Multilingual Detection of Hate

Ben Cote, Madhav Kashyap, Lindsay Skinner, Keaton Strawn, Allan Tsai

Task Description – SemEval 2019: Task 5

Multilingual Detection of Hate against Immigrants and Women in Twitter data

Primary Task

- Data is pre-labeled tweets in English
- Binary classification (0/1) on Hate Speech, Aggression, and Target Group

Adaptation Task

- Data is pre-labeled tweets in Spanish
- Binary classification (0/1) on Hate Speech, Aggression, and Target Group

What Changes?

- Spellchecker must be able to handle Spanish and English
- Embedding features need different pretrained models
- Emotion Lexicon features need Spanish and English Lexicons
- Translator for a different approach to modeling Spanish

Our System

DataProcessor

- Separates URLs and hashtags from the text
- Replaces emojis with English descriptions
- Calculates and adds a feature indicating what percentage of the text is capitalized
- Lower-cases the cleaned text
- Generates counts for special punctuation symbols
- Removes all punctuation from the cleaned text
- Stores twitter user IDs in a feature and replaces them with the string 'user'
- Replaces typos with best guesses of correctly spelled words from the python spellchecker library
- Replaces typos in Spanish tweets with best guesses of correctly spelled word

INPUT

Raw text: "Hurray, saving us \$\$\$ in so many ways @potus @realDonaldTrump #LockThemUp #BuildTheWall #EndDACA #BoycottNFL #BoycottNike"

OUTPUT

Cleaned text: "hurray saving us in so many ways user user"

 $\textbf{Hashtags:} \ [\texttt{\#LockThemUp \#BuildTheWall \#EndDACA}]$

#BoycottNFL #BoycottNike]

User IDs: [@potus, @realDonaldTrump]

Percent capitalized: 0.029412

\$ count: 3

Feature Engineering

- (All Normalized): Punctuation Counts, NRC lexicon counts, Slang scores
- Embeddings:
 - Aggregated GloVe twitter embeddings
 - Google Universal Sentence Encoder embeddings
 - Aggregated BERTweet embeddings
- NRC Lexicon extension Use Logistic Regression & Glove embeddings to predict emotion labels for all words in dataset
 - Spanish and English
- Normalized NRC Lexicon counts using pre-built Spanish translation of NRC Lexicon
- Translator function to convert Spanish tweets into English for NRC Lexicon
- Spanish Emotional Sentiment Dictionary implemented to label words with sentiment strength
- Replace BERTweet embeddings with TwHIN-BERT to for multilingual use
- Implemented alternative GloVe embeddings if data in Spanish (trained on SBW corpus)
- Implemented Spanish Sentence Embeddings from sentence_transformers library

INPUT

Cleaned text: "hurray saving us in so many ways user user"

Hashtags: [#LockThemUp #BuildTheWall #EndDACA

#BoycottNFL #BoycottNike]

User IDs: [@potus, @realDonaldTrump]

Percent capitalized: 0.029412

\$ count: 3

OUTPUT

! count normalized: 0.385523 ? count normalized: 0.428634 \$ count normalized: 1.0 * count normalized: 0.46831 NRCLex scores: [0.23,...]

Slang score: 0

Universal sentence encoder embeddings: [0.045,...]

BERTweet embeddings: [-0.015,...] **Aggregate GloVe embeddings:** [0.303,...]

ClassificationModel

- Baseline
 - Predicts the most seen label for each instance
- Random Forest
 - Predictions based on number of trees, split criterion, minimum split size, maximum number of features, equal vs. balanced class weights, maximum samples per tree
 - Able to treat the classification as three separate binary tasks, or one five-class classification task
- Multi-class SVM
 - Predictions based on kernel type and number of degrees (for polynomial kernels)
 - Able to treat the classification as three separate binary tasks, or one five-class classification task
- Logistic Regression Classifier added
 - Predictions based on max number iterations and equal vs. balanced class weights
- Fine-tuned RoBERTa for Sequence Classification with raw data as input
- Ablation testing to ensure model tests on best feature combination*
- Ensemble classifier uses either a Decision Tree or Logistic Regression Classifier to evaluate the results from best SVM, Random Forest, and Logistic Regression classifications in order to make an overall classification.

INPUT

Percent capitalized: 0.029412 ! count normalized: 0.385523 ? count normalized: 0.428634 \$ count normalized: 1.0 * count normalized: 0.46831

NRCLex scores: [0.23,...]

Slang score: 0

Universal sentence encoder embeddings: [0.045,...]

BERTweet embeddings: [-0.015,...] **Aggregate GloVe embeddings:** [0.303,...]

INTERMEDIATE

Random Forest: HS+TR

SVM: HS

Logistic Regression: HS+TR

(These results are passed to a Logistic Regression or Decision Tree classifier)

OUTPUT

HS (hate speech): 1 TR (targeted): 1 AG (aggressive): 0

Evaluator

Calculates F1 across all classes and for individual classes, precision for each class, recall for each class, accuracy for each class, and exact match ratio

INPUT

Predictions:

Tweet 1: HS=0, TR=0, AG=0

Tweet 2: HS=1, TR=0, AG=0

Tweet 3: HS =1, TR=0, AG=0

Tweet 4: HS=1, TR=1, AG=0

...

Actual:

Tweet 1: HS=1, TR=0, AG=0

Tweet 2: HS=1, TR=0, AG=0

Tweet 3: HS =1, TR=0, AG=0

Tweet 4: HS=1, TR=0, AG=1

. . .

OUTPUT

Macro F1: 0.449

EMR: 0.527

HS F1: 0.465

TR F1: 0.439

AG F1: 0.443

HS Precision: 0.551

TR Precision: 0.891

AG Precision: 0.898

HS Recall: 0.521

TR Recall: 0.898

AG Recall: 0.891

HS Accuracy: 0.577

TR Accuracy: 0.781

AG Accuracy: 0.796

Evaluation and Results: All Models

Model	Data set	Macro F1	HS F1	TR F1	AG F1
SVM	English Validation	0.7088	0.7189	0.7621	0.6454
Random Forest	English Validation	0.6577	0.6580	0.7234	0.5915
Logistic Regression	English Validation	0.7022	0.7109	0.7463	0.6495
Ensemble-LR	English Validation	0.7148	0.7274	0.7655	0.6516
Ensemble-DT	English Validation	0.7030	0.7129	0.7421	0.6539
RoBERTa Sequence Classifier	English Validation	0.7404	0.7527	0.7852	0.6833
SVM	English Test	0.6982	0.7325	0.7301	0.6321
Random Forest	English Test	0.6389	0.6610	0.6486	0.6070
Logistic Regression	English Test	0.7006	0.7421	0.7226	0.6373
Ensemble-LR	English Test	0.7040	0.7482	0.7323	0.6315
Ensemble-DT	English Test	0.6843	0.7117	0.7090	0.6321

Model	Data set	Macro F1	HS F1	TR F1	AG F1
SVM	Spanish Validation	0.7369	0.7330	0.7748	0.7031
Random Forest	Spanish Validation	0.5724	0.4968	0.6689	0.5513
Logistic Regression	Spanish Validation	0.7585	0.7479	0.7929	0.7346
Ensemble-LR	Spanish Validation	0.7540	0.7476	0.7859	0.7284
Ensemble-DT	Spanish Validation	0.7496	0.7427	0.7839	0.7223
SVM	Spanish Test	0.7382	0.7168	0.7781	0.7198
Random Forest	Spanish Test	0.5638	0.4822	0.6360	0.5733
Logistic Regression	Spanish Test	0.7479	0.7430	0.7717	0.7290
Ensemble-LR	Spanish Test	0.7479	0.7390	0.7737	0.7311
Ensemble-DT	Spanish Test	0.7443	0.7349	0.7701	0.7279

Detailed Results for Top Performing English Model: Confusion Matrix

Detailed Results for Top Performing Spanish Model: Confusion Matrix

References

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti. 2019. Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In Proceedings of the 13th international workshop on semantic evaluation, pages 54–63.