Distributed MST in Core-Periphery Networks

Chen Avin, Michael Borokhovich, Zvi Lotker, David Peleg

Communication Systems Engineering, BGU, Israel

Department of Computer Science, The Weizmann Institute, Israel

Motivation - Social Networks Structure

- Core (or Elite) a small group of influential, and well connected individuals.
- Observed in different real-world networks (empirical study)

A1. High *Core* Influence.

•
$$\sum_{v \in \mathcal{C}} d_{\text{out}}(v) = \Omega(m)$$

A1. High *Core* Influence.

•
$$\sum_{v \in \mathcal{C}} d_{\text{out}}(v) = \Omega(m)$$

A2. Balanced Core Boundary.

•
$$\forall v \in \mathcal{C}, \ \frac{d_{\text{out}}(v)}{d_{\text{in}}(v)} = O(1)$$

A1. High Core Influence.

•
$$\sum_{v \in \mathcal{C}} d_{\text{out}}(v) = \Omega(m)$$

A2. Balanced Core Boundary.

•
$$\forall v \in \mathcal{C}, \ \frac{d_{\mathsf{out}}(v)}{d_{\mathsf{in}}(v)} = O(1)$$

A3. Core Clique Emulation.

• $\mathcal{C} \stackrel{\text{all-to-all}}{\longleftrightarrow} \mathcal{C}$, in O(1)

A1. High *Core* Influence.

•
$$\sum_{v \in \mathcal{C}} d_{\text{out}}(v) = \Omega(m)$$

A2. Balanced Core Boundary.

•
$$\forall v \in \mathcal{C}, \quad \frac{d_{\mathsf{out}}(v)}{d_{\mathsf{in}}(v)} = O(1)$$

- A3. Core Clique Emulation.
 - $\mathcal{C} \stackrel{\text{all-to-all}}{\longleftrightarrow} \mathcal{C}$, in O(1)
- A4. Periphery-Core Convergecast.
 - $\mathcal{P} \xrightarrow{\text{all-to-any}} \mathcal{C}$, in O(1)

Distributed Minimum Spanning Tree (CONGEST **model)**

Complete graph

D = 1: $O(\log \log n)$

Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg, 2005

• D = 2: $O(\log n)$

 $D \geq 3$: $\Omega(\sqrt[3]{n})$

Z. Lotker, B. Patt-Shamir, D. Peleg, 2006

Distributed Minimum Spanning Tree (CONGEST **model)**

Complete graph

D = 1: $O(\log \log n)$

Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg, 2005

• D = 2: $O(\log n)$

 $D \geq 3$: $\Omega(\sqrt[3]{n})$

Z. Lotker, B. Patt-Shamir, D. Peleg, 2006

 \mathcal{CP} -MST algorithm: $O(\log^2 n)$

Summary

- Axiomatic approach
- Efficient $O(\log^2 n)$ MST algorithm for Core-Periphery networks

Summary

- Axiomatic approach
- Efficient $O(\log^2 n)$ MST algorithm for Core-Periphery networks
- Future work:
 - Refine Axioms
 - More algorithms for Core-Periphery networks

Summary

- Axiomatic approach
- Efficient $O(\log^2 n)$ MST algorithm for Core-Periphery networks
- Future work:
 - Refine Axioms
 - More algorithms for Core-Periphery networks

THANK YOU!