Chapitre 17 : R-ev euclidien orienté de dimension 3

I Préliminaires

E est un \mathbb{R} -ev euclidien orienté de dimension 3.

A) Brefs rappels

- Les formes linéaires sur *E* sont exactement les $\vec{x} \mapsto \vec{a} \cdot \vec{x}$
- Les plans sont les hyperplans de E, admettent une équation du type ax + by + cz = 0, avec $(a, b, c) \neq (0, 0, 0)$, dans toute base.

Si \mathfrak{B} est une base orthonormale, et si P: ax + by + cz = 0 dans \mathfrak{B} , alors $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

(signifie : \vec{n} de colonne de composantes $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ dans \mathfrak{B}) est normal à P.

Si \vec{u} est un vecteur de E, de composantes (x_0, y_0, z_0) dans \mathfrak{B} , et p le projecteur orthogonal sur P:

$$\vec{u} = p(\vec{u}) + \lambda \vec{n}$$
, et $\lambda = \frac{\vec{u} \cdot \vec{n}}{\|\vec{n}\|^2}$; $d(\vec{u}, P) = \frac{|\vec{u} \cdot \vec{n}|}{\|\vec{n}\|} = \frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}$

B) Orientation induite

Soit P un plan de E, \vec{n} un vecteur normal à P (non nul) :

Lemme

Soient $\mathfrak{B}_P = (\vec{u}, \vec{v}), \ \mathfrak{B'}_P = (\vec{u}', \vec{v}')$ deux bases de P.

Alors $\det_{\mathfrak{B}_p} \mathfrak{B'}_p = \det_{(\vec{u},\vec{v})}(\vec{u}',\vec{v}') = \det_{(\vec{u},\vec{v},\vec{n})}(\vec{u}',\vec{v}',\vec{n}).$

 $((\vec{u}, \vec{v}, \vec{n})$ et $(\vec{u}', \vec{v}', \vec{n})$ sont bien des bases de E)

En effet, si la matrice de (\vec{u}', \vec{v}') dans (\vec{u}, \vec{v}) est $\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}$, alors la matrice de

$$(\vec{u}', \vec{v}', \vec{n})$$
 dans $(\vec{u}, \vec{v}, \vec{n})$ est $\begin{pmatrix} \alpha & \gamma & 0 \\ \beta & \delta & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Il en résulte qu'on peut définir une orientation sur P de sorte que, étant donnée une base (\vec{u}, \vec{v}) de P:

 (\vec{u}, \vec{v}) est une base directe de $P \Leftrightarrow (\vec{u}, \vec{v}, \vec{n})$ est une base directe de E.

Cette orientation s'appelle l'orientation induite sur P par \vec{n} .

C) Angle non orienté

L'angle non orienté de deux vecteurs \vec{u}, \vec{v} non nuls, c'est l'unique $\alpha \in [0, \pi]$ tel que $\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\| \|\vec{u}\|}$ (définition valable en toute dimension)

Remarque:

Si P est un plan orienté contenant \vec{u}, \vec{v} , et si θ est l'angle orienté (\vec{u}, \vec{v}) dans le plan, alors $\theta = \pm \alpha [2\pi]$, puisque $\cos \alpha = \cos \theta$

II Produit vectoriel

A) Proposition, définition

Soient $\vec{u}, \vec{v} \in E$.

Alors il existe un et un seul vecteur $\vec{w} \in E$ tel que $\forall \vec{x} \in E, \det(\vec{u}, \vec{v}, \vec{x}) = \vec{w} \cdot \vec{x}$.

Ce vecteur \vec{w} est noté $\vec{u} \wedge \vec{v}$, et s'appelle le produit vectoriel de \vec{u} et \vec{v} .

Ainsi, $\vec{u} \wedge \vec{v}$ est caractérisé par $\forall \vec{x} \in E, \det(\vec{u}, \vec{v}, \vec{x}) = (\vec{u} \wedge \vec{v}) \cdot \vec{x}$

En effet:

 $\vec{x} \mapsto \det(\vec{u}, \vec{v}, \vec{x})$ est une forme linéaire (car det est une application 3-linéaire)

Il existe donc un unique $\vec{w} \in E$ tel que cette forme linéaire soit $\vec{x} \mapsto \vec{w} \cdot \vec{x}$.

B) Composantes en base orthonormée directe

Soit $\mathfrak{B} = (\vec{i}, \vec{j}, \vec{k})$ une base orthonormée directe de E.

Soient
$$\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$. Recherche des composantes de $\vec{u} \wedge \vec{v}$:

Soit
$$\vec{x} \in E, \vec{x} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Alors
$$\det(\vec{u}, \vec{v}, \vec{x}) = \det_{\mathfrak{B}}(\vec{u}, \vec{v}, \vec{x}) = x \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} - y \begin{vmatrix} a & a' \\ c & c' \end{vmatrix} + z \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = \vec{w} \cdot \vec{x}$$

Où
$$\vec{w}$$

$$\begin{pmatrix}
bc'-cb' \\
ca'-ac' \\
ab'-ba'
\end{pmatrix}$$

Ainsi : $\forall \vec{x} \in E, \det(\vec{u}, \vec{v}, \vec{x}) = \vec{w} \cdot \vec{x}$

Donc
$$\vec{w} = \vec{u} \wedge \vec{v}$$

Ainsi, $\vec{u} \wedge \vec{v} \begin{pmatrix} bc' - cb' \\ ca' - ac' \\ ab' - ba' \end{pmatrix}$

C) Propriétés diverses

• Si $\mathfrak{B} = (\vec{i}, \vec{j}, \vec{k})$ est une base orthonormale de E, alors $\vec{i} \wedge \vec{j} = \vec{k}$. En effet :

Il suffit de reprendre la formule précédente avec $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

- Si \vec{u}, \vec{v} sont orthogonaux et de norme 1, alors $\vec{u} \wedge \vec{v}$ est le vecteur tel que la base $(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v})$ soit orthonormée directe.
- L'application : $E \times E \to E$ est 2-linéaire alternée : $(\vec{u}, \vec{v}) \mapsto \vec{u} \wedge \vec{v}$
- linéarité par rapport à la première variable :

Soit $\vec{x} \in E$. On a:

$$\det(\vec{u} + \lambda \vec{u}', \vec{v}, \vec{x}) = \underbrace{((\vec{u} + \lambda \vec{u}') \wedge \vec{v})}_{\vec{w}} \cdot \vec{x}, \text{ et :}$$

$$\det(\vec{u} + \lambda \vec{u}', \vec{v}, \vec{x}) = \det(\vec{u}, \vec{v}, \vec{x}) + \lambda \det(\vec{u}', \vec{v}, \vec{x})$$

$$= (\vec{u} \wedge \vec{v}) \cdot \vec{x} + \lambda (\vec{u}' \wedge \vec{v}) \cdot \vec{x}$$

$$= \underbrace{(\vec{u} \wedge \vec{v} + \lambda \vec{u}' \wedge \vec{v})}_{\vec{w}} \cdot \vec{x}$$

- Linéarité par rapport à la deuxième variable : idem
- Alternée :

Pour tout $\vec{x} \in E$, $\det(\vec{u}, \vec{u}, \vec{x}) = 0 = \vec{0} \cdot \vec{x}$.

Donc $\vec{0} = \vec{u} \wedge \vec{u}$.

• Plus précisément, on a l'équivalence :

$$(\vec{u}, \vec{v})$$
 est libre $\Leftrightarrow \vec{u} \wedge \vec{v} \neq \vec{0}$

En effet:

Si (\vec{u}, \vec{v}) est liée, alors $\vec{u} \wedge \vec{v} = \vec{0}$ car alors $\forall \vec{x} \in E, \det(\vec{u}, \vec{v}, \vec{x}) = 0 = \vec{0} \cdot \vec{x}$.

Si (\vec{u}, \vec{v}) est libre, on peut la compléter en une base $(\vec{u}, \vec{v}, \vec{w})$ de E.

Alors $\det(\vec{u}, \vec{v}, \vec{w}) = (\vec{u} \wedge \vec{v}) \cdot \vec{w} \neq 0$, donc $\vec{u} \wedge \vec{v} \neq \vec{0}$

• $\vec{u} \wedge \vec{v} \perp \vec{u}$ et $\vec{u} \wedge \vec{v} \perp \vec{v}$

En effet:

$$(\vec{u} \wedge \vec{v}) \cdot \vec{u} = \det(\vec{u}, \vec{v}, \vec{u}) = 0$$

$$(\vec{u} \wedge \vec{v}) \cdot \vec{v} = \det(\vec{u}, \vec{v}, \vec{v}) = 0$$

• Si \vec{u}, \vec{v} sont indépendants, alors $(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v})$ forme une base directe de E (non nécessairement orthonormée)

En effet:

$$\det(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v}) = (\vec{u} \wedge \vec{v}) \cdot (\vec{u} \wedge \vec{v}) > 0, \text{ car } \vec{u} \wedge \vec{v} \neq \vec{0}$$

D) Produit vectoriel, angles

Soient $\vec{u}, \vec{v} \in E \setminus \{0\}$. Soit P un plan contenant \vec{u}, \vec{v} (Vect (\vec{u}, \vec{v}) lorsque les deux vecteurs sont indépendants). Soit \vec{w} un vecteur unitaire sur P^{\perp} .

On oriente P avec l'orientation induite par \vec{w} .

Soit θ l'angle orienté (\vec{u}, \vec{v}) dans P.

Ainsi,
$$\frac{\vec{v}}{\|\vec{v}\|} = \cos\theta \frac{\vec{u}}{\|\vec{u}\|} + \sin\theta . \vec{u}'$$
, où \vec{u}' est tel que $\left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right)$ soit une base

orthonormée directe de P, c'est-à-dire que $\left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}', \vec{w}\right)$ est une base orthonormée directe

de
$$E$$
. (Remarque : $\vec{u}' = \vec{w} \wedge \frac{\vec{u}}{\|\vec{u}\|}$)

En faisant le produit vectoriel par $\frac{\vec{u}}{\|\vec{u}\|}$, on obtient :

$$\frac{\vec{u}}{\|\vec{u}\|} \wedge \frac{\vec{v}}{\|\vec{v}\|} = \sin \theta \cdot \frac{\vec{u}}{\|\vec{u}\|} \wedge \vec{u}' = \sin \theta \cdot \vec{w}$$

Donc, par linéarité du produit vectoriel :

$$\vec{u} \wedge \vec{v} = ||\vec{u}|| ||\vec{v}|| \sin \theta \cdot \vec{w}$$

Ainsi ·

 $\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta = \|\vec{u}\| \|\vec{v}\| \sin \alpha$, où α est l'angle non orienté entre \vec{u} et \vec{v} .

Donc, si
$$\vec{u} \wedge \vec{v} \neq \vec{0}$$
 : $\vec{u} \wedge \vec{v} = \|\vec{u}\| \|\vec{v}\| \sin \alpha \cdot \frac{\vec{u} \wedge \vec{v}}{\|\vec{u} \wedge \vec{v}\|}$ (\vec{w}' est le vecteur unitaire sur P^{\perp}

tel que $(\vec{u}, \vec{v}, \vec{w}')$ est une base directe).

III Etude de O(E) et O_3 .

A) Deux lemmes

Lemme 1:

Soit $f \in O(E)$.

Alors l'application $x \mapsto \det(f - x \operatorname{Id}_E)$ est polynomiale de degré 3 :

Si $A = \max(f, \mathfrak{B}) = (a_{i,j})_{\substack{1 \le i \le 3 \\ 1 \le j \le 3}}$ où \mathfrak{B} est une base quelconque :

$$\det(f - x \operatorname{Id}_{E}) = \det(A - x I_{3}) = \begin{vmatrix} a_{1,1} - x & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} - x & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} - x \end{vmatrix}$$

(Rappel : c'est le polynôme caractéristique de f).

Ce polynôme possède donc au moins une racine réelle λ (puisque la fonction tend vers $+\infty$ en $-\infty$ et vers $-\infty$ en $+\infty$, et elle est continue)

Alors $det(f - \lambda Id_E) = 0$. Donc $f - \lambda Id_E$ n'est pas injective.

Donc $\ker(f - \lambda \operatorname{Id}_E) \neq \{0\}.$

Il existe donc $u \in E \setminus \{0\}$ tel que $f(u) = \lambda u$.

Mais $f \in O(E)$. Donc $\forall u \in E, ||f(u)|| = ||u||$.

Donc $\lambda = \pm 1$

Conclusion:

L'un au moins des deux espaces $\ker(f - \operatorname{Id}_E)$ ou $\ker(f + \operatorname{Id}_E)$ n'est pas réduit à $\{0\}$. ($\ker(f - \operatorname{Id}_E)$ est appelé l'espace des vecteurs invariants, $\ker(f + \operatorname{Id}_E)$ celui des vecteurs retournés)

Lemme 2:

Soit $f \in O(E)$. Si F est un sous-espace vectoriel de E stable par f, alors F^{\perp} est aussi stable par f.

Démonstration:

Soit F stable par f, c'est-à-dire $\forall u \in F, f(u) \in F$ (ou $f(F) \subset F$)

Comme f est un automorphisme, on a en fait f(F) = F, car f(F) est de même dimension (finie) que F.

Soit $v \in F^{\perp}$. Soit $w \in F$. Alors w = f(u), où $u \in F$.

Donc $f(v) \cdot w = f(v) \cdot f(u) = v \cdot u = 0$ (car $v \in F^{\perp}$ et $u \in F$ donc $u \perp v$)

Ainsi, $\forall w \in F, f(v) \cdot w = 0$. Donc $f(v) \in F^{\perp}$. D'où la stabilité.

B) Classification des éléments de O(E) selon la dimension de l'espace des invariants

Soit $f \in O(E)$, $F = \ker(f - \operatorname{Id}_E)$.

 1^{er} cas: dim F = 3. Alors $f = Id_E$. (inversement, $Id_E \in O(E)$)

 $2^{\mathrm{ème}}$ cas: $\dim F = 2$. Alors la droite $D = F^{\perp}$ est stable par f. $f_{/D}$ constitue donc une isométrie de D, et sans vecteur invariant autre que $\vec{0}$ (puisque l'ensemble des vecteurs invariants est F, et $F \cap F^{\perp} = F \cap D = \{\vec{0}\}$). Donc $f_{/D} = \pm \mathrm{Id}_D$ (les seules isométries d'un espace de dimension 1 sont Id_D et $-\mathrm{Id}_D$). Comme seul $\vec{0}$ est invariant, $f_{/D} = -\mathrm{Id}_D$. Inversement, les réflexions sont bien dans O(E) (et même $O(E) \setminus SO(E)$).

 $3^{\text{ème}}$ cas: dim F = 1.

Soit $P = F^{\perp}$; P est stable par f, et $f_{/P}$ constitue une isométrie vectorielle de P, sans vecteur invariant autre que $\vec{0}$ (même raison que précédemment). $f_{/P}$ est donc une rotation d'angle non nul)

Chapitre 17 : R-ev euclidien orienté de dimension 3 Algèbre

Si on se donne un vecteur unitaire \vec{k} sur F, et \vec{i} , \vec{j} (dans P) tels que $(\vec{i}$, \vec{j} , \vec{k}) est une base orthonormée directe de E, si on note θ l'angle de la rotation $f_{/P}$ du plan P orienté par (\vec{i}, \vec{j}) (c'est-à-dire par \vec{k}), la matrice de f dans $(\vec{i}, \vec{j}, \vec{k})$ est alors :

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}.$$

Inversement : un endomorphisme admettant une telle matrice dans une base orthonormée directe est dans SO(E) (car la matrice est dans SO_2)

$$4^{\text{ème}} \text{ cas} : \dim F = 0$$

Selon le lemme 1, l'espace $\ker(f + \operatorname{Id}_E)$ n'est alors pas réduit à $\{0\}$. On introduit $\vec{w} \in E \setminus \{0\}$ tel que $f(\vec{w}) = -\vec{w}$.

Soit alors $D = \text{Vect}(\vec{w})$: alors D est stable par $f(\text{car } \forall \lambda \in \mathbb{R}, f(\lambda \vec{w}) = -\lambda \vec{w} \in D)$

Donc $P = D^{\perp}$ est aussi stable par f.

Donc $f_{/P}$ constitue une isométrie de P, sans vecteur invariant autre que $\vec{0}$.

 $f_{/P}$ est donc une rotation d'angle non nul. Il existe donc une base orthonormée directe $(\vec{i}, \vec{j}, \vec{k})$, qu'on définit de la même façon que dans le troisième cas, telle que :

$$\max(f, (\vec{i}, \vec{j}, \vec{k})) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Inversement, un endomorphisme admettant une telle matrice dans une base orthonormée directe est bien élément de $O(E) \setminus SO(E)$, car la matrice est dans $O_3 \setminus SO_3$

C) Etude de *SO*(*E*)

1) Proposition, définition

Soit $f \in SO(E)$.

On peut alors introduire:

- Une droite D, un vecteur unitaire \vec{k} sur D (c'est-à-dire un axe (D, \vec{k}))
- Un réel 6

Tels que la matrice de f dans toute base orthonormée directe dont le troisième vecteur est \vec{k} soit :

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

On dit que f est la rotation d'axe (D, \vec{k}) et d'angle θ .

Démonstration:

Résulte de l'étude et du chapitre précédent avec les rotations planes.

2) Détermination du couple axe – angle

- Si $f = Id_E$: on prend un axe quelconque, et comme angle $\theta = 0[2\pi]$.
- Si $f \neq Id_E$, on a deux couples axe angle possibles:

$$((D, \vec{k}), \theta)$$
 ou $((D, -\vec{k}), -\theta)$, où $D = \ker(f - \operatorname{Id}_E)$

Détermination pratique :

- (1) $D = \ker(f \operatorname{Id}_E) \dots$
- (2) \vec{k} unitaire sur *D* (deux choix).
- (3) choix de \vec{i} , \vec{j} tels que $(\vec{i}$, \vec{j} , \vec{k}) soit orthonormée directe (pas nécessairement explicités)

Ainsi, la matrice de
$$f$$
 dans $(\vec{i}, \vec{j}, \vec{k})$ est $\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

$$f(\vec{i}) = \cos\theta \cdot \vec{i} + \sin\theta \cdot \vec{j}$$
.

Donc $\vec{i} \cdot f(\vec{i}) = \cos \theta$. Et $\vec{j} \cdot f(\vec{j}) = \sin \theta$, ou alors $\det(\vec{i}, f(\vec{i})) = \sin \theta$ ou encore $\vec{i} \wedge f(\vec{i}) = \sin \theta \cdot \vec{i} \wedge \vec{j} = \sin \theta \cdot \vec{k}$ (ces deux dernières possibilités permettent de n'avoir à calculer que \vec{i} si \vec{i} et \vec{j} ne sont pas explicités)

Figure:

Rotation d'axe (D, \vec{k}) et d'angle θ .

Formules pour obtenir $f(\vec{u})$, image de \vec{u} par f, rotation d'axe (D, \vec{k}) et d'angle θ .

On note $P = D^{\perp}$

 $\vec{u} = \vec{u}_1 + \vec{u}_2$, où $\vec{u}_1 \in P$ et $\vec{u}_2 \in D$.

Comme $\vec{u}_2 \in D$, on a $\vec{u}_2 = \lambda . \vec{k}$.

Et
$$\vec{u} \cdot \vec{k} = \underbrace{\vec{u}_1 \cdot \vec{k}}_{=0} + \lambda ||\vec{k}||^2$$
. Donc $\lambda = \frac{\vec{u} \cdot \vec{k}}{||\vec{k}||^2}$.

On a
$$f(\vec{u}) = f(\vec{u}_1) + \underbrace{f(\vec{u}_2)}_{=\vec{u}_2}$$
.

Détermination de $f(\vec{u})$

Supposons $\vec{u}_1 \neq \vec{0}$ (sinon, $f(\vec{u}) = f(\vec{u}_2) = \vec{u}_2 = \vec{u}$).

On introduit alors \vec{a} tel que $\left(\frac{\vec{u}_1}{\|\vec{u}_1\|}, \vec{a}\right)$ soit une base orthonormée de P

orienté par \vec{k} , c'est-à-dire tel que $\left(\frac{\vec{u}_1}{\|\vec{u}_1\|}, \vec{a}, \frac{\vec{k}}{\|\vec{k}\|}\right)$ soit une base orthonormée directe

de
$$E$$
. (on a alors $\vec{a} = \frac{\vec{k}}{\|\vec{k}\|} \wedge \frac{\vec{u}_1}{\|\vec{u}_1\|}$)

Ainsi

$$f\left(\frac{\vec{u}_1}{\|\vec{u}_1\|}\right) = \frac{\vec{u}_1}{\|\vec{u}_1\|} \cos \theta + \sin \theta . \vec{a}, \text{ où } \theta \in \mathbb{R}$$

$$\text{(La rotation plane } f_{/P} \text{ a pour matrice} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \operatorname{dans} \left(\frac{\vec{u}_1}{\left\|\vec{u}_1\right\|}, \vec{a} \right))$$

Ainsi, comme $\vec{u}_1 = \vec{u} - \vec{u}_2 = \vec{u} - \lambda . \vec{k}$

$$f(\vec{u}_1) = \vec{u}_1 \cos \theta + \|\vec{u}_1\| \sin \theta \cdot \frac{\vec{k}}{\|\vec{k}\|} \wedge \frac{\vec{u}_1}{\|\vec{u}_1\|} = \vec{u}_1 \cos \theta + \sin \theta \cdot \frac{\vec{k}}{\|\vec{k}\|} \wedge \vec{u}_1$$

Donc

$$f(u) = f(\vec{u}_1) + \underbrace{f(\vec{u}_2)}_{=\vec{u}_2}$$

$$= \left(\vec{u} - \frac{\vec{u} \cdot \vec{k}}{\|\vec{k}\|^2} \vec{k}\right) \cos \theta + \sin \theta \cdot \frac{\vec{k}}{\|\vec{k}\|} \wedge (\vec{u} - \lambda \cdot \vec{k}) + \frac{\vec{u} \cdot \vec{k}}{\|\vec{k}\|^2} \vec{k}$$

$$= \cos \theta \cdot \vec{u} + \sin \theta \cdot \frac{\vec{k} \wedge \vec{u}}{\|\vec{k}\|} + \frac{\vec{u} \cdot \vec{k}}{\|\vec{k}\|^2} (1 - \cos \theta) \vec{k}$$

D) Tableau résumant la classification

Dimension de l'espace		Nature	Matrice dans une base adaptée
des invariants			
SO(E)	3	Id_E	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ dans toute base
	1	Rotation d'angle θ non nul d'axe (D, \vec{k})	$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} $ dans toute base
			orthonormée directe dont le
			troisième vecteur est $\frac{\vec{k}}{\ \vec{k}\ }$
$O(E) \setminus SO(E)$	2	Réflexion de plan P	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} $ dans une base
			orthonormale dont les deux premiers vecteurs sont dans <i>P</i> .
	0	Composée d'une rotation d'angle θ non nul d'axe	$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & -1 \end{pmatrix}$ dans toute base
		(D, \vec{k}) et d'une réflexion de plan orthogonal à l'axe de rotation	orthonormée directe dont le troisième vecteur est $\frac{\vec{k}}{\ \vec{k}\ }$

E) Composée de réflexions

Proposition:

La composée de deux réflexions est une rotation.

Plus précisément :

Si s_1 et s_2 sont deux réflexions de plans P_1 et P_2 , alors :

- Si $s_1 = s_2$, alors $s_1 \circ s_2 = \operatorname{Id}_E$.
- Sinon, $s_1 \circ s_2$ est une rotation d'axe porté par $P_1 \cap P_2$.

Démonstration :

- $s_1 \circ s_2 \in SO(E)$: évident ; c'est la composée de deux isométries indirectes.
- Si $s_1 \neq s_2$, $s_1 \circ s_2$ est une rotation autre que Id_E . De plus, les éléments de $P_1 \cap P_2$ sont invariants par $s_1 \circ s_2$ (car $\forall u \in P_1 \cap P_2, s_1 \circ s_2(u) = s_1(s_2(u)) = s_1(u) = u$) Remarque:

 $s_1 \circ s_2$ est la rotation d'axe (D, \vec{k}) et d'angle 2θ .

Proposition:

Toute rotation f est composée de deux réflexions par rapport à des plans contenant l'axe de rotation, l'une des deux réflexions pouvant être prise quelconque (mais contenant l'axe tout de même)

Démonstration :

Soit P_1 un plan contenant l'axe D de f, s_1 la réflexion de plan P_1 .

Alors $s_1 \circ f \in O(E) \setminus SO(E)$, et $s_1 \circ f$ laisse les éléments de D invariants. Donc $\dim(\ker(f - \operatorname{Id}_E)) \neq 0$. Donc $s_1 \circ f$ est une réflexion s_2 , de plan contenant D.

Donc $s_1 \circ f = s_2$. Donc $f = s_1 \circ s_2$. On procède de même avec $f \circ s_1 \dots$

Conséquence:

Le groupe O(E) est engendré par les réflexions. Plus précisément, tout élément de O(E) peut s'écrire comme produit de 0, 1, 2 ou 3 réflexions.

IV Divers angles non orientés en dimension 3

• De vecteurs \vec{u}, \vec{v} :

L'angle non orienté (\vec{u}, \vec{v}) est le réel $\theta \in [0, \pi]$ tel que $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$.

• De droites D_1, D_2 :

L'angle non orienté (D_1, D_2) est le réel $\theta \in \left[0, \frac{\pi}{2}\right]$ tel que $\cos \theta = \frac{|\vec{u} \cdot \vec{v}|}{\|\vec{u}\| \|\vec{v}\|}$,

Où $D_1 = \text{Vect}(\vec{u})$, et $D_2 = \text{Vect}(\vec{v})$

• De plans P_1, P_2 :

C'est l'angle non orienté des normales N_1, N_2 aux deux plans.

C'est aussi celui de D_1, D_2 , où $P = (P_1 \cap P_2)^{\perp}$, $D_1 = P_1 \cap P$, $D_2 = P_2 \cap P$.

• D'un plan *P* avec une droite *D*.

C'est l'angle entre D et sa projection orthogonale sur P.

(définition non valable si $D = P^{\perp}$)

C'est aussi $\frac{\pi}{2} - (D, N)$, où $N = P^{\perp}$

