Nonstandard Analysis

Paul Schulze

History

- Newton & Leibniz formulated calculus using the idea of infinitesimals.
- Infinitesimals are really really small, but not 0.
- ► Considered nonsensical, replaced with δ - ϵ .
- Early 1960's: Abraham Robinson formalizes Nonstandard Analysis.
- Most modern formulations are based on work by Jerzy Łoś.

(a) Abraham Robinson

(b) Jerzy Łoś

Hyperreals

We construct a set of *hyperreals*, call it ${}^*\mathbb{R}$, such that we know three things:

- 1. $\mathbb{R} \subset {}^*\mathbb{R}$
- 2. * $\mathbb R$ contains at least one infinitesimal δ , such that $0<\delta$ but $\delta< r$ for any positive real number r
- 3. **Transfer Principle:** Any sentence of first-order logic is true in \mathbb{R} iff it is true* in * \mathbb{R}

First-Order Logic

- Our logical language has, in addition to symbols for numbers, sets, and functions on real numbers, the following logical symbols:
 - ▶ ¬ for "not"
 - ightharpoonup for "if...then..."
 - ▶ ∀ for "for all"
 - ▶ ∃ for "there exists"
 - ► ∈ for set membership
- > 5 + 3 = 8
- $(\forall x \in \mathbb{R})(5+x=8 \to x=3)$
- $(\forall x \in \mathbb{R})(\exists y \in \mathbb{N})(x < y)$

Transfer Principle

Every sentence that's true in \mathbb{R} is also "true in \mathbb{R} ," when modified to be talking about \mathbb{R} . For instance:

- ▶ $(\forall x \in {}^*\mathbb{R})(\forall y \in {}^*\mathbb{R})(x+y=y+x)$, i.e. addition is commutative
 - We can similarly prove other arithmetic properties, so we can do algebra as normal in ${}^*\mathbb{R}$
- ▶ $(\forall x \in {}^*\mathbb{R}) (x \neq 0 \rightarrow (\exists y \in {}^*\mathbb{R})(x \cdot y = 1))$, i.e. for any nonzero x there exists a multiplicative inverse $\frac{1}{x}$
 - lackbox So even if δ is an infinitesimal, we know $\frac{1}{\delta}$ has to exist

What is ${}^*\mathbb{R}$ like?

- ▶ Call a hyperreal x infinitesimal when |x| < r for every positive real r.
 - There's exactly one real infinitesimal: 0
- There are "infinite" hyperreals—take any nonzero infinitesimal δ , and $\frac{1}{\delta}$ is greater than any real number
- ▶ Two hyperreals x and y are *infinitely close*, denoted $x \simeq y$, when their difference x y is infinitesimal
 - ▶ No two distinct real numbers are infinitely close to each other
 - ▶ Transitive: if $x \simeq y$ and $y \simeq z$, then $x \simeq z$
- Any finite hyperreal x is infinitely close to exactly one real number, called its standard part st (x)
 - For instance, st $(1 + \delta) = 1$

Derivatives, the way Leibniz intended

- ▶ Say $f: \mathbb{R} \to \mathbb{R}$
- ▶ Fix $b \in \mathbb{R}$, and let Δx be a nonzero infinitesimal. Then

$$f'(b) = \operatorname{st}\left(\frac{f(b+\Delta x)-f(b)}{\Delta x}\right)$$

so that $f'(b) \simeq \frac{f(b+\Delta x)-f(b)}{\Delta x}$.

Example: Say $f(x) = x^2$. Then we have

$$f'(3) \simeq \frac{(3 + \Delta x)^2 - 3^2}{\Delta x} = \frac{9 + 6\Delta x + (\Delta x)^2 - 9}{\Delta x}$$

= $\frac{6\Delta x + (\Delta x)^2}{\Delta x} = 6 + \Delta x \simeq 6.$

So $f'(3) \simeq 6$, so their difference is infinitesimal. But they're both *real numbers*, so f'(3) = 6.

Continuity

We call f(x) continuous at a point c if for every hyperreal $x \simeq c$, we have $f(x) \simeq f(c)$.

Theorem

The composition of continuous functions is continuous.

Proof.

Let c be some real number, and let $x \simeq c$. We want to show $(f \circ g)(x) \simeq (f \circ g)(c)$, given that g is continuous at c and f is continuous at g(c).

Since g is continuous at c, $g(x) \simeq g(c)$. Since f is continuous at g(c), we have $f(g(x)) \simeq f(g(c))$.

Proof: Chain Rule

Let $f,g:\mathbb{R}\to\mathbb{R}$ be differentiable. Let Δx be any infinitesimal, and $\Delta g=g(x+\Delta x)-g(x)$. Since $g'(x)=\operatorname{st}(\Delta g/\Delta x)$ is defined, Δg must be infinitesimal. Then

$$(f \circ g)'(x) \simeq \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}$$

$$= \frac{f(g(x) + \Delta g) - f(g(x))}{\Delta g} \cdot \frac{\Delta g}{\Delta x}$$

$$\simeq f'(g(x)) \cdot g'(x)$$

So $(f \circ g)'(x) \simeq f'(g(x)) \cdot g'(x)$. But since both of these numbers are real, they must be identical.

In the case where $\Delta g=0$, we clearly have $f(g(x)+\Delta g)-f(g(x))=0$ and so $(f\circ g)'(x)=0$.