Digital IC Design

Exercise 3 Sequential circuits

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

Time/Area Analysis of Sequential Circuits

- Use Verilog to design a 3x3 convolution kernel
 - ◆ Design the kernel with/without pipeline techniques
 - > Draw the block diagram of your designs
 - ◆ Verify your designs by gate-level simulation using the pattern provided by TA.
 - Analysis on the area, latency and throughput of your designs by setting different clock periods

Specifications for 3x3 convolution kernels

Signals:

Input signals	Bit width	Description
clk	1	Positive edge trigger clock
rst_n	1	Asynchronous active-low reset.
in_valid	1	When High, In_IFMs are valid
Weight_valid	1	When High, In_Weights are valid
In_IFM_1-9	8	Input feature map (9 signals), give in 25 cycles
In_Weight_1-9	8	Weights (9 signals), give in one cycle
Output signals	Bit width	Description
Out_valid	1	High when out is valid, then Patten will check Out_OFM. (It should maintain 25 cycles)
Out_OFM	21	The answers of the 3x3 convolution. (It should maintain 25 cycles)

Settings:

- ◆ In_IFMs & In_Weights should be received by registers.
- ◆ The output ports should be set as registers.

Introduction of 3x3 Convolution

*

IFM

Give in cycle 1 I₁₄ I₁₀ I₁₁ I₁₇ 23 24

Give in cycle 25

Weight

OFM

The 25th output

$$O_1 = I_1 \times W_1 + I_2 \times W_2 + I_3 \times W_3 + I_4 \times W_4 + I_5 \times W_5 + I_6 \times W_6 + I_7 \times W_7 + I_8 \times W_8 + I_9 \times W_9$$

$$O_{25} = I_{33} \times W_1 + I_{34} \times W_2 + I_{35} \times W_3 + I_{40} \times W_4 + I_{41} \times W_5 + I_{42} \times W_6 + I_{47} \times W_7 + I_{48} \times W_8 + I_{49} \times W_9$$

Example: Block Diagram of 3x3 Convolution

3x3 Convolution kernel without pipeline

Submission of Exerice-3

- Please upload the following files
 - ◆ Due day: PM 11:55 on 11/24
 - ◆ Report.pdf
 - Convolution_without_pipeline.v
 - ◆ Convolution_with_pipeline.v
 - Synthesis_clk_period.txt

(Please describe the clock periods, you chose to synthesis in the report, in the "Synthesis_clk_period.txt". TA will use the clock period to run and check your design correct or not.)