

# 功能聚类 - GSVA 自定义基因集

| IDs  | s1           | s2            | s3            | s4           | s5           |
|------|--------------|---------------|---------------|--------------|--------------|
| gs1  | -0.192655151 | -0.0860944286 | -0.1013756794 | -0.260717481 | 0.145957458  |
| gs2  | 0.148577606  | -0.0204790697 | 0.0168391070  | 0.114559924  | -0.112953383 |
| gs3  | 0.078764819  | -0.2105647580 | -0.1478470438 | 0.024141368  | 0.164408619  |
| gs4  | -0.216089322 | -0.3965959406 | -0.0244867979 | 0.123615377  | 0.333483397  |
| gs5  | -0.048289052 | 0.0414135075  | -0.0694476395 | 0.010819867  | 0.065202501  |
| gs6  | 0.037988818  | -0.1819210076 | -0.1111575263 | 0.275762114  | -0.058125316 |
| gs7  | -0.279400679 | -0.3016609984 | -0.1763779665 | -0.167907396 | -0.147600401 |
| gs8  | 0.223400377  | 0.1340883058  | 0.0905533832  | 0.053868679  | -0.076058782 |
| gs9  | -0.098771793 | 0.0551448150  | -0.0937835062 | 0.081060991  | -0.087523918 |
| gs10 | 0.049315000  | 0.0002629903  | -0.0981344049 | -0.122054051 | -0.105298167 |
| gs11 | -0.095474673 | -0.1071615776 | 0.1354543509  | -0.081089320 | 0.037202338  |
| gs12 | -0.093517051 | 0.0069120972  | 0.1259126580  | 0.145737077  | -0.075640843 |

网址: <a href="https://www.xiantao.love">https://www.xiantao.love</a>



更新时间: 2023.11.09



#### 目录

| 基本概念  |
|-------|
| 应用场景  |
| 主要结果  |
| 数据格式  |
| 参数说明  |
| 分析参数  |
| 结果说明  |
| 主要结果  |
| 方法学 9 |
| 如何引用  |
| 党员问题  |





## 基本概念

➤ 基因集变异分析(Gene set variation analysis, GSVA): 是一种非参数、无监督的算法,从单个基因作为特征的表达矩阵,转化为特定基因集作为特征的表达矩阵的过程。

### 应用场景

与 GSEA 不同,GSVA 不需要预先对样本进行分组、或者对分子/基因排序,该 算法默认处理表达量数据(log 化)或者原始 count 计数数据,从而计算每个样本中特定基因集的富集分数。

如果研究对象非功能基因或者是希望自定义特定集合,可以使用自定义基因集进行 GSVA 分析。



## 主要结果

| À  | Α    | В           | С           | D           | E           | F           | G           |
|----|------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1  | IDs  | s1          | s2          | s3          | s <b>4</b>  | s5          | s6          |
| 2  | gs1  | -0.19265515 | -0.08609443 | -0.10137568 | -0.26071748 | 0.14595746  | -0.00388346 |
| 3  | gs2  | 0.14857761  | -0.02047907 | 0.01683911  | 0.11455992  | -0.11295338 | -0.07945878 |
| 4  | gs3  | 0.07876482  | -0.21056476 | -0.14784704 | 0.02414137  | 0.16440862  | 0.26612282  |
| 5  | gs4  | -0.21608932 | -0.39659594 | -0.0244868  | 0.12361538  | 0.3334834   | 0.56707211  |
| 6  | gs5  | -0.04828905 | 0.04141351  | -0.06944764 | 0.01081987  | 0.0652025   | -0.08705512 |
| 7  | gs6  | 0.03798882  | -0.18192101 | -0.11115753 | 0.27576211  | -0.05812532 | -0.02287783 |
| 8  | gs7  | -0.27940068 | -0.301661   | -0.17637797 | -0.1679074  | -0.1476004  | 0.23509886  |
| 9  | gs8  | 0.22340038  | 0.13408831  | 0.09055338  | 0.05386868  | -0.07605878 | -0.08125558 |
| 10 | gs9  | -0.09877179 | 0.05514481  | -0.09378351 | 0.08106099  | -0.08752392 | 0.1285223   |
| 11 | gs10 | 0.049315    | 0.00026299  | -0.0981344  | -0.12205405 | -0.10529817 | -0.25895853 |
| 12 | gs11 | -0.09547467 | -0.10716158 | 0.13545435  | -0.08108932 | 0.03720234  | 0.0486299   |
| 13 | gs12 | -0.09351705 | 0.0069121   | 0.12591266  | 0.14573708  | -0.07564084 | -0.10040315 |

▶ 表格中的行名(第一列)代表基因集名称,列(从第二列开始)代表样本,数值代表每个样本在对应基因集的富集得分。

结果包含所有满足条件(基因集内定义的分子数目>2 且分子存在于表达量数据矩阵中)的基因集的样本富集得分。可以作为组间比较(limma)的输入数据,从而评估不同基因集在不同组间的富集程度(后续会开发 limma 差异分析模块)。



## 数据格式

#### 表达量

| 1  | А   | В        | С        | D        | E        | F        | G        |
|----|-----|----------|----------|----------|----------|----------|----------|
| 1  | IDs | s1       | s2       | s3       | s4       | s5       | s6       |
| 2  | g1  | -0.59808 | 1.636706 | -0.40887 | 0.178157 | 1.486084 | 0.614145 |
| 3  | g2  | 0.379568 | 1.304403 | -1.29235 | -1.17344 | 0.890876 | 1.621795 |
| 4  | g3  | 1.921686 | -1.0319  | 0.458201 | 1.387484 | -0.4117  | -1.34292 |
| 5  | g4  | -0.29105 | 0.429697 | 0.678384 | -1.47682 | 1.05833  | -1.21538 |
| 6  | g5  | 1.862092 | 1.22481  | 0.491899 | 0.711793 | 0.981387 | 0.697307 |
| 7  | g6  | -2.29404 | -1.06946 | -0.52327 | 0.059466 | 0.482005 | 0.951184 |
| 8  | g7  | -0.80498 | -0.51614 | 0.904459 | -0.35037 | -1.57431 | -0.69293 |
| 9  | g8  | -0.42672 | 0.749551 | 0.048787 | -1.27132 | -0.21031 | 0.887832 |
| 10 | g9  | -0.85795 | 0.852707 | 0.357472 | -0.35265 | 0.057828 | 0.444108 |
| 11 | g10 | 0.248116 | -1.44779 | -1.02924 | -1.05662 | 1.486841 | -1.39108 |
| 12 | g11 | -1.39174 | -1.11407 | -0.5052  | 0.887208 | 1.110899 | -0.74754 |
| 13 | g12 | 1.156562 | -0.0013  | -0.70316 | 0.022295 | 0.760419 | -1.01562 |

#### 数据要求:

- ➤ 数据至少有 2 列以上,至少需要 100 行数据。第一行为样本编号,第一列为分子 ID (基因名,需要跟自定义基因集数据的分子能匹配上),不能含有缺失、重复及特殊字符。数值部分为不同分子在各样本中的表达量,功能基因可以是 log(value)或 raw count。支持 RNAseq 数据或者是芯片数据。
- ▶ 最多支持 500 列, 60000 行。若验证数据时返回报错,需要在上传数据内进行相应的调整,然后再上传数据。



#### 自定义基因集

| -1 | Α     | В     | С     | D     | E     | F     | G     | Н     |
|----|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | gs1   | gs2   | gs3   | gs4   | gs5   | gs6   | gs7   | gs8   |
| 2  | g9397 | g3131 | g5254 | g5403 | g7607 | g5384 | g1444 | g4957 |
| 3  | g7429 | g9553 | g9596 | g8936 | g2756 | g7801 | g9482 | g9250 |
| 4  | g1852 | g3890 | g1463 | g5121 | g4768 | g1196 | g7871 | g411  |
| 5  | g4608 | g975  | g5210 | g4993 | g4090 | g582  | g7776 | g1014 |
| 6  | g4861 | g891  | g1119 | g6095 | g3348 | g3335 | g5459 | g2092 |
| 7  | g4729 | g1807 | g8958 | g7116 | g5567 | g5449 | g9127 | g5231 |
| 8  | g9372 | g242  | g7726 | g7017 | g4137 | g8951 | g6798 | g2312 |
| 9  | g6251 | g5173 | g1372 | g1533 | g437  | g4143 | g641  | g8179 |
| 10 | g5860 | g3968 | g1925 | g1843 | g2603 | g4242 | g5435 | g1862 |
| 11 | g6942 | g9499 | g7265 | g5060 | g474  | g9215 | g5054 | g5327 |
| 12 | g1786 | g2030 | g7186 | g9400 | g4519 | g5386 | g774  | g5339 |
| 13 | g6295 | g9078 | g9291 |       | g7482 | g7257 | g8847 | g9680 |
| 14 | g1751 | g6007 | g6745 |       | g573  | g2064 | g3282 | g8155 |
| 15 | g7777 | g1863 | g5393 |       | g815  | g6166 | g2203 | g9989 |
| 16 | g536  | g8570 | g2183 |       | g2048 | g4397 | g3803 | g2238 |
| 17 | 0.00  | g1123 | g3378 |       | g4899 | g9914 | 130   | g4379 |
| 18 |       | g1426 | g9895 |       | g9694 | g7514 |       | g1674 |
| 19 |       | g82   | g480  |       | g6927 | g9677 |       | g6767 |
| 20 |       | g5255 | g8900 |       | g1328 | g629  |       | g7893 |

#### 数据要求:

- ▶ 数据至少有1列以上,每一列至少需要2行数据。
- ▶ 第一行为自定义基因集名称,每一列为对应基因集的分子 ID 信息。数据应为字符类型,并且要保证基因集中的分子 ID 与表达量数据中的第一列分子 ID 至少2个以上匹配,否则无法进行富集分析。
- ▶ 最多支持 100 列, 10000 行。若验证数据时返回报错,需要在上传数据内进行相应的调整,然后再上传数据。

这里为任务式模块,提交任务后需要到历史记录中刷新并等待任务完成,(分析时间大概在几分钟左右,如果任务执行时间过长,刷新后任然在执行阶段,建议删除后重新提交。)



## 参数说明

(说明:标注了颜色的为常用参数。)

### 分析参数



- ➤ **富集方法**:估计每个样本基因集富集分数的方法,默认 gsva,可选 <u>ssgsea</u>。 只对一个样本进行富集分析时,应选择 ssgsea 方法。当样本>1 且选择 gsva 方法时,数据中不能存在行全为同一个数值,即行的方差不能为 0。
- ▶ 概率分布:累积分布函数中非参数估计样本间表达水平的方法,仅对 gsva 方法起作用(微阵列或 CPM、RPKM、TPM 测序数据使用 Gaussian,测序 count 数据使用 Poisson)。



# 结果说明

### 主要结果

#### GSVA-自定义基因集

GSVA分析:基因集变异分析(Gene set variation analysis, GSVA), 从单个基因作为特征的表达矩阵,转化为特定基因集作为特征的表达矩阵的过程。 · 页面只展示前5的结果,所有结果请下载结果后进行查看。

| IDs  | s1           | s2            | s3            | s4           | s5           |
|------|--------------|---------------|---------------|--------------|--------------|
| gs1  | -0.192655151 | -0.0860944286 | -0.1013756794 | -0.260717481 | 0.145957458  |
| gs2  | 0.148577606  | -0.0204790697 | 0.0168391070  | 0.114559924  | -0.112953383 |
| gs3  | 0.078764819  | -0.2105647580 | -0.1478470438 | 0.024141368  | 0.164408619  |
| gs4  | -0.216089322 | -0.3965959406 | -0.0244867979 | 0.123615377  | 0.333483397  |
| gs5  | -0.048289052 | 0.0414135075  | -0.0694476395 | 0.010819867  | 0.065202501  |
| gs6  | 0.037988818  | -0.1819210076 | -0.1111575263 | 0.275762114  | -0.058125316 |
| gs7  | -0.279400679 | -0.3016609984 | -0.1763779665 | -0.167907396 | -0.147600401 |
| gs8  | 0.223400377  | 0.1340883058  | 0.0905533832  | 0.053868679  | -0.076058782 |
| gs9  | -0.098771793 | 0.0551448150  | -0.0937835062 | 0.081060991  | -0.087523918 |
| gs10 | 0.049315000  | 0.0002629903  | -0.0981344049 | -0.122054051 | -0.105298167 |
| gs11 | -0.095474673 | -0.1071615776 | 0.1354543509  | -0.081089320 | 0.037202338  |
| gs12 | -0.093517051 | 0.0069120972  | 0.1259126580  | 0.145737077  | -0.075640843 |
| gs13 | 0.002162300  | -0.3645511747 | 0.0575838479  | -0.281510814 | 0.173432586  |
|      |              |               |               |              |              |

富集得分表.xlsx

这里为任务式模块,提交任务后需要到历史记录中刷新并等待任务完成,(<u>分析</u>时间大概在 几分钟 左右,如果任务执行时间过长,刷新后任然在执行阶段,建 议删除后重新提交。)任务完成后,提供 Excel 格式下载。



### 方法学

所有分析和可视化均在 R 4.2.1 中进行

涉及的R包: GSVA包

处理过程:

首先根据表达谱矩阵基因的累计密度分布对基因进行排序,对每一个基因集进行类似 K-S 检验的秩统计量计算,将表达矩阵转换成基因集富集打分(ES)矩阵,获得每个基因集对应每个样本的 GSVA 富集打分。





# 如何引用

生信工具分析和可视化用的是 R 语言,可以直接写自己用 R 来进行分析和可视化即可,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。





### 常见问题

1. 可以使用 Count 数据进行 GSVA 分析吗?

答:可以。

GSVA 不需要预先对样本进行分组、或者对分子/基因排序,该算法默认处理表达量数据(log 化)或者原始 count 计数数据,从而计算每个样本中特定基因集的富集分数。

(1) 按照【数据格式】要求,整理原始 count 计数数据即可。第一行为样本编号,第一列为分子 ID(基因名,<u>需要跟自定义基因集数据的分子能匹配上</u>)。如下图所示:



(2) gsva 方法进行富集分析时,需要选择【概率分布】参数,而针对原始 count 数据,算法建议使用 "Poisson"。

