EE3-23: Machine Learning

Deniz Gündüz and and Krystian Mikolajczyk

Department of Electrical and Electronic Engineering
Imperial College London

Fall 2019

Today

Support Vector Machines

Today

- Support Vector Machines
- Kernels

Support Vector Machines (SVM)

 One of the most successful classification algorithms (best until a few years ago)

Maximizing the margin

Support Vector Machines (SVM)

- One of the most successful classification algorithms (best until a few years ago)
- Maximizing the margin
 - Intuitively, in classification large margin is good
 - Disciplined explanation

Support Vector Machines (SVM)

- One of the most successful classification algorithms (best until a few years ago)
- Maximizing the margin
 - ▶ Intuitively, in classification large margin is good
 - ► Disciplined explanation

Hyperplane
$$H(w, b) = \{x : w^\top x + b = 0\}$$
 with $||w|| = 1$

Hyperplane $H(w, b) = \{x : w^\top x + b = 0\}$ with ||w|| = 1

Distance of x from H is $|w^Tx + b|$

Hyperplane
$$H(w, b) = \{x : w^{T}x + b = 0\}$$
 with $||w|| = 1$

Distance of x from H is $|w^Tx + b|$

•
$$p_x = x - (w^T x + b)w \in H$$
:

$$w^{\top} p_x + b = w^{\top} (x - (w^{\top} x + b) w) + b = w^{\top} x - ||w||^2 (w^{\top} x + b) + b = 0$$

Hyperplane
$$H(w, b) = \{x : w^{T}x + b = 0\}$$
 with $||w|| = 1$

Distance of x from H is $|w^Tx + b|$

$$w^{\top}p_{x}+b=w^{\top}(x-(w^{\top}x+b)w)+b=w^{\top}x-\|w\|^{2}(w^{\top}x+b)+b=0$$

• $x - p_x$ is parallel with $w \Rightarrow$ orthogonal to $H \Rightarrow p_x$ is the orthogonal projection

Hyperplane
$$H(w, b) = \{x : w^{T}x + b = 0\}$$
 with $||w|| = 1$

Distance of x from H is $|w^Tx + b|$

$$w^{\top}p_{x}+b=w^{\top}(x-(w^{\top}x+b)w)+b=w^{\top}x-\|w\|^{2}(w^{\top}x+b)+b=0$$

• $x - p_x$ is parallel with $w \Rightarrow$ orthogonal to $H \Rightarrow p_x$ is the orthogonal projection

Hyperplane
$$H(w, b) = \{x : w^{T}x + b = 0\}$$
 with $||w|| = 1$

Distance of x from H is $|w^Tx + b|$

$$w^{\top}p_{x}+b=w^{\top}(x-(w^{\top}x+b)w)+b=w^{\top}x-\|w\|^{2}(w^{\top}x+b)+b=0$$

• $x - p_x$ is parallel with $w \Rightarrow$ orthogonal to $H \Rightarrow p_x$ is the orthogonal projection

More formally: any $u \in H$ is $p_x + v$ where $w^\top v = 0$ $(v \perp w)$

$$||x-u||^2 = ||x-p_x+p_x-u||^2 = ||\underbrace{x-p_x}_x + v||^2 = ||x-p_x||^2 + ||v||^2 \ge ||x-p_x||^2$$

Points are separable: there exist w and b such that $y_i(w^\top x_i + b) > 0$

Points are separable: there exist w and b such that $y_i(w^\top x_i + b) > 0$

What is the minimum distance from separator for $\|w\| = 1$:

$$\min_i |w^\top x_i + b| = \min_i y_i (w^\top x_i + b)$$

Points are separable: there exist w and b such that $y_i(w^\top x_i + b) > 0$

What is the minimum distance from separator for ||w|| = 1: $\min_i |w^\top x_i + b| = \min_i y_i (w^\top x_i + b)$

Max-margin separator

$$(w_*,b_*) = \operatorname{argmax}_{w,b:||w||=1} \min_i |w^\top x_i + b| \text{ s.t. } y_i(w^\top x_i + b) > 0 \text{ for all } i$$

Equivalently derived from:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i \geq 0$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i \geq 0$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i \geq 0$

$$\nabla_{w} \mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$
$$\nabla_{b} \mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$
$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} [1 - y_{i} (w^{\top} x_{i} + b)] = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i > 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} [1 - y_{i} (w^{\top} x_{i} + b)] = 0 \qquad \Rightarrow \qquad \alpha_{i} = 0 \text{ or } y_{i} (w^{\top} x_{i} + b) = 1$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i [1 - y_i (w^{\top} x_i + b)]$$

minimize in primal variables w, b, maximize in dual variables $\alpha_i > 0$

$$\nabla_{w} \mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b} \mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} [1 - y_{i} (w^{\top} x_{i} + b)] = 0 \qquad \Rightarrow \qquad \alpha_{i} = 0 \text{ or } y_{i} (w^{\top} x_{i} + b) = 1$$

- Support vectors: x_i with $\alpha_i \neq 0$
- $y_i(w_*^\top x_i + b_*) = 1$ for support vectors
- w is a linear combination of the support vectors

Hard-SVM - Dual Formulation:

$$\max_{\alpha} \mathcal{L}(\alpha) \triangleq \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j x_i^{\top} x_j$$

subject to
$$\alpha_i \geq 0$$
, $\sum_{i=1}^n \alpha_i y_i = 0$.

- Quadratic program
- Once α_i s are solved:

$$w^* = \sum_{i:\alpha_i^*>0} \alpha_i^* y_i x_i$$

Hard-SVM - Dual Formulation:

$$\max_{\alpha} \mathcal{L}(\alpha) \triangleq \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j x_i^{\top} x_j$$

subject to $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

- Quadratic program
- Once α_i s are solved:
 - $\mathbf{w}^* = \sum_{i:\alpha_i^*>0} \alpha_i^* y_i x_i$
 - ▶ $b^* = 1 y_i(w^*)^\top x_i$ for any support vector x_i (equivalently: $b^* = -\frac{\max_{i:y_i = -1} (w^*)^\top x_i + \min_{i:y_i = +1} (w^*)^\top x_i}{2}$)

Prediction with Hard-SVM

Assume we fit our model to a training dataset, and wish to make a prediction for a new data sample x.

• Predict y = 1 if and only if $w^T x + b > 0$

We have

$$w^{T}x + b = \left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right)^{T} x + b$$
$$= \sum_{i=1:\alpha_{i}>0}^{n} \alpha_{i} y_{i} (x_{i}^{T} x) + b$$

We only need the inner products with the support vectors!

Let z be a feature vector for x

Use z instead of x:

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j z_i^{\top} z_j$$

with constraints $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

What do we need?

• Compute/optimize $\mathcal{L}(\alpha)$: need $z_i^{\top} z_j$

Let z be a feature vector for x

Use z instead of x:

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j z_i^{\top} z_j$$

with constraints $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

What do we need?

- Compute/optimize $\mathcal{L}(\alpha)$: need $z_i^\top z_j$
- Classifier: $g(x) = \operatorname{sign}(w^{\top}z + b) = \operatorname{sign}\left(\sum_{z_i \text{ is SV}} \alpha_i y_i z_i^{\top}z + b\right)$

Let z be a feature vector for x

Use z instead of x:

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j z_i^{\top} z_j$$

with constraints $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

What do we need?

- Compute/optimize $\mathcal{L}(\alpha)$: need $z_i^\top z_j$
- Classifier: $g(x) = \operatorname{sign}(w^{\top}z + b) = \operatorname{sign}\left(\sum_{z_i \text{ is SV}} \alpha_i y_i z_i^{\top}z + b\right)$
- $b = 1 y_i w^\top z_i$ (z_i support vector)

Let z be a feature vector for x

Use z instead of x:

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j z_i^{\top} z_j$$

with constraints $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

What do we need?

- Compute/optimize $\mathcal{L}(\alpha)$: need $z_i^\top z_j$
- Classifier: $g(x) = \operatorname{sign}(w^{\top}z + b) = \operatorname{sign}\left(\sum_{z_i \text{ is SV}} \alpha_i y_i z_i^{\top}z + b\right)$
- $b = 1 y_i w^\top z_i$ (z_i support vector)
- Only need to compute $z_i^{\top} z_j!$

The kernel: $\mathbf{z}^{\top}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$

• Example:
$$\mathbf{x} = (x_1, x_2)$$

 $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2)$
 $\mathbf{z}^{\top} \mathbf{z}' = K(\mathbf{x}, \mathbf{x}') = 1 + x_1 x_1' + x_2 x_2' + x_1^2 {x_1'}^2 + x_2^2 {x_2'}^2$

The kernel:
$$\mathbf{z}^{\top}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$$

• Example: $\mathbf{x} = (x_1, x_2)$ $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2)$ $\mathbf{z}^{\top} \mathbf{z}' = K(\mathbf{x}, \mathbf{x}') = 1 + x_1 x_1' + x_2 x_2' + x_1^2 {x_1'}^2 + x_2^2 {x_2'}^2$

• Example: $K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^2 = (1 + x_1 x_1' + x_2 x_2')^2$

The kernel:
$$\mathbf{z}^{\top}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$$

• Example: $\mathbf{x} = (x_1, x_2)$ $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2)$ $\mathbf{z}^{\top} \mathbf{z}' = K(\mathbf{x}, \mathbf{x}') = 1 + x_1 x_1' + x_2 x_2' + x_1^2 {x_1'}^2 + x_2^2 {x_2'}^2$

• Example: $K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^2 = (1 + x_1 x_1' + x_2 x_2')^2$

The kernel:
$$\mathbf{z}^{\top}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$$

• Example: $\mathbf{x} = (x_1, x_2)$ $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2)$ $\mathbf{z}^\top \mathbf{z}' = K(\mathbf{x}, \mathbf{x}') = 1 + x_1 x_1' + x_2 x_2' + x_1^2 {x_1'}^2 + x_2^2 {x_2'}^2$

• Example:
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^2 = (1 + x_1 x_1' + x_2 x_2')^2$$

= $1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_2 x_1' x_2'$

Generalized inner product

The kernel: $\mathbf{z}^{\top}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$

• Example:
$$\mathbf{x} = (x_1, x_2)$$

 $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2)$
 $\mathbf{z}^{\top} \mathbf{z}' = K(\mathbf{x}, \mathbf{x}') = 1 + x_1 x_1' + x_2 x_2' + x_1^2 {x_1'}^2 + x_2^2 {x_2'}^2$

• Example:
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^2 = (1 + x_1 x_1' + x_2 x_2')^2$$

= $1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_2 x_1' x_2'$
Inner product for

 $\mathbf{z} = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$

Generalized inner product

The kernel: $\mathbf{z}^{\top}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$

- Example: $\mathbf{x} = (x_1, x_2)$ $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2)$ $\mathbf{z}^{\top} \mathbf{z}' = K(\mathbf{x}, \mathbf{x}') = 1 + x_1 x_1' + x_2 x_2' + x_1^2 {x_1'}^2 + x_2^2 {x_2'}^2$
- Example: $K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^2 = (1 + x_1 x_1' + x_2 x_2')^2$ $= 1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_2 x_1' x_2'$ Inner product for $\mathbf{z} = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1 x_2)$

Computing **z** is not needed! – Kernel trick

Kernel trick

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j z_i^{\top} z_j$$

with constraints $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

Classifier:

$$g(x) = \operatorname{sign}(w^{\top}z + b) = \operatorname{sign}\left(\sum_{z_i \text{ is SV}} \alpha_i y_i z_i^{\top}z + b\right)$$

$$b = 1 - y_i w^\top z_i = 1 - y_i \sum_{z_i \text{ is SV}} \alpha_j y_j z_i^\top z_j$$

Kernel trick

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j)$$

with constraints $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

Classifier:

$$g(x) = \operatorname{sign}(w^{\top}z + b) = \operatorname{sign}\left(\sum_{z_i \text{ is SV}} \alpha_i y_i K(x_i, x) + b\right)$$
$$b = 1 - y_i w^{\top} z_i = 1 - y_i \sum_{z_i \in SV} \alpha_i y_i K(x_i, x_i)$$

z: is SV

Kernel trick

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j)$$

with constraints $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i y_i = 0$.

Classifier:

$$g(x) = \operatorname{sign}(w^{\top}z + b) = \operatorname{sign}\left(\sum_{z_i \text{ is SV}} \alpha_i y_i K(x_i, x) + b\right)$$

$$b = 1 - y_i w^{\top} z_i = 1 - y_i \sum_{z_i \text{ is SV}} \alpha_j y_j K(x_i, x_j)$$

Indeed, no need to transform the features as long as we can compute K!

Polynomial kernel

$$K(\mathbf{x}, \mathbf{x}') = (c + \mathbf{x}^{\top} \mathbf{x}')^q = \left(c + \sum_{j=1}^d x_i x_i'\right)^q$$

 d^q terms if expanded! \Rightarrow Computational benefits

Gaussian (Radial Basis Function - RBF) kernel

Assume the original instance space is R, and consider feature map

$$\Phi(x)_n = \frac{1}{\sqrt{n!}} \exp{-x^2/2x^n}$$

Then

$$\Phi(x)^{T}\Phi(x') = \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{n!}} e^{-x^{2}/2} x^{n}\right) \left(\frac{1}{\sqrt{n!}} e^{-(x')^{2}/2} (x')^{n}\right)$$
$$= e^{-\frac{x^{2} + (x')^{2}}{2}} \sum_{n=0}^{\infty} \frac{(x \cdot x')^{n}}{n!}$$
$$= e^{-\frac{\|x - x'\|^{2}}{2}}$$

• Requirement about the kernel K: it computes inner products in the Z space: $K(x,x')=z^{\top}z'$

- Requirement about the kernel K: it computes inner products in the Z space: $K(x,x')=z^{\top}z'$
 - ► Consequences: K is symmetric and positive semidefinite: for any x_1, \ldots, x_n ,

$$K_{x_{1},...,x_{n}} = \begin{bmatrix} K(x_{1},x_{1}) & K(x_{1},x_{2}) & \dots & K(x_{1},x_{n}) \\ K(x_{2},x_{1}) & K(x_{2},x_{2}) & \dots & K(x_{2},x_{n}) \\ \vdots & & \ddots & & \vdots \\ K(x_{n},x_{1}) & K(x_{n},x_{2}) & \dots & K(x_{n},x_{n}) \end{bmatrix}$$

is symmetric and positive semidefinite (Mercer condition).

- Requirement about the kernel K: it computes inner products in the Z space: $K(x, x') = z^{\top}z'$
 - ► Consequences: K is symmetric and positive semidefinite: for any x_1, \ldots, x_n ,

$$K_{x_{1},...,x_{n}} = \begin{bmatrix} K(x_{1},x_{1}) & K(x_{1},x_{2}) & \dots & K(x_{1},x_{n}) \\ K(x_{2},x_{1}) & K(x_{2},x_{2}) & \dots & K(x_{2},x_{n}) \\ \vdots & & \ddots & \ddots & \vdots \\ K(x_{n},x_{1}) & K(x_{n},x_{2}) & \dots & K(x_{n},x_{n}) \end{bmatrix}$$

is symmetric and positive semidefinite (Mercer condition).

▶ Indeed, if
$$Z^{\top} = (z_1, \dots, z_n)$$
 then $K_{x_1, \dots, x_n} = ZZ^{\top}$ and
$$u^{\top} K_{x_1, \dots, x_n} u = u^{\top} ZZ^{\top} u = (Z^{\top} u)^{\top} Z^{\top} u = \|Z^{\top} u\|^2 \ge 0$$

- Requirement about the kernel K: it computes inner products in the Z space: $K(x, x') = z^{\top}z'$
 - ► Consequences: K is symmetric and positive semidefinite: for any x_1, \ldots, x_n ,

$$K_{x_{1},...,x_{n}} = \begin{bmatrix} K(x_{1},x_{1}) & K(x_{1},x_{2}) & \dots & K(x_{1},x_{n}) \\ K(x_{2},x_{1}) & K(x_{2},x_{2}) & \dots & K(x_{2},x_{n}) \\ \vdots & & \ddots & \ddots & \vdots \\ K(x_{n},x_{1}) & K(x_{n},x_{2}) & \dots & K(x_{n},x_{n}) \end{bmatrix}$$

is symmetric and positive semidefinite (Mercer condition).

- ▶ Indeed, if $Z^{\top} = (z_1, \dots, z_n)$ then $K_{x_1, \dots, x_n} = ZZ^{\top}$ and $u^{\top} K_{x_1, \dots, x_n} u = u^{\top} ZZ^{\top} u = (Z^{\top} u)^{\top} Z^{\top} u = \|Z^{\top} u\|^2 \ge 0$
- This is sufficient! Z exists as long as the Mercer conditions are satisfied.

Two non-separable cases

• Cannot guarantee

$$y_i(w^\top x_i + b) \ge 1$$
 for all i

Cannot guarantee

$$y_i(w^\top x_i + b) \ge 1$$
 for all i

• Relax condition: $y_i(w^\top x_i + b) \ge 1 - \xi_i$ $\xi_i \ge 0$ is a "slack" variable

Cannot guarantee

$$y_i(w^\top x_i + b) \ge 1$$
 for all i

- Relax condition: $y_i(w^\top x_i + b) \ge 1 \xi_i$ $\xi_i \ge 0$ is a "slack" variable
- Total margin violation: $\sum_{i=1}^{n} \xi_i$

Cannot guarantee

$$y_i(w^\top x_i + b) \ge 1$$
 for all i

- Relax condition: $y_i(w^\top x_i + b) \ge 1 \xi_i$ $\xi_i \ge 0$ is a "slack" variable
- Total margin violation: $\sum_{i=1}^{n} \xi_i$

Soft-margin SVM

Non-separable case:

Cannot guarantee

$$y_i(w^\top x_i + b) \ge 1$$
 for all i

- Relax condition: $y_i(w^\top x_i + b) \ge 1 \xi_i$ $\xi_i \ge 0$ is a "slack" variable
- Total margin violation: $\sum_{i=1}^{n} \xi_i$

minimize
$$\frac{1}{2}\|w\|^2 + C\sum_{i=1}^n \xi_i$$
 subject to $y_i(w^\top x_i + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$ for all i

Parameter C provides a balance between minimizing $||w||^2$ (large margin) and ensuring that most samples have functional margin at least 1 (minimum number of misclassified samples)

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w} \mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w} \mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$
$$\nabla_{b} \mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\nabla_{\varepsilon} \mathcal{L} = C - \alpha_{i} - \beta_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\nabla_{\xi_{i}}\mathcal{L} = C - \alpha_{i} - \beta_{i} = 0 \qquad \Rightarrow \qquad \alpha_{i} + \beta_{i} = C$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\nabla_{\xi_{i}}\mathcal{L} = C - \alpha_{i} - \beta_{i} = 0 \qquad \Rightarrow \qquad \alpha_{i} + \beta_{i} = C$$

$$\alpha_{i} [1 - \xi_{i} - y_{i} (w^{\top} x_{i} + b)] = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\nabla_{\xi_{i}}\mathcal{L} = C - \alpha_{i} - \beta_{i} = 0 \qquad \Rightarrow \qquad \alpha_{i} + \beta_{i} = C$$

$$\alpha_{i} [1 - \xi_{i} - y_{i} (w^{\top} x_{i} + b)] = 0 \qquad \Rightarrow \qquad \alpha_{i} = 0 \text{ or } y_{i} (w^{\top} x_{i} + b) = 1 - \xi_{i}$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\nabla_{\xi_{i}}\mathcal{L} = C - \alpha_{i} - \beta_{i} = 0 \qquad \Rightarrow \qquad \alpha_{i} + \beta_{i} = C$$

$$\alpha_{i} [1 - \xi_{i} - y_{i} (w^{\top} x_{i} + b)] = 0 \qquad \Rightarrow \qquad \alpha_{i} = 0 \text{ or } y_{i} (w^{\top} x_{i} + b) = 1 - \xi_{i}$$

$$\beta_{i} \xi_{i} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i (w^\top x_i + b)] - \sum_{i=1}^n \beta_i \xi_i$$

minimize in primal variables w, b, ξ , maximize in dual variables $\alpha_i, \beta_i \geq 0$

$$\nabla_{w}\mathcal{L} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \qquad \Rightarrow \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}\mathcal{L} = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\nabla_{\xi_{i}}\mathcal{L} = C - \alpha_{i} - \beta_{i} = 0 \qquad \Rightarrow \qquad \alpha_{i} + \beta_{i} = C$$

$$\alpha_{i} [1 - \xi_{i} - y_{i} (w^{\top} x_{i} + b)] = 0 \qquad \Rightarrow \qquad \alpha_{i} = 0 \text{ or } y_{i} (w^{\top} x_{i} + b) = 1 - \xi_{i}$$

$$\beta_{i} \xi_{i} = 0 \qquad \Rightarrow \qquad \beta_{i} = 0 \text{ or } \xi_{i} = 0$$

Soft-margin SVM - dual

Minimize

$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j x_i^{\top} x_j$$

subject to
$$0 \le \alpha_i \le C$$
, $\sum_{i=1}^n \alpha_i y_i = 0$

$$b = y_i - \sum_{i=j}^n \alpha_j y_j x_j^\top x_i$$

when $0 < \alpha_i < C$.

• How to select kernels?

- How to select kernels?
 - ► Kernel learning:

- How to select kernels?
 - ► Kernel learning:

$$\star$$
 $K_j(x,x') = \phi_j^\top(x)\phi_j(x')$, and $K(x,x') = \sum_{j=1}^J \gamma_j K_j(x,x')$

- How to select kernels?
 - ► Kernel learning:
 - \star $K_j(x,x') = \phi_j^\top(x)\phi_j(x')$, and $K(x,x') = \sum_{i=1}^J \gamma_i K_j(x,x')$
 - * Equivalent to having feature vector $z^{\top} = (\phi_1^{\top}, \dots, \phi_J^{\top})$ and weight vector $w = (w_1, \dots, w_J)$

- How to select kernels?
 - Kernel learning:
 - \star $K_j(x,x') = \phi_j^\top(x)\phi_j(x')$, and $K(x,x') = \sum_{j=1}^J \gamma_j K_j(x,x')$
 - * Equivalent to having feature vector $z^{\top} = (\phi_1^{\top}, \dots, \phi_J^{\top})$ and weight vector $w = (w_1, \dots, w_J)$
 - * Penalize to limit the number of kernels used: instead of minimizing $\|w\|^2$, minimize $\left(\sum_{j=1}^J \|w_j\|^p\right)^{2/p}$ mixed L_1 - L_2 penalty for p=1.

- How to select kernels?
 - Kernel learning:
 - \star $K_j(x,x') = \phi_j^\top(x)\phi_j(x')$, and $K(x,x') = \sum_{j=1}^J \gamma_j K_j(x,x')$
 - * Equivalent to having feature vector $z^{\top} = (\phi_1^{\top}, \dots, \phi_J^{\top})$ and weight vector $w = (w_1, \dots, w_J)$
 - * Penalize to limit the number of kernels used: instead of minimizing $\|w\|^2$, minimize $\left(\sum_{j=1}^J \|w_j\|^p\right)^{2/p}$ mixed L_1 - L_2 penalty for p=1.
- Training time with QP typically $\Theta(n^3)$ —can be much faster with GD/SGD with an approximate solution

Gaussian-RBF kernels

Gaussian RBF (radial basis function) kernel:

$$K(x, x') = \exp\left(-\gamma \underbrace{\|x - x'\|^2}_{radial}\right)$$

Gaussian-RBF kernels

Gaussian RBF (radial basis function) kernel:

$$K(x, x') = \exp\left(-\gamma \underbrace{\|x - x'\|^2}_{radial}\right)$$

SVM predictor

$$g(x) = \operatorname{sign}\left(\sum_{x_i \text{ is SV}} \alpha_i y_i \frac{K(x_i, x) + b}{K(x_i, x) + b}\right) = \operatorname{sign}\left(\sum_{x_i \text{ is SV}} \alpha_i y_i e^{-\gamma \|x - x_i\|^2} + b\right)$$

$$\gamma = 10$$

$$\gamma = 100$$

$$\gamma = 0.1$$

$$\gamma = 0.01$$