Model Answer Exercise 1 April 27th

The four points are:

$$x^{(1)} = (2,4), \ y^{(1)} = 1$$

 $x^{(2)} = (1,3), \ y^{(2)} = 1$
 $x^{(3)} = (4,2), \ y^{(3)} = 0$
 $x^{(2)} = (2,2), \ y^{(4)} = 0$

The initial weights are $(\theta_0, \theta_1, \theta_2) = (0.9, 1.3, 0.1)$

For each vector $x = (x_1, x_2)$ we calculate

$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}}$$

So we have:

$$h_{\theta}(x^{(1)}) = 0.980$$

 $h_{\theta}(x^{(2)}) = 0.924$
 $h_{\theta}(x^{(3)}) = 0.998$
 $h_{\theta}(x^{(4)}) = 0.976$

Let us calculate the cost function for each of the four points, where each point is indexed by i:

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = -y^{(i)}\log\left(h_{\theta}(x^{(i)})\right) - \left(1 - y^{(i)}\right)\log\left(1 - h_{\theta}(x^{(i)})\right)$$

We have:

$$Cost(h_{\theta}(x^{(1)}), y^{(1)}) = 0.020$$
 $Cost(h_{\theta}(x^{(2)}), y^{(2)}) = 0.079$
 $Cost(h_{\theta}(x^{(3)}), y^{(3)}) = 6.302$
 $Cost(h_{\theta}(x^{(4)}), y^{(4)}) = 3.724$

So the total initial cost function is the mean of the four above cost functions, that is:

$$J(\theta_0, \theta_1, \theta_2) = 2.531$$

In order to update the three parameters $(\theta_0, \theta_1, \theta_2)$, we now need to calculate the gradient of the cost function at each point i in relation to each of the three parameters. For a given point $x^{(i)}$, we have:

$$\frac{\partial J(\theta)}{\partial \theta_0} = \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)x_0^{(i)} \qquad \frac{\partial J(\theta)}{\partial \theta_1} = \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)x_1^{(i)} \quad \frac{\partial J(\theta)}{\partial \theta_2} = \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)x_2^{(i)}$$

So for point
$$x^{(1)}$$
: $\frac{\partial J(\theta)}{\partial \theta_0} = -0.020$ $\frac{\partial J(\theta)}{\partial \theta_1} = -0.040$ $\frac{\partial J(\theta)}{\partial \theta_2} = -0.079$

So for point
$$x^{(2)}$$
: $\frac{\partial J(\theta)}{\partial \theta_0} = -0.076$ $\frac{\partial J(\theta)}{\partial \theta_1} = -0.076$ $\frac{\partial J(\theta)}{\partial \theta_2} = -0.228$

So for point
$$x^{(3)}$$
: $\frac{\partial J(\theta)}{\partial \theta_0} = 0.998$ $\frac{\partial J(\theta)}{\partial \theta_1} = 3.993$ $\frac{\partial J(\theta)}{\partial \theta_2} = 1.996$

So for point
$$x^{(4)}$$
: $\frac{\partial J(\theta)}{\partial \theta_0} = 0.976$ $\frac{\partial J(\theta)}{\partial \theta_1} = 1.952$ $\frac{\partial J(\theta)}{\partial \theta_2} = 1.952$

In order to obtain a single gradient figure for each of the three parameters, we add the gradients associated to each of the four data points, and we divide by the number of data points:

$$\frac{\partial J(\theta)}{\partial \theta_0} = 0.470 \qquad \frac{\partial J(\theta)}{\partial \theta_1} = 1.457 \quad \frac{\partial J(\theta)}{\partial \theta_2} = 0.910$$

Now that we have the gradients we can modify the parameters $(\theta_0, \theta_1, \theta_2)$ using these gradients. If we denote $(\theta'_0, \theta'_1, \theta'_2)$:

$$\theta_0' = \theta_0 - \alpha \frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_0} \qquad \theta_1' = \theta_1 - \alpha \frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_1} \quad \theta_2' = \theta_2 - \alpha \frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_2}$$

If we use a value of 0.1 for the learning rate α , we have:

$$\theta_0' = 0.9 - 0.1 \times 0.470 = 0.852$$

 $\theta_1' = 1.3 - 0.1 \times 1.457 = 1.154$
 $\theta_2' = 0.1 - 0.1 \times 0.910 = 0.009$

Now let us start with the second iteration, starting this time with the values:

$$(\theta_0, \theta_1, \theta_2) = (0.852, 1.154, 0.009)$$

We now have:

$$h_{\theta}(x^{(1)}) = 0.961$$

 $h_{\theta}(x^{(2)}) = 0.884$
 $h_{\theta}(x^{(3)}) = 0.996$
 $h_{\theta}(x^{(4)}) = 0.960$

And

$$Cost(h_{\theta}(x^{(1)}), y^{(1)}) = 0.040$$
 $Cost(h_{\theta}(x^{(2)}), y^{(2)}) = 0.123$
 $Cost(h_{\theta}(x^{(3)}), y^{(3)}) = 5.492$
 $Cost(h_{\theta}(x^{(4)}), y^{(4)}) = 3.220$

So the total cost function, summed over the four points, is:

$$I(\theta_0, \theta_1, \theta_2) = 2.219$$

So for point
$$x^{(1)}$$
: $\frac{\partial J(\theta)}{\partial \theta_0} = -0.039$ $\frac{\partial J(\theta)}{\partial \theta_1} = -0.079$ $\frac{\partial J(\theta)}{\partial \theta_2} = -0.157$

So for point $x^{(2)}$: $\frac{\partial J(\theta)}{\partial \theta_0} = -0.116$ $\frac{\partial J(\theta)}{\partial \theta_1} = -0.116$ $\frac{\partial J(\theta)}{\partial \theta_2} = -0.347$

So for point $x^{(3)}$: $\frac{\partial J(\theta)}{\partial \theta_0} = 0.996$ $\frac{\partial J(\theta)}{\partial \theta_1} = 3.984$ $\frac{\partial J(\theta)}{\partial \theta_2} = 1.992$

So for point $x^{(4)}$: $\frac{\partial J(\theta)}{\partial \theta_0} = 0.960$ $\frac{\partial J(\theta)}{\partial \theta_1} = 1.920$ $\frac{\partial J(\theta)}{\partial \theta_2} = 1.920$

By averaging over the four points we get:

$$\frac{\partial J(\theta)}{\partial \theta_0} = 0.450 \quad \frac{\partial J(\theta)}{\partial \theta_1} = 1.427 \quad \frac{\partial J(\theta)}{\partial \theta_2} = 0.852$$

Hence:

$$\theta_0^{\prime\prime} = 0.852 - 0.1 \times 0.450 = 0.807$$

 $\theta_1^{\prime\prime} = 1.154 - 0.1 \times 1.427 = 1.011$
 $\theta_2^{\prime\prime} = 0.009 - 0.1 \times 0.852 = -0.076$