https://powcoder.com Assignment Project Exam Help

Assignment/PeGhat Exampletp
Transition-based dependency parsing
https://powcoder.com

Add WeChat powcoder

Transition systems for dependency parsing https://powcoder.com

Assignment Project Exam Help

Transitions are between **configurations** that are represented as triples $C \to (\sigma, \beta, A)$, where σ is the stack, β is the input buffer, and A is the list of arcs that have been created. Transition systems type://powcoder.com

Arc-standard

Arc-eager Add WeChat powcoder

The arc-standard system

https://powcoder.com

Assignment Project Exam Help

The arc-standard system is closely related to the shift-reduce algorithm for phrase structive of the difference being that the REDUCE action is split into two actions, ARC-LEFT and $\begin{array}{c} {\rm Arc\text{-}RIGHT,\ depending\ on\ whether\ the\ head\ is\ on\ the\ left\ or\ right.}\\ & nttps://powcoder.com \end{array}$

- SHIFT $(\sigma, i | \beta, A) \Rightarrow (\sigma | i, \beta, A)$ ARC-LEFT $(\sigma | i, j | \beta, A) \Rightarrow (\sigma, j | \beta$
- ARC-RIGHT $(\sigma|i,j|\beta,A) \Rightarrow (\sigma,i|\beta,A \oplus i \xrightarrow{r} j)$

Arc-standard derivation

https://powcoder.com

	Assigni	nent Proiect	<u>Exam</u>	Heln
	σ	β	action	arc added to ${\cal A}$
1.	[ROOT]	they like bagels with lox	SHIFT	_
2.	[ROOAtry]10111	Gut viscouldat B	WARRED	$hey \leftarrow like$
3.	[ROOT]	like bagels with lox	Shift	· P
4.	[ROOT, like]	bagels with lox	Shift	
5.	[ROOT, like, barelt] to S	Withlexwooder	SHIFT	
6.	[ROOT, like, bagels, with]	lox	ARC-LEFT	$(with \leftarrow lox)$
7.	[ROOT, like, bagels]	lox	Arc-Right	$(bagels \rightarrow lox)$
8.	[ROOT, like]	Wike Chat pov	ARC-RIGHT	$(like \rightarrow bagels)$
9.	[ROOT] Aud	Vilke Chat pov	VARURIEHT	$(ROOT \rightarrow like)$
10.	[ROOT]	Ø	Done	

Table 11.2: Arc-standard derivation of the unlabeled dependency parse for the input *they like bagels with lox*.

Arc-eager transition system

https://powcoder.com

Arc-eager dependency parsing changes the ARC-RIGHT action so that right dependents can be attached before all of their dependents have been found. Rather than removing the modifier from both Arcsignal actions the modifier on to the stack of the head. Two additional changes are necessary:

https://powcoder.com

- A precondition is required to ensure that the ARC-LEFT action cannot de applied When the top compent on the stack already has a parent A.
- A new Reduce action is introduced, which can remove elements from the stack if they have a parent A: $(\sigma|i,\beta,A) \Rightarrow (\sigma,\beta,A)$

Arc-eager derivation

https://powcoder.com

-	Aggian	mant Draina	Evan	Holp
	σ Assign	ment Project	action	arc added to A
1.	[ROOT]	they like bagels with lox		
2.	[ROOTAthey]	die bagels with lox P	ARCEDITION	$(they \leftarrow like)$
3.		tike bagels with tox	ARE-RIGHT	$(ROOT \rightarrow like)$
4.	[Root, like]	bagels with lox	Arc-Right	$(like \rightarrow bagels)$
5.	[ROOT, like, bagels]	with lox	SHIFT	
6.	[ROOT, like, bagel, with	:hoxpowcoder	. GOMFT	$(with \leftarrow lox)$
7.	[ROOT, like, bagels]	lox	Arc-Right	$(bagels \rightarrow lox)$
8.	[ROOT, like, bagels, lox]	Ø	Reduce	
9.	[ROOT, like, bages]	weChat pov	weoder	
10.	[ROOT, like]	Ø	REDUCE	
11.	[ROOT]	Ø	Done	

Table 11.3: Arc-eager derivation of the unlabeled dependency parse for the input *they like bagels with lox*.

Oracle-based training

An **oracle** is a function that maps a parse tree into an action be trained by stepping through the oracle action sequences, and optimizing Ang sing the stiffent of the selection of the oracle action. A commonly used objective is to maximize the conditional likelihood (or/minimize the negative log conditional likelihood).

Add WeChat powcoder
$$P(a|c, \mathbf{w}) = \frac{\exp \psi(a, c, \mathbf{w}; \theta)}{\sum_{a' \in \mathcal{A}(c)} \exp \psi(a', c, \mathbf{w}; \theta)}$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \sum_{l=1}^{|A^{(i)}|} \log P(a_t^{(i)}|c_t^{(i)}, \mathbf{w})$$