UPGMA and **CMM**

Peter Revesz

CSCE 915 Computer Science and Engineering University of Nebraska-Lincoln

Evolutionary trees

The earliest evolutionary trees were constructed manually by biologists based on morphological similarities. This works reasonably for a few species, but is not good for a large number of species or for individuals within the same or closely related species.

Today computer algorithms can construct evolutionary trees based on genetic similarities. Thousands of species or individuals can be placed into an evolutionary tree.

(Ernst Haeckel 1866)

From DNA Strings to Distance Matrices

DNA String			
S_1	AGCTA	CTAGT	AATCA
S ₂	AGCTA	CGAGT	AATCA
S ₃	ATCCA	CTAGT	ACACT
S ₄	ATCCA	CTAGT	ATACT
S ₅	CGGTA	TTTGT	AAGCT
S ₆	CGGTT	CATCA	AATGC
S ₇	AGGTA	CTTGA	AATCC

The Hamming distance δ between two DNA strings is the number of different nucleotides.

$$\delta(S1, S2) = 1$$

because $S_1[7] = T$ while $S_2[7] = G$.

Distance matrix based on Hamming distance:

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
S ₁	0	1	5	5	6	9	4
S ₂	1	0	6	6	7	9	5
S ₃	5	6	0	1	8	13	8
S ₄	5	6	1	0	8	13	8
S ₅	6	7	8	8	0	8	5
S ₆	9	9	13	13	8	0	5
S ₇	4	5	8	8	5	5	0

The UPGMA algorithm

- Unweighted Pair Group Method with Arithmetic mean
- Always combine the closest pairs, which is S1 and S2.
- After combination the distance from S12 to others with be the average of the distances from S1 and S2.

	S ₁₂	S ₃	S ₄	S ₅	S ₆	S ₇
S ₁₂	0	5.5	5.5	6.5	9	4.5
S ₃	5.5	0	1	8	13	8
S ₄	5.5	1	0	8	13	8
S ₅	6.5	8	8	0	8	5
S ₆	9	13	13	8	0	5
S ₇	4.5	8	8	5	5	0

After combining S3 and S4:

	S ₁₂	S ₃₄	S ₅	S ₆	S ₇
S ₁₂	0	5.5	6.5	9	4.5
S ₃₄	5.5	0	8	13	8
S ₅	6.5	8	0	8	5
S ₆	9	13	8	0	5
S ₇	4.5	8	5	5	0

After combining S12 and S7:

	S ₁₂₇	S ₃₄	S ₅	S ₆
S ₁₂₇	0	6.75	5.75	7
S ₃₄	6.75	0	8	13
S ₅	5.75	8	0	8
S ₆	7	13	8	0

After combining S127 and S5:

	S ₁₂₅₇	S ₃₄	S ₆
S ₁₂₅₇	0	7.375	7.5
S ₃₄	7.375	0	13
S ₆	7.5	13	0

After combining S1257 and S34:

	S ₁₂₃₄₅₇	S ₆
S ₁₂₃₄₅₇	0	10.25
S ₆	10.25	0

The evolutionary tree Generated by UPGMA.

A new algorithm based on Common Mutation Matrixes.

- Common mutations suggest evolutionary similarities.
- In some cases common mutations may be more reliable evidence of an evolutionary relationship than similarities.

DNA String			
S ₁	AGCTA	CTAGT	AATC <u>A</u>
S ₂	AGCTA	C <u>G</u> AGT	AATC <u>A</u>
S ₃	A <u>T</u> C <u>C</u> A	CTAGT	A <u>CA</u> CT
S ₄	A <u>T</u> C <u>C</u> A	CTAGT	A <u>TA</u> CT
S ₅	<u>C</u> G <u>G</u> TA	<u>TTT</u> GT	AA <u>G</u> CT
S ₆	<u>CGG</u> T <u>T</u>	C <u>ATCA</u>	AAT <u>GC</u>
S ₇	AG <u>G</u> TA	CT <u>T</u> G <u>A</u>	AATC <u>C</u>
μ	AGCTA	CTAGT	AATCT

Consensus sequence.

Sequence	Set of Mutations Δ
S ₁	15A
S ₂	7G, 15A
S ₃	2T, 4C, 12C, 13A
S ₄	2T, 4C, 12T, 13A
S ₅	1C, 3G, 6T, 8T, 13G
S ₆	1C, 3G, 5T, 7A, 8T, 9C, 10A, 14G, 15C
S ₇	3G, 8T, 10A, 15C

Set of mutations.

Common mutation matrix.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
S ₁	15A	15A	Ø	Ø	Ø	Ø	Ø
S ₂		7G, 15A	Ø	Ø	Ø	Ø	Ø
S ₃			2T, 4C, 12C, 13A	2T, 4C, 13A	Ø	Ø	Ø
S ₄				2T, 4C, 12T, 13A	Ø	Ø	Ø
S ₅					1C, 3G, 6T, 8T, 13G	1C, 3G, 8T	3G, 8T
S ₆						1C, 3G, 5T, 7A, 8T, 9C, 10A, 14G, 15C	
S ₇							3G, 8T, 10A, 15C

	S_1	S ₂	S ₃	S ₄	S ₅	S ₆₇
S ₁	15A	15A	Ø	Ø	Ø	Ø
S ₂		7G, 15A	Ø	Ø	Ø	Ø
S ₃			2T, 4C, 12C, 13A	2T, 4C, 13A	Ø	Ø
S ₄				2T, 4C, 12T, 13A	Ø	Ø
S ₅					1C, 3G, 6T, 8T, 13G	3G, 8T
S ₆₇						3G, 8T, 10A, 15C

Combine S6 and S7.

	S ₁	S ₂	S ₃₄	S ₅	S ₆₇
S ₁	15A	15A	Ø	Ø	Ø
S ₂		7G, 15A	Ø	Ø	Ø
S ₃₄			2T, 4C, 13A	Ø	Ø
S ₅				1C, 3G, 6T, 8T, 13G	3G, 8T
S ₆₇					3G, 8T, 10A, 15C

Combine S3 and S4.

	S ₁	S ₂	S ₃₄	S ₅₆₇
S ₁	15A	15A	Ø	Ø
S ₂		7G, 15A	Ø	Ø
S ₃₄			2T, 4C, 13A	Ø
S ₅₆₇				3G, 8T

Combine S_5 and S_{67} .

	S ₁₂	S ₃₄	S ₅₆₇
S ₁₂	15A	Ø	Ø
S ₃₄		2T, 4C, 13A	Ø
S ₅₆₇			3G, 8T

Combine S_1 and S_2 .

The evolutionary tree generated by the CMM algorithm

Comparison of the UPGMA and the CMM algorithms

- The two evolutionary trees are different.
- CMM is better in dealing with long distance branches.
- Two long distance branch may look more similar to a small branch which does not contain many mutations than to each other even though these have common mutations.
- Hence CMM is more robust in these cases.
- CMM complexity is O(n² m), where n is number of input sequences and m is the length of the sequences.

Can UPGMA and CMM be applied to language families?

Swadesh list for Germanic languages (detail)

Swadesh list for Germanic languages (detail)									
English	Scots	West Frisian	Dutch	Afrikaans	Low Saxon	Limburgish	Central Franconian	Luxembourgish	German
I	A	ik	ik	ek	ik	ich	ich, eich, ech	ech	ich
you (singular) thou (dialectal, literary, or archaic)	thoo, you, ye	do (dû) (informal), jo (formal)	jij, je (informal), u (formal)	jy (informal), u (formal)	du	doe (informal), geer (formal)	du, de	du, de	du
he	he	hy, er	hij	hy	he	hae	hä, hän, er, e	hien, en	er
we	we	wy	wij, we	ons	wi	weer	mir, mer	mir, mer	wir

ji

se

düsse, düt

geer

die

dit

ühr, ihr, er,

sei, sie, se

disse, diss,

diss/ditt

dir, der

dir, der

si, se

dësen, dës, dëst

ihr

sie

dieser, -e, -

es etc.

jullie

jimme, me

sy, hja

dit, dizze

(informal), u

(formal)

zij, ze

deze, dit

you(se),

ye(se)

thay

this

you (plural)

they

this

julle

(informal), u

dié, hierdie

(formal)

hulle

Algorithm to generate a language family tree

- Take a Swadesh list for a group of related languages.
 Suppose the list has N rows where groups of cognate words are marked with different colors. The cognate words are assumed to have a common origin.
- Find for each pair of languages Li, Lj how many cognates they have. If they have k cognates, then their Hamming distance is:

$$\delta(Li, Lj) = N-k$$
.

- Build a distance matrix for the group of languages.
 Apply the UPGMA algorithm to generate a tree.
- Build a common novel cognates matrix.
 Apply the CMM algorithm to generate a tree.