8.1

Una bobina rigida quadrata di lato a = 2cm, formata da N = 20 spire compatte, e percorsa da una corrente $i_b = 2A$ ed è posta a distanza y da un filo indefinito percorso da una corrente i = 50A.

Calcolare la forza magnetica $\vec{F}(y)$ che agisce sulla bobina dimostrando che per $y \gg a, F = \frac{mdB}{dy}$, se m è il momento magnetico della bobina e B il campo

Calcolare inoltre il lavoro W_1 compiuto dalla forza magnetica per spostare la bobina da $y_1 = 1cm$ e $y_2 = 2cm$ e il lavoro W_2 compiuto dalla forza magnetica per ruotare di 180° la bobina, quando $y=y_4=20cm$.

Formule utilizzate

$$\vec{F} = i \int_{A}^{B} d\vec{j} \wedge \vec{B}$$

Soluzione punto a

il filo percorso da corrente i produce un campo $B = \frac{\mu_0 i}{2\pi r}$ con direzione che sarà uscente al di sopra e entrante al di sotto dell'asse x.

in \vec{PQ} il campo magnetico è pari a $B = \frac{\mu i}{2\pi y}$

in \vec{SR} il campo magnetico è pari a $B = \frac{\vec{\mu} \ i}{2\pi(y+a)}$

in \vec{PS} la forza è opposta a quella di \vec{RQ} quindi la forza risultante è nulla,

poichè:
$$\vec{F_{PS}} = \frac{i^2 \mu_0}{2\pi} \int_P^S \frac{1}{y} dy \\ \vec{F_{RQ}} = \frac{i^2 \mu_0}{2\pi} \int_R^Q \frac{1}{y} dy$$

$$\vec{F_{RQ}} = \frac{i^2 \mu_0}{2\pi} \int_R^Q \frac{1}{y} dy$$

$$\vec{F}(y) = \vec{F_{PQ}} + \vec{F_{RS}} = \frac{\mu_0 \ N \ i \ i_b \ a}{2 \ \pi} \left(\frac{1}{y} - \frac{1}{y+a}\right) \vec{u_y} = \frac{\mu_0 \ N \ i \ i_b \ a^2}{2 \ \pi \ y \ (y+a)} \vec{u_y}$$

La forza ottenuta è repulsiva e questo è corente con $\vec{F} = Ni_b \triangle \phi(\vec{B})$ dove $\phi(\vec{B})$ è il flusso del campo magnetico generato attraverso la bobina.

Se la spira si allontana il glusso di B diventa meno negativo, cioè aumenta. Dato che la bobina percorsa da corrente i_b ha area Na^2 il suo momento magnetico vale:

$$vecm = -N i_b a^2 \vec{u_z}$$

mentre il filo percorso da una corrente i ad una distanza y produce un campo magnetico B che vale:

$$\vec{B} = \frac{\mu_0 \ i}{2\pi y} \vec{u_z}$$

Si nota che:
$$\vec{F} = \nabla(\vec{m} * \vec{B}) = \nabla(mB_z) = m\frac{dB_z}{dy}\vec{u_y}$$

$$F(y) = m\frac{dB}{dy} = -Ni_b a^2 \frac{d}{dy} \left[\frac{\mu_0 \ i}{2\pi y} \right] = \frac{\mu_0 \ N \ i \ i_b \ a^2}{2\pi y^2}$$

$$F(y) = m\frac{dB}{dy} = -Ni_b a^2 \frac{d}{dy} \left[\frac{\mu_0}{2\pi y} \right] = \frac{\mu_0}{2\pi y^2} \frac{N i i_b a^2}{2\pi y^2}$$

$$W_1 = \int_{y_1}^{y_2} F dy = \frac{\mu_0 N i i_b a}{2\pi} \int_{y_1}^{y_2} \left(\frac{1}{y} - \frac{1}{y+a} \right) dy = \frac{\mu_0 N i i_b a}{2\pi} ln \left(\frac{y_2(y_1+a)}{y_1(y_2+a)} \right)$$

Soluzione punto b

$$W_2 = \Delta U_p = U_p(f) - U_p(i) = -m\vec{i} * \vec{B} + m\vec{f} * \vec{B}$$

 $m = iS = ia^2 = mi = mf$