MATH 320/321 (Real Analysis) Notes

Rio Weil

This document was typeset on May 10, 2021

Introduction

This set of notes is transcribed from UBC's MATH 320/321 (Real Variables I/II) sequence. The course covers the first 9 chapters of Rudin's "Principles of Mathematical Analysis" with occasional omissions & additions. The numbering of the definitions/theorems/examples will follow that used in Rudin to make following along with the textbook convenient. The structure of these notes is such that it is split into the main text (the boxed elements) and side text (everything else). It is possible to read just the main text for the main ideas without loss of continuity, but the additional discussion that the side text provides will no doubt prove to be useful to any student of analysis.

Contents

1	The Real and Complex Number Systems 1.1 The Naturals, Integers, and Rationals	2 2
2	Basic Topology	4
3	Numerical Sequences and Series	4
4	Continuity	4
5	Differentiation	4
6	The Riemann-Stieltjes Integral	4
7	Sequences and Series of Functions	4
8	Some Special Functions	4
9	Functions of Several Variables	4

1 The Real and Complex Number Systems

1.1 The Naturals, Integers, and Rationals

We begin by a review of number systems which are already familiar.

Definition: The Natural Numbers

The **Naturals**, denoted by \mathbb{N} , is the set $\{1, 2, 3, \ldots\}$.

For $x, y \in \mathbb{N}$, we have that $x + y \in \mathbb{N}$ and $xy \in \mathbb{N}$, so the naturals are closed under addition and multiplication. However, we note that it is not closed under subtraction; take for example $2 - 4 = -2 \notin \mathbb{N}$.

Definition: The Integers

The **Integers**, denoted by \mathbb{Z} , is the set $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$.

The integers are closed under addition, multiplication, and subtraction. However, it is not closed under division; for example, $1/2 \notin \mathbb{Z}$.

Definition: The Rationals (informal)

The **Rationals**, denoted by \mathbb{Q} , can be defined as $\left\{\frac{m}{n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$, where $\frac{m_1}{n_1}$ and $\frac{m_2}{n_2}$ are identified if $m_1n_2 = m_2n_1$.

We note that unlike the naturals/integers, the rationals do not have as obvious of a denumeration. This above is a good definition if we already have the same rigorous idea of what a rational number is in our mind; i.e. it works because we have a shared preconceived understanding of a rational number.

If this is not the case, it may help to define the rational numbers more rigorously/formally (even if the definition may be slightly harder to parse). As a second attempt at a definition, we can say that \mathbb{Q} is the set of ordered pairs $\{(m,n): m \in \mathbb{Z}, n \in \mathbb{N}\}$. However, this is not quite enough as we need a notion of equivalence between two rational numbers (e.g. (1,2)=(2,4)). Hence, a complete and rigorous definition would be:

Definition: The Rationals (formal)

The **Rationals**, denoted by \mathbb{Q} , is the set $\{(m,n): m \in \mathbb{Z}, n \in \mathbb{N}\} / \sim \text{ where } (m_1,n_1) \sim (m_2,n_2) \text{ if } m_1n_2 = m_2n_1.$

Under the formal definition, the rationals are a set of equivalence classes of ordered pairs, under the equivalence relation \sim . We note that the rationals are closed under addition, subtraction, multiplication, and division.

This formal definition might be slightly harder to parse, so it might be useful to consider an example with a similar flavour. Consider the set $X = \{m \in \mathbb{Z}\} / \sim$ such that $m_1 \sim m_2$ if $m_1 - m_2$ is divisible by 12. This is "clock arithmetic", with equivalence classes $[0], [1], [2], \ldots$ for each hour on an analog clock. A fun side note: If instead of 12 we picked a prime number, we would get a field (we will discuss what this is in a later lecture)!

Note that under this definition, (1,2) and (2,4) are different representations of the same rational number. With this definition, we would define addition such that $(m_1, n_1) + (m_2, n_2) = (m_1 n_2 + m_2 n_1, n_1 n_2)$. Note that $(2m_1, 2n_2) + (m_2, n_2) = (2m_1 n_2 + 2m_2 n_1, 2n_1 n_2)$ and we can identify $(m_1 n_2 + m_2 n_1, n_1 n_2)$ with $(2m_1 n_2 + 2m_2 n_1, 2n_1 n_2)$. If we choose different representations when we do addition, we might get a different representation in our result, but it will represent the same rational number regardless of the choice of representations we originally chose to do the addition.

A natural question then becomes if the rationals are sufficient for doing all of real analysis. Certainly, it seems as we have a number system that is closed under all our basic arithmetic operations; but is this enough? For example, are we able to take limits just using the rationals? The answer turns out to be no (they are insufficient!) and the following example will serve as one illustration of this fact.

Example 1.1: Incompleteness of the Rationals

- (a) There exists no $p \in \mathbb{Q}$ such that $p^2 = 2$.
- (b) Let $A = \{p \in \mathbb{Q} : p > 0, p^2 < 2\}$, and $B = \{p \in \mathbb{Q} : p > 0, p^2 > 2\}$. Then, $\forall p \in A, \exists q \in A \text{ such that } p < q, \text{ and } \forall p \in B, \exists q \in B \text{ such that } q < p.$

For (a), we proceed via proof by contradiction. Recall in that these types of proof, we start with a certain wrong assumption, follow a correct/true line of reasoning, reach an eventual absurdity, and therefore conclude that the original assumption was mistaken.

Proof

(a) Let us then suppose for the contradiction that there exists $p = \frac{m}{n}$ with $p^2 = 2$. We then have that not both m, n are even, and hence at least one is odd. Then, we have that $2 = p^2 = \frac{m^2}{n^2}$ and hence $m^2 = 2n^2$, so m^2 is even, implying m is even. So, let us write m = 2k for $k \in \mathbb{Z}$. Then, $(2k)^2 = 4k^2 = 2n^2$, and hence $2k^2 = n^2$. Therefore, n^2 is even and hence n is even. m and n are therefore both even, a contradiction. We conclude that no such p exists.

Why can we conclude that not both m, n are even in the above proof? This is the case as if m, n we both even, then we could write m = 2m', n = 2n' for some m', n', and then $p = \frac{m}{n} = \frac{2m'}{2n'} = \frac{m'}{n'}$ which we can continue until either the numerator or denominator is odd. A natural question to consider is how to prove that this process of reducing fractions will eventually conclude. The resolution is to invoke the fundamental theorem of arithmetic, and write m, n in terms of their unique prime factorization. We are then able to cancel out factors of 2 from the numerator/denominator until at least one is odd.

We note that the example of part (a) leads us to conclude that the rationals have certain "holes" in them. For the proof of part (b), we consider playin ga 2 person game. One person is \forall , one person is \exists , and we consider if one person has a winning strategy. \forall goes first, and then \exists goes next, having seen the choice that \forall has made. Then, we check if indeed p < q. If p < q, then \exists wins. If $p \not< q$, then \forall wins.

- 2 Basic Topology
- 3 Numerical Sequences and Series
- 4 Continuity
- 5 Differentiation
- 6 The Riemann-Stieltjes Integral
- 7 Sequences and Series of Functions
- 8 Some Special Functions
- 9 Functions of Several Variables