Self-Supervised Learning for Vision

Supervision is costly!

- Supervision is costly!
- Billions of GB of internet content.

- Supervision is costly!
- Billions of GB of internet content.
- Can we use the data itself as supervision?

- Supervision is costly!
- Billions of GB of internet content.
- Can we use the data itself as supervision?
- Fine-tune pre-trained model on supervised downstream task.

Many methods!!

Some background

Basics: Contrastive Learning

Similar samples should be **closer** in representation space.

COLLAPSE TO CONSTANT REPRESENTATION!

Different samples (negatives) should be **far away** in representation space.

Problems:

- > Size of negative set
- Quality of negatives

Basics: Contrastive Learning

Basics: Siamese Networks

- Two sister networks (same weights)
- Different inputs
- Trained contrastively.

Triplet loss:

$$\mathcal{L}\left(A,P,N
ight) = \max\Bigl(\left\|\operatorname{f}(A) - \operatorname{f}(P)
ight\|^2 - \left\|\operatorname{f}(A) - \operatorname{f}(N)
ight\|^2 + lpha,0\Bigr)$$

Basics: Knowledge Distillation

Mimic behaviour of a larger network by transferring learned representations to a smaller one.

- Train large network.
- Train smaller network on output logits form the first network.

Glassic Self-supervised Learning for Video

Classic SSL for Video

Temporal Consistency

Cubic puzzles

Arrow of time

Jigsaw Puzzle

Binary Multi-class

Colorization

Video Prediction

Given a video sequence, generate the next frames.

Dense Predictive Coding

Predictive Coding: anticipate the future clip representations given a context of multiple clips.

Sample negatives from:

- > other videos
- same video on different time
- same time on different positions.

$$\mathcal{L} = -\sum_{i,k} \left[\log \frac{\exp(\hat{z}_{i,k}^{\top} \cdot z_{i,k})}{\sum_{j,m} \exp(\hat{z}_{i,k}^{\top} \cdot z_{j,m})} \right]$$

Generative Video Models

Interpolation

Generative

Current Trends on Visual SSL

Contrastive: SimCLR

- Siamese setting.
- Data augmentation.
- Contrastive loss.
- Negatives from batch.

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

 $g(\cdot)$

 $f(\cdot)$

Maximize agreement

 \leftarrow Representation \longrightarrow

 $g(\cdot)$

 $f(\cdot)$

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

Contrastive: MoCo

- Similar to SimCLR
- Uses queue to store past batches
- Draw negatives from queue

- Unstable training!
- Use momentum encoder

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

Contrastive: PIRL

Pretext tasks → **covariant** representations

Use **siamese** and **contrastive** to make them **invariant**.

Clustering: NNCLR

- Contrastive setting
- Negatives from mini-batch
- Positive is a similar sample from a memory bank

$$\mathcal{L}_{i}^{\text{NNCLR}} = -\log \frac{\exp \left(\text{NN}(z_{i}, Q) \cdot z_{i}^{+} / \tau\right)}{\sum\limits_{k=1}^{n} \exp \left(\text{NN}(z_{i}, Q) \cdot z_{k}^{+} / \tau\right)}$$

Clustering: SwAv

- NO MORE NEGATIVES!
- Learnable prototypes
- Collapse!
 - Cluster using Sinkhorn-Knopp
 - Uniform sample distribution
 - Soft assignment
- Swapped prediction.
- Multi-crop

Distillation: BYOL

- Knowledge distillation setting
- Asymmetric Siamese architecture
- Both networks start from scratch
- Teacher is a moving average
- Minimize distance between augmentations

Distillation: SimSiam

Which components are crucial for avoiding collapse?

Stop-gradient

Momentum encoder and **predictor** improve accuracy.

- Expectation Maximization algorithm:
 - E: the teacher generates various samples (n^t)
 - M: fitting the parameters of the online net to approximate those representations.

$$\mathcal{L}(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \Big[\big\| \mathcal{F}_{\theta}(\mathcal{T}(x)) - \eta_x \big\|_2^2 \Big]$$

$$\theta^t \leftarrow \arg \min_{\theta} \mathcal{L}(\theta, \eta^{t-1})$$

$$\eta^t \leftarrow \arg \min_{\eta} \mathcal{L}(\theta^t, \eta)$$

$$\eta_x^t \leftarrow \mathcal{F}_{\theta^t}(\mathcal{T}'(x)).$$

$$\theta^{t+1} \leftarrow \arg \min_{\theta} \mathbb{E}_{x, \mathcal{T}} \Big[\big\| \mathcal{F}_{\theta}(\mathcal{T}(x)) - \mathcal{F}_{\theta^t}(\mathcal{T}'(x)) \big\|_2^2 \Big]$$

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm_2

Distillation: DINO

- Instance classification (CE)
- Multi Crop
- Transformer Architecture
- Centering & Sharpenning

Distillation: DINO

 \cup

Redundancy Reduction: Barlow Twins

- Symmetric Siamese
- Correlation matrix
 - Invariance (same feature should be similar in both embeddings)
 - Reduces redundancy (no two features should be similar)

Information Bottleneck
Principle: Maximize
input-output mutual
information while being
invariant to distortions

Information Bottleneck Principle

Intuitions

- Batch Normalization
- LARS optimizer
- Asymmetry (projector/predictor with large LR)
- Momentum Network
- Weight Decay
- Stop-gradient

What about video?

Evolved SSL Losses

- > Multiple streams (flow, grayscale, audio...)
- > **Distilled** at different depths onto the RGB stream.
- Multi-task (reconstruction, prediction, temporal ordering, multi-modal contrastive/alignment).
- > Evolutionary algorithm to weight the losses.
- Clustered output forced to follow Zipf's law through KL divergence

Large-scale study

		linear protocol	finetuning accuracy				
method	pre-train	K400	UCF101	AVA (mAP)	Charades (mAP)	SSv2	
supervised	scratch	74.7	68.8	11.7	7.4	48.8	
supervised	K400-240K	-	94.8	22.2	34.7	52.8	
SimCLR		62.0 (-12.7)	87.9 (-6.9)	17.6(-4.6)	11.4 (-23.3)	52.0 (-0.8)	
SwAV	K400-240K	62.7 (-11.5)	89.4 (-5.4)	18.2(-4.0)	10.7(-24.0)	51.7 (-1.1)	
BYOL		68.3 (-6.4)	93.8(-1.0)	23.4 (+1.2)	21.0(-13.7)	55.8 (+3.0)	
MoCo		67.3 (-7.4)	92.8(-2.0)	20.3(-1.9)	33.5(-1.2)	54.4 (+1.8)	

Self-supervised Video Transformer

Extension to **DINO** for video. Use of multiple **global views** (varying frame-rate) and multiple **local views**. Matching at global-global (motion) and local-global (cross-view).

$oldsymbol{l} o oldsymbol{g}$	$oldsymbol{g} o oldsymbol{g}$	$m{l} o m{l}$	$oldsymbol{g} o oldsymbol{l}$	UCF-101	HMDB-51
1	×	×	X	84.11	50.72
X	/	X	X	81.95	49.04
/	1	X	X	84.64	52.17
1	1	1	X	83.11	51.23
✓	1	X	1	84.71	51.88
1	1	1	1	83.69	51.71

Brave

- Focus on leveraging multi-modality.
- Temporal crops (local and global):
 - Teacher performs global → local prediction.
 - Student performs local → global prediction.
- Pairwise predictors.
- Synchronization matters!

Thanks!

QUESTIONS?