Making better conservation decisions

Jeffrey Hanson

Acknowledgements

Adam Marques Amanda Martin Ana Veríssimo Angela Brennan Carlo Rondinini Caitlyn Proctor Cynthia Riginos Emma Hudgins Francesco Ficetola
Graeme Buchanan
Guillermo Velo-Antón
Iadine Chadès
Íñigo Martínez-Solano
Hugh Possingham
Jaimie Vincent
Jenny McCune

Jonathan Rhodes
Joseph Bennett
Josie Hughes
Lenore Fahrig
Matt Watts
Matthew Strimas-Mackey
Miguel Camacho-Sanchez

Peter Arcese Richard Fuller Richard Pither Richard Schuster Silvia Carvalho Stuart Butchart

Nina Morell

Environment and Climate Change Canada

How can we get a better conservation decision?

- (1) Better algorithms
 - (2) Better data
- (3) Better surrogates

Reserve selection Features

Reserve selection

Planning units

Reserve selection

Reserve selection

Heuristic algorithm

Meta-heuristic algorithms

Exact algorithms

Different solutions

Different solutions

Different solutions

prioritizr R package

Objective
what makes the solution better?
Data

Biodiversity
Land use

Economic Social

Mathematical optimization problem

<u>Constraints</u>

what must the solution do?

Input to solver

Solve problem

Maps Metrics

OPTIMIZATION CPLEX

Hanson et al. 2020 CRAN

Better solutions

Faster too!

What about other types of problems?

Project prioritization

Project prioritization

Project prioritization

New Zealand case study

- Projects for 62 imperiled bird species
- 1,218 different actions
- Many actions shared between projects for different species

Hanson et al. 2019 Methods Ecol Evol

- Exact algorithms always best
- Ranking and heuristic algorithms sometimes produced optimal plans
- Randomly funding projects sometimes produced better plans than ranking and heuristic algorithms
- oppr R package

Hanson et al. 2019 Methods Ecol Evol

How can we get a better conservation decision?

- (1) Better algorithms
 - (2) Better data
- (3) Better surrogates

Conservation planning for adaptive and neutral evolutionary processes

Hyla molleri Pelobates cultripes Rana iberica NT

NT

Hanson et al. 2020 J Appl Ecol

Prioritizations

Plan with evolutionary processes

Conventional plan

Only costs 9% less

However, more data isn't always better...

Study system: Middlesex country, Canada

199 places that could potentially be acquired for protected area establishment

8 imperilled plant species

143 places that could potentially be surveyed to improve existing data

Hanson et al. under review

Different approaches for designing survey schemes

Value of information

- Using existing data could lead to positive outcomes
- More fundings could mean better outcomes

Value of information

- Allocating funds for data collection can mean worse outcomes
- Allocating funds for data collection can mean better outcomes too

Hanson et al. under review

Value of information

- Different conventional approaches have different performance
- Performance of these approaches depends on available funds
- All of them could lead to lead to worse outcomes

Value of information

- Maximizing return on investment is best
- This considers objectives and constraints that underpin conservation plans and their success
- surveyvoi R package

How can we get a better conservation decision?

- (1) Better algorithms
 - (2) Better data
- (3) Better surrogates

→ Information — → Plan - Better ↑ understanding of biodiversity

Objectives Constraints

Can we use environmental and geographic variables as surrogates of genetic variation for conservation planning?

Environmental and geographic surrogates might work

Geographic surrogates not guaranteed

Selecting sites by...

maximizing genetic diversity

randomly

maximizing
geographic spread
maximizing spread
across isolation barriers

Hanson et al. 2021 Cons Biol

Assuming environmental surrogates work, how can we use them for conservation?

Data

- 9,670 bird, 5,070 mammal, 5,197 amphibian species
- 5 × 5 km maps delineating suitable habitat
- Subdivided each species' spatial distribution into multiple "environmental partitions"
- Set targets for each environmental partition for each species' spatial distribution

Hanson et al. 2020 Nature

How good is the existing protected system?

- 18,097 (90%) species are not adequately represented in reserves
- 9,651 (48%) species do not have a single partition adequately represented
- Of these, 2,385 species are globally imperilled

Hanson et al. 2020 Nature

Prioritization

34% of Earth's land and inland waters

Many surrogates are often available, how do our choices affect results?

A comparison of approaches for including connectivity in systematic conservation planning

Washington State, USA

- 261 bird species
- Land acquisition costs
- Existing protected areas
- Multiple land-uses
- Multiple eco-systems

Hanson et al. (in press) J Appl Ecol

 Different connectivity approaches produce different prioritizations

 Different connectivity approaches can yield similar prioritizations

Hanson et al. (in press) J Appl Ecol

Make better conservation decisions by using...

- 1. Better algorithms
- 2. Cost-effective data
- 3. Reliable surrogates

