THANGAL KUNJU MUSALIAR COLLEGE OF ENGINEERING

KOLLAM - 691 005

ELECTRONICS AND COMMUNICATION ENGINEERING

LABORATORY RECORD

YEAR 2024-25

Certified that this is a Bonafide Record of the work done by

MOHAMMED AADHIL M of 5th Semester class (Roll No. [B22ECB47N]

Electronics and Communication Branch) in the Digital Signal Processing

Laboratory during the year 2024-25

Name of the Examination: Fifth Semester B. Tech Degree Examination 2024

Register Number : TKM22EC084

Staff Member in-charge

External Examiner

Date:

INDEX

SL No.	DATE	NAME OF THE EXPERIMENTS	PAGE NO.	REMARKS
1.	29/07/2024	Simulation of Basic Test Signals	4	
2.	06/08/2024	Verification of Sampling Theorem	11	
3.	13/08/2024	Linear Convolution	15	
4.	03/09/2024	Circular Convolution	20	
5.	10/09/2024	Linear Convolution using circular convolution and vice versa	24	

Experiment No: 1 Date: 29/07/24 Simulation of Basic Test Signals

Aim:

To generate continuous and discrete waveforms for the following:

- 1. Unit Impulse Signal
- 2. Bipolar Pulse Signal
- 3. Unipolar Pulse Signal
- 4. Ramp Signal
- 5. Triangular Signal
- 6. Sine Signal
- 7. Cosine Signal
- 8. Exponential Signal

9. Unit Step Signal

Theory:

1.Unit Impulse Signal:

• A signal that is zero everywhere except at one point, typically at t=0 where its value is 1.

$$\infty$$
; $t = 0$
• Mathematically $\delta(t) = \{ \}$
 $0; t \neq 0$

2.Bipolar Pulse Signal:

- A pulse signal that alternates between positive and negative values, usually rectangular in shape. It switches between two constant levels (e.g., -1 and 1) for a defined duration.
- Mathematically p(t) = A for $|t| \le \tau/2$, p(t) = 0 otherwise

3. Unipolar Pulse Signal:

- A pulse signal that alternates between zero and a positive value. It remains at zero for a specified duration and then jumps to a positive constant level (e.g., 0 and 1).
- Mathematically p(t) = A for $|t| \le \tau/2$, p(t) = 0 otherwise (assuming A is positive)

4. Ramp Signal:

• A signal that increases linearly with time.

$$t; t \ge 0$$
• Mathematically $r(t) = \{ \}$
 $0; t < 0$

5.Triangular Signal:

- A periodic signal that forms a triangle shape, linearly increasing and decreasing with time, typically between a positive and negative peak.
- Mathematically: $\Lambda(t) = 1 |t|$ for $|t| \le 1$, $\Lambda(t) = 0$ otherwise

6.Sine Signal:

- A continuous periodic signal. It oscillates smoothly between -1 and 1.
- Mathematically: $y(t)=A\sin(2\pi ft)$

7. Cosine Signal:

- A continuous periodic signal like the sine wave but phase-shifted by $\pi \setminus 2$.
- Mathematically: $y(t) = A\cos(2\pi ft)$

8. Exponential Signal:

- A signal that increases or decreases exponentially with time. The rate of growth or decay is determined by the constant a.
- Mathematically: e^(at)

9. Unit Step Signal:

• A signal that is zero for all negative time values and one for positive time values.

1;
$$t \ge 0$$
Mathematically $u(t) = \{ \}$
0; $t < 0$

Program:

```
clc; clear
all; close
all;
subplot(3,
3,1); t =
-5:1:5; y
=
[zeros(1,5)
),ones(1,1)
```

```
),zeros(1,
5)];
stem(t,y);
xlabel("Ti
me(s)");
ylabel("Am
plitude");
title("Uni
t Impulse
Signal");
subplot(3,3,2); t2 = 0:0.01:1;
f = 5; y2 = square(2*pi*f*t2);
stem(t2,y2); hold on;
plot(t2,y2); xlabel("Time(s)");
ylabel("Amplitude");
title("Bipolar Pulse Signal");
legend("Discrete", "Continuous");
subplot(3,3,3); t3 =
0:0.1:1; f = 5; y3 =
abs(square(2*pi*f*t3));
stem(t3,y3); hold on;
plot(t3,y3);
xlabel("Time(s)");
ylabel("Amplitude");
title("Unipolar Pulse
Signal");
legend("Discrete","Continuo
us");
subplot(3,3,4); t4 = -5:1:5; y4
= t4 .*(t4>=0); stem(t4,y4);
```

```
hold on; plot(t4,y4);
xlabel("Time(s)");
ylabel("Amplitude"); title("Unit
Ramp Signal");
legend("Discrete", "Continuous");
subplot(3,3,5); t5 = 0:0.025:1;
f = 10; y5 =
sawtooth(2*pi*f*t5,0.5);
stem(t5,y5); hold on;
plot(t5,y5); xlabel("Time(s)");
ylabel("Amplitude");
title("Triangular Signal");
legend("Discrete", "Continuous");
subplot(3,3,6); t6
= 0:0.001:1; f = 10;
y6 = sin(2*pi*f*t6);
stem(t6,y6); hold
on; plot(t6,y6);
xlabel("Time(s)");
ylabel("Amplitude");
title("Sine Wave");
legend("Discrete","C
ontinuous");
subplot(3,3,7); t7 = 0:0.001:1;
f = 10; y7 = cos(2*pi*f*t7);
stem(t7,y7); hold on;
plot(t7,y7); xlabel("Time(s)");
ylabel("Amplitude");
title("Cosine Wave");
legend("Discrete", "Continuous");
```

```
subplot(3,3,8); t8 = -5:1:5; y8
= exp(t8); stem(t8,y8); hold on;
plot(t8,y8); xlabel("Time(s)");
ylabel("Amplitude");
title("Exponential Signal");
legend("Discrete","Continuous");
subplot(3,3,9); t9 = -5:1:5; y9
= [zeros(1,5),ones(1,6)];
stem(t9,y9); xlabel("Time(s)");
ylabel("Amplitude"); title("Unit
Step Signal");
```

Result:

Generated and Verified various Continuous and Discrete waveforms for basic test signals.

Observation:

