

Konkurs 2018

Przyciąganie wody

Doświadczenie 1.

Eksperyment należy wykonać w łazience lub kuchni

Przygotuj:

- balon
- sweter lub włosy na głowie

Po wykonaniu doświadczenia spróbuj odpowiedzieć na pytania dotyczące obserwacji. Koniecznie przeczytaj komentarz!

Eksperyment:

- 1. Nadmuchaj balon i zawiąż jego koniec, by powietrze z niego nie uciekało.
- 2. Odkręć kran z zimną wodą, tak by wypływała ona z kranu bardzo cienką strużką.
- 3. Potrzyj włosy lub sweter balonem, żeby go naelektryzować.
- 4. Przybliż naelektryzowaną stronę balona do strumienia wody. Uważaj, żeby balon się nie zamoczył. Jeśli balon się zamoczy, wytrzyj go dokładnie i powtórz eksperyment od punktu nr 3.
- 5. Włóż balon pod strumień wody, następnie wyjmij go spod strumienia i bez wycierania ponownie zbliż go do strużki wody.
- 6. Po wykonaniu eksperymentu zakręć wodę w kranie.

Obserwacje:

- 1. Co się dzieje ze strumieniem wody, gdy naelektryzowany balon znajduje się blisko niego?
- 2. Co się dzieje, gdy balon zostanie oblany wodą i ponownie zbliżony do strumienia wody?

Komentarz:

Woda ma bardzo ciekawe właściwości. Niektóre substancje rozpuszcza, a innych nie. W temperaturze około 0 °C i przy odpowiednio niskim ciśnieniu występuje w postaci ciała stałego i cieczy oraz gazu (czyli pary wodnej). Największą gęstość ma w temperaturze 4 °C. Może tworzyć płatki śniegu, które zawsze mają sześć ramion, pomimo że każdy płatek śniegu ma inny kształt. Kształt płatków śniegu związany jest z budową cząsteczki wody, która składa się z jednego atomu tlenu i z dwóch atomów

wodoru. Są one zawsze ułożone względem siebie pod tym samym katem.

Balon potarty o włosy lub o sweter, elektryzuje się ujemnie. Oznacza to, że gromadzi się na nim dodatkowy ujemny ładunek elektryczny. Przedostaje się on na balon na skutek sił tarcia, które oddzielają niektóre elektrony z włosów. Naelektryzowany balon przyciąga długie włosy, a gdy zbliżymy do niego palec, słyszymy przeskakujący pomiędzy nimi ładunek elektryczny.

Gdy naelektryzowany balon znajdował się blisko cienkiej strużki wody, przyciągał ją

i w rezultacie - odginał. Efekt ten jest związany z **polarną budową wody**. Oznacza to, że w cząsteczkach wody ładunki dodatnie i ujemne są względem siebie nieco przesunięte. Gdy do wody zbliża się ujemnie naelektryzowany balon, wszystkie cząsteczki wody ustawiają się dodatnimi końcami w jego stronę, w wyniku czego są do niego przyciągane. Oblewając balon, woda zmywa z niego nadmiarowe ładunki elektryczne i balon z powrotem staje się neutralny elektrycznie. Dlatego po ponownym zbliżeniu go do strużki, nie widać już efektu przyciągania.

Konkurs 2018

Woda jest przyciągana przez naelektryzowany balon, ale nie każda woda przewodzi prąd elektryczny. Bardzo czysta woda (bez soli mineralnych) nie przewodzi prądu elektrycznego – taką wodę nazywamy zdemineralizowaną lub dejonizowaną. Można ją kupić w sklepie i użyć np. w żelazku. W kranach nie płynie czysta woda, ale taka z rozpuszczonymi związkami mineralnymi. Stosunkowo dobrze przewodzi ona prąd, dlatego w pobliżu wody nie powinno się używać urządzeń elektrycznych, żeby nie doszło do porażenia prądem.

Pomyśl:

- 1. Jakie inne materiały mogłyby być przyciągane przez naelektryzowany balon?
- 2. Czy taki sam efekt, jak w eksperymencie, byłby widoczny dla soku owocowego lub dla oleju?

Konkurs 2018

Doświadczenie 2.

Endo-egzo

Potrzebna jest pomoc osoby dorosłej

Podczas doświadczenia można się poplamić

Przygotuj:

- 2 puste, plastikowe butelki z zakrętkami, o pojemności 1,5 I
- 3 płaskie łyżeczki kwasku cytrynowego
- 5 płaskich łyżeczek sody oczyszczonej
- wode
- > lejek
- > 3 szklanki o pojemności 250 ml
- pół łyżeczki nadmanganianu potasu w kryształkach lub 15 małych tabletek (do kupienia w aptece)
- glicerynę (do kupienia w aptece)
- wąski słoiczek o pojemności min. 250 ml
- ▶ łyżeczkę
- plastikowy pojemnik
- zegarek z minutnikiem lub stoper
- miarkę kuchenną, wagę lub linijkę
- łyżkę

Po wykonaniu doświadczenia spróbuj odpowiedzieć na pytania dotyczące obserwacji. Koniecznie przeczytaj komentarz!

Zadanie:

- 1. Sprawdź czy plastikowa butelka jest sucha. Jeśli nie, pozostaw ją do wyschnięcia w ciepłym miejscu.
- 2. Do każdej z trzech szklanek wlej po 200 ml letniej wody. Wodę możesz odmierzyć na trzy sposoby. Pierwszym z nich jest użycie miarki kuchennej i odmierzenie 200 ml wody. Drugi sposób polega na odważeniu 200 g wody w szklance przy pomocy wagi kuchennej. Jeśli nie masz miarki ani wagi, użyj linijki i nalej do szklanki wody do 4/5 jej wysokości mierząc od dna. W tym sposobie ważne jest, żeby szklanka miała proste ścianki.
- 3. Jeśli nie masz nadmanganianu potasu w kryształkach, umieść 15 tabletek tej substancji między dwoma kartkami papieru i skrusz je za pomocą łyżki lub tłuczka z moździerza.

Eksperyment 1:

- 1. Do suchej butelki wsyp ostrożnie 3 płaskie łyżeczki kwasku cytrynowego i 5 płaskich łyżeczek sody oczyszczonej. Użyj w tym celu suchego lejka.
- 2. Zgnieć butelkę i zegnij ją, tak jak pokazano na rysunku obok.
- 3. Do drugiej butelki wlej wodę z jednej szklanki, zakręć ją i odstaw. Do zgniecionej i zagiętej butelki z kwaskiem i sodą wlej wodę z drugiej szklanki. Gdy zobaczysz, że ciecz zaczyna się pienić po zetknięciu z mieszaniną sody i kwasku cytrynowego, zakręć butelkę i nią potrząśnij.
- 4. Po 2 minutach dotknij butelki z kwaskiem i sodą w miejscu, gdzie znajduje się ciecz i sprawdź czy jest ciepła, czy chłodna?
- 5. Porównaj temperaturę cieczy w obu butelkach.
- 6. Po zakończonym eksperymencie skieruj butelkę z mieszaniną w stronę pustej ściany i odkręcaj ją bardzo powoli, tak by zgromadzony gaz stopniowo się z niej wydobywał.

Uwaga! W trakcie eksperymentu butelka z sodą i kwaskiem bardzo się pompuje, ale mimo to nie należy odkręcać zakrętki przed sprawdzeniem różnicy temperatury.

Obserwacje:

1. Co się stało po dolaniu wody do mieszaniny kwasku cytrynowego i sody oczyszczonej?

Konkurs 2018

- 2. Czy da się zauważyć różnicę w temperaturze cieczy przed i po zajściu reakcji?
- 3. Czy temperatura cieczy w butelce, w której zaszła reakcja była taka sama jak temperatura wody w drugiej butelce?

Pytania:

- 1. Co było przyczyną szybkiego napompowania butelki?
- 2. Dlaczego temperatura cieczy w butelce po reakcji uległa zmianie?

Eksperyment 2:

Uwaga! Musisz zachować proporcje, które są podane w opisie doświadczenia! Słoik po eksperymencie należy wyrzucić.

- 1. Do słoiczka wlej wodę z trzeciej przygotowanej szklanki.
- 2. Umieść słoiczek w plastikowym pojemniku. Pojemnik postaw na stole lub w zlewie.
- 3. Do słoika z wodą wsyp pół łyżeczki kryształków nadmanganianu potasu lub zgniecionych wcześniej tabletek. **Nie mieszaj!**

- 5. Odczekaj około 3 minut.
- 6. Podnieś słoik i ostrożnie dotknij jego dna.

Obserwacje:

- 1. Co stało się po dodaniu gliceryny do słoika?
- 2. Czy słyszałeś jakieś dźwięki dobiegające ze słoika?
- 3. Jak zmieniła się temperatura dna słoika po zajściu reakcji?

Pytania:

- 1. Dlaczego temperatura na dnie słoika uległa zmianie?
- 2. W jakim celu w doświadczeniu użyto wody?

Komentarz:

W trakcie reakcji chemicznych zachodzą różne zmiany. Często obserwuje się zmianę barwy lub powstawanie gazu. Inne efekty wiążą się z przemianami **energii** w mieszaninie reakcyjnej. Reakcjom mogą towarzyszyć efekty związane z powstawaniem lub pobieraniem ciepła, powstawaniem światła (zapalaniem się) lub dźwięku.

W wykonywanych doświadczeniach zaszły dwa rodzaje reakcji. W eksperymencie pierwszym temperatura cieczy w butelce z kwaskiem cytrynowym i sodą oczyszczoną obniżyła się. Procesy, które zaszły w butelce pobrały ciepło z otoczenia, czyli z wody i dna butelki. Zaszła tutaj **reakcja endoenergetyczna**. Butelka napompowała się, ponieważ na skutek reakcji roztworu kwasku cytrynowego i sody oczyszczonej powstało dużo dwutlenku węgla. W drugim eksperymencie dno słoika ogrzało się. Mieliśmy do czynienia z reakcją, w której powstaje bardzo dużo ciepła. Ciepło to jest przekazywane z mieszaniny reakcyjnej do otoczenia, czyli do wody i dna słoika. Reakcja ta nazywana jest **reakcją egzoenergetyczną**.

Procesy, z którymi spotykasz się w życiu codziennym także wiążą się z przepływem ciepła. Reakcje egzoenergetyczne możesz obserwować podczas spalania różnych substancji. Do procesów endoenergetycznych możemy zaliczyć np. rozkład proszku do pieczenia w trakcie pieczenia ciasta.

Konkurs 2018

Doświadczenie 3.

Makulatura

Potrzebna jest pomoc osoby dorosłej

To doświadczenie trwa kilkanaście godzin

Przygotuj:

- 4 kartki z zeszytu w rozmiarze A5
- piekarnik i blachę
- arkusz folii aluminiowej wielkości kartki A4
- goraca wode
- plastikowy pojemnik
- blender
- ręcznik papierowy

Po wykonaniu doświadczenia spróbuj odpowiedzieć na pytania dotyczące obserwacji. Koniecznie przeczytaj komentarz!

Eksperyment:

- 1. Porwij kartki papieru z zeszytu na niewielkie kawałki i wsyp je do plastikowego pojemnika.
- 2. Zalej kawałki papieru gorącą wodą. Woda powinna przykryć cały papier.
- 3. Pozostaw miskę z namoczonym papierem w odizolowanym
- miejscu na minimum 8 godzin. 4. Poproś osobę dorosłą o pomoc w przygotowaniu masy papierowej przez zblendowanie mokrych
- 5. Połóż arkusz folii aluminiowej na chłodna blachę z piekarnika.
- 6. Poproś osobę dorosłą, żeby nagrzała pusty piekarnik do 100 °C.
- 7. Wylej na folię zmiksowaną masę papierową.
- 8. Rozprowadź ręką masę na folii, tak żeby nigdzie nie było prześwitów, ale równocześnie żeby warstwa masy papierowej była jak najcieńsza.
- 9. Nadmiar wody, który zostanie odciśnięty możesz delikatnie zebrać ręcznikiem papierowym.
- 10. Włóż blachę z masą papierową do nagrzanego piekarnika.
- 11. Susz papier przez godzinę.

papierków z wodą.

- 12. Po tym czasie wyłącz piekarnik i wyjmij z niego blachę.
- 13. Kiedy blacha wystygnie zdejmij z niej ostrożnie folię z suchym papierem.
- 14. Delikatnie oderwij folię od otrzymanego kawałka papieru.

Obserwacje:

1. Czy papier otrzymany w doświadczeniu jest podobny do kartek, z których powstał?

Pytania:

- 1. Czy papier otrzymany w doświadczeniu może zostać ponownie wykorzystany?
- 2. Jak nazywa się proces, w którym materiały są przetwarzane i przygotowane do ponownego użycia?

Konkurs 2018

Komentarz:

Podczas wykonywania doświadczenia przeprowadzony został proces domowego recyklingu papieru. **Recykling** jest jedną z metod ochrony środowiska naturalnego. Polega on na ponownym przetworzeniu i wykorzystaniu odpadów do produkcji innych, podobnych materiałów. Obok znajduje się rysunek symbolu, który czasem możesz znaleźć na opakowaniach. Najczęściej taki znak umieszczany jest na materiałach wykonanych z plastiku. Opakowania z metalu, szkła i papieru prawie zawsze nadają się do recyklingu, dlatego znak ten pojawia się na nich rzadziej.

Jak widzisz na rysunku, znak recyklingu to trzy strzałki ułożone w trójkąt. Często w środku trójkąta znajduje się liczba, a pod nim skrót literowy. Liczby i skróty są kodem oznaczającym dany materiał. W przypadku produktów wykonanych z papieru kod recyklingu składa się z liczby 22 i liter PAP. Żeby ponowne przetworzenie było możliwe, należy odpowiednio segregować odpady. W tym celu stworzone zostały specjalne pojemniki i worki w różnych kolorach. Pojemniki na papier mają kolor niebieski, kolor żółty oznacza pojemnik na plastik i metal. A szkło powinno być wrzucane do pojemników w kolorze zielonym. Jeśli spotykasz pojemniki lub worki w innych kolorach, zawsze zwracaj uwagę, czy nie ma na nich rysunku lub napisu informującego, jakie odpady powinny być w nich gromadzone.

W trakcie trwania eksperymentu przeprowadzono podobny proces, jaki wykorzystywany jest w fabrykach zajmujących się przetwórstwem makulatury. **Makulatura** to zniszczone lub niepotrzebne wyroby z papieru, które po zebraniu poddaje się obróbce. Papier powstały w eksperymencie nie był idealnie biały ponieważ nie użyto żadnych środków chemicznych. W fabrykach do masy papierowej dodaje się wielu substancji chemicznych, między innymi o działaniu wybielającym, tak by otrzymać z niej papier gazetowy czy papier do pisania.

Doświadczenie 4.

Włókna

W doświadczeniu używany jest płomień. Należy zachować ostrożność

Potrzebna jest obecność osoby dorosłej podczas całego doświadczenia.

Przygotuj:

- kawałek włóczki lub nici bawełnianej o długości około 10 cm
- kawałek włóczki wełnianej o długości około 10 cm
- kawałek włóczki lub nici syntetycznej o długości około 10 cm
- świeczkę
- > zapałki lub zapalniczkę

Po wykonaniu doświadczenia spróbuj odpowiedzieć na pytania dotyczące obserwacji. Koniecznie przeczytaj komentarz!

Uwaga: Podczas doświadczenia każdy kawałek włóczki powinien być trzymany za jeden z końców, jak najdalej od drugiego końca, zbliżanego do płomienia świecy.

Eksperyment:

1. Świeczkę ustaw pionowo w stabilnej pozycji.

- Poproś osobę dorosłą o to, by zbliżyła pierwszy kawałek
 włóczki do płomienia. W chwili, gdy materiał się zapali, należy natychmiast wyciągnąć go z płomienia
 i zgaśić energicznym dmuchnięciem.
- 4. Powąchaj dym powstały po zgaszeniu palącego się kawałka włóczki.
- 5. Powtórzcie te same czynności z pozostałymi materiałami.

Uwaga! Największą ostrożność należy zachować podczas podpalania kawałka ze sztucznego włókna.

Obserwacje:

Pytania:

- 1. Z czym kojarzy Ci się zapach po spaleniu włóczki bawełnianej?
- 2. Z czym kojarzy Ci się zapach po spaleniu włóczki wełnianej?
- 3. Z czym kojarzy Ci się zapach po spaleniu włóczki z włókna syntetycznego?

Komentarz:

Odzież, którą nosimy codziennie, jest wykonana z różnego rodzaju włókien. Dział przemysłu zajmujący się przetwarzaniem surowców na włókna i tkaniny nazywany jest włókienniczym lub tekstylnym.

W doświadczeniu należało sprawdzić zapach powstały w wyniku spalenia trzech różnych materiałów. Włóczka bawełniana po podpaleniu pachnie jak palona kartka papieru lub knot świecy Dzieje się tak dlatego, że zarówno papier jak i materiały **bawełniane** są pochodzenia roślinnego. Ich najważniejszym składnikiem jest **celuloza**, która buduje ściany komórkowe wielu roślin. Celuloza jest

Konkurs 2018

wykorzystywana nie tylko w przemyśle włókienniczym czy papierniczym, ale jest także głównym składnikiem tzw. błonnika pokarmowego. Materiały bawełniane są zazwyczaj lekkie, przewiewne, dobrze chłoną wodę i nie uczulają.

Drugim użytym w doświadczeniu włóknem była **wełna**. Zapach podpalonej wełny jest taki sam jak zapach spalonego włosa. Wełna jest produktem pochodzenia zwierzęcego. Pozyskuje się ją z sierści owiec, alpak, wielbłądów, kóz lub królików. Zwierzęta, z których włosia robi się wełnę są w specjalny sposób strzyżone i nie odczuwają z tego powodu bólu. Zarówno włosy, jak i wełna zbudowane są z **białek**. Dlatego po spaleniu czujemy nieprzyjemny zapach związany z rozkładem cząsteczek budujących białka. Wełna jest najczęściej wykorzystywana do produkcji czapek, rękawiczek czy swetrów. Ubrania z niej są bardzo ciepłe i odporne na gniecenie. Niektóre osoby mogą być jednak uczulone na materiały wełniane.

Ostatnim użytym materiałem było włókno pochodzenia syntetycznego. Po podpaleniu nitki z takiego materiału można wyczuć zapach bardzo przypominający spalony plastik. Najczęściej używanym sztucznym włóknem jest tzw. **akryl**. Jest on wykorzystywany jako zamiennik wełny lub jedwabiu. Włókna akrylowe są bardzo miękkie i nie uczulają. Ubrania wykonane z akrylu nie są jednak przewiewne i nie przepuszczają powietrza, tak dobrze jak materiały naturalne.

Pomyśl:

1. Z czego są wykonane tekstylia, których używasz w domu?