IngéDoc 2014

Journée des jeunes chercheurs de l'UTBM

Maxime Grolleau², Stéphane Galland¹², Olivier Lamotte¹²

¹IRTES-SET – Simulation multiagent

²Département Informatique

<u>stephane.galland@utbm.fr</u>

http://www.multiagent.fr

Outils de géométrie algorithmique pour la simulation multiagent dans un univers virtuel

Mots clés : Système multiagent, Environnement virtuel, Géométrie algorithmique

Contexte et Problématiques

CONTEXTE

Simulation multiagent d'individus dans un univers virtuel 3D.

PROBLÉMATIQUE LIÉE AU GÉNIE LOGICIEL

- Ensemble d'objets mathématiques et géométriques pour la modélisation de l'univers 3D.
- Vérification et validation systématique des résultats numériques produits par les algorithmes.

Problématiques liées à l'Algorithmique Géométrique

- Minimisation de l'approximation introduite par les modèles géométriques et leurs implantation.
- Minimisation des temps de calcul pour permettre l'usage dans des applications de « jeu sérieux ».

Modélisation orientée-objet des objets géométriques

STRUCTURES ET OBJETS GÉOMÉTRIQUES

- Structures spatiales: arbres, graphes...
- Objets géométriques : ligne, courbe, triangle, boîte...
- Espaces euclidiens discrets et continus.
- Opérations géométriques :
 - Construction d'objets par fusion.
 - Tests d'intersection et de classification géométrique.
 - Transformations affines.

VÉRIFICATION ET VALIDATION

- Tests unitaires des opérations (90% de couverture)
- Génération semi-automatiques de cas de tests.

Librement téléchargeable : http://www.arakhne.org/afc

Exemple: détermination de la projetée d'un point sur une ellipse

PROBLÈME

- Comment déterminer le plus rapidement possible la projetée P d'un point M sur une ellipse ?
- Peut-on transformer l'équation obtenue en un système d'équations de second degrés ?
- Ordre du groupe de Galois associé à P est $24 \Rightarrow$ Système non constructible.

SOLUTION EXACTE MAIS « LENTE »

- Résolution du système par les méthodes de Ferrari ou Lagrange.
- Produit un résultat exact.
- Nombre d'opérations trop important pour un usage en simulation.

SOLUTION APPROXIMÉE ET « RAPIDE »

- Résolution numérique par la méthode de Newton.
- Produit un résultat approximé
- Précision pertinente (\approx 10⁻⁶) pour la simulation dans un univers à l'échelle 1.
- Performant: 4 itérations sont suffisantes.

