B31YS Robotics Systems Science

Bayesian Filtering and Robot Localisation Probabilistic Robotics

Dr. Sen Wang

s.wang@hw.ac.uk

Schedule – Week 3 & 4

	Monday			Thursday	Friday
	10.15 – 11.15	13.15 – 15.15	16.15 – 17.15	16.15 – 17.15	13.15 – 15.15
Week 3	Lecture - Bayes filters - Recursive Bayes filters - Robot motion models - Odometry and velocity models	Lecture - Observation model - Kalman filter - Extended Kalman Filter - filter consistency	Lab – Matlab - understand KF & EKF - robot localisation - filter tuning and consistency	Lab - Fusion - EKF fusion of odometry + GPS using real data for localisation	Lab - Fusion - EKF fusion of odometry + GPS - prepare presentations
Week 4	Lecture - Importance Sampling - Particle filter - comparison with KF/EKF	Lecture -Monte Carlo Localisation Lab – ROS AMCL in simulation/real robot using Laser (Kinect) + odometry	Lab – ROS AMCL in simulation/real robot using Laser (Kinect) + odometry	Lab – ROS (Continued) AMCL in simulation/ robot Lab - Fusion(optional) - fusion of odometry + GPS using PF	Lecture - Student presentations of sensor fusion - Discussion / Q&A

Textbooks:

- Sebastian Thrun, Wolfram Burgard, Dieter Fox. Probabilistic robotics. Ch.2 Ch. 8
- Timothy D. Barfoot. State Estimation for Robotics.
- Yaakov Bar-Shalom, X.-Rong Li, Thiagalingam Kirubarajan. Estimation with Applications to Tracking and Navigation.

Previous

Autonomous Robots

- The control of autonomous robots involves a number of subtasks
 - Understanding and modeling of the mechanism
 - Kinematics, Dynamics, and Odometry
 - Reliable control of the actuators
 - Closed-loop control
 - Generation of task-specific motions
 - Path planning
 - Integration of sensors
 - Selection and interfacing of various types of sensors
 - Coping with noise and uncertainty
 - Filtering of sensor noise and actuator uncertainty
 - Creation of flexible control policies
 - Control has to deal with new situations

Why Probabilistic Robotics

- Noise and uncertainty are everywhere in real world
 - actuators: failure, drift
 - sensors: observations, imprecise, unreliable
 - non-observability: system state(s), environment initially unknown
- Use probability theory to explicitly represent the uncertainty

Related Terms

State Estimation Multi-Sensor Fusion Localisation

Mapping SLAM Navigation

Robot Localisation

- how a robot figures out globally where it is
- fundamental for autonomous mobile robots

Three Main Paradigms:

Kalman Filter (W3)

Particle Filter (W4)

Graph based Methods (W7)

Formulation of Robot Localisation

Bayes' Theorem/Rule

posterior
$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

robot localisation/SLAM:

Motion Model - Prior

The motion model describes the relative motion of the robot

- Examples
- Gaussian model

Observation/Sensor Model - Likelihood

 The observation or sensor model relates measurements with the robot's pose

- Examples
- Gaussian model

Non-Gaussian model

(here
$$x_r = x$$
)

$$\overline{bel}_0(x) = \frac{1}{L}$$

z₀: door detected

$$p(z_0|x)$$

$$bel_0(x) = \eta \ p(z_0|x_0)\overline{bel}_0(x) = \eta' p(z_0|x_0)$$

u₀: the robot moves

$$\overline{bel}_1(x) = \int_0^L p(x|x_0 = y, u_0)bel_0(y)dy$$

z₁: door detected again

$$p(z_1|x)$$

$$bel_1(x) = \eta \ p(z_1|x_1)\overline{bel}_1(x)$$

u₁: the robot moves again

$$\overline{bel}_2(x) = \int_0^L p(x|x_1 = y, u_1)bel_1(y)dy$$

From Thrun Burgard Fox, Probabilistic Robotics, MIT Press 2006

Filter Tuning

How to decide if the estimates produced are a "reasonably good" reflection of the true state? And filter parameters?

- filter tuning: process of choosing a suitable Q and R
- Innovation: difference between true and predicted observations

$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$
 innovation

$$K_t = \bar{\Sigma}_t \; H_t^T (H_t \; \bar{\Sigma}_t \; H_t^T + Q_t)^{-1} \;$$
 innovation covariance

- most important analysis: using innovation sequence
- innovation sequence: white and unbiased process
- Normalised Innovation Squared, etc.

Filter Tuning

- 4 cases:
 - under-estimate of process noise
 - under-estimate of observation noise
 - over-estimate of process noise
 - over-estimate of observation noise

