Department of Computer Science

CS 1005 – Discrete Structures

FALL 2021

Instructor Name: Dr. S. M. Husnine, Dr. Misbah Irshad, Ms. Hina Dilawer

, Dr. Muhammad Awais Umar, Ms. Igra Zareef

Course Description/Objectives/Goals:

The goal of this course is to introduce the students to "Discrete Mathematics", which is an important area of mathematics and theoretical computer science. It deals with structures that are not continuous and do not vary smoothly, but are distinct with separate values. The course covers the basics of logic, set theory, proof techniques, counting, number theory and graph theory.

Course Learning Outcomes (CLOs):				
At the end of the course students will be able to:	Domain	BT* Level		
1. Understand the key concepts of Discrete Structures such as Sets, Permutations, Combinations, Relations, Graphs, etc.	С	2		
2. Apply formal logic proofs and/or informal, but rigorous, logical reasoning.	С	3		
3. Apply discrete structures into computing problems.	С	3		
4. Differentiate various discrete structures.	С	4		

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain.

Bloom's taxonomy Levels: 1. Knowledge, 2. Comprehension, 3. Application, 4. Analysis, 5. Synthesis, 6. Evaluation

Course Textbook

1. Kenneth H. Rosen, Discrete Mathematics and Its Applications, seventh Edition., McGraw-Hill.

Additional references and books related to the course:

- 1. Ralph P. Grimaldi, *Discrete and Combinatorial Mathematics: An Applied Introduction*, Fourth edition or later, Addison-Wesley.
- 2. Winifred K. Grassman, Jean P. Tremblay, *Logic and Discrete Mathematics: A Computer Science Perspective*, International Edition (or edition 1 or later), Prentice Hall.
- 3. Stuart Russell and Peter Norvig, *Artificial Intelligence, A Modern Approach*, Second edition or later, Pearson.

Tentative Weekly Schedule

Week	Topics to be	Readings	Assignments/Projects
	covered		?
1	Introduction to discrete structures		
2	Propositional calculus,		
	logical connectives and		
	examples		
3	Propositional calculus		
	continued, inference		
	techniques		
4	First order logic:		
	predicates and		
	quantifiers, inference		
	techniques		
5	Set theory: set		
	operations, set		
	relationships,		
	Functions, classification		
	and composition.		
6	Midterm Exam 1		
6	Cardinality of sets.		
	countable and		
	uncountable sets		
7	Binary and n-ary		
	Relations, representing		
	Relations, closure,		
	equivalence		
8	Proof techniques		
9	Proof techniques		
	continued +		
	Mathematical		
	induction with		
	examples		
10	Number theory:		
	Euclidean algorithm,		
	LCM, Fermat's little		
	theorem, Chinese		
	remainder theorem, modular		
	exponentiation.		
11			
11	Recurrence relation, homogenous and non-		
	homogenous equations		
12	Midterm 2		
12	Introduction to		
12	counting,		
	permutations,		
	combinations, pigeon		
	hole principle		
13	Combinatorics:		
	Pascal's Triangle,		
	pascal's identity,		
	Vandermonde identity		
14	Introduction to graphs		
<u> </u>	oddotion to grupiis	<u> </u>	

15	Problems related to	
	graphs	

Evaluations

Assignments: 10%
Quizzes: 10%

3. Midterm Exams:30%4. Final Exam: 50%

Course Policies

1. Quizzes may be un-announced.

2. No makeup for missed quizzes or assignments.

3. 80% attendance is essential

Grading Scheme

Relative