In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('ggplot')
sns.set()
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
```

Mounted at /content/drive

In [3]:

```
#uploading the training dataset
acc_train = pd.read_csv("/content/drive/MyDrive/final_project/train.csv")
acc_train.head()
```

Out[3]:

	ID	Source	TMC	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	End_
0	A- 2017855	MapQuest	201.0	2	2018-07-19 20:30:23	2018-07- 19 21:14:11	34.153896	-118.275482	ı
1	A- 3340193	Bing	NaN	2	2020-12-27 13:22:48	2020-12- 27 15:02:42	40.261747	-75.250020	40.263
2	A- 3274372	Bing	NaN	2	2020-12-19 20:27:52	2020-12- 19 22:23:39	29.980875	-90.073829	29.981
3	A- 2782559	Bing	NaN	3	2016-09-27 17:29:27	2016-09- 27 23:29:27	39.018870	-77.102890	39.019
4	A- 3722269	Bing	NaN	2	2020-02-11 19:22:00	2020-02- 11 23:22:00	45.743940	-120.175670	45.743

In [4]:

```
acc_train.shape
```

Out[4]:

(2962779, 49)

In [5]:

acc_train.describe().T

Out[5]:

	count	mean	std	min	25%	50%
ТМС	1901648.0	208.348254	21.236047	200.00000	201.00000	201.00000
Severity	2962779.0	2.305150	0.533466	1.00000	2.00000	2.00000
Start_Lat	2962779.0	36.397790	4.964845	24.55527	33.52025	35.82550
Start_Lng	2962779.0	-95.466527	17.354510	-124.62380	-117.35660	-90.01895
End_Lat	1061131.0	36.898592	5.166983	24.57018	33.85400	37.35016
End_Lng	1061131.0	-98.597794	18.495270	-124.49780	-118.20730	-94.39028
Distance.mi.	2962779.0	0.336481	1.616485	0.00000	0.00000	0.00000
Number	1081417.0	6131.773288	12495.013510	1.00000	898.00000	2893.00000
Temperature.F.	2899590.0	61.488264	18.523924	-89.00000	49.00000	63.00000
Wind_Chill.F.	1634781.0	54.903686	22.720811	-89.00000	38.00000	58.00000
Humidity	2895631.0	65.663194	22.735045	1.00000	49.00000	68.00000
Pressure.in.	2909032.0	29.693540	0.864541	0.00000	29.64000	29.93000
Visibility.mi.	2893495.0	9.112050	2.818845	0.00000	10.00000	10.00000
Wind_Speed.mph.	2626594.0	7.903770	5.339578	0.00000	4.60000	7.00000
Precipitation.in.	1516143.0	0.012379	0.163746	0.00000	0.00000	0.00000

In [6]:

```
#checking how many nulls in each column
nulls_df = acc_train.isnull().sum(axis = 0).to_frame()
nulls_df = nulls_df.sort_values(by=0, ascending=False)
nulls_df[0] = round(nulls_df[0]/len(acc_train),3)
nulls_df
```

Out[6]:

	0
End_Lng	0.642
End_Lat	0.642
Number	0.635
Precipitation.in.	0.488
Wind_Chill.F.	0.448
ТМС	0.358
Wind_Speed.mph.	0.113
Visibility.mi.	0.023
Weather_Condition	0.023
Humidity	0.023
Temperature.F.	0.021
Wind_Direction	0.020
Pressure.in.	0.018
Weather_Timestamp	0.015
Airport_Code	0.002
Timezone	0.001
Zipcode	0.000
Sunrise_Sunset	0.000
Civil_Twilight	0.000
Nautical_Twilight	0.000
Astronomical_Twilight	0.000
City	0.000
Description	0.000
Country	0.000
Junction	0.000
Severity	0.000
Start_Time	0.000
End_Time	0.000
Turning_Loop	0.000
Traffic_Signal	0.000
Traffic_Calming	0.000
Stop	0.000
Station	0.000
Roundabout	0.000
Railway	0.000
No_Exit	0.000
Give_Way	0.000

0

```
        State
        0.000

        Crossing
        0.000

        Bump
        0.000

        Amenity
        0.000

        Start_Lat
        0.000

        Start_Lng
        0.000

        Distance.mi.
        0.000

        Street
        0.000

        Side
        0.000

        County
        0.000

        ID
        0.000
```

In [7]:

In [8]:

```
#changing the severity column so that anything
acc_train['Severity'] = (acc_train['Severity'] > 2) * 1
```

In [9]:

```
#for the column city, it has 101 rows missing which is a small number compared to the t
otal number of rows and it is going to be crucial for analysis later.
#same goes for sunrise_sunset column and description
acc_train.dropna(subset=['Sunrise_Sunset','City','Description'],inplace=True)
```

In [10]:

```
#getting some additional columns which may/may not be used
acc_train['Start_Time'] = pd.to_datetime(acc_train['Start_Time'])
acc_train['End_Time'] = pd.to_datetime(acc_train['End_Time'])
acc_train['day_of_Week'] = acc_train['Start_Time'].dt.dayofweek
acc_train['month'] = pd.DatetimeIndex(acc_train['Start_Time']).month
acc_train['year'] = pd.DatetimeIndex(acc_train['Start_Time']).year
acc_train['Hour'] = acc_train['Start_Time'].dt.hour
```

In [11]:

```
#Finding the top 10 cities and top 10 states with the maximum number of accidents
city_df = acc_train[['City','State' , 'Severity']]
by_state = city_df.groupby('State').agg({'City' : 'count'}).sort_values(by='City',ascen
ding=False)
by_state.rename(columns={"City":"count"},inplace=True)
by_state
```

Out[11]:

count

State	
CA	680772
TX	263389
FL	259261
sc	148563
NC	135593
NY	132605
PA	95472
VA	89540
IL	78036
OR	75787
GA	75090
MI	74219
MN	73800
ΑZ	65306
TN	61889
LA	56381
WA	52355
ОН	51134
MD	48789
NJ	48421
OK	45451
UT	40910
AL	39960
СО	37651
MA	30820
МО	27950
IN	26857
СТ	22813
NE	17615
KY	17226
WI	15025
IA	9803
RI	8999
NV	8429
KS	6821
NH	6012

count

State		
MS	5675	
DE	4808	
DC	4512	
NM	4481	
AR	3540	
ID	2986	
WV	2556	
MT	2354	
ME	1667	
VT	503	
WY	373	
ND	314	
SD	161	

In [12]:

```
#viewing the top 20 states.
state_graph = by_state.iloc[0:20,:]
plt.figure(figsize=(12,8))
sns.barplot(data=state_graph, y='count',x=state_graph.index, palette='cubehelix')
plt.ylabel("Number of Accidents")
plt.title("Top 20 States with the highest number of accidents")
```

Out[12]:

Text(0.5, 1.0, 'Top 20 States with the highest number of accidents')

In [13]:

```
#finding the order of most accident-prone cities
stat_df = acc_train[['State' , 'City', 'Severity']].groupby('City').count()
stat_df = stat_df.rename(columns = {'Severity' : 'Count'}).drop(columns=['State'],inpla
ce=False)
by_city = stat_df.sort_values(by='Count' , ascending = False)
by_city
```

Out[13]:

	Count
City	
Houston	80475
Los Angeles	64674
Charlotte	62284
Dallas	53993
Austin	49097
Fort Laramie	1
Midway Park	1
Turon	1
Sigourney	1
Rockleigh	1

11766 rows × 1 columns

In [14]:

```
city_graph = by_city.iloc[0:20,:]
plt.figure(figsize=(12,10))
sns.barplot(data=city_graph, y='Count',x=city_graph.index, palette='cubehelix')
plt.xticks(rotation=45)
plt.ylabel("Number of Accidents")
plt.title("Top 20 Cities with the highest number of accidents")
```

Out[14]:

Text(0.5, 1.0, 'Top 20 Cities with the highest number of accidents')

In [15]:

```
#plotting the frequencies of the accidents throughout different times
fig,(axis1,axis2) = plt.subplots(1,2,figsize=(14,5))
# plot for year
light palette = sns.color palette(palette='Set3')
year_color_map = [light_palette[4] for _ in range(5)]
year = acc train['year'].value counts()
years = axis1.bar(year.index.values , year, color=year_color_map , edgecolor = 'black')
axis1.spines[('top')].set_visible(False)
axis1.spines[('right')].set_visible(False)
axis1.set_xlabel("Years", fontdict = {'fontsize':12 , 'color':'MidnightBlue'} )
axis1.set_ylabel("No. of Accidents")
axis1.set_title('Accidents per Years', fontdict = {'fontsize':16 , 'color':'MidnightBlu
e'})
for p in axis1.patches :
    axis1.text(p.get_x() + p.get_width()/2,
            p.get_height() + 20000,
            '{:.2f}%'.format(p.get_height()/len(acc_train)*100),
            ha = "center",
            fontsize = 8, color='Blue')
#for month
month_color_map = [light_palette[0] for _ in range(5)]
month = acc train['month'].value counts()
months = axis2.bar(month.index.values , month, color=month_color_map , edgecolor = 'bla
ck')
axis2.spines[('top')].set_visible(False)
axis2.spines[('right')].set_visible(False)
axis2.set_xlabel("Months", fontdict = {'fontsize':12 , 'color':'MidnightBlue'} )
axis2.set_ylabel("No. of Accidents")
axis2.set title('Accidents per Months', fontdict = {'fontsize':16 , 'color':'MidnightBl
ue'})
for p in axis2.patches :
    axis2.text(p.get_x() + p.get_width()/2,
            p.get_height() + 20000,
            '{:.2f}%'.format(p.get height()/len(acc train)*100),
            ha = "center",
            fontsize = 8, color='Blue')
```


In [16]:

```
#checking growth in number of accidents for severity 0 and 1
plt.figure(figsize=(8,6))
sns.countplot(data=acc_train, x='year', hue='Severity', palette='Set2')
plt.ylabel('Number of accidents')
plt.title('Number of accidents from 2016 to 2020')
```

Out[16]:

Text(0.5, 1.0, 'Number of accidents from 2016 to 2020')

In []:

```
#checking growth in number of accidents for severity 0 and 1
plt.figure(figsize=(12,8))
sns.countplot(data=acc_train, x='month', hue='Severity', palette='bright')
plt.ylabel('Number of accidents')
plt.title('Number of accidents every month')
```

Out[]:

Text(0.5, 1.0, 'Number of accidents every month')

In []:

```
#hours
hour = acc_train['Hour'].value_counts().to_frame()
hour_labels = np.arange(24)

plt.figure(figsize=(12,8))
sns.lineplot(
    data=hour,
    x=hour.index, y="Hour", marker='o', dashes=False
)
plt.xlabel("Hour")
plt.xticks(hour_labels)
plt.ylabel("No. of accidents")
plt.title("Number of Accidents during the hours of the day",fontdict = {'fontsize':16 ,
'color':'MidnightBlue'})
```

Out[]:

Text(0.5, 1.0, 'Number of Accidents during the hours of the day')

Here, we see the peaks in the morning (around 8am) and another peak around 5pm. This is close to the rush hours, especially during the weekdays.

In []:

```
#days of the week
week_day = acc_train['day_of_Week'].value_counts().to_frame()
day_labels = np.arange(7)

plt.figure(figsize=(12,8))
sns.barplot(
    data=week_day,
        x=week_day.index, y="day_of_Week", palette='cubehelix')

plt.xlabel("Day of the Week")
plt.xticks(day_labels)
plt.ylabel("No. of accidents")
plt.title("Number of Accidents during the days of the week",fontdict = {'fontsize':16 ,
    'color':'MidnightBlue'})
```

Out[]:

Text(0.5, 1.0, 'Number of Accidents during the days of the week')

In []:

In [19]:

```
#since there are so many road features, but not too many to perform PCA on, I'm going t
  o try to analyze which ones are most important
  road_features = acc_train[["Amenity", "Bump", "Crossing", "Give_Way", "Junction", "No_E
  xit", "Railway", "Roundabout", "Station", "Stop", "Traffic_Calming", "Traffic_Signal",
  "Turning_Loop"]]
  road_df = road_features.sum().sort_values(ascending=False).to_frame().rename(columns={0
  :'count'})
  road_df

#plotting it on barplot
  plt.figure(figsize=(12,8))
  sns.barplot(data=road_df, x=road_df.index, y='count')
  plt.xticks(rotation=45)
  plt.ylabel("Number of Accidents")
  plt.title("Analyzing the road features")
```

Out[19]:

Text(0.5, 1.0, 'Analyzing the road features')

So this shows that accidents usually happened in places where there was a traffic signal, with a crossing and a junction.

In [20]:

acc_train.nunique()

Out[20]:

Severity	2
Start_Time	2628784
End_Time	2707188
Start_Lat	798384
Start_Lng	749983
Distance.mi.	13061
Description	1655596
Street	181216
Side	2
City	11766
County	1730
State	49
Zipcode	398476
Temperature.F.	826
Wind_Chill.F.	967
Humidity	100
Pressure.in.	1024
Visibility.mi.	83
Wind_Direction	24
Wind_Speed.mph.	147
Precipitation.in.	250
Weather_Condition	127
Amenity	2
Bump	2
Crossing	2
Give_Way	2
Junction	2
No_Exit	2
_ Railway	2
Roundabout	2
Station	2 2 2 2 2 2 2 2 2 2 2 2 2
Stop	2
Traffic_Calming	2
Traffic_Signal	2
Turning_Loop	1
Sunrise_Sunset	2
day_of_Week	7
month	12
year	5
Hour	24
dtype: int64	
21	

 $local host: 8889/nbc onvert/html/Stat 154/final_project/stat 154_final proj. ipynb? download=false$

In [21]:

```
weather_cond_df = acc_train['Weather_Condition'].value_counts(dropna=False)[0:15].to_fr
ame()

plt.figure(figsize=(12,8))
sns.barplot(data=weather_cond_df, x=weather_cond_df.index, y='Weather_Condition')
plt.xlabel("Weather Condition")
plt.ylabel("Number of Accidents")
plt.title("No. of accidents distribution by Weather condition")
plt.xticks(rotation=45)
```

Out[21]:

In [22]:

```
#number of null values per column
acc_train.isna().sum()
```

Out[22]:

Coverity	0
Severity Start Time	0
_	0
End_Time	0
Start_Lat	0
Start_Lng	0
Distance.mi.	0
Description	0
Street	0
Side	0
City	0
County	0
State	0
Zipcode	933
Temperature.F.	63185
Wind_Chill.F.	1327951
Humidity	67144
Pressure.in.	53742
Visibility.mi.	69279
Wind_Direction	58875
Wind_Speed.mph.	336173
Precipitation.in.	1446591
Weather_Condition	69140
Amenity	0
Bump	0
Crossing	0
Give_Way	0
Junction	0
No_Exit	0
Railway	0
Roundabout	0
Station	0
Stop	0
Traffic_Calming	0
Traffic_Signal	0
Turning_Loop	0
Sunrise_Sunset	0
day_of_Week	0
month	0
year	0
Hour	0
dtype: int64	ŭ
,	

In [23]:

```
#further dropping Precipitation and Wind_Chill with >1.3M missing values
acc_train.drop(columns=["Wind_Chill.F.", "Precipitation.in."], inplace=True)
```

In [24]:

```
#taking a Look at pressure and visibility
acc_train[["Pressure.in.", "Visibility.mi."]].describe().round(2)
```

Out[24]:

	Pressure.in.	Visibility.mi.
count	2908932.00	2893395.00
mean	29.69	9.11
std	0.86	2.82
min	0.00	0.00
25%	29.64	10.00
50%	29.93	10.00
75%	30.08	10.00
max	58.04	140.00

Data Preprocessing

In [27]:

```
#correlation matrix to determine if there are any highly related columns
correlation_mtx = acc_train.corr()

plt.figure(figsize=(18, 10))
sns.heatmap(correlation_mtx, vmin=-1, vmax=1, cmap="seismic", annot = True, fmt='.1g')
```

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f97fefb11d0>

Windchill and Humidity seem to be highly correlation(negative correlation).\ Turning Loop seems to have a missing correlation which turns out are all False values.\

```
In [ ]:
acc train["Description"].value counts()
Out[ ]:
A crash has occurred causing no to minimum delays. Use caution.
At I-15 - Accident.
1507
At I-5 - Accident.
1344
At I-405/San Diego Fwy - Accident.
1242
At I-605 - Accident.
1047
Lane blocked due to accident on PA-130 Sandy Creek Rd Northbound from PA-3
80 Frankstown Rd to Verona Rd.
Accident on I-5 Northbound before Exit 45 Poinsettia Ln. On the median.
Accident on US-29 Tryon St Westbound at Us-29 Access Rd.
Accident on 88th Ave Westbound at I-76.
Accident on CA-193 both ways at Kelsey Rd.
Name: Description, Length: 1655596, dtype: int64
In [ ]:
acc_train.columns
Out[ ]:
Index(['Severity', 'Start_Time', 'End_Time', 'Start_Lat', 'Start_Lng',
       'Distance.mi.', 'Description', 'Street', 'Side', 'City', 'County',
       'State', 'Zipcode', 'Temperature.F.', 'Humidity...', 'Pressure.i
n.',
       'Visibility.mi.', 'Wind_Direction', 'Wind_Speed.mph.',
       'Weather_Condition', 'Amenity', 'Bump', 'Crossing', 'Give_Way',
       'Junction', 'No_Exit', 'Railway', 'Roundabout', 'Station', 'Stop',
       'Traffic_Calming', 'Traffic_Signal', 'Turning_Loop', 'Sunrise_Sunse
t',
       'day of Week', 'month', 'year', 'Hour'],
      dtype='object')
In [ ]:
drop_again = ["End_Time", "Turning_Loop", 'Street', 'County', 'Zipcode', 'Start_Time', 'De
scription','Wind Direction']
X = acc_train.drop(columns=drop_again, inplace=False)
```

```
In [ ]:
```

```
print("rows with duplicates:", len(X.index))
X.drop_duplicates(inplace=True)
print("rows after duplicates are dropped:", len(X.index))
```

rows with duplicates: 2962674

rows after duplicates are dropped: 2861522

```
In [ ]:
```

```
for i in X.columns:
    print(i)
    display(X[i].value_counts())
    display(len(X[i].value_counts().index))
```

```
Severity
```

```
2034106
0
1
      827416
Name: Severity, dtype: int64
2
Start_Lat
37.808500
             452
33.876290
             410
33.941360
             387
33.744980
             375
33.781530
             367
39.872078
               1
29.711370
               1
35.468370
               1
45.779950
               1
41.520110
               1
Name: Start_Lat, Length: 798384, dtype: int64
798384
Start_Lng
-118.36830
              626
-118.28060
              602
-111.89100
              578
              555
-111.89130
-121.38290
              548
-95.16788
                1
-95.33212
                1
-82.37925
                1
                1
-76.71649
-83.91406
                1
Name: Start_Lng, Length: 749983, dtype: int64
749983
Distance.mi.
          1849222
0.000
0.010
           185463
0.020
             5883
0.001
             3841
0.008
             2721
6.760
                1
                1
8.498
9.533
                1
13.388
                1
12.610
                1
Name: Distance.mi., Length: 13061, dtype: int64
13061
```

Side

R 2343334 L 518188

Name: Side, dtype: int64

2

City

Houston 79236
Los Angeles 62533
Charlotte 60699
Dallas 52992
Austin 48369

Counselor 1
Charleston AFB 1
Ventnor City 1
Tiro 1
Wallington 1

Name: City, Length: 11766, dtype: int64

11766

State

2/2021		
CA	655363	
TX	259189	
FL	243043	
SC	145433	
NC	131731	
NY	126628	
PA	90435	
VA	84366	
IL	77119	
GA	73426	
MI	73003	
OR	72330	
MN	70913	
AZ	63339	
TN	60449	
LA	54250	
WA	51463	
OH	50487	
NJ	46282	
MD	45376	
OK	45259	
UT	39478	
AL	39082	
CO	36779	
MA	30298	
MO	27274	
IN	26317	
CT	21626	
NE	17542	
KY	17059	
WI	14953	
IA	9377	
RI	8865	
NV	8316	
KS	6620	
NH	5963	
MS	5526	
DE	4613	
NM	4422	
DC	4181	
AR	3210	
ID	2622	
WV	2405	
MT	2149	
ME	1660	
VT	502	
WY	370	
ND	288	
SD	141	
Name:	State,	ď

ltype: int64

49

Temperature.F.

```
62468
 68.0
 77.0
          61222
          58493
 59.0
 73.0
          57054
 63.0
          53913
               1
 113.4
 111.7
               1
 143.6
               1
 167.0
               1
-21.1
               1
Name: Temperature.F., Length: 826, dtype: int64
826
Humidity...
100.0
         115584
93.0
         111138
90.0
          65492
87.0
          65062
89.0
          54435
5.0
           1581
4.0
            868
3.0
            217
2.0
             67
1.0
Name: Humidity..., Length: 100, dtype: int64
100
Pressure.in.
29.96
         54143
30.01
         54001
29.99
         53414
29.94
         51922
30.04
         51432
20.30
             1
20.05
             1
19.89
             1
20.07
             1
20.10
             1
Name: Pressure.in., Length: 1024, dtype: int64
1024
Visibility.mi.
```

localhost:8889/nbconvert/html/Stat154/final_project/stat154_finalproj.ipynb?download=false

```
10.0
        2225748
7.0
          87391
9.0
          75023
8.0
          59906
5.0
          56463
58.0
               1
               1
6.2
63.0
               1
67.0
               1
43.0
               1
Name: Visibility.mi., Length: 83, dtype: int64
83
Wind_Speed.mph.
0.0
         245610
4.6
         151218
5.8
         150100
3.5
         141735
6.9
         140161
211.0
               1
214.0
              1
105.0
               1
232.0
              1
               1
77.1
Name: Wind_Speed.mph., Length: 147, dtype: int64
147
Weather_Condition
Fair
                        587613
Clear
                        562916
Mostly Cloudy
                        387759
Partly Cloudy
                        270262
Overcast
                        265814
Blowing Sand
                             1
Hail
                             1
Light Fog
                             1
Partial Fog / Windy
                             1
Light Sleet / Windy
                             1
Name: Weather_Condition, Length: 127, dtype: int64
127
Amenity
False
         2827989
           33533
True
Name: Amenity, dtype: int64
2
```

Bump

False 2860952 True 570

Name: Bump, dtype: int64

2

Crossing

False 2625408 True 236114

Name: Crossing, dtype: int64

2

Give_Way

False 2852483 True 9039

Name: Give_Way, dtype: int64

2

Junction

False 2633717 True 227805

Name: Junction, dtype: int64

2

No_Exit

False 2857543 True 3979

Name: No_Exit, dtype: int64

2

Railway

False 2835415 True 26107

Name: Railway, dtype: int64

2

Roundabout

False 2861350 True 172

Name: Roundabout, dtype: int64

2

Station

False 2804030 True 57492

Name: Station, dtype: int64

2

Stop

```
False
         2812221
True
           49301
Name: Stop, dtype: int64
2
Traffic_Calming
False
         2860058
True
            1464
Name: Traffic_Calming, dtype: int64
2
Traffic_Signal
False
         2365989
True
          495533
Name: Traffic_Signal, dtype: int64
2
Sunrise_Sunset
Day
         1998429
Night
          863093
Name: Sunrise_Sunset, dtype: int64
2
day_of_Week
4
     508242
2
     506441
1
     505395
3
     502531
0
     476990
5
     192008
6
     169915
Name: day_of_Week, dtype: int64
7
month
12
      333503
11
      323433
10
      310946
9
      258921
8
      227136
6
      213374
1
      209472
4
      203471
5
      202654
3
      201599
2
      197375
7
      179638
Name: month, dtype: int64
12
year
```

```
2020
        792602
2019
        662625
2018
        621325
2017
        499246
2016
        285724
Name: year, dtype: int64
Hour
8
      247876
      241209
17
      205814
      200750
16
15
      169639
18
      161249
6
      157296
9
      152426
14
      145228
      140042
10
11
      139058
13
      137093
12
      127256
19
      112616
20
       84175
5
       82998
21
       66185
       60068
4
22
       58642
23
       41257
0
       37168
1
       34022
2
       31633
       27822
Name: Hour, dtype: int64
```

Don't run anything under this until the modelling section

```
In []:
In []:
In []:
list_values = ['City','State','Weather_Condition','day_of_Week','month','year','Hour']
num_vals = [25, 25,15,6,12,5,24]
```

```
In [ ]:
```

```
for i in range(len(list values)):
    col_name = list_values[i]
    num_cols = num_vals[i]
    col_df = pd.get_dummies(X[col_name],prefix=col_name, prefix_sep='_')
    col_df = col_df.iloc[:,0:num_cols]
    X = X.join(col_df)
NameError
                                          Traceback (most recent call las
t)
<ipython-input-3-061c47e0a03f> in <module>()
            col_name = list_values[i]
      3
            num_cols = num_vals[i]
---> 4
            col_df = pd.get_dummies(X[col_name],prefix=col_name, prefix_se
p='_')
            col_df = col_df.iloc[:,0:num_cols]
      5
            X = X.join(col_df)
```

NameError: name 'pd' is not defined

In []:

```
In [ ]:
```

```
X['Weather_Condition'].value_counts().to_frame().head(30)
```

Out[]:

	Weather_Condition
Fair	587613
Clear	562916
Mostly Cloudy	387759
Partly Cloudy	270262
Overcast	265814
Cloudy	211467
Scattered Clouds	142512
Light Rain	139644
Light Snow	39037
Rain	32918
Haze	31680
Fog	30231
Heavy Rain	12387
Light Drizzle	9835
Fair / Windy	7410
Smoke	5525
Snow	4399
Mostly Cloudy / Windy	4122
Cloudy / Windy	4067
Light Thunderstorms and Rain	3393
T-Storm	3362
Thunderstorm	3086
Thunder in the Vicinity	2844
Light Rain with Thunder	2722
Partly Cloudy / Windy	2493
Thunder	2323
Light Rain / Windy	2246
Patches of Fog	2073
Drizzle	2012
B#*. 4	4004

Mist

1894

In []:			
In []:			
In []:			