УДК 54: 621.039

# РАДИАЦИОННАЯ СТОЙКОСТЬ ПЛЕНОК БУТИЛАКРИЛАТНЫХ КАУЧУКОВ

# М.А. Тулешова\*, В.К. Милинчук\*\*

- \* Филиал НИФХИ им. Л. Я. Карпова, г. Обнинск
- \*\* Обнинский государственный технический университет атомной энергетики,
- г. Обнинск



Исследованы радиационно-химические изменения поверхностных, физико-химических свойств пленок бутилакрилатных каучуков (БАК) при уоблучении на воздухе при комнатной температуре Преобладающим радиационно-химическим процессом в пленках из латекса БАК 29 является радиационное сшивание, в пленках из латексов БАК Р и БАК Ш – радиационная деструкция: отношения выходов деструкции и сшивания G/G составляют для пленок из латекса БАК 29 0.57, БАК P-1.15 и БАК  $\coprod^n$  – 1.06 При облучении дозами до 1 МГр у пленок из БАК Ш поверхностная энергии увеличивается с 32 до 62 мДж/м², а у пленок из БАК 29 и БАК Р – практически не изменяется. При облучении дозой 1 МГр работа адгезии к металлическим и органическим подложкам у пленок БАК 29, БАК Р не изменяется и лежит в интервале 65- 94 мДж/м², у пленок БАК Ш увеличивается в 1.4 раза; работа когезии пленок из латексов БАК 29, БАК Р не изменяется ( $\sim$ 80 мДж/м²), у пленок БАК Ш увеличивается почти в 2 раза и достигает  $\sim$ 124 мДж/м². Величина дисперсионной компоненты поверхностной энергии в пленках из латекса БАК Ш снижается почти в 30 раз, в то время как в БАК 29 примерно в 4 раза, а в БАК Р остается без изменения. Основной вклад в величину поверхностной энергии, работы адгезии и когезии вносит полярная компонента поверхностной энергии. При облучении максимальное увеличение поверхностной энергии происходит за счет увеличения полярной компоненты – у БАК Ш примерно на 30%, у БАК 29 – на ~20%. Радиационно-индуцированные изменения поверхностных свойств пленок носят экстремальный характер с максимумом при ~0.05 МГр и минимумом при ~0.3 МГр. Полимерные пленки из БАК 2Э и БАК Р обладают удовлетворительной радиационной стойкостью до дозы ~1 МГр, а пленки из латекса БАК Ш – только до дозы ~0.05 МГр.

# ВВЕДЕНИЕ

В [1, 2] была показана перспективность использования полимерных пленок, сформированных из водоразбавляемых латексов бутилакрилатного каучука (БАК), в качестве эффективных легкосъемных дезактивирующих и защитных покрытий для оборудования и поверхностей АЭС. При проведении дезактивационных работ на АЭС полимерные покрытия подвергаются действию ионизирующих излучений. Поэтому немаловажным является изучение радиационно-индуцированных изменений структуры и свойств пленок БАК для оценки их радиационной стойкости при использова-

нии в качестве дезактивирующих материалов [3, 4]. С этой целью мы исследовали радиационно-химические процессы, протекающие в пленках БАК в реальных условиях эксплуатации при облучении на воздухе при комнатной температуре, а также изменения их поверхностных свойств — поверхностной энергии, работы когезии и адгезии к металлическим и органическим твердым поверхностям.

## **МЕТОДИКА ЭКСПЕРИМЕНТА**

В качестве объекта исследования были взяты образцы водоразбавляемых латексов, которые синтезируются и производятся в промышленных объемах в филиале НИФХИ им. Л.Я. Карпова (г. Обнинск).

В работе исследовались полимерные пленки, сформированные из бутилакрилатных латексов (БАК), представляющих собой статистические сополимеры бутилакрилата (БА) (~50%), акрилонитрила (АН) (~5–45%) и метакриловой кислоты (МАК) (~2–5%), полученных методом эмульсионной сополимеризации мономеров и радиационного сшивания полимера в латексной форме. Объектами исследований служили пленки из латексов трех типов: БАК 29 (состав: бутилакрилат (БА) /акрилонитрил (АН)/метакриловая кислота (МАК) = 73.2/24.4/2.4% с массовой долей сухого вещества 40% и минимальной температурой пленкообразования (МТП) 5°С), БАК Ш (состав: БА/АН/МАК = 92.9/4.6/2.5% с массовой долей сухого вещества 48% и МТП 0°С), БАК Р (состав: БА/АН/МАК =65.5/28.0/2.6% с массовой долей сухого вещества 40% и МТП (15-20)°С). Полимерные пленки формировали в чашках Петри методом налива латекса при комнатной температуре толщиной от 100 до 500 мкм. Пленки БАК облучали на  $\gamma$ -установке источника  $^{60}$ Со в на воздухе при 300 К, мощности поглощенных доз составляли от 0.7 до 2 Гр/с, поглощенные дозы — 0.05; 0.1; 0.3; 0.5 и 1 МГр.

Индекс набухания и содержание гель-фракции полимера определяли по методикам согласно [5]. Золь-фракцию *S* определяли по формуле

$$S = 1 - \Gamma, \tag{1}$$

где S и  $\Gamma$  – золь- и гель-фракции полимера соответственно.

Радиационно-химический выход сшивания  $G_{\rm c}$  и деструкции  $G_{\rm d}$  определяли с помощью уравнения Чарльзби-Пиннера

$$S + \sqrt{S} = \frac{5.0 \cdot 10^5 \, N_A}{\overline{M}_{p_c} \, G_c \, D} + \frac{G_A}{G_c}, \tag{2}$$

где S — золь-фракция;  $N_A$  — число Авогадро;  $\overline{M}_{n_0}$  — среднечисленная молекулярная масса исходного полимера; D — величина поглощенной дозы. Отношение  $G_{\rm p}/G_{\rm c}$  определяли из зависимости  $S+\sqrt{S}$  от величины 1/D как отрезок прямой, отсекаемой на ординате при  $D\to\infty$ . Методики определения поверхностной энергии, работы когезии и адгезии латексных пленок описаны в [6].

# РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведена зависимость индекса набухания полимерных пленок бутилакрилатных латексов БАК в толуоле от величины дозы. Видно, что все исходные пленки обладают высоким индексом набухания, обусловленного незначительным первоначальным сшиванием полимерных цепей в процессе эмульсионной полимеризации и последующим радиационным сшиванием полимеров в латексной форме. Индекс набухания пленок зависит от дозы облучения: при дозе 0.05 МГр у пленок из латексов БАК Ш и БАК 29 индекс набухания уменьшается в ~ 2.6, а у БАК Р — в 1.3 раза, При дальнейшем облучении индексы набухания медленно уменьшаются, и при дозе 1 МГр их величины в 5 — 8 раз меньше исходных. Обнаруженная зависимость индекса на-



Рис. 1. Зависимость индекса набухания полимерных пленок из бутилакрилатных латексов от величины дозы: 1 – БАК Ш, 2 – БАК 2Э, 3 – БАК Р ( $\gamma$ -облучение на воздухе при 300 K)

бухания от дозы свидетельствует о радиационном сшивании полимеров.

Содержание гель-фракции в полимерах носит сложный характер в зависимости от величины дозы — в БАК Р наблюдается минимум при дозе  $\sim$ 0.05 МГр и максимумом при  $\sim$ 0.1 МГр (кривая 1); в БАК 29 наблюдается минимум при дозе  $\sim$ 0.05 МГр, а максимум лежит при  $\sim$  0.5 МГр (рис. 2, кривая 2). Как видно на рис. 2, кривая 3, у БАК Ш содержание гель-фракции незначительно уменьшается при дозе 0.05 МГр и при дальнейшем облучении практически остается без изменения. Отношения выходов деструкции и сшивания  $G_{\rm L}/G_{\rm C}$  составляют для пленок из латекса БАК 29 0.57, БАК Р-1.15 и БАК Ш — 1.06. Из этих данных следует, что преобладающим радиационнохимическим процессом в пленке, сформированной из латекса БАК 29, является радиационное сшивание, тогда как в пленках из латексов БАК Р и БАК Ш преобладает радиационная деструкция.



Рис. 2. Зависимость содержания гель-фракции полимерных пленок из бутилакрилатных латексов от величины дозы: 1 – БАК P, 2 – БАК 29, 3 – БАК Ш ( $\gamma$ -облучение на воздухе при 300 K)

Таблица 1 Изменение поверхностной энергии полимерных пленок, сформированных из бутилакрилатных латексов, ее полярной и дисперсионной составляющей в зависимости от величины дозы

| Доза,<br>МГр | БАК 2Э        |                             |                              | БАК Р         |                              |                              | БАК Ш         |                             |                              |
|--------------|---------------|-----------------------------|------------------------------|---------------|------------------------------|------------------------------|---------------|-----------------------------|------------------------------|
|              | γπ,<br>мДж/м² | γπ <sup>р</sup> ,<br>мДж/м² | γ <sub>тг</sub> d,<br>мДж/м² | γπ,<br>мДж/м² | γ <sub>тг</sub> р,<br>мДж/м² | γ <sub>тг</sub> d,<br>мДж/м² | γπ,<br>мДж/м² | γπ <sup>р</sup> ,<br>мДж/м² | γ <sub>тг</sub> d,<br>мДж/м² |
| 0            | 38.8          | 29.4                        | 9.4                          | 42.9          | 30.8                         | 12.1                         | 32.0          | 22.2                        | 9.8                          |
| 0.05         | 48.0          | 33.8                        | 14.2                         | 43.5          | 25.7                         | 17.7                         | 97.01         | 46.61                       | 50.40                        |
| 0.1          | 42.1          | 12.9                        | 29.2                         | 40.1          | 26.7                         | 13.3                         | 77.79         | 30.81                       | 46.98                        |
| 0.3          | 35.7          | 34.7                        | 0.9                          | 27.7          | 14.3                         | 13.4                         | 30.4          | 12.9                        | 17.5                         |
| 0.5          | 37.6          | 36.0                        | 12.3                         | 34.6          | 25.1                         | 9.5                          | 41.5          | 39.6                        | 1.9                          |
| 1            | 39.7          | 37.2                        | 2.5                          | 36.3          | 24.4                         | 11.9                         | 62.1          | 61.5                        | 0.6                          |

Как видно из табл. 1, поверхностные энергии исходных латексных пленок лежат в интервале от 32 (БАК Ш) до 43 мДж/м² (БАК Р). В величину поверхностной энергии исходных пленок основной вклад вносит полярная компонента (70 – 75%), а вклад дисперсионной компоненты составляет 25–30%. В состав макромолекул этих латексов входят мономерные звенья бутилакрилата, акрилонитрила и метакриловой кислоты. Содержание последней компоненты одинаково во всех латексах и составляет 2.4–2.6%. Макромолекулы пленок латекса БАК Ш содержат наибольшее количество бутилакрилата (93%). Пленки из латекса БАК Р, содержащие в наибольшем количестве акрилонитрил (28%), обладают наибольшей поверхностной энергией. При получении латексов радиационно-химическим способом происходит частичное сшивание полимерных цепей. В наибольшей степени сшиты пленки латекса БАК Р – величина гель-фракции достигает 90%, у пленок латекса БАКШ – 74%, а у пленок латекса БАК 29 – 53%.

При  $\gamma$ -облучении пленок на воздухе происходит изменение поверхностной энергии всех латексных пленок. Эти изменения сложным образом зависят как от величины поглощенной дозы, так и от химического строения макромолекул, первоначальной структуры пространственной сетки полимера.

Из табл. 1 видно, что в зависимости от дозы происходит чередование величин поверхностной энергии  $\gamma_{\text{тг}}$ , а именно, сначала при дозе 0.05 МГр значения величин поверхностных энергий  $_{\text{тг}}$  увеличиваются у пленок латекса БАК Ш в 3 раза, у пленок латекса БАК 29 на 24%, а у пленок латекса БАК Р остаются без изменения. В интервале доз 0.1–0.5 МГр поверхностная энергия сначала снижается, а затем возрастает. Наибольшее снижение наблюдается при дозе 0.3 МГр. Так в пленках латекса БАК Ш при этой дозе поверхностная энергия снижается почти в 3.2 раза по сравнению с дозой 0.05 МГр, а затем при больших дозах увеличивается.

При дозе 1 МГр практически не изменяется поверхностная энергия у пленок БАК 29, на 15% уменьшается у пленок латекса БАК Р и в 2 раза увеличивается у пленок из латекса БАК Ш. Таким образом, при облучении на воздухе при этой дозе наибольшим радиационным изменениям подвергаются поверхностные свойства латекса БАК Ш, макромолекулы которых содержат наибольшее количество бутилакрилата. У пленок БАК 29 практически не изменяется общая поверхностная энергия, но существенно изменяется соотношение между полярной и дисперсионной составляющей: вклад

полярной компоненты возрастает до 94% (с 75%), а вклад дисперсионной снижается с 25 до 6%. Наибольшим радиационным изменениям подвергаются поверхностные свойства пленок латекса БАК Ш: почти в 2 раза увеличивается поверхностная энергия, за которую ответственна только полярная компонента (99%) (вклад дисперсионной компоненты при облучении падает почти в 30 раз). Почти не изменяется соотношение между полярной и дисперсионной компонентами в практически полностью сшитых пленках латекса БАК Р. Таким образом, при облучении на воздухе наименьшим изменениям подвергаются поверхностные свойства пленок из латекса БАК Р, которые обладают наибольшей исходной поверхностной энергией —  $\gamma_{\text{тг}} = 43$  мДж/м², незначительным (на 16%) снижением его величины при облучении и слабым (5%) изменением полярной и дисперсионной составляющих. Возможно, наибольшая радиационная стабильность у пленок из этого латекса обусловлена высоким содержанием акрилонитрила (28%), характеризующимся относительно невысоким выходом свободных радикалов (G = 0.6 радикалов/100 эВ, [7]).

В табл. 2 приведены работы когезии пленок латексов БАК и адгезии их к металлическим и органическим подложкам. Значения работы когезии и адгезии у необлученных пленок латексов БАК 2Э и БАК Р примерно одинаковы, примерно 30% они меньше у пленок латекса БАК Ш. Таким образом, видна корреляция между величинами поверхностной энергии и работами когезии и адгезии у исходных пленок из этих латексов. Это указывает на общность причин, определяющих исходные свойства пленок.

Изменение работы когезии  $W_{\rm K}$  и адгезии  $W_{\rm A}$  полимерных пленок, сформированных из бутилакрилатных латексов, в зависимости от поглощенной дозы

|                                |             |      | БАК 2Э | )     |      |      |       |  |  |  |  |
|--------------------------------|-------------|------|--------|-------|------|------|-------|--|--|--|--|
| Доза, М                        | ИГр         | 0    | 0.05   | 0.10  | 0.30 | 0.50 | 1.00  |  |  |  |  |
| <i>W</i> к, мД                 | ж/м²        | 77.6 | 96.0   | 84.2  | 71.4 | 75.2 | 79.4  |  |  |  |  |
| <i>W</i> а, мДж/м²             | Сталь 3     | 76.2 | 85.4   | 79.5  | 73.1 | 75.0 | 77.1  |  |  |  |  |
|                                | ПММА        | 80.0 | 89.2   | 83.3  | 76.9 | 78.8 | 80.9  |  |  |  |  |
|                                | Х18н10т     | 82.3 | 91.5   | 85.6  | 79.2 | 81.1 | 83.2  |  |  |  |  |
|                                | Гетинакс    | 84.5 | 93.7   | 87.8  | 81.4 | 83.3 | 85.4  |  |  |  |  |
| БАК Р                          |             |      |        |       |      |      |       |  |  |  |  |
| Доза, М                        | <b>Л</b> Гр | 0    | 0.05   | 0.10  | 0.30 | 0.50 | 1.00  |  |  |  |  |
| <i>W</i> к, мД                 | ж/м²        | 85.8 | 87.0   | 80.2  | 55.4 | 69.2 | 72.6  |  |  |  |  |
|                                | Сталь 3     | 80.3 | 80.9   | 77.5  | 65.1 | 72.0 | 73.7  |  |  |  |  |
| <i>W</i> <sub>A</sub> , мДж/м² | ПММА        | 84.1 | 84.7   | 81.3  | 68.9 | 75.8 | 77.5  |  |  |  |  |
| vvA, MAX/M⁻                    | Х18н10т     | 86.4 | 87.0   | 83.6  | 71.2 | 78.1 | 79.8  |  |  |  |  |
|                                | Гетинакс    | 88.6 | 89.2   | 85.8  | 73.4 | 80.3 | 82.0  |  |  |  |  |
| БАК Ш                          |             |      |        |       |      |      |       |  |  |  |  |
| Доза, М                        | ИΓp         | 0    | 0.05   | 0.10  | 0.30 | 0.50 | 1.00  |  |  |  |  |
| <i>W</i> к, мД                 | ж/м²        | 64.0 | 194.2  | 155.6 | 60.8 | 83.0 | 124.2 |  |  |  |  |
|                                | Сталь 3     | 69.4 | 134.4  | 115.2 | 67.8 | 78.9 | 99.5  |  |  |  |  |
| M/. na Thu/na?                 | ПММА        | 73.2 | 138.2  | 119.0 | 71.6 | 82.7 | 103.3 |  |  |  |  |
| <i>W</i> <sub>A</sub> , мДж/м² | Х18н10т     | 75.5 | 140.5  | 121.3 | 73.9 | 85.0 | 105.6 |  |  |  |  |
|                                | Гетинакс    | 77.7 | 142.7  | 123.5 | 76.1 | 87.2 | 107.8 |  |  |  |  |

Таблица 2

При  $\gamma$ -облучении на воздухе характер изменения работы когезии и адгезии в зависимости от дозы примерно такой же, как и поверхностной энергии. Так при дозе 0.05 МГр у пленок БАК Ш работа когезии увеличивается в  $\sim$  3 раза, работа адгезии ко всем подложкам – в  $\sim$  2 раза. У остальных пленок работы когезии и адгезии пленок остаются почти без изменения. Как и поверхностные энергии, наименьшие значения имеют работы адгезии и когезии при дозе 0.3 МГр. При дальнейшем облучении они увеличиваются. При дозе 1 МГр работа когезии почти в 2 раза превышает первоначальное значение, а работа адгезии как к металлическим, так и органическим подложкам увеличивается примерно в 1.4 раза. Из сопоставления поведения поверхностной энергии, с одной стороны, работы когезии и адгезии, с другой, в зависимости от величины поглощенной дозы следует вывод о том, что в их основе лежат одни и те же радиационно-индуцированные превращения полимерных матриц.

Таким образом, в диапазоне доз до  $\sim 1$  МГр пленки из латексов БАК 29 и БАК Р обладают высокой радиационной стойкостью, практически без изменения сохраняя такие важные показатели как работы когезии и адгезии. Работа когезии и адгезии пленки БАК Ш изменяются в  $\sim 2-3$  раза уже при дозе  $\sim 0.05$  МГр, что свидетельствует о ее заметно более низкой радиационной стойкости по сравнению с пленками из других латексов.

### Литература

- 1. *Тулешова М.А., Милинчук В.К.* Дезактивирующие полимерные покрытия на основе бутилакрилатных латексов//Известия вузов. Ядерная энергетика. 2004. № 4. С. 50-55.
- 2. Лебедева Н.Н. Шитов В.С., Гусакова Н.С., Царев О.П. Латексный состав для дезактивации радиоактивных загрязнений на атомных электростанциях //Лакокрасочные материалы и их применение. -1982. -№6. -C. 13.
- 3. ГОСТ 4.54 79. Покрытия полимерные защитные изолирующие, дезактивирующие и аккумулирующие.
- 4. ГОСТ 19465 74. Покрытия полимерные защитные для улучшения радиационной обстановки.
- 5. Методы исследования ударопрочных полистиролов/Под ред. В.М. Гальперина. Л.: Химия, 1975. С. 14-15.
- 6. Wu S. Polymer Interfaces and Adhesion. New York Marcel Dekker. 1982. P. 318.
- 7. Organic Radiation Chemistry Handbook/ Ed. V.K. Milinchuk, V.I. Tupikov. Published by Ellis Hirwood Limited, Chichester, 1989. P. 36.

Поступила в редакцию 27.06.2006