Customer Personality Analysis

Load the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import datetime as dt

data = pd.read_csv('/content/marketing_campaign.csv', sep='\t')
```

Data Exploration and Preprocessing

```
print(data.head())
\rightarrow
                            Education Marital_Status
                                                                 Kidhome
          ID
              Year_Birth
                                                         Income
                                                                           Teenhome
        5524
     0
                     1957
                           Graduation
                                               Single
                                                        58138.0
                                                                                   0
     1
       2174
                     1954
                           Graduation
                                               Single 46344.0
                                                                        1
                                                                                   1
     2 4141
                     1965
                           Graduation
                                             Together
                                                                        0
                                                                                   0
                                                        71613.0
     3 6182
                     1984
                           Graduation
                                             Together
                                                        26646.0
                                                                        1
                                                                                   0
     4 5324
                     1981
                                  PhD
                                              Married
                                                        58293.0
                                                                        1
                                                                                   0
       Dt_Customer
                     Recency
                              MntWines ...
                                              NumWebVisitsMonth
                                                                 AcceptedCmp3
     0 04-09-2012
                          58
                                    635
                                                               7
                                                                              0
                                                               5
     1 08-03-2014
                          38
                                     11
                                                                              0
        21-08-2013
                          26
                                    426
                                                               4
                                                                              0
                                                               6
     3 10-02-2014
                          26
                                     11
                                                                              0
     4 19-01-2014
                          94
                                    173
        AcceptedCmp4
                      AcceptedCmp5
                                     AcceptedCmp1
                                                    AcceptedCmp2
     0
                    0
     1
                                                                0
                                                                           0
                    0
                                  0
                                                 0
     2
                    0
                                  0
                                                 0
                                                                0
                                                                           0
     3
                    0
                                  0
                                                 0
                                                                0
                                                                           0
     4
                                                                           0
        Z CostContact
                        Z Revenue
                                    Response
     0
                     3
                               11
     1
                     3
                               11
                                           0
     2
                     3
                               11
                                           0
```

0

11

3

[5 rows x 29 columns]

print(data.info())

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 29 columns):

рата	columns (total 29 co.		•	
#	Column	Non-I	Null Count	Dtype
0	ID		non-null	int64
1	Year_Birth	2240	non-null	int64
2	Education	2240	non-null	object
3	Marital_Status		non-null	object
4	Income	2216	non-null	float6
5	Kidhome	2240	non-null	int64
6	Teenhome	2240	non-null	int64
7	Dt_Customer	2240	non-null	object
8	Recency	2240	non-null	int64
9	MntWines		non-null	int64
10	MntFruits	2240	non-null	int64
11	MntMeatProducts	2240	non-null	int64
12	MntFishProducts	2240	non-null	int64
13	MntSweetProducts	2240	non-null	int64
14	MntGoldProds	2240	non-null	int64
15	NumDealsPurchases	2240	non-null	int64
16	NumWebPurchases	2240	non-null	int64
17	NumCatalogPurchases	2240	non-null	int64
18	NumStorePurchases	2240	non-null	int64
19	NumWebVisitsMonth	2240	non-null	int64
20	AcceptedCmp3	2240	non-null	int64
21	AcceptedCmp4	2240	non-null	int64
22	AcceptedCmp5	2240	non-null	int64
23	AcceptedCmp1	2240	non-null	int64
24	AcceptedCmp2	2240	non-null	int64
25	Complain	2240	non-null	int64
26	<pre>Z_CostContact</pre>	2240	non-null	int64
27	Z_Revenue	2240	non-null	int64
28	Response	2240	non-null	int64
dtype	es: float64(1), int64((25),	object(3)	

dtypes: float64(1), int64(25), object(3)

memory usage: 507.6+ KB

None

print(data.describe())

$\overline{\Rightarrow}$		ID	Year_Birth	Income	Kidhome	Teenhome	\
	count	2240.000000	2240.000000	2216.000000	2240.000000	2240.000000	
	mean	5592.159821	1968.805804	52247.251354	0.444196	0.506250	
	std	3246.662198	11.984069	25173.076661	0.538398	0.544538	
	min	0.000000	1893.000000	1730.000000	0.000000	0.000000	
	25%	2828.250000	1959.000000	35303.000000	0.000000	0.000000	
	50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	
	75%	8427.750000	1977.000000	68522.000000	1.000000	1.000000	

			-	···· - · ·····, ·		
max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	
	Recency	MntWines	MntFruits M	ntMeatProducts	\	
count	2240.000000	2240.000000	2240.000000	2240.000000		
mean	49.109375	303.935714	26.302232	166.950000		
std	28.962453	336.597393	39.773434	225.715373		
min	0.000000	0.000000	0.000000	0.000000		
25%	24.000000	23.750000	1.000000	16.000000		
50%	49.000000	173.500000	8.000000	67.000000		
75%	74.000000	504.250000	33.000000	232.000000		
max	99.000000	1493.000000	199.000000	1725.000000		
	MntFishProdu	cts NumW	ebVisitsMonth	AcceptedCmp3	AcceptedCmp4	\
count	2240.000	000	2240.000000	2240.000000	2240.000000	
mean	37.525	446	5.316518	0.072768	0.074554	
std	54.6289	979	2.426645	0.259813	0.262728	
min	0.000	000	0.000000	0.000000	0.000000	
25%	3.000	000	3.000000	0.000000	0.000000	
50%	12.000	000	6.000000	0.000000	0.000000	
75%	50.000	000	7.000000	0.000000	0.000000	
max	259.000	000	20.000000	1.000000	1.000000	
	AcceptedCmp5	AcceptedCmp1		·	Z_CostContact	\
count	2240.000000	2240.000000			2240.0	
mean	0.072768	0.064286		0.009375	3.0	
std	0.259813	0.245316			0.0	
min	0.000000	0.00000			3.0	
25%	0.000000	0.00000			3.0	
50%	0.000000	0.000000			3.0	
75%	0.000000	0.00000			3.0	
max	1.000000	1.000000	1.000000	1.000000	3.0	
	Z_Revenue	Response				
count		240.000000				
mean	11.0	0.149107				
std	0.0	0.356274				
min	11.0	0.000000				
25%	11.0	0.000000				
50%	11.0	0.000000				
75%	11.0	0.000000				
max	11.0	1.000000				

Handling Missing Values

[8 rows x 26 columns]

print(data.isnull().sum())

```
→ ID 0
Year_Birth 0
Education 0
Marital_Status 0
```

24
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Handle missing values

```
data['Income'].fillna(data['Income'].median(), inplace=True)
```

Remove rows with missing values

```
data.dropna(inplace=True)
```

Check for missing values again after handling them

```
print(data.isnull().sum())
```

\rightarrow	ID	0
	Year_Birth	0
	Education	0
	Marital_Status	0
	Income	0
	Kidhome	0

Teenhome 0 Dt_Customer Recency MntWines MntFruits MntMeatProducts MntFishProducts MntSweetProducts 0 MntGoldProds NumDealsPurchases NumWebPurchases NumCatalogPurchases 0 NumStorePurchases 0 0 NumWebVisitsMonth AcceptedCmp3 AcceptedCmp4 AcceptedCmp5 0 AcceptedCmp1 AcceptedCmp2 Complain Z_CostContact Z Revenue Response dtype: int64

Feature Engineering

Calculate age

```
data['Year_Birth'] = pd.to_datetime(data['Year_Birth'], format='%Y').dt.year
data['Age'] = 2023 - data['Year_Birth']
```

Calculate total spending on products

```
data['TotalSpent'] = data['MntWines'] + data['MntFruits'] + data['MntMeatProducts'] + data['
```

Family Size

```
data['FamilySize'] = 1 + data['Kidhome'] + data['Teenhome']
```

Education Level (Ordinal Encoding)

```
education_mapping = {
    'Basic': 1,
    'Graduation': 2,
    'Master': 3,
    '2n Cycle': 4,
    'PhD': 5
}
data['EducationLevel'] = data['Education'].map(education mapping)
```

Number of Total Purchases

```
data['TotalPurchases'] = data['NumDealsPurchases'] + data['NumWebPurchases'] + data['NumCata
```

DataFrame with new features

```
print(data.head())
```

→	0	ID 5524	Year_	_Birth 1957	Gr	aduat	ion	Marita	l_Status Single	5813	8.0	0	eenhome 0	\
	1	2174		1954		aduat			Single			1	1	
	2	4141		1965	Gr	aduat	ion		Together	7161	3.0	0	0	
	3	6182		1984	Gr	aduat	ion		Together	2664	6.0	1	0	
	4	5324		1981			PhD		Married	5829	3.0	1	0	
		Dt_Cus	tomer	Recen	су	MntW	ines		Accepted	dCmp2	Complair	ı Z_Co	stContac	t \
	0	04-09	-2012		58		635			0	6)		3
	1	08-03	-2014		38		11			0	6)		3
	2	21-08	-2013		26		426			0	()		3
	3	10-02	-2014		26		11			0	6)		3
	4	19-01	-2014		94		173			0	6)		3
		Z_Rev	enue	Respon	se	Age	Tota	alSpen	t Family	/Size	Educatio	nLevel	\	
	0		11		1	66		161	7	1		2		
	1		11		0	69		2	7	3		2		
	2		11		0	58		77	6	1		2		
	3		11		0	39		5	3	2		2		
	4		11		0	42		42	2	2		5		

```
TotalPurchases
0 25
1 6
2 21
3 8
4 19

[5 rows x 34 columns]
```

Customer Segmentation

Select features for clustering

```
rfm_features = ['Recency', 'TotalPurchases', 'TotalSpent']
rfm_data = data[rfm_features]
```

Standardize the data

```
scaler = StandardScaler()
scaled_rfm_data = scaler.fit_transform(rfm_data)
```

Determine the optimal number of clusters

```
inertia = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, random_state=42)
    kmeans.fit(scaled_rfm_data)
    inertia.append(kmeans.inertia_)

plt.plot(range(1, 11), inertia, marker='o')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```


Double-click (or enter) to edit

Apply K-Means clustering

```
n_clusters = 4
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
data['Cluster'] = kmeans.fit_predict(scaled_rfm_data)
```

Analyze the segments

segment_analysis = data.groupby('Cluster')[['Recency', 'TotalPurchases', 'TotalSpent']].mear
print(segment_analysis)

```
Recency TotalPurchases TotalSpent Cluster 0 24.606612 8.604959 126.923967
```

1	72.521505	21.553763	1157.704301
2	22.575453	21.845070	1114.390342
3	74.881034	8.967241	138.531034

Visualize the clusters

```
plt.figure(figsize=(8, 6))
sns.scatterplot(x='Recency', y='TotalSpent', hue='Cluster', data=data, palette='viridis')
plt.title('Customer Segmentation based on Recency and Total Spent')
plt.show()
```


RFM Analysis

Calculate Recency

```
data['Dt_Customer'] = pd.to_datetime(data['Dt_Customer'], format='%d-%m-%Y')
last_purchase_date = data['Dt_Customer'].max()
data['Recency'] = (last_purchase_date - data['Dt_Customer']).dt.days
print(data['Recency'])
             663
             113
             312
     3
             139
     4
             161
     2235
             381
     2236
             19
     2237
             155
     2238
             156
     2239
             622
     Name: Recency, Length: 2240, dtype: int64
```

Calculate Frequency

```
frequency_data = data.groupby('ID')['ID'].count().reset_index(name='Frequency')
# Rename the 'Frequency' column in data to 'Frequency_x' to avoid conflicts during the merge
data = data.rename(columns={'Frequency': 'Frequency_x'})
data = pd.merge(data, frequency_data, on='ID', how='left')
# Rename the 'Frequency_y' column back to 'Frequency' after the merge
data = data.rename(columns={'Frequency_y': 'Frequency'})
print(data['Frequency'])
   0
             1
     2
             1
     3
             1
             1
     2235
             1
     2236
             1
     2237
             1
     2238
             1
     2239
     Name: Frequency, Length: 2240, dtype: int64
```

Calculate Monetary Value

```
monetary_data = data.groupby('ID')['TotalSpent'].sum().reset_index(name='MonetaryValue')
data = pd.merge(data, monetary_data, on='ID', how='left')
print (data['MonetaryValue'])
→ 0
             1617
               27
              776
              53
              422
     2235
             1341
     2236
            444
     2237
             1241
     2238
              843
     2239
              172
     Name: MonetaryValue, Length: 2240, dtype: int64
```

K-Means Clustering

Select relevant features for clustering

```
features = ['Age', 'Income', 'MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts',
X = data[features]
```

Standardize the features

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Determine the optimal number of clusters

```
inertia = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, random_state=42)
    kmeans.fit(X_scaled)
    inertia.append(kmeans.inertia_)

plt.plot(range(1, 11), inertia, marker='o')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```


Apply K-Means clustering

```
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X_scaled)
data['Cluster'] = kmeans.labels_
```

Explore the characteristics of each cluster

```
for cluster in data['Cluster'].unique():
  print(f"\nCluster {cluster}:")
  cluster data = data[data['Cluster'] == cluster]
  print("Age range:", cluster_data['Age'].min(), "-", cluster_data['Age'].max())
  print("Average income:", cluster_data['Income'].mean())
  print("Average total spent:", cluster data['TotalSpent'].mean())
 print("Average total purchases:", cluster data['TotalPurchases'].mean())
  print("Education level distribution:", cluster_data['EducationLevel'].value_counts(normali
  print("Marital status distribution:", cluster data['Marital Status'].value counts(normaliz
    Education level distribution: EducationLevel
          0.605381
     5
          0.159193
         0.123318
     3
     4
         0.109865
          0.002242
     Name: proportion, dtype: float64
     Marital status distribution: Marital_Status
     Married
                 0.367713
```

```
Together
           0.244395
Single
           0.239910
Divorced
           0.094170
Widow
           0.049327
Absurd
           0.004484
Name: proportion, dtype: float64
Cluster 0:
Age range: 27 - 123
Average income: 36751.689741451206
Average total spent: 137.58381984987489
Average total purchases: 9.215179316096748
Education level distribution: EducationLevel
2
    0.484570
5
    0.199333
3
    0.171810
4
    0.100917
    0.043369
Name: proportion, dtype: float64
Marital status distribution: Marital_Status
Married
           0.394495
Together
           0.255213
```

Single 0.221852

```
cluster 2:
Age range: 29 - 130
Average income: 65372.61680672269
Average total spent: 955.7462184873949
Average total purchases: 21.415126050420167
Education level distribution: EducationLevel
2
     0.463866
5
     0.295798
3
     0.183193
4
     0.055462
1
     0.001681
Name: proportion, dtype: float64
Marital status distribution: Marital_Status
Married
            0.381513
Together
            0.277311
Single
            0.179832
Divorced
            0.115966
Widow
            0.043697
Alone
            0.001681
Name: proportion, dtype: float64
```

Visualize the characteristics of each cluster

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='Cluster', y='Age', data=data)
plt.title('Age Distribution across Clusters')
plt.show()
```


Age Distribution across Clusters


```
plt.figure(figsize=(12, 6))
sns.boxplot(x='Cluster', y='TotalSpent', data=data)
plt.title('Total Spending Distribution across Clusters')
plt.show()
```


Total Spending Distribution across Clusters


```
plt.figure(figsize=(12, 6))
sns.histplot(x='EducationLevel', hue='Cluster', data=data, multiple='stack')
plt.title('Education Level Distribution across Clusters')
plt.show()
```

3.5

4.5

5.0

4.0

 $\overline{2}$

3.0

EducationLevel

Visualize the distribution of income across different clusters

2.5

```
plt.figure(figsize=(8, 6))
sns.boxplot(x='Cluster', y='Income', data=data)
plt.title('Income Distribution Across Clusters')
plt.show()
```

1.5

2.0

 $\overline{2}$

Income Distribution Across Clusters

Analyze the relationship between cluster and other variables

```
plt.figure(figsize=(8, 6))
sns.countplot(x='EducationLevel', hue='Cluster', data=data)
plt.title('Education Level vs. Cluster')
plt.show()
```

 $\overline{2}$

EducationLevel

Analyze the characteristics of each cluster and identify patterns and insights

Analyze the relationship between cluster and marital status

```
plt.figure(figsize=(8, 6))
sns.countplot(x='Marital_Status', hue='Cluster', data=data)
plt.title('Marital Status vs. Cluster')
plt.show()
```


Marital Status vs. Cluster

Analyze the relationship between cluster and kid/teenhome

```
plt.figure(figsize=(8, 6))
sns.countplot(x='Kidhome', hue='Cluster', data=data)
plt.title('Kidhome vs. Cluster')
plt.show()
```


Kidhome vs. Cluster


```
plt.figure(figsize=(8, 6))
sns.countplot(x='Teenhome', hue='Cluster', data=data)
plt.title('Teenhome vs. Cluster')
plt.show()
```


Analyze the relationship between cluster and total purchases

```
plt.figure(figsize=(8, 6))
sns.boxplot(x='Cluster', y='TotalPurchases', data=data)
plt.title('Total Purchases vs. Cluster')
plt.show()
```

 $\overline{\mathbf{T}}$

Total Purchases vs. Cluster

Analyze the relationship between cluster and different product categories

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='Cluster', y='MntWines', data=data)
plt.title('Wine Spending vs. Cluster')
plt.show()
```



```
plt.figure(figsize=(12, 6))
sns.boxplot(x='Cluster', y='MntMeatProducts', data=data)
plt.title('Meat Spending vs. Cluster')
plt.show()
```


Scatter plot of age vs. income, color-coded by cluster

```
plt.figure(figsize=(8, 6))
sns.scatterplot(x='Age', y='Income', hue='Cluster', data=data, palette='viridis')
plt.title('Age vs. Income by Cluster')
plt.show()
```

 $\overline{2}$

Bar chart showing average spending on different product categories by cluster

```
product_categories = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweaverage_spending_by_cluster = data.groupby('Cluster')[product_categories].mean()

average_spending_by_cluster.plot(kind='bar', figsize=(12, 6))
plt.title('Average Spending on Product Categories by Cluster')
plt.xlabel('Cluster')
plt.ylabel('Average Spending')
plt.ylabel('Average Spending')
plt.ticks(rotation=0)
plt.legend(title='Product Category')
plt.show()
```


Histograms of age, income, and other variables by cluster

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Age', y='Income', hue='Cluster', data=data)
plt.title('Customer Segmentation based on Age and Income')
plt.show()
```


Customer Segmentation based on Age and Income


```
plt.figure(figsize=(10, 6))
sns.barplot(x='Cluster', y='MntWines', data=data)
plt.title('Average Wine Spending by Cluster')
plt.show()
```


Calculate average purchase value for each customer