

FIG. 1

09295786-063001

Figure 3a) Mean resist film thickness as a function of solvent concentration at a fixed drying spin speed . Mean film thickness can be varied close to 4000Å by varying the solvent concentration at a fixed 2000 rpm.

Figure 3b): Film thickness as a function of solvent flow time for a working example.

Figure 4: A typical film thickness profile, as measured by 30,000 pts film thickness measurement tool, has a 1σ uniformity of 4 Å (0.045%) for 8880 Å target thickness.

	Conventional Coater	Invention
$1\sigma_{ave}$	5.67 Å	4.86 Å
$1\sigma_{band}$	4.5 Å	2.2 Å

Figure 5) Film uniformity comparison between the invention (SME) and conventional spin coaters.

Figure 6: Resist temperature latitude comparison between the invention (SME) and conventional coaters for 200mm wafers. The SME coater resist temperature latitude of film uniformity is 36% wider than that of a conventional coater.

Figure 7: Chill plate temperature latitude comparison of the invention (SME) and conventional coaters for 200mm wafers. The SME coater chill plate temperature latitude of film uniformity is 43% wider than that of a conventional coater.

FIG. 8

FIG. 9

FIG. 10

FIG. II

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

02895786 - 0163001

FIG. 24

FIG. 25