Tabla.1 Propiedades de los limites

Propiedad	Expresión algebraica
Límite de una constante	$\lim_{x \to a} c = c; c \in \mathbb{R}$
Propiedad de la suma y resta	$\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
Propiedad de la multiplicación	$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
Propiedad de la división	$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}; g(x) \neq 0$
Propiedad de la potencia	$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n; n \in \mathbb{R}$
Propiedad de la raíz	$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}; n \in \mathbb{R}, si \ n \ es \ par, \lim_{x \to a} f(x) \ge 0$

Tabla.2 Límites trigonométrico-especiales

Propiedad	Expresión algebraica
Límite del seno	$\lim_{x \to 0} \frac{\sin x}{x} = 1 \Leftrightarrow \lim_{x \to 0} \frac{x}{\sin x} = 1$
Límite del coseno	$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \Leftrightarrow \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$
Límite de la tangente	$\lim_{x \to 0} \frac{\tan x}{x} = 1 \Leftrightarrow \lim_{x \to 0} \frac{x}{\tan x} = 1$

Tabla.3 Límites exponenciales y logarítmicos

Propiedad	Expresión algebraica
Límite al más infinito de a^x , $a > 1$	$\lim_{x \to +\infty} a^x = +\infty; a \in \mathbb{R}$
Límite al menos infinito de a^x , $a > 1$	$\lim_{x\to-\infty}a^x=0;a\in\mathbb{R}$
Límite a cero infinito de a^x , $a > 1$	$\lim_{x\to 0}a^x=1;a\in\mathbb{R}$
Límite al más infinito de a^x , $1 > a > 0$	$\lim_{x\to+\infty}a^x=0;a\in\mathbb{R}$
Límite al menos infinito de a^x , 1 > $a > 01$	$\lim_{x\to-\infty}a^x=+\infty;a\in\mathbb{R}$
Límite a cero infinito de a^x , 1 > $a > 0$	$ \lim_{x\to 0}a^x=1; a\in\mathbb{R} $
Límite al más infinito de $\log_a x$, $a > 1$	$\lim_{x\to+\infty}\log_a x = +\infty; a\in\mathbb{R}$

$$\begin{array}{lll} \textit{L\'imite al menos infinito de} & & \lim_{x\to 0}\log_a x = -\infty; a \in \mathbb{R} \\ \log_a x \, , a > 1 & & \lim_{x\to 0}\log_a x = 0; a \in \mathbb{R} \\ & \lim_{x\to 1}\log_a x = 0; a \in \mathbb{R} \\ & \lim_{x\to 1}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to 1}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to 1}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to \infty}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to \infty}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to \infty}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to \infty}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to \infty}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to \infty}\log_a x = -\infty; a \in \mathbb{R} \\ & \lim_{x\to \infty}\log_a x = 0; a$$

Tabla.4 Teoremas de las derivadas

Teorema	Expresión algebraica
Definición de una derivada	$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
Teorema de linealidad de la derivada (Suma de funciones)	$\frac{d}{dx}[f(x) \pm g(x)] = \frac{df}{dx} \pm \frac{dg}{dx}$
Teorema de linealidad de la derivada (Producto de constantes)	$\frac{d}{dx}[c \cdot f(x)] = c \cdot \frac{df}{dx} ; c \in \mathbb{R}$
Regla del producto	$\frac{d}{dx}[f(x)\cdot g(x)] = \frac{df}{dx}\cdot g(x) + \frac{dg}{dx}\cdot f(x)$
Regla del cociente	$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{df}{dx} \cdot g(x) - \frac{dg}{dx} \cdot f(x)}{[g(x)]^2}$
Regla de la cadena	$\frac{d}{dx}f(g(x)) = \frac{df}{dx} \cdot \frac{dg}{dx}$

Tabla.5 Derivadas de funciones conocidas

Función	Derivada
$f(x)=c\;;c\in\mathbb{R}$	$\frac{df}{dx} = 0$
$f(x)=x^n; n\in\mathbb{R}$	$\frac{df}{dx} = nx^{n-1}; n \in \mathbb{R}$
$f(x) = \sin(x)$	$\frac{df}{dx} = \cos x$

$f(x) = \cos(x)$	$\frac{df}{dx} = -\sin x$
$f(x) = \sec x$	$\frac{df}{dx} = \sec x \tan x$
$f(x) = \csc x$	$\frac{df}{dx} = -\csc x \cot x$
$f(x) = \tan x$	$\frac{df}{dx} = \sec^2 x$
$f(x) = \cot x$	$\frac{df}{dx} = \csc^2 x$
$f(x) = e^x$	$\frac{df}{dx} = e^x$
$f(x) = a^x$	$\frac{df}{dx} = a^x \ln a$; $a \in \mathbb{R}$
$f(x) = \ln x$	$\frac{df}{dx} = \frac{1}{x}$
$f(x) = \log_a x$	$\frac{df}{dx} = \frac{1}{x \ln a}; a \in \mathbb{R}$
$f(x) = \sin^{-1} x$	$\frac{df}{dx} = \frac{1}{\sqrt{1 - x^2}}$
$f(x) = \cos^{-1} x$	$\frac{df}{dx} = -\frac{1}{\sqrt{1-x^2}}$
$f(x) = \tan^{-1} x$	$\frac{df}{dx} = \frac{1}{1+x^2}$
$f(x) = \sec^{-1} x$	$\frac{df}{dx} = \frac{1}{x\sqrt{x^2 - 1}}$
$f(x) = \cot^{-1} x$	$\frac{df}{dx} = -\frac{1}{1+x^2}$
$f(x) = \csc^{-1} x$	$\frac{dx}{df} = -\frac{1+x^2}{1}$ $\frac{1}{x\sqrt{x^2-1}}$

Tabla.6 Propiedades de potencias

Dato	Definición	
Suma de potencias	$a^n \cdot a^m = a^{n+m}; a, n, m \in \mathbb{R}$	_
Resta de potencias	$\frac{a^n}{a^m} = a^{n-m}; a, n, m \in \mathbb{R} \ y \ m \neq 0$	
Multiplicación de potencias	$(a^n)^m = a^{n \cdot m}; a, n, m \in \mathbb{R}$	

División de potencias, potencia a raíz Potencias negativas

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}; a, n, m \in \mathbb{N}$$

$$\left(\frac{b}{a}\right)^{-n} = \left(\frac{a}{b}\right)^n$$
; $a, b, n \in \mathbb{R}$

Tabla.7 Propiedades de logaritmos

Dato	Definición
Propiedad principal	$\log_a b = c \Leftrightarrow a^c = b; a, b, c \in \mathbb{R}^+ \ y \ a \neq \{1,0\}$
Exponente logarítmico	$a^{\log_a b} = b; a, b \in \mathbb{R}^+ \ y \ a \neq \{1,0\}$
Armento con potencia	$\log_a a^b = b; a, b \in \mathbb{R}^+ \ y \ a \neq \{1,0\}$
Multiplicación del argumento	$\log_a(b \cdot c) = \log_a b + \log_a c; a, b, c \in \mathbb{R}^+ \ y \ a \neq \{1, 0\}$
Radical en el argumento	$\log_a \sqrt[c]{b} = \frac{\log_a b}{c} a, b, c \in \mathbb{R}^+ \ y \ a \neq \{1,0\}$
División en el argumento	$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c; a, b, c \in \mathbb{R}^+ \ y \ a \neq \{1, 0\}$
División de logaritmos	$\log_a b = \frac{\log_c b}{\log_c a}; a, b, c \in \mathbb{R}^+ \ y \ a, c \neq \{1,0\}$
Cambio de base	$b^{\log_a c} = c^{\log_a b}; a, b, c \in \mathbb{R}^+ \ y \ a, c \neq \{1,0\}$

Tabla.8 Formulas notables

Dato	Definición	
Trinomio cuadrado perfecto	$(a \pm b)^2 = a^2 \pm 2ab + b^2$	
Diferencia de cuadrados	$a^2 - b^2 = (a+b)(a-b)$	
Diferencia de cubos	$a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})$	
Suma de cubos	$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})$	
Producto de cubos	$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^3 \pm b^3$	

Tabla.9 Propiedades del infinito

Dato	Definición
Suma y resta de constantes	$\pm \infty \pm c = \pm \infty; c \in \mathbb{R}$
Multiplicación de constantes (más infinito)	$+\infty \cdot c = \begin{cases} +\infty; c > 0 \\ -\infty; c < 0 \end{cases}; c \in \mathbb{R}$
Multiplicación de constantes (menos infinito)	$-\infty \cdot c = \begin{cases} -\infty; c > 0 \\ +\infty; c < 0 \end{cases}; c \in \mathbb{R}$
División de infinito	$\frac{c}{\pm \infty} = 0; ; c \in \mathbb{R}$
Suma de infinito (más infinito)	$+\infty + \infty = +\infty$
Suma de infinito (menos infinito)	$-\infty - \infty = -\infty$
Multiplicación de infinitos (más infinito)	$\pm \infty \cdot \pm \infty = +\infty$
Multiplicación de infinitos (menos infinito)	$+\infty\cdot-\infty=-\infty$