1 Tarea: Masa binomial y densidad normal.

Estimados estudiantes,

Resolver los siguientes ejercicios en el formato adjunto y cargar en la tarea correspondiente.

En los siguientes truncar a cuatro cifras tanto datos como respuestas.

Ejercicio:

Primero suponga (a) que $Y \sim bin(9, 0.6859169615802349)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(5, 0.35028029414066864)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = 5Y + -5, A_2(Y) = 9Y + -2$

Ejercicio:

Primero suponga (a) que $Y \sim bin(7,0.03849153066595856)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(-7,0.06280085530987634)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = -3Y + 6$, $A_2(Y) = 4Y + 7$

Ejercicio:

Primero suponga (a) que $Y \sim bin(4,0.3320335389189675)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(-4,0.5830712400773459)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = -4Y + 6$, $A_2(Y) = 10Y + 4$

Ejercicio:

Primero suponga (a) que $Y \sim bin(10, 0.33141063084604094)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(-4, 0.08632467620461604)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = 6Y + -1$, $A_2(Y) = -6Y + -9$

Ejercicio:

Primero suponga (a) que $Y \sim bin(10, 0.36330556630465605)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(8, 0.9662778847642144)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = 4Y + 7$, $A_2(Y) = 5Y + -2$

Ejercicio:

Primero suponga (a) que $Y \sim bin(4,0.4346435281177028)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(2,0.935120054481449)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = 0Y + 1$, $A_2(Y) = 8Y + -4$

Ejercicio:

Primero suponga (a) que $Y \sim bin(9,0.9186660216515242)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(8,0.8508599545560452)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = 9Y + 8$, $A_2(Y) = 1Y + 2$

Ejercicio:

Primero suponga (a) que $Y \sim bin(5, 0.6101555548281544)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$], finalmente (b) suponga que $Y \sim nor(-2, 0.8889568106426155)$ y calcule E[Y],V[Y] y la desviación[Y] y, luego E[$A_1(Y)$] y V[$A_2(Y)$]. Use: $A_1(Y) = 5Y + -1, A_2(Y) = 10Y + 8$