高等数学A(上)

本章重点

分析基础

函数 — 研究对象

极限 — 研究方法

连续 — 研究桥梁

常量

初等 数学 变量

高等 数学 函数

研究 对象 极限

研究 方法 连续

研究 桥梁

C 目录 CONTENTS

第一章

第一节 函数的概述

第三节 函数的极限

第四节 极限运算法则

第五节 无穷小的比较

第六节 连续函数的运算与初等 函数的连续性

第二节 数列的极限

第四节 无穷小与无穷大

第四节 极限存在准则 两个重要极限

第六节 函数的连续性与间断点

第七节 闭区间上连续函数的性质

第6.1节 函数的连续性与间断点

一、函数的连续性

二、函数的间断点

一、函数的连续性

1. 函数的增量

设函数f(x)在 $U_{\delta}(x_0)$ 内有定义, $\forall x \in U_{\delta}(x_0)$, $\Delta x = x - x_0$ 称为自变量

在点 x_0 的增量. 可正、可负

 $\Delta y = f(x) - f(x_0)$ 称为函数f(x)相应于 Δx 的增量.

可正

可负

可为0

2. 连续的定义

设函数y=f(x)在点 x_0 的某一邻域内有定义,如果

定义1

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0,$$

那么称函数y=f(x)在点 x_0 连续.

设
$$x = x_0 + \Delta x$$
,则 $\Delta x \to 0$ 即 $x \to x_0$, $\Delta y \to 0$ 即 $f(x) \to f(x_0)$.

设函数y=f(x)在点 x_0 的某一邻域内有定义,如果

定义2

$$\lim_{x\to x_0} f(x) = f(x_0),$$

那么称函数y=f(x)在点 x_0 连续.

 $\varepsilon - \delta$ "定义: $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $|x - x_0| < \delta$ 时,恒有 $|f(x) - f(x_0)| < \varepsilon$. 可见,函数f(x)在点 x_0 连续,必须同时满足如下三个条件:

- (1) f(x)在点 x_0 有定义,即 $f(x_0)$ 存在;
- (2) f(x)在点 x_0 有极限, 即 $\lim_{x \to x_0} f(x)$ 存在;
- (3) f(x)在点 x_0 的极限值等于函数值, 即 $\lim_{x\to x_0} f(x) = f(x_0)$.

即:
$$f(x)$$
在 x_0 连续 $\longrightarrow \lim_{x \to x_0} f(x) = f(x_0)$.

例如: 函数
$$f(x) = \begin{cases} x\sin\frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续.

3. 单侧连续

如果函数f(x)在 $(a, x_0]$ 内有定义,且 $\lim_{x\to x_0} f(x) = f(x_0)$,

则称f(x)在点 x_0 处左连续;

如果函数f(x)在 $[x_0,b)$ 内有定义,且 $\lim_{x\to x_0^+} f(x)=f(x_0)$,

则称f(x)在点 x_0 处右连续;

定理 函数f(x)在 x_0 处连续f(x)在 x_0 处既左连续又右连续.

即: f(x)在 x_0 连续 $\longrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$.

例1 讨论函数
$$f(x) = \begin{cases} x + 2, x \ge 0, \\ x - 2, x < 0 \end{cases}$$
 在 $x = 0$ 处的连续性.

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+2) = 2 = f(0),$$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x-2) = -2 \neq f(0),$$

右连续但不左连续, 故函数f(x)在点x=0处不连续.

课堂练习

已知
$$f(x) = \begin{cases} \frac{\sin x}{x} + 3, & x < 0, \\ 2a, & x = 0, \text{ 在} x = 0$$
处连续, 求 a, b 的值.
$$b + x \sin \frac{1}{x}, & x > 0 \end{cases}$$

答 案: a = 2, b = 4.

4. 连续函数与连续区间

(1)在区间上每一点都连续的函数,叫做在该区间上的**连续函数**,或者说函数在该区间上连续.

例如:

有理整函数 $P(x) = a_0 + a_1x + \dots + a_nx^n = (-\infty, +\infty)$ 上的连续函数.

$$\because \forall x_0 \in (-\infty, +\infty), \bar{\mathbf{a}} \lim_{x \to x_0} P(x) = P(x_0).$$

有理分式函数
$$R(x) = \frac{P(x)}{Q(x)}$$
在其定义域内连续.

$$:: 只要 $Q(x_0) \neq 0$, 就有 $\lim_{x \to x_0} R(x) = R(x_0)$.$$

(2) 如果函数f(x)在开区间(a,b)内连续,则f(x)在左端点x=a处右连续,在右端点x=b处左连续.

闭区间[a,b]上的连续函数的集合记作C[a,b].

连续函数的图形是一条连续而不间断的曲线.

例2 证明函数 $y = \sin x$ 在区间 $(-\infty, +\infty)$ 上连续.

证 任取 $x \in (-\infty, +\infty)$,

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2} \cdot \cos\left(x + \frac{\Delta x}{2}\right)$$

对任意的 α , 当 $a \neq 0$ 时, 有 $|\sin \alpha| < \alpha$,

故
$$\left|\Delta y\right| \leq 2 \left|\sin \frac{\Delta x}{2}\right| < \left|\Delta x\right|, \quad \therefore \lim_{\Delta x \to 0} \Delta y = 0.$$

即函数 $y = \sin x$ 对任意 $x \in (-\infty, +\infty)$ 都是连续的.

同理可证 $y = \cos x$ 也是 $(-\infty, +\infty)$ 上的连续函数.

二、函数的间断点

1.间断点的定义

设f(x)在 x_0 的某去心邻域内有定义,如果 x_0 不是函数f(x)的连续点,则称 x_0 为f(x)的间断点.

有以下三种情形:

- (1) f(x)在点 x_0 处没有定义;
- (2) 函数f(x)在 x_0 点虽有定义,但 $\lim_{x\to x_0} f(x)$ 不存在;
- (3) f(x)在点 x_0 处有定义, $\lim_{x\to x_0} f(x)$ 存在, 但 $\lim_{x\to x_0} f(x) \neq f(x_0)$.

2. 间断点分类:

第一类间断点:

左极限 $\lim_{x\to x_0^-} f(x)$, 右极限 $\lim_{x\to x_0^+} f(x)$ 均存在.

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x), \, 称x_0 为可去间断点.$$

 $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x), \, 称x_0$ 为跳跃间断点.

第二类间断点:

左极限 $\lim_{x\to x_0^-} f(x)$ 和右极限 $\lim_{x\to x_0^+} f(x)$, 至少有一个不存在.

若其中有一个为 ∞ , 称 x_0 为无穷间断点.

若其中有一个为振荡, 称 x_0 为振荡间断点.

例3 已知函数
$$f(x) = \begin{cases} 2\sqrt{x}, & 0 \le x < 1, \\ 1, & x = 1, \end{cases}$$
 在 $x = 1$ 处间断,判断其类型. $1 + x, \quad x > 1$

 $\mathbf{A} (1) f(1) = 1.$

(2)
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2\sqrt{x} = 2,$$

 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (1 + x) = 2,$
 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (1 + x) = 2,$

(3) : $\lim_{x \to 1} f(x) \neq f(1)$, :: x = 0为函数的可去间断点.

如果令f(1)=2,则f(x)在x=1处连续.

例4 已知函数
$$f(x) = \begin{cases} x - 1, x < 0, \\ 0, x = 0, & \text{在}x = 0$$
处间断,判断其类型. $x + 1, x > 0$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1) = -1,$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x + 1) = 1,$$

$$\lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x),$$

: x=0为函数的跳跃间断点.

例5 已知函数
$$f(x) = \begin{cases} \frac{1}{x}, \\ x, \end{cases}$$

例5 已知函数
$$f(x) = \begin{cases} \frac{1}{x}, & x > 0, \\ x, & x \le 0 \end{cases}$$
 在 $x = 0$ 处间断,判断其类型.

解

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x = 0,$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} = +\infty,$$

: x=1为函数的无穷间断点.

例6 已知函数 $f(x) = \sin \frac{1}{x} \pm ex = 0$ 处间断,判断其类型.

解

: 在*x* =0处没有定义,

且 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

x = 0为振荡间断点.

注意: 不要以为函数的间断点只是个别的几个点.

★ **狄利克雷函数**
$$y = D(x) = \begin{cases} 1, x 是 有理数, \\ 0, x 是 无理数. \end{cases}$$

在定义域R内每一点处都间断, 且都是第二类间断点.

$$\star f(x) = \begin{cases} x, x 是 有理数, \\ -x, x 是 无理数. \end{cases}$$

仅在x=0处连续, 其余各点处处间断.

$$\star f(x) = \begin{cases} 1, x 是 有理数, \\ -1, x 是 无理数. \end{cases}$$

在定义域R内每一点处都间断,但其绝对值处处连续.

提问: 判断下列间断点类型:

第6.2节 连续函数的运算与初等函数的连续性

一、四则运算的连续性

二、反函数与复合函数的连续性

三、初等函数的连续性

一、四则运算的连续性

定理1 若函数 f(x), g(x)在点 x_0 处连续,则 $f(x) \pm g(x)$, $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}(g(x_0) \neq 0)$ 在点 x_0 处也连续.

例1 : $\sin x$, $\cos x$ 在($-\infty$, $+\infty$)内连续,

在其定义域内都是连续的.

二、反函数与复合函数的连续性

连续单调递增(递减)函数的反函数也连续单调递增(递减).

例2 :
$$y = \sin x$$
在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上单调增加且连续,

 $\therefore y = \arcsin x$ 在[-1,1]上也是单调增加且连续;

同理

 $Y = \arccos x$ 在[-1,1]上单调减少且连续,

 $Y = \arctan x$,

 $Y = \operatorname{arccot} x$ 在 $[-\infty, +\infty]$ 上单调且连续.

定理3

设函数y=f[g(x)]由函数u=g(x)与函数y=f(u)复合而成,

 $\lim_{x\to 0} g(x) = u_0$, 函数 f(u) 在点 u_0 连续, 则有

$$\lim_{x\to 0} f[g(x)] = f(\lim_{x\to 0} g(x)).$$
 对于 $x\to \infty$ 情形类似可证

证

:f(u)在点 $u = u_0$ 连续,

∴ $\forall \varepsilon > 0$, $\exists \eta > 0$, $\dot{\exists} |u - u_0| < \eta$ 时, $\dot{\eta} |f(u) - f(u_0)| < \varepsilon$.

又: $\lim_{x \to x_0} g(x) = u_0$,.:对于 $\eta > 0$, $\underline{\exists \delta > 0}$, $\underline{\exists 0 < |x - x_0| < \delta$ 时, $\overline{f}|g(x) - u_0| < \eta, \, \overline{\Box} \overline{h}|f[g(x)] - f(u_0)| < \varepsilon,$

故
$$\lim_{x \to x_0} f[g(x)] = f(u_0) = f[\lim_{x \to 0} g(x)].$$

定理3表明,在一定条件,函数符号f与极限符号可交换.

例3 求
$$\lim_{x\to 3} \sqrt{\frac{x-3}{x^2-9}}$$
.

解
$$y = \sqrt{\frac{x-3}{x^2-9}}$$
可看做由 $y = \sqrt{u}$ 与 $u = \frac{x-3}{x^2-9}$ 复合而成.

$$\lim_{x\to 3} \frac{x-3}{x^2-9} = \lim_{x\to 3} \frac{x-3}{(x+3)(x-3)} = \lim_{x\to 3} \frac{1}{x+3} = \frac{1}{6},$$

$$y = \sqrt{u} \pm \frac{1}{6}$$
处连续,

$$\therefore \lim_{x \to 3} \sqrt{\frac{x-3}{x^2-9}} = \sqrt{\lim_{x \to 3} \frac{x-3}{x^2-9}} = \sqrt{\frac{1}{6}} = \frac{\sqrt{6}}{6}.$$

定理4

连续函数的复合函数是连续的.(是定理3的特殊情况)

证

设f(g(x))在 $\lim_{x\to x_0} g(x)$ 处连续, g(x)在 x_0 连续,

$$\text{Im}_{x \to x_0} f[g(x)] = f\left(\lim_{x \to x_0} g(x)\right) = f(g(x_0)).$$

故复合函数f[g(x)]在点 x_0 连续.

例4

讨论函数 $y = \sin \frac{1}{x}$ 的连续性.

解

 $y = \sin \frac{1}{x}$ 可看作 $y = \sin u = \frac{1}{x}$ 复合而成.

$$\therefore y = \sin\frac{1}{x} \, \text{在}(-\infty, 0) \, \text{U}(0, +\infty) \, \text{内连续}.$$

三、初等函数的连续性

- ★ 三角函数及反三角函数在它们的定义域内是连续的.
- ★ 指数函数 $y = a^x(a > 0, a \neq 1)$ 在 $(-\infty, +\infty)$ 内单调且连续;
- ★ 对数函数 $y = \log_a x (a > 0, a \neq 1)$ 在 $(0, +\infty)$ 内单调且连续;
- \star $y = x^{\mu} = a^{\mu \log_a x}$ \to $y = a^u$, $u = \mu \log_a x$, $\text{在}(0, +\infty)$ 内连续. 讨论 μ 不同值, 可得到
- ★ 幂函数在其定义域内连续.

定理5 基本初等函数在定义域内是连续的.

定理6 一切初等函数在其定义区间内都是连续的.

定义区间是指包含在定义域内的区间.

$$y = \sqrt{1 - x^2}$$
在其定义区间[-1,1]上连续.(端点为单侧连续)

初等函数仅在其定义区间内连续,在其定义域内不一定连续.

$$y = \sqrt{\cos x - 1}, D: x = 0, \pm 2\pi, \pm 4\pi, \cdots$$
 为孤立点集,

函数在这些孤立点的邻域内没有定义, 故在D内不连续.

$$y = \sqrt{x^2(x-1)^3}$$
, $D: x = 0$, 及 $x \ge 1$,

函数在0点的邻域内没有定义, 在区间[1,+∞)上连续.

根据定理6,可得求极限的代入法.

$$\lim_{x \to x_0} f(x) = f(x_0) \qquad (x_0 \in \mathbb{E} \mathbb{Z} \boxtimes \mathbb{i})$$

例5 求
$$\lim_{x\to 1} \sin \sqrt{e^x - 1}$$
.

解 原式=
$$\sin \sqrt{e^1 - 1} = \sin \sqrt{e - 1}$$
.

例6 求
$$\lim_{x\to 0} \frac{\sqrt{1+x^2}-1}{x}$$
.

解 原式 =
$$\lim_{x \to 0} \frac{(\sqrt{1+x^2-1})(\sqrt{1+x^2+1})}{x(\sqrt{1+x^2}+1)} = \lim_{x \to 0} \frac{x}{\sqrt{1+x^2+1}} = \frac{0}{2} = 0.$$

例7 求
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x}$$
.

例7 求
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x}$$
. 特别地, $a = e$ 时, $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

解 原式=
$$\lim_{x\to 0}\log_a(1+x)^{\frac{1}{x}}=\log_a e=\frac{1}{\ln a}$$
.

例8 求
$$\lim_{x\to 0} \frac{a^x-1}{x}$$
.

例8 求
$$\lim_{x\to 0} \frac{a^{x}-1}{x}$$
. 特别地, $a = e$ 时, $\lim_{x\to 0} \frac{e^{x}-1}{x} = 1$.

解 令
$$t = a^x - 1$$
,则 $x = \log_a(1+t)$,原式 = $\lim_{t\to 0} \frac{t}{\log_a(1+t)} = \ln a$.

结论:
$$\exists x \to 0$$
时,

有
$$a^x - 1 \sim x \ln a$$

有
$$a^x - 1 \sim x \ln a$$
, $e^x - 1 \sim x$, $\ln(1 + x) \sim x$.

例9 求
$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha(\alpha \in \mathbf{R}).$$

原式=
$$\lim_{x\to 0} \left[\frac{(1+x)^{\alpha}-1}{\alpha \ln(1+x)} \cdot \frac{\alpha \ln(1+x)}{x} \right]$$

$$=\lim_{t\to 0}\frac{t}{\ln(1+t)}\cdot\lim_{t\to 0}\frac{\alpha\ln(1+x)}{x}=\alpha.$$

说明: 当 $x \to 0$ 时,有 $(1+x)^{\alpha} - 1 \sim \alpha x$.

例10 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$
.

原式=
$$\lim_{x\to 0} e^{\frac{3}{\sin x} \ln(1+2x)} = e^{\lim_{x\to 0} \frac{3 \ln(1+2x)}{\sin x}} = e^{\lim_{x\to 0} \frac{6x}{\sin x}} = e^6.$$

换底公式:

$$f(x)^{g(x)} = e^{g(x) \ln f(x)}$$

函数与极限

符号交换

等价无穷小

代换定理

代入法

一般地 若
$$\lim_{x \to x_0} u(x) = 0$$
, $\lim_{x \to x_0} v(x) = \infty$, 则有

$$\lim_{x \to x_0} [1 + u(x)]^{v(x)} = e^{\lim_{x \to x_0} v(x) \ln[1 + u(x)]} = e^{\lim_{x \to x_0} v(x) u(x)}.$$