

Academic Year:	2020/2021	Term Exam:	First Term
Department:	MDP	Course Code:	MDP491
Date:	22/12/2020	Course Title:	Comp. Dyn.
Time:	1 hour	Full Mark:	10

For the following mechanism; use the provided table for links' lengths and initial value of generalized coordinates in order to solve this system as a kinematical driven system.

Requirements:

- 1. The components of the vectors and matrices $(\mathbf{C}, \mathbf{C_q}, \mathbf{C_t}, \mathbf{Q_d})$
- 2. Fill the values in table 4 for positions, velocity and accelerations after 0.5 seconds. Note that:
 - The frame of each pinned-pinned link is located in its middle. The length of the link i is l^i .
 - Driving constraint $\dot{\theta}^2 = \omega^2$

Quick return mechanism

l^2	0.2 m	h_{1}	0.3 m
l^3	0.5 m	h_2	0.2 m
l^4	0.3 m	ω^2	1 rad/s
θ^2	90 °	θ^3	90 °
R_x^{-2}	0	R_x^3	0
R_y^2	0.1 m	R_y^3	-0.05 m
$ heta^4$	0°	$ heta^5$	0 °
R_x^{4}	0.2 m	R_x^{5}	0.3 m
R_y^{-4}	0.15 m	R_y^{5}	0.2 m

C	

 $\mathbf{C}_{\mathbf{q}}$

 \mathbf{C}_{t}

\mathbf{Q}_d	

Solution after 0.5 seconds

R_x^2	$ \dot{R}_x ^2$	$\ddot{R}_{_{X}}^{^{2}}$
R_y^2	$\dot{R}_{_{\mathrm{y}}}^{^{2}}$	$\ddot{R}_{_{y}}^{^{2}}$
θ^2	$\dot{ heta}^2$	$\ddot{ heta}^2$
R_x^3	\dot{R}_x^3	$\ddot{R}_{_{X}}^{3}$
R_y^3	\dot{R}_y^3	$\ddot{R}_{_{\mathcal{Y}}}^{\ 3}$
θ^3	$\dot{ heta}^3$	$\ddot{ heta}^3$
R_x^4	\dot{R}_{x}^{4}	$\ddot{R}_{_{\chi}}^{4}$
R_y^4	$\dot{R}_{_{\mathrm{y}}}^{^{4}}$	$\ddot{R}_{_{\mathcal{Y}}}^{4}$
θ^4	$\dot{ heta}^4$	$\ddot{ heta}^4$
R_x^{5}	\dot{R}_x^5	\ddot{R}_{x}^{5}