

SOSELETO: A Unified Approach to Transfer Learning and Training with Noisy Labels

Or Litany, Daniel Freedman

orlitany@gmail.com, danielfreedman@google.com

Not all train samples are created equal

Key observation: Some source examples are more informative than others for the target classification problem

Problem: We do not know *a priori* which source examples will be important

SOSELETO: We let the target decide!

SOurce SElection for Target Optimization

Source (many) and Target (few) share a representation

Interior level:

Source samples *directly* modify the representation

Optimize: $\theta^*(\alpha), \phi^{s*}(\alpha) = \min_{\theta, \phi^s} L_s(\theta, \phi^s, \alpha)$; $L_s(\theta, \phi^s, \alpha) = \frac{1}{n^s} \sum_{j=1}^{n^s} \alpha_j \ell(y_j^s, F(x_j^s; \theta, \phi^s))$

Exterior level:

Target samples modify representation via source weights

Optimize: $\min_{\alpha,\phi^t} L_t(\theta^*(\alpha),\phi^t)$; $L_t(\theta,\phi^t) = \frac{1}{n^t} \sum_{i=1}^{n^t} \ell(y_i^t, F(x_i^t; \theta, \phi^t))$

Noisy labels: synthetic experiment

Inputs:

Source: 500 points with 20% noisy labels Target: 50 points with clean labels

Result:

correctly labeled inputs are assigned large weights noisy inputs are assigned small weights

Noisy labels: CIFAR-10

Input: 50K samples, of which 30-50% are noisy.

Noise Level	CIFAR-10 Quick	Sukhbaatar et al. (2014) 10K clean examples	Xiao et al. (2015) 10K clean examples	Ours 5K clean examples
30%	65.57	69.73	69.81	72.41
$40\% \\ 50\%$	$62.38 \\ 57.36$	66.66 63.39	$66.76 \\ 63.00$	$69.98 \\ 66.33$

Data filtering:

Transfer: SVHN to MNIST

No class overlap: SVHN 0-4 to MNIST 5-9

Uses Unlabelled Data?	Method	$n^t = 20$	$n^t = 25$
No	Target only	80.1	84.0
No	Fine-tuning	80.2	83.0
No	SOSELETO	83.2	87.9
Yes	Vinyals et al. (2016)	56.6	51.3
Yes	Fine-tuned variant of Vinyals et al. (2016)	79.3	82.7
Yes	Luo et al. (2017)	80.4	83.1
Yes	Label-efficient version of Luo et al. (2017)	94.2	95.0

Leveraging unlabeled MNIST: +4%

Partial overlap (SVHN 0-9) boosts performance to 90.3% Sample weight corresponds to appearance (and not class)

