

SPECIFICATION SHEET

MODEL NAME	CO2 SENSOR (RX-9, RX-9 Simple)
PART NUMBER	EX-NN-20123VN5KA (Various)
CUSTOMER NAME	-
CUSTOMER PART NUMBER	
DATE	2018.11.30
REMARK	R04(19.09.30)
SOFTWARE VERSION	-
SOFTWARE CHECKSUM	-

Features

- Electrochemical type CO₂ gas sensor
- Solid state sensor
- Temperature compensate sensor
- High selectivity
- High reliability
- Fast response
- Super compact size
- Suitable to indoor environment
- 4 Pin, 2.0 mm pitch pin header

Detecting Gas

Carbon dioxide gas

Sensor Series

- RX-9 Simple: 2CH Analog output, sensor, to sense freshness state of indoor
- RX-9: 2CH Analog output, sensor with QR code, QR code contains factory calibration information, user can use this data to calibrate the sensor

Application

- Air cleaner
- Air conditioner
- Diffuser
- Climate control system
- Total heat exchanger
- Security
- Home automation
- Set-top box
- Lighting
- Dash-Cam
- Portable sensor box

1. DATA SHEET

MODEL NAME	CO ₂ SENSOR (RX-9, RX-9 Simple)		
PART NUMBER	EX-NN-20123VN5KA (Various)		
DIMENSION	20 x 12 (mm ²)		
CO. CAS DETECTION DANCE	RX-9: 400~5,000 (ppm range could be changed by client's need)		
CO ₂ GAS DETECTION RANGE	RX-9 Simple: 3 to 5 step of freshness output		
COMMUNICATION	Analog voltage output (Default: 2CH, Simple mode: 1CH)		
ADDITION	Carbon dioxide concentration display		
APPLICATION	General Purpose		

(1) Dimension

• Small Sensor Module, 20 x 12 x 6.45 (L x W x H, mm)

• Connector: 2.0 mm pin header 4 pin

General Tolerance (mm)				
Linear	±0.3			
Radius	±0.5			

Nov. 2018

(2) Sensor & electrical performance specification ($T_a = 25$ °C)

Pa	rameters	Condition	Symbol	Min	Тур	Max	Unit
Gas	Target gas	-	T_Gas		CO ₂		-
Data	Sensor type	-	EC		Electrochemical		
	Detection range	-	DD_R		400-5,000		ppm
	Resolution	-	D_R		1		ppm
	Accuracy ¹⁾	25°C 50%RH	RX-9 Simple	-20	-	20	%
		After warm-up	RX-9	-10	-	10	
Time	Response	25℃ 50%RH In 1 m³ Chamber with circulation	T_Res		1 min		
	Warm-up	-	T_{WU}		3	30	min
	Life-time	-	T_{LT}		10 years		-
Power	Input	RX-9 Simple		3.2	3.3	3.4	V
		RX-9	V_{IN}	3.2	3.3	3.4	V
	Current Consumption	-	P _A	-	0.12	0.15	А
	Warm-up consumption	-	P_{W}	-	0.5	0.8	W
Output	Interface	RX-9 Simple	0	Analog o	utput, 2CH or 1CH	l available	V
	connections	RX-9	O _C	A	V		
	Connector	-	CNT (2.0	mm x 4 pin head	der	-
Ambient	Operating Temp	-	O _T	-40	25	60	°C
	Operating Humidity	No condensing	Он	0	-	95	%
	Storage Temp	-	S _T	-40	25	85	°C
	Storage Humidity	Pack in moisture proof bag	S _H	5	-	90	%
Ca	libration	-	CAL	Not required and Self mode is ready. Self mode algorithm is provided by manufacturer. User must code the algorithm as instruction.			-

¹⁾ Accuracy: Accuracy can be measured after 24 ~ 48 hours with auto calibration.

Nov. 2018

EXSEN EXSEN Inc.

(3) Sensor characteristic graph

Fig. 1 Accuracy by temperature

Fig. 2 Required aging time by storage time

Fig. 3 Accuracy by Humidity

Fig. 4 Fluctuation by temperature changing

Nov. 2018

2. Terminal descriptions

- Connector

Model name	Maker	Туре	Pin no	Pin to Pin	
2.0 mm pitch pin	Various	Mole	4	1~4	
header	Various	Male	4	1~4	

Pin No.	Symbol		Description		
1	V RX-9		V RX-9		Vin, 3.3V, Voltage Input
	Simple				
		RX-9 Vin, 3.3V, Voltage Input			
2	G		Ground		
3	E		E		Voltage output, Sensor raw signal, Electromotive Force
4	Т		Voltage output, NTC Thermistor signal for temperature		
			compensation		

TEGV

3. Communication descriptions

Please Contact to EXSEN or local distributor. Protocol and Algorithm is provided by another documents. RX-9 needs 2 ADC CH to transfer sensor data. Please check the master system it has spare 2 ADC CH.

Sample Code: https://github.com/EXSEN/RX-9

4. QR Code information for RX-9

write the calibration factor to master

RX-9 have 2 mode.

First of two is RX-9 Simple.

RX-9 Simple can be used for freshness output and it has lower accuracy compare with RX-9.

Two of two is RX-9

To enhance accuracy RX-9 use QR code. It comprised with calibration information on the back side of sensor. Add calibration information to MCU to calculate the concentration of carbon dioxide. QR code comprised with 22 digits. For example, it is 15742214167K0544CAB07A.

1574 is calibration factor A

A is calculated in co2 calculation formula as 157.4

2214 is calibration factor B

B is calculated in co2 calculation formula as 22.14

167 is Temperature compensation factor.

167 is calculated in co2 calculation formula as 1.67

K0544CAB07A is serial number.

To use rx-9 sensor to your system, you should have QR-code reader and writing system to

Nov. 2018

5. Freshness output of RX-9 Simple

RX-9 simple module can be used for output of freshness. The number of steps is calculated by user and EXSEN provide the algorithm to calculate it. Normally EXSEN recommend 3 to 5 steps. Very simple algorithm is used for this.

If your system must display concentration of carbon dioxide as ppm, use RX-9 or digital communication available module like EX-14 or HX-105N. but if it is enough to display it as steps of freshness, RX-9 simple is good enough and it is very cost effective selection.

6. Assembly Guide

1. distance between sensor and inner surface

Ds is required distance between sensor and inner surface. Avoiding ESD from outer surface, Ds is needed. Ds is required over 10 mm from inner surface.

$$D_s \ge 10 \text{ mm}$$

Nov. 2018

2. Preventing rapid air flow

>0.5 m/s wind can take a heat from the sensor. Heat loss can make transition on sensing. So the sensor should be installed in separated space from rapid air flow of fan. At same reason, another heat source should be separated from sensor. (Ex: Power source or heating type sensor).

 \times Air flow: > 0.5 m/s

3. Air hole guide

Carbon dioxide gas can be diffused easily. So, air hole is needed but it is not important.

- Air hole size, location is not important. If the product has another hole on outer surface, don't make more holes for this.
- Don't seal the product fully. Make sensor can breathe.

Nov. 2018

7. Reliability Test Result for RX-9

1. Thermal Shock Test

- Ambient Condition: -40°C 30 min, 85°C 30 min, 150 cycles

- Electric Condition: No Operation

- Sample No: 30 ea

- Pass Condition: Operation-able, No Crack on device

Sample no.	Result	Sample no.	Result	Sample no.	Result
1	Pass	11	Pass	21	Pass
2	Pass	12	Pass	22	Pass
3	Pass	13	Pass	23	Pass
4	Pass	14	Pass	24	Pass
5	Pass	15	Pass	25	Pass
6	Pass	16	Pass	26	Pass
7	Pass	17	Pass	27	Pass
8	Pass	18	Pass	28	Pass
9	Pass	19	Pass	29	Pass
10	Pass	20	Pass	30	Pass

2. Operating Endurance Test

Ambient Condition: 25°C, 1000 hrElectric Condition: 3.3V (<±0.1V)

- Sample No: 30 ea

Sample no.	Res	sult	Sample no.	Res	Result		
Sample no.	ppm	%	Sample 110.	ppm	%		
1	999	-2.1%	16	982	-3.7%		
2	981	-3.8%	17	970	-4.9%		
3	1009	-1.1%	18	951	-6.8%		
4	951	-6.8%	19	1028	0.8%		
5	1000	-2.0%	20	967	-5.2%		
6	1011	-0.9%	21	959	-6.0%		
7	1024	0.4%	22	1028	0.8%		
8	984	-3.5%	23	1030	1.0%		
9	958	-6.1%	24	988	-3.1%		
10	967	-5.2%	25	1018	-0.2%		
11	1025	0.5%	26	1041	2.1%		
12	1022	0.2%	27	992	-2.7%		
13	967	-5.2%	28	999	-2.1%		
14	1022	0.2%	29	963	-5.6%		
15	993	-2.6%	30	963	-5.6%		

Nov. 2018

3. High Temperature High Humidity Life Test

- Ambient Condition: 85°C, 85%, 500 hr

- Electric Condition: Operation

- Sample No: 30 ea

- Pass Condition: After Test, apply 400 ppm CO₂ gas with Air balance for 5 days to recover.

Then measure the CO₂ gas concentration under 1000 ppm of CO₂ (ppm tolerance: <±10%)

@995 ppm

Sample no.	Res	sult	Sample no.	Res	sult
Sample no.	ppm	%	Sample no.	ppm	%
1	978	-1.7%	16	1062	6.7%
2	1039	4.4%	17	971	-2.4%
3	957	-3.8%	18	1067	7.2%
4	903	-9.2%	19	972	-2.3%
5	977	-1.8%	20	933	-6.2%
6	1066	7.1%	21	1035	4.0%
7	928	-6.7%	22	1036	4.1%
8	1057	6.2%	23	1028	3.3%
9	984	-1.1%	24	1078	8.3%
10	973	-2.2%	25	1054	5.9%
11	968	-2.7%	26	992	-0.3%
12	976	-1.9%	27	1020	2.5%
13	971	-2.4%	28	1047	5.2%
14	1006	1.1%	29	1054	5.9%
15	967	-2.8%	30	943	-5.2%

4. ESD(HBM)

- Ambient Condition: 25°C

- Electric Condition: No Operation, HBM: 2 kV, 3 times each pin

- Sample No: 30ea

- Pass Condition: Operation-able

Sample no.	Result	Sample no.	Result	Sample no.	Result
1	Pass	11	Pass	21	Pass
2	Pass	12	Pass	22	Pass
3	Pass	13	Pass	23	Pass
4	Pass	14	Pass	24	Pass
5	Pass	15	Pass	25	Pass
6	Pass	16	Pass	26	Pass
7	Pass	17	Pass	27	Pass
8	Pass	18	Pass	28	Pass
9	Pass	19	Pass	29	Pass
10	Pass	20	Pass	30	Pass

Nov. 2018

5. Gas Exposure Test

- Ambient Condition: 25°C, 50%RH- Electric Condition: Operation

- Sample No: 150 ea

- Pass Condition: @500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 ppm

ppm Tolerance: ±10% at each CO₂ concentration

Sample No.	Result								
1	PASS	31	PASS	61	PASS	91	PASS	121	PASS
2	PASS	32	PASS	62	PASS	92	PASS	122	PASS
3	PASS	33	PASS	63	PASS	93	PASS	123	PASS
4	PASS	34	PASS	64	PASS	94	PASS	124	PASS
5	PASS	35	PASS	65	PASS	95	PASS	125	PASS
6	PASS	36	PASS	66	PASS	96	PASS	126	PASS
7	PASS	37	PASS	67	PASS	97	PASS	127	PASS
8	PASS	38	PASS	68	PASS	98	PASS	128	PASS
9	PASS	39	PASS	69	PASS	99	PASS	129	PASS
10	PASS	40	PASS	70	PASS	100	PASS	130	PASS
11	PASS	41	PASS	71	PASS	101	PASS	131	PASS
12	PASS	42	PASS	72	PASS	102	PASS	132	PASS
13	PASS	43	PASS	73	PASS	103	PASS	133	PASS
14	PASS	44	PASS	74	PASS	104	PASS	134	PASS
15	PASS	45	PASS	75	PASS	105	PASS	135	PASS
16	PASS	46	PASS	76	PASS	106	PASS	136	PASS
17	PASS	47	PASS	77	PASS	107	PASS	137	PASS
18	PASS	48	PASS	78	PASS	108	PASS	138	PASS
19	PASS	49	PASS	79	PASS	109	PASS	139	PASS
20	PASS	50	PASS	80	PASS	110	PASS	140	PASS
21	PASS	51	PASS	81	PASS	111	PASS	141	PASS
22	PASS	52	PASS	82	PASS	112	PASS	142	PASS
23	PASS	53	PASS	83	PASS	113	PASS	143	PASS
24	PASS	54	PASS	84	PASS	114	PASS	144	PASS
25	PASS	55	PASS	85	PASS	115	PASS	145	PASS
26	PASS	56	PASS	86	PASS	116	PASS	146	PASS
27	PASS	57	PASS	87	PASS	117	PASS	147	PASS
28	PASS	58	PASS	88	PASS	118	PASS	148	PASS
29	PASS	59	PASS	89	PASS	119	PASS	149	PASS
30	PASS	60	PASS	90	PASS	120	PASS	150	PASS

8. Cautions

1. Moisture, Gas-Proof Package

1.1 When moisture or interfering gas is absorbed into the sensor module it may cause malfunction. There is a possibility that may cause broad ppm tolerance of sensor. but normally sensor module can self-calibrated after 1 day. For this reason, the sensor module is used to keep moisture or interfering gas to minimum

2. Storage Conditions

2.1 Before/After opening the packing: The sensor module should be kept at 30°C or less and 60%RH or less. The sensor module should be used within 3 months. When storing the sensor module, the cap sealing tape is should be attached.

Nov. 2018

- 2.2 EXSEN sensor is sensitive to ambient condition while storing, if the sensor module exposed to air direct w/o cap sealing tape, the sensor module should be operated for 4 days after that the sensor self-calibrated at clean air.
- 2.3 Please avoid rapid transition in ambient temperature, humidity, interfering gas, especially in high humidity environments where condensation can occur.

3. Handling

- 3.1 The sensor module is very sensitive to human touching. Don't touch the sensor pin w/o glove. it may occur the sensor malfunction.
- 3.2 The sensor module is temperature compensation device, so don't apply rapid transition in temperature by conduction, convection, radiation. rapid temperature transition can make sensor output ppm fluctuation.
- 3.3 The sensor could be damaged from high concentrated interfering gas. For example, ethanol Isopropyl alcohol or solvent to clean the PCB could be harm to sensor.
- 3.4 PCB coating solution or resin is harm to sensor. While curing to PCB coating, the resin outgasses the interfering gas to sensor. It damages to sensor sensitivity. Occasionally, the damage works permanently. If the coating is required to use the sensor, seal the top of sensor firmly.

4. Initializing of sensor (warm-up)

- 4.1 The sensor takes 5 minutes to initialize their internal components. The sensor is basically heating device. so, the initializing means warming up the device to sense the carbon dioxide.
- 4.2 The accuracy depends on the warming-up time. The sensor shows ±25% deviation at 5 min after starting and ±15% at 10 min.

5. Auto Calibration

- 5.1 The sensor is monitored their output by program of MCU. the MCU calibrate the baseline of sensor output by 1 day.
- 5.2 It is required to auto-calibrate, the sensor should be exposed to clean atmosphere at least 5 min/day, because the sensor learns the baseline of clean air.
- 5.3 The sensor shows reliable sensing data after 1 auto-calibration. Because storage condition of sensor could change the baseline of sensor at first. But this symptom is calibrated after 1 day by auto calibration
- 5.4 After reliability test, the sensor should be exposed to clean air at least 3 days. The harmful environment changes the sensor baseline. So, give enough time to sensor to calibrate.

6. Temperature changing

- 6.1 Rapid temperature changing makes signal fluctuation to sensor output. The fluctuation is stabilized soon when the temperature is stabilized.
- 6.2 The temperature changing is caused by convection, heat conduction, and thermal radiation.

6.3

FIG. The convection model of temperature changing for sensor

RX-9 output data, @400 ppm, Ambient Temp = 25°C

FAN speed	T1 (s)	T2 (s)	T3 (s)	T4 (s)	Δppm (%)	P1 (%)	P2 (%)
High	200	400	200	300	10	12	10
Low	175	300	200	300	8	10	8

9. Revision history

Revision No.	Date (yy.mm.dd)	Description	Page	Note
00	18.11.30	Initiate the documents	All	Yk
01	19.02.15	Add QR code and reliability test result	All	Yk
02	19.06.27	Add sensor characteristic graph	4	Yk
03	19.07.03	Add RX-9 simple step description, assembly guide	7,8,9	Yk
04	19.09.30	Modify QR code structure, Add revision history	6,14	Yk

Nov. 2018

Notice

EXSEN Inc. (EXSEN) reserves the right to make changes to the products contained in this document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised to contact EXSEN to obtain the latest product information before placing orders or designing EXSEN products into systems.

EXSEN assumes no responsibility for the use of any products or circuits described in this document or customer product design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that the circuits are free of patent infringement. EXSEN further makes no claim as to the suitability of its products for any particular purpose, nor does EXSEN assume any liability arising out of the use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

EXSEN, the EXSEN logo are registered trademarks of EXSEN.