Case 1:

The following configuration has the corner of A_2 to be at $(0, 0, D_z)$,

$$F_{d1-2} = \frac{1}{2\pi} \left\{ \frac{A}{\left(1 + A^2\right)^{1/2}} \tan^{-1} \left[\frac{B}{\left(1 + A^2\right)^{1/2}} \right] + \frac{B}{\left(1 + B^2\right)^{1/2}} \tan^{-1} \left[\frac{A}{\left(1 + B^2\right)^{1/2}} \right] \right\}$$

Definitions: A=a/c; B=b/c

Use the following notation:

$$a=D_x$$
, $b=D_y$, $c=D_z$

Determine the view factor if the corner of the rectangle is at (x, y, z)

- a. Find the view factor by superposition
- b. Find the view factor by Monte Carlo
- c. Find the view factor between A_1 and A_2 where A_1 is a rectangle with dimension $D_{x,0}$ by $D_{y,0}$, left corner at the origin A_2 is a rectangle with dimension D_x by D_y , left corner at (x, y, z)

Case 2:

The following configuration has the corner of A_2 to be at $(D_x, 0, 0)$,

$$F_{d1-2} = \frac{1}{2\pi} \left[\tan^{-1} \left(\frac{1}{C} \right) - \frac{C}{Y} \tan^{-1} \left(\frac{1}{Y} \right) \right]$$

Definitions:
$$A=a/b$$
; $C=c/b$; $Y=(A^2+C^2)^{1/2}$

Use the following notation:

$$a=D_z, b=D_y, c=D_x$$

Determine the view factor if the corner of the rectangle is at (x, y, z)

- a. Find the view factor by superposition
- b. Find the view factor by Monte Carlo
- c. Find the view factor between A_1 and A_2 where A_1 is a rectangle with dimension $D_{x,0}$ by $D_{y,0}$, left corner at the origin A_2 is a rectangle with dimension D_y by D_z , left corner at (x, y, z)