Przetwarzanie obrazów

Zestaw zadań nr 3

⋆: zadania na ocenę

Uwaga: W ImageJ możliwy jest import/eksport obrazów jako plików tekstowych. Importowane pliki tekstowe interpretowane są jako obraz 32-bit RGB, w przypadku wartości szarości w przedziale $\{0,\ldots,255\}$ należy je skonwertować do obrazów 8-bit.

1. Histogram - egzamin SL2024

Proszę utworzyć histogram dla danego obrazu g w skali szarości:

q

1	1	0	0	6	4	4
5	1	1	0	6	6	6
5	6	1	0	3	3	3
5	2	1	0	3	3	3
5	5	1	0	3	3	3

2. Statystyka obrazu / transformacje histogramu

Proszę użyć programu ImageJ, aby zbadać histogram obrazu Gdansk Modified.png. Jakie transformacje histogramu można wykorzystać do ulepszenia obrazu?

Proszę wykonać

- (a) clipping (ograniczenie histogramu), tak by szarym wartościom $\{0,\ldots,5\}$ została przypisana wartość 0, a $\{60,\ldots,255\}$ wartość 255. Dla pozostałych wartości szarości należy zastosować rozproszenie histogramu. **Wskazówka:** W ImageJ do binaryzacji/przesunięcia/rozproszenia histogramu można użyć funkcji $Image \rightarrow Adjust \rightarrow Brightness/Contrast.$
- (b) transformację gamma z tak dobranym parametrem γ , by największa wartość szarości w obrazie wyjściowym wynosiła ≈ 180 . Wskazówka: Transformacja gamma w ImageJ: $Process \rightarrow Math$.

3. Transformacje histogramu - egzamin SL2024

Dane są obraz wejściowy i obraz po transformacji histogramu wraz z ich histogramami.

Która z poniższych transformacji histogramu została wykonana na obrazie wejściowym?

4. Binaryzacja histogramu $\star (1 + 1.5 + 1.5)$

Dla obrazu roze.png proszę wyznaczyć obrazy wyjściowe w przypadku

- (a) progowania obrazu wartością progową T obliczoną metodą Otsu (progowanie globalne),
- (b) iteracyjnego trójklasowego progowania obrazu w oparciu o metodę Otsu z warunkiem $\Delta < 2,$

(c) progowania wartościami lokalnymi progów obliczonych metodą Otsu w sąsiedztwie 11×11 dla każdego piksela. Jeżeli sąsiedztwo wykracza poza obszar obrazu należy przyjąć w obliczeniach symetryczne odbicie obrazu.

5. Wyrównanie histogramu / hiperbolizacja histogramu \star (1.5+1.5)

Dla obrazu czaszka.png (grafika poniżej) proszę wykonać

- (a) wyrównanie histogramu,
- (b) hiperbolizację histogramu z parametrem $\alpha = -\frac{1}{3}$.

Do rozwiązania proszę załączyć znormalizowany histogram $H_{\rm II}(g)$ obrazu czaszka.png, histogram $H_{\rm S}(g)$ skumulowanej wartości szarości oraz obrazy wyjściowe wraz z ich histogramami.

6. LUT w obrazowaniu medycznym * (1)

Dla jednego z obrazów wyjściowych (przetworzonego obrazu czaszki) z zadania 5 proszę wykonać transformację obrazu zgodnie z poniższym diagramem (zwiększenie kontrastu poprzez zastosowanie trzech funkcji ma-

powania wartości szarośc):

7. Zwiększenie kontrastu poprzez zastosowanie kolorów

W poniższym obrazie wejściowym został zwiększony kontrast poprzez zastosowanie zestawów trzech nieliniowych, niemonotonicznych funkcji mapowania wartości szarości.

(a) Proszę przyporządkować zestaw funkcji mapowania a),b)ic)do obra-

zu wyjściowego A), B) i C).

(b) Do którego z obrazów A),B) czy C) należą poniższe histogramy kanałów RGB?

8. Zwiększenie kontrastu poprzez operacje punktowe oparte na histogramie \star (2)

Zdjęcie poniżej (CalunTurynski.png, autor: Giuseppe Enrie, 1931r, pozytyw) przedstawia odwzorowanie twarzy postaci na Całunie Turyńskim.

Proszę zaproponować i wykonać etapy przetwarzania obrazu oparte na histogramie, które poprawią efekt wizualny (widoczność) postaci na zdjęciu. Do rozwiązania należy załączyć wyniki poszczególnych kroków metody wraz z histogramami.

9. Problemy z zakresem wartości jasności - ImageJ

Podczas przetwarzania obrazów w 8-bitowej skali szarości pojawia się problem przekraczania zakresu dostępnych wartości jasności. W jaki sposób roziwązany jest ten problem w ImageJ w przypadku

- dodawania dwóch obrazów, których wartości szarości są większe niż 127?
- obliczania różnicy obrazów A-B, gdzie B ma wyższe wartości pikseli niż A?
- przetwarzania obrazu mnożenia przez 0.5 a następnie przez 2, w którym występują wszystkie poziomy szarości (np. rampa.png)?

Wskazówka: operacje arytmetyczne i logiczne w Image J
: $Process \to Math,$ $Process \to Image\ Calculator.$

10. Operatory punktowe

Jakiej operacji punktowej (arytmetycznej i/lub logicznej) odpowiada wklejenie obrazu na białe tło w paint?

11. Operacje logiczne na obrazie

Dla obrazu mikolajek.
png proszę wykonać w Image J $(Process \rightarrow \mathit{Math})$ operacje punktowe

- (a) odejmowanie wartości $(100)_{10}$
- (b) XOR z wartością (1111 1111) $_2$
- (c) XOR z wartością $(0000\,0000)_2$

i wyjaśnić wyniki.

12. Operacje logiczne i arytmetyczne na obrazach

Dla obrazów hallowe
en1.png i halloween2.png proszę wykonać w Image J $(Process \to Image\ Calculator)$ o
peracje

- (a) Add
- (b) Substract
- (c) AND
- (d) OR
- (e) XOR

i wyjaśnić wyniki.

13. Operacje logiczne i arytmetyczne na obrazach - egzamin SL 2024 Dane są obrazy g_1 i g_2 :

Obraz g_3

to wynik operacji

- (a) $g_1 + g_2$
- (b) $g_1 g_2$
- (c) $g_1 \cdot g_2$

- (d) $g_1:g_2$
- (e) $g_1 \wedge g_2$
- (f) $g_1 \vee g_2$
- (g) $g_1 \oplus g_2$
- (h) żadnej z powyższych

14. Okienkowanie obrazu $\star (1+1+1)$

Zaszumiony obraz ptaki.png proszę

- (a) przetworzyć oknem sinusoidalnym,
- (b) obraz wyjściowy z (a) wygładzić filtrem uśredniającym:

$$g'(m,n) = \frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} g(m-i, n-j).$$

(c) dokonać korekty gamma obrazu z (b) z odpowiednio dobranym współczynnikiem γ tak, by średnie wartości jasności skorygowanego obrazu i obrazu ptaki.png były do siebie zbliżone.

Wskazówka: Transformacja gamma w ImageJ: $Process \rightarrow Math$.

(d) Proszę wykonać uśrednienie bezpośrednio na obrazie ptaki.png i opisowo porównać wynik z wynikiem z (c).

15. Flat-field correction \star (1+1)

Dany jest obraz wejściowy torus.png oraz dark frame i flat frame (niejednorodne tło) dla sensora, którym wykonano obraz.

- (a) Proszę dokonać korekty obrazu torus.png metodą Flat-field correction.
- (b) Proszę dokonać transformacji histogramu obrazu z części (a), tak by kontrast globalny obrazu wyniósł 1.

Do wyników w (a) i (b) proszę załączyć histogramy obrazów.

16. Steganografia $\star (1+2)$

W obrazie AlbertEinstein-modified.png proszę

- (a) odczytać cytat Einsteina (obraz) "schowany" w płaszczyźnie bitowej,
- (b) zastąpić informację innym obrazem i "ukryć" go w obrazie wejściowym. (Obraz wyjściowy należy załączyć do roziwązań jako odrębny plik.)