	SHARP et al. Application No.: 09/448,884 Page 2				
7	Conclu	(1)	reduce the number of defects in the trench created during		
8	the ste	p of for	ming, and		
9		(2)	round corners at the open and closed ends of the trench.		
1	2.	The n	nethod of claim 1, wherein the step of annealing is performed using		
2	hydrogen gas.				
1	3.	The n	nethod of claim 2, wherein the step of annealing is performed within a		
.2			60 to 1160°C and within a pressure range of about 40 to 240 Torr.		
_			, ,		
1	4.	The n	nethod of claim 1, wherein the step of forming the trench, is performed		
2	using an anisotropic etch.				
	5	The	and a fine to the second following the appealing stop, the width of the		
1	5.		nethod of claim 4, wherein following the annealing step, the width of the		
2	trench away from the rounded ends, remains substantially the same as the width prior to the				
3	annealing step.				
1	6.	A met	thod of forming a trench in a semiconductor substrate, the trench		
2	defined by an open end at a major surface of the substrate and by a closed end within the body of the				
3	substrate, the method comprising the steps of:				
4		(a)	providing a substrate,		
5		(b)	growing a masking layer on the major surface of the substrate;		
6		(c)	selectively etching, through the masking layer to the major surface of		
7	the substrate, to define a trench opening access;				
8		(d)	anisotropically etching, from the trench opening access and into the		
9	body of the substrate to form a trench;				
10		(e)	removing the selectively etched masking layer; and		
11		(f)	annealing the trench so that corners at the open and closed ends of the		
12	trench become round	ed.			
1	7.	The n	nethod of claim 6, wherein the step of annealing is performed using		
2	hydrogen gas.	/	/		
1	8.	The n	nethod of claim 7, wherein the step of annealing is performed within a		
2		/	60 to 1160°C and within a pressure range of about 40 to 240 Torr.		
_			oo to thee of min minima processes range of moons to to also seem		

SHARP et al. Application No.: 09/448,884 Page 3

1	9.	A method of forming a trench in an epitaxial layer of a semiconductor			
2	substrate, the trench defined by a closed end at a major surface of the epitaxial layer and a closed end				
3	within the body of the epitaxial layer, the method comprising the steps of:				
4	(a)	forming a trench that extends a predetermined distance into the			
5	epitaxial layer	r; and			
6	(b)	annealing the trench so that corners at the open and closed ends of the trench			
7	become rounded.				
1	10.	The method of claim 9, wherein the step of annealing is performed using			
2	hydrogen gas.				
1	11.	The method of claim 10, wherein the step of annealing is performed within a			
2		about 960 to 1160°C and within a pressure range of about 40 to 240 Torr.			
2	temperature range or	about 900 to 1100 te and within a pressure range of about 40 to 240 1011.			
1	12.	The method of claim 9, wherein the step of annealing also functions to reduce			
2	the number of materia	al defects in and/or on the walls of the trench.			
1	13.	The method of claim 9, wherein the step of forming the trench is performed			
2	using an anisotropic e	ách.			
1	14.	The method of claim 13, wherein, following the annealing step, the width of			
2		the rounded ends, remains substantially the same as the width prior to the			
3	annealing step.	The founded chas, femants substantially the same as the width prior to the			
J	annearing step.				
1	15.	Canceled.			
1	16.	Canceled.			
1	17.	Canceled.			
•	17.	Canonica.			
1	18.	Canceled.			
	10				
1	19.	A method of making a trench field effect transistor, comprising:			
2		(a) providing a semiconductor substrate of a first dopant charge type, the			
3	substrate embodying the drain of the trench field effect transistor;				

PATENT

SHARP et al. Application No.: 09/448,884 Page 4

4	(b) growing an epitaxial layer of the sai	ne msi dopani charge type ob me			
5	5 substrate, the epitaxial layer having a different resistivity th	an the resistivity of the substrate;			
6	6 (c) forming at least one trench into the	epitaxial layer, each trench			
7	7 defined by a first end in a plane defined by a major surface	of the substrate and by walls that			
8	8 extend to a second end at a predetermined depth into the ep	itaxial layer;			
9	9 (d) annealing the at least one trench to:				
10	10 (1) reduce the number of defects	s in the at least one trench created			
l·1	during the step of forming the at least one tr	ench, and			
12	12 (2) round corners at the first and	I second ends of the at least one			
13	13 trench;	/			
14	(e) growing a dielectric layer on the wa	lls of the at least one trench;			
15	15 (f) forming a conductor over the dielect	ric layer, the conductor			
16	embodying the gate of the trench field effect transistor;				
17	(g) patterning the epitaxial layer and im	planting a dopant of a second			
18	charge type to form wells interposed between adjacent trenches; and				
19	(h) patterning the epitaxial layer and im	planting a dopant of the first			
20	charge type to form regions that embody the source regions	of the field effect transistor.			
1	1 20. The method of claim 19, further including the	es stan of forming one or more			
1	/				
2	heavy bodies of the second charge type positioned above the wells and between the source regions,				
3	3 each heavy body forming an abrupt junction with its corresponding	well.			
1	1 21. The method of claim 19, wherein the step of	annealing is performed using			
2	2 hydrogen gas.				
1					
2	2 temperature range of about 960 to 1160°C and within a pressure ran	nge of about 40 to 240 Torr.			
1	1 23. The method of claim 19, wherein the step of	f forming the at least one trench is			
2		•			
	. / .				