PRACTICA CALIFICADA N°2 - FUNDAMENTOS DE FÍSICA 2020.1

Material extraído de la práctica n°2 evaluada en EEGGCC de la PUCP

Enunciado Parte Conceptual

(2 puntos) Elija el DCL correcto para cada uno de los bloques que se muestran (bloque A sobre una superficie horizontal, bloque B sobre el plano inclinado y el bloque C cuelga verticalmente). Considere que todas las superficies son lisas. Además, las cuerdas y poleas son ideales.

2) (2 puntos) Elija el DCL correcto para cada uno de los bloques rectangulares A y B que se muestran (bloque A sobre una superficie horizontal, techo horizontal). Considere que todas las superficies están en contacto y son lisas. Además, las cuerdas son ideales.

- (1 punto) Relacionar:
 - I. Al patear una pelota de fútbol, el módulo de la fuerza que el pie le imprime a la pelota es igual al módulo de la fuerza que ejerce la pelota sobre el pie. Además, estas fuerzas tienen la misma dirección pero sentido contrario.
 - II. La fuerza resultante que actúa sobre una caja de masa m tiene magnitud F. Si la fuerza resultante sobre la misma caja se duplica, entonces la aceleración también se duplica.
 - III. Un objeto de masa m se encuentra sobre una mesa horizontal lisa. Entonces, la normal de la mesa sobre el objeto tiene la misma magnitud que el peso del mismo.
 - IV. Entre dos mangos de masas M y 3M, el que posee más inercia es el de masa 3M.

1. Equilibrio

2. 1ra Ley de Newton 3. 2da Ley

de Newton **4.** 3ra Ley de

Newton

- (1 punto) Dos proyectiles A y B son lanzados en el mismo instante y con la misma rapidez, desde la posición (242; -3) m, con ángulos de lanzamiento con la horizontal igual a 55° y α (diferentes) respectivamente. Si la posición final de ambos proyectiles es (726; -3) m, necesariamente se cumple que:
 - **1)** El ángulo de lanzamiento del proyectil B es: $lpha=35^\circ$.
 - **2)** El proyectil lanzado con ángulo 55° llega primero a (726; -3) m.
 - **3)** Ambos móviles llegan al mismo instante a (726; -3) m.
 - 4) El proyectil B tiene menor tiempo de vuelo que el proyectil A.
 - 5) La rapidez de lanzamiento del proyectil A es mayor que la de B.

(1 punto) Un bloque A de 10 kg masa, apoyado en el piso horizontal y liso, es sometido a dos fuerzas

horizontales $\overrightarrow{F_1}$ y $\overrightarrow{F_2}$, tal como se muestra en la figura. Indique cuál(es) de los enunciados abajo es(son) correcto(s):

- **1)** Si la gráfica (I) le corresponde al bloque, entonces $|\overrightarrow{F_1}| > |\overrightarrow{F_2}|$.
- **2)** Si la gráfica (II) le corresponde al bloque, entonces $|\overrightarrow{F_1}| > |\overrightarrow{F_2}|$.
- **3)** Si la gráfica (III) le corresponde al bloque, entonces $|\overrightarrow{F_1}| = |\overrightarrow{F_2}|$.
- **4)** Si la gráfica (IV) le corresponde al bloque, entonces $|\overrightarrow{F_1}| < |\overrightarrow{F_2}|$.
- **5)** Si la gráfica (III) le corresponde al bloque, entonces $|\overrightarrow{F_1}| > |\overrightarrow{F_2}|$.
- (1 punto) Un bloque de 12 kg, se mueve a lo largo del eje x y presenta la siguiente ley de movimiento:

$$x(t) = egin{array}{ccc} 9+4t+(6t^2) & ext{; 0 s} \leq t \leq 6 ext{ s} \ 249 & ext{; 6 s} < t \leq 10 ext{ s} \ 249+3(t-10) & ext{; 10 s} < t \leq 16 ext{ s} \end{array}$$

Según los siguientes encunciados, marque la alternativa correcta.

- 1) De $\mathbf{0}$ s a $\mathbf{6}$ s, la suma de fuerzas sobre el cuerpo es cero.
- 2) De 10 s a 16 s, el bloque no está en equilibrio.
- 3) De 0 s a 6 s, el módulo de la suma de fuerzas sobre el cuerpo es 36 N.
- 4) De 6 s a 10 s, la suma de fuerzas sobre el cuerpo es nula.
- 5) De $0\,\mathrm{s}$ a $6\,\mathrm{s}$, el módulo de la suma de fuerzas sobre el cuerpo es $144\,\mathrm{N}$.

Seleccione una:

- a. Solo 2, 3 y 5 son correctas.
- b. Solo 2 y 3 son correctas.
- c. Solo 3 y 5 son correctas.
- d. Solo 4 y 5 son correctas.
- e. Solo 1, 2 y 3 son correctas.

Enunciado - Parte numérica

(2.5 puntos) Un bombero, a una distancia 12 m de la base de un edificio en llamas, dirige una corriente de agua desde una manguera contra incendios en un ángulo 34° por encima de la horizontal. Si la velocidad inicial del chorro de agua es 57 m/s, ¿A qué altura h, respecto del nivel de lanzamiento, impacta el agua al edificio?

Seleccione una:

- a. h = 7.78 m.
- b. h = 8.60 m.
- o. h = 8.93 m.
- d. h = 6.83 m.
- e. h = 7.15 m.
- 2) (1.5 puntos) En el punto M se ubica una base militar que intenta atacar a una base enemiga ubicada en B. La distancia que separa B y M es L=20 km. La base en B es protegida por una estación antimisiles localizada en P la cual se encuentra a una distancia D=2.8 km, tal como se muestra en la figura.

Desde la base M se dispara un proyectil con una rapidez inicial $V_M=450~\rm m/s$ y ángulo de 37.72° . La estación en P detecta la amenaza exactamente 21 segundos antes de que impacte contra la base en B. Con el fin de contrarrestarla, en dicho instante se lanza desde P un proyectil interceptor.

¿Cuál es la posición (x,y) en la que el proyectil lanzado desde P debe interceptar al lanzado desde M si se desea destruir la amenaza 2 segundos antes de que impacte contra la base en B?

(1.5 puntos) ¿Cuál debe ser el ángulo α con el que debe ser lanzado el proyectil interceptor en P? (recuerde que se desea destruir la amenaza 2 segundos antes de que impacte contra la base en B)

Seleccione una:

- a. 33.22°
- b. 56.78°
- c. 36.30°
- d. 72.74°
- e. No existe alternativa
- (2.5 puntos) Se tiene un bloque de 18 kg que está apoyado en la esquina formada por la pared vertical y el piso liso horizontal. Sobre el bloque se aplica una fuerza de 165.816 N que forma un ángulo de 21.7° con la horizontal, tal como se muestra en la figura. Respecto a la normal del piso y la normal de la pared sobre el bloque, ¿Cuál(es) de las opciones mostradas abajo es(son) correcta(s).

- 1) El módulo de la normal del piso sobre el bloque es 237.71 N.
- 2) El módulo de la normal de la pared sobre el bloque es 50.05 N.
- 3) El módulo de la normal del piso sobre el bloque es $165.82\,\mathrm{N}$.
- 4) El módulo de la normal de la pared sobre el bloque es $154.07\,\mathrm{N}.$
- 5) El módulo de la normal del piso sobre el bloque es 115.09 N.

SOLUCIONARIO PRÁCTICA CALIFICADA Nº2 - FUNDAMENTOS DE FÍSICA 2020.1

Parte Conceptual

(2 puntos) Elija el DCL correcto para cada uno de los bloques que se muestran (bloque A sobre una superficie horizontal, bloque B sobre el plano inclinado y el bloque C cuelga verticalmente). Considere que todas las superficies son lisas. Además, las cuerdas y poleas son ideales.

(2 puntos) Elija el DCL correcto para cada uno de los bloques rectangulares A y B que se muestran (bloque A sobre una superficie horizontal, techo horizontal). Considere que todas las superficies están en contacto y son lisas. Además, las cuerdas son ideales.

(1 punto) Relacionar:

I. Al patear una pelota de fútbol, el módulo de la fuerza que el pie le imprime a la pelota es igual al módulo de la fuerza que ejerce la pelota sobre el pie. Además, estas fuerzas tienen la misma dirección pero sentido contrario.

1. Equilibrio

II. La fuerza resultante que actúa sobre una caja de masa m tiene magnitud F. Si la fuerza resultante sobre la misma caja se duplica, entonces la aceleración también se duplica.

2. 1ra Ley de Newton

III. Un objeto de masa m se encuentra sobre una mesa horizontal lisa. Entonces, la normal de la mesa sobre el objeto tiene la misma magnitud que el peso del mismo.

3. 2da Ley de Newton

IV. Entre dos mangos de masas M y 3M, el que posee más inercia es el de masa 3M.

4. 3ra Ley de Newton

Solvionario:

La respuesta correcta es: I-4, II-3, III-1, IV-2

(1 punto) Dos proyectiles A y B son lanzados en el mismo instante y con la misma rapidez, desde la posición (242;-3) m, con ángulos de lanzamiento con la horizontal igual a 55° y α (diferentes) respectivamente. Si la posición final de ambos proyectiles es (726;-3) m, necesariamente se cumple que:

- **1)** El ángulo de lanzamiento del proyectil B es: $lpha=35^\circ$.
- **2)** El proyectil lanzado con ángulo 55° llega primero a (726; -3) m.
- **3)** Ambos móviles llegan al mismo instante a (726; -3) m.
- 4) El proyectil B tiene menor tiempo de vuelo que el proyectil A.
- **5)** La rapidez de lanzamiento del proyectil A es mayor que la de B.

