so the feasibility equations become

$$Ax = b$$
$$Px + q + A^{\mathsf{T}}\lambda = 0,$$

which in matrix form become

$$\begin{pmatrix} P & A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = \begin{pmatrix} -q \\ b \end{pmatrix}. \tag{KKT-eq}$$

The matrix of the linear system is usually called the *KKT-matrix*. Observe that the KKT matrix was already encountered in Proposition 42.3 with a different notation; there we had $P = A^{-1}$, $A = B^{T}$, q = b, and b = f.

If the KKT matrix is invertible, then its unique solution (x^*, λ^*) yields a unique minimum x^* of Problem (P). If the KKT matrix is singular but the System (KKT-eq) is solvable, then any solution (x^*, λ^*) yields a minimum x^* of Problem (P).

Proposition 50.10. If the System (KKT-eq) is not solvable, then Program (P) is unbounded below.

Proof. We use the fact shown in Section 30.7, that a linear system Bx = c has no solution iff there is some y that $B^{\top}y = 0$ and $y^{\top}c \neq 0$. By changing y to -y if necessary, we may assume that $y^{\top}c > 0$. We apply this fact to the linear system (KKT-eq), so B is the KKT-matrix, which is symmetric, and we obtain the condition that there exist $v \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m$ such that

$$Pv + A^{\mathsf{T}}\lambda = 0$$
, $Av = 0$, $-q^{\mathsf{T}}v + b^{\mathsf{T}}\lambda > 0$.

Since the $m \times n$ matrix A has rank m and $b \in \mathbb{R}^m$, the system Ax = b, is solvable, so for any feasible x_0 (which means that $Ax_0 = b$), since Av = 0, the vector $x = x_0 + tv$ is also a feasible solution for all $t \in \mathbb{R}$. Using the fact that $Pv = -A^{\top}\lambda$, $v^{\top}P = -\lambda^{\top}A$, Av = 0, $x_0^{\top}A^{\top} = b^{\top}$, and P is symmetric, we have

$$J(x_0 + tv) = J(x_0) + (v^{\top} P x_0 + q^{\top} v)t + (1/2)(v^{\top} P v)t^2$$

= $J(x_0) + (x_0^{\top} P v + q^{\top} v)t - (1/2)(\lambda^{\top} A v)t^2$
= $J(x_0) + (-x_0^{\top} A^{\top} \lambda + q^{\top} v)t$
= $J(x_0) - (b^{\top} \lambda - q^{\top} v)t$,

and since $-q^{\top}v + b^{\top}\lambda > 0$, the above expression goes to $-\infty$ when t goes to $+\infty$.

It is obviously important to have criteria to decide whether the KKT-matrix is invertible. There are indeed such criteria, as pointed in Boyd and Vandenberghe [29] (Chapter 10, Exercise 10.1).