Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №6 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «ИСТОЧНИКИ ТОКА»

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

Содержание

1	Цел	ь работы	2
2	Исо	Исследование токового зеркала с компенсацией теплового дрейфа	
_	2.1	Расчет параметров схемы	2
	2.2	Схема токового зеркала с компенсацией теплового дрейфа	3
	2.3	Зависимость тока через нагрузку от напряжения на нагрузке	3
	2.4	Зависимость тока через нагрузку и тока на токозадающем устройстве	0
	2 -	от напряжения питания	3
	2.5	Ток через нагрузку при различных сопротивлениях нагрузки	4
3	Исследование токового зеркала Уилсона		5
	3.1	Расчет параметров схемы	5
	3.2	Схема токового зеркала Уилсона	6
	3.3	Зависимость тока через нагрузку от напряжения на нагрузке	6
	3.4	Зависимость тока через нагрузку и тока на токозадающем устройстве	
		от напряжения питания	7
	3.5	Ток через нагрузку при различных сопротивлениях нагрузки	7
4	Исследование генератора тока на ОУ		9
	4.1	Расчет параметров схемы	9
	4.2	Схема генератора тока на ОУ	9
	4.3	Зависимость тока через нагрузку от напряжения на нагрузке	9
	4.4	Зависимость тока через нагрузку и тока на токозадающем устройстве	
		от напряжения питания	10
	4.5	Ток через нагрузку при различных сопротивлениях нагрузки	10
	1.0	zam zap za mangany nya pasam man somportasiana narpyotin	-3
5	Вы	вол	12

Цель работы

Цель работы – исследование работы источников тока.

Исследование токового зеркала с компенсацией теплового дрейфа

Расчет параметров схемы

Рассчитаем схему токового зеркала с компенсацией теплового дрейфа. Дан ток нагрузки

$$I_{\rm H} = 250 \; {\rm mA}$$

и следующие формулы

$$I_{k1} \approx \frac{E_{\Pi} - 0.7}{R_1 + R_{21}}, \ I_{H} \approx \frac{R_{21} (E_{\Pi} - 0.7)}{R_1 R_{22} + R_{21} R_{22}};$$

В данном случае $I_{k1}=I_{Q_2},\ R_1$ — токозадающее устройство. Зададим напряжение питания

$$E_{\Pi} = 12 \; \text{B}$$

Кремниевые транзисторы обычно имеют напряжение между базой и и эмиттером

$$U_{\rm E3} = 0.7 \; \rm B$$

Так как токовое зеркало «копирует» ток через транзистор Q2, то ток через нагрузку должен быть равен эталонному току на транзисторе Q2

$$I_{k1} \approx I_{\mathrm{H}} = 250 \; \mathrm{мA}$$

Найдем сумму сопротивлений $R_1 + R_{\mathfrak{s}1}$ через формулу для I_{k1}

$$250 \cdot 10^{-3} = \frac{12 - 0.7}{R_1 + R_{\text{pl}}} \Rightarrow R_1 + R_{\text{pl}} = \frac{11.3}{0.25} = 45.2 \text{ Om}$$

Для уменьшения потерь мощности выберем первый эмиттерный резистор с небольшим номиналом в 10 Ом. Рассчитаем R_1

$$R_{\rm 91} = 10 \text{ Om} \Rightarrow R_1 = 45.2 - 10 = 35.2 \text{ Om}$$

Ближайший стандартный номинал $R_1 \approx 35$ Ом. Рассчитаем сопротивление второго эмиттерного резистора R_{32} через формулу для $I_{\rm H}$

$$250 \cdot 10^{-3} = \frac{10(12 - 0.7)}{35R_{92} + 10R_{92}} \Rightarrow R_{92} = \frac{113}{0.25 \cdot 45} \approx 10.04 \text{ Om}$$

Возьмем ближайший стандартный номинал $R_{92} \approx 10$ Ом. Выберем в качестве Т1 Т2 транзисторов 2N2222 из библиотеки LTspice. Напряжение между коллектором и эмиттером этого транзистора, когда он находится в режиме насыщения, составляет

$$U_{\rm KS (Hac)} \approx 0.2 \; \rm B$$

Тогда, определим сопротивление нагрузочного резистора по формуле

$$R_{\rm H} = \frac{E_{\rm \Pi} - U_{
m K9~(HaC)}}{I_{
m H}} = \frac{12 - 0.2}{250 \cdot 10^{-3}} = \frac{11.8}{0.25} = 47.2 \,\, {
m Om}$$

Ближайший стандартный номинал $R_{\rm H} \approx 47~{\rm Om}$.

Схема токового зеркала с компенсацией теплового дрейфа

Построим в LTspice одноименную схему. R1 – токозадающее устройство. Транзистор Q1 зеркалит ток на Q2 и выдает его на нагрузку

Рис. 1: Схема токового зеркала с компенсацией теплового дрейфа

Зависимость тока через нагрузку от напряжения на нагрузке

Построим график зависимости тока через нагрузку от напряжения на нагрузке. Зададим в источник питания DC 0, поставим на схему .dc Vin 0 14.7 0.01. С помощью net обозначим VH

Рис. 2: Зависимость $I_{\rm H}$ от $U_{\rm H}$

Биполярный транзистор начинает проводить только когда между базой и эмиттером набирается напряжение примерно в 0.6–0.7 В. До этого момента оба транзистора в зеркале закрыты – ток не течет.

Зависимость тока через нагрузку и тока на токозадающем устройстве от напряжения питания

Построим график зависимости тока через нагрузку и тока на токозадающем устройстве от напряжения питания. С помощью net обозначим Vпит. Синяя траектория – зависимость тока через нагрузку от напряжения питания, красная – зависимость тока на токозадающем устройстве от напряжения питания

Рис. 3: Зависимости $I_{\rm H}\left(U_{\rm пит}\right),\ I_{\rm T3}\left(U_{\rm пит}\right)$

Токи равны нулю до напряжения в 0.7 В. В идеале траектории должны были совпасть. $I_{\rm T3~makc}\approx 312$ мA, $I_{\rm H~makc}\approx 251$ мA.

Ток через нагрузку при различных сопротивлениях нагрузки

Построим графики зависимости тока от напряжения питания при различных сопротивлениях нагрузки. Проверим $R_{\rm H}=10,10^2,10^3,10^4$ Ом. Красный график – подаваемое напряжение питания, синий – ток нагрузки

Рис. 4: $I_{\rm H} \, (U_{\rm пит})$ при $R_{\rm H} = 10$ Ом

Рис. 5: $I_{\rm H} \, (U_{\rm пит})$ при $R_{\rm H} = 100 \; {\rm Ом}$

Рис. 6: $I_{\rm H} \left(U_{\rm пит} \right)$ при $R_{\rm H} = 1000~{
m Om}$

Рис. 7: $I_{\rm H} \left(U_{\rm пит} \right)$ при $R_{\rm H} = 10000$ Ом

При увеличении сопротивления нагрузки ток нагрузки уменьшается – токовое зеркало не может создать нужный ток, не хватает напряжения питания.

Исследование токового зеркала Уилсона

Расчет параметров схемы

Рассчитаем схему токового зеркала Уилсона. Дан ток нагрузки

$$I_{\rm H} = 250 \; {\rm mA}$$

и следующие формулы

$$I_{k1} \approx \frac{E_{\Pi} - 1.4}{R_1 + R_{91}}, \ I_{H} \approx \frac{R_{91} (E_{\Pi} - 0.7)}{R_1 R_{92} + R_{91} R_{92}};$$

В данном случае $I_{k1}=I_{Q_1},\ R_1$ — токозадающее устройство. Зададим напряжение питания

$$E_{\Pi} = 12 \; \text{B}$$

Эмиттерное напряжение для кремниевого транзистора

$$U_{\rm B9} = 0.7 \; \rm B$$

Ток через нагрузку $I_{\rm H}$ должен быть равен I_{k1} , так как токовое зеркало копирует ток через транзистор ${\bf Q1}$

$$I_{k1} \approx I_{\mathrm{H}} = 250 \; \mathrm{мA}$$

Найдем сумму $R_1+R_{
m s1}$ из формулы для I_{k1}

$$250 \cdot 10^{-3} = \frac{12 - 1.4}{R_1 + R_{91}} \Rightarrow R_1 + R_{91} = \frac{10.6}{0.25} = 42.4 \text{ Om}$$

Пусть $R_{\rm el} = 10$ Ом, тогда

$$R_1 = 42.4 - 10 = 32.4$$

Возьмем ближайший стандартный номинал $R_1 \approx 33$ Ом. Используя формулу для $I_{\rm H}$, определим $R_{\rm s2}$

$$250 \cdot 10^{-3} = \frac{10(12 - 0.7)}{33R_{92} + 10R_{92}} \Rightarrow R_{92} = \frac{113}{0.25 \cdot 43} \approx 10.51 \text{ Om}$$

Возьмем ближайший стандартный номинал $R_{92}\approx 10$ Ом. В качестве транзисторов Т1 Т2 Т3 выберем 2N2222 из библиотеки LTspice. Аналогично имеем

$$U_{\rm KS~(Hac)} \approx 0.2~{\rm B}$$

Тогда, сопротивление на нагрузке

$$R_{\rm H} = \frac{E_{\Pi} - U_{
m K9~(Hac)}}{I_{
m H}} = \frac{12 - 0.2}{250 \cdot 10^{-3}} = 47.2 \,\, {
m Om}$$

Ближайший стандартный номинал $R_{\rm H} \approx 47~{\rm Om}$.

Схема токового зеркала Уилсона

Построим в LTspice одноименную схему. R1 – токозадающее устройство, Q2 копирует ток Q1. Q3 «компенсирует» базовый ток Q2 и уменьшает ошибку копирования тока

Рис. 8: Схема токового зеркала Уилсона

Зависимость тока через нагрузку от напряжения на нагрузке

Построим график зависимости тока через нагрузку от напряжения на нагрузке. Зададим в источник питания DC 0, поставим на схему .dc Vin 0 15.7 0.01. С помощью net обозначим Vh

Рис. 9: Зависимость $I_{\rm H}$ от $U_{\rm H}$

Имеем два последовательных перехода база-эмиттер, что дает в сумме падение напряжения на 1.4 В. На графике видим, что транзисторы открываются в районе 1.4 В, до этого момента ток нулевой.

Зависимость тока через нагрузку и тока на токозадающем устройстве от напряжения питания

Построим график зависимости тока через нагрузку и тока на токозадающем устройстве от напряжения питания. С помощью net обозначим Vпит. Синяя траектория – зависимость тока через нагрузку от напряжения питания, красная – зависимость тока на токозадающем устройстве от напряжения питания

Рис. 10: Зависимости $I_{\rm H}\left(U_{\rm пит}\right),\ I_{\rm T3}\left(U_{\rm пит}\right)$

До напряжения в 1.4 В транзисторы закрыты, ток нулевой. После они входят в активный режим, ток растет линейно. Максимумы $I_{\rm H~makc}\approx 251$ мА, $I_{\rm T3~makc}\approx 323$ мА. Для достижения $I_{\rm H}=250$ мА потребовалось подать напряжение на 1 В больше, чем в случае с токовым зеркалом с компенсацией теплового дрейфа (больше падение напряжения в цепи).

Ток через нагрузку при различных сопротивлениях нагрузки

Построим графики зависимости тока от напряжения питания при различных сопротивлениях нагрузки. Проверим $R_{\rm H}=10,10^2,10^3,10^4$ Ом. Красный график – подаваемое напряжение питания, синий – ток нагрузки

При увеличении сопротивления нагрузки ток нагрузки уменьшается. В сравнении с токовым зеркалом с компенсацией теплового дрейфа падение тока более заметно. Транзистор быстрее уходит в насыщение и не может поддерживать заданный ток — не хватает напряжения.

Исследование генератора тока на ОУ

Расчет параметров схемы

Дано

$$I_{\mathrm{H}}=250$$
 mA, $I_{\mathrm{H}}pprox rac{U_{\mathrm{bx}}}{R_{\mathrm{1}}};$

 U_{bx} можно рассматривать как опорное напряжение $U_{\mathrm{O\Pi}}$ для эмиттера. Зададим

$$U_{\rm O\Pi} = 0.7 \; {\rm B}$$

Тогда, сопротивление R_1

$$R_1 = \frac{U_{\text{OII}}}{I_{\text{H}}} = \frac{0.7}{0.25} = 2.8 \text{ Om}$$

Определим сопротивление нагрузки при $E_{\Pi}=12~{\rm B},\,U_{{\rm K9~(Hac)}}\approx0.2~{\rm B}$ (транзистор 2N2222)

$$R_{\rm H} = \frac{E_{\Pi} - U_{
m K9~(Hac)}}{I_{
m H}} = \frac{12 - 0.2}{250 \cdot 10^{-3}} = 47.2 \,\, {
m Om}$$

Возьмем ближайший стандартный номинал $R_{\rm H} = 47~{
m Om}.$

Схема генератора тока на ОУ

Построим в LTspice одноименную схему. R1 – токозадающее устройство. ОУ задает на R1 нужное напряжение. Через R1 протекает ток, который через эмиттер транзистора превращается в ток через нагрузку Rн

Рис. 15: Схема генератора тока на ОУ

Зависимость тока через нагрузку от напряжения на нагрузке

Построим график зависимости тока через нагрузку от напряжения на нагрузке. Зададим в источник питания DC 0, поставим на схему .dc Vin 0 15 0.01. С помощью net обозначим Vh

Рис. 16: Зависимость I_{H} от U_{H}

Наблюдаем линейный рост тока до ≈ 0.85 В (транзистору не хватает напряжения насыщения). Далее нелинейный рост до ≈ 1 В (транзистор плавно переходит из активного режима в насыщенный). После 1 В ток фиксируется на значении в ≈ 248 мА.

Зависимость тока через нагрузку и тока на токозадающем устройстве от напряжения питания

Построим график зависимости тока через нагрузку и тока на токозадающем устройстве от напряжения питания. С помощью net обозначим Vпит. Синяя траектория – зависимость тока через нагрузку от напряжения питания, красная – зависимость тока на токозадающем устройстве от напряжения питания

Рис. 17: Зависимости $I_{\rm H}\left(U_{\rm пит}\right),\ I_{\rm T3}\left(U_{\rm пит}\right)$

Ток на R1 растет не с нуля быстрее тока на RH, на $\approx 11~\mathrm{B}$ достигает максимума $I_{\mathrm{T3~Makc}} \approx 250~\mathrm{mA}$. На RH ток достигает максимума $I_{\mathrm{H~makc}} \approx 248~\mathrm{mA}$ после $\approx 12.6~\mathrm{B}$.

Ток через нагрузку при различных сопротивлениях нагрузки

Построим графики зависимости тока от напряжения питания при различных сопротивлениях нагрузки. Проверим $R_{\rm H}=10,10^2,10^3,10^4$ Ом. Красный график – подаваемое напряжение питания, синий – ток нагрузки

Рис. 18: $I_{
m H}\,(U_{
m nut})$ при $R_{
m H}=10$ Ом

При увеличении сопротивления $R_{\rm H}$ ток $I_{\rm H}$ уменьшается — не хватает напряжения. Необходимое напряжение для поддержания 250 мА можно рассчитать следующим образом

$$\begin{split} &U_{\rm H} = R_{\rm H} \times I_{\rm H}, \\ &U_{\rm H,\ 10\ OM} = 10 \times 0.25 = 2.5\ {\rm B}, \\ &U_{\rm H,\ 1000\ OM} = 100 \times 0.25 = 25\ {\rm B}, \\ &U_{\rm H,\ 10000\ OM} = 1000 \times 0.25 = 250\ {\rm B}, \\ &U_{\rm H,\ 10000\ OM} = 10000 \times 0.25 = 2500\ {\rm B}; \end{split}$$

Подаваемое напряжение ограничено 15 B, поэтому уже при $R_{\rm H} \ge 100$ Ом тока в 250 мА достичь не удается. При $R_{\rm H} = 10$ Ом ток фиксируется на 250 мА (см. рис. 18).

Вывод

В ходе выполнения лабораторной работы были рассмотрены различные схемы с транзисторами: токовые зеркала и генератор тока на ОУ. В каждом случае были рассчитаны параметры схемы и промоделированы необходимые графики. Результаты подтверждают корректность расчетов и рассуджений.