BUDT 730 Data, Models and Decisions

Lecture 9
Regression Analysis (I)
Prof. Sujin Kim

Learning Objective

- Introduce linear regression as a study of relationships between variables
- Example:
 - o Catalog Marketing Reg.xlsx

Overview of Linear Regression Analysis

Introduction to Linear Regression

Regression analysis is the study of relationships between variables

It is one of the most useful tools for a business analyst because it applies to many situations

Regression is used for two primary purposes:

Explanatory model: Explain why and how a thing works **Predictive model**: Estimate what will happen for future

observations

Regression can be applied to cross-sectional or time series data

Statistical Methods for Business Analytics

<u>Article</u>

Recall: HyTex Catalog Marketing Data

- We can use scatterplots to visualize the relationship between "Amount Spent" and "Salary"
- What can you say about the relationship between a customer's salary and the amount he/she spends?
- We can use association measures to quantify the relationship between two variables

Measuring Associations

- A Scatterplot tells us:
 - that there is some relationship between Salary and Amount Spent
- The Correlation coefficients tells us:
 - how strong the linear relationship is between Salary and Amount Spent
- However, we still don't know the precise relationship
 - For example, we still don't know exactly by how much Amount Spent will increase for each additional \$ amount of increase in Salary
- We would like to mathematically express the relationship between Salary and Amount Spent => Regression Analysis

Announcements

- Download:
 - Catalog marketing data and r script
 - Wine data
- Pick up the worksheet

Example: HyTex Catalog Marketing Data

- Linear regression quantifies the relationship between X (Salary) and Y (Amount Spent) variables.
- For a fixed change in X, how does Y change?

```
Amount Spent = 0.022 * Salary-15.332
```

Linear Regression Models

- The dependent variable (Y) is the variable that we are trying to explain or predict.
 - Also called the **response** or target variable
- We use one or more independent variables (X) to help explain or predict the dependent variable
 - Also called **explanatory** or **predictor** variables

Linear Regression Models (10/20 (W))

We can include more than one independent variable to obtain a better fit:

$$Y = a + b_1 X_1 + ... + b_k X_k$$

- One independent variable -- simple regression
- More than one independent variable -- multiple regression

• How to identify the best line (or best linear regression model)?

"Best Line"

Linear Regression Models

How to measure the linear relationship between dependent and independent variables for multiple regression?

=> R^2 : measure of fit, it is the square of correlation in simple regression

Example: HyTex Catalog Marketing Data

Correl (AmountSpent, Salary) =0.66598

 $R^2 = (Correl (AmountSpent, Salary))^2$

= 0.4894

=> Measure of fit

The variance of error increases as salary increases

Logarithmic Transformation

To obtain a valid linear regression model we should check if our model satisfy all the regression model assumptions. We will discuss this later.

Regression Analysis in R

Dataset: Catalog Marketing_Reg.xlsx

Environment: R and RStudio

R functions:

Function Name	Description
lm()	Fitting Linear Models
abline()	Add Straight Lines to a Plot
plot()	Draw a scatter plot
summary()	Produce result summaries of the results of model fitting functions.
resid()	Extract Model Residuals

Regression Analysis in R

- Steps:
 - Upload dataset
 - Run a simple linear regression model
 - Create a scatterplot and plot the regression line

Step 1: Upload Dataset

- Use Dataset From Excel
- Import Catalog Marketing_Reg.xlsx
 There are 11 columns in the dataset,

Step 2: Run a simple linear regression model

- The command to fit a simple linear regression model is lm()
- You can get information about the lm() command by typing

```
>?lm()
```

 We will fit a simple linear regression model to predict AmountSpent using Salary as the predictor.

Step 3: Plot the regression line

- We can create a scatterplot and plot the regression line with the following commands
- > plot(AmountSpent ~ Salary, main
- ="AmountSpent ~ Salary ", data = Catalog Marketing Reg)
- > abline(slr, col="blue")

Step 3: Residual Plots

- We can plot the residuals in the order given in the data with the following commands:
 - > residslr <-resid(slr)
 - > plot(residslr)

Next ...

More on Explanatory Regression Models