Оглавление

1	Вве	Введение			
	1.1	Чувстви	ительность модели	6	
	1.2	Анализ	чувствительности	7	
2	Teo	ретичес	кая часть	8	
	2.1	Некотор	оые понятия теории графов	8	
		2.1.1 I	рафы и деревья	8	
		2.1.2	Способы представления графов	10	
	2.2	Уравнен	ния для анализа и газоснабжения	12	
		2.2.1	Законы течения по трубе	13	
		2.2.2 I	Іервый закон Кирхгофа	14	
		2.2.3 E	Второй закон Кирхгофа	14	
	2.3	Постано	вка расчетной задачи. Граничные условия	15	
	2.4	Матриц	а чувствительности	16	
3	Пра	актичесь	кая часть	19	
	3.1	Построе	ение примеров вычислений и использования	19	
	3.2	Пример	ы вычислений	20	
		3.2.1 I	Іример 1	20	
		3.2.2 I	Іример 2	24	

4 Заключение 28

Глава 1

Введение

Гидравлические расчеты трубопроводных сетей, в частности систем газосбора и газораспределения, требуются при решении многих технико-экономических проблем, связанных с их проектированием и эксплуатацией. Задачи гидравлического расчета решаются в рамках теории гидравлических цепей. Одним из недостаточно исследованных вопросов этой теории является оценка и контроль откликов модели трубопроводной системы на изменение исходных данных – граничных условий – задачи. Эти вопросы относятся к сфере чувствительности модели.

1.1 Чувствительность модели

Вместе с моделью газопроводной сети рассматриваются и её начальные и/или граничные условия. Данные условия являются необходимыми для поиска решения, которое является единственным.

Чувствительность модели характеризуется способностью реагировать на изменения начальных или граничных условий.

При расчете гидравлических цепей, условия (начальные или граничные) предполагаются неизменными, стационарными, однако, важно понимать, что в общем случае таковыми не являются, поэтому возникает множество вопросов связанных с тем, какова же будет реакция на изменения условий, какие узлы и дуги, и как отреагируют на эти изменения, или другими словами, ставится вопрос о чувствительности конкретной модели к варьированию начальных и граничных условий.

1.2 Анализ чувствительности

Анализ различных аспектов чувствительности требует моделирования этой системы и использования наиболее адекватных моделей. Расчет гидравлических цепей является сложной процедурой (в плане времени и вычислительных ресурсов). В связи с этим целесообразно использование матриц чувствительности системы, которые связывают изменения входных параметров рассматриваемой системы с выходными.

Матрица чувствительности – матрица якоби отображения пространства начальных и граничных условий в пространство откликов модели.

Глава 2

Теоретическая часть

2.1 Некоторые понятия теории графов

2.1.1 Графы и деревья

Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, то есть соединений между парами вершин. Например, за множество вершин можно взять множество аэропортов, обслуживаемых некоторой авиакомпанией, а за множество рёбер взять регулярные рейсы этой авиакомпании между городами. Также, газопроводные и газотранспортные сети успешно описываются графами.

Теория графов — раздел дискретной математики, изучающий свойства графов.

В зависимости от рассматриваемой задачи, граф может быть

- 1. Направленный (ориентированный)
- 2. Ненаправленный (неоринтированный)

- 3. Смешанный
- 4. Мультиграф
- 5. и т.д.

В рамках данной работы будут рассматриваться неориентированные графы.

Пример направленного (ориентированного) графа (рисунок 2.1).

Рис. 2.1: Пример графа

Ориентация рёбер графа, изображенного на рисунке 2.1, обозначена стрелкой.

Граф G задаётся множествами V, E, соответственно множество вершин (узлов) и множество рёбер. Таким образом – G = (V, E) Количество вершин в графе $G - N_V = |V|$ и дуг (рёбер) соотвественно – $N_E = |E|$.

Вершины графа будем обозначать числами натурального ряда $1\dots N_V$. Дуги графа принято обозначать латинскими буквами с индексами – $a_1\dots a_{N_E}$.

Говорят, что дуга инцидентна вершине, если она исходит из этой вершины или заходит в неё. Вершины, которым инцидентна только одна дуга, называются висячими.

Полным графом называется граф, у которого любая пара вершин соединена ребром (дугой). В полном графе \widetilde{G} , число вершин $N_V=C_n^2=\frac{n(n-1)}{2}$.

2.1.2 Способы представления графов

Графы, как математический объект, можно задать несколькими способами.

Основные способы

- 1. Матрица (таблица) смежности
- 2. Список рёбер
- 3. Матрица инцидентности

Для каждого способа будет приведён пример на основе графа из рисунка 2.1.

Матрица смежности

Матрицей смежности для графа G = (V, E) называется квадратная матрица $A = (a_{ij})$, строкам и столбцам которой соответствуют вершины графа. Для неориентированного графа число a_{ij} равно числу ребер, инцидентных i и j. Для орграфа (ориентированного, направленного графа) число a_{ij} равно числу ребер с началом в i и концом в j.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Список рёбер

Списком рёбер графа называется таблица, состоящая из двух столбцов, в которой на пересечении i-й строки и первого (левого) столбца записывается ребро a_i , а на пересечении i-й строки и второго (правого) столбца записываются вершины, инцидентные ребру a_i .

$$T = \begin{bmatrix} 1 & 1, 2 \\ 2 & 2, 3 \\ 3 & 2, 4 \end{bmatrix}$$

Матрица инцидентности

Матрицей инцидентности для графа G=(V,E) называется матрица $B=(b_{ij}),$ столбцам которой соответствуют вершины графа, а строкам — ребра. Число ориентированного графа b_{ij} равно:

$$(b_{ij}) = egin{cases} 1, \, ext{если } a_i \, ext{исходит из } i \ -1, \, ext{если } a_i \, ext{заходит в } i \ 0, \, ext{иначе} \end{cases}$$

Для неориентированного:

$$(b_{ij}) = egin{cases} 1, \ ext{если} \ a_i \ ext{инцидентно} \ i \ 0, \ ext{иначе} \end{cases}$$

Матрица инцидентности для графа из рисунка 2.1:

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

В рамках рассматриваемой работы – основным способом задания графов будет матрица инцидентности

2.2 Уравнения для анализа и газоснабжения

Преступим к изучению методов расчета систем газоснабжения. Структуру сети будем изображать в виде направленного графа и использовать соответствующую терминологию.

Расчетом системы будем называть воспроизведение (моделирование) режимов – определение расхода по дугам и давления по узлам (вершинам графа). Известными считаются: конфигурация системы и характеристики оборудования. Перед тем, как приступить к моделированию, необходимо грамотно построить граф системы адекватно отражающий технологическую суть газотранспортной сети. Граф также дополняется данными об оборудовании: диаметры и допустимые давления в трубах, характеристики компрессорных агрегатов, технологические особенности ГРС и т.д.

Расчетная схема – информационный комплекс включающий в себя граф системы и формулы для расчета режимов каждого её элемента.

Кроме того, если на расчетной схеме задать индентификационные параметры, то получится **гидравлическая модель системы**.

2.2.1 Законы течения по трубе

Для расчета падения давления на участке газовой сети **среднего и вы- сокого давлений** используется формула

$$p_s^2 - p_f^2 = \frac{\rho}{81\pi^2} \lambda \frac{Q_n^2}{D^5} \rho_n L = 0.1268710^{-4} \lambda \frac{Q_n^2}{D^5} \rho_n L \tag{1}$$

где p_s – абсолютное давление в начале газопровода, МПа; p_f – абсолютное давление в конце газопровода, МПа; $\rho_0=1.01325$; λ – коэффициент гидравлического трения; L – расчетная длина газопровода постоянного диаметра, м; D – внутренний диаметр газопровода, см; ρ_n – плотность газа при нормальных условиях; Q_n – расход газа, при нормальных условиях.

Газопроводы **низкого давления** расчитываются с помощью формулы

$$p_s - p_f = \frac{10^6}{81\pi^2} \lambda \frac{Q_n^2}{D^5} \rho_n L \tag{2}$$

В отличии от газопроводов среднего и высокого давлений здесь p_s, p_f измеряется в Па.

Соотношение (1) описывает газовые сети. Соотношение (1) можно переписать в так называемой упрощенной форме

$$P_s - P_f = \Lambda x^2$$

Здесь через P_s, P_f обозначены потенциалы потенциалы течения, роль

потенциала в (1) играет квадрат давления p^2 ; Λ – обобщенный коэффициент сопротивления. Для сетей газораспределения

$$\Lambda = c\lambda D^{-5}\rho_0 L$$

2.2.2 Первый закон Кирхгофа

Наряду с расходами по дугам, следует также рассмотреть внешние притоки и отборы Q_i в узлах системы газоснабжения (СГ) – вершинах графа. Величину Q_i будем считать положительной ($Q_i > 0$).

В случае, когда Q_i – приток, то величина берется со знаком '+', если отбор, то со знаком '-'.

Для представления законов Кирхгофа в векторно-матричной форме: вектор узловых давлений $\overline{\mathbf{P}} = ||P_j||$, вектор притоков-отборов $\overline{\mathbf{Q}} = ||Q_j||$, а также вектор расходов $\mathbf{x} = ||x_{j,k}||$ из узла j, в узел k.

Первый закон Кирхгофа в векторно-матричной форме

$$\overline{\mathbf{A}}\mathbf{x} = \overline{\mathbf{Q}} \tag{3}$$

Матрица $\overline{\bf A}$ - матрица инцидентности графа рассматриваемой системы, ${\bf c}$ исключением последней строки, так как строки матрицы A – линейно-зависимы.

2.2.3 Второй закон Кирхгофа

Введем n—мерный по числу дуг вектор напряжений $\mathbf{y} = ||y_{ik}||$, положив $y_{ik} = P_i - P_k$ Второй закон Кирхгофа устанавливает, что алгебраическая сумма напряжений по по любому замкнутому контуру равна нулю. На контуре определяется направление обхода. Алгебраическая сумма – это

значит, что напряжения берутся со знаком '+', если направление контура и дуги совпадают, иначе со знаком '-'.

Если учесть, что $y_{ik} = \Lambda_{ik} x_{ik} |x_{ik}|$, то получаются соотношения связывающие расходы x_{ik} .

В векторно-матричной форме уравнения второго закона Кирхгофа имеют вид

$$\mathbf{B}\mathbf{y} = 0 \tag{4}$$

В – цикломатическая матрица, или матрица контуров.

2.3 Постановка расчетной задачи. Граничные условия

Пусть G – ориентированный граф с N_V узлами (образующими множество узлов ${\bf V}$) и N_E ветвями (образующими множество ветвей ${\bf E}$). Расход по i-й ветви связан с начальным и конечным давлениями p_s^i и p_f^i замыкающим соотношением

$$x_i = \phi\left(p_s^i, p_f^i\right) \tag{5}$$

Q - вектор узловых притоков. Тогда уравнения Кирхгофа (уравнения балансов в узлах) записывается в виде

A - матрица инцидентности графа G ($a_{ij}=1$, если ребро ј начинается в узле $i, a_{ij}=-1$, если ребро ј заканчивается в узле i);

$$\mathbf{AX} = \mathbf{Q} \tag{6}$$

Используя матрицы A_S и A_F , соответствующие выходящим и входящим ветвям ($A=A_S+A_F$), вектор узловых давлений P и вектор Φ

функций ϕ_i , уравнения (1) можно записать в виде

$$P_S = A_S^T P, P_F = -A_F^T P$$

$$X = \Phi(P_S, P_F)$$
(7)

Преположим что граничные условия заданы

$$P_{\gamma} = (P_{i_1}, \dots, P_{i_k}), Q_{\gamma} = (Q_{i_{k+1}}, \dots, Q_{i_n})$$
(8)

Таким образом система уравнений

$$X = \Phi(P_S, P_F), \widetilde{A}X = Q \tag{9}$$

Матрица \widetilde{A} - это матрица A, только без последней строки, так как $rankA = min(N_E, N_V) = N_V - 1.$

При граничных условиях (8), система (9) имеет единственное решение.

После решения системы (9), получаются векторы $Q_0,\,P_0$

Затем, предположим, что граничные условия (8) – получили малые приращения соответственно

$$\widetilde{P}_{\gamma} = P_{\gamma} + \delta P_{\gamma}, \widetilde{Q}_{\gamma} = Q_{\gamma} + \delta Q_{\gamma}$$

Требуется оценить влияние изменений граничных условий на неграничные (незаданные) переменные.

2.4 Матрица чувствительности

Для удобного рассмотрения модели введем обозначения:

 V_{P} – множество узлов с заданным давлением, V_{Q} – множество узлов с заданным притоком

Рассмотрим случай, когда замыкающие соотношения являются непрерывно диффиренцируемыми в окрестности решения P_0, Q_0 системы (5).

Обозначим

$$d_{Si} = \frac{\partial \phi_i(P_S, P_F)}{\partial P_S}$$

$$d_{Fi} = -\frac{\partial \phi_i(P_S, P_F)}{\partial P_F}$$

Тогда в силу монотонности ϕ_i справедливы неравенства $d_{Si} \geq 0$ и $d_{Fi} \geq 0$

Определим диагональные матрицы D_S и D_F с d_{Si} и d_{Fi} на диагонали. Тогда уравнения (2) и (3) можно переписать

$$dX = (D_S A_S^T + D_F A_F^T) dP (7)$$

$$dQ = A(D_S A_S^T + D_F A_F^T) dP (8)$$

Перенумеруем узлы графа так, чтобы сначала шли узлы с заданными притоками (из V_Q), а затем с заданными давлением (из V_P) и разобьем векторы и матрицы на соответствующие блоки:

$$P = \left(\frac{P_{var}}{P_{fix}}\right)Q = \left(\frac{Q_{var}}{Q_{fix}}\right)A = \left(\frac{A_Q}{A_P}\right)A_S = \left(\frac{A_{SQ}}{A_{SP}}\right)A_F = \left(\frac{A_{FQ}}{A_{FP}}\right) \tag{9}$$

Тогда уравнения (7) и (8) можно переписать

$$dX = (D_S A_{SQ}^T + D_F A_{FQ}^T) dP_{var} + (D_S A_{SP}^T + D_F A_{FP}^T) dP_{fix}$$
 (10)

$$dQ_{fix} = A_Q(D_S A_{SQ}^T + D_F A_{FQ}^T) dP_{var} + A_Q(D_S A_{SP}^T + D_F A_{FP}^T) dP_{fix}$$
 (11)

$$dQ_{var} = A_P (D_S A_{SO}^T + D_F A_{FO}^T) dP_{var} + A_P (D_S A_{SP}^T + D_F A_{FP}^T) dP_{fix}$$
 (12)

Матрица $M = A_Q(D_S A_{SQ}^T + D_F A_{FQ}^T)$ связывает подвекторы с фиксированными переменными (заданными граничными условиями) с подвекторами свободных переменных. Эта матрица также называется модифицированной матрицей Максвелла или M-матрицей.

Отметим еще несколько матриц

$$M_{PP} = A_P (D_S A_{SP}^T + D_F A_{FP}^T) (13)$$

$$M_{PQ} = A_P (D_S A_{SQ}^T + D_F A_{FQ}^T) (14)$$

$$M_{OP} = A_O(D_S A_{SP}^T + D_F A_{FP}^T) (15)$$

Тогда (11) и (12) можно переписать используя (13), (14) и (15)

$$dQ_{var} = M_{PQ}M^{-1}dQ_{fix} + (M_{PP} - M_{PQ}M^{-1}M_{QP})dP_{fix}$$
 (16)

$$dP_{var} = M^{-1}dQ_{fix} - M^{-1}M_{QP}dP_{fix}$$
 (17)

Заметим также, что матрицы

$$M, M_{QP}, M_{PQ}, M_{PP}$$

– функциональные матрицы, векторных аргументов P_0, Q_0

Глава 3

Практическая часть

3.1 Построение примеров вычислений и использования

Рассмотрим систему уравнений (5) и её решение P_0, Q_0

$$A\Phi(A_S^T P_0, -A_F^T P_0) = Q_0$$

А также перенумерованные векторы P_0 и Q_0 так, чтобы сначала шли узлы с заданными притоками, затем с давлениями

$$P_0 = \left(\frac{P_0^{var}}{P_0^{fix}}\right), Q_0 = \left(\frac{Q_0^{var}}{Q_0^{fix}}\right)$$

и их "малые"изменения

$$\delta P_0 = \left(\frac{\delta P_0^{var}}{\delta P_0^{fix}}\right), \delta Q_0 = \left(\frac{\delta Q_0^{var}}{\delta Q_0^{fix}}\right)$$

В соотстветствие с описанным выше способом, получается:

$$dQ_0^{var} = [M_{PQ}M^{-1}](A_S^TP_0, -A_F^TP_0)dQ_0^{fix} +$$

$$[M_{PP} - M_{PQ}M^{-1}M_{QP}](A_S^T P_0, -A_F^T P_0)dP_0^{fix}$$

Соответственно вектор откликов притоков

$$dP_0^{var} = [M^{-1}](A_S^T P_0, -A_F^T P_0) dQ_0^{fix} - [M^{-1} M_{QP}](A_S^T P_0, -A_F^T P_0) dP_0^{fix}$$

и вектор откликов давлений.

3.2 Примеры вычислений

Все примеры носят иллюстративный характер.

3.2.1 Пример 1

Рис. 3.1: Схема для примера 1

Рассмотрим простую гидравлическую цепь, изображенную на рисунке 3.1. На данной схеме в узлах графа задаются давления, на рёбрах расходы.

Переменная	Значение
P_1	18
P_3	4
P_5	7
P_6	6

Таблица 3.1: Начальные условия

Начальные условия представлены в таблице 3.1. Также, их можно отобразить на рисунке.

Рис. 3.2: Схема для примера 1 (с учетом начальных условий)

Далее по расчетной схеме получается система уравнений для решения

задачи.

$$\begin{cases} P_4^2 - P_6^2 - AX_5^2 = 0 \\ P_4^2 - P_5^2 - AX_2^2 = 0 \end{cases}$$

$$P_2^2 - P_4^2 - AX_4^2 = 0$$

$$P_2^2 - P_3^2 - AX_1^2 = 0$$

$$P_4^2 - P_6^2 - AX_5^2 = 0$$

$$P_1^2 - P_2^2 - AX_3^2 = 0$$

$$X_3 - X_1 - X_4 = 0$$

$$X_4 - X_2 - X_5 = 0$$

Численное решение системы, с учетом начальных условий из таблицы 3.1, даёт значение неизвестных

Переменная	Значение
P_1	18
P_2	9.689
P_3	4
P_4	7.322
P_5	7
P_6	6
X_1	8.825
X_2	15.17
X_3	6.345
X_4	4.197
X_5	2.148

Таблица 3.2: Результаты расчета

В результате найдены значения всех неизвестных.

Рис. 3.3: Схема для примера 1 (все неизвестные учтены)

Теперь рассмотрим малое изменение начальных условий.

Переменная	Предыдущее значение	Новое значение
P_1	18	18.01
P_3	4	4.01
P_5	7	7.01
P_6	6	6.01

Таблица 3.3: Начальные условия (измененные)

Новый расчет будет проведен 2-мя способами: будет решена система уравнений и с помощью матрицы чувствительности.

Результаты и сранение 2-х способов отображены в таблице 3.4.

Точное значение – получено из решения системы уравнений.

Оцененное значение – получено с помощью матрицы чувствительности.

Переменная	Точное значение	Оцененное значение
P_1	18.01	18.01
P_2	9.697	9.70
P_3	4.01	4.01
P_4	7.331	7.331
P_5	7.01	7.01
P_6	6.01	6.01
X_1	8.829	8.823
X_2	15.176	15.170
X_3	6.347	6.351
X_4	4.199	4.198
X_5	2.147	2.153

Таблица 3.4: Результаты расчета

Из таблицы 3.4 видно, что разница между значениями переменных, полученными разными методами, весьма мала.

3.2.2 Пример 2

Аналогично, как и в примере 1, будут проведены расчеты разными методами и результаты будут отображены в таблице.

Рис. 3.4: Схема для примера 2

Переменная	Значение
P_1	10
P_4	3
P_5	2

Таблица 3.5: Начальные условия (пример 2)

Переменная	Значение
P_1	10
P_2	5.546
P_3	4.169
P_4	3
P_5	2
X_1	8.321
X_2	4.664
X_3	3.657
X_4	3.657

Таблица 3.6: Результаты расчета (пример 2)

Переменная	Предыдущее значение	Новое значение
P_1	10	10.01
P_4	3	3.01
P_5	2	2.01

Таблица 3.7: Начальные условия (измененные). Пример 2.

Переменная	Точное значение	Оцененное значение
P_1	10.01	10.01
P_2	5.553	5.551
P_3	4.176	4.179
P_4	3.01	3.01
P_5	2.01	2.01
X_1	8.328	8.327
X_3	6.347	6.351
X_4	3.660	3.657
X_5	3.660	3.657

Таблица 3.8: Результаты расчета (пример 2)

Глава 4

Заключение

Разработана компьютерная программа для моделирования систем произвольной структуры. Программа позволяет варьировать начальные и граничные условия системы, производить расчет гидравлических цепей, строить матрицы чувствительности для заданного набора условий.

Программа - написана на языке Python 3, использовались сторонние модули для обработки графов, численного и символьного решения систем уравнений (линейных и нелинейных).

Данная программа была собрана в отдельный модуль, который можно просто подключить в исходных кодах программ сторонних исследователей и использоваться далее другими разработчиками. Также в целях обеспечения доступа к программе сторонним разработчикам – исходный код программы представлен в системе контроля версий (СКВ) – GitHub.

СКВ – это система, регистрирующая изменения в одном или нескольких файлах с тем, чтобы в дальнейшем была возможность вернуться к определённым старым версиям этих файлов и предоставить доступ для

совместной разработки и использования наиболее актуальных версий модуля.