CS201: Discrete Math for Computer Science 2022 Spring Semester Written Assignment # 3

Due: Apr. 6th, 2022, please submit one pdf file through Sakai Please answer questions in English. Using any other language will lead to a zero point.

Q. 1. (5 points) Show that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Q. 2. (5 points)

- (a) Convert $(1768)_{10}$ to hexadecimal
- (b) Convert $(10101)_2$ to octal
- (c) Convert $(3B5A)_{16}$ to binary number

Q. 3. (5 points) What are the prime factorizations of

- (a) 256
- (b) 1890
- (c) 5!

Q. 4. (5 points)

- (a) Use Euclidean algorithm to find gcd(267, 79).
- (b) Find integers s and t such that gcd(267,79) = 79s + 267t.

Q. 5. (5 points) For three integers a, b, y, suppose that $gcd(a, y) = d_1$ and $gcd(b, y) = d_2$. Prove that

$$\gcd(\gcd(a,b),y)=\gcd(d_1,d_2).$$

Q. 6. (5 points) Suppose that gcd(b, a) = 1. Prove that $gcd(b+a, b-a) \le 2$.

- **Q. 7.** (10 points) Fermat's little theorem: If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.
 - (a) Show that Fermat's little theorem does not hold if p is not prime.
 - (b) Computer $302^{302} \pmod{11}$, $4762^{5367} \pmod{13}$, $2^{39674} \pmod{523}$.
- Q. 8. (5 points) Solve the following modular equations.
 - (a) $267x \equiv 3 \pmod{79}$.
 - (b) $312x \equiv 3 \pmod{97}$.
- **Q. 9.** (5 points) Prove that if a and m are positive integer such that gcd(a, m) = 1, then the function

$$f: \{0, \dots, m-1\} \to \{0, \dots, m-1\}$$

defined by

$$f(x) = (a \cdot x) \bmod m$$

is a bijection.

- **Q. 10.** (5 points) Show that if n is an integer, then $n^2 \equiv 0$ or 1 (mod 4).
- **Q. 11.** (5 points) Use Q. 10 to show that if m is a positive integer of the form 4k + 3 for some nonnegative integer k, then m is not the sum of the squares of two integers.
- **Q. 12.** (5 points) Prove that if a and m are positive integers such that $gcd(a, m) \neq 1$, then a does not have an inverse modulo m.
- **Q. 13.** (5 points)
 - (a) Convert $(1768)_{10}$ to hexadecimal
 - (b) Convert $(10101)_2$ to octal
 - (c) Convert $(3B5A)_{16}$ to binary number

- **Q. 14.** (5 points) Show that if a, b, and m are integers such that $m \ge 2$ and $a \equiv b \mod m$, then $\gcd(a, m) = \gcd(b, m)$.
- **Q. 15.** (5 points) Solve the system of congruence $x \equiv 3 \pmod{6}$ and $x \equiv 4 \pmod{7}$ using the method of back substitution.
- **Q. 16.** (10 points) Find all solutions, if any, to the system of congruences $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$.
- **Q. 17.** (10 points) Suppose that (n, e) is an RSA encryption key, with n = pq where p and q are large primes and $\gcd(e, (p-1)(q-1)) = 1$. Furthermore, suppose that d is an inverse of e modulo (p-1)(q-1). Suppose that $C \equiv M^e$ (mod pq). In the lecture, we showed that RSA decryption, that is, the congruence $C^d \equiv M \pmod{pq}$ holds when $\gcd(M, pq) = 1$. Show that this decryption congruence also holds when $\gcd(M, pq) > 1$. [Hint: Use congruences modulo p and modulo q and apply the Chinese remainder theorem.]