Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет

 $\mathbf Y$ равнения математической физики Лабораторная работа №3

 Φ акультет: Φ ПМИ Γ руппа: Π М-63

Студент: Кожекин М.В.

Вариант: 1

1. Цель работы

Разработать программу решения гармонической задачи методом конечных элементов. Сравнить прямой и итерационные методы решения получаемой в результате конечноэлементной аппроксимации СЛАУ.

2. Задание

- 1. Выполнить конечноэлементную аппроксимацию исходного уравнения в соответствии с заданием. Получить формулы для вычисления компонент матрицы ${\bf A}$ и вектора правой части ${\bf b}$.
- 2. Реализовать программу решения гармонической задачи с учетом следующих требований:
 - язык программирования С++ или Фортран;
 - предусмотреть возможность задания неравномерной сетки по пространству, разрывность параметров уравнения по подобластям, учет краевых условий;
 - матрицу хранить в разреженном строчно-столбцовом формате с возможностью перегенерации ее в профильный формат;
 - реализовать (или воспользоваться реализованными в курсе «Численные методы») методы решения СЛАУ: итерационный локально-оптимальную схему или метод сопряженных градиентов для несимметричных матриц с предобусловливанием и прямой LU-разложение или его модификации [2, с. 871; 3].
 - 3. Протестировать разработанную программу на полиномах первой степени.
- 4. Исследовать реализованные методы для сеток с небольшим количеством узлов 500 1000 и большим количеством узлов примерно 20 000 50 000 для различных значений параметров $10^{-4} \le \omega \le 10^9, \ 10^2 \le \lambda \le 8 \cdot 10^5, \ 0 \le \sigma \le 10^8, \ 8.81 \cdot 10^{-12} \le \chi \le 10^{-10}$. Для всех решенных задач сравнить вычислительные затраты, требуемые для решения СЛАУ итерационным и прямым методом.

Вариант 1: Решить одномерную гармоническую задачу в декартовых координатах, базисные функции - линейные.

3. Анализ

Рассмотрим задачу для уравнения:

$$\chi \frac{d^2 u}{dt^2} + \sigma \frac{du}{dt} - div(\lambda grad(u)) = f$$

Решение данного уравния и и его правая часть f представимы в виде:

$$u(x, y, t) = u^s sin\omega t + u^c cos\omega t$$

$$f(x, y, t) = f^s \sin \omega t + f^c \cos \omega t$$

Значит исходное уравнение можно привести к системе уравнений

$$-div(\lambda grad(u^s)) - \omega \sigma u^c - \omega^2 \chi u^s = f$$

$$-div(\lambda qrad(u^c)) - \omega \sigma u^s - \omega^2 \chi u^c = f$$

$$p_{ij}(q_s) = \int_{\Omega} \left(\lambda g r a d\psi_i g r a d\psi_j - \omega^2 \chi \psi_i \psi_j \right) d\Omega$$
$$c_{ij}(q_s) = \omega \int_{\Omega} \sigma \psi_i \psi_j d\Omega$$

Матрица конечноэлементной СЛАУ будет иметь следующую структуру:

$$\begin{pmatrix} p_{00} & -c_{00} & p_{01} & -c_{01} \\ c_{00} & p_{00} & c_{01} & p_{01} \\ p_{10} & -c_{10} & p_{11} & -c_{11} \\ c_{10} & p_{10} & c_{11} & p_{11} \end{pmatrix}$$

Выведем формулы для локальных матриц массы, жёсткости и вектора правой части.

$$\begin{split} \frac{du}{dx} &= \frac{d\sum_{k=0}^{1} q_k \psi_k}{dx} = q_0 \frac{d\psi_0}{dx} + q_1 \frac{d\psi_1}{dx} = -\frac{1}{h} q_0 + \frac{1}{h} q_1 = \frac{q_1 - q_0}{h} \\ G_{i,j} &= \int_{\Omega} \lambda (\frac{du}{dx}) grad\psi_i grad\psi_j d\Omega \\ G_{0,0} &= \sum_{k=0}^{1} \int_{\Omega} \lambda (\frac{q_1 - q_0}{h}) \psi_k grad\psi_0 grad\psi_0 d\Omega = \\ &= \frac{1}{h} \sum_{k=0}^{1} \int_{\Omega} \lambda (\frac{q_1 - q_0}{h}) \psi_k d\Omega = \\ &= \frac{\lambda_0 (\frac{q_1 - q_0}{h}) + \lambda_1 (\frac{q_1 - q_0}{h})}{2h} = G_{1,1} \\ G_{0,1} &= \sum_{k=0}^{1} \int_{\Omega} \lambda (\frac{q_1 - q_0}{h}) \psi_k grad\psi_0 grad\psi_1 d\Omega = \\ &= -\frac{1}{h} \sum_{k=0}^{1} \int_{\Omega} \lambda (\frac{q_1 - q_0}{h}) \psi_k d\Omega = \\ &= -\frac{\lambda_0 (\frac{q_1 - q_0}{h}) + \lambda_1 (\frac{q_1 - q_0}{h})}{2h} = G_{1,0} \\ G &= \frac{\lambda_0 (\frac{q_1 - q_0}{h}) + \lambda_1 (\frac{q_1 - q_0}{h})}{2h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \end{split}$$

$$M_{i,j} = \frac{\sigma}{\Delta t_s} \int_{\Omega} \psi_i \psi_j d\Omega$$

$$M_{0,0} = \frac{\sigma}{\Delta t_s} \int_{\Omega} \psi_0 \psi_0 d\Omega = \frac{\sigma h}{\Delta t_s} \int_0^1 \xi^2 d\xi = \frac{\sigma h}{\Delta t_s} \frac{\xi^3}{3} \Big|_0^1 = \frac{\sigma h}{3\Delta t_s} = M_{1,1}$$

$$M_{0,1} = \frac{\sigma}{\Delta t_s} \int_{\Omega} \psi_0 \psi_1 d\Omega = \frac{\sigma h}{\Delta t_s} \int_0^1 \xi (1 - \xi) d\xi = \frac{\sigma h}{\Delta t_s} \left(\frac{\xi^2}{2} - \frac{\xi^3}{3}\right) \Big|_0^1 = \frac{\sigma h}{6\Delta t_s} = M_{1,0}$$

$$M = \frac{\sigma h}{6\Delta t_s} \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}$$

$$\begin{split} b_i &= \int_{\Omega} f_s \psi_i d\Omega + \frac{1}{\Delta t_s} \int_{\Omega} \sigma u_{q-1}^h \psi_i d\Omega \left| u_{q-1}h = \sum_{k=0}^1 q_{k,s-1} \psi_k \right| \\ b_0 &= \sum_{k=0}^1 \int_{\Omega} f_k \psi_k \psi_0 d\Omega + \frac{\sigma}{\Delta t_s} \sum_{k=0}^1 \int_{\Omega} q_{k,q-1} \psi_k \psi_0 d\Omega \\ &= \left[f_0 \int_{\Omega} \psi_0 \psi_0 d\Omega + f_1 \int_{\Omega} \psi_1 \psi_0 d\Omega \right] + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \int_{\Omega} \psi_0 \psi_0 d\Omega + q_{1,s-1} \int_{\Omega} \psi_1 \psi_0 d\Omega \right] \\ &= h \left[f_0 \int_{0}^1 \xi^2 d\xi + f_1 \int_{0}^1 (1 - \xi) \xi d\xi \right] + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \int_{0}^1 \xi^2 d\xi + q_{1,s-1} \int_{0}^1 (1 - \xi) \xi d\xi \right] \\ &= h \left[f_0 \frac{\xi^3}{3} \Big|_{0}^1 + f_1 \Big(\frac{\xi^2}{2} - \frac{\xi^3}{3} \Big) \Big|_{0}^1 \right] + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \frac{\xi^3}{3} \Big|_{0}^1 + q_{1,s-1} \Big(\frac{\xi^2}{2} - \frac{\xi^3}{3} \Big) \Big|_{0}^1 \right] \\ &= h \left[f_0 \frac{1}{3} + f_1 \frac{1}{6} \right] + \frac{\sigma}{\Delta t_s} \left[\frac{1}{3} q_{0,s-1} + \frac{1}{6} q_{1,s-1} \right] \\ &= h \left[f_0 \frac{1}{3} + f_1 \frac{1}{6} \right] + \frac{\sigma}{\Delta t_s} \left[2 q_{0,s-1} + q_{1,s-1} \right] \\ b_1 &= \sum_{k=0}^1 \int_{\Omega} f_k \psi_k \psi_1 d\Omega + \frac{\sigma}{\Delta t_s} \sum_{k=0}^1 \int_{\Omega} q_{k,q-1} \psi_0 \psi_1 d\Omega = \\ &= \left[f_0 \int_{\Omega} \psi_0 \psi_1 d\Omega + f_1 \int_{\Omega} \psi_1 \psi_1 d\Omega \right] + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \int_{\Omega} \psi_0 \psi_1 d\Omega + q_{1,s-1} \int_{\Omega} \psi_1 \psi_1 d\Omega \right] = \\ &= h \left[f_0 \int_{0}^1 \xi (1 - \xi) d\xi + f_1 \int_{0}^1 (1 - \xi)^2 d\xi \right] + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \int_{0}^1 \xi (1 - \xi) d\xi + q_{1,s-1} \int_{0}^1 (1 - \xi)^2 d\xi \right] = \\ &= h \left[f_0 \left(\frac{\xi^2}{2} - \frac{\xi^3}{3} \right) \Big|_{0}^1 + f_1 (1 - \xi)^3 \Big|_{0}^1 \right] + \frac{\sigma}{\Delta t_s} \left[q_{0,s-1} \left(\frac{\xi^2}{2} - \frac{\xi^3}{3} \right) \Big|_{0}^1 + q_{1,s-1} (1 - \xi)^3 \Big|_{0}^1 \right] = \\ &= \frac{h}{6} \left[f_0 + 2 f_1 \right] + \frac{\sigma}{6 \Delta t_s} \left[\frac{1}{6} q_{0,s-1} + \frac{1}{3} q_{1,s-1} \right] \\ &= \frac{h}{6} \left[f_0 + 2 f_1 \right] + \frac{\sigma}{6 \Delta t_s} \left[q_{0,s-1} + 2 q_{1,s-1} \right] \\ b &= \frac{hx}{6} \left(\frac{2}{f_0} + f_1 \right) + \frac{\sigma}{6 \Delta t_s} \left[q_{0,s-1} + q_{1,s-1} \right] \\ \end{split}$$

В итоге:

$$G = \frac{\lambda_0(\frac{q_1 - q_0}{h}) + \lambda_1(\frac{q_1 - q_0}{h})}{2h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$M = \frac{\sigma h}{6\Delta t_s} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$b = \frac{hx}{6} \begin{pmatrix} 2f_0 + f_1 \\ f_0 + 2f_1 \end{pmatrix} + \frac{\sigma}{6\Delta t_s} \begin{pmatrix} 2q_{0,s-1} + q_{1,s-1} \\ q_{0,s-1} + 2q_{1,s-1} \end{pmatrix}$$

4. Точность для разных функций и и λ

В ходе следующего исследования использовались следующие параметры:

$$\varepsilon = 1e - 7$$

 $\sigma = 1$

maxiter = 1000

Область пространства $\Omega = [0, 1]$

Время задано на отрезке [0, 1]

Первоначальное число узлов 11, а конечных элементов 10

Для неравномерных сеток по времени и пространству коэффициент k=1.1

$u_c(x,t)$ $u_c(x,t)$	1	x	x^2	x^3	x^4	x^5	sin(x)	$\sin u$
1	8.98e-29	5.60e-28	8.67e-28	5.59e-27	2.92e-26	2.80e-25	4.05e-29	1.48e-26
x	1.22e-28	3.08e-28	5.15e-27	6.03e-27	5.78e-26	2.49e-26	1.26e-28	1.13e-26
x^2	3.49e-28	2.05e-27	1.48e-27	1.68e-27	2.70e-26	4.92e-26	1.42e-28	4.97e-27
x^3	5.05e-28	2.84e-27	1.79e-27	3.49e-27	4.77e-27	5.48e-26	5.66e-28	8.70e-27
x^4	9.65e-28	1.87e-27	4.40e-27	1.50e-26	3.22e-26	6.05e-26	1.13e-27	8.56e-27
x^5	2.75e-26	2.11e-26	2.61e-26	3.36e-26	1.48e-25	2.11e-26	2.81e-26	1.17e-25
sin(x)	1.07e-28	3.22e-28	1.71e-27	8.37e-27	2.94e-26	2.01e-25	6.06e-29	9.79e-27
e^x	2.84e-28	1.14e-27	2.27e-27	2.92e-27	2.60e-26	5.70e-26	1.27e-28	1.52e-26

4.1. Вывод

Как видно из таблицы метод начинает сходиться хуже при повышении степени полинома. Если же функция λ будет зависеть не от $\frac{du}{dx}$, а просто от u, то сходимость будет куда выше . Если функция λ гармоническая (в нашем случае $\sin(u)$), то метод работает хуже, хотя вообще он не должен сходиться.

Также стоит отметить, что и скорость программы в варианте 7 заметно ниже варианта 5. Рещение сходится медленно.

5. Точность решения при дроблении сетки

В ходе следующего исследования использовались следующие параметры:

$$\varepsilon = 1e - 22$$

$$\sigma = 1$$

maxiter = 1000, т.к. повышение этого числа не приводит к должному результату, а лишь занимает процессорное время

Область пространства $\Omega = [0, 1]$

Время задано на отрезке [0, 1]

Первоначальное число узлов 11, а конечных элементов 10

Для неравномерных сеток по времени и пространству коэффициент k=1.1

$$u_s = x, u_c = -2 \cdot x$$

пространство	равномерное					не равномерное				
	i	nodes	iters	norm		i	nodes	iters	norm	
равномерное	0	10	0	8.981e-29		0	11	0	5.702e-28	
	1	19	0	8.140e-28		1	21	0	1.211e-25	
	2	37	0	1.205e-25		2	41	0	7.297e-23	
	3	73	0	8.994e-25		3	81	2	9.365e-49	
	4	145	0	4.295e-24		4	161	2	7.218e-42	
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	8.981e-29		0	11	0	5.702e-28	
не равномерное	1	19	0	8.140e-28		1	21	0	1.211e-25	
пс равномерное	2	37	0	1.205e-25		2	41	0	7.297e-23	
	3	73	0	8.994e-25		3	81	2	9.365e-49	
	4	145	0	4.295e-24		4	161	2	7.218e-42	

$$u_s = x, u_c = -2 \cdot x$$

пространство	равномерное					не равномерное				
	i	nodes	iters	norm		i	nodes	iters	norm	
равномерное	0	10	0	3.077e-28		0	11	0	7.572e-28	
	1	19	0	5.113e-27		1	21	0	2.522e-25	
	2	37	0	1.120e-25		2	41	0	5.996e-23	
	3	73	0	2.436e-24		3	81	1	1.703e-36	
	4	145	0	3.699e-23		4	161	1	2.778e-32	
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	3.077e-28		0	11	0	7.572e-28	
HO DARHOMODHOO	1	19	0	5.113e-27		1	21	0	2.522e-25	
не равномерное	2	37	0	1.120e-25		2	41	0	5.996e-23	
	3	73	0	2.436e-24		3	81	1	1.703e-36	
	4	145	0	3.699e-23		4	161	1	2.778e-32	

$$u_s = x^2, u_c = -2 \cdot x^2$$

пространство	равномерное					не равномерное				
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	1.485e-27		0	11	0	2.948e-28	
рариомериое	1	19	0	1.057e-26		1	21	0	9.778e-26	
равномерное	2	37	0	3.731e-25		2	41	1	2.140e-31	
	3	73	0	2.816e-24		3	81	1	6.207e-37	
	4	145	1	1.129e-26		4	161	1	2.665e-32	
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	1.485e-27		0	11	0	2.948e-28	
HO DARHOMODHOO	1	19	0	1.057e-26		1	21	0	9.778e-26	
не равномерное	2	37	0	3.731e-25		2	41	1	2.140e-31	
	3	73	0	2.816e-24		3	81	1	6.207e-37	
	4	145	1	1.129e-26		4	161	1	2.665e-32	

$$u_s = x^3, u_c = -2 \cdot x^3$$

пространство	равномерное					не равномерное				
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	3.490e-27		0	11	0	1.668e-28	
papiioMopiioo	1	19	0	4.726e-26		1	21	0	1.929e-25	.
равномерное	2	37	0	9.980e-25		2	41	0	6.387e-23	.
	3	73	0	2.688e-23		3	81	1	3.745e-37	
	4	145	1	5.618e-27		4	161	1	2.968e-32	
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	3.490e-27		0	11	0	1.668e-28	.
не равномерное	1	19	0	4.726e-26		1	21	0	1.929e-25	.
пс равномерное	2	37	0	9.980e-25		2	41	0	6.387e-23	
	3	73	0	2.688e-23		3	81	1	3.745e-37	
	4	145	1	5.618e-27		4	161	1	2.968e-32	

$$u_s = x^4, u_c = -2 \cdot x^4$$

пространство	равномерное					не равномерное				
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	3.220e-26		0	11	0	4.958e-28	
papiioMobiloo	1	19	0	3.915e-25		1	21	0	1.394e-25	
равномерное	2	37	0	1.836e-24		2	41	0	6.353e-23	
	3	73	1	2.383e-27		3	81	1	9.484e-38	
	4	145	1	2.477e-25		4	161	1	3.011e-32	
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	3.220e-26		0	11	0	4.958e-28	
HO DARHOMODHOO	1	19	0	3.915e-25		1	21	0	1.394e-25	
не равномерное	2	37	0	1.836e-24		2	41	0	6.353e-23	
	3	73	1	2.383e-27		3	81	1	9.484e-38	
	4	145	1	2.477e-25		4	161	1	3.011e-32	

$$u_s = x^5, u_c = -2 \cdot x^5$$

пространство	равномерное					не равномерное					
	i	nodes	iters	norm		i	nodes	iters	norm		
	0	10	0	2.115e-26		0	11	0	5.806e-28		
париомериое	1	19	0	9.560 e-25		1	21	0	2.007e-25		
равномерное	2	37	0	4.183e-23		2	41	0	5.569e-23		
	3	73	1	2.365e-26		3	81	1	5.654e-36		
	4	145	1	4.071e-25		4	161	1	2.796e-32		
	i	nodes	iters	norm		i	nodes	iters	norm		
	0	10	0	2.115e-26		0	11	0	5.806e-28		
не равномерное	1	19	0	9.560e-25		1	21	0	2.007e-25		
пе равномерное	2	37	0	4.183e-23		2	41	0	5.569e-23		
	3	73	1	2.365e-26		3	81	1	5.654e-36		
	4	145	1	4.071e-25		4	161	1	2.796e-32		

$$u_s = \sin(x), u_c = -2 \cdot \sin(x)$$

пространство	равномерное					не равномерное				
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	6.059e-29		0	11	0	4.118e-28	
DablioMobiloo	1	19	0	1.986e-27		1	21	0	1.132e-25	
равномерное	2	37	0	2.282e-26		2	41	0	1.558e-23	
	3	73	0	5.451e-25		3	81	1	1.993e-37	
	4	145	0	5.159e-24		4	161	1	3.439e-32	
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	6.059e-29		0	11	0	4.118e-28	
не равномерное	1	19	0	1.986e-27		1	21	0	1.132e-25	
пс равномерное	2	37	0	2.282e-26		2	41	0	1.558e-23	
	3	73	0	5.451e-25		3	81	1	1.993e-37	
	4	145	0	5.159e-24		4	161	1	3.439e-32	

$$u_s = e^x, u_c = -2 \cdot e^x$$

пространство	равномерное					не равномерное				
	i	nodes	iters	norm		i	nodes	iters	norm	
равномерное	0	10	0	1.515e-26		0	11	0	2.357e-27	
	1	19	0	1.293e-25		1	21	0	1.146e-24	
	2	37	0	5.975e-25		2	41	1	6.564e-24	
	3	73	0	2.419e-23		3	81	2	5.631e-49	
	4	145	1	4.231e-25		4	161	2	4.778e-41	
	i	nodes	iters	norm		i	nodes	iters	norm	
	0	10	0	1.515e-26		0	11	0	2.357e-27	
не равномерное	1	19	0	1.293e-25		1	21	0	1.146e-24	
пс равномерное	2	37	0	5.975e-25		2	41	1	6.564e-24	
	3	73	0	2.419e-23		3	81	2	5.631e-49	
	4	145	1	4.231e-25		4	161	2	4.778e-41	

5.1. Вывод

Т.к. порядок сходимости - это степень того, насколько сильно увеличивается точность при дроблении сетки. Он определяется из степени х.

Исходя из исследований можно заметить, что порядок сходимости $\frac{1}{3}$

6. И	сходный	код	программы	I
------	---------	-----	-----------	---