

17.12.2004

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

RE-REGISTERED COPY

Signed

Dated

23 November 2004

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Patents Form 1/77

Patents Act 1977
(Rule 16)The
Patent
Office

1/77

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

THE PATENT OFFICE
JG
16 MAR 2004
RECEIVED BY FAX

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ

APB/PB60739P 1

1. Your Reference

0405899.6

17MAR04 E881469-1 D02029 16 MAR 2004

P01/7700 0.00-0405899.6 ACCOUNT CHA

2. Patent application number
(The Patent office will fill in this part)3. Full name, address and postcode of the or of
each applicant (underline all surnames)

GLAXO GROUP LIMITED
GLAXO WELLCOME HOUSE
BERKELEY AVENUE
GREENFORD
MIDDLESEX
UB6 0NN
GB

473587003

Patents ADP number (if you know it)

If the applicant is a corporate body, give the
country/state of its corporation

GB

4 Title of the invention

COMPOUNDS

5 Name of your agent (if you have one)

ANTHONY P BREEN

"Address for service" in the United Kingdom
to which all correspondence should be sent
(including the postcode)

GLAXOSMITHKLINE
CORPORATE INTELLECTUAL PROPERTY
980 GREAT WEST ROAD
BRENTFORD, MIDDLESEX

Patents ADP number (if you know it)

TW8 9GS, GB

6. Priority: Complete this section if you are
declaring priority from one or more earlier
patent applications, filed in the last 12 monthsCountry Priority application number
(if you know it)Date of Filing
(day / month / year)7. Divisionals, etc Complete this section only if
this application is a divisional application or
resulted from an entitlement dispute (see note 1)

Number of earlier UK application

Date of filing
(day / month / year)8. Is a Patents Form 7/77 (Statement of
inventorship and of right to grant of a patent)
required in support of this request?

YES

Answer YES if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an

applicant, or

any named applicant is a corporate body

Otherwise answer NO See note (d)

Patents Form 1/77

9. Accompanying documents: A patent application must include a description of the invention. Not counting duplicates, please enter the number of pages of each item accompanying this form:

Continuation sheet of this form

Description 182

Claim(s) -

Abstract -

Drawing(s) -

2 - Papers missing
see minute.

10. If you are also filing any of the following, state how many against each item

Priority Documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patent Form 7/77*)Request for preliminary examination and search (*Patent Form 9/77*)Request for substantive examination (*Patent Form 10/77*)

Any other documents (please specify)

Form 23/77 and Fee Sheet ✓

11. I/We request the grant of a patent on the basis of this application

A C CONNELL

Signature(s)

A C CONNELL

Date: 16 March 2004

12. Name and daytime telephone number and e-mail address, if any, of person to contact in the United Kingdom

LESLEY WELLS	01 438 768599
ANTHONY GREEN	01438 762055

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered "Yes" in part 8, a Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) Part 7 should only be completed when a divisional application is being made under section 15(4), or when an application is being made under section 8(3), 12(6) or 37(4) following an entitlement dispute. By completing part 7 you are requesting that this application takes the same filing date as an earlier UK application. If you want the new application to have the same priority date(s) as the earlier UK application, you should also complete part 6 with the priority details.

PB60739P1 GB

- 1 -

COMPOUNDS

The present invention relates to pyrazolo[3,4-b]pyridine compounds, processes for their preparation, intermediates usable in these processes, and pharmaceutical compositions containing the compounds. The invention also relates to the use of the pyrazolo[3,4-b]pyridine compounds in therapy, for example as inhibitors of phosphodiesterase type IV (PDE4) and/or for the treatment and/or prophylaxis of inflammatory and/or allergic diseases such as chronic obstructive pulmonary disease (COPD); asthma, rheumatoid arthritis or allergic rhinitis.

Background to the Invention

US 3,979,399, US 3,840,546, and US 3,966,746 (E.R.Squibb & Sons) disclose 4-amino derivatives of pyrazolo[3,4-b]pyridine-5-carboxamides wherein the 4-amino group NR₃R₄ can be an acyclic amino group wherein R₃ and R₄ may each be hydrogen, lower alkyl (e.g. butyl), phenyl, etc.; NR₃R₄ can alternatively be a 3-6-membered heterocyclic group such as pyrrolidino, piperidino and piperazino. The compounds are disclosed as central nervous system depressants useful as ataractic, analgesic and hypotensive agents.

US 3,925,388, US 3,856,799, US 3,833,594 and US 3,755,340 (E.R.Squibb & Sons) disclose 4-amino derivatives of pyrazolo[3,4-b]pyridine-5-carboxylic acids and esters. The 4-amino group NR₃R₄ can be an acyclic amino group wherein R₃ and R₄ may each be hydrogen, lower alkyl (e.g. butyl), phenyl, etc.; NR₃R₄ can alternatively be a 5-6-membered heterocyclic group in which an additional nitrogen is present such as pyrrolidino, piperidino, pyrazolyl, pyrimidinyl, pyridazinyl or piperazinyl. The compounds are mentioned as being central nervous system depressants useful as ataractic agents or tranquillisers, as having antiinflammatory and analgesic properties. The compounds are mentioned as increasing the intracellular concentration of adenosine-3',5'-cyclic monophosphate and for alleviating the symptoms of asthma.

H. Hoehn et al., *J. Heterocycl. Chem.*, 1972, 9(2), 235-253 discloses a series of 1*H*-pyrazolo[3,4-b]pyridine-5-carboxylic acid derivatives with 4-hydroxy, 4-chloro, 4-alkoxy, 4-hydrazino, and 4-amino substituents.

CA 1003419, CH 553 799 and T.Denzel, *Archiv der Pharmazie*, 1974, 307(3), 177-186 disclose 4,5-disubstituted 1*H*-pyrazolo[3,4-b]pyridines unsubstituted at the 1-position.

Japanese laid-open patent application JP-2002-20386-A (Ono Yakuhin Kogyo KK) published on 23 January 2002 discloses pyrazolopyridine compounds of the following formula:

PB60739P1 GB

- 2 -

JP-2002-20386-A
(Ono)

wherein R¹ denotes 1) a group -OR⁶, 2) a group -SR⁷, 3) a C2-8 alkynyl group, 4) a nitro group, 5) a cyano group, 6) a C1-8 alkyl group substituted by a hydroxy group or a C1-8 alkoxy group, 7) a phenyl group, 8) a group -C(O)R⁸, 9) a group -SO₂NR⁹R¹⁰, 10) a group -NR¹¹SO₂R¹², 11) a group -NR¹³C(O)R¹⁴ or 12) a group -CH=NR¹⁵. R⁶ and R⁷ denote i) a hydrogen atom, ii) a C1-8 alkyl group, iii) a C1-8 alkyl group substituted by a C1-8 alkoxy group, iv) a trihalomethyl group, v) a C3-7 cycloalkyl group, vi) a C1-8 alkyl group substituted by a phenyl group or vii) a 3-15 membered mono-, di- or tricyclic hetero ring containing 1-4 nitrogen atoms, 1-3 oxygen atoms and/or 1-3 sulphur atoms.

R² denotes 1) a hydrogen atom or 2) a C1-8 alkoxy group. R³ denotes 1) a hydrogen atom or 2) a C1-8 alkyl group. R⁴ denotes 1) a hydrogen atom, 2) a C1-8 alkyl group, 3) a C3-7 cycloalkyl group, 4) a C1-8 alkyl group substituted by a C3-7 cycloalkyl group, 5) a phenyl group which may be substituted by 1-3 halogen atoms or 6) a 3-15 membered mono-, di- or tricyclic hetero ring containing 1-4 nitrogen atoms, 1-3 oxygen atoms and/or 1-3 sulphur atoms. R⁵ denotes 1) a hydrogen atom, 2) a C1-8 alkyl group, 3) a C3-7 cycloalkyl group, 4) a C1-8 alkyl group substituted by a C3-7 cycloalkyl group or 5) a phenyl group which may be substituted by 1-3 substituents. In group R³, a hydrogen atom is preferred. In group R⁴, methyl, ethyl, cyclopropyl, cyclobutyl or cyclopentyl are preferred. The compounds of JP-2002-20386-A are stated as having PDE4 inhibitory activity and as being useful in the prevention and/or treatment of inflammatory diseases and many other diseases.

1,3-Dimethyl-4-(arylamino)-pyrazolo[3,4-b]pyridines with a 5-C(O)NH₂ substituent similar or identical to those in JP-2002-20386-A were disclosed as orally active PDE4 inhibitors by authors from Ono Pharmaceutical Co. in: H. Ochiai et al., *Bioorg. Med. Chem. Lett.*, 5th January 2004 issue, vol. 14(1), pp. 29-32 (available on or before 4th December 2003 from the Web version of the journal: "articles in press").

EP 0 076 035 A1 (ICI Americas) discloses pyrazolo[3,4-b]pyridine derivatives as central nervous system depressants useful as tranquillisers or ataractic agents for the relief of anxiety and tension states.

The compound cartazolate, ethyl 4-(n-butylamino)-1-ethyl-1H-pyrazolo[3,4-b]-pyridine-5-carboxylate, is known. J.W. Daly et al., *Med. Chem. Res.*, 1994, 4, 293-306 and D. Shi et al., *Drug Development Research*, 1997, 42, 41-56 disclose a series of 4-

PB60739P1 GB

- 3 -

(amino)substituted 1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid derivatives, including ethyl 4-cyclopentylamino-1-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate, and their affinities and antagonist activities at A₁- and A_{2A}-adenosine receptors, and the latter paper discloses their affinities at various binding sites of the GABA_A-receptor channel.

- 5 S. Schenone et al., *Bioorg. Med. Chem. Lett.*, 2001, 11, 2529-2531, and P. Bondavalli et al., *J. Med. Chem.*, 2002, vol. 45 (Issue 22, 24 October 2002, allegedly published on Web 09/24/2002), pp. 4875-4887 disclose a series of 4-amino-1-(2-chloro-2-phenylethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid ethyl esters as A₁-adenosine receptor ligands.
- 10 WO 02/060900 A2 appears to disclose, as MCP-1 antagonists for treatment of allergic, inflammatory or autoimmune disorders or diseases, a series of bicyclic heterocyclic compounds with a -C(O)-NR⁴-C(O)-NR⁵R⁶ substituent, including isoxazolo[5,4-*b*]pyridines and 1*H*-pyrazolo[3,4-*b*]pyridines (named as pyrazolo[5,4-*b*]pyridines) with the -C(O)-NR⁴-C(O)-NR⁵R⁶ group as the 5-substituent and optionally substituted at the 1-, 3-, 4-, and/or 6-positions. Bicyclic heterocyclic compounds with a -C(O)NH₂ substituent instead of the -C(O)-NR⁴-C(O)-NR⁵R⁶ substituent are alleged to be disclosed in WO 02/060900 as intermediates in the synthesis of the -C(O)-NR⁴-C(O)-NR⁵R⁶ substituted compounds.
- 15
- 20 WO 00/15222 (Bristol-Myers Squibb) discloses *inter alia* pyrazolo[3,4-*b*]pyridines having *inter alia* a C(O)-X₁ group at the 5-position and a group E₁ at the 4-position of the ring system. Amongst other things, X₁ can for example be -OR₉, -N(R₉)(R₁₀) or -N(R₅)(-A₂-R₂), and E₁ can for example be -NH-A₁-cycloalkyl, -NH-A₁-substituted cycloalkyl, or -NH-A₁-heterocyclo; wherein A₁ is an alkylene or substituted alkylene bridge of 1 to 10 carbons and A₂ can for example be a direct bond or an alkylene or substituted alkylene bridge of 1 to 10 carbons. The compounds are disclosed as being useful as inhibitors of cGMP phosphodiesterase, especially PDE type V, and in the treatment of various cGMP-associated conditions such as erectile dysfunction. Compounds with a cycloalkyl or heterocyclo group directly attached to -NH- at the 4-position of the pyrazolo[3,4-*b*]pyridine ring system and/or having PDE4 inhibitory activity do not appear to be disclosed in WO 00/15222.
- 25
- 30
- 35

Copending unpublished patent application PCT/EP03/11814, filed on 12 September 2003 in the name of Glaxo Group Limited, and incorporated herein by reference, discloses pyrazolo[3,4-*b*]pyridine compounds or salts thereof with a 4-NHR³ group and a 5-C(O)-X group, according to this formula (I):

PR60739P1 GB

- 4 -

wherein:

R¹ is C₁₋₄alkyl, C₁₋₃fluoroalkyl, -CH₂CH₂OH or -CH₂CH₂CO₂C₁₋₂alkyl;

R² is a hydrogen atom (H), methyl or C₁ fluoroalkyl;

5 R³ is optionally substituted C₃-cycloalkyl or optionally substituted mono-unsaturated-C₅-7cycloalkenyl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc);

in which n^1 and n^2 independently are 1 or 2; and in which Y is O, S, SO_2 , or NR¹⁰;

10 or R³ is a bicyclic group (dd) or (ee): (dd) (ee)

and wherein X is NR⁴R⁵ or OR^{5a}.

In PCT/EP03/11814, R⁴ is a hydrogen atom (H); C₁₋₆alkyl; C₁₋₃fluoroalkyl; or

15 C₂-alkyl substituted by one substituent R¹¹.

In PCT/EP03/11814, R⁵ can be: a hydrogen atom (H); C₁₋₈alkyl; C₁₋₈fluoroalkyl; C₃₋₈cycloalkyl optionally substituted by a C₁₋₂alkyl group; -(CH₂)_n⁴⁻C₃₋₈cycloalkyl optionally substituted, in the -(CH₂)_n⁴⁻ moiety or in the C₃₋₈cycloalkyl moiety, by a

20 C₁₋₂alkyl group, wherein n⁴ is 1, 2 or 3; C₂₋₆alkyl substituted by one or two independent substituents R¹¹; -(CH₂)_n¹¹-C(O)R¹⁶; -(CH₂)_n¹²-C(O)NR¹²R¹³; -CHR¹⁹-C(O)NR¹²R¹³; -(CH₂)_n¹²-C(O)OR¹⁶; -(CH₂)_n¹²-C(O)OH; -CHR¹⁹-C(O)OR¹⁶; -CHR¹⁹-C(O)OH; -(CH₂)_n¹²-SO₂-NR¹²R¹³; -(CH₂)_n¹²-SO₂R¹⁶; or -(CH₂)_n¹²-CN; -(CH₂)_n¹³-Het; or optionally substituted phenyl.

PB60739P1 GB

- 5 -

Alternatively, in PCT/EP03/11814, R⁵ can have the sub-formula (x), (y), (y1) or (z):

5 wherein in sub-formula (x), n = 0, 1 or 2; in sub-formula (y) and (y1), m = 1 or 2; and in
sub-formula (z), r = 0, 1 or 2; and wherein in sub-formula (x) and (y) and (y1), none, one
or two of A, B, D, E and F are independently nitrogen or nitrogen-oxide ($N^{+}-O^{-}$)
provided that no more than one of A, B, D, E and F is nitrogen-oxide, and the remaining
10 of A, B, D, E and F are independently CH or CR^6 ; and provided that when n is 0 in sub-
formula (x) then one or two of A, B, D, E and F are independently nitrogen or
nitrogen-oxide ($N^{+}-O^{-}$) and no more than one of A, B, D, E and F is nitrogen-oxide;

In PCT/EP03/11814, each R⁶, independently of any other R⁶ present, is: a halogen atom; C₁₋₆alkyl; C₁₋₄fluoroalkyl; C₁₋₄alkoxy; C₁₋₂fluoroalkoxy; C₃₋₆cycloalkyloxy; -C(O)R^{16a}; -C(O)OR³⁰; -S(O)₂-R^{16a}; R^{16a}-S(O)₂-NR^{15a}; R⁷R⁸N-S(O)₂-; C₁₋₂alkyl-C(O)-R^{15a}N-S(O)₂-; C₁₋₄alkyl-S(O)-; Ph-S(O)-; R⁷R⁸N-CO-; -NR¹⁵-C(O)R¹⁶; R⁷R⁸N; OH; C₁₋₄alkoxymethyl; C₁₋₄alkoxyethyl; C₁₋₂alkyl-S(O)₂-CH₂-; R⁷R⁸N-S(O)₂-CH₂-; C₁₋₂alkyl-S(O)₂-NR^{15a}.CH₂-; -CH₂-OH; -CH₂CH₂-OH; -CH₂-NR⁷R⁸; -CH₂-CH₂-NR⁷R⁸; -CH₂-C(O)OR³⁰; -CH₂-C(O)-NR⁷R⁸; -CH₂-NR^{15a}-C(O)-C₁₋₃alkyl; -(CH₂)_n¹⁴-Het¹ where n¹⁴ is 0 or 1; cyano (CN); Ar^{5b}; or phenyl, pyridinyl or pyrimidinyl wherein the phenyl, pyridinyl or pyrimidinyl independently are optionally substituted by one or two of fluoro, chloro, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

In PCT/EP03/11814, in sub-formula (z), G is O or S or NR⁹ wherein R⁹ is a hydrogen atom (H), C₁₋₄alkyl or C₁₋₄fluoroalkyl; none, one, two or three of J, L, M and Q are nitrogen; and the remaining of J, L, M and Q are independently CH or CR⁶ where R⁶, independently of any other R⁶ present, is as defined therein.

The pyrazolo[3,4-b]pyridine compounds of formula (I) and salts thereof disclosed in PCT/EP03/11814 are disclosed as being inhibitors of phosphodiesterase type IV (PDE4), and as being useful for the treatment and/or prophylaxis of an inflammatory and/or

PB60739P1 GB

- 6 -

allergic diseases such as chronic obstructive pulmonary disease (COPD), asthma, rheumatoid arthritis, or allergic rhinitis.

5 The Invention

We have now found new pyrazolo[3,4-*b*]pyridine compounds, having a -C(O)-NH-C(R⁴)(R⁵)-aryl substituent at the 5-position of the pyrazolo[3,4-*b*]pyridine ring system wherein at least one of R⁴ and R⁵ is not a hydrogen atom (H), which compounds inhibit phosphodiesterase type IV (PDE4).

10 compounds inhibit phosphodiesterase type IV (PDE4).

The present invention therefore provides a compound of formula (I) or a salt thereof (in particular, a pharmaceutically acceptable salt thereof):

15

wherein Ar has the sub-formula (x) or (z):

20 and wherein:

R^1 is C_{1-4} alkyl, C_{1-3} fluoroalkyl, or $-CH_2CH_2OH$;

R^2 is a hydrogen atom (H), methyl or C₁ fluoroalkyl;

25 R³ is optionally substituted C₃-cycloalkyl or optionally substituted mono-unsaturated-C₅-7cycloalkenyl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc);

PB60739P1 GB

- 7 -

(aa)

or

or

(cc)

in which n^1 and n^2 independently are 1 or 2; and in which Y is O, S, SO₂, or NR¹⁰;

where R¹⁰ is a hydrogen atom (H), C₁₋₂alkyl, C₁₋₂fluoroalkyl, CH₂C(O)NH₂,

C(O)NH₂, C(O)NHMe, C(O)-C₁₋₂alkyl, C(O)-C₁fluoroalkyl or -C(O)-CH₂O-C₁₋₂alkyl;

5

and wherein in R³ the C₃-cycloalkyl or the heterocyclic group of sub-formula (aa), (bb) or (cc) is optionally substituted on a ring carbon with one or two substituents independently being oxo (=O); OH; C₁₋₂alkoxy; C₁₋₂fluoroalkoxy; NHR²¹ wherein R²¹ is a hydrogen atom (H) or C₁₋₄ straight-chain alkyl; C₁₋₂alkyl; C₁₋₂fluoroalkyl;

10 -CH₂OH; -CH₂CH₂OH; -CH₂NHR²² wherein R²² is H or C₁₋₂alkyl; -C(O)OR²³ wherein R²³ is H or C₁₋₂alkyl; -C(O)NHR²⁴ wherein R²⁴ is H or C₁₋₂alkyl; -C(O)R²⁵ wherein R²⁵ is C₁₋₂alkyl; fluoro; hydroxyimino (=N-OH); or (C₁₋₄alkoxy)imino (=N-OR²⁶ where R²⁶ is C₁₋₄alkyl); and wherein any OH, alkoxy, fluoroalkoxy or NHR²¹ substituent is not substituted at the R³ ring carbon attached (bonded) to the -NH- group of formula (I) and is not substituted at either R³ ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc);

15

and wherein, when R³ is optionally substituted mono-unsaturated-C₅₋₇cycloalkenyl, then the cycloalkenyl is optionally substituted with one substituent being fluoro or C₁₋₂alkyl

20

or two substituents independently being fluoro or methyl, and the R³ ring carbon bonded to the -NH- group of formula (I) does not partake in the cycloalkenyl double bond;

(ee)

wherein Y¹, Y² and Y³

independently are CH₂ or oxygen (O) provided that no more than one of Y¹, Y² and Y³

25

is oxygen (O);

and wherein:

PB60739P1 GB

- 8 -

R^4 is a hydrogen atom (H), methyl, ethyl, n-propyl, isopropyl, C_1 -2fluoroalkyl, cyclopropyl, $-CH_2OR^{4a}$, $-CH(Me)OR^{4a}$, or $-CH_2CH_2OR^{4a}$, wherein R^{4a} is a hydrogen atom (H), methyl (Me), or C_1 fluoroalkyl such as CF_3 or CHF_2 ; and

5

R^5 is a hydrogen atom (H); C_1 -alkyl (e.g. C_1 -6alkyl or C_1 -4alkyl); C_1 -3fluoroalkyl; C_3 -8cycloalkyl optionally substituted by a C_1 -2alkyl group; or $-(CH_2)_n^4-C_3$ -8cycloalkyl optionally substituted, in the $-(CH_2)_n^4$ - moiety or in the C_3 -8cycloalkyl moiety, by a C_1 -2alkyl group, wherein n^4 is 1 or 2;

10

or R^5 is C_1 -4alkyl substituted by one substituent R^{11} ; wherein R^{11} is: hydroxy (OH); C_1 -6alkoxy; C_1 -2fluoroalkoxy; phenoxy; (monofluoro- or difluoro-phenyl)oxy; (monomethyl- or dimethyl-phenyl)oxy; benzyloxy; $-NR^{12}R^{13}$; $-NR^{15}-C(O)R^{16}$; $-NR^{15}-C(O)-NH-R^{15}$; or $-NR^{15}-S(O)_2R^{16}$;

15

or R^5 is C_2 -4alkyl substituted on different carbon atoms by two hydroxy (OH) substituents;

or R^5 is $-(CH_2)_n^{11}-C(O)R^{16}$; $-(CH_2)_n^{11}-C(O)NR^{12}R^{13}$; $-CHR^{19}-C(O)NR^{12}R^{13}$; $-(CH_2)_n^{11}-C(O)OR^{16}$; $-(CH_2)_n^{11}-C(O)OH$; $-CHR^{19}-C(O)OR^{16}$; $-CHR^{19}-C(O)OH$; $-(CH_2)_n^{11}-S(O)_2-NR^{12}R^{13}$; $-(CH_2)_n^{11}-S(O)_2R^{16}$; or $-(CH_2)_n^{11}-CN$; wherein n^{11} is 0, 1, 2 or 3 (wherein for each R^5 group n^{11} is independent of the value of n^{11} in other R^5 groups); and wherein R^{19} is C_1 -2alkyl;

25 or R^5 is $-(CH_2)_n^{13}$ -Het, wherein n^{13} is 0, 1 or 2 and Het is a 4-, 5-, 6- or 7-membered saturated or unsaturated heterocyclic ring, other than $-NR^{12}R^{13}$, containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-hetero-atoms present are not bound to the $-(CH_2)_n^{13}$ - moiety when n^{13} is 0; wherein any ring-nitrogens which are present and which are not unsaturated (i.e. which do not partake in a double bond) and which are not connecting nitrogens (i.e. which are not nitrogens bound to the $-(CH_2)_n^{13}$ - moiety or to the carbon atom to which R^5 is attached) are present as NR^{17} ; and wherein one or two of the carbon ring-atoms are independently optionally substituted by C_1 -2alkyl;

35 or R^5 is phenyl (Ph), $-CH_2$ -Ph, $-CH(Me)$ -Ph, $-CHEt$ -Ph, CMe_2 -Ph, or $-CH_2CH_2$ -Ph, wherein the phenyl ring Ph is optionally substituted with one or two substituents independently being: a halogen atom; C_1 -4alkyl (e.g. C_1 -2alkyl); C_1 -2fluoroalkyl (e.g. trifluoromethyl); C_1 -4alkoxy (e.g. C_1 -2alkoxy); C_1 -2fluoroalkoxy (e.g. trifluoromethoxy)

PB60739P1 GB

- 9 -

or difluoromethoxy); cyclopropyl; cyclopropyloxy; -C(O)-C₁₋₄alkyl; -C(O)OH; -C(O)-OC₁₋₄alkyl; C₁₋₄alkyl-S(O)₂₋; C₁₋₄alkyl-S(O)₂₋-NR^{8a}; R^{7a}R^{8a}N-S(O)₂₋; R^{7a}R^{8a}N-C(O)-; -NR^{8a}-C(O)-C₁₋₄alkyl; R^{7a}R^{8a}N; OH; nitro (-NO₂); or cyano (-CN);

5 or R⁴ and R⁵ taken together are -(CH₂)_{p¹}- or -(CH₂)_{p³}-X⁵-(CH₂)_{p⁴}-, in which: X⁵ is O or NR^{17a}; p¹ = 2, 3, 4, 5 or 6, and p³ and p⁴ independently are 1, 2 or 3 provided that if p³ is 3 then p⁴ is 1 or 2 and if p⁴ is 3 then p³ is 1 or 2;

10 provided that at least one of R⁴ and R⁵ is not a hydrogen atom (H);

and wherein, in sub-formula (x):

15 A is C-R^{6A}, nitrogen (N) or nitrogen-oxide (N⁺⁻O⁻),
 B is C-R^{6B}, nitrogen (N) or nitrogen-oxide (N⁺⁻O⁻),
 D is C-R^{6D}, nitrogen (N) or nitrogen-oxide (N⁺⁻O⁻),
 E is C-R^{6E}, nitrogen (N) or nitrogen-oxide (N⁺⁻O⁻),
 F is C-R^{6F}, nitrogen (N) or nitrogen-oxide (N⁺⁻O⁻).

20 wherein, R^{6A}, R^{6B}, R^{6D}, R^{6E} and R^{6F} independently are: a hydrogen atom (H), a halogen atom; C₁₋₆alkyl (e.g. C₁₋₄alkyl or C₁₋₂alkyl); C₁₋₄fluoroalkyl (e.g. C₁₋₂fluoroalkyl); C₃₋₆cycloalkyl; C₁₋₄alkoxy (e.g. C₁₋₂alkoxy); C₁₋₂fluoroalkoxy; C₃₋₆cycloalkyloxy; -C(O)R^{16a}; -C(O)OR³⁰; -S(O)₂₋R^{16a} (e.g. C₁₋₂alkyl-S(O)₂₋);

25 R^{16a}-S(O)₂₋-NR^{15a} (e.g. C₁₋₂alkyl-S(O)₂₋-NH-); R⁷R⁸N-S(O)₂₋; C₁₋₂alkyl-C(O)-R^{15a}N-S(O)₂₋; C₁₋₄alkyl-S(O)-, Ph-S(O)-, R⁷R⁸N-CO-; -NR^{15a}-C(O)R^{16a}; R⁷R⁸N; nitro (-NO₂); OH (including any tautomer thereof); C₁₋₄alkoxymethyl; C₁₋₄alkoxyethyl; C₁₋₂alkyl-S(O)₂₋-CH₂-; R⁷R⁸N-S(O)₂₋-CH₂-; C₁₋₂alkyl-S(O)₂₋-NR^{15a}-CH₂-; -CH₂-OH; -CH₂CH₂-OH; -CH₂-NR⁷R⁸;

30 -CH₂-CH₂-NR⁷R⁸; -CH₂-C(O)OR³⁰; -CH₂-C(O)-NR⁷R⁸; -CH₂-NR^{15a}-C(O)-C₁₋₃alkyl; -(CH₂)_{n¹⁴}-Het¹ where n¹⁴ is 0 or 1; cyano (-CN); Ar^{5b}; or phenyl, pyridinyl or pyrimidinyl wherein the phenyl, pyridinyl or pyrimidinyl independently are optionally substituted by one or two of fluoro, chloro, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

35 and/or two adjacent groups selected from R^{6A}, R^{6B}, R^{6D}, R^{6E} and R^{6F} are taken together and are: -CH=CH-CH=CH₂-; -(CH₂)_{n^{14a}} where n^{14a} is 3, 4 or 5 (e.g. 3 or 4); -O-(CMe₂)-O-, -O-(CH₂)_{n^{14b}}-O- where n^{14b} is 1 or 2; -CH=CH-NR^{15b}-;

PB60739P1 GB

- 10 -

-N=CH-NR^{15b}-; -CH=N-NR^{15b}-; -N=N-NR^{15b}-; -CH=CH-O-; -N=CH-O-;
 -CH=CH-S-; or -N=CH-S-; wherein R^{15b} is H or C₁₋₂alkyl;

provided that:

5 two or more of A, B, D, E and F are independently C-H (carbon-hydrogen), C-F (carbon-fluorine), nitrogen (N), or nitrogen-oxide (N⁺-O⁻);
 and no more than two of A, B, D, E and F are independently nitrogen or nitrogen-oxide (N⁺-O⁻);
 and no more than one of A, B, D, E and F is nitrogen-oxide (N⁺-O⁻);

10

and wherein, in sub-formula (z):

G is O or S or NR⁹ wherein R⁹ is a hydrogen atom (H), C₁₋₄alkyl, or C₁₋₂fluoroalkyl;
 15 J is C-R^{6J}, C-[connection point to formula (I)], or nitrogen (N),
 L is C-R^{6L}, C-[connection point to formula (I)], or nitrogen (N),
 M is C-R^{6M}, C-[connection point to formula (I)], or nitrogen (N),
 Q is C-R^{6Q}, C-[connection point to formula (I)], or nitrogen (N),
 20 wherein, R^{6J}, R^{6L}, R^{6M} and R^{6Q} independently are: a hydrogen atom (H), a halogen atom; C₁₋₄alkyl (e.g. C₁₋₂alkyl); C₁₋₃fluoroalkyl (e.g. C₁₋₂fluoroalkyl); C₃₋₆cycloalkyl; C₁₋₄alkoxy (e.g. C₁₋₂alkoxy); C₁₋₂fluoroalkoxy; C₃₋₆cycloalkyloxy; OH (including any tautomer thereof); or phenyl optionally substituted by one or two substituents independently being fluoro, chloro, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or
 25 C₁fluoroalkoxy;

provided that:

two or more of J, L, M and Q are independently C-H, C-F, C-C₁₋₂alkyl (e.g. C-Me), C-[connection point to formula (I)], or nitrogen (N);
 30 and no more than three of J, L, M and Q are nitrogen (N);

and wherein:

35 R⁷ and R⁸ are independently a hydrogen atom (H); C₁₋₄alkyl (e.g. C₁₋₂alkyl such as methyl); C₃₋₆cycloalkyl; or phenyl optionally substituted by one or two substituents independently being: fluoro, chloro, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

PB60739P1 GB

- 11 -

or R⁷ and R⁸ together are -(CH₂)_n⁶- or -C(O)-(CH₂)_n⁷- or -C(O)-(CH₂)_n¹⁰-C(O)- or -(CH₂)_n⁸-X⁷-(CH₂)_n⁹- or -C(O)-X⁷-(CH₂)_n¹⁰- in which: n⁶ is 3, 4, 5 or 6, n⁷ is 2, 3, 4, or 5, n⁸ and n⁹ and n¹⁰ independently are 2 or 3, and X⁷ is O or NR¹⁴;

5 R^{7a} is a hydrogen atom (H) or C₁₋₄alkyl;

R^{8a} is a hydrogen atom (H) or methyl;

10 R¹² and R¹³ independently are H; C₁₋₄alkyl (e.g. C₁₋₂alkyl); C₃₋₆cycloalkyl; or phenyl optionally substituted by one or two substituents independently being: fluoro, chloro, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

15 R¹² and R¹³ together are -(CH₂)_n^{6a}- or -C(O)-(CH₂)_n^{7a}- or -C(O)-(CH₂)_n^{10a}-C(O)- or -(CH₂)_n^{8a}-X¹²-(CH₂)_n^{9a}- or -C(O)-X¹²-(CH₂)_n^{10a}- in which: n^{6a} is 3, 4, 5 or 6, n^{7a} is 2, 3, 4, or 5, n^{8a} and n^{9a} and n^{10a} independently are 2 or 3 and X¹² is O or NR^{14a};

20 R¹⁴, R^{14a}, R¹⁷ and R^{17a} independently are: a hydrogen atom (H); C₁₋₄alkyl (e.g. C₁₋₂alkyl); C₁₋₂fluoroalkyl (e.g. CF₃); cyclopropyl; -C(O)-C₁₋₄alkyl (e.g. -C(O)Me); -C(O)NR^{7a}R^{8a} (e.g. -C(O)NH₂); or -S(O)₂-C₁₋₄alkyl (e.g. -S(O)₂Me);

25 R¹⁵, independent of other R¹⁵, is a hydrogen atom (H); C₁₋₄alkyl (e.g. tBu or C₁₋₂alkyl e.g. methyl); C₃₋₆cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

30 R^{15a}, independent of other R^{15a}, is a hydrogen atom (H) or C₁₋₄alkyl;

R¹⁶ is: C₁₋₄alkyl (e.g. C₁₋₂alkyl); C₃₋₆cycloalkyl (e.g. C₅₋₆cycloalkyl); C₃₋₆cycloalkyl-CH₂- (e.g. C₅₋₆cycloalkyl-CH₂-); or phenyl or benzyl, wherein the phenyl and benzyl are independently optionally substituted on their ring by one or two substituents independently being fluoro, chloro, methyl, C₁fluoroalkyl, methoxy or C₁fluoroalkoxy;

R^{16a} is:

35 C₁₋₆alkyl (e.g. C₁₋₄alkyl or C₁₋₂alkyl); C₃₋₆cycloalkyl (e.g. C₅₋₆cycloalkyl) optionally substituted by one oxo (=O), OH or C₁₋₂alkyl substituent (e.g. optionally substituted at the 3- or 4-position of a C₅₋₆cycloalkyl ring; and/or preferably unsubstituted C₃₋₆cycloalkyl); C₃₋₆cycloalkyl-CH₂- (e.g. C₅₋₆cycloalkyl-CH₂-);

PB60739P1 GB

- 12 -

pyridinyl (e.g. pyridin-2-yl) optionally substituted on a ring carbon atom by one of: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

Ar^{5c};

phenyl optionally substituted by one or two substituents independently being: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

benzyl optionally substituted on its ring by one or two substituents independently being: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy; or

a 4-, 5-, 6- or 7-membered saturated heterocyclic ring connected at a ring-carbon and containing one or two ring-hetero-atoms independently selected from O, S, and N;

10 wherein any ring-nitrogens which are present are present as NR²⁷ where R²⁷ is H, C₁₋₂alkyl or -C(O)Me; and wherein the ring is optionally substituted at carbon by one C₁₋₂alkyl or oxo (=O) substituent, provided that any oxo (=O) substituent is substituted at a ring-carbon atom bonded to a ring-nitrogen;

15 R³⁰, independent of other R³⁰, is a hydrogen atom (H), C₁₋₄alkyl or C₃₋₆cycloalkyl;

Ar^{5b} and Ar^{5c} independently is/are a 5-membered aromatic heterocyclic ring containing one O, S or NR^{15a} in the 5-membered ring, wherein the 5-membered ring can optionally 20 additionally contain one or two N atoms, and wherein the heterocyclic ring is optionally substituted on a ring carbon atom by one of: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, -CH₂OH, -CH₂-OC₁₋₂alkyl, OH (including the keto tautomer thereof) or -CH₂-NR²⁸R²⁹ wherein R²⁸ and R²⁹ independently are H or methyl; and

25 Het¹, is a 4-, 5-, 6- or 7-membered saturated heterocyclic ring connected at a ring-carbon and containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-nitrogens which are present are present as NR³¹ where R³¹ is H, C₁₋₂alkyl or -C(O)Me; and wherein the ring is optionally substituted at carbon by one C₁₋₂alkyl or oxo (=O) substituent, provided that any oxo (=O) substituent is substituted at a ring-carbon atom bonded to a ring-nitrogen;

30

provided that:

when R³ is the heterocyclic group of sub-formula (bb), n¹ is 1, and Y is NR¹⁰, then R¹⁰ is not C₁₋₂alkyl or C₁₋₂fluoroalkyl; and

35 when R³ is the heterocyclic group of sub-formula (aa) and Y is NR¹⁰, then R¹⁰ is not C(O)-C₁₋₂alkyl, C(O)-C₁fluoroalkyl or -C(O)-CH₂O-C₁₋₂alkyl.

40

PB60739P1 GB

- 13 -

In compounds, for example in the compounds of formula (I) (or formula (IA) or formula (IB), see later), an "alkyl" group or moiety may be straight-chain or branched. Alkyl groups, for example C₁-alkyl or C₁-6alkyl or C₁-4alkyl or C₁-3alkyl or C₁-2alkyl, which may be employed include C₁-6alkyl or C₁-4alkyl or C₁-3alkyl or C₁-2alkyl such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, or n-hexyl or any branched isomers thereof such as isopropyl, t-butyl, sec-butyl, isobutyl, 3-methylbutan-2-yl, 2-ethylbutan-1-yl, or the like.

A corresponding meaning is intended for "alkoxy", "alkylene", and like terms derived from alkyl. For example, "alkoxy" such as C₁-6alkoxy or C₁-4alkoxy or C₁-2alkoxy includes methoxy, ethoxy, propyloxy, and oxy derivatives of the alkyls listed above. "Alkylsulfonyl" such as C₁-4alkylsulfonyl includes methylsulfonyl (methanesulfonyl), ethylsulfonyl, and others derived from the alkyls listed above. "Alkylsulfonyloxy" such as C₁-4alkylsulfonyloxy includes methanesulfonyloxy (methylsulfonyloxy), ethanesulfonyloxy, *et al.*

15 "Cycloalkyl", for example C₃-8cycloalkyl, includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like. Preferably, a C₃-6cycloalkyl or C₅-6cycloalkyl, that is contains a 3-6 membered or 5-6 membered carbocyclic ring.

20 "Fluoroalkyl" includes alkyl groups with one, two, three, four, five or more fluorine substituents, for example C₁-4fluoroalkyl or C₁-3fluoroalkyl or C₁-2fluoroalkyl such as monofluoromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl (CF₃CH₂-), 2,2-difluoroethyl (CHF₂CH₂-), 2-fluoroethyl (CH₂FCH₂-), etc. "Fluoroalkoxy" includes C₁-4fluoroalkoxy or C₁-2fluoroalkoxy such as trifluoromethoxy, pentafluoroethoxy, monofluoromethoxy, difluoromethoxy, etc.

25 "Fluoroalkylsulfonyl" such as C₁-4fluoroalkylsulfonyl includes trifluoromethanesulfonyl, pentafluoroethylsulfonyl, etc.

A halogen atom ("halo") present in compounds, for example in the compounds of formula (I), means a fluorine, chlorine, bromine or iodine atom ("fluoro", "chloro", "bromo" or "ido"), for example fluoro, chloro or bromo.

30 When the specification states that atom or moiety A is "bonded" or "attached" to atom or moiety B, it means that atom/moiety A is directly bonded to atom/moiety B usually by means of a covalent bond or a double covalent bond, and excludes A being indirectly attached to B via one or more intermediate atoms/moieties (e.g. excludes A-C-B); unless it is clear from the context that another meaning is intended.

35 When R¹ is C₁-4alkyl or C₁-3fluoroalkyl, it can be straight-chained or branched. Where R¹ is C₁-4alkyl then it can for example be methyl, ethyl, n-propyl, isopropyl or n-butyl. When R¹ is C₁-3fluoroalkyl, then R¹ can for example be C₁fluoroalkyl such as monofluoromethyl, difluoromethyl, trifluoromethyl; or R¹ can be C₂fluoroalkyl such as pentafluoroethyl or more preferably C₁fluoroalkyl-CH₂- such as 2,2,2-trifluoroethyl (CF₃CH₂-), 2,2-difluoroethyl (CHF₂CH₂-), or 2-fluoroethyl (CH₂FCH₂-).

PB60739P1 GB

- 14 -

Preferably, R¹ is C₁₋₃alkyl (e.g. methyl, ethyl or n-propyl), C₁₋₃fluoroalkyl or -CH₂CH₂OH. R¹ is more preferably C₁₋₃alkyl, C₁₋₂fluoroalkyl, or -CH₂CH₂OH. Still more preferably, R¹ is C₂₋₃alkyl (e.g. ethyl or n-propyl), C₂fluoroalkyl (e.g.

5 C₁fluoroalkyl-CH₂- such as CF₃-CH₂-) or -CH₂CH₂OH; in particular ethyl, n-propyl or -CH₂CH₂OH. Yet more preferably, R¹ is C₂alkyl or C₂fluoroalkyl. R¹ is most preferably ethyl.

Preferably, R² is a hydrogen atom (H) or methyl, for example a hydrogen atom (H).

10

Preferably, in R³ there is one substituent or no substituent.

In one optional embodiment, R³ is the optionally substituted C₃-cycloalkyl or the 15 optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc).

In one optional embodiment, when R³ is optionally substituted C₃-cycloalkyl, it is not unsubstituted C₅cycloalkyl, i.e. not unsubstituted cyclopentyl. In this case, suitably, R³ is optionally substituted C₆-cycloalkyl.

20

When R³ is optionally substituted C₃-cycloalkyl, it is more suitably optionally substituted C₆₋₇cycloalkyl, preferably optionally substituted C₆cycloalkyl (i.e. optionally substituted cyclohexyl).

25

Suitably, when R³ is optionally substituted C₃-cycloalkyl, then R³ is C₃-cycloalkyl (e.g. C₆₋₇cycloalkyl) optionally substituted with one or two substituents independently being oxo (=O); OH; C₁alkoxy; C₁fluoroalkoxy (e.g. trifluoromethoxy or difluoromethoxy); NHR²¹ wherein R²¹ is a hydrogen atom (H) or C₁₋₂alkyl (more preferably R²¹ is H); C₁₋₂alkyl such as methyl; C₁fluoroalkyl such as -CH₂F or -CHF₂;

30 -CH₂OH; -CH₂NHR²² wherein R²² is H; -C(O)OR²³ wherein R²³ is H or methyl; -C(O)NHR²⁴ wherein R²⁴ is H or methyl; -C(O)R²⁵ wherein R²⁵ is methyl; fluoro; hydroxyimino (=N-OH); or (C₁₋₄alkoxy)imino (=N-OR²⁶ where R²⁶ is C₁₋₄alkyl); and wherein any OH, alkoxy, fluoroalkoxy or NHR²¹ substituent is not substituted at the R³ ring carbon attached (bonded) to the -NH- group of formula (I) and is not substituted at either R³ ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc).

Preferably, when R³ is optionally substituted C₃-cycloalkyl, then R³ is C₃-cycloalkyl (e.g. C₆₋₇cycloalkyl) optionally substituted with one or two substituents independently

being oxo (=O); OH; NHR²¹ wherein R²¹ is a hydrogen atom (H); C₁-2alkyl such as methyl; C₁fluoroalkyl such as -CH₂F or -CHF₂; -C(O)OR²³ wherein R²³ is H or methyl; -C(O)NHR²⁴ wherein R²⁴ is H or methyl; fluoro; hydroxyimino (=N-OH); or (C₁-2alkoxy)imino (=N-OR²⁶ where R²⁶ is C₁-2alkyl).

5

More preferably, when R³ is optionally substituted C₃-8cycloalkyl, then R³ is C₃-8cycloalkyl (e.g. C₆-7cycloalkyl) optionally substituted with one or two substituents independently being oxo (=O); OH; NHR²¹ wherein R²¹ is a hydrogen atom (H); methyl; -CH₂F; -CHF₂; -C(O)OR²³ wherein R²³ is H; -C(O)NHR²⁴ wherein R²⁴ is H or methyl (preferably H); fluoro; hydroxyimino (=N-OH); or methoxyimino (=N-OR²⁶ where R²⁶ is methyl).

10

Still more preferably, when R³ is optionally substituted C₃-8cycloalkyl, then R³ is C₃-8cycloalkyl (e.g. C₆-7cycloalkyl) optionally substituted with one or two substituents independently being oxo (=O); OH; methyl; -C(O)NHR²⁴ wherein R²⁴ is H; fluoro; hydroxyimino (=N-OH); or methoxyimino (=N-OR²⁶ where R²⁶ is methyl).

15

Yet more preferably, when R³ is optionally substituted C₃-8cycloalkyl, then R³ is C₃-8cycloalkyl (e.g. C₆-7cycloalkyl) optionally substituted with one or two substituents independently being OH; -C(O)NHR²⁴ wherein R²⁴ is H; oxo (=O) or hydroxyimino (=N-OH).

20

In one optional embodiment, in R³, the C₃-8cycloalkyl can be unsubstituted.

25

When R³ is optionally substituted C₃-8cycloalkyl or optionally substituted C₅-7cycloalkenyl, e.g. optionally substituted C₅-8cycloalkyl or C₅-7cycloalkyl, such as optionally substituted C₆cycloalkyl (optionally substituted cyclohexyl) or optionally substituted cyclohexenyl, the one or two optional substituents if present suitably can comprise a substituent (for example is or are substituent(s)) at the 3-, 4- and/or 5-position(s), e.g. at the 3- and/or 4- position(s), of the R³ cycloalkyl or cycloalkenyl ring.

30

(In this connection and generally herein, the 1-position of the R³ ring, e.g. of the R³ cycloalkyl or cycloalkenyl ring is deemed to be the connection point to the -NH- in formula (I) = the ring atom connecting to the -NH- in formula (I)).

35

Suitably, for R³, and in particular when R³ is optionally substituted C₃-8cycloalkyl or optionally substituted C₅-7cycloalkenyl, R³ is not substituted (other than optionally by alkyl or fluoroalkyl) at the ring atom connecting to the -NH- in formula (I), and R³ is not substituted (other than optionally by alkyl, fluoroalkyl or NHR²¹) at the two ring atoms

PB60739P1 GB

- 16 -

either side of (bonded to) the connecting atom. For example, suitably, for R³, and in particular when R³ is optionally substituted C₃-cycloalkyl or optionally substituted C₅-7cycloalkenyl, R³ is not substituted at the ring atom connecting to the -NH- in formula (I), and R³ is not substituted at the two ring atoms either side of (bonded to) the connecting atom.

Suitably, for R³, and in particular when R³ is optionally substituted C₃-cycloalkyl or optionally substituted C₅-7cycloalkenyl, the one or two optional R³ substituents if present can comprise a substituent (for example is or are substituent(s)):

- 10 (a) at the 3-position of a R³ cyclobutyl ring, or
- (b) at the 3- and/or 4- position(s) of a R³ cyclopentyl or cyclopentenyl ring, or
- (c) at the 3-, 4- and/or 5- position(s) of a R³ cyclohexyl or cyclohexenyl ring, or
- (d) at the 3-, 4-, 5- and/or 6- position(s) of a R³ cycloheptyl or cycloheptenyl ring, or
- (e) at the 3-, 4-, 5-, 6- and/or 7- position(s) of a R³ cyclooctyl ring,
- 15 and/or
- (f) at the 1-, 2- and/or highest-numbered- position(s) of a R³ cycloalkyl or cycloalkenyl ring, for alkyl or fluoroalkyl substituent(s), and/or
- (g) at the 2- and/or highest-numbered- position(s) of a R³ cycloalkyl or cycloalkenyl ring, for NHR²¹ or fluoro substituent(s).

20 When R³ is optionally substituted C₃-cycloalkyl, any OH, alkoxy, fluoroalkoxy, -CH₂CH₂OH or -CH₂NHR²² substituent (particularly any OH substituent) is suitably at the 3-, 4- or 5- position, e.g. 3- or 5-position, of the R³ cycloalkyl (e.g. C₆-cycloalkyl) ring. Optionally, any OH, alkoxy, fluoroalkoxy, -CH₂CH₂OH or -CH₂NHR²²

25 substituent (particularly any OH substituent) can be: at the 3-position of a R³ cyclobutyl ring; or at the 3- or 4- position of a R³ C₅cycloalkyl (cyclopentyl) ring; or at the 3-, 4- or 5- position of a R³ C₆cycloalkyl (cyclohexyl) ring (e.g. at the 3- or 5-position of a R³ cyclohexyl ring especially for any OH substituent); or at the 3-, 4-, 5- or 6- position of a R³ cycloheptyl ring, or at the 3-, 4-, 5-, 6- or 7- position of a R³ cyclooctyl ring.

30 Suitably, any OH, alkoxy, fluoroalkoxy, -CH₂CH₂OH or -CH₂NHR²² substituent (particularly any OH substituent) is at the 3- or 4- position of a R³ C₅cycloalkyl (cyclopentyl) ring; or more suitably at the 3-, 4- or 5- position, still more suitably at the 3- or 5-position, of a R³ C₆cycloalkyl (cyclohexyl) ring.

35 Suitably, when R³ is optionally substituted C₃-cycloalkyl or optionally substituted C₅-7cycloalkenyl, any -C(O)OR²³, -C(O)NHR²⁴, -C(O)R²⁵, -CH₂OH or fluoro substituent is: at the 3-position of a R³ cyclobutyl ring; or at the 3- or 4- position of a R³ C₅cycloalkyl (cyclopentyl) or cyclopentenyl ring; or at the 3-, 4- or 5- position,

PB60739P1 GB

- 17 -

preferably at the 4-position, of a R^3 C_6 cycloalkyl (cyclohexyl) or cyclohexenyl ring; or at the 3-, 4-, 5- or 6-position of a R^3 cycloheptyl or cycloheptenyl ring, or at the 3-, 4-, 5-, 6- or 7-position of a R^3 cycloceryl ring. Any $-C(O)OR^{23}$, $-C(O)NHR^{24}$, $-C(O)R^{25}$, $-CH_2OH$ or fluoro substituent, e.g. any $-C(O)NHR^{24}$ or fluoro substituent, is suitably at

5 the 3-, 4- or 5-position, more suitably at the 4-position, of a R^3 C_6 cycloalkyl (cyclohexyl) or cyclohexenyl ring. It is particularly preferable for any $-C(O)NHR^{24}$ substituent to be at the 4-position of a R^3 cyclohexyl ring.

When R^3 is optionally substituted C_{3-8} cycloalkyl, any NHR^{21} substituent is at any position other than the 1-position (the ring atom connecting to the $-NH-$ in formula (I)), e.g. at the 2-, 3-, 4-, 5-, 6-, 7- or 8-position. Suitably, any NHR^{21} substituent is at the 2-, 3-, 5- or 6-position, or more suitably at the 3- or 5-position, of a R^3 cyclohexyl ring.

When R^3 is optionally substituted C_{3-8} cycloalkyl or optionally substituted C_{5-7} cycloalkenyl, any alkyl or fluoroalkyl substituent can for example be at the 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-position, for example at the 1-, 2-, 3-, 5- or 6-position, e.g. the 1-position, of the R^3 ring. Preferably, any alkyl or fluoroalkyl substituent is at the 1-, 2-, 3-, 5- or 6-position, or more preferably at the 1-, 3- or 5-position, of a R^3 cyclohexyl or cyclohexenyl ring.

When R^3 is optionally substituted C_{3-8} cycloalkyl, any oxo ($=O$), hydroxyimino ($=N-OH$); or $(C_{1-4}alkoxy)imino$ ($=N-OR^{26}$) substituent is suitably at the 3-, 4- or 5-position, e.g. at the 4-position, of the R^3 cycloalkyl (e.g. C_6 - 8 cycloalkyl e.g. cyclohexyl) ring. Preferably any such substituent is at the 4-position of a R^3 cyclohexyl ring.

When R^3 is optionally substituted C_{3-8} cycloalkyl (e.g. C_6 - 7 cycloalkyl), R^3 is preferably cyclohexyl (i.e. unsubstituted); or cycloheptyl (i.e. unsubstituted); or cyclohexyl substituted by one substituent being oxo ($=O$), OH, NHR^{21} , $C_{1-2}alkyl$, $C_{1-2}fluoroalkyl$, $-CH_2OH$, $-C(O)OR^{23}$, $-C(O)NHR^{24}$, $-C(O)R^{25}$, fluoro, hydroxyimino ($=N-OH$), or $(C_{1-4}alkoxy)imino$ ($=N-OR^{26}$); or cyclohexyl substituted by two fluoro substituents. More preferably, R^3 is cyclohexyl (i.e. unsubstituted); or cycloheptyl (i.e. unsubstituted); or cyclohexyl substituted by one substituent being oxo ($=O$), OH, NHR^{21} , $C_{1-2}alkyl$, $C_{1-2}fluoroalkyl$, $-C(O)OR^{23}$, $-C(O)NHR^{24}$, fluoro, hydroxyimino ($=N-OH$), or $(C_{1-2}alkoxy)imino$ ($=N-OR^{26}$ wherein R^{26} is $C_{1-2}alkyl$); or cyclohexyl substituted by two fluoro substituents. Still more preferably R^3 is cyclohexyl (i.e. unsubstituted) or cyclohexyl substituted by one oxo ($=O$), hydroxyimino ($=N-OH$), $-C(O)NH_2$, methyl or OH substituent. The optional substituent can for example be at the 3- or 4-position, of the R^3 cyclohexyl ring. Preferably, any OH substituent is preferably at the 3-position of

PB60739P1 GB

- 18 -

5 a R³ cyclohexyl ring, and/or any oxo (=O), hydroxyimino (=N-OH), (C₁₋₄alkoxy)imino (=N-OR²⁶) or -C(O)NH₂ substituent is preferably at the 4-position of a R³ cyclohexyl ring, and/or any alkyl or fluoroalkyl substituent is preferably at the 1-, 3- or 5- position of a R³ cyclohexyl ring.

5

When R³ is optionally substituted C₆₋₇cycloalkyl, R³ can for example be 4-hydroxy-cyclohexyl (i.e. 4-hydroxycyclohexan-1-yl), 4-methylcyclohexyl, 3-fluorocyclohexyl, 2-aminocyclohexyl, 3-(HO(O)C)cyclohexyl or 3-oxocyclohexyl, but R³ is more preferably cyclohexyl (i.e. unsubstituted), cycloheptyl (i.e. unsubstituted), 3-hydroxy-cyclohexyl (i.e. 3-hydroxycyclohexan-1-yl) (e.g. in a *cis* configuration), 4-oxo-cyclohexyl (i.e. 4-oxocyclohexan-1-yl), 4-(hydroxyimino)cyclohexyl (i.e. 4-(hydroxyimino)cyclohexan-1-yl), 4-(C₁₋₂alkoxyimino)cyclohexyl, 4-(aminocarbonyl)cyclohexyl (i.e. 4-(aminocarbonyl)cyclohexan-1-yl) (e.g. in a *cis* configuration), 1-methylcyclohexyl, 3-methylcyclohexyl, 4,4-(difluoro)cyclohexyl, or 3-aminocyclohexyl.

10

15

When R³ is optionally substituted C₆₋₇cycloalkyl, R³ is most preferably cyclohexyl (i.e. unsubstituted), 3-hydroxy-cyclohexyl (i.e. 3-hydroxycyclohexan-1-yl) (e.g. in a *cis* configuration), 4-oxo-cyclohexyl (i.e. 4-oxocyclohexan-1-yl), 4-(hydroxyimino)cyclohexyl (i.e. 4-(hydroxyimino)cyclohexan-1-yl), or 4-(aminocarbonyl)cyclohexyl (i.e. 4-(aminocarbonyl)cyclohexan-1-yl) (e.g. in a *cis* configuration).

20

25

When R³ is optionally substituted C₅cycloalkyl (optionally substituted cyclopentyl), R³ can for example be cyclopentyl (i.e. unsubstituted) or more suitably 3-hydroxy-cyclopentyl.

When R³ is optionally substituted mono-unsaturated-C₅₋₇cycloalkenyl, preferably it is optionally substituted mono-unsaturated-C₅₋₆cycloalkenyl, more preferably optionally substituted mono-unsaturated-C₆cycloalkenyl (i.e. optionally substituted

30

mono-unsaturated-cyclohexenyl = optionally substituted cyclohexenyl). For example, the R³ cyclohexenyl can be optionally substituted cyclohex-3-en-1-yl.

35

When R³ is optionally substituted mono-unsaturated-C₅₋₇cycloalkenyl, in one optional embodiment the R³ cycloalkenyl is optionally substituted with one or two substituents independently being fluoro or methyl. Preferably, in this embodiment, if there are two substituents then they are not both methyl.

In another optional embodiment, the R³ cycloalkenyl (e.g. cyclohexenyl) is optionally substituted with one substituent being fluoro or C₁₋₂alkyl (preferably fluoro or methyl);

40

more preferably the R³ cycloalkenyl (e.g. cyclohexenyl) is substituted with one fluoro

PB60739P1 GB

- 19 -

substituent or is unsubstituted. For example, the R³ optionally substituted cycloalkenyl can be cyclohex-3-en-1-yl (i.e. unsubstituted) or 4-fluoro-cyclohex-3-en-1-yl.

For R³ cycloalkenyl, the optional substituent(s) can for example be at the 1-, 2-, 3-, 4-, 5- or 6- position(s) of the cycloalkenyl ring.

When R³ is the heterocyclic group of sub-formula (aa), (bb) or (cc), then Y is preferably O or NR¹⁰, most preferably O or N-C(O)-NH₂.

Suitably, R¹⁰ is a hydrogen atom (H), methyl, ethyl, C(O)NH₂, C(O)-C₁₋₂alkyl or C(O)-C₁fluoroalkyl. Preferably, R¹⁰ is not C₁₋₂alkyl or C₁fluoroalkyl. Suitably, R¹⁰ is not CH₂C(O)NH₂.

More preferably, R¹⁰ is a hydrogen atom (H), C(O)NH₂, C(O)-C₁₋₂alkyl (e.g. C(O)methyl) or C(O)-C₁fluoroalkyl (e.g. C(O)-CF₃). Still more preferably R¹⁰ is H, C(O)NH₂ or C(O)methyl; for example C(O)NH₂.

When R³ is the heterocyclic group of sub-formula (aa), (bb) or (cc), then it is preferable that R³ is the heterocyclic group of sub-formula (aa) or (bb), more preferably of sub-formula (bb).

In sub-formula (bb), n¹ is preferably 1. In sub-formula (cc), n² is preferably 1. That is, six-membered rings are preferred in the R³ heterocyclic group.

Suitably, in R³, the heterocyclic group of sub-formula (aa), (bb) or (cc) is unsubstituted on a ring carbon. (In this connection, where Y is NR¹⁰, R¹⁰ is not a substituent on a ring carbon).

In the R³ heterocyclic group of sub-formula (aa), (bb) or (cc), the one or two optional substituents preferably comprise (e.g. is or independently are) OH; oxo (=O); C₁₋₂alkyl (e.g. methyl) or C₁₋₂fluoroalkyl (e.g. C₁fluoroalkyl such as -CH₂F or -CHF₂). More preferably, in the R³ heterocyclic group of sub-formula (aa), (bb) or (cc), the one or two optional substituents comprise (e.g. is or independently are) C₁₋₂alkyl (e.g. methyl) or oxo; most preferably the one or two optional substituents comprise (e.g. is or are) oxo (=O).

In the R³ heterocyclic group of sub-formula (aa), (bb) or (cc), any oxo (=O) substituent is preferably on a carbon atom bonded (adjacent) to Y, e.g. is on a carbon atom bonded (adjacent) to Y only when Y is O or NR¹⁰.

PB60739P1 GB

- 20 -

In the R^3 heterocyclic group of sub-formula (aa), (bb) or (cc), any oxo ($=O$) substituent can suitably be at the 2-, 3-, 4-, 5- or 6-position of the R^3 heterocyclic ring. For example any oxo ($=O$) substituent(s) can be: at the 2-, 4- or 5-position(s) (e.g. 2-position or 4-position, or two oxo substituents at 2- and 4-positions) of a R^3 heterocyclic group of sub-formula (aa), at the 2-, 4-, 5- or 6-position(s) (e.g. 4-position) of a six-membered R^3 heterocyclic group of sub-formula (cc) wherein n^2 is 1, at the 2-, 3-, 5-, 6- or 7-position(s) (e.g. 5-position) of a seven-membered R^3 heterocyclic group of sub-formula (bb) wherein n^1 is 2, or at the 2-, 4-, 5-, 6- or 7-position(s) (e.g. 2-position) of a seven-membered R^3 heterocyclic group of sub-formula (cc) wherein n^2 is 2.

10

(In this connection and generally herein, the 1-position of the R^3 heterocyclic ring is deemed to be the connection point to the -NH- in formula (I) = the ring atom connecting to the -NH- in formula (I), and the remaining positions of the ring are then numbered so that the ring heteroatom takes the lowest possible number).

15

In the R^3 heterocyclic group of sub-formula (aa), (bb) or (cc), any alkyl or fluoroalkyl substituent can for example be at the 1-, 2-, 3-, 4-, 5- or 6-position, e.g. the 1-position, of the R^3 heterocyclic ring, for example at the 1-, 3- or 5-position of a six-membered R^3 heterocyclic ring.

20

In the R^3 heterocyclic group of sub-formula (aa), (bb) or (cc), any OH substituent can be: at the 5-position of a six-membered R^3 heterocyclic group of sub-formula (cc) wherein n^2 is 1; at the 5- or 6-position of a seven-membered R^3 heterocyclic group of sub-formula (cc) wherein n^2 is 2; or at the 6-position of a seven-membered R^3 heterocyclic group of sub-formula (bb) wherein n^1 is 2.

Any other substituents of the R^3 heterocyclic group can optionally be positioned on the R^3 heterocyclic ring at numerical positions as described herein for when R^3 is optionally substituted C₅-7cycloalkyl, all necessary changes to the wording being made.

30

In the R^3 heterocyclic group of sub-formula (aa), (bb) or (cc), preferably, only C₁₋₂alkyl, C₁₋₂fluoroalkyl, fluoro or oxo ($=O$) substitution or no substitution is allowed independently at each of the 2- and highest-numbered-positions of the R^3 heterocyclic ring (e.g. at each of the 2- and 6-positions of a six-membered R^3 heterocyclic ring), and/or only C₁₋₂alkyl, C₁₋₂fluoroalkyl or fluoro substitution or no substitution is allowed at the 1-position of the R^3 heterocyclic ring.

When R^3 is the heterocyclic group of sub-formula (aa) and Y is NR¹⁰, then R¹⁰ is not C(O)-C₁₋₂alkyl, C(O)-C₁fluoroalkyl or -C(O)-CH₂O-C₁₋₂alkyl. According to one

40

optional embodiment, when R^3 is the heterocyclic group of sub-formula (aa) and Y is

PB60739P1 GB

- 21 -

NR¹⁰ then R¹⁰ is optionally not C(O)NHMe, C(O)-C₁₋₂alkyl, C(O)-C₁fluoroalkyl or -C(O)-CH₂O-C₁₋₂alkyl.

5 In one preferable embodiment, Y is O, S, SO₂ or NH when R³ is the heterocyclic group of sub-formula (aa).

When R³ is the heterocyclic group of sub-formula (bb), n¹ is 1, and Y is NR¹⁰ (e.g.

when NHR³ is HN), then R¹⁰ is not C₁₋₂alkyl or C₁₋₂fluoroalkyl. More preferably, when R³ is the heterocyclic group of sub-formula (bb) wherein n¹ is 1 or 2 and Y is NR¹⁰, then R¹⁰ is preferably not C₁₋₂alkyl or C₁₋₂fluoroalkyl.

10 In one embodiment, when R³ is the heterocyclic group of sub-formula (bb), then preferably Y is O, S, SO₂ or NR¹⁰ wherein R¹⁰ is H, C(O)NH₂, C(O)-C₁₋₂alkyl (e.g. C(O)methyl) or C(O)-C₁fluoroalkyl (e.g. C(O)-CF₃), or more preferably R¹⁰ is H, 15 C(O)NH₂ or C(O)Me, for example C(O)NH₂ or C(O)Me, most preferably C(O)NH₂.

In one optional embodiment, when R³ is the heterocyclic group of sub-formula (cc), then 20 optionally Y is O, S, SO₂ or NR¹⁰ wherein R¹⁰ is H, C(O)NH₂, C(O)-C₁₋₂alkyl (e.g. C(O)methyl) or C(O)-C₁fluoroalkyl (e.g. C(O)-CF₃). In this case R¹⁰ can for example be H, C(O)NH₂ or C(O)Me, for example H.

Optionally, for sub-formula (bb) and/or for sub-formula (cc), Y is O or NR¹⁰.

25 When R³ is optionally substituted C₃₋₈cycloalkyl (e.g. C₆₋₇cycloalkyl) or optionally substituted mono-unsaturated-C₅₋₇cycloalkenyl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc), then a substituent can be in the *cis* or *trans* configuration with respect to the -NH- group of formula (I) to which R³ is attached (bonded); this includes mixtures of configurations wherein the stated configuration is the major component. For example, an OH or -C(O)NHR²⁴ substituent on C₆₋₇cycloalkyl 30 can for example be in the *cis* configuration and/or a NHR²¹ substituent on C₆₋₇cycloalkyl can for example be in the *cis* or *trans* configuration, with respect to the -NH- group of formula (I) to which R³ is attached (bonded), including mixtures of configurations wherein the stated configuration is the major component.

35 When R³ is a bicyclic group of sub-formula (ee), then preferably Y¹, Y² and Y³ are all CH₂.

PB60739P1 GB

- 22 -

Preferably, NHR^3 is of sub-formula (a), (a1), (b), (c), (c 1), (c 2), (c 3), (c 4), (c 5), (c 6), (c 7), (d), (e), (f), (g), (g1), (g2), (g3), (g4), (h), (i), (j), (k), (k1), (k2), (L), (m), (m1), (m2), (m3), (m5), (n), (o), (o1), (o2), (o3), (p), (p1), (p2), (p3), (p4), (p5), (p6), (p7), (p8), (p9), (p10), (p11) or (q):

5

PB60739P1 GB

- 23 -

PB60739P1 GB

- 24 -

In the sub-formulae (a) to (q) etc above, the -NH- connection point of the NHR³ group to the 4-position of the pyrazolopyridine of formula (I) is underlined.

5

Preferably, NHR³ is of sub-formula (c), (c1), (c 2), (c 3), (c 4), (c 5), (c 6), (c 7), (d), (e), (f), (g1), (g4), (h), (i), (j), (k), (k1), (k2), (L), (m), (m1), (m2), (m3), (m5), (n), (o), (o1), (o2), (o3), (p), (p2), (p5), (p6), (p7), (p9), (p10), (p11) or (q). More preferably, NHR³ is of sub-formula (c), (c1), (c 4), (c 5), (h), (i), (j), (k), (k2), (m1), (m2), (n), (o), (o2), (o3),

10

(p2), (p5), (p6), (p9), (p11) or (q). NHR³ can for example be of sub-formula (c), (p11), (h), (k), (k2), (n), (o), (o2) or (p9); or still more preferably (c), (p11), (h), (k2), (n), (o), (o2) or (p9). Most preferably, R³ is tetrahydro-2H-pyran-4-yl or 1-(aminocarbonyl)-4-piperidinyl; that is NHR³ is most preferably of sub-formula (h) or (k2), as shown above.

15

When NHR³ is of sub-formula (n), then preferably it is in the *cis* configuration, i.e. preferably it is a *cis*-(3-hydroxycyclohexan-1-yl)amino group, e.g. in any enantiomeric form or mixture of forms such as a racemic mixture.

20

When NHR³ is of sub-formula (p9), then preferably it is in the *cis* configuration, i.e. preferably it is a *cis*-[4-(aminocarbonyl)cyclohexan-1-yl]amino group.

25

Where R⁴ is C₁₋₂fluoroalkyl, then it can be C₁fluoroalkyl such as monofluoromethyl, difluoromethyl or trifluoromethyl.

R^{4a} can suitably be a hydrogen atom (H) or methyl (Me), more suitably H.

30

R⁴ can for example be a hydrogen atom (H); methyl, ethyl, C₁fluoroalkyl, -CH₂OH, -CH(Me)OH, -CH₂CH₂OH, or -CH₂OMe; or preferably a hydrogen atom (H), methyl, ethyl, CF₃, -CH₂OH, or -CH₂OMe. More preferably, R⁴ is methyl, ethyl, CF₃, -CH₂OH, or -CH₂OMe; for example methyl, ethyl, CF₃ or -CH₂OH. Still more preferably, R⁴ is methyl or ethyl. Most preferably, R⁴ is ethyl.

35

Suitably, R⁴ is not a hydrogen atom (H), and more suitably R⁵ is a hydrogen atom (H).

40

When R⁵ is C₁₋₄alkyl substituted by one substituent R¹¹ or R⁵ is C₂₋₄alkyl (e.g. ethyl or n-propyl) substituted on different carbon atoms by two OH substituents, then suitably R⁵ is C₁₋₄alkyl substituted by one substituent R¹¹.

PB60739P1 GB

- 25 -

When R⁵ is C₁₋₄alkyl substituted by one substituent R¹¹, it is suitable that R⁵ is C₁₋₃alkyl (e.g. C₁₋₂alkyl) substituted by one substituent R¹¹. Suitably, R⁵ is -(CH₂)_n⁵-R¹¹ wherein n⁵ is 1, 2, 3 or 4 or R⁵ is -CH(Me)-R¹¹. Preferably n⁵ is 1, 2 or 3, more preferably 1 or 2, still more preferably 1.

5

Suitably, R¹¹ is: hydroxy (OH); C₁₋₄alkoxy or C₁₋₂alkoxy (such as t-butyloxy, ethoxy or preferably methoxy); C₁fluoroalkoxy; -NR¹²R¹³; -NR¹⁵-C(O)R¹⁶; or -NR¹⁵-S(O)₂R¹⁶. More suitably, R¹¹ is hydroxy (OH), C₁₋₄alkoxy (e.g. C₁₋₂alkoxy), or -NR¹²R¹³; still more suitably OH, ethoxy, methoxy, NH₂, NHMe, NHEt, NMe₂.

10

pyrrolidin-1-yl or piperidin-1-yl; preferably OH, methoxy, NH₂, NHMe or NMe₂.

15

Where R⁵ is C₁₋₈alkyl, then suitably it is C₁₋₆alkyl or C₁₋₅alkyl or C₁₋₄alkyl or C₁₋₃alkyl. Where R⁵ is C₁₋₃fluoroalkyl then suitably it is C₁₋₂fluoroalkyl or C₁fluoroalkyl such as monofluoromethyl, difluoromethyl or trifluoromethyl. Where R⁵ is C₃₋₈cycloalkyl optionally substituted by a C₁₋₂alkyl group, then optionally the C₃₋₈cycloalkyl is not substituted at the connecting ring-carbon. Where R⁵ is optionally substituted C₃₋₈cycloalkyl, then suitably it is C₃₋₈cycloalkyl (i.e. unsubstituted) and/or optionally substituted C₃₋₆cycloalkyl such as optionally substituted cyclopropyl or optionally substituted cyclohexyl.

20

When R⁵ is optionally substituted -(CH₂)_n⁴-C₃₋₈cycloalkyl, then n⁴ is preferably 1, and/or suitably R⁵ is optionally substituted -(CH₂)_n⁴-C₃₋₆cycloalkyl such as optionally substituted -(CH₂)_n⁴-cyclopropyl or optionally substituted -(CH₂)_n⁴-C₆cycloalkyl.

When R⁵ is optionally substituted -(CH₂)_n⁴-C₃₋₈cycloalkyl, preferably it is not

25

substituted. For example, R⁵ can be (cyclohexyl)methyl-, that is -CH₂-cyclohexyl, or -CH₂-cyclopropyl.

When R¹⁹ is C₁₋₂alkyl, then optionally it can be methyl.

30

When R⁵ is -(CH₂)_n¹¹-C(O)R¹⁶; -(CH₂)_n¹¹-C(O)NR¹²R¹³; -CHR¹⁹-C(O)NR¹²R¹³; -(CH₂)_n¹¹-C(O)OR¹⁶; -(CH₂)_n¹¹-C(O)OH; -CHR¹⁹-C(O)OR¹⁶; -CHR¹⁹-C(O)OH; -(CH₂)_n¹¹-S(O)₂-NR¹²R¹³; -(CH₂)_n¹¹-S(O)₂R¹⁶; or -(CH₂)_n¹¹-CN; then R⁵ can suitably be -(CH₂)_n¹¹-C(O)NR¹²R¹³; -(CH₂)_n¹¹-C(O)OR¹⁶; -(CH₂)_n¹¹-C(O)OH; or -(CH₂)_n¹¹-CN; more suitably -(CH₂)_n¹¹-C(O)OR¹⁶ or -(CH₂)_n¹¹-CN; or preferably -(CH₂)_n¹¹-C(O)OR¹⁶.

PB60739P1 GB

- 26 -

Preferably, n^{11} is 0, 1 or 2; more preferably n^{11} is 0 or 1, for example 0.

When R^5 is $-(CH_2)_n^{13}\text{-Het}$, n^{13} can for example be 0 or 1.

5 Suitably, Het is a 5- or 6-membered saturated or unsaturated heterocyclic ring, and/or preferably Het is a 4-, 5-, 6- or 7-membered saturated heterocyclic ring. Suitably, the heterocyclic ring Het contains one ring-hetero-atom selected from O, S and N. Suitably, the carbon ring-atoms in Het are not substituted. Het can for example be:

10

When R^5 is phenyl (Ph), $-CH_2\text{-Ph}$, $-CHMe\text{-Ph}$, $-CHe\text{-Ph}$, $CMe_2\text{Ph}$, or $-CH_2CH_2\text{-Ph}$, wherein the phenyl ring Ph is optionally substituted, then suitably Ph is optionally substituted with one of the substituents defined herein. Preferably, R^5 is phenyl (Ph) or $-CH_2\text{-Ph}$ wherein the phenyl ring Ph is optionally substituted with one or two substituents as defined herein.

When R^5 is phenyl (Ph), $-CH_2\text{-Ph}$, $-CHMe\text{-Ph}$, $-CHe\text{-Ph}$, $CMe_2\text{Ph}$, or $-CH_2CH_2\text{-Ph}$, wherein the phenyl ring Ph is optionally substituted with one or two substituents, then preferably the phenyl ring Ph is optionally substituted with one or two (e.g. one) substituents independently being: fluoro; chloro; C_1 -alkyl (e.g. methyl); C_1 fluoroalkyl (e.g. trifluoromethyl); C_1 -alkoxy (e.g. methoxy); or C_1 fluoroalkoxy (e.g. trifluoromethoxy or difluoromethoxy). Ph can be unsubstituted.

25 When R^4 and R^5 taken together are $-(CH_2)_p^{1-}$ or $-(CH_2)_p^{3-X^5-(CH_2)_p^{4-}}$, in which X^5 is O or NR^{17a} ; then preferably R^4 and R^5 taken together are $-(CH_2)_p^{1-}$. In one embodiment of the invention, R^4 and R^5 are not taken together to be either $-(CH_2)_p^{1-}$ or $-(CH_2)_p^{3-X^5-(CH_2)_p^{4-}}$.

30 When R^4 and R^5 taken together are $-(CH_2)_p^{1-}$, then p^1 can for example be 2, 4, 5 or 6. p^1 is preferably 2, 4 or 5, more preferably 2 or 4.

When R^4 and R^5 taken together are $-(CH_2)_p^{3-X^5-(CH_2)_p^{4-}}$, in which X^5 is O or NR^{17a} ; then suitably: p^3 is 2, and/or p^4 is 2, and/or one of p^3 and p^4 is 1 and the other of p^3 and p^4 is 2, and/or p^3 and p^4 are both 1. Suitably, X^5 is O. $-(CH_2)_p^{3-X^5-(CH_2)_p^{4-}}$ can for example be $-(CH_2)_2\text{-O-}(CH_2)_2-$.

PB60739P1 GB

- 27 -

In one embodiment of the invention, R⁴ and R⁵ are not taken together as -(CH₂)_p¹- or -(CH₂)_p³-X⁵-(CH₂)_p⁴.

5

It is preferable that Ar has the sub-formula (x).

10 Preferably, in sub-formula (x), two or more (more preferably three or more) of A, B, D, E and F are independently C-H (carbon-hydrogen), C-F (carbon-fluorine) or nitrogen (N).

Preferably, in sub-formula (x), three or more of A, B, D, E and F are independently C-H (carbon-hydrogen), C-F (carbon-fluorine), nitrogen (N), or nitrogen-oxide (N⁺-O⁻).

15 Preferably, in sub-formula (x), two or more (e.g. three or more) of A, B, D, E and F are independently C-H (carbon-hydrogen), C-F (carbon-fluorine), or nitrogen (N); and one or more (e.g. two or more) others of A, B, D, E and F are independently C-H (carbon-hydrogen), C-F (carbon-fluorine), C-Cl (carbon-chlorine), C-Me, C-OMe, or nitrogen (N). More preferably, in sub-formula (x), two or more (e.g. three or more) of A, B, D, E
20 and F are C-H (carbon-hydrogen); and one or more (e.g. two or more) others of A, B, D, E and F are independently C-H (carbon-hydrogen), C-F (carbon-fluorine), C-Cl (carbon-chlorine), C-Me, C-OMe, or nitrogen (N).

Preferably, in sub-formula (x), two or more (e.g. three or more, e.g. four or more) of A, B, D, E and F are C-H.

Preferably, in sub-formula (x), no more than one (more preferably none) of A, B, D, E and F are independently nitrogen or nitrogen-oxide (N⁺-O⁻).

30 Preferably, in sub-formula (x), none of A, B, D, E and F are nitrogen-oxide (N⁺-O⁻).

Preferably, Ar has the sub-formula (x) which is sub-formula (x1), (x2), (x3), (x4), (x5), (x6), (x7), (x8), (x9), (x10), (x11), (x12), (x13), (x14), (x15) or (x16):

PB60739P1 GB

- 28 -

More preferably, Ar has the sub-formula (x) which is sub-formula (x1), (x2), (x3), (x8), (x13), or (x14). Still more preferably, Ar has the sub-formula (x) which is sub-formula (x1), (x8), (x13), or (x14). Most preferably, Ar has the sub-formula (x) which is sub-formula (x1).

In sub-formula (x), preferably, R^{6A}, R^{6B}, R^{6D}, R^{6E} and/or R^{6F}, independently of each other, is or are: a hydrogen atom (H), a fluorine, chlorine, bromine or iodine atom, methyl, ethyl, n-propyl, isopropyl, C₄alkyl, trifluoromethyl, -CH₂OH, methoxy, ethoxy, n-propoxy, isopropoxy, C₁fluoroalkoxy (e.g. trifluoromethoxy or difluoromethoxy), cyclohexyloxy; cyclopentyloxy; nitro (-NO₂), OH, C₁₋₃alkylS(O)₂- (such as MeS(O)₂-), C₁₋₃alkylS(O)₂-NH- such as Me-S(O)₂-NH-, Me₂N-S(O)₂-, H₂N-S(O)₂-, -CONH₂, -CONHMe, -C(O)OH, cyano (-CN), NMe₂, or C₁₋₂alkyl-S(O)₂-CH₂- such as Me-S(O)₂-CH₂-.

PB60739P1 GB

- 29 -

More preferably, R^{6A}, R^{6B}, R^{6D}, R^{6E} and/or R^{6F}, independently of each other, is or are: a hydrogen atom (H), a fluorine, chlorine, bromine or iodine atom, methyl, ethyl, n-propyl, isopropyl, isobutyl, trifluoromethyl, -CH₂OH, methoxy, ethoxy, n-propoxy, isopropoxy, C₁fluoroalkoxy (e.g. trifluoromethoxy or difluoromethoxy), nitro (-NO₂).

5 OH, C₁₋₃alkylS(O)₂₋ such as MeS(O)₂₋, C₁₋₂alkylS(O)₂₋NH- such as Me-S(O)₂₋NH-, -CONH₂, cyano (-CN), or C₁₋₂alkylS(O)₂₋CH₂- such as Me-S(O)₂₋CH₂.

Still more preferably, R^{6A}, R^{6B}, R^{6D}, R^{6E} and/or R^{6F}, independently of each other, is or are: a hydrogen atom (H), a fluorine, chlorine or bromine atom, methyl, ethyl, n-propyl, isopropyl, trifluoromethyl, -CH₂OH, methoxy, ethoxy, n-propoxy, difluoromethoxy, OH or MeS(O)₂₋.

When two adjacent groups selected from R^{6A}, R^{6B}, R^{6D}, R^{6E} and R^{6F} are taken together, then, preferably, when taken together they are: -CH=CH-CH=CH₂-,

15 -(CH₂)_n^{14a}- where n^{14a} is 3, 4 or 5 (e.g. 3 or 4), -O-(CMe₂)-O-, -O-(CH₂)_n^{14b}-O- where n^{14b} is 1 or 2; -CH=CH-NR^{15b}-; -N=CH-NR^{15b}-; -N=N-NR^{15b} wherein R^{15b} is H or C₁₋₂alkyl (preferably R^{15b} is H). More preferably, in this embodiment, two adjacent groups selected from R^{6A}, R^{6B}, R^{6D}, R^{6E} and R^{6F} are taken together and are: -CH=CH-CH=CH₂- or -(CH₂)_n^{14a}- where n^{14a} is 3, 4 or 5 (e.g. 3 or 4).

20 In sub-formula (x), e.g. in sub-formula (x1), suitably, one, two or three of R^{6B}, R^{6D} and R^{6E} are other than a hydrogen atom (H).

25 In sub-formula (x), e.g. in sub-formula (x1), preferably, one or both of R^{6A} and R^{6F} are independently a hydrogen atom (H), a fluorine atom (F), or methyl. For example, one or both of R^{6A} and R^{6F} can be a hydrogen atom (H).

30 In sub-formula (x), e.g. in sub-formula (x1), suitably the ring or ring system is unsubstituted, monosubstituted, disubstituted or trisubstituted; or preferably the ring or ring system is unsubstituted, monosubstituted or disubstituted; more preferably monosubstituted or disubstituted. In sub-formula (x), e.g. in sub-formula (x1), for monosubstitution of the ring or ring system, then the one substituent selected from R^{6A}, R^{6B}, R^{6D}, R^{6E} and R^{6F} is suitably present at the 3- or 4-position with respect to the -(CR⁴R⁵)- side-chain (i.e. D is CR^{6D} where R^{6D} is other than H), or is a 2-methyl, 2-ethyl, 2-fluoro or 2-chloro substituent. In sub-formula (x), e.g. in sub-formula (x1), for disubstitution of the ring or ring system, then 3,4-disubstitution, 2,4-disubstitution, 2,3-disubstitution or 3,5-disubstitution is suitable.

40 In one preferable embodiment, Ar has the sub-formula (x1) and is: phenyl, monoalkyl-phenyl-, mono(fluoroalkyl)-phenyl-, monohalo-phenyl-, monoalkoxy-phenyl-, mono(fluoroalkoxy)-phenyl-, mono(N,N-dimethylamino)-phenyl-,

PB60739P1 GB

- 30 -

mono(methyl-SO₂-NH-)-phenyl-, mono(methyl-SO₂-)-phenyl-, dialkyl-phenyl-,
 monoalkyl-monohalo-phenyl-, mono(fluoroalkyl)-monohalo-phenyl-, dihalo-phenyl-,
 dihalo-monoalkyl-phenyl-, dihalo-mono(hydroxymethyl)-phenyl- (e.g. 2,3-dichloro-6-
 (hydroxymethyl)-phenyl-), or dialkoxy-phenyl- such as 3,4-dimethoxy-phenyl-. The
 5 substituents can preferably be further defined, as defined in preferable embodiments
 herein.

In one preferable embodiment, Ar is of sub-formula (x1) and is: monoalkyl-phenyl-,
 mono(fluoroalkyl)-phenyl-, monohalo-phenyl-, monoalkoxy-phenyl-,
 10 mono(fluoroalkoxy)-phenyl-, dialkyl-phenyl-, monoalkyl-monohalo-phenyl-, dihalo-
 phenyl- or dihalo-monoalkyl-phenyl-.

More preferably, in this embodiment, Ar is:
 - monoC₁₋₄alkyl-phenyl- or monoC₁₋₃alkyl-phenyl- such as 4-C₁₋₄alkyl-phenyl- (e.g.
 15 4-C₁₋₃alkyl-phenyl-) or 2-C₁₋₂alkyl-phenyl-;
 - monoC₁fluoroalkyl-phenyl- such as 4-C₁fluoroalkyl-phenyl-;
 - monoC₁₋₃alkoxy-phenyl- such as 4-C₁₋₃alkoxy-phenyl- or 3-C₁₋₃alkoxy-phenyl-;
 - mono(C₁fluoroalkoxy)-phenyl- such as 4-C₁fluoroalkoxy-phenyl-;
 - diC₁₋₃alkyl-phenyl- or diC₁₋₂alkyl-phenyl- or dimethyl-phenyl- such as 3,4-dimethyl-
 20 phenyl-, 2,4-dimethyl-phenyl-, 3,5-dimethyl-phenyl-, 2,3-dimethyl-phenyl- or 2,5-
 dimethyl-phenyl-; for example 3,4-dimethyl-phenyl-, 2,4-dimethyl-phenyl-, 2,3-dimethyl-
 phenyl- or 3,5-dimethyl-phenyl-;
 - monoC₁₋₃alkyl-monohalo-phenyl-, such as monoC₁₋₂alkyl-monohalo-phenyl- and/or
 monoC₁₋₃alkyl-monochloro-phenyl- or monoC₁₋₃alkyl-monofluoro-phenyl-, for
 25 example 4-methyl-3-chloro-phenyl-, 3-methyl-4-chloro-phenyl-, or
 2-methyl-4-chloro-phenyl-;
 - dihalo-phenyl- such as 2-chloro-4-fluorophenyl- or 2,4-difluoro-phenyl- or 4-bromo-
 2-fluorophenyl- or preferably 4-chloro-2-fluorophenyl-; for example dichloro-phenyl-
 such as 3,4-dichloro-phenyl- or 2,4-dichloro-phenyl- or 2,6-dichloro-phenyl- or
 30 preferably 2,3-dichloro-phenyl-; or
 - dihalo-monoC₁₋₂alkyl-phenyl- e.g. 2,4-dichloro-6-methyl-phenyl-.

In an alternative embodiment, Ar has the sub-formula (z).

35 Preferably, in sub-formula (z), three or more (for example all) of J, L, M and Q are
 independently C-H, C-F, C-C₁₋₂alkyl (e.g. C-Me), C-[connection point to formula (I)], or
 nitrogen (N).
 40 Preferably, in sub-formula (z), no more than two (for example no more than one) of J, L,
 M and Q are nitrogen (N).

PB60739P1 GB

- 31 -

Suitably, Q is C-[connection point to formula (D)].

Suitably, R⁹ is a hydrogen atom (H) or methyl.

5 Suitably, R^{6J}, R^{6L}, R^{6M} and/or R^{6Q} independently is or are: a hydrogen atom (H); fluoro; chloro; C₁₋₂alkyl (e.g. methyl); C₁fluoroalkyl (e.g. CF₃); C₁₋₂alkoxy (methoxy); C₁fluoroalkoxy (e.g. CF₂HO-); OH (including any tautomer thereof); or phenyl optionally substituted by one substituent being fluoro, methyl, C₁fluoroalkyl, methoxy or C₁fluoroalkoxy. More Suitably R^{6J}, R^{6L}, R^{6M} and/or R^{6Q} independently is or are H, 10 OH (including any keto tautomer thereof), or more preferably C₁₋₂alkyl (e.g. methyl) or C₁fluoroalkyl.

When Ar has the sub-formula (z), then sub-formula (z) can suitably be one of the following:

15

Suitably, R^{7a} is H or C₁₋₂alkyl, more suitably H or methyl. Suitably, R^{8a} is H.

20 Preferably, R⁷ and/or R⁸ are independently a hydrogen atom (H); C₁₋₂alkyl such as methyl; C₃₋₆cycloalkyl; or phenyl optionally substituted by one or two (e.g. one) substituents independently being: fluoro, chloro, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy; or R⁷ and R⁸ together are -(CH₂)_n⁶⁻ or -(CH₂)_n⁸⁻-X⁷-(CH₂)_n⁹⁻ wherein X⁷ is NR¹⁴ or preferably O.

25

When R⁷ is cycloalkyl or optionally substituted phenyl, then preferably R⁸ is neither cycloalkyl nor optionally substituted phenyl. In this case, R⁸ can for example be H.

More preferably, R⁷ and/or R⁸ independently are a hydrogen atom (H) or C₁₋₂alkyl. It is preferable that R⁸ is a hydrogen atom (H).

PB60739P1 GB

- 32 -

Preferably n^6 is 4 or 5. Preferably n^7 is 3 or 4. Preferably, n^8 , n^9 and/or n^{10} independently is/are 2.

5 Preferably, R^{12} and/or R^{13} independently are H; C_1 -2alkyl such as methyl; C_3 - C_6 cycloalkyl; or phenyl optionally substituted by one or two (e.g. one) substituents independently being: fluoro, chloro, C_1 -2alkyl, C_1 fluoroalkyl, C_1 alkoxy or C_1 fluoroalkoxy; or R^{12} and R^{13} together are $-(CH_2)_n^{6a}$ or $-(CH_2)_n^{8a}X^{12}-(CH_2)_n^{9a}$ in which X^{12} is NR^{14a} or preferably O.

10 When R^{12} is cycloalkyl or optionally substituted phenyl, then preferably R^{13} is neither cycloalkyl nor optionally substituted phenyl. In this case, R^{13} can for example be H.

More preferably, R^{12} and/or R^{13} independently are a hydrogen atom (H) or C_1 -2alkyl.
15 It is preferable that R^{13} is a hydrogen atom (H).

Preferably n^{6a} is 4 or 5. Preferably n^{7a} is 3 or 4. Preferably, n^{8a} , n^{9a} and/or n^{10a} independently is/are 2.

20 In one embodiment of the invention, NR^7R^8 and/or $NR^{12}R^{13}$ can for example

25 Suitably, R^{14} , R^{14a} , R^{17} and/or R^{17a} independently are: a hydrogen atom (H); C_1 -2alkyl; C_1 fluoroalkyl (e.g. CF_3); $-C(O)Me$; $-C(O)NH_2$; or $-S(O)_2Me$. More suitably, R^{14} , R^{14a} , R^{17} and/or R^{17a} independently is/are: H, C_1 -2alkyl, or $-C(O)Me$; or for example H or C_1 -2alkyl.

30 Suitably, R^{15} is a hydrogen atom (H) or C_1 -4alkyl (e.g. tBu or C_1 -2alkyl e.g. methyl); more suitably, R^{15} is a hydrogen atom (H).

Where R^{15a} , independent of other R^{15a} , is a hydrogen atom (H) or C_1 -4alkyl, it can for example be H, tBu or C_1 -2alkyl such as methyl. Suitably, R^{15a} , independent of other R^{15a} , is H or C_1 -2alkyl, more preferably H.

PB60739P1 GB

- 33 -

Preferably, R^{15b} is H.

Suitably, R¹⁶ is C₁₋₄alkyl (e.g. C₁₋₂alkyl) or C₃₋₆cycloalkyl (e.g. C₅₋₆cycloalkyl);

5 more suitably R¹⁶ is C₁₋₄alkyl (e.g. C₁₋₂alkyl).

Preferably, R^{16a} is:

C₁₋₄alkyl (e.g. C₁₋₂alkyl);

10 C₃₋₆cycloalkyl (e.g. C₅₋₆cycloalkyl) optionally substituted by one oxo (=O), OH or methyl substituent (e.g. optionally substituted at the 3- or 4-position of a C₅₋₆cycloalkyl ring; and/or preferably unsubstituted C₃₋₆cycloalkyl);

C₃₋₆cycloalkyl-CH₂- (e.g. C₅₋₆cycloalkyl-CH₂-);

pyridinyl (e.g. pyridin-2-yl) optionally substituted on a ring carbon atom by one of: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

15 Ar^{5c};

phenyl optionally substituted by one or two substituents independently being: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

benzyl optionally substituted on its ring by one or two substituents independently being: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy; or

20 a 5- or 6-membered saturated heterocyclic ring connected at a ring-carbon and containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-nitrogens which are present are present as NR²⁷ where R²⁷ is H, C₁₋₂alkyl or -C(O)Me (preferably H or C₁₋₂alkyl); and wherein the ring is not substituted at carbon.

25 More preferably, R^{16a} is: C₁₋₄alkyl (e.g. C₁₋₂alkyl); unsubstituted C₃₋₆cycloalkyl (e.g. unsubstituted C₅₋₆cycloalkyl); phenyl optionally substituted by one or two substituents independently being: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy; or benzyl optionally substituted on its ring by one or two substituents independently being: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy.

30

Suitably, R³⁰, independent of other R³⁰, is a hydrogen atom (H) or C₁₋₄alkyl, for example H, t-butyl or C₁₋₂alkyl.

35

Preferably, the compound of formula (I) or the salt thereof is a compound of formula (IA) or a salt thereof:

PB60739P1 GB

- 34 -

Formula (IA) means that more than 50% of the compound or salt present has the stereochemistry shown at the carbon atom bearing the R⁴ and R⁵ groups.

5

Preferably, the stereochemistry at the carbon atom bearing the R⁴ and R⁵ groups is such that there is an enantiomeric excess (e.e.) of 50% or more at the carbon atom bearing the R⁴ and R⁵ groups (ignoring the stereochemistry at any other carbon atoms). More preferably, the enantiomeric excess (e.e.) is 70% or more or 80% or more, still more preferably 90% or more, yet more preferably 95% or more, at the carbon atom bearing the R⁴ and R⁵ groups (ignoring the stereochemistry at any other carbon atoms).

10

"Enantiomeric excess" (e.e.) is defined as the percentage of the major isomer present minus the percentage of the minor isomer present. For example, if 95% of major isomer is present and 5% of the minor isomer is present, then the e.e. would be 90%.

15

20

In formula (IA), it is preferable that R⁴ is not a hydrogen atom (H). In formula (IA), more preferably R⁴ is methyl, ethyl, C₁fluoroalkyl (such as CF₃), -CH₂OH, or -CH₂OMe; still more preferably R⁴ is methyl, ethyl, CF₃ or -CH₂OH; yet more preferably R⁴ is methyl or ethyl; and most preferably R⁴ is ethyl.

25

In formula (IA), it is particularly preferable that R⁵ is a hydrogen atom (H) and R⁴ is not a hydrogen atom (H). In formula (IA), it is more preferable that R⁵ is a hydrogen atom (H); and R⁴ is methyl, ethyl, C₁fluoroalkyl (such as CF₃), -CH₂OH, or -CH₂OMe (e.g. methyl, ethyl, CF₃ or -CH₂OH). In formula (IA), it is most preferable that R⁵ is a hydrogen atom (H); and R⁴ is methyl or ethyl (preferably ethyl).

30

In formula (IA), when R⁴ is not a hydrogen atom (H), and optionally when R⁵ is a hydrogen atom (H), it is particularly preferable that Ar, such as having sub-formula (x1), is a monocycle. That is, in formula (IA) and when R⁴ is not a hydrogen atom (H), it is particularly preferable that two adjacent groups selected from R^{6A}, R^{6B}, R^{6D}, R^{6E} and R^{6F} are not taken together to form part of a second ring.

PB60739P1 GB

- 35 -

The Examples 1, 8, 24, 28, 63, 127, 129, 174, and 178 disclosed herein, having the formula (IA) wherein R⁵ is H, and wherein R⁴ is methyl, ethyl, -CH₂OH, or -CH₂OMe, and wherein Ar is a monocycle, have been found to have greater PDE4B inhibitory activity than the comparable Examples 6, 7, 29, 26, 64, 126, 124, 170, and 177 which 5 have the opposite stereochemistry at the CR⁴R⁵ carbon atom.

In an especially preferable embodiment, N-CR⁴R⁵-Ar is the N-CR⁴R⁵-Ar group as 10 defined in any one of Examples 1 to 314.

It is particularly preferred that the compound of formula (I) or the salt thereof is:

- 15 1-ethyl-N-[(1*R*)-1-phenylpropyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
-
- 1-ethyl-N-(1-methyl-1-phenylethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 20 1-ethyl-N-[1-[4-(methylsulfonyl)phenyl]ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- N-(diphenylmethyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 25 1-ethyl-N-[1-(3-pyridinyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 1-ethyl-N-[(1*S*)-1-phenylpropyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 30 1-ethyl-N-[(1*S*)-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 1-ethyl-N-[(1*R*)-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 35 N-[1-(4-chlorophenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 1-ethyl-N-[1-[4-(ethoxy)phenyl]ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 40 1-ethyl-N-(3-hydroxy-1-phenylpropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
- 1-ethyl-N-[1-(3-hydroxyphenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 36 -

N-[2-(dimethylamino)-1-phenylethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[1-phenyl-2-(1-pyrrolidinyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

5 1-ethyl-N-[1-(hydroxymethyl)-1-phenylpropyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[1-[4-(propyloxy)phenyl]ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

10 methyl 3-((1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl)carbonyl)amino)-3-phenylpropanoate

1-ethyl-N-[1-(4-fluorophenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

N-[1-(4-chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

15 ethyl ((1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl)carbonyl)amino)(phenyl)acetate

1-ethyl-N-[(1*R*)-1-[3-(methyloxy)phenyl]ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[(1*S*)-2-(methyloxy)-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

20 1-ethyl-N-[(1*R*)-2-amino-2-oxo-1-phenylethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[(1*R*)-2-hydroxy-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

25 1-ethyl-N-[(1*R*)-1-(4-nitrophenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[(1*S*)-2-hydroxy-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[(1*R*)-2-(methyloxy)-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

30 1-ethyl-N-[(1*R*)-2-hydroxy-1,1-diphenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

N-[1-(3-cyanophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

35 N-[cyano(phenyl)methyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

N-(cyclopropyl)[4-(methyloxy)phenyl]methyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[1-(1-naphthalenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

40 N-(1,2-diphenylethyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 37 -

1-ethyl-N-[1-[4-(methyloxy)phenyl]butyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[(1*R*)-1-(1-naphthalenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

5 1-ethyl-N-[(1*S*)-1-(1-naphthalenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(aminocarbonyl)-1-phenylpropyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-(1-phenylcyclopentyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

10 1-ethyl-N-(4-phenyltetrahydro-2*H*-pyran-4-yl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-(1-phenylcyclopropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

15 *N*-{1-[4-(cyclohexyloxy)-3-methylphenyl]ethyl}-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-{1-[3-(cyclohexyloxy)-4-(methyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(2,3-dichlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-

20 pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-{1-[4-(cyclohexyloxy)-3-hydroxyphenyl]ethyl}-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-{1-[4-(cyclopentyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

25 1-ethyl-N-[1-(4-methylphenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-{1-[4-(1,1-dimethylethyl)phenyl]cycloheptyl}-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(4-bromophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-

30 pyrazolo[3,4-*b*]pyridine-5-carboxamide
1-ethyl-N-[(1*S*)-1-(4-iodophenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-{1-[4-(aminosulfonyl)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

35 1-ethyl-N-(1-methyl-1-phenylpropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(1,3-benzodioxol-5-yl)cyclohexyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
1-ethyl-N-[1-[4-(methyloxy)phenyl]cyclohexyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-

40 pyrazolo[3,4-*b*]pyridine-5-carboxamide
1-ethyl-N-[1-(4-fluorophenyl)cyclohexyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 38 -

N-[1-(3-chlorophenyl)cyclopentyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(2-chlorophenyl)cyclopentyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 5 N-(1-[4-(1,1-dimethylethyl)phenyl]cyclohexyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[1-[4-(1-methylethyl)phenyl]ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-
 10 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[(1*S*,2*R*)-2-hydroxy-1-phenylpropyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[(1*R*)-1-[4-(methyloxy)phenyl]ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 15 1-ethyl-N-[(1*S*)-1-[4-(methyloxy)phenyl]ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-(1-phenylhexyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-(1-phenylpentyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-
 20 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-(2-methyl-1-phenylpropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-(1-phenylbutyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 25 1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-N-(2,2,2-trifluoro-1-phenylethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[cyclopropyl(phenyl)methyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[1-(4-fluorophenyl)propyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-
 30 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(2,3-dichlorophenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[(1*R*)-1-(4-methylphenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 35 1-ethyl-N-(1-phenylethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[(1*R*)-1-(4-bromophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(4-chlorophenyl)-2-hydroxyethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-
 40 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(3,4-dichlorophenyl)-2-hydroxyethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 39 -

1-ethyl-N-[1-[3-(methyloxy)phenyl]propyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[1-[4-(methyloxy)phenyl]propyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 5 N-[1-(4-bromophenyl)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[1-[4-(propyloxy)phenyl]propyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 10 N-[1-(3,5-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[1-(4-methylphenyl)propyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 15 1-ethyl-N-[1-[4-(1-methylethyl)phenyl]propyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[1-(2-methylphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 20 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[1-[4-(trifluoromethyl)phenyl]ethyl]-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[1-(2-methylphenyl)propyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 25 1-ethyl-N-[1-[4-(ethyloxy)phenyl]propyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-(1-{4-[(difluoromethyl)oxy]phenyl}propyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[1-[4-(trifluoromethyl)phenyl]propyl]-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 30 N-[1-(3,4-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(2,3-dimethylphenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 35 N-[1-(4-chloro-2-fluorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(3-chloro-4-methylphenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(2,3-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 40 N-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(3,4-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 40 -

*N-[1-(4-chloro-2-fluorophenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(3-chloro-4-methylphenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

5 *1-ethyl-N-[1-(3-hydroxyphenyl)propyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(2,3-dihydro-1*H*-inden-5-yl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

10 *1-ethyl-N-[1-(5,6,7,8-tetrahydro-2-naphthalenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(4-bromophenyl)-2,2,2-trifluoroethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

15 *1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-N-(2,2,2-trifluoro-1-[3-(methyloxy)phenyl]ethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*4-(cyclohexylamino)-1-ethyl-N-[1-[4-(methylsulfonyl)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

20 *4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-1-phenylpropyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*4-(cyclohexylamino)-N-(diphenylmethyl)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

25 *4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-1-phenylethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*ethyl ([4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl]carbonyl)amino(phenyl)acetate*

*N-[1-(4-chlorophenyl)ethyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

30 *4-(cyclohexylamino)-1-ethyl-N-(1-methyl-1-phenylethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*4-(cyclohexylamino)-1-ethyl-N-[1-(4-fluorophenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

35 *N-[1-(4-chlorophenyl)propyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*4-(cyclohexylamino)-N-(1,2-diphenylethyl)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

40 *4-(cyclohexylamino)-1-ethyl-N-{1-[4-(propyloxy)phenyl]ethyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*methyl 3-(([4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl]carbonyl)amino)-3-phenylpropanoate*

*4-(cyclohexylamino)-1-ethyl-N-[1-(hydroxymethyl)-1-phenylpropyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*4-(cyclohexylamino)-1-ethyl-N-(3-hydroxy-1-phenylpropyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

PB60739P1 GB

- 41 -

4-(cyclohexylamino)-1-ethyl-N-{1-[4-(ethyloxy)phenyl]ethyl}-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[1-(3-hydroxyphenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-
 5-carboxamide
 5 4-(cyclohexylamino)-1-ethyl-N-[1-phenyl-2-(1-pyrrolidinyl)ethyl]-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-N-[2-(dimethylamino)-1-phenylethyl]-1-ethyl-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-2-(methyloxy)-1-phenylethyl]-1*H*-pyrazolo[3,4-
 10 *b*]pyridine-5-carboxamide
 N-[(1*R*)-2-amino-2-oxo-1-phenylethyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-2-hydroxy-1-phenylethyl]-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 15 4-(cyclohexylamino)-1-ethyl-N-[(1*S*)-2-hydroxy-1-phenylethyl]-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-1-[3-(methyloxy)phenyl]ethyl]-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*S*)-2-(methyloxy)-1-phenylethyl]-1*H*-pyrazolo[3,4-
 20 *b*]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-1-(4-nitrophenyl)ethyl]-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*S*)-1-(1-naphthalenyl)ethyl]-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 25 4-(cyclohexylamino)-1-ethyl-N-[phenyl(4-phenyl-1,3-thiazol-2-yl)methyl]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[cyano(phenyl)methyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-
 carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[1-(1-naphthalenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-
 30 carboxamide
 4-(cyclohexylamino)-1-ethyl-N-(2-hydroxy-1,1-diphenylethyl)-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-1-[4-(methyloxy)phenyl]ethyl]-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 35 4-(cyclohexylamino)-1-ethyl-N-[1-(4-fluorophenyl)propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-
 5-carboxamide
 4-(cyclohexylamino)-N-[1-(2,3-dichlorophenyl)propyl]-1-ethyl-1*H*-pyrazolo[3,4-
b]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[(1*R*)-1-(4-methylphenyl)ethyl]-1*H*-pyrazolo[3,4-
 40 *b*]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-(1-phenylethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-
 carboxamide

PB60739P1 GB

- 42 -

N-[(1*R*)-1-(4-bromophenyl)ethyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-*N*-[1-(2,3-dichlorophenyl)ethyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
5 4-(cyclohexylamino)-1-ethyl-*N*-{1-[3-(methyloxy)phenyl]propyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-1-ethyl-*N*-{1-[4-(methyloxy)phenyl]propyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(4-bromophenyl)propyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-
10 5-carboxamide
4-(cyclohexylamino)-1-ethyl-*N*-{1-[4-(propyloxy)phenyl]propyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-*N*-[1-(3,5-dimethylphenyl)propyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
15 4-(cyclohexylamino)-1-ethyl-*N*-[1-(4-methylphenyl)propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-1-ethyl-*N*-{1-[4-(1-methylethyl)phenyl]propyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-1-ethyl-*N*-[1-(2-methylphenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-
20 carboxamide
4-(cyclohexylamino)-*N*-(1-{4-[(difluoromethyl)oxy]phenyl}ethyl)-1-ethyl-1*H*-
pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-1-ethyl-*N*-{1-[4-(trifluoromethyl)phenyl]ethyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
25 4-(cyclohexylamino)-1-ethyl-*N*-[1-(2-methylphenyl)propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-1-ethyl-*N*-{1-[4-(ethyloxy)phenyl]propyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-*N*-(1-{4-[(difluoromethyl)oxy]phenyl}propyl)-1-ethyl-1*H*-
30 pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-1-ethyl-*N*-{1-[4-(trifluoromethyl)phenyl]propyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-*N*-[1-(3,4-dimethylphenyl)propyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
35 4-(cyclohexylamino)-*N*-[1-(2,3-dimethylphenyl)ethyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-*N*-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
4-(cyclohexylamino)-*N*-[1-(4-chloro-2-fluorophenyl)ethyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
40 *N*-[1-(3-chloro-4-methylphenyl)ethyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 43 -

4-(cyclohexylamino)-N-[1-(2,3-dimethylphenyl)propyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 4-(cyclohexylamino)-N-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 5 N-[1-(4-chloro-2-fluorophenyl)propyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(3-chloro-4-methylphenyl)propyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 4-(cyclohexylamino)-1-ethyl-N-[1-(3-hydroxyphenyl)propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 10 N-[1-(4-chlorophenyl)-2-hydroxyethyl]-4-(cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 4-(cyclohexylamino)-N-[1-(2,3-dihydro-1*H*-inden-5-yl)ethyl]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 15 4-(cyclohexylamino)-1-ethyl-N-[1-(5,6,7,8-tetrahydro-2-naphthalenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-N-[(1*S*)-1-phenylpropyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-N-[(1*R*)-1-phenylethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 20 4-[(1-acetyl-4-piperidinyl)amino]-N-(diphenylmethyl)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-N-(1-[4-(methylsulfonyl)phenyl]ethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 25 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-N-[(1*R*)-1-phenylpropyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(4-chlorophenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(4-chlorophenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 30 1-ethyl-N-[(1*S*)-1-(4-nitrophenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[(1*R*)-1-(4-nitrophenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 35 1-ethyl-N-[(1-[4-(ethyloxy)phenyl]ethyl)-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-4-[(4-oxocyclohexyl)amino]-N-[(1-[4-(propyloxy)phenyl]ethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-N-[(1-(4-fluorophenyl)ethyl)-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 40 1-ethyl-N-[(1*R*)-2-hydroxy-1-phenylethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 44 -

1-ethyl-4-[(4-oxocyclohexyl)amino]-N-(1-phenylpropyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

(2*R*)-[(1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl]carbonyl]amino][3-(methyloxy)phenyl]ethanoic acid

5 1-ethyl-N-{1-[4-(1-methylethyl)phenyl]ethyl}-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[1-(2-methylphenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

N-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

10 1-ethyl-N-[(1*R*)-1-[4-(methyloxy)phenyl]ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[1-(4-fluorophenyl)propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

15 N-[1-(2,3-dichlorophenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[(1*R*)-1-(4-methylphenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-4-[(4-oxocyclohexyl)amino]-N-(1-phenylethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

20 N-[(1*R*)-1-(4-bromophenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[(1*S*)-2-hydroxy-1-phenylethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

25 N-[1-(4-chlorophenyl)-2-hydroxyethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

N-(1-[4-[(difluoromethyl)oxy]phenyl]ethyl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-4-[(4-oxocyclohexyl)amino]-N-[1-[4-(trifluoromethyl)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

30 1-ethyl-N-[1-(2-methylphenyl)propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-N-[1-[4-(ethyloxy)phenyl]propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

35 N-(1-[4-[(difluoromethyl)oxy]phenyl]propyl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

1-ethyl-4-[(4-oxocyclohexyl)amino]-N-[1-[4-(trifluoromethyl)phenyl]propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

N-[1-(3,4-dimethylphenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

40 1-ethyl-4-[(4-oxocyclohexyl)amino]-N-[(1*R*)-1-phenylpropyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 45 -

1-ethyl-N-{(1*R*)-1-[3-(methyloxy)phenyl]ethyl}-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(2,3-dimethylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
5 *N*-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(4-chloro-2-fluorophenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(3-chloro-4-methylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
10 10 *N*-[1-(2,3-dimethylphenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(4-chloro-2-fluorophenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
15 15 *N*-[1-(3-chloro-4-methylphenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
1-ethyl-*N*-[1-(3-hydroxyphenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
20 20 1-ethyl-*N*-[1-(3-hydroxyphenyl)propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(2,3-dichlorophenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
25 25 1-ethyl-*N*-[1-(3-(methyloxy)phenyl)propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
1-ethyl-*N*-[1-[4-(methyloxy)phenyl]propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(4-bromophenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
30 30 1-ethyl-4-[(4-oxocyclohexyl)amino]-*N*-[1-[4-(propyloxy)phenyl]propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(3,5-dimethylphenyl)propyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
35 35 1-ethyl-*N*-[1-(4-methylphenyl)propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
1-ethyl-*N*-[1-[4-(1-methylethyl)phenyl]propyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
40 40 1-ethyl-*N*-[1-(4-[(1-methylethyl)oxy]phenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
1-ethyl-4-[(4-oxocyclohexyl)amino]-*N*-[1-(5,6,7,8-tetrahydro-2-naphthalenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 46 -

*N-[1-(4-bromophenyl)-2,2,2-trifluoroethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-4-[(4-oxocyclohexyl)amino]-N-[2,2,2-trifluoro-1-[3-(methyloxy)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

5 *1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[1-(5,6,7,8-tetrahydro-2-naphthalenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[(1*S*)-2-hydroxy-1-phenylethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(2,3-dihydro-1*H*-inden-5-yl)ethyl]-1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

10 *N-[1-(4-chlorophenyl)-2-hydroxyethyl]-1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-N-[1-[4-(ethyloxy)phenyl]ethyl]-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

15 *1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[1-[4-(propyloxy)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-N-[1-(4-fluorophenyl)ethyl]-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[(1*R*)-2-hydroxy-1-phenylethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

20 *1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-(1-phenylpropyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[1-[4-(1-methylethyl)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

25 *N-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[(1*R*)-1-[4-(methyloxy)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-N-[1-(4-fluorophenyl)propyl]-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

30 *1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[1-(2,3-dichlorophenyl)propyl]-1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-[(1*R*)-1-(4-methylphenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

35 *1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-N-(1-phenylethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[(1*R*)-1-(4-bromophenyl)ethyl]-1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(2,3-dichlorophenyl)ethyl]-1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

40 *N-[1-(4-chlorophenyl)propyl]-1-ethyl-4-{{[4-(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

PB60739P1 GB

- 47 -

N-[1-(4-chlorophenyl)ethyl]-1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-[3-(methyloxy)phenyl]propyl]-
 1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 5 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-[4-(methyloxy)phenyl]propyl]-
 1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(4-bromophenyl)propyl]-1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 10 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-[4-(propyloxy)phenyl]propyl]-
 1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(3,5-dimethylphenyl)propyl]-1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 15 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-(4-methylphenyl)propyl]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-[4-(1-
 methylethyl)phenyl]propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 20 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-(2-methylphenyl)ethyl]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-(1-{4-[(difluoromethyl)oxy]phenyl}ethyl)-1-ethyl-4-[[4-
 (hydroxyimino)cyclohexyl]amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 25 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-[4-
 (trifluoromethyl)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-(2-methylphenyl)propyl]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 30 1-ethyl-N-[1-[4-(ethyloxy)phenyl]propyl]-4-[[4-(hydroxyimino)cyclohexyl]amino]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-(1-{4-[(difluoromethyl)oxy]phenyl}propyl)-1-ethyl-4-[[4-
 (hydroxyimino)cyclohexyl]amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 35 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-[4-
 (trifluoromethyl)phenyl]propyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(3,4-dimethylphenyl)propyl]-1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[(1*R*)-1-phenylpropyl]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 40 35 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[(1*R*)-1-[3-
 (methyloxy)phenyl]ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(2,3-dimethylphenyl)ethyl]-1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 N-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-1*H*-
 pyrazolo[3,4-*b*]pyridine-5-carboxamide
 45 1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-N-[1-(4-chloro-2-fluorophenyl)ethyl]-1-ethyl-4-[[4-(hydroxyimino)cyclohexyl]amino]-
 1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

PB60739P1 GB

- 48 -

*N-[1-(3-chloro-4-methylphenyl)ethyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(2,3-dimethylphenyl)propyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

5 *N-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(4-chloro-2-fluorophenyl)propyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

10 *N-[1-(3-chloro-4-methylphenyl)propyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(3-hydroxyphenyl)propyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

15 *N-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

20 *N-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

25 *1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-N-(1-{4-[(1-methylethyl)oxy]phenyl}ethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*1-ethyl-4-[(4-hydroxyimino)cyclohexyl]amino}-N-(1-{4-[(1-methylethyl)oxy]phenyl}ethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

30 *1-ethyl-N-[1-(4-fluorophenyl)ethyl]-4-[(4-hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(4-chlorophenyl)propyl]-1-ethyl-4-[(1*S*,3*R*)-hydroxycyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide and/or (1*R*,3*S*)-3-*

35 *1-ethyl-4-[(1*S*,3*R*)-hydroxycyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Isomer 1)*

*N-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-4-[(1*S*,3*R*)-hydroxycyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Isomer 2)*

40 *N-[1-(3,4-dimethylphenyl)propyl]-1-ethyl-4-[(1*S*,3*R*)-hydroxycyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

*N-[1-(4-chlorophenyl)propyl]-1-ethyl-6-methyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide*

PB60739P1 GB

- 49 -

N-[1-(4-chlorophenyl)ethyl]-1-ethyl-6-methyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
N-[1-(4-chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
5 *N*-[1-(4-chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
 N-[1-(4-chlorophenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
 N-[1-(4-chlorophenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
10 *N*-ethyl-*N*-{1-[4-(ethyloxy)phenyl]ethyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
 N-ethyl-*N*-{1-[4-(ethyloxy)phenyl]ethyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
15 *N*-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
 N-[1-(2,4-dimethylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
 N-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
20 *N*-[1-(3,5-dimethylphenyl)ethyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
 N-[1-(4-[(1-methylethyl)oxy]phenyl]ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
 N-[1-(4-[(1-methylethyl)oxy]phenyl]ethyl)-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
25 *N*-[1-[(4-[(1-methylethyl)oxy]phenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
 N-[1-[(4-[(1-methylethyl)oxy]phenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
 N-ethyl-*N*-[1-(4-fluorophenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
 N-ethyl-*N*-[1-(4-fluorophenyl)ethyl]-4-[(4-oxocyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
30 *N*-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 1)
 N-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
 1-ethyl-4-[(1*S*,3*R*)- and/or (1*R*,3*S*)-3-hydroxycyclohexyl]amino]-*N*-[(1*R*)-1-(4-methylphenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Diastereoisomer 1)
 1-ethyl-4-[(1*S*,3*R*)- and/or (1*R*,3*S*)-3-hydroxycyclohexyl]amino]-*N*-[(1*R*)-1-(4-methylphenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Diastereoisomer 2)
35 *N*-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide (Enantiomer 2)
 N-[1-(aminocarbonyl)-4-piperidinyl]amino]-1-ethyl-*N*-[(1*R*)-1-(4-methylphenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide
40 *N*-[1-(aminocarbonyl)-4-piperidinyl]amino]-1-ethyl-*N*-[(1*R*)-1-(4-methylphenyl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide hydrochloride

PB60739P1 GB

- 50 -

4-[(1-(aminocarbonyl)-4-piperidinyl)amino]-1-ethyl-N-[(1R)-1-phenylethyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
 4-[(1-(aminocarbonyl)-4-piperidinyl)amino]-N-[(1R)-1-(4-bromophenyl)ethyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
 5 4-[(1-(aminocarbonyl)-4-piperidinyl)amino]-N-[1-(2,4-dimethylphenyl)propyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
 4-[(1-(aminocarbonyl)-4-piperidinyl)amino]-N-[1-(3-chloro-4-methylphenyl)propyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
 4-[(1-(aminocarbonyl)-4-piperidinyl)amino]-N-[1-(4-chloro-2-fluorophenyl)propyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, or
 10 4-[(4-aminocarbonyl)cyclohexyl]amino]-1-ethyl-N-[(1R)-1-phenylethyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide;

as a compound or a salt thereof, e.g. a pharmaceutically acceptable salt thereof.

15 The structures of these specific compounds are given in Examples 1 to 314 hereinafter.

It is particularly preferred that the compound of formula (I) or the salt thereof is one of Examples 1 to 314, as a compound or a salt thereof, e.g. a pharmaceutically acceptable salt thereof. The structures of these specific compounds are given in Examples 1 to 314 hereinafter, and their names are given in the Examples section.

25 In one embodiment, is still further preferred that the compound of formula (I) or the salt thereof is a compound of Example 73, 98, 283, 304, 306, 307, 310 or 311, as defined by the structures and/or names described herein, or a salt thereof, e.g. a pharmaceutically acceptable salt thereof. The structures and names of these Examples are described in the Examples section. These Examples are thought to be suitable for inhaled administration.

30 According to one optional embodiment of the invention, the compound of formula (I) or salt thereof can be a compound of Formula (XXVIII) or a salt thereof:

wherein:

35 R^{X1} is a hydrogen atom (H), C₁₋₂alkyl or C₁fluoroalkyl (preferably H);

PB60739P1 GB

- 51 -

R^{Y1} is a hydrogen atom (H) or C₁₋₂alkyl;

R^{Y2} is a hydrogen atom (H); C₁₋₃alkyl (e.g. C₁₋₂alkyl or methyl); or -(CH₂)_n^{7aa}-OH;

wherein n^{7aa} is 1, 2 or 3;

and

5 R^{X2} is Ar^A, wherein:

(i) Ar^A is phenyl optionally substituted by one or two substituents independently being: fluoro, chloro, bromo, C₁₋₂alkyl, C₁₋₂fluoroalkyl, C₁₋₂alkoxy,

C₁₋₂fluoroalkoxy; OH; -NR^{11aa}R^{11bb} (wherein R^{11aa} is H or C₁₋₂alkyl and R^{11bb} is H, C₁₋₂alkyl, -C(O)-C₁₋₂alkyl or -S(O)₂-C₁₋₂alkyl); cyano; -C(O)-NR^{11cc}R^{11dd}

10 (wherein R^{11cc} and R^{11dd} independently are H or C₁₋₂alkyl); -C(O)-OR^{11ee} wherein R^{11ee} is H or C₁₋₂alkyl; or -S(O)₂-R^{11ff} (wherein R^{11ff} is C₁₋₂alkyl, NH₂, NHMe or NMe₂); or the phenyl Ar^A is optionally substituted at two adjacent Ar ring atoms by the two ends of a chain which is: -(CH₂)₄-, -(CH₂)₃-, or -CH=CH-CH=CH-; or

(ii) Ar^A is an optionally substituted 5-membered heterocyclic aromatic ring

15 containing 1, 2, 3 or 4 heteroatoms (e.g. 1, 2 or 3 heteroatoms) selected from O, N or S; and wherein when the heterocyclic aromatic ring Ar^A contains 2, 3 or 4 heteroatoms (e.g. 2 or 3 heteroatoms), one is selected from O, N and S and the remaining heteroatom(s) are N; and wherein the heterocyclic aromatic ring Ar^A is optionally substituted by one or two groups independently being C₁₋₄alkyl (e.g. C₁₋₂alkyl) or OH (including any keto

20 tautomer of an OH-substituted aromatic ring).

A compound of formula (XXVIII) can suitably be:

, or

25

These three compounds are:

1-Ethyl-N-[(1*R*)-2-hydroxy-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,

PB60739P1 GB

- 52 -

5 1-Ethyl-N-[(1*S*)-2-hydroxy-1-phenylethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide, and
1-Ethyl-N-[(1*S*,2*R*)-2-hydroxy-1-phenylpropyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.

10 These three compounds are disclosed as Intermediates 42, 43 and 46 respectively in copending international patent application PCT/EP2003/014867 (=PCT/EP03/14867), filed on 19 December 2003 in the name of Glaxo Group Limited, the content of which is incorporated herein by reference. The compounds of Formula (XXVIII) are also disclosed in PCT/EP2003/014867 and are incorporated herein by reference.

15 **Salts, solvates, isomers, tautomeric forms, molecular weights, etc.**

20 Because of their potential use in medicine, the salts of the compounds of formula (I) are preferably pharmaceutically acceptable. Suitable pharmaceutically acceptable salts can include acid or base addition salts.

25 A pharmaceutically acceptable acid addition salt can be formed by reaction of a compound of formula (I) with a suitable inorganic or organic acid (such as hydrobromic, hydrochloric, sulfuric, nitric, phosphoric, succinic, maleic, formic, acetic, propionic, fumaric, citric, tartaric, lactic, benzoic, salicylic, glutamaic, aspartic, p-toluenesulfonic, benzenesulfonic, methanesulfonic, ethanesulfonic, naphthalenesulfonic such as 2-naphthalenesulfonic, or hexanoic acid), optionally in a suitable solvent such as an organic solvent, to give the salt which is usually isolated for example by crystallisation and filtration. A pharmaceutically acceptable acid addition salt of a compound of formula (I) can comprise or be for example a hydrobromide, hydrochloride, sulfate, nitrate, phosphate, succinate, maleate, formate, acetate, propionate, fumarate, citrate, tartrate, lactate, benzoate, salicylate, glutamate, aspartate, p-toluenesulfonate, benzenesulfonate, methanesulfonate, ethanesulfonate, naphthalenesulfonate (e.g. 2-naphthalenesulfonate) or hexanoate salt.

30 A pharmaceutically acceptable base addition salt can be formed by reaction of a compound of formula (I) with a suitable inorganic or organic base (e.g. triethylamine, ethanolamine, triethanolamine, choline, arginine, lysine or histidine), optionally in a suitable solvent such as an organic solvent, to give the base addition salt which is usually isolated for example by crystallisation and filtration.

35 Other suitable pharmaceutically acceptable salts include pharmaceutically acceptable metal salts, for example pharmaceutically acceptable alkali-metal or alkaline-earth-metal salts such as sodium, potassium, calcium or magnesium salts; in particular pharmaceutically acceptable metal salts of one or more carboxylic acid moieties that may be present in the compound of formula (I).

Other non-pharmaceutically acceptable salts, e.g. oxalates, may be used, for example in the isolation of compounds of the invention, and are included within the scope of this invention.

5 The invention includes within its scope all possible stoichiometric and non-stoichiometric forms of the salts of the compounds of formula (I).

Also included within the scope of the invention are all solvates, hydrates and complexes of compounds and salts of the invention.

10 Certain groups, substituents, compounds or salts included in the present invention may be present as isomers. The present invention includes within its scope all such isomers, including racemates, enantiomers and mixtures thereof.

15 In the compounds or salts, pharmaceutical compositions, uses, methods of treatment/prophylaxis, methods of preparing, etc. according to the present invention, where a defined isomeric configuration e.g. stereochemical configuration is described or claimed, the invention includes a mixture comprising (a) a major component of the compound or salt which is in the described or claimed configuration, together with (b) one or more minor components of the compound or salt which is/are not in the described or claimed configuration. Preferably, in such a mixture, the major component of the compound or salt which is in the described or claimed configuration represents 70% or more, or 75% or more, more preferably 85% or more, still more preferably 90% or more, yet more preferably 95% or more, yet more preferably 98% or more, of the total amount of compound or salt present in the mixture on a molarity basis.

20 25 The percentage of one isomeric / stereochemical component in a mixture of different isomeric / stereochemical components, and if appropriate enantiomeric and/or diastereomeric excesses, can be measured using techniques known in the art. Such methods include the following:

(1) Measurement using NMR (e.g. ^1H NMR) spectroscopy in the presence of chiral agent. One can measure a nuclear magnetic resonance (NMR) spectrum (preferably a ^1H NMR spectrum, and/or a solution-phase NMR spectrum e.g. in CDCl_3 or D6-DMSO solvent) of the compound/salt mixture in the presence of a suitable chiral agent which "splits" the NMR peaks of a given atom in different isomers into different peak positions. The chiral agent can be: i) an optically pure reagent which reacts with the compound/salt e.g. to form a mixture of diastereomers, ii) a chiral solvent, iii) a chiral molecule which forms a transient species (e.g. diastereomeric species) with the compound/salt, or iv) a chiral shift reagent. See e.g. J. March, "Advanced Organic Chemistry", 4th edn., 1992, pages 125-126 and refs. 138-146 cited therein. A chiral shift reagent can be a chiral lanthanide shift reagent such as tris[3-trifluoroacetyl-*d*-camphorato]europium-(III) or others as described in Morill, "Lanthanide Shift Reagents in Stereochemical Analysis", VCH, New York, 1986. Whatever the chiral agent is that is used, usually, the relative integrals (intensities) for the NMR peaks of a given atom or group in different isomers can provide a measurement of the relative amounts of each isomer present.

PB60739P1 GB

- 54 -

(2) Measurement using chiral chromatography, especially on an analytical scale. A suitable chiral column which separates the different isomeric components can be used to effect separation, e.g. using gas or liquid chromatography such as HPLC, and/or e.g. on an analytical scale. The peaks for each isomer can be integrated (area under each peak); and a comparison or ratio of the integrals for the different isomers present can give a measurement of the percentage of each isomeric component present. See for example: "Chiral Chromatography", Separation Science Series Author: T.E. Beesley and R.P.W. Scott, John Wiley & Sons, Ltd., Chichester, UK, 1998, electronic Book ISBN: 0585352690, Book ISBN: 0471974277.

5 (3) Separation of pre-existing diastereomeric mixtures which are compounds/salts of the invention can be achieved (usually directly, without derivatisation) using separation techniques such as gas or liquid chromatography. Diastereomeric ratios and/or excesses can thereby be derived e.g. from the relative peak areas or relative separated masses.

10 (4) Conversion with a chiral / optically-active agent and subsequent separation of the resulting isomers, e.g. diastereomers. Conversion can be via derivatisation of a derivatisable group (e.g. -OH, -NHR) on the compound/salt with an optically-active derivatising group (e.g. optically active acid chloride or acid anhydride); or can be via formation of an acid or base addition salt of the compound by treatment of the compound with an optically-active acid or base, such as + or - di-para-toluoyl tartaric acid. After derivatisation, separation of the resulting isomers e.g. diastereomers, can be using gas or liquid chromatography (usually non-chiral); or (especially with isomeric salts) can be by selective crystallisation of a single isomeric e.g. diastereoisomeric salt. Determination of isomeric ratios and/or excesses can be using chromatography peak areas or measurement of mass of each separated isomer.

15 See e.g. J. March, "Advanced Organic Chemistry", 4th edn., 1992, pages 120-121 and 126, and refs. 105-115 and 147-149 cited therein.

20 (5) Measurement of optical activity [alpha] of mixture and comparison with optical activity of pure isomer [alpha]_{max} if available (e.g. see J. March, "Advanced Organic Chemistry", 4th edn., 1992, page 125 and refs. 138-139 cited therein). This assumes a substantially linear relationship between [alpha] and concentration.

25 Certain of the groups, e.g. heteroaromatic ring systems, included in compounds of formula (I) or their salts may exist in one or more tautomeric forms. The present invention includes within its scope all such tautomeric forms, including mixtures.

30 Especially when intended for oral medicinal use, the compound of formula (I) can optionally have a molecular weight of 1000 or less, for example 800 or less, in particular 650 or less or 600 or less. Molecular weight here refers to that of the unsolvated "free base" compound, that is excluding any molecular weight contributed by any addition salts, solvent (e.g. water) molecules, etc.

35

40

PB60739P1 GB

- 55 -

Synthetic Process Routes

The following processes can be used to make the compounds of the invention:

Some of the following synthetic processes may be exemplified for compounds of Formula (I) wherein R² is a hydrogen atom (H). However, some or all of these processes can also be used with appropriate modification, e.g. of starting materials and reagents, for making compounds of Formula (I) wherein R² is methyl.

Process A

To form a compound of formula (I), a carboxylic acid of formula (II) can be converted into an activated compound of formula (III) wherein X^1 is a leaving group substitutable by an amine (as defined below), and subsequently the activated compound can be reacted with an amine of formula $\text{ArCR}^4\text{R}^5\text{NH}_2$:

For example, the activated compound (the compound of formula (III)) can be the acid chloride ($X^1 = Cl$). This can be formed from the carboxylic acid of formula (II) e.g. by reaction with thionyl chloride, either in an organic solvent such as chloroform or without solvent. Alternatively, the activated compound (the compound of formula (III)) can be an activated ester wherein the leaving group X^1 is

PB60739P1 GB

- 56 -

The latter activated compound of formula (III) can be formed from the carboxylic acid of formula (II) either:

5 (a) by reaction of the carboxylic acid with a carbodiimide such as EDC, which is 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide and is also 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, or a salt thereof e.g. hydrochloride salt, preferably followed by reaction of the resulting product with 1-hydroxybenzotriazole (HOBT); reaction (a) usually being carried out in the presence of a solvent (preferably anhydrous) such as dimethyl formamide (DMF) or acetonitrile and/or preferably under anhydrous conditions and/or usually at room temperature (e.g. about 20 to about 25 °C);

10 or:

15 (b) by reaction with 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) or O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), in the presence of a base such as diisopropylethylamine ($i\text{Pr}_2\text{NEt}$ = DIPEA), and usually in the presence of a solvent such as dimethyl formamide (DMF) or acetonitrile and/or preferably under anhydrous conditions and/or usually at room temperature (e.g. about 20 to about 25 °C).

20

Compounds of formula (II) can be prepared by hydrolysis of an compound of formula (IV), an ester.

This process preferably involves reaction of compound of formula (IV) with either:

30 (a) a base, such as sodium hydroxide or potassium hydroxide, in a solvent, e.g. an aqueous solvent such as aqueous ethanol or aqueous dioxane or

PB60739P1 GB

- 57 -

(b) an acid, such as hydrochloric acid, in a solvent, e.g. an aqueous solvent such as aqueous dioxane.

5

Compounds of formula (IV) can be prepared according to a method, for example as described by Yu et. al. in *J. Med Chem.*, 2001, 44, 1025-1027, by reaction of a compound of formula (V) with an amine of formula $R^3\text{NH}_2$. The reaction is preferably carried out in the presence of a base such as triethylamine or N,N-diisopropylethylamine, and/or in an organic solvent such as ethanol, dioxane or acetonitrile. The reaction may require heating e.g. to ca. 60-100°C, for example ca. 80-90°C:

15 Compounds of formula (V) are also described in the above reference. They can be prepared by reaction of a compound of formula (VI) with $(R^2)(OEt)C=C(CO_2RE)_2$, which can for example be diethyl(ethoxymethylene)malonate (wherein R^2 is H and RE is Et) or diethyl 2-(1-ethoxyethylidene)malonate (wherein R^2 is Me and RE is Et), with heating, followed by reaction with phosphorous oxychloride, again with heating:

20

For examples of the compound (VI) to compound (V) process, see for example: (i) the Intermediate 1 synthesis and G. Yu et. al., *J. Med Chem.*, 2001, 44, 1025-1027 hereinafter, where $R^2 = H$ and $R^1 = \text{ethyl}$; and see (ii) the Intermediate 10 synthesis hereinafter where $R^2 = \text{Me}$ and $R^1 = \text{ethyl}$; and see (iii) Intermediate 122 synthesis

PB60739P1 GB

- 58 -

hereinafter wherein R² = H and R¹ = methyl (i.e. reaction of 5-amino-1-methyl pyrazole with diethylethoxymethylene malonate).

Where the desired amino pyrazole of formula (VI) is not commercially available,

5 preparation of the amino pyrazole (VI) can be achieved, for example, using methods described by Dorgan et al. in *J. Chem. Soc., Perkin Trans. I*, (4), 938-42; 1980, by reaction of cyanoethyl hydrazine with a suitable aldehyde of formula R⁴⁰CHO in a solvent such as ethanol, with heating, followed by reduction, for example reduction with sodium in a solvent such as t-butanol. R⁴⁰ should be chosen so as to contain one less

10 carbon atom than R¹, for example R⁴⁰ = methyl will afford R¹ = ethyl.

Alternatively, e.g. where the desired amino pyrazole of Formula (VI) is not commercially available, preparation of the 4-amino 5-ester/acid compounds of Formulae (IV) and (II)

15 can be achieved from a (different R¹) 4-chloro 5-ester compound of Formula (V) (e.g. Intermediate 1, wherein R¹ = ethyl), using a generalised version of the reaction scheme shown in Intermediate 114 and shown below. In this method:

- the 4-chloro 5-ester pyrazolopyridine of Formula (V) (e.g. Intermediate 1) is optionally converted to the 4-alkoxy (e.g. C₁-4alkoxy such as ethoxy) pyrazolopyridine;

20 - the R¹ group is removed (e.g. using N-bromosuccinimide (NBS) and preferably base e.g. Na₂CO₃) (e.g. to give Intermediate 1A – an alternative synthesis for which is given under "Intermediate 1A" hereinafter);

- the 4-amino NHR³ group is inserted by displacing the 4-chloro or 4-alkoxy group by

25 reaction with R³NH₂;

- and the pyrazolopyridine is alkylated at N-1 by reacting it with R¹-X⁴¹ where X⁴¹ is a group displaceable by the N-1 nitrogen of the pyrazolopyridine in order to re-insert the desired R¹ group. X⁴¹ can for example be a halogen, e.g. Cl, Br or I; or X⁴¹ can be -O-SO₂-R⁴¹ where R⁴¹ is C₁-4alkyl, C₁-2fluoroalkyl, or phenyl optionally substituted by C₁-2alkyl.

The scheme below (Intermediate 114 scheme) shows a suitable route and conditions for this, to insert R¹ = n-propyl:

PB60739P1 GB

- 59 -

In an alternative embodiment of Process A, the 4-chloro substituent in the compound of formula (V) can be replaced by another halogen atom, such as a bromine atom, or by another suitable leaving group which is displaceable by an amine of formula R^3NH_2 . The leaving group displaceable by the amine can for example be R^{LA} , in a compound of formula (Va), wherein R^{LA} is an alkoxymethyl group OR^3SCH_2 such as $\text{OC}_1\text{-}_4\text{alkyl}$ (in particular OEt) or a group $-\text{O}-\text{S}(\text{O})_2-\text{R}^3\text{7}$, wherein $\text{R}^3\text{7}$ is $\text{C}_1\text{-}_6\text{alkyl}$ (e.g. $\text{C}_1\text{-}_4\text{alkyl}$ or $\text{C}_1\text{-}_2\text{alkyl}$ such as methyl), $\text{C}_1\text{-}_6\text{fluoroalkyl}$ (e.g. $\text{C}_1\text{-}_4\text{fluoroalkyl}$ or $\text{C}_1\text{-}_2\text{fluoroalkyl}$ such as CF_3 or C_4F_9), or phenyl wherein the phenyl is optionally substituted by one or two of independently $\text{C}_1\text{-}_2\text{alkyl}$, halogen or $\text{C}_1\text{-}_2\text{alkoxy}$ (such as phenyl or 4-methyl-phenyl). The reaction of the compound of formula (Va) with the amine of formula R^3NH_2 may be carried out with or without solvent and may require heating:

15

PB60739P1 GB

- 60 -

5 In another alternative embodiment of Process A, the compound of formula (IV), described herein, can be prepared by reaction of a compound of formula (IX) with an alkylating agent of formula R^1-X^3 , where X^3 is a leaving group displaceable by the 1-position pyrazolopyridine nitrogen atom of the compound of formula (IX):

 R^1-X^3

10

A suitable alkylating agent of formula R^1-X^3 can be used. For example, X^3 can be a halogen atom such as a chlorine atom or more preferably a bromino or iodine atom, or X^3 can be $-O-S(O)_2-R^{36}$ wherein R^{36} is C_1 -alkyl (e.g. C_1 - 4 alkyl or C_1 - 2 alkyl such as methyl), C_1 - 6 fluoroalkyl (e.g. C_1 - 4 fluoroalkyl or C_1 - 2 fluoroalkyl such as CF_3 or C_4F_9), 15 or phenyl wherein the phenyl is optionally substituted by one or two of independently C_1 - 2 alkyl, halogen or C_1 - 2 alkoxy (such as phenyl or 4-methyl-phenyl). The reaction is preferably carried out in the presence of a base; the base can for example comprise or be potassium carbonate, sodium carbonate, sodium hydride, potassium hydride, or a basic resin or polymer such as polymer-bound 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine. The reaction is preferably carried out in the presence 20 of a solvent, e.g. an organic solvent such as DMF; the solvent is preferably anhydrous.

Compounds of formula (IX) can be prepared, using a method analogous to that used for 25 the preparation of compounds of formula (IV) from compounds of formula (V), by reaction of a compound of formula (X) (which is the same as compound of formula (V) but wherein $R^1 = H$) with an amine of formula R^3NH_2 . The reaction is preferably carried out in the presence of a base such as triethylamine or N,N -disopropylethylamine, and/or in an organic solvent such as ethanol, dioxane or acetonitrile. The reaction may require heating e.g. to ca. 60 - $100^\circ C$, for example ca. 80 - $90^\circ C$:

PB60739P1 GB

- 61 -

Compound of formula (V) can be made as described above.

5

Process B

Compounds of formula (I) can be prepared by reaction of a compound of formula (VII) with an amine of formula R^3NH_2 . In the compound of formula (VII), R^{LB} is a leaving group which is displaceable by the amine of formula R^3NH_2 . R^{LB} can preferably be a bromine atom (Br) or more preferably a chlorine atom (Cl), or alternatively R^{LB} can be an alkoxy group OR^{35} such as OC_{1-4} alkyl (in particular OEt) or a group $-O-S(O)_2-R^{37}$, wherein R^{37} is C_{1-8} alkyl (e.g. C_{1-4} alkyl or C_{1-2} alkyl such as methyl), C_{1-6} fluoroalkyl (e.g. C_{1-4} fluoroalkyl or C_{1-2} fluoroalkyl such as CF_3 or C_4F_9), or phenyl wherein the phenyl is optionally substituted by one or two of independently C_{1-2} alkyl, halogen or C_{1-2} alkoxy (such as phenyl or 4-methylphenyl). The reaction of (VII) to (I) is preferably carried out in the presence of a base, such as triethylamine or N,N-diisopropylethylamine, and/or in an organic solvent such as ethanol, THF, dioxane or acetonitrile. The reaction may require heating, e.g. to ca. 60-100 °C or ca. 80-90 °C, for example for 8-48 or 12-24 hours:

Compounds of formula (VII), wherein R^{LB} is a chlorine atom (compound of formula (VIIa), can be prepared in a two step procedure as described by Bare et. al. in *J. Med.*

PB60739P1 GB

- 62 -

Chem. 1989, 32, 2561-2573. This process involves 2 steps. In the first step, a compound of formula (VIII) is reacted with thionyl chloride (or another agent suitable for forming an acid chloride from a carboxylic acid), either in an organic solvent such as chloroform or THF, or as a neat solution. This reaction may require heating and the thus-formed intermediate may or may not be isolated. Step two involves reaction with an amine of formula $\text{ArCR}^4\text{R}^5\text{NH}_2$, in an organic solvent such as THF or chloroform and may also involve the use of a base such as triethylamine or diisopropylethylamine:

Compounds of formula (VIII) can be prepared by hydrolysis of an ester of formula (V) according to the method described by Yuet. al. in *J. Med Chem.*, 2001, 44, 1025-1027. This procedure preferably involves reaction with a base, such as sodium hydroxide or potassium hydroxide, in a solvent e.g. an aqueous solvent such as aqueous ethanol or aqueous dioxane:

Compounds of formula (V) can be prepared as described in Process A above.

20 **Process C**

A compounds of formula (I) can be prepared by reaction of a compound of formula (IXa) with an alkylating agent of formula $\text{R}^1\text{-X}^3$, where X^3 is a leaving group displaceable by the 1-position pyrazolopyridine nitrogen atom of the compound of formula (IXa):

PB60739P1 GB

- 63 -

5 A suitable alkylating agent of formula R¹-X³ can be used. For example, X³ can be a halogen atom such as a chlorine atom or more preferably a bromine or iodine atom, or X³ can be -O-S(O)₂-R³⁶ wherein R³⁶ is C₁-alkyl (e.g. C₁-4alkyl or C₁-2alkyl such as methyl), C₁-6fluoroalkyl (e.g. C₁-4fluoroalkyl or C₁-2fluoroalkyl such as CF₃ or C₄F₉), or phenyl wherein the phenyl is optionally substituted by one or two of independently C₁-2alkyl, halogen or C₁-2alkoxy (such as phenyl or 4-methyl-phenyl). The reaction is preferably carried out in the presence of a base; the base can for example comprise or be potassium carbonate, sodium carbonate, sodium hydride, potassium hydride, or a basic resin or polymer such as polymer-bound 2-tert-butylimino-2-diethylamino-1,3-dimethyl-perhydro-1,3,2-diazaphosphorine. The reaction is preferably carried out in the presence of a solvent, e.g. an organic solvent such as DMF; the solvent is preferably anhydrous.

10

15 Compounds of formula (IXa) can be prepared from a compound of formula (IX);

(IX)

by hydrolysis of the ester and conversion of the resulting carboxylic acid to the amide of formula (IXa) by activation of the acid and reaction with an amine of formula ArCR⁴R⁵NH₂. The ester (IX) to acid to amide (IXa) conversion can suitably use the reagents and reaction conditions mentioned in Process A above for conversion of (IV) to (II) to (III) to (I).

The ester compound of formula (IX) can be prepared using the method described in the alternative embodiment of Process A, above.

25

Process D: Conversion of one compound of formula (I), (II) or (IV) or salt thereof into another compound of formula (I), (II) or (IV) or salt thereof

PB60739P1 GB

- 64 -

One compound of formula (I), (II) or (IV) or salt thereof can be converted into another compound of formula (I), (II) or (IV) or salt thereof. This conversion preferably comprises or is one or more of the following processes D1 to D7:

5 D1. Conversion of a ketone into the corresponding oxime (e.g. Examples 231-281).

10 D2. An oxidation process. For example, the oxidation process can comprise or be oxidation of an alcohol to a ketone (e.g. using Jones reagent) or oxidation of an alcohol or a ketone to a carboxylic acid. The oxidation process can e.g. comprise or be conversion of a nitrogen-containing compound of formula (I) or salt thereof to the corresponding N-oxide (e.g. using *meta*-chloroperoxybenzoic acid), for example conversion of a pyridine-containing compound to the corresponding pyridine N-oxide (e.g. see Examples 210-212 of PCT/EP03/11814, filed on 12 September 2003 and incorporated herein by reference, for suitable process details).

15 D3. A reduction process, for example reduction of a ketone or a carboxylic acid to an alcohol.

20 D4. Acylation, for example acylation of an amine (e.g. see Examples 329-349 and Example 353 of PCT/EP03/11814; filed on 12 September 2003 and incorporated herein by reference, for suitable process details), or acylation of a hydroxy group.

25 D5. Alkylation, for example alkylation of an amine or of a hydroxy group.

25 D6. Hydrolysis, e.g. hydrolysis of an ester to the corresponding carboxylic acid or salt thereof (e.g. see Examples 351, 488, 489, 650, 651 of PCT/EP03/11814, filed on 12 September 2003 and incorporated herein by reference, for suitable process details).

30 D7. Deprotection, e.g. deprotection (e.g. deacylation or t-butyloxycarbonyl (BOC) removal) of an amine group.

35 D8. Formation of an ester or amide, for example from the corresponding carboxylic acid.

35 D9. Sulfenylation, e.g. sulfonamide formation by reaction of an amine with a sulfonyl halide e.g. a sulfonyl chloride (e.g. see Examples 322-328 of PCT/EP03/11814, filed on 12 September 2003 and incorporated herein by reference, for suitable process details).

40 and/or

40 D10. Beckmann rearrangement of one compound of formula (I) into another compound of formula (I), preferably using cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) together

with a formamide such as DMF, e.g. at room temperature (see L.D. Luca, *J. Org. Chem.*, 2002, 67, 6272-6274). The Beckmann rearrangement can for example comprise conversion of a compound of formula (I) wherein NHR^3 is of sub-formula (o2)

) into a compound of formula (I) wherein NHR^3 is of sub-formula

5 (m3) (NH), and suitable process details can be as illustrated in Examples 658 and 659 of PCT/EP03/11814, filed on 12 September 2003 and incorporated herein by reference.

10 The present invention therefore also provides a method of preparing a compound of formula (I) or a salt thereof:

wherein R^1 , R^2 , R^3 , R^4 , R^5 and Ar are as defined, the method comprising :

15

(a) reaction of an activated compound of formula (III),

wherein X^1 is a leaving group substitutable by an amine, with an amine of formula $\text{ArCR}^4\text{R}^5\text{NH}_2$;

20

(b) reaction of a compound of formula (VII):

PB60739P1 GB

- 66 -

(VII)

, wherein R^{LB} is a leaving group which is displaceable by the amine of formula R^3NH_2 , with an amine of formula R^3NH_2 ;

5 (c) reaction of a compound of formula (IXa) with an alkylating agent of formula R^1-X^3 , where X^3 is a leaving group displaceable by the 1-position pyrazolopyridine nitrogen atom of the compound of formula (IXa);

10

or

(d) conversion of one compound of formula (I) or salt thereof into another compound of formula (I) or salt thereof;

15

and optionally converting the compound of formula (I) into a salt thereof e.g. a pharmaceutically acceptable salt thereof.

Preferred features of methods (a), (b), (c) and (d), independently of each other, are as described above for Processes A, B, C, and D, with all necessary changes being made.

The present invention also provides: (e) a method of preparing a pharmaceutically acceptable salt of a compound of formula (I) comprising conversion of the compound of formula (I) or a salt thereof into the desired pharmaceutically acceptable salt thereof.

25 (See for example Example 307).

The present invention also provides a compound of formula (I) or a salt thereof, prepared by a method as defined herein.

Medical uses

5 The present invention also provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use as an active therapeutic substance in a mammal such as a human. The compound or salt can be for use in the treatment and/or prophylaxis of any of the diseases / conditions described herein (e.g. for use in the treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal) and/or for use as a
10 phosphodiesterase inhibitor e.g. for use as a phosphodiesterase 4 (PDE4) inhibitor.
"Therapy" may include treatment and/or prophylaxis.

Also provided is the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament (e.g. pharmaceutical composition) for the
15 treatment and/or prophylaxis of any of the diseases / conditions described herein in a mammal such as a human, e.g. for the treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal such as a human.

Also provided is a method of treatment and/or prophylaxis of any of the diseases /
20 conditions described herein in a mammal (e.g. human) in need thereof, e.g. a method of treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal (e.g. human) in need thereof, which method comprises administering to the mammal (e.g. human) a therapeutically effective amount of a compound of formula (I) as herein defined or a pharmaceutically acceptable salt thereof.

25 Phosphodiesterase 4 inhibitors are thought to be useful in the treatment and/or prophylaxis of a variety of diseases / conditions, especially inflammatory and/or allergic diseases, in mammals such as humans, for example: asthma, chronic obstructive pulmonary disease (COPD) (e.g. chronic bronchitis and/or emphysema), atopic
30 dermatitis, urticaria, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, eosinophilic granuloma, psoriasis, rheumatoid arthritis, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury of the myocardium and brain, chronic glomerulonephritis, endotoxic shock, adult respiratory distress syndrome, multiple sclerosis, cognitive impairment (e.g. in a neurological disorder such as Alzheimer's
35 disease), depression, or pain. Ulcerative colitis and/or Crohn's disease are collectively often referred to as inflammatory bowel disease.

In the treatment and/or prophylaxis, the inflammatory and/or allergic disease is preferably chronic obstructive pulmonary disease (COPD), asthma, rheumatoid arthritis or allergic
40 rhinitis in a mammal (e.g. human). More preferably, the treatment and/or prophylaxis is of COPD or asthma in a mammal (e.g. human).

PB60739P1 GB

- 68 -

PDE4 inhibitors are thought to be effective in the treatment of asthma (e.g. see M.A.Giembycz, *Drugs*, Feb. 2000, 59(2), 193-212; Z. Huang et al., *Current Opinion in Chemical Biology*, 2001, 5: 432-438; H.J.Dyke et al., *Expert Opinion on Investigational Drugs*, January 2002, 11(1), 1-13; C.Burnouf et al., *Current Pharmaceutical Design*, 2002, 8(14), 1255-1296; A.M.Doherty, *Current Opinion Chem. Biol.*, 1999, 3(4), 466-473; and references cited in the aforementioned publications).

5 PDE4 inhibitors are thought to be effective in the treatment of COPD. For example, see S.L. Wolda, *Emerging Drugs*, 2000, 5(3), 309-319; Z. Huang et al., *Current Opinion in Chemical Biology*, 2001, 5: 432-438; H.J.Dyke et al., *Expert Opinion on Investigational Drugs*, January 2002, 11(1), 1-13; C.Burnouf et al., *Current Pharmaceutical Design*, 2002, 8(14), 1255-1296; A.M.Doherty, *Current Opinion Chem. Biol.*, 1999, 3(4), 466-473; and references cited in the aforementioned publications; and G. Krishna et al.,
10 15 *Expert Opinion on Investigational Drugs*, 2004, 13(3), 255-267 (see especially pp. 259-261 and refs. 102-111 and 201 therein). COPD is often characterised by the presence of airflow obstruction due to chronic bronchitis and/or emphysema (e.g., see S.L. Wolda, *Emerging Drugs*, 2000, 5(3), 309-319).

20 PDE4 inhibitors are thought to be effective in the treatment of allergic rhinitis (e.g. see B.M. Schmidt et al., *J. Allergy & Clinical Immunology*, 108(4), 2001, 530-536).

PDE4 inhibitors are thought to be effective in the treatment of rheumatoid arthritis and multiple sclerosis (e.g. see H.J.Dyke et al., *Expert Opinion on Investigational Drugs*,
25 25 January 2002, 11(1), 1-13; C.Burnouf et al., *Current Pharmaceutical Design*, 2002, 8(14), 1255-1296; and A.M.Doherty, *Current Opinion Chem. Biol.*, 1999, 3(4), 466-473; and references cited in these publications). See e.g. A.M.Doherty, *Current Opinion Chem. Biol.*, 1999, 3(4), 466-473 and references cited therein for atopic dermatitis use.

30 PDE4 inhibitors have been suggested as having analgesic properties and thus being effective in the treatment of pain (A.Kumar et al., *Indian J. Exp. Biol.*, 2000, 38(1), 26-30).

In the invention, the treatment and/or prophylaxis can be of cognitive impairment e.g.
35 35 cognitive impairment in a neurological disorder such as Alzheimer's disease. For example, the treatment and/or prophylaxis can comprise cognitive enhancement e.g. in a neurological disorder. See for example: H.T.Zhang et al. in: *Psychopharmacology*, June 2000, 150(3), 311-316 and *Neuropsychopharmacology*, 2000, 23(2), 198-204; and T. Egawa et al., *Japanese J. Pharmacol.*, 1997, 75(3), 275-81.

40

PB60739P1 GB

- 69 -

PDE4 inhibitors such as rolipram have been suggested as having antidepressant properties (e.g. J. Zhu et al., *CNS Drug Reviews*, 2001, 7(4), 387-398; O'Donnell, *Expert Opinion on Investigational Drugs*, 2000, 9(3), 621-625; and H.T. Zhang et al., *Neuropsychopharmacology*, October 2002, 27(4), 587-595).

5

Pharmaceutical compositions and dosing

For use in medicine, the compounds of the present invention are usually 10 administered as a pharmaceutical composition.

The present invention therefore provides in a further aspect a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers and/or excipients.

The pharmaceutical composition can be for use in the treatment and/or 15 prophylaxis of any of the conditions described herein.

The invention also provides a method of preparing a pharmaceutical composition comprising a compound of formula (I), as herein defined, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers and/or excipients,

20 the method comprising mixing the compound or salt with the one or more pharmaceutically acceptable carriers and/or excipients.

The invention also provides a pharmaceutical composition prepared by said method.

The compounds of formula (I) and/or the pharmaceutical composition may be 25 administered, for example, by oral, parenteral (e.g. intravenous, subcutaneous, or intramuscular), inhaled or nasal administration. Accordingly, the pharmaceutical composition is preferably suitable for oral, parenteral (e.g. intravenous, subcutaneous, or intramuscular), inhaled or nasal administration. More preferably, the pharmaceutical composition is suitable for inhaled or oral administration, e.g. to a mammal such as a 30 human. Inhaled administration involves topical administration to the lung e.g. by aerosol or dry powder composition. Oral administration to a human is most preferred.

A pharmaceutical composition suitable for oral administration can be liquid or solid; for example it can be a syrup, suspension or emulsion, a tablet, a capsule or a lozenge.

35 A liquid formulation will generally consist of a suspension or solution of the compound or pharmaceutically acceptable salt in a suitable pharmaceutically acceptable liquid carrier(s), for example an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil. The formulation may also contain a suspending agent, preservative, flavouring and/or colouring agent.

40 A pharmaceutical composition suitable for oral administration being a tablet can comprise one or more pharmaceutically acceptable carriers and/or excipients suitable for preparing tablet formulations. The carrier can for example be or include lactose, cellulose (for example microcrystalline cellulose), or mannitol. The tablet can also or instead

PB60739P1 GB

- 70 -

contain one or more pharmaceutically acceptable excipients, for example a binding agent such as hydroxypropylmethylcellulose or povidone (polyvinylpyrrolidone), a lubricant e.g. an alkaline earth metal stearate such as magnesium stearate, and/or a tablet disintegrant such as sodium starch glycollate, croscarmellose sodium, or crospovidone (cross-linked polyvinylpyrrolidone). The pharmaceutical composition being a tablet can be prepared by a method comprising the steps of: (i) mixing the compound of formula (I), as herein defined, or a pharmaceutically acceptable salt thereof, with the one or more pharmaceutically acceptable carriers and/or excipients, (ii) compressing the resulting mixture (which is usually in powder form) into tablets, and (iii) optionally coating the tablet with a tablet film-coating material.

5 A pharmaceutical composition suitable for oral administration being a capsule can be prepared using encapsulation procedures. For example, pellets or powder containing the active ingredient can be prepared using a suitable pharmaceutically acceptable carrier and then filled into a hard gelatin capsule. Alternatively, a dispersion or suspension can 10 be prepared using any suitable pharmaceutically acceptable carrier, for example an aqueous gum or an oil and the dispersion or suspension then filled into a soft gelatin capsule.

15 Preferably the composition is in unit dose form such as a tablet or capsule for oral administration, e.g. for oral administration to a human.

20 A parenteral composition can comprise a solution or suspension of the compound or pharmaceutically acceptable salt in a sterile aqueous carrier or parenterally acceptable oil. Alternatively, the solution can be lyophilised; the lyophilised parenteral pharmaceutical composition can be reconstituted with a suitable solvent just prior to administration.

25 Compositions for nasal or inhaled administration may conveniently be formulated as aerosols, drops, gels or dry powders.

30 Aerosol formulations, e.g. for inhaled administration, can comprise a solution or fine suspension of the active substance in a pharmaceutically acceptable aqueous or non-aqueous solvent. Aerosol formulations can be presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomising device or inhaler. Alternatively the sealed container may be a unitary dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve (metered dose inhaler) which is intended for disposal once the contents of the container have been exhausted.

35 Where the dosage form comprises an aerosol dispenser, it preferably contains a suitable propellant under pressure such as compressed air, carbon dioxide, or an organic propellant such as a chlorofluorocarbon (CFC) or hydrofluorocarbon (HFC). Suitable CFC propellants include dichlorodifluoromethane, trichlorofluoromethane and dichlorotetrafluoroethane. Suitable HFC propellants include 1,1,1,2,3,3,3-heptafluoropropane and 1,1,1,2-tetrafluoroethane. The aerosol dosage forms can also 40 take the form of a pump-atomiser.

Particle size reduction of compound of formula (I) or salt thereof

For pharmaceutical compositions suitable and/or adapted for inhaled administration, it is preferred that the compound or salt of formula (I) is in a particle-size-reduced form, and more preferably the size-reduced form is obtained or obtainable by micronisation.

Micronisation usually involves subjecting the compound/salt to collisional and/or abrasional forces in a fast-flowing circular or spiral/vortex-shaped airstream often including a cyclone component. The preferable particle size of the size-reduced (e.g. micronised) compound or salt is defined by a D₅₀ value of about 0.5 to about 10 microns, e.g. about 1 to about 7 microns (e.g. as measured using laser diffraction). For example, it is preferable for the compound or salt of formula (I) to have a particle size defined by: a D₁₀ of about 0.3 to about 3 microns (e.g. about 0.5 to about 2 microns, or about 1 micron), and/or a D₅₀ of about 0.5 to about 10 microns or about 1 to about 7 microns (e.g. about 2 to about 5 microns or about 2 to about 4 microns), and/or a D₉₀ of about 1 to about 30 microns or about 2 to about 20 microns or about 3 to about 15 microns (e.g. about 5 to about 15 microns or about 5 to about 10 microns); for example as measured using laser diffraction.

In particle size measurements, D₉₀, D₅₀ and D₁₀ respectively mean that 90%, 50% and 10% of the material is less than the micron size specified. D₅₀ is the median particle size. DV₉₀, DV₅₀ and DV₁₀ respectively mean that 90%, 50% and 10% by volume of the material is less than the micron size specified. DM₉₀, DM₅₀ and DM₁₀ respectively mean that 90%, 50% and 10% by weight of the material is less than the micron size specified.

Laser diffraction measurement of particle size can use a dry method (wherein a suspension of the compound/salt in an airflow crosses the laser beam) or a wet method [wherein a suspension of the compound/salt in a liquid dispersing medium, such as isoctane or (e.g. if compound is soluble in isoctane) 0.1% Tween 80 in water, crosses the laser beam]. With laser diffraction, particle size is preferably calculated using the Fraunhofer calculation; and/or preferably a Malvern Mastersizer or Sympatec apparatus is used for measurement. For example, particle size measurement and/or analysis by laser diffraction can use any or all of (preferably all of) the following: a Malvern Mastersizer longbed version, a dispersing medium of 0.1% Tween 80 in water, a stir rate of ca. 1500 rpm, ca. 3 mins sonification prior to final dispersion and analysis, a 300 RF (Reverse Fourier) lens, and/or the Fraunhofer calculation with Malvern software.

An illustrative non-limiting example of a small-scale micronisation process is now given:

Micronisation Example: Micronisation of Example 73, 98, 283, 304, 306 or 307

PB60739P1 GB

- 72 -

- Purpose: To micronize Example 73, 98, 283, 304, 306 or 307 (described hereinafter), usually in an amount of approximately 600-1000 mg thereof, using a Jetpharma MC1 micronizer.
- The parent (unmicronised) and micronised materials are analyzed for particle size by laser diffraction and crystallinity by PXRD.

5

Equipment and material

Equipment/material	Description and specification
Jetpharma MC1 Micronizer	Nitrogen supply: Air tank with 275psi rate tubing
Analytical balance	Sartorius Analytical
Top loader balance	Mettler PM400
Digital Caliper	VWR Electronic caliper
Vibrational spatula	Auto-spat Dispenser
Materials to be micronised	Example 73, 98, 283, 304, 306 or 307

10 The Jetpharma MC1 Micronizer comprises a horizontal disc-shaped milling housing having: a tubular compound inlet (e.g. angled at ca. 30 degrees to the horizontal) for entry of a suspension of unmicronised compound of formula (I) or salt in a gasflow, a separate gas inlet for entry of gases, a gas outlet for exit of gases, and a collection vessel for collecting micronised material. The milling housing has two chambers: (a) an outer annular chamber in gaseous connection with the gas inlet, the chamber being for receiving pressurised gas (e.g. air or nitrogen), and (b) a disc-shaped inner milling chamber within and coaxial with the outer chamber for micronising the input compound / salt, the two chambers being separated by an annular wall. The annular wall (ring R) has a plurality of narrow-bored holes connecting the inner and outer chambers and circumferentially-spaced-apart around the annular wall. The holes opening into the inner chamber are directed at an angle (directed part-way between radially and tangentially), and in use act as nozzles directing pressurised gas at high velocity from the outer chamber into the inner chamber and in an inwardly-spiral path (vortex) around the inner chamber (cyclone). The compound inlet is in gaseous communication with the inner chamber via a nozzle directed tangentially to the inner chamber, within and near to the annular wall / ring R. Upper and lower broad-diameter exit vents in the central axis of the inner milling chamber connect to (a) (lower exit) the collection vessel which has no air outlet, and (b) (upper exit) the gas outlet which leads to a collection bag, filter and a gas exhaust. Inside and coaxial with the tubular compound inlet and longitudinally-movable within it is positioned a venturi inlet (V) for entry of gases. The compound inlet also has a bifurcation connecting to an upwardly-directed material inlet port for inputting material.

15

20

25

30

In use, the narrow head of the venturi inlet (V) is preferably positioned below and slightly forward of the material inlet port so that when the venturi delivers pressurised gas (e.g. air or nitrogen) the feed material is sucked from the material inlet port into the gasstream thorough the compound inlet and is accelerated into the inner milling chamber

35

tangentially at a subsonic speed. Inside the milling chamber the material is further accelerated to a supersonic speed by the hole/nozzle system around the ring (R) (annular wall) of the milling chamber. The nozzles are slightly angled so that the acceleration pattern of the material is in the form of an inwardly-directed vortex or cyclone. The material inside the milling chamber circulates rapidly and particle collisions occur during the process, causing larger particles to fracture into smaller ones. "Centrifugal" acceleration in the vortex causes the larger particles to remain at the periphery of the inner chamber while progressively smaller particles move closer to the center until they exit the milling chamber, generally through the lower exit, at low pressure and low velocity. The particles that exit the milling chamber are heavier than air and settle downward through the lower exit into the collection vessel, while the exhaust gas rises (together with a minority of small particles of micronised material) and escapes into the atmosphere at low pressure and low velocity.

15 *Procedure:*

The micronizer is assembled. The venturi protrusion distance from input port is preferably adjusted to about 1.0 cm respectively (e.g. so that the narrow head of the venturi inlet is positioned below and slightly forward of the material inlet port) and is measured with a micro-caliper to make sure that it is inserted correctly. The ring (R) and venturi (V) pressures are adjusted according to the values specified in the experimental design (refer to experimental section below) by adjusting the valves on the pressure gauges on the micronizer. The setup is checked for leakage by observing if there is any fluctuation in the reading of the pressure gauges.

Note that the venturi (V) pressure is kept at least 2 bars greater than the ring (R) pressure to prevent regurgitation of material, e.g. outwardly from the material inlet port.

Balance performance is checked with calibration weights. Specified amount of the parent material (see section on experimental run) is weighed into a plastic weigh boat. The material is then fed into the micronizer using a vibrational spatula (e.g. V-shaped in cross-section) at a specified feed rate. The material feeding time and equipment pressures are monitored during the micronization process.

Upon completion of the micronising run, the nitrogen supply is shut off and the collection bag is tapped to allow particles to settle into the recovery / collection vessel at the bottom of the micronizer. The collection bag is removed and set aside. The micronised powder in the recovery vessel (collection vessel) and the cyclone (above the recovery vessel) are collected separately into different weighed+labelled collection vials. The weight of the micronised material is recorded. The micronizer is disassembled and residual PDE4 compound on the micronizer inner surface is rinsed with 70/30 isopropyl alcohol / water and collected into a flask. The micronizer is then thoroughly cleaned by rinsing and wiping with suitable solvent and dried before subsequent runs are performed.

40

Preferred or Optional Experimental Parameters

Parent (unmicronised) material (Procedure 1): Example 73, 98, 283, 304, 306 or 307

Balance(s) Used: Sartorius analytical

PB60739P1 GB

- 74 -

Proc- edure no.	Material input amount (g)	Venturi ring (R) Pressure (bar)	Intended feed-rate	Time needed to feed material (min+sec)	Actual feed-rate (g/min)
1	ca. 0.9 g	V = 8 to 10 bar R = 5.5 to 6 bar	180 to 200 mg/min		procedure not carried out

The above optional parameters can be varied using the skilled person's knowledge.

5 *Results and/or observations*

% yield = [(Material from vessel + Material from cyclone)/Material input amount] x 100

In general, very approximately 50-75% yields are achievable using this method, including material from collection vessel and material from inside walls of cyclone.

10 Procedure 1 includes possible parameters and conditions and has not been carried out.

Alternative embodiment: Any of the Examples of the compounds or salts of the invention disclosed herein can be micronised as described above.

15

Dry powder inhalable compositions

For pharmaceutical compositions suitable and/or adapted for inhaled administration, it is preferred that the pharmaceutical composition is a dry powder

20 inhalable composition. Such a composition can comprise a powder base such as lactose or starch, the compound of formula (I) or salt thereof (preferably in particle-size-reduced form, e.g. in micronised form), and optionally a performance modifier such as L-leucine, mannitol, trehalose and/or magnesium stearate. Preferably, the dry powder inhalable composition comprises a dry powder blend of lactose and the compound of formula (I) or

25 salt thereof. The lactose is preferably lactose hydrate e.g. lactose monohydrate and/or is preferably inhalation-grade and/or fine-grade lactose. Preferably, the particle size of the lactose is defined by 90% or more (by weight or by volume) of the lactose particles being less than 1000 microns (micrometres) (e.g. 10-1000 microns e.g. 30-1000 microns) in diameter, and/or 50% or more of the lactose particles being less than 500 microns (e.g.

30 10-500 microns) in diameter. More preferably, the particle size of the lactose is defined by 90% or more of the lactose particles being less than 300 microns (e.g. 10-300 microns e.g. 50-300 microns) in diameter, and/or 50% or more of the lactose particles being less than 100 microns in diameter. Optionally, the particle size of the lactose is defined by 90% or more of the lactose particles being less than 100-200 microns in diameter, and/or

35 50% or more of the lactose particles being less than 40-70 microns in diameter. Most importantly, it is preferable that about 3 to about 30% (e.g. about 10%) (by weight or by

PB60739P1 GB

- 75 -

volume) of the particles are less than 50 microns or less than 20 microns in diameter. For example, without limitation, a suitable inhalation-grade lactose is E9334 lactose (10% fines) (Bortculo Domo Ingredients, Hanzeplein 25, 8017 JD Zwolle, Netherlands).

In the dry powder inhalable composition, preferably, the compound of formula (I) or salt thereof is present in about 0.1% to about 70% (e.g. about 1% to about 50%, e.g. about 5% to about 40%, e.g. about 20 to about 30%) by weight of the composition.

An illustrative non-limiting example of a dry powder inhalable composition follows:

10 *Dry Powder Formulation Example - Dry powder Lactose Blend Preparation*

Using a size-reduced e.g. micronised form of the compound of formula (I) or salt thereof (e.g. as prepared in the Micromisation Example above), the dry powder blend is prepared by mixing the required amount of the compound/salt (e.g. 10 mg, 1% w/w) with inhalation-grade lactose containing 10% fines (e.g. 990 mg, 99% w/w) in a Teflon™

15 (polytetrafluoroethylene) pot in a Mikro-dismembrator ball-mill (but without a ball bearing) at ¼ speed (ca. 2000-2500 rpm) for about 4 hours at each blend concentration. The Mikro-dismembrator (available from B. Braun Biotech International, Schwarzenberger Weg 73-79, D-34212 Melsungen, Germany; www.bbbaunbiotech.com) comprises a base with an upwardly-projecting and sidewardly-vibratable arm to which is attached the

20 Teflon™ pot. The vibration of the arm achieves blending.

Other blends: 10% w/w compound/salt (50 mg) + 90% w/w lactose (450 mg, inhalation-grade lactose containing 10% fines).

Serial dilution of the 1% w/w blend can achieve e.g. 0.1% and 0.3% w/w blends.

25

Dry powder inhalation devices

Optionally, in particular for dry powder inhalable compositions, a pharmaceutical composition for inhaled administration can be incorporated into a plurality of sealed dose containers (e.g. containing the dry powder composition) mounted longitudinally in a strip or ribbon inside a suitable inhalation device. The container is rupturable or peel-openable on demand and the dose, e.g. of the dry powder composition, can be administered by inhalation via a device such as the DISKUS™ device, marketed by GlaxoSmithKline. The DISKUS™ inhalation device is usually substantially as described in GB 2,242,134

30 A. In such device at least one container for the pharmaceutical composition in powder form (the at least one container preferably being a plurality of sealed dose containers mounted longitudinally in a strip or ribbon) is defined between two members peelably secured to one another; the device comprises: means defining an opening station for the said at least one container; means for peeling the members apart at the opening station to open the container; and an outlet, communicating with the opened container, through

35 which a user can inhale the pharmaceutical composition in powder form from the opened container.

Unit dose form and dosing regimens

PB60739P1 GB

- 76 -

Preferably the composition is in unit dose form such as a tablet or capsule for oral administration, e.g. for oral administration to a human.

In the pharmaceutical composition, a or each dosage unit for oral or parenteral administration preferably contains from 0.01 to 3000 mg, more preferably 0.5 to 1000 mg, of a compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base. A or each dosage unit for nasal or inhaled administration preferably contains from 0.001 to 50 mg, more preferably 0.01 to 5 mg, of a compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

A pharmaceutically acceptable compound or salt of the invention is preferably administered to a mammal (e.g. human) in a daily oral or parenteral dose of 0.001 mg to 50 mg per kg body weight per day (mg/kg/day), for example 0.01 to 20 mg/kg/day or 0.03 to 10 mg/kg/day or 0.1 to 2 mg/kg/day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

A pharmaceutically acceptable compound or salt of the invention is preferably administered to a mammal (e.g. human) in a daily nasal or inhaled dose of: 0.0001 to 5 mg/kg/day or 0.0001 to 1 mg/kg/day, e.g. 0.001 to 1 mg/kg/day or 0.001 to 0.3 mg/kg/day or 0.001 to 0.1 mg/kg/day or 0.005 to 0.3 mg/kg/day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

The pharmaceutically acceptable compounds or salts of the invention is preferably administered in a daily dose (for an adult patient) of, for example, an oral or parenteral dose of 0.01 mg to 3000 mg per day or 0.5 to 1000 mg per day e.g. 2 to 500 mg per day, or a nasal or inhaled dose of 0.001 to 300 mg per day or 0.001 to 50 mg per day or 0.01 to 30 mg per day or 0.01 to 5 mg per day or 0.02 to 2 mg per day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

25

Combinations

The compounds, salts and/or pharmaceutical compositions according to the invention may also be used in combination with another therapeutically active agent, for example, a β_2 adrenoreceptor agonist, an anti-histamine, an anti-allergic or an anti-inflammatory agent.

The invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with another therapeutically active agent, for example, a β_2 -adrenoreceptor agonist, an anti-histamine, an anti-allergic, an anti-inflammatory agent or an antiinfective agent.

Preferably, the β_2 -adrenoreceptor agonist is salmeterol (e.g. as racemate or a single enantiomer such as the R-enantiomer), salbutamol, formoterol, salmefamol, fenoterol or terbutaline, or a salt thereof (e.g. pharmaceutically acceptable salt thereof), for example the xinafoate salt of salmeterol, the sulphate salt or free base of salbutamol or the

PB60739P1 GB

- 77 -

fumarate salt of formoterol. Long-acting β_2 -adrenoreceptor agonists are preferred, especially those having a therapeutic effect over a 12-24 hour period such as salmeterol or formoterol. Preferably, the β_2 -adrenoreceptor agonist is for inhaled administration, e.g. once per day and/or for simultaneous inhaled administration; and more preferably the β_2 -adrenoreceptor agonist is in particle-size-reduced form e.g. as defined herein.

5 Preferably, the β_2 -adrenoreceptor agonist combination is for treatment and/or prophylaxis of COPD or asthma. Salmeterol or a pharmaceutically acceptable salt thereof, e.g. salmeterol xinafoate, is preferably administered to humans at an inhaled dose of 25 to 50 micrograms twice per day (measured as the free base). The combination with
10 a β_2 -adrenoreceptor agonist can be as described in WO 00/12078.

Preferred long acting β_2 -adrenoreceptor agonists include those described in WO 02/066422A, WO 03/024439, WO 02/070490 and WO 02/076933.

15 Especially preferred long-acting β_2 -adrenoreceptor agonists include compounds of formula(XX) (described in WO 02/066422):

or a salt or solvate thereof, wherein in formula (XX):

m^X is an integer of from 2 to 8;

20 n^X is an integer of from 3 to 11,

with the proviso that m^X + n^X is 8 to 19;

R^{11X} is -XSO₂NR^{16X}R^{17X} wherein X is -(CH₂)_p- or C₂₋₆ alkenylene;

R^{16X} and R^{17X} are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, C(O)NR^{18X}R^{19X}, phenyl, and phenyl (C₁₋₄alkyl),

25 or R^{16X} and R^{17X}, together with the nitrogen to which they are bonded, form a 5-, 6-, or 7-membered nitrogen containing ring, and R^{16X} and R^{17X} are each optionally substituted by one or two groups selected from halo, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, hydroxy-substituted C₁₋₆alkoxy, -CO₂R^{18X}, -SO₂NR^{18X}R^{19X}, -CONR^{18X}R^{19X}, -NR^{18X}C(O)R^{19X}, or a 5-, 6- or 7-membered heterocyclic ring;

30 R^{18X} and R^{19X} are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, phenyl, and phenyl (C₁₋₄alkyl); and

p^X is an integer of from 0 to 6, preferably from 0 to 4;

R^{12X} and R^{13X} are independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, halo, phenyl, and C₁₋₆haloalkyl; and

35 R^{14X} and R^{15X} are independently selected from hydrogen and C₁₋₄alkyl with the proviso that the total number of carbon atoms in R^{14X} and R^{15X} is not more than 4.

PB60739P1 GB

-78-

Prefered β_2 -adrenoreceptor agonists disclosed in WO 02/066422 include:

3-(4-{[6-((2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)-phenyl]ethyl)amino]hexyl}oxy)butyl)benzenesulfonamide and
 3-(3-((7-((2R)-2-hydroxy-2-[4-hydroxy-3-hydroxymethyl)phenyl]ethyl)-amino)heptyl)oxy)propyl)benzenesulfonamide.

A preferred β_2 -adrenoreceptor agonist disclosed in WO 03/024439 is:

4-((1R)-2-[(6-{2-[(2,6-dichlorobenzyl)oxy]ethoxy}hexyl)amino]-1-hydroxyethyl)-2-(hydroxymethyl)phenol.

10

A combination of a compound of formula (I) or salt together with an anti-histamine is preferably for oral administration (e.g. as a combined composition such as a combined tablet), and can be for treatment and/or prophylaxis of allergic rhinitis. Examples of anti-histamines include methapyrilene, or H1 antagonists such as cetirizine, loratadine (e.g. Clarityn TM), desloratadine (e.g. Clarinex TM) or fexofenadine (e.g. Allegra TM).

The invention also provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with an anticholinergic compound, e.g. a muscarinic (M) receptor antagonist in particular an M₁, M₂, M₁/M₂, or

20 M₃ receptor antagonist, more preferably a M₃ receptor antagonist, still more preferably a M₃ receptor antagonist which selectively antagonises (e.g. antagonises 10 times or more strongly) the M₃ receptor over the M₁ and/or M₂ receptor. For combinations of anticholinergic compounds / muscarinic (M) receptor antagonist with PDE4 inhibitors,

see for example WO 03/011274 A2 and WO 02/069945 A2 / US 2002/0193393 A1 and US 2002/052312 A1, and some or all of these publications give examples of

anticholinergic compounds / muscarinic (M) receptor antagonists which may be used with the compounds of formula (I) or salts, and/or suitable pharmaceutical compositions. For example, the muscarinic receptor antagonist can comprise or be an ipratropium salt (e.g. ipratropium bromide), an oxitropium salt (e.g. oxitropium bromide), or more

30 preferably a tiotropium salt (e.g. tiotropium bromide); see e.g. EP 418 716 A1 for tiotropium.

The anticholinergic compound or muscarinic (M) receptor antagonist, e.g. M₃ receptor antagonist, is preferably for inhaled administration, more preferably in particle-size-

35 reduced form e.g. as defined herein. More preferably, both the muscarinic (M) receptor antagonist and the compound of formula (I) or the pharmaceutically acceptable salt thereof are for inhaled administration. Preferably, the anticholinergic compound or muscarinic receptor antagonist and the compound of formula (I) or salt are for simultaneous administration. The muscarinic receptor antagonist combination is
 40 preferably for treatment and/or prophylaxis of COPD.

PB60739P1 GB

- 79 -

Other suitable combinations include, for example, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with another anti-inflammatory agent such as an anti-inflammatory corticosteroid; or a non-steroidal anti-inflammatory drug (NSAID) such as a leukotriene antagonist (e.g. montelukast), an iNOS inhibitor, a tryptase inhibitor, a elastase inhibitor, a beta-2 integrin antagonist, a

5 adenosine 2a agonist, a CCR3 antagonist, or a 5-lipoxygenase inhibitor, or an antiinfective agent (e.g. an antibiotic or an antiviral). An iNOS inhibitor is preferably for oral administration. Suitable iNOS inhibitors (inducible nitric oxide synthase inhibitors) include those disclosed in WO 93/13055, WO 98/30537, WO 02/50021, WO 95/34534
10 and WO 99/62875. Suitable CCR3 inhibitors include those disclosed in WO 02/26722.

In a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with an anti-inflammatory corticosteroid (which is preferably for treatment and/or prophylaxis of asthma, COPD or allergic rhinitis), then preferably the

15 anti-inflammatory corticosteroid is fluticasone, fluticasone propionate (e.g. see US patent 4,335,121), beclomethasone, beclomethasone 17-propionate ester, beclomethasone 17,21-dipropionate ester, dexamethasone or an ester thereof, mometasone or an ester thereof, ciclesonide, budesonide, flunisolide, or a compound as described in WO 02/12266 A1 (e.g. as claimed in any of claims 1 to 22 therein), or a pharmaceutically
20 acceptable salt of any of the above. If the anti-inflammatory corticosteroid is a compound as described in WO 02/12266 A1, then preferably it is Example 1 therein {which is 6 α ,9 α -difluoro-17 α -[(2-furanylcarbonyl)oxy]-11 β -hydroxy-16 α -methyl-3-oxo-androsta-1,4-diene-17 β -carbothioic acid S-fluoromethyl ester} or Example 41 therein {which is 6 α ,9 α -difluoro-11 β -hydroxy-16 α -methyl-17 α -[(4-methyl-1,3-thiazole-5-carbonyl)oxy]-3-oxo-androsta-1,4-diene-17 β -carbothioic acid S-fluoromethyl ester}, or a
25 pharmaceutically acceptable salt thereof. The anti-inflammatory corticosteroid is preferably for intranasal or inhaled administration. Fluticasone propionate is preferred and is preferably for inhaled administration to a human either (a) at a dose of 250 micrograms once per day or (b) at a dose of 50 to 250 micrograms twice per day.

30 Also provided is a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with β_2 -adrenoreceptor agonist and an anti-inflammatory corticosteroid, for example as described in WO 03/030939 A1. Preferably this combination is for treatment and/or prophylaxis of asthma, COPD or
35 allergic rhinitis. The β_2 -adrenoreceptor agonist and/or the anti-inflammatory corticosteroid can be as described above and/or as described in WO 03/030939 A1. Most preferably, in this "triple" combination, the β_2 -adrenoreceptor agonist is salmeterol or a pharmaceutically acceptable salt thereof (e.g. salmeterol xinafoate) and the anti-inflammatory corticosteroid is fluticasone propionate.

40

PB60739P1 GB

- 80 -

The combinations referred to above may conveniently be presented for use in the form of a pharmaceutical composition and thus a pharmaceutical composition comprising a combination as defined above together with one or more pharmaceutically acceptable carriers and/or excipients represent a further aspect of the invention.

5 The individual compounds of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical composition.

10 In one embodiment, the combination as defined herein can be for simultaneous inhaled administration and is disposed in a combination inhalation device. Such a combination inhalation device is another aspect of the invention. Such a combination inhalation device can comprise a combined pharmaceutical composition for simultaneous inhaled administration (e.g. dry powder composition), the composition comprising all the individual compounds of the combination, and the composition being incorporated into a plurality of sealed dose containers mounted longitudinally in a strip or ribbon inside the inhalation device, the containers being rupturable or peel-openable on demand; for example such inhalation device can be substantially as described in GB 2,242,134 A (DISKUS TM) and/or as described above. Alternatively, the combination inhalation device can be such that the individual compounds of the combination are administrable simultaneously but are stored separately (or wholly or partly stored separately for triple combinations), e.g. in separate pharmaceutical compositions, for example as described in PCT/EP03/00598 filed on 22 January 2003, published as WO 03/061743 (e.g. as described in the claims thereof e.g. claim 1).

15 20 25 The invention also provides a method of preparing a combination as defined herein, the method comprising either
 (a) preparing a separate pharmaceutical composition for administration of the individual compounds of the combination either sequentially or simultaneously, or
 (b) preparing a combined pharmaceutical composition for administration of the individual compounds of the combination simultaneously,
 wherein the pharmaceutical composition comprises the combination together with one or more pharmaceutically acceptable carriers and/or excipients.

30 35 The invention also provides a combination as defined herein, prepared by a method as defined herein.

PB60739P1 GB

- 81 -

BIOLOGICAL TEST METHODS**PDE 3, PDE 4B, PDE 4D, PDE 5, PDE 6 Primary assay methods**

5 The activity of the compounds can be measured in the assay methods shown below. Preferred compounds of the invention are selective PDE4 inhibitors, i.e. they inhibit PDE4 (e.g. PDE4B and/or PDE4D, preferably PDE4B) more strongly than they inhibit PDE3 and/or more strongly than they inhibit PDE5 and/or more strongly than they inhibit PDE6.

10 **PDE enzyme sources and literature references**

Human recombinant PDE4B, in particular the 2B splice variant thereof (HSPDE4B2B), is disclosed in WO 94/20079 and also M.M. McLaughlin et al., "A low Km, rolipram-sensitive, cAMP-specific phosphodiesterase from human brain: cloning and expression of cDNA, biochemical characterisation of recombinant protein, and tissue distribution of mRNA", *J. Biol. Chem.*, 1993, **268**, 6470-6476. For example, in Example 1 of WO 94/20079, human recombinant PDE4B is described as being expressed in the PDE-deficient yeast *Saccharomyces cerevisiae* strain GL62, e.g. after induction by addition of 150 nM CuSO₄, and 100,000 x g supernatant fractions of yeast cell lysates are described for use in the harvesting of PDE4B enzyme.

25 Human recombinant PDE4D (HSPDE4DΔA) is disclosed in P. A. Baeker et al., "Isolation of a cDNA encoding a human rolipram-sensitive cyclic AMP phosphodiesterase (PDE IV_D)", *Gene*, 1994, **138**, 253-256.

30 Human recombinant PDE5 is disclosed in K. Loughney et al., "Isolation and characterisation of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3',5'-cyclic nucleotide phosphodiesterase", *Gene*, 1998, **216**, 139-147.

35 PDE3 was purified from bovine aorta as described by H. Coste and P. Grondin, "Characterisation of a novel potent and specific inhibitor of type V phosphodiesterase", *Biochem. Pharmacol.*, 1995, **50**, 1577-1585.

40 PDE6 was purified from bovine retina as described by: P. Carty and P. Deterre, "Activation and solubilization of the retinal cGMP-specific phosphodiesterase by limited proteolysis", *Eur. J. Biochem.*, 1991, **199**, 263-269; A. Tar et al. "Purification of bovine retinal cGMP phosphodiesterase", *Methods in Enzymology*, 1994, **238**, 3-12; and/or D. Srivastava et al. "Effects of magnesium on cyclic GMP hydrolysis by the bovine retinal rod cyclic GMP phosphodiesterase", *Biochem. J.*, 1995, **308**, 653-658.

PB60739P1 GB

- 82 -

Inhibition of PDE 3, PDE 4B, PDE 4D, PDE 5 or PDE 6 activity: radioactive Scintillation Proximity Assay (SPA)

The ability of compounds to inhibit catalytic activity at PDE4B or 4D (human recombinant), PDE3 (from bovine aorta), PDE5 (human recombinant) or PDE6 (from bovine retina) is determined by Scintillation Proximity Assay (SPA) in 96-well format. Test compounds (as a solution in DMSO, preferably about 2 microlitre (ul) volume of DMSO solution) are preincubated at ambient temperature (room temperature, e.g. 19-23°C) in Wallac Isoplates (code 1450-514) with PDE enzyme in 50mM Tris-HCl buffer pH 7.5, 8.3mM MgCl₂, 1.7mM EGTA, 0.05% (w/v) bovine serum albumin for 10-30 minutes (usually 30 minutes). The enzyme concentration is adjusted so that no more than 20% hydrolysis of the substrate defined below occurred in control wells without compound, during the incubation. For the PDE3, PDE4B and PDE4D assays, [5',8-³H]Adenosine 3',5'-cyclic phosphate (Amersham Pharmacia Biotech, code TRK-559; or 15 Amersham Biosciences UK Ltd, Pollards Wood, Chalfont St Giles, Buckinghamshire HP8 4SP, UK) is added to give 0.05uCi per well and ~ 10nM final concentration. For the PDE5 and PDE6 assays, [8-³H]Guanosine 3',5'-cyclic phosphate (Amersham Pharmacia Biotech, code TRK-392) is added to give 0.05uCi per well and ~ 36nM final concentration. Plates containing assay mixture, preferably approx. 100 ul volume of 20 assay mixture, are mixed on an orbital shaker for 5 minutes and incubated at ambient temperature for 1 hour. Phosphodiesterase SPA beads (Amersham Pharmacia Biotech, code RPNQ 0150) are added (~1mg per well) to terminate the assay. Plates are sealed and shaken and allowed to stand at ambient temperature for 35 minutes to 1 hour (preferably 35 minutes) to allow the beads to settle. Bound radioactive product is 25 measured using a WALLAC TRILUX 1450 Microbeta scintillation counter. For inhibition curves, 10 concentrations (1.5μM - 30μM) of each compound are assayed. Curves are analysed using ActivityBase and XLfit (ID Business Solutions Limited, 2 Ocean Court, Surrey Research Park, Guildford, Surrey GU2 7QB, United Kingdom) Results are expressed as pIC₅₀ values.

30 In an alternative to the above radioactive SPA assay, PDE4B or PDE4D inhibition can be measured in the following Fluorescence Polarisation (FP) assay:

Inhibition of PDE4B or PDE4D activity: Fluorescence Polarisation (FP) assay

35 The ability of compounds to inhibit catalytic activity at PDE4B (human recombinant) or PDE4D (human recombinant) is determined by IMAP Fluorescence Polarisation (FP) assay (IMAP Explorer kit, available from Molecular Devices Corporation, Sunnydale, CA, USA; Molecular Devices code: R8062) in 384-well format. 40 The IMAP FP assay is able to measure PDE activity in an homogenous, non-radioactive assay format. The FP assay uses the ability of immobilised trivalent metal cations, coated onto nanoparticles (tiny beads), to bind the phosphate group of Fl-AMP that is produced on the hydrolysis of fluorescein-labelled (Fl) cyclic adenosine mono-phosphate (Fl-cAMP) to the non-cyclic Fl-AMP form. Fl-cAMP does not bind. Binding of Fl-AMP 45 product to the beads (coated with the immobilised trivalent cations) slows the rotation of

PB60739P1 GB

- 33 -

the bound Fl-AMP and leads to an increase in the fluorescence polarisation ratio of parallel to perpendicular light. Inhibition of the PDE reduces/inhibits this signal increase.

Test compounds (small volume, e.g. ca. 0.5 to 1 μ l, preferably ca. 0.5 μ l, of solution in DMSO) are preincubated at ambient temperature (room temperature, e.g. 19-23°C) in black 384-well microtitre plates (supplier: NUNC, code 262260) with PDE

5 enzyme in 10mM Tris-HCl buffer pH 7.2, 10mM MgCl₂, 0.1% (w/v) bovine serum albumin, and 0.05% NaNO₃ for 10-30 minutes. The enzyme level is set by experimentation so that reaction was linear throughout the incubation. Fluorescein 10 adenosine 3',5'-cyclic phosphate (from Molecular Devices Corporation, Molecular Devices code: R7091) is added to give about 40nM final concentration (final assay volume usually ca. 20-40 μ l, preferably ca. 20 μ l). Plates are mixed on an orbital shaker for 10 seconds and incubated at ambient temperature for 40 minutes. IMAP binding reagent (as described above, from Molecular Devices Corporation, Molecular Devices code: R7207) is added (60 μ l of a 1 in 400 dilution in binding buffer of the kit stock 15 solution) to terminate the assay. Plates are allowed to stand at ambient temperature for 1 hour. The Fluorescence Polarisation (FP) ratio of parallel to perpendicular light is measured using an Analyst™ plate reader (from Molecular Devices Corporation). For inhibition curves, 10 concentrations (1.5nM to 30nM) of each compound are assayed. Curves are analysed using ActivityBase and XLfit (ID Business Solutions Limited, 20 Ocean Court, Surrey Research Park, Guildford, Surrey GU2 7QB, United Kingdom). Results are expressed as pIC₅₀ values.

In the FP assay, all reagents are dispensed using Multidrop™ (available from Thermo Labsystems Oy, Ratastie 2, PO Box 100, Vantaa 01620, Finland).

25 For a given PDE4 inhibitor, the PDE4B (or PDE4D) inhibition values measured using the SPA and FP assays can differ slightly. However, in a regression analysis of 100 test compounds (not necessarily compounds of the invention), the pIC₅₀ inhibition values measured using SPA and FP assays have been found generally to agree within 0.5 log units, for PDE4B and PDE4D (linear regression coefficient 0.966 for PDE4B and 0.971 for PDE4D; David R.Mobbs et al., "Comparison of the IMAP Fluorescence Polarisation Assay with the Scintillation Proximity Assay for Phosphodiesterase Activity", poster presented at 2003 Molecular Devices UK & Europe User Meeting, 2nd October 2003, 30 Down Hall, Harlow, Essex, United Kingdom).

35 Biological Data obtained for some of the Examples (PDE4B inhibitory activity, either as one reading or as an average of ca. 2-6 readings) are as follows, based on current measurements only. In each of the SPA and FP assays, absolute accuracy of measurement is not possible, and the readings given are accurate only up to about \pm 0.5 of a log unit, depending on the number of readings made and averaged:

40

Example number	PDE4B pIC ₅₀ (\pm about 0.5)
1, 8, 24, 28	8.3 to 8.8
6, 7, 26, 29	7.15 to 7.45

PB60739P1 GB

10, 13	8.3 to 8.5
48, 73, 98, 139, 210, 218, 221, 252, 261, 282	8.7 to 10.0
Examples 308 to 314	8.0 to 8.45

A large majority or substantially all of the Examples have been tested for PDE4B inhibition using the radioactive SPA assay or the FP assay. A large majority or substantially all of the Examples tested have PDE4B inhibitory activities in the range of 5 pIC_{50} = about 6 (\pm about 0.5) to about 10 (\pm about 0.5).

The Examples wherein R^3 = cyclohexyl (NHR³ = sub-formula (c)), tetrahydro-2H-pyran-4-yl (NHR³ = group (h)), 4-oxocyclohexyl (NHR³ = sub-formula (o)), or certain other types of substituted cyclohexyl or certain heterocycles, usually or often (especially with 10 R^1 = ethyl) have a higher level of selectivity for PDE4B over PDE5, as measured in the above enzyme inhibition assays, compared to the selectivities of comparable Examples where R^3 = cyclopropyl (NHR³ = sub-formula (b)). For example, based on current measurements only, and subject to cumulative assay inaccuracies:

- Examples 21, 40, 90, 198 and 201 (wherein NHR³ = sub-formula (h), (c), (j), (n) and 15 (o) respectively, R^1 = ethyl) have selectivities for PDE4B over PDE5 in the range of about 3 to 20 or more times greater than the selectivity achieved for the equivalent Example 39 wherein R^3 = cyclopropyl (NHR³ = sub-formula (b));
- Examples 43 and 44 (wherein NHR³ = sub-formula (c) and (h) respectively) have 20 selectivities for PDE4B over PDE5 in the range of about 4 to 8 or more times greater than the selectivity achieved for the equivalent R^3 = cyclopropyl Example 42;
- Examples 22 and 48 (wherein NHR³ = sub-formula (h) and (c) respectively) have 25 selectivities for PDE4B over PDE5 in the range of about 2.5 to 10 or more times greater than the selectivity achieved for the equivalent R^3 = cyclopropyl Example 47; and
- Examples 2 and 3 (wherein NHR³ = sub-formula (c) and (h) respectively) have selectivities for PDE4B over PDE5 in the range of about 2 to 5 or more times greater than 30 the selectivity achieved for the equivalent R^3 = cyclopropyl Example 1.

Emesis: Some known PDE4 inhibitors can cause emesis and/or nausea to greater or lesser extents (e.g. see Z. Huang et al., *Current Opinion in Chemical Biology*, 2001, 5: 432-438, see especially pages 433-434 and refs cited therein). Therefore, it would be preferable, but not essential, if a PDE4 inhibitory compound or salt of the invention were to cause only limited or manageable emetic side-effects. Emetic side-effects can for example be measured by the emetogenic potential of the compound or salt when administered to ferrets; for example one can measure the time to onset, extent, frequency and/or duration of vomiting, retching and/or writhing in ferrets after oral or parenteral administration of the compound or salt. See for example In vivo Assay 4 hereinafter for a measurement method for anti-inflammatory effect, emetic side-effects and therapeutic 35

PB60739P1 GB

85

index (TI) in the ferret. See also for example A. Robichaud et al., "Emesis induced by inhibitors of [PDE IV] in the ferret", *Neuropharmacology*, 1999, 38, 289-297, erratum *Neuropharmacology*, 2001, 40, 465-465. However, optionally, emetic side-effects and therapeutic index (TI) in rats can be conveniently measured by monitoring the pica feeding behaviour of rats after administration of the compound or salt of the invention (see *In Vivo Assay 2* below).

5 *Other side effects:* Some known PDE4 inhibitors can cause other side effects such as headache and other central nervous system (CNS-) mediated side effects; and/or 10 gastrointestinal (GI) tract disturbances. Therefore, it would be preferable but not essential if a particular PDE4 inhibitory compound or salt of the invention were to cause only limited or manageable side-effects in one or more of these side-effect categories.

In Vivo Biological Assays

15 The *in vitro* enzymatic PDE4B inhibition assay described above should be regarded as being the primary test of biological activity. However, additional *in vivo* biological tests, which are optional and which are not an essential measure of efficacy or side-effects, are described below.

20

PB60739P1 GB

- 86 -

In Vivo Assay I. LPS-induced pulmonary neutrophilia in rats: effect of orally administered PDE4 inhibitors

Pulmonary neutrophil influx has been shown to be a significant component in the

ed

PCT/EP2004/014490

0097911 16-Mar-04 11:41

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.