HW2

Please type or photograph your solution and turn it into a pdf before submitting it to Canvas. The first two problems will be graded for correctness.

- 1. Let A be a set. $+_A: P(A) \times P(A) \to P(A)$ defined as $(B,C) \mapsto (B \cup C) \setminus (B \cap C)$. Then:
 - (a) Show that $(P(A), +_A)$ is an abelian group.
 - (b) Let $A' \subseteq A$, show that $B \mapsto B \cap A'$ is a homomorphism from $(P(A), +_A)$ to $(P(A'), +_{A'})$.
 - (c) Let $F = \{B \in P(A) : B \text{ is finite or } A \setminus B \text{ is finite}\}$. Show that B is a subgroup of $(P(A), +_A)$.
- 2. Let G be a group, H_1 , H_2 be two subgroups.
 - (a) Show that $H_1 \cap H_2 \leq G$.
 - (b) Show that $H_1 \cup H_2 \leq G$ iff $H_1 \leq H_2$ or $H_2 \leq H_1$.
 - (c) Let G be the group of integers and the group operation is addition. Write down two subgroups whose union is no longer a subgroup.
- 3. Show that the set of $n \times n$ matrices with integer entries and determinant 1 form a group under matrix multiplication. (These groups are denoted as $SL(n,\mathbb{Z})$.
- 4. Let G be a group, show that G has only the identity element iff for any group H, Hom(H,G) has exactly one element.
- 5. Show that for any group G, any $g \in G$, there is a unique group homomorphism from $(\mathbb{Z}, +)$ to G, sending 1 to g.
- 6. Let M be a set, $*: M \times M \to M$ be a function, such that for any $a,b,c \in M$, *(a,*(b,c)) = *(*(a,b),c), *(a,b) = *(b,a), and there is an element $e \in M$ such that for any $a \in M$, *(e,a) = *(a,e) = a. Let $: (M \times M) \times (M \times M) \to M \times M$ be $((a,b),(c,d)) \mapsto (*(a,c),*(b,d))$, \sim a relation on $M \times M$ defined as $\sim = \{((a,b),(c,d)) \in (M \times M) \times (M \times M) :$ there exists $k \in M$, $*(*(a,d),k) = *(*(b,c),k)\}$
 - (a) Show that \sim is an equivalence relation.
 - (b) Let $G = (M \times M) / \sim$. Show that $([a], [b]) \mapsto [\cdot (a, b)]$ is a function from $G \times G$ to G. Denote it as \cdot' .

- (c) Show that (G, \cdot') is an abelian group. This is called the Grothendieck group of (M, *).
- (d) Show that there is a bijective homomorphism from the Grothendieck group of $(\mathbb{Z}\setminus\{0\},\times)$ to the group (\mathbb{Q},\times) .