Intelligent Data Analysis

Solutions to Exercise sheet 1

1. According to Zip's Law, with C = 0.1 and α = 1, how many times would the most frequent word occur in a document that contains 180, 000 words?

Solution:

According to Zipf's Law the rank-frequency distribution F is given by:

$$F(r) = \frac{c}{r^{\alpha}}$$

Where $\alpha \approx 1$ and $C \approx 0.1$.

For the most frequent word r=1 and F(1)=0.1. Therefore the number of occurrences of the most frequent word is predicted to be $180,000 \times F(1) = 180,000 \times 0.1 = 18,000$.

2. Two documents D_1 and D_2 have the following forms:

 D_1 : Delays on Southern Rail trains peaked over the Christmas period

 D_2 : Industrial action caused train cancellations and train delays in the south of England over Christmas

After stop-word removal and stemming these become:

 d_1 : delay south rail train peak christmas period

 d_2 : industry action cause train cancel train delay south england christmas

The IDFs of the words that occur in these documents are given in the Table below:

Term (t)	IDF(t)	Term (t)	IDF(t)	Term (t)	IDF(t)
action	0.4	delay	0.8	period	0.5
cancel	0.6	england	2.1	rail	2.2
cause	0.3	Industry	1.6	south	0.8
christmas	1.5	peak	0.6	train	1.9

a. Calculate the TF-IDF similarity $sim(d_1, d_2)$ between d_1 and d_2 .

Solution:

I think it is easiest to do this type of calculation in a table. In the table below, the 5th, 8th and 9th columns contain the numbers that you need to calculate the similarity: the square root of the sum of column 5 (8) is the length of document 1 (2) and the sum of column 9 is the numerator in the similarity calculation.

t	IDF(t)	f_{t,d_1}	W_{t,d_1}	w_{t,d_1}^2	f_{t,d_2}	W_{t,d_2}	w_{t,d_2}^2	$W_{t,d_1} \times W_{t,d_2}$
action	0.4	0	0	0	1	0.4	0.16	0
cancel	0.6	0	0	0	1	0.6	0.36	0

					1		1	Т
cause	0.3	0	0	0	1	0.3	0.09	0
christmas	1.5	1	1.5	2.25	1	1.5	2.25	2.25
delay	0.8	1	0.8	0.64	1	0.8	0.64	0.64
England	2.1	0	0	0	1	2.1	4.41	0
industry	1.6	0	0	0	1	1.6	2.56	0
peak	0.6	1	0.6	0.36	0	0	0	0
period	0.5	1	0.5	0.25	0	0	0	0
Rail	2.2	1	2.2	4.84	0	0	0	0
south	0.8	1	0.8	0.64	1	0.8	0.64	0.64
train	1.9	1	1.9	3.61	2	3.8	14.44	7.22

$$||d_1|| = \sqrt{2.25 + 0.64 + 0.36 + 0.25 + 4.84 + 0.64 + 3.61} = 3.55,$$

 $||d_2|| = 5.05$

The numerator in the formula for TF-IDF similarity is just the sum of entries in the final column. Therefore,

$$sim(d_1, d_2) = \frac{10.75}{3.55 \times 5.05} = 0.6$$

b. Assuming that the vocabulary in the table above is the complete vocabulary and is ordered according to the table, write down the document vectors $vec(d_1)$ and $vec(d_2)$.

Solution: The elements of a document vector are just the TF-IDF weights for each term for that document. Hence the document vectors for documents d_1 and d_2 can be obtained directly from columns 4 and 7 of the table:

$$vec(d_1) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1.5 \\ 0.8 \\ 0 \\ 0 \\ 0.6 \\ 0.5 \\ 2.2 \\ 0.8 \\ 1.9 \end{bmatrix}, vec(d_2) = \begin{bmatrix} 0.4 \\ 0.6 \\ 0.3 \\ 1.5 \\ 0.8 \\ 2.1 \\ 1.6 \\ 0 \\ 0 \\ 0 \\ 0.8 \\ 3.8 \end{bmatrix}$$

c. Suppose that the term "delay" is repeated N times in d_1 . Write down a formula for the angle θ_N between $vec(d_1)$ and $vec(d_2)$ as a function of N.

Solution: If "delay" is repeated N times in d_1 this will not have any effect on IDF(delay) but it will change w_{delay,d_1} . In this case:

$$w_{delay,d_1} = N \times 0.8, ||d_1|| = \sqrt{11.95 + (0.8N)^2}$$

$$||d_2|| = 5.05$$
 (unchanged)

$$\sum_{t \in d_1 \cap d_2} w_{t,d_1} \times w_{t,d_2} = 10.11 + 0.64N$$

Therefore, since cosine similarity and TF-IDF similarity are the same,

$$cos(\theta_N) = \frac{10.11 + 0.64N}{5.05 \times \sqrt{11.95 + 0.64N^2}}$$

Therefore

$$\theta_N = \cos^{-1}\left(\frac{10.11 + 0.64N}{5.50 \times \sqrt{11.95 + 0.64N^2}}\right)$$

d. What is the limiting value of θ_N as $N \to \infty$? (Note: it is possible to answer this question without the formula from part (iv)).

Solution: There are at least two ways to do this. Denote the angle by θ . Then

From the formula from the previous part:

$$cos(\theta) = lim_{N\to\infty} \frac{10.11 + 0.64N}{5.05 \times \sqrt{11.95 + 0.64N^2}} =$$

$$\lim_{N \to \infty} \frac{0.64N}{5.05 \times \sqrt{0.64N^2}} = \lim_{N \to \infty} \frac{0.8}{5.05} = 0.158$$

So
$$\theta = \cos^{-1}(0.158) = 1.412 \text{ radians} = 80.9^{\circ}$$
.

Alternatively, notice that as $N \to \infty$ the term "delay" will dominate and the direction of the vector representation of d_1 will tend towards

3. Suppose that d_1 and d_2 are documents. Show that

$$0 \le sim(d_1, d_2) \le 1$$

where $sim(d_1,d_2)$ is the TF-IDF similarity between d_1 and d_2 .

Solution:

This follows immediately from the result from week 2 that $sim(d_1, d_2)$ is equal to the cosine of the angle between $vec(d_1)$ and $vec(d_2)$.

Alternatively, you can obtain the result from first principles by considering the cases where $d_1=d_2$ and where d_1 and d_2 have no words in common

- 4. Consider the following set of documents:
 - The cat sat on the mat
 - The dog chased the cat
 - The cat sat on the dog
 - The dog chased another dog
 - The cat sat on the dog's mat

After text pre-processing these become:

- d₁: cat sat mat
- d₂: dog chase cat
- d₃: cat sat dog
- d₄: dog chase dog
- d₅: cat sat dog mat

With the vocabulary ordered alphabetically as follows {cat, chase, dog, mat, sat}

a. Calculate the Inverse Document Frequency of each word in the vocabulary

Solution:

Word w	d_1	d ₂	d ₃	d ₄	d_5	$ND_{\rm w}$	IDF(w)
cat	1	1	1	0	1	4	0.22
chase	0	1	0	1	0	2	0.92
dog	0	1	1	2	1	4	0.22
mat	1	0	0	0	1	2	0.92
sat	1	0	1	0	1	3	0.51

b. Calculate the document vectors $vec(d_1)$, ..., $vec(d_5)$

Solution:

First calculate the TF-IDF weights using the values in the table above:

Word w	d_1	d ₂	d ₃	d ₄	d ₅
cat	0.22	0.22	0.22	0	0.22
chase	0	0.92	0	0.92	0
dog	0	0.22	0.22	0.45	0.22

mat	0.92	0	0	0	0.92
sat	0.51	0	0.51	0	0.51

$$vec(d_1) = \begin{bmatrix} 0.22\\0\\0\\0.92\\0.51 \end{bmatrix}, vec(d_2) = \begin{bmatrix} 0.22\\0.92\\0\\0 \end{bmatrix}, vec(d_3) = \begin{bmatrix} 0.22\\0\\0.22\\0\\0.51 \end{bmatrix},$$

$$vec(d_4) = \begin{bmatrix} 0\\0.92\\0.45\\0\\0 \end{bmatrix}, vec(d_5) = \begin{bmatrix} 0.22\\0\\0.22\\0.92\\0.51 \end{bmatrix},$$

c. Calculate the similarity sim(d₂,d₄)

Solution:

$$\begin{aligned} \|d_2\| &= 0.97, \|d_4\| = 1.02\\ sim(d_2, d_4) &= \frac{\sum_{w \in d_2 \cap d_4} w_{w, d_2} w_{w, d_4}}{\|d_2\| \|d_4\|} = \frac{0.94}{1.07 \times 1.02} = 0.95 \end{aligned}$$

5. Let d_1 and d_2 be documents. Show that the cosine similarity between $vec(d_1)$ and $vec(d_2)$ is the same as the TF-IDF similarity between d_1 and d_2 . In other words show that

$$CSim(d_1, d_2) = sim(d_1, d_2)$$

Solution:

This was covered in the lecture in week 2 and is in the notes on Canvas.