

 R^1 represents $C_{1\cdot 12}$ alkyl, $\cdot (CH_2)_a \cdot aryl$, or $(CH_2)_a \cdot Het^1$ (all of which are optionally substituted by one or more substituents selected from $\cdot OH$, halo, cyano, nitro, $C_{1\cdot 4}$ alkyl and/or $C_{1\cdot 4}$ alkoxy);

a represents 0, 1, 2, 3, or 4;

Het¹ represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

X represents O or S;

 R^{5a} and R^{5b} independently represent H or $C_{1\cdot 3}$ alkyl;

R² and R³ independently represent H, C_{1.4} alkyl (optionally substituted with one or more nitro or cyano groups), OR^7 , $N(R^{7a})R^{7b}$, $OC(O)R^8$ or together form $-O\cdot(CH_2)_2-O\cdot$, $(CH_2)_3$ -, $-(CH_2)_4$ - or $-(CH_2)_5$ -;

 R^7 and R^8 independently represent H, $C_{1.6}$ alkyl or $-(CH_2)_b$ -aryl (which latter two groups are optionally substituted by one or more substituents selected from -OH, halo, cyano, nitro $C_{1.4}$ alkyl and/or $C_{1.4}$ alkoxy);

R^{7a} and R^{7b} independently represent H or C_{1.6} alkyl;

b represents 0,-1, 2, 3 or 4;

R4 represents H or C_{1.6} alkyl;

D represents H, -OH, or $(CH_2)_cN(R^{10})(R^{11})$;

c represents 0, 1, 2, 3 or 4;

 $R^{10} \text{ represents H, C$_{1.6}$ alkyl, -(CH$_2)$_d-aryl, -C(NH)NH$_2, -S(O)$_2R$^{13}, -[C(O)]$_eN(R$^{14})(R$^{15}), -C(O)R$^{16} or -C(O)OR$^{17}, }$

e represents 1 or 2;

 R^{11} represents H, $C_{1.6}$ alkyl, $-C(O)R^{18}$ or $-(CH_2)_f$ -aryl (which latter group is optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, $C_{1.6}$ alkyl and/or $C_{1.6}$ alkoxy);

 R^{14} , R^{15} , R^{16} , R^{17} and R^{18} independently represent H, $C_{1.6}$ alkyl, Het² or $\cdot (CH_2)_g$ -aryl (which latter three groups are optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, $C_{1.6}$ alkyl and/or $C_{1.6}$ alkoxy);

Sih

B/2

 R^{13} represents $C_{1.6}$ alkyl, aryl or $(CH_2)_h$ aryl (all of which are all optionally substituted by one or more substituents chosen from halo, nitro, $C_{1.6}$ alkyl and/or $C_{1.6}$ alkoxy).

d, f, g and h independently represent 0, 1, 2, 3 or 4;

Het² represents a five to ten-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =0 substituents;

 R^6 represents one or more optional substituents selected from -OH, cyano, halo, amino, nitro, $C_{1.6}$ alkyl (optionally terminated by -N(H)C(O)OR^{18a}),

 $C_{1.6}$ alkoxy, $\cdot C(O)N(H)R^{19}$, $\cdot NH^{\bullet}C(O)N(H)R^{20}$, $\cdot N(H)S(O)_2R^{21}$ and $\cdot OS(O)_2R^{22}$;

R¹⁹ and R²⁰ independently represent H or C_{1.6} alkyl;

 R^{18a} , R^{21} and R^{22} independently represent C_{1-6} alkyl;

A represents a single bond, C_1 alkylene, $-N(R^{23})(CH_2)_{j^-}$, $-O(CH_2)_{j^-}$ or $-(CH_2)_JC(H)(OR^{23})(CH_2)_{k^-}$ (in which latter three groups, the $-(CH_2)_{j^-}$ group is attached to the bispidine nitrogen atom, and which latter four groups are all optionally substituted by one or more OH groups);

B represents a single bond, $C_{1.4}$ alkylene, $(CH_2)_mN(R^{24})$, $(CH_2)_mS(O)_n$, $-(CH_2)_mO$. (in which three latter groups, the \sim (CH₂)_m- group is attached to the carbon atom bearing D and R⁴), $-C(O)N(R^{24})$ - (in which latter group, the -C(O)- group is attached to the carbon atom bearing D and R⁴), $N(R^{24})C(O)O(CH_2)_m$ - or $-N(R^{24})(CH_2)_m$ - (in which latter two groups, the $N(R^{24})$ group is attached to the carbon atom bearing D and R⁴);

j, k and m independently represent 0, 1, 2, 3 or 4;

n represents 0, 1 or 2;

 R^{3} represents H, $C_{1.6}$ alkyl or

R²⁴ represents H or C_{1.6} alkyl;

 R^{25} represents H, $C_{1.6}$ alkyl, Het^3 or $\cdot (CH_2)_p$ -aryl (which latter two groups are optionally substituted by one or more substituents selected from -OH, cyano, halo, amino, nitro, $C_{1.6}$ alkyl and/or $C_{1.6}$ alkoxy);

Het³ represents a five to ten-membered heterocyclic ring containing one or more heteroatoms-selected-from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =0 substituents;

p represents 0, 1, 2, 3 &r 4;

or a pharmaceutically acceptable salt, solvate or protected derivative thereof;

provided that:

- (a) when D represents either H δ r -OH, and R^{5a} and R^{5b} both represent H, then at least one of R² and R³ represents OR δ OC(O)R⁸ or C_{1.4} alkyl, which alkyl group is substituted with one or more nitro or cyano groups; and
- (b) when D represents -OH or -(CH₂)_cN(R¹⁰)R¹¹ in which c represents 0, then:-
- (i) A does not represent $-N(R^{23})(CH_2)_j$, $-O(CH_2)_j$ or $-CH_2)_JC(H)(OR^{23})(CH_2)_k$ (in which k is 0); and/or
- (ii) m does not represent 0 when B represents $\cdot (CH_2)_m N(R^{24})_{-1}$. $\cdot (CH_2)_m S(O)_n \cdot \text{ or } \cdot (CH_2)_m O_{-1}$.

51/9

5.b

23 (Amended). A compound of formula IV as defined in Claim 21, or a protected derivative thereof, provided that when R^{5a} and R^{5b} both represent H, then at least one of R^2 and R^3 represents OR^7 , $OC(O)R^8$ or $C_{1.4}$ alkyl, which alkyl group is substituted with one or more nitro or cyano groups.

- **H**

26 (Amended). A process for the preparation of a compound of formula VIII, as defined in Claim 24, or a compound of formula XVII, as defined in Claim 25, which comprises reaction of a compound of formula XXIX,

Sub

XXIX

wherein R^Z represents H or $-C(O)XR^1$ and R^1 , R^{5a} , R^{5b} and X are as defined in Claim 1 with [(as appropriate) either:

(1)] a compound of formula XXX,

or a protected derivative thereof, wherein R⁴, R⁶, A, B and D are as defined in Claim 1, in all cases in the presence of a formaldehyde.

Please add the following new claim.

27-(New). A method as claimed in Claim 20, wherein the arrhythmia is

an atrial or a ventricular arrhythmia.