{e^{\log A}}{e^{\log B}}\right) = \log(e^{\log A - \log B}) = \log A - \log B$$

$$\log(A^n)$$

$$\begin{split} \log(A \cdot B) &= \log(A) + \log(B) \\ \text{Proof: } \log(A \cdot B) &= \log(e^{\log A} e^{\log B}) = \log(e^{\log A + \log B}) = \log(A) + \log(B) \\ \log(A/B) &= \log(A) - \log(B) \\ \text{Proof: } \log(A/B) &= \log\left(\frac{e^{\log A}}{e^{\log B}}\right) = \log(e^{\log A - \log B}) = \log A - \log B \\ \log(A^n) &= n \log(A) \end{split}$$

$$\log(A \cdot B) = \log(A) + \log(B)$$

$$\log(A/B) = \log(A) - \log(B)$$

$$\log(A^n) = n\log(A)$$

Let *A* and *B* be positive, and let *n* be any real number.

$$\log(A \cdot B) = \log(A) + \log(B)$$

$$\log(A/B) = \log(A) - \log(B)$$

$$\log(A^n) = n\log(A)$$

Write as a single logarithm:

$$f(x) = \log\left(\frac{10}{x^2}\right) + 2\log x + \log(10 + x)$$

$$\log(A \cdot B) = \log(A) + \log(B)$$
$$\log(A/B) = \log(A) - \log(B)$$
$$\log(A^n) = n \log(A)$$

$$f(x) = \log\left(\frac{10}{x^2}\right) + 2\log x + \log(10 + x)$$

$$= \log 10 - \log(x^2) + 2\log x + \log(10 + x)$$

$$= \log 10 - 2\log x + 2\log x + \log(10 + x)$$

$$= \log 10 + \log(10 + x) = \log(10(10 + x))$$

$$= \log(100 + 10x)$$

BASE CHANGE

Fact: $b^{\log_b(a)} = a$

BASE CHANGE

Fact:
$$b^{\log_b(a)} = a$$

 $\Rightarrow \log(b^{\log_b(a)}) = \log(a)$
 $\Rightarrow \log_b(a) \log(b) = \log(a)$
 $\Rightarrow \log_b(a) = \frac{\log(a)}{\log(b)}$

BASE CHANGE

Fact:
$$b^{\log_b(a)} = a$$

 $\Rightarrow \log(b^{\log_b(a)}) = \log(a)$
 $\Rightarrow \log_b(a) \log(b) = \log(a)$
 $\Rightarrow \log_b(a) = \frac{\log(a)}{\log(b)}$

In general, for positive *a*, *b*, and *c*:

$$\log_b(a) = \frac{\log_c(a)}{\log_c(b)}$$

In general, for positive *a*, *b*, and *c*:

$$\log_b(a) = \frac{\log_c(a)}{\log_c(b)}$$

Suppose your calculator can only compute logarithms base 10. What would you enter to calculate log(17)?

Suppose your calculator can only compute natural logarithms. What would you enter to calculate $\log_2(57)$?

Suppose your calculator can only compute logarithms base 2. What would you enter to calculate $\log(2)$?

In general, for positive *a*, *b*, and *c*:

$$\log_b(a) = \frac{\log_c(a)}{\log_c(b)}$$

Suppose your calculator can only compute logarithms base 10. What would you enter to calculate $\log(17)$? $\frac{\log_{10}(17)}{\log_{10}(e)}$

Suppose your calculator can only compute natural logarithms. What would you enter to calculate $\log_2(57)$? $\frac{\log(57)}{\log(2)}$

Suppose your calculator can only compute logarithms base 2. What would you enter to calculate $\log(2)$? $\frac{\log_2 2}{\log_2 e} = \frac{1}{\log_2 e}$

Decibels: For a particular measure of the power *P* of a sound wave, the decibels of that sound is:

$$10\log_{10}(P)$$

So, every ten decibels corresponds to a sound being ten **times** louder.

Decibels: For a particular measure of the power *P* of a sound wave, the decibels of that sound is:

$$10\log_{10}(P)$$

So, every ten decibels corresponds to a sound being ten times louder.

A lawnmower emits a 100dB sound. How much sound will two lawnmowers make?

- A. 100 dB
- B. 110 dB
- C. 200 dB
- D. other

Decibels: For a particular measure of the power *P* of a sound wave, the decibels of that sound is:

$$10\log_{10}(P)$$

So, every ten decibels corresponds to a sound being ten times louder.

A lawnmower emits a 100dB sound. How much sound will two lawnmowers make?

- A. 100 dB
- B. 110 dB
- C. 200 dB
- D. other \checkmark more than 100, less than 110

TABLE OF CONTENTS

Calculate $\frac{d}{dx} \{ \log_e x \}$.

Calculate $\frac{d}{dx} \{ \log_e x \}$. One Weird Trick:

$$x = e^{\log_e x}$$

Calculate $\frac{d}{dx} \{ \log_e x \}$. One Weird Trick:

$$x = e^{\log_e x}$$

$$\frac{d}{dx} \{x\} = \frac{d}{dx} \{e^{\log_e x}\}$$

$$1 = e^{\log_e x} \cdot \frac{d}{dx} \{\log_e x\} = x \cdot \frac{d}{dx} \{\log_e x\}$$

$$\frac{1}{x} = \frac{d}{dx} \{\log_e x\}$$

Calculate $\frac{d}{dx} \{ \log_e x \}$.

Derivative of Natural Logarithm – Theorem 2.10.1

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\log_e x\} = \frac{1}{x} \qquad (x > 0)$$

Calculate $\frac{d}{dx} \{ \log_e x \}$.

Derivative of Natural Logarithm – Theorem 2.10.1

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\log_e x\} = \frac{1}{x} \qquad (x > 0)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left\{\log_e|x|\right\} =$$

Calculate $\frac{d}{dx} \{ \log_e x \}$.

Derivative of Natural Logarithm – Theorem 2.10.1

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\log_e x\} = \frac{1}{x} \qquad (x > 0)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left\{ \log_e |x| \right\} = \frac{1}{x} \qquad (x \neq 0)$$

Derivative of Natural Logarithm

$$\frac{\mathrm{d}}{\mathrm{d}x} \left\{ \log_e |x| \right\} = \frac{1}{x} \qquad (x \neq 0)$$

Differentiate: $f(x) = \log_e |x^2 + 1|$

Derivative of Natural Logarithm

$$\frac{\mathrm{d}}{\mathrm{d}x}\left\{\log_e|x|\right\} = \frac{1}{x} \qquad (x \neq 0)$$

Differentiate: $f(x) = \log_e |x^2 + 1|$

We use the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left\{ \log_e \left| \boxed{x^2 + 1} \right| \right\} = \frac{1}{x^2 + 1} \cdot (2x)$$
$$= \frac{2x}{x^2 + 1}$$

Derivatives of Logarithms – Corollary 2.10.6

For a > 0:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\log_a|x|] = \frac{1}{x\log a}$$

In particular:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\log|x|] = \frac{1}{x}$$

Derivatives of Logarithms – Corollary 2.10.6

For a > 0:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\log_a|x|] = \frac{1}{x\log a}$$

In particular:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\log|x|] = \frac{1}{x}$$

Differentiate: $f(x) = \log_e |\cot x|$

Derivatives of Logarithms – Corollary 2.10.6

For a > 0:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\log_a|x|] = \frac{1}{x\log a}$$

In particular:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\log|x|] = \frac{1}{x}$$

Differentiate: $f(x) = \log_e |\cot x|$

We use the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\log_e\left|\cot x\right|] = \frac{1}{\cot x} \cdot \left(-\csc^2 x\right) = \frac{-\csc^2 x}{\cot x}$$

$$\blacktriangleright \log\left(\frac{f}{g}\right) = \log f - \log g$$

$$\blacktriangleright \log (f^g) = g \log f$$

- ► $\log(f \cdot g) = \log f + \log g$ multiplication turns into addition
- ▶ $\log\left(\frac{f}{g}\right) = \log f \log g$ division turns into subtraction
- ▶ $\log(f^g) = g \log f$ exponentiation turns into multiplication

- ► $\log(f \cdot g) = \log f + \log g$ multiplication turns into addition
- ▶ $\log\left(\frac{f}{g}\right) = \log f \log g$ division turns into subtraction
- ▶ $\log(f^g) = g \log f$ exponentiation turns into multiplication

We can exploit these properties to differentiate!

In general, if
$$f(x) \neq 0$$
, $\frac{d}{dx} [\log |f(x)|] = \frac{f'(x)}{f(x)}$.

$$f(x) = \left(\frac{(2x+5)^4(x^2+1)}{x+3}\right)^5$$

Find f'(x).

$$f(x) = \left(\frac{(2x+5)^4(x^2+1)}{x+3}\right)^5$$

$$f(x) = \left(\frac{(2x+5)^4(x^2+1)}{x+3}\right)^5$$

$$\log(f(x)) = \log\left[\left(\frac{(2x+5)^4(x^2+1)}{x+3}\right)^5\right]$$

$$= 5\log\left[\frac{(2x+5)^4(x^2+1)}{x+3}\right]$$

$$= 5\left[4\log(2x+5) + \log(x^2+1) - \log(x+3)\right]$$

$$\frac{f'(x)}{f(x)} = 5\left[4\frac{2}{2x+5} + \frac{2x}{x^2+1} - \frac{1}{x+3}\right]$$

$$f'(x) = \left(\frac{(2x+5)^4(x^2+1)}{x+3}\right)^5 \cdot 5\left[4\frac{2}{2x+5} + \frac{2x}{x^2+1} - \frac{1}{x+3}\right]$$

Differentiate:

$$f(x) = x^x$$

Differentiate:

$$f(x) = x^x$$

$$\log(f(x)) = \log [x^x]$$

$$= x \log x$$

$$\frac{f'(x)}{f(x)} = x \cdot \frac{1}{x} + \log x \cdot 1$$

$$= 1 + \log x$$

$$f'(x) = x^x [1 + \log x]$$

Differentiate:

$$f(x) = \left(\frac{(x^{15} - 9x^2)^{10}(x + x^2 + 1)}{(x^7 + 7)(x + 1)(x + 2)(x + 3)}\right)^5$$

Differentiate:

0.6: Inverse Functions

$$f(x) = \left(\frac{(x^{15} - 9x^2)^{10}(x + x^2 + 1)}{(x^7 + 7)(x + 1)(x + 2)(x + 3)}\right)^5$$

$$\begin{split} \log(f(x)) &= \log \left[\left(\frac{(x^{15} - 9x^2)^{10}(x + x^2 + 1)}{(x^7 + 7)(x + 1)(x + 2)(x + 3)} \right)^5 \right] \\ &= 5 \log \left[\frac{(x^{15} - 9x^2)^{10}(x + x^2 + 1)}{(x^7 + 7)(x + 1)(x + 2)(x + 3)} \right] \\ &= 5 \left[10 \log \left(x^{15} - 9x^2 \right) + \log(x + x^2 + 1) - \log(x^7 + 7) - \log(x + 1) - \log(x + 2) - \log(x + 3) \right] \\ \frac{f'(x)}{f(x)} &= 5 \left[10 \frac{15x^{14} - 18x}{x^{15} - 9x^2} + \frac{1 + 2x}{x + x^2 + 1} - \frac{7x^6}{x^7 + 7} - \frac{1}{x + 1} - \frac{1}{x + 2} - \frac{1}{x + 3} \right] \\ f'(x) &= \left(\frac{(x^{15} - 9x^2)^{10}(x + x^2 + 1)}{(x^7 + 7)(x + 1)(x + 2)(x + 3)} \right)^5 \cdot 5 \left[10 \frac{15x^{14} - 18x}{x^{15} - 9x^2} + \frac{1 + 2x}{x + x^2 + 1} - \frac{7x^6}{x^7 + 7} - \frac{1}{x + 1} - \frac{1}{x + 2} - \frac{1}{x + 3} \right] \end{split}$$

$$f(x) = \frac{(x^8 - e^x)(\sqrt{x} + 5)}{\csc^5 x}$$

$$f(x) = \frac{(x^8 - e^x)(\sqrt{x} + 5)}{\csc^5 x}$$

$$\frac{(x^8 - e^x)(\sqrt{x} + 5)}{\csc^5 x} = f(x)$$

$$\log \left| \frac{(x^8 - e^x)(\sqrt{x} + 5)}{\csc^5 x} \right| = \log |f(x)|$$

$$\left[\log |x^8 - e^x| + \log |x^{1/2} + 5| - 5\log |\csc x| \right] = \log |f(x)|$$

$$\frac{d}{dx} \left[\log |x^8 - e^x| + \log |x^{1/2} + 5| - 5\log |\csc x| \right] = \frac{d}{dx} \log |f(x)|$$

$$\frac{8x^7 - e^x}{x^8 - e^x} + \frac{\frac{1}{2}x^{-1/2}}{x^{1/2} + 5} - 5 \frac{-\csc x \cot x}{\csc x} = \frac{f'(x)}{f(x)}$$

$$\frac{(x^8 - e^x)(\sqrt{x} + 5)}{\csc^5 x} \left(\frac{8x^7 - e^x}{x^8 - e^x} + \frac{\frac{1}{2}x^{-1/2}}{x^{1/2} + 5} + 5 \frac{\csc x \cot x}{\csc x} \right) = f'(x)$$

2.10: Natural Log

$$f(x) = (x^2 + 17)(32x^5 - 8)(x^{98} - x^{57} + 32x^2)^4(32x^{10} - 10x^{32})$$

Find f'(x).

$$f(x) = (x^2 + 17)(32x^5 - 8)(x^{98} - x^{57} + 32x^2)^4(32x^{10} - 10x^{32})$$

Find f'(x).

$$(x^{2} + 17)(32x^{5} - 8)(x^{98} - x^{57} + 32x^{2})^{4}(32x^{10} - 10x^{32}) = f(x)$$

$$\log \left| (x^{2} + 17)(32x^{5} - 8)(x^{98} - x^{57} + 32x^{2})^{4}(32x^{10} - 10x^{32}) \right| = \log |f(x)|$$

$$\log |x^{2} + 17| + \log |32x^{5} - 8| + 4\log |x^{98} - x^{57} + 32x^{2}| + \log |32x^{10} - 10x^{32}| = \log |f(x)|$$

$$\frac{d}{dx} \left[\log |x^{2} + 17| + \log |32x^{5} - 8| + 4\log |x^{98} - x^{57} + 32x^{2}| + \log |32x^{10} - 10x^{32}| \right] = \frac{d}{dx} [\log |f(x)|]$$

$$\frac{2x}{x^{2} + 17} + \frac{160x^{4}}{32x^{5} - 8} + 4\frac{98x^{97} - 57x^{56} + 64x}{x^{98} - x^{57} + 32x^{2}} + \frac{320x^{9} - 320x^{31}}{32x^{10} - 10x^{32}} = \frac{f'(x)}{f(x)}$$

$$\left((x^{2} + 17)(32x^{5} - 8)(x^{98} - x^{57} + 32x^{2})^{4}(32x^{10} - 10x^{32}) \right) \cdot$$

$$\left(\frac{2x}{x^{2} + 17} + \frac{160x^{4}}{32x^{5} - 8} + 4\frac{98x^{97} - 57x^{56} + 64x}{x^{98} - x^{57} + 32x^{2}} + \frac{320x^{9} - 320x^{31}}{32x^{10} - 10x^{32}} \right) = f'(x)$$

Included Work

-	Anonymous. (2012) Decibel Scale of Frequently Heard Sounds.	
	<pre>Biology Forums. http://biology-forums.com/index.php?</pre>	
		, 97
	'Slide rule - KEUFFEL & ESSER CO. N.Y.' by s58y is licensed under	
	CC BY 2.0 (accessed 20 July 2021)	, 115

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 37, 115