Векторные представления объектов

Виктор Китов victorkitov.github.io

Содержание

- 1 Векторное представление слов
- Word2vec
- ③ Регулярности в пространстве представлений
- 4 Настройка skip-gram
- 5 Методы на основе матрицы совстречаемости
- 6 Представления параграфов
- Понтрастное обучение

Стандартное представление слов

- Обозначим D=размер словаря.
- Стандартные представления слов $x \in \mathbb{R}^D$:
 - $x_w = \mathbb{I}[w$ встретился в документе]
 - $x_w = TF_w = \#[w]$ встретился в документе]
 - $x_w = TF_w IDF_w$, $IDF_w = \frac{N}{N_w}$
 - ullet N # документов
 - ullet N_w # документов, содержащих w хотя бы раз.
- ullet V велико, поэтому нужно компактное представление (word embedding) $x \in \mathbb{R}^K$, K << D:
 - меньше входов=>меньше параметров=>ниже переобучение
 - возможность учитывать семантическое сходство/различие
 - например, синонимы "автомобиль" и "машина"

Интерпретируемые векторные представления слов

- Можно из слов извлекать интерпретируемые признаки:
 - x¹: часть речи
 - x^2 : род (м/ж/ср для существительных)
 - x^3 : время (пр/наст/буд для глаголов)
 - x^4 : $\mathbb{I}[$ начинается с заглавной буквы]
 - x⁵: # букв
 - x^6 : категория: машинное обучение, физика, биология, ...
 - x^7 : подкатегория: обучение с учителем, без учителя, частичное обучение, ...
 - .
- Необходимо придумывать признаки под задачу, производить разметку.
- Легче работать с неинтерпретируемыми признаками, но которые извлекаются автоматически.

Неинтерпретируемые представления слов

- Хотим, чтобы семантически близким словам соответствовали близкие представления.
- Дистрибутивная гипотеза (distributional hypothesis): слова близки по смыслу <=> они часто встречаются совместно
- "точность бустинга", "бустинг дал точность", "ниже точность, по сравнению с бустингом"
 - "точность" и "бустинг" связаны!
- Типичная размерность векторного представления $\in [300, 500].$

Представления фраз

Можно обрабатывать фразы как отдельные "слова".

• Коллокации (неслучайно часто встречающиеся слова):

$$(w_i,w_j)$$
-коллокация $\Longleftrightarrow rac{p(w_iw_j)-\delta}{p(w_i)p(w_j)}$

Представления фраз

Можно обрабатывать фразы как отдельные "слова".

• Коллокации (неслучайно часто встречающиеся слова):

$$(w_i,w_j)$$
-коллокация $\Longleftrightarrow rac{p(w_iw_j)-\delta}{p(w_i)p(w_j)}$

> threshold. δ - параметр, снижающий значимость редко совстречающихся слов.

Содержание

- Векторное представление слов
- Word2vec
- 3 Регулярности в пространстве представлений
- 4 Настройка skip-gram
- 5 Методы на основе матрицы совстречаемости
- 6 Представления параграфов
- Понтрастное обучение

Word2vec

- Для каждого w оценим:
 - ullet целевое представление слова v_w
 - ullet контекстное представление слова u_w
 - впоследствии можно не использовать, усреднить или конкатенировать с целевым представлением

CBOW: идея

Continuous bag of words (CBOW): предсказываем центральное слово по контексту.

CBOW: модель

$$\frac{1}{T} \sum_{t=1}^{T} \ln p(w_t|w_{t-K},...w_{t-1},w_{t+1},...w_{t+K}) \to \max_{\theta}$$
 где $u_c = \sum_{-K \leq i \leq K,\, i \neq 0} u_{w_{t+i}}$ и
$$p(w_t|w_{t-c},...w_{t-1},w_{t+1},...w_{t+c}) = \frac{\exp\left(u_c^T v_{w_t}\right)}{\sum_{w=1}^{D} \exp\left(u_c^T v_w\right)}$$

Skip-gram: идея

Skip-gram: предсказываем контекст по центральному слову:

Skip-gram: модель

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-K \le i \le K, i \ne 0} \ln p(w_{t+i}|w_t) \to \max_{\theta}$$
$$p(w_{t+i}|w_t) = \frac{\exp(u_{w_t}^T v_{w_{t+i}})}{\sum_{w=1}^{D} \exp(u_{w_t}^T v_w)}$$

Комментарии

- Можем извлекать представления для др. объектов из последовательностей.
 - символы, биграммы, триграммы символов (см. *FastText*), предложения
 - нуклеотиды в ДНК последовательности
 - сервисы, заказанные клиентом компании
- Можем использовать ансамбли представлений
 - сумма, среднее, конкатенация

Содержание

- Векторное представление слов
- 2 Word2vec
- 3 Регулярности в пространстве представлений
- 4 Настройка skip-gram
- 5 Методы на основе матрицы совстречаемости
- 6 Представления параграфов
- 7 Контрастное обучение

Похожие слова по представлению¹

- Ближайшие соседи слова в пространстве эмбеддингов слова, похожие по смыслу (корпус GoogleNews, cosine-sim):
 - student -> teacher, faculty, school, university
 - car -> truck, jeep, vehicle
 - country -> nation, continent, region

¹http://epsilon-it.utu.fi/wv demo/

Формы слов

Одинаковые слова в разных формах образуют похожие структуры:

Представления могут помочь строить др. формы новых и редких слов.

Слова на разных языках

Слова на разных языках группируются похожим образом:

Представления слов могут помочь в переводе на др. язык.

Семантическая регулярность

Слова, связанные семантически определенным образом группируются единообразно:

(prince-princess)+queen≈king. Может помочь в системе автоматических ответов на вопросы.

Семантическая регулярность

Слова, связанные семантически определенным образом группируются единообразно:

(Beijing-China)+Russia≈Moscow! Может помочь в системе автоматических ответов на вопросы.

Содержание

- Векторное представление слов
- Word2vec
- ③ Регулярности в пространстве представлений
- 4 Настройка skip-gram
- 5 Методы на основе матрицы совстречаемости
- 6 Представления параграфов
- 7 Контрастное обучение

Вычислительная сложность Word2vec

СВОW:
$$\frac{1}{T} \sum_{t=1}^{T} \ln p(w_t | w_{t-c}, ...w_{t-1}, w_{t+1}, ...w_{t+c}) \to \max_{\theta}$$
 где $u_c = \sum_{-K \le i \le K, \, i \ne 0} u_{w_{t+i}}$ и
$$p(w_t | w_{t-K}, ...w_{t-1}, w_{t+1}, ...w_{t+K}) = \frac{\exp\left(u_c^T v_{w_t}\right)}{\sum_{w=1}^{D} \exp\left(u_c^T v_w\right)}$$
 SkipGram:
$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-K \le i \le K, \, i \ne 0} \ln p(w_{t+i} | w_t) \to \max_{\theta}$$

$$p(w_{t+i} | w_t) = \frac{\exp\left(u_{w_t}^T v_{w_{t+i}}\right)}{\sum_{w=1}^{D} \exp\left(u_{w_t}^T v_w\right)}$$

Проблема: знаменатель вычисляется за O(D).

Иерархический SoftMax

- Бинарное дерево:
 - предсказываемые слова языка - листья.
 - u_c -эмбеддинг центрального слова (контекста)

- Пусть w_I входное слово, а w_O выходное (предсказываемое) слово в Skip-Gram.
- ullet Тогда $w_I o u_{w_I}, \, w_O o \{v_{w_O,j}\}_j$ для каждого узла дерева j.
- ullet Для каждого узла j:

$$\begin{split} p(\mathsf{left}|j) = &\sigma\left(v_j^T u_c\right), \\ p(\mathsf{right}|j) = &1 - \sigma\left(v_j^T u_c\right) = \sigma\left(-v_j^T u_c\right) \end{split}$$

• $p(w|\mathsf{context}) =$ произведение вероятностей дойти до него.

Иерархический SoftMax

• Сложность вычисления $p(w_O|w_I)$ существенно снижается:

$$O(D) \to O(\log_2 D)$$

- Целевым представлением для w теперь уже является входной эмбеддинг u_w
 - а не набор выходных, связанных с переходами в дереве
- Эффективнее работает не сбалансированное дерево, а дерево Хафмана
 - более частотным словам более короткие пути.

Негативное сэмплирование

- Негативное сэмплирование (negative sampling)² аппроксимация максимизация правдоподобия.
- ullet Для каждой реальной (позитивной) пары (w_t,w_{t+i}) сэмплируем S негативных случайно $ig(w_t,w_{j(1)}ig)$, ... $ig(w_t,w_{j(D)}ig)$.

$$\ln \underbrace{\left(\frac{1}{1+e^{-u_{w_t}^Tv_{w_{t+i}}}}\right)}_{\sigma\left(+u_{w_t}^Tv_{w_{t+i}}\right)} + \sum_{k=1}^S \ln \underbrace{\left(\frac{1}{1+e^{+u_{w_t}^Tv_{w_{t+i}}}}\right)}_{\sigma\left(-u_{w_t}^Tv_{w_{j(k)}}\right)} \rightarrow \max_{u_{w_t},v_{w_{t+i}}}$$

ullet $S\sim$ 2-5. $p\left(w_{j(k)}
ight)\propto p(w)^{3/4}$ -чаще сэмлируем редкие слова.

²Distributed Representations of Words and Phrases

fastText³

- Работает как skip-gram (предсказываем слова контекста по центральному слову)
- ullet Раньше совместимость была $u_t^T v_{t+i}$
- B fastText $w \to \left[u_w, \{p_j\}_{p \in \mathsf{n-grams}(w)}, v_w\right]$
 - $u_w, \{p_j\}_{p \in \mathsf{n-grams}(w)}$ входные эмбеддинги для известного слова
 - ullet v_w выходной эмбеддинг для предсказываемого
- Новая совместимость

$$u_{w_t}^T v_{w_{t+i}} + \sum_{j \in \mathsf{n-grams}(w_t)} p_j^T v_{w_{t+i}}$$

- Пример 3-грамм person:
 - "<person>","<pe","per","ers","rso","son","on>"
 - предлагается использовать все n-граммы, $3 \le n \le 6$.
- Для слов вне словаря работает, используем только n-граммы $\sum_{j\in \mathbf{n-grams}(w)} p_j$.

³https://arviv.org/pdf/1607.04606.pdf/4500.u.gahhtle:fasttext.cc

Содержание

- Векторное представление слов
- 2 Word2vec
- ③ Регулярности в пространстве представлений
- 4 Настройка skip-gram
- 5 Методы на основе матрицы совстречаемости
- Представления параграфов
- Понтрастное обучение

Матрица совстречаемости слов

- ullet $X \in \mathbb{R}^{VxV}$ матрица со-встречаемости слов (word co-occurrence matrix)
- $X_{ij} = \#\{$ слово ј встретилось в контексте слова і $\}$.
- Пример для контекста ± 1 слово:

I like deep learning. I like NLP. I enjoy flying.

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Разложение матрицы совстречаемости

- Hyperspace Analogue to Language (HAL)⁴: эмбеддинги из низкорангового разложения
 - ullet напр. строки U либо столбы V^T из SVD.
 - эмбеддинги доминируются частыми словами!

⁴Lund and Burgess, 1996.

⁵Bullinaria and Levy, 2007

⁶https://aclanthology.org/D14-1162.pdf

Разложение матрицы совстречаемости

- Hyperspace Analogue to Language (HAL)⁴: эмбеддинги из низкорангового разложения
 - ullet напр. строки U либо столбы V^T из SVD.
 - эмбеддинги доминируются частыми словами!
- Модификация⁵: счётчик совстречаемости→PPMI

$$PPMI(w_1, w_2) = \max\{0, PMI(w_1, w_2)\} = \max\{0, \ln \frac{P(w_1, w_2)}{P(w_1)P(w_2)}\}$$

⁴Lund and Burgess, 1996.

⁵Bullinaria and Levy, 2007

⁶https://aclanthology.org/D14-1162.pdf

Разложение матрицы совстречаемости

- Hyperspace Analogue to Language (HAL)⁴: эмбеддинги из низкорангового разложения
 - ullet напр. строки U либо столбы V^T из SVD.
 - эмбеддинги доминируются частыми словами!
- Модификация⁵: счётчик совстречаемости→PPMI

$$PPMI(w_1, w_2) = \max\{0, PMI(w_1, w_2)\} = \max\{0, \ln \frac{P(w_1, w_2)}{P(w_1)P(w_2)}\}$$

ullet GloVe 6 : матр. факторизация $\log X pprox W^T ilde{W} + B + ilde{B}$

$$\sum_{i,j=1}^{D} f(X_{ij}) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2 \to \min_{w, \tilde{w}, b, \tilde{b}}$$

 $f(X_{ij})$ некоторая \uparrow функция весов, f(0)=0.

⁴Lund and Burgess, 1996.

⁵Bullinaria and Levy, 2007

⁶https://aclanthology.org/D14-1162.pdf

Содержание

- Векторное представление слов
- Word2vec
- ③ Регулярности в пространстве представлений
- 4 Настройка skip-gram
- 5 Методы на основе матрицы совстречаемости
- Представления параграфов
- Понтрастное обучение

Представления параграфов - мотивация

- Необходимо получить векторные представления параграфов (документов, предложений,...).
- Простой подход: усреднить слова, входящие в параграф.
 - или взвешенно усреднить, учитывая частоту встречаемости слов и их тематику.
- Точнее работает непосредственное представление самих параграфов.

Paragraph vector: модель PV-DM

- Во время обучения делим документы на параграфы.
 Каждому параграфу -> векторное представление.
- Оценивается CBOW, контекст: представление слов и парграфов.
- Можно усреднять или конкатенировать контексты слов и параграфа.
- Называется Distributed Memory Model of Paragraph Vectors (PV-DM).

Paragraph vector: модель PV-DBOW

- Во время обучения делим документы на параграфы.
 Каждому параграфу -> векторное представление.
- Оценивается skip-gram: предсказываются случайные слова параграфа по представлению параграфа.
 - контекст: только представления параграфов
- Называется Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

Содержание

- Векторное представление слов
- Word2vec
- ③ Регулярности в пространстве представлений
- 4 Настройка skip-gram
- Методы на основе матрицы совстречаемости
- 6 Представления параграфов
- Понтрастное обучение

Сиамская сеть

- Сиамская сеть (siamese network): объект $x_n \rightarrow$ эмбеддинг e_n .
 - объекты могут быть разных доменов.
- Обучение: похожие объекты \Rightarrow похожие представления.
 - похожесть: $\|\cdot\|_2^2$, $\langle\cdot,\cdot\rangle$, cos-sim

Примеры приложений

- Классификация:
 - вход: 2 объекта (обучение) или тестовый объект (применение)
 - выход: класс на основе близости к центроиду класса или по K-NN
- Поисковая система
 - вход: документ и поисковый запрос
 - возможен и поиск по изображению
 - выход: степень релевантности документа запросу
- Обнаружение перефразирования:
 - вход: 2 предложения
 - выход: насколько они близки по смыслу
- Проверка подписи
 - вход: сканы 2х подписей
 - выход: степень их принадлежности одному человеку

Обучение

- Идея функции потерь:
 - представления похожих объектов должны быть близки
 - представления различных объектов должны быть далеки

Представления объектов: классификация и сиамская сеть

Представления объектов: классификация и сиамская сеть для MNIST:

Применение

После того, как сиамская сеть настроена, можно решать конечную задачу. Если классификация, то можно

- инициализировать классификационную сеть первыми слоями сиамской сети (особенно для instance discrimination)
- решать классификацию в пространстве эмбеддингов.
 - метод ближайших центроидов
 - метод К ближайших соседей

Попарные потери

Попарные потери (pairwise contrastive loss, spring loss)⁷:

• обучение на случайных парах объектов x_i, x_j

$$\mathcal{L}(x_i,x_j) = \begin{cases} \rho(e_i,e_j)^2, & \text{если } x_i,x_j \text{ похожи} \\ \max\left\{0,\alpha-\rho(e_i,e_j)\right\}^2, & \text{если } x_i,x_j \text{ похожи} \end{cases}$$

- $\alpha>0$ гиперпараметр (мин. расстояние для непохожих объектов, когда не будет штрафа)
- ullet ho(e,e') обычно Евклидово
- ullet число уникальных пар $O(N^2)$.

⁷Выгоднее позволять похожим объектам небольшую вариацию в эмбеддингах. Предложите соответствующее изменение.

Тройные потери

Тройные потери (triplet loss):

- обучение на случайных тройках x, x^+, x^- .
- x опорный объект (anchor)
- x^+ похожий на x (positive)
- x^- не похожий на x (negative)
- $\alpha > 0$ гиперпараметр (мин. разница расстояний без штрафа)
- $m{\phi}(e,e')$ обычно Евклидово $\mathcal{L}(x,x^+,x^-) = \max\left\{
 ho(e,e^+)^2
 ho(e,e^-)^2 + lpha;0
 ight\}$
- ullet число уникальных пар $O(N^3)$.

Вероятностные потери

- Вероятностные потери (InfoNCE loss, NCE=noise constrastive estimation)
- x опорный объект (anchor)
- x^+ похожий на x (positive)
- ullet $x_1,...x_S$ набор непохожих на x объектов

$$\mathcal{L}(x, x^+, x_1^-, ... x_M^-) = -\ln \frac{e^{sim(e, e^+)}}{e^{sim(e, e^+)} + \sum_{m=1}^S e^{sim(e, e_m^-)}}$$
$$sim(e, e') = \frac{e^T e'}{||e|| \cdot ||e'||}$$

ullet $> O(N^3)$ уникальных сэмплов.

Комментарии

- Сэмплировать можно равномерно
 - по объектам (максимизируем микро-усредненные метрики per object)
 - по классам (максимизируем макро-усредненные метрики per class)
- Контрастное обучение можно использовать для metric learning $\rho_{\theta}(x,x')$.

Сиамская сеть и классификация

- Классификация
 - выучивает "что представляет каждый класс".
 - выдает степени соответствия x каждому классу.
- Сиамская сеть
 - выучивает "что отличает классы друг от друга".
 - ullet выдает расстояния от x до каждого класса.
 - более устойчива к дисбалансу классов и редким классам (one shot learning)
 - при обучении каждый класс учитывается поровну
 - модель выучивает признаки, по которым можно судить о сходстве классов на частотных классах, потом сразу подхватывает их для редких.
 - извлекает больше информации из выборки
 - обучение не на объектах, а на парах и тройках объектов.
 - хороша в ансамбле с классификатором (фразнообразие)

Векторные представления объектов - Виктор Китов

Контрастное обучение

Применения

Заключение

- **Представления слов** отображают слова в компактные векторные представления.
 - может применяться
 - к биграммам, триграммам, коллокациям.
 - к символам удобно для новых слов
 - к любым объектам из посл-тей (нуклеотиды в ДНК и др.)
- Представления параграфов отображают параграфы в векторные представления.
 - работают лучше, чем усреднение слов параграфа
- Представления можно находить для целевой или связанной задачи (language modeling, transfer learning)
- Сиамская сеть оценивает похожесть пар объектов.
 - применения: классификация (особенно one shot learning), детекция перефразирования, нахождение похожих изображений, ...