Cognoms	Nom	DNI
Examen Final AP3	Duració: 3 hores	07/01/2020
• Contesteu tots els problem	rares i 4 problemes. plet i número de DNI a cada full. nes en el propi full de l'enunciat i d ontrari, cal justificar les respostes.	•
Problema 1		(2 punts)
interpretades com a nomi raules 0, 11, 00110 pertan 0, 3 i 6 respectivament. La que representa el nombre llenguatge, donat que representa el DFA a transicions. En qualsevol	llenguatge del qual siguin les se bres naturals, són múltiples de yen al llenguatge, donat que re a paraula buida λ també forma e 0. En canvi, les paraules 1, 01 presenten els nombres 1, 2 i 5 re amb una taula de transicions of cas, indiqueu clarament l'estat convenis de notació vistos a clasta.	e 3. Per exemple, les pa- epresenten els nombres a part del llenguatge, ja 10, 101 no pertanyen al espectivament. o amb un diagrama de t inicial i els estats d'ac-

(b) (1 pt.) Per a cada afirmació donada a continuació, marqueu amb una X la casella corresponent segons si és certa o falsa. No cal justificar res.

Nota: Cada resposta correcta sumarà 0.2 punts; cada resposta equivocada restarà 0.2 punts, llevat del cas que hi hagi més respostes equivocades que correctes, en què la nota de l'exercici serà 0.

Recordeu: k-SAT és el problema de, donada una fórmula proposicional en CNF amb com a molt k literals per clàusula, decidir si és satisfactible o no.

- (1) Tot problema de la classe P es pot decidir amb un algorisme de cost polinòmic.
- (2) Hi ha problemes de la classe NP que es poden decidir amb un algorisme de cost polinòmic.
- (3) Tot problema NP-complet es pot decidir amb un algorisme de cost exponencial.
- (4) Hi ha problemes que es poden reduir a 2-SAT i també a 3-SAT.
- (5) Hi ha problemes que es poden reduir a 3-SAT però no a 4-SAT.

	(1)	(2)	(3)	(4)	(5)
CERT					
FALS					

Lognoms	Nom	ı D	I NI
oblema 2			(2 punts)
conat un vector $a[0n-1]$ of collim un índex i amb $0 \le ma$ més gran dels element questa operació $k > 0$ vega er exemple, si $a = [3, -1, 0]$ of aconseguir escollint els fact té suma 6 .	(i < n, i reemplacem) its del vector que es podes. [0,2] i $[k=3, l]$ llavors $[k=3, l]$	a[i] per $-a[i]$. Ve pot aconseguir de a resposta és 6.	olem calcular la esprés d'aplicar Aquest valor es
) (1 pt.) Si $k = 1$, quin Demostreu-ho.	índex podem escolli	r per obtenir la	suma màxima?

(b) (1 pt.) Ompliu el buit de la funció següent per resoldre el problema. Es valorarà l'eficiència. int max_sum(const vector<int>& a, int k) {

Cognoms	Nom	DNI	

Problema 3 (4 punts)

En el problema de la motxilla disposem d'una motxilla amb capacitat W>0 i de n objectes, cadascun amb un pes $w_k>0$ i un valor $v_k>0$ (on $0 \le k < n$). Es tracta de trobar el valor acumulat màxim que es pot aconseguir amb un subconjunt d'objectes el pes total del qual no excedeixi la capacitat de la motxilla. És a dir, es tracta de trobar el màxim $\sum_{k \in S} v_k$ on $S \subseteq \{0, \ldots, n-1\}$ és tal que $\sum_{k \in S} w_k \le W$.

Suposem que per tot $0 \le k < n$ es compleix que $w_k \le W$ (doncs altrament l'objecte k-èsim mai podrà formar part de la selecció òptima).

(a) (1 pt.) Ompliu els buits del programa següent per a resoldre el problema de la motxilla.

```
int n, W;
vector < int > v, w;
int opt1() {
  vector < vector < int>> m(n+1, vector < int>(W+1,
  for (int i = 1; i <= n; ++i) {
    for (int j = 0; j < 0
      m[i][j] = m[i-1][j];
    for (int j =
      m[i][j] = max(
  return
int main() {
  cin >> n >> W;
  v = w = vector < int > (n);
  for (int& x : v) cin >> x;
  for (int& x : w) cin >> x;
  cout << opt1() << endl;
```

(b) (0.5 pts.) Raoneu quin és el cost asimptòtic en temps d'opt1 en funció de *n* i *W*.

(c) (0.6 pts.) Donats i tal que $0 \le i \le n$ i un valor V tal que $V \le \sum_{k=0}^{i-1} v_k$, definim c(i,V) com el C més petit tal que hi ha un subconjunt dels i primers objectes amb pes total C i valor com a mínim V, o sigui, un subconjunt $S \subseteq \{0,\ldots,i-1\}$ tal que $\sum_{k \in S} w_k = C$ i $\sum_{k \in S} v_k \ge V$. Completeu la recurrència següent.

```
c(i,V) = \begin{cases} & \text{si } V \leq 0 \\ & \text{si } V > \sum_{k=0}^{i-2} v_k \\ & \text{altrament} \end{cases}
```

(d) (0.9 pts.) Ompliu els buits del programa següent per a resoldre el problema de la motxilla, on **int** c(int i, int V) implementa la funció de l'apartat anterior.

```
int n, W;
vector < int > v, w, s;
vector < vector < int>> cc;
int c(\text{int } i, \text{ int } V) {
}
int opt2() {
            s = vector < int > (n+1, 0);
            for (int k = 1; k \le n; k \ge n; k
            int S = s.back();
            cc = vector < vector < int >> (n+1, vector < int > (S+1, -1));
            int V=0;
            while (
           return
int main() {
            cin >> n >> W;
            v = w = vector < int > (n);
            for (int& x : v) cin >> x;
            for (int& x : w) cin >> x;
            cout << opt2() << endl;
```

$\frac{1}{1000000000000000000000000000000000$	$\int_{0}^{1} v_{k}$ en el cas p	itjor.			
	s un valor grar	n, quin dels do	s programe	e la motxilla i W s anteriors escoll esposta.	

Aquesta cara estaria en blanc intencionadament si no fos per aquesta nota.

Cognoms	Nom	DNI

Problema 4 (2 punts)

Avui és l'endemà del dia de Reis, i toca tornar a posar ordre a la casa. Finalment els Reis Mags no han portat carbó, sinó una pila de joguines que ara cal guardar. Per fer-ho, disposem d'un calaix de dimensions $n \times m$, on n, m > 0. Tenim p joguines (amb p > 0), cadascuna de les quals ve en una caixa rectangular de dimensions $a_k \times b_k$, on per cada $0 \le k < p$ es compleix $0 < a_k \le n$ i $0 < b_k \le m$. Per simplificar, ignorarem l'alçada del calaix i de les caixes, i només considerarem dues dimensions, l'amplada i la fondària. També per simplificar assumirem que les caixes no poden ser rotades (és a dir, una caixa de dimensions 1×2 **no** és igual que una caixa de dimensions 2×1).

Per exemple, si n=3, m=4, p=3 i les caixes de joguines tenen dimensions 2×3 , 2×1 i 1×3 respectivament, aleshores una possible manera de col·locar les caixes al calaix (mirant el calaix des de dalt) és aquesta:

Observeu que el calaix no té per què quedar ple del tot.

Ompliu els buits del programa següent per a resoldre el problema de col·locar les caixes de joguines al calaix.

```
bool bt(int i, int j, int left) {
        if (
                                                                                                                                                                                                                                                        ) return false;
        if (i == n) {
               for (int r = 0; r < n; ++r) {
                        for (int c = 0; c < m; ++c)
                               cout << ' ' << s[r][c];
                        cout << endl;</pre>
               return true;
        if (j == m) return
        if (s[i][j] != -1) return
        for (int k = 0; k < p; ++k) {
                 if (not u[k] and can\_place\_at(k, i, j)) {
                        u[k] = true;
                         fill(k, i, j, k);
                        if (bt(i, j+1,
                                                                                                                                                                                                                      )) return true;
                        fill (k, i, j, -1);
                        u[k] = \mathbf{false};
       return
int main() {
       cin >> n >> p;
       a = b = vector < int > (p);
       int left = 0;
       for (int k = 0; k < p; ++k) {
               cin >> a[k] >> b[k];
                  left += a[k] * b[k];
       s = vector < vector < int > (n, vector < int > (m, vector < int > (m
       u = vector < int > (p, false);
        if (not bt(
                                                                                                                                                        , left)) cout << "No solution" << endl;
```