# Interpretaciones, satisfabilidad, validez y consecuencia

Sesión 3

Edgar Andrade, PhD

Enero de 2019

Departmento de Matemáticas Aplicadas y Ciencias de la Computación





#### Presentación

#### En esta sesión estudiaremos:

- 1. Interpretaciones
- 2. Clasificación de fórmulas de acuerdo a sus interpretaciones
- 3. Consecuencia lógica

#### Contenido

1 Interpretaciones

2 Satisfacibilidad, validez e implicación

3 Implicación lógica

Determinar cuándo una proposición está en 'concordancia' con el mundo (es verdadera)

Determinar cuándo una proposición está en 'concordancia' con el mundo (es verdadera)

Conexión entre el lenguaje y el mundo

Determinar cuándo una proposición está en 'concordancia' con el mundo (es verdadera)

Conexión entre el lenguaje y el mundo

Mundo posible: estipulación de cuáles situaciones básicas del mundo 'acaecen' (son verdaderas)

Determinar cuándo una proposición está en 'concordancia' con el mundo (es verdadera)

Conexión entre el lenguaje y el mundo

Mundo posible: estipulación de cuáles situaciones básicas del mundo 'acaecen' (son verdaderas)

Interpretación: asignación de valores a los átomos del lenguaje

Determinar cuándo una proposición está en 'concordancia' con el mundo (es verdadera)

Conexión entre el lenguaje y el mundo

Mundo posible: estipulación de cuáles situaciones básicas del mundo 'acaecen' (son verdaderas)

Interpretación: asignación de valores a los átomos del lenguaje Asignación de valor a las fórmulas complejas en función de los valores de sus átomos

#### Interpretación de los átomos

Sea f una fórmula. Definimos  $P_f$  como el conjunto de átomos de f.

Decimos que I es una interpretación de f si  $I:P_f \to \{1,0\}$ . Es decir, I es una función que a cada átomo de f le asigna o bien el valor 1 o bien el 0.

5

#### **Ejemplo**

Suponga que f es la fórmula  $(\neg p \lor q)$ .

Claramente  $P_f = \{p, q\}$ .

#### **Ejemplo**

Suponga que f es la fórmula  $(\neg p \lor q)$ .

Claramente  $P_f = \{p, q\}$ .

Una interpretación  $I_1$  de f puede ser:

| p | q      |
|---|--------|
| 1 | 1      |
|   | р<br>1 |

#### **Ejemplo**

Suponga que f es la fórmula  $(\neg p \lor q)$ .

Claramente  $P_f = \{p, q\}$ .

Una interpretación  $I_1$  de f puede ser:

| Átomo          | р | q |
|----------------|---|---|
| I <sub>1</sub> | 1 | 1 |

Existen otras tres interpretaciones de f:

| р | q   |
|---|-----|
| 1 | 0   |
| 0 | 1   |
| 0 | 0   |
|   | 1 0 |

```
Sea f una fórmula e I una interpretación de f. 
 DEF V_I(f): 
 SI f.RIGHT == NULL: 
 RETORNAR I(f.LABEL) 
 \vdots
```

```
Sea f una fórmula e I una interpretación de f.
Def V_I(f):
      SI f.RIGHT == NULL:
           RETORNAR I(f.LABEL)
Ej: Sea
I(p)=1
A=\text{Tree}(p, \text{NULL}, \text{NULL})
```

```
Sea f una fórmula e I una interpretación de f.

DEF V_I(f):

SI f.RIGHT == NULL:

RETORNAR I(f.LABEL)

\vdots

Ej: Sea I(p)=1

A=TREE(p, NULL, NULL)
```

```
Sea f una fórmula e I una interpretación de f.
Def V_I(f):
      SI f.RIGHT == NULL:
           RETORNAR I(f.LABEL)
Ej: Sea
I(p)=1
A=\text{Tree}(p, \text{null}, \text{null})
\nabla V_I(A) = I(A.LABEL)
```

```
Sea f una fórmula e I una interpretación de f.
Def V_I(f):
      SI f.RIGHT == NULL:
           RETORNAR I(f.LABEL)
Ej: Sea
I(p)=1
A=\text{Tree}(p, \text{null}, \text{null})
\mathbb{F}V_I(A) = I(p) = 1
```

```
Def V_l(f):

SI f.RIGHT == NULL:

RETORNAR l(f.LABEL)

SI NO, SI f.LABEL == \neg:

RETORNAR 1 - V_l(f.RIGHT)

:
```

```
Def V_I(f):

SI f.RIGHT == NULL:
RETORNAR I(f.LABEL)

SI NO, SI f.LABEL == \neg:
RETORNAR 1 - V_I(f.RIGHT)

\vdots

Ej: Sean
I(p) = 1
A = \text{Tree}(p, \text{NULL, NULL}); B = \text{Tree}(\neg, \text{NULL, } A)
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
SI NO, SI f.LABEL == \neg:
          RETORNAR 1 - V_I(f.RIGHT)
Ej: Sean
I(p)=1
A=\text{Tree}(p, \text{null}, \text{null}); B=\text{Tree}(\neg, \text{null}, A)
```

```
Def V_I(f):
   SI f.RIGHT == NULL:
       RETORNAR I(f.LABEL)
SI NO, SI f.LABEL == \neg:
          RETORNAR 1 - V_I(f.RIGHT)
Ej: Sean
I(p)=1
A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
\mathbb{P}V_I(B) = 1 - V_I(B.RIGHT)
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
SI NO, SI f.LABEL == \neg:
          RETORNAR 1 - V_I(f.RIGHT)
Ej: Sean
I(p)=1
A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
\mathbb{P}V_I(B) = 1 - V_I(A)
```

```
DEF V_l(f):

SI f.RIGHT == NULL:

RETORNAR l(f.LABEL)

SI NO, SI f.LABEL == \neg:

RETORNAR 1 - V_l(f.RIGHT)

\vdots
```

```
Def V_l(f):

SI f.RIGHT == NULL:

RETORNAR I(f.LABEL)

SI NO, SI f.LABEL == \neg:

RETORNAR 1 - V_l(f.RIGHT)

SI NO, SI f.LABEL == \land:

RETORNAR V_l(f.LEFT) \times V_l(f.RIGHT)

:
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        Retornar 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \land:
               RETORNAR V_I(f.\text{LEFT}) \times V_I(f.\text{RIGHT})
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{null}, \text{null}); B=\text{Tree}(\neg, \text{null}, A)
C = \text{Tree}(\land, A, B)
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        Retornar 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \wedge:
               RETORNAR V_I(f.\text{LEFT}) \times V_I(f.\text{RIGHT})
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{null}, \text{null}); B=\text{Tree}(\neg, \text{null}, A)
C = \text{Tree}(\land, A, B)
```

```
Def V_I(f):
    Si f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        RETORNAR 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \land:
               RETORNAR V_I(f.\text{LEFT}) \times V_I(f.\text{RIGHT})
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\land, A, B)
\nabla V_I(C) = V_I(C.\text{LEFT}) \times V_I(C.\text{RIGHT})
```

```
Def V_I(f):
   SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        RETORNAR 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \land:
              RETORNAR V_I(f.LEFT) \times V_I(f.RIGHT)
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\land, A, B)
V_I(C) = V_I(C.\text{LEFT}) \times V_I(C.\text{RIGHT})
```

```
Def V_I(f):
   SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        RETORNAR 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \land:
              RETORNAR V_I(f.LEFT) \times V_I(f.RIGHT)
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\land, A, B)
V_I(C) = V_I(A) \times V_I(C.RIGHT)
```

```
Def V_I(f):
    Si f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        RETORNAR 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \land:
              RETORNAR V_I(f.LEFT) \times V_I(f.RIGHT)
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\land, A, B)
V_I(C) = V_I(A) \times V_I(C.RIGHT)
```

```
Def V_I(f):
   SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        Retornar 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \land:
              RETORNAR V_I(f.LEFT) \times V_I(f.RIGHT)
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\land, A, B)
V_I(C) = V_I(A) \times V_I(B)
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO, SI f.LABEL == \neg:
        Retornar 1 - V_I(f.RIGHT)
SI NO, SI f.LABEL == \land:
               RETORNAR V_I(f.\text{LEFT}) \times V_I(f.\text{RIGHT})
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\land, A, B)
V_{I}(C) = 1 \times 0 = 0
```

```
Def V_l(f):

SI f.right == null:

RETORNAR l(f.label.)

SI NO, SI f.label == \neg:

RETORNAR 1 - V_l(f.right)

SI NO, SI f.label == \land:

4RETORNAR V_l(f.left) \times V_l(f.right)

SI NO, SI f.label == \lor:

RETORNAR MAX\{V_l(f).LEFT, V_l(f).RIGHT)

:
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
        Retornar 1 - V_I(f.RIGHT)
    SI NO, SI f.LABEL == \wedge:
            4Retornar V_i(f, \text{Left}) \times V_i(f, \text{Right})
SI NO, SI f.LABEL == \vee:
               RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\lor, A, B)
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
        Retornar 1 - V_I(f.RIGHT)
    SI NO, SI f.LABEL == \wedge:
            4Retornar V_i(f, \text{Left}) \times V_i(f, \text{Right})
SI NO, SI f.LABEL == \vee:
               RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\lor, A, B)
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
         RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
         Retornar 1 — V_I(f, RIGHT)
    SI NO, SI f.LABEL == \wedge:
             4Retornar V_t(f, \text{Left}) \times V_t(f, \text{Right})
SI NO, SI f.LABEL == \vee:
               RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\lor, A, B)
\mathbb{P}V_{I}(C) = \max\{V_{I}(C.\text{LEFT}), V_{I}(C.\text{RIGHT})\}
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
        Retornar 1 — V_I(f, RIGHT)
    SI NO, SI f.LABEL == \wedge:
            4Retornar V_t(f, \text{Left}) \times V_t(f, \text{Right})
SI NO, SI f.LABEL == \lor:
              RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\vee, A, B)
V_I(C) = \max\{V_I(C.LEFT), V_I(C.RIGHT)\}
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
        Retornar 1 - V_I(f, RIGHT)
    SI NO, SI f.LABEL == \wedge:
            4Retornar V_t(f, \text{Left}) \times V_t(f, \text{Right})
SI NO, SI f.LABEL == \lor:
               RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\lor, A, B)
V_I(C) = \max\{V_I(A), V_I(C.RIGHT)\}
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
        Retornar 1 - V_I(f, RIGHT)
    SI NO, SI f.LABEL == \wedge:
            4Retornar V_t(f, \text{Left}) \times V_t(f, \text{Right})
SI NO, SI f.LABEL == \lor:
               RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\vee, A, B)
V_I(C) = \max\{V_I(A), V_I(C.RIGHT)\}
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
        Retornar 1 - V_I(f, RIGHT)
    SI NO, SI f.LABEL == \wedge:
            4Retornar V_t(f, \text{Left}) \times V_t(f, \text{Right})
SI NO, SI f.LABEL == \lor:
               RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\lor, A, B)
V_I(C) = \max\{V_I(A), V_I(B)\}
```

```
Def V_I(f):
    SI f.RIGHT == NULL:
        RETORNAR I(f.LABEL)
    SI NO. SI f.LABEL == \neg:
        Retornar 1 - V_I(f, RIGHT)
    SI NO, SI f.LABEL == \wedge:
            4Retornar V_t(f, \text{Left}) \times V_t(f, \text{Right})
SI NO, SI f.LABEL == \lor:
               RETORNAR MAX{V_I(f.LEFT), V_I(f.RIGHT)}
Ei: Sean
I(p)=1; A=\text{Tree}(p, \text{NULL}, \text{NULL}); B=\text{Tree}(\neg, \text{NULL}, A)
C = \text{Tree}(\lor, A, B)
V_I(C) = \max\{1, 0\} = 1
```

```
Def V_l(f):

SI f.right == null:

Retornar l(f.label)
SI no, SI f.label == \neg:

Retornar 1 - V_l(f.right)
SI no, SI f.label == \land:

Retornar V_l(f.left) \times V_l(f.right)
SI no, SI f.label == \lor:

Retornar max{V_l(f.left), V_l(f.right)}
SI no, SI f.label == \lor:

RETORNAR MAX{l(f.left), V_l(f.right)}

SI no, SI f.label == \rightarrow:

RETORNAR MAX{l-V_l(f.left), V_l(f.right)}

:
```

```
Def V_l(f):

SI f.right == null:

RETORNAR I(f.Label)
SI NO, SI f.Label == \neg:

RETORNAR 1 - V_l(f.right)
SI NO, SI f.Label == \wedge:

RETORNAR V_l(f.Left) \times V_l(f.right)
SI NO, SI f.Label == \vee:

RETORNAR MAX{V_l(f.Left), V_l(f.right)}
SI NO, SI f.Label == \rightarrow:

RETORNAR MAX{1 - V_l(f.Left), V_l(f.right)}
SI NO, SI f.Label == \leftrightarrow:

RETORNAR 1 - (V_l(f.Left)) - V_l(f.Right))^2
```

#### Contenido

1 Interpretaciones

2 Satisfacibilidad, validez e implicación

3 Implicación lógica

#### Satisfacibilidad e insatisfacibilidad de fórmulas

Sea A una fórmula.

A es satisfacible sii existe una interpretación I tal que  $V_I(A)=1.$ 

#### Satisfacibilidad e insatisfacibilidad de fórmulas

Sea A una fórmula.

A es satisfacible sii existe una interpretación I tal que  $V_I(A)=1$ .

A es insatisfacible sii para toda interpretación I,  $V_I(A) = 0$ .

*Proposición:* La fórmula  $p \wedge q$  es satisfacible.

Sea 
$$I$$
 tal que  $I(p)=1$  y  $I(q)=1$ . Luego  $V_I(p\wedge q)=1$ .

*Proposición:* La fórmula  $p \land \neg p$  es insatisfacible.

*Proposición:* La fórmula  $p \land \neg p$  es insatisfacible.

*Proposición:* La fórmula  $p \land \neg p$  es insatisfacible.

Caso 1: 
$$I(p) = 0$$
. Luego  $V_I(p \land \neg p) = 0$ .

*Proposición:* La fórmula  $p \land \neg p$  es insatisfacible.

Caso 1: 
$$I(p) = 0$$
. Luego  $V_I(p \land \neg p) = 0$ .

Caso 2: 
$$I(p) = 1$$
. Luego  $V_I(\neg p) = 0$  y entonces  $V_I(p \land \neg p) = 0$ .

*Proposición:* La fórmula  $p \land \neg p$  es insatisfacible.

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1: 
$$I(p) = 0$$
. Luego  $V_I(p \land \neg p) = 0$ .

Caso 2: 
$$I(p) = 1$$
. Luego  $V_I(\neg p) = 0$  y entonces  $V_I(p \land \neg p) = 0$ .

En cualquier caso,  $V_I(p \wedge \neg p) = 0$ . Como I es arbitraria,  $p \wedge \neg p$  es insatisfacible.

#### Validez y falseabilidad de fórmulas

Sea A una fórmula.

A es válida sii para toda interpretación I,  $V_I(A) = 1$ .

### Validez y falseabilidad de fórmulas

Sea A una fórmula.

A es válida sii para toda interpretación I,  $V_I(A) = 1$ .

A es falseable sii existe una interpretación I tal que  $V_I(A) = 0$ .

*Proposición:* La fórmula  $p \lor \neg p$  es válida.

*Proposición:* La fórmula  $p \lor \neg p$  es válida.

*Proposición:* La fórmula  $p \lor \neg p$  es válida.

Caso 1: 
$$I(p) = 1$$
. Luego  $V_I(p \lor \neg p) = 1$ .

*Proposición:* La fórmula  $p \lor \neg p$  es válida.

Caso 1: 
$$I(p) = 1$$
. Luego  $V_I(p \vee \neg p) = 1$ .

Caso 2: 
$$I(p) = 0$$
. Luego  $V_I(\neg p) = 1$  y entonces  $V_I(p \lor \neg p) = 1$ .

*Proposición:* La fórmula  $p \lor \neg p$  es válida.

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1: 
$$I(p) = 1$$
. Luego  $V_I(p \vee \neg p) = 1$ .

Caso 2: 
$$I(p) = 0$$
. Luego  $V_I(\neg p) = 1$  y entonces  $V_I(p \lor \neg p) = 1$ .

En cualquier caso,  $V_I(p \vee \neg p) = 1$ . Como I es arbitraria,  $p \vee \neg p$  es válida.

*Proposición:* La fórmula  $p \wedge q$  es falseable.

*Proposición:* La fórmula  $p \wedge q$  es falseable.

Sea 
$$I$$
 tal que  $I(p) = 0$ . Luego  $V_I(p \wedge q) = 0$ .

### Contingencia

Sea A una fórmula.

A es contingente sii A es satisfacible y falseable.

*Proposición:* La fórmula  $p \wedge q$  es contingente.

*Proposición:* La fórmula  $p \wedge q$  es contingente.

Ver ejemplos 3 y 6.

| 1<br>en toda<br>interpretación | 1<br>en unas<br>y 0<br>en otras | 0<br>en toda<br>interpretación |
|--------------------------------|---------------------------------|--------------------------------|
|--------------------------------|---------------------------------|--------------------------------|









Satisfacibles



### Satisfacibilidad e insatisfacibilidad de conjuntos

Sea 
$$U = \{A_1, \dots, A_n\}$$
 un conjunto de fórmulas.

U es satisfacible sii existe una interpretación I tal que para toda  $A_i \in U$ ,  $V_I(A_i) = 1$ .

### Satisfacibilidad e insatisfacibilidad de conjuntos

Sea  $U = \{A_1, \dots, A_n\}$  un conjunto de fórmulas.

U es satisfacible sii existe una interpretación I tal que para toda  $A_i \in U$ ,  $V_I(A_i) = 1$ .

U es insatisfacible sii para toda interpretación I, existe  $A_i \in U$  tal que  $V_I(A_i) = 0$ .

*Proposición:* El conjunto  $U = \{p \lor r, q \lor r\}$  es satisfacible.

Sea 
$$I$$
 tal que  $I(p)=1$  y  $I(q)=1$ . Luego  $V_I(p\vee r)=1$  y  $V_I(q\vee r)=1$ .

*Proposición:* El conjunto  $U = \{p \lor r, q \lor r\}$  es satisfacible.

Sea 
$$I$$
 tal que  $I(p)=1$  y  $I(q)=1$ . Luego  $V_I(p\vee r)=1$  y  $V_I(q\vee r)=1$ .

NB: Observe que cualquiera sea el valor que I le da a r no se altera el hecho de que  $V_I(p \lor r) = 1$  y  $V_I(q \lor r) = 1$ . Luego hay más de una tal I.

*Proposición:* El conjunto  $U = \{p, \neg q, \neg p \lor q\}$  es insatisfacible.

*Proposición:* El conjunto  $U = \{p, \neg q, \neg p \lor q\}$  es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que  $V_I(A)=0$ . Tenemos varios casos:

*Proposición:* El conjunto  $U = \{p, \neg q, \neg p \lor q\}$  es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que  $V_I(A) = 0$ . Tenemos varios casos:

Caso 1: I(p) = 0. Luego sea A = p. Observe que  $A \in U$  y que  $V_I(A) = 0$ .

*Proposición:* El conjunto  $U = \{p, \neg q, \neg p \lor q\}$  es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que  $V_I(A) = 0$ . Tenemos varios casos:

Caso 1: I(p) = 0. Luego sea A = p. Observe que  $A \in U$  y que  $V_I(A) = 0$ .

Caso 2: I(p) = 1. Luego  $V_I(\neg p) = 0$ . Tenemos dos casos:

*Proposición:* El conjunto  $U = \{p, \neg q, \neg p \lor q\}$  es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que  $V_I(A) = 0$ . Tenemos varios casos:

- Caso 1: I(p) = 0. Luego sea A = p. Observe que  $A \in U$  y que  $V_I(A) = 0$ .
- Caso 2: I(p) = 1. Luego  $V_I(\neg p) = 0$ . Tenemos dos casos:

Caso 2a: 
$$I(q)=1$$
. Luego sea  $A=\neg q$ . Observe que  $A\in U$  y que  $V_I(A)=0$ .

*Proposición:* El conjunto  $U = \{p, \neg q, \neg p \lor q\}$  es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que  $V_I(A) = 0$ . Tenemos varios casos:

- Caso 1: I(p) = 0. Luego sea A = p. Observe que  $A \in U$  y que  $V_I(A) = 0$ .
- Caso 2: I(p) = 1. Luego  $V_I(\neg p) = 0$ . Tenemos dos casos:
  - Caso 2a: I(q)=1. Luego sea  $A=\neg q$ . Observe que  $A\in U$  y que  $V_I(A)=0$ .
  - Caso 2b: I(q)=0. Luego sea  $A=\neg p\lor q$ . Observe que  $A\in U$  y que  $V_I(A)=0$ , toda vez que  $V_I(\neg p)=0$  y que  $V_I(q)=0$ .

*Proposición:* El conjunto  $U = \{p, \neg q, \neg p \lor q\}$  es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que  $V_I(A)=0$ . Tenemos varios casos:

- Caso 1: I(p) = 0. Luego sea A = p. Observe que  $A \in U$  y que  $V_I(A) = 0$ .
- Caso 2: I(p) = 1. Luego  $V_I(\neg p) = 0$ . Tenemos dos casos:
  - Caso 2a: I(q)=1. Luego sea  $A=\neg q$ . Observe que  $A\in U$  y que  $V_I(A)=0$ .
  - Caso 2b: I(q)=0. Luego sea  $A=\neg p\lor q$ . Observe que  $A\in U$  y que  $V_I(A)=0$ , toda vez que  $V_I(\neg p)=0$  y que  $V_I(q)=0$ .

En cualquier caso, existe una fórmula A en U tal que  $V_I(A) = 0$ . Como I es arbitraria, U es insatisfacible.

Sean B una fórmula y  $U = \{A_1, \dots, A_n\}$  un conjunto de fórmulas.

1. Si U es satisfacible, entonces  $U - \{A_i\}$  es satisfacible, para cualquier i = 1, ..., n.

Sean B una fórmula y  $U = \{A_1, \dots, A_n\}$  un conjunto de fórmulas.

- 1. Si U es satisfacible, entonces  $U \{A_i\}$  es satisfacible, para cualquier i = 1, ..., n.
- 2. Si U es satisfacible y B es válida, entonces  $U \cup \{B\}$  es satisfacible.

Sean B una fórmula y  $U = \{A_1, \dots, A_n\}$  un conjunto de fórmulas.

- 1. Si U es satisfacible, entonces  $U \{A_i\}$  es satisfacible, para cualquier i = 1, ..., n.
- 2. Si U es satisfacible y B es válida, entonces  $U \cup \{B\}$  es satisfacible.
- 3. Si U es insatisfacible, entonces  $U \cup \{B\}$  es insatisfacible para cualquier fórmula B.

Sean B una fórmula y  $U = \{A_1, \dots, A_n\}$  un conjunto de fórmulas.

- 1. Si U es satisfacible, entonces  $U \{A_i\}$  es satisfacible, para cualquier i = 1, ..., n.
- 2. Si U es satisfacible y B es válida, entonces  $U \cup \{B\}$  es satisfacible.
- 3. Si U es insatisfacible, entonces  $U \cup \{B\}$  es insatisfacible para cualquier fórmula B.
- 4. Si U es insatisfacible y  $A_i$  es válida para algún i, entonces  $U \{A_i\}$  es insatisfacible.

### Contenido

1 Interpretaciones

2 Satisfacibilidad, validez e implicación

3 Implicación lógica

# Implicación lógica (1/2)

Sea B una fórmula y  $U = \{A_1, \ldots, A_n\}$ . Definimos que B es una implicación lógica de U:

$$U \models B$$
 sii para toda interpretación  $I$ , si  $V_I(A_i) = 1$  para todo  $A_i \in U$ , entonces  $V_I(B) = 1$ .

*Proposición:* Sea B=q y  $U=\{p,p\rightarrow r,r\rightarrow q\}$ . Entonces  $U\models B$ .

Proposición: Sea B=q y  $U=\{p,p\rightarrow r,r\rightarrow q\}$ . Entonces  $U\models B$ .

Sea I una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Proposición: Sea B=q y  $U=\{p,p\rightarrow r,r\rightarrow q\}$ . Entonces  $U\models B$ .

Sea / una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Como 
$$V_I(p) = 1$$
 y  $V_I(p \rightarrow r) = 1$ , entonces  $V_I(r) = 1$ .

Proposición: Sea B=q y  $U=\{p,p\rightarrow r,r\rightarrow q\}$ . Entonces  $U\models B$ .

Sea I una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Como 
$$V_I(p) = 1$$
 y  $V_I(p \rightarrow r) = 1$ , entonces  $V_I(r) = 1$ .

Como 
$$V_I(r) = 1$$
 y  $V_I(r \rightarrow q) = 1$ , entonces  $V_I(q) = 1$ .

Proposición: Sea B=q y  $U=\{p,p\rightarrow r,r\rightarrow q\}$ . Entonces  $U\models B$ .

Sea I una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Como 
$$V_I(p) = 1$$
 y  $V_I(p \rightarrow r) = 1$ , entonces  $V_I(r) = 1$ .

Como 
$$V_I(r)=1$$
 y  $V_I(r \rightarrow q)=1$ , entonces  $V_I(q)=1$ .

En consecuencia, si  $V_I(A_i) = 1$  para todo  $A_i \in U$ , entonces  $V_I(B) = 1$ . Por lo tanto  $U \models B$ .

# Implicación lógica (2/2)

Observe que:

$$U \not\models B$$
 sii existe una interpretación  $I$  tal que  $V_I(A_i) = 1$  para todo  $A_i$ , pero  $V_I(B) = 0$ .

*Proposición:* Sea B = q y  $U = \{p \rightarrow r, r \rightarrow q\}$ . Entonces  $U \not\models B$ .

*Proposición:* Sea B = q y  $U = \{p \rightarrow r, r \rightarrow q\}$ . Entonces  $U \not\models B$ .

Debemos encontrar una I tal que  $V_I(p o r) = V_I(r o q) = 1$  y  $V_I(q) = 0$ .

*Proposición:* Sea B = q y  $U = \{p \rightarrow r, r \rightarrow q\}$ . Entonces  $U \not\models B$ .

Debemos encontrar una I tal que  $V_I(p \to r) = V_I(r \to q) = 1$  y  $V_I(q) = 0$ .

Sea 
$$I(p) = I(r) = I(q) = 0$$
.

Proposición: Sea B = q y  $U = \{p \rightarrow r, r \rightarrow q\}$ . Entonces  $U \not\models B$ .

Debemos encontrar una I tal que  $V_I(p o r) = V_I(r o q) = 1$  y  $V_I(q) = 0$ .

Sea 
$$I(p) = I(r) = I(q) = 0$$
.

Luego  $V_I(p 
ightarrow r) = 1$  y también  $V_I(r 
ightarrow q) = 1$ . Además,  $V_I(q) = 0$ .

Sean B, C fórmulas y  $U=\{A_1,\ldots,A_n\}$  un conjunto de fórmulas.

1. Si  $U \models B$ , entonces  $U \cup \{C\} \models B$ .

Sean B, C fórmulas y  $U = \{A_1, \dots, A_n\}$  un conjunto de fórmulas.

- 1. Si  $U \models B$ , entonces  $U \cup \{C\} \models B$ .
- 2. Si C es válida y  $U \models B$ , entonces  $U \{C\} \models B$ .

*Proposición:* Sea B una fórmula y  $U = \{A_1, \dots, A_n\}$  un conjunto de fórmulas:

$$U \models B \text{ sii } (A_1 \land \ldots \land A_n) \rightarrow B \text{ es válida}.$$

 $\Rightarrow$ ) Supongamos que  $U \models B$  y sea I una interpretación arbitraria. Debemos ver que  $V_I((A_1 \land \ldots \land A_n) \to B) = 1$ . Tenemos dos casos:

 $\Rightarrow$ ) Supongamos que  $U \models B$  y sea I una interpretación arbitraria. Debemos ver que  $V_I((A_1 \land \ldots \land A_n) \to B) = 1$ . Tenemos dos casos:

Existe 
$$A_i \in U$$
 tal que  $V_I(A_i) = 0$ . Luego  $V_I(A_1 \wedge \ldots \wedge A_n) = 0$  y por lo tanto  $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$ .

 $\Rightarrow$ ) Supongamos que  $U \models B$  y sea I una interpretación arbitraria. Debemos ver que  $V_I((A_1 \land \ldots \land A_n) \to B) = 1$ . Tenemos dos casos:

Existe 
$$A_i \in U$$
 tal que  $V_I(A_i) = 0$ . Luego  $V_I(A_1 \wedge \ldots \wedge A_n) = 0$  y por lo tanto  $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$ .

$$V_I(A_i)=1$$
 para todo  $A_i\in U$ . Como  $U\models B$ , entonces  $V_I(B)=1$  y por lo tanto  $V_I(\left(A_1\wedge\ldots\wedge A_n\right)\to B)=1$ .

 $\Rightarrow$ ) Supongamos que  $U \models B$  y sea I una interpretación arbitraria. Debemos ver que  $V_I((A_1 \land \ldots \land A_n) \to B) = 1$ . Tenemos dos casos:

Existe 
$$A_i \in U$$
 tal que  $V_I(A_i) = 0$ . Luego  $V_I(A_1 \wedge \ldots \wedge A_n) = 0$  y por lo tanto  $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$ .

$$V_I(A_i)=1$$
 para todo  $A_i\in U$ . Como  $U\models B$ , entonces  $V_I(B)=1$  y por lo tanto  $V_I(\left(A_1\wedge\ldots\wedge A_n\right)\to B)=1$ .

En cualquier caso,  $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$ . Como I es arbitraria,  $(A_1 \wedge \ldots \wedge A_n) \to B$  es válida.

 $\Leftarrow$ ) Supongamos que  $(A_1 \wedge \ldots \wedge A_n) \rightarrow B$  es válida y sea I tal que  $V_I(A_i) = 1$  para todo  $A_i \in U$ . Debemos ver que  $V_I(B) = 1$ .

```
\Leftarrow) Supongamos que (A_1 \wedge \ldots \wedge A_n) \rightarrow B es válida y sea I tal que V_I(A_i) = 1 para todo A_i \in U. Debemos ver que V_I(B) = 1.
```

Esto es fácil, ya que 
$$V_I(A_1 \wedge ... \wedge A_n) = 1$$
 y como  $V_I((A_1 \wedge ... \wedge A_n) \rightarrow B) = 1$ , entonces  $V_I(B) = 1$ .

 $\Leftarrow$ ) Supongamos que  $(A_1 \land \ldots \land A_n) \to B$  es válida y sea I tal que  $V_I(A_i) = 1$  para todo  $A_i \in U$ . Debemos ver que  $V_I(B) = 1$ .

Esto es fácil, ya que  $V_I(A_1 \wedge ... \wedge A_n) = 1$  y como  $V_I((A_1 \wedge ... \wedge A_n) \rightarrow B) = 1$ , entonces  $V_I(B) = 1$ .

Por lo tanto  $U \models B$ .

### Fin de la sesión 3

### En esta sesión usted ha aprendido:

- Interpretar de manera recursiva una fórmula de la lógica proposicional
- 2. Comprender las categorías de una fórmula de acuerdo a sus interpretaciones
- 3. Demostrar relaciones entre conceptos lógicos
- Comprender una de las posibles formalizaciones de la noción de consecuencia lógica