PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees

Pandian Raju¹, Rohan Kadekodi¹, Vijay Chidambaram^{1,2}, Ittai Abraham²

¹The University of Texas at Austin

²VMware Research

- Insertions:
- Point lookups:
- Range Queries:

- Insertions: put(key, value)
- Point lookups:
- Range Queries:

- Insertions: put(key, value)
- Point lookups: get(key)
- Range Queries:

- Insertions: put(key, value)
- Point lookups: get(key)
- Range Queries: get_range(key1, key2)

Key-Value Stores - widely used

- Google's BigTable powers Search, Analytics, Maps and Gmail
- Facebook's RocksDB is used as storage engine in production systems of many companies

Write-optimized data structures

- Log Structured Merge Tree (LSM) is a write-optimized data structure used in key-value stores
- Provides high write throughput with good read throughput, but suffers high write amplification

Write-optimized data structures

- Log Structured Merge Tree (LSM) is a write-optimized data structure used in key-value stores
- Provides high write throughput with good read throughput, but suffers high write amplification
- Write amplification Ratio of amount of write IO to amount of user data

If total write I/O is 200 GB

Write amplification = 20

Write amplification in LSM based KV stores

- Inserted 500M key-value pairs
- Key: 16 bytes, Value: 128 bytes
- Total user data: ~45 GB

Write amplification in LSM based KV stores

- Inserted 500M key-value pairs
- Key: 16 bytes, Value: 128 bytes
- Total user data: ~45 GB

Why is write amplification bad?

- Reduces the write throughput
- Flash devices wear out after limited write cycles

(Intel SSD DC P4600 – can last ~5 years assuming ~5 TB write per day)

RocksDB can write ~500 GB of user data per day to a SSD to last 1.25 years

PebblesDB

High performance write-optimized key-value store

Built using new data structure Fragmented Log-Structured Merge Tree

Achieves 3-6.7x higher write throughput and 2.4-3x lesser write amplification compared to RocksDB

Gets the highest write throughput and least write amplification as a backend store to MongoDB

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

Data is stored both in memory and storage

Writes are directly put to memory

In-memory data is periodically written as files to storage (sequential I/O)

Files on storage are logically arranged in different levels

Compaction pushes data to higher numbered levels

Files are sorted and have non-overlapping key ranges

Level 0 can have files with overlapping (but sorted) key ranges

Write amplification: Illustration

Figure 2: LSM Compaction. The figure shows sstables being inserted and compacted over time in a LSM.

Root cause of write amplification

Rewriting data to the same level multiple times

To maintain sorted non-overlapping files in each level

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

Naïve approach to reduce write amplification

- Just append the file to the end of next level
- Many (possibly all) overlapping files within a level

(all files have overlapping key ranges)

Affects the read performance

Partially sorted levels

- Hybrid between all non-overlapping files and all overlapping files
- Inspired from Skip-List data structure
- Concrete boundaries (guards) to group together overlapping files

(files of same color can have overlapping key ranges)

Fragmented Log-Structured Merge Tree

Novel modification of LSM data structure

Uses guards to maintain partially sorted levels

Writes data only once per level in most cases

FLSM structure

Note how files are logically grouped within guards

FLSM structure

Guards get more fine grained deeper into the tree

Max files in level 0 is configured to be 2

Compacting level 0

Fragmented files are just appended to next level

Guard 15 in Level 1 is to be compacted

Files are combined, sorted and fragmented

Fragmented files are just appended to next level

FLSM doesn't re-write data to the same level in most cases

How does FLSM maintain read performance?

FLSM maintains partially sorted levels to efficiently reduce the search space

Selecting Guards

- Guards are chosen randomly and dynamically
- Dependent on the distribution of data

Operations: Write

FLSM structure

FLSM structure

Search level by level starting from memory

All level 0 files need to be searched

Level 1: File under guard 15 is searched

Level 2: Both the files under guard 15 are searched

High write throughput in FLSM

- Compaction from memory to level 0 is stalled
- Writes to memory is also stalled

If rate of insertion is higher than rate of compaction, write throughput depends on the rate of compaction

High write throughput in FLSM

- Compaction from memory to level 0 is stalled
- Writes to memory is also stalled

FLSM has faster compaction because of lesser I/O and hence higher write throughput

If rate of insertion is higher than rate of compaction, write throughput depends on the rate of compaction

Challenges in FLSM

- Every read/range query operation needs to examine multiple files per level
- For example, if every guard has 5 files, read latency is increased by 5x (assuming no cache hits)

Trade-off between write I/O and read performance

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

PebblesDB

- Built by modifying HyperLevelDB (±9100 LOC) to use FLSM
- HyperLevelDB, built over LevelDB, to provide improved parallelism and compaction
- API compatible with LevelDB, but not with RocksDB

- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter

- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter

- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter

- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter

PebblesDB reads same number of files as any LSM based store

- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter
- Range query performance is improved using parallel threads and better compaction

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

Evaluation

Micro-benchmarks

Real world workloads - YCSB

Crash recovery

Small dataset

Low memory

CPU and memory usage

NoSQL applications

Aged file system

Evaluation

Micro-benchmarks

Real world workloads - YCSB

Crash recovery

Small dataset

ow memory

CPU and memory usage

NoSQL applications

Aged file system

- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load A - 100 % writes

Run A - 50% reads, 50% writes

Run B - 95% reads, 5% writes

Run C - 100% reads

Run D - 95% reads (latest), 5% writes

Load E - 100% writes

Run E - 95% range queries, 5% writes

- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load A - 100 % writes

Run A - 50% reads, 50% writes

Run B - 95% reads, 5% writes

Run C - 100% reads

Run D - 95% reads (latest), 5% writes

Load E - 100% writes

Run E - 95% range queries, 5% writes

- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load A - 100 % writes

Run A - 50% reads, 50% writes

Run B - 95% reads, 5% writes

Run C - 100% reads

Run D - 95% reads (latest), 5% writes

Load E - 100% writes

Run E - 95% range queries, 5% writes

- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load A - 100 % writes

Run A - 50% reads, 50% writes

Run B - 95% reads, 5% writes

Run C - 100% reads

Run D - 95% reads (latest), 5% writes

Load E - 100% writes

Run E - 95% range queries, 5% writes

- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load A - 100 % writes

Run A - 50% reads, 50% writes

Run B - 95% reads, 5% writes

Run C - 100% reads

Run D - 95% reads (latest), 5% writes

Load E - 100% writes

Run E - 95% range queries, 5% writes

- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

PebblesDB combines low write IO of WiredTiger with high performance of RocksDB

Load A - 100 % writes Run D - 95% reads (latest), 5% writes

Run A - 50% reads, 50% writes Load E - 100% writes

Run B - 95% reads, 5% writes Run E - 95% range queries, 5% writes

Run C - 100% reads Run F - 50% reads, 50% read-modify-writes

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

Conclusion

- PebblesDB: key-value store built on Fragmented Log-Structured Merge Trees
 - Increases write throughput and reduces write IO at the same time
 - Obtains 6X the write throughput of RocksDB
- As key-value stores become more widely used, there have been several attempts to optimize them
- PebblesDB combines algorithmic innovation (the FLSM data structure) with careful systems building

https://github.com/utsaslab/pebblesdb

https://github.com/utsaslab/pebblesdb

Backup slides

- Seek(target): Returns the smallest key in the database which is >= target
- Used for range queries (for example, return all entries between 5 and 18)

```
Level 0 - 1, 2, 100, 1000
```

Get(1)

Level 1 – 1, 5, 10, 2000

Level 2 - 5, 300, 500

- Seek(target): Returns the smallest key in the database which is >= target
- Used for range queries (for example, return all entries between 5 and 18)

```
Level 0 - 1, 2, 100, 1000
```

Level 1 – 1, 5, 10, 2000

Level 2 - 5, 300, 500

Seek(200)

- Seek(target): Returns the smallest key in the database which is >= target
- Used for range queries (for example, return all entries between 5 and 18)

FLSM structure

All levels and memtable need to be searched

- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set

- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set

- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set

- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set

PebblesDB reads at most one file per guard with high probability

- Challenge with seeks: Multiple sstable reads per level
- Parallel seeks: Parallel threads to seek() on files in a guard

- Challenge with seeks: Multiple sstable reads per level
- Parallel seeks: Parallel threads to seek() on files in a guard
- Seek based compaction: Triggers compaction for a level during a seek-heavy workload
 - · Reduce the average number of sstables per guard
 - Reduce the number of active levels

Seek based compaction increases write I/O but as a trade-off to improve seek performance

Tuning PebblesDB

- PebblesDB characteristics like
 - Increase in write throughput,
 - decrease in write amplification and
 - overhead of read/seek operation all depend on one parameter, maxFilesPerGuard (default 2 in PebblesDB)
- Setting this to a very high value favors write throughput
- Setting this to a very low value favors read throughput

Experimental setup

- Intel Xeon 2.8 GHz processor
- 16 GB RAM
- Running Ubuntu 16.04 LTS with the Linux 4.4 kernel
- Software RAID0 over 2 Intel 750 SSDs (1.2 TB each)
- Datasets in experiments 3x bigger than DRAM size

Write amplification

Inserted different number of keys with key size 16 bytes and value size
 128 bytes

Micro-benchmarks

- Used db_bench tool that ships with LevelDB
- Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB
- Number of read/seek operations: 10M

Micro-benchmarks

- Used db_bench tool that ships with LevelDB
- Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB
- Number of read/seek operations: 10M

Small cached dataset

- Insert 1M key-value pairs with 16 bytes key and 1 KB value
- Total data set (~1 GB) fits within memory
- PebblesDB-1: with maximum one file per guard

Aged FS and KV store

- File system aging: Fill up 89% of the file system
- KV store aging: Insert 50M, delete 20M and update 20M key-value pairs in random order

Low memory micro-benchmark

- 100M key-value pairs with 1KB (~65 GB data set)
- DRAM was limited to 4 GB

NoSQL stores - HyperDex

- HyperDex distributed key-value store from Cornell
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load A - 100 % writes

Run A - 50% reads, 50% writes

Run B - 95% reads, 5% writes

Run C - 100% reads

Run D - 95% reads (latest), 5% writes

Load E - 100% writes

Run E - 95% range queries, 5% writes

Run F - 50% reads, 50% read-modify-writes

CPU usage

- Median CPU usage by inserting 30M keys and reading 10M keys
- PebblesDB: ~171%
- Other key-value stores: 98-110%
- Due to aggressive compaction, more CPU operations due to merging multiple files in a guard

Memory usage

- 100M records (16 bytes key, 1 KB value) 106 GB data set
 - 300 MB memory space
 - 0.3% of data set size

Bloom filter calculation cost

- 1.2 sec per GB of sstable
- 3200 files 52 GB 62 seconds

Impact of different optimizations

- Sstable level bloom filter improve read performance by 63%
- PebblesDB without optimizations for seek 66%

Thank you!

Questions?