MSBD5004 Mathematical Methods for Data Analysis

Homework 1

Due date: Thursday, September 26

- 1. Consider the vector space \mathbb{R}^n .
 - (a) Check that $\|\boldsymbol{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$ is indeed a norm on \mathbb{R}^n .
 - (b) Prove the inequality

$$\|\boldsymbol{x}\|_{\infty} \le \|\boldsymbol{x}\|_1 \le n\|\boldsymbol{x}\|_{\infty}, \quad \forall \boldsymbol{x} \in \mathbb{R}^n.$$

(c) Prove the inequality

$$|\boldsymbol{x}^T \boldsymbol{y}| \leq \|\boldsymbol{x}\|_1 \|\boldsymbol{y}\|_{\infty}, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

2. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have defined

$$\|m{A}\|_2 = \max_{m{x} \in \mathbb{R}^n, \ \|m{x}\|_2 = 1} \|m{A}m{x}\|_2.$$

- (a) Prove that $\|\cdot\|_2$ is a norm on $\mathbb{R}^{m\times n}$.
- (b) Prove that $\|\mathbf{A}\mathbf{x}\|_2 \leq \|\mathbf{A}\|_2 \|\mathbf{x}\|_2$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$.
- (c) Prove that $\|\mathbf{A}\mathbf{B}\|_{2} \leq \|\mathbf{A}\|_{2} \|\mathbf{B}\|_{2}$ for all $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.
- 3. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, we define the Frobenius norm $\|\mathbf{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{i,j}^2\right)^{1/2}$. Prove that

$$\|A\|_{2} \leq \|A\|_{F} \leq \sqrt{n} \|A\|_{2}.$$

4. A magic square M_n is a $n \times n$ matrix containing the integers from 1 to n^2 whose row and column sums are all the same. For example:

$$\begin{bmatrix} 16 & 2 & 3 & 13 \\ 5 & 11 & 10 & 8 \\ 9 & 7 & 6 & 12 \\ 4 & 14 & 15 & 1 \end{bmatrix}.$$

This magic square appears in the Renaissance engraving $Melencolia\ I$ by the German painter, engraver, and amateur mathematician Albrecht Dürer (1471–1528).

Let a_n denote the magic constant of M_n , so that $a_n = n(n^2 + 1)/2$. Let d denote a vector in \mathbb{R}^n with each element equal to 1.

- (a) Determine $M_n d$ and $d^T M_n$. Conclude that a_n is an eigenvalue of M_n .
- (b) Show that the row and column sums of M_n^2 are all the same.
- (c) Determine $||M_n||_2$.

5. Let a_1, a_2, \ldots, a_m be m given real numbers. Prove that a median of a_1, a_2, \ldots, a_m minimizes

$$\sum_{i=1}^{m} |a_i - b|$$

over all $b \in \mathbb{R}$. (As we discussed in the lecture, this result is crucial for deriving the K-medians algorithm in clustering.)

- 6. Suppose that the vectors x_1, \ldots, x_N in \mathbb{R}^n are clustered using the K-means algorithm, with group representatives z_1, \ldots, z_k .
 - (a) Suppose the original vectors x_i are nonnegative, *i.e.*, their entries are nonnegative. Explain why the representatives z_i output by the K-means algorithm are also nonnegative.
 - (b) Suppose the original vectors x_i represent proportions, *i.e.*, their entries are nonnegative and sum to one. (This is the case when x_i are word count histograms, for example.) Explain why the representatives z_j output by the K-means algorithm are also represent proportions (*i.e.*, their entries are nonnegative and sum to one).
 - (c) Suppose the original vectors x_i are Boolean, *i.e.*, their entries are either 0 or 1. Give an interpretation of $(z_j)_i$, the *i*-th entry of the *j* group representative.