LECTURE NOTES

MATHEMATICS FOR MACHINE LEARNING

This version: October 27, 2025

Latest version: github.com/felipe-tobar/Maths-for-ML

Felipe Tobar Department of Mathematics Imperial College London

f.tobar@imperial.ac.uk
www.ma.ic.ac.uk/~ft410

Contents

1	Introduction	•
	Optimisation 2.1 Terminology	1
	Continuous unconstrained optimisation 3.1 Optimality Conditions	
	3.2 Convex optimisation	•

1 Introduction

MISSING

2 Optimisation

NB: in this chapter, we follow (Murphy, 2022).

Optimisation is central to ML, since models are *trained* by minimising a loss function (or optimising a reward function). In general, model design involves the definition of a training objective, that is, a function that denotes how good a model is. This training objective is a function of the training data and a model, the latter usually represented by its parameters. The best model is is the chosen by optimising this function.

Example: Linear regression (LR)

In the LR setting, we aim to determine the function

$$f: \mathbb{R}^M \to \mathbb{R}$$

 $x \mapsto f(x) = a^\top x + b, \quad a \in \mathbb{R}^M, b \in \mathbb{R}$ (2.1)

conditional to a set of observations

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N \subset \mathbb{R}^M \times \mathbb{R}. \tag{2.2}$$

Using least squares, the function f is chosen via minimisation of the sum of the square differences between observations $\{y_i\}_{i=1}^N$ and predictions $\{f(x_i)\}_{i=1}^N$. That is, we aim to minimise he loss:

$$J(\mathcal{D}, f) = \sum_{i=1}^{N} (y_i - f(x_i))^2 = \sum_{i=1}^{N} (y_i - a^{\top} x_i - b)^2.$$
 (2.3)

[TODO: Generate figure: Check fig 1 ML lecture notes]

Example: Logistic regression

Here, we aim to determine the function

$$f: \mathbb{R}^M \to \mathbb{R}$$
$$x \mapsto f(x) = \frac{1}{1 + e^{-\theta^\top x + b}}, \quad \theta \in \mathbb{R}^M, b \in \mathbb{R}$$
 (2.4)

conditional to the observations

$$\mathcal{D} = \{(x_i, c_i)\}_{i=1}^N \subset \mathbb{R}^M \times \{0, 1\}.$$
(2.5)

The standard loss function for the classification problem is the cross entropy, given by:

$$J(\mathcal{D}, f) = -\frac{1}{N} \sum_{i=1}^{N} \left(c_i \log f(x_i) + (1 - c_i) \log(1 - f(x_i)) \right)$$
 (2.6)

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\log(1 + e^{-\theta^{\top} x + b}) - y_i(-\theta^{\top} x + b) \right)$$
 (2.7)

Example: Clustering (K-means)

Given a set of observations

$$\mathcal{D} = \{x_i\}_{i=1}^N \subset \mathbb{R}^M, \tag{2.8}$$

we aim to find cluster centres (or prototypes) $\mu_1, \mu_2, \dots, \mu_K$ and assignment variables $\{r_{ik}\}_{i,k=1}^{N,K}$, to minimise the following loss

$$J(\mathcal{D}, f) = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} ||x_i - \mu_k||^2$$
(2.9)

(2.10)

[TODO: Generate figure]

2.1 Terminology

We denote an optimisation problem as follows:

$$\min_{x \in \mathcal{X}} f(x) \quad \text{s.t.} \quad g_i(x) \le 0, \ h_j(x) = 0, \ i = 1, \dots, I, \ j = 1, \dots, J.$$
 (2.11)

We describe the components of this statement in detail:

- Objective function: The function $f: \mathcal{X} \to \mathbb{R}$ is the quantity to be minimised, with respect to x.
- Optimisation variable: Minimising f requires fining the value of x such that f(x) is minimum. This is also written as

$$x_{\star} = \underset{x \in \mathcal{X}}{\arg \min} f(x) \text{ s.t. } g_i(x) \le 0, \ h_j(x) = 0.$$
 (2.12)

- Restrictions: These are denoted by the functions g_i and h_i above, which describe the requirements for the optimiser in the form of equalities and inequalities, respectively.
- Feasible region: This is the subset of the domain that complies with the restrictions, that is

$$C = \{x \in \mathcal{X}, \text{ s.t. } g_i(x) \le 0, h_j(x) = 0, i = 1, \dots, I, j = 1, \dots, J\}$$
 (2.13)

• Local / global optima. Values for the optimisation variable that solve the optimisation problem wither locally or globally. More formally:

$$x_{\star}$$
 is a local optima $\iff \exists \lambda > 0$ s.t. $x_{\star} = \underset{x \in \mathcal{X}}{\arg \min} f(x)$. (2.14)

$$x_{\star}$$
 is a global optima $\iff x_{\star} = \underset{x \in \mathcal{X}}{\operatorname{arg \, min}} f(x).$ (2.15)

Interplay between constrains and local/global optima

[TODO: generate figure, how different restrictions change the number and type of optima]

Example: XXX

[TODO: Show a few parametric functions and indicate their (closed-form) minima]

3 Continuous unconstrained optimisation

We will ignore constrains in this section, and we will focus on problems of the form

$$\theta \in \operatorname*{arg\,min}_{\theta \in \Theta} L(\theta). \tag{3.1}$$

We emphasise that if θ_{\star} satisfies the above, then

$$\forall \theta \in \Theta, \ L(\theta_{\star}) \le L(\theta), \tag{3.2}$$

meaning that it is a **global** optimum. However, as this might be very hard to find, we are also interested in local optima, that is, θ_{\star} such that

$$\exists \delta > 0 \ \forall \theta \in \Theta \text{ s.t. } \|\theta - \theta_{\star}\| < \delta \Rightarrow L(\theta_{\star}) \le L(\theta). \tag{3.3}$$

3.1 Optimality Conditions

Assumption 3.1. The loss function L is twice differentiable.

Denoting $g(\theta) = \nabla_{\theta} L(\theta)$ and $H(\theta) = \nabla_{\theta}^2 L(\theta)$, we can state the following optimality conditions.

- First order necessary condition: If θ_{\star} is a local minimum, then
 - $\nabla_{\theta} L(\theta_{\star}) = 0$
- Second order necessary condition: If θ_{\star} is a local minimum, then
 - $\nabla_{\theta} L(\theta_{\star}) = 0$
 - $-\nabla^2_{\theta}L(\theta_{\star})$ is positive semidefinite
- Second order sufficient condition: If θ_{\star} is a local minimum if and only if
 - $\nabla_{\theta} L(\theta_{\star}) = 0$
 - $-\nabla^2_{\theta}L(\theta_{\star})$ is positive definite

Example: different stationary points

Let us consider the function

$$f \colon \mathbb{R}^2 \to \mathbb{R}$$
$$x \mapsto f(x) = (p-1)x^2 + (p+1)y^2, \quad p \in \mathbb{R}$$
 (3.4)

Observe that

$$\nabla f = \begin{bmatrix} 2(p-1)x\\ 2(p+1)y \end{bmatrix},\tag{3.5}$$

meaning that the only stationary points is (x, y) = (0, 0). Furthermore,

$$\nabla^2 f = \begin{bmatrix} 2(p-1) & 0\\ 0 & 2(p+1) \end{bmatrix},\tag{3.6}$$

where we have 3 possible cases:

- p > 1: The stationary point is a minimum
- -1 : The stationary point is a saddle point
- p < -1: The stationary point is a maximum

[TODO: generate figure for all three cases, discuss case |p| = 1]

3.2 Convex optimisation

This setting is defined by having a convex objective function and a convex feasible region. Critically, in the setting of convex optimisation a local minimum (according to the first/second order conditions presented above) is a global minimum. We next formally provide the relevant definitions.

Definition 3.1 (Convex set). S is a convex set if $\forall x, x' \in S$, we have:

$$\lambda x + (1 - \lambda)x' \in \mathcal{S}, \quad \forall \lambda \in [0, 1].$$
 (3.7)

[TODO: Generate figures for convex and non-convex sets]

Definition 3.2 (Epigraph of a function). The epigraph of a function $f: \mathcal{X} \to \mathbb{R}$ is the set defined by the region above the graph of the function, that is,

$$\operatorname{epi}(f) = \{ (x, t) \in \mathcal{X} \times \mathbb{R} \mid f(x) \le t \}. \tag{3.8}$$

Definition 3.3 (Convex function). f is a convex function if its epigraph is convex. Equivalently, f is convex is it is supported on a convex set and $\forall x, x' \in \mathcal{X}$

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x'), \quad \forall \lambda \in [0, 1]. \tag{3.9}$$

Furthermore, is the inequality is strict, we say that the function is **strictly convex**.

Example: Convex functions (in 1D)

The following are convex function from \mathbb{R} to \mathbb{R} :

- $f(x) = x^2$
- $f(x) = e^{ax}, a \in \mathbb{R}$
- $f(x) = -\log x$
- $f(x) = x^a, a > 1, x > 0$
- $f(x) = |x|^a, a > 1$
- $\bullet \ f(x) = x \log x, \, x > 0$

We now review some important results in convex optimisation

Proposition 3.1. Consider $f: \mathcal{X} \subset \mathbb{R} \to \mathbb{R}$ differentiable. We have that if $f'(x) \geq 0 \, \forall x \in \mathbb{R}$, f is non-decreasing

Proof. By the fundamental theorem of calculus, we have that for $a, b \in \mathbb{R}, a < b$,

$$f(b) - f(a) = \int_{a}^{b} f'(x)dx,$$
 (3.10)

since $f'(x) \ge 0, \forall x \in [a, b]$, we have $\int_a^b f'(x)dx \ge 0$, therefore $f(b) \ge f(a)$, which means that f is non-decreasing.

Proposition 3.2. Consider $f: \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$ differentiable. The direction of maximum growth of f at x_0 is along its gradient $\nabla f(x_0)$

Proof. Let us consider $x' = x_0 + \rho u$, where $u \in \mathcal{X}, ||u|| = 1$, and $\rho > 0$ is a small constant. We find the maximum growth direction by maximising $f(x') - f(x_0)$ with respect to u. We consider the Taylor expansion

$$f(x') = f(x_0) + \nabla f(x_0)\rho u + \mathcal{O}(\rho^2),$$
 (3.11)

and thus conclude that $f(x') - f(x_0) \simeq \nabla f(x_0) \rho u$, meaning that the maximum growth can be achieved by choosing u parallel to $\nabla f(x_0)$. That is, $\nabla f(x_0)$ is the direction of maximum growth for f at x_0 .

Teorema 3.1. Suppose $f: \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$ twice differentiable, then f is convex if and only if ∇^2 is positive semi definite.

Proof. We consider d = 1. Using the FTC,

$$f'(b) - f'(a) = \int_{a}^{b} f''(x)dx \ge 0,$$
(3.12)

which implies that f' is non-decreasing. Therefore (using FTC again),

$$f(b) - f(a) = \int_{a}^{b} f'(x)dx \ge (b - a)f'(a), \tag{3.13}$$

equivalently,

$$f(b) \ge f(a)'(b-a)f'(a),$$
 (3.14)

meaning that the function f is always above its tangent. Evaluating (3.14) for (a, z) and (b, z), where z = (1 - t)a + tb, we have

$$f(z) > f(a) + (z - a)f'(a)$$
 (3.15)

$$f(z) \ge f(b) + (z - b)f'(b). \tag{3.16}$$

Then, multiplying the above equations by (1-t) and t respectively and summing them, we obtain:

$$f(z) \ge (1-t)f(a) + tf(b) + (1-t)(tb-ta)f'(a) + t[(1-t)a - (1-t)b]f'(b)$$
(3.17)

$$= (1-t)f(a) + tf(b) + (1-t)t(b-a)[f'(a) - f'(b)]$$
(3.18)

$$> (1-t)f(a) + tf(b)$$
 (3.19)

8

Example: Explore some functions

 $[TODO:\ Choose\ some\ functions,\ compute\ the\ derivative\ and\ Hessian,\ analyse\ them]$

References

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press. Retrieved from probml.ai