LAB ASSESSMENT

- 1. A programmer needs to break a certain string into two parts. If the string contains *n* characters, it costs *n* units of time to break it into two parts, as it involves copying the old string. The programmer wants to break the string into more than 2 parts, and the order in which the breaks are made affects the total amount of time used. For example, suppose we wish to break a 20-character string after characters 3, 8, and 10. If the breaks are made in left-right order, then the first break costs 20 units of time, the second break costs 17 units of time, and the third break costs 12 units of time, for a total of 49 steps. If the breaks are made in right-left order, the first break costs 20 units of time, the second break costs 10 units of time, and the third break costs 8 units of time, for a total of only 38 steps. Give a dynamic programming algorithm that takes a list of character positions after which to break and determines the cheapest break cost in O(n^3) time.
- Suppose the job scanning through a shelf of books is to be split between k workers. To
 avoid the need to rearrange the books or separate them into piles, we can divide the
 shelf into k regions and assign each region to one worker. What is the fairest way to
 divide the shelf up? If each book is the same length, partition the books into equal-sized
 regions,

100 100 100 | 100 100 100 | 100 100 100

But what if the books are not the same length?

This partition would yield 100 200 300 | 400 500 600 | 700 800 900

Which part of the job would you volunteer to do? How can we find the fairest possible partition, i.e. 100 200 300 400 500 | 600 700 | 800 900

- 3. Implement Greedy Fractional Knapsack for the following problems:
 - 1. N = 3, M = 20, (P1, P2, P3) = (25, 24, 15), (W1, W2, W3) = (18, 15, 10)
 - 2. N = 7, M = 15, (P1, P2, P3, P4, P5, P6, P7) = (10, 5, 15, 7, 6, 18, 3); (W1, W2, W3, W4, W5, W6, W7) = (2,3,5,7,1,4,1)
- 4. Implement the dynamic programming algorithm for the Traveling Salesman Problem (TSP). Describe the data structure you use for the g(i,S) functions. Run your program for the following graphs:

Graph 1:

Graph 2:

(a) The graph

	1	2	3	4	5	. 6	7	8	9	11 1 1E 1
1		345	parties	me	500	1 11 1	97	230	39	Baltimore
2	345			186	252	445	365	217	io lui	Buffalo
3	ri par			244	265			284	492	Cincinnati
4		186	244		167	507		125		Cleveland
5		252	265	167						Detroit
6	GCI	445		507			92	386		New York
7	97	365				92		305		Philadelphia
8	230	217	284	125		386	305		231	Pittsburgh
9	39		492					231		Washington

(b) The adjacency matrix representation of the graph

(c) The adjacency list representation of the graph

Figure 4.1: Two Internal Representations of a Graph

Graph 3:

Figure 1.3: An Instance of the Symmetric Travelling Salesperson Problem with Triangle Inequality