

Министерство образования Российской Федерации Московский Государственный Технический Университет им. Н.Э. Баумана

Отчет по лабораторной работе №2 По курсу ««Математическая статистика»

Тема: «Интервальные оценки»

Вариант 11

Студент: Медведев А.В.

Группа: ИУ7-62

Преподаватель: Власов П.А.

Содержание

Определения	2
Формулы для вычисления	2
Текст программы	3
Результаты расчетов и графики	7

Определения

Доверительным интервалом уровня γ для параметра θ называют пару статистик $\underline{\theta}(\vec{X})$ и $\overline{\theta}(\vec{X})$ таких, что $P\{\theta \in (\underline{\theta}(\vec{X}), \overline{\theta}(\vec{X}))\} = \gamma$.

 γ - доверительный интервал -интервал, который покрывает теоретическое значение параметра θ с вероятностью $\gamma.$

Односторонней нижней–доверительной границей для параметра Θ называется статистика $\underline{\Theta}(\vec{X_n})$ такая, что $P\{\Theta \in [\underline{\Theta}(\vec{X_n}), +\infty)\} = \gamma$.

Односторонней верхней–доверительной границей для параметра Θ называется статистика $\underline{\Theta}(\vec{X_n})$ такая, что $P\{\Theta \in (-\infty, \overline{\Theta}(\vec{X_n})]\} = \gamma$.

Формулы для вычисления

Для вычисления границ γ -доверительного интервала для параметров нормальной случайной величины используют три центральные статистики:

Параметры:	Оценить:	Центральная	Границы:
		статистика:	
μ - неизвестно,	μ	$\frac{\mu - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$	$\underline{\mu} = \overline{X} - \frac{u_{1-\alpha}\sigma}{\sqrt{n}}$
σ - известно			$\frac{\underline{\mu} = \overline{X} - \frac{u_{1-\alpha}\sigma}{\sqrt{n}}}{\overline{\mu} = \overline{X} + \frac{u_{1-\alpha}\sigma}{\sqrt{n}}}$
μ - неизвестно,	μ	$\frac{\mu - \overline{X}}{S(\vec{X_n})} \sqrt{n} \sim St(n-1)$	$\underline{\mu} = \overline{X} - \frac{t_{1-\alpha}S(\vec{X_n})}{\sqrt{n}}$ $\overline{\mu} = \overline{X} + \frac{t_{1-\alpha}S(\vec{x_n})}{\sqrt{n}}$
σ - неизвестно			$\overline{\mu} = \overline{X} + \frac{t_{1-\alpha}S(\vec{x_n})}{\sqrt{n}}$
μ - известно,	σ		
σ - неизвестно		$\frac{S^2(\vec{X_n})}{\sigma^2}(n-1) \sim \chi^2(n-1)$	$\frac{\sigma}{\overline{\sigma}} = \frac{S^2(\vec{X_n})(n-1)}{h_{1-\alpha}}$ $\overline{\sigma} = \frac{S^2(\vec{X_n})(n-1)}{h_{\alpha}}$
μ -неизвестно,	σ		$\overline{\sigma} = \frac{S^2(\vec{X_n})(n-1)}{h_{\alpha}}$
σ -неизвестно			

где
$$\alpha = \frac{1-\gamma}{2}$$
;

 $u_{\alpha}, t_{\alpha}, h_{\alpha}$ - квантили уровня α нормального распределения N(0;1), распределения Стьюдента с n-1 степенью свободы и распределения Хи-квадрат с n-1 степенью свободы соответственно

Текст программы

Листинг 1: Функция Main

```
function main()
      sample = importdata('data(var11).txt');
      N = length(sample);
      [mu] = GetMuExpectedValue(sample);
      [s2] = GetS2DispersionValue(sample);
      fprintf("mu: %.4f\n",mu);
      fprintf("s2: %.4f\n",s2);
10
      gam = 0.9;
11
      [IM, hM] = GetBordersForExpectedValue(gam, s2, mu, N);
      fprintf("MX borders with gamma=\%.2f: (\%.4f .. %.4f) \ n",
13
          gam, IM, hM);
      [ID, hD] = GetBordersForDispersionValue(gam, s2, N);
15
      fprintf("DX borders with gamma=%.2f: (%.4f .. %.4f)\n",
16
          gam, ID, hD);
```

```
figure (1);
hold on;
GetGraphMX(sample, N, gam);

figure (2);
hold on;
GetGraphDX(sample, N, gam);
end
```

Листинг 2: Точечные оценки МХ и DX

```
function [Mu] = GetMuExpectedValue(sample)
    n = length(sample);
    Mu = sum(sample)/n;
end

function [s2] = GetS2DispersionValue(sample)
    n = length(sample);
    m = GetMuExpectedValue(sample);
    if n > 1
        s2 = sum((sample-m).^2)/(n-1);
else
    s2 = 0;
end
end
```

Листинг 3: Границы у-доверительного интервала для МХ

Листинг 4: Границы γ -доверительного интервала для DX

```
alpha2 = (1 + gam)/2;
quantile1 = chi2inv(alpha1, n-1);
quantile2 = chi2inv(alpha2, n-1);

ID = s2*(n-1)/quantile2;
hD = s2*(n-1)/quantile1;
end
```

Листинг 5: Графики для оценок МХ

```
function GetGraphMX(sample, n, gam)
      mu = zeros(n,1);
      s2 = zeros(n,1);
      IMu = zeros(n,1);
      hMu = zeros(n,1);
      line = zeros(n,1);
      line(1:n) = mu(n);
      for i = 1:n
           part = sample(1:i);
10
           [mu(i)] = GetMuExpectedValue(part);
           [s2(i)] = GetS2DispersionValue(part);
           [IMu(i), hMu(i)] = GetBordersForExpectedValue(gam,
              s2(i), mu(i), i);
      end
14
15
      plot(line, 'g');
      plot(IMu, 'r');
      plot(hMu, 'b');
18
      plot(mu, 'k');
19
      grid on;
20
      xlabel('n');
21
      ylabel('\mu');
      legend('\mu\^(x_N)','_{{--}}\mu^(x_n)', '^{{--}}\mu^(x_n)',
           '\mu\^(x_n)');
24 end
```

Листинг 6: Графики для оценок DX

```
function GetGraphDX(sample, n, gam)

s2 = zeros(n,1);

ISigma = zeros(n,1);

hSigma = zeros(n,1);

line = zeros(n,1);
```

```
startI = 3;
       line(startl:n) = s2(n);
       for i = startl:n
            part = sample(1:i);
10
            [s2(i)] = GetS2DispersionValue(part);
11
            [ISigma(i), hSigma(i)] =
12
                GetBordersForDispersionValue(gam, s2(i), i);
       end
13
       plot((startl:n), line(startl:n), 'g');
15
       plot((startl:n), ISigma(startl:n), 'r');
plot((startl:n), hSigma(startl:n), 'b');
16
17
       plot((startl:n), s2(startl:n), 'k');
18
       grid on;
       xlabel('n');
20
       ylabel('\sigma');
21
       legend ( 'S^2(x_N)', '_{--}\sigma^2(x_n)', '^{--}\sigma^2(x_n)', 'S^2(x_n)');
23 end
```

Результаты расчетов и графики

$\hat{\mu}(\vec{x_n})$	-2.0585
$S^2(\vec{x_n})$	0.9440

	Нижняя граница	Верхняя граница
μ	-2.2055	-1.9115
σ^2	0.7723	1.1848

На координатной плоскости OYn построить прямую $y = \hat{\mu}(\vec{x_N})$, также графики функций $y = \hat{\mu}(\vec{x_n})$, $y = \mu(\vec{x_N})$ и $y = \overline{\mu}(\vec{x_N})$ как функций объема n выборки, где n изменяется от 1 до N:

На другой координатной плоскости OZn построить прямую $z=S^2(\vec{x_N})$, также графики функций $z=S^2(\vec{x_n}),\,z=\underline{S^2}(\vec{x_N})$ и $z=\overline{S^2}(\vec{x_N})$ как функций объема n выборки, где n изменяется от 1 до N:

