

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 23

Operadores Lineares: Autovalores,

Autovetores e Operadores Diagonalizáveis

Professora: Isamara C. Alves

Data: 01/06/2021

Autovalores e Autovetores

Exercícios:

Seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^4)$, tal que;

Autovalores e Autovetores

Exercícios:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$, tal que; $\mathcal{F}(x,y,z,w) =$

Autovalores e Autovetores

EXERCÍCIOS:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$, tal que; $\mathcal{F}(x,y,z,w) = (y-x,$

Autovalores e Autovetores

EXERCÍCIOS:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,y)$

Autovalores e Autovetores

EXERCÍCIOS:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$;

Autovalores e Autovetores

Exercícios:

Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$;

1. Determine, se possível, os AUTOVALORES e AUTOVETORES associados, dos operadores lineares: \mathcal{F} e $5\mathcal{F}$.

Autovalores e Autovetores

Exercícios:

Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$;

- 1. Determine, se possível, os AUTOVALORES e AUTOVETORES associados, dos operadores lineares: \mathcal{F} e $5\mathcal{F}$.
- 2. Determine, se possível, as multiplicidades ALGÉBRICA e GEOMÉTRICA dos AUTOVALORES, dos operadores lineares do item(1.).

Autovalores e Autovetores

EXERCÍCIOS:

Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$;

- 1. Determine, se possível, os AUTOVALORES e AUTOVETORES associados, dos operadores lineares: \mathcal{F} e $5\mathcal{F}$.
- 2. Determine, se possível, as multiplicidades ALGÉBRICA e GEOMÉTRICA dos AUTOVALORES, dos operadores lineares do item(1.).
- 3. Determine, se possível, uma base formada por AUTOVETORES para o domínio $\mathcal{V} = \mathbb{R}^4$, dos operadores lineares do item(1.).

Autovalores e Autovetores

EXERCÍCIOS:

Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$;

- 1. Determine, se possível, os AUTOVALORES e AUTOVETORES associados, dos operadores lineares: \mathcal{F} e $5\mathcal{F}$.
- 2. Determine, se possível, as multiplicidades ALGÉBRICA e GEOMÉTRICA dos AUTOVALORES, dos operadores lineares do item(1.).
- 3. Determine, se possível, uma base formada por AUTOVETORES para o domínio $\mathcal{V} = \mathbb{R}^4$, dos operadores lineares do item(1.).

Autovalores e Autovetores

Exercícios(Solução):

 $\mathcal{F}\in\mathcal{L}(\mathbb{R}^4)$, tal que;

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x, y, z, w) =$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x, y, z, w) = (y - x, y, z, w)$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x, y, z, w) = (y - x, x, 0, y)$

Autovalores e Autovetores

$$\mathcal{F}\in\mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w)=(y-x,x,0,w-z)$;

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$;

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_4)$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$;

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_4) =$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$; $\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix}$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x,y,z,w) = (y-x,x,0,w-z)$; $\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_4) = det \left(\begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \right) = 0$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $\mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z)$; $\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_4) = det \begin{pmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{pmatrix} = \lambda^4 - 2\lambda^2$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = det\begin{pmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{pmatrix} = \lambda^{4} - 2\lambda^{2} + \lambda$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 2\lambda^{2} + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0;$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 2\lambda^{2} + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 1;$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5} - 1}{2};$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 2\lambda^{2} + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 1; \lambda_{3} = \frac{-\sqrt{5} - 1}{2}; \lambda_{4} = \frac{\sqrt{5} - 1}{2}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 2\lambda^{2} + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 1; \lambda_{3} = \frac{-\sqrt{5} - 1}{2}; \lambda_{4} = \frac{\sqrt{5} - 1}{2}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1) = 0$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1) = 1;$$

$$m_a(\lambda_1) = 1;$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 0$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1) = 1; \quad m_2(\lambda_2) = 1;$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1) = 1; \quad m_2(\lambda_2) = 1; \quad m_2(\lambda_3) = 1$$

$$m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1) = 1; \quad m_2(\lambda_2) = 1; \quad m_2(\lambda_3) = 1;$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{\sqrt{3}}{2}; \lambda_4 = \frac{\sqrt{3}}{2}$$
 sao os AU $m_a(\lambda_1) = 1; m_a(\lambda_2) = 1; m_a(\lambda_3) = 1;$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1) = 1; \quad m_2(\lambda_2) = 1; \quad m_2(\lambda_3) = 1; \quad m_2(\lambda_4) = 1$$

$$m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 2\lambda^{2} + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 1; \lambda_{3} = \frac{-\sqrt{5}-1}{2}; \lambda_{4} = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_{2}(\lambda_{1}) = 1; \quad m_{2}(\lambda_{2}) = 1; \quad m_{2}(\lambda_{3}) = 1; \quad m_{2}(\lambda_{4}) = 1.$$

Autovalores e Autovetores

EXERCÍCIOS(Solução):

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathbb{R}^4) \text{, tal que; } \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix}\right) = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_a(\lambda_1) &= 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \mathcal{B}_{\mathcal{V}_{\lambda_1}} &= \{(0,1,1,0)\}; \end{split}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \mathcal{B}_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\};$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\mathcal{A}}(\lambda_1) = 1; \quad m_{\mathcal{A}}(\lambda_2) = 1; \quad m_{\mathcal{A}}(\lambda_3) = 1; \quad m_{\mathcal{A}}(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\};$$

$$\beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2}, 1, 0, 0)\}$$

Autovalores e Autovetores

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathbb{R}^4) \text{, tal que; } \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \right) = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\partial}(\lambda_1) &= 1; \quad m_{\partial}(\lambda_2) = 1; \quad m_{\partial}(\lambda_3) = 1; \quad m_{\partial}(\lambda_4) = 1. \\ \mathcal{B}_{\mathcal{V}_{\lambda_1}} &= \{(0,1,1,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}-1,0,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_4}} = \{(\frac$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}$$

Autovalores e Autovetores

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathbb{R}^4) \text{, tal que; } \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix}\right) = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\mathcal{S}}(\lambda_1) &= 1; \quad m_{\mathcal{S}}(\lambda_2) = 1; \quad m_{\mathcal{S}}(\lambda_3) = 1; \quad m_{\mathcal{S}}(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} &= \{(0,1,1,0)\}; \; \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \; \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \; \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \; \beta_{\mathcal{V}_{\lambda_4}} =$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ \beta$$

Autovalores e Autovetores

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathbb{R}^4) \text{, tal que; } \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix}\right) = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_a(\lambda_1) &= 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} &= \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{, tal que; } \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1 \}$$

Autovalores e Autovetores

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathbb{R}^4) \text{, tal que; } \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix}\right) = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) &= 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_a(\lambda_1) &= 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} &= \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \end{split}$$

Autovalores e Autovetores

EXERCÍCIOS (Solução):

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\mathcal{S}}(\lambda_1) = 1; \quad m_{\mathcal{S}}(\lambda_2) = 1; \quad m_{\mathcal{S}}(\lambda_3) = 1; \quad m_{\mathcal{S}}(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_{\mathcal{S}}(\lambda_1) = 1; \quad m_{\mathcal{S}}(\lambda_2) = 1; \quad m_{\mathcal{S}}(\lambda_3) = 1; \quad m_{\mathcal{S}}(\lambda_4) = 1. \\ \end{pmatrix}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\mathcal{J}}(\lambda_1) = 1; \quad m_{\mathcal{J}}(\lambda_2) = 1; \quad m_{\mathcal{J}}(\lambda_3) = 1; \quad m_{\mathcal{J}}(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_{\mathcal{J}}(\lambda_1) = 1; \quad m_{\mathcal{J}}(\lambda_2) = 1; \quad m_{\mathcal{J}}(\lambda_3) = 1; \quad m_{\mathcal{J}}(\lambda_4) = 1. \\ \end{pmatrix}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\mathcal{S}}(\lambda_1) = 1; \quad m_{\mathcal{S}}(\lambda_2) = 1; \quad m_{\mathcal{S}}(\lambda_3) = 1; \quad m_{\mathcal{S}}(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2}, 1, 0, 0)\}; \ \beta_$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\mathcal{S}}(\lambda_1) = 1; \quad m_{\mathcal{S}}(\lambda_2) = 1; \quad m_{\mathcal{S}}(\lambda_3) = 1; \quad m_{\mathcal{S}}(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2}, 1, 0, 0)\}; \ \beta_$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_s(\lambda_1) = 1; \quad m_s(\lambda_2) = 1; \quad m_s(\lambda_3) = 1; \quad m_s(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix}\right) = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_s(\lambda_1) = 1; \quad m_s(\lambda_2) = 1; \quad m_s(\lambda_3) = 1; \quad m_s(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_s(\lambda_1) = 1; \quad m_s(\lambda_2) = 1; \quad m_s(\lambda_3) = 1; \quad m_s(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}} \cup \beta_{\mathcal{V}_{\lambda_4}}$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad \mathcal{F}(x,y,z,w) = (y-x,x,0,w-z); \\ \mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -1-\lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 2\lambda^2 + \lambda \\ \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_s(\lambda_1) = 1; \quad m_s(\lambda_2) = 1; \quad m_s(\lambda_3) = 1; \quad m_s(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}} \cup \beta_{\mathcal{V}_{\lambda_4}} = \{(0,1,1,0),(0,0,0,1),(\frac{-\sqrt{5}-1}{2},1,0,0),(\frac{\sqrt{5}-1}{2},1,0,0)\}.$$

Autovalores e Autovetores

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } \mathcal{F}(x, y, z, w) = (y - x, x, 0, w - z);$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det([\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & 1 - \lambda \end{pmatrix} = \lambda^{4} - 2\lambda^{2} + \lambda$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 1; \lambda_3 = \frac{-\sqrt{5}-1}{2}; \lambda_4 = \frac{\sqrt{5}-1}{2} \text{ são os AUTOVALORES de } \mathcal{F}. \\ m_{\boldsymbol{a}}(\lambda_1) = 1; \quad m_{\boldsymbol{a}}(\lambda_2) = 1; \quad m_{\boldsymbol{a}}(\lambda_3) = 1; \quad m_{\boldsymbol{a}}(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}} \cup \beta_{\mathcal{V}_{\lambda_4}} = \{(0,1,1,0),(0,0,0,1),(\frac{-\sqrt{5}-1}{2},1,0,0),(\frac{\sqrt{5}-1}{2},1,0,0)\}.$$

E ainda,
$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}} = egin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -rac{\sqrt{5}-1}{2} & 0 \\ 0 & 0 & 0 & rac{\sqrt{5}-1}{2} \end{pmatrix}$$

Autovalores e Autovetores

EXERCÍCIOS(Solução): $5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$, tal que;

Autovalores e Autovetores

$$5\mathcal{F}\in\mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x,y,z,w)=$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x,y,z,w) = (5(y-x),$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z));$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z))$;

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_4)$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z))$;

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_4) =$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det \begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix}$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_4) = det \begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} = 0$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det\begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} = \lambda^{4}$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det \begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} = \lambda^{4} - 50\lambda^{2}$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0;$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det \begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5;$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5} - 5}{2};$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5} - 5}{5}; \lambda_{4} = \frac{5\sqrt{5} - 5}{5}$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2}$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5} - 5}{5}; \lambda_{4} = \frac{5\sqrt{5} - 5}{5}$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2}$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5}-5}{2}; \lambda_{4} = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}.$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z))$; $\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_4) = det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda$ $\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0$; $\lambda_2 = 5$; $\lambda_3 = \frac{-5\sqrt{5}-5}{2}$; $\lambda_4 = \frac{5\sqrt{5}-5}{2}$ são os AUTOVALORES de $5\mathcal{F}$. $m_3(\lambda_1) = 0$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z))$; $\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_4) = det \begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda$ $\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0$; $\lambda_2 = 5$; $\lambda_3 = \frac{-5\sqrt{5}-5}{2}$; $\lambda_4 = \frac{5\sqrt{5}-5}{2}$ são os AUTOVALORES de $5\mathcal{F}$. $m_3(\lambda_1) = 1$:

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
, tal que; $5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z))$; $\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_4) = det \begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda$ $\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0$; $\lambda_2 = 5$; $\lambda_3 = \frac{-5\sqrt{5}-5}{2}$; $\lambda_4 = \frac{5\sqrt{5}-5}{2}$ são os AUTOVALORES de $5\mathcal{F}$. $m_3(\lambda_1) = 1$: $m_3(\lambda_2) = 0$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5} - 5}{5}; \lambda_{4} = \frac{5\sqrt{5} - 5}{5}; \delta_{6} \text{ os AUTOVALORES de } 5\mathcal{F}.$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2}$$
 são os AUTOVALORES de $5\mathcal{F}$. $m_a(\lambda_1) = 1; m_a(\lambda_2) = 1;$

$$m_a(\lambda_1)=1; \quad m_a(\lambda_2)=1;$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{7\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda = 0; \lambda = 5; \lambda = -\frac{5\sqrt{5} - 5}{5}; \lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2}$$
 são os AUTOVALORES de $5\mathcal{F}$. $m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1$

Autovalores e Autovetores

Exercícios(Solução):

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{7\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda = 0; \lambda = 5; \lambda = -\frac{5\sqrt{5} - 5}{5}; \lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2}$$
 são os AUTOVALORES de $5\mathcal{F}$. $m_{\text{a}}(\lambda_1) = 1; \quad m_{\text{a}}(\lambda_2) = 1; \quad m_{\text{a}}(\lambda_3) = 1;$

Autovalores e Autovetores

Exercícios(Solução):

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det \begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2}$$
 são os AUTOVALORES de $5\mathcal{F}$. $m_a(\lambda_1) = 1; \ m_a(\lambda_2) = 1; \ m_a(\lambda_3) = 1; \ m_a(\lambda_4) =$

Autovalores e Autovetores

Exercícios(Solução):

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det \begin{pmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2}$$
 são os AUTOVALORES de $5\mathcal{F}$. $m_a(\lambda_1) = 1; \ m_a(\lambda_2) = 1; \ m_a(\lambda_3) = 1; \ m_a(\lambda_4) = 1.$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5} - 5}{2}; \lambda_{4} = \frac{5\sqrt{5} - 5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}.$$

$$m_{a}(\lambda_{1}) = 1; \quad m_{a}(\lambda_{2}) = 1; \quad m_{a}(\lambda_{3}) = 1; \quad m_{a}(\lambda_{4}) = 1.$$

$$\beta_{3} = \{(0, 1, 1, 0)\};$$

$$\beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\};$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -5-\lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5-\lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda \\ \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \mathcal{B}_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\};$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{, tal que;} \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2}, 1, 0, 0)\}; \end{split}$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -5-\lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}-1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}-1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \text{ tal que; } & 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = det([5\mathcal{F}] - \lambda\mathcal{I}_4) = det \begin{pmatrix} \begin{bmatrix} -5-\lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{pmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; & m_a(\lambda_2) = 1; & m_a(\lambda_3) = 1; & m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_a(\lambda_1) = 1; \end{pmatrix} \end{split}$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_{\mathcal{A}}(\lambda_1) = 1; \quad m_{\mathcal{A}}(\lambda_2) = 1; \quad m_{\mathcal{A}}(\lambda_3) = 1; \quad m_{\mathcal{A}}(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_{\mathcal{B}}(\lambda_1) = 1; \quad m_{\mathcal{B}}(\lambda_2) = 1; \end{split}$$

Autovalores e Autovetores

Exercícios(Solução):

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -5-\lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \mathcal{B}_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ \mathcal{B}_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1$$

Autovalores e Autovetores

Exercícios(Solução):

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que;} \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \ \text{são os AUTOVALORES de } 5\mathcal{F}. \\ & m_s(\lambda_1) = 1; \quad m_s(\lambda_2) = 1; \quad m_s(\lambda_3) = 1; \quad m_s(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \\ & m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \end{split}$$

Autovalores e Autovetores

Exercícios(Solução):

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\begin{pmatrix} \begin{bmatrix} -5-\lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^4 - 50\lambda^2 + 125\lambda \\ \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \end{cases}$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que; } 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5-\lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5}-5}{2}; \lambda_{4} = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}.$$

$$m_{a}(\lambda_{1}) = 1; \quad m_{a}(\lambda_{2}) = 1; \quad m_{a}(\lambda_{3}) = 1; \quad m_{a}(\lambda_{4}) = 1.$$

$$\beta_{\mathcal{V}_{\lambda_{1}}} = \{(0, 1, 1, 0)\}; \beta_{\mathcal{V}_{\lambda_{2}}} = \{(0, 0, 0, 1)\}; \beta_{\mathcal{V}_{\lambda_{3}}} = \{(\frac{-\sqrt{5}-1}{2}, 1, 0, 0)\}; \beta_{\mathcal{V}_{\lambda_{4}}} = \{(\frac{\sqrt{5}-1}{2}, 1, 0, 0)\}; \beta_{\mathcal{V}_{\lambda_{4}}} =$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda\mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5-\lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix} \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda \\ \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_{1} = 0; \lambda_{2} = 5; \lambda_{3} = \frac{-5\sqrt{5}-5}{2}; \lambda_{4} = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ m_{a}(\lambda_{1}) = 1; \quad m_{a}(\lambda_{2}) = 1; \quad m_{a}(\lambda_{3}) = 1; \quad m_{a}(\lambda_{4}) = 1. \\ \beta_{\mathcal{V}_{\lambda_{1}}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_{2}}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_{3}}} = \{(\frac{-\sqrt{5}-1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_{4}}} = \{(\frac{\sqrt{5}-1}{2}, 1, 0, 0)\}; \\ m_{a}(\lambda_{1}) = 1; \quad m_{a}(\lambda_{2}) = 1; \quad m_{a}(\lambda_{3}) = 1; \quad m_{a}(\lambda_{4}) = 1. \\ \end{pmatrix}$$

Autovalores e Autovetores

Exercícios(Solução):

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda\mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \\ & m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ & \beta_{\mathcal{V}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4$$

Autovalores e Autovetores

Exercícios(Solução):

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}-1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}-1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} =$$

Autovalores e Autovetores

Exercícios(Solução):

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que;} \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_{\mathcal{S}}(\lambda_1) = 1; \quad m_{\mathcal{S}}(\lambda_2) = 1; \quad m_{\mathcal{S}}(\lambda_3) = 1; \quad m_{\mathcal{S}}(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \\ & m_{\mathcal{S}}(\lambda_1) = 1; \quad m_{\mathcal{S}}(\lambda_2) = 1; \quad m_{\mathcal{S}}(\lambda_3) = 1; \quad m_{\mathcal{S}}(\lambda_4) = 1. \\ & \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \end{split}$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_{a}(\lambda_1) = 1; \quad m_{a}(\lambda_2) = 1; \quad m_{a}(\lambda_3) = 1; \quad m_{a}(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0, 1, 1, 0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0, 0, 0, 1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2}, 1, 0, 0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2}, 1, 0, 0)\}; \\ & m_{g}(\lambda_1) = 1; \quad m_{g}(\lambda_2) = 1; \quad m_{g}(\lambda_3) = 1; \quad m_{g}(\lambda_4) = 1. \\ & \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}} \end{split}$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que;} \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \text{ são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2},1,0,0)\}; \\ & m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ & \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}} \cup \beta_{\mathcal{V}_{\lambda_4}} \end{split}$$

Autovalores e Autovetores

$$\begin{split} & 5\mathcal{F} \in \mathcal{L}(\mathbb{R}^4), \ \text{tal que}; \quad 5\mathcal{F}(x,y,z,w) = (5(y-x),5x,0,5(w-z)); \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_4) = \det\left(\begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -5 & 5 - \lambda \end{bmatrix}\right) = \lambda^4 - 50\lambda^2 + 125\lambda \\ & \mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5} - 5}{2}; \lambda_4 = \frac{5\sqrt{5} - 5}{2} \ \text{são os AUTOVALORES de } 5\mathcal{F}. \\ & m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ & \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5} - 1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5} - 1}{2},1,0,0)\}; \\ & m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ & \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}} \cup \beta_{\mathcal{V}_{\lambda_4}} = \{(0,1,1,0),(0,0,0,1),(\frac{-\sqrt{5} - 1}{2},1,0,0),(\frac{\sqrt{5} - 1}{2},1,0,0)\}. \end{split}$$

Autovalores e Autovetores

$$5\mathcal{F} \in \mathcal{L}(\mathbb{R}^{4}), \text{ tal que;} \quad 5\mathcal{F}(x, y, z, w) = (5(y - x), 5x, 0, 5(w - z));$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = \det([5\mathcal{F}] - \lambda \mathcal{I}_{4}) = \det\begin{pmatrix} \begin{bmatrix} -5 - \lambda & 5 & 0 & 0 \\ 5 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & 0 & 5 & 5 \end{pmatrix} = \lambda^{4} - 50\lambda^{2} + 125\lambda$$

$$\mathcal{P}_{5\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = 0; \lambda_2 = 5; \lambda_3 = \frac{-5\sqrt{5}-5}{2}; \lambda_4 = \frac{5\sqrt{5}-5}{2} \text{ são os autovalores de } 5\mathcal{F}. \\ m_a(\lambda_1) = 1; \quad m_a(\lambda_2) = 1; \quad m_a(\lambda_3) = 1; \quad m_a(\lambda_4) = 1. \\ \beta_{\mathcal{V}_{\lambda_1}} = \{(0,1,1,0)\}; \ \beta_{\mathcal{V}_{\lambda_2}} = \{(0,0,0,1)\}; \ \beta_{\mathcal{V}_{\lambda_3}} = \{(\frac{-\sqrt{5}-1}{2},1,0,0)\}; \ \beta_{\mathcal{V}_{\lambda_4}} = \{(\frac{\sqrt{5}-1}{2},1,0,0)\}; \ m_g(\lambda_1) = 1; \quad m_g(\lambda_2) = 1; \quad m_g(\lambda_3) = 1; \quad m_g(\lambda_4) = 1. \\ \beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \beta_{\mathcal{V}_{\lambda_3}} \cup \beta_{\mathcal{V}_{\lambda_4}} = \{(0,1,1,0),(0,0,0,1),(\frac{-\sqrt{5}-1}{2},1,0,0),(\frac{\sqrt{5}-1}{2},1,0,0)\}.$$

E ainda,
$$[5\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & \frac{-5\sqrt{5}-5}{2} & 0 \\ 0 & 0 & 0 & \frac{5\sqrt{5}-5}{2} \end{pmatrix}$$

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$;

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**. Então,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**.

Então, os **autovalores** de ${\cal F}$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**.

Então, os autovalores de $\mathcal F$ são os elementos da diagonal principal de $[\mathcal F]_{\beta \nu}^{\beta \nu}$.

Autovalores e Autovetores

TEOREMA:

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**.

Então, os autovalores de ${\mathcal F}$ são os elementos da diagonal principal de $[{\mathcal F}]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$.

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0$$

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0$$

$$\Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda)$$

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0$$

$$\Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda) = 0$$

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0$$

$$\Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda) = 0 \Rightarrow \lambda_1 = a_{11};$$

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**. Então, os **autovalores** de $\mathcal F$ são os **elementos da diagonal principal** de $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$.

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0$$

$$\Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda) = 0 \Rightarrow \lambda_1 = a_{11}; \lambda_2 = a_{22};$$

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**. Então, os **autovalores** de $\mathcal F$ são os **elementos da diagonal principal** de $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$.

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0$$

$$\Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda) = 0 \Rightarrow \lambda_1 = a_{11}; \lambda_2 = a_{22}; \dots \lambda_n = a_{nn}.$$

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz triangular**. Então, os **autovalores** de $\mathcal F$ são os **elementos da diagonal principal** de $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$.

Isto é,
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0$$

$$\Rightarrow \mathcal{P}_{\mathcal{F}}(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda) = 0 \Rightarrow \lambda_1 = a_{11}; \lambda_2 = a_{22}; \dots \lambda_n = a_{nn}.$$

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$;

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$. Então,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}$ é **invertível** se, e somente se,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta \nu}^{\beta \nu}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é, considerando $\lambda = 0$ um autovalor de \mathcal{F} temos,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é, considerando $\lambda=0$ um autovalor de \mathcal{F} temos, $det([\mathcal{F}]_{\beta\gamma}^{\beta\gamma}-\lambda\mathcal{I}_n)=0$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é, considerando $\lambda=0$ um autovalor de $\mathcal F$ temos, $det([\mathcal F]_{\beta \nu}^{\beta \nu}-\lambda \mathcal I_n)=0 \Rightarrow det([\mathcal F]_{\beta \nu}^{\beta \nu}-0\mathcal I_n)=0$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta \nu}^{\beta \nu}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é, considerando $\lambda = 0$ um autovalor de \mathcal{F} temos, $det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0 \Rightarrow det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - 0\mathcal{I}_n) = 0 \Rightarrow det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = 0$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta \nu}^{\beta \nu}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é, considerando $\lambda=0$ um autovalor de $\mathcal F$ temos, $det([\mathcal F]_{\beta\nu}^{\beta\nu}-\lambda\mathcal I_n)=0\Rightarrow det([\mathcal F]_{\beta\nu}^{\beta\nu}-0\mathcal I_n)=0\Rightarrow det([\mathcal F]_{\beta\nu}^{\beta\nu})=0\Rightarrow [\mathcal F]_{\beta\nu}^{\beta\nu}$ não é invertível

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta \nu}^{\beta \nu}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é, considerando $\lambda = 0$ um autovalor de \mathcal{F} temos, $det([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0 \Rightarrow det([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} - 0\mathcal{I}_n) = 0 \Rightarrow det([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}}) = 0 \Rightarrow [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} \text{ não é invertível}$ $\Rightarrow \mathcal{F} \text{ não é invertível}$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$.

Então, $[\mathcal{F}]_{\beta \nu}^{\beta \nu}$ é invertível se, e somente se, o escalar 0 não for um autovalor de \mathcal{F} .

Isto é, considerando $\lambda = 0$ um autovalor de \mathcal{F} temos, $det([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0 \Rightarrow det([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} - 0\mathcal{I}_n) = 0 \Rightarrow det([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}}) = 0 \Rightarrow [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} \text{ não é invertível}$ $\Rightarrow \mathcal{F} \text{ não é invertível}$.

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e ${\mathcal F}\in {\mathcal L}({\mathcal V})$;

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$

Autovalores e Autovetores

TEOREMA:

Autovalores e Autovetores

TEOREMA:

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\pmb\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor $\pmb\lambda$. Então,

(i) $\forall n \in \mathbb{N}^*$

Autovalores e Autovetores

TEOREMA:

(i)
$$\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

(i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

(i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.

Autovalores e Autovetores

TEOREMA:

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível

Autovalores e Autovetores

TEOREMA:

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é **invertível** então $\frac{1}{\lambda}$

Autovalores e Autovetores

TEOREMA:

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1}

Autovalores e Autovetores

TEOREMA:

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

lsto é.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \mathcal{F}(v)$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos,

$$\mathcal{F}(v) = \frac{\lambda}{v} \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\frac{\lambda}{v}) \Rightarrow \mathcal{F}^{2}(v) = \frac{\lambda}{v} \mathcal{F}(v) = \frac{\lambda}{v} (\frac{\lambda}{v}) = \frac{\lambda}{v} \mathcal{F}(v) = \frac{\lambda}{v} \mathcal{F}(v$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de ${\mathcal F}$ temos,

$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^{2}(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^{2}v$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de $\mathcal F$ temos,

$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^{2}(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^{2}v \cdots$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^{2}(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^{2} v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v)))$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^{2}(v) = \lambda \mathcal{F}(v) = \lambda^{2}v \cdots$

$$\mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v)))$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de $\mathcal F$ temos,

$$\mathcal{F}(v) = \frac{\lambda}{v} \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\frac{\lambda}{v}) \Rightarrow \mathcal{F}^{2}(v) = \frac{\lambda}{v} \mathcal{F}(v) = \frac{\lambda^{2}v}{v} \cdots$$

$$\mathcal{F}(v) = \frac{\lambda}{v} \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(v) \Rightarrow \mathcal{F}(v) = \frac{\lambda^{2}v}{v} \Rightarrow \mathcal{F}(v) = \frac{\lambda^{2}v}{v}$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de $\mathcal F$ temos,

$$\mathcal{F}(v) = \frac{\lambda v}{\lambda v} \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\frac{\lambda v}{\lambda v}) \Rightarrow \mathcal{F}^{2}(v) = \frac{\lambda}{\lambda} \mathcal{F}(v) = \frac{\lambda(\lambda v)}{\lambda v} = \frac{\lambda^{2} v}{\lambda^{2} v} \cdots$$

$$\mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v)$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** ν .
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos,

$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^{2}(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^{2} v \cdots$$
$$\mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos,

$$\mathcal{F}(v) = \frac{\lambda v}{\lambda v} \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\frac{\lambda v}{\lambda v}) \Rightarrow \mathcal{F}^{2}(v) = \frac{\lambda \mathcal{F}(v)}{\lambda v} = \frac{\lambda^{2} v}{\lambda v} \cdots$$
$$\mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \frac{\lambda}{\lambda} \dots (\frac{\lambda}{\lambda v}) \Rightarrow \mathcal{F}^{n}(v) = \frac{\lambda^{2} v}{\lambda v} \cdots$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos,

$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^{2}(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^{2} v \cdots$$

$$\mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^{n}(v) = \lambda^{n} v.$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \\ \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v.$ Agora, considerando $\lambda \neq 0$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\pmb\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um **autovetor** de $\mathcal F$ associado ao autovalor $\pmb\lambda$. Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots$ $\mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v.$ Agora, considerando $\lambda \neq 0$ um autovalor de \mathcal{F} temos,

Autovalores e Autovetores

TEOREMA:

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** ν .
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \\ \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. \\ \text{Agora, considerando } \lambda \neq 0 \text{ um autovalor de } \mathcal{F} \text{ temos,} \\ \mathcal{F}^{-1}(v) = \alpha v \Rightarrow
```

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\pmb\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um **autovetor** de $\mathcal F$ associado ao autovalor $\pmb\lambda$. Então,

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} temos, $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots$ $\mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v.$ Agora, considerando $\lambda \neq 0$ um autovalor de \mathcal{F} temos, $\mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow$

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. Agora, considerando \lambda \neq 0 um autovalor de \mathcal{F} temos, \mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow (\mathcal{F}o\mathcal{F}^{-1})(v) = \alpha(\mathcal{F}(v)) \Rightarrow
```

Autovalores e Autovetores

TEOREMA:

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** ν .
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. Agora, considerando \lambda \neq 0 um autovalor de \mathcal{F} temos, \mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow (\mathcal{F}o\mathcal{F}^{-1})(v) = \alpha(\mathcal{F}(v)) \Rightarrow \mathcal{I}_{\mathcal{V}}(v) = \alpha(\lambda v) \Rightarrow
```

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o \mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. Agora, considerando \lambda \neq 0 um autovalor de \mathcal{F} temos, \mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow (\mathcal{F}o \mathcal{F}^{-1})(v) = \alpha(\mathcal{F}(v)) \Rightarrow \mathcal{I}_{\mathcal{V}}(v) = \alpha(\lambda v) \Rightarrow v = \alpha \lambda v \Rightarrow
```

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. Agora, considerando \lambda \neq 0 um autovalor de \mathcal{F} temos, \mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow (\mathcal{F}o\mathcal{F}^{-1})(v) = \alpha(\mathcal{F}(v)) \Rightarrow \mathcal{I}_{\mathcal{V}}(v) = \alpha(\lambda v) \Rightarrow v = \alpha \lambda v \Rightarrow 1 = \alpha \lambda \Rightarrow
```

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. Agora, considerando \lambda \neq 0 um autovalor de \mathcal{F} temos, \mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow (\mathcal{F}o\mathcal{F}^{-1})(v) = \alpha(\mathcal{F}(v)) \Rightarrow \mathcal{I}_{\mathcal{V}}(v) = \alpha(\lambda v) \Rightarrow v = \alpha \lambda v \Rightarrow 1 = \alpha \lambda \Rightarrow \alpha = \frac{1}{\lambda}
```

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. Agora, considerando \lambda \neq 0 um autovalor de \mathcal{F} temos, \mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow (\mathcal{F}o\mathcal{F}^{-1})(v) = \alpha(\mathcal{F}(v)) \Rightarrow \mathcal{I}_{\mathcal{V}}(v) = \alpha(\lambda v) \Rightarrow v = \alpha \lambda v \Rightarrow 1 = \alpha \lambda \Rightarrow \alpha = \frac{1}{\lambda} \Rightarrow \mathcal{F}^{-1}(v) = \frac{1}{\lambda} v.
```

- (i) $\forall n \in \mathbb{N}^* \Rightarrow \lambda^n$ é um autovalor de \mathcal{F}^n correspondente ao **autovetor** v.
- (ii) Se \mathcal{F} é invertível então $\frac{1}{\lambda}$ é um autovalor de \mathcal{F}^{-1} associado ao autovetor v.

```
Isto é, considerando \lambda um autovalor de \mathcal{F} temos, \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(\mathcal{F}(v)) = \mathcal{F}(\lambda v) \Rightarrow \mathcal{F}^2(v) = \lambda \mathcal{F}(v) = \lambda(\lambda v) = \lambda^2 v \cdots \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(v))) = \mathcal{F} \dots (\mathcal{F}(\mathcal{F}(\lambda v))) \Rightarrow (\mathcal{F}o \dots \mathcal{F}o\mathcal{F})(v) = \lambda \dots (\lambda(v)) \Rightarrow \mathcal{F}^n(v) = \lambda^n v. Agora, considerando \lambda \neq 0 um autovalor de \mathcal{F} temos, \mathcal{F}^{-1}(v) = \alpha v \Rightarrow \mathcal{F}(\mathcal{F}^{-1}(v)) = \mathcal{F}(\alpha v) \Rightarrow (\mathcal{F}o\mathcal{F}^{-1})(v) = \alpha(\mathcal{F}(v)) \Rightarrow \mathcal{I}_{\mathcal{V}}(v) = \alpha(\lambda v) \Rightarrow v = \alpha \lambda v \Rightarrow 1 = \alpha \lambda \Rightarrow \alpha = \frac{1}{\lambda} \Rightarrow \mathcal{F}^{-1}(v) = \frac{1}{\lambda} v.
```

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$;

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então. $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então. $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F}

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v. Então, $\mathcal{F}(v) = \lambda v$ e

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \frac{\lambda}{v} e \mathcal{G}(v) = \frac{\alpha}{v}$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \frac{\lambda}{v} e \mathcal{G}(v) = \frac{\alpha}{v}$.

Assim,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \frac{\lambda}{v} e \mathcal{G}(v) = \frac{\alpha}{v}$.

Assim, $\mathcal{F}(v) + \mathcal{G}(v) =$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \frac{\lambda}{v} e \mathcal{G}(v) = \frac{\alpha}{v}$.

Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \lambda v + \alpha v =$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Então,
$$\mathcal{F}(v) = \frac{\lambda}{\lambda}v$$
 e $\mathcal{G}(v) = \frac{\alpha}{\lambda}v$.
Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \frac{\lambda}{\lambda}v + \frac{\alpha}{\alpha}v = (\lambda + \frac{\alpha}{\lambda})v$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Então,
$$\mathcal{F}(v) = \frac{\lambda}{\lambda}v$$
 e $\mathcal{G}(v) = \frac{\alpha}{\lambda}v$.
Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \frac{\lambda}{\lambda}v + \frac{\alpha}{\alpha}v = (\frac{\lambda}{\lambda} + \frac{\alpha}{\lambda})v$ e $(\mathcal{F}o\mathcal{G})(v) =$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Então,
$$\mathcal{F}(v) = \lambda v$$
 e $\mathcal{G}(v) = \alpha v$.
Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \lambda v + \alpha v = (\lambda + \alpha)v$ e $(\mathcal{F} \circ \mathcal{G})(v) = \mathcal{F}(\mathcal{G}(v)) =$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \lambda v$ e $\mathcal{G}(v) = \alpha v$. Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \lambda v + \alpha v = (\lambda + \alpha)v$ e $(\mathcal{F} \circ \mathcal{G})(v) = \mathcal{F}(\mathcal{G}(v)) = \mathcal{F}(\alpha v) =$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \lambda v$ e $\mathcal{G}(v) = \alpha v$. Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \lambda v + \alpha v = (\lambda + \alpha)v$ e $(\mathcal{F} \circ \mathcal{G})(v) = \mathcal{F}(\mathcal{G}(v)) = \mathcal{F}(\alpha v) = \alpha(\mathcal{F}(v)) = \alpha(\mathcal{F$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \lambda v$ e $\mathcal{G}(v) = \alpha v$. Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \lambda v + \alpha v = (\lambda + \alpha)v$ e $(\mathcal{F} \circ \mathcal{G})(v) = \mathcal{F}(\mathcal{G}(v)) = \mathcal{F}(\alpha v) = \alpha(\mathcal{F}(v)) = \alpha(\lambda v) = \alpha(\lambda v)$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \lambda v$ e $\mathcal{G}(v) = \alpha v$. Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \lambda v + \alpha v = (\lambda + \alpha)v$ e $(\mathcal{F} \circ \mathcal{G})(v) = \mathcal{F}(\mathcal{G}(v)) = \mathcal{F}(\alpha v) = \alpha(\mathcal{F}(v)) = \alpha(\lambda v) = (\alpha \lambda)v$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F,\mathcal G\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ e $\alpha\in\mathbb K$ autovalores de $\mathcal F$ e $\mathcal G$, respectivamente; associados ao **mesmo autovetor** v. Então, $\lambda+\alpha$ é um autovalor de $\mathcal F+\mathcal G$ e $\lambda\alpha$ é um autovalor de $\mathcal F\circ\mathcal G$.

Isto é, considerando $\lambda \in \mathbb{K}$ e $\alpha \in \mathbb{K}$ autovalores de \mathcal{F} e \mathcal{G} , respectivamente; associados ao mesmo autovetor v.

Então, $\mathcal{F}(v) = \lambda v$ e $\mathcal{G}(v) = \alpha v$. Assim, $\mathcal{F}(v) + \mathcal{G}(v) = \lambda v + \alpha v = (\lambda + \alpha)v$ e $(\mathcal{F} \circ \mathcal{G})(v) = \mathcal{F}(\mathcal{G}(v)) = \mathcal{F}(\alpha v) = \alpha(\mathcal{F}(v)) = \alpha(\lambda v) = (\alpha \lambda)v$.

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$;

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\le n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente. Então.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

Isto é,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

Isto é, considerando $\lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{K}$ autovalores distintos de \mathcal{F}

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1}{\lambda_1} v_1;$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1}{v_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2}{v_2};$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1}{1}v_1$$
; $\mathcal{F}(v_2) = \frac{\lambda_2}{1}v_2$; ...; $\mathcal{F}(v_m) = \frac{\lambda_m}{1}v_m$.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1}{\lambda_1}v_1$$
; $\mathcal{F}(v_2) = \frac{\lambda_2}{\lambda_2}v_2$; ...; $\mathcal{F}(v_m) = \frac{\lambda_m}{\lambda_m}v_m$. Supondo que o autovetor; $v_1 = \alpha_2v_2 + \ldots + \alpha_mv_m$ (1)

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1}{\lambda_1} v_1; \ \mathcal{F}(v_2) = \frac{\lambda_2}{\lambda_2} v_2; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m}{\lambda_m} v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad \textbf{(1)} \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \dots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1 v_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2 v_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor};$$

$$v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad \textbf{(1)} \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

$$\Rightarrow \frac{\lambda_1 v_1}{\lambda_1 v_1} = \frac{\alpha_2 \lambda_2 v_2}{\lambda_2 v_2} + \ldots + \frac{\alpha_m \lambda_m v_m}{\lambda_m v_m}$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \dots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor};$$

$$v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

$$\Rightarrow \frac{\lambda_1 v_1}{\lambda_1} = \alpha_2 \frac{\lambda_2 v_2}{\lambda_2} + \ldots + \frac{\lambda_m \lambda_m v_m}{\lambda_m v_m} \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \frac{\lambda_2 v_2}{\lambda_2} + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2)$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \text{ Supondo que o autovetor; } v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2)$$
 (2)=(1):

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \text{ Supondo que o autovetor;}$$

$$v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

$$\Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2)$$

$$(2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m =$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1}{\lambda_1} v_1; \ \mathcal{F}(v_2) = \frac{\lambda_2}{\lambda_2} v_2; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m}{\lambda_m} v_m. \ \text{Supondo que o autovetor};$$

$$v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

$$\Rightarrow \frac{\lambda_1}{\lambda_1} v_1 = \alpha_2 \frac{\lambda_2}{\lambda_2} v_2 + \ldots + \frac{\alpha_m}{\lambda_m} \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \frac{\lambda_2}{\lambda_2} v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m$$

$$(2)$$

$$(2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \frac{\lambda_2}{\lambda_2} v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2,$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots,$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad \textbf{(1)} \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad \textbf{(2)} \\ \textbf{(2)=(1)} : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2,$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots,$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2,$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots,$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor};$$

$$v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

$$\Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2)$$

$$(2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m$$

$$\Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor};$$

$$v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

$$\Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m$$

$$(2)$$

$$(2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m$$

$$\Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow 1$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \dots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \text{ Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_1$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \frac{\lambda_1 v_1}{\lambda_1}; \ \mathcal{F}(v_2) = \frac{\lambda_2 v_2}{\lambda_2}; \ \cdots; \ \mathcal{F}(v_m) = \frac{\lambda_m v_m}{\lambda_m v_m}. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 =$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \text{ Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \text{ Supondo que o autovetor};$$

$$v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m)$$

$$\Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2)$$

$$(2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m$$

$$\Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \lambda_2 = \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \lambda_2 = \lambda_2 =$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \text{contradição}; \text{ pois:}$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \text{contradição; pois: } \lambda_1 \neq \lambda_2 \neq \ldots \neq \lambda_m$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \text{contradição; pois: } \lambda_1 \neq \lambda_2 \neq \ldots \neq \lambda_m \Rightarrow \lambda_1 = \lambda_2 \leq \ldots \leq \lambda_m \Rightarrow \lambda_1 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_m \Rightarrow \lambda_2 \leq \lambda_2 \leq \ldots \leq \lambda_m \Rightarrow \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_m \Rightarrow \lambda_2 \leq \lambda_2 \leq \lambda_2 \leq \lambda_2 \leq \lambda_2 \leq \lambda_2 \leq \ldots \leq \lambda_m \Rightarrow \lambda_1 \leq \lambda_2 \leq$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \text{contradição; pois: } \lambda_1 \neq \lambda_2 \neq \ldots \neq \lambda_m \Rightarrow \{v_1, v_2, \ldots, v_m\} \text{ \'e LI}.$$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda_1,\lambda_2,\ldots,\lambda_m\in\mathbb K$; $m\leq n$ autovalores distintos de $\mathcal F$ associados aos autovetores, $v_1,v_2,\ldots,v_m\in\mathcal V$, respectivamente.

Então, os autovetores v_1, v_2, \ldots, v_m são **Linearmente independentes**.

$$\mathcal{F}(v_1) = \lambda_1 v_1; \ \mathcal{F}(v_2) = \lambda_2 v_2; \ \cdots; \ \mathcal{F}(v_m) = \lambda_m v_m. \ \text{Supondo que o autovetor}; \\ v_1 = \alpha_2 v_2 + \ldots + \alpha_m v_m \quad (1) \Rightarrow \mathcal{F}(v_1) = \alpha_2 \mathcal{F}(v_2) + \ldots + \alpha_m \mathcal{F}(v_m) \\ \Rightarrow \lambda_1 v_1 = \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m \Rightarrow v_1 = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \quad (2) \\ (2) = (1) : \alpha_2 v_2 + \ldots + \alpha_m v_m = \frac{1}{\lambda_1} \alpha_2 \lambda_2 v_2 + \ldots + \frac{1}{\lambda_1} \alpha_m \lambda_m v_m \\ \Rightarrow \alpha_2 = \frac{1}{\lambda_1} \alpha_2 \lambda_2, \ldots, \alpha_m = \frac{1}{\lambda_1} \alpha_m \lambda_m \Rightarrow 1 = \frac{1}{\lambda_1} \lambda_2, \ldots, 1 = \frac{1}{\lambda_1} \lambda_m \Rightarrow \lambda_1 = \lambda_2, \ldots, \lambda_1 = \lambda_m \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_m \Rightarrow \text{contradição; pois: } \lambda_1 \neq \lambda_2 \neq \ldots \neq \lambda_m \Rightarrow \{v_1, v_2, \ldots, v_m\} \text{ \'e LI}.$$

Operadores Diagonalizáveis

TEOREMA:

Sejam V um espaço vetorial de dimensão finita, (dim(V) = n),

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$.

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver n autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior.

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se.

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos**

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então,

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI.

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V}

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} .

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$.

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$. E. como $\mathcal{F}(v_i) = \lambda_i v_i$: $i = 1, \ldots, n$

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; $i = 1, \ldots, n$ obtemos a seguinte matriz associada ao operador \mathcal{F}

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; $i = 1, \dots, n$ obtemos a seguinte matriz associada ao operador \mathcal{F} em relação à base $\beta_{\mathcal{V}}$:

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; i = 1, ..., n obtemos a seguinte matriz associada ao operador \mathcal{F} em relação à base $\beta_{\mathcal{V}}$:

$$[\mathcal{F}]_{\beta\nu}^{\beta\nu} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix};$$

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; i = 1, ..., n obtemos a seguinte matriz associada ao operador \mathcal{F} em relação à base $\beta_{\mathcal{V}}$:

$$[\mathcal{F}]_{\beta\nu}^{\beta\nu} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}; \quad \text{Observe que } [\mathcal{F}]_{\beta\nu}^{\beta\nu}$$

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se \mathcal{F} tiver *n* autovalores **distintos**, $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$, então \mathcal{F} é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n autovetores LI. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; i = 1, ..., n obtemos a seguinte matriz associada ao operador \mathcal{F} em relação à base $\beta_{\mathcal{V}}$:

relação à base
$$\beta_{\mathcal{V}}$$
:
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}; \quad \text{Observe que } [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} \text{ \'e uma MATRIZ DIAGONAL}$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Se $\mathcal F$ tiver n autovalores **distintos**, $\lambda_1,\lambda_2,\ldots,\lambda_n\in\mathbb K$, então $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n **autovetores LI**. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \ldots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; i = 1, ..., n obtemos a seguinte matriz associada ao operador \mathcal{F} em relação à base $\beta_{\mathcal{V}}$:

relação a base
$$\beta_{\mathcal{V}}$$
:
$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}; \quad \text{Observe que } [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} \text{ \'e uma MATRIZ DIAGONAL com a}$$

diagonal principal formada pelos autovalores

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Se $\mathcal F$ tiver n autovalores **distintos**, $\lambda_1,\lambda_2,\ldots,\lambda_n\in\mathbb K$, então $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n **autovetores LI**. Isto implica que temos uma base para \mathcal{V} formada por autovetores de \mathcal{F} : $\beta_{\mathcal{V}} = \{v_1, v_2, \ldots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; i = 1, ..., n obtemos a seguinte matriz associada ao operador \mathcal{F} em relação à base $\beta_{\mathcal{V}}$:

$$[\mathcal{F}]_{\beta\nu}^{\beta\nu} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}; \quad \text{Observe que } [\mathcal{F}]_{\beta\nu}^{\beta\nu} \text{ \'e uma MATRIZ DIAGONAL com a}$$

diagonal principal formada pelos autovalores que aparecem <u>na mesma ordem</u> dos autovetores na base $\beta_{\mathcal{V}}$.

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Se $\mathcal F$ tiver n autovalores **distintos**, $\lambda_1,\lambda_2,\ldots,\lambda_n\in\mathbb K$, então $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL.

Note pelo teorema anterior, se, \mathcal{F} possui $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{K}$ autovalores **distintos** então, \mathcal{F} possui v_1, v_2, \ldots, v_n **autovetores LI**. Isto implica que temos uma base para \mathcal{V} formada por autovetores de $\mathcal{F}: \beta_{\mathcal{V}} = \{v_1, v_2, \ldots, v_n\}$.

E, como $\mathcal{F}(v_i) = \lambda_i v_i$; i = 1, ..., n obtemos a seguinte matriz associada ao operador \mathcal{F} em relação à base $\beta_{\mathcal{V}}$:

$$[\mathcal{F}]_{\beta\nu}^{\beta\nu} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}; \quad \text{Observe que } [\mathcal{F}]_{\beta\nu}^{\beta\nu} \text{ \'e uma MATRIZ DIAGONAL com a}$$

diagonal principal formada pelos autovalores que aparecem <u>na mesma ordem</u> dos autovetores na base $\beta_{\mathcal{V}}$.

Operadores Diagonalizáveis

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$.

Operadores Diagonalizáveis

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Então,

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

(i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_{\sigma}(\lambda_i) = m_{\sigma}(\lambda_i); \forall i = 1, \ldots, n.$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_{\sigma}(\lambda_i) = m_{\sigma}(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que. se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por **autovetores LI** de \mathcal{F}

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_{\sigma}(\lambda_i) = m_{\sigma}(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores LI de \mathcal{F} pode ser obtida do seguinte modo:

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores LI de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores LI de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

onde.

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por **autovetores LI** de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

onde, \mathcal{V}_{λ_i} é o AUTO-ESPACO associado ao autovalor λ_i ; $i=1,\ldots,n$,

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores LI de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

onde, \mathcal{V}_{λ_i} é o AUTO-ESPAÇO associado ao autovalor λ_i ; $i=1,\ldots,n$, cuja **dimensão** coincide com o número de vezes que λ_i aparece como raiz do polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$:

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por **autovetores LI** de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

onde, \mathcal{V}_{λ_i} é o AUTO-ESPAÇO associado ao autovalor λ_i ; $i=1,\ldots,n$, cuja **dimensão** coincide com o número de vezes que λ_i aparece como raiz do polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$: $dim(\mathcal{V}_{\lambda_{i}}) =$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores LI de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

onde, \mathcal{V}_{λ_i} é o AUTO-ESPAÇO associado ao autovalor λ_i ; $i=1,\ldots,n$, cuja **dimensão** coincide com o número de vezes que λ_i aparece como raiz do polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$: $dim(\mathcal{V}_{\lambda_i}) = m_{\sigma}(\lambda_i) =$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores LI de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

onde, \mathcal{V}_{λ_i} é o AUTO-ESPAÇO associado ao autovalor λ_i ; $i=1,\ldots,n$, cuja **dimensão** coincide com o número de vezes que λ_i aparece como raiz do polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$: $dim(\mathcal{V}_{\lambda_i}) = m_{\sigma}(\lambda_i) = m_{\sigma}(\lambda_i).$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

- (i) O polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$ possui todas as suas **raízes** em \mathbb{K} ; e
- (ii) $m_a(\lambda_i) = m_\sigma(\lambda_i); \forall i = 1, \ldots, n.$

Note que.

se $dim(\mathcal{V}) = n \Rightarrow \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores LI de \mathcal{F} pode ser obtida do seguinte modo:

$$\beta_{\mathcal{V}} = \beta_{\mathcal{V}_{\lambda_1}} \cup \beta_{\mathcal{V}_{\lambda_2}} \cup \ldots \cup \beta_{\mathcal{V}_{\lambda_n}}$$

onde, \mathcal{V}_{λ_i} é o AUTO-ESPAÇO associado ao autovalor λ_i ; $i=1,\ldots,n$, cuja **dimensão** coincide com o número de vezes que λ_i aparece como raiz do polinômio característico $\mathcal{P}_{\mathcal{F}}(\lambda)$: $dim(\mathcal{V}_{\lambda_i}) = m_{\sigma}(\lambda_i) = m_{\sigma}(\lambda_i).$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$;

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} :

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$

autovetores LI de \mathcal{F} associados

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ **autovetores LI** de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Operadores Diagonalizáveis

EXEMPLO:

```
Seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^2); talque \mathcal{F}(x,y) = (y,x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ **autovetores LI** de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V}

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ **autovetores LI** de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores:

Operadores Diagonalizáveis

EXEMPLO:

```
Seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^2); talque \mathcal{F}(x,y) = (y,x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ **autovetores LI** de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$;

Operadores Diagonalizáveis

```
EXEMPLO:
```

```
Seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^2); talque \mathcal{F}(x,y) = (y,x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ **autovetores LI** de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e

Operadores Diagonalizáveis

EXEMPLO:

```
Seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^2); talque \mathcal{F}(x,y) = (y,x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ **autovetores LI** de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1$

Operadores Diagonalizáveis

EXEMPLO:

```
Seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^2); talque \mathcal{F}(x,y) = (y,x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1, 1),$

Operadores Diagonalizáveis

```
EXEMPLO:
```

```
Seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^2); talque \mathcal{F}(x,y) = (y,x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1,1), (1,1)\}$:

Operadores Diagonalizáveis

EXEMPLO:

```
Seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^2); talque \mathcal{F}(x,y) = (y,x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1,1), (1,1)\}$: e assim.

Operadores Diagonalizáveis

```
EXEMPLO:
Seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^2): talque \mathcal{F}(x, y) = (y, x).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos os autovalores de \mathcal{F}: \lambda_1 = -1 e \lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2 então. \exists v_1, v_2 \in \mathcal{V}
autovetores LI de \mathcal{F} associados aos autovalores \lambda_1, \lambda_2, respectivamente.
Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: \beta_{\mathcal{V}} = \{v_1, v_2\}; tais
que; v_1 = (-y, y); y \neq 0 é o autovetor associado ao \lambda_1 = -1; e v_2 = (x, x); x \neq 0 é o
autovetor associado ao \lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1,1), (1,1)\}: e assim.
[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}}
```

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1,1),(1,1)\}$; e assim,

$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

Operadores Diagonalizáveis

EXEMPLO:

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$: talque $\mathcal{F}(x, y) = (y, x)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1,1),(1,1)\}$; e assim.

$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para $\mathcal V$ formada por autovetores: $\beta_{\mathcal V}=\{v_1,v_2\}$; tais que; $v_1=(-y,y); y\neq 0$ é o autovetor associado ao $\lambda_1=-1$; e $v_2=(x,x); x\neq 0$ é o autovetor associado ao $\lambda_2=1\Rightarrow \beta_{\mathcal V}=\{(-1,1),(1,1)\}$; e assim,

$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1,1),(1,1)\};$ e assim.

$$[\mathcal{F}]_{eta
u}^{eta
u} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

Operadores Diagonalizáveis

EXEMPLO:

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$: talque $\mathcal{F}(x, y) = (y, x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então. $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para \mathcal{V} formada por autovetores: $\beta_{\mathcal{V}} = \{v_1, v_2\}$; tais que; $v_1 = (-y, y)$; $y \neq 0$ é o autovetor associado ao $\lambda_1 = -1$; e $v_2 = (x, x)$; $x \neq 0$ é o autovetor associado ao $\lambda_2 = 1 \Rightarrow \beta_{\mathcal{V}} = \{(-1,1),(1,1)\}$; e assim.

$$[\mathcal{F}]_{eta
u}^{eta
u} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

Operadores Diagonalizáveis

EXEMPLO:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1 \Rightarrow \lambda_1 \neq \lambda_2$ então, $\exists v_1, v_2 \in \mathcal{V}$ autovetores LI de \mathcal{F} associados aos autovalores λ_1, λ_2 , respectivamente.

Desta forma, podemos obter uma base para $\mathcal V$ formada por autovetores: $\beta_{\mathcal V}=\{v_1,v_2\}$; tais que; $v_1=(-y,y); y\neq 0$ é o autovetor associado ao $\lambda_1=-1$; e $v_2=(x,x); x\neq 0$ é o autovetor associado ao $\lambda_2=1\Rightarrow \beta_{\mathcal V}=\{(-1,1),(1,1)\}$; e assim,

$$[\mathcal{F}]_{eta
u}^{eta
u} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Operador Linear Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$.

Operador Linear Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então,

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se,

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D

Operador Linear Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal *D* tais que;

$$[\mathcal{F}]P =$$

Operadores Diagonalizáveis

TEOREMA:

Seiam $\mathcal V$ um espaco vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

$$[\mathcal{F}]P = PD;$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

$$[\mathcal{F}]P = PD;$$

onde, para
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal *D* tais que;

$$[\mathcal{F}]P = PD;$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal *D* tais que;

$$[\mathcal{F}]P = PD;$$

$$D = [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} =$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

$$[\mathcal{F}]P = PD;$$

$$D = [\mathcal{F}]_{\beta \nu}^{\beta \nu} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix} ;$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F \in \mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

$$[\mathcal{F}]P = PD;$$

$$D = [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix} ; e \quad P = [[v_1]]$$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

$$[\mathcal{F}]P = PD;$$

Described by
$$D = \{v_1, v_2, \dots, v_n\}$$
 unital base de V formada point $D = [\mathcal{F}]_{\beta_V}^{\beta_V} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$; e $P = [[v_1] \quad [v_2]]$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

$$[\mathcal{F}]P = PD;$$

onde, para
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
 unta base de \mathcal{V} formada por autovetores of $D = [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$; e $P = [[v_1] \quad [v_2] \quad \dots \quad [v_n]].$

Operadores Diagonalizáveis

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, $\mathcal F$ é um OPERADOR DIAGONALIZÁVEL se, e somente se, existe uma matriz invertível P e uma matriz diagonal D tais que;

$$[\mathcal{F}]P = PD;$$

onde, para
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
 unta base de \mathcal{V} formada por autovetores of $D = [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$; e $P = [[v_1] \quad [v_2] \quad \dots \quad [v_n]].$

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Operador Diagonalizável

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z).$

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = 0$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) =$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
e;

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \}$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$V_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}}$, então; $m_g(\lambda)$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda) = \dim(\mathcal{V}_{\lambda}) =$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda) = \dim(\mathcal{V}_{\lambda}) = 3$.

Operador Diagonalizável

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$ e; $\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda)=dim(\mathcal{V}_\lambda)=3.$ Note que, $m_a(\lambda)=dim(\mathcal{V}_\lambda)=dim$

Operador Diagonalizável

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$ e; $\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda)=dim(\mathcal{V}_\lambda)=3.$ Note que, $m_a(\lambda)=m_g(\lambda)\Rightarrow \mathcal{F}$ é um operador Diagonalizável

Operador Diagonalizável

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$ e; $\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda)=dim(\mathcal{V}_\lambda)=3.$ Note que, $m_a(\lambda)=m_g(\lambda)\Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto,

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.
$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = \mathbf{3};$$
 e;
$$\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$
 então;
$$m_g(\lambda) = \dim(\mathcal{V}_{\lambda}) = \mathbf{3}.$$
 Note que,
$$m_g(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F} \text{ é um operador Diagonalizável portanto, } \beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$.
$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0 \Rightarrow \lambda_1=\lambda_2=\lambda_3=3 \Rightarrow m_a(\lambda)=3;$$
 e;
$$\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$$
 então;
$$m_g(\lambda)=\dim(\mathcal{V}_\lambda)=3.$$
 Note que,

 $m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{V} formada por autovetores de \mathcal{F} .

14 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Operador Diagonalizável

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$.
$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$$
 e;
$$\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$$
 então;
$$m_g(\lambda)=\dim(\mathcal{V}_\lambda)=3.$$
 Note que,
$$m_a(\lambda)=m_g(\lambda)\Rightarrow \mathcal{F} \text{ é um operador Diagonalizável portanto, } \beta_{\mathbb{R}^3}=\{v_1,v_2,v_3\} \text{ é uma base de } \mathcal{V} \text{ formada por autovetores de } \mathcal{F}.$$
 E. neste caso.

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

Note que.

 $m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{V} formada por autovetores de \mathcal{F} .

E. neste caso.

$$[\mathcal{F}] = [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} =$$

Operador Diagonalizável

EXEMPLO:

Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
e:

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

Note que.

$$m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$$
 é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{V} formada por autovetores de \mathcal{F} .

E, neste caso,

$$[\mathcal{F}] = [\mathcal{F}]_{eta v}^{eta v} = egin{array}{cccc} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 3 \end{array} ;$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
e:

$$V(\lambda=3)$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

Note que.

$$m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$$
 é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{Y} formada por autoveteros de \mathcal{F}

 \mathcal{V} formada por autovetores de \mathcal{F} .

E. neste caso.

$$[\mathcal{F}]=[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}=egin{bmatrix} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 3 \end{bmatrix}; \ P=\mathcal{I}_3 \ ext{para} \ eta_{\mathbb{R}^3} \ ext{sendo a base canônica}.$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
e:

$$V(\lambda=3)$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

Note que.

$$m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$$
 é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{Y} formada por autoveteros de \mathcal{F}

 \mathcal{V} formada por autovetores de \mathcal{F} .

E. neste caso.

$$[\mathcal{F}]=[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}=egin{bmatrix} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 3 \end{bmatrix}; \ P=\mathcal{I}_3 \ ext{para} \ eta_{\mathbb{R}^3} \ ext{sendo a base canônica}.$$

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$:

Operador Diagonalizável

EXEMPLO:

Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$

Operador Diagonalizável

EXEMPLO:

Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) =$$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

 $m_2(\lambda_1 = \lambda_2) = 2$; com AUTO-ESPACO:

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\}$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda = 2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda)}} = \{(1, -1, -1)\}$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\}$$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com AUTO-ESPAÇO: $\mathcal{V}_{(\lambda = 2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{ (1, -1, -1) \} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1$$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com AUTO-ESPAÇO: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.$

$$\beta_{\mathcal{V}_{(\boldsymbol{\lambda_1})}} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\boldsymbol{\lambda_1})}) = 1 \Rightarrow m_g(\boldsymbol{\lambda_1}) = 1.$$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com AUTO-ESPAÇO: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda, \cdot)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$
 $\Rightarrow m_a(\lambda_1) \neq m_g(\lambda = 2).$

Operador Diagonalizável

EXEMPLO:

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^{3} \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1 \Rightarrow m_{g}(\lambda_{1}) = 1.$
 $\Rightarrow m_{a}(\lambda_{1}) \neq m_{g}(\lambda = 2).$

Operador Diagonalizável

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
```

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com AUTO-ESPAÇO: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$
 $\Rightarrow m_g(\lambda_1) \neq m_g(\lambda = 2).$

$$\Rightarrow m_a(\lambda_1) \neq m_g(\lambda = 2)$$

e
$$m_a(\lambda_3) =$$

Operador Diagonalizável

EXEMPLO:

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos. $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda = 2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{ (1, -1, -1) \} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$
 $\Rightarrow m_a(\lambda_1) \neq m_g(\lambda = 2).$

e $m_2(\lambda_3) = 1$.

Operador Diagonalizável

EXEMPLO:

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
```

Determinamos. $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^{3} \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1 \Rightarrow m_{g}(\lambda_{1}) = 1.$
 $\Rightarrow m_{a}(\lambda_{1}) \neq m_{g}(\lambda = 2).$

e $m_3(\lambda_3) = 1$. com AUTO-ESPACO:

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^{3} \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1 \Rightarrow m_{g}(\lambda_{1}) = 1.$

$$\Rightarrow m_a(\lambda_1) \neq m_g(\lambda=2).$$

e
$$m_a(\lambda_3) = 1$$
. com Auto-Espaço: $\mathcal{V}_{(\lambda_3)} = \{ v \in \mathbb{R}^3 \mid y = -x \text{ e } z = x \}$

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda = 2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$

$$\Rightarrow m_a(\lambda_1) \neq m_g(\lambda=2).$$

e
$$m_a(\lambda_3) = 1$$
. com Auto-Espaço: $\mathcal{V}_{(\lambda_3)} = \{ v \in \mathbb{R}^3 \mid y = -x \text{ e } z = x \} = [(1, -1, 1)].$

Operador Diagonalizável

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: \mathcal{V}_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(X_2)} = \{(1, -1, 1)\}
```

Operador Diagonalizável

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_3(\lambda_3) = 1. com AUTO-ESPAÇO: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \ e \ z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}(\lambda_2)) = 1
```

Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos. $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^{3} \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1 \Rightarrow m_{g}(\lambda_{1}) = 1.$

$$\Rightarrow m_a(\lambda_1) \neq m_g(\lambda=2).$$

e $m_a(\lambda_3) = 1$. com Auto-Espaço: $V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].$ $\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.$

Operador Diagonalizável

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_3(\lambda_3) = 1. com AUTO-ESPAÇO: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \ e \ z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_2)}) = 1 \Rightarrow m_{\sigma}(\lambda = 4) = 1.
\Rightarrow
```

Operador Diagonalizável

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
```

Operador Diagonalizável

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_{\alpha})} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_{\alpha})}) = 1 \Rightarrow m_{\sigma}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}(\mathbf{x}_0)} \cup \beta_{\mathcal{V}(\mathbf{x}_0)}
```

Operador Diagonalizável

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda = 2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_{\alpha})} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_{\alpha})}) = 1 \Rightarrow m_{\sigma}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}(X_1)} \cup \beta_{\mathcal{V}(X_2)} = \{(1, -1, -1), (1, -1, 1)\}
```

Operador Diagonalizável

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}(X_1)} \cup \beta_{\mathcal{V}(X_2)} = \{(1, -1, -1), (1, -1, 1)\} \neq \beta_{\mathbb{R}^3}
```

Operador Diagonalizável

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}_{(1,2)}} \cup \beta_{\mathcal{V}_{(1,2)}} = \{(1,-1,-1),(1,-1,1)\} \neq \beta_{\mathbb{R}^3} \Rightarrow
```

Operador Diagonalizável

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
\log_{\mathcal{C}}; \beta_{\mathcal{V}_{(\lambda,\lambda)}} \cup \beta_{\mathcal{V}_{(\lambda,\lambda)}} = \{(1,-1,-1),(1,-1,1)\} \neq \beta_{\mathbb{R}^3} \Rightarrow \mathcal{F} não é um operador Diagonalizável!
```

Operador Diagonalizável

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
\log_{\mathcal{C}}; \beta_{\mathcal{V}_{(\lambda,\lambda)}} \cup \beta_{\mathcal{V}_{(\lambda,\lambda)}} = \{(1,-1,-1),(1,-1,1)\} \neq \beta_{\mathbb{R}^3} \Rightarrow \mathcal{F} não é um operador Diagonalizável!
```