MINISTRY OF EDUCATION MANDALAY TECHNOLOGICAL UNIVERSITY

Department of Mechatronic Engineering 2018-2019 Academic Year

Fourth Year

Second Semester Examination

McE-42077 Control Engineering II

Date: 25.9.2019(WED) Time: 1:00 to 4:00 pm

1.(a) (a) The goal of vertical takeoff and landing (VTOL) aircraft is to achieve (10.M)operation from relatively small airports and yet operate as a normal aircraft in arks) level flight. A control system using adjustable jets can control the vehicle, as shown in Figure 1 (a). (a) Determine the range of gain for which the system is stable, (b) Determine the gain K for which the system is marginally stable and the roots of the characteristic equation for this value of K. Controller Aircraft dynamics Y(s) R(s) K(s+2) Actual s+10 s(s-1)Vertical Vertical path path Figure.1.(a) **Solution:** $G(s) = \frac{K(s+2)}{(s+10)} \times \frac{1}{s(s-1)}, H(s) = 1$ $=\frac{K(s+2)}{(s+10)(s-1)s}$ (a.) Characteristics Equation, 1 + H(s)G(s) = 02.5 $1 + \frac{K(s+2)}{(s+10)(s-1)s} = 0$ $\frac{(s+10)(s-1)s+K(s+2)}{(s+10)(s-1)s} = 0$ (s+10)(s-1)s + K(s+2) = 0

	S	$s^3 + 9s^2 - 10s + Ks$	s + 2K = 0		
	Using Ro	outh-hurwitz,		2.5	
	S^3	1	K-10	2.5	
	S^2	9	2K		
	S^1	$\frac{9K-90-2K}{9}$	0		
	S^0	2K	0		

For the system to be stable,

$$\frac{7K-90}{9} > 0$$

$$7K-90 > 0$$

$$K > \frac{90}{7}$$

(b.) When
$$K = \frac{90}{7}$$

The system is marginally stable,

$$S^2$$
 row $q(s) = 9 s^2 + 2K = 0$

$$9 s^{2} + 2(\frac{90}{7}) = 0$$

$$9 s^{2} = -\frac{180}{7}$$

$$s^{2} = -\frac{180}{7} \times \frac{1}{9} = \frac{-20}{7}$$

$$s = \pm j\sqrt{\frac{20}{7}}$$

The root of the characteristic equation is,

2.5

2.5

	$S_{1,2} = \pm j \sqrt{\frac{20}{7}}$	
1.(b) A unity feedback system has a loop transfer function $L(s) = \frac{K}{(s+1)(s+3)(s+5)}$ where $K = 30$. Find the roots of the closed-loop system's character equation.		(10.M arks)
	Solution: $L(s) = \frac{K}{(s+1)(s+3)(s+5)}$ $T(s) = \frac{L(s)}{1+L(s)H(s)}$ $= \frac{K}{(s+1)(s+3)(s+5)} \times \frac{(s+1)(s+3)(s+5)}{(s+1)(s+3)(s+5)+K}$ $= \frac{K}{(s+1)(s+3)(s+5)+K}$	
	When K = 30; $T(s) = \frac{30}{(s+1)(s+3)(s+5)+30}$ $= \frac{30}{(s^2+4s+3)(s+5)+30}$ $= \frac{30}{(s^2+4s+3)(s+5)+30}$	2
	$= \frac{30}{(s^3 + 9s^2 + 23s + 15) + 30}$ $= \frac{30}{(s^3 + 9s^2 + 23s + 45)}$	2
	$s^3 + 9s^2 + 23s + 45 = 0$ $X_1 = -6.53$ $X_2 = -1.23 + j2.32$ $X_3 = -1.23 - j \cdot 22.32$ The roots of the closed loop system; $s_1 = -6.53$	2

	$s_2 = -1.23 + j2.32$	2
	$s_3 = -1.23 - j 2.32 \# \#$	
2.	A unity feedback system has the loop transfer function	
	$L(s) = KG(s) = \frac{K(s+4)}{s(s+2)}$	(20.M
	(a) Find the breakaway and entry points on the real axis.	arks)
	(b) Find the gain and the roots when the real part of the complex roots is	
	located at - 2.	
	(c) Sketch the locus.	
	Solution:	
	(a) Breakaway and entry points on the real axis.	1
	$L(s) = KG(s) = \frac{K(s+4)}{s(s+2)}$	1
	$L(s) = KG(s) = \frac{1}{s(s+2)}$	
	1+KG(s)=0	
	K(s+4)	1
	$1 + \frac{K(s+4)}{s(s+2)} = 0$	
	$K = \left -\frac{s(s+2)}{(s+4)} \right $	
	$\frac{dK}{ds} = 0$	2
	$\frac{d}{ds}\frac{s(s+2)}{(s+4)} = 0$	
	$\frac{(s+4)(2s+2)-s(s+2)}{(s+4)2} = 0$	1
	$2s^2 + 2s + 8s + 8 - s^2 - 2s = 0$	
	$s^2 + 8s + 8 = 0$	
	s = -1.17 and $s = -6.83$	
	Breakaway point, s= -1.17	
	Entry point, $s = -6.83$	1
		1
	(b.)Let the two roots be	
	S = -2 + aj	
	S = -2 + aj $S = -2 - aj$	

(s+2-aj)(s+2+aj) = 0	
(12)2 (12)	1
$(s+2)^2 - (aj)^2 = 0$	
$s^2 + 4s + 4 + a^2 = 0$	
$s^{2} + 4s + (4 + a^{2}) = 0$	1
Compare with $s^2 + (2 + K) s + 4K = 0$	•
2 + K = 4	
K = 2,	1
$4K = 4 + a^2$	
$4(2) = 4 + a^2$	
$a^2 = \pm 2$	
So, the roots are $(-2-2j)$ and $(-2+2j)$.	
The gain, $K = 2$.	2
(c.) The characteristic equation ,	
K(s+4)	
$1 + \frac{K(s+4)}{s(s+2)} = 0$	
When $K=0$, poles at $s=0$ and $s=-2$	
\therefore np = 2	
When $K=\infty$, zeros at $s=-4$	
\therefore nz = 1	
μω	1
→ × × → 6	
-4 -2 0	
	1
Number of separate loci SL=n=2, M=1	
The root loci are symmetric with the horizontal axis.	
Segment of root loci at $s=0$ and $s=-2$	
5	
Center of Asymptotes,	
$\mathbf{G}_{\mathbf{A}} = \frac{\sum (-p) - \sum (-z)}{n_p - n_z}$	
$n_p - n_z$	

$=\frac{0-2-(-4)}{2-1} = 2$	1
Angle of Asymptotes,	
$ \Phi_{A} = \frac{2q+1}{n_p - n_z} \times 180 $ $q = n - M - 1 = 2 - 1 - 1 = 0$	1
$\Phi_{\rm A} = \frac{2(0)+1}{2-1} \times 180 = 180$	1
Imaginary crossing point, s(s+2) + k(s+4) = 0	
$s^2 + 2s + Ks + 4K = 0$	
$s^2 + (2 + K)s + 4K = 0$	1
Routh array is $s^2 1 4K$	1
$s^1 = 2+K = 0$	
$s^0 = 4K = 0$	
The system to be stable, 2 + K = 0, $4K = 0K = -2$ is impossible	1
K = -2 is impossible. K = 0	
AsymptotesRoot Locus	
$\uparrow^{1\omega}$	
-6.83 -4 -2 -1.17 0	
	2

3.(a) (a) A specific closed-loop control system is to be designed for an underdamped response to a step input. The specifications for the system are as follows:

(15 mark s)

20% < percent overshoot < 30%, Settling time < 0.7 s.

- (a) Identify the desired area for the dominant roots of the system,
- (b) Determine the smallest value of a third root; if the complex conjugate roots are to represent the dominant response.

Solution

(a) Identify the desired area for the dominant roots of the system,

$$100* e(-\pi \zeta / \sqrt{1-\zeta^2}) < 30\%$$

$$e(-\pi\zeta/\sqrt{1-\zeta^2}) < 0.3$$

$$\frac{-\pi\zeta}{\sqrt{1-\zeta^2}} < \ln 0.3$$

$$\frac{-\pi\zeta}{\sqrt{1-\zeta^2}} \quad < -1.204$$

$$\frac{\pi\zeta}{\sqrt{1-\zeta^2}} \quad > \quad 1.204$$

Squaring on both sides,

$$\frac{\pi^2 \zeta^2}{1 - \zeta^2} \quad > \quad 1.45$$

$$\frac{\pi^2 \zeta^2}{1.45} > 1 - \zeta^2$$

$$_{6.807}\,\zeta^{\,2}~>~1$$
- $\zeta^{\,2}$

$$7.807 \, \zeta^2 > 1$$

$$\zeta^2 > 0.128$$

$$\zeta > 0.358$$

$$\zeta = \cos \Theta$$

$$\Theta = 69^{\circ}$$

$$\cos \Theta > 0.46$$

$$\Theta > 69^{\circ}$$

$$100^{*} e(-\pi \zeta / \sqrt{1 - \zeta^{2}}) > 20\%$$

$$e(-\pi \zeta / \sqrt{1 - \zeta^{2}}) > 0.2$$

$$\frac{-\pi \zeta}{\sqrt{1 - \zeta^{2}}} > \ln 0.2$$

$$\frac{-\pi \zeta}{\sqrt{1 - \zeta^{2}}} > -1.609$$

$$\frac{\pi \zeta}{\sqrt{1 - \zeta^{2}}} < 1.609$$

Squaring on both sides,

$$\frac{\pi^2 \zeta^2}{1 - \zeta^2} < 2.589$$

$$\frac{\pi^2 \zeta^2}{1.45} < 1 - \zeta^2$$

$$3.812 \zeta^{2} < 1 - \zeta^{2}$$
 $4.812 \zeta^{2} < 1$

$$\zeta^{2} < 0.208$$

$$\zeta < 0.456$$

$$\zeta = \cos \theta$$
$$\Theta = 63^{\circ}$$
$$\cos \Theta < 0.456$$
$$\Theta < 63^{\circ}$$

$$T_s$$
 < 0.7 sec

$$\frac{4}{\zeta\omega} < 0.7$$
$$\zeta\omega > 5.71$$

(b.) The third root should be at least 10 times farther in the left half-plane,so

$$|r_3| \ge 10 |\zeta \omega|$$

$$|r_3| \ge 10 \times 5.71$$

$$r_3 \geq 57.1$$

$$r_3 = -57.1$$
 (for stable)

••••••

A unity feedback control system shown in Figure.3.(b) has the process below, 3.(b)design a PID controller by using Ziegler-Nichols tuning method.

(15.M)arks)

Figure.3.(b) A Unity Feedback Control System

Solution

Figure-1: A unity feedback control system

The characteristic equation of the system is $1 + K_U \frac{5}{s(s+5)(s+7)} = 0$

$$s^3 + 12s^2 + 35s + 5K_U = 0$$

Routh array

$$\begin{vmatrix}
s^{3} & 1 & 35 \\
s^{2} & 12 & 5K_{U} \\
s^{1} & \frac{12 \times 35 - 5K_{U}}{12} & 0 \\
s^{0} & 5K_{U}
\end{vmatrix}$$

$$\frac{12 \times 35 - 5K_U}{12} \ge 0 \qquad , \qquad 5K_U \ge 0$$
$$\therefore K_U \ge 0$$

$$K_U \le 84$$

 $\therefore K_U = 84$

Auxiliary equation is $12s^2 + 5K_U = 0$

$$12s^2 = 420$$

$$s = \pm j\sqrt{35} = \pm j\omega$$

$$\therefore \omega = \sqrt{35}$$

$$\omega T_U = 2\pi$$

$$T_U = \frac{2\pi}{\sqrt{35}} = 1.06$$
 seconds

The gains of PID Controller by Ziegler-Nichols method are

5

2

3

$K_P = 0.6K_U = 0.6 \times 84 = 50.4$	5
$K_I = \frac{1.2K_U}{T_U} = \frac{1.2 \times 84}{1.06} = 95.094$	
U	
$K_D = \frac{1.2K_UT_U}{8} = \frac{1.2 \times 84 \times 1.06}{8} = 13.356$	
Ans: the gains of PID Controller, $K_P = 50.4, K_I = 95.094, K_D = 13.356$	
Design the lower order transfer function of the given system. Determine the percent overshoot and the peak time of the lower order transfer function.	(20.M
The overall transfer function of the system is	arks)
$G_{H(s)} = \frac{7}{s^3 + 6s^2 + 11s + 7}$	
Solution:	
$G_H(s) = \frac{7}{s^3 + 6s^2 + 11s + 7}$	
3 1 03 1 113 1 /	
$G_H(s) = \frac{7}{1 + \frac{11}{7}s + \frac{6}{7}s^2 + \frac{1}{7}s^3}$	
Using second-order model,	
$G_L(s) = \frac{1}{1 + d_1 s + d_2 s^2}$	
$M(s) = 1 + d_1 s + d_2 s^2 = 1 + 11/7s + 6/7 s^2 + 1/7 s^3$	
111/3 1/3 1/3	
$M^{(0)}(s) = 1 + d_1 s + d_2 s^2 = M^{(0)}(0) = 1$	
$M^{(1)}(s) = d_1 + 2 d_2 s = M^{(1)}(0) = d1$	
$M^{(2)}(s) = 2 d_2 = M^{(2)}(0) = 2 d_2$	
$M^{(3)}(s) = 0$ $= M^{(3)}(0) = 0$	
(0)	
$\Delta^{(0)}(s) = 1 + 11/7 s + 6/7 s^2 + 1/7 s^3$, $\Delta^{(0)}(s) = 1$	
$\Lambda^{(1)}(s) = 11/7 + 12/7 s + 3/7 s^2$ $\Lambda^{(1)}(s) = 11/7$	

$$\Delta^{(0)}(s) = 1 + 11/7 s + 6/7 s^{2} + 1/7 s^{3} , \quad \Delta^{(0)}(s) = 1$$

$$\Delta^{(1)}(s) = 11/7 + 12/7 s + 3/7 s^{2} , \quad \Delta^{(1)}(s) = 11/7$$

$$\Delta^{(2)}(s) = 12/7 + 6/7 s , \quad \Delta^{(1)}(s) = 12/7$$

$$\Delta^{(2)}(s) = 6/7 , \quad \Delta^{(1)}(s) = 6/7$$

4.

$$M_{2q} = \sum_{k=0}^{2q} \frac{(-1)^{k+q} M^k(0) M^{(2q-k)}(0)}{k! (2q-k)!}$$

for
$$q = 1$$
,

$$M2 = \frac{M^{(0)}(0)M^{(2)}(0)}{2} + \frac{M^{(1)}(0)M^{(1)}(0)}{1} - \frac{M^{(2)}(0)M^{(0)}(0)}{2}$$

$$= -\frac{2d_2}{2} + \frac{d_1d_2}{1} - \frac{2d_2.1}{2}$$

$$= -2d_2 + d_1^2$$

for
$$q = 2$$
,

$$M2 = \frac{M^{(2)}(0)M^{(2)}(0)}{4}$$

$$M_2 = d_2^2$$

$$\Delta_{2q} = \sum_{k=0}^{2q} \frac{(-1)^{k+q} \Delta^k(0) \Delta^{(2q-k)}(0)}{k! (2q-k)!}$$

for
$$q = 1$$
,

$$\begin{split} \Delta_2 &= (-1) \frac{\Delta^{(0)}(0) \Delta^{(2)}(0)}{2} + (-1)^2 \frac{\Delta^{(1)}(0) \Delta^{(1)}(0)}{1} - (-1)^3 & \frac{\Delta^{(2)}(0) \Delta^{(0)}(0)}{2} \\ &= \frac{-12}{7} + \frac{121}{49} = \frac{37}{49} \end{split}$$

for
$$q = 2$$
,

$$\Delta_4 = (-1)^3 \frac{\Delta^{(1)}(0)\Delta^{(3)}(0)}{3x2} + (-1)^4 \frac{\Delta^{(2)}(0)\Delta^{(2)}(0)}{2 x 2} - (-1)^5 \frac{\Delta^{(3)}(0)\Delta^{(1)}(0)}{3 x 2}$$
$$= \frac{-11}{49} - \frac{11}{49} + \frac{144}{196} = \frac{2}{7}$$

$$M_2 = \Delta_2$$
 (if $q = 1$)

$$2d_2 + d_1^2 = \frac{37}{49}$$

$$M_4 = \Delta_4 \quad (\text{if } q = 2)$$

$$d_2^2 = \frac{2}{7}$$

$$d_2 = 0.5345$$

$$d_1 = 1.35$$

Second-order transfer function is,

$$G_L(s) = 1/(1 + 1.35 s + 0.5345 s^2)$$

$$G_L(s) = 1.35/(s^2 + 0.5345 s + 1.35)$$

Compare with the general second order system, $s^2 + 2\zeta\omega_n s + \omega_n^2$

$$\omega_n^2 = 1.87$$

$$\omega_n = 1.367$$

$$2\zeta\;\omega_n\;=\;2.526$$

$$\zeta = 0.924$$

$$P.O = 100e^{\frac{-\xi\pi}{\sqrt{\varsigma^2} - 1}} = 0.0504\%$$

The peak time,
$$t_p = \frac{\pi}{\omega_n \sqrt{\zeta^2 - 1}} = 6.01 \text{ sec}$$

5.

When the system shown in Figure.5(a).i. is subjected to a unit-step input, the system output responds as shown in Figure.5. Determine the values of K and T from the response curve.

(10.Marks)

Solution

The maximum overshoot of 25.4% corresponds to $\zeta = 0.4$.

From the response curve, $t_p = 3$

$$t_{p} = \frac{\pi}{\omega_{d}} = \frac{\pi}{\omega_{n}\sqrt{1-\zeta^{2}}}$$

$$\frac{\pi}{\omega_{n}\sqrt{1-\zeta^{2}}} = 3$$

$$\omega_n = 1.14$$

From the block diagram,

$$\frac{C(s)}{R(s)} = \frac{K}{Ts^2 + s + K}$$

$$=\frac{K/T}{s^2+1/Ts+K/T}$$

$$\omega_n = \sqrt{\frac{\kappa}{T}} , 2\zeta \omega_n = \frac{1}{T}$$

$$T = \frac{1}{2\zeta \omega_n} = \frac{1}{2 \times 0.4 \times 1.14} = 1.09$$

$$K = \omega_n^2 \times T = (1.14)^2 \times 1.09 = 1.42 \# \# \#$$

------End of the Questions-----