Série 4

L'exercice 1 sera discuté pendant le cours du lundi 17 octobre. L'exercice $3\ (\star)$ peut être rendu le jeudi 20 octobre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a) Déterminer si les énoncés proposés sont vrais ou faux.		
• Il existe un anneau $(A, +, \cdot)$ tel que A contient un seul élément.		
	🔾 vrai	O faux
• Il existe un corps $(K, +, \cdot)$ tel que K contient un seul élément.		
	\bigcirc vrai	O faux
• Dans l'anneau des polynômes $A[t]$, les polynômes de degré pair zéro forment un sous-anneau.	r avec le p	olynôme
	🔾 vrai	O faux
• Dans l'anneau des polynômes $A[t]$, les polynômes de degré in nôme zéro forment un sous-anneau.	npair avec	e le poly-
	🔾 vrai	O faux
• Soit $D = \{z \in \mathbb{C} z = 1\}$. Alors (D, \cdot) et $(SO(2), \cdot)$ sont isomorphes.		
	🔾 vrai	O faux
• Pour chaque $z \in \mathbb{C}$ il existe $k \in \mathbb{N}$ tel que $z^k \in \mathbb{R}$.		
	🔾 vrai	O faux
(b) Déterminer les énoncés corrects.		
1. Supposons que $a^2 = a$ pour tous les éléments a d'un anneau A . Lesquelles des assertions suivantes sont correctes?		
$\bigcirc a^3 = a$, pour tout a .		
○ L'anneau est commutatif.		
$\bigcirc a^3 = 0$, pour tout a .		
2. Combien de solutions a l'équation $z^{-1} = z$ dans \mathbb{C} ?		
\bigcirc 0.		
\bigcirc 1.		
\bigcirc 2.		
$\bigcirc \infty$.		
3. Combien de solutions a l'équation $z^{-1} = \bar{z}$ dans \mathbb{C} ?		
\bigcirc 0.		
\bigcirc 1.		

- \bigcirc 2.
- $\bigcirc \infty$.
- 4. Combien de solutions a l'équation $\exp(z) = -1$ dans \mathbb{C} ?
 - \bigcirc 0.
 - \bigcirc 1.
 - $\bigcirc \infty$.
- 5. Combien de solutions a l'équation $\exp(z) = -1 + i \operatorname{dans} \mathbb{C}$?
 - \bigcirc 0.
 - O 1.
 - $\bigcirc \infty$.

Exercice 2

Montrer que $(M_{n\times n}(K), +, \cdot)$, n > 1, est un anneau non-commutatif, où K est un corps, + l'addition matricelle et \cdot la multiplication matricelle.

Remarque: Vous pouvez utiliser le matériel déjà montré dans le polycopié et les exercices. Par exemple, il ne faut pas montrer que $(M_{n\times n}(K), +)$ est un groupe abélien.

Exercice 3 (*)

Montrer que $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ n'est pas un anneau, où les opérations \oplus et \odot sont définies par

$$a\oplus b=\min\{a,b\},\quad a\odot b=a+b,\quad a,b\in\mathbb{R}\cup\{\infty\}.$$

En testant tous les axiomes, déterminer lesquels sont satisfaits et lesquels ne le sont pas.

Exercice 4

Montrer que l'ensemble A[t] avec les opérations + et \cdot , définies dans le cours, est un anneau. Montrer de plus que si A est un anneau commutatif, alors A[t] est aussi un anneau commutatif.

Exercice 5

a) Soient u = -2 + i, v = 2 + 3i et w = 7 - 11i. Calculer

$$u+v, \qquad u+\bar{v}+w, \qquad u\cdot v, \qquad v\cdot w\cdot \mathrm{i}, \qquad \frac{w}{v}, \qquad \frac{v}{u}.$$

b) Pour chacun des nombres complexes suivants, déterminer la partie réelle, la partie imaginaire, le module et l'argument :

$$\sqrt{5} + 2i$$
, $(3+3i)^9$, $\frac{5-i}{3+2i}$, $\left(\frac{-1}{i}\right)^{57}$.

2

Exercice 6

On considère le sous-ensemble $H = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}; a, b \in \mathbb{C} \right\} \text{ de } M_{2 \times 2}(\mathbb{C}).$

- i) Montrer que $(H, +, \cdot)$ est un sous-anneau de $(M_{2\times 2}(\mathbb{C}), +, \cdot)$, où + et \cdot sont l'addition et la multiplication usuelle des matrices.
- ii) Montrer que tous les éléments de $H \setminus \{0\}$ sont inversibles pour la multiplication. Est-ce que $(H,+,\cdot)$ est un corps?
- iii) (**optionnel**) Construire un isomorphisme entre $(H, +, \cdot)$ et un sous-anneau de $(M_{4\times 4}(\mathbb{R}), +, \cdot)$.

Indice: Pour l'inverse d'un élément non nul de H, on a une formule similaire (mais pas identique) à l'inverse d'une matrice réelle 2×2 inversible.

 $NB : L'ensemble H muni des opérations + et \cdot s'appelle l'ensemble des quaternions.$

Exercice 7

Soit $G = \{a, b, c, x, y, z\}$ et $\circ : G \times G \to G$ une loi de composition donnée par la table de Cayley (incomplète)

Par exemple, si y est dans la ligne c et la colonne b, cela signifie que $c \circ b = y$. Tous les éléments de G apparaissent au plus une fois dans chaque ligne et dans chaque colonne (la règle du Sudoku).

Compléter la table afin que (G, \circ) soit un groupe, c-à-d vérifier

- la stabilité de G,
- l'associativité de 0,
- l'existence de l'élément neutre,
- l'inversibilité.

Remarque: Vous pouvez compléter la table de sorte à ce que les 4 points ci-dessus soient vérifiés. Vous n'avez alors pas besoin à la fin de vérifier si, par exemple, l'associativité est satisfaite pour toutes les paires d'éléments de G.