

Universidade de Brasília - UnB

Faculdade UnB Gama - FGA

Nome do Curso Título: Subtítulo do Trabalho

Autor: Nome do Autor

Orientador: (Titulação Acadêmica e Nome do Orientador)

Brasília, DF 2013

Nome do Autor

Título: Subtítulo do Trabalho

Monografia submetida ao curso de graduação em (Nome do Curso) da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em (Nome do Curso).

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Orientador: (Titulação Acadêmica e Nome do Orientador) Coorientador: (quando houver, Titulação Acadêmica e Nome do Orientador)

> Brasília, DF 2013

Lista de ilustrações

Figura 1 –	Foto aérea do campus FGA. Marcação laranja indica o posicionamento	
	do biodigestor	16
Figura 2 -	Esquema de associação de células fotovoltaicas em série	22
Figura 3 -	Esquema de associação de células fotovoltaicas em paralelo	23
Figura 4 -	Esquema de energia híbrida (Fotovoltaiva e Eólica)	25
Figura 5 -	Representação esquemática do sistema On-Grid. Cores Fantasia	26
Figura 6 –	Fonte: (??)	26
Figura 7 -	Gráfico de irradiação solar da UnB campus Gama	27
Figura 8 -	Desenho esquemático da manutenção de placas fotovoltaicas	28
Figura 9 –	Painel Solar Monocristalino	29
Figura 10 –	Painel Solar Policristalino	30
Figura 11 –	Painel Solar silício amorfo	30

Lista de tabelas

Sumário

	Introdução	7
ı	BIOGÁS COMO FONTE RENOVÁVEL DE ENERGIA	ç
1	BIOGÁS COMO FONTE RENOVÁVEL DE ENERGIA	11
1.1	Definição	1
1.2	Funcionamento	12
1.3	Aplicação na FGA	13
1.3.1	Desenho Esquemático	15
П	ENERGIA FOTOVOLTAICA	17
2	ENERGIA FOTOVOLTAICA	19
2.1	Introdução	19
2.1.1	Efeito fotovoltaico	19
2.1.2	Vantagens e Desvantagens	20
2.2	Funcionamento de um Sistema Fotovoltaico	21
2.2.1	Bloco Gerador	22
2.2.2	Bloco de condicionamento de potência	23
2.2.3	Bloco Armazenador	24
2.2.4	Configurações de sistemas fotovoltaicos	25
2.3	Incidência solar na FGA	25
2.4	Manutenção das placas	27
2.5	Tipos de painéis solares fotovoltaicos	28
2.5.1	Painel Solar Monocristalino	28
2.5.2	Painel Solar Policristalino	29
2.5.3	Painel de silício amorfo (a-Si)	29
	REFERÊNCIAS	3 1

Introdução

Este documento apresenta o trabalho realizado pela turma C da disciplina Projeto Integrador 1, no que diz respeitos à entrega do desenvolvimento do trabalho até o segundo ponto de controle. Este documento foi dividido em três partes principais: SmartGrid, energia fotovoltáica e biogás. A parte denominada como SmartGrid trata das questões para o desenvolvimento do mesmo e as outras duas partes dizem respeito às fontes de alternativas de energia que serão utilizadas para o desenvolvimento do projeto.

Parte I

Biogás como fonte renovável de energia

1 Biogás como fonte renovável de energia

1.1 Definição

A compreensão do biogás como fonte renovável de energia traz como necessário o entendimento da biomassa como recurso com potencial energético. Biomassa pode ser designada como a massa total de matéria orgânica acumulada num espaço. Desta forma pertencem à biomassa todos os vegetais e animais, bem como os seus resíduos. Além disso, os resíduos industriais dos segmentos madeireiro e alimentício e os resíduos urbanos, como esgoto doméstico. Esta abrangência de biomassa pode ser transformada pelas tecnologias convenientes de conversão em biocombustíveis e energias térmica, mecânica e elétrica (STAISS e PEREIRA, 2001).

O biogás é produzido a partir da digestão anaeróbia de matéria orgânica. Basicamente o processo é constituído pela aglomeração destes resíduos em uma estrutura fechada, denominada biodigestor. No biodigestor as bactérias inerentes aos dejetos obtêm, dentro de condições adequadas de trabalho, suas energias a partir da atuação fermentativa nos resíduos orgânicos, que traz como produtos o biogás, o efluente líquido mineralizado (após tratamento) e biofertilizantes.

Os microrganismos atuantes neste processo precisam de condições adequadas para a eficiência do trabalho fermentativo, como baixo teor de substâncias tóxicas e poder calorífico adequado da matéria orgânica, temperatura na faixa de 30-35oC e pH entre 7-7,5. Essas restrições, junto a escolha adequada do tipo de biodigestor, não expõem os microrganismos a condições estressantes, promovendo um bom aproveitamento da aglomeração orgânica.

O biodigestor é o local onde a matéria orgânica é depositada e sofre a digestão anaeróbia bacteriana. Esta construção é basicamente constituída por um canal de entrada de resíduos, uma câmara de digestão, um canal de remoção do biofertilizantes, por um desnível coletor dos efluentes líquidos e por uma canalização para saída do gás. O biodigestor do tipo indiano é designado por este projeto, em virtude da sua simplicidade tecnológica e do posicionamento subterrâneo da sua câmara de digestão, que contribui na regulação das condições térmicas da atuação bacteriana.

O produto de maior relevância, neste estudo, a ser obtido é o biogás. Este por sua vez, é uma mistura de outros gases cujas características qualitativas e quantitativas dependem dos tipos residuais postos à atividade de digestão anaeróbia. Normalmente o gás metano (CH4) aparece como constituinte em maior percentual no biogás – de 50 a 80% (LA FARGE, 1979). A relevância do biogás, aqui, é devido ao interesse no produto

final energia elétrica. A energia química do gás, por um processo controlado de combustão, é convertida em energia mecânica que ativa um gerador elétrico.

1.2 Funcionamento

A biomassa adotada neste estudo é a proveniente de resíduos orgânicos produzidos pelo restaurante universitário do Campus Faculdade do Gama, da Universidade de Brasília. O objetivo é a redução da dependência energética da concessionária de energia elétrica da região, o incentivo ao estudo e desenvolvimento de fontes renováveis de energia. Para este fim, administração do restaurante universitário da UnB, campus Gama, foi contatada para que se pudesse obter dados sobre a quantidade de dejetos orgânicos jogados fora. O controle documentado sobre essas informações não existe, porém de acordo com os dados fornecidos pela administração do restaurante pôde-se estimar a quantidade de resíduo orgânico produzido diariamente. A quantidade é de aproximadamente 240 kg de resíduo orgânico.

O processo de conversão do biogás em energia elétrica é necessário ao entendimento do funcionamento deste projeto. Existem diversas tecnologias para efetuar a conversão energética do biogás. Entende-se por conversão energética o processo que transforma um tipo de energia em outro. No caso do biogás a energia química contida em suas moléculas é convertida em energia mecânica por um processo de combustão controlada. Essa energia mecânica aciona um gerador que a converte em energia elétrica.

Após a conclusão da construção do biodigestor e do sistema de armazenamento de biogás, a matéria orgânica se decompõe e o biogás proveniente da decomposição é enviado através de uma tubulação para ser utilizado com combustível para o conjunto motorgerador. O conjunto gerador consiste em um motor de combustão interna Ciclo Otto adaptada para o uso do biogás como combustível, acoplado a um gerador de eletricidade, gerando energia.

1. Entrada dos resíduos orgânicos:

Os resíduos que irão alimentar o biodigestor serão os restos de alimentos gerados no restaurante universitário da faculdade. A geração do biogás, vai se realizar através da digestão desses resíduos, fontes da biomassa.

2. Biodigestor:

É no biodigestor onde ocorre a fermentação da biomassa. Essa unidade pode ser composta por uma caixa, uma vala (revestida e coberta por um material impermeável) ou um tanque. É de extrema importância, que o biodigestor seja vedado, criando um ambiente anaeróbico (sem a presença de oxigênio) para que os microrganismos sejam estimulados na degradação da biomassa, gerando o biogás.

a) Fermentação da biomassa:

Desintegração da biomassa por bactérias anaeróbicas (fermentativas) que passa por diversas fases de transformação até que forme uma mistura que contém majoritariamente metano e dióxido de carbono.

b) Produção e saída do biogás:

Os gases produzidos através da fermentação inflam a cúpula do biodigestor e, através da pressão, eles escapam pela tubulação de saída. Essa tubulação dirige o biogás até o motor-gerador que transformará sua energia em eletricidade.

c) Caixa coletora:

O processo de biodigestão gera uma outra matéria orgânica residual que é conduzida a uma caixa coletora (pode ser de alvenaria e deve cuidadosamente tampada).

3. Geração de energia elétrica:

O motor escolhido para a conversão do biogás em energia elétrica foi o Ciclo de Otto. Esse motor trabalha por combustão interna que aspira ou absorve uma mistura arcombustível, e a comprime num local denominado câmara de combustão. A partir da centelha produzida na vela de ignição é gerada a combustão. Também conhecido como motor de quatro tempos, pois seu funcionamento decorre de quatro etapas sequenciais: admissão da mistura ar-combustível, compressão da mistura e geração de faísca, combustão para explosão da mistura, e exaustão para escape dos gases. Em funcionamento com a queima do biogás, o motor Otto alimenta o gerador de energia elétrica.

1.3 Aplicação na FGA

A instalação do biodigestor nos arredores do campus traz a discussão de uma nova questão. Para a viabilidade do projeto não é suficiente provar numericamente a eficiência energética da proposta. É necessário avaliar e resolver os possíveis transtornos que sua instalação traria à comunidade da FGA.

Durante o processo de obtenção do Biogás — que é um gás composto em sua maioria por Gás Metano —, são gerados vários outros gases (como o dióxido de carbono, nitrogênio, hidrogênio, gás sulfídrico e amônia) (??). Alguns desses, trazem mau odor ao ambiente (como é o caso do gás sulfídrico). Este, mesmo em pequenas porcentagens, gera bastante desconforto devido ao seu odor pútrido) (??).

Um recurso utilizado para diminuição de odores, é a aplicação de agentes químicos oxidantes, como Ozônio e Peróxido de Hidrogênio. Ou até mesmo agentes aromáticos capazes de sobressair seu cheiro agradável ao cheiro produzido pelo biodigestor (??) (??).

Há também, a possibilidade de neutralizar esses odores ao utilizar artifícios mais comuns em esgotos. Como a adsorção, onde há a ligação fraca entre moléculas, de compostos orgânicos e uma superfície sólida de adsorvente. Essa superfície, é caracterizada por ser produzida por sólidos porosos. Um dos materiais mais utilizados nesse tipo de processo, é o carvão ativado (??).

A separação por membrana também é um recurso para a contenção de gases mau cheirosos, e se dá quando alguns gases são retidos por uma espécie de membrana delgada. Geralmente, as mesmas são construídas a partir de fibras ocas. Essas fibras são capazes de absorver alguns gases, e infelizmente não possuem o poder de extinguir todo e qualquer cheiro (??).

É válido ressaltar que apesar da fonte de resíduos orgânicos adotada ser da FGA, outras alternativas foram colocadas em pauta durante a realização desta pesquisa. A utilização dos insumos orgânicos advindos da Região Administrativa do Gama, Distrito Federal, foi uma opção levada em consideração. A princípio seria feito o contato com a administração do Gama para que o destino do lixo orgânico gerado na cidade fosse direcionado para o grupo de trabalho responsável pelos biodigestores na FGA. Um grande empecilho encontrado, contudo, no possível relacionamento com a administração são as questões burocráticas e processos licitatórios necessários à exploração do lixo orgânico.

Esta decisão foi tomada pela burocracia a respeito da utilização de resíduos sólidos urbanos, pois conforme a lei nº12.305, de 2 de agosto de 2010, o direito sobre o uso e o descarte do lixo e do titular dos serviços públicos de limpeza urbana e do gerador do resíduo, isto é, as instituições que podem alterar o descarte do lixo em aterros sanitários é a empresa que presta serviços para o município, ou no caso para o Distrito Federal.

Desta forma, por exemplo, para usar os resíduos dos moradores da cidade do Gama ou de qualquer outra cidade, seria necessária uma aprovação de todos os moradores, ou uma licitação pública com o objetivo de obter a autorização para a coleta dos resíduos, o que está, de imediato, além das fronteiras projeto.

Segundo o decreto Nº 5.940, de 25 de outubro de 2006, todas a entidades de administração pública federal direta e indireta deverão separar o lixo em resíduos orgânicos e materiais recicláveis.

A escolha da Universidade de Brasília campus Gama, se baseou no decreto nº 5.940 e na lei nº12.305, pois como a diretoria da faculdade é um stakeholder e também é uma geradora de resíduos, através de um acordo os resíduos orgânicos gerados dentro do campus podem ser utilizados como massa reativa do biodigestor. Devido ao decreto nº 5.940 deve haver uma separação, que aumentará a eficiência do biodigestor e reduzirá a quantidade de matéria não reativa, que será retirada no fim do processo.

1.3.1 Desenho Esquemático

Neste projeto foi idealizada a utilização de apenas um biodigestor do tipo indiano, e para a sua localização no campus foi considerada a norma ABTN NBR 13.591 que trata sobre a compostagem de resíduos sólidos domiciliares, a norma ABNT NBR 15526/2009 que aborda os regulamentos para as redes de distribuição interna para gases combustíveis em instalações residenciais e comerciais — projeto e execução e a norma ABNT NBR 13523/2008 que aborda, por sua vez, sobre instalações de uma central de gás liquefeito de petróleo.

Além das normas ABNT consideradas, é importante ressaltar que o projeto de construção do campus, ainda não concluído, também foi considerado a fim de não interferir na estrutura do projeto e trazer obstáculos à construção de um novo prédio ou de um estacionamento, por exemplo. A figura 1 identifica o posicionamento do biodigestor no campus da FGA.

Figura 1 – Foto aérea do campus FGA. Marcação laranja indica o posicionamento do biodigestor

Parte II Energia Fotovoltaica

2 Energia Fotovoltaica

2.1 Introdução

O efeito fotovoltaico foi observado em 1839 pelo físico francês Alexandre Edmond Becquerel. Quando incidindo, sobre uma superfície semicondutora, uma luz ele observou a diferença de potencial entre suas extremidades.

As primeiras células fotovoltaicas surgiram em 1956, com o grande desenvolvimento da microeletrônica, mas o alto custo já tornava a popularização de sua utilização inviável, eram empregadas comumente em sistemas espaciais para o fornecimento de energia elétrica. Essa utilização se dava pelo balanço de custo das placas em relação ao sistema espacial como um todo que tornava as placas não tão inviáveis, além de seu baixo peso e bom desempenho em ambiente espacial.

Com a crise do petróleo em 1973 foi impulsionada fortemente a pesquisa e desenvolvimento da tecnologia fotovoltaica para diversas aplicações, esse tipo de produção de energia elétrica passou a atrair uma maior atenção dos governos. Entretanto, um fator ainda preocupante era a baixa eficiência das células fotovoltaicas em relação ao seu custo de produção, nisso o mercado tem ainda um desenvolvimento muito lento. Em 1978 a produção das células chegava a 1 Mwp/ano, quinze anos depois já alcançava 60 Mwp/ano, já em em 1998 a produção prevista era em torno de 100 Mwp/ano (PRINCÍPIO DE FUNCIONAMENTO DA CÉLULA FOTOVOLTAICA, Cássio Araújo do Nascimento, página 10).

Atualmente a viabilidade de utilização das placas fotovoltaicas não está em necessariamente criar uma grande usina para abastecimento geral, mas em pequenas instalações em locais urbanos (casas, prédios, parques) que são capazes de suprir a demanda pontual e até mesmo fornecer energia elétrica gerada excedente, ou locais rurais que ainda dependem de fontes como carvão e biomassa para diminuir a dependência de fontes muito poluentes.

2.1.1 Efeito fotovoltaico

Células fotovoltaicas são fabricadas com material semicondutor, um material que possui características intermediárias entre condutor e isolante. Para essas células é utilizado, basicamente, o silício como material semicondutor.

O silício é um material bastante abundante na superfície terrestre, normalmente encontrado na areia e, para utilização na fabricação das células fotovoltaicas é extraído,

muitas vezes, de forma mais pura possível através de métodos adequados. O cristal de silício puro é um mal condutor pela ausência de elétrons livres em sua composição, para que estre passe a conduzir acrescenta-se quantidades de outros elementos ao cristal, este processo é denominado dopagem.

A dopagem do silício com fósforo gera um material com elétrons livre, portadores de cargas negativas excedentes, denominado silício tipo N. Já a dopagem do silício com o elemento boro gera um material com características inversas, este é portador de cargas positivas excedentes, silício tipo P.

As células fotovoltaicas são compostas por uma placa fina de silício tipo N acoplada à uma placa com maior espessura de silício tipo P, unidas formam uma região P-N, onde há um campo elétrico devido a diferença de potencial entre as placas, naturalmente os elétrons fluirão no sentido N para P até que o equilíbrio seja atingido. Quando a célula é exposta à luz, os fótons excitam os elétrons da região N, fazendo com que continuem a fluir para a região P, gerando, assim, uma corrente contínua. No anexo 1, têm mais detalhado sobre as células fotovoltaicas, os tipos de painéis, a eficiência e a duração.

2.1.2 Vantagens e Desvantagens

São muitas as vantagens da utilização de um sistema fotovoltaico, é uma geração não prejudicial ao meio ambiente durante sua produção de energia elétrica, não há nenhum tipo de poluição. As placas possuem vida útil muitas vezes superior a 25 anos com uma manutenção adequada e a utilização de uma fonte inesgotável, o Sol.

As principais vantagens são:

- Não consome combustível;
- Não produz poluição;
- É uma fonte silenciosa;
- A vida útil é superior a 25 anos;
- Resistente a condições climáticas (umidade, altas temperaturas, vento, chuvas);
- Manutenção simples (a limpeza dos painéis é a única manutenção realmente rotineira);
- Capacidade de geração até em dias não ensolarados (mesmo com eficiência baixa);
- Possibilidade de ajustes na potência instalada através da incorporação ou retirada de módulos;

A geração de energia elétrica através do efeito fotoelétrico, em comparação a outras fontes, apresenta uma série de desvantagens. A eficiência é baixa quando analisada a possibilidade de aproveitamento, pois há muitos fatores que reduzem a eficiência, como exemplo: reflexão e sombreamento na placa, excedência e insuficiência de energia do fóton nas radiações de onda curta e longa, respectivamente, entre outros. Ainda há a questão ambiental envolvendo não a produção da energia elétrica, mas a fabricação das células, o processo de purificação do silício é tão prejudicial ao meio ambiente quanto qualquer outro processo industrial.

As principais desvantagens são:

- As células fotovoltaicas necessitam de tecnologia sofisticada para sua produção;
- O custo para implementação de um sistema fotovoltaico é elevado;
- A eficiência das células não alcança índices muito altos;
- O rendimento depende de fatores sempre presentes, como nuvens e radiação solar;
- Não há produção de energia elétrica durante a noite para abastecimento. (ENER-GIA SOLAR FOTOVOLTAICA: FUNDAMENTOS E APLICAÇÕES, pg. 31 e 32, Renata Pereira Braga).

2.2 Funcionamento de um Sistema Fotovoltaico

Um sistema fotovoltaico é um conjunto de componentes que possibilitam a transformação de energia luminosa (cuja fonte é o sol) em energia elétrica. O sistema é dividido em três blocos principais:

- Bloco Gerador: É o responsável pela transformação de energia
- Bloco de condicionamento de potência: É responsável por adaptar a energia gerada para a utilização final.
- Bloco Armazenador: Responsável pelo o armazenamento da energia elétrica.

Além disso, os sistemas fotovoltaicos podem se apresentar em diferentes configurações, sendo elas:

- Sistemas Isolados: Desconectado da rede de energia
- Sistemas Híbridos: Diferentes tipos de geração de energia ligados a uma mesma rede.

• Sistemas conectados à rede: A energia gerada pelo sistema é distribuída diretamente na rede convencional.

A junção dos três blocos citados acima, colocados em uma configuração adequada ao local de instalação do complexo compõem o Sistema Fotovoltaico.

2.2.1 Bloco Gerador

O bloco gerador é composto por módulos fotovoltaicos, estruturas de suporte e cabeamento.

O funcionamento da energia solar fotovoltaica ocorre quando os painéis fotovoltaicos são expostos a partículas de luz solar, essas partículas são chamadas de fótons. Eles fazem a trajetória entre o Sol e a Terra por cerca de 9 minutos. Ao atingir as células fotovoltaicas, os elétrons que são transportados pelo semicondutor e circulam em torno dos átomos se desprendem deixando espaços vazios. Durante a exposição, através de corrente elétrica, esses se deslocam em direção constante a célula de silício, que está com ausência de elétrons. Este fluxo intenso de elétrons, gera a energia solar fotovoltaica. Os elétrons continuam a se livrar dos átomos, enquanto há incidência de luz solar.

Um módulo fotovoltaico é um conjunto de placas fotovoltaicas, ligadas em série ou em paralelo, que fornecem certa corrente e tensão final. O módulo fotovoltaico também é chamado de painel fotovoltaico.

A ligação de módulo pode ser feita de duas formas, em série ou em paralelo. O arranjo em série consiste em agrupar o maior número de células possível até alcançar a tensão de 12V, a tensão final será a soma da tensão de cada uma das células. Esse arranjo é o mais comum em sistemas fotovoltaicos.

Figura 2 – Esquema de associação de células fotovoltaicas em série

Já o arranjo em paralelo fornece a corrente contínua final como a soma das correntes de cada placa e a tensão como a tensão de uma única placa. Esse arranjo é pouco utilizado já que a tensão fica em torno de 0,7V e a corrente máxima em 3A.

As estruturas de suporte são estruturas que suportam os módulos solares, eles podem ser fixos e sem angulação, voltados constantemente para cima. Podem ser móveis com angulação que é mudada manualmente de acordo com as condições anuais. E podem

Figura 3 – Esquema de associação de células fotovoltaicas em paralelo

ser dispositivos tracker, estruturas automatizadas que mudam de angulação segundo a posição do sol durante os dias.

Já o cabeamento corresponde a todo o conjunto de cabos que são necessários para a interligação dos componentes do sistema fotovoltaico. Em geral, são utilizados cabos do tipo módulo ou fileira, que protegem o sistema contra curto-circuitos e falhas.

2.2.2 Bloco de condicionamento de potência

O bloco de condicionamento de potência é composto por um inversor e um controlador de carga.

Os inversores são conversores de corrente contínua em corrente alternada (CC/CA). A maioria dos aparelhos utiliza corrente alternada enquanto o módulo fotovoltaico produz corrente contínua, por isso a necessidade de se instalar um no sistema fotovoltaico. O inversor funciona "quebrando" a corrente contínua em pulsos, isso permite que ela se torne alternada. Eles podem ser divididos em seis categorias:

- 1. Onda Quadrada: são os mais baratos e econômicos, geram pulsos alternados, mas são pouco recomendados. Usados apenas para pequenas aplicações.
- 2. Inversores de onda senoidal modificada: Muito utilizado, recomendado para pequenas instalações. Possui uma onda entre a senoidal pura e a quadrada.
- 3. Inversores de onda senoidal pura: Tem sido cada vez mais utilizado por ter preço parecido com os de onda senoidal modificada, pode ser ligado a qualquer aparelho. E possui um tipo de onda senoidal quase pura.
- 4. Inversores para conexão à rede (Grid-Tie): Necessário se o sistema for interligado à rede. Além de produzir uma onda senoidal quase pura, alinha a frequência com a frequência da rede elétrica.
- 5. Microinversores para conexão à rede (Grid-Tie): Cada vez mais utilizado, por ser de mais fácil instalação, ligado a cada placa individualmente, além de ter uma maior durabilidade.

6. Inversor/Carregador: Além de agir como um inversor é capaz de agir carregando uma bateria ligada à uma fonte de CC, isso permite reduzir a quantidade de baterias necessárias no bloco de armazenamento.

Os controladores de carga são ligados ao bloco de armazenamento e controla a carga e a descarga das baterias, aumentando assim a vida útil das mesmas. Se a bateria descarrega rapidamente em longos períodos sem insolação o controlador impede que a bateria se descarregue completamente, já em períodos de grande insolação, o controlador impede a carga excessiva.

Os controladores de carga podem ser divididos em três grandes grupos principais:

- 1. Reguladores Série: Incorporam um interruptor entre o gerador e o acumulador, para interromper o fluxo e energia para a carga.
- Reguladores Shunt (derivação): O interruptor curta-circuita o gerador solar em fim de carga.
- 3. Reguladores de ponto de potência máxima (MPPT): Utilizam um circuito eletrônico que sempre tende a captar a potência máxima.

2.2.3 Bloco Armazenador

O bloco armazenador é composto por baterias que armazenam a energia produzida para ser utilizada em períodos de mau tempo ou durante a noite. Existem vários tipo de bateria, cada uma adequada a situações específicas, dentre elas temos:

- 1. Baterias de Chumbo-Ácido: São as mais utilizadas para sistemas fotovoltaicos devido à grande variedade de tamanhos, baixo custo e bom desempenho. As mais comuns são: Chumbo-Antimônio, Chumbo-Selênio e Chumbo-Cálcio.
- 2. Baterias de Chumbo-Ácido com eletrolito captativo: Também chamadas de baterias de chumbo-ácido com válvula reguladora. São de fácil transporte e podem ser instaladas em locais isolados. O ponto fraco é a excessiva sobrecarga e a perda do eletrólito, que é acelerado para clima quentes.
- 3. Baterias de Níquel-Cádmio: São utilizadas em sistemas fotovoltaicos isolados devido ao seu longo tempo de vida, pequena manuntenção, sobrevivencia a excessivas sobrecargas, excelente capacidade de retenção a baixas temperaturas e não necessidade de ter uma tensão de regulação de carga. As desvantagens são o grande custo e a necessidade de aplicação especifica.

2.2.4 Configurações de sistemas fotovoltaicos

Já em relação à configuração de um sistema fotovoltaico temos três tipos:

- 1. Sistema Isolado: Também chamado de off-grid, se caracteriza por não se conectar à rede elétrica. É construído com lugar e propósito específico abastecendo diretamente o aparelho a ser utilizado. Um exemplo de sistema isolado é a iluminação pública.
- 2. Sistema Híbrido: Consiste de duas ou mais fontes de energia renováveis utilizadas em conjunto para proporcionar uma maior eficiência no sistema, bem como um maior equilíbrio no fornecimento de energia. Um exemplo é a utilização de energia fotovoltaica e eólica em um mesmo sistema.
- 3. Sistema conectado à rede: Também chamado de On-Grid, o sistema é interligado à rede comum de distribuição de energia, assim não é necessário um sistema de armazenamento. Durante o período de pouca insolação ou durante à noite, a energia utilizada para abastecer o local passa a ser da rede comum. Já se a produção da energia solar excede à consumida, essa energia passa para a rede compartilhada e produz uma diminuição no consumo de energia.

Figura 4 – Esquema de energia híbrida (Fotovoltaiva e Eólica)

2.3 Incidência solar na FGA

Além das condições atmosféricas, a disponibilidade de radiação solar, ou energia total incidente sobre a superfície terrestre, depende da latitude local e da posição no tempo (hora do dia e do ano).

Segundo dados do ATLAS de Irradiação Solar no Brasil, de 1998 mostrado na figura 6, Brasília é uma região que recebe aproximadamente de 5700 a 5900 Wh por m^2 todos os dias, o que representa uma alta quantidade de energia solar recebida também na região onde se concentra a Faculdade UnB Gama.

Figura 5 – Representação esquemática do sistema On-Grid. Cores Fantasia.

Figura 6 – Fonte: (??)

Outro dado importante diagnosticado pelo ATLAS Solarimétrico do Brasil, Brasília recebe em média anualmente 6 horas de insolação por dia.

Para tornar máximo o aproveitamento da radiação solar, o sistema solar fotovoltaico pode ser instalado com uma angulatura específica para a localidade, que depende da latitude do local e do período do ano que se deseja obter mais energia. Como podemos ver na figura 7, o gráfico de irradiação solar da UNB campus Gama:

Neste gráfico estão contido valores de radiação solar que será absorvido (KWh/ m^2

Figura 7 – Gráfico de irradiação solar da UnB campus Gama

dia) ao longo dos meses a partir do SunData do CRESESB, no qual já pode ser verificado a melhor angulação a serem colocadas as placas conforme a coordenada do campus. Verificase a partir deste gráfico que a angulação de 20° é a melhor, pois possui um delta total (diferença da maior irradiação para a menor irradiação) e média anual de irradiação maior que as demais angulações. A aplicação que será feita está de forma detalhada no desenho.

2.4 Manutenção das placas

A manutenção das placas se dará de forma simples e manual, visto que a poeira do local de instalação das placas é considerada bastante acentuada e que, se essa poeira revestir os painéis fotovoltaicos, o rendimento na geração de energia será muito baixo ou quase nenhum. Será necessária a limpeza manual. Essa limpeza acontecerá de acordo com a quantidade de poeira existente nas placas e a diminuição de rendimento. Ter-se-á todo controle de rendimento e quando este diminuir a limpeza será feita. Inicialmente, os funcionários da limpeza poderão lavar as placas com água e sabão neutro. Posteriormente, e se houver iniciativa de alunos e professores da área de energia, alunos participantes de projeto poderão fazer a limpeza das placas, visto que, de acordo com alguns estudantes, não se tem muita prática nas aulas de fontes de energia, além da facilidade de se fazer tal limpeza. Essa iniciativa poderia ajudar alunos que se interessam na área de energia fotovoltaica a medir eficiência na prática e ajudar na manutenção das placas.

Figura 8 – Desenho esquemático da manutenção de placas fotovoltaicas

2.5 Tipos de painéis solares fotovoltaicos

O painel solar é o componente principal de um sistema de geração de energia solar, formado por um conjunto de células fotovoltaicas que geram energia através da luz solar. Quando as células são atingidas pelos raios solares, os elétrons se movimentam, gerando a corrente elétrica.

A escolha do tipo e da quantidade de painéis adequados depende da demanda de uso e do local de instalação. Dentre vários tipos existentes, foi escolhido três distintos, porém básicos, sendo eles: Monocristalino, Policristalino, silício amorfo (a-Si).

2.5.1 Painel Solar Monocristalino

É mais eficiente, produzido de células monocristalinas de silício. O silício deve ter elevada um alto grau de pureza para que torne o processo complexo para a produção de cristais únicos para cada célula. Tem uma eficiência média de 14% - 21%. Estão disponíveis nas cores: azul escuro ou quase preto (com anti reflexo), cinza ou azul acinzentada(sem anti reflexo). Possuem formato arredondado. E é mais caro que o policristalino Vida útil maior que 30 anos, e com garantia de fábrica de 25 anos. As vantagens do painel monocristalino é que possui a eficiência mais alta dentre as tecnologias comercialmente viáveis atualmente, ocupam menor espaço. As desvantagens se dá por conta dos custos serem maiores e por desperdiçar uma certa quantia de silício na hora da produção.

Figura 9 – Painel Solar Monocristalino

2.5.2 Painel Solar Policristalino

Menos eficiente que os monocristalinos, e são formadas por diversas células tornandoos diferente dos monocristalinos, dando uma aparência de vidro quebrado á célula. Tem eficiência média de 13% - 16,5%. Disponível na cor azul. Encontrado na forma quadrada. Vida útil de 30 anos e com garantia do fabricante de 25 anos. Vantagens se dá pelo fato da quantidade de resíduos de silício gerado ser menor que os monocristalinos, e por ter um custo menor. Desvantagens: Ser menos eficiente que os monocristalinos, e precisar de uma área maior para gerar a mesma quantidade de energia que os painéis monocristalinos.

2.5.3 Painel de silício amorfo (a-Si)

A produção de energia nessa tecnologia é baixa, as células solares de silício amorfo eram usadas para aplicações de pequenas escalas, tais como: calculadoras de bolso. Portanto, hoje já está sendo disponível para ser utilizada em larga escala. Utiliza de uma técnica chamada de empilhamento, na qual várias camadas de células solares de silício amorfo são combinadas, resultando numa taxa de 6% - 9% de de eficiência. A vantagem é que são necessário apenas 1% do silício utilizado em células solares de silício cristalino. Já a desvantagem é que a técnica do empilhamento tem custos elevados.

Figura 10 – Painel Solar Policristalino

Figura 11 – Painel Solar silício amorfo

Referências

Nenhuma citação no texto.

André de Paula Moniz OLIVER, Aurélio de Andrade Souza NETO, Danilo Gusmão QUADROS, and Renata Everett VALLADARES. Manual de treinamento em biodigestão. instituto winrock, universidade do estado da bahia, brasil. 2008. Citado na página 13.

D.C Capatan, A Capatan, N.R Rosset, and J.H Harzer. Análise da viabilidade financeira da produção de biogás através de dejetos de equinos. 2012. Citado na página 13.

D. F. McCROY and P. J HOBBS. Additivies to reduce ammonia and odor emissions from livestock wastes: a review.journal of environmental quality. madison. 30:345–355, 2001. Citado na página 13.

Sérgio Colle and Enio Bueno Pereira. Atlas de irradiação solar do brasil. LABSOLAR/INMET, UFSC, 1998. Citado 2 vezes nas páginas 2 e 26.