

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

For Video Solution of this DPP, Click on below link

Solution on Website:-

https://physicsaholics.com/home/courseDetails/52

Solution on YouTube:-

https://youtu.be/F0BVSYJhp_k

JEE Main & Advanced, NSEP, INPhO, IPhO Physics DPP

DPP-6 Projectile Motion on inclined plane By Physicsaholics Team

Q) On an inclined plane of inclination 30°, a ball is thrown at an angle of 60° with the horizontal from the foot of the incline with a velocity of $10\sqrt{3}$ m/s. If g = 10 m/s², hen find the time in which ball will hit the inclined plane?

(a) 1 s

Join Unacademy PLUS Referral Code:

Ans. b

Q) Two bodies are projected from the same point with equal speeds in such a directions that they strike on the same point on a plane whose inclination is β . If α the angle of projection of the first, ratio of there times of flight is

(a) $\frac{\sin \alpha}{\cos \beta}$ (b) $\frac{\sin \alpha}{\sin \beta}$ (c) $\frac{\sin(\alpha - \beta)}{\cos \beta}$ (d) $\frac{\sin(\alpha - \beta)}{\cos \alpha}$

Join Unacademy PLUS Referral Code:

Ans. d

Q) A baseball is projected with a velocity v making an angle θ with the incline of indication α as shown in fig. Find the condition that the ball hits the incline at right angle.

(a)
$$\cot \theta = 2 \tan \alpha$$
 (b) $\sin \theta = \cos \alpha$

(c)
$$\tan \theta = \sin \alpha$$
 (d) $\cot \theta = \cos \alpha$

Join Unacademy PLUS Referral Code:

Ans. a

Q) A projectile is required to hit a target whose coordinates relative to horizontal and vertical axes through the point of projection are (α, β) . If the gun velocity is $\sqrt{2g\alpha}$, it is impossible to hit the target if

- (a) $\beta > 3\alpha/4$
- (c) $\beta \leq 3\alpha/4$

- (b) $\beta \ge 1\alpha/4$
- (d) $\beta \ge 3\alpha/4$

Join Unacademy PLUS Referral Code:

Ans. a

maximum Range On Inclined plan

Q) A marble rolls down from top of a staircase with constant horizontal velocity 10 m/s. If each step is y = 1 meter high and x = 1 meter wide. To which step the marble will strike directly? $(g = 9.8 \text{ m/s}^2)$

(a) 21st

(c) 10th

(b) 8th

(d) 18th

Join Unacademy PLUS Referral Code:

Ans. a

Solution: Since 2012 CRC 21/2

Q) A particle is projected from origin of coordinate system. A target is fixed at point (40m, 30m). Find the minimum velocity of projectile to hit the target? $(g = 10 \text{ m/s}^2)$

(a) $10 \, m/s$

(c) $20\sqrt{2} \ m/s$

(b) $17 \, m/s$

(d) $10\sqrt{5} m/s$

Join Unacademy PLUS Referral Code:

Ans. c

Rmax =
$$\frac{U^2}{g(1+S_{In}A)}$$
 $\Rightarrow 50 = \frac{U^2}{10(1+3)(sp)}$
 $\Rightarrow U^2 = 300 \Rightarrow U = 2002 \text{ m/src.}$
 $\Rightarrow 40\text{ m}$
 $\Rightarrow 40\text{ m}$

Q) A particle is projected at an angle θ with an inclined plane making an angle β with the horizontal as shown in figure, speed of the particle is u, after time t find y component of velocity when particle is at maximum distance from the incline plane?

(a) $\frac{u}{\sqrt{2}}$

(b) $\frac{2u}{\sqrt{3}}$

(c) $\frac{\sqrt{2}u}{3}$

d) zero

Join Unacademy PLUS Referral Code:

Ans. d

Q) A ball is projected from point A with a velocity 10 m/s perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is:

Join Unacademy PLUS Referral Code:

Ans. a

Q) A plane surface is inclined making an angle θ with the horizontal. From the bottom of this inclined plane, a bullet is fired with velocity v. The maximum possible range of the bullet on the inclined plane is

$$(c) \frac{V^2}{g(1-\sin\theta)}$$

(d)
$$\frac{\sqrt{1+\cos\theta}}{g(1+\cos\theta)}$$

Join Unacademy PLUS Referral Code:

Ans. b

Inchind.

$$R = 20^{2} (08(0+d) S_{1-}q)$$
 $g(08^{2}Q)$
 $g(08^{2}Q)$
 $g(1-S_{1-}Q)$
 $g(1-S_{1-}Q)$
 $g(1-S_{1-}Q)$
 $g(1-S_{1-}Q)$
 $g(1+S_{1-}Q)$

Q) A ball is projected horizontal with a speed v from the top of a plane inclined at an angle 45° with the horizontal. How far from the point of projection with the ball strike the plane?

(a)
$$\frac{V^2}{g}$$

b)
$$\sqrt{2} \frac{V^2}{g}$$
 (c) $\frac{2V^2}{g}$

d)
$$\sqrt{2} \left[\frac{2V^2}{g} \right]$$

Join Unacademy PLUS Referral Code:

Ans. d

Q) Two inclined planes OA and OB having inclination with horizontal) 30° and 60° respectively, intersect each other at O as shown in figure. A particle is projected from point P with velocity $u = 10\sqrt{3}$ m/s Along a direction perpendicular to plane OA. If the particle strikes plane OB perpendicularly at Q, calculate Velocity with which particle strikes the plane OB? (g = 10 m/s²)

Join Unacademy PLUS Referral Code:

Ans. a

Q) A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide after t = 4 second. The speed of projection of P is:-

(a) 5 m/s

(b) 10 m/s

(c) 15 m/s

(d) 20 m/s

Join Unacademy PLUS Referral Code:

Physicslive

Ans. b

Q) A ball is projected on smooth inclined plane in direction perpendicular to line of greatest slope with velocity of 8m/s. Find it's speed after 1 sec.

Join Unacademy PLUS Referral Code:

Physicslive

Ans. a

Q) A particle is projected from a point P(2,0,0)m with a velocity 10m/s making an angle 45° with the horizontal. The plane of projectile motion passes through a horizontal line PQ which makes an angle of 37° with positive x-axis, xy plane is horizontal. The coordinates of the point where the particle will strike the li ne PQ is: -(take $g = 10 \text{ m/s}^2$)

(a) (10,6,0)m

(b) (8,6,0)m

(c) (10,8,0)m

(d) (6,10,0)m

Join Unacademy PLUS Referral Code:

Physicslive

Ans. a

For Video Solution of this DPP, Click on below link

Solution on Website:-

https://physicsaholics.com/home/courseDetails/52

Solution on YouTube:-

https://youtu.be/F0BVSYJhp_k

CUSIS NIKIS