

فريق أوميعًا الأكاديمي يقدم لكم:

اسئلة سنوات فاينل لهادة

علي بن أبي طالب -رضي الله عنه-

Yn Poisson (3)

P(x>30 Y < 2) = ----

- = P P(x>3) P(xx3)
- = (1-p(x53))p(y51)=
- 1001-11008-11 =
- PF0P50 =

Q2:01	Score	0	1	2	3	41	5	total
	8.8	.05	.40	.15	.10	120	.10	
	x; 8;	0	1 .4	1.3	-3	.8	1.5	2.3

60

= Pso ~ n= 70

$$\frac{R_{np} + X_{np+1}}{2} = \frac{X_{35} + X_{36}}{2} = 55$$

ass x= B(1000.4)

a-Var(x)=----

= 100 + -4 + 10 = 5 A

b- β is normally distribud with mean - - and variance - - - -

~ (-420:002)

QX:0 \$ the mean n=50

= N(40 > 100)

p.

@ 720 90th percentile Pgo of the distribution N(20036) --

いましゃ(110)いりのアローラア・ロアロー

= 1.28 + 136 + 20

= 1.28 * 6 + 20

= 27.68

Q8:0

P(4< x < 13) = ----

= P(4-10 < Z < 13-10) = P(4-10 < Z < 13-10)

= .6915 - .1587

= .5328

Q10: 95 v. c.I

error = 3

o' Previous estimated to be 15

the sample size = ----

Qu:- n=100

Contains 30 with anemia

I I we wish to use this sample for testing whether the Proportien pof people with is more than . 20 at

×=0.05

(a) The null and the alternative hypotheses of this test are

(b) test statistic

$$\frac{100}{\sqrt{\frac{100}{100}}} = \frac{.30 - .2}{\sqrt{\frac{.31(.7)}{100}}} = \frac{.1}{0.045} = 2.22$$
we reject H.

(C) we will accept the alternative hypothesis if test . St is grater than ---

II) Using this sample

$$a = 90 \times cJ + 90 \times 9 is$$
 $= 9 \pm 2 \pm \sqrt{\frac{9(1-8)}{m_1}}$
 $= -3 \pm 1.96 \times .04$
 $= .3 \pm 0.0882$

Q13:0 Abinary number is number whose wigits are ether o or 1. The number of possible 6-digit binary number whose third wigits

$$= \frac{1}{(n-r)} \times 2 \times \frac{N}{(n-r)}$$

$$= \frac{2\times 1}{1} \times 2 \times \frac{3\times 2\times 1}{2} = 12$$

$$= \frac{2\times 1}{1} \times 2 \times \frac{3\times 2\times 1}{2} = 12$$

Ques two independent sample
from town normally obstributed with means M., Mi
and equal variances

	Sample1	Sample2
Sample size	m=12	n=6
mean	₹, = 35	X2=5
Variance	2 = 40	Si=Yo

(a) The poded variance 50 of those two samples: ----

$$\frac{45p^{2} = (m-1)5,^{2} + (m-1)5,^{2}}{m+n-2} = \frac{11 \times 90 + 5 \times 40}{16}$$

$$= 74.375$$

(4)

(b) if these two samples are combained to from a new Sample then the mean of the new sample equal ----

new 512e = 450 = 25

new menn = 35 × 12 + 6 × 5 = 450 new 812 = 12 + 6 = 18

Q15: for Paired Sample of 7 pairs = let D= A-B and Suppose that D=3 and SD=2

a ssuming normaly condition salisfied

(a) Give a 90%. C. I for MD (b) use this sample for testing Moro ox =0.05

Q16 20 1et xx B(10000.5) use normal approximation
to binomial distribution to approximate &
P(44< x < 60)

UNIVERSITY OF JORDAN MATH 131 DATE: 23/5/2012

DEPT OF MATH

Final EXAM

TIME 2 hrs

Student Name:	Student Number

Instructor Name: _____Section Number:

Solve all the following questions.

Answers without solution details are not accepted.

Q1) Consider a sample of size $n \neq 100$

that has mean 45 and standard deviation 3.

- X=45 S=
- a) Find the interval that contains at least 96 observations

$$1 - \frac{1}{k^2} = 0.96 \Rightarrow K = 5$$

$$(45 - 5(3) \quad 45 + 5(3))$$

$$(30 - 360)$$

b) Assuming that the data has a bell-shaped frequency curve

Find the approximate number of observations that may be in the interval [42.,54.]

Q2) Let A and B be two events such that $P(A \mid B) =$

$$\frac{1}{4}$$
, P(B | A) = $\frac{2}{3}$ and P(A \cap B) = $\frac{1}{12}$

a) Find P(A).

$$P(A) = \frac{P(BNA)}{P(BIA)} = \frac{1}{712} \cdot \frac{3}{2} = \frac{1}{8}$$

$$P(B) = \frac{P(A \cap B)}{P(A \mid B)} = \frac{1}{12} \cdot 4 = \frac{1}{3}$$

b) Find P(A UB).

$$\frac{1}{8} + \frac{1}{3} - \frac{1}{12}$$
= $(3/8)$ demu

Q3) Let X be discrete random variable with values -1, 0, and 1

Assume that
$$P(X = 1) = \frac{1}{7}$$
 and $E(X) = -\frac{1}{2}$

a) Find $P(X < 1) = \frac{1}{7}$

$$C_1 = \frac{9}{14}$$

$$\begin{pmatrix} c_1 = \frac{q}{14} \\ c_2 = \frac{3}{14} \end{pmatrix}$$

b) Find E(X2).

$$Ex^2 = \frac{9}{14} + \frac{1}{7}$$

= $\frac{11}{14} = 0.7857$

Q4) Let X be a binomial random variable with parameters n =

130 and p =
$$\frac{1}{52}$$
a) Find E(X²).

 $\beta_1 (170, \frac{1}{52})$
 $\beta_2 = \frac{130}{52} = 2.5$

$$\beta_3 7019$$

b) Find Poisson approximation for
$$P(X < 5) = F(Y)$$

When Poisson table, that Find $F(Y)$

Fru $P(2.5)$

0.891

- Q5) Let \overline{X} and S² be sample mean and variance of a sample of size n = 16 from normal distribution with mean μ and variance σ^2
 - a) Find the 97.5th percentile of \overline{X} if you know that $S^2 = 36$

b) Find standard error of $\hat{\mu} = \overline{X}$ if $\sigma^2 = 16$

$$\sqrt{\frac{D}{n}} = 1$$

Q6) Determine the sample size necessary to estimate a proprtion p to within 0.04 with 95.% confidence level

Q7) To test the hypothesis that a coin is fair

(P({head}=P{tail}=1/2)) against the alternative that it is not fair,

toss the coin 122

times and accept the hypothesis if the number of heads X ∈ [58,64]

a) Compute probability of type I error of this test X~B; (122, \frac{1}{2}

b) Compute probability of type = 10,4714 = 70,5286

II error of this test When P({head})= 0.7

$$\beta = \rho\left(\frac{57.5 - 85.4}{V^{25.62}} < 2 < \frac{64.5 - 85.4}{V^{25.62}}\right) \times \mathcal{A} \cdot \mathcal{B}_{i}(122,6.7)$$

$$Ex = 89.4$$

$$\rho\left(-5.51 < 7 < -4.129\right)$$

$$= 0$$

Q8) The following table provides information about two paired samples from bivariate normal distribution with mean vector (μ_1, μ_2)

X | 5 | 6 | 10 | 9 | 8 | 7 Y | 7 | 12 | 9 | 11 | 10 | 8 a) Find point estimate for $\mu_1 - \mu_2$

b) Find 90.% confidence interval for $\mu_1 - \mu_2$

$$\frac{J \pm \frac{S_d}{V_K} t_{0.05,5}}{-2 \pm \frac{2.2804}{V_6} (2.015)}$$

c) At 0.1 level of significance test H_0 $\mu_1 = \mu_2$ against H_1 $\mu_1 < \mu_2$

Q9) The following table provides

information about two independent samples from two independent normal distributions with means μ_1 , μ_2 and variances σ_1^2 , σ_2^2 respectively

	I	II
n	5	7
$\overline{\mathbf{X}}$. 30	28
S ²	3	6

a) Find 99.% confidence interval for μ_1

b) Find 97.5% confidence interval for σ_1^2

c) Find the pooled variance of the two samples

$$S_p^2 = \frac{4(3) + 6(6)}{10} = 4.8$$

d) Find 90.% confidence interval for
$$\mu_1 - \mu_2$$
 $\int_1^{\infty} = \delta_2$ $\left(\frac{1}{\lambda} - \frac{1}{\lambda}\right) + \sqrt{5\rho^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} + \sqrt{1.8 \left(\frac{1}{5} + \frac{1}{4}\right)} = 0.05$, 10

2 $\pm \sqrt{4.8 \left(\frac{1}{5} + \frac{1}{4}\right)} = 0.025$, 10

e) Find 97.5% confidence interval for $\sigma_1^2 / \sigma_2^2 = 0.025$, $\frac{6.23}{6.23}$

Q10) The number of passing and failing male and female students in calculus course are given in the following table

Let p₁ and p₂ be the proportions

of passing males and femailes respectively

	Pass	Fail	2 221
Male	36	64	Pi= 0.36
Female	41	59	P2 = 0.41

a) Find the estimated standard error for the estimator of $p_1 - p_2$

$$\sqrt{\frac{\hat{l}.\hat{g}. + \hat{l}.\hat{g}.}{100}} = \sqrt{\frac{0.36(0.64) + 0.41(0.54)}{100}} = 0.6687$$

b) Find the point estimate for $p_1 - p_2$

c) Find 97.5% confidence interval for $p_1 - p_2$

d) Find the pooled proportion of the two samples

$$P = \frac{36 + 41}{200}$$
= 0.385

0.384

e) Find the rejection region for testing H_0 : $p_1=p_2$ vs. H_1 : $p1\neq p2$, at 0.01 confidence level

f) Find the p-value for the testing problem in (e) above

The University of Jordan Math 131 Final Exam

Mathematic Department

Date: 20/1/2010 Time: 2 hours

Student name:
Student number:
Course section:

Notes: (1) This exam consists of 33 multiple choice questions .

- (2) Carry out all your computations to two decimals.
- (3) Mark or circle the correct answer to each question on the following table :

					II	1			
Question 1	a	b	c	d	Question 17	a	b	c	d
Question 2	a	b	c	d	Question 18	a	b	c	d
Question 3	a	b	c	d	Question 19	a	b	c	d
Question 4	a	b	c	d	Question 20	a	b	c	d
Question 5	a	b	c	d	Question 21	a	b	c	d
Question 6	a	b	c	d	Question 22	a	b	c	d
Question 7	a	b	c	d	Question 23	a	b	c	d
Question 8	a	b	c	d	Question 24	a	b	c	d
Question 9	a	b	c	d	Question 25	A	b	С	d
Question 10	a	b	c	d	Question 26	A	b	c	d
Question 11	a	b	С	d	Question 27	a	b	С	d
Question 12	a	b	С	d	Question 28	a	b	С	d
Question 13	a	b	С	d	Question 29	a	b	С	d
Question 14	a	b	С	d	Question 30	a	b	С	d
Question 15	a	b	С	d	Question 31	a	b	С	d
Question 16	a	b	с	d	Question 32	a	b	c	d
					Question 33	a	b	c	d

*For questions (1) - (4): Te age distribution of a sample of 30 persons is as follows:

Age. class	10 - 14	15 – 19	20 - 24	25 - 29	30 – 34
Frequency	3	7	10	7	3

1) The sample mean \overline{X} is

a) 23

b) 24.5

c) 22

d) 19.5

2) The proportion of observations greater than 24 is:

a) 1/3

b) 2/3

c) 1/4

d) 3/4

3) The 90th percentile is:

a) 27

b) 29.5

c) 28.5

d) 14.5

4) The sample standard deviation S is:

a) 5.63

b) 31.67

c) 5.72

d) 32.76

*For questions (5) –(6):

A and B are two events in a random experiment such that $P(A) = 0.7 P(\overline{B}) = 0.4 P(\overline{A} \cup \overline{B}) = 0.5$

5) $P(A/\overline{B}) =$

a) 1/3

b) 0.5

c) 0.2

d) none

6) $P(A \cup B) =$

a) 0.1

b) 0.9

c) 0.7

d) 0.4

*For questions (7) - (9):

A box contains 10 identical cards numbered -1, -1, -1, 0, 0, 1, 1, 2, 3, 3 A number is drawn randomly from the box. Let X=the number drawn.

7) $P(-1 \le X \le 1) =$

a) 0.5

b) 0.7

c) 0.3

d) 0.2

8) E(2X-1)=

a) 1

b) 0.4

c) 0.7

d) 0

9)Var(1-2X) =

a) 4.42

b) 8.84

c) 2

d) 8

*For questions (10) - (11):

A box contain 4 white balls and 6 black balls. Three balls are drawn together at random.

10) The probability that there are 2 white balls in the 3 balls drawn is :

a) 0.7

b) 0.3

c) 0.288

d) 0.612

11) The expected number of white balls drawn is:

a) 0.4

b) 0.6

c) 1.2

d) 1.6

*For questions (12) – (13):

Let X= the number of heads appearing when a balanced coin is tossed 5 times.

12) P(X>1/X<3)=

a) 0.23

b) 1

c) 0.385

d) 0.624

13)Var X=

a) 1.25

b) 1.118

c) 0.5

d) 0.25

*For question (14):

The number of typing errors X per page of a book is Poisson random variable with mean 2

14) P(X>4)=

a) 0.947

b) 0.053

c) 0.017

d) 0.983

*For questions (15) – (16) :

The following table is the joint probability distribution of X and Y

	13:50	Y		
	.Ω: 3 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	0	1	2
	0	1/12	1/6	1/12
X	1	1/12	1/6	1/12
(a) /	2	1/12	1/6	1/12

15) P(X + Y=1)=

a) 1/2

b) 1/4

c) 1/12

d) 1/6

16) $P(X \le 1/Y = 1) =$

a) 2/3

b) 1/4

c) 1/3

d) 3/4

*For questions (17) – (19) :

Let (X, Y) be a bivariate random variable such that EX=3, EY=5, Var X=4, Var Y=9, Cov(X,Y)=-1

17) Corr(3X-2, 4-2Y) =

a) -1/36

b) 1/6

c) - 1/6

d) 1/36

18) $E(X^2 + 2X + 5) =$

a) 24

b) 15

c) 19

d) 20

19) Var(2X-3Y + 4)=

a) 109

b) 7

c) 85

d) 113

*For questions (20) – (24) :

The grades of an exam are normally distributed with mean 63.6 and variance 25

20) The minimum grade for the top 10% of the grades is

a) 80

b) 90

c) 70

d) 75

a) 0.07 b) 0.736 c) 0.264 d) 0.93 23) Hundred grades are randomly selected, use(binomial n=100 and p=0.1) to find the probability that exactly 10 of these grades are each greater than 70. This probability is: a) 0.4325 b) 0.135 c) 0.5675 d) 0.9108 24) The probability that the average of a sample \overline{X} of 25 grades is less than 65 is: a) 0.0308 b) 0.9192 c) 0.3897 d) 0.6103 *For questions (25) – (26): Two independent random samples of university students (n_A =100 and n_B =150) were randomly selected to compare two teaching methods (A and B). The number of passing and failing students under each method were as follows: Number passing Number failing	22)Ten grades are randomly selected, use(binomial n=10 and p=0.1) to find the probability that at least two of these ten grades are each greater than 70. This probability is:										
find the probability that exactly 10 of these grades are each greater than 70. This probability is: a) 0.4325 b) 0.135 c) 0.5675 d) 0.9108 24) The probability that the average of a sample \overline{X} of 25 grades is less than 65 is: a) 0.0308 b) 0.9192 c) 0.3897 d) 0.6103 *For questions (25) – (26): Two independent random samples of university students (n_A =100 and n_B =150) were randomly selected to compare two teaching methods (A and B). The number of passing and failing students under each method were as follows: Number passing Number failing		•	b	0) 0.736	c) 0.264		d) 0.93				
24) The probability that the average of a sample \overline{X} of 25 grades is less than 65 is: a) 0.0308 b)0.9192 c) 0.3897 d)0.6103 *For questions (25) – (26): Two independent random samples of university students (n_A =100 and n_B =150) were randomly selected to compare two teaching methods (A and B). The number of passing and failing students under each method were as follows:		find the probability		<u> </u>			<u> </u>				
a) 0.0308 b) 0.9192 c) 0.3897 d) 0.6103 *For questions (25) – (26): Two independent random samples of university students (n_A =100 and n_B =150) were randomly selected to compare two teaching methods (A and B). The number of passing and failing students under each method were as follows: Number passing Number failing			b	0)0.135	c) 0.5675		d) 0.9108				
Two independent random samples of university students (n_A =100 and n_B =150) were randomly selected to compare two teaching methods (A and B). The number of passing and failing students under each method were as follows: Number passing Number failing		a) 0.0308 b)0.9192 c) 0.3897 d)0.6103									
Method A6337Method B1073425)A 98% CI for the passing percentage of method A p_A is a) $(0.625, 0.635)$ b) $(0.52, 0.74)$ c) $(0.28, 0.46)$ d) $(0.367, 0.373)$ 26) For testing if there is a difference (i.e. $p_{A \neq} p_B$) in proportion of passing under the methods A and B, the value of the Z test statistics is : a) -1.88 b) 2.58 c) -11.83 d) -1.33 *For questions (27) $-$ (30) :		Two independent random samples of university students (n_A =100 and n_B =150) were randomly selected to compare two teaching methods (A and B). The number									
Method B		2003000		Number pass	sing	Numb	er failing				
25)A 98% CI for the passing percentage of method A p_A is a) $(0.625, 0.635)$ b) $(0.52, 0.74)$ c) $(0.28, 0.46)$ d) $(0.367, 0.373)$ 26) For testing if there is a difference (i.e. $p_{A} \neq p_B$) in proportion of passing under the methods A and B, the value of the Z test statistics is: a) -1.88 b) 2.58 c) -11.83 d) -1.33 *For questions $(27) - (30)$: The lifetime (age) in hours of two independent random samples of two types of batteries (I, II) gave the following data Battery type Sample size Sample mean Sample standard deviation I 9 90 3 II 10 80 4 Let μ_1, μ_2 be the respective population means of the two batteries, and let σ_1, σ_2 be the respective population standard deviations. 27) A 98% CI for μ_1 is: a) $(87.1, 92.9)$ b) $(86.18, 92.82)$ c) $(93.03, 90.97)$ d) $(6.1, 11.9)$	4										
a) $(0.625, 0.635)$ b) $(0.52, 0.74)$ c) $(0.28, 0.46)$ d) $(0.367, 0.373)$ 26) For testing if there is a difference (i.e. $p_{A\neq}p_B$) in proportion of passing under the methods A and B, the value of the Z test statistics is: a) -1.88 b) 2.58 c) -11.83 d) -1.33 *For questions $(27) - (30)$: The lifetime (age) in hours of two independent random samples of two types of batteries (I, II) gave the following data Battery type Sample size Sample mean Sample standard deviation I 9 90 3 II 10 80 4 Let μ_1, μ_2 be the respective population means of the two batteries, and let σ_1, σ_2 be the respective population standard deviations. 27) A 98% CI for μ_1 is: a) $(87.1, 92.9)$ b) $(86.18, 92.82)$ c) $(93.03, 90.97)$ d) $(6.1, 11.9)$ 28) A 98% CI for σ_1 is: a) $(1.09, 17.86)$ b) $(3.28, 53.57)$		Method B		107		34					
Battery type Sample size Sample mean deviation I 9 90 3 II 10 80 4		a) $(0.625, 0.635)$ b) $(0.52, 0.74)$ c) $(0.28, 0.46)$ b) $(0.367, 0.373)$ 26) For testing if there is a difference (i.e. $p_{A\neq} p_B$) in proportion of passing under the methods A and B, the value of the Z test statistics is: a) -1.88 b) 2.58 c) -11.83 d) -1.33 *For questions $(27) - (30)$: The lifetime (age) in hours of two independent random samples of two types of									
II 10 80 4 Let μ_1, μ_2 be the respective population means of the two batteries, and let σ_1, σ_2 be the respective population standard deviations. 27) A 98% CI for μ_1 is: a) (87.1, 92.9) b) (86.18, 92.82) c) (93.03, 90.97) d) (6.1, 11.9) 28) A 98% CI for σ_1 is: a) (1.09, 17.86) b) (3.28, 53.57)		Battery type	Sa	mple size	Sample mean		-				
Let μ_1 , μ_2 be the respective population means of the two batteries, and let σ_1 , σ_2 be the respective population standard deviations. 27) A 98% CI for μ_1 is: a) (87.1, 92.9) b) (86.18, 92.82) c) (93.03, 90.97) d) (6.1, 11.9) 28) A 98% CI for σ_1 is: a) (1.09, 17.86) b) (3.28, 53.57)							3				
be the respective population standard deviations. 27) A 98% CI for μ_1 is : a) (87.1, 92.9) b) (86.18, 92.82) c) (93.03, 90.97) d) (6.1, 11.9) 28) A 98% CI for σ_1 is : a) (1.09, 17.86) b) (3.28, 53.57)		II	10		80		4				
	Let μ_1, μ_2 be the respective population means of the two batteries, and let σ_1, σ_2 be the respective population standard deviations. 27) A 98% CI for μ_1 is: a) (87.1, 92.9) b) (86.18, 92.82) c) (93.03, 90.97) b) (86.18, 92.82) d) (6.1, 11.9) 28) A 98% CI for σ_1 is: a) (1.09, 17.86) b) (3.28, 53.57)										

21) The proportion p of grades greater than 70 is

b) 0.9

c) 0.95

d) 0.1

a) 0.05

29) A 95% CI for $\mu_1 - \mu_2$ is:

a) (-2.34, 22.34)

b) (8.42, 11.58)

c) (4.37, 15.63)

d) (6.54, 13.46)

30) For testing $H_0: {\sigma_1}^2 = {\sigma_2}^2$ vs. $H_1: {\sigma_1}^2 \neq {\sigma_2}^2$ at α =0.10, we accept H_0 if the statistic ${S_1}^2/{S_2}^2$ belongs to the interval

a) (0.39, 2.47)

b) (0.29, 3.23)

c) (0.31, 3.45)

d) (0.40, 2.56)

*For question (31):

A researcher wants to determine if a certain medicine reduces blood pressure (BP) of patients. He conducted an experiment and data were as follows:

Patient	1	2	3	4	5	6	Mean	Standard
Number								deviation
Bp before (X)	70	80	76	74	68	84	75.33	6.02
Bp after (Y)	68	72	58	74	72	74	69.67	5.59
d=X-Y	2	8	18	0	-4	10	5.67	7.25

31) A 99% CI for the mean BP reduction is:

a) (-7.4. 18.74)

b) (1.22, 10.12)

c) (-6.26, 17.6)

d) (-5.24, 16.58)

*For question 32:

It is desired to estimate the population proportion p of defective items by a 96% CI.

32) The sample size needed so that the 96% CI has length 0.15 (i.e. error of estimation=0.075) is:

a) 136

b) 34

c) 187

d) 47

*For question (33):

It is desired to test H_0 : μ =50 vs. H_1 : μ >50 using the sample mean \overline{X} of a large sample of 100 observation

33) If the value of the Z test statistics is 1.36, the P-value of this test is:

a)0.4131

b) 0.1738

c) 0.2066

d) 0.0869

END OF EXAM