VPS Customer churn prediction - Part 2

JG Pardyak

03-9-2021

Introduction

Apache Spark

Machine Learning

Further steps

Motivation

This is the continuation of the presentations:

- https://github.com/JacekPardyak/vps/blob/master/vps-part-1.pdf ,
- https://github.com/JacekPardyak/vps/blob/master/vps-part-2.pdf ,
- https://github.com/JacekPardyak/vps/blob/master/vps-part-3.pdf.

In this presentation we:

demonstrate how to use sparklyr R interface for Apache Spark

Apache Spark

Setting up Spark connection

#spark_disconnect(sc)

```
library(tidyverse)
library(sparklyr)
spark_install(version = "3.1")
sc <- spark_connect(master = "local")
connection_is_open(sc)
## [1] TRUE</pre>
```

Copy local data frames to a remote src vps <- read_csv("./data/vps_churn_data.txt")

Rows: 283 Columns: 23

Delimiter: "."

Delimiter: "."

lgl (1): is_churn

dbl (22): id, cpu_load_mean_m_3, disk_octets_read_mean_r

-- Column specification ------

dbl (23): id, cpu_load_mean_m_3, disk_octets_read_mean_r

Plot some data from Spark

`geom_smooth()` using method = 'loess' and formula 'y ~ network_rx_max_gradient

disk octets write mean m 3

Plot some other data from Spark

`geom_smooth()` using method = 'loess' and formula 'y ~
Warning: Removed 1 rows containing non-finite values (s-

Data with outliers

Outliers removal

```
var = 'disk_octets_write_mean_m_3'
tbl <- tbl(sc, 'vps') %>% select('id', all of(var)) %>% col
summary(tbl)
##
   id
                   disk octets write mean m 3
## Min. :100.0 Min. : 0.0000
## 1st Qu.:170.5 1st Qu.: 0.5245
## Median :241.0 Median : 1.0526
## Mean :241.0 Mean : 3.2483
## 3rd Qu.:311.5 3rd Qu.: 2.0462
## Max. :382.0 Max. :113.3633
Q <- tbl %>% select(!! sym(var)) %>% pull() %>% quantile(p
iqr <- tbl %>% select(!! sym(var)) %>% pull() %>% IQR()
\#up \leftarrow Q[2]+1.5*igr \# Upper Range
#low < - Q[1] - 1.5 * igr # Lower Range
proper \leftarrow tbl %>% filter((!! sym(var) > (Q[1] - 1.5*iqr) &
```

Data without outliers

Using SQL

_				
##		id	cpu_load_mean_m_3	disk_octets_read_mean_m_3 disk
##	1	100	13.379892	38.82583205
##	2	101	16.902043	0.00328473
##	3	102	248.935914	19.37152776
##	4	103	14.054194	0.10182502
##	5	104	85.793333	15.49345957
##	6	105	39.394301	11.36519674
##	7	106	1.288280	0.00176921
##	8	107	79.788387	27.30295340
##	9	108	68.253118	18.10863666
##	10	109	8.866774	1.17613777
##		disk	c_ops_read_mean_m_3	disk_ops_write_mean_m_3 network
##	1		336.69720430	6.770323
##	2		0.08150538	2.793979
##	3		213.16032260	194.558280
##	4		2.18870968	9.634839
##	5		280.23193550	9.595376

55.020000

793.13655910

Random forest, all vars, evaluation on training data

1 21 114

```
rf model <- vps tbl %>%
 ml_random_forest(is_churn ~ ., type = "classification")
rf_predict <- ml_predict(rf_model, vps_tbl) %>%
 ft string indexer("is churn", "is churn idx") %>% collect
table(rf_predict$is_churn_idx, rf_predict$prediction)
##
##
## 0 139 9
```

Random forest, all vars, evaluation on test data

0 39 22 ## 1 28 24

```
partitions <- tbl(sc, "vps") %>%
  sdf random split(training = 0.6, test = 0.4, seed = 888)
rf model <- partitions$training %>%
 ml random forest(is churn ~ ., type = "classification")
rf_predict <- ml_predict(rf_model, partitions$test) %>%
 ft_string_indexer("is_churn", "is_churn_idx") %>%
  collect
table(rf_predict$is_churn_idx, rf_predict$prediction)
##
##
```

Correlations

network rx mean m 3-

```
## Warning: package 'corrr' was built under R version 4.1.
## New names:
## * `` -> ...1
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * ...
##
## Correlation method: 'pearson'
## Missing treated using: 'pairwise.complete.obs'
## Don't know how to automatically pick scale for object of
      cpu_load_mean_m_3-
   disk octets read mean m 3 -
   disk_octets_write_mean_m_3-
    disk_ops_read_mean_m_3 -
    disk_ops_write_mean_m_3 -
```

Random forest, chosen vars, evaluation on test data features <- c("cpu load mean m 3",

"disk_octets_read_mean_m_3", "disk_octets_write_mean_m_3", "disk ops read mean m 3", "disk ops write mean m 3", "network_rx_mean_m_3", "network tx mean m 3", "cpu load monthly mean delta", "network tx monthly mean delta", "network rx monthly mean delta", "disk_ops_read_monthly_mean_delta", "disk_ops_write_monthly_mean_delta", "disk_octets_write_monthly_mean_delta", "disk_octets_read_monthly_mean_delta", "cpu_load_max_gradient", "disk_octets_read_max_gradient", "disk_octets_write_max_gradient", "disk_ops_read_max_gradient",

Further steps

discuss with domain experts: outliers detected, crossing variables for feature engineering