Regularization

The goal of supervised learning is generalization

- We minimize error on a training set
 - o using a *really* complex model
- But we care about the error on a (future) test set
 - o want to fit the signal, not the noise
- Why not use a simpler model?
 - o it doesn't work as well

Model complexity matters

- Too simple a model "underfits"
 - It fails to capture the signal in the data

Bias

- Simple models can underfit
 - weights are systematically too small

Model complexity matters

- Too complex a model "overfits"
 - It fits the noise in the data, and so generalizes poorly

Variance

- Complex models can overfit
 - Fites the noise in the data

Picking the right model complexity

https://images.deepai.org/

The "right" complexity generalizes best

- Too simple a model "underfits"
 - It fails to capture the signal in the data
- Too complex a model "overfits"
 - It fits the noise in the data, aad so general

<u>colab</u>

Generalization and Overfitting

- Deep learning often uses more parameters than observations
 - 'should' massively overfit
- Deep learning on images (Zhang, Bengio, Hardt, Recht, and Vinyalsn 2017)
 - o gives 0 training error -- and small test error
 - o gives 0 training error with randomized labels
- GPT-3 (175B params trained on 500B words) seems to memorize a lot
 - Q. What do you call a droid that takes the long way around?
 - A. R2 detour.

Regularization is key

- Modern neural nets don't overfit as much as one might expect
 - often trained with similar numbers of weights and observations
- Best accuracy from giant networks with lots of regularization
 - o best: combine many different regularizations

Today: Regularization

- Regularization controls overfitting in overparameterized models
- Regularization by
 - shrinking: L1, L2, early stopping
 - data augmentation
 - o SGD
 - dropout
- Hyperparameter tuning is critical and expensive
- Adversarial attacks
 - defense via regularization

Overparameterization and Overfitting

Overparameterization

- If you have more adjustable parameters than you have observations, you can generally fit the training data perfectly
 - E.g. 100 patients, each with an image with 40,000 voxels
- What happens when to try to use linear regression with more features than observations?

Regularization is Shrinkage

Shrinkage is Regularization

- We'll see many ways to shrink parameters
 - L2 penalties
 - set some of them to zero
- Smaller weights
 - regularize more
 - give smoother models
 - give models with lower "capacity"
 - o fit the noise less well

Shrinkage is Regularization

Fit
$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

with a ridge penalty of 0, 0.5, or 5,000

higher penalty = smoother prediction

colab

Shrinkage is Regularization

Fit
$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

with a ridge penalty of 0, 0.5, or 5,000 $\|\mathbf{c}\|_{2}$ 518, 17 0.5

higher penalty = smaller weights

colab

Generalization and overfitting

Generalization and Overfitting

- Deep learning often uses more parameters than observations
 - o 'should' massively overfit
- Deep learning on CIFAR10 and IMAGENET
 - gives 0 training error -- and small test error
 - o gives 0 training error with randomized labels

Zhang, Bengio, Hardt, Recht, and Vinyalsn 2017

Regularization via early stopping

Early stopping

- Initialize with small weights
- These get bigger as you do gradient descent
- Stop when they are the 'optimal' size