

Lecture #9

Diffraction Gratings

Lecture 9

Lecture Outline

- Fourier series
- Diffraction from gratings
- The plane wave spectrum
- Plane wave spectrum for crossed gratings
- The grating spectrometer
- Littrow gratings
- Patterned fanout gratings
- Diffractive optical elements

rure 9

iluc 2

Fourier Series

Jean Baptiste Joseph Fourier

Born: March 21, 1768 in Yonne, France.

<u>Died:</u> May 16, 1830 in Paris, France.

1D Complex Fourier Series

If a function f(x) is periodic with period Λ_x , it can be expanded into a complex Fourier series.

$$f(x) = \sum_{m=-\infty}^{\infty} a(m)e^{j\frac{2\pi mx}{\Lambda}}$$
$$a(m) = \frac{1}{\Lambda} \int_{-\Lambda/2}^{\Lambda/2} f(x)e^{-j\frac{2\pi mx}{\Lambda}} dx$$

Typically, we retain only a finite number of terms in the expansion.

$$f(x) = \sum_{m=-M}^{M} a(m) e^{j\frac{2\pi mx}{\Lambda}}$$

Lecture 9

Slide 4

2D Complex Fourier Series

For 2D periodic functions, the complex Fourier series generalizes to

$$f(x,y) = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} a(p,q) e^{\int \left(\frac{2\pi px}{\Lambda_x} + \frac{2\pi qy}{\Lambda_y}\right)}$$

$$f(x,y) = \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} a(p,q) e^{j\left(\frac{2\pi px}{\Lambda_x} + \frac{2\pi qy}{\Lambda_y}\right)} \qquad a(p,q) = \frac{1}{A} \iint_A f(x,y) e^{-j\left(\frac{2\pi px}{\Lambda_x} + \frac{2\pi qy}{\Lambda_y}\right)} dA$$

Diffraction from Gratings

Field in a Periodic Structure

The dielectric function of a sinusoidal grating can be written as

$$\varepsilon_{\rm r}(\vec{r}) = \varepsilon_{\rm r,avg} + \Delta\varepsilon\cos(\vec{K} \bullet \vec{r})$$

A wave propagating through this grating takes on the same symmetry.

$$\begin{split} E(\vec{r}) &= A(\vec{r}) e^{-j\vec{k}_{\text{inc}} \cdot \vec{r}} \\ &= A \bigg[\varepsilon_{\text{r,avg}} + \Delta \varepsilon \cos \left(\vec{K} \cdot \vec{r} \right) \bigg] e^{-j\vec{k}_{\text{inc}} \cdot \vec{r}} \\ &\vdots \\ &= \underbrace{A \varepsilon_{\text{r,avg}} e^{-j\vec{k}_{\text{inc}} \cdot \vec{r}}}_{\text{wave 1}} + \underbrace{\frac{A \Delta \varepsilon}{2} e^{-j\left(\vec{k}_{\text{inc}} - \vec{K} \right) \cdot \vec{r}}}_{\text{wave 2}} + \underbrace{\frac{A \Delta \varepsilon}{2} e^{-j\left(\vec{k}_{\text{inc}} + \vec{K} \right) \cdot \vec{r}}}_{\text{wave 3}} \end{split}$$

Lecture

9

Grating Produces New Waves

The applied wave splits into three waves.

$$\begin{array}{ccc} & e^{-j\vec{k}_{\mathrm{inc}}\bullet\vec{r}} & \\ e^{-j\vec{k}_{\mathrm{inc}}\bullet\vec{r}} & \rightarrow & e^{-j(\vec{k}_{\mathrm{inc}}-\vec{K})\bullet\vec{r}} \\ & e^{-j(\vec{k}_{\mathrm{inc}}+\vec{K})\bullet\vec{r}} \end{array}$$

Each of those splits into three waves as well.

$$e^{-j\vec{k}_{\text{inc}} \bullet \vec{r}} \rightarrow e^{-j(\vec{k}_{\text{inc}} - \vec{K}) \bullet \vec{r}} \qquad e^{-j(\vec{k}_{\text{inc}} - \vec{K}) \bullet \vec{r}} \qquad e^{-j(\vec{k}_{\text{inc}} - \vec{K}) \bullet \vec{r}} \rightarrow e^{-j(\vec{k}_{\text{inc}} + \vec{K}) \bullet \vec{r}} \rightarrow e$$

And each of these split, and so on.

$$\vec{k}\left(m\right) = \vec{k}_{\rm inc} - m\vec{K} \qquad \qquad m = -\infty, ..., -2, -1, 0, 1, 2, ..., \infty \qquad \begin{array}{c} \text{This equation describes} \\ \text{the total set of allowed} \\ \text{diffraction orders}. \end{array}$$

Wave Incident on a Grating

Boundary conditions required the tangential component of the wave vector be continuous.

$$k_{x,\text{trn}} \stackrel{?}{=} k_{x,\text{inc}}$$

The wave is entering a grating, so the phase matching condition is

$$k_x(m) = k_{x,inc} - mK_x$$

The longitudinal vector component is calculated from the dispersion relation.

$$k_z^2(m) = (k_0 n_{\text{avg}})^2 - k_x^2(m)$$

For large m, $k_{z,m}$ can actually become imaginary. This indicates that the highest diffraction-orders are evanescent.

Lecture

11

The Grating Equation

The Grating Equation

$$n_{\text{avg}} \sin \left[\theta(m)\right] = n_{\text{inc}} \sin \theta_{\text{inc}} - m \frac{\lambda_0}{\Lambda} \sin \phi$$

Note, this really is just

$$k_x(m) = k_{x,\text{inc}} - mK_x$$

Proof:

Proof:
$$k_{x}(m) = k_{x,\text{inc}} - mK_{x}$$

$$k_{0}n_{\text{avg}} \sin\left[\theta(m)\right] = k_{0}n_{\text{inc}} \sin\theta_{\text{inc}} - m\frac{2\pi}{\Lambda_{x}}$$

$$\frac{2\pi}{\lambda_{0}}n_{\text{avg}} \sin\left[\theta(m)\right] = \frac{2\pi}{\lambda_{0}}n_{\text{inc}} \sin\theta_{\text{inc}} - m\frac{2\pi}{\Lambda_{x}}$$

$$n_{\text{avg}} \sin\left[\theta(m)\right] = n_{\text{inc}} \sin\theta_{\text{inc}} - m\frac{\lambda_{0}}{\Lambda_{x}}$$

$$n_{\text{avg}} \sin\left[\theta(m)\right] = n_{\text{inc}} \sin\theta_{\text{inc}} - m\frac{\lambda_{0}}{\Lambda_{x}}$$

Diffraction in Two Dimensions

Slide 13

• We know everything about the direction of diffracted waves just from the grating period.

Diffraction tends to occur along the lattice planes.

Slide 14

- The grating equation says nothing about how much power is in the diffracted modes.
 - We need to solve Maxwell's equations for that!

Grating Cutoff Wavelength

When θ_m becomes imaginary, the mth mode is evanescent and cut off.

Assuming normal incidence (i.e. $\theta_{\rm inc}=0^{\circ}$), the grating equation reduces to

$$n\sin\left[\theta(m)\right] = -m\frac{\lambda_0}{\Lambda_x}$$

The first diffracted modes to appear are $m = \pm 1$.

The cutoff for the first-order modes happens when $\theta(\pm 1) = 90^{\circ}$.

$$\theta(\pm 1) = 90^{\circ}$$

$$\sin\left[90^{\circ}\right] = 1 = \frac{\lambda_0}{n\Lambda_x}$$

$$\Lambda_x = \frac{\lambda_0}{n}$$

To prevent the first-order modes, we need

$$\Lambda_x < \frac{\lambda_0}{n}$$
 or $\Lambda_x < \lambda$

To ensure we have first-order modes, we need

$$\Lambda_x > \frac{\lambda_0}{n}$$
 or $\Lambda_x > \lambda$

Lecture 9

Slide 19

Total Number of Diffracted Modes

Given the grating period Λ_x and the wavelength λ_0 , we can determine how many diffracted modes exist.

Again, assuming normal incidence, the grating equation becomes

$$\sin\left[\theta(m)\right] = -\frac{m\lambda_0}{n_{\text{avg}}\Lambda_x} \longrightarrow \left|\sin\left[\theta(m)\right]\right| = \left|\frac{m\lambda_0}{n_{\text{avg}}\Lambda_x}\right| < 1$$

Therefore, a maximum value for m is

$$m_{\text{max}} = \frac{n_{\text{avg}} \Lambda_x}{\lambda_0}$$

The total number of possible diffracted modes M is then $2m_{\text{max}}+1$

$$M = \frac{2n_{\text{avg}}\Lambda_x}{\lambda_0} + 1$$

Lecture 9

Slide 20

Determining Grating Cutoff Conditions **Condition** Requirements 0-order mode Always exists unless there is total-internal reflection No 1st-order modes Grating period must be shorter than what causes $\theta(\pm 1) = 90^{\circ}$ Ensure 1st-order modes Grating period must be larger than what causes $\theta(\pm 1) = 90^{\circ}$ No 2nd-order modes Grating period must be shorter than what causes $\theta(\pm 2) = 90^{\circ}$ Ensure 2nd-order modes Grating period must be larger than what causes $\theta(\pm 2) = 90^{\circ}$ No mth-order modes Grating period must be shorter than what causes $\theta(\pm m) = 90^{\circ}$ Ensure *m*th-order modes Grating period must be larger than what causes $\theta(\pm m) = 90^{\circ}$

Analysis of Diffraction Gratings

Direction of the Diffracted Modes

$$n \sin \left[\theta(m)\right] = n_{\text{inc}} \sin \theta_{\text{inc}} - m \frac{\lambda_0}{\Lambda} \sin \phi$$

Diffraction Efficiency and Polarization of the Diffracted Modes

We must obtain a rigorous solution to Maxwell's equations to determine amplitude and polarization of the diffracted modes.

$$\nabla \times \vec{E} = -j\omega\mu \vec{H}$$

$$\nabla \times \vec{H} = j\omega\varepsilon \vec{E}$$

$$\nabla \bullet \left(\varepsilon \vec{E}\right) = 0$$

$$\nabla \bullet (\mu \vec{H}) = 0$$

Applications of Gratings

Subwavelength Gratings

Only the zero-order modes may exist.

Applications

- Polarizers
- Artificial birefringence
- Form birefringence
- Anti-reflection
- · Effective index media

Littrow Gratings

Gratings in the littrow configuration are a spectrally selective retroreflector.

Applications

- Sensors
- Lasers

Patterned Fanout Gratings

Gratings diffract laser light to form images.

Holograms

Holograms are stored as gratings.

Spectrometry

Gratings separate broadband light into its component colors.

Slide 24

The Plane Wave Spectrum

Rearrange the Fourier Series (1

A periodic field can be expanded into a Fourier series.

$$\begin{split} E\left(x,y\right) &= A\left(x\right)e^{j\vec{\beta}\bullet\vec{r}} \\ &= \left[\sum_{m=-\infty}^{\infty} S\left(m\right)e^{-j\frac{2\pi mx}{\Lambda_x}}\right]e^{j\vec{\beta}\bullet\vec{r}} \\ &= \sum_{m=-\infty}^{\infty} S\left(m\right)e^{j\vec{\beta}\bullet\vec{r}}e^{-j\frac{2\pi mx}{\Lambda_x}} & \text{Here the plane wave term } e^{j\beta_x} \text{ is brought inside of the summation.} \\ &= \sum_{m=-\infty}^{\infty} S\left(m\right)e^{j\beta_x x}e^{j\beta_y y}e^{-j\frac{2\pi mx}{\Lambda_x}} \end{split}$$

Rearrange the Fourier Series (2)

 $\beta_{\rm r}$ can be combined with the last complex exponential.

$$E(x,y) = \sum_{m=-\infty}^{\infty} S(m) e^{j\beta_x x} e^{j\beta_y y} e^{-j\frac{2\pi mx}{\Lambda_x}}$$
$$= \sum_{m=-\infty}^{\infty} S(m) e^{j\beta_y y} e^{j\left(\beta_x - \frac{2\pi m}{\Lambda_x}\right)x}$$

Now let $k_{x,m} = \beta_x - \frac{2\pi m}{\Lambda_x}$ and $k_{y,m} = \beta_y$

$$E(x,y) = \sum_{m=-\infty}^{\infty} S(m)e^{j\vec{k}(m)\cdot\vec{r}} \qquad \vec{k}(m) = \left(\beta_x - \frac{2\pi m}{\Lambda_x}\right)\hat{a}_x + \beta_y\hat{a}_y$$

The Plane Wave Spectrum

We rearranged terms and now we see that a periodic field can also be thought of as an infinite sum of plane waves at different angles. This is the "plane wave spectrum" of a periodic field.

Lecture 9 Slide 2

Longitudinal Wave Vector Components of the Plane Wave Spectrum

The wave incident on a grating can be written as

$$E_{\text{inc}}(x,y) = E_0 e^{j(k_{x,\text{inc}}x + k_{y,\text{inc}}y)} \qquad k_{x,\text{inc}} = k_0 n_{\text{inc}} \sin \theta_{\text{inc}} k_{y,\text{inc}} = k_0 n_{\text{inc}} \cos \theta_{\text{inc}}$$

Phase matching into the grating leads to

$$k_x(m) = k_{x,\text{inc}} - m \frac{2\pi}{\Lambda_x}$$
 $m = \dots, -2, -1, 0, 1, 2, \dots$

Note: k_r is always real.

Each wave must satisfy the dispersion relation.

$$k_{x}^{2}\left(m\right)+k_{y}^{2}\left(m\right)=\left(k_{0}n_{\mathrm{grat}}\right)^{2}$$

$$\downarrow$$

$$k_{y}\left(m\right)=\sqrt{\left(k_{0}n_{\mathrm{grat}}\right)^{2}-k_{x}^{2}\left(m\right)}$$
We have two possible solutions here.

1. Purely real k_{y}
2. Purely imaginary k_{y} .

Lecture 5

Slide 30

Conclusions About the Plane Wave Spectrum

- Fields in periodic media take on the same periodicity as the media they are in.
- Periodic fields can be expanded into a Fourier series.
- Each term of the Fourier series represents a spatial harmonic (plane wave).
- Since there are in infinite number of terms in the Fourier series, there are an infinite number of spatial harmonics.
- Only a few of the spatial harmonics are actually propagating waves. Only these can carry power away from a device. Tunneling is an exception.

Lecture 9 Slide 32

Plane Wave Spectrum from Crossed Gratings

Diffraction from Crossed Gratings

Doubly-periodic gratings, also called crossed gratings, can diffract waves into many directions.

They are described by two grating vectors, \mathbf{K}_{x} and \mathbf{K}_{v} .

Two boundary conditions are necessary here.

$$k_x(m) = k_{x,\text{inc}} - mK_x$$
 $m = ..., -2, -1, 0, 1, 2, ...$
 $k_y(n) = k_{y,\text{inc}} - nK_y$ $n = ..., -2, -1, 0, 1, 2, ...$

$$\vec{K}_{y} = \frac{2\pi}{\Lambda_{v}} \hat{y}$$

Transverse Wave Vector Expansion

Crossed gratings diffraction in two dimensions, x and y.

To quantify diffraction for crossed gratings, we must calculate an expansion for both k_x and k_y .

$$k_x(m) = k_{x,\text{inc}} - \frac{2\pi m}{\Lambda_x} \qquad m = -\infty, \dots, -2, -1, 0, 1, 2, \dots \infty$$

$$k_y(n) = k_{y,\text{inc}} - \frac{2\pi n}{\Lambda_y} \qquad n = -\infty, \dots, -2, -1, 0, 1, 2, \dots \infty$$

$$m = -\infty, \cdots, -2, -1, 0, 1, 2, \cdots$$

$$k_{y}(n) = k_{y,\text{inc}} - \frac{2\pi n}{\Lambda_{y}}$$

$$n = -\infty, \dots, -2, -1, 0, 1, 2, \dots \infty$$

$$\vec{k}_{t}(m,n) = k_{x}(m)\hat{x} + k_{y}(n)\hat{y}$$

% TRANSVERSE WAVE VECTOR EXPANSION M = [-floor(Nx/2):floor(Nx/2)]';

N = [-floor(Ny/2):floor(Ny/2)]';kx = kxinc - 2*pi*M/Lx; ky = kyinc - 2*pi*N/Ly;

[ky, kx] = meshgrid(ky, kx);

We will use this code for 2D PWEM, 3D RCWA, 3D FDTD, 3D FDFD, 3D MoL, and more.

Longitudinal Wave Vector Expansion

The longitudinal components of the wave vectors are computed as

$$k_z^{\text{ref}}(m,n) = \sqrt{\left(k_0 n_{\text{ref}}\right) - k_x^2(m) - k_y^2(n)}$$

$$k_z^{\text{tm}}\left(m,n\right) = \sqrt{\left(k_0 n_{\text{trn}}\right) - k_x^2\left(m\right) - k_y^2\left(n\right)}$$

The center few modes will have real k_z 's. These correspond to propagating waves. The others will have imaginary k_z 's and correspond to evanescent waves that do not transport power.

The Grating Spectrometer

Spectral Sensitivity

We start with the grating equation.

$$n_{\text{avg}} \sin \left[\theta(m)\right] = n_{\text{inc}} \sin \theta_{\text{inc}} - m \frac{\lambda_0}{\Lambda_{\text{c}}}$$

We define spectral sensitivity as how much the diffracted angle changes with respect to wavelength $\partial \theta(m)/\partial \lambda_0$.

$$\frac{\partial \theta(m)}{\partial \lambda_0} = -\frac{m}{\Lambda_x n_{\text{avg}} \cos \theta_m}$$

$$\frac{\partial \theta(m)}{\partial \lambda_0} = -\frac{m}{\Lambda_x n_{\text{avg}} \cos \theta_m} \qquad \qquad \boxed{\Delta \theta(m) \cong \frac{m}{\Lambda_x n_{\text{avg}} \cos \left[\theta(m)\right]} \Delta \lambda_0}$$

This equation tells us how to maximize sensitivity.

- 1. Diffract into higher order modes ($\uparrow m$).
- 2. Use short period gratings ($\downarrow \Lambda_x$).
- 3. Diffract into large angles ($\uparrow \theta(m)$).
- 4. Diffract into air $(\downarrow n_{\text{avg}})$.

Littrow Gratings

Littrow Configuration

In the littrow configuration, the +1-order reflected mode is parallel to the incident wave vector. This forms a spectrally selective mirror.

Lecture 9

4 E

Conditions for the Littrow Configuration

The grating equation is

$$n\sin\left[\theta(m)\right] = n\sin\theta_{\rm inc} - m\frac{\lambda_0}{\Lambda_x}$$

The littrow configuration occurs when

$$\theta(+1) = -\theta_{\text{inc}}$$

The condition for the littrow configuration is found by substituting this into the grating equation.

$$2n\sin\theta_{\rm inc} = \frac{\lambda_0}{\Lambda_x}$$

Lecture 9

Spectral Selectivity

Typically only a cone of angles $\Delta\theta$ reflected from a grating is detected.

We wish to find $d\lambda/d\theta$ by differentiating our last equation.

$$\frac{d\lambda_0}{d\theta} = 2n\Lambda_x \cos\theta$$

Typically this is used to calculate the reflected bandwidth.

$$\Delta \lambda_0 = 2n\Lambda_x \cos\theta \cdot \Delta\theta$$

Linewidth (optics and photonics)

$$\Delta f = \frac{2n\Lambda_x f^2 \cos \theta}{c_0} \Delta \theta$$

Bandwidth (RF and microwave)

Lecture 9

47

Example (1 of 2)

Design a metallic grating in air that is to be operated in the littrow configuration at 10 GHz at an angle of 45°.

Solution

Right away, we know that

$$n = 1.0$$

$$\theta_{\rm inc} = 45^{\circ}$$

$$\lambda_0 = \frac{c_0}{f} = \frac{3 \times 10^8 \frac{m}{s}}{10 \text{ GHz}} = 3.00 \text{ cm}$$

The grating period is then found to be

$$\Lambda_x = \frac{\lambda_0}{2n\sin\theta_{\text{inc}}} = \frac{3.00 \text{ cm}}{2(1.0)\sin(45^\circ)} = 2.12 \text{ cm}$$

Lecture 9

Example (2 of 2)

Solution continued

Assuming a 5° cone of angles is detected upon reflection, the bandwidth is

$$\Delta f = \frac{2(1.0)(2.12 \text{ cm})(10 \text{ GHz})^2 \cos(45^\circ)}{3 \times 10^8 \frac{m}{s}} \left(\frac{\pi}{180^\circ} 5^\circ\right) = 0.87 \text{ GHz}$$

Lecture 9

49

Patterned Fanout Gratings

Diffractive Optical Elements

