Andreas Landgrebe Computer Science 250 Laboratory Assignment 4 Improving Standard Sorting Algorithms February 11, 2015

Part 1 Results

Altering Insertion Sort	Run 1	Run 2	Run 3	Run 4	Run 5	Mean(Average)	Standard Deviation
Array Length 1000	5.043	4.870	5.522	4.913	5.571	5.1838	0.30197046213165
Array Length 10000	429.310	461.410	408.542	449.632	448.370	434.47566667	20.102257896952
Array Length 100000	10280.331	10831.381	10269.832	10199.987	10596.183	10435.5428	240.63684732177

Figure 1: Results of NewInsertion vs Insertion

Part Two Results

Altering Mergesort	Run 1	Run 2	Run 3	Run 4	Run 5	Mean(Average)	Standard Deviation
Threshold Value 5	1.249	1.258	1.276	1.295	1.288	1.2732	0.017428711943227
Threshold Value 10	1.583	1.541	1.496	1.569	1.561	1.55	0.0302258167797
Threshold Value 25	2.042	1.942	2.060	2.025	2.051	2.024	0.042600469480981
Threshold Value 100	3.031	3.014	3.111	2.025	2.051	2.6464	0.49790344445485

Figure 2: Results of MergeInsertion vs Merge with different threshold vaues

Part 3 Results

Altering Quicksort	Run 1	Run 2	Run 3	Run 4	Run 5	Mean(Average)	Standard Deviation
Array Length 10000	0.880	0.801	0.831	0.832	0.924	0.8536	0.043352508577936
Array Length 100000	1.014	1.007	1.028	0.930	0.943	0.9844	0.039902882101422
Array Length 1000000	1.090	1.012	0.990	1.152	1.032	1.0552	0.05871422314908

Figure 3: Results of Three QuickSort vs QuickSort

Part 4: While You Have Some Downtime

1. Trace how the Heapsort algorithm will sort the array REHEAPIFICATION

1. Build the heap

2. Sorting

TRPFIONEEACIHI

IRPFIONEEACIHI

IRPFIONEEACIH Sorting Array: T

RIPFIONRRACIH

HIPFIONRRACIR

Sorting Array: TR

PIHFIONRRACIR

PIOFIHNEEACI

PIOFIINRRACH

HIOFIINEEAC Sorting Array: TRP

OIHFIINEEAC

OINFIIHEEAC

CINFIIHEEA Sorting Array: TRPO

NICFIIHEEA

NIIFICHEEA

AIIFICHEE Sorting Array: TRPON

IAIFICHEE

IIIFACHEE

EIIFACHE Sorting Array: TRPONI

IEIFACHE

IFIEACHE

EFDIEACH Sorting Array: TRPONII

IFEEACH

IFHEACE

EFHEAC Sorting Array: TRPONIII

HFEEAC

CFEEA Sorting Array: TRPONIIIH

FCEEA FEECA

AEEC Sorting Array: TRPONIIIHF

EAEC ECEA

ACE Sorting Array: TRPONIIIHFE

EAC

AC Sorting Array: TRPONIIIHFEE

 ${\rm CA}$

A Sorting Array: TRPONIIIHFEEC Sorting Array: TRPONIIIHFEECA

2. What is the minimum number of items that must be exchanged during a **RemoveMax()** operation on a heap of size N? Give a heap of size 15 for which this minimum is achieved. Of a heap size n, the minimum number of items that must be exchanged is 2.