

Pre-LUCA Protein Evolution Reconstructed from an Imprint Conserved within the Genetic Code

Brian K. Davis :: Research Foundation of Southern California
8861 Villa La Jolla Dr. #13595, La Jolla, CA 92037, USA :: davis@resfdnsca.org

Introduction: Recent insights into the formation of the genetic code¹, around 4×10^9 years ago, have made it possible to reconstruct protein evolution prior to the Last Universal Common Ancestor (LUCA). The time-order of pre-LUCA protein formation being inferred from the 'code age' of the ancestral residue profile.

Procedure: Antecedents of the H⁺-ATPase proteolipid helix-1 subunit (PL-h1) and ferredoxin (Fd) were identified by a neighbor-joining analysis of sequences from a database search²; the latter protein was then reconstructed.³ From the distribution of residue synthesis path-lengths, the 'code age' of each pre-LUCA protein was determined. In addition, residue hydrophobic free energy (ΔG_f), from aqueous/non-aqueous phase (dielectric constant, 2) partitioning, charge, site mutability, and function were appraised.

Results:

□ GENETIC CODE FORMED IN THREE STAGES

Successive recruitment of the codon 5'-, mid-, and 3'-base produced three distinct stages of code formation. Initially, both diacid amino acids (Asp¹, Glu¹), and their amides (Asn², Gln²), together with a termination signal (Ter), acquired 5-base specific codons within the NAN column of triplets. They form a hydrophilic cluster of short path (1 or 2 step) amino acids, produced by oxaloacetate, or oxoglutarate, reacting with one, or two, ammonium ions.

Columnwise expansion, through mid-base recruitment, added ten amino acids, formed on 2- to 8-step paths. All are hydrophobic, discounting Pro⁴, and those in the NUN set form a highly hydrophobic cluster. As this set has the longest mean synthesis path, nearly 7 steps, a hydrophobic attractor evidently drove encoding of mid-stage amino acids.

3'-Base recruitment placed six basic, aromatic, and heterocyclic amino acids (9-14 steps) in split-boxes with homologs.

□ CODE EXPANSION TOWARD A HYDROPHOBIC ATTRACTOR

Occurrence of a linear relation between amino acid synthesis path-length and residue transfer free energy, during expansion from the NH₄⁺ Fixers Code, establishes hydrophobicity as the principal determinant of amino acid addition to the code. A dynamic interpretation of the code clusters results. The hydrophilic cluster with both diacid amino acids and their amides, formed in 1 to 2 steps, together with chain termination triplets, in the NAN column, formed the first code. Mid-base codon assignments to increasingly hydrophobic amino acids followed, leading to the cluster of highly hydrophobic amino acids, synthesized on 5 to 8 step paths, at weak-bonding NUN triplets.

□ PROTEINS AS MARKERS IN PRE-LUCA EVOLUTION OF THE CELL

All 11 residues in pre-LUCA PL-h1, a trans-membrane bilayer subunit of H⁺-ATPase, were hydrophobic: **V¹G²A³G⁴L⁵A⁶V⁷G⁸L⁹A¹⁰A¹¹**.² Four highly hydrophobic residues, formed on 5- to 8-step paths, place the origin of both PL-h1 and that of a functional cell membrane at the final stage of code expansion. Consistent with this, markedly different kinds of amino acids, having a large basic, or cyclic, side-chain, were subsequently added to the code, through recruitment of the codon 3'-base, in its final stage.

With residue path-lengths up to 5-steps, pre-LUCA Fd antecedent, pro-Fd[5], has a mid-expansion stage 'code age'. Thus, it evidently predates PL-h1 and the cell membrane. Attachment of a negatively charged N-terminal 7-residue segment, with 2 Asp¹ and 3 Glu¹, to the 16 residue [4Fe-4S] cofactor-binding segment, moreover, furnishes evidence that pro-Fd[5] anchored its cofactor, by charge attraction, to a cationic mineral surface, in a pre-cell metabolic system.^{2,3}

Inclusion of 14 hydrophobic residues - with 9 highly hydrophobic - in the 16 residue cofactor-binding segment, furthermore, would prolong pro-Fd[5] attachment (Fajan-Paneth effect) to a cationic mineral surface, supporting a pre-cell metabolism.

Ancestral Archaea and Bacteria Fd both differ from LUCA Fd by mutations at 11 sites, placing them equi-distant from their common ancestor. Whereas the Archaean Fd has a single mutation at the site of a charged residue within its 7-residue foot, Bacteria Fd has 8 mutations at charged sites within its foot:

$\chi^2 = 6.77, p = 9.28 \times 10^{-3}$ (corrected for continuity). A significantly slower rate of Archaean transition from the surface-binding form of Fd implies longer retention of the transitional surface/cell intermediate state.

Residue path-distances of the transmembrane PL-h1 protein placed cell membrane formation at the end of codon mid-base recruitment, during evolution of the universal genetic code. Thus, the transition from a mineral surface system to membrane-bound cells significantly preceded LUCA.

NH ₄ ⁺ Fixers	Expansion			Overprint	
	C	G	U		
mid	ΔG_f	ΔG_f	ΔG_f		
G	Asp ¹ Glu ¹	Ala ² Ser ⁴	Gly ⁵ Arg ⁹	Val ⁶ Ile ⁷ Met ⁸	Leu ⁹ Leu ¹⁰ Leu ¹¹
A	Asn ² Lys ¹⁰	Thr ⁶	Ser ⁴	Arg ⁹	
C	His ¹² Gln ²	Pro ⁴	Cys ⁸		
U	Tyr ¹¹ Ter	Ser ⁴	Ile ⁷		
	Hydrophilic cluster			Transitional boxes	Hydrophobic cluster

Legend:
ΔG_f > 0 kcal/mol., hydrophilic
0 > ΔG_f > -2.0 kcal/mol., hydrophobic
-2.0 ≥ ΔG_f kcal/mol., strongly hydrophobic

Conclusion: Pre-LUCA Fd and H⁺-ATPase PL-h1 residue sequence identified cofactor-anchoring to mineral surface and membrane formation as hydrophobic attractors in codon mid-base recruitment during expansion stage of genetic code formation.

References: 1. Davis BK (2020) Genetic code evolution reconstructed with aligned metrics. *Biorxiv* doi:10.1101/2020.07.29.22778

2. Davis BK (2002) Molecular evolution before the origin of species. *Prog Biophys Mol Biol*. 79, 77-133.

3. Nørgaard H (2009) Characterization of ancient ferredoxins & Chlamydia Trachomatis ribonucleotide reductase. Ph.D. Thesis, Technical University of Denmark, Lyngby, <https://orbit.dtu.dk/files/5050569/Hanne%20Nørgaard.pdf>.

Nørgaard H ,Helt SS, Ooi BL, Hagen WR, Christensen HEM 2009. *J Biol Inorg Chem* 14 Supp.1, 212, P581.