

OUTGOING DOCUMENT INDEX SHEET

A DOCPHOENIX

OUTGOING

CTMS	
Miscellaneous Office Action	
IMIS	
Miscellaneous Internal Document	
NRES	
Letter Restating Period for Response	
1449	
Signed 1449	
892	
ABN	
Abandonment	
APDEC	
Board of Appeals Decision	
APEA	
Examiner Answer to Appeal Brief	
CRFR	
Letter Requiring CRF	
CTAV	
Count Advisory Action	
CTEQ	
Count Ex parte Quayle	
CTFR	
Count Final Rejection	
CTNF	
Count Non-Final	
CTRS	
Count Restriction	
EXIN	
Examiner Interview	
FOR	
Foreign Reference	
M903	
DO/EO Acceptance	
M905	
DO/EO Missing Requirement	

OUTGOING

NFDR	
Formal Drawing Required	
NOA	
Notice of Allowance	
NPL	
Non-Patent Literature	
PEFN	
Pre-Exam Formalities Notice	
PETDEC	
Petition Decision	
ANE.I	
After Final or 312 Amendment	
PGEA.G	
Petition Decision Express ABN	
XRUSH	
TC Resp. to Printer Query	

PTO INTERNAL

CLMPTO	
PTO Prepared Complete Claim Set	
IIFW	
File Wrapper Issue Information	

SRNT	
Examiner Search Notes	
SRFW	
File Wrapper Search Info	

SEQREQ	
Sequence Problem Att. from Examiner	
CDCHECK	
Compact Disk Review Checklist	

L2 ANSWER 17 OF 21 AGRICOLA
TI Homology between the HrpO protein of *Pseudomonas solanacearum* and bacterial proteins implicated in a signal peptide-independent secretion mechanism.

L2 ANSWER 18 OF 21 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.
TI The VirD2 protein of *Agrobacterium tumefaciens* carries nuclear localization signals important for transfer of T-DNA to plants.

L2 ANSWER 19 OF 21 AGRICOLA
TI Are harpins universal elicitors of the hypersensitive response of phytopathogenic bacteria?

L2 ANSWER 20 OF 21 CABA COPYRIGHT 2003 CABI
TI Harpin, from *Erwinia amylovora*, elicits the hypersensitive response and is a determinant of pathogenicity.

L2 ANSWER 21 OF 21 AGRICOLA
TI Harpin, elicitor of the hypersensitive response produced by the plant pathogen *Erwinia amylovora*.

=> d bib abs 13 2

L2 ANSWER 13 OF 21 CAPLUS COPYRIGHT 2003 ACS
AN 1994:265707 CAPLUS
DN 120:265707
TI Cloning of microbial gene for elicitor of the hypersensitive response in plants
IN Beer, Steven V.; Wei, Zhong Min; Bauer, David W.; Collmer, Alan; He, Sheng Yang; Laby, Ron
PA Cornell Research Foundation, Inc., USA
SO PCT Int. Appl., 51 pp.
CODEN: PIXXD2

DT Patent
LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9401546	A1	19940120	WO 1993-US6243	19930630 <--
	W: JP				
	RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	EP 648266	A1	19950419	EP 1993-918140	19930630 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
	JP 07509604	T2	19951026	JP 1993-503402	19930630 <--
	US 5849868	A	19981215	US 1994-200724	19940223
	US 6174717	B1	20010116	US 1997-851376	19970505
PRAI	US 1992-907935	A	19920701		
	WO 1993-US6243	W	19930630		
	US 1994-200724	A3	19940223		

AB The gene (***hrpN***) for the hypersensitive response elicitor protein, harpin, is cloned from *Erwinia amylovora* cosmid pCPP430 and its amino acids deduced. The elicitor protein is a 44-kDa protein with a pI of 4.3 and is heat-resistant at 100.degree. for >1 min. The ***hrpN*** genes of *Erwinia*, *Pseudomonas*, and *Xanthomonas* are highly similar. A method to alter the disease or hypersensitive response in a plant by providing an inhibitor of the harpin elicitor is also described.

L2 ANSWER 2 OF 21 CAPLUS COPYRIGHT 2003 ACS
AN 1997:151517 CAPLUS
DN 126:155234
TI Hypersensitive response induced resistance in plants
IN Wei, Zhong-Min; Beer, Steven V.
PA Cornell Research Foundation, Inc., USA
SO PCT Int. Appl., 68 pp.
CODEN: PIXXD2

DT Patent
LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9639802	A1	19961219	WO 1996-US8819	19960605 <--
	W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE,				
	ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT,				
	LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,				

RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR;
 IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML
 US 5650387 A 19970722 US 1995-475775 19950607
 CA 2223616 AA 19961219 CA 1996-2223616 19960605 <--
 AU 9659821 A1 19961230 AU 1996-59821 19960605 <--
 AU 714512 B2 20000106
 CN 1192647 A 19980909 CN 1996-196146 19960605
 EP 871354 A1 19981021 EP 1996-917152 19960605
 R: CH, DE, DK, ES, FR, GB, LI, NL, SE
 BR 9609073 A 19990126 BR 1996-9073 19960605
 JP 11506938 T2 19990622 JP 1996-501304 19960605
 PL 182459 B1 20020131 PL 1996-323823 19960605
 US 5859324 A 19990112 US 1997-819539 19970317
 US 5776889 A 19980707 US 1997-891254 19970710
 PRAI US 1995-475775 A 19950607
 WO 1996-US8819 W 19960605

AB A method of imparting pathogen resistance to plants is described. This involves applying a hypersensitive response elicitor polypeptide or protein in a non-infectious form to a plant under conditions where the polypeptide or protein contacts cells of the plant. The invention is also directed to a pathogen resistant plant and a compn. for imparting pathogen resistance to plants. Thus, treatment of tomato plants with harpin or *Escherichia coli* DH5 (pCPP430), which produces harpin, results in induced resistance in the plants to southern bacterial wilt caused by *Pseudomonas solanacearum* K60.

=> d bib abs 4

L2 ANSWER 4 OF 21 CABA COPYRIGHT 2003 CABI
 AN 97:74736 CABA
 DN 971003528
 TI Harpin from *Erwinia amylovora* induces plant resistance
 AU Wei, Z. M.; Beer, S. V.; Bonn, W. G. [EDITOR]
 CS Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA.
 SO Acta Horticulturae, (***1996***) No. 411, pp. 223-225. 7 ref.
 Meeting Info.: VII International workshop on fire blight, St. Catherines,
 Ontario, Canada, 7-10 August 1995.
 ISSN: 0567-7572; ISBN: 90-6605-897-8
 DT Conference Article; Journal
 LA English
 AB hrp genes are essential for *E. amylovora* to cause disease in host plants and the hypersensitive response (HR) in non-host plants. Harpin is a heat stable, glycine rich protein encoded by ***hrpN*** of *E. amylovora* which elicits HR in many plants. Harpin-induced HR may, therefore, induce plant resistance. Harpin induced resistance in >7 different plants against 8 diseases caused by fungi, viruses and bacteria was studied. All tested plants showed some resistance. Evidence of harpin-induced resistance to southern bacterial wilt of tomato [*Ralstonia solanacearum*] and tobacco mosaic tobamovirus and *Gliocladium* leaf spot of cucumbers is reported.

=> logoff hold

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	15.76	15.97
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-1.30	-1.30

SESSION WILL BE HELD FOR 60 MINUTES
 STN INTERNATIONAL SESSION SUSPENDED AT 14:31:35 ON 23 APR 2003

	<input checked="" type="checkbox"/> <input type="checkbox"/>	Document ID	Issue Date	Title	Inventor	S C
1	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5849868 A	20031029	Hypersensitive response elicitor protein derived from erwinia amylovora - and DNA encoding it, useful for developing harpin inhibitors to prevent e.g. fire blight of fruit	BAUER, D W et al.	<input type="checkbox"/> <input type="checkbox"/>
2	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020066122 A	20031007	Novel hypersensitive response elicitor polynucleotides and polypeptides used to improve disease resistance, insect resistance, and growth of plants	FAN, H et al.	<input type="checkbox"/> <input type="checkbox"/>
3	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20030182683 A1	20030925	Hypersensitive response elicitor fragments eliciting a hypersensitive response and uses thereof	Laby, Ron J. et al.	<input type="checkbox"/> <input type="checkbox"/>
4	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20010011380 A	20030925	New fragments of an Erwinia hypersensitive response elicitor protein and related DNA - used to impart disease resistance to plants, to increase their growth and to control insects	BEER, S V et al.	<input type="checkbox"/> <input type="checkbox"/>
5	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6624139 B1	20030923	Hypersensitive response elicitor-induced stress resistance	Wei, Zhong-Min et al.	<input type="checkbox"/> <input type="checkbox"/>
6	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20030177526 A1	20030918	Receptors for hypersensitive response elicitors and uses thereof	Song, Xiaoling et al.	<input type="checkbox"/> <input type="checkbox"/>
7	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 2003054211 A	20030918	New isolated protein as a receptor in plants for plant pathogen hypersensitive response elicitors, useful for identifying agents that impart disease resistance, enhance plant growth, control insects and/or impart stress tolerance	BARIOLA, P A et al.	<input type="checkbox"/> <input type="checkbox"/>
8	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20030166533 A1	20030904	Genes for male accessory gland proteins in Drosophila melanogaster	Wolfner, Mariana F. et al.	<input type="checkbox"/> <input type="checkbox"/>
9	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6613960 B1	20030902	Phloem-loading-specific promoter	Turgeon, E. Robert	<input type="checkbox"/> <input type="checkbox"/>
10	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20030163837 A1	20030828	Constitutive and inducible promoters from coffee plants	Aldwinckle, Herbert S. et al.	<input type="checkbox"/> <input type="checkbox"/>
11	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020019337 A	20030820	Inhibiting post harvest disease (caused by Penicillium, Botrytis, Phytophthora, or Erwinia) or desiccation and enhancing the longevity in fruits or vegetables, using hypersensitive response elicitor proteins or nucleic acids	QIU, D et al.	<input type="checkbox"/> <input type="checkbox"/>
12	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020007501 A	20030709	New plant pathogen hypersensitive response elicitor-receptor protein isolated from plants, which upon silencing is used to study plant signal transduction pathways leading to disease resistance and growth enhancement	FAN, H et al.	<input type="checkbox"/> <input type="checkbox"/>
13	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 3054211 A2	20030703	RECEPTORS FOR HYPERSENSITIVE RESPONSE ELICITORS AND USES THEREOF	SONG, XIAOLING et al.	<input type="checkbox"/> <input type="checkbox"/>
14	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6583107 B2	20030624	Hypersensitive response elicitor fragments eliciting a hypersensitive response and uses thereof	Laby, Ron J. et al.	<input type="checkbox"/> <input type="checkbox"/>
15	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20030104979 A1	20030605	Methods of inhibiting desiccation of cuttings removed from ornamental plants	Wei, Zhong-Min et al.	<input type="checkbox"/> <input type="checkbox"/>
16	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 200237960 A	20030605	Inhibiting desiccation of cuttings from ornamental plants, by treating ornamental plants with hypersensitive response elicitor protein, or expressing heterologous hypersensitive response elicitor protein in plants	LEON, E et al.	<input type="checkbox"/> <input type="checkbox"/>
17	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020062500 A	20030409	New hypersensitive response elicitor proteins comprising spaced apart domains having an acidic portion linked to an alpha-helix, useful for imparting disease or stress resistance, controlling insects or enhancing plant growth	FAN, H et al.	<input type="checkbox"/> <input type="checkbox"/>

	<input checked="" type="checkbox"/> <input type="checkbox"/>	Document ID	Issue Date	Title	Inventor	S	C
18	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20030028918 A1	20030206	Method of imparting drought resistance to plants	Wei, Zhong-Min	<input type="checkbox"/>	<input type="checkbox"/>
19	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6277814 B	20030206	method for enhancing plant growth - comprises use of hypersensitive response elicitor polypeptide or protein which may also effect, e.g. increase in plant height or earlier germination seed	BEER, S V et al.	<input type="checkbox"/>	<input type="checkbox"/>
20	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6485977 B1	20021126	Recombinant constructs and techniques for delivering to eucaryotic cells bacterial proteins that are secreted via type III secretion systems	Collmer, Alan et al.	<input type="checkbox"/>	<input type="checkbox"/>
21	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 200119393 A	20021126	Delivering effector proteins into target cell for use in protein therapy, involves introducing effector protein fused to protein transduction domain of human immunodeficiency virus TAT protein, into target cells	BEER, S V et al.	<input type="checkbox"/>	<input type="checkbox"/>
22	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6441273 B1	20020827	Constitutive and inducible promoters from coffee plants	Aldwinckle, Herbert S. et al.	<input type="checkbox"/>	<input type="checkbox"/>
23	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020116733 A1	20020822	Hypersensitive response induced resistance in plants by seed treatment	Qiu, Dewen et al.	<input type="checkbox"/>	<input type="checkbox"/>
24	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6235974 B	20020822	Imparting pathogen resistance to plants - by applying a hypersensitive response elicitor polypeptide to seeds	BEER, S V et al.	<input type="checkbox"/>	<input type="checkbox"/>
25	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020069434 A1	20020606	Oomycete-resistant transgenic plants by virtue of pathogen-induced expression of a heterologous hypersensitive response elicitor	Beer, Steven V. et al.	<input type="checkbox"/>	<input type="checkbox"/>
26	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 200028055 A	20020601	Application of a hypersensitive response elicitor protein to plants to impart stress resistance	SCHADING, R L et al.	<input type="checkbox"/>	<input type="checkbox"/>
27	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 200020452 A	20020601	Hypersensitive response elicitor polypeptides useful for imparting enhanced growth, disease resistance and insect resistance to plants, especially vegetables and ornamental flowers	FAN, H et al.	<input type="checkbox"/>	<input type="checkbox"/>
28	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020066122 A1	20020530	Hypersensitive response elicitor from Xanthomonas campestris	Wei, Zhong-Min et al.	<input type="checkbox"/>	<input type="checkbox"/>
29	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020062500 A1	20020523	Hypersensitive response eliciting domains and use thereof	Fan, Hao et al.	<input type="checkbox"/>	<input type="checkbox"/>
30	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020059658 A1	20020516	Methods of improving the effectiveness of transgenic plants	Wei, Zhong-Min et al.	<input type="checkbox"/>	<input type="checkbox"/>
31	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6333302 B	20020501	Imparting disease resistance to plants	BEER, S V et al.	<input type="checkbox"/>	<input type="checkbox"/>
32	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6380159 B1	20020430	Genes for male accessory gland proteins in drosophila melanogaster	Wolfner, Mariana F. et al.	<input type="checkbox"/>	<input type="checkbox"/>
33	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020019337 A1	20020214	Treatment of fruits or vegetables with hypersensitive response elicitor to inhibit postharvest disease or desiccation	Wei, Zhong-Min et al.	<input type="checkbox"/>	<input type="checkbox"/>
34	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020066122 A	20020214	New Xanthomonas hypersensitive response elicitor protein, useful for imparting disease resistance to plants, enhancing plant growth and controlling insects in plants	SWANSON, S S et al.	<input type="checkbox"/>	<input type="checkbox"/>
35	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020007501 A1	20020117	Receptors for hypersensitive response elicitors and uses thereof	Song, Xiaoling et al.	<input type="checkbox"/>	<input type="checkbox"/>
36	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6333302 B1	20011225	Use of hypersensitive response elicitor protein or polypeptide from Clavibacter michiganensis for disease resistance, growth enhancement and insect control	Beer, Steven V. et al.	<input type="checkbox"/>	<input type="checkbox"/>

	<input checked="" type="checkbox"/> <input type="checkbox"/>	Document ID	Issue Date	Title	Inventor	S	C
37	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020059658 A	20011220	Improving effectiveness of transgenic plants by topical application of a hypersensitive response elicitor protein to the transgenic plant or by incorporating into the plant a transgene encoding the protein	DEROCHER, J E et al.	<input type="checkbox"/>	<input type="checkbox"/>
38	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6277814 B1	20010821	Enhancement of growth in plants	Qiu, Dewen et al.	<input type="checkbox"/>	<input type="checkbox"/>
39	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20010011380 A1	20010802	HYPERSENSITIVE RESPONSE ELICITOR FRAGMENTS ELICITING A HYPERSENSITIVE RESPONSE AND USES THEREOF	LABY, RON J. et al.	<input type="checkbox"/>	<input type="checkbox"/>
40	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 20020069434 A	20010802	New chimeric gene, useful for controlling plant-pathogenic fungi and producing oomycete-resistant transgenic plants, comprises first DNA encoding hypersensitive response elicitor, promoter and regulatory region	BAUER, D W et al.	<input type="checkbox"/>	<input type="checkbox"/>
41	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6262018 B1	20010717	Hypersensitive response elicitor from <i>Erwinia amylovora</i> and its use	Kim, Jihyun Francis et al.	<input type="checkbox"/>	<input type="checkbox"/>
42	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6235974 B1	20010522	Hypersensitive response induced resistance in plants by seed treatment with a hypersensitive response elicitor	Qiu, Dewen et al.	<input type="checkbox"/>	<input type="checkbox"/>
43	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6228644 B1	20010508	Hypersensitive response elicitor from <i>Erwinia amylovora</i> , its use, and encoding gene	Bogdanove, Adam J. et al.	<input type="checkbox"/>	<input type="checkbox"/>
44	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6174717 B1	20010116	Elicitor of the hypersensitive response in plants	Beer, Steven V. et al.	<input type="checkbox"/>	<input type="checkbox"/>
45	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6172184 B1	20010109	Hypersensitive response elicitor from <i>Pseudomonas syringae</i> and its use	Collmer, Alan et al.	<input type="checkbox"/>	<input type="checkbox"/>
46	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 6001959 A	19991214	Hypersensitive response elicitor from <i>Erwinia chrysanthemi</i>	Bauer, David et al.	<input type="checkbox"/>	<input type="checkbox"/>
47	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5977060 A	19991102	Insect control with a hypersensitive response elicitor	Zitter, Thomas A. et al.	<input type="checkbox"/>	<input type="checkbox"/>
48	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9911133 A1	19990311	USE OF HYPERSENSITIVE RESPONSE ELICITOR FROM GRAM POSITIVE BACTERIA	BEER, STEVEN V et al.	<input type="checkbox"/>	<input type="checkbox"/>
49	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9907208 A1	19990218	HYPERSENSITIVE RESPONSE ELICITOR FROM <i>ERWINIA AMYLOVORA</i> AND ITS USE	KIM, JIHYUN FRANCIS et	<input type="checkbox"/>	<input type="checkbox"/>
50	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9907207 A1	19990218	HYPERSENSITIVE RESPONSE ELICITOR FROM <i>PSEUDOMONAS SYRINGAE</i> AND ITS USE	COLLMER, ALAN et al.	<input type="checkbox"/>	<input type="checkbox"/>
51	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9907206 A1	19990218	HYPERSENSITIVE RESPONSE ELICITOR FROM <i>ERWINIA AMYLOVORA</i> , ITS USE, AND ENCODING GENE	BOGDANOV E, ADAM J et al.	<input type="checkbox"/>	<input type="checkbox"/>
52	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5859324 A	19990112	Hypersensitive response induced resistance in plants	Wei, Zhong-Min et al.	<input type="checkbox"/>	<input type="checkbox"/>
53	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5850015 A	19981215	Hypersensitive response elicitor from <i>Erwinia chrysanthemi</i>	Bauer, David et al.	<input type="checkbox"/>	<input type="checkbox"/>
54	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5849868 A	19981215	Elicitor of the hypersensitive response in plants	Beer, Steven V. et al.	<input type="checkbox"/>	<input type="checkbox"/>
55	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9854214 A2	19981203	HYPERSENSITIVE RESPONSE ELICITOR FRAGMENTS ELICITING A HYPERSENSITIVE RESPONSE AND USES THEREOF	LABY, RONALD J et al.	<input type="checkbox"/>	<input type="checkbox"/>
56	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9837752 A1	19980903	INSECT CONTROL WITH A HYPERSENSITIVE RESPONSE ELICITOR	ZITTER, THOMAS A et al.	<input type="checkbox"/>	<input type="checkbox"/>
57	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5977060 A	19980903	Use of hypersensitive response elicitor polypeptide - for application to plants or seeds or transgenic plants or seeds for the control of insects.	WEI, Z et al.	<input type="checkbox"/>	<input type="checkbox"/>
58	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9832844 A1	19980730	ENHANCEMENT OF GROWTH IN PLANTS	QIU, DEWEN et al.	<input type="checkbox"/>	<input type="checkbox"/>

	<input checked="" type="checkbox"/> <input type="checkbox"/>	Document ID	Issue Date	Title	Inventor	S	C
59	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5776889 A	19980707	Hypersensitive response induced resistance in plants	Wei, Zhong-Min et al.	<input type="checkbox"/>	<input type="checkbox"/>
60	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9824297 A1	19980611	HYPERSENSITIVE RESPONSE INDUCED RESISTANCE IN PLANTS BY SEED TREATMENT	QIU, DEWEN et al.	<input type="checkbox"/>	<input type="checkbox"/>
61	<input checked="" type="checkbox"/> <input type="checkbox"/>	WO 9639802 A1	19961219	HYPERSENSITIVE RESPONSE INDUCED RESISTANCE IN PLANTS	WEI, ZHONG-MIN et al.	<input type="checkbox"/>	<input type="checkbox"/>
62	<input checked="" type="checkbox"/> <input type="checkbox"/>	US 5650387 A	19961219	Imparting pathogen resistance to plants - with hypersensitive response elicitor polypeptide or protein	BEER, S V et al.	<input type="checkbox"/>	<input type="checkbox"/>