Análisis Matemático I

Doble Grado en Ingeniería Informática y Matemáticas

Objetivos de aprendizaje para el tema 1

- 1. Conocer y comprender las siguientes definiciones:
 - a) Espacio pre-hilbertiano
 - b) Espacio normado
 - c) Espacio métrico
- 2. Conocer la relación entre los conceptos anteriores y los ejemplos que permitan distinguir entre ellos
- 3. Conocer los siguientes resultados, incluyendo su demostración:
 - a) Desigualdad de Cauchy-Schwartz
 - b) Desigualdad triangular para la norma de un espacio pre-hilbertiano

1 y 2 a) Expecie polilbertiano

 $(x,y) \longrightarrow (x|y) = \sum_{k=1}^{N} x(u)y(u)$

Propiededes:

(x 1x) >0 4xeV \ (x 1x) >0 (x 1x) = (x1x) = (x1x)

Esta forma bilimal simotiva indua una Soma cuadrática que es una aplicación que reroge les cuadrades de bodo la vectoros de V. Por alej, es definida patira.

6) Epocio usimado

lu espacio un mado es un espacio vectorial junto a una aptración lamada un ma Eu acosiones, esta prede venir inducida por el producto escalar.

Propredoctes

- . |x1130 1 |x1 |=0 (=> x=0
- · ||x+y|| = (|x(|+11/1)
- · || > || = | > | / | × ||

Genple de Esposes Nermodo no pre-hilbertions: (R,111-1/1)

c) Especio motrico

Un es paris métrico es un conjunto no vario con una distancia que prode o un serinducida por una norma. En coso de sorte tendudames una aptroción definida de la signiente forma.

d: VxV — bk Guaso de ser esp. perhilbertique

(x1y) — b d(x1y)= ||y-x|| = \(\sigma(x1y) - \sigma(x1x)\)

Propiedados

d(x,y)≥0 A d(x,y)=0 (=> x=y d(xy)=d(yx) ((x,2) & d(x,y)+d(y,2)

un ejemple de especie métrice moment es Zon le distancia discreta (din)

Per oblimo, lay une relación entre conceptos bostantectora:

Especies prehilbelians a Especier Normales a Especies motions

30) |(x1x)| = ||x||||x||

Debours destingun des casas:

Salambamos ×1×€ ~ 50

suporganos xtxeVcI

$$02 (x-xy|x-xy) = (x|x-xy) - |x|(y|x-xy) =$$

$$= (x(x) - |x|(x|y) - |x|(y|x) + |x|^{2}(y|y) = ||x||^{2} - 2|x|(x|y) + |x|^{2}||y||^{2}$$

$$Tanonclo x = \frac{(x|y)}{||y||^{2}} \quad \text{oldenomes for ox } ||x||^{2} - \frac{(x|y)}{||y||^{2}} \implies \blacksquare$$

b) 11x+y 11 = 11x 11 + 11y11

$$||x+y|| \le ||x|| + ||y||$$

$$||x+y||^{2} = (x+y)|x+y| = (x+y) + (y+x+y) = (x+x) + 2(x+y) + (y+x) = ||x||^{2} + 2(x+y) + ||y||^{2} \le ||x||^{2} + 2||x|||y|| + ||y||^{2} = (||x|| + ||y||^{2})$$

$$\le ||x||^{2} + 2||x|||y|| + ||y||^{2} = (||x|| + ||y||^{2})$$