# 随机过程大作业

#### Zanue

上海交通大学电子信息与电气工程学院

日期: June 3, 2022

#### 摘 要

本文使用 Python 语言的 NumPy 库、Matplotlib 库对布朗运动和随机微分方程进行探究。本文首先模拟生成了具有不同方差的布朗运动轨道。接下来,本文对两个不同的随机微分方程进行了仿真,探究不同的参数对轨道的影响,并使用 Monte Caro 方法计算特定时间的解的期望和方差。

关键词: 布朗运动, 随机微分方程, Monte Caro 方法, Python 仿真

### 1 定义

#### 1.1 布朗运动

若一个随机过程  $\{X(t), t \geq 0\}$  满足:

- 1. X(t) 是独立增量过程;
- 2.  $\forall s, t > 0, X(s+t) X(s) \sim N(0, c^2t)$ , 即 X(s+t) X(s) 是数学期望为 0,方差为  $c^2t$  的 正态分布;
- 3. X(t) 关于 t 是连续函数,

则称  $\{X(t), t \geq 0\}$  是布朗运动或维纳过程。当 c = 1 时,称  $\{X(t), t \geq 0\}$  是标准布朗运动。[2]

#### 1.2 随机微分方程

设  $(\omega, \mathcal{F}, P)$  为一个完备的概率空间, $\mathbb{F} = \{\mathcal{F}_t, t \in [0, T]\}$  为一个满足通常条件的  $\sigma$ - 域流, $B = \{B_t, t \in [0, T]\}$  为关于  $(P, \mathbb{F})$  的标准布朗运动。设 a(t, x) 和 b(t, x) 为两个关于 t, x 的可测函数,给定一个关于  $\mathcal{F}_0$  可测的随机变量  $\eta$ ,我们考虑如下随机微分方程 [3]:

$$\begin{cases} dX_t = a(t, X_t)dt + b(t, X_t)dB_t, \\ X_0 = \eta \end{cases}$$
 (1)

### 1.3 Monte Caro 方法

Monte Caro 方法也称统计模拟法、统计试验法。是把概率现象作为研究对象的数值模拟方法。是按抽样调查法求取统计值来推定未知特性量的计算方法。Monte Caro 是摩纳哥的著名赌城,该法为表明其随机抽样的本质而命名。故适用于对离散系统进行计算仿真试验。在计算仿

真中,通过构造一个和系统性能相近似的概率模型,并在数字计算机上进行随机试验,可以模拟系统的随机特性。[1]

### 2 布朗运动的模拟



图 1: 不同方差下的布朗运动轨迹

如图1, 在 c = 0.5, 1, 2, 10 的不同情况下,布朗运动的轨迹趋势相似,但向外扩展的程度(方 差)逐渐增大。

## 3 随机微分方程一的模拟

已知随机微分方程一为:

$$\begin{cases} dX_t = \alpha(v - X_t)dt + \sigma dB_t \\ X_0 = x_0 \end{cases}$$
 (2)

### 3.1 调整 $\alpha$

如图2, 考虑  $\alpha$  在 [0,1] 内取值的情形。 $\alpha=0$  时,随机微分方程退化为布朗运动,结论平凡。 $\alpha=1$  时, $X_t$  在 v 附近波动。 $\alpha$  在 (0,1) 内取值时,随着  $\alpha$  的增大,曲线由布朗运动  $\alpha=0$  逐渐收敛到均值为 v 的高斯过程。

如图3, 考虑  $\alpha$  在  $(1,\infty)$  内取值的情形。 $\alpha \in (1,2)$  时,曲线的开端部分产生一定的波动。  $\alpha = 2$  时,曲线只有波动项无法收敛。 $\alpha > 2$  时,曲线的波动随着时间的推移而急剧增大。

如图**4**, 考虑  $\alpha$  在  $(-\infty,0)$  内取值的情形。随着时间的推移,曲线急剧下降,并且随着  $\alpha$  的 减小而加剧下降的程度。



图 2:  $\alpha$  在 [0,1] 内取值的 X 的轨迹



图 3:  $\alpha$  在  $(1,\infty)$  内取值的 X 的轨迹

### **3.2** 调整 v

如图5, 当  $\alpha \in (0,1)$  时, 轨迹均收敛到 v (在 v 附近波动)。当  $\alpha$  的取值使得曲线不收敛时, v 的取值对曲线无明显影响。



图 4:  $\alpha$  在  $(-\infty,0)$  内取值的 X 的轨迹



图 5: 不同 v 取值下的 X 的轨迹

### 3.3 调整 $\sigma$

如图**6**, **7**, 在  $\alpha$  取值不同的情况下,不论曲线是否趋于稳定, $\sigma$  的增大都会导致曲线的波动增大。

### **3.4** 调整 $x_0$

如图**8**, 当  $\alpha \in [0,1]$  时,改变  $x_0$  会影响  $X_t$  最终收敛到的值。当  $\alpha < 0$  时,改变  $x_0$  会影响  $X_t$  的走向趋势(向上递增或者向下递减)。如图**9**, 当  $\alpha \geq 2$  时,改变  $x_0$  不会改变曲线波动的趋势。

### 3.5 Monte Caro 仿真

对各种参数设置下的随机微分方程,分别生成 1000 个不同的  $X_1$ ,计算相应的均值和方差,得到  $EX_1=(1-\alpha)x_0+\alpha v$ , $DX_1=\sigma^2$ .



图 6: 不同  $\sigma$  取值下的 X 的轨迹



图 7: 不同  $\sigma$  取值下的 X 的轨迹

# 4 随机微分方程二的模拟

已知随机微分方程二为:

$$\begin{cases} dX_t = \alpha(v - X_t)dt + \sigma dB_t \\ dS_t = \theta(X_t - S_t)dt + \hat{\sigma}_1 dB_t + \hat{\sigma}_2 dW_t \\ X_0 = x_0, S_0 = s_0 \end{cases}$$
(3)



图 8: 不同  $x_0$  取值下的 X 的轨迹



图 9: 不同  $x_0$  取值下的 X 的轨迹

注意到方程二的第一个式子与方程一相同,故我们只需考虑与方程二的第二个式子相关的 参数。

### 4.1 调整 $\theta$

如图10, 当  $\alpha \in (0,2)$  时,调整  $\theta$  的值会影响 S 曲线的波动程度和与 X 的相关位置。 $\theta$  的绝对值越小,S 相对于 X 的波动幅度越小。而 S 的波动趋势和 X 相近。



**图 10:**  $\alpha \in (0,2)$  时不同  $\theta$  取值下的 X 和 S 的轨迹



**图 11:**  $\alpha \in [2, \infty)$  时不同  $\theta$  取值下的 X 和 S 的轨迹

如图11, 当  $\alpha \in [2,\infty)$  时,调整  $\theta$  的值会影响 S 相对于 X 的位置和 S 的波动情况。 $\theta$  的绝对值越小,S 相对于 X 的波动幅度越小。

如图12, 当  $\alpha \in (-\infty,0)$  时,X 向无穷远处发散,且 S 也随着 X 而发散,发散程度和  $\theta$  的取值相关。



**图 12:**  $\alpha \in (-\infty, 0)$  时不同  $\theta$  取值下的 X 和 S 的轨迹



图 13:  $\alpha \in (0,2)$  时不同  $\hat{\sigma}_1, \hat{\sigma}_2$  取值下的 X 和 S 的轨迹

### **4.2** 调整 $\hat{\sigma}_1, \hat{\sigma}_2$

如图13和14,调整  $\hat{\sigma}_1,\hat{\sigma}_2$  均会改变曲线的波动(或者发散)程度。一般来说, $\hat{\sigma}_1,\hat{\sigma}_2$  越大,曲线的波动(或者发散)程度也越大。

### 4.3 调整 $s_0$

如图15, 当 X 和 S 都趋向于在某个值附近稳定地波动时,  $s_0$  只会影响曲线的开端而不会影响接下来的过程。当 X 和 S 都发散地波动时, 改变  $s_0$  也会影响曲线发散的程度。

### 4.4 Monte Caro 仿真

对各种参数设置下的随机微分方程,分别生成 1000 个不同的  $S_1$ ,计算相应的均值和方差,得到  $ES_1 = (1-\alpha)s_0 + \theta x_0$ , $DS_1 = \hat{\sigma}_1^2 + \hat{\sigma}_2^2$ .



图 14:  $\alpha \in (2, \infty) \cup (-\infty, 0)$  时不同  $\hat{\sigma}_1, \hat{\sigma}_2$  取值下的 X 和 S 的轨迹



图 15: 不同  $s_0$  取值下的 X 和 S 的轨迹

# 5 总结

本文对布朗运动和随机微分方程进行了模拟仿真。本文首先模拟生成了具有不同方差的布朗运动轨道。接下来,本文对两个不同的随机微分方程进行了仿真,探究不同的参数对轨道的影响,并使用 Monte Caro 方法计算特定时间的解的期望和方差。本文发现,在两个随机微分方程中, $\alpha$  对曲线的影响最大,不同的  $\alpha$  取值会得到不同类型的曲线轨迹。 $\theta$  会一定程度地影响 S 曲线的波动或者发散的程度和曲线相对于 X 曲线的位置。 $\sigma$ , $\hat{\sigma}_1$ , $\hat{\sigma}_2$  会影响曲线波动或者发散的

程度。x<sub>0</sub>, s<sub>0</sub> 会影响曲线的初值,在某些情形下也可能影响曲线的发散程度。

# 参考文献

- [1] 萧浩辉. 决策科学辞典. 人民出版社, 1995.
- [2] 熊德文 韩东 王桂兰. "布朗运动". In: 应用随机过程. 北京: 高等教育出版社, Aug. 2016. Chap. 6, pp. 109–110.
- [3] 熊德文 韩东 王桂兰. "随机分析基础". In: 应用随机过程. 北京: 高等教育出版社, Aug. 2016. Chap. 7, pp. 153–154.