



# Low-Cost Optical Terminal (LCOT)

# Initial Test Results Of The LCOT Adaptive Optics System

**Predrag Sekulic** 

Optical Systems I&T Engineer – KBR / NASA GSFC

Co-Authors: N.M. Desch, S.A. Hall, R.E.L. Lafon, K.C. Olsen, D.A. Paulson, H. Safavi, P.L. Thompson





# The LCOT AOS



# Introduction



- □ LCOT designed to serve TX and Rx for missions at LEO, GEO, and Lunar orbits
- Design philosophy:
  - > Modular for high level of reconfigurability between missions
  - > COTS
- Located at Goddard Geophysical Astronomical Observatory (GGAO)
- Receive Telescope:
  - PlaneWave Instruments RC700-F12
  - > Type: Ritchey-Chretien with Nasmyth access on both sides
  - Diameter 700 mm
  - ➤ Focal Ratio: F/12
  - Alt-Az mount
- □ Port Optical Bench (POB) at Nasmyth
  - Wide Field of View Camera for pointing & tracking
  - Adaptive Optics (AO) system
- ☐ Starboard Optical Bench (SOB) at Nasmyth
  - > Few or multi-mode fiber
  - No AO
- ☐ Transmit Optical Assembly (XOA)





## **AO** Motivation



- ☐ Infrared received signal between 1500 and 1600 nm
- □ Coherent communication formats to be coupled into an 8-12 µm single mode fiber
- Large telescope + atmospheric turbulence
  - ⇒ Blurry image, large spot, speckle pattern
  - ⇒ Wobbling spot
- Coupling into fiber improved when using Adaptive Optics (AO)
  - Wavefront sensor + DM to correct image wavefront and spot size
  - Tracking system to stabilize spot on the fiber head
- AO system:
  - Measures wavefront distortion caused by atmosphere turbulence
  - ➤ Then applies an inverse distortion to a deformable mirror (DM)
  - > Cancels out turbulence induced wavefront error
  - ➤ Allows signal to be imaged closer to the diffraction limit of the telescope

| Atmospheric<br>Parameter      | Specification |
|-------------------------------|---------------|
| Fiber Coupling Efficiency     | 25%           |
| Fried Parameter $(r_o)$       | 7.5 <i>cm</i> |
| Greenwood Freq $(f_G)$        | 109 <i>Hz</i> |
| Rytov Variance $(\sigma_R^2)$ | 0.278         |
| Tilt Greenwood Freq $(f_T)$   | 16.3 Hz       |



### **How AO Works?**



- ☐ Atmospheric optical turbulence disturbs the amplitude and phase of coherent laser downlink light
- □ A Shack-Hartman Wavefront Sensor (SH-WFS) detects phase distortions using a microlens array and an infrared (IR) camera
- ☐ The Deformable Mirror (DM) corrects phase aberrations by altering transverse path lengths
- ☐ The light can now be focused to a sharper point for fiber coupling improvements (improves Strehl Ratio)

| Wavefront Sensor (WFS)     | Deformable Mirror (DM) Compensation                      | Implications for Focusing                |
|----------------------------|----------------------------------------------------------|------------------------------------------|
| lenslet array  image plane | incoming wavefront corrected wavefront deformable mirror | input wavefronts focused wavefronts lens |



# **AO Design**







# **AO Optical Path**









# **General Atomics AO System**



- ☐ Spectral range: 1500 to 1600 nm
- Wavefront sensor:
  - Lenslet array 24 x 24
  - > WFS FSM
  - Frame rate: 10kHz
  - Deformable mirror
    - Boston Micromachines 492-DM
    - 16x16 actuators
    - Actuator stroke = 3.6 μm Pitch = 400 μm
- □ Tracking system
  - > Tracker FSM: 1kHz ± 1.5°
  - Tracking camera
- □ Reconfigurable input relay optics
  - > 6.4 mm pupil on DM
  - > 4 mm pupil on DM
- Pupil registration
  - > Tip/tilt window to register beam position DM/WFS
- Non-common path correction
  - Zernike injection to optimize output power from single-mode fiber
- □ SMF-28 single-mode fiber with F/4 lens system for beam injection





# **Laboratory Test Setup**



# **Laboratory Testing**



- Objective: Test fiber coupling efficiency by measuring power output and using a phase wheel to simulate air turbulence
- AOS tested at NASA/GSFC in lab
- Test Setup:
  - $\triangleright$  Laser source  $\lambda = 1528$  to 1563 nm to create a collimated beam
  - Beam expander + iris to 15 mm (pseudo flat-top)
  - ➤ 4-F relay optics
  - > 27 % Central Obscuration Emulator (COE)
  - ➤ Turbulence phase wheel designed for:
    - 700 mm telescope
    - AO input beam 15 mm
    - Fried Parameter  $r_0 = 7.5 \text{ cm} \Rightarrow \text{scaled to } r_0 = 1.6 \text{ mm}$
  - 2 flat mirrors for beam pointing/centering
  - Power meter + detectors coupled to output SMF-28 single-mode fiber





### **Turbulence Simulator**



- ☐ Phase plate to simulate atmospheric turbulence in lab
- Manufactured by Lexitek, inc.
- Design:
- Diameter 83 mm corresponding to a 4096x4096 phase array
- > Thickness: 22 mm
- > Fried parameter r0 = 7.5 cm
- Beam diameter: 15 mm
- > Spectral range: 400 1600 nm
- ➤ LS-100 motorized rotary stage:
- Greenwood frequency = f (rotation speed)





| Rotation speed<br>(RPM) | Greenwood Freq<br>(Hz) |
|-------------------------|------------------------|
| 60.0                    | 48.8                   |
| 98.4                    | 80.0                   |
| 120.0                   | 97.6                   |
| 134.1                   | 109.0                  |
| 180.0                   | 146.3                  |
| 184.5                   | 150.0                  |
| 190.0                   | 154.5                  |





# 4-F Relay





### 4-F system designed and installed as relay optics to:

- Generate a 15 mm collimated beam
- Reimage phase plate on the AO pupil = tracking FSM
- ➤ Wavelength @ 1550 nm +/- 70 nm including O2O and LCRD wavelengths.
- > Rytov variance at nominal value of 0.3 + Rytov variance change



### **Central Obscuration Emulator**



- ☐ LCOT AOS installed at the Nasmyth of a 70 cm Ritchey-Chretien telescope
- Secondary mirror mount ⇒ 27% central obscuration
- Central obscuration emulator (COE) to simulate its effect on the AO performance
- ☐ 3D printed + metal wires
- Positioned next to the AO pupil (AO tracker FSM)
- ☐ 15 mm beam aperture







## **General Atomics Software**



### **Test sequence example:**

- 1. AO/Tracker loops open
- 2. Only Tracker loop closed
- 3. AO/Tracker loops closed
- 4. Only AO loop closed
- 5. AO/Tracker loops closed





# **3 AO System Test Configurations**



- Horizontal test in lab with AO on lab bench.
- Horizontal test in lab with AO on POB
- Vertical test in lab with AO on POB
  - Identical test as horizontal
  - > Final test with a telescope simulator









# **Preliminary Tests Results**



# **Coupling Efficiency Vs Greenwood Frequency**



#### **Measurement in GSFC laboratory with AO system on optical bench:**

Coupling Efficiency > 41.6% @  $f_G = 109$  Hz







# **Coupling Efficiency Vs Greenwood Frequency**



### **Measurement in GSFC laboratory with AO system on POB:**

 $\square$  Coupling Efficiency> 41.0% @ f<sub>G</sub> = 109 Hz

#### **Maximum repeatability on Coupling Efficiency < 4%**











# **Coupling Efficiency Vs Rytov Variance**



#### Coupling efficiency wrt wheel position AOS on POB



### **Measurement in GSFC laboratory with AO system on POB:**

- Coupling Efficiency > 33.9% @ position < 290 mm ⇒ Rytov Variance < 0.3 (nominal)
- Worst case: Coupling Efficiency = 31%



# **Central Obscuration Effect**



# Measurement in GSFC laboratory with AO system on optical bench:

 $\square$  Coupling Efficiency > 29.3% @ f<sub>G</sub> = 109 Hz

#### **Measurement in GSFC laboratory with AO system on POB:**

□ Coupling Efficiency > 31.9% @ f<sub>G</sub> = 109 Hz





### Coupling efficiency wrt Greenwood Frequency AOS on POB - with COE







# **Conclusion & Path Forward**



# **Conclusion & Path Forward**



- ☐ AO system has been tested in laboratory as individual setup
- Results meet all requirements with and without central obscuration
- On-Sky testing to confirm these data
- ☐ Continue AO testing:
  - Vertical position in lab
  - Complete POB test with telescope simulator in lab
  - On-sky: Star + LCRD
- ☐ AO system test with LCRD space terminal currently in GEO orbit
- ☐ AO system test for future Quantum Communications experiments





# Thank you!