# Eigenvalues of Random Matrices under Finite-Rank Perturbations

18.338 Project Presentation

Xiaomin Li <sup>1</sup> Yi Tian <sup>2</sup>

<sup>1</sup>School of Engineering and Applied Sciences, Harvard University

<sup>2</sup>EECS Department, MIT

## Random matrices under finite-rank perturbations

- Let  $X_n$  be an  $n \times n$  Hermite ensemble (Wigner, Wishart, Jacobi...).
- For a fixed  $r \ge 1$ , let  $\theta_1 \ge \cdots \ge \theta_s > 0 > \theta_{s+1} \ge \cdots \ge \theta_r$  be deterministic nonzero real numbers.
- Let  $P_n$  be an  $n \times n$  Hermite ensemble that has rank r and  $\theta_1, \ldots, \theta_r$  as its nonzero eigenvalues.
- $X_n$  and  $P_n$  are independent.
- How are the eigenvalues of  $X_n + P_n$  and  $X_n(I_n + P_n)$  distributed as  $n \to \infty$ ?

## Literature: [BGN11]

Benaych-Georges, Florent, and Raj Rao Nadakuditi. "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices." Advances in Mathematics 227.1 (2011): 494-521.

- Further assume that either  $X_n$  or  $P_n$  is unitarily invariant.
- · Also studied the eigenvectors.
- · Phase transition: generalization of [BBAP05].

#### Theorem (informal, largest eigenvalues)

Let  $\widetilde{X}_n$  be either  $X_n + P_n$  or  $X_n(I_n + P_n)$ . Let b be the supremum of the support of the limiting eigenvalue distribution of  $X_n$ . For each  $1 \le i \le s$ , there exists a threshold  $\theta_c$  and some function f such that

$$\lambda_i(\widetilde{X}_n) \xrightarrow{\mathrm{a.s.}} \begin{cases} f(\theta_i) & \text{if } \theta_i > \theta_c \\ b & \text{otherwise,} \end{cases}$$

while for fixed i > s,  $\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} b$ , as  $n \to \infty$ .

# Experiments



Figure 1: Histograms of the eigenvalues of real Hermite ensembles  $X_n$  perturbed by additive  $\theta u_n u_n^{\top}$ . Left:  $\theta = 0.5$ . Right:  $\theta = 5$ .

#### **Progress**

 $\boldsymbol{\cdot}$  Confirm the known theoretical results with experiments.

#### **Progress**

- · Confirm the known theoretical results with experiments.
- · Understand the proof techniques in [BGN11].
- Study a new question: perturbing random matrices whose eigenvalue distributions have multiple bulks.

By unitary invariance, w.l.o.g., suppose  $X_n = \text{diag}(\lambda_1, \dots, \lambda_n)$ . Consider rank-2 perturbation  $P_n = \theta_1 u_n u_n^\top + \theta_2 v_n v_n^\top$ .

By unitary invariance, w.l.o.g., suppose  $X_n = \text{diag}(\lambda_1, \dots, \lambda_n)$ .

Consider rank-2 perturbation  $P_n = \theta_1 u_n u_n^\top + \theta_2 v_n v_n^\top$ .

The eigenvalues of  $X_n + P_n$  are solutions to the equation

$$\det(ZI-(X_n+P_n))=0.$$

By unitary invariance, w.l.o.g., suppose  $X_n = \text{diag}(\lambda_1, \dots, \lambda_n)$ .

Consider rank-2 perturbation  $P_n = \theta_1 u_n u_n^{\top} + \theta_2 v_n v_n^{\top}$ .

The eigenvalues of  $X_n + P_n$  are solutions to the equation

$$\det(ZI-(X_n+P_n))=0.$$

If  $zI - X_n$  is invertible, we have

$$zI - (X_n + P_n) = (zI - X_n)(I - (zI - X_n)^{-1}P_n).$$
  
 
$$det(zI - (X_n + P_n)) = det(zI - X_n) \cdot det(I - (zI - X_n)^{-1}P_n).$$

By unitary invariance, w.l.o.g., suppose  $X_n = \text{diag}(\lambda_1, \dots, \lambda_n)$ .

Consider rank-2 perturbation  $P_n = \theta_1 u_n u_n^{\top} + \theta_2 v_n v_n^{\top}$ .

The eigenvalues of  $X_n + P_n$  are solutions to the equation

$$\det(zI-(X_n+P_n))=0.$$

If  $zI - X_n$  is invertible, we have

$$zI - (X_n + P_n) = (zI - X_n)(I - (zI - X_n)^{-1}P_n).$$
  
 
$$det(zI - (X_n + P_n)) = det(zI - X_n) \cdot det(I - (zI - X_n)^{-1}P_n).$$

This means z is an eigenvalue of  $X_n + P_n$  and not an eigenvalue of  $X_n$  if and only if  $\det(I - (zI - X_n)^{-1}P_n) = 0$ .

$$\begin{aligned}
\det(I - (zI - X_n)^{-1} P_n) \\
&= \det(I - (zI - X_n)^{-1} (\theta_1 u_n u_n^\top + \theta_2 v_n v_n^\top)) \\
\stackrel{(i)}{=} \det(I - [u_n, v_n]^\top \operatorname{diag}((z - \lambda_1)^{-1}, \dots, (z - \lambda_n)^{-1}) [\theta_1 u_n, \theta_2 v_n]) \\
&= \det\left(\begin{bmatrix} 1 - \theta_1 \sum_{i=1}^n u_i^2 (z - \lambda_i)^{-1} & \theta_2 \sum_{i=1}^n u_i v_i (z - \lambda_i)^{-1} \\ \theta_1 \sum_{i=1}^n u_i v_i (z - \lambda_i)^{-1} & 1 - \theta_2 \sum_{i=1}^n v_i^2 (z - \lambda_i)^{-1} \end{bmatrix}\right),\end{aligned}$$

where (i) is due to Sylvester's determinant identity.

$$\begin{aligned}
\det(I - (zI - X_n)^{-1}P_n) \\
&= \det(I - (zI - X_n)^{-1}(\theta_1 u_n u_n^\top + \theta_2 v_n v_n^\top)) \\
\stackrel{(i)}{=} \det(I - [u_n, v_n]^\top \operatorname{diag}((z - \lambda_1)^{-1}, \dots, (z - \lambda_n)^{-1})[\theta_1 u_n, \theta_2 v_n]) \\
&= \det\left(\begin{bmatrix} 1 - \theta_1 \sum_{i=1}^n u_i^2 (z - \lambda_i)^{-1} & \theta_2 \sum_{i=1}^n u_i v_i (z - \lambda_i)^{-1} \\ \theta_1 \sum_{i=1}^n u_i v_i (z - \lambda_i)^{-1} & 1 - \theta_2 \sum_{i=1}^n v_i^2 (z - \lambda_i)^{-1} \end{bmatrix}\right),\end{aligned}$$

where (i) is due to Sylvester's determinant identity. In the limit,

$$\sum_{i=1}^{n} u_{i} v_{i} (z - \lambda_{i})^{-1} \stackrel{a.s.}{\to} 0, \quad \sum_{i=1}^{n} u_{i}^{2} (z - \lambda_{i})^{-1} \stackrel{a.s.}{\to} n^{-1} \sum_{i=1}^{n} (z - \lambda_{i})^{-1}.$$

$$\begin{aligned}
\det(I - (zI - X_n)^{-1}P_n) \\
&= \det(I - (zI - X_n)^{-1}(\theta_1 u_n u_n^\top + \theta_2 v_n v_n^\top)) \\
\stackrel{(i)}{=} \det(I - [u_n, v_n]^\top \operatorname{diag}((z - \lambda_1)^{-1}, \dots, (z - \lambda_n)^{-1})[\theta_1 u_n, \theta_2 v_n]) \\
&= \det\left(\begin{bmatrix} 1 - \theta_1 \sum_{i=1}^n u_i^2 (z - \lambda_i)^{-1} & \theta_2 \sum_{i=1}^n u_i v_i (z - \lambda_i)^{-1} \\ \theta_1 \sum_{i=1}^n u_i v_i (z - \lambda_i)^{-1} & 1 - \theta_2 \sum_{i=1}^n v_i^2 (z - \lambda_i)^{-1} \end{bmatrix}\right),\end{aligned}$$

where (i) is due to Sylvester's determinant identity. In the limit,

$$\sum_{i=1}^{n} u_{i} v_{i} (z - \lambda_{i})^{-1} \stackrel{a.s.}{\to} 0, \quad \sum_{i=1}^{n} u_{i}^{2} (z - \lambda_{i})^{-1} \stackrel{a.s.}{\to} n^{-1} \sum_{i=1}^{n} (z - \lambda_{i})^{-1}.$$
Then,  $\det(I - (zI - X_{n})^{-1} P_{n}) = 0$  if and only if
$$1 - \theta_{1} n^{-1} \sum_{i=1}^{n} (z - \lambda_{i})^{-1} = 0, \text{ or } 1 - \theta_{2} n^{-1} \sum_{i=1}^{n} (z - \lambda_{i})^{-1} = 0.$$

z is an eigenvalue of  $X_n + P_n$  and not an eigenvalue of  $X_n$ 

$$\iff \det(I - (zI - X_n)^{-1}P_n) = 0$$

$$\iff 1 - \theta_1 n^{-1} \sum_{i=1}^n (z - \lambda_i)^{-1} = 0, \text{ or } 1 - \theta_2 n^{-1} \sum_{i=1}^n (z - \lambda_i)^{-1} = 0.$$

z is an eigenvalue of  $X_n + P_n$  and not an eigenvalue of  $X_n$ 

$$\iff \det(I - (zI - X_n)^{-1}P_n) = 0$$

$$\iff 1 - \theta_1 n^{-1} \sum_{i=1}^n (z - \lambda_i)^{-1} = 0, \text{ or } 1 - \theta_2 n^{-1} \sum_{i=1}^n (z - \lambda_i)^{-1} = 0.$$

Let  $\mu_{X_n} := n^{-1} \sum_{i=1}^n \delta_{\lambda_i(X_n)}$ . Then, its Cauchy transform is precisely

$$G_{\mu_{X_n}}(z) = \int (z-t)^{-1} \mathrm{d}\mu_{X_n}(t) = n^{-1} \sum_{i=1}^n (z-\lambda_i)^{-1}.$$

z is an eigenvalue of  $X_n + P_n$  and not an eigenvalue of  $X_n$ 

$$\iff \det(I - (zI - X_n)^{-1}P_n) = 0$$

$$\iff 1 - \theta_1 n^{-1} \sum_{i=1}^n (z - \lambda_i)^{-1} = 0, \text{ or } 1 - \theta_2 n^{-1} \sum_{i=1}^n (z - \lambda_i)^{-1} = 0.$$

Let  $\mu_{X_n} := n^{-1} \sum_{i=1}^n \delta_{\lambda_i(X_n)}$ . Then, its Cauchy transform is precisely

$$G_{\mu_{X_n}}(z) = \int (z-t)^{-1} \mathrm{d}\mu_{X_n}(t) = n^{-1} \sum_{i=1}^n (z-\lambda_i)^{-1}.$$

In the limit of  $n \to \infty$ ,  $G_{\mu_{X_n}} \to G_{\mu_X}$ , where  $\mu_X$  is the limiting eigenvalue distribution of  $X_n$ . Hence, new limiting eigenvalue z of  $X_n + P_n$  satisfy

$$G_{\mu_X}(z) = \theta_1^{-1}$$
, or  $G_{\mu_X}(z) = \theta_2^{-1}$ .

## Results in the additive case in [BGN11]

#### Theorem (informal, largest eigenvalues)

Let  $\widetilde{X}_n$  be either  $X_n + P_n$ . Let b be the supremum of the support of the limiting eigenvalue distribution of  $X_n$ . For each  $1 \le i \le s$ ,

$$\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} \begin{cases} G_{\mu_X}^{-1}(\theta_i^{-1}) & \text{if } \theta_i > (G_{\mu_X}(b^+))^{-1}, \\ b & \text{otherwise}, \end{cases}$$

while for fixed i > s,  $\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} b$ , as  $n \to \infty$ .

#### Results in the additive case in [BGN11]

#### Theorem (informal, largest eigenvalues)

Let  $\widetilde{X}_n$  be either  $X_n + P_n$ . Let b be the supremum of the support of the limiting eigenvalue distribution of  $X_n$ . For each  $1 \le i \le s$ ,

$$\lambda_i(\widetilde{X}_n) \xrightarrow{\mathrm{a.s.}} \begin{cases} G_{\mu_X}^{-1}(\theta_i^{-1}) & \text{if } \theta_i > (G_{\mu_X}(b^+))^{-1}, \\ b & \text{otherwise}, \end{cases}$$

while for fixed i > s,  $\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} b$ , as  $n \to \infty$ .

For Wigner matrices,  $\mu_X$  is the semicircle distribution, and

$$G_{\mu_{X}}(z) = \frac{z - \operatorname{sign}(z)\sqrt{z^{2} - 4\sigma^{2}}}{2\sigma^{2}}.$$

For 
$$0 < z \le 2\sigma$$
,  $G_{\mu_X}^{-1}(z) = \sigma^2 z + z^{-1}$ .

# Experiments



Figure 2: Histograms of the eigenvalues of real Hermite ensembles  $X_n$  perturbed by additive  $\theta u_n u_n^{\top}$ . Left:  $\theta = 0.5$  (theory: no spike). Right:  $\theta = 5$  (theory: spike at 5.2).

Consider  $X_{2n} = \text{diag}(Y_n, Z_n)$  where  $Y_n, Z_n$  are diagonal and two bulks.

Rank-2 perturbation  $P_{2n} = \theta_1 u_{2n} u_{2n}^{\top} + \theta_2 v_{2n} v_{2n}^{\top}$ .

Consider  $X_{2n} = \text{diag}(Y_n, Z_n)$  where  $Y_n, Z_n$  are diagonal and two bulks.

Rank-2 perturbation  $P_{2n} = \theta_1 u_{2n} u_{2n}^{\top} + \theta_2 v_{2n} v_{2n}^{\top}$ .

z is a limit eigenvalue of  $X_n + P_n$  and not a limit eigenvalue of  $X_n$  if and only if  $G_{\mu_X}(z) = \theta_1^{-1}$ , or  $G_{\mu_X}(z) = \theta_2^{-1}$ . So, reduces to finding  $G_{\mu_X}$ .

Consider  $X_{2n} = \text{diag}(Y_n, Z_n)$  where  $Y_n, Z_n$  are diagonal and two bulks.

Rank-2 perturbation  $P_{2n} = \theta_1 u_{2n} u_{2n}^{\top} + \theta_2 v_{2n} v_{2n}^{\top}$ .

z is a limit eigenvalue of  $X_n + P_n$  and not a limit eigenvalue of  $X_n$  if and only if  $G_{\mu_X}(z) = \theta_1^{-1}$ , or  $G_{\mu_X}(z) = \theta_2^{-1}$ . So, reduces to finding  $G_{\mu_X}$ .

Let 
$$\mu_{Y_n}=\frac{1}{n}\sum_{i=1}^n\delta_{\lambda_i(X_{2n})}$$
 and  $\mu_{Z_n}=\frac{1}{n}\sum_{i=n+1}^{2n}\delta_{\lambda_i(X_{2n})}$  Then,

$$\mu_{X_n} = \frac{1}{2n} \sum_{i=1}^{2n} \delta_{\lambda_i(X_{2n})} = \frac{1}{2} (\mu_{Y_n} + \mu_{Z_n}),$$

Consider  $X_{2n} = \text{diag}(Y_n, Z_n)$  where  $Y_n, Z_n$  are diagonal and two bulks.

Rank-2 perturbation  $P_{2n} = \theta_1 u_{2n} u_{2n}^\top + \theta_2 v_{2n} v_{2n}^\top$ .

z is a limit eigenvalue of  $X_n + P_n$  and not a limit eigenvalue of  $X_n$  if and only if  $G_{\mu_X}(z) = \theta_1^{-1}$ , or  $G_{\mu_X}(z) = \theta_2^{-1}$ . So, reduces to finding  $G_{\mu_X}$ .

Let  $\mu_{Y_n}=\frac{1}{n}\sum_{i=1}^n\delta_{\lambda_i(X_{2n})}$  and  $\mu_{Z_n}=\frac{1}{n}\sum_{i=n+1}^{2n}\delta_{\lambda_i(X_{2n})}$  Then,

$$\mu_{X_n} = \frac{1}{2n} \sum_{i=1}^{2n} \delta_{\lambda_i(X_{2n})} = \frac{1}{2} (\mu_{Y_n} + \mu_{Z_n}),$$

Let  $\mu_X, \mu_Y, \mu_Z$  be the limiting distributions of  $\mu_{X_{2n}}, \mu_{Y_n}, \mu_{Z_n}$ . We have

$$G_{\mu_X}=\frac{1}{2}(G_{\mu_Y}+G_{\mu_Z}).$$

Suppose  $\mu_Z, \mu_Y$  are two semicircle distributions in [-2,2],[6,10]. Then

$$G_{\mu_{Z}}(z) = \frac{z - \operatorname{sign}(z)\sqrt{z^{2} - 4}}{2}, \quad z \le -2, \text{ or } z \ge 2,$$

$$G_{\mu_{Y}}(z) = \frac{z - 8 - \operatorname{sign}(z - 8)\sqrt{(z - 8)^{2} - 4}}{2}, \quad z \le 6, \text{ or } z \ge 10.$$

Suppose  $\mu_Z$ ,  $\mu_Y$  are two semicircle distributions in [-2,2], [6,10]. Then

$$G_{\mu_Z}(z) = \frac{z - \operatorname{sign}(z)\sqrt{z^2 - 4}}{2}, \quad z \le -2, \text{ or } z \ge 2,$$

$$G_{\mu_Y}(z) = \frac{z - 8 - \operatorname{sign}(z - 8)\sqrt{(z - 8)^2 - 4}}{2}, \quad z \le 6, \text{ or } z \ge 10.$$

Hence,

$$G_{\mu_X}(z) = \frac{2z - 8 - \text{sign}(z)\sqrt{z^2 - 4} - \text{sign}(z - 8)\sqrt{(z - 8)^2 - 4}}{4},$$

where  $z \le -2$ ,  $2 \le z \le 6$ , or  $z \ge 10$ .

Suppose  $\mu_Z, \mu_Y$  are two semicircle distributions in [-2,2],[6,10]. Then

$$G_{\mu_Z}(z) = \frac{z - \operatorname{sign}(z)\sqrt{z^2 - 4}}{2}, \quad z \le -2, \text{ or } z \ge 2,$$

$$G_{\mu_Y}(z) = \frac{z - 8 - \operatorname{sign}(z - 8)\sqrt{(z - 8)^2 - 4}}{2}, \quad z \le 6, \text{ or } z \ge 10.$$

Hence,

$$G_{\mu_X}(z) = \frac{2z - 8 - \text{sign}(z)\sqrt{z^2 - 4} - \text{sign}(z - 8)\sqrt{(z - 8)^2 - 4}}{4},$$

where  $z \le -2$ ,  $2 \le z \le 6$ , or  $z \ge 10$ . In particular,

$$G(-2) = -G(10) = \sqrt{6} - 3 \approx -0.55, \ G(2) = -G(6) = \sqrt{2} - 1 \approx 0.41.$$

Suppose  $\mu_Z, \mu_Y$  are two semicircle distributions in [-2,2],[6,10]. Then

$$G_{\mu_Z}(z) = \frac{z - \operatorname{sign}(z)\sqrt{z^2 - 4}}{2}, \quad z \le -2, \text{ or } z \ge 2,$$

$$G_{\mu_Y}(z) = \frac{z - 8 - \operatorname{sign}(z - 8)\sqrt{(z - 8)^2 - 4}}{2}, \quad z \le 6, \text{ or } z \ge 10.$$

Hence,

$$G_{\mu_X}(z) = \frac{2z - 8 - \text{sign}(z)\sqrt{z^2 - 4} - \text{sign}(z - 8)\sqrt{(z - 8)^2 - 4}}{4},$$

where  $z \le -2$ ,  $2 \le z \le 6$ , or  $z \ge 10$ . In particular,

$$G(-2) = -G(10) = \sqrt{6} - 3 \approx -0.55, \ G(2) = -G(6) = \sqrt{2} - 1 \approx 0.41.$$

- $|\theta_i|^{-1} \ge 0.55$ : no new eigenvalue;
- 0.41  $\leq |\theta_i|^{-1} <$  0.55: a spike outside [-2, 10] but none in [2, 6];
- $|\theta_i|^{-1} <$  0.41, both a spike outside [–2,10] and one in [2,6].

# Numerical experiments

Jupyter notebook

#### References i



The Annals of Probability, 33(5):1643–1697, 2005.

Florent Benaych-Georges and Raj Rao Nadakuditi.

The eigenvalues and eigenvectors of finite low ra

The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices.

Advances in Mathematics, 227(1):494–521, 2011.