

4.6 The Minimum Edit Distance

- 问题定义
- 问题求解
 - 优化解的结构分析
 - ●建立优化解代价的递归方程
 - 递归地划分子问题
 - 自底向上计算优化解的代价 记录优化解的构造信息
 - ●构造优化解

2024/4/8 ©DB-LAB

问题的定义

• 最小编辑距离

输入:两个字符串x[1..m]和y[1..n]

输出:将x[1..m]转换为y[1..n]所需要的最少操作数.

操作:插入一个符号,或者

删除一个符号,或者

替换一个符号

例如: x="snowy", y="sunny", "-"表示空字符

 $\mathtt{S}-\mathtt{N}\mathtt{O}\mathtt{W}\mathtt{Y}$ $-\mathtt{S}\mathtt{N}\mathtt{O}\mathtt{W}-\mathtt{N}$

SUNN-Y SUN--NY

Cost: 3 Cost: 5

优化解结构分析

• 寻找优化解拆分成子问题解的方式

ED[m, n]: 字符串x[1:m]和y[1:n]的编辑距离

不能遗漏拆分方式

优化解结构分析

• 综合所有情况

$$X: \cdots \cdots X_m - \cdots - Y: \cdots \cdots Y_n$$

如果X[m]匹配Y[n]之前的字符: ED[m,n] = ED[m,n-1] + 1

$$X: \cdots \cdots X_m$$

如果 $X[m]$ 匹配 $Y[n]: Y: \cdots \cdots Y_n$
 $ED[m,n] = ED[m-1,n-1] + diff(X[m],Y[n])$

$$diff(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & if \ x \neq y \end{cases}$$

如果X[m]匹配Y[n]之后的字符: ED[m,n] = ED[m-1,n] + 1

上述三种情况涵盖所有无重叠操作的编辑序列

$$X: \cdots \cdots X_m$$

 $Y: \cdots Y_n - \cdots -$

优化子结构证明

$$ED[m, n] = min \begin{cases} ED[m-1, n] + 1 \\ ED[m-1, n-1] + diff(X[m], Y[n]) \\ ED[m, n-1] + 1 \end{cases}$$

证明:

情况一: ED[m,n] = ED[m-1,n] + 1 拜取得优化解,则ED[m-1,n] 必为x[1:m-1] 和y[1:n] 的最小编辑距离。否则,将存在一组编辑操作将x[1:m-1] 在k 步转换为y[1:n],且k < ED[m-1,n]。如此,找到k+1 次编辑操作将x 转换为y k+1 < ED[m,n],与ED[m,n]为优化解矛盾!

情况二、情况三的证明过程与情况一类似

子问题重叠性

最小编辑距离问题具有子问题重叠性

最小编辑距离的递归方程

•计算X[1:i]和Y[1:j]的最小编辑距离ED[i,j]

$$ED[i,0] = i 1 \le i \le m$$

$$ED[0,j] = j 1 \le j \le n$$

$$ED[i-1,j] + 1$$

$$ED[i,j] = min \begin{cases} ED[i-1,j] + 1 \\ ED[i-1,j-1] + diff(X[i],Y[j]) \\ ED[i,j-1] + 1 \end{cases}$$

递归划分与自底向上求解

$$ED[i, 0] = i$$
 $1 \le i \le m$

$$ED[0,j] = j \qquad 1 \le j \le n$$

ED[i-1, j-1]	<i>ED[i-1,j]</i>	
<i>ED[i, j-1]</i>	ED[i, j]	

2024/4/8

©DB-LAB

$$ED[i,j] = min \begin{cases} ED[i-1,j] + 1 \\ ED[i-1,j-1] + diff(X[i],Y[j]) \\ ED[i,j-1] + 1 \end{cases}$$

	y_j	\boldsymbol{R}	\boldsymbol{E}	N	\boldsymbol{A}	T	0
$i=0$ x_i							
\boldsymbol{R}							
0							
N							
\boldsymbol{A}							
$oldsymbol{L}$							
\boldsymbol{D}							
2024/4/8					1		

记录优化解信息、
$$ED[i,j] = min$$

$$\begin{cases} ED[i-1,j] + 1 \\ ED[i-1,j-1] + diff(X[i],Y[j]) \\ ED[i,j-1] + 1 \end{cases}$$

		y_{j}	R	E	N	\boldsymbol{A}	T	0
i=0	x_i	0	1	2	3	4	5	6
	R	1	▼ 0	←1	←2	← 3	←4	← 5
	0	2	1	X 1	^ 2	\ 3	~ 4	► 4
	N	3	1 2	\ 2	X 1	←2	← 3	←4
	\boldsymbol{A}	4	↑ 3	\ 3	† 2	\1	←2	←3
	L	5	↑ 4	\ 4	† 3	† 2	^ 2	₹ 3
	D	6	↑ 5	\ 5	↑ 4	↑ 3	^ 3	\ 3
2024/4/8	0	7	↑ 6	^ 6	↑ 5	↑ 4	~ 4	₹ 3
		i=0						

记录优化解信息、
$$ED[i,j] = min\begin{cases} ED[i-1,j] + 1 \\ ED[i-1,j-1] + diff(X[i],Y[j]) \\ ED[i,j-1] + 1 \end{cases}$$

		y_{j}	R	E	N	\boldsymbol{A}	T	0
i=0	x_i	0	1	2	3	4	5	6
	R	1	\ 0	← 1	←2	← 3	←4	←5
	0	2	1	\1	^ 2	\ 3	~ 4	₹4
	N	3	1 2	\ 2	\1	←2	← 3	←4
	\boldsymbol{A}	4	↑ 3	^ 3	† 2	\1	←2	←3
	L	5	↑ 4	\ 4	† 3	† 2	^ 2	\ 3
	D	6	↑ 5	\ 5	↑ 4	13	\ 3	\ 3
2024/4/8	0	7	↑ 6	^ 6	↑ 5	↑ 4	~ 4	\ 3
		i=0						_

```
MinimumED(X, Y)
M \leftarrow \text{length}(X); n \leftarrow \text{length}(Y);
For i \leftarrow 0 To m Do
         E[i,0]\leftarrow i;
For j \leftarrow 1 To n Do
         E[0,j] \leftarrow j;
For i \leftarrow 1 To m Do
    For j \leftarrow 1 To n Do
       If x_i = y_i
           Then E[i,j] \leftarrow E[i-1,j-1];
       Else
          E[i,j] \leftarrow E[i-1,j-1]+1;
       B[i,j] \leftarrow";
       If E[i,j] > E[i-1,j] + 1
           Then E[i,j] = E[i-1,j] + 1;
           B[i,j] \leftarrow "\uparrow";
       If E[i,j] > E[i,j-1] + 1
           Then E[i,j]=E[i,j-1]+1;
           B[i,j] \leftarrow "\leftarrow";
Return E and B.
```

算法和算法复杂性

- 时间复杂性
 - -(i, j)两层层循环,每 层循环至多m和n步
 - 时间复杂性为O(mn)
- 空间复杂性
 - $-- \uparrow (m+1) \times (n+1)$ 数组, 一 $\uparrow m \times n$ 数组
 - -O(mn)
 - -B可以省去

构造优化编辑序列
$$ED[i,j] = min\begin{cases} ED[i-1,j]+1 \\ ED[i-1,j-1]+diff(X[i],Y[j]) \\ ED[i,j-1]+1 \end{cases}$$

	y_j	\boldsymbol{R}	\boldsymbol{E}	N	\boldsymbol{A}	\boldsymbol{T}	0
$i=0$ x_i	0	1	2	3	4	5	6
\boldsymbol{R}	1	^ 0	← 1	←2	← 3	←4	←5
0	2	1	\1	←2	← 3	←4	\ 4
N	3	1 2	12	\1	←2	← 3	←4
\boldsymbol{A}	4	↑3	↑ 3	↑2	\1	←2	← 3
\boldsymbol{L}	5	↑ 4	↑ 4	↑ 3	† 2	∖ 2	\3
D	6	↑ 5	↑5	1 4	1 ↑3	\ 3	∖ 3
0	7	↑ 6	1 6	↑ 5	14	₹4	\ 4
•	j=0						

边界条件E[i, 0]: 删除x[1: i]

边界条件E[0, j]: 在x[1] 新插入y[1: j]

- Ŋ 将x[1: i-1]修改为y[1: j-1]后,将x[i]按 需修改为v[i]
- ← 将x[1: i]修改为y[1: j-1]后,在末尾插 **~**y[j]
- ↑ 将x[1: i-1]修改为y[1: j]后,删除末尾 符号 (原x[i])

• 最小编辑距离判别问题

输入:两个字符串x[1..m]和y[1..n],整数t

输出: True,如果x和y的最小编辑距离不大于t

False,如果x和y的最小编辑距离大于t

输入: RONALDO, RENATO, 4, 输出: True

输入: RONALDO, RENATO, 2, 输出: False

问题的定义

- 最小编辑距离判别问题
 - Step 1. 计算输入字符串的最小编辑距离
 - Step 2. 与阈值比较

• 改进算法的两点启发

在E中计算大量不必要的元素!

ED[i-1,j] + 1 $ED[i,j] = min \begin{cases} ED[i-1,j-1] + diff(X[i],Y[j]) \\ ED[i,j-1] + 1 \end{cases}$ $ED[i,0] = i \qquad 1 \le i \le m$ $ED[0,j] = j \qquad 1 \le j \le n$

。字符串X和Y的最小编辑距离不小于二者长度之差的绝对值

x="RONALDO", y="RENATO",

编辑距离阅值t=2

		R	E	N	\boldsymbol{A}	T	0
$i=0$ x_i							
R							
0							
N							
\boldsymbol{A}							
$oldsymbol{L}$							
D							
2024/4/8	1				1		

算法的复杂性

x="RONALDO", y="RENATO", 编辑距离阈值t = 2

			R	E	N	\boldsymbol{A}	T	0
i=0	x_i	0	1	2				
	R	1	0	1	2			
	0	2	1	1	2	3		
	N		2	2	1	2	3	
	A			3	2	1	2	3
	L				3	2	2	3
	D					3	3	3
	0							

- 时间复杂性
 - 每行、列最多计算2t+1
 - 时间复杂性为O(min{m,n}t)
- 空间复杂性
 - $-O(min\{m,n\}t)$
 - 可优化为O(t)

多段图规划

求从S到t的最短路径.

多段图规划

• 优化解的结构分析

设 $S,...,v_{ij},...,v_{ik},...,t$ 是一条由S到t的最短路径,则 $v_{ij},...,v_{ik},...,t$ 也是由 v_{ij} 到t的最短路径

子集求和

• 问题定义

输入: 集合 $S=\{n$ 个正整数 $\}$, 正整数P

输出: True, 若存在子集合S', 使得P=S'中所有

数之和

False, 否则

• 优化解结构分析

M(i, j): =True, 当且仅当在S的前i个数中,存在一个子集合,使其数据之和为j.

M(n, P)即为原始问题

$$M(i,j) = M(i-1, j-S[i]) \vee M(i-1, j)$$

$$M(i, 0) = True$$

 $M(0, j) = False$ for $j > 0$

• 最长增长子序列问题

输入:由n个数组成的一个序列S: $a_1,a_2,...,a_n$

输出: 子序列 $S'=b_1,b_2,...,b_k$, 满足:

- $(1) b_1 \leq b_2 \leq \dots \leq b_k,$
- (2) |S'|最大

5 2 8 6 3 6 9 7

• 最长增长子序列问题

总结

- 原始问题可以划分成一系列子问题,子问题之间不是相互独立的
- 不同子问题的数目常常只有多项式量级
- 优化子结构

总结

- 优化解的结构分析
- 建立优化解代价的递归方程
- 递归地划分子问题
- 自底向上计算优化解的代价记录优化解的构造信息
- 构造优化解