In20-S4-CS3063 - Theory of Computing

Assignment 01

NAME: K.S. RANASINGHE INDEX NO.: 210518H

QUESTION 01

- a) The regular expression for the given DFA is (0|1)*10010(0|1)*. In simple terms, the language L1 consists of all strings that:
 - Start with any combination of 0s and 1s including none at all, denoted by the "*".
 - Followed by the sequence "10010".
 - Ends with any combination of 0s and 1s including none at all, again denoted by "*".

So essentially L1 is a string containing the sequence "10010". For example, "10010", "0110010", "0100100110".

- b) L2 contains all strings over the alphabet Σ that are not in L1. That means any string which doesn't contain the sequence "10010". Eg. "11010", "11111"
- c) To get the complement of a DFA we need to change the Final states to non-final states and vice-versa.

QUESTION 02

QUESTION 03

a) Yellow – 1st Pass Blue – 2nd Pass No 3rd Pass

Equivalence Classes;

{3,4,5}

{1,2}

{0}

b)

Transition Diagram for minimized DFA

c) It will accept a or b (a|b) and another a or b (a|b) and anything afterwards $(a|b)^*$. This means it will accept any string of length >= 2 for the given language.

Regular Expression: $(a|b)(a|b)(a|b)^*$ or (a|b)(a|b)+

QUESTION 04

a)

q	$\delta(q, \Lambda)$	δ(q, a)	δ(q, b)	δ*(q, a)	$\delta^*(q, b)$
0	Ø	{1}	{3}	{1,2,3}	{1,2,3}
1	{2,3}	Ø	Ø	{1,2,3}	Ø
2	Ø	{3}	Ø	{1,2,3}	Ø
3	{1}	Ø	Ø	{1,2,3}	Ø

b)

q	δ*(q, a)	$\delta^*(q, b)$	
{0}	{1,2,3}	{1,2,3}	
{1,2,3}	{1,2,3}	Ø	

QUESTION 05

a) (a|bab*a|bb)*b

$$P \rightarrow aP$$
 $Q \rightarrow aR$ $R \rightarrow aP$
 $\rightarrow bQ$ $\rightarrow bP$ $\rightarrow bR$
 $\rightarrow \Lambda$
 $R = aP + bR = b^*aP$
 $Q = aR + bP + \Lambda = ab^*aP + bP + \Lambda = (ab^*a + b)P + \Lambda$
 $P = aP + bQ$
 $= aP + b((ab^*a + b)P + \Lambda)$
 $= (a + bab^*a + bb)P + b$
 $= (a|bab^*a|bb)^*b$

b) (a|ab⁺|b⁺ab^{*})a

$$0 \to a2 \qquad 1 \to a3 \qquad 2 \to a \qquad 3 \to a
0 \to b1 \qquad 1 \to b1 \qquad 2 \to b3 \qquad 3 \to b3$$

$$3 = a + b3 = b^* a
2 = a + b3 = a + bb^* a
1 = a3 + b1 = ab^* a + b1 = b^* ab^* a
0 = a2 + b1 = a(a + bb^* a) + b(b^* ab^* a)
= (aa|abb^* a|bb^* ab^* a)
= (a|ab^+|b^+ ab^*)a$$

c) $(10^*1|0)^*110$

QUESTION 06

