auditsampling

May 23, 2019

Title A auxiliary package to calculate some basic things in sampling. Most used para CGU auditors.

Version 0.0.0.9000

Description The package contains some functions the help auditors in sampling process.

Depends R (>= 3.4.3)

Imports flextable

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1.9000

R topics documented:

infe	receSRS	Outputs	a table	with	SRS bas	ed inferenc	es	
Index								7
	NSubpop							 5
	nStrata							
	nSRS							
	nPilot							
	nClusterProp							
	infereceSRS							

Description

This function do Simple Random Sample inferences from a sample data, given a confidence level. It can calculate estimates for means and totals and proportions too. It have option to print a Word *.docx table with the estimate parameters.

```
infereceSRS(sample.data, num.cols = NULL, cat.cols = NULL, alpha,
  N = Inf, type = c("mean", "total"), print.report = FALSE,
  labels = NULL)
```

2 nClusterProp

Arguments

sample.data A data.frame representing a sample with the collected data.

num.cols The number of the columns where the data is continuous.

cat.cols The number of the columns where the data is categorical.

alpha Confidence level.

type If you want means or totals.

print.report FALSE by default. If TRUE, prints a .docx table.

labels An optional string vector of labels to be putted into printed table. Must have

the same length of the sum of numerical columns and all levels of categorical

columns.

Value

A data.frame containing the fields:

parameter paremeters estimated

n sample size

cv variation coefficient
point.estimate point estimate
interval confidence interval

If the option print.report=TRUE, the function will output a .docx file with this table.

Examples

nClusterProp

Calculates the number os cluster to a cluster sample design

Description

This function returns the number of clusters to be sampled in a proportion based survey. By default, the argument 'pq' is 0.25 (maximum variance).

```
nClusterProp(data, clustername, alpha, moe, pq = 0.25)
```

nPilot 3

Arguments

data The data.frame containing the variable denoted as the cluster.

clustername The variable name of the considered cluster.

alpha (1 - confidence level). moe Margin of error.

pq The variance, as P(1-P). By default, it is 0.25.

Value

The value (integer) of the number of clusters to sample in cluster sampling.

Examples

```
library(survey)
data("api")
nClusterProp(data=apipop, clustername = "dnum", alpha = 0.05, moe = 0.1)
nClusterProp(data=apipop, clustername = "dnum", alpha = 0.05, moe = 0.05)
```

nPilot

Calculates the remaing sample size when using pilot sample

Description

Based on a pilot sample, this function calculates the remain elements to the final sample given the variance considered.

Usage

```
nPilot(s2 = NULL, pq = NULL, n1, V)
```

Arguments

pq The variance, as P(1-P). Not necessary if 'S2' is not 'NULL'.

n1 The size of the pilot sample.

V The target variance.

S2 The variance, as σ^2 . Not necessary if 'S2' is not 'NULL'.

Value

The final sample is

$$n = n_1 + n_2$$

Where n_2 is the value returned by this function.

References

COCHRAN, William Gemmell. Sampling techniques-3. 1977.

Examples

```
nPilot(s2=13.5,n1=30,V=1)
nPilot(pq=0.15,n1=30,V=0.025)
```

4 nStrata

nSRS
110110

Calculates the sample size for SRS

Description

This function calculates de sample size in a SRS design based on one of three possible arguments: σ^2 , pq or CV. Provide just one of then.

Usage

```
nSRS(moe, alpha, CV = NULL, S2 = NULL, pq = NULL, N = Inf)
```

Arguments

moe	Margin of error.	
alpha	1 - (confidence level).	
CV	Variaton coefficient.	
S2	σ^2 , population variance.	
pq	P(1-P), population variance for proportions.	
N	Population size.	

Value

The value of n.

Examples

```
nSRS(moe=0.05,alpha=0.05,S2=6,N=1500)
nSRS(moe=0.05,alpha=0.05,CV=0.2,N=1500)
nSRS(moe=0.05,alpha=0.05,pq=0.25,N=1500)
```

nStrata

Calculates the sample size in a stratified desgin

Description

This function returns the number of elements to be sampled in a stratified based survey. If the method choosen is 'prop' or 'optimum', the function return the allocation too.

```
nStrata(data, stratanames, alpha, moe, S2 = NULL, pq = NULL,
    V = NULL, N = Inf, method = c("none", "prop", "optimum"))
```

NSubpop 5

Arguments

data	The data.frame containing the variable denoted as the cluster.
stratanames	The variable name of the considered strata. Can be a vector of variable names.
alpha	(1 - confidence level).
moe	Margin of error.
S2	The variance, as σ^2 . Not necessary if 'pq' or 'V' is not 'NULL'.
pq	The variance, as $P(1-P)$. Not necessary if 'S2' or 'V' is not 'NULL'.
V	The variance, as $(d/t)^2$. Not necessary if 'S2' or 'pq' is not 'NULL'.
N	Population size.
method	A string with 'none', 'prop' or 'optimum'. With 'optimum', it uses Neyman allocation.

Value

The value (integer) of the number of elements to sample in stratified sampling. If 'prop' or 'optimum' where used, the function returns a list with the components

 ${\bf n}$ Total number of elements in the sample.

nh In case of method 'prop' or 'optimum', the allocation in each strata.

Examples

NSubpop	Calculates the new subpopulation due elements thar not belong to the		
	populational universe		

Description

This function returns the number of the new subpopulation.

```
NSubpop(N, n, p, z = 3)
```

NSubpop NSubpop

Arguments

N	Population size.
n	Sample size.
р	Proportion or the number of elements that belong to the universe intended.
z	The z-value of α .
data	The data.frame containing the variable denoted as the cluster.

Value

The value (integer) of the new population (subpopulation) number.

Examples

```
NSubpop(45000,100,59)
NSubpop(45000,100,5)
```

Index

```
infereceSRS, 1
nClusterProp, 2
nPilot, 3
nSRS, 4
nStrata, 4
NSubpop, 5
```