ポートフォリオ

Namachan

created with LATEX

はじめに 2
1 自己紹介
1.1 経歴 (p.2) 1.2 過去の活動・実績 (p.2) 1.3 対応領域 (p.2)
1.4 使用可能ツール (p.2) 1.5 仕事のスタイル (p.2) 1.6 リンク (p.2)
Ⅱ 作品紹介
2 数学 3
2.1 サイクロイド (p.3) 2.2 写像 (p.4) 2.3 上方和と下方和 (p.5)
2.4 三角不等式の証明 (p.7) 2.5 はさみうちの原理 (p.8) 2.6 内心 (p.9)
2.7 球座標 (p.10) 2.8 四面体 (p.11) 2.9 樹形図 (p.12) 2.10 増減表とグラフ (p.13)
2.11 楕円(ケプラーの法則)(p.14) 2.12 回転体 (p.15)
3 物理
3.1 ばねとブロック(力学)(p.17) 3.2 滑車とロープ(力学)(p.19)
3.3 フックの法則(力学)(p.21) 3.4 気体分子運動論(熱力学)(p.22)
3.5 ピストン付き容器(熱力学)(p.24) 3.6 LC 回路(電磁気学)(p.25)
3.7 傾斜レール上の導体棒(電磁気学)(p.26) 3.8 ヤングの実験(光学)(p.28)
3.9 凸レンズによる実像の形成(光学)(p.29)
4 化学 31
4.1 サリチル酸と炭酸水素ナトリウムの化学反応式 (p.31)
4.2 サリチル酸の構造式 (p.31) 4.3 ハロゲン(フッ素)の電子配置 (p.31)
4.4 モル濃度の計算 (p.32) 4.5 β-グルコースの構造式 (p.32) 4.6 酢酸の電離 (p.33)
4.7 塩化銅 (Ⅱ) 水溶液の電気分解 (p.34)
5 書類
5.1 問題用紙(数学)(p.36) 5.2 スクリプト(Python)(p.37)
参考文献
索引

l はじめに

本書は、出版社や教育機関などの採用担当者向けに作成した LATEX 入力および作図業務の作品集である。 冒頭では簡単な自己紹介を記載し、その後に各種サンプル (「LATEX コード」や「仕上がりイメージ」)を掲載している。 依頼や相談は、X (旧 Twitter): @math_namachan まで連絡されたい。

1 自己紹介

1.1 経歴

茨城県立水戸第一高等学校を卒業後、学習院大学理学部数学科に入学し、翌年に中途退学、その後、故郷の茨城にてLATEX 入力の技術を磨きつつ、通信制大学にて自然科学を学んでいる。

2018 年に、『線型代数入門(基礎数学 1)』(齋藤正彦著、東京大学出版会)、『解析入門 I(基礎数学 2)』(杉浦光夫著、東京大学出版会)の解答集を作るプロジェクト「数学書解答集作成班」を立ち上げ、現在 GitHub にて解答をオープンソースで公開中、2025 年現在、公開されている解答は 2 冊ともに 100 ページを超える.

また、Discord を用いた数学・物理のコミュニティ『数物-学習の場-』を立ち上げ、自主ゼミ結成の支援・数学・物理関連の質問の場を開設し、2025年現在もリーダーとして運営に尽力している。

1.2 過去の活動・実績

- 2011 年 株式会社東京出版『月刊 大学への数学』の学力 コンテスト(S コース)にて氏名の冊子掲載を複数 回にわたり経験
- **2018 年**「数学書解答集作成班」を結成. 現在のメンバーは 11 名. 主に Discord を用いたオンライン作業で解答を制作する.
- 2024年 出版社1社と LATEX 入力の業務委託契約を締結.
- **2025 年** 出版社・予備校合わせて 2 社と LATEX 入力の業務委託契約を締結.

1.3 対応領域

- 数学 (LAT_FX 入力, 作図)
- 物理(LATEX 入力, 作図)
- 化学(LATEX 入力,複雑な式は要相談)

その他の分野の書類については個別に相談されたい。

1.4 使用可能ツール

- LATEX
 - 2018年から6年間使用.
 - TikZ を用いた作図も対応可能
 - 主に LualATEX, uplATEX を使用.
- Git (2018 年から GitHub と併用して使用)

その他、Slack、Discord 等のチャットツールを用いて業務に従事することが可能である。

1.5 仕事のスタイル

- Slack や Discord を用いたオンラインでのコミュニケーションを重視する。
- 文書を作成するにあたっては、指定された形式を 守りつつ、丁寧に体裁を整えるスタイルをとる。

1.6 リンク

GitHub

https://github.com/NamaSwimming

- GitHub にて、解答集とそのソースコードを公開している
- 解答集の公開にあたっては、著作権に配慮するために出版社に確認をとり「問題文は掲載せず、解答のみ掲載」という形になった。
- GitHub の Pull Request 機能を用いることで、誰も がこの解答集に対して「コードの修正の提案」をす ることが可能である。
- 上記のことに関連して、Git や GitHub を用いたプロジェクトの経験があるため、仕事をするにあたって「複数人での教材の共同編集」という状況に対応可能である。

II 作品紹介

これまでに作成してきたコンテンツを紹介する. 基本的には、まず LATEX のソースコードを記述し、続けてコンパイル結果を掲載する.

なお、行数制約のため、複数行で記述すべきコードを1行にまとめている箇所がある。本来は可読性のために改行するべきであることに気をつけたい。

2 数学

2.1 サイクロイド

ソースコード (図)

```
\begin{tikzpicture}[scale=1.175]
       \draw[->] (-0.1,0) -- (7,0) node[below] {$x$};
3
       \draw[->] (0,-0.1) -- (0,3) node[left] {$y$};
       \draw (0,0) node[below left] {\$\mathrm{0}\$} coordinate (0);
4
5
       \label{lem:condition} $$ \operatorname{dashed}(pi,0) \operatorname{node}[below]{$\pi a$}--(pi,2)--(0,2)\operatorname{node}[left]{$2a$};
       \draw(2*pi ,0)node[below]{$2\pi a$};
7
       \draw [thin] (pi/2,1) circle (1);
       \draw [dashed] (pi/2,0)--(pi/2,1)--(0,1);
8
9
       \draw [color=red] plot[domain=0:{2*pi}, variable=\theta,smooth]
10
       ({\theta r}), {1-\cos(\theta r)};
       \fill [color=red] ({pi/2-1}, 1) circle (1.5pt);
11
   \end{tikzpicture}
```

説明と図

媒介変数 θ と定数 a を用いて

$$\begin{cases} x = a(\theta - \sin \theta), \\ y = a(1 - \cos \theta), \end{cases} (0 \le \theta < 2\pi)$$

と表される図形をサイクロイドとよび、図の赤線部になる $^{\dagger 1}$. さて、円が 1 回転したときの定点の軌跡の長さを l は以下のようになる:

$$l = \int_0^{2\pi} \sqrt{(dx/d\theta)^2 + (dy/d\theta)^2} d\theta$$
$$= a \int_0^{2\pi} \sqrt{2 - 2\cos\theta} d\theta$$
$$= 2a \int_0^{2\pi} \sin(\theta/2) d\theta$$
$$= 8a.$$

ポイント

■ 媒介変数を定義して、サイクロイドを plot した.

 $^{^{\}dagger 1}$ 図形的に説明すると、「直線に沿って円が滑らずに回転するときの円周上の定点の軌跡」である。

2.2 写像

ソースコード (図)

```
1
    \begin{tikzpicture}[scale=1.2]
      \draw[fill=lightgray!40, draw=lightgray] (-2,0) ellipse (1.5cm and 2cm);
 3
       \node at (-2,2.2) {$A$};
 4
 5
      \draw[fill=lightgray!40, draw=lightgray] (3,0) ellipse (1.5cm and 2cm);
 6
      \node at (3,2.2) {$B$};
 7
 8
      \fill (-2,1) circle (2pt); \node[left] at (-2,1) {\$1\$};
 9
      \fill (-2,0) circle (2pt); \node[left] at (-2,0) {$2$};
10
      \fill (-2,-1) circle (2pt); \node[left] at (-2,-1) {$3$};
11
12
      \fill (3,1) circle (2pt); \node[right] at (3,1) {\$a\$};
13
       \fill (3,0) circle (2pt); \node[right] at (3,0) {$b$};
       \fill (3,-1) circle (2pt); \node[right] at (3,-1) {$c$};
14
15
16
      \draw[->, thin] (-2,1) to[bend left=20] (3,1);
17
      \draw[->, thin] (-2,0) to[bend left=0] (3,0);
      \draw[->, thin] (-2,-1) to[bend left=20] (3,1);
18
19
     \end{tikzpicture}
```

A

2•

B

説明と図

集合 A から集合 B への写像 f とは、任意の $a \in A$ に対して、 $b \in B$ をただひとつ対応させる規則のことである。

このとき、A を f の始集合 、B を f の終集合とよぶ。これを次のように表す:

$$f: A \to B$$
.

この写像 f によって, $a \in A$ が $b \in B$ に対応するとき,

$$b = f(a)$$

または

$$f: a \mapsto b$$

とかく†1

たとえば、 $A=\{1,2,3\}$ 、 $B=\{a,b,c\}$ とする。 f(1)=a、f(2)=b、f(3)=a とすると、この写像 f は図のように表現できる。

ポイント

■ 円・楕円・矢印を組み合わせて描写した。

2.3 上方和と下方和

ソースコード (図)

```
1
              \begin{tikzpicture}[scale=1.15]
  2
                    \pgfmathsetmacro{\xZero}{pi/6}
  3
                    \pgfmathsetmacro{\x0ne}{pi/3}
   4
                    \pgfmathsetmacro{\xTwo}{2*pi/3}
  5
                    \pgfmathsetmacro{\xThree}{pi}
  6
                    \pgfmathsetmacro{\xFour}{11*pi/6}
  7
                    \pgfmathsetmacro{\xFive}{25*pi/12}
  8
  9
                    \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
10
                    \protect{fone}{ sin(\xone r) + 4}
11
                    \pgfmathsetmacro{\fTwo}{ sin(\xTwo r)
12
                    \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
13
                    \protect\operatorname{\mathsf{NFour}}\{\protect\operatorname{\mathsf{sin}}(\xrour\ r)\ +\ 4\}
14
                    \protect\operatorname{pgfmathsetmacro} \from {\protect\operatorname{five}} {\protect\operatorname{sin}(\xrown + 4)}
15
16
                    \coordinate (x0) at (\xZero,0);
                    \coordinate (x1) at (\x0ne, 0);
17
18
                    \coordinate (x2) at (\xTwo, 0);
19
                    \coordinate (x3) at (\xThree, 0);
20
                    \coordinate (x4) at (\xFour, 0);
21
                    \coordinate (x5) at (\xFive, 0);
22
                    \coordinate (X0) at (\xZero, \fZero);
23
                    \coordinate (X1) at (\x0ne,
                                                                                                             \f0ne );
                    \coordinate (X2) at (\xTwo,
                                                                                                             \fTwo );
24
                    \coordinate (X3) at (\xThree, \fThree);
25
26
                    \coordinate (X4) at (\xFour, \fFour);
27
                    \coordinate (X5) at (\xFive, \fFive);
28
29
                    draw (-0.2,0) -- (7.5,0);
30
                    \filldraw[fill=lightgray!50,draw=black] (X0) rectangle (X1);
31
32
                    filldraw[fill=darkgray!50,draw=black] (x0) rectangle ($(x1)+(0,\fZero)$);
33
34
                    filldraw[fill=lightgray!50,draw=black] (X1) rectangle ((x2)+(0,5));
35
                    filldraw[fill=darkgray!50,draw=black] (x1) rectangle ((x2)+(0,f0ne));
36
                    \filldraw[fill=lightgray!50,draw=black] (\xTwo,\fThree) rectangle (\xThree,\fTwo);
37
38
                    \filldraw[fill=darkgray!50,draw=black] (x2) rectangle ($(x3)+(0,\fThree)$);
39
40
                    \filldraw[fill=lightgray!50,draw=black] (\xThree,3) rectangle (\xFour,\fThree);
41
                    \filldraw[fill=darkgray!50,draw=black] (x3) rectangle ($(x4)+(0,3)$);
42
43
                    \filldraw[fill=lightgray!50,draw=black] (X4) rectangle (X5);
44
                    filldraw[fill=darkgray!50,draw=black] (x4) rectangle ($(x5)+(0,\fFour)$);
45
                    \draw (x0) node[below] \{a = x_0\};
46
47
                    \draw (x1) node[below right]{$x_1$};
48
                    \draw (x2) node[below]
                                                                                                       {$x 2$};
49
                    \draw (x3) node[below]
                                                                                                        {$x_3$};
50
                    \draw (x4) node[below]
                                                                                                       {$x_4$};
51
                    \draw (x5) node[below right] {$x_5 = b$};
52
53
                    \displaystyle \frac{(x, sin(x r)+4)}{node[above left]} 
54
              \end{tikzpicture}
```

$$f: [a,b] \to \mathbb{R} \ ([a,b] \subset \mathbb{R})$$

は有界であるとする.

区間 [a,b] を n 個の小区間 $[x_{i-1},x_i]$ に分割し、小区間 $[x_{i-1},x_i]$ における f の最小値を m_i 、最大値を M_i とする.

図において、f の下方和は $[x_{i-1},x_i]$ を底辺、最小値 m_i を高さとする長方形の面積の和である。 f の上方和は $[x_{i-1},x_i]$ を底辺、最大値 M_i を高さとする長方形の面積の和である。

U(f) を f の上方和、L(f) を f の下方和とすると、次の不等式が成り立つ:

$$m(b-a) \le L(f) \le U(f) \le M(b-a).$$

このことから、ただちに L(f) と U(f) が有界であることが従う。ゆえに、

$$\sup L(f) \in \mathbb{R}, \quad \inf U(f) \in \mathbb{R}$$

が存在する^{†1}.

L(f) と U(f) はそれぞれ上方和と下方和であるため、

$$\sup L(f) \le \inf U(f)$$

が成り立つ. そして,

$$\sup L(f) = \inf U(f)$$

となることは、f が [a,b] で積分可能であるため の必要十分条件であり、このとき、f は [a,b] で可積分であるという。この共通の値を

$$\int_{a}^{b} f(x) \, dx$$

とかき、これを f の区間 [a,b] における定積分とよぶ。

ポイント

■ 具体的な関数を plot してグラフを作成した.

^{†1} 実数の連続性の公理による.

2.4 三角不等式の証明

ソースコード

```
1
                \begin{proof}
                       -\abs{x} \leq x \leq x  \leqq x \leqq \abs{x}$\cdots -\abs{y} \leqq y \leqq \abs{y}$\cdots -\abs{y}$\cdots -\abs
   3
                              -(\abs{x}+\abs{y}) \ \abs{x}+\abs{y}.
   4
   5
   6
                       7
                       絶対値の定義\footnote\{x \in \mathbb{R}$の絶対値x=x$をx=max = x$と定める.}から
   8
   9
                              \abs{x}+\abs{y} \ \geqq \ \x+y,-(x+y)\ = \abs{x+y}.
10
                       \]
                       $\abs{x}$について,
11
12
                       \begin{align*}
13
                                 & \abs{x} = \abs{x-y +y} \leq \abs{x-y}+\abs{y}, \
                                  & \therefore ~ \abs\{x\}-\abs\{y\} \ \abs\{x-y\}
14
15
                       \end{align*}
16
                       となるから、$x \geqq y$, $x \leqq y$のときがあることを加味すると、
17
18
                              \abs{\abs{x}-\abs{y}} \ \abs{x \ y}
19
20
                       であるから、以上のことををまとめると、
21
22
                              23
                       \]
24
               \end{proof}
```

証明

ポイント

■ 絶対値記号を\abs を用いて記述した.

 $^{\dagger 1}$ $x \in \mathbb{R}$ の絶対値 |x| を $|x| = \max\{x, -x\}$ と定める.

2.5 はさみうちの原理

ソースコード(定理環境の定義)

```
1
    \usepackage{tcolorbox}
    \tcbuselibrary{theorems,breakable,skins}
3
    \definecolor{applePaper}{HTML}{F5F5F7}
    \definecolor{appleInk}{HTML}{1D1D1F}
5
    \definecolor{appleLine}{HTML}{D1D1D6}
6
    \definecolor{appleCard}{HTML}{FFFFFF}
7
    \tcbset{ appleMonoBase/.style={enhanced, breakable,
8
          colback=appleCard, colframe=appleLine, coltitle=appleInk,
9
          fonttitle=\sffamily\bfseries,
10
          boxrule=0.5pt, arc=3pt,
          left=8pt,right=8pt,top=6pt,bottom=6pt,
11
12
          attach boxed title to top left={xshift=8pt,yshift=-3pt},
13
          boxed title style={size=small,interior engine=empty},
          drop shadow={black!6!applePaper} }
14
15
    }
```

文章

Theorem 2.5.1: はさみうちの原理

数列 $(a_n)_{n\in\mathbb{N}}$ および $(b_n)_{n\in\mathbb{N}}$ がともに収束し,

$$\lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} b_n = a$$

であり、なおかつ、任意の $n \in \mathbb{N}$ に対して $a_n \leq b_n$ であるとする。 この条件のもとで、数列 $(c_n)_{n \in \mathbb{N}}$ が任意の $n \in \mathbb{N}$ に対して

$$a_n \le c_n \le b_n$$

であるならば、 $(c_n)_{n\in\mathbb{N}}$ は収束し、

$$\lim_{n \to \infty} c_n = a$$

となる.

証明. 仮定により、任意の $\varepsilon>0$ に対して、 $N_1\in\mathbb{N},\ N_2\in\mathbb{N}$ が存在し、任意の $n\in\mathbb{N}$ に対して、

$$n \ge N_1 \Longrightarrow |a - a_n| < \varepsilon,$$

 $n \ge N_2 \Longrightarrow |a - b_n| < \varepsilon$

となる. ここで $N = \max\{N_1, N_2\}$ と定めると, $n \ge N$ のとき,

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$

が成り立ち、 $|a-c_n|<\varepsilon$ であるので、

$$\lim_{n \to \infty} c_n = a$$

を得る. これが証明すべきことであった. □

ポイント

■ tcolorbox.sty を用いて定理環境を記述した.

2.6 内心

ソースコード (図)

```
1
    \begin{tikzpicture}[scale =1.8]
2
      \draw[->] (-0.2,0) -- (4.3,0) node[below] {$x$};
3
      \draw[->] (0,-0.2) -- (0,3.3) node[left] {$y$};
      \coordinate (0) at (0,0) node [below left ] at (0) {mathrm{0}};
4
5
      \coordinate (A) at (4,0) node [below] at (A) \{\infty,A\};
6
      \coordinate (B) at (0,3) node [above right] at (B) {$\mathrm{B}$$};
7
      \draw (0)--(A)--(B)--cycle;
8
      \protect{pgfmathsetmacro{xL}{(3*4 + 4*0)/(4+3)}}
9
      \protect\operatorname{hyl}{(3*0 + 4*3)/(4+3)}
10
      \protect{pgfmathsetmacro{xM}{(4*0 + 5*0)/(5+4)}}
11
      \pgfmathsetmacro{\yM}{(4*3 + 5*0)/(5+4)}
12
      \protect{xN}{(5*0 + 3*4)/(3+5)}
13
      \protect{yN}{(5*0 + 3*0)/(3+5)}
      \coordinate (L) at (\xL,\yL) node [above right] at (L) {\star L}
14
15
      \coordinate (M) at (\xM,\yM) node [above left] at (M) {\infty,yM};
16
      \coordinate (N) at (\xN,\yN) node [above right] at (N) \{mathrm\{N\}\}\};
17
18
      \draw[name path= line 0,red] (0)--(L);
19
      \draw[name path= line A,blue](A)--(M);
20
      \draw[name path= line B,green](B)--(N);
21
      \path[name intersections={of=line 0 and line B, by=P}];
22
      \fill (P) circle (1pt) node[left,xshift=-3pt,yshift=-1pt] {P};
23
      \text{draw let } p1=(\$(0)!(P)!(A)-(P)\$), \\ n1=\{\text{veclen}(\x1,\y1)\} \text{ in circle } [at=(P), radius=\n1];
24
25
      \draw pic[draw=blue, angle radius=1.8cm,"$\alpha$"] {angle=M--A--0};
26
      \draw pic[draw=blue, angle radius=1.8cm,"$\alpha$"] {angle=B--A--M};
27
      \draw pic[draw=red, angle radius=1.2cm,"$\tfrac{\pi}{4}$"] {angle=L--0--B};
28
      29
      \draw pic[draw=green, angle radius=1.8cm,"$\beta$"] {angle=0--B--N};
30
      \draw pic[draw=green, angle radius=1.8cm,"$\beta$"] {angle=N--B--A};
    \end{tikzpicture}
```

内心の定義および図

Definition 2.6.1: 内心

三角形の各頂点の内角を二等分する線は一点で交わり、この点を三角形の内心という。

ポイント

■ angles ライブラリを読み込んで TikZ で角度を描画した.

2.7 球座標

ソースコード (図)

```
1
             \tdplotsetmaincoords{60}{120}
  2
             \begin{tikzpicture}[tdplot_main_coords,scale=1.25]
  3
                   \poline{1.5cm} \pol
                   \protect\operatorname{hy}{5 * \sin(45) * \sin(45)}
  4
  5
                   \protect\operatorname{\protect} \{5 \times \cos(45)\}\
  6
  7
                   \draw[thick,->] (0,0,0) -- (4,0,0) node[anchor=north east]{x};
  8
                   \draw[thick,->] (0,0,0) -- (0,4,0) node[anchor=north west]{$y$};
  9
                   \draw[thick,->] (0,0,0) -- (0,0,4) node[anchor=south]{$z$};
10
                   \displaystyle \frac{1}{2\pi} \left( x, y, z \right) = \frac{2\pi}{3\pi} \left( x, y, z \right)  ricle (2pt) \displaystyle \frac{1}{3\pi} \left( x, z \right) = \frac{1}{3\pi} \left( x, z \right) 
11
12
13
                   \label{lem:draw} $$ \operatorname{dashed}, \operatorname{gray} = (0,0,0) -- (\x,0,0) -- (\x,\y,0) -- (0,\y,0) -- (0,0,0); 
14
                   \label{lem:dashed} $$ \operatorname{dashed,gray} (0,0,0)--(\x,0,0)--(\x,0,\z)--(0,0,\z)--(0,0,0); $$
15
                   \draw[dashed,gray] (0,0,0)--(0,\y,0)--(0,\y,\z)--(0,0,\z)--(0,0,0);
16
                   \draw[dashed,gray] (\x,0,\z)--(\x,\y,\z)--(\x,\y,0);
17
                   \draw[dashed,gray] (\x,\y,0)--(\x,\y,\z)--(0,\y,\z);
18
19
                   \draw[gray] (0,0,0)--(\x,\y,\z);
20
                   \draw[gray] (0,0,0)--(\x,\y,0);
21
22
                   (1,0,0) coordinate (A) -- (0,0,0) coordinate (B) -- (0,1,0) coordinate (C);
23
                   \label{lem:continuous} $$ \down{1.5} {0,0,0}}{0.5}{0}{45}{anchor=north}{$\varphi$} $$
24
                   \tdplotsetthetaplanecoords{45}
25
                   \node at (0.5, 0.5, 1) {$\theta$};
26
27
             \end{tikzpicture}
```

説明と図

直交座標 (x,y,z) から球座標 (r,θ,φ) への変換は次のようになる:

$$\begin{cases} x = r \sin \theta \cos \varphi, \\ y = r \sin \theta \sin \varphi, \\ z = r \cos \theta. \end{cases}$$

球座標 (r,θ,φ) から直交座標 (x,y,z) への変換は次のようになる:

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2}, \\ \theta = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right), \\ \varphi = \operatorname{sgn}(y) \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right). \end{cases}$$

- tikz-3dplot を用いて、3次元での極座標を描写した。
- 図の調整にあたって、ChatGPT を用いた箇所もある。

2.8 四面体

ソースコード (図)

```
\tdplotsetmaincoords{70}{0}
2
    \begin{tikzpicture}[tdplot_main_coords, scale=0.54]
3
       \coordinate (A) at (-4,-3,-9);
4
      \coordinate (B) at (-5,6,-9);
5
      \coordinate (C) at (4,-2,-9);
6
      \coordinate (0) at (0,0,0);
7
      \coordinate (H) at (0,0,-9);
8
      \draw (A) -- (C) -- (O) -- cycle;
9
       \draw (B) -- (0);
10
11
       \draw (B) -- (A) -- (O);
12
       \draw [dashed] (B) -- (C);
13
       \draw (H) -- (A);
14
      \fill [opacity=1.0,gray!80] (0) -- (A) -- (H) -- cycle;
15
16
      draw (0) -- (H);
      \pic [draw, angle radius=10pt] {right angle = 0--H--A};
17
18
19
      \node[below left] at (A) {$\mathrm{A}$};
      \node[above left] at (B) {$\mathrm{B}$};
20
21
      \node[below right] at (C) {$\mathrm{C}$};
22
      \node[above]
                        at (0) {$\mathrm{0}$};
23
       \node[below right]
                               at (H) {$\mathrm{H}$};
24
       \draw [dashed](0) .. controls ($(0)!.2!(A)!30pt!320:(B)$) and ($(0)!.8!(A)!30pt!320:(B)$) .. (A)
25
26
      node [midway, left, fill=white] {$a$};
       \draw [dashed](0) .. controls ($(0)!.2!(B)!30pt!190:(A)$) and ($(0)!.8!(B)!30pt!190:(A)$) .. (B)
27
      node [midway, left, fill=white] {$b$};
28
29
      \frac{(0)!.2!(C)!30pt!140:(A)}{(A)} and \frac{(0)!.8!(C)!30pt!140:(A)}{(A)} ... (C)
      node [midway, left, fill=white] {$c$};
30
31
    \end{tikzpicture}
```

説明と図

$$\vec{a} = \overrightarrow{OA}, \quad \vec{b} = \overrightarrow{OB}, \quad \vec{c} = \overrightarrow{OC}.$$

とし、 \vec{n} を $\triangle OAB$ の法線ベクトルとする。このとき、

$$\overrightarrow{\mathrm{OH}} = s\vec{a} + t\vec{b} + u\vec{c} \quad (s+t+u=1,\ s,t,u\in\mathbb{R})$$

とおくと, $\vec{n} \cdot \overrightarrow{AH} = 0$ であるから,

$$\vec{n} \cdot (\overrightarrow{OH} - \overrightarrow{OA}) = 0.$$

したがって,

$$\vec{n} \cdot \{ (s\vec{a} + t\vec{b} + u\vec{c}) - \vec{a} \} = 0.$$

この式を用いて \overrightarrow{OH} の長さを求めたのちに, $\triangle OAH$ に三平方の定理を適用することで, \overrightarrow{AH} の長さを求めることができる.

- tikz-3dplot を用いて、三次元の四面体を描写した.
- angles ライブラリを読み込んで TikZ で直角を描画した.

2.9 樹形図

ソースコード (樹形図・1回目が表の場合)

```
1
    \begin{tikzpicture}
      [ scale=1.0, grow=right, level distance=30mm,
3
        sibling distance=45mm, edge from parent/.style={draw, -stealth}
4
5
      \node {\textcolor{red}{1回目:表}}
      child[grow=0,edge from parent/.style={draw=red, -stealth}] { node {\textcolor{red}{2回目:表}}
6
          child[grow=0, edge from parent/.style={draw=black, -stealth}] { node {3回目:表} }
7
          child[grow=-40, edge from parent/.style={draw=red, -stealth}] { node {\textcolor{red}{3回目:裏}} } }
8
9
      child[grow=-60] { node {2回目:裏}
10
          child[grow=0] { node {3回目:表} }
          child[grow=-40] { node {3回目:裏} } };
11
12
    \end{tikzpicture}
```

説明と図

コインを3回投げるとき、各回で表または裏が同じ確率で出ると仮定する。ここで、「1回目:表、2回目:表、3回目: 裏」となる確率を求めたい。この場合の出方は右のように樹形図で表すことができる。

コインを 1 回投げたときに表または裏が出る確率はそれぞれ $\frac{1}{2}$ であり、独立な試行を 3 回行うので、出方は

$$2^3 = 8$$

通りある。その中で、「表・表・裏」に対応するのは1通りだけであるため、求める確率は

 $\frac{1}{8}$

である.

また、k を n 以下の自然数として、コインを n 回投げたときに表が k 回出る確率は

$$\binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{2}\right)^{n} {}^{\dagger 1}$$

である.

ポイント

■ 樹形図を描くために、trees ライブラリを用いた。

 $^{^{\}dagger 1}\binom{n}{k}$ は $_n\mathrm{C}_k$ ともかき,n 個の中から k 個を選ぶ組み合わせの数を表す.

2.10 増減表とグラフ

ソースコード (増減表)

```
1
    \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}
                & $\cdots$ & $0$ & $\cdots$ & $1/3$ & $\cdots$ & $1$ & $\cdots$ \\ \hline
2
      $x$
3
      $f'(x)$ & $-$
                            & $0$ & $+$
                                               & $+$ & $+$
                                                                    & $0$ & $+$
                                                                                      \\ \hline
      $f''(x)$ & $+$
                                                      & $-$
                                                                    & $0$ & $+$
4
                            & $+$ & $+$
                                               & $0$
                                                                                       \\ \hline
5
      $f(x)$ & \ser
                                  & \ner
                                                       & \nel
                                                                          & \ner
                                                                                      \\ \hline
6
    \end{tabular}
```

ソースコード (グラフ)

```
\begin{tikzpicture}[scale = 4.0]
 2
       \draw[->,>=stealth,semithick](-0.02,0)--(1.02,0)node[above right]{$x$};
 3
       \draw[->,>=stealth,semithick](0,-0.02)--(0,1.02)node[right]{$y$};
 4
       \draw(0,0)node[below right]{0};
 5
       \draw[domain=-0.02:1.02,samples=100]
 6
       plot(\x, {(\x)^4 - (8/3)*(\x)^3 + 2*(\x)^2})
 7
       node[below right]{$y=f(x)$};
 8
       \def\xa{0}
 9
       \left( \frac{1}{3} \right)
10
       \def\xc{1}
       \label{eq:local_pgfmathset} $$ \operatorname{macro} fxa\{(\xa)^4 - (8/3)*(\xa)^3 + 2*(\xa)^2\} $$
11
       \proonup fmathsetmacro\fxb{(\xb)^4 - (8/3)*(\xb)^3 + 2*(\xb)^2}
12
13
       \proonup fmathsetmacro\fxc{(\xc)^4 - (8/3)*(\xc)^3 + 2*(\xc)^2}
14
       \draw[dashed] (\xa,0)--(\xa,1);
15
16
       \draw[dashed] (0,{\pi a})--(1,{\pi a});
17
       \fill (\xa,{\fxa}) circle[radius=0.3pt];
18
       \draw[dashed] (\xb,0)--(\xb,1);
19
       \draw[dashed] (0,{\fxb})--(1,{\fxb});
20
       \fill (\xb,{\fxb}) circle[radius=0.3pt];
21
       \node[left] at (0,\fxb) {$f(1/3)$};
22
       \node[below right] at (\xb,0) {$1/3$};
23
       \draw[dashed] (\xc,0)--(\xc,1);
24
       \draw[dashed] (0,{\fxc})--(1,{\fxc});
25
       \fill (\xc,{\fxc}) circle[radius=0.3pt];
26
       \node[left] at (0,\fxc) {$f(1)$};
27
       \node[below right] at (\xc,0) {$1$};
28
     \end{tikzpicture}
```

説明、表とグラフ

x が実数全体を動くとき, $f(x)=x^4-8x^3/3+2x^2$ とおくと, $f'(x)=4x(x-1)^2$,f''(x)=4(3x-1)(x-1) であるから,増減表およびグラフは以下のようになる.

x		0		1/3		1	• • •
f'(x)	_	0	+	+	+	0	+
f''(x)	+	+	+	0	_	0	+
f(x)	\ \		1		^		Ì

ポイント

■ \ner, \nel, \sel, \ser は TikZ を用いて定義したマクロである.

2.11 楕円 (ケプラーの法則)

ソースコード

```
1
                \begin{tikzpicture}[scale=0.71]
   2
                       \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
   3
                       \protect\operatorname{\protect}{pgfmathsetmacro}(\s){atan(\t/7)}
                       \protect\operatorname{\mathsf{Nu}}{\{\operatorname{\mathsf{atan}}(\t)\}}
   4
   5
   6
                      \draw[->,>=stealth,semithick](-8,0)--(4,0)node[above]\{$x$\};
   7
                       \label{lem:continuous} $$ \operatorname{cond}_{->,>= stealth, semithick}(0,-4.5)--(0,4.5) \operatorname{node}_{right}_{\$y\$};
   8
                      \draw(0,0)node[below left]{0};
   9
10
                       \node at (-8,0) [below left] \{\$-a(1+e\$)\};
                       \node at (2,0) [below right] {\$a(1-e)\$};
11
12
13
                       \draw [black] (-3,0) circle [x radius=5cm, y radius=3cm];
14
                       \fill (-6,0) circle (2pt) node at (-6,0) [below right] {\$-2ae\};
15
16
                       \fill (-3,0) circle (2pt) node at (-3,0) [below right] {\$-ae\$};
17
                       \coordinate (A) at (1, \t) node at (A) [above right] \{(x,y)\};
18
19
                       \fill (A) circle (2pt);
20
                       \draw (0,0)--(A)--(-6,0)--cycle;
21
22
                      \draw[dashed] (-6,0) to [out=30+\s,in=150+\s] (1,\t);
23
                       \node at (-5/2, {(3+\t)/2}) {$r'$};
24
25
                       \draw[dashed] (0,0) to [out=-30+\u,in=-150+\u] (1,\t);
26
                       \node at (1,\{(-2/3+\t)/2\}) {$r$};
27
                \end{tikzpicture}
```

説明と図

極方程式が

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

で表される楕円を描写した. 焦点は O と (-2ae, 0) である.

ここで e は離心率を表し,

$$e = \frac{\sqrt{a^2 - b^2}}{a}$$

である.

この楕円は「ケプラーの法則」の説明に 用いられる。その場合、原点 O は太陽を表 し、惑星は楕円の周を動くと設定する。

つまり、惑星は太陽を焦点とした楕円軌道を公転する.

ポイント

■ 楕円上の点の座標を\pgfmathsetmacroを用いて設定した.

2.12 回転体

ソースコード

```
1
              \begin{tikzpicture}[x=2.0cm,y=2.0cm,>={Latex[length=2mm]},
  2
                    axis/.style ={-Latex,very thick,draw=appleGrayDark},scale=1.1
  3
   4
  5
                     \left( -30 \right)
  6
                    \pgfmathsetmacro{\k}{abs(sin(\angle))}
  7
  8
                    \def\xa\{1.3\} \def\ra\{1.3\}
                     \def\xx{3.0} \def\xx{1.0}
  9
10
                     \def\xb{5.5} \def\rb{1.7}
11
                     \pgfmathsetmacro{\hra}{\k*\ra}
12
                     \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
13
14
                     \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
15
                    \coordinate (A) at (\xa,\ra);
16
17
                     \coordinate (X) at (\xx,\rx);
                     \coordinate (B) at (\xb,\rb);
18
19
20
                    \shade[top color=appleGrayLight!85,
21
                          bottom color=appleGrayDark!35,
22
                           shading angle=-90]
23
                     (\xa, 0) -
                    plot[smooth,tension=.8] coordinates {(A)(X)(B)} --
24
25
                     (\xb,0) --
26
                    plot[smooth, tension=.8] coordinates \{(\xb, -\rb)(\xx, -\rc)(\xa, -\ra)\} --
27
                    cvcle;
28
29
                     30
                                \shade[top color=appleGrayLight!85,
31
                                       bottom color=appleGrayDark!35,
32
                                       shading angle=-90]
33
                                 (\X,0) ellipse (\{\HR\}\ and \{\R\});
34
35
36
                     \draw[black,thick] plot[smooth,tension=.8] coordinates {(A)(X)(B)};
37
                    \displaystyle \frac{1}{xx,-\rx}(xx,-\rx)(xx,-\rx)}
38
                     \draw[black,thick] (\xa,0) ellipse ({\hra} and {\ra});
39
40
                     \draw[black,thick] (\xb,0) ellipse ({\hrb} and {\rb});
41
                     \draw[black,dotted,thick] (\xx,0) ellipse ({\hrx} and {\rx});
42
43
                     \draw[appleBlue,thick,-Latex]
44
                     ([shift={(0,-0.3)}]\xb+1.05,0) arc(-90:210:0.12 and 0.3);
45
                     \draw[axis] (-0.7,0) -- (\xb+1.5,0) node[below,font=\large] {$x$};
46
47
                     \draw[axis] (0,-2.3) -- (0, 2.3) node[left,font=\large] {$y$};
48
                    \draw[axis] (120:1.3) -- (0,0) -- ++(-60:2.2) node[below right,font=\large] {$z$};
49
50
                    \foreach \X/\R in {\xa/\ra,\xx/\rx,\xb/\rb}{
51
                                 \draw[dotted] (\X,0) -- (\X,\R);
52
                          }
53
54
                     \node[below left=2pt,font=\large] at (0,0) {$\mathrm{0}$};
55
                     \node[below,font=\large] at (\xa,0) {$a$};
56
                    \node[below, font=\lceil at (\xx,0) {$x$};
57
                    \node[below,font=\large] at (\xb,0) {$b$};
58
                     \node[above=4pt,font=\large] at (\xx,\rx) {$y = f(x)$};
59
              \end{tikzpicture}
```

説明と図

関数 f は連続であり、区間 [a,b] で $f(x) \ge 0$ であるものとする。このとき、

$$C = \{(x, y) \in \mathbb{R}^2 \mid y = f(x), a \le x \le b\}$$

をx軸の回りに回転させた図形は

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid y^2 + z^2 \le f(x)^2, a \le x \le b\}$$

または

$$A = \left\{ (x,y,z) \in \mathbb{R}^3 \mid \exists y' \text{ s.t. } (x,y') \in C, y^2 + z^2 \leqq (y')^2 \right\}$$

とかける.

このとき、A の体積をV とすると、

$$V = \pi \int_{a}^{b} f(x)^{2} dx$$

である.

- \shade を用いてグラデーションをつけた.
- \ellipse を用いて楕円を描いた.
- \pgfmathsetmacro を用いて数値計算を行った.

3 物理

3.1 ばねとブロック(力学)

ソースコード (図)

```
1
     \begin{tikzpicture}[scale=1.15,line join=round]
 2
 3
         rail/.style = {line width=5pt, draw=darkgray!80, line cap=butt, line join=round},
                             = {draw=darkgray!80, line width=8pt, line cap=butt, line join=round},
 4
         thickRail/.style
 5
                             = {line width=1.5pt, draw=darkgray!60, densely dashed, line cap=butt},
         dash line/.style
 6
                             = {line width=1pt, arrows={-Stealth}, draw=gray},
         dim line/.stvle
 7
         springStraight/.style = {line width=1.6pt, draw=darkgray, line cap=round},
 8
         springCoil/.style = {draw=darkgray, decorate, decoration={coil, amplitude=6pt},
 9
             line width=1.6pt, line cap=round},
10
         block/.stvle
                             = {draw=black!80, top color=darkgray!90, bottom color=darkgray!60,
             blur shadow={shadow xshift=2pt,shadow yshift=-2pt,shadow blur steps=6}},
11
12
13
       \coordinate (RailJoint)
                                 at (0.0,-1.6);
14
15
       \coordinate (RailCurve)
                                 at (5.2, 2.5);
       \coordinate (RailEnd)
16
                                 at (5.7, 3.4);
17
       \coordinate (AuxLeft)
                                 at (-5.7, 0.0);
       \coordinate (Hbase)
                                 at (6.0,-1.6);
18
19
       \coordinate (Htop)
                                 at (6.0, 2.5);
20
       \coordinate (SpringLeft) at (-5.65,-1.3);
21
       \coordinate (SpringRight) at (-4.0,-1.3);
22
23
       \coordinate (BlockLL)
                                 at (-4.0, -1.53);
24
       \coordinate (BlockUR)
                                 at (-3.2, -1.10);
25
       \coordinate (BL)
                                 at ($(BlockLL)+(0.465,0)$);
26
       \coordinate (BU)
                                 at (\$(BlockUR)+(0.465,0)\$);
27
       \coordinate (BC)
                                 at ($(BL)!0.5!(BU)$);
28
29
       \coordinate (Xbase)
                                 at (0,-1.10);
30
       \coordinate (Xtop)
                                 at (0, 0.30);
31
32
       \coordinate (ZeroBase)
                                 at (-1.8,0.45);
33
34
       \draw[dash line] (RailJoint) -- (7.4,-1.6);
35
       \draw[dash line] (RailCurve) -- (7.4, 2.5);
36
37
       \draw[dim line] (Hbase) -- (Htop) node[midway,right] {$h$};
38
39
       \draw[rail] (RailLeft) -- (RailJoint)
40
       to[out=0,in=-120] (RailCurve) -- (RailEnd);
       \draw[thickRail] ($(RailLeft)+(0,-0.065)$) -- (AuxLeft);
41
42
43
       \draw[springStraight] ($(SpringLeft)+(0.065,0)$) -- ++(0.2,0);
44
       \draw[springCoil]
                             ($(SpringLeft)+(0.265,0)$) -- ($(SpringRight)+(0.265,0)$);
       \draw[springStraight] ($(SpringRight)+(0.265,0)$) -- ++(0.2,0);
45
46
       \draw[block] (BL) rectangle (BU) node[above right,font=\small\bfseries] {$\mathrm{T}$};
47
       \draw[dash line] (\$(BC|-Xbase)\$) -- (\$(BC|-Xtop)\$);
48
49
       \node[above] at ($(BC|-ZeroBase)$) {$x$};
50
51
       \draw[dash line] ($(-1.8,-1.6)+(0,0.1)$) -- (-1.8,0.30);
52
       \node[above,align=center] at (ZeroBase) {(自然長)\\$0$};
53
       \node[above right] at ($(RailCurve)+(0.25,0.1)$) {$\mathrm{S}$};
54
55
     \end{tikzpicture}
```


図のように、ばねを自然長から x だけ縮め、ブロックを静かに離す操作を考える。このとき、ブロックは点 S で速さが 0 になった、ブロックの質量 $^{\dagger 1}$ は m とし、全ての面で摩擦は無視できるものとする。

自然長からxだけ縮めたときのばねの弾性エネルギーは、ばね定数をkとすると、

$$\frac{1}{2}kx^2$$

と表せる。

高さがh の点でのブロックの速さを v_h とすると、その点でのブロックの運動エネルギーは

$$\frac{1}{2}mv_h^2$$

と表せる.

いま、ブロックに右向きの初速 v_0 を与えると、力学的エネルギー保存則により、

$$\frac{1}{2}m{v_0}^2 = \frac{1}{2}kx^2$$
 : $v_0 = \sqrt{\frac{k}{m}}x$.

また、 $\triangle S$ でのブロックの重力による位置エネルギーは、重力加速度の大きさをgとすると、

mqh

と表せるので、力学的エネルギー保存則により、

$$\frac{1}{2}m{v_0}^2 = mgh \quad \therefore \ h = \frac{{v_0}^2}{2g}.$$

最後に、曲線上で水平面からの高さが h/2 の点 $S_{
m mid}$ におけるブロックの速さを $v_{
m mid}$ とし、これを求めよう:力学的エネルギー保存則により、

$$\frac{1}{2} m {v_0}^2 = \frac{1}{2} m {v_{\rm mid}}^2 + m g \cdot \frac{h}{2} \quad \therefore \ v_{\rm mid} = \sqrt{{v_0}^2 - g h}.$$

- \tikzset を用いて、スタイルを定義した。
- \coordinate を用いて、座標を定義した。

 $^{^{\}dagger 1}$ 物理において「質量」と「重量(重さ)」は異なる概念である。質量は物体固有の量を示すもので,大きさのみを持つスカラー量である。一方,重量は物体に働く重力のことであり,大きさと向きを持つベクトル量である。両者の大きさの関係は,重量の大きさを W,質量を m,重力加速度の大きさを g とすると,W=mg と表される。このため,質量 m の物体は地球上でも月面でも等しく質量 m を持つが,その重量の大き さ W は場所の重力加速度の大きさ g に依存して変化する。たとえば,月面における重力加速度の大きさは地球上の約 1/6 であるため,同じ質量の物体が月面で受ける重量の大きさは地球上で受ける重量の大きさの約 1/6 となる。

3.2 滑車とロープ(力学)

ソースコード (図)

```
\begin{tikzpicture}[scale=1.3,line cap=round, line join=round]
 2
       \tikzset{ thickline/.style ={line width=0.15cm, color=darkgray!70},
 3
         ropeline/.style
                           ={line width=0.1cm, color=darkgray,line cap=butt},
 4
         outercircle/.style ={line width=0.05cm, color=black}, }
 5
 6
       \coordinate (TopLeft) at (-5.1, 4.3);
 7
       \coordinate (TopRight) at (3.1, 4.3);
       \coordinate (ClipLowerLeft) at (-5.1, 4.3);
 8
 9
       \coordinate (ClipUpperRight) at ( 3.1, 4.8);
10
       \draw [thickline] (TopLeft) -- (TopRight);
11
       \begin{scope}
12
13
         \clip (ClipLowerLeft) rectangle (ClipUpperRight);
14
         \foreach \i in \{0,...,33\} \{ \draw [darkgray!70, semithick]
15
             (\{-5.2 + 0.25*\idot\idot\idot\], 4.3) -- (\{-4.7 + 0.25*\idot\], 4.8); }
16
       \end{scope}
17
18
       \draw [very thick] (-2.6, 0.5) rectangle (-2.1, -2.7);
19
       \fill [left color=darkgray!80, right color=darkgray!70] (-2.6, 0.5) rectangle (-2.1, -2.7);
20
       \draw[very thick, shorten <=0.075cm, shorten >=0.075cm, line cap=butt]
21
       (0.15,2.4) rectangle (0.55,4.23);
22
       \fill [left color=darkgray!80, right color=darkgray!70] (0.15,2.4) rectangle (0.55,4.23);
23
24
       \begin{scope}
25
         \protect\operatorname{\protect}{R}{1.35}
26
         \draw [outercircle] (-2.35, -1.1) circle (\R);
27
         \fill [left color=darkgray!80, right color=darkgray!60, middle color=lightgray]
28
         (-2.35, -1.1) circle (\R);
29
         \draw [very thick, white] (-2.35, -1.1) circle (.3 * \R);
         \draw [ultra thick, white] (-2.35, -1.1) circle (.7 * \R);
30
31
         \shade [ball color=white] (-2.35, -1.1) circle (.2);
32
         \draw [darkgray, line width=0.1cm] (-2.35, -1.1) ++(0:\R) arc (0:-180:\R);
         \draw [ropeline] (-3.7, -1.1) -- (-3.7,4.25);
33
34
         \draw [outercircle] (0.35, 2.4) circle (\R);
35
       \end{scope}
36
37
38
       \begin{scope}
39
         \protect\operatorname{\protect}{R}{1.35}
40
         \draw [outercircle] (0.35, 2.4) circle (\R);
         \fill [left color=darkgray!80, right color=darkgray!60, middle color=lightgray]
41
42
         (0.35, 2.4) circle (\R);
43
         \draw [thick,
                             white] (0.35, 2.4) circle (.3 * \R);
         \draw [ultra thick, white] (0.35, 2.4) circle (.7 * \R);
44
45
         \shade [ball color=white] (0.35, 2.4) circle (.2);
46
         \draw [darkgray, line width=0.1cm] (0.35, 2.4) ++(180:\R) arc (180:0:\R);
47
         \draw [ropeline] (-1.0, -1.1) -- (-1.0, 2.4);
48
       \end{scope}
49
50
       \draw [ultra thick] (-2.35, -2.7) -- (-2.35, -3.7);
51
       \draw (-2.9, -3.7) rectangle (-1.8, -5.3);
       \fill [left color=darkgray!80, right color=darkgray!70] (-2.9, -3.7) rectangle (-1.8, -5.3);
52
53
       \node [left] at (-2.9, -4.5) {$\mathrm{B}$};
54
       \draw [ropeline] (1.7,2.4) -- (1.7,-3.7);
55
56
       draw (1.2, -3.7) rectangle (2.3, -5.3);
57
       \fill [left color=darkgray!80, right color=darkgray!70] (1.2, -3.7) rectangle (2.3, -5.3);
       \node [left] at (1.2, -4.5) {\mbox{mathrm{A}}};
58
     \end{tikzpicture}
59
```


物体 A と物体 B があり、それぞれの質量を m_A 、 m_B とする。ただし、 m_B は m_A に比べて十分大きいとする。また、物体 A と物体 B はそれぞれ上昇および下降運動を行うものとし、糸の質量と伸縮、滑車の質量と摩擦は無視する。

天井の位置を原点とし、鉛直下向きを正の方向とする。重力加速度を g、物体 A の位置を x_A 、物体 B の位置を x_B とすると、各物体の運動方程式は次式のように表される:

$$\begin{split} m_{\rm A} \frac{d^2 x_{\rm A}}{dt^2} &= m_{\rm A} g + (-T), \\ m_{\rm B} \frac{d^2 x_{\rm B}}{dt^2} &= m_{\rm B} g + (-T) + (-T). \end{split}$$

糸の長さが一定なことから、束縛条件は

$$x_{\rm A} + 2x_{\rm B} = {\rm const}$$
 \therefore $\frac{d^2x_{\rm A}}{dt^2} + 2\frac{d^2x_{\rm B}}{dt^2} = 0.$

この運動方程式と束縛条件を用いて、物体 A および物体 B の加速度、ならびに両物体を結ぶ糸の張力 T を求めると、

$$\frac{d^2x_{\rm A}}{dt^2} = -\frac{2(m_{\rm B}-2m_{\rm A})}{m_{\rm B}+4m_{\rm A}}g, \quad \frac{d^2x_{\rm B}}{dt^2} = \frac{m_{\rm B}-2m_{\rm A}}{m_{\rm B}+4m_{\rm A}}g, \quad T = \frac{3m_{\rm A}m_{\rm B}}{m_{\rm B}+4m_{\rm A}}g.$$

- \scope 環境を用いて、スコープを分けた。
- \clip を用いて、クリッピング範囲を指定した。
- \foreach を用いて、ループ処理を行った。

3.3 フックの法則(力学)

ソースコード (図)

```
\begin{tikzpicture}[x=0.65pt,y=0.65pt,yscale=-1.02,xscale=1.02]
2
      \displaystyle \frac{-}{340,200} - (340,200)  node [above right] {xx};
3
      \draw (255,195)--(255,205);
4
      \node at (255,135) [align=center] {(自然長)\\$0$};
5
      \draw [dashed] (310,170)--(310,230) node at (310,155) {$x$};
6
      \draw [color=darkgray!80,line width=2] (280,260) -- (243,260);
7
      \draw [darkgray!80,decorate,decoration={coil,amplitude=6pt},line width=2] (245,260) -- (150,260);
      \draw [color=darkgray!80,line width=2] (150,260) -- (115,260);
9
      \shade [ball color=darkgray!70] (310,255) circle [radius=30];
      \draw (310,255) circle [radius=30];
10
  \end{tikzpicture}
```

説明と図

摩擦なしの水平面に質量 m の球とばね定数 k のばねを置く、フックの法則により、運動方程式は次のようになる:

$$m\frac{d^2x}{dt^2} = -kx.$$

これは 2 階線型微分方程式であり、初期条件を与えれば解が 求められる $^{\dagger 1}$ 、初期条件を

$$x(0) = 0, \quad \dot{x}(0) = v_0$$

とする^{†2}. このとき解は

$$x(t) = \frac{v_0}{\sqrt{k/m}} \sin\left(\sqrt{\frac{k}{m}}t\right)$$

となる.

また、物体とばねからなる系の運動エネルギーと弾性エネルギーの和は保存し、エネルギー保存則は次のようになる:

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \text{const.}$$

運動エネルギー 弾性エネルギー

- mathcha を用いて作図し、その後は自分の手で調整を施した。
- \shade を用いることで、グラデーションを施した。

^{†1} いわゆる「単振動」を表す微分方程式である.

 $[\]dot{x}^2$ $\dot{x}=dx/dt$ である。 \dot{x} はニュートンの微分記法,dx/dt はライプニッツの微分記法である。

3.4 気体分子運動論(熱力学)

ソースコード (図)

```
1
                    \begin{tikzpicture}[
    2
                                     scale=0.80,
    3
                                     line cap=round,
    4
                                     line join=round,
    5
                                     every node/.style={font=\large, color=appleBlack},
    6
                                     x=\{(1.1cm, 0cm)\}, y=\{(0.7cm, 0.6cm)\}, z=\{(0cm, 1.0cm)\}
    7
    8
    9
                            \left\{ def \right\}
10
11
                             \label{lem:condition} $$ \displaystyle -\{Stealth[length=3mm]\}] $$ (0,0,0) -- (L+2,0,0) \ node[pos=1, right] $$ $$ ($x$); $$ ($
12
                             \label{lem:condition} $$\operatorname{In}(0,0,0) -- (0,\L+2,0) \ node[pos=1, above right] {$y$};
13
                            \displaystyle \frac{-\{Stealth[length=3mm]\}}{(0,0,0)} -- (0,0,L+2) \ node[pos=1, right] {$z$};
14
                            \node[below right=1pt and -3pt] at (0,0,0) {\mbox{mathrm}{0}$};
15
16
17
                            \colorlet{edgecolor}{appleBlack}
18
19
20
                            \draw[dashed, edgecolor] (0,0,0) -- (0,\L,0);
21
                            \draw[dashed, edgecolor] (0,\L,0) -- (\L,\L,0);
22
                            \draw[dashed, edgecolor] (0,0,0) -- (0,0,\L);
23
                            \draw[dashed, edgecolor] (0,\L,\L) -- (0,\L,0);
24
25
                             \draw[edgecolor] (\L,0,0) -- (0,0,0) -- (0,0,\L) -- (0,\L,\L) ;
26
                             \draw[edgecolor] (\L,\L,\L) -- (\L,0,\L) -- (\L,0,0);
27
                             \draw[edgecolor] (\L,\L,\L) -- (0,\L,\L);
28
                            \draw[edgecolor] (\L,\L,0) -- (\L,\L,\L);
29
                             \draw[edgecolor] (0,0,\L) -- (\L,0,\L) ;
30
                            \draw[edgecolor] (\L,\L,0) -- (\L,0,0);
31
32
                             \node[below] at (L/2, 0, 0) {$L$};
33
                             \node[above left] at (0, L/2, 0) {$L$};
                            \node[above left] at (0, 0, L/2) {$L$};
34
35
36
                            \pgfmathsetseed{16}
37
                            \foreach \i in \{1,\ldots,25\}{
38
39
                                             \pgfmathsetmacro{\randx}{rnd * \L}
40
                                             \pgfmathsetmacro{\randy}{rnd * \L}
41
                                             \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
42
                                             \shade[ball color=gray, opacity=0.8] (\randx,\randy,\randz) circle (0.15cm);
43
                                     }
44
45
                            \coordinate (p) at (2, 0.5, 2.5);
46
47
                             \def\vlen{2.0}
48
49
                            \label{length=2.5mm} $$ \operatorname{length=2.5mm}, appleBlue, semithick] (p) --++ (\vlen,0,0) node[right=3pt] $$ \operatorname{vec}_x^s; $$ is $$ (v)_x^s; $$ is $$ (v)_x^s; $$ is $$ (v)_x^s; $$ is $$ (v)_x^s; $$ (v)_x^
50
51
                            \label{lem:condition} $$ \operatorname{Stealth[length=2.5mm]}, appleGreen, semithick] (p) --++ (0,\vlen,0) node[above=3pt] {$\vec{v}_y$}; $$
52
53
                            \draw[-{Stealth[length=2.5mm]}, appleRed, semithick]
54
                              (p) --++ (0,0,\vlen) node[above left=2pt and -2pt] {$\vec{v}_z$};
55
56
                             \shade[ball color=appleGray, opacity=1.0] (p) circle (0.17cm);
                   \end{tikzpicture}
57
```


x 軸方向について,質量 m の分子 1 個が壁 A に衝突する状況を考える。x 方向の速度が v_x から $-v_x$ に変わるため,1 回の衝突で分子が受ける運動量の変化は $(-mv_x)-(mv_x)=-2mv_x$ となる.作用・反作用の法則より,壁が受ける力積は $2mv_x$ である.

また,一辺 L の容器内で,この分子は単位時間に $\frac{v_x}{2L}$ 回,壁に衝突する $^{\dagger 1}$.1 個の分子が壁に及ぼす平均の力は,単位時間あたりの力積の合計に等しいので.

$$2mv_x \cdot \frac{v_x}{2L} = \frac{mv_x^2}{L}.$$

容器内に N 個の分子が存在する場合,壁が受ける合力 F_x は,x 方向の速度の 2 乗平均 $\langle {v_x}^2 \rangle$ を用いて次のように表される:

$$F_x = \frac{N\langle m{v_x}^2\rangle}{L}.$$

壁の面積を L^2 とすると,圧力 p_x は

$$p_x = \frac{F_x}{L^2} = \frac{Nm\langle v_x^2 \rangle}{L^3} = \frac{Nm\langle v_x^2 \rangle}{V}$$

である。ただし、 $V=L^3$ は容器の体積である。

分子の運動は等方的であるため、 $\langle {v_x}^2 \rangle = \langle {v_y}^2 \rangle = \langle {v_z}^2 \rangle$ が成り立つ。そして、 $\langle {v}^2 \rangle = \langle {v_x}^2 \rangle + \langle {v_y}^2 \rangle + \langle {v_z}^2 \rangle = 3 \langle {v_x}^2 \rangle$ より、

$$\langle v_x^2 \rangle = \frac{1}{3} \langle v^2 \rangle.$$

これより、気体の圧力pが次のように求められる:

$$p = \frac{Nm\langle v^2 \rangle}{3V}.$$

ポイント

■ 球の配置には乱数を使用し \pgfmathsetseed を用いてシードを固定した.

 $^{^{\}dagger 1}$ 一辺が L の容器内を運動する分子は,一方の壁に衝突後,対向する壁との衝突を経て再び元の壁に戻る.このため,同じ壁に連続して衝突する間の x 軸方向の移動距離は 2L となる.

3.5 ピストン付き容器 (熱力学)

ソースコード (図)

```
\begin{tikzpicture}[scale=0.113,yscale=-1,xscale=1]
      \fill[lightgray] (2,6) rectangle (35,45);
2
3
      \fill[black!70]
      (70,6) -- (71,6) -- (71,46) -- (2,46) -- (2,6)
4
5
      -- (44,6) -- (44,7) -- (3,7) -- (3,45) -- (70,45)
6
      -- (70,6) -- cycle;
7
      \fill[darkgray!60] (35,7) -- (38,7) -- (38,45) -- (35,45) -- cycle;
8
9
      draw[line width=2] (38,30) -- (44,30);
      \draw[color=black, decorate, decoration={coil, amplitude=6pt}, line width=2]
10
11
       (44,30) -- (64,30);
12
      \draw[line width=2] (64,30) -- (70,30);
13
14
      \draw[line width=1.5] (8,18) -- (12,18) -- (12,32) -- (8,32) -- cycle;
15
16
      draw (0,10) -- (10,10) -- (10,18);
      \draw (10,32) -- (10,40) -- (0,40);
17
18
19
      \draw (44, 4) node[anchor=west] {シリンダ};
      \draw (48, 24) node[anchor=west] {ばね};
20
21
      \draw (16, 23) node[anchor=west] {気体};
22
      \draw (-14, 16) node[anchor=west] \{L-9-\};
23
      \draw (40, 18) node[anchor=west] {ピストン};
24
    \end{tikzpicture}
```

説明と図

P を気体の圧力,V を気体の体積,n を気体のモル数,R を気体定数 $^{\dagger 1}$,T を気体の温度 $^{\dagger 2}$ とする

また、U を気体の内部エネルギー、W を気体が外界に対して行う仕事、Q を気体が外界から受け取る熱量とする。

「理想気体 $^{\dagger 3}$ を考える」などの条件を課すと $^{\dagger 4}$, この状況は下記の二式から考察される:

理想気体の状態方程式 PV = nRT.

熱力学第一法則 $\Delta U = -W + Q$.

圧力 P は力学的にピストンのつり合いから求めるもので、状態方程式から求められるものではない。そして、W は P-V グラフの面積から求まるものである。

ポイント

■ mathcha を用いて作図し、その後にコードを整えた。

 $^{^{\}dagger 1}$ $R=8.31\,\mathrm{J/K\cdot mol}$ であり、これはボルツマン定数 k とアボガドロ定数 N_A の積である。

 $^{^{\}dagger 2}$ この場合の温度は絶対温度であり、セルシウス温度とは異なる。原子や分子の熱運動がほとんどなくなる温度を基準とした温度尺度を絶対温度(ケルビン温度)といい、その単位はケルビン(K)で表される。一方、標準大気圧($1\,\mathrm{atm}$)における氷の融点を $0\,^\circ\mathrm{C}$ 、水の沸点を $100\,^\circ\mathrm{C}$ とした温度尺度をセルシウス温度といい、その単位はセルシウス度($^\circ\mathrm{C}$)で表される。両者の間には $T\,\mathrm{(K)} = t\,(^\circ\mathrm{C}) + 273.15$ の関係がある。

 $^{^{\}dagger 3}$ ここでいう理想気体とは,体積が $^{~0}$ で分子間力がはたらかないと仮定した架空の気体のことである.

^{†4} シリンダやピストンに断熱性を課したり,ピストンの摩擦を無視することが多い.ここではそれらの条件の明記は省略する.

3.6 LC 回路 (電磁気学)

ソースコード (図)

```
1 \begin{circuitikz}[scale=1.3,american currents]
2 \draw (0,0)
3 to [L=$L$] (0,5)
4 to [short] (3,5);
5
6 \draw (3,5)
7 to [C=$C$] (3,0)
8 to [short] (0,0);
9
10 \node at (2.5,3) {$Q$};
11 \node at (2.5,2) {$-Q$};
12 \end{circuitikz}
```

説明と図

電気振動の基本的なモデルである.

充電した電荷 Q_0 のコンデンサーを、時刻 t=0 でコイルにつなぐ.時刻 t における回路の電流を I とし、時計回りを電流の正の向きとする.

キルヒホッフ則により、回路方程式は次のようになる:

$$\frac{Q}{C} + L \frac{dI}{dt} = 0 \quad \therefore \ \frac{dI}{dt} = -\frac{Q}{LC}.$$

また, 連続方程式は次のようになる:

$$\frac{dQ}{dt} = I.$$

これを回路方程式に代入すると,

$$\frac{d^2Q}{dt^2} = -\frac{Q}{LC}.$$

これは2階線型微分方程式である。初期条件 $^{\dagger 1}$ を考慮するとその解は次のようになる:

$$Q = Q_0 \cos \omega t, \quad \omega = \frac{1}{\sqrt{LC}}.$$

また, 回路方程式と連続方程式から次の結果を得る:

$$LI\frac{dI}{dt} + \frac{Q}{C}\frac{dQ}{dt} = 0$$
 $\therefore \frac{d}{dt}\left(\frac{LI^2}{2} + \frac{Q^2}{2C}\right) = 0.$

このことから、次のエネルギー保存則を得る:

$$\frac{LI^2}{2}$$
 + $\frac{Q^2}{2C}$ = const.

コイルのエネルギー 静電エネルギー

ポイント

■ circuitikz.sty を用いて作図した.

 $^{^{\}dagger 1}$ 時刻 t=0 でコンデンサーの電荷が Q_0 であること.

3.7 傾斜レール上の導体棒(電磁気学)

ソースコード (図)

```
\begin{tikzpicture}[font=\large,line cap=round,line join=round,scale=1.45,
 2
         transform shape, shift=\{(-4.725, -0.32)\}
 3
       \colorlet{railcolor}{black!75} \colorlet{rodBody}{black!60}
 4
       \colorlet{rodHighlight}{white} \colorlet{arrowcolor}{black!80}
 5
       \tikzset{ RailLine/.style = {draw=railcolor, line width=4.0},
 6
                            = {draw=black!50, dashed, line width=1.5},
 7
       ResistorLine/.style = {draw=railcolor, line width=1.0},
       BaseLine/.style
                           = {draw=black, line width=1.2},
 8
 9
       Vector/.style
                           = {-{Stealth[length=10pt]}, very thick, draw=arrowcolor},
10
       DistanceArrow/.style={ <->,>={Stealth[length=10pt]}},
       dashed,line width=2.0,draw=black!50,} }
11
       \coordinate (A) at (-1.12,0.32);
12
13
       \coordinate (B) at (4.725,4.27);
14
       \coordinate (D) at (-4.7, 2.02);
15
       \coordinate (E) at ( 1.1 ,5.95);
16
       \draw[RailLine] (A)--(B);
17
       \draw[RailLine] (D)--(E);
       \coordinate (C) at ($(E)!0.9!(B)$);
18
19
       \label{lem:continuous} $$ \operatorname{ResistorLine}_{(E)} = (E) \ to[european resistor, l=$R$, bipoles/length=0.9cm] \ (C) \ -- \ (B); $$
20
       \def\s{0.27}
21
       \coordinate (S1) at (\$(A)!\s!(B)\$);
       \coordinate (S2) at (\$(D)!\s!(E)\$);
22
23
       \draw[DistanceArrow] (S1) -- (S2) node[midway,below] {$\$};
24
       \coordinate (F) at ( 2.8 ,1.6 );
25
       \coordinate (G) at (-2.7, 2.65);
26
       \draw pic[draw, line width=1.2,angle eccentricity=1.45,angle radius=1.05cm,
27
           pic text={$\theta$}] {angle=F--A--B};
28
       \draw pic[draw, line width=1.2,angle eccentricity=1.45,angle radius=1.05cm,
29
           pic text={$\theta$}] {angle=G--D--E};
30
       \draw[Vector] (-2,2.0) -- ++(0,-0.75) node[left] {$g$};
31
       \draw[Vector] (-0.4,2.5) -- ++(0, 0.75) node[below right] {$B$};
32
       \begin{scope}
33
         \left(0.58\right)
34
         \def\rodW{5pt}
35
         \def\rodExt{0.30cm}
36
         \coordinate (R1) at (\$(A)!\t!(B)\$);
         \coordinate (R2) at (\$(D)!\t!(E)\$);
37
38
         \draw[line width=\rodW+1.2pt, color=black,line cap=round, shorten >=-\rodExt,
39
           shorten \leftarrow \rackless (R1) -- (R2);
         \draw[line width=\rodW+1pt, color=black!20, opacity=0.5,line cap=round,
40
41
           shorten >=-\rodExt, shorten <=-\rodExt] (R1)--(R2);</pre>
42
         \draw[line width=\rodW, color=rodBody,line cap=round, shorten >=-\rodExt,
43
           shorten <=-\rodExt] (R1)--(R2);</pre>
         \label{eq:p1 = (R1), p2 = (R2), n1 = {y2-y1}, n2 = {x1-x2}, n3 = {veclen(\n1,\n2)}} \\
44
45
         in coordinate (rodShift) at (\n1/\n3*0.9pt,\n2/\n3*0.9pt);
46
         \begin{scope}[shift={(rodShift)}]
47
           \draw[line width=2pt, color=rodHighlight, opacity=0.7,line cap=round,
48
             shorten >=-\rodExt, shorten <=-\rodExt] (R1)--(R2);</pre>
49
         \end{scope}
50
       \end{scope}
51
       \path[overlay,name\ path=BaseFront] (A) -- ($(A)!6!(F)$);
       \path[overlay,name path=BaseBack ] (D) -- ($(D)!6!(G)$);
52
53
       \path[overlay,name path=VertB
                                        ] (B) -- ++(0,-10);
54
       \path[overlay,name path=VertE ] (E) -- ++(0,-10);
55
       \path[name intersections={of=BaseFront and VertB, by=Bb}];
56
       \path[name intersections={of=BaseBack and VertE, by=Eb}];
       \draw[BaseLine] (A) -- (Bb) -- (Eb) -- (D) -- cycle;
57
       \draw[BaseLine] (B) -- (Bb);
58
       \draw[BaseLine] (E) -- (Eb);
59
60
     \end{tikzpicture}
```


レール間隔を l, 傾角を θ , 棒の質量を m, 磁束密度を B, 抵抗を R とし, レールに沿う下向きを正とする. 誘導起電力を V とすると, V は以下のように表される:

$$V = vBl\cos\theta$$

時計回りを正として、流れる電流をiとする。キルヒホッフ則により、

$$V = Ri$$
 $\therefore i = \frac{V}{R} = \frac{vBl\cos\theta}{R}.$

導体棒の運動方程式は、レールにはたらく力の斜面と平行な成分を考えて^{†1}、

$$m\frac{dv}{dt} = mg\sin\theta - iBl\cos\theta$$
$$= mg\sin\theta - \frac{B^2l^2\cos^2\theta}{R}v.$$

十分時間が経てば dv/dt = 0 となり,

$$v_{\infty} = \frac{mgR\sin\theta}{B^2l^2\cos^2\theta}.$$

このとき, $i = (vBl\cos\theta)/R$ より,

$$i_{\infty} = \frac{mg\sin\theta}{Bl\cos\theta}.$$

よって、抵抗で消費される電力を P とすると、 $P=i^2R$ より、

$$P_{\infty} = \left(\frac{mg\sin\theta}{Bl\cos\theta}\right)^2 R.$$

- 抵抗は circuitikz.sty を用いて描画した.
- 導体棒の影を\path を用いて描画した.
- 導体棒のハイライトは、\scope 環境を用いて描画した。

^{†1} 導体棒にはたらく重力とローレンツ力を考えればよい.

3.8 ヤングの実験(光学)

ソースコード (図)

```
1
                \begin{tikzpicture}[scale=0.735]
  2
                      \draw[thick] (-3, 2) -- (-3, -2);
  3
                       \draw (-3.3, 2) node[left] {\$\mathrm{S}_1\$};
  4
                      \draw[thick] (-2.8, 0.5) -- (-3.2, 0.5);
  5
                      \draw[thick] (-2.8, -0.5) -- (-3.2, -0.5);
  6
                      \draw[thick] (0, 2) -- (0, 1.2);
  7
                      \draw[thick] (0, 0.8) -- (0, -0.8);
  8
                      \draw[thick] (0, -1.2) -- (0, -2);
                      \label{left} $$ \operatorname{(-0.3, 2) \ node[left] {$\mathbb{S}_2$};}
  9
10
                      \draw[thick] (-0.2, 1) -- (0.2, 1);
11
                      \draw[thick] (-0.2, -1) -- (0.2, -1);
                      \draw[thick] (6, 3) -- (6, -3);
12
13
                      \draw (6.3, 3) node[right] {\$\mathrm{F}\$\};
14
15
                      \foreach \y in \{-2.5, -2, ..., 2.5\} {\\draw[gray, thick] (6, \y) -- (6.3, \y); }
                      \foreach \i in {0.5,1,1.5,2,2.5} {
16
                                    \displaystyle \frac{1}{3} - \frac{1}{3} - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = \frac{
17
                       \foreach \i in \{0.5,1,1.5,2,2.5,3\} { \draw[thin, dashed] (0,1) ++(0,\i)
18
19
                                    arc[start angle=90,end angle=-90,radius=\i];
20
                                    \label{lem:condition} $$ \operatorname{den}_{0,-1} ++(0,\cdot) \ \operatorname{arc[start\ angle=90,end\ angle=-90,radius=\cdot]; } $$
21
22
                      \draw[thick, ->] (-3, 0) -- (0, 1);
23
                      \draw[thick, ->] (-3, 0) -- (0, -1);
                      \draw[thick, ->] (0, 1) -- (6, 1);
24
25
                       \draw[thick, ->] (0, -1) -- (6, 1);
26
                      \node at (-2.8, 0.25) {\$a\$};
27
                      \node at (-0.3, 1.3) {$b$};
28
                      \node at (-0.3, -1.3) {\$c\$};
29
                      \node at (5, 1.3) {$d$};
30
              \end{tikzpicture}
```

説明と図

光が波の性質である「干渉性」を持つことを示す「ヤングの実験」 に関する図である。ヤングの実験により、2つのスリットを通過した光が、強め合ったり打ち消し合ったりして干渉縞が現れることが示された。

光に関しては「光電効果」というよく知られた現象があるが、その現象では光は粒子の性質を持つことがわかっている。そのため、 光の性質については以下のような説明がよくなされる:

「光」を波だと思っていたら、粒子であった。「電子」を粒子だと思っていたら、波であった。よって「光」も「電子」も波であり粒子である。

だが「光」と「電子」はマクロな人間にとって「直感的概念」であるから、以下の2点で光を説明する:

- 波でも粒子でもない
- 量子力学で記述される対象

ポイント

■ ChatGPT で大雑把なソースコードをを作り、その後は自分の手で調整を施した。

3.9 凸レンズによる実像の形成(光学)

ソースコード (図)

```
\begin{tikzpicture}[
1
2
        x=1.55cm, y=1.55cm,
3
        axis/.style ={-Stealth, line width=1.0pt, draw=appleGrayDark},
4
        lensEdge/.style={draw=appleGrayDark, line width=1.0pt},
5
        lensGlass/.style={top color=appleGrayLight!60,
6
            bottom color=appleGrayDark!40, shading angle=0},
7
        object/.style ={-Stealth, very thick, draw=appleGrayDark},
                      ={-Stealth, very thick, draw=appleGrayDark},
8
        image/.style
9
        ray/.style
                       ={very thick, draw=appleBlue, rounded corners},
10
        label/.style ={font=\normalsize, inner sep=1pt},
        dimLine/.style={<->, shorten >=1pt, shorten <=1pt, draw=applePurple, line width=0.75pt},</pre>
11
12
        dimLabel/.style={font=\small, inner sep=1pt, midway, below}
13
      1
14
15
      \pgfmathsetmacro{\focal}{2.0}
16
      \pgfmathsetmacro{\distancea}{3.5}
17
      \pgfmathsetmacro{\distanceb}{\focal*\distancea/(\distancea-\focal)}
18
      \pgfmathsetmacro{\objh}{1.0}
19
      20
      \pgfmathsetmacro{\axisRight}{\distanceb+1.0}
21
22
      \begin{scope}
23
        \clip (-0.4,-2) rectangle (0.4,2);
24
        \filldraw [lensGlass, lensEdge]
25
        (0,-2) .. controls (0.4,-1) and (0.4,1) .. (0,2)
26
        -- (0,2) .. controls (-0.4,1) and (-0.4,-1) .. (0,-2) -- cycle;
27
      \end{scope}
28
      \node at (0.65,1.8) [label] {凸レンズ};
29
      \draw [axis] (-4.5,0) -- (\axisRight,0) node [label,above right] {光軸};
30
31
      \node [label,below=3pt] at (0,0) {$\mathrm{0}$};
32
33
      \fill (-\focal,0) circle (1pt) node [label,below=3pt] {\$\mathrm{F}\$};
34
      \fill (\focal,0) circle (1pt) node [label,below=3pt] {$\mathrm{F}'$};
35
36
      \coordinate (OBase) at (-\distancea,0);
37
      \coordinate (OTip) at (-\distancea,\objh);
      \draw [object] (OBase) -- (OTip) node [label, align=center, above=4pt] {$\mathrm{A'}$\\\normalsize(光源)};
38
39
      \node [label, below=2pt] at (OBase) {$\mathrm{A}$};
40
41
      \coordinate (IBase) at (\distanceb,0);
42
      \coordinate (ITip) at (\distanceb,\imgh);
43
      \draw [image] (IBase) -- (ITip) node [label, align=center, below=4pt] {$\mathrm{B'}$\\\normalsize(実像)};
44
      \node [label, below right= 1.73pt] at (IBase) {$\mathrm{B}$$;
45
46
      \coordinate (L1) at (0,\objh);
      47
48
49
      \draw [ray] (OTip) -- (0,0) -- (ITip);
50
51
      \def\distMarkY{-2.3}
52
      \def\focalMarkY{-2.6}
53
54
      \draw [dimLine] (-\distancea, \distMarkY) -- (0, \distMarkY) node [dimLabel] {\$a\$};
55
      \draw [dimLine] (0, \distMarkY) -- (\distanceb, \distMarkY) node [dimLabel] {$b$};
56
      \draw [dimLine] (0, \focalMarkY) -- (\focal, \focalMarkY) node [dimLabel] {$f$};
57
    \end{tikzpicture}
```

説明と図

凸レンズの中心から物体までの距離を a, レンズの中心から像までの距離を b とする. 凸レンズの焦点は物体側にあるものとし、焦点距離は f とする. また、ここでは a>0、b>0, f>0 とする $^{\dagger 1}$.

この条件のもとで、凸レンズによって実像が形成される場合の「レンズの公式」は以下のようになる:

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b}.$$

この公式を導出してみよう:

証明. 図より、 $\triangle AA'O$ と $\triangle BB'O$ は相似であるから、

$$AA' : BB' = OA : OB = a : b.$$

図より、 $\triangle POF'$ と $\triangle BB'F'$ も相似であるから、

$$PO : BB' = OF' : BF' = f : b - f.$$

AA'と PO の長さが等しいため、

$$OA : OB = OF' : BF'$$

:.
$$a:b=f:(b-f)$$
.

このことからただちに次の結果を得る:

$$bf = a(b-f)$$
 \therefore $\frac{1}{f} = \frac{1}{a} + \frac{1}{b}.$

これが証明すべきことであった. □

ポイント

■ svg2tikz を用いて、SVG 形式の画像を TikZ コードに変換し、ソースコードを整えて図を生成した。

 $^{^{\}dagger 1}$ この条件を設けないことで、虚像の場合を議論することもあるが、ここでは実像ができる場合のみを考えることとする。

4 化学

4.1 サリチル酸と炭酸水素ナトリウムの化学反応式

ソースコード

 $1 \quad \texttt{\ce{\congruence} 1 - \ce{\congruence} + \congruence} + \congruence + \congruen$

化学反応式

4.2 サリチル酸の構造式

ソースコード

1 $\left\{ (-60) * 6(--(-(-[:270]0)(-[:30]0H)) = (-[:30]0H) -=) \right\}$

サリチル酸の構造式

4.3 ハロゲン(フッ素)の電子配置

ソースコード

1 \chlewis[lewis-distance=1.25ex]{0.90,180,270}{F}

ハロゲン(フッ素)の電子配置

F•

- chemformula.sty, chemfig.sty と mhchem.sty を用いて作成した.
- 記述の難易度を考慮し、主に芳香族の反応を取り上げた.

4.4 モル濃度の計算

ソースコード (計算式)

```
1 c= \frac{\dfrac{\SI{5.85}{g}}{\SI{58.44}{g/mol}}}{\dfrac{\SI{500}{mL}}{\SI{1000}{mL/L}}}
2 = \frac{\SI{0.1000}{mol}}{\SI{0.5000}{L}}
3 = \SI{0.2000}{mol/L}.
```

モル濃度の計算

質量 $m=5.85\,\mathrm{g}$ の NaCl を $500\,\mathrm{mL}$ の溶液に溶かしたときのモル濃度を c とすると、

$$c = \frac{\frac{5.85\,\mathrm{g}}{58.44\,\mathrm{g/mol}}}{\frac{500\,\mathrm{mL}}{1000\,\mathrm{mL/L}}} = \frac{0.1000\,\mathrm{mol}}{0.5000\,\mathrm{L}} = 0.2000\,\mathrm{mol/L}.$$

4.5 β-グルコースの構造式

```
1 \chemfig{%
2 C?(-[2]OH)(-[6]H)
3
   <[:-130,1.8]
4 C(-[2]H)(-[6]OH)
5
   -[:180,1.5,,,line width=3pt,cap=round]
6 C(-[2]OH)(-[6]H)
7 >[:130,1.8]
8
  C(-[2]H)(-[6,,,2]HO)
9
   -[:50,1.8]
10
    C(-[6]H)(-[,1.5]0?)
11
    -[2]
12
    CH_20H
13
   }
```

β -グルコースの構造式

- siunitx.sty を用いて単位を表記した.
- chemfig.sty を用いて化学構造式を表記した.

4.6 酢酸の電離

ソースコード (表)

```
1 \begin{tabular}{cc@{}c@{}c@{}c@{}c@{}c}\hline
2 & \ce{CH3COOH} & \ce{<->} & \ce{CH3COO-} & \ce{+} & \ce{H+} \\hline
3 反応前 & $c$ & & $0$ \\
4 变化量 & $-c\alpha$ & & $+c\alpha$ & & $+c\alpha$ \\
5 平衡状態 & $c(1-\alpha)$ & & $$c\alpha$ & & $$c \alpha$ \\hline
6 \multicolumn{6}{r}{ih$c(1+\alpha)\si{mol}$}
7 \end{tabular}
```

酢酸の電離

酢酸の電離定数を K_a , 酢酸の電離度を α とすると,

$$K_a = \frac{[\text{CH}_3\text{COO}^-][\text{H}^+]}{[\text{CH}_3\text{COOH}]}$$
$$= \frac{c\alpha \times c\alpha}{c(1-\alpha)}$$
$$= \frac{c\alpha^2}{1-\alpha}$$

$CH_3COOH \Longrightarrow CH_3COO^- + H^+$				
反応前	c	0	0	
変化量	$-c\alpha$	$+c\alpha$	$+c\alpha$	
平衡状態	$c(1-\alpha)$	$c\alpha$	$c\alpha$	
	$ \equiv c(1+\alpha) $ mc			

ここで、 $\alpha \ll 1$ より、 $K_a = c\alpha^2$ であるから、

$$\alpha = \sqrt{\frac{K_a}{c}}$$

である^{†1}. よってこのとき

$$[\mathbf{H}^+] = c\alpha$$
$$= \sqrt{cK_a}.$$

ゆえに,

$$pH = -\log_{10}[H^{+}]$$

$$= -\log_{10} \sqrt{cK_a}$$

$$= -\frac{1}{2}\log_{10} cK_a.$$

- chemformula.sty, chemfig.sty と mhchem.sty を用いて作成した.
- 酢酸の電離に対する記述では tabular 環境も用いた.

 $^{^{\}dagger 1}$ $1-\alpha$ に近似が適用できない場合は、二次方程式の解の公式を用いて議論する。

4.7 塩化銅 (Ⅱ) 水溶液の電気分解

ソースコード (図)

```
1
       \begin{tikzpicture}[scale=2.1,
 2
          every node/.style={font=\small},
 3
          eFlow/.style ={blue!70!black,thick,-{Stealth}},
 4
          ionFlowCu/.style={orange!80!black,thin,dashed,-{Stealth}},
 5
          ionFlowCl/.style={green!70!black,thin,dashed,-{Stealth}},
 6
          moleculeCl/.style={ellipse,draw=green!50,fill=green!20,minimum height=3pt,minimum width=6pt}
 7
 8
 9
          \colorlet{CopperyColor}{orange!80!brown} \colorlet{DarkCopperyColor}{CopperyColor!70!black}
10
          \coordinate (FTL) at (-0.5,0.2); \coordinate (FTR) at (6.5,0.2); \coordinate (FBL) at (-0.5,-2.8);
11
          \coordinate (FBR) at (6.5,-2.8); \coordinate (BTL) at (0.1,0.5); \coordinate (BTR) at (5.9,0.5);
12
          \coordinate (BBL) at (0.1,-2.5); \coordinate (BBR) at (5.9,-2.5); \coordinate (WFL) at (-0.5,-0.2);
13
          \coordinate (WFR) at (6.5,-0.2); \coordinate (WBL) at (0.1,0.1); \coordinate (WBR) at (5.9,0.1);
14
          \draw [gray] (BBL) -- (BTL) -- (BTR) -- (BBR) -- cycle;
          \path[fill=blue!35!white,opacity=0.2] (FBL) -- (FBR) -- (BBR) -- (BBL) -- cycle;
15
          \path[fill=blue!45!white,opacity=0.2] (BBL) -- (BBR) -- (WBR) -- (WBL) -- cycle;
16
          \path[fill=blue!40!white,opacity=0.2] (FBL) -- (BBL) -- (WBL) -- (WFL) -- cycle;
17
          \path[fill=blue!40!white,opacity=0.2] (FBR) -- (BBR) -- (WBR) -- (WFR) -- cycle;
18
19
          \draw[blue!50!cyan,opacity=0.4] (WBL) -- (WBR);
20
21
          \coordinate (Epersp) at (0.12, 0.06);
22
          \coordinate (L_FTL) at (0.875,2); \coordinate (L_FTR) at (1.875,2); \coordinate (L_FBR) at (1.875,-1.75);
23
          \draw[fill=gray!60] (L_FTR) -- ++(Epersp) -- ++(0, -3.81) -- (L_FBR) -- cycle;
          \draw[fill=gray!50] (L_FTL) -- (L_FTR) -- ++(Epersp) -- ++(-1, 0) -- cycle;
24
25
          \draw[fill=gray!30] (0.875, 2) rectangle (1.875, -1.75);
26
          \node [above left=0.1cm] at (1.375, 2) {\Large{Pt}};
27
          \coordinate (R_FTL) at (4.125,2); \coordinate (R_FTR) at (5.125,2); \coordinate (R_FBL) at (4.125,-1.75);
28
          \coordinate (Epersp_inv) at (-0.12,0.06);
29
          \draw[fill=gray!60] (R_FTL) -- ++(Epersp_inv) -- ++(0,-3.81) -- (R_FBL) -- cycle;
30
          \draw[fill=gray!50] (R_FTL) -- (R_FTR) -- ++(Epersp_inv) -- ++(-1,0) -- cycle;
31
          \draw[fill=gray!30] (4.125,2) rectangle (5.125, -1.75);
32
          \node [above right=0.1cm] at (4.625,2) {\Large{Pt}}};
33
34
          draw [join = round, thick] (1.375,2) -- (1.375,2.5)
35
          --(2.5,2.5) to [battery1,invert, l={}] (3.5,2.5) -- (4.625,2.5) -- (4.625,2);
36
                                  (2.50,2.5)--(1.45,2.5) node [midway,above=1pt] {\mbox{mathrm}{e^-}};
37
          \draw [eFlow] (4.55,2.5) -- (3.55,2.5) node [midway,above=1pt] {<math>\mbox{moth mode} = \mbox{mode} = 
          \del{condition} (1.375,1.8) -- (1.375,-1.2) node [midway,right=2pt] {<math>\delcondition} (4.375,1.8) -- (1.375,-1.2)
38
39
          \draw [eFlow] (4.625,-1.2) -- (4.625, 1.8) node [midway,left=2pt] {<math>\mbox{mathrm} \{e^{-}\};
40
41
          \label{lem:conflowCu} $$ (3.5,-0.8) -- (2.1,-0.8) \ node [midway,above=0.1cm] {\ch{Cu^2+}}; $$
42
          \draw[decoration={random steps,segment length=3pt,amplitude=1.2pt},
43
             decorate,fill=CopperyColor,draw=DarkCopperyColor]
           (1.875, -0.7) --(1.975, -0.9) -- (2.025, -1.3) --(1.925, -1.5) -- (1.875, -1.6) -- cycle;
44
          \node[text=DarkCopperyColor,anchor=west] at (2.05, -1.1) {\ch{Cu}};
45
46
47
          \draw[ionFlowCl] (2.5,-0.5) -- (4.1,-0.5) node [midway,above=0.1cm] {\ch{Cl-}};
48
          \node[moleculeCl] at (4.125, -0.8) {};
49
          \draw[green!70!black, -{Stealth}] (4.125, -0.7) -- (4.125, -0.4);
50
          \node[moleculeCl] at (4.125, -0.3) {};
51
          \draw[green!70!black, -{Stealth}] (4.125, -0.2) -- (4.125, 0.1);
52
53
          \node at (3.0,-2.3) {\Large{\ch{CuCl2_{(aq)}}}}};
54
          \path[fill=blue!50!white, opacity=0.3] (FBL) -- (FBR) -- (WFR) -- (WFL) -- cycle;
55
          \path[fill=blue!30!white, opacity=0.4] (WFL) -- (WFR) -- (WBR) -- (WBL) -- cycle;
56
          \draw[blue!50!cyan, opacity=0.6] (WFL) -- (WFR);
          \draw (FBL) -- (FTL) -- (FTR) -- (FBR);
57
58
          \draw (FTL) -- (BTL); \draw (FTR) -- (BTR); \draw (FBL) -- (BBL);
59
          \draw (FBR) -- (BBR); \draw (FBL) -- (FBR);
60
       \end{tikzpicture}
```


白金 (Pt) を電極として、塩化銅 (II) (CuCl₂) 水溶液の電気分解を行うと、次のような反応が起きる.

陽極(酸化反応) 塩化物イオンが酸化され、塩素ガスが発生する.

$$2 \operatorname{Cl}^- \longrightarrow \operatorname{Cl}_2 + 2 \operatorname{e}^-$$

陰極(還元反応) 銅(Ⅱ)イオンが還元され、銅が析出する.

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$

電気分解全体としての化学反応式は次のようになる:

$$CuCl_2 \longrightarrow Cu + Cl_2$$

濃度 $0.5\,\mathrm{mol/L}$ の塩化銅 (II) 水溶液 $500\,\mathrm{mL}$ に対し, $0.5\,\mathrm{A}$ の電流を $16\,\mathrm{分}5$ 秒 間流した後のモル濃度 c_f を計算する.

電流を流した時間 $t = 16 \min 5 s = 965 s$ ファラデー定数 $F = 9.65 \times 10^4 \, \mathrm{C/mol}$

このとき、電気分解後の塩化銅(Ⅱ)水溶液の濃度は次のように計算できる:

$$c_f = \frac{0.50\,\mathrm{mol/L}\times0.500\,\mathrm{L} - \frac{0.5\,\mathrm{A}\times965\,\mathrm{s}}{9.65\times10^4\,\mathrm{C/mol}}\times\frac{1}{2}}{0.500\,\mathrm{L}} = \frac{0.2475\,\mathrm{mol}}{0.500\,\mathrm{L}} = 0.495\,\mathrm{mol/L}.$$

ポイント

• chemformula.sty と chemfig.sty を用いて化学反応式を表記した.

5 書類

5.1 問題用紙(数学)

Math						中間試験 July 29, 2024
		3	数学			
学籍番号:		名前:				
指示: 各問	題に答えなさ	らい. 選択	₹問題では	は正しい選	鬢択肢を	E選びなさい.
問題 1. (10 点) 解の公式を用いて,	次の方程式の	の解を求め	かなさい.			
		x^2	-5x + 6	= 0		
						問題 1
問題 2. (5 点) 自然数全体の集合を	と表す記号は多	欠のうちと	ごれか.			
(a) R						
(b) Q						
(c) ℤ(d) ℕ						
						問題 2
問題 3. (5 点) イ , ロ	<u>ا</u> ک	\	適切な数	を入れな	さい.	
	$\frac{3}{2-\sqrt{3}} =$	= 1	+		ハ	
である.						
						問題 3. イ
						問題 3. ロ
						問題 3. ハ
		T	T	Г	ı	円退 3. /
	問題番号	問題 1	問題 2	問題 3	計	

問題番号	問題 1	問題 2	問題 3	計
配点	10	5	5	20
得点				

ポイント

■ exam.cls を用いて作成し、一部の箇所にて、exam.cls で定義された表記を書き換えている.

5.2 スクリプト (Python)

ソースコード (LATEX)

```
\begin{minted}{python}
 2
    import numpy as np
 3
    import matplotlib.pyplot as plt
 5
    def plot_cycloid(r=1, t_max=4 * np.pi, n_points=500):
 6
 7
    t = np.linspace(0, t_max, n_points)
 8
 9
    x = r * (t - np.sin(t))
10
    y = r * (1 - np.cos(t))
11
12
    plt.figure(figsize=(8, 4))
    plt.plot(x, y, linewidth=2)
13
    plt.xlabel('x')
14
15
    plt.ylabel('y')
    plt.title(f'Cycloid (r = {r})')
16
    plt.axis('equal')
17
18
    plt.grid(True)
19
    plt.tight_layout()
20
    plt.show()
21
22
    if __name__ == '__main__':
23
    plot_cycloid()
    \end{minted}
24
```

スクリプト (Python)

```
import numpy as np
   import matplotlib.pyplot as plt
   def plot_cycloid(r=1, t_max=4 * np.pi, n_points=500):
       t = np.linspace(0, t_max, n_points)
       x = r * (t - np.sin(t))
       y = r * (1 - np.cos(t))
10
       plt.figure(figsize=(8, 4))
       plt.plot(x, y, linewidth=2)
12
       plt.xlabel('x')
13
14
       plt.ylabel('y')
       plt.title(f'Cycloid (r = {r})')
       plt.axis('equal')
16
17
       plt.grid(True)
       plt.tight_layout()
       plt.show()
19
   if __name__ == '__main__':
       plot_cycloid()
```

- minted 環境を用いて Python のスクリプトを記述した.
- matplotlib を用いてサイクロイドを描画した.

数学の分野では [1], [2], [3], 物理の分野では [4] と [5] を参考にした.

参考文献

- [1] 杉浦 光夫. 解析入門 (1). 東京大学出版会, 1980, p. 430.
- [2] 松坂 和夫. 解析入門 (上). 岩波書店, 2018, p. 424.
- [3] 中島 匠一. 集合・写像・論理: 数学の基本を学ぶ. 共立出版, 2012, p. 240.
- [4] 篠本 滋, 坂口 英継 and 益川 敏英. 基幹講座 物理学 力学. Ed. by 植松 恒夫 and 青山 秀明. 東京図書, 2013, p. 356.
- [5] 田崎 晴明. 熱力学: 現代的な視点から (新物理学シリーズ 32). 培風館, 2000, p. 302.

索引

産動が程式 20, 27 エネルギー 18 位置エネルギー 18 位置エネルギー 18 コー	b	相似
本の記事を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	アボガドロ定数24	束縛条件20
位置エイルギー 18 2		t-
選動エネルギー 18,21		
対象の内部エネルギー	運動エネルギー18, 21	
#簡電 ネルギー 18.21 電気振動 25 電機 35 電機 3		32(1)
#性エネルギー 18.21		定積分6
工A 八 千 「保存明	=	
機対温度 24 階種 35 階種 35 で		18747373
総対温度 24 階極 35 大 1 日本 35		S =
か		
か 回版件 15 回版行程式 25 心学反応式 31,35 確率 12 可賛分 66 反流元反応 35 元元反応 35 元元反応 35 元二人下が性 28 動跡 33 気体定数 24 対ル上にヤッリ 25,77 インアラー 10 インアラーの法則 14 ド遊古 31,32 を 27 サイナロイド 37 カアラーの法則 14 ドグラーの法則 14 ドグラー 13 インアラーの法則 14 ドグラー 13 インアラーの法則 14 ドグラーの法則 14 ドグラー 13 インアラーの法則 14 ドグラー 13 インアラーの法則 14 大 28 微分方程式 21,25 を 27 アクラーア生数 35 ファッテー定数 35 ファックの法則 21 大 28 微分方程式 21,25 と 24 ドグーの法則 31 大 31,32 微分方程式 21,25 と 4 が 28 微分方程式 21,25 大 29 ボルツマン定数 24 ドサーノを 35 ファッテー定数 35 ファッテー定数 35 ファッテー定数 35 ファッテー定数 35 ファッテー定数 35 フェッシに対し 24 ドサーノを 37 ファッテー定数 35 ファッテー定数 35 ファッテー定数 35 ファッテー定数 35 エル波度 32 ボルツマン定数 24 を 4 を 4 を 4 を 4 を 4 を 4 を 4 を	セルシウス温度24	電離
国転体 15 以体性 26 以下 27 以下 27 以下 28 以下	4.	
回路方程式 25 位レンズ 29 位レンズ 29 位レンズ 29 位レンズ 29 位 25 位		
# 2		******
な		ПРЭД
内心	1-0-7-1-1	な
下方和 6	可積分6	
下沙性	下方和	波
規算を対しています。 は は は さみ うちの原理		
域性定数 24 は 対域性に 10 は さみうちの原理 8 1 10 は さみうちの原理 8 1 10 は さんかうちの原理 8 1 10 は さんかうちの原理 8 1 10 10 立 10 10 10 10 10 10 10 10 10 10 10 10 10		熱力学第一法則24
球座標 10 はさみうちの原理 8 8 10 はさみうちの原理 8 10 はさみうちの原理 8 10 10 10 10 10 10 10 10 10 10 10 10 10	気体定数	t+
中ルピホック則 25, 27	球座標10	
□	キルヒホッフ則25, 27	
### 14		
講造式		
### 15		
マックの法則 21 フックの法則 21 フッタ 31 ボルツマン定数 31 ボルツマン定数 24 グラッ素 31 ボルツマン定数 24 グラックの法則 25 グラッ素 31 ボルツマン定数 24 グラック 32 グラック 33 グラック 34 グラック 33 グラック 34 グラック 33 グラック 34 グ		· · · · · · · · · · · · · · · · · · ·
サイクロイド mri 反作用の法則	<u> </u>	
作用・反作用の法則 23 サリチル酸 31 酸化反応 35 世 元濃度 32, 35 性 元濃度 32, 35 th 元素度 32, 35 th 元	サイクロイド3	
サリチル酸 31 酸化反応 35 試行 12 始集合 4 誠來密度 27 実数の連続性 6 実像 30 四面体 11 写像 4 修集合 4 収束 8 重力 18 カウのエネルギー保存則 18 カウのエネルギー保存則 18 カウのエネルギー保存則 18 カウのエネルギー保存則 18 カウのエネルギー保存則 18 カ積 23 糖心率 14 焦点 14 30 埋痕気体の状態方程式 24 上方和 6 粒子 初期条件 21,25 砂対値 7 連続方程式 25		ボルツマン定数24
酸化反応 35 試行 12 始集合 4 磁束密度 27 実数の連続性 6 理の面体 11 写像 4 核集合 4 収束 8 重力 18 重力加速度 18 樹形図 12 熊点 14 馬点 14 焦点 14 基定 14 砂期条件 21, 25 レンズの公式 30 連続方程式 25		
大力		
磁束密度 27 実数の連続性 6 実像 30 四面体 11 写像 4 修集合 4 取束 8 重力 18 重力 18 動形図 12 熊点 14, 30 無点 14, 30 生点和 30 世友和 6 初期条件 21, 25 地対値 7 27 ヤングの実験 28 有界 6 誘導起電力 27 5 21 財業 23 世級大の公式 24 レンズの公式 30 連続方程式 25	試行	モル濃度
磁束密度 実数の連続性 27 実像 30 四面体 11 写像 4 核集合 4 収束 8 重力 18 重力加速度 18 動形図 12 焦点 14,30 焦点距離 30 上方和 6 初期条件 21,25 他対値 7 マクプニッツの微分記法 21 ライプニッツの微分記法 21 ライプニッツの微分記法 21 東心率 18 理想気体 23 粒子 24 粒子 28 レンズの公式 30 連続方程式 25	始集合4	や
大会のではできます。 30 有界	磁束密度	
50		
写像.4終集合.4収束.8ライプニッツの微分記法.21重力.18力学的エネルギー保存則.18重力加速度.18力積.23樹形図.12離心率.14焦点.14.30理想気体.24焦点距離.30理想気体の状態方程式.24上方和.6粒子.28初期条件.21.25他対値.7連続方程式.25		
収束 8 ライプニッツの微分記法 21 重力 18 力学的エネルギー保存則 18 動形図 12 離心率 14 焦点 14,30 理想気体 24 焦点距離 30 理想気体の状態方程式 24 上方和 6 粒子 28 初期条件 21,25 レンズの公式 30 絶対値 7 連続方程式 25	写像4	
重力18力学的エネルギー保存則18重力加速度18力積23樹形図12離心率14焦点14,30理想気体24焦点距離30理想気体の状態方程式24上方和6粒子28初期条件21,25レンズの公式30絶対値7連続方程式25	終集合4	
重力加速度18力積23樹形図12離心率14焦点14,30理想気体24焦点距離30理想気体の状態方程式24上方和6粒子28初期条件21,25レンズの公式30絶対値7連続方程式25		
樹形図 12 離心率 14 焦点 14,30 理想気体 24 焦点距離 30 理想気体の状態方程式 24 上方和 6 粒子 28 初期条件 21,25 レンズの公式 30 絶対値 7 連続方程式 25		
焦点14,30理想気体24焦点距離30理想気体の状態方程式24上方和6粒子28初期条件21,25レンズの公式30絶対値7連続方程式25		
上方和6粒子28初期条件21, 25レンズの公式30絶対値7連続方程式25	焦点	理想気体
初期条件	***************************************	理想気体の状態方程式24
絶対値		
	·	
		理続/7任式

Portfolio

2025 Edition