

UNIVERSIDAD DE GRANADA

GRADO EN INGENIERÍA INFORMÁTICA

Práctica 2: Algoritmos de Divide y Vencerás

Autores:

Yunkai Lin Pan: 20 %

Alfonso Jesús Piñera Herrera: 20 % Álvaro Hernández Coronel: 20 %

Jaime Castillo Uclés: 20 % Yeray López Ramírez: 20 % Curso:2°C

Asignatura: Algorítmica Fecha: 7 de Abril de 2022

Grupo de prácticas: C2

Número de grupo: 3

Índice

1.		Eripción del problema Enunciado formal del problema Compra-venta de acciones	2 2		
2.	Algoritmo Trivial				
		Implementación de la función de cómputo en C++	2		
		Cálculo de la Eficiencia Teórica			
	2.3.	Cálculo de la Eficiencia Empírica	3		
		Cálculo de la Eficiencia Híbrida			
3.	Algo	ritmo basado en Divide y Vencerás	6		
	3.1.	Implementación de la función de cómputo en C++	6		
	3.2.	Cálculo de la Eficiencia teórica	8		
	3.3.	Cálculo de la Eficiencia empírica	9		
	3.4.	Cálculo de la Eficiencia Híbrida	12		

1. Descripción del problema

En esta práctica diseñaremos, analizaremos y implementaremos dos algoritmos para resolver el problema de **Compra-venta de acciones**. Uno de los cuales es un **Algoritmo Trivial** que no está basado en Divide y Vencerás, por lo tanto es mucho menos eficiente que su contraparte a esta práctica, **el Algoritmo basado en DyV**.

1.1. Enunciado formal del problema Compra-venta de acciones

Se dispone de una secuencia de n datos correspondientes al valor p[i] > 0 de las acciones de una cierta empresa a lo largo de diferentes días, $i = 1, 2, \ldots$, n. Se desea analizar esa secuencia para determinar los dos días c y v (con c < v) en que, si hubiésemos comprado acciones el día c y las hubiésemos vendido el día v, el beneficio habría sido el máximo posible (pudiendo ser negativo dicho beneficio).

2. Algoritmo Trivial

En esta parte trataremos la implementación, ánalisis y diseño del primer algoritmo, textbfel Algoritmo Trivial.

2.1. Implementación de la función de cómputo en C++

La función implementada para el cómputo de este algoritmo es la siguiente:

```
void compraVentaTrivial(vector<int> secuencia, int & c, int & v){
   int beneficio, compra, venta, optimo = -999999;

for(int i = 0; i < secuencia.size(); i++){
     compra = secuencia[i];
     for(int j = i+1; j < secuencia.size(); j++){
        venta = secuencia[j];
        beneficio = venta - compra;
        if(beneficio > optimo){
            optimo = beneficio;
            c = i;
            v = j;
        }
    }
}
```

2.2. Cálculo de la Eficiencia Teórica

for interno:
$$\sum_{i+1}^{n-1} = n \nearrow 1 - (i+1) \nearrow 1 = n-i-1$$

for externo:

$$\sum_{0}^{n-1} n - i - 1 = \sum_{0}^{n-1} n - 1 + \sum_{0}^{n-1} - i = \sum_{0}^{n-1} (n - 1)(n + 1 - 0 + 1) - (n - 1)\frac{n}{2} = \sum_{0}^{n-1} (n - 1) = \frac{n^2 - n}{2} = \frac{n^2 - n}{2} = \frac{n^2 - n}{2} = 0.5n^2 - 0.5n = O(n^2)$$

2.3. Cálculo de la Eficiencia Empírica

Al ejecutar ./trivial con los valores predeterminados del compilador:

Tamaño	Tiempo(seg)
5000	0.0882197
10000	0.230257
15000	0.50619
20000	0.90972
25000	1.4216
30000	2.02462
35000	2.77955
40000	3.66997
45000	4.62323
50000	5.69014
55000	6.95487
60000	8.12162
65000	9.5316
70000	11.056
75000	12.8074

80000	14.5782
85000	16.298
90000	18.2981
95000	20.3784
100000	22.7175
105000	24.9754
110000	27.4274
115000	30.7646
120000	33.3786
125000	35.8784

Al usar gnuplot para graficar los datos anteriores, se crea la siguiente gráfica:

2.4. Cálculo de la Eficiencia Híbrida

La eficiencia híbrida calculada mediante gnuplot da como resultado el siguiente fichero fit_trivial.log:

```
FIT:
       data read from 'compraventatrivial.dat'
       format = z
       #datapoints = 25
       residuals are weighted equally (unit weight)
function used for fitting: f(x)
       f(x)=a0*x*x+a1*x+a2
fitted parameters initialized with current variable values
                 delta/lim lambda a2
         chisq
                                                     a1
                                                                  a0
  0 1.3487215210e+21 0.00e+00 4.24e+09
                                           2.330664e-09 -4.438380e-06
  5 6.9420451076e-01 -4.96e-10 4.24e+04 2.330664e-09 -4.438380e-06
After 5 iterations the fit converged.
final sum of squares of residuals : 0.694205
rel. change during last iteration: -4.95775e-15
degrees of freedom
                    (FIT_NDF)
                                                    : 22
                    (FIT\_STDFIT) = sqrt(WSSR/ndf) : 0.177637
rms of residuals
variance of residuals (reduced chisquare) = WSSR/ndf
                                                    : 0.0315548
Final set of parameters
                                 Asymptotic Standard Error
= 2.33066e-09
                                +/- 0.1157
                                                 (4.965e+09%)
a2
              = -4.43838e-06
                                +/- 4.102e-06
                                                 (92.41\%)
a1
              = 2.33066e-09
                                +/- 3.063e-11 (1.314%)
a0
correlation matrix of the fit parameters:
               a2
                     a1
                            a0
               1.000
a2
              -0.884 1.000
a1
               0.774 -0.971 1.000
a0
```

De aquí concluimos que la formula ajustada es:

$$f(x) = 2,33066 \times 10^{-9} x^2 - 4,43838 \times 10^{-6} x + 2,33066e - 09$$

Tras representar la función ajustada anterior en la gráfica de puntos podemos ver que se ajustan perfectamente:

3. Algoritmo basado en Divide y Vencerás

La técnica de Divide y Vencerás nos permitirá pasar del algoritmo anterior una técnica muy ineficiente que tardaría mucho para grandes conjuntos de datos a un algoritmo mucho más eficiente. Para ello, en la implementación del Divide y Vencerás, utilizamos la recursividad.

3.1. Implementación de la función de cómputo en C++

```
int encontrarMinimo_izq(vector<int> &sentencia, int 1, int r, int &dC){
   int minimo = sentencia[1];
   dC = 1;
   for(int i = 1; i <= r; i++)
        if(sentencia[i] < minimo){
            minimo = sentencia[i];
            dC= i;
   }
   return minimo;
}</pre>
```

```
int encontrarMaximo_der(vector<int> &sentencia, int 1, int r, int &dV){
    int maximo = sentencia[1];
    dV=1;
    for( int i = 1; i <= r; i++)
        if(sentencia[i] > maximo){
            maximo = sentencia[i];
            dV = i;
    }
    return maximo;
}
```

```
int maxDiferencia(vector<int> &sentencia, int minimo, int maximo, int &dC,
                  int &dV){
  if (minimo>= maximo){
          dC = dV = minimo;
          return -9999;
  int maxDiff = -99999, diaC, diaV;
  int mitad = (maximo + minimo) / 2;
  int izq_maxDiff = maxDiferencia(sentencia, minimo, mitad, dC, dV);
  diaC = dC;
  diaV = dV;
  int der_maxDiff = maxDiferencia(sentencia, mitad+1, maximo, dC, dV);
  if (izq_maxDiff > der_maxDiff){
          maxDiff = izq_maxDiff;
  }else{
          diaC = dC;
          diaV = dV;
          maxDiff = der_maxDiff;
  }
  int minimo_izq = encontrarMinimo_izq(sentencia, minimo, mitad, dC);
  int maximo_der = encontrarMaximo_der(sentencia, mitad + 1, maximo, dV);
  if ((maximo_der - minimo_izq) > maxDiff){
          maxDiff = maximo_der - minimo_izq;
          diaC = dC;
          diaV = dV;
  }
  dC = diaC;
  dV = diaV;
  return maxDiff;
}
```

3.2. Cálculo de la Eficiencia teórica

$$T(n) = I \cdot T(n/b) + G(n) = 2 \cdot T(\frac{n}{2}) + n$$
$$I = 2^k = 2^1 \Rightarrow T(n) = O(n \log n)$$

$$I=2 \} \quad \text{izq_maxDiff = maxDiferencia(sentencia, minimo, mitad)} \\ b=2 \} \quad \text{der_maxDiff = maxDiff = maxDiferencia(sentencia, mitad+1, maximo)}$$

$$G(n) = D(n) + C(n) = O(1) + O(n) = O(n)$$

$$D(n) = 1$$
 $mitad = \frac{maximo + minimo}{2}$

$$C(n) = n \begin{cases} & \text{minima_izq} = \text{encontrarMinimo_izq(sentencia, minimo, mitad)} \\ & \text{maximo_der} = \text{encontrarMaximo_der(sentencia, mitad+1, maximo)} \\ & \text{maxDiff} = \text{max(izq_maxDiff, der_maxDiff, maximo_der-minimo_izq)} \end{cases}$$

3.3. Cálculo de la Eficiencia empírica

La tabla de datos resultante que obtenemos al ejecutarlo sin ningún optimizador de código es:

Tamaño	Tiempo(seg)			
5000	0.00163401			
10000	0.000806976			
15000	0.00103244			
20000	0.00142681			
25000	0.00161177			
30000	0.00200034			
35000	0.00240804			
40000	0.00275965			
45000	0.00321197			
50000	0.00350924			
55000	0.00386887			
60000	0.00428708			
65000	0.00469606			
70000	0.00508064			
75000	0.00571565			
80000	0.00593092			
85000	0.0062978			
90000	0.00668497			
95000	0.0105791			
100000	0.00936575			
105000	0.0080948			
110000	0.0082681			
115000	0.00859129			
120000	0.00895775			
125000	0.0093908			
-				

Al usar gnuplot para graficar los datos anteriores, se crea la siguiente gráfica:

3.4. Cálculo de la Eficiencia Híbrida

```
FIT:
       data read from 'compraventaDyV1.dat'
       format = z
       #datapoints = 25
       residuals are weighted equally (unit weight)
function used for fitting: f(x)
       f(x)=a*x*log(x)
fitted parameters initialized with current variable values
                    delta/lim lambda a
         chisq
                      0.00e+00 1.02e+07
  0 2.6033979973e+15
                                           1.000000e+00
   5 2.8801247962e-05 -2.24e-10 1.02e+02
                                          5.580963e-09
After 5 iterations the fit converged.
final sum of squares of residuals : 2.88012e-05
rel. change during last iteration : -2.23513e-15
degrees of freedom
                    (FIT_NDF)
                                                    : 24
                    (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.00109547
rms of residuals
variance of residuals (reduced chisquare) = WSSR/ndf : 1.20005e-06
Final set of parameters
                                 Asymptotic Standard Error
                                 _____
_____
               = 5.58096e-09
                                 +/- 2.147e-11
                                                 (0.3847\%)
```

La función ajustada que nos genera es:

$$f(x) = 5,58096 \times 10^{-9} x log(x)$$

Al ajustarla vemos que la función pasa por el medio de los puntos:

