Calculating Cosine and Sine

The Hackett Series

Cosine Example of Hackett Series (7 Iterations)

$$g(x) = 2x^2 - 1$$

$$f(x) = g(g(g(g(g(g(x \bmod \tau / 2^7)))))))$$

Output Graph:

Sine Example of Hackett Series (7 Iterations)

$$g(x) = 3x - 4x^3$$

$$f(x) = g(g(g(g(g(g(x mod \tau / 3^7)))))))$$

Output Graph:

Hackett Series

$$\cos\left(x
ight)=\lim_{n o\infty}x_n, x_1=rac{x_1\ mod\ au}{2^n}, x_n=2x_{n-1}^2-1$$

$$\sin(x) = \lim_{n o \infty} x_n, x_1 = \frac{x_1 \; mod \; au}{3^n}, x_n = 3x_{n-1} - 4x_{n-1}^3$$

$$\pi = \lim_{n o \infty} 2^{n+1} \sqrt{2 - x_n} \, , x_1 = 0 \, , x_n = \sqrt{2 + x_{n-1}}$$

$$au = \lim_{n o \infty} 2^{n+2} \sqrt{2 - x_n} \, , x_1 = 0 \, , x_n = \sqrt{2 + x_{n-1}}$$

$$\sin(x) = \cos\left(x - \frac{\pi}{2}\right), \cos(x) = \sin\left(x + \frac{\pi}{2}\right), \tan(x) = \frac{\sin(x)}{\cos(x)}$$

Cosine Source Code in C int n = 10; // Precision double cos(double x) x = fmod(x, tau) / (1 << n);for (int i = 0; i < n; ++i) x = (x + x) * x - 1;return x;

Sine Source Code in C

```
double sin(double x)
  x = fmod(x, tau) / pow(3, n);
  for (int i = 0; i < n; ++i)
      x = 3 * x - 4 * x * x * x;
  return x;
```

Pi Source Code in C

```
double pi()
  double p = 0;
  for (int i = 0; i < n; ++i)
    p = sqrt(2 + p);
  return sqrt(2 - p) * (1 << n + 1);
```

Tau Source Code in C

```
double tau()
  double p = 0;
  for (int i = 0; i < n; ++i)
    p = sqrt(2 + p);
  return sqrt(2 - p) * (1 << n + 2);
```