DATA MINING METODE CLUSTERING

ALGORITMA K-MEANS

Pendahuluan

- Clustering merupakan suatu teknik data mining yang membagi-bagikan data ke dalam beberapa kelompok (grup atau cluster atau segmen) yang tiap cluster dapat ditempati beberapa anggota bersama-sama.
- Clustering adalah suatu metode pengelompokan berdasarkan ukuran kedekatan (kemiripan).
- Clustering tidak mensyaratkan pengetahuan sebelumnya dari kelompok yang dibentuk, juga dari para anggota yang harus mengikutinya.

Pendahuluan

- Algoritma K-Means diperkenalkan oleh J.B.
 MacQueen pada tahun 1976, salah satu algoritma
 clustering sangat umum yang mengelompokkan data
 sesuai dengan karakteristik atau ciri-ciri bersama
 yang serupa.
- Kelompok data ini dinamakan sebagai klaster (cluster).
- Data di dalam suatu klaster mempunyai ciri-ciri (atau fitur, karakteristik, atribut, properti) serupa dan tidak serupa dengan data pada klaster lain.
- Clustering K-Means hanya dapat digunakan pada data numerical.

Manfaat

- Identifikasi obyek (Recognition):
 - Dalam bidang image processing, computer vision atau robot vision.
- Decision Support System dan data mining:
 - Segmentasi pasar, pemetaan wilayah, manajemen marketing dll.

Contoh Penerapan

- Biology: taxonomy makhluk hidup: kingdom, phylum, class, order, family, genus dan species
- Information retrieval : clustering dokumen
- Pemanfaatan lahan : identifikasi area pemanfaatan lahan yang serupa berdasarkan data dalam database earth observation
- Marketing: membantu pelaku marketing untuk menemukan kelompok pelanggan tertentu, dan memanfaatkan pengetahuan ini untuk mengembangkan program terhadap kelompok pelanggan yang menjadi target.
- Perencanaan kota : identikasi kelompok rumah berdasarkan tipe, harga dan lokasi geografis.
- Iklim: mempelajari iklim dengan mencari pola pergerakan atmosfer dan samudra.
- Ilmu ekonomi : mencari pengetahuan tentang pasar dalam bidang marketing
- DII.

Metode Clustering: K-Means

- 1. Tentukan jumlah klaster k yang diinginkan.
- 2. Inisialisasi k pusat klaster (centroid) secara random.
- 3. Tempatkan setiap data atau objek ke klaster terdekat. Kedekatan dua objek ditentukan berdasar jarak. Jarak yang dipakai pada algoritma k-Means adalah Euclidean distance (d).

$$d_{Euclidean}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Dimana x = x1, x2, ..., xn, dan y = y1, y2, ..., yn merupakan banyaknya n atribut (kolom) antara 2 record

Metode Clustering: K-Means

- 4. Hitung kembali pusat klaster dengan keanggotaan klaster yang sekarang. Pusat klaster adalah rata-rata (mean) dari semua data atau objek dalam klaster tertentu
- 5. Tugaskan lagi setiap objek dengan memakai pusat klaster yang baru. Jika pusat klaster sudah tidak berubah lagi, maka proses pengklasteran selesai. Atau, kembali lagi ke langkah nomor 3 sampai pusat klaster tidak berubah lagi (stabil) atau tidak ada penurunan yang signifikan dari nilai SSE (Sum of Squared Errors).

$$SSE = \sum_{i=1}^{k} \sum_{p \in C_i} (d(p, c_i))^2$$

Contoh Algoritma K-Means (Diketahui satu atribut)

• Lakukan clustering ke dalam 2 kelompok klaster berdasarkan data berikut:

Data	Nilai X
Α	2
В	3
С	4
D	10
E	II
F	12
G	20
Н	25
I	35

Tahap Clustering (Iterasi I)

- Diketahui k = 2
- Pilih centroid awal (secara random dari dataset) untuk masing-masing klaster.
 - Misal: centroid C1 (m1) = 20, centroid C2 (m2) = 25
- Hitung jarak masing-masing data X terhadap nilai centroid masing-masing klaster menggunakan Euclidean Distance
- Hitung nilai SSE nya.

Iterasi I

Centroid Awal	Χ
m l	20
m2	25

Data	Jarak ke m l	Jarak ke m2	Cluster
Α	18	23	CI
В	17	22	CI
C	16	21	CI
D	10	15	CI
Ε	9	14	CI
F	8	13	CI
G	0	5	CI
Н	5	0	C2
<u> </u>	15	10	C2
SSE	1214		

SSE =
$$18^2 + 17^2 + 16^2 + 10^2 + 9^2 + 8^2 + 0^2 + 0^2 + 10^2 = 1214$$

- Anggota klaster CI = {A,B,C,D,E,F,G}
- Anggota klaster C2 = {H,I}

Tahap Clustering (Iterasi 2)

- Hitung nilai centroid baru berdasarkan nilai rerata anggota masing-masing klaster.
 - centroid C1 (m1) = average(A,B,C,D,E,F,G),
 - o centroid C2 (m2) = average(H,I)
- Hitung jarak masing-masing data X terhadap nilai centroid baru masingmasing klaster menggunakan Euclidean Distance
- Hitung nilai SSE nya.

Iterasi 2

Centroid Baru	X
ml	8.86
m2	30

Data	Jarak ke m l	Jarak ke m2	Cluster
Α	6.86	28	CI
В	5.86	27	CI
C	4.86	26	CI
D	1.14	20	CI
Ε	2.14	19	CI
F	3.14	18	CI
G	11.14	10	C2
Н	16.14	5	C2
	26.14	5	C2
SSE	270.69		

SSE = $6.86^2 + 5.86^2 + 4.86^2 + 1.14^2 + 2.14^2 + 3.14^2 + 10^2 + 5^2 + 5^2 = 270.69$

- Anggota klaster CI = {A,B,C,D,E,F}
- Anggota klaster C2 = {G,H,I}

Tahap Clustering (Iterasi 3)

- Karena anggota berubah, maka lakukan iterasi ke-3.
- Hitung nilai centroid baru berdasarkan nilai rerata anggota masing-masing klaster.
 - centroid CI (mI) = average(A,B,C,D,E,F),
 - centroid C2 (m2) = average(G,H,I)
- Hitung jarak masing-masing data X terhadap nilai centroid baru masing-masing klaster menggunakan Euclidean Distance
- Hitung nilai SSE nya.

Iterasi 3

Centroid Baru	X
ml	7.00
m2	26.67

Data	Jarak ke m l	Jarak ke m2	Cluster
Α	5.00	24.67	CI
В	4.00	23.67	CI
С	3.00	22.67	CI
D	3.00	16.67	CI
Ε	4.00	15.67	CI
F	5.00	14.67	CI
G	13.00	6.67	C2
Н	18.00	1.67	C2
<u> </u>	28.00	8.33	C2
SSE	216.67		

- Anggota klaster CI = {A,B,C,D,E,F}
- Anggota klaster C2 = {G,H,I}
- Karena tidak ada perubahan data anggota klaster, maka iterasi dihentikan dengan nilai SSE sebesar 216.67

Contoh Algoritma K-Means (Diketahui dua atribut)

 Lakukan clustering ke dalam 2 kelompok klaster berdasarkan data berikut:

DATA	ΧI	X2
Α	I	3
В	3	3
С	4	3
D	5	3
Е	I	2
F	4	2
G	Ī	
Н	2	

Tahap Clustering (Iterasi I)

- Diketahui k = 2
- Pilih centroid awal (secara random dari dataset) untuk masing-masing klaster.
 - Misal: centroid C1 (m1) = (1,1), centroid C2 (m2) = (2,1)
- Hitung jarak masing-masing data X terhadap nilai centroid masing-masing klaster menggunakan Euclidean Distance
- Hitung nilai SSE nya.

Iterasi I

Centroid Awal	ΧI	X2
ml	I	I
m2	2	I

Data	Jarak ke m l	Jarak ke m2	Cluster
Α	2.00	2.24	CI
В	2.83	2.24	C2
C	3.61	2.83	C2
D	4.47	3.61	C2
Ε	1.00	1.41	CI
F	3.16	2.24	C2
G	0.00	1.00	CI
Н	1.00	0.00	C2
SSE	36.00		
		_	

SSE =
$$2^2+2.24^2+2.83^2+3.61^2+1^2+2.24^2+0^2+0^2=36$$

- Anggota klaster CI = {A,E,G}
- Anggota klaster C2 = {B,C,D,F,H}

Tahap Clustering (Iterasi 2)

- Hitung nilai centroid baru berdasarkan nilai rerata anggota masing-masing klaster.
 - centroid CI (mI) = average(A,E,G),
 - centroid C2 (m2) = average(B,C,D,F,H)
- Hitung jarak masing-masing data X terhadap nilai centroid baru masingmasing klaster menggunakan Euclidean Distance
- Hitung nilai SSE nya.

Iterasi 2

Centroid Baru	ΧI	X2
m l	I	2
m2	3.6	2.4

Data	Jarak ke m l	Jarak ke m2	Cluster
Α	1.00	2.67	CI
В	2.24	0.85	C2
C	3.16	0.72	C2
D	4.12	1.52	C2
Ε	0.00	2.63	CI
F	3.00	0.57	C2
G	1.00	2.95	CI
H	1.41	2.13	CI
SSE	7.88		

$$SSE = 1^2 + 0.85^2 + 0.72^2 + 1.52^2 + 0^2 + 0.57^2 + 1^2 + 1.41^2 = 7.88$$

- Anggota klaster CI = {A,E,G,H}
- Anggota klaster C2 = {B,C,D,F}

Tahap Clustering (Iterasi 3)

- Karena anggota berubah, maka lakukan iterasi ke-3.
- Hitung nilai centroid baru berdasarkan nilai rerata anggota masing-masing klaster.
 - centroid C1 (m1) = average(A,E,G,H),
 - centroid C2 (m2) = average(B,C,D,F)
- Hitung jarak masing-masing data X terhadap nilai centroid baru masing-masing klaster menggunakan Euclidean Distance
- Hitung nilai SSE nya.

Iterasi 3

Centroid Baru	ΧI	X2
ml	1.25	1.75
m2	4	2.75

Data	Jarak ke m l	Jarak ke m2	Cluster
Α	1.27	3.01	CI
В	2.15	1.03	C2
C	3.02	0.25	C2
D	3.95	1.03	C2
Ε	0.35	3.09	CI
F	2.76	0.75	C2
G	0.79	3.47	CI
Н	1.06	2.66	CI
SSE	6.25		

SSE = $1.27^2 + 1.03^2 + 0.25^2 + 1.03^2 + 0.35^2 + 0.75^2 + 0.79^2 + 1.06^2 = 6.25$

- Anggota klaster CI = {A,E,G,H}
- Anggota klaster C2 = {B,C,D,F}
- Karena tidak ada perubahan data anggota klaster, maka iterasi dihentikan dengan nilai SSE sebesar 6.25

Cukup mudahkan?

Latihan

Lakukan clustering ke dalam 2 kelompok klaster:

NAMA	B.IND	B.ING
JOKO	8.54	8.4
AGUS	9.98	6.81
SUSI	6.2	9.15
DYAH	5.24	7.26
WATI	5.7	5.71
IKA	8.57	5.87
EKO	7.7	7.71
YANTO	6.6	5.7
WAWAN	9	8.12
MAHMUD	9.81	9.58