Advanced Artificial Intelligence (EE7260)

DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING UNIVERSITY OF RUHUNA

Sanjaya Edirisinghe

Sanjaya@ professional.mit.edu Sanjaya@bu.edu

Code	EE 72xx		Title	Advanced Artificial Intelligence					
Credits	2.0	Lecture Hours/Semester			20 Hr	Core/TE/GE	TE		
		Workshop Hours/Semester			16 Hr				
GPA/NGPA	GPA					Pre-requisites	EE5253, EE6350		
Aim		The aim is to equip students with advanced knowledge and practical skills in advanced artificial intelligence techniques, with a particular focus on natural language processing, generative models, and AI system deployment.							
Learning Outcomes		Upon successful completion of this module, students will be able to:							
		LO-1	Preprocess raw text data by applying NLP techniques and generate feature representations and word embeddings						
		LO-2	Design and implement transformer-based models for an NLP task and create effective prompts for few-shot and zero-shot learning						
		LO-3	Build and evaluate a Variational Autoencoder and a Generative Adversarial Network to solve a defined task with measurable performance metrics						
		LO-4	Create a fully functional AI pipeline that includes preprocessing, modelling, and deployment for a real-world scenario						

Bio

- Head of Delivery Enterprise Applications Virtusa
- Director of Delivery (IT) Virtusa
- Sr. Program Manager Cognizant
- Technical Program Manager/Director for various clients

- Boston University MSc (AI & ML)
- University of Peradeniya, Faculty of Computer Engineering BSc
- Massachusetts Institute Technology (MIT) PgDip

- Sanjaya@professional.mit.edu
- SanjayaE@bu.edu

Course Structure

Section 1:

Text Preprocessing and Representation

Section 2:

Word Embeddings

Section 3:

Transformer Architecture

Section 4:

Applications of Transformers and LLMs (LLM Fine Tune)

Section 6:

Autoencoders and Variants

Section 7: Generative Adversarial Networks

(CV)

(GANs)

Section 5:

Prompt Engineering

Section 8-10: MLOps

(Overview, Pipelines,

Scaling)

Why AI?

DIKW Pyramid of Data (Science)

Human Limitations

1982

Really easy, right?

Starting MS-DOS...

HIMEM is testing extended memory...done.

C:>>C:NDOS\SMARTDRU.EXE /X

MODE prepare code page function completed

MODE select code page function completed C:\>dir

Volume in drive C is MS-DOS_6 Volume Serial Number is 40B4-7F23 Directory of C:\

DOS	<dir></dir>			12.05.	20	15:57
COMMAND	COM	54 €	45	94.05.	31	6:22
WINAZ0	386	9 3	149	94.05.	31	6:22
CONFIG	SYS		44	12.05.	20	15:57
AUTOEXEC	BAT		88	12.05.	20	15:57
	64 326 bytes					
		24	7	60 320	bytes	free

Graphical User Interface (GUI)

Windows 1.0

Windows 3.0

Windows 95

80s/90s, GUIs

Generative AI

We have have arrived at making requests in plain language

(not like Alexa)

Time to value

Faster Decisions

Post-ChatGPT, Moving at the speed of thought

How far can it go?

Test scores of AI systems on various capabilities relative to human performance

Generative A.I. Can Add \$4.4 Trillion to Global Economy

McKinsey: Generative AI set to add \$4.4 trillion to global economy annually.

https://www.nytimes.com/2023/06/14/technology/generative-ai-global-economy.html

Generative A.I. Can Add \$4.4 Trillion in Value to Global Economy, Study Says

The report from McKinsey comes as a debate rages over the potential economic effects of A.I.-powered chatbots on labor and the economy.

Research Areas for (Gen) AI field

Effectiveness

- Reasoning Capabilities (Decision making with logical reasoning)
- . Meaningful context (Context awareness, long-range dependencies)
- Explainable AI (Transparency)

Efficiency improvement:

- . More efficient AI architecture (Low watt per token)
- The bigger the better!" should not be true for model training and constriction of foundation models
- Training models with small number of data sets
- Multi-modal capabilities
- . Agentic AI