Practical Machine Learning Project

Marion Joncheres

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit, it is now possible to collect a large amount of data about personal activity relatively inexpensively. These devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly. That people regularly quantify how much of a particular activity they do, but they rarely quantify how well they do it. More information is available here: http://groupware.les.inf.puc-rio.br/har. We will use the datafrom accelerometers placed on differents body parts of 6 participants who perform barbell lifts. They can do it correctly and incorrectly, in 5 different ways (the "classe" variable): according to specifications ("A"), throwing the elbows to the front ("B"), lifting dumbbell only halfway ("C"), lowering dumbbell only halfway ("D"), throwing hips to the front ("E"). Our goal is to build a prediction model to predict the "classe" for 20 different test cases.

Data pre-processing and cleaning

Load required packages

```
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2

library(rpart)
library(rpart.plot)
library(randomForest)

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

##

## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':
##

## margin

library(knitr)
```

Load and read data

```
dataset_url <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
download.file(dataset_url, "pml-training.csv")
training = read.csv("pml-training.csv")
dataset_url <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
download.file(dataset_url, "pml-testing.csv")
testing = read.csv("pml-testing.csv")
dim(training); dim(testing)</pre>
```

```
## [1] 19622 160
## [1] 20 160
```

Split training set between subtraining and subtesting sets, to keep the testing data for quiz prediction

```
set.seed(3598) # For reproducibile purpose
inTrain <- createDataPartition(training$classe, p=0.6, list=FALSE)
subtraining <- training[inTrain, ]
subtesting <- training[-inTrain, ]</pre>
```

Datasets have 160 columns. We can remove some of them, based on unuseful identification columns (5 first ones), columns with to many N/A values (eg > 80%) and Near Zero Variance variables.

```
# remove first 5 columns of subtraining (which only contains figures similar to index)
subtraining <- subtraining[, -c(1:5)]
# remove columns with more than 80% of N/A values
NAvalues <- sapply(subtraining, function(x) mean(is.na(x))) > 0.80
subtraining <- subtraining[, NAvalues==FALSE]
# remove Near Zero Variance variables
NZV <- nearZeroVar(subtraining)
subtraining <- subtraining[, -NZV]
dim(subtraining)</pre>
```

```
## [1] 11776 54
```

We are down to 54 columns in the training set. We need to replicate this cleaning to subtesting and testing sets, so we just subset and keep the same columns than in the subtraining set.

```
colsubtraining <- colnames(subtraining)
subclasse <- colnames(subtraining[, -54]) # remove the classe column (which is the last one)
subtesting <- subtesting[colsubtraining] # only keep variables in subtesting that are in subtraining testing <- testing[subclasse] # only keep variables in testing that are in subtraining less subtesting$classe<- as.factor(subtesting$classe) # classe variable should be a factor variable subtraining$classe<- as.factor(subtraining$classe) # classe variable should be a factor variable
```

We can check the number of columns in these two datasets:

```
dim(subtesting)
## [1] 7846 54
```

```
dim(testing)
```

```
## [1] 20 53
```

We are now ready to build the model.

Prediction Model

We'll use different algorythme to find out which one is the most efficient based on accuracy level. We started with random forest, one of the most well-known and efficient. However, it seems that we have not enough computing power and it took ages to run, illustrating what was said during the course. So we tried with the decision tree instead.

1. Decision tree

```
mod_dt <- rpart(classe ~ ., data=subtraining, method="class")
rpart.plot(mod_dt)</pre>
```

= A = B = C = D


```
predict_dt <- predict(mod_dt, newdata=subtesting, type = "class")
cm_dt <- confusionMatrix(predict_dt, subtesting$classe)
cm_dt</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
                                       Е
## Prediction
                  Α
                       В
                             С
                                  D
##
            A 1928
                     286
                            10
                                136
                                      99
            В
                 41
##
                     754
                            47
                                 24
                                     131
##
            C
                 29
                     166 1121
                                187
                                     123
##
            D
                207
                     238
                          107
                                868
                                     166
##
            Ε
                 27
                      74
                            83
                                 71
                                     923
##
## Overall Statistics
##
##
                   Accuracy: 0.713
##
                     95% CI: (0.7028, 0.723)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.6364
##
##
    Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
                         Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                           0.8638
                                     0.4967
                                               0.8194
                                                        0.6750
                                                                  0.6401
## Specificity
                            0.9054
                                     0.9616
                                               0.9220
                                                        0.8905
                                                                  0.9602
## Pos Pred Value
                                     0.7563
                                               0.6894
                                                        0.5473
                                                                  0.7835
                            0.7841
## Neg Pred Value
                            0.9436
                                     0.8885
                                               0.9603
                                                        0.9332
                                                                  0.9222
## Prevalence
                            0.2845
                                     0.1935
                                               0.1744
                                                        0.1639
                                                                  0.1838
## Detection Rate
                            0.2457
                                     0.0961
                                               0.1429
                                                        0.1106
                                                                  0.1176
## Detection Prevalence
                            0.3134
                                     0.1271
                                               0.2072
                                                         0.2021
                                                                  0.1501
## Balanced Accuracy
                            0.8846
                                     0.7292
                                               0.8707
                                                        0.7828
                                                                  0.8001
  2. Global Boosted Regression Models (GBM)
mod_gbm <- train(classe ~ ., data = subtraining, method = "gbm", verbose="FALSE")</pre>
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : NAs introduits lors de la conversion automatique
## Iter
          TrainDeviance
                            ValidDeviance
                                             StepSize
                                                         Improve
##
        1
                  1.6094
                                               0.1000
                                                          0.1293
                                      nan
##
        2
                                               0.1000
                                                          0.0891
                  1.5239
                                      nan
        3
##
                  1.4662
                                               0.1000
                                                          0.0693
                                      nan
##
        4
                  1.4215
                                               0.1000
                                                          0.0525
                                      nan
##
        5
                  1.3863
                                               0.1000
                                                          0.0538
                                      nan
        6
##
                                               0.1000
                  1.3511
                                                         0.0407
                                      nan
##
        7
                                               0.1000
                                                          0.0403
                  1.3242
                                      nan
##
                  1.2990
        8
                                               0.1000
                                                         0.0341
                                      nan
##
        9
                                               0.1000
                                                         0.0384
                  1.2773
                                      nan
##
       10
                  1.2519
                                               0.1000
                                                         0.0297
                                      nan
##
       20
                                               0.1000
                                                         0.0223
                  1.0887
                                      nan
```

nan

0.1000

0.0106

##

40

0.9043

```
##
       60
                 0.7935
                                             0.1000
                                                       0.0065
                                     nan
##
                 0.7089
                                             0.1000
                                                       0.0050
       80
                                     nan
##
      100
                 0.6421
                                             0.1000
                                                       0.0038
                                     nan
##
      120
                 0.5893
                                             0.1000
                                                       0.0025
                                     nan
##
      140
                 0.5419
                                     nan
                                             0.1000
                                                       0.0021
##
      150
                 0.5213
                                             0.1000
                                                       0.0027
                                     nan
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1962
##	2	1.4854	nan	0.1000	0.1314
##	3	1.4016	nan	0.1000	0.1050
##	4	1.3322	nan	0.1000	0.0896
##	5	1.2761	nan	0.1000	0.0834
##	6	1.2232	nan	0.1000	0.0615
##	7	1.1839	nan	0.1000	0.0649
##	8	1.1430	nan	0.1000	0.0505
##	9	1.1113	nan	0.1000	0.0599
##	10	1.0754	nan	0.1000	0.0441
##	20	0.8501	nan	0.1000	0.0219
##	40	0.6221	nan	0.1000	0.0109
##	60	0.4871	nan	0.1000	0.0063
##	80	0.3965	nan	0.1000	0.0057
##	100	0.3263	nan	0.1000	0.0028
##	120	0.2733	nan	0.1000	0.0041
##	140	0.2277	nan	0.1000	0.0031
##	150	0.2073	nan	0.1000	0.0012

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2400
##	2	1.4576	nan	0.1000	0.1646
##	3	1.3509	nan	0.1000	0.1278
##	4	1.2701	nan	0.1000	0.1094
##	5	1.2005	nan	0.1000	0.0933
##	6	1.1427	nan	0.1000	0.0807
##	7	1.0920	nan	0.1000	0.0799
##	8	1.0424	nan	0.1000	0.0715
##	9	0.9984	nan	0.1000	0.0592
##	10	0.9615	nan	0.1000	0.0581
##	20	0.6926	nan	0.1000	0.0220
##	40	0.4439	nan	0.1000	0.0134
##	60	0.3175	nan	0.1000	0.0065
##	80	0.2378	nan	0.1000	0.0041
##	100	0.1874	nan	0.1000	0.0026
##	120	0.1494	nan	0.1000	0.0039
##	140	0.1169	nan	0.1000	0.0020
##	150	0.1067	nan	0.1000	0.0014

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1289
##	2	1.5238	nan	0.1000	0.0931
##	3	1.4645	nan	0.1000	0.0661
##	4	1.4200	nan	0.1000	0.0577
##	5	1.3825	nan	0.1000	0.0521
##	6	1.3490	nan	0.1000	0.0372
##	7	1.3237	nan	0.1000	0.0391
##	8	1.2978	nan	0.1000	0.0414
##	9	1.2725	nan	0.1000	0.0365
##	10	1.2493	nan	0.1000	0.0329
##	20	1.0852	nan	0.1000	0.0195
##	40	0.9019	nan	0.1000	0.0110
##	60	0.7881	nan	0.1000	0.0078
##	80	0.7050	nan	0.1000	0.0050
##	100	0.6406	nan	0.1000	0.0031
##	120	0.5867	nan	0.1000	0.0036
##	140	0.5395	nan	0.1000	0.0021
##	150	0.5195	nan	0.1000	0.0029

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1874
##	2	1.4884	nan	0.1000	0.1392
##	3	1.3973	nan	0.1000	0.1008
##	4	1.3323	nan	0.1000	0.0894
##	5	1.2753	nan	0.1000	0.0735
##	6	1.2287	nan	0.1000	0.0741
##	7	1.1825	nan	0.1000	0.0586
##	8	1.1453	nan	0.1000	0.0519
##	9	1.1119	nan	0.1000	0.0541
##	10	1.0782	nan	0.1000	0.0436
##	20	0.8425	nan	0.1000	0.0287
##	40	0.6024	nan	0.1000	0.0143
##	60	0.4756	nan	0.1000	0.0102
##	80	0.3853	nan	0.1000	0.0059
##	100	0.3187	nan	0.1000	0.0048
##	120	0.2631	nan	0.1000	0.0044
##	140	0.2208	nan	0.1000	0.0018
##	150	0.2021	nan	0.1000	0.0015

## I1	ter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2308
##	2	1.4611	nan	0.1000	0.1702
##	3	1 3530	nan	0 1000	0 1318

```
0.1000
                                                            0.1142
##
                   1.2699
                                        nan
##
        5
                   1.1979
                                                 0.1000
                                                            0.0872
                                        nan
                                                            0.0820
##
        6
                   1.1420
                                        nan
                                                 0.1000
##
        7
                   1.0906
                                                 0.1000
                                                            0.0766
                                        nan
##
        8
                   1.0434
                                        nan
                                                 0.1000
                                                            0.0793
##
        9
                   0.9946
                                                 0.1000
                                                            0.0544
                                        nan
##
       10
                   0.9588
                                                 0.1000
                                                            0.0580
                                        nan
       20
                   0.6890
                                                            0.0278
##
                                        nan
                                                 0.1000
##
       40
                   0.4476
                                        nan
                                                 0.1000
                                                            0.0149
##
       60
                                                            0.0083
                   0.3171
                                        {\tt nan}
                                                 0.1000
##
       80
                   0.2344
                                                 0.1000
                                                            0.0047
                                        {\tt nan}
##
       100
                   0.1812
                                                 0.1000
                                                            0.0033
                                        nan
##
      120
                                                 0.1000
                                                            0.0026
                   0.1437
                                        {\tt nan}
##
       140
                                                 0.1000
                                                            0.0012
                   0.1122
                                        nan
##
      150
                   0.1019
                                                 0.1000
                                                            0.0019
                                        {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1328
##	2	1.5206	nan	0.1000	0.0889
##	3	1.4612	nan	0.1000	0.0683
##	4	1.4170	nan	0.1000	0.0573
##	5	1.3799	nan	0.1000	0.0532
##	6	1.3455	nan	0.1000	0.0405
##	7	1.3192	nan	0.1000	0.0413
##	8	1.2938	nan	0.1000	0.0348
##	9	1.2710	nan	0.1000	0.0364
##	10	1.2461	nan	0.1000	0.0333
##	20	1.0786	nan	0.1000	0.0193
##	40	0.8972	nan	0.1000	0.0091
##	60	0.7856	nan	0.1000	0.0074
##	80	0.7034	nan	0.1000	0.0057
##	100	0.6388	nan	0.1000	0.0036
##	120	0.5840	nan	0.1000	0.0032
##	140	0.5370	nan	0.1000	0.0028
##	150	0.5150	nan	0.1000	0.0031

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1921
##	2	1.4858	nan	0.1000	0.1371
##	3	1.3977	nan	0.1000	0.1072
##	4	1.3293	nan	0.1000	0.0965
##	5	1.2680	nan	0.1000	0.0770
##	6	1.2193	nan	0.1000	0.0690
##	7	1.1748	nan	0.1000	0.0665
##	8	1.1333	nan	0.1000	0.0530
##	9	1.0997	nan	0.1000	0.0463
##	10	1.0696	nan	0.1000	0.0576

```
##
       20
                 0.8407
                                             0.1000
                                                       0.0321
                                     nan
##
       40
                 0.6139
                                             0.1000
                                                       0.0087
                                     nan
##
       60
                 0.4808
                                             0.1000
                                                       0.0110
                                     nan
##
       80
                 0.3880
                                             0.1000
                                                       0.0071
                                     nan
##
      100
                 0.3169
                                     nan
                                             0.1000
                                                       0.0031
##
      120
                 0.2654
                                             0.1000
                                                       0.0034
                                     nan
                                                       0.0022
##
      140
                 0.2270
                                     nan
                                             0.1000
      150
                 0.2077
                                             0.1000
                                                       0.0033
##
                                     nan
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2479
##	2	1.4538	nan	0.1000	0.1650
##	3	1.3480	nan	0.1000	0.1275
##	4	1.2673	nan	0.1000	0.1069
##	5	1.2002	nan	0.1000	0.0965
##	6	1.1412	nan	0.1000	0.0886
##	7	1.0860	nan	0.1000	0.0783
##	8	1.0368	nan	0.1000	0.0835
##	9	0.9866	nan	0.1000	0.0583
##	10	0.9503	nan	0.1000	0.0590
##	20	0.7006	nan	0.1000	0.0250
##	40	0.4492	nan	0.1000	0.0097
##	60	0.3257	nan	0.1000	0.0071
##	80	0.2431	nan	0.1000	0.0052
##	100	0.1882	nan	0.1000	0.0020
##	120	0.1451	nan	0.1000	0.0019
##	140	0.1174	nan	0.1000	0.0016
##	150	0.1059	nan	0.1000	0.0011

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1288
##	2	1.5256	nan	0.1000	0.0851
##	3	1.4699	nan	0.1000	0.0660
##	4	1.4274	nan	0.1000	0.0510
##	5	1.3941	nan	0.1000	0.0539
##	6	1.3604	nan	0.1000	0.0369
##	7	1.3358	nan	0.1000	0.0406
##	8	1.3100	nan	0.1000	0.0335
##	9	1.2864	nan	0.1000	0.0291
##	10	1.2677	nan	0.1000	0.0343
##	20	1.1043	nan	0.1000	0.0198
##	40	0.9215	nan	0.1000	0.0088
##	60	0.8113	nan	0.1000	0.0067
##	80	0.7293	nan	0.1000	0.0048
##	100	0.6630	nan	0.1000	0.0041
##	120	0.6088	nan	0.1000	0.0037
##	140	0.5604	nan	0.1000	0.0031
##	150	0.5383	nan	0.1000	0.0026

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
				-	-
##	1	1.6094	nan	0.1000	0.1890
##	2	1.4899	nan	0.1000	0.1259
##	3	1.4086	nan	0.1000	0.1048
##	4	1.3417	nan	0.1000	0.0856
##	5	1.2872	nan	0.1000	0.0775
##	6	1.2380	nan	0.1000	0.0694
##	7	1.1940	nan	0.1000	0.0565
##	8	1.1582	nan	0.1000	0.0480
##	9	1.1278	nan	0.1000	0.0414
##	10	1.0991	nan	0.1000	0.0505
##	20	0.8737	nan	0.1000	0.0340
##	40	0.6410	nan	0.1000	0.0090
##	60	0.5014	nan	0.1000	0.0088
##	80	0.4039	nan	0.1000	0.0054
##	100	0.3353	nan	0.1000	0.0039
##	120	0.2803	nan	0.1000	0.0024
##	140	0.2363	nan	0.1000	0.0026
##	150	0.2165	nan	0.1000	0.0010

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2274
##	2	1.4624	nan	0.1000	0.1611
##	3	1.3625	nan	0.1000	0.1334
##	4	1.2803	nan	0.1000	0.1046
##	5	1.2144	nan	0.1000	0.1003
##	6	1.1500	nan	0.1000	0.0796
##	7	1.0982	nan	0.1000	0.0686
##	8	1.0557	nan	0.1000	0.0814
##	9	1.0064	nan	0.1000	0.0651
##	10	0.9666	nan	0.1000	0.0588
##	20	0.7006	nan	0.1000	0.0244
##	40	0.4557	nan	0.1000	0.0117
##	60	0.3340	nan	0.1000	0.0053
##	80	0.2523	nan	0.1000	0.0055
##	100	0.1967	nan	0.1000	0.0037
##	120	0.1529	nan	0.1000	0.0017
##	140	0.1234	nan	0.1000	0.0013
##	150	0.1128	nan	0.1000	0.0019

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1220
##	2	1.5247	nan	0.1000	0.0913
##	3	1 4653	nan	0 1000	0 0683

```
0.1000
                                                           0.0510
##
                   1.4205
                                       nan
##
        5
                   1.3857
                                                0.1000
                                                           0.0525
                                       nan
                   1.3529
                                                           0.0414
##
        6
                                       nan
                                                0.1000
##
        7
                                                0.1000
                                                           0.0389
                   1.3264
                                       nan
##
        8
                   1.3014
                                       nan
                                                0.1000
                                                           0.0365
##
        9
                   1.2782
                                                0.1000
                                                           0.0335
                                       nan
##
       10
                   1.2571
                                                0.1000
                                                           0.0301
                                       nan
       20
                                                           0.0189
##
                   1.0909
                                       nan
                                                0.1000
##
       40
                  0.9104
                                       nan
                                                0.1000
                                                           0.0093
##
       60
                                                           0.0056
                  0.7964
                                       {\tt nan}
                                                0.1000
##
       80
                   0.7125
                                                0.1000
                                                           0.0041
                                       {\tt nan}
##
      100
                   0.6462
                                                0.1000
                                                           0.0040
                                       nan
##
      120
                                                0.1000
                                                           0.0029
                   0.5928
                                       nan
##
      140
                   0.5448
                                                0.1000
                                                           0.0029
                                       nan
##
      150
                   0.5249
                                                0.1000
                                                           0.0029
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1924
##	2	1.4860	nan	0.1000	0.1328
##	3	1.3998	nan	0.1000	0.1049
##	4	1.3326	nan	0.1000	0.0889
##	5	1.2758	nan	0.1000	0.0681
##	6	1.2311	nan	0.1000	0.0671
##	7	1.1891	nan	0.1000	0.0716
##	8	1.1461	nan	0.1000	0.0579
##	9	1.1099	nan	0.1000	0.0612
##	10	1.0726	nan	0.1000	0.0431
##	20	0.8543	nan	0.1000	0.0244
##	40	0.6184	nan	0.1000	0.0111
##	60	0.4822	nan	0.1000	0.0063
##	80	0.3892	nan	0.1000	0.0078
##	100	0.3206	nan	0.1000	0.0035
##	120	0.2655	nan	0.1000	0.0059
##	140	0.2231	nan	0.1000	0.0020
##	150	0.2066	nan	0.1000	0.0016

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2400
##	2	1.4561	nan	0.1000	0.1662
##	3	1.3527	nan	0.1000	0.1289
##	4	1.2717	nan	0.1000	0.1025
##	5	1.2059	nan	0.1000	0.0891
##	6	1.1480	nan	0.1000	0.0798
##	7	1.0974	nan	0.1000	0.0689
##	8	1.0528	nan	0.1000	0.0806
##	9	1.0044	nan	0.1000	0.0770
##	10	0.9584	nan	0.1000	0.0641

```
##
       20
                 0.6818
                                            0.1000
                                                      0.0269
                                    nan
##
       40
                 0.4427
                                            0.1000
                                                      0.0083
                                    nan
##
       60
                 0.3195
                                            0.1000
                                                      0.0056
                                    nan
##
       80
                 0.2364
                                            0.1000
                                                      0.0037
                                    nan
                                                      0.0027
##
      100
                 0.1827
                                    nan
                                            0.1000
##
      120
                 0.1434
                                            0.1000
                                                      0.0030
                                    nan
                                                      0.0017
##
      140
                 0.1157
                                    nan
                                            0.1000
      150
                 0.1042
                                            0.1000
                                                      0.0012
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1252
##	2	1.5262	nan	0.1000	0.0816
##	3	1.4706	nan	0.1000	0.0652
##	4	1.4266	nan	0.1000	0.0519
##	5	1.3917	nan	0.1000	0.0491
##	6	1.3593	nan	0.1000	0.0451
##	7	1.3312	nan	0.1000	0.0347
##	8	1.3091	nan	0.1000	0.0423
##	9	1.2813	nan	0.1000	0.0325
##	10	1.2610	nan	0.1000	0.0317
##	20	1.0980	nan	0.1000	0.0192
##	40	0.9189	nan	0.1000	0.0099
##	60	0.8062	nan	0.1000	0.0066
##	80	0.7250	nan	0.1000	0.0056
##	100	0.6605	nan	0.1000	0.0023
##	120	0.6058	nan	0.1000	0.0030
##	140	0.5601	nan	0.1000	0.0023
##	150	0.5403	nan	0.1000	0.0016

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1869
##	2	1.4858	nan	0.1000	0.1261
##	3	1.4040	nan	0.1000	0.1012
##	4	1.3387	nan	0.1000	0.0854
##	5	1.2838	nan	0.1000	0.0703
##	6	1.2375	nan	0.1000	0.0742
##	7	1.1908	nan	0.1000	0.0587
##	8	1.1533	nan	0.1000	0.0546
##	9	1.1184	nan	0.1000	0.0522
##	10	1.0861	nan	0.1000	0.0403
##	20	0.8626	nan	0.1000	0.0228
##	40	0.6416	nan	0.1000	0.0227
##	60	0.4959	nan	0.1000	0.0089
##	80	0.4083	nan	0.1000	0.0048
##	100	0.3324	nan	0.1000	0.0030
##	120	0.2792	nan	0.1000	0.0028
##	140	0.2332	nan	0.1000	0.0026
##	150	0.2165	nan	0.1000	0.0019

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
			validbeviance	-	-
##	1	1.6094	nan	0.1000	0.2343
##	2	1.4609	nan	0.1000	0.1580
##	3	1.3606	nan	0.1000	0.1274
##	4	1.2811	nan	0.1000	0.1043
##	5	1.2152	nan	0.1000	0.0966
##	6	1.1538	nan	0.1000	0.0849
##	7	1.0999	nan	0.1000	0.0710
##	8	1.0550	nan	0.1000	0.0646
##	9	1.0134	nan	0.1000	0.0518
##	10	0.9802	nan	0.1000	0.0649
##	20	0.7051	nan	0.1000	0.0222
##	40	0.4677	nan	0.1000	0.0096
##	60	0.3365	nan	0.1000	0.0078
##	80	0.2558	nan	0.1000	0.0024
##	100	0.2011	nan	0.1000	0.0023
##	120	0.1576	nan	0.1000	0.0034
##	140	0.1273	nan	0.1000	0.0018
##	150	0.1154	nan	0.1000	0.0015

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1241
##	2	1.5242	nan	0.1000	0.0862
##	3	1.4663	nan	0.1000	0.0670
##	4	1.4228	nan	0.1000	0.0524
##	5	1.3887	nan	0.1000	0.0521
##	6	1.3556	nan	0.1000	0.0420
##	7	1.3278	nan	0.1000	0.0350
##	8	1.3048	nan	0.1000	0.0326
##	9	1.2834	nan	0.1000	0.0403
##	10	1.2562	nan	0.1000	0.0298
##	20	1.0940	nan	0.1000	0.0200
##	40	0.9139	nan	0.1000	0.0094
##	60	0.8025	nan	0.1000	0.0060
##	80	0.7194	nan	0.1000	0.0050
##	100	0.6526	nan	0.1000	0.0042
##	120	0.5970	nan	0.1000	0.0029
##	140	0.5491	nan	0.1000	0.0033
##	150	0.5291	nan	0.1000	0.0027

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1909
##	2	1.4871	nan	0.1000	0.1292
##	3	1 4032	nan	0 1000	0 1048

```
0.1000
                                                           0.0819
##
                  1.3354
                                       nan
##
        5
                  1.2825
                                                0.1000
                                                           0.0795
                                       nan
                                                           0.0707
##
        6
                  1.2319
                                       nan
                                                0.1000
##
        7
                  1.1869
                                                0.1000
                                                           0.0691
                                       nan
##
        8
                  1.1431
                                       nan
                                                0.1000
                                                           0.0534
##
        9
                  1.1089
                                                0.1000
                                                           0.0545
                                       nan
##
       10
                  1.0753
                                                0.1000
                                                           0.0348
                                       nan
       20
                  0.8581
                                                           0.0209
##
                                       nan
                                                0.1000
##
       40
                  0.6301
                                       nan
                                                0.1000
                                                           0.0139
##
       60
                                                           0.0061
                  0.4935
                                       {\tt nan}
                                                0.1000
##
       80
                  0.4000
                                                0.1000
                                                           0.0062
                                       {\tt nan}
##
      100
                  0.3307
                                                0.1000
                                                           0.0043
                                       nan
##
      120
                                                0.1000
                                                           0.0023
                  0.2789
                                       nan
##
      140
                  0.2351
                                                0.1000
                                                           0.0012
                                       nan
##
      150
                  0.2158
                                                0.1000
                                                           0.0022
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2350
##	2	1.4605	nan	0.1000	0.1659
##	3	1.3567	nan	0.1000	0.1311
##	4	1.2729	nan	0.1000	0.1117
##	5	1.2017	nan	0.1000	0.0941
##	6	1.1439	nan	0.1000	0.0829
##	7	1.0919	nan	0.1000	0.0660
##	8	1.0491	nan	0.1000	0.0744
##	9	1.0036	nan	0.1000	0.0698
##	10	0.9595	nan	0.1000	0.0620
##	20	0.6904	nan	0.1000	0.0220
##	40	0.4468	nan	0.1000	0.0093
##	60	0.3248	nan	0.1000	0.0080
##	80	0.2478	nan	0.1000	0.0040
##	100	0.1966	nan	0.1000	0.0023
##	120	0.1575	nan	0.1000	0.0039
##	140	0.1286	nan	0.1000	0.0016
##	150	0.1155	nan	0.1000	0.0026

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1340
##	2	1.5219	nan	0.1000	0.0885
##	3	1.4631	nan	0.1000	0.0658
##	4	1.4190	nan	0.1000	0.0551
##	5	1.3830	nan	0.1000	0.0539
##	6	1.3479	nan	0.1000	0.0453
##	7	1.3180	nan	0.1000	0.0343
##	8	1.2958	nan	0.1000	0.0355
##	9	1.2722	nan	0.1000	0.0335
##	10	1.2512	nan	0.1000	0.0329

```
##
       20
                 1.0893
                                             0.1000
                                                       0.0173
                                    nan
##
       40
                 0.9093
                                             0.1000
                                                       0.0115
                                    nan
##
       60
                 0.7952
                                             0.1000
                                                       0.0079
                                    nan
##
       80
                 0.7117
                                             0.1000
                                                       0.0062
                                    nan
                                                       0.0029
##
      100
                 0.6433
                                    nan
                                             0.1000
##
      120
                 0.5872
                                             0.1000
                                                       0.0032
                                    nan
                                                       0.0022
##
      140
                 0.5401
                                    nan
                                             0.1000
      150
                 0.5187
                                             0.1000
                                                       0.0025
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1936
##	2	1.4815	nan	0.1000	0.1352
##	3	1.3955	nan	0.1000	0.1064
##	4	1.3274	nan	0.1000	0.0835
##	5	1.2728	nan	0.1000	0.0705
##	6	1.2278	nan	0.1000	0.0661
##	7	1.1857	nan	0.1000	0.0605
##	8	1.1475	nan	0.1000	0.0576
##	9	1.1115	nan	0.1000	0.0525
##	10	1.0795	nan	0.1000	0.0467
##	20	0.8334	nan	0.1000	0.0228
##	40	0.6088	nan	0.1000	0.0135
##	60	0.4813	nan	0.1000	0.0078
##	80	0.3859	nan	0.1000	0.0044
##	100	0.3140	nan	0.1000	0.0058
##	120	0.2637	nan	0.1000	0.0024
##	140	0.2243	nan	0.1000	0.0025
##	150	0.2074	nan	0.1000	0.0015

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2398
##	2	1.4553	nan	0.1000	0.1689
##	3	1.3500	nan	0.1000	0.1233
##	4	1.2716	nan	0.1000	0.1109
##	5	1.2019	nan	0.1000	0.0971
##	6	1.1423	nan	0.1000	0.0712
##	7	1.0953	nan	0.1000	0.0838
##	8	1.0428	nan	0.1000	0.0718
##	9	0.9990	nan	0.1000	0.0574
##	10	0.9627	nan	0.1000	0.0666
##	20	0.6917	nan	0.1000	0.0314
##	40	0.4429	nan	0.1000	0.0092
##	60	0.3150	nan	0.1000	0.0061
##	80	0.2417	nan	0.1000	0.0038
##	100	0.1816	nan	0.1000	0.0032
##	120	0.1447	nan	0.1000	0.0022
##	140	0.1174	nan	0.1000	0.0012
##	150	0.1061	nan	0.1000	0.0017

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Ttom	TrainDeviance	ValidDavianaa	CtonCino	Tmnmarra
##	Iter		ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1319
##	2	1.5212	nan	0.1000	0.0886
##	3	1.4625	nan	0.1000	0.0669
##	4	1.4175	nan	0.1000	0.0538
##	5	1.3809	nan	0.1000	0.0526
##	6	1.3473	nan	0.1000	0.0389
##	7	1.3215	nan	0.1000	0.0406
##	8	1.2963	nan	0.1000	0.0366
##	9	1.2717	nan	0.1000	0.0295
##	10	1.2522	nan	0.1000	0.0286
##	20	1.0889	nan	0.1000	0.0193
##	40	0.9095	nan	0.1000	0.0112
##	60	0.7956	nan	0.1000	0.0077
##	80	0.7105	nan	0.1000	0.0053
##	100	0.6458	nan	0.1000	0.0038
##	120	0.5909	nan	0.1000	0.0033
##	140	0.5415	nan	0.1000	0.0024
##	150	0.5203	nan	0.1000	0.0025

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1922
##	2	1.4847	nan	0.1000	0.1326
##	3	1.3985	nan	0.1000	0.1133
##	4	1.3254	nan	0.1000	0.0893
##	5	1.2682	nan	0.1000	0.0700
##	6	1.2236	nan	0.1000	0.0733
##	7	1.1761	nan	0.1000	0.0560
##	8	1.1402	nan	0.1000	0.0559
##	9	1.1044	nan	0.1000	0.0490
##	10	1.0742	nan	0.1000	0.0495
##	20	0.8418	nan	0.1000	0.0244
##	40	0.6219	nan	0.1000	0.0211
##	60	0.4823	nan	0.1000	0.0085
##	80	0.3832	nan	0.1000	0.0100
##	100	0.3178	nan	0.1000	0.0029
##	120	0.2663	nan	0.1000	0.0034
##	140	0.2254	nan	0.1000	0.0025
##	150	0.2068	nan	0.1000	0.0020

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2415
##	2	1.4571	nan	0.1000	0.1632
##	વ	1 3548	nan	0 1000	0 1254

```
0.1000
                                                           0.1111
##
                   1.2737
                                       nan
                                                           0.0910
##
        5
                   1.2027
                                                0.1000
                                       nan
        6
                                                           0.0809
##
                   1.1445
                                       nan
                                                0.1000
##
        7
                   1.0927
                                                0.1000
                                                           0.0795
                                       nan
##
        8
                   1.0444
                                       nan
                                                0.1000
                                                           0.0707
##
        9
                   1.0015
                                                0.1000
                                                           0.0734
                                       nan
##
       10
                  0.9569
                                                0.1000
                                                           0.0647
                                       nan
##
       20
                  0.6875
                                                           0.0248
                                       nan
                                                0.1000
##
       40
                   0.4475
                                       nan
                                                0.1000
                                                           0.0115
##
       60
                                                           0.0081
                   0.3260
                                       {\tt nan}
                                                0.1000
##
       80
                   0.2474
                                                0.1000
                                                           0.0056
                                       {\tt nan}
##
      100
                   0.1925
                                                0.1000
                                                           0.0026
                                       nan
##
      120
                                                0.1000
                                                           0.0025
                   0.1511
                                       nan
##
      140
                   0.1196
                                                0.1000
                                                           0.0013
                                       nan
##
      150
                   0.1092
                                                0.1000
                                                           0.0011
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1271
##	2	1.5242	nan	0.1000	0.0870
##	3	1.4652	nan	0.1000	0.0702
##	4	1.4201	nan	0.1000	0.0522
##	5	1.3847	nan	0.1000	0.0488
##	6	1.3535	nan	0.1000	0.0420
##	7	1.3260	nan	0.1000	0.0407
##	8	1.2999	nan	0.1000	0.0362
##	9	1.2745	nan	0.1000	0.0363
##	10	1.2515	nan	0.1000	0.0280
##	20	1.0893	nan	0.1000	0.0169
##	40	0.9056	nan	0.1000	0.0077
##	60	0.7949	nan	0.1000	0.0063
##	80	0.7144	nan	0.1000	0.0048
##	100	0.6510	nan	0.1000	0.0046
##	120	0.5940	nan	0.1000	0.0020
##	140	0.5471	nan	0.1000	0.0022
##	150	0.5263	nan	0.1000	0.0027

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1885
##	2	1.4848	nan	0.1000	0.1281
##	3	1.4019	nan	0.1000	0.1056
##	4	1.3332	nan	0.1000	0.0881
##	5	1.2745	nan	0.1000	0.0775
##	6	1.2240	nan	0.1000	0.0628
##	7	1.1832	nan	0.1000	0.0661
##	8	1.1421	nan	0.1000	0.0479
##	9	1.1111	nan	0.1000	0.0646
##	10	1.0727	nan	0.1000	0.0429

```
##
       20
                 0.8491
                                            0.1000
                                                      0.0241
                                    nan
##
       40
                 0.6192
                                            0.1000
                                                      0.0103
                                    nan
                 0.4895
                                                      0.0103
##
       60
                                            0.1000
                                    nan
##
       80
                 0.3961
                                            0.1000
                                                      0.0082
                                    nan
                 0.3278
                                                      0.0045
##
      100
                                    nan
                                            0.1000
##
      120
                 0.2728
                                            0.1000
                                                      0.0032
                                    nan
                                            0.1000
                                                      0.0023
##
      140
                 0.2326
                                    nan
      150
                 0.2131
                                            0.1000
                                                      0.0021
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2310
##	2	1.4598	nan	0.1000	0.1657
##	3	1.3531	nan	0.1000	0.1340
##	4	1.2704	nan	0.1000	0.1032
##	5	1.2025	nan	0.1000	0.0866
##	6	1.1450	nan	0.1000	0.0757
##	7	1.0948	nan	0.1000	0.0775
##	8	1.0469	nan	0.1000	0.0600
##	9	1.0081	nan	0.1000	0.0657
##	10	0.9676	nan	0.1000	0.0571
##	20	0.7032	nan	0.1000	0.0206
##	40	0.4569	nan	0.1000	0.0151
##	60	0.3305	nan	0.1000	0.0072
##	80	0.2502	nan	0.1000	0.0035
##	100	0.1924	nan	0.1000	0.0035
##	120	0.1507	nan	0.1000	0.0031
##	140	0.1204	nan	0.1000	0.0010
##	150	0.1102	nan	0.1000	0.0014

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1293
##	2	1.5237	nan	0.1000	0.0851
##	3	1.4666	nan	0.1000	0.0650
##	4	1.4232	nan	0.1000	0.0537
##	5	1.3874	nan	0.1000	0.0524
##	6	1.3538	nan	0.1000	0.0418
##	7	1.3258	nan	0.1000	0.0364
##	8	1.3028	nan	0.1000	0.0424
##	9	1.2751	nan	0.1000	0.0346
##	10	1.2530	nan	0.1000	0.0292
##	20	1.0907	nan	0.1000	0.0179
##	40	0.9082	nan	0.1000	0.0129
##	60	0.7922	nan	0.1000	0.0057
##	80	0.7117	nan	0.1000	0.0063
##	100	0.6441	nan	0.1000	0.0031
##	120	0.5911	nan	0.1000	0.0037
##	140	0.5442	nan	0.1000	0.0021
##	150	0.5228	nan	0.1000	0.0022

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	CtonCino	Tmnmarra
	rter		validbeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1935
##	2	1.4843	nan	0.1000	0.1244
##	3	1.4012	nan	0.1000	0.1086
##	4	1.3307	nan	0.1000	0.0866
##	5	1.2746	nan	0.1000	0.0814
##	6	1.2233	nan	0.1000	0.0643
##	7	1.1819	nan	0.1000	0.0564
##	8	1.1456	nan	0.1000	0.0582
##	9	1.1097	nan	0.1000	0.0522
##	10	1.0770	nan	0.1000	0.0477
##	20	0.8490	nan	0.1000	0.0301
##	40	0.6240	nan	0.1000	0.0110
##	60	0.4879	nan	0.1000	0.0065
##	80	0.3937	nan	0.1000	0.0072
##	100	0.3237	nan	0.1000	0.0039
##	120	0.2687	nan	0.1000	0.0031
##	140	0.2269	nan	0.1000	0.0027
##	150	0.2093	nan	0.1000	0.0039

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	${\tt Improve}$
##	1	1.6094	nan	0.1000	0.2277
##	2	1.4621	nan	0.1000	0.1693
##	3	1.3539	nan	0.1000	0.1311
##	4	1.2694	nan	0.1000	0.1030
##	5	1.2045	nan	0.1000	0.1175
##	6	1.1320	nan	0.1000	0.0750
##	7	1.0842	nan	0.1000	0.0858
##	8	1.0325	nan	0.1000	0.0674
##	9	0.9900	nan	0.1000	0.0591
##	10	0.9518	nan	0.1000	0.0585
##	20	0.6873	nan	0.1000	0.0241
##	40	0.4472	nan	0.1000	0.0114
##	60	0.3268	nan	0.1000	0.0063
##	80	0.2435	nan	0.1000	0.0041
##	100	0.1872	nan	0.1000	0.0040
##	120	0.1486	nan	0.1000	0.0038
##	140	0.1175	nan	0.1000	0.0010
##	150	0.1062	nan	0.1000	0.0016

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1347
##	2	1.5212	nan	0.1000	0.0890
##	3	1 4623	nan	0 1000	0 0693

```
0.0562
##
                  1.4163
                                        nan
                                                 0.1000
##
        5
                  1.3791
                                                 0.1000
                                                           0.0520
                                        nan
                                                           0.0436
##
        6
                  1.3454
                                        nan
                                                 0.1000
                                                0.1000
##
        7
                                                           0.0348
                   1.3171
                                        nan
##
        8
                   1.2938
                                        nan
                                                 0.1000
                                                           0.0355
##
        9
                  1.2694
                                                 0.1000
                                                           0.0373
                                        nan
##
       10
                  1.2458
                                                 0.1000
                                                           0.0337
                                        nan
                                                           0.0197
##
       20
                  1.0833
                                        nan
                                                 0.1000
##
       40
                  0.8998
                                        nan
                                                0.1000
                                                           0.0096
##
       60
                                                           0.0072
                  0.7869
                                        {\tt nan}
                                                 0.1000
##
       80
                  0.7068
                                                 0.1000
                                                           0.0048
                                        {\tt nan}
##
       100
                  0.6422
                                                 0.1000
                                                           0.0035
                                        nan
##
      120
                                                           0.0029
                   0.5883
                                                 0.1000
                                        {\tt nan}
##
       140
                                                 0.1000
                                                            0.0025
                   0.5413
                                        nan
##
      150
                   0.5200
                                                 0.1000
                                                            0.0024
                                        {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1919
##	2	1.4848	nan	0.1000	0.1361
##	3	1.3955	nan	0.1000	0.1080
##	4	1.3267	nan	0.1000	0.0880
##	5	1.2707	nan	0.1000	0.0737
##	6	1.2225	nan	0.1000	0.0627
##	7	1.1815	nan	0.1000	0.0605
##	8	1.1416	nan	0.1000	0.0619
##	9	1.1034	nan	0.1000	0.0558
##	10	1.0690	nan	0.1000	0.0435
##	20	0.8427	nan	0.1000	0.0318
##	40	0.6163	nan	0.1000	0.0118
##	60	0.4782	nan	0.1000	0.0107
##	80	0.3840	nan	0.1000	0.0055
##	100	0.3147	nan	0.1000	0.0031
##	120	0.2593	nan	0.1000	0.0047
##	140	0.2194	nan	0.1000	0.0020
##	150	0.2027	nan	0.1000	0.0030

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2429
##	2	1.4551	nan	0.1000	0.1699
##	3	1.3495	nan	0.1000	0.1381
##	4	1.2636	nan	0.1000	0.1138
##	5	1.1934	nan	0.1000	0.0991
##	6	1.1295	nan	0.1000	0.0731
##	7	1.0832	nan	0.1000	0.0711
##	8	1.0380	nan	0.1000	0.0746
##	9	0.9921	nan	0.1000	0.0715
##	10	0.9467	nan	0.1000	0.0444

```
##
       20
                 0.6856
                                            0.1000
                                                      0.0244
                                    nan
##
       40
                 0.4470
                                            0.1000
                                                      0.0122
                                    nan
                                                      0.0077
##
       60
                 0.3211
                                            0.1000
                                    nan
##
       80
                 0.2442
                                            0.1000
                                                      0.0046
                                    nan
                 0.1913
                                                      0.0014
##
      100
                                    nan
                                            0.1000
##
      120
                 0.1527
                                            0.1000
                                                      0.0020
                                    nan
                                                      0.0017
##
      140
                 0.1230
                                    nan
                                            0.1000
      150
                 0.1110
                                            0.1000
                                                      0.0012
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1276
##	2	1.5240	nan	0.1000	0.0859
##	3	1.4665	nan	0.1000	0.0688
##	4	1.4215	nan	0.1000	0.0569
##	5	1.3849	nan	0.1000	0.0528
##	6	1.3503	nan	0.1000	0.0495
##	7	1.3196	nan	0.1000	0.0404
##	8	1.2940	nan	0.1000	0.0355
##	9	1.2695	nan	0.1000	0.0304
##	10	1.2494	nan	0.1000	0.0343
##	20	1.0852	nan	0.1000	0.0177
##	40	0.9027	nan	0.1000	0.0102
##	60	0.7902	nan	0.1000	0.0051
##	80	0.7080	nan	0.1000	0.0064
##	100	0.6389	nan	0.1000	0.0037
##	120	0.5851	nan	0.1000	0.0029
##	140	0.5389	nan	0.1000	0.0019
##	150	0.5187	nan	0.1000	0.0027

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1973
##	2	1.4835	nan	0.1000	0.1320
##	3	1.3978	nan	0.1000	0.1049
##	4	1.3302	nan	0.1000	0.0936
##	5	1.2714	nan	0.1000	0.0722
##	6	1.2248	nan	0.1000	0.0691
##	7	1.1819	nan	0.1000	0.0690
##	8	1.1397	nan	0.1000	0.0546
##	9	1.1054	nan	0.1000	0.0553
##	10	1.0708	nan	0.1000	0.0415
##	20	0.8483	nan	0.1000	0.0275
##	40	0.6129	nan	0.1000	0.0144
##	60	0.4785	nan	0.1000	0.0072
##	80	0.3884	nan	0.1000	0.0069
##	100	0.3207	nan	0.1000	0.0049
##	120	0.2663	nan	0.1000	0.0025
##	140	0.2273	nan	0.1000	0.0037
##	150	0.2091	nan	0.1000	0.0024

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
			validbeviance	-	-
##	1	1.6094	nan	0.1000	0.2451
##	2	1.4561	nan	0.1000	0.1631
##	3	1.3506	nan	0.1000	0.1249
##	4	1.2694	nan	0.1000	0.1096
##	5	1.2014	nan	0.1000	0.0902
##	6	1.1427	nan	0.1000	0.0862
##	7	1.0900	nan	0.1000	0.0779
##	8	1.0407	nan	0.1000	0.0651
##	9	0.9996	nan	0.1000	0.0726
##	10	0.9562	nan	0.1000	0.0475
##	20	0.6861	nan	0.1000	0.0342
##	40	0.4498	nan	0.1000	0.0113
##	60	0.3262	nan	0.1000	0.0090
##	80	0.2460	nan	0.1000	0.0045
##	100	0.1917	nan	0.1000	0.0044
##	120	0.1517	nan	0.1000	0.0020
##	140	0.1198	nan	0.1000	0.0010
##	150	0.1089	nan	0.1000	0.0010

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1317
##	2	1.5234	nan	0.1000	0.0851
##	3	1.4654	nan	0.1000	0.0650
##	4	1.4222	nan	0.1000	0.0543
##	5	1.3865	nan	0.1000	0.0509
##	6	1.3531	nan	0.1000	0.0383
##	7	1.3285	nan	0.1000	0.0407
##	8	1.3021	nan	0.1000	0.0359
##	9	1.2761	nan	0.1000	0.0364
##	10	1.2538	nan	0.1000	0.0305
##	20	1.0899	nan	0.1000	0.0175
##	40	0.9048	nan	0.1000	0.0101
##	60	0.7924	nan	0.1000	0.0071
##	80	0.7123	nan	0.1000	0.0051
##	100	0.6464	nan	0.1000	0.0045
##	120	0.5893	nan	0.1000	0.0031
##	140	0.5420	nan	0.1000	0.0027
##	150	0.5212	nan	0.1000	0.0026

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1883
##	2	1.4878	nan	0.1000	0.1354
##	3	1 4026	nan	0 1000	0 1047

```
0.1000
                                                          0.0857
##
                  1.3363
                                       nan
##
        5
                  1.2800
                                                0.1000
                                                          0.0813
                                       nan
        6
                  1.2279
                                                          0.0659
##
                                       nan
                                                0.1000
##
        7
                  1.1852
                                                0.1000
                                                          0.0640
                                       nan
##
        8
                  1.1451
                                       nan
                                                0.1000
                                                          0.0535
##
        9
                  1.1111
                                                0.1000
                                                          0.0494
                                       nan
##
       10
                  1.0804
                                                0.1000
                                                          0.0517
                                       nan
##
       20
                  0.8508
                                                          0.0301
                                       nan
                                                0.1000
##
       40
                  0.6220
                                       nan
                                                0.1000
                                                          0.0109
##
       60
                                                          0.0062
                  0.4750
                                       {\tt nan}
                                                0.1000
##
       80
                  0.3857
                                       nan
                                                0.1000
                                                          0.0061
##
      100
                  0.3158
                                                0.1000
                                                          0.0035
                                       nan
##
      120
                                                0.1000
                                                          0.0032
                  0.2645
                                       nan
##
      140
                  0.2237
                                                0.1000
                                                          0.0020
                                       nan
##
      150
                  0.2067
                                                0.1000
                                                          0.0026
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2447
##	2	1.4536	nan	0.1000	0.1596
##	3	1.3542	nan	0.1000	0.1258
##	4	1.2736	nan	0.1000	0.1167
##	5	1.2008	nan	0.1000	0.0832
##	6	1.1465	nan	0.1000	0.0816
##	7	1.0950	nan	0.1000	0.0848
##	8	1.0426	nan	0.1000	0.0623
##	9	1.0033	nan	0.1000	0.0723
##	10	0.9591	nan	0.1000	0.0564
##	20	0.6802	nan	0.1000	0.0235
##	40	0.4521	nan	0.1000	0.0162
##	60	0.3243	nan	0.1000	0.0082
##	80	0.2449	nan	0.1000	0.0053
##	100	0.1920	nan	0.1000	0.0024
##	120	0.1529	nan	0.1000	0.0037
##	140	0.1211	nan	0.1000	0.0013
##	150	0.1097	nan	0.1000	0.0010

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1313
##	2	1.5227	nan	0.1000	0.0903
##	3	1.4643	nan	0.1000	0.0671
##	4	1.4198	nan	0.1000	0.0558
##	5	1.3841	nan	0.1000	0.0535
##	6	1.3497	nan	0.1000	0.0439
##	7	1.3219	nan	0.1000	0.0388
##	8	1.2969	nan	0.1000	0.0353
##	9	1.2746	nan	0.1000	0.0390
##	10	1.2489	nan	0.1000	0.0268

```
##
       20
                 1.0846
                                             0.1000
                                                       0.0187
                                    nan
##
       40
                 0.9050
                                             0.1000
                                                       0.0103
                                    nan
##
       60
                 0.7930
                                             0.1000
                                                       0.0075
                                    nan
##
       80
                 0.7092
                                             0.1000
                                                       0.0053
                                    nan
##
      100
                 0.6453
                                    nan
                                             0.1000
                                                       0.0054
##
      120
                 0.5889
                                             0.1000
                                                       0.0032
                                    nan
                                                       0.0022
##
      140
                 0.5418
                                    nan
                                             0.1000
      150
                 0.5211
                                             0.1000
                                                       0.0026
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1876
##	2	1.4863	nan	0.1000	0.1352
##	3	1.3986	nan	0.1000	0.1022
##	4	1.3310	nan	0.1000	0.0845
##	5	1.2740	nan	0.1000	0.0793
##	6	1.2245	nan	0.1000	0.0749
##	7	1.1768	nan	0.1000	0.0664
##	8	1.1357	nan	0.1000	0.0572
##	9	1.0996	nan	0.1000	0.0493
##	10	1.0684	nan	0.1000	0.0458
##	20	0.8356	nan	0.1000	0.0299
##	40	0.6114	nan	0.1000	0.0162
##	60	0.4729	nan	0.1000	0.0088
##	80	0.3830	nan	0.1000	0.0069
##	100	0.3228	nan	0.1000	0.0058
##	120	0.2680	nan	0.1000	0.0024
##	140	0.2275	nan	0.1000	0.0030
##	150	0.2076	nan	0.1000	0.0037

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2380
##	2	1.4582	nan	0.1000	0.1703
##	3	1.3505	nan	0.1000	0.1328
##	4	1.2686	nan	0.1000	0.1146
##	5	1.1970	nan	0.1000	0.0976
##	6	1.1360	nan	0.1000	0.0741
##	7	1.0877	nan	0.1000	0.0855
##	8	1.0348	nan	0.1000	0.0731
##	9	0.9897	nan	0.1000	0.0571
##	10	0.9536	nan	0.1000	0.0566
##	20	0.6866	nan	0.1000	0.0285
##	40	0.4444	nan	0.1000	0.0141
##	60	0.3146	nan	0.1000	0.0051
##	80	0.2436	nan	0.1000	0.0039
##	100	0.1880	nan	0.1000	0.0027
##	120	0.1479	nan	0.1000	0.0026
##	140	0.1200	nan	0.1000	0.0013
##	150	0.1084	nan	0.1000	0.0012

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	CtonCino	Tmnmarra
	rter		validbeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1359
##	2	1.5210	nan	0.1000	0.0926
##	3	1.4603	nan	0.1000	0.0679
##	4	1.4157	nan	0.1000	0.0585
##	5	1.3769	nan	0.1000	0.0519
##	6	1.3440	nan	0.1000	0.0426
##	7	1.3164	nan	0.1000	0.0406
##	8	1.2912	nan	0.1000	0.0356
##	9	1.2658	nan	0.1000	0.0345
##	10	1.2432	nan	0.1000	0.0310
##	20	1.0763	nan	0.1000	0.0194
##	40	0.8956	nan	0.1000	0.0107
##	60	0.7814	nan	0.1000	0.0065
##	80	0.6963	nan	0.1000	0.0057
##	100	0.6326	nan	0.1000	0.0029
##	120	0.5783	nan	0.1000	0.0040
##	140	0.5335	nan	0.1000	0.0035
##	150	0.5126	nan	0.1000	0.0027

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1970
##	2	1.4830	nan	0.1000	0.1331
##	3	1.3976	nan	0.1000	0.1082
##	4	1.3284	nan	0.1000	0.0940
##	5	1.2691	nan	0.1000	0.0725
##	6	1.2211	nan	0.1000	0.0725
##	7	1.1760	nan	0.1000	0.0675
##	8	1.1339	nan	0.1000	0.0508
##	9	1.1020	nan	0.1000	0.0533
##	10	1.0685	nan	0.1000	0.0442
##	20	0.8409	nan	0.1000	0.0209
##	40	0.6141	nan	0.1000	0.0094
##	60	0.4842	nan	0.1000	0.0069
##	80	0.3906	nan	0.1000	0.0067
##	100	0.3207	nan	0.1000	0.0063
##	120	0.2686	nan	0.1000	0.0024
##	140	0.2286	nan	0.1000	0.0024
##	150	0.2123	nan	0.1000	0.0021

## It	er	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2431
##	2	1.4561	nan	0.1000	0.1646
##	3	1 3515	nan	0 1000	0 1321

```
0.1000
                                                          0.1202
##
                  1.2674
                                       nan
##
        5
                  1.1930
                                               0.1000
                                                          0.0940
                                       nan
        6
                                                          0.0714
##
                  1.1347
                                       nan
                                               0.1000
##
        7
                  1.0874
                                               0.1000
                                                          0.0759
                                       nan
##
        8
                  1.0398
                                       nan
                                               0.1000
                                                          0.0563
##
        9
                  1.0029
                                               0.1000
                                                          0.0712
                                       nan
##
       10
                  0.9582
                                               0.1000
                                                          0.0648
                                       nan
                                                          0.0333
##
       20
                  0.6838
                                       nan
                                               0.1000
##
       40
                  0.4530
                                       nan
                                               0.1000
                                                          0.0110
##
       60
                                                          0.0082
                  0.3266
                                       {\tt nan}
                                               0.1000
##
       80
                  0.2472
                                       nan
                                               0.1000
                                                          0.0042
##
      100
                  0.1937
                                               0.1000
                                                          0.0026
                                       nan
##
      120
                                               0.1000
                                                          0.0026
                  0.1514
                                       nan
##
      140
                  0.1219
                                               0.1000
                                                          0.0026
                                       nan
##
      150
                  0.1087
                                               0.1000
                                                          0.0012
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1332
##	2	1.5212	nan	0.1000	0.0925
##	3	1.4613	nan	0.1000	0.0667
##	4	1.4170	nan	0.1000	0.0569
##	5	1.3791	nan	0.1000	0.0568
##	6	1.3438	nan	0.1000	0.0431
##	7	1.3155	nan	0.1000	0.0349
##	8	1.2919	nan	0.1000	0.0349
##	9	1.2692	nan	0.1000	0.0334
##	10	1.2485	nan	0.1000	0.0338
##	20	1.0830	nan	0.1000	0.0186
##	40	0.9006	nan	0.1000	0.0117
##	60	0.7892	nan	0.1000	0.0066
##	80	0.7076	nan	0.1000	0.0050
##	100	0.6415	nan	0.1000	0.0039
##	120	0.5877	nan	0.1000	0.0033
##	140	0.5396	nan	0.1000	0.0025
##	150	0.5192	nan	0.1000	0.0014

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1937
##	2	1.4859	nan	0.1000	0.1333
##	3	1.4002	nan	0.1000	0.1018
##	4	1.3340	nan	0.1000	0.0987
##	5	1.2714	nan	0.1000	0.0762
##	6	1.2230	nan	0.1000	0.0726
##	7	1.1763	nan	0.1000	0.0549
##	8	1.1412	nan	0.1000	0.0580
##	9	1.1047	nan	0.1000	0.0556
##	10	1.0702	nan	0.1000	0.0409

```
##
       20
                 0.8426
                                            0.1000
                                                      0.0249
                                    nan
##
       40
                 0.6216
                                            0.1000
                                                      0.0109
                                    nan
                                                      0.0068
##
       60
                 0.4794
                                            0.1000
                                    nan
##
       80
                 0.3931
                                            0.1000
                                                      0.0044
                                    nan
                                                      0.0044
##
      100
                 0.3247
                                    nan
                                            0.1000
##
      120
                 0.2705
                                            0.1000
                                                      0.0031
                                    nan
                                                      0.0021
##
      140
                 0.2239
                                    nan
                                            0.1000
      150
                 0.2041
                                            0.1000
                                                      0.0014
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2362
##	2	1.4576	nan	0.1000	0.1674
##	3	1.3522	nan	0.1000	0.1303
##	4	1.2714	nan	0.1000	0.1115
##	5	1.2014	nan	0.1000	0.1068
##	6	1.1355	nan	0.1000	0.0787
##	7	1.0850	nan	0.1000	0.0794
##	8	1.0372	nan	0.1000	0.0691
##	9	0.9942	nan	0.1000	0.0802
##	10	0.9412	nan	0.1000	0.0536
##	20	0.6851	nan	0.1000	0.0268
##	40	0.4546	nan	0.1000	0.0121
##	60	0.3343	nan	0.1000	0.0074
##	80	0.2542	nan	0.1000	0.0027
##	100	0.1951	nan	0.1000	0.0020
##	120	0.1529	nan	0.1000	0.0023
##	140	0.1230	nan	0.1000	0.0024
##	150	0.1090	nan	0.1000	0.0019

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1263
##	2	1.5224	nan	0.1000	0.0915
##	3	1.4620	nan	0.1000	0.0660
##	4	1.4174	nan	0.1000	0.0555
##	5	1.3810	nan	0.1000	0.0537
##	6	1.3469	nan	0.1000	0.0424
##	7	1.3189	nan	0.1000	0.0413
##	8	1.2934	nan	0.1000	0.0404
##	9	1.2666	nan	0.1000	0.0318
##	10	1.2462	nan	0.1000	0.0331
##	20	1.0828	nan	0.1000	0.0170
##	40	0.8962	nan	0.1000	0.0099
##	60	0.7872	nan	0.1000	0.0067
##	80	0.7024	nan	0.1000	0.0036
##	100	0.6395	nan	0.1000	0.0036
##	120	0.5839	nan	0.1000	0.0047
##	140	0.5366	nan	0.1000	0.0020
##	150	0.5165	nan	0.1000	0.0033

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

шш	T+	T i Di	V-1: dD:	C+ C :	T
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1939
##	2	1.4848	nan	0.1000	0.1385
##	3	1.3950	nan	0.1000	0.1097
##	4	1.3263	nan	0.1000	0.0873
##	5	1.2705	nan	0.1000	0.0763
##	6	1.2215	nan	0.1000	0.0779
##	7	1.1725	nan	0.1000	0.0663
##	8	1.1310	nan	0.1000	0.0529
##	9	1.0968	nan	0.1000	0.0506
##	10	1.0649	nan	0.1000	0.0443
##	20	0.8454	nan	0.1000	0.0220
##	40	0.6153	nan	0.1000	0.0169
##	60	0.4699	nan	0.1000	0.0063
##	80	0.3829	nan	0.1000	0.0053
##	100	0.3140	nan	0.1000	0.0026
##	120	0.2648	nan	0.1000	0.0017
##	140	0.2246	nan	0.1000	0.0021
##	150	0.2083	nan	0.1000	0.0017

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2408
##	2	1.4561	nan	0.1000	0.1718
##	3	1.3504	nan	0.1000	0.1322
##	4	1.2666	nan	0.1000	0.1124
##	5	1.1965	nan	0.1000	0.0860
##	6	1.1407	nan	0.1000	0.0829
##	7	1.0881	nan	0.1000	0.0654
##	8	1.0455	nan	0.1000	0.0782
##	9	0.9987	nan	0.1000	0.0777
##	10	0.9526	nan	0.1000	0.0601
##	20	0.6740	nan	0.1000	0.0329
##	40	0.4373	nan	0.1000	0.0131
##	60	0.3113	nan	0.1000	0.0063
##	80	0.2435	nan	0.1000	0.0033
##	100	0.1869	nan	0.1000	0.0029
##	120	0.1460	nan	0.1000	0.0014
##	140	0.1193	nan	0.1000	0.0008
##	150	0.1082	nan	0.1000	0.0014

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1354
##	2	1.5205	nan	0.1000	0.0881
##	3	1 4612	nan	0 1000	0 0667

```
0.1000
                                                          0.0546
##
                  1.4159
                                       nan
##
        5
                  1.3799
                                                0.1000
                                                          0.0546
                                       nan
        6
                  1.3453
                                                          0.0389
##
                                       nan
                                                0.1000
##
        7
                  1.3200
                                                0.1000
                                                          0.0414
                                       nan
##
        8
                  1.2936
                                       nan
                                                0.1000
                                                          0.0346
##
        9
                  1.2709
                                                0.1000
                                                          0.0368
                                       nan
##
       10
                  1.2453
                                                0.1000
                                                          0.0306
                                       nan
##
       20
                                                          0.0178
                  1.0795
                                       nan
                                                0.1000
##
       40
                  0.9014
                                       nan
                                                0.1000
                                                          0.0096
##
       60
                                                          0.0053
                  0.7923
                                       {\tt nan}
                                                0.1000
##
       80
                  0.7096
                                       nan
                                                0.1000
                                                          0.0056
##
      100
                  0.6442
                                                0.1000
                                                          0.0039
                                       nan
##
      120
                                                0.1000
                                                          0.0031
                  0.5891
                                       nan
##
      140
                  0.5404
                                                0.1000
                                                          0.0035
                                       nan
##
      150
                  0.5190
                                                0.1000
                                                          0.0028
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1962
##	2	1.4815	nan	0.1000	0.1358
##	3	1.3958	nan	0.1000	0.1055
##	4	1.3273	nan	0.1000	0.0902
##	5	1.2698	nan	0.1000	0.0685
##	6	1.2246	nan	0.1000	0.0706
##	7	1.1811	nan	0.1000	0.0640
##	8	1.1409	nan	0.1000	0.0445
##	9	1.1116	nan	0.1000	0.0578
##	10	1.0758	nan	0.1000	0.0422
##	20	0.8420	nan	0.1000	0.0201
##	40	0.6172	nan	0.1000	0.0082
##	60	0.4827	nan	0.1000	0.0064
##	80	0.3892	nan	0.1000	0.0107
##	100	0.3166	nan	0.1000	0.0047
##	120	0.2666	nan	0.1000	0.0040
##	140	0.2266	nan	0.1000	0.0015
##	150	0.2088	nan	0.1000	0.0024

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2364
##	2	1.4570	nan	0.1000	0.1638
##	3	1.3518	nan	0.1000	0.1255
##	4	1.2734	nan	0.1000	0.1238
##	5	1.1978	nan	0.1000	0.0955
##	6	1.1386	nan	0.1000	0.0845
##	7	1.0848	nan	0.1000	0.0743
##	8	1.0376	nan	0.1000	0.0699
##	9	0.9944	nan	0.1000	0.0572
##	10	0.9590	nan	0.1000	0.0659

```
##
       20
                 0.6878
                                            0.1000
                                                      0.0243
                                    nan
##
       40
                 0.4426
                                            0.1000
                                                      0.0091
                                    nan
                                                      0.0090
##
       60
                 0.3201
                                            0.1000
                                    nan
##
       80
                 0.2381
                                            0.1000
                                                      0.0042
                                    nan
                 0.1861
                                                      0.0033
##
      100
                                    nan
                                            0.1000
##
      120
                 0.1448
                                            0.1000
                                                      0.0018
                                    nan
                                                      0.0013
##
      140
                 0.1173
                                    nan
                                            0.1000
      150
                 0.1058
                                            0.1000
                                                      0.0012
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1335
##	2	1.5218	nan	0.1000	0.0887
##	3	1.4632	nan	0.1000	0.0696
##	4	1.4170	nan	0.1000	0.0564
##	5	1.3800	nan	0.1000	0.0543
##	6	1.3454	nan	0.1000	0.0428
##	7	1.3173	nan	0.1000	0.0382
##	8	1.2924	nan	0.1000	0.0354
##	9	1.2670	nan	0.1000	0.0348
##	10	1.2445	nan	0.1000	0.0288
##	20	1.0838	nan	0.1000	0.0173
##	40	0.9007	nan	0.1000	0.0101
##	60	0.7868	nan	0.1000	0.0065
##	80	0.7045	nan	0.1000	0.0053
##	100	0.6400	nan	0.1000	0.0032
##	120	0.5847	nan	0.1000	0.0039
##	140	0.5389	nan	0.1000	0.0028
##	150	0.5160	nan	0.1000	0.0030

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1918
##	2	1.4853	nan	0.1000	0.1359
##	3	1.3977	nan	0.1000	0.1100
##	4	1.3274	nan	0.1000	0.0895
##	5	1.2688	nan	0.1000	0.0723
##	6	1.2226	nan	0.1000	0.0735
##	7	1.1768	nan	0.1000	0.0647
##	8	1.1360	nan	0.1000	0.0490
##	9	1.1054	nan	0.1000	0.0505
##	10	1.0735	nan	0.1000	0.0546
##	20	0.8524	nan	0.1000	0.0223
##	40	0.6256	nan	0.1000	0.0118
##	60	0.4858	nan	0.1000	0.0077
##	80	0.3932	nan	0.1000	0.0040
##	100	0.3276	nan	0.1000	0.0042
##	120	0.2784	nan	0.1000	0.0027
##	140	0.2344	nan	0.1000	0.0017
##	150	0.2180	nan	0.1000	0.0025

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	C+onCino	Tmnmarra
	rter		validbeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2412
##	2	1.4560	nan	0.1000	0.1702
##	3	1.3477	nan	0.1000	0.1307
##	4	1.2642	nan	0.1000	0.1108
##	5	1.1946	nan	0.1000	0.0806
##	6	1.1435	nan	0.1000	0.0878
##	7	1.0888	nan	0.1000	0.0724
##	8	1.0426	nan	0.1000	0.0644
##	9	1.0016	nan	0.1000	0.0682
##	10	0.9589	nan	0.1000	0.0538
##	20	0.6892	nan	0.1000	0.0187
##	40	0.4475	nan	0.1000	0.0122
##	60	0.3206	nan	0.1000	0.0095
##	80	0.2433	nan	0.1000	0.0052
##	100	0.1887	nan	0.1000	0.0029
##	120	0.1512	nan	0.1000	0.0021
##	140	0.1214	nan	0.1000	0.0012
##	150	0.1103	nan	0.1000	0.0013

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1232
##	2	1.5254	nan	0.1000	0.0859
##	3	1.4686	nan	0.1000	0.0658
##	4	1.4243	nan	0.1000	0.0516
##	5	1.3903	nan	0.1000	0.0530
##	6	1.3560	nan	0.1000	0.0438
##	7	1.3282	nan	0.1000	0.0376
##	8	1.3032	nan	0.1000	0.0399
##	9	1.2766	nan	0.1000	0.0313
##	10	1.2568	nan	0.1000	0.0310
##	20	1.0922	nan	0.1000	0.0188
##	40	0.9051	nan	0.1000	0.0088
##	60	0.7921	nan	0.1000	0.0057
##	80	0.7103	nan	0.1000	0.0036
##	100	0.6448	nan	0.1000	0.0045
##	120	0.5906	nan	0.1000	0.0036
##	140	0.5442	nan	0.1000	0.0017
##	150	0.5226	nan	0.1000	0.0027

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1802
##	2	1.4912	nan	0.1000	0.1342
##	3	1 4044	nan	0 1000	0 1024

```
0.1000
                                                           0.0880
##
                  1.3370
                                       nan
##
        5
                  1.2802
                                                0.1000
                                                           0.0749
                                       nan
                  1.2326
                                                           0.0701
##
        6
                                       nan
                                                0.1000
##
        7
                                                0.1000
                                                           0.0595
                  1.1878
                                       nan
##
        8
                  1.1499
                                       nan
                                                0.1000
                                                           0.0639
##
        9
                  1.1105
                                                0.1000
                                                           0.0480
                                       nan
##
       10
                  1.0802
                                                0.1000
                                                           0.0446
                                       nan
       20
                  0.8546
                                                           0.0309
##
                                       nan
                                                0.1000
##
       40
                  0.6252
                                       nan
                                                0.1000
                                                           0.0116
##
       60
                                                           0.0073
                  0.4884
                                       {\tt nan}
                                                0.1000
##
       80
                  0.3885
                                                0.1000
                                                           0.0034
                                       {\tt nan}
##
      100
                  0.3195
                                                0.1000
                                                           0.0035
                                       nan
##
      120
                                                0.1000
                                                           0.0023
                  0.2640
                                       nan
##
      140
                  0.2252
                                                0.1000
                                                           0.0035
                                       nan
##
      150
                  0.2047
                                                0.1000
                                                           0.0022
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2365
##	2	1.4579	nan	0.1000	0.1685
##	3	1.3518	nan	0.1000	0.1272
##	4	1.2710	nan	0.1000	0.1120
##	5	1.2011	nan	0.1000	0.0948
##	6	1.1409	nan	0.1000	0.0814
##	7	1.0886	nan	0.1000	0.0812
##	8	1.0363	nan	0.1000	0.0653
##	9	0.9962	nan	0.1000	0.0698
##	10	0.9528	nan	0.1000	0.0482
##	20	0.6902	nan	0.1000	0.0242
##	40	0.4471	nan	0.1000	0.0135
##	60	0.3236	nan	0.1000	0.0090
##	80	0.2410	nan	0.1000	0.0051
##	100	0.1878	nan	0.1000	0.0053
##	120	0.1481	nan	0.1000	0.0014
##	140	0.1185	nan	0.1000	0.0012
##	150	0.1061	nan	0.1000	0.0013

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1322
##	2	1.5195	nan	0.1000	0.0917
##	3	1.4583	nan	0.1000	0.0713
##	4	1.4119	nan	0.1000	0.0552
##	5	1.3760	nan	0.1000	0.0537
##	6	1.3410	nan	0.1000	0.0441
##	7	1.3125	nan	0.1000	0.0384
##	8	1.2881	nan	0.1000	0.0345
##	9	1.2656	nan	0.1000	0.0352
##	10	1.2416	nan	0.1000	0.0360

```
##
       20
                 1.0730
                                            0.1000
                                                      0.0205
                                    nan
##
       40
                 0.8881
                                            0.1000
                                                      0.0108
                                    nan
##
       60
                 0.7778
                                            0.1000
                                                      0.0059
                                    nan
##
       80
                 0.6976
                                            0.1000
                                                      0.0047
                                    nan
                                                      0.0032
##
      100
                 0.6312
                                    nan
                                            0.1000
##
      120
                 0.5758
                                            0.1000
                                                      0.0035
                                    nan
                                                      0.0024
##
      140
                 0.5297
                                    nan
                                            0.1000
      150
                 0.5088
                                            0.1000
                                                      0.0024
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1939
##	2	1.4828	nan	0.1000	0.1401
##	3	1.3946	nan	0.1000	0.1080
##	4	1.3260	nan	0.1000	0.0869
##	5	1.2691	nan	0.1000	0.0789
##	6	1.2190	nan	0.1000	0.0737
##	7	1.1723	nan	0.1000	0.0531
##	8	1.1380	nan	0.1000	0.0658
##	9	1.0969	nan	0.1000	0.0567
##	10	1.0616	nan	0.1000	0.0555
##	20	0.8307	nan	0.1000	0.0226
##	40	0.5992	nan	0.1000	0.0114
##	60	0.4675	nan	0.1000	0.0111
##	80	0.3804	nan	0.1000	0.0081
##	100	0.3104	nan	0.1000	0.0022
##	120	0.2581	nan	0.1000	0.0014
##	140	0.2185	nan	0.1000	0.0028
##	150	0.1992	nan	0.1000	0.0008

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2409
##	2	1.4546	nan	0.1000	0.1664
##	3	1.3480	nan	0.1000	0.1328
##	4	1.2640	nan	0.1000	0.1059
##	5	1.1955	nan	0.1000	0.0826
##	6	1.1413	nan	0.1000	0.0838
##	7	1.0892	nan	0.1000	0.0865
##	8	1.0358	nan	0.1000	0.0780
##	9	0.9894	nan	0.1000	0.0666
##	10	0.9481	nan	0.1000	0.0638
##	20	0.6821	nan	0.1000	0.0266
##	40	0.4400	nan	0.1000	0.0094
##	60	0.3201	nan	0.1000	0.0106
##	80	0.2398	nan	0.1000	0.0036
##	100	0.1847	nan	0.1000	0.0039
##	120	0.1466	nan	0.1000	0.0013
##	140	0.1177	nan	0.1000	0.0016
##	150	0.1066	nan	0.1000	0.0012

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
			validbeviance	-	-
##	1	1.6094	nan	0.1000	0.1301
##	2	1.5241	nan	0.1000	0.0864
##	3	1.4666	nan	0.1000	0.0674
##	4	1.4221	nan	0.1000	0.0531
##	5	1.3866	nan	0.1000	0.0456
##	6	1.3572	nan	0.1000	0.0438
##	7	1.3294	nan	0.1000	0.0448
##	8	1.3021	nan	0.1000	0.0324
##	9	1.2808	nan	0.1000	0.0375
##	10	1.2553	nan	0.1000	0.0349
##	20	1.0908	nan	0.1000	0.0184
##	40	0.9123	nan	0.1000	0.0115
##	60	0.7968	nan	0.1000	0.0060
##	80	0.7168	nan	0.1000	0.0052
##	100	0.6483	nan	0.1000	0.0036
##	120	0.5942	nan	0.1000	0.0034
##	140	0.5465	nan	0.1000	0.0026
##	150	0.5250	nan	0.1000	0.0022

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1933
##	2	1.4850	nan	0.1000	0.1283
##	3	1.3995	nan	0.1000	0.1009
##	4	1.3343	nan	0.1000	0.0896
##	5	1.2777	nan	0.1000	0.0776
##	6	1.2286	nan	0.1000	0.0608
##	7	1.1893	nan	0.1000	0.0707
##	8	1.1458	nan	0.1000	0.0574
##	9	1.1109	nan	0.1000	0.0444
##	10	1.0827	nan	0.1000	0.0456
##	20	0.8519	nan	0.1000	0.0223
##	40	0.6127	nan	0.1000	0.0131
##	60	0.4703	nan	0.1000	0.0081
##	80	0.3817	nan	0.1000	0.0061
##	100	0.3180	nan	0.1000	0.0041
##	120	0.2673	nan	0.1000	0.0038
##	140	0.2257	nan	0.1000	0.0023
##	150	0.2090	nan	0.1000	0.0010

##	Iter		TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1	1.6094	nan	0.1000	0.2408
##	2	2	1.4565	nan	0.1000	0.1605
##	9	2	1 3527	nan	0 1000	0 1289

```
0.1000
                                                           0.1064
##
                  1.2708
                                       nan
##
        5
                  1.2024
                                                0.1000
                                                           0.0974
                                       nan
                  1.1420
                                                           0.0753
##
        6
                                       nan
                                                0.1000
##
        7
                  1.0927
                                                0.1000
                                                           0.0701
                                       nan
##
        8
                  1.0482
                                       nan
                                                0.1000
                                                           0.0672
##
        9
                  1.0055
                                                0.1000
                                                           0.0512
                                       nan
##
       10
                  0.9716
                                                0.1000
                                                           0.0721
                                       nan
       20
                  0.7061
                                                           0.0285
##
                                       nan
                                                0.1000
                  0.4516
##
       40
                                       nan
                                                0.1000
                                                           0.0154
##
       60
                                                           0.0048
                  0.3253
                                       {\tt nan}
                                                0.1000
##
       80
                  0.2442
                                                0.1000
                                                           0.0077
                                       {\tt nan}
##
      100
                  0.1858
                                                0.1000
                                                           0.0034
                                       nan
##
      120
                                                0.1000
                                                           0.0019
                  0.1458
                                       nan
##
      140
                  0.1157
                                                0.1000
                                                           0.0020
                                       nan
##
      150
                  0.1045
                                                0.1000
                                                           0.0012
                                       {\tt nan}
```

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1282
##	2	1.5228	nan	0.1000	0.0889
##	3	1.4650	nan	0.1000	0.0677
##	4	1.4207	nan	0.1000	0.0538
##	5	1.3853	nan	0.1000	0.0530
##	6	1.3511	nan	0.1000	0.0373
##	7	1.3258	nan	0.1000	0.0405
##	8	1.2994	nan	0.1000	0.0334
##	9	1.2779	nan	0.1000	0.0417
##	10	1.2512	nan	0.1000	0.0290
##	20	1.0867	nan	0.1000	0.0183
##	40	0.9051	nan	0.1000	0.0101
##	60	0.7925	nan	0.1000	0.0070
##	80	0.7108	nan	0.1000	0.0042
##	100	0.6443	nan	0.1000	0.0039
##	120	0.5897	nan	0.1000	0.0043
##	140	0.5421	nan	0.1000	0.0027
##	150	0.5199	nan	0.1000	0.0027

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1835
##	2	1.4885	nan	0.1000	0.1341
##	3	1.4034	nan	0.1000	0.0977
##	4	1.3378	nan	0.1000	0.0873
##	5	1.2804	nan	0.1000	0.0801
##	6	1.2295	nan	0.1000	0.0774
##	7	1.1804	nan	0.1000	0.0600
##	8	1.1416	nan	0.1000	0.0567
##	9	1.1053	nan	0.1000	0.0451
##	10	1.0760	nan	0.1000	0.0495

```
##
       20
                 0.8527
                                            0.1000
                                                      0.0370
                                    nan
##
       40
                 0.6155
                                            0.1000
                                                      0.0119
                                    nan
##
       60
                 0.4849
                                            0.1000
                                                      0.0096
                                    nan
##
       80
                 0.3922
                                            0.1000
                                                      0.0062
                                    nan
                                                      0.0045
##
      100
                 0.3239
                                    nan
                                            0.1000
##
      120
                 0.2728
                                            0.1000
                                                      0.0025
                                    nan
                                                      0.0023
##
      140
                 0.2309
                                    nan
                                            0.1000
      150
                 0.2131
                                            0.1000
                                                      0.0036
##
                                    nan
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2391
##	2	1.4583	nan	0.1000	0.1638
##	3	1.3548	nan	0.1000	0.1310
##	4	1.2715	nan	0.1000	0.0997
##	5	1.2070	nan	0.1000	0.0976
##	6	1.1480	nan	0.1000	0.0742
##	7	1.1004	nan	0.1000	0.0835
##	8	1.0488	nan	0.1000	0.0739
##	9	1.0038	nan	0.1000	0.0766
##	10	0.9585	nan	0.1000	0.0551
##	20	0.6905	nan	0.1000	0.0207
##	40	0.4482	nan	0.1000	0.0127
##	60	0.3142	nan	0.1000	0.0068
##	80	0.2361	nan	0.1000	0.0033
##	100	0.1851	nan	0.1000	0.0027
##	120	0.1464	nan	0.1000	0.0008
##	140	0.1171	nan	0.1000	0.0014
##	150	0.1066	nan	0.1000	0.0010

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1217
##	2	1.5274	nan	0.1000	0.0845
##	3	1.4710	nan	0.1000	0.0620
##	4	1.4293	nan	0.1000	0.0534
##	5	1.3939	nan	0.1000	0.0526
##	6	1.3608	nan	0.1000	0.0359
##	7	1.3362	nan	0.1000	0.0395
##	8	1.3115	nan	0.1000	0.0407
##	9	1.2843	nan	0.1000	0.0363
##	10	1.2622	nan	0.1000	0.0342
##	20	1.0990	nan	0.1000	0.0190
##	40	0.9140	nan	0.1000	0.0107
##	60	0.7980	nan	0.1000	0.0078
##	80	0.7179	nan	0.1000	0.0058
##	100	0.6523	nan	0.1000	0.0040
##	120	0.5951	nan	0.1000	0.0034
##	140	0.5456	nan	0.1000	0.0034
##	150	0.5250	nan	0.1000	0.0024

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : NAs introduits lors de la conversion automatique

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
				-	-
##	1	1.6094	nan	0.1000	0.1881
##	2	1.4878	nan	0.1000	0.1322
##	3	1.4026	nan	0.1000	0.1046
##	4	1.3354	nan	0.1000	0.0808
##	5	1.2836	nan	0.1000	0.0763
##	6	1.2347	nan	0.1000	0.0709
##	7	1.1894	nan	0.1000	0.0622
##	8	1.1508	nan	0.1000	0.0455
##	9	1.1214	nan	0.1000	0.0534
##	10	1.0883	nan	0.1000	0.0567
##	20	0.8540	nan	0.1000	0.0225
##	40	0.6232	nan	0.1000	0.0148
##	60	0.4937	nan	0.1000	0.0114
##	80	0.3902	nan	0.1000	0.0048
##	100	0.3223	nan	0.1000	0.0051
##	120	0.2648	nan	0.1000	0.0029
##	140	0.2232	nan	0.1000	0.0032
##	150	0.2065	nan	0.1000	0.0035

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2265
##	2	1.4637	nan	0.1000	0.1635
##	3	1.3613	nan	0.1000	0.1318
##	4	1.2784	nan	0.1000	0.1047
##	5	1.2105	nan	0.1000	0.0880
##	6	1.1555	nan	0.1000	0.0879
##	7	1.1012	nan	0.1000	0.0737
##	8	1.0547	nan	0.1000	0.0540
##	9	1.0194	nan	0.1000	0.0677
##	10	0.9777	nan	0.1000	0.0596
##	20	0.7125	nan	0.1000	0.0342
##	40	0.4682	nan	0.1000	0.0118
##	60	0.3309	nan	0.1000	0.0069
##	80	0.2421	nan	0.1000	0.0054
##	100	0.1908	nan	0.1000	0.0033
##	120	0.1498	nan	0.1000	0.0022
##	140	0.1178	nan	0.1000	0.0015
##	150	0.1049	nan	0.1000	0.0020

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2355
##	2	1.4590	nan	0.1000	0.1691
##	3	1 35/16	nan	0 1000	0 1324

```
##
                   1.2718
                                                 0.1000
                                                            0.1068
                                        nan
##
        5
                   1.2042
                                                 0.1000
                                                            0.1009
                                        nan
                                                 0.1000
##
        6
                   1.1417
                                        nan
                                                            0.0761
        7
##
                   1.0932
                                                 0.1000
                                                            0.0709
                                        nan
##
        8
                   1.0473
                                        nan
                                                 0.1000
                                                            0.0641
##
        9
                   1.0067
                                                 0.1000
                                                            0.0676
                                        nan
##
       10
                                                            0.0646
                   0.9654
                                        nan
                                                 0.1000
##
       20
                   0.7007
                                        nan
                                                 0.1000
                                                            0.0333
##
       40
                   0.4575
                                                 0.1000
                                                            0.0180
                                        nan
##
       60
                   0.3349
                                        nan
                                                 0.1000
                                                            0.0056
##
       80
                   0.2481
                                                 0.1000
                                                            0.0029
                                        nan
##
      100
                   0.1910
                                        nan
                                                 0.1000
                                                            0.0012
##
      120
                   0.1539
                                                 0.1000
                                                            0.0020
                                        nan
##
      140
                   0.1254
                                        nan
                                                 0.1000
                                                            0.0025
##
      150
                                                 0.1000
                                                            0.0016
                   0.1123
                                        nan
```

```
predictGBM <- predict(mod_gbm, newdata=subtesting)
cmGBM <- confusionMatrix(predictGBM, subtesting$classe)
cmGBM</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
                       В
                            C
                                  D
                                       Ε
##
  Prediction
                  Α
##
            A 2230
                      18
                            0
                                  0
                                       1
                  1 1492
                                  2
                                       4
##
            В
                            19
##
            C
                  0
                       8 1348
                                 15
##
            D
                  1
                       0
                            1 1267
                                      18
##
            Ε
                  0
                       0
                            0
                                  2 1419
##
  Overall Statistics
##
##
                   Accuracy: 0.9885
##
                     95% CI: (0.9859, 0.9908)
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.9855
##
##
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                            0.9991
                                     0.9829
                                               0.9854
                                                        0.9852
                                                                  0.9840
## Specificity
                            0.9966
                                     0.9959
                                               0.9964
                                                        0.9970
                                                                  0.9997
## Pos Pred Value
                                     0.9829
                                               0.9832
                                                        0.9845
                                                                  0.9986
                            0.9916
## Neg Pred Value
                            0.9996
                                     0.9959
                                               0.9969
                                                        0.9971
                                                                  0.9964
## Prevalence
                            0.2845
                                     0.1935
                                               0.1744
                                                        0.1639
                                                                  0.1838
## Detection Rate
                            0.2842
                                     0.1902
                                               0.1718
                                                        0.1615
                                                                  0.1809
                            0.2866
## Detection Prevalence
                                     0.1935
                                               0.1747
                                                        0.1640
                                                                  0.1811
```

0.9979

Balanced Accuracy

0.9909

0.9911

0.9919

0.9894

^{3.} Linear Discriminant analysis (LDA)

```
predictLDA <- predict(mod_lda, newdata=subtesting)</pre>
cmLDA <- confusionMatrix(predictLDA, subtesting$classe)</pre>
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Α
                       В
                            С
                                 D
                                      Ε
##
            A 1848
                     188
                          138
                                77
                                      65
##
            В
                74
                    984
                          141
                                68
                                    203
            С
##
               159
                     212
                          900
                               150
                                    137
##
            D
               143
                      62
                          153
                                   127
                               942
##
            Ε
                 8
                      72
                           36
                                49
                                    910
##
## Overall Statistics
##
##
                  Accuracy: 0.7117
                     95% CI: (0.7015, 0.7217)
##
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.6351
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
                         Class: A Class: B Class: C Class: D Class: E
##
                           0.8280
                                    0.6482
                                              0.6579
                                                       0.7325
                                                                 0.6311
## Sensitivity
## Specificity
                           0.9166
                                    0.9232
                                              0.8984
                                                       0.9261
                                                                 0.9742
## Pos Pred Value
                           0.7979
                                    0.6694
                                              0.5777
                                                       0.6601
                                                                 0.8465
## Neg Pred Value
                           0.9306
                                    0.9162
                                              0.9256
                                                       0.9464
                                                                 0.9214
## Prevalence
                                                                 0.1838
                           0.2845
                                    0.1935
                                              0.1744
                                                       0.1639
## Detection Rate
                           0.2355
                                                       0.1201
                                                                 0.1160
                                    0.1254
                                              0.1147
## Detection Prevalence
                                              0.1986
                                                       0.1819
                                                                 0.1370
                           0.2952
                                    0.1874
## Balanced Accuracy
                           0.8723
                                    0.7857
                                              0.7782
                                                       0.8293
                                                                 0.8027
```

mod_lda <- train(classe ~ ., data = subtraining, method = "lda")</pre>

Predictions for the quiz

The GBM model has the best accuracy by far. The expected out of sample error stands around 1%. We'll use it to answer the quiz questions.

```
quiz <- predict(mod_gbm, newdata=testing)
quiz</pre>
```

```
## [1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```