Assignment 6

Jiawen KE

March 2025

1

Bellman equation:

$$V(k) = \max U(c) + \beta V(k')$$
s.t.
$$k' = k^{\alpha} l^{1-\alpha} - c - \delta k$$
where
$$U(c) = \frac{c^{1-\gamma}}{1-\gamma} - \frac{l^{1+\xi}}{1+\xi}$$

Hence,

$$V(k) = \max \left[\frac{(k^{\alpha}l^{1-\alpha} - \delta k - k')^{1-\gamma}}{1-\gamma} - \frac{l^{1+\xi}}{1+\xi} \right] + \beta V(k')$$
 (1)

2

Algorithm to solve for $(a_0, a_1, a_2, a_3, a_4) = \mathbf{a}$:

• Solve the optimal l^*

$$l^{\xi+\alpha} = (zk^{\alpha}l^{1-\alpha} - \delta k - k')^{-\gamma}(1-\alpha)zk^{\alpha}$$

Since $z = 1$, $l^* = (1-\alpha)^{\frac{1}{\xi+\alpha}}(k^{\alpha}l^{1-\alpha} - \delta k - k')^{\frac{-\gamma}{\xi+\alpha}}k^{\frac{\alpha}{\xi+\alpha}}$ (2)

• Solve the optimal k_{t+1} :

$$(k^{\alpha}l^{1-\alpha} - \delta k - k')^{-\gamma} = \beta(a_1 + 2a_2k' + 3a_3k'^2 + 4a_4k'^3)$$
 (3)

- Combine equations (2) and (3), we can get the optimal l^* and k'^*
- Plug the l^* and k'^* into equation (1), for each $k = k_i$, we will have $V(k_i) = V_i$. We pick up arbitrary five k_i , and hence we have five (k_i, V_i) .
- At the same time, for each $k = k_i$, we also have:

$$V(k_i) = V_i = a_0 + a_1 k_i + a_2 k_i^2 + a_3 k_i^3 + a_4 k_i^4, i = 1, ..., 5$$

• Then we insert the initial guess of $(a_0, ..., a_4)$ as $(a_0, ..., a_4)^{(0)}$ and five groups of (k_i, V_i) to start the iteration until $(a_0, ..., a_4)^{(t)} = (a_0, ..., a_4)^{(t-1)}$.

3

Please refer to the code.

$$\mathbf{a} = \begin{bmatrix} 11.6935 \\ 1.7231 \\ -3.1268 \\ 3.7162 \\ -1.9150 \end{bmatrix}$$

4

4.1

Bellman Equation:

$$V(k, z_s) = \max z_s U(c) + \beta E \left[\pi_{s,s} V(k', z_s) + \pi_{s,-s} V(k', z_{-s}) \right]$$

s.t. $k' = z_s k^{\alpha} l^{1-\alpha} - c - \delta k$ (4)

Where: $z_L = 0.8, z_H = 1.2$

Markov shifter with a transition matrix:

$$\Pi = \begin{bmatrix} \pi_{LL} & \pi_{LH} \\ \pi_{HL} & \pi_{HH} \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{bmatrix}$$

4.2

Optimal
$$\mathbf{a} = \begin{bmatrix} 14.4245 & 14.4267 \\ 1.7211 & 1.7302 \\ -3.1116 & -3.1379 \\ 3.6912 & 3.7273 \\ -1.9002 & -1.9200 \end{bmatrix}$$