ĐA THỰC NỘI SUY LAGRANGE

Hà Thị Ngọc Yến Hà nội, 9/2020

ĐA THỨC NỘI SUY

- Cho bộ điểm

$$\left\{x_i, y_i = f\left(x_i\right)\right\}_{i=0,n}, x_i \neq x_j \ \forall i \neq j, x_i \in [a,b]$$

- Đa thức bậc không quá n, $P_n(x)$ đi qua bộ điểm trên được gọi là đa thức nội suy với các mốc nội suy $\{x_i\}_{i=\overline{0.n}}$
- Khi đó

$$f(x) \approx P_n(x)$$

ĐA THỰC NỘI SUY

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$\begin{cases} a_o L_0(x_0) + a_1 L_1(x_0) + \dots + a_n L_n(x_0) = y_0 \\ a_o L_0(x_1) + a_1 L_1(x_1) + \dots + a_n L_n(x_1) = y_1 \\ \dots \\ a_o L_0(x_n) + a_1 L_1(x_n) + \dots + a_n L_n(x_n) = y_n \end{cases}$$

Nội suy Lagrange

• Đa thức Lagrange cơ bản

$$L_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad \deg L_i \leq n$$

Đa thức nội suy Lagrange

$$P_n(x) = \sum_{i=0}^n y_i L_i(x)$$

ĐA THỨC NỘI SUY LAGRANGE

$$f(x) = P_n(x) + R_n(x)$$

$$P_n(x) = \sum_{i=0}^n y_i \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}.$$

$$\left| R_n(x) \right| \le \frac{M_{n+1}}{(n+1)!} \left| \mathbf{w}_{n+1}(x) \right|$$

$$\mathbf{w}_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$$

ĐT NỘI SUY NEWTON

• Ví dụ: xét hàm số $y = 3^x$

X	-1	0	1
У	1/3	1	3

ĐT NỘI SUY LAGRANGE

$$L_1(x) = \frac{x(x-1)}{(-1-0)(-1-1)} = \frac{1}{2}x^2 - \frac{1}{2}x$$

$$L_2(x) = \frac{(x+1)(x-1)}{(0+1)(0-1)} = -x^2 + 1$$

$$L_3(x) = \frac{(x+1)x}{(1+1)(1-0)} = \frac{1}{2}x^2 + \frac{1}{2}x$$

$$L(x) = \frac{1}{3}L_1(x) + L_2(x) + 3L_3(x) = \frac{2}{3}x^2 + \frac{4}{3}x + 1$$

ĐT NỘI SUY LAGRANGE

$$f\left(\frac{1}{10}\right) = \sqrt[10]{3} \approx L\left(\frac{1}{10}\right) = 1.14$$

Ví dụ

• Xấp xỉ hàm
$$f(x) = \frac{1}{25x^2 + 1}$$

Với 5 mốc nội suy

Ví dụ

Với 10 và 17 mốc nội suy

