TSB-funded Project 'TADD'- Trainable vision-based anomaly detection and diagnosis Technical Report for July 2014

Hossein Malekmohamadi and Tom Duckett

Chapter 1

Introduction

This is the July 2014 report for the project TADD. The core topic of this report is software development for QA-TADD. I will be away on training course from 21 to 25 July 2014, consequently this report covers research and development in QA-TADD for the first two weeks and the last week of July. The job description for this month is taken from the objectives of QA-TADD for Q6 which is integrating the purchased camera into the QA-TADD to take high resolution images.

Chapter 2

QA-TADD Development

In the last month (June 2014), we achieved the goal to enable QA-TADD work with high resolution images. To enable QA-TADD users work with real-time images, we purchased a decent DSLR camera (Canon EOS 700D Digital SLR Camera with 18MP CMOS sensor and 3 inch LCD) with the prime lens (Canon EF 50mm - f/1.4 USM Lens). A prime lens is a lens that has only one focal length. Prime lens can provide crisp and sharp shots. The effective distance in order to capture the container box (60 cm \times 40 cm \times 20 cm) fully is around 87 cm. In addition, we purchased a UV filter for the DSLR camera that absorbs the ultraviolet rays to make images under blueish or yellowish LED lights look more natural. Software implementation for this part of QA-TADD is to integrate DigiCamControl in to it as shown in Figures 2.1 to 2.4.

¹http://digicamcontrol.com/

Figure 2.1: QA-TADD is running while it calls integrated DigiCamControl UI.

Figure 2.2: DigiCamControl UI is shown with functionalities like live view and capture. User can choose different parameters as well like shutter speed, aperture, auto-focus and white balance.

Figure 2.3: QA-TADD is then loaded with the captured photo with DSLR. Please note that the zoom is set to 25% for viewing purposes.

Figure 2.4: Training process is shown for the captured image.

Chapter 3

Conclusions

In this July 2014 report, we have enabled QA-TADD to work with the purchased DSLR camera. This gives the ability to the user to process QC tasks with more detailed images form potatoes.