FISICA TECNICA - riassunto

Federico Mainetti Gambera

30 aprile 2020

Indice

1	L01-	-Introduzione	2			
	1.1	Introduzione	2			
	1.2	Sistema termodinamico	2			
	1.3	Il sistema semplice	2			
	1.4	Stato di equilibrio	2			
		1.4.1 Variabili termodinamiche	2			
		1.4.2 Legge di Duhem	3			
		1.4.3 Regola di Gibbs				
	1.5	Tipologie di sistemi termodinamici	3			
	1.6	Trasformazioni termodinamiche	3			
	1.7	Equazione di stato	4			
		1.7.1 Equazione di stato per i gas ideali	4			
		1.7.2 Equazione di stato per i gas reali				
		1.7.3 Equazione di stato per liquidi e solidi	5			
2	L01-	-Principi di conservazione	6			
3	L01-	-Trasformazioni	7			
4	L01-Sistemi bifase					
5	L01-	-Macchine termodinamiche	g			
6	L01-	-Sistemi aperti	10			
7	L01-Cicli a gas					
8	L08-	-Cicli a vapore	12			
-			_			

../pdf/L01-Introduzione(1).pdf

1 L01-Introduzione

1.1 Introduzione

La **termodinamica** è la scienza che studia **l'energia**, la **materia** e le **leggi** che governano le loro interazioni (scambi).

1.2 Sistema termodinamico

Il sistema termodinamico è inteso come porzione di spazio limitata da un **contorno** che lo racchiude completamente (il contorno è costituito da una superficie reale o immaginaria, rigida o deformabile).

Tutto ciò che è esterno al sistema termodinamico è il **mondo esterno** e quando il mondo esterno è di massa infinita viene chiamato **ambiente**.

I termini **serbatoio**, **sorgente** o **pozzo** fanno riferimento ad ambienti che interagiscono con il sistema termodinamico.

Un sistema composto è un insieme di sistemi e sottosistemi a massa finita e/o infinita.

Il sistema può essere **monocomponente** (sostanza pura o miscela di sostanze pure in rapporto fisso, quale ad esempio l'aria) o **policomponente** cioè composto da più componenti.

Ogni sistema monocomponente può essere in diversi **stati di aggregazione** (solido, liquido, aeriforme). I sistemi saranno **monofase** o **polifase**.

1.3 Il sistema semplice

- Chimicamente e fisicamente omogeneo ed isotropo;
- non soggetto a campi gravitazionali, elettrici o magnetici;
- chimicamente inerte
- esente da effetti di superficie per via delle grandi dimensioni.

1.4 Stato di equilibrio

Lo stato di equilibrio è il particolare stato cui perviene spontaneamente il sistema isolato.

E' ripoducibile e descrivibile da poche proprietà del sistema stesso.

1.4.1 Variabili termodinamiche

Il sistema all'equilibrio è compiutamente descritto attraverso un numero ristretto di variabili termodinamiche (anche dette grandezze o proprietà di stato, variabili o funzioni di stato).

Le grandezze si dividono in:

- **Grandezza intensiva**: valore **non dipende** dall'estensione del sistema (per esempio temperatura, pressione, densità);
- Grandezza estensiva: valore dipende dall'estensione del sistema (per esempio massa, volume);
- Grandezza estensiva specifica: grandezza estensiva divisa per un'altra grandezza estensiva (tipicamente massa o numero di moli, per esempio $v=\frac{V}{M}$).

Massa: 200 g	dividendo il sistema in 2	Massa: 100 g	Massa: 100 g
Volume: 2 L	sistema m 2	Volume: 1 L	Volume: 1 L
Temperatura: 10 °C		Temperatura: 10 °C	Temperatura: 10 °C
Pressione: 1 bar		Pressione: 1 bar	Pressione: 1 bar
•			•

Le grandezze estensive specifiche ed intensive vengono normalmente usate per descrivere lo stato di equilibrio di un sistema termodinamico.

1.4.2 Legge di Duhem

«Nel caso di sistema monocomponente, il numero di parametri termodinamici intensivi o estensivi specifici indipendenti atti a descrivere compiutamente lo stato interno di equilibrio è due.»

1.4.3 Regola di Gibbs

$$V = C + 2 - F$$

C: numero di componenti;

F: numero di fasi;

V: numero di variabili intensive indipendenti utilizzabili.

1.5 Tipologie di sistemi termodinamici

Tipologie di contorni:

CONTORNO	CALORE	LAVORO	MASSA
Adiabatico	NO		
Diatermano	SI		
Rigido		NO	
Deformabile		SI	
Impermeabile (chiuso)			NO
Permeabile (aperto)			SI
Sistema isolato	NO	NO	NO

Sistema aperto e chiuso:

1.6 Trasformazioni termodinamiche

L'insieme degli stati intermedi successivi, tra lo stato iniziale e finale, definisce la trasformazione termodinamica.

Le trasformazioni termodinamiche si dividono in:

- Quasi-statica o internamente reversibile: Costituita da una successione di stati di equilibrio; può non essere reversibile.
- Reversibile: Se percorsa in senso inverso, riporta il sistema e ambiente nello stasto iniziale.
- Irreversibile: Trasformazione in parte o per intero non reversibile. Non è rappresentabile su un diagramma di stato.
- Chiusa o ciclica: Gli estremi della trasformazione coicidono.
- Elementare: Se una delle grandezze di stato si manitiene costatne durante la traformazione.

1.7 Equazione di stato

Conseguenza della legge di Duhem è l'esistenza di un'equazione di sato

$$f(P, v, T) = 0$$

In molti casi, l'equazione di stato è ignota.

L' **equazione di stato** di un **sistema semplice** è rappresentata in uno spazio cartesiano tridimensionale da una superficie detta «**superficie di stato**», luogo dei punti rappresentativi di **tutti i possibili stati** termodinamici di **equilibrio**.

1.7.1 Equazione di stato per i gas ideali

$$PV = NRT$$

P: pressione [Pa] V: volume $[m^3]$ N: moli [kmole]

T: temperatura [K]

R: costante universale dei gas ideali $\rightarrow R = 8314[J/(kmole~K)]$

Oppure:

$$PV = MR^*T$$

M: massa [kg]

 M_m : massa molare [kg/kmole]

 R^* : costante caratteristica del gas considerato $\to R^* = \frac{R}{M_{\rm min}}$

1.7.2 Equazione di stato per i gas reali

Modello di equazione di stato più complesso per descrivere il comportamento di gas in condizioni di **temperatura** e **pressioni elevate**.

Equazione di van der Waals:

$$\left(P + \frac{a}{v_m^2}\right)(v_m - b) = RT$$

1.7.3 Equazione di stato per liquidi e solidi

$$dv = \beta v dT - K_T v dP$$

Coefficiente di dilatazioen termica isobaro $\beta = \frac{1}{v} \left(\frac{\delta v}{\delta T} \right)$ Coefficiente di comprimibilità isotermo $K_T = -\frac{1}{v} \left(\frac{\delta v}{\delta T} \right)$

Siccome β e K_T possono essere considerati costanti per ampi intervalli di temperatura e di pressione, la precedente relazione differenziale è integrabile e lo stato calcolabile.

Un modello semplificato è quello per **liquidi e solidi incomprimibili**, in cui si considera v= costante.

2 L01-Principi di conservazione

3 L01-Trasformazioni

4 L01-Sistemi bifase

5 L01-Macchine termodinamiche

6 L01-Sistemi aperti

7 L01-Cicli a gas

8 L08-Cicli a vapore