Package 'masked.data'

January 20, 2022

January 20, 2022
Title Masked Data
Version 0.0.0.9000
Description Set of functions for working with masked data, estimating series systems from masked data, and making predictions from masked data.
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Imports dplyr, extraDistr, jsonlite, matlib, numDeriv, readr, stats, tibble, mvtnorm
Depends R (>= 2.10)
LazyData true
VignetteBuilder knitr
R topics documented:
confint.md_estimate

fisher_info	
fisher_info.md_estimate	. 7
hazard	
hazard.exp_dist	. 8
lomax_series_data_1	. 8
lomax_series_data_2	. 9
make_exp_dist	. 10
make_exp_series	. 10
make_normal	. 11
masked.data	
md_candidates_as_matrix	
md_candidates_to_strings	
md_candidate_m0	
md_candidate_m1	
md_exp_series	
md_exp_series_node_failure_m0	
md_exp_series_system_failure_interval_m0	
md_fisher_scoring	
md_info_exp_series_m0	. 16
md_info_lomax_series_m0	
md_is_masked_data	
md_kloglike_exp_series_m0	
md_kloglike_lomax_series_m0_ref	
md_lomax_series	
md_mle_exp_series_m0	
md_node_times_as_matrix	
md_num_nodes	
md_read_json	
md_score_exp_series_m0	
md_series_data	
md_series_node_failure_decorator_m0	
md_series_system_failure_decorator_m0	
md_write_csv	
num_nodes	
params	
params.normal	
params.series	
pdf	
pdf.exp_dist	
point	
point.md_estimate	. 27
print.tbl_md	. 27
sampler	. 28
sampler.exp_dist	. 28
sampler.md_estimate	. 28
sampler.normal	. 29
vcov.exp_dist	. 29
vcov.exp series	

confint.md_estimate 3

	vcov.md_estimate vcov.normal																				
Index																					32
confi	nt.md_estimate	Meth mash							ls d	of i	the	p	are	an	ıet	er	va	lue	es c	of a	<u>-</u>

Description

Method to obtain the confidence intervals of the parameter values of a masked data estimator, $md_estimate$.

Usage

```
## S3 method for class 'md_estimate'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object The md_estimate object to compute the confidence intervals for

parm Unused

level Confidence level, defaults to 0.95 (alpha=.05)

 $\verb|exp_series_data_1| \qquad \textit{Masked data for a series system with exponentially distributed nodes}$

Description

Masked data containing the system lifetime and other attributes of 1000 series system with parameter value theta=c(3,4,5) and candidate model m0.

Usage

```
exp_series_data_1
```

Format

A data frame with 1000 rows and 9 variables:

- ${\bf s}~$ Real observable variable, system lifetime
- k Integer latent variable, the failed node
- w Integer observable variable, number of candidates
- t.1 Real latent variable, lifetime of node 1

4 exp_series_data_2

- **t.2** Real latent variable, lifetime of node 2
- **t.3** Real latent variable, lifetime of node 3
- c.1 Boolean observable variable, TRUE indicates node 1 is in candidate set
- **c.2** Boolean observable variable, TRUE indicates node 2 is in candidate set
- c.3 Boolean observable variable, TRUE indicates node 3 is in candidate set

Details

Each candidate is of size w=2.

Source

```
https://github.com/queelius/masked.data/blob/master/data-raw/exp_series_data_1_
gen.R
```

Description

Masked data containing the system lifetime and other attributes of 1000 series parameterized by theta=c(3,4,5,6,7) and candidate model m0.

Usage

```
exp_series_data_2
```

Format

A data frame with 100000 rows and 13 variables:

- s Real observable variable, system lifetime
- k Integer latent variable, the failed node
- w Integer observable variable, number of candidates
- t.1 Real latent variable, lifetime of node 1
- **t.2** Real latent variable, lifetime of node 2
- t.3 Real latent variable, lifetime of node 3
- **t.4** Real latent variable, lifetime of node 4
- **t.5** Real latent variable, lifetime of node 5
- c.1 Boolean observable variable, TRUE indicates node 1 is in candidate set
- c.2 Boolean observable variable, TRUE indicates node 2 is in candidate set
- **c.3** Boolean observable variable, TRUE indicates node 3 is in candidate set
- **c.4** Boolean observable variable, TRUE indicates node 1 is in candidate set
- c.5 Boolean observable variable, TRUE indicates node 2 is in candidate set

exp_series_data_3 5

Details

Candidate set sizes are randomly drawn from {2,3,4}.

Source

https://github.com/queelius/masked.data/blob/master/data-raw/exp_series_data_2_gen.R

exp_series_data_3

Masked data for a 10-out-of-10 (series system) with exponentially distributed nodes.

Description

Masked data containing a sample of 100000 system lifetimes and other attributes where the system is parameterized by theta=c(3,5,4,6,7,2,8,9,10,11) and candidate model is m0.

Usage

```
exp_series_data_3
```

Format

A data frame with 100000 rows and 23 variables:

- s Real observable variable, system lifetime
- k Integer latent variable, the failed node
- w Integer observable variable, number of candidates
- t.1-t.10 Real latent variable, lifetimes of the 10 nodes
- c.1-c.10 Boolean observable variable, c.j TRUE indicates nodes j is in candidate set

Details

Candidate set sizes are randomly drawn from 2,3,4,5,6,7,8,9.

Source

https://github.com/queelius/masked.data/blob/master/data-raw/exp_series_data_3_
gen.R

6 exp_series_data_4

Description

Masked data containing a sample of 10000 system lifetimes and other attributes where the system is parameterized by theta=c(1,1,1) and candidate model m0.

Usage

```
exp_series_data_4
```

Format

A data frame with 10000 rows and 9 variables:

- s Real observable variable, system lifetime
- k Integer latent variable, the failed node
- w Integer observable variable, number of candidates
- t.1 Real latent variable, lifetime of node 1
- **t.2** Real latent variable, lifetime of node 2
- **t.3** Real latent variable, lifetime of node 3
- c.1 Boolean observable variable, c.1 TRUE indicates nodes j is in candidate set
- c.2 Boolean observable variable, c.2 TRUE indicates nodes j is in candidate set
- **c.3** Boolean observable variable, c.3 TRUE indicates nodes j is in candidate set

Details

Candidate set sizes are w=2.

Source

https://github.com/queelius/masked.data/blob/master/data-raw/exp_series_data_4_gen.R

fisher_info 7

fisher_info

Generic method for obtaining the fisher information matrix of an estimator, if supported.

Description

Generic method for obtaining the fisher information matrix of an estimator, if supported.

Usage

```
fisher_info(x, ...)
```

Arguments

Х

The object to obtain the fisher information of

```
fisher_info.md_estimate
```

Method to obtain the fisher information matrix of an md_estimate.

Description

Method to obtain the fisher information matrix of an md_estimate.

Usage

```
## S3 method for class 'md_estimate'
fisher_info(x, ...)
```

Arguments

Χ

The md_estimate object to obtain the fisher information of

8 lomax_series_data_1

hazard

Generic method for obtaining the hazard function of a random variable.

Description

Generic method for obtaining the hazard function of a random variable.

Usage

```
hazard(x, ...)
```

Arguments

Х

The object to obtain the hazard function of

hazard.exp_dist

Method to obtain the hazard function of an exp_dist object.

Description

Method to obtain the hazard function of an exp_dist object.

Usage

```
## S3 method for class 'exp_dist' hazard(x, ...)
```

Arguments

Х

The exp_dist object to obtain the hazard function of

lomax_series_data_1

Masked data for a series system with lomax distributed nodes and candidate sets that model m0

Description

Masked data containing the system lifetime and other attributes of 10000 series system with parameters lambda=c(3,4,5) and kappa=c(2,3,4). Every candidate set (of model m0) has w=2 candidate nodes.

Usage

```
lomax_series_data_1
```

lomax_series_data_2

Format

A data frame with 10000 rows and 9 variables:

- s Real observable variable, system lifetime
- **k** Integer latent variable, the failed node
- w Integer observable variable, number of candidates
- t.1 Real latent variable, lifetime of node 1
- **t.2** Real latent variable, lifetime of node 2
- **t.3** Real latent variable, lifetime of node 3
- c.1 Boolean observable variable, TRUE indicates node 1 is in candidate set
- c.2 Boolean observable variable, TRUE indicates node 2 is in candidate set
- **c.3** Boolean observable variable, TRUE indicates node 3 is in candidate set

Source

```
https://github.com/queelius/masked.data/blob/master/data-raw/lomax_series_data_
1_gen.R
```

 ${\tt lomax_series_data_2}$

Masked data for a series system with lomax distributed nodes and candidate sets that model m0

Description

Masked data containing the system lifetime and other attributes of 2000 series system with parameters lambda=c(1,1.5,.75) and kappa=c(2,1.5,2.5). Every candidate set (of model m0) has w=2 candidate nodes.

Usage

lomax_series_data_2

Format

A data frame with 2000 rows and 9 variables:

- s Real observable variable, system lifetime
- k Integer latent variable, the failed node
- w Integer observable variable, number of candidates
- t.1 Real latent variable, lifetime of node 1
- **t.2** Real latent variable, lifetime of node 2
- t.3 Real latent variable, lifetime of node 3
- c.1 Boolean observable variable, TRUE indicates node 1 is in candidate set
- **c.2** Boolean observable variable, TRUE indicates node 2 is in candidate set
- c.3 Boolean observable variable, TRUE indicates node 3 is in candidate set

make_exp_series

Source

 $https://github.com/queelius/masked.data/blob/master/data-raw/lomax_series_data_2_gen.R$

make_exp_dist

Construct exponential distribution object.

Description

Construct exponential distribution object.

Usage

```
make_exp_dist(rate)
```

Arguments

rate

failure rate

make_exp_series

Construct exponential series object.

Description

Construct exponential series object.

Usage

```
make_exp_series(rate)
```

Arguments

rate

failure rates

make_normal 11

make_normal

Construct (multivariate or univariate) normal distribution object.

Description

Construct (multivariate or univariate) normal distribution object.

Usage

```
make_normal(mu, sigma = diag(length(mu)))
```

Arguments

mu mean

sigma variance-covariance matrix

masked.data

masked.data: A package for estimating parameters from masked data

Description

The masked data package provides a general framework for working with masked data and designing functions to solve for the parameter's of latent node lifetime distributions in a series system.

data structures

```
md_estimate tbl_md
```

tbl_md tools

```
md_write_csv
```

MLE point estimators

```
md_mle_exp_series_m0 md_mle_exp_series_m1 md_mle_exp_series_m0 point.md_estimate
```

MLE interval estimators and covariance

```
vcov.md_estimate info.md_estimate confint.md_estimate
```

```
md\_candidates\_as\_matrix
```

Convert the columns corresponding to the candidate matrix to a matrix object.

Description

Convert the columns corresponding to the candidate matrix to a matrix object.

Usage

```
md_candidates_as_matrix(md)
```

Arguments

md

masked data

Value

Candidate sets represented as a Boolean matrix

```
md_candidates_to_strings
```

Candidate matrix to stringified vector of integers

Description

Candidate matrix to stringified vector of integers

Usage

```
md_candidates_to_strings(md)
```

Arguments

 md

masked data

md_candidate_m0 13

Description

Decorates masked data object md with candidate sets according to candidate model m0.

Usage

```
md_candidate_m0(md, m)
```

Arguments

md masked data, data frame object with column k for failed component and column

w for corresponding candidate set size.

m number of nodes in the series system

Details

Specifically, the candidate sets are generated according to the alpha-masked model, where C[i,] contains k[i] and w[i-1] nodes randomly selected without replacement from $\{1, ..., m\} - \{k[i]\}$.

Value

masked data with candidate sets that model m0

md_candidate_m1	Candidate model m1	
-----------------	--------------------	--

Description

Decorates masked data object md with candidate sets according to candidate model m1.

Usage

```
md\_candidate\_m1(md, m)
```

Arguments

md masked data, a data frame object with column 'k' for failed component, column

'w' for corresponding candidate set size, and column 'alpha' for corresponding

alpha probabilities

m Integer, number of nodes in the series system

14 md_exp_series

Details

Specifically, the candidate sets are generated according to the alpha-masked model, where with probability alpha[i], C[i,] contains k[i] and w[i-1] nodes randomly selected without replacement from $\{1, \ldots, m\}$ -{ k[i]} and with probability 1-alpha[i], C[i,] contains w[i] nodes randomly selected without replacement from $\{1, \ldots, m\}$ -{ k[i]}.

Value

alpha-masked data with candidate sets that model m1

md_exp_series Generates masked data for a series system with exponentially distributed nodes and candidate sets according to candidate_model.

Description

Generates masked data for a series system with exponentially distributed nodes and candidate sets according to candidate_model.

Usage

```
md_exp_series(n, theta, w, candidate_model = md_candidate_m0, metadata = T)
```

Arguments

n Integer. The sample size (each row is an observation).

Numeric vector. The jth component has a failure rate theta[j].

w Integer vector. For the ith observation, generate w[j] candidates.

candidate_model

Function that accepts masked data as an argument. The candidate model, defaults to md_candidate_m0. If set to NULL, then do not generate a candidate set. md_mle_exp_series will treat such masked data as a sample that includes every

node as candidates.

metadata Boolean. If TRUE writes meta-data for series system to attributes of masked data.

Value

masked data, a data frame of n observations, (s,k,t1,...,tm,c1,...,cm) where k, t, and c are covariates (or predictors) of s,k,t1,...,tm.

Examples

```
md_exp_series(n=10, theta=c(1,2,3), w=rep(2,10))
```

```
md_exp_series_node_failure_m0
```

Constructs a pdf object for the conditional node failure in an exponential series system according to candidate model m0, $f(k|c,s) = h_k(s)/h(s) I(k in c)$.

Description

This simplifies to f(k|c) = theta[k] / sum(theta[j], j in c) for the exponential series system.

Usage

```
md_exp_series_node_failure_m0(theta)
```

Arguments

theta

parameter value of exp_series

```
md_exp_series_system_failure_interval_m0
```

Constructs the shortest interval for the system lifetime given a candidate set under model m0 with a probability p that the interval contains the system failure.

Description

Constructs the shortest interval for the system lifetime given a candidate set under model m0 with a probability p that the interval contains the system failure.

Usage

```
md_exp_series_system_failure_interval_m0(theta, p)
```

Arguments

theta parameter value of exp_series

p probability that system failure time is in the computed interval

md_fisher_scoring

Fisher scoring algorithm.

Description

Fisher scoring algorithm.

Usage

```
md_fisher_scoring(theta0, info, score, eps = 1e-05, max_iterations = 10000L)
```

Arguments

theta0 initial guess of theta with p components

info information matrix function of type $R^p - > R^{p \times q}$

score score function of type $R^p - > R^p$

eps stopping condition

max_iterations maximum number of iterations

Algorithm

The algorithm is straightforward. Details here.

md_info_exp_series_m0 Information matrix (observed) for rate parameter with respect to masked data of a series system with exponentially distributed lifetimes and candidate model m0.

Description

Information matrix (observed) for rate parameter with respect to masked data of a series system with exponentially distributed lifetimes and candidate model m0.

Usage

```
md_info_exp_series_m0(md)
```

Arguments

md

masked data for candidate model m0

Value

observed information matrix of type $R^m -> R^m \times m$

```
md_info_lomax_series_m0
```

Observed information matrix of the rate parameter of the series system with exponentially distributed component lifetimes given masked data with candidate sets according to model m0.

Description

Observed information matrix of the rate parameter of the series system with exponentially distributed component lifetimes given masked data with candidate sets according to model m0.

Usage

```
md_info_lomax_series_m0(md)
```

Arguments

md

masked data

Value

observed info

 $md_is_masked_data$

Test whether x is masked data

Description

An object is considered to be masked data if it is a type of data frame (e.g., tibble) and it has at least two columns for candidate sets named c.1 and c.2.

Usage

```
md_is_masked_data(x)
```

Arguments

Х

object to test

md_kloglike_exp_series_m0

Kernel log-likelihood for masked data m0 for exponential series system using sufficient statistics.

Description

The log of the kernel of the likelihood function for masked data for a series system with exponentially distributed lifetimes and candidate sets that model m0 using sufficient statistics.

Usage

```
md_kloglike_exp_series_m0(md)
```

Arguments

md

masked data

```
md_kloglike_lomax_series_m0_ref
```

Kernel log-likelihood for masked data m0 for lomax series system.

Description

The log of the kernel of the likelihood function for masked data for a series system with lomax distributed lifetimes and candidate sets that model m0.

Usage

```
md_kloglike_lomax_series_m0_ref(md)
```

Arguments

md

masked data for candidate model m0

Details

This is the unoptimized version, which serves as a ground-truth for testing a more efficient implementation.

md_lomax_series 19

md_lomax_series	Generates masked data for a series system with lomax distributed
	nodes and candidate sets according to candidate_model.

Description

Generates masked data for a series system with lomax distributed nodes and candidate sets according to candidate_model.

Usage

```
md_lomax_series(
    n,
    lambda,
    kappa,
    w,
    candidate_model = md_candidate_m0,
    metadata = T
)
```

Arguments

n Integer. The sample size (each row is an observation).

lambda Numeric vector.

kappa Numeric vector. The jth node is parameterized by theta_j := (lambda_j,kappa_j).

w Integer vector. For the ith observation, generate w_j candidates.

candidate_model

Function that accepts masked data as an argument. The candidate model, defaults to md_candidate_m0. If set to NULL, then do not generate a candidate set. md_mle_exp_series will treat such masked data as a sample that includes

every node as candidates.

metadata Boolean. If TRUE writes meta-data for series system to attributes of masked

data (tbl md).

Value

masked data, a data frame of n observations, (s,k,t1,...,tm,c1,...,cm) where k, t, and c are covariates (or predictors) of s,k,t1,...,tm.

Examples

```
md_lomax_series(n=10,lambda=c(1,2,3),kappa=c(4,5,6),w=rep(2,10))
```

md_mle_exp_series_m0

Maximum likelihood estimator of the parameters of a series system with nodes that have exponentially distributed lifetimes given a sample of masked data according to candidate model m0.

Description

Maximum likelihood estimator of the parameters of a series system with nodes that have exponentially distributed lifetimes given a sample of masked data according to candidate model m0.

Usage

```
md_mle_exp_series_m0(md, theta0 = NULL, eps = 1e-05, max_iterations = 10000L)
```

Arguments

md masked data

theta0 initial guess for MLE eps stopping condition

max_iterations stop if iterations reaches max_iterations.

Value

MLE estimate

```
md_node_times_as_matrix
```

Convert the columns corresponding to the node times matrix to a matrix object.

Description

Convert the columns corresponding to the node times matrix to a matrix object.

Usage

```
md_node_times_as_matrix(md)
```

Arguments

md masked data

Value

Node times represented as a real matrix

md_num_nodes 21

md_num_nodes	Retrieve the number of nodes implicitly defined by the masked data input 'md'.
--------------	--

Description

Retrieve the number of nodes implicitly defined by the masked data input 'md'.

Usage

```
md_num_nodes(md)
```

Arguments

md

masked data

Value

number of nodes in the series system

 md_read_json

Read masked data from a JSON file. If the JSON file has a 'dataset' field, then each member of this field is assumed to refer to a CSV file to read a masked data sample from.

Description

Any metadata in the JSON file is inserted into the attributes of the masked data samples.

Usage

```
md_read_json(filename)
```

Arguments

filename

filename for csv

Value

list of masked data objects

22 md_series_data

```
md_score_exp_series_m0
```

score function of masked data for a series system with exponentially distributed lifetimes.

Description

score function of masked data for a series system with exponentially distributed lifetimes.

Usage

```
md_score_exp_series_m0(md)
```

Arguments

md

masked data for candidate model m0

Value

score function of type R^m -> R

md_series_data

Generates masked data for a series system with the given node failure times t, candidate set model candidate_model, and candidate set sizes w.

Description

Generates masked data for a series system with the given node failure times t, candidate set model candidate_model, and candidate set sizes w.

Usage

```
md_series_data(t, w, candidate_model = md_candidate_m0)
```

Arguments

t matrix of node failure times

w Integer vector. For the ith observation, generate w_j candidates.

candidate_model

Function that accepts masked data as an argument. The candidate model, defaults to md_candidate_m0. If set to NULL, then do not generate a candidate set. md_mle_exp_series will treat such masked data as a sample that includes every node as candidates.

Value

masked data, a data frame of n observations, (s,k,t1,...,tm,c1,...,cm) where k, t, and c are covariates (or predictors) of s,k,t1,...,tm.

```
md_series_node_failure_decorator_m0
```

Decorate masked data (tbl_md) with node failure probabilities.

Description

Under model m0, we do not know which node caused the failure, (note: if |C|=1, under m0 we know precisely which node failed), but if we have an estimate (or know) theta, then we may construct f(k|s,c) and compute the node failure probabilities in a masked data object md.

Usage

```
md_series_node_failure_decorator_m0(md, fk)
```

Arguments

md masked data fk pdf f(k|s,c)

Details

We decorate masked data md with an estimate of the probabilities, f(k|s,c) for k=1,...,k=m and return the result.

```
md_series_system_failure_decorator_m0
```

Decorate masked data (tbl_md) with node failure probabilities.

Description

Under model m0, we do not know which node caused the failure, (note: if |C|=1, under m0 we know precisely which node failed), but if we have an estimate (or know) theta, then we may construct f(kls,c) and compute the node failure probabilities in a masked data object md.

Usage

```
md_series_system_failure_decorator_m0(md, q)
```

Arguments

md masked data

q interval computer for slc

num_nodes

Details

We decorate masked data md with an estimate of the probabilities, f(k|s,c) for k=1,...,k=m and return the result.

md_write_csv Write masked data data frame (tibble) object to a CSV (comma separated file), optionally writing associated meta-data to a JSON file.

In particular, meta-data in this case is defined as the attributes of the data frame object.

Description

Write masked data data frame (tibble) object to a CSV (comma separated file), optionally writing associated meta-data to a JSON file. In particular, meta-data in this case is defined as the attributes of the data frame object.

Usage

```
md_write_csv(md, filename, write.metadata = T)
```

Arguments

md a masked data frame filename for csv write.metadata write a separate

num_nodes

Method for obtaining the number of nodes in an object.

Description

Method for obtaining the number of nodes in an object.

Usage

```
num_nodes(series)
```

Arguments

series

The object to obtain the number of nodes of

params 25

params

Generic method for obtaining the parameters of a parametric distribution.

Description

Generic method for obtaining the parameters of a parametric distribution.

Usage

```
params(x, ...)
```

Arguments

Χ

The object to obtain the parameters of

params.normal

Method for obtaining the parameters of a normal object.

Description

Method for obtaining the parameters of a normal object.

Usage

```
## S3 method for class 'normal' params(x, ...)
```

Arguments

Χ

The object to obtain the parameters of

params.series

Method for obtaining the parameters of a series distribution object.

Description

Method for obtaining the parameters of a series distribution object.

Usage

```
## S3 method for class 'series'
params(x, ...)
```

Arguments

Х

The series object to obtain the parameters of

26 point

pdf

Generic method for obtaining the pdf function of a random variable.

Description

Generic method for obtaining the pdf function of a random variable.

Usage

```
pdf(x, ...)
```

Arguments

Х

The object to obtain the hazard function of

pdf.exp_dist

Method to obtain the pdf of an exp_dist *object.*

Description

Note that since exp_series is also exponentially distributed, this works for that too.

Usage

```
## S3 method for class 'exp_dist' pdf(x, ...)
```

Arguments

Х

The object to obtain the pdf of

point

Generic method for obtaining the point estimate of an estimator.

Description

Generic method for obtaining the point estimate of an estimator.

Usage

```
point(x, ...)
```

Arguments

Χ

The object to obtain the point estimate of

point.md_estimate 27

point.md_estimate	Method to obtain the point estimate of a masked data estimator,
	md_estimate.

Description

Method to obtain the point estimate of a masked data estimator, $md_estimate$.

Usage

```
## S3 method for class 'md_estimate'
point(x, ...)
```

Arguments

x The md_estimate object to obtain the point estimate of

Description

Print method for masked data (tbl_md).

Usage

```
## S3 method for class 'tbl_md'
print(x, pprint = F, drop_latent = F, ...)
```

Arguments

x masked data to print

pprint Boolean, show candidates as a string column drop_latent Boolean, drop the latent random variables

28 sampler.md_estimate

sampler

Generic method for sampling from distribution objects.

Description

Generic method for sampling from distribution objects.

Usage

```
sampler(x, ...)
```

Arguments

Х

The object to sample from.

 ${\tt sampler.exp_dist}$

Method to sample from an exp_dist object.

Description

Method to sample from an exp_dist object.

Usage

```
## S3 method for class 'exp_dist'
sampler(x, ...)
```

Arguments

Х

The exp_dist object to sample from.

 ${\tt sampler.md_estimate}$

Method to obtain the sampler for an md_estimate object.

Description

Method to obtain the sampler for an md_estimate object.

Usage

```
## S3 method for class 'md_estimate'
sampler(x, ...)
```

Arguments

Х

The md_estimate object to create a sampling procedure from

sampler.normal 29

sampler.normal

Method for sampling from a normal object.

Description

Method for sampling from a normal object.

Usage

```
## S3 method for class 'normal'
sampler(x, ...)
```

Arguments

Χ

The object to sample from

vcov.exp_dist

Method for obtaining the variance of a exp_dist *object.*

Description

Method for obtaining the variance of a exp_dist object.

Usage

```
## S3 method for class 'exp_dist'
vcov(object, ...)
```

Arguments

object

The exp_dist object to obtain the variance of

30 vcov.md_estimate

vcov.exp_series

Method for obtaining the variance-covariance of a exp_series object.

Description

Method for obtaining the variance-covariance of a exp_series object.

Usage

```
## S3 method for class 'exp_series'
vcov(object, ...)
```

Arguments

object

The exp_seriesThe object to obtain the variance of

 $\verb|vcov.md_estimate||$

Compute the covariance matrix from the given masked data estimate.

Description

Sampling distribution of the MLE is a multivariate normal with mean given by the true parameter value and, asymptotically, a covariance given by the inverse of the Fisher information matrix.

Usage

```
## S3 method for class 'md_estimate'
vcov(object, ...)
```

Arguments

object

The variance-covariance matrix of the estimator to obtain

vcov.normal 31

vcov.normal	Retrieve the variance-covariance matrix (or scalar) of a normal object.

Description

Retrieve the variance-covariance matrix (or scalar) of a normal object.

Usage

```
## S3 method for class 'normal'
vcov(object, ...)
```

Arguments

object

The normal object to retrieve the variance-covariance matrix from

Index

* datasets	md_kloglike_lomax_series_m0_ref, 18
<pre>exp_series_data_1, 3</pre>	md_lomax_series, 19
<pre>exp_series_data_2,4</pre>	<pre>md_mle_exp_series_m0, 20</pre>
exp_series_data_3,5	<pre>md_node_times_as_matrix, 20</pre>
exp_series_data_4,6	md_num_nodes, 21
<pre>lomax_series_data_1, 8</pre>	<pre>md_read_json, 21</pre>
<pre>lomax_series_data_2,9</pre>	<pre>md_score_exp_series_m0, 22</pre>
	md_series_data,22
confint.md_estimate, 3	<pre>md_series_node_failure_decorator_m0,</pre>
exp_series_data_1,3	md_series_system_failure_decorator_m0,
exp_series_data_2,4	23
exp_series_data_3,5	md_write_csv, 24
exp_series_data_4,6	md_wr 100_03V, 21
fisher_info,7	num_nodes, 24
fisher_info.md_estimate, 7	params, 25
	params.normal, 25
hazard, 8	params.series, 25
hazard.exp_dist,8	pdf, 26
	pdf.exp_dist, 26
lomax_series_data_1, 8	point, 26
<pre>lomax_series_data_2,9</pre>	point.md_estimate, 27
make_exp_dist, 10	print.tbl_md, 27
make_exp_urst, 10 make_exp_series, 10	p, =,
make_exp_series, 10 make_normal, 11	sampler, 28
masked.data, 11	sampler.exp_dist, 28
md_candidate_m0, 13	<pre>sampler.md_estimate, 28</pre>
md_candidate_mio, 13	sampler.normal, 29
md_candidate_mi, 13 md_candidates_as_matrix, 12	
md_candidates_as_matrix, 12 md_candidates_to_strings, 12	vcov.exp_dist, 29
md_exp_series, 14	vcov.exp_series,30
md_exp_series_node_failure_m0,15	vcov.md_estimate, 30
md_exp_series_node_rallure_interval_m0,	vcov.normal, 31
15	
md_fisher_scoring, 16	
md_info_exp_series_m0, 16	
md_info_lomax_series_m0,17	
md_is_masked_data, 17	
md_loglike exp series m0.18	