Rapport : Classification de Patients Atteints de Cancer avec Random Forest

1. 1. Introduction à Random Forest

Définition

Random Forest est un algorithme d'apprentissage automatique supervisé qui crée une "forêt" d'arbres de décision et fusionne leurs prédictions pour obtenir une prédiction plus précise et stable.

Fonctionnement

- 1. **Bootstrap Aggregating (Bagging)**: Création de multiples échantillons du dataset original
- 2. Construction des arbres : Pour chaque échantillon, création d'un arbre de décision
- 3. Random Feature Selection : À chaque nœud, sélection aléatoire d'un sous-ensemble de caractéristiques
- 4. **Agrégation**: Combinaison des prédictions par vote majoritaire (classification) ou moyenne (régression)

Avantages

- Robuste au surapprentissage
- Gère bien les données manquantes et les valeurs aberrantes
- Fournit des mesures d'importance des caractéristiques
- Parallélisable

Inconvénients

- Complexité computationnelle élevée
- Moins interprétable qu'un seul arbre de décision
- Nécessite plus de mémoire

2. Cas d'Utilisation : Prédiction de Survie des Patients Atteints de Cancer

Dataset

Données synthétiques de patients atteints de cancer en Chine, comprenant :

- Caractéristiques démographiques (âge, genre, province)
- Informations médicales (type de tumeur, stade, traitement)

- Variables comportementales (tabagisme, alcool)
- Statut de survie (variable cible)

2. Implémentation

Le notebook contient :

- 1. Chargement et prétraitement des données
- 2. Encodage des variables catégorielles
- 3. Entraînement du modèle Random Forest
- 4. Évaluation des performances
- 5. Visualisation des résultats

Code Principal

```
# Prétraitement
df_encoded = pd.get_dummies(df[cat_columns])
df_final = pd.concat([df_encoded, df[num_columns]], axis=1)

# Modélisation
X = df_final
y = (df['SurvivalStatus'] == 'Deceased').astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Entraînement
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)

# Évaluation
y_pred = rf_model.predict(X_test)
```

3. Résultats

Matrices de confusion visualisant les prédictions correctes/incorrectes

- Top 20 des caractéristiques les plus importantes pour la prédiction
- Métriques de performance (accuracy, precision, recall, F1-score)

4. Conclusion

Random Forest s'avère efficace pour la prédiction du statut de survie des patients, offrant :

- Une bonne performance prédictive
- Des insights sur les facteurs les plus importants
- Une base solide pour la prise de décision médicale

5. Annexes

