Deutsch Algorithm

The Deutsch Algorithm, proposed by David Deutsch (1985), is the first quantum algorithm that demonstrates how a quantum computer can outperform a classical computer.

It is used to determine whether a function f(x), with input $x \in \{0,1\}$, is:

• Constant: f(0) = f(1)

• Balanced: $f(0) \neq f(1)$

A classical computer requires two evaluations of f(x), but a quantum computer can determine the result with one evaluation using superposition and interference.

2. Steps of the Algorithm

Step 1: Initialize qubits Prepare two qubits:

$$|\psi_0\rangle = |0\rangle |1\rangle$$

The first qubit represents the input x, and the second assists in encoding the function.

Step 2: Apply Hadamard gates
Apply a Hadamard gate (H) to both qubits to create a superposition:

$$\mid \psi_1 \rangle = \frac{1}{2} (\mid 0 \rangle + \mid 1 \rangle) (\mid 0 \rangle - \mid 1 \rangle)$$

This represents both possible inputs (0 and 1) simultaneously.

Step 3: Apply oracle U_f The oracle implements the function f(x):

$$U_f \mid x, y \rangle = \mid x, y \oplus f(x) \rangle$$

This flips the phase of the first qubit depending on the function's output.

Step 4: Apply Hadamard to the first qubit again

A Hadamard gate is applied to the first qubit. Quantum interference ensures the amplitude of the first qubit reflects whether f(x) is constant or balanced.

Step 5: Measure the first qubit

- Result 0 → function is constant
- Result 1 → function is balanced

3. Minimal Math (Concept Only)

After the algorithm, the first qubit is in the state:

$$|\psi_{final}
angle = egin{cases} |0
angle, & ext{if } f(0) = f(1) ext{ (constant)} \ |1
angle, & ext{if } f(0)
eq f(1) ext{ (balanced)} \end{cases}$$

Thus, only one measurement is needed to determine the answer.

4. Advantages

- Requires only one function evaluation, demonstrating quantum speed-up.
- Clearly illustrates quantum superposition and interference.
- Forms the foundation for Deutsch– Jozsa, Grover's, and Shor's algorithms.
- Demonstrates that quantum computing can outperform classical methods even for simple problems.

5. Disadvantages

- Applicable only to single-bit input functions.
- Mainly theoretical, with limited practical use.
- Requires perfect quantum gates and stable qubits to work reliably.
- Provides constant speed-up rather than exponential speed-up.

Deutsch-Jozsa Algorithm

The **Deutsch–Jozsa Algorithm** is a quantum algorithm designed to determine whether a

given **n-bit function** f(x) is **constant** or **balanced**.

- Constant function: f(x) gives the same output (0 or 1) for all 2ⁿ possible inputs.
- Balanced function: f(x) outputs 0 for exactly half of the inputs and 1 for the other half.

Classically, it may require up to 2^{n-1} + 1evaluations to determine the type of function. Using quantum computing, the Deutsch–Jozsa Algorithm solves the problem with only one evaluation of the function.

2. Steps of the Algorithm

Step 1: Initialize qubits

Prepare n + 1qubits:

$$|\psi_0\rangle = |0\rangle^{\otimes n} |1\rangle$$

The first *n*qubits represent the input, and the last qubit is used to encode the function's output.

Step 2: Apply Hadamard gates

Apply a Hadamard gate to each qubit:

$$|\psi_1\rangle = H^{\otimes n+1} |\psi_0\rangle$$

The first nqubits now exist in a superposition of all 2^n input states.

Step 3: Apply oracle U_f

The oracle encodes the function into the quantum state:

$$U_f \mid x, y \rangle = \mid x, y \oplus f(x) \rangle$$

This applies a **phase shift** to the first nqubits depending on the function value.

Step 4: Apply Hadamard gates again to first nqubits

Applying Hadamard gates again causes **quantum interference**: the amplitude of $| 0 \dots 0 \rangle$ depends on whether f(x) is constant or balanced.

Step 5: Measure the first nqubits

- If the measurement is |0...0⟩ → function is constant
- If the measurement is any other state
 → function is balanced

3. Minimal Math (Concept Only)

The amplitude of the $\mid 0 \dots 0$) state after the second Hadamard gates is:

Amplitude =
$$\frac{1}{2^n} \sum_{x=0}^{2^n - 1} (-1)^{f(x)}$$

- Constant function: All terms are the same → amplitude ≠ 0 → measurement gives | 0 ... 0⟩
- Balanced function: Half terms +1, half
 -1 → amplitude = 0 → measurement gives other states

Thus, **only one function evaluation** is sufficient to determine the type.

4. Advantages

- Provides exponential speed-up over classical algorithms for large n.
- Evaluates **all** 2ⁿ**inputs simultaneously** using superposition.
- Demonstrates quantum interference and parallelism clearly.
- Forms a foundation for many other quantum algorithms in computation and cryptography.

5. Disadvantages

- Mainly theoretical, with limited practical applications.
- Requires ideal quantum hardware (perfect gates and no decoherence).
- Applicable only to promise problems where the function is guaranteed to be either constant or balanced.

Simon's Algorithm

Simon's Algorithm is a quantum algorithm developed by **Daniel Simon (1994)**. It is designed to find a **hidden binary string**

sin a function $f: \{0,1\}^n \to \{0,1\}^n$ that satisfies the following property:

$$f(x) = f(y) \iff x \oplus y = s$$

Here, s is an unknown string and \bigoplus denotes bitwise XOR.

The problem is called **Simon's Problem**. Classically, finding *s* requires **exponentially many queries**, whereas the quantum algorithm solves it **efficiently in polynomial time**.

2. Steps of Simon's Algorithm

Step 1: Initialize qubits

Prepare **two registers** of *n* qubits each:

$$|\psi_0\rangle = |0\rangle^{\otimes n} |0\rangle^{\otimes n}$$

The first register holds input x, and the second holds the output of the function f(x).

Step 2: Apply Hadamard gates to the first register

Apply Hadamard gates to the first register to create a superposition of all possible inputs:

$$|\psi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle |0\rangle$$

Step 3: Apply oracle U_f

The oracle encodes the function f(x) into the second register:

$$U_f \mid x \rangle \mid 0 \rangle = \mid x \rangle \mid f(x) \rangle$$

This produces a superposition of all inputoutput pairs.

Step 4: Measure the second register

Measuring the second register collapses it to a particular function output $f(x_0)$.

The first register then becomes a superposition of **all inputs that map to that output**, which are related by the hidden string s:

$$|x_0\rangle + |x_0 \oplus s\rangle$$

Step 5: Apply Hadamard gates to the first register again

Apply Hadamard gates to the first register. Quantum interference ensures that measurement of the first register gives a string ysuch that:

$$y \cdot s = 0 \pmod{2}$$

(where ·is the bitwise dot product).

Step 6: Repeat measurements

Repeat steps 1–5 multiple times (about ntimes) to collect enough linear equations to determine s uniquely.

Step 7: Solve for S

Use the linear equations over \mathbb{F}_2 (binary field) obtained from the measurements to compute the hidden string s.

3. Minimal Math (Concept Only)

- Superposition: $|x\rangle$ over all 2^n inputs.
- Oracle: $U_f \mid x \rangle \mid 0 \rangle = \mid x \rangle \mid f(x) \rangle$
- After Hadamard on first register: measurement yields y such that $y \cdot s = 0$
- Solve system of linear equations in binary to find *s*.

4. Advantages

- Exponentially faster than classical algorithms (polynomial vs. exponential).
- Demonstrates quantum parallelism and interference in practical hiddenstructure problems.

 Forms the foundation for Shor's Algorithm, which uses similar quantum period-finding principles.

5. Disadvantages

- Requires ideal quantum hardware (no decoherence or errors).
- Only applicable to promise problems where the function satisfies the Simon property.
- Mainly theoretical, not directly practical for general computation problems.

Shor's Algorithm

Shor's Algorithm, developed by Peter Shor (1994), is a quantum algorithm for factoring large integers efficiently.

- Given a composite number N, the goal is to find nontrivial factors of N.
- Classically, integer factorization requires sub-exponential time, but Shor's Algorithm solves it in polynomial time using quantum computation.
- It combines quantum period finding with classical number theory.

2. Steps of the Algorithm

Step 1: Precheck & choose a number a

- Select a random integer asuch that 1 < a < N.
- Compute gcd(a, N).
- If gcd (a, N) > 1, it is a factor of N, and we are done.

Step 2: Reduce factoring to period finding

• Define the function:

$$f(x) = a^x \mod N$$

• Goal: find the **period** r such that $a^r \equiv 1 \pmod{N}$.

Step 3: Quantum part — prepare superposition

- Use a quantum register to create a superposition of all integers x from 0 to Q-1 (where Q is a power of 2, $Q>N^2$).
- Apply the oracle U_f to compute f(x) in superposition.

Step 4: Apply Quantum Fourier Transform (QFT)

 QFT is applied to extract information about the period rfrom the superposed states.

Step 5: Measure and classical post-processing

- Measure the first register to obtain an integer *m*.
- Use the **continued fraction algorithm** to approximate $m/Q \approx s/r$, recovering the candidate period r.

Step 6: Verify the period and compute factors

• If r is even and $a^{r/2} \equiv /-1 \pmod{N}$, compute:

$$\gcd(a^{r/2}-1, N)$$
 and $\gcd(a^{r/2}+1, N)$

- These give nontrivial factors of *N*.
- If factors are trivial, repeat with a different a.

3. Minimal Math (Concept Only)

- 1. Function for period-finding: $f(x) = a^x \mod N$
- 2. Period: rsuch that $a^r \equiv 1 \pmod{N}$
- 3. Factors: gcd $(a^{r/2} \pm 1, N)$

Quantum steps (superposition + QFT) **find refficiently**, which is the core of the speed-up.

4. Advantages

- Exponentially faster than classical factoring algorithms.
- Can break classical cryptosystems like RSA by factoring large numbers efficiently.
- Demonstrates quantum parallelism and quantum Fourier transform applications.
- Polynomial time in the number of bits of N

5. Disadvantages

- Requires large-scale, fault-tolerant quantum computers; not yet practical for real-world RSA numbers.
- Sensitive to quantum decoherence and gate errors.
- The algorithm works efficiently only when the number is composite; trivial for primes.

Grover's Algorithm

Grover's Algorithm, developed by **Lov Grover (1996)**, is a quantum algorithm designed for **searching an unsorted database** efficiently.

- Given an unsorted database of Nitems, classical search requires O(N)time.
- Grover's Algorithm finds the desired item in O(VN) queries, demonstrating a quadratic speed-up over classical search.
- It is widely used in quantum search and optimization problems.

2. Steps of the Algorithm

Step 1: Initialize qubits

• Prepare nqubits ($N = 2^n$) in the $|0\rangle$ state:

$$|\psi_0\rangle = |0\rangle^{\otimes n}$$

Step 2: Apply Hadamard gates

 Apply Hadamard gates to all qubits to create equal superposition of all states:

$$|\psi_1\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$

Step 3: Oracle marking

• Apply the **oracle function** O_f that flips the phase of the target state:

$$O_f \mid x \rangle = \{ \begin{matrix} - \mid x \rangle & \text{if } x \text{ is the target} \\ \mid x \rangle & \text{otherwise} \end{matrix}$$

Step 4: Apply Grover diffusion operator

- Amplifies the probability of the target state by reflecting all amplitudes about their average.
- The combination of **oracle + diffusion** is called **Grover iteration**.

Step 5: Repeat Grover iterations

• Repeat the Grover iteration approximately $\frac{\pi}{4}\sqrt{N}$ times to maximize the probability of the target state.

Step 6: Measurement

- Measure the qubits.
- The result will be the **target item** with high probability.

3. Minimal Math (Concept Only)

- Superposition: $|\psi\rangle = \frac{1}{\sqrt{N}}\sum |x\rangle$
- Oracle flips phase of target: $|x\rangle \rightarrow -|x\rangle$
- Diffusion amplifies target amplitude: reflection about mean

• Repeating $O(\sqrt{N})$ times gives high probability of correct output

4. Advantages

- Quadratic speed-up over classical search $(O(\sqrt{N}))$ vs O(N).
- Works for any unstructured search problem.
- Demonstrates quantum parallelism and amplitude amplification.
- Useful in **optimization**, **database search**, **and cryptography**.

5. Disadvantages

- Only provides **probabilistic success**; repeated runs may be needed.
- Requires ideal quantum hardware to avoid decoherence and errors.
- Less dramatic improvement than Shor's Algorithm (quadratic vs exponential).
- Limited to problems where **oracle can be efficiently implemented**.

Phase Kickback

Phase Kickback is a quantum computing phenomenon where the phase of a control qubit is modified based on the state of a target qubit after a controlled operation.

- It is widely used in quantum algorithms, such as Shor's Algorithm, Deutsch-Jozsa Algorithm, and Quantum Phase Estimation.
- Phase kickback allows information about a function or operation to be encoded in the phase of a qubit rather than its amplitude.

2. Explanation

Consider a **controlled-unitary operation** *CU* applied on two qubits:

$$|c\rangle |t\rangle \stackrel{CU}{\rightarrow} |c\rangle U^c |t\rangle$$

- Here, | c is the control qubit and | t is the target qubit.
- If the target qubit is in an eigenstate of U with eigenvalue $e^{i\phi}$, then applying CU effectively adds a phase ϕ to the control qubit:

$$|c\rangle |t\rangle \rightarrow e^{ic\phi} |c\rangle |t\rangle$$

This effect, where the **phase of the control qubit "kicks back"** from the target qubit, is called **phase kickback**.

- Phase kickback is crucial in quantum phase estimation, where eigenvalues of a unitary operator are encoded in the phase of control qubits.
- It allows quantum algorithms to extract global information efficiently without measuring the target qubits directly.

3. Minimal Math (Concept Only)

- 1. Controlled-unitary: $CU \mid c \rangle \mid u \rangle = |c \rangle U^c \mid u \rangle$
- 2. Target eigenstate: $U \mid u \rangle = e^{i\phi} \mid u \rangle$
- 3. Resulting control qubit: $|c\rangle \rightarrow e^{ic\phi} |c\rangle$
- The phase of control qubit now carries information about the eigenvalue φ.

4. Advantages

- Enables efficient extraction of function or operator information in quantum algorithms.
- Key component in Shor's Algorithm for factoring large numbers.
- Allows phase encoding without disturbing the target qubit.

 Facilitates quantum parallelism and interference-based computations.

5. Disadvantages

- Requires target qubit to be in an eigenstate of the unitary operator.
- Implementation depends on accurate controlled-unitary operations; hardware errors can affect phase.
- Concept is abstract and may be difficult to visualize.
- Sensitive to decoherence and noise in quantum systems.

Factoring Integers in Quantum Computing

In quantum computing, factoring integers refers to using a quantum algorithm to efficiently find nontrivial factors of a large composite number N.

- Classical algorithms take exponentially long for large numbers.
- Quantum algorithms, particularly Shor's Algorithm, can factor integers in polynomial time by exploiting superposition, entanglement, and quantum interference.

2. Importance in Quantum Computing

- Cryptography: RSA encryption relies on the difficulty of factoring large integers; quantum factoring can break classical cryptosystems.
- Algorithmic demonstration: Shows that quantum computers can solve problems exponentially faster than classical computers.
- Quantum number theory applications: Enables efficient period finding, modular arithmetic, and other number-theoretic computations.

3. Quantum Method: Shor's Algorithm

Step 1: Reduce factoring to period finding

 For a composite number N and randomly chosen a < N:

$$f(x) = a^x \mod N$$

• Goal: find the **period** r such that $a^r \equiv 1 \pmod{N}$.

Step 2: Prepare superposition

• Use a quantum register to create a superposition of all possible xvalues.

Step 3: Apply quantum oracle U_f

• Compute f(x) in superposition:

$$|x\rangle |0\rangle \stackrel{U_f}{\rightarrow} |x\rangle |f(x)\rangle$$

Step 4: Apply Quantum Fourier Transform (QFT)

 Extract the period r from the amplitudes using interference patterns.

Step 5: Classical post-processing

 Measure the first register, use continued fractions to find r, then compute factors:

$$\gcd(a^{r/2}\pm 1,N)$$

4. Advantages in Quantum Computing

- Provides exponential speed-up over classical factoring methods.
- Exploits quantum parallelism to evaluate all possible inputs simultaneously.
- Can potentially break RSA and other classical cryptosystems.
- Demonstrates key quantum concepts: superposition, entanglement, phase kickback, and QFT.

5. Disadvantages / Challenges

- Requires fault-tolerant, large-scale quantum computers.
- Sensitive to decoherence and gate errors, which can affect results.
- Only practical for composite numbers; quantum factoring is currently limited by hardware size.

Probabilistic Versus Quantum Algorithms

- Algorithms that use **randomness** as part of their logic to solve a problem.
- Output may vary for the same input and usually provides a correct answer with high probability.
- Examples: Randomized quicksort,
 Monte Carlo algorithms, Pollard's rho algorithm.

Quantum Algorithms:

Probabilistic Algorithms:

- Algorithms that leverage quantum mechanics principles like superposition, entanglement, and interference.
- Solve problems by exploring many possibilities simultaneously and manipulating probability amplitudes.
- Examples: Shor's Algorithm, Grover's Algorithm, Deutsch-Jozsa Algorithm.

Feature	Probabilistic Algorithms	Quantum Algorithms
Basis	Classical randomness	Quantum mechanics
Comput ation	Processes one possibility at a time	Processes superpositions of all possibilities simultaneously

Output	Correct with high probability	Correct with high probability, can leverage interference for exact or amplified probabilities
Speed	Often faster than deterministic classical algorithms, but still limited	Can achieve exponential or quadratic speed-up over classical algorithms
Exampl es	Monte Carlo, Las Vegas algorithms	Shor's, Grover's, Deutsch–Jozsa

3. Minimal Math / Concept

- **Probabilistic:** Uses random variable X and probability P(X = x) to guide computation.
- Quantum: Uses quantum states | $\psi \rangle = \sum \alpha_i \mid i \rangle$ and probability amplitudes | $\alpha_i \mid^2$ for measurement outcomes.

5. Advantages of Quantum Algorithms

- Exploit superposition and entanglement to explore multiple solutions simultaneously.
- Can provide exponential speed-up (Shor) or quadratic speed-up (Grover) over classical methods.
- Solve certain problems impossible for classical computers in reasonable time.