Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_şt-nat* Barem de evaluare și de notare

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	(* · · · · · · · · · · · · · · · · · · ·	
1.	$\begin{vmatrix} b_5 = b_2 q^3 \Rightarrow q^3 = 8 \\ q = 2 \end{vmatrix}$	3p 2p
2.	f(0) = 7 $(f \circ f)(0) = f(7) = 70$	2p
	$(f \circ f)(0) = f(7) = 70$	3p
3.	$(x-3)^2 = x-1 \Rightarrow x^2 - 7x + 10 = 0$	2p
	$x_1 = 2$ nu verifică ecuația și $x_2 = 5$ verifică ecuația	3 p
4.	Numerele divizibile cu 11 din mulţimea A sunt 11, 22, 33 şi $44 \Rightarrow 4$ cazuri favorabile Numărul elementelor mulţimii A este $50 \Rightarrow 50$ de cazuri posibile $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{25}$	2p 1p 2p
5.	$\begin{vmatrix} \frac{2}{1} = \frac{a+1}{2} \\ a = 3 \end{vmatrix}$	3p 2p
6.	$\sin x = \frac{1}{2}$	2p
	$x = \frac{\pi}{6}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 20 \end{pmatrix}$	2p
	$B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 20 \end{pmatrix} \Rightarrow A \cdot B = B \cdot A$	3 p
b)	$A + B = \begin{pmatrix} 2 & 0 \\ 0 & 9 \end{pmatrix} \Rightarrow \det(A + B) = 18$	2p
	$\det A + \det B = 4 + 5 = 9 \Longrightarrow \det (A + B) > \det A + \det B$	3 p
c)	$X^2 = \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix}$	2p
	$ \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \Rightarrow \begin{cases} a^2 = 1 \\ b^2 = 4 \end{cases} \Rightarrow a = \pm 1, \ b = \pm 2 \Rightarrow \text{sunt 4 matrice } X \text{ care verifică cerințele} $	3p
2.a)	$f = X^3 + X - 2 \Rightarrow f(1) = 1^3 + 1 - 2 =$	3p
	=2-2=0	2 p
b)	$(2-x_1)(2-x_2)(2-x_3) = f(2)$ $f(2) = 10 + a \Rightarrow a = -8$	3p
	$f(2)=10+a \Rightarrow a=-8$	2p

c)	$x_1 + x_2 + x_3 = 0$, $x_1x_2 + x_2x_3 + x_3x_1 = 1$, $x_1x_2x_3 = -a$	1p
	$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = -\frac{1}{a}, \ \frac{1}{x_1} \cdot \frac{1}{x_2} + \frac{1}{x_2} \cdot \frac{1}{x_3} + \frac{1}{x_3} \cdot \frac{1}{x_1} = 0, \ \frac{1}{x_1} \cdot \frac{1}{x_2} \cdot \frac{1}{x_3} = -\frac{1}{a}$	3р
	Un polinom este $g = aX^3 + X^2 + 1$	1p

SUBIECTUL al III-lea		0 de puncte)
1.a)	$f'(x) = (\ln(x+1))' - (\ln x)' =$	2p
	$=\frac{1}{x+1}-\frac{1}{x}$, pentru orice $x \in (0,+\infty)$	3p
b)	$f'(x) = -\frac{1}{x(x+1)}$, pentru orice $x \in (0, +\infty)$	2p
	$f'(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este descrescătoare	3 p
c)	$\lim_{x \to +\infty} xf(x) = \lim_{x \to +\infty} \frac{\ln(x+1) - \ln x}{\frac{1}{x}} =$	2p
	$= \lim_{x \to +\infty} \frac{\frac{1}{x+1} - \frac{1}{x}}{-\frac{1}{x^2}} = 1$	3р
2.a)	$\frac{x^2}{1}$	
2.0)	$\int_{0}^{1} (x+2)f(x)dx = \int_{0}^{1} xdx =$	2 p
	$=\frac{x^2}{2}\Big _0^1=\frac{1}{2}$	3р
b)	$f'(x) = \frac{2}{(x+2)^2} \Rightarrow f(x) + (x+2)f'(x) = 1 \text{ pentru orice } x \in (-2, +\infty)$	3p
	$\int_{2013}^{2014} 1 \cdot dx = x \Big _{2013}^{2014} = 1$	2 p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} (x+2)^{2} dx =$	3p
	$=\pi \frac{(x+2)^3}{3} \Big _{1}^2 = \frac{37\pi}{3}$	2 p