StrainTool - Improving the Mapping of Tectonic Strain in Eurasia

 $\underline{\text{D.Anastasiou}}^{1,2}$, X. Papanikolaou^{1,2}, V. Kapetanidis^{1,3}, V. Tsironi¹, A. Ganas¹, D. Paradissis²

¹Institute of Geodynamics - National Observatory of Athens

²Dionysos Satellite Observatory - Higher Geodesy Laboratory, National Technical University of Athens

³Department of Geology, National and Kapodistrian Univarsity of Athens

*https://dsolab.github.io/StrainTool

*dganastasiou@gmail.com

*dganastasiou@gmail.com

*line for the occupion of 10 years from his death of 10 years fr

Introduction

Open Source Software StrainTool v1.0

Data analysis and Results

Validation - Discussion

Conclusions

Introduction

- StrainTool is a free and open-source software.
- Cooperation between the National Technical University of Athens (NTUA) and National Observatory of Athens (NOA) under EPOS-IP project.
- User-friendly software can be used directly by the scientific community.
- Pyhton programming language: free, flexible and cross-platform-compatible nature.
- Software's development was performed using Github.
- Input a list of data points along with their tectonic velovcities.
- Estimate Strain Tensor parameters.

StrainTool has three basic components:

- pystrain: A python pachage.
- StrainTensor.py: the main executable.
- A list of shell scripts to plot results from StrainTensor.py

TODO: structure design

pystrain the core part of the project.

Python functions and classes, enable computation of strain tensor.

The package includes:

- iotools: input/output classes to parse ASCII files.
- geodesy: functions for basic geodetic calculations.
- grid.py: a simple grid generator
- strain.py: main class and necessary functions for estimation of strain tensor parameters

Estimate strain tensor parameters

Strain tensor parameters aestimated (or calculated) by solving for the system:

$$\begin{bmatrix} V_{x,S_1} \\ V_{y,S_1} \\ \vdots \\ V_{x,S_n} \\ V_{y,S_n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta_{y_1} & \Delta_{x_1} & \Delta_{y_1} & 0 \\ 0 & 1 & -\Delta_{x_1} & 0 & \Delta_{x_1} & \Delta_{y_1} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ 1 & 0 & \Delta_{y_n} & \Delta_{x_n} & \Delta_{y_n} & 0 \\ 0 & 1 & -\Delta_{x_n} & 0 & \Delta_{x_n} & \Delta_{y_n} \end{bmatrix} \begin{bmatrix} U_x \\ U_y \\ \omega \\ \tau_x \\ \tau_{xy} \\ \tau_y \end{bmatrix}$$

 $\Delta_{x_i}, \Delta_{y_i}$ are the displacement components between station i and the point. A minimum of three stations is required to compute the parameters.

Estimate strain tensor parameters

Assuming that there is a variance information for the station velocities (and a Gaussian distribution), we can add the covariance matrix C of the velocity data in the system. In the simplest case, C is a diagonal matrix, with the velocity component standard deviations as its elements.

$$C = \sigma_0^2 \begin{bmatrix} (\frac{1}{\sigma_{V_{x_1}S_1}})^2 & 0 & 0 & \dots & 0 \\ 0 & (\frac{1}{\sigma_{V_{y_1}S_1}})^2 & 0 & \dots & 0 \\ 0 & 0 & (\frac{1}{\sigma_{V_{x_2}S_2}})^2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (\frac{1}{\sigma_{V_{y_i}S_i}})^2 \end{bmatrix}$$

Shen Algorithm

Shen Algorithm

Distance-dependent weighting

Optimal smoothin parameter D

Spatial weights

Veis Algorithm

Validation

Conclusions

Thank you for your attention!

