UZH Zürich Institut für Informatik FS 2018

Student Name: Matrikel-Nr:

Formale Grundlagen der Informatik I -Assignment 5

Hand out: 27.04.2018 - Due to: 17.05.2018

Upload the solutions to the Olat system.

5.1 Relations und Functions

- a) Let R be a relation which describes a date with a week day. For example: (2018-05-01, Tuesday) $\in R$, because May 1. 2018 is a Tuesday.
 - i. Is R a function?
 - ii. Is the inverse, R^{-1} , a function?
- **b)** Let $S_1 = \{a, b, c, d, e\}$ be a set and $R_1 \subseteq S_1 \times S_1$ a binary relation where the following applications hold:

$$cR_1b$$
, eR_1a , aR_1a , cR_1c , dR_1b , dR_1d , bR_1a , eR_1e , bR_1b

Is this relation

- i. asymmetric?
- ii. antisymmetric?
- iii. transitive?
- iv. reflexive?
- c) Let $A := \{1, 2, 3, \dots, 8\}$ and R a relation defined as

$$R = \{(x, y) \mid x = 5^i \mod 9, \ y = i, \ i \in A\}.$$

Is R a function of A to A? Argue why or why not.

- d) Let O be the set of all odd integers. Prove that O has the same cardinality as 2Z, the set of all even integers.
- e) Let R be a relation on a set A and suppose R is symmetric and transitive. Prove the following: If for every $x \in A$ there is a $y \in A$ such that xRy, then R is an equivalence relation.

5.2 Linear homogeneous recursive equations of 3. order

Given a recursive equation

$$a_k = 2a_{k-1} + a_{k-2} - 2a_{k-3}$$

and the starting conditions

$$a_0 = 6$$
 and $a_1 = 6$ and $a_2 = 12$.

Derive a closed formula for a_k .

Hint: Use an extension of the approach for recursive equations of second order. This means, determine the roots r_1, r_2, r_3 of the characteristic equation

$$t^3 - 2t^2 - t + 2 = 0.$$

Then $a_k = Ar_1^k + Br_2^k + Cr_3^k$ holds, where A, B and C can be determined by the starting conditions