Komplementet: A, alt som ikke er i A	X = gjennomonitt
	G = G = G = G = G = G = G = G = G = G =
Snithet: AMB, alt; bade A os B Unionen: AUB, alt; enten A ellar B ellar busse	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
Disjunkt: ANB = Ø, Aos B har inserting talles	
	m = for ventains aver J:
Kombi natorikk	n 2
$\binom{N}{K} = \frac{N!}{K! \cdot (N-K)!}$	$s^2 = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - x_j)^2$
Sannsynlighet for hendelse	$S = \sqrt{s^2}$
P(A) = 1 - P(A)	
$P(AUB) = P(A) + P(B) - P(A \cap B)$	Normal fordeling
P(AUB) = P(A) + P(B) (Huis A of B er disjunkte)	$P(X \le x) = F(x) = G\left(\frac{x + \mu}{\sigma}\right)$
$P(A B) = \frac{P(A B)}{P(B)}$	$P(X > x) = -G(\frac{x - \mu}{G}) $
$P(A \cap B) = P(A) \cdot P(B \setminus A) = P(B) \cdot P(A \cap B)$	$P(a \le X < b) = G(\frac{b-\mu}{6}) - G(\frac{a-\mu}{6})$
Samo In Cont.	
B	$X \sim N_{\text{ormal}}(\mu, \sigma)$
P(B; A) = P(B;) · P(A B;) P(A)	1 Vormal (m, o)
Y(B; A) = P(A)	
	$\hat{\mu} = \bar{\chi} = \frac{1}{n} (x_1 + x_2 + + x_n)$
Total samsynlishet	$\tilde{\mu} = X = \tilde{h} (X_1 + X_2 + + X_n)$
$P(A) = P(B_1) \cdot P(A B_1) + \dots + P(B_n) \cdot P(A B_n)$	
	totemering av o2
Varhensise hendolser	Estemering av σ^2 $\sigma^2 = 5^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$
P(A(B) = P(A) · P(B)	
P(A B) = P(A)	Estemering as p
P(B A) = P(B)	P = X
Binomisk fordeling	
Ko.:	
Krau: 1. n vauhensise forsøk	
2. Huet forsek har bare to utall: A /; kke A	
3. P(1) = p : alle delforsøk	
J. I(II) - p i alle del largos	
$P(X=x) = \binom{n}{x} p^{x} (1-p)^{n-x} \qquad \text{for} \qquad x = 0,1,2n$	
$r(\lambda = x) = (x) p^{\lambda} (1-p) \qquad \text{for} \qquad x \neq 0, 1, 2 $	
D()	
$P(\chi \leq \chi) = \sum_{k=0}^{x} P(\chi = k)$	
Forventning og varians	
Forventains: E(X) = N.P	
Various: Var (x) = n.p. (1-p)	