Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

MATHEMATICS 9709/43

Paper 4 Mechanics

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages. Any blank pages are indicated.

BLANK PAGE

A metal post is driven vertically into the ground by dropping a heavy object onto it from above. The mass of the object is $120\,\mathrm{kg}$ and the mass of the post is $40\,\mathrm{kg}$ (see diagram). The object hits the post with speed $8\,\mathrm{m\,s^{-1}}$ and remains in contact with it after the impact.

(a)	Calculate the speed with which the combined post and object moves immediately after the imp	act. [2]
		•••••
		•••••
		•••••
(b)	There is a constant force resisting the motion of magnitude 4800 N.	
	Calculate the distance the post is driven into the ground.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

A particle of mass 8 kg is suspended in equilibrium by two light inextensible strings which make

ang	les of 60° and 45° above the horizontal.	
(a)	Draw a diagram showing the forces acting on the particle.	[1]
(b)	Find the tensions in the strings.	[6]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

	all of mass 1.6 kg is released from rest at a point 5 m above horizontal ground. When the ball hits ground it instantaneously loses 8 J of kinetic energy and starts to move upwards.
(a)	Use an energy method to find the greatest height that the ball reaches after hitting the ground. [3]
(b)	Find the total time taken, from the initial release of the ball until it reaches this greatest height. [3]

A car of mass 1400 kg is moving on a straight road against a constant force of 1250 N resisting the

		car moves along a horizontal section of the road at a constant speed of 36 m s ⁻¹ .	
((i)	Calculate the work done against the resisting force during the first 8 seconds.	[2]
			•••••
			•••••
			•••••
G	ii)	Calculate in kW the power developed by the engine of the car	[21
(i	ii)	Calculate, in kW, the power developed by the engine of the car.	[2]
(i	ii)	Calculate, in kW, the power developed by the engine of the car.	
(i	ii)		
(i	ii)		
(1	ii)		
(i	ii)		
(1	ii)		
((ii)		
(1	ii)		
(1	ii)		
(1	ii)		
	iii)		
	iii)		
	ii)		

(111	i) Given that this power is suddenly increased by 12 kW, find the is of the car.	[3]
hoı	the car now travels at a constant speed of $32 \mathrm{m s^{-1}}$ up a section of the rizontal, with the engine working at $64 \mathrm{kW}$.	
hoı	the car now travels at a constant speed of $32 \mathrm{m s^{-1}}$ up a section of the rizontal, with the engine working at $64 \mathrm{kW}$. and the value of θ .	
hoı	rizontal, with the engine working at 64 kW.	
hoı	rizontal, with the engine working at 64 kW.	
hoı	rizontal, with the engine working at 64 kW.	
hoı	rizontal, with the engine working at 64 kW.	
hoı	rizontal, with the engine working at 64 kW.	
hoı	rizontal, with the engine working at 64 kW.	
hoı	rizontal, with the engine working at 64 kW.	
hoı	rizontal, with the engine working at 64 kW.	road inclined at θ° to the
hoı	rizontal, with the engine working at 64 kW.	

	ing O the acceleration of P is $k(16-t^2)$ m s ⁻² , where k is a positive constant, and the displacement in O is s m. The velocity of P is 8 m s ⁻¹ when $t = 4$.
(a)	Show that $s = \frac{1}{64}t^2(96 - t^2)$. [5]

			•••••		
	•••••				
•••••		•••••	•••••	••••••	
•••••••	••••••	••••••••••	•••••	••••••	•••••
•••••	•••••			•••••	•••••
Find the maxi	mum displacem	nent of the parti	cle from O.		
Find the maxi	num displacem	nent of the parti	cle from O.		
Find the maxi	num displacen	nent of the parti	cle from O.		
Find the maxi	num displacen	nent of the parti	icle from O.		
Find the maxii	num displacem	nent of the parti	icle from O.		
Find the maxii	num displacem	nent of the parti	icle from O.		
			cle from O.		

The diagram shows a particle of mass 5 kg on a rough horizontal table, and two light inextensible strings attached to it passing over smooth pulleys fixed at the edges of the table. Particles of masses 4 kg and 6 kg hang freely at the ends of the strings. The particle of mass 6 kg is 0.5 m above the ground. The system is in limiting equilibrium.

(a)	Show that the coefficient of friction between the 5 kg particle and the table is 0.4.	;]
		••
		••
		••
		••
The	6 kg particle is now replaced by a particle of mass 8 kg and the system is released from rest.	
(b)	Find the acceleration of the 4 kg particle and the tensions in the strings. [5]	[]
(b)	Find the acceleration of the 4 kg particle and the tensions in the strings. [5	[]
(b)	Find the acceleration of the 4 kg particle and the tensions in the strings. [5	[]
(b)	Find the acceleration of the 4 kg particle and the tensions in the strings. [5	
(b)		

(c)	In the subsequent motion the 8 kg particle hits the ground and does not rebound.
	Find the time that elapses after the 8 kg particle hits the ground before the other two particles come to instantaneous rest. (You may assume this occurs before either particle reaches a pulley.) [5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.