Soit $A_n[X]$ le sous ensemble de $\mathbb{R}_n[X]$ dont tous les coefficients sont dans $\{0,1\}$.

- 1. Combien y-a-t-il d'éléments dans $A_n[X]$?
- 2. Combien y-a-t-il d'éléments dans $A_n[X]$ de degré n? On muni $A_n[X]$ de la probabilité uniforme.
- 3. On choisit un polynôme P aléatoirement dans $A_n[X]$, quelle est la probabilité que P soit de degré n?
- 4. On choisit un polynôme P aléatoirement dans $A_n[X]$, quelle est la probabilité que P admette 0 comme racine?
- 5. Quelle est la probabilité que P admette 0 comme racine simple (mais pas double)?
- 6. Quelle est la probabilité que P admette 0 comme racine double sachant que 0 est racine?
- 7. On modélise un polynôme $\sum_{k=0}^{n} a_k X^k$ de degré n par une liste Python de longueur n+1, dont les éléments sont donnés par a_0, \dots, a_n dans cette ordre.
 - (a) Donner la liste correspondant au polynôme $P = X^3 + X + 1$
 - (b) Ecrire une fonction polynôme qui prend en argument le degré n et qui retourne une liste correspondant à un polynôme de $A_n[X]$ dont les coefficients sont pris aléatoirement dans $\{0,1\}$.
 - (c) Créer une fonction degre qui prend en argument une liste (représentant un polynôme) et qui retourne son degré.
 - (d) Créer une fonction racine qui prend en argument une liste (représentant un polynôme) et qui vérifie si 0 est racine ou ne l'est pas.