DTS103TC Design and Analysis of Algorithms

Lecture 1: Complexity Analysis

Dr. Pascal Lefevre
School of AI and Advanced Computing

Learning outcomes

- Algorithm definition
- Examples of algorithmic problems
- Insertion sort
- Analysis of algorithms
- Mathematical Induction
- Worst-case and average-case time complexity
- Space complexity
- Understand asymptotic complexity and notation
- Carry out simple asymptotic analysis of algorithms

What is an algorithm?

 An algorithm is a sequence of computational steps that transform the input into the output.

· Daily life examples: cooking recipe

Algorithm vs. Program

- Algorithm
 - Design
 - Domain Knowledge
 - Any language
 - · Hardware & OS
 - Analyze

- Program
 - Implementation
 - Programmer
 - Programming Language
 - · Hardware & OS
 - Testing

Some Well-known Algorithms

- Sorting
 - Insertion sort
 - Merge sort
- Searching
- Graph algorithms
 - · Minimum Spanning Trees
 - Shortest Path
- String matching
 - The Rabin-Karp algorithm
 - · The Knuth-Morris-Pratt algorithm
- Number-Theoretic Algorithms
 - The RSA public-key cryptosystem

Sorting

• Input: A sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$.

• Output: A reordering $\langle a_1', a_2', \dots, a_n' \rangle$ of the input sequence such that $a_1' \leq a_2' \leq \dots \leq a_n'$.

Example:

Input: <8,2,4,9,3,6>

Output: <2,3,4,6,8,9>

Insertion sort

Sorting a hand of cards using insertion sort

3 2 4 9 3 6

Pseudocode

INSERTION-SORT(
$$A$$
)

1 **for**
$$j = 2$$
 to $A.length$

$$2 key = A[j]$$

3 // Insert
$$A[j]$$
 into the sorted sequence $A[1..j-1]$.

$$4 i = j - 1$$

5 **while**
$$i > 0$$
 and $A[i] > key$

$$A[i+1] = A[i]$$

$$i = i - 1$$

$$8 A[i+1] = key$$

3

Learning outcomes

- Algorithm definition
- Examples of algorithmic problems
- Insertion sort
- Analysis of algorithms
- Mathematical Induction
- Worst-case and average-case time complexity
- Space complexity
- Understand asymptotic complexity and notation
- Carry out simple asymptotic analysis of algorithms

Analysis of Algorithms

 Proof of correctness: show that the algorithm gives the desired result

- Time complexity analysis: find out how fast the algorithm runs
- · Space complexity analysis: decide how much memory space the algorithm requires

Mathematical Induction

- Mathematical induction: a mathematical technique to prove that a statement holds for every natural number n=0,1,2,....
- For example, to prove $1+2+...+n = n(n+1)/2 \forall integers n \ge 1$
 - when n is 1, L.H.S = 1, R.H.S = 1*2/2 = 1 **OK!**
 - when n is 2, L.H.S = 1+2 = 3, R.H.S = 2*3/2 = 3 **OK!**
 - when n is 3, L.H.S = 1+2+3=6, R.H.S = 3*4/2=6 **OK!**

However, none of these constitute a proof and we cannot enumerate over all possible numbers.

=> Mathematical Induction

Mathematical induction – cont'd

- Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes.
- If the first domino falls, then the second domino falls. If the second domino falls, then the third domino will fall too. And so on.
- · Conclusion: If the first domino falls, then any n, nth domino falls.

Mathematical Induction Examples

- To prove: 1+2+...+n = n(n+1)/2 ∀ integers $n \ge 1$
- Base case: When n=1, L.H.S = 1, R.H.S = 1*2/2=1. Therefore, the statement is true for n=1.
- Induction hypothesis: Assume that statement is true when n=k for some integer $k \ge 1$.
 - i.e., assume that 1+2+...+k = k(k+1)/2
- Induction step: When n=k+1,
 - L.H.S = $1+2+...+k+(k+1) = (k^2+3k+2)/2$
 - R.H.S = $(k+1)((k+1)+1)/2 = (k^2+3k+2)/2 = L.H.S$

Mathematical Induction Examples - Cont'd

- We have proved
 - statement true for n=1
 - · If statement is true for n=k, then also true for n=k+1
- In other words,
 - true for n=1 implies true for n=2 (induction step)
 - true for n=2 implies true for n=3 (induction step)
 - true for n=3 implies true for n=4 (induction step)
 - and so on
- Conclusion: true for all integers n

Question

Use Mathematical Induction to prove $2^n < n! \forall$ integers $n \ge 4$.

Mathematical Induction Examples - Cont'd

- To prove $2^n < n! \ \forall \text{ integers } n \ge 4$.
- Base case: When n=4, L.H.S = 16, R.H.S = 4! = 4*3*2*1 = 24,
 L.H.S < R.H.S. So, statement true for n=4
- Induction hypothesis: Assume that statement is true for some integer $k \ge 4$, i.e., assume $2^k < k!$
- Induction step: When n=k+1
 - L.H.S = 2^{k+1} = 2*2k < 2*k! < by hypothesis

 - So, statement true for k+1
- Conclusion: statement true ∀ integers n ≥ 4.

Loop invariants and the correctness of insertion sort

 Back to Insertion Sort, We use loop invariants (Similar to Mathematical Induction) to help us understand why an algorithm is correct.

loop invariant:

- · Initialization: It is true prior to the first iteration of the loop.
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Loop invariants and the correctness of insertion sort – cont'd

Initialization: When j = 2, the subarray A[1..j-1] consists of just the single element A[1], which shows that the loop invariant holds prior to the first iteration of the loop.

```
INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```


Loop invariants and the correctness of insertion sort – cont'd

Maintenance: The body of the for loop works by moving A[j-1], A[j-2], A[j-3] and so on by one position to the right until it finds the proper position for A[j] (lines 4-7), at which point it inserts the value of A[j] (line 8). The subarray A[1...j] then consists of the elements in sorted order. Incrementing j for the next iteration of the for loop then preserves the loop invariant.

```
INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1...j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```


Loop invariants and the correctness of insertion sort – cont'd

Termination: The condition causing the for loop to terminate is that =j=n+1. We have the entire array A[1...n] consists of the elements in sorted order. Hence, the algorithm is correct.

```
INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1...j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```


Complexity Measures

- Why we need to analyze algorithm complexity?
 - · Computing time is a bounded resource, and so is space in memory.

- What we need to analyze?
 - Analyzing an algorithm has come to mean predicting the resources that the algorithm requires (computational time, space, power consumption, number of exchanged messages, and so on).

Running Time

 The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.

 It is convenient to define the notion of step so that it is as machine-independent as possible.

· Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.

• $T_A(n) = time of A on length n inputs$

Running Time – cont'd

The running time of the algorithm is the sum of running times for each statement executed; a statement that takes time c_i to execute and executes n times will contribute $c_i n$ to the total running time.

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	C_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C_8	n-1

Running Time – cont'd

The total running time T(n) for INSERTION-SORT is:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	C_{4}	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C_8	n-1

Running Time – cont'd

 The running time also depends on the input: an already sorted sequence (Best-case) is easier to sort.

 Generally, we seek upper bounds (Worst-case) on the running time, to have a guarantee of performance.

best-case for Insertion Sort

• The best case occurs if the array is already sorted, which means $t_j = 1$.

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

• It's a linear function of n.

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C_8	n-1

Worst-case for Insertion Sort

· The worst case occurs if the array is reverse sorted.

$$T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - \left(c_2 + c_4 + c_5 + c_8\right)$$

• It is a quadratic function of n.

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j-1]$.	0	n-1
4	i = j - 1	C_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	C_{7}	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C8	n-1

Worst-case and average-case analysis

- The worst-case running time of an algorithm gives us an upper bound on the running time for any input.
- The average-case running time is the amount of time used by the algorithm, averaged over all possible inputs. The averagecase is often roughly as bad as the worst case.

Order of growth

For Insertion Sort, we expressed the worst-case running time

$$T(n) = an^2 + bn + c$$

• We consider only the leading term of a formula (e.g., an^2).

 We write that insertion sort has a worst-case time complexity of

Time complexity

- Time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm.
- We commonly considers the worst-case time complexity, which
 is the maximum amount of time required for inputs of a given
 size.
- The time complexity is commonly expressed using big O notation
- Insertion sort has a time complexity of $O(n^2)$

Space complexity

- The space complexity of an algorithm is the amount of memory space required to solve an instance of the computational problem.
- Space complexity is often expressed in big O notation.
- Auxiliary space refers to space other than that consumed by the input
- We commonly considers the auxiliary space complexity

What is the space complexity of Insertion sort?

6

```
INSERTION-SORT(A)
   for j = 2 to A.length
       key = A[j]
                                                                              8
       // Insert A[j] into the sorted sequence A[1...j-1].
       i = j - 1
       while i > 0 and A[i] > key
                                                                              8
                                                                                                          6
           A[i+1] = A[i]
6
          i = i - 1
       A[i+1] = key
                                                                                       6
                                                                                                8
```


Space complexity of Insertion sort

- In-place: An in-place algorithm updates its input sequence only through replacement or swapping of elements
- Only requires a constant amount O(1) of additional memory space
- · (Auxiliary) space complexity: O(1)

> sort (34, 10, 64, 51, 32, 21) in ascending order

•	· · · · · · · · · · · · · · · · · · ·	
Sorted part	Unsorted part	Swapped
	34 10 64 51 32 21	10, 34
10	34 64 51 32 21	21, 34
10 21	64 51 32 34	32,64
10 21 32	51 64 34	51, 34
10 21 32 34	64 51	51, 64
10 21 32 34 51	64	
10 21 32 34 51 6	4	


```
for i = 1 to n-1:
    min = i
    for j = i+1 to n do
        if a[j] < a[min]
            min = j
        swap a[i] and a[min]</pre>
```


Worst-case Time complexity?

Best-case time complexity?

Average-case time complexity?

(Auxiliary) space complexity?

• Worst-case Time complexity: $O(n^2)$

• Best-case time complexity: $O(n^2)$

• Average-case time complexity: $O(n^2)$

(Auxiliary) space complexity: O(1)

Learning outcomes

- Algorithm definition
- Examples of algorithmic problems
- Insertion sort
- Analysis of algorithms
- Mathematical Induction
- Worst-case and average-case time complexity
- Space complexity
- Understand asymptotic complexity and notation
- Carry out simple asymptotic analysis of algorithms

Time Complexity Analysis

- How fast is the algorithm?
 - · Depend on the speed of the computer
 - Waste time coding and testing if the algorithm is slow
- Identify some important operations/steps and count how many times these operations/steps needed to executed
- How to measure efficiency?
 - · Number of operations usually expressed in terms of input size n

Time Complexity Analysis

- Suppose:
 - an algorithm takes n^2 comparisons to sort n numbers
 - we need 1 sec to sort 5 numbers (25 comparisons)
- Now, if we can perform 2500 comparisons in 1 sec (100 times speedup), How many numbers we can sort?
 - 50 numbers (10 times more)

Time Complexity Analysis

- The time complexity of Insertion Sort is: $O(n^2)$
 - If we doubled the input size, how much longer would the algorithm take?
 - Roughly 4 times
 - If we trebled the input size, how much longer would it take?
 - Roughly 9 times

Time complexityBig O notation

Which algorithm is the fastest?

• Consider a problem that can be solved by 5 algorithms A_1 , A_2 , A_3 , A_4 , A_5 using different number of operations.

```
f_1(n) = \log n
```

$$f_2(n) = c$$

$$f_3(n) = n^2$$

$$f_4(n) = n$$

•
$$f_5(n) = 2^n$$

```
(\log n \ stand \ for \ \log_2 n) (\log_2 2^x = x) (constant)
```


Relative growth rate

Growth of functions

n	$\log n$	\sqrt{n}	n	$n \log n$	n^2	n^3	2^n
2	1	1.4	2	2	4	8	4
4	2	2	4	8	16	64	16
8	3	2.8	8	24	64	512	256
16	4	4	16	64	256	4096	65536
32	5	5.7	32	160	1024	32768	4294967296
64	6	8	64	384	4096	262144	1.84×10^{19}
128	7	11.3	128	896	16384	2097152	3.40×10^{38}
256	8	16	256	2048	65536	16777216	1.16×10^{77}
512	9	22.6	512	4608	262144	134217728	1.34×10^{154}
1024	10	32	1024	10240	1048576	1073741824	

Hierarchy of functions

 We can define a hierarchy of functions each having a greater order of magnitude than its predecessor:

As n increases, the values of the later functions increase more rapidly than the values of the earlier ones.

Hierarchy of functions

- When we have a function, we can assign the function to some function in the hierarchy:
 - For example, $f(n) = an^2 + bn + c$
 - The term with the highest power is an^2 . The growth rate of f(n) is dominated by n^2 .
- This concept is captured by Big-O notation

Big-O notation

• f(n) = O(g(n)): There exists a constant c and n_0 such that $f(n) \le c \times g(n)$ for all $n \ge n_0$

- O-notation provides an
- asymptotic upper bound
- on a function

Big-O notation

- Examples:
 - $\cdot 2n^3 = O(n^3)$
 - $\cdot 2n^3 + n^2 = O(n^3)$
 - $\cdot nlogn + n^2 = O(n^2)$
- function on L.H.S and function on R.H.S are said to have the same order of magnitude

Proof of order of magnitude

- Show that $2n^3 + n^2$ is $O(n^3)$
 - Since $n^2 < n^3$ for all n > 1,
 - we have $2n^3 + n^2 \le 2n^3 + n^3 = 3n^3$ for all n > 1.
 - Therefore, by definition $2n^3 + n^2$ is $O(n^3)$. (c = 3, n_0 =1)
- Show that $nlogn + n^2$ is $O(n^2)$
 - Since log n < n for all n > 1,
 - we have $nlog n + n^2 \le n^2 + n^2 = 2n^2$ for all n > 1.
 - Therefore, by definition $nlog n + n^2$ is $O(n^2)$. (c = 2, n_0 = 1)

Exercises

- Prove the order magnitude:
 - Show that $n^3 + 3n^2 + 3$ is $O(n^3)$
 - Show that $4n^2 \log n + n^3 + 5n^2 + n$ is $O(n^3)$

Exercises

$$\cdot$$
 $n^3 + 3n^2 + 3$

- $\cdot 3n^2 \le n^3 \quad \forall n \ge 3$
- $\cdot 3 \le n^3 \quad \forall n \ge 2$
- $\rightarrow n^3 + 3n^2 + 3 \le 3n^3 \quad \forall n \ge 3$

• $4n^2 \log n + n^3 + 5n^2 + n$

- $4n^2 \log n \le 4n^3 \quad \forall n \ge 1$
- $\cdot 5n^2 \le n^3 \quad \forall n \ge 5$
- \cdot n $\leq n^3 \quad \forall n \geq 1$
- $\cdot \implies 4n^2 \log n + n^3 + 5n^2 + n \le 7n^3 \quad \forall n \ge 5$

c and n_0 could be different when proving the order of magnitude

Ω -notation

• $f(n) = \Omega(g(n))$: There exists a constant c and n_0 such that $c \times g(n) \le f(n)$ for all $n \ge n_0$

- \cdot Ω -notation provides an
- asymptotic lower bound.

Θ-notation

• $f(n) = \Theta(g(n))$: There exists constant c_1, c_2 and n_0 such that $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$

- Θ notation provides an
- asymptotically tight bound

Asymptotic Notations

- Since O-notation describes an upper bound, we usually use it to bound the worst-case running time of an algorithm.
 - $O(n^2)$ bound on worst-case running time of insertion sort also applies to its running time on every input.
 - The $\Theta(n^2)$ bound on the worst-case running time of insertion sort, does not imply $\Theta(n^2)$ bound on the running time of insertion sort on every input. Best-case insertion sort runs in $\Theta(n)$ time.
 - $\cdot n = O(n^2)$, BUT O-notation informally describing asymptotically tight upper bounds

Exercises

Write the computation complexity directly:

 \cdot $n^3 + 3n^2 + 3$

 $O(n^3)$

• $4n^2 \log n + n^3 + 5n^2 + n$

 $O(n^3)$

 $\cdot 2n^2 + n^2 \log n$

O(n² log n)

• $6n^2 + 2^n$

 $O(2^n)$

```
for (i=0;i<n;i++)
{
    stmt
    O(?)
}</pre>
```



```
for (i=n;i>0;i--)
{
    stmt
    O(?)
}
```



```
for (i=0;i<n;i=i+2)
{
    stmt
    O(?)
}</pre>
```



```
for (i=0;i<n;i++)
{
    stmt
}
for (j=0;j<n;j++)
{
    stmt
}
O(n)</pre>
```


$$O(\sqrt{n})$$


```
for (i=1;i<n;i=i*2)
{
    stmt
}</pre>
```

```
0(?)
```

O(logn)


```
k=0
for (i=1;i<n;i=i*2)
    k++;
for (j=1; j< k; j=j*2)
    stmt
```

```
0(?)
```

O(loglogn)

Time complexity of this?

```
for (i=0;i<n;i++)
   for (j=1;j<n;j=j*2)
      stmt
                           0(?)
                           O(nlogn)
```


Some algorithms we learnt

```
INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key

O(n<sup>2</sup>)
```


Some algorithms we learnt

```
for i = 1 to n-1:
    min = i
    for j = i+1 to n do
        if a[j] < a[min]
            min = j
    swap a[i] and a[min]</pre>
```

```
0(?)
```

$$O(n^2)$$

Searching

• Input: n numbers a_1 , a_2 , ..., a_n and a number X

· Output: determine if X is in the sequence or not

Sequential search

34

To find 7

found!

5

Sequential search

· 12	34	2	9	7	5	To find 10
. 12	34 10	2	9	7	5	
• 12	34	2 10	9	7	5	
• 12	34	2	9 10	7	5	
• 12	34	2	9	7 10	5	
• 12	34	2	9	7	5 10	not found!

Sequential search

```
i = 1
found = false
while (i<=n && found==false)
     if X == a[i] then
            found = true
      else
            i = i+1
```

```
Best case: X is 1st no. \Rightarrow 1 comparison \Rightarrow O(1)
```

Worst case: X is last OR X is not found \Rightarrow n comparisons \Rightarrow O(n)

How to improve Searching?

Time complexity of Sequential searching is O(n).

 If a sorted array is given, can we improve the time complexity?

Binary search

• Input: a sequence of n sorted numbers a_1 , a_2 , ..., a_n in ascending order and a number X

Idea of algorithm:

- · compare X with number in the middle
- then focus on only the first half or the second half (depend on whether X is smaller or greater than the middle number)
- · reduce the amount of numbers to be searched by half

Binary Search

To find 24

3	7	11	12	15 24	19	24	33	41	55
					19	24	33 24	41	55
					19 24	24			

24 24

found!

Binary Search

To find 30

3	7	11	12	15 30	19	24	33	41	55
					19	24	33 30	41	55
					19	24			

30

24 30

not found!

Binary Search – Pseudo Code

```
first = 1, last = n, found = false
while (first <= last && found == false)
      mid = \lfloor (first + last)/2 \rfloor
      if (X == a[mid])
           found = true
      else
           if (X < a[mid])
                last = mid-1
         else
               first = mid+1
if (found == true)
      report "Found"
else
      report "Not Found"
```

Xi,an Jiaotong-Liverpool Universit 西文を12の海大場 Best case: X is the number in the middle \Rightarrow 1 comparison \Rightarrow O(1)

Worst case: at most (logn+1) comparisons \Rightarrow O(logn)

Why? Every comparison reduces the amount of numbers by at least half E.g., $16 \Rightarrow 8 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$

Learning outcomes

- Algorithm definition
- Examples of algorithmic problems
- Insertion sort
- Analysis of algorithms
- Mathematical Induction
- Worst-case and average-case time complexity
- Space complexity
- Understand asymptotic complexity and notation
- Carry out simple asymptotic analysis of algorithms

