Logică computațională Curs 7

Lector dr. Pop Andreea-Diana

Rafinările rezoluției

• impun restricții asupra clauzelor care rezolvă, pentru a eficientiza procesul rezolutiv

Notație

• $S \mid_{-\text{Res}}^{st} \square$ "din mulțimea S de clauze s-a derivat clauza vidă prin aplicarea strategiei st a rezoluției propoziținale"

Completitudinea și corectitudinea

- Toate rafinările și strategiile rezolutive păstrează completitudinea și corectitudinea.
- Combinarea lor poate impune prea multe restricții și deși mulțimea inițială de clauze este inconsistentă, s-ar putea să nu se poată deriva clauza vidă.
- sunt complete:
 - rezoluţia generală + strategia eliminării
 - rezoluţia generală + strategia mulţimii suport
 - rezoluția generală + strategia mulțimii suport + strategia eliminării
 - rezoluția liniară + strategia eliminării
 - rezoluţia liniară + strategia mulţimii suport
- nu sunt complete:
 - rezoluția blocării + strategia eliminării
 - rezoluția blocării + strategia mulțimii suport
 - rezoluția blocării + rezoluția liniară
 - rezoluţia unitară
 - rezoluția de intrare

Rezoluţia blocării (lock resolution)

- introdusă de Boyer în 1971
- fiecare apariție de literal din mulțimea de clauze este indexat arbitrar cu un întreg
- restricția: literalii care rezolvă din clauzele părinți trebuie să aibă cei mai mici indici din aceste clauze
- literalii din rezolvenți moștenesc indicii de la clauzele părinți, iar în cazul moștenirii a doi literali identici, se păstrează cel cu indicele mai mic
- este foarte eficientă și ușor de implementat, se recomandă combinarea ei cu strategia saturării pe nivele

Teorema de corectitudine și completitudine

- Teorema de completitudine
 - Fie *S* o mulțime de clauze în care fiecare literal este indexat în mod arbitrar cu un întreg. Dacă *S* este inconsistentă, atunci există o deducție din mulțimea *S* a clauzei vide prin rezoluția blocării.
- Teorema de corectitudine
 - Fie *S* o mulţime de clauze în care fiecare literal este indexat în mod arbitrar cu un întreg. Dacă din *S* se deduce prin rezoluţia blocării clauza vidă, atunci *S* este inconsistentă.

Rezolvare

Verificați inconsistența mulțimilor următoare de clauze utilizând rezoluția blocării:

$$S = \{ (5)p \lor (4) q, (1) \neg p \lor (6) q, (7)p \lor (2) \neg q, (8) \neg p \lor (3) \neg q \}$$

$$C_{1} \stackrel{\text{not.}}{=}_{(4)} q \vee_{(5)} p$$

$$C_{2} \stackrel{\text{not.}}{=}_{(1)} \neg p \vee_{(6)} q$$

$$C_{3} \stackrel{\text{not.}}{=}_{(2)} \neg q \vee_{(7)} p$$

$$C_{4} \stackrel{\text{not.}}{=}_{(3)} \neg q \vee_{(8)} \neg p$$

$$C_{5} = \operatorname{Res}_{q}^{lock} (C_{1}, C_{3}) =_{(5)} p$$

$$C_{6} = \operatorname{Res}_{p}^{lock} (C_{2}, C_{5}) =_{(6)} q$$

$$C_{7} = \operatorname{Res}_{q}^{lock} (C_{4}, C_{6}) =_{(8)} \neg p$$

$$C_{8} = \operatorname{Res}_{p}^{lock} (C_{5}, C_{7}) = \square$$

$$\stackrel{\text{TCC}}{=} S \text{ este inconsistent }$$

Rezoluţia liniară

- Loveland 1970
- procesul rezolutiv este liniar: la fiecare pas una dintre clauzele părinte este rezolventul obținut la pasul anterior
- Arborele de derivare corespunzător procesului rezolutiv liniar are forma:
 - C_0 clauză vârf
 - C_1, C_2, \ldots, C_n clauze centrale
 - B_0, B_1, \dots, B_{n-1} clauze laterale
 - $\forall i=1,2,...,n$, are loc: $C_i = \text{Res}(C_{i-1}, B_{i-1})$

Teorema de corectitudine și completitudine

• Mulțimea S de clauze este inconsistentă, dacă și numai dacă $S \mid_{-\operatorname{Res}}^{lin} \square$.

Observație:

- rezoluția liniară furnizează o strategie la nivel de implementare: *căutarea cu revenire*
 - la fiecare iterație, pentru clauza centrală pot exista mai multe posibile clauze laterale
 - după ce au fost utilizate toate posibilele clauze laterale, dar nu s-a obținut clauza vidă, se revine la iterația precedentă
 - consistența mulțimii de clauze este demonstrată după o căutare completă fără derivarea clauzei vide

Cazuri particulare ale rezoluției liniare

- **Rezoluția unitară** (*unit*): clauzele centrale au *cel puțin* o *clauză* părinte unitară (conține un singur literal)
- **Rezoluția de intrare** (*input*): clauzele *laterale* sunt clauze *inițiale* (de intrare)

Teorema de echivalență dintre rezoluția unit și cea input

- Fie mulţimea S de clauze. $S \mid -\frac{input}{Res} \square$ dacă şi numai dacă $S \mid -\frac{unit}{Res} \square$.
- corectitudinea: Dacă $S \mid_{-\mathrm{Res}}^{input/unit} \square$ atunci S este inconsistentă
- incompletitudinea: există mulțimi inconsistente de clauze din care nu se poate deriva clauza vidă folosind rezoluția input sau rezoluția unit.

Tipuri de metode

	Semantice	Sintactice
Directe	Tabela de adevăr FNC	Deducția (mp)
prin Respingere	FND Tabele semantică	Rezoluția (generală, strategia eliminării, strategia saturării pe nivele, strategia mulțimii suport, rafinarea rezoluției blocării, rafinarea rezoluției liniare, cazuri particulare: input și unit)