MTA Ridership Analysis Post-Pandemic

Project Summary and Key Insights

- Sneha Shailesh Khandizode

Authority (MTA) Ridership Analysis Post-Pandemic

This presentation analyzes MTA ridership trends since the start of the pandemic, providing insights into the recovery of the transportation system and future opportunities.

Project Objectives

Objective

- Identify highest ridership days for each transportation mode.
- Analyze recovery trends compared to pre-pandemic levels.
- Calculate averages and totals for long-term trends.
- Provide actionable insights for strategic planning.

Identify key factors

 Explore factors influencing ridership recovery, such as economic conditions, public health guidelines, and service disruptions.

Develop insights and recommendations

 Provide data-driven insights to inform MTA policies and strategies for future ridership growth.

Project Overview

- By using SQL, this project will help in extracting some really valuable insights into the operations of MTA Ridership.
- The COVID-19 pandemic has significantly impacted public transportation systems worldwide. The Metropolitan Transportation Authority (MTA) in New York City saw a drastic drop in ridership during the peak of the pandemic.
- As the city began to recover, understanding how ridership patterns evolved became crucial for decision-makers to optimize services, allocate resources, and plan for future needs.
- This project aims to analyze the MTA daily ridership data to track recovery trends across different transportation modes, including subways, buses, Long Island Rail Road (LIRR), Metro-North, and bridges/tunnels.

SQL Analysis Problem Statement

```
--- 1) Find the highest ridership day for subways
      --- 2) Average bus ridership percentage since the pandemic
      --- 3) Identify days when Metro-North ridership exceeded 100,000
      --- 4) Get the total traffic for bridges and tunnels over the entire dataset
      --- 5) Find the date with the lowest 5 recorde of percentage of pre-pandemic ridership for Access-A-Ride
      --- 6) Calculate weekly average ridership rather than analyzing fluctuations on a daily basis
6
      --- 7) Monitor railway ridership recovery trends post-pandemic by comparing percentages
      --- 8) Total Ridership by Year for Subways, Buses, LIRR, and Metro-North
8
      --- 9) Top 3 Highest Ridership Days per Year
      --- 10) Year-wise Percentage of Pre-Pandemic Ridership
10
```

```
--- 1) Find the highest ridership day for subways

SELECT Date_MTA , Subways_Total_Estimated_Ridership As Highest_Ridership

FROM mta_daily_ridership

ORDER BY Subways_Total_Estimated_Ridership DESC

LIMIT 1;
```


- This query retrieves the date
 (Date_MTA) and ridership count for the day with the highest subway ridership.
- The ORDER BY ... DESC clause sorts the rows in descending order based on

Subways_Total_Estimated_Ridership.

•The LIMIT 1 ensures that only the top record (highest ridership) is returned.

```
--- 2) Average bus ridership percentage since the pandemic

SELECT avg(Buses_Percentage_of_Pre_Pandemic) AS Avg_Bus_Per

FROM mta_daily_ridership;
```


- Calculates the average percentage of pre-pandemic bus ridership across the entire dataset.
- •The AVG() function computes the average of all values in the Buses_Percentage_of_Pre_Pandemic column.

```
--- 3) Identify days when Metro-North ridership exceeded 100,000

SELECT Date_MTA, MetroNorth_Total_Estimated_Ridership

FROM mta_daily_ridership

WHERE MetroNorth_Total_Estimated_Ridership > 100000;
```

	Date_MTA	MetroNorth_Total_Estimated_Ridership	
•	02-03-2020	180701	70
	03-03-2020	190648	
	04-03-2020	192689	
	05-03-2020	194386	
	06-03-2020	205056	
	09-03-2020	183953	
	10-03-2020	179050	
	11-03-2020	175074	
	12-03-2020	169547	
	13-03-2020	167176	
	16-03-2020	153262	
	17-03-2020	147391	
	18-03-2020	146118	
	19-03-2020	144466	

- This query filters records to find all dates (Date_MTA)
- •when Metro-North ridership was greater than 100,000.
- •The WHERE clause specifies the condition for filtering rows.

--- 4) Get the total traffic for bridges and tunnels over the entire dataset

SELECT SUM(Bridges_Tunnels_Total_Traffic) AS Total_traffic

FROM mta_daily_ridership;

Computes the total traffic across bridges and tunnels using the SUM() function, which adds up all values in the Bridges_Tunnels_Total_Traffic column.

```
--- 5) Find the date with the lowest 5 recorde of percentage of 
--- pre-pandemic ridership for Access-A-Ride
```

SELECT Date_MTA, AccessARide_Percentage_of_Pre_Pandemic
FROM mta_daily_ridership
ORDER BY AccessARide_Percentage_of_Pre_Pandemic DESC
LIMIT 5;

- •Retrieves the 5 lowest percentages of pre-pandemic ridership for Access-A-Ride.
- •The ORDER BY ... ASC clause sorts rows in ascending order based on the AccessARide_Percentage_of_Pre_Pandemic.
- •LIMIT 5 ensures that only the 5 lowest records are returned.

- •Groups data by **year and week** to calculate the weekly average subway ridership using AVG().
- •YEAR() and WEEK() extract the year and week from the Date_MTA.
- •The GROUP BY clause ensures averages are calculated for each unique combination of year and week.

--- 7) Monitor railway ridership recovery trends post-pandemic by comparing percentage

SELECT

Date_MTA	Daily_Change	
01-01-2021	HULL	
01-01-2022	2	
01-01-2023	34	
01-01-2024	9	
01-02-2021	-68	
01-02-2022	25	
01-02-2023	16	
01-02-2024	-1	
01-03-2020	6	
01-03-2021	-31	
01-03-2022	21	
01-03-2023	4	
01-03-2024	-7	
01-04-2020	-35	
01-04-2021	17	
01-04-2022	16	
01-04-2023	-7	

- •Tracks daily changes in Staten Island Railway's percentage of pre-pandemic ridership.
- •The LAG() function calculates the previous day's percentage for comparison.
- •OVER (ORDER BY Date_MTA) ensures that the records are processed in chronological order.

```
SELECT

YEAR(Date_MTA) AS Year,

SUM(Subways_Total_Estimated_Ridership) AS Total_Subway_Ridership,

SUM(Buses_Total_Estimated_Ridership) AS Total_Bus_Ridership,

SUM(LIRR_Total_Estimated_Ridership) AS Total_LIRR_Ridership,

SUM(MetroNorth_Total_Estimated_Ridership) AS Total_LIRR_Ridership,

SUM(MetroNorth_Total_Estimated_Ridership) AS Total_MetroNorth_Ridership

FROM

mta_daily_ridership

GROUP BY

YEAR(Date_MTA)

ORDER BY

Year;
```


- Aggregates total yearly ridership for subways, buses, LIRR, and Metro-North using SUM().
- YEAR() extracts the year from the Date_MTA.
- •GROUP BY YEAR(Date_MTA) groups data by year, ensuring totals are calculated per year.

```
--- 9) Top 3 Highest Ridership Days per Year
SELECT
    Date MTA,
    YEAR(Date MTA) AS Year,
    Subways Total Estimated Ridership
FROM
    mta daily ridership AS outer table
WHERE
    (SELECT COUNT(DISTINCT Subways Total Estimated Ridership)
     FROM mta daily ridership AS inner table
     WHERE YEAR(inner table.Date MTA) = YEAR(outer table.Date MTA)
       AND inner table. Subways Total Estimated Ridership >=
                        outer table. Subways Total Estimated Ridership) <= 3
```

ORDER BY

Year DESC , Subways Total Estimated Ridership ASC;

- •Finds the top 3 subway ridership days for each year.
- •Uses a correlated subquery to count the number of ridership days in the same year with equal or greater ridership.
- •Ensures only the top 3 days per year are returned.

```
SELECT

Date_MTA,

AVG(Subways_Percentage_of_Pre_Pandemic) AS Subway_Percent_Pre_Pandemic,

AVG(Buses_Percentage_of_Pre_Pandemic) AS Bus_Percent_Pre_Pandemic,

AVG(LIRR_Percentage_of_Pre_Pandemic) AS LIRR_Percent_Pre_Pandemic,

AVG(MetroNorth_Percentage_of_Pre_Pandemic) AS MetroNorth_Percent_Pre_Pandemic

FROM

mta_daily_ridership

GROUP BY

Date_MTA

ORDER BY

Date_MTA;
```

Date_MTA	Subway_Percent_Pre_Pandemic	Bus_Percent_Pre_Pandemic	LIRR_Percent_Pre_Pandemic	MetroNorth_Percent_Pre_Pandemic
1-03-2024	64.0000	57.0000	58.0000	57.0000
1-04-2020	9.0000	1.0000	3.0000	3.0000
1-04-2021	33.0000	47.0000	25.0000	13.0000
1-04-2022	58.0000	65.0000	47.0000	42.0000
1-04-2023	72.0000	63.0000	72.0000	59.0000
1-04-2024	60.0000	53.0000	67.0000	63.0000
1-05-2020	9.0000	1.0000	2.0000	3.0000
1-05-2021	47.0000	59.0000	43.0000	27.0000
1-05-2022	70.0000	70.0000	66.0000	60.0000
1-05-2023	64.0000	64.0000	59.0000	58.0000
1-05-2024	71.0000	59.0000	72.0000	72.0000
1-06-2020	12.0000	1.0000	10.0000	5.0000
1-06-2021	40.0000	57.0000	34.0000	32.0000
1-06-2022	60.0000	68.0000	54.0000	54.0000
1-06-2023	69.0000	68.0000	63.0000	65.0000

- •Calculates the average percentage of pre-pandemic ridership for subways, buses, LIRR, and Metro-North for each day.
- Groups data by Date_MTA using GROUP BY.
- Results are sorted by Date_MTA.

Key Insights and Findings

Subways and Buses: Subways have shown a faster recovery compared to buses, with ridership levels approaching nearly **Z**% of pre-pandemic levels.

Bridges and Tunnels: Traffic through bridges and tunnels
has almost fully recovered, indicating a shift toward private
vehicle usage.

• Access-A-Ride: Recovery for Access-A-Ride services was slower, indicating that vulnerable populations may still face mobility challenges.

Conclusion

- The analysis of MTA ridership data provides valuable insights into post-pandemic recovery patterns across different transportation modes.
- Understanding these trends can help policymakers and transportation authorities optimize services and plan for future needs.
- Subways and railroads, being critical to New York City's public transportation network, have shown a resilient recovery, while buses and specialized services like Access-A-Ride continue to face challenges.

Future Enhancements

 Data Enrichment: Integrate weather data, events, or COVID-19 case rates to understand external factors affecting ridership.

 Predictive Analysis: Use machine learning to forecast future ridership trends based on historical data.

Dashboard Visualization: Develop interactive dashboards using tools like Power BI or Tableau for real-time monitoring of ridership data.