Elektrische Brückenschaltung

Maximilian Sackel Philip Schäfers
Maximilian.sackel@gmx.de phil.schaefers@gmail.com

Durchführung: 15.12.15 Abgabe: 05.01.2015

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theoretische Grundlage								
	.1 Fehlerrechnung								
	1.1.1 Mittelwert								
	1.1.2 Gauß'sche Fehlerfortpflanzung								
	1.1.3 Lineare Regression								
_	2 Durchführung und Aufbau 3 Auswertung								
•	3.1 Wheatston'sche Brückeschaltung								
	3.2 Kapazitätsmessbrücke								
4	Diskussion								

1 Theoretische Grundlage

1.1 Fehlerrechnung

Sämtliche Fehlerrechnungen werden mit Hilfe von Python 3.4.3 durchgeführt.

1.1.1 Mittelwert

Der Mittelwert einer Messreihe $x_1,...,x_{\rm n}$ lässt sich durch die Formel

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{1}$$

berechnen. Die Standardabweichung des Mittelwertes beträgt

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2}$$
 (2)

1.1.2 Gauß'sche Fehlerfortpflanzung

Wenn $x_1, ..., x_n$ fehlerbehaftete Messgrößen im weiteren Verlauf benutzt werden, wird der neue Fehler Δf mit Hilfe der Gaußschen Fehlerfortpflanzung angegeben.

$$\Delta f = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_k}\right)^2 \cdot (\Delta x_k)^2}$$
 (3)

1.1.3 Lineare Regression

Die Steigung und y-Achsenabschnitt einer Ausgleichsgeraden werden gegebenfalls mittels Linearen Regression berechnet.

$$y = m \cdot x + b \tag{4}$$

$$m = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{5}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\,\overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{6}$$

2 Durchführung und Aufbau

3 Auswertung

3.1 Wheatston'sche Brückeschaltung

Mit Hilfe der Wheatston'schen Brückeschaltung werden zwei unbekannte Wiederstände R_{13} = Wert13 und R_{14} = Wert14 bestimmt. Dies geschieht mit Formel ??, die Werte

und Ergebnisse sind in den Tabellen 1 und 2 aufgeführt. $\overline{R_{13,14}}$ entspricht hierbei den gemittelten Werten für die gesuchten Widerstände.

R_2 / Ω	R_3 / Ω	R_4 / Ω	R_{13} / Ω	$\overline{R_{13}} / \Omega$
332	735	265	322.8 ± 1.6	
500	648	352	321.0 ± 1.6	326.6 ± 0.9
664	582	418	336.0 ± 1.7	

Tabelle 1: Werte für die Bestimmung von R_{13} .

R_2 / Ω	R_3 / Ω	R_4 / Ω	R_{14} / Ω	$\overline{R_{14}}$ / Ω
332	493	507	920.8 ± 4.6	
500	391	609	920.5 ± 4.6	921.9 ± 2.7
664	336	664	924.5 ± 4.6	

Tabelle 2: Werte für die Bestimmung von R_{14} .

3.2 Kapazitätsmessbrücke

Mit Hilfe der Kapazitätsmessbrücke werden drei unbekannte Kapazitäten C_2 = Wert2, C_3 = Wert3 und C_8 = Wert8 bestimmt. Dies geschieht mit Formel ??, die Werte und Ergebnisse sind in den Tabellen 3 bis ?? aufgeführt. $\overline{C_{2,3,8}}$ entspricht hierbei den gemittelten Werten für die gesuchten Kapazitäten.

C_2 / nF	R_3 / Ω	R_4 / Ω	$C_2 / 10^{-6} \text{ F}$	$\overline{C_2}$ / 10^{-6} F
597	285	715	1.498 ± 0.007	
750	329	671	1.530 ± 0.008	1.517 ± 0.004
994	395	605	1.522 ± 0.008	

Tabelle 3: Werte für die Bestimmung von C_2 .

C_2 / nF	R_3 / Ω	R_4 / Ω	$C_3 / 10^{-6} \text{ F}$	$\overline{C_3} / 10^{-6} \text{ F}$
597	593	607	4.091 ± 0.020	
750	639	361	4.237 ± 0.021	4.165 ± 0.012
994	705	295	4.159 ± 0.021	

Tabelle 4: Werte für die Bestimmung von C_3 .

f / Hz	$U_{ m br}$ / V
20	2.28
70	1.88
180	0.89
200	0.76
220	0.64
240	0.54
260	0.44
280	0.35
300	0.28
320	0.20
340	0.13
360	0.07
380	0.01
400	0.11
420	0.12
440	0.17
460	0.22
480	0.26
500	0.31
520	0.35
540	0.39
560	0.44
580	0.48
700	0.69
1000	1.07
2000	1.63
7000	1.95
15000	1.96
30000	1.96

Tabelle 5: Brückenspannung gegen die Frequenz aufgetragen.

Abbildung 1: Brückenschaltung

4 Diskussion