Reduction of Logical Regulatory Networks by rewriting logical functions

Aurélien Naldi 2015/05/29

Outline

- 1 Introduction
- 2 Model Reduction
 - Dynamical Impact
- 3 Selecting Reduced Components
- 4 Implementation and Applications
 - GINsim: Definition and Analysis of Logical Models
 - CoLoMoTo: Improving Interoperability
 - Th differentiation
- 5 Conclusion and Prospects

Outline

- 1 Introduction
- 2 Model Reduction
 - Dynamical Impact
- 3 Selecting Reduced Components
- 4 Implementation and Applications
 - GINsim: Definition and Analysis of Logical Models
 - CoLoMoTo: Improving Interoperability
 - Th differentiation
- 5 Conclusion and Prospects

)

Logical Formalism

Regulatory Graph

- Components
- Interactions
- Logical functions

next(A): A & !B next(B): A & !B:2

Logical Formalism

Regulatory Graph

- Components
- Interactions
- Logical functions

next(A): A & !B next(B): A & !B:2

Logical Formalism

Regulatory Graph

- Components
- Interactions
- Logical functions

next(A): A & !B next(B): A & !B:2

Dynamical Behaviour

Asynchronous

Other updatings

- Sequential
- Block-sequential
- Random walks

Synchronous

Properties

- Attractors stable states/oscillations
- Reachability

Outline

- 1 Introduction
- 2 Model Reduction
 - Dynamical Impact
- 3 Selecting Reduced Components
- 4 Implementation and Applications
 - GINsim: Definition and Analysis of Logical Models
 - CoLoMoTo: Improving Interoperability
 - Th differentiation
- 5 Conclusion and Prospects

Model Reduction

Aim and properties

- Detailled reference model
- Multiple reductions
- Preserve feedback circuits
- Dynamical impact well understood

Definition of the reduced model:

A Naldi et al. Theor Comput Sci (2011)

Definition of the reduced model:

 \blacksquare All components but r

A Naldi et al. Theor Comput Sci (2011)

Definition of the reduced model:

- \blacksquare All components but r
- Interactions between these components

A Naldi et al. Theor Comput Sci (2011)

Definition of the reduced model:

- \blacksquare All components but r
- Interactions between these components
- \blacksquare Regulators of r become regulators of its targets

A Naldi et al. Theor Comput Sci (2011)

Definition of the reduced model:

- All components but r
- Interactions between these components
- \blacksquare Regulators of r become regulators of its targets
- New logical functions for the targets of r

A Naldi et al. Theor Comput Sci (2011)

Definition of the reduced model:

- All components but r
- Interactions between these components
- \blacksquare Regulators of r become regulators of its targets
- New logical functions for the targets of r

Replace constraints r == v by parts of the function of r

All happens as if r reached its target value: it can not be self-regulated

A Naldi et al. Theor Comput Sci (2011)

,

Dynamical Impact

A Naldi et al. Theor Comput Sci (2011)

Dynamical Impact

A Naldi et al. Theor Comput Sci (2011)

Dynamical Impact

A Naldi et al. Theor Comput Sci (2011)

Order of multiple reductions

How to apply a series of reductions?

The order does not affect the result

"Representative states in Multiple directions" are unique

... but it may affect feasability

- A self-regulated state can not be reduced
- Reduction of his regulator may kill the loop
- finding a possible order is not trivial

Summary

Controlled dynamical impact

- Equivalence classes and representative states
- Preserve attractors
 - Same stable states
 - Stable oscillations in the same regions
 - May add new stable oscillations
- Reachability can be lost, not made up

Picking "good" reduced nodes is crucial

- "Fast" components
- Conservative reductions
 - no change in attractors
 - no change in reachability

Outline

- 1 Introduction
- Model ReductionDynamical Impact
- 3 Selecting Reduced Components
- 4 Implementation and Applications
 - GINsim: Definition and Analysis of Logical Models
 - CoLoMoTo: Improving Interoperability
 - Th differentiation
- 5 Conclusion and Prospects

Reduction of output components

Output reduction

- No computation
- No impact
- Retrieve values

Reduction of output components

Output reduction

- No computation
- No impact
- Retrieve values

Extend to pseudo-outputs

- No impact
- Harder retrieval
- ⇒ Rewire the model: pseudo-outputs become outputs

Rewiring: all functions only depend on core components

Reduction of pseudo-inputs

Propagation of pseudo-inputs

- Preserves attractors
- Reachability depends on initial condition

"Local" reachability loss related to targets of R: can't be avoided

Better approach: look at longer paths with alternatives

Better approach: look at longer paths with alternatives

WIP: identification of motifs killing groups of alternative paths

WIP: identification of motifs killing groups of alternative paths

WIP: identification of motifs killing groups of alternative paths

Outline

- 1 Introduction
- Model ReductionDynamical Impact
- 3 Selecting Reduced Components
- 4 Implementation and Applications
 - GINsim: Definition and Analysis of Logical Models
 - CoLoMoTo: Improving Interoperability
 - Th differentiation
- 5 Conclusion and Prospects

GINsim: Definition and Analysis of Logical Models

http://www.ginsim.org

A Naldi et al. Bio Systems (2009)

GINsim features

Model definition

- Interaction Graph & Logical functions
- Annotations
- Perturbations

Simulation

- Updating modes
- STG and HTG

Import / Export

- Other modelling tools
- Documentation & Images

Static Analysis

- Circuit Analysis
- Stable states

Miscellanous

- Scripting with Jython
- Open Source

A Naldi et al. Bio Systems (2009)

Using Multiple Tools for Logical Model Analysis

"Many" logical modelling tools available

Complete each other, but have no interoperability

Consortium for Logical Models Tools (CoLoMoTo)

- Exchanging models: SBML qual format
- Toolbox/converter: LogicalModel
- Take advantage of multiple tools

http://www.colomoto.org https://github.com/colomoto

Related Tools

Formal: Attractor Identification

- Stable Motifs (J Zanudo & R Albert)
- Symbolic Steady States (H Klarner & H Siebert)

Simulation

- Model checking with NuSMV (P Monteiro)
- Reachability analysis with Pint (L Paulevé)
- Stochastic simulations with MaBoSS (G Stoll)
- Time delays with boolnet (C Müssel & H Kestler)
- Continuous simulations with SQUAD (L Mendoza & I Xenarios)

Model Optimization

■ CellNopt (J Saez-Rodriguez)

A Naldi et al. PLoS Comput Biol (2010)

A Naldi et al. PLoS Comput Biol (2010)

A Naldi et al. $PLoS\ Comput\ Biol\ (2010)$

Outline

- 1 Introduction
- 2 Model Reduction
 - Dynamical Impact
- 3 Selecting Reduced Components
- 4 Implementation and Applications
 - GINsim: Definition and Analysis of Logical Models
 - CoLoMoTo: Improving Interoperability
 - Th differentiation
- 5 Conclusion and Prospects

Conclusion and prospects

An efficient reduction method

- Automated reduction
- Preserved attractors
- Well defined dynamical impact
- Implementation available
- Applied in some published models

... with some low-hanging fruits

- Automated "safe reductions" Extend to longer paths
- Reduction for static analysis: do NOT generate complex functions
- Find possible orders

Acknowledgements & Collaborations

IGC, Lisbonne

Claudine Chaouiya

Pedro Monteiro Jorge Carneiro

IML, Marseille

Elisabeth Remy

IBENS - Curie, Paris

Denis Thieffry

Wassim Abou-Jaoudé