Applied Machine Learning

- M-Estimators
- Minimization function with M-Estimators
- Solving regression with M-Estimators

- Regression finds coefficients that minimize $\sum_{i}^{\infty} e^{2i}$
 - Single point with large residual pull regression towards it
 - likely outliers
- Weight points in cost function
 - large for those with low residuals
 - low for those with high residuals

M-Estimators

- Linear regression minimizes: $\sum_{i} (r_i(\mathbf{x}_i, \beta))^2$
 - Model coefficients: β
 - Residual for *i*'th point: $r_i(\mathbf{x}_i, \beta) = y_i \mathbf{x}_i^{\mathsf{T}} \beta$
- M-estimators minimize: $\sum_i \rho(u, \sigma)$

Hubber loss:
$$\rho(u,\sigma) = \begin{cases} \frac{u^2}{2} & |u| < \sigma \\ \sigma |u| - \frac{\sigma^2}{2} & |u| \geq \sigma \end{cases}$$

•
$$u = r_i(\mathbf{x}_i, \beta)$$

Influence Function of an M-Estimator

$$\frac{\partial \rho}{\partial u}$$

. Weight for point
$$i$$
:
$$w_i(\beta) = \frac{\frac{\partial \rho}{\partial u}}{y_i - \mathbf{x}_i^{\top} \beta}$$

Minimization criterion:
$$\nabla_{\beta} \bigg(\sum_{i} \rho(y_{i} - \mathbf{x}_{i}^{\mathsf{T}} \beta, \sigma) \bigg) = \sum_{i} \bigg[\frac{\partial \rho}{\partial u} \bigg] (-\mathbf{x}_{i}) = 0$$
$$= \sum_{i} (w_{i}(\beta)(y_{i} - \mathbf{x}_{i}^{\mathsf{T}} \beta)(-\mathbf{x}_{i}) = 0$$

- Minimization in matrix form:
 - $\mathbf{W}(\beta)$: diagonal matrix with $w_{i,i} = w_i(\beta)$
 - $\mathbf{X}^{\mathsf{T}}[\mathbf{W}(\beta)]\mathbf{y} = \mathbf{X}^{\mathsf{T}}[\mathbf{W}(\beta)]\mathbf{X}\beta$

Solving regression with M-Estimator

- minimization criterion: $\mathbf{X}^{\mathsf{T}}[\mathbf{W}(\beta)]\mathbf{y} = \mathbf{X}^{\mathsf{T}}[\mathbf{W}(\beta)]\mathbf{X}\beta$
 - Initialization: fit $\hat{eta}^{(1)}$ to a randomly sampled small subset of training set
 - while changes in $W(\beta)$ are higher than threshold at step (n)
 - update elements in $W^{(n)}$ with: $w_i^{(n)} = \frac{\frac{\partial \rho}{\partial u}}{y_i \mathbf{x}_i^{\top} \hat{\beta}}$
 - estimate $\hat{\beta}^{(n+1)}$ by solving $\mathbf{X}^{\mathsf{T}}\mathbf{W}^{(n)}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{W}^{(n)}\mathbf{X}\hat{\beta}^{(n+1)}$
- scale of estimator $\sigma^{(n)}$

Solving regression with M-Estimator

- scale of estimator $\sigma^{(n)}$ for the update: $w_i^{(n)} = \frac{\overline{\partial u}}{y_i \mathbf{x}_i^{\top} \hat{\beta}}$
 - Median Absolute Deviation (MAD): $\sigma^{(n)} = 1.4826 \text{ median}_i | r_i^{(n)}(x_i, \hat{\beta}^{(n-1)}) |$
 - Huber's proposal 2. Solve for $\sigma^{(n)}$:

$$\sum_{i} \chi \left(\frac{r_i^{(n)}(x_i, \hat{\beta}^{(n-1)})}{\sigma^{(n)}} \right) = Nk_2$$

- $\chi(u) = \min(|u|, k_1)^2$
- $k_1 > 0$, k_2 good for normal distribution,

- M-Estimators
- Minimization Function with M-Estimators
- Solving regression with M-Estimators

Applied Machine Learning