Homework #1 (Due date: 2/21/2025)

1. Below is an algorithm for Bounded Buffer problem. Fill in the table of the values of semaphores. (2.5 points)

Shared data semaphore full, empty, mutex; Initially: full = 0, empty = n, mutex = 1 Producer process: do {

produce an item in nextp

wait(empty); wait(mutex);

add nextp to buffer

signal(mutex);
signal(full);
} while (1);

Consumer process:

do {

wait(full)
wait(mutex);

remove an item from buffer to nextc

signal(mutex);
signal(empty);

consume the item in nextc

} while (1);

events	mutex	full	empty
produce 1 item	1-10-11	0-31	2 -1 0-1
produce 1 item	1-10-1	1-12	n-1 -> n-2
produce 1 item	1-10-11	2-)3	n-1 -> n-3
consume 1 item	1-10-1	3-32	v-3 → v-T
consume I item	1-10-21	2-1	n-2->n-1
produce 1 item	1-0-1	1-32	0-1-10-
consume 1 item	1-0-1	2-11	
Consume 1 nem	1-0-1	1-10	V-7 -> V-
		7	V-1 ->

eventa	mutex	full	empty
Doduce liter	1-10-11	0 -> 1	3-12
puduce litem	1-10-11	1-> 2	2> 1
produce 1 item	1-10-11	2-13	1-10
ansume litem	1-10-11	3 -> 2	0-31
Consume likem	1-30-1	2->1	1-52
produce litem	1-10-11	1-32	2 -> 1
annume litem	1-30-31	2> 1	1 -> 2
consume litem	1-0-1	1->0	2 -> 3

2. Below is an algorithm for Readers-Writers problem. Fill in the table of the values of semaphores or variables. (2.5 points)

```
Shared data
semaphore mutex, db;
Initially
mutex = 1, db = 1, readcount = 0
```

Writer process:

wait(db);

writing is performed

signal(db);

Reader process:

event	mutex =1	db = 1	readcount = °
	1. 12 to 12 11 11 11 11 11 11 11 11 11 11 11 11		
a writer comes		1-0	0
a reader comes	1 -> 0	0 -> -1	0
a writer has done	0->1	-1 -> 0	1
a reader comes	1-0-1	0	1-> 2
a reader comes	1-0-1	0	2 -> 3
a writer comes	1	0 -> -1	3
a reader has done	1-0-1	-1	
a reader has done	1-0-1	-1	$3 \rightarrow 2$
a reader has done	,		2-11
a writer comes	1-0-1	-1-10	1-0
	1	0-1-1	0

3. Consider the following set of processes, with length of the Burst Time given in milliseconds:

(5 points) Process	Arrival Time	Burst Time	Priority
P1	0.0	7	2
P2	2.0	4	1
P3	4.0	1	3
P4	5.0	4	2

1) Draw Gantt charts with ready queues if applicable, that using FCFS, SJF, Priority (a smaller priority number implies a higher priority), and RR (quantum = 1), with non-preemptive for all the algorithms applicable.

2) Repeat 1) with preemptive for the applicable algorithms only.

*** Y **

Round Robin (RR):

Gantt chort

P1 P1 P2 P1 P2 P3 P1 P4 P2 P1 P4 P2 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4

Redy Que :

VI K. 82 K. 82 83 81 M X M M 82 81 84 M DG

3) What is the <u>Turnaround time</u> of each process for each of the scheduling algorithms in 1) and RR in 2)?

	FCFS	SJF	Priority	RR
Pl	7-0=7	F=0-F	7-0=7	RR 15-0=15
P2	11-2 = 9	13 - 3 = 10	11 - 2 = 9	12 - 2 = 10
Р3	12 -4 = 8	8-4=4	16-4=12	(-4=1
P4	16-5-11	16-5-11	15-5=10	16-5=11

4) What is the Waiting time of each process for each of the scheduling algorithms in 1) and RR in 2).

FCFS		SJF	Priority	RR
P1	7-7=0	7-7=0	7-7=0	15-7=8
P2	9-4=5	10-4=6	9-4=5	10-4-6
P3	2-1=7	4-1-3	12-1=11	2-1=1
P4	11-4=7	11 ► Y = 7	10-4=6	11 - 4 = 7

5) Which of the schedules in 1) and RR in 2) results in the minimal average waiting time over all processes? Show your judgments and calculations.

rcrs	SJF	Filolity	N.K
0+++++	0+ (+3+7	047+11+6	8+6+1+7
4	4	4	4
= 4.7ms	= 4 ms	= 5.7ms	= 5.5ms

Time

Conclusion | Judgement: SJF has the lowest overge waiting time.