Lab3 zad3

Aleksander Wiśniewski

28 05 2020

Zadanie 3

Wzór

W zadaniu trzecim będziemy chcieli wyznaczyć ciepło topnienia lodu, korzystając z kalorymetru napełnionego wodą, do którego dodajemy kostki lodu.

W pierwszje kolejności wyznaczymy wzór na ciepło topnienia lodu. Bilans energetyczny takiego układu wygląda tak:

$$q_l m_l + m_l c_{wH2O} T_k = m_{1H2O} c_{wH2O} (T_{1H2O} - T_k) + m_k c_{wk} (T_{1H2O} - T_k)$$

Gdzie q_l jest ciepłem topnienia lodu, m_l to masa wrzucanego lodu, c_{wH2O} to ciepło właściwe wody wyliczone w 1 zadaniu, c_{wk} to ciepło właściwe kalorymetru wyliczone w 2 zadaniu, T_k to temperatura końcowa układu, m_{1H2O} to masa wody w kalorymetrze przed dodaniem lodu, T_{1H2O} to temperatura układu przed dodaniem lodu, T_k to temperatura końcowa układu, m_k to masa kalorymetru.

Chcemy z tego wzoru wyznaczyć wzór na ciepło topnienia lodu. Po prostych przekształceniach równania otrzymamy:

$$q_{l} = \frac{(m_{1H2O}c_{wH2O} + m_{k}c_{wk})(T_{1H2O} - T_{k})}{m_{l}} - c_{wH2O}T_{k}$$

Wyniki

Korzystając z pomiarów zapisanych przy wykonywaniu wirtualnego laboratorium, wypiszemy teraz dane oraz otrzymaną wartość ciepła topnienia lodu dla kolejnych pomiarów.

Table 1: Pomiary i wartości ciepła topnienia

$T_p[C]$	$T_k[C]$	$m_{H2O}[kg]$	$c_t[J/kg*K]$
60,0000	57,1442	1,0000	334608,7
57,1442	54,4029	1,0243	334597,1
54,4029	51,7692	1,0486	334618,1
51,7692	49,2369	1,0729	334635,0
49,2369	46,8004	1,0972	334618,6
46,8004	44,4542	1,1215	334640,5
44,4542	42,1934	1,1458	334654,5
42,1934	40,0135	1,1701	334649,1
40,0135	37,9102	1,1944	334652,1
37,9102	35,8795	1,2187	334662,8
35,8795	33,9178	1,2430	334649,5
33,9178	32,0215	1,2673	334672,5
32,0215	30,1875	1,2916	334664,5
30,1875	28,4127	1,3159	334677,5
28,4127	26,6943	1,3402	334684,4
26,6943	25,0297	1,3645	334678,5
25,0297	23,4163	1,3888	334703,5
23,4163	21,8519	1,4131	334692,4
21,8519	20,3343	1,4374	334682,1
20,3343	18,8613	1,4617	334709,6

W wyliczeniach przyjmowaliśmy za każdym razem:

Table 2: Wartości stałych

Masa lodu [kg]	0,0243
Masa kalorymetru [kg]	0,765
Ciepło właściwe wody [J/kg*K]	4200
Ciepło właściwe kalorymetru [J/kg*K]	901,1668

Analiza niepewności pomiarowych

Otrzymane wartości ciepła topnienia lodu każdorazowo obarczone są pewną niepewnością obliczeniową typu B, która wynika z niedokładności urządzeń pomiarowych oraz niepewności wartości ciepła właściwego wody oraz kalorymetru, wyliczonych w poprzednich poleceniach.

Niepewność typu B wartości ciepła topnienia lodu obliczymy metodą propagacji niepewności:

$$u_{B}(q_{l}) = \sqrt{\frac{(\frac{\partial q_{l}}{\partial c_{wH2O}})^{2} u_{B}^{2}(c_{wH2O}) + (\frac{\partial q_{l}}{\partial m_{1H2O}})^{2} u_{B}^{2}(m_{1H2O}) + (\frac{\partial q_{l}}{\partial c_{wk}})^{2} u_{B}^{2}(c_{wk}) + (\frac{\partial q_{l}}{\partial m_{l}})^{2} u_{B}^{2}(m_{l}) + (\frac{\partial q_{l}}{\partial T_{k}})^{2} u_{B}^{2}(T_{k}) + (\frac{\partial q_{l}}{\partial T_{1H2O}})^{2} u_{B}^{2}(T_{1H2O})}}$$

Poszczególne pochodne cząstkowe wyrażają się wzorami:

Table 3: Wzory pochodnych

$\frac{\partial q_l}{\partial c_{wH2O}}$	$\frac{m_{1H2O}(T_{1H2O} - T_k)}{m_l} - T_k$
$\frac{\partial q_l}{\partial m_{1H2O}}$	$\frac{c_{wH2O}(T_{1H2O} - T_k)}{m_l}$
$rac{\partial q_l}{\partial c_{wk}}$	$rac{m_k(T_{1H2O}\!-\!T_k)}{m_l}$
$rac{\partial q_l}{\partial m_l}$	$-\frac{(m_{1H2O}c_{wH2O}+m_kc_{wk})(T_{1H2O}-T_k)}{m_l^2}$
$rac{\partial q_l}{\partial T_k}$	$\frac{-(m_{1H2O}c_{wH2O} + m_k c_{wk})}{m_l} - c_{wH2O}$
$\frac{\partial q_l}{\partial T_{1H2O}}$	$\frac{m_{1H2O}c_{wH2O} + m_k c_{wk}}{m_l}$

Natomiast ich wartości dla poszczególnych pomiarów są takie:

Table 4: Wartości pochodnych

Pomiar	$\frac{\partial q_l}{\partial c_{wH2O}}$	$\frac{\partial q_l}{\partial m_{1H2O}}$	$\frac{\partial q_l}{\partial c_{wk}}$	$\frac{\partial q_l}{\partial m_l}$	$\frac{\partial q_l}{\partial T_k}$	$\frac{\partial q_l}{\partial T_{1H2O}}$
1	60,37843	493595,1	89,90481	-23646679	-205409,6	201209,6
2	61,14910	473804,9	86,30019	-23172398	-209609,6	205409,6
3	61,88092	455207,4	82,91278	-22718055	-213809,6	209609,6
4	62,56988	437681,5	79,72056	-22281069	-218009,6	213809,6
5	63,21309	421123,5	76,70463	-21859273	-222209,6	218009,6
6	63,82824	405516,0	73,86185	-21454654	-226409,6	222209,6
7	64,40844	390755,6	71,17333	-21064476	-230609,6	226409,6
8	64,95362	376772,8	68,62648	-20687482	-234809,6	230609,6
9	65,47176	363533,3	66,21500	-20324073	-239009,6	234809,6
10	65,96470	350985,2	63,92944	-19973528	-243209,6	239009,6
11	66,42760	339059,3	61,75722	-19633918	-247409,6	243209,6
12	66,87484	327755,6	59,69833	-19307110	-251609,6	247409,6
13	67,29375	316987,7	57,73704	-18989792	-255809,6	251609,6
14	67,69674	306755,6	55,87333	-18683573	-260009,6	255809,6
15	68,07935	297007,4	54,09778	-18386850	-264209,6	260009,6
16	68,44136	287708,6	52,40407	-18098899	-268409,6	264209,6
17	68,79316	278859,3	50,79222	-17821070	-272609,6	268409,6
18	69,12150	270390,1	49,24963	-17550223	-276809,6	272609,6
19	69,43517	262301,2	47,77630	-17287498	-281009,6	276809,6
20	69,74298	254592,6	46,37222	-17034037	-285209,6	281009,6

Przedstawmy teraz wyliczone wartości ciepła topnienia lodu wraz z ich niepewnościami.

Table 5: Wartości ciepła topnienia i niepewności

$T_p[C]$	$T_k[C]$	$m_{H2O}[kg]$	$c_t[J/kg*K]$	$u_B(c_t)[J/kg*K]$
60,0000	57,1442	1,0000	334608,7	1369,9273
57,1442	54,4029	1,0243	334597,1	1342,4191
54,4029	51,7692	1,0486	334618,1	1316,0775
51,7692	49,2369	1,0729	334635,0	1290,7517
49,2369	46,8004	1,0972	334618,6	1266,3147
46,8004	44,4542	1,1215	334640,5	1242,8813
44,4542	42,1934	1,1458	334654,5	1220,2916
42,1934	40,0135	1,1701	334649,1	1198,4723
40,0135	37,9102	1,1944	334652,1	1177,4459
37,9102	35,8795	1,2187	334662,8	1157,1701
35,8795	33,9178	1,2430	334649,5	1137,5325
33,9178	32,0215	1,2673	334672,5	1118,6410
32,0215	30,1875	1,2916	334664,5	1100,3031
30,1875	28,4127	1,3159	334677,5	1082,6117
28,4127	26,6943	1,3402	334684,4	1065,4737
26,6943	25,0297	1,3645	334678,5	1048,8468
25,0297	23,4163	1,3888	334703,5	1032,8091
23,4163	21,8519	1,4131	334692,4	1017,1781
21,8519	20,3343	1,4374	334682,1	1002,0198
20,3343	18,8613	1,4617	334709,6	987,4004

Wynik

Jako wynik naszych obliczeń weźmiemy średnią arytmetyczną wartości ciepła topnienia lodu, a jako niepewność pomiarową - największą z uzyskanych niepewności. W takim razie wyliczona przez nas wartość ciepła topnienia lodu wynosi: $334657,55(1369,93)[\mathrm{J/kg*K}]$.