

Agenda

Wifi-Locationing

- 1. Wifi Locationing How does it work?
- 2. Wifi Locationing Research Project University Jaume (Spain)

Data Analysis and ML for Wifi Locationing Data Set

- 1. Data Preparation
- 2. Data Exploration
- 3. Modeling & Predicting Location of User (Building, Floor & Longitude/Latitude)

Wifi-Locationing

GPS

- many applications need to know location of users
- outdoor localization problem solved accurately with GPS sensors into the mobile devices

Wifi-Locationing

- indoor localization open problem due to loss of GPS signal
- estimating position of user (latitude, longitude and altitude) by using WAPs and electronic device (mobile phone)

Wifi-Locationing by Univ. Jaume

- 3 buildings on university campus (almost 110.000 m2)
- 3-4 floors per building
- 520 Wireless Access Points (WAPs)
- 20 different users with 25 Android devices
- 19.937 Wifi fingerprints for training
- 1.111 Wifi fingerprints for validation

Cleaning Wifi Data Set I

Raw Data Set

WAP010	 WAP520	LONGITUDE	LATITUDE	FLOOR	BUILDINGID	SPACEID	RELATIVEPOSITION	USERID	PHONEID
100	 100	-9.304907	43.763135	2	1	106	2	2	23
100	 100	-9.304863	43.763258	2	1	106	2	2	23
100	 100	-9.304661	43.763407	2	1	103	2	2	23
100	 100	-9.304714	43.763265	2	1	102	2	2	23
100	 100	-9.306088	43.763623	0	0	122	2	11	13

- 520 WAP's
- LONGITUDE
- LATITUDE
- FLOOR
- BUILDINGID
- SPACEID
- RELATIVEPOSTION
- USERID
- PHONEID
- TIMESTAMP

1. Step: Removing duplicate observations

Observations	Features
19.937	529

Observations	Features		
19.300	529		

Cleaning Wifi Data Set II

2. Step: Converting Signal Strength for "no signal"

from +100 to -105 (lowest signal is-104)

- 3. Step: Removing redundant features
- WAPs with no signal
- irrelevant features

Observations	Features
19.300	529

Signal Strength of all WAPs

Observations	Features
19.300	469

Cleaning Wifi Data Set III

4. Step: Removing Outliers

- definition of boundary by visualisation
- signal strength 0 until -25 outlier area

-removing observations in this area

Observations	Features
19.300	469

Signal Strength of all WAPs in training data set

Support Vector Machine

SVM: finds an optimal boundary between the possible outputs to identify the optimal separating hyperplane

grid search for best parameter combination for SVM:

C=5, gamma=0.001, kernel='rbf'

accuracy_score: 63.7 %

kappa_score: 46.9 %

K Nearest Neighbor

KNN assumes similar things exist in close proximity

-calculating the distance between points

-majority of K's decide target class

grid search for best K : k_neighbors': 3

accuracy_score: 99.5 %

kappa_score: 99.3 %

Random Forest

- -constructing a multitude of decision trees
- -what features allow to split observations so that the groups are as different as possible?
- Each tree gives prediction
- Class with most predictions -> model's prediction

accuracy_score: 99.8 %

kappa_score: 99.8 %

Random Forest

n_estimators': 50 for best model

Random Forest

accuracy_score: 91.1 %

kappa_score: 87.6 %

reasons for wrong predictions:

- -human error? confound floors?
- -wrong placement of WAPs?
- -> speculative

Predicting Longitude/Latitude

K-nearest neighbor (K=2)

Longitude

mean absolute error: 6.20 m

Latitude

mean absolute error: 5.58 m

average location error: 8.34 m

