CHAPITRE 1

Espaces vectoriels : Rappels et Compléments

1.1 Espaces vectoriels - Généralités

1.1.1 Définition et propriétés élémentaires

Dans ce cours, \mathbb{K} désignera \mathbb{R} , ou \mathbb{C} .

Définition 1.1 (Espace vectoriel)

Un espace vectoriel sur \mathbb{K} (ou \mathbb{K} - espace vectoriel) consiste en un ensemble V, dont les éléments sont notés $v \in V$ et appelés vecteurs, muni de 2 opérations :

- $-\underline{Addition}: V \times V \longrightarrow V: (\boldsymbol{v}, \boldsymbol{w}) \longmapsto \boldsymbol{v} + \boldsymbol{w} \text{ (loi interne), et}$
- $-\underbrace{Multiplication}_{C}: \mathbb{K} \times V \longrightarrow V : (\alpha, \mathbf{v}) \longmapsto \alpha \cdot \mathbf{v} \text{ (loi externe)},$

vérifiant les axiomes suivants :

- (A1) Commutativité de l'addition : v + w = w + v, $\forall v, w \in V$,
- (A2) Associativité de l'addition : $(u + v) + w = u + (v + w), \forall u, v, w \in V$,
- (A3) Existence d'un élément neutre pour l'addition :
 - $\exists \mathbf{0} \in V \text{ tel que } \mathbf{v} + \mathbf{0} = \mathbf{v}, \forall \mathbf{v} \in V,$
- (A4) Existence d'inverses additifs ou opposés : $\forall v \in V, \exists w \in V \text{ tel que } v + w = 0,$
- (A5) Distributivité $\cdot/+: \alpha \cdot (\boldsymbol{v} + \boldsymbol{w}) = \alpha \cdot \boldsymbol{v} + \alpha \cdot \boldsymbol{w}, \forall \alpha \in \mathbb{K}, \forall \boldsymbol{v}, \boldsymbol{w} \in V,$
- (A6) **Distributivité** $+/\cdot : (\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}, \forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{v} \in V,$
- (A7) Associativité: $\alpha \cdot (\beta \cdot v) = (\alpha \times \beta) \cdot v, \forall \alpha, \beta \in \mathbb{K}, \forall v \in V,$
- (A8) Normalisation: $1_{\mathbb{K}} \cdot v = v, \forall v \in V$.

Remarques et commentaires 1.1

- 1. $(A3) \Rightarrow$ Tout espace vectoriel contient au moins un vecteur, le vecteur nul 0.
- 2. {0} est l'espace vectoriel trivial.
- 3. Les éléments de \mathbb{K} sont appelés des scalaires.
- 4. Par commodité, on pourra écrire αv au lieu de $\alpha \cdot v(c$ -à-d supprimer le · de la loi externe).

Proposition 1.1 (Propriétés élémentaires)

- 1. Unicité de l'élément neutre : Soit $z \in V$. Si $\exists v \in V$ tel que v + z = v, alors z = 0.
- 2. Unicité de l'inverse additif : Soient $v, w, w' \in V$. Si v + w = 0 = v + w', alors w = w'.
- 3. $0 \cdot \mathbf{v} = \mathbf{0}, \forall \mathbf{v} \in V \text{ et } \alpha \cdot \mathbf{0} = \mathbf{0}, \forall \alpha \in \mathbb{K}.$
- 4. $\alpha \cdot \mathbf{v} = \mathbf{0} \Rightarrow \alpha = 0_{\mathbb{K}} \text{ ou } \mathbf{v} = \mathbf{0}.$
- 5. (-1)v est l'unique inverse additif de v, $\forall v \in V$. Il sera noté -v.
- 6. $\forall \alpha \in \mathbb{K}, \forall v \in V, (-\alpha)v = \alpha(-v) = -(\alpha v).$

Exemples 1.1

- 1. $(\mathbb{K}, +, \times)$ est un espace vectoriel sur lui même.
- **2.** $(\mathbb{C}, +, \times)$ est un espace vectoriel sur \mathbb{R} .
- **3.** $(\mathbb{R}, +, \times)$ n'est pas un espace vectoriel sur \mathbb{C} .
- 4. Soient V_1 et V_2 deux espaces vectoriels sur \mathbb{K} . On définit une structure d'espace vectoriel sur $V_1 \times V_2$ par : $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$ et $\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)$ avec $\alpha \in \mathbb{K}$. D'une manière analogue, $V_1 \times V_2 \cdots \times V_n$ est un espace vectoriel sur \mathbb{K} si $V_1, V_2 \cdots , V_n$ le sont.
- Ainsi $(\mathbb{R}^2, +, \cdot)$ (et $(\mathbb{R}^n, +, \cdot)$ par généralisation) sont des espaces vectoriels sur \mathbb{R} . Pour $(\mathbb{R}^2, +, \cdot)$, on définit la loi + interne et la loi · externe par :

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
 et $\alpha \cdot (x, y) = (\alpha x, \alpha y)$ avec $\alpha \in \mathbb{R}$.

6. Soit V un espace vectoriel sur \mathbb{K} , A un ensemble quelconque non vide, et $A = \{ \text{ applications } f : A \longrightarrow V \}.$

On peut définir sur $\mathcal A$ une structure d'espace vectoriel sur $\mathbb K$ par les lois + interne et \cdot externe définies par :

Si $f, g \in \mathcal{A}$ et $\alpha \in \mathbb{K}$, alors

$$\forall a \in A, \quad (f+g)(a) = f(a) + g(a), \quad (\alpha \cdot f)(a) = \alpha \cdot f(a).$$

1.1.2 Sous-espaces vectoriels

Définition 1.2 (Sous-espace vectoriel)

Soit $U \subset V$, un sous-ensemble.

Si U hérite d'une structure d'espace vectoriel de V, alors U est un sous-espace vectoriel de V.

Proposition 1.2 (Caractérisation de sous-espaces vectoriels)

U est un sous-espace de V

$$\Leftrightarrow \left\{ \begin{array}{l} U \neq \varnothing \ et \ \mathbf{0} \in U \\ \boldsymbol{u} + \boldsymbol{v} \in U, \forall \boldsymbol{u}, \boldsymbol{v} \in U \\ \alpha \boldsymbol{u} \in U, \forall \alpha \in \mathbb{K}, \forall \boldsymbol{u} \in U \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \mathbf{0} \in U \\ \lambda \boldsymbol{u} + \boldsymbol{v} \in U, \forall \lambda \in \mathbb{K}, \ \forall \boldsymbol{u}, \boldsymbol{v} \in U. \end{array} \right.$$

Exercice d'application 1 : $Droites \ dans \ \mathbb{R}^2$

Vérifier que l'ensemble $\mathcal{D}_{(a,b)}$ est un sous-espace vectoriel de \mathbb{R}^2 où $\mathcal{D}_{(a,b)} = \{(x,y) \in \mathbb{R}^2 \mid ax + by = 0\}$, avec $(a,b) \in \mathbb{R}^2 \neq (0,0)$.

Exemples 1.2

- 1. $U_1 = \{(x,y) \in \mathbb{R}^2, x-y=0\} = \{(x,y) \in \mathbb{R}^2, y=x\} = \{(x,x), x \in \mathbb{R}\}$ est un s.e.v. de \mathbb{R}^2 sur \mathbb{R} .(première bissectrice)
- **2.** $U_2 = \{(x,y) \in \mathbb{R}^2, x + y = 0\} = \{(x,y) \in \mathbb{R}^2, y = -x\} = \{(x,-x), x \in \mathbb{R}\}$ est un s.e.v. de \mathbb{R}^2 sur \mathbb{R} . (deuxième bissectrice)
- 3. $U_3 = \{(x, y) \in \mathbb{R}^2, y = 0\} = \{(x, 0), x \in \mathbb{R}\} \text{ est un s.e.v. de } \mathbb{R}^2 \text{ sur } \mathbb{R}.(\text{axe } (Ox))$
- **4.** $U_4 = \{(x,y) \in \mathbb{R}^2, x = 1\} = \{(1,y), y \in \mathbb{R}\}$ n'est pas un s.e.v. de \mathbb{R}^2 sur \mathbb{R} .(droite verticale passant par (1,0))
- 5. $U_5 = \{(x,y) \in \mathbb{R}^2, x = 0\} = \{(0,y), y \in \mathbb{R}\} \text{ est un s.e.v. de } \mathbb{R}^2 \text{ sur } \mathbb{R}.(\text{axe } (Oy))$

Proposition 1.3 (Intersection de sous-espaces vectoriels)

Si U_1, U_2 sont des sous-espace vectoriels d'un même e.v. V alors leur intersection $U_1 \cap U_2$ est aussi un s.e.v de V.

Proposition 1.4 (Union de sous-espaces vectoriels)

Si U_1, U_2 sont des sous-espace vectoriels d'un même e.v. V alors leur réunion $U_1 \cup U_2$ n'est pas en général un s.e.v de V.

Exemples 1.3 (Contres exemples)

En utilisant les notations des exemples 1.2, on peut montrer que : $U_3 \cup U_5$ (resp. $U_1 \cup U_2$) n'est pas un s.e.v. de \mathbb{R}^2 sur \mathbb{R} .

Définition 1.3 (Somme de deux sous-espaces vectoriels)

Soient U_1, U_2 deux sous-espaces vectoriels d'un \mathbb{K} - espace vectoriel V. Leur **somme** est un sous-ensemble de V défini par :

$$U_1 + U_2 = \{ \boldsymbol{u} \in V | \exists \boldsymbol{u_1} \in U_1, \exists \boldsymbol{u_2} \in U_2, \boldsymbol{u} = \boldsymbol{u_1} + \boldsymbol{u_2} \}.$$

Proposition 1.5

Soient U_1, U_2 deux sous-espaces vectoriels d'un \mathbb{K} - espace vectoriel V. $U_1 + U_2$ est un sous-espace vectoriel de V.

Exercice d'application 2 : Somme des deux axes du plan vectoriel \mathbb{R}^2 En utilisant les notations des exemples 1.2, montrer que $U_3 + U_5 = \mathbb{R}^2 \square$.

Définition 1.4 (Somme directe par unicité)

Soient U_1, U_2 des sous-espaces de V.

Leur somme est **directe** si $\forall v \in U_1 + U_2$,

$$\exists ! \ u_1 \in U_1, u_2 \in U_2 \ tel \ que \ v = u_1 + u_2.$$

Autrement dit, si $u_1 + u_2 = u_1' + u_2'$, où $u_i, u_i' \in U_i \ \forall \ 1 \leqslant i \leqslant 2$, alors $u_i = u_i'$, $\forall \ 1 \leqslant i \leqslant 2$.

Notation: $U_1 + U_2 = U_1 \oplus U_2$.

Proposition 1.6 (Somme directe caractérisée par l'intersection)

$$U_1 + U_2$$
 est directe $\Leftrightarrow U_1 + U_2 = U_1 \oplus U_2 \Leftrightarrow U_1 \cap U_2 = \{\mathbf{0}\}.$

Définition 1.5 (E.V. défini comme somme directe de deux s.e.v.) Soient V_1, V_2 des sous-espaces vectoriels d'un espace vectoriel V.

$$V = V_1 \oplus V_2 \Leftrightarrow V = V_1 + V_2 \text{ et } V_1 \cap V_2 = \{\mathbf{0}\}$$

FIG. 1.2 – À Gauche : La somme F+G est directe car $F\cap G$ est l'espace nul. , À Droite : La somme F+G n'est pas directe car $F\cap G$ n'est pas l'espace nul mais une droite.

Exercice d'application 3 : Matrices carrées réelles d'ordre 2

Une matrice réelle A d'ordre 2 est un tableau carré de réels a_{ij} avec $1 \leq i \leq 2$ et $1 \leq j \leq 2$, on note $A = (a_{ij})$, les indices i et j désignent respectivement le numéro de ligne et de colonne. Une matrice réelle A d'ordre 2 s'écrit donc sous la forme :

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right)$$

C'est une matrice ayant 2 lignes et 2 colonnes. Pour $1 \leq i, j \leq 2$, l'élément a_{ij} se trouve à l'intersection de la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne, on écrit alors $(A)_{ij} = a_{ij}$. L'ensemble des matrices carrées réelles d'ordre 2 sera noté $\mathcal{M}_2(\mathbb{R})$.

Égalité de deux matrices : Deux matrices carrées A et B sont égales si leurs éléments correspondants sont égales : $(A)_{ij} = (B)_{ij}, \forall 1 \leq i, j \leq 2$.

Somme de deux matrices : Soient $A = (a_{ij})$ et $B = (b_{ij})$ deux matrices carrées. La somme de A et B est la matrice carrée, notée A + B, définie par :

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}.$$

Produit d'une matrice par un réel : Le produit d'une matrice carrée $A=(a_{ij})$ par un réel α est une matrice carrée d'ordre 2 notée $\alpha \cdot A$ définie par :

$$\alpha \cdot A = \left(\begin{array}{cc} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{array} \right).$$

On pourra vérifier (c'est long mais pas difficile!) que $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$ est un \mathbb{R} -espace vectoriel.

On appelle matrice triangulaire supérieure(resp. inférieure) toute matrice A vérifiant $a_{21} = 0$ (resp. $a_{12} = 0$). Les ensembles de ces matrices seront notées respectivement $\mathcal{M}_2^{ts}(\mathbb{R})$ et $\mathcal{M}_2^{ti}(\mathbb{R})$.

- **1.** Montrer que $(\mathcal{M}_2^{ts}(\mathbb{R}), +, \cdot)$ et $(\mathcal{M}_2^{ti}(\mathbb{R}), +, \cdot)$ sont des espaces vectoriels sur \mathbb{R} .
- **2.** Montrer que toute matrice de $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$ peut être écrite sous la forme de somme de deux matrices l'une matrice triangulaire supérieure et l'autre matrice triangulaire inférieure. A-t-on l'unicité d'une telle somme?
- **3.** En déduire la nature de la somme $\mathcal{M}_2^{ts}(\mathbb{R}) + \mathcal{M}_2^{ti}(\mathbb{R})$ et déterminer $\mathcal{M}_2^{ts}(\mathbb{R}) \cap \mathcal{M}_2^{ti}(\mathbb{R})\square$.

1.2 Espaces vectoriels de dimension finie

Définition 1.6 (S.E.V engendré par une famille de vecteurs)

Soit $\{v_1, \ldots, v_n\}$ une famille de vecteurs dans V.

Le sous-espace de V engendré par la famille $\{v_1,\ldots,v_n\}$ est le sous-espace vectoriel :

$$Vect(\{\boldsymbol{v_1},\ldots,\boldsymbol{v_n}\}) = \{\sum_{i=1}^n \alpha_i \ \boldsymbol{v_i} \mid \alpha_i \in \mathbb{K}, \forall \ 1 \leqslant i \leqslant n\}.$$

où la somme $\sum_{i=1}^{n} \alpha_i \ v_i$ est appelée une **combinaison linéaire** des vecteurs de la famille $\{v_1, \ldots, v_n\}$. Les scalaires α_i qui appartiennent à \mathbb{K} sont appelés les **coefficients** de cette combinaison linéaire (abrégé par C.L.).

Soit U un sous-espace vectoriel de V. Si $U = Vect(\{v_1, \ldots, v_n\})$, alors $\{v_1, \ldots, v_n\}$ est dite une **famille génératrice** pour U ou bien U est **engendré** par la famille $\{v_1, \ldots, v_n\}$.

Définition 1.7

Soit $\{v_1, \ldots, v_n\}$ une famille de vecteurs dans V.

la famille $\{\boldsymbol{v_1},\dots,\boldsymbol{v_n}\}$ est une famille génératrice d'un s.e.v U de V si

$$\forall u \in U, \exists (\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n | u = \sum_{i=1}^n \alpha_i \ v_i$$

Notation 1.1 Par commodité, on notera $Vect(\{v_1, \ldots, v_n\})$ ou simplement $Vect(v_1, \ldots, v_n)$ le sous-espace vectoriel engendré par la famille $\{v_1, \ldots, v_n\}$.

Remarques et commentaires 1.2

- 1. $\forall \boldsymbol{u} \in V, Vect(\boldsymbol{u}) = \{\alpha \boldsymbol{u} \mid \alpha \in \mathbb{K}\}.$
- 2. \forall famille $\{v_1, \ldots, v_n\}$, $Vect(\{v_1, \ldots, v_n\}) = Vect(v_1) + \ldots + Vect(v_n)$.

Définition 1.8 (Indépendance linéaire)

Une famille de vecteurs $\{v_1, \ldots, v_n\}$ est libre ou linéairement indépendante si :

$$(\sum_{i=1}^{n} \alpha_i \ v_i = \mathbf{0}) \Rightarrow \alpha_i = 0, \ \forall \ 1 \leqslant i \leqslant n.$$

Si la famille ne vérifie pas cette condition, on dit qu'elle est **linéairement dépendante** ou **liée**.

Proposition 1.7 (Unicité des coefficients des C.L. pour les familles libres) Soit $\{v_1, \ldots, v_n\}$ une famille libre.

Si
$$\sum_{i=1}^{n} \alpha_i \ \mathbf{v_i} = \sum_{i=1}^{n} \beta_i \ \mathbf{v_i}$$
, alors $\alpha_i = \beta_i \ \forall \ 1 \leqslant i \leqslant n$.

Définition 1.9

Soit une famille $\mathcal{F} = \{v_1, \dots, v_n\}$, on dira que \mathcal{F}' est une sous-famille de \mathcal{F} (resp. sur-famille) si $\mathcal{F}' \subset \mathcal{F}$ (resp. $\mathcal{F} \subset \mathcal{F}'$).

Proposition 1.8 (Propriétés élémentaires)

- 1. (v) linéairement indépendante $\Leftrightarrow v \neq 0$.
- 2. (v, w) linéairement indépendante $\Leftrightarrow \exists \alpha \in \mathbb{K} \text{ tel que } v = \alpha w \text{ et } v \neq 0 \neq w.$
- 3. Si $w \in Vect(\{v_1, \ldots, v_n\})$, alors la famille $\{v_1, \ldots, v_n, w\}$ est linéairement dépendante.
- 4. Toute sous-famille d'une famille libre est libre.
- 5. Toute sur-famille d'une famille génératrice est génératrice.

Lemme 1.1 (Lemme du vecteur superflu) Soit $\{v_1, \ldots, v_n\}$ une famille linéairement dépendante de vecteurs de V, où $v_1 \neq 0$. Alors $\exists j \geq 2$ tel que :

$$v_j \in Vect(v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_n)$$

Définition 1.10 (Espace vectoriel de dimension finie)

Si $\exists \{v_1, \ldots, v_n\}$ telle que $V = Vect(\{v_1, \ldots, v_n\})$, alors V est de dimension finie. Sinon, V est de dimension infinie.

Proposition 1.9

Tout sous-espace U d'un espace vectoriel V de dimension finie est de dimension finie.

Définition 1.11 (Base=libre + génératrice)

Une famille $\{v_1,\ldots,v_n\}$ est une <u>base</u> de V si et seulement si :

Proposition 1.10 (Caractérisation d'une base)

 $\{v_1, \ldots, v_n\}$ est une base de V si et seulement si :

$$\forall \boldsymbol{v} \in V, \exists ! \ \alpha_1, \dots, \alpha_n \in \mathbb{K} \ tels \ que \ \boldsymbol{v} = \alpha_1 \boldsymbol{v_1} + \dots + \alpha_n \boldsymbol{v_n}.$$

Théorème 1.1 (Théorème du ballon)

- $-\frac{\text{"Gonfler"}}{\exists w_1, \ldots, w_r} \in V \text{ tels que } (v_1, \ldots, v_n, w_1, \ldots, w_r) \text{ soit une base de } V. \text{ Alors connue sous le nom "théorème de la base incomplète"}$
- <u>"Dégonfler"</u> : Soit $(\boldsymbol{v_1},\ldots,\boldsymbol{v_s})$ une famille génératrice pour V.

Alors \exists une sous-famille $(v_{i_1}, \ldots, v_{i_n})$, avec $n \leq s$, qui est une base de V. Note 9 : Théorème 1.2 (Existence de bases) Soit V un \mathbb{K} - espace vectoriel de dimension finie. Alors $\exists \{v_1, \ldots, v_n\}$ qui est une base de V. ×.....× Note **10**: Théorème 1.3 (Existence de compléments) Soit V un \mathbb{K} - espace vectoriel de dimension finie. Soit $U \subset V$ un sous-espace. Alors $\exists W$, sous-espace de V, tel que $U \oplus W = V$. Théorème 1.4 Soit V un \mathbb{K} - espace vectoriel de dimension finie. Alors toute base de V est de même longueur. Définition 1.12 (Dimension) Soit V un \mathbb{K} - espace vectoriel de dimension finie. La dimension (sur \mathbb{K}) de V, notée $\dim V$ (ou $\dim_{\mathbb{K}} V$), est la longueur d'une base de V. Proposition 1.11 (Égalité de deux s.e.v d'un même espace vectoriel)

Soit V un \mathbb{K} - espace vectoriel de dimension finie. Soit $U_1,U_2\subset V$ deux sous-espace vectoriels. Alors

 $(U_1 \subset U_2 \quad et \quad dim U_1 = dim U_2) \Leftrightarrow U_1 = U_2.$

Théorème 1.5 (Théorème de la borne)

Soit V un \mathbb{K} - espace vectoriel de dimension finie (dim V = n).

Si (u_1, \ldots, u_m) est une famille libre de V, alors $m \leq n$.

Si (u_1, \ldots, u_m) est une famille génératrice de vecteurs de V, alors $m \ge n$.

Proposition 1.12 (Proposition "deux en un"!)

Soit V un \mathbb{K} - espace vectoriel tel que dimV=n. Soit $\{v_1,\ldots,v_n\}$ une famille de vecteurs dans $V(donc\ de\ \underline{cardinal\ \'egal\ \`a}\ la\ \underline{dimension}\ de\ l'espace)$. Alors :

- si $\{v_1, \ldots, v_n\}$ est génératrice de V alors $\{v_1, \ldots, v_n\}$ est une base de V.
- si $\{v_1, \ldots, v_n\}$ est libre dans V alors $\{v_1, \ldots, v_n\}$ est une base de V.

Remarque 1.1 La proposition ci-dessus est intéressante car si une famille $\{v_1, \ldots, v_n\}$ de cardinal n la dimension de l'e.v. V, alors elle sera une base de V si et seulement si elle est génératrice de V <u>ou</u> libre dans V.

Proposition 1.13 (Interaction entre dimension et sommes de sous-espaces) Soit V un \mathbb{K} - espace vectoriel de dimension finie. Soient $U, W \subset V$ des sous-espaces. Alors :

$$dim(U+W) = dimU + dimW - dim(U \cap W).$$

Corollaire 1.1 Sous les hypothèses de la proposition précédente, on a

- La somme U + W est directe $\Leftrightarrow dim(U + W) = dimU + dimW$.
- $V = U \oplus W \Leftrightarrow V = U + W, U \cap W = \{0\} \Leftrightarrow U \cap W = \{0\}, dimU + dimW = dimV$ $\Leftrightarrow V = U + W, dimU + dimW = dimV.$

Remarque 1.2 (Remarque générale) La plupart des propriétés obtenues pour deux s.e.v peuvent être généralisées pour $n \ (n > 2)$ s.e.v, mais par souci de simplicité on a considéré dans ce cours seulement le cas n = 2.

Proposition 1.14 (Généralisation de la somme directe pour plusieurs s.e.v) Soient U_1, \ldots, U_n des sous-espaces d'un \mathbb{K} -espace vectoriel V de dimension finie.

Alors, si
$$\begin{cases} V = U_1 + \ldots + U_n \text{ et} \\ dim V = dim U_1 + \ldots + dim U_n \end{cases} , \text{ alors } V = U_1 \oplus \ldots \oplus U_n.$$

1.3 Méthodologie

1.3.1 Comment faire?

1.3.1.1 Comment montrer que F est \mathbb{K} -espace vectoriel?

En montrant l'une des propositions suivantes :

- Fest un $\mathbb{K}\text{-sous-espace}$ vectoriel d'un $\mathbb{K}\text{-espace}$ vectoriel connuE, soit
 - $0 \in F$:
 - $\ \forall (\lambda, \mu) \in \mathbb{K}^2, \ \forall (\mathbf{x}, \mathbf{y}), \ \mathbf{x} \in F \ \mathrm{et} \ \mathbf{y} \in F \implies \lambda \mathbf{x} + \mu \mathbf{y} \in F;$

- F est le sous-espace vectoriel engendré par une famille $(\mathbf{v}_1,\ldots,\mathbf{v}_p)$ de vecteurs, <u>i.e.</u> F est l'ensemble des combinaisons linéaires $\sum_{k=1}^p \lambda_k \mathbf{x}_k$ avec $(\lambda_1,\ldots,\lambda_p) \in \mathbb{K}^p$.

1.3.1.2 Comment montrer l'égalité de deux sous-espaces vectoriels F et G?

En utilisant l'une des propositions suivantes :

- la double inclusion : $F \subset G$ et $G \subset F$;
- une inclusion suffit si on possède un renseignement sur la dimension :

$$\dim(F) = \dim(G) \text{ et } F \subset G \implies F = G$$

1.3.1.3 Comment montrer que la famille $(\mathbf{v}_1, \dots, \mathbf{v}_p)$ est une base de E?

En utilisant l'une des propositions suivantes :

- la définition : la famille $(\mathbf{v}_1,\dots,\mathbf{v}_p)$ est une famille <u>libre</u> **et** <u>génératrice</u> de E :
- **une** seule propriété suffit si on possède un renseignement sur la dimension : $\dim(E) = p$ la famille $(\mathbf{v}_1, \dots, \mathbf{v}_p)$ est libre \Longrightarrow la famille $(\mathbf{v}_1, \dots, \mathbf{v}_p)$ est une base ; $\dim(E) = p$ la famille $(\mathbf{v}_1, \dots, \mathbf{v}_p)$ est génératrice \Longrightarrow la famille $(\mathbf{v}_1, \dots, \mathbf{v}_p)$ est une base.

1.3.1.4 Comment démontrer que $E = F \oplus G$?

En utilisant l'une des propriétés suivantes :

- la définition :

$$\forall \mathbf{x} \in E, \ \exists ! (\mathbf{y}, \mathbf{z}) \in F \times G, \ \mathbf{x} = \mathbf{y} + \mathbf{z}$$

- la caractérisation : E = F + G et $F \cap G = \{0\}$;
- **une** seule propriété suffit si on possède un renseignement sur la dimension :

$$\begin{aligned}
\dim(E) &= \dim(F) + \dim(G) \\
E &= F + G
\end{aligned} \implies E = F \oplus G; \\
\dim(E) &= \dim(F) + \dim(G) \\
F \cap G &= \{\mathbf{0}\}
\end{aligned} \implies E = F \oplus G;$$

1.3.2 Exercices

Exercice 1:

On note $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$

1. Montrer que F est un s.e.v. de \mathbb{R}^3 .

2. Déterminer une base de F.

Correction

- **1.** On commence par constater que $(0,0,0) \in F$.
- Soient u = (x, y, z) et u' = (x', y', z') deux éléments de F. On a donc x + y + z = 0 et x' + y' + z' = 0. Donc (x + x') + (y + y') + (z + z') = 0 et (x, y, z) + (x', y', z') = (x + x', y + y', z + z') = u + u' appartient à F.
- Soit $\lambda \in \mathbb{R}$ et $u = (x, y, z) \in \mathbb{R}^3$. Alors la relation x + y + z = 0 implique que $\lambda x + \lambda y + \lambda z = \lambda (x + y + z) = 0$ donc que $\lambda (x, y, z) = (\lambda x, \lambda y, \lambda z) = \lambda u$ appartient à F.

Des propriétés suivantes, on peut déduire que F est un s.e.v. de \mathbb{R}^3 .

- 2. Montrer
- 3. $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ $= \{(x, y, z) \in \mathbb{R}^3 \mid x = -y z\}$ $= \{(-y z, y, z), \text{ avec } y, z \in \mathbb{R}\}$ $= \{y(-1, 1, 0) + z(-1, 0, 1), \text{ avec } y, z \in \mathbb{R}\}$ = Vect((-1, 1, 0), (-1, 0, 1))

La famille B = ((-1, 1, 0), (-1, 0, 1)) est une famille naturellement génératrice de F et constitue une famille libre (coordonnées non proportionnelles) donc constitue une base. La dimension de F est donc égale à son cardinal 2.

Exercice 2:

Soit E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . Soient P le sous-espace des fonctions paires et I le sous-espace des fonctions impaires. Montrer que $E = P \bigoplus I$.

Correction La seule fonction qui est à la fois paire et impaire est la fonction nulle : $P \cap I = \{0\}$. Montrons qu'une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ se décompose en une fonction paire et une fonction impaire. En effet :

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.$$

La fonction $x \mapsto \frac{f(x)+f(-x)}{2}$ est paire (le vérifier!), la fonction $x \mapsto \frac{f(x)-f(-x)}{2}$ est impaire (le vérifier!). Donc P+I=E. On conclut donc que : $E=P\oplus I$.

Exercice 3:

Dans \mathbb{R}^3 , on donne les sous espaces : $\begin{cases} P = \{\overrightarrow{X} = (x, y, z) \text{ tq } x + y + z = 0\} \\ D = \text{vect}(\overrightarrow{U} = (1, 1, 2)). \end{cases}$

- 1. Déterminer $\dim P$ et en donner une base. Préciser la dimension de D.
- **2.** Démontrer que $P \oplus D = \mathbb{R}^3$.

Correction

- 1. P est un plan de dimension 2(voir exer. 1), D est une droite de dimension 1.
- 2. Il suffit de vérifier que $P \cap D = \{0\}$, pour cela il suffit de remarquer que $\overrightarrow{U} \notin P$