LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1

Zadania przeznaczone są do rozwiązywania na ćwiczeniach oraz samodzielnie. Ostatnia lista POWTÓRKA może posłużyć jako przygotowanie do kartkówek. Zadania z egzaminów na ocenę celującą z lat poprzednich można znaleźć na stronie Wydziału Matematyki: www.wmat.pwr.edu.pl.

LISTA 0 (material do samodzielnego powtórzenia).

Działania w zbiorze liczb rzeczywistych

W zadaniach 0.2-0.5 $n \in \mathbb{N}$, natomiast a,b,x,y są liczbami rzeczywistymi, dla których występujące w zadaniach wyrażenia i wykonywane przekształcenia mają sens.

0.1. Przypomnieć kolejność wykonywania działań w wyrażeniach bez nawiasów oraz w wyrażeniach z nawiasami. Obliczyć wartość wyrażenia: $4+6:2\cdot 3-8\cdot 2$. Wstawić nawiasy tak, aby wartość otrzymanego wyrażenia była równa.

- (a) -1, (b) -11, (c) -10
- 0.2. Uzupełnić i zapamiętać wzory "skróconego mnożenia":
- (a) $(a+b)^2 = \cdots$, (b) $(a+b)^3 = \cdots$, (c) $(a+b)(a-b) = \cdots$, (d) $(a+b)(a^2 ab + b^2) = \cdots$

Czy można w powyższych wyrażeniach zastąpić "b" przez "-b"? Co otrzymamy?

Uprościć wyrażenia wymierne:

- (a) $\frac{3a^2 6ab + 3b^2}{6a^2 6b^2}$, (b) $\frac{9 + 6x + x^2}{x^2 9}$, (c) $\frac{a^3 + 8}{a^2 4}$, (d) $\frac{1 x^3}{3x^2 + 3x + 3}$,
- (e) $\frac{x^3 x^2 x + 1}{x^4 2x^2 + 1}$, (f) $\frac{2x^2 + 4xy + 2y^2}{9x^2 9y^2}$, (g) $\frac{x^3 + x^2 + 2x + 2}{x^4 + 4x^2 + 4}$.
- 0.3. Zapisać wyrażenia w prostszej postaci podając wykorzystywane prawa działań na potęgach
- (a) $\frac{2^n + 3 \cdot 2^{n+2}}{4^{2n}}$, (b) $\frac{(\sqrt{2})^{3n+2} (\sqrt{8})^n}{2^n}$, (c) $\frac{21 \cdot 27^n}{9^{n+2} + 3^{2n+1}}$, (d) $\left(\frac{1}{\sqrt{a^3}} \cdot b \cdot \sqrt{\frac{b^2}{a}} \cdot \sqrt[3]{a^2}\right)^3$.
- **0.4.** Wykonać działania. Wynik zapisać w najprostszej postaci.
- (a) $\frac{b}{ay + ax} \frac{a}{by + bx}$, (b) $\frac{1}{a b} \frac{3ab}{a^3 b^3} \frac{b a}{a^2 + ab + b^2}$,
- (c) $\frac{8x}{x-9x^3} + \frac{3x}{x+3x^2} \frac{2-6x}{(1-3x)^2}$, (d) $\frac{x\sqrt{4-x^2}-(2-x^2)\cdot\frac{x}{\sqrt{4-x^2}}}{4-x^2}$.
- 0.5. W podanych wyrażeniach usunąć niewymierność z mianownika
- (a) $\frac{1}{4+\sqrt{1+x}}$, (b) $\frac{n-2}{\sqrt{n}+\sqrt{2}}$, (c) $\frac{n+1}{\sqrt{5n+4}-\sqrt{4n+3}}$, (d) $\frac{a-b}{\sqrt[3]{a}-\sqrt[3]{b}}$, (e) $\frac{x}{\sqrt[3]{x+1}+\sqrt[3]{x-1}}$, (f) $\frac{n-1}{\sqrt[3]{n^2}+\sqrt[3]{n}+1}$.

LISTA 1.

(na 3-4 ćwiczenia)

Powtórzenie i uzupełnienie wiadomości o funkcjach

1.1. Zdanie logiczne. Forma zdaniowa. Kwantyfikatory.

Dla zdań, będących zdaniami logicznymi, podać ich wartość logiczną.

(a)
$$\sqrt{2} > \sqrt[3]{3}$$
,

(b)
$$x^2 - 7 < 0$$
,

(c)
$$\bigwedge_{x \in \mathbf{P}} x^2 - 7 < 0$$
,

(d)
$$\bigvee_{x \in \mathbf{R}} x^2 - 7 < 0$$
,

(a)
$$\sqrt{2} > \sqrt[3]{3}$$
, (b) $x^2 - 7 < 0$, (c) $\bigwedge_{x \in \mathbf{R}} x^2 - 7 < 0$, (d) $\bigvee_{x \in \mathbf{R}} x^2 - 7 < 0$, (e) $\bigvee_{x \in \mathbf{R} - \{0, -2\}} \frac{1}{x+2} = \frac{1}{x} + \frac{1}{2}$, (f) $\bigwedge_{x \in \mathbf{R}} \bigvee_{y \in \mathbf{R}} x^2 - y^2 = 0$.

(f)
$$\bigwedge_{x \in \mathbf{R}} \bigvee_{y \in \mathbf{R}} x^2 - y^2 = 0$$

1.2. Negacja. Równoważność. Prawa de Morgana dla koniunkcji i alternatywy.

Zapisać przy użyciu spójników logicznych "i", "lub" rozwiązanie równania (nierówności). Zaznaczyć na płaszczyźnie zbiór punktów, których współrzędne spełniają podany warunek.

(a)
$$(x-3)(y+2) = 0$$
,

(b)
$$(x-3)(y+2) \neq 0$$

(a)
$$(x-3)(y+2) = 0$$
, (b) $(x-3)(y+2) \neq 0$, (c) $(x-3)(y+2) > 0$, (d) $4x^2 - y^2 < 0$,

(d)
$$4x^2 - y^2 < 0$$
,

(e)
$$\frac{x-y}{x+y} = 0$$

(f)
$$\frac{y-2}{x-y+1} > 0$$

$$(g) \frac{2x - y}{x + y} \leqslant 0,$$

(e)
$$\frac{x-y}{x+y} = 0$$
, (f) $\frac{y-2}{x-y+1} > 0$, (g) $\frac{2x-y}{x+y} \le 0$, (h) $\frac{x^2+y-1}{x^2-y^2} \ge 0$.

1.3. Implikacja. Twierdzenie. Prawo kontrapozycji.

(A) Prawdziwe jest twierdzenie: Jeśli liczba naturalna jest podzielna przez 12, to jest podzielna przez 3.

Wskazać założenie oraz tezę twierdzenia.

Na podstawie powyższego twierdzenia podać:

- (a) warunek wystarczający podzielności przez 3. Dlaczego nie jest to warunek konieczny?
- (b) warunek konieczny podzielności przez 12. Dlaczego nie jest to warunek wystarczający?
- (c) Liczba naturalna nie jest podzielna przez 12. Czy twierdzenie pozwala wyciagnać wniosek o podzielności tej liczby przez 3?
- (d) Liczba naturalna jest podzielna przez 3. Czy twierdzenie pozwala wyciągnąć wniosek o podzielności tej liczby przez 12?
- (e) Liczba naturalna nie jest podzielna przez 3. Czy twierdzenie pozwala wyciągnąć wniosek o podzielności tej liczby przez 12?
- (f) Sformułować warunek konieczny i wystarczający podzielności przez 3.

(B) Niech $x, y \in \mathbf{R}$. Prawdziwa jest implikacja:

$$(x > 0 \text{ i } y > 0) \Longrightarrow (xy > 0).$$

Wskazać założenie oraz teze twierdzenia.

- (a) Wiadomo, że $\alpha > 1$ i $\beta > -1$. Czy twierdzenie pozwala wyciągnąć wniosek o znaku iloczynu $(\alpha - 1) \cdot (\beta + 1)$? A o znaku iloczynu $\alpha \cdot \beta$? Podać przykłady.
- (b) Wiadomo, że ab > 0. Czy twierdzenie pozwala wyciągnąć wniosek o znaku liczby a? Podać przykłady.
- (c) Wiadomo, że $uv \leq 0$. Jaki wniosek o liczbach u i v pozwala wyciagnać twierdzenie?

1.4. Prawa de Morgana dla kwantyfikatorów.

Zapisać w równoważnej postaci zdania:

(a)
$$\neg \left(\bigwedge_{x \in \mathbf{R}} 2^x = 2^{-x} \right)$$
, (b) $\neg \left(\bigvee_{x < 0} x^2 = x^4 \right)$, (c) $\neg \left(\bigvee_{M \in \mathbf{R}} \bigwedge_{n \in \mathbf{N}} \frac{n^2 + 1}{n} < M \right)$, (d) $\neg \left(\bigwedge_{\epsilon > 0} \bigvee_{n_0 \in \mathbf{N}} \bigwedge_{n \in \mathbf{N}} (n > n_0) \Longrightarrow \left(\frac{n}{n + 5} < \epsilon \right) \right)$.

1.5. Wyznaczyć dziedziny naturalne funkcji. Zbadać, która z nich jest parzysta, która nieparzysta, a która nie ma żadnej z tych własności.

(a)
$$f(x) = \frac{|x|+3}{x^2-9}$$
, (b) $f(x) = \frac{x}{6x^2-x-1}$, (c) $f(x) = \sqrt{3x-x^3}$, (d) $f(x) = \sqrt[3]{8-\frac{1}{x^3}}$.

- 1.6. Korzystając z równania pęku prostych $y-y_0=a\left(x-x_0\right)$ oraz interpretacji współczynnika $a = \frac{\Delta y}{\Delta x}$ napisać równanie prostej:
- a) przechodzącej przez punkty (2,3), (-1,-3), b) przechodzącej przez punkt $\left(\sqrt{2},-\sqrt{3}\right)$ i równoległej do prostej y=-2x,
- c) przechodzącej przez punkt (-2,1) i prostopadłej do prostej x-3y+1=0
- 1.7. Przekształcając wykres odpowiedniej funkcji liniowej narysowć wykres podanej funkcji. Odczytać z wykresu zbiór wartości.

(a)
$$f(x) = |4 - 2x|$$
, (b) $f(x) = 4 - 2|x|$

(a)
$$f(x) = |4 - 2x|$$
, (b) $f(x) = 4 - 2|x|$,
(c) $f(x) = \sqrt{x^2 + 4x + 4}$, (d) $f(x) = \begin{cases} x + 2 & \text{dla} & |x| \le 1 \\ 1 & \text{dla} & |x| > 1 \end{cases}$.

1.8. Przekształcając wykres funkcji $y=ax^2$ naszkicować wykres funkcji y=f(x). Odczytać z wykresu zbiór wartości.

(a)
$$f(x) = x^2 - 4x + 5$$
, (b) $f(x) = x^2 - 2|x| + 1$,

(c)
$$f(x) = -4 - 4x - 2x^2$$
, (d) $f(x) = \operatorname{sgn}(x^2 - 3x)$.

1.9. Przekształcając wykres funkcji $y=\frac{a}{x}$ lub $y=\frac{a}{x^2}$ naszkicować wykres funkcji y=f(x). Odczytać z wykresu zbiór wartości.

(a)
$$f(x) = \frac{x}{x-1}$$
, (b) $f(x) = \frac{x-1}{x+1}$, (c) $f(x) = \frac{1}{(x-2)^2}$, (d) $f(x) = \frac{x^2+4x+3}{x^2+4x+4}$.

1.10. Napisać wzory określające funkcje złożone $f \circ g, g \circ f, f \circ f, g \circ g$ dla podanych funkcji f i g. Naszkicować wykresy funkcji y = f(g(x)) oraz y = g(f(x)).

(a)
$$f(x) = x^2$$
, $g(x) = x - 2$, (b) $f(x) = \sqrt{x}$, $g(x) = 4x^2$.

(c)
$$f(x) = |x|$$
, $g(x) = \frac{1}{x+1}$, (d) $f(x) = x^2 - 2$, $g(x) = \operatorname{sgn} x$.

1.11.	Zaproponować	przedstawienie	funkcji	złożonych	w	postaci $g \circ h$. Czy	jest	tylko	jedna	para
	ji g, h takich, że		v	v			·	·	v	Ü	•

(a)
$$f(x) = \sqrt{x^2 + 16}$$
, (b) $f(x) = \frac{1}{x^4 + 3}$, (c) $f(x) = 4x^2 + 12x$.

1.12. Obliczyć (podając wykorzystywaną własność logarytmu):

$$\log_2\left(2\sqrt{2}+6\sqrt[4]{4}\right),\quad \log\left(2^6+6^2\right),\quad \log_32-\log_318,\quad 3\log5+0.5\log64,\quad \log_3\lg\frac{\pi}{6},\\ \ln e^3,\quad 2^{\log_23},\quad \left(\frac{1}{3}\right)^{\log_35},\quad 3^{\log\sqrt{3}\frac{\sqrt{6}}{2}},\quad e^{2\ln10},\quad e^{1-\ln10},\quad \log_23\cdot\log_38.$$

 ${\bf 1.13.}$ Zaznaczyć na płaszczyźnie zbiór punktów, których współrzędne (x,y) spełniają podany warunek

(a)
$$\log_2 y = \log_2 x + \log_2 3$$
, (b) $\log_{0.5} y = 2\log_{0.5}(x+1)$, (c) $\log |y| = \log |x| + \log 0.5$.

1.14. Naszkicować wykresy funkcji

(a)
$$f(x) = 2^{|x|}$$
, (b) $f(x) = \left| \left(\frac{1}{2} \right)^x - 1 \right|$, (c) $f(x) = 1 + \frac{1}{e^x}$, (d) $f(x) = -e^{-|x|}$,

(e)
$$f(x) = \log_2(x-1)$$
, (f) $f(x) = \left|\log_{0.5} x\right|$, (g) $f(x) = \ln|x|$, (h) $f(x) = \ln x^2$.

1.15. Rozwiązać równania i nierówności

(a)
$$\left(\frac{1}{2}\right)^{(x-2)^2 - 5x} = \left(\frac{1}{4}\right)^5$$
, (b) $4^x + 24 = 5 \cdot 2^{x+1}$, (c) $|2^x - 5| < 2$,

(d)
$$|3\log x - 1| = 2$$
, (e) $\log_2(x+1) - \log_2 x < 1$, (f) $\ln^2 x + \ln x \ge 2$.

1.16. Wyprowadzić wzór określający funkcję odwrotną do funkcji f. Naszkicować w jednym układzie współrzędnych wykresy funkcji y = f(x) i $y = f^{-1}(x)$.

(a)
$$f(x) = \log_2(x+1)$$
, (b) $f(x) = 1 - 2^x$, (c) $f(x) = 2 - \sqrt{x}$,

(d)
$$f(x) = x^2 - 2x + 2$$
 dla $x \ge 1$, (e) $f(x) = x^2 - 2x + 2$ dla $x \le 1$.

1.17. Wykorzystując okresowość funkcji i koło trygonometryczne obliczyć wartości wyrażeń

(a)
$$\cos \frac{\pi}{3} + \sin \frac{4}{3}\pi$$
, (b) $\sin \frac{13}{6}\pi + \sin \frac{11}{3}\pi$, (c) $\cos \frac{14}{3}\pi + \cos \frac{19}{6}\pi$,

(d)
$$\sin\left(-\frac{9}{4}\pi\right) + \cos\left(-\frac{13}{4}\pi\right)$$
, (e) $\sin\frac{17}{2}\pi + \cos\frac{17}{2}\pi$, (f) $\tan\frac{20}{3}\pi + \cot\frac{19}{3}\pi$.

1.18. Udowodnić tożsamości. Określić ich dziedziny.

(a)
$$\cos^2 x = \frac{1}{1 + \lg^2 x}$$
, (b) $\sin^2 x = \frac{\lg^2 x}{1 + \lg^2 x}$, (c) $\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}}$, (d) $\sin x = \frac{2\lg \frac{x}{2}}{1 + \lg^2 \frac{x}{2}}$,

(e)
$$1 + \operatorname{tg} x + \operatorname{tg}^2 x + \operatorname{tg}^3 x = \frac{\sin x + \cos x}{\cos^3 x}$$
, (f) $\sin^4 x + \cos^4 x = 1 - 0.5 \sin^2 2x$.

1.19. Krzywą daną równaniem $y = a\sin(bx + c) + d$ dla ustalonych parametrów $a \neq 0, b \neq 0, c, d$ nazywamy sinusoidą. Uzasadnić, że każda z poniższych krzywych jest sinusoidą i naszkicować ją.

(a)
$$y = \sin x \cos x$$
,

(b)
$$y = (\sin x + \cos x)^2$$
, (c) $y = \cos^2 x$.

(c)
$$y = \cos^2 x$$
.

 ${\bf 1.20.}$ Naszkicować wykres funkcji y=f(x). Odczytać z wykresu okres podstawowy oraz zbiór wartości funkcji.

(a)
$$f(x) = \cos\left(x + \frac{\pi}{3}\right)$$
, (b) $f(x) = \sin x + |\sin x|$, (c) $f(x) = \tan \frac{x}{2}$, (d) $f(x) = |\cot(\pi x)|$.

1.21. Rozwiązać równania i nierówności.

(a)
$$\cos 2x = 0$$

(a)
$$\cos 2x = 0$$
, (b) $\sin \left(3x + \frac{\pi}{3}\right) = -1$, (c) $\tan \frac{x}{2} = 1$,

(c)
$$tg\frac{x}{2} = 1$$
,

(d)
$$\sin\left(x + \frac{\pi}{4}\right) \le 0$$
, (e) $\cos\frac{x}{3} > 0$,

(e)
$$\cos \frac{x}{3} > 0$$

(f)
$$\operatorname{ctg}^2 x < 1$$
.

1.22. Obliczyć wartości wyrażeń

(a)
$$w = \arcsin \frac{x}{2} - \arccos \frac{x}{2} + \arctan \frac{1}{x}$$
, jeśli $\operatorname{arcctg} x = \frac{\pi}{6}$;

(b)
$$w = \arcsin(-x) + \arccos 2x + \arctan 2x$$
, jeśli $\arccos x = \frac{2\pi}{3}$;

(c)
$$\operatorname{tg}\left(\arccos\frac{1}{3}\right)$$
; (d) $\sin\left(\arcsin\frac{3}{5} + \arcsin\frac{8}{17}\right)$.

1.23. Rozwiązać równania wykorzystując funkcje cyklometryczne

(a)
$$tg2x = 5$$
, (b) $\sin x = \frac{1}{3}$, (c) $\sin x = -\frac{1}{4}$, (d) $\cos \left(x + \frac{\pi}{5}\right) = \frac{\sqrt{3}}{3}$, (e) $\cos x = -\frac{3}{4}$.

Podobne zadania (także rozwiązane) można znaleźć w skrypcie: M.Gewert, Z.Skoczylas, Wstęp do analizy i algebry. Teoria, przykłady, zadania, Oficyna Wydawnicza GiŚ, Wrocław 2014.

LISTA 2

(na 1 ćwiczenia)

Ciagi liczbowe

2.1. Uzasadnić, że podane ciągi są monotoniczne i ograniczone.

(a)
$$a_n = \frac{n}{2n+1}$$
,

(b)
$$b_n = \frac{2^n}{3^n + 2}$$

(c)
$$c_n = \frac{(n!)^2}{(2n)!}$$
,

(a)
$$a_n = \frac{n}{2n+1}$$
, (b) $b_n = \frac{2^n}{3^n+2}$, (c) $c_n = \frac{(n!)^2}{(2n)!}$, (d) $d_n = \sin \frac{\pi}{2n+1}$,

(e)
$$e_n = \frac{(n+2)^2}{2^{n+2}}$$

(f)
$$f_n = \sqrt{n+8} - \sqrt{n+3}$$

(e)
$$e_n = \frac{(n+2)^2}{2^{n+2}}$$
, (f) $f_n = \sqrt{n+8} - \sqrt{n+3}$, (g) $g_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$.

2.2. Korzystając z odpowiedniej definicji granicy ciagu liczbowego, uzasadnić, że

(a)
$$\lim_{n \to \infty} \frac{n}{n+2} = 1$$

(a)
$$\lim_{n \to \infty} \frac{n}{n+2} = 1$$
, (b) $\lim_{n \to \infty} \frac{n^2 + 1}{2n} = +\infty$, (c) $\lim_{n \to \infty} \frac{n+4}{n+2} \neq 2$.

(c)
$$\lim_{n \to \infty} \frac{n+4}{n+2} \neq 2$$

2.3. Uzasadnić, podając odpowiednie przykłady, że poniższe wyrażenia są nieoznaczone

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 1^{∞} , ∞^{0} , 0^{0} .

$$0\cdot\infty$$

$$\infty - \infty$$

$$\infty$$
, ∞

2.4. Obliczyć granice ciągów liczbowych.

(a)
$$a_n = \frac{2n-3}{3n+4}$$

(b)
$$b_n = \frac{n^2 + 3n - 8}{2n + 5}$$

(a)
$$a_n = \frac{2n-3}{3n+4}$$
, (b) $b_n = \frac{n^2+3n-8}{2n+5}$, (c) $c_n = \frac{n^2+n-3}{n^3+2n+1}$

(d)
$$d_n = \frac{(2n^3 + 3)^8}{(2n^4 + 7)^6}$$

(d)
$$d_n = \frac{(2n^3 + 3)^8}{(2n^4 + 7)^6}$$
, (e) $e_n = \frac{n + \sqrt{n^3 + 7}}{\sqrt[3]{n^2 + 5} + 4n}$, (f) $f_n = \frac{8^{n+2} + 2^n}{2^{3n+1} + 3^n + 4}$, (g) $g_n = \frac{1 + 2 + 3 + \dots + n}{n^2}$, (h) $h_n = \sqrt{n+8} - \sqrt{n+3}$,

(f)
$$f_n = \frac{8^{n+2} + 2^n}{2^{3n+1} + 3^n + 4}$$

(g)
$$g_n = \frac{\hat{1} + 2 + \hat{3} + \dots + n}{n^2}$$

(h)
$$h_n = \sqrt{n+8} - \sqrt{n+3}$$
,

(i)
$$i_n = \sqrt{n^2 + 4n + 1} - \sqrt{n^2 + 3}$$
,

(j)
$$j_n = \sqrt{2n+1} - \sqrt{n+23}$$
,

(k)
$$k_n = \sqrt{9^n + 4 \cdot 3^n + 1} - \sqrt{9^n + 3}$$
, (l) $l_n = n^{30} - 2 \cdot n^{21} - 3 \cdot n^9 + 3$,

(l)
$$l_n = n^{30} - 2 \cdot n^{21} - 3 \cdot n^9 + 3$$

(m)
$$m_n = 7^n - 2 \cdot 5^{2n} + 3 \cdot 9^{n+5} + 4$$
, (n) $m_n = \left(\frac{n+4}{n+1}\right)^{n+3}$, (o) $o_n = \left(\frac{n^2+3}{n^2+1}\right)^{n^2}$, (p) $p_n = \left(\frac{2n+1}{2n+5}\right)^{1-3n}$, (r) $r_n = \left(\frac{4n+1}{2n-1}\right)^{n+6}$, (s) $s_n = \left(\frac{3^n+2^n}{5^n+3^n}\right)^n$.

(n)
$$m_n = \left(\frac{n+4}{n+1}\right)^{n+3}$$
,

(o)
$$o_n = \left(\frac{n^2 + 3}{n^2 + 1}\right)^{n^2}$$

(p)
$$p_n = \left(\frac{2n+1}{2n+5}\right)^{1-3n}$$
,

(r)
$$r_n = \left(\frac{4n+1}{2n-1}\right)^{n+6}$$
,

(s)
$$s_n = \left(\frac{3^n + 2^n}{5^n + 3^n}\right)^n$$

2.5. Dla danego ciągu (a_n) dobrać (odgadnąć i uzasadnić) ciąg (b_n) postaci $b_n = n^p$ lub $b_n = \alpha^n$ tak, aby ciągi (a_n) i (b_n) były tego samego rzędu. (Mówimy, że ciągi (a_n) , (b_n) są tego samego rzędu, jeśli $\lim_{n\to\infty} \frac{a_n'}{b_n} = k$, dla pewnej liczby dodatniej k.)

(a)
$$a_n = \frac{1}{n^2 + 4n + 3}$$
, (b) $a_n = \frac{n^2}{n^3 + 7}$, (c) $a_n = \sqrt{n + 9} - \sqrt{n + 1}$, (d) $a_n = \frac{1}{3 \cdot 2^n + 2 \cdot 3^n}$, (e) $a_n = \frac{3^n}{4^n + 5^n}$, (f) $a_n = \frac{4^{n+2}}{5 \cdot 2^{n+1} + 2 \cdot 3^n}$.

(b)
$$a_n = \frac{n^2}{n^3 + 7}$$
,

(c)
$$a_n = \sqrt{n+9} - \sqrt{n+1}$$

(d)
$$a_n = \frac{1}{3 \cdot 2^n + 2 \cdot 3^n}$$

(e)
$$a_n = \frac{3^n}{4^n + 5^n}$$
,

(f)
$$a_n = \frac{4^{n+2}}{5 \cdot 2^{n+1} + 2 \cdot 3^n}$$

Podobne zadania (także rozwiązane) można znaleźć w skrypcie:

M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2018, rozdział 2.

LISTA 3

(na 2 ćwiczenia)

Granice funkcji. Asymptoty. Funkcje ciągłe

3.1. Narysować wykresy funkcji spełniających wszystkie podane warunki

(a)
$$f(0) = 1$$
, $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to 0} f(x) = -1$, $\lim_{x \to 2} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = \pi$;

(b)
$$g(0) = 4$$
, $\lim_{x \to -\infty} g(x) = 0$, $\lim_{x \to -\infty} g(x) = +\infty$, $\lim_{x \to -\infty} g(x) = 0$, $\lim_{x \to +\infty} g(x) = 0$, nie istnieje;

$$\begin{array}{lll} \text{(b)} \ g(0)=4, & \lim_{x\to -\infty}g(x)=0, & \lim_{x\to -3^-}g(x)=+\infty, & \lim_{x\to -3^+}g(x)=0, & \lim_{x\to +\infty}g(x) & \text{nie istnieje;} \\ \text{(c)} \ \lim_{x\to -\infty}h(x)=-\infty, & \lim_{x\to -1}h(x) & \text{nie istnieje,} & \lim_{x\to 0}h(x)\neq h(0), & \lim_{x\to 1}h(x)=+\infty, & h(3)<0. \end{array}$$

3.2. Obliczyć granice

(a)
$$\lim_{x \to +\infty} \frac{x^2 - 3x + 2}{x^2 - 1}$$
, (b) $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$, (c) $\lim_{x \to -\infty} \frac{8 - x^3}{x^2 - 4}$, (d) $\lim_{x \to 2} \frac{8 - x^3}{x^2 - 4}$

(e)
$$\lim_{x \to 1} \frac{x+3}{|x^2-1|}$$
, (f) $\lim_{x \to 1^-} \frac{e^x}{x-1}$, (g) $\lim_{x \to +\infty} \frac{\sqrt[3]{x}+x^2}{x+\sqrt{x}}$, (h) $\lim_{x \to 0^+} \frac{\sqrt[3]{x}+x^2}{x+\sqrt{x}}$,

(i)
$$\lim_{x \to 0} \frac{\sin \pi x}{x}$$
, (j) $\lim_{x \to 0} \frac{x^2}{\sin^2 3x}$, (k) $\lim_{x \to +\infty} \frac{\operatorname{tg} \frac{1}{x}}{\operatorname{tg} \frac{2}{x}}$, (l) $\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\sin 6x}$.

3.3. Uzasadnić, że podane granice funkcji nie istnieją

(a)
$$\lim_{x \to -0.5} \frac{2x - 1}{4x^2 - 1}$$
, (b) $\lim_{x \to 0} 2^{1/x}$, (c) $\lim_{x \to 0} \frac{1}{2^x - 3^x}$, (d) $\lim_{x \to \pi} \operatorname{sgn}(\sin x)$.

3.4. Korzystając z odpowiednich twierdzeń (o trzech funkcjach, o iloczynie funkcji ograniczonej i funkcji zbieżnej do zera, o dwóch funkcjach) wyznaczyć granice

(a)
$$\lim_{x \to 0^+} \sqrt{x} \cos \frac{1}{x^2}$$
, (b) $\lim_{x \to -\infty} \frac{\sin x^2}{x}$, (c) $\lim_{x \to +\infty} \frac{2x + \sin x^2}{3x + \cos \sqrt{x}}$, (d) $\lim_{x \to 0^+} \frac{2 + \sin \frac{1}{x}}{x^3}$.

3.5. Narysować wykresy funkcji spełniających wszystkie podane warunki

(a) prosta x = 1 jest asymptotą pionową obustronną funkcji f, y = 2 jest asymptotą poziomą $\hat{\mathbf{w}} - \infty$, y = -x + 2 jest asymptotą ukośną $\mathbf{w} + \infty$;

(b) prosta x=-2 jest asymptotą pionową lewostronną funkcji g i nie jest asymptotą pionową prawostronną, funkcja g nie ma asymptoty w $-\infty$, $\lim_{x\to+\infty}g(x)=3$;

(c) prosta x=0 jest asymptotą pionową obustronną funkcji h, $\lim_{x\to 0} h(x)$ nie istnieje, $\lim_{x \to -\infty} [h(x) + 2x] = 0, \lim_{x \to +\infty} [h(x) + x - 1] = 0.$

3.6. Wyznaczyć wszystkie asymptoty funkcji f. Naszkicować hipotetyczny wykres.

(a)
$$f(x) = \frac{8x^3 + 1}{4x^2 - 1}$$
, (b) $f(x) = \frac{x^2 - 6}{x - 1}$, (c) $f(x) = \frac{3}{2^x - 8}$

(b)
$$f(x) = \frac{x^2 - 6}{x - 1}$$

(c)
$$f(x) = \frac{3}{2^x - 8}$$
,

(d)
$$f(x) = \frac{e^x}{e^x - 2}$$
, (e) $f(x) = \sqrt{x^2 - 2x}$, (f) $f(x) = \frac{\cos x}{2\pi - x}$.

(e)
$$f(x) = \sqrt{x^2 - 2x}$$

(f)
$$f(x) = \frac{\cos x}{2\pi - x}$$

3.7. Czy można dobrać parametry $a, b \in \mathbf{R}$ tak, aby podana funkcja była ciągła na \mathbf{R} . Wykonać rysunek.

(a)
$$f(x) = \begin{cases} |x+2| & \text{dla } x < 0 \\ a-x & \text{dla } x \geqslant 0 \end{cases}$$

(a)
$$f(x) = \begin{cases} |x+2| & \text{dla } x < 0 \\ a-x & \text{dla } x \ge 0 \end{cases}$$
, (b) $f(x) = \begin{cases} \operatorname{arctg} x & \text{dla } |x| \le 1 \\ ax^2 + bx & \text{dla } |x| > 1 \end{cases}$,

c)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{dla } x \neq 2\\ a & \text{dla } x = 2 \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{dla } x \neq 2 \\ a & \text{dla } x = 2 \end{cases}$$
, d) $f(x) = \begin{cases} \frac{x + 1}{x^2 - 1} & \text{dla } |x| \neq 1 \\ a & \text{dla } x = -1 \\ b & \text{dla } x = 1 \end{cases}$.

3.8. Uzasadnić, korzystając z twierdzenia Darboux, że równanie ma rozwiązanie we wskazanym przedziale. W przykładach (a), (b), (c) uzasadnić jednoznaczność rozwiązania. Podać graficzną interpretację równania.

$$(a) \sin x = 2 - 2x,$$

$$\left(0,\frac{\pi}{2}\right);$$

(a)
$$\sin x = 2 - 2x$$
, $\left(0, \frac{\pi}{2}\right)$; (b) $e^x = \frac{1}{x^2}$, $\left(\frac{1}{2}, 1\right)$;

(c)
$$x^2 = -\ln x$$

$$(0,+\infty);$$

(c)
$$x^2 = -\ln x$$
, $(0, +\infty)$; (d) $10\sin(\pi x) = x + 1$, $\left(-\frac{1}{2}, 1\right)$.

$$\left(-\frac{1}{2},1\right)$$
.

3.9. Uzasadnić, że równanie ma dokładnie jedno rozwiązanie i wyznaczyć je (nie korzystając z kalkulatora) z błędem nie większym niż 0,25.

(a)
$$x^3 + 6x = 2$$
,

(a)
$$x^3 + 6x = 2$$
, (b) $x^3 + x^2 + 2x + 1 = 0$, (c) $x^3 = 4 + 2^{-x}$.

(c)
$$x^3 = 4 + 2^{-x}$$

Podobne zadania (także rozwiązane) można znaleźć w skrypcie: M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2018, rozdział 3.

LISTA 4

(na 3-4 ćwiczenia)

Rachunek różniczkowy funkcji jednej zmiennej

4.1. Korzystając z definicji zbadać, czy istnieją pochodne jednostronne oraz pochodna podanej funkcji we wskazanym punkcie. Naszkicować wykres funkcji.

(a)
$$y(x) = |x^2 - 4|$$
, $x_0 = 2$; (b) $f(x) = |\sin^3 x|$, $x_0 = 0$;

(b)
$$f(x) = \left| \sin^3 x \right|, \quad x_0 = 0;$$

(c)
$$g(x) = x^2 \operatorname{sgn} x$$
, $x_0 = 0$;

(c)
$$g(x) = x^2 \operatorname{sgn} x$$
, $x_0 = 0$; (d) $h(x) =\begin{cases} 1 - x^2 & \text{dla } x \leq 1 \\ (x - 2)^2 & \text{dla } x > 1 \end{cases}$, $x_0 = 1$.

4.2. Korzystając z wzoru na pochodną funkcji $f(x) = x^{\alpha}$ i reguł różniczkowania, obliczyć pochodna funkcji:

(a)
$$y = \sqrt{2}x^4 + 4\sqrt{x} - x\sqrt{x} + 3x^2\sqrt[3]{x}$$

(a)
$$y = \sqrt{2}x^4 + 4\sqrt{x} - x\sqrt{x} + 3x^2\sqrt[3]{x}$$
, (b) $y = 5 \cdot \frac{1}{x^4} + \frac{1}{\sqrt[3]{x}} - \frac{2}{x \cdot \sqrt{x}} + \frac{1}{3x \cdot \sqrt[3]{x}}$

(c)
$$y = \frac{x}{\sqrt[4]{x^3}} - \frac{5x^2}{\sqrt{x}} + \frac{\sqrt[3]{x^2}}{7x^2} + \frac{x^{-2}}{x}$$

(c)
$$y = \frac{x}{\sqrt[4]{x^3}} - \frac{5x^2}{\sqrt{x}} + \frac{\sqrt[3]{x^2}}{7x^2} + \frac{x^{-2}}{x};$$
 (d) $y = \frac{\sqrt{3}}{\sqrt{9x}} - \frac{8}{(2x)^2} + \sqrt[3]{\frac{x}{16}} + \sqrt[4]{2^3}.$

4.3. Korzystając z wzoru na pochodną iloczynu lub ilorazu, obliczyć pochodną funkcji:

(a)
$$y = e^x \cdot \cos x$$

(b)
$$y = x^2 \cdot \ln x$$
,

(c)
$$y = x \cdot 2^x \cdot \sin x$$
,

(a)
$$y = e^x \cdot \cos x$$
, (b) $y = x^2 \cdot \ln x$, (c) $y = x \cdot 2^x \cdot \sin x$, (d) $y = x^2 \cdot \operatorname{tg} x \cdot \operatorname{arctg} x$,

(e)
$$y = \frac{x^2}{x^2 + x + 2}$$
,

(f)
$$y = \frac{2^x - 3^x}{x}$$
,

$$(g) y = \frac{x \ln x}{2x - 3}$$

(e)
$$y = \frac{x^2}{x^2 + x + 2}$$
, (f) $y = \frac{2^x - 3^x}{x}$, (g) $y = \frac{x \ln x}{2x - 3}$, (h) $y = \frac{x \sin x + \cos x}{\sin x - x \cos x}$.

4.4. Obliczyć pochodną funkcji:

(a)
$$y = \ln(2x)$$
,

(b)
$$y = \frac{1}{(2x-3)^2}$$

(a)
$$y = \ln(2x)$$
, (b) $y = \frac{1}{(2x-3)^2}$, (c) $y = 3x \sin\left(5x - \frac{\pi}{4}\right)$, (d) $y = \arctan\frac{1}{x}$,

(d)
$$y = \operatorname{arctg} \frac{1}{x}$$
,

(e)
$$y = \sqrt{\frac{x+1}{x+2}}$$
,

(f)
$$y = \sin^2 x$$
,

(e)
$$y = \sqrt{\frac{x+1}{x+2}}$$
, (f) $y = \sin^2 x$, (g) $y = \cos^3 \left(2x - \frac{\pi}{6}\right)$, (h) $y = x^3 \cos^2 \pi x$.

$$(h) y = x^3 \cos^2 \pi x$$

4.5. Napisać równanie stycznej do wykresu funkcji y = f(x) w punkcie $(x_0, f(x_0))$. Sporządzić rysunek.

(a)
$$f(x) = \sin 2x$$
, $x_0 = 0$; (b) $f(x) = \operatorname{ctg} x$, $x_0 = 1.5\pi$; (c) $f(x) = \ln(x - 3)$, $f(x_0) = 0$.

b)
$$f(x) = \text{ctg}x$$
, $x_0 = 1.57$

(c)
$$f(x) = \ln(x - 3)$$
, $f(x - 3)$

4.6. Napisać równanie tej stycznej do wykresu funkcji y = f(x), która ma podaną własność.

(a) $f(x) = x \cdot \ln x$, styczna jest równoległa do prostej 5x + 5y - 1 = 0;

(b) $f(x) = \sqrt{x^2 + 1}$, styczna jest prostopadła do prostej 2x - y = 0;

(c) $f(x) = \frac{x}{x^2 + 1}$, styczna jest równoległa do osi OX;

(d) $f(x) = 3 - x^2$, styczna tworzy kąt $\frac{\pi}{3}$ z dodatnim kierunkiem osi OX.

- 4.7. Korzystajac z różniczki funkcji obliczyć przybliżoną wartość wyrażenia:
- (a) $\frac{1}{\sqrt{4.02}}$, (b) $\frac{\ln 0.99}{1.99}$, (c) $1.03 \cdot \sqrt[3]{8.03}$, (d) $tg^2 44^\circ$.
- **4.8.** W wyniku pomiaru długości krawedzi czworościanu foremnego otrzymano $1.00 \pm 0.01~m.$ Z jakim błędem bezwzględnym i względnym zostaną obliczone: wysokość, pole powierzchni i objętość tego czworościanu?
- **4.9.** Korzystajac z reguly de L'Hospitala obliczyć granice:
- (a) $\lim_{x \to 1} \frac{\ln\left(\sin\left(\frac{\pi}{2}x\right)\right)}{\ln x}$, (b) $\lim_{x \to -\infty} \frac{\ln\left(1+2^x\right)}{3^x}$, (c) $\lim_{x \to 0^-} \left(\frac{1}{x} \operatorname{ctg}x\right)$

- (d) $\lim_{x \to +\infty} \left(\sqrt{x} \ln x \right)$, (e) $\lim_{x \to 0^+} \sqrt{x} \ln x$, (f) $\lim_{x \to \pi^-} (\pi x) \cdot \operatorname{tg} \frac{x}{2}$.
- **4.10.** Wyznaczyć wszystkie asymptoty funkcji:

(a)
$$f(x) = \frac{x - \arctan x}{x^2}$$
, (b) $f(x) = \frac{\ln(x+1)}{\sqrt{x}}$, (c) $f(x) = \frac{x}{\arctan x}$, (d) $f(x) = \ln(x^2 - 4)$.

4.11. Wyznaczyć przedziały monotoniczności i ekstrema lokalne funkcji. Naszkicować ich wykresy.

(a)
$$y(x) = \frac{x^4}{4} - \frac{x^3}{3} - x^2$$
, (b) $y(x) = \frac{x^2}{x+1}$, (c) $f(x) = x^3 \cdot e^{6x}$, (d) $g(x) = \sqrt{x} \cdot \ln x$.

4.12. Znaleźć najmniejsza i najwieksza wartość funkcji na wskazanym przedziale:

(a)
$$f(x) = x - 2\sqrt{x}$$
, [0, 5], (b) $f(x) = \arctan x - \frac{x}{2}$, [0, 2], (c) $f(x) = 2\sin x + \sin 2x$, $\left[0, \frac{3}{2}\pi\right]$.

4.13.

- (a) Wyznaczyć dwie liczby dodatnie, których suma jest równa 20, a iloczyn kwadratu pierwszej i trzeciej potegi drugiej ma wartość największą.
- (b) Zbadać, który z prostopadłościanów o podstawie kwadratowej i danym polu powierzchni całkowitej ma największą objętość.
- (c) Firma spedycyjna przyjmuje zlecenie przewozu prostopadłościennych paczek, dla których suma wysokości i obwodu podstawy jest nie większa niż 108 cm. Znaleźć wymiary paczki o kwadratowej podstawie i największej objętości, która może być przesłana za pośrednictwem tej firmy.
- (d) Przez punkt P=(1,3) poprowadzić prostą tak, aby wraz z dodatnimi półosiami układu współrzędnych tworzyła trójkąt o najmniejszym polu.
- 4.14. Wyznaczyć zbiór wartości funkcji:

(a)
$$f(x) = \frac{\sqrt{1+x^2}}{x}$$
, (b) $g(x) = (x+1) \cdot e^{-2x}$, (c) $h(x) = x \cdot \ln^2 x$, (d) $h(x) = \sin x - \sin^2 x$.

Podobne zadania (z rozwiązaniami lub odpowiedziami) można znaleźć w skrypcie: M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2018, rozdział 4, 5.

LISTA 5.

(na 4 ćwiczenia)

Całka nieoznaczona i oznaczona

5.1. Korzystając z definicji i wzorów na pochodne podstawowych funkcji odgadnąć funkcje pierwotne F funkcji f:

(a)
$$f(x) = 2x - 1$$
, (b) $f(x) = \frac{3}{1 + x^2}$, (c) $f(x) = \sin\left(x + \frac{\pi}{3}\right)$, (d) $f(x) = e^{-4x}$.

5.2. Obliczyć całki:

(a)
$$\int \frac{x^4 - x^3 + x - 1}{x - 1} dx$$
, (b) $\int \left(\frac{x - 2}{x}\right)^2 dx$, (c) $\int \left(\sqrt{x} + 1\right) \left(x - \sqrt{x} + 1\right) dx$,

(d)
$$\int \frac{\sqrt[3]{x^2} - \sqrt[4]{x}}{\sqrt{x}} dx$$
, (e) $\int \frac{3 \cdot 2^x - 2 \cdot 3^x}{2^x} dx$, (f) $\int \frac{\cos 2x}{\cos^2 x \cdot \sin^2 x} dx$,

(g)
$$\int \operatorname{ctg}^2 x \, dx$$
, (h) $\int \sin x \cdot \cos x \, dx$, (i) $\int \left(4 \sin \left(x + \frac{\pi}{4} \right) - 6 \cos 3x + 1 \right) \, dx$.

5.3. Obliczyć całki stosując odpowiednie podstawienie

(a)
$$\int x\sqrt{1+2x^2} \, dx$$
, (b) $\int \frac{4x}{\sqrt[3]{x^2-4}} \, dx$, (c) $\int x^2 (x^3-2)^5 \, dx$, (d) $\int \sin x \cdot \cos^2 x \, dx$,

(e)
$$\int \frac{\ln^2 x}{x} dx$$
, (f) $\int xe^{-x^2} dx$, (g) $\int \sin^2 x \cdot \cos^3 x dx$, (h) $\int \frac{1}{4x^2 + 4x + 5} dx$.

5.4. Obliczyć całki, korzystając z tego, że
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$
.

(a)
$$\int \frac{1}{3x+2} dx$$
, (b) $\int \frac{x}{1+2x^2} dx$, (c) $\int \frac{1}{x \ln x} dx$, (d) $\int \frac{e^x}{e^x+1} dx$.

5.5. Obliczyć całki, stosując wzór na całkowanie przez części

(a)
$$\int xe^{-3x} dx$$
, (b) $\int x \cos \frac{x}{2} dx$, (c) $\int x^2 \sin \left(x + \frac{\pi}{3}\right) dx$, (d) $\int \ln(x+2) dx$,

(e)
$$\int \sqrt{x} \ln x \, dx$$
, (f) $\int \frac{\ln x}{x^2} \, dx$, (g) $\int \operatorname{arcctg} x \, dx$, (h) $\int e^{-x} \sin 2x \, dx$.

5.6. Zapisać sume całkowa dla podanej całki oznaczonej. Zastosować równomierny podział przedziału całkowania. Wykorzystać wartości funkcji podcałkowej w prawych końcach podprzedziałów. Korzystając z definicji obliczyć całki z przykładów (a), (b).

(a)
$$\int_{0}^{1} x^{2} dx$$
, (b) $\int_{1}^{2} x dx$, (c) $\int_{0}^{\pi} \sin x dx$, (d) $\int_{0}^{1} \frac{1}{1+x} dx$.

5.7. Obliczyć całkę oznaczoną. Podać jej interpretację geometryczną, wykonując odpowiedni ry-

(a)
$$\int_{0}^{1} (1+x) dx$$
, (b) $\int_{\frac{\pi}{7}}^{\frac{8}{7}\pi} \sin 2x dx$, (c) $\int_{-1}^{1} e^{-x} dx$, (d) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \operatorname{ctg} x dx$, (e) $\int_{e^{-2}}^{e^{2}} \ln x dx$.

5.8. Wyznaczyć średnią wartość funkcji f na przedziale [a, b]. Wykonać rysunek.

(a)
$$f(x) = \sin^2 x$$
, $[a, b] = [0, \pi]$;

(a)
$$f(x) = \sin^2 x$$
, $[a, b] = [0, \pi]$; (b) $f(x) = |x - 2|$, $[a, b] = [0, 3]$.

5.9. Obliczyć pole figury ograniczonej podanymi krzywymi. Wykonać rysunek.

(a)
$$y = x^2 - 2x + 3$$
, $y = x + 3$; (b) $y = \frac{4}{x^2 + 2}$, $y = 1$;

(b)
$$y = \frac{4}{x^2 + 2}$$
, $y = 1$;

(c)
$$y = x^2$$
, $y = \frac{x^2}{2}$, $y = 3x$;

(d)
$$y = -\ln(x+2)$$
, $x = 0$, $y = 0$:

(e)
$$y = 2\sqrt{x}$$
, $y = \sqrt{5-x}$, $y = 0$.

5.10. Napisać wzór na długość łuku wykresu funkcji różniczkowalnej i obliczyć długości podanych krzywych. Naszkicować je.

(a)
$$y = -x\sqrt{x}, \ x \in \left[0, \frac{4}{9}\right];$$
 (b) $y = \sqrt{4 - x^2}, \ x \in [-1, 1];$

(b)
$$y = \sqrt{4 - x^2}, \ x \in [-1, 1];$$

(c)
$$y = \ln \sin x, \ x \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right];$$
 (d) $y = \ln x, \ x \in [1, e].$

(d)
$$y = \ln x, \ x \in [1, e].$$

 $\mathbf{5.11}$. Napisać wzór na objętość bryły obrotowej powstającej przez obrót wokół osi OX obszaru ograniczonego wykresem ciągłej funkcji nieujemnej y = f(x), osią OX i prostymi x = a, x = b. Korzystając z tego wzoru obliczyć objętość:

- (a) kuli o promienu R,
- (b) stożka ściętego o promieniach podstaw r, R i wysokości H,
- (c) bryły powstającej przez obrót wokół osi OX obszaru

$$T = \left\{ (x, y) \in \mathbb{R}^2 : 0 \leqslant x \leqslant \frac{\pi}{4}, \ 0 \leqslant y \leqslant \operatorname{tg} x \right\},\,$$

(d) bryły powstającej przez obrót wokół osi OX obszaru

$$T = \left\{ (x, y) \in \mathbb{R}^2 : -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}, \ 0 \leqslant y \leqslant \cos^2 x \right\}.$$

5.12. Obliczyć całki funkcji wymiernych

(a)
$$\int \frac{8x^2}{x^2 - 1} dx$$
,

(a)
$$\int \frac{8x^2}{x^2 - 1} dx$$
, (b) $\int \frac{3x^2}{x^3 + x^2 - 4x - 4} dx$, (c) $\int \frac{x^3 - x^2 + 3}{x^4 + 3x^2} dx$,

(c)
$$\int \frac{x^3 - x^2 + 3}{x^4 + 3x^2} \, dx$$

(d)
$$\int \frac{2}{x^2 + 6x + 18} \, dx$$

(e)
$$\int \frac{5-4x}{x^2-4x+20} dx$$
,

(d)
$$\int \frac{2}{x^2 + 6x + 18} dx$$
, (e) $\int \frac{5 - 4x}{x^2 - 4x + 20} dx$, (f) $\int \frac{x^2 + 2x + 1}{x^3 + 2x^2 + 2x} dx$.

5.13. Obliczyć całki funkcji trygonometrycznych

(a)
$$\int \sin^5 x \, dx$$
, (b) $\int_{\pi} \sin^2 x \cos^3 x \, dx$, (c) $\int_{\pi} \frac{\cos^3 x}{2 - \sin x} \, dx$, (d) $\int_{\pi} \frac{1}{4 + 5 \sin^2 x} \, dx$, (e) $\int_{-\pi} \frac{1}{5 - 3 \cos x} \, dx$, (e) $\int_{-\pi} \sin x \sin 3x \, dx$, (f) $\int_{-\pi} \sin 2x \cos 4x \, dx$, (g) $\int_{-\pi} \sin^2 x \, dx$.

Podobne zadania (z rozwiązaniami lub odpowiedziami) można znaleźć w skrypcie: M.Gewert, Z.Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2018, rozdział 6, 7, 8.

POWTÓRKA

P.1. Naszkicować wykresy funkcji.

(a)
$$f(x) = \left| \frac{|x|}{2} - 4 \right|$$
, (b) $f(x) = \frac{x-1}{x-2}$,

(b)
$$f(x) = \frac{x-1}{x-2}$$
,

(c)
$$f(x) = x^2 - 4|x| + 7$$

(d)
$$f(x) = 1 - \sqrt{|x| - 2}$$
, (e) $f(x) = 2^{-x} - 2$,

(e)
$$f(x) = 2^{-x} - 2$$

(f)
$$f(x) = ||\log_2(x-2)| - 1|$$
,

(g)
$$f(x) = 1 + tg\frac{x}{2}$$
,

(g)
$$f(x) = 1 + tg\frac{x}{2}$$
, (h) $f(x) = cos(|x| + \frac{\pi}{3})$, (i) $f(x) = 2sin 2x - |sin 2x|$

(i)
$$f(x) = 2\sin 2x - |\sin 2x|$$
,

(j)
$$f(x) = \frac{|\operatorname{ctg} x|}{\operatorname{ctg} x}$$
,

(k)
$$f(x) = \pi - \arctan x$$

(k)
$$f(x) = \pi - \operatorname{arctg} x$$
, (l) $f(x) = \frac{\pi}{2} + \arcsin x$.

P.2. Wyznaczyć dziedzinę funkcji.

(a)
$$f(x) = \frac{x+3}{\sqrt{x^2+4x}}$$
, (b) $f(x) = \sqrt{\frac{x+2}{x-4}}$,

(b)
$$f(x) = \sqrt{\frac{x+2}{x-4}}$$
,

(c)
$$f(x) = 1 - \ln \sin x$$
,

(d)
$$f(x) = \frac{x-5}{\log_2(x^2-3)}$$
, (e) $f(x) = \frac{1}{2^{-x}-2}$,

(e)
$$f(x) = \frac{1}{2^{-x} - 2}$$
,

(f)
$$f(x) = \ln^2 \left(6 - \frac{1}{x}\right)$$
,

(g)
$$f(x) = 3\operatorname{ctg} \frac{x}{4}$$
,

(h)
$$f(x) = \frac{e^x}{\pi^2 - 16 \operatorname{arctg}^2 x}$$
,

(i)
$$f(x) = \arcsin \ln x$$
.

P.3. Rozwiązać równania i nierówności.

(a)
$$x(x-1) < 2(x+2)$$
, (b) $x^4 - 5x^2 \ge -4$, (c) $\frac{8}{x} \le 27x^2$,

(b)
$$x^4 - 5x^2 \ge -4$$

(c)
$$\frac{8}{x} \le 27x^2$$

(d)
$$|e^{-x} - 3| = 1$$

(d)
$$\left| e^{-x} - 3 \right| = 1,$$
 (e) $2^x - \frac{3}{2^x} > 2,$ (f) $\frac{1}{\ln x} < 3,$

(f)
$$\frac{1}{\ln x} < 3$$
,

(g)
$$\sin\left(2x + \frac{\pi}{4}\right) \ge 0$$
, (h) $\cos^2\frac{x}{5} = 1$,

(h)
$$\cos^2 \frac{x}{5} = 1$$
,

(i)
$$tg3x = 2$$
.

P.4. Uzasadnić tożsamość trygonometryczną i podać jej dziedzinę.

(a)
$$\cos x \cdot (\operatorname{tg} x + \operatorname{ctg} x) = \frac{1}{\sin x}$$
, (b) $\operatorname{tg}^2 x - \operatorname{ctg}^2 x = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}$, (c) $\frac{\sin x}{1 - \cos x} = \operatorname{ctg} \frac{x}{2}$.

P.5. Napisać wzory określające funkcje złożone $f\circ g,\,g\circ f$ oraz naszkicować ich wykresy.

(a)
$$f(x) = x^2 - 4x$$
, $g(x) = |x|$, (b) $f(x) = e^{-x}$, $g(x) = 2x + 1$,

(b)
$$f(x) = e^{-x}$$
, $g(x) = 2x + 1$

(c)
$$f(x) = \log_{0.5} x$$
, $g(x) = |x| + 2$, (d) $f(x) = \cos 2x$, $g(x) = 0.5x$

(d)
$$f(x) = \cos 2x$$
, $g(x) = 0.5x$,

(e)
$$f(x) = \sin\left(x + \frac{\pi}{4}\right)$$
, $g(x) = 2x$, (f) $f(x) = \sqrt{x}$, $g(x) = x^2$.

(f)
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$.

P.6. Wyprowadzić wzór funkcji odwrotnej do funkcji f. Naszkicować w jednym układzie współrzędnych wykresy funkcji y = f(x) i $y = f^{-1}(x)$.

(a)
$$f(x) = 4 - 2x$$
, (b) $f(x) = \sqrt{x} + 1$, (c) $f(x) = 1 + 2^x$, (d) $f(x) = 2\ln(x + 1)$,

(e)
$$f(x) = x^2 + 2x$$
 dla $x \ge -1$, (f) $f(x) = x^2 + 2x$ dla $x \le -1$.

P.7. Uzasadnić, że ciąg (a_n) jest monotoniczny (od pewnego miejsca) i ograniczony

(a)
$$a_n = \frac{n+1}{3n+4}$$
, (b) $a_n = \frac{2^n + 4^n}{5^n}$, (c) $a_n = \frac{12^n}{(n+1)!}$

(d)
$$a_n = \cos^2 \frac{\pi}{4n+7}$$
, (e) $a_n = \sqrt{n+4} - \sqrt{n}$, (f) $a_n = \frac{1}{2} \cdot \frac{1}{2^2} \cdot \frac{1}{2^3} \cdot \dots \cdot \frac{1}{2^n}$.

P.8. Obliczyć granice ciągów liczbowych:

(a)
$$a_n = \frac{\sqrt{5}n + 4}{4n + \sqrt{5}}$$
, (b) $a_n = \frac{3^{n+1} + 6 \cdot 2^n}{5 \cdot 4^{n-1} - 3^n}$, (c) $a_n = \frac{1}{\sqrt{4^n + 3 \cdot 2^n} - \sqrt{4^n + 4}}$

(d)
$$a_n = 7^{3n+4} - 9^{2n+7}$$
, (e) $a_n = \frac{1+n^2}{1+2+3+\cdots+n}$, (f) $a_n = \frac{n\sqrt{n+3} - \sqrt{n^3+9}}{\sqrt{n}}$,

(g)
$$a_n = \left(\frac{n^3 + 2}{n^2 + 2n}\right)^{3n+1}$$
, (h) $a_n = \left(\frac{2n}{2n+1}\right)^n$, (i) $a_n = \left(\frac{3n+5}{3n+2}\right)^{2-5n}$,

(j)
$$a_n = \sqrt{\pi^n} - \sqrt{e^n}$$
, (k) $a_n = \frac{\arctan(2n+1)}{1 + 2\arctan^2}$, (l) $a_n = \ln(4n+5) - \ln(2n+3)$.

P.9. Naszkicować wykresy funkcji spełniających wszystkie podane warunki

(a)
$$\lim_{x\to 0^+} f(x) = 1$$
, $\lim_{x\to 3} f(x) = +\infty$, $\lim_{x\to +\infty} f(x) = +\infty$, f jest funkcją nieparzystą;

(b) prosta y=1 jest asymptotą poziomą w $-\infty$, prosta x=0 jest asymptotą pionową obustronną, $\lim_{x\to 2}g(x)$ nie istnieje, g jest funkcją parzystą;

(c)
$$\lim_{x\to -\infty}[h(x)-x+2]=0$$
, $\lim_{x\to 1^-}h(x)=-2$, $\lim_{x\to 1^+}h(x)=-\infty$, $\lim_{x\to +\infty}h(x)=1$, h nie jest ciągła w punkcie $x_0=0$.

P.10. Obliczyć granice funkcji:

(a)
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$
, (b) $\lim_{x \to -3^+} \frac{x^2 - 2x - 3}{x^2 - 9}$, (c) $\lim_{x \to +\infty} \frac{x^2 - 2x - 3}{x^2 - 9}$, (d) $\lim_{x \to 9} \frac{\sqrt{x - 5} - 2}{x - 9}$,

(e)
$$\lim_{x \to +\infty} \frac{3^x + 2^x}{4 + 2 \cdot 3^x}$$
, (f) $\lim_{x \to -\infty} \frac{3^x + 2^x}{4 + 2 \cdot 3^x}$, (g) $\lim_{x \to -\infty} \frac{1}{4^x - 3^x}$, (h) $\lim_{x \to -\infty} (\sqrt{x^2 + x} + x)$,

(i)
$$\lim_{x \to +\infty} \frac{\sin^2 x}{\sqrt{x+\pi}}$$
, (j) $\lim_{x \to \pi} \frac{\sin x}{x-\pi}$, (k) $\lim_{x \to 0} \frac{3\sin 3x - 5\sin 5x}{x}$, (l) $\lim_{x \to 0} \frac{\operatorname{tg} 4x}{\sqrt{1+3x} - 1}$.

P.11. Zbadać, czy istnieją granice:

(a)
$$\lim_{x \to 0} \frac{\sin(\pi x)}{|x|}$$
, (b) $\lim_{x \to 2} e^{\frac{x+2}{x-2}}$, (c) $\lim_{x \to 0} \operatorname{arcctg} \frac{1}{x}$, (d) $\lim_{x \to e} \frac{1}{1 - \ln x}$.

P.12. Wyznaczyć asymptoty funkcji:

(a)
$$f(x) = \frac{x}{x^2 - 1}$$
, (b) $f(x) = \frac{x^2 + 1}{x^2 - 1}$, (c) $f(x) = \frac{x^3 - 1}{x^2 - 1}$, (d) $f(x) = \sqrt{x^2 - 4x}$,

(e)
$$f(x) = \frac{\sqrt{x^2 - 4}}{x}$$
, (f) $f(x) = \frac{\ln x}{2 + \ln x}$, (g) $f(x) = \frac{3^x}{3^x - 2}$, (h) $f(x) = x + \frac{\sin \sqrt{x}}{x}$.

P.13. Czy można dobrać parametry $a,b\in\mathbf{R}$ tak, aby funkcja f była ciągła na \mathbf{R} ? Obliczyć odpowiednie granice i naszkicować wykres funkcji f.

(a)
$$f(x) = \begin{cases} x+2 & \text{dla } x < 1 \\ b & \text{dla } x = 1 \\ x^2 + ax + 1 & \text{dla } x > 1 \end{cases}$$
, (b) $f(x) = \begin{cases} ax+b & \text{dla } |x| < 1 \\ \arctan x > 1 \end{cases}$,

P.14. Korzystając z twierdzenia Darboux uzasadnić, że równanie ma dokładnie jedno rozwiązanie na wskazanym przedziale. Przedstawić graficzną interpretację równania.

(a)
$$4^x = \frac{2}{x}$$
, (0,5,1); (b) $\ln x = 1 - 2x$, (0,5,1);

(c)
$$3^x = -x^3$$
, $(-1, -0.5)$; (d) $2^x = 4 - \sqrt{x}$, $(1, 2)$.

P.15. Obliczyć pochodne funkcji:

(a)
$$f(x) = \frac{\arctan x}{\ln(1+x^2)}$$
, (b) $f(x) = e^{3\sin x} \cdot \sin 2x$, (c) $f(x) = (x\cos x)^2$, (d) $f(x) = \frac{x \cdot \sqrt[3]{2+x}}{x + \sqrt[3]{2+x}}$.

P.16.

(a) Napisać równania stycznych do wykresu funkcji $f(x) = \frac{1}{2} \operatorname{arctg} (1 - x^2)$ w miejscach zerowych funkcji. Pod jakimi kątami wykres przecina oś OX?

(b) Napisać równanie tej stycznej do wykresu funkcji $f(x) = \ln \sqrt{x} - 0.5x^2$, która jest równoległa do osi OX.

- (c) Napisać równanie tej stycznej do wykresu funkcji $f(x) = \ln(x^2 + e^{-x})$, która jest równoległa do prostej l: y = 5 - x.
- (d) Napisać równanie tej stycznej do wykresu funkcji $f(x) = \operatorname{tg}(2x) 3x$, $x \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$, która jest prostopadła do prostej l: x + 5y = 0.
- (e) Dla jakich wartości parametrów a, b parabola o równaniu $y = -x^2 + ax + b$ jest styczna w punkcie (1,1) do prostej y=x? Wykonać rysunek.
- P.17. Wykorzystując różniczkę obliczyć, o ile w przybliżeniu zmieni się wartość funkcji
- (a) $f(x) = (1+x) \ln x$, gdy jej argument wzrośnie od wartości $x_0 = 1$ do wartości $x_1 = 1,1$;
- (b) $g(x) = \frac{\sqrt{x}}{1+x}$, gdy jej argument zmieni się od wartości $x_0 = 4$ do wartości $x_1 = 3.99$.
- P.18. Zbadać istnienie asymptoty
- (a) o równaniu x = 0 funkcji $f(x) = \frac{1 \cos 3x}{\sin^2 4x}$
- (b) o równaniu $x = \frac{\pi}{2}$ funkcji $f(x) = \frac{\ln(1 + 3\cos x)}{\pi 2x}$,
- (c) poziomej w $+\infty$ funkcji $f(x) = x \cdot \left(6^{\frac{1}{x}} 2^{\frac{1}{x}}\right)$,
- (d) o równaniu x = 0 funkcji $f(x) = \frac{1}{x} \frac{1}{\sin 2x}$.
- P.19. Znaleźć najmniejszą i największą wartość funkcji na wskazanym przedziale.

(a)
$$f(x) = \frac{x+1}{x^2+2x+2}$$
, $[-7,0]$; (b) $y(x) = \frac{e^x}{1+x^2}$, $[-2,2]$;

(b)
$$y(x) = \frac{e^x}{1+x^2}$$
, [-2,2];

(c)
$$g(x) = \sqrt{3}\cos x + \sin x$$
, $\left[0, \frac{\pi}{2}\right]$; (d) $y(x) = \sqrt[3]{(x^2 + x)^2}$, $[-2, 3]$.

(d)
$$y(x) = \sqrt[3]{(x^2 + x)^2}$$
, $[-2, 3]$.

P.20. Wyznaczyć przedziały monotoniczności i ekstrema lokalne funkcji f. Naszkicować jej wykres.

(a)
$$f(x) = \ln(x^3 - 2x^2 + x)$$
, (b) $f(x) = x \cdot \ln^4 x$, (c) $f(x) = \frac{e^{2x}}{e^x - 1}$, (d) $f(x) = \frac{x}{\ln x}$.

P.21. Wyznaczyć zbiór wartości funkcji. Naszkicować jej wykres.

(a)
$$y(x) = \frac{(x-1)^2}{(x-3)^2}$$
, (b) $f(x) = x \cdot (1+2\ln x)$, (c) $f(x) = x \cdot \sqrt{4x-x^2}$, (d) $f(x) = \frac{\sqrt{x^2-1}}{x}$.

P.22.

- (a) W obszar ograniczony parabolą $y = 16 x^2$ i osią OX wpisano prostokąt tak, że jeden z jego boków leży na osi OX. Jakie wymiary ma prostokąt o największym polu?
- (b) Metodami rachunku różniczkowego uzasadnić, że prostopadłościan o danej sumie długości krawędzi, kwadratowej podstawie i największej objętości jest sześcianem.
- (c) Ile materiału stracimy wycinając z blachy w kształcie półkola o promieniu R prostokąt o największym polu?

P.23. Obliczyć całki:

(a)
$$\int x \cdot \cos(\pi x + 2) dx$$
, (b) $\int \left(\frac{x}{e^x}\right)^2 dx$,

(b)
$$\int \left(\frac{x}{e^x}\right)^2 dx$$
,

(c)
$$\int \frac{\ln^2 x}{\sqrt{x}} dx$$
,

(d)
$$\int \frac{\sin 3x}{e^x} \, dx$$

(e)
$$\int \frac{\operatorname{tg}(\ln x)}{x} \, dx$$

(d)
$$\int \frac{\sin 3x}{e^x} dx$$
, (e) $\int \frac{\text{tg}(\ln x)}{x} dx$, (f) $\int \frac{\sqrt[3]{x^2 + 1} + \sqrt{x^2 + 1}}{x^2 + 1} x dx$,

(g)
$$\int \frac{1 + \ln x}{1 + \ln^2 x} \cdot \frac{1}{x} dx$$

(g)
$$\int \frac{1 + \ln x}{1 + \ln^2 x} \cdot \frac{1}{x} dx$$
, (h) $\int (1 + \cos x) \cdot \sin^3 x dx$, (i) $\int 3^{2x} \cdot \sin 3^x dx$.

(i)
$$\int 3^{2x} \cdot \sin 3^x \, dx.$$

P.24. Obliczyć całkę oznaczoną. Podać jej interpretację geometryczną. Wykonać rysunek.

(a)
$$\int_{1}^{1} e^{2x} dx$$
,

(a)
$$\int_{1}^{1} e^{2x} dx$$
, (b) $\int_{0}^{\pi} \sin x \cos x dx$, (c) $\int_{1}^{e^{2}} \ln x dx$, (d) $\int_{0}^{\frac{\pi}{3}} \operatorname{tg} x dx$.

(c)
$$\int_{\frac{1}{2}}^{e^2} \ln x \, dx,$$

(d)
$$\int_{0}^{\frac{\pi}{3}} \operatorname{tg} x \, dx$$

P.25. Obliczyć pole figury ograniczonej podanymi krzywymi. Wykonać rysunek.

(a)
$$y = x^2 - 2x$$
, $y = x + 4$;

(a)
$$y = x^2 - 2x$$
, $y = x + 4$; (b) $y = x^2$, $y = 5 - (x + 1)^2$;

(c)
$$y = \sqrt{x}, \ y = \sqrt[3]{x};$$

(d)
$$y = \frac{4}{r^2 + 1}$$
, $y = 1$;

(e)
$$x + y = 4$$
, $y = \frac{3}{x}$;

(f)
$$y = \sin x$$
, $y = x$, $x = \pi$;

(g)
$$y = \ln(1+x)$$
, $y = x$, $x = e$; (h) $y = \ln(1+x)$, $y = x$, $y = 1$.

(h)
$$y = \ln(1+r)$$
 $y = r$ $y = 1$

Podobne zadania (także rozwiązane) można znaleźć w skryptach:

M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS,

M. Gewert, Z. Škoczylas, Analiza matematyczna 1. Kolokwia i egzaminy, Oficyna Wydawnicza GiS, Wrocław 2018.

LISTA 6. (dodatkowa)

6.1. Wyznaczyć przedziały wypukłości i punkty przegięcia wykresu funkcji

(a)
$$f(x) = \frac{1}{x^2 + 1}$$
, (b) $f(x) = e^{\arctan x}$, (c) $f(x) = \frac{\ln x}{\sqrt{x}}$, (d) $f(x) = \sin x + 0.125 \sin 2x$.

6.2. Zbadać przebieg zmienności funkcji i sporządzić ich wykresy:

(a)
$$f(x) = \frac{x^3}{x-1}$$
, (b) $f(x) = \frac{\ln x}{x}$, (c) $f(x) = \frac{\sqrt{x}}{x-1}$, (d) $f(x) = 4e^x - e^{2x}$.

6.3. Napisać wzory Taylora z drugą i trzecią resztą dla podanych funkcji i punktów. Naszkicować wykres funkcji oraz wielomianu Taylora pierwszego i drugiego rzędu.

(a)
$$f(x) = \sqrt{x}$$
, $x_0 = 1$; (b) $f(x) = \frac{1}{x}$, $x_0 = 2$.

6.4. Oszacować dokładność przybliżeń na wskazanych przedziałach:

(a)
$$\ln(1+x) \approx x - \frac{x^2}{2} + \frac{x^3}{3}$$
, $|x| \le 0.1$; (b) $\sqrt{1+x} \approx 1 + \frac{x}{2}$, $|x| \le 0.01$;

(c)
$$\cos^2 x \approx 1 - x^2$$
, $|x| \le 0.1$; (d) $e^{-2x} \approx 1 - 2x + 2x^2$, $|x| \le 0.25$.

6.5. Napisać wzór na pole powierzchni powstałej przez obrót wokół osi OX wykresu funkcji $y=f(x),\ x\in [a,b],\ a\geqslant 0$, (nieujemnej i mającej ciągłą pochodną na tym przedziałe). Korzystając z tego wzoru obliczyć pole powierzchni powstałej przez obrót wokół osi OX wykresu funkcji:

(a)
$$y = \sqrt{r^2 - x^2}$$
, $x \in \left[0, \frac{r}{2}\right]$; (b) $y = \frac{x^3}{3}$, $x \in [1, 2]$; (c) $y = 2\sqrt{x+1}$, $x \in [2, 7]$.

Jolanta Sulkowska