Note that all variable names in CDF files have pre-pended 'th[probe]_' for probe data, (example 'tha_peef_density'). Ground based data is prepended with 'thg_'. See the THEMIS Data Analysis Software User's Guide for details:

http://themis.ssl.berkeley.edu/downloads/

 $THEMIS_Users_Guide_THEMIS_Science_Data_Analysis_Software_TDAS_v7.0.pdf$

_			<u> </u>
Instrument	Level	Data Name	Description
ASI	L1	asf_????	All-sky imager full resolution images of 256x256 pixels
			(???? = 4-letter code of ground station)
		ast_????	All-sky imager thumbnail images of 32x32 pixels
			(???? = 4-letter code of ground station)
ASK	L1	ask_????	All-sky imager keogram images of 256 pixels
			(???? = 4-letter code of ground station)
ESA	L2 or L0*	For ESA: ? = f or r or b	f=full, r=reduced, b=burst
		pei?_data_quality	ion data quality flag (0: good data; nonzero: data may not be suitable)
		pei?_density	ion density
		pei?_t3	diagonalized ion temperature
		pei?_en_eflux	ion energy flux spectrogram
		pei?_velocity_???	ion velocity (???=DSL or GSE or GSM)
		pei?_ptens	ion pressure tensor (DSL)
		peif_mftens pei?_magt3	ion momentum flux tensor (DSL)
		pei?_magts pei?_avgtemp	ion temperatures in B frame trace of diagonalized temperature tensor
		per:_avgtemp	divided by 3
		pei?_vthermal	ion thermal velocity
		pei?_symm	direction of pressure tensor symmetry (DSL)
		pei?_symm_ang	angle between symmetry direction and B
		pei?_mode	ion instrument mode
		pei?_sc_pot	spacecraft potential
		pei?_flux	ion particle flux vector
		pei?_magf	magnetic field vector in DSL
		pee?_data_quality	electron data quality flag (0: good data; nonzero: data may not be suitable)
		pee?_density	electron density
		pee?_t3	diagonalized electron temperature
		pee?_en_eflux	electron energy flux spectrogram
		pee?_velocity_???	electron velocity (???=DSL or GSE or GSM)
		pee?_ptens	electron pressure tensor (DSL)
		pee?_mftens	electron momentum flux tensor (DSL)
		pee?_magt3	electron temperatures in B frame
		pee?_avgtemp	trace of diagonalized temperature tensor divided by 3
		pee?_vthermal	electron thermal velocity
		pee?_symm	direction of pressure tensor symmetry (DSL)
		pee?_symm_ang	angle between symmetry direction and B

pee?_sc_pot spacecraft potential
pee?_flux electron particle flux vector
pee?_magf magnetic field vector in DSL
pee?_mode electron instrument mode
iesa_solarwind_flag ion solar wind mode flag (0: not in solar wind mode; 1: in solar wind mode)

eesa_solarwind_flag electron solar wind mode flag (0: not in solar

wind mode; 1: in solar wind mode)

L0 only pei?_en_counts ion count vs. energy
L0 only pee?_en_counts electron count vs. energy

SST	L1*	For SST: ? = f or r or b psi?_# pse?_#	f=full, r=reduced, b=burst # = same quantities as for ESA # = same quantities as for ESA
	L2	SST: full only	# = Same quantities as for ESA
		psif_en_eflux	ion energy spectrogram
		psef_en_eflux	electron energy spectrogram
MOM	L1 and L2	peim_density	ESA ion density
(on-board		peim_flux	ESA ion flux
moments)		peim_mftens	ESA ion momentum flux tensor
	(1.4. 1.)	peim_eflux	ESA ion energy flux
	(L1 only)	peim_velocity	ESA ion velocity
		peim_ptot	ESA ion pressure
	I 2 only	peim_ptens	ESA ion pressure tensor
	L2 only	peim_velocity_???	ESA ion velocity in ???=dsl, gse, gsm coordinates
		peim_velocity_mag	ESA ion field-aligned velocity
		peim_ptens_mag	ESA ion field-aligned pressure tensor
		peim_t3_mag	ESA ion field-aligned temperature
		peim_mag	B field (DSL) interpolated to peim time array
		peim_data_quality	ion moment data quality (0: good data; nonzero:
		pxxm_pot	data may not be suitable) Spacecraft potential
	L1 and L2	peem_#	# = ESA electron quantities (same as above for
	LT and LZ	рссп_#	ESA ions)+A1
		iesa_solarwind_flag	ESA ion solar wind flag mode (0: not in solar
			wind mode; 1: in solar wind mode)
		eesa_solarwind_flag	ESA electron solar wind flag mode (0: not in
			solar wind mode; 1: in solar wind mode)
	L1 only	psim_#	# = SST ion quantities (same as for ESA ions)
		psem_#	# = SST electron quantities (same as for ESA electrons)
		ptim_#	# = ESA+SST ion quantities (same as for ESA ions)
		ptem_#	# = ESA+SST electron quantities (same as for ESA ions)
		pxxm_qf	calibration parameter for SC potential
		pxxm_shft	calibration parameter for SC potential
EFI	L1 and L2	eff	E field, fast survey/full orbit, 3D
	L1 only?	efp	E field, particle burst, 3D
	L1 only?	efw	E field, wave burst, 3D
		eff_dot0	E field, fast survey/full orbit, 3D, using E dot
			B=0 (DSL coordinates)
	L1 only?	efp_dot0	E field, particle burst, 3D, using E dot B=0
	L1 only?	efw_dot0	E field, particle burst, 3D, using E dot B=0
	L1 only?	eff_0	E field, fast survey/full orbit, 3D, using Ez=0
	L1 only?	efp_0	E field, particle burst, 3D, using Ez=0
	L1 only? L1 only?	efw_0 efs	E field, particle burst, 3D, using Ez=0 On-board spin-fit electric field
	L1 only?	efs_0	On-board spin-fit electric field using Ez=0
	Li Only:	013_0	on sourd opin in diconic floid doing Lz-0

		efs_dot0	On-board spin-fit electric field using E dot B=0 (DSL coordinates)
	L1 only?	vaf	Voltage, processor A, fast survey/full orbit
	L1 only?	vap	Voltage, processor A, particle burst
	L1 only?	vaw	Voltage, processor A, wave burst
	L1 only?	vbf	Voltage, processor B, fast survey/full orbit
	L1 only?	vbp	Voltage, processor B, particle burst
	L1 only?	vbw	Voltage, processor B, wave burst
	L1 only?	ef?_hed	16-byte packet header for analogous data type; ?=f or p or w
	L1 only?	ef?_raw	raw data for analogous data type; ?=f or p or w
	L1 only?	va?_hed	16-byte packet header for analogous data type; ?=f or p or w
	L1 only?	va?_raw	raw data for analogous data type; ?=f or p or w
		efs_q_mag	Data quality parameter (=NaN)
		efs_q_pha	Data quality parameter (=NaN)
		eff_q_mag	Data quality parameter (equal to the spin-fit
			E34 electric field magnitude divided by the spin- fit E12 electric field magnitude. Good values
			are near 1.0)
		eff_q_pha	Data quality parameter (equal to the cosine of
		— I—I	the angle between the spin-fit E34 electric field
			and the spin-fit E12 electric field. Good values
			are near 1.0)
		eff_e12_efs	Ground spin-fit (using E12), spin plane electric field vector in DSL coordinates
		eff_e34_efs	Ground spin-fit (using E34), spin plane electric
			field vector in DSL coordinates
FBK	L1 only	fb1	Filter Bank 1 (E and/or B)
		fb2	Filter Bank 2 (E and/or B)
	14 - 110	fbh	Filter Bank high frequency (100-300kHz)
	L1 and L2	fb_hff	High-frequency filter peak and average values
		fb_eac12	Spectrogram E field AC component, sensors 1&2 (spin plane)
		fb_eac34	Spectrogram E field AC component, sensors 3&4 (spin plane)
		fb_eac56	Spectrogram E field AC component, sensors 5&6 (axial)
		fb_edc12	Spectrogram E field DC component, sensors 1&2 (spin plane)
		fb_edc34	Spectrogram E field DC component, sensors 3&4 (spin plane)
		fb_edc56	Spectrogram E field DC component, sensors 5&6 (axial)
		fb_scm?	Spectrogram SCM? (search coil); ?=1,2,3 (three axes)
		fb_v?	Spectrogram floating potential of sensor ?=1,2,3,4,5,6

FFT	L1 and L2	ffp_16	FFT power spectrum in particle burst x 16 frequencies
(on-board)		ffp_16_dbpara	FFT power spectrum for dB (parallel)
(on board)		ffp_16_dbperp	FFT power spectrum for dB (perpendicular)
		ffp_16_eac12	FFT power spectrum for AC component E12
		ffp_16_eac34	FFT power spectrum for AC component E34
		ffp_16_eac54	FFT power spectrum for AC component E56
		ffp_16_edc12	FFT power spectrum for DC component E12
		ffp_16_edc34	FFT power spectrum for DC component E12
		ffp_16_edc54	FFT power spectrum for DC component E56
		ffp_16_eqc36	FFT power spectrum for E (parallel)
		·	. , ,
		ffp_16_eperp	FFT power spectrum for E (perpendicular)
		ffp_16_scm?	FFT power spectrum for SCM?; ?=1,2,3 (axes)
		ffp_16_v?	FFT power spectrum for V?; ?=1,2,3,4,5,6
			(sensors)
		ffp_32_#	# = same quantities in particle burst x 32
			frequencies
		ffp_64_#	# = same quantities in particle burst x 64
			frequencies
		ffw_16_#	# = same quantities in wave burst x 16
			frequencies
		ffw_32_#	# = same quantities in wave burst x 32
			frequencies
		ffw_64_#	# = same quantities in wave burst x 64
			frequencies
FGM	L1 and L2	fgl	B field, low telemetry (low data rate)
i Givi	LT and LZ	fgh	B field, high telemetry (high data rate)
		fge	engineering data (decimated from FGH)
	L2 only		B field, spin-resolution magnetic field B in DSL
	LZ Offig	fgs_dsl	B field, spiri-resolution magnetic field B in DSL
		fgs_btotal	spin-resolution magnetic field magnitude
		fgl_btotal	low time resolution magnetic field magnitude
		fgh_btotal	high time resolution magnetic field magnitude
		fge_btotal	engineering mode magnetic field magnitude
FIT	L2 only	efs	On-board spin-fit electric field (EFI) data
(on-board)	LZ Offig	efs_0	On-board spin-fit electric field (EFI) using Ez=0
(OII-DOAIU)		615_0	On-board spin-fit electric field (Li 1) dsing Lz=0
		efs_dot0	On-board spin-fit electric field (EFI) using E dot B=0
		efs_sigma	Variance of onboard spin-plane electric field spin fit
		fgs	On-board spin-fit FGM data
		fgs_sigma	Variance of onboard spin-plane magnetic field
		.55.5	spin fit
		fit_bfit	FGM spinfit calibrated data: A,B,C,sig,avg
		fit_efit	EFI spinfit calibrated data: A,B,C,sig,avg
	L1?	fit	SpinFIT file E&B raw data

GMAG	L2	mag_????	Ground magnetometer data in HDZ*
			coordinates
			(????? = 4-letter code of ground station)
		mag_???	(??? = 3-letter code of ground station)
		•	`

SCM L1 For SCM: ? = f or p or w f=fast survey, p=particle burst, w=wave	Durst
---	-------

	scf scp scw sc?_misalign sc?_dc	waveform fast survey (DSL) waveform particle burst (DSL) waveform wave burst (DSL) misalignment of Z axis from spin axis X-Y (spin plane) values of the DC field in DSL
	sc?_iano sc?_cal	time discontinuities of data calibrated data (unit depends on selected step)
L2	scf_??? scp_??? scw_??? scf_btotal scp_btotal scw_btotal	waveform fast survey (DSL, GSE, GSM) waveform particle burst (DSL, GSE, GSM) waveform wave burst (DSL, GSE, GSM) fast survey magnetic field magnitude particle burst magnetic field magnitude wave burst magnetic field magnitude

STATE L1 state_pos GEI position, xyz state_vel GEI velocity, xyz state_man Maneuver flag

state_rioi Regions of interest

state_spinras spin axis right ascension, deg state_spindec spin axis declination, deg

state_spinalpha Geom to spin axis, Euler alpha, deg state_spinbeta Geom to spin axis, Euler beta, deg

state_spinper spin period, sec state_spinphase spin phase, deg

state_{pos,vel}_gsm GSM position and velocity state_{pos,vel}_gse GSE position and velocity

state_spindec_correction V03 correction to spin axis declination

state_spinras_correction V03 correction to spin axis right ascension

Comments

*For ESA L0 and SST L1, a separate call to THM_PART_MOMENTS is required for moments.

*For ESA L0 and SST L1, a separate call to THM_PART_MOMENTS is required for moments.

changed from _press

Needs FGS data to load Needs FGS data to load Needs FGS data to load Needs FGS data to load

*Coordinate system for

gmags may vary depending on site and installation error/drift. It is best to verify with comparison to expected field.