UNCLASSIFIED

AD NUMBER
AD407780
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution authorized to DoD only; Administrative/Operational Use; 17 APR 1963. Other requests shall be referred to Department of the Army, Rock Island Arsenal, IL.
AUTHORITY
RIA D/A ltr, 28 Jan 1977

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

UNCLASSIFIED

AD 407780

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

DEFENSE.

407780

Rock Island Arsenal Laboratory

AS AD

TECHNICAL REPORT

SYNTHESIS AND EVALUATION OF POLYURETHANE ELASTOMERS

Вy

W. M. Veroeven

NO OTS

Department of the Army Project No. 1-D-S-21801-D-262

AMC Code No. 5521.12.255

AMC Code No.

Report No. 63-1242 Copy No. ____

IEL No. 1-8-107-3 Date 17 April 1963

DISTRIBUTED BY CHE
OFFICE OF TECHNICAL SERVICES
U. S. DEPARTMENT OF COMMERCE
WASHINGTON 25, D. C.

THIS REPORT MAY BE DESTROYED WHEN NO LONGER REQUIRED FOR REFERENCE

407 780

The findings in this report are not to be construed as an official Department of the Army position.

"Copies Available at Office of Technical Services \$...50 ".

Repor	t	No.	63-1242
Сору	No	•	

SYNTHESIS AND EVALUATION OF POLYURETHANE ELASTOMERS

By

M. m. Veroeven

W. M. Veroeven

Approved by:

a. C. Hanson

A. C. HANSON Laboratory Director

17 April 1963

DA Project No. 1-D-S-21801-D-262

AMC Code No. 5521.12.255

Rock Island Arsenal Rock Island, Illinois

ASTIA Availability Notice:

Qualified requesters may obtain copies of this report from ASTIA.

ABSTRACT

Commercially available castable, millable and/or injection moldable polyurethane elastomers were evaluated to determine their characteristics and potential use for Army applications.

Experimental polyurethanes were synthesized using various polyols, polyamines and stabilizing agents in an effort to improve the heat stability in the range 149 to 204°C.

It was shown that retention of strength at elevated temperature can be improved by increased functionality in the system, but only at the expense of the elastic characteristics of the material.

The increased crosslinking of the millable gums offers the most promise for heat resistant polyurethanes.

RECOMMENDATIONS

It is recommended that the following be considered for future R&D work in polyurethanes.

- 1. Conduct compounding studies with various millable gum urethanes (both sulfur and peroxide vulcanizable) and blends with other polymers. Determine the effects of fillers, curatives and additives: on the thermal stability and hysteresis of these compounds.
- 2. Investigate additives for improving the high temperature and hydrolytic stability of polyurethanes.

63-1242

SYNTHESIS AND EVALUATION OF POLYURETHANE ELASTOMERS

CONTENTS

	Page No.
Object	1
Introduction	1
Procedure	1
Results and Discussion	2
Conclusions	8
Literature References	9
Distribution	10

SYNTHESIS AND EVALUATION OF POLYURETHANE ELASTOMERS

OBJECT

To synthesize new heat stable urethanes and to study ways for compounding commercial urethanes to improve their heat stability. To evaluate commercially available castable and injection moldable polyurethanes for potential use in Military applications.

INTRODUCTION

Polyurethane elastomers are well known for their excellent strength, resistance to abrasion, ozone and oil and ability to withstand low temperature impact. These properties and previous work at this Arsenal (1) suggested the further investigation of urethanes for Army application. The present report is the result of such investigations.

Interest for improving urethane properties at elevated temperatures was prompted by previous work done by Detroit Arsenal (2,3,4); and, Dayco Corporation (5) in conjunction with Detroit Arsenal, on the use of polyurethanes for tracked vehicle pads. This work indicated that although urethanes exhibit excellent tensile and abrasion properties at room temperature, their use in tracked vehicle pads appears to be hindered by a reduction of these properties at the elevated temperatures attained at the surface of the pads during vehicle operation. Thus, further investigation of newly developed heat stable experimental polyurethanes prepared at this Arsenal and by Dayco Corporation was undertaken. Attempts were made to improve tensile strength properties at elevated temperatures in commercially available urethanes by screening various polyfunctional crosslinkers in castable Various heat stabilizers were evaluated in a polyure thanes. millable gum urethane in an attempt to improve resistance to thermal degradation.

Commercially available castable and injection moldable urethanes were evaluated to determine processing characteristics and properties obtainable.

PROCEDURE

Hydroxy terminated polyesters were prepared by the addition polymerization of epsilon-caprolactone initiated with d-sorbitol or the condensation polymerization of isophthaloyl chloride with a diol. Fumaric acid was used to introduce unsaturation.

1 63-1242

Preparation of experimental polyesters and polyurethanes was carried out in a 500 ml. resin kettle fitted with a thermometer, stirrer, gas inlet and outlet. Temperature was controlled with a heating mantle and a Variac. Standard laboratory procedures were followed in carrying out the reactions.

All commercial compounds discussed were prepared following the manufacturers recommendations. Any changes made in these procedures have been noted in the text or tables.

Specimens were tested in accordance with ASTM procedures (6) unless otherwise noted. Tensiles at elevated temperatures were determined on specimens conditioned at the test temperature for six minutes before being tested.

RESULTS AND DISCUSSION

Formulations and physical properties obtained on experimental urethanes are summarized in Table I. The Z130 formulation was found to exhibit the best properties of all the experimental urethanes evaluated. The usefulness of such a urethane, however, would be doubtful because of its low initial tensile strength. Its use would also be hampered by a very short pot life of about one minute after crosslinker addition. The pot life problem was overcome (sufficiently to permit casting of test pads) by lowering the prepolymer temperature prior to addition of the crosslinker.

Formulation Z130D5C3F3 in Table I was evaluated in an attempt to crosslink the urethane gum, through the unsaturation present, by means of a conventional sulfur curing system. A possible explanation for the lack of cure might be found in a report by Briggs, Erickson and Fuller (7) in which they state that esters are rapidly hydrolyzed by zinc and magnesium oxides.

Formulations and physical properties for commercial urethanes compounded for heat stability are summarized in Table II. Tensile values exhibited at ambient and elevated temperatures by compound Z130D9C6F5 showed the most promise of all the compounds evaluated.

Table III lists heat stabilizers previously screened in SBR at this Arsenal (8,9) and found to have varying degrees of effectiveness in this polymer. Evaluation was made by incorporating 5 parts of the stabilizer into a basic urethane compound comprised of 100 parts of Polymer H, 25 parts of MAF carbon black, 4 parts of 40% active dicumyl peroxide and 0.2 parts of stearic acid. Test pads were cured 30 minutes at 160°C. Many of the stabilizer compounds were found to retard or destroy the peroxide cure. None of the compounds listed in Table III improved the heat aging stability of the basic urethane compound after aging 21 days at 149°C in an air oven.

63-1242

TABLE I

PREPARATION AND PHYSICAL PROPERTIES FOR EXPERIMENTAL POLYURETHANES

	1	Z130D1	Z130D2C	Z130D3C1F	Z130D4C2F2	Z130D5C3F3
d-sorbitol - 8.19; zinc borate 0.21	100	100				
Polyester of isophthaloy1 chloride - 50.8; p-phenylenediethoxydiethanol - 4.95; 1,10-decanediol - 44.55; o-dichlorobenzene - 6.52			100	100	,	
Polyester of isophthaloyl chloride - 40.6; funaric acid - 5.8; p-penylenediethoxydiethanol - 4.95; l,l0-decanediol - 44.55; hydroquinone 0.1; o-dichlorobenzene - 6.52					100	100
1,5-naphthalene diisocyanate						
p,p'-diphenylmethane diisocyanate	41.7		œ	4	70	10
Tolylene-2, 4-diisocyanate		29.5				
**OT	*·01	*.o.				
4,4 methylene bis (2 chlorogniline) Dicumyl neroxide (40%)			3.7	10	7	
					Trace	
						'n
						1.5
						7
Tetramethyl thiuram disulfide HAF Carbon Black				20	10	1.5
						40
16 hrs.	s. 16 hrs.	16 hrs. @110°C	3 hrs.	2 hrs. @160°C	2 hrs. @153°C	30 min. @153°C
14 days @250C & 50% rel- ative humidity	14 days 6250C & 1- 50% rel- ative humidity	14 days 625°C & 50% rel- ative humidity				
2620	1270	880	160*	Resisted	270	Failed
18	74	26	31	after 24	\$	to care
1900	330	290	,	hrs. 6249°C	1	
086	*	260	'	in an air	•	
490	*	190		1240	•	

*Pulled on an Instron tester using 1/4 inch wide specimens and crosshead speed of 20 inches/min. **Properties too poor to permit testing.

TABLE II

FORMULATIONS AND PHYSICAL PROPERTIES FOR COMMERCIAL URETHANES COMPOUNDED FOR HEAT STABILITY

	(1) Z130D6C4	Z130D7C5F4	(2) Z130D8C4	Z130D9C6F5	Z130D10C7	Z130D10C8	Z130D10C9	Z130D10C10
Polymer A (Injection moldable and millable polyester urethane) **	300							
Polymer B (Millable polyester urethane)		700						
Polymer C (Injection moldable and millable polyester urethane)			100					
Polymer E (Castable polyether urethane)					100	100	. 100	100
Polymer H (Millable polyester urethane)				100		,		
FEF Carbon black				57				
KPC Carbon black		50						
Stearic acid				0.2				
Barium stearate	7	~1	H					
1,4-Butanediol						1.12		
1,2,6-Hexapetriol							1.12	
Trimethanolpropane						-		1.12
4,4' Methylene bis (2 chloroguiline)					- 1	8.3	8.3	8.3
Di-cumyl peroxide (40%)				4				
Di-cumyl peroxide (95%)		n						
Polymethylene polyphenyl isocyanate	01	_	01	-				
Cure	60 min.	45 min.	60 min.	30 min. 6160°C	5 hrs.	5 hrs.	5 hrs.	5 hrs.
Post cure	7 days G24°C & 50% rel- ative humidity		7 days 624°C & 50% rel- ative humidity		14 days 624°C & 50% rel- ative humidity	14 days 624°C 6 50% rel- ative humidity	14 days @24°C 6 50% rel- ative humidity	14 days 624°C 6 50% rel- ative humidity
Tensile, psi at 250c	2370	5050	3530	4000	2630	3170	1600	2220
Tensile, psi at 100°C	300	1420	320	1780	1320	1330	830	1190
Tensile, psi at 149°C	210	480	* :	1160	820	650	640	530
Hardness. Shore A	282	200	*	Ž.	, i		S. K.	. K.
	:	•	-	**	*	0	- 2	ň

(1) Mill rolls heated with hot water during milling process. (2) Mill rolls beated with steam during milling process.

* Properties too poor to permit testing. ** This and other coded materials are identified in Code Sheet at end of report.

S.M., Specimens Melt.

TABLE II (Cont.)

	Z130D10C11	Z130D10C1Z	Z130D10C13	Z130D10C14	Z130D10C15	Z130D10C16	Z130D11C17
Polymer E (Castable polyether urethane)	100	00τ	100	100	100	100	
Polymer F, (Castable urethane)							100
1,2,6-Hexanetriol			4.47				
Trimethanolpropane				4.47			
1,2,3 Propanetriol	0.767				3.07		
N,N,N',N'-tetrakis (2-hydroxy propyl) ethylenediamine				· · · · · · · · · · · · · · · · · · ·		7.30	
Hydroxyethyl cellulose		. 01					
4,4' Methylene bis (2 chloroaniline)	8.3	9.4				-	59
Citric acid		0.040					
Cure	5 hrs.	3 hrs.	24 hrs.	24 hrs. @110°C	24 hrs. @110°C	24 hrs. @110°C	60 min. ©100°C
Post cure	14 days @24°C & 50% rel- ative	14 days @24°C & 50% rei- ative	14 days @24°C & 50% rel- ative				
	humidity						
Tensile, psi at 25°C	3680	2160	340	560	1500	250	6620
Tensile, psi at 100°C	1330	1100	270	370	1040	250	3730
Tensile, psi at 149°C	610	630	300	250	300	*	1790
Tensile, psi at 204°C	S.M.	S.K.	230	290	S.K.	*	*
Hardness, Shore A	92	. 94	57	57	58	58	1
Hardness, Shore D	ı		1	•	•	1	89

TABLE III

HEAT STABILIZERS EVALUATED IN A MILLABLE GUM URETHANE

Cadmium-barium soap chelator mixture

Calcium ricinoleate-barium stearate-ethylenediamine tetraacetic acid mixture

Barium stearate-calcium myristate mixture

Pentaerythritol ester of saturated fatty acids

Resin modified polyester

Ferric oxide

Metallic soap

Arsenic pentoxide

Stannous butyl benzoate

Polymeric secondary amine from p-phenylenediamine and p-dichlorobenzene

Phenyl didecylphosphate

Sec-amine from resorcinol m-phenylenediamine

Barium/cadmium salt ferrocenoylpropionic acid

Nickel chelate of 8-hydroxyquinoline

Urethane materials listed in Table IV were evaluated to obtain a background of knowledge on processing characteristics and properties obtainable with injection moldable and castable urethanes. From the data listed it can be seen that the injection moldable and castable urethanes in general display the excellent room temperature tensile properties usually associated with polyurethanes. These polymers also display good solvent resistance except in polar type brake fluid where degradation is quite severe. Compression set is high as is frequently the case with urethanes.

TABLE IV

FORMULATIONS AND PHYSICAL PROPERTIES FOR COMMERCIAL CASTABLE AND INJECTION MOLDABLE URETHANES

	Polymer A - 100 Barium stearate - 1 Compression molded	Polymer B - 100 EPC Carbon Black - 20 Barium stearate - 1 Dicumyl peroxide (95%) - 3 Compression molded	Polymer C - 100 Barium stearate - 1 Compression molded	Polymer D - 100 Injection molded	Polymer E - 100 4,4' methylene bis (2 chloro- aniline) - 11	Polymer F - 100 4,4' methylene bis (2 chloro- aniline) - 29	Polymer G - 100 1,4-Butanediol - 6.4	'One Shot' urethane prepared and supplied by manufacturer
OR IGINAL			1					
Tensile, psi	5170	5660	6760	3870	5470	8890	7350	2230
100% M, psi	590	290	1570	1275	1150	3810	610	1210
200% M, psi	740	-	2090	1770	-	6120	890	1540
300% M, psi	910	2190	2960	2420	2010	8890	1260	1810
% Elongation Hardness	665	500	540	480	500	300	640	405
Shore A	75	62	84	90	94	95	78	91
Shore D	,	· .				68	-	
Compression Set, %								
22 hrs. 070°C	_	29	_		25*	-	26*	-
70 hrs. @100°C	-	82	-	_	_	-	-	106
94 hrs. @-55°C	-	<u>-</u>	-	-	-	-		102
Change in Volume, % and Hardness (ΔΗ)					:			
ASTM #3 011 70 hrs. @100°C	+5 ΔH(-11)	+6 ΔH(-10)	+3 ΔH(0)		+18 ΔH(-7)	+7 ΔH(-7)	+4 ΔH(-6)	+12
Di Octyl Sebacate 70 hrs. @100°C	+3 ΔH(-10)	+4 ΔH(-7)	+1 ΔH(0)	-	+17 ΔH(-5)	+7 ΔH(~5)	+1 ΔH(-5)	- -
Brake Fluid 70 hrs. @100°C	Disinte- grated	Disinte- grated	Disinte- grated	-	-	Disinte- grated	Disinte- grated	-
ASTM Reference Fuel B 7 days © 24 ⁰ C	+14 ΔH(0)	+16 ΔH(-3)	- -	-	+29 ΔH(-5)	+16 ΔH(-7) (-13)	+11 ΔH(-5)	-
Air Oven Aging 70 hrs. @100°C								
Tensile, psi	,			Ī	5070			1920
100% M, psi					1220			1240
200% M, psi				'	1630 2110			1460 1590
300% M, psi % Elongation	ı				460			495
Hardness, Shore A	,				90			89
Low temperature brittleness ASTM D746 @-55°C			1	-	-	-		5 Break

AH - Change in Shore A hardness.

^{* -} Obtained on laminated specimen,

Although these observations are quite general and based upon properties summarized in Table IV, they should act as a guide and not as a limiting factor of properties available. Various grades and classes of injection moldable and castable urethanes are available to provide a wide latitude in properties. With certain castable urethanes, a wide range of properties may be obtained by the type of chemical reagents selected and the manner in which they are formulated. Proper selection and compounding can, therefore, often produce an injection moldable or castable urethane having physical properties desired for specific end-use.

CONCLUS IONS

Polyurethanes based upon d-sorbitol/epsilon-caprolactone polyester exhibit fair tensile properties at 204°C. Tensile strength at room temperature in these urethanes; however, is one-half to one-third that normally associated with urethanes. Castable pot life of such a resin would create a problem in any attempted practical applications.

Tensile at elevated temperatures can be improved in castable urethanes by the use of triols and higher functionality polyols. However, original physical properties are destroyed to such a great extent that their use would be of questionable value in an application such as track pads.

Millable gum urethanes appear to offer the greatest potential in the immediate future for good properties at room and elevated temperatures.

Castable and injection moldable urethanes offer a wide range of properties, applications and advantages for Army use.

LITERATURE REFERENCES

- 1. Rock Island Arsenal Laboratory Report No. 61-3349, dated 12 September 1961.
- 2. Yuma Test Station, Report No. DPS/OTA-135, DA Project No. 548-02-021, dated October 1961.
- 3. Yuma Test Station, Report No. DPS/OTA-140, DA Project No. 548-02-021, dated May 1962.
- 4. Private correspondence with Detroit Arsenal.
- 5. Dayco Corporation, Dayton, Ohio, 'Development of Urethane Elastomers With Low Hysteresis and High Heat Resistance', J. Rockoff and R. Veteto, DA Project No. 548-02-021, dated 22 December 1961.
- 6. ASTM Standards on Rubber Products, American Society for Testing Materials, 1916 Race Street, Philadelphia, Pa. (October 1961).
- 7. Briggs, B. S., Erickson, R. H., and Fuller, C. S., Ind. Eng. Chem. 9, 1090 (1947).
- 8. Rock Island Arsenal Laboratory Report No. 58-3359, dated 5 December 1958.
- 9. Rock Island Arsenal Laboratory Report No. 59-3249, dated 29 December 1959.

		No. of Copies
A.	Department of Defense	
	Office of the Director of Defense Research & Engineering ATTN: Mr. J. C. Barrett Room 3D-1085, The Pentagon Washington 25, D. C.	1
	Advanced Research Project Agency ATTN: Dr. G. Mock The Pentagon Washington 25, D. C.	1
	Commander Armed Services Technical Information Agency ATTN: TIPDR Arlington Hall Station Arlington 12, Virginia	20
в.	Department of the Army - Technical Services	
	Commanding General U.S. Army Materiel Command Room 2502, Bldg. T-7 ATTN: AMCRD-RS-CM	2
	Washington 25, D. C. Commanding Officer	2
	U.S. Army Chemical & Coating Laboratory ATTN: Dr. C. Pickett Technical Library Aberdeen Proving Ground, Maryland	1 1
ı	Commanding General U.S. Army Tank Automotive Center ATTN: SMOTA-REM.2 SMOTA-REM.3	1 1
	Detroit Arsenal Center Line, Michigan	
	Commanding General U.S. Army Weapons Command ATTN: AMSWE-RD AMSWE-PP Rock Island Arsenal Rock Island, Illinois	1 1

	No. of Copies
Commanding General U.S. Army Missile Command ATTN: Documentation & Technical	9
Information Branch Mr. R. E. Ely, AMSMI-RRS	2 1
Mr. R. Fink, AMSMI-RKX	1
Mr. W. K. Thomas, AMSMI Mr. E. J. Wheelahan, AMSMI-RSM	1 1
Redstone Arsenal, Alabama	
Commanding Officer	
Frankford Arsenal ATTN: SMUFA-1330	1
Library-0270	ī
Philadelphia 37, Pa.	
Commanding Officer	
U.S. Army Materials Research Agency Watertown Arsenal	
ATTN: RPD	
Watertown 72, Mass.	1
Commanding Officer	
Picatinny Arsenal ATTN: Plastics & Packaging Lab	
Dover, New Jersey	1
Director	
PLASTEC Picating Argonal	
Picatinny Arsenal Dover, New Jersey	1
Commanding Officer	
Springfield Armory	
ATTN: SWESP-TX	1
Springfield 1, Mass.	1
Commanding Officer	
Watertown Arsenal ATTN: SMIWT-LX	
Watertown 72, Mass.	1
Commanding Officer	
Watervliet Arsenal	
ATTN: SWEWV-RDR	7
Watervliet, New York	1

	No.	of	Copies
Commanding General U.S. Army Ammunitions Command Dover, New Jersey			1
Commanding Officer U.S. Army Environmental Health Laboratory Army Chemical Center, Maryland			1
Commanding Officer U.S. Army Chemical Warfare Laboratories ATTN: Technical Library Army Chemical Center, Maryland			1
Commanding Officer Harry Diamond Laboratory ATTN: Technical Library Washington 25, D. C.			1
Commanding Officer Engineer R&D Laboratory ATTN: Materials Branch Ft. Belvoir, Virginia			1
Commanding General Quartermaster R&D Command ATTN: Chemicals & Plastics Division Natick, Massachusetts			1
Commanding Officer U.S. Army Prosthetics Research Laboratory Forest Glen, Maryland			1
Commanding Officer Headquarters U.S. Army Signal R&D Laboratory ATTN: Materials Branch Fort Monmouth, N. J.			1
Department of the Army - Other Army Agencies			
Commander U.S. Army Research Office Arlington Hall Station Arlington 12, Virginia			1

		No. of Copies
	Commanding Officer U.S. Army Research Office (Durham) Box CM, Duke Station Durham, North Carolina	1
	Chief of Research and Development U.S. Army Research & Development Liaison Grou ATTN: Dr. B. Stein APO 757 New York, N. Y.	p 1
c.	Department of the Navy	
•	Chief, Bureau of Naval Weapons Department of the Navy ATTN: RMMP	
	Room 2225, Munitions Building Washington 25, D. C.	1
	Commander Department of the Navy Office of Naval Research ATTN: Code 423	
	Washington 25, D. C. Chief	1
	Department of the Navy Bureau of Ships ATTN: Code 344 Washington 25, D. C.	1
	Commander Department of the Navy Special Projects Office Bureau of Naval Weapons ATTN: SP 271	
	ATTN: SP 271 Washington 25, D. C.	1
	Commander U.S. Naval Ordnance Laboratory ATTN: Code WM White Oak,	
	Silver Spring, Maryland	1

		No. o	f Copies
	Commander		
	U.S. Naval Ordnance Test Station		
	ATTN: Technical Library Branch		•
	China Lake, California		1
	Commander		
	U.S. Naval Research Laboratory		
	ATTN: Technical Information Center		
	Anacostia Station		•
	Washington 25, D. C.		1
	Commander		
•	Mare Island Naval Shipyard		
	ATTN: Rubber Laboratory		_
	Vallejo, California		1
D.	Department of the Air Force		
ν.	begai then of the All Poles		
	U.S. Air Force Directorate of Research		
	and Development	•	•
	ATTN: Lt. Col. J. B. Shipp, Jr.		
	Room 4D-313, The Pentagon		
	Washington 25, D. C.		1
	Commander		
	Wright Air Development Division		
	ATTN: ASRCN		
	Wright-Patterson Air Force Base, Ohio		2
	6593 Test Group (Development)		
	ATTN: Solid Systems Division, DGSC		•
	Edwards Air Force Base, California		1
	AMC Aeronautical Systems Center	•	
	ATTN: Manufacturing & Materials		
	Technology Division, LMBMO		
	Wright-Patterson Air Force Base, Ohio		2
TC*	Other Covernment Agencies		
E.	Other Government Agencies		
	Jet Propulsion Laboratory		
	California Institute of Technology		
	ATTN: Dr. L. Jaffe		
	4800 Oak Grove Drive		
	Pasadena, California		1

	No. of Copies
George C. Marshall Space Flight Center ATTN: M-S&M-M M-F&AE-M Huntsville, Alabama	1 1
Scientific and Technical Information Facilit ATTN: NASA Representative (S-AK/DL) Mr. B. G. Achhammer Mr. G. C. Deutsch Mr. R. V. Rhode P. O. Box 5700 Bethesda, Maryland	1 1 1 1
Commanding General U.S. Army Weapons Command ATTN: AMSWE-RD Rock Island Arsenal Rock Island, Illinois for release to	3
Commander British Army Staff ATTN: Reports Officer 3100 Massachusetts Avenue, N. W. Washington 8, D. C.	
Commanding General U.S. Army Weapons Command ATTN: AMSWE-RD Rock Island Arsenal Rock Island, Illinois for release to	3
Canadian Army Staff, Washington ATTN: GSO-1, A&R Section 2450 Massachusetts Avenue, N. W. Washington 8, D. C.	
Prevention of Deterioration Center National Academy of Science National Research Council 2101 Constitution Avenue Washington 25, D. C.	1
Office of Technical Services Stock 1200 South Eads Street Arlington, Virginia	200
15	63-1242

"THIS CODE SHEET WILL BE REMOVED FROM THE REPORT WHEN LOANED OR OTHERWISE DISTRIBUTED OUTSIDE THE DEPARTMENT OF DEFENSE"

CODE SHEET

Chemical Name or Description	Trade Name or Common Name	Source
Polymer A (Injection moldable & millable polyester urethane)	Estane 5740X1	B.F. Goodrich Chemical Co.
Polymer B (Millable polyester urethane)	Estane 5740X2	**
Polymer C (Injection moldable & millable polyester urethane)	Estane 5740X7	***
Polymer D (Injection moldable polyester urethane)	Texin 192A	Mobay Chemical Company
Polymer E (Castable polyether urethane)	Adiprene L-100	E.I. Dupont de Nemours & Co.
Polymer F (Castable urethane)	Adiprene LD-315	n
Polymer G (Castable polyester urethane)	Multrathane F66	Mobay Chemical Company
Dicumyl Peroxide (95%)	Recrystallized Dicumyl Peroxide	Hercules Powder Company
4,4' Methylene bis (2 chloroaniline)	Moca	E.I. Dupont de Nemours & Co.
EPC Carbon Black	Kosmobile 77	United Carbon Co., Inc.
Brake Fluid	Wagner Brake Fluid	Wagner Electric Company

"THIS CODE SHEET WILL BE REMOVED FROM THE REPORT WHEN LOANED OR OTHERWISE DISTRIBUTED OUTSIDE THE DEPARTMENT OF DEFENSE"

CODE SHEET (Cont.)

Chemical Name or Description	Trade Name or Common Name	Source
Polymer H (Millable polyester urethane)	Genthane S	General Tire & Rubber Co.
FEF Carbon Black	Philblack A	Phillips Chem. Co.
Dicumyl Peroxide (40%)	DiCup 40C	Hercules Powder Co.
Metallic Soap	Thermolite 12	General Electric
Cadmium-Barium Soap/Chelator mixture	Ferro 1825	Ferro Chemical Co.
Pentaerythritol ester of saturated fatty acids	Hercolube A	Hercules Powder Co.
Rosin modified polyester	Neolyn 40	Hercules Powder Co.
N-methyl-N,4-dini- trosoaniline	Elastopar	Monsanto Chemical Company
Hydroxyethyl Cellulose	Cellosize WP-09	Union Carbide Chemical Co.
N,N,N',N'-tetrakis (2-hydroxypropyl) ethylenediamine	Quadrol	Wyandotte Chem. Corp.
Polymethylene poly- phenyl isocyanate	Papi	Carwin Company
HAF Carbon Black	Philblack "0"	Phillips Chem. Co.
Benzothiazyl Disulfide	Altax	R.T. Vanderbilt Co.
Tetramethyl thiuram disulfide	Methyl tuads	R.T. Vanderbilt Co.

RIA Lab. Rep. 63-1242, 17 Apr 63, 15 p. incl. 11lus. tables, (DA Project No. 1-D-S-21801-D-262, AMC Code No. 5521:12.255) Unclassified report.

Commercially available castable, millable and/ or injection moldable polyurethane elastoners were evaluated to determine their characteristics and potential use for Army applications. Experimental polyurethanes were synthesized using various polyols, polyamines and stabilizing agonts in an effort to improve the heat stability in the range 149 to 2040C. It was shown that retention of strength at elevated temperature can be improved by increased functionality in the system, but only at the expense of the alastic characteristics of the material. The increased crosslinking of the maillable gues offers the most promise for heat resistant polyurethanes.

AD Accession No. Rock Island Arsenal Laboratory, Rock Island, Illinois SYNTHESIS AND EVALUATION OF POLYURFHANE KLASTOMERS, by W. M. Veroeven

RIA Lab. Rep. 63-1242, 17 Apr 63, 15 p. incl. 11lus. tables, (DA Project No. 1-D-5-2180]-D-262, AMC Code No. 5521.12.255) Unclassified report.

Commercially available castable, millable and/
or injection moldable polyurethane elastomers
were evaluated to determine their characteristics and potential use for Army applications.
Experimental polyurethanes were synthesized
using various polyols, polyamines and stabilizing agents in an effort to improve the
heat stability in the range 149 to 204Cc. It
was shown that retention of strength at elevated temperature can be improved by increased
functionality in the system, but only at the
expense of the elastic characteristics of the
material. The increased crosslinking of the
millable gums offers the most promise for heat
resistant polyurethanes.

UNCLASSIFIED

- 1. Rubber
- 2. Elastomers
- 3. Polyurethanes

DISTRIBUTION: Copies obtainable from ASTIA.

UNCLASSIFIED

- 1. Rubber
- 2. Elastomers
- 3. Polyurethanes

DISTRIBUTION: Copies obtainable from ASTIA.

AD Rock Island Arsenal Laboratory, Rock Island, Illinois SYNTHESIS AND EVALUATION OF POLYURETHANE ELASTOMERS, by W. M. Veroeven

RIA Lab. Rep. 63-1242, 17 Apr 63, 15 p. incl. illus. tables, (DA Project No. 1-D-S-21801-D-262, AMC Code No. 5521.12.255) Unclassified report.

Commercially available castable, millable and/
or injection moldable polyurethane elastomers
were evaluated to determine their characteristics and potential use for Army applications.
Kaperimental polyurethanes were synthesized
using various polyols, polyamines and stabilizing agents in an effort to improve the
heat stability in the range 149 to 2040C. It
was shown that retention of strength at elevated temperature can be improved by increased
functionality in the system, but only at the
expense of the elastic characteristics of the
material. The increased crosslinking of the
millable gums offers the most promise for heat
resistant polyurethanes.

AD Rock Island Arsenal Laboratory, Rock Island, Illinois SYNTHESIS AND EVALUATION OF POLYURETHANE ELASTOMERS, by W. M. Veroeven

RIA Lab. Rep. 63-1242, 17 Apr 63, 15 p. incl. illus. tables, (DA Project No. 1-D-5-21801-D-262, AMC Code No. 5521.12.255) Unclassified report.

Commercially available castable, millable and/ or injection molable polyurethane elastomers were evaluated to determine their character-lattic and potential use for Army applications. Experimental polyurethanes were synthesized using various polyols, polyamines and stabilizing agents in an effort to improve the heat stability in the range 149 to 2040C. It was shown that retention of strength at ela-vated temperature can be improved by increased functionality in the system, but only at the margense of the elastic characteristics of the material. The increased crosslinking of the maillable gums offers the most promise for heat resistant polyurethanes.

UNCLASSIFIED

- 1. Rubber
- 2. Elastomers
- 3. Polyurethanes

DISTRIBUTION: Copies obtainable from ASTIA.

UNCLASSIFIED

- ļ
- 1. Rubber
- 2. Elastomers

3. Polyurethanes

DISTRIBUTION: Copies obtainable from ASTIA.