AUTOMATY A GRAMATIKY

6

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Regulární výrazy

- Kleeneho věta poskytuje alternativní popis regulárních jazyků nad danou abecedou X
 - umožňuje zavedení regulárních výrazů, což jsou slova nad abecedou $X \cup \{\emptyset, \lambda, +, ., *, (,)\}$ vytvořené podle následujících pravidel:
 - předpokládáme, že $\{\emptyset, \lambda, +, ., *, (,)\} \cap X = \emptyset$
 - (i) Ø a λ jsou regulární výrazy
 - (ii) x je regulární výraz pro každé x∈X
 - (iii) $(\alpha+\beta)$ je regulární výraz, když α, β jsou regulární výrazy
 - (iv) $(\alpha.\beta)$ je regulární výraz, když α , β jsou regulární výrazy
 - \bullet (v) α^* je regulární výraz, když α je regulární výraz
 - (vi) každý regulární výraz vznikne konečným použitím pravidel (i)-(v)
 - regulární výraz α **reprezentuje** jazyk [α], kde
 - $[\emptyset]=\emptyset$, $[\lambda]=\{\lambda\}$, $[x]=\{x\}$ pro $x\in X$
 - $= [(\alpha+\beta)] = [\alpha] \cup [\beta]$
 - $= [(\alpha.\beta)] = [\alpha].[\beta]$
 - $[\alpha^*] = [\alpha]^*$
 - z Kleeneho věty vidíme, že reprezentovaný jazyk je regulární a naopak libovolný regulární jazyk lze reprezentovat nějakým regulárním výrazem

Př: $X = \{a,b,c,d\}$ a(bc)*a+cd (ab)*(cd)*+ca

Př: [a(bc)*a+cd] = $[a(bc)*a]\cup[cd] =$ $\{a\}.[bc]*.\{a\} \cup \{cd\} =$ {aa, abca, abcbca, ... abcbc...bca, cd}

Regulární **výraz** ⇒konečný **automat**

- regulárním jazykem **není** reprezentující regulární výraz určen **jednoznačně**
 - chceme rozpoznávat, zda dvojice regulárních výrazů reprezentuje stejný jazyk, tj. zda jsou ekvivalentní
 - převodem na konečný automat $A=(Q\cup\{q_0\}, X, \delta, \{q_0\}, F)$
 - regulární výrazy umožňují úspornou reprezentaci jazyka ⇒ rozhodnutí o ekvivalenci regulárních výrazů je PSPACE-úplný problém
 - 1. očíslujeme symboly v regulárním výrazu
 - množina stavů Q
 - 2. zjistíme, které očíslované symboly mohou stát na začátku reprezentovaného slova
 - počáteční stavy
 - 3. zjistíme, které dvojice očíslovaných symbolů mohou v reprezentovaném slově stát vedle sebe
 - přechodová funkce
 - 4. zjistíme, které očíslované symboly mohou stát na konci reprezentovaného slova
 - přijímající stavy
 - 5. speciálně ošetřit případ, kdy λ je reprezentováno regulárním výrazem

```
Př: X = \{a,b,c,d\}
     a(bc)*a+cd
     a_1(b_2c_3)*a_4+c_5d_6
     Q=\{a_1, b_2, c_3, a_4, c_5, d_6\}
```

Př: začátek $\{a_1, c_5\}$

Př: sousedství $\{[a_1,b_2], [b_2,c_3], [c_3,b_2],$ $[c_3,a_4], [a_1,a_4], [c_5,d_6]$

Př: konec $\{a_4, d_6\}$

Př: λ reprezentováno není q_o nebude v F

Konečný **automat** ⇒ regulární **výraz**

- \square mějme KA A=(Q, X, δ, q₁,F), kde Q = {q₁,q₂, ..., q_n}
 - využijeme důkaz Kleeneho věty, tj. zkonstruujeme regulární výrazy pro L_{i.i}
 - induktivně podle: $L_{i,j}^{k+1} = L_{i,j}^{k} \cup L_{i,k+1}^{k} \cdot (L_{k+1,k+1}^{k})^{*} \cdot L_{k+1,j}^{k}$
 - výsledný regulární výraz sestavíme (aditivně) z regulárních výrazů pro L_{1.i}, kde q_i∈F

(a+	b)*b	+	(a+b))*ba
(,		(/	,

L _{i,j} 0	1	2	3
1	a+λ	b	Ø
2	Ø	b+λ	а
3	a	b	λ

L _{i,j} ²	1	2	3
1	a*	a*bb*	a*bb*a
2	Ø	b*	b*a
3	aa*	a*bb*	a*bb*a+λ

$L_{i,j}^1$	1	2	3
1	a*	a*b	Ø
2	Ø	b+λ	а
3	aa*	a*b	λ

L _{i,j} ³	1	2	3
1	-	(a+b)*b	(a+b)*ba
2	_	_	_
3	_	_	_

Regularita regulární substituce

- snadno ukážeme, že f(L), resp. h(L) je regulární jazyk
 - pro f regulární substituci, resp. h homomorfismus a L regulární jazyk
 - připomenutí: $f: X \to 2^{Y^*}$, $h: X \to 2^{Y^*}$
 - f(x) je regulární pro $x \in X$, |h(x)| = 1 pro $x \in X$ (tedy h(x) také regulární)
 - pro $x \in X$ existuje regulární výraz R_x , že $[R_x] = f(x)$
 - existuje regulární výraz R₁, že [R₁]=L
 - nechť $f(R_l)$ je regulární výraz vzniklý z R_l tak, že výskyt symbolu $x \in X$ v R_l je nahrazen výrazem R_x
 - $[f(R_1)] = f(L)$
 - indukcí podle složitosti R₁
 - R₁= \emptyset , pak L= \emptyset , $[f(\emptyset)]=f(\emptyset)$; R₁= λ , pak L= $\{\lambda\}$, $[f(\lambda)]=f(\{\lambda\})$
 - $R_1 = x \text{ pro } x \in X, \text{ pak L} = \{x\}, [f(x)] = [R_x] = f(\{x\})$
 - $R_L = (\alpha + \beta)$, přičemž víme, že $[f(\alpha)] = f([\alpha])$ a $[f(\beta)] = f([\beta])$
 - $\operatorname{pak} [f(\alpha+\beta)] = [f(\alpha)+f(\beta)] = [f(\alpha)] \cup [f(\beta)] = f([\alpha]) \cup f([\beta]) = f([\alpha] \cup [\beta]) = f([\alpha+\beta])$
 - $R_1 = (\alpha.\beta)$, přičemž víme, že $[f(\alpha)] = f([\alpha])$ a $[f(\beta)] = f([\beta])$
 - $pak [f(\alpha.\beta)] = [f(\alpha).f(\beta)] = [f(\alpha)].[f(\beta)] = f([\alpha]).f([\beta]) = f([\alpha].[\beta]) = f([\alpha.\beta])$
 - R₁= α^* , přičemž víme, že [$f(\alpha)$]= $f([\alpha])$
 - pak $[f(\alpha^*)] = [f(\alpha)^*] = [f(\alpha)]^* = f([\alpha])^* = f([\alpha]^*) = f([\alpha^*])$

Konečné automaty shrnutí

- Varianty konečných automatů
 - (D)KA deterministický konečný automat
 - NKA nedeterministický konečný automat
 - 2KA dvousměrný konečný automat
 - (D)2KA deterministický
 - N2KA nedeterministický
 - přijímají právě regulární jazyky
- Regulární výrazy
 - alternativní popis regulárních jazyků
- Uzávěrové vlastnosti
 - □ ∩, ∪, . , *, kvocienty, substituce, ...
- Charakterizace regulárních jazyků
 - Myhill-Nerodova věta
 - pumping (iterační) lemma
 - Kleeneho věta

Grafická motivace ke gramatikám

- motivace želví grafikou
 - želva kreslí čáru
 - přijímá příkazy
 - f vpřed
 - + otočit po směru hodinových ručiček o 30°
 - otočit proti směru hodinových ručiček o 30°
 - zapamatovat stav na zásobník (push)
 - vyzvednout stav ze zásobníku a vrátit se do něj (pop)
 - posloupnost příkazů f[+f]f postupně kreslí

- začni s F
- F přepiš na F[+F][-F]F, F přepiš na f
 - vytvoří posloupnosti příkazů pro kreslení stromů

Gramatiky formálně

- **gramatika** je čtveřice $G = (V_N, V_T, S, P)$
 - V_N konečná neprázdná množina neterminálních symbolů
 - neterminály
 - V_T konečná neprázdná množina terminálních symbolů
 - terminály
 - S∈V_N počáteční neterminál
 - konečná množina **přepisovacích** pravidel
 - pravidla jsou tvaru $u \rightarrow v$, kde $u,v \in (V_N \cup V_T)^*$ a u obsahuje <u>aspoň jeden neterminál</u>
- slovo $w \in (V_N \cup V_T)^*$ lze vzhledem ke gramatice G (přímo) *přepsat* na slovo $z \in (V_N \cup V_T)^*$
 - □ značíme $\mathbf{w} \Rightarrow_{\mathbf{G}} \mathbf{z}$, jestliže existují $\mathbf{w}_1, \mathbf{w}_2 \in (\mathbf{V}_{\mathbf{N}} \cup \mathbf{V}_{\mathbf{T}})^*$ a $\mathbf{u} \rightarrow \mathbf{v} \in \mathbf{P}$, že $\mathbf{w} = \mathbf{w}_1 \mathbf{u} \mathbf{w}_2$ a $Z=W_1VW_2$
- slovo $z \in (V_N \cup V_T)^*$ lze vzhledem ke gramatice G **odvodit** ze slova $w \in (V_N \cup V_T)^*$
 - □ značíme $\mathbf{w} \Rightarrow_{\mathbf{G}}^* \mathbf{z}$, jestliže existují $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n \in (\mathbf{V}_N \cup \mathbf{V}_T)^*$, kde $\mathbf{n} \in \mathbb{N}$, taková, že
 - $\mathbf{w}_1 = \mathbf{w}, \mathbf{w}_n = \mathbf{z} \mathbf{a} \mathbf{w}_i \Rightarrow_{\mathbf{G}} \mathbf{w}_{i+1} \text{ pro } i = 1, 2, ..., n-1$
 - posloupnost $w = w_1, w_2, ..., w_n = z$ se nazývá **odvozením** (*derivací*) slova z ze slova w vzhledem ke gramatice G nedeterminismus ve volbě pravidel

Pozn.:

 $V_N = \{ F \}$ $V_T = \{ f, +, -, [,] \}$ S = F $P = \{ F \rightarrow F[+F][-F]F,$ $F \rightarrow f$

Př.: G = (V_N, V_T, S, P) , kde

Jazyky a gramatiky

- □ G = (V_N, V_T, S, P) □ jazyk L(G) generovaný gramatikou G ■ L(G) = $\{w \mid w \in V_T^* \text{ a } S \Rightarrow_G^* w\}$ □ G₁ = (V_N^1, V_T, S_1, P_1) a G₂ = (V_N^2, V_T, S_2, P_2) jsou **ekvivalentní**, jestliže L(G₁) = L(G₂)
- **Př.:** G = (V_N, V_T, S, P), kde V_N = { S } V_T = { 0, 1 } P = { S \rightarrow 0S1, S \rightarrow \(\) } L(G) = { 0ⁱ1ⁱ | i=0,1,2,... }

```
Př.: G = (V<sub>N</sub>, V<sub>T</sub>, V, P), kde

V<sub>N</sub> = { V, T, F }

V<sub>T</sub> = { 0, 1, (, ), +, * }

P = { V → T + V | T, T → F * V | F, F → (V) | 1 | 0 }

L(G) = { jednoduché aritmetické výrazy nad konstantami 0 a 1 }

0 + 1*0 + 1 ∈ L(G)

V ⇒<sub>G</sub> T + V ⇒<sub>G</sub> T + T + V ⇒<sub>G</sub> T + T + T ⇒<sub>G</sub> F + T + T ⇒<sub>G</sub> 0 + T + T ⇒<sub>G</sub>

0 + F * V + T ⇒<sub>G</sub> 0 + 1 * V + T ⇒<sub>G</sub> 0 + 1 * T + T ⇒<sub>G</sub> 0 + 1 * F + T

⇒<sub>G</sub> 0 + 1 * 0 + T ⇒<sub>G</sub> 0 + 1 * 0 + F ⇒<sub>G</sub> 0 + 1 * 0 + 1
```

```
Př.: G = (V_N, V_T, S, P), kde

V_N = \{ S, A, B, D \}

V_T = \{ a, b, c \}

P = \{ S \rightarrow \lambda \mid abc \mid ABSc \mid ADc

BA \rightarrow AB,

BD \rightarrow Db,

AD \rightarrow ab,

AD \rightarrow ab,

Aa \rightarrow aa \}

L(G) = \{ a^i b^i c^i \mid i=0,1,2,... \}
```

Chomského hierarchie

- $G = (V_N, V_T, S, P)$
 - různá omezení tvaru pravidel v gramatikách
 - klasifikace gramatik a jimi generovaných jazyků
 - gramatiky typu 0
 - lacksquare rekurzivně spočetné jazyky, třída \mathcal{L}_0
 - žádné omezení gramatik
 - gramatiky typu 1
 - lacksquare $\frac{\mathsf{kontextov\acute{e}}}{\mathsf{kontextov\acute{e}}}$ jazyky, třída \mathcal{L}_1
 - pravidla tvaru $\alpha X\beta \rightarrow \alpha w\beta$, kde α , $\beta \in (V_N \cup V_T)^*$, $X \in V_N$ a $w \in (V_N \cup V_T)^*$ a $w \neq \lambda$
 - nebo S $\rightarrow \lambda$, pokud S není na pravé straně žádného jiného pravidla
 - alternativně jako nezkracující gramatika
 - pravidla tvaru $\alpha \to \beta$, kde α , $\beta \in (V_N \cup V_T)^*$ a $|\alpha| \le |\beta|$
 - nebo $S \rightarrow \lambda$, pokud S není na pravé straně žádného jiného pravidla
 - gramatiky <u>typu 2</u>
 - <u>bezkontextové</u> jazyky, třída L₂
 - pravidla tvaru $X \to \alpha$, kde $X \in V_N$ a $\alpha \in (V_N \cup V_T)^*$
 - gramatiky <u>typu 3</u>
 - regulární jazyky (zprava lineární), třída \mathcal{L}_3
 - pravidla tvaru X → wY nebo X → w, kde X, Y∈V_N a w∈V_T*

Pozn.: Lze každý jazyk generovat nějakou gramatikou? Je \mathcal{L}_0 = všechny jazyky?

Jednoduché vztahy

- $\square \mathcal{L}_3 \subsetneq \mathcal{L}_2 \subsetneq \mathcal{L}_1 \subsetneq \mathcal{L}_0 \subsetneq \mathsf{vše}$
 - zatím snadno ověřitelné vztahy
 - $\square \mathcal{L}_1 \subseteq \mathcal{L}_0$
 - rekurzivně spočetné jazyky zahrnují kontextové
 - obecná pravidla zahrnují kontextová pravidla
 - \square $\mathcal{L}_3 \subseteq \mathcal{L}_2$
 - bezkontextové jazyky zahrnují regulární
 - pravidla tvaru $X \rightarrow wY$ nebo $X \rightarrow w$, kde $X, Y \in V_N$ a $w \in V_T^*$ jsou zároveň bezkontextová
 - □ skoro vidíme i $\mathcal{L}_2 \subseteq \mathcal{L}_1$
 - kontextové jazyky zahrnují bezkontextové
 - jsou-li pravidla tvaru X → α , kde X ∈ V_N a α ∈ (V_N ∪ V_T)* s $|\alpha| \ge 1$, jsou zároveň kontextová
 - □ jsou-li \mathcal{L}_3 regulární jazyky, pak $\mathcal{L}_3 \neq \mathcal{L}_2$
 - $S \rightarrow 0S1$, $S \rightarrow \lambda$ je bezkontextová gramatika generující $\{0^i1^i \mid i=0,1,2,...\}$, který není regulární

$\mathcal{L}_2 \subseteq \mathcal{L}_1$

Kontextové a bezkontextové (1)

- □ ošetření pravidel tvaru $X \to \lambda$ pro $X \in V_N$
 - bezkontextová gramatika je **nevypouštějící**, jestliže neobsahuje pravidla tvaru $X \rightarrow \lambda$ pro $X \in V_N$
 - ke každé bezkontextové gramatice $G=(V_N, V_T, S, P)$, existuje nevypouštějící gramatika $G'=(V_N, V_T, S, P')$, že $L(G')=L(G)-\{\lambda\}$
 - neterminál $X \in V_N$, pro který $X \Rightarrow_G^* \lambda$, místo přepisu na λ vůbec nevygenerujeme
 - $\blacksquare \quad \Pi = \{X \mid X \in V_N \land X \Rightarrow_G^* \lambda \}$
 - pro pravidlo $Y \rightarrow w_1 X_1 w_2 X_2 ... w_n X_n w_{n+1} \in P$, kde $X_i \in \Pi$ pro i=1,2,...,n a $w_i \in ((V_N \Pi) \cup V_T)^*$ dáme do P' pravidla, která vzniknou z $Y \rightarrow w_1 X_1 w_2 X_2 ... w_n X_n w_{n+1} vypuštěním libovolné podmnožiny neterminálů <math>\{X_1, X_2, ..., X_n\}$ na pravé straně
 - pravidla $X \rightarrow w \in P$, kde $w \neq \lambda$, přidáme do P'
 - ke každé bezkontextové gramatice G, kde λ∈L(G), existuje bezkontextová gramatika G"=(V_N∪{S"},V_T,S",P"), že L(G")=L(G) a jediné zkracující pravidlo v P" je S"→ λ s tím, že S" se nevyskytuje na pravé straně žádného pravidla
 - nejprve zkonstruujeme nevypouštějící bezkontextovou G', že L(G')=L(G)-{λ}
 - přidáme nový neterminál S" (v pravidlech P' se nevyskytuje)
 - změníme počáteční neterminál na S"
 - $P''=P' \cup \{S'' \rightarrow \lambda, S'' \rightarrow S\}$

$\mathcal{L}_2 \subseteq \mathcal{L}_1$

Kontextové a bezkontextové (2)

- detaily navržené konstrukce
 - $\square \sqcap = \{X \mid X \in V_N \land X \Rightarrow_G^* \lambda\}$
 - $\blacksquare \ \Pi_1 = \{ \ X \mid \ X \in V_N \land \ X \Rightarrow_G \lambda \}$
- \square $\lambda \neq w \in L(G) \Rightarrow w \in L(G')$
 - uvážíme derivaci ukazující S⇒_G*w
 - použití pravidla $X \rightarrow \lambda$ pro $X \in V_N$, předcházelo použití pravidel, které vygenerovaly X, tj. $Y \rightarrow uZv$ pro $u,v \in (V_N \cup V_T)^+$, kde $Z \Rightarrow_G^* X$
 - použití pravidla X→ λ vypustíme, použití pravidla Y→ uZv nahradíme použitím pravidla Y→ uv, které bylo přidáno do P'
- \square $w \in L(G') \Rightarrow w \in L(G)$
 - \square $S \Rightarrow_{G'}^* W$
 - použití nových pravidel nahradíme původním pravidlem a vypouštěním

```
Př.: G = (V_N, V_T, S, P), kde

V_N = \{ S, A \}

V_T = \{ a, b, c \}

P = \{ S \rightarrow aSc \mid A

A \rightarrow bAc \mid \lambda \}

\Pi_1 = \{ A \}

\Pi_2 = \{ A, S \}

P' = \{ S \rightarrow aSc \mid ac \mid A

A \rightarrow bAc \mid bc \}
```

<mark>Konečný automat</mark> ⇒ gramatika typu 3

- \square KA A=(Q, X, δ , q_0 , F)
 - □ definujeme gramatiku $G = (Q, X, q_0, P)$, kde
 - $p \rightarrow xq ∈ P$, kdykoli δ(p, x) = q
 - \blacksquare p $\rightarrow \lambda \in P$, kdykoli p $\in F$
- \square $w \in L(A) \Leftrightarrow w \in L(G)$
 - $\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \in L(A) \Leftrightarrow (\exists q_0 q_1 q_2 \dots q_n) \delta(q_{i-1}, \mathbf{x}_i) = q_i \text{ a } q_n \in F, \text{ právě když}$


```
Př.: G = (V_N, V_T, 1, P), kde

V_N = \{ 1, 2, 3 \}

V_T = \{ a, b \}

P = \{ 1 \rightarrow a1 \mid b2

2 \rightarrow a3 \mid b2 \mid \lambda

3 \rightarrow a1 \mid b2 \mid \lambda \}
```

Gramatika typu 3 ⇒ konečný automat (1)

- □ gramatika $G = (V_N, V_T, S, P)$ typu 3
 - □ zkonstruujeme gramatiku G'= (V_N',V_T,S,P') typu 3, že L(G')=L(G), kde
 - pravidla mají v P' mají tvar X → xY nebo X → λ , kde X, Y∈V_N a x∈V_T
 - pro pravidlo $X \rightarrow x_1x_2...x_nY \in P$ s $x_i \in V_T$ pro i=1,2,...,n a $X,Y \in V_N$ dáme do P' pravidla
 - \blacksquare X \to x₁Y₁, Y₁ \to x₂Y₂, Y₂ \to x₃Y₃, ..., Y_{n-1} \to x_nY, kde Y₁,Y₂, ...,Y_{n-1} jsou nové neterminály do V_N'
 - podobně pro pravidlo $X \rightarrow x_1x_2...x_n \in P$ s $x_i \in V_T$ pro i=1,2,...,n a $X,Y \in V_N$ dáme do P' pravidla
 - $X \rightarrow x_1Z_1$, $Z_1 \rightarrow x_2Z_2$, $Z_2 \rightarrow x_3Z_3$, ..., $Z_{n-1} \rightarrow x_nZ_n$, $Z_n \rightarrow \lambda$, kde Z_1,Z_2 , ..., Z_n jsou nové neterminály do V_N
 - ošetření pravidel X → Y∈P s X,Y∈V_N
 - zkonstruujeme $\Phi(X) = \{Y \mid Y \in V_N \land X \Rightarrow_G^* Y\}$
 - postupná konstrukce $Φ_1(X) = \{Y \mid Y \in V_N \land X \Rightarrow_G Y\}$
 - $\Phi_{i+1}(X) = \Phi_i(X) \cup \{Y \mid Y \in V_N \land (\exists Z)[Z \in \Phi_i(X) \land Z \Rightarrow_G Y]\}$
 - do P' přidáme pravidla $X \to w$, kdykoli $Y \to w \in P'$ pro $Y \in \Phi(X)$

Gramatika typu 3 ⇒ konečný automat (2)

- \square gramatika G'= (V_N', V_T, S, P') typu 3, kde
 - □ pravidla mají v P' mají tvar X \rightarrow xY nebo X \rightarrow λ , kde X, Y \in V_N' a x∈V_⊤
 - definujeme NKA A = $(V_N', V_T, \delta, \{S\}, F)$, kde
 - $\blacksquare F = \{ X \mid X \in V_N' \land X \rightarrow \lambda \in P' \}$
 - $\delta(X, x) = \{ Y \mid Y \in V_N' \land X \rightarrow xY \in P' \} \text{ pro } X \in V_N' \text{ a } x \in V_T$
- \square w \in L(G') \Leftrightarrow w \in L(A)
 - $\Rightarrow_{G'} \dots \Rightarrow_{G'} x_1 x_2 \dots x_n Y_n \Rightarrow_{G'} x_1 x_2 \dots x_n$, kde $Y_1, Y_2, \dots, Y_n \in V_N'$, právě když
 - \square $(\exists Y_1, Y_2, ..., Y_n \in V_N') Y_{i+1} \in \delta(Y_i, x_{i+1})$ pro $i=1,2,...,n-1, Y_1 \in \delta(S, x_1)$ a $Y_n \in F$