Practice

-Name -

Theorem. If x and y are odd integers then x + y is an even integer.

Proof. We assume that x and y are odd integers and will prove that x + y is an even integer. Since x and y are odd, there exist integers m and n such that x = 2m + 1 and y = 2n + 1. By substitution and algebra we obtain

$$x + y = 2m + 1 + 2n + 1$$

= $2m + 2n + 2$
= $2(m + n + 1)$.

Define q = m + n + 1. Since m and n are integers and the integers are closed under addition, we conclude that q is an integer. Since x + y = 2q for the integer q we conclude that x + y is an even integer.

Challenge Typing

Suppose that $f:(-1,1)\to\mathbb{R}$ and f is differentiable at 0. Let sequences $(\alpha_n)_{n\geq 1}$ and $(\beta_n)_{n\geq 1}$ satisfy $-1<\alpha_n<\beta_n<1$ for all $n\geq 1$ and $\lim_{n\to\infty}\alpha_n=\lim_{n\to\infty}\beta_n=0$. Set

$$\lambda_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}.$$

Theorem. The set $\{x \in \mathbb{Z} : |x - 2.5| = 2\}$ is the empty set.

Proof. Let y be an integer such that $y \in \{x \in \mathbb{Z} : |x-2.5|=2\}$ Then $y \in \mathbb{Z}$ and |y-2.5|=2. Since |y-2.5|=2 then y=4.5 or y=-.5. But then y is not an integer. Therefore the set $\{x \in \mathbb{Z} : |x-2.5|=2\}$ has no elements and

$${x \in \mathbb{Z} : |x - 2.5| = 2} = \emptyset.$$

Theorem. There exist two positive irrational numbers s and t such that s^t is rational.

Proof. We will consider two cases. For the first case, suppose that $\sqrt{2}^{\sqrt{2}}$ is rational. Then we may take $s=t=\sqrt{2}$. For the second case, suppose that $\sqrt{2}^{\sqrt{2}}$ is irrational. Let $s=\sqrt{2}^{\sqrt{2}}$ and $t=\sqrt{2}$. Then

$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^2 = 2.$$

Since 2 is rational, s^t is rational. Therefore, there exists irrational numbers s and t such that s^t is rational.

Theorem. Let n be a natural number. Then

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

Consider the following matrix,

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)$$