Question 8. Montrer que si A et B sont deux parties non-vides et majorées de \mathbb{R} , alors $\sup(A+B)=\sup(A)+\sup(B)$.

Réponse. Soient $(A, B) \in P(\mathbb{R})^2$ non-vides et majorées fixées quelconques. $\sup(A)$ et $\sup(B)$ existent d'après la propriété de la borne supérieure. De plus, on définit A+B par :

$$A + B = \{a + b | (a, b) \in A \times B\}$$

Ainsi, A + B est:

- \star une partie de \mathbb{R} par définition.
- * non-vide : $A \neq \emptyset$ et $B \neq \emptyset$ donc on peut choisir $a_0 \in A$ et $b_0 \in B$ si bien que $a_0 + b_0 \in A + B$.
- * majorée : en effet, soit $c \in A + B$ fixé quelconque. $\exists (a,b) \in A \times B : c = a + b$ d'où $c = a + b \leqslant \sup A + \sup B$ Donc A + B admet une borne supérieure et, bonus, $\sup(A + B) \leqslant \sup A + \sup B$.

Par définition de $\sup(A+B)$, $\sup(A+B) \in M(a+B)$, soit :

$$\forall (a, b) \in A \times B, a + b \leq \sup(A + B)$$

Fixons $b \in B$ quelconque :

$$\forall a \in A, a+b \leqslant \sup(A+B) \iff a \leqslant \sup(A+B) - b$$

C'est donc un majorant, donc plus grand que le plus petit des majorants :

$$\sup A \leqslant \sup(A+B) - b$$

Relâchons le caractère fixé de b.

$$\forall b \in B, \sup A \leqslant \sup(A+B) - b \iff b \leqslant \sup(A+B) - \sup A$$

Donc $\sup(A+B)$ majore B donc $\sup B \leq \sup(A+B) - \sup A$, ainsi :

$$\sup A + \sup B \leqslant \sup (A + B)$$

Finalement, on a bien montré que :

$$\sup(A+B) = \sup A + \sup B$$