מאיצים חישוביים ומערכות מואצות 046278

<u>דו"ח הגשה – תרגיל בית רטוב 2</u>

208936989 מתן צחורי

עדי צחורי 315374066

<u>1 חלק</u>

- ex2. cu-2 ממומש (a
- (ט בהרצת קיבלנו: Streams בהרצת השרת במצב (b throughput=438.6 $\left[\frac{req}{sec}\right]$

.maxLoad-סמנו כ-

נריץ את השרת כעת עם load משתנה בקפיצות קבועות בטווח: (c . $\left[\frac{maxLoad}{10}, 2 \cdot maxLoad\right]$

 $load \in \{43, 136, 229, 321, 414, 506, 599, 692, 784, 877\}$

Load $\left[\frac{Req}{sec}\right]$	Throughput $\left[\frac{Req}{sec}\right]$	Latency [msec]					
		Average	Minimum	Median	99 th Percent	Maximum	
43	43.8	0.5406	0.0599	0.1737	4.3726	124.3338	
136	135.9	0.2759	0.1241	0.1368	3.1474	123.6057	
229	228.7	0.4467	0.0597	0.1540	2.4609	130.0971	
321	320.0	0.3471	0.0532	0.1415	2.4350	4.9791	
414	416.9	0.5925	0.0428	0.2989	2.8770	4.9230	
506	510.6	0.8746	0.0392	0.7601	2.4287	5.1120	
599	599.9	0.9785	0.0463	0.9517	2.3254	4.9685	
692	690.9	1.1501	0.0483	1.1352	2.5169	4.9347	
784	779.2	1.1559	0.0444	1.1485	2.7071	5.0443	
877	870.0	1.1338	0.0390	1.1628	2.3212	4.8677	

להלן מצורף גרף המציג את ההשהיה החציונית עבור קצבי התמונות לשנייה כפי (d - המציג את ההשהיה y- וציר ה-y- הוא ה- x- הוא ה

מגרף זה ניתן לראות כי עבור עומס הקטן מהעומס שמצאנו בסעיף ב, ההשהיה לכל בקשת תמונה נמשכת כמות זמן קטנה יחסית ובפרט נמוכה מההשהיה עבור *maxLoad*.

אך ככל שהעומס על השרת עולה כך ההשהיה הולכת וגדלה. כלומר ככל שמעמיסים יותר על השרת, כך קצב מילוי הבקשות קטן.

<u>חלק 2</u>

SM- שניתן להריץ עבור כל SM ונכפיל במספר ה-Threadblocks ונכפיל מספר ה-GPU שלנו.

את המידע אודות מאפייני ה-GPU נשלוף בעזרת המתודה

המידע אותו נרצה לשלוף הוא: מספר הרגיסטרים .cudaGetDeviceProperties () המידע אותו נרצה לשלוף הוא: מספר הרגיסטרים .SM הכולל עבור כל SM, נסמן max_regs_SM ומספר החוטים הכולל עבור כל SM, נסמן max_smem_SM נסמן . $max_threads_SM$

GPUנרצה גם לדעת מה מספר ה-SM הכולל שיש לנו ב-GPU, נסמן. $total_SM$

נרצה לבדוק איך כל אחד מהמאפיינים הנ"ל מגביל את מספר ה-TBs שניתן להריץ. $\frac{max_regs_SM}{regs_per_thread\cdot threads_per_tb}$, כאשר מספר הרגיסטרים לכל חוט נתון והוא 32, ומספר החוטים לכל בלוק גם כן ידוע.

עבור זיכרון משותף נחשב: $\frac{\max_smem_SM}{smem_per_block}$ כאשר את הזכרון משותף לכל בלוק (nvcc --ptxas-options=-v) נמצא באמצעות הדגל

שמשתמשת הפונקציה interpolate.

עבור חוטים נרצה לבדוק שמספר החוטים המבוקש לא חורג ממספר החוטים האפשריים לבלוק (אם כי אף אחת מהבקשות למספר חוטים בבלוק בתרגיל זה לא האפשריים לבלוק (אם כי אף אחת מהבקשות למספר החוטים האפשרי - 1024). נחשב: $\frac{\max_threads_SM}{threads_per_tb}$

מתוך החישובים הנ"ל ניקח את הערך המינימלי שהוא המגבלה עבורנו ונכפיל במספר החישובים הנ"ל ניקח את המספר TBs הכולל שנוכל להריץ.

ex2. cu-ם ממומש (b

. התורים המחברים בין ה-*CPU* ל-*CPU* ממומשים עם *RingBuffer* שנלמד בתרגול (c מכיוון בכל צד כותב לצד אחד ורק קורא מהצד השני, פעולות ההכנסה וההוצאה מהתור אינם נדרשים להיות אטומיים.

בצד של ה-CPU, ה-CPU הוא היחיד שמכניס ומוציא משני התורים ולכן נוכל לבצע את הפעולות ללא הגנה.

בצד של ה-GPU, מספר חוטים שונים יכולים לנסות להוציא/להכניס לתורים באותו זמן, GPU בצד של הן פעולות קריטיות עליהן נדרש להגן עליהן בעזרת מנעול בסקופ ה-לכן פעולות אלא הן פעולות קריטיות cuda: atomic כפי שראינו בתרגול. GPU

עבור 1024 חוטים קיבלנו: (d

עם load=0 קיבלנו: בהרצת השרת במצב load=0

$$throughput = 23564.8 \left[\frac{req}{sec} \right]$$

.maxLoad-סמנו כ-

משתנה בקפיצות קבועות בטווח: load נריץ את השרת כעת עם load נעגל $. extit{II}$. $\left[rac{maxLoad}{10}, 2 \cdot maxLoad
ight]$

 $load \in \{2356, 7331, 12306, 17280, 22255, 27230, 32205, 37180, 42154, 47129\}$

Load	Throughput	Latency [msec]					
$\left[\frac{Req}{sec}\right]$	$\left[\frac{Req}{sec}\right]$	Average	Minimum	Median	99 th Percent	Maximum	
2356	2360	1.2221	0.0415	0.6356	13.5978	22.1500	
7331	7322.4	1.6421	0.0427	0.8974	18.8720	32.8370	
12306	12267.9	1.1807	0.0454	1.0118	3.3889	7.4612	
17280	17214.7	1.2836	0.0432	1.1686	3.5187	8.1081	
22255	22136.1	3.2151	0.0413	1.7163	18.4067	25.0771	
27230	27008.2	1.4989	0.0414	1.4339	4.5534	11.8838	
32205	30541.9	7.2534	0.0441	6.7705	15.1227	21.6213	
37180	25235.5	64.7553	0.0495	65.6774	124.1765	129.1646	
42154	30887.6	42.6014	0.0438	42.5507	83.2830	89.8744	
47129	27993.3	80.0443	1.0236	91.2204	144.8387	150.9760	

:עבור 512 חוטים קיבלנו (e

load=0 עם Queues קיבלנו: throughput=25834.6 $\left[rac{req}{sec}
ight]$

.maxLoad-כסמנו כ-

נריץ את השרת כעת עם load משתנה בקפיצות קבועות בטווח: .II . $\left[\frac{maxLoad}{10}, 2 \cdot maxLoad\right]$

 $load \in \{2583, 8037, 13491, 18945, 24399, 29853, 35307, 40761, 46215, 51669\}$

Load	Throughput	Latency [msec]					
$\left[\frac{Req}{sec}\right]$	$\left[\frac{Req}{sec}\right]$	Average	Minimum	Median	99 th Percent	Maximum	
2583	2583	1.2755	0.0469	0.8249	10.0307	22.1209	
8037	8020.6	1.2279	0.0490	1.0061	3.5298	6.1595	
13491	13359.4	2.2044	0.0471	1.3726	18.9037	32.6071	
18945	18723.4	2.7532	0.0477	1.6893	18.8057	35.8692	
24399	24262.2	1.7014	0.0481	1.5935	5.4561	10.5460	
29853	28093	8.3685	0.0517	7.1907	23.4176	34.7279	
35307	31080.3	19.8775	0.0788	20.0585	37.4587	46.3057	
40761	23637.6	86.0527	0.0583	85.4288	175.2483	182.5065	
46215	30716.9	54.2996	0.3360	53.7820	106.3185	115.9771	
51669	28262.9	76.7883	0.8303	72.1633	159.5514	166.1539	

נו: עבור 256 חוטים קיבלנו: (f

$$load=0$$
 עם $Queues$ קיבלנו: $throughput=29805.6$ $\left[rac{req}{sec}
ight]$

.maxLoad-c

משתנה בקפיצות קבועות בטווח: load נריץ את השרת כעת עם load נעגל $\left[\frac{maxLoad}{10}, 2 \cdot maxLoad\right]$

 $load \in \{2980, 9272, 15565, 21857, 28149, 34442, 40734, 47026, 53318, 59611\}$

Load	Throughput	Latency [msec]					
$\left[\frac{Req}{sec}\right]$	$\left[\frac{Req}{sec}\right]$	Average	Minimum	Median	99 th Percent	Maximum	
2980	2986.7	1.7354	0.0695	1.3006	13.0232	28.4818	
9272	9260.9	2.1569	0.0759	1.6722	15.2046	31.0827	
15565	15352.1	3.0714	0.0685	1.9927	22.6278	40.7089	
21857	21610	6.3231	0.0695	3.3755	25.5577	40.8086	
28149	27654.6	5.9098	0.0726	4.3808	20.1226	37.8714	
34442	29493.4	25.5279	0.0817	26.7479	48.5357	64.2646	
40734	27673.6	61.0745	0.1009	63.1935	115.4722	121.6248	
47026	25715	88.7153	0.1009	89.3396	171.5398	186.8136	
53318	24687.8	72.0962	0.6006	72.2073	141.9914	219.0242	
59611	25915.2	109.6600	1.0582	109.9643	214.0395	224.0965	

להלן מצורפים הגרפים המציגים את ההשהיה החציונית עבור קצבי התמונות לשנייה (g cert throughput - אוא ה-x הוא בסעיפים קודמים. כאשר ציר ה-x הוא ה-x וציר ה-x הוא ה-x (שני גרפים שונים בגלל סקלות שונות).

- (h) ניתן ללמוד מתוך הגרפים שכאשר עוברים את נק' ה-maxLoad מתצורות ההפעלה זמני ההשהיה קופצים בצורה דרמתית, והמערכת לא מסוגלת לעמוד בדרישת העומס במצבים אלו.
 בנוסף, אם נתמקד באזורים בגרף שבהם המערכת כן עומדת בדרישת העומס, ניתן לראות שעבור מספר רק יותר של חוטים ההשהיה קטנה יותר בממוצע.
- יכולה החלפת התורים מזוג תורים לכל המערכת, לזוג תורים לכל Threadblock יכולה לשפר את ביצועי השרת בהנחה שה-*CPU* מספיק למלא/לרוקן את התורים בזמן וכן מסוגל לפזר את הבקשות בצורה אחידה בין ה-*Threadblocks*. כעת, מכיוון שמספר Threadblocks עלולים לגשת לתור להוצאה/הכנסה של בקשות בו זמנית, הגישה לתור מוגנת על ידי מנעול. הפרדת התור לתורים פרטיים יאפשר גישה ללא הגנה עם מנעול (בגלל אופן מימוש התור), ועשוי בכך להאיץ את קצב הטיפול בבקשות אין חסימת גישה.
- העברת התור CPU-GPU לזכרון ה-GPU עשויה לשפר ביצועים בכך שיהיה חסכון בקריאות מהתור מתוך ה-GPU לזיכרון שנמצא ב-CPU מנסה בלולאה אינסופית לבדוק אם קיים איבר הגרעין שרץ על כל Threadblock מנסה בלולאה אינסופית לבדוק אם קיים איבר בתור CPU-GPU, ואם כן לשלוף אותו. כלומר מתבצעות מספר גדול מאוד של בקשות גישה לזיכרון הנמצא ב-CPU ובכך מועברות הרבה בקשות זיכרון שעוברות ב-CPU ולוקחות זמן, לעומת זאת ה-CPU ניגש לתור זה בכל פעם שהוא מוסיף בקשה בהעברת התור לזיכרון ה-CPU רוב הבקשות יגיעו מתוך ה-CPU ולא יצטרכו להמשך מתוך זיכרון ה-CPU.
 - CPU על מנת להעביר את התור $\mathit{CPU}-\mathit{GPU}$ לזיכרון של ה- GPU , נצטרך לתת ל(k
 - ניתן לבצע זאת באופן סימטרי לאופן שבו אפשרנו ל-GPU לגשת לזכרון של ה-CPU לכתובות בעזרת CPU בקשר בקש למפות מרחב כתובות זיכרון ב- $Memory\ Map\ I/O$ לכתובות בעזרת היהיה מחוץ לטווח הכתובות הפיזיות של ה-CPU. בבקשת גישה לזיכרון שנמצא ב-GPU, הכתובות יעברו תרגום דרך ה-PCIe ונקבל את הכתובת המתאימה ב-CPU.

.GPUDirectRDMA למשל ניתן לבצע זאת בעזרת טכנולוגיית אוררNVIDIA-ב