

فهر ست

۵	بخش اول : تحلیلی تلفات فلزی موجبر WR_112
۵	بخش دوم: شبیه سازی WR_112 و بدست آوردن مقدار ضریب تلفات
۸	بخش سوم: افزایش عرض موجبر و اثر آن بر ضریب تلفات
٩	بخش چهارم: بررسی مودهای منتشر شده در TallGuide
11	بخش پنجم: اطلاعات کلی در مورد TallGuide
17	m Hبخش ششم: بررسی ایجاد خم در صفحه های $ m E$ و $ m H$
18	بخش هفتم : طراحی موجبر Twist
١٧	بخش هشتم : طراحی ساختار گذر مناسب بین موجبر استاندارد و Tallguide
۲٠	مراجع

فهرست تصاوير

ئىكل 1 - موجبر استاندارد WR-112
نکل 2 - نمایش همگرا شدن پاسخها به صورت جدول
نکل 3 - نمایش همگرا شدن پاسخها به صورت نمودار
شکل 4 – تغییرات تلفات موجبر بر حسب تغییرات فرکانس
شکل 5 - افزایش عرض موجبر و اثر آن بر ضریب تلفات
ئىكل 6 - اطلاعاتى دربارەي Tallguide
ئىكل 7 - ايجاد خم در صفحهى E
ئىكل 8 - ايجاد خم در صفحهى H
ئىكل 9 - ايجاد خم ٩٠ درجه در صفحه E با شعاع 45 mm ساعة 45 ساما 1۳
ئىكل 10 - ايجاد خم ٩٠ درجه در صفحه H با شعاع mm 35 mm
نکل 11 - سوییپ روی شعاع برای یافتن مقدار مناسب آن برای ایجاد خم در صفحه H
نکل 12 - سوییپ روی شعاع برای یافتن مقدار مناسب آن برای ایجاد خم در صفحه E
ئىكل 13 - اطلاعات datasheet براى ايجاد خم مناسب
ئىكل 14 - شكلهاى datasheet براى ايجاد خم و twist مناسب
ئىكل 15 - موجبر Twist
شکل 16 - سوییپ روی ارتفاع موجبر برای یافتن مقدار مناست آن در حالت موجبر Twist
ئىكل 17 - ساختار گذر بين موجبر استاندار و tallguide
شکل 18 - سوییپ روی ارتفاع بخش گذر در حالتی که عرض tallguide ۳ برابر عرض موجبر استاندارد
ى
شکل 19 - سوییپ روی ارتفاع بخش گذر در حالتی که عرض ۲٫۲ ، tallguide برابر عرض موجبر استاندارد
ى
شکل 20 - بررسی ساختار گذر وقتی مجددا در بخش انتهایی موجبر استاندارد قرار میدهیم
نکل 21 - سوییپ روی ارتفاع بخش گذر در حالتی که در بخش انتهایی موجبر مجددا از موجبر استاندارد
ستفاده شده است.

بخش اول: تحليلي تلفات فلزي موجبر WR_112

با توجه به اینکه جنس موجبر WR_112 را مس و عایق داخل رو هم خلا در نظر گرفتیم:

$$\alpha_c = P_L/2P$$
 (σ (S/m) = 5.96×107)

فرکانس کاری موجبر استاندارد در بازهی ۷ تا ۱۰ گیگاهرتز میباشد که در شبیهسازی این پروژه فرکانس مرکزی ۸٫۵گیگاهرتز درنظر گرفته شده است. برای موجبر مستطیلی در مد TE₁₀ داریم:

$$P_L = \frac{1}{2\sigma\delta} \int H_t \cdot H_t^* dl = \frac{1}{2\sigma\delta} H_{10}^2 a \frac{f^2}{f_{c10}^2} \left[1 + \frac{2b}{a} \frac{f^2}{f_{c10}^2} \right] \qquad \delta = \sqrt{\frac{2}{\omega\sigma\mu}}$$

$$P = \frac{1}{2} Z_{w10} \int H_t \cdot H_t^* dl = \frac{1}{4} w \mu_0 \beta \frac{\alpha^2}{\pi^2} ab H_{10}^2 \qquad f_{c10} = \frac{c}{2} \sqrt{(\frac{m}{a})^2 + (\frac{n}{b})^2}$$

ابعاد موجبر استاندارد WR-112 برابر با ۲۲٬۶۲×۲۸٫۵ میباشد. (فرکانس قطع نیز ۵٬۲۶ گیگاهرتز است.)

بخش دوم: شبیه سازی WR_112 و بدست آوردن مقدار ضریب تلفات

برای طراحی موجبر داخل برنامه hfss ابتدا یک مکعب مستطیل مخصوص هوا یا خلا داخل موجبر ایجاد شده و سپس مکعبی مخصوص خود موجبر و کمی بزرگتر (۲میلیمتر) از جنس مس ایجاد کرده و از قسمت هوا کم شد.

موجبر wr-112 مطابق شكل زير مىباشد.

شكل 1 - موجبر استاندارد WR-112

با انجام شبیه سازی، حل معادلات مطابق شکل زیر converge می شود.

شکل 2 - نمایش همگر اشدن پاسخها به صورت جدول

شکل 3 - نمایش همگر ا شدن باسخها به صورت نمودار

برای بدست آوردن ضریب تلفات بخش حقیقی گاما را باید در بازه فرکانس کاری موجبر sweep کرد. نتایج شبیه سازی به شرح زیر است. (با افزایش فرکانس مقدار عمق نفوذ کاهش و نسبت فرکانس به فرکانس قطع افزایش میابد.)

شكل 4 - تغييرات تلفات موجبر برحسب تغييرات فركانس

مقادیر دقیق این ضرایب نیز به صورت زیر است:

	Freq [GHz]	re(Gamma(1:1)) : Setup1 : Sweep
1	4.000000	71.564850
2	4.500000	57.049326
3	5.000000	34.177203
4	5.500000	0.025164
5	6.000000	0.014839
6	6.500000	0.011893
7	7.000000	0.010434
8	7.500000	0.009569
9	8.000000	0.009006
10	8.500000	0.008623
11	9.000000	0.008355
12	9.500000	0.008166
13	10.000000	0.008033

مايكروويو

بخش سوم: افزایش عرض موجبر و اثر آن بر ضریب تلفات

با افزایش عرض موجبر ، فرکانس قطع ثابت است اما ضریب تلفات کاهش میابد. در این بخش با sweep کردن عرض موجبر با استفاده از parameter sweep بخش optimetric این عمل انجام گرفت.

شكل 5 - افزايش عرض موجبر و اثر آن بر ضريب تلفات

شكل رسم شده نيز با تنظيم پلات روى last adaptive بدست آمد . مقادير دقيق هم به شرح زير است

	C.		- 33	•	, , ,
	b [mm]	re(Gamma(1:1)) : Setup1 : LastAdaptive : I	Freq='8.5GHz'		
1	12.620000	0.008623			
2	12.680000	0.008593			
3	17.680000	0.006780			
4	22.680000	0.005766			
5	27.680000	0.005119			
6	32.680000	0.004013			
7	37.680000	0.003376			
8	42.680000	0.003022			
9	47.680000	0.002806			
10	52.680000	0.002666			
11	57.680000	0.002571			
12	62.680000	0.002503			
13	67.680000	0.002454			

14	72.680000	0.002417
15	77.680000	0.002388
16	82.680000	0.002366
17	87.680000	0.002348
18	92.680000	0.002334
19	97.680000	0.002322
20	102.680000	0.002312
21	107.680000	0.002304
22	112.680000	0.002297
23	117.680000	0.002291
24	122.680000	0.002286
25	126.800000	0.002283

بخش چهارم: بررسی مودهای منتشر شده در TallGuide

در این بخش با سه برابر کردن عرض موجبراستاندارد ، یک Tallguide خواهیم داشت. مودهای منتشر شده در آن بدلیل تغییر عرض دارای فرکانس قطع پایین تری خواهند بود و در فرکانس کاری ۸٫۵ گیگاهر تز ۴ مد اول منتشر میشوند.

$$f_c = \frac{c}{2} \sqrt{\left(\frac{n}{a}\right)^2 + \left(\frac{m}{b}\right)^2} \quad \Rightarrow$$

فرکانس های قطع محاسبه شده در جدول زیر آمده است. (n به صورت افقی زیاد میشود و m به صورت عمودی)

	0	1	2	3	4
0	0	3961965.1347	7923930.269413	11885895.40412	15847860.53882
0	U	0682	63	04	73
1	5263157.894	6587715.7462	9512597.013405	12999051.52627	16698967.47356
	73684	6313	98	00	10
2	10526315.78	11247243.743	13175431.49252	15876959.20689	19025194.02681
2	94737	6181	63	52	20

2	15789473.68	16278963.325	17666243.23785	19763147.23878	22371011.66426
3	42105	5011	07	94	09

در این بخش نیز برای بررسی انتشار مدهای مختلف ، بخش موهومی گاما sweep فرکانسی شده است . نتایج شبیه سازی در hfss :

این در حالی است که در همین فرکانس در موجبر استاندارد فقط مد اول منتشر میشد.

برای WR_112 داریم:

	0	1
0	0	11885895
1	5263157	12999051
2	10526315	15876959

بخش پنجم: اطلاعات کلی در مورد TallGuide

این دسته از موجبرها Tallguide نامیده میشوند ، از آنجایی که عرض آن ها بزرگ شده است و تلفاتشان کمتر شده است مناسب برای مسافت های زیاد میباشند ، بنابراین در حالاتی که انتقال موج برای مسافت زیاد داریم از آن استفاده میکنیم.

Welcome to the Tallguide ®

Ultra low transmission loss Tallguide (TALLGUIDE ®) is a unique form of precision rectangular waveguide that exhibits one tenth (1/10) the transmission line loss of standard WR type waveguide. For power users, Tallguide carries 5 times more power than ordinary waveguide. Tallguide's virtual loss free transmission mode appeals to multi-mode waveguide technology where as many as 15 or more higher order modes may propagate. Tallguide has all necessary bends, twists and straight sections that are essential to lay out any waveguide run. A Tallguide run consists of transition units from standard waveguide into and out of Tallguide, H-plane bends, twists, straight sections and mode suppressor in-between. Tallguide enables the interfacility waveguide run distance, between the control room and transmitting antenna, to be specified for convenience. Tallguide is easy to install. Like waveguide, no special tools or alignments are necessary. Frequency range is 5 to 110 GHz.

شكل 6 - اطلاعاتي دربارهي Tallguide

طبق سایت http://www.tallguide.com تلفات به مقدار ۰٫۱ برابر و بیشترین توان قابل انتشار نیز به ۵ برابر افزایش میابد.

از Tallguide ها ، به طور نمونه ، براى انتقال موج بين اتاق كنترل و آنتن فرستنده استفاده ميشود.

استفاده کلی آن در ایستگاه های ماهواره ای زمینی است که طی آن میتوان به طور کلی حدود ۲ برابر توان را بیشتر کرد و کمک میکند که آنتن کوچکتر داشته باشیم و توان ارسالی نیز بالاتر میرود.

> مدل معادل Tallguide برای WR-112 مدل TG-170 میباشد. http://www.tallguide.com/tg170.html

بخش ششم: بررسی ایجاد خم در صفحه های E و

ایجاد خم در صفحه E: برای ایجاد این خم ابتدا یک مستطیل به اندازه سطح مقطع موجبر انتخاب شد و سپس با جابجایی آن و سوییپ آن حول محور X خم لازم ایجاد شد. (راستای میدان X محور X است و راستای انتشار نیز محور X است بنابراین برای ایجاد X سویپ شده است.)

شکل 7 - ایجاد خم در صفحهی E

ایجاد خم در صفحهی H : به همین ترتیب مانند قسمت قبل

شکل 8 - ایجاد خم در صفحهی H

برای یافتن شعاع مناسب جهت ایجاد خم در E-plane و H-plane روی شعاع آن sweep انجام دادیم.

90° bend E-plane - radius = 45mm

شكل 9 - ايجاد خم ٩٠ درجه در صفحه E با شعاع 45 mm

90° bend H-plane – radius = 35mm

شكل 10 - ايجاد خم ٩٠ درجه در صفحه H با شعاع 35 mm

مشاهده میشود که با ایجاد خم ۹۰ درجه در صفحه H مد اول به مدهای دیگر کوپل شده است. بدین منظور با تغییر شعاع خواهیم داشت :

شكل 11 - سوييپ روى شعاع براى يافتن مقدار مناسب آن براى ايجاد خم در صفحه H

در شعاع های ۷۱ و ۵۹ میلیمتر مقادیر مناسبی جهت ایجاد خم ۹۰ درجه در صفحه H را خواهیم داشت. این مقدار با datasheet محصول مورد نظر نیز مطابقت دارد.

همین کار را نیز برای صفحه E انجام دادیم که نتیجه مورد نظر در مقادیر ۲۴ و ۳۸ و ۵۰ میلیمتر کاملا مناسب بود.

شكل 12 - سوييپ روى شعاع براى يافتن مقدار مناسب آن براى ايجاد خم در صفحه E

طبق datasheet داریم : (مقادیر به اینچ وارد شده که تبدیل آن به mm همان نتیجه های بالا را میدهد.)

FREQUENCY	WAVEGUIDE	STRAIGHT E PLANE SECTION BEND		H PLANE BEND		TWIST		MATERIAL	
(GHz)	SIZE	MODEL NO.	MODEL NO.	Α	MODEL NO.	Α	MODEL NO.	Α	Ī
			STANDARD W	AVEG	JIDE				
1.0 - 1.45	WR770	E10	E120	24.0	E130	24.0	E150	_	Α
1.12 - 1.70	WR650	L10	L120	15.0	L130	15.0	L150	24.0	Α
1.45 - 2.20	WR510	LM10	LM120	15.0	LM130	15.0	LM150	24.0	Α
1.70 - 2.60	WR430	LA10	LA120	15.0	LA130	15.0	LA150	24.0	Α
2.20 - 3.30	WR340	LS10	LS120	12.0	LS130	12.0	LS150	24.0	Α
2.60 - 3.95	WR284	S10	S120	4.75	S130	6.50	S150	11.0	A,C
3.30 - 4.90	WR229	B10	B120	5.00	B130	8.00	B150	12.0	A,C
3.95 - 5.85	WR187	G10	G120	3.00	G130	4.50	G150	8.0	A,C
4.90 - 7.05	WR159	D10	D120	4.25	D130	4.25	D150	7.0	A,C
5.85- 8.20	WR137	J10	J120	2.38	J130	2.75	J150	6.0	A,C
7.05 - 10.0	WR112	H10	H120	1.50	H130	2.63	H150	6.0	A,C
7 0 - 11 0	WR102	W10	W120	2 31	W130	2 63	W150	6.0	A C

شكل 13 - اطلاعات datasheet براى ايجاد خم مناسب

شکل 14 - شکلهای datasheet برای ایجاد خم و twist مناسب

بخش هفتم: طراحي موجبر Twist

شكل 15 - موجبر Twist

این شکل با sweep along path ایجاد شد بدین ترتیب که خطی مسیر حرکت مستطیل را مشخص و مستطیل حول این خط ۹۰ درجه sweep شد. برای ارتفاع این موجبر نیز یک parameter sweep روی ارتفاع انجام گرفت که نتیجه آن برای مقادیر بزرگتر از ۱۶۰ میلیمتر مناسب بود.

شكل 16 - سوييپ روى ارتفاع موجبر براى يافتن مقدار مناست آن در حالت موجبر Twist

بخش هشتم : طراحی ساختار گذر مناسب بین موجبر استاندارد و Tallguide

شکل 17 - ساختار گذر بین موجبر استاندار و tallguide

در این بخش با ایجاد یک transition مناسب از موجبر استاندارد به Tallguide می خواهیم به ساختار گذری برسیم که مد اول به مدهای دیگر کوپل نشود. این ساختار از این جهت مناسب است که همانند یک تطبیق امپدانس عمل میکند و تغییرات شدید و پله مانند نخواهیم داشت که موجب تبدیل مد شود.

این نتیجه با تغییرات ارتفاع ساختار گذر حاصل نشد. در این حالت مد اول کاملا به مد دوم تبدیل میشود.

شکل 18 - سوبیپ روی ارتفاع بخش گذر در حالتی که عرض rtallguide برابر عرض موجبر استاندارد میهاشد

اما با کمی کوچکتر کردن عرض Tallguide این مهم حاصل میشود. (عرض Tallguide را در این حالت برابر Tallguide کردیم که نتیجه مناسب در این حالت حاصل شد.) در این حالت عرض sweep ۲۲٫۲ برابر موجبر استاندارد شده است.

شکل 19 - سوبیپ روی ارتفاع بخش گذر در حالتی که عرض ۲٫۲، tallguide برابر عرض موجبر استاندارد میباشد

در این بخش به بررسی حالتی دیگر از حالت گذر میپردازیم، به این صورت که از آنجایی که طراحی این گونه تبدیل ها برای آن است که Tallguide ها دارای تلفات کم هستند و از آنها برای مسافت زیاد استفاده میشود و سپس دوباره یک تبدیل قرار داده میشود ، که طی آن دوباره به موجبر استاندارد برمیگردیم.

شکل 20 - بررسی ساختار گذر وقتی مجددا در بخش انتهایی موجبر استاندارد قرار میدهیم.

شکل 21 - سوبیپ روی ارتفاع بخش گذر در حالتی که در بخش انتهایی موجبر مجددا از موجبر استاندارد استفاده شده است.

در این حالت در سایر طول های بخش گذر که بزرگتر از ۱۰میلیمتر میباشند، برای ساختار گذر مناسب است. طراحی این ساختار گذر نیز بدین ترتیب است که دو موجبر کنار همدیگر قرار گرفته سپس ذوزنقه ای به عنوان سطح مقطع بین دو موجبر قرار گرفته (با ایجاد یک محیط بسته توسط خط ها) سپس sweep along path بدون زاویه انجام میشود.

مراجع

- 1 http://www.tallguide.com
- 2 http://www.tallguide.com/tg170.html
- 3 Microwave Engineering Corporation (m.e.c) Rectangular Waveguides datasheet
- 4 http://www.microwaveeng.com/