

COMP3055 Machine Learning

Topic 5 – Machine Learning Theory and Practice

Ying Weng 2024 Autumn

Motivating Example

Polynomial Curve Fitting

Plot of a training data set of N=10 points, each comprising an observation of the input variable x along with the corresponding target variable t. The green curve shows the function $sin(2\pi x)$ used to generate the data. Our goal is to predict the value of t for some new value of t, without knowledge of the green curve.

Classification VS Regression

Classification
predict a label (discrete value)

Regression
predict a response (continuous value)

Regression Problem

- $X \equiv (x_1, ..., x_N)^T$, $T \equiv (t_1, ..., t_N)^T$
- Training set is generated with $t_n = sin(2\pi x_n) + b_n$, n = 1,2,...,N, where b_n is random noise having a Gaussian Distribution.
- **Goal**: predict the target value of t for some new input value $x \rightarrow$ implicitly trying to discover the underlying function $sin(2\pi x_n)$.
- Generalize from a finite data set (N=10)
- Uncertainty: the observed data are corrupted with noise.

Polynomial Function

 We fit the training data using a polynomial function (linear models) of the form:

$$y(x, \mathbf{w}) = w_0 + w_1 x^1 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

• Where M is the order of the polynomial (degree of freedom), and the polynomial coefficients w_0, w_1, \dots, w_M are collectively denoted by the vector \boldsymbol{w}

Solve a Polynomial Function

Target: find the values of polynomial coefficients

- Step 1: Fit the polynomial to the training data
- Step 2: minimize the *error* function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Where E(w) measures the misfit between the function y(x, w) and the training set data points

½ is included for later convenience. E(w)=0 if and only if the function y(x,w) were to pass exactly through each training data point. The error function is a quadratic function of w, there is only one solution.

Model Selection

Choosing order *M* of the polynomial

Model Selection

- Goal: achieve good generalization by making accurate predictions for new data.
- We use Root-mean-square (RMS) error on data

$$E_{RMS} = \sqrt{2E(w^*)/N}$$

- Where N allows us to compare different sizes of data set, and w^* is the solution of minimizing E(w) (hypothesis).
- It measures how well the model w^* doing in predicting the values of t for new data observations of x.

Overfitting

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$w_3^{ar{\star}}$			17.37	48568.31
w_4^\star				-231639.30
$w_5^{ar{\star}}$				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Overfitting

Overfitting can occur when:

- Learning is performed for too long (e.g. in Neural Networks).
- The examples in the training set are not representative of all possible situations (is usually the case!).
- Model parameters are adjusted to uninformative features in the training set that have no causal relation to the true underlying target function!

Overfitting

Increasing the size of the data set reduces the overfitting problem.

Regularization

 Regularization can control the overfitting phenomenon, by adding penalty term to the error function to discourage the coefficients from reaching large values.

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \frac{\lambda}{2} \| w \|^2$$

• Where $\|w\|^2 \equiv w^T w = w_0^2 + w_1^2 + \dots + w_M^2$, and the coefficient λ governs the relative importance of the regularization term compared with the sum-of-squares error term.

Regularization

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$	Training
w_0^{\star}	0.35	0.35	0.13	Test
w_1^\star	232.37	4.74	-0.05	1001
w_2^\star	-5321.83	-0.77	-0.06	
$w_3^\star \ w_4^\star$	48568.31	-31.97	-0.05	SS -
w_4^\star	-231639.30	-3.89	-0.03	$\begin{array}{c} E_{\rm RWS} \\ \hline \end{array}$
w_5^\star	640042.26	55.28	-0.02	
w_6^\star	-1061800.52	41.32	-0.01	
w_7^\star	1042400.18	-45.95	-0.00	
w_8^{\star}	-557682.99	-91.53	0.00	
w_9^\star	125201.43	72.68	0.01	0
				-35 -30 $\ln \lambda$ -25 -20

- Table of the coefficients w^* for M=9 polynomials with various values for the regularization parameter λ .
- λ controls the *effective complexity* of the model and hence determines the *degree of overfitting*

Cross Validation

 Idea #1: Choose hyperparameters that work best on the data

Your Dataset

 Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

 Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

train	validation	test
-------	------------	------

Cross Validation

 Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Cross Validation

- Cross Validation is often used to counter overfitting.
- Partition the dataset into S groups, with (S-2) training sets, a validation set and a testing set.
 - The training set is used to determine the coefficients w
 - The validation set is used to optimize the model complexity (hyperparameters, either M or λ in the previous example)
 - The testing set is used to evaluate the final selected mode
- The procedure is then repeated for all S possible choices, the performance scores from the S runs are then averaged.

Evaluation procedure

- For large datasets, a single split is usually sufficient.
- For smaller datasets, rely on cross validation

Cross validation procedure

- Split the data into training, validation and test sets in a repeated fashion.
- Estimate the total error as the average of each fold error.

Classification Measures - Error Rate

- Common performance measure for classification problems
 - Success: instance's class is predicted correctly (True Positives (TP) / Negatives (TN))
 - Error: instance's class is predicted incorrectly (False Positives (FP) /Negatives (FN))
 - False positives Type I error. False Negative Type II error
- Classification error rate: proportion of instances misclassified over the whole set of instances

a.k.a, accuracy

Accuracy = 1 - Error Rate

Classification Error Rate on the Training Set can be too optimistic!

Unbalanced data

 Balanced set: (roughly) equal number of positive / negative examples:

Classifier	TP	TN	FP	FN	Recall Rate
A	25	25	25	25	50%
В	37	37	13	13	74%

Recall = TP/(TP+FN)

Unbalanced data

Unbalanced set: unequal number of positive / negative examples

Classifier	TP	TN	FP	FN	Recall Rate
A	25	75	75	25	50%
В	0	150	0	50	0%

Classifier B cannot predict any positive examples!

Recall = TP/(TP+FN)

Classification Measures

- Error Rate (Accuracy)
- Precision/Recall
- F-measure
- ROC curve
- Confusion matrix
- •

Recall/Precision

- B: Number of positive examples not retrieved
- A: Number of positive examples retrieved

RECALL: $\frac{A}{A+B} \times 100\%$

- C: Number of negative examples retrieved
- A: Number of positive examples retrieved

PRECISION: $\frac{A}{A+C} \times 100\%$

More insight over a classifier's behavior

For the positive class:

Classifier A: Recall = 50%, Precision = 25%

Classifier B: Recall = 0%, Precision = 0%

Classifier B is useless!

F-measure

- Comparing different approaches is difficult when using multiple evaluation measures (e.g. Recall and Precision)
- F-measure combines recall and precision into a single measure:

$$f_{eta} = (1+eta^2) rac{P ext{Recall}}{(eta^2 P) + R}$$

 β is a non-negative real values

We often use f1 measure.

ROC curves

Receiver Operator Characteristic (ROC) curves plot TP vs FP rates

- Can be achieved by e.g. varying decision threshold of a classifier
- Area under the curve is often used as measure of goodness

Confusion matrix

- A visualization tool used to present the results attained by a learner.
- Easy to see if the system is commonly mislabeling one class as another.

Predicted	A	В	C
True			
A	5	3	0
В	2	3	1
C	0	2	11

 As dimension D increases, the number of independent coefficients grows proportionally

$$y(x, \mathbf{w}) = w_0 + w_1 x^1 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$y(x, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k \dots$$

 The amount of data needed to support the result often grows exponentially with the dimensionality.

- Consider a sphere of radius r=1 in a space of D dimensions, what is the fraction of the volume of the sphere that lies between radius $r=1-\epsilon$ and r=1?
- The volume of a sphere of radius r in D dimensions must scale as r^D , we have

$$V_3(r) = \frac{4}{3}\pi r^3$$

$$V_D(r) = K_D r^D$$

• Where the constant K_D depends only on D, thus the required volume fraction is given by

$$\frac{V_D(1) - V_D(1 - \epsilon)}{V_D(1)} = 1 - (1 - \epsilon)^D$$

• For large D, the fraction tend to 1 even for small values of ϵ .

• For large D, the fraction $tend\ to\ 1$ even for small values of ϵ .

 In space of high dimensionality, most of the volume of a sphere is concentrated in a thin shell near the surface.

• Distance functions losing their usefulness (for the nearest-neighbor criterion in feature-comparison algorithms, for example) in high dimensions.