3.ANÁLISIS Y DISEÑO DE CONTROLADORES EN EL TIEMPO

Control

Ing. Mecatrónica

D.C. Johan Walter González Murueta

3. Análisis y diseño de controladores en el tiempo

3.1 DEFINICIÓN DE CARACTERÍSTICAS DE UN CONTROLADOR

3.2 TIPOS DE CONTROLADORES

RECORDANDO LA ESTRUCTURA DE UN SISTEMA EN LAZO CERRADO

SISTEMA CONTROLADO EN LAZO CERRADO

Tomando el actuador y proceso juntos tenemos lo que hemos considerado

CONTROLADOR PROPORCIONAL P

Un controlador proporcional es aquel en el que:

$$G_c = K_p$$

$$v(t) = K_p \, e(t)$$

$$V(s) = K_p E(s)$$

$$G_c(s) = \frac{V(s)}{E(s)} = K_p$$

Multiplica por una constate

CONTROLADOR INTEGRAL (I)

Un controlador integral es aquel en el que:

$$v(t) = K_i \int e(t) dt$$

$$K_i = \frac{K_p}{T_i}$$

$$V(s) = \frac{K_i}{s} E(s) \quad \therefore \quad G_c(s) = \frac{V(s)}{E(s)} = \frac{K_i}{s} = \frac{K_p}{T_i s}$$

Multiplica por una constate y tiene un polo en el origen

CONTROLADOR DERIVATIVO (D)

Un controlador derivativo es aquel en el que:

$$v(t) = K_d \frac{d e(t)}{d t}$$

$$K_d = K_p T_d$$

$$V(s) = K_d s E(s)$$
 :: $G_c(s) = \frac{V(s)}{E(s)} = K_d s = K_p T_d s$

Multiplica por una constate y tiene un cero en el origen

CONTROLADOR PROPOCIONAL-INTEGRAL (PI)

Se define en el tiempo como:

$$v(t) = K_p e(t) + K_i \int e(t) dt = K_p e(t) + \frac{Kp}{Ti} \int e(t) dt$$

▶ Obtener Gc(s) en forma:

$$G_c = \frac{\prod_i^m (s - z_i)}{\prod_i^n (s - p_i)}$$

Multiplica por una constate, tiene un cero real movible y un polo en

origen

$$G_c(s) = \frac{V(s)}{E(s)} = K_p \left[\frac{s + 1/T_i}{s} \right] = K_p \left[\frac{s + (K_i/K_p)}{s} \right]$$

CONTROLADOR PROPORCIONAL-DERIVATIVO (PD)

Se define en el tiempo como:

$$v(t) = K_p e(t) + K_p T_d \frac{de(t)}{dt} = K_p e(t) + K_d \frac{de(t)}{dt}$$

Obtener Gc(s) en forma:

$$G_c = \frac{\prod_i^m (s - z_i)}{\prod_i^n (s - p_i)}$$

Multiplica por una constate y tiene un cero real movible

$$G_c(s) = \frac{V(s)}{E(s)} = K_p T_d [s + 1/T_d] = K_p T_d [s + (K_p/K_d)]$$

CONTROLADOR PROPOCIONAL-INTEGRAL-DERIVATIVO (PID)

Se define en el tiempo como:

$$v(t) = K_p e(t) + K_p T_d \frac{de(t)}{dt} + \frac{Kp}{Ti} \int e(t) dt$$
$$= K_p e(t) + K_d \frac{de(t)}{dt} + K_i \int e(t) dt$$

Obtener Gc(s) en forma:

$$Gc = \frac{p(s)}{q(s)}$$

Y analizar su efecto en el plano s

Multiplica por una constate, tiene 2 ceros movibles y un polo en el origen

$$G_c(s) = \frac{V(s)}{E(s)} = K_p T_d \left[\frac{s^2 + (1/T_d)s + 1/T_i T_d}{s} \right]$$

RESUMEN CONTROLADORES

Sistema	Polos	Ceros
Propircional	-	-
Integral	Origen	-
Derivativo	-	Origen
Proporcional Integral	Origen	Real movible
Proporcional Derivativo	-	Real movible
Proporcional Integral Derivativo	Origen	2 movibles

DISEÑO DE CONTROLADORES

- Muchas veces se requiere cambiar los parámetros de respuesta de un sistema.
- El diseño de un controlador se basa en las especificaciones deseadas del comportamiento de un sistema.
- Tener especificaciones demasiado detalladas puede hacer costosa la situación o complicar el diseño
- Hay que buscar un equilibrio costo-beneficio en el diseño de controladores

DISEÑO DE CONTROLADORES DISEÑO EN TIEMPO

Cuando las especificaciones de diseño se enfocan en:

- ► Factor de amortiguamiento
- Frecuencia natural del sistema
- Sobretiro máximo
- Tiempo de crecimiento (T)
- Tiempo de decaimiento (T)

Se considera que es un diseño en el tiempo y el método del Lugar Geométrico de las Raíces es muy útil.

EJERCICIO SISTEMA DE PRIMER ORDEN

En un sistema mecánico de primer orden se realizó un analisis de las piezas movibles, y se cocnluyo que el sistema está respondiendo demasiado rápido y forza dichas piezas, pues al ser de primer orden no tiene oscilación y acelera y frena de inmediato. Se requiere que el sistema responda de forma mas lenta e icluso pueda llegar a oscilar a una frecuencia baja.

¿Qué tipo de controlador ayudaría para este caso?

Estableciendo que el sistema oscile a 1 rad/seg, calcule los parametros necesarios del controlador elegído, sabiendo que el polo del sistema se encuentra en s=-6

EJERCICIO SISTEMA DE PRIMER ORDEN

- Al ser un sistema de primer orden sólo tiene un polo
- Las especificaciones del sistema puede ser T y K

Diseñe un controlador proporcional derivativo para un sistema de primer orden con la función de transferencia:

$$G_p(s) = \frac{2}{2s+1}$$

El cual provoque que el sistema responda 2 veces mas rápido y sin oscilar (en la mitad del tiempo) de lo original.

Suponga que se cuenta con un sensor con H(s)=1.

Elija el cero en el doble del valor del polo en el que se establecerá el sistema.

I.- ¿Cuál debe ser el polo del sistema ya controlado?

2.- ¿Cuáles son los valores de Kp y Td del controlador?

$$G_c(s) = \frac{V(s)}{E(s)} = K_p T_d [s + 1/T_d] = K_p T_d [s + (K_p/K_d)]$$

DETALLES EN LA SOLUCIÓN EJERCICIO DE PRIMER ORDEN

Se parte de ecuación característica del sistema

$$G(s)H(s) = -1$$

$$\frac{K_p(\frac{1}{2})(s+2)(2)}{2s+1} = -1$$

$$\frac{K_p(s+2)}{2s+1} = -1$$

Y se toma solo la condicíon de magnitud (solo magnitudes)

$$\frac{|K_p||s+2|}{|2s+1|} = 1$$

$$|K_p| = \frac{|2s+1|}{|s+2|}$$

Calculando K_p para el polo deseado, p=-I
$$\left|K_p\right| = \frac{\left|-2+1\right|}{\left|-1+2\right|} = \frac{\left|-1\right|}{\left|1\right|}$$

$$Kp = 1$$

CONTROLADOR PARA SISTEMA DE SEGUNDO ORDEN

Se tiene el siguiente sistema de segundo orden:

$$G_p = \frac{13}{s^2 + 6s + 13}$$

Se desea implementar un controlador para que el sistema no oscile y asegurar al menos su misma velocidad de estabilización.

- I. En base a los polos del sistema ¿Qué tipo de controlador, eligiendo el mas sencillo de diseñar, logra el objetivo?
- ¿Cual es el valor de los polos a definir para que cumpla las especificaciones dadas?
- 3. Calcule los parámetros necesarios del controlador