EE263 Autumn 2015 S. Boyd and S. Lall

Ellipsoids

- ▶ ellipsoids
- ▶ ellipsoids in estimation

Ellipsoids

if
$$A = A^{\mathsf{T}} > 0$$
, the set

$$\mathcal{E} = \{ \ x \mid x^{\mathsf{T}} A x \le 1 \ \}$$

is an *ellipsoid* in \mathbb{R}^n , centered at 0

Ellipsoids

semi-axes are given by $s_i = \lambda_i^{-1/2} q_i$, i.e.:

- eigenvectors determine directions of semiaxes
- eigenvalues determine lengths of semiaxes

note:

- ▶ in direction q_1 , x^TAx is *large*, hence ellipsoid is *thin* in direction q_1
- ▶ in direction q_n , x^TAx is *small*, hence ellipsoid is *fat* in direction q_n
- $ightharpoonup \sqrt{\lambda_{\mathsf{max}}/\lambda_{\mathsf{min}}}$ gives maximum *eccentricity*

 $\text{if } \tilde{\mathcal{E}} = \{ \ x \mid x^\mathsf{T} B x \leq 1 \ \} \text{, where } B > 0 \text{, then } \mathcal{E} \subseteq \tilde{\mathcal{E}} \iff A \geq B$

Ellipsoids in estimation

ightharpoonup if y = Ax then $||y||^2 = x^T A^T Ax$ so

$$\left\{\left.x\in\mathbb{R}^{n}\mid\boldsymbol{x}^{T}\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x}\leq1\right.\right\} \quad\text{ maps into }\quad\left\{\left.y\in\mathbb{R}^{m}\mid\|\boldsymbol{y}\|\leq1\right.\right\}$$

- ightharpoonup assume A is skinny and full rank, then A^TA is positive definite
- ▶ $\sigma_i^2 = i$ th eigenvalue of $A^T A$; convention $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$, called singular values of A
- v_i is unit eigenvector of A^TA corresponding to σ_i
- $\blacktriangleright u_i = \frac{1}{\sigma_i} A v_i$, are orthogonal

Ellipsoids in estimation

- ▶ short axis of ellipsoid (eigenvector v_1 corresponding $\lambda_{\max}(A^TA)$) is stretched most by sensing.
- ▶ long axis of ellipsoid (eigenvector v_n corresponding $\lambda_{\min}(A^TA)$) is *stretched least* by sensing.

therefore

- ightharpoonup small changes to x in the direction v_1 cause large changes in sensor readings y; sensors are *highly sensitive*
- ightharpoonup small changes to x in the direction v_n cause small changes in sensor readings y; sensors are *insensitive*

Example: Navigation

here $A \in \mathbb{R}^{4 \times 2}$ with

$$A = \begin{bmatrix} b_1^T \\ b_2^T \\ b_3^T \\ b_4^T \end{bmatrix}$$

and y = Ax. Each b_i is a unit vector.

- ▶ x is unknown.
- lacksquare y is measured, with y_i the component of x in the direction b_i
- ▶ the ellipsoid is the set of $x \in \mathbb{R}^2$ which result in $||y|| \le 1$
- lacktriangle plot shows contours of $\|y\|$, i.e., contours of $\sqrt{x^TA^TAx}$

Example: Row interpretation

$$A = \begin{bmatrix} b_1^T \\ b_2^T \end{bmatrix} = \begin{bmatrix} 0.5 & 1 \\ 0.25 & 1 \end{bmatrix}$$

 v_1 and v_2 are eigenvectors of $A^T A$ with corresponding singular values

$$\sigma_1 \approx 1.5117$$
 $\sigma_2 \approx 0.1654$

sensors are approx 10 times more sensitive to changes in x in the v_1 direction than in v_2 direction.