第一章 Integration by substitution

1.1 Integrate with a given substitution

给定换元: u = g(x) (记其反函数为 x = h(u)),通过以下方式将关于 x 的不定积分换元为关于 u 的不定积分:

$$\int f(x)dx = F(x) \stackrel{*}{=} F(h(u)) = \int f(h(u))h'(u)du = \int \tilde{f}(u)\frac{dx}{du}du$$

换元积分法的基本步骤:

- 1. 换元过程: 通过换元 (u = g(x) 或者 x = h(u)),将原不定积分 $\int f(x) dx$ 转化为更容易计算的不定积分 $\int \tilde{f}(u) \frac{dx}{du} du$
- 2. 积分过程: 计算不定积分 $\int \tilde{f}(u) \frac{dx}{du} du$, 记积分结果 $\tilde{F}(u)$
- 3. 回代过程:将 u = g(x)代入积分结果 $\tilde{F}(u)$ 这里我们不熟悉的是换元过程,接下来我们将结合几道例题来讲解如何换元。

例题 1.1 (1) Calculate $\int 4x\sqrt{2x+1}dx$, using the substitute u=2x+1

(2) Calculate $\int \frac{8}{x^2+4} dx$, using the substitute $x=2\tan u$ 总结这两个例子,换元过程需要干两件事情:被积函数 f(x) 转化为 f(u); 微分项 dx 转化为 $\frac{dx}{du}du$. 让我们再看一个例子

例题 1.2 Calculate $\int \sin^2 2x \cos x dx$, using the substitute $u = \sin x$

我们发现,部分情况下,无须把 f(x) 与 $\frac{dx}{dx}$ 中的每一个 x 都换元. 适当保留部分 x 可以帮助更快的计算。

一般来说,当给定换元方式为 u=g(x) 时,可以先观察原不定积分,若其形式为 $\int f(g(x))g'(x)dx$,一个便捷的换元方式是计算 $\frac{dx}{du}=\frac{1}{g'(x)}$ (无须换元),若