Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

 $h_{1,2} = -7, -7$

Case1: △>0 $h_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the h-intercepts of multiplicity 1.

Given a quadratic $y(h) = a h^2 + b h + c$ compute its discriminant \triangle :

$$h_{1,2} = \frac{-b \pm \sqrt{b^2 - 4} \, ac}{2a}$$
 computes the h-intercepts of multiplicity 1.
 y(0) = c computes the single y-intercept.

Example 1. $y(h) = 3 h^2 + 13 h - 30$ compute its discriminant \triangle :

$$\triangle=529>0$$
 $h_{1,2}=\frac{5}{3},-6$
 $y(0)=-30$ y-intercept.

y(0) = -98 y-intercept.

 $y(h) = 4 h^2 + 72 h + 405$ compute its discriminant \triangle : $\triangle = -1296 < 0$

However there is a y-intercept.

no h-intercepts.

y(0) = 405 y-intercept.

Example 3.

-10