

Calculation of predictions for non-identical particle correlations in AA collisions at LHC energies from hydrodynamics-inspired models

MASTER OF SCIENCE THESIS

Author: Mateusz Wojciech Gałażyn

Supervisor: **Prof. Adam Kisiel**

Warsaw, 8th July 2014

Obliczenia teoretycznych przewidywań korelacji cząstek nieidentycznych w zderzeniach AA przy energiach LHC pochodzących z modeli hydrodynamicznych

PRACA MAGISTERSKA

Autor: Mateusz Wojciech Gałażyn

Promotor:

dr hab. inż. Adam Kisiel, prof. PW

Warszawa, 8 lipca 2014

1 Abstract

2 Streszczenie

Contents

4	1	Introduction	1
5 6 7 8	2	Theory of heavy ion collsions 2.1 The Standard Model	2
	3	Therminator model	3
10	4	Particle interferometry	4
11		4.1 HBT interferometry	4
12		4.2 Intensity interferometry in heavy ion collisions	
13		4.2.1 Theoretical approach	
14		4.2.2 Experimental approach	
15		4.3 Scaling of femtoscopic radii	
16	5	Results	5
17		5.1 Identical particles correlations	5
18		5.2 Results of the fit	5
19		5.3 Discussion of results	
20	6	Summary	6

- ²¹ Chapter 1
- 22 Introduction

²³ Chapter 2

Theory of heavy ion collsions

- 25 2.1 The Standard Model
- 26 2.2 Quantum Chromodynamics
- 27 2.3 Relativistic heavy ion collisions

- 28 Chapter 3
- 29 Therminator model

30 Chapter 4

Particle interferometry

- 32 4.1 HBT interferometry
- 33 4.2 Intensity interferometry in heavy ion collisions
- 34 4.2.1 Theoretical approach
- 35 Two particle wave function
- 36 Source function
- 37 Theoretical correlation function
- 38 Spherical harmonics decomposition of correlation function
- 39 4.2.2 Experimental approach
- 4.3 Scaling of femtoscopic radii

Chapter 5

Results

- **5.1** Identical particles correlations
- 44 5.2 Results of the fit
- 5.3 Discussion of results

- 6 Chapter 6
- 5 Summary

${\tt \tiny 48} \ Bibliography$

List of Figures