Unsupervised Learning

Machine Learning – CSE446 Kevin Jamieson University of Washington

June 3, 2019

minimize
$$\sum_{i=1}^{n} ||x_i - g(f(x_i))||_2^2$$

PCA is a linear transformation

Three major applications

- 1. De-noising
- 2. Feature extraction
- 3. Manifold learning

minimize
$$\sum_{i=1}^{n} ||x_i - g(f(x_i))||_2^2$$

Sparse
$$\min_{f,g} \min \sum_{i=1}^n \|x_i - g(f(x_i))\|_2^2 + \lambda \|f(x_i)\|_1$$
 Autoencoder

What if f(X) = Ax and g(y) = By?

This will just pretty much be PCA...

minimize
$$\sum_{i=1}^{n} ||x_i - g(f(x_i))||_2^2$$

Three major applications

- 1. De-noising
- 2. Feature extraction
- 3. Manifold learning

Related application: Generating new samples (see autoencoder)

GAN (Generative Adversarial Networks)

Find a low dimensional representation for your data by predicting your data

Output:

$$\widehat{x} = g(f(x)) \in \mathbb{R}^d$$

minimize
$$\sum_{i=1}^{n} ||x_i - g(f(x_i))||_2^2$$

Three major applications

- 1. De-noising
- 2. Feature extraction
- 3. Manifold learning

Related application: *Generating new samples* (see variational autoencoders (VAE) or generative adversarial networks (GAN)

Sequences and Recurrent Neural Networks

Machine Learning – CSE446 Kevin Jamieson University of Washington June 3, 2019

Variable length sequences

Images are usually standardized to be the same size (e.g., 256x256x3)

Variable length sequences

Images are usually standardized to be the same size (e.g., 256x256x3)

But what if we wanted to do classification on country-of-origin for names?

Variable length sequences

