18.745 Lecture Notes - Lecture 2 Introduction and Basic Definitions - Part II

Alan M. Dunn* (Dated: November 7, 2004)

A homomorphism of Lie algebras \mathfrak{g} is a linear map $\phi: \mathfrak{g} \to \mathfrak{g}_1$ which preserves the bracket, that is, $\phi([a,b]) = [\phi(a),\phi(b)]$. The kernel of a homomorphism ϕ , denoted Ker ϕ , is a subset of \mathfrak{g} such that Ker $\phi = \{a \in \mathfrak{g} | \phi(a) = 0\}$. The image of a such a homomorphism, Im $\phi \equiv \{\phi(a) | a \in \mathfrak{g}_1\}$ is a subset of \mathfrak{g}_1 . A homomorphism ϕ is called an isomorphism if it is bijective, i.e. if Ker $\phi = 0$, Im $\phi = \mathfrak{g}_1$.

Exercise 2.1: Prove the following claims:

- a) Ker ϕ is an ideal in \mathfrak{g} .
- b) Im ϕ is a subalgebra of \mathfrak{g} .
- c) The Lie algebra $\operatorname{Im} \phi$ is isomorphic to the Lie algebra $\mathfrak{g}/\operatorname{Ker} \phi$.

Proof.

- a) Given $a \in \operatorname{Ker} \phi, b \in \mathfrak{g}$. $\phi([a,b]) = [\phi(a),\phi(b)] = [0,\phi(b)] = 0 \to [a,b] \in \operatorname{Ker} \phi \to [\operatorname{Ker} \phi,\mathfrak{g}] \subset \operatorname{Ker} \phi \to \operatorname{Ker} \phi$ is an ideal.
- b) $a, b \in \text{Im } \phi \to a = \phi(a'), b = \phi(b') \to \phi(\lambda a' + \nu b') = \lambda a + \nu b$ (by the linearity of ϕ) $\to \lambda a + \nu b \in \text{Im } \phi \to \text{Im } \phi$ a subspace.

$$[a,b] = [\phi(a'),\phi(b')] = \phi([a',b']) \rightarrow [a,b] \in \operatorname{Im} \phi \rightarrow \operatorname{Im} \phi$$
 a subalgebra of \mathfrak{g}

c) Define $\psi : \mathfrak{g}/\operatorname{Ker} \phi \to \operatorname{Im} \phi$, $\psi(a + \operatorname{Ker} \phi) = \phi(a)$. $\psi(\mathfrak{g}/\operatorname{Ker} \phi)$ is evidently equal to $\operatorname{Im} \phi$, which implies ψ is surjective.

 ψ is well defined, since choosing any representatives $c,d \in a + \operatorname{Ker} \phi$ will both yield $\phi(a)$ under ψ . $\psi(a + \operatorname{Ker} \phi) = \psi(b + \operatorname{Ker} \phi) \to \phi(a) = \phi(b) \to a = b + c, c \in \operatorname{Ker} \phi \to a + \operatorname{Ker} \phi = b + \operatorname{Ker} \phi \to \psi$ is bijective, which implies that ψ is an isomorphism.

The center of a Lie algebra \mathfrak{g} , denoted $Z(\mathfrak{g})$, is the set of elements commuting with \mathfrak{g} i.e. $Z(\mathfrak{g}) = \{a \in \mathfrak{g} | [a, \mathfrak{g}] = 0\}$. This is obviously an ideal.

Exercise 2.2: If \mathfrak{g} is a non-abelian Lie algebra, then $\dim Z(\mathfrak{g}) \leq \dim(\mathfrak{g}) - 2$.

Proof. \mathfrak{g} non-abelian implies that there are at least two linearly independent elements $a,b\in\mathfrak{g}$ such that $[a,b]=c,c\neq0$ $\to a,b\notin\mathrm{Z}(\mathfrak{g})\to\dim\mathrm{Z}(\mathfrak{g})\leq\dim(\mathfrak{g})-2$ since the subspace spanned by a and b is not in $\mathrm{Z}(\mathfrak{g})$: [Aa+Bb,a]=-Bc, and [Aa+Bb,b]=Ac for $A,B\in\mathbb{F}$, which are only 0 for B and A equal to 0 respectively. \square

Exercise 2.3: If \mathfrak{g} is a Lie algebra of dimension $n \geq 3$ with a 1 dimensional derived subalgebra, then \mathfrak{g} , up to isomorphism, is one of the following:

- $b_2 \oplus ab_{n-2}$
- $H_k \oplus ab_{n-2k-1}$

where b_2 is the unique two-dimensional non-abelian Lie algebra, ab_k is a k-dimensional abelian Lie algebra, and H_k is the k-th Heisenberg algebra of dimension 2k + 1.

Proof. $[\mathfrak{g},\mathfrak{g}]$ 1 dimensional implies that $[\mathfrak{g},\mathfrak{g}] = \mathbb{F}a, a \in \mathfrak{g}, a \neq 0$.

^{*}Electronic address: amdunn@mit.edu

Case $1 \exists b \in \mathfrak{g} | [b,a] \neq 0 \rightarrow [b,a] = \lambda a \ (\lambda \neq 0)$. Send $b \rightarrow \frac{1}{\lambda} b$, that is, instead choose $b' = \frac{1}{\lambda} b$ and take that as a basis element. Then [b,a]=a. We can now construct a basis for the remaining $n-2 \geq 1$ dimensions of the algebra: Take any element that is linearly independent from a and b, call it e_1 . $[a,e_1]=\lambda_1 a \rightarrow [a,e_1+\lambda_1 b]=0$, so send $e_1 \rightarrow e_1+\lambda_1 b$. $[b,e_1]=\lambda_2 a \rightarrow [b,e_1-\lambda_2 a]=0$, and also $[a,e_1-\lambda_2 a]=0 \rightarrow \text{sending } e_1 \rightarrow e_1-\lambda_2 a$ creates e_1 that commutes with both a and b, while leaving e_1 linearly independent of a and b. Now we can construct a mutually commuting basis $\{e_1,\ldots,e_{n-2}\}$ that commutes with a and b by induction: Given $\{e_1,\ldots,e_i\}$ mutually commuting and commuting with a and b, select e_{i+1} linearly independent of $\{a,b,e_1,\ldots,e_i\}$, which can be done if $i \leq n+2$. e_{i+1} can be made to commute with a and b by the same process as before. Furthermore, given any e_a , $[e_{i+1},e_a]=\lambda a$, and thus by the Jacobi identity $\lambda a=[b,[e_{i+1},e_a]]=[[b,e_{i+1}],e_a]+[e_{i+1},[b,e_a]]=0$ and thus e_{i+1} will commute with all the e_a for $a\leq i+1$. Thus we have $\{a,b\}$ composing b_2 , the unique two dimensional non-abelian Lie algebra, and $\{e_1,\cdots,e_{n-2}\}$ which span an n-2 dimensional abelian Lie algebra, and thus $\mathfrak{g}=b_2\oplus ab_{n-2}$

Case 2 $\nexists b \in \mathfrak{g}|[b,a] \neq 0, \mathfrak{g}$ non-abelian since $[\mathfrak{g},\mathfrak{g}] \neq 0$ and thus $\exists p_1,q_1 \in \mathfrak{g}|[p_1,q_1] \neq 0 \rightarrow [p_1,q_1] = \lambda a$, sending $p_1 \to \frac{1}{\lambda}p_1 \to [p_1,q_1] = a$. Now if \mathfrak{g} is three dimensional we have $\mathfrak{g} = H_1$, otherwise we can construct a basis for the remaining $n-3 \geq 1$ dimensional subspace. Choose d linearly independent from p_1,q_1 , and a. $[d,a]=0,[d,p_1]=\lambda_1 a \to \text{send} d$ to $d+\lambda_1 q_1 \to [d,p_1]=0,[d,q_1]=\lambda_2 a \to \text{send} d$ to $d-\lambda_2 p_1 \to [d,q_1]=0$ while keeping $[d,p_1]=0$. Thus d commutes with the vectors p_1,q_1,a . While we do not have enough basis vectors we can use the previous algorithm to construct more. Now that we have $\{v_1,\ldots,v_{n-3}\}$ such that these all commute with $\{a,p_1,q_1\}$. Let $H=\{p_1,q_1\}$. We can put the basis into an appropriate form as follows:

- 1. Consider the complement subspace H^c to H. Since a is in this subspace, the subspace is a Lie algebra.
- 2. If $[H^c, H^c] = 0$, all the vectors in H^c commute and we are done.
- 3. If $[H^c, H^c] \neq 0, \exists p, q \in H^c | [p, q] = \lambda a \neq 0$, sending $p \to \frac{1}{\lambda} p$ will make [p, q] = a. We can also make p, q commute with all the vectors in H by taking the vectors in H pairwise and performing the same process as before. Move the new vectors we have created from H^c to H and go to the first step (recalculate H^c).

Since the last step decreases the dimension of H^c and $\dim(H^c)$ begins at a finite number, the algorithm must terminate, and then $H \cup \{a\}$ forms the Heisenberg algebra $H_{\dim(H)/2}$ since H contains pairs of vectors $\{p,q\}$ such that [p,q]=a,[p,t]=0 for t not proportional to q and [q,t]=0 for t not proportional to p. The vectors still in H^c will all commute with each other and form an abelian subalgebra of dimension $n-\dim(H)-1$. So $\mathfrak{g}=H_{\dim(H)/2}\oplus ab_{n-\dim(H)-1}$.

A digression on Lie algebras formed from algebraic groups:

An algebraic group over a field \mathbb{F} is a collection of polynomials $\{p_{\alpha}|\alpha\in J\}$ for some indexing set J on the space of n by n matrices $Mat_n(F)$ such that for any commutative associative unital algebra A over F, the set $G(A) \equiv \{g \in Mat_n(A)|g \text{ invertible and } p_{\alpha}(g) = 0 \text{ for all } \alpha \in I\}$ is a group with respect to matrix multiplication.

Examples:

- a) If we set $\{p_{\alpha}\}=\phi$ then the corresponding algebraic group is called the general linear algebraic group and is denoted GL_n . $GL_n(A)=\{$ invertible matrices $a\in Mat_n(A)\}.$
- b) Since the determinant of a matrix is a polynomial in the entries of the matrix, we can set $\{p_{\alpha}\} = \{det 1\}$. The corresponding algebraic group is known as the special algebraic group, denoted SL_n . $SL_n(A) = \{a \in Mat_n(A) | det \ a = 1\}$.
- c) Let $B \in Mat_n(\mathbb{F})$. Define $O_{n,B}(A) \equiv \{a \in GL_n(A) | a^TBa = B\}$.

Exercise 2.4: Prove that $O_{n,B}(A)$ is a subgroup of $GL_n(A)$.

Proof.
$$O_{n,B} = \{a \in GL_n(A) | a^T B a = B\}$$
.
Let $a, b \in O_{n,B}$. $a^T B a = B, b^T B b = B \to (ab)^T B (ab) = b^T a^T B a b = b^T B b = B \to ab \in O_{n,B}$. $a^T B a = B \to (a^{-1})^T B a^{-1} = B \to a^{-1} \in O_{n,B}$.

If B is non-degenerate and symmetric (respectively, skew-symmetric) then $O_{n,B}(A)$ is called the orthogonal (respectively, symplectic) algebraic group.

Let $D = \mathbb{F}[\epsilon]/(\epsilon^2) = \{a + b\epsilon | a, b \in \mathbb{F}, \epsilon^2 = 0\}$. D is called the algebra of dual numbers. Multiplication in D is carried out as follows:

$$(a + b\epsilon)(c + d\epsilon) = ac + (bc + ad)\epsilon$$

The Lie algebra of an algebraic group G, denoted Lie G, is a subalgebra $\{X \in \mathfrak{gl}_n(\mathbb{F}) | I + \epsilon X \in G(D)\}$.

Theorem 2.5: Lie G is a subalgebra of the Lie algebra $\mathfrak{gl}_n(\mathbb{F})$.

Proof. $X \in \text{Lie } G \iff p_{\alpha}(I + \epsilon X) = 0$ for all α and $I + \epsilon X$ is invertible in $Mat_n(D)$. $(I + \epsilon X)^{-1} = I - \epsilon X$ since $\epsilon^2 = 0 \to I + \epsilon X$ invertible. Also, $p_{\alpha}(I) = 0$ since G(D) is a group. We can Taylor expand the constraints for elements of the algebraic group as follows:

$$0 = p_{\alpha}(I + \epsilon X) = p_{\alpha}(I) + \sum_{i,j} \frac{\partial p_{\alpha}}{\partial X_{ij}}(I)\epsilon X_{ij}(\epsilon^{2} = 0)$$

Hence $X \in \text{Lie } G$ if and only if

$$\sum_{i,j} \frac{\partial p_{\alpha}}{\partial X_{ij}}(I)X_{ij} = 0, \alpha \in J.$$

Thus Lie G is a subspace of $Mat_n(\mathbb{F})$. If $X, Y \in \text{Lie } G$, consider two elements in G(D): $1 + \epsilon X \in G(\mathbb{F}[\epsilon]/(\epsilon^2))$ and $1 + \epsilon' Y \in G(\mathbb{F}[\epsilon']/(\epsilon'^2))$. Both of these are in $G(\mathbb{F}[\epsilon, \epsilon']/(\epsilon^2, \epsilon'^2))$ and we can consider an equation in this group:

$$(1 + \epsilon X)(1 + \epsilon' Y)(1 + \epsilon X)^{-1}(1 + \epsilon' Y)^{-1} = (1 + \epsilon X)(1 + \epsilon' Y)(1 - \epsilon X)(1 - \epsilon Y)$$
$$= 1 + \epsilon \epsilon' (XY - YX) \in G(\mathbb{F}[\epsilon \epsilon']/(\epsilon \epsilon')^2)$$

which is isomorphic again to the algebra of dual numbers. So Lie G is a subalgebra and we are finished. \Box

Examples:

- a) If $G = GL_n(\mathbb{F})$, then Lie $G = \mathfrak{gl}_n(\mathbb{F})$.
- b) If $G = SL_n(\mathbb{F})$, then Lie G = $\{X | det(I + \epsilon X) = 1\}$. By writing out the determinant we can see that:

$$\begin{vmatrix} 1 + \epsilon x_{11} & \epsilon x_{12} & \cdots & \epsilon x_{1n} \\ \epsilon x_{21} & 1 + \epsilon x_{12} & \cdots & \epsilon x_{2n} \\ \vdots & & \ddots & \\ \epsilon x_{n1} & \epsilon x_{n2} & \cdots & 1 + \epsilon x_{nn} \end{vmatrix} = 0$$

=
$$1 + \epsilon(x_{11} + x_{22} + \dots + x_{nn}) + O(\epsilon^2) = 1 + \epsilon tr X \to tr X = 0$$
.
So, Lie $SL_n(\mathbb{F}) = \mathfrak{sl}_n(\mathbb{F})$.

Exercise 2.6: Lie $O_{n,B} = \mathfrak{o}_{n,B}(\mathbb{F})$.

Proof. Let
$$G = O_{n,B}$$
. $X \in \text{Lie } G \to (1+\epsilon X)^T B (1+\epsilon X) = B \to B + \epsilon (X^T B + BX) = B \to X^T B + BX = 0$. \square

Next we prepare to prove Engel's theorem by establishing the following definition and lemma:

Definition: An operator $A \in End\ V$ is nilpotent if $A^N = 0$ for some positive integer N.

Lemma: If A is nilpotent (on V), then ad A is nilpotent on gl_V .

Proof. Note ad $A = L_A - R_A$, where L_A and R_A are the operations of left and right multiplication by A (in the space of endomorphisms of V) respectively. Since A is nilpotent, L_A and R_A raised to some power N are each zero for large enough N. Moreover, L_A and R_B commute since matrix composition in the space of endomorphisms of V is associative. (ad A)^{2N} = $\sum_{i=0}^{2N} \binom{2i}{i} L_A^{2N-i} R_A^i$, and for all i, $2N-i \geq N$ or $i \geq N \rightarrow L_A^{2N-i} = 0$ or $R_A^i = 0 \rightarrow (\operatorname{ad} A)^{2N} = 0$. \square