CS528 High Performance Computing

A Sahu

Dept of CSE, IIT Guwahati

A Sahu

High Performance Computing

- What is HPC?
- Who needs high performance systems?
- How do you achieve high performance?
- How to analyze or evaluate performance?
- Power Performance Tradeoff : Green Computing
- Best architecture/design for a problem
- Parallel Architecture: Design and Programming
- Cloud Computing, FOG/EDGE Computing/IoT

Course Website

- http://jatinga.iitg.ernet.in/~asahu/cs528/
 - MS team Group : Grp_CS528_2022
- Course Contents
 - Mostly Algorithmic Nature: Require CS204/CS512
- Text and Reference Books
- All lecture slides
- Summery of each class with references
- Other information
 - Benchmarks, Source Code,
 - Referred Papers, EBooks

Grading Policy & General

- Class timing & Venue
 - Tue, Wed, Thursday: 3PM -4 PM
 - Venue: MS Team, Online, Video recording, PPT will be shared in MS Team
- Grading (HPC-3-0-0-6): No programming assignment
 ○
 - 2 Pre-announce quizs, Mid Sem, End Sem
 - Quizs (30%), MidSem(30%), End Sem (30%), 10% Class participation
 - Rapid Mode MCQ/SA Exam
 - Missing Exam/Quiz due to medical/Internet cases: Average of others exams
- No single text book is available
 - Two books : Hager HPC Book and Paterson CA Book
 - Many other resources: Manuals and Papers

What are Supercomputers Used For?

- Scientific simulations
- Animated graphics
- Analysis of geological data
- Nuclear energy research and meteorology
- Computational fluid dynamics
- Analysis of business data
 - Online Sales
- Analysis of social data
 - Social media, Facebook, Utube, LinedIn,...

How do you achieve high performance?

- Performance: FLOPS or MIPS
- High Performance = => Increase FLOPS
- How?

How do you achieve high performance?

- How?
 - Increase number of FPU of the system
 - Increase number processor in the system
 - Increase amount of Register/Cache/RAM of system
 - Use different cache/RAM mapping/management policy
 - Restructure Program, Use different Language
 - Use different compiler
 - Use different algorithm/approaches for same problem
- Cost, AMC, Power Consumption

How?

- Increase number of FPU of the system
 - Vector Processor (SSE, SIMD, MMX), GPU Accelerator
- Increase number processor in the system
 - Core i3/i5/i7, Ryzen R3/R5/R7: Dual/Quad/Hexa/Octa cores
 - Intel Xeon 4,6,8,10,12,16,18,20, 24, 38 cores
 - Intel Xeon Phi (KNL), 72 cores/288Thread
 - AMD Thread Ripper: 8, 16, 32, 64 cores
- Increase amount of Register/Cache/RAM of system
 - Big register file/Cache :Power Hungry
 - RAM/NVRAM /SSD: No disk moment fast but costly

Technology Trends

- Desktop 8086/80386
 - Processor, Mother Board, Co-Processor (Floating Point Unit), Graphics Card, RAM, Audio, Ethernet
- Desktop Pentium
 - Processor (Coprocessor inside) + Mother Board (Audio, Ethernet) + Graphics Card
- Desktop PIV
 - Processor + Mother Board (Graphics + Audio + Ethernet)
- Desktop Core
 - Processor (Graphics Inside) + Board (Audio, Ethernet)
- Mobile SOC
 - Processor + Graphics+ Board (Almost in Chip)

Technology Trend

- Performance is no longer is main issue
 - Power, Energy, Cost
 - DVFS : run at lower frequency to reduce power/energy consumption
- Most of modern day servers are
 - Under utilized (core, RAM)
 - Same for Laptop/Desktop/Mobile
- Under utilized
 - Wastage of resources, can be shared with others
 - Sharing methodology (virtualization)
 - Leads to Cloud Computing

Technology Trend

- Cloud Computing
 - Economy: Similar to OLA/UBER
 - Renting Model
- IoT: Many things on Internet
 - Control and Management of Big Work
 - Sensors and actuators
- FOG
 - Peers Computing, Multiple Level
- Edge
 - Computing at Edge not far, Latency sensitive

Technology Trend

- Single processor/Single Computer
 - Single processor with SIMD instruction
- Multi Computer
 - Cluster, Data need to travel outside PC via LAN cable
- Multi processor
 - Tightly coupled, Data no need to travel out side PC, out side board
- Processor + Accelerator
 - PCI or Board level Communication
- Processor and Accelerator in the same chip
 - On chip, High BW, Intel Core (Graphics are in Chip)
- 3D chip

Quest for Performance

Quest for Performance

- Pipelining
- Superscalar Architecture
- Out of Order Execution
- Caches, SMT
- ISA Advancements
- Parallelism
 - Multi-core processors
 - Clusters
 - -Grid, Cloud System

Single Processor

Past research

This is the current and future

Trend of HPC

HPC system

- Multi Nodes/Computer/Blades
- Programming Model MPI
- Nodes are Multicore
 - Node have accelerators
 - Programming Model : OpenMP, OpenCL/Cuda

Core

- Multi Threaded
- With vector instructions
- 4 issue OOO Pipelines, Multilevel Caches,
- Programming Model: gcc optimized, vectorized code, OpenMP

Need to study in HPC: User Prospects

- Single Processor
 - Architecture: Core Pipeline, Core Multithreading,
 Cache Hierarchy, SIMD
 - C/C++ Optimization Methods: gcc, OpenMP,
 Simidization, cache optimized code
- Multicore node
 - Multicore, Accelerator, Interconnections
 - OpenMP Model, Cuda Model, Accelerated Model
- HPC Server
 - Multiple Nodes/Blades, Interconnection, Storages
 - Programming Model : MPI

HPC: overall

- Top 500 HPC: Multiprocessor, Accelerator based
- Applications : Programming Model, Management
- Cost of HPC: Initial cost (System: Racks, Rack server, SAS), Place, AC, ...
- Running Cost of HPC : AMC, Energy, Management
- HPC on Rent :
 - VM, Management, Revenue Model, Cost Model
 - Cloud Model, IasS, PasS, SaaS (Infra/Platform/Software)

HPC Course Contents (Abstract)

- Parallel/Multicore Architecture
 - Multicore, GPU, Xeon Phi
- Programming Model: Thread, OpenMP, MPI, Cilk, Cuda, Intel MKL
- Scheduling and Management
 - Resources: Core, RAID/NAS
- Benchmarking and Analysis
- Cloud: Virtualization, Cost, Revenue Model
- Energy Efficient and Power Efficiency
- Theme FOG/EGDE = Mobile Cloud Computing

HPC course

- 1st Half: Before Mid Sem
 - HPC, Architecture, Programming, Code
 Optimization
 - Scheduling, Energy Efficiency, Power Efficiency
- 2nd Half: After Mid Sem
 - Cloud Computing
 - Mobile Cloud, FOG, EGDE, IoT

Books: Text

- Hager G and Wellein G. Introduction to High Performance Computing for Scientists and Engineers (1st ed.). CRC Press,, India, 2010.
- Some user manuals
- Some recent papers