- **Complete PWM Power Control Circuitry**
- **Completely Synchronized Operation**
- **Internal Undervoltage Lockout Protection**
- Wide Supply Voltage Range
- **Internal Short-Circuit Protection**
- Oscillator Frequency . . . 500 kHz Max
- Variable Dead Time Provides Control Over **Total Range**
- Internal Regulator Provides a Stable 2.5-V Reference Supply
- **Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards**

description

The TL1451A incorporates on a single monolithic chip all the functions required in the construction of two pulse-width-modulation (PWM) control circuits. Designed primarily for power-supply control, the TL1451A contains an on-chip 2.5-V regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators, undervoltage lockout circuitry, and dual common-emitter output transistor circuits.

The uncommitted output transistors provide common-emitter output capability for each

D, DB, N, NS, PW, OR J PACKAGE (TOP VIEW)

FK PACKAGE (TOP VIEW)

controller. The internal amplifiers exhibit a common-mode voltage range from 1.04 V to 1.45 V. The dead-time control (DTC) comparator has no offset unless externally altered and can provide 0% to 100% dead time. The on-chip oscillator can be operated by terminating RT and CT. During low V_{CC} conditions, the undervoltage lockout control circuit feature locks the outputs off until the internal circuitry is operational.

The TL1451AC is characterized for operation from -20°C to 85°C. The TL1451AQ is characterized for operation from -40°C to 125°C. The TL1451AM is characterized for operation from -55°C to 125°C.

AVAILABLE OPTIONS

		PACKAGED DEVICES									
TA	SMALL OUTLINE (D)	SMALL OUTLINE (DB)†	PLASTIC DIP OUTLINE TSSOP CA		CHIP CARRIER (FK)	CERAMIC DIP (J)					
–20°C to 85°C	TL1451ACD	TL1451ACDB	TL1451ACN	TL1451ACNS	TL1451ACPW	_	_				
–40°C to 125°C	TL1451AQD	_	_	_	_	_	_				
–55°C to 125°C	_	_			_	TL1451AMFK	TL1451AMJ				

[†]The DB and PW packages are only available left-end taped and reeled (add LE suffix, i.e., TL1451ACPWLE).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

SLVS024E - FEBRUARY 1983 - REVISED NOVEMBER 1999

functional block diagram

COMPONENT COUNT

Resistors	65						
Capacitors	8						
Transistors	105						
JFETs	18						

SLVS024E - FEBRUARY 1983 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range†

Supply voltage, V _{CC}	51 V
Amplifier input voltage, V _I	
Collector output voltage, VO	51 V
Collector output current, IO	21 mA
Continuous power total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A C suffix	–20°C to 85°C
Q suffix	–40°C to 125°C
M suffix	–55°C to 125°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	1088 mW	8.7 mW/°C	696 mW	566 mW	218 mW
DB	775 mW	6.2 mW/°C	496 mW	403 mW	_
N	1000 mW	8.0 mW/°C	640 mW	520 mW	_
NS	500 mW	4.0 mW/°C	320 mW	260 mW	_
PW	838 mW	6.7 mW/°C	536 mW	436 mW	168 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW

recommended operating conditions

			MIN	MAX	UNIT
Supply voltage, V _{CC}			3.6	50	V
Amplifier input voltage, V _I			1.05	1.45	V
Collector output voltage, VO				50	V
Collector output current, IO				20	mA
Current into feedback terminal				45	μΑ
Feedback resistor, R _F			100		kΩ
Timing capacitor, C _T			150	15000	pF
Timing resistor, R _T			5.1	100	kΩ
Oscillator frequency			1	500	kHz
	C s	suffix	-20	85	
Operating free-air temperature, T _A	Qs	suffix	-40	125	°C
Collector output voltage, VO Collector output current, IO Current into feedback terminal Feedback resistor, RF Fiming capacitor, CT Fiming resistor, RT Oscillator frequency	M s	suffix	-55	125	

SLVS024E - FEBRUARY 1983 - REVISED NOVEMBER 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 6 V, f = 200 kHz (unless otherwise noted)

reference section

DADAMETED	TEST CONDITIONS	Т	LINUT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	f MAX 5 2.6 % ±1% % ±1% 2 12.5 r	UNIT
Output voltage (pin 16)	$I_O = 1 \text{ mA}$	2.4	2.5	2.6	V
	$T_A = -20^{\circ}C$ to $25^{\circ}C$		-0.1%	±1%	
Output voltage change with temperature	$T_A = 25^{\circ}C$ to $85^{\circ}C$		-0.2%	±1%	
Input voltage regulation	$V_{CC} = 3.6 \text{ V to } 40 \text{ V}$		2	12.5	mV
Output voltage regulation	$I_O = 0.1 \text{ mA to } 1 \text{ mA}$		1	7.5	mV
Short-circuit output current	V _O = 0	3	10	30	mA

[†] All typical values are at $T_A = 25$ °C.

undervoltage lockout section

202445	TTOT CONDITIONS	TL1451AC			
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Upper threshold voltage (V _{CC})			2.72		V
Lower threshold voltage (V _{CC})	In . 0.4 mA To 25°C		2.6		V
Hysteresis (V _{CC})	$I_{O(ref)} = 0.1 \text{ mA}, T_{A} = 25^{\circ}C$	80	120		mV
Reset threshold voltage (V _{CC})			1.9		V

[†] All typical values are at $T_A = 25$ °C.

short-circuit protection control section

DADAMETED	TEST COMPITIONS	Т			
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Input threshold voltage (SCP)	T _A = 25°C	0.65	0.7	0.75	V
Standby voltage (SCP)	No pullup	140	185	230	mV
Latched input voltage (SCP)	No pullup		60	120	mV
Input (source) current	$V_{I} = 0.7 \text{ V}, \qquad T_{A} = 25^{\circ}\text{C}$	-10	-15	-20	μΑ
Comparator threshold voltage (FEEDBACK)			1.18		V

[†] All typical values are at $T_A = 25^{\circ}C$.

oscillator section

DADAMETED	TEGT CONDI	7	TUALL			
PARAMETER	R TEST CONDITIONS MIN		TYP [†]	MAX	UNIT	
Frequency	C _T = 330 pF,	$R_T = 10 \text{ k}\Omega$		200		kHz
Standard deviation of frequency	C _T = 330 pF,	$R_T = 10 \text{ k}\Omega$		10%		
Frequency change with voltage	V _{CC} = 3.6 V to 40 V			1%		
Fragues at the constant with temperature	$T_A = -20^{\circ}C$ to $25^{\circ}C$			-0.4%	±2%	
Frequency change with temperature	$T_A = 25^{\circ}C \text{ to } 85^{\circ}C$			-0.2%	±2%	

[†] All typical values are at $T_A = 25$ °C.

4

dead-time control section

DADAMETED	TEGT CONDITIONS	Т	LINUT		
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Input bias current (DTC)				1	μΑ
Latch mode (source) current (DTC)	T _A = 25°C	-80	-145		μΑ
Latched input voltage (DTC)	ΙΟ = 40 μΑ	2.3			V
Input threshold voltage at f = 10 kHz /DTC\	Zero duty cycle		2.05	2.25	V
Input threshold voltage at f = 10 kHz (DTC)	Maximum duty cycle	1.2	1.45		V

[†] All typical values are at $T_A = 25$ °C.

error-amplifier section

DADAMETED		TL1451AC			
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Input offset voltage	V _O (FEEDBACK) = 1.25 V			±6	mV
Input offset current	V _O (FEEDBACK) = 1.25 V			±100	nA
Input bias current	V _O (FEEDBACK) = 1.25 V		160	500	nA
Common-mode input voltage range	V _{CC} = 3.6 V to 40 V	1.05 to 1.45			V
Open-loop voltage amplification	$R_F = 200 \text{ k}\Omega$	70	80		dB
Unity-gain bandwidth			1.5		MHz
Common-mode rejection ratio		60	80		dB
Positive output voltage swing		V _{ref} -0.1			V
Negative output voltage swing				1	V
Output (sink) current (FEEDBACK)	$V_{ID} = -0.1 \text{ V}, V_{O} = 1.25 \text{ V}$	0.5	1.6		mA
Output (source) current (FEEDBACK)	$V_{ID} = 0.1 \text{ V}, \qquad V_{O} = 1.25 \text{ V}$	-45	-70		μΑ

[†] All typical values are at $T_A = 25^{\circ}C$.

output section

DADAMETED.			TL1451AC			
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
Collector off-state current	V _O = 50 V			10	μΑ	
Output saturation voltage	$I_O = 10 \text{ mA}$		1.2	2	V	
Short-circuit output current	V _O = 6 V		90		mA	

[†] All typical values are at $T_A = 25^{\circ}C$.

pwm comparator section

PARAMETER	TEST CONDITIONS	Т			
		MIN	TYP [†]	MAX	UNIT
Input threshold voltage at f = 10 kHz (FEEDBACK)	Zero duty cycle		2.05	2.25	V
	Maximum duty cycle	1.2	1.45		V

[†] All typical values are at $T_A = 25$ °C.

total device

PARAMETER	TEST CONDITIONS	Т	UNIT		
FARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNII
Standby supply current	Off-state		1.3	1.8	mA
Average supply current	$R_T = 10 \text{ k}\Omega$		1.7	2.4	mA

[†] All typical values are at $T_A = 25$ °C.

SLVS024E - FEBRUARY 1983 - REVISED NOVEMBER 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 6 V, f = 200 kHz (unless otherwise noted)

reference section

DADAMETED	TEST SOMBITIO	NIO.	TL1451	AQ, TL14	51AM	LINUT
PARAMETER TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT	
Outrot and to make the AO	1 4 4	T _A = 25°C	2.40	2.50	2.60	V
Output voltage (pin 16) $I_O = 1$	$I_O = 1 \text{ mA}$	T _A = MIN and 125°C	2.35	2.46	2.65	٧
Output voltage change with temperature				-0.63%	*±4%	
	V _{CC} = 3.6 V to 40 V	T _A = 25°C		2.0	12.5	
Input voltage regulation		T _A = 125°C		0.7	15	mV
		$T_A = MIN$		0.3	30	
		T _A = 25°C		1.0	7.5	
Output voltage regulation	I _O = 0.1 mA to 1 mA	T _A = 125°C		0.3	14	mV
		$T_A = MIN$		0.3	20	
Short-circuit output current	V _O = 0		3	10	30	mA

^{*}These parameters are not production tested.

undervoltage lockout section

242445	TT0T 001/DITI01/0	TL1451AQ, TL14	51AM	
PARAMETER	TEST CONDITIONS	MIN TYPT	MAX	UNIT
	T _A = 25°C	2.72		
Upper threshold voltage (V _{CC})	T _A = 125°C	1.70		V
	$T_A = MIN$	3.15		
Lower threshold voltage (V _{CC})	T _A = 25°C	2.60		
	T _A = 125°C	1.65		V
	T _A = MIN	3.09		
	T _A = 25°C	80 120		
Hysteresis (V _{CC})	T _A = 125°C	10 50		mV
	$T_A = MIN$	10 60		
Reset threshold voltage (V _{CC})	T _A = 25°C	1.50		
	T _A = 125°C	0.95		V
	T _A = MIN	1.50		

 $^{^{\}dagger}$ All typical values are at T_A = 25°C unless otherwise indicated.

 $^{^{\}dagger}$ All typical values are at T_A = 25°C unless otherwise indicated.

SLVS024E - FEBRUARY 1983 - REVISED NOVEMBER 1999

short-circuit protection control section

DADAMETED	TEGT COMPLETIONS	TL1451			
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
	T _A = 25°C	650	700	750	
1 '	T _A = 125°C	400	478	550	mV
	$T_A = MIN$	800	880	950	
Standby voltage (SCP)		140	185	230	mV
	T _A = 25°C		60	120	
Latched input voltage (SCP)	T _A = 125°C		70	120	mV
	$T_A = MIN$		60	120	
Equivalent timing resistance			170		kΩ
Comparator threshold voltage (FEEDBACK)			1.18		V

 $^{^{\}dagger}$ All typical values are at T_A = 25°C unless otherwise indicated.

oscillator section

DADAMETED	TEST CONDI	TL1451				
PARAMETER	TEST CONDIT	MIN	TYP†	MAX	UNIT	
	0 000 5	T _A = 25°C		200		
' '	T _A = 125°C		195		kHz	
	17 - 10 122	$T_A = MIN$		193		
Standard deviation of frequency	$C_T = 330 \text{ pF},$	$R_T = 10 \text{ k}\Omega$		2%		
		T _A = 25°C		1%		
Frequency change with voltage	V _{CC} = 3.6 V to 40 V	T _A = 125°C		1%		
		$T_A = MIN$		3%		
Frequency change with temperature				1.37%	*±10%	

dead-time control section

DADAMETED	TEST CONDITIONS	TL1451			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input bias current (DTC)	T _A = 25°C			1	^
	T _A = MIN and 125°C			3	μΑ
Latch mode (source) current (DTC)		-80	-145		μΑ
	T _A = 25°C	2.30			
Latched input voltage (DTC)	T _A = 125°C	2.22	2.32		V
	$T_A = MIN$	2.28	2.40		
Input threshold voltage at f = 10 kHz (DTC)	Zero duty cycle		2.05	*2.25	V
	Maximum duty cycle	*1.20	1.45		٧

^{*}These parameters are not production tested.
† All typical values are at T_A = 25°C unless otherwise indicated.

^{*}These parameters are not production tested.
† All typical values are at T_A = 25°C unless otherwise indicated.

SLVS024E - FEBRUARY 1983 - REVISED NOVEMBER 1999

error-amplifier section

DADAMETER	TEST SOMBITIONS		TL1451	AQ, TL145	1AM	
PARAMETER	TEST CONDITIO	NS	MIN	TYP [†]	MAX	UNIT
		T _A = 25°C			±6	
Input offset voltage	V _O (FEEDBACK) = 1.25 V	T _A = 125°C			±10	mV
		$T_A = MIN$			±12	
		T _A = 25°C			±100	
Input offset current	V _O (FEEDBACK) = 1.25 V	T _A = 125°C			±100	nA
		T _A = MIN			±200	
		T _A = 25°C		160	500	
Input bias current V _O (FEEDBACK) = 1.25 V	T _A = 125°C		100	500	nA	
	,	T _A = MIN		142	700	
Common-mode input voltage range	V _{CC} = 3.6 V to 40 V		1.05 to 1.45			V
		T _A = 25°C	70	80		
Open-loop voltage amplification	$R_F = 200 \text{ k}\Omega$	T _A = 125°C	70	80		dB
		$T_A = MIN$	64	80		
Unity-gain bandwidth				1.5		MHz
Common-mode rejection ratio			60	80		dB
Positive output voltage swing			2			٧
Negative output voltage swing					1	V
		T _A = 25°C	0.5	1.6		
Output (sink) current (FEEDBACK)	$V_{ID} = -0.1 \text{ V}, V_{O} = 1.25 \text{ V}$	T _A = 125°C	0.4	1.8		mA
		$T_A = MIN$	0.3	1.7		
		T _A = 25°C	-45	-70		
Output (source) current (FEEDBACK)	$V_{ID} = 0.1 \text{ V}, V_{O} = 1.25 \text{ V}$	T _A = 125°C	-25	-50		μΑ
		T _A = MIN	-15	-70		

 $^{^{\}dagger}$ All typical values are at T_A = 25°C unless otherwise indicated.

output section

PARAMETER	T-07 0011710110	TL1451			
	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Collector off-state current	V _O = 50 V			10	μΑ
	T _A = 25°C		1.20	2.0	
Output saturation voltage	T _A = 125°C		1.60	2.4	V
	T _A = MIN		1.36	2.2	
Short-circuit output current	V _O = 6 V		90		mA

 $^{^{\}dagger}$ All typical values are at T_A = 25°C unless otherwise indicated.

pwm comparator section

PARAMETER	TEST CONDITIONS	TL1451	LINUT		
		MIN	TYP [†]	MAX	UNIT
Input threshold voltage at f = 10 kHz (FEEDBACK)	Zero duty cycle		2.05	*2.25	V
	Maximum duty cycle	*1.20	1.45		V

8

^{*}These parameters are not production tested.
† All typical values are at T_A = 25°C unless otherwise indicated.

total device

PARAMETER	TEST CONDITIONS	TL1451	LINUT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Standby supply current	Off-state		1.3	1.8	mA
Average supply current	$R_T = 10 \text{ k}\Omega$		1.7	2.4	mA

[†] All typical values are at $T_A = 25$ °C unless otherwise indicated.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuit

[†] Protection Enable Time, $t_{pe} = (0.051 \text{ x } 10^6 \text{ x } C_{pe})$ in seconds

Figure 2. TL1451A Timing Diagram

TRIANGLE OSCILLATOR FREQUENCY vs

Figure 3

TRIANGLE WAVEFORM SWING VOLTAGE

Figure 5

OSCILLATOR FREQUENCY VARIATION vs

Figure 4

TRIANGLE WAVEFORM PERIOD

TIMING CAPACITANCE

Figure 6

REFERENCE OUTPUT VOLTAGE VARIATION

TYPICAL CHARACTERISTICS

REFERENCE OUTPUT VOLTAGE VARIATION

FREE-AIR TEMPERATURE

Figure 7

FREE-AIR TEMPERATURE 30

Figure 8

REFERENCE OUTPUT VOLTAGE vs

SUPPLY VOLTAGE

Figure 9

DROPOUT VOLTAGE VARIATION

Figure 10

Figure 11

Figure 12

SHORT-CIRCUIT PROTECTION CHARACTERISTICS

Figure 13

PROTECTION ENABLE TIME

PROTECTION ENABLE CAPACITANCE

Figure 14

ERROR AMP MAXIMUM OUTPUT VOLTAGE SWING

OPEN-LOOP VOLTAGE AMPLIFICATION

Figure 15

Figure 16

GAIN (AMPLIFIER IN UNITY-GAIN CONFIGURATION)

Figure 17

CLOSED-LOOP GAIN AND PHASE SHIFT

FREQUENCY

Figure 18

CLOSED-LOOP GAIN AND PHASE SHIFT

FREQUENCY 70 V_{CC} = 5 V C_X: ○ 47 pF • 470 pF R_{ref} = 15 Ω 60 C_{ref} = 470 pF △ 4700 pF $T_A = 25^{\circ}C$ **Phase Shift** Closed-Loop Gain - dB 50 (Right Scale) **Closed-Loop Gain** 40 (Left Scale) 30 **–40**° 20 -50° **−60**° **-70**° 10 -80° 0 **-90**° 100 1 k 10 k 100 k 1 M f - Frequency - Hz v_{ref}

Figure 19

CLOSED-LOOP GAIN AND PHASE SHIFT

FREQUENCY

Figure 20

CLOSED-LOOP GAIN AND PHASE SHIFT

FREQUENCY 70 $V_{CC} = 5 V$ C_{ref} = 470 pF 60 $T_A = 25^{\circ}C$ Closed-Loop Gain - dB 50 **0**° -10° -20° -30° -30° -30° -30° 40 **Closed-Loop Gain Phase Shift** (Left Scale) (Right Scale) 30 **–40**° 20 **-50**° **−60**° **-70**° 10 **−80**° 0 **-90**° 100 1 k 10 k 100 k 1 M f - Frequency - Hz \textbf{V}_{ref} **39 k**Ω $\stackrel{<}{>}$ \mathbf{c}_{ref} **39 k**Ω ≶

Figure 21

Test Circuit

OUTPUT SINK CURRENT

COLLECTOR OUTPUT SATURATION VOLTAGE

Figure 22

MAXIMUM OUTPUT VOLTAGE SWING

VS

Figure 23

 $V_{CC} = 3.6 \text{ V}$ $R_L = 100 \text{ k}\Omega$ $V_{OM+1} = 1.25 \text{ V}$ $V_{OM-1} = 1.15 \text{ V (Right Scale)}$ $V_{OM-1} = 1.35 \text{ V (Left Scale)}$

TEST CIRCUIT

OUTPUT TRANSISTOR ON DUTY CYCLE DEAD-TIME INPUT VOLTAGE 0 $V_{CC} = 3.6 V$ 10 $R_T = 10k\Omega$ Output Transistor "On" Duty Cycle - % $C_T = 330 pF$ 20 30 40 50 60 70 80 90 100 0.5 2 3.5 Dead-Time Input Voltage - V

Figure 24

STANDBY CURRENT FREE-AIR TEMPERATURE **Average Supply Current** 2 $V_{CC} = 6 \text{ V}, R_T = 10 \text{ k}\Omega,$ $C_{T} = 330 \text{ pF}$ 1.75 ICC - Supply Current - mA 1.5 Stand-By Current, V_{CC} = 40 V, No Load 1.25 Stand-By Current, V_{CC} = 3.6 V, No Load 1 0.75 0.5 0.25 0 -25 50 100 T_A - Free-Air Temperature - °C Figure 26

STANDBY CURRENT

Figure 25

MAXIMUM CONTINUOUS POWER DISSIPATION vs

Figure 27

APPLICATION INFORMATION

NOTE A: Values for R1 through R7, C1 through C4, and L1 and L2 depend upon individual application.

Figure 28. High-Speed Dual Switching Regulator

MECHANICAL DATA

D (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

MECHANICAL DATA

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

MECHANICAL DATA

FK (S-CQCC-N**)

28 TERMINALS SHOWN

LEADLESS CERAMIC CHIP CARRIER

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. The terminals are gold-plated.
 - E. Falls within JEDEC MS-004

MECHANICAL DATA

J (R-GDIP-T**)

14 LEADS SHOWN

CERAMIC DUAL-IN-LINE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package is hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification.
 - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, and GDIP1-T20

MECHANICAL DATA

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001).

MECHANICAL DATA

NS (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

MECHANICAL DATA

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated