2 Моделирование траектории движения 2.1 Задание второе

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника GPS на заданный момент по шкале времени UTC. В качестве эфемерид использовать данные, полученные на предыдущем этапе.

Построить трехмерные графики множества положений спутника GPS с системным номером, соответствующим номеру студента по списку. Графики в двух вариантах: в СК ЕСЕГ WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать суточному интервалу на дне формирования наблюдений, определенном на предыдущем этапе. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

Вывести значения координат спутника в файл out.txt в системе ECEF WGS 84 в виде строк: Секунда от начала дня X Y Z.

Используя оценку местоположения с предыдущего этапа, построить Sky Plot за указанный временной интервал и сравнить результат с Trimble GNSS Planning Online.

Требуется:

- 1. Реализовать в Matlab или Python (описание модели и её листинг)
- 2. Записать таблицу использованных эфемерид
- 3. Построить трехмерные графики положений спутника в ЕСЕГ и ЕСІ (не забыть подписать оси, изобразить соответствующую Земле сферу в начале СК)
- 4. Построить расчётный и полученный в GNSS Planing Online SkyView

2.2 Разработка программы расчета положения спутника

Из [2] запишем таблицу значений эфемерид из п.1.2 в соответствии с моделью GPS и воспользуемся константами из ИКД GPS.

таолица т — эначения эфемерид в соответствии с моделью от э	
Crs	1.056250e+01
Δn	2.848947e-07
\mathbf{M}_0	136.526979
Cuc	3.501773e-07
e	1.554191e-02
Cus	5.355105e-06

Таблица 1 – Значения эфемерид в соответствии с моделью GPS

sqrtA	5.153684e+03
toe	-6.519258e-08
Cic	-2.887100e-07
Omega0	70.200499
Cis	2.710312e+02
i0	54.466585
Crc	-131.270351
omega	-4.590606e-07
OmegaDot	7.346443e-09
iDot	-1.117587e-08
Tgd	100800
toc	100800
af2	3.101248e-04
af1	149
af0	35
WN	0

Далее значения из табл.1 используются для расчета положения спутника GPS на заданный момент по шкале времени UTC на суточном интервале в системе координат ECEF WGS 84 и соответствующей ей инерциальной СК. Алгоритм расчёта координат КА взят из [2].

Для перевода в инерциальную СК расчёт проводится по (1):

$$\begin{cases} x' = x\cos(\theta) - y\sin(\theta) \\ y' = x\sin(\theta) + y\cos(\theta) \\ z' = z \end{cases}$$
 (1)

, где
$$heta=\Omega_{c}\left(t-t_{0}
ight)$$

Центр декартовой системы координат переносится в точку приёма (рисунок 6). Далее координаты КА относительно точки приёма пересчитываются в полярную систему координат по (2) из алгоритма ИКД.

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ cos(\theta) = \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ tg(\varphi) = \frac{y}{x} \end{cases}$$
 (2)

Координаты приёмника в RTKNAVI:

Solution: SINGLE ☐

N: 44° 09' 36.3261"

E: 39° 00' 13.0546"

He: 1.247 m

N: 5.081 E: 2.342 U: 4.863 m
Age: 0.0 s Ratio: 0.0 #Sat: 6

Рисунок 6 – Координаты приемника

Вывод значений координат производится в файл out.txt. В приложении Б представлен листинг кода, реализующий расчёт положения КА и вывод соответствующих графиков.

2.3 Результаты моделирования

На рисунке 7 представлена траектория движения КА №7 на интервале суток в СК ЕСЕГ WGS 84 с отмеченным местоположением приёмника. На рисунке 8 изображена траектория движения КА в СК, а также точка, в которой находится приёмник. На рисунке 8 изображён Sky Plot с учётом угла места в 10 град.

Рисунок 7 — Траектория движения KA в CK ECEF WGS84 и приёмник

Рисунок 8 – Траектория движения КА в СК ЕСІ и приёмник

Рисунок 9 – Sky Plot

2.4 Сравнение результатов моделирования с Trimble GNSS Planning Online

Выставим необходимые параметры в Trimble GNSS Planning Online для построения SkyView на заданную дату и время:

Рисунок 10 — Данные для построения SkyView

На рисунках 11,12 построен SkyView KA №7 системы GPS.

На интервале времени $14.02.2022\ 04:00$ - $15.02.2022\ 04:00$ из точки приёма КА виден 2 раза.

Рисунок 11 – Построение SkyView для первого пролёта КА

Рисунок 12 – Построение SkyView для второго пролёта КА

Комментарий к рис. 9,11,12:

Рассчитанные положения КА в результате моделирования совпадают с Trimble GNSS Planning Online

Вывод:

На втором этапе курсового проекта была разработана программа, выполняющая расчет положения спутника GPS, выводящая в файл out.txt значения координат спутника в заданном формате. При сравнении графиков на рисунках 8 и 10 замечается сходство рассчитанного SkyView и полученного с помощью Trimble GNSS Planning Online.