

Рисинок 4.5 Метод діаграм Вейча

$f4_{MHII\Phi} = (X4\overline{X}3X2\overline{X}1) \ v \ (X4X3\overline{X}2) \ v \ (\overline{X}2X1) \ v \ (X3X1)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільни мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Кваина-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуемо таблицю покриття (таблиця 4.5).

ע ע	, ,
K1	<i>K2</i>
000X (1,2)	OXXO (1,3)
00X0 (1,2,3)	OXXO (1,3)
OXOO (1,3)	XX00 (1)
X000 (1)	XX00 (1)
OX10 (1,2,3)	X11X (2)
X010 (3)	X11X (2)
01X0 (1,3)	11XX (2)
X100 (1,3)	11XX (2)
011X (1,2,3)]
X110 (2)	_
X111 (1,2,3)	
1X00 (1)	
110X (2)	
11X0 (2)	
11X1 (2)	
111X (2)	
	K1 000X (1,2) 00X0 (1,2,3) 0X00 (1,3) X000 (1) 0X10 (1,2,3) X010 (3) 01X0 (1,3) X100 (1,3) X110 (2) X111 (1,2,3) 1X00 (1) 110X (2) 11X1 (2) 11X1 (2)

Рисинок 4.6 Склеювання і поглинання термів системи

					<i>[A/1Ц.463626</i>
Зм.	Арк.	№ докум.	Підп.	Дата	І АЛЦ.463626

Таблиця покриття системи

	0000lF1	0001/F1/	0010/F1/	0110/F1/	1000(F1)	1100/F1/	1111/F1/	00000F2	0001/F2	0010/F2	1101/F2J	1110/F2/	1111F2J	00000F3	0010(F3)	0100(F3)	0111F3J	1001/F3J	1010IF3J	1100/F3/	1111F3J
1001 (3)																		+			
1100 (1,2,3)						+														+	
000X(1,2)	+	+						+	+												
00X0 (1,2,3)	+		+					+		+				+	+						
OX10 (1,2,3)			+	+						+					+						
X010 (3)															+				+		
X100 (1,3)						+										+				+	
011X (1,2,3)				+													+				
X111 (1,2,3)							+						+				+				+
OXXO(1,3)	+		+	+										+	+	+					
XX00 (1)	+				+	+															
X11X (2)												+	+								
11XX (2)											+	+	+								

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X2}\overline{X1})$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4X1) \ v \ (X4X3)$

 $f3_{MDH\Phi} = (X4\overline{X}3\overline{X}2X1) \ v \ (\overline{X}3X2\overline{X}1) \ v \ (X3\overline{X}2\overline{X}1) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1)$

Проведемо <u>мініміз</u>ацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

Зм.	Арк.	№ докум.	Підп.	Дата

K1	K2
00X1 (3)	01XX (2)
OXO1 (3)	01XX (2)
OX11 (1,2)	10XX (2)
X011 (1,2,3)	10XX (2)
010X (1,2)	
01X0 (2)	1
X100 (2)	
01X1 (1,2)	
X101 (1,3)	ı
011X (2)	
X110 (3)	
100X (2)	1
10X0 (2)	
1X00 (2)	
10X1 (1,2)	
1X01 (1)	
101X (1,2)	
1X10 (1)	
	00X1 (3) 0X01 (3) 0X11 (1,2) X011 (1,2,3) 010X (1,2) 01X0 (2) X100 (2) X101 (1,3) 011X (2) X110 (3) 100X (2) 10X0 (2) 10X1 (1,2) 10X1 (1,2) 11X01 (1,2) 11X01 (1,2)

Рисунок 4.7 Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 Таблиця покриття системи

	0011/F1)	01011F11	1001/F1/	1010/F1/	1011/F1/	1101/F1/	1110/F1/	0011/F2J	0100/F2	b101/F2/	1000IF2	h001/F2/	1010/F2/	1011/F2)	0001/F3	bornF3/	01011F3J	1000lF3	ho111F3J	11011F3/	1110/F3J
0101 (1,2,3)		+								+							+				
1000 (2.3)											+							+			
1110 (1,3)							+														+
00X1 (3)															+	+					
OX01 (3)															+		+				
OX11 (1,2)	+							+													
X011(1,2,3)	+				+			+						+		+			+		
010X (1,2)		+							+	+											
X100 (2)									+												
01X1 (1,2)		+								+											
X101 (1,3)		+				+											+			+	
X110 (3)																					+
1X00 (2)											+										
10X1 (1,2)			+		+							+		+							
1X01 (1)			+			+															
101X (1,2)				+	+								+	+							
1X10 (1)				+			+														
01XX (2)									+	+											
10XX (2)											+	+	+	+							

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

f1_{MIIHO}= (X3X2X1) v (X3X2X1) v (X4X3X1) v (X4X2X1)

f2_{MDHФ}= (\$\overline{X3} X2 X1) v (\$\overline{X4} X3) v (\$X4 \$\overline{X3}\$)

 $f3_{M\Pi H \phi} = (X4\overline{X}3\overline{X}2\overline{X}1) \ v \ (\overline{X}4\overline{X}3X1) \ v \ (\overline{X}3X2X1) \ v \ (X3\overline{X}2X1) \ v \ (X3X2\overline{X}1)$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

 $f1_{MRH\Phi} = (\overline{X}4\overline{X}3\overline{X}2) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1) \ v \ (\overline{X}2\overline{X}1)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4X1) \ v \ (X4X3)$

Зм.	Арк.	№ докум.	Підп.	Дата

ІАЛЦ.463626.004 ПЗ

Арк.

$f3_{MDH\phi} = (X4\overline{X}3\overline{X}2X1) \ v \ (\overline{X}3X2\overline{X}1) \ v \ (X3\overline{X}2\overline{X}1) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1)$

Позначимо терми системи:

 $P_1 = \overline{X4} \overline{X3} \overline{X2}$

 $P_2 = X3X2X1$

 $P_3 = \overline{X4}\overline{X1}$

 $P_{\perp} = \overline{X2}\overline{X1}$

 $P_5 = \overline{X4}\overline{X3}\overline{X1}$

 $P_6 = X4X1$

 $P_7 = X4X3$

 $P_8 = X4\overline{X}3\overline{X}2X1$

 $P_9 = \overline{X3}X2\overline{X1}$

 $P_{10} = X3\overline{X}2\overline{X}1$

Тоді функції виходів описуються системою:

 $f1 = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X2}\overline{X1}) = P_1 \ v \ P_2 \ v \ P_3 \ v \ P_4$

 $f2 = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4X1) \ v \ (X4X3) = P_1 \ v \ P_5 \ v \ P_6 \ v \ P_7$

 $f3 = (X4\overline{X}3\overline{X}2X1) \ v \ (\overline{X}3X2\overline{X}1) \ v \ (X3\overline{X}2\overline{X}1) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1) = P_8 \ v \ P_9 \ v \ P_{10} \ v$

 $V P_2 V P_3$

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 10 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,8,3) (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата