

Eab 7 實作 F Function

```
* as.owin() → 更新sf套件
#1 Read file & convert to ppp.
#2 Generating random points. rpoint()
#3 Calculate nearest distance. nncross()
#4 Calculate F(d): ecdf()
#5 Monte Carlo Significance Test: for-loop
#6 plotting the CDF curve: plot()
Final: comparing with the result of envelope(School.ppp, fun=Fest)
nnd=nncross(Random.ppp, School.ppp)
F = ecdf(nnd$dist)
Monte Carlo Significance Test
Repeat RandomSchool.ppp
nnd=nncross(Random.ppp, RandomSchool.ppp)
F = ecdf(nnd$dist)
```

Lab 7

實習要求

- 1. 本週作業不需要做檢定、結論,呈現出手動實作與套件結果即可。
- 2. 以台南市範圍作為邊界
- 3. 手動實作:包絡曲線-直接畫出99次模擬的ecdf即可(灰色線)。
- 4. 套件實作:包絡曲線-99次模擬,依右方假設的畫出區間。

- *H*₀:點分布隨機
- H_a :點分布非隨機
- $\alpha = 0.1$


```
G(d) 事件點→事件點
```

從事件點出發找最近的事件點

```
nnd= nndist(SH.ppp)
```

G = ecdf(nnd)

G = Gest(SH.ppp)

<u>Monte Carlo</u> SH.ppp→隨機模擬

F(d) 隨機點→事件點

從隨機點出發找最近的事件點

nnd= nncross(Random.ppp, SH.ppp)

F = ecdf(nnd\$dist)

F = Fest(SH.ppp)

K(d)

計算K(d)

- 1. 每個點產生距離d的環域
- 2. 計算環域中不含自己的點
- 3. 加總計算的數值,除以點個數
- 4. 除以點密度(點個數/面積)

L(d)

$$L(d) = \sqrt{\frac{K(d)}{\pi} - d}$$

在完全隨機分布(CSR)下, L(d)=0

L = Lest(SH.ppp)
L\$iso-L\$r

Confidence Envelope

envelope()

F(d) CI=envelope(SH.ppp, Fest, nsim=99, nrank=1)

模擬99次

取前後1個

- G(d) CI=envelope(SH.ppp, Gest, nsim=99, nrank=1)
- K(d) CI=envelope(SH.ppp, Kest, nsim=99, nrank=1)
- L(d) CI=envelope(SH.ppp, Lest, nsim=99, nrank=1)
 plot(CI)
 plot(CI,.-r~r)

補充:Bivariate F

<u>Univariate F</u>

隨機點 →事件點

※ 事件是否群聚?

<u>Bivariate F</u>

A事件點 → B事件點

※ A是否鄰近於B? (A是否群聚於B)

K(d)考古題

請計算 d=100 公尺的

Ripley's K Function

K(d) 以及 L(d) 的函數值

(107-1 計量地理學期中考二)

進階:考慮面積邊緣校正?

(104-1 計量地理學期中考二)

(107-2 空間分析)

加分題:Bivariate K
$$\widehat{K}_{ij}(t) = (\widehat{\lambda}_i \widehat{\lambda}_j A)^{-1} \sum_k \sum_l w(i_k, j_l) I(d_{i_k, j_l} < t)$$

- 1. 台北市KFC是否顯著群聚在MIC附近?
- 2. 如何進行蒙地卡羅顯著性檢定? (說明+實作)
- Hint : spatstat Kcross()
- Hint : splancs k12hat()

某研究區內的犯罪地點位置分布

K(d)考古題

• K(100) & L(100)

ID	環域內有多少不含自己的點			
1	0			
2	5			
3	5			
4	5			
5	5			
6	5			
7	5			
8	1			
9	1			
平均	$\frac{32}{9}$			
密度	$\frac{9}{250 \times 250}$			
K (100)	$\frac{32}{9} \div \frac{9}{250 \times 250} = 24691.36$			
L (100)	$\sqrt{\frac{K(d)}{\pi}}-d=-11.3462$			

• 考慮邊緣校正

ID	環域內 其他點	環域在研究 區的比例	邊緣校正	
1	0	0.25	0	
2	5	1	5	
3	5	1	5	
4	5	1	5	
5	5	1	5	
6	5	1	5	
7	5	1	5	
8	1	0.5	2	
9	1	0.5	2	
平均	$\frac{34}{9}$			
密度	$\frac{9}{250 \times 250}$			
K (100)	$\frac{34}{9} \div \frac{9}{250 \times 250} = 26234.57$			
L (100)	$\sqrt{\frac{K(d)}{\pi}} - d = -8.61771$			

• spatstat - Kcross()

• splancs - k12hat()

