JEE (ADVANCED) 2018 PAPER 2 PART-III MATHEMATICS

SECTION 1 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has **FOUR** options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s).
- For each question, choose the correct option(s) to answer the question.

Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct options.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option.

Zero Marks : **0** If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

- For Example: If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.
- Q.1 For any positive integer n, define $f_n:(0,\infty)\to\mathbb{R}$ as

$$f_n(x) = \sum_{j=1}^n \tan^{-1} \left(\frac{1}{1 + (x+j)(x+j-1)} \right)$$
 for all $x \in (0, \infty)$.

(Here, the inverse trigonometric function $\tan^{-1}x$ assumes values in $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.)

Then, which of the following statement(s) is (are) TRUE?

(A)
$$\sum_{i=1}^{5} \tan^2(f_i(0)) = 55$$

(B)
$$\sum_{i=1}^{10} (1 + f_i'(0)) \sec^2(f_i(0)) = 10$$

- (C) For any fixed positive integer n, $\lim_{x \to \infty} \tan (f_n(x)) = \frac{1}{n}$
- (D) For any fixed positive integer n, $\lim_{x\to\infty} \sec^2(f_n(x)) = 1$

Let T be the line passing through the points P(-2,7) and Q(2,-5). Let F_1 be the set of all Q.2 pairs of circles (S_1, S_2) such that T is tangent to S_1 at P and tangent to S_2 at Q, and also such that S_1 and S_2 touch each other at a point, say, M. Let E_1 be the set representing the locus of M as the pair (S_1, S_2) varies in F_1 . Let the set of all straight line segments joining a pair of distinct points of E_1 and passing through the point R(1,1) be F_2 . Let E_2 be the set of the mid-points of the line segments in the set F_2 . Then, which of the following statement(s) is (are) TRUE?

- (A) The point (-2,7) lies in E_1
- (B) The point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does **NOT** lie in E_2
- (A) The point (-2,7) lies in E_1 (B) The point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does **NOT** lie in E_2 (C) The point $\left(\frac{1}{2}, 1\right)$ lies in E_2 (D) The point $\left(0, \frac{3}{2}\right)$ does **NOT** lie in E_1
- Let S be the set of all column matrices $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that $b_1, b_2, b_3 \in \mathbb{R}$ and the system of 0.3 equations (in real variables)

$$-x + 2y + 5z = b_1$$

$$2x - 4y + 3z = b_2$$

$$x - 2y + 2z = b_3$$

has at least one solution. Then, which of the following system(s) (in real variables) has

(have) at least one solution for each $\begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix} \in S$?

(A)
$$x + 2y + 3z = b_1$$
, $4y + 5z = b_2$ and $x + 2y + 6z = b_3$

(B)
$$x + y + 3z = b_1$$
, $5x + 2y + 6z = b_2$ and $-2x - y - 3z = b_3$

(C)
$$-x + 2y - 5z = b_1$$
, $2x - 4y + 10z = b_2$ and $x - 2y + 5z = b_3$

(D)
$$x + 2y + 5z = b_1$$
, $2x + 3z = b_2$ and $x + 4y - 5z = b_3$

Consider two straight lines, each of which is tangent to both the circle $x^2 + y^2 = \frac{1}{2}$ and the parabola $y^2 = 4x$. Let these lines intersect at the point Q. Consider the ellipse whose center is at the origin O(0,0) and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement(s) is (are) TRUE?

- (A) For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is 1
- (B) For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
- (C) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{4\sqrt{2}}(\pi 2)$
- (D) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{16}(\pi 2)$
- Q.5 Let s,t,r be non-zero complex numbers and L be the set of solutions z = x + iy $(x,y \in \mathbb{R}, i = \sqrt{-1})$ of the equation $sz + t\bar{z} + r = 0$, where $\bar{z} = x iy$. Then, which of the following statement(s) is (are) TRUE?
 - (A) If L has exactly one element, then $|s| \neq |t|$
 - (B) If |s| = |t|, then L has infinitely many elements
 - (C) The number of elements in $L \cap \{z : |z 1 + i| = 5\}$ is at most 2
 - (D) If L has more than one element, then L has infinitely many elements

Q.6 Let $f:(0,\pi) \to \mathbb{R}$ be a twice differentiable function such that

$$\lim_{t \to x} \frac{f(x) \sin t - f(t) \sin x}{t - x} = \sin^2 x \text{ for all } x \in (0, \pi).$$

If $f\left(\frac{\pi}{6}\right) = -\frac{\pi}{12}$, then which of the following statement(s) is (are) TRUE?

(A)
$$f\left(\frac{\pi}{4}\right) = \frac{\pi}{4\sqrt{2}}$$

(B)
$$f(x) < \frac{x^4}{6} - x^2 \text{ for all } x \in (0, \pi)$$

(C) There exists
$$\alpha \in (0, \pi)$$
 such that $f'(\alpha) = 0$

(D)
$$f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) = 0$$

SECTION 2 (Maximum Marks: 24)

• This section contains EIGHT (08) questions. The answer to each question is a NUMERICAL VALUE.

• For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the **second decimal place**; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30) using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered as answer.

Zero Marks : 0 In all other cases.

Q.7 The value of the integral

$$\int_{0}^{\frac{1}{2}} \frac{1 + \sqrt{3}}{((x+1)^{2}(1-x)^{6})^{\frac{1}{4}}} dx$$

is .

- Q.8 Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1, 0, 1\}$. Then, the maximum possible value of the determinant of P is _____.
- Q.9 Let *X* be a set with exactly 5 elements and *Y* be a set with exactly 7 elements. If α is the number of one-one functions from *X* to *Y* and β is the number of onto functions from *Y* to *X*, then the value of $\frac{1}{5!}(\beta \alpha)$ is _____.
- Q.10 Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation

$$\frac{dy}{dx} = (2 + 5y)(5y - 2),$$

then the value of $\lim_{x \to -\infty} f(x)$ is _____.

- Q.11 Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 1 and satisfying the equation $f(x+y) = f(x)f'(y) + f'(x)f(y) \text{ for all } x,y \in \mathbb{R}.$ Then, the value of $\log_e(f(4))$ is _____.
- Q.12 Let P be a point in the first octant, whose image Q in the plane x + y = 3 (that is, the line segment PQ is perpendicular to the plane x + y = 3 and the mid-point of PQ lies in the plane x + y = 3) lies on the z-axis. Let the distance of P from the x-axis be 5. If P is the image of P in the P0 in the P1 in the P2 in the length of P3 is _____.

Q.13 Consider the cube in the first octant with sides OP, OQ and OR of length 1, along the x-axis, y-axis and z-axis, respectively, where O(0,0,0) is the origin. Let $S\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If $\vec{p} = \vec{SP}$, $\vec{q} = \vec{SQ}$, $\vec{r} = \vec{SR}$ and $\vec{t} = \vec{ST}$, then the value of $|(\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t})|$ is _____.

$$X = \left({}^{10}C_1 \right)^2 + 2\left({}^{10}C_2 \right)^2 + 3\left({}^{10}C_3 \right)^2 + \dots + 10\left({}^{10}C_{10} \right)^2,$$

where $^{10}C_r, r \in \{1, 2, \cdots, 10\}$ denote binomial coefficients. Then, the value of $\frac{1}{1430} X$ is _____.

SECTION 3 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has TWO (02) matching lists: LIST-I and LIST-II.
- FOUR options are given representing matching of elements from LIST-I and LIST-II. ONLY ONE of these four options corresponds to a correct matching.
- For each question, choose the option corresponding to the correct matching.
- For each question, marks will be awarded according to the following marking scheme:

Full Marks : +3 If ONLY the option corresponding to the correct matching is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -1 In all other cases.

Q.15 Let
$$E_1 = \left\{x \in \mathbb{R} : x \neq 1 \text{ and } \frac{x}{x-1} > 0\right\}$$
 and $E_2 = \left\{x \in E_1 : \sin^{-1}\left(\log_e\left(\frac{x}{x-1}\right)\right) \text{ is a real number }\right\}$. (Here, the inverse trigonometric function $\sin^{-1}x$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.) Let $f: E_1 \to \mathbb{R}$ be the function defined by $f(x) = \log_e\left(\frac{x}{x-1}\right)$ and $g: E_2 \to \mathbb{R}$ be the function defined by $g(x) = \sin^{-1}\left(\log_e\left(\frac{x}{x-1}\right)\right)$.

LIST-I

- **P.** The range of f is
- **Q.** The range of g contains
- **R.** The domain of f contains
- **S.** The domain of g is

LIST-II

- 1. $\left(-\infty, \frac{1}{1-e}\right] \cup \left[\frac{e}{e-1}, \infty\right)$
- **2.** (0, 1)
- 3. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
- **4.** $(-\infty, 0) \cup (0, \infty)$
- 5. $\left(-\infty, \frac{e}{e-1}\right]$
- **6.** $(-\infty, 0) \cup \left(\frac{1}{2}, \frac{e}{e-1}\right)$

The correct option is:

- (A) $P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 1$
- (B) $P \rightarrow 3$; $Q \rightarrow 3$; $R \rightarrow 6$; $S \rightarrow 5$
- (C) $P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 6$
- (D) $P \rightarrow 4$; $Q \rightarrow 3$; $R \rightarrow 6$; $S \rightarrow 5$

Q.16 In a high school, a committee has to be formed from a group of 6 boys M_1 , M_2 , M_3 , M_4 , M_5 , M_6 and 5 girls G_1 , G_2 , G_3 , G_4 , G_5 .

- (i) Let α_1 be the total number of ways in which the committee can be formed such that the committee has 5 members, having exactly 3 boys and 2 girls.
- (ii) Let α_2 be the total number of ways in which the committee can be formed such that the committee has at least 2 members, and having an equal number of boys and girls.
- (iii) Let α_3 be the total number of ways in which the committee can be formed such that the committee has 5 members, at least 2 of them being girls.
- (iv) Let α_4 be the total number of ways in which the committee can be formed such that the committee has 4 members, having at least 2 girls and such that both M_1 and G_1 are **NOT** in the committee together.

LIST-I	LIST-II
P. The value of α_1 is	1. 136
Q. The value of α_2 is	2. 189
R. The value of α_3 is	3. 192
S. The value of α_4 is	4. 200
	5. 381
	6. 461

The correct option is:

- (A) $P \rightarrow 4$; $Q \rightarrow 6$; $R \rightarrow 2$; $S \rightarrow 1$
- (B) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$
- (C) $P \rightarrow 4$; $Q \rightarrow 6$; $R \rightarrow 5$; $S \rightarrow 2$
- (D) $P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 3$; $S \rightarrow 1$

Q.17 Let $H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where a > b > 0, be a hyperbola in the *xy*-plane whose conjugate axis *LM* subtends an angle of 60^0 at one of its vertices *N*. Let the area of the triangle *LMN* be $4\sqrt{3}$.

LIST-I

- **P.** The length of the conjugate axis of H is
- **Q.** The eccentricity of H is
- **R.** The distance between the foci of H is
- **S.** The length of the latus rectum of H is

The correct option is:

- (A) $P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$
- (B) $P \rightarrow 4$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 2$
- (C) $P \rightarrow 4$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 2$
- (D) $P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 1$

LIST-II

- 1. 8
- 2. $\frac{4}{\sqrt{3}}$
- 3. $\frac{2}{\sqrt{3}}$
- **4.** 4

Q.18 Let $f_1: \mathbb{R} \to \mathbb{R}$, $f_2: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$, $f_3: \left(-1, e^{\frac{\pi}{2}} - 2\right) \to \mathbb{R}$ and $f_4: \mathbb{R} \to \mathbb{R}$ be functions defined by

- (i) $f_1(x) = \sin(\sqrt{1 e^{-x^2}}),$
- (ii) $f_2(x) = \begin{cases} \frac{|\sin x|}{\tan^{-1}x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$, where the inverse trigonometric function $\tan^{-1}x$ assumes values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,
- (iii) $f_3(x) = [\sin(\log_e(x+2))]$, where, for $t \in \mathbb{R}$, [t] denotes the greatest integer less than or equal to t,
- (iv) $f_4(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

LIST-I

- **P.** The function f_1 is
- **Q.** The function f_2 is
- **R.** The function f_3 is
- **S.** The function f_4 is

LIST-II

- 1. NOT continuous at x = 0
- **2.** continuous at x = 0 and **NOT** differentiable at x = 0
- 3. differentiable at x = 0 and its derivative is **NOT** continuous at x = 0
- **4.** differentiable at x = 0 and its derivative is continuous at x = 0

The correct option is:

- (A) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 4$
- (B) $P \rightarrow 4$; $Q \rightarrow 1$; $R \rightarrow 2$; $S \rightarrow 3$
- (C) $P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$
- (D) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 4$; $S \rightarrow 3$

END OF THE QUESTION PAPER