Matematisk Statistik: Modelbaseret Inferens

Cross validation

Jens Ledet Jensen

I dag

Multipel regression med mange forkarende variable

Hvordan undgår vi overfitting?

Hvordan vælger vi den bedste multiple regressionsmodel?

Illustration af overfitting

Grønne kurve modellerer de tilfældige udsving i data ikke god til efterfølgende prædiktion

Multipel regressionsmodel

Model:
$$X_i \sim N(\beta_1 t_{i1} + \cdots + \beta_k t_{ik}, \sigma^2)$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{X} \sim N(\boldsymbol{\beta}, \sigma^{2}(\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1})$$

Backward selektion: starte med alle k led, teste led væk successivt

Forward selektion: starte uden led og addere led successivt

Problem: kan ikke stole på $s^2(M)$ til at udvælge model

Bruge prædiktionsvarians som "målestok"

Prædiktionsvarians

 $\hat{oldsymbol{eta}}$ estimeres ud fra data (træningsdata)

Hvor gode er vi til at forudsige respons $ilde{X}$ hørende til nye værdier $ilde{t}_1, \dots ilde{t}_k$

Prædiktionsvarians:
$$E\{(\tilde{X}-(\hat{eta}_1\tilde{t}_1+\cdots+\hat{eta}_k\tilde{t}_k))^2|\text{data}\}$$

$$= E\{(\tilde{X} - (\beta_1 \tilde{t}_1 + \dots + \beta_k \tilde{t}_k) - ((\hat{\beta}_1 - \beta_1) \tilde{t}_1 + \dots + (\hat{\beta}_k - \beta_k) \tilde{t}_k))^2 | \text{data}\}$$

$$= \sigma^2 + \{(\hat{\beta}_1 - \beta_1)\tilde{t}_1 + \dots + (\hat{\beta}_k - \beta_k)\tilde{t}_k\}^2$$

Ikke kun interesseret i én t-værdi: tage "middelværdi" over t

Problem: kender ikke $oldsymbol{eta}$, så hvad gør vi?

Overfitting: eksempel

Sande model: $E(X_i) = \alpha + \beta_1 t_i$

Fitter model:
$$E(X_i) = \alpha + \beta_1 t_i + \beta_2 t_i^2 + \cdots + \beta_k t_i^k$$

Typisk: jo større k er jo bedre et fit får vi: $s(M_k)$ er lille

hvis
$$k = n$$
 er $s(M_k) = 0$!

Hvis vi overfitter giver dette typisk en dårligere prediktor:

$$Eig\{ig(X_{\mathsf{ny}} - \mathsf{Prediktor}(t_{\mathsf{ny}})ig)^2|\mathsf{data}ig\}$$
 bliver større

k=1	k=2	k=4	k=6	k=8
2.3	3.2	4.2	5.9	14.4

For viste data, $t_{\rm ny}$ uniform Kender sande eta

Overfitting: eksempel

Prøv selv i R

t=c(1:10)

Kør koden nogel gange og se at det sidste spredningsskøn typisk er mindre end det første

```
x=rnorm(10)
c(summary(lm(x~poly(t,2)))$sigma,
summary(lm(x~poly(t,6)))$sigma,
summary(lm(x~poly(t,8)))$sigma)
```

Forslag 1

Tage middelværdi af prædiktionsvarians mht $\hat{\beta}_1,\ldots,\hat{\beta}_k$ (det er denne der bruges, når vi laver prædiktionsintervaller)

$$E((\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}} \tilde{\mathbf{t}})^2 = \sigma^2 \tilde{\mathbf{t}}^{\mathsf{T}} (\mathbf{H}^{\mathsf{T}} \mathbf{H})^{-1} \tilde{\mathbf{t}}$$

Eksempel:
$$\mathbf{H} = \begin{pmatrix} 1 & t_1 \\ \vdots & \\ 1 & t_n \end{pmatrix} : \sigma^2(\frac{1}{n} + \frac{(\overline{t} - \widetilde{t})^2}{\mathsf{SSD}_t})$$

Eksempel: $\mathbf{H}^{\mathsf{T}}\mathbf{H} = \mathsf{diag}(w_1,\ldots,w_k)$:

$$\sigma^2 \sum_{j=1}^k rac{ ilde{t}_j^2}{w_j},$$
 stiger med k uanset om $eta_k = 0$

overfitting!

Hvis $\beta_{k_0+1}=\cdots=\beta_k=0$ og vi kun bruger t_1,\ldots,t_{k_0} :

$$\sigma^2 \sum_{j=1}^{k_0} \frac{\tilde{t}_j^2}{w_j}$$

Hvis vi kun bruger t_1, \ldots, t_{k_0} men $\beta_{k_0+1}, \ldots, \beta_k$ er ikke nul:

$$\sigma^2 \sum_{j=1}^{k_0} \frac{\tilde{t}_j^2}{w_j} + (\beta_{k_0+1} \tilde{t}_{K_0+1} + \dots + \beta_k \tilde{t}_k)^2$$

Prædiktionsvariansen vil falde sålænge vi inkluderer relevante led, men stige når vi inkuderer irrelevante led

Forslag 2

Beregne prædiktionsvarians ud fra et testsæt $(\tilde{t}_{i1},\ldots,\tilde{t}_{ik},\tilde{x}_i)$ $i=1,\ldots,m$

Skøn over prædiktionsvariansen: $\frac{1}{m}\sum_{i=1}^{m}(\tilde{x}_i-(\hat{\beta}_1\tilde{t}_1+\cdots+\hat{\beta}_k\tilde{t}_k))^2$

MEN: typisk har vi ikke et testsæt til rådighed

Alternativ: Dele oprindelige datasæt op i et "træningssæt" og et "testsæt"

crossvalidation

Træningssæt / testsæt

Træningssæt:

Data x_1, \ldots, x_n bruges til at estimere model

$$x_i \sim N(\alpha + \beta_1 t_{1i} + \cdots + \beta_k t_{ki}, \sigma^2)$$

 t_1, \ldots, t_k : forklarende variable (regressionsvariable)

Testsæt:
$$\tilde{x}_i, \tilde{t}_{1i}, \ldots, \tilde{t}_{ki}, i = 1, \ldots, m$$

data der IKKE blev brugt til at finde skøn $\hat{\alpha}$, $\hat{\beta}$

Beregn prædikterede værdier $\hat{\xi}_i^P = \hat{\alpha} + \hat{\beta}_1 \tilde{t}_{1i} + \dots + \hat{\beta}_k \tilde{t}_{ki}$

Skøn over prædiktionsspredning: $s_P = \sqrt{\frac{1}{m} \sum_{i=1}^m (\tilde{x}_i - \hat{\xi}_i^P)^2}$

Illustration af overfitting

1.-akse: antal variable i model; 2.-akse: hvor godt passer model til data

Blå kurve viser bedre og bedre tilpasning til trænings-data ved inkludering af flere variable

Rød kurve viser prædiktionsspredning på test-data

Testdata - crossvalidation

Hvordan vurderer vi om vi overfitter, hvis vi ikke har et test-datasæt?

Crossvalidation: Data deles op i et træningssæt og et testsæt

Træningssættet bruges til at estimere parametre i model M

Testsættet bruges til at beregne prædikterede værdier $\tilde{\xi}_i^P(M)$ baseret på estimerede parametre fra træningssættet og de forklarende variable i testsættet, index i løber over testsæt

giver bidrag til prædiktionsvariansen på formen $(x_i - \hat{\xi}_i^P)^2$

Prædiktionsspredning ved crossvalidation: $s_{ ext{cv}} = \sqrt{\frac{1}{m}\sum (x_i - \hat{\xi}_i^P)^2}$

m er antal led i summen

Procedure kan gentages med forskellige valg af træningssæt og testsæt

5-fold crossvalidation

5-fold crossvalidation:

Betragt tilfælde med 50 observationer

Vi deler dem op i 5 blokke: 1-10, 11-20, 21-30, 31-40 og 41-50

- 1) estimerer model baseret på 1-40, tester på 41-50
- 2) estimerer model baseret på 1-30 + 41-50 og tester på 31-40
- 5) estimerer model baseret på 11-50 og tester på 1-10
- I beregning af prædiktionsspredningen får vi nu 50 led

Eventuelt gentage flere gange hvor vi tilfældigt deler op i 5 blokke

Illustration af 5-fold crossvalidation

Leave one out crossvalidation

Leave one out crossvalidation (LOOCV):

Specialtilfælde af crossvalidation, hvor testsættet kun består af 1 observation:

observation i tages ud

model estimeres fra de resterende n-1 observationer

prædikteret værdi $\hat{\xi}_i^{-i}(M)$ beregnes for den udeladte observation

Prædiktionsspredning ved crossvalidation $s_{\text{cv}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(x_i - \hat{\xi}_i^{-i}(M)\right)^2}$

Illustration af LOOCV

Overfitting: eksempel

Sande model:
$$E(X_i) = \alpha + \beta_1 t_i$$

Fitter model:
$$E(X_i) = \alpha + \beta_1 t_i + \beta_2 t_i^2 + \cdots + \beta_k t_i^k$$

Typisk: jo større k er jo bedre et fit får vi: $s(M_k)$ er lille

hvis
$$k = n$$
 er $s(M_k) = 0$!

Fitte polynomium: LOOCV

k=1, s=2.33, sP=2.6 k=2, s=2.31, sP=2.9 k=4, s=2.12, sP=4.2

k=6, s=1.93, sP=9.1 k=8, s=1.52, sP=150.

Fitter 4.gradspolynomium med et punkt udeladt

$$s_{\text{cv}}^2 = \frac{1}{10}(4.3^2 + (-2.5)^2 + 3.4^2 + \dots + (-4.4)^2 + 9.7^2) = 4.26^2$$

Prøv selv i R

```
t=c(1:10)
x=t+rnorm(10)
lmUD=lm(x~poly(t,6))
summary(lmUD)$sigma
sqrt(mean( (lmUD$residuals/(1-lm.influence(lmUD)$h) )^2 ) )
```

Sceneskift

Leave one out crossvalidation er indført

Næste: bruge dette i multipel regression

LOOCV for multipel regressionsmodel

Model:
$$X_i \sim N(\alpha + \beta_1 t_{i1} + \cdots + \beta_k t_{ik}, \sigma^2)$$

Observation i udelades, model estimeres:

estimater:
$$\hat{\alpha}^{-i}, \hat{\beta}_1^{-i}, \dots, \hat{\beta}_k^{-i}$$

Prædikteret værdi beregnes:

$$\hat{\xi}_{i}^{-i} = \hat{\alpha}^{-i} + \hat{\beta}_{1}^{-i} t_{1i} + \dots + \hat{\beta}_{k}^{-i} t_{ki}$$

prædiktionsfejl:
$$x_i - \hat{\xi}_i^{-i}$$

Prædiktionsspredning:

$$s_{cv} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\xi}_i^{-i})^2}$$

Beregning i R

Hjemmelavet funktion til LOOCV uden variabelselektion:

```
loocv=function(fit) {
  h=lm.influence(fit) $h
  return(sqrt(mean((residuals(fit)/(1-h))^2)))
}
lmUD=lm(IR~Sa+BD+MC+OC)
loocv(lmUD)
```

Vis kørsel i R

LOOCV for nedsivnings-data

Respons: Infiltration Rate (IR)
Regressionsvariable: Sand, Silt, BD (bulk density), PD (particle density),
MC (moisture content), OC (organic carbon)

Sa. Si. BD. PD. MC. OC

Backward selection: Sa+BD+MC+OC

$$s(M_B) = 2.42, s_{cv}(M_B) = 3.02$$

Forward selection: Sa+BD

$$s(M_F) = 2.80, s_{cv}(M_F) = 3.12$$

 $s_{
m cv}$ afspejler både usikkerhed i skøn $\hat{\xi}_i^{-i}$ og spredning σ i model

Begge modeller er lige gode, ingen tegn på overfitting

Sceneskift

LOOCV i en multipel regressionsmodel er vist

I multiple regressionsmodeller med få variable bibringer crossvalidation ofte ikke noget nyt

Næste: Multipel regression med mange variable

Data

Data er analyseret i artiklen "Application of near-infrared reflectance spectroscopy to compositional analysis of biscuits and biscuit dough", Journal of the Science of Food and Agriculture, 1984

Ønsker at kunne prædiktere mængden af vand i dej ud fra gennemlysning med lys

NIR: near infrared reflectance spectroscopy måler reflektion ved 700 bølgelænger i intervallet 1100-2500 nm

Data: vektor x med vandindhold i n = 39 prøver

39 × 700 matrix med reflektioner hver række giver spektrum for prøve, hver søjle er en forklarende variabel

multipel regression med 700 forklarende variable!

Regression på individuelle spektre

Backward

Når antal forklarende variable er større end antal prøver: de forventede værdier i multipel regresion = responsværdier $s^2(M)=0$

Enten lægge restriktioner på $\hat{\beta}$ (ridge-regression, LASSO-regression) eller: forward selektion nødvendigt med crossvalidation: figur i webbog afsnit 5.7

Figur med summary(lm(x \sim tj))\$sigma, $j=1,\ldots,700$ Figur med summary(lm(x \sim t114+tj))\$sigma, $j=1,\ldots,700$

Fra 1 til 2 variable

R-beregning: forward

Finde næste led i forward proceduren:

FWstep(T,x,variable)

 $T: n \times k$ matrix med forklarende variable

x: vektor af længde n med responsværdier

variable: vektor med numre på de variable der allerede er inkluderet

Tjek it out: webbog afsnit 5.7: se næste slide

(først vise dej-kørsel i mit eget R, forklar program)

Prøv selv i R

Gå til webbog afsnit 5.7 første kodevindue

Fjern alt fra og med linje 21 til og med linje 29. Indsæt i stedet

dat=matrix(nottem, 20, 12)

spek=dat[,-6]

sukker=dat[,6]

Lav forward selektion ved at køre koden flere gange

R-beregning: crossvalidation

OBS: ikke crossvalidation som for en given multipel regressionsmodel

LOOCV med j led i forward algoritme: Fjerner observation i fra datasæt, kører forward selektion på reducerede datasæt indtil j variable er inkluderet

Finde cross validation prædiktionsspredning:

FWcrossval(T,x,m)

m: det maksimale antal led der ønskes undersøgt

Tjek it out: webbog afsnit 5.7 (langsom!)

se figur på tidligere slide, webbog afsnit 5.5 og 5.7

Værdier

Crossvalidation prædiktionsspredninger fra FWcrossval:

```
1 2 3 4 5 6 7 8 9 10
0.92 0.61 0.47 0.33 0.24 0.22 0.24 0.25 0.26 0.28
```

Tyder på at 6 variable er et godt valg

Prøv selv i R

Gå til webbog afsnit 5.7 andet kodevindue

Fjern alt fra og med linje 30 til og med linje 38. Indsæt i stedet

```
dat=matrix(nottem, 20, 12)
spek=dat[,-6]
```

sukker=dat[,6]

Kør FWcrossval

Prædiktionsspredning fra ægte testsæt

Der er indsamlet 31 nye prøver

Beregner prædiktionsspredning på disse baseret på forward selektion på oprindelige data (træningssæt) med 2 til 10 variable (kode afsnit 5.8)

```
Antal 2 3 4 5 6 7 8 9 10
Variabelnummer 114+85 +142 +285 +78 +75 +81 +206 +166 +205
Prædiktionsspredning 0.38 0.28 0.31 0.26 0.25 0.26 0.25 0.21 0.21
```

Tyder på at vi godt kan tage lidt flere end 6 variable

Sceneskift

Slut med nyt materiale i dag

Næste: Regne eksamensopgave