BIG DATA ANALYTICS Recommendation Systems

Predicting user tastes

- Predicting user responses to options: A recommendation system
- Examples:
 - News articles to on-line newspaper readers
 - Suggestions to customers of an on-line retailer

Technology

- Content-based systems: properties of the items
 - A Netflix user has watched many cowboy movies recommend a "cowboy" movie
- Collaborative filtering systems: similarity measures between users and/or items
 - The items recommended to a user are those preferred by similar users

From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters, ...
- Web enables near zero cost dissemination of information about products

From scarcity to abundance

Recommendation in the physical world

- Impossible to tailor the store to each individual customer
- The choice is based on the aggregate numbers:
 - a bookstore will display only the books that are most popular
 - a newspaper will print only the articles the most people will be interested

The Long Tail

Example

- "Touching the Void": not a big seller in its day
- Another book on the same topic: "Into Thin Air"
- Amazon: a few people bought both books
- Recommending "Touching the Void" to people who bought, or were considering, "Into Thin Air"
- "Touching the Void" became very popular!

The Netflix problem

- Netflix database
 - About half a million users
 - About 18,000 movies
- People rate movies
- Sparsely sampled entries

The Netflix problem

- Netflix database
 - About half a million users
 - About 18,000 movies
- People rate movies
- Sparsely sampled entries

Problem

Complete the "Netflix matrix"

The Utility Matrix

- Two classes of entities: users and items
 - Users have preferences for certain items
 - Preferences must be teased out of the data
- A utility matrix: for each user-item pair, a value of the degree of preference of that user for that item
 - Values from an ordered set (e.g., integers $\{1,\ldots,5\}=$ the number of stars)
 - Matrix is sparse: that most entries are "unknown"

Utility (Preference) Matrix

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Rows: Users

Columns: Movies (in general Items)

Values: The rating of the user for the movie

How can we fill the empty entries of the matrix?

Filling Utility Matrix?

- It is not necessary to predict every blank entry
- For each row: discover some entries that are likely to be high
- Find a large subset of items with the highest ratings

Populating the Utility Matrix I

- Acquiring data from utility matrix is difficult
- Ask users to rate items
 - Movie ratings
 - On-line stores
 - YouTube
- Users are unwilling to provide responses
- The information is biased

Populating the Utility Matrix II

- Make inferences from users' behavior:
 - If a user buys a product ⇒ user "likes" this item
 - Rating system with one value: 1
- Also infer interest from behavior other than purchasing:
 - e. g. if a customer views information about an item

Content-Based Recommendations

- Main idea: Recommend items to customer x similar to previous items rated highly by x
- Movie recommendations:
 - movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - other sites with "similar" content

Plan of action

Movies Profiles

Construct for each item a profile with important characteristics

- For a movie:
 - The set of actors of the movie
 - The director
 - The year in which the movie was made
 - The genre or general type of movie
 - Other features of movies?

Item Profiles

- The information available from descriptions of movies
 - Movie reviews generally assign a genre to a movie
 - Internet Movie Database (IMDB)
- Obtaining features from available data:
 - Descriptions written by the manufacturer (e.g., the screen size and cabinet color for a TV)
 - Books ∼ movies
 - Music products: artist, composer, and genre.

Recommendation system for documents?

- Other classes of items?
- Many kinds of documents for which a recommendation system can be useful:
 - News articles
 - Web pages want to see?
 - Blogs

Discovering Features of Documents

- Characterizing the topic of a document
 - eliminate stop words
 - compute the TF.IDF score for each word in the document
 - the ones with the highest scores are the words that characterize the document
- The features of a document = the n words with the highest TF.IDF scores
 - same n for all documents
 - n a fixed percentage of the words in the document
 - all words whose TF.IDF scores are above a given threshold

Topic based similarity

- Documents: sets of words that express the subjects or main ideas of the document
- Measures of similarity between two documents:
 - the Jaccard distance between the sets of words
 - the cosine distance between the sets, treated as vectors.

Two Kinds of Document Similarity

- Previous lecture: a method for finding documents that were "similar", using shingling, minhashing, and LSH
- Lexical notion of similarity documents are similar if they contain large, identical sequences of characters
- Recommendation systems: the occurrences of important words in both documents
- The methodology for finding similar documents remains almost the same

Discovering Features of Images

- How to get features for a database of images?
- Images: an array of pixels
- Simple properties of pixels, e.g. the average amount of red are useless

Tagging pictures

- Obtain information by inviting users to tag the items by entering words that describe the image
- A picture with a lot of red:
 - "Tiananmen Square" or
 - "Sunset at Malibu".

Obtaining Item Features From Tags

- One of the earliest attempts: the site del.icio.us
 - a method of search where users entered a set of tags as their search query
- We can use the tags for recommendation:
 - A user retrieves or bookmarks many pages with a certain set of tags
 - We can recommend other pages with the same tags

Tags: not always feasible

- Only works if users are willing to take the trouble to create the tags
- We need enough tags
 - occasional erroneous may bias the system

Creating User's Profile

- We need to create vectors that describe the user's preferences
- Utility matrix: connection between users and items
 - user purchases
 - ratings
- Aggregation of the profiles of items that user likes: :
 - e.g., the average of the components for which the utility matrix has 1's

Example

- Items are movies
- Boolean profiles with components corresponding to actors
- The utility matrix has a 1 if the user has seen the movie and is blank otherwise
- 20% of the movies that user U likes have Julia Roberts as one of the actors
- the user profile for U will have 0.2 in the component for Julia Roberts.

User Profiles from ratings

- The utility matrix: ratings 1 − 5
- Weight the vectors of the profiles of items by the utility value
- + normalize the utilities by subtracting the average value for a user:
 - negative weights for items with a below-average rating
 - positive weights for items with above-average ratings.

Example

- Movies: the utility matrix has entries that are ratings in the 1
 5 range
- Suppose user U gives an average rating of 3
- Three movies with Julia Roberts as an actor: ratings of 3, 4, and 5
- The user profile of U: the component for Julia Roberts = average of 3 - 3, 4 - 3, and 5 - 3 = 1.

Predictions

- ullet Given profile vectors for both users x and items v
 - Estimate the degree to which a user would prefer an item: $\cos(x,v) = x \cdot v/|x||v|$
 - Cosine distance = $1 \cos(x, v)$
- Example:
 - In the user's profile components for actors = likelihood that the actor will appear in a movie the user likes
 - the highest recommendations = lowest cosine distance between the user's and item's vectors
 - movies with lots of actors that appear in many of the movies the user likes

Pros: content based approach

- + No need for data on other users
 - No cold--start or sparsity problems
- + Able to recommend to users with unique tastes
- + Able to recommend new & unpopular items
- + Able to provide explanations
 - listing content--features that caused an item to be recommended

Cons: content based approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- ullet Estimate x's ratings based on ratings of users in N

Collaborative Filtering

- Focus on the similarity of the user ratings for two items
- The item-profile vector for an item is replaced by its column in the utility matrix
- Users: rows in the utility matrix
 - Users are similar if their vectors are close according to some distance measure
- Recommendation for a user U:
 - look at the users that are most similar to U
 - recommend items that these users like
- Identifying similar users and recommending what similar users like: collaborative filtering

Item-Item Collaborative Filtering

- So far: User user collaborative filtering
- Another view: Item item:
 - For item i, find other similar items
 - ullet Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user – user model
 - Jaccard
 - Cosine
- In practice, it has been observed that item--item often works better than user--user
- Why? Items are simpler, users have multiple tastes

	users												
	1	2	3	4	5	6	7	8	9	10	11	12	
1	1		3			5			5		4		
2			5	4			4			2	1	3	
3	2	4		1	2		3		4	3	5		
4		2	4		5			4			2		
5			4	3	4	2					2	5	
6	1		3		3			2			4		

- unknown rating

movies

- rat

- rating between 1 to 5

users 10 11 12 movies

- estimate rating of movie 1 by user 5

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

	users													
movies		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
	<u>3</u>	2	4		1	2		3		4	3	5		0.41
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		0.59

Compute similarity weights:

	users												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{j}}{\sum s_{ij}}$$

CF: common practice

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors:
 - ullet Items most similar to i , that were rated by x
- Estimate rating r_{xi} as the weighted average

Matrix Completion

Problem

Infer missing entries

Global positioning from local distances

- Points $\{x_j\}_{1 \le j \le n} \in \mathbb{R}^d$
- Partial information about distances $M_{ij} = \|x_i x_j\|$

Example (Singer, Biswas et al.)

- Low-powered wirelessly networked sensors
- Each sensor can construct a distance estimate from nearest neighbor

Global positioning from local distances

- Points $\{x_j\}_{1 \le j \le n} \in \mathbb{R}^d$
- Partial information about distances $M_{ij} = ||x_i x_j||$

Example (Singer, Biswas et al.)

- Low-powered wirelessly networked sensors
- Each sensor can construct a distance estimate from nearest neighbor

 $\mathbf{j}\begin{bmatrix} \times & & & \times & \\ & \times & \times & \\ \times & \times & & \\ \times & & \times & \\ & \times & & & \times \end{bmatrix}$

Problem

Locate the sensors

Structure-from-motion problem

Problem

Recover 3D shape from 2D images

Structure-from-motion problem

- ullet P features over F frames
- $(x_{fp},y_{fp})=$ position of feature p at frame f
- $2F \times P$ measurement matrix

```
egin{bmatrix} x_{11} & \cdots & x_{1P} \ & \cdots & & & \\ x_{F1} & \cdots & x_{FP} \ y_{11} & \cdots & y_{1P} \ & \cdots & & & \\ y_{F1} & \cdots & y_{FP} \end{bmatrix}
```

Structure-from-motion problem

- ullet P features over F frames
- $(x_{fp},y_{fp})=$ position of feature p at frame f
- W a $2F \times P$ measurement matrix
- Occlusions $\to W$ partially filled in

```
\begin{bmatrix} \times & ? & ? & ? & \times & ? \\ ? & ? & \times & \times & ? & ? \\ \times & ? & \times & ? & ? & ? \\ \times & ? & \times & ? & ? & ? \\ ? & \times & ? & ? & ? & ? \\ ? & \times & ? & \times & ? & ? \end{bmatrix}
```

Problem

Recover the missing measurements

Low-dimensional structure

Engineering/scientific applications: unknown matrix has often (approx.) low rank

- Netflix matrix
- Sensor-net matrix: $||x_i x_j||^2$, $\{x_i\} \in \mathbb{R}^d$
 - rank 2 if d = 2
 - rank 3 if d=3
 - ...
- Many others (e.g. machine learning, computer vision ...)

Dimension reduction

 $M \in \mathbb{R}^{m_1 imes m_2}$ of rank r depends upon $(m_1 + m_2 - r)r$ free parameters

- $r \ll \min(m_1, m_2) \Rightarrow (m_1 + m_2 r)r \ll m_1 m_2$
- Completion impossible if $n < (m_1 + m_2 r)r$

Trace - norm heuristics

minimize
$$\operatorname{rank}(A)$$

subject to $\mathcal{O}_n(A) = b$

 $\mathcal{O}_n \text{ linear transformation supplying information about } M$ (e.g. $\mathcal{O}_n(M) = \{M_{ij}\}_{(i,j) \in E}, \ E \text{ subset of entries})$ (Usually) NP-hard

Trace - norm heuristics

minimize
$$\operatorname{rank}(A)$$

subject to $\mathcal{O}_n(A) = b$

 \mathcal{O}_n linear transformation supplying information about M (e.g. $\mathcal{O}_n(M) = \{M_{ij}\}_{(i,j) \in E}$, E subset of entries)

(Usually) NP-hard

Convex relaxation of the rank minimization program \rightarrow trace norm heuristics: Fazel (2002), Hindi, Boyd and Fazel (2001)

$$\label{eq:minimize} \begin{aligned} & \min & \|A\|_* \\ & \text{subject to} & & \mathcal{O}_n(A) = b \end{aligned}$$

<u>Trace norm</u> ($\sigma_i(A)$ is *i*th largest singular value of A)

$$||A||_{\star} = \Sigma \ \sigma_i(A).$$

Non-noisy case

- Candès/Recht (2008), Candès/Tao (2009)
- Gross (2009), Recht (2009)
- Different approach Keshavan et al (2009) (OPTSPACE)

Recht (2009)

Exact reconstruction with high probability if

$$n > C \log^2(m) (m_1 + m_2) \operatorname{rank}(M)$$

$$m = \min\{m_1, m_2\}.$$

Exact reconstruction: conditions

- Sampling uniformly at random
- "Incoherence" condition:

$$A \in \mathbb{R}^{m_1 \times m_2} = U \, DV^T$$
, $\mathrm{rank}(A) = r$, $\nu = O(1)$ and $d = \max(m_1, m_2)$

$$\left\| U^T e_i \right\|^2 \le \frac{\nu r}{d}, \quad \left\| V^T e_i \right\|^2 \le \frac{\nu r}{d}$$

and

$$\left| U V^T \right|_{ij}^2 \le \frac{\nu r}{d^2}$$

(intuition: column and row spaces cannot be aligned with basis vectors)

Pros/Cons Collaborative Filtering

+ Works for ant kind of items

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

 Cannot recommend an item that has not been previously rated

- Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content--based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

References

- J. Leskovec, A. Rajaraman and J. D. Ullman Mining of Massive Datasets (2014), Chapter 9 and 11 (SVD)
- Candès, E.J. and Recht, B. (2009) Exact matrix completion via convex optimization. Fondations of Computational Mathematics, 9(6), 717-772.
- O. Klopp. Noisy low-rank matrix completion with general sampling distribution.
 Bernoulli, 20(1):282–303, 2014.