List of topics in this lecture

- Kramers' theory of reaction kinetics, physical escape time, effects of potential width, diffusion coefficient, and energy barrier
- Memoryless property of average escape time, exponential distribution, escape rate
- Application of Kramers' theory: a simplified model of ignition
- Feynman-Kac formula, fatality rate, path integral u(x, t, T), interpretation of path integral as relative population size, governing equation of u(x, t, T)

Review

Exit time: reflecting boundary condition for T(x)

$$T'(L_1) = 0$$

Escape of a Brownian particle from a potential well

Langevin equation \to Smoluchowski-Kramers approximation in the limit of small particle \to over-damped Langevin equation

$$dX = -\frac{D}{k_{R}T}V'(X)dt + \sqrt{2D} dW$$

Dimensionless equation

$$dX = -V'(X)dt + \sqrt{2}dW$$

Exact solution for T(x)

$$T(x) = \int_{Y}^{1} dy \exp(V(y)) \int_{0}^{y} ds \exp(-V(s))$$

Deep potential well

$$V(x) = \Delta G \phi(x)$$
 ΔG is moderately large

Approximate solution for T(x)

$$T(x) \approx \exp(\Delta G) \cdot \frac{1}{\Delta G} \sqrt{\frac{(2\pi)^2}{\phi''(x_1) \cdot (-\phi''(x_2))}}$$
 independent of x

T(x) is independent of starting position x when x is <u>inside</u> the potential well.

End of review

Kramers' theory of reaction kinetics

Physical escape time in terms of physical quantities

Recall the non-dimensionalization.

$$t = \frac{D}{L^2} t_{\text{phy}}$$
, $T(x) = \frac{D}{L^2} T_{\text{phy}}(x_{\text{phy}})$, $\Delta G = \frac{1}{(k_B T)} \Delta G_{\text{phy}}$

Substituting these into the expression of T(x), we get

$$\frac{D}{L^2}T_{phy}(x_{phy}) = \exp\left(\frac{\Delta G_{phy}}{k_B T}\right) \cdot \frac{k_B T}{\Delta G_{phy}} \sqrt{\frac{(2\pi)^2}{\phi''(x_1) \cdot (-\phi''(x_2))}}$$

Caution on the notation:

T in (k_BT) is the temperature.

T(x) is the average exit time.

The physical escape time has the expression

$$T_{phy}(x_{phy}) = \underbrace{\frac{L^2}{D}}_{\text{Effect of mobility}} \cdot \underbrace{\exp\left(\frac{\Delta G_{phy}}{k_B T}\right) \frac{k_B T}{\Delta G_{phy}}}_{\text{Effect of energy barrier}} \underbrace{\sqrt{\frac{(2\pi)^2}{\phi''(x_1) \cdot (-\phi''(x_2))}}}_{\text{Effect of geometric factors}}$$

We can see how the physical escape time scales with other physical quantities.

- When the width of potential L is doubled, T_{phy} is increased by a factor of 4. It is more difficulty to escape from a wide potential well.
- When the diffusion coefficient D is doubled, $T_{\rm phy}$ is halved. It is easier for a smaller particle to escape.
- T_{phy} increases exponentially with the energy barrier ΔG_{phy} . When ΔG_{phy} is increased by $2.3k_{\text{B}}T$, T_{phy} is approximately multiplied by a factor of 10. By far, the energy barrier ΔG_{phy} has the dominant influence on T_{phy} .

An example:

Consider the escape of a 1-nm (diameter) particle from a potential well of width 0.5nm.

$$L = 0.5$$
nm; ΔG_{phy} is left as a variable;

a (particle radius) = 0.5nm;
$$\eta$$
 (viscosity of water) = 0.01 g(cm)⁻¹s⁻¹;

D is calculated below.

$$D = \frac{k_B T}{6\pi n a} = 4.350 \times 10^8 \,\text{nm}^2\text{s}^{-1}$$

We use the function shown below for $\phi(x)$, the <u>non-dimensionalized</u> and <u>normalized</u> potential with min $\phi(x) = 0$, max $\phi(x) = 1$, $0 \le x \le 1$.

Mathematically, function $\phi(x)$ has the expression

$$\phi(x) = \frac{1}{2} + \frac{1}{2} \sin((1.8x - 1.0)\pi)$$

$$x_1 = \arg \min \phi(x) = \frac{5}{18}, \quad x_2 = \arg \max \phi(x) = \frac{15}{18}$$

$$\phi''(x_1) = \frac{1}{2}(1.8\pi)^2$$
, $\phi''(x_2) = \frac{-1}{2}(1.8\pi)^2$

Substituting these quantities into the expression of $T_{\rm phy}$, we obtain

$$T_{phy}(x_{phy}) = \exp\left(\frac{\Delta G_{phy}}{k_B T}\right) \frac{k_B T}{\Delta G_{phy}} (2.258 \times 10^{-10} \text{ s})$$

•
$$\Delta G_{\text{phy}} = 10 \ k_{\text{B}}T$$
 ==> $T_{\text{phy}} = 4.974 \times 10^{-7} \text{ s} = 0.497 \ \mu \text{s}$
• $\Delta G_{\text{phy}} = 15 \ k_{\text{B}}T$ ==> $T_{\text{phy}} = 4.922 \times 10^{-5} \text{ s} = 49.2 \ \mu \text{s}$
• $\Delta G_{\text{phy}} = 20 \ k_{\text{B}}T$ ==> $T_{\text{phy}} = 5.478 \times 10^{-3} \text{ s} = 5.48 \ \text{ms}$

•
$$\Delta G_{\text{phy}} = 15 k_{\text{B}}T$$
 ==> $T_{\text{phy}} = 4.922 \times 10^{-5} \text{ s} = 49.2 \mu \text{s}$

•
$$\Delta G_{\text{phy}} = 20 \ k_{\text{B}}T$$
 ==> $T_{\text{phy}} = 5.478 \times 10^{-3} \text{ s} = 5.48 \text{ ms}$

Distribution of the random escape time

Let $Y(\omega)$ denote the random exit time. In the above, we derived an expression for

$$T(x) \equiv E(Y(\omega)|X(0) = x)$$

Question:

What can we say about the distribution of the random exit time?

Answer:

For a deep potential well, the escape process is (approximately) memoryless. Specifically, the solution of T(x) tells us

$$T(x) \approx \exp(\Delta G) \cdot \frac{1}{\Delta G} \sqrt{\frac{(2\pi)^2}{\phi''(x_1) \cdot (-\phi''(x_2))}}$$
 independent of x

That is, the average exit time is memoryless. Mathematically, it gives us

$$E(Y-t_0|Y>t_0)=E(Y)$$
 independent of t_0

Let $\rho(t)$ be the probability density of Y. Based on this memoryless property of the average exit time, we derive density $\rho(t)$.

In terms of $\rho(t)$, the memoryless property above becomes

$$\frac{1}{\int_{t_0}^{\infty} \rho(t)dt} \int_{t_0}^{\infty} (t - t_0) \rho(t) dt = E(Y) \quad \text{independent of } t_0$$

We write $\rho(t) = -G'(t)$ where $G(t) \equiv \int_{t}^{\infty} \rho(s) ds$. Carrying out integration by parts in the numerator and multiplying by the denominator, we write the equation as

$$\int_{t_0}^{\infty} G(t) dt = E(Y)G(t_0)$$

Differentiating with respect to t_0 , we arrive at

$$\frac{-1}{E(Y)}G(t_0) = G'(t_0)$$

(This is the same ODE as you obtained previously.)

...

We conclude that $Y(\omega)$ has the exponential distribution:

$$\rho(t) = r \exp(-rt), \quad r = \frac{1}{E(Y)} = \frac{1}{T(x)}$$

where r is called the <u>escape rate</u> and has the meaning of <u>probability per time</u>:

$$r = \frac{1}{\Delta t} \Pr\left(\text{escaping in } (t_0, t_0 + \Delta t) \mid \text{has not escaped by } t_0\right)$$

The physical escape rate has the expression

$$r_{phy} = \frac{1}{T_{phy}(x_{phy})} = \underbrace{\frac{D}{L^2}}_{\text{Effect of mobility}} \cdot \exp\left(\frac{-\Delta G_{phy}}{k_B T}\right) \frac{\Delta G_{phy}}{k_B T} \underbrace{\sqrt{\frac{\phi''(x_1) \cdot (-\phi''(x_2))}{(2\pi)^2}}}_{\text{Effect of geometric factors}}$$

This is the Kramers theory of reaction kinetics (named after Hans Kramers).

Remarks:

- The chemical reaction between molecules A and B requires activation, which means crossing over an energy barrier. The energy barrier, for example, may be that molecule A has to fluctuate to an energetically unfavorable configuration.
- The process of crossing over an energy barrier is mathematically an escape process.
- The escape process is memoryless and is described by a reaction rate.
- The reaction rate has a strong dependence on the temperature.

$$r_{phy} \sim \exp\left(\frac{-\Delta G_{phy}}{k_B T}\right)$$

• Another aspect of the chemical reaction is the probability of encounter between molecules A and B, which is affected by concentrations and the temperature.

A simplified model of ignition

Let T_0 = temperature of the environment.

T(t) = spot temperature at time t at an interface of gasoline and air (where locally there is a mix of gasoline and air)

T(t) is governed by Newton's law of cooling

$$\frac{dT(t)}{dt} = \underbrace{-\mu(T(t) - T_0)}_{\text{cooling}} + \underbrace{\alpha \exp\left(\frac{-\Delta G}{T(t)}\right)}_{\text{heat generated by reaction}}$$

Let $y(t) \equiv (T(t)-T_0)/T_0$, the normalized temperature increase.

We expand the non-linear term in the ODE for small y.

$$T(t) = T_0(1+y)$$

$$\frac{-\Delta G}{T(t)} = \frac{-\Delta G}{T_0(1+y)} = \frac{-\Delta G}{T_0} (1-y+\cdots) = \frac{-\Delta G}{T_0} + \frac{\Delta G}{T_0} y + \cdots$$

$$\exp\left(\frac{-\Delta G}{T(t)}\right) = \exp\left(\frac{-\Delta G}{T_0}\right) \exp\left(\frac{\Delta G}{T_0} y + \cdots\right) = \exp\left(\frac{-\Delta G}{T_0}\right) \left(1 + \frac{\Delta G}{T_0} y + \cdots\right)$$

Substituting the expansion in the ODE yields

$$T_0 \frac{dy}{dt} = \underbrace{-\mu T_0 y}_{\text{cooling}} + \underbrace{\alpha \exp\left(\frac{-\Delta G}{T_0}\right) \left(1 + \frac{\Delta G}{T_0}y + \cdots\right)}_{\text{heat generated by reaction}}$$

Governing equation for y

Dividing by T_0 and neglecting higher order terms, we obtain

$$\frac{dy}{dt} = \underbrace{\left(\frac{\alpha \Delta G}{T_0^2} \exp\left(\frac{-\Delta G}{T_0}\right) - \mu\right)}_{\equiv \lambda(T_0)} y + \underbrace{\frac{\alpha}{T_0} \exp\left(\frac{-\Delta G}{T_0}\right)}_{q}$$

Initial condition

$$y(0) = 0$$

Behavior of the IVP

$$\begin{cases} y' = \lambda y + q \\ y(0) = 0 \end{cases}$$

Exact solution:
$$y(t) = (e^{\lambda t} - 1) \frac{q}{\lambda}$$

Case of λ < 0:

As t increases,
$$y(t) \rightarrow \frac{q}{(-\lambda)} > 0$$

Temperature stabilizes at a finite value. No ignition.

Case of $\lambda > 0$:

As t increases,
$$y(t) \rightarrow +\infty$$

Temperature increases unbounded. Ignition.

Ignition temperature:

We examine how $\lambda(T_0)$ varies with T_0 .

$$\lambda(T_0) = \frac{\alpha \Delta G}{T_0^2} \exp\left(\frac{-\Delta G}{T_0}\right) - \mu$$

$$= > \frac{d\lambda}{dT_0} = \frac{\alpha \Delta G}{T_0^3} \exp\left(\frac{-\Delta G}{T_0}\right) \left(\frac{\Delta G}{T_0} - 2\right)$$

 $\lambda(T_0)$ is an increasing function of ambient temperature T_0 when $\Delta G/T_0 > 2$ (when the energy barrier of the reaction is significant).

The ignition temperature T_0^* is defined as $\lambda(T_0^*) = 0$.

For ambient temperature $T_0 > T_0^*$, spot temperature T(t) increases unbounded, making the reaction at the spot faster and faster (combustion).

Feynman-Kac formula

Consider the Ito interpretation of

$$dX = b(X,t)dt + \sqrt{a(X,t)}dW$$

The moments of dX are

$$E(dX|X(t)=x)=b(x,t)dt+o(dt)$$

$$E((dX)^{2}|X(t)=x)=a(x,t)dt+o(dt)$$

$$E((dX)^n | X(t) = x) = o(dt)$$
 for $n \ge 3$

Definition of u(x, t, T)

Consider function u(x, t, T) defined as

$$u(x,t,T) = E\left(\exp\left(-\int_{t}^{T} \psi(X(s),s)ds\right) \middle| X(t) = x\right)$$

Meaning of u(x, t, T)

For $\psi(z, s) > 0$, we view $\psi(z, s)$ is the fatality rate at position z at time s.

Fatality rate = fatality probability per time

= Pr(fatality in [s,
$$s+\Delta s$$
]) / Δs

==>
$$Pr(fatality in [s, s+\Delta s]) = (fatality rate) \times \Delta s$$

Let us follow one particular path x(s) from time t to T.

We discretize the path on a time grid

$$\Delta s = \frac{T - t}{N}$$
, $s_j = t + j \Delta s$, $s_0 = t$, $s_N = T$

Probability of surviving from time s_i to s_{i+1} along the given path x(s) is approximately

$$1 - \underbrace{\psi(x(s_j), s_j) \Delta s}_{\text{Pr(fatality in } [s_i, s_{i+1}]} \approx \exp\left(-\psi(x(s_j), s_j) \Delta s\right)$$

Probability of surviving from time t to T along the given path x(s) is

$$\prod_{j=0}^{N-1} \left(1 - \psi(x(s_j), s_j) \Delta s \right) \approx \prod_{j=0}^{N-1} \exp\left(-\psi(x(s_j), s_j) \Delta s \right)$$

$$= \exp\left(-\sum_{j=0}^{N-1} \psi(x(s_j), s_j) \Delta s \right)$$

$$\to \exp\left(-\int_t^T \psi(x(s), s) ds \right) \quad \text{as } N \to \infty$$

We average the surviving probability over all paths starting at X(t) = x.

$$u(x,t,T) \equiv E\left(\exp\left(-\int_{t}^{T} \psi(X(s),s)ds\right) \middle| X(t) = x\right)$$

= probability of surviving from time *t* to time *T*,

averaged over all paths starting at X(t) = x.

For the case of negative fatality rate $\psi(z, s) < 0$, we can interpret $[-\psi(z, s)] > 0$ as the growth rate at position z at time s.

For the general case ($\psi(z, s)$ may be positive or negative),

u(x, t, T) = population size at time T relative to that at time t, averaged over all paths starting at X(t) = x.

The interpretation of u(x, t, T) as the relative population size is more general; it is valid for both positive and negative $\psi(z, s)$.

Examples:

X(s) = temperature at time s

u = size of a bacteria population at time = T relative to that at time t

X(s) =collective population size of all predators at time s

u = size of a prey population at time = T relative to that at time t

X(s) = collective population size of all preys at time s

 $u = \text{size of } \underline{a} \text{ predator population}$ at time = T relative to that at time t

X(s) = oil price at time s.

u = stock price of an oil company at time T relative to that at time t.

Governing equation for u(x, t, T)

Now we derive the partial differential equation giverning u(x, t, T).

We use the backward view for u(x, t, T):

[
$$t \rightarrow T$$
] is divided into [$t \rightarrow t + \Delta t$] and [$t + \Delta t \rightarrow T$].

$$\exp\left(-\int_{t}^{T} \psi(X(s), s)ds\right)$$

$$= \exp\left(-\int_{t}^{t+dt} \psi(X(s), s)ds\right) \exp\left(-\int_{t+dt}^{T} \psi(X(s), s)ds\right)$$

$$= \exp\left(-\psi(x, t)dt + o(dt)\right) \exp\left(-\int_{t+dt}^{T} \psi(X(s), s)ds\right)$$

$$= \underbrace{(1 - \psi(x, t)dt)}_{\text{independent of nath}} \exp\left(-\int_{t+dt}^{T} \psi(X(s), s)ds\right) + o(dt)$$

We average $\exp\left(-\int_{t+dt}^{T}\right)$ over <u>all paths</u> starting at X(t) = x.

We use the law of total expectation to write the average over $\{X(s), t \le s \le T\}$ as

$$E_{\{X(s),t \le s \le T\}}(*|X(t) = x) = E_{dX}(E_{\{X(s),t + \Delta t \le s \le T\}}(*|X(t+dt) = x+dX))$$

The average of $\exp\left(-\int_{t+dt}^{T}\right)$ over all paths starting at X(t) = x has the expression

$$E\left(\exp\left(-\int_{t+dt}^{T}\psi(X(s),s)ds\right)\bigg|X(t)=x\right)$$

Law of total expectation

$$=E_{dX}\left(E_{\left\{X(s),t+dt\leq s\leq T\right\}}\left(\exp\left(-\int_{t+dt}^{T}\psi(X(s),s)ds\right)\middle|X(t+dt)=x+dX\right)\right)$$

Definition of u(x, t, T)

$$=E_{dX}(u(x+dX,t+dt,T))$$

Taylor expansion

$$= E_{dX} \left(u(x,t,T) + u_t dt + u_x dX + \frac{1}{2} u_{xx} (dX)^2 \right) + o(dt)$$

Using moments of dX

$$= u(x,t,T) + u_t dt + u_x b(x,t) dt + \frac{1}{2} u_{xx} a(x,t) dt + o(dt)$$

Using this result, we write u(x, t, T) as

$$u(x,t,T) = E\left(\exp\left(-\int_{t}^{T} \psi(X(s),s)ds\right) \middle| X(t) = x\right)$$

$$= \underbrace{(1-\psi(x,t)dt)}_{\text{independent of path}} E\left(\exp\left(-\int_{t+dt}^{T} \psi(X(s),s)ds\right)\right) + o(dt)$$

$$= (1-\psi(x,t)dt) \left(u(x,t,T) + u_{t}dt + u_{x}b(x,t)dt + \frac{1}{2}u_{xx}a(x,t)dt\right) + o(dt)$$

$$= u(x,t,T) + u_{t}dt + u_{x}b(x,t)dt + \frac{1}{2}u_{xx}a(x,t)dt - \psi(x,t)udt + o(dt)$$

Dividing by dt and taking the limit at $dt \rightarrow 0$, we obtain the governing equation

$$0 = u_t + b(x,t)u_x + \frac{1}{2}a(x,t)u_{xx} - \psi(x,t)u$$

It is the backward equation with a fatality/growth term.

The End/final condition

$$u(x, t, T)|_{t=T} = 1$$

We consider the FVP

$$\begin{cases} 0 = u_{t} + b(x,t)u_{x} + \frac{1}{2}a(x,t)u_{xx} - \psi(x,t)u \\ u(x,t,T)\Big|_{t=T} = 1 \end{cases}$$

The solution of the FVP has the path integral expression

$$u(x,t,T) = E\left(\exp\left(-\int_{t}^{T} \psi(X(s),s)ds\right) \middle| X(t) = x\right)$$

This is called the <u>Feynman-Kac formula</u> for the backward equation (named after Richard Feynman and Mark Kac).

A more general case

Consider the function

$$u(x,t,T) = E\left(\exp\left(-\int_{t}^{T} \psi(X(s),s)ds\right) f(X(T)) \middle| X(t) = x\right)$$

Meaning of u(x, t, T)

 $\psi(z, s)$ is the fatality/growth rate at position z at time s.

f(z) is the reward for surviving and reaching position z at final time T.

u(x, t, T) = reward at final time T per population at time t,

averaged over all paths starting at X(t) = x

Governing equation for u(x, t, T)

The governing equation is not affected by function f(z).

$$0 = u_t + b(x,t)u_x + \frac{1}{2}a(x,t)u_{xx} - \psi(x,t)u$$

which is the same as in the special case of $f(z) \equiv 1$.

The end/final condition

$$u(x, t, T)|_{t=T} = f(x)$$

The effect of f(z) is contained in the end/final condition.

Remarks:

- If we know the PDE, we can solve the PDE for solution u(x, t, T).
- If we don't know PDE but we are given a set of sample paths, we can calculate u(x, t, T) using Feynman-Kac formula, and use u(x, t, T) to <u>learn about the PDE</u>.

Feynman-Kac formula for the forward equation

Definition of u(x, t)

Consider the function

$$u(x,t) = E\left(\delta(X(t)-x)\exp\left(-\int_0^t \psi(X(s),s)ds\right)\right)$$

where $\psi(x, t)$ is the fatality/growth rate at position x at time t.

Items of the discussion:

- 1) We need to explain the δ function in the average.
- 2) We need to derive the governing equation for u(x, t).
- 3) We need to explain the meaning of u(x, t) and discuss the distribution of X(0).

<u>Item #1:</u> We first explain the δ function in the average.

Definition #1:

Let $I_{[x,x+\Delta x]}(z)$ be the indicator function defined as

AM216 Stochastic Differential Equations

$$I_{[x,x+\Delta x]}(z) = \begin{cases} 1, & x \le z \le x + \Delta x \\ 0, & \text{otherwise} \end{cases}$$

u(x, t) can be viewed as

$$u(x,t) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} E\left(I_{[x,x+\Delta x]}(X(t)) \exp\left(-\int_0^t \psi(X(s),s)ds\right)\right)$$

Definition #2: Method of test function

$$\int h(x)u(x,t)dx = E\left(\left(\int h(x)\delta(X(t)-x)dx\right)\exp\left(-\int_0^t \psi(X(s),s)ds\right)\right)$$

which leads to

$$\int h(x)u(x,t)dx = E\left(h(X(t))\exp\left(-\int_0^t \psi(X(s),s)ds\right)\right)$$

Here h(x) is any smooth function that decays to zero rapidly as $|x| \to \infty$.

The two definitions are equivalent to each other. We are going to use definition #2 in the derivation of the governing equation for u(x, t).