

W601 芯片设计指导书

V1. 0. 1

北京联盛德微电子有限责任公司 (winner micro)

地址: 北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档历史

版本	完成日期	修订记录	作者	审核	批准
V1. 0. 0	2018-11-20	创建	Linda		
V1. 0. 1	2018-12-07	修正板厚			
				77	
				/1	

目录

概述		1
芯片管肌	脚定义	1
芯片外围	围电路设计	5
3.1	BOOTMODE 设计	5
3.2	RESET 复位电路设计	5
3.3	参考时钟电路设计	5
3.4	射频电路设计	6
3.5		
3.6	LCD 设计	7
3.7		
3.8	电源设计	8
3.9	地平面设计	8
3.10	天线设计	9
3.	.10.1 外置天线	9
	芯片管所 芯片外I 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	3.2 RESET 复位电路设计 3.3 参考时钟电路设计 3.4 射频电路设计 3.5 GPIO 设计 3.6 LCD 设计 3.7 ADC 设计 3.8 电源设计 3.9 地平面设计

1 概述

W601 芯片基于 ARM 核心的 CPU,集成了丰富的外部接口,并且集成 Wi-Fi MAC、BB、安全、RF。CPU 核心运行的软件处理网络相关的协议栈,包括 Wi-Fi, TCP/IP, Http 等网络协议。该芯片功能丰富,满足目标市场嵌入式产品的硬件需求,具备运行完整嵌入式操作系统,独立处理端到端的网络服务的能力。该芯片采用 QFN68 封装,外围需要极少器件,达到产品最小化设计。

本设计书说明了该芯片的管脚定义、物理尺寸,描述了时钟、LCD、ADC、电源、射频、天线等功能部分设计要求。 请按照该设计书设计相应的产品,以获得最佳性能。

2 芯片管脚定义

芯片管脚排列信息如图 2-1 所示:

图 2-1 芯片引脚排列及尺寸图

芯片管脚说明如表 2-1 所示:

表 2-1 芯片管脚说明

编号	名称	类型	复位后管脚功能	复用功能
1	PB_19	I/0	PWM_1	UART2_RX、SAR-ADC1、GPIOPB_19
2	PB_20	I/0	PWM_2	UART2_TX、SIM_DATA、SAR-ADC2、GPIOPB_20
3	PB_21	I/0	PWM_3	UART2_RTS、SIM_CLK、I2C_SCL、SAR-ADC3、GPIOPB_21
4	PB_22	I/0	PWM_4	UART2_CTS、I2C_DAT、SAR-ADC4、GP10PB_22
5	PB_23	I/0	PWM_5	UARTO_CTS、SAR-ADC5、GPIOPB_23
6	PB_24	I/0	PWM_BREAK	UARTO_RTS、SAR-ADC6、GPIOPB_24
7	PB_25	I/0	UARTO_RX	SAR-ADC7、GPIOPB 25
8	PB_26	I/0	UARTO_TX	SAR-ADC8、GPIOPB_26
9	WAKEUP	I	WAKEUP 唤醒功能	X
10	RESET	Ι	RESET 复位	
11	XTAL_OUT	0	外部晶振输出	
12	XTAL_IN	I	外部晶振输入	
13	VDD33	Р	芯片电源, 3.3V	
14	NC		无需联接	
15	DVDD33	Р	数字电路电源, 3.3V	
16	VDD33LNA	P	LNA 电源, 3.3V	
17	ANT	1/0	射频天线	
18	VDD33PA	Р	PA 电源,3.3V	
19	VDD33PLLA	Р	PLL 电源, 3.3V	
20	VDD33ANA	P	模拟电源, 3.3V	
21	EXT24K	I	串联 24K Ω +-1% 精度电阻到地	
22	TEST	I	测试功能配置管脚	
23	BOOTMODE	I/0	BOOTMODE	UART2_RX、PWM_1、LCD_SEGO、GPIOPA_0
24	PA_1	I/0	UART2_TX	SIM_DATA、PWM_2、SPI(M/S)_CK、LCD_SEG1、GPIOPA_1
25	PA_2	I/0	UART2_RTS	SIM_CLK、PWM_3、SPI(M/S)_CS、I2S_M_MCLK、LCD_SEG2、GPIOPA_2
26	PA_3	I/0	UART2_CTS	PWM_4、SPI(M/S)_DI、I2S_M_SDA、LCD_SEG3、GPIOPA_3

27	PA_4	I/0	UARTO_TX	PWM_5、SPI(M/S)_DO、I2S_M_SCL、LCD_SEG4、GPIOPA_4
28	VDD3310	Р	IO 电源,3. 3V	
29	PA_5	I/0	UARTO_RX	PWM_1、SPI(M/S)_DI、I2S_M_EXTCLK、LCD_SEG5、GPIOPA_5
30	PA_13	I/0	UARTO_RTS	I2S_M_RL、LCD_SEG6、GPIOPA_13
31	PA_14	I/0	UARTO_CTS	I2S_S_SDA、LCD_SEG7、GPIOPA_14
32	PA_15	I/0	I2C_DAT	I ² S_S_SCL、LCD_SEG8、GPIOPA_15
33	PA_6	I/0	I2C_SCL	I ² S_S_RL、SDIO_CMD、LCD_SEG9、GPIOPA_6
34	VDD3310	Р	IO 电源, 3.3V	
35	PA_7	I/0	I2S_M_SDA	PWM_2、I2C_DAT、LCD_SEG10、GPIOPA_7
36	PA_8	I/0	I2S_M_SCL	PWM_3、UARTO_TX、I2C_SCL、LCD_SEG11、GPIOPA_8
37	PA_9	I/0	I²S_M_RL	PWM_4, UARTO_RX, SPI(M/S)-DO, LCD_SEG12, GPIOPA_9
38	PA_10	I/0	I2S_S_SDA	PWM_5、UART2_RX、SPI(M/S)-DI、LCD_SEG13、GPIOPA_10
39	PA_11	I/0	I ² S_S_SCL	PWM_BREAK、UART2_TX、SIM_DATA、SPI(M/S)-CK、
				LCD_SEG14、GPIOPA_11
40	PA_12	I/0	I ² S_S_RL	UART2_RTS、SIM_CLK、SPI(M/S)-CS、LCD_SEG15、 GPIOPA_12
41	PB_28	I/0	I2S_M_MCLK	UART2_CTS、LCD_COMO、GPIOPB_28
42	VDD3310	Р	IO 电源, 3.3V	
43	PB_13	I/0	PWM_2	I ² S_SCL、SDIO_CMD、GPIOPB_13
44	PB_14	1/0	H_SPI_INT	PWM_5、I2C_DAT、I2S_S_SDA、GPIOPB_14
45	PB_15	I/0	H_SPI_CS	PWM_4、SPI(M/S)_CS、I2S_S_SCL、GPIOPB_15
46	VDD3310	P	10 电源,3. 3V	
47	PB_16	I/0	H_SPI_CK	PWM_3、SPI(M/S)_CK、I ² S_S_RL、GPIOPB_16
48	PB_17	I/0	H_SPI_DI	PWM_2、SPI(M/S)_DI、UART1_RX、GPIOPB_17
49	PB_18	I/0	H_SPI_DO	PWM_1、SPI(M/S)_DO、UART1_TX、GPIOPB_18
50	CAP	I	外接电容,1岬	
51	PB_30	I/0	UART2_RX	PWM_1、GPIOPB_30
52	PB_31	I/0	I2S_M_MCLK	GPIOPB_31
53	PB_27	I/0	SPI(M/S)-CK	LCD_COM1、GPIOPB_27
54	PB_0	I/0	SPI(M/S)-CS	UART2_CTS、PWM_BREAK、LCD_COM2、GPIOPB_0
55	PB_1	I/0	SPI(M/S)-DI	UART2_RTS、SIM_CLK、PWM_5、LCD_COM3、GPIOPB_1
56	PB_2	I/0	SPI(M/S)-DO	UART2_TX、SIM_DATA、PWM_4、LCD_COM4、GPIOPB_2

57	PB_3	I/0	JTAG_TRST	UART2_RX、PWM_3、I2S_S_SDA、LCD_COM5、GPIOPB_3
58	VDD3310	Р	IO 电源, 3.3V	
59	PB_4	I/0	JTAG_TDO	UARTO_RTS、PWM_2、I2S_S_SCL、LCD_COM6、GPIOPB_4
60	PB_5	I/0	JTAG_TDI	UARTO_CTS、PWM_1、I2S_S_RL、LCD_COM7、GPIOPB_5
61	PB_6	I/0	Reserved	SWDAT、UARTO_RX、PWM_4、SIM_CLK、GPIOPB_6
62	PB_7	I/0	Reserved	SWCK、UARTO_TX、SDIO_CMD、SPI(M/S)_CS、GPIOPB_7
63	PB_8	I/0	PWM_5	H_SPI_CK、SDIO_CK、I2S_M_SCL、GPIOPB_8
64	PB_9	I/0	UART1_CTS	H_SPI_INT、SDIO_DATO、12S_M_SDA、GPIOPB_9
65	PB_10	I/0	UART1_RTS	H_SPI_CS、SDIO_DAT1、I2S_M_RL、GPIOPB_10
66	PB_11	I/0	UART1_RX	H_SPI_DI、SDIO_DAT2、I2C_SCL、GPIOPB_11
67	PB_12	I/0	UART1_TX	H_SPI_DO、SDIO_DAT3、I ² C_DAT、GPIOPB_12
68	VDD3310	Р	IO 电源, 3.3V	
69	GND	Р	接地	

注: 1. I = 输入, 0 = 输出, P = 电源

3 芯片外围电路设计

3.1 BOOTMODE 设计

芯片支持直接从 ROM 模式下载。将 BOOTMODE(即 PA0)脚拉低大于 30ms,芯片上电,然后释放 BOOTMODE,开始下载。设计电路时一定要注意该脚不能一直下拉。

3.2 RESET 复位电路设计

复位电路建议设计为 RC 形式,上电自动复位设计,W601 采用低电平复位。如果使用外部控制 RESET 管脚,当电平值低于 2.0v 时芯片处于复位状态。低电平需要持续 100us 以上,见图 3-1 所示。

图 3-1 复位电路

3.3 参考时钟电路设计

芯片参考时钟选用 40MHz 晶体,时钟要求-40~85℃范围内频率稳定度±10ppm,负载电容 10pF。见图 3-2 所示。

图 3-2 时钟参考电路

时钟放置尽量靠近芯片且走线尽量短,并且远离外部干扰源。时钟下面各层禁止有其它走线穿过,防止干扰时钟源,导致系统性能下降。

3.4 射频电路设计

芯片射频口采用单天线设计,内部集成功放及收发开关,芯片端口阻抗 50 欧。根据产品设计性能匹配要求,建议预留 π 型阻抗匹配网络,根据实际天线阻抗值,优化外部设计匹配元件。原理图如图 3-3 所示。

图 3-3 射频电路参考设计

为节省成本,客户可使用两层板设计,采用 FR-4 板材,板厚建议 0.8mm,为了保证射频阻抗达到 50 欧姆要求,需要线宽 20mil(如果板厚变化,需要重新计算射频线宽),线与敷铜间距 5mil。射频走线跟芯片走同一层,避免穿层,射频走线背面参考地层不能有任何走线,全部敷铜处理,保证整个射频参考地的完整性。射频 PCB Layout 参考设计见图 3-4 所示。高亮为射频走线,在加工 PCB 时需要做 50 欧姆阻抗控制。同时在 Layout 时保证射频走线尽量短。

图 3-4 射频 PCB layout 参考设计

3.5 GPIO 设计

芯片上电后 27, 29 脚默认为 UARTO 端口,该端口提供下载及 AT 指令端口以及 log

的输出端口。W601 芯片 ROM 默认此接口为固件下载接口。客户产线第一次下载固件必须使用此接口(新芯片);当用户使用带有标准固件的模块产品时,由于 Flash 里面已经有固件,重新升级时可以使用 UART1 作为固件下载接口。客户在电路设计时注意不要随意使用该端口作为 GPIO 使用,防止被占用无法下载及调试。在系统起来后,该端口可以通过软件配置,复用为其它端口使用。

表 3-2 芯片 UARTO 管脚说明

27	PA_4	I/0	UARTO_TX
29	PA_5	I/0	UARTO_RX

其余各个管脚复用关系见表 2-1。

3.6 LCD 设计

芯片支持 8COM x 16SEG 或者 4COM x 20SEG 的 COM/SEG 类型 LCD 屏, 驱动支持 1/2、1/3、1/4、1/5、1/6、1/7、1/8 Duty 刷新模式; 支持 1/2、1/3、1/4 Bais 偏置电压; LCD 刷新频率可动态配置; IO 最大支持 24mA 驱动能力。LCD 详细接口见表 2-1 芯片管脚定义说明。

3.7 开发调试接口建议

由于 LCD 跟 UARTO 功能复用,为方便开发和生产,在设计产品时,对生产阶段程序下载,开发调试过程建议按下述方式处理:

- 1) UARTO 预留焊盘或者接口,在芯片内部没有程序时,生产或者开发调试时可以直接使用 UARTO 作为下载程序,操作方式见 3.1 节。
- 2) UART1 预留焊盘或者接口,当芯片内部有程序时,可以使用 UART0 或者 UART1 下载程序。使用 UART1 下载程序的方式参考 W600 SDK 相关文档。

当产品使用了 LCD 功能,程序运行起来后 UART0 被 LCD 占用,UART0 将不能使用, 此时 UART1 将作为调试和 AT 通信接口与外部相通信。此时 UART1 将是关键的调试接口。

- 预留 Reset 接口,在开发调试过程中,频繁的下载程序,重启系统,reset 引脚 会很好帮助调试
- 预留 BootMode 接口, 在生产过程中,当芯片内部没有程序时,用于进入 ROM 下载模式。
- 预留 SWD 接口, W60x 系列芯片支持 SWD 接口, 通过 Keil 或者 Winnermicro 提供的 IDE 工具, 可以在线调试固件

3.8 ADC 设计

芯片支持 8 路单端或 4 路差分 ADC 输入。ADC 采样频率最高支持 10MHz。为保证 ADC 采样数据稳定可靠,PCB 走线时要尽量远离干扰源,走线加地孔保护;当使用差分 ADC 时,要保证差分阻抗 100 欧。

3.9 电源设计

为了保证芯片性能及芯片稳定正常工作,W601 电源输入脚需放置相应滤波电容,且外部对整个芯片供电电源的总电流建议 500mA 及以上。总电源走线线宽要求不低于 30mil。供电范围 3.0V-3.6V。请勿超过该范围,超过 3.6v 可能会对芯片造成永久性损坏。低于 3.0v 可能整体性能会下降。但芯片低于 2.7v 时系统将不能工作。不同管脚放置电容见下述要求。芯片 13,15,16 脚附近需放置 2 个电容, 分别为 10uf 和 4.7nf 滤波器电容。见表 3-3。

表 3-3 芯片电源管脚说明

13	VDD33	Р	芯片电源, 3.3V	
15	DVDD33	Р	数字电路电源, 3.3V	
16	VDD33LNA	Р	LNA 电源, 3.3V	

芯片 18 脚附近放置 47uf 滤波电容, 19 和 20 脚附近放置 4.7uf 电容。推荐有条件客户在底板上放置 330uf 电解电容。见表 3-4。

表 3-4 芯片电源管脚说明

18	VDD33PA	P	PA 电源、3.3V
19	VDD33_PLLA	P	模拟电源, 3.3V
20	VDD33ANA	Р	模拟电源, 3.3V

芯片 50 脚需要外接 1uf 滤波电容。

芯片21脚需外接24K1%精度电阻。

3.10 地平面设计

W601 芯片中间 PAD 是芯片地焊盘,必须接地处理,同时需要打孔,跟地平面良好接触散热。地过孔如 3-5 图所示。

图 3-5 PAD 焊盘地孔设计

产品设计完成后 PCB 需要所有层做敷铜接地处理,天线部分敷铜严格按照 3.9 章节处理,背面要尽量少走线保证地的完整性。

3.11 天线设计

天线设计根据客户需要可使用外置天线,也可以使用 PCB 板载天线。根据天线的不同对产品有不同的要求。

3.11.1 外置天线

使用外置天线,对连接外置天线的连接座尽可能远离底板电源等噪声源,防止干扰天线,影响整个系统射频性能。

3.11.2 板载天线

使用板载天线,需严格按照本指导书设计,防止天线性能下降,影响产品使用。天线背面敷铜需全部挖空,天线参考地平面尽可能大,天线必须经过实际仿真,仿真后天线尺寸图导入 PCB。图 3-9 为板载天线性能影响较小的天线摆放方式,建议采用该摆放方式。其中黑色部分为 W601 芯片在板上位置,绿色区域是天线区域,两边白色区域为净空区域,净空区域不允许摆放器件和走线,并且该区域各层禁止敷铜。

图 3-9 板载天线放置要求