Série Temporelle - De la théorie à la pratique.

ANDRIAMANANA H. Rivo Hery

19 septembre 2019

1 Serie Temporelle - La Théorie

1.1 Auto-Regression (AR)

Definition 1.1. Un processus (X_t) est Auto-Regressif quand sa valeur à l'instant t n'est expliquée que par ses anciennes valeurs $(X_{t-1},...,X_{t-i})$, où $i \in \{2,...,\infty\}$ et non par d'autres processus.

$$X_t = \phi_1 X_{t-1} + \dots + \phi_i X_{t-i} + \epsilon_t, \quad i \in \{2, \dots, \infty\},$$

où les ϵ_t sont des bruits blancs, indépendants et identiquement distribués, notés $\epsilon_t \to iid(0,\sigma^2), \forall t.$

Definition 1.2 (Ordre d'un AR). Un processus AR est d'ordre p, noté AR(p), quand sa valeur à l'instant t est expliquée par ses p anciennes valeurs:

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + \epsilon_t,$$

 $où \epsilon_t \to iid(0,\sigma^2), \forall t.$

Definition 1.3 (Opérateur de retard). Pour une série temporelle $(X_t)_t$, on définit l'opérateur de retard, noté L, par une application qui à chaque élément X_t de la série, associe son observation précédente X_{t-1} :

$$LX_t = X_{t-1}, \quad \forall t > 1.$$

En particulier, $L^i(X_t) = X_{t-i}$.

Definition 1.4 (Opérateur de différenciation). Pour une série temporelle $(X_t)_t$, on définit l'opérateur de différenciation, noté ∇ , par une application qui à chaque élément X_t de la série, associe la différence $X_t - X_{t-1}$:

$$\nabla X_t = X_t - X_{t-1}, \quad \forall t > 1.$$

Definition 1.5 (Polynome caractéristique). Ayant définit l'opérateur de retard, on peut l'utiliser dans la définition d'un processus AR(p).

Ainsi, si $(X_t)_t$ est un AR(p), alors, on définit le polynome caractéristique Φ d'un processus AR(p) de tel sorte que: $\Phi(L)X_t = \epsilon_t$,

$$\Phi(L) = 1 - \phi_1 L^1 + \dots + \phi_p L^p.$$

Definition 1.6 (Équation caractéristique). On appelle équation caracteristique d'un processus AR(p), l'équation déduit de Φ en remplacant L par x:

$$(1 - \phi_1 x^1 + \dots + \phi_p x^p).$$

1.2 Moyenne Mobile (MA)

Introduction 1.1. Une moyenne est dite mobile lorsqu'elle est recalculée de façon continue, en utilisant à chaque calcul un sous-ensemble d'éléments dans lequel un nouvel élément remplace le plus ancien ou s'ajoute au sous-ensemble.

Definition 1.7. Un processus est une Moyenne Mobile lorsqu'il est de la forme:

$$X_t = \theta_1 \epsilon_{t-1} + \dots + \theta_i \epsilon_{t-i} + \epsilon_t, \quad i \in \{2, \dots, \infty\},$$

 $où \epsilon_t \to iid(0,\sigma^2), \forall t.$

Definition 1.8 (Ordre d'un MA). Un processus MA est d'ordre q, noté MA(q), quand sa valeur à l'instant t est expliquée par ses q anciennes valeurs:

$$X_t = \theta_1 \epsilon_{t-1} + \dots + \theta_p \epsilon_{t-q} + \epsilon_t,$$

 $où \epsilon_t \to iid(0,\sigma^2), \forall t.$

Definition 1.9 (Polynome caractéristique). Le polynome caractéristique Θ d'un processus MA(q) est definit de tel sorte que: $X_t = \Theta(L)\epsilon_t$,

$$\Theta(L) = 1 + \theta_1 L^1 + \dots + \theta_q L^q.$$

1.3 Auto-Regression et Moyenne Mobile (ARMA)

Definition 1.10. Un processus $ARMA(X_t)_t$ est comme son nom l'indique, un processus auto-regessif et moyenne mobile. Il a une partie AR(p) et une partie MA(q) et est noté ARMA(p,q) selon la définition:

$$X_t := \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + \theta_1 \epsilon_{t-1} + \ldots + \theta_p \epsilon_{t-q} + \epsilon_t,$$

 $où \epsilon_t \to iid(0,\sigma^2), \forall t.$

Definition 1.11 (Stationnarité faible). Un processus $(X_t)_t$ est faiblement stationnaire $si: \forall t, \forall h < t;$

- $E(X_t) = \mu$, l'esperence est constante au cours du temps.
- $-Var(X_t) = \sigma^2 < \infty$, la variance est constante et non infinie.
- $Cov(X_t, X_{t-h}) = \gamma(h)$, l'auto-corrélation entre X_t et X_{t-h} reste constante et ne dépend que de h.

Definition 1.12 (Stationnarité forte). Un processus $(X_t)_t$ est fortement stationnaire si: $\forall t, \ \forall h; \ (X_1, X_2, ..., X_t)$ et $(X_{1+h}, X_{2+h}, ..., X_{t+h})$ ont même lois en probabilité.

Definition 1.13 (Auto-Corrélation (ACF)). La fonction d'auto-corrélation est définie par:

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \frac{E[(X_t - \mu)(X_{t+h} - \mu)]}{\sigma^2}.$$

2 Serie Temporelle - La Pratique

Introduction 2.1. En analyse théorique, l'étude d'une série temporelle commence par sa forme théorique. Par exemple, l'étude d'un processus ARMA(p,q) $(X_t)_t$ débute par sa forme:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + \theta_1 \epsilon_{t-1} + \ldots + \theta_p \epsilon_{t-q} + \epsilon_t,$$

où les ϕ_i et θ_j sont sont des constantes données $\forall i < p, \forall j < q.$

Par contre, l'analyse pratique d'une série temporelle débute par un tableau de données, et grâce à ces données, on essaie d'estimer les paramètres du processus, et de déterminer les propriétés des résidus.

A savoir (p-value). En test statistique, le p-value est une critère d'acceptation de l'hypothèse nulle (H_0) :

- si p > 0.10, aucune signification, (H_0) acceptee
- $si p \le 0.10$, asymptotiquement significative, (H_0) acceptee
- $si p \le 0.05$, significative, (H_0) rejetee
- $si p \leq 0.01$, tres significative, (H_0) rejetee.

A savoir (Teste de Dickey-Fuller Augmenté - ADF). Le test ADF est un test de racine unitaire:

 (H_0) : Le processus admet une racine unitaire (non stationnaire)

 (H_1) : Le processus est stationnaire.

Package: library('tseries')
Utilisation: adf.test(...)