

Lab 5. Preparation for project 1

Cheng PENG

Department of Biomedical Engineering

pengc@sustech.edu.cn

Fall 2021

Lab Schedule

2021年	周 次	_	Ξ	Ξ	四	五	六	日	
	第10周	15 +-	16 +=	17 +≡	18 十四	19 +五	20 十六	21 +t	← lab 5
	第11周	22 小雪	23 十九	24 =+	25 廿−	26 #=	27 ±≡	28 ^{廿四}	← Intro to project 1
12月	第12周 _{秋季学期}	29 _{廿五}	30 ^{廿六}	1 世七	2 世八	3 世九	4 初一	5 初二	← Q&A
	第13周 秋季学期	6 初三	7 大雪	8 初五	9 初六	10 初七	11 初八	12 初九	← Presentation 1
	第14周	13 初十	14 +-	15 +=	16 +≡	17 十四	18 +五	19 +☆	← Intro to project 2
	第15周	20 +t	21 冬至	22 十九	23 =+	24 廿−	25 廿二	26 #≡	← Q&A
	第16周 秋季学期	27 廿四	28 _{廿五}	29 ^{廿六}	30 世七	31 世八	1 元旦	2 ≡+	← Presentation 2

Overview

- In this tutorial, you will learn to:
 - 1. Design basic filters via Matlab
 - 2. Use filtering to
 - generate speech-shaped noise
 - ② extract signal envelope
 - 3. Adjust the signal intensity
 - normalizing signal energy
 - 2 adjusting signal-to-noise ratio (SNR) level

1. Butterworth filter design

- [b,a]=butter(n,Wn)
 - Design an order n low-pass digital Butterworth filter with <u>normalized</u> <u>cutoff frequency</u> Wn. Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate (fs/2 in Hz, 2*pi*fs/2 in radian/s).
 - Return the filter coefficients in length n+1 vectors b and a.
- [b,a]=butter(n,Wn,'ftype')
 - Design a highpass, lowpass, or bandstop filter, where the string 'ftype' is 'high', 'low', or 'stop',
 - e.g.,

```
fs=8000;

[b, a]=butter(2,400/(fs/2)); % low-pass

[b, a]=butter(2,400/(fs/2), 'high'); % high-pass

[b, a]=butter(2,[400 1000]/(fs/2)); % band-pass

[b, a]=butter(2,[400 1000]/(fs/2), 'stop'); % band-stop
```

8.0

8.0

8.0

8.0

0.9

0.9

0.9

0.9

- fs=8000; % sampling rate for discrete signal
- [b, a]=butter(2,400/(fs/2)); % low pass filter
- [h,f]=freqz(b,a,512,fs); % Digital filter frequency response
- plot(f,20*log10(abs(h))); % in dB scale
- axis([0 5000 -50 5]);
- xlabel('Frequency (Hz) ');
- ylabel('Magnitude (dB)');

How about 'high-pass' and 'band-pass'?
How about high-order n?

2. Use filtering to ...

- ① Generate speech-shaped noise
 - White noise:

N=1000; noise = 1-2*rand(1,N);

Steps:

- 1) generate long-term spectrum of speech signal
- 不会拼接成矩阵
- concatenate 10 speech waveforms into one signal
 - sig = [x,x,x,x,x,x,x,x,x,x]; Or, repmat(x,1,10); % x is a row vector
 - sig =[x; x; x; x; x; x; x; x; x; x; x]; Or, repmat(x,10,1); % x is a column vector
- estimate the power spectral density of the speech signal
 - [Pxx,w] =psd(sig,[],512,fs);
 - Or [Pxx,w] = periodogram(sig,[],512,fs)
- plot(w,Pxx)
 - Or plot(w,10*log10(Pxx))

- psd for lower version of Matlab
- periodogram for higher version

- · 有同学可能从其他途径了解到 pwelch
 - pwelch 是对 periodogram(周期图法)的一种改进(已超纲)
 - 两个方法给出的结果看上去并不一样(因为改进了嘛)
 - · periodogram 和 pwelch 可以任选一个使用,但全程要保持不变
 - 选了periodogram就一直用periodogram
 - 选了pwelch就一直用pwelch
- ·不知道pwelch的同学不用管(因为已超纲)
 - 并没有什么损失
- · 其他做功率谱估计(power spectral estimation)的方法不需要去了解(因为已超纲)
 - · 把时间用在关键问题上(完成lab task)

Steps:

- 2) generate filter coefficients
 - b = fir2(3000,w/(fs/2),sqrt(Pxx/max(Pxx))); % fir2: from frequency response to coefficients, a=1
 - [h,wh] = freqz(b,1,128); %check frequency response here
- 3) perform filtering on white noise signal
 - y= filter(b,1,noise);

$$H(j\omega) = \frac{\sum_{k=0}^{N} b_k (j\omega)^k}{\sum_{k=0}^{M} a_k (j\omega)^k}$$

Then you'll get the speech-shaped noise

Use filtering to ...

② Extract speech envelope (包络) waveform

2. Use filtering to ... -- Summary

- ① Generate speech-shaped noise
 - 1) generate long-term spectrum of speech signal
 - generate filter coefficients based on speech signal's power spectrum density (psd)
 - 3) perform filtering on white noise signal
- ② Extract speech envelope (包络) waveform
 - 1) Pass the 'abs(sig)' through a lowpass filter butter

3. Adjust Signal Intensity

Signal Energy

$$E = \sum_{n=n_1}^{n_2} |x[n]|^2$$

- $E \rightarrow a \times E$, $|x[n]| \rightarrow a^2 \times |x[n]|$
- In Matlab,
 - norm(sig) = $\sqrt{\sum_{n=n_1}^{n_2} |x[n]|^2} = \sqrt{E_{sig}}$, $E_{sig} = \text{norm(sig)^2}$
 - n = norm(v) returns the Euclidean norm of vector v. This norm is also called the 2-norm, vector magnitude, or Euclidean length.

Normalizing signal energy

- Energy normalization
 - y=y/norm(y); % then E(y) is normalized to 1
 - y=y/norm(y)*3; % then E(y) is normalized to 9 (= 3^2)
- Energy adjustment
 - y=y/norm(y)*norm(x); % then E(y) = E(x)
 - y=y/norm(y)*2*norm(x); % then, norm(y)=2norm(x), E(y)=4*E(x)

```
x = randn(1000,1)*rand(1,1); % generate 2 random signals with random norms y = randn(1000,1)*rand(1,1); y = y/norm(y)*2*norm(x); % norm(y) = 2norm(x), E(y) = 4*E(x) norm(y)/norm(x) % norm(y)/norm(x) = 2 norm(y)^2/norm(x)^2 % E(y)/E(x) = 4
```

② Adjusting signal-to-noise ratio (SNR) level

Signal-to-noise ratio (SNR)

$$SNR = 10log_{10} \left(\frac{E_{signal}}{E_{noise}} \right) = 20log_{10} \left(\frac{\sqrt{E_{signal}}}{\sqrt{E_{noise}}} \right)$$

- E is energy, and SNR in dB scale
- In Matlab:
 - SNR=20*log10(norm(sig)/norm(noise)); % sig and noise must have the same length

- How to adjust SNR when adding noise to a noise-free signal?
 - 1. Adjust the energy of noise to target value
 - $E_{signal}/E_{noise} = 10^{\frac{SNR}{10}} \Rightarrow E_{noise} = f(SNR, E_{signal})$, target
 - noise = noise/norm(noise) * (?)
 - 2. Verify the resultant SNR after adjusting the noise energy
 - norm(sig)^2/norm(noise)^2 = Specified SNR?
 - 3. sigwithnoise = sig+noise; % sig and noise must have the same length
 - sigwithnoise has the specified SNR

More on audio file ...

- Read audio file ('*.wav' in this lab)
 - [y, fs] = audioread(filename)
 - y: signal, fs: sampling rate in Hertz
- Play sound
 - sound(y, fs)
 - Or,
 - player = audioplayer(y, fs)
 - play(player)
- Save audio file
 - audiowrite(filename,y,fs)

- Record sound using PC-based audio input device
 - recObj = audiorecorder(fs, nbits, NumChannels)
 - recordblocking(recObj, length)
 - nbits: the number of bits per sample used to encode the data (e.g., 8, 16, 32)
 - NumChannels: number of channels
 - length: recording length in seconds

An example

```
fs = 11025; nbits = 8; length = 5;
% Record your voice for 5 seconds.
recObj = audiorecorder(fs,nbits,1);
disp('Start speaking.')
recordblocking(recObj, length);
disp('End of Recording.');
% Play back the recording.
play(recObj);
% Store data in double-precision array
myRecording = getaudiodata(recObj);
subplot(2,1,1); plot(myRecording); % Plot the waveform.
audiowrite('Myvoice.wav', myRecording, fs)
[sigread,fsread] = audioread('Myvoice.wav');
subplot(2,1,2); plot(sigread); % Plot the waveform.
```

Lab 5 Assignment

- 1. Generate a speech-shaped noise (SSN), and plot the spectra of the speech signal and SSN (e.g., use Matlab function 'psd' or 'periodogram').
 - a. generate long-term spectrum of speech signal
 - b. generate filter coefficients based on the psd of above speech signal (fir2)
 - c. generate white noise (how many points?)
 - d. perform filtering on white noise signal

Lab 5 Assignment

- 2. Read a speech signal x(t), adjust the SNR (x(t) to the above SSN in last part) to -5 dB, let y = x + SSN, and normalize the energy of y in relative to x(t), i.e., modify the energy of y so that it equals to the energy of x.

 Be sure to verify
 - a. Adjust the intensity of SSN so that $SNR = 20log_{10}(norm(x)/norm(SSN)) = -5$
 - b. Adjust the intensity of y so that

$$norm(y) = norm(x) \Leftrightarrow Energy(y) = Energy(x)$$

Lab 5 Assignment (cont.)

- 3. Extract speech envelope
 - a. Full wave rectification : y =abs(y)
 - b. Low-pass filtering (butter)
 - ① With 2^{nd} -order low-pass filter and cutoff frequency f_{cut} = 100, 200, and 300 Hz. Plot these three envelope waveforms in one plot, and <u>describe</u> the difference among them.
 - ② With 2^{nd} and 6^{th} -order low-pass filter and cutoff frequency f_{cut} = 200 Hz. Plot these two envelope waveforms in one plot, and <u>describe the</u> difference between them.

Assignment for lab 5 (cont.)

- Two *.wav files for lab 5 and the coming Project 1
 - 'C_01_01.wav' & 'C_01_02.wav'
- For lab 5, use the files above or record speech signal by yourself via Matlab

 Submit your lab 5 report + codes onto Blackboard before 10:00 am Nov. 25th • Any questions?

