Kochrezept¹ für Jordan-Matrizen

Sei V Vektorraum, sei $f \in L(V, V)$ eine Abbildung, deren charakteristisches Polynom in Linear-faktoren zerfällt, und sei λ ein Eigenwert.

Dann kann man die Größen und Anzahlen der in der Jordan-Normalform vorkommenden Jordan-Kästchen zum Eigenwert λ aus den Rängen (oder Defekten) der Potenzen der Abbildung $g = g_{\lambda} := f - \lambda \cdot \mathrm{id}$ so berechnen:

- Zunächst berechnet man die Ränge und/oder Defekte der Potenzen von g: Sei $d_j := \operatorname{def}(g^j)$ und $r_j := \operatorname{rg}(g^j)$ für $j = 0, 1, \ldots$ Die Folge (d_0, d_1, \ldots) ist schwach monoton steigend (d.h. $d_0 \le d_1 \le \cdots$), beginnt mit $d_0 = 0$ und ist schließlich konstant mit einem Wert n_λ , der die algebraische Vielfachheit von λ ist. Die Folge der Ränge ist natürlich schwach monoton fallend.
- Dann bildet man die sukzessiven Differenzen dieser Folge: $u_j = d_j d_{j-1}$ für $j = 1, 2, \ldots$ (Oder $u_j := r_{j-1} r_j$.) Die Folge (u_1, u_2, \ldots) ist schwach monoton fallend und schließlich konstant mit Wert 0.

(Bemerkung: u_1 ist die Anzahl aller Kästchen zum Eigenwert λ . Was für eine Bedeutung haben die Zahlen $u_2, u_3,$ etc?)

- Dann bildet man die sukzessiven Differenzen dieser Folge: $k_j = u_j u_{j+1}$ für $j = 1, 2, \ldots$
- Die so gefundenen k_j sind die Anzahlen der entsprechenden Kästchen: k_1 gibt die Anzahl der 1x1-Kästchen $J_1(\lambda)$ an, k_2 die Anzahl der Kästchen $J_2(\lambda)$, etc.
- Zur "Probe" sollte man überprüfen, ob tatsächlich $k_1 + 2k_2 + 3k_3 + \cdots = n_{\lambda}$ gilt.
- Wenn es noch andere Eigenwerte λ' , etc gibt, dann muss man die obigen Berechnungen für $f \lambda' \cdot id$, etc wiederholen.

BEISPIEL: Sei A eine 13×13 -Matrix in Jordan-Normalform zum Eigenwert λ , die aus zwei 5×5 -Kästchen $J_5(\lambda)$ und einem 3×3 -Kästchen $J_3(\lambda)$ besteht:

$$\begin{pmatrix}
J_5(\lambda) & 0 & 0 \\
0 & J_5(\lambda) & 0 \\
0 & 0 & J_3(\lambda)
\end{pmatrix}$$

Da die Potenzen $(J_5 - \lambda E_5)^j$ für j = 0, 1, 2, 3, 4, 5 die Ränge 5, 4, 3, 2, 1, 0 haben, und die Potenzen $(J_3 - \lambda E_3)^j$ für j = 0, 1, 2, 3, 4, 5 die Ränge 3, 2, 1, 0, 0, 0 haben, ergibt sich nach obigem Rezept die folgende Tabelle:

Die gleiche Tabelle erhält man, wenn man statt einer Matrix in Jordan-NF eine dazu äquivalente Matrix verwendet. (Warum?)

Aus der letzten Zeile ergibt sich bereits die Jordan-NF, ohne dass man eine Basis bestimmen muss.

¹Das Wort "Kochrezept" weist darauf hin, dass Sie Ihr Verständnis von Jordan-Matrizen nicht dadurch verbessern können, dass Sie dieses Rezept unreflektiert anwenden. Sie müssen sich selbst überlegen, warum es funktioniert.