Versuch 702

Aktivierung mit Neutronen

Jonah Nitschke Sebastian Pape lejonah@web.de sepa@gmx.de

> Durchführung: 18.04.2017 Abgabe: 25.04.2017

1 Theorie

1.1 Zielsetzung

Der Versuch 702 setzt sich mit dem radioaktiven Zerfall von Aktivierten Atomkernen auseinander. Das Ziel des Versuches ist es die Halbwertszeit des Isotopes $^{116}_{49}$ In und eines Rhodiumisomeres zu bestimmen.

1.2 Theoretische Grundlagen

Damit instabile Kerne erzeugt werden, werden stabile Kene mit Neutronen beschossen. Der Vorteil der Neutronenaktivierung liegt darin, dass die ladungsneutralen Neutronen weniger Energie benötigen, um die Kerne zu aktivieren, da sie nicht die Coulomb-Barriere des geladenen Kernes überwinden müssen.

Eine Allgemeine Kernreaktion eines Beispielkernes $_{\mathbf{z}}^{\mathbf{m}}$ A sieht folgendermaßen aus:

$$_{\mathbf{z}}^{\mathbf{m}}\mathbf{A} + {}_{0}^{\mathbf{1}}\mathbf{n} \longrightarrow {}_{\mathbf{z}}^{\mathbf{m}+\mathbf{1}}\mathbf{A}^{*} \longrightarrow {}_{\mathbf{z}}^{\mathbf{m}+\mathbf{1}}\mathbf{A} + \gamma.$$

 $^{\rm m}_{\rm z}$ A* ist dabei der sogenannte Zwischenkern oder auch Compoundkern. Seine Energie ist im Vergleich zu dem Ausgangskern um die kinetische Energie des Neutrons und der Bindungsenergie höher. Bei geringer kinetischer Energie des Neutrons ist die eingebrachte Energie zu gering um ein Nukleon oder ein Neutron wieder abzugeben. Deshalb wird nach etwa 10^{-16} s ein γ -Quant abgegeben, sodass der Kern wieder in seinen Grundzustand zurückfällt. Dieser Kern ist immernoch instabil, hat aber eine deutlich längere Lebensdauer als der Zwischenkern. Die Zerfallsreihe dieses Kerns läuft wie folgt ab:

$$^{m+1}_{z}A \longrightarrow ^{m+1}_{z+1}C + \beta^{-} + E_{kin} + \bar{\nu}_{e}.$$

Dieser Zerfall ist ein erlaubter Zerfall, da die Masse der linken Seite größer ist als die Gesamtmasse der rechten Seite. Der Massenunterschied ist durch die Einsteinsche Energie-Masse Beziehung einzusehen.

$$\Delta E = \Delta mc^2 \tag{1}$$

Die Masse wird in Form von kinetischer Energie an das β^- - und $\bar{\nu}_e$ -Teilchen abgegeben ($\bar{\nu}_e$ ist ein Antineutrino).

Wenn Neutronen auf stabile Atomkerne geschossen werden, ist die charakteristische Größe, dass ein Neutron von einem Atomkern eingefangen wird der Wirkungsquerschnitt. Er ist über die Formel

$$\sigma = \frac{u}{nKd} \tag{2}$$

definiert, wenn Neutronen auf eine Folie mit einem Flächeninhalt von 1 cm² geschossen werden. Dabei ist n die Anzahl der abgeschossenen Neutronen, u die Anzahl der eingefangenen Neutronen, d die Dicke der beschossenen Fläche und K die Anzahl der Atome pro Quadratcentimeter in der Folie. Der Wirkungsquerschnitt wird in der Einheit 10^{-24} cm² = 1 b gemessen. Bei den abgeschossenen Neutronen wird zwischen schnellen und langsamen Neutronen unterschieden. Die beiden unterscheiden sich, wie der Name es suggeriert lediglich in ihrer Geschwindigkeit v. Als Kriterium dieser Klassifizierung dient die De-Broglie-Wellenlänge λ , die definiert ist über:

$$\lambda = h/m_n v. \tag{3}$$

Ist λ groß gegenüber dem Kernradius $R(\approx 10^{-14} \, \mathrm{m})$ handelt es sich um schnelle Neutronen. Andersherum handelt es sich um langsame Neutronen. Bei langsamen Neutronen ist der Wirkungsquerschnitt deutlich größer als bei schnellen Neutronen, weshalb sich langsame Neutronen besser für die Aktivierung von Atomkernen eignen. Es stellt sich heraus, dass σ reziprok von der Geschwindigkeit v der Neutronen abhängt.

Bei der Aktivierung der Proben müssen langsame Neutronen zunächst erzeugt werden. Schnelle Neutronen lassen sich aus verschieden Reaktionen gewinnen. Der Abbremsungsvorgang wird über elastische Stöße realisiert. Dabei stoßen die Neutronen mit den Kohlenwasserstoffen in einem Paraffinmantel, der um die Neutronenquelle anliegt. Zum Abbremsen der schnellen Neutronen eignen sich ähnlich schwere Moleküle besser, da aus den Formeln des elastischen Stoßes hervorgeht, dass der größte Energieübertrag zweier elastisch stoßender Teilchen bei gleicher Masse erfolgt. Deshalb eignet sich Parrafin, weil der in dem Paraffin enthaltene Wasserstoff beinahe die selbe Masse wie ein Neutron besitzt. Sind die Neutronen auf eine Geschwindigkeit von 2,2 km/s abgebremst, werden sie auch als thermische Neutronen bezeichnet.

Der radioaktive Zerfall von instabilen Atomkernen lässt sich durch ein Exponentialgesetz beschreiben. Die Anzahl der zur Zeit t noch nicht Zerfallenen Kerne lässt sich wie folgt berechnen.

$$N(t) = N_0 \exp^{-\lambda t} \tag{4}$$

Dabei ist N_0 die anfängliche Anzahl der instabilen Kerne und λ die Zerfallskonstante.

Die Zerfallsreihen der verwendeten Proben Indium und Rhodium sind im Folgenden dargestellt.

$${}^{115}_{49}\text{In} + {}^{1}_{0}\text{n} \longrightarrow {}^{116}_{49}\text{In} \longrightarrow {}^{116}_{50}\text{Sn} + \beta^{-} + \bar{\nu}_{e}$$

$$(5)$$

$${}^{103}_{45}\mathrm{Rh} + {}^{1}_{0}\mathrm{n} \left\{ \begin{array}{l} \stackrel{10\%}{\longrightarrow} {}^{104\mathrm{i}}_{45}\mathrm{Rh} \longrightarrow {}^{104}_{45}\mathrm{Rh} + \gamma \longrightarrow {}^{104}_{46}\mathrm{Pd} + \beta^{-} + \bar{\nu}_{\mathrm{e}} \\ \stackrel{90\%}{\longrightarrow} {}^{104}_{45}\mathrm{Rh} \longrightarrow {}^{104}_{46}\mathrm{Pd} + \beta^{-} + \bar{\nu}_{\mathrm{e}} \end{array} \right.$$
(6)

2 Durchführung

Die zu untersuchenden Proben wurden im Vorhinein aktiviert. Für die Aktivierung wird die Apparatur aus Abb. 1 verwendet.

Abbildung 1: Schematische Darstellung der Aktivierungsvorrichtung[TUD17].

Die in Abb. 1 aufgeführten Makierungen sind wie folgt erklärt.

- 1 Quelle schneller Neutronen
- 2 Bleiabschirmung
- **3** Paraffin
- 4 Stahlbehälter
- 5 Aktivierungsbohrungen

Vor der ersten Messung muss der Nullwert bestimmt werden. Dafür wird eine Messung über 900 s ohne Probe gemacht. Danach wurden die zu untersuchenden Proben in den Aufbau eingelegt. Es wurden das Isotop Indium-116 (116 In) und ein Rhodiumisomer (104 Rh & 104i Rh) untersucht. Für das Indiumisotop ist eine Messzeit von einer Stunde mit einem Messintervall von $\Delta t = 240\,\mathrm{s}$ gewählt worden. Für das Rhodiumisomer ist eine Messzeit von 12 min angesetzt worden, mit einem Messintervall Δt von 15 s.

Die Messungen sind mit dem Aufbau, der in Abb. 2 dargestellt ist, zu realisieren. Der Aufbau besteht grundlegend aus einem Geiger-Müller-Zählrohr, einen Impulsverstärker und einem Zählwerk mit zwei Displays. Das Geiger-Müller-Zählrohr misst die radioaktiven Zerfälle in Form eines eletrischen Impulses. Dieser wird durch einen Impulsverstärker geschickt und letztendlich von einem Zählwerk registriert. Das Zählwerk besitzt zwei Displays, sodass kontinuierlich gemessen werden kann.

Abbildung 2: Schematischer Versuchsaufbau[TUD17].

Die Probe wird zu Beginn der Messung gemäß Abb. 2 eingelegt. Vor dem Einlegen der Probe muss das Messintervall Δt an dem Zählwerk eingestellt werden. Die Messwerte können an dem Zählwerk erhoben werden.

3 Auswertung

Bei der Nullmessung wird ein Zeitintervall von $\Delta t = 900$ gewählt und es werden zwei Messungen durchgeführt, deren Mittelwert für weitere Berechnungen verwendet wird:

$$\begin{split} N_1 &= 218 \\ N_2 &= 224 \\ \bar{N} &= 221 \\ \sigma_{\text{Nullmessung}} &= 14.87 \end{split}$$

Alle Fehler der folgenden Messungen wurden mit der Gauß´schen Fehlerfortpflanzung errechnet und die verschiedenen Abbildungen wurden mit Python angefertigt. Dabei wird für die Anzahl der Zerfälle N ein Fehler von \sqrt{N} verwendet. Desweiteren wird bei allen Messungen eine lineare Regression in der folgenden Form verwendet, um die Zerfallskonstante zu bestimmen:

$$f(x) = -A \cdot x + B \tag{7}$$

Bei der Formel handelt es sich um eine Anpassung an die Exponentialfunktion, sodass sich folgende Beziehungen für die Konstanten ergeben:

$$A = \lambda \tag{8}$$

$$B = \ln N_0 \tag{9}$$

3.1 Halbwertszeit von Indium

Bei der Messung von Indium wird ein Zeitintervall von $\Delta t = 240\,\mathrm{s}$ und ein Messzeitraum von $t_{\rm ges} = 3600\,\mathrm{s}$ gewählt. Die gemessenen Zerfälle sind in Tabelle ?? eingetragen und grafisch in Abbildung ?? dargestellt.

Mithilfe einer linearen Regression der Form (??) und den Beziehungen gemäß Formel (??) und (??) werden dabei die Zeitkonstante λ und $N_{0,\text{Indium}}$ bestimmt:

$$\begin{split} \lambda_{\mathrm{Indium}} &= A = (0.0002 \pm 9 \cdot 10^{-6}) \, \frac{1}{\mathrm{s}} \\ N_{0.\mathrm{Indium}} &= \exp B = \exp \left(7.96 \pm 0.02 \right) = (2.88 \pm 0.06) \cdot 10^{3} \end{split}$$

Abbildung 3: logarithmische Darstellung der gemessenen Zerfälle (N) bei Indium.

Tabelle 1: Gemessene Zerfälle bei Indium.

t in s	Anz. Zerfaelle	σ_N	$\sigma_{N,u}$	$\sigma_{N,o}$
240	2995	54	0.02	0.02
720	2465	49	0.02	0.02
1200	2345	49	0.02	0.02
1680	2076	48	0.02	0.02
2160	1894	48	0.02	0.02
2640	1686	47	0.02	0.02
3120	1525	45	0.02	0.02
3600	1417	43	0.02	0.02
480	2485	43	0.02	0.02
960	2346	42	0.02	0.02
1440	2268	40	0.03	0.02
1920	1943	39	0.03	0.03
2400	1827	38	0.03	0.03
2880	1555	38	0.03	0.03
3360	1512	37	0.03	0.03

$$T(\lambda) = \frac{\ln(2)}{\lambda} \tag{10}$$

$$\sigma_T = \frac{\ln(2)}{\lambda^2} \cdot \sigma_{\lambda} \tag{11}$$

$$\sigma_T = \frac{\ln(2)}{\lambda^2} \cdot \sigma_\lambda \tag{11}$$

Mit der Formel (??) kann aus der bestimmten Zeitkonstante nun die Halbwertzeit von Indium bestimmt werden, für die sich der folgende Wert ergibt:

$$T_{\rm Indium} = (3278 \pm 141) \, \mathrm{s}$$

3.2 Halbwertszeit von Rhodium

Bei der Messung mit $^{103}_{~45} \mathrm{Rd}$ wird ein Zeitintervall von $\Delta t = 12\,\mathrm{s}$ und ein Messzeitraum von $t_{\rm ges} = 720\,{\rm s}$ gewählt. Die gemessenen Zerfälle sind in Tabelle ?? eingetragen sowie grafisch in Abbildung?? dargestellt.

Um die Halbwertzeiten der zwei verschiedenen Isotope $^{104}\mathrm{Rd}$ sowie $^{104\mathrm{i}}\mathrm{Rd}$ zu bestimmen, die bei der Aktivierung von $^{103}_{~45}\mathrm{Rd}$ entstehen, werden für die Unterteilung die Messzeiten $t^*=355\,\mathrm{s}$ und $t_{\mathrm{max}}=80\,\mathrm{s}$ gewählt. Zusätzlich werden von den gemessenen Werten die von den Umgebungszerfällen erzeugten Signale subtrahiert (siehe Tabelle??).

Abbildung 4: Gemessene Zerfälle (N) bei Rhodium.

Abbildung 5: logarithmische Darstellung der gemessene Zerfälle (N) für $t>t^*$ bei Rh $^{104i}.$

Tabelle 2: Gemessene Zerfälle bei Rhodium.

$\Delta t in s$	Anz.Zerfaelle	$\Delta t in \mathrm{s}$	Anz.Zerfaelle	$\Delta t in \mathrm{s}$	Anz.Zerfaelle
15	630	30	517	45	445
60	330	75	265	90	212
105	192	120	176	135	152
150	116	165	99	180	98
195	92	210	64	225	55
240	60	255	55	270	61
285	51	300	51	315	33
330	40	345	48	360	28
375	32	390	35	405	33
420	25	435	22	450	29
465	18	480	27	495	22
510	22	525	25	540	25
555	22	570	20	585	22
600	13	615	24	630	23
645	12	660	21	675	19
690	18	705	15	720	14

Mithilfe einer linearen Regression gemäß Formel (??) können dann mithilfe der Werte für $t>t^*$ (Abbildung ??) zuerst die beiden Parameter für 104i Rd bestimmt werden:

$$\begin{split} A &= \lambda_{\rm Rhodium\,104i} = (0.0023 \pm 0.0004)\,\frac{1}{\rm s} \\ B &= N_{\rm 0,Rhodium\,104i} = (4.1 \pm 0.2) \end{split}$$

Mit den Werten und Formel (??) ergibt sich für die Halbwertszeit von Rh^{104i} folgender Wert:

$$T_{\rm Rhodium\,104i}=(297\pm54)\,\rm s$$

Mithilfe der selben Vorgehensweise kann aus allen Werten für $t < t_{max}$ (Abbildung ??, Tabelle ??) auch die Halbwertszeit für $^{104}\mathrm{Rd}$ berechnet werden. Dafür wird vorher mithilfe der berechneten Parameter von $^{104\mathrm{i}}\mathrm{Rd}$ der Anteil an Zerfällen des langlebigen Zerfalls subtrahiert, sodass sich folgende Parameter ergeben:

Tabelle 3: Gemessene Werte für $^{104\mathrm{i}}\mathrm{Rd}.$

Δt in s	Zerfaelle N	σ_N	$\sigma_{ln,u}$	$\sigma_{ln,o}$
360	23	5	0.2	0.2
375	37	5	0.2	0.2
390	30	5	0.2	0.2
405	28	5	0.2	0.2
420	20	4	0.3	0.2
435	17	4	0.3	0.2
450	24	5	0.2	0.2
465	13	4	0.3	0.2
480	22	5	0.2	0.2
495	17	4	0.3	0.2
510	17	4	0.3	0.2
525	20	4	0.3	0.2
540	20	4	0.3	0.2
555	17	4	0.3	0.2
570	15	4	0.3	0.2
585	17	4	0.3	0.2
600	18	4	0.3	0.2
615	19	4	0.3	0.2
630	18	4	0.3	0.2
645	7	3	0.5	0.3
660	16	4	0.3	0.2
675	14	4	0.3	0.2
690	13	4	0.3	0.2
705	10	3	0.4	0.3
720	9	3	0.4	0.3

Tabelle 4: Gemessene Werte für 104^Rd .

Δt in s	Zerfaelle N	σ_N	$\sigma_{ln,u}$	$\sigma_{ln,o}$
15	566	25	0.05	0.04
30	455	23	0.05	0.05
45	385	21	0.05	0.05
60	272	18	0.07	0.07
75	209	16	0.08	0.07

$$\begin{split} \lambda_{\text{Rhodium 104}} &= A = (0.0167 \pm 0.0011) \, \frac{1}{\text{s}} \\ N_{0,\text{Rhodium 104}} &= \exp B = \exp \left(6.68 \pm 0.05 \right) = (7.5 \pm 0.4) \cdot 10^2 T_{\text{Rhodium 104}} \ \, = (41 \pm 3) \, \text{s} \end{split}$$

Abbildung 6: logarithmische Darstellung der gemessene Zerfälle (N) für $t < t_{max}$ bei Rh 104 .

Mit den bestimmten Parametern für 104 Rd und 104i Rd kann nun auch eine Summenkurve gezeichnet werden (Abbildung ??).

Abbildung 7: Summenkurve für den Zerfall von $^{103}_{\ 45}\mathrm{Rd}.$

4 Diskussion

Wenn die berechneten Halbwertszeiten für $^{103}_{45}$ Rd und In $^{115}_{49}$ mit den Literaturwerten verglichen werden, ist eine leichte Abweichung zu erkennen. Bei allen drei bestimmten Halbwertszeiten liegt der Literaturwert im Fehlerintervall des jeweiligen experimentell bestimmten Wert (siehe Tabelle ??).

Tabelle 5: Halbwertszeiten der verschiedenen Isotope [Wik17].

Isotop	$T_{exp} in s$	$T_{Lit} in s$
$ \text{In}_{49}^{115} \\ \text{Rh}^{104} $	3278 ± 141	3269
	41 ± 3	42.3
Rh^{104i}	297 ± 54	274

Zusammen mit dieser Erkenntnis und den verschiedenen Abbildungen lässt sich darauf schließen, dass die auftretenden Abweichungen lediglich durch statistische Fehler hervorgerufen werden.

Fehlerquellen können hierbei vor allem der Nulleffekt und das Geiger-Müller-Zählrohr sein, da die von der Umgebung abgegebene Radioaktivität im Laufe des Experimentes schwankt und nicht anhand einer vorher ausgeführten Nullmessung komplett eliminiert werden kann.

Literatur

- [TUD17] TU-Dortmund. Versuch V702: Aktivierung mit Neutronen. 18. Apr. 2017. URL: http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V702.pdf.
- [Wik17] Wikipedia. Liste der Isotope/5.Periode. 23. Apr. 2017. URL: https://de.wikipedia.org/wiki/Liste_der_Isotope/5._Periode#45_Rhodium.