

Video

Parte IV – Video Sommario

Parte 1:

- Introduzione
- Aspect Ratio e Risoluzione
- Formati di trasmissione e registrazione
- Interlacciamento
- Conversione Analogico-Digitale

Parte 2:

- Errori di registrazione
- Drop e Artefatti

Parte IV – Video

Sommario

- Parte 3:
 - Spazi di riferimento 3D-2D e Proiezioni

- Stima del movimento
 - Algoritmi di Block e Feature Matching

- Parte 4:
 - (a) Stabilizzazione +
 - (b) Codifiche e Compressione
 - MPEG1, MPEG2, MPEG4
 - H.264

Libro di testo consigliato

- Wang, Y., Ostermann, J., & Zhang, Y. Q. (2002). Video processing and communications (Vol. 5). Upper Saddle River: Prentice Hall. ISO 690
 - Chapter 5 Video Modeling
 - Camera Model
 - Two-Dimensional Motion Models
 - Chapter 6 Two-Dimensional Motion Estimation
 - Chapter 8 Foundations of Video Coding
 - Chapter 13 Video Compression Standards

Video – Parte 1

Introduzione
Aspect Ratio e Risoluzione
Formati di trasmissione e registrazione
Interlacciamento
Conversione Analogico-Digitale

Introduzione

Storia della televisione (1)

 25 Marzo 1925, John L. Baird trasmise per la prima volta un'immagine in bianco e nero

Introduzione Storia della televisione (2)

 La prima televisione <u>elettro-meccanica</u> si basava sul disco di Nipkow

Introduzione

Storia della televisione (3)

- 7 Settembre 1927, Philo Farnsworth inventa la televisione elettronica
 - Trasmissioni basate su CRT (Cathode Ray-Tube)

Introduzione Storia della televisione (4)

 28 Luglio 1928, John L. Baird riesce a trasmettere per la prima volta <u>a colori</u>

Multimedia

Introduzione Storia della televisione (5)

- Per quanto riguarda la televisione digitale, bisogna aspettare la nascita del primo computer elettronico digitale l'Atanasoff-Berry Computer nel 1942
- Tuttavia, la potenza di calcolo necessaria per una televisione digitale diventa alla portata del consumatore medio solo negli anni '90 del XX secolo
- Nel 1994, negli Stati Uniti, la Hughes Electronics diede avvio al primo servizio di TV digitale via satellite con la Direc TV mentre in Italia circa un anno dopo seguirono i servizi digitali satellitari di Telepiù

Introduzione Storia del cinema (1)

 La prima ripresa cinematografica è ritenuta essere Roundhay Garden Scene, cortometraggio di 2 secondi, realizzato il 14 ottobre 1888 da Louis Le Prince

Introduzione Storia del cinema (2)

- Thomas Edison nel 1889 realizzò
 - una cinepresa (detta Kinetograph) destinata a scattare in rapida successione una serie di fotografie su una pellicola 35mm
 - una macchina da visione (Kinetoscopio) consentiva ad un solo spettatore per volta di osservare, tramite un visore, l'alternanza delle immagini impresse sulla pellicola

Introduzione

Storia del cinema (3)

La cinematografia intesa come la proiezione in sala di una pellicola stampata è nata invece il 28 dicembre 1895, grazie ad un'invenzione dei fratelli Louis e Auguste Lumière con un apparecchio da loro brevettato, chiamato

cinématographe

Aspect Ratio

- Rapporto larghezza/altezza dell'immagine
- Indicato in diversi modi:
 - Frazione "x:y" o "x/y"
 - Risultato "1,3"
 - □ In proporzione all'unità "1,3:1"

Rapporti differenti in base al campo di utilizzo: cinema, televisione, fotografia...

4:3

- Utilizzato fin dalle origini della televisione
- È quello che si avvicina alla visione umana 155°h per 120°v (rapporto 4:3,075)

Widescreen

16:9

- Usato nel cinema e nella televisione
- Proporzioni panoramiche

Tecniche di adattamento degli Aspect Ratio

Stretch (deforma l'immagine → Aliasing)

- Letterbox (16:9 → 4:3)
- Pillarbox (4:3 → 16:9)
- Windowbox (a:b → c:d)

- Pan&Scan (16:9 → 4:3)
- Tilt&Scan (4:3 → 16:9)

LetterBox

16:9

- Permette di vedere il 16:9 su schermi 4:3
- Immagine scalata con aggiunta di 2 bande nere

PillarBox and WindowBox

- PillarBox: Permette di vedere il 4:3 su schermi 16:9
- Immagine scalata con aggiunta di 2 bande nere
- WindowBox: aggiunta di 4 bande nere

Pan&Scan e Tilt&Scan

- Pan&Scan
 - Permette di vedere il 16:9 su schermi 4:3
 - Immagine ritagliata a sinistra e a destra

- Tilt&Scan
 - Permette di vedere il 4:3 su 16:9
 - Immagini ritagliata in alto e in basso

Risoluzione – MP "MegaPixel"

- Unità di misura che equivale a 1 milione di pixel
- Come calcolare i MP di un dispositivo:
 - (MaxRisoluzioneOrizzontale * MaxRisoluzioneVerticale) / 1.000.000
 - Il valore pubblicizzato è spesso un arrotondamento
- Il numero di MP non è un diretto indice di qualità delle macchine fotografiche
 - Influisce anche il potere risolutivo del sistema ottico

Risoluzione – TVL "TeleVision Lines"

- Una delle misure sulla risoluzione video più importanti
- Il valore TVL
 corrisponde al massimo
 numero di linee
 alternate bianche e
 nere rappresentabili
 verticalmente in
 maniera distinguibile
 in un'area avente lato
 uguale all'altezza
 dell'immagine (frame)

Le TVL non vanno confuse con le righe di scansione!

Misurazione rapida delle TVL "TVL Charts"

High Definition TeleVision

- Aspect Ratio 16:9
- 4 Formati:
 - Half resolution (540p): 960x540 pixel
 - HD ready (720p): 1280x720 pixel
 - 1080i: 1920x1080 pixel (interlacciato)
 - Full HD (1080p): 1920x1080 pixel

Multimedia

- Super High Definition (SHD), detto 4K
 - Risoluzione 3840x2160 pixel (4 volte un FullHD)
 - Nel mercato nei prossimi anni
 - Presente qualche video su YouTube
- Ultra High Definition TeleVision (UHDTV)
 - Risoluzione 7680x4320 pixel (16x un FullHD)
 - Nel 2018 circa

Standard di Trasmissione TV Formati video

- Con formati video ci si riferisce ai metodi standard di codifica, memorizzazione e riproduzione utilizzati nei dispositivi video
- Includono informazioni su:
 - connettori fisici: numero di canali e il tipo di dati da essi trasmessi
 - e sui display: spazio dei colori utilizzato,
 risoluzione e frequenza di refresh
- Distinguiamo fra formati Analogici e Digitali

Formati TV Analogici

- NTSC (National Television Systems Committee)
- PAL (Phase Alternating Line)
- **SECAM** (SÉquentiel Couleur À Mémoire)

Formati TV Analogici - Spazi di colore

 Per l'acquisizione e il display del segnale video tutti i sistemi usano RGB (o XYZ)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 2,365 & -0,515 & 0,005 \\ -0,897 & 1,426 & -0,014 \\ -0,468 & 0,089 & 1,009 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 Per la trasmissione si utilizza uno spazio di coordinate luminanza/crominanza (YUV), perché richiede una larghezza di banda minore

$$Y = 0.3R + 0.6G + 0.1B$$

$$U = B - Y$$

$$V = R - Y$$

Multimedia

Formati TV Analogici – NTSC (National Television Systems Committee)

Sviluppato negli anni '50 negli USA

Caratteristiche formato tv analogico NTSC	
Righe di scansione	525 (~480 visibili) con interlacciamento 2:1
Frequenza di riga	15750 Hz
Frequenza di semiquadro	~60 Hz (~60 semiquadri al secondo) [29,97 fps (=Hz per quadro)]
Formato delle immagini	4:3 o 16:9
Spazio di Colore	YIQ
Scansione immagine	Orizzontale da in alto a sinistra a in basso a destra
Sincronismo colore	3,58 MHz (sottoportante di crominanza)
Modulazione	QAM (Quadrature Amplitude Modulation)

Formati TV Analogici – NTSC Rappresentazione del colore

- La crominanza è rappresentata tramite:
 - I: in-phase.
 - Q: quadrature phase.

$$I = 0.60 R - 0.32 G - 0.28 B$$

 $Q = 0.21 R + 0.31 B - 0.52 G$

- I e Q hanno la stessa frequenza ma con una differenza di fase di 90°
- Si applica una modulazione in ampiezza di sottoportante (AMSC)

Formati TV Analogici – NTSC Problemi di trasmissione

- Il segnale ricevuto dev'essere demodulato (cioè bisogna scomporre le componenti multiplexate insieme)
- Alcuni range di frequenze sono sovrapposti
 - Cross-color
 - Cross-luminance
- Da qui l'acronimo NTSC: Never Twice Same Color

Formati TV Analogici – NTSC Pros & Cons

Vantaggi:

- Non è richiesto il cambiamento di fase (i segnali sono già sfasati di 90°) dunque i circuiti sono più semplici di PAL e SECAM;
- Fa un uso ottimale della larghezza di banda per la crominanza, riservando la maggior parte di questa per i colori che l'occhio umano percepisce meglio;

Svantaggi:

- Nel caso di errori nei colori ed eventuale correzione, il processo di sincronizzazione tra le due sottoportanti diviene complesso;
- L'instabilità cromatica insieme a motivi tecnici e di politica internazionale ha contribuito alla nascita di standard alternativi: PAL e SECAM.

Formati TV Analogici – PAL (Phase Alternating Line)

 Sviluppato nel 1963 in Germania da Telefunken (fra i primi creatori della TV)

Caratteristiche formato tv analogico PAL	
Righe di scansione	625 con interlacciamento 2:1
Frequenza di riga	15625 Hz
Frequenza di semiquadro	50 Hz (50 semiquadri al secondo) [25 fps (=Hz per quadro)]
Formato delle immagini	4:3 o 16:9
Spazio di Colore	YUV
Sincronismo colore	4,43 MHz (sottoportante di crominanza)
Modulazione	QAM (Quadrature Amplitude Modulation)

Formati TV Analogici – PAL Rappresentazione del colore

- Sistema di modulazione simile a NTSC (a parte la diversa frequenza della sottoportante di crominanza), tuttavia ad ogni riga (alternandosi) il segnale V ha uno sfasamento di 180° → Phase Alternation by Line (PAL)
- Questo sistema risolve i problemi di instabilità cromatica di NTSC
- Richiede una sincronizzazione per distinguere la «PAL line» dall'«NTSC line»

Formati TV Analogici – PAL Pros & Cons

Vantaggi:

 L'errore di fase che causa distorsioni cromatiche è automaticamente eliminato;

Svantaggi:

Nel sistema PAL sono necessari la commutazione elettronica della fase e l'identificazione del segnale, ciò rende la progettazione dei circuiti più complessa e quindi i ricevitori PAL sono i più costosi

Formati TV Analogici – SECAM (SÉquentiel Couleur À Mémoire)

Sviluppato nel 1958 in Francia

Caratteristiche formato tv analogico SECAM	
Righe di scansione	625 con interlacciamento 2:1
Frequenza di riga	15625 Hz
Frequenza di semiquadro	50 Hz (50 semiquadri al secondo) [25 fps (=Hz per quadro)]
Formato delle immagini	4:3 o 16:9
Spazio di Colore	YDbDr
Sincronismo colore	4,43 MHz (sottoportante di crominanza)
Modulazione	FM (Frequency Modulation)

Formati TV Analogici – SECAM Versioni

- SECAM I divenuto disponibile nel 1961
- SECAM II e SECAM III (A e B), versioni di migliore qualità e compatibilità del primo
- Infine furono sviluppati SECAM IV e SECAM V, quest'ultimo noto anche come NIR-SECAM, dal nome dell'omonimo istituto sovietico che rispose alla richiesta dell'Unione Sovietica di sviluppare un proprio standard
- Il risultato fu una combinazione di SECAM tradizionale e PAL

Formati TV Analogici – SECAM Rappresentazione del colore e Trasmissione

Si utilizza lo spazio di colore YD_bD_r

$$D_b = 3.059U$$

$$D_r = -2.169V$$

- Si applica una modulazione sulla frequenza
- La differenza principale fra SECAM e NTSC/PAL è la seguente:
 - Ogni linea contiene solo uno dei due segnali della crominanza D_b e D_r, in maniera alternata

Formati TV Analogici – SECAM Pros & Cons

Vantaggi:

- La modulazione in frequenza con segnali di crominanza alternati è più resistente ai rumori (no cross-color/luminance);
- L'informazione cromatica mancante dalla linea precedente è ripristinata con un buffer chiamato linea di ritardo (o "delay line", da cui il nome "sequenziale con memoria").

Svantaggi:

- E' necessaria l'identificazione del segnale per distinguere le linee che contengono il segnale D_b da quelle che contengono D_r;
- Poiché c'è solo una sottoportante per ogni linea del segnale cromatico anziché due, si perde metà dell'informazione sul colore, quindi la risoluzione verticale originale del colore è dimezzata

Formati TV Analogici Riassumendo...

- NTSC, PAL e SECAM sono retrocompatibili
 - i televisori possono ricevere segnali codificati per le vecchie televisioni in bianco e nero

Caratteristiche formati TV Analogici			
	NTSC	PAL	SECAM
Righe di scansione	525 (~480 visibili)	625	625
Frequenza di riga	15750 Hz	15625 Hz	15625 Hz
Frequenza di quadro	29,97 fps	25 fps	25 fps
Formato delle immagini	4:3 o 16:9	4:3 o 16:9	4:3 o 16:9
Spazio di Colore	YIQ	YUV	YDbDr
Sincronismo colore	3,58 MHz	4,43 MHz	4,25(Db) 4,41(Dr) MHz
Modulazione	QAM	QAM	FM

Formati TV Digitali

- ATSC (Advanced Television Systems Committee)
- DVB-T (Digital Video Broadcasting Terrestrial)
- ISDB-T (Integrated Services Digital Broadcasting T.)
- DTMB (Digital Terrestrial Multimedia Broadcasting)

Formati TV Digitali – ATSC (Advanced Television Systems Committee)

- Sviluppato nei primi anni '90 principalmente per l'HDTV (High Definition TeleVision)
- ATSC sta attualmente rimpiazzando NTSC negli Stati Uniti
 - Sono già state fissate le date di switchover per altri paesi americani

Formati TV Digitali – ATSC Standard di compressione compatibili

- In quanto formato digitale, prevede diverse modalità di funzionamento relative al frame rate, alla risoluzione, agli standard di compressione compatibili (MPEG-2, H.264) e retrocompatibilità con i formati analogici.
- Nonostante H.264 consenta formati di qualità visiva più elevata, la maggior parte delle TV in commercio contiene solamente i codec MPEG-2

Formati TV Digitali – DVB-T (Digital Video Broadcasting – Terrestrial)

- Standard europeo per la TV digitale, pubblicato nel 1997.
 - La prima trasmissione in tale formato avvenne nel 1998 nel Regno Unito e ad oggi è adottato in più di 80 paesi in tutto il mondo.
- Permette la trasmissione di una grande quantità di dati garantendo alta definizione.
- I suoi predecessori sono PAL e SECAM.

Formati TV Digitali – DVB-T Passaggio al digitale terrestre in Italia

- Switch-off in Italia
 - Inizio: 15 Ottobre 2008
 - □ Fine: 4 Luglio 2012
- Standard Definition (SD):
 - MPEG-2 video MPEG-1 audio
- High Definition (HD):
 - H.264 video MPEG1 audio
- Alcune frequenze liberate sono state utilizzate per canali pay-per-view

Formati TV Digitali – DVB-T Caratteristiche principali

- Utilizzo dei codec MPEG-2 o H.264
- Sistema di trasmissione OFDM (Orthogonal Frequency Division Multiplexing):
- sistema di multiplexing multi-portante, in cui le sottoportanti sono tra loro ortogonali.
- Buona resa anche in condizioni non ottimali del canale
- Garantisce un'attenuazione costante e dunque stimabile e correggibile.

OFDM: esempio con 4 sottoportanti

Formati TV Digitali ISDB-T e DTMB

- Simili al DVB-T
 - Utilizzo di OFDM
 - Utilizzo dei codec MPEG-2 o H.264
- ISDB-T:
 - Sviluppato e diffuso in Giappone dal 2003 e parte del sud America dal 2007
- DTMB:
 - Sviluppato e diffuso in Cina dal 2002

Dispositivi Video

- Intorno agli anni '50 nascono i primi dispositivi di registrazione video
 - □ 1956: Ampex sviluppa i **VTR** (*Video Tape Recorder*)

(venduto a 50.000\$ a dispositivo...)

Dispositivi Video

- 1971: Sony realizza i VCR (VideoCassette Recorder)
- VCR rappresenta un'evoluzione del VTR, infatti il nastro magnetico anziché essere libero è collocato all'interno di una cassetta di plastica

Nastri magnetici Principi fisici di funzionamento

- Possiamo considerare le testine come dei magneti (solenoide)
- Il nastro magnetico comprende uno strato di materiale ferromagnetico
- Le fasi di *lettura*, *scrittura* e *cancellazione* sono realizzate sfruttando il **principio di induzione** elettromagnetica

Rivestimento
Strato Magnetico
Supporto
Rivestimento

Multimedia

Nastri magnetici Sistemi di Registrazione

- 3 metodi di registrazione:
- Sistema Longitudinale:
 - Tracce parallele ai bordi del nastro
 - Solo per registrazioni audio
- Sistema Trasversale:
 - Tracce perpendicolari ai bordi del nastro
 - Utilizza 4 testine su un tamburo con asse parallelo al bordo

Nastri magnetici Sistemi di Registrazione

Sistema Elicoidale:

- E' il più utilizzato
- Maggiore larghezza di banda
- Tracce e tamburo sono obliqui rispetto ai bordi

Inclinazione da 2° a 20°

Sistemi di Scansione

Scansione Progressiva:

 Le linee di ciascun frame sono memorizzate in sequenza

Scansione Interlacciata:

- Le linee di ciascun frame sono suddivise in due insiemi, pari e dispari
- Quadri o frame → semiquadri o campi (field)

Odd Lines: Field 1

Even Lines: Field 2 10 11

Field 1 + Field 2 = Frame (Complete Image)

Sistemi di Scansione Interlacciamento – Pros & Cons

- A parità di larghezza di banda si può dimezzare la banda del segnale
 - Analogamente, si raddoppia la frequenza di visualizzazione
- Si riduce lo "sfarfallio" nei monitor CRT
 - Per quanto riguarda i monitor dei PC invece lo "sfarfallio" aumentava (effetto flicker); la direzione attuale è quella di prediligere il progressivo, a causa dell'alta qualità video richiesta

Sistemi di Scansione

Interlacciamento – Pros & Cons

- Rinunciando a metà dell'informazione:
 - Possibile comparsa di artefatti dovuti a interpolazione se sono presenti strutture orizzontali (effetto twitter)

Artefatti pesanti se sono presenti soggetti in

rapido movimento

Formati di Registrazione

- Dopo la nascita dei VCR furono sviluppati un'enorme quantità di sistemi di registrazione e formati che fossero compatibili con gli standard televisivi
- Fra quelli che ebbero più successo:
 - U-Matic
 - Betacam

- Sviluppato nel 1970 da Sony
- Precursore dei principali sistemi video domestici
 - Prese il suo nome dal sistema di scorrimento del nastro dalla forma ad 'U'
 - Supporta PAL e NTSC
 - Sistema di registrazione elicoidale

U-Matic

Tamburo e Testine

 Sul tamburo sono presenti 2 testine per la lettura/scrittura dei due semiquadri (video interlacciati)

U-Matic Problemi principali

- Dopo una breve serie di copie:
 - La qualità degrada
 - Necessita utilizzo di correttore per la base dei tempi (TBC)
- In caso di fermo immagine:
 - Distacco di ossido dal nastro
 - Compare una striscia di rumore detta "sabbia"

Betacam

- Sviluppato nel 1982 da Sony
- Meccanica simile a U-Matic
- 6 tipi di tracce:

R-Y e B-Y (C) sono registrate insieme in Chroma Time Division Multiplexing (CTDM)

CTL (Control Tracking Longitudinal): scandisce inizio e fine di ogni traccia

Time Code (Codifica Temporale): etichetta i frame

Betacam

Tamburo e Testine

Sul tamburo sono presenti 6 testine

Il costo rispetto a U-Matic è ovviamente maggiore...

Betacam Il problema del fermo immagine

- Betacam SP (Superior Performance), 1986, presenta un sistema di controllo a retroazione della testina di lettura:
 - Ampex: Automatic Scan Tracking (AST)
 - Sony: Dynamic Tracking (DT)
- Senza tale sistema compare una striscia grigia (sabbia in U-Matic) sull'immagine

Conversione Analogico-Digitale Motivazioni

- I nastri magnetici sono facilmente deteriorabili:
 - Umidità (degradazione e muffa)
 - Polvere
 - Impurità
 - Deformazioni meccaniche
 - Sbalzi di temperatura
 - Cattiva conservazione
 - **...**

Conversione Analogico-Digitale Motivazioni

- I supporti digitali permettono:
 - Distribuzione più semplice in termini di spazio e di utenti
 - Deteriorabilità trascurabile a fronte di un numero potenzialmente illimitato di copie
 - Necessita comunque di eventuali back-up
- Fattore critico di compatibilità dei dispositivi

Conversione Analogico-Digitale: "Digitalizzazione"

La differenza fra "segnale analogico" e "segnale digitale" corrisponde alla differenza fra una rappresentazione continua e una rappresentazione discreta di determinate

Digitalizzazione

Campionamento e Quantizzazione

- Discretizzare implica poter assumere un numero limitato di valori
- Se la strumentazione è buona sarà possibile effettuare misurazioni sempre più precise e dettagliate
 - nel campo delle registrazioni audio/video di poter trattare filmati con una qualità migliore
- La digitalizzazione è strettamente legata ai problemi di campionamento e quantizzazione

Digitalizzazione

Campionamento e Quantizzazione

- Per passare ad un segnale digitale discreto ci sono due fasi principali da eseguire:
 - Campionamento per passare da un numero infinito di valori reali ad uno finito
 - Quale tasso di campionamento scegliere?
 Teorema di Shannon e Frequenza di Nyquist
 - Quantizzazione per associare i valori reali dei campioni ai corrispondenti valori discreti.
 - Come impostare i livelli di quantizzazione?
 Quantizzazione uniforme e non uniforme

Digitalizzazione Codifica e Dispositivi ADC

- Infine, il segnale digitale discreto va codificato: ad ogni intervallo di quantizzazione è associata una combinazione di cifre binarie
- I dispositivi di conversione analogico/digitale (ADC) contengono al loro interno tre componenti fondamentali per ciascuno dei passi che abbiamo trattato precedentemente
 - un campionatore
 - un quantizzatore
 - e un codificatore

Digitalizzazione Dispositivi DAQ

- I dispositivi di Data AcQuisition (DAQ) contengono al proprio interno tre componenti principali:
 - Sensori che convertano i parametri fisici del segnale analogico da acquisire in segnali elettrici;
 - Dispositivi elettronici che convertano tali segnali elettrici in un formato convertibile in digitale;
 - Dispositivi ADC che completino la conversione verso il digitale.
- A questi tre si possono aggiungere ad esempio RAM o timer.