

VIGILADA MINEDUCACIÓN - SNIES 1732

Solución de ecuaciones No lineales

Calcule la raíz de la siguiente función, con el método de la falsa posición y el método gráfico

$$f(x) = x^2 - 2$$

En el intervalo [0,2]

Calcule la raíz de la siguiente función, con el método de la falsa posición

$$f(x) = 2x^4 - 5x^2 + x$$

En el intervalo [1,3.5]

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- 5.3 Determine las raíces reales de $f(x) = -25 + 82x 90x^2 + 44x^3 8x^4 + 0.7x^5$:
 - a) Gráficamente
 - b) Usando el método de bisección para localizar la raíz más grande con $\varepsilon_s = 10\%$. Utilice como valores iniciales $x_l = 0.5$ y $x_u = 1.0$.
- c) Realice el mismo cálculo que en b), pero con el método de la falsa posición y $\varepsilon_s = 0.2\%$.

- 5.7 Determine la raíz real de f(x) = (0.8 0.3x)/x:
- a) Analíticamente
- b) Gráficamente
- c) Empleando tres iteraciones en el método de la falsa posición, con valores iniciales de 1 a 3. Calcule el error aproximado ε_a y el error verdadero ε_t en cada iteración.

$$f(x) = 0 = (0.8 - 0.3 \times)/x$$

$$0 = 0.8 - 0.3 \times$$

$$0.3 \times = 0.8$$

$$\times = 2.667$$

5.10 Encuentre la raíz positiva de $f(x) = x^4 - 8x^3 - 35x^2 + 450x$ -1001, utilizando el método de la falsa posición. Tome como valores iniciales a $x_l = 4.5$ y $x_u = 6$, y ejecute cinco iteraciones. Calcule los errores tanto aproximado como verdadero, con base en el hecho de que la raíz es 5.60979. Emplee una gráfica para explicar sus resultados y hacer el cálculo dentro de un $\varepsilon_s = 1.0\%$.

Empezando con el intervalo [2,3], realizar tres iteraciones del método de la regla de la falsa posición a la función

$$f(x) = 4x^4 - 9x^3 + 1$$

Empezando con el intervalo [0,6], aplicar el método de la bisección y el de la regla de la falsa posición a la función

$$f(x) = x^2 - 4$$

Comparación entre ambos métodos

SIMILITUDES	DIFERENCIAS
 Ambos requieren iniciar con dos valores (intervalo). Buscan un cambio de signo en la función. Convergen a la raíz con cierta tolerancia. 	 Para hallar el nuevo punto utilizan diferentes estrategias. El método de la falsa posición converge más rápido generalmente.

Referencia bibliográfica

Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill,.

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

@santotomastunja