Problem 11

Ha Vu Anh

Let M,N be the midpoint of EF,SR. Denote J as the center of $(\Omega_2).$

Let KE, KF, KS, KR cut (O) at E', F', S', R'; E'F' cut S'R' at W, EF cut SR at T. Since K is the exsimilicenter of (Ω_1) and (Ω_2) we get K, W, T are collinear.

Since $\angle E'AK = \angle E'F'K = \angle EFK = \angle AEE'$ we get $E'A^2 = E'E \cdot E'K$ which is equivalent to E' lies on the radical axis of (A,0) and (Ω_2) .

Similarly, we can prove that F' lies on the the radical axis of (A,0) and (Ω_2) , therefore E'F' is the radical axis of (A,0) and (Ω_2) .

therefore E'F' pass through the midpoint of AE, AF therefore E'F' is the perpendicular bisector of AM. and similarly S'R' is the perpendicular of BN therefore W is the intersection of perpendicular bisector of AM and BN(1).

Since $JM \cdot JA = JN \cdot JB = R(\Omega_2)^2$ we get AMNB are cyclic.

Combine this with (1), we get A, M, N, B lies on a circle with center W which we will denote as (Ω_3) .

Let AA', BB' be the diameter of (Ω_3) we get A', B' lies on EF, SR respectively. Let U be the intersection of AN and BM.

Applying Pascal theorem for: $\begin{pmatrix} A & M & B' \\ B & N & A' \end{pmatrix}$ we get T, U, W are collinear therefore K, W, T, U are collinear.

Let AN, BM cut (ASR), (BEF) at X, Y respectively we get $MA \cdot MJ = ME \cdot MF = MB \cdot MY$ therefore AYJB is cyclic and similarly AXJB is cyclic therefore $\angle AYB = \angle AJB = \angle AXB$ therefore AYXB is cyclic therefore $Pow(U, (ASR)) = UA \cdot UX = UB \cdot UY = Pow(U, (BEF))$ therefore U lies on the radical axis of (ASR) and (BEF).

Also $TS \cdot TR = TE \cdot TF$ therefore T also lies on the radical axis of (ASR) and (BEF).

Therefore T, U lie on the radical axis of (ASR) and (BEF) and T, U, K are collinear we get K lies on the radical axis of (ASR) and (BEF), which is PQ, as desired.

Therefore, the problem is proved.