

RM6

Double-Sided 6-Corner Shoulder Milling Tool

Milling tool series for high quality surface finish and cost efficiency

Higher Productivity

Designed to provide high speed and feed improves chip removal rates

Improved Perpendicularity

True perpendicular milling

Superior Clamping Stability

Powerful clamping thanks to strong clamping screws and 3-side flank supporting system

Double-Sided 6-Corner Shoulder Milling Tool

RM6

RM6, KORLOY's new Rich Mill Series for shouldering responds to these demands by employing double-sided inserts with six perpendicular corners to achieve cost efficiency. It features strong clamping screws, 3-side supporting system, and wide clamping areas which enable powerful clamping force. This facilitates stable machining at high speed and feed, and delivers higher productivity.

Wide minor cutting edges and optimized multi-stepped relief surfaces of the RM6 provide exceptional bottom surface finish. The RM6 achieves perpendicularity and improved flank surface finish. The chip breaker design high rake and high helix angle were applied to the inserts for stable cutting performance in hard-to-cut materials or high hardened workpieces, achieving an increase in tool life.

KORLOY's RM6 is one of the most advanced shouldering solutions available to meet the demand of the mold making market today.

Insert

Cutter

Shank

→ Code System

→ Code System

→ RM6 Features

- Stable clamping 3 clamping surfaces on the side and strong clamping screws

 → Improves cutting stability
- **High quality results** High precision, excellent perpendicularity, outstanding surface finish on the flank, accurate tolerance
- **High productivity** High rake angle and sharp cutting edges for lower cutting resistance

 → Ideal for high speed and high feed machining

→ Insert Features

→ Cutter Features

- 3-side supporting system, strong clamping screws, and wide seat areas
- → Improve clamping stability
- → Reduce tool vibrations and cutting resistance
- Optimized H/D design with curved surface for smooth chip flow
- → Facilitates chip evacuation in slopping or deep shouldering

Strong clamping screws

 Strong clamping screws enable rigid clamping

Streamlined holder design

 Improved chip evacuation in deep shouldering and slotting

Through coolant system

 Improved chip flow and tool life thanks to insert cooling

3-side supporting system

Stable tool life

→ Chip Breaker Features

• Chip breaker MA

Chip breaker	Cutting edge	Application	Features
MA		For aluminum	 MA: Milling Aluminum Sharp cutting edges for excellent cutting performance in aluminum machining Buffed surface for excellent chip flow and welding resistance
ML		For light cutting	 ML: Milling Light Chip breaker design of low cutting resistance, ideal for light cutting and machining hard-to-cut materials Excellent tool life and quality results
ММ		For general cutting	 MM : General shouldering operations Chip breaker design ideal for general shoulder milling and most applications

→ Performance Evaluation

■ Workpiece 42CrMo4(DIN), SCM440(KS), 4140(AISI), 300(L)x200(W)x100(H), Steel rectangular tube

■ Cutting conditions vc(m/min)=250, fz(mm/t)=0.2, ap(mm)=4, ae(mm)=10, Dry

■ Machining method Facing

■ Tools Insert WNGX080608PNSR-MM(PC5300) Holder RM6PCM063R-22-6-WN08

- Chipping resistance has improved thanks to stable clamping even at high speed
- → Minimized unexpected tool breakage
- Sharp cutting edges and streamlined chip breaker design
- → Minimized cutting resistance

→ Perpendicularity Evaluation

■ Workpiece C45(ISO), SM45C(KS), 1045(AISI), 300(L)x200(W)x100(H), Steel rectangular tube

■ Cutting conditions vc(m/min)=150, fz(mm/t)=0.15, ap(mm)=7, ae(mm)=5, Dry

■ Machining method Perpendicularity, flank surface finish, and unevenness were measured

after three passes of 7mm each, and 21mm in total

■ Tools Insert WNGX080608PNSR-MM(PC5300) Holder RM6PCM063R-22-6-WN08

→ Application Examples

Carbon steel [C45(ISO), HB180]

■ Cutting conditions vc(m/min)=250, fz(mm/t)=0.12, ap(mm)=7, ae(mm)=2, Dry

■ Machining method Shouldering

■ Tools Insert WNGX080608PNSR-MM(PC5300)

Holder RM6PS032R-2W32-120-WN08

RM6 150%
Competitor 100%

50% more

50% longer tool life compared to the competitor

Cold forged tool steel [X100CrMoV5 1(DIN), HB255]

■ Cutting conditions vc(m/min)=235, fz(mm/t)=0.28, ap(mm)=2, ae(mm)=5, Dry

■ Machining method Shouldering

■ Tools Insert WNGX080608PNER-ML(PC5300)

Holder RM6PCM063R-22-6-WN08

RM6 164% Competitor 100% 64% more

♦ 64% longer tool life compared to the competitor

Cast iron [600-3(ISO), HB230]

■ Cutting conditions vc(m/min)=226, fz(mm/t)=0.19, ap(mm)=1, ae(mm)=75, Dry

■ Machining method Facing

■ Tools Insert WNGX080608PNER-ML(PC5400)

Holder RM6PCM080R-27-7-WN08

RM6 120% Competitor 100%

20% more

◆ 20% longer tool life compared to the competitor

→ Grade Guideline per Workpiece Type

	Workpiece	I		M	K	N
Cutting conditions		Carbon steel	Alloy steel	Stainless steel	Cast iron	Non ferrous metal
Shape	1st recommended	MM	MM	ML	ML	MA
Зпаре	2nd recommended	ML	ML	-	MM	MA
	High speed milling	PC3600	PC3600	PC5300	PC6510	H01
Grade	General milling	PC5400	PC5300	PC5400	PC5300	H01
	Interrupted milling	PC5400	PC5400	PC5400	PC5400	H01

→ Recommended Cutting Conditions

> WNGX04

			WNG	(040304PNS	SR-MM	WNG	(040304PNI	ER-ML	WNGX	(040304PNI	FR-MA
	Workpiece	Grade	vc (m/min)	fz (mm/t)	max. ap(mm)	vc (m/min)	fz (mm/t)	max. ap(mm)	vc (m/min)	fz (mm/t)	max. ap(mm)
		PC3600	160~270	0.25~0.05	4.3	160~270	0.20~0.05	4.3	-	-	4.3
P	Steel	PC5300	150~240	0.25~0.05	4.3	150~240	0.25~0.05	4.3	-	-	4.3
		PC5400	130~210	0.25~0.05	4.3	130~210	0.25~0.05	4.3	-	-	4.3
	Stainless	PC5300	90~150	0.20~0.05	4.3	90~150	0.10~0.05	4.3	-	-	4.3
M	steel	PC5400	70~120	0.20~0.05	4.3	70~120	0.10~0.05	4.3	-	-	4.3
17	0	PC6510	140~230	0.30~0.08	4.3	140~230	0.25~0.08	4.3	-	-	4.3
K	Cast iron	PC5300	120~200	0.30~0.08	4.3	120~200	0.25~0.08	4.3	-	-	4.3
N	Non ferrous metal	H01	-	-	4.3	-	-	4.3	500~1000	0.2~0.05	4.3

[#] The above data refer to general cutting conditions and can be adjustable up to 300m/min and 0.4mm/t depending on user environment.

> WNGX08

			WNG	(080608PNS	SR-MM	WNG	K080608PNI	ER-ML	WNG	(080608PNF	FR-MA
	Workpiece	Grade	vc (m/min)	fz (mm/t)	max. ap(mm)	vc (m/min)	fz (mm/t)	max. ap(mm)	vc (m/min)	fz (mm/t)	max. ap(mm)
		PC3600	160~270	0.25~0.05	8.2	160~270	0.20~0.05	8.2	-	-	8.2
P	Steel	PC5300	150~240	0.25~0.05	8.2	150~240	0.25~0.05	8.2	-	-	8.2
		PC5400	130~210	0.25~0.05	8.2	130~210	0.25~0.05	8.2	-	-	8.2
M	Stainless	PC5300	90~150	0.20~0.05	8.2	90~150	0.10~0.05	8.2	-	-	8.2
IVI	steel	PC5400	70~120	0.20~0.05	8.2	70~120	0.10~0.05	8.2	-	-	8.2
K	Cast iron	PC6510	140~230	0.30~0.08	8.2	140~230	0.25~0.08	8.2	-	-	8.2
K	Cast Iron	PC5300	120~200	0.30~0.08	8.2	120~200	0.25~0.08	8.2	-	-	8.2
N	Non ferrous metal	H01	-	-	8.2	-	-	8.2	500~1000	0.2~0.05	8.2

^{**}The above data refer to general cutting conditions and can be adjustable up to 300m/min and 0.4mm/t depending on user environment.

→ Ramping

1. Ramping

2. Helical cutting for blind holes

3. Helical cutting for through holes

(mm)

		Tool	Depth	1. Rar	nping	2. Hel	ical cutting	g for blind	holes	3. Helical cutting	for through holes
	Designation	Dia. ØD	of cut ap	Max. rake angle	Lmin	Min. machining Dia. Ø DHmin	Max. pitch dmax	Max. machining Dia. Ø DHmax	Max. pitch dmax	Min. machining Dia. Ø DHmin	Max. pitch dmax
RM6PS	032R-2W32-120-WN08	32	8	4.6	99.5	54	4.5	62	5.2	38.5	3.2
	040R-3W32-120-WN08	40	8	4.2	109	69	5.3	78	6.0	54.5	4.2
	050R-4W32-120-WN08	50	8	4.0	114.5	89	6.5	98	7.2	74.5	5.5
RM6PCM	063R-22-6-WN08	63	8	4.0	114.5	115	8.0	124	8.0	100.5	7.4
	080R-27-7-WN08	80	8	3.5	131	149	8.0	158	8.0	134.5	8.0
	100R-32-8-WN08	100	8	2.6	176.5	189	8.0	198	8.0	174.5	8.0
	125R-40-11-WN08	125	8	1.8	255	239	8.0	248	8.0	224.5	7.8

^{*} Lmin = ap/tan(α°)

 $\label{eq:Lmin:Cutting length at min. rake angle} $$ap: Axial depth of cut $$\alpha^\circ: Available rake angle for ramping$

→ Available Inserts

(mm)

				Coa	ated		Uncoated		Dimensi	ons (mn	1)	
Shape		Designation	PC3600	PC5300	PC5400	PC6510	H01	d	t	r	Мах. ар	Figure
	WNGX	040304PNFR-MA						7.0	3.46	0.4	4.3	
		040308PNFR-MA						7.0	3.46	0.8	4.3	
		040312PNFR-MA						7.0	3.46	1.2	4.3	
		040316PNFR-MA						7.0	3.46	1.6	4.3	
		080604PNFR-MA						13.0	6.4	0.4	8.2	
		080608PNFR-MA					•	13.0	6.4	0.8	8.2	
		080612PNFR-MA						13.0	6.4	1.2	8.2	
		080616PNFR-MA						13.0	6.4	1.6	8.2	
		080620PNFR-MA						13.0	6.4	2.0	8.2	
	WNGX	040304PNER-ML						7.0	3.46	0.4	4.3	
		040308PNER-ML						7.0	3.46	0.8	4.3	
		040312PNER-ML						7.0	3.46	1.2	4.3	d t
		040316PNER-ML						7.0	3.46	1.6	4.3	
		080604PNER-ML	•	•	•			13.0	6.4	0.4	8.2	
		080608PNER-ML	•	•	•			13.0	6.4	0.8	8.2	Max ap
		080612PNER-ML						13.0	6.4	1.2	8.2	r
		080616PNER-ML						13.0	6.4	1.6	8.2	
		080620PNER-ML						13.0	6.4	2.0	8.2	
	WNGX	040304PNSR-MM						7.0	3.46	0.4	4.3	
		040308PNSR-MM						7.0	3.46	0.8	4.3	
		040312PNSR-MM						7.0	3.46	1.2	4.3	
		040316PNSR-MM						7.0	3.46	1.6	4.3	
		080604PNSR-MM	•	•				13.0	6.4	0.4	8.2	
		080608PNSR-MM	•	•				13.0	6.4	0.8	8.2	
		080612PNSR-MM						13.0	6.4	1.2	8.2	
		080616PNSR-MM						13.0	6.4	1.6	8.2	
		080620PNSR-MM						13.0	6.4	2.0	8.2	

→ Cutters

(mm)

D	esignation	()	ØD	ØD ₂	Ød	Ød1	Ød2	Ødз	а	b	E	F	ар	O
RM6PCM	040R-16-6-WN04	6	40	35	16	9	14	-	8.4	5.6	19	40	4.3	0.19
	040R-16-7-WN04	7	40	35	16	9	14	-	8.4	5.6	19	40	4.3	0.19
	050R-22-8-WN04	8	50	42	22	11	18	-	10.4	6.3	20	40	4.3	0.28
	050R-22-9-WN04	9	50	42	22	11	18	-	10.4	6.3	20	40	4.3	0.28
	063R-22-10-WN04	10	63	49	22	11	18	-	10.4	6.3	20	40	4.3	0.47
	063R-22-11-WN04	11	63	49	22	11	18	-	10.4	6.3	20	40	4.3	0.47
	050R-22-4-WN08	4	50	42	22	11	18	-	10.4	6.3	20	40	8.2	0.28
	050R-22-5-WN08	5	50	42	22	11	18	-	10.4	6.3	20	40	8.2	0.27
	063R-22-5-WN08	5	63	49	22	11	18	-	10.4	6.3	20	40	8.2	0.45
	063R-22-6-WN08	6	63	49	22	11	18	-	10.4	6.3	20	40	8.2	0.45
	080R-27-7-WN08	7	80	57	27	14	20	35	12.4	7	23	50	8.2	0.90
	080R-27-9-WN08	9	80	57	27	14	20	35	12.4	7	23	50	8.2	0.89
	100R-32-8-WN08	8	100	67	32	18	26	42	14.4	8	25	50	8.2	1.47
	100R-32-11-WN08	11	100	67	32	18	26	42	14.4	8	25	50	8.2	1.45
	125R-40-11-WN08	11	125	90	40	22	32	52	16.4	10	29	63	8.2	2.94
	125R-40-14-WN08	14	125	90	40	22	32	52	16.4	10	29	63	8.2	2.91
RM6PC	080R-25.4-7-WN08	7	80	57	25.4	14	20	35	9.5	6	25	50	8.2	0.91
	080R-25.4-9-WN08	9	80	57	25.4	14	20	35	9.5	6	25	50	8.2	0.91
	100R-31.75-8-WN08	8	100	67	31.75	18	26	42	12.7	8	32	63	8.2	1.69
	100R-31.75-11-WN08	11	100	67	31.75	18	26	42	12.7	8	32	63	8.2	1.73
	125R-38.1-11-WN08	11	125	90	38.1	22	32	52	15.9	9	35	63	8.2	1.98
	125R-38.1-14-WN08	14	125	90	38.1	22	32	52	15.9	9	35	63	8.2	2.90

> Available Arbors

Cutte	er designation	NC arbors
RM6PCM	040R-16-6-WN04	BT□□-FMC16-□□
	040R-16-7-WN04	
	050R-22-8-WN04	
	050R-22-9-WN04	
	063R-22-10-WN04	
	063R-22-11-WN04	BT□□-FMC22-□□
	050R-22-4-WN08	
	050R-22-5-WN08	
	063R-22-5-WN08	
	063R-22-6-WN08	

Cutte	r designation	NC arbors
RM6PCM	080R-27-7-WN08	BT□□-FMC27-□□
	080R-27-9-WN08	BIFMC27
	100R-32-8-WN08	BT□□-FMC32-□□
	100R-32-11-WN08	BIFMC32
	125R-40-11-WN08	BT□□-FMC40-□□
	125R-40-14-WN08	BIFMC40
RM6PC	080R-25.4-7-WN08	BT□□-FMA25.4-□□
	080R-25.4-9-WN08	BIFMA25.4
	100R-31.75-8-WN08	BT -FMA31.75-
	100R-31.75-11-WN08	BILL-FIVIAST.75-LL
	125R-38.1-11-WN08	BT -FMA38.1-
	125R-38.1-14-WN08	

▶ Parts

		Screw	Wrench	Wrench
Specific	cation			
WNGX04	Ø40 ~ Ø63	ETNA02506	TW07S	-
WNGX08	Ø50 ~ Ø125	FTNA0512	-	TW20-100

(mm)

	Designation	(ØD	Ød	Q	L	ар	kg
RM6PS	020R-2W20-110-WN04	2	20	20	35	110	4.3	0.22
	020R-3W20-110-WN04	3	20	20	35	110	4.3	0.22
	025R-3W25-110-WN04	3	25	25	35	110	4.3	0.36
	025R-4W25-110-WN04	4	25	25	35	110	4.3	0.35
	032R-5W32-110-WN04	5	32	32	35	110	4.3	0.60
	032R-6W32-110-WN04	6	32	32	35	110	4.3	0.60
	032R-2W32-120-WN08	3	32	32	40	120	8.2	0.65
	040R-3W32-120-WN08	3	40	32	40	120	8.2	0.69
	040R-4W32-120-WN08	4	40	32	40	120	8.2	0.69
	050R-4W32-120-WN08	4	50	32	40	120	8.2	0.76
	050R-5W32-120-WN08	5	50	32	40	120	8.2	0.76

> Parts

		Screw	Wrench	Wrench
Specifi	cation			
WNGX04	Ø20 ~ Ø32	ETNA02506	TW07S	-
WNGX08	Ø32 ~ Ø50	FTNA0512	-	TW20-100

Holystar B/D, 1350, Nambusunhwan-ro, Geumcheon-gu, Seoul, 08536, Korea
Tel: +82-2-522-3181 Fax: +82-2-522-3184, +82-2-3474-4744 Web: www.korloy.com E-mail: export@korloy.com

620 Maple Avenue, Torrance, CA 90503, USA
Tel: +1-310-782-3800 Toll Free: +1-888-711-0001 Fax: +1-310-782-3885
www.korloyamerica.com E-mail: sales@korloy.us

Gablonzer Str. 25-27, 61440 Oberursel, Germany
Tel: +49-6171-277-83-0 Fax: +49-6171-277-83-59
www.korloyeurope.com E-mail: sales@korloyeurope.com

Plot NO.415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, INDIA Tel:+91-124-4391790 Fax:+91-124-4050032 www.korloyindia.com E-mail:sales.kip@korloy.com

Av. Aruana 280, conj.12, WLC, Alphaville, Barueri, CEP06460-010, SP, Brasil
Tel: +55-11-4193-3810 E-mail: vendas@korloy.com