A Cellulose Loosening Protein is One of Nature's Most Widely **Shared Tools**

PennState **NC STATE** UNIVERSITY

Accession Number

William R. Chase, Olga Zhaxybayeva, Rob Dunn, Daniel J. Cosgrove, Lori R. Shapiro

Summary

Methods

- Public databases were queried for the presence of expansin by BLAST and keyword annotation search
- Sequences were filtered, aligned, and trimmed. Then the best fitting model of evolution was inferred using ModelFinder
- Phylogenetic trees were built using maximum likelihood (IQ-TREE) and Bayesian (MrBayes) methods
- HGT events were inferred by the placement of a taxa in the gene tree outside of its expected species grouping; these putative HGT events were then validated by examining concordance and node support across several methods of phylogenetic inference
- Evidence of ancient and recent HGT events was inferred by finding the most parsimonious explanation for the present day distribution of expansins across the tree of life using a combination of gene duplication, gene transfer, and gene loss (duplication-transfer-loss modeling)
- A literature review was performed to classify each expansin-containing organism into a general ecological niche

Key Findings

- Expansin originated in ancient time before the rise of land plants (between 1.5 0.8 Ga, origin lineage is unclear)
- From there, expansin was spread across the tree of life by vertical and horizontal transfer between and within domains
- Expansin was adapted for two main purposes: to loosen structural cellulose, and to aid plant-microbe interactions
- Expansin appears to be required by organisms that use cellulose structurally, and as an accessory gene in other organisms
- Expansin is found in a highly diverse set of taxa, is adapted to various functions spanning multiple ecological niches, and can fuse with several other carbohydrate-active modules for form novel chimeric proteins

Expansins are widespread across diverse taxa

Comments? Questions? Want to learn more? Find me here: @W_R_Chase lliamrchase.com

Save it for later! Download this poster as a PDF by scanning this QR code with your phone.

Expansin evolution was shaped by horizontal gene transfer

Table 1: Summary of the 10 putative HGT events identified in the original expansin gene tree. Support at each HGT node was

are very high certainty, yellow are well-supported, and white have questionable support

evaluated by multiple phylogenetic analyses. Nodes are highlighted according to confidence based on support values. Blue nodes

Node Number	HGT recipient	HGT recipient groups within	Full ML tree support (SH-aLRT/UFboot)	Full bayesian tree support (posterior probability)	Pruned ML tree support (SH- aLRT/UFboot)	
1	Ralstonia spp. (β-proteobacteria)	Xanthomonads	97.9/100	100	98/100	
2	Enterobacteria *	Firmicutes	44.3/85	polytomy	21.9/84	
3	<i>Sphaerotilus natans</i> (β-proteobacteria)	Myxobacteria	89.6/99	polytomy	93.3/93	
4	Janthinobacterium sp., Methylibium sp., Acidovorax radicis, Leptothrix cholodnii, Polyangium brachysporum (β- proteobacteria)	Myxobacteria	93.5/99	97	92.2/97	
5₾	Vitrella brassicaformis (Alveolate), Sorangium cellulosum (β-proteobacteria)	Actinobacteria	87.4/99	52	83.8/89	
6₾	Neocallimastix californiae, Anaeromyces robustus, Piromyces finnis, Allomyces macrogynus (Chytrid anaerobic gut fungi)	Actinobacteria	87.2/98	76	93.7/89	
7	Fungal expansin-CBMI fusion proteins (Ascomycetes)	Phytophthora	91.5/93	100	95.1/99	
8	<i>Physarum polycephalum</i> (Amoebozoa)	Phytophthora	96/98	76	N/A	
9₽	Haloferula sp. (Verrucomicrobia)	Phytophthora	85/97	100	95.9/100	
10	Hamadaea tsuonensis (Actinobacteria), Streptomyces acidiscabies (Actinobacteria), Uliginosibacterium gangwonense (β-proteobacteria)	Amoebozoa	97.2/98	79	84.7/86	
= interdomain HGT event * = low bootstrap support, but recovered across 12 of 13 tree-building rups and supported by a DTI model						

* = low bootstrap support, but recovered across 12 of 13 tree-building runs and supported by a DTL model

Table 2: Approximate age of putative HGT events inferred by

Recent

Erwinia tracheiphila

Species Tree parsimony. Within-group Putative HGT acceptor **Estimated** Expansin was Sequence timescale Identity 0.538 1,236 MYA MRCA of Myxococcales MRCA of Micromonospora 198 MYA 0.803 0.594 125 MYA MRCA of Nocardia 0.784 30 MYA MRCA of Xanthomonas <0.936 MYA 0.941 Expansin MRCA of Xylella

0.767 MRCA of Lentzea 0.425 MYA 0.911 0.0315 MYA MRCA of Herbidospora 0.0174 MYA 0.992 MRCA of Pectobacterium Time 0.97 MRCA of Dickeya 0.0058 MYA Recent Ralstonia solanacearum Clavibacter michiaanensis Recent Clostridium puniceum Recent

= species has expansin Figure 3: A simplified version of the parsimony model used to infer HGT in table 2.

present in the

originated in

lineage by HGT

this single

Expansins are found in numerous ecological niches

Figure 4: Ecological niches of expansin-containing microbes from bacteria, fungi, and protists.

Accession Number

Expansins are abundant in the world's worst plant pathogens

Table 3: Although most expansin-containing microbes are non-pathogenic, expansins are overrepresented among the worlds most damaging agricultural pathogens. The "top 10" worst bacterial and fungal plant pathogens are listed, and those with expansin are noted by the accession number of the expansin gene.

Dacteria	Accession number	i uligi	Accession number
Pseudomonas syringae	_	Magnaporthe oryzae	XP_003711472
Ralstonia solanacearum	AOE88952	Botryis cinerea	CCD54783
Agrobacterium tumefaciens	_	Fusarium graminearum	CEF78987
Xanthomonas oryzae	WP_011409499	Fusarium oxysporum	KNB11838
Xanthomonas campestris	WP_011038627	Blumeria graminis	_
Xanthomonas axonopodis	WP_048490938	Mycosphaerella graminicola [†]	EGP90221
Erwinia amylovora	_	Ustilago maydis	_
Xylella fastidiosa	SHG20409	Melampsora lini‡	_
Dickeya (dadantii and solani)	WP_038924663, KHN53802	Puccinia spp.	KNZ59084, EFP85064, KNF04021
Pectobacterium (carotovorum and atrosepticum)	SHG09776, AIK14148	Colletotrichum spp.	OLN88490, CCF37207, KXH45263, XP_007594649, KXH43193, KXH26982,
† Reclassified as <i>Zymoseptoria tritici</i> ‡ No available genome sequence			ENH88520, EQB51143, KDN66674

Expansins are actively innovating through gene fusion

Figure 5: The domain architecture of expansin-fusion proteins and selected non-fusion proteins. Frequent fusion modules are glycoside hydrolase domains (GH) or carbohydrate binding modules (CBM). The phylogenetic tree is the species tree built from conserved proteins gyrB for bacteria and EFII-a for fungi. The red star denotes two lineages where the expansin and associated domain are separate ORFs, but adjacent in the genome and separated by only a few nucleotides.

References

- Cosgrove, D. J. (2017). Microbial expansins. Annual review of microbiology, 71, 479-497.
- Nikolaidis, N., Doran, N., & Cosgrove, D. J. (2013). Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Molecular biology and evolution, 31(2), 376-386.
- Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376), 241.