对抗生成网络 Generative Adversarial Network

七月在线 张雨石 2018年9月16日 http://blog.csdn.net/stdcoutzyx

对抗生成网络

- □ 对抗生成网络原理
- □ 深度卷积对抗生成网络 (DCGAN)
- □ 图像翻译 (Pix2Pix)
- □ 无配对图像翻译 (CycleGAN)
- □ 多领域图像翻译 (StarGAN)
- □ 文本生成图像 (Text2Img)

- ☐ Discriminative Problem
 - 分类
 - 手段
 - ☐ Dropout
 - □ Batch Normalization
 - ☐ ResNet
 - □

- ☐ Generative Problem
 - 无中生有
 - 图像高清化
 - 图像修复
 - 线描图上色
 -

[Goodfellow et al., 2014] University of Montreal

[Roth et al., 2017] Microsoft and ETHZ

[Karras et al., 2018] NVIDIA

- □ 发展状况
 - Discriminative Model
 - Generative Model
- □ 如何能借用Discriminative优势?
 - GAN

- □ 对抗哲学
 - ■道高一尺魔高一丈
- □ 警察和小偷
 - 小偷不停的更新偷盗技术以避免被抓
 - 警察不停的发现新的方法是识别小偷

- □ 对抗哲学
 - 逐步递进
- □ 郭靖和他的对手们
 - 黄河四鬼
 - 沙通天
 - 欧阳克
 - 梅超风
 - 西毒

- □ 生成器和判别器
 - 交替训练——道高一尺魔高一丈
 - G的目标: 生成一个仿真数据
 - D的目标: 判别一个样本是否真实
 - 最终目标:得到一个好的G

- □ 生成器和判别器
 - 交替训练——道高一尺魔高一丈

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

- ■训练D
 - □ 真为真,假为假
- ■训练G
 - □ 假为真

- □如何构建一个新的GAN网络
 - 定义目标
 - 定义G的输入输出
 - 定义D的输入输出
 - 定义G和D的结构

- □目标
 - 从随机向量生成真实图像

□ 生成器G

- □ 生成器G
 - 输入: 随机向量
 - 输出:图像
 - 反卷积
 - Deconvolution
 - ☐ Transposed Convolution
 - ☐ Franctional strided convolution

□卷积操作的展开

A00	A01	A02	A03
A10	A11	A12	A13
A20	A21	A22	A23
A30	A31	A32	A33

w0,0	w0,1	w0,2
w1,0	w1,1	w1,2
w2,0	w2,1	w2,2

$$B00 = a00*w0,0 + a01*w0,1 + a02*w0,2 + a10*w1,0 + a11*w1,1+a12*w1,2+a20*w2,0 + a21*w2,1 + a22*w2,2$$

$$B00 = a00*w0,0 + a01*w0,1 + a02*w0,2 + a10*w1,0 + a11*w1,1+a12*w1,2+a20*w2,0 + a21*w2,1 + a22*w2,2$$

[a00, a01, a02, a03, a10, a11, a12, a13, a20, a21, a22, a23, a30, a31, a32, a33]

julyedu.com

 \square Y = CX -> X是(16,1), C是(4,16)

□ $Y = C^TX -> x \mathcal{L}(4,1), C^T\mathcal{L}(16,4)$

[b00, b01, b10, b11]

$$\begin{pmatrix} w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 & 0 \\ 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 \\ 0 & 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} \end{pmatrix}$$

B00	B01
B10	b11

w0,0	w0,1	w0,2
w1,0	w1,1	w1,2
w2,0	w2,1	w2,2

W2,2	0	0	0
W2,1	W2,2	0	0
W2,0	W2,1	0	0
0	W2,0	0	0
•••	• • •	•••	•••

☐ Fractional strided

- □ 模型结构
 - Pooling层用convolutional层替代
 - D上使用strided covolutions
 - G上使用fractional-strided convolutions

- □ 模型结构
 - G和D都使用batch normalization
 - □ 帮助解决初始化差的问题
 - □ 梯度传播到每一层
 - □ BN不应用于输入层和输出层
- □ 模型结构
 - G上除了输出层使用tanh外其他都用Relu
 - D上使用LeakyReLU

微调向量使某个物品消失或出现

julyedu.com 30/65

□ 微调向量使某个物品消失或出现

- □ 使用LR来确认隐空间中哪个和窗户有关
 - mMask

□向量加减法

smiling woman

neutral woman

smiling man

图像翻译(Pix2Pix)

□目标:以输入图为条件,生成内容相似但风 格不同的新图

Positive examples

Real or fake pair?

G tries to synthesize fake images that fool **D**

D tries to identify the fakes

Negative examples

Real or fake pair?

- □ 模型结构-G
 - U-Net

· 深度学习集训营

julyedu.com

图像翻译(Pix2Pix)-效果

图像翻译(Pix2Pix)-效果

图像翻译(Pix2Pix)-效果

字種成東字推 符利對亞型 到 用 抗 語 進 字條網言行新 符件絡字自方 一生對體動

□ Pix2Pix 要求图像必须成对

- □目标:从无配对的图像中学到风格的变换
- □ 想法: 类似于语言翻译, 翻译过去再翻译回来要保持信息

- □ 建模:
 - 两个领域X, y
 - 映射G: x->y
 - 映射F: y->x
 - 判别器Dx: 区分x和F(y)
 - 判别器Dy: 区分y和G(x)

□ Cycle 一致性

- ☐ CycleGAN
 - 两套GAN
 - □ G和Dy
 - □ F和Dx
 - 两个一致性损失

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

$$\begin{split} \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = & \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] \\ + & \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x))] \end{split}$$

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F),$$

$$G^*, F^* = \arg\min_{G, F} \max_{D_x, D_Y} \mathcal{L}(G, F, D_X, D_Y)$$

- □ 为何会有效?
 - 一致性约束的存在降低了搜索空间

- □之前模型的问题
 - 每种转换训练一个新模型
 - 多个任务:更换头发颜色,表情,年龄等
 - □ 低效
 - □ 模型中学到的信息不能共享,效果有限

- □ StarGAN
 - G的输入添加目标领域信息
 - D除了判断是否真实以外,还需要判断类别
 - 图像重建loss

□目标函数

$$\mathcal{L}_{adv} = \mathbb{E}_x \left[\log D_{src}(x) \right] + \\ \mathbb{E}_{x,c} \left[\log \left(1 - D_{src}(G(x,c)) \right) \right]$$

$$\mathcal{L}_{rec} = \mathbb{E}_{x,c,c'}[||x - G(G(x,c),c')||_1]$$

$$\mathcal{L}_{cls}^f = \mathbb{E}_{x,c}[-\log D_{cls}(c|G(x,c))].$$

$$\mathcal{L}_D = -\mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^r,$$
 $\mathcal{L}_G = \mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^f + \lambda_{rec} \, \mathcal{L}_{rec},$

$$\mathcal{L}_{cls}^r = \mathbb{E}_{x,c'}[-\log D_{cls}(c'|x)],$$

- □ 解决的是成对图像的问题
- □ 生成器中有领域信息
- □判别器中也要判断是否是某个领域
- □ G和D训练的时候目标函数不同

- □问题难点
 - 多样化
 - □ 一个描述对应多张图,搜索空间比图像生成文本更大
 - □一个词的变化图就会发生很大的变化
 - 任务
 - □ 生成真实的图像
 - □ 生成与文字匹配的图像

□ 模型结构

- □ 模型结构
 - G
 - □ 输入: 随机向量+文本编码
 - □ 输出:图像
 - \blacksquare D
 - □ 输入:生成图像+文本编码
 - □ 输出:图像文本是否匹配+图像是否真实

- □技巧
 - 先将图像是否合理训练出来,再训练图像文本 是否匹配
 - ■除了<假图,描述>和<真图,描述>之外,添加< 真图,不匹配描述>

文

Algorithm 1 GAN-CLS training algorithm with step size α , using minibatch SGD for simplicity.

- 1: **Input:** minibatch images x, matching text t, mismatching \hat{t} , number of training batch steps S
- 2: for n=1 to S do
- 3: $h \leftarrow \varphi(t)$ {Encode matching text description}
- 4: $\hat{h} \leftarrow \varphi(\hat{t})$ {Encode mis-matching text description}
- 5: $z \sim \mathcal{N}(0,1)^Z$ {Draw sample of random noise}
- 6: $\hat{x} \leftarrow G(z, h)$ {Forward through generator}
- 7: $s_r \leftarrow D(x, h)$ {real image, right text}
- 8: $s_w \leftarrow D(x, \hat{h})$ {real image, wrong text}
- 9: $s_f \leftarrow D(\hat{x}, h)$ {fake image, right text}
- 10: $\mathcal{L}_D \leftarrow \log(s_r) + (\log(1 s_w) + \log(1 s_f))/2$
- 11: $D \leftarrow D \alpha \partial \mathcal{L}_D / \partial D$ {Update discriminator}
- 12: $\mathcal{L}_G \leftarrow \log(s_f)$
- 13: $G \leftarrow G \alpha \partial \mathcal{L}_G / \partial G$ {Update generator}

14: end for

总结

- □ 对抗生成网络原理
- □ 深度卷积对抗生成网络 (DCGAN)
- □ 图像翻译 (Pix2Pix)
- □ 无配对图像翻译 (CycleGAN)
- □ 多领域图像翻译 (StarGAN)
- □ 文本生成图像 (Text2Img)

Thanks!

Q&A