第一章 数学建模与误差分析——绪

论 第一章测验题

小提示:本节包含奇怪的同名章节内容

1、 问题:算法的计算复杂性可以通过()来衡量。

选项:

A:循环嵌套的次数

B:加法的次数

C:算法的时间复杂度

D:程序的长短

答案: 【算法的时间复杂度】

2、 问题:计算

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x$$

的值时, 若直接计算

$$a_i x^i (i=0,1,\cdots,n)_{_{{\scriptscriptstyle {
m A}}{
m K}{\scriptscriptstyle {
m M}}{
m Im},\ {\scriptscriptstyle {
m H}}{
m K}}}$$

做**__次乘法和_***次加法,而采用秦九韶算法,则只需要做次乘* **法和_**_次加法。

选项:

A:n(n+1),n,n,n

B:n(n+1)/2,n,n,n

C:(n+1)/2, n, n+1, n

D:n*n/2,n,n,n+1

答案: 【n(n+1)/2,n,n,n】

3、 问题:0.048657168 具有 5 位有效数字的近似值是__.

选项:

A:0.04865

,

B:0.048657

C:0.0486 D:0.0486571

答案: 【0.048657】

4、 问题:设数据 x1, x2 的绝对误差分别为 0.025 和 0.006,

那么两数的乘积 x1x2 的绝对误差为 .

选项:

A:0.025x1x2

B:0.025

C:0.025×2 +0.006×1

D:0.031(x1+x2)

答案: 【0.025×2 +0.006×1】

5、问

题:

设x的相对误差为 2%,则x"的相对误差为

选项:

$$n \times 2\%$$

2%

6、 问题:若精确值是 100,则近似值 99.9 的绝对误差和相对

误差分别是。

选项:

A:0.1, 0.01

B:0.1, 0.001

C:0.01, 0.001

D:0.01, 0.001

答案: 【0.1, 0.001】

设观测数据 x_1, x_2, x_3 的绝对误差限都为0.001,那么 $x_1 + x_2 + x_3$ 的 绝对误差限为_____

选项:

A:0.001

B:0.003

C:0.002

D:0.004

答案: 【0.003】

8、 问题:舍入误差是___产生的误差。

选项:

A:只取有限位数

B:模型准确值与用数值方法求得的准确值

C:观察与测量

D:数学模型准确值与实际值

答案: 【只取有限位数】

9、 问题:精确解就是解析解。

选项:

A:正确

B:错误

答案: 【错误】

10、问题:一个算法如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法数值稳定的,否则称此算法为不稳

定的。 选项: A:正确

B:错误

答案: 【正确】

11、 问题:简化计算步骤,有助于减少运算次数.

选项: A:正确

B:错误

答案: 【正确】

12、 问题:截断误差又称为方法误差。

选项: A:正确 B:错误

答案: 【正确】

第二章 城市供水量的预测模型-插

值与拟合算法 第二章测验题

1、 问题:n 次插值多项式存在唯一的条件是____ 选项:

A:有 n 个节点

B:有 n+1 个节点

C:有 n 个插值条件

D:n+1 个节点互异

答案: 【n+1 个节点互异】

2、 问题:Lagrange 插值基函数 I1(x)在节点 x0 处的函数值

I1(x0)=____

选项:

A:1

B:0

C:2

D:-1

答案: 【0】

3、 问题:对于 Newton 向前插值公式与 Newton 向后插值公式的选则, 当要计算的点 x 靠近起点 x0 时, 应选用 Newton__

插值公式, 当要计算的点 x 靠近终点 xn 时应选用

Newton___插值公式.

选项:

A:向前,向前

B:向前,向后

C:向后,向前

D:向后,向后

答案: 【向前,向后】

4、 问题:插值多项式随着节点的增多而___.

选项:

A:增加

B:减少

C:不增加

D:在某些点可能产生激烈的振荡

答案: 【在某些点可能产生激烈的振荡】

5、 问题:分段低次插值克服了高次插值多项式可能产生震荡的不足,但分段低次插值函数在整个插值区间上不能保证__.

选项:

A:连续

B:一阶可导

C:一阶导数连续

D:二阶可导

答案: 【一阶可导】

6、 问题:通常不用__来估计拟合函数拟合效果的好坏。

选项:

A:偏差和

B:偏差绝对值之和的平均值

C:偏差平方和

D:均方误差

答案: 【偏差和】

```
已知 y = \sqrt{x}, x_0 = 4, x_1 = 9,用 Lagrange 线性插值求 \sqrt{6} 的近似值为______
A:2.1
B:2.2
C:2.3
D:2.4
答案: 【2.4】
     已知 f(-1)=2, f(1)=1, f(2)=1, 则 f(x) 的 Lagrange 插值多项式为_____.
  L(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} + \frac{(x+1)(x-2)}{(1+1)(1-2)} + \frac{(x+1)(x-1)}{(2+1)(2-1)}
 L(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} \cdot 2 + \frac{(x+1)(x-2)}{(1+1)(1-2)} + \frac{(x+1)(x-1)}{(2+1)(2-1)}
L(x) = \frac{(x+1)(x-2)}{(-1+1)(-1-2)} \cdot 2 + \frac{(x+1)(x-2)}{(1+1)(1-2)} + \frac{(x+1)(x-1)}{(2+1)(2-1)}
 L(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} \cdot 2 + \frac{(x+1)(x+2)}{(1+1)(1+2)} + \frac{(x+1)(x-1)}{(2+1)(2-1)}
L(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} \cdot 2 + \frac{(x+1)(x-2)}{(1+1)(1-2)} + \frac{(x+1)(x-1)}{(2+1)(2-1)}
    已知函数值 f(0)=2, f(1)=3, f(2)=5, f(3)=4, f(4)=1, 则函数在x=2处的二阶向前
A:-1
B:0
C:1
D:-2
答案: 【-2】
      已知函数值 f(0)=2, f(1)=3, f(2)=5, f(3)=4, f(4)=1, 则函数在 x=2 处的二阶向后
      差分为____
选项:
A:-1
B:0
C:1
D:-2
```

答案: 【1】

如下函数值表

x	0	1	2	4
f(x)	1	9	23	3

建立不超过三次的 Newton 插值多项式,构造差商表:

X	f(x)	一阶均差	二阶均差	三阶均差
0	1			
1	9	8		
2	23	14	3	
4	3	-10	а	b

表中的 a,b 分别是

A:-24, -27

B:-12, -15/2

C:8, -5/4

D:-8, -11/4

答案: 【-8, -11/4】

12、

如下函数值表

x	0	1	2	3
f(x)	1	9	11	3

建立不超过三次的 Newton 插值多项式。

构造差商表:

x	f(x)	一阶均差	二阶均差	三阶均差
0	1			
1	9	8		
2	11	2	-3	
3	3	-8	-5	-2/3

Newton 插值多项式为

$$N(x) = 1 + 8x - 3x(x-1) - \frac{2}{3}x(x-1)(x-2);$$

$$N(x) = -1 - 8x + 3x(x-1) + \frac{2}{3}x(x-1)(x-2);$$

$$N(x) = 3 - 8x - 5x(x-1) - \frac{2}{3}x(x-1)(x-2);$$

$$N(x) = 1 + 8x - 3x^2 - \frac{2}{3}x^3$$

$$N(x) = 1 + 8x - 3x(x-1) - \frac{2}{3}x(x-1)(x-2);$$

第三章 湘江流量估计模型一数值积分法 第三章测验题

选项: A:0 B:1 C:2 D:3 答案: 【1】 复合Simpson公式 S_n 是____ 选项: A:1 B:2 D:4 答案: 【4】 含有n+1个节点 x_k ($k=0,1,\dots,n$) 的插值型求积公式的代数精度至少为? 选项: A:n+1 B:n D:1 Newton-Cotes 公式的一般形式中, $\int_a^b f(x)dx \approx$ (a-b) $\sum_{k=0}^{n} C_k^{(n)} f(x_k)$ $(b-a)\sum_{k=0}^{n} C_{k}^{(n)} f(x_{k})$ B: $(b-a)\sum_{k=0}^{n} C_{k+1}^{(n)} f(x_k)$ $(b-a)\sum_{k=0}^{n} C_{k-1}^{(n)} f(x_k)$ 答案: $(b-a)\sum_{k=0}^{n}C_{k}^{(n)}f(x_{k})$

$T_1 = 3$, $T_2 = 3.1$, 利用龙贝格算法, 求得 $S_1 = 3.1$

选项:

A:2.98725

B:3.00000

C:3.13333

D:3.14159

答案: 【3.13333】

6、 问题:插值型求积公式是机械积分公式吗?

选项: A:正确 A:正确 B:错误 B:错误

答案: 【正确】

7、 问题:Cotes 求积系数与积分区间和被积函数无关。

选项:

A:正确 B:错误

答案: 【正确】

8、问题:Romberg 算法是在积分区间逐次分半的过程中,对用复 合梯形产生的近似值进行加权平均,以获得精度更高的一种方法。

选项:

答案: 【正确】

9、 问题:对于一般区间[a,b]上的积分,可以利用视频中的表 3.5.1

(Gauss 型求积公式节点和系数表) 写出对应的 Gauss 型求积公

式。 选项:

> A:正确 B:错误

答案: 【正确】

对于一个数值求积公式来说,收敛阶越高,近似值 I_n 收敛到真值 $\int_a^b f(x)dx$ 的速度就越快。

选项:

A:正确

B:错误

答案: 【正确】

第四章 养老保险问题 第四章测验题

1、 问题:二分法计算简单方便,但它收敛较慢,且不能求____. C:3

选项: D:4

A:复根和偶数重根 答案: 【2】

B:复根和奇数重根

3、 问题:Newton 迭代法在根的领域内是____阶收敛的。 C:奇数重根

A:--

D:四

选项: D:奇数和偶数重根

答案: 【复根和偶数重根】

C:Ξ 2、使用 Aitken 方法时,从 x_k 迭代到 x_{k+1} 需要校正几次?

答案: 【二】 A:1

B:2

```
求\sqrt{10} 的近似值,可以转化为用 Newton 迭代法解二次方程x^2-10=0,
4、 那么,取x_0 = 1.0,则迭代一次得到x_1 = _____
选项:
A:2.0
B:3.5
C:4.0
D:5.5
答案: 【5.5】
   用割线法求解方程 f(x) = x^3 - 3x^2 - x + 9 = 0 在 (-2, -1.5) 内的根,
x_0 = -2 , x_1 = -1 , 迭代一次得到 x_2 = ______.
选项:
A:-1
B:-1.4
C:-2.8
D:-3.5
答案: 【-1.4】
6、 问题:逐步搜索法适合于求解对高精度要求的非线性方程。
                                        7、 问题:初值的选取影响 Newton 迭代法的收敛性。
                                        选项:
A:正确
                                        A:正确
B:错误
                                        B:错误
答案: 【错误】
                                        答案: 【正确】
  若 f(x)在[a,b]连续,且 f(a)f(b)<0,则方程 f(x)=0在(a,b)上有且
8、 仅有一个实数零点.
A:正确
B:错误
答案: 【错误】
9、 问题:二分法是一种能用来求解非线性方程根的数值解法。
                                        10、 问题:Newton 迭代法可以用于求解方程的重根和复根。
选项:
                                        选项:
A:正确
                                        A:正确
B:错误
                                        B:错误
答案: 【正确】
                                        答案: 【错误】
第五章 小行星轨道方程计算问题——线性方程组求解的直接法
1、 问题:线性方程组 AX=0 满足结论( )。
                                        C:有非 0 解
选项:
                                        D:一定有解
```

答案: 【一定有解】

A:可能有解 B:只有 0 解

 $\int 3x_1 - x_2 + 4x_3 = 1$ 用列主元消去法解方程组 $\left\{-x_1+2x_2-9x_3=0\right\}$,第一次消元, $-4x_1 - 3x_2 + x_3 = -1$

2、: 选择主元

A:3

B:4

C:-4

D:-9

答案: 【-4】

用 LU 分解法求解线性方程组
$$\begin{cases} 2x_1+x_2+x_3=0\\ x_1+x_2+x_3=3 \text{ 时,解得 L=} \\ x_1+x_2+2x_3=1 \end{cases}$$
 3、:

选项:

$$\begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1/2 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1/2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1/2 & 1 & 1 \end{bmatrix}$$

A: L-1/2 1/2 1

1/2 1 0 1/2 -1 1

4、 问题:直接解法就是利用一系列公式进行有限步计算,直接得 到方程组的精确解的方法。实际计算结果中仍会有误差,如舍入 误差。

选项:

A:正确

B:错误

答案: 【正确】

5、 问题:所有的矩阵都可以进行 LU 分解

选项:

A:正确

B:错误

答案: 【错误】

6、 问题:用完全主元素消去法处理系数矩阵,不会影响未知数向

量x。

选项:

A:正确

B:错误

答案: 【错误】

C: 1/2 1/2 1

7、 问题:列主元素消去法不改变矩阵 x 的元素位置。

选项:

A:正确

B:错误

答案: 【正确】

8、 问题:用 Gauss-Jordan 消去法可求得任意矩阵的逆矩阵。

选项:

A:正确

B:错误

答案: 【错误】

9、 问题:对正定矩阵 A 进行平方根分解,存在且唯一。

选项:

A:正确

B:错误

答案: 【正确】

10、 问题:不选主元素的平方根法是数值稳定算法。

选项:

A:正确

B:错误

答案: 【正确】

11、 问题:平方根法计算量与一般直接 LU 分解法计算量相同。

选项:

A:正确

B:错误

答案: 【错误】

12、 问题:所有顺序主子式大于 0 的矩阵,可进行平方根分解。

选项:

A:正确

B:错误

答案: 【正确】

答案:【平方根法约需 $n^2/6$ 次乘除法:】

13、 问题:三对角矩阵只要对角占优,就可以进行三角分解。

B:追赶法公式实际是高斯法在三对角线方程组上的应用;

C:追赶法计算公式中不会出现中间结果数量级的巨大增长和舍入

D:高斯消去法可能会导致其他元素数量级的严重增长和舍入误差

选项: A:正确

B:错误

选项:

答案: 【正确】

误差的严重累积;

的扩散。

14、 问题:下列说法不正确的是__.

设矩阵 A的 LU 分解如下: $A = \begin{pmatrix} 2 & 2 & 3 \\ 4 & 7 & 7 \\ -2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & b \\ 0 & 3 & 1 \\ 0 & 0 & 6 \end{pmatrix}$,

则该分解式中a,b的值分别为

A:a = 2, b = 3

B:a = 2, b = 6

C:a = 6, b = 2

D:a = -1, b = 2

答案: 【a = 2, b = 3】

第六章 回归问题——线性方程组求解的迭代法 第六章 测验题

$x = (-3,2,10)^T$,其向量范数 $||x||_1$ 和 $||x||_\infty$ 分别为 ()

A:15, 10

B:12, 10

C:10, 15

D:10, 12

答案: 【15,10】

求解线性方程组 $\begin{cases} 3x+y=-1 \\ x-2y=2 \end{cases}$ 的雅可比迭代矩阵是()

$$B_{J} = \begin{pmatrix} 0 & -\frac{1}{3} \\ \frac{1}{2} & 0 \end{pmatrix}$$

$$B_J = \begin{pmatrix} 0 & \frac{1}{3} \\ -\frac{1}{2} & 0 \end{pmatrix}$$

$$B_{J} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} \end{pmatrix}$$

$$B_J = \begin{pmatrix} -\frac{1}{2} & 0\\ 0 & \frac{1}{3} \end{pmatrix}$$

$$B_{J} = \begin{pmatrix} 0 & -\frac{1}{3} \\ \frac{1}{2} & 0 \end{pmatrix}$$
答案: [

求解线性方程组 $\begin{cases} 3x+y=-1 \\ x-2y=2 \end{cases}$ 的 Gauss-Seidel 迭代矩阵是

$$G = \begin{pmatrix} 0 & -\frac{1}{3} \\ \frac{1}{2} & 0 \end{pmatrix}$$

$$G = \begin{pmatrix} 0 & \frac{1}{3} \\ -\frac{1}{2} & \frac{1}{6} \end{pmatrix}$$

$$G = \begin{pmatrix} 0 & -\frac{1}{3} \\ 0 & -\frac{1}{6} \end{pmatrix}$$

$$G = \begin{pmatrix} 0 & -\frac{1}{3} \\ 0 & -\frac{1}{6} \end{pmatrix}$$

$$G = \begin{pmatrix} -\frac{1}{3} & 0\\ -\frac{1}{6} & \frac{1}{2} \end{pmatrix}$$

设 $A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$,则A的谱半径 $\rho(A) = ($)

选项:

A:1

B:2

C:3

D:4

答案: 【2】

设
$$x=(3,1,2)^T$$
, $A=\begin{pmatrix} 1 & 3 & 5 \\ 2 & 5 & 1 \\ 1 & 7 & 6 \end{pmatrix}$, 则下面表述正确的是()

$$\|x\|_{\infty} = 3$$

$$||A||_2 = 3$$

$$||A||_1 = 15$$

$$||x||_1 = 3$$

答案: 【
$$\|x\|_{\infty} = 3$$
 $\|A\|_{1} = 15$

设有方程组

$$\begin{cases} x_1 + 0.4x_2 + 0.4x_3 = 1 \\ 0.4x_1 + x_2 + 0.8x_3 = 2 \\ 0.4x_1 + 0.8x_2 + x_3 = 3 \end{cases}$$

(2)
$$\begin{cases} x_1 + 2x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 1 \\ 2x_1 + 2x_2 + x_3 = 1 \end{cases}$$

6、上述方程组的 Jacobi 迭代法和 Gauss-Seidel 迭代法收敛性为____

洗顶.

A: (1)Jacobi 迭代法收敛,(2) Jacobi 迭代法不收敛

B:(1)Jacobi 迭代法不收敛, (2) Jacobi 迭代法收敛

C: (1)Gauss-Seidel 迭代法收敛, (2) Gauss-Seidel 迭代法不收敛

D:(1)Gauss-Seidel 迭代法不收敛,(2) Gauss-Seidel 迭代法收敛

答案: 【(1)Jacobi 迭代法不收敛,(2) Jacobi 迭代法收敛;

(1)Gauss-Seidel 迭代法收敛,(2) Gauss-Seidel 迭代法不收敛】

7、 下列说法正确的是

对任意选取的初始向量 $x^{(0)}$, 迭代法 $x^{(k+1)} = Bx^{(k)} + f$ 收敛的充分必要条件是,

A: B 的谱半径 ρ(B) < 1;

对迭代法 $x^{(k+1)}=Bx^{(k)}+f$,若存在 B 的某种算子范数 $\|B\|=q$ < 1,则迭代法收

B: 敛;

若
$$x^{(k+1)} = Bx^{(k)} + f$$
 收敛,则 $\|x^{(k)} - x^{(k-1)}\| \le \frac{q}{1-q} \|x^* - x^{(k)}\|;$

A 为严格对角占优阵,则解 Ax = b 的 Jacobi 迭代法, Gauss-Seidel 迭代法均收 。 敛

答案: 【ABD};

8、问题:Gauss-Seidel 迭代法可以看作是 Jacobi 迭代法的一个修

B:错误 答案: 【错误】

正

选项:

A:正确

选项:

B:错误

A:正确

答案: 【正确】

B:错误

9、 问题:Gauss – Seidel 迭代法一定比 Jacobi 迭代法收敛快

答案: 【错误】

选项:

A:正确

B:错误

则相应的 SOR 迭代法就收敛。

11、 问题:迭代矩阵的某种范数小于 1 是迭代收敛的必要条件。

12、问题:用 SOR 迭代法解方程组 Ax=b,只要松弛因子 $0<\omega<2$,

答案: 【错误】

选项: A:正确 B:错误

10、 问题:初值的选取会影响线性方程组迭代法的收敛性。

选项:

答案: 【错误】

A:正确

解方程组
$$\begin{cases} 5x_1 + x_2 - 3x_3 = 1 \\ x_1 + 6x_2 + x_3 = 2 \end{cases}$$
 的 Jacobi 迭代法和 Gauss-Seidel 迭代法 ______.

13、

A:都收敛

B:都发散

C:Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散

D:Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛

答案: 【都收敛】

14、 问题:以下属于用迭代法求解线性方程组的优点的是___.

选项:

A:需要计算机的存贮单元较少,程序设计简单

B:迭代法可以求得解析解

C:原始系数矩阵在计算过程中只会发生很小的变化

D:迭代法不用考虑收敛问题

答案: 【需要计算机的存贮单元较少,程序设计简单】

第七章 传染病模型——常微分方程数值解法简介 第七章 测验题

1、 问题:下面哪一项不是一阶常微分方程初值问题适定性的条件

选项:

A:解存在

B:解唯一

C:解连续依赖初值

D:存在多个解

答案: 【存在多个解】

若某算法的局部截断误差

$$R_n = y(x_{n+1}) - y_n = \varphi(x_n, y_n)h^{p+1} + O(h^{p+2})$$

2、: 则称该算法有()阶精度。

B:p+1

C:p+2

D:p+3

答案: 【p】

取步长h=0.2,写出用向前Euler 法求解初值问题

$$\begin{cases} y'(x) = -y - xy^2 \\ y(0) = 1, \end{cases} \quad 0 \le x \le 1$$

3、: 的计算公式为____。

$$y_{n+1} = 0.8y_n + 0.2x_n y_n^2$$

$$y_{n+1} = 0.8y_n - 0.2x_n y_n^2$$

$$y_{n+1} = 0.4y_n - 0.2x_n y_n^2$$

$$y_{n+1} = 0.4y_n + 0.2x_n y_n^2$$

$$y_{n+1} = 0.4y_n + 0.2x_n y_n^2$$

$$y_{n+1} = 0.8y_n - 0.2x_n y_n^2$$

取步长 h = 0.1, 用后退 Euler 法求解初值问题:

$$\begin{cases} y'(x) = \frac{2y}{1 - 9x}, \\ y(0) = 1. \end{cases}$$

y(0.1)=______.

选项:

A:-2

B:-1

C:0

D:1

答案: 【-1】

解初值问题
$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$
 近似解得梯形公式是 $y_{k+1} = f(x,y)$

$$y_k + \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$$
A:

$$y_k + \frac{h}{2} [f(x_k, y_k) - f(x_{k+1}, y_{k+1})]$$

$$y_k - \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$$

$$y_k - \frac{h}{2} [f(x_{k+1}, y_{k+1}) - f(x_k, y_k)]$$

四阶龙格一库塔法的经典计算公式是 火井 =

$$y_n + \frac{h}{6}[K_1 + K_2 + K_3 + K_4]$$

$$y_n + \frac{h}{6}[K_1 + 2K_2 + 2K_3 + K_4]$$

$$y_n + \frac{h}{6}[K_1 + 2K_2 + 2K_3 + K_4]$$

7、 问题:4 阶 Runge-Kutta 法的局部截断误差和整体截断误差分别为

$$O(h^4), O(h^5)$$

$$O(h^4), O(h^4)$$

答案:
$$O(h^5), O(h^4)$$

8、 问题:当 k=0 时,Adams 内插法就是 Euler 法。

选项:

A:正确

B:错误

答案: 【错误】

9、 问题:R-K 法都是隐式法。

选项:

A:正确

B:错误

答案: 【错误】

10、 问题:任何高阶微分方程都可以转化成一阶微分方程组问题

求解。

选项:

A:正确

B:错误

答案: 【正确】

11、 问题:四级 R-K 法的精度阶数最高只能达到 4 阶。

洗项:

$$y_n + \frac{h}{6} [2K_1 + 2K_2 + 2K_3 + 2K_4]$$

$$y_n + \frac{h}{6} [2K_1 + K_2 + K_3 + 2K_4]$$
Discrete

$$y_n + \frac{h}{6} [2K_1 + K_2 + K_3 + 2K_4]$$

$$O(h^5), O(h^4)$$

$$O(h^5), O(h^5)$$

A:正确

B:错误

答案: 【正确】

12、 问题:微分方程的解析解通常不容易求出。

选项:

A:正确

B:错误

答案: 【正确】

第八章 决策方案评价问题——层次

分析法 第八章 测验题

1、 问题:层次分析方法是一种 的分析方法。

选项:

A:定性

B:定量

C:量化

D:定性和定量相结合

答案: 【定性和定量相结合】

2、问题:为比较不同性质因素的重要程度,Saaty 等人提出 尺度进行定性到定量的转化。

选项:

A:1-3

B:1-5

C:1-9

D:1-17

答案: 【1-9】

3、 问题:应用层次分析法解决方案评价问题的主要困难是 。

选项:

A:成对比较矩阵的构造

B:矩阵特征值和特征向量的计算

C:一致性检验

D:组合权向量的计算

答案: 【矩阵特征值和特征向量的计算】

4、 问题:层析分析法适用于多目标、多准则或无结构特性的决策

问题。

选项:

A:正确

B:错误

答案: 【正确】

5、 问题:使用层次分析法进行决策可以得出更好的新方案。

选项:

第一章作业题

已知
$$y = P(x) = x^2 + x - 1150$$
 , $x = \frac{100}{3}$, $x^* = 3$ 计算 $y = P(\frac{100}{3})$ 及 $y^* = P(33)$, 并求 x^* 和 y^* 的

评分规则:

ľ

$$\varepsilon_r(x) = \frac{x - x^*}{x} = 0.01$$

$$\varepsilon_r(y) = \frac{y - y^*}{y} = \frac{P(\frac{100}{3}) - P(33)}{P(\frac{100}{3})} = -4.0$$

A:正确

B:错误

答案: 【错误】

6、 问题:决策是指在面临多种方案时依据一定的标准选择决策者

认为的最佳方案。

选项:

A:正确

B:错误

答案: 【正确】

7、 问题:层次分析法构造两两比较矩阵允许出现不一致情况。

选项:

A:正确

B:错误

答案: 【正确】

8、 问题:评价者构造两两比较矩阵时主要依据自己的主观看法。

选项:

A:正确

B:错误

答案: 【正确】

9、 问题:层次分析法不适用于精度较高的问题。

选项:

A:正确

B:错误

答案: 【正确】

1 单选 (2分) 若真值是10,则近似值9.9的绝对误差和相对误差分别是__ 7 单选 (2分) 设 P(x) 是在区间 [a,b] 上的 y = f(x) 的分段线性插值函数,以下条件不是 P(x)必须满足的条件是__ A. 0.01, 0.1 B. 0.1, 0.01 ● A. P(x)在[a,b]上可导 O. 0.01, 0.01 ○ B. P(x)在[a,b]上连续 D. 0.1, 0.1 \bigcirc C. $P(x_k)=y_k$ 2 单选 (2分) 0.00234711具有5位有效数字的近似值是 ○ D. P(x)在各子区间上是线性函数 A. 0.0023471 8 单选 (2分) 通常不用_____来估计拟合函数拟合效果的好坏。 ■ B. 0.00235 C. 0.0023 ○ A. 偏差绝对值之和的平均值 D. 0.00234711 B. 偏差和 ◎ C. 偏差平方和 3 单选 (2分) 已知函数值 f(0)=1, f(1)=4, f(2)=3, f(3)=2, f(4)=5,则函数在 x=2 处的二 ○ D. 均方误差 9 单选 (2分) 已知 n 对观测数据 $(x_k, y_k), k = 1, 2, ..., n$ 。 这 n 个点的最小二乘拟合曲线 O A. 2 $y = a_0 x + a_1$, a_0, a_1 是使______最小的解。 B. -4 O C. -2 O D. 4 • B. $\sum_{k=1}^{n} (y_k - a_0 x_k - a_1)^2$ 4 单选 (2分) 已知差商 $f[x_0,x_2,x_1]=5, f[x_4,x_0,x_2]=9, f[x_2,x_3,x_4]=14, f[x_0,x_3,x_2]=8,$ 那么 $f[x_4, x_2, x_0] =$ _____ O. $\sum_{k=1}^{n} (y_k - a_0 - a_1 x_k^2)$ A. 9 $\sum_{k=1}^{n} |y_k - a_0 - a_1 x_k|$ B. 14 O C. 5 10 单选 (2分) 采用复合梯形求积公式将步长缩小到原步长一半时,新近似值的余项约为 O D. 8 原近似值的余项的____倍。 5 单选 (2分) 函数 f(x) 在结点 x_3, x_4, x_5 处的二阶差商 $f[x_3, x_4, x_5] = ___$ O A. 4 B. 1/2 A. $f[x_3, x_4] - f[x_4, x_5]$ O C. 2 D. 1/4 B. $f(x_3) - f(x_5)$ 15 单选 (2分) 下列说法正确的是____ \bigcirc C. $f[x_5, x_3]$ A. 设没有舍入误差,用高斯消元法求解线性方程组Ax=b得到是精确解; O D. $f[x_4,x_3]-f[x_5,x_4]$ $egin{array}{lll} egin{array}{lll} egin{array} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{l$ 成立。 单选 (2分) 如下函数值表 6 ○ C. 插值节点相同,用不同方法求出的插值多项式是不相等的; D. 方程 f(x)=0 的复根能用于二分法求; 2 f(x)16 単选 (2分) $\int 3x_1 - x_2 + 4x_3 = 1$ 用列主元消去法解方程组 $\left\{ -2x_{_{1}}+1x_{_{2}}-9x_{_{3}}=0 \right.$,第一次消元,选择主元___ -5x, -3x, +x, = -1建立不超过三次的 Newton 插值多项式,构造差商表: 三阶均差 一阶均差 X f(x) O A. -9 1 ■ B. -5 3 C. 4 -2 -5/2 D. 3 则 Newton 插值多项式为____ 17 单选 (2分) 设矩阵 A 的 LU 分解如下: $A = \begin{pmatrix} 2 & 2 & 3 \\ 4 & 7 & 7 \\ -2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & a & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 3 \\ 0 & b & 1 \\ 0 & 0 & 6 \end{pmatrix}$,则该分 A. $N(x) = 1 + 2x + \frac{1}{2}x(x-1) - x(x-1)(x-2)$

B. $N(x) = 1 + 2x - \frac{5}{2}x(x-1) - x(x-1)(x-2)$

C. $N(x) = 4 - 2x - \frac{5}{2}x(x-1) - x(x-1)(x-2)$

O D. N(x) = 4 - 2x - x(x-1) - x(x-1)(x-2)

解式中a,b的值分别为

 \bigcirc A. a = 2, b = 6• B. a = 2, b = 3

 \bigcirc C. a = 6, b = 2

 \bigcirc D. a = -1, b = 2

11	^{単选 (2分)} $T_1 = 6, T_2 = 6.1$,利用龙贝格算法,求得 $S_1 =$ 。	22 单选 (2分) 设有方程组
		$\begin{cases} x_1 + 2x_2 - 3x_3 = 1 \end{cases}$
0	A. 6.00000	$\begin{cases} x_1 + x_2 + x_3 = 2 \end{cases}$
0	B. 5.98725	$[2x_1 + 2x_2 + x_3 = 3$
0	C. 6.14159	$\begin{cases} 5x_1 + 2x_2 - 2x_3 = 1 \\ x_1 + 3x_2 + x_3 = 1 \end{cases}$
•	D. 6.13333	(2) $\begin{cases} x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + 2x_2 + 7x_3 = 1 \end{cases}$
12	DESTR. (OVA)	上述方程组的 Jacobi 迭代法和 Gauss-Seidel 迭代法收敛性为
12	學选 (2分) 为使求积公式 $\int_0^1 f(x) dx \approx c_0 f(0) + c_1 f(x_1)$ 具有尽可能高的代数精度, c_0, c_1, x_1	and the second s
	的值分别为	○ A. (1)Jacobi迭代法不收敛, (2) Jacobi迭代法不收敛
	A. 1 3 2	□ B. (1)Gauss-Seidel迭代法收敛, (2) Gauss-Seidel迭代法不收敛
	A. $c_0 = \frac{1}{4}, c_1 = \frac{3}{4}, x_1 = \frac{2}{3}$	• C. (1)Gauss-Seidel迭代法不收敛,(2) Gauss-Seidel迭代法收敛
0	B. $c_0 = 1, c_1 = 0, x_1 = \frac{1}{2}$	□ D. (1)Jacobi迭代法收敛, (2) Jacobi迭代法不收敛
	$c_0 = 1, c_1 = 0, x_1 = \frac{1}{2}$	
0	c. $c_0 = \frac{1}{3}, c_1 = \frac{2}{3}, x_1 = \frac{2}{3}$	23 章选 (2分) 下面哪一项不是一阶常微分方程初值问题适定性的条件.
	$c_0 - \frac{1}{3}, c_1 - \frac{1}{3}, x_1 - \frac{1}{3}$	○ A. 解存在
0	D. $c_0 = \frac{1}{2}, c_1 = \frac{1}{2}, x_1 = 1$	B. 存在多个解
	2,-1 2,-1	○ c. 解唯一
13	单选 (2分) Newton迭代法在根的领域内是 阶收敛的。	D. 解连续依赖初值
	and the same tension decisions.	- C. GIANGERINGER
0	A. —	24 单选 (2分) 用 Euler 法求徵分方程 $\begin{cases} y' = x - 3y \\ y(0) = 1 \end{cases}$, $x \in [0,1]$ 数值解,取步长 $h = 0.02$,则 y_1 的
0	B. Ξ	(X0)=1 计算值为
•	с. =	11 # IE / 3
0	D. 四	○ A. 2
14	单选 (2分) 下列说法不正确的是	■ B. 0.94
		© C. 0.84
0	A. 三次样条插值函数具有二阶的连续导数	O D. 1.94
0	B. 二分法本质上也是一种迭代法	
0	C. Romberg算法是一种加速收敛的求解数值积分的算法	25 雌选 (2分) 若某算法的局部截断误差 $R_n = y(x_{n+1}) - y_n = \varphi(x_n, y_n) h^{p+1} + O(h^{p+2})$,则称该算
•	D. 插值多项式的阶数越高越好	法有
18	单选 (2分) 下列说法不正确的是	○ A. p+1
		○ B. p+3
0	A. 高斯消去法可能会导致其他元素数量级的严重增长和含入误差的扩散。	• C. p
0	B. 追赶法计算公式中不会出现中间结果数量级的巨大增长和舍入误差的严重	D. p+2
	累积;	
•		26 单选 (2分) 4阶Runge-Kutta法的局部截断误差和整体截断误差分别为
	累积; C. 平方根法约需 n²/6 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用;	
0	C. 平方根法约需 n²/6次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用;	26 ● (2分) 4阶Runge-Kutta法的局部裁断误差和整体裁断误差分别为
0	$^{\text{C.}}$ 平方根法约需 $n^2/6$ 次乘除法;	$^{\odot}$ A $_{\mathcal{O}}(h^4),_{\mathcal{O}}(h^5)$
19	C. 平方根法约需 n^2 /6 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用;	\circ A $O(h^4), O(h^5)$ \circ B. $O(h^5), O(h^5)$
19	C. 平方根法约需 n²/6次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用;	$ \overset{\triangle}{\circ} O(h^4), O(h^5) $ $\overset{\triangle}{\circ} B. O(h^5), O(h^5) $ $\overset{\bullet}{\circ} C. O(h^5), O(h^4) $
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 单选 (25) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$,试比较大小: $\ \mathbf{x}\ _{\mathbf{z}}$, $\ \mathbf{x}\ _{\mathbf{z}}$, $n\ \mathbf{x}\ _{\mathbf{z}}$.	\circ A $O(h^4), O(h^5)$ \circ B. $O(h^5), O(h^5)$
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 整题 (29) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$,试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}}$ B. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$	• A. $O(h^4), O(h^5)$ • B. $O(h^5), O(h^5)$ • C. $O(h^5), O(h^4)$ • D. $O(h^4), O(h^4)$
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 题题 $(2分)$ 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbf{z}}$, $\ \mathbf{x}\ _{\mathbf{z}}$, $n\ \mathbf{x}\ _{\mathbf{z}}$. A. $n\ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}}$ B. $\ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}} \le n\ \mathbf{x}\ _{\mathbf{z}}$ C. $\ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}} \le n\ \mathbf{x}\ _{\mathbf{z}}$	$ \overset{\triangle}{\circ} O(h^4), O(h^5) $ $\overset{\triangle}{\circ} B. O(h^5), O(h^5) $ $\overset{\bullet}{\circ} C. O(h^5), O(h^4) $
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 整题 (29) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$,试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}}$ B. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$	• A. $O(h^4), O(h^5)$ • B. $O(h^5), O(h^5)$ • C. $O(h^5), O(h^4)$ • D. $O(h^4), O(h^4)$
19	C. 平方根法约需 n^2 / 6 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 重题 (2%) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{L}}$, $n\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}}$ B. $\ \mathbf{x}\ _{\mathbb{L}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ C. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ D. $n\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} < \ \mathbf{x}\ _{\mathbb{R}}$	 A. O(h⁴),O(h⁵) B. O(h⁵),O(h⁵) C. O(h⁵),O(h⁴) D. O(h⁴),O(h⁴) 27 無数 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 n^2 / 6 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 重题 (2%) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{L}}$, $n\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}}$ B. $\ \mathbf{x}\ _{\mathbb{L}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ C. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ D. $n\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} < \ \mathbf{x}\ _{\mathbb{R}}$	 A. O(h⁴),O(h⁵) B. O(h⁵),O(h⁵) C. O(h⁵),O(h⁴) D. O(h⁴),O(h⁴) 27 無應 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 n^2 / 6 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 重题 (2%) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{L}}$, $n\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}}$ B. $\ \mathbf{x}\ _{\mathbb{L}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ C. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ D. $n\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} < \ \mathbf{x}\ _{\mathbb{R}}$	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27 樂應 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用;	 A. O(h⁴),O(h⁵) B. O(h⁵),O(h⁵) C. O(h⁵),O(h⁴) D. O(h⁴),O(h⁴) 27 单选 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 n^2 / 6 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 重题 (2%) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{L}}$, $n\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}}$ B. $\ \mathbf{x}\ _{\mathbb{L}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ C. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{L}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ D. $n\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} < \ \mathbf{x}\ _{\mathbb{R}}$	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27 单选 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 n^2 / 6 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 是题 (2分) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{L}}$, $n\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \le \ \mathbf{x}\ _{\mathbb{R}} \le \ \mathbf{x}\ _{\mathbb{R}}$ B. $\ \mathbf{x}\ _{\mathbb{L}} \le \ \mathbf{x}\ _{\mathbb{R}} \le n\ \mathbf{x}\ _{\mathbb{R}}$ C. $\ \mathbf{x}\ _{\mathbb{R}} \le \ \mathbf{x}\ _{\mathbb{L}} \le n\ \mathbf{x}\ _{\mathbb{R}}$ D. $n\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} < \ \mathbf{x}\ _{\mathbb{R}}$ D. $\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} < \ \mathbf{x}\ _{\mathbb{R}}$ D. $\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} < \ \mathbf{x}\ _{\mathbb{R}}$	 A. O(h⁴),O(h⁵) B. O(h⁵),O(h⁵) C. O(h⁵),O(h⁴) D. O(h⁴),O(h⁴) 27 单选 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 题题 (2%) 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbf{z}}$, $\ \mathbf{x}\ _{\mathbf{z}}$, $\ \mathbf{x}\ _{\mathbf{z}}$. A. $n\ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}}$ B. $\ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}} \le n\ \mathbf{x}\ _{\mathbf{z}}$ C. $\ \mathbf{x}\ _{\mathbf{z}} \le \ \mathbf{x}\ _{\mathbf{z}} \le n\ \mathbf{x}\ _{\mathbf{z}}$ D. $n\ \mathbf{x}\ _{\mathbf{z}} < \ \mathbf{x}\ _{\mathbf{z}} < \ \mathbf{x}\ _{\mathbf{z}}$	 A. O(h⁴),O(h⁵) B. O(h⁵),O(h⁵) C. O(h⁵),O(h⁴) D. O(h⁴),O(h⁴) 27 单选 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 题题 $(2 \circ)$ 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}}$ B. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ C. $\ \mathbf{x}\ _{\mathbb{R}} \leq \ \mathbf{x}\ _{\mathbb{R}} \leq n\ \mathbf{x}\ _{\mathbb{R}}$ D. $n\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{R}}$ $ \partial_{0} \delta_{0} \delta_{0}$	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27 单选 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 是版 $(2分)$ 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\mathbb{R}}$, $\ \mathbf{x}\ _{\mathbb{L}}$, $n\ \mathbf{x}\ _{\mathbb{R}}$. A. $n\ \mathbf{x}\ _{\mathbb{R}} \le \ \mathbf{x}\ _{\mathbb{R}} \le \ \mathbf{x}\ _{\mathbb{R}}$ B. $\ \mathbf{x}\ _{\mathbb{L}} \le \ \mathbf{x}\ _{\mathbb{R}} \le n\ \mathbf{x}\ _{\mathbb{R}}$ C. $\ \mathbf{x}\ _{\mathbb{L}} \le \ \mathbf{x}\ _{\mathbb{L}} \le n\ \mathbf{x}\ _{\mathbb{R}}$ D. $n\ \mathbf{x}\ _{\mathbb{R}} < \ \mathbf{x}\ _{\mathbb{L}} \le \ \mathbf{x}\ _{\mathbb{R}}$	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27 樂應 (2分) 运用层析分析法时,构造的成对比较矩阵是
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 题题 $(2分)$ 设 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 试比较大小: $\ \mathbf{x}\ _{\infty}$, $\ \mathbf{x}\ _{1}$, $n\ \mathbf{x}\ _{\infty}$. A. $n\ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _{1}$ B. $\ \mathbf{x}\ _{1} \le \ \mathbf{x}\ _{\infty} \le n\ \mathbf{x}\ _{\infty}$ C. $\ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _{1} \le n\ \mathbf{x}\ _{\infty}$ D. $n\ \mathbf{x}\ _{\infty} < \ \mathbf{x}\ _{1} < \ \mathbf{x}\ _{\infty}$ 题题 $(2分)$ 设 $\mathbf{A} = \begin{pmatrix} 1 & 3 & 5 \\ 0 & 5 & 1 \\ 0 & 0 & -6 \end{pmatrix}$, 则 \mathbf{A} 的 $\ddot{\mathbf{a}} + \mathbf{E}$ $\mathbf{P}(\mathbf{A}) = \underline{}$ A. 6 B6 C. 1	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27
19	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 基施 $(2分)$ 设 $x = (x_1, x_2, \cdots, x_n)^T \in R^n$, 试比较大小: $\ x\ _x$, $\ x\ _1$, $n\ x\ _x$. A. $n\ x\ _x \le \ x\ _x \le \ x\ _1$ B. $\ x\ _x \le \ x\ _x \le n\ x\ _x$ C. $\ x\ _x \le \ x\ _1 \le n\ x\ _x$ D. $n\ x\ _x < \ x\ _1 < \ x\ _x$ W	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27
20	C. 平方根法约需 n² /6 次乗除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 単版 (2分) 设 x = (x₁, x₂, ···, xₙ)² ∈ R², 试比较大小: x _e , x _i , n x _e . A. n x _e ≤ x _e ≤ x _e B. x _e ≤ x _e ≤ n x _e C. x _e ≤ x _e ≤ n x _e D. n x _e < x _e < x _e D. n x _e < x _e x _e D. n x _e < x _e x _e A. 6 B. 6 C. 1 D. 5 B. 6 C. 1 D. 5 A. Jacobi迭代法和Gauss-Scidel迭代法	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27
20	C. 平方根法约需 $n^2/6$ 次乘除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 是选 $(2分)$ 设 $x = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$,试比较大小: $\ x\ _x$, $\ x\ _1$, $n\ x\ _x$. A. $n\ x\ _x \le \ x\ _x \le \ x\ _1$ B. $\ x\ _x \le \ x\ _x \le n\ x\ _x$ C. $\ x\ _x \le \ x\ _1 \le n\ x\ _x$ D. $n\ x\ _x < \ x\ _1 < \ x\ _x$	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27
20	C. 平方根法约需 n² /6 次乗除法; D. 追赶法公式实际是高斯法在三对角线方程组上的应用; 単版 (2分) 设 x = (x₁, x₂, ···, xₙ)² ∈ R², 试比较大小: x _e , x _i , n x _e . A. n x _e ≤ x _e ≤ x _e B. x _e ≤ x _e ≤ n x _e C. x _e ≤ x _e ≤ n x _e D. n x _e < x _e < x _e D. n x _e < x _e x _e D. n x _e < x _e x _e A. 6 B. 6 C. 1 D. 5 B. 6 C. 1 D. 5 A. Jacobi迭代法和Gauss-Scidel迭代法	 A O(h⁴),O(h⁵) B O(h⁵),O(h⁵) C O(h⁵),O(h⁴) D O(h⁴),O(h⁴) 27

29 单选 (2分) 为比较不同性质因素的重要程度, Saaty等人提出尺的转化。	度进行员 40 李嘶 (2分) 选取主元素发是由Gauss消去法改进而来的。
	○ A X
○ A. 1-17	B. ✓
● B. 1-9	41 判断(2分)用Gauss-Jordan消去法可求得任意矩阵的逆矩阵。
○ C. 1-5	○ A.✓
O. 1-3	■ B. X
30 单选 (2分) 应用层次分析法解决方案评价问题的主要困难是。	。 42 [判断 (2分) 常用求解三对角线性方程组的直接解法是追赶法。
A. 矩阵特征值和特征向量的计算	○ A.X
○ B. 组合权向量的计算	B. ✓
○ c. 一致性检验	43 [判断 (2分) 若A是严格对角占优矩阵,则A的行列式不为零。
○ D. 成对比较矩阵的构造	40 2回 (42) 石ARF (IIIA) 用口 WAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	● A. ✓
31 判断 (2分) 舍入误差又称为凑整误差。	○ B. X
● A. ✓	44 判断 (2分) 用SOR迭代法解方程组Ax=b,只要松弛因子0<ω<2,则相应的SOR迭代法
○ B. X	就收敛。
	• A X
32 判断 (25) 若插值节点 $x_0, x_1, \cdots x_n$ 互不相同,则满足插值条件的 n	
且唯一.	AF WW GOVER NETSTAND A KARNE
* · · ·	45 pm (2分) Euler法又称为Euler折线法。
● A. ✓ B. ×	○ A. X
0.7	● B. ✓
33 [判断 (2分) 如果插值节点相同,在满足相同插值条件下所有的插值多	多项式等 46 测断 (2分) Euler 法求解常微分方程的局部截断误差为 O(fr)。
	○ A. ✓
● B. ✓	● B. X
差。 A イ B X 35 国際 (7分) カルナ A 新 (株本) 57 (人の) 中央 第一人 (本)	47 判断 (2分) 四级Runge-Kutta法的精度阶数最高只能达到4阶。 A. × B. ✓
第5 美丽 (2分) 对于一个数值求积公式来说,收敛阶越高,近似值/。收敛到真值度就越快。	48 判断 (2分) 层析分析法适用于多目标、多准则或无结构特性的决策问题。
● A. ✓	● A. ✓
⊚ B. X	○ B. X
36 判断 (2分) 要想提高代数精度,只能采用Gauss型求积公式。	49 判断 (2分) 决策是指在面临多种方案时依据一定的标准选择决策者认为的最佳方案
● A. ×	
○ B. ✓	● A. ✓
37 判断 (2分) 逐步搜索法适合于求解对高精度要求的非线性方程.	○ B. X
• A. X	50 判断 (2分) 层次分析法构造两两比较矩阵允许出现不一致情况。
○ B. ✓	
38 判断 (2分) 初值的选取影响Newton迭代法的收敛性。	● A. ✓
A. ✓	○ B. X
⊚ в. ×	
39 新順(2分)求解线性方程组的直接解法就是利用一系列公式进行有限步计 到方程组的精确解的方法。实际计算结果中仍会有误差,如舍入误差。	算,直ž
● A. ✓	
⊚ B. X	