### 2-1-1 ssh Secure SHell

Using Public Key Cryptography

Keying, Key Exchange, and Session Setup

Communicate
Safely with
Remote Systems

#### What is "Safely"

- Authentication I am Assured of Which Host I am Talking With
- Authentication The Host Knows
   Who I Am

- Privacy The Traffic is Encrypted
- Integrity The Traffic is Unmodified

#### Traditional



### Encrypted



#### Secure SHell

- Provides authenticated and encrypted shell access to a remote host
- But it is much more
- It is used by other protocols, sftp, scp, rsync, ...
- You can use it to build custom tunnels

Think of SSH as a Bit Like PGP where the Other End is a Computer, Not a Human

But PGP is Object Security SSH is Channel/Transport Security

# Proof of Possession

### If I Have a Key Pair





How Do I Convince You That I Have Both Private and Public Keys Over The Public Net?



#### You Verify Signature Using The Public Key

If It Verifies, Then You Know That I Must Have The Private Key

And You Know You Have the Corresponding Public Key

## ssh - Keying Setup



ssh-keygen -t rsa





#### 2-Way Authentication



### Checking Host's Keys

```
$ ssh -o VisualHostKey=yes psg.com
Host key fingerprint is
d2:2b:f1:17:75:0d:c9:86:74:71:e2:00:62:0f:22:02
+--[ RSA 1024]----+
E... + .000=0.
    . . 0 + .++=
           . . . 0 .
      os.
```

And you check it against what you got out of band

# ssh-keygen RSA Key

```
/usr/home/foo> ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/usr/home/foo/.ssh/id rsa):
Created directory '/usr/home/foo/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /usr/home/foo/.ssh/id rsa.
Your public key has been saved in /usr/home/foo/.ssh/id rsa.pub.
The key fingerprint is:
27:99:35:e4:ab:9b:d8:50:6a:8b:27:08:2f:44:d4:20 foo@psg.com
The key's randomart image is:
+--[ RSA 2048]---+
E.O
  0.0.=0
     .00 +
```

## Eliptical Curve Key

```
/usr/home/foo> ssh-keygen -t ed25519
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/randy/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/randy/.ssh/id ed25519.
Your public key has been saved in /home/randy/.ssh/id ed25519.pub.
The key fingerprint is:
SHA256:OdV6B3SOwlndmvJXoatyS0xOFP+aWT1R3JFHAcT1Q2I randy@ran.psg.com
The key's randomart image is:
+--[ED25519 256]--+
         ...+=E+OB
        • • o*=+oB
        . +0.00=+
        .0.0.= =
        S + +.+o
          = .* 0
          +.+ .
          ..0
          0..
+----[SHA256]----+
```

### ssh-keygen - sshv1 key

```
/usr/home/foo> ssh-keygen -t rsa1
Generating public/private rsal key pair.
Enter file in which to save the key (/usr/home/foo/.ssh/identity):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /usr/home/foo/.ssh/identity.
Your public key has been saved in /usr/home/foo/.ssh/identity.pub.
The key fingerprint is:
le:c2:df:cd:54:60:63:24:58:71:1f:ac:36:67:c8:b6 fo@ran.psg.com
The key's randomart image is:
+--[RSA1 2048]---+
        o+oB..
        . = +..
           . 00
                         ssh v1 is ONLY for
       B.O
      o S o =
                           2511s and other
       + o +E
        0 • 0
                                 antiques
```

#### Use Keys Not Passwords

- In /etc/ssh/sshd\_config PermitRootLogin without-password PasswordAuthentication no UsePAM no
- Never Store Private Key on a Multi-User Host
- Store Private Key ONLY on Your Laptop and Protect Your Laptop (Encrypt Disk!)
- It is OK to Use SSH\_AGENT to Remember your Key ONLY if your Laptop Locks Very Quickly

The Only Compromise I Have Had to My Infrastructure was a Researcher who Stored Their Private Key on a Shared University Host

#### Private Key Protection

 FreeBSD Repository Compromise Six Years Ago

"The compromise is believed to have occurred due to the leak of an SSH key from a developer who legitimately had access to the machines in question, and was not due to any vulnerability or code exploit within FreeBSD."

#### General Purpose Tunnel

- I am in my hotel room and want to send mail from my laptop
- I do not want unencrypted mail going over the net
- So I want the SMTP traffic to be encrypted to my SMTP server
- I own the SMTP server

#### General Purpose Tunnel



```
$ ssh -N ssh.psg.com -p 443 -L 2525:127.0.0.1:25
```

Target Host Tunnel Port

Port on MacBook

Tunnel EndPoint

SSH is Built In UNIX Linux MacOS X

#### Get Software







← → C Secure https://psg.com/aprisec-sw/

#### Index of /aprisec-sw

- Parent Directory
- gpg4win-2.3.3.exe
- openvpn-install-2.3.14-I002-x86\_64.exe
- openvpn-install-2.3.14-I602-i686.exe
- openvpn-install-2.3.14-I602-x86 64.exe
- pageant.exe
- pfs-udp-1194-OpenVPN-Viscosity.visc.zip
- pfs-udp-1194-install-vista+.exe
- pfs-udp-1194-install-xp32.exe
- pfs-udp-1194-install-xp64.exe
- pscp.exe
- putty.exe
- puttygen.exe



### Generate Key Pair



#### Save Public Key





#### Save Private Key

| ile Key Conversio                                                             | ns Help                                             |                                                                                                       |
|-------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Key                                                                           |                                                     |                                                                                                       |
|                                                                               | into OpenSSH authorized key                         | ys file:                                                                                              |
| kDkyBWUsyAdJeuq2<br>+O2kljOD2eqYUoNi1                                         | qCgpRU7n7Sc1Bs0OYlhD2c<br>/cuCn0JovYgTBlqthaytAPTol | Thp 1/MWNPJIn ShqLYSMRug 10aK<br>cT3GoT<br>lH9m58hJhwDhralvrjbWmjfhxDsW0<br>qPFwTMbapcTHekKMzOBKpMDz9 |
| Key fingerprint: ssh-rsa 2048 31:34:90:47:43:d8:11:ae:a3:c9:48:0a:b5:79:34:c5 |                                                     | 3:d8:11:ae:a3:c9:48:0a:b5:79:34:c5                                                                    |
| Key comment:                                                                  | Key comment: rsa-key-20170219                       |                                                                                                       |
| Key passphrase:                                                               | ••••                                                |                                                                                                       |
| Confirm passphrase:                                                           | ••••                                                |                                                                                                       |
| Actions                                                                       |                                                     |                                                                                                       |
| Generate a public/priv                                                        | rate key pair                                       | Generate                                                                                              |
| Load an existing private key file Load                                        |                                                     | Load                                                                                                  |
| Save the generated k                                                          | ey Sa                                               | sve public key Save private key                                                                       |
| Parameters                                                                    |                                                     | <u> </u>                                                                                              |
| Type of key to genera<br>SSH-1 (RSA)                                          | te:<br>SSH-2 RSA                                    | SSH-2 DSA                                                                                             |
| Number of bits in a ge                                                        | nerated key:                                        | 2048                                                                                                  |



Copy Public Key



# Putting the Key on the Target Host

Now, you need to paste the copied public key in the file ~/.ssh/authorized\_keys on your server.

Log in to your destination server using putty with username apricot / password \_ask\_instructor\_

If your SSH folder does not yet exist, create it manually:

- \$ mkdir ~/.ssh
- \$ chmod 0700 ~/.ssh
- \$ touch ~/.ssh/authorized\_keys
- \$ chmod 0644 ~/.ssh/authorized\_keys

# Putting the Key on the Target Host

Paste the SSH public key into your ~/.ssh/authorized\_keys file:

\$ vi ~/.ssh/authorized\_keys

Tap the i key on your keyboard & right-click your mouse to paste.

To save, tap the following keys on your keyboard (in this order): Esc, :wq Enter.

## Load Key in Putty



#### ssh to Host



### Accept Host's Key



# Passphrase for Key



#### You Are In!



# Disable Password based authentication

\$ sudo vi /etc/ssh/sshd\_config

In this file, set the following settings to the following values. If these settings are already in the file, set them to "no" rather than add new lines.

ChallengeResponseAuthentication no PasswordAuthentication no

Once this is done, restart the SSH daemon to apply the settings.

\$ sudo /etc/init.d/sshd restart

#### ssh - Shell Session

\$ ssh class@ssh.derp.nz

