Σχεσιακός Λογισμός Πλειάδων

- Μεταβλητές
 - Σχεσιακό Λογισμό Πεδίων: μεταβλητές για τιμές γνωρισμάτων από τα ορισμένα πεδία τιμών
- Μεταβλητές: t₁, t₂, ... t_k
 - Αναφέρονται σε πλειάδες σχεσιακών πινάκων
 - Αναφερόμαστε με t_i[j] στο γνώρισμα j της πλειάδας t_i
- Σύμβολα Σχέσεων: R, S, T, ... ενός συγκεκριμένου βαθμού
 - αντιστοιχούν σε ονόματα σχέσεων
- Ατομικές ή Βασικές Προτάσεις
 - R(t) όπου R είναι ένα σύμβολο για σχέση k-βαθμού
 - $t_i[j]$ θ $t_k[m]$ όπου t_i , t_k είναι μεταβλητές πλειάδων και $\theta \in \{\le, \ge, \ne, <, =, >\}$
 - t_i[j] θ c όπου t_i είναι μεταβλητή, c είναι μια σταθερά

Προτάσεις Σχεσιακού Λογισμού Πλειάδων

- Μια Έκφραση Σχεσιακού Λογισμού έχει τη μορφή {t : F(t) } όπου F(t) είναι μια πρόταση σχεσιακού λογισμού και t είναι μια ελεύθερη μεταβλητή
- Η έκφραση {t : F(t) } επιστρέφει όλες εκείνες τις πλειάδες οι οποίες κάνουν αληθή την πρόταση F στη βάση Ι.
- Όταν μια έκφραση Σχεσιακού Λογισμού Πεδίων {t : F(t) } αποτιμάται σε μια σχεσιακή βάση Ι επιστρέφει μια σχέση η οποία περιέχει όλες τις πλειάδες εκείνες που κάνουν αληθή την πρόταση F στη βάση Ι.
- Για να αναφερθούμε στον βαθμό μιας μεταβλητής πλειάδας t, γράφουμε t⁽ⁱ⁾
 - Έκφραση {t⁽ⁱ⁾: F(t) } ορίζει μια σχέση με βαθμό i }

Παράδειγμα (14)

```
Σχέση: Customers(<u>cid</u>, cname,city,discount)
```

Πρόταση Σ.Λ.Πλειάδων: Customers(t)

√«Βρείτε τους κωδικούς και τα ονόματα των πελατών»

```
{t (2): ((\exists c^{(4)}) Customers(c) \land (t[1] = c[1]) \land (t[2] = c[2])}
```

√ «Βρείτε τους κωδικούς και τα ονόματα των πελατών που ζουν στη Νέα Υόρκη»

3

```
{t ^{(2)}: (\exists c^{(4)}) (Customers(c) \land (t[1] = c[1]) \land (t[2] = c[2]) \land (c[3] = "NY"))}
```

Παράδειγμα (15)

```
Σχέση: Customers(cid, cname,city,discount) Πρόταση Σ.Λ.Πλειάδων: Customers(t) 
Σχέση: Products(pid, pname,city,quantity,price) – Πρόταση Σ.Λ.Πλειάδων: Products(t) 
Σχέση: Orders(orderno, month,cid,aid,pid,qty,amt) – Πρόταση Σ.Λ.Πλειάδων: Orders(t)
```

√«Βρείτε τα <u>ονόματα</u> και την <u>τιμή</u> των <u>προϊόντων</u> που <u>παραγγέλνει</u> ο πελάτης c002 μέσω του πράκτορα a01»

```
{t ^{(2)}: ((\exists p^{(5)}) (\exists o^{(7)}) Products(p) \land Orders(o) \land (t[1] = p[2]) \land (t[2] = p[5]) \land (p[1] = o[5]) \land (o[3] = 'c002') \land (o[4] = 'a01')) }
```

Παράδειγμα (16)

```
Σχέση: Customers(cid, cname,city,discount) Πρόταση Σ.Λ.Πλειάδων: Customers(t) 
Σχέση: Products(pid, pname,city,quantity,price) – Πρόταση Σ.Λ.Πλειάδων: Products(t) 
Σχέση: Orders(orderno, month,cid,aid,pid,qty,amt) – Πρόταση Σ.Λ.Πλειάδων: Orders(t) 
Σχέση: Agents(aid, aname,city,percent) – Πρόταση Σ.Λ.Πλειάδων: Agents(t)
```

5

√ «Βρείτε τα ζεύγη πρακτόρων που ζουν στην ίδια πόλη »

```
{t (2): ( (\exists p^{(4)}) (\exists q^{(4)} ) Agents(p) \land Agents(q) \land (t[1] = p[1] ) \land (t[2] = q[1] ) \land (p[3] = q[3] ) \land (p[1] \neq q[1] ) ) }
```

Παράδειγμα (17)

```
Σχέση: Customers(cid, cname,city,discount) Πρόταση Σ.Λ.Πλειάδων: Customers(t) 
Σχέση: Products(pid, pname,city,quantity,price) – Πρόταση Σ.Λ.Πλειάδων: Products(t) 
Σχέση: Orders(orderno, month,cid,aid,pid,qty,amt) – Πρόταση Σ.Λ.Πλειάδων: Orders(t) 
Σχέση: Agents(aid, aname,city,percent) – Πρόταση Σ.Λ.Πλειάδων: Agents(t)
```

✓ Βρείτε τα <u>ονόματα</u> όλων των <u>πρακτόρων</u> που κάνουν παραγγελίες για <u>όλα</u> τα <u>προϊόντα</u> που παραγγέλνει ο πελάτης 'c002'»

6

```
{t <sup>(1)</sup>: ((∃a<sup>(4)</sup>) Agents(a) ∧ (t[1] = a[2]) ∧

((∀ o<sup>(7)</sup> (Orders(o) ∧ (o[3] = 'c002') → (∃ o1<sup>(7)</sup> Orders(o1) ∧

(o1[4] = a[1]) ∧ (o1[5] = o[5])))}
```

Σχεσιακή Άλγεβρα → Σχεσιακό Λογισμό Πλειάδων

1. Παράδειγμα:

- ✓ Σχεσιακή Άλγεβρα: π , (R(x,y))
- ✓ Σχεσιακός Λογισμός Πλειάδων:

```
\{t^{(1)}: (\exists q^{(2)}) (R(q) \land (t[1] = q[2])) \}
```

2. Παράδειγμα:

- \checkmark Σχεσιακή Άλγεβρα: $S(X) \times \pi_{Y}$ (R(X,Y))
- ✓ Σχεσιακός Λογισμός Πλειάδων:

Σχεσιακή Άλγεβρα → Σχεσιακό Λογισμό Πλειάδων

1. Παράδειγμα:

- Σχεσιακή Άλγεβρα: $R(x,y) (S(X) \times \pi_{Y} (R(X,Y))$
- ✓ Σχεσιακός Λογισμός Πλειάδων:

$$\{t^{(2)} \mid (\exists q^{(2)}) (R(q) \land \neg ((\exists m^{(1)}) (\exists r^{(1)}) (\exists r^{(1)}) (\exists r^{(1)}) \land (\exists q^{(2)}) \land (r[1] = q[2])) \land (t[1] = m[1]) \land (t[2] = r[1])) \}$$

Από το Σχεσιακό Λογισμό Πλειάδων στο Σχεσιακό Λογισμό Πεδίων

- <u>Θεώρημα 2</u>: Για κάθε ασφαλή πρόταση του Σχεσιακού Λογισμού Πλειάδων υπάρχει μια ασφαλή πρόταση του Σχεσιακού Λογισμού Πεδίων που ορίζει την ίδια σχέση.
- <u>Απόδειξη:</u> Οι μεταβλητή πλειάδας $t^{(k)}$ αντικαθιστάται με ένα σύνολο μεταβλητών $\{x_1, x_2, ... x_k\}$ χρησιμοποιώντας τη μεταβλητή x_i στη θέση της t[i] μέσα στην πρόταση.

• <u>Θεώρημα 3</u>: Η σχεσιακή άλγεβρα, ο ασφαλής σχεσιακός λογισμός πλειάδων και ο ασφαλής σχεσιακός λογισμός πεδίων έχουν την ίδια εκφραστική δύναμη.

Παράδειγμα (18)

Σχέση: Works(pname, cname, salary)

Πρόταση Σ.Λ.Πλειάδων: Works(t)

Πρόταση Σ.Λ.Πεδίων: Works(z1,z2,z3)

«Βρείτε τα ονόματα των ατόμων που εργάζονται στην 'First Bank'.»

- 1. Σχεσιακή Άλγεβρα
 - π_{pname} (($\sigma_{cname = 'First Bank'}$ (Works))
- 2. Σχεσιακός Λογισμός Πλειάδων
 - $\{t^{(1)} \mid (\exists q^{(3)}) \text{ (Works}(q) \land q[2] = 'First Bank' \land t[1] = q[1]) \}$
- 3. Σχεσιακός Λογισμός Πεδίων
 - $\{z1 \mid (\exists z3) (\exists z2) (Works(z1,z2,z3) \land z2 = 'First Bank')\}$

Παράδειγμα (19)

Σχέση: Works(pname, cname, salary)
Πρόταση Σ.Λ.Πλειάδων: Works(t)
Πρόταση Σ.Λ.Πεδίων: Works(z1,z2,z3)

Σχέση: Lives(pname, street, city)
Πρόταση Σ.Λ.Πλειάδων: Lives(t)
Πρόταση Σ.Λ.Πεδίων: Lives(x1, x2, x3)

«Βρείτε τα <u>ονόματα</u> και τις <u>πόλεις</u> των ατόμων που εργάζονται στην 'First Bank'.»

- 1. Σχεσιακή Άλγεβρα
 - $\pi_{\text{pname,city}}(\sigma_{\text{cname} = 'First Bank'}, (Works Join Lives))$
- 2. Σχεσιακός Λογισμός Πλειάδων
 - $\{t^{(2)} \mid (\exists q^{(3)}) (\exists p^{(3)}) (Works(q) \land Lives(p) \land (q[2] = 'First Bank') \land (t[1] = q[1]) \land (t[2] = p[3]) \land (q[1] = p[1])) \}$

11

- 3. Σχεσιακός Λογισμός Πεδίων
 - { (z1,x3) | (∃z3,z2,x2) (Works(z1,z2,z3) ∧ Lives(z1,x2,x3) ∧ (z2 = 'First Bank')) }

Παράδειγμα (20)

Σχέση: Works(pname, cname, salary) Πρόταση Σ.Λ.Πλειάδων: Works(t)

Πρόταση Σ.Λ.Πεδίων: Works(z1,z2,z3)

- «Βρείτε τα <u>ονόματα</u> των ατόμων που δεν εργάζονται στην 'First Bank'.»
 - 1. Σχεσιακή Άλγεβρα
 - π_{pname} ($\sigma_{\text{cname}} \neq \text{`First Bank'}$ (Works))
- 2. Σχεσιακός Λογισμός Πλειάδων $\{t^{(1)} \mid (\exists q^{(3)}) \text{ (Works}(q) \land q[2] \neq \text{'First Bank'} \land t[1] = q[1] \text{) }\}$
- 3. Σχεσιακός Λογισμός Πεδίων
 - { z1 | \exists z2,z3 (Works(z1,z2,z3) \land (z2 \neq 'First Bank')) }

Παράδειγμα (21)

Σχέση: Works(pname, cname, salary) Πρόταση Σ.Λ.Πλειάδων: Works(t) Πρόταση Σ.Λ.Πεδίων: Works(z1,z2,z3) Σχέση: Lives(pname, street, city)
Πρόταση Σ.Λ.Πλειάδων: Lives(t)
Πρόταση Σ.Λ.Πεδίων: Lives(x1, x2, x3)

«Βρείτε τα <u>ονόματα</u> των ατόμων που δεν εργάζονται στην 'First Bank' (να επιστραφούν και τα άτομα που δεν εργάζονται πουθενά) »

- 1. Σχεσιακή Άλγεβρα
 - π_{pname} (Lives) π_{pname} ($\sigma_{\text{cname}} = \text{'First Bank'}$ (Works))
- 2. Σχεσιακός Λογισμός Πλειάδων

```
\{t^{(1)} \mid (\exists q^{(3)}) \text{ Lives}(q) \land (t[1] = q[1]) \land \neg (\exists p^{(3)}) \text{ (Works}(p) \land p[1] = q[1]) \land p[2] = \text{'First Bank'}) \}
```

- 3. Σχεσιακός Λογισμός Πεδίων
 - $\{x1 \mid (\exists x2) (\exists x3) (Lives(x1,x2,x3) \land \neg ((\exists z2) (\exists z3)) (Works(x1,z2,z3) \land z2 = 'First Bank')) \}$

SQL Structured Query Language

- Η γλώσσα που χρησιμοποιείται συχνότερα από εμπορικά Συστήματα Διαχείρισης Βάσεων Δεδομένων.
- Παρέχει
 - Γλώσσα Ορισμού Δεδομένων (Data Definition Language DDL)
 - Γλώσσα Χειρισμού Δεδομένων (Data Manipulation Language DML).
- Βασίζεται στο Σχεσιακό Λογισμό
- Έχει την ίδια εκφραστική δύναμη με τη Σχεσιακή Άλγεβρα και τον Ασφαλή Σχεσιακό Λογισμό.
- Εντολές SQL μπορούν να εκτελεστούν ενσωματωμένες σε μια γλώσσα προγραμματισμού (C, Pascal, Java, 4GL)
- Εκδόσεις της SQL έχουν γίνει διεθνή πρότυπα: το πρότυπο SQL:2011 είναι η πιο πρόσφατη έκδοση (Δεκέμβριος 2011), με την προηγούμενη έκδοση SQL:2008 (Ιούλιος 2008) να είναι η πιο πρόσφατη έκδοση υλοποιημένη σε εμπορικά συστήματα

SQL Data Definition Language

- Εντολή create table:
 - create table tablename (attrname datatype [not null]{, attrname datatype [not null]};
- Δημιουργεί
 - Σχέση : tablename
 - Γνώρισμα: *attrname* με τύπο *datatype*
 - Προαιρετική δήλωση not null: δεν επιτρέπονται κενές τιμές στο συγκεκριμένο γνώρισμα
- Παραδείγματα:
- create table customers (cid char(4) not null, cname varchar(13), city varchar(20), discnt real)
- create table products(pid char(3) not null, pname varchar(14), city varchar(20), quantity int, price real);

SQL Data Definition Language

Εντολή drop table:

```
drop table tablename;
```

- √ Διαγράφει τη σχέση **tablename**
- Εντολή alter table:

```
alter table tablename action;
```

- √Τροποποιεί τη σχέση **tablename** εκτελώντας την ενέργεια **action**
- ✓ action μπορεί να είναι μια από
 - √ Προσθήκη Γνωρίσματος: add attrname datatype
 - ✓ Διαγραφή Γνωρίσματος: *drop attrname*
- Παραδείγματα:
- drop table customers
- alter table customers add age int not null;
- alter table customers drop city;

SQL Data Manipulation Language

```
    Εντολή select [all|distinct] expression {, expression }
        from tablename [ var ] {, tablename [ var ] }
        [where search-condition ]
        [group-by attrname ]{, attrname } ]
        [having search-condition];
```

Παράδειγμα (1)

```
Agents(aid, aname, city, percent)
Agents(a1,a2,a3,a4)
```

- «Βρείτε τα αναγνωριστικά και τα ονόματα των πρακτόρων που έχουν ως έδρα τη Νέα Υόρκη»
 - Σχεσιακή άλγεβρα

```
\pi_{\text{aid, aname}} (\sigma_{\text{city} = "NY"} (Agents))
```

• Σχεσιακός λογισμός

```
i. \{t^{(2)} \mid (\exists a) \text{ (Agents(a)} \land (t[1] = a[1]) \land (t[2] = a[2]) \land (a[3] = "NY")) \}
```

18

- ii. $\{(a1,a2) \mid (\exists a4) \text{ (Agents}(a1,a2, "NY",a4) \land (a3 = "NY"))\}$
- SQL:

select aid, aname from Agents where city = "NY";

Παράδειγμα (2)

```
Customers(<u>cid</u>, cname, city, discount)
Customers(x1,x2,x3,x4)
```

- «Δώστε τις πλειάδες τις σχέσης Customers»
 - Σχεσιακή άλγεβρα Customers
 - Σχεσιακός Λογισμός
 - i. {t | Customers(t) }
 - ii. $\{(x1,x2,x3,x4) \mid Customers(x1,x2,x3,x4) \}$
 - SQL: select * from Customers

Παράδειγμα (3)

```
Orders(orderno, month,cid,aid,pid,qty,amt)
Orders(x1,x2,x3,x4,x5,x6,x7)
```

- «Βρείτε τα αναγνωριστικά των προϊόντων για τα οποία υπάρχει παραγγελία»
 - Σχεσιακή Άλγεβρα: π pid (Orders)
 - Σχεσιακός Λογισμός:
 - i. $\{t^{(1)} \mid (\exists o) (Orders(o) \land t[1] = o[4])\}$
 - ii. $\{x5 \mid (\exists x1,x2,x3,x4,x6,x7) (Orders(x1,x2,x3,x4,x5,x6,x7)) \}$
 - SQL: select pid from Orders
- Το αποτέλεσμα περιέχει διπλότυπα (πολλές παραγγελίες για τα ίδια προϊόντα).
- Επιστροφή των διακριτών πλειάδων μέσω του distinct
 - select distinct pid from Orders
- Λέξη κλειδί all επιστρέφει όλες τις πλειάδες του αποτελέσματος

Παράδειγμα (4a)

```
Orders(orderno, month,cid,aid,pid,qty,amt) - Orders(x1, x2,x3,x4,x5,x6,x7)

Customers(<u>cid</u>, cname,city,discount) – Customers(y1,y2,y3,y4)

Agents(aid, aname,city,percent) – Agents(z1,z2,z3,z4)

«Βρείτε όλα τα ζεύγη ονομάτων πελατών – πρακτόρων όπου ο πελάτης κάνει παραγγελία μέσω του πράκτορα»
```

- Σχεσιακή Άλγεβρα:
- i. $\pi_{\text{cname, aname}}$ (($\pi_{\text{cid, cname}}$ (Customers Join Orders) Join Agents)
- ii. $\pi_{\text{cname, aname}}$ ($\sigma_{\text{(Customers.cid = Orders.cid)}} \land \text{(Agents.aid = Orders.aid)}$ (Customers \times Orders) \times Agents)
- Σχεσιακός Λογισμός:
- i. { $t^{(2)} \mid (\exists o,c,a)$ (Orders(o) \land Customers (c) \land Agents(a) \land c[1] = o[3] \land (a[1] = o[4]) \land (t[1] = c[2]) \land (t[2] = a[2]))
- ii. $\{(y2,z2) | (\exists y1,y3,y4,z1,z3,z4,x1,x2,x5,x6,x7) \land Orders(x1,x2,y1,z1,x5,x6,x7) \land Customers(y1,y2,y3,y4) \land Agents(z1,z2,z3,z4) \}$

Παράδειγμα (4b)

«Βρείτε όλα τα ζεύγη ονομάτων πελατών – πρακτόρων όπου ο πελάτης κάνει παραγγελία μέσω του πράκτορα»

- Σχεσιακή Άλγεβρα:
- i. $\pi_{\text{cname, aname}}$ ($\sigma_{\text{(Customers.cid = Orders.cid)}} \land \text{(Agents.aid = Orders.aid)}$ (Customers \times Orders) \times Agents)
- Eντολή SQL:
 select distinct cname, aname
 from Agents, Orders, Customers
 where Customers.cid = Orders.cid and Agents.aid = Orders.aid;

Η σύζευξη εκφράζεται ως το καρτεσιανό γινόμενο των σχέσεων στην πρόταση from ακολουθούμενο από μια επιλογή σύμφωνα με τις συνθήκες στην πρόταση where

SQL Data Manipulation Language

```
Orders(orderno, month,cid,aid,pid,qty,amt) Customers(<u>cid</u>, cname,city,discount)
Agents(aid, aname,city,percent) Products(pid, pname,city,quantity,price)
```

- Έστω ότι το κέρδος από ένα προϊόν υπολογίζεται πολλαπλασιάζοντας (α) την ποσότητα επί της τιμής, αφαιρώντας το 60% (κόστος χονδρικής) (β) την έκπτωση (%) του πελάτη και την προμήθεια (%) του πράκτορα.
- select distinct orderno, c.cid, a.aid, o.pid, 0.4*(o.qty*p.price) –
 0.1*(c.discount+a.percent) * (o.qty*p.price)

```
from Agents, Orders, Customers, Products where c.cid = o.cid and a.aid = o.aid and a.pid = o.pid
```

• Σημείωση: τα **c,o,p,a** είναι ψευδώνυμα για τις σχέσεις και ισχύουν μόνο στο πλαίσιο της εντολής που δηλώνονται.

SQL Data Manipulation Language

- Η SQL εκτελεί την μετατροπή τύπου στην πρόσθεση ακεραίου με αριθμό κινητής υποδιαστολής και ως εκ τούτου το αποτέλεσμα να είναι αριθμός κινητής υποδιαστολής.
- Δεν δίνεται όνομα για το γνώρισμα που σχετίζεται με την αριθμητική έκφραση.
- Περισσότερα συστήματα δίνουν ένα default όνομα (COL5)
- Επιτρέπεται στον χρήστη να δώσει ένα όνομα στην κολώνα
- select distinct orderno, c.cid, a.aid, o.pid, 0.4*(o.qty*p.price) 0.1*(c.discount+a.percent) *
 (o.qty*p.price) as profit

```
from Agents a, Orders o, Customers c, Products p
where c.cid = o.cid and a.aid = o.aid and a.pid = o.pid
```

• Σημείωση: τα **c,o,p,a** είναι <u>ψευδώνυμα</u> για τις σχέσεις & ισχύουν μόνο στο πλαίσιο της εντολής που δηλώνονται.

Παράδειγμα (5)

• «Βρείτε όλα τα ζεύγη πελατών που ζουν στην ίδια πόλη. »

```
Customers(<u>cid</u>, cname, city, discount), Customers(y1,y2,y3,y4)
C1:=Customers, C2:=Customers
```

• Σχεσιακή Άλγεβρα:

```
\pi_{\text{C1.cid, C2.cid}} (\sigma_{\text{(C1.cid < C2.cid)}} (C1 Join (C1.city = C2.city) C2))
```

select distinct c1.cid, c2.cid

```
from Customers c1, Customers c2
where c1.cid < c2.cid and c1.city = c2.city
```

- Χωρίς τη χρήση ψευδωνύμων η παραπάνω ερώτηση δεν απαντάται στην SQL.
- Τα ψευδώνυμα **c1, c2** μπορούν να θεωρηθούν ως μεταβλητές πλειάδων της σχέσης **Customers** σε αναλογία με τον σχεσιακό λογισμό πεδίων

Παράδειγμα (6)

• «Βρείτε τα αναγνωριστικά των προϊόντων που έχουν παραγγελθεί από τουλάχιστον δυο πελάτες.»

```
Orders(orderno, month,cid,aid,pid,qty,amt) O1:=Orders, O2:=Orders
Orders(x1, x2,x3,x4,x5,x6,x7)
• Σχεσιακή Άλγεβρα:
\pi_{O1.pid} (\sigma_{(O1.cid < O2.cid)} (O1 Join_{(O1.pid = O2.pid)} O2))
• Σχεσιακός Λογμαμός:
```

- Σχεσιακός Λογισμός:
 - i. $\{t^{(1)} \mid (\exists o1,o2) (Orders(o1) \land Orders(o2) \land o2[5] = o1[5] \land o1[3] < o2[3] \land t[1] = o1[5]) \}$
 - ii. $\{x5 \mid (\exists x1,x2,x3,x4,x6,x7,y1,y2,y3,y4,y6,y7) \land (Orders(x1,x2,x3,x4,x5,x6,x7) \land (Orders(y1,y2,y3,y4,x5,y6,y7) \land x3 < y3) \}$
- SQL:

```
select distinct o1.pid from Orders o1, Orders o2 where o1.cid < o2.cid and o1.pid = o2.pid 26
```

Παράδειγμα (7)

• «Βρείτε τα αναγνωριστικά των πελατών που παραγγέλνουν προϊόντα για τα οποία έχει γίνει παραγγελία μέσω του πράκτορα a06.»

```
Orders(orderno, month,cid,aid,pid,qty,amt) O1:=Orders, O2:=Orders Orders(x1, x2,x3,x4,x5,x6,x7)
```

• Σχεσιακή Άλγεβρα:

$$\pi_{\text{O1.cid}}$$
 (O1 Join π_{pid} ($\sigma_{\text{(O2.aid='a06')}}$ (O2)))

- Σχεσιακός Λογισμός:
 - i. $\{t^{(1)} \mid (\exists o1,o2) \text{ (Orders}(o1) \land \text{Orders}(o2) \land o2[4] = a06 \land o1[5] = o2[5] \land t[1] = o1[3] \text{)} \}$
 - ii. $\{x3 \mid (\exists x1,x2,x4,x5,x6,x7,y1,y2,y4,y5,y6,y7) \text{ (Orders}(x1,x2,x3,x4,x5,x6,x7) \land \text{ Orders}(y1,y2,x3,a06,x5,y6,y7) \}$
- SQL:

select distinct o2.pid from Orders o1, Orders o2 where o2.aid = 'a06' and o1.pid = o2.pid

SQL Data Manipulation Language

orderno	month	cid	aid	pid	qty	amt
1011	jan	<u>c001</u>	a01	p01	1000	450
1012	jan	<u>c001</u>	a01	p01	1000	450
1019	feb	c001	a02	p02	400	180
1017	feb	<u>c001</u>	a06	p03	600	540
1018	feb	c001	a03	p04	600	540
1023	mar	c001	a04	p05	500	450
1022	mar	c001	a05	p06	400	720
1025	apr	c001	a05	p07	800	720
1013	jan	<u>c002</u>	a03	p03	1000	880
1026	may	c002	a05	p03	800	704
1015	jan	c003	a03	p05	1200	1104
1014	jan	c003	a03	p05	1200	1104
1021	geb	<u>c004</u>	a06	<u>p01</u>	1000	460
1016	jan	c006	a01	p01	1000	500
1020	feb	c006	a03	p07	600	600
1024	mar	c006	a96	p01	800	400