得分	教师签名	批改日期

深圳大学实验报告

课程名称:_	大学	物理实验(()		
实验名称:_	霍尔敦	<u>效应及其应</u> 月	<u>Ħ</u>		_
学 院:_	数	学与统计学	:院		
指导教师 <u>:</u>		記燕翔、李穎	<u> </u>		
报告人:	王曦	组号:	20		_
学号20211	<u>192010</u> 회	K验地点	致原	楼 214	
实验时间:_	年	11	月	17	_日
提交时间:	2022	年11月24	日		

1

一、实验目的

- 1. 了解产生霍尔效应的物理原理.
- 2. 学习控制变量法和对称测量法.
- 3. 测量霍尔器件的输出特性.
- 4. 利用霍尔元件测量长直螺线管的轴向磁场分布(霍尔效应的应用).

二、实验原理

- 1. 霍尔效应
- 1.1 霍尔电势

洛伦兹力

$$f_m = \overrightarrow{qv} imes \overrightarrow{B}_{(1)},$$

静电场力

$$f_e = qE = qrac{V_H}{l}_{(2),}$$

电流

$$I = nqvdl_{(3)}$$

由二力平衡:

$$V_{H}=K_{H}IB=rac{IB}{nqd}_{(4),}$$

 $R_H = rac{1}{nq}$ 为材料的霍尔系数.

其中 V_H 为霍尔电动势, K_H 为霍尔器件的灵敏度,

1.2 样品的导电类型

图 1:N 型导体与 P 型导体

在如上图所示的条件下: (1)N 型:电势 A 点高于 B 点.

- (2)P 型:电势 B 点高于 A 点.
- 2. 霍尔元件的输出特性测量
- 2.1 控制变量法

$$V_H = K_H IB$$
 (5)

- (1)控制 B 不变,研究 V_H 与工作电流 I 的关系.
- (2)控制工作电流 I 不变,研究 V_H 与磁感应强度 B 的关系.
- 2.2 附加电动势

图 2:附加电动势

- (1)电热:爱廷豪森效应.
- (2)温差:能斯特效应、里纪勒杜克效应.
- (3)不等电位差:零位误差.
- 2.3 对称测量法消除附加电动势

通过改变磁场的方向或改变霍尔电流的方向,即分别测量四组不同方向的 I_S 和 B 组合的 V_{AA} 后求平均

$$V_H = rac{V_1 - V_2 + V_3 - V_4}{4}$$

能斯特效应引起的 V_N 的方向仅与 B 的方向有关.

$$+I_{S'}+B$$
 .

$$V_1 = V_H + V_{N} \tag{6}$$

$$-I_{S'}+B$$
.

$$V_2 = -V_H + V_N$$
 (7).

- 3. 霍尔器件的应用
- 3.1 测量螺线管的磁场分布

图 3: 螺线管的磁场分布

图 4:螺线管的磁感应强度与距离螺线管中心的距离的关系图象

三、实验仪器:

霍尔器件输出特性测量仪器.

仪器操作注意事项:

- (1)测试仪开关机前将 I_S 和 I_M 旋钮逆时针转到底,防止输出电流过大.
- (2) I_S 和 I_M 接线不可颠倒,防止烧坏霍尔片.
- (3)式样应置于螺旋线圈/铁芯气隙内磁场均匀处(即尽量处于中心).
- (4)电压表调零.

四、实验内容与步骤

- 4.1 霍尔器件输出特性测量
- 4.1.1 测绘 $V_H I_S$ 曲线

试验仪双刀开关倒向 V_H ,测试仪功能选择置于 V_H ,调节 $I_M=0.5~\mathrm{A}$.

4.1.2 测绘 $V_H - I_M$ 曲线

保持 I_S 值不变,调节 $I_S=3.00 \,\mathrm{mA}$.

注意记录电磁铁规格数值K,单位为千高斯/安(KGs/A).

4.2 测量螺线管轴线上的磁场分布

先调零,然后设定励磁电流、工作电流,将霍尔片从螺线管右端移到左端,记录数据.

注意记录线圈的霍尔灵敏度 K_{H} ,单位 $\mathrm{mV/(mA\cdot T)}$.

五、数据记录:

组号: ___20___; 姓名___王曦___

- 5.1 测量霍尔片的输出特性,确定样品的霍尔系数
- 5. 1. 1 保持励磁电流 $I_M=0.500~{
 m A}$ 不变,将实验仪双刀开关倒向" V_H ",测试仪功能选择置于" V_H ",测绘 V_H-I_S 曲线.

励磁线圏参数 $K=4.03~{
m KGS\cdot A^{-1}}$

霍尔片厚度 $d=0.5~\mathrm{mm}$

I_S/mA	V_1/mV	V_2/mV	V_3/mV	V_4/mV	$V_H=rac{V_1-V_2+V_3-V_4}{4}\left/\mathrm{mV} ight.$
	$+B,+I_S$	$-B,+I_S$	$-B, -I_S$	$+B,-I_S$	± /
1.00	2. 39	-2. 43	2. 43	-2.40	2. 413
1.50	3. 59	-3.64	3. 64	-3. 59	3. 615
2.00	4. 79	-4.86	4.86	-4. 79	4. 825
2.50	6. 01	-6. 09	6. 09	-6.01	6. 050
3.00	7. 19	-7. 28	7. 29	-7. 18	7. 235
3.50	8. 41	-8. 52	8. 52	-8.41	8. 465
4.00	9. 60	-9. 73	9. 73	-9. 59	9, 662

以 $I_S=1.00\,\mathrm{mA}$ 时为例,此时

$$V_H = rac{|2.39| + |-2.43| + |2.43| + |-2.40|}{4} \text{ mV} = 2.413 \text{ mV}$$
 (8).

5.1.2 测绘 V_H-I_M 曲线

I_M/A	V_1/mV	V_2/mV	V_3/mV	V_4/mV	$V_H=rac{V_1-V_2+V_3-V_4}{4}\left/\mathrm{mV} ight.$
	$+B,+I_S$	$-B,+I_S$	$-B, -I_S$	$+B,-I_S$	± /
0.300	4. 31	-4. 38	4. 38	-4. 28	4. 338
0.400	5. 72	-5.82	5.83	-5. 72	5. 772
0.500	7. 18	-7. 28	7. 29	-7. 18	7. 232
0.600	8. 62	-8. 72	8. 73	-8.62	8. 672
0.700	10.07	-10. 18	10. 18	-10.07	10. 125
0.800	11.50	-11.60	11.60	-11.50	11. 550

以 $I_M=0.300~\mathrm{A}$ 时为例,此时

5.2 用霍尔片测量螺线管轴线上的磁场分布

霍尔片工作电流 $I_S=3.00~\mathrm{mA}$

励磁电流 $I_M=0.500~\mathrm{A}$

霍尔元件灵敏度 $K_H=173~\mathrm{mv/(mA\cdot T)}$

x/mm	V_1/mV	V_2/mV	V_3/mV	V_4/mV	V_H/mV	$B=rac{V_H}{K_H I_S}igg/T$
	$+B,+I_S$	$-B,+I_S$	$-B, -I_S$	$+B,-I_S$		$K_{H}I_{S}$ /
0	-0.24	0.86	-0.86	0.21	0.542	0.00105
0.5	-0.44	1.03	-1.05	0.42	0.735	0.00142
1	-0.74	1.33	-1.36	0.70	1.033	0.00199
1.5	-1.16	1.73	-1.77	1.12	1.445	0.00278
2	-1.63	2. 20	-2.24	1.60	1.917	0.00369
3	-2.25	2.83	-2.85	2. 20	2. 532	0.00488
5	-2.68	3. 24	-3. 26	2.63	2. 952	0.00569
7	-2.78	3. 35	-3.38	2.75	3.065	0.00591
11	-2.83	3.40	-3.43	2.82	3. 120	0.00601
15	-2.78	3. 36	-3.38	2.75	3.067	0.00591
17	-2.62	3. 20	-3.22	2. 59	2. 908	0.00560
0.019	-2.05	2.64	-2.65	2.01	2. 337	0.00450
20	-1.22	1.79	-1.82	1. 17	1.500	0.00289
21	-0.47	1.07	-1.08	0.44	0.765	0.00147
21. 5	-0.26	0.85	-0.88	0.24	0. 557	0.00107
22	-0.12	0.72	-0.75	0.09	0. 420	0.00081
22. 5	-0.03	0.61	-0.64	-0.01	0.323	0.00062

23 0.05 0.54 -0.59 -0.09 0.318 0.00061

以x = 0 mm时为例,此时

$$V_H = rac{|-0.24| + |0.86| + |-0.86| + |0.21|}{4} = 0.542 \text{ mV}$$

$$B = rac{V_H}{K_H I_S} = rac{0.542}{173 \times 3.00} \text{ T} = 0.00105 \text{ T}$$
(11)

六、数据处理

- 6.1 测量霍尔片的输出特性, 确定样品的霍尔系数
- 6.1.1 测绘 $V_H I_S$ 曲线.

由上图知:斜率 k = 2.4184 V/A.

霍尔系数:

$$R_H = rac{V_H d}{k I_M I_S} = rac{2.413 imes 10^{-3} imes 0.5 imes 10^{-3}}{2.4184 imes 0.5 imes 1.00 imes 10^{-3}} \; \mathrm{m/A} = 9.978 imes 10^{-4} \; \mathrm{m/A}$$
 (12).

6.1.2 测绘 $V_H - I_M$ 曲线.

由上图知: 斜率 k = 14.445 mV/A.

霍尔系数:

$$R_H = \frac{V_H d}{k I_M I_S} = \frac{4.338 \times 10^{-3} \times 0.5 \times 10^{-3} \times 10^{-3}}{14.445 \times 10^{-3} \times 0.300 \times 3 \times 10^{-3}} \text{ m/A} = 1.6684 \times 10^{-3} \text{ m/A}$$
(13).

两结果取平均:

$$\overline{R_H} = \frac{R_{H1} + R_{H2}}{2} = \frac{9.978 \times 10^{-4} + 1.6684 \times 10^{-3}}{2} \text{ m/A} = 1.3331 \times 10^{-3} \text{ m/A}_{(14)}.$$

6.2 用霍尔片测量螺线管轴线上的磁场分布

螺线管轴线上的磁场分布曲线

七、结果陈述:

- 7.1 实验测得样品的霍尔系数为 $1.3331 \times 10^{-3} \; \mathrm{m/A}$.
- 7.2 螺线管轴线上的磁场在中间取得最大值 $^{0.006}$ T.并从中间向两边递减.

八、实验总结与思考题

- 8.1 实验总结.
- (1) 本实验用"对称测量法",通过改变电流 I 和磁感应强度 B 的方向,消除副效应产生的附加电动势.
- 8.2 思考题.
- (1) 若磁感应强度 B 不垂直于霍尔片, 对测量结果有何影响?如何由实验判断 B 与霍尔片是否垂直?若磁感应强度 B 不垂直于霍尔片, 求得的磁感应强度是磁场在垂直于霍尔片的分量, 故测量结果偏小.将霍尔片绕轴线方向左右旋转, 观察电压示数大小变化, 示数最大时即垂直.
- (2) 霍尔效应有哪些应用, 举一例并阐述其原理.

测量微小位移. 若令霍尔元件的工作电流保持不变. 而使其在一一个均匀梯度磁场中移动, 它输出的霍尔电压 UH 值只由它在该磁场中的位移量来决定. 产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器, 将它们固定在被测系统上, 可构成霍尔微位移传感器.

指导教师批阅意见:	

成绩评定:

预习	操作及记录	数据处理与结果陈述 30 分	思考题	报告整体	总分	
(20分)	(40分)	数编处理刊组末协处 30 万	10分	印象	 ₩	