1 Definitions

Definition 1.1 (Prorelation). A partial-ordered set of relations $X \to Y$, which is down-directed and an upper set. i.e A set, $P \subseteq \mathcal{P}(X \times Y)$ such that

- (i) A partial-order defined to be containment as relations, $r \subseteq s$ only if $\forall (x,y) \in X \times Y, (x,y) \in r \implies (x,y) \in s$
- (ii) (Down-directed), $\forall r, s \in P, \exists t \in P \text{ such that } t \subseteq r \text{ and } t \subseteq s$
- (iii) (Up-set) for any relation $u: X \to Y$, if $\exists p \in P$ such that p < u then $u \in P$

Definition 1.2 (Composition of prorelations). Prorelations can be composed by taking all compositions of their elements as relations: for prorelations $P: X \to Y$ and $Q: Y \to Z$,

$$Q.P := \{q \circ p : p \in P \text{ and } q \in Q\}$$

Definiton 1.3 (Comparison of Prorelations). Two prorelations with same domain, co-domain are comparable as

for
$$P,Q:X\to Y$$
 , $P\le Q$ if $\forall q\in Q, \exists p\in P$ such that $p\subseteq q$

Definition 1.4 (Quasi-uniformity). A prorelation on a set $X, P : X \to X$ is a quasi-uniformity if it follows:

i
$$\forall p \in P$$
, for any $x \in X$, $(x, x) \in p$ i.e. xpx

ii
$$\forall p \in P, \exists p' \in P \text{ such that } p' \circ p' \subseteq p$$

And in this case, (X, A) is called a quasi-uniform space.

Definition 1.5 (Uniformly Continuous function). A function, $f: X \to Y$ is called a uniformly continuous function,

$$f: (X,A) \to (Y,B) \text{ if, } \forall b \in B, \exists a \in A \text{ such that } f \circ a \subseteq b \circ f. \text{ meaning that } f.A \leq B.f \text{ or } A \downarrow \qquad \leq \qquad \downarrow_B.$$

$$X \xrightarrow{f} Y$$

$$X \xrightarrow{f} Y$$

Definiton 1.6 (Promodule). A prorelation, $\phi: X \longrightarrow Y$ is called a promodule $\phi: (X,A) \longrightarrow (Y,B)$ if it obeys: $\phi.A \le \phi$ and $B.\phi \le \phi$ where . denotes composition as prorelations.

Definition 1.7 (Comparison of Promodules). Promodules with same domain and co-domain are compared as prorelations, for $\phi, \psi : (X, A) \longrightarrow (Y, B), \phi \sqsubseteq \psi$, only if $\phi \leq \psi$.

Definition 1.8 (Composition of Promodules). Promodules are composed as prorelations. For promodules $\phi: (X, A) \longrightarrow (Y, B)$ and $\psi: (Y, B) \longrightarrow (Z, C)$, $\psi \phi := \psi.\phi = \{q \circ p : p \in \phi \text{ and } q \in \psi\}$

Definition 1.9 (Opposite relation). For relation $r: X \to Y$, r^o is defined to be a relation $r^o: Y \to X$ as

$$\forall (x,y) \in X \times Y, (x,y) \in r \iff (y,x) \in r^o$$

Lemma 1.9.1. For any relation $r: X \to Y$, $r^o \circ r = \Delta_X$

Lemma 1.9.2. For any relation $r: X \to Y$, $r \circ r^o \subseteq \Delta_Y$

Definition 1.10 $((-)_*)$.

Definition 1.11 $((-)^*)$.

Definiton 1.12 (Fully Faithful).

Definiton 1.13 (Fully Dense).

Definition 1.14 (Topologically Dense).

2 Propositions

Definition 2.1 (QUnif). QUnif is defined to be the category having quasi-uniform spaces as objects, and uniformly continous maps between them as morphisms.

Lemma 2.1.1. QUnif does define a category, as

i Composition

ii Identity

Definiton 2.2 (ProMod).

Lemma 2.2.1. ProMod does define a category, as

- i Composition
- ii Identity

Proposition 2.1 $((-)_*: QUnif \rightarrow ProMod \text{ is a Functor }).$

Proof.

Proposition 2.2 ((-)* :QUnif^{op} \rightarrow ProMod is a Functor). Defined as fixing objects and taking morphisms to their image under (-)*

- (a) for $(X, A) \in QUnif^{op}$, $(X, A)^* := (X, A) \in ProMod$
- (b) for $f:(X,A)\to (Y,B)$ in QUnif, $f^*:=f^o.B$

Proof.

Showing that $f^o.B:(Y,B) \longrightarrow (X,A)$ is a promodule

So, need to show $f^o.B$ a prorelation $Y \to X$ and that $(f^o.B).B \sqsubseteq f^o.B$ and $A.(f^o.B) \sqsubseteq f^o.B$ To show prorelation,

- (i) (Partial-order) Inclusion of relations i.e. for $k = f^o \circ b$ and $k' = f^o \circ b'$ in $f^o B$, $k \subseteq k' \iff b \subseteq b'$
- (ii) (Down directed) for $k, k' \in f^o.B$, need that $\exists l \in f^o.B$ such that $l \subseteq k, k'$ Fix $k, k' \in f^o.B \implies \exists b, b' \in B : k = f^o \circ b$ and $k' = f^o \circ b'$ And as B is a quasi-uniformity, it's down directed so, $\exists c \in B : c \subseteq b, b' \implies l := f^o \circ c \subseteq k, k'$
- (iii) (Up-set) for a relation $l: Y \to X$ and $k \in f^o.B$ such that $l \supseteq k$, need $l \in f^o.B$ Let $b \in B$ be such that $k = f^o \circ b$ and define $b' := \{(y,y'): y \in domain(l) \text{ and } y' \in (f^o)^{-1}(l(y)) \}$ As $l \supseteq k = f^o \circ b$, $domain(b') = domain(l) \supseteq domain(b)$ and $range(l) \supseteq range(f^o \circ b) \implies \forall y \in domain(b), range(b') = (f^o)^{-1}(l(y)) \supseteq (f^o)^{-1}(f^o \circ b) = range(b)$ Now, by definition of b', $f^o \circ b' \supseteq l$. To show $f^o \circ b \subseteq l$, $(x,y) \in f^o \circ b' \implies \exists z \in Y : (x,z) \in b'$ and $(z,y) \in f^o \implies x \in domain(l)$ and $z \in l(x)$ i.e. $(x,z) \in l$

To show $(f^o.B).B \leq f^o.B$, need that $\forall b \in B, \exists b' \in B : f^o \circ b' \circ b' \subseteq f^o \circ b$,

Fix any $b \in B$ as B is a quasi-uniformity, $\exists b' \in B : b' \circ b' \subseteq b \implies f^o \circ b' \circ b' \subseteq f^o \circ b$

To show $A.(f^o.B) \leq f^o.B$, need that $\forall b \in B, \exists b' \in B, a \in A : a \circ f^o \circ b' \subseteq f^o \circ b$,

As f is uniformly continuous, $f.A \leq B.f$ i.e. $\forall b \in B, \exists a \in A : f \circ a \subseteq b \circ f \implies a = f^o \circ f \circ a \subseteq f^o \circ b \circ f$ Fix any $b \in B$, so, $\exists b' \in B : b'b' \subseteq b$ (for brevity,omitting \circ to explicitly denote composition) And, for this $b', \exists a : a \subseteq f^ob'f \implies af^ob' \subseteq f^ob'ff^ob' \subseteq f^ob'b' \subseteq f^ob \implies af^ob' \subseteq f^ob$

Now, need to show that $(-)^*$ respects composition and identity.

(i) (Composition) let f,g be uniformly continuous, $(X,A)\xrightarrow{f} (Y,B)\xrightarrow{g} (Z,C)$ need that $(g\circ f)^*=f^*.g^*$ LHS= $(g\circ f)^*=(g\circ f)^o.C=(f^o\circ g^o).C$ and RHS= $f^*.g^*=(f^o.B).(g^o.C)$ For equality, showing that LHS \geq RHS and LHS \leq RHS:

To show $(f^o \circ g^o).C \ge (f^o.B).(g^o.C)$, need that $\forall c \in C, \exists b \in B, c' \in C: f^og^oc \supseteq f^obgc'$

Fix any $c \in C$, so, $\exists c' \in C : c' \circ c' \subseteq c \implies f^o g^o c \supseteq f^o g^o (c'c') = f^o g^o (c'\Delta_Z c') \supseteq f^o g^o c' (gg^o) c'$

By uniform countinuity of g, for $c' \in C$, $\exists b \in B : gb \subseteq c'g$

Thus, $f^o g^o c \supseteq f^o g^o (c'g) g^o c' \supseteq f^o (g^o g) b g^o c' = f^o b g^o c'$.

To show $(f^o \circ g^o).C \leq (f^o.B).(g^o.C)$, need that $\forall b \in B, c \in C, \exists c' \in C : f^og^oc \subseteq f^obg^oc$

Fix any $c \in C, b \in B$ will show that c' := c works:

As B is a quasi-uniformity, $\Delta_Y \subseteq b \implies f^o \Delta_Y g^o c = f^o g^o c \subseteq f^o b g^o c = f^o b g^o c'$

(ii) (Identity) let $(X, A) \in \text{QUnif}^{op}$, and $1_{(X,A)} : (X, A) \to (X, A)$ as $x \mapsto x$ need that $(1_{(X,A)})^* = 1_{(X,A)^*}$ LHS= $(1_{(X,A)})^* = (1_{(X,A)})^o . A = 1_{(X,A)} . A = A$.

Now, it's required that \hat{A} is the identity of (X, A) in ProMod.

So, fix $\phi:(X,A) \longrightarrow (Y,B)$, need to show $\phi.A = \phi$

As ϕ is a promodule, $\phi.A \leq \phi$ and as A is quasi-uniformity on X,

 $\forall a \in A, \Delta_X \subseteq a \implies \forall a \in A, \forall p \in \phi, p = p\Delta_X \subseteq pa \implies \phi \leq \phi.A$

Also, fix $\psi:(Y,B) \longrightarrow (X,A)$, need to show $A.\psi = \psi$

As ψ is a promodule, $A.\psi \leq \psi$ and as A is quasi-uniformity on X,

 $\forall a \in A, \Delta_X \subseteq a \implies \forall a \in A, \forall q \in \psi, q = \Delta_X q \subseteq aq \implies \psi \leq \psi.A$

Proposition 2.3 (Proposition 1). Fix a uniformly continuous map, $f:(X,A)\to (Y,B)$

- (a) f is fully faithful $\iff A = f^o.B.f$
- (b) f is fully dense $\iff \forall b \in B, \exists b' \in B \text{ such that }$
- (c) f is topologically dense $\iff \forall b \in B, \Delta_Y \subseteq b \circ f \circ f^o \circ b$
- (d) f is fully dense \iff f is topologically dense

Proof.

Definition 2.3 (PX). $PX := \{ \psi : \psi : (X, A) \longrightarrow 1 \text{ is a promodule} \}$

Definition 2.4 (\tilde{a}) . for any $a \in A$, \tilde{a} is defined to be a relation $PX \to PX$ as

for
$$\phi, \psi \in PX, \phi \tilde{a} \psi$$
 only if $\phi \leq \psi.a$

Proposition 2.4 (Prorelation \tilde{A}). The set, $\tilde{A} := \{\tilde{a} : a \in A\}$ defines a quasi-uniformity on PX.

Proof. First, need to show that \tilde{A} is a prorelation,

- (i) (Partial order) Define, for any two relations $\tilde{a}, \tilde{b}: PX \to PX$, that $\tilde{a} \leq \tilde{b}$ only if $a \subseteq b$
- (ii) (Down-Directed) Need that $\forall \tilde{a}, \tilde{b} \in \tilde{A}, \exists \tilde{c} \in A : c \subseteq a, b$ $\tilde{a}, \tilde{b} \in A \implies a, b \in A \implies \exists c \in A : c \subseteq a, b \implies \tilde{c} \leq \tilde{a}, \tilde{b}$
- (iii) (Upset) Need that, for any relation $l: PX \to PX$, if $\exists \tilde{k} \in \tilde{A}$ such that $l \geq \tilde{k}$, then $l \in \tilde{A}$ Fix any $k: PX \to PX$, and $\tilde{k} \in \tilde{A}$ such that $l \geq \tilde{k}$ Now, k is a relation between promodules $X \to 1$. Thus, it can be thought of as a relation on X, $a:=\{(x,y): x \in domain(\psi)andy \in domain(\phi) \text{ whenever } \exists \psi, \phi \in PX: \psi l \phi\}$ So, $l=\tilde{a}$ and thus, $\tilde{a} \geq \tilde{k} \implies a \supseteq k \implies a \in A \implies l \in \tilde{A}$

Now to show that the other two conditions hold,

- (i) need that $\forall \tilde{a} \in \tilde{A}, \forall \psi \in PX, \psi \tilde{a} \psi$ So, need to show that $\psi \leq \psi.a$ i.e. $\forall p \in \psi, \exists q \in \psi: q \subseteq p.a$. Take q := p, and as A is a quasi-uniformity, $\Delta_X \subseteq a \implies p = p.\Delta_X \subseteq p.a$
- (ii) Need that $\forall \tilde{a} \in \tilde{A}, \exists \tilde{b} \in \tilde{A} : \tilde{b}\tilde{b} \leq \tilde{a}$ Before that, showing, for any $x, y \in A, \tilde{x}\tilde{y} \leq \widetilde{xy}$ i.e. $\forall \psi, \phi \in PX$, $\psi(\tilde{x}.\tilde{y})\phi \implies \psi\widetilde{xy}\phi$ Let $\psi_1(\tilde{a}.\tilde{b})\psi_3 \implies \exists \psi_2 : \psi_1\tilde{b}\psi_2\tilde{a}\psi_3 \implies \psi_1 \leq \psi_2.b$ and $\psi_2 \leq \psi_3.a \implies \psi_1 \leq \psi_2.b \leq \psi_3.ab \implies \psi_1(\tilde{a}\tilde{b})\psi_3$ Fix any $\tilde{a} \in \tilde{A} \implies a \in A \implies \exists b \in A : b \circ b \subseteq a \implies \tilde{b}\tilde{b} \leq \tilde{a} \implies \tilde{b}\tilde{b} \leq \tilde{b}\tilde{b} \leq \tilde{a}$

Proposition 2.5 (Yoneda Embedding).

 asd