

Lecture 09: Trees

CSE 373: Data Structures and Algorithms

Binary Search Trees

Aside Anything Can Be a Map

Want to make a tree implement the Map ADT?

 No problem – just add a value field to the nodes, so each node represents a key/value pair.

```
public class Node<K, V> {
    K key;
    V value;
    Node<K, V> left;
    Node<K, V> right;
}
```


For simplicity, we'll just talk about the keys

- Interactions between nodes are based off of keys (e.g. BST sorts by keys)
- oIn other words, keys determine where the nodes go

Binary Trees

A tree is a collection of nodes

- Each node has at most 1 parent and anywhere from 0 to 2 children
- o pretty similar to node based structures we've seen before (linked-lists)

```
public class Node<K> {
    K data;
    Node<K> left;
    Node<K> right;
}
```

Root node: the single node with no parent, "top" of the tree. Often called the 'overallRoot'

Leaf node: a node with no children

Subtree: a node and all it descendants

Height: the number of edges contained in the longest path from root node to some leaf node

Binary Search Tree (BST)

Invariants (A.K.A. rules for your data structure)

- By holding true to rules laid out, you can assume good state to enable simpler and more efficient code
- Checking if rules are upheld is a good way to maintain valid state within each method

Binary Search Tree invariants:

- For every node with key *k*:
 - \circ The <u>left subtree</u> has only keys <u>smaller</u> than k
 - \circ The <u>right subtree</u> has only keys greater than k
 - This invariant applies recursively throughout tree

BST Ordering Applies Recursively

Binary Tree vs. BST: containsKey(5)

Binary Trees vs Binary Search Trees: containsKey()

Best Case:

finds value at overallRoot (random value)

Worst Case:

- doesn't find value, has to check every node

$$f(n) = \begin{cases} C_0 & if \ n < 1 \\ 2f(?) + C_1 & otherwise \end{cases}$$

```
public boolean containsKeyBST(node, key) {
   if (node == null) {
      return false;
   } else if (node.key == key) {
      return true;
   } else {
      if (key <= node.key) {
         return containsKeyBST(node.left);
      } else {
        return containsKeyBST(node.right);
      }
   }
}
*one explores left or right at each level</pre>
```

Best Case:

- finds value at overallRoot (middle value)

Worst Case:

doesn't find value, has to check one path

$$f(n) = \begin{cases} C_0 & if \ n < 1 \\ f(?) + C_1 & otherwise \end{cases}$$

Tree states

Perfectly balanced – for every node, its descendants are split evenly between left and right subtrees.

At each level of recursion half the possibilities are eliminated

$$f(n) = \begin{cases} C_0 & \text{if } n < 1\\ f\left(\frac{n}{2}\right) + C_1 & \text{otherwise} \end{cases}$$

$$f(n) = \theta(\log n)$$

$$f(n) = \theta(\log n)$$

Degenerate – for every node, all of its descendants are in the right subtree.

Questions?

So far:

- Binary Trees, definitions
- Binary Search Tree, invariants
- Best/Worst case runtimes for BTs and BSTs
 - where the key is locatedhow the tree is structured

Tree Height

What is the height (the number of edges contained in the longest path from root node to some leaf node) of the following binary trees?

Can we improve on the BST?

Observation: The fuller the tree, the more nodes are eliminated at each level.

- The a full tree was perfectly "balanced" between left and right
- A full tree means 1/2 of possible nodes eliminated at each level
- The fuller the tree, the shorter the tree
- **Height:** number of edges on the longest path from the root to a leaf.

Height dictates the number of recursive calls we're going to make

• And each recursive call does a constant number of operations.

The BST invariant makes it easy to know where to find a key

Can we add an invariant to keep the tree short?

BST containsKey()

The AVL Invariant

Rotations

The AVL Invariant

NARIAN

AVL Invariant

For every node, the height of its left and right subtrees may only differ by at most 1

AVL Tree: A Binary Search Tree that also maintains the AVL Invariant

- Named after Adelson-Velsky and Landis
- But also A Very Lovable Tree!

Will this have the effect we want?

- If maintained, our tree will have height Θ(log n)
- Fantastic! Limiting the height avoids the $\Theta(n)$ worst case

Can we maintain this?
We'll need a way to fix this property when violated in insert and delete

Measuring Balance

Measuring balance:

- For each node, compare the heights of its two sub trees
- Balanced when the difference in height between sub trees is no greater than 1

CSE 373 24WI Unbalanced

Is this a valid AVL tree?

Is this a valid AVL tree?

Maintaining the Invariant

```
public boolean containsKey(node, key) {
    // find key
}
```

containsKey benefits from invariant: at worst $\Theta(\log n)$ time

containsKey doesn't modify anything, so the invariant holds after being called

```
public boolean insert(node, key) {
    // find where key would go
    // insert
  }

?? INVARIANT
```

insert benefits from invariant: at worst $\Theta(\log n)$ time to find location for key

But needs to maintain the invariant

How?

- Track heights of subtrees
- Detect any imbalance
- Restore balance

BST containsKey() The AVL Invariant Rotations

Insertion

What happens if when we do an insertion, we break the AVL condition?

The AVL rebalances itself!

AVL are a type of "Self Balancing Tree"

Fixing AVL Invariant

Fixing AVL Invariant: Left Rotation

In general, we can fix the AVL invariant by performing rotations wherever an imbalance was created

Left Rotation

Find the node that is violating the invariant (here, 1) Let it "fall" left to become a left child

Apply a left rotation whenever the newly inserted node is located under the right child of the right child

Left Rotation: More Precisely

Subtrees are okay! They just come along for the ride.

 Only subtree 2 needs to hop – but notice that its relationship with nodes A and B doesn't change in the new position!

Right Rotation

P

Right Rotation

Mirror image of Left Rotation!

NODE A
SUBTREE 2

It Gets More Complicated

Can't do a left rotation

Do a "right" rotation around 3 first.

Not Quite as Straightforward

What if there's a "kink" in the tree where the insertion happened?

Can we apply a Left Rotation?

No, violates the BST invariant!

Right/Left Rotation

Solution: Right/Left Rotation

- First rotate the bottom to the right, then rotate the whole thing to the left
- Easiest to think of as two steps
- Preserves BST invariant!

Right/Left Rotation: More Precisely

Again, subtrees are invited to come with

 Now 2 and 3 both have to hop, but all BST ordering properties are still preserved (see below)

SUBTREE

Left/Right Rotation

Left/Right Rotation

• Mirror image of Right/Left Rotation!

Two AVL Cases

Line Case

Solve with 1 rotation

Rotate Right

Child's right becomes its parent

Rotate Left

Parent's left becomes child's right Parent's right becomes child's left Child's left becomes its parent

Kink Case

Solve with 2 rotations

Right Kink Resolution

Rotate subtree left Rotate root tree right

Left Kink Resolution

Rotate subtree right Rotate root tree left

How Long Does Rebalancing Take?

- Assume we store in each node the height of its subtree.
 - How do we find an unbalanced node?
 - Just go back up the tree from where we inserted.
- How many rotations might we have to do?
 - Just a single or double rotation on the lowest unbalanced node.
 - A rotation will cause the subtree rooted where the rotation happens to have the same height it had before insertion
 - log(n) time to traverse to a leaf of the tree
 - log(n) time to find the imbalanced node
 - constant time to do the rotation(s)
 - Theta(log(n)) time for put (the worst case for all interesting + common AVL methods (get/containsKey/put is logarithmic time)

AVL insert(): Approach

Our overall algorithm:

- 1. Insert the new node as in a BST (a new leaf)
- 2. For each node on the path from the root to the new leaf:
 - The insertion may (or may not) have changed the node's height
 - Detect height imbalance and perform a rotation to restore balance

Facts that make this easier:

- Imbalances can only occur along the path from the new leaf to the root
- We only have to address the lowest unbalanced node
- Applying a rotation (or double rotation), restores the height of the subtree before the insertion -- when everything was balanced!
- Therefore, we need at most one rebalancing operation

(3) Since the rotation on 8 will restore **the subtree** to height 2, whole tree balanced again!

AVL insert() code

```
// Left-heavy?
                                                         if (balanceFactor < -1) {
                                                            if (balanceFactor(node.left) <= 0) {</pre>
                                                                                                    // Case 1
   Node insertNode (int key, Node node) {
                                                               // Rotate right
                                                               node = rotateRight(node);
      node = super.insertNode(key, node);
                                                                                                     // Case 2
                                                            } else {
                                                               // Rotate left-right
      updateHeight (node);
                                                               node.left = rotateLeft(node.left);
      return rebalance (node);
                                                               node = rotateRight(node);
private void updateHeight (Node node) {
                                                         // Right-heavy?
   int leftChildHeight = height(node.left);
                                                         if (balanceFactor > 1) {
   int rightChildHeight = height(node.right);
  node.height = max(leftChildHeight, rightChildHeight) + 1;
                                                            if (balanceFactor(node.right) >= 0) { // Case 3
                                                               // Rotate left
                                                               node = rotateLeft(node);
                public class Node {
                                                                                                      // Case 4
                                                            } else {
                   int data:
                                                               // Rotate right-left
                   Node left;
                                                               node.right = rotateRight(node.right);
                   Node right;
                                                               node = rotateLeft(node);
                   int height;
                   public Node(int data) {
                                                         return node;
                      this.data = data;
```

private Node rebalance (Node node) {

int balanceFactor = balanceFactor(node);

AVL rotate() code

```
private Node rotateLeft(Node node) {
  Node rightChild = node.right;
  node.right = rightChild.left;
  rightChild.left = node;

  updateHeight(node);
  updateHeight(rightChild);
  return rightChild;
}
```

```
private Node rotateRight(Node node) {
  Node leftChild = node.left;
  node.left = leftChild.right;
  leftChild.right = node;

  updateHeight(node);
  updateHeight(leftChild);
  return leftChild;
}
```

AVL delete()

- Unfortunately, deletions in an AVL tree are more complicated
- There's a similar set of rotations that let you rebalance an AVL tree after deleting an element
 - Beyond the scope of this class
 - You can research on your own if you're curious!
- In the worst case, takes $\Theta(\log n)$ time to rebalance after a deletion
 - O But finding the node to delete is also Θ(log n), and Θ(2log n) is just a constant factor. Asymptotically the same time

We won't ask you to perform an AVL deletion

AVL Trees

PROS

- All operations on an AVL Tree have a logarithmic worst case
 - Because these trees are always balanced!
- The act of rebalancing adds no more than a constant factor to insert and delete
- Asymptotically, just better than a normal BST!

CONS

- Relatively difficult to program and debug (so many moving parts during a rotation)
- Additional space for the height field
- Though asymptotically faster, rebalancing does take some time
 - Depends how important every little bit of performance is to you

That's all!