

Snakemake for reproducible research

Introduction to Snakemake

Reproducibility

Question 1

What is reproducibility?

- Replicability vs repeatability vs reproducibility
- "Reproducibility is more or less the ability to draw similar conclusions from replicates studies"
 - Diaba-Nuhoho, P., Amponsah-Offeh, M., BMC Research Notes (2021), https://doi.org/10.1186/s13104-021-05875-3
- Key component of the scientific method, "cornerstone of science"

Reproducibility crisis

Question 2

Is there a reproducibility crisis?

- Baker, M., Nature (2016), https://doi.org/10.1038/533452a:
 - ~1600 researchers: 52% significant crisis, 38% slight crisis (90% in total)
- Alfredo Sánchez-Tójar, Universität Bielefeld:
 - Publication bias in ecology: https://www.youtube.com/watch?v=wdhzLrPUJJY
 - 83 articles of 3 fields: ~30% of partial replication, **0% of true replication**
- Knudtson, K. L., J Biomol Tech. (2019), https://doi.org/10.7171%2Fjbt.19-3003-001
 - Has your core's rigor and reproducibility practice statement ever been requested?

Why is that?

Why is that?

50 experiments

INITIATED 87 experiments

DESIGNED 193 experiments

- Absence of knowledge/infrastructure
- Questionable research practices and fraud
- Statistical issues
 - Low statistical power
 - Statistical heterogeneity
- Publication system in science
 - Publication bias (non-significant results/unoriginal replications not published)
 - "Publish or perish"
 - Standards of reporting, open-access

Errington, T.M. et al., eLife (2021), https://doi.org/10.7554/eLife.67995

Why is that?

50 experiments

INITIATED 87 experiments

DESIGNED 193 experiments

- Absence of knowledge/infrastructure
- Questionable research practices and fraud
- Statistical issues
 - Low statistical power
 - Statistical heterogeneity
- Publication system in science
 - Publication bias (non-significant results/unoriginal replications not published)
 - "Publish or perish"
 - Standards of reporting, open-access

Errington, T.M. et al., eLife (2021), https://doi.org/10.7554/eLife.67995

Workflow Management Systems (WMS)

Question 3

What do WMS bring?

- WMS can can solve several hidden reproducibility issues:
 - Entirely:
 - OS
 - Version
 - Language
 - Readability
 - Availability
 - Partially (at least):
 - File format
 - Metadata
 - Parameters/options

	<u>Nextflow</u>	<u>Snakemake</u>	<u>Galaxy</u>
Language (How to code the worklow?)	Groovy (~ Java)	Extension of Python	Java + Python

	<u>Nextflow</u>	<u>Snakemake</u>	<u>Galaxy</u>
Language (How to code the worklow?)	Groovy (~ Java)	Extension of Python	Java + Python
Execution system (How are tasks organised and run?)	Join processes manually	Automatically resolve dependencies from last outputs to first inputs	Web-based GUI, manual task organisation but no need for programming knowledge

	<u>Nextflow</u>	<u>Snakemake</u>	<u>Galaxy</u>
Language (How to code the worklow?)	Groovy (~ Java)	Extension of Python	Java + Python
Execution system (How are tasks organised and run?)	Join processes manually	Automatically resolve dependencies from last outputs to first inputs	Web-based GUI, manual task organisation but no need for programming knowledge

Python, you said?

• Question 4

• **Python-based**: concise and readable = user-friendly

- **Python-based**: concise and readable = user-friendly
- Easily deployable/executable **locally** or **remotely** (computation clusters and clouds)

- **Python-based**: concise and readable = user-friendly
- Easily deployable/executable **locally** or **remotely** (computation clusters and clouds)
- Integrated package management via conda/mamba (package manager) and apptainer (container manager)

- Python-based: concise and readable = user-friendly
- Easily deployable/executable **locally** or **remotely** (computation clusters and clouds)
- Integrated package management via conda/mamba (package manager) and apptainer (container manager)
- Once you have downloaded a workflow, it is easy to:
 - O Run Snakemake in a **strictly controlled environment** (OS, software, versions, parameters...)
 - Efficiently and automatically reproduce analyses, results and figures

- Workflow:
 - Network of dependent rules

Workflow:

Network of dependent rules

Rule:

- Smallest part of a workflow
- Set of instructions to create one or more output(s) from zero or more input(s)

Workflow:

Network of dependent rules

Rule:

- Smallest part of a workflow
- Set of instructions to create one or more output(s) from zero or more input(s)

Job:

- Execution of a rule with specific input(s)/output(s)
- Success conditions:
 - No error
 - All expected outputs present

- Workflow:
 - Network of dependent rules
- Rule:
 - Smallest part of a workflow
 - Set of instructions to create one or more output(s) from zero or more input(s)
- Job:
 - Execution of a rule with specific input(s)/output(s)
 - Success conditions:
 - No error
 - All expected outputs present
- Directed Acyclic Graph (DAG) determined from the required outputs.

Why is a DAG useful?

- Skip parts of the DAG to avoid recomputing → Save time and resources (CPU, memory, energy, money)
- Change/add inputs to existing analyses without re-running everything
- Resume running a workflow that failed part-way

What does Snakemake really look like?

Snakemake lingo cheatsheet

- Snakemake keyword
- Rule name (user-defined)
- Snakemake directives
- Directives values:
 - Object
 - String (file path)
 - Instruction (command)
 - Numeric values (seen later)
- Wildcards
- Placeholders

```
rule rename_file:
    input:
       'data/{file}.tsv'
    output:
       'results/{file}.txt'
    shell:
       'mv {input} {output}'
```

Exercises

- Throughout the day:
 - Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes
 (DEG)
- For this session:
 - Understand the structure of a Snakemake workflow
 - Create your first rules and Snakefile
 - Chain rules together
 - Run your first workflow