Linear Algebra: Inner Product Spaces

Arjun Vardhan

[†] Created: 22nd July 2022 Last updated: 22nd July 2022

1 Introduction

- An inner product is a function that assigns a scalar to a pair of vectors.
- Let $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$. The norm of a vector in \mathbb{R}^n is defined as $||x|| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$. The inner product of two vectors is defined as $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + ... + x_n y_n$.
- ullet Let V be a vector space over \mathbb{C} . An inner product in V must satisfy the following properties:
 - 1. Conjugate symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in V$.
 - 2. **Linearity:** $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$, for all $x, y, z \in V$ and all $\alpha, \beta \in \mathbb{C}$.
 - 3. Non-negativity: $\langle x, x \rangle \geq 0$ for all $x \in V$.
 - 4. Non-degeneracy: $\langle x, x \rangle = 0$ if and only if x = 0.

If such a function exists, then V together with its inner product is an inner product space.

- Given an inner product space, the norm of a vector x is defined as $||x|| = \sqrt{\langle x, x \rangle}$.
- $\langle x,0\rangle=0$ for all vectors x. Proof: $\langle x,0\rangle=\langle x,x-x\rangle=\langle x,x\rangle+\langle x,-x\rangle=\langle x,x\rangle-\langle x,x\rangle=0$.
- Let $x \in V$. Then x = 0 if and only if $\langle x, y \rangle = 0$ for all $y \in V$. *Proof:*
- Corollary: Let x,y be vectors in an inner product space V. x=y if and only if $\langle x,z\rangle=\langle y,z\rangle$ for all $z\in V$. *Proof:*
- Suppose two operators $A, B: X \to Y$ satisfy
- Cauchy-Schwarz Inequality: $|\langle x, y \rangle| \leq ||x|| \, ||y||$. *Proof:*
- Triangle Inequality: $||x + y|| \le ||x|| + ||y||$. Proof:

•

2 Orthogonality, Orthogonal and Orthonormal Bases

- Two vectors u and v are called orthogonal if $\langle u, v \rangle = 0$. This is denoted by $u \perp v$.
- Pythagorean Identity: If $u \perp v$, then $||u|| + ||v|| = ||u||^2 + ||v||^2$. Proof:
- A vector v is said to be orthogonal to a subspace E if $v \perp w$ for all $w \in E$.
- Subspaces E and F are said to be orthogonal if all vectors in E are orthogonal to all vectors in F.
- Let E be spanned by $v_1, v_2, ..., v_n$. Then $v \perp E$ if and only if $v \perp v_k$ for all k. Proof:
- A system of vectors $v_1, v_2, ..., v_n$ is called orthogonal if $v_i \perp v_j$ whenever $i \neq j$. If $||v_k|| = 1$ for all k, the system is called orthonormal.

•

3 Orthogonal Projection and Gram-Schmidt Orthogonalization

•