1.4.1 Изучение физического маятника

Тимур Байдюсенов Б01-302

29.09.2023

1 Аннотация

В работе определяется справедливость формул периода колебаний для физического маятника и значение g. Во время выполнения работы исследовалась зависимость периода колебаний физического маятника от его момента инерции. При обработке результатов оценил погрешность прямых и косвенных измерений.

2 Теоретические сведения

Физический маятник - любое твёрдое тело, которое под действием силы тяжести может свободно качатся вокруг неподвижной горизонтальной оси. Движение маятника описывается уравнением:

$$J\frac{d^2\varphi}{dt^2} = M\tag{1}$$

где J= момент инерции мятника, φ - угол отклонения маятника от положения равновесия, t - время, M - момент сил, действующих на маятник

По теореме Гюйгенса-Штейнера момент инерции маятника вычисляется по формуле:

$$J = \frac{ml^2}{12} + ma^2 (2)$$

Момент силы тяжести, действующий на маятник:

$$M = -mga\sin\varphi \tag{3}$$

При малых углах φ формула приобретает вид:

$$M \approx -mga\varphi \tag{4}$$

Подставляя выражение для J и M в (1), получаем уравнениие:

$$\ddot{\varphi} + \omega^2 \varphi = 0 \tag{5}$$

где

$$\omega^2 = \frac{ga}{a^2 + \frac{l^2}{12}} \tag{6}$$

Период колебаний находится по формуле:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{a^2 + \frac{l^2}{12}}{ag}} \tag{7}$$

Период колебаний маятника без груза находится по формуле:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{g(1 + \frac{m_{\Pi p}}{m_{CT}})x_{\Pi}}}$$
 (8)

Период колебаний маятника с грузом находится по формуле:

$$T = 2\pi \sqrt{\frac{J_0 + m_{\Gamma} y^2}{gM x_{\text{II}}}} \tag{9}$$

3 Оборудование

Рис. 1: А: Стержень как физический маятник

Рис. 2: Б: Маятник с дополнительным грузом

Систематические погрешности приборов:

Штангенциркуль: $\Delta_{\rm IIIT}=\pm 0.05~{
m MM}$

Линейка : $\Delta_{\rm J} = \pm 0.5 \; {\rm MM}$ Секундомер : $\Delta_{\rm C} = \pm 0.005 \; {\rm c}$

Весы : $\Delta_{\mathrm{B}} = \pm 0.005$ г

4 Результаты измерений и обработка данных

Измерение оборудования:

 $m_{\Gamma \mathrm{p}} = 315, 9$ г, масса груза

 $m_{\rm CT} = 890, 8$ г, масса стержня

 $m_{\rm \Pi D} = 76,0$ г, масса призмы

 $l_{\rm CT} = 996$ мм, длина стержня

Таблица 1: Результаты измерения периода колебаний

номер	t, c
1	30,75
2	30,75
3	30,70
4	30,72
5	30,77
6	30,70
7	30,71
8	30,74
9	30,73
10	30,74
\overline{t} , c	30,73
$\sigma_t^{\text{случ}}$	0,025
$\sigma_t^{\text{CИСТ}}$	0,005
$\sigma_t^{\Pi \text{OJIH}}$	0,026

Вычислим $\sigma_t^{\text{СЛУЧ}}$ по формуле:

$$\sigma_t^{\text{СЛУЧ}} = \sqrt{\frac{1}{N-1} \sum (t_i - \overline{t})^2}$$
(10)

Вычислим $\sigma_t^{\Pi O \Pi H}$ по формуле:

$$\sigma_t^{\text{ПОЛН}} = \sqrt{\sigma_t^{\text{СЛУЧ}_2} + \sigma_t^{\text{СИСТ}_2}} \tag{11}$$

Используя погрешность σ_t измерения времени, оценим число колебаний n, по которому следует измерять период, чтобы относительная погрешность измерений была не хуже, чем $\epsilon \approx 0,1\%$

$$n = \frac{\sigma_t}{T\epsilon_T} = \frac{0,026}{1,5 \cdot 10^{-3}} \approx 17 \tag{12}$$

Таблица 2: Результаты измерения периода для установки А(без груза)

номер	а, м	<i>х</i> ц, м	n	t_n , c	Т, с	g, м/с2̂
1	0,28	0,217	20	33,62	1,681	9,55
2	0,242	0,221	20	31,81	1,5905	10,47
3	0,253	0,234	20	32,67	1,6335	9,373
4	0,267	0,248	20	30,95	1,5475	9,85
5	0,249	0,232	20	31,38	1,569	10,24
6	0,256	0,237	20	32,46	1,623	9,37
7	0,263	0,244	20	31,21	1,5605	9,85
8	0,247	0,229	20	31,96	1,598	10,00

Для установки А вычислим g по формуле:

$$g = 4\pi^2 \frac{l^2/12 + a^2}{T^2 x_{\text{II}} (1 + \frac{m_{\text{IIP}}}{m_{\text{CT}}})}$$
 (13)

Определим погрешность по формуле:

$$\sigma_{g} = 4\pi^{2} \sqrt{\left(\frac{l}{6T^{2}x_{\mathrm{II}}\left(1 + \frac{m_{\mathrm{\Pi}\mathrm{p}}}{m_{\mathrm{CT}}}\right)^{2} + \left(\frac{2a}{T^{2}x_{\mathrm{II}}\left(1 + \frac{m_{\mathrm{\Pi}\mathrm{p}}}{m_{\mathrm{CT}}}\right)^{2} + \left(-2\frac{l^{2}/12 + a^{2}}{T^{3}x_{\mathrm{II}}\left(1 + \frac{m_{\mathrm{\Pi}\mathrm{p}}}{m_{\mathrm{CT}}}\right)^{2} + \right)^{2} + \frac{l^{2}/12 + a^{2}}{T^{2}x_{\mathrm{II}}\left(1 + \frac{m_{\mathrm{\Pi}\mathrm{p}}}{m_{\mathrm{CT}}}\right)^{2}} \sigma_{x_{\mathrm{II}}}\right)^{2} + \left(-\frac{l^{2}/12 + a^{2}}{T^{2}x_{\mathrm{II}}} \frac{m_{\mathrm{CT}}}{(m_{\mathrm{\Pi}\mathrm{p}} + m_{\mathrm{CT}})^{2}} \sigma_{m_{\mathrm{\Pi}\mathrm{p}}}\right)^{2} + \frac{l^{2}/12 + a^{2}}{T^{2}x_{\mathrm{II}}} \frac{m_{\mathrm{\Pi}\mathrm{p}}}{(m_{\mathrm{\Pi}\mathrm{p}} + m_{\mathrm{CT}})^{2}} \sigma_{m_{\mathrm{CT}}}\right)^{2} (14)$$

Усредним значения g, получим: $g_{\rm a,cp} = 9,84 \pm 0,07$ м/ c^2

Таблица 3: Результаты измерения периода для установки Б(с грузом)

		1		1 / / /	, ,	
номер	у, м	$x_{\mathbf{Ц}}, \mathbf{M}$	n	t_n , c	Т, с	g , $M/c\hat{2}$
1	0,392	0,261	20	31,64	1,582	9,69
2	0,437	0,274	20	31,91	1,5955	10,18
3	0,496	0,289	20	33,74	1,687	9,96
4	0,606	0,315	20	37,05	1,8525	9,82
5	0,579	0,31	20	36,64	1,832	9,62
6	0,56	0,303	20	35,22	1,761	10,10
7	0,53	0,296	20	34,33	1,7165	10,14
8	0,596	0,306	20	36,61	1,8305	9,90

Для установки Б вычислим g по формуле:

$$g = \frac{4\pi^2}{T^2} \frac{J_0 + m_{\Gamma} y^2}{M x_{\text{II}}} \tag{15}$$

где $J_o = \frac{m_{\rm CT} l_{\rm CT}^2}{12} + m_{\rm CT} a^2$ Усредним значения g, получим: $g_{
m b,cp} = 9,93 \pm 0,07$ м/ c^2 Построим график зависимости ${
m T(y)}$:

Найдем минимум с помощью графика:

 $T_{min}=1,345~{\rm c}$ согласно графику, что согласуется с теоретическим расчетом ($T_{min}=1,52~{\rm c}$). Однако измерение с помощью графика имеет существенную погрешность.

Построим график в координатах $u = T^2 y, v = y^2$:

Определим g с помощью графика, методом наименьших квадратов и

оценим погрешность. В итоге получим,

$$g=9,565\pm0,39\ {\rm m}/c^2$$

5 Вывод

Определил справедливость формул периода колебаний для физического маятника и значение g. Во время выполнения работы исследовалал зависимость периода колебаний физического маятника от его момента инерции. При обработке результатов оценил погрешность прямых и косвенных измерений. В результате в обоих случаях были получены значения действительному: средее арифметическое: $g_{\rm b,cp}=9,93\pm0,07/^2$, по МНК: $g=9,565\pm0,39~{\rm m}/c^2$.