8. Limits

Definition 8.1. Let $P \in \mathbb{R}^n$ be a point. The **open ball of radius** $\epsilon > 0$ **about** P is the set

$$B_{\epsilon}(P) = \{ Q \in \mathbb{R}^n \mid ||\overrightarrow{PQ}|| < \epsilon \}.$$

The closed ball of radius $\epsilon > 0$ about P is the set

$$\{Q \in \mathbb{R}^n \mid \|\overrightarrow{PQ}\| \le \epsilon\}.$$

Definition 8.2. A subset $A \subset \mathbb{R}^n$ is called **open** if for every $P \in A$ there is an $\epsilon > 0$ such that the open ball of radius ϵ about P is entirely contained in A,

$$B_{\epsilon}(P) \subset A$$
.

We say that B is **closed** if the complement of B is open.

Put differently, an open set is a union of open balls. Open balls are open and closed balls are closed. [0,1) is neither open nor closed.

Definition 8.3. Let $B \subset \mathbb{R}^n$. We say that $P \in \mathbb{R}^n$ is a **limit point** if for every $\epsilon > 0$ the intersection

$$B_{\epsilon}(P) \cap B \neq \emptyset$$
.

Example 8.4. 0 is a limit point of

$$\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \subset \mathbb{R}.$$

Lemma 8.5. A subset $B \subset \mathbb{R}^n$ is closed if and only if B contains all of its limit points.

Example 8.6. $\mathbb{R}^n - \{0\}$ is open. One can see this directly from the definition or from the fact that the complement $\{0\}$ is closed.

Definition 8.7. Let $A \subset \mathbb{R}^n$ and let $P \in \mathbb{R}^n$ be a limit point. Suppose that $f: A \longrightarrow \mathbb{R}^m$ is a function.

We say that f approaches L as Q approaches P and write

$$\lim_{Q \to P} f(Q) = L,$$

if for every $\epsilon > 0$ we may find $\delta > 0$ such that whenever $Q \in B_{\delta}(P) \cap A$ $f(Q) \in B_{\epsilon}(L)$. In this case we call L the **limit**.

It might help to understand the notion of a limit in terms of a game played between two people. Let's call the first player Larry and the second player Norman. Larry wants to show that L is the limit of f(Q) as Q approaches P and Norman does not.

So Norman gets to choose $\epsilon > 0$. Once Norman has chosen $\epsilon > 0$, Larry has to choose $\delta > 0$. The smaller that Norman chooses $\epsilon > 0$,

the harder Larry has to work (typically he will have to make a choice of $\delta > 0$ very small).

Proposition 8.8. Let $f: A \longrightarrow \mathbb{R}^m$ and $g: A \longrightarrow \mathbb{R}^m$ be two functions. Let $\lambda \in \mathbb{R}$ be a scalar. If P is a limit point of A and

$$\lim_{Q\to P} f(Q) = L \qquad and \qquad \lim_{Q\to P} g(Q) = M,$$

then

- (1) $\lim_{Q\to P} (f+g)(Q) = L + M$, and
- (2) $\lim_{Q \to P} (\lambda f)(Q) = \lambda L$.

Now suppose that m = 1.

- (3) $\lim_{Q\to P} (fg)(Q) = LM$, and
- (4) if $M \neq 0$, then $\lim_{Q \to P} (f/q)(Q) = L/M$.

Proof. We just prove (1). Suppose that $\epsilon > 0$. As L and M are limits, we may find δ_1 and δ_2 such that, if $\|Q - P\| < \delta_1$ and $Q \in A$, then $\|f(Q) - L\| < \epsilon/2$ and if $\|Q - P\| < \delta_2$ and $Q \in A$, then $\|g(Q) - L\| < \epsilon/2$.

Let $\delta = \min(\delta_1, \delta_2)$. If $||Q - P|| < \delta$ and $Q \in A$, then

$$\begin{split} \|(f+g)(Q) - L - M\| &= \|(f(Q) - L) + (g(Q) - M)\| \\ &\leq \|(f(Q) - L)\| + \|(g(Q) - M)\| \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{split}$$

where we applied the triangle inequality to get from the second line to the third line. This is (1). (2-4) have similar proofs.

Definition 8.9. Let $A \subset \mathbb{R}^n$ and let $P \in A$. If $f: A \longrightarrow \mathbb{R}^m$ is a function, then we say that f is continuous at P, if

$$\lim_{Q \to P} f(Q) = f(P).$$

We say that f is continuous, if it continuous at every point of A.

Theorem 8.10. If $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is a polynomial function, then f is continuous.

A similar result holds if f is a rational function (a quotient of two polynomials).

Example 8.11. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by $f(x,y) = x^2 + y^2$ is continuous.

Sometimes Larry is very lucky:

Example 8.12. Does the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x - y},$$

exist? Here the domain of f is

$$A = \{ (x, y) \in \mathbb{R}^2 | x \neq y \}.$$

Note (0,0) is a limit point of A. Note that if $(x,y) \in A$, then

$$\frac{x^2 - y^2}{x - y} = x + y,$$

so that

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x - y} = \lim_{(x,y)\to(0,0)} x + y = 0.$$

So the limit does exist.

Norman likes the following result:

Proposition 8.13. Let $A \subset \mathbb{R}^n$ and let $B \subset \mathbb{R}^m$. Let $f: A \longrightarrow B$ and $g \colon B \longrightarrow \mathbb{R}^l$.

Suppose that P is a limit point of A, L is a limit point of B and

$$\lim_{Q \to P} f(Q) = L \qquad and \qquad \lim_{M \to L} g(M) = E.$$

Then

$$\lim_{Q \to P} (g \circ f)(Q) = E.$$

Proof. Let $\epsilon > 0$. We may find $\delta > 0$ such that if $||M - L|| < \delta$, and $M \in B$, then $||g(M) - E|| < \epsilon$. Given $\delta > 0$ we may find $\eta > 0$ such that if $||Q - P|| < \eta$ and $Q \in A$, then $|f(Q) - L|| < \eta$. But then if $||Q-P|| < \eta$ and $Q \in A$, then $M = f(Q) \in B$ and $||M-L|| < \delta$, so that

$$||(g \circ f)(Q) - E|| = ||g(f(Q)) - E||$$

$$= ||g(M) - E||$$

$$< \epsilon.$$

Example 8.14. Does

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

exist? The answer is no.

To show that the answer is no, we suppose that the limit exists. Suppose we consider restricting to the x-axis. Let

$$f: \mathbb{R} \longrightarrow \mathbb{R}^2,$$

be given by $t \longrightarrow (t,0)$. As f is continuous, if we compose we must get a function with a limit,

$$\lim_{t \to 0} \frac{0}{t^2 + 0} = \lim_{t \to 0} 0 = 0.$$

Now suppose that we restrict to the line y = x. Now consider the function

$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$

be given by $t \longrightarrow (t, t)$. As f is continuous, if we compose we must get a function with a limit,

$$\lim_{t \to 0} \frac{t^2}{t^2 + t^2} = \lim_{t \to 0} \frac{1}{2} = \frac{1}{2}.$$

The problem is that the limit along two different lines is different. So the original limit cannot exist.

Example 8.15. Does the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2},$$

exist? Let us use polar coordinates. Note that

$$\frac{x^3}{x^2 + y^2} = \frac{r^3 \cos^3 \theta}{r^2} = r \cos^3 \theta.$$

So we guess the limit is zero.

$$\lim_{(x,y)\to(0,0)} \left| \frac{x^3}{x^2 + y^2} \right| = \lim_{r\to 0} \left| r \cos^3 \theta \right|$$

$$\leq \lim_{r\to 0} |r| = 0.$$

Example 8.16. Does the limit

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^2+z^2},$$

exist? Same trick, but now let us use spherical coordinates.

$$\begin{split} \lim_{(x,y,z)\to(0,0,0)} |\frac{xyz}{x^2+y^2+z^2}| &= \lim_{\rho\to 0} |\frac{\rho^3\cos^2\phi\sin\phi\cos\theta\sin\theta}{\rho^2}| \\ &= \lim_{\rho\to 0} |\rho\cos^2\phi\sin\phi\cos\theta\sin\theta| \\ &\leq \lim_{\rho\to 0} |\rho| = 0. \end{split}$$

Sometimes Norman needs to restrict to more complicated curves than just lines:

Example 8.17. Does the limit

$$\lim_{(x,y)\to(0,0)}\frac{y}{y+x^2},$$

exist? If we restrict to the line $t \longrightarrow (at, bt)$, then we get

$$\lim_{t \to 0} \frac{bt}{bt + a^2t^2} = \lim_{t \to 0} \frac{b}{b + at} = 1.$$

But if we restrict to the conic $t \longrightarrow (t, at^2)$, then we get

$$\lim_{t \to 0} \frac{at^2}{at^2 + t^2} = \lim_{t \to 0} \frac{a}{1 + a} = \frac{a}{1 + a},$$

and the limit changes as we vary a, so that the limit does not exist.

Note that if we start with

$$\frac{y}{y+x^d},$$

then Norman even needs to use curves of degree d,

$$t \longrightarrow (t, at^d).$$