Machine Elements Report

June 19, 2020

Contents

1	Cha	in Drive	Design	4
	1.1	Nomen	clature	4
	1.2	Find <i>p</i>		5
	1.3	Find <i>a</i> ,	x_c and i	6
	1.4	Strengt	h of chain drive	6
	1.5	Force o	on shaft	7
2	Gea	rbox Des	sign (Helix gears)	8
	2.1	Nomen	clature	8
	2.2	Choose	e material	10
	2.3	Calcula	te $[\sigma_H]$ and $[\sigma_F]$	10
		2.3.1	Working cycle of bearing stress	10
		2.3.2	Working cycle of equivalent tensile stress	10
		2.3.3	Aging factor	11
		2.3.4	Calculate $[\sigma_H]$ and $[\sigma_F]$	11
	2.4	Transm	nission Design	11
		2.4.1	Determine basic parameters	11
		2.4.2	Determine gear meshing parameters	12
		2.4.3	Other parameters	12
		2.4.4	Contact stress analysis	13
		2.4.5	Bending stress analysis	14

3	Shaf	ft Design	16
	3.1	Nomenclature	16
	3.2	Choose material	17
	3.3	Tranmission Design	17
		3.3.1 Load on shafts	17

List of Tables

1.1	Table of chain drive specifications	•	•	•	•	•	•	•		•		•	7
2.1	Gearbox specifications											•	15

v conveyor belt speed, m/s
 D pulley diameter, mm
 L service life, year

 F_t tangential force, N

- T working torque, $N \cdot mm$
- t working time, s
- δ_u error of speed ratio, %

Chapter 1

Chain Drive Design

1.1 Nomenclature

z_1	number of teeth on the driving	q	mass per meter of chain, kg/m
	sprocket	v_1	driving sprocket speed, m/s
z_2	number of teeth on the driven	F_t	tangential force on shaft, N
	sprocket	F_v	centrifugal force, N
z_{max}	maximum number of teeth on the	F_0	tension from passive chain part, N
	driven sprocket	F_r	force on shaft, N
[P]	permissible power, kW	n_{ch}	rotational speed of chain drive,
p	sprocket pitch, mm		rpm
d_1	driving sprocket diameter, mm	n_{01}	experimental rotational speed,
d_2	driven sprocket diameter, mm		rpm
d_c	pin diameter, mm	k_z	coefficient of number of teeth
B	bush length, mm	k_n	coefficient of rotational speed
Q	permissible load, N	k	overall factor
a	center distance, mm	k_0	arrangement of drive factor
a_{min}	minimum center distance, mm	k_a	center distance and chain's length
a_{max}	maximum center distance, mm		factor

x number of links k_{dc} chain tension factor

 x_c an even number of links k_{bt} lubrication factor

i impact times per second k_d dynamic loads factor

[i] permissible impact times per k_c rating factor

second k_f loosing factor

s safety factor k_x chain weight factor

[s] permissible safety factor

1.2 Find p

$$n_{ch} = n_{sh2} = 586 \, (\text{rpm})$$

Find z Since z_1 and z_2 is preferably an odd number (p.80):

$$z_1 = 29 - 2u_{ch} = 18.94 \approx 19$$

$$z_2 = u_{ch} z_1 = 95.57 \approx 97 \le z_{max} = 120$$

Find k Since $n_{ch} = 586 \approx 600$ (rpm), choose $n_{01} = 600$ (rpm), which is obtained from table 5.5. Then, we calculate k_z and k_n

$$k_z = \frac{25}{z_1} \approx 1.32, k_n = \frac{n_{01}}{n_{ch}} \approx 1.02$$

Specifying the chain drive's working condition and ultizing table 5.6 , we find out

that
$$k_0 = k_a = k_{dc} = k_{bt} = 1$$
, $k_d = 1.25$, $k_c = 1.3$

$$\Rightarrow k = k_0 k_a k_{dc} k_{bt} k_d k_c = 1.625$$

Find p From table 5.5:

$$[P] = P_{ch}kk_zk_n \approx 22.78 \text{ (kW)} \le 25.7 \text{ (kW)} \Rightarrow [P] = 25.7 \text{ (kW)}$$

Using the table, we also get the other parameters:

$$p = 25.4 \text{ (mm)}, d_c = 7.95 \text{ (mm)}, B = 22.61 \text{ (mm)},$$

$$d_1 = \frac{p}{\sin\frac{\pi}{z_1}} \approx 154.32 \text{ (mm)}, d_2 = \frac{p}{\sin\frac{\pi}{z_2}} \approx 784.39 \text{ (mm)}$$

1.3 Find a, x_c and i

Find x_c $a_{min} = 30p = 762 \text{ (mm)}$, $a_{max} = 50p = 1270 \text{ (mm)}$. Therefore, we can approximate a = 800 (mm)

$$x = \frac{2a}{p} + \frac{z_1 + z_2}{2} + \frac{(z_2 - z_1)^2 p}{4\pi^2 a} \approx 123.71 \Rightarrow x_c = 124$$

Find a From equation (5.13), recalculating a with x_c :

$$a = \frac{p}{4} \left(x_c - \frac{z_2 + z_1}{2} + \sqrt{\left(x_c - \frac{z_2 + z_1}{2} \right)^2 - 2 \frac{(z_2 - z_1)^2}{\pi^2}} \right) - 0.003 \cdot 800 \approx 771.66 \text{ (mm)}$$

Find i From table 5.9:

$$i = \frac{z_1 n_{sh2}}{15x} \approx 6 < [i] = 30$$

1.4 Strength of chain drive

Choose $k_d = 1.2, k_f = 6$

Given p from previous calculations, Q and q are obtained from table 5.2:

$$Q = 56.7 \times 10^3 \text{ (N)}, q = 2.6 \text{ (kg/m)}$$

 $v_1 = \frac{n_{ch}pz_1}{6 \times 10^4} \approx 4.71 (m/s)$

Find F_t , F_v , F_0 We also need to calculate F_t , F_v and F_0

$$F_t = \frac{10^3 P_{ch}}{v_1} \approx 2208.07 \text{ (N)}$$
$$F_v = q v_1^2 \approx 57.76 \text{ (N)}$$

$$F_0 = 9.81 \times 10^{-3} k_f qa \approx 118.09 \text{ (N)}$$

Validate s From equation (5.15):

$$s = \frac{Q}{k_d F_t + F_0 + F_v} \approx 20.07 \ge [s] = 10.3$$
, where [s] is chosen from table 5.10

1.5 Force on shaft

Choose $k_x = 1.15$ and follow equation (5.20):

 $F_r = k_x F_t \approx 2539.28 \, (\text{N})$

In summary, we have the following table:

[P] (kW)	25.7
n (rpm)	586
u_{ch}	5.03
<i>z</i> ₁	19
<i>z</i> ₂	97
p (mm)	25.4
d_1 (mm)	154.32
$d_2 (\mathrm{mm})$	784.39
d_c (mm)	7.95
B (mm)	22.61
x_c	124
a (mm)	771.66
i	6

Table 1.1: Table of chain drive specifications

Chapter 2

Gearbox Design (Helix gears)

2.1 Nomenclature

$[\sigma_H]$	permissible contact stress, MPa		aging factor due to contact stress							
$[\sigma_F]$	permissible bending stress, MPa	K_{FL}	aging factor due to bending stress							
σ^o_{Hlim}	permissible contact stress	K_{FC}	load placement factor							
	corresponding to working cycle,	$K_{H\alpha}$	factor of load distribution from							
	MPa		contact stress on gear teeth							
σ^o_{Flim}	permissible bending stress	$K_{H\beta}$	factor of load distribution from							
	corresponding to working cycle,		contact stress on top land							
	MPa	K_{Hv}	factor of dynamic load from							
σ_b	ultimate strength, MPa		contact stress at meshing area							
σ_{ch}	yield limit, MPa	K_H	load factor from contact stress							
H	surface roughness, HB	$K_{F\alpha}$	factor of load distribution from							
S	length, mm		bending stress on gear teeth							
S_H	safety factor of contact stress	$K_{F\beta}$	factor of load distribution from							
S_F	safety factor of bending stress		bending stress on top land							
N_{HO}	working cycle of bearing stress	K_{Fv}	factor of dynamic load from							
corresponding to $[\sigma_H]$			bending stress at meshing area							
		K_F	load factor from bending stress							

N_{HE}	working cycle of equivalent tensile	K_d	coefficient of gear material
	stress corresponding to $[\sigma_H]$	Y_{ϵ}	meshing factor
N_{FO}	working cycle of bearing stress	Y_{β}	helix angle factor
	corresponding to $[\sigma_F]$	Y_F	tooth shape factor
N_{FE}	working cycle of equivalent tensile	c	gear meshing rate
	stress corresponding to $[\sigma_F]$	a_w	center distance, mm
AG	accuracy grade of gear	b_w	face width, mm
Z_{M}	material's mechanical properties	d	pitch circle diameter, mm
	factor	d_w	rolling circle diameter, mm
ZH	contact surface's shape factor	d_a	addendum diameter, mm
z_{ϵ}	meshing condition factor	d_f	deddendum diameter, mm
z_{min}	minimum number of teeth	d_b	base diameter, mm
	corresponding to β	m_H	root of fatigue curve in contact
z_v	equivalent number of teeth		stress test
ϵ_{lpha}	horizontal meshing condition	m_F	root of fatigue curve in bending
	factor		stress test
ϵ_{eta}	vertical meshing condition factor	m	traverse module, mm
α	base profile angle, following	m_n	normal module, mm
	Vietnam standard (TCVN	v	rotational velocity, m/s
	1065-71), i.e. $\alpha = 20^{\circ}$	X	gear correction factor
α_t	profile angle of a gear tooth, $^{\circ}$	У	center displacement factor
α_{tw}	meshing profile angle, °	1	subscript for driving gear
$oldsymbol{eta}$	helix angle, °	2	subscript for driven gear
eta_b	helix angle at base circle, $^{\circ}$		
ψ_{ba}	width to shaft distance ratio		
ψ_{bd}	width to pinion diameter ratio		

2.2 Choose material

From table 6.1, the material of choice for both gears is steel 40X with $S \le 100$ (mm), HB250, $\sigma_b = 850$ (MPa), $\sigma_{ch} = 550$ (MPa).

Table 6.2 also gives
$$\sigma_{Hlim}^{o} = 2\text{HB} + 70$$
, $S_{H} = 1.1$, $\sigma_{Flim}^{o} = 1.8\text{HB}$, $S_{F} = 1.75$

Therefore, they have the same properties except for their surface roughness H.

For the driving gear,
$$H_1 = \text{HB250} \Rightarrow \sigma^o_{Hlim1} = 570 \text{ (MPa)}, \sigma^o_{Flim1} = 450 \text{ (MPa)}$$

For the driven gear,
$$H_2 = \text{HB}240 \Rightarrow \sigma^o_{Hlim2} = 550 \, (\text{MPa}), \, \sigma^o_{Flim2} = 432 \, (\text{MPa})$$

2.3 Calculate $[\sigma_H]$ and $[\sigma_F]$

2.3.1 Working cycle of bearing stress

Using equation (6.5):

$$N_{HO1} = 30H_1^{2.4} = 17.07 \times 10^6 \text{ (cycles)}$$

$$N_{HO2} = 30H_2^{2.4} = 15.4749 \times 10^6 \text{ (cycles)}$$

2.3.2 Working cycle of equivalent tensile stress

Since $H_1, H_2 \le \text{HB350}, m_H = 6, m_F = 6.$

Both gears meshed indefinitely, thus c = 1.

Applying equation (6.7) and T_1 , T_2 , t_1 , t_2 from the initial parameters:

$$N_{HE1} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 5.73 \times 10^6 \text{ (cycles)} \quad (n_1 = n_2 = n_{sh1})$$

$$N_{HE2} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 1.15 \times 10^6 \text{ (cycles)} \quad (n_1 = n_2 = n_{sh2})$$

$$N_{FE1} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 3.35 \times 10^6 \text{ (cycles)} \quad (n_1 = n_2 = n_{sh1})$$

$$N_{FE2} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 0.67 \times 10^6 \text{ (cycles)} \quad (n_1 = n_2 = n_{sh2})$$

2.3.3 Aging factor

For steel, $N_FO = 4 \times 10^6$ (MPa). Applying equation (6.3) and (6.4) yield:

$$K_{HL1} = {}^{m} \sqrt{N_{HO1}/N_{HE1}} \approx 1.2$$

 $K_{HL2} = {}^{m} \sqrt{N_{HO2}/N_{HE2}} \approx 1.54$
 $K_{FL1} = {}^{m} \sqrt{N_{FO1}/N_{FE1}} \approx 1.03$
 $K_{FL2} = {}^{m} \sqrt{N_{FO2}/N_{FE2}} \approx 1.35$

2.3.4 Calculate $[\sigma_H]$ and $[\sigma_F]$

Since the motor works in one direction, $K_{FC} = 1$

$$\begin{split} &[\sigma_{H1}] = \sigma^o_{Hlim1} K_{HL1} / S_{H1} \approx 621.61 \text{ (MPa)} \\ &[\sigma_{H2}] = \sigma^o_{Hlim2} K_{HL2} / S_{H2} \approx 771.63 \text{ (MPa)} \\ &[\sigma_{F1}] = \sigma^o_{Flim1} K_{FC1} K_{FL1} / S_{F1} \approx 264.85 \text{ (MPa)} \\ &[\sigma_{F2}] = \sigma^o_{Flim2} K_{FC2} K_{FL2} / S_{F2} \approx 332.48 \text{ (MPa)} \\ &[\sigma_{H}]_{max} = \frac{1}{2} \left([\sigma_{H1}] + [\sigma_{H2}] \right) \approx 696.62 \text{ (MPa)} \leq 1.25 [\sigma_{H}]_{min} = 1.25 [\sigma_{H1}] \end{split}$$

Permissible bending stress during overload:

$$[\sigma_F]_{max} = [\sigma_{F2}] = 0.8\sigma_{ch} \approx 440 \,(\text{MPa})$$

2.4 Transmission Design

2.4.1 Determine basic parameters

Examine table 6.5 gives $K_a = 43$

Assuming symmetrical design, table 6.6 also gives $\psi_{ba} = 0.5$

$$\Rightarrow \psi_{bd} = 0.53 \psi_{ba} (u_{hg} + 1) = 1.59$$

From table 6.7 , using interpolation we approximate $K_{H\beta} \approx 1.108, K_{F\beta} \approx 1.2558$

Since the gear system only consists of involute gears and it is also a speed reducer gearbox, we estimate a_w using equation (6.15a) before following SEV229-75 standard:

$$a_w = K_a (u_{hg} + 1) \sqrt[3]{\frac{T_{sh1} K_{H\beta}}{[\sigma_H]^2 u_{hg} \psi_{ba}}} = 83.84 \text{ (mm)}$$

2.4.2 Determine gear meshing parameters

Find m Applying equation (6.17) and choose m from table (6.8):

$$m = (0.01 \div 0.02)a_w = (0.84 \div 1.68) \text{ (mm)} \Rightarrow m = 1.5 \text{ (mm)}$$

Find z_1 , z_2 , a_w We have $\beta = \alpha = 20^\circ$. Combining equation (6.18) and (6.20), we come up with the formula to calculate z_1 . From the result, z_1 is rounded to the nearest odd number (preferably a prime number).

$$z_1 = \frac{2a_w \cos \beta}{m(u+1)} \approx 17.51 \approx 17$$
$$z_2 = u_{hg} z_1 = 85$$

According to SEV229-75 standard, we choose $a_w = 80 \text{ (mm)}$

$$\Rightarrow b_w = \psi_{ba} a_w = 40 \text{ (mm)}$$

Find x_1 , x_2 Let $\beta = 20^\circ$, $z_{min} = 15$. Knowing that $y = \frac{a_w}{m} - \frac{z_1 + z_2}{2} = 0$, we conclude z_1 must not be smaller than 17 as mentioned by table 6.9. Hence, there is no need for correction ($x_1 = x_2 = 0$) and $z_1 = 17$ satisfy the condition.

Find
$$\alpha_{tw}$$
 Since $y = 0 \Rightarrow \alpha_{tw} = \alpha_t = \tan^{-1} \frac{\tan \alpha}{\cos \beta} \approx 21.17^{\circ} \text{ (p.105)}$

2.4.3 Other parameters

$$\alpha_{t} = \tan^{-1} \frac{\tan \alpha}{\cos \beta} \approx 21.17^{\circ}$$

$$d_{1} = \frac{mz_{1}}{\cos \beta} \approx 27.14 \text{ (mm)}$$

$$d_{2} = \frac{mz_{2}}{\cos \beta} \approx 135.68 \text{ (mm)}$$

$$d_{2} = d_{1} + 2m \approx 30.14 \text{ (mm)}$$

$$d_{2} = d_{2} + 2m \approx 138.68 \text{ (mm)}$$

$$d_{3} = d_{1} - 2.5m \approx 23.39 \text{ (mm)}$$

$$d_{4} = d_{1} - 2.5m \approx 23.39 \text{ (mm)}$$

$$d_{4} = d_{2} - 2.5m \approx 131.93 \text{ (mm)}$$

$$d_{b1} = d_{1} \cos \alpha \approx 25.3 \text{ (mm)}$$

$$d_{b2} = d_{2} \cos \alpha \approx 126.52 \text{ (mm)}$$

$$d_{w1} = d_{1} \approx 27.14 \text{ (mm)}$$

$$d_{w2} = d_{2} \approx 135.68 \text{ (mm)}$$

$$v = \frac{\pi d_{1}n_{1}}{6 \times 10^{4}} \approx 4.16 \text{ (m/s)}$$

2.4.4 Contact stress analysis

From section 6.3.3. in the text, contact stress applied on a gear surface must satisfy the condition below:

$$\sigma_H = z_M z_H z_\epsilon \sqrt{2T_{sh1} K_H \frac{u_{hg} + 1}{b_w u_{hg} d_{w1}^2}} \le [\sigma_H]$$
(2.1)

Find $z_M = 274$, according to table 6.5

Find z_H Since correction is unused in our calculation:

$$\beta_b = \arctan(\cos \alpha_t \tan \beta) \approx 18.75^\circ \Rightarrow z_H = \sqrt{2 \frac{\cos \beta_b}{\sin(2\alpha_t)}} \approx 1.68$$

Find z_{ϵ} Obtaining z_{ϵ} through calculations:

$$\epsilon_{\alpha} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} - 2a_w \sin \alpha_t}{2\pi m \frac{\cos \alpha_t}{\cos \beta}} \approx 1.64$$

$$\epsilon_{\beta} = b_w \frac{\sin \beta}{m\pi} \approx 2.9 > 1 \Rightarrow z_{\epsilon} = \epsilon_{\alpha}^{-0.5} \approx 0.78$$

Find K_H We find K_H using equation $K_H = K_{H\beta}K_{H\alpha}K_{H\nu}$

From table 6.13, $v \le 10 \text{ (m/s)} \Rightarrow AG = 8$

From table P2.3, using interpolation, we approximate:

$$K_{Hv} \approx 1.0417, K_{Fv} \approx 1.1145$$

From table 6.14, using interpolation, we approximate:

$$K_{H\alpha} \approx 1.0766, K_{F\alpha} \approx 1.253$$

$$\Rightarrow K_H \approx 1.24$$

Find σ_H After calculating z_M , z_H , z_ϵ , K_H , we get the following result:

$$\sigma_H \approx 699.12 \, (\text{MPa}) \leq [\sigma_H] \approx 696.62 \, (\text{MPa})$$

Since σ_H and $[\sigma_H]$ are almost equal to each other, i.e $||\sigma_H - [\sigma_H]|| < 4\%$, the assumed parameters are appropriate.

2.4.5 Bending stress analysis

For safety reasons, the following conditions must be met:

$$\sigma_{F1} = 2 \frac{T_{sh1} K_F Y_{\epsilon} Y_{\beta} Y_{F1}}{b_w d_{w1} m_n} \le [\sigma_{F1}]$$

$$(2.2)$$

$$\sigma_{F2} = \frac{\sigma_{F1} Y_{F2}}{Y_{F1}} \le [\sigma_{F2}] \tag{2.3}$$

Find Y_{ϵ} Knowing that $\epsilon_{\alpha} \approx 1.64$, we can calculate $Y_{\epsilon} = \epsilon_{\alpha}^{-1} \approx 0.61$

Find
$$Y_{\beta}$$
 Since $\beta = 20^{\circ} \Rightarrow Y_{\beta} = 1 - \frac{\beta}{140} \approx 0.86$

Find Y_F Using formula $z_v = z \cos^{-3}(\beta)$ and table 6.18:

$$z_{v1}=z_1\cos^{-3}(\beta)\approx 20.49 \Rightarrow Y_{F1}\approx 4.06$$

$$z_{v2} = z_2 \cos^{-3}(\beta) \approx 102.44 \Rightarrow Y_{F2} \approx 3.6$$

Find K_F Using $K_{F\beta}$, $K_{F\alpha}$, $K_{F\nu}$ calculated from the sections above, we derive:

$$K_F = K_{F\beta}K_{F\alpha}K_{F\nu} \approx 1.75$$

Find σ_F Substituting all the values, we find out that:

$$\sigma_{F1} \approx 182.39 \,(\text{MPa}) \leq [\sigma_{F1}] \approx 264.85 \,(\text{MPa})$$

$$\sigma_{F2} \approx 161.69 \,(\text{MPa}) \leq [\sigma_{F2}] \approx 332.48 \,(\text{MPa})$$

The calculated results are appropriate.

Through calculations, there is no correction needed, i.e. y = 0. Thus, the specifications will not include corrections.

In summary, we have the following table:

	pinion	driving gear					
H(HB)	250	240					
$[\sigma_H]$ (MPa)	621.61	771.63					
$[\sigma_F]$ (MPa)	264.85	332.48					
$[\sigma_H]$ (MPa)	696	.62					
σ_F (MPa)	182.39	161.69					
σ_H (MPa)	699	.12					
α_{tw} (°)	21.17						
β (°)	20						
a_w (mm)	80						
b_w (mm)	40						
m (mm)	1.5						
Z	17	85					
d (mm)	27.14	135.68					
d_a (mm)	30.14	138.68					
d_f (mm)	23.39	131.93					
d_b (mm)	25.3	126.52					

Table 2.1: Gearbox specifications

Chapter 3

Shaft Design

3.1 Nomenclature

 $[\sigma_H]$ permissible contact stress, MPa

 $[\sigma_H]_{max}$ permissible contact stress due to

overloading, MPa

 $[\sigma_F]_{max}$ permissible bending stress due to

overloading, MPa

 $[\sigma_{FO}]$ permissible bending stress

corresponding to 10^6 cycles, MPa

 v_s translational velocity, m/s

 σ_b ultimate strength, MPa

 σ_{ch} yield limit, MPa

 N_{FE} working cycle of equivalent tensile

stress corresponding to $[\sigma_F]$

 K_{FL} aging factor due to bending stress

 a_w shaft distance, mm

z number of teeth of worm wheel

d worm wheel diameter, mm

q standardized coefficient of shaft

diameter

T torque on shaft

3.2 Choose material

For moderate load, we will use quenched steel 40X to design the shafts. From table 6.1, the specifications are as follows: $S \le 100 \, (\text{mm})$, HB260, $\sigma_b = 850 \, (\text{MPa})$, $\sigma_{ch} = 550 \, (\text{MPa})$.

3.3 Tranmission Design

3.3.1 Load on shafts

Following p.186, the sign convention of the book will be used in this section. On shaft 1, the motor is 1 and the pinion is 2. On shaft 2, the driven gear is 1 and the driving sprocket is 2. Therefore, we obtain:

$$r_{12} = d_{12}/2 \approx 13.57 \text{ (mm)}, hr_{12} = +1, cb_{12} = +1, cq_1 = +1$$

 $r_{21} = d_{21}/2 \approx 67.84 \text{ (mm)}, hr_{21} = +1, cb_{21} = -1, cq_2 = -1$

Find magnitude of F_t , F_r , F_a Using the results from the previous chapter, we obtain $\alpha_{tw} \approx 21.17^\circ$, $\beta = 20^\circ$, $d_{w12} = d_{12} \approx 27.14$ (mm)

$$\begin{cases} F_{t12} = F_{t21} = \frac{2T_{sh1}}{d_{w12}} = 2769.03 \text{ (N)} \\ F_{r12} = F_{r21} = \frac{F_{t12} \tan \alpha_{tw}}{\cos \beta} = 1141.36 \text{ (N)} \\ F_{a12} = F_{a21} = F_{t12} \tan \beta = 1007.84 \text{ (N)} \end{cases}$$

Find direction of F_t , F_r , F_a Following the sign convention, we obtain the forces:

$$\begin{cases} F_{x12} = \frac{r_{12}}{|r_{12}|} cq_1 cb_{12} F_{t12} \approx 2769.03 \text{ (N)} \\ F_{y12} = -\frac{r_{12}}{|r_{12}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t12} \approx -1141.36 \text{ (N)} \\ F_{z12} = cq_1 cb_{12} hr_{12} F_{t12} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

$$\begin{cases} F_{x21} = \frac{r_{21}}{|r_{21}|} cq_2 cb_{21} F_{t21} \approx 2769.03 \text{ (N)} \\ F_{y21} = -\frac{r_{21}}{|r_{21}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t21} \approx -1141.36 \text{ (N)} \\ F_{z21} = cq_2 cb_{21} hr_{21} F_{t21} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

Assuming $\alpha = 150^{\circ}$ and combining with $F_r \approx 2539.28$ (N) from chapter 2, we get the direction of F_r onto shaft 2:

$$\begin{cases} F_{x22} = F_{r22} \cos \alpha \approx -2199.08 \text{ (N)} \\ F_{y22} = F_{r22} \sin \alpha \approx 1269.64 \text{ (N)} \end{cases}$$