Лекция 2 Введение в теорию стохастического интегрирования. Часть I

Финансовая математика

Евгений Лукаш | ЦМФ МГУ

Введение

Эта лекция — наиболее теоретическая из всего курса. На ней будут рассмотрены базовые идеи из теорий меры и вероятностей, позволяющие перейти к стохастическому интегрированию и сопутствующему корпусу идей из теории случайных процессов, которые будут рассмотрены в следующей лекции, и которые станут, в свою очередь, основой для изложения теории интеграла Ито.

Случайные величины

Рассмотрим простейший эксперимент, заключающийся в подбрасывании монеты. Для того, чтобы проанализировать его математически, нам необходимо сопоставить каждый исход с, например, некоторым числом.

Так, мы можем записывать «1» при выпадении орла и «0» при выпадении решки. Тогда мы получим случайную величину $X=X(\omega)\in\{0,1\}$, где ω принадлежит пространству исходов $\Omega=\{\text{орел, решка}\}.$

Более абстрактно, мы всегда определяем некоторое пространство исходов Ω , содержащее в себе все возможные исходы. С точки зрения такого подхода, любая случайная величина X, определенная на этом пространстве исходов, представляет собой ничто иное, как функцию $X=X(\omega)$.

Следующим шагом становится вероятностное описание величины X. Для этого необходимо введение нового понятия.

σ -АЛГЕБРЫ

Определение

Будем называть σ -алгеброй $\mathcal F$ на Ω набор подмножеств Ω , удовлетворяющий следующим условиям:

- ullet Он непуст: $\emptyset \in \mathcal{F}$ и $\Omega \in \mathcal{F}$.
- ullet Если $A \in \mathcal{F}$, то $A^c = \Omega \setminus A \in \mathcal{F}$
- ullet Если $A_1,A_2,...\in\mathcal{F}$, то

$$\bigcup_{i=1}^{\infty}A_{i}\in\mathcal{F}$$
и $\bigcap_{i=1}^{\infty}A_{i}\in\mathcal{F}$

Теорема

Для произвольного заданного набора C подмножеств Ω существует наименьшая σ -алгебра $\sigma(C)$, содержащая C. Такая σ -алгебра называется σ -алгеброй, порожденной C.

Для того, чтобы найти эту σ -алгебру, достаточно, рассмотрев все σ -алгебры, содержащие событие C, взять их пересечение.

Понятие измеримости (немного забежим вперед)

Пример

Рассмотрим следующий пример: подбрасываются два шестигранных кубика, после чего сообщается сумма очков на выпавших гранях. В каких случаях мы можем точно определить, какие именно цифры выпадали (без учета порядка выпадения):

- Сумма очков равна 12,
- Сумма очков равна 3,
- Сумма очков равна 7?

При такой постановке задачи у нас будут события от 2 до 12, при этом восстановить событие, касающееся конкретного распределения очков, мы сможем лишь в четырех случаях. Если же, например, предположить, что сначала сообщается сумма очков, а затем остаток очков на первом кубике при делении на 5, мы получаем больше информации, и в связи с этим можем угадать более мелкое событие с большей точностью. Соответственно, можно всегда сказать, что произошло событие Ω , так как это наиболее грубая информация, а наибольшей точностью будет обладать информация об исходах из множества Ω .

В дальнейшем все наши рассмотрения будут вестись на некотором вероятностном пространстве

$$(\Omega,\mathcal{F},\mathbb{P}),$$

где

 Ω — пространство элементарных событий (состояний мира),

 \mathcal{F} — σ -алгебра подмножеств Ω (совокупность событий),

 \mathbb{P} — вероятность, вероятностная мера на \mathcal{F} .

Определение

Будем называть фильтрацией такой набор σ -алгебр $\mathbb{F}=(\mathcal{F}_n)_{n\geq 0}$, что $\mathcal{F}_0\subset\mathcal{F}_1\subset...\subset\mathcal{F}_n...\subset\mathcal{F}$

Такой объект нами рассматривается в связи с его интерпретацией, как потока событий. Таким образом, можно сказать, что \mathcal{F}_n отображает всю доступную наблюдателю информацию о рынке в момент времени n.

Таким образом, в основе наших моделей будет лежать фильтрованное вероятностное пространство (называемое также стохастическим базисом):

$$(\Omega,\mathcal{F},(\mathcal{F}_n)_{n>0},\mathbb{P})$$

База для использования описанной модели: Интегри-**РОВАНИЕ**

Необходимо понять, что представляет собой выражение вида

$$\int\limits_X f(x) d\mu(x)$$

Определение

Для произвольного множества $A \subset X$ индикатор I_A (иногда - 1_A) определен соотношением

$$I_A(X) = \left\{ \begin{array}{ll} 1, & \text{если} & x \in A, \\ 0, & \text{если} & x \in A^c. \end{array} \right.$$

С использованием этой концепции можно определить интеграл выше следующим образом, предполагая, что $f = cI_A$:

$$\int\limits_{Y}f(x)d\mu(x)=\int cI_{A}(x)d\mu(x)=c\mu(A),$$

иначе говоря, с помощью интуитивной идеи «площади под графиком». Конечно же, в случае, если множество A не является σ -измеримым, то правая часть формулы просто не определена.

Определение

Отображение $f:X \to \mathbb{R}$ называется простым, если оно может быть записано в виде:

$$f(x) = \sum_{i=1}^n c_i I_{A_i}(x),$$

где множества A_1, \dots, A_n измеримы, а $c_1, \dots c_n$ — вещественные числа.

Определение

Для простой функции интеграл определен соотношением

$$\int\limits_X f(x)d\mu(x) = \sum_{i=1}^n c_i \mu(A_i)$$

Очевидно, не все функции являются простыми. Тем не менее, простыми функциями можно аппроксимировать функции, не относящиеся к этому классу. Для некоторой неотрицательной функции f можно произвести действия в два шага: (1) аппроксимировать f снизу простыми функциями, т.е., найти последовательность простых функция, стремящихся снизу к f, (2) определить интеграл от f как предел интегралов от аппроксимирующих простых функций.

Измеримость

Конечно, не все функции можно аппроксимировать с помощью простых функций, поэтому определение интеграла, данное выше, будет действительно только для определенного класса функций, который мы назовем измеримым.

Определение

Функция $f:X\to\mathbb{R}$ является \mathcal{F} -измеримой, если для любого интервала $I\subset\mathbb{R}$ выполняется включение $f^{-1}(I)\in\mathcal{F}$, т.е., если

$$\{x\in X; f(x)\in I\}\in \mathcal{F}$$

для всех интервалов I. В этом случае мы часто пишем $f \in \mathcal{F}$.

Для проверки функции на измеримость оказывается удобным использование следующих эквивалентных свойств:

- 1. функция f является \mathcal{F} -измеримой;
- 2. $\{f(x) < \alpha | x \in X\} \in \mathcal{F} \forall \alpha \in \mathbb{R};$
- 3. $\{f(x) \le \alpha | x \in X\} \in \mathcal{F} \forall \alpha \in \mathbb{R};$
- 4. $\{f(x) > \alpha | x \in X\} \in \mathcal{F} \forall \alpha \in \mathbb{R};$
- 5. $\{f(x) \ge \alpha | x \in X\} \in \mathcal{F} \forall \alpha \in \mathbb{R};$

Измеримость

Важным результатом является то, что измеримость сохраняется при наиболее общих операциях.

Утверждение

Пусть даны некоторые измеримые функции, определенные на измеримом пространстве (X,\mathcal{F}) . Тогда справедливы следующие утверждения:

1. Для всех вещественных чисел α и β функции

$$\alpha f + \beta g, f \cdot g$$

измеримы.

- 2. Если $g \neq 0$ для всех x, то f/g измеримая функция.
- 3. Если $\{f_n\}_{n=1}^\infty$ последовательность измеримых функций, то функции $\sup_n f_n, \inf_n f_n, \limsup_n f_n, \liminf_n f_n$

измеримы. lim lim

Интегрирование: продолжение

Определение

Пусть $f:X\to\mathbb{R}$ — неотрицательная измеримая функция, определенная на пространстве с мерой (X,\mathcal{F},μ) . Интеграл от функции f по мере μ по пространству X определяется соотношением

$$\int\limits_X f(x)d\mu(x)=\sup\limits_\varphi\int\limits_X \varphi(x)d\mu(x),$$

где супремум берется по классу таких простых функций φ , что $0 \le \varphi \le f$.

После этого несложно доказать аналогичные утверждения и для функций, которые могут быть отрицательными. Для этого применяется стандартное разложение функции:

$$f = f^+ - f^-,$$

гле

$$f^+ = \max[f,0], \ \ f^- = \max[-f,0].$$

Остальное следует из выведенных на предыдущем слайде свойств измеримых функций.

Определение интегрируемой функции

Определение

Измеримая функция f интегрируема, что будет обозначаться $f \in L^1(X,\mathcal{F},\mu)$, если

$$\int X|f(x)|d\mu(x) < \infty.$$

Для интегрируемой функции f интеграл по X определен соотношением

$$\int X f(x) d\mu(x) = \int X f^+(x) d\mu(x) - \int X f^-(x) d\mu(x)$$

Если A — произвольное измеримое множество, то интеграл от функции f по множеству A определен соотношением

$$\int X f(x) d\mu(x) = \int X I_A(x) f(x) d\mu(x).$$

Вместо $\int X f(x) d\mu(x)$ будет часто писаться $\int\limits_{X} f d\mu$.

Свойства интегралов

Утверждение 1

Для любых $f,g\in L^1(X,\mathcal{F},\mu)$ и любых $\alpha,\beta\in\mathbb{R}$ справедливо равенство

$$\int\limits_{Y}(\alpha f(x)+\beta g(x))\mu(dx)=\alpha\int\limits_{Y}f(x)\mu(dx)+\beta\int\limits_{Y}g(x)\mu(dx).$$

Утверждение 2

Если $f(x) \le g(x)$ для всех x, то

$$\int\limits_X f(x)\mu(dx) \leq \int_X g(x)\mu(dx).$$

Утверждение 3

Для любой функции из L^1 справедлива оценка

$$\left| \int\limits_X f(x)\mu(dx) \right| \le \int\limits_X |f(x)|\mu(dx).$$

Производная Радона-Никодима

Определение

Рассмотрим измеримое пространство (X,\mathcal{F}) , на котором определены две различные меры μ и ν . Если для всех $A\in\mathcal{F}$ выполнено

$$\mu(A)=0 \Rightarrow \nu(A)=0,$$

то говорят, что мера ν абсолютно непрерывна относительно μ на $\mathcal F$ и обозначают это в виде $\nu \ll \mu$.

Если $\nu \ll \mu$ и $\mu \ll \nu$, то говорят, что меры μ и ν эквивалентны, и обозначают это $\mu \sim \nu$.

Если существуют два таких события A и B, что

- 1. $A \cap B = \emptyset$,
- 2. $\mu(B) = 0$ и $\nu(A) = 0$,

то говорят, что меры μ и ν взаимно сингулярны, и обозначают это $\mu \perp \nu$.

Нас интересует задача о построении мер, абсолютно непрерывных относительно исходной меры μ .

Производная Радона-Никодима

Теорема

Рассмотрим пространство с мерой (X,\mathcal{F},μ) и предположим, что мера μ финитна, то есть, $\mu(X)<\infty$. Предположим, что существует такая мера ν на (X,\mathcal{F}) , что $\nu\ll\mu$ на \mathcal{F} . Тогда существует такая неотрицательная функция $f:X\to\mathbb{R}$, что

$$f$$
 является $\mathcal{F}-$ измеримой,
$$\int\limits_X f(x)d\mu(x)<\infty,$$

$$\nu(A)=\int\limits_A f(x)d\mu(x) \forall A\in\mathcal{F}.$$

Функция f называется производной Радона-Никодима меры ν относительно меры μ . Эта функция однозначно определена μ и

$$f(x) = \frac{d\nu(x)}{d\mu(x)},$$

или

$$d\nu(x) = f(x)d\mu(x).$$

Теорема Радона-Никодима

Теорема Радона-Никодима очень важна в теории математических финансов, так как для построения большей части формул требуется непрерывное преобразование меры. Также очень часто используется теорема Гирсанова, которая является фундаментальным результатом теории стохастического анализа.

Суть теоремы состоит в том, что процессу со сносом можно сопоставить некоторый эквивалентный процесс без сноса в другой вероятностной мере.

Подробно изучить данную теорему можно будет на курсе, посвященном оценке деривативов, следующим сразу за этим курсом. Сейчас же мы перейдем к теории стохастического интегрирования.

Теория вероятностей

Как уже утверждалось выше, вероятностное пространство представляет собой пространство с мерой $\Omega, \mathcal{F}, \mathbb{P}$, имеющее общую массу, равную единице, то есть,

$$\mathbb{P}(\Omega) = 1.$$

При этом элементы сигма-алгебры называют событиями.

Определение

Случайная величина X — это $\mathcal F$ -измеримое отображение

$$X:\Omega\to\mathbb{R}.$$

Определение

Распределение μ_x случайной величины X представляет собой меру на $\mathbb{R},\mathcal{B},$ определенную соотношением

$$\mu_X(B) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B},$$

т.е.,

$$\mu_X(B)=\mathbb{P}(X^{-1}(B)).$$

Функция распределения случайной величины X обозначается, как F_X и задается соотношением

$$F_X(x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \leq x\}).$$

Введение в теорию стохастического интегрирования

Оказывается, что наиболее математически полная и соответствующая реальности теория возникает при использовании процессов диффузии и стохастических дифференциальных уравнений. Зададим сначала определение диффузии:

Определение (нестрогое)

Случайный процесс X называется диффузией, если локально его динамика можеть быть аппроксимирована стохастическим разностным уравнением:

$$x(T+\Delta t)-X(t)=\mu(t,X(t))\Delta t+\sigma(t,X(t))Z(t),$$

где Z(t) представляет собой нормально распределенный случайный шум, который не зависит от происходящего до момента t, а функции μ и σ являются заданными и детерминированными.

Иначе говоря, идея приведенного определения заключается в том, что на интервале времени $[t,t+\Delta t]$ эволюция процесса X определяется двумя силами:

- локально детерминированная скорость $\mu(t,X(t))$
- гауссовское возмущение с коэффициентом $\sigma(t,X(t))$.

Функция μ называется сносом процесса, а σ называется коэффициентом диффузии.

Винеровский процесс

Для моделирования гауссовских возмущений очень удобным будет использование винеровского процесса (броуновского движения).

Определение

Случайный процесс представляет собой набор случайных величин $X=\{X_t; 0\leq t<\infty\}$, определенных на множестве (Ω,\mathcal{F}) . Для фиксированного $\omega\in\Omega$ функция $t\mapsto X_t(\omega); t\geq 0$ называется траекторией процесса X, соответствующей исходу ω .

Определение

Случайный процесс W называется винеровским процессом, если:

- 1. W(0) = 0;
- 2. процесс W имеет независимые приращения, т.е. если $r < s \le t < u$, то W(u) W(t) и W(s) W(r) независимые случайные величины;
- 3. для s < t случайная величина W(t) W(s) имеет нормальное распределение: $W(t) W(s) \sim N[0, \sqrt{t-s}];$
- 4. процесс W имеет непрерывные траектории.

Винеровский процесс: использование

Теперь мы можем переписать приведенное выше определение диффузионного процесса в следующем виде:

$$X(t+\Delta t)-X(t)=\mu(t,X(t))\Delta t+\sigma(t,X(t))\Delta W(t),$$
 где $\Delta W(t)=W(t+\Delta t)-W(t).$

Хотелось бы попробовать разделить это равенство на Δt и устремить Δt к нулю. Мы бы получили соотношение

$$\dot{X}(t) = \mu(t,X(t)) + \sigma(t,X(t))\nu(t),$$

где $\nu(t)$ определен, как

$$\nu(t) = \frac{dW}{dt}$$

и обозначает формальную производную по времени винеровского процесса W, а после этого приписать также X(0)=a.

Затем, если бы проделанные выше манипуляции были бы корректными, можно было бы воспользоваться привычными методами из теории обыкновенных дифференциальных уравнений, и решить уравнение для каждой траектории ν . Однако, к сожалению, несложно показать, что с вероятностью 1 траектория винеровского процесса нигде не дифференцируема, так что процесс ν не определен.

Винеровский процесс: использование

Можно попытаться идти другим путем и рассматривать предел уравнения из определения диффузии при $\Delta t \to 0$ без деления на Δt , что приведет нас к

$$\begin{cases} dX(t) = \mu(t, X(t))dt + \sigma(t, X(t))dW(t), \\ X(0) = a, \end{cases}$$

которое будет логичным интерпретировать, как краткую запись интегрального уравнения

$$X(t) = a + \int\limits_0^t \mu(s,X(s))ds + \int\limits_0^t \sigma(s,X(s))dW(s).$$

При этом левая часть в принципе является обычным интегралом по Риману, которым мы пользуемся почти всегда, а вот правая часть, интеграл относительно dW, мог бы трактоваться, как интеграл для каждой траектории W. Оказывается, что невозможно и это, так как траектории процесса W не только нигде не дифференцируемы, но и не обладают локально ограниченной вариацией.

Продолжать попытки задать уравнение диффузии для каждой из ее траекторий оказывается бессмысленным, зато плодотворным будет введение нового определения интеграла — так называемого интеграла Ито.

База для определения интеграла Ито

Далее нас будет интересовать определение интегралов вида

$$\int_{0}^{t} g(s)dW(s).$$

Такие интегралы мы будем называть интегралами Ито. С помощью них мы попробуем построить соответствующее их определению дифференциальное исчисление и научиться решать стохастические дифференциальные уравнения.

Информация

Определение

Символом \mathcal{F}^X_t мы обозначим информацию, порожденную процессом X на интервале времени [0,t]. Если на основании наблюдений за траекторией $\{X(s),s\leq t\}$ можно принять решение о том, произошло ли событие A или нет, то запишем это в виде

$$A\in\mathcal{F}^X_t$$

или скажем, что A является \mathcal{F}_t^X -измеримым.

Если значение данной случайной величины Z можно полностью определить на основании наблюдений за траекторией $\{X(s), 0 \leq s \leq t\}$, то будем записывать это в виде

$$Z\in \mathcal{F}^X_t.$$

Если Y — такой случайный процесс, что $Y(t) \in \mathcal{F}^X_t$ для всех $t \geq 0$, то будем говорить, что Y согласован с фильтрацией $\left\{\mathcal{F}^X_t\right\}_{t\geq 0}$ или адаптирован к этой фильтрации.9

Для внимательного слушателя предыдущей лекции, конечно же, очевидно, что речь идет о концепциях сигма-алгебры, фильтрации и измеримости.

Стохастические интегралы

Теперь попробуем сконструировать стохастический интеграл. Для этого рассмотрим винеровский процесс W и некоторый стохастический процесс g. Нам потребуется ввести определенные условия интегрируемости, накладываемые на функцию g. Оказывается, что наиболее удобным для этого оказывается класс \mathcal{L}^2 .

Определение

- а) Говорят, что процесс g принадлежит классу $\mathcal{L}^2[a,b]$, если удовлетворены следующие условия:
 - $-\int_{a}^{b}\mathbb{E}[g^{2}(s)]ds<\infty;$
 - процесс g согласован с фильтрацией \mathcal{F}_t^W ю
- б) Говорят, что процесс g принадлежит классу \mathcal{L}^2 , если $g\in\mathcal{L}^2[0,t]$ для всех t>0.

Теперь определим стохастический интеграл $\int_0^t g(s)dW(s)$ для процесса $g\in\mathcal{L}^2[a,b]$, что можно осуществить в два этапа.

Определение стохастического интеграла I

Предположим, что процесс $g \in \mathcal{L}^2[a,b]$ простой (вспомним определение простых функций, данное в одном из слайдов этой лекции), то есть, что существует некоторое разбиение отрезка на подотрезки, такое что g является константой на каждом из них. Тогда стохастический интеграл можно определить формулой вида

$$\int\limits_{a}^{b}g(s)dW(s)=\sum_{k=0}^{n-1}g(t_{k})[W(t_{k+1}-W(t_{k}))]$$

Далее все аналогично доказательству интегрируемости функций (переход к пределу от простых функций):

1. Аппроксимируем процесс g последовательностью простых процессов так, чтобы

$$\int\limits_a^b \mathbb{E}\left[(g_n(s)-g(s))^2\right]ds \to 0$$

2. Для каждого n интеграл $\int_a^b g_n(s)dW(s)$ представляет собой корректно определенную случайную величину Z_n , и можно доказать, что существует такая случайная величина Z, что $Z_n \to Z$ (в \mathcal{L}^2) при $n \to \infty$.

Стохастический интеграл и его свойства

Теперь стохастический интеграл можно определить соотношением

$$\int\limits_a^b g(s)dW(s) = \lim\limits_{n \to \infty} \int\limits_a^b g_n(s)dW(s)$$

Приведем некоторые важные свойства стохастического интеграла:

Предложение

Пусть случайный процесс g адаптирован к фильтрации \mathcal{F}^W_t и принадлежит к $\mathcal{L}^2[a,b]$. Тогда справедливо

$$\mathbb{E}\left[\int_a^b g(s)dW(s)\right] = 0$$

$$\mathbb{E}\left[\left(\int_a^b g(s)dW(s)\right)^2\right] = \int_a^b \mathbb{E}[g^2(s)]ds$$

интеграл $\int\limits_a^s g(s)dW(s)$ является F_b^W -измеримым. Доказательство проводится с использованием аппроксимации простыми функциями.

Мартингалы

Практически вся современная теория финансовых производных использует теорию мартингалов. Учитывая наши теоретические выкладки по теории меры, мы можем, наконец, дать определение этому математическому объекту.

Определение

Случайный процесс X называется \mathcal{F}_t -мартингалом, если выполняются следующие условия:

- Процесс X согласован с фильтрацией $\left\{\mathcal{F}_t\right\}_{t\geq 0}$
- ullet Для всех t выполняется неравенство

$$\mathbb{E}\left[|X(t)|\right] < \infty$$

 $\bullet\,$ Для всех таких s и t, что $s\leq t,$ справедливо следующее соотношение:

$$\mathbb{E}\left[X(t)|\mathcal{F}_{s}\right] = X(s)$$

При этом процесс X, удовлетворяющий для всех s и $t,s \leq t$ неравенству $\mathbb{E}\left[X(t)|\mathcal{F}_s\right] < X(s)$

называется супермартингалом, а процесс X, удовлетворяющий неравенству $\mathbb{E}\left[X(t)|\mathcal{F}_{c}\right] > X(s)$

называется субмартиналом.

Мартингалы

Итак, наиболее важным является условие, заключающееся в тм, что математическое ожидание любого из будущих значений мартингала при наличии информации, доступной сегодня, равно сегодняшнему значению X.

Предложение

Для любого процесса $g \in \mathcal{L}^2[s,t]$ справедливо равенство

$$\mathbb{E}\left[\int_{s}^{t}g(u)dW(u)|F_{s}^{W}\right]=0$$

Следствие

Для любого процесса $g \in \mathcal{L}^2[s,t]$ процесс X, определенный соотношением

$$X(t) = \int_{0}^{t} g(s)dW(s),$$

является \mathcal{F}^W_t -мартингалом. Другими словами, с точностью до условий интегрируемости каждый стохастический интеграл является мартингалом.

Стохастическое исчисление и формула Ито

Пусть X — случайный процесс, и существуют константа a и два адаптированных процесса μ и σ , для которых при всех $t\geq 0$ выполняется соотношение

$$X(t) = a + \int\limits_0^t \mu(s) ds + \int\limits_0^t \sigma(s) dW(s)$$

Более удобно записывать это уравнение в виде

$$\begin{split} dX(t) &= \mu(t)dt + \sigma(t)dW(t), \\ X(0) &= a. \end{split}$$

В этом случае будем говорить, что процесс X имеет стохастический дифференциал приведенного выше вида и удовлетворяет начальному условию X(0)=a.

Теперь предположим, что процесс X имеет стохастический дифференциал, представляющий из себя сумму локального детерминированного сноса $\mu(t)dt$ и аддитивного гауссовского шума $\sigma(t)dW(t)$. Предположим, далее, что нам задана функция $f\in C^{1,2}f:\mathbb{R}_+\prod\mathbb{R}\to\mathbb{R}$, и определим новый процесс Z по формуле

$$Z(t) = f(t, X(t))$$

Как будет выглядеть локальная динамика процесса Z?

Формула Ито: предпосылки

Интуитивно можно предположить, что процесс Z не будет иметь стохастического дифференциала, так как функция может лишить гауссовский шум его свойства аддитивности, будучи, например, нелинейной.

Однако оказывается, что структура стохастического дифференциала сохраняется (в непрерывном времени) и при сложных нелинейных отображениях, и задается она формулой Ито.

Для начала рассмотрим некоторые эвристические утверждения, интуитивно подводящие нас к формуле Ито.

Формула Ито: предпосылки

Рассмотрим два момента времени s и t, где s < t и воспользуемся обозначениями

$$\Delta t = t - s,$$

$$\Delta W(t) = W(t) - W(s).$$

Поскольку приращения винеровского процесса распределены нормально, мы можем использовать следующие свойства:

$$\mathbb{E} [\Delta W] = 0,$$

$$\mathbb{E} [(\Delta W)^2] = \Delta t,$$

$$\operatorname{Var} [\Delta W] = \Delta t,$$

$$\operatorname{Var} [(\Delta W)^2] = 2(\Delta t)^2$$

Отсюда видно, что квадрат приращения винеровского процесса имеет математическое ожидание, равное приращению времени Δt . Кроме того, важно то, что дисперсия квадрата приращения пренебрежимо мала по сравнению с ее математическим ожиданием.

Иными словами, при устремлении Δt к нулю мы будем ожидать, что $(\Delta W(t))^2$ будет стремиться к нулю намного быстрее, чем математическое ожидание, и в пределе мы должны будем получить

$$\left[dW(t)\right]^2 = dt.$$

Формула Ито

Несмотря на то, что полученный нами результат является верным, метод его получения математически неточен. Однако доказательство его достаточно сложно, поэтому мы примем этот результат как данный и приведем основной результат стохастического исчисления — формулу Ито.

Теорема (формула Ито)

Предположим, что процесс X имеет стохастический дифференциал вида

$$dX(t) = \mu(t)dt + \sigma(t)dW(t),$$

где μ и σ — адаптированные процессы, и пусть f — функция класса $C^{1,2}$. Определим процесс Z соотношением Z(t)=f(t,X(t)). Тогда Z имеет стохастический дифференциал вида

$$df(t,X(t)) = \left\{\frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial x} + \frac{1}{2}\sigma^2 \frac{\partial^2 f}{\partial x^2}\right\} dt + \sigma \frac{\partial f}{\partial x} dW(t)$$

Такое разложение может быть получено с помощью формулы Тейлора, примененной к процессу Z (с точностью членов второго порядка малости).

Формула Ито

где использовано

Предложение (формула Ито)

В предположениях теоремы дифференциал df имеет вид

$$df = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} dX + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (dX)^2,$$

$$\begin{cases} (dt)^2 = 0, \\ dt \cdot dW = 0, \\ (dW)^2 = dt \end{cases}$$

Приведем пример использованя леммы Ито: вычислим $\mathbb{E}[W^4(t)]$.

Определим Z соотношением $Z(t)=W^4(t)$. Тогда Z(t)=f(t,X(t)), где X=W и f имеет вид $f(t,x)=x^4$. Стохастический дифференциал представляет собой равенство dX=dW, что означает $\mu=0$ и $\sigma=1$. Далее

$$\frac{\partial f}{\partial t} = 0, \quad \frac{\partial f}{\partial x} = 4x^3, \quad \frac{\partial^2 f}{\partial x^2} = 12x^2$$

Из формулы Ито следует, что

$$dZ(t) = 6W^2(t)dt + 4W^3(t)dW(t), \quad Z(0) = 0$$

Формула Ито: пример применения

Запишем полученное в интегральном виде

$$Z(t) = 0 + 6 \int_{0}^{t} W^{2}(s)ds + 4 \int_{0}^{t} W^{3}(s)dW(s).$$

Вычислим математическое ожидание обеих частей: в силу предложения со слайда о мартингалах стохастический интеграл даст нулевой вклад. Затем имеем

$$\mathbb{E}[Z(t)] = 6\int\limits_0^t \mathbb{E}[W^2(s)]ds$$

Учитывая, что $\mathbb{E}[W^2(s)] = s$, получаем

$$\mathbb{E}[W^{4}(t)] = \mathbb{E}[Z(t)] = 6 \int_{0}^{t} s ds = 3t^{2}$$

Программа следующей лекции

- Многомерная формула Ито
- Геометрическое броуновское движение и решение соответствующего уравнения
- Вывод уравнения Блэка-Шоулза.