Increasing Profitability

Airline Carriers

Stakeholders: Airline Carriers

Profitability

Revenue - Costs

How to increase revenue?

How to decrease costs?

Market Share

Data Set & Motivation

2019 Flights Delays - 6,489,062 rows (slimmed to 1,489,062)

Airports, Airlines, Plane Size and Weather

United States Airports

Exploratory Data Analysis

Do airports have different probabilities of delayed flights?

Distributions

Regions

Best Region

Average probability of delay:16.53%

Average Monthly Flights:6,483

Case Study

How to decrease the number of delayed flights for United Airlines by airport selection?

Worst Performing Region

Average Probability of delay: 20.0%

+1.4% Average

How to lower probability of delays? ²⁰

Closest Neighbor Approach

NYC area airports

For flights with the same destination, funnel a^{41.0} higher proportion of flights to the airport with a lower probability of delay.

Differences Between Closest Neighbor

Consumers will attribute lower delays with the airline, not the airport

Reputation, Loyalty, Revenue

Correlation: Delays & Flights

Will increasing the number of flights of an airport increase the probability of delay?

Target smaller airports

0.24

0.22

0.20

0.18 0.16

0.14

Closest Neighbor Approach-30 airports

United States Airlines

Exploratory Data Analysis

Which airlines have the most delays and what are their commonalities?

Case Study - Setting Benchmarks

Comparing profit generating variable, passengers:

United: 8,501,631

- Southwest: 13,382,999

- Delta: 12,460,183

Performance:

- -4,881,368 less than Southwest
- -3,958,552 less than Delta

Case Study - Delays

Delay Percentages: Maximum: 25.75%

United: 19.46%

Southwest: 20.88%

Delta: 14.67%

Performance:

- -6.29% on upper bound
- +4.79% on lower bound

Case Study - Operation Variables

Case Study - Operation Variable of Interest

Concurrent Flights Distance Group Flights Per Month Segment Number Plane Age

Case Study - Human Resources Variables

Passengers per Month

Flight Attendants per Passenger

Ground Crew per Passenger

Case Study - Human Resources VOI

Passengers per Month

Flight Attendants per Passenger

Ground Crew per Passenger

Case Study - Flight Attendants per Passenger

United: ~2.54e-4 Southwest: ~6.2e-5

Delta: ~1.44e-4

Average: ~8.2e-5

Average, similar airlines: ~9.9e-5

United is employing far more flight attendants than all of its competitors, with no discernible difference in delay time

Recommendation: United should slim down its flight attendant crews

Case Study - Ground Crew per Passenger

United: 2.29e-4

Southwest: ~9.9e-5

Delta: 1.49e-4

Average: ~1.29e-4

Average, similar airlines: ~1.5e-4

Again, United is employing far more ground crew than all of its competitors, with no discernible difference in delay time

Recommendation: United should slim down its ground crews

Case Study - Flights per Month

United: ~51,977 w/ 8,501,631 pass. (163.6 per) Southwest: ~111,171 w/ 13,382,999 pass. (120.4 per) Delta: ~83,069 w/ 12,460,183 pass. (150.0 per)

Average: ~35,906 w/ 4,070,878 pass. (113.4 per) Average, similar airlines: ~56,936 w/ 7,290,721 pass. (128.1 per)

United is operating far fewer flights than its competitors, operating with 13.6 more people per flight than delta, and 35.5 more people than similar airlines

Recommendation: United needs to start decreasing the number of people per flight by increasing the number of flights offered, or changing plane size

Airplanes

Exploratory Data Analysis

Does the size of the airplane affect how likely it is to be delayed?

Airplanes

Categorizing Plane Size

<u>Small</u>

 $43 < Number Of Seats \le 124$

Medium

124 < Number Of Seats ≤ **158**

Large

158 < Number Of Seats ≤ **337**

~ Same # of Flights in Each Category

Varying By Carrier

Different plane layouts and boarding procedures likely lead to differences in performance for the same plane size

Plane Size Options

Does having more plane sizes lead to less delays overall?

Delta Air Lines Inc.	25
American Airlines Inc.	21
United Air Lines Inc.	18
Alaska Airlines Inc.	11
American Eagle Airlines Inc.	7
JetBlue Airways	6
SkyWest Airlines Inc.	6
Mesa Airlines Inc.	6
Midwest Airline, Inc.	5
Endeavor Air Inc.	5
Comair Inc.	5
Hawaiian Airlines Inc.	5
Spirit Air Lines	5
Atlantic Southeast Airlines	4
Southwest Airlines Co.	4
Frontier Airlines Inc.	4
Allegiant Air	2

Plane Size Options

Does having more plane sizes lead to less delays overall?

Correlation is very low

 $r^2 = 0.037269$

No significant trend when outliers removed

Focusing On United

What airplanes should United Airlines purchase to decrease future delays?

4th EDA: United and weather

is the way United operates in different weather conditions responsible for a bigger probability of delay?

- 1) United is the 6th most likely airline to be delayed. How much of that is due to "bad" weather?
- 2) Compared to other airlines, is it the case that United flies more in bad weather?
- 3) If yes, what factors of "bad" weather are most likely to affect its
- 4) Case study of airline of biggest probability of delays and airline of lowest prob of dealy: how does their weather indicator look like

Proportion of delays for airlines

- Biggest probability of being delayed the most: Frontier Airlines, JetBlue
- Lowest probability of being delayed: Hawaiian Airlines Inc

Creating the weather indicator

Weather indicator = (snow + rain + wind) /3

United = **4th position**

 Flying more frequently so more flights happen in bad weather - 9% of all flights in dataset are for United

Notice: Comair Inc < United < JetBlue Airways

Conclusion 1: United has a high weather indicator which could be causing the delays

Does weather cause delays?

- Split data into subsets to notice monthly trends
 - Calculate delays per month and indicator per month
- Find correlation between delays and weather indicator

Weather indicator only:

Comair Inc <United< JetBlue Airways

Weather indicator + correlation:

JetBlue Airways <United< Comair Inc

Conclusion 2: United's delays are likely not to be due to bad weather

0.401403
0. 101-105
0.396127
-0.324852
-0.300407
-0.165776
-0.139086
0.134725
-0.125721
-0.124465
-0.124411
0.121742
-0.075680
-0.071582
-0.070815
0.046326
0.030387
0.009300

Snow: Potential for weather recommendations?

No, United flying in an average amount of **snow**

Comair Inc =United=JetBlue Airways

Rain: Potential for weather recommendations?

United vs other airlines:

Yes, rain might be a weather factor that is weighing more heavily or the weather indicator

Comair Inc =United<<JetBlue Airways

Wind: Potential for weather recommendations?

Yes, United is flying in highest wind speed compared to other airlines

JetBlue Airways < Comair Inc << United

Weather takeaways

Good things:

- It's good that United's weather indicator correlation with delays is low it shows the robust systems in place that take care of random events (minimizing randomness is good)
- United can take advantage of its relatively better performance when it comes to delays by using the correlations found in its advertisement campaigns

Area for growth:

 United can still maintain its average/good delays performance while it operates more flights in the winter/during bad weather – we learn from JetBlue that the weather indicator can be the highest, yet weather is even less of a reason that there are flight delays

Summary

- 1. Closest Neighbor Approach
 - a. Select airports with a lower probability of delay
- 2. Emulate the Winners, Avoid the Losers
 - a. Fly More
 - b. Less Employees
- Weather the Storm or Don't
 - Delays not due to weather could do better with handling rain, potentially snow
- 4. Bigger Bang for your Buck
 - a. Purchase Smaller Planes

