The best place in the house should be the child's study corner. Rabotnitas 37 no.9:28 8 '59. (MIRA 13:1) (Children--Care and hygiene)

VOYETKOVA, I.N., kand.iskusetvovedeniya

Rolled materials for finishing walls. Opyt stroi. 15:87-105 *58. (Wallpaper) (MIRA 11:11)

Equipment of Opyt stroi.	foreign enterprises producing lightweight blocks. no.18:46-68 '58. (MIRA 12:1) (Lightweight concrete) (Concrete blocks)	
•		
•		
		ترعد

VOYEYKOVA, I.H., kend.iskusstvovedeniya

Coiled finishing materials for walls and floors. Opyt. stroi.
no.16:105-121 '58. (MIRA 11:9)

(Wallpaper) (Linoleum)

VOYEYKOVA, M.G., inzh.

Preparation and use of peat-manure-earth composts. Inform. biul. VDNKH no.2:27-28 F 64. (MIRA 17:8)

1. Laboratoriya mekhanizatsii primeneniya udobreniy Vsesoyuznogo nauchno-issledovatel skogo instituta udobreniy.

LUPAKOV, I.S., kand.tekhn.nauk; VOYEYKOV, V.P., inzh.

Use of E1692 steel for work at 800 . Metalloved.i term.obr.met.
no.2:49-51 F '62. (MIRA 15:3)
(Steel, Heat resistant) (Metals at high temperature)

VOYEYKOVA, E. D.

1324. Issledovaniye kataliticheskogo vosstanovleniya ionov serebra proyavlyayvshchimi veshchestvami. [L.]: 1954. 12s. s graf. zosm. (Gos. ordena Lenina optich. in-t im. S. I. Vavilova). 100 ekz. B. ts. - [54-52863]

SO: Knizhnaya Letopie, Vol. 1, 1955

KULICHENKO, V.F.; KOVYRSHINA, I.B.; VOYNYKOVA, I.S.; SHIRINA, K.F.; BUGEL'SKIY, Yu.A.

[Skillful hands; organisation and work of the "Skillful Hands" club] Umelye ruki. Organizatsiia i sodershanie raboty krushka "Umelye ruki." Izd-vo Tsk VLKSM "Molodaia gvardiia", 1953. 286 p. (MLRA 6:11) (Manual training)

BERRI, R.Ya., dotsent; KOZYLYAYEV, P.A., dotsent; LUNTS, G.L., dotsent; LIBIN, M.L., starshiy prepodavatel; ROZEHTAL, M.I., assistent. Prinimali uchastiye: FUKS, B.A., prof.; YOYEYKOYA, S.Y., dotsent; KOZITSIN, V.I., dotsent; TEUSH, V.L., dotsent. ANOSHINA, K.I., red.; KUZ'MINA, N.S., tekhn.red.

[Higher mathematics; instructions and control problems for students specializing in agriculture, fish culture, and forestry in upper-level correspondence schools (departments)] Vysshaia matematika; metodicheskie ukazaniia i kontrol'nye zadaniia dlia studentov sel'skokhoziaistvennykh, rybokhoziaistvennykh i lesokhoziaiastvennykh spetsial'nostei zaochnykh vysshikh uchebnykh zavedenii (fakul'tetov). Pod red. G.L.Luntsa. Moskva, Gos.izd-vo "Sovetskaia nauka," 1958.

90 p. (MIRA 12:4)

1. Russia (1923- U.S.S.R.) Ministerstvo vysshego obrazovaniya. Metodicheskoye upravleniye.

(Mathematics)

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1"

FATERMAN, G.P.; VOIETROVA, Te.D.

Study of the catalytic effect of sols on the reduction of silver ions (MIRA 9:4) with developers. Usp.nanch.fot.no.4:150-163 155. (MIRA 9:4) (Photography--Developing and developers)

VOYEYKOUN, Ye. D.

PAYERMAN, G.P.; VOYEYKOVA, Ye.D.

Mechanism of the catalytic action of development muclei. Usp.
nauch.fot. 3:174-182 '55.

(Photographic chemistry)

(Photographic chemistry)

VOYETKOVA, Ye. D.

"Investigation of the Catalytic Reduction of Silver Ions by Developers." Cand Chem Sci, State Optical Inst, Lemingrad 1954. (KL, No 1, Jan 55)

Survey of Scientific and Technical Dissertations Defended at USSR Higher Educational Institutions (12)
SO: Sum. No. 598, 29 Jul 55)

VOIGT, J.

Voigu, d. and Heumann, J.

The preparation of monodisporsed silver hydrosol free from protectin; colloids

2 anorg. allgem. Chem., Vol. 16h, 1927, pp. 109-19

Chem. Abs., Vol. 21, 3512

The usual Ag hydrosols are polydispersed and centain varicolored sub-icrons. Sols with uniformly colored particles can be propd. It is necessary to have materials of the utmost purity and to use very dil. Ag solns. As starting material, a soln. of AgoO contg. 0.001% Ag was used. The method of seeding with Ag or Au nuclei was employed. The Au proved more favorable. Hydrazine sulfate or hydrate, formal and H2O2were found suitable reducing agents. Solns. of P in ether were unsuitable because spontaneous nucleus formation takes place too readily.

VOXCT, M.

Menzel, Henrich; Schulz, H.; Sieg, L; and Voigt, M.

Boric acids and alkali salts of boric acids. Supplement to communication VIII. IX. The system sodium tetraborate water.

Z. anorg. allegem. Chem., Vol. 224, 1935 pp. 1-22

Chem. Abs., Vol. 30, P. 7848-3

VOYINOV, A.P.

124-11-13409

Translation from: Referativnyy Zhurnal, Mekhanika, 1957, Nr 11, p 155 (USSR)

AUTHOR: Voyinov , A. P.

Steel-Wood Beams. TITLE:

(Stalederevyanye balki.)

Nauk. pratsi Kharkivs'k. in-t inzh. komun. budivnitstva1956, Nr 7, PERIODICAL:

17-60 (Ukrainian paper with Russian resume). pp

Theoretical and experimental investigations show that the carrying ability of a wooden beam can be increased by bonding a reinforcing ABSTRACT: steel flange onto it at temperatures of 160°-200° (C) with water-

resistant bonding BF-2 or BF-4. The resulting prestrest ad condition increases the operational carrying strength of the beam. Computational

procedure and test results are shown. Bibliography: 5 references.

A. V. Dyatlov

Card 1/1

VOYK, V.

A matter of national significance. Sov.profsoiuzy 6 no.17:16-17 D '58. (MIRA 12:1)

POLAND / Farm Animals, Honey-Bees

Q-8

Abs Jour: Ref Zhur-Biol., No 2, 1958, 7258

Author : Jerzy Voyke Inst : Not given

Title | : Bees Do Not Differentiate Between the Larvae

of Drones and Bees

Orig Pub: Pszczelarstwo, 1956, 7, No 5, 1-4 (Pol'sk).

Abstract: The author has observed instances of the establishment by bees of queen cells in honeycombs close to the brood of drones. The queen cells in these cases were in no way different from those usually used by queen bees. From a standard beehive, the entire brood was removed, and from other beehives three frames of sealed and three frames of unsealed broods of bees

were brought in, as well as three frames of unsealed drone broods, which had been obtained

Card 1/2

CIA-RDP86-00513RQ01861120001-1"

Abstract: from a colony of drones who had deposited their unfertilized ova in the cells meant for bees. Three days later, a queen cell was found in the honeycomb of the drones similar to those found in the honeycombs of the bees. In the second experiment, honeycombs with an unsealed brood from the drone colony and from another normal colony were introduced into a normal colony. Three days later, the bees established five queen cells in the bee broods, and six cells in the drones. Conclusion was drawn that bees, during the establishment of queen bee cells, do not distinguish between the broods of the bee and

VOYKHANSKAYA, B. S.

37419. SUKHENKO, F. T. i VOYKHANSKAYA, B. S. Soderzhaniye Vitamina Cv Raznykh Sortakh Pomidorov.-- V Ogl. 2-Y Avt: B. O. Voykhanskaya. Sbornik Rabot Po Voprosam Gigiyeny Pitaniya. Novosibirsk, 1949, s. 128-33.--Bibliogr: 8 Nazv.

SO: Letopis' Zhurnal'nykh Statey, Vol. 7, 1949

SAMSONOV, G.V.; VPDENEYEVA, V.V.; SELEZNEVA, A.A.; VOYKHANSKAYA, E.Ye.

Ion exchange on anion exchangers involving penicillin. Zhur. fiz. khim. 37 no.4:725-729 Ap *63. (MIRA 17:7)

1. Leningradskiy khimiko-farmatsevticheskiy institut.

Voykhanekava. N.F.

Visibility of photospheric flares on the solar disk. Uch. 22cc. IGR (MIPA 18:10) no. 328:120-124, 165.

VOYKHANSKAYA, N.F.

The broadening mechanism of Fraunhofer hydrogen lines. Astron.zhur.
42 no.5:1122 S-0 165. (MIRA 18:10)

1. Leningradskiy gosudarstvennyy universitet, kafedra astrofiziki.

L 5432-66 EWT(1) GW

ACC NR: AT5026210

SOURCE CODE: UR/2703/65/000/328/0120/0124

AUTHOR: Voykhanskaya, N. F.

3/

CRG: Astronomical Observatory, Leningrad State University (Astronomicheskaya observatoriya, Leningradskiy gosudarstvennyy universitet) 55

TITLE: On the visibility of photospheric flares on the solar disk

SOURCE: Leningrad. Universitet. Uchenyye zapiski, no. 328, 1965. Seriya matematicheskikh nauk, no. 39. Trudy Astronomicheskoy observatorii, v. 22, 120-124

TOPIC TAGS: solar photosphere, photosphere, solar flare, solar telescope, solar visible radiation, solar limb, solar disk, temperature gradient, temperature distribution, solar radiation scattering

ABSTRACT: An explanation is given for the visibility of flares for a 200-degree temperature difference between them and the photosphere and for their gradual disappearance in moving toward the center of the solar disk. The relative gradient $\Delta \Phi$ is calculated from the formula

 $\Delta \Phi = \Phi - \Phi_0 = \frac{C_3}{T} \left(1 - e^{-\frac{C_1}{T_0}} \right)^{-1} - \frac{C_2}{T_0} \left(1 - e^{-\frac{C_1}{T_0}} \right)^{-1}$

Card 1/3

09010964

L 5432-66

ACC NR: AT5026210

where Φ_0 is the spectrophotometric gradient at the point of comparison. From this, the spectrophotometric gradient Φ and the temperature T are found. The contrasts are calculated, assuming that the photosphere and a flare radiate as an absolutely black body. The visibility function V_{λ} is calculated by the formula $V_{\lambda} = P_{\lambda}^{\text{inc.}} \eta_{\lambda} v_{\lambda}$,

where P_{λ} is the transmission of the atmosphere, z the zenith distance of the sun, η_{λ} the light losses in the optics of the telescope, and v_{λ} the visibility function of the naked eye. A curve of V_{λ} for the solar telescope of the Astronomical Observatory of Leningrad State University is shown in Fig. 1. Corrections are made for light scattering by the atmosphere. It is found that as a flare moves are made for light scattering by the atmosphere. It is found that it grad-toward the center of the solar disk its visibility is impaired and that it grad-toward the center of the solar disk its visibility is closer to the center it ually disappears. The greater the area of the flare, the closer to the center it can be seen.

Card 2/3

UR/0269/66/000/005/0057/0057 SOURCE CODE: ACC NR: AR6028763. AUTHOR: Yoykhanskaya, N. F. TITLE: Investigation of motion in solar facular plages using K2 and K3 lines of ionized Ca SOURCE: Ref. zh. Astronomiya, Abs. 6.51.452 REF SOURCE: Solnechnyye dannyye, no. 9, 1965, 57-61 TOPIC TAGS: solar facula, solar plage, solar photosphere TRANSLATION: The K2 and K3 Ca II lines from spectrograms obtained by the solar telescope of the Astronomical Observatory of the Leningrad State University (solar image diameter 203 mm, dispersion 0.98 A/mm) were used to measure facular rates v_{r} and turbulence rates $v_{oldsymbol{t}}$ above the faculae. The obtained values of turbulence rates agree with the values previously obtained by V. A. Krat and V. L. Khokhlova. Gradient $v_{f t}$ in the chromosphere above the faculae was determined: it amounts to 7 m/sec per km. ences. M. G. SUB CODE: 03 wc: 523.75 Card 1/1

VOYK	CHOWSKIY, M. YE.	56-4-26/54
AUTHOR:	Voykhanskiy, M.Ye.	in Deformed
TITLE:	Selection Rules for Electromagnetic Transition Nuclei (Pravila othera dlya elektromagnitnykh formirovannykh yadrakh)	
PERIODICAL:	Zhurnal Eksperim. i Teoret. Fiziki, 1957, vol. pp. 1004 - 1009 (USSR)	itions in a badly
ABSTRACT:	The selection rules for electromagnetic transdeformed nucleus are theoretically derived. T	
	a) selection rules for N, n_z , Λ , \leq for election	n _{zi} conditions
	of the multipole order χ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 0 & - \\ & 1 \\ & \frac{1}{2} \\ \hline 0 & \lambda = 2 \\ \lambda = 2 \end{array} $
Card 1/2		

	K KELEASE: 08/09/2001	CIA-KDP86-00513K	
Selection Rules f	or Electromagnetic Transit $\sum_{\mathbf{f}} \frac{\sum_{\mathbf{f}} \Delta \mathbf{A} = \Lambda_{\mathbf{f}} - \Lambda_{\mathbf{i}}}{\sum_{\mathbf{f}} - \sum_{\mathbf{i}}}$	ion in Deformed Nuclei $ \Delta N = N_f - N_i \qquad \Delta n_z $	Additional conditions transitions of
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} \lambda+1, \lambda-1, & \ddots & \lambda & -1 \\ \lambda-1, \lambda-3, & \dots & \lambda & -1 \\ \lambda-1, \lambda-3, & \dots & \lambda-1 \\ \lambda+1, \lambda-1, & \dots & \lambda-1 \\ \lambda-1, \lambda-3, & \dots & \lambda-1 \\ & \pm 1, & \pm 3 \\ & \pm 1 \end{vmatrix} $	$ \begin{array}{c c} 0 \\ +2 \\ +1 \\ +1 \\ -1 \\ 0 \end{array} $ $ \begin{array}{c c} \lambda > 1 \\ \lambda > 1 \\ \lambda = 2 \\ \lambda = 2 \end{array} $
ASSOCIATION: SUBMITTED:	The taking into account or permits to clear up the permits to clear up the permits to transitions. The magnetic transitions. The Leningrad Pedagogical Inspedagogicheskiy institut May 8, 1957 (initially), Library of Congress	re are 4 tables and 2	(Leningradskiy
AVAILABLE: Card 2/2	Library of cons		SIGNATURE OF THE STREET

sov/48-23-2-15/20

21(7)

AUTHORS:

Voykhanskiy, M. Ye., Listengarten, M. A. On the Selection Rules of Conversion Transitions (O pravilakh

othora pri konversionnykh perekhodskh) TITLE:

PERIODICAL:

Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, 1959,

Vol 23, Nr 2, pp 238-243 (USSR)

ABSTRACT:

The conversion probability is determined by the sum of the The conversion probability is describined by since same of the probability is described by and $\langle U_{\gamma} \rangle$. Both internal and external matrix elements $\langle M_{\theta} \rangle$ and $\langle U_{\gamma} \rangle$.

matrix elements are subject to various selection rules. If there is a selection rule according to which the probabilities of internal conversion are not influenced in the case of strong decrease of the probability of y radiation and external conversion, the nucleus largely contributes to conversion and the CIC (coefficients of internal conversion) depend on the nuclear structure. Therefore, CIC measurements may indicate the nuclear structure. Also the problem of selection rules for conversions on forbidden transitions is connected herewith. In the present paper the selection rule is given in a general form for transitions of any multipole order on the basis of asymptotic quantum numbers for the matrix

Card 1/3

SOV/48-23-2-15/20

On the Selection Rules of Conversion Transitions

elements of $\langle \mathbf{W}_{e} \rangle$ internal conversion in nonspherical nuclei. In addition, the selection rule for electric conversion transitions is given more accurately than in reference 5, taking into account the complete term for the nuclear currents of transitions. The influence exercised by the nuclear structure upon the CIC is determined by the quantity of parameter $\lambda = \langle \mathbf{W}_{e} \rangle / \langle \mathbf{U}_{\gamma} \rangle$. In the case of a magnetic 2^{1} -pole radiation the CIC depend only on one parameter λ_{1}^{0} , in the case of electric multipoles they depend on $\lambda_{1}^{(+1)}$ and $\lambda_{1}^{(-1)}$. The obtained selection rules, with respect to the asymptotic quantum numbers, for the matrix elements of inner conversion in nonspherical nuclei are given in table 1 (electric multipole order) and table 2 (magnetic multipole order). For electric dipole conversions it was found that they differ from all other radiation and conversion transitions at small energies by their spin. There are 2 tables and 11 references, 4 of which are Soviet.

Card 2/3

807/48-23-2-15/20

On the Selection Rules of Conversion Transitions

ASSOCIATION: Nauchno-issledovatel'skiy fizicheskiy institut Leningradskogo gos. universiteta im. A. A. Zhdanova (Scientific Research Institute of Physics of Leningrad State University imeni A. A. Zhdanov)

Card 3/3

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001861120001-1

VOYKHANSKIY, M. YE.

AUTHOR:

Voykhanskiy, M.Ye.

56-4-39/54

TITLE:

An Asymptotic Selection Rule for the B-Disintegration of Deformed Nuclei (Asimptoticheskiye pravila otbora dlya B-raspada deformirovannykh yader) (Letter to the Editor)

PERIODICAL:

Zhurnal Eksperim. i Teoret. Fiziki, 1957, Vol. 33, Nr 4, pp. 1054 - 1056 (USSR)

ABSTRACT:

The selection rules of the asymptotic quantum numbers N, n, Λ , Σ , for B-transitions of any degree of interdiction (λ >^1) for the different interaction possibilities are theoretically derived. They are:

possibi lities	matrix elements	K =QΔ= QI	ΔΛ	ΔΣ	Δn _z	ΔN
3, V V	}yλk(r) }yλk(∇)	±λ ±λ	±λ ±λ	0	0	λ, λ -2 ···-λ λ, λ -2 ···-λ
Т, А	(yλ+1K(σ)	$\begin{cases} \pm \lambda \\ \pm \lambda \\ \pm (\lambda+1) \end{cases}$	(±(x-1) (±;x (±;x	\$\frac{\pmatrix}{20} \\ \pmatrix{21} \\ \pmatrix{21} \\ \pmatrix{21} \\ \pmatrix{21} \\ \pmatrix{21} \\ \pmatrix{21} \\ \pmatrix{22} \\ \pmatr	(±1 0 0	} } λ, λ -2 ···-λ

Card 1/2

56-4-39/54 An Asymptotic Selection Rule for the 8-Disintegration of Deformed Nuclei

possibi- lities	matrix elements	к-ДО- Д І	ΔΛ	ΔΣ	Δn _z	Ди
Т, А	<i>γ</i> λ κ[στ]	±λ	∫±(λ−1) (±λ	$\begin{cases} \frac{+1}{0} \end{cases}$	{±1 0	} λ, λ -2····-λ
T	{yλ κ[σ√]		{±(λ−1) {±,λ	$\begin{cases} \frac{+}{0} \\ 0 \end{cases}$	$\left\{\frac{\pm 1}{0}\right\}$	} λ,λ -2····-λ

There are 1 table and 1 Slavic reference.

ASSOCIATION:

Leningrad Pedagogical Institute imeni A.I. Gertsen

(Leningradskiy pedagogicheskiy institut imeni A.I. Gertsena)

SUBMITTED:

July 2, 1957

AVAILABLE:

Library of Congress

Card 2/2

VOYKHANSKIY, M. Ye. Probabilities of radiative transitions in odd and odd-odd deformed nuclei. Izv. AN SSSR. Ser. fiz. 27 no.1:118-124 (MIRA 16:1)

Ja 163.

(Quantum theory) (Nuclei, Atomic)

DZHELEPOV, B.S.; VOYKHANSKIY, M.Ye.; MEDVEDEV, A.I.; UCHEVATKIN, I.F.

On the nature of the 531.8 Kev. level of Er¹⁶⁷.

Dokl. AN SSSR 146 no.4:789-792 0 '62. (MIRA 15:11)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut
metrologii im. D.I. Mendeleyeva. 2. Chlen-korrespondent
AN SSSR (for Dzhelepov).

(Erbium)

(Quantum theory)

```
B/04B/61/025/002/013/016
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        B117/B212
                                                                                                                                               Electromagnetic transitions of multipolaty L = |Ji - Jf|+ 1
                                                                                                                                                        Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, v. 25,
                                                                                                                                            Yoykhanskiy, M. Ye.
                     TEXT: The present paper was read at the 11th Annual Conference on Nuclear 11th Annual Within the scope of spectroscopy (Riga. January 25 to February 2. 1961). Within the scope of spectroscopy (Riga. January 25 to February 2. 1961).
                         TEXT: The present paper was read at the 11th Annual Conference on Nuclear the Top Supplies The Internation of the 11th Annual Conference on Nuclear the 11th Annual Conference on Nuclea
AUTHOR:
      TITLE:
             PERIODICAL:
                                        participating in the transition. (4)

participating in the following holds:
                                                 S(J_{1}LJ_{2}) = Z^{-(1_{1}J_{1}^{-1}I_{2}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{-1}I_{3}^{
                                              parvicipating in the following holds: (4)
of the type EL the following holds:
                                                              (6) g(J_1LJ_2) = \frac{1}{2^2(l_1 - l_2)} \frac{1}{2^2(l_1 - l_2)} \frac{1}{2^2(l_2 - l_2)} \frac{1}{2^2(l_
                                                                          Card 1/6
```

S/048/61/025/002/013/016 B117/B212

Electromagnetic transitions ...

Card 2/6

The function Z(abcd; 1/2 L) in formulas (4), (5), and (6) represents a combination of the Racah coefficient W (abcd; 1/2 L) and the Clebsch-Gordan coefficient (Ref. 3). In the values of the level spin J_1 , J_1 and the multipolarity L are given then the formulas (4)-(6) yield the same result. The statistical numerical values of $S(J_1LJ_1)$ for γ -transitions with $L=|J_1-J_1|$ are given in Table 1 and those for $S(J_1LJ_1)$ for the γ -transitions of the type EL and ML for the multipolarity $L=|J_1-J_1|+1$ are given in Table 2. The mixtures of the type M1 + E2 and E1 + M2 have a special meaning. Considering $S(J_1LJ_1)$ for these transitions leads to various effects, according to the value of the spins J_1 , J_1 of initial and final states. 1) At $J_1=1/2$ or $J_1=1/2$, but $J_1=1/2$ or $J_1=1/2$, the dipole and quadrupole radiation is characterized by the same value of $S(J_1LJ_1)$. 2) At J_1 , $J_1=1/2$ and $J_1=1/2$ taking into account the statistic factor leads to a greater probability (1.2 to 1.7 times greater) of a dipole radiation and a considerably smaller probability (up to 1/20 and higher) of a quadrupole radiation. For transitions with equal

Electromagnetic transitions ...

S/048/61/025/002/013/016 B117/B212

values of the spin $J_i = J_f$ the consideration of $S(J_iLJ_f)$ shows an opposite effect: The probability of a dipole radiation decreases substantially (down to 1/50 and more), the probability of a quadrupole radiation remains practically unchanged. Table 3 gives numerical values of the statistical factor for the transitions $J_i = J_f$. A magnetic multipole radiation $L = J_i - J_f$ is possible for transitions between the following states: Either

 $J_i = l_i + 1/2 \longrightarrow J_f = l_f - 1/2$, or $J_i = l_i - 1/2 \longrightarrow J_f = l_f + 1/2$. Table 4

shows formulas for the dimensionless factor Mµ for four possible types of transitions. J> denotes the largest and J< the smallest values of J_i and J_f It is shown that for magnetic multipole transitions with $L = |J_i - J_f| + 1$ there is a dependence of the transition probability (according to Moshkovskiy) on the level spin J_i and J_f not only in the statistical factor but also in Mµ. According to Weiskopf it exists only in the statistical factor. The electric and magnetic multipole transitions $L_1 = |J_i - J_f|$ and $L_2 = |J_i - J_f| + 1$ are characterized by the statistical factor $S(J_iLJ_f)$ which differs consider—Card 3/6

Electromagnetic transitions ...

S/048/61/025/002/013/016 B117/B212

ably with the exception of $J_1 = 1/2$ or $J_2 = 1/2$. The author thanks L. A. Sliv for the interest. There are 4 tables and 4 references: 2 Soviet-bloc.

ASSOCIATION: Leningradskiy khimiko-farmatsevticheskiy institut (Leningrad Chemicopharmaceutical Institute)

Статистический множитель $S\left(J_{i}LJ_{j}\right)$ для исреходов типа EL и ML с $L=\left\{J_{i}-J_{j}\right\}$

J,				11				7
-,	1/6	%	%	1/e	%	11/8	u/,	• ·
1/g 3/g 5/g 5/g 7/g 9/g 11/g 12/g	-2 3 4 5 6 7	1 7/4 11/7 10/3 44/11 62/13	1 / 6/8	1 9/7 9/7 9/7 5/8 11/11 11116/419	1 4/s 10/y 4/s ———————————————————————————————————	1 15/11 50/23 50/23 15/11 	10/12 225/143 4000/419 223/143 14/13	*

Electromagn	etic tra	nsitions	•••		S/048/6 B117/B2	61/025/0 212	002/013/016	
	C	татистический	мпожитель <i>8</i> с <i>L</i> ≕	(J _t LJ ₁) для J _t -J ₁ +	пореходов т l		лица 2 ; ML	· · · · · · · · · · · · · · · · · · ·
	4	<u>''</u> , '',	· // ₁	J ₁	γ ε.	11/4	10/0	•
	1/a 8/2 6/s 7/8 8/2 11/2 13/4	1 1 2 1/8 3 3/7 2/8 5 10/11 6 18/12 7 7/8	1 3/7 8/35 6/31 10/23 60/143 7/13	1 1/2 1/7 1/2 15/231 18/49 28/143	1 4/11 8/11 90/11 1/2 19/143 45/419	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 1/s 2/13 29/143 51/439 6/143	
Card 5/6								. 21
		an an ann an						2:

 Cı	атисти	ческий	множите	ль S(JL	J) nan nej	режодов м		яда 3 , голявяня	t.		,
·				, , ,		. 11 m l		* 1	•		V
 	L	1/8	1/a	1/1	1/0	1/2	11/2	19/9			
2	1 2	1	1/s 1	3/23	1/21 25/21	1/23 60/23	2/100 175/143	1/63 16/19			: '
			•					Таблиц M_{μ} для четырех вореходов магнятного	3N0%-	10	:
						14	3,	ν _μ			. •
				•		1 ₄ 41	l/s l _f =1/	$ \left\{ \begin{array}{l} \frac{1}{2} \\ \frac{1}{2} \\ \end{array} \right\} = \left[\mu_p L - \frac{L}{L+1} \right] $ $ \frac{1}{2} (J_> + 1)^2 \left[\mu_p + \frac{2J_>}{L} \right] $]		
	•					l_i+1	1/2 1/+1/	$\left(J_{>}+1\right)^{2}\left[\mu_{p}+\frac{2J_{<}}{L}\right]$	-		
Card	6/6	•	•			I ₄ ¹	1/2 1,-1/	$J_{<}^{2} \left[\mu_{p} - \frac{2J_{>} + I_{>}}{L + I_{>}} \right]$	3]		•

VOYKHANSKIY, M.Ye.

Dependence of the probability of garma-radiation of nuclei on the moments of state involved in transitions. Izv.vys.ucheb. zav.; fiz. no.3:103-108 61. (MIRA 14:8)

1. Leningradskiy khimiko-farmatsevticheskiy institut.
(Gamua rays) (Nuclear reactions)

VOYKHANSKIY M.YE.

BR

PHASE I BOOK EXPLOITATION

sov/5914

Akademiya nauk SSSR. Fiziko-tekhnicheskiy institut im. A. F. Ioffe

Gamma-luchi (Gamma Rays) Moscow, Izd-vo AN SSSR, 1961. 720 p. Errata slip inserted. 3300 copies printed.

Sponsoring Agency: Akademiya nauk SSSR. Fiziko-tekhnicheskiy institut im. A. F. Ioffe.

Resp. Ed.: L. A. Sliv, Doctor of Physics and Mathematics; Ed. of Publishing House: N. K. Zaychik; Tech. Ed.: A. V. Smirnova.

PURPOSE: This book is intended for theoretical and experimental physicists working in the field of nuclear spectroscopy and in related fields where gamma rays are utilized. It may also be useful to advanced students of physics.

COVERAGE: The book, representing a symposium of papers whose authors are specialists in their areas, attempts to provide the fullest possible coverage of theoretical and experimental methods of

Card 1/14

Gamma Rays			sov/5	914
determining nuclear game of gamma rays to study of the book contains a largeraphs and can be used to personalities are metals.	matter, parti ge number of	tables, graphs,	and nomo-	as.
TABLE OF CONTENTS [Abridge	d]:			
Foreword				3
PART 1. NUCLEAR RAD	IATIVE TRANSI Ye. Voykhans	TIONS IN A SHEI kly)	T WODET	
Ch. 1. Gamma Radiation of	Nuclei			5
Ch. 2. Radiative Transiti	ons in a Sing	le-Particle She	ell Model	9
Ch. 3. Formulas and Nomog				20
Card 2/14				

s/058/62/000/008/015/134 A061/A101

AUTHOR:

Voykhanskiy, M. Ye.

TITLE:

Nuclear radiative transitions in the shell model

PERIODICAL:

Referativnyy zhurnal, Fizika, no. 8, 1962, 34, abstract 8B242 (In collection: "Gamma-luchi", Moscow - Leningrad, AN SSSR, 1961,

The present review (intended primarily for experimenters) contains detailed calculations of the single-particle electromagnetic transition probabilities with tables and nomograms, and a synopsis of selection rules for singleparticle and many-particle transitions.

v. Neudachin

[Abstracter's note: Complete translation]

Card 1/1

5/058/62/000/008/016/134 A061/A101

AUTHOR:

Voykhanskiy, M. Ye.

TITLE:

Radiative transitions in the generalized nucleus model

PERIODICAL: Referativnyy zhurnal, Fizika, no. 8, 1962, 34 - 35, abstract 8R243 (In collection: Gamma-luchi, Moscow - Leningrad, AN SSSR, 1961,

44 - 84

The present review (intended primarily for experimenters) contains detailed formulas for the collective and single-particle transition probabilities in deformed nuclei, and tables of eigenfunctions and energy eigenvalues for the problem of proton motion in a single-particle deformed potential field for shell N=5 (i.e., for nuclei with Z>82). A synopsis of selection rules for asymptotic quantum numbers is given, and tables are compiled for the Clebsch-Gordan coefficients.

V. Neudachin

[Abstracter's note: Complete translation]

Card 1/1

8/048/61/025/002/015/016 B117/B212

AUTHORS:

Voykhanskiy, M. Ye. and Peker, L. K.

Selection rules for beta and gamma transitions on odd-odd

TITLE:

nuolei

PERIODICAL:

Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, v. 25,

no. 2, 1961, 297-308

TEXT: The present paper was read at the 11th Annual Conference on Nuclear Spectroscopy (Riga, January 25 to February 2, 1961). It deals with the asymptotic selection rules and their significance for beta and gamma transitions. The authors have shown that transitions in such nuclei exhibit a number of peculiarities, as compared to transitions in nuclei with an odd A. The beta and gamma transitions in odd-odd nuclei may be divided into two groups (Ref. 9). Transitions between states of the same binding scheme

 Ω_1 = Ω_{1i} \pm Ω_{2i} \rightarrow Ω_f = Ω_{1f} \pm Ω_{2f} are called transitions of the first class. Transitions between states of a different binding scheme

Card 1/14

S/048/61/025/002/015/016 B117/B212

Selection rules for ...

 $\Omega_1 = \Omega_{11} \pm \Omega_{21} \rightarrow \Omega_f = \Omega_{1f} \pm \Omega_{2f}$ are called transitions of the second class by the authors. Experimental data on the beta-transition probability (log ft) in odd-odd nuclei are given in Table 2 for deformed nuclei, and in (log ft) in odd-odd nuclei. These data are divided into groups according Table 3 for spherical nuclei. These data are divided into groups according to the transition classes and the order of forbiddenness. They show that beta transitions of the second class are, as a rule, marked by larger log ft values. In both classes those transitions are strictly separated which, according to Λ (j or 1), are allowed or forbidden. At present, an analysis of gamma transitions in even-even nuclei is practically an analysis of isomeric transitions of $L \geqslant 2$. Table 4 gives experimental data for isomeric transitions of the second class in deformed nuclei. In

transitions of the second class in deformed nuclei. In 22 24 158 174, and 95 147, these transitions connect 11 11, 11 13, 65 1593, 71 103, and 95 147, these transitions in both interlinks of a doublet. With the exception of gamma transitions in 11 12 and 11 13, where there is no forbiddenness, all the other transitions are greatly delayed. This delay may be influenced by the Aforbidtions are greatly delayed. This delay may be influenced by the Aforbiddenness should be found for gamma transitions of the second class, with redenness should be found for gamma transitions of the second class, with re-

Card 2/14

s/048/61/025/002/015/016 B117/B212

Selection rules for ...

spect to j or l. It is illustrated by data on transition probabilities of the M4-type. In this case, transitions are only forbidden if the binding scheme changes. The established data point to a strong influence of the A (j of l) selection rules for beta and gamma transitions in nuclei with even A. It is therefore possible to apply for the transition characteristic of odd-odd and even-even, deformed and spherical nuclei not only I, $K,\Omega(I,j)$ but also the quantum numbers A (j or 1). This conclusion agrees with information in Ref. 8 where it was shown that the introduction of asymptotic quantum numbers Λ , Σ is of significance for the classification of the moments of state of odd-odd nuclei. The authors thank M. A. Listengarten for discussing the paper. There are 5 tables and 21 references: 8 Sovietbloc.

ASSOCIATION: Nauchno-issledovatel'skiy fizicheskiy institut Leningradskogo gos. universiteta im. A. A. Zhdanova (Scientific Research Institute of Physics, Leningrad State University imeni

Leningradskiy khimiko-farmatsevticheskiy institut (Leningrad Chemicopharmaceutical Institute)

s/048/61/025/002/015/016 B117/B212 Selection rules for ... Legend to the Tables: 1) parent and daughter nuclei; 2) energy of the daughter-nucleus level; 3) allowed transitions of first class; 4) allowed transitions of second class; 5) once forbidden first-class transitions; 6) once forbidden second-class transitions Таблица 2* В-Пероходы в деформированных ядрах с четным А Энергия уровия дочернего ядра 2 E. keV 1g /t $I_1K_1\pi_1$ $I_{i}K_{i}\pi_{i}$ Исходное и дочернее паро 3 Разрешению переходы I класса $\Omega_1 - \Omega_2 \rightarrow \Omega_1 - \Omega_1$ 4,8 428 í 6,3 92Np240 → 94Pu240 × 118 ... 44 10 10

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1

Selection rules for B	/048/61/025/002/015/016 1117/B212	
9. Разрощениы переходы 11 кл $_{65}^{152}$ $\rightarrow _{63}^{152}$ $\rightarrow _{63}^{152}$ $\rightarrow _{63}^{152}$ $\rightarrow _{64}^{153}$ $\rightarrow _{64}^{154}$	- 1531 ~10 - 1500 ~10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	О ва	/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0 6,8 + 0 7,1 + 1030 7,7 + 1030 6,2 1071 6,6	
Card 5/11, $0.00^{240}_{148} \rightarrow 0.00^{240}_{147}$ 0 0 + 1. 1.	to the transfer of the second	

	· · · · · · · · · · · · · · · · · · ·				· • · · · · · · · · · · · · · · · · · ·
	•	. 1	· · · · · · · · · · · · · · · · · · ·	1	
Selection	rules for	·	S/048/61/03 B117/B212	25/002/015/016	
	2NP247 → 04Pu240		0 + 0	6,7 7,2 6,9 7,1 6,8	
	300				
	212 → 2Cm ²¹²	$ \begin{bmatrix} 1 & 0 & - & 0 \\ 1 & 0 & - & 2 \\ 1 & 0 & - & 2 \end{bmatrix} $		7.1 6.8	
	$_{48}Am_{147}^{242} \rightarrow _{84}Pu_{148}^{242}$ $_{28}Am_{149}^{244} \rightarrow _{86}Cm_{148}^{244}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 + 0 44,5	~7,6 7,3	-5
	6 Олнонов	THOSENNAMARRA	о переходы II клас	~6,3	
	43Eu ¹⁵² → 42Sm ¹⁵²	$\begin{bmatrix} 3 & 3 & - & & 2 \\ 3 & 3 & - & & 3 \end{bmatrix}$	2 + 1 1087 2 + 1 1235	9.5 9.7	, /
	$\epsilon_{3}Eu_{80}^{152} \rightarrow \epsilon_{3}Sm_{80}^{152}$ { $\epsilon_{3}Eu_{91}^{154} \rightarrow \epsilon_{4}Gd_{80}^{154}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 + 990 2 + 1128	11,6 11,0	(1)
		1 -		•	
Card 6/14	Samuel en manifestation de la company de	in the second second of the second			1
			The second secon	** ** **	
		and the second s			

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1

	rules for / // Исходное в нонечное ядро	TABLE	र्वे गुन्	Энергия уров- ия дочернего идра Е, keV	1 c //	ī
		2	3	4	5	:
	З. Разрошоппис.	переходы 1	иласса /1	$-l_1+a\rightarrow l_1-$	ls .	
	₈ B ₇ ¹² → ₆ C ₆ ¹²		0 + 2 + 0 +	4400 7660	4.2 5.1 4,2	1
	$_{10}\mathrm{Ne}_{14}^{24} \rightarrow _{11}\mathrm{Na}_{13}^{24}$	0 +	1 +	472	4,4	
	$_{13}\text{Al}_{13}^{26} \rightarrow _{13}\text{Mg}_{14}^{26}$	0 +	0 +	0	3,5 7,9	
	$_{15}P_{17}^{32} \rightarrow _{16}S_{16}^{32}$	1+	0 +	0	6,7	
	14Si ₁₈ -> 15P ₁₇	1 +	0 +	0	5,1 4,7	
	$_{13}P_{19}^{31} \rightarrow _{16}S_{18}^{31}$ {	1 +	2 +	2127	3,5	
	$_{19}^{17017} \rightarrow _{18078}^{18073}$ $_{19}^{38} \rightarrow _{18}^{38}^{38}$	0 +	0 +	0	3,4	V 3
	$_{21}Sc_{21}^{42} \rightarrow _{20}Ca_{22}^{42}$	· · · · · ·	0,+	0	3,0	
Card 7/14	21Sc23 - 20Cn24	3 +	2 +	1130	5,3 3,5	

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1

		and a second second second		and the second	s/048/61	/025/00	2/015/016	and the second
s.	election r	ules for			B117/321	2	3,5	
		25Mn ⁵⁰ → 25Cr ²⁰ 25V ⁵² → 24Cr ⁵²	0 2	$\begin{array}{c c} + & 0 \\ + & 2 \end{array}$	+	1460 ·	5,5	45
		13 - 14 C7 52 13 Mn 52 - 14 C7 28	· · · · · · · · · · · · · · · · · · ·	+ 3 2 4 3 7 7 2 4	+	1460	5,3 3,5	
		17Co27 - 14Fo28	in the transfer of a tr	+ 0	+	814	6,8	
		27C031 → 26Fe32		+ 2	, i	1820 1330	7,5 7,2	4.5
		27Co ₃₃ → 21Nl ₃₂ 22Cu ₃₃ → 21Nl ₃₆	outlies to 1/2 at 1/2 a	1 0	1	0 1340	5,0 5,0	
		29Cu ⁶⁴ → 30Zn ⁶⁴	off sparing and the property of the property o	4 , 0,	+ ,	0	5,2 3,9	
		24 Ni 38 → 29 Cu 37		+ 0	+ '	0 1050	5,4 5,6	51
		29 Cu ⁶⁶ ₃₇ → 20 Zn ⁶⁶ ₃₆ 31 Ca ⁶⁶ ₃₅ → 20 Zn ⁶⁶ ₃₀	14. 45 (1) 4 (1) 14. 27. 14. 15 (1) 0	+ 2 + 0	+	0 0	7,8	· ·
		31Ga 35 → 30Zn 38	roman de la	† 0 2	# 1	0 1020	5,2 5,3	
		21Ga ⁷⁰ → 22Ge ⁷⁰		+ 0	#	1038	5,1 5,6 5.9	· · · · · · · · · · · · · · · · · · ·
		-Be78 Se78	e gratis 7 Paris 1.	+ 0	+	0	4,4	
	Card.8/14	25Br ₄₅ → 24Se ₄₆	4	+ 0	+	. 0	4,6	
	ere en			4,				

Card 9/14	Selecti	on rules 1 ${}_{35}Br_{45}^{82} \rightarrow {}_{36}Ki$ ${}_{37}Br_{45}^{82} \rightarrow {}_{37}Ki$ ${}_{43}Tr_{51}^{94} \rightarrow {}_{45}Mi$ ${}_{43}Rh_{53}^{93} \rightarrow {}_{44}Ri$	82 7 10 - (10 10 10 10 10 10 10 10 10 10 10 10 10	1 + 1 + 1 + 2 +(3+) 2 +	S/B1 0 + 2 + 0 + 2 + 2 +	048/61/029 17/B212 0 620 0 870 660	5,5 5,6 4,3 5,4 4,9	5/016	
				•				1	
						V de la companya de l			
		•			•	٠,			
								•	
						•			

gelection :	rules for			/61/025/002/ 0212		
	Пеходное в нопечное ядро	I ₁ × ₁	I s o n	нца 3 (продоля до	1g /t	
Card 10/1	$\begin{array}{c} 1 \\ 44Rh_{50}^{104} \rightarrow 46Pd_{58}^{104} \\ 44Rh_{61}^{106} \rightarrow 46Pd_{50}^{106} \\ 47Ag_{50}^{106} \rightarrow 46Pd_{60}^{106} \\ 47Ag_{50}^{103} \rightarrow 46Pd_{60}^{108} \\ 47Ag_{61}^{103} \rightarrow 46Pd_{62}^{108} \\ 47Ag_{61}^{103} \rightarrow 46Cd_{60}^{108} \\ 48In_{50}^{103} \rightarrow 44Cd_{60}^{108} \\ 47Ag_{63}^{110} \rightarrow 44Cd_{60}^{108} \\ 49In_{65}^{114} \rightarrow 46Cd_{66}^{114} \\ 49In_{65}^{114} \rightarrow 46Cn_{66}^{114} \\ 40In_{65}^{114} \rightarrow 4$	1 + + + + + + + + + + + + + + + + + + +	0 + + 0 + + 0 + + 0 + + 0 + + 0 + + 0 + + 0 + + 0 + + 0 + + 0	0 556 0 513 0 513 0 430 1030 0 637 637 0 056 0	4.5 5,8 5,2 6,4 4,9 5,2 4,8 6,0 4,8 4,0 6,0 5,1 4,5 4,6 4,5	

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1

en de grande de		e de la companya de l			
	Selection	rules for		S/11,8/61/025/002/015/016 B117/B212	3
		40 In 116 - 80 Su 116	1 +	0 + 0 5,0	
		$_{51}\mathrm{Sb}_{69}^{120} \rightarrow _{50}\mathrm{Sn}_{70}^{120}$	{	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
		11 ¹²⁸ → 11 ¹²⁸		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		• * ·	1 1 1	A 1 84	•
		, 43J ₇₅ → 54Xe ₇₄ ·		2 + 990 6,6	
		ssCe ¹²⁸ → s4Xe ¹²⁸		0 + 0 4,8	•
		1 55 Cs ¹³⁰ → 54 Xe ¹³⁰		0 + 0 3,1	
		ssCs130 → ssBa74	1 +	0 + 0 4.3	
		59Pr ₈₁ ¹⁴⁰ → 14Ce ₈₂ ¹⁴⁰		If unacconditable $a \rightarrow b = b$:
		Paspeme (Cs → 7N7	ениме переходи	1 1 + 1 0 9,0	
		${}_{3}O_{0}^{16} \rightarrow {}_{7}N_{7}^{16}$	0 +	1 + 0 7.8	
		10Ne ₈ ¹⁸ → •F ¹⁸	0 +	1 + 0 2,9	•
1		$_{9}F_{9}^{18} \rightarrow _{8}O_{10}^{18}$	1 +	0 + 0 3,8	
	Card 11/14	•			
		V 12			•

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1

Selection	on rules for	S/11.8/61/025/002/015/016 B117/B212	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 + 1280 7,3 3 + 5230 6,8 2 + 1790 4,9 2 + 1790 4,9 0 + 0 5,0 2 + 2240 5,4 2 + 2127 6,1 2 + 2150 5,0 4 + 2310 6,1 2 + 835 6,1	
Card 1	2/14		

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16		11,B/61/025/0 17/Б212 блица 3 (око	and the second s		or	ion rules fo	Selecti	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2		Igne	одка эопропом			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7		5		3			IlCXOAAA		
	-		5,2 6,6 .6,5		2 + 0 + 1 - 1 - 0 +	2 - 0 - 0 + 0 +	₁ Pb ²⁰⁵ ₁₂₄ ₁₃ Bi ²¹² ₁₂₃ ₁₃ Bi ²¹⁴ ₁₃₁	$_{s_1}Tl_{125}^{205} \rightarrow s_2$ $_{s_2}Pb_{130}^{214} \rightarrow s_3$ $_{s_2}Pb_{132}^{214} \rightarrow s_4$		
Card 13/14								3/ग्री	Card 13	

		Sel	ection	rules	for				s/ m	/11 ₁ 8/61/0 .17/B212	0 25/002/ 015/	'o16	
					Поомерн	мо переходы ночотно	II RAGE	со в деф корди хы	оринро	блица 4 наиных •			
				•	Ядро	τ_{γ_1}	E _y .	Тип перехода	-ΔK-	$F = \frac{T_{\text{prict}}}{T_{\text{reop}}}$	-		
Commence of the parameter state of the contract					11No 22 11No 24 11No 24 11No 24 11No 25 11So 11S	0,228.10-4 cor 0,02 cor >9,2 час 5,0 час 11 сог >5 час	593 472 50 88,4.	E2 M3 M3 E3 M3 E3	1 0 0 0	~10 ³ ~1 >5·10 ⁴ ~10 ⁸ ~10 ⁸ >10 ⁸	•	•	
東京第1号の「製作の学生でである」 1999年の第1号のではなった。					**************************************	165 дц 152 гол	50 48,6	М3	2	10°			
		Card	ת/ית ו								· ·		

Selection rules for electromagnetic transitions in deformed nuclei. Zhur. eksp. i teor. fiz. 33 no.4:1004-1009 0 57. (MIRA 11:1)	· •
1. Leningradskiy pedagogicheskiy Institut im. Gertsena. (Nuclei, Atomic)	

Voy KHZNSKIY M.Ye. Asymptotic selection rules for the beta decay of deformed muclei. (MIRA 11:1) Zhur. eksp. i teor. fiz. 33 no.4:1054-1056 0 157.

1. Leningradskiy pedagogicheskiy institut im. A.I. Gertsena. (Nuclei, Atomic-Decay)

VOUR ANTOSIA

VOYKHANSKIY, M. Ye. Cand Phys-Math Sci -- (diss) "On principles defined for the selection of Beta and Gamma transitions in strained nuclei."

Len,1958. 10 pp. (Min of Higher Education. Len State Ped Inst im A. I. Gertsen. Chair of Theoretical Physics.)

100 copies.

(KL, 8-58, 103)

-1-

7	կև950	
	8/048/63/027/001/039/043 B108/B180	
24,6410 AUTHOR:	Varbhanakiv. M. Ye.	
TITLE:	The probabilities of radiation transitions in odd and	
PERIODICAL:	Akademiya nauk SSSR. Izvestiya. Seriya fizicheskaya, v. 27 no. 1, 1963, 118-124	
functions of	formulas derived by S. Nilsson for the probability of radiative involve very cumbersome computations. The internal wave involve very cumbersome represented as an expansion with f the deformed nucleus were represented as an expansion with the eigenfunctions of the isotropic harmonic oscillator. The the eigenfunctions of the isotropic harmonic as based on a representation through the asymptotic quantum of n , Λ , which are associated with the anisotropic harmonic n , Λ , which are associated with the anisotropic harmonic	V
numbers n _z ,	It results in the expansion $\chi_{N\Omega} = \sum_{n_z \in A_{n_z} \in A_{n_z}} \psi_{n_z n_o \Delta \Sigma}$ (cf. also	
A. Rassey.	Phys. Rev., 109, 949 (1958)). The radiative transitions are	
Card 1/3		
The factors of the control of the		

S/048/63/027/001/039/043 B108/B180

The probabilities of radiation ...

considered with the aid of these wave functions. In this representation the selection rules can be introduced more easily than in Nilsson's calculations and the resulting expressions are simpler. Results: the transition probability for odd nuclei is

$$w_{\gamma}(EL) = \frac{\ln 2}{T_{f_{\alpha}}^{(\gamma)}} = \frac{2(L+1)}{L(2L+1)} \frac{e^{2}}{\hbar e} 8_{L}^{2} \frac{1 - (|k| - \frac{9}{6}L) e}{(L+k) (L-k) 1} \times \frac{E_{\gamma}^{2L+1}}{\hbar (\hbar \omega_{0})^{L} (me^{0})^{L}} [C_{f_{\alpha}K_{1}^{\gamma}Lk}^{f_{\alpha}K_{1}^{\gamma}Lk}]^{2} G_{BL}^{4}, \qquad (25)$$

(transition with multipolarity EL from the state I_1 ; $\Omega_1 = K_1$, π_1 , N_1 , n_2 , Λ_1 , Σ_1 into the state I_1 , Ω_1). Σ_L is a factor accounting for the recoil effect.

$$G_{BL} = \sum_{n_{xi}, n_{xj}, n_{xi}+L-|k|-nn} \sum_{A_i, A_j} \delta_{A_j, A_i+k} \sum_{E_j, E_i} \delta_{E_i, E_j} \times A_{n_xi} A_{n_{xi}E_i} \left\langle n_{xj} \right| g^{L-|k|} \left| n_{xi} \right\rangle - \frac{3-2s}{9} \delta_{k,0} \delta_{L,n} \times \left\langle n_{sj} A_j \right| p^{|k|} \left| n_{si} A_i \right\rangle$$
(22)

Card 2/3

S/048/63/027/001/039/043 B108/B180

The probabilities of radiation .

For an odd-odd nucleus, the reduced transition probability differs from that of an odd nucleus only by a factor of) $\chi_{\hat{\Omega}_1}$ $\chi_{\hat{\Omega}_1}$ $d\tau_1$, which

contains the wave functions of the nucleon not involved in the transition. The factor GEL for odd-odd nuclei has the form

$$G_{EL} = \sum_{n_{2f}, n_{2i}} \delta_{n_{2f}, n_{2i} + L - |k| - 2m} \sum_{\Lambda_{i}, \Lambda_{f}} \delta_{\Lambda_{i} + \Lambda_{f}, |k|} \sum_{\Sigma_{i}, \Sigma_{f}} \delta_{-\Sigma_{f}, \Sigma_{i}} \times A_{n_{2f}\Sigma_{f}} A_{n_{2i}\Sigma_{i}} [\langle n_{2f} | z^{L - |k|} | n_{2i} \rangle - \frac{3 - 24}{9} \delta_{R, 0} \delta_{L, 0}] \times \times \langle n_{ef} \Lambda_{f} | p^{|k|} | n_{ei} \Lambda_{i} \rangle.$$
(29)

The corresponding formulas for magnetic transitions will be published in a later paper. This paper was read at the 12. Annual Conference on Nuclear Spectroscopy, Leningrad, January 26 - February 2, 1962. 1 table.

Card 3/3

"APPROVED FOR RELEASE: 08/09/2001 CI

CIA-RDP86-00513R001861120001-1

USSR/Ruclear Physics - Beta-Decay

Nuclear Physics - Hydrogen Isotope

"The Problem of Beta-Disintegration of H3," N. Ye.
Voykhanskiy, B. 3. Exhelepov, L. A. Sliv, Ieningrad State U imeni A. A. Zhdanov, 3 pp

"Dok Ak Mauk SSER" Vol LNVI, No 5

All "mirror" nuclei, type 125-1, form a compact group of permissible beta-emitters; their theory ocmeans properties of type 125-1 beta-emitters, upper limits of which change from 13 keV to 5,000 keV and the period from one second to 4,10 seconds. Submitted by Acad P. I. Lukirskiy, 13 Apr 19.

50/45737

VOYKHANSKIY, M. Ye.

Electromagnetic transitions of multipolarity $L=|J_{c}-J_{F}|+1$ Izv. AN SSSR. Ser. fiz. 25 no.2:283-286 P 161. (MIRA 14:3)

1. Leningradskiy khimiko-farmatsevticheskiy institut. (Nuclei, Atomic)

VOYKHANSKIY, M. Ye.; PEKER, L.K.

Selection rules for β and Δ transitions in odd-odd nuclei.

Izv. AN SSSR. Ser. fiz. 25 no.2:297-308 P :61. (MIRA 14:3)

1. Nauchno-issledovatel'skiy fizicheskiy institut Leningradskogo gosudarstvennogo universiteta im. A. Zhdanova i Leningradskiy khimiko-farmatsevticheskiy institut.

(Nuclei, Atomic)

"APPROVED FOR RELEASE: 08/09/2001 CIA-RD

CIA-RDP86-00513R001861120001-1

L 06496-67 ACC NR. AP7000460 UR/0367/66/004/001/0066/0071 SOURCE CODE: VOYKHANSKIY, M. Ye.: LISTENGARTEN, M. A.: FERESIN, A. P. Problem of Penetration Effects in Internal Conversion" Moscow, Yadernaya Fizika; July, 1966; pp 66-71 ABSTRACT: Anomalies in internal conversion coefficients are connected with the difference in the selection rules for y'-transitions and conversion transitions, due to the penetration of an electron into the nucleus. In cases when the first terms in the expansion of the penetration conversion matrix elements are negligible, higher terms play a significant role, and selection rules with respect to asymptotic quantum numbers are obtained for them. Orig. art. has: 7 formulas and 1 table. Based on authors' Eng. abst. JPRS: 37,330 ORG: Leningrad State University (Leningradskiy gosudarstvennyy universitet) TOPIC TAGS: gamma transition, nuclear physics SUB CODE: 20 / SUBM DATE: 07Jul65 / ORIG REF: 014 / OTH REF: 012

Card 1/1 加足

•	81 (A)	SOURCE CODE:	UR/0413/66/000/003/0059/	0059
AUTHOR: Konsta	ntinov, V. N.; Ser	menov. V. G.; Yoykh	anskiy, P. O.; Fedoseyev	. V. I.
ORG: none TITLE: Unit for [Announced by the Machinery (Nauch	r longitudinal ori he <u>Scientific Rese</u> hno-issledovatel's	lentation of a polymerch Institute for skiy institut khimi	mer film. Class 39, No. the Construction of Che cheskogo mashinostroyeni arnyye zneki, no. 3, 196	178485 mical ya)]
ABSTRACT: An Autudinal orientative retarding rolls	uthor Certificate tion of polymer fi and another set o and control its d	ims. The machine if pulling rolls. The formation rate on	scribing a unit for the is equipped with one set to reduce the transverse	of shrink-
be heated up, is	THREATTED DELMEST	both the pulling a lim in the vertical	und retarding rolls and a	quipped
be heated up, is with a mechanism	THREATTED DELMEST	i both the pulling a lim in the vertical	und retarding rolls and e	(LD)
be heated up, is with a mechanism	i for moving the f	i both the pulling a lim in the vertical	and retarding rolls and e	quipped
be heated up, is with a mechanism SUB CODE: 14/ film processing	i for moving the f	i both the pulling a lim in the vertical	plane.	quipped

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1"

Wounting four-jaw chucks on the tailstock of lathes. Mashinostroitel' no.2:33-34 7 '58. (Chucks)

VOYKHANSKIT, YED,

AUTHOR:

Voykhanskiy, Ye.D., Engineer

117-2-17/29

TITLE:

Fixture for Attaching a Four-Jaw Chuck on a Tailstock (Ustanovka chetyrekhkulachkovogo patrona na zadney babke stanka)

PERIODICAL: Mashinostroitel', 1958, # 2, p 33-34 (USSR)

ABSTRACT:

The described fixture - used at the plant "Ekonomayzer" serves for attaching four-jaw chucks on lathe tailstocks. The four-jaw chucks provide a more rigid hold than the usual tailstock center and so relieve the vibration of the workpiece, which permits better utilization of the lathe capacity. This fixture also eliminates some operations, which can be seen in the example of machining a 1550 mm long, 270 mm diameter supercharger gear which formerly had to be positioned on a boring tool for milling the face surfaces, then to be removed and positioned on the indexing plate for indexing. Then the center holes had to be drilled on a radial drilling or a boring machine, and ohly after that could the gear blank be positioned on a lathe for further machining. The tailstock fixture for four-jaw chuck has made all these operations unnecessary:

There is 1 drawing.

AVAILABLE:

Library of Congress

Card 1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1" YERMILOV, Valentin Georgiyevich; VOYKHANSKIY, Yb.A., redaktor; DIZHUR, I.M. redaktor izdatel stva; TIKHONOVA, Ye.A., tekhnicheskiy redaktor

[Regulating steem distribution in marine steam powered machinery]
Regulirovanie paroraspredeleniia sudovykh parovykh mashin. Moskva,
Izd-vo "Morskoi transport," 1956. 129 p. (MLRA 10:4)

(Steam engineering) (Marine engines)

YOYKIN, G., slesar'

Increasing the durability of plunger pairs of pump and injector units. Avt. transp. 37 no.4:49-50 Ap 159. (MIRA 12:6)

1. Avtotransportnaya kontora No.5 avtotresta Glavleningradstroya.
(Diesel engines--Fuel systems)

VOYKIN, E. M., Cand Biol Sci (diss) -- "Forms of phosphates, the absorption and transformation of phosphorus fertilizers in the soils of the Tatar ASSR".

Kazan', 1959. 17 pp (Min Higher and Inter Spec Educ RSFSR, Kazan' Order of Labor Red Banner State U im V. I. Ul'yanov-Lenin), 150 copies (KL, No 10, 1960, 128)

Country : USSR

Category: Soil Science. Physical and Chemical Properties of Soil.

Abs Jour: NZhBiol., No 18, 1958, No 82096

Author : Madanov, P.V.; Voykin, L.M.

Inst : Kazen Univ.

Title : Absorption of PO4 Anion by Some Soils of the Tatar

Region.

Orig Pub: Uch zap. Kazansk un-ta, 1956, 116, No 5, 175-180

Abstract: Black earth and podzolic types of soil in the Tatar

region had a high absorption capacity for water soluble phosphates ($KH_2PO_{\downarrow_i}$), especially carbonates of black earth and cinnemon-gray soils. Strongly podzolic soils had the smallest absorbing capacity. The

Card : 1/2

VOYKIN, L.M.

USSR/Cultivated Plants - Grains.

M-2

Abs Jour

: Ref Zhur - Biol., No 20, 1958, 91621

Author

: Voykin, L.M.

Inst

: Kazan University

Title

: Influence of Pre-Sowing Treatment of Seeds with KH2POL

Solution on the Yield of Spring Wheat.

Orig Pub

: Uch. zap. Kazansk, un-ta, 1957, 117, No 2, 250-253.

Abstract

: The moistening of Lutescens 62 spring wheat seeds (laboratory tests) in KH₂PO₄ solution of 0.1 N concentration caused a boost in the above-ground and root mass of the crop by 1⁴ - 16% in comparison with the control (moistening in water). In the field experiments of 195⁴ - 1956, the same treatment increased the yield, averaging 1.0⁴ centner/hectare or 10.2% in three years. -- M.V. Dranishnikov.

Card 1/1

voykov, v. i.

USSR/Chemistry Synthesis

Card

2 1/1

Authors .

Petrov, A. D., Ponomarenko, V. A., and Voykov, V. I.

Synthesis and properties of alpha- and gamma-mothylallyl silanes

Periodical

Izv. AN SSSR, Otd. Khim. Nauk., 3, 504 - 510, May - June 1954

Abstract

The synthesis of alpha- and gamma-methylallyl silanes in accordance with the Grignard-Wuertz reactions and by the utilization of crotyl halides, which calls for the study of the allyl regrouping of the halides, is described. The ability of these new type alkenyl silanes (with H-atom in the silicen) to rhodanize in the case of diluted solutions was determined by their chemical properties. The physical properties of these unsaturated hydrocarbon cilicates compared with the properties $\circ \mathbf{f}$ homologous olefins, are given in a table. Eight references: 5 USSR,

3 USA. Table, graphs.

Institution : Acad. of Sc. USSR, The A. D. Zelinskiy Institute of Crf. Cherdstry

Submitted

: July 17, 1953

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1"

WOYKIN, A.M., inzhener; TUROW, M.G., inzhener.

Primites of working out the technical designs of building pachinery parts and units. Stroi. i dor. mashinostr. 1 no.4:33-34 Ap *56.

(Building machinery)

(Building machinery)

MADANOV, P.V.; VOYKIN, L.M.

Madanov, P.V.; V

	Ио	We thod for determining the sum of exchangeable bases (Ca and Mg) in carbonaceous soils. Uch.zap.Kaz.un. 114 no.1:73-78 154.								
	1.	Kafedra pochy (Soils-Ans	ovedeniya. lysis) (Cal	cium) (Mag	gne sium)	(MLRA 10:3)			

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1"

MADANOV, P.V., prof.; VOYKIN, L.H., assistent; VOZOVIK, I.S., inzh.

Plow attachment for the placement of mineral fertilizers at the time of plowing. Zemledelia 7 no.12:80-81 D '59.

(MIRA 13:3)

1. Kazanskiy gosudarstvennyy universitet imeni V.I.Ul'yanova-Lenina (for Madanov, Voykin). 2. Kazanskaya gosudarstvennaya sel'skokhozyayatvennaya opytnaya stantsiya (for Vozovik). (Plows--Attachments) (Fertilizer sproaders)

VOYKIN, L. M.

USSR/Soil Cultivation. Physical and Chemical Properties of Soils. J-2

Abs Jour: Ref. Zhur-Biologiya, No 1, 1958, 1214.

Author: Madanov, P.V., Voykin, L.M.

Inst

Title : A Simplified Method for Determining the Total of Exchanged Alkali-

Earth Bases in Non-Carbonate Chernozems.

Orig Pub: Pochvovedeniye, 1956, No 12, 80-82.

Abstract: The offered method is based upon an irreversible reaction,

occurring between the exchanged alkali-earth bases of earth and 0.1 normal $K_2C_2O_{l_1}$ with formation of insoluble $CaC_2O_{l_2}$ and $MgC_2O_{l_1}$, which leads to a reduction in the concentration of $K_2C_2O_{l_1}$ in the solution, in a quantity equivalent to the total of the exchanged Ca and Mg of the soil. Ten grams of soil, ground and forced through a one-mm. sieve, are put in a 350 ml. retort; then 250 ml. of 0.1 normal $K_2C_2O_{l_1}$ are added, the solution is shaken up for an hour and left to sit for 24 hours with

Card : 1/2

-5-

USSR/Soil Cultivation. Physical and Chemical Properties of Soils.

J-2

Abs Jour: Ref. Zhur-Biologiya, No 1, 1958, 1214.

periodic shakings. It is filtered through a double filter, and to 50 ml. of the filtrate 20 ml. of 10% H₂SO₁₄ solution and 0.3 g. of activated carbon are added. This is heated (while being stirred) almost to the boiling point and filtered; the precipitate on the filter is washed in a 10% H₂SO₁₄ solution. The filtrate is heated to boiling point and titrated with 0.1 normal KMnO₁₄ until it is pale rose in color. The results achieved by this method with 33 specimens of leached and fertile chernozems of the Volga-Kama wooded steppe agree with those attained by the K.K. Gedroyts method.

Card : 2/2

-6-

MANAHOV, P.V.; VOYKIN, L.M.

Simplified method for determining the amount of alkali bases in some noncarbonaceous Chernozem soils. Pocvovedenie no.12:80-82 D *56.

1. Mazanskiy gosudarstvennyy universitet.

(Chernozem soils—Analysis)

MADANOV, P.V.; VOYKIN, L.M.

Absorption of the PO, anion by some soils of Tatarstan. Uch.

sap.Kas.un. 116 no.57175-180 '56.

(MIRA 10:4)

1. Kafedra pochvovedeniya.

(Tatar A.S.S.R.--Soil absorption)

(Phosphates)

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001861120001-1

DOBZHITSKIY, Yan. [Pobrzycki, Jan]; KATS, V.M. [translator];
KARTASHOI, A.K., red.; VOYKOVA, A.A., red.

[Juice purification in sugar manufacture. Translated from the Polish] Ochistka sokov v sakharnom proizvodstve. Mother Polish | Ochistka sokov v sakharnom proizvodstve. Moskva, Pishchevaia promyshlennosti, 1964. 206 p.

(MIRA 17:9)

VELIKAYA, Yelizaveta Ivanovna; SUKHODOL, Viktoriya Fominichna; TOMASHEVICH, Vladimir Konstantinovich SMIRNOV, V.A., prof., retsenzent; MALCHELKO, A.L., prof., retsenzent; FERTMAN, G.I., prof., retsenzent; VOYKOVA, A.A., red.

[General methods of control in fermentation industries]
Obshchie metody kontrolia brodil'nykh proizvodstv. Moskva, Pishchevaia pronyshlennost', 1964. 273 p.
(MIRA 17:9)

VOYKOVA, A.A., redaktor; CHEBYSHEVA, Ye.A., tekhnicheskiy redaktor.

[Canning industry; mechanization and organization of production in canning factories] Konservais promyshlennost; mekhanizatsiia in canning factories] Konservais promyshlennost; mekhanizatsiia in canning factories] Konservais promyshlennost; mekhanizatsiia in canning factories] Konservaish i ovoshchesushil'nykh i organizatsiia proizvodstva na konservaykh i ovoshchesushil'nykh i organizatsiia proizvodstva na konservaykh i ovoshchesushil'nykh i organizatsiia proizvodstva na konservaish Vol. 2 1956. 161 p.

zavodakh. Moskva, Pishchepromizdat. Vol. 2 1956. 161 p.

(MIRA 10:5)

1. Moscow. Vsesoyuznyy nauchno-issledovatelskiy institut konservnoy promyshlennosti.

(Canning and preserving)

WHENHAN, R.S. [Hannen, R.S.]; RAYSKAYA, M.G.[translator]; CHERNYAYEV. N.D. [translator]; ROGACHEV, V.I., kand.tekhn.anuk, red.; VOYKOVA, A.A., red.; CHEBYSHEVA, Ye.A., tekhn.red.

[Scientific and technological problems involved in using ionizing radiation for the preservation of food. Translated from the English] Nauchnye i tekhnologicheskie problemy primeneniia ioniziruiushchikh izluchenii dlia konservirovaniia pishchevykh produktov. Moskva. (MIRA 11:4) Pishchepromizdat, 1957. 278 p. (Radiation sterilization)

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1"

VOYKOVA, A:A. ZAYTSEV, Nikolay Vladimirovich; VOYKOVA, A.A., red.; GOTLIB, E.M., tekhu. [Assembling and repairing equipment used in the food industry] Montash i remont oborudovanila pishchevoi promyshlennosti. Moskva, Pishchepromisdat, 1957. 335 p.

(Food industry-Equipment and supplies)

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001861120001-1" SERGEYEV, A.G., kand.tekhn.nauk; VOYKOVA, A.A., red.; TARASOVA, N.M., tekhn.red.

[Refining cottonseed oil] Rafinatsiia khlopkovogo masla.

Moskva, Pishchepromizdat, 1959. 120 p. (MIRA 12:7)

(Cottonseed oil)

KAGANOV, Isaak Natanovich; MIKHATOVA, Galina Nikolayevna; VOYKOVA, A.A., red.

[Chemical and technical calculations and accounting in sugar manufacture] Khimiko-tekhnicheskie raschety i uchet v sakharnom proizvodstve. Moskva, Pishchevaia promyshlennost!, 1964. 330 p. (MIRA 18:4)

VOSTOKOV, Aleksey Izmailovich; LEPESEKIN, Ivan Pavlovich; BUDNYY, Anatoliy Vladimirovich; VOYKOVA, A.A., red.

[Calculating the technological capacity of the equipment and structures of sugar beet plants] Raschet tekhnicheskoi moshchnosti obcrudovanila i sooruzhenii sveklosaklarnykh zavodov. Izd.2., perer. i dop. Moskva, Pishchevala promyshlennosti, 1965. 515 p. (MIRA 18:3)

KUL'MAN, Avgust Gustavovich; REBINDER, P.A., akademik, red.; VOIKOVA, A.A., red.; ZARSHCHIKOVA, L.N., tekhm.red.

[Physical and colloid chemistry] Fizicheskaia i kolloidnaia khimiia. Izd.3, perer. Moskva, Pishchepromizdat, 1963. 503 p. (MIRA 17:2)