

FIG.1A

b8 fo 1





FIG.1B



FIG.1C



FIG.2A



**FIG.2B** 

N ന

6 5 4

+ 68







FIG.4A



FIG.4B





b8 f 8



68 fr b



FIG.7A

1ST CODING NUCLEOTIDE OF DI-A EXON 1 OF βHCG6 1

5-CAGGGGACGCACCAAGGATGCAGATGTTCCAG-GGCCTGATGATGTTGTT

GATTCTTCTTAAATCTTTTGTGATGGAAAACTTTTCTTCGTACCACGGGACTA

AACCTGGTTATGTAGATTCCATTCAAAA-3'

FIG.7B

b8 & 11





E1 E2 E3 = NORMAL 
$$cis$$
-SPLICING (277bp)

### Irans- spliced products

= 1st EVENT, 196bp. Trans-SPLICING BETWEEN 5' ss OF TARGET & 3' ss OF PTM.

= 2nd EVENT, 161bp. Trans- SPLICING BETWEEN 3' ss OF TARGET & 5' ss OF PTM.

FIG.8B



FIG.9





FIG. 10B

b8 fo 91



FIG.11A

68 Je 21





FIG.11B



FIG.11C



FIG.12A

1. NUCLEOTIDE SEQUENCES OF THE cis-SPLICED PRODUCT (285 bp):

BioLac-TR1

GCCTTTCGCTACCTGGAGAGGCGCCCCCTGATCCTTTGCCAATACCCCCACGCGATGGGTAACAGTCTTG

GCGGTTTCCCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCCGTTTACAG/GGCGGCCTTCGTCTAATAATG Splice junction

GGACTGGGTGGATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCCGTGATT1

TGGOCATACCCCCAAACCAGTTCTGTATGAACCGTCTGGTCTTTGCCCACCCCCACCCCCATCCAG Lac-TR2

2. NUCLEOTIDE SEQUENCES OF THE trans-SPLICED PRODUCT (195 bp)

BioLac-TR1

GCCTTTCGCTACCTGCAGAGACGCCCCCCTGATCCTTTGCGAATACCCCCACGCGATGCGTAACAGTCTTGG

CGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAG/GGCCTGCTGCTGTTGCTGCTGCT Splice junction

HCGR2
GAGCATGGGCGACATGGGCATCCAAGGAGCCACTTCGGCCACGGTGCCG

FIG. 12B

68 Jo 12

CFTR Pre-theropeutic molecule (PTM or "bullet")





**FIG.13** 



FIG.14



68 Jo 47

| 111<br>Dra I<br>17AGTT 400<br>ATTCAA<br>399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRESENT IN PTM 3' UT BUT NOT TARGET CCTTCCTTGACC 480 GGAAGGAACTGG        | FIG 15B                                                                                                                                                                                                                                                                                                                                                                             |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Sau3A 1  Sau3A 1  Dpn 1  BamH 1  Kpn 1  Little CACTGCACTAGTGCATCCCAGCTTCAATT  GTGACCTAGTCACTAGGCTCCAGCTTCAATT  CF28 11  CF28 11  373  390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 378 PRESENT<br>378 BUT N<br>378 BUT N<br>4GCCATCTGTTGCCCCTCCCCTGCCTTCCTT | Restriction Endonucleases site usage         EcoR I       1       Nde I       -       Sau96         EcoR V       1       Nhe I       1       Sca I         Hae II       -       Not I       1       Sma I         Hae III       2       Pf IM I       -       Sph I         HinD III       1       Pvu I       -       Sp I         HinD III       1       Pvu I       -       Sp I | ı<br><u>-</u> |
| Sau3a   Sau3a   Sau3a   HinD   III   Pst   Dpn   HinD   III   Dra   HinD   III   HinD | Sau3A I  Dpn I  TAAACCGCTCACTCTCACTTCTACTTCCCACCTCTTTTTTTT               | CTCCCAC 500  GAGGGG  Acc I Apa I Apal I Avr II BamH I Ban II                                                                                                                                                                                                                                                                                                                        | i<br>-        |

68 A ST



**FIG.16** 

Double Splicing PTM

CFTR BD intron 9 Spacer+BP+PPT+3'SS CFTR exan 10 Spacer+BP+PPT+5'SS CFTR BD intron



18 Jo. L7





b8 \$ 8Z

### Double Trans-splicing PTMs



Figure 19

## Double Trans-splicing β-Gal Model



Repaired LacZ mRNA

Figure 20

b8 \$ 08

# Important Structural Elements of DSPTM-7: (Double splicing PTM with all the necessary

splice elements i.e. has both 3' and 5' functional splice sites and the binding domains)



(1) 3' BD (120 BP): GATTCACTTGCTCCAATTATCATCCTAAGCAGAAGTGTATATTTGTTAAAGATTCTATTAACTCATTTGATTC AAAATATTTAAAATACTTCCTGTTTCATACTCTGCTATGCAC

(2) Spacer sequences (24 bp): AACATTATTATAACGTTGCTCGAA

۶

000 000 acZ mini **EcoRV** PPT Kpn I В

3, ss

(3) Branch point, pyrimidine tract and acceptor splice site: TACTAAC T GGTACC TCTTCTTTTTTTT GATATC CTGCAG

(4) 5' donor site and 2<sup>nd</sup> spacer sequence:| ick and 3 ick and 2 ide sequence:| ick and 3 ide and 2 ide 5, 88 LacZ mini

### CTAAGATCCACCGG

(5) 5' BD (260 BP): TCAAAAAGTTTTCACATAATTTCTTACCTCTTTGAATTCATGCTTTGATGACGCTTCTGTATCTATATTCATCATTGGAA AAAAACCCTCTGAA7TCTCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATCATTATTAACTCA 
 ACACCAATGATTTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACACAATGAAATTCTTCCACTGTGCTTAA
 TTATCAAATCACGC

Figure 21

~



b8 fo z E

## Double Trans-splicing Produces Full-length Protein



Figure 24

P8 % 48

# Restoration of $\beta$ -Gal Function by Double Trans-splicing





b8 \$ 9 €

# Double Trans-splicing: Titration of Target & PTM



Figure 27

68 fo LE





Figure 28

DSHCGT1 (Non-specific Target):

## Specificity of double trans-splicing Reaction



Figure 29



Figure 30

68 fo 0 to

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini-gene target.



<u>c*tte*ggegteagttacgacag</u>ta<u>cc</u>gcta<u>tcgctcg</u>gt<u>taag</u>gc<u>c</u>tg<u>ttg</u>gag A<u>CGAGCT</u>TGCTCATGATGATGGG<u>CGAGTTAGAACCAAGTGAA</u>GG<u>C</u>AA<u>G</u>ATCAAACA GCCGCAT<u>CAGC</u>TTTTG<u>CAGC</u>CAATT<u>CAGTT</u>GGATCATGCC<u>CGGT</u>ACCAT<u>C</u>AAGGAGAA\_AT

MCU in exon 10 of PTM

88 of 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined).

Figure 31

b8 fo 14



b8 \$ 84





Figure 33

b8 \$ Et



for tot

18

PTM with a long binding domain masking two splice sites and the whole of exon 10 in a mini-gene target.

(82 mismatches with PTM)

189 nt

44 nt

ons 1-10) MCU

Figure 34



68

54

88 of 192 (46%) bases in PTM exon 10 are not complementary to MCU in exon 10 of PTM its binding domain.

A<u>CGAGCI</u>TGCTCATGATGATGGGCGAGITAGAACCAAGIGAAGGCAAGATCAAACAITCCG <u>CTICGGCGTCAGTIACGACGAGTACCGCTAICGCICGTG</u>AT<u>I</u>AAGGCCTGICAGIIGGAGGAG G<u>CCGCATCAGC</u>TT<u>T</u>TG<u>CAGC</u>CA<u>A</u>TT<u>CAGTT</u>GGAT<u>C</u>ATGCC<u>CGGT</u>ACCAT<u>C</u>AA<u>G</u>GA<u>G</u>AA<u>A</u>AT

Figure 35

Target

P.I.M

(**b**0)

Trans-

8



Jo 94 68



Figure 37 A

4

b8 & L#

#### Figure 37B







Figure 37C

C

68 J 6 H



Figure 38 A

|                |                     | Total RNA | # PCR cycles | (299 bp)             |               |
|----------------|---------------------|-----------|--------------|----------------------|---------------|
| Trans-splicing | lacZCF9             | 50 ng     | 30           |                      | 12 M 13 14 15 |
|                |                     |           | 20 25 30     |                      | 14            |
|                |                     |           | 2            |                      | 13            |
|                | JacZCF9m + PTM-CF24 | -         | -            |                      | Σ             |
|                |                     | 100 ng    | ೫            |                      | 12            |
|                |                     |           | 20 25 30     |                      | 10 11         |
|                |                     |           | 2            |                      | )[            |
|                |                     | 50 ng     | 8.           |                      | 6             |
|                |                     |           | 20 25 30     |                      | <b>∞</b>      |
|                |                     |           | 2            |                      | 1 7           |
| Cis-splicing   |                     | Si) lig   | •            |                      | E N           |
|                |                     |           | ř            |                      |               |
|                |                     |           | 20 25 30     |                      | 4             |
|                |                     |           |              |                      | 3             |
|                |                     | ag        | 30           |                      | 2             |
|                |                     | 25 ag     | 25           | •                    | ·.            |
|                |                     |           | 70           | •                    |               |
|                |                     |           |              |                      | Į             |
|                |                     |           |              | Cis-spliced (303 bp) |               |

b8 400



Figure 38B

 $\mathbf{m}$ 

b8 \$ 15



b8 f 79





A Figure 40A



B-gal activity (unitalmg protein)

68 fo 75 /



Figure 400

bo fo 99



Repaired lacZ mRNA

Figure 41A

b8 fo 95

4



Figure 410



Figure 41C

68 J 89

#### 59 of 89

Exons 1-10  ${\tt ATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAG}$ GGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGG AGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCA TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTAT TGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGT TTGATTTATAGAAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTT CCAACAACCTGAACAAATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCT CATGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAG GCTGGGCTAGGGAGAATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAG AACAGAACTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAATAGCTCAGCCTTCTTCTTCTCAGGGTTCTTT GTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGGAAAATATTCACCACCATCTCATTCT GCATTGTTCTGCGCATGGCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAA CAAAATACAGGATTTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGGAG AATGTAACAGCCTTCTGGGAGGAGGGATTTGGGGAATTATTTGAGAAAGCAAAACAAAACAATAACAATAGAAAAACTT CTAATGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGTCCTGAAAGATATTAATTTCAAGAT AGAAAGAGGACAGTTGTTGGCGGTTGCTGGATCCACTGGAGCAGGCAAGA<u>CGAGCT</u>T<u>GC</u>T<u>C</u>ATGATGAT<u>C</u>ATGGG<u>C</u>CGA<u>G</u> TTAGAACCAAGTGAAGGCAAGATCAAACATTCCGGCCGCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCCGGTA CCATCAAGGAGAACATAATCTTCGGCGTCAGTTACGACGAGTACCGCTATCGCTCGGTGATTAAGGCCTGTCAGTTGGA

GGAG Trans-splicing domain

GTAAGATATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACGCTAAGATCCACCGG

TCAAAAAGTTTTCACATAATTTCTTACCTCTTCTTGAATTCATGCTTTGATGACGCTTCTGTATCTATATTCATCATTG
GAAACACCAATGATATTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACAATGAAATTCTTCCACTGT
GCTTAATTTTACCCTCTGAATTCTCCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAAACCCATCATT
ATTAACTCATTATCAAATCACGCT

Figure 42

### 153 bp PTM24 Binding Domain:

GCTAGC - ENTRE GACGAAGCCGCCCTCACGCTCAGGATTCACTTGCCTCCAATTATCATCTTAAGCAGAAGTGTATA 153 bp BD underlined Nhe I

<u>TTCTTATTTGTAAAGATTCTATTAACTCATTTGATTCAAAATATTTAAAATACTTCCTGTTTCACCTACTCTGCTATGC</u>

Sac II <u>AC</u>-**CCGCGG**  Figure 43A

b8 fo 09

61 of 89

Trans-splicing domain

Exons 10-24

ACTTCACTTCTAATGATGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTTCATTCT GTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATA CAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGGACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAA GGTGGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTAGCAAGAGCAGTATACAAAGATGCTGATTTGTATT TATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAGCTGTGTCTGTAAACTGATGGC AGCAGCTATTTTTATGGGACATTTTCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCAAAACTCATGGGATGTGATT CTTTCGACCAATTTAGTGCAGAAAGAAGAATTCAATCCTAACTGAGACCTTACACCGTTTCTCATTAGAAGGAGATGC TCCTGTCTCCTGGACAGAACAAAAAAACAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAAGGAAGAATTCTATT  $\verb|CTGATGAGCCTTTAGAGAGAGGCTGTCCTTAGTACCAGATTCTGAGCAGGGAGAGGCGATACTGCCTCGCATCAGCGT| \\$ GATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT CAGAACATTCACCGAAAGACAA<u>CAGCATC</u>CACACGAAAAGTGTCACTGGCCCCTCAGGCAAACTTGACTGAACTGGATA TATATTCAAGAAGGTTATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATTAACGAAGAAGACTTAAAGGAGTGCTT TTTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTTCGATATATTACTGTCCACAAGAGCTTA ATTTTTGTGCTAATTTGGTGCTTAGTAATTTTTCTGGCAGAGGTGGCTGCTTCTTTGGTTGTTGTGCTCCTTGGAA ACACTCCTCTTCAAGACAAAGGGAATAGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACCAGCACCAGTTC CATACTCTAATCACAGTGTCGAAAATTTTACACCACAAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTCA A CACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAAGATATAGCAATTTTGGATGACCTTCTGCCTCTTACCATATTTGACTTCATCCAGTTGTTATTAATTGTGATTGGAGCTATAGCAGTTGTCGCAGTTTTACAACCCTACATCTTTGTT GCAACAGTGCCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAACTCAAACAACTGG AATCTGAAGGCAGGAGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTATGGACACTTCGTGCCTTCGGACG GCAGCCTTACTTTGAAACTCTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTCTTGTACCTGTCAACACTG CGCTGGTTCCAAATGAGAATAGAAATGATTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCCATTTTAACAACAG GAGAAGGAGAAGGAAGAGTTGGTATTATCCTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCTGTAAACTC CAGCATAGATGTGGATAGCTTGATGCGATCTGTGAGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAACCT ACATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACAGCAAAATACACAGAAGGTGGAAATGCCATATTAGA GAACATTTCCTTCTCAATAAGTCCTGGCCAGAGGGTGGGCCTCTTGGGAAGAACTGGATCAGGGAAGAAGTACTTTGTTA  ${\tt TGAACAGTGGAGTGATCAAGAAATATGGAAAGTTGCAGATGAGGTTGGGCTCAGATCTGTGATAGAACAGTTTCCTGGG$ AAGCTTGACTTTGTCCTTGTGGATGGGGGCTGTGTCCTAAGCCATGGCCACAAGCAGTTGATGTGCTTGGCTAGATCTG TTCTCAGTAAGGCGAAGATCTTGCTGCTTGATGAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATTAGAAG AACTCTAAAACAAGCATTTGCTGATTGCACAGTAATTCTCTGTGAACACAGGATAGAAGCAAT**GCTGGAA**TGCCAACAA Histidine tag Stop

TGCTCTGAAAGAGAGACAGAAGAAGAGGGTGCAAGATACAAGGCTTCATCATCATCATCATCATTAG

Figure 43B



Figure 44 A

L Z



(,

Figure 44B

rocaeo" achthrol Figure 44 C

CTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCCTATAAAAAGCGAAGCGCGGCGGGGG CTTTAAAAAGAAACTTATGAGAAAATTTCCGCGGAACATTATTATAACGTTGCTCGAATACTAACTGGTAC TATTAAAATCCTAAGCTTTTATATCTCTCTATCCCTCTATCTTTTGCTCTCTATCCAATTTTATTAACTTAGA BGAGTCG TIGCGACGCTGCCTTCGCCCCGTGCRAACCTCCGCCTCGAGCTTACCTGAACTATTTTAGAA

Chicken \( \beta\)-actin

Promoter

Nucleotide changes are shown in blue Boxed = CAT box, TATA box

Boxed + Arrow = Transcription Start

Oval = Downstream elements

Bold = Binding domain

Italicized = Spacer+PPT+BP+AG dinucleotide

F13 + F2 = 235 + 106 = 341 bp F13 + F4 = 235 + 315 = 550 bpExon 1 Intron 1(partial) 117 4 277 CBA promote Extent of promoter in original construct Extent of promoter in above construct 525 CMV enhancer

Chicken Beta Actin Promoter (including exon 1 and part of intron 1)

bs \$ 49

CTCTTCTTTTTTTTTGAIATCTTGCAG



Figure 44D

b8 J 99

Figure 45



Method:

Excise TSD and part of exon 16 with

XhoI and PflMI and ligate in a PCR product that:

- 1) eliminates the TSD and splice acceptor site
  - 2) inserts EcoRV adjacent to exon 16
    - 3) restores the coding for exon 16

b8 fr 99

METHODS



Figure 46

26 and a C-terminal FLAG tag. BGH = bovine growth hormone 3' UTR; Binding domain = Detailed structure of a mouse factor VIII PTM containing normal sequences for exons 16-125 bp.



#### REFERENCE FOR DESIGN OF FLAG TAG

Adenoviral vector-mediated expression of physiologic levels of human factor VIII in nonhuman primates. Hum Gene Ther 1999 Dec 10;10(18):2999-3011 Brann T, Kayda D, Lyons RM, Shirley P, Roy S, Kaleko M, Smith T.

Genetic Therapy, Inc., a Novartis Company, Gaithersburg, MD 20878, USA. Epitope-tagged B domain-deleted human factor VIII cDNA (flagged FVIII) was evaluated in nonhuman primates.

Figure 47A



69

FLAG = C-terminal tag to be used to detect repaired factor VIII protein.

Figure 47B

## Transcription Map of HPV-16



### Tairgeiting E6 Exoin



儿

68

SMaRT Strategy by 3' Exon Replacement: schematic diagram of HPV-PTM2 binding to the 3' splice site of the HPV type 16 target pre-mRNA

下 「GURE 十9

INTRONN



### TM Design



68 J EL

HPV-PTM1 with 80 bp binding domain targeted to 3'ss at 409:



Binding domain sequence: CAGTTAATAC ACCTAATTAA CAAATCACAC AACGCTTTGT TGTATTGCTG TTCTAATGTT GTTCCATACA CACTATAACA

*}!* 

HPV-PTM2 with 149 bp binding domain targeted to 3' ss at 409:



Binding domain sequence: CAGTTAATAC ACCTAATTAA CAAATCACAC AACGCTTTGT TGTATTGCTG TACTCACTAA TCGATTCCC TITIAGAATA AAACTITAAA CATTTATCAC ATACAGCATA TICTAATGIT GITCCATACA CACTATAACA ATAATGICTA

FIGURE 52

2

## **Einding Domains of HPV-PTM3 and 4**

## HPV-PTM3 Binding domain (covers both 3' ss at 409 and 526; has 53 bp bubble)

AGTTAATACACCTAATTAACAAATCACACAACGGTTTGTTGTATTGCAGTTCTAATGTTGTTCCATACACACTA GATGATCTGCAACAAGACATACATCGACCGGTCCA (53 nt bubble) CTTCAGGACACAGTGGCTTTTGAC TAACAAT



## HPV-PTM4 Binding domain (covers both 3' ss at 409 and 526; has 76 bp bubble)

GATGATCTGCAACAAGAC (76 nt bubble) GACACAGTGGCTTTTGACAGTTAATACCACCTAATTAACAAATC ACACAACGGTTTGTTGTATTGCAGTTCTAATGTTGTTCCATACACTATAACAAT



TIGORE 53

### HPV-PTM5 and 6

HPV-PTM5, Binding domain (140 nt, has 53 nt bubble, covers 3'ss at position 409 and 526)

gatgatctgcaacaagacatacatcgacCGGTcca.cttcaggacacacagtggcttttgacagttaatacacctaattaacaaatcacacaagCGGT

TTGTTGTATTGCAGTTCTAATGTTGTTCCATACACACTATAACA

C**C**GT





HPV-PTM6, Binding domain (117 nt, has 76 nt bubble, covers 3'ss at position 404 and 526)

GATGATCTGCAACAAGAC.GACACAGTGGCTTTTGACAGTTAATACACCTAATTAACAAATCACACAAAGGGJTTGTTGTATTGCAGTTCT

AATGTTGTTCCATACACACTATAACA



Note: Nucleotides in bold are modified to prevent PTMs cryptic splicing

INTRON

LD # 01.



# Trans-splicing Efficiency of HPV-PTMs in 293T Cells





RT-PCR Analysis of total RNA

-FIGURE 56-

INTRON

68 H 81

Trans-splicing between target pre-mRNA and PTM is accurate (293T cells)

Trans-spliced Chimeric mRNA *lacZ* 3' exon E6 of HPV-16R

# Trans-splicing in 293 Cells (Co-transfections)



| PTM             | Binding Domain<br>Region Size (nt | Domain<br>Size (nt) | % trans<br>226 sd | % trans-spliced<br>226 sd 880 sd |  |
|-----------------|-----------------------------------|---------------------|-------------------|----------------------------------|--|
| HPV-PTM1        | ⋖                                 | 80                  | 69                | 9.0                              |  |
| HPV-PTM2        | ⋖                                 | 149                 | 45                | 6.0                              |  |
| HPV-PTM5        | A+B                               | 140                 | 55                | 0.8                              |  |
| HPV-PTM5∆BP/PPT | A+B                               | 140                 | 0.5               | 0.2                              |  |
| HPV-PTM6        | A+B                               | 117                 | 59                | <del></del>                      |  |
| HPV-PTM8        | O                                 | 104                 | 7                 | 37                               |  |
| HPV-PTM9        | O                                 | 174                 | 41                | 22                               |  |
| CF-PTM27        | CF intron                         | 411                 | 0                 | 0                                |  |

Quantification of trans-splicing efficiency using real-time QRT-PCR

FIGURE 58

## Trans-splicing into Endogenous HPV Pre-mRNA Target in SiHa & CaSki Cells



Trans-spliced Chimeric-mRNA

RT-PCR Analysis of total RNA

lacZ 3' exon

ofMD15

<u>Б</u>

#### RT-PCR Conditions

- Total RNA: 400 ng/rxn
- Primer's: oJMD15 + Lac16R
- # Cycles: 35
- Expected product :

#### Details

- •PTM1, PTM2 : HPV targeted, specific
- PTM14: CF targeted, non-specific, has 23 bp BD
- PTM14 : CF targeted, non-specific, has 411 bp

INTRONN

Accurate Trans-splicing of HPV-PTM1 in Si Ha Cells Trans-spliced Chimeric mRNA (Endogenous target pre-mRNA) E6 of HPV-16R onwedis E6 he

# Tens-splicing in SiHa Transfections

(Endogenous target)

PTM %

% trans-spliced

pcDNA3.1

**O** 

HPV-PTM1

0.16

0.12

o.

HPV-PTM5

E S

0.11

**HPV-PTM6** 

CF-PTM27

Quantification of trans-splicing efficiency using real-time QRT-PCR

## Trans-splicing Efficiency of HPV-PTM1, 5, & 6 in SiHa Cells



SiHa cells transfected with

1.5 μg plasmid DNA, LipoPlus

Total RNA: 500 ng/Rxn

· Primers: oJMD15 + Lac16R

Expected product: 418 bp

Deletion of polypyrimidine tract abolishes trans-splicing



#### Methods:

- SiHa cells transfected with 1.5 μg of plasmid DNA
- Total RNA isolated after 48 hr and analyzed by RT-PCR (30 cycles)

Expected product: 269 bp Primers: oJMD15+Lac6R

with HPV-? PPT (mutant); No trans-splicing Lanes 1 & 2: RNA from cells transfected detected

Lanes 3 & 4: RNA from cells transfected with HPV-PTM5 plasmid; trans-splicing Detected (269 bp product)

# SMaRT Strategy by 5' Exon Replacement



Schematic diagram of a PTM binding to the 5' splice site of the HPV mini-gene target

hr fo 98

## Double Trans-splicing



Schematic diagram of a double trans-splicing PTM binding to the 3' and 5' splice sites of the HPV minigene target

FIGURE

SMaRT Strategy by 3' Exon Replacement: Schematic diagram of a PTM binding to the 3' splice site of the HPV mini-gene target



SMaRT Strategy by 5' Exon Replacement: Schematic diagram of a PTM binding to the 5' splice site of the HPV mini-gene target





FIGURE 67

b8 & b8