DS Physique 3 (Modes propres!)

Cet examen a été suivi d'une activité de correction par chaque étudiant. D'où la présence d'un barême détaillé dans les solutions.

Calculatrice interdite, sans document, durée : 3h, Encadrez vos résultats. Toute valeur numérique donnée sans unité sera considérée comme erronée.

EXERCICE 1 - Questions de cours - 5 points

Quelques questions de cours

- **1.** Soit un oscillateur harmonique : $\ddot{s} + 2\beta \dot{s} + \omega_0^2 s = 0$. À quelle condition la grandeur s de ce système présentera-t-elle des oscillations?
- 2. Quelle sera la pseudo-pulsation des oscillations de s?
- 3. Quelle est la dimension des symboles β et ω_0 de l'expression précédente?
- 4. Il existe une relation physique qui s'écrit :

$$\omega^2 = (gk + \frac{\sigma}{\rho}k^3)\tanh(kh)$$

où ω est une pulsation, g une accélération et ρ une masse volumique et tanh est la fonction tangente hyperbolique. Donner la dimension de k, h et σ .

5. Donner la définition du travail d'une force \vec{f} exercée sur un point qui va du point A jusqu'au point B en passant par la trajectoire \mathcal{T} .

EXERCICE 2 - Instabilité - 19 points

Une bague M de masse m connue est contrainte d'évoluer sur un rail circulaire de rayon a connu. Elle est également attachée à un ressort de raideur k connu et de longueur à vide ℓ_0 connue. Le point d'ancrage A du ressort est situé à une distance a du sommet du rail. On tient compte de la gravité, orientée vers le bas. On appelle $\overrightarrow{u_x}$ la verticale ascendante. On tient compte d'une force de frottement fluide visqueux (proportionnel à la vitesse) avec l'air de coefficient α connu. L'air est fixe dans le référentiel d'étude.

- 1. Exprimer le poids \overrightarrow{P} dans la base polaire en M.
- 2. Exprimer la force de frottement \vec{F}_f dans la base polaire en M, en fonction de $\dot{\theta}$.
- 3. Rappeler l'expression de l'accélération de M en fonction de $\dot{\theta}$ et $\ddot{\theta}$.
- 4. Exprimer le vecteur \overrightarrow{AM} dans la base polaire en M.

On ne s'intéresse qu'aux déplacement proche du sommet, c'est à dire pour des valeurs de $\theta \ll 1$. On rappelle que dans ce cas $\sin \theta \approx \theta$ et $\cos \theta \approx 1$.

5. Montrer que la force de rappel élastique s'exprime alors

$$\overrightarrow{F}_e \approx -k(a-\ell_0) \begin{bmatrix} -1\\ 2\theta \end{bmatrix}_{pol}$$

- **6.** En déduire une équation différentielle sur θ .
- 7. Montrer que la longueur à vide du ressort ℓ_0 doit être plus petite qu'une certaine valeur (que vous donnerez) pour que ce système soit un oscillateur harmonique.
- 8. On se place dans le cas où ℓ_0 est bien plus petite que cette valeur. Mettre cette équation différentielle sous la forme :

$$\ddot{\theta} + 2\beta\dot{\theta} + \omega_0^2\theta = 0$$

En précisant les expressions de β et ω_0 .

On admet que $\omega_0 \gg \beta$. Initialement la bague est située au sommet et on lui donne une petite vitesse initiale $\vec{v} = v_0 \vec{u_v}$.

9. Déterminer la solution $\theta(t)$ correspondant aux conditions données ci-dessus.

Les valeurs numériques sont les suivantes : a=10 cm, g=10 m/s 2 , $\ell_0\ll a$, m=0.1 kg, k=250 N/m, $\alpha=0.2$ kg/s et $\nu_0=0.1$ m/s

- 10. Déterminer la valeur numérique de ω_0 . En déduire la pseudo-période des oscillations (prendre $\pi=3$). Donnez vos réponses sous forme décimale.
- 11. Au bout de combien de temps est-ce que l'amplitude des oscillations est égale à 10% de l'amplitude initiale? (Au bout de combien de temps est-ce que l'enveloppe exponentielle vaut 10% de sa valeur initiale?) Faire l'application numérique. On donne ln(10) = 2.3
- **12.** Tracer soigneusement l'allure de $\theta(t)$.

EXERCICE 3 – Oscillateurs couplés - 17 points

On donne $\sqrt{3} \approx 1.7$.

On étudie un système constitué de deux masses ponctuelles, de masse m_1 et m_2 connues. Ces deux masses ne peuvent se déplacer que horizontalement. On ignore la gravité. Chacune est reliée à un mur via un ressort de raideur respectives k_1 et k_2 et de longueur au repos $\ell_{1,0}$ et $\ell_{2,0}$. Enfin les deux masses sont elles même reliées par un autre ressort de raideur k_{12} et de longueur à vide $\ell_{12,0}$. Toutes ces raideurs/longueurs à vide sont connues. On note m_1 le déplacement à un instant quelconque de la masse m_1 par rapport à sa position au repos. m_2 par rapport à sa position au repos.

FIGURE 1 – Schéma annoté du système. En haut : situation au repos. En bas : situation à un instant quelconque. Sur ce schéma, on a pris $\ell_{1,0} = \ell_{2.0} = \ell_{12.0}$, mais ce n'est pas nécessairement le cas.

1. Exprimer, à un instant quelconque, les longueurs ℓ_1 , ℓ_2 et ℓ_{12} en fonction de x_1 , x_2 et des données.

2. En déduire l'expression des forces exercées sur m_1 , ainsi que celles exercées sur m_2 , toujours en fonction de x_1 , x_2 et des données.

On suppose à partir de maintenant que $k_1 = k_2 = k$ et $m_1 = m_2 = m$. Attention, on ne suppose pas que $k_{12} = k$.

3. Montrer que les grandeurs x_1 et x_2 vérifient les deux égalités suivantes (vous préciserez les expressions de ω_0 et ω_c) :

$$\begin{cases} \ddot{x}_1 + \omega_0^2 x_1 - \omega_c^2 (x_2 - x_1) = 0 & (1) \\ \ddot{x}_2 + \omega_0^2 x_2 + \omega_c^2 (x_2 - x_1) = 0 & (2) \end{cases}$$

Si vous n'avez pas réussi à établir ce système, vous pouvez l'admettre et considérer que ω_0 et ω_c sont des données pour la suite.

Une personne nommée Caroline mesure la quantité $Q_+ \stackrel{\text{\tiny def}}{=} \frac{x_1 + x_2}{2}$. Une personne nommée Roger mesure la quantité $Q_- \stackrel{\text{\tiny def}}{=} \frac{x_2 - x_1}{2}$.

- 4. Montrer que Caroline peut affirmer que ce système est un oscillateur harmonique (portant sur Q_+) dont vous donnerez la pulsation propre " ω_+ ".
- 5. Montrer que Roger peut affirmer que ce système est un autre oscillateur harmonique (portant sur Q_-) dont vous donnerez la pulsation propre " ω_- ".
- 6. Faire l'application numérique pour ω_+ et ω_- si m=1 kg, et $k_{12}=k=100$ N m⁻¹.

Si vous n'avez pas réussi à établir les expressions de ω_+ et ω_- vous pouvez les considérer comme des données pour la suite. Si vous avez réussi à trouver leur expression, vous pouvez aussi utiliser ω_+ et ω_- pour simplifier vos expressions.

On choisit les conditions initiales suivantes : On déplace la masse m_1 vers la droite de 1 cm, c'est à dire $x_1 = a$, avec a = 1 cm. On laisse m_2 sur sa position de repos, et on libère les masses sans qu'aucune d'elle n'ait de vitesse initiale.

- 7. Traduire ces conditions initiales en des conditions initiales portant sur Q_+ et Q_- et les dérivées de ces quantités.
- **8.** En déduire l'expression de $Q_{+}(t)$ ainsi que $Q_{-}(t)$.
- 9. En déduire l'expression de $x_1(t)$ et de $x_2(t)$.
- 10. Proposer des conditions initiales sur x_1 et x_2 pour que le mouvement de x_1 et x_2 soient tous les deux une sinusoïde pure de pulsation ω_+ .
- 11. Expliquer pourquoi dans le cas décrit par la situation ci-dessus, tout se passe comme si le ressort k_{12} n'existait pas.
- 12. Proposer des conditions initiales sur x_1 et x_2 pour que le mouvement de x_1 et x_2 soient tous les deux une sinusoïde pure de pulsation ω_- .