

Transmission Mediums & Multiplexing

A/PROF. DUY NGO

Fundamental Issues in Transmission Media

- Information bearing capacity
 - >Amplitude response & bandwidth
 - ➤ Dependence on distance
 - Susceptibility to noise & interference
 - ► Error rates & SNRs
- Propagation speed of signal
 - $ightharpoonup c = 3 \times 10^8 \text{ meters/second in vacuum}$
 - $c_e = c/v \epsilon$ speed of light in medium where $\epsilon > 1$ is the dielectric constant of the medium
 - $rac{}{} c_e$ = 2.3 x 10⁸ m/sec in copper wire; c_e = 2.0 x 10⁸ m/sec in optical fiber

Communications systems & Electromagnetic Spectrum

> Frequency of communications signals

Wireless & Wired Media

Wireless media

- Signal energy propagates in space, limited directionality
- Interference possible, so spectrum regulated
- >Limited bandwidth
- ➤ Simple infrastructure: antennas & transmitters
- ➤ No physical connection between network & user
- >Users can move

Wired media

- ➤ Signal energy contained & guided within medium
- Spectrum can be re-used in separate media (wires or cables), more scalable
- Extremely high bandwidth
- Complex infrastructure: ducts, conduits, poles, right-of-way

Attenuation/Loss

- Attenuation varies with media
 - Dependence on distance of central importance
- Wired media has exponential dependence
 - ➤ Received power at *d* meters proportional to 10-kd
 - \triangleright Attenuation in decibel dB = k*d, where k is dB/meter
- ➤ Wireless media has logarithmic dependence
 - ➤ Received power at *d* meters proportional to *d*-*n*
 - \triangleright Attenuation in dB = $n \log d$, where n is path loss exponent; n=2 in free space
 - ➤ Signal level maintained for much longer distances
 - ➤ Space communications possible

Twisted Pair

- ➤ Twisted pair
- Two insulated copper wires arranged in a regular spiral pattern to minimize interference
- ➤ Various thicknesses, e.g. 0.016 inch (24 gauge)
- >Low cost
- Telephone subscriber loop from customer to a switch or a node
- Intra-building telephone from wiring closet to desktop
- Twisted pair with coil loading has transmission bandwidth from 0 to 3.5 kHz with typical delay of 50 μs/km

Twisted Pair for Data Transmission

- Electronic industries association published standard ANSI/EIA/TIA-568 commercial building telecommunications cabling standard which specifies the use of voice and data grade UTP (unshielded twisted pair) and F/S/UTP (foil/shielded)
- Several cabling standard exists for the industry:
 - ➤ ANSI/TIA-568-c.0 generic telecommunications cabling for customer premises
 - > ANSI/TIA-56-c.1 commercial building telecommunications cabling standard
 - > ANSI/TIA-56-c.2 balanced twisted pair telecommunications cabling and components standard
 - > ANSI/TIA-568-c.3 optical fibre cabling components standard
- Since 2000 twisted pair categories have started to make significant impact on data communications
- Cat 5, 6, 7 cables have gradually emerged with increasing data rates and lower losses

ANSI: American National Standards Institute, EIA: Electronic Industries Alliance, TIA: Telecommunications Industries Alliance

Twisted Pair Categories and Classes

Parameters	Cat5- Class D	Cat 6 – Class E	Cat 6A – Class E _A	Cat 7 Class F	Cat 7 _A Class F _A
Bandwidth	100 MHz	250 MHz	500 MHz	600 MHz	1 GHz
Cable type	UTP	UTP/FTP	UTP/FTP	S/FTP	S/FTP
Data rate	1 Gbps	1 Gbps	10 Gbps	10 Gbps	>10 Gbps
Insertion loss (dB)	24	21.3	20.9	20.8	20.3
NEXT loss (dB)	30.1	39.9	39.9	62.9	65
ACR	6.1	18.6	19	42.1	44.1
Applications	Ethernet	Ethernet	Ethernet	Ethernet	Ethernet+CA TV

UTP: Unshielded Twisted Pair, STP: Shielded Twisted Pair, FTP: Foil Shielded Twisted Pair

Twisted Pair: Losses

▶Insertion loss: this loss refers to attenuation caused by the medium. This loss limits the transmission distance, where P_t and P_r are the transmitted and received power respectively.

$$A_{dB} = 10log_{10} \frac{P_t}{P_r}$$

NEXT (near-end crosstalk): this loss applies to twisted pair wiring systems coupling of the signal from one pair of conductors to another pair. This figure shows how a transmitted signal is interfered by a received signal when the ports are close to each other, P_c is the coupling power

$$NEXT_{dB} = 10log_{10} \frac{P_t}{P_c}$$

- **ACR** (attenuation-to-crosstalk): $ACR_{dB} = NEXT_{dB} A_{dB}$
- ►ACR is a measure of how much larger the received signal strength is compared to crosstalk on the same pair

Coaxial Cable

- ➤Twisted pair
- Cylindrical braided outer conductor surrounds insulated inner wire conductor
- ➤ High interference immunity
- ➤ Higher bandwidth than twisted pair
- >Hundreds of MHz
- ➤ Cable TV distribution
- Long distance telephone transmission
- ➤ Original Ethernet LAN medium

Optical Fiber

- Light sources (lasers, LEDs) generate pulses of light that are transmitted on optical fiber
 - Very long distances (>1000 km)
 - Very high speeds (>40 Gbps/wavelength)
 - ➤ Nearly error-free (BER (Bit Error Rate) of 10⁻¹⁵)
- Profound influence on network architecture
 - Dominates long distance transmission
 - Distance less of a cost factor in communications
 - > Plentiful bandwidth for new services
 - > Transmission bandwidth= $f_1 f_2 = \frac{c}{\lambda_1} \frac{c}{\lambda_2}$

Transmission in Optical Fiber

- ➤ Very fine glass cylindrical core surrounded by concentric layer of glass (cladding)
- Core has higher index of refraction than cladding
- \triangleright Light rays incident at less than critical angle θ_c is completely reflected back into the core

Optical Fiber Loss

https://www.thorlabs.com

Multiplexing

- Transmission resources of a communication system is one of the most expensive component of a system
- Transmission links generally can accommodate a large number of baseband signals but those signals needs to be separated by using a multiplexing technique
- Five physical parameters can be utilised to implement multiplexing functionalities on a transmission link
- Multiplexing techniques used on transmission links are:
 - Frequency Division Multiplexing (FDM)
 - ➤ Time Division Multiplexing (TDM)
 - Code Division Multiplexing (CDM)
 - Space Division Multiplexing (SDM)
 - Wavelength Division Multiplexing (WDM)
 - ➤ Orthogonal Frequency Division Multiplexing (OFDM)

Multiplexing

- Multiplexing involves the sharing of a transmission channel (resource) by several connections or information flows
 - ➤ Channel = 1 wire, 1 optical fiber, or 1 frequency band
- Significant economies of scale can be achieved by combining many signals into one
 - Fewer wires/pole; fiber replaces thousands of cables
- Implicit or explicit information is required to demultiplex the information flows.

Frequency-Division Multiplexing

0

➤ Channel divided into frequency bands

 W_u

(a) Individual signals occupy W₁₁ Hz

(b) Combined signal fits into channel bandwidth

- ➤ Guard bands required
- >AM or FM radio stations
- TV stations in air or cable
- ➤ Satellite communication
- Mobile communication

FDM: Calculations

Let *N* be the number of frequency bands. Value of *N* can be calculated using the following equation:

$$N = \left\lceil \frac{W - (N - 1)W_g}{W_u} \right\rceil$$

- The width of guard band will depend on the roll off characteristics of the filter used to avoid channel interference
- FDM channels can transmit both analog and digital signals
- End-to-end delay is controlled by the transmission and propagation delays.
- >FDM is hardly used in current fixed telecommunication networks

Time-Division Multiplexing

- High-speed digital channel divided into time slots
 - (a) Each signal transmits 1 unit every 3*T* seconds

(b) Combinedsignal transmits1 unit every *T*seconds

- Framing required
- Telephone digital transmission
- Digital transmission in backbone network

TDM Calculations

- >TDM connection allows only one user to use the transmission link for a time slot duration.
- Let's assume t_f and t_s are time frame and slot duration respectively represented in bits. Let's assume R is the transmission rate of the channel in bits/sec. Also, assume that r is the slot capacity in bits.
- \triangleright No. of bits per TDM frame is r_f and n is the number of slots per frame are given by following equations:
- $\triangleright R_f = R * T_f$
- $rac{R*T_f}{r}$
- ➤ End to end delay is mostly controlled by the frame delay

Code Division Multiplexing

- ➤ Using the CDM technique each transmission medium can transmit data from multiple sources using the orthogonal codes
- Orthogonal codes have the following main property
 - ➤ Orthogonal codes have zero cross correlation
 - \triangleright Assume three channels are transmitting data streams A, B and C using a_1 , a_2 and a_3 orthogonal codes
 - > For above codes following conditions will be true:
 - $\triangleright a_1 * a_1 = 1$, $a_1 * a_2 = 0$, similarly others
 - Transmitted signal on a channel is represented by $T = a_1 * A + a_2 * B + a_3 * C$
 - \triangleright If a data receiver wants to receive signal from channel C then the received data stream needs to multiplied by a_3 as shown below.
 - $\triangleright R = T * a_3 = a_3(a_1 * A + a_2 * B + a_3 * C) = a_3 * a_1 * A + a_3 * a_2 * B + a_3 * a_3 * C = 0 + 0 + C = C$