TEORÍA LINEAL DE OLAS (TLO)

Aplicaciones de la Teoría Lineal de Olas (TLO)

Se trata de estimar las propiedades de las olas a partir de parámetros básicos, por medio de la TLO.

Ejercicio 4.8

Imagine un tren de olas de altura igual a 2.5 m, en aguas de profundidad igual a 10 m, caracterizado por períodos de 12 s.

- · ¿Estas son aguas poco profundas para las olas?
- · ¿A quién le puede importar si las olas están en aguas poco o muy profundas o entre medio de esas dos?
- · Calcule la velocidad orbital máxima en la dirección de propagación, la aceleración máxima, la presión máxima en el fondo del mar y la velocidad de grupo.
- · ¿Para qué puede servir conocer la velocidad máxima orbital de un tren de olas?

TEORÍA LINEAL DE OLAS (TLO)

Ejercicio 4.9

Imagine que la ola anterior sigue viajando y encuentra profundidades de 6 m. ¿Cuál será la longitud de onda, período, celeridad, altura, máximas velocidades y aceleraciones y presión en el fondo?

Ejercicio 4.10

Se han generado olas en un canal de laboratorio de 1.22 m de profundidad. A lo largo del canal se han medido la celeridad y longitud de onda de las olas, obteniéndose los resultados que se muestran en la tabla

Experimento	T(s)	L(m)	C(m/s)
1	0.87	1.23	1.41
2	1.25	2.41	1.93

Nota: T: período de la ola, L: longitud de onda de la ola, C: celeridad.

- · Indique si las condiciones de propagación de olas corresponden a aguas profundas, intermedias o poco profundas.
- · Calcule los valores de C y L a partir de la Teoría Lineal de Olas y el error respecto de los valores medidos.