Multi-Armed Bandits

Machine Learning

Daniele Loiacono

Outline and References

- Outline
 - K-armed problems
 - Action-Values
 - ► Incremental Update and Non-Stationary Problems
 - ► Epsilon-Greedy Action Selection
 - Optimistic Initial Values
 - ▶ UCB Action Selection

- References
 - ► Reinforcement Learning: An Introduction [RL Chapter 2]
 - ► <u>Fundamentals of Reinforcement Learning</u> (Coursera)

Making decisions under uncertainty

The k-armed Bandit Problem

☐ It is the simplest form of Reinforcement Learning problem:

In the k-armed bandit problem, we have an **agent** who chooses between k **actions** and receives a **reward** based on action it chooses.

- ► Goal is to find optimal decision (action) among k options
- ► Optimal decision is not context-dependent (no state)
- ► Feedback consists of an evaluation (reward) of decisions under uncertainty
- ▶ Learning by trial and error and through interaction with environment

The k-armed Bandit Problem

The k-armed Bandit Problem

Action-Values

☐ The value of each action is defined as the expected reward:

$$q^*(a) \doteq \mathbb{E}[R_t | A_t = a] = \sum p(r|a)r \qquad \forall a \in \{1, ..., k\}$$

☐ The goal of the agent is to maximize the expected reward:

$$argmax_a q^*(a)$$

Computing q*(a)

Estimate of $q^*(a)$

 \square As p(r|a) is not known, we estimate $q^*(a)$ from experience:

sum of rewards when a chosen before step t

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} \hat{R}_i \mathbb{1}_{A_t = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t = a}}$$

times *a* chosen before step *t*

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

$$Q_t(a) \doteq \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

Incremental update and non-stationary problems

Incremental update of action-values

☐ Let's consider the update of a single action:

$$Q_n = \frac{1}{n-1} \sum_{i=1}^{n-1} R_i$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$$
$$= \frac{1}{n} \left(R_n + (n-1)Q_n \right)$$
$$= Q_n + \frac{1}{n} \left(R_n - Q_n \right)$$

Incremental update of action-values

Non-stationary bandit problems

$$\alpha \in [0,1]$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

Non-stationary bandit problems

$$Q_{n+1} = Q_n + \alpha \left(R_n - Q_n \right)$$

 $Q_{n+1} = Q_n + \alpha (R_n - Q_n)$ $= \alpha R_n + (1 - \alpha) Q_n$ $= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 Q_{n-1}$ $= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 \alpha R_{n-2} + \dots$ $+ (1 - \alpha)^{n-1} \alpha R_1 + (1 - \alpha)^n Q_1$

Initial action-value

Action Selection

non-greedy actions

$$Q_{12}(\)=$$
 0.75 greedy action

$$a_g = argmax \ Q(a)$$

What would happen if we always select the greedy action?

Exploration vs Exploitation

Exploration vs Exploitation

■ Exploitation: agent exploits knowledge for **short-term** benefit

Exploration vs Exploitation

- ☐ Exploitation: agent exploits its knowledge for short-term benefit
- □ Exploration: agent improves its knowledge for long-term benefit
- How to choose when to explore and when to exploit?

Epsilon-Greedy Action Selection

$$A_t = \begin{cases} argmax_a Q_t(a) & \text{with probability } 1 - \epsilon \\ Uniform(\{a_1, ..., a_k\}) & \text{with probability } \epsilon \end{cases}$$

Epsilon-Greedy Action Selection

$$A_t = \begin{cases} argmax_a Q_t(a) & \text{with probability } 1 - \epsilon \\ Uniform(\{a_1, ..., a_k\}) & \text{with probability } \epsilon \end{cases}$$

10-armed testbed

Optimistic Initial Values

- ☐ So far we initialized action-values to 0.0
- ☐ What happen if we initialize action-values to larger values?

$$Q_{n+1} = Q_n + \alpha(R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

Reward 1 if the treatment works, 0 otherwise

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

000

0.625

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

$$\alpha = 0.5$$

Optimistic Initial Values on 10-armed testbed

Limitations of optimistic initial values

- Optimistic initial values only drive early exploration
- ☐ They are not well-suited for non-stationary problems
- ☐ We may not know what othe optimistic inital value should be

Let's go back to epsilon-greedy

$$A_t = \begin{cases} argmax_a Q_t(a) & \text{with probability } 1 - \epsilon \\ Uniform(\{a_1, ..., a_k\}) & \text{with probability } \epsilon \end{cases}$$

- □ Can we do better than uniform selection?
- ☐ Can we evaluate the uncertainty in action-value estimates?

Uncertainty in Action-Values Estimates

Uncertainty in Action-Values Estimates

Upper-Confidence Bound (UCB) Action Selection

Which action should be selected?

Optimism in the face of uncertainty

Upper-Confidence Bound (UCB) Action Selection

How do we compute upper bound?

Upper-Confidence Bound (UCB) Action Selection

UCB on the 10-armed testbed

