ESO208A ASSIGNMENT 1

QUESTION1

Test functions:

$$f(x) = x - \cos x$$

Use the initial bracket as (0,1) or the initial guess as 0; maximum iterations 50; and maximum $\varepsilon_r = 0.01\%$. For Fixed-Point method, use $\phi(x) = \cos x$.

1. BISECTION

2. FALSE-POSITION

3. FIXED POINT

4. NEWTON RAPHSON

5. SECANT

$$f(x) = exp(-x) - x = 0$$

Use the initial bracket as (0,1) or the initial guess as 0; maximum iterations 50; and maximum $\varepsilon_r = 0.05\%$. For Fixed-Point method, use $\phi(x) = \exp(-x)$.

1. BISECTION

$$MaxErr = 0.0500$$

The root of the equation: 0.567139

2. FALSE-POSITION

MaxErr = 0.0500

3. FIXED-POINT

4. NEWTON-RAPHSON

MaxErr = 0.0500

5. SECANT

QUESTION2

Test polynomial:

$$f(x) = x^4 - 7.4x^3 + 20.44x^2 - 24.184x + 9.6448 = 0$$

Maximum iteration: 50

Maximum relative approximate error: 0.01%

Muller method: (-1,0,1)

The root is 0.800000

Muller method: (0,1,2)

The root is 2.200000

Bairstow method: $(\alpha_0 = -5, \alpha_1 = 4)$

The root is 2.200000 and 2.200000

Bairstow method: $(\alpha_0 = -2, \alpha_1 = 2)$

The root is 2.200000 and 0.800000

