IO 21000 Board Interface and a study of Reed-Solomon Code and circuit design

Speaker: Chi-Lin Huang, Hong-fu Chou

Advisor: Prof. Kwang-Cheng Chen, Prof. Mao-Chao Lin

Outline

- Interface of IO 21000 board
- Components of IO 21000 board
- Project Procedure
- A study of Reed-Solomon Code and circuit design
- Deliverable

Interface of IO21000 board (1/2)

- The Interfaces are consists of two parts of I/O:
- The PCI interface:
- (1)Input the data from demodulator (High rate Demodulator (HDR))
- (2)Output the data from RS decoder
- (3)Interface of GUI
- The SMA connector: Input data x 2, Output data x 2, and I/O clock x2 for two channels (i.e., total SMA x 8).
- The Input and output of SMA are designed for (a) testing purpose (b) external data I/O.

Interface of IO21000 board (2/2)

- Based on our observation from the IO21000 board in NSPO,
- (1) Input from demodulator: SMA data input and SMA clock input
- (2) Output from RS decoder: PCI interface
 where the Input of PCI interface is disable since input data from demodulator is ingested by SMA connector.
- (3) GUI interface: PCI interface

SMA connector (1/2)

- (1) Input data from demodulator: (serial, synchronized)
- Connector: SMA (female)
- Input: ECL Differential (default)
 LVDS, RS-422 or TTL (optional)
- Impedance: 50ohm terminated to -2volt(ECL)
- Data rate: 150M bps (maximum)

SMA connector (2/2)

- (2) Input clock: (serial, synchronized)
- Connector: SMA (female)
- Input: ECL Differential (default)
 LVDS, RS-422 or TTL (optional)
- Impedance: 50ohm terminated to -2volt(ECL)
- Duty cycle: 50% (error within 10 %)
- Clock phasing 0 or 180 degree

ECL (Emitter couple logic)

- ECL (Emitter couple logic)
 - a logic family in which current is steered through bipolar transistors to implement logic functions
 - Sometimes call current-mode logic or current-switch emitter-follower (CSEF) logic

LVDS (Low Voltage Differential Signal)

- LVDS (Low Voltage Differential Signal)
 - Low power consumption

- Max data rate: 3.125 Gbps

- Driven current: 350 ma

- Input impedance: 100 Ω

 Due to differential signaling such as excellent noise immunity and low device-generated switching noise.

PCI interface

- PCI interface: PCI-X
- (1) Output from RS decoder (parallel, synchronized)
- (2) GUI interface(parallel, synchronized)
- All pins function can find in datasheet.

PCI interface pins configuration (1/2)

PCI interface pins configuration (2/2)

Components of IO 21000 board (1/2)

Components of IO 21000 board (2/2)

- 1. INTEL IO processor: FW80321M600
- 2. FPGA processor : Virtex-4 XC4VLX25-FF668-10C/I *3
- 3. Programmable ROM : Xilinx XCF32P VOG48
- 4. FIFO buffer : IDT 72V36104, IDT 72T18125
- 5. Power saving : XC2C256 CoolRunner-II CPLD

Intel IO processor (1/2)

- Main function :
 - A single-function device that integrate the Intel XScale core with intelligent peripherals, including a PCI bus application bridge.
- Feature :
- 1.Core:
 - Intel XScale core with clock rate 600 MHz
 - ARM V5T instruction set
- 2.PCI bus interface: 64-bit/133 MHz Operation in PCI-X Mode
- 3. Memory Controller:
 - Up to 1 Gbyte of 64-bit DDR SDRAM
 - Up to 512 Mbytes of 32-bit DDR SDRAM
- 4.554-Ball, Plastic Ball Grid Array
- 5.8 general purpose I/O pins

Intel IO processor (2/2)

Major Interface :

- Memory interface
 - DDR I/F unit output → 72-Bit I/F
 - PBI unit (Flash) → 32-Bit I/F
- IIC serial bus interface → IIC serial bus
 - The IIC unit uses a serial bus developed by Philips Semiconductor* consisting of a twopin interface
 - IIC DATA is used for data transfer and arbitration on the I₂C bus. This is one of two IIC buses that the user may enable
 - IIC CLOCK provides synchronous operation of the IIC bus. This is one of two I₂C buses that the user may enable
- Synchronous serial port (SSP) unit → serial bus
 - a full-duplex synchronous serial interface
- Message unit and Address translation unit → 64-bit / 32-bit PCI

Intel IO processor functional block diagram [3]

Intel IO processor Ball map (Left side) [3]

Intel IO processor Ball map (Right side) [3]

Xilinx Virtex 4 FPGA Processor

- Virtex-4 devices are produced on a state-of-the-art 90-nm copper process using 300-mm (12-inch) wafer technology.
- Feature:
 - 1.2V Core Voltage
 - Flexible Logic Resources
 - Max data rate: 500 MHz
 - I/O
 - Wide selections of I/O standards from 1.5V to 3.3V
 - Up to 960 user I/Os

Xilinx Virtex 4 FPGA Processor Pin out diagram [8]

SF363 (XC4VLX25) - Top View

User I/O Pins	Dedicated Pins		Other Pins
User I/O Pins O IO_LXXY_# Multi-Function Pins: O ADC1 - ADC7 O D0 - D31 O CC O N_GC O P_GC O P_GC LC SM1 - SM7 VREF VRN VRP	Dedicated Z ADC C CCLK C CS_B D IN D DONE A DOUT_BUSY H HSWAPEN T INIT Z T O M2, M1, M0	Pins IP PROG_B IM PWRDWN_B ID RDWR_B IS SM IS TCK II TDI ID TDO IM TMS II TDP II TDN	GND GND RSVD VBATT VCCAUX VCCINT VCCO NO CONNECT

IDT FIFO buffer (1/2)

- IDT_72V36104:
 - Memory storage capacity :
 - 65,536 x 36 x 2-bit
 - Supply voltage: 3.3 V
 - Clock frequencies up to 100 MHz
 - Free-running clock may be asynchronous or synchronous (simultaneous reading and writing of data on a single clock edge is permitted)
 - Two independent clocked FIFOs buffering data in opposite direction
- All pins function can find in datasheet

IDT_72V36104 FIFO buffer pin configuration [6]

IDT FIFO buffer (2/2)

- IDT_72T18125
 - Memory storage capacity:
 - 524,288 x 18-bit/1,048,576 x 9-bit
 - Supply voltage: 3.3 V
 - Clock frequencies up to 225 MHz
 - Asynchronous/Synchronous translation on the read or write ports
- All pins function can find in datasheet.

IDT_72T18125 FIFO buffer pin configuration [7]

NTU GICE

Programmable ROM

- Xilinx XCF32P VOG48
 - Endurance of 20000 Program / Erase cycles
 - I/O
 - Dedicated Boundary-Scan (JTAG) I/O Power Supply
 - I/O pins compatible with voltage level ranging from 1.5v to 3.3 v
 - Supply voltage 1.8v
 - Serial or parallel FPGA configuration interface (up to 33 MHz)
- All pins function can find in datasheet

Programmable ROM pin configuration [4]

Power saving: XC2C256 CoolRunner-II CPLD

- Xilinx XC2C256 CoolRunner-II CPLD
- Function: Power savings to high-end communication equipment and high speed to battery operated devices. Due to the low power stand-by and dynamic operation, overall system reliability is improved.
 - Optimized for 1.8V systems
 - As fast as 5.7 ns pin-to-pin delays
 - As low as 13 μ A quiescent current
 - All pins function can find in data sheet

Power saving: XC2C256 CoolRunner-II CPLD pin configuration [5]

FT256 Bottom View

^{(1) -} Global Output Enable

^{(2) -} Global Clock

^{(3) -} Global Set/Reset (4) - Clock Divide Reset

^{(5) -} DataGATE Enable

Project Procedure (1/4)

- 1. The first step is to identify the ECL interface and PCI-X interface as following,
 - The ECL interface is synchronous or asynchronous
 - The input data bit length, clock bit length, clock rate and data rate.
 - To identify what is the header bits to drive the ECL interface.
 - PCI-X is a typical standard, which can find in [10],[11]. All things above could probably do by logical analyzer and pattern generator.

Project Procedure (2/4)

- 2. Draw the total connection way among key components which we desire to know of the board.
 - By Digital MultiMeter (三用電表) in use of short circuit concept and datasheet
 - As following figure, try to complete the interface connection.

Project Procedure (3/4)

- 3. Confirm which processor is working alone or cooperation and where they get the instruction.
 - INTEL processor : load instruction from external ROM when system starts
 - FPGA processor : load instruction from internal ROM or external ROM when system starts.
 - Both are need to be verified by logic analyzer to record the waveform,
- 4. Use software to disable the function block (such as Viterbi, R-S decoder ..), we can distinguish if any FPGA processor is dedicated to some function block by logic analyzer and identify the location among processor of all function block.

Project Procedure (4/4)

- 5. If we know where the processor get the instruction to work, we can use logic analyzer to record the instruction. Then, by software to disable some function (such as R-S decoder), we hope to extract all instructions by observe the instruction waveform.
- 6. Use pattern generator to copy the observe instruction waveform to verify if the copied instruction can do the same action as disable function.
- Need help:
 - Logic analyzer
 - Pattern generator
 - Discuss when is suitable time for us to proceed measurement of board

A study of Reed-Solomon Code and circuit design : Basic computation

Galois Field:

- A Galois field of 2^m elements is defined by an irreducible binary polynomial of degree \mathbf{m}
- Ex: $(285)=2^0+2^2+2^3+2^4+2^8=(100011101)$

$$X^8 + X^4 + X^3 + X^2 + 1$$

- The field element a^i is then defined as the remainder of the division of the i^{th} power of x by the defining polynomial
- Ex: a^{12} = (11001101)

$$a^{12} \Longrightarrow \frac{X^{12}}{X^8 + X^4 + X^3 + X^2 + 1} = x^4 + 1 + \frac{x^7 + x^6 + x^3 + x^2 + 1}{x^8 + x^4 + x^3 + x^2 + 1}$$

$$a^{i} * a^{j} = a^{[(i+j) \mod(2m-1)]}$$

$$a^i / a^j = a^{[(i-j)\operatorname{mod}(2m-1]}$$

$$a^i + a^j = xor(a^i + a^j)$$

RS decoding approach

- RS codeword polynomial has consecutive 2t roots $\alpha, \alpha^2, \alpha^3,, \alpha^{2t}$
- A) Syndrome computation \rightarrow S_i = R(α^i)
- B) Key equation solving by Euclidean algorithm (輾轉相除法)
 - → Find the error locator polynomial
- C) The roots of error locator polynomial imply error location
- D) The coefficient of error locator polynomial imply error magnitude
- E) Correct the received codeword

RS decoder

NTU GICE

Syndrome Computation

Syndrome Calculator t=16

- R(X) = C(X) + E(X)
- R(
$$\alpha^{i}$$
) = C(α^{i}) + E(α^{i}) ,i=1,2,.....2t
- S_i = R(α^{i}) = 0 + E(α^{i}) = E(α^{i}) ,i=1,2,.....2t
- S_i = $r_{219}\alpha^{219i} + r_{218}\alpha^{218i} + \dots + r_{1}\alpha^{i} + r_{0}$
- S_i = $(r_{219}\alpha^{219i} + r_{218})\alpha^{i} + \dots + r_{1})\alpha^{i} + r_{0}$

Parallel syndrome generator

Key equation

Key equation

-
$$S_i = R(\alpha^i) = 0 + E(\alpha^i) = E(\alpha^i)$$
 , $i = 1,2,.....2t$
- $S_i = e_{j1}\alpha^{ij1} + e_{j2}\alpha^{ij2} + + e_{jv}\alpha^{ijv}$, $jv = 1,2,.....t$
- $S_i = Y_1 X_1^i + Y_2 X_2^i + + Y_n X_n^i$, $v = 1,2,.....t$

- Define $\Lambda(x)$ is the error locator polynomial

$$\Lambda(x) = (1 + X_1 x)(1 + X_2 x)(1 + X_3 x)....(1 + X_\nu x)$$
$$= 1 + \Lambda_1 x + \Lambda_2 x^2 + \Lambda_3 x^3 + + \Lambda_\nu x^\nu$$

$$0 = Y_l X_l^{j+\nu} \Lambda(X_l^{-1}) = S_{j+\nu} + \Lambda_1 S_{j+\nu-1} + \dots + \Lambda_{\nu} S_j$$

- Euclid's Algorithm: fast to get value
 - Defined Error magnitude polynomial $\Omega(x)$

$$s(x)\Lambda(x) \operatorname{mod}(x^{2t}) = \Omega(x)$$

$$\Theta(x)x^{2t} + \Omega(x) = S(x)\Lambda(x)$$

$$\Theta(x)x^{2t} + S(x)\Lambda(x) = \Omega(x)$$

- Find GCD(*x*^{2t}, S(x)) 最大公因數

GCD transformation

GCD-preserving transformation

$$A = a_i x^i + \dots + a_1 x^1 + a_0$$
$$B = b_i x^j + \dots + b_1 x^1 + b_0$$

 \blacksquare GCD(A,B)=GCD(A',B') , d=i-j , q= b_i / a_i

$$A' = A - qx^d B$$

$$B' = B$$

• Or GCD(A,B)=GCD(A',B'), d=j-I , q= b_i / a_i

$$A' = A$$

$$B' = B - qx^d A$$

Simple GCD example

- Ex: find GCD(256,108)
 - Find GCD(256,108) is the same as finding GCD(40,108)
 - -40 = 256 2*108
 - Find GCD(40,108) is the same as finding GCD(40,28)
 - -28 = 108 2*40
 - Find GCD(12,28) is the same as finding GCD(12,4)
 - -4 = 28 2*12
 - $GCD(12,4) = 4 \rightarrow GCD(256,108)=4$

Modified Euclidean algorithm

- Avoid divider by Math skill
- \blacksquare GCD(x^{2t} , S(x))

$$\Theta(x)x^{2t} + S(x)\Lambda(x) = \Omega(x)$$

• Using ME : In last iteration , we can get $\Lambda(x) = L_i(x)\Omega(x) = R_i(x)$

$$R_0(x) = x^{2t}, Q_0(x) = S(x) = S_1 + S_2 x + ... + S_{2t} x^{2t}, L_0(x) = 0, U_0(x) = 1$$

$$R_{i}(x) = [\sigma_{i-1}b_{i-1}R_{i-1}(x) + \bar{\sigma}_{i-1}a_{i-1}Q_{i-1}(x)] + x^{|l_{i}-1|}[\sigma_{i-1}a_{i-1}Q(x) + \bar{\sigma}_{i-1}b_{i-1}R_{i-1}(x)]$$

$$Q_{i}(x) = \sigma_{i-1}Q_{i-1}(x) + \bar{\sigma}_{i-1}R_{i-1}(x)$$

$$L_{i}(x) = [\sigma_{i-1}b_{i-1}L_{i-1}(x) + \bar{\sigma}_{i-1}a_{i-1}U_{i-1}(x)] + x^{|l_{i}-1|}[\sigma_{i-1}a_{i-1}Q(x) + \bar{\sigma}_{i-1}b_{i-1}L_{i-1}(x)]$$

$$U_{i}(x) = \sigma_{i-1}U_{i-1}(x) + \bar{\sigma}_{i-1}L_{i-1}(x)$$

$$l_{i-1} = \deg(R_{i-1}(x)) - \deg(Q_{i-1}(x))$$

$$\sigma_{i-1} = 1, l_{i-1} \ge 0$$

$$\sigma_{i-1} = 0, l_{i-1} < 0$$

Chien search

Determine the roots (error location) of an error locator polynomial

$$\sigma(x) = \sigma_t x^t + \sigma_{t-1} x^{t-1} + ... + \sigma_0$$

Paraller Chien search with parallel factor p=16

Forney Algorithm (Error value)

$$Y_{j} = \frac{\Omega(X_{j}^{-1})}{\Lambda'(X_{j}^{-1})}$$

■ J=1,2,3....,n-1, it represents code to correct form $r^{n-1}, r^{n-2}, ..., r^1, r^0$

IO pin of R-S decoder

.Signal	I	Description		
		O		
CLK50Mhz	I	Input clock 50 MHz from Clock Gen		
rstn	I	Reset (active low) for clock generation		
RS_START	I	RS decoder starting		
RSDATA_END	I	No data to RS decoder, So, RS decoder ending		
RSSYNI0[N-1:0]	I	Input date from SRAMA0		
RSADA0[M-1:0]	О	Address for SRAMA0		
RSWRA0	0	Write enable for SRAMA0		
RSRDA0	0	Read enable for SRAMA0		
ERRADD1[7:0]	О	Error address for 1st Error		
ERRADD2[7:0]	О	Error address for 2st Error		
ERRADD3[7:0]	О	Error address for 3st Error		
ERRADD4[7:0]	О	Error address for 4st Error		
ERRADD5[7:0]	О	Error address for 5st Error		
ERRADD6[7:0]	О	Error address for 6st Error		
etc.				
ERRADD14[7:0]	О	Error address for 14st Error		
ERRADD15[7:0]	О	Error address for 15st Error		
ERRADD16[7:0]	О	Error address for 16st Error		
SERR[3:0]	0	Corrected error amount		

Implementation board

Altera: Trex-S2-180-3

Memory spec

Feature	M512 Blocks	M4K Blocks	M-RAM Blocks
Maximum performance	500 MHz	550 MHz	420 MHz
Total RAM bits (including parity bits)	576	4,608	589,824
Configurations	512 × 1 256 × 2 128 × 4 64 × 8 64 × 9 32 × 16 32 × 18	4K × 1 2K × 2 1K × 4 512 × 8 512 × 9 256 × 16 256 × 18 128 × 32 128 × 36	64K × 8 64K × 9 32K × 16 32K × 18 16K × 32 8K × 64 8K × 72 4K × 128 4K × 144
Parity bits	~	~	~
Byte enable	~	~	~
Pack mode		~	~
Address clock enable		~	~
Single-port memory	~	~	~
Simple dual-port memory	~	~	~
True dual-port memory		~	~
Embedded shift register	~	~	
ROM	~	~	
FIFO buffer	~	~	~
Simple dual-port mixed width support	~	~	~
True dual-port mixed width support		~	~

Deliverables

- From the deliverable of our proposal during this project, we will not complete the whole verification for replacing IO21000 board, but we will deliver:
- (i)Frame synchronization
- (ii)PRN descrambler
- (iii)RS decoder

where (i) and (ii) will be verified by software simulation (providing MATLAB code), and (iii) will be verified by hardware (FPGA).

Reference

- [1] Kongsberg Spacetec AS, online source, http://www.spacetec.no/
- [2] National Semiconductor, "LVDS Owner's Manual Including High-Speed CML and Signal Conditioning, 4th edition, 2008
- [3] Intel, "FW80321 IO Processor datasheet", January, 2005
- [4] Xilinx, "XCF32P VOG48 datasheet", March 14, 2005
- [5] Xilinx XC2C256 CoolRunner-II CPLD datasheet, March 8, 2007
- [6] IDT,"72V36104 datasheet", March, 2001
- [7] IDT "72T18125 datasheet", Feburary, 2009
- [8] Xilinx, "Virtex-4 FPGA packaging and pin out specification datasheet",
 September, 2008
- [9] Xilinx, "Initiator/Target v6.5 for PCI-X User Guide", 2007.
- [10] Xilinx, "Virtex-4 ML455 PCI/PCI-X Development Kit *User Guide*", 2005.