REMARKS

The application has been reviewed in light of the Office Action mailed June 19, 2003. At the time of the Office Action, claims 1-66 were pending in this application, and claims 1-66 were rejected.

I. Rejections under 35 U.S.C. § 102(e)

Claims 1, 7-9, 25, 26, 31, 32, 37-40, 46-52, 56-59, and 64 were rejected under 35 U.S.C. § 102(e) as being anticipated by U.S. Patent 6,496,173 issued to Lucian R. Albu et al., (hereinafter "Albu"). Applicant respectfully traverses the rejection and submits that the reference relied upon does not disclose what is being claimed in independent claims 1, 37 and 49.

The present invention uses a constant amplitude having a well defined and controllable pulse width from a current source. Both the current source amplitude and pulse width are controlled in combination to achieve very high resolution of the resulting voltage charge created on the column capacitance from the injected time duration controlled (pulse-width) current amplitude pulse for each individual column. The current pulse characteristics may be stored in a gamma lookup table (LUT) so that the desired pulse amplitude and time duration for each of the desired gray scale shades of the liquid crystal display (LCD) may be selected as required by the received pixel image to be displayed on the LCD. By selectively controlling both the current pulse amplitude and the current pulse-width, much finer resolution (granularity) of the resultant column voltages may be obtained. The resolution may be the number of bits applied to the digital-to-analog converter (DAC) for a current amplitude from the DAC, represented by A, and the pulse-width time duration of the current pulse used to charge

the column capacitance to a desired voltage will be A x T. Thus, the voltage charge to the column is not limited to the resolution of the current DAC.

The Albu patent discloses a counter (12) that controls a lookup table (LUT) (32) whose output controls the output of a current source digital-to-analog converter (IDAC) (34). The output of the IDAC (34) is initially coupled to all of the LCD pixel columns (28) through current amplifier/switches (36, 38). Each of the column switches 38 has an associated comparator (24) that monitors the output of the counter (12) and predetermined counter values for each column (28) that are stored in a data buffer (22). When the digital value of the counter (12) matches a predetermined counter value for a column, the comparator (24) will turn off the respective column switch (38), thereby stopping any further voltage charge of that column (28). In effect each column stays connected to the voltage charging circuit (34, 18, 36) until a desired voltage value (i.e., what is stored for that column 28 in the data buffer (22). As each voltage value for a column (28) is reached, as determined by the comparator (24), that column is disconnected from the voltage charging circuit (34, 18, 36). This operation is like a bus dropping passengers off along a well defined route (each column gets of the voltage charging bus when it reaches its desired voltage value). See generally, Albu, column 3, lines 11-44.

Albu does not address or take into account the change in capacitance that results from a column being disconnected from the charging circuit. The current charging disclosed in Albu simply ramps up from the value of the counter (12), thus changes in connected column capacitance will greatly alter the accuracy of a voltage charge into a capacitance from a current source since voltage is dependent upon the amount of charge (current) injected into the capacitance in combination with the capacitance value. Significant errors may be introduced by changing the capacitance values while trying to charge column(s) from a current source. Also

HOU02:945683 15 of 22 U.S.S.N. 09/827,558

the voltage charging method disclosed in Albu has only the resolution of the IDAC (34) since pulse-width is not controlled, only the time in which a column is connected to the charging source. In contrast to what is disclosed in Albu, the present invention injects a unique current pulse, having a specific amplitude and pulse-width, for each individual LCD column. Thus the present invention takes advantage of the greater resolution of combining both current amplitude and pulse-width time duration to exactly control the amount of current charge injected into each individual column capacitance. This results in many more gray scale shades available even with a relatively low input resolution DAC.

Applicant respectfully submits that Albu does not disclose independently controlling both current pulse amplitudes and pulse-widths to uniquely charge each of the respective columns of an LCD, as claimed in independent claims 1, 37 and 49. Claims 7-9, 25, 26, 31, 32 and 64 depend from independent Claim 1 and contain all limitations thereof. Claims 38-40, 46-48 depend from independent Claim 37 and contain all limitations thereof. Claims 50-52 and 56-59 depend from independent Claim 49 and contain all limitations thereof.

II. Rejections under 35 U.S.C. § 103

Applicant respectfully submits that none of the references relied upon teach or suggest, individually or in combination, what is being claimed in independent claims 1, 37 and 49.

A. Claims 2-4, 27 and 28 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of U.S. Patent 6,459,395 issued to Yoshitoshi Kida et al. (hereafter "Kida").

Kida merely teaches column and row selection in a LCD. Neither Albu nor Kid teach or suggest, individually or in combination, independently controlling both current pulse amplitudes and pulse-widths to uniquely charge each of the respective columns of an LCD, as

HOU02:945683 16 of 22 U.S.S.N. 09/827,558

discussed above. Claims 2-4, 27 and 28 depend from independent Claim 1 and contain all limitations thereof.

B. Claims 5, 6, 29, and 30 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of Kida as applied to Claim 2 above, and further in view of U.S. Patent 6,067,083 issued to David Glen et al. (hereinafter "Glen").

Glen teaches saving power by turning off a video graphics processor during horizontal and vertical retrace times in an analog cathode ray tube (CRT) video display. Glen also teaches a look-up table DAC for use with the CRT display. There is no teaching or suggestion to apply the Glen invention to an LCD (LCD is digitally controlled, not analog and does not require horizontal and vertical retrace times). Kida merely teaches column and row selection in a LCD. None of the references relied upon teach or suggest, individually or in combination, independently controlling both current pulse amplitudes and pulse-widths to uniquely charge each of the respective columns of an LCD, as discussed above. Claims 5, 6, 29 and 30 depend from independent Claim 1 and contain all limitations thereof.

C. Claims 10-12, 33, 34, 41-43, 54, and 55 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of U.S. Patent 5,103,112 issued to George R. Briggs (hereinafter "Briggs").

Briggs teaches using variable pulse width generators for digital-to-analog converter (DAC) circuits. There is no teaching or suggestion in Briggs for controlling the pulse-width of a current pulse from a DAC to charge a column of a LCD. There is no suggestion nor motivation in the references relied upon to combine Albu with Briggs with what is being claimed in independent claims 1, 37 and 49, *i.e.*, to obtain independently controlling both current pulse amplitudes and pulse-widths to uniquely charge each of the respective columns of an LCD, as discussed above. Any attempt to combine Albu with Briggs to suggest what is being claimed would require an extreme stretch of impermissible hindsight. Albu teaches charging a plurality

HOU02:945683 17 of 22 U.S.S.N. 09/827,558

of LCD columns, all initially connected together, and as these plurality of columns reach their desired voltage levels, they are disconnected from the voltage charging source. Briggs teaches a circuit to implement a DAC that may be used in an LCD. There is no suggestion in Briggs to control the pulse width and amplitude of a current source used to charge individual LCD columns to specific voltage levels, nor do the references relied upon teach or suggest the high resolution gray scale shade selection possible when using the present invention. Claim 10 has been canceled. Claims 11, 12, 33 and 34 depend from independent Claim 1 and contain all limitations thereof. Claim 41 has been canceled. Claims 42 and 43 depend from independent Claim 37 and contain all limitations thereof. Claim 54 has been canceled. Claim 55 depends from independent Claim 49 and contains all limitations thereof.

D. Claims 13, 14, 44, and 45 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of Briggs as applied to Claims 10-12 above, and further in view of U.S. Patent 5,970,106 issued to Masanori Izumikawa (hereinafter "Izumikawa").

Izumikawa teaches a phase-locked-loop (PLL) clock system. There is no teaching nor suggestion to use the Izumikawa invention in a LCD to control a current pulse amplitude and pulse-width for charging a LCD column voltage. Likewise there is no suggestion to combine the PLL of Izumikawa with the other references relied upon to control the amplitude and pulse width of a current source used to charge individual LCD columns to specific voltage levels, nor do the references relied upon teach or suggest the high resolution gray scale shade selection possible when using the present invention. Claims 13 and 14 depend from independent Claim 1 and contain all limitations thereof. Claims 44 and 45 depend from independent Claim 37 and contain all limitations thereof.

HOU02:945683 U.S.S.N. 09/827,558

E. Claims 15-18 and 35 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of U.S. Patent 5,453,991 issued to Kouhei Suzuki et al. (hereinafter "Suzuki").

Suzuki teaches internal integrated circuit inspection circuitry that is directed to wafer-level inspection. There is no relationship to LCD column voltage charging, nor is there any motivation to combine Suzuki with the other references relied upon to teach or suggest controlling the amplitude and pulse width of a current source used to charge individual LCD columns to specific voltage levels, nor do the references relied upon teach or suggest the high resolution gray scale shade selection possible when using the present invention. Claims 15-18 and 35 depend from independent Claim 1 and contain all limitations thereof.

F. Claims 19-21, and 60 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of U.S. Patent 5,668,650 issued to Hisatoshi Mori et al. (hereinafter "Mori").

Mori teaches an internal amorphous thin film transistor (TFT) structure that internally compensates for the gate-source capacitance Cgs of each TFT. None of the references relied upon teach or suggest, either individually or in combination, controlling amplitude and pulse-width of a current source to charge individual LCD columns to specific voltage levels or the high resolution gray scale shade selection possible when using the present invention. Claims 19-21 depend from independent Claim 1 and contain all limitations thereof. Claim 60 depends from independent Claim 49 and contains all limitations thereof.

G. Claims 22, 23, and 36 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of Mori as applied to Claims 19-21 above, and further in view of U.S. Patent 6,081,250 issued to Takayuki Shimada et al. (hereinafter "Shimada").

Shimada teaches a method to reduce the effect of column and row delay times by doubling the number of columns and rows, and modifying the signals used in them. This method is not relevant nor required for the present invention. None of the references relied upon teach or

HOU02:945683 19 of 22 U.S.S.N. 09/827,558

suggest, either individually or in combination, what is being claimed. Claims 22, 23 and 36 depend from independent Claim 1 and contain all limitations thereof.

H. Claim 24 was rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of Mori as applied to Claims 19-21 above, and further in view of U.S. Patent 3,538,450 issued to J. J. Andrea et al. (hereinafter "Andrea").

Andrea teaches using a varactor capacitor to electronically control the frequency of an oscillator. There is no teaching nor suggestion in Andrea for what is being claimed. None of the references relied upon teach or suggest, either individually or in combination, controlling amplitude and pulse-width of a current source to charge individual LCD columns to specific voltage levels or the high resolution gray scale shade selection possible when using the present invention. Claim 24 depends from independent Claim 1 and contains all limitations thereof.

- Claim 53 was rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu.
 Claim 53 has been canceled.
- J. Claims 61-63 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of U.S. Patent 5,940,057 issued to Lien et al. (hereinafter "Lien").

Lien teaches solving crosstalk in amorphous silicon TFT displays be line inversions and pre-charging of the display electronics. This is not required nor desired in the present invention. There is no suggestion to combine Lien with the other references relied upon to teach or suggest, either individually or in combination, controlling amplitude and pulse-width of a current source to charge individual LCD columns to specific voltage levels or the high resolution gray scale shade selection possible when using the present invention. Claims 61-63 depend from independent Claim 1 and contain all limitations thereof.

HOU02:945683 20 of 22 U.S.S.N. 09/827,558

K. Claims 65 and 66 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Albu in view of Mori et al. as applied to Claim 19 and 20 or as applied to Claim 60 above, and further in view of U.S. Patent 6,151,238 issued to Willem Smit et al. (hereinafter "Smit").

Smit teaches using flusable links to adjust capacitance. However, Smit in combination with the other references relied upon do not teach or suggest, either individually or in combination, controlling amplitude and pulse-width of a current source to charge individual LCD columns to specific voltage levels or the high resolution gray scale shade selection possible when using the present invention. Claim 65 depends from independent Claim 1 and contains all limitations thereof. Claim 66 depends from independent Claim 49 and contains all limitations thereof.

All amendments are made in a good faith effort to advance the prosecution on the merits. Applicant reserves the right to subsequently take up prosecution on the claims as originally filed in this or appropriate continuation, continuation-in-part and/or divisional applications.

Applicant respectfully requests that the amendments submitted herein be entered, and further requests reconsideration in light of the amendments and remarks contained herein.

Applicant respectfully requests withdrawal of all objections and rejections, and that there be an early notice of allowance.

HOU02:945683 21 of 22 U.S.S.N. 09/827,558

ATTORNEY DOCKET 068363.0109

SUMMARY

In light of the above amendments and remarks Applicant respectfully submits that the application is now in condition for allowance and early notice of the same is earnestly solicited. Should the Examiner have any questions, comments or suggestions in furtherance of the prosecution of this application, the Examiner is invited to contact the attorney of record by telephone or facsimile.

Applicant believes that there are no additional fees due in association with the filing of this Response. However, should the Commissioner deem that any additional fees are due, including any fees for any additional extensions of time, Applicant respectfully requests that the Commissioner accept this a Petition therefor, and direct that any additional fees be charged to, or any overpayments be credited to, Baker Botts L.L.P. Deposit Account No. 02-0383, (formerly Baker & Botts, L.L.P.), Order Number 068363.0109.

BAKER BOTTS L.L.P. (023640)

Paul N. Katz

Reg. No. 35,917 One Shell Plaza

910 Louisiana Street

Houston, Texas 77002-4995

Telephone: 713.229.1343 Facsimile: 713.229.7743

EMail: Paul.Katz@bakerbotts.com

ATTORNEY FOR APPLICANT

September 22, 2003