

CSC 384 Introduction to Artificial Intelligence

CSP 3

Alice Gao and Randy Hickey
Winter 2023

Learning Goals

By the end of this lecture, you should be able to

- Trace the execution of the AC-3 algorithm.
- Trace the execution of Backtracking Search and AC-3.
- Explain why we must add arcs back to the queue in the AC-3 algorithm.
- Explain the properties of the AC-3 algorithm (order of removing arcs, three outcomes of the algorithm, guaranteed to terminate).

Outline

- 1. The AC-3 Algorithm
- 2. Properties of the AC-3 Algorithm
- 3. Backtracking Search with AC-3

THE AC-3 ALGORITHM

Types of Constraints

Unary constraints (over 1 variable)

Examples:
$$c(x)$$
: $x = 2$; $c(y)$: $y > 5$

Binary constraints (over 2 variables)

Examples:
$$c(x, y)$$
: $x + y < 6$

- Higher-order (n-ary) constraints (over ≥ 3 variables)
- Possible to convert any higher-order constraint to a binary constraint by defining "dummy" variables.

AC-3 Arc-Consistency Algorithm (Flowchart)

AC-3 Arc-Consistency Algorithm (Pseudocode)

```
1. function AC-3(csp)
   # returns false if an inconsistency is found and true
   otherwise
     inputs: csp, a binary CSP with components (X, D, C)
3.
   local variables: queue, a queue of arcs, initially all
   the arcs in csp
5 -
6. add all the arcs to the queue
     while queue is not empty do
7.
          \langle X_i, X_i \rangle \leftarrow REMOVE-FIRST(queue)
8.
          if REVISE(csp, X_i, X_j) then
9.
               if D_i is empty then
10.
11.
                   return false
12.
               for each X_k in X_i.NEIGHBORS - \{X_i\} do
13.
                   add \langle X_k, X_i \rangle to queue
14.
      return true
```

Revise Domain to Restore Arc-Consistency

- 1. function REVISE(csp, X, Y)
- 2. revised ← false
- 3. for each v in D_x do
- 4. if no value w in D_y allows (v,w) to satisfy the constraint between X and Y then
- 5. delete v from D_x
- 6. revised ← true
- 7. return revised

Queue: $\langle x_1, x_2 \rangle$, $\langle x_2, x_1 \rangle$, $\langle x_3, x_1 \rangle$, $\langle x_2, x_3 \rangle$, $\langle x_1, x_3 \rangle$, $\langle x_3, x_2 \rangle$

Step 1		
Arc removed		
Values deleted		
Arc(s) added		

Queue: $\langle x_1, x_2 \rangle$, $\langle x_2, x_1 \rangle$, $\langle x_3, x_1 \rangle$, $\langle x_2, x_3 \rangle$, $\langle x_1, x_3 \rangle$, $\langle x_3, x_2 \rangle$

Step 1		
Arc removed	$< x_1, x_2 >$	
Values deleted		
Arc(s) added		

Step 1: Restore Arc Consistency

How can we make the arc below consistent?

$$< x_1, x_2 > (or < x_1, c(x_1, x_2) >)$$

- A. It is already consistent.
- B. Remove 2 from D_1 .
- C. Remove 3 from D_1 .
- D. Remove 2 and 3 from D_1 .
- E. Remove 1 from D_2 .
- F. Remove 3 from D_2 .
- G. Remove 1 and 3 from D_2 .

Queue: $\langle x_1, x_2 \rangle$, $\langle x_2, x_1 \rangle$, $\langle x_3, x_1 \rangle$, $\langle x_2, x_3 \rangle$, $\langle x_1, x_3 \rangle$, $\langle x_3, x_2 \rangle$ $\langle x_0 \rangle = 0, D_1 = \{2, 3\}, D_2 = \{1, 3\}, D_3 = \{1, 2\}$

Step	Arc removed	Values to delete	Updated Domains	Arc(s) added

Why Do We Need to Add Arcs back to Queue?

Removing a value from a variable's domain may cause other arcs to become inconsistent.

After reducing X_i 's domain to restore consistency for $< X_i, X_i >$,

Add any arc $\langle X_k, X_i \rangle$ to the queue where

- X_k is a neighbour of X_i , and
- $X_k \neq X_j$.

Queue: $\langle x_1, x_3 \rangle$, $\langle x_2, x_3 \rangle$, $\langle x_3, x_2 \rangle$, $\langle x_2, x_1 \rangle$, $\langle x_3, x_1 \rangle$, $\langle x_1, x_2 \rangle$

Step 1		
Arc removed		
Values deleted		
Arc(s) added		

Queue: $\langle x_2, x_3 \rangle$, $\langle x_3, x_2 \rangle$, $\langle x_2, x_1 \rangle$, $\langle x_3, x_1 \rangle$, $\langle x_1, x_2 \rangle$

Step 2		
Arc removed		
Values deleted		
Arc(s) added		

Queue: $\langle x_3, x_2 \rangle$, $\langle x_2, x_1 \rangle$, $\langle x_3, x_1 \rangle$, $\langle x_1, x_2 \rangle$

Step 3		
Arc removed		
Values deleted		
Arc(s) added		

Queue: $\langle x_2, x_1 \rangle$, $\langle x_3, x_1 \rangle$, $\langle x_1, x_2 \rangle$

Step 4		
Arc removed		
Values deleted		
Arc(s) added		

PROPERTIES OF AC-3 ALGORITHM

Properties of AC-3 Algorithm

Order of removing arcs.

Outcomes of AC-3 algorithm.

Guaranteed to terminate? Complete?

Order of Removing Arcs

Does the order of removing arcs affect the outcome of AC-3?

No. The "queue" should really be called a "set."

What are three outcomes of AC-3 algorithm?

1.

2.

3.

Is AC-3 Guaranteed to Terminate?

A. Yes.

B. No.

Why or why not?

BACKTRACKING SEARCH WITH AC-3

Backtracking Search w/ AC-3

Extra Example 1: Execute AC-3 Algorithm

Queue:
$$\langle x_2, x_1 \rangle$$
, $\langle x_3, x_1 \rangle$, $\langle x_3, x_2 \rangle$, $\langle x_1, x_2 \rangle$, $\langle x_1, x_3 \rangle$, $\langle x_2, x_3 \rangle$
 $\langle x_0 \rangle = 1$, $\langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle$, $\langle x_2, x_3 \rangle = \langle x_1, x_2 \rangle$

Step	Arc removed	Values to delete	Updated Domains	Arc(s) added
1				
2				
3				
4				
5				
6				