# P1 Chapter 4: Transforming Graphs

Translation of Graphs

Suppose 
$$f(x) = x^2$$



Sketch y = f(x):

Then 
$$f(x + 2) =$$
 ?

Sketch 
$$y = f(x + 2)$$

What do you notice about the relationship between the graphs of y = f(x) and y = f(x + 2)?



.

Suppose 
$$f(x) = x^2$$



Sketch y = f(x):



Then f(x + 2) =

Sketch y = f(x + 2)

We know  $y = (x + 2)^2$ has a root of -2 where





What do you notice about the relationship between the graphs of y = f(x) and y = f(x + 2)?



The graph has been translated by  $\binom{-2}{0}$ , i.e. we have subtracted 2 from each x value.

This is all you need to remember when considering how transforming your function transforms your graph...

|                             | Affects which axis? | What we expect or opposite? |
|-----------------------------|---------------------|-----------------------------|
| Change <b>inside</b> $f()$  | ?                   | ?                           |
| Change <b>outside</b> $f()$ | ?                   | ?                           |

Therefore...

$$y = f(x - 3) \longrightarrow ?$$

$$y = f(x) + 4 \longrightarrow ?$$

$$y = f(5x) \longrightarrow ?$$

$$y = 2f(x) \longrightarrow ?$$

This is all you need to remember when considering how transforming your function transforms your graph...

|                             | Affects which axis? | What we expect or opposite? |
|-----------------------------|---------------------|-----------------------------|
| Change <b>inside</b> $f()$  | x                   | Opposite                    |
| Change <b>outside</b> $f()$ | y                   | What we expect              |

Therefore...

$$y = f(x - 3)$$
 Translation by  $\binom{3}{0}$   
 $y = f(x) + 4$  Translation by  $\binom{0}{4}$   
 $y = f(5x)$  Stretch in  $x$ -direction by scale factor  $\frac{1}{5}$   
 $y = 2f(x)$  Stretch in  $y$ -direction by scale factor 2

# Sketching transformed graphs

Sketch  $y = x^2 + 3$ 

Sketch  $y = \frac{2}{x+1}$ 



# Sketching transformed graphs

Sketch 
$$y = x^2 + 3$$

If  $y=x^2$ , the +3 is 'outside' the squared function, so translation of  $\binom{0}{3}$ . Imagine a sketch of  $y=x^2$  and then do the translation, ensuring you adjust any intercepts with the axes.



Sketch 
$$y = \frac{2}{x+1}$$

This looks like a reciprocal function  $y = \frac{2}{x}$ . The change of +1 is *inside* the reciprocal function, so we have a translation to the left by 1.



Draw asymptotes using a dotted line and write its equation on it.

# Example

```
Sketch y = x(x + 2). On the same axes, sketch y = (x - a)(x - a + 2), where a > 2.
```

# Example

Sketch y = x(x + 2). On the same axes, sketch y = (x - a)(x - a + 2), where a > 2.

The <u>input</u> x has been replaced with x-a, i.e. a change inside the function. We translate right by a. The significance of a>2 is that the original root of -2 will now be positive.



# Exercise 4.5

Pearson Pure Mathematics Year 1/AS Page 30

#### Homework Exercise

1 Apply the following transformations to the curves with equations y = f(x) where:

$$i f(x) = x^2$$

ii 
$$f(x) = x^3$$

**i** 
$$f(x) = x^2$$
 **ii**  $f(x) = x^3$  **iii**  $f(x) = \frac{1}{x}$ 

In each case state the coordinates of points where the curves cross the axes and in iii state the equations of the asymptotes.

$$\mathbf{a} \ \mathbf{f}(x+2)$$

**a** 
$$f(x+2)$$
 **b**  $f(x)+2$  **c**  $f(x-1)$ 

c 
$$f(x-1)$$

**d** 
$$f(x) - 1$$

$$e f(x) - 3$$

**d** 
$$f(x) - 1$$
 **e**  $f(x) - 3$  **f**  $f(x - 3)$ 

- 2 a Sketch the curve y = f(x) where f(x) = (x 1)(x + 2).
  - **b** On separate diagrams sketch the graphs of  $\mathbf{i} y = f(x+2)$   $\mathbf{ii} y = f(x) + 2$ .
  - c Find the equations of the curves y = f(x + 2) and y = f(x) + 2, in terms of x, and use these equations to find the coordinates of the points where your graphs in part b cross the y-axis.
- 3 a Sketch the graph of y = f(x) where  $f(x) = x^2(1 x)$ .
  - **b** Sketch the curve with equation y = f(x + 1).
  - c By finding the equation f(x + 1) in terms of x, find the coordinates of the point in part b where the curve crosses the y-axis.
- **4** a Sketch the graph of y = f(x) where  $f(x) = x(x-2)^2$ .
  - **b** Sketch the curves with equations y = f(x) + 2 and y = f(x + 2).
  - c Find the coordinates of the points where the graph of y = f(x + 2) crosses the axes.

#### Homework Exercise

- 5 a Sketch the graph of y = f(x) where f(x) = x(x 4).
  - **b** Sketch the curves with equations y = f(x + 2) and y = f(x) + 4.
  - **c** Find the equations of the curves in part **b** in terms of x and hence find the coordinates of the points where the curves cross the axes.
- **6** a Sketch the graph of y = f(x) where  $f(x) = x^2(x-1)(x-2)$ .
  - **b** Sketch the curves with equations y = f(x + 2) and y = f(x) 1.
- 7 The point P(4, -1) lies on the curve with equation y = f(x).
  - a State the coordinates that point P is transformed to on the curve with equation y = f(x-2). (1 mark)
  - **b** State the coordinates that point *P* is transformed to on the curve with equation y = f(x) + 3. (1 mark)
- 8 The graph of y = f(x) where  $f(x) = \frac{1}{x}$  is translated so that the asymptotes are at x = 4 and y = 0. Write down the equation for the transformed function in the form  $y = \frac{1}{x+a}$  (3 marks)
- 9 a Sketch the graph of  $y = x^3 5x^2 + 6x$ , marking clearly the points of intersection with the axes.
  - **b** Hence sketch  $y = (x-2)^3 5(x-2)^2 + 6(x-2)$ .

#### Homework Exercise

- 10 a Sketch the graph of  $y = x^2(x-3)(x+2)$ , marking clearly the points of intersection with the axes.
  - **b** Hence sketch  $y = (x + 2)^2(x 1)(x + 4)$ .
- **11 a** Sketch the graph of  $y = x^3 + 4x^2 + 4x$ . (6 marks)
  - **b** The point with coordinates (-1, 0) lies on the curve with equation  $y = (x + a)^3 + 4(x + a)^2 + 4(x + a)$  where a is a constant. Find the two possible values of a. (3 marks)

#### **Problem-solving**

Look at your sketch and picture the curve sliding to the left or right.

**12 a** Sketch the graph of  $y = x(x + 1)(x + 3)^2$ .

(4 marks)

**b** Find the possible values of b such that the point (2, 0) lies on the curve with equation  $y = (x + b)(x + b + 1)(x + b + 3)^2$ . (3 marks)

#### Challenge

- **1** Sketch the graph of  $y = (x-3)^3 + 2$  and determine the coordinates of the point of inflection.  $\rightarrow$  Section 12.9
- **2** The point Q(-5, -7) lies on the curve with equation y = f(x).
  - a State the coordinates that point Q is transformed to on the curve with equation y = f(x + 2) 5.
  - **b** The coordinates of the point Q on a transformed curve are (-3, -6). Write down the transformation in the form y = f(x + a) b.

# Homework Answers











$$(2\frac{1}{2},0), y=2, x=0$$

























## **Homework Answers**

2 a







c 
$$f(x + 2) = (x + 1)(x + 4); (0, 4)$$
  
 $f(x) + 2 = (x + 1)(x + 2) + 2; (0, 0)$ 

3





c  $f(x + 1) = -x(x + 1)^2$ ; (0, 0)



c  $f(x + 2) = (x + 2)x^2$ ; (0, 0); (-2, 0)

b



5 a



b



c 
$$f(x + 2) = (x + 2)(x - 2); (2, 0); (-2, 0)$$
  
 $f(x) + 4 = (x - 2)^2; (2, 0)$ 

6 a





## **Homework Answers**

**b** (4, 2)

$$8 \quad y = \frac{1}{x - 4}$$











#### 12 a



#### Challenge

1 (3, 2)

**a** 
$$(-7, -12)$$
 **b**  $f(x-2) + 1$