

## Univerza na Primorskem UP FAMNIT Študijsko leto 2021/2022

## Algebra I IZPIT – 26. JANUAR 2022 –

Čas pisanja: 135 minut. Maksimalno število točk: 100. Dovoljena je uporaba pisala in kalkulatorja. Pišite razločno in utemeljite vsak odgovor. Srečno!

- 1. (a) Kako izračunamo pravokotno projekcijo vektorja  $\overrightarrow{u}$  na vektor  $\overrightarrow{v}$ , z uporabo skalarnega produkta? Dokažite izjavo: Če je  $\overrightarrow{w}$  pravokotna projekcija vektorja  $\overrightarrow{u}$  na vektor  $\overrightarrow{v}$ , potem sta vektorja  $\overrightarrow{u} \overrightarrow{w}$  in  $\overrightarrow{v}$  pravokotna. (7 točk)
  - (b) Zapišite karakterizacijo:
    - i. Vzporednosti dve premice v  $\mathbb{R}^3$  v smislu linearne odvisnosti. (3 točke)
    - ii. Vzporednosti premice in ravnine v smislu skalarnega produkta. (3 točke)
  - (c) i. Zapišite definicijo ranga matrike v smislu vrtičnega ešalona (tj. matrike stopničaste oblike). (3 točke)
    - ii. Dokažite izjavo: Homogeni sistem linearnih enačb  $A_{m \times n} X = 0$  ima netrivijalno rešitev če in samo če je rang(A) < n. (4 točke)
- 2. V previlnem šestkotniku ABCDEF je točka G razpolovišče stranice EF, točka S pa presečišče premic AC in BG ter velja |AS|:|SC|=3:4. Stranica šestkotnika meri 2 enoti. Označimo  $\overrightarrow{a}=\overrightarrow{BA}$  in  $\overrightarrow{b}=\overrightarrow{BC}$ .
  - (a) Izrazite vektor  $\overrightarrow{SG}$  kot linearno kombinacijo vektorjev  $\overrightarrow{d}$  in  $\overrightarrow{b}$ . (10 točk)
  - (b) Izračunajte dolžino vektorja  $\overrightarrow{AC}$ . (5 točk)
  - (c) Izračunajte kot  $\varphi$  med vektorjema  $\overrightarrow{AC}$  in  $\overrightarrow{AF}$ . (5 točk)
- 3. Naj bosta  $\ell$  :  $\frac{x}{6} = \frac{y-3}{-2} = -z-5$  in  $p = (1,7,-4) + \lambda(1,-2,2)$  premici v prostoru.
  - (a) Poiščite vse točke T na premici p, ki so na razdalji 6 od točke  $A(1,7,-4) \in p$ . (10 točk)
  - (b) Zapišite splošno obliko enačbe ravnine  $\Sigma$ , ki vsebuje premico  $\ell$  in je vzporedna s premico p. (10 točk)
- 4. Za katere vrednosti  $\lambda \in \mathbb{R}$  ima sistem

$$8z - 3x - 6y = \lambda x$$
$$2x + y + 4z = \lambda y$$
$$4x + 3y + z = \lambda z$$

neskončno mnogo rešitev? Za največjo dobljeno vrednost parametra  $\lambda$  poiščite tudi rešitev sistema. (20 točk)

5. Z uporabo elementarnih operacij pokažite da velja

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b),$$

pri čemer so vrednosti  $a,b,c\in\mathbb{R}$  paroma različne.



## University of Primorska UP FAMNIT Academic year 2021/2022

## Algebra I Exam – January 26, 2022 –

Time: 135 minutes. Maximum number of points: 100. You are allowed to use a pen and a calculator. Write clearly, and justify all your answers. Good luck!

- 1. (a) How do we compute the vector projection of vector  $\overrightarrow{u}$  on vector  $\overrightarrow{v}$  using the dot product? Prove the next statement: If  $\overrightarrow{w}$  is the vector projection of vector  $\overrightarrow{u}$  on vector  $\overrightarrow{v}$ , then vectors  $\overrightarrow{u} \overrightarrow{w}$  and  $\overrightarrow{v}$  are orthogonal. (7 points)
  - (b) Give the characterisation for:

i. two parallel lines in  $\mathbb{R}^3$  using linear dependence.

(3 points)

ii. a line parallel to a plane using the dot product.

(3 points)

- (c) i. Give the definition of the rank of a matrix that involves the matrix echelon form. (3 points)
  - ii. Prove the statement: A homogeneous system of linear equations  $A_{m \times n} X = 0$  has a nontrivial solution if and only if rang(A) < n. (4 points)
- 2. In a regular hexagon ABCDEF point G is the midpoint of line segment EF, point S is the intersection of lines AC and BG, and |AS|:|SC|=3:4. The side of the hexagon has length 2. Denote  $\overrightarrow{a}=\overrightarrow{BA}$  and  $\overrightarrow{b}=\overrightarrow{BC}$ .
  - (a) Write the vector  $\overrightarrow{SG}$  as a linear combination of vectors  $\overrightarrow{d}$  and  $\overrightarrow{b}$ . (10 points)
  - (b) Compute the length of the vector  $\overrightarrow{AC}$ . (5 points)
  - (c) Compute the angle  $\varphi$  between vectors  $\overrightarrow{AC}$  and  $\overrightarrow{AF}$ . (5 points)
- 3. Let  $\ell$ :  $\frac{x}{6} = \frac{y-3}{-2} = -z 5$  and  $p = (1,7,-4) + \lambda(1,-2,2)$  be two lines in space.
  - (a) Find all points T in the line p, that are at distance 6 from the point  $A(1,7,-4) \in p$ .
  - (b) Write the general form equation of the plane  $\Sigma$ , that contains line  $\ell$  and is parallel to line p.
- 4. For which values  $\lambda \in \mathbb{R}$  has the system

$$8z - 3x - 6y = \lambda x$$
$$2x + y + 4z = \lambda y$$
$$4x + 3y + z = \lambda z$$

infinitely many solutions? Find the solution of the system for the greatest obtained value  $\lambda$ . (20 points)

5. Using elementary row operations show that

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b),$$

where  $a, b, c \in \mathbb{R}$  are all different.