Índice

1.	Det	ermina	ación de la carga del viento	4
	1.1.	Clasifi	cación de cerramiento	4
	1.2.	Coefic	ente de presión interna	5
2.	Aná	ilisis d	e carga	6
	2.1.	Anális	is en correas	6
		2.1.1.	Estado base 1: peso propio	6
		2.1.2.	Estado base 2: sobrecarga	7
		2.1.3.	Estado base 3: carga de viento	7
			Verificación para estados último	
			Verificación para estados de servicio	
	2.2.	Anális	is en viga	9
			Estado base 1: peso propio	
			Estado base 2: sobrecarga	
			Estado base 3: viento	
			Verificación para estados último	
			Verificación para estados de servicio	

Hoja de comentarios		
	2	

1. Determinación de la carga del viento

El primer paso para éste análisis de viento. Esto lo hacemos a partir del método explicado en el capitulo 5 del reglamento CIRSOC 102.

Primero, obtenemos la **velocidad básica del viento** a partir de la figura 1A, el **factor de direccionalidad** a partir de la Tabla 6, el **factor de importancia** para un edificio Categoría II a partir de la tabla y un factor topográfico a partir del artículo 5.7. Resumiendo, obtenemos:

$$V = 50 \,\mathrm{m/s}$$

$$k_d = 0.85$$

$$I = 1$$

$$K_{zt} = 1.$$

Luego a partir de la Tabla 5 determinamos lo siguiente:

Categoría de exposición	В
α	7.00
zg [m]	366.00

Obtenemos el coeficiente de exposición para la presión dinámica según la altura:

$$k_z = 2.01 * (z/z_q)^{2/\alpha} \longrightarrow \text{para } 5 \text{ m} \le z \le z_q$$

$$k_z = 2.01 * (5/z_g)^{2/\alpha} \longrightarrow \text{para } z \le 5 \text{ m}.$$

Podemos formular la siguiente tabla:

Cuadro 1: Coeficiente de exposición q_z

z [m]	0.00	3.73	7.45
Kz	0.59	0.59	0.66
$qz [KN/m^2]$	768.55	768.55	859.73

Luego, obtenemos el factor de ráfaga de la siguiente forma:

$$G = 0.85$$
.

1.1. Clasificación de cerramiento

Siguiendo el artículo 5.9, obtenemos el área total de aberturas en una pared A_o , el área total de la misma pared A_g , la suma de las áreas de abertura en la envolvente del edificio A_{oi} y la suma de las áreas totales de la envolvente del edificio A_{qi} . Con esto verificiamos:

$$A_q = 126.3 \,\mathrm{m}^2$$

$$A_o = 21.6 \,\mathrm{m}^2$$
.

Vemos que $101.02 \,\mathrm{m}^2 \le A_o$, entonces procedemos con la verificación de un edificio parcialmente cerrado. Para esto obtenemos:

$$A_g = 126.3 \,\mathrm{m}^2$$

 $A_o = 21.6 \,\mathrm{m}^2$
 $A_{oi} = 7.2 \,\mathrm{m}^2$
 $A_{gi} = 71.7 \,\mathrm{m}^2$.

Con esto también verificamos que:

$$7.92\,\mathrm{m}^2 \leq A_o \quad \longrightarrow \quad \text{Cumple}$$

$$0.4\,\mathrm{m}^2 \leq A_o \quad \longrightarrow \quad \text{Cumple}$$

$$0.1\,\mathrm{m}^2 \geq 0.2 \quad \longrightarrow \quad \textbf{No cumple}.$$

Entonces determinamos que tenemos un edificio cerrado.

1.2. Coeficente de presión interna

Se determina el valor del coeficiente de presión interna Gcpi a partir de la tabla 7, que nos da:

$$Gcpi = \pm 0.18.$$

Por último, obteniendo el valor de \mathcal{C}_p , podemos desarrollar la siguiente tabla:

Dirección del viento normal a la cumbrera							
	- Direction der	nento noma	i a la cullibrei	Presión	Presión neta [N/m²]		
Superficie		9	Ср	Presion	Presion ne	eta [IN/III]	
Supermore	[m]	[N/m²]	CP	externa	18	-18	
Pared a barlovento	0,00 a 3,73	768.55	0.80	522.61	384.27	660.95	
Pared a barroverito	3,73 a 7,45	768.55	0.80	522.61	384.27	660.95	
Pared a sotavento	todo	768.55	-0.50	-326.63	-464.97	-188.29	
Pared lateral	todo	768.55	-0.70	-457.29	-595.63	-318.95	
Cubierta by y sv	de 0 a 3,73	768.55	-1.06	-692.46	-830.80	-554.12	
Cubierta DV y SV	de 3,73 a 7,45	859.73	-1.06	-774.62	-929.37	-619.87	

Dirección del viento paralela a la cumbrera							
Superficie	Z	q	Ср	Presión	Presión ne	eta [N/m²]	
Superficie	[m]	[N/m ²]		externa	18	-18	
Pared a barlovento	de 0 a 3,73	768.55	0.80	522.61	384.27	660.95	
Pared a parioverito	de 3,73 a 7,45	768.55	0.80	522.61	384.27	660.95	
Pared a sotavento	todo	768.55	-0.30	-195.98	-334.32	-57.64	
Pared lateral	todo	768.55	-0.70	-457.29	-595.63	-318.95	
Cubierta	de 0 a 3,73	768.55	-0.90	-587.94	-726.28	-449.60	
Cubierta	de 3,73 a 7,45	859.73	-0.90	-657.70	-812.45	-502.94	

En resumen, entonces podemos obtener las siguientes cargas de viento:

Elemento	Separación [m]	Presión de diseño [KN/m²]	Carga de viento [KN/m]
Correa	1.00	-0.93	-0.93
Viga	4.20	-0.93	-3.90

2. Análisis de carga

2.1. Análisis en correas

Para esto, en principio adoptamos un Perfil C 100x50 c/e:2.5mm y una chapa acanalada de perfil ondulado. Entonces, obtenemos:

INFORMACIÓN					
L	4.2	m			
binf	1	m			
Ainf	4.2	m2			
Inc	8	%			
	F	Perfil C			
h	10	cm			
b	5	cm			
е	0.25	cm			
A	5.27	cm2			
Sy	1.62E-05	m3			
σ_y	235	Mpa			
q	0.0418	kN/m			
Chapa acanalada de perfil ondulado					
e	1	mm			
q	0.1	kN/m2			

2.1.1. Estado base 1: peso propio

Consideramos el estado base por peso propio. El cálculo se desarrolla de la siguiente forma:

ESTADO BASE 1: PESO PROPIO							
	Cargas						
Tipo	Magnitud	Unidad					
Chapa 0.1 Perfil 0.0418 Total 0.1418		kN/m					
		kN/m kN/m					
						Esfuerzos	
M_max	0.31	kNm					
V_max	0.30	kN					

Donde los valores de momento máximo y de corte máximo se obtienen de la siguiente forma:

$$M_{max} = \frac{q * L^2}{8}$$

$$V_{max} = \frac{q * L}{2}.$$

2.1.2. Estado base 2: sobrecarga

Consideramos el estado base por sobrecarga. Para esto se consideran dos tipos de sobrecarga: la de 1 kN puntual en el punto más desfavorable, o mediante el cálculo de L_r según el reglamento, y adoptamos aquel que nos genere un momento y corte mayor. Esto se resume en la siguiente tabla:

ESTADO BASE 2: SOBRECARGA							
	Valores						
R1	R1 1						
R2	R2 1						
Lr	0.96	kN/m2					
	Carga	ıs					
Tipo	Magnitud	Unidad					
Sobrecarga 1	0.96	kN/m					
Sobrecarga 2	1	kN a 2.1m del apoyo					
Esfuerzos							
M_max	2.12	kNm					
$V_m ax$	2.02	kN					

2.1.3. Estado base 3: carga de viento

En este caso adoptamos los valores obtenido anteriormente, teniendo en cuenta que el esfuerzo será de *succión*. Resumimos el cálculo en la siguiente tabla:

ESTADO BASE 3: VIENTO						
	Valores					
W	-0.93	kN/m2				
	Cargas					
Tipo	Magnitud	Unidad				
Viento	-0.929	kN/m				
	Esfuerzos					
$M_m ax$	-2.05	kNm				
V_max	-1.95	kN				

2.1.4. Verificación para estados último

Realizamos la combinación de cargas y adopamos el valor más grande para la verificación de la pieza. Entonces, tenemos:

Dirección del viento normal a la cumbrera							
Superficie	Z	q	Presión		Presión neta [N/m²]		
Superficie	[m]	[N/m²]	Ср	externa	18	-18	
Pared a barlovento	0,00 a 3,73	768.55	0.80	522.61	384.27	660.95	
Pareu a pariovento	3,73 a 7,45	768.55	0.80	522.61	384.27	660.95	
Pared a sotavento	todo	768.55	-0.50	-326.63	-464.97	-188.29	
Pared lateral	todo	768.55	-0.70	-457.29	-595.63	-318.95	
Cubierta by y sy	de 0 a 3,73	768.55	-1.06	-692.46	-830.80	-554.12	
Cubierta by y sv	de 3,73 a 7,45	859.73	-1.06	-774.62	-929.37	-619.87	

Verificamos la pieza de la pieza calculando $S_{calc}=M_u/(\sigma_y*0.9)$, y vemos que el que calculamos es menor al de la pieza:

VERIFICACION				
Mu	3.76	kNm		
ϕ	0.9			
Scalc	1.78E-05	m3		
Verifica				

2.1.5. Verificación para estados de servicio

Utilizamos la siguiente combinación de cargas:

$$Q_1 = 1 * D + 1 * L + 1 * W = 0.17 \text{ kN/m}.$$

Conociendo los datos ya mostrados, obtenemos la flecha máxima como:

$$f_{max} = \frac{L}{200}$$

$$f_{max} = 2.1 \, \text{cm}.$$

Luego, verificamos que la flecha calculada sea menor a la flecha máxima:

$$f_{calc} = \frac{5}{384} * q * \frac{L^4}{EI}$$

$$f_{calc} = 0.41 \, \mathrm{cm} \quad \longrightarrow \quad \mathbf{Verifica}.$$

2.2. Análisis en viga

En este caso adoptamos un perfil $\mathbf{IPN240}$, y siguiendo un procedimiento parecido a lo anterior, obtenemos lo siguiente:

INFORMACIÓN					
L	10	m			
binf	4.2	m			
Ainf	42	m2			
Inc	8	%			
Perfil IPN					
h	24	cm			
b	10.6	cm			
A	46.1	cm2			
Sy	0.00035	m3			
σ_y	235	Mpa			
q	0.362	$\mathrm{kN/m}$			

2.2.1. Estado base 1: peso propio

Consideramos el estado base por peso propio. El cálculo se desarrolla de la siguiente forma:

ESTADO BASE 1: PESO PROPIO						
Cargas						
Tipo	Magnitud	Unidad				
p/correa	0.2836	kN c/4.2m				
Perfil	0.3620	kN/m				
Total	0.646	kN/m				
Esfuerzos						
Mmax	8.07	kNm				
Vmax	3.23	kN				

2.2.2. Estado base 2: sobrecarga

Consideramos el estado base por peso propio. El cálculo se desarrolla de la siguiente forma:

ESTADO BASE 2: SOBRECARGA						
	Cargas					
Tipo	Magnitud	Unidad				
p/correa	4.032	kN c/4.2m				
Total	4.032	kN/m				
Esfuerzos						
M_{max}	50.40	kNm				
V_{max}	20.16	kN				

2.2.3. Estado base 3: viento

Consideramos el estado base por peso propio. El cálculo se desarrolla de la siguiente forma:

Cuadro 2: Add caption

ESTADO BASE 3: VIENTO					
Cargas					
Tipo	Magnitud	Unidad			
p/correa	-3.9	i.9 kN c/235Mpa			
Total	-3.9	kN/m			
Esfuerzos					
Mmax	-48.77	kNm			
Vmax	-19.51	kN			

2.2.4. Verificación para estados último

Realizamos la combinación de cargas y adopamos el valor más grande para la verificación de la pieza. Entonces, tenemos:

	COMBINACIÓN									
M _{pp} (kNm)	V _{pp} (kN)	fpp	Ms (kNm)	Vs (kN)	fs	Mw (kNm)	Vw (kN)	fw	Mu (kNm)	Vu (kN)
8.07	3.23	1.4	50.40	20.16	0	-48.77	-19.51	0	11.30	4.52
8.07	3.23	1.2	50.40	20.16	1.6	-48.77	-19.51	0	90.32	36.13
8.07	3.23	0.9	50.40	20.16	0	-48.77	-19.51	1.5	-65.90	-26.36

Verificamos la pieza de la pieza calculando $S_{calc}=M_u/(\sigma_y*0.9),$ y vemos que el que calculamos es menor al de la pieza:

VERIFICACION				
Mu	90.32	kNm		
φ	0.9			
Scalc	4.27E-04	m3		
Verifica				

2.2.5. Verificación para estados de servicio

Utilizamos la siguiente combinación de cargas:

$$Q_1 = 1 * D + 1 * L + 1 * W = 0.78 \,\mathrm{kN/m}.$$

Conociendo los datos ya mostrados, obtenemos la flecha máxima como:

$$f_{max} = \frac{L}{200}$$

$$f_{max} = 5 \,\mathrm{cm}.$$

Luego, verificamos que la flecha calculada sea menor a la flecha máxima:

