Circuiti combinatori fondamentali

Costruiamoci molti blocchetti base utili

Metodo gerarchico

Il metodo visto finora è generico

- Basta scrivere la mappa e semplificarla
- Gestibile fino a un numero di variabili limitato

Con tante variabili la semplificazione diventa complessa

- Sia perché ci sono troppe caselle
- Ma soprattutto perché è difficile perfino immaginare il valore che deve avere la funzione
- ▶ E' quindi complesso anche solo scrivere le mappe (e non solo perché sono di grandi dimensioni)

Conviene costruire il circuito a partire da blocchi base

- I blocchi li possiamo progettare con cura
- Ne conosciamo bene il funzionamento
- Sappiamo già che funzionano
- In pratica aumentiamo il livello di astrazione
- Gerarchico perché una volta fatto non lo si apre più

Multiplexer 4 a 1

Funzione a 4 ingressi di dato + 2 ingressi di controllo

- Ingressi a, b, c e d, più s₀ ed s₁ per la scelta
- ▶ Totale 6 ingressi
- Difficile da gestire come tabella o come mappa

Si può fare un circuito gerarchico

- Prima si sceglie tra a e b, e tra c e d usando s₀
- ▶ Poi si sceglie tra i due che sono rimasti con s₁
- Il circuito che si ottiene non è più a 2 livelli
- Si potrebbe fare una soluzione a due livelli, forse più veloce (provare a farla a casa!)

Simbolo grafico del multiplexer

- Si aggiungono gli ingressi di dato e quelli di selezione
 - ▶ Si aggiornano i numerini che identificano l'ingresso attivo in corrispondenza di una combinazione degli ingressi di selezione
- I multiplexer sono utili in molteplici applicazioni
 - Per condividere risorse
 - Per fare delle scelte
 - Per realizzare dispositivi programmabili
 - Per selezionare celle di memoria

Decodifiche o decoder

- ▶ E' utile poter passare da una codifica ad un'altra
 - ▶ Per esempio si può passare dal codice binario al codice Gray
 - Oppure passare da fixed point a floating point
- Decodificare significa passare da n a m cifre
 - ▶ Con $n \le m \le 2^n$
 - In modo che ad ogni codice di ingresso corrisponda una uscita unica
 - ▶ In pratica si scompatta la rappresentazione
 - \blacktriangleright Con m cifre potrei rappresentare 2^m codici, ma ne uso solo 2^n

Decodifica 1 a 2

- Un ingresso e due uscite
 - ▶ La prima uscita vale 1 se l'ingresso vale 0
 - La seconda uscita vale 1 se l'ingresso vale 1

- Notate che le uscite non sono mai a 1 o a 0 contemporaneamente
 - In teoria 2 uscite potrebbero codificare 4 diversi elementi
 - Alcune combinazioni però non vengono utilizzate

Realizzazione

Tabella della verità

- Solo due righe e due uscite
- Non è una mappa di Karnaugh!!!

а	Х	у
0	1	0
1	0	1

Per ispezione si vede che

- ▶ L'uscita y è uguale all'ingresso a
- ▶ L'uscita x è uguale al negato dell'ingresso a

Circuito

Decodifica 2 a 4

Due ingressi e quattro uscite

- ▶ La prima uscita vale 1 se l'ingresso vale 0
- ▶ La seconda uscita vale 1 se l'ingresso vale 1
- ▶ La terza uscita vale 1 se l'ingresso vale 2
- ▶ La quarta uscita vale 1 se l'ingresso vale 3

Realizzazione

Tabella della verità

- Ogni uscita ha un solo minterm
- Inutile farsi le mappe di Karnaugh
- ▶ Non c'è nulla da semplificare

Circuito

Costruito con due decodifiche 1 a 2

ab	W	X	у	Z
00	1	0	0	0
01	0	1	0	0
10	0	0	1	0
11	0	0	0	1

Decodifiche

A cosa servono le decodifiche?

- Molto utili per indirizzare le memorie
- ▶ Il processore mette sul bus un indirizzo a *n* bit
- Metà indirizza le righe con una decodifica
- L'altra metà sceglie la colonna con un multiplexer
- Molti altri usi

Demultiplexer

▶ Fa il lavoro contrario del multiplexer

- ▶ Prende in ingresso una variabile binaria e la presenta su una uscita a scelta tra 2ⁿ possibili
- Le uscite non selezionate vengono tenute a valore 0
- ▶ Il demultiplexer ha
 - \triangleright n + 1 ingressi (n per la selezione, più un ingresso di dato)
 - ▶ 2ⁿ uscite

Esempio: demux 1 a 4

- ▶ 2 ingressi di selezione
- 4 uscite
- Facilmente realizzabile a due livelli con quattro mappe

Realizzazione con decodifica

- Il demultiplexer si può realizzare utilizzando una decodifica
 - Delle porte AND abilitano l'ingresso a passare ad ognuna uscita
 - La decodifica sceglie quale porta AND abilitare
 - Semplicissimo fare demux a tante uscite usando decodifiche più grosse

Encoder o codifica

▶ E' il processo contrario della decodifica

- ▶ Per esempio si può passare da 8 fili a 3
- Molto più semplice da realizzare

D_7	D_6	D_5	D_4	D_3	D ₂	D_1	D ₀	A ₂	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Realizzazione

D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D_1	D ₀	A_2	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Ogni uscita vale 1 per una determinata combinazione di ingressi

▶ Per esempio A_2 vale 1 per D_4 , D_5 , D_6 e D_7 . Quindi

$$A_2 = D_4 + D_5 + D_6 + D_7$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_0 = D_1 + D_3 + D_5 + D_7$$

Priority encoder

Già visto in precedenza

- Passati da 3 ingressi a 2 uscite
 - Nessuna, 1, 2, 3 (4 combinazioni)
- ▶ Con 4 ingressi occorrono 3 uscite
 - Dobbiamo codificare anche il caso in cui nessun ingresso sia attivo
 - Nessuna, 1, 2, 3, 4 (5 combinazioni)

Si può codificare l'uscita in modo alternativo

- ▶ Una uscita V (valid) dice se almeno un ingresso è attivo
- ▶ Le altre 2 uscite codificano l'indice dell'ingresso attivo con priorità più alta
- Possiamo cominciare a contare da 0 invece che da 1

Tabella della verità

D_3	D_2	D_1	D_0	A_1	A_0	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	x	X	1	0	1
1	x	х	x	1	1	1

- Gli ingressi a x indicano che il valore della variabile non è importante (come una wildcard)
 - ▶ Se c'è una **x** è come in realtà indicare 2 righe contemporaneamente
 - ▶ Con due **x** si indicano quattro righe contemporaneamente
 - ▶ E' solo un modo per scrivere la tabella più velocemente, ma altrimenti non cambia assolutamente nulla
- Per V basta mettere in OR tutti gli ingressi
 - Per le altre uscite costruiamo le mappe

Mappe di Karnaugh

$D_3D_2\backslash D_1D_0$	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

D_2	
D_3	
	$A_1 = D_2 + D_3$

$D_3D_2\backslash D_1D_0$	00	01	11	10
00	0	0	1	1
01	0	0	0	0
11	1	1	1	1
10	1	1	1	1

Decodifica per display a 7 segmenti

- Si vuole realizzare una decodifica in grado di pilotare un display a 7 segmenti
 - ▶ Si assume di avere un numero binario a 4 cifre in ingresso, denominate x, y, z, w
 - Si devono calcolare 7 uscite, ognuna in corrispondenza di un segmento
 - Si vuole rappresentare il dato binario in esadecimale

Display a 7 segmenti

Identifichiamo ogni segmento con una lettera

- ▶ Per esempio *a*, *b*, *c*, *d*, *e*, *f*, *g* come mostrato a fianco
- Ogni segmento sarà acceso (uscita uguale a 1) oppure spento (uscita uguale a 0) a seconda della combinazione degli ingressi secondo lo schema seguente

Segmento a

Isolando il segmento a si ottiene la seguente mappa

xy/zw	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	1	0	1	1
10	1	1	0	1

Implicanti primi:

- L'unico implicante primo non essenziale è zw'
- Quelli essenziali coprono la funzione, quindi

 - Ha un totale di 14 letterali

Segmento g

Isolando il segmento g si ottiene la seguente mappa

xy/zw	00	01	11	10
00	0	0	1	1
01	1	1	0	1
11	0	1	1	1
10	1	1	1	1

Implicanti primi:

- Essenziali: y'z e xy'
- Degli altri possiamo per esempio prendere i seguenti

 - ▶ Ha un totale di 11 letterali

Minimizzazione congiunta

Si noti che

- Il termine xy'z' è un implicante primo essenziale per il segmento a
- ▶ Lo stesso termine è implicante per il segmento g, ma non è implicante primo, essendo contenuto in xy′, che è implicante primo essenziale per g

Il termine è disponibile nella rete logica

- ▶ Può essere vantaggioso usarlo anche per g
- ▶ Gli altri 1 di xy' sono coperti nell'espressione di g da altri implicanti
- ▶ Si può allora scrivere *g* come segue
- Sebbene vi siano 12 letterali, un termine non contribuisce perché già presente nella rete logica, per un totale di soli 9 letterali

xy/zw	00	01	11	10				
00	1	0	1	1				
01	0	1	1	1				
11	1	0	1	1				
10	1	1	0	1				
а								

 xy/zw
 00
 01
 11
 10

 00
 0
 0
 1
 1

 01
 1
 1
 0
 1

 11
 0
 1
 1
 1

 10
 1
 1
 1
 1

g

Take away

- Abbiamo realizzato un gran numero di elementi base
 - Multiplexer
 - ▶ Encoder
 - Decoder
 - Transcoder
- Mettendoli assieme si possono fare circuiti più complessi
 - Non necessariamente a due livelli
 - Ma facili da capire
- Minimizzazione congiunta
 - Può fornire risultati migliori
 - E' però molto più complicato farla a mano
 - Meglio usare programmi per calcolatore specializzati

Indifferenze o don't care

Quando non tutto serve

Le indifferenze

- In certe occasioni il valore dell'uscita in corrispondenza di alcune combinazioni di ingressi è irrilevante
 - ▶ Per esempio, nel caso della codifica 8 a 3, quando vi sono due o più ingressi a 1 contemporaneamente
 - Ogni volta che gli ingressi codificano un numero di combinazioni inferiore a 2ⁿ
- Le mappe di Karnaugh però devono includere un valore per tutte le combinazioni di ingressi
 - Che valore dare?
 - Se l'ingresso non si presenta mai, si può dare il valore 0 o 1 indifferentemente
 - Vogliamo assegnare un valore che ci consenta di ottenere un'espressione più semplice
- Le combinazioni di ingresso per cui non si indica un valore preciso dell'uscita si chiamano indifferenze o don't care

Dimensione degli implicanti

- Implicanti che coprono molti 1 (cioè sono più grossi) sono anche quelli con meno letterali
 - Infatti andiamo a prendere gli implicanti primi, che sono i più grossi per definizione, per realizzare un'espressione minima
- Possiamo allora usare le indifferenze per ingrandire gli implicanti
 - Cioè immaginiamo che le indifferenze siano a 1
 - Alcuni degli implicanti si possono espandere a coprire gli uni indifferenti

Esempio

- ▶ Si supponga di voler realizzare una decodifica per display a 7 segmenti che mostri solo le cifre numeriche decimali
- Gli ingressi da 1010 (0xA) a 1111 (0xF) producono delle indifferenze, perché non ci interessa il valore delle uscite

Segmento a con indifferenze

xy/zw	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	-	-	-	-
10	1	1	-	<u> </u>

xy/zw	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	1	0	1	1
10	1	1	0	1

Implicanti primi:

- a = z + y'w' + yw + x
- ▶ 6 letterali

Implicanti primi:

- ▶ 14 letterali

Segmento g con indifferenze

xy/zw	00	01	11	10
00	0	0	1	1
01	1	1	0	1
11	-	-	-	-
10	1	1	-	-

xy/zw	00	01	11	10
00	0	0 0		1
01	1	1	0	1
11	0	1	1	1
10	1	1	1	1

Implicanti primi:

- ▶ 7 letterali

Implicanti primi:

- ▶ 11 letterali

Esempio

xy/zw	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	-	-
10	-	-	-	-

Due implicanti primi

$$f = y + x$$

$$\rightarrow$$
 $f = y$

Inutile aggiungere implicanti nella copertura per coprire solamente indifferenze

Consideriamo le indifferenze come 1 quando si cercano gli implicanti

Ma le consideriamo come fossero degli 0 quando occorre scegliere quali implicanti utilizzare!!

Indifferenze: Take away

Le indifferenze sono combinazioni di ingresso per le quali non ci interessa il valore dell'uscita

- Per esempio, perché sappiamo che la combinazione di ingresso non si presenta mai
- L'uscita può quindi essere considerata alternativamente 0 oppure 1 a seconda della convenienza

Sfruttiamo le indifferenze per semplificare l'espressione

- Assumendo che l'indifferenza valga 1, possiamo espandere gli implicanti, che quindi hanno meno letterali
- Durante la scelta degli implicanti, assumiamo che l'indifferenza valga 0, così da non aggiungere implicanti inutili
- In particolare, un implicante non sarà mai essenziale a causa di una indifferenza

Come ottenere le indifferenze?

- Il caso più semplice è quando sappiamo che certi ingressi non si presentano
- Il caso generale è molto più complesso e richiede l'analisi di una rete per identificare quando una uscita è effettivamente indifferente

Mappe a 5 variabili

A 5 variabili (x, y, z, w, v) si ottengono 32 caselle

 Anche usando il codice Gray, impossibile mantenere le vicinanze geometriche sul piano

Si possono usare due tabelle da 4 variabili

- ▶ Entrambe funzione delle variabili x, y, z, e w
- ▶ La prima relativa al caso in cui v = 0
- ▶ La seconda relativa al caso in cui v = 1
- ▶ In pratica consideriamo l'espansione di Shannon sulla variabile *v*

Le vicinanze su v vanno considerate tra una tabella e l'altra

- Caselle che occupano la stessa posizione su entrambe le tabelle sono da considerarsi vicine, e possono formare un termine
- Lo stesso vale per gli implicanti

Geometricamente

Immaginate che le tabelle siano poste una sopra all'altra

Mappe a 5 variabili

Reti Logiche

- Ingresso: numero binario a 5 bit
- Uscita a 1 se il numero è primo o divisibile per 3, a 0 altrimenti

$a_4 a_3 / a_2 a_1 a_0$	000	001	011	010	100	101	111	110
00	0	1	3	2	4	5	7	6
01	8	9	11	10	12	13	15	14
11	24	25	27	26	28	29	31	30
10	16	17	19	18	20	21	23	22

- Ingresso: numero binario a 5 bit
- Uscita a 1 se il numero è primo o divisibile per 3, a 0 altrimenti

$a_4 a_3 / a_2 a_1 a_0$	000	001	011	010	100	101	111	110
00		1	1	1		1	1	1
01		1	1		1	1	1	
11	1		1			1	1	1
10		1	1	1		1	1	

- Ingresso: numero binario a 5 bit
- Uscita a 1 se il numero è primo o divisibile per 3, a 0 altrimenti

			Е	neanch	e ques	te!!		
$a_4 a_3 / a_2 a_1 a_0$	000	001	011	010	100	101	111	110
00		1	1	1		1	1	1
01		1	1		1	1	1	
11	1		1			1	1	1
10		1	1	1		1	1	

- Ingresso: numero binario a 5 bit
- Uscita a 1 se il numero è primo o divisibile per 3, a 0 altrimenti

- Ingresso: numero binario a 5 bit
- Uscita a 1 se il numero è primo o divisibile per 3, a 0 altrimenti

$a_4 a_3 / a_2 a_1 a_0$	000	001	011	010	100	101	111	110
00		1	1	1		1	1	1
01		1	1		1	1	1	
11	1		1			1	1	1
10		1	1	1		1	1	

- Ingresso: numero binario a 5 bit
- Uscita a 1 se il numero è primo o divisibile per 3, a 0 altrimenti

$a_4 a_3 / a_2 a_1 a_0$	000	001	011	010	100	101	111	110
00		1	1	1		[1	1	1
01		1	1		1	1	1	
11	1		1			1	1	1
10		1	1	1		1	1	

Espressione minima

- ▶ Ci dobbiamo tenere tutti gli implicanti
- $p = a_4'a_0 + a_3'a_0 + a_2a_0 + a_1a_0 + a_4'a_3'a_1 + a_3'a_2'a_1 + a_4a_3a_2a_1 + a_4'a_3a_2a_1' + a_4a_3a_2'a_1'a_0'$

$a_4 a_3 / a_2 a_1 a_0$	000	001	011	010	100	101	111	110
00		1	1	1		1		1
01		1	1		1	1	1	
11	1		1			1	1	1
10		1	1	1		1	1	

Osservazioni

Espressione minima

- ▶ E' un po' tedioso
- ▶ E' inoltre facile sbagliare con tutti gli implicanti

Possibile un'altra numerazione delle colonne

- Si può usare direttamente il codice Gray
- Metodo alternativo
- Attenzione però che le vicinanze cambiano
 - Per esempio, le due colonne di mezzo sarebbero vicine
- ▶ Non si può più pensare alle due mappe come sovrapposte

Mappe a 6 e più variabili

- Si possono usare 4 mappe a 4 variabili
 - In ogni caso non sono molto convenienti
- Per più di 6 variabili attenzione a come si ordinano le mappe
 - Conviene di nuovo usare il codice Gray gerarchicamente anche per le variabili che indicizzano le mappe
- Solo più complesse geometricamente
 - Mettono a dura prova il colpo d'occhio
 - Altrimenti non c'è nulla di nuovo
 - Spezzatele con Shannon!!

Good luck!

abc / def			()		1			
abc,	dei	00	01	11	10	00	01	11	10
	00	0	1	1	0	0	-	1	-
0	01	1	-	0	1	-	-	1	0
0	11	0	0	-	1	1	-	0	0
	10								
	00								
1	01								
1	11								
	10								

42 Reti Logiche

Altri modi di sintetizzare e fare il circuito

Realizzazione NAND - NAND

- Conveniente usare sempre lo stesso tipo di porta logica
 - Rende la realizzazione più omogenea in termini di caratteristiche elettriche
 - Le porte invertenti usano meno transistori di quelle non invertenti
- Si ottiene la sintesi NAND NAND partendo da quella AND – OR ed applicando la legge di De Morgan
 - f = z + y'w' + yw + xz'
 - f = (z + y'w' + yw + xz')''
 - ▶ f = ((z)'(y'w')'(yw)'(xz')')'
- Gli implicanti sono quindi gli stessi della sintesi AND –
 OR
 - Si individuano allo stesso modo

Nella pratica

Procedimento

- Ad ogni AND si sostituisce una NAND
- Ad ogni OR si sostituisce una NAND
- ▶ Se un ingresso va direttamente alla OR viene negato

Realizzazione NOR – NOR

- Come prima, solo che partiamo dal prodotto di somme
 - Gli implicanti si ottengono dagli zeri della funzione
 - Applichiamo le legge di De Morgan
 - Di nuovo si sostituisce tutto con porte NOR
 - Con l'avvertenza di negare gli ingressi che vanno direttamente alla porta di uscita

Take away

Vi sono varie alternative realizzative

- Si possono differenziare per tecnologia
- A seconda della funzione possono produrre implementazioni migliori o peggiori
- ▶ Talvolta utile rappresentare tutto con sole porte NAND per semplificare l'analisi da parte di strumenti automatici

Procedimento standard

- ▶ In tutti i casi il procedimento non cambia
- ▶ E' possibile passare da una rappresentazione ad un'altra applicando semplici proprietà dell'algebra Booleana

Complessità

- Possibili mappe con gran numero di variabili
- Difficili da manipolare a mano