1

Linear Equations in Linear Algebra

1.4

THE MATRIX EQUATION Ax = b

Definition: If A is an $m \times n$ matrix, with columns \mathbf{a}_1 , ..., \mathbf{a}_n , and if x is in \mathbf{R}^n , then the **product of** A and x, denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x

columns of
$$A$$
 using the corresponding entries in \mathbf{x} as weights; that is,
$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n.$$
• $A\mathbf{x}$ is defined only if the number of columns of A equals the number of entries in \mathbf{x} .

equals the number of entries in x.

- **Example 1:** For \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 in \mathbf{R}^m , write the linear combination $3\mathbf{v}_1 5\mathbf{v}_2 + 7\mathbf{v}_3$ as a matrix times a vector.
- Solution: Place \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 into the columns of a matrix A and place the weights 3, –5, and 7 into a vector \mathbf{x} .
- That is,

$$3\mathbf{v}_{1} - 5\mathbf{v}_{2} + 7\mathbf{v}_{3} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{bmatrix} \begin{vmatrix} 3 \\ -5 \\ 7 \end{vmatrix} = A\mathbf{x}.$$

- Now, write the system of linear equations as a vector equation involving a linear combination of vectors.
- For example, the following system

$$x_1 + 2x_2 - x_3 = 4$$

$$-5x_2 + 3x_3 = 1$$

is equivalent to

$$x_{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_{3} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}. \qquad ----(2)$$

• As in the given example (1), the linear combination on the left side is a matrix times a vector, so that (2) becomes

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}. \qquad ----(3)$$

• Equation (3) has the form Ax = b. Such an equation is called a **matrix equation**.

■ **Theorem 3:** If A is an $m \times n$ matrix, with columns a1, ..., an, and if b is in \mathbf{R}^m , then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1 a_1 + x_2 a_2 + \dots + x_n a_n = b,$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}$$
.

EXISTENCE OF SOLUTIONS

- The equation Ax = b has a solution if and only if **b** is a linear combination of the columns of A.
- Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
 - a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
 - b. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
 - c. The columns of A span \mathbb{R}^m .
 - d. A has a pivot position in every row.

PROOF OF THEOREM 4

- Statements (a), (b), and (c) are logically equivalent.
- So, it suffices to show (for an arbitrary matrix A) that
 (a) and (d) are either both true or false.
- Let *U* be an echelon form of *A*.
- Given **b** in \mathbb{R}^m , we can row reduce the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$ to an augmented matrix $\begin{bmatrix} U & d \end{bmatrix}$ for some **d** in \mathbb{R}^m :

$$[A \quad b] \sim \dots \sim [U \quad d]$$

• If statement (d) is true, then each row of *U* contains a pivot position, and there can be no pivot in the augmented column.

PROOF OF THEOREM 4

- So Ax = b has a solution for any **b**, and (a) is true.
- If (d) is false, then the last row of U is all zeros.
- Let **d** be any vector with a 1 in its last entry.
- Then $\begin{bmatrix} U & d \end{bmatrix}$ represents an *inconsistent* system.
- Since row operations are reversible, $\begin{bmatrix} U & d \end{bmatrix}$ can be transformed into the form $\begin{bmatrix} A & b \end{bmatrix}$.
- The new system Ax = b is also inconsistent, and (a) is false.

COMPUTATION OF Ax

Example 2: Compute
$$A\mathbf{x}$$
, where $A = \begin{bmatrix} 2 & 3 & 4 \\ -1 & 5 & -3 \\ 6 & -2 & 8 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

• Solution: From the definition,

$$\begin{bmatrix} 2 & 3 & 4 \\ -1 & 5 & -3 \\ 6 & -2 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 5 \\ -2 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ -3 \\ 8 \end{bmatrix}$$

COMPUTATION OF Ax

$$= \begin{bmatrix} 2x_1 \\ -x_1 \\ 6x_1 \end{bmatrix} + \begin{bmatrix} 3x_2 \\ 5x_2 \\ -2x_2 \end{bmatrix} + \begin{bmatrix} 4x_3 \\ -3x_3 \\ 8x_3 \end{bmatrix} ----(1)$$

$$= \begin{bmatrix} 2x_1 + 3x_2 + 4x_3 \\ -x_1 + 5x_2 - 3x_3 \\ 6x_1 - 2x_2 + 8x_3 \end{bmatrix}.$$

• The first entry in the product $A\mathbf{x}$ is a sum of products (a dot product), using the first row of A and the entries in \mathbf{x} .

COMPUTATION OF Ax

• That is,
$$\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 + 3x_2 + 4x_3 \\ x_3 \end{bmatrix}$$

• Similarly, the second entry in Ax can be calculated by multiplying the entries in the second row of A by the corresponding entries in x and then summing the

resulting products.
$$\begin{bmatrix} x_1 \\ -1 & 5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 + 5x_2 - 3x_3 \end{bmatrix}$$

ROW-VECTOR RULE FOR COMPUTING Ax

- Likewise, the third entry in $A\mathbf{x}$ can be calculated from the third row of A and the entries in \mathbf{x} .
- If the product $A\mathbf{x}$ is defined, then the *i*th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vertex \mathbf{x} .
- The matrix with 1s on the diagonal and 0s elsewhere is called an **identity matrix** and is denoted by *I*.

For example, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ is an identity matrix. $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

PROPERTIES OF THE MATRIX-VECTOR PRODUCT Ax

- **Theorem 5:** If A is an $m \times n$ matrix, u and v are vectors in \mathbb{R}^n , and c is a scalar, then
 - a. A(u + v) = Au + Av;
 - b. $A(c\mathbf{u}) = c(A\mathbf{u})$.
- **Proof:** For simplicity, take n = 3, $A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$, and \mathbf{u} , \mathbf{v} in \mathbf{R}^3 .
- For i = 1, 2, 3, let u_i and v_i be the *i*th entries in **u** and **v**, respectively.

PROPERTIES OF THE MATRIX-VECTOR PRODUCT Ax

• To prove statement (a), compute A(u + v) as a linear combination of the columns of A using the entries in u + v as weights

$$u + v \text{ as weights.}$$

$$A(u + v) = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$$

$$= (u_1 + v_1)a_1 + (u_2 + v_2)a_2 + (u_3 + v_3)a_3$$

$$= (u_1a_1 + u_2a_2 + u_3a_3) + (v_1a_1 + v_2a_2 + v_3a_3)$$

$$= Au + Av$$
Entries in $u + v$
Columns of A

PROPERTIES OF THE MATRIX-VECTOR PRODUCT Ax

• To prove statement (b), compute $A(c\mathbf{u})$ as a linear combination of the columns of A using the entries in $c\mathbf{u}$ as weights.

weights.

$$A(c\mathbf{u}) = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix} = (cu_1)\mathbf{a}_1 + (cu_2)\mathbf{a}_2 + (cu_3)\mathbf{a}_3$$

$$= c(u_1\mathbf{a}_1) + c(u_2\mathbf{a}_2) + c(u_3\mathbf{a}_3)$$

$$= c(u_1\mathbf{a}_1 + u_2\mathbf{a}_2 + u_3\mathbf{a}_3)$$

$$= c(A\mathbf{u})$$