This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

The Delphion Integrated View

	Get Now: 🔀 PDF More choices		Tools: Add to Work File: Create new Work File		
ſ	View: Expand Details INPADOC Jump to: Top	[2]	Go to: Derwent		

EP0638910A2: Sintered ceramic for stable high temperature-thermis

their method of manufacture[German][French]

PDerwent Title: Sinter ceramic for stable high-temperature thermistors - is in form of

substance system containing manganese with content of basic oxide

[Derwent Record]

EP European Patent Office (EPO) **PCountry**:

A2 Publ. of Application without search report i (See also:

EP0638910A3, EP0638910B1)

Feltz, Adalbert, Prof. Dr. habil.;

Kriegel, Ralph, Dr. rer. nat.; Schrank, Franz, Dr. Dipl.-Ing.;

SIEMENS MATSUSHITA COMPONENTS GmbH & CO KG

News, Profiles, Stocks and More about this company

Published / Filed: **1995-02-15** / 1994-07-11

> EP1994000110754

Number:

FIPC Code: H01C 7/04;

H01C7/04C2; FECLA Code:

1993-08-13 DE1993004327285 Priority Number:

> Sintered ceramic for stable high-temperature thermistors in the

> > form of a mixture containing manganese(IV) and a basic oxide.

♥INPADOC Show legal status actions Get Now: Family Legal Status Report

Legal Status:

Country:

DE FR GB NL [®] Designated

Family: Show known family members (at least 6)

References:

Go to Result Set: Forward references (2)

PDF	Patent	Pub.Date	Inventor	Assignee	Title
認	DE19942176C2		Feltz, Adalbert, Prof. Dr.		Verfahren zur Verhinderur Thermistordrift bei einem I Thermistor
豱	DE19942176A1		Feltz, Adalbert, Prof. Dr.		Sinterkeramik für NTC Hochtemperatur-Thermist

Other Abstract Info:

CHEMABS 125(14)182966Z DERC95-076533 DERABS C95-076533

Nominate this for the Gall-

© 1997-2004 Thomson

Research Subscriptions | Privacy Policy | Terms & Conditions | Site Map | Contact Us | F

① Veröffentlichungsnummer: 0 638 910 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 94110754.2

(51) Int. Cl.5: H01C 7/04

2 Anmeldetag: 11.07.94

Priorität: 13.08.93 DE 4327285

Veröffentlichungstag der Anmeldung: 15.02.95 Patentblatt 95/07

 Benannte Vertragsstaaten: DE FR GB NL

(71) Anmelder: SIEMENS MATSUSHITA **COMPONENTS GmbH & CO KG** Balanstrasse 73. Postfach 80 17 09 D-81617 München (DE)

Erfinder: Feltz, Adalbert, Prof. Dr. habil. **Burgeggerstrasse 50** A-8530 Deutschlandsberg (AT) Erfinder: Kriegel, Ralph, Dr. rer. nat. Neustädter Strasse 22 D-07768 Kahla (DE) Erfinder: Schrank, Franz, Dr. Dipl.-Ing.

Petersbergenstrasse 2 A-8042 Graz (AT)

(4) Vertreter: Fuchs, Franz-Josef, Dr.-Ing. et al. Postfach 22 13 17 D-80503 München (DE)

- Sinterkeramik für stabile Hochtemperatur-Thermistoren und Verfahren zu ihrer Herstellung.
- (F) Sinterkeramik für stabile Hochtemperatur-Thermistoren in Form eines Mangan (IV) und ein basisches Oxid enthaltenden Stoffgemisches.

Die vorliegende Erfindung betrifft eine Sinterkeramik für stabile Hochtemperatur-Thermistoren nach dem Oberbegriff des Patentanspruchs 1 sowie ein Verfahren zur Herstellung einer derartigen Sinterkeramik nach dem Oberbegriff des Patentanspruchs 1 bzw. 10.

Beispielsweise aus dem National Technical Report Vol. 34 (4) 24 - 34 (1988) bekannte technische Lösungen gehen von halbleitenden Oxiden der Übergangselemente und deren Kombinationen aus, die sich auf Patentanmeldungen stützen, z. B. im Fall des Systems Mn-Ni-Cr-Zn-Zr-Si-Oxid gemäß der EP-PS 0 149 681 und der US-PS 4 729 852 und 4 891 158 oder im Fall des Systems Mn-Ni-Cu-Fe-Dr-Oxid gemäß der US-PS 4 324 702. Zur Anwendung gelangen Mehrphasensysteme, ohne daß der Vorteil der Bildung einer einheitlichen Phase angestrebt wird. Der Nennwiderstand R₂₅ oder R₁₀₀ eines Thermistors, d. h. der elektrische Widerstand bei der Temperatur T = 25 °C bzw. 100 °C und die für die Empfindlichkeit der Temperaturmessung maßgebliche Materialkonstante B eines Thermistors gemäß der Beziehung

$$R(T) = R_0 e \times p(B/T) = R_{25/100} e \times p(\frac{1}{T} - \frac{1}{298} b z w. \frac{1}{373})$$

15

45

50

wird auf der Basis derartiger mehrphasiger Systeme durch eine entsprechende Reaktionsführung im Sinterprozeß auf variable Werte eingestellt, so daß bei einem gegebenen Versatz die Produktion eines bestimmten Sortiments von Thermistoren möglich ist. Diese Verfahrensweise schließt im allgemeinen eine beträchtliche Streubreite der Daten der Einzelexemplare und insbesondere von Charge zu Charge ein, da die den Thermistor kennzeichnenden elektrischen Parameter je nach dem erreichten Sintergefüge der Keramik verschiedene Werte annehmen. In derartigen realisierten Systemen ist die Gleichgewichtszusammensetzung der Phasen im allgemeinen temperaturabhängig, woraus sich negative Wirkungen auf die zeitliche Stabilität der elektrischen Parameter ergeben.

Es ist gezeigt worden, daß der reinphasige Spinell MgNi^{II}Mn^{IV}O₄ aufgrund einer energetisch stabilen Zuordnung der Übergangsmetallkationen zu den Gitterplätzen durch eine relativ hohe B-Konstante von etwa 4.600 K bei zugleich nicht zu geringem Nennwiderstand gekennzeichnet ist. Die Anwendung einer Keramik auf der Basis dieser halbleitenden Verbindung als Hochtemperatur-Thermistor ist in der älteren deutschen Patentanmeldung P 42 13 631.8 beschrieben. Die Änderung der Gleichgewichtszusammensetzung nebeneinander vorliegender Phasen entfällt in diesem System beim Aufheizen bis auf etwa 700 °C, so daß eine hohe zeitliche Stabilität und Reproduzierbarkeit der elektrischen Parameter erreicht wird. Oberhalb 720 °C tritt aufgrund der starken Polarisation der Oxidionen durch die Mn^{IV}-Kationen Zersetzung unter Sauerstoffabspaltung ein, so daß der Temperaturbereich der Anwendung der halbleitenden Keramik auf der Basis von MgNiMnO₄ begrenzt ist.

Der Erfindung liegt die Aufgabe zugrunde, eine Sinterkeramik mit großer B-Konstante bei zugleich hoher Einheitlichkeit und Phasenstabilität sowie ein Verfahren zu deren Herstellung anzugeben, um auf einer solchen Basis Thermistoren mit hoher Stabilität und Empfindlichkeit für einen Temperaturbereich bis 1.200 °C herstellen zu können.

Die Aufgabe wird bei einer Sinterkeramik sowie einem Verfahren der eingangs genannten Art erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 bzw. 10 gelöst.

Weiterbildungen der Erfindung sind Gegenstand entsprechender Unteransprüche.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen in Verbindung mit den Figuren der Zeichnung näher erläutert. Es zeigen:

- Figur 1 ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Sr₇ Mn₄ O₁₅-Keramik;
- Figur 2 ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Keramik der Zusammensetzung Sr_{6.99}Y_{0.01}Mn₄O₁₅;
- Figur 3 ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Keramik der Zusammensetzung Sr_{8.99}La_{0.01}Mn₄O₁₅; und
- Figur 4 ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Keramik der Zusammensetzung Sr₇Mn_{3.99}Nb_{0.01}O₁₅.

Der Kern der Erfindung besteht darin, durch den Einbau eines basischen Oxides, insbesondere von Strontiumoxid in Strontiummanganat die Oxidationsstufe +4 des Mangans in der Verbindung Sr₂Mn₄O₁₅ aufgrund des erhöhten Gehalts an basischem Oxid zu stabilisieren, die Temperatur der Sauerstoffabspaltung dadurch auf 1.200 °C heraufzusetzen und dabei zugleich Temperaturen bis 1.200 °C durch Widerstandsmessungen empfindlich bestimmbar zu machen.

Gemäß besonderer Ausführungsformen der Erfindung handelt es sich um eine Sinterkeramik auf der Basis $Sr_{7-x}M_xMn_4O_{15}$ oder $Sr_7M_xMn_4-xO_{15}$, worin H einen Dotierungsstoff bedeutet, der im erstgenannten

System Yttrium (Y), Lanthan (La) oder ein Element der seltenen Erden und im zweitgenannten System Scandium (Sc), Titan (Ti), Zirkon (Zr), Niob (Nb) oder Tantal (Ta) sein kann.

Der Parameter x ist im Grundsatz größer als Null. Er kann ggf. auch gleich Null sein, wobei im letzteren Fall der Dotierungsstoff entfällt.

Beim erfindungsgemäßen Verfahren zur Herstellung einer Sinterkeramik ist vorgesehen, SrCO₃ und Mn₂O₃ oder Mn₃O₄ im Molverhältnis der Verbindung Sr₇Mn₄O₁₅ in einem wäßrigen Schlicker zu mischen und nach dem Abfiltrieren und Trocknen durch 12-stündiges Erhitzen auf 1.000 °C umzusetzen. Nach der Aufbereitung der keramischen Pulvermischung zu einem rieselfähigen Granulat durch Verreiben mit einer 8%-igen Polyvinylalkohol-Lösung und Preßformgebung zu Tabletten, erfolgt die Kontaktierung durch Aufstreichen einer Platin(Pt)-Leitpaste. Die Sinterverdichtung wird zweckmäßig durch Erhitzen auf 1.350 °C, mehrstündiges Halten bei 1.550 °C und Temperung bei 1.200 °C unter Bildung der erfindungsgemäßen Keramik ausgeführt, deren einheitliche Struktur nach einer Röntgenstrukturanalyse durch eine zweidimensional-unendliche Verknüpfung von Mangan(IV)-Sauerstoffdoppeloktaedern [O_{1/2}O₂Mn^{IV}O₃Mn^{IV}OO_{2/2}]^{7 –} beschrieben werden kann {siehe dazu Z. anorg. allg. Chem. 617 (1992) 99}. Die Zuleitungen werden abschließend durch Bonden dünner Pt-Drähte auf den Elektroden fixiert. In einer anderen Ausführungsform gelingt die Bildung der halbleitenden Keramik in der Form von Perlen zwischen dünnen Platindrähten, die eingesintert werden.

Es ist erfindungsgemäß insbesondere vorgesehen, die elektrischen Parameter der Sr₇ Mn₄ O₁₅-Keramik durch gezielte Dotierung in den Reihen

$$Sr_{7-x}^{II}La_{x}^{III}Mn_{1-x}^{IV}Mn_{x}^{III}O_{15} \qquad (0 < x < 0,1)$$

$$Sr_{7-x}^{II}Y_{x}^{III}Mn_{1-x}^{IV}Mn_{x}^{III}O_{15} \qquad (0 < x < 0,1)$$

$$Sr_{7}^{II}Nb_{x}^{V}Mn_{x}^{III}Mn_{4-2x}^{IV}O_{15} \qquad (0 < x < 0,1)$$

$$Sr_{7}^{II}Mn_{4-x}^{IV}Sc_{x}^{III}O_{15-x/2} \qquad (0 < x < 0,1)$$

$$Sr_{7}^{II}Ti_{x}^{IV}Mn_{4-x}^{IV}O_{15} \qquad (0 < x < 1)$$

20

45

50

55

zu modifizieren, um die elektrische Leitfähigkeit und die B-Konstante auf bestimmte Wertebereiche einstellen zu können. Dazu wird die aus SrCO₃ und Mn₂O₃ bzw. Mn₃O₄ bestehende Ausgangsmischung entsprechend der für einen bestimmten x-Wert gegebenen Zusammensetzung zunächst ohne den Zusatz der Dotierkomponente durch Mischung in einem wäßrigen Schlicker zubereitet und nach dem Abfiltrieren durch Erhitzen auf 1.000 °C kalziniert. Man suspendiert das Umsetzungsprodukt in Wasser und komplettiert die Zusammensetzung durch den Zusatz der Dotierkomponente in Form einer Suspension von frisch gefälltem Lanthan-, Yttrium-, Scandium-, Niob- bzw. Titan-oxidhydroxid. Die weitere Verarbeitung erfolgt wie für die undotierte Sr₇Mn₄O₁₅-Keramik beschrieben.

Die Erfindung wird an folgenden Ausführungsbeispielen weiter erläutert:

Figur 1 zeigt ein Diagramm der spezifischen Leitfähigkeit σ als Funktion der Temperatur T für eine undotierte Sr₇Mn₄O₁₅-Keramik. Die Eignung für Thermistor-Anwendungen im Bereich hoher Temperatur wird durch die mehrfache Wiederholung der Messung, die Reproduzierbarkeit durch die Vermessung mehrerer Exemplare belegt. Eine Drift der elektrischen Parameter ist nicht erkennbar. Die Linearität über den Temperaturbereich 600 bis 1.200 °C kann als Eigenleitfähigkeit der Verbindung interpretiert, der flachere Verlauf im Temperaturbereich 25 bis 600 °C auf Defekte zurückgeführt werden.

Figur 2 zeigt ein Diagramm der spezifischen Leitfähigkeit O als Funktion der Temperatur T für eine mit Y^{III}-Kationen dotierte Keramik der Zusammensetzung

Erwartungsgemäß wird hier ein für die vorgenommene Dotierung typischer geringer Anstieg festgestellt. Der im Bereich 25 °C bis 600 °C etwas flachere Verlauf ist auch hier auf Defekte zurückzuführen, die aus dem Herstellungsprozeß resultieren.

EP 0 638 910 A2

Figur 3 zeigt den zu Figur 2 analogen Kurvenverlauf für eine Keramik der homogenen Zusammensetzung

$$Sr_{6.99} La_{0.01}^{III} Mn_{0.01}^{III} Mn_{3.99}^{IV} O_4$$
.

Figur 4 zeigt ein Diagramm der spezifischen Leitfähigkeit σ als Funktion der Temperatur T für eine mit Niob dotierte Keramik der Zusammensetzung

$$Sr_7Mn_{3.98}^{IV}Nb_{0.01}^{V}Mn_{0.01}^{III}O_4$$
.

Die elektrische Leitfähigkeit einer Thermistor-Keramik dieser Zusammensetzung ist im Bereich der Nenntemperatur von 25 °C bzw. 100 °C signifikant erhöht und die B-Konstante entsprechend herabgemindert. Deren Wert ist für Anwendungen hinreichend, um Temperaturmessungen im gesamten Temperaturbereich von Raumtemperatur bis 1.200 °C ausführen zu können.

Die Eigenschaften von Thermistorproben auf der Basis einer reinen bzw. durch die genannten Dotierkomponenten modifizierten $Sr_7 Mn_4 O_{15}$ -Keramik sind in der nachfolgenden Tabelle angegeben.

Tabelle

5

10

15

20

25

30

35

40

45

Eigenschaften von Thermistorproben mit einem Durchmesser d und einer Höhe h

Zusammensetzung	$\rho_{rel} = \frac{\rho}{\rho_{tb}}$	Almossun- gen d/mm h/mm	σ _{373 K} s*cm ⁻¹	_	B ₂₅ -600 / K B ₆₀₀ -1.200 / K
Sr7 M n4 O15	94,3%	3,22 1,50	1,1*10 ⁻⁷	0,108	12.350 4.860
Sr6.99 Y0.01 Mn4 O15	91,8%	3,31 1,47	1,26*10 ⁻⁷	0,100	7.890 5.230
Sr6.99 La0.01 Mn4 O15	89,2%	3,34	2,15*10 ⁻⁷	0,100	6.830 5,980
Sr7 N b _{0.01} Mn _{3.99} O ₁₅	77,4%	3,25 1,48	2,15*10 ⁻⁶	0,147	5.315 (25-1.200)

Patentansprüche

- Sinterkeramik für stabile Hochtemperatur-Thermistoren in Form eines Mangan (IV) enthaltenden Stoffsystems, gekennzelchnet durch einen Gehalt an basischem Oxid.
 - 2. Sinterkeramik nach Anspruch 1, dadurch gekennzeichnet, daß als basisches Oxid Strontiumoxid vorgesehen ist.
 - Sinterkeramik nach Anspruch 1 und 2, gekennzeichnet durch das Stoffsystem Sr_{7-x}M_xMn₄O₁₅ worin M einen Dotierungsstoff bedeutet.

55

EP 0 638 910 A2

- 4. Sinterkeramik nach Anspruch 3, dadurch gekennzelchnet, daß als Dotierungsstoff Yttrium oder Lanthan vorgesehen ist.
- Sinterkeramik nach Anspruch 3, dadurch gekennzelchnet, daß als Dotierungsstoff ein Element der seltenen Erden vorgesehen ist.
 - Sinterkeramik nach Anspruch 1 und 2, gekennzeichnet durch das Stoffsystem Sr₇M_xMn_{4-x}O₁₅, worin M einen Dotierungsstoff bedeutet.
- 7. Sinterkeramik nach Anspruch 6, dadurch gekennzelchnet, daß als Dotierungsstoff Scandium, Titan, Zircon, Niob oder Tantal vorgesehen ist.
 - 8. Sinterkeramik nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß x > 0 ist.
- 9. Sinterkeramik nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß x = 0 ist.
 - 10. Verfahren zur Herstellung einer Sinterkeramik nach einem der Ansprüche 1 bis 9, dadurch gekennzelchnet, daß eine Mischung aus SrCO₃ und Mn₂O₃ oder Mn₃O₄ kalziniert wird, einer wässrigen Suspension der kalzinierten Oxidmischung ein Oxidhydroxid eines Dotierungsstoffes in der Molmenge x zugesetzt wird und danach eine Preßverdichtung des Stoffsystems durchgeführt wird.
 - 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß aus dem Stoffsystem durch Preßformung Thermistor-Tabletten hergestellt und die Tabletten bei einer Temperatur im Bereich von 1.550 °C gesintert werden.

5

20

25

30

35

40

45

50

55

