DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6:

C12N 15/49, 7/00, C12Q 1/68, A61K 39/21, C07K 16/10, 14/16, G01N 33/50

(11) Numéro de publication internationale: A1

WO 98/26075

(43) Date de publication internationale:

18 juin 1998 (18.06.98)

(21) Numéro de la demande internationale:

PCT/FR97/02227

(22) Date de dépôt international:

8 décembre 1997 (08.12.97)

(30) Données relatives à la priorité:

96/15087

9 décembre 1996 (09.12.96)

FR

(71) Déposants (pour tous les Etats désignés sauf US): INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE - INSERM [FR/FR]; 101, rue de Tolbiac, F-75654 Paris Cedex 13 (FR). ASSISTANCE PUBLIQUE-HOPITAUX DE PARIS [FR/FR]; 3, avenue Victoria, P-75100 Paris RP (FR). INSTITUT PASTEUR [FR/FR]; 28, rue du Docteur Roux, F-75724 Paris Cedex 15 (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): MAUCLERE, Philippe [FR/FR]; 2, rue Buhan, F-33000 Bordeaux (FR). LOUSSERT-AJAKA, Ibtissam [FR/FR]; 26, avenue de la République, F-78500 Sartrouville (FR). SIMON, François [FR/FR]; 8, rue Germain Pilon, F-75018 Paris (FR). SARAGOSTI, Sentob [FR/FR]; 69 bis, rue de Billancourt, F-92100 Boulogne Billancourt (FR). BARRE-SINOUSSI, Françoise [FR/FR]; 104 Le Capricome, 50, rue d'Erevan, F-92130 Issy-les-Moulineaux (FR).

(74) Mandataire: CABINET ORES; 6, avenue de Messine. F-75008 Paris (FR).

(81) Etats désignés: AL, AU, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, ID, IL, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, brevet ARIPO (GH, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

- (54) Title: NON-M NON-O HIV STRAINS, FRAGMENTS AND APPLICATIONS
- (54) Titre: SOUCHES DE VIH-1 NON-M NON-O, FRAGMENTS ET APPLICATIONS

(57) Abstract

The invention concerns retroviral strains of the group HIV-1, non-M non-O, particularly a strain called YBF30, its fragments and its applications as diagnosis reagent and as immunogenic agent. The HIV-2 different both from the group M and from the group O have the following characteristics: little or no serological response with respect to proteins of groups M and O and strong serological response with respect to proteins derived from the YBF30 strain or the SIV CPZGAB strain; absence of genomic amplification by the primers of regions env and gag of the HIV-1-1 of groups M and O; genomic amplification in the presence of the primers derived from the YBF30 strain; and homology of the envelope gene products higher than 70 % with respect to the YBF30 strain.

(57) Abrégé

Souches de rétrovirus du groupe VIH-1, non-M non-O, notamment une souche dénommée YBF30, ses fragments ainsi que ses applications, en tant que réactif de diagnostic et en tant qu'agent immunogène. Les VIH-1 distincts à la fois du groupe M et du groupe O présentent les caractéristiques suivantes: peu ou pas de réactivité sérologique vis-à-vis des protéines des groupes M et O et forte réactivité sérologique vis-à-vis des protéines issues de la souche YBF30 selon l'invention ou de la souche SIV CPZGAB; absence d'amplification génomique à l'aide des amorces des régions env et gag des

YRT AS1 भूता-8 भूताक-4 4411-6 4256.1 4256.2 4256.2 4256.4 8426.6 8426.6 8426.3 8426.3 8426.3 8426.1 8426.1 8426.3 8426.3 8426.3 8426.3 8426.3 8426.3 8426.3 8426.3 8426.3

VIH-1 des groupes M et O; amplification génomique en présence des amorces issues de la souche YBF30, selon l'invention; et homologie des produits du gène d'enveloppe supérieure à 70 % vis-à-vis de la souche YBF30.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
ΑZ	Azerbaīdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HŲ	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israči	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW ·	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		, ,
CZ	République tchèque	.LC	Sainte-Lucie	RU	Fédération de Russie		•
DE	Allemagne	LI	Liechtenstein	SD	Soudan		•
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

20

25

SOUCHES DE VIH-1 NON-M NON-O, FRAGMENTS ET APPLICATIONS.

La présente invention est relative à des souches de rétrovirus du groupe VIH-1, non-M non-O, notamment une souche dénommée YBF30, à ses fragments ainsi qu'à ses applications, en tant que réactif de diagnostic et en tant qu'agent immunogène.

Les virus humains de l'immunodéficience acquise, VIH-1 et VIH-2 sont des rétrolentivirus, virus retrouvés chez de nombreux primates africains. Tous ces virus semblent avoir un ancêtre commun ; il est toutefois très difficile de préjuger de la période à laquelle ces différents virus se sont séparés de ce précurseur. D'autres virus plus distants bien que faisant partie du même groupe sont retrouvés chez d'autres mammifères (ongulés et félins).

Tous ces virus sont associés à des infections longues ; l'absence de symptômes est la règle chez les singes infectés naturellement.

Du fait de sa forte homologie avec le virus du Sooty Mangabey (Afrique de l'Ouest), l'origine du VIH-2 semble claire, mais aucun virus proche du VIH-1 n'a été retrouvé chez les singes. Les virus les plus proches sont des virus retrouvés chez deux chimpanzés (SIV CPZGAB, SIV ANT).

Une importante variabilité génétique est retrouvée chez tous les lentivirus, et l'étude phylogénétique de ces variants obtenus à partir de nombreux points géographiques différents a permis de distinguer pour VIH-1, 8 sous-types (clades), tous également équidistants entre eux. Les clades ne sont qu'une représentation mathématique de l'expression de la variabilité : l'analyse phénétique, basée non sur les acides nucléiques mais sur les acides aminés donne des résultats différents (Korber et al, 1994).

La mise en évidence de sous-types correspond à une analyse phylogénétique qui n'a pas, à ce jour de corrélation physiopathologique, mais une correspondance géographique. En effet, chaque sous-type est retrouvé principalement dans un certain espace géographique. En Europe et aux États-Unis, le sous-type B est majoritaire, alors qu'en Thaïlande, deux sous-types E et B sont retrouvés, et qu'il existe une corrélation forte entre le mode de transmission qui, en fait, correspond à une certaine population et le sous-type retrouvé. Tous les clades ont été retrouvés en Afrique et leurs distributions à travers le reste du monde reflète une probabilité de rencontre entre

25

personnes à comportement à haut risque. Le clade majoritaire, car présent en proportion importante en Afrique est le clade A. Dans certains pays d'Afrique, une très grande variabilité a été retrouvée (G. Myers, 1994; P.M. Sharp et al., 1994). Plusieurs soustypes ont été caractérisés dans les pays d'Afrique centrale de l'ouest, comme la République Centre Africaine (Murphy et al, 1993) et le Cameroun (Nkengasong et al, 1994).

Dernièrement, des patients porteurs de virus variants du VIH-1, dont les sérums posaient des problèmes de détection pour certains kits commercialisés sur le marché français et dont les western blots de confirmation étaient atypiques, ont été caractérisés (Loussert-Ajaka et al ; 1994; Simon et al, 1994 ; Demande Internationale PCT WO 96/27013).

L'analyse de ces variants a permis de confirmer que les virus VIH de type 1, devaient être sous-divisés en deux groupes, le groupe M (majeur) et un groupe O (Outlier) incluant ces isolats, comme l'avaient proposé Charneau et al, 1994. L'analyse du rapport des mutations synonymes/mutations non synonymes sur les séquences des virus du groupe O connus, indique que ce nouveau groupe est aussi ancien, si ce n'est plus, que le groupe M (Loussert-Ajaka et al, 1995). Sa faible prévalence à ce jour, 8% des patients infectés par VIH-1 au Cameroun (Zekeng et al, 1994), et 18 cas caractérisés en France, serait due à des facteurs purement épidémiologiques.

Ces deux groupes de VIH-1 forment un arbre en forme de double étoile (figures 9 à 19). Deux isolats, SIV CPZGAB, caractérisé à partir d'un chimpanzé du Gabon (Huet et al, 1990) et CPZANT, caractérisé à partir d'un chimpanzé du zoo d'Anvers ont des séquences et des organisations géniques très proche de VIH-1, mais ne s'inscrivent dans aucun de ces deux groupes et forment sur l'arbre phylogénétique deux nouvelles branches.

La mise en évidence de nouveaux variants est importante pour mettre au point des réactifs de dépistage des infections par VIH, suffisamment sensibles et spécifiques, c'est-à-dire ne conduisant pas à des résultats faussement négatifs ou faussement positifs et des compositions protectrices vis-à-vis de sous-types n'appartenant ni au groupe M, ni au groupe O.

En conséquence, la Demanderesse s'est donné pour but de pourvoir à une souche non-M, non-O, ainsi qu'à des séquences issues de cette souche, aptes à

20

25

permettre la détection de variants du VIH-1 non M et non-O, qui permettent d'éviter l'obtention de résultats faussement négatifs ou faussement positifs. Pour ce faire, les Inventeurs ont notamment établi un algorithme de différenciation et de confirmation entre les infections HIV-1 des groupes M et O, ce qui leur a permis de sélectionner des variants non-M, non-O.

La présente invention a pour objet une souche de VIH-1 non-M non-O, présentant les caractéristiques morphologiques et immunologiques du rétrovirus déposé à la Collection Nationale de Cultures de Microorganismes tenue par l'Institut Pasteur sous le numéro I-1753 (dénommé YBF30) le 2 juillet 1996.

On entend par variant non-M non-O, un VIH de type 1, qui sérologiquement et moléculairement ne peut être reconnu comme appartenant à l'un de ces groupes.

La présente invention a également pour objet la séquence nucléotidique complète de la souche telle que définie ci-dessus (SEQ ID N°1) ainsi que des fragments d'acide nucléique d'au moins 10 nucléotides, issus de ladite souche.

Parmi ces fragments, on peut citer:

- LTR YBF 30 (SEQ ID N°2),
- GAG YBF 30 (SEQ ID N°3) (gène gag),
- POL YBF 30 (SEQ ID N°5) (gène pol),
- VIF YBF 30 (SEQ ID N°7) (gène vif),
- VPR YBF 30 (SEQ ID N°9) (gène vpr),
- VPU YBF 30 (SEQ ID N°11) (gène vpu),
- TAT YBF 30 (SEQ ID N°13) (gène tat),
- REV YBF 30 (SEQ ID N°15) (gène rev),
- ENV gp160 YBF 30 (SEQ ID N°17) (gène env),
- NEF YBF 30 (SEQ ID N°19) (gène nef),
- les SEQ ID N°21-57, également dénommées respectivement YLG, LPBS.1, GAG Y AS1.1, GAG Y AS1, GAG 6, GAG Y S1, GAG Y S1.1, GAG Y S1.2, YRT AS1.3, YRT AS1.2, YRT AS1.1, YRT 2, YRT AS1, YRT 2.1, YRT 2.2, YRT 2.3, YRT 2.4, 4481-1, 4481-2, 4235.1, 4235.2, 4235.3, 4235.4, SK69.6, SK69.5, SK69.4, SK69.3, SK69.2, SK69.1, SK68.1, SK68.2, SK68.3, LSI AS1.3, LSI AS1.2, LSI AS1.1, LSI A1, YLPA, ainsi que toute séquence, qui n'est pas identique à

15

20

l'une des séquences nucléotidiques ci-dessus ou n'est pas complémentaire de l'une de ces séquences, mais est néanmoins susceptible de s'hybrider, de manière spécifique, avec une séquence nucléique issue d'un virus VIH-1 non-M, non-O.

De telles séquences trouvent application dans l'identification spécifique d'un VIH-1 non-M non-O, comme réactif de diagnostic, seules ou en *pool* avec d'autres réactifs, pour l'identification différentielle de n'importe quel VIH-1.

Ces séquences peuvent notamment être mises en oeuvre dans des tests de diagnostic comprenant, soit une hybridation directe avec la séquence virale à détecter, soit une amplification de ladite séquence virale, en utilisant comme amorces ou comme sondes, un oligonucléotide comprenant au moins 10 nucléotides, inclus dans l'une quelconque des séquences ci-dessus et notamment l'une des séquences SEQ ID N°21-57 précitées.

La présente invention a également pour objet des VIH-1, caractérisés en ce qu'ils sont distincts à la fois du groupe M et du groupe O et présentent les caractéristiques suivantes :

- * peu ou pas de réactivité sérologique vis-à-vis des protéines des groupes M et O et forte réactivité sérologique vis-à-vis des protéines issues de la souche YBF30 ou de la souche SIV CPZGAB;
- * absence d'amplification génomique à l'aide des amorces des régions env et gag des VIH-1 des groupes M et O;
- * amplification génomique en présence des amorces issues de la souche YBF30, telles que définies ci-dessus ; et
- * homologie des produits du gène d'enveloppe > 70 % vis-à-vis de la souche YBF30.

L'invention a également pour objet l'utilisation des séquences décrites ci-dessus pour la mise en oeuvre d'un procédé d'hybridation et/ou d'amplification génique de séquences nucléiques de type VIH-1, ces procédés étant applicables au diagnostic *in vitro* de l'infection potentielle d'un individu par un virus du type VIH-1 non-M non-O.

Ce procédé de diagnostic *in vitro* est réalisé à partir d'un échantillon biologique (sérum ou lymphocyte circulant) et comprend :

une étape d'extraction de l'acide nucléique à détecter, appartenant au génome du virus, éventuellement présent dans l'échantillon biologique et, le cas

échéant, une étape de traitement de l'acide nucléique, à l'aide d'une transcriptase inverse, si ce dernier est sous forme d'ARN,

au moins un cycle comprenant les étapes de dénaturation de l'acide nucléique, d'hybridation avec au moins une séquence conforme à l'invention et éventuellement, si nécessaire, extension de l'hybride formé, en présence de réactifs convenables (agent de polymérisation, tel qu'ADN polymérase et dNTP) et

une étape de détection de la présence éventuelle de l'acide nucléique appartenant au génome d'un virus de type VIH-1 de groupe non-M non-O.

Les conditions mises en oeuvre pour la PCR à l'aide des amorces issues de la souche YBF30 sont les suivantes :

- Extraction de l'ADN lymphocytaire par la technique phénol-chlorofome et quantification par spectrophotométrie à une longueur d'onde de 260 nm. Toutes les amplifications sont réalisées sur Perkin Elmer thermocycler 2400.
- Les PCR longues (9 kb) sont réalisées avec le kit XL PCR (Perkin
 15 Elmer) selon les conditions du fabriquant et avec les dNTP, les tampons fournis et le
 « hot start » de Perkin Elmer ; les cycles d'amplification de cette PCR longue sont :
 - . 1 cycle de dénaturation pendant 2 minutes à 94°C,
 - . puis 16 cycles : 15 secondes à 94°C, 15 secondes à 55°C, 8 minutes à 68°C,
 - puis 24 cycles : 15 secondes à 94°C, 15 secondes à 55°C, 8 minutes à 68°C, en ajoutant à chaque cycle 15 secondes de plus (incrémentation).
 - Les PCR nichées sont réalisées sur les produits d'amplification des PCR longues. Les conditions de réalisation des PCR nichées sont :
- tampon et enzyme Taq polymérase « Expand High Fidelity PCR System » de Boehringer Mannheim selon les instructions du fabriquant, dNTP et « hot start » de Perkin Elmer,
 - . 200 μM de chaque dNTP, 20 pmol de chaque amorce selon l'invention, 5 μl d'ADN, 10 μl de tampon PCR 10X, 2,6 unités de Taq polymérase dans un volume de 100 μl ,
- amplification : un cycle de 2 minutes à 94°C, suivie de 38 cycles : 15 secondes à 94°C, 15 secondes à 55°C, un temps d'élongation à 72°C variable selon

10

15

20

25

30

la taille du produit de PCR à amplifier (de 30 secondes à 2 minutes) et un dernier cycle d'élongation de 10 minutes à 72°C.

La détection du produit amplifié est réalisée de préférence par séquençage direct.

L'invention a également pour objet un peptide ou un fragment peptidique, caractérisé en ce qu'il est susceptible d'être exprimé par une souche de VIH-1 non-M non-O ou à l'aide d'une séquence nucléotidique telle que définie ci-dessus et en ce qu'il est apte : (1) à être reconnu par des anticorps induits par un VIH-1 non-M non-O, tel que défini ci-dessus et notamment la souche YBF30 ou un variant de celle-ci et présents dans un échantillon biologique obtenu après une infection par une souche de VIH-1 non-M non-O et/ou (2) à induire la production d'anticorps anti-VIH-1 non-M non-O.

Parmi ces peptides, on peut citer, en particulier ceux issus de la souche YBF30 et notamment : celui exprimé par le gène gag (SEQ ID N° 4), celui exprimé par le gène pol (SEQ ID N° 6), celui exprimé par le gène vif (SEQ ID N° 8), celui exprimé par le gène vpr (SEQ ID N° 10), celui exprimé par le gène vpu (SEQ ID N° 12), celui exprimé par le gène tat (SEQ ID N° 14), celui exprimé par le gène rev (SEO ID N° 16), celui exprimé par le gène env (SEO ID N° 18) ou l'un de ses fragtel qu'un fragment de région de la boucle V3 ments, la CTRPGNNTGGQVQIGPAMTFYNIEKIVGDIRQAYC (SEQ ID N° 58) et celui exprimé par le gène nef (SEQ ID N° 20) ou un fragment de ceux-ci aptes à reconnaître les anticorps produits lors d'une infection par un VIH-1 non-M non-O tel que défini cidessus.

L'invention a également pour objet des compositions immunogènes comprenant un ou plusieurs produits de traduction des séquences nucléotidiques selon l'invention et/ou l'un des peptides tels que définis ci-dessus, obtenus notamment de manière synthétique.

L'invention a également pour objet les anticorps dirigés contre l'un ou plusieurs des peptides décrits ci-dessus et leur utilisation pour la mise en oeuvre de méthodes de diagnostic *in vitro*, notamment différentielle, de l'infection d'un individu par un virus de type VIH-1, selon les procédés connus de l'homme du métier.

10

15

20

25

La présente invention englobe l'ensemble des peptides aptes à être reconnus par des anticorps isolés à partir d'un sérum infectieux obtenu après une infection par une souche VIH-1 non-M non-O et les peptides aptes à être reconnus par un anticorps selon l'invention.

L'invention a, en outre, pour objet une méthode de diagnostic in vitro d'un VIH-1 non-M non-O, caractérisée en ce qu'elle comprend la mise en contact d'un échantillon biologique prélevé chez un patient, avec des anticorps selon la revendication 10, éventuellement associés à des anticorps anti-SIV CPZGAB et la détection des complexes immunologiques formés entre les antigènes de VIH-1, éventuellement présents dans l'échantillon biologique et lesdits anticorps.

L'invention a également pour objet une trousse de diagnostic de VIH-1, caractérisée en ce qu'elle inclut au moins un réactif selon l'invention.

Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions, qui ressortiront de la description qui va suivre, qui se réfère à des exemples de mise en oeuvre du procédé objet de la présente invention ainsi qu'aux dessins annexés, dans lesquels :

- les figures 1 à 7 illustrent l'emplacement des différentes amorces sur le génome de la souche YBF30;
 - la figure 8 illustre l'organisation génomique de la souche YBF30;
- les figures 9 à 16 représentent l'analyse phylogénétique des différents gènes de la souche YBF30 par rapport au VIH-1 de groupe M et de groupe O (figure 9 : gène *ltr*, figure 10 : gène *gag*, figure 11 : gène *tat*, figure 12 : gène *rev*, figure 13 : gène *vif*, figure 14 : gène *env* gp120, figure 15 : gène *env* gp41, figure 16 : gène *nef*, figure 17 : gène *pol*, figure 18 : gène *vpr*, figure 19 : gène *vpu*);
- la figure 20 illustre le pourcentage de distance génétique entre YBF30 et VIH-1/SIV CPZGAB.

Il doit être bien entendu, toutefois, que ces exemples sont donnés uniquement à titre d'illustration de l'objet de l'invention, dont ils ne constituent en aucune manière une limitation.

15

25

30

EXEMPLE: Obtention d'un variant VIH-1 non-M non-O selon l'invention (YBF30) et ses applications.

Ceci a en particulier été possible en étudiant l'épidémiologie de l'infection par les virus de l'immunodéficience humaine acquise (VIH) au Cameroun, qui est particulièrement paradoxale. Dans ce pays, la diversité des souches est remarquable, puisque la plupart des sous-types connus à ce jour des virus VIH-1 du groupe M (Majeur) ont été rapportés. Des cas d'infections par des virus VIH-1 hautement divergeants du groupe O (O pour outlier) ont été rapportés, presque exclusivement chez des patients d'origine camerounaise. Des cas d'infections par VIH-2, HTLV-1 et HTLV-2 sous-type A et B ont été également rapportés.

Sur la base des résultats des évaluations sérologiques et génotypiques antérieures, les Inventeurs ont établi un algorithme de différenciation et de confirmation entre les infections VIH-1 des groupes M et O, afin de sélectionner des variants non-M, non-O.

Ces méthodes ont été appliquées sur des échantillons adressés au Laboratoire National de Référence des infections à VIH de Yaoundé et ont permis de caractériser un isolat VIH hautement divergeant et de définir les outils de caractérisation d'un nouveau groupe VIH-1, compte tenu des homologies observées entre cette souche humaine YBF30 et la souche simienne SIV CPZGAB.

20 I - Moyen de caractérisation sérologique du variant YBF30 lors de l'étude épidémiologique.

1) Recueil des échantillons :

Tous les sérums de patients adultes adressés au Laboratoire de référence de Yaoundé en 1994 et 1995 pour dépistage ou confirmation d'une infection HIV ont été étudiés (n=8831).

2) <u>Différenciation sérologique entre VIH-1 groupe M et groupe O et sélection des variants</u>:

En cas de positivité du dépistage anti-VIH (EIA indirect mixte HIV-1 et HIV-2 Génélavia Mixt, Sanofi-Pasteur, Paris, France), un test EIA basé sur le principe de la compétition vis à vis d'antigène spécifique du groupe M (Wellcozyme Rec HIV-1, Murex, Dartford, UK), a été associé.

20

30

En cas de positivité du test de type compétitif Wellcozyme Rec HIV-1, avec ratio de réactivité en densité optique (DO) par rapport à la valeur seuil ou *cut*off (CO) supérieur à 5 (CO/DO >5), le sérum est considéré comme VIH-1 positif, résultat qui doit être confirmé sur un nouveau prélèvement.

Le choix d'un ratio de réactivité supérieur à 5 pour considérer le test par compétition comme test de confirmation de l'infection à VIH-1 est basé sur l'expérience acquise par le laboratoire de virologie de l'hôpital Bichat : sur 7200 échantillons réactifs avec un ratio > 5, tous présentaient un Western Blot VIH-1 (WB, New Lav Blot 1, SDP, Marnes la Coquette) fortement positif. En dehors des cas de séroconversions VIH-1, les échantillons confirmés VIH positifs et présentant un ratio Wellcozyme < 5, correspondent soit à des infections par VIH-2, soit à des infections par VIH-1 du groupe O ou d'autres variants.

Pour éliminer les réactions faussement positives en dépistage EIA mixte, les échantillons présentant un ratio CO/DO < 5 sont systématiquement testés par un EIA mixte HIV-1/HIV-2 de troisième génération (Enzygnost Plus, Marburg, Germany) incluant les antigènes des VIH-1 des groupes M et O (recombinant gp41 de la souche MVP5180). En cas de positivité de ce test, un test rapide discriminant HIV-1 et HIV-2 (Multispot, SDP, Marnes la Coquette) et un Western Blot (WB, New Lav Blot 1 ou 2, SDP) sont réalisés.

3) Confirmation sérologique des infections VIH-1 groupe O et variants.

Tous les échantillons présentant un ratio CO/DO < 5, différenciés positifs par WB (critères de positivité : 2 ENV +/- POL +/- GAG ou 1 ENV + POL +/- GAG) et HIV-1, sont testés par un test *Dot-blot* utilisant des antigènes peptidiques des régions V3 et transmembranaires (InnoLia, Innogenetics, Ghent, Belgium).

4) Isolement rétroviral des souches de groupe O et des variants.

Les cellules mononucléées sanguines périphériques (PBMC) des patients séropositifs ont été isolés par gradient de Ficoll-Hypaque au Cameroun, conservées et transportées à Paris en azote liquide.

Après décongélation, les PBMC des patients ont été cocultivés avec des lymphocytes de donneurs caucasiens séronégatifs. La réplication virale dans les surnageants de cultures a été mise en évidence par la détection de l'activité transcrip-

10

15

20

30

tase inverse et par la recherche de l'Antigène p24 (Elavia p24 polyclonal, SDP) sur une période d'un mois.

5) Séquences:

Les produits des PCR sont visualisés sur gels d'agarose de 1 à 1,4 % selon la taille des fragments, précipités en acétate de sodium 3M (1:10) et 3 volumes d'éthanol absolu, incubés 30 minutes à -80°C, centrifugés 20 minutes à 13 000 rpm. Le culot est séché puis repris avec 10 µl d'eau distillée (Sigma). La purification est réalisée sur « Qiaquick Gel Extraction kit » (Qiagen) selon les instructions du fabriquant ; les produits sont séquencés avec le Kit Dye Terminator Applied Biosystem sur un automate DNA Sequencer (Applied Biosystems, Inc., Foster Cit, CA), comme décrit précédemment (Loussert-Ajaka et al, 1995) ; les séquences nucléotidiques sont analysées sur logiciel Séquence Navigator (Applied Biosystems), alignés avec le logiciel GeneWorks (Intelligenetics Inc.).

6) Analyses phylogénétiques:

Les séquences ont été alignées avec le logiciel CLUSTAL pour les alignements multiples, en prenant comme matrice de référence, les alignements de la compilation des séquences VIH du laboratoire de Biologie et de Biophysique Théorique de Los Alamos, New Mexico, 87545 USA.

Les analyses phylogénétiques ont été faites avec le logiciel PHYLIP; dans un premier temps, les distances ont été calculées avec DNADIST, puis l'analyse phylogénétique a ensuite été réalisée avec NEIGHBOR JOINING ou FITCH; enfin, les arbres ont été dessinés avec DRAWTREE (figures 9 à 19). Les pourcentages de distance génétique sont également illustrés à la figure 20.

Pour les analyses de « boostrapping », SEQBOOT a d'abord été utilisé, suivi de DNADIST et NEIGHBOR-JOINING ou FITCH. Enfin les valeurs de boostrap ont été obtenues avec CONSENS.

II - Résultats de l'enquête de mise en évidence des VIH groupe O et variant :

174 échantillons, parmi 3193 échantillons positifs au dépistage, ont été considérés soit groupe O, soit groupe M avec réactivité sérologique anormale, soit comme variants.

III - Mise en évidence d'un échantillon non groupe O et non groupe M présentant une réactivité sérologique anormale

Les 174 sérums HIV-1 positifs par WB (Western Blot), mais réactifs avec un ratio CO/DO < 5 en EIA de type compétitif ont été testés par dot blot LIA de différenciation sur les peptides V3 du groupe M, groupe O et SIV CPZGAB :

- 7 ne réagissent sur aucun des peptides (M, O ou SIV CPGGAB) représentés. L'absence de collecte cellulaire ne permet aucune conclusion.
- 82 présentent une réactivité vis à vis d'au moins un des peptides correspondant à la boucle V3 des souches du groupe O. La fréquence des réactions croisées est faible et limitée aux épitopes correspondant aux régions V3 consensus (11 %) et SIV-CPZ GAB (43 %).
- 84 sérums sont non réactifs vis-à-vis des épitopes du groupe O. Ces prélèvements ont été réalisés majoritairement chez des patients présentant un SIDA (75/84).
- un sérum, prélevé chez une patiente camerounaise (NJ) est réactif exclusivement avec le peptide SIV CPZGAB. Cette réactivité isolée vis à vis d'un antigène du SIV CPZGAB n'a jamais été décrite auparavant. Des lymphocytes ayant été collectés chez la patiente, la caractérisation virologique de cette souche nommée YBF30 a pu être poursuivie.
- IV Résultats des examens sérologiques et virologiques sur les premiers prélèvements effectués sur cette patiente (mai 1995) (N° sérum : 95-6295) :
 - 1) Tests ELISA commerciaux (Densité optique/valeur seuil)

Critère de positivité : DO/CO > 1

Génélavia = >15

Wellcozyme CO/DO = 1,55

25

30

Abbott Plus = >15

Behring Plus= 4,2

2) Western blot

WB New Lav 1 Pasteur:

160++, 120++, 68++,55+, 41+, 40+/-, 34++, 24++, 18+

3) LIA dot-Blot Innogenetics

Négatif pour toutes les bandes groupe O et groupe M sauf V3 SIV

CPZGAB

10

15

- 4) Résultats des examens sérologiques de recherche sur peptides
- 5 spécifiques des groupes M et O
 - * La technique du Pr. Francis Barin du Laboratoire de Virologie du CHU de Tours a été adaptée (Barin F. et al., 1996); des peptides des régions transmembranaires synthétisés (BioMérieux) on été utilisés, pour mettre au point un test de différenciation entre les groupes M et O. Cette technique est basée sur la compétition de liaison des anticorps entre les peptides transmembranaires gp41 des groupes O et M déposés sur la phase solide et des peptides transmembranaires gp41 soit du groupe O, soit du groupe M en concentration supérieure en une phase liquide de réaction hyperosmolaire. Les résultats sont illustrés au Tableau I ci-après, dans lequel le puits CP correspond au témoin d'inhibition 100 % et le puits CSP correspond au contrôle 0 % d'inhibition.

Tableau I

Résultats des différenciations inter groupe O - groupe M du sérum 6295

	gp41 M	gp41 O	СР	CSP
6295	0,25	0,36	0,12	1,98

Ces résultats montrent qu'il existe une forte liaison vis-à-vis des peptides de la phase solide (CSP), une nette inhibition par l'adjonction combinée des peptides M et O (CP) mais pas de nette différenciation, soit par le peptide M, soit par le peptide O. Il existe donc une évidence sérologique que la souche infectante n'appartient ni au groupe M, ni au groupe O.

* Compte tenu d'une réactivité isolée sur le dot blot InnoLia vis-à-vis des antigènes V3 SIV CPZGAB, sur les mêmes bases de compétition entre peptides, ce sérum a été étudié en mettant en compétition les peptides gp41 M, gp41 O et gp 41 SIV CPZGAB.

L'utilisation du sérum du chimpanzé dénommé 'Amandine' (donné par M. Peeters, qui a isolé la souche SIV CPZGAB, AIDS 1992) a permis, dans un pre-

10

20

mier temps, de valider cette technique. Sur le tableau II, les valeurs (DO) les plus basses indiquent le plus haut degré de liaison aux antigènes.

Tableau II

Résultats des différenciations inter groupe O - groupe M - SIVcpzGab avec le sérum du chimpanzé Amandine et le sérum 6295

	gp41 M	gp41 O	gp41 CPZGAB	СР	CSP
Amandine	0,8	1,4	0,3	0,5	1,9
6295	0,7	1,1	0,7	0,4	2,1

La réactivité du sérum « Amandine » confirme et valide le test selon l'invention et indique que le sérum de la patiente réagit de manière identique vis-à-vis des peptides M et SIV CPZGAB, mais est sans réaction croisée avec le peptide O.

Ces résultats montrent qu'il existe une inhibition similaire avec le sérum de la patiente par les peptides gp41 du groupe M et gp41 SIV CPZGAB. Les antigènes de la souche infectante ont donc donné naissance à des anticorps reconnaissant, de façon similaire, les gp 41 du groupe M et du SIV CPZGAB.

4) <u>Résultats obtenus à partir de l'isolement lymphocytaire</u>
15 (prélèvement mai 1995)

Un rétrovirus a été isolé à partir des lymphocytes prélevés le 22 mai 1995, selon les techniques classiques. La culture avec la lignée MT2 montre que la souche YBF30 ne forme pas de syncytia (NSI).

V - Résultats des examens sérologiques sur le deuxième prélèvement (Novembre 1995) (N° sérum : 95-3371)

1) LIA dot-Blot Innogenetics

Négatif pour toutes les bandes, sauf V3 SIV CPZGAB

- 2) <u>Résultats des examens sérologiques de recherche sur peptides</u> spécifiques des groupes M et O.
- Le Tableau III illustre les résultats des différenciations gp41 inter groupe O groupe M SIV CPZGAB avec le sérum 3371.

20

25

Tableau III

Résultats des différenciations gp41 inter groupe O - groupe M
SIV CPZGAB avec le sérum 3371

	gp41 M	gp41 O	gp41 cpz-gab	СР	CSP
3371	1,31	1,7	0,89	0,54	2,02

Ces résultats confirment sur ce nouveau prélèvement (effectué chez la même patiente, en phase terminale de la maladie) qu'il existe une inhibition marquée avec le sérum de la patiente par le peptide gp41 SIV CPZGAB.

Les antigènes de la souche infectante ont donc induit des anticorps reconnaissant de façon préférentielle la gp 41 du SIV CPZGAB.

3) <u>Résultats de l'isolement lymphocytaire</u> (prélèvement novembre 95 (95-3371-YBF31))

Un rétrovirus a été isolé à partir des lymphocytes prélevés en novembre 1995, selon les techniques classiques et dénommé YBF31; les éléments de séquence sont identiques à ceux de YBF30.

15 VI - Amplification génomique et Séquences de YBF 30

L'ADN pour toutes les manipulations de PCR est extrait à partir des cellules de fin de culture positive.

Les PCR réalisées avec les amorces VIH-1 groupe O dans différentes régions testées sont négatives (gag, pol, env) De même, celles réalisées avec les amorces spécifiques du VIH-1 groupe M sont négatives.

Les conditions d'amplification et d'hybridation pour les PCR du groupe O sont réalisées dans les conditions décrites dans Loussert-Ajaka, 1995. Les conditions d'amplification et d'hybridation pour les PCR du groupe M sont celles décrites par les Auteurs cités ci-après.

Ces amorces groupe M sont positionnées selon la séquence HIV-1-HXB2 :

- Dans l'env gpl20 : ED3/ED12 (position 5956-5985 ; 7822-7792) ; ED5/ED14 (6556-6581 ; 7960-7931) ; ED5/ED12 ; ED3/ED14 ; ES7/ES8 (7001-7020 ; 7667-7647) (Delwart et al. Science 1993; 262 : 1257-1261).

15

20

25

- Dans l'env gp41: première PCR ED3/M29, suivie d'une PCR nichée M28/M29 (7785-7808 ; 8099-8124) ; M28/M29 présentent les séquences suivantes:

M28: CGGTTCTT(AG)GGAGCAGC(ACT)GGAAGCA

M29: T(CT)T(ACGT)TCCCA(CT)T(AT)(CT)A(AGT)CCA(AGT)GTCAT;

SK68/SK69 (Ou et al. Science, 1988; 239: 295-297).

- Dans le gag: Amplicor Roche Diagnostics systems; amorces gag nichées (Loussert-Ajaka et al. Lancet 1995; 346: 912-913); SK38/SK39 (Ou et al., Science, 1988; 239: 295-297).
- Dans le *pol*: A/NE1 (Boucher et al., Lancet, 1990; 336: 585-590); 10 Pol3/Pol4 (Lauré et al., Lancet, 1988, ii, 538-541).

Seules les PCR réalisées avec les amorces H Pol sont positives (4235/4538) suivie d'une PCR nichée avec les amorces 4327/4481 (Fransen et al. Molecular and Cellular Probes 1994; 8: 31 7-322). Ce fragment H Pol, localisé dans l'intégrase (260 pb), a été séquencé. L'amplification avec les amorces HPOL est rendue possible, en raison de l'excès de virus. En effet, l'ADN utilisé est extrait des cellules de fin de culture fortement positive (transcriptase inverse > 100.000 cpm). L'amplification de l'ADN extrait des cellules fraîches sans coculture est impossible de par le nombre important de mésappariement entre les amorces HPOL (surtout dans la région 3') et la séquence de l'isolat YBF30. La conservation de cette extremité 3' est très importante pour l'activité d'extension de la Taq polymérase.

- 1 Séquence du gène pol: l'utilisation d'amorces très dégénérées pour l'amplification par RT-PCR du RNA extrait du surnageant de culture positif, a donné une amplification positive. Ce sont des amorces communes à tous les rétrovirus (Donehower et al. J. Virol. Methods 1990; 28: 33-46), situés dans la région de la transcriptase inverse du gène pol. L'analyse du fragment après sequence a permis de générer une amorce spécifique YRT2 (SEQ ID N° 32) de l'Isolat YBF30 et d'amplifier le gène pol en utilisant l'amorce Hpol 4481 (Fransen et al., 1994 précité), comme amorce anti-sens. La séquence du fragment a été réalisée en synthétisant au fur et à mesure des amorces spécifiques pour chaque fragment généré (Figure 1).
- 2 Séquence du gène env : la deuxième approche a été de faire une PCR longue (XL-PCR, Perkin Elmer) amplifiant tout le virus (9000 pb) en utilisant des amorces situées dans le LTR : LPBS 1 (SEQ ID N°22) ; LSiGi, suivie d'une PCR

nichée avec YRT2 (SEQ ID N° 32)/SK69 de 6000 pb, et de séquencer toute l'enveloppe en suivant la même procédure. La séquence de la région gp41 a été réalisée en utilisant une PCR nichée avec les amorces SK68/LSiGi.

3 - Séquence du gène gag: utilisation d'une PCR nichée, réalisée par PCR longue (LPBS 1 /LSiGi), avec les amorces Gag 5 et Gag 11i, et en générant au fur et à mesure des amorces spécifiques, afin de marcher sur le génome viral.

VII - Résultats des séquences

La souche YBF30 a été complètement séquencée (voir liste des séquences). La souche YBF31 de Novembre 1995 a été partiellement séquencée et l'absence de variation significative confirme la validité des séquences de YBF30.

VIII - Synthèse de peptides de la région de la boucle V3 de la souche YBF30.

L'étude des séquences de la région de la boucle V3 a permis de synthétiser le peptide correspondant et de comparer les acides aminés de cette région de la souche YBF 30 avec ceux des autres sous-types M et des souches O.

Les séquences des peptides sont :

YBF30:

10

15

20

SEQ N° ID 58

SIV CPZGAB:

CHRPGNNTRGEVQIGPGMTFYNIENVYGDTRSAYC

(SEQ ID N° 59)

GROUPE 0:

CIRPGNRTYRNLQIGPGMTFYNVEIATGDIRKAFC

(ANT70)

(SEQ ID N° 60)

GROUPE M:

CTRPNNNTRKSVRIGPGQAFYATGDIIGDIRQAHC

(SS-TYPE A)

(SEQ ID N° 61)

Le peptide a été synthétisé, à partir des 2 asparagines de la région 5'
de la boucle et utilisé selon le même principe que décrit précédemment (voir IV 4)), à
savoir en compétition par rapport aux peptides du groupe M, du groupe O et du SIV
CPZGAB. Les résultats illustrés au Tableau IV confirment l'originalité de cette souche
et l'extension possible de ces souches puisque les résultats sérologiques sont en faveur
d'infection du type YBF30 au Cameroun. En outre, l'étude de 200 sérums sélectionnés
VIH-1 positifs du Cameroun met en évidence un nouveau cas présentant un profil
similaire à celui de YBF30.

15

25

Tableau IV	
Etude de réactivité de 200	sérums

Sérum	Origine	V3A	V3cpz	V3YBF30	CP	CSP
953371	Cameroun	1,66	0,38	1,39	0,39	1,64
956295.	Cameroun	1,72	0,37	1,16	0,51	1,73
967321	Cameroun	0,07	0,17	0,5	0,05	0,27
Amandine	SIVGAB	1,74	0,14	1,48	0,19	1,74
NOA.*	SIVANT	2,66	0,31	1,88	0,46	1,9

^{*} sérum du SIV CPZ ANT

Sur ce nouveau test, la réactivité des sérums 953371 et 956295, correspondant à la patiente chez qui la souche YBF30 a été isolée, avec le peptide SIV-CPZ, a été confirmée. La plus faible réactivité vis à vis de son propre antigène V3 est classique lors des stades tardifs de la maladie. Cette réactivité reste cependant supérieure à celle relevée vis à vis du peptide M. Un autre patient camerounais (sérum 967321) présente le même profil de réactivité peptidique.

Bibliographie:

- * Barin F. et al., Aids Research and Human Retroviruses, 1996, 12, 13, 1279-1289, Diversity of Antibody Binding to V3 Peptides Representing Consensus Sequences of HIV Type 1 Genotypes A to E: An Approach for HIV Type 1 Serological Subtyping.
- * Charneau P., Borman AM., Quillent C., Guétard D., Chamaret S., Cohen J., Rémy G., Montagnier L., and F. Clavel, Virology, 1994, 205, 247-253, Isolation and envelope sequence of a highly divergent HIV-1 isolate: definition of a new HIV-1 group.
- 20 * Descamps D., Collin G., Loussert-Ajaka I., Saragosti S., Simon F. and F. Brun-Vezinet. AIDS, 1995, 9, 977-978, HIV-1 group O sensitivity to antiretroviral drugs.
 - * Huet, T., Cheynier R., Meyerhans A., Roelants G., and S. Wain-Hobson, Nature, 1990, 345, 356-359, Genetic organization of a chimpanzee lentivirus related to HIV-1.
 - * Korber BTM., MacInnes K., Smith R. and G. Myers, J. Virol., 1994, 68, 6730-6744, Mutational trends in V3 loop protein sequences observed in different genetic lineages of HIV-1.

TT C 701400 (C) A C 1123C ((0444)

* Loussert-Ajaka I., Ly TD., Chaix ML., Ingrand D., Saragosti S., Couroucé AM., Brun-Vezinet F. and F. Simon, Lancet, 1994, 343, 1393-1394, HIV-1/HIV-2 seronegativity in HIV-1 subtype O infected patients.

18

* Loussert-Ajaka I., Chaix ML., Korber B., Letourneur F., Gomas E., Allen E., Ly TD., Brun-Vezinet F., Simon F. and S. Saragosti, J. Virol., 1995, 69, 5640-5649, Variability of HIV type 1 group O strains isolated from Cameroonian patients living in FRANCE.

5

10

25

30

- * Murphy, E., B. Korber, Georges-Courbot, MC., You B., Pinter A., Cook D., Kienky MP., Georges A., Mathiot C., Barré-Sinoussi F., and M. Girard, AIDS Res. Hum. Retroviruses, 1993, 9, 997-1006, Diversity of V3 region sequences of human immunodeficiency viruses type 1 from the Central African Republic.
- * G. Myers, Aids Res. Hum. Retrovir., 1994, 10, 11, 1317-1324, Tenth Anniversary Perspectives on AIDS.
- Nkengasong, J.N., Janssens W., Heyndrickx L., Fransen K., Ndumbe PM., Motte J.,
 Leonaers A., Ngolle M., Ayuk J., Piot P., and G. Van der Groen, AIDS, 1994, 8,
 1405-1412, Genotypic subtypes of HIV-1 in Cameroon.
 - * Sharp P.M. et al., AIDS, 1994, 8, suppl. 1, S27-S42, Origins and diversity of human immunodeficiency viruses.
- * Simon, F., T.D. Ly, A. Baillou-Beaufils, V. Schneider-Fauveau, J. de Saint-Martin,
 I. Loussert-Ajaka, M.L. Chaix, S. Saragosti, A.M. Couroucé, D. Ingrand, C. Janot,
 and F. Brun-Vezinet. AIDS, 1994, 8, 1628-1629. Sensitivity of screening kits for
 anti-HIV-1 subtype O antibodies.
 - * Zekeng, L., L. Gurtler, E. Afane Ze, A. Sam-Abbenyi, G. Mbouni, Essomba, E. Mpoudi-Ngolle, M. Monny-Lobbe, J.B. Tapko, and L. Kaptue, AIDS, 1994, 8, 1626-1628, Prevalence of HIV-1 subtype O infection in Cameroon: preliminary results.

Ainsi que cela ressort de ce qui précède, l'invention ne se limite nullement à ceux de ses modes de mise en oeuvre, de réalisation et d'application qui viennent d'être décrits de façon plus explicite; elle en embrasse au contraire toutes les variantes qui peuvent venir à l'esprit du technicien en la matière, sans s'écarter du cadre, ni de la portée, de la présente invention.

LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES:

- (i) DEPOSANT:
 - (A) NOM: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE INSERM
 - (B) RUE: 101 rue de Tolbiac
 - (C) VILLE: PARIS
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75654 CEDEX 13
 - (A) NOM: ASSISTANCE PUBLIQUE-HOPITAUX DE PARIS
 - (B) RUE: 3 avenue Victoria
 - (C) VILLE: PARIS
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75100 RP
 - (A) NOM: INSTITUT PASTEUR
 - (B) RUE: 28 rue du Docteur Roux
 - (C) VILLE: PARIS
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75724 Cédex 15
 - (A) NOM: MAUCLERE Philippe
 - (B) RUE: 2 rue Buhan
 - (C) VILLE: BORDEAUX
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 33000
 - (A) NOM: LOUSSERT-AJAKA Ibtissam
 - (B) RUE: 26 avenue de la République
 - (C) VILLE: SARTROUVILLE
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 78500
 - (A) NOM: SIMON François
 - (B) RUE: 8 rue Germain Pilon
 - (C) VILLE: PARIS
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75018
 - (A) NOM: SARAGOSTI Sentob
 - (B) RUE: 69 bis rue de Billancourt
 - (C) VILLE: BOULOGNE BILLANCOURT
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 92100
 - (A) NOM: BARRE-SINOUSSI Françoise
 - (B) RUE: 104 Le Capricorne, 50 rue d'Erevan
 - (C) VILLE: ISSY LES MOULINEAUX
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 92130
- (ii) TITRE DE L'INVENTION: SOUCHES DE VIH-1 NON-M NON-O, FRAGMENTS ET APPLICATIONS.
 - (iii) NOMBRE DE SEQUENCES: 61

- (iv) FORME DECHIFFRABLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Floppy disk
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)
- (2) INFORMATIONS POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 9183 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

(X1) D	SOCKIFIION I	on the ondone	.cb. bbg ib	110. 1.		
CTTCTCGCTT	GTACTGGGTC	TCTCTTGCTG	GACCAGATTA	GAGCCTGGGA	GCTCTCTGGC	60
TAGCAGGGAA	CCCACTGCTT	AAGCCTCAAT	AAAGCTTGCC	TTGAGTGCTA	AAGTGGTGTG	120
TGCCCATCCA	TTCGGTAACT	CTGGTACCTA	GAGATCCCTC	AGACCATCTA	GACTGAGTGA	180
AAAATCTCTA	GCAGTGGCGC	CCGAACAGGG	ACTTGAAAAC	GAAAGTAGAA	CCGGAGGCTG	240
AATCTCTCGA	CGCAGGACTC	GGCTCGTTGG	TGCACACAGC	GAGAGGCGAG	GCGGCGGAAG	300
TGTGAGTACG	CAATTTTGAC	TGGCGGTGGC	CAGAAAGTAG	GAGAGAGGAT	GGGTGCGAGA	360
GCGTCAGTGT	TAACAGGGGG	AAAATTAGAT	CAATGGGAAT	CAATTTATTT	GAGACCAGGG	420
GGAAAGAAAA	AATACAGAAT	GAAACATTTA	GTATGGGCAA	GCAGGGAGCT	GGAAAGATTC	480
GCTTGTAACC	CAGGTCTCAT	GGACACAGCG	GACGGCTGTG	CCAAGTTACT	AAATCAATTA	540
GAACCAGCTC	TCAAGACAGG	GTCAGAAGAA	CTGCGCTCTT	TATATAACGC	TCTAGCAGTT	600
CTTTATTGTG	TCCATAGTAG	GATACAGATA	CACAACACAC	AGGAAGCTTT	GGACAAGATA	660
AAAGAGAAAC	AGGAACAGCA	CAAGCCCGAG	CCAAAAAACC	CAGAAGCAGG	GGCAGCGGCA	720
GCAACTGATA	GCAATATCAG	TAGGAATTAT	CCTCTAGTCC	AGACTGCTCA	AGGACAAATG	780
GTACATCAGC	CGCTGACACC	CAGAACCTTA	AATGCTTGGG	TGAAAGTGAT	AGAGGAGAAG	840
GCCTTTAGTC	CAGAAGTAAT	ACCAATGTTT	ATGGCCTTGT	CAGAAGGGGC	AACGCCCTCA	900
GATCTAAATA	CTATGTTAAA	TACAGTAGGG	GGACATCAGG	CAGCAATGCA	GATGCTGAAG	960
GAAGTCATCA	ATGAGGAAGC	AGCAGACTGG	GATAGGACAC	ATCCAGTCCC	TGTGGGACCA	1020
CTACCCCCAG	GGCAACTGAG	AGACCCTAGA	GGAAGTGATA	TAGCAGGAAC	AACTAGCACC	1080
CTGGCAGAAC	AGGTGGCTTG	GATGACTGCT	AATCCTCCTG	TTCCAGTAGG	AGATATTTAT	1140
AGAAGATGGA	TAGTCCTGGG	GTTAAACAGA	ATTGTGAGAA	TGTATAGTCC	TGTCAGCATT	1200
CTAGAGATCA	AACAAGGACC	AAAAGAACCC	TTCAGAGACT	ATGTAGACAG	GTTCTACAAA	1260
ACTCTAAGAG	CAGAGCAGGC	AACACAGGAA	GTAAAGAATT	GGATGACAGA	AACACTCTTA	1320
GTACAAAATG	CAAACCCAGA	TTGTAAACAG	CTCCTAAAAG	CATTAGGGCC	AGGAGCTACC	1380
TTAGAAGAGA	TGATGACGGC	CTGCCAGGGA	GTGGGGGGAC	CAGCACATAA	GGCAAGAGTG	1440

CTAGCAGAGG CTATGTCACA GGTGCAGCAG CCAACAACTA GTGTCTTTGC ACAAAGGGGA 1500 AACTTTAAAG GCATAAGGAA ACCCATTAAA TGTTTCAATT GTGGCAAAGA GGGCCATTTG 1560 GCAAGAAACT GTAAGGCCCC TAGAAGAGGA GGCTGTTGGA AGTGTGGGCA AGAAGGACAT 1620 CAAATGAAAG ATTGTAAAAA TGAAGGAAGA CAGGCTAATT TTTTAGGGAA GAGCTGGTCT 1680 CCCTTCAAAG GGAGACCAGG AAACTTCCCC CAGACAACAA CAAGGAAAGA GCCCACAGCC 1740 CCGCCACTAG AGAGTTATGG GTTTCAGGAG GAGAAGAGCA CACAGGGGAA GGAGATGCAG 1800 GAGAACCAGG AGAGGACAGA GAACTCTCTG TACCCACCTT TAACTTCCCT CAGATCACTC 1860 TTTGGCAACG ACCCGTCATC ACAGTAAAAA TAGGGAAAGA AGTAAGAGAA GCTCTTTTAG 1920 ATACAGGAGC TGATGATACA GTAATAGAAG AGCTACAATT AGAGGGAAAA TGGAAACCAA 1980 AAATGATAGG AGGAATTGGA GGATTTATCA AAGTGAGACA ATATGATAAT ATAACAGTAG 2040 ACATACAGGG AAGAAAAGCA GTTGGTACAG TATTAGTAGG ACCAACACCT GTTAATATTA 2100 TAGGAAGAAA TCTTTTAACC CAGATTGGCT GTACTTTAAA TTTTCCAATA AGTCCTATTG 2160 AAACTGTACC AGTAAAATTA AAACCAGGAA TGGATGGCCC AAAGGTAAAA CAATGGCCTT 2220 TGACAACAGA AAAAATAGAG GCATTAAGAG AAATTTGTAC AGAAATGGAA AAGGAAGGAA 2280 AAATTTCTAG AATAGGGCCT GAGAATCCAT ATAACACTCC AATTTTTGCT ATAAAAAAGA 2340 AAGATAGCAC TAAATGGAGA AAATTAGTAG ATTTCAGGGA ATTAAATAAA AGGACCCAAG 2400 ATTTTTGGGA AGTGCAGCTA GGAATTCCAC ATCCAGCAGG ATTAAAGCAG AAAAAATCAG 2460 TGACAGTTTT GGATGTAGGA GATGCTTATT TTTCATGTCC CTTGGACAAA GATTTTAGAA 2520 AGTATACAGC TTTTACCATA CCTAGTATAA ACAATGAGAC ACCTGGTATT AGATACCAGT 2580 ATAATGTGCT GCCACAAGGC TGGAAAGGGT CACCAGCAAT TTTTCAGAGT ACAATGACAA 2640 AAATTCTAGA ACCATTCAGA GAGAAACATC CAGAGATAAT CATTTACCAG TACATGGATG 2700 ACCTCTATGT GGGATCTGAC TTAGAACTAG CACAACATAG AGAGGCAGTA GAAGACCTTA 2760 GAGATCATCT TTTGAAGTGG GGCTTTACGA CCCCTGACAA AAAACATCAG AAGGAACCCC 2820 CGTTCCTCTG GATGGGATAT GAACTCCATC CAGACAAATG GACAGTCCAG CCAATAAAGT 2880 TACCAGAAAA GGATGTATGG ACTGTCAATG ATATACAGAA ATTAGTAGGA AAGTTAAATT 2940 GGGCAAGTCA GATCTATCCA GGAATCAGAG TAAAACAGCT CTGTAAATTA ATCAGAGGAA 3000 CCAAAGCTTT GACAGAAGTA GTCAACTTTA CAGAAGAAGC AGAATTAGAA CTAGCAGAAA 3060 ACAGGGAGAT ATTAAAAGAA CCCCTGCATG GAGTCTATTA TGACCCAGGA AAAGAATTAG 3120 TAGCAGAAAT TCAAAAGCAA GGACAAGGTC AGTGGACATA TCAGATTTAT CAGGAGTTAC 3180 ATAAAAATTT AAAAACAGGA AAGTATGCAA AAATGAGATC TGCCCATACT AATGATATAA 3240 AACAGTTAGT TGAAGTGGTA AGGAAAGTGG CAACAGAAAG TATAGTAATT TGGGGAAAGA 3300 CTCCTAAATT TAGATTACCA GTACAAAAGG AAGTGTGGGA GGCATGGTGG ACCGATCATT 3360 GGCAAGCAAC TTGGATTCCT GAGTGGGAAT TTGTCAACAC TCCTCCCCTT GTAAAATTAT 3420

GGTATCAGTT AGAAACAGAG CCAATCAGTG GGGCAGAAAC TTTCTATGTA GATGGAGCAG 3480 CTAATAGGGA AACAAAATTG GGAAAAGCAG GTTTTGTGAC AGATAGGGGA AGACAGAAAG 3540 TGGTCTCTAT TGCAGACACC ACCAATCAAA AGGCTGAGTT ACAAGCTATC CTTATGGCCT 3600 TACAAGAGTC AGGACGGGAT GTAAACATAG TCACTGACTC TCAGTATGCT ATGGGAATAA 3660 TTCATTCACA GCCAGATAAA AGTGAATCAG AATTGGTGAG CCAAATAATA GAAGAGCTCA 3720 TAAAAAAGGA AAGAGTTTAT CTCTCTTGGG TACCTGCACA TAAAGGTATT GGAGGAAATG 3780 AGCAGGTAGA CAAATTAGTT AGCTCAGGAA TTAGAAAAAT ATTATTCCTA GATGGTATAG 3840 AAAAAGCCCA AGAAGATCAT GACAGATATC ACAGCAATTG GAAAGCAATG GCCAGTGATT 3900 TTAACTTACC CCCCATAGTG GCAAAAGAAA TAGTAGCCAG CTGTGACAAA TGCCAGCTAA 3960 AAGGGGAAGC CATGCATGGA CAGGTCAATT GTAGTCCAGG AGTGTGGCAA TTAGATTGTA 4020 CACACTTAGA GGGAAAAATC ATCCTTGTGG CGGTCCATGT GGCCAGTGGC TACTTAGAAG 4080 GAAGATGGCC AGTAAAAGTT ATACACACTG ATAATGGATC CAATTTCACT AGTGCCACTG 4200 TAAAAGCAGC CTGTTGGTGG GCAAATATCA AACAGGAATT TGGGATACCC TACAATCCTC 4260 AAAGTCAGGG AGCAGTAGAG TCCATGAATA AAGAATTAAA GAAAATTATA GGACAAATCA 4320 GAGATCAAGC AGAACATCTA AAGACAGCAG TGCAAATGGC GGTTTTCATT CACAATTTTA 4380 AAAGAAAAGG GGGGATTGGG GGGTACACTG CAGGGGAAAG AATAATAGAC ATAATAGCAA 4440 CAGACATACA GACAACAAT TTACAAACAC AAATTTTAAA AGTTCAAAAT TTTCGGGTTT 4500 ATTACAGAGA CAGCAGAGAT CCCATTTGGA AAGGACCAGC CAAACTTCTG TGGAAAGGAG 4560 AAGGGGCAGT GGTAATTCAA GATAACGGGG ATATAAAAGT AGTCCCACGT AGGAAAGCAA 4620 AAATAATTAG GGATTATGGA AAACAGATGG CAGGTGATGG TTGTGTGGCA AGTGGACAGG 4680 ATGAAAATCA GGAAATGGAA TAGCTTAGTA AAACATCATA TGTATGTGTC AAAAAAGGCA 4740 AAAGGATGGT ATTATAGACA TCATTATGAA ACACATCACC CAAAAATAAG TTCAGAAGTA 4800 CATATCCCAG TAGGTCAGGC AAGATTAGTG ACAGTCACTT ATTGGGGGCT AACAACAGGA 4860 GAACAGTCTT GGCATCTAGG ACATGGAGTA TCCATAGAAT GGAGACTAAG AAAATACAAG 4920 ACACAAGTTG ATCCTGAAAT GGCAGACAAG CTAATACATC TTCATTATTT TGATTGTTTT 4980 ACAGCCTCTG CCATAAGGCA AGCGGTCTTA GGGAGACCAG TATTACCTAG GTGTGAATAT 5040 CCAGCAGGGC ACAAACAGGT AGGCACCCTA CAATATCTAG CACTAACAGC CTGGGTGGGA 5100 GCAAAGAAGA GAAAGCCACC CTTACCTAGT GTGACTAAGC TAACAGAAGA TAGATGGAAC 5160 GAGCACCAGA AGATGCAGGG CCACAGAGGG AACCCTATAA TGAATGGGCA CTAGAATTAT 5220 TAGAAGAATT AAAAAATGAA GCTGTGCGCC ATTTTCCAAG GATTTGGCTA CATGGGTTAG 5280 GACAACACT CTATAACACA TATGGAGACA CCTGGGAGGG GGTAGAGGCA ATTATCAGGA 5340 TACTACAACA ATTACTGTTT ATCCATTATA GGATTGGCTG CCAGCACAGC AGAATAGGGA 5400

77 U /UI=UV / U

TCACTCCTCA AAGGAGAAGG AATGGAACCA GTAGATCCTA GATTAGAGCC CTGGAATCAT 5460 CCAGGAAGCC AACCTAAAAC AGCTTGCAAT AATTGCTATT GTAAAAGATG TTGCTATCAC 5520 TGCTTATATT GCTTCACAAA GAAAGGCTTA GGCATCTCAT ATGGCAGGAA GAAGCGGAGT 5580 CAACGACGAA GAACTCCTCA GAGCAGTAAG AGTCATCAAG ATCTTATACC AGAGCAGTAA 5640 GTAAAACCTG TATATATGCT GTCATTGGGA TTCATAGCGT TAGGAGCAGC AGTTAGCATA 5700 GCAGTAATAG TCTGGGCATT ACTATATAGA GAATATAAGA AAATAAAATT GCAGGAAAAA 5760 ATAAAACACA TAAGACAGAG AATAAGAGAA AGAGAAGAAG ATAGTGGCAA TGAAAGTGAT 5820 GGGGATGCAG AGTGGTTGGA TGGGGATGAA GAGTGGTTGG TTACTCTTCT ATCTTCTAGT 5880 AAGCTTGATC AAGGTAATTG GGTCTGAACA ACATTGGGTA ACAGTGTACT ATGGGGTACC 5940 AGTATGGAGA GAAGCAGAGA CAACTCTTTT CTGTGCTTCA GATGCTAAAG CCCATAGTAC 6000 AGAGGCTCAC AACATCTGGG CCACACAAGC ATGTGTTCCT ACTGATCCCA ATCCACAAGA 6060 AGTGCTATTA CCCAATGTAA CTGAAAAATT TAATATGTGG GAAAATAAAA TGGCAGACCA 6120 AATGCAAGAG GATATTATCA GTCTGTGGGA ACAGAGCTTA AAGCCCTGTG TTAAATTAAC 6180 CCCATTATGT GTAACTATGC TTTGTAACGA TAGCTATGGG GAGGAAAGGA ACAATACAAA 6240 TATGACAACA AGAGAACCAG ACATAGGATA CAAACAAATG AAAAATTGCT CATTCAATGC 6300 AACCACTGAG CTAACAGATA AAAAGAAGCA AGTTTACTCT CTGTTTTATG TAGAAGATGT 6360 AGTACCAATC AATGCCTATA ATAAAACATA TAGGCTAATA AATTGTAATA CCACAGCTGT 6420 GACACAAGCT TGTCCTAAGA CTTCCTTTGA GCCAATTCCA ATACATTACT GTGCACCACC 6480 AGGCTTTGCC ATTATGAAAT GTAATGAAGG AAACTTTAGT GGAAATGGAA GCTGTACAAA 6540 TGTGAGTACT GTACAATGCA CACATGGAAT AAAGCCAGTG ATATCCACTC AGTTAATCCT 6600 AAATGGAAGC TTAAATACAG ATGGAATTGT TATTAGAAAT GATAGTCACA GTAATCTGTT 6660 GGTGCAATGG AATGAGACAG TGCCAATAAA TTGTACAAGG CCAGGAAATA ATACAGGAGG 6720 ACAGGTGCAG ATAGGACCTG CTATGACATT TTATAACATA GAAAAAATAG TAGGAGACAT 6780 TAGACAAGCA TACTGTAATG TCTCTAAAGA ACTATGGGAA CCAATGTGGA ATAGAACAAG 6840 AGAGGAAATA AAGAAAATCC TGGGGAAAAA CAACATAACC TTCAGGGCTC GAGAGAGGAA 6900 TGAAGGAGAC CTAGAAGTGA CACACTTAAT GTTCAATTGT AGAGGAGAGT TTTTCTATTG 6960 TAACACTTCC AAATTATTTA ATGAGGAATT ACTTAACGAG ACAGGTGAGC CTATTACTCT 7020 GCCTTGTAGA ATAAGACAGA TTGTAAATTT GTGGACAAGG GTAGGAAAAG GAATTTATGC 7080 TAGTGGTGGG CCTGACACCA AGGAAACAAT AGTATATCCC TCAGGAGGAA ACATGGTTAA 7200 TCTCTGGAGA CAAGAGTTGT ATAAGTACAA AGTAGTTAGC ATAGAACCCA TAGGAGTAGC 7260 ACCAGGTAAA GCTAAAAGAC GCACAGTGAG TAGAGAAAAA AGAGCAGCCT TTGGACTAGG 7320 TGCGCTGTTT CTTGGGTTTC TTGGAGCAGC AGGGAGCACT ATGGGCGCAG CGTCAATAAC 7380

GCTGACGGTA CAGGCCCGGA CATTATTATC TGGGATAGTG CAACAGCAGA ATATTCTGTT 7440 GAGAGCAATA GAGGCGCAAC AACATTTGTT GCAACTCTCA ATCTGGGGCA TTAAACAGCT 7500 CCAGGCAAAA GTCCTTGCTA TAGAAAGATA CCTTAGGGAT CAGCAAATCC TAAGTCTATG 7560 GGGCTGCTCA GGAAAAACAA TATGCTATAC CACTGTGCCT TGGAATGAGA CTTGGAGCAA 7620 CAATACCTCT TATGATACAA TCTGGAATAA TTTAACCTGG CAACAATGGG ATGAGAAAGT 7680 AAGAAACTAT TCAGGTGTCA TTTTTGGACT TATAGAACAG GCACAAGAAC AACAGAACAC 7740 AAATGAGAAA TCACTCTTGG AATTGGATCA ATGGGACAGT CTGTGGAGCT GGTTTGGTAT 7800 TACAAAATGG CTGTGGTATA TAAAAATAGC TATAATGATA GTAGCAGGCA TTGTAGGCAT 7860 AAGAATCATA AGTATAGTAA TAACTATAAT AGCAAGAGTT AGGCAGGGAT ATTCTCCCCT 7920 TTCGTTGCAG ACCCTTATCC CAACAGCAAG GGGACCAGAC AGGCCAGAAG AAACAGAAGG 7980 AGGCGTTGGA GAGCAAGACA GAGGCAGATC CGTGCGATTA GTGAGCGGAT TCTCAGCTCT 8040 TGTCTGGGAG GACCTCCGGA ACCTGTTGAT CTTCCTCTAC CACCGCTTGA CAGACTCACT 8100 CTTGATACTG AGGAGGACTC TGGAACTCCT GGGACAGAGT CTCAGCAGGG GACTGCAACT 8160 ACTGAATGAA CTCAGAACAC ACTTGTGGGG AATACTTGCA TATTGGGGAA AAGAGTTAAG 8220 GGATAGTGCT ATCAGCTTGC TTAATACAAC AGCTATTGTA GTAGCAGAAG GAACAGATAG 8280 GATTATAGAA TTAGCACAAA GAATAGGAAG GGGAATATTA CACATACCTA GAAGAATCAG 8340 ACAAGGCCTA GAAAGAGCAC TGATATAAGA TGGGAAAGAT TTGGTCAAAG AGCAGCCTAG 8400 TAGGATGGCC AGAAATCAGA GAAAGAATGA GAAGACAAAC GCAAGAACCA GCAGTAGAGC 8460 CAGCAGTAGG AGCAGGAGCA GCTTCTCAAG ATCTAGCTAA TCGAGGGGCC ATCACCATAA 8520 GAAATACTAG AGACAATAAT GAAAGTATAG CTTGGCTAGA AGCACAAGAA GAAGAAGAG 8580 AAGTAGGCTT TCCAGTACGC CCTCAGGTAC CATTAAGGCC AATAACCTAT AAACAGGCTT 8640 TTGATCTTTC CTTCTTTTTA AAAGATAAGG GGGGACTGGA AGGGCTAGTT TGGTCCAGAA 8700 AAAGGCAAGA TATTCTAGAC CTCTGGATGT ATCACACACA AGGCATCCTC CCTGACTGGC 8760 ATAACTACAC ACCAGGGCCA GGAATTAGAT ACCCCGTAAC CTTTGGATGG TGCTTCAAAC 8820 TAGTACCATT GTCAGCTGAA GAAGTAGAAG AGGCTAATGA AGGAGACAAC AATGCCCTCT 8880 TACACCCCAT ATGTCAACAT GGAGCAGATG ATGATCATAA AGAAGTGTTG GTGTGGCGAT 8940 TTGACAGCTC CCTAGCAAGA AGACATGTAG CAAGAGAGCT GCATCCGGAG TTTTACAAGA 9000 ACTGCTGACA AGGGACTTTA CTGCTGACAA GGGACTTTAT ACTTGGGGAC TTTCCGCCAG 9060 GGACTTTCCA GGGAGGTGTG GTTGGGGGAG TGGCTTGCCC TCAGAGCTGC ATAAAAGCAG 9120 CCGCTTCTCG CTTGTACTGG GTCTCTCTTG CTGGACCAGA TTAGAGTCTG GGAGCATATT 9180 GGG 9183

(2) INFORMATIONS POUR LA SEQ ID NO:	121	INFORMATIONS	POUR	LA	SEO	ID	NO:	2
-------------------------------------	-----	--------------	------	----	-----	----	-----	---

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 813 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

TTGGAAGGGC	TAGTTTGGTC	CAGAAAAAGG	CAAGATATTC	TAGACCTCTG	GATGTATCAC	60
ACACAAGGCA	TCCTCCCTGA	CTGGCATAAC	TACACACCAG	GGCCAGGAAT	TAGATACCCC	120
GTAACCTTTG	GATGGTGCTT	CAAACTAGTA	CCATTGTCAG	CTGAAGAAGT	AGAAGAGGCT	180
AATGAAGGAG	ACAACAATGC	CCTCTTACAC	CCCATATGTC	AACATGGAGC	AGATGATGAT	240
CATAAAGAAG	TGTTGGTGTG	GCGATTTGAC	AGCTCCCTAG	CAAGAAGACA	TGTAGCAAGA	300
GAGCTGCATC	CGGAGTTTTA	CAAGAACTGC	TGACAAGGGA	CTTTACTGCT	GACAAGGGAC	360
TTTATACTTG	GGGACTTTCC	GCCAGGGACT	TTCCAGGGAG	GTGTGGTTGG	GGGAGTGGCT	420
TGCCCTCAGA	GCTGCATAAA	AGCAGCCGCT	TCTCGCTTGT	ACTGGGTCTC	TCTTGCTGGA	480
CTATACAGAT	TAGAGCCTGG	GAGCTCTCTG	GCTAGCAGGG	AACCCACTGC	TTAAGCCTCA	540
ATAAATACAG	CTTGCCTTGA	GTGCTAAAGT	GGTGTGTGCC	CATCCATTCG	GTAACTCTGG	600
TACCTAGAGA	ATCCCTCAGA	CCATCTAGAC	TGAGTGAAAA	ATCTCTAGCA	GTGGCGCCCG	660
AACAGGGACT	TAGTTGAAAA	CGAAAGTAGA	ACCGGAGGCT	GAATCTCTCG	ACGCAGGACT	720
CGGCTCGTTG	GTGCACACAG	CGAGAGGCGA	GGCGGCGGAA	GTGTGAGTAC	GCAATTTTGA	780
CTGGCGGTGG	CCAGAAAGTA	GGAGAGAGGG	AGG			813

(2) INFORMATIONS POUR LA SEQ ID NO: 3:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 1539 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..1536
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:
- ATG GGT GCG AGA GCG TCA GTG TTA ACA GGG GGA AAA TTA GAT CAA TGG
 Met Gly Ala Arg Ala Ser Val Leu Thr Gly Gly Lys Leu Asp Gln Trp

 1 5 10 15
- GAA TCA ATT TAT TTG AGA CCA GGG GGA AAG AAA AAA TAC AGA ATG AAA Glu Ser Ile Tyr Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Met Lys 20 25 30

					AGA Arg				144
					AAG Lys				192
					CTG Leu 75				240
					AGG Arg				288
					AAA Lys				336
					GCG Ala				384
					ACT Thr				432
					AAT Asn 155				480
					ATA Ile				528
					AAT Asn				576
					CTG Leu			AAT Asn	624
					CCA Pro				672
					GGA Gly 235				720
					TGG Trp				768
					TGG Trp				816
					AGC Ser			AAA Lys	864

CAA Gln	GGA Gly 290	CCA Pro	AAA Lys	GAA Glu	CCC Pro	TTC Phe 295	AGA Arg	GAC Asp	TAT Tyr	GTA Val	GAC Asp 300	AGG Arg	TTC Phe	TAC Tyr	AAA Lys	912
ACT Thr 305	Leu	AGA Arg	GCA Ala	GAG Glu	CAG Gln 310	GCA Ala	ACA Thr	CAG Gln	GAA Glu	GTA Val 315	AAG Lys	AAT Asn	TGG Trp	ATG Met	ACA Thr 320	960
GAA Glu	ACA Thr	CTC Leu	TTA Leu	GTA Val 325	CAA Gln	AAT Asn	GCA Ala	AAC Asn	CCA Pro 330	GAT Asp	TGT Cys	AAA Lys	CAG Gln	CTC Leu 335	CTA Leu	1008
AAA Lys	GCA Ala	TTA Leu	GGG Gly 340	CCA Pro	GGA Gly	GCT Ala	ACC Thr	TTA Leu 345	GAA Glu	GAG Glu	ATG Met	ATG Met	ACG Thr 350	GCC Ala	TGC Cys	1056
CAG Gln	GGA Gly	GTG Val 355	GGG Gly	GGA Gly	CCA Pro	GCA Ala	CAT His 360	AAG Lys	GCA Ala	AGA Arg	GTG Val	CTA Leu 365	GCA Ala	GAG Glu	GCT Ala	1104
Met	TCA Ser 370	CAG Gln	GTG Val	CAG Gln	CAG Gln	CCA Pro 375	ACA Thr	ACT Thr	AGT Ser	GTC Val	TTT Phe 380	GCA Ala	CAA Gln	AGG Arg	GGA Gly	1152
AAC Asn 385	TTT Phe	AAA Lys	GGC Gly	ATA Ile	AGG Arg 390	AAA Lys	CCC Pro	ATT Ile	AAA Lys	TGT Cys 395	TTC Phe	AAT Asn	TGT Cys	GGC Gly	AAA Lys 400	1200
GAG Glu	GGC Gly	CAT His	TTG Leu	GCA Ala 405	Arg	AAC Asn	TGT Cys	AAG Lys	GCC Ala 410	CCT Pro	AGA Arg	AGA Arg	GGA Gly	GGC Gly 415	TGT Cys	1248
TGG Trp	AAG Lys	TGT Cys	GGG Gly 420	CAA Gln	GAA Glu	GGA Gly	CAT His	CAA Gln 425	ATG Met	AAA Lys	GAT Asp	TGT Cys	AAA Lys 430	AAT Asn	GAA Glu	1296
GGA Gly	AGA Arg	CAG Gln 435	GCT Ala	AAT Asn	TTT Phe	TTA Leu	GGG Gly 440	AAG Lys	AGC Ser	TGG Trp	TCT Ser	CCC Pro 445	TTC Phe	AAA Lys	GGG Gly	1344
AGA Arg	CCA Pro 450	GGA Gly	AAC Asn	TTC Phe	CCC Pro	CAG Gln 455	ACA Thr	ACA Thr	ACA Thr	AGG Arg	AAA Lys 460	GAG Glu	CCC Pro	ACA Thr	GCC Ala	1392
CCG Pro 465	CCA Pro	CTA Leu	GAG Glu	AGT Ser	TAT Tyr 470	GGG Gly	TTT Phe	CAG Gln	GAG Glu	GAG Glu 475	AAG Lys	AGC Ser	ACA Thr	CAG Gln	GGG Gly 480	1440
AAG Lys	GAG Glu	ATG Met	CAG Gln	GAG Glu 485	AAC Asn	CAG Gln	GAG Glu	AGG Arg	ACA Thr 490	GAG Glu	AAC Asn	TCT Ser	CTG Leu	TAC Tyr 495	CCA Pro	1488
CCT Pro	TTA Leu	ACT Thr	TCC Ser 500	CTC Leu	AGA Arg	TCA Ser	Leu	TTT Phe 505	GGC Gly	AAC Asn	GAC Asp	CCG Pro	TCA Ser 510	TCA Ser	CAG Gln	1536
TAA																1539

(2) INFORMATIONS POUR LA SEQ ID NO: 4:

- (i) CARACTERISTIQUES DE LA SEQUENCE:(A) LONGUEUR: 512 acides aminés(B) TYPE: acide aminé(D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:

Met Gly Ala Arg Ala Ser Val Leu Thr Gly Gly Lys Leu Asp Gln Trp 1 5 10 15

Glu Ser Ile Tyr Leu Arg Pro Gly Gly Lys Lys Lys Tyr Arg Met Lys
20 25 30

His Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Cys Asn Pro 35 40 45

Gly Leu Met Asp Thr Ala Asp Gly Cys Ala Lys Leu Leu Asn Gln Leu 50 55 60

Glu Pro Ala Leu Lys Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn 65 70 75 80

Ala Leu Ala Val Leu Tyr Cys Val His Ser Arg Ile Gln Ile His Asn 85 90 95

Thr Gln Glu Ala Leu Asp Lys Ile Lys Glu Lys Gln Glu Gln His Lys
100 105 110

Pro Glu Pro Lys Asn Pro Glu Ala Gly Ala Ala Ala Ala Thr Asp Ser 115 120 . 125

Asn Ile Ser Arg Asn Tyr Pro Leu Val Gln Thr Ala Gln Gly Gln Met 130 140

Val His Gln Pro Leu Thr Pro Arg Thr Leu Asn Ala Trp Val Lys Val 145 150 155 160

Ile Glu Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Met Ala 165 170 175

Leu Ser Glu Gly Ala Thr Pro Ser Asp Leu Asn Thr Met Leu Asn Thr 180 185 190

Val Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Val Ile Asn 195 200 205

Glu Glu Ala Ala Asp Trp Asp Arg Thr His Pro Val Pro Val Gly Pro 210 215 220

Leu Pro Pro Gly Gln Leu Arg Asp Pro Arg Gly Ser Asp Ile Ala Gly 225 230 235 240

Thr Thr Ser Thr Leu Ala Glu Gln Val Ala Trp Met Thr Ala Asn Pro 245 250 255

Pro Val Pro Val Gly Asp Ile Tyr Arg Arg Trp Ile Val Leu Gly Leu 260 265 270

Asn Arg Ile Val Arg Met Tyr Ser Pro Val Ser Ile Leu Glu Ile Lys 275 280 285

Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr Lys 290 295 300

Thr Leu Arg Ala Glu Gln Ala Thr Gln Glu Val Lys Asn Trp Met Thr 305 310 315 320

Glu Thr Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Gln Leu Leu 325 330 335

Lys	Ala	Leu	Gly 340	Pro	Gly	Ala	Thr	Leu 345	Glu	Glu	Met	Met	Thr 350	Ala	Cys
Gln	Gly	Val 355	Gly	Gly	Pro	Ala	His 360		Ala	Arg	Val	Leu 365	Ala	Glu	Ala
Met	Ser 370	Gln	Val	Gln	Gln	Pro 375	Thr	Thr	Ser		Phe 380	Ala	Gln	Arg	Gly
Asn 385	Phe	Lys	Gly	Ile	Arg 390	Lys	Pro	Ile	Lys	Cys 395	Phe	Asn	Cys	Gly	Lys 400
Glu	Gly	His	Leu	Ala 405	Arg	Asn	Cys	Lys	Ala 410	Pro	Arg	Arg	Gly	Gly 415	Cys
Trp	Lys	Cys	Gly 420	Gln	Glu	Gly	His	Gln 425	Met	Lys	Asp	Cys	Lys 430	Asn	Glu
Gly	Arg	Gln 435	Ala	Asn	Phe	Leu	Gly 440	Lys	Ser	Trp	Ser	Pro 445	Phe	Lys	Gly
Arg	Pro 450	Gly	Asn	Phe	Pro	Gln 455	Thr	Thr	Thr	Arg	Lys 460	Glu	Pro	Thr	Ala
Pro 465	Pro	Leu	Glu	Ser	Tyr 470	Gly	Phe	Gln	Glu	Glu 475	Lys	Ser	Thr	Gln	Gly 480
Lys	Glu	Met	Gln	Glu 485	Asn	Gln	Glu	Arg	Thr 490	Glu	Asn	Ser	Leu	Tyr 495	Pro
Pro	Leu	Thr	Ser	Leu	Arg	Ser	Leu	Phe	Gly	Asn	Asp	Pro	Ser	Ser	Gln

510

(2) INFORMATIONS POUR LA SEQ ID NO: 5:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 3045 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple

 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (ix) CARACTERISTIQUE:

500

- (A) NOM/CLE: CDS
 (B) EMPLACEMENT:1..3042
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:

	TTT Phe								48
CCC Pro	CCA Pro 530	 	 _		 	 	 	 	96
TTA Leu 545	TGG Trp								144

GAA Glu	CCA Pro	GGA Gly	GAG Glu	GAC Asp 565	AGA Arg	GAA Glu	CTC Leu	TCT	GTA Val 570	CCC Pro	ACC Thr	TTT Phe	AAC Asn	TTC Phe 575	CCT Pro	192
CAG Gln																240
GAA Glu																288
GAA Glu																336
ATT Ile 625																384
ATA Ile																432
GTT Val																480
AAT Asn																528
GGA .																576
ATA (Ile (705																624
ATT (672
ATA .																720
GAA (768
CCA (816
GTA (Val (785																864
TAT :																912

AGA Arg	TAC Tyr	CAG Gln	TAT Tyr 820	AAT Asn	GTG Val	CTG Leu	CCA Pro	CAA Gln 825	GGC Gly	TGG Trp	AAA Lys	GGG Gly	TCA Ser 830	CCA Pro	GCA Ala	960
ATT Ile	TTT Phe	CAG Gln 835	AGT Ser	ACA Thr	ATG Met	ACA Thr	AAA Lys 840	ATT Ile	CTA Leu	GAA Glu	CCA Pro	TTC Phe 845	AGA Arg	GAG Glu	AAA Lys	1008
														GTG Val		1056
														CTC Leu		1104
														CAT His 895		1152
														GAC Asp		1200
														ACT Thr		1248
AAT Asn	GAT Asp 930	ATA Ile	CAG Gln	AAA Lys	TTA Leu	GTA Val 935	GGA Gly	AAG Lys	TTA Leu	AAT Asn	TGG Trp 940	GCA Ala	AGT Ser	CAG Gln	ATC Ile	1296
														GGA Gly		1344
AGA Arg	GCT Ala	TTG Leu	ACA Thr	GAA Glu 965	GTA Val	GTC Val	AAC Asn	TTT Phe	ACA Thr 970	GAA Glu	GAA Glu	GCA Ala	GAA Glu	TTA Leu 975	GAA Glu	1392
														GTC Val		1440
	_		_			_		Ala		_	_		Gln	GGA Gly		1488
		Trp					Tyr					Lys		TTA Leu		1536
	Gly					Met					Thr			ATA Ile		1584
					Val					Thr				GTA Val 1059	Ile .	1632
				Pro					Pro					GTG Val		1680

Glu Ala T	rgg rgg AC Frp Trp Th 1075	C GAT CAT r Asp His	TGG CAA Trp Gln 1080	GCA ACT Ala Thr	TGG ATT Trp Ile 108	Pro Glu	TGG 1728 Trp
GAA TTT G Glu Phe V 1090	GTC AAC AC /al Asn Th	T CCT CCC r Pro Pro 109	Leu Val	AAA TTA Lys Leu	TGG TAT Trp Tyr 1100	CAG TTA Gln Leu	GAA 1776 Glu
ACA GAG C Thr Glu F 1105	CCA ATC AG Pro Ile Se	r GGG GCA r Gly Ala 1110	GAA ACT Glu Thr	TTC TAT Phe Tyr 111	Val Asp	GGA GCA Gly Ala	GCT 1824 Ala 1120
AAT AGG G Asn Arg G	SAA ACA AA Slu Thr Ly 11	s Leu Gly					Gly
AGA CAG A Arg Gln L				Thr Thr			
TTA CAA G Leu Gln A 1	CT ATC CT La Ile Le 155	r ATG GCC 1 Met Ala	TTA CAA Leu Gln 1160	GAG TCA Glu Ser	GGA CGG Gly Arg 116	Asp Val	AAC 1968 Asn
ATA GTC A Ile Val T 1170	CT GAC TC'	r CAG TAT c Gln Tyr 117	Ala Met	GGA ATA Gly Ile	ATT CAT Ile His 1180	TCA CAG Ser Gln	CCA 2016 Pro
GAT AAA A Asp Lys S 1185	GT GAA TC Ger Glu Se	A GAA TTG c Glu Leu 1190	GTG AGC Val Ser	CAA ATA Gln Ile 119	Ile Glu	GAG CTC Glu Leu	ATA 2064 Ile 1200
AAA AAG G Lys Lys G		l Tyr Leu					Ile
GGA GGA A Gly Gly A	AT GAG CAG sn Glu Gli 1220	G GTA GAC 1 Val Asp	AAA TTA Lys Leu 122	Val Ser	TCA GGA Ser Gly	ATT AGA Ile Arg 1230	AAA 2160 Lys
ATA TTA T Ile Leu P 1						His Asp	
TAT CAC A Tyr His S 1250			Met Ala				
ATA GTG G Ile Val A 1265	CA AAA GAA la Lys Glu	A ATA GTA 1 lle Val 1270	GCC AGC Ala Ser	TGT GAC Cys Asp 1275	Lys Cys	CAG CTA Gln Leu	AAA 2304 Lys 1280
GGG GAA G	CC ATG CAT la Met His 128	Gly Gln	GTC AAT Val Asn	TGT AGT Cys Ser 1290	CCA GGA Pro Gly	GTG TGG Val Trp 1295	Gln
TTA GAT TO				Ile Ile			
GTG GCC A Val Ala S 1	GT GGC TAC er Gly Tyr 315	TTA GAA Leu Glu	GCA GAA Ala Glu 1320	GTT ATT Val Ile	CCT GCA Pro Ala 1325	Glu Thr	GGA 2448 Gly

CAG Gln	GAA Glu 1330	Thr	GCA Ala	TAT Tyr	TTT Phe	Ile 133	Leu	AAG Lys	TTA Leu	GCT Ala	GGA Gly 1340	Arg	TGG Trp	CCA Pro	GTA Val	2496
AAA Lys 1345	Val	ATA Ile	CAC His	ACT Thr	GAT Asp 1350	Asn	GGA Gly	TCC Ser	AAT Asn	TTC Phe 135	Thr	AGT Ser	GCC Ala	ACT Thr	GTA Val 1360	2544
AAA Lys	GCA Ala	GCC Ala	TGT Cys	TGG Trp 136	TGG Trp	GCA Ala	AAT Asn	ATC Ile	AAA Lys 1370	Gln	GAA Glu	TTT Phe	GGG Gly	ATA Ile 1375	Pro	2592
				Ser	CAG Gln				Glu					Glu		2640
AAG Lys	AAA Lys	ATT Ile 1395	Ile	GGA Gly	CAA Gln	ATC Ile	AGA Arg 1400	Asp	CAA Gln	GCA Ala	GAA Glu	CAT His 1405	Leu	AAG Lys	ACA Thr	2688
Ala	GTG Val 1410	Gln	ATG Met	GCG Ala	GTT Val	TTC Phe 1415	Ile	CAC His	AAT Asn	TTT Phe	AAA Lys 1420	Arg	AAA Lys	GGG Gly	GGG Gly	2736
ATT Ile 1425	Gly	GGG Gly	TAC Tyr	ACT Thr	GCA Ala 1430	Gly	GAA Glu	AGA Arg	ATA Ile	ATA Ile 1435	Asp	ATA Ile	ATA Ile	GCA Ala	ACA Thr 1440	2784
					AAT Asn					Ile					Asn	2832
				Tyr	AGA Arg				Asp					Gly		2880
GCC Ala	AAA Lys	CTT Leu 1475	Leu	TGG Trp	AAA Lys	GGA Gly	GAA Glu 1480	Gly	GCA Ala	GTG Val	GTA Val	ATT Ile 1485	Gln	GAT Asp	AAC Asn	2928
GGG Gly	GAT Asp 1490	Ile	AAA Lys	GTA Val	GTC Val	CCA Pro 1495	Arg	AGG Arg	AAA Lys	GCA Ala	AAA Lys 1500	Ile	ATT Ile	AGG Arg	GAT Asp	2976
TAT Tyr 1505	Gly	AAA Lys	CAG Gln	ATG Met	GCA Ala 1510	Gly	GAT Asp	GGT Gly	TGT Cys	GTG Val 1515	Ala	AGT Ser	GGA Gly	CAG Gln	GAT Asp 1520	3024
	AAT Asn					TAG										3045

(2) INFORMATIONS POUR LA SEQ ID NO: 6:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 1014 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:

Phe Phe Arg Glu Glu Leu Val Ser Leu Gln Arg Glu Thr Arg Lys Leu 15

Pro Pro Asp Asn Asn Lys Glu Arg Ala His Ser Pro Ala Thr Arg Glu Leu Trp Val Ser Gly Gly Glu Glu His Thr Gly Glu Gly Asp Ala Gly Glu Pro Gly Glu Asp Arg Glu Leu Ser Val Pro Thr Phe Asn Phe Pro Gln Ile Thr Leu Trp Gln Arg Pro Val Ile Thr Val Lys Ile Gly Lys Glu Val Arg Glu Ala Leu Leu Asp Thr Gly Ala Asp Asp Thr Val Ile Glu Glu Leu Gln Leu Glu Gly Lys Trp Lys Pro Lys Met Ile Gly Gly Ile Gly Gly Phe Ile Lys Val Arg Gln Tyr Asp Asn Ile Thr Val Asp Ile Gln Gly Arg Lys Ala Val Gly Thr Val Leu Val Gly Pro Thr Pro Val Asn Ile Ile Gly Arg Asn Leu Leu Thr Gln Ile Gly Cys Thr Leu Asn Phe Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Thr Glu Lys 185 Ile Glu Ala Leu Arg Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Arg Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Ile Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys Gln Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Cys Pro Leu Asp Lys Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Thr Met Thr Lys Ile Leu Glu Pro Phe Arg Glu Lys 325 330 His Pro Glu Ile Ile Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Leu Ala Gln His Arg Glu Ala Val Glu Asp Leu Arg

Asp His Leu Leu Lys Trp Gly Phe Thr Thr Pro Asp Lys Lys His Gln 375 Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys 390 Trp Thr Val Gln Pro Ile Lys Leu Pro Glu Lys Asp Val Trp Thr Val 410 Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Arg Val Lys Gln Leu Cys Lys Leu Ile Arg Gly Ala Arg Ala Leu Thr Glu Val Val Asn Phe Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Leu His Gly Val Tyr Tyr Asp Pro Gly Lys Glu Leu Val Ala Glu Ile Gln Lys Gln Gly Gln 490 Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Leu His Lys Asn Leu Lys Thr Gly Lys Tyr Ala Lys Met Arg Ser Ala His Thr Asn Asp Ile Lys 520 Gln Leu Val Glu Val Val Arg Lys Val Ala Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe Arg Leu Pro Val Gln Lys Glu Val Trp Glu Ala Trp Trp Thr Asp His Trp Gln Ala Thr Trp Ile Pro Glu Trp 570 Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Thr Glu Pro Ile Ser Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Phe Val Thr Asp Arg Gly Arg Gln Lys Val Val Ser Ile Ala Asp Thr Thr Asn Gln Lys Ala Glu Leu Gln Ala Ile Leu Met Ala Leu Gln Glu Ser Gly Arg Asp Val Asn Ile Val Thr Asp Ser Gln Tyr Ala Met Gly Ile Ile His Ser Gln Pro Asp Lys Ser Glu Ser Glu Leu Val Ser Gln Ile Ile Glu Glu Leu Ile Lys Lys Glu Arg Val Tyr Leu Ser Trp Val Pro Ala His Lys Gly Ile 695 Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ser Gly Ile Arg Lys

Ile Leu Phe Leu Asp Gly Ile Glu Lys Ala Gln Glu Asp His Asp Arg

Tyr His Ser Asn Trp Lys Ala Met Ala Ser Asp Phe Asn Leu Pro Pro 740 Tle Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys 755 Gly Gly Gly Val Trp Gln 770 Ala Met His Gly Gln Val Asn Cys Ser Pro Gly Val Trp Gln 770 Ala Ser Cys Thr His Leu Glu Gly Lys Ile Ile Leu Val Ala Val His 800 Val Ala Ser Gly Tyr Leu Glu Ala Glu Val Ile Pro Ala Glu Thr Gly 805 Gln Glu Thr Ala Tyr Phe Ile Leu Lys Leu Ala Gly Arg Trp Pro Val 820 Lys Val Ile His Thr Asp Asn Gly Ser Asn Phe Thr Ser Ala Thr Val 835 Ala Ala Cys Trp Trp Ala Asn Ile Lys Gln Glu Phe Gly Ile Pro 850 Ala Ala Cys Trp Trp Ala Asn Ile Lys Gln Glu Phe Gly Ile Pro 850 Asn Phe Thr Ser Ala 750 Asn Phe 750 Asn Ph

- 915 920 925
 Asp Ile Gln Thr Thr Asn Leu Gln Thr Gln Ile Leu Lys Val Gln Asn
- 930 935 940

Tyr Asn Pro Gln Ser Gln Gly Ala Val Glu Ser Met Asn Lys Glu Leu

Lys Lys Ile Ile Gly Gln Ile Arg Asp Gln Ala Glu His Leu Lys Thr

Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly

Ile Gly Gly Tyr Thr Ala Gly Glu Arg Ile Ile Asp Ile Ile Ala Thr

890

- Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asp Pro Ile Trp Lys Gly Pro 945 955 960
- Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn 965 970 975
- Gly Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp 980 985 990
- Tyr Gly Lys Gln Met Ala Gly Asp Gly Cys Val Ala Ser Gly Gln Asp 995 1000 1005
- Glu Asn Gln Glu Met Glu 1010
- (2) INFORMATIONS POUR LA SEQ ID NO: 7:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 579 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)

(ix) CARACTERISTIQUE:

(A) NOM/CLE: CDS
(B) EMPLACEMENT:1..576

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:

ATG GAA AAC AGA TGG CAG GTG ATG GTT GTG TGG CAA GTG Met Glu Asn Arg Trp Gln Val Met Val Val Trp Gln Val 1015 1020 1025	
AAA ATC AGG AAA TGG AAT AGC TTA GTA AAA CAT CAT ATG Lys Ile Arg Lys Trp Asn Ser Leu Val Lys His His Met 1035 1040	
AAA AAG GCA AAA GGA TGG TAT TAT AGA CAT CAT TAT GAA Lys Lys Ala Lys Gly Trp Tyr Tyr Arg His His Tyr Glu 1050 1055	
CCA AAA ATA AGT TCA GAA GTA CAT ATC CCA GTA GGT CAG Pro Lys Ile Ser Ser Glu Val His Ile Pro Val Gly Gln 1065 1070 107	Ala Arg Leu
GTG ACA GTC ACT TAT TGG GGG CTA ACA ACA GGA GAA CAG Val Thr Val Thr Tyr Trp Gly Leu Thr Thr Gly Glu Gln 1080 1085 1090	G TCT TGG CAT 240 a Ser Trp His
CTA GGA CAT GGA GTA TCC ATA GAA TGG AGA CTA AGA AAA Leu Gly His Gly Val Ser Ile Glu Trp Arg Leu Arg Lys 1095 1100 1105	
CAA GTT GAT CCT GAA ATG GCA GAC AAG CTA ATA CAT CTT Gln Val Asp Pro Glu Met Ala Asp Lys Leu Ile His Leu 1115 1120	
GAT TGT TTT ACA GCC TCT GCC ATA AGG CAA GCG GTC TTA Asp Cys Phe Thr Ala Ser Ala Ile Arg Gln Ala Val Leu 1130 1135	
GTA TTA CCT AGG TGT GAA TAT CCA GCA GGG CAC AAA CAG Val Leu Pro Arg Cys Glu Tyr Pro Ala Gly His Lys Gln 1145 1150 115	Val Gly Thr
CTA CAA TAT CTA GCA CTA ACA GCC TGG GTG GGA GCA AAG Leu Gln Tyr Leu Ala Leu Thr Ala Trp Val Gly Ala Lys 1160 1165 1170	AAG AGA AAG 480 Lys Arg Lys
CCA CCC TTA CCT AGT GTG ACT AAG CTA ACA GAA GAT AGA Pro Pro Leu Pro Ser Val Thr Lys Leu Thr Glu Asp Arg 1175 1180 1185	
CAC CAG AAG ATG CAG GGC CAC AGA GGG AAC CCT ATA ATG His Gln Lys Met Gln Gly His Arg Gly Asn Pro Ile Met 1195 1200	
TAG	579

(2) INFORMATIONS POUR LA SEQ ID NO: 8:

- (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 192 acides aminés

 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

Met Glu Asn Arg Trp Gln Val Met Val Val Trp Gln Val Asp Arg Met

1 10 15

Lys Ile Arg Lys Trp Asn Ser Leu Val Lys His His Met Tyr Val Ser 20 25 30

Lys Lys Ala Lys Gly Trp Tyr Tyr Arg His His Tyr Glu Thr His His 35 40

Pro Lys Ile Ser Ser Glu Val His Ile Pro Val Gly Gln Ala Arg Leu
50 55 60

Val Thr Val Thr Tyr Trp Gly Leu Thr Thr Gly Glu Gln Ser Trp His 65 70 75 80

Leu Gly His Gly Val Ser Ile Glu Trp Arg Leu Arg Lys Tyr Lys Thr
85 90 95

Gln Val Asp Pro Glu Met Ala Asp Lys Leu Ile His Leu His Tyr Phe 100 105 110

Asp Cys Phe Thr Ala Ser Ala Ile Arg Gln Ala Val Leu Gly Arg Pro 115 120 125

Val Leu Pro Arg Cys Glu Tyr Pro Ala Gly His Lys Gln Val Gly Thr 130 135 140

Leu Gln Tyr Leu Ala Leu Thr Ala Trp Val Gly Ala Lys Lys Arg Lys 145 150 155 160

Pro Pro Leu Pro Ser Val Thr Lys Leu Thr Glu Asp Arg Trp Asn Glu 165 170 175

His Gln Lys Met Gln Gly His Arg Gly Asn Pro Ile Met Asn Gly His 180 185 190

- (2) INFORMATIONS POUR LA SEQ ID NO: 9:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 288 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..285
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:
- ATG GAA CGA GCA CCA GAA GAT GCA GGG CCA CAG AGG GAA CCC TAT AAT

 Met Glu Arg Ala Pro Glu Asp Ala Gly Pro Gln Arg Glu Pro Tyr Asn

 195 200 205
- GAA TGG GCA CTA GAA TTA TTA GAA GAA TTA AAA AAT GAA GCT GTG CGC 96
 Glu Trp Ala Leu Glu Leu Glu Glu Leu Lys Asn Glu Ala Val Arg
 210 215 220

CAT His 225	TTT Phe	CCA Pro	AGG Arg	ATT Ile	TGG Trp 230	CTA Leu	CAT His	GGG Gly	TTA Leu	GGA Gly 235	CAA Gln	CAC His	ATC Ile	TAT Tyr	AAC Asn 240	144
														ATA Ile 255		192
CAA Gln	CAA Gln	TTA Leu	CTG Leu 260	TTT Phe	ATC Ile	CAT His	TAT Tyr	AGG Arg 265	ATT Ile	GGC Gly	TGC Cys	CAG Gln	CAC His 270	AGC Ser	AGA Arg	240
					CAA Gln											285
TAG																288

- (2) INFORMATIONS POUR LA SEQ ID NO: 10:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 95 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: protéine
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

Met Glu Arg Ala Pro Glu Asp Ala Gly Pro Gln Arg Glu Pro Tyr Asn

Glu Trp Ala Leu Glu Leu Leu Glu Glu Leu Lys Asn Glu Ala Val Arg

His Phe Pro Arg Ile Trp Leu His Gly Leu Gly Gln His Ile Tyr Asn

Thr Tyr Gly Asp Thr Trp Glu Gly Val Glu Ala Ile Ile Arg Ile Leu 50 55 60

Gln Gln Leu Leu Phe Ile His Tyr Arg Ile Gly Cys Gln His Ser Arg 65 70 75 80

Ile Gly Ile Thr Pro Gln Arg Arg Arg Asn Gly Thr Ser Arg Ser

- (2) INFORMATIONS POUR LA SEQ ID NO: 11:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 252 paires de bases

 - (B) TYPE: nucléotide(C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..249

	(xi)) DE	SCRI	PTIO	V DE	LA :	SEQU	ENCE	: SE	QID	NO:	11:				
ATG Met	CTG Leu	TCA Ser	TTG Leu	GGA Gly 100	TTC Phe	ATA Ile	GCG Ala	TTA Leu	GGA Gly 105	GCA Ala	GCA Ala	GTT Val	AGC Ser	ATA Ile 110	GCA Ala	48
GTA Val	ATA Ile	GTC Val	TGG Trp 115	GCA Ala	TTA Leu	CTA Leu	TAT Tyr	AGA Arg 120	GAA Glu	TAT Tyr	AAG Lys	AAA Lys	ATA Ile 125	AAA Lys	TTG Leu	96
CAG Gln	GAA Glu	AAA Lys 130	ATA Ile	AAA Lys	CAC His	ATA Ile	AGA Arg 135	CAG Gln	AGA Arg	ATA Ile	AGA Arg	GAA Glu 140	AGA Arg	GAA Glu	GAA Glu	144
GAT Asp	AGT Ser 145	GGC Gly	AAT Asn	GAA Glu	AGT Ser	GAT Asp 150	GGG Gly	GAT Asp	GCA Ala	GAG Glu	TGG Trp 155	TTG Leu	GAT Asp	GGG Gly	GAT Asp	192
GAA Glu 160	GAG Glu	TGG Trp	TTG Leu	GTT Val	ACT Thr 165	CTT Leu	CTA Leu	TCT Ser	TCT Ser	AGT Ser 170	AAG Lys	CTT Leu	GAT Asp	CAA Gln	GGT Gly 175	240
AAT.	TGG	GTC	TGA													252

(2) INFORMATIONS POUR LA SEQ ID NO: 12:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 83 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

Met Leu Ser Leu Gly Phe Ile Ala Leu Gly Ala Ala Val Ser Ile Ala

Val Ile Val Trp Ala Leu Leu Tyr Arg Glu Tyr Lys Lys Ile Lys Leu

Gln Glu Lys Ile Lys His Ile Arg Gln Arg Ile Arg Glu Arg Glu Glu

Asp Ser Gly Asn Glu Ser Asp Gly Asp Ala Glu Trp Leu Asp Gly Asp

Glu Glu Trp Leu Val Thr Leu Leu Ser Ser Ser Lys Leu Asp Gln Gly

Asn Trp Val

Asn Trp Val

(2) INFORMATIONS POUR LA SEQ ID NO: 13:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 306 paires de bases

 - (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)

1321	CADA	CORDIT	STIQUE	٠
(1X)	CARA	CTERL	STIUUL	:::

- (A) NOM/CLE: CDS
- (B) EMPLACEMENT:1..303

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:

	,	 	 	 	 	 •.••			
	GAA Glu 85								48
	CCT Pro								96
	TGC Cys								144
	AAG Lys			 -		 	 	 	192
	CAA Gln							-	240
_	ACA Thr 165								288
_	GAT Asp		TAG						306

(2) INFORMATIONS POUR LA SEQ ID NO: 14:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 101 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Asn His Pro Gly Ser 1 5 10 15

Gln Pro Lys Thr Ala Cys Asn Asn Cys Tyr Cys Lys Arg Cys Cys Tyr 20 25 30

His Cys Leu Tyr Cys Phe Thr Lys Lys Gly Leu Gly Ile Ser Tyr Gly 35 40

Arg Lys Lys Arg Ser Gln Arg Arg Thr Pro Gln Ser Ser Lys Ser
50 55 60

His Gln Asp Leu Ile Pro Glu Gln Pro Leu Ser Gln Gln Gln Gly Asp 65 70 75 80

Gln Thr Gly Gln Lys Gln Lys Glu Ala Leu Glu Ser Lys Thr Glu 85 90 95

Ala Asp Pro Cys Asp 100

(2)	INFORMATIONS	POUR	LA	SEQ	ID	NO:	15:
-----	--------------	------	----	-----	----	-----	-----

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 369 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..366
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:

	 GGA Gly				-				48

AGA GTC ATC AAG ATC TTA TAC CAG AGC AGT TAT CCC AAC AGC AAG GGG
Arg Val Ile Lys Ile Leu Tyr Gln Ser Ser Tyr Pro Asn Ser Lys Gly
120 125 130

AGG CAG ATC CGT GCG ATT AGT GAG CGG ATT CTC AGC TCT TGT CTG GGA
Arg Gln Ile Arg Ala Ile Ser Glu Arg Ile Leu Ser Ser Cys Leu Gly
150 155 160 165

GGA CCT CCG GAA CCT GTT GAT CTT CCT CTA CCA CCG CTT GAC AGA CTC

Gly Pro Pro Glu Pro Val Asp Leu Pro Leu Pro Pro Leu Asp Arg Leu

170

180

ACT CTT GAT ACT GAG GAG GAC TCT GGA ACT CCT GGG ACA GAG TCT CAG

Thr Leu Asp Thr Glu Glu Asp Ser Gly Thr Pro Gly Thr Glu Ser Gln

185

190

195

CAG GGG ACT GCA ACT ACT GAA TGA ACT CAG AAC ACA CTT GTG GGG AAT

336
Gln Gly Thr Ala Thr Thr Glu * Thr Gln Asn Thr Leu Val Gly Asn
200 205

ACT TGC ATA TTG GGG AAA AGA GTT AAG GGA TAG
Thr Cys Ile Leu Gly Lys Arg Val Lys Gly
215 220

(2) INFORMATIONS POUR LA SEQ ID NO: 16:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 122 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:

Met Ala Gly Arg Ser Gly Val Asn Asp Glu Glu Leu Leu Arg Ala Val 1 5 10 15

Arg Val Ile Lys Ile Leu Tyr Gln Ser Ser Tyr Pro Asn Ser Lys Gly
20 25 30

Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Ala Arg Gln

Arg Gln Ile Arg Ala Ile Ser Glu Arg Ile Leu Ser Ser Cys Leu Gly

Gly Pro Pro Glu Pro Val Asp Leu Pro Leu Pro Pro Leu Asp Arg Leu

Thr Leu Asp Thr Glu Glu Asp Ser Gly Thr Pro Gly Thr Glu Ser Gln

Gln Gly Thr Ala Thr Thr Glu * Thr Gln Asn Thr Leu Val Gly Asn

Thr Cys Ile Leu Gly Lys Arg Val Lys Gly

- (2) INFORMATIONS POUR LA SEQ ID NO: 17:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 2559 paires de bases

 - (B) TYPE: nucléotide(C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..2556
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:

ATG	AAA	GTG	ATG	GGG	ATG	CAG	AGT	GGT	TGG	ATG	GGG	ATG	AAG	AGT	GGT	48
Met	Lys	Val	Met	Gly	Met	Gln	Ser	Gly	Trp	Met	Gly	Met	Lys	Ser	Gly	
		125					130					135				

- TGG TTA CTC TTC TAT CTT CTA GTA AGC TTG ATC AAG GTA ATT GGG TCT Trp Leu Leu Phe Tyr Leu Leu Val Ser Leu Ile Lys Val Ile Gly Ser 145
- GAA CAA CAT TGG GTA ACA GTG TAC TAT GGG GTA CCA GTA TGG AGA GAA 144 Glu Gln His Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Arg Glu 160
- GCA GAG ACA ACT CTT TTC TGT GCT TCA GAT GCT AAA GCC CAT AGT ACA 192 Ala Glu Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala His Ser Thr 180
- GAG GCT CAC AAC ATC TGG GCC ACA CAA GCA TGT GTT CCT ACT GAT CCC 240 Glu Ala His Asn Ile Trp Ala Thr Gln Ala Cys Val Pro Thr Asp Pro 190 195
- AAT CCA CAA GAA GTG CTA TTA CCC AAT GTA ACT GAA AAA TTT AAT ATG 288 Asn Pro Gln Glu Val Leu Leu Pro Asn Val Thr Glu Lys Phe Asn Met 210
- TGG GAA AAT AAA ATG GCA GAC CAA ATG CAA GAG GAT ATT ATC AGT CTG 336 Trp Glu Asn Lys Met Ala Asp Gln Met Gln Glu Asp Ile Ile Ser Leu 220 225

TGG Trp 235	GAA Glu	CAG Gln	AGC Ser	TTA Leu	AAG Lys 240	CCC Pro	TGT Cys	GTT Val	AAA Lys	TTA Leu 245	ACC Thr	CCA Pro	TTA Leu	TGT Cys	GTA Val 250	384
ACT Thr	ATG Met	CTT Leu	TGT Cys	AAC Asn 255	GAT Asp	AGC Ser	TAT Tyr	GGG Gly	GAG Glu 260	GAA Glu	AGG Arg	AAC Asn	AAT Asn	ACA Thr 265	AAT Asn	432
ATG Met	ACA Thr	ACA Thr	AGA Arg 270	GAA Glu	CCA Pro	GAC Asp	ATA Ile	GGA Gly 275	TAC Tyr	AAA Lys	CAA Gln	ATG Met	AAA Lys 280	AAT Asn	TGC Cys	480
TCA Ser	TTC Phe	AAT Asn 285	GCA Ala	ACC Thr	ACT Thr	GAG Glu	CTA Leu 290	ACA Thr	GAT Asp	AAA Lys	AAG Lys	AAG Lys 295	CAA Gln	GTT Val	TAC Tyr	528
TCT Ser	CTG Leu 300	TTT Phe	TAT Tyr	GTA Val	GAA Glu	GAT Asp 305	GTA Val	GTA Val	CCA Pro	ATC Ile	AAT Asn 310	GCC Ala	TAT Tyr	AAT Asn	AAA Lys	576
ACA Thr 315	TAT Tyr	AGG Arg	CTA Leu	ATA Ile	AAT Asn 320	TGT Cys	AAT Asn	ACC Thr	ACA Thr	GCT Ala 325	GTG Val	ACA Thr	CAA Gln	GCT Ala	TGT Cys 330	624
CCT Pro	AAG Lys	ACT Thr	TCC Ser	TTT Phe 335	GAG Glu	CCA Pro	ATT Ile	CCA Pro	ATA Ile 340	CAT His	TAC Tyr	TGT Cys	GCA Ala	CCA Pro 345	CCA Pro	672
GGC Gly	TTT Phe	GCC Ala	ATT Ile 350	ATG Met	AAA Lys	TGT Cys	AAT Asn	GAA Glu 355	GGA Gly	AAC Asn	TTT Phe	AGT Ser	GGA Gly 360	AAT Asn	GGA Gly	720
AGC Ser	TGT Cys	ACA Thr 365	AAT Asn	GTG Val	AGT Ser	ACT Thr	GTA Val 370	CAA Gln	TGC Cys	ACA Thr	CAT His	GGA Gly 375	ATA Ile	AAG Lys	CCA Pro	768
GTG Val	ATA Ile 380	TCC Ser	ACT Thr	CAG Gln	TTA Leu	ATC Ile 385	Leu	AAT Asn	GGA Gly	AGC Ser	TTA Leu 390	AAT Asn	ACA Thr	GAT Asp	GGA Gly	816
ATT Ile 395	GTT Val	ATT Ile	AGA Arg	AAT Asn	GAT Asp 400	AGT Ser	CAC His	AGT Ser	AAT Asn	CTG Leu 405	TTG Leu	GTG Val	CAA Gln	TGG Trp	AAT Asn 410	854
GAG Glu	ACA Thr	GTG Val	CCA Pro	ATA Ile 415	AAT Asn	TGT Cys	ACA Thr	AGG Arg	CCA Pro 420	GGA Gly	AAT Asn	AAT Asn	ACA Thr	GGA Gly 425	GGA Gly	912
CAG Gln	GTG Val	CAG Gln	ATA Ile 430	GGA Gly	CCT Pro	GCT Ala	ATG Met	ACA Thr 435	TTT Phe	TAT Tyr	AAC Asn	ATA Ile	GAA Glu 440	AAA Lys	ATA Ile	960
GTA Val	GGA Gly	GAC Asp 445	ATT Ile	AGA Arg	CAA Gln	GCA Ala	TAC Tyr 450	TGT Cys	AAT Asn	GTC Val	TCT Ser	AAA Lys 455	GAA Glu	CTA Leu	TGG Trp	1008
GAA Glu	CCA Pro 460	ATG Met	TGG Trp	AAT Asn	AGA Arg	ACA Thr 465	AGA Arg	GAG Glu	GAA Glu	ATA Ile	AAG Lys 470	AAA Lys	ATC Ile	CTG Leu	GGG Gly	1056
AAA Lys 475	AAC Asn	AAC Asn	ATA Ile	ACC Thr	TTC Phe 480	AGG Arg	GCT Ala	CGA Arg	GAG Glu	AGG Arg 485	AAT Asn	GAA Glu	GGA Gly	GAC Asp	CTA Leu 490	1104

	GTG Val										1152
	ACT Thr										1200
	ATT Ile										1248
	GTA Val 540								_		1296
	ACC Thr										1344
	ACC Thr										1392
	TGG Trp										1440
	GGA Gly										1488
	AGA Arg 620										1536
	GCA Ala										1584
	CGG Arg									TTG Leu	1632
_	GCA Ala	 	 	 '	_	_	 _	_	- 1	 0.7	1680
	AAA Lys										1728
	CAG Gln 700										1776
	ACC Thr										1824
	ACA Thr										1872

AGA Arg	AAC Asn	тат туг	TCA Ser 750	GGT Gly	GTC Val	ATT Ile	TTT Phe	GGA Gly 755	CTT Leu	ATA Ile	GAA Glu	CAG Gln	GCA Ala 760	CAA Gln	GAA Glu	1920
											Leu		CAA Gln			1968
AGT Ser	CTG Leu 780	TGG Trp	AGC Ser	TGG Trp	TTT Phe	GGT Gly 785	ATT Ile	ACA Thr	AAA Lys	TGG Trp	CTG Leu 790	TGG Trp	TAT Tyr	ATA Ile	AAA Lys	2016
													ATC Ile			2064
													TCT Ser			2112
TCG Ser	TTG Leu	CAG Gln	ACC Thr 830	CTT Leu	ATC Ile	CCA Pro	ACA Thr	GCA Ala 835	AGG Arg	GGA Gly	CCA Pro	GAC Asp	AGG Arg 840	CCA Pro	GAA Glu	2160
GAA Glu	ACA Thr	GAA Glu 845	GGA Gly	GGC Gly	GTT Val	GGA Gly	GAG Glu 850	CAA Gln	GAC Asp	AGA Arg	GGC Gly	AGA Arg 855	TCC Ser	GTG Val	CGA Arg	2208
TTA Leu	GTG Val 860	AGC Ser	GGA Gly	TTC Phe	TCA Ser	GCT Ala 865	CTT Leu	GTC Val	TGG Trp	GAG Glu	GAC Asp 870	CTC Leu	CGG Arg	AAC Asn	CTG Leu	2256
													ATA Ile			2304
													CTG Leu			2352
													TAT Tyr 920		GGA Gly	2400
													ACA Thr			2448
													CAA Gln			2496
													GGC Gly			2544
	GCA Ala			TAA				•								2559

WO 98/26075 PCT/FR97/02227

47

(2) INFORMATIONS POUR LA SEQ ID NO: 18:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 852 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:

Met Lys Val Met Gly Met Gln Ser Gly Trp Met Gly Met Lys Ser Gly

Trp Leu Leu Phe Tyr Leu Leu Val Ser Leu Ile Lys Val Ile Gly Ser

Glu Gln His Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Arg Glu

Ala Glu Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala His Ser Thr

Glu Ala His Asn Ile Trp Ala Thr Gln Ala Cys Val Pro Thr Asp Pro

Asn Pro Gln Glu Val Leu Leu Pro Asn Val Thr Glu Lys Phe Asn Met

Trp Glu Asn Lys Met Ala Asp Gln Met Gln Glu Asp Ile Ile Ser Leu

Trp Glu Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val

Thr Met Leu Cys Asn Asp Ser Tyr Gly Glu Glu Arg Asn Asn Thr Asn

Met Thr Thr Arg Glu Pro Asp Ile Gly Tyr Lys Gln Met Lys Asn Cys

Ser Phe Asn Ala Thr Thr Glu Leu Thr Asp Lys Lys Gln Val Tyr

Ser Leu Phe Tyr Val Glu Asp Val Val Pro Ile Asn Ala Tyr Asn Lys

Thr Tyr Arg Leu Ile Asn Cys Asn Thr Thr Ala Val Thr Gln Ala Cys

Pro Lys Thr Ser Phe Glu Pro Ile Pro Ile His Tyr Cys Ala Pro Pro

Gly Phe Ala Ile Met Lys Cys Asn Glu Gly Asn Phe Ser Gly Asn Gly

Ser Cys Thr Asn Val Ser Thr Val Gln Cys Thr His Gly Ile Lys Pro

Val Ile Ser Thr Gln Leu Ile Leu Asn Gly Ser Leu Asn Thr Asp Gly

Ile Val Ile Arg Asn Asp Ser His Ser Asn Leu Leu Val Gln Trp Asn

Glu Thr Val Pro Ile Asn Cys Thr Arg Pro Gly Asn Asn Thr Gly Gly 295

Gln Val Gln Ile Gly Pro Ala Met Thr Phe Tyr Asn Ile Glu Lys Ile Val Gly Asp Ile Arg Gln Ala Tyr Cys Asn Val Ser Lys Glu Leu Trp Glu Pro Met Trp Asn Arg Thr Arg Glu Glu Ile Lys Lys Ile Leu Gly Lys Asn Asn Ile Thr Phe Arg Ala Arg Glu Arg Asn Glu Gly Asp Leu Glu Val Thr His Leu Met Phe Asn Cys Arg Gly Glu Phe Phe Tyr Cys 375 Asn Thr Ser Lys Leu Phe Asn Glu Glu Leu Leu Asn Glu Thr Gly Glu Pro Ile Thr Leu Pro Cys Arg Ile Arg Gln Ile Val Asn Leu Trp Thr Arg Val Gly Lys Gly Ile Tyr Ala Pro Pro Ile Arg Gly Val Leu Asn Cys Thr Ser Asn Ile Thr Gly Leu Val Leu Glu Tyr Ser Gly Gly Pro 440 Asp Thr Lys Glu Thr Ile Val Tyr Pro Ser Gly Gly Asn Met Val Asn Leu Trp Arg Gln Glu Leu Tyr Lys Tyr Lys Val Val Ser Ile Glu Pro Ile Gly Val Ala Pro Gly Lys Ala Lys Arg Arg Thr Val Ser Arg Glu Lys Arg Ala Ala Phe Gly Leu Gly Ala Leu Phe Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Ala Ser Ile Thr Leu Thr Val Gln Ala Arg Thr Leu Leu Ser Gly Ile Val Gln Gln Asn Ile Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Gln Leu Ser Ile Trp Gly Ile Lys Gln Leu Gln Ala Lys Val Leu Ala Ile Glu Arg Tyr Leu Arg Asp Gln Gln Ile Leu Ser Leu Trp Gly Cys Ser Gly Lys Thr Ile Cys 585 Tyr Thr Thr Val Pro Trp Asn Glu Thr Trp Ser Asn Asn Thr Ser Tyr 600 Asp Thr Ile Trp Asn Asn Leu Thr Trp Gln Gln Trp Asp Glu Lys Val Arg Asn Tyr Ser Gly Val Ile Phe Gly Leu Ile Glu Gln Ala Gln Glu Gln Gln Asn Thr Asn Glu Lys Ser Leu Leu Glu Leu Asp Gln Trp Asp 650 645

Ser Leu Trp Ser Trp Phe Gly Ile Thr Lys Trp Leu Trp Tyr Ile Lys
660 665 670

Ile Ala Ile Met Ile Val Ala Gly Ile Val Gly Ile Arg Ile Ile Ser 675 680 685

Ile Val Ile Thr Ile Ile Ala Arg Val Arg Gln Gly Tyr Ser Pro Leu 690 695 700

Ser Leu Gln Thr Leu Ile Pro Thr Ala Arg Gly Pro Asp Arg Pro Glu 705 710 715 720

Glu Thr Glu Gly Gly Val Gly Glu Gln Asp Arg Gly Arg Ser Val Arg 725 730 735

Leu Val Ser Gly Phe Ser Ala Leu Val Trp Glu Asp Leu Arg Asn Leu 740 745 750

Leu Ile Phe Leu Tyr His Arg Leu Thr Asp Ser Leu Leu Ile Leu Arg
755 760 765

Arg Thr Leu Glu Leu Leu Gly Gln Ser Leu Ser Arg Gly Leu Gln Leu 770 780

Leu Asn Glu Leu Arg Thr His Leu Trp Gly Ile Leu Ala Tyr Trp Gly 785 790 795 800

Lys Glu Leu Arg Asp Ser Ala Ile Ser Leu Leu Asn Thr Thr Ala Ile 805 810 815

Val Val Ala Glu Gly Thr Asp Arg Ile Ile Glu Leu Ala Gln Arg Ile 820 825 830

Gly Arg Gly Ile Leu His Ile Pro Arg Arg Ile Arg Gln Gly Leu Glu 835 840 845

Arg Ala Leu Ile 850

- (2) INFORMATIONS POUR LA SEQ ID NO: 19:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 639 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..636
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 19:
- ATG GGA AAG ATT TGG TCA AAG AGC AGC CTA GTA GGA TGG CCA GAA ATC

 Met Gly Lys Ile Trp Ser Lys Ser Ser Leu Val Gly Trp Pro Glu Ile

 855 860 865
- AGA GAA AGA ATG AGA AGA CAA ACG CAA GAA CCA GCA GTA GAG CCA GCA
 Arg Glu Arg Met Arg Arg Gln Thr Gln Glu Pro Ala Val Glu Pro Ala
 870
 880

GTA Val 885	GGA Gly	GCA Ala	GGA Gly	GCA Ala	GCT Ala 890	TCT Ser	CAA Gln	GAT Asp	CTA Leu	GCT Ala 895	AAT Asn	CGA Arg	GGG	GCC Ala	ATC Ile 900	144
ACC Thr	ATA Ile	AGA Arg	AAT Asn	ACT Thr 905	AGA Arg	GAC Asp	AAT Asn	AAT Asn	GAA Glu 910	AGT Ser	ATA Ile	GCT Ala	TGG Trp	CTA Leu 915	GAA Glu	192
GCA Ala	CAA Gln	GAA Glu	GAA Glu 920	GAA Glu	GAG Glu	GAA Glu	GTA Val	GGC Gly 925	TTT Phe	CCA Pro	GTA Val	CGC Arg	CCT Pro 930	CAG Gln	GTA Val	240
CCA Pro	TTA Leu	AGG Arg 935	CCA Pro	ATA Ile	ACC Thr	TAT Tyr	AAA Lys 940	CAG Gln	GCT Ala	TTT Phe	GAT Asp	CTT Leu 945	TCC Ser	TTC Phe	TTT Phe	288
TTA Leu	AAA Lys 950	GAT Asp	AAG Lys	GGG Gly	GGA Gly	CTG Leu 955	GAA Glu	GGG Gly	CTA Leu	GTT Val	TGG Trp 960	TCC Ser	AGA Arg	AAA Lys	AGG Arg	336
CAA Gln 965	GAT Asp	ATT Ile	CTA Leu	GAC Asp	CTC Leu 970	TGG Trp	ATG Met	TAT Tyr	CAC His	ACA Thr 975	CAA Gln	GGC Gly	ATC Ile	CTC Leu	CCT Pro 980	384
GAC Asp	TGG Trp	CAT His	AAC Asn	TAC Tyr 985	ACA Thr	CCA Pro	GGG Gly	CCA Pro	GGA Gly 990	ATT Ile	AGA Arg	TAC Tyr	CCC Pro	GTA Val 995	ACC Thr	432
TTT Phe	GGA Gly	TGG Trp	TGC Cys 1000	Phe	AAA Lys	CTA Leu	GTA Val	CCA Pro 100	Leu	TCA Ser	GCT Ala	GAA Glu	GAA Glu 101	Val	GAA Glu	480
GAG Glu	GCT Ala	AAT Asn 1015	Glu	GGA Gly	GAC Asp	AAC Asn	AAT Asn 102	Ala	CTC Leu	TTA Leu	CAC His	CCC Pro 102	Ile	TGT Cys	CAA Gln	528
CAT His	GGA Gly 1030	Ala	GAT Asp	GAT Asp	GAT Asp	CAT His 103	Lys	GAA Glu	GTG Val	TTG Leu	GTG Val 104	Trp	CGA Arg	TTT Phe	GAC Asp	576
AGC Ser 104	Ser	CTA Leu	GCA Ala	AGA Arg	AGA Arg 105	His	GTA Val	GCA Ala	AGA Arg	GAG Glu 105	Leu	CAT His	CCG Pro	GAG Glu	TTT Phe 1060	624
	AAG Lys			TGA												639

(2) INFORMATIONS POUR LA SEQ ID NO: 20:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 212 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 20:

Met Gly Lys Ile Trp Ser Lys Ser Ser Leu Val Gly Trp Pro Glu Ile

Arg Glu Arg Met Arg Arg Gln Thr Gln Glu Pro Ala Val Glu Pro Ala 30 20 25

WO 98/26075

20

Val Gly Ala Gly Ala Ala Ser Gln Asp Leu Ala Asn Arg Gly Ala Ile 35 40 45

Thr Ile Arg Asn Thr Arg Asp Asn Asn Glu Ser Ile Ala Trp Leu Glu
50 55 60

Ala Gln Glu Glu Glu Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val 65 70 75 80

Pro Leu Arg Pro Ile Thr Tyr Lys Gln Ala Phe Asp Leu Ser Phe Phe 85 90 95

Leu Lys Asp Lys Gly Gly Leu Glu Gly Leu Val Trp Ser Arg Lys Arg
100 105 110

Gln Asp Ile Leu Asp Leu Trp Met Tyr His Thr Gln Gly Ile Leu Pro 115 120 125

Asp Trp His Asn Tyr Thr Pro Gly Pro Gly Ile Arg Tyr Pro Val Thr 130 135 140

Phe Gly Trp Cys Phe Lys Leu Val Pro Leu Ser Ala Glu Glu Val Glu 145 150 155 160

Glu Ala Asn Glu Gly Asp Asn Asn Ala Leu Leu His Pro Ile Cys Gln
165 170 175

His Gly Ala Asp Asp Asp His Lys Glu Val Leu Val Trp Arg Phe Asp 180 185 190

Ser Ser Leu Ala Arg Arg His Val Ala Arg Glu Leu His Pro Glu Phe 195 200 205

Tyr Lys Asn Cys 210

- (2) INFORMATIONS POUR LA SEQ ID NO: 21:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 20 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 21:

ATTGCGTACT CACACTTCCG

(2) INFORMATIONS POUR LA SEQ ID NO: 22:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 17 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: Autre acide nucléique
 - (A) DESCRIPTION: /desc = "AMORCE"

	(Xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 22:	
GGCA	AGCA	GG GAGCTGG	17
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 23:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 23:	
TCCT	TGAG	CA GTCTGGAC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 24:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
•	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 24:	
GAAC	AGGA(GG ATTAGCAG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 25:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 25:	
AGCA	.GAGG	CT ATGTCACA	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 26:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 26:	
TGTA	AGGC	CC CTAGAAGAG	19

(2)	INFO	RMATIONS POUR LA SEQ ID NO: 27:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 27:	
ACAG	AGAA	CT CTCTGTAC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 28:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 28:	
AAGA	AAAG	CA GTTGGTAC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 29:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 17 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 29:	
TTTC	TTCCC	CT GTATGTC	17
(2)	INFOR	RMATIONS POUR LA SEQ ID NO: 30:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 30:	
GTTA	TATGO	GA TTCTCAGG	18

PCT/FR97/02227

(2)	INFO	RMATIONS POUR LA SEQ 1D NO: 31:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 31:	
TGG	CAGCA	CA TTATACTGG	19
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 32:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 23 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	•
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 32:	
ATC	ATTTA	CC AGTACATGGA CGA	23
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 33:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 33:	
TGT	CAGGG	GT CGTAAAGC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 34:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 34:	
TCC	rctgg.	AT GGGATATG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 35:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases	

		(B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 35:	
TCT	ATCCA	GG AATCAGAG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 36:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	•
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 36:	
AATO	GAGAT	CT GCCCATAC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 37:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 37:	
TGA	CAGAT	AG GGGAAGAC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 38:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 38:	
AAC	CGCCA'	TT TGCACTGC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 39:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	

	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 39:	
ACA!	TGGAC	CG CCACAAGG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 40:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 40:	
AGC	AACAG	AC ATACAGAC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 41:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 41:	
AAA	GTAGT	CC CACGTAGG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 42:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 42:	
ATA	rccca	GT AGGTCAGG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 43:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	

	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 43:	
TCT	AGCAC	TA ACAGCCTG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 44:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	•
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 44:	
ACTO	CTTAC	TG CTCTGAGG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 45:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 45:	
CCA	ragta(CA CTGTTACC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 46:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 20 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	•
1	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 46:	
CAT	AGCTA	TC GTTACAAAGC	20
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 47:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	

	(X1)	DESCRIPTION DE LA SEQUENCE: SEQ 10 NO: 47:	
TCA	TAATO	GC AAAGCCTG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 48:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 48:	
CTA	TTCCA	CA TTGGTTCC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 49:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 49:	
ATTO	CTAGA	AC CAGTCCAG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 50:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 20 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
		TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 50:	
CCTT	raggg.	AT CAGCAAATCC	20
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 51:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	

	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 51:	
TGG	GACAG	TC TGTGGAGC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 52:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 52:	
TTC	rcage'	TC TTGTCTGG	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 53:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 53:	
ATTA	AAGCA	AG CTGATAGC	18
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 54:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 16 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 54:	
TGT	GCTTC'	TA GCCAAG	16
(2)	INFO	RMATIONS POUR LA SEQ ID NO: 55:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 18 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "AMORCE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 55:	
CCTC	יבאתביי	IT GACATATG	18

							60								
(2)	INFO	RMATIO	NS POU	R LA	SEQ	ID 1	10: 5	56:							
	(i)	(B) (C) I	TERIST: LONGUE TYPE: 1 NOMBRE CONFIG	UR: 10 nuclée DE BI	8 pa otid RINS	ires le : si	s de imple	base			,				
	(ii)	TYPE I	DE MOLI							ique					
	(xi)	DESCR	PTION	DE L	A SE	QUE	ICE:	SEQ	ID I	: 07	56:				
AGA	GAGAC	CC AGT	ACAAG												1
(2)	INFO	RMATION	IS POU	R LA S	SEQ	ID N	10: 5	57:							
	(i)	(B) 7 (C) 1	CERIST CONGUET CYPE: 1 NOMBRE CONFIGU	JR: 20 nucléo DE BI) pa otid RINS	ires e : si	de imple	base							·
	(ii)	TYPE I	DE MOLI							ique				•	
	(xi)	DESCRI	PTION	DE LA	A SE	QUEN	ICE:	SEQ	ID 1	10:	57 :				
ATA	AAAGC	AG CCGC	CTTCTC(3											20
(2)	INFO	RMATION	IS POU	R LA S	SEQ	ID N	10: 5	58:				•			
	(i)	(B) T	CERIST LONGUE CYPE: & NOMBRE CONFIGU	JR: 35 acide DE BE	ac ami RINS	ides né : si	ima :	inés				,			
	(ii)	TYPE I	E MOL	CULE:	: pe	ptid	le								
	(xi)	DESCRI	PTION	DE LA	A SE	QUEN	ICE:	SEQ	ID I	: 07	58: .				
	Cys 1	Thr Ar	g Pro	Gly P	Asn	Asn	Thr	Gly	Gly 10	Gln	Val	Gln	Ile	Gly 15	Pro
	Ala	Met Th	r Phe 20	Tyr 1	Asn	Ile	Glu	Lys 25	Ile	Val	Gly	Asp	Ile 30	Arg	Gln
	Ala	Tyr Cy 35													
(2)	INFO	RMATION	IS POUR	R LA S	SEQ	ID N	10: 5	59:							
	(i)	(B) 1 (C) N	CERISTI LONGUEU LYPE: 6 NOMBRE CONFIGU	R: 35 acide DE BE	ac ami RINS	ides né : si	mple	inés e	:						
	(ii)	TYPE I	E MOLE	ECULE:	pe	ptid	le								
	(xi)	DESCRI	PTION	DE LA	A SE	QUEN	ICE:	SEQ	ID !	NO:	59:				
	Cys 1	His Ar	g Pro	Gly A	Asn	Asn	Thr	Arg	Gly 10	Glu	Val	Gln	Ile	Gly 15	Pro

Gly Met Thr Phe Tyr Asn Ile Glu Asn Val Tyr Gly Asp Thr Arg Ser 20 25 30

Ala Tyr Cys

- (2) INFORMATIONS POUR LA SEQ ID NO: 60:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 35 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 60:

Cys Ile Arg Pro Gly Asn Arg Thr Tyr Arg Asn Leu Gln Ile Gly Pro

Gly Met Thr Phe Tyr Asn Val Glu Ile Ala Thr Gly Asp Ile Arg Lys 20 25 30

Ala Phe Cys

- (2) INFORMATIONS POUR LA SEQ ID NO: 61:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 35 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 61:

Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Val Arg Ile Gly Pro 1 5 10 15

Gly Gln Ala Phe Tyr Ala Thr Gly Asp Ile Ile Gly Asp Ile Arg Gln
20 25 30

Ala His Cys

62 No de la demande interne

MICRO-ORGANISMES
Foulfile facultative relative au micro-organisme mentionné en page 3 , Sene. 9 de la description t
A. IDENTIFICATION DU DÉPOT '
O'eutres dépôts sont identifiés sur une feuille supplémentaire 1
Nom de l'institution de dépôt f
Collection Nationale de Cultures de Microorganismes
Adresse de l'Institution de dépôt (y compris le code postal et le pays) 4
28 rue du Docteur Roux, 75724 PARIS CEDEX 15
Date du dépôt ° 2 juillet 1996 N° d'ordre ° I-1753
B. INDICATIONS SUPPLÉMENTAIRES! (à ne remplir que el nécessaire). Une feuille séparée est jointe pour le suite de ces renselgnements
"En ce qui concerne les désignations dans lesquelles un brevet européen est demandé, un échantillon du micro-organisme déposé ne sera accessible, jusqu'à la publication de la mention de la délivrance du brevet européen ou jusqu'à la date à laquelle la demande sera rejetée, retirée ou réputée retirée, que par la remise d'un échantillon à un expert désigné par le requérant. (règle 28.4) de la CBE)".
C. ÉTATS DÉSIGNÉS POUR LESQUELS LES INDICATIONS SONT DONNÉES > (si les indications ne sont pes données pour tous les États désignés)
TOUS LES PAYS PARTIES AU PCT
D. INDICATIONS FOURNIES SÉPARÉMENT + (à no rompile que si nécessaire)
Les indications énumérées ci-après seront soumises ultérieurement au Bureau international * (spécifier la nature générale des indi- cations p. ez., « No d'ordre du dépôt »)
•
l. 🔲 La présente feuille a été reçue avec la demande internationale lorsque celle-ci a été déposée (à vérifler par l'office récepteur)
(Fonctionnaire autorisé)
Date de réception (en provenance du déposant) per le Sureau international 10
(Fonctionnaire autorisé)

10

15

20

25

REVENDICATIONS

- l°) Souche de VIH-1 non-M non-O, présentant les caractéristiques morphologiques et immunologiques du rétrovirus déposés à la Collection Nationale de Cultures de Microorganismes tenue par l'Institut Pasteur sous le numéro I-1753 (dénommé YBF30) le 2 juillet 1996.
- 2°) Séquences d'acide nucléique, caractérisées en ce qu'elles sont issues de la souche selon la revendication 1.
- 3°) Séquence d'acide nucléique selon la revendication 2, caractérisée en ce qu'elle est sélectionnée dans le groupe constitué par les séquences suivantes : la séquence nucléotidique complète de la souche selon la revendication 1 (SEQ ID N°1) ainsi que des fragments d'acide nucléique, issus de ladite souche : (SEQ ID N°2), (SEQ ID N°3), (SEQ ID N°5), (SEQ ID N°7), (SEQ ID N°9), (SEQ ID N°11), (SEQ ID N°13), (SEQ ID N°15), (SEQ ID N°17), (SEQ ID N°19) et les SEQ ID N°21-57, ainsi que toute séquence, qui n'est pas identique à l'une des séquences nucléotidiques ci-dessus ou n'est pas complémentaire de l'une de ces séquences, mais est néanmoins susceptible de s'hybrider avec une séquence nucléique issue d'un virus VIH-1 non-M, non-O.
- 4°) Oligonucléotide, caractérisé en ce qu'il est sélectionné parmi les séquences SEQ ID N°21 à 57 et en ce qu'il est apte à servir d'amorce et/ou de sonde pour la détection d'un VIH-1 selon la revendication 1 ou la revendication 5.
- 5°) VIH-1, caractérisés en ce qu'ils sont distincts à la fois du groupe M et du groupe O et présentent les caractéristiques suivantes :
- * peu ou pas de réactivité sérologique vis-à-vis des protéines des groupes M et O et forte réactivité sérologique vis-à-vis des protéines issues de la souche YBF30 selon la revendication 1 ou de la souche SIV CPZGAB;
- * absence d'amplification génomique à l'aide des amorces des régions env et gag des VIH-1 des groupes M et O;
- * amplification génomique en présence des amorces issues de la souche YBF30, selon la revendication 4 ; et
- * homologie des produits du gène d'enveloppe supérieure à 70 % vis-à-vis de la souche YBF30.

5

15

20

25

6°) Procédé de diagnostic *in vitro* d'un VIH-1 de groupe non-M non-O, par hybridation et/ou amplification génique, réalisé à partir d'un échantillon biologique (sérum ou lymphocyte circulant), lequel procédé est caractérisé en ce qu'il comprend :

une étape d'extraction de l'acide nucléique à détecter, appartenant au génome du virus, éventuellement présent dans l'échantillon biologique et, le cas échéant, une étape de traitement de l'acide nucléique, à l'aide d'une transcriptase inverse, si ce dernier est sous forme d'ARN,

au moins un cycle comprenant les étapes de dénaturation de l'acide nucléique, d'hybridation avec au moins une séquence selon la revendication 3 ou la revendication 4 et éventuellement, si nécessaire, extension de l'hybride formé, en présence de réactifs convenables (agent de polymérisation, tel qu'ADN polymérase et dNTP) et

une étape de détection de la présence éventuelle de l'acide nucléique appartenant au génome d'un virus de type VIH-1 de groupe non-M non-O.

7°) Peptide, caractérisé en ce qu'il est susceptible d'être exprimé par une souche de VIH-1 non-M non-O selon la revendication 1 ou la revendication 5 ou à l'aide d'une séquence nucléotidique selon la revendication 3 et en ce qu'il est apte (1) à être reconnu par des anticorps induits par un VIH-1 non-M non-O selon la revendication 1 ou la revendication 5 ou un variant de celui-ci et présents dans un échantillon biologique obtenu après une infection par une souche de VIH-1 non-M non-O et/ou (2) à induire la production d'anticorps anti-VIH-1 non-M non-O.

8°) Peptide selon la revendication 7, caractérisé en ce qu'il est choisi parmi celui exprimé par le gène gag (SEQ ID N° 4), celui exprimé par le gène pol (SEQ ID N° 6), celui exprimé par le gène vif (SEQ ID N° 8), celui exprimé par le gène vpr (SEQ ID N° 10), celui exprimé par le gène vpu (SEQ ID N° 12), celui exprimé par le gène tat (SEQ ID N° 14), celui exprimé par le gène rev (SEQ ID N° 16), celui exprimé par le gène env (SEQ ID N° 18) ou l'un de ses fragments, tels qu'un fragment de la région de la boucle V3 (SEQ ID N° 58) et celui exprimé par le gène nef (SEQ ID N° 20) ou un fragment de ceux-ci aptes à reconnaître les anticorps produits lors d'une infection par un VIH-1 selon la revendication 1 ou la revendication 5.

10

15

- 9°) Compositions immunogènes comprenant un ou plusieurs produits de traduction des séquences nucléotidiques selon la revendication 3 et/ou l'un des peptides selon la revendication 7 ou la revendication 8.
- 10°) Anticorps dirigés contre l'un ou plusieurs des peptides selon la revendication 7 ou la revendication 8.
 - 11°) Méthode de diagnostic *in vitro* d'un VIH-1 non-M non-O, caractérisée en ce qu'elle comprend la mise en contact d'un échantillon biologique prélevé chez un patient, avec des anticorps selon la revendication 10, éventuellement associés à des anticorps anti-SIV CPZGAB et la détection des complexes immunologiques formés entre les antigènes de VIH-1, éventuellement présents dans l'échantillon biologique et lesdits anticorps.
 - 12°) Réactif de diagnostic d'un VIH-1 non-M non-O, caractérisé en ce qu'il comprend une séquence selon l'une quelconque des revendications 3, 4, 7 ou 8.
 - 13°) Procédé de criblage et de typage d'un VIH-1 non-M non-O, caractérisé en ce qu'il comprend la mise en contact de l'un quelconque des fragments nucléotidiques selon la revendication 3 ou la revendication 4 avec l'acide nucléique du virus à typer et la détection de l'hybride formé.
- 14°) Trousse de diagnostic de VIH-1 non-M non-O, caractérisée en ce qu'elle inclut au moins un réactif selon la revendication 12.

1/20

```
YLG
            ltr
                             С
                                 G
                                    Т
                                        Α
                                            С
                                              T
                                                  C
                                                     Α
                                                         C
                                                             Α
                                                                CT
                                                                       Т
                                                                           С
                                                                             CG
 LPBS.1
                 G
                        С
                                 G
                                    C
                                            G
            ltr
                    G
                           Α
                              Α
                                        Α
                                              G
                                                  G
                                                     Α
                                                         G
                                                             C
                                                                T
                                                                   G
                                                                       G
 GAG Y
                    C
                        C
                           T
                              T
                                 G
                                        G
                                            C
                                                     T
            ltr
                                     Α
                                              Α
                                                  G
                                                         C
                                                             T
                                                                G
                                                                   G
                                                                           C
 AS1.1
 GAG Y
                          C
                                 GGA
                                           GG
                 G A
                       Α
                             Α
                                                     T
                                                         T
                                                 Α
                                                             Α
                                                                G
                                                                  С
 AS1
 Gag 6
            gag
                        C
                                    G
                                           C
                    G
                          Α
                              G
                                 Α
                                        G
                                              T
                                                     Т
                                                         G
                                                  Α
                                                             T
                                                                C
                                                                   Α
                                                                       C
GAG Y S1
            gag T
                    G
                       Т
                           Α
                              Α
                                 G
                                    G
                                        С
                                           С
                                              C
                                                  C
                                                     T
                                                         Α
                                                             G
                                                                Α
                                                                   Α
                                                                       G
                                                                          Α
                                                                              G
GAG Y
                    C
                       Α
                           G
                             Α
                                 G
                                    Α
                                        Α
                                           CT
                                                  С
                                                     T
                                                         С
                                                            Т
                                                                G
                                                                   T
S1.1
GAG Y
                       G A
                             Α
                                 Α
                                    Α
                                       GCA
                                                 G
                                                    T
                                                         T
                                                            G
                                                                G
                                                                  T
S1.2
YRT AS
                       T
                                 T
                                    C
                                        C
                                          CT
            pol
                 T
                    T
                          C
                             T
                                                  G
                                                    Т
                                                         Α
                                                            Т
                                                                GT
1.3
YRT AS1.2 pol
                 G
                    Т
                        T
                              T
                                    T
                                        G
                                           G
                                             Α
                                                  Т
                                                     T
                                                         C
                                                            T
                                                                C
                                                                  Α
                                                                       G
                                                                          G
YRT AS1.1 pol
                    G
                       G
                           С
                                 G
                                    C
                                           C
                 T
                              Α
                                        Α
                                              Α
                                                  T
                                                     Т
                                                            Ţ
                                                         Α
                                                                Α
                                                                   C
                                                                       T
                                                                          G
                                                                              G
YRT2
                 Α
                    T
                       C
                          Α
                              T
                                 T
                                    Т
                                        Α
                                           C
                                              C
                                                     G
                                                         T
            pol
                                                  Α
                                                             Α
                                                                C
                                                                   Α
                                                                       T
                                                                          G
                                                                              GACGA
YRT AS1
                       T
                          C
                                        G
                                           G
                 Т
                    G
                             Α
                                 G
                                    G
                                             Т
                                                  С
                                                     G
                                                         T
           pol
                                                            Α
                                                                Α
                                                                   Α
                                                                       G
                                                                          C
YRT2-1
                       C
                                 Т
                 Т
                    C
                          T
                              C
                                    G
                                        G
                                              T
           pol
                                           Α
                                                  G
                                                     G
                                                         G
                                                            Α
                                                                T
                                                                   Α
                                                                       T
                                                                          G
YRT2-2
                 Ţ
                    C
                       T
                                 C
                                    C
                                        Α
                                           G
                                              G
                                                            C
           pol
                                                  Α
                                                     Α
                                                         T
                                                                Α
                                                                   G
                                                                       Α
                                                                          G
YRT-3
                       T
                          G
                                 G
                                        T
                                           C
                                              T
                                                         С
           pol
                             Α
                                    Α
                                                  G
                                                     C
                                                            C
                                                                   T
                                                                          C
                                                                Α
YRT2-4
           pol
                 Т
                    G
                       Α
                          C
                             Α
                                 G
                                    Α
                                        T
                                           Α
                                              G
                                                  G
                                                     G
                                                         G
                                                            Α
                                                                Α
                                                                   G
                                                                       Α
                                                                          C
4481-1
                             G
                                 C
                                    C
                                           T
                                              T
                                                  Т
           pol
                       C
                          C
                                        Α
                                                     G
                                                         C
                                                            Α
                                                                C
                                                                   Т
                                                                       G
                                                                          C
4481-2
                    C
                          T
                                 G
                                        C
                                           C
           pol
                       Α
                             G
                                    Α
                                              G
                                                  C
                                                     C
                                                            C
                                                                       G
                                                         Α
                                                                Α
                                                                   Α
                                                                          G
4235.1
                 Α
                    G
                       C
                          Α
                             Α
                                 C
                                    Α
                                        G
                                           Α
                                              C
                                                  Α
           pol
                                                     T
                                                         Α
                                                            C
                                                                A
                                                                   G
                                                                      Α
                                                                          C
4235.2
                          G
                             T
                                    G
                                       T
                                           C
           vif
                                 Α
                                              C
                                                  C
                                                     Α
                                                         C
                                                            G
                                                               T
                                                                   Α
                                                                      G
                                                                          G
4235.3
                          T
                             C
                                 C
                                    C
                                           G
                    Т
                                        Α
                                              T
                                                     G
                                                         G
                                                            T
                                                                C
                                                                      G
           tat
                                                  Α
                                                                   Α
                                                                          G
4235.4
                 T
                    C
                       T
                          Α
                             G
                                 C
                                    Α
                                        C
                                           T
                                                  A
                                                     C
                                                                C
                                                                   C
                                                                      T
           tat
                                              Α
                                                         Α
                                                            G
                                                                          G
SK69.6
                          C
                                                 C
           env
                Α
                    C
                       T
                             T
                                 Т
                                    Α
                                        C
                                           T
                                              G
                                                     T
                                                         C
                                                            T
                                                                G
                                                                   Α
                                                                      G
                                                                          G
SK69.5
                C
                    C
                          T
                                 G
                                    Т
                                        Α
                                           C
                                                 C
                                                     T
           env
                       Α
                             Α
                                              Α
                                                         G
                                                            T
                                                               T
                                                                   Α
                                                                      C
                                                                          C
SK69.4
                C
                   Α
                       T
                          Α
                             G
                                 C
                                    Ţ
                                       Α
                                           T
                                              C
                                                 G
                                                     T
                                                         Т
                                                                C
                                                            Α
                                                                  Α
                                                                      Α
                                                                          Α
                                                                              G C
SK69.3
                T
                   C
                          T
                                    T
                                       G
                                           G
                                              C
                                                               C
                                                                   C
                                                                      T
           env
                       Α
                             Α
                                Α
                                                 Α
                                                     Α
                                                         Α
                                                            G
                                                                          G
SK69.2
                   T
                                 C
                                    C
                                           C
                C
                       Α
                          T
                             T
                                        Α
                                                 T
                                                     Т
                                                         G
           env
                                              Α
                                                            G
                                                                   T
                                                                      C
                                                                          C
SK69.1
           env
                Α
                   T
                       T
                          C
                                Α
                                    G
                                       Α
                                           Α
                                              C
                                                 C
                                                     Α
                                                         G
                                                            T
                                                               C
                                                                   C
                                                                      Α
                                                                          G
SK68.1
                C
                   C
           env
                       T
                          T
                             Α
                                G
                                    G
                                       G
                                           Α
                                              T
                                                 C
                                                     Α
                                                        G
                                                            C
                                                                          T
                                                                      Α
                                                                                С
SK68.2
                Т
                   G
                       G
                          G
                             Α
                                C
                                    Α
                                       G
                                           T
                                              C
           env
                                                 Т
                                                     G
                                                        T
                                                            G
                                                               G
                                                                  A.
                                                                      G
                                                                          C
SK68.3
                T
                   T
                       C
                                       C
                                           T
           env
                          T
                             C
                                Α
                                    G
                                              C
                                                 T
                                                     T
                                                        G
                                                            Т
                                                               C
                                                                  Т
                                                                      G
                                                                          G
LSI AS1.3
                       T
                                G
                   T
                                    C
                                              G
                                                 C
                                                     T
           nef
                Α
                          Α
                                       Α
                                           Α
                                                        G
                                                            Α
                                                               T
                                                                  Α
                                                                      G
LSIAS1.2
                T
                             C
                                    T
                                       C
                                           T
           nef
                   G
                       T
                          G
                                T
                                              Α
                                                 G
                                                     C
                                                        C
                                                                   G
                                                            Α
                                                               Α
LSI AS 1.1
           Itr
                G
                    C
                       T
                          C
                             C
                                Α
                                    T
                                       G
                                           T
                                             T
                                                 G
                                                        C
                                                     Α
                                                            Α
                                                               T
                                                                  Α
                                                                      T
                                                                          G
LSI A1
                                       C
                                           C
                                                        T
           ltr
                Α
                   G
                       Α
                          G
                             Α
                                G
                                    Α
                                             C
                                                 Α
                                                     G
                                                            Α
                                                               C
                                                                  Α
                                                                          G
                                                                      Α
YLPA
           ltr
                   T
                             Α
                                Α
                                   G
                                       C
                                           Α
                                             G
                                                 C
                                                     C
                                                        G
                                                            C
                                                               T
                                                                  T
                                                                      C
                Α
                                                                         T
```


FIGURE 3

GAG

FIGURE 4

POL

FIGURE 5

FIGURE 8

YBF30 LTR 464 nt après "bootstrapping" PHYLIP n-j arbre avec valeurs "bootstrap"(100 "bootstraps") **ANT70**

FIGURE 9

YBF30 Gag 1386 nt après "gapstripping" (après réarrangement de l'alignement des séquences) Phylip n-j arbre avec valeurs "bootstrap" (100 "bootstraps")

FIGURE 10

YBF30 Tat 292 nt après "gapstripping" PHYLIP n-j arbre avec valeurs "bootstrap" (100 "bootstraps")

YBF30 Rev 296 nt après "gapstripping" PHYLIP n-j arbre avec valeurs "bootstrap" (100 "bootstraps")

YBF30 gp120 1317 nt après "gapstripping" PHYLIP n-jarbre avec valeurs "bootstrap" (100 réplicats) distances Kimura, transition/transversion = 1.8

GROUPE O

YBF30 gp41 988 nt aorès "gapstripping" PHYLIP n-j trbme avec valeurs "bootstrap" (100 "bootstraps")

FIGURE 16

YBF30 Nef 615 nt après "gapstripping" PHYLIP n-j arbre avec valeurs "bootstrap" (100 "bootstraps")

YBF30 POL Phylip Fitch; 1867 nt après "gapstripping" 100 "bootstraps"

FIGURE 17

Groupe M

FIGURE 18

YBF30 VPR Phylip nj, 315 nt après "gapstripping"

FIGURE 19

Pourcentage de distance génétique entre YBF30 et HIV-1/SIVCPZ

	Gag	Pol	Vif	Vpr	ηďΛ	Tat	Rev	Env gp120	Nef
HIV-1 M	30-33	22-24	27,5-30	27-30	08-9'99	66,6-80 22-27,6 33,8-42	33,8-42	i .	34,6-39
HIV-1 0	37-38	33-34	42-45,6	32-36	>100	46-47,7	80-88	73-74	52,8-53
CPZGAB	32	26,8	40,3	28,8	>100	27,8	56,8	50	33,7
CPZANT	45	41,2	57,1	57,4	>100	55	ND*	74,5	ND*

*ND: non déterminé

INTERNATIONAL SEARCH REPURT

Intern. Snal Application No PCT/FR 97/02227

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/49 C12N7/00
C07K14/16 G01N33/50

C12Q1/68

A61K39/21

C07K16/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 6 \ C12N \ C07K$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUME	NTS CONSIDERED TO BE RELEVANT	1 7 ° · · · · · · · · · · · · · · · · · ·
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	HUET, Z. ET AL.: "A highly defective HIV-1 strain isolated from a healthy Gabonese individual presenting an atypical	3
	Western blot" AIDS, vol. 3, no. 11, November 1989, pages 707-715, XP002041193 see figure 3	
X	WO 86 02383 A (PASTEUR INSTITUT ;CENTRE NAT RECH SCIENT (FR)) 24 April 1986 see figure 4	3
	-/	
		,

Further documents are listed in the continuation of box C.

χ Patent family members are listed in annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of theinternational search

Date of mailing of the international search report

14 April 1998

21/04/1998

Name and mailing address of the ISA

--- POTACA DAD /------ ----- / b.b. 100

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Authorized officer

Chambonnet, F

1

INTERNATIONAL SEARCH REPORT

Inten Snal Application No PCT/FR 97/02227

		PCT/FR 97	//02227
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication where appropriate, of the relevant passages		Relevant to claim No.
X	HUET T ET AL: "GENETIC ORGANIZATION OF A CHIMPANZEE LENTIVIRUS RELATED TO HIV-1" NATURE, vol. 345, no. 6273, 24 May 1990, pages 356-359, XP000172750 see the whole document		3
X	TOJO, N. ET AL.: "Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth" JOURNAL OF BACTERIOLOGY, vol. 175, no. 8, April 1993, pages 2271-2277, XP002041194 see figure 3		3
X	INAGAKI, N. ET AL.: "Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 91, March 1994, WASHINGTON US, pages 2679-2683, XP002041195 see the whole document		3
		TIC ORGANIZATION OF A US RELATED TO HIV-1" 24 May 1990, 172750 ent Cloning and nucleotide coccus xanthus lon ity of lon for "Cloning and rization of a third cyclase-activating subtype expressed in ells" WASHINGTON US, 202041195 ent	
		of the relevant passages Relevant to claim No. ANIZATION OF A BD TO HIV-1" 1990, and nucleotide xanthus lon on for ,4 ng and of a third -activating e expressed in ACADEMY OF GTON US, 5	
		•	
			·

INTERNATIONAL SEARCH REPORT

information on patent family members

Intern .onal Application No PCT/FR 97/02227

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 8602383 A	24-04-86	FR 2571968 A AU 603543 B AU 5061785 A DE 3587181 A DE 3587512 T DK 35593 A DK 284986 A EP 0201540 A EP 0387914 A EP 0387915 A EP 0462627 A IE 64006 B JP 9132594 A JP 9118689 A JP 9178751 A JP 9178751 A JP 7309779 A JP 2609448 B JP 62500592 T NZ 230372 A US 5705612 A US 5705612 A US 5610035 A AU 600227 B AU 5320086 A DK 168667 B WO 8604336 A EP 0211022 A JP 62502095 T KR 9508570 B OA 8413 A	25-04-86 22-11-90 02-05-86 15-04-93 09-09-93 02-12-93 26-03-93 14-08-86 20-11-86 19-09-90 19-09-90 27-12-91 28-06-95 20-05-97 11-07-97 28-11-95 14-05-97 12-03-87 25-02-94 06-01-98 11-03-97 09-08-90 13-08-86 16-05-94 31-07-86 25-02-87 20-08-87 03-08-95 30-06-88

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 97/02227

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C12N15/49 C12N7/00 C07K14/16 G01N33/50

7700 C12Q1/68

A61K39/21

C07K16/10

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 C12N C07K

Documentation consultée autre que la documentationminimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUME	NTS CONSIDERES COMME PERTINENTS	
Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
χ	HUET, Z. ET AL.: "A highly defective HIV-1 strain isolated from a healthy Gabonese individual presenting an atypical Western blot"	3
	AIDS, vol. 3, no. 11, novembre 1989, pages 707-715, XP002041193 voir figure 3	
X	WO 86 02383 A (PASTEUR INSTITUT ;CENTRE NAT RECH SCIENT (FR)) 24 avril 1986 voir figure 4	3
	-/	

X

Les documents de familles de brevets sont indiqués en annexe

- Catégories spéciales de documents cités:
- "A" document définissant l'état général de latechnique, non considére comme particulièrement pertinent
- "E" document antérieur, mais publié à la date dedépôt international ou après cette date

Voir la suite du cadre C pour la fin de la liste des documents

- "L" document pouvant jeter un doute sur une revendcation de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôtinternational, mais postérieurement à la date de priorité revendiquée
- T° document ultérieur publié après ladate de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieure autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famillede brevets

Date à laquelle la recherche internationale a étéeffectivement achevée

Date d'expédition du présent rapport de recherche internationale.

14 avril 1998

21/04/1998

Nom et adresse postale de l'administrationchargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Chambonnet, F

RAPPORT DE RECHERCHE INTERNATIONALE

Dem. Jinternationale No PCT/FR 97/02227

		PCT/FR 9	7/02227
C.(suite) De Catégorie	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec,le cas échéant, l'indicationdes passages per	tinents	no. des revendications visées
			TO. GES TOTOLIGICATIONS VISCOS
X	HUET T ET AL: "GENETIC ORGANIZATION OF A CHIMPANZEE LENTIVIRUS RELATED TO HIV-1" NATURE, vol. 345, no. 6273, 24 mai 1990, pages 356-359, XP000172750 voir le document en entier		3
(TOJO, N. ET AL.: "Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth" JOURNAL OF BACTERIOLOGY, vol. 175, no. 8, avril 1993, pages 2271-2277, XP002041194 voir figure 3		3
X	INAGAKI, N. ET AL.: "Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 91, mars 1994, WASHINGTON US, pages 2679-2683, XP002041195 voir le document en entier		3
	,		

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Dem. .e Internationale No PCT/FR 97/02227

W0 8602383 A 24-04-86 FR 2571968 A 25-04-86 AU 603543 B 22-11-90 AU 5061785 A 02-05-86 DE 3587181 A 15-04-93 DE 3587512 A 09-09-93 DE 3587512 T 02-12-93 DK 35593 A 26-03-93 DK 284986 A 14-08-86 EP 0201540 A 20-11-86 EP 0387914 A 19-09-90 EP 0462627 A 27-12-91 IE 64006 B 28-06-95 JP 9132594 A 20-05-97 JP 9118689 A 06-05-97 JP 9178751 A 11-07-97 JP 7309779 A 28-11-95 JP 2609448 B 14-05-97 JP 62500592 T 12-03-87 NZ 230372 A 25-02-94 US 5705612 A 06-01-98 US 5610035 A 11-03-97 AU 600227 B 09-08-90
AU 5320086 A 13-08-86 DK 168667 B 16-05-94 WO 8604336 A 31-07-86