Further

Transplendent models

Fredrik Engström

- Background
- Transplendent models
- Subtransplendent models
- **Further**

Preliminaries

- All models will be (expansions of) models of PA.
- All languages \mathscr{L} will be recursive extensions of the language of arithmetic. \mathcal{L}_{Δ} .

Subtransplendent models

• The standard system of M, SSy(M), is the collection of standard parts of (parameter) \mathcal{L}_A -definable sets in M.

$$SSy(M) = \{ X \cap \mathbb{N} \mid X \in Def(M') \},$$

where M' is the \mathcal{L}_{Δ} -reduct of M.

Recursive saturation

- A type over M is a set of formulas with finitely many parameters \bar{a} from M and finitely many free variables \bar{x} consistent with $Th(M, \bar{a})$.
- M is recursively saturated if all recursive types over M are realized in M.
- M is recursively saturated iff all types in SSy(M) are realized in M.
- There is a Σ_1^1 -sentence Θ such that a model is recursively saturated iff it satisfies Θ .
- \bullet Θ says that M-logic is consistent.

Resplendent models

- M is resplendent if for any theory T in an expanded language $\mathscr{L} \supseteq \mathscr{L}_A \cup \{\bar{a}\}\$ such that $T + \operatorname{Th}(M, \bar{a})$ is consistent there is an expansion of M satisfying T.
- All resplendent models are recursively saturated.
- All countable recursively saturated models are resplendent.
- There is a Δ_2^1 sentence Θ such that a model is resplendent iff it satisfies Θ .
- \bullet Θ says that M-logic is consistent and that for every (non-standard) sentence φ consistent in M-logic there is a satisfaction class including φ .

Subresplendent models

- M is subresplendent if for any theory T in an expanded language $\mathscr{L}\supseteq\mathscr{L}_A\cup\{\bar{a}\}$ such that $T+\operatorname{Th}(M,\bar{a})$ is consistent there are an elementary submodel $\bar{a}\in N$ of M and an expansion of N satisfying T.
- A model is subresplendent iff it is recursively saturated.

Arithmetic saturation

- M is arithmetically saturated if for any type arithmetic in some $\operatorname{Th}(M, \bar{a}), \bar{a} \in M$, is realized in M.
- M is arithmetically saturated iff M is recursively saturated and SSy(M) is closed under arithmetic comprehension.
- A countable recursively saturated model M is arithmetically saturated iff there is a maximal automorphism, i.e. an automorphism f such that

$$fix(f) = \{ a \in M \mid f(a) = a \} = Scl_M(\emptyset).$$

Omitting types

Background

0000000

• $p\uparrow$ is the $\mathcal{L}_{\omega_1\omega}$ -sentence saying that p is omitted, i.e.,

$$\forall \bar{x} \bigvee_{\psi(\bar{x}) \in p(\bar{x})} \neg \psi(\bar{x})$$

- p(x) is isolated in T if there is $\varphi(x)$ such that $T + \exists x \varphi(x)$ is consistent and $T \models \forall x (\varphi(x) \rightarrow \psi(x))$ for all $\psi(x) \in p(x)$.
- Omitting Types Theorem: If p(x) is not isolated in T then $T + p\uparrow$ is consistent.

Omitting types, two examples

- If M is countable and recursively saturated and p(x) is a type which is not isolated in any $T + \text{Th}(M, \bar{a}, \bar{b})$ where $\bar{b} \in M$ (and these theories are consistent) then there is an expansion of M satisfying $T + p\uparrow$.
- Maximal automorphism: Let T_f say that f is an automorphism and $p_f(x) = \{f(x) = x\} \cup \{x \neq t \mid t \text{ is a Skolem term }\}.$
- f is a maximal automorphism of M iff $(M, f) \models T_f + p_f \uparrow$.
- p_f is isolated in $\mathrm{Th}(M,a)$, where $a \notin \mathrm{Scl}_M(\emptyset)$.
- Standard cut: Let $T_K = \{ K(n) \mid n \in \mathbb{N} \}$ and $p_K(x) = \{K(x)\} \cup \{x > n \mid n \in \mathbb{N}\}.$
- K is the standard cut of M iff $(M, K) \models T_K + p_K \uparrow$.
- p_K is isolated in Th(M, a), where a is non-standard.

Definition

- T and p(x) are a theory and a type in an extended language \mathscr{L} with finitely many parameters \bar{a} from M. T_0 a \mathscr{L}_A theory.
- $T + p\uparrow$ is fully consistent over T_0 if there is a model of $T_0 + T + p\uparrow$ with standard system $\mathscr{P}(\mathbb{N})$ whose \mathscr{L}_A -reduct is recursively saturated.
- $T + p \uparrow$ is fully consistent over M if it is fully consistent over $\operatorname{Th}(M,\bar{a}).$
- Let $M \models PA$. We say that M is almost transplendent if for all $T, p(\bar{x}) \in SSy(M)$ such that $T + p\uparrow$ is fully consistent over M, there is an expansion M^+ of (M, \bar{a}) such that $M^+ \models T + p\uparrow$ and $Th(M^+, \bar{a}) + p\uparrow$ is fully consistent over M.and $Th(M^+, \bar{a}) + p\uparrow$ is fully consistent over M.

Existence

Theorem

There is a transplendent model of cardinality 2^{\aleph_0} .

Definition

A Scott set \mathscr{X} is *closed* if for any $T_0, T, p \in \mathscr{X}$ such that $T + p \uparrow$ is fully consistent over T_0 there is a completion $T_c \in \mathcal{X}$ of T such that $T_c + p \uparrow$ is fully consistent over T_0 .

Theorem

Any countable recursively saturated model with a closed standard system is transplendent.

Closure is equivalent to transplendence

Given $T, p \in SSy(M)$ such that $T + p \uparrow$ is fully consistent over T_0 then the theory

 $T + p\uparrow + c$ codes the theory of the model'

is fully consistent over T_0 .

Theorem

Let M be a countable model of PA. M is transplendent iff M is recursively saturated and SSy(M) is closed.

The standard predicate

- Let $T_{K=\mathbb{N}}$ be the theory consisting of all K(n), $n \in \mathbb{N}$ together with $p \uparrow$ where $p(x) = \{K(x)\} \cup \{x > n \mid n \in \mathbb{N}\}.$
- $(M, K) \models T_{K=\mathbb{N}} \text{ iff } K = \mathbb{N}.$
- Clearly $T_{K=\mathbb{N}}$ is fully consistent over any T_0 .

Second order arithmetic vs. the standard predicate

Given a second order \mathcal{L}_A -sentence Θ we translate it into a first order $\mathcal{L}_A(K)$ -sentence Θ^K :

- $(t \in X)^K$ becomes $(x)_t \neq 0$
- $(\exists x \Psi)^K$ becomes $\exists x (K(x) \land \Psi^K)$
- $(\exists X \Psi)^K$ becomes $\exists x \Psi^K$

Theorem

 $(M,\mathbb{N})\models\Theta^K(\bar{a})$ iff $SS_V(M)\models\Theta(\bar{A})$, where \bar{a} codes the sets \bar{A} .

Implications of transplendence

If $\mathscr{P}(\mathbb{N}) \models \Theta(\bar{A})$ then $T_{K=\mathbb{N}} + \Theta^K(\bar{a})$ is fully consistent over any T_0 .

Theorem

Background

If M is transplendent then $SSy(M) \prec \mathscr{P}(\mathbb{N})$.

Given $A \in SSy(M)$ then $T_{K=\mathbb{N}} + {}^{\iota}c$ codes $\operatorname{Th}(\mathscr{P}(\mathbb{N}), A)'$ is fully consistent over any T_0 .

Theorem

If M is transplendent then $\operatorname{Th}(\mathscr{P}(\mathbb{N}),A) \in \operatorname{SSy}(M)$ for every $A \in SSv(M)$.

Some basis theorems

- $\Gamma \subset \mathscr{P}(\mathbb{N})$ is a basis for $\Delta \subseteq \mathscr{P}(\mathscr{P}(\mathbb{N}))$ if $\forall X \in \Delta \ X \cap \Gamma \neq \emptyset$.
- V = L implies that Δ_k^1 is a basis for Σ_k^1 for all $k \ge 2$.
- PD implies that Δ_k^1 is a basis for Σ_k^1 for all even $k \geq 2$.
- If V = L or PD then Σ^1_{∞} is a basis for Σ^1_{∞} .

Theorem

If V = L or PD then if $\mathrm{Th}(\mathscr{P}(\mathbb{N}), A) \in \mathscr{X}$ for every $A \in \mathscr{X}$ then $\mathscr{X} \prec \mathscr{P}(\mathbb{N}).$

Is this true in general?

Weakening 'fully consistent'

Replacing 'fully consistent' with 'consistent' in the definition of transplendent models will not work: Let p(x) be some type realized in M.

Theorem

Background

There are recursive T, p such that

- For any type g over PA there is a model of $PA + T + q \downarrow + p \uparrow$.
- No recursively saturated model of PA has an expansion satisfying $T + p\uparrow$.

$$T + p \uparrow$$
 is

 $T_{K=\mathbb{N}} + \Sigma$ is a truth predicate + 'there is an omitted coded type'.

Subtransplendent models

What can be done if 'fully consistent' is weakened to 'consistent'?

Definition

Background

We say that M is subtransplendent if for all $T, p(\bar{x}) \in SSy(M)$ such that $T + p \uparrow + \text{Th}(M, \bar{a})$ is consistent there are an elementary submodel $(N, \bar{a}) \prec (M, \bar{a})$ and an expansion $N^+ \models T + p \uparrow$ of $(N, \bar{a}).$

Theorem

M is subtransplendent iff M is recursively saturated and for every $T, p \in SS_{Y}(M)$ such that $T + p \uparrow + Th(M, \bar{a})$ is consistent there is a completion $T_c \in SSy(M)$ of T making $T_c + p \uparrow + Th(M, \bar{a})$ consistent.

β -models

Background

Definition

 $\mathscr{X} \subseteq \mathscr{P}(\mathbb{N})$ is a β -model if $\mathscr{X} \prec_{\Sigma_1^1} \mathscr{P}(\mathbb{N})$.

Theorem

M is subtransplendent iff M is recursively saturated and SSy(M) is a β -model.

Transplendence implies subtransplendence.

The logic of omitting a type

- A Scott set $\mathscr X$ is a β -model iff for every $T_0, T, p \in \mathscr X$ such that $T+p\uparrow+T_0$ is consistent there is a completion $T_c\in\mathscr X$ of T making $T_c+p\uparrow+T_0$ consistent.
- For every hyperarithmetic T and p the height of a (minimal) proof in the logic of omitting a type (a variant on ω -logic) is at most ω_1^{CK} .
- There are hyperaritmetic T and p such that the supremum of the heights of (minimal) proofs is ω_1^{CK} .
- The supremum of all heights of (minimal) proofs over all recursive T, p is at least ϵ_0 .

Open questions

- Is it possible to replace fully consistency with something weaker?
- Almost transplendence implies transplendence?
- Nicer characterization of the standard systems of transplendent models.
- What's the complexity of the notion of transplendence/subtransplendence?
- Is there a satisfaction class type property such that M is transplendent iff there is such a satisfaction class?