UNIVERSIDAD DE LAS AMÉRICAS PUEBLA

Cociente de Uniformes Temas Selectos I

Dr. Rubén Blancas Rivera

Universidad de las Américas Puebla

Otoño 2025

85 AÑOS DE EXCELENCIA ◆ 55 AÑOS EN PUEBLA

Content

Cociente de Uniformes

Exponencial

Distribución Normal

Método de Von Neumann: Caso Discreto

Método de Von Neumann: Caso Continuo

Cociente de Uniformes

- En algunos casos, la distribución de una variable aleatoria continua se puede representar como la distribución que se obtiene al tomar el cociente de dos variables aleatorias con distribución uniforme.
- Vamos a mostrar que la manera en la que esta representación, junto con el método de aceptación y rechazo, producen un algoritmo para la simulación de ciertas variables aleatorias.

Cociente de Uniformes

Este método fue propuesto por A. J. Kinderman y J. F. Monahan en 1977 y está basado en el siguiente resultado.

Teorema (Cociente de Uniformes)

Sea $h(x) \ge 0$ una función integrable, acotada y tal que:

- 1. $0 < \int_{-\infty}^{\infty} h(x) dx < \infty$.
- $2. \sup_{x} |x| \ h(x) < \infty.$

Defina la región

$$S = \left\{ (u, v) : 0 < u < \sqrt{h(u/v)}, \ \frac{v}{u} \in \operatorname{sop}(h) \right\} \subseteq \mathbb{R}^2,$$

en donde $\mathrm{sop}(h)=\{x:h(x)>0\}$ es el soporte de h(x). Si (U,V) es un vector aleatorio con distribución uniforme sobre la región S, entonces el cociente $\frac{V}{U}$ tiene función de densidad

$$f(x) = \frac{h(x)}{\int_{-\infty}^{\infty} h(t) dt}.$$

Cociente de Uniformes

- A partir de una función h(x) con las características indicadas, se puede construir la función de densidad f(x).
- Valores de esta distribución se pueden obtener a través del cociente $\frac{V}{U}$ de dos variables aleatorias con distribución uniforme sobre la región S.
- A su vez, valores de estas variables aleatorias uniformes pueden obtenerse mediante una transformación simple de la distribución $\mathrm{Unif}(0,1)$.

Área de la región ${\cal S}$

$$|S| = \frac{1}{2} \int_{-\infty}^{\infty} h(x) \, dx.$$

Supongamos entonces que X tiene función de densidad

$$f(x) = e^{-x} I_{(0,\infty)}(x).$$

Tomaremos a h(x) como la misma función f(x). No es difícil verificar que se cumplen las condiciones

$$0 < \int_{-\infty}^{\infty} h(x) \, dx < \infty \quad \text{y} \quad \sup_{x \in \mathbb{R}} |x| \, h(x) < \infty.$$

Siguiendo el procedimiento explicado antes, se debe considerar la región

$$\begin{split} S &= \left\{ (u,v) : 0 < u < h \left(\frac{v}{u} \right), \ \frac{v}{u} \in \operatorname{sop}(h) \right\} \\ &= \left\{ (u,v) : 0 < u < e^{-v/u}, \ \frac{v}{u} \in (0,\infty) \right\}. \end{split}$$

Colocando la raíz cuadrada dentro de la exponencial, obtenemos

$$S = \left\{ (u, v) : 0 < u < \exp\left(-\frac{v}{2u}\right), \ v > 0 \right\}.$$

Ahora observamos que $-\frac{v}{2u}$ es negativo y, por lo tanto, el valor de la exponencial tiene a 1 como cota superior.

Además, resolviendo para v en la desigualdad que involucra a u y v conjuntamente, se encuentra finalmente la siguiente expresión de la región S:

$$S = \Big\{ (u, v) : 0 < u < 1, \ 0 < v < -2u \ln(u) \Big\}.$$

Puede comprobarse para este caso particular que el área de la región ${\cal S}$ es

$$|S| = \int_0^1 (-2u \ln u) du = -\int_0^1 (\frac{d}{du}u^2) \ln u du = \frac{1}{2}.$$

Algoritmo

- 2. Si $v < -2u \ln(u)$, aceptar (u, v) como un valor de $\mathrm{Unif}(S)$; en caso contrario, regresar al paso 1.
- 3. Calcular x = v/u.
- 4. Sea $X = x/\lambda$.
- 5. Entonces $X \sim \text{Exp}(\lambda)$.

Aplicaremos el método del cociente de uniformes para generar valores de la distribución $\mathcal{N}(\mu, \sigma^2)$. Recordemos que es suficiente obtener valores de X con distribución $\mathcal{N}(0,1)$, pues

$$\mu + \sigma X \sim \mathcal{N}(\mu, \sigma^2).$$

Sea X con función de densidad

$$f(x) = (2\pi)^{-1/2} \exp\left(-\frac{x^2}{2}\right), \quad x \in (-\infty, \infty).$$

Podemos considerar a h(x) como f(x), pero por simplicidad en la determinación de la región S tomaremos

$$h(x) = \exp\left(-\frac{x^2}{2}\right).$$

No es difícil verificar que se cumplen las condiciones

$$0<\int_{-\infty}^{\infty}h(x)\,dx<\infty\quad \text{y}\quad \sup_{x\in\mathbb{R}}|x|\,h(x)<\infty.$$

Siguiendo el procedimiento explicado antes, se debe considerar la región

$$S = \left\{ (u, v) : 0 < u < \sqrt{h\left(\frac{v}{u}\right)}, \ \frac{v}{u} \in \text{supp}(h) \right\}$$

$$= \left\{ (u, v) : 0 < u < \sqrt{\exp\left(-\frac{v^2}{2u^2}\right)}, \ \frac{v}{u} \in (-\infty, \infty) \right\}$$

$$= \left\{ (u, v) : 0 < u < \exp\left(-\frac{v^2}{4u^2}\right), \ v \in \mathbb{R} \right\}$$

$$= \left\{ (u, v) : 0 < u < 1, v^2 < -4u^2 \ln(u). \right\}$$

Puede comprobarse para este caso particular que el área de la región ${\cal S}$ es

$$|S| = 2 \int_0^1 \sqrt{-4u^2 \ln(u)} \, du$$

$$= 2 \int_0^1 2u \sqrt{\ln(\frac{1}{u})} \, du$$

$$= 8 \int_0^\infty v^2 e^{-2v^2} \, dv, \quad v^2 := \ln(\frac{1}{u}).$$

$$|S| = 4\sqrt{2\pi\sigma^2}\,\mathbb{E}[W^2], \quad W \sim \mathcal{N}(0,\sigma^2), \ \sigma^2 = \tfrac{1}{4}.$$

Por lo tanto,

$$|S| = \frac{1}{2}\sqrt{2\pi} = \frac{1}{2}\int_{-\infty}^{\infty} h(x) dx.$$

- 1. Generar $(u, v) \sim \text{Unif}(0, 1) \times \text{Unif}(-1, 1)$.
- 2. Verificar la condición: si $v^2 < -4u^2 \ln(u)$, aceptar (u,v) como un valor de $\mathrm{Unif}(S)$; en caso contrario, regresar al paso 1.
- 3. Calcular el cociente x = v/u.
- **4.** El valor x tiene distribución $\mathcal{N}(0,1)$.
- 5. Finalmente, calcular $Y=\mu+\sigma x$, el cual tiene distribución $\mathcal{N}(\mu,\sigma^2)$.

Generación de valores de variables aleatorias multivariadas

Vamos a estudiar el método de von Neumann, y de aceptación y rechazo, para generar valores de vectores aleatorios, tanto en el caso discreto como continuo. Estos procedimientos son similares al caso unidimensional.

Proposición

Sea f(x,y) una función de probabilidad bivariada con soporte el conjunto finito $S=\{x_1,\ldots,x_n\}\times\{y_1,\ldots,y_m\}$. Sea (X,Y) una variable con distribución uniforme sobre S e independiente de $U\sim \mathsf{Unif}(0,1)$. Entonces, se cumple que

$$\mathbb{P}\big(X=x,\,Y=y\,\big|\,U\leq f(X,Y)\big)=f(x,y),\quad \text{para }(x,y)\in S.$$

- Si tienes una función de probabilidad bivariada f(x,y) con soporte finito S,
- puedes construir un procedimiento que, a partir de una distribución uniforme sobre S y un número uniforme independiente $U \sim \mathsf{Unif}(0,1)$,
- genere una pareja (X,Y) que efectivamente sigue la distribución f(x,y).

$$\mathbb{P}(X = x, Y = y \mid U \le f(X, Y)) = f(x, y), \quad (x, y) \in S,$$

nos dice que, al condicionar en el evento de aceptación $U \leq f(X,Y)$, el par (X,Y) termina distribuyéndose exactamente según la ley deseada f(x,y).

Demostración.

Sea $(x,y) \in S$. Observemos primero que

$$\mathbb{P}(X=x, Y=y) = \frac{1}{nm},$$

y además

$$\mathbb{P}\big(U \leq f(X,Y) \,\big|\, X = x, Y = y\big) = \mathbb{P}\big(U \leq f(x,y)\big) = f(x,y).$$

or definición de probabilidad condicional:

$$\mathbb{P}(X = x, Y = y \mid U \le f(X, Y)) = \frac{\mathbb{P}(X = x, Y = y, U \le f(X, Y))}{\mathbb{P}(U \le f(X, Y))}$$

$$= \frac{\mathbb{P}(U \le f(X, Y) \mid X = x, Y = y) \mathbb{P}(X = x, Y = y)}{\sum_{(u,v)\in S} \mathbb{P}(U \le f(X, Y) \mid X = u, Y = v) \mathbb{P}(X = u, Y = v)}$$

$$= \frac{f(x, y) \frac{1}{nm}}{\sum_{(u,v)\in S} f(u, v) \frac{1}{nm}}$$

$$= f(x, y).$$

Ejemplo

Sea el soporte

$$S = \{0, 1\} \times \{0, 1\},\$$

y definamos la función de probabilidad bivariada

$$f(x,y) = \begin{cases} 0.4 & \text{si } (x,y) = (0,0), \\ 0.1 & \text{si } (x,y) = (0,1), \\ 0.2 & \text{si } (x,y) = (1,0), \\ 0.3 & \text{si } (x,y) = (1,1). \end{cases}$$

Algoritmo

El procedimiento del método de von Neumann es el siguiente:

- 1. Generamos un candidato (X,Y) uniforme sobre S. Cada punto tiene probabilidad $\frac{1}{4}.$
- 2. Generamos $U \sim \mathsf{Unif}(0,1)$.
- 3. Aceptamos el candidato (x, y) si $U \leq f(x, y)$.

Proposición.

Sea f(x,y) una densidad bivariada con soporte $(a,b)\times(c,d)$, acotada por M>0. Sean $U_1,U_2,U_3\sim \mathrm{Unif}(0,1)$ independientes y definamos

$$X = a + (b - a)U_1, \quad Y = c + (d - c)U_2, \quad U = MU_3.$$

Entonces, la distribución de (X,Y) condicionada a $\{U \leq f(X,Y)\}$ es f(x,y).

Demostración.

Sea f(x,y) una densidad bivariada con soporte $(a,b)\times (c,d)$, acotada por M>0. Sean $U_1,U_2,U_3\sim \mathrm{Unif}(0,1)$ independientes y definamos

$$X = a + (b - a)U_1, \quad Y = c + (d - c)U_2, \quad U = MU_3.$$

Entonces, la distribución de (X,Y) condicionada a $\{U \leq f(X,Y)\}$ es f(x,y).