PH 441 End-Sem. Part I 24/11/2020 Marks: 20

1. Find the out put state of the following circuit, for:

- (a) $|\psi\rangle = |0\rangle$ and
- (b) $|\psi\rangle = |1\rangle$

3

- 2. (a) A system is in a statistical mixture of states in which 25% are in the state |0⟩ and the remaining in state |1⟩. If the measurement is made in {|+⟩, |-⟩}, basis, what is the probability of finding the system in the |+⟩ state?
 - (b) Work out the reduced density matrix corresponding to the first qubit, for following state: $|\psi\rangle = \frac{1}{\sqrt{3}}[|00\rangle + |01\rangle + |10\rangle]$

1+2=3

3. Consider the following two-qubit state:

$$\frac{1}{\sqrt{11}} \left(|00\rangle + \sqrt{5}|01\rangle + \sqrt{2}|10\rangle + \sqrt{3}|11\rangle \right)$$

- (a) If we measure the first qubit and get $|0\rangle$, then find out the state to which the second qubit collapses.
- (b) What is the probability that a projective measurement of the first qubit gives $|0\rangle$?

2+2=4

4. What is the fundamental difference between Super-dense coding and quantum teleportation. Show how the quantum teleportation protocol could be realized using the Bell state: $|\Phi^-\rangle = \frac{1}{\sqrt{2}}[|00\rangle - |11\rangle]$.

1+4=5

5. Consider the following table giving values of a 2 to 1 function f(x) corresponding to three qubit inputs x. There exists a string ξ such that f(x) = f(y) iff $x \oplus \xi = y$.

X	f(x)	X	f(x)
000	101	100	000
001	010	101	110
010	000	110	101
011	110	111	010

Table 1

The string in this case is $|110\rangle$. A Simon algorithm is executed and the second register is measured which gives: $|000\rangle$. If the first register is passed through Hadamard gates, what will be the result of measurement on the first register?