Bioinformatik Stefanie Hartmann

Wintersemester 2019 / 2020, Universität Potsdam

Multiple sequence alignments Nov 22, 2019

MSA challenges (I)

- collecting homologous input sequences
 - input = non-homologous sequences:an alignment will be computed!
 - mathematically correct vs. biologically correct
- covered methods compute global multiple alignments
 - need globally homologous input sequences

bioinf WS19 . lec6 . S.Hartmann

Collecting homologous sequences Query: sequence ID: ABC, length: 809 aa Good BLAST hit: sequence ID: XYZ, length: 816 aa sequence ID: seqXYZ length: 451 Score Expect Identities Positive (1/20) Oury 366 ISSI DELONGOUS CHEEN PROLECTION (1/20) Solyet 305 Ward Placeting (1/20) Oury 366 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 366 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 367 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 368 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 368 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 367 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 368 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 367 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 367 ISSI DELONGOUS CHEEN PROLECTION (1/20) Oury 368 ISSI DELONGOUS CHEEN PROLECTION (1/20) Our 3

Types of multiple sequence alignments

local multiple sequence alignment

- contains aligned (and possibly unaligned) regions
- software: Dialign, HMMer

global multiple sequence alignment

- the software tries to align the sequences end to end
- most MSA software

MSA challenges (II)

- biological
 - criterion for accuracy?
 - reconcile multiple pw alignments into a msa
- computational
 - (mathematical) accuracy: no fast solution exists, all approaches use heuristics

MSA challenges (II) biological - criterion for accuracy? - reconcile multiple pw alignments into a msa 1 ACTG ² ACG 3 sequences 3 ATG 1 ACTG 1 ACTG optimal pairwise 3 A-TG 3 ATG alignments 2 AC-G 1 ACTG optimal multiple ² AC-G alignment 3 A-TG bioinf WS19 · lec6 · S.Hartmann

Computing MSAs

algorithmic approaches

- · many different types of heuristics exist
- · progressive alignment is most frequently used

implementations (programs):

 Align-m, AMAP, BlastAlign, ClustalW, ClustalX, ClustalO, DCA, DIALIGN-2, HMMER, ITERALIGN, Kalign, MACAW, MAFFT, Match-Box, MAVID, MSA, Multalin, MULTIALIN, MUSCA, MUSCLE, Nomad, PCMA, PileUp, POA, PRALINE, Prank, ProAlign, ProbCons, PRRP, PSAlign, SAGA, SAM, SAM-T99, T-Coffee, ...

bioinf WS19 • lec6 • S.Hartman

Progressive alignment

1. compute a pairwise distance matrix

>SEQ1
EDREMMLCLSCYLHVTRKPLQSIKTAYLYFSVQSTGGKVG
>SEQ2
EDAENFLCLSCLLHVTGKPLQSIKTRYLYFSVQSTGGKVG
>SEQ3
EDFENMLGVHCLSCYLHVTRKILQSIKTAYLYFSIQSTLGKIG
>SEQ4
EDRENMLGVHCLSCYLHVTRKILQSIKTAYLYFSIQSTLGKIG
>SEQ5
EDFENMLGVHCLGCNLHVTRKPLQSIKTAGGYFSIQSTLGKIG
>SEQ5
DDRDNMLGVLCLSNYLHVTAKPLQSIKTAYMYFSVGNRQSTPGKVG

bioinf WS19 · lec6 · S.Hartmann

Progressive alignment

- 1. compute a pairwise distance matrix
- 2. use distance values to compute a guide tree
- 3. align sequences based on the guide tree
 - start with the most similar sequences
 - progressively add more distant sequences
 - once computed, subalignments are "frozen"

bioinf WS19 • lec6 • S.Hartmann

Growing the multiple sequence alignment

- 3 how to align a sequence to an alignment?
 - compare sequence with all sequences in the group
 - highest scoring pairwise alignment determines how sequence will be aligned to the group
- 2 how to align an alignment to an alignment?
 - compare all sequence pairs between the groups
 - best pairwise alignment determines the alignment of the two groups

bioinf WS19 · lec6 · S.Hartmann

Growing the multiple sequence alignment

better: use profile alignments, not pairwise alignments

- a profile:
 - table: 20 rows, one for each amino acid, as many columns as the alignment has (or transposed)
 - profile columns contain information about how conserved the corresponding alignment column is

bioinf WS19 · lec6 · S.Hartmann

Growing the multiple sequence alignment

bioinf WS19 · lec6 · S.Hartmann

Progressive alignment using profiles

- align sequences 1 and 2, 3 and 4
- compute profiles for subalignments 1-2, 3-4
- align profile 1-2 to profile 3-4, discard profiles, result: subalignment 1-2-3-4
- compute profile for subalignment 1-2-3-4
- align 5 to profile 1-2-3-4, discard profile
- only report final alignment 1-2-3-4-5

Progressive alignment: major weakness

- distant sequences present problems
- long insertions or deletions present problems
- once they are introduced, alignment errors cannot be corrected

bioinf WS19 . lec6 . S.Hartmani

Sum-of-pairs score

- sum of scores of all induced pairwise alignments
- uses a substitution scoring matrix

identity: 1, mismatch: -1, gap: -2

seq1<mark>ATTCACAG</mark>T seq2AT - <mark>CACGGT</mark>

score = 4

score = 4+6+3 = 13

seq1<mark>ATTCACAG</mark>T seq3<mark>ATTCAC-G</mark>T

score = 6

seq2AT-CACGGT score = 3

bioinf WS19 • lec6 • S.Hartmann

Iterative refinement

1.compute an initial alignment

2.modify it

- re-align a single sequence or re-align several sequences
- evaluate the new alignment
- repeat (n times, or until no further improvement is observed)

3.keep the best alignment

slower than purely progressive algorithms

bioinf WS19 . lec6 . S.Hartmann

Progressive alignment algorithm

implemented in the software ClustalW, ClustalX, ClustalO

- optional iterative refinement: groups of sequences are realigned
- position-specific gap penalties
 - increased gap penalties in flanking regions of a gap
 - lower gap penalty in regions already containing a gap
- residue-specific gap penalties
 - increased gap penalties in hydrophobic protein regions
- if alignment score for a sequence is low, it will be added later
- use of four different substitution matrices
- and many more

Clustal Conserved positions

- * positions which have a single, fully conserved residue.
- : one of the following 'strong' groups is fully conserved:

STA NEQK NHQK NDEQ QHRK MILV MILF HY FYW

. one of the following 'weaker' groups is fully conserved:

CSA ATV SAG STNK STPA SGND SNDEQK NDEQHK NEQHRK FVLIM HFY

bioinf WS19 • lec6 • S.Hartmann

Now that you've got a MSA...

- design of PCR-primers
- evolutionary analysis of genes/organisms
- analysis of the alignment, characterization of conserved regions

- amino acid (base) frequency
- physico-chemical properties of amino acids (bases), substitution matrix
- gaps
- evaluation per alignment, per column/region

bioinf WS19 · lec6 · S.Hartmann

Clustal X Colour Scheme

Each residue in the alignment is assigned a colour if the amino acid profile of the alignment at that position meets some minimum criteria specific for the residue type.

The table below gives these criteria as clauses: {+X%,xx,y}, where X is the minimum percentage presence for any of the xx (or y) residue types.

Clustal X Default Colouring		
Residue at position	Applied Colour	{ Threshhold, Residue group }
A,I,L,M,F,W,V	BLUE	{+60%, WLVIMAFCHP}
R,K	RED	{+60%,KR},{+80%,K,R,Q}
N	GREEN	{+50%, N}, {+85%, N,Y}
C	BLUE	{+60%, WLVIMAFCHP}
С	PINK	{100%, C}
Q	GREEN	{+60%,KR},{+50%,QE},{+85%,Q,E,K,R}
Е	MAGENTA	{+60%,KR},{+50%,QE},{+85%,E,Q,D}
D	MAGENTA	{+60%,KR}, {+85%, K,R,Q}, {+50%,ED}
G	ORANGE	{+0%, G}
H,Y	CYAN	{+60%, WLVIMAFCHP}, {+85%, W,Y,A,C,P,Q,F,H,I,L,M,V}
P	YELLOW	{+0%, P}
S,T	GREEN	{+60%, WLVIMAFCHP}, {+50%, TS}, {+85%,S,T}

MSA is a difficult problem!

- •MSA is a hard problem, biologically and computationally
- •no program or parameter set works for all sequence families
- refinement of alignments is often necessary (incl. exclusion of sequences/regions)
- •many different challenges:
 - -degree of sequence identity
 - -insertions, deletions
 - presence of repeats, rearrangements
 - -very long sequences
 - -lots of sequences
 - local or global homology
 - -etc

bioinf WS19 . lec6 . S.Hartmann

Balibase: reference sequence alignments

sets of sequences for which there are

- 3D structures
- corresponding high-quality multiple sequence alignments

Evaluation of new methods • simulated reference alignments • manually curated reference alignments Relivy part of feet of the feet of t

Today's exercise

- 1. the data: seven globin homologs
 - hemoglobin beta: human_b, horse_b
 - hemoglobin alpha: human_a, horse_a
 - lamprey_g
 - myoglobin: whale_m
 - leghemoglobin: lupine_l

- 2. computing a multiple alignment (and guide tree)
 - ClustalW (linux terminal)
- 3. viewing a multiple alignment
 - read and evaluate a MSA (linux terminal, Jalview)

bioinf WS19 • Iec6 • S.Hartmann

Key terms and concepts

- purpose & application of MSAs
- considerations for using BLAST to collect sequences for a MSA
- computing MSA: challenges
- progressive alignment
 - steps
 - profiles
 - advantages, disadvantages
 - iterative refinement
- sum of pairs score
- development & evaluation of new MSA methods