

	DATE:
\$ 1	
*	Advantages: (1= apportunital) 11 8
	- Faster for calculating pixel position.
	- Easy to understand 2/2
	SC Y K T K
×	Disadvantages:
	- Floating point operations are line consuming.
X	Branchan's Line Drawing Algorithm:
	- It determined the points at an on-dimensional that
	should be related in order to form an approximation to
	a straight line between two points
1.1	Pseudo-Code:
	Bresenham's (int n, int y, int nz, int yi) rotor ignal
	E-rightani, og= grove no indiagle poissore mis-
	dn = abilinhaix, mos this policions wounthous
200	white stasigne yazgion of szasigne hatiti); of mal-
	if (dn < dy)
	- Antemp = the testignite = quite = 1
	dog=day;
	dy=temp;
	Topold 3 900 louds A 910 haloson & forget
	not else wil mitrou los des a con li
2.7 2.7	{ interchange = 0; must anil on.
	e + doidy dy;
	for Ci=1 to do)
	unidatory that I for any service for
	E set pixel (ny)
	while (e>=0)
	ust formed and formed and formed
	FOR EDUCATIONAL USE

	DATE:
	2 if (interchange =1)
	morting N= N+ SI; Holy los not solvit
	else postupion of part
	y= y+32
	e=e-2*dn; 120/20/00/00 *
	gainness fail an entitary take gatherin
	1 f (interchange = 1)
	ing Egypsi; grimmal soil incorpide to
	tall broken when else to doing out warmatch ft.
-0	thorizon as much N= N+05.40 at belong od bloods
	tringl FRIP 2 depited gail toporter
	3 - 3ho) - ah 1919
Æ	Applications: from on to the tribe and as well
	- Line drawing algorithms are useful for a reflicient in
	montinuous drawing with some intersity.
	- Computer Aided Design & for engineening and antitecture
	gisten etc.
	- Animations one well for testing performance.
,-	in p = rap
×	Test Cares:
	Ipput Expected orp Actual orp Regult
D	DOA restical restical line of the Paul
	n=4=0 line drawn 0= adrawnoff
	N2 = 10
2)	00A (60 0) 1-10 mg
	21=9/41=10 Morrantal Horrantale line Pass
	m2=y2 =10 line dimuni 18x19 dimin
3	Barrenbam (0 2) of dw
	ni=41=0 Diagonal line Diagonal line (as)
	nz = yz = 10 drawn FOR EDUCATIONAL USE

.1 *	DATE:
*	Marking:
	1=200, B=100, n=30, y=40
	Brevenham (50, 50, 250, 50)
	Breserham (30, 50, 150, 150)
	Bresenham (50,150, 250, 150)
	Bresenham (250, 50, 250, 350)
	DDA (50,100,100)
_	ODA (150,50,250,100)
	DOA (280, 100, 150, 150)
	00A (170, 150, 50,100)
	Brevenham (100, 71, 200, 75)
	Breyenham (190,75,200,75)
	Bresenham (100, 125, 200, 125)
	Breverham (100,121, 120, 75)
	- 5.00 mart - 121/(00)
	Conclusion:
- -	Lie have sucreulylly implemented DDA and Brienham
$-\parallel$	
	Drawing algorithm