Programming and Data Structures with Python

Lecture 1, 14 December 2020

What is programming?

Writing systematic procedures in precise notation

• Systematic procedure: algorithm

• Precise notation: programming language

Example: Prepare a classroom for a seminar by a guest speaker

- Various things to be done: arrange chairs, check projector/screen, check audio system, turn on a/c early, ...
- Need to instruct support staff to do this task. Nature of instructions varies according to who
 is doing the job.
 - Outsouce to professionals: Know the process, just provide the time of the talk and the expected audience size.
 - Somewhat experienced staff: Provide a high-level checklist, but each step need not be described explicitly
 - Inexperienced staff: Each high-level step needs detailed instructions
 - Arranging chairs: arrange m rows of chairs, k chairs per row, leave an aisle in between to walk to the back, ...)
- In all cases, instructions are in terms of basic steps
 - Basic steps can executed without further clarification
 - Granularity of the explanation varies according to the nature of basic steps

Greatest Common Divisor

gcd(m, n): largest d that divides both m and n

- Also called hcf, highest common factor
- 1 divides any number, so there is at least one such d, always

How can we systematically compute gcd(m, n)?

First look for a systematic procedure

• "Brute force" - need not be clever or efficient, but must always be correct

From the definition fo gcd(m, n):

- Generate the set of factors/divisors of m
- Generate the set of factors/divisors of n
- · Compare these sets and find the largest element common to both sets

Computing the factors of m

- Smallest factor of *m* is 1, largest factor is *m*
- Search for factors in the range 1,2,...,*m*
 - For each number is in this range, check that *i* divides *m*
- · Factors of 14
 - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
 - {1, 2, 7, 14}, set of factors of 14
 - [1, 2, 7, 14], list of factors of 14
- Sets vs lists
 - In a list, order matters
 - $[1, 2, 7, 14] \neq [14, 7, 2, 1]$, whereas $\{1, 2, 7, 14\} = \{14, 7, 2, 1\}$
 - In a list, duplicates matter
 - $[1, 2, 7, 14, 14] \neq [1, 2, 7, 14], \text{ whereas } \{1, 2, 7, 14\} = \{1, 2, 7, 14, 14\}$
- Compute gcd(14, 63)
 - Factors of 14 are [1, 2, 7, 14]
 - Factors of 63 are [1, 3, 7, 9, 21, 63]
 - Find largest element common to both lists
 - For each factor of 14, check if it is also in the list of factors 63
 - Check 1 (yes), 2 (no), 7 (yes), 14 (no)
 - Common factors are [1, 7]
 - Largest of these is 7, so gcd(14, 63) = 7

Using names to store intermediate values

In a maths book you might see an equation labelled (*) or (3.7) so that later in the text the author can refer to equation (*) or equation (3.7).

Likewise, we need to refer to intermediate values in our procedure

- Generate the list of factors of m
- Generate the list of factors of n
- Compare the first list with the second list

Generate a third list of common factors of m and n

As the number of items to keep track of increases, we need to name them systematically

- **fm**, the list of factors of *m*
- **fn**, the list of factors of *n*
- **cf**, the list of common factors of *m* and *n*

Often, names are also referred to as *variables*

- Different from variables in mathematics
- In mathematics, a variable is typically an unknown, but fixed quantity
 - I bought some apples and gave 3 to my sister. I now have 2 apples left. How many did I buy initially?
 - Let x be the number of apples I bought. I know that x 5 = 3. So x = 2.
 - The value of x is not known till you resolve the constraints, but the value of x does not change
- In programming, intermediate values are periodically updated
 - Initially, fm is the empty list []
 - Each factor i we discover is appended to fm
 - Even *i* is a name, for the potential factor we are checking!

Our first look at Python

Here is Python code for the procedure we have described

In [1]:

```
def gcd1(m,n):
    fm = []
    for i in range(1,m+1):
        if (m%i) == 0:
            fm.append(i)
    fn = []
    for j in range(1,n+1):
        if (n%j) == 0:
            fn.append(j)
    cf = []
    for f in fm:
        if f in fn:
            cf.append(f)
    return(cf[-1])
```

Some explanations

Define a function to compute gcd(m, n).

```
def gcd1(m,n):
```

• gcd1 because this is the first of multiple versions that we will see

Go through each i from from 1 to m

```
for i in range(1,m+1):
```

• range(1,m+1) generates the list [1,2,...,m]

and update fm if i divides m

```
if (m%i) == 0:
    fm.append(i)
```

- m%i is the remainder of m divided by i, ($m \mod i$, in mathematical notation)
- We use = for assigning a value, == to check equality

Checking for common factors

```
for f in fm:
    if f in fn:
        cf.append(f)
```

Factors are discovered in ascending order, so the largest common factor is the rightmost value in the list **cf**. Lists are indexed forwards from 0 and backwards from -1. The function returns the rightmost value in **cf**.

```
return(cf[-1])
```

Run the code and check that it works

```
In [2]:
```

```
gcd1(14,63)
```

```
Out[2]:
```

7

```
In [3]:
```

```
gcd1(837,775)
```

Out[3]:

31

Improving the brute force algorithm

Restricting the range to search for factors

- Factors of *m* are between 1 and *m*
- 21 and 63 are factors of 63 that cannot be factors of 14
- Enough to check for factors from 1 to min(m, n)

Overlapping the search

- Two scans from 1 to min(m, n) to generate **fm** and **fn**
- Instead, check and update both **fm** and **fn** in a single scan

In [4]:

```
def gcd2(m,n):
    fm = []
    fn = []
    for i in range(1,min(m,n)+1):
        if (m%i) == 0:
            fm.append(i)
        if (n%i) == 0:
            fn.append(i)

cf = []
    for f in fm:
        if f in fn:
        cf.append(f)
    return(cf[-1])
```

Still better

While scanning values from 1 to min(m, n) can directly identify common factors

• No need to separately generate **fm** and **fn** and then scan for common elements

In [5]:

```
def gcd3(m,n):
    cf = []
    for i in range(1,min(m,n)+1):
        if (m%i) == 0 and (n%i) == 0:
            cf.append(i)
    return(cf[-1])
```

Downloading and installing Python

- We will use Python 3
 - Latest version is 3.9.x, but any recent version will do
- Download from the official Python site
 - Python Software Foundation https://www.python.org/)
- Anaconda distribution has a complete set of libraries to use Python for data science
 - Anaconda Individual Edition https://www.anaconda.com/products/individual
 (https://www.anaconda.com/products/individual
 - Will automatically install Jupyter notebook, which is being used to generate these notes
 - Very useful to write/update code and also include documentation