Graph Neural Network

Sang Hoon Han

Department of AISW

Dongguk University

Contents

- Introduction
 - CNN(Convolution Neural Network)
 - Graph Data Structure
- GNN(Graph Neural Network)
 - Graph Convolution Network
 - Graph Attention Network
 - Transformer
- ◆ Conclusion

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

CNN(Convolution Neural Network)

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

8

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

- CNN(Convolution Neural Network)
 - Want to see "Globally" -> GO DEEPER!!!

* Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

- GNN(Graph Neural Network)
 - CNN의 목적을 Graph Data Structure 에 적용

^{*} Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.

◆ Graph Data Structure

3D Mesh

Molecular Graph

Graph Data Structure

◆ Graph Data Structure

◆ Graph Data Structure

$$_{26}C_2 = 325$$

 $2^{325} =$ 683,516,000,00 0,000,000,000,000 0,000,000,000,000 0,000,000,000,000 0,000,000,000,000 0,000,000,000 0,000,000,000

- Graph Data Structure
 - "Anything can be a graph, when we consider it as a graph"

Graph Neural Network

- ◆ Tasks
 - Node focused task
 - Node classification
 - Link prediction
 - Feature Prediction
 - Graph focused task

Principle

- Principle
 - Ex) Consider updating Node#1
 - 4 Nodes
 - 5 Features for each node

Adjacency Matrix A (4 x 4)

1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1

Feature Matrix X (4 x 5)

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_{1}^{(l+1)} = \sigma \left(H_{1}^{(l)} \mathbf{W}^{(l)} + H_{2}^{(l)} \mathbf{W}^{(l)} + H_{3}^{(l)} \mathbf{W}^{(l)} + H_{4}^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_{1}^{(l+1)} = \sigma \left(H_{1}^{(l)} \mathbf{W}^{(l)} + H_{2}^{(l)} \mathbf{W}^{(l)} + H_{3}^{(l)} \mathbf{W}^{(l)} + H_{4}^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \mathbf{W}^{(l)} + H_2^{(l)} \mathbf{W}^{(l)} + H_3^{(l)} \mathbf{W}^{(l)} + H_4^{(l)} \mathbf{W}^{(l)} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#1

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} \boldsymbol{W^{(l)}} + H_2^{(l)} \boldsymbol{W^{(l)}} + H_3^{(l)} \boldsymbol{W^{(l)}} + H_4^{(l)} \boldsymbol{W^{(l)}} + b^{(l)} \right)$$

- Principle
 - Ex) Consider updating Node#2

Adjacency Matrix A (4 x 4)

1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1

- Principle
 - Ex) Consider updating Node#2

- Principle
 - Ex) Consider updating Node#2

- Principle
 - Ex) Consider updating Node#2

- Limitation
 - Initial Specific Graph 에 국한된다

- Limitation
 - Edge들의 가중치는 학습하지 못함
 - 다른 노드의 정보를 가지고 오냐 오지 않는냐 (이진법)

Adjacency Matrix A (4 x 4)

	100.00		
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1

◆ Edge의 가중치를 학습

◆ Edge의 가중치를 학습

- ◆ General Graph를 사용가능
 - Fully Connected

- Principle
 - Transformer의 Encoder 구조를 따름
 - Adjacency Matrix : 다른(이웃) 노드와 내(노드)가 얼마나 유사한가를 측정해서 기록

- Principle
 - Ex) Intial Specific Graph가 주어졌을 때

Adjacency Matrix e₁₁

- Principle
 - Ex) Intial Specific Graph가 주어졌을 때

Adjacency Matrix

<i>e</i> ₁₁	<i>e</i> ₁₂		

- Principle
 - Ex) Intial Specific Graph가 주어졌을 때

Adjacency Matrix

e ₁₁	<i>e</i> ₁₂	<i>e</i> ₁₄	

- Principle
 - Ex) Intial Specific Graph가 주어졌을 때

- ◆ General Graph를 사용가능
 - Fully Connected

Adjacency Matrix

a ₁₁	a ₁₂	0	a ₁₄	0
a ₂₁	a ₂₂	a ₂₃	0	a ₂₅
0	a ₃₂	a ₃₃	a ₃₄	a ₃₅
a ₄₁	0	a ₄₃	a_{44}	a_{45}
0	a ₅₂	a ₅₃	a ₅₄	a ₅₅

- Principle
 - Ex) Intial Specific Graph가 주어졌을 때

- Principle
 - Transformer의 Encoder 구조를 따름

Matmul(Query, Key)

- Principle
 - Transformer의 개념을 사용

- Principle
 - Transformer의 개념을 사용

Value

- Principle
 - <mark>Multi-Head 사용</mark>

Principle

Mathematical Expression

$$z_i^{(l)} = W^{(l)} h_i^{(l)}, (1)$$

$$e_{ij}^{(l)} = \text{LeakyReLU}(\vec{a}^{(l)^T}(z_i^{(l)}||z_j^{(l)})),$$
 (2)

$$\alpha_{ij}^{(l)} = \frac{\exp(e_{ij}^{(l)})}{\sum_{k \in \mathcal{N}(i)} \exp(e_{ik}^{(l)})},\tag{3}$$

$$h_i^{(l+1)} = \sigma\left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij}^{(l)} z_j^{(l)}\right),\tag{4}$$

$$\text{concatenation}: h_i^{(l+1)} = ||_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij}^k W^k h_j^{(l)} \right)$$

$$\text{average}: h_i^{(l+1)} = \sigma\left(\frac{1}{K}\sum_{k=1}^K \sum_{j \in \mathcal{N}(i)} \alpha_{ij}^k W^k h_j^{(l)}\right)$$

Conclusion

- ◆ GCN, GAT
 - CNN과 목적은 동일
 - 주위의 중요한 노드 정보들을 종합하여, 모든 노드들이 해당 정보를 조금씩 내재하게 함으로써, 더 "Global" 하게 볼 수 있게 만들어 주는 역할을 한다.

Thank You

