

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

Escola	EACH	TUR	MA				
Curso	Sistemas de Informação			Nota do aluno na PROVA			
Disciplina	Sistemas Operacionais - ACH2044	Data da Prova	18/12/14				
Professor	Clodoaldo Aparecido de Moraes Lir	Clodoaldo Aparecido de Moraes Lima					
Aluno							
No. USP							

a) (0,2 ponto) Quantos bits são necessários para endereçar todos os endereços virtuais e reais?

Tamanho da Pagina = 4 K, logo 12 bits

Número de páginas = 16, logo 4 bits

Número de frames = 8, logo 3 bits

Endereçamento virtual = 4 bits +12bits = 16 bits 0,1

Endereçamento real = 3 bits +12 bits = 15 bits 0,1

b) (0,3 ponto) Quantos bits são usados para número de páginas, frames e o deslocamento?

Número de paginas = 16, 4 bits 0,1

Número de frames = 8, 3 bits 0,1

Deslocamento = 12 bits0,1

c) (0,6 ponto) Apresente o endereço físico (em binário) correspondente a cada um dos seguintes endereços virtuais: 200; 12100; 37300, 0011 1101 1011 0000

200 --> 0000 0000 1100 1000 será mapeado para 010 0000 1100 1000

12100 --> 0010 1111 0100 0100 será mapeado para 110 1111 0100 0100

37300 --> 1001 0001 1011 0100 --> será mapeado para 101 0001 1011 0100

0011 1101 1011 0000 --> **000** 1101 1011 0000

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

Cada 0,15

d) (0,4 ponto) Supondo uma tabela de paginas de 2 níveis, os endereços são quebrados em um campo de x bits para a tabela de paginas de nível 1, um campo de y bits para a tabela de pagina de nível 2 com 4 entradas. Considerando um processo de 18 Kbytes, quantas tabelas, no mínimo, deverão estar em memória física.

Solução

Tabela Nível 2 - 4 entradas --> 2 bits 0.1

Tabela Nível 1 - ---> 2 bits 0.1

Cada tabela Nível 2 mapeia = 4* 4 K byte = 16 K Byte 0.1

Logo duas tabelas, tabela de nível 1 e duas tabela de nível 2 0.1

QUESTÃO 02 Valor da Questão: 1,0

Os pedidos para acesso a um disco chegam em seu driver para os cilindros 10, 22, 20, 2, 40, 6, 38 nesta ordem. O disco demora 4 ms para movimentar o braço de leitura/escrita entre dois cilindros consecutivos. Considerando que o braço está inicialmente no cilindro 26 calcule o tempo gasto em seek para cada um dos algoritmos de escalonamento do braço do disco:

a) (0,3 ponto) FCFS (Primeiro-a-Chegar-Primeiro-a-Ser-Servido);

Fila [26 10 22 20 2 40 6 38] 0,4

tempo = ((26-10) + (10-22) + (22-20) + (20-2) + (2-40) + (40-6) + (6-38))*4ms

tempo = (16 + 12 +2+ 18 + 38 + 34 + 32) * 4 = 608 ms

b) (0,3 ponto) SSF (Menor Seek Primeiro);

Fila [26 22 20 10 6 2 38 40] 0,4

tempo = ((26 - 22) + (22 - 20) + (20 - 10) + (10 - 6) + (6 - 2) + (2 - 38) + (38 - 40))*4ms

tempo = (4 + 2 + 10 + 4 + 4 + 36 + 2)*4 = 248 ms

cada 0.05, com exceção do 26

c) (0,4 ponto) O algoritmo do elevador, suponha que braço está se movendo inicialmente para cima, ou seja, dos cilindros de número menor para os de número maior.

Fila [26 38 40 22 20 10 6 2] 0,4

tempo = ((26 - 38) + (38 - 40) + (40 - 22) + (22 - 20) + (20 - 10) + (10 - 6) + (6 - 2))*4ms

tempo = (12 + 2 + 18 + 2 + 10 + 4 + 4)*4

tempo = 208 ms

Cada erro 0.05

Valor 0,05

Solução

QUESTAO 03	Valor da Questão:	1,0

Considerando um programa que tenha os dois segmentos mostrados a seguir, consistindo de instruções no segmento 0 e de dados de leitura/escrita no segmento 1. O segmento 0 tem proteção leitura/execução e o segmento 1 tem proteção leitura/escrita. O sistema de memória é um sistema de memória virtual paginado por

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

demanda, com endereços virtuais que têm um número de página de 4 bits e um deslocamento de 10 bits. As tabelas de paginas e proteção são as seguintes:

Segme	nto 0	Segmento 1				
Leitura/ Ex	ecução	Leitura/Escrita				
Pagina Virtual	Modura	Página Virtual	Moldura			
0	2	0	Em disco			
1	Em disco	1	14			
2	11	2	9			
3	5	3	6			
4	Em disco	4	Em disco			
5	Em disco	5	13			
6	4	6	8			
7	3	7	12			

Para cada um dos seguintes casos, dê o endereço de memória real (efetiva) que resulta da tradução de endereço dinâmico ou identifique o tipo de erro que ocorre (seja erro de página ou de proteção)

a) (0,25 ponto) Busca no segmento 1, página 7, deslocamento 26

(7,26) 12*1024 + 26 = 12314 0,25

b) (0,25 ponto) Armazenamento no segmento 0, página 3, deslocamento 16 **Protection fault (valor 0,1): não se pode escrever lá (valor 0,15)**

c) (0,25 ponto) Busca no segmento 1, página 4, deslocamento 28

Page fault (valor 0,10): o endereço buscado está em disco (valor 0,15)

d) (0,25 ponto) Salto para uma localização no segmento 1, página 7, deslocamento 32

Protection fault (valor 0,10): salto é usado para desvio de fluxo em programas --> irá desviar para uma instrução que será executada. A moldura, contudo, não tem permissão para execução (valor 0,15)

QUESTÃO 04	Valor da Questão:	1.5

Considere um arquivo de nome prova.pdf com tamanho **y** armazenado em uma partição de **z** Mbytes, cujo endereçamento é de 16bits com blocos de 4K.

a) (0,2 ponto) Qual o tamanho máximo da partição em Mbytes?

Tamanho da Partição = 2^16*4K/(1024)^2 = 256 Mbytes

b) (0,5 ponto) Suponha que a FAT que mapeia este arquivo possui os seguintes valores: x, x, 8, 7, -1, -1, 3, 2, 5, 0, 0. Sendo x não relevante para os nossos propósitos, o 0 indica uma posição livre e –1 indica fim de arquivo. Se a entrada do diretório para este arquivo tem 6 como o bloco inicial, quantos blocos possui este arquivo e qual o tamanho deste arquivo?

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

0	Χ
1	X
2 3 4 5 6 7	8
3	7
4	-1
5	-1
6	3
7	3 2 5
8	5
9	0
10	0

Tamanho do arquivo 0,3 6-> 3-> 7 --> 2--->8--->5, logo o tamanho máximo do arquivo é 6*4Kbyte = 24 Kbyte

Faltou bloco 6, -0.15

c) (0,4 ponto) Considere que o sistema de arquivo utilizado seja baseado em nó-i (i-node), o qual possui 8 endereços de disco para blocos de dados, 1 endereço de bloco para endereçamento indireto simples, 1 para endereçamento indireto duplo e 1 para endereçamento indireto triplo. Ilustre o mapeamento dos blocos deste arquivo nesta partição (faça um desenho ilustrando), considerando que o arquivo possua 8322 Kbytes.

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

Endereço Indireto Simples = 4 KByte /2Byte = 2K endereço

Numero de Blocos = 8322 K /4 K = 2081 (0,1)

Desenho ilustrando 0.1

0	Endereço Bloco 2057
1	Endereço Bloco 2058
2	Endereço Bloco 2059
3	Endereço Bloco 2060
	:
24	Endereço Bloco 2081
25	
26	
2K-1	

d) (0,4 ponto) Para o item b), qual é o tamanho do maior arquivo que pode ser manipulado? Mostre todos os cálculos.

Tamanho máximo = (8 + 2K + 2K * 2K+ 2K*2K*2K) * 4 Kbyte

Esquecer de multiplicar por 4 Kbyte

Cada item 0,1

QUESTÃO 05 Valor da Questão: 1.0

Um sistema simula múltiplos relógios encadeando todas as solicitações pendentes do relógio. Suponha que o tempo corrente seja 4098 e que existam solicitações pendentes em 5005, 5010, 5014, 5025, 5028 e 5035. a)(0,6 ponto) Mostre os valores do cabeçalho do relógio, o tempo real e o próximo sinal em 5003, 5015 e 5020.

Tempo atual: 4098

Próximo sinal: 907(0,05 ponto)

Cabeçalho: 907 (5005) -->5 (5010) --->4 (5014) -->11 (5025) --> 3 (5028)--> 7 (5035) (0,1 ponto)

Tempo atual: 5003 Próximo sinal: 2

Cabeçalho: 2 (5005) -->5 (5010) --->4 (5014) -->11 (5025) --> 3 (5028)-->7 (5035)

Tempo atual: 5015 Próximo sinal: 10

Cabeçalho: 10 (5025) --> 3 (5028)-->7 (5035)

Tempo atual: 5020 Próximo sinal: 5

Cabeçalho: 5 (5025) --> 3 (5028)-->7 (5035)

b) Suponha que um novo sinal chegue (e fique pendente) em 5.017 e 5.033. Mostre os valores do cabeçalho do relógio, o tempo real e o próximo sinal em 5.026.

Tempo atual: 5026

Próximo sinal: 2 (0,1 ponto)

Cabeçalho: 2 (5028)-->5(5033) ->2 (5035) (0,3 ponto)

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

QUESTÃO 06 Valor da Questão: 1.0

Quando um arquivo no sistema UNIX é aberto (ex.: /usr/ast/work/temp.txt) são feitos vários acessos a disco para ler o nó-i e os blocos do diretório. Indique o que é lido no disco em cada um desses acessos se for considerado que o nó-i para o diretório raiz **sempre estará na memória** e todos os diretórios têm o tamanho de um bloco.

cada item 0.125

Bloco /
I-node usr
Bloco usr
I-node ast
Bloco ast
I-node work
Bloco work
I-node temp
Bloco Temp.txt

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

Um programa verificador do sistema de arquivos (em nível de bloco) encontrou a seguinte configuração (1 = sim, 0 = não)

Número do bloco	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	П	F
Bloco usado?	1	0	2	0	0	1	0	1	1	0	1	0	0	1	0	1
Bloco livre?	0	1	0	1	0	0	1	0	1	1	0	1	1	0	2	0

a) (0.6) Descreva todos os problemas de consistência existentes neste sistema de arquivos, indicando a maneira de resolvê-lo(s)

Bloco 2 - Duplicatas na lista de blocos em uso

O mesmo bloco está presente em 2 ou mais arquivos 0.05

Solução: Alocar um bloco livre, copia o conteúdo do bloco para ele, inserir a copia em um dos arquivos. 0.1 0.15

Bloco 4 - Missing Block

Consequência: desperdício de espaço, reduzindo a capacidade do disco

Adicione-o lista de livres

0.15

Bloco 8 - Blocos na lista de livres e usados

Retire-o da lista de livres

0.15

Bloco E - Duplicatas na lista de livres

Não podem ocorrer se a lista de livres for bitmap (apenas se for lista ligada)

Reconstrua a lista de livres, marcando como livre apenas uma vez

0.15

b)(0,4) Qual(quais) destes problemas pode(m) causar danos ao sistema de arquivos? Justifique

Blocos 8 0,05, pois consta como livres. Se não for retirado da lista livres, o sistema utilizará este bloco para outro arquivo, sobrescrevendo o seu contéudo. 0,1

Bloco E 0,05 , caso seja utilizado cairá no problema do problema do Bloco 8 0.05

Bloco 2 0,05, neste qualquer alteração realizada no arquivo que utiliza este bloco afetará o outro arquivo que também utiliza o mesmo bloco. 0,1

~		
QUESTAO 08	Valor da Questão:	20
QUESTAC 00	i vaidi ua Questad.	2.0

Em um computador, o endereço virtual da memória virtual por paginação é de 16 bits e as páginas têm tamanho de 2 K endereços. O limite de páginas reais de um processo qualquer é de quatro páginas.

a) (0.3 ponto) Quantos bits do endereço virtual destinam-se ao número de página? E ao deslocamento?

Quatro páginas -> 2 bits

Tamanho da pagina = $2 K = 2^11 bits$

Numero bits para paginas virtuais = 5 bits

Deslocamento = 11 bits

b) (0.2 ponto) Qual o número máximo de entradas da tabela de páginas?

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

Numero máximo igual = 2^5 = 32 paginas

c) (1,5 ponto) llustre o mapeamento e calcule quantas interrupções por falta de página ocorrerão na seguinte seqüência de referências à memória: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1 para os algoritmos de substituição de página Considere que os 4 quadros (frames) disponíveis para o processo estão inicialmente vazios.

a) Ótimo

Página virtual	Páginas na memória	Page fault	Página a ser substituída
1		S	
2	1	S	
3	1,2	S	
4	1,2,3	S	
2	1,2,3,4	N	
1	1,2,3,4	N	
5	1,2,3,4	S	4
6	1,2,3,5	S	5
2	1,2,3,6	N	
1	1,2,3,6	N	
2	1,2,3,6	N	
3	1,2,3,6	N	
7	1,2,3,6	S	1
6	7,2,3,6	N	
3	7,2,3,6	N	
2	7,2,3,6	N	
1	7,2,3,6	S	7 ou 2 ou 3 ou 6
	1,2,3,6 ou		_
	7,1,3,6 ou		
	7,2,1,6 ou		
	7,2,3,1		

Cada _I	pagina	a ser	substituída	corretamente	- 0.125
-------------------	--------	-------	-------------	--------------	---------

Numero	de	faltas	de	paginas	5	3
Nullicio	uс	iailas	uС	payiilas	(,

b) Algoritmo do relógio.

,			
Página virtual	Páginas na memória	Page fault	Página a ser substituída
1		S	
2	1 [1]	S	
3	1,2 [1,1]	S	
4	1,2,3 [1,1,1]	S	
2	1,2,3,4 [1,1,1,1]	N	
1	1,2,3,4 [1,1,1,1]	N	
5	1,2,3,4 [1,1,1,1]	S	1
6	2,3,4,5 [0,0,0,1]	S	2
2	3,4,5,6 [0,0,1,1]	S	3
1	4,5,6,2 [0,1,1,1]	S	4
2	5,6,2,1 [1,1,1,1]	N	
3	5,6,2,1 [1,1,1,1]	S	5
7	6,2,1,3 [0,0,0,1]	S	6
6	2,1,3,7 [0,0,1,1]	S	2
3	1,3,7,6 [0,1,1,1]	N	
2	1,3,7,6 [0,1,1,1]	S	1

SEGUNDO SEMESTRE LETIVO DE 2014 SEGUNDA PROVA

1	3,7,6,2 [1,1,1,1]	S	3	
	7,6,2,1 [0,0,0,1]			

Cada pagina substituída 0,05

Adicionar 0,05

Numero de faltas de paginas _____13____

c) LRU

Página virtual	Páginas na memória	Page fault	Página a ser substituída
1		S	
2	1	S	
3	1,2	S	
4	1,2 1,2,3	S	
2	1,2,3,4	N	
1	1,3,4,2	N	
5	3.4.2.1	S	3
6	4,2,1,5 2,1,5,6	S	4
2	2,1,5,6	N	
1	1,5,6,2	N	
2	5,6,2,1	N	
3	5,6,1,2	S	5
7	6,1,2,3	S	6
6	1,2,3,7	S	1
3	2,3,7,6	N	
2	2,7,6,3	N	
1	7,6,3,2	S	7
	6,3,2,1		

Cada pagina substituída 0,08

Numero de faltas de paginas _____10_____

QUESTÃO Extra Valor da Questão: 0.5

Um computador utiliza um relógio programável no modo onda quadrada. Se for utilizado um cristal de 100 MHz, qual deve ser o valor do registrador de apoio para alcançar uma resolução de

- (a) (0,25 ponto) 1 ms (1 tique do relógio a cada ms)?
- (b) (0,25 ponto) 100 μs

Solução

100MHz --> decrementa o contador 100.000.000 de vezes em um segundo.

Resultado correto, mas formula errada 0,1 para cada

- (a) Em 1ms, o contador terá oscilado $100 \times 10^6 \times 1 \times 10^{-3} = 100 \times 10^3 = 100.000$ vezes. Então esse deve ser o valor no contador
- (b) 100 μ s = 0.1 ms. Então temos 100 x10⁶ x 1 * 10⁻⁴ = 10.000 vezes