几何学期中考试试题

考试日期: 2010 年 11 月 20 日。考试时间: 2 小时。

1,2 题为计算题,可只写答案。若答案错但有计算过程,可给过程分。

题 1 (40 分) 过空间直角坐标系的原点 *O*, 求出满足以下条件的平面或直线方程。每小题 8 分。

- 1) 作平面 Σ_1 , 使其垂直于平面 z=0 并过 (1,1,1) 点。
- 2) 作平面 Σ_2 , 使其过直线

$$\ell: \begin{cases} x + y + z + 1 = 0, \\ 2x - y + z + 2 = 0. \end{cases}$$

- 3) 作平面 Σ_3 ,使其与直线 $l: \frac{x+1}{2} = \frac{y+11}{1} = \frac{z+111}{-3}$ 和 $l': \frac{x-9}{1} = \frac{y-99}{-5} = \frac{z-999}{4}$ 平行。
- 4) 作平面 Σ_4 , 使其到点 (2010, 11, 20) 的距离尽量大 (即达到最大值)。
- 5) 作直线 l_5 , 使其与直线 (x, y, z) = (1, 0, t) (t 为参数) 垂直且两者距离尽量大(达到可能的最大值)。要求写出 l_5 的标准方程(即点斜式或参数式)。

题 $2(10\ \mathcal{H})$ 给定平面直角坐标系,直线 l 的方程为 x+y=1。写出关于 l 的反射变换的坐标变换公式。

题 3 (10 分) 设 l, l' 是同一平面上的两条不同直线, $\phi: l \to l'$ 为等距映射。证明: 任取 $p \in l$, 取其与 $\phi(p) \in l'$ 连线的中点, 这些中点要么共线, 要么是同一个定点。

题 4 (20 分)

- 1) $(10 \, \mathcal{G})$ 平面上给定椭圆 Γ 和椭圆外一点 A, 过 A 作 Γ 的两条切线, 切点 为 B, C, BC 中点为 D。试证明 A, D 及椭圆中心 O 三点共线。
- 2) (10 分) 椭圆 Γ 的所有外切平行四边形中,面积的最小值是多少? 什么时候达到?

题 5 (10 分) 证明:空间中起点相同的四向量 a,b,c,d, 其终点共面当且仅当 [a,b,c]-[b,c,d]+[c,d,a]-[d,a,b]=0. (方括号表示混合积。)

题 6 (10 分)

- 1) (5 分) 设空间等距变换 ϕ 有一条不变直线 l。试分析并列举出所有可能的这种变换 ϕ 。
- 2) (5分) 设空间仿射变换 ψ 有唯一不动点 O。试证明 ψ 的任一不变直线都过点 O。