

Fundamentos de Sistemas de Operação

LEI - 2023/2024

Vitor Duarte
Mª. Cecília Gomes

1

Aula 20

- Escalonamento de processos
- OSTEP: cap. 7

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREMENTO DE INFORMÁTIC

Vários escalonamentos

- Escalonamento de processos e threads para o/s CPU
- Escalonamento de cada pedido em cada recurso (p.e. IO)
- Escalonamento de curto prazo, médio prazo e de longo prazo
 - que processos executar a cada "instante"
 - que processos suspender/swapout
 - para o dia, semana, mês, ... em batch ou por agendamento
- · Escalonamento interno ao processo, pelo programador
 - Exemplo de mau escalonamento pelo programador: abrir ficheiros antes de ter a certeza que o programa vai precisar destes...
- O escalonamento no CPU pode dominar o desempenho de todo o sistema

Grandes objetivos

- Justiça no acesso aos recursos
 - todos têm possibilidade de usar o recurso de que necessitam (p.e. CPU)
- Impor politica/disciplina de atendimento
 - pretende-se obter um plano para determinados objetivos: fazer mais tarefas, atender mais depressa, atender mais tarefas, usar melhor os recursos, etc
- Equilibrio na utilização dos recursos
 - pretende-se que todos os recusos estejam em uso para efetuar mais trabalho em vez de um recurso ficar desocupado por causa de mau planeamento

FACULDADE DE CIÊNCIAS E TEC DEPAREAMENTO D

Modelos para os sistemas

- Modelo para o estudo:
 - existem processos ou tarefas → define a carga de trabalho (o workload)
 - consideram-se várias carateristicas das tarefas: uso de cpu, io, tempo de execução, etc
 - estuda-se o escalonador (algoritmo) que define o plano de atendimento considerando determinados objetivos
 - definem-se metricas para os objetivos pretendidos, a usar na avaliação/comparação
- Exemplos de sistemas:
 - BATCH atendimento sequencial de tarefas
 - Processos concorrentes vários processos partilham o uso de CPU, memória, IO, etc

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAESAMENTO DE INFORMÁTICA

7

7

Métricas de escalonamento

- Taxa de utilização de recurso:
 - De cada periférico e, principalmente, do CPU

tempo utilização

tempo total

(o ideal é 100%)

Débito de trabalhos ou pedidos:

trabalhos/pedidos concluídos

tempo

(quanto mais melhor)

FACULDADE DE CIÊNCIAS E TECNO DE JEPAREAMENTO DE J

Métricas de escalonamento (2)

- Tempo de resposta/conclusão (turnarround time)
 - Tempo que decorre desde a submissão do trabalho até à sua conclusão Tempo conclusão - Tempo chegada

(quanto menor melhor para o utilizador)

- Em sistemas interativos é mais relevante o tempo de resposta em termos de cada ação (response time) visto como latência
 - Tempo que decorre para o sistema responder a uma ação do utilizador Tempo da resposta - Tempo pedido ação
 - Pode ser definido como o tempo até começar a sua execução Tempo início de execução - Tempo pedido ação

(quanto menor melhor para o utilizador)

• Nota: Melhorar a resposta média pode aumentar injustiças...

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREAMENTO DE INFORMÁTICA

9

Exemplo

- Consideremos a execução de tarefas (p.e. processos)
- Simplificamos considerando
 - temos um conjunto de tarefas pré-definido (workload)
 - não temos em conta se usam CPU, IO, chamadas ao SO, etc
 - atendimento sequencial, como em batch, executando uma tarefa de cada vez
 - só troca de contexto no fim de cada tarefa
 - sabemos o tempo total de execução para cada tarefa
- workload: 3 tarefas no instante 0 que duram 100, 10 e 10 unidades tempo

FACULDADE DE CIÊNCIAS E TECNOLOGIA DE DEFORMÁTI

Problemas?

- Todo o computador é atribuído a um programa
 - Má rentabilização dos recursos
 - Maus tempos para atender todos os pedidos, baixos débitos
- Normalmente não é possível conhecer/estimar o futuro
- Se as tarefas vão chegando
 - · o plano devia ser refeito
- Não serve para sistemas interativos
 - Nestes queremos bom response time

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREMENTO DE INFORMÁTICA

13

13

Ajustando nas chegadas

- A cada novo pedido, se pode suspender a tarefa corrente, reavalia o plano
 - prioridade ao que falta menos tempo para terminar

• B e C só no instante 10

Turnaround médio = 110 resposta média = 70

Turnaround médio = (20+30+120)/3 = 57 apr. resposta média = (0+10+20)/3 = 10

14

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMÁT

Perfil de um processo (ready vs block)

- Um processo executa diferentes ações que definem o seu perfil
- CPU, IO, sincronização (wait, semáforos, etc), ...
 - Comuta entre diferentes estados (running, ready, blocked)
- O CPU e IO podem ser melhor usados → mais trabalho feito

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREMENTO DE INFORMÁTICA

15

15

Recordando: Perfis dos processos

- Dois exemplos de perfis:
 - CPU bound é limitado pelo tempo de uso do CPU

• 10 bound – é limitado pela espera nas ações de 10 ou sincronização

• Os processos podem ter diferentes fases:

17

17

Sem conhecer o tempo de cada tarefa

- Idealmente o SO gere processos com diferentes perfis, em diferentes estados (running, ready, blocked)
 - Permite sobrepor ações diferentes de diferentes processos
- Procura que todos os processos progridam, mantendo os recursos sempre ocupados
 - Quando um se bloqueia é uma oportunidade para outro (ready) usar o CPU (passar a Running) → troca de contexto do CPU
 - Evita a monopolização do CPU por um processo: a cada chamada ao SO e usando time-slicing
- Que processo escolher para executar em cada oportunidade?
 - Como ter uma melhor utilização do CPU e dos outros recursos (p.e. IO)?
 - Como ter uma boa sobreposição CPU/IO?
 - Como obter bons tempos de turnaround e response?

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMÁTICO.

CPU: Round-Robin com preempção

- Lidar com processos em períodos CPU bound
 - Apreender-lhes o CPU ao fim de um tempo limite time-slice (ou quantum)
 - permite atender nova tarefa em cada time-slice
- Fazer rodar, à vez, o CPU pelos vários processos READY
 - exemplo: 3 processos de duração 5 em RR com slices de 1

FACULDADE DE CIÊNCIAS E TECNOLOS DEPAREAMENTO DE INFO

19

19

Análise

- Troca de contexto (context swtch) tem custos
 - suspender um processo + retomar outro processo
 - e ainda voltar a popular as caches, TLB, etc para o novo processo
- Round-Robin tem overhead relacionado com o time-slice
 - podemos amortizar reduzindo o número de trocas de contexto
 - se quatum = 10 e troca de context = 1 \rightarrow 10% overhead
 - se quantum = 100 e troca de contexto =1 → 1% overhead (logo mais tempo para os processos, mas pior resposta)

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMÁTICO.

Vantagens vs Desvantagens

- Sobreposição de IO com CPU
 - Melhora o uso dos recursos e o tempo para terminar um conjunto de processos: melhor uso de recursos e melhor débito de tarefas
 - No fim de cada IO o processo passa a ready → pode executar
- RR com time-slice no uso do CPU
 - Permite partilhar o CPU entre todos os processos ready, protegendo dos CPU-bound: melhor response time
 - Tem custos com a troca de contextos
- O tempo de conclusão de todas as tarefas tende a ser atrasado
 - Num sistema com vários tipos de processos, os curtos e os IObound ficam prejudicados: pior turnaround time
- Não é necessário saber o futuro (as tarefas podem entrar a meio)

21

21

Prioridade ao IO-bound?

- · Objectivos:
 - Melhorar o turnarround time dos processos, especialmente os IObound (interatividade é IO)
 - Garantir bom response time na interação com utilizadores. Evitar injustiças e impedir starvation
- Se um processo é IO-bound deve ter prioridade no uso do CPLI?
 - De qualquer modo vai deixar de usar o CPU brevemente... → Shortest Job First
- Como saber o perfil de cada processo?
 - Não sabemos o futuro mas podemos usar o passado recente como indicador do futuro
 - Se terminou IO dar-lhe oportunidade de passar à frente do que têm estado a usar o CPU

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREMENTO DE INFORMÁTICO

Multi-Level Queue

- Em vez de uma fila de processos READY, várias filas, cada uma para diferente prioridade
 - Cada processo READY está numa só fila
- O escalonador atribui o CPU ao primeiro da fila com maior prioridade (usa RR se vários)
 - necessita de políticas para fazer subir e descer processos nas prioridades

23

FACULDADE DE CIÊNCIAS E TEC