

ICKE-VOLATIL LAGRING

Hålkort

Hålremsa

Magnetiskt band

by Author is licensed under BY-SA This Photo by Author is licensed under CC BY-SA This Photo by Author is licensed under CC BY-SA

ASCII kommer från telegraf

Hålremsor blev poppulära för de tillät *telegraf*" utrustning att användas som in- och output enheter.

Hex	Dec	Char																					
00	0	NUL	10	16	DLE	20	32		30	48	0	40	64	@	50	80	Р	60	96	,	70	112	р
01	1	SOH	11	17	DC1	21	33	!	31	49	1	41	65	Α	51	81	Q	61	97	а	71	113	q
02	2	STX	12	18	DC2	22	34	"	32	50	2	42	66	В	52	82	R	62	98	b	72	114	r
03	3	ETX	13	19	DC3	23	35	#	33	51	3	43	67	С	53	83	S	63	99	С	73	115	s
04	4	EOT	14	20	DC4	24	36	\$	34	52	4	44	68	D	54	84	Т	64	100	d	74	116	t
05	5	ENQ	15	21	NAK	25	37	%	35	53	5	45	69	Е	55	85	U	65	101	е	75	117	u
06	6	ACK	16	22	SYN	26	38	&	36	54	6	46	70	F	56	86	٧	66	102	f	76	118	v
07	7	BEL	17	23	ЕТВ	27	39	٠	37	55	7	47	71	G	57	87	W	67	103	g	77	119	w
08	8	BS	18	24	CAN	28	40	(38	56	8	48	72	Н	58	88	Х	68	104	h	78	120	х
09	9	TAB	19	25	EM	29	41)	39	57	9	49	73	ı	59	89	Υ	69	105	i	79	121	у
0A	10	LF	1A	26	SUB	2A	42	*	ЗА	58	:	4A	74	J	5A	90	Z	6A	106	j	7A	122	z
0B	11	VT	1B	27	ESC	2B	43	+	3B	59	;	4B	75	K	5B	91	[6B	107	k	7B	123	{
0C	12	FF	1C	28	FS	2C	44	,	3C	60	<	4C	76	L	5C	92	١	6C	108	ı	7C	124	ı
0D	13	CR	1D	29	GS	2D	45	-	3D	61	=	4D	77	М	5D	93]	6D	109	m	7D	125	}
0E	14	NUL	1E	30	RS	2E	46		3E	62	>	4E	78	N	5E	94	^	6E	110	n	7E	126	~
0F	15	SI	1F	31	US	2F	47	/	3F	63	?	4F	79	0	5F	95	_	6F	111	0	7F	127	

ASCII = 7 bitar

FIGURE 6-1: ASCII character encoding

MAGNETISKA DISKAR

- "hårddiskar" kom inte förrän 1956 (IBM 305 RAMAC)
 - multipla skivor och rörliga huvuden
 - 5 megabyte
 - Vägde ett ton (1000 KG)
- Den moderna hårddisken, 1973 (IBM Winchester)
 - Sluten disk
- Desktop diskar, 1980 (Seagate ST-506)
 - 5 ½ tum
 - 5 MB
 - Kostade 1000 USD (idag 30 000 SEK)

CYLINDER TRACK SECTOR

- En disk innehåller ofta flera skivor staplade på varandra.
- Data lagras på båda sidor av en skiva
- Ett läs/skriv huvud per skiva och sida

Två läs/skriv huvuden

Olika antal sektorer inne och ute på skivan

OPTISKA DISKAR

HÖGSKOLAN VÄST

- CD och DVD skivor
- En etta kodas som ändring
- En nolla som samma som tidigare
- Använder en Reed-Solomon ECC kod

FIGURE 6-7: Optical disk operation

FLASH MINNE

Uppfanns i början av 1980-talet Användes initialt till firmware och BIOS

- flash minnen: SD, MMC, CF
- USB minnen
- inbyggda minnen: *eMMC, UFS*
- diskar: Solid State Drive (SSD)

FLASH CELL

HÖGSKOLAN VÄST

Control

- Finns flera olika tekniker
- går ut på att elektroner lagras i "ex: en floating gate".
- håller laddningen i många år (kanske 100 år)
- Mäter om det finns elektroner eller inte.

• Problem: med tiden fastnar fler och fler elektroner.

SLC, MLC, TLC

- I en SLC mäter man om nivån är max eller 0
- MLC/TLC mäter nivån i flera steg.
- MLC/TLC är känsligare för elektroner som "fastnat"
- MLC lagrar två bitar (motsvarar 2 SLC celler)
- TLC largar tre bitar (motsvara 3 SLC celler)

NAND FLASH

- NAND flash konstruerades för att vara billigt.
- Transistorerna ordnade i strings (32 eller 64 celler)
- Läser eller skriver en "page" åt gången (512-4096 bitar)
- Ett block är vanligtvis mellan 16KB och 256KB

FIGURE 6-12: NAND strings, pages and blocks

ERASE

- Det går inte att skriva till samma page flera gånger.
- Mellan varje skrivning till en page måste den återställas (erase).
- Vid återställning sätts ALLA transistorer i blocket till 1.
- Sedan när en page skrivs sätts alla 0'r or till 0.
- 1:orna finns redan.

- Erase tar tid!
- Hur vet disken att en sida inte används
 - TRIM
 - Write amplification
- Jämna ut slitaget
 - Wear leveling

FIGURE 6-12: NAND strings, pages and blocks

INPUT och OUTPUT

Den första musen var en militär hemlighet.

Input:

En enhet konverterar analoga signaler till digitala (1/0) och skickar dem till datorn.

Output:

Datorn skickar digitala signaler till en enhet som gör någonting.

Seriell vs parallel kommunikation

HÖGSKOLAN VÄST

Seriekommunikation skickas alla signaler efter varandra i samma ledning.

Parallelkommunikation skickas flera signaler samtidigt i var sin ledning.

Seriell vs parallel kommunikation

HÖGSKOLAN VÄST

Seriekommunikation skickas alla signaler efter varandra i samma ledning.

Parallelkommunikation skickas flera signaler samtidigt i var sin ledning.

 0
 0
 0
 0
 1
 1
 1

 0
 0
 0
 0
 1
 1
 0

 0
 0
 0
 0
 0
 1
 0
 1

 0
 0
 0
 0
 0
 1
 0
 0

 0
 0
 0
 0
 0
 0
 1
 0

UNIVERSAL SERIAL BUS

USB har ersatt nästan alla andra externa bussar.

- USB 1.x
 - 1996, 1,5 Mbit/s eller 12 Mbit/s
- USB 2.x
 - **2001, 480 Mbit/s**
- USB 3.x
 - 2008, 5Gbit/s senare 10 Gbit/s
- USB-C
 - 2016, Ny kontakt standard, 20 Gbit/s

USB

USB använder ett stjärn-topologi där edge enheterna kan vara stjärnor i sig.

ATA

- Nu i efterhand ofta refererad till som PATA
- IDE, ATA, Ultra ATA

• Användes för hårddiskar fram till mekaniska hårddiskar med integrerade kontrollerkort (även CD/DVD).

This Photo by Author is licensed under CC BY-SA

Seriell ATA

- Ersatte (P)ATA
- Hastigheter på 2GB/s

INTER-INTEGRATED CIRCUIT 12C HÖGSKOLAN VÄST

- en kommunikationsbuss för inter-kretskorts kommunikation
- används även mellan kort över en kabel

- Stöd finns i BCM283x chippet
- Inte påslaget i Raspberry som standard

RS-232, seriekommunikation

HÖGSKOLAN VÄST

- Förr väldigt vanlig.
- Forfarande mycket utrustning inom industri och annan "utrustning"

Kan göra seriekommunikation med en Raspberry Pi via GPIO.

UART finns i BCM283x

