EMISSORS I RECEPTORS

Examen MQ QP 22/23

Problema 1:

Per tal de que el receptor de la figura, que opera en la banda de 433 MHz amb canalitzacions de 200 kHz, funcioni correctament, precisa a l'entrada del desmodulador una potència mínima de senyal de –80 dBm amb una (S/N) mínima de 20 dB i un IMR mínim de 40 dB.

Aquest receptor es connecta a una antena que proporciona una potència de senyal de –85 dBm amb una temperatura d'antena de 220K. L'amplificador presenta un guany ajustable entre 15 dB i 25 dB amb un factor de soroll d'1,3 dB.

- a) Suposant que tot el sistema es troba a la temperatura de referència (T₀ = 290K), determinar la llargada màxima que pot tenir el cable coaxial que connecta l'antena al receptor, considerant que atenua 0,6 dB/m, i el valor del guany de l'amplificador per tal de que el sistema funcioni correctament. (1 p)
- b) Si el guany de l'amplificador s'ajusta a 20 dB, determinar la llargada màxima del cable per tal d'obtenir a l'entrada del desmodulador una (S/N) de 30 dB. (1 p)
- c) Suposant una llargada del cable de 8,2 m i guany de l'amplificador de 20dB, determinar el valor mínim de l'OIP3 que ha de tenir l'amplificador per garantir l'IMR mínim de 40 dB en el desmodulador. (1 p)
- d) Suposant una llargada del cable de 8,2 m i un OIP3 = -50 dBm per l'amplificador, determinar el valor de l'IMR que s'obtindrà en el desmodulador quan el guany de l'amplificador sigui de 15 dB. (0,5 p)
- e) Suposant un OIP3 = -50 dBm per l'amplificador, determinar el valor del marge dinàmic lliure d'espuris del receptor en les condicions de l'apartat a) (quan la (S/N) a la sortida és de 20 dB).

Constant de Boltzmann: k = 1,38·10⁻²³ [W/Hz/K]

Problema 2:

Les següents taules inclouen les dades del balanç d'enllaç, tant de baixada ("downlink") com de pujada ("uplink"), entre els satèl·lits Iridium i el terminal terrestre ("Handheld") en condicions normals de propagació (sense "fàding").

Table 8. Link budget from handheld to IRIDIUM [source: Motorola 1992]
(a)Uplink (Without Shadowing)
(b) Downlink (Without Shadowing)

EIRP	(dBW)	- 4.2
SatelliteGr	dB)	24
Path Loss	(dB)	160
Noise Temperature (K)		500
Noise Bandwidth(kHz)		31.5
CNR	(dB)	16.42

EIRP	(dBW)	27.7
Handheld Gr	(dB)	1
Path Loss	(dB)	160
Noise Temperature (K)		250
Noise Bandwidth (kHz)		31.5
CNR	(dB)	28.34

EMISSORS I RECEPTORS

Examen MQ QP 22/23

El paràmetre **Gr** és el guany de l'antena receptora i el "Path Loss" son les pèrdues en espai lliure. "Noise Temperature" es la suma de les temperatures de soroll de l'antena i el receptor i CNR es la relació senyal/soroll a l'entrada del receptor. "Noise Bandwidth" es l'amplada de banda ocupada. Es demana:

- a) Comprovar que ambdues taules son correctes detallant tots el càlculs que feu. (1 p)
- b) Tenint en compte que la velocitat de transmissió és 50 kbit/s i que es requereix una E_b/N_0 mínima de 10 dB a l'entrada del receptor (tant per "downlink" com per "uplink"), calcular el marge d'enllaç (marge de "fàding") de que disposa el sistema tant per "downlink" com per "uplink". (1 p)
- c) Aquest balanç de potencia està calculat per la pitjor situació: satèl·lit a 1607 km del terminal terrestre (la màxima distancia). Quins son els marges d'enllaç quan el satèl·lit sobrevola l'usuari (distancia 780 km)?

Problema 3:

La gràfica de la figura correspon a la mesura de la distorsió d'intermodulació amb dos tons d'un amplificador.

Es demana:

a)	Indicar la frequencia i potencia dels dos tons.	(0,5 p)
b)	Indicar l'IMR obtingut.	(0,5 p)
c)	Indicar la freqüència dels dos tons d'intermodulació.	(0,5 p)
d)	Indicar quina seria la potència del terra de soroll per un filtre de resolució de 10 kHz	(0,5 p)
e)	I per un filtre de vídeo de 10 Hz?	(0,5 p)

IMRmin = 40dB

Va = 220K

Sm1 = - 85 dom

SOUTHIN = - 80 dom.

6

$$G_2 - L_1 = G_7 + L_2 = 5dB + 1dB = 6dB \implies \frac{G_2}{L_1} = 3,581$$

$$37.75 = L_1 \cdot 10^{0.13} + \frac{1}{3.981} \cdot (10^{0.1} - 1) = 1.349 \cdot L_1 + 0.065$$

$$l = \frac{L_1}{0.6d8/m} = \frac{14.69}{0.6} = 24.48 m$$

$$\frac{1}{\log T} = \frac{3,162 \cdot 10^{-15}}{1,38 \cdot 10^{-23} \cdot 200 \cdot 10^{3}} - 220 = 1146 - 220 = 925,8 \text{ K}$$

$$F_{T}' = L_{1}F_{2} + (L_{3}-\Delta) \cdot \frac{L_{1}}{G_{2}} = L_{1} \left(10^{0.13} + (10^{0.1}-\Delta) \cdot \frac{1}{10^{2}} \right)$$

A la sortida de l'amphicador. Port= -70,920Bm +1dB= -69,920Bm

```
Uphar
```

Down-link

Tena > Sat

Sat - Terra

$$\frac{Eb}{N_0} = \frac{P_R}{Rb. hT} = \frac{(5/N).B}{Rb} = 16,43 dB + 44.98 dB th - 47 dB$$

$$= 14,42 dB.$$

$$\frac{Eb}{Ab}$$
 = 28,34 + 44,58 - 47 oB = 26,32 dB

$$FSL = \left(\frac{1}{4\pi R}\right)^2 = \left(\frac{1}{4\pi R}\right)^2 = -160 dB = 100. lo^{-18}$$

$$FSL' = \left(\frac{201.5 \text{ mm}}{6\pi.780.10^3}\right)^2 = 424, 5.10^{-18} = -153, 7 dB$$

DFSL = -160 + 153, 7-03 = 6,278 dB.

=> Incomenten la (5/N) en C,278dB, por text.

- e) 800,025 nHz, -5,42 dBm 800,025 - 2,5. 20 hitz = 759,575 HHz -5,42 com
- b) (ma = 40 dB
- 9 NO MHZ + 3,75. 20 bits = 1 800,075 Mite. 1799,925 MHZ.
- d) $N_{\parallel} = -70 dBm / Bw = 100 Hz = -70 dBm + 10 log. \frac{10.000}{100} = -50 dBm.$
- q) N=-70dom., no causiz.