附表: $\Phi(1.96)=0.975$, $\Phi(1.64)=0.95$, $\Phi(2)=0.9772$, $t_{0.05}(15)=1.7531$, $t_{0.05}(16)=1.7459$ $t_{0.025}(15)=2.1315$, $t_{0.025}(16)=2.1199$

一、简答题

1. 将4封信放入4个邮筒,求恰好有2个邮筒为空的概率.

2. 设X服从正态分布 $N(\mu, \sigma^2)$,求 $P(|X-\mu|>\sigma)$. (用标准正态分布的分布函数 $\Phi(.)$ 表示)

3. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} \frac{3}{a^3} x^2, & 0 < x < a \\ 0, & 其他 \end{cases}$,且 P(X>1)=7/8. 确定常数 a.

- 4. 若随机变量 X 和 Y 互相独立,则由 X 和 Y 的边缘分布______(填:一定、不一定、一定不)能确定其联合分布.
- 5. 已知随机变量 X 和 Y 独立同分布,且 $P\{X=1\}=P\{X=3\}=0.2, P\{X=2\}=0.6$,求 D(X-Y).

6. 设总体 X 服从标准正态分布 $N(0,1)$, X_1 , X_2 ,, X_6 是来自总体 X 的一个简单随机样本,
$Y = \frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2 + X_5^2 + X_6^2}}$,则 a 取何值时, aY 服从 $t(4)$ 分布.
7.设总体 $X\sim U(\theta,2\theta)$,其中 $\theta>0$ 未知, $X_1,X_2,,X_n$ 为取自该总体的一个样本, \bar{X} 为样本均值,则 a 取何值时, $\hat{\theta}=a\bar{X}$ 是参数 θ 的无偏估计.
8 在假设检验问题中,(1)原假设 H_0 真,但不被接受,这种判断错误称为第类
错误? (2)原假设 H ₀ 为假,但被接受,这种判断错误又称为第类错误?
9.在假设检验中,两类错误的概率的和(填:一定,不一定)等于1.

二、设甲、乙、丙三人独立的向同一飞行目标各射击一次,击中的概率分别为 0.4, 0.5, 0.8. 如果只有一人击中目标,则目标被击落的概率为 0.3; 如果有两人击中目标,则目标被击落的概率为 0.6; 如果三人都击中目标,则目标一定被击落. 求目标被击落的概率.

三、1. 设 $X \sim f(x) = \begin{cases} 100/x^2, x > 100 \\ 0, 其他 \end{cases}$ (1) 求 X 的分布函数; (2) 计算概率 $P(X \le 200), P(X > 300).$

2. 设随机变量 X 服从数学期望为 λ 的指数分布. 令 $Y=1-e^{-\frac{1}{\lambda}X}$,求 Y 的概率密度函数.

四、设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} cye^{-x}, & x > 0, 0 \le y \le 1 \\ 0, & \text{ 其他} \end{cases}$$

- 1. 求常数 c 的值.
- 2. 求 X 和 Y 的边缘概率密度函数,判断 X 和 Y 是否相互独立并说明理由.
- 3. 求 Z=X+Y 的概率密度.

五、一食品店有 A、B、C 三种蛋糕出售,其价格分别为 10 元、15 元、20 元. 根据经验,顾客进店后选择这三种蛋糕的概率分别为 0.3、0.4、0.3. 某天售出了 375 只蛋糕,求蛋糕收入至少是 5775 元的概率.

六、1. 给出两个随机变量 X 和 Y 独立以及不相关的定义,并叙述独立与不相关之间的关系.

2. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其他} \end{cases}$ 记 $Y = X^2$,求 Cov(X,Y), D(X+Y).

七、总体 X 的概率密度函数为 $f(x) = \begin{cases} \theta e^{\theta} x^{-(\theta+1)}, & x > e \\ 0, & \text{其它} \end{cases}$, 其中 $\theta > 1$ 为未知参数. $X_1, X_2, ..., X_n$

为取自该总体的样本, $x_1, x_2, ..., x_n$ 为相应的样本观测值.

1. 求参数 θ 的矩估计量; 2.求参数 θ 的最大似然估计量; 3. 求 EX 的最大似然估计量.

八、某钢厂原工艺下钢板厚度服从正态分布 $N(40, 2^2)$ (单位:毫米),改进工艺后,测得 16 块钢板厚度的平均值为 41. 假定方差不变,试问在显著性水平 $\alpha=0.05$ 下,平均钢板厚度是否有所提高?