

Learning Objective Explain the concepts of Turing Machine and its extension. Explain the Concept of decidability and different undecidable problems Understand the concept of reducibility Explain the concept or recursion and recursion theorem

SHARLIN CONTROL VICTORIAN	Turing Machine						
What does a Turing Machine Does							
 Determine if an input x is in a language. 							
	at is, answer if the answer of a problem P for the instance x is es".						
 Compu 	ate a function						
√Gi	ven an input x , what is $f(x)$?						
■ How de	oes Turing Machine work						
 For each 	ch move, a TM						
√rea	nds the symbol under its tape head						
	coording to the <i>transition function</i> on the symbol read from the se and its current state, the TM:	:					
	write a symbol on the tape						
	move its tape head to the left or right one cell or not						
	changes its state to the next state						
© Bharati Vidyapeeth	n's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar	113.4					

Turing Machine

- When does a Turing Machine stop
 - When it gets into the special state called halt state. (halts)
 - \checkmark The output of the TM is on the tape.
 - When the tape head is on the leftmost cell and is moved to the left. (hangs)
 - When there is no *next state*. (hangs)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Manish Kuma

U3.

Formal definition of Turing machine

- A Deterministic Turing Machine is a quintuple $(Q, \Sigma, \Gamma, \delta, s)$, where
 - The set of states Q is finite, not containing halt state h,
 - The input alphabet Σ is a finite set of symbols not including the blank symbol $\Delta,$
 - The tape alphabet Γ is a finite set of symbols containing Σ, but not including the blank symbol Δ,
 - The start state s is in Q, and
 - The transition function δ is a partial function from

 $Q\times (\Gamma\cup\{\Delta\})\to Q\cup\{h\}\times (\Gamma\cup\{\Delta\})\times \{\mathsf{L},\,\mathsf{R},\,\mathsf{S}\}.$

Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

Turing Machine as a language acceptor
Definition
Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM, and $w \in \Sigma^*$.
T accepts w if $(s, \varepsilon, \Delta, w) \mid_{T^*} (h, \varepsilon, \Delta, 1)$.
The language accepted by a TM T , denoted by $L(T)$, is the set of strings accepted by T .

SHARE C NOWSEEN

Mutitape Turing Machine

- In this extension, the machine can have several tapes, each with its own read/write head. We focus on the case where there are two tapes.
- In one step, the machine reads the symbols scanned by all heads and then, depending on those symbols and its current state, each head will move or write and the control unit will enter a new state.
- Note that the actions of the heads are independent of each other: in one step one head might move left and another might move right or write an "a".

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

 This is a single-tape Turing machine with K read/write heads. The heads are numbered 1 through K. The move of the TM depends on the state and on the symbol scanned by each head. In one move the heads may move independently left, right, or remain stationary. The move function of the two head can be defined as δ(state, symbol under Head1,Symbol under Head2) = (New state, (S₁, M₁), (S₂, M₂)) [Assumed only two head] Every multi-head Turing machine M₁ has equivalent single head Turing machine M₂. (How?) CBurral Vergagest's Institute of Georgetar Applications and Management, New Delth-Ch. by Managh Rumar Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along o	heads. The heads are numbered 1 through K. The move of the TM depends on the state and on the symbol scanned by each head. In one move the heads may move independently left, right,	
 The heads are numbered 1 through K. The move of the TM depends on the state and on the symbol scanned by each head. In one move the heads may move independently left, right, or remain stationary. The move function of the two head can be defined as δ(state, symbol under Head1,Symbol under Head2) = (New state, (S₁, M₁), (S₂, M₂)) [Assumed only two head] Every multi-head Turing machine M₁ has equivalent single head Turing machine M₂. (How?) C Bharatt Vidyappenth's Institute of Computer Applications and Wanagament, New Collid-Cl. by Wandth Kumar Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. In is a a a a a a a a a a a a a a a a a a	 The heads are numbered 1 through K. The move of the TM depends on the state and on the symbol scanned by each head. In one move the heads may move independently left, right, 	
 The move of the TM depends on the state and on the symbol scanned by each head. In one move the heads may move independently left, right, or remain stationary. The move function of the two head can be defined as δ(state, symbol under Head1,Symbol under Head2) = (New state, (S₁, M₁), (S₂, M₂)) [Assumed only two head] Every multi-head Turing machine M₁ has equivalent single head Turing machine M₂. (How?) CBlastril Valyappenth's Institute of Composite Applications and Management, New Delth-C3, by Mantah Kumw This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is along one axis, and the head is at the left end of the input. Initially the input is a long one axis, and the head is at the left end of the input. Initially the input is a long one axis, and the head is at the left end of the input. Initially the input is a long one axis, and the head is at the left end of the input. Initially the input is a long one axis, and the head is at the left end of the input. Initially the input is a long one axis, and the head is at the left end of the input. Initially the input is a long one axis, and the head is at the left end of the input. Initially the input is a long one axis, and the head is at the left end of the input. 	 The move of the TM depends on the state and on the symbol scanned by each head. In one move the heads may move independently left, right, 	
 In one move the heads may move independently left, right, or remain stationary. The move function of the two head can be defined as δ(state, symbol under Head1,Symbol under Head2) = (New state, (S₁, M₁), (S₂, M₂)) [Assumed only two head] Every multi-head Turing machine M₁ has equivalent single head Turing machine M₂. (How?) □ Bharati Vidyspeath's institute of Computer Applications and Management, New Dethi-63, by Manish Kumar ■ This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. ■ Initially the input is along one axis, and the head is at the left end of the input. ■ Initially the input is along one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end of the input. ■ Initially the input is a long one axis, and the head is at the left end o	symbol scanned by each head. • In one move the heads may move independently left, right,	
 The move function of the two head can be defined as δ(state, symbol under Head1, Symbol under Head2) = (New state, (S₁, M₁), (S₂, M₂)) [Assumed only two head] Every multi-head Turing machine M₁ has equivalent single head Turing machine M₂. (How?) □ Dhard! Vidyapseth's Institute of Computer Applications and Management. New Dethi-Cl. by Manith Kumar This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. ■ Initially the input is along one axis, and the head is at the left end of the input. ■ 1		
 δ(state, symbol under Head1,Symbol under Head2) = (New state, (S₁, M₁), (S₂, M₂)) [Assumed only two head] Every multi-head Turing machine M₁ has equivalent single head Turing machine M₂. (How?) Charactividyspeeth's institute of Computer Applications and Management, New Delibids, by Manish Kumar This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. Initially the input is along one axis, and the head is at the left end of the input. 		-
state, (S ₁ , M ₁), (S ₂ , M ₂)) [Assumed only two head] Every multi-head Turing machine M ₁ has equivalent single head Turing machine M ₂ . (How?) Otherall Vdyspeeth's institute of Computer Applications and Managament, New Dethi-43, by Manish Kumar Wulti-dimensional Turing Machine This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. Initially the input is along one axis, and the head is at the left end of the input. Solve B. So	 The move function of the two head can be defined as 	
 Every multi-head Turing machine M₂. (How?) C Bhardl Vidyapeeth's Institute of Computer Applications and Management. New Dathi-43. by Manish Kumar This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. Initially the input is along one axis, and the head is at the left end of the input. In transition function: δ (q, a) = {p, A, L/R/U/D} 	• δ (state, symbol under Head1,Symbol under Head2) = (New	
head Turing machine M₂. (How?) Dharati Vidyspeeth's Institute of Computer Applications and Management., New Delibi-G3, by Manish Kumar Multi-dimensional Turing Machine This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. Initially the input is along one axis, and the head is at the left end of the input. N N N N N N N N N		
Multi-dimensional Turing Machine This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. Initially the input is along one axis, and the head is at the left end of the input.		
 This type of Turing machine consists of k-dimensional array of cells infinite in all 2k directions, for some fixed k. Initially the input is along one axis, and the head is at the left end of the input. 		
left end of the input.	This type of Turing machine consists of k-dimensional array	
* Transition function : δ (q, a) = {p, A, L/R/U/D}	, i	
	B B B B B B B B B B B B B B B B B B B	
	0 0 0 0 0 0	
© Bharati Vidyspeeth's Institute of Computer Applications and Management., New Delhi-63, by Manish Kumar U3. 17	• Transition function : δ (q, a) = {p, A, L/R/U/D}	
© Bharatl Vidyspeeth's Institute of Computer Applications and Management,, New Delhi-53, by Manish Kumar U3.17		
	© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Manish Kumar U3.17	

Every equival	Multi-din ent single								ng	mach	nine	has
		В	В	В	В	В	В	В]			
		В	В	a	ь	a	В	В				
		В	В	ь	a	a	В	В				
		В	В	a	a	ь	В	В				
		В	В	В	В	В	В	В				
■ The "B" represents Blank symbol. The equivalent single												
tape represented by following.												
[a b a	B b	а	а	В	а	a t	В	В	ВВ		
Each row is separated by blank space.												

MANUT CONTROL MANUTON

Non-deterministic Turing Machine

- An NTM starts working and stops working in the same way as a DTM.
- Each move of an NTM can be nondeterministic.
- Each move in NTM reads the symbol under its tape head
- According to the transition relation on the symbol read from the tape and its current state, the TM choose one move non-deterministically to:
 - write a symbol on the tape
 - move its tape head to the left or right one cell or not
 - changes its state to the next state

© Bharati Vidyapeeth's Institute of Computer Applications and Management., New Delhi-63, by Manish Kum

U3, 19

Definition of Non-deterministic Turing Machine

• NTM a quintuple $(Q, \Sigma, \Gamma, \delta, s)$,

where

- lacktriangle the set of states Q is finite, and does not contain halt state h,
- the input alphabet Σ is a finite set of symbols, not including the blank symbol Δ ,
- the tape alphabet Γ is a finite set of symbols containing Σ , but not including the blank symbol Δ ,
- the start state s is in Q, and
- $\bullet \ \ \text{the transition f}^{\text{n}} \ \delta: Q \times (\Gamma \cup \{\Delta\}) \rightarrow 2^{Q \cup \{h\} \times (\Gamma \cup \{\Delta\}) \times \{L,R,S\}}.$

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kuma

112.2

SHAME NO STREET

Universal Turing Machine

- Turing Machines are "hardwired" means they execute only one program.
- But, Real Computers are re-programmable.
- So, the solution is Universal Turing machine which has the capability of reprogrammable and simulation of any other Turing machine.
- Universal Turing machine can simulate any Turing machine "M" on string "w".
- Therefore, it accepts a description of Turing machine "M" and the input string "w".

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

112.26

SHAREN WINNERS	Universal Turing Machine	
 The des string. 	cription of Turing machine is encoded by the	oinary
types of Alpha State Head	oding of a Turing machine involves following encoding whether encoding enco	four
	ition encoding g Machine encoding	
© Bharati Vidyapeeth	's Institute of Computer Applications and Management., New Delhi-63, by Manish Kumar	112 20

SHABARITY PROPERTY.	Universal Turing Machine						
	Alpha	bet Encod	ling				
Symbols:	a	\bigcup_{j}^{b}	$\stackrel{c}{\downarrow}$	d			
Encoding:	1	11	111	1111			
© Bharati Vidyapeeth's Institute	of Computer Applic	ations and Manageme	nt New Delhi-63, by Ms	ınish Kumar	U3. 2		

SHARIT CONTINUE	Universal Turing Machine					
	Head Move Encoding					
Move:	L R					
	\					
Encoding:	1 11					
	Transition Encoding					
Transition:	$\delta(q_1,a) = (q_2,b,L)$					
Encoding:	10101101101					
	separator					
Bharati Vidyapeeth's Institute of	© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar U3. 31					

MARKET CONTENTS	Uni	versa	l Turi	ng Ma	chine		
	Turing Ma	chine	Enco	ding			
Transitions:							
$\delta(q_1,a)$	$=(q_2,b,I)$	2)	δ (q_2, b	(q) = (q)	$q_3, c,$	(R)
Encoding:	V				\downarrow		
10101	101101	00	110	110	1110	111	011
	sep	↑ arato	r				
© Bharati Vidvapeeth's Inst	itute of Computer Application	ns and Man	agement New	Delhi-63, by	Manish Kumar		112 22

Church-Turing Thesis
■ Church-Turing Thesis: Whenever there is a effective method (algorithm) for obtaining the values of a mathematical function, the function can be computable by a TM.
 An effective computable method is one in which there is finite no. of steps to find the solution i.e. a mechanical process to derive the result also known as algorithm.
■ Hence Church-Turing thesis defines "algorithm".
 Strong Church-Turing thesis: A Turing machine can do anything that a computer can do.
© Bharati Vidyapeeth's Institute of Computer Applications and Management., New Delhi-63, by Manish Kumar U3. 33

HAME OF WINNERS	ļr

Church-Turing Thesis

- It is a thesis not theorem because it has no mathematical proof.
- Arguments to accept the Church -Turing thesis.
 - No one has been able to suggest a counter example to disprove.
 - Some Turing machines can also perform anything that can be performed by digital computer.
 - There are several alternative model of computation like Random Access Machine, Post Machine etc. But no one is more powerful than Turing machine.
- The universal Turing machine gives the idea about the reprogrammable machine and it was used in the invent of modern computer.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kum

U3. 3

Decidability

- A language is "recursive" if there exists a Turing machine that accepts every string of language and rejects every string over the same alphabet that is not in the language
- A language is "recursively enumerable" if there exists a Turing machine that accepts every string of the language, and does not accept strings that are not in the language.
- Strings which are not in the language may be rejected or may cause the Turing machine to go into an infinite loop.
- Every Recursive language is also recursively enumerable.
 But it is not clear if every recursively enumerable language is also recursive.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

U3. 3

Decidability

- A problem whose language is recursive is said to be decidable means there exists a Turing machine that accepts an instance of problem and determine whether the answer is "yes" or "no".
- The best known undecidable problem is the Halting Problem of TM.
- Halting Problem: "Given an arbitrary Turing Machine T as input and equally arbitrary input w, decide whether T halts on w."
- Basically UTM that takes a TM, T as its input, and simulates the T running on input w, and returns or decides whether or not T halts on w.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kuma

186	Halting Problem is Und	ecidable proof					
	The Halting Problem						
	If T _H , exists, then we can input its own	description $dT_{H''}$					
ŀ	<u>Case 1:</u> If $T_{H''}$ halts on $dT_{H''}$, then $T_{H''}$ because of an endless loop.	does not halt on $dT_{H'}$					
ŀ	<u>Case 2:</u> If $T_{H^{"}}$ does not halt on $dT_{H^{"}}$, then $T_{H^{"}}$ does halt on $dT_{H^{"}}$.						
•	This <i>contradicts</i> that T_H ever existed in the first place.	1					
•	The Halting Problem is not solvable by any TM hence undecidable.						

BRAND C NORTH,

Reducibility

- A reduction is a way of converging one problem into another problem in such a way that solution to the second problem can be used to solve first problem.
- Suppose someone wants to find the way around new city.
 He / She can reduce the problem of finding way around city to the problem finding the way on Google map.
- Reduction does not mean to make smaller, it means to transform or convert a problem X to another problem Y that is at least as hard as X. Usually Y is at least as hard as X, and so we express a reduction from X to Y as X ≤ Y.
- Reducibility can be used to show that a problem is unsolvable.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kuma

112.4

Reducibility

- Use the idea that "If A is undecidable and reducible to B, then B is undecidable."
- Suppose R decides $HALT_{TM}$. We construct S to decide A_{TM} .
- S = "On input <M, w>
 - $1. \quad Run \; R \; on \; input <\! M, \; w\! >$
 - 2. If R rejects reject.
 - 3. If R accepts, simulate M on w until it halts.
 - 4. If M has accepted, accept; If M has rejected, reject."
- \blacksquare Since A_{TM} is reduced to $HALT_{TM}, HALT_{TM}$ is undecidable

© Rharati Vidyanaath's Institute of Computer Annications and Managament, New Delhi-63, by Manich Kumar

Recursion Theor	rem
• Statement : Let T be a TM that compute $t: \Sigma^* x \Sigma^* \to \Sigma^*$	es a function
There is TM R that computes a functi for every w , $r(w) = t (< R >, w)$	on $r: \Sigma^* \to \Sigma^*$ where
Proof:	
• We construct a TM R in three parts given by the statement of theorem.	A, B, T where T is
$R \xrightarrow{A \to B \to T}$	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G	3, by Manish Kumar 113, 43

880	Recursion Theorem
	In figure, A is TM $T_{}$ and described by g(<bt>). To preserve the input w, we redesign q so that <math>T_{<bt>}</bt></math> write its output following any string preexisting on the tape.</bt>
•	When A runs the tape contains w <bt>. B is a procedure that examines the tape and applies q to its content. The result is $<$A>.</bt>
•	Now B combines ABT and obtain its description $<\!$ ABT $>=$ R
•	Finally it encodes together with w and place the resulting string.

