Skew braces and solutions to the Yang-Baxter equation

Ilaria Colazzo

Contents

Lecture	1. 21/02/2024	2
§ 1.1.	The Yang–Baxter equation	2
§ 1.2.	The set-theoretic version	2
§ 1.3.	Set-theoretic solutions to the Yang–Baxter equation and III Reidemeister move	2
§ 1.4.	First examples	2
Referen	Ces	Δ

The notes correspond to the series of lectures on *Skew braces and solutions to the Yang–Baxter equation* taught as part of the conference Introduction to Modern Advances in Algebra.

This version was compiled on Wednesday 14th February, 2024 at 21:45.

Ilaria Colazzo Exeter (UK)

University of Exeter – Exeter (UK) $\,$

E-mail address: ilariacolazzo@gmail.com.

Lecture 1. 21/02/2024

§ 1.1. The Yang-Baxter equation. The Yang-Baxter equation (YBE) is one important equation in mathematical physics. It first appeared in two independent papers of Yang [3] and Baxter [1].

Definition 1.1. A solution of the *Yang–Baxter eqution* is a bijective linear map $R: V \otimes V \to V \otimes V$, where V is a vector space such that

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

where R_{ij} denotes the map $V \otimes V \otimes V \to V \otimes V \otimes V$ acting as R on the (i, j) factor and as the identity on the remaining factor.

Let $\tau: V \otimes V \to V \otimes V$ be the map $\tau(u \otimes v) = v \otimes u$ for $u, v \in V$. It's easy to check (try!) that $R: V \otimes V \to V \otimes V$ is a solution of the Yang–Baxter equation if and only if $\bar{R} := \tau R$ satisfies

$$\bar{R}_{12}\bar{R}_{23}\bar{R}_{12} = \bar{R}_{23}\bar{R}_{12}\bar{R}_{23}.$$

An interesting class of solutions of the Yang–Baxter equation arises when *V* has a *R*-invariant basis *X*. In such a case the solution is said to be set-theoretic.

§ 1.2. The set-theoretic version. Drinfeld in [2] observed it makes sense to consider the Yang–Baxter equation in the category of sets and stated that

it would be interesting to study set-theoretic solutions.

These lectures will focus on set-theoretic solutions to the Yang-Baxter equation and their connection with known and "new" algebraic structures.

DEFINITION 1.2. A *set-theoretic solution to the Yang–Baxter equation* is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a bijective map such that

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$$

Convention 1. If (X, r) is a set-theoretic solution to the Yang–Baxter equation, we write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

where $\lambda_x, \rho_x : X \to X$.

Definition 1.3. Let (X, r) be a set-theoretic solution to the Yang–Baxter equation. We say that

- (X,r) is *finite* if X is finite.
- (X,r) is non-degenerate if λ_x, ρ_x are bijective for all $x \in X$.

§ 1.3. Set-theoretic solutions to the Yang–Baxter equation and III Reidemeister move.

§ 1.4. First examples.

Examples 1.4. Let *X* be a non-empty set.

- 1) The pair $(X, \mathrm{id}_{X \times X})$ is a set-theoretic solution to the Yang–Baxter equation. Note that $(X, \mathrm{id}_{X \times X})$ is not non-degenerate, since $\lambda_x(y) = x$ and $\rho_y(x) = y$, for all $x, y \in X$.
- 2) Let $\tau: X \times X \to X \times X$ be the flip map, i.e. $\tau(x,y) = (y,x)$ for all $x,y \in X$. Then, the pair (X,τ) is a set-theoretic solution to the Yang–Baxter equation. Moreover, it is non-degenerate since $\lambda_x = \rho_x = \mathrm{id}_X$ for all $x \in X$.

3) Let λ, ρ be permutaions of X. Then $r(x,y) = (\lambda(y), \rho(x))$ is a non-degenerate set-theoretic solution to the Yang–Baxter equation if and only if $\lambda \rho = \rho \lambda$. Morever, (X,r) is involutive if and only if $\rho = \lambda^{-1}$. The solution (X,r) is called a *permutational solution* or a *Lyubashenko's solution*.

If on the set *X* we have a bit more structure we can define some more sophisticated solutions.

Example 1.5. Let G be a group and let

$$r_1(x,y) = (y,y^{-1}xy)$$

 $r_2(x,y) = (x^2y,y^{-1}x^{-1}y).$

Then (X, r_1) and (X, r_2) are bijective non-degenerate set-theoretic solutions to the Yang–Baxter equation.

References

- [1] R. J. Baxter. Eight-vertex model in lattice statistics. Phys. Rev. Lett., 26:832–833, 1971.
- [2] V. G. Drinfeld. On some unsolved problems in quantum group theory. In *Quantum Groups (Leningrad 1990)*, volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin, 1992.
- [3] C. N. Yang. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. *Phys. Rev. Lett.*, 19:1312–1315, 1967.