MODELING THE MODELER: A NORMATIVE THEORY OF EXPERIMENTAL DESIGN

Evan Piermont

Royal Holloway, University of London

joint with

Fernando Payró

UAB, BSE & CODE

Université Paris 1 Panthéon-Sorbonne --- September 2024

- Decision theoretic analysis of experiments: analyst's preference over experiments
- ♦ The value of an exp is determined by what it allows to identify
- In principle any kind of experiment, but adapt the analysis to revealed preference
 - Laboratory economics experiments
 - Any agent who can probe at the preference of other agents

- We propose three normative principles for experimental design
 - minimal rationality properties, independent of specific motivations
 - We will specifically think about revealed preference experiments
- We show that they imply a particular representation
 - Relates a experiment to the expected value of identification
 - Unifies many distinct models of experimentation
 - Axiomatic characterization for Bayesian Experimental Design
 - Test for analyst to make sure they do not have an "agenda"

- \diamond A space of parameters \mathcal{U}
- \diamond Experiment A has possible observable outcomes $\{P_1, \ldots, P_n\}$
- ♦ Observing *P* identifies a set of parameters:
 - \diamond $W_{A,P} \subseteq \mathcal{U}$ consistent with observation
- \diamond An "ideal" experiment should induce a partition over \mathcal{U}
 - Not always possible (some parameters might not uniquely determine an observation)

Ranking over experiments should reflect the value of potential identification

Normative Principles

Structural Invariance: Two experiments that identify the sets of parameters are equally valued

Information Monotonicity: Experiments that induce sharper identification are (weakly) better

Identification Separability: The value of identifying a set of parameters should *not* depend on counterfactuals

Expected Identification Value

These principles characterize ranking according to expected identification value

- \diamond Exists some τ : for $W \subseteq \mathcal{U}, \tau(W)$ is the value of identifying W
- Experiments are valued according to:

$$F(A, \mathcal{P}) = \sum_{P \in \mathcal{P}} \tau(W_{A,P}) \mu(W_{A,P})$$

 \diamond where μ is the (exogenous) prior probability

Special Case: Entropy

$$\tau(W) = -\log(\mu(W))$$

- Value of experiment is expected reduction in entropy
- Axiomatized in paper

Special Case: Hypothesis Testing

$$\tau(W) = \begin{cases} 1 & \text{if } W \subseteq W^* \text{ or } W^* \subseteq W^c \\ 0 & \text{otherwise} . \end{cases}$$

- \diamond Hypothesis: the parameter lies in W^*
- Value of exp is the probability the hypothesis can be accepted or rejected

Special Case: Actions

$$\tau(W) = \max_{a \in \mathbb{A}} \int_{W} \xi(a, u) d\mu.$$

- \diamond The analyst will take action $a \in \mathbb{A}$
- \diamond Utility of outcome depends on the parameter: $\xi(a,u)$
- Value of exp is expected value of conditionally optimal action

Related literature

Decision Theory

- Dekel, Lipman and Rustichini (2001) "Representing Preferences with a Unique Subjective State Space"
- ♦ Gilboa and Lerher (1991) "The value of information-An axiomatic approach"
- ♦ Ergin and Sarver (2015) "Hidden actions and preferences for timing of resolution of uncertainty"

Statistics

- Lindley (1972) "Bayesian statistics: A review"
- ♦ Chaloner and Verdinelli (1995) "Bayesian experimental design: A review"

An anal	yst (s	she)) wishes t	to infe	r a sub	ject's (he)	utility	function over X:	

- \diamond Revealed Preference: she should offer a menu $A\subseteq X$ and observe the subject's choice
- Subject's choice
- Different menus offer different "inference" opportunities
- ♦ Ranking over menus will depend on the goals for the analyst

Experimental Environment

- \diamond Z set of alternatives
- $\diamond \ \mathcal{U} \subseteq \{u: Z \to \mathbb{R}\}$ set of utility functions over Z
- $\diamond \Omega$ algebra of measurable sets of $\mathcal U$
- $\diamond \mu$ prior over (\mathcal{U}, Ω)

The tuple $(Z, \mathcal{U}, \Omega, \mu)$ constitutes a theory for a Bayesian experimenter

An **experiment** $e = (A, \mathcal{P})$ is a pair:

- $\diamond A \subseteq Z$ is finite decision problem
- $\diamond \mathscr{P}$ is a partition of A
 - Represents observability constraints
 - Allows for dynamic experiments, non-lab settings, etc

Given an experiment, (A, \mathcal{P}) , define the *identified set*:

$$W_{A,P} = \{ u \in \mathcal{U} \mid P \cap \operatorname{argmax}_{x \in A} u(x) \neq \emptyset \}$$

- \diamond Observing $P \in \mathscr{P}$ identifies that the subject's utility is in $W_{A,P}$
- \diamond We require for an experiment (A, \mathscr{P}) that for any $P, Q \in \mathscr{P}$
 - (1) $W_{A,P} \in \Omega$ measurability
 - (2) $\mu(W_{A,P} \cap W_{A,Q}) = 0$ zero μ -prob of times

Expected Utility Preferences

We can example identifying EU preferences as an example:

- $\diamond Z$ is lotteries over $\{a, b, c\}$
- $\diamond \mathcal{U}$ is affine functions

$$\left\{\frac{2}{3}a + \frac{1}{3}b, \frac{2}{3}a + \frac{1}{3}c, \frac{1}{3}a + \frac{1}{3}b + \frac{1}{3}c\right\}$$

μ -equivalence

Call $\{W_1,...,W_n\}$ and $\{V_1,...,V_m\}$, families of subsets of \mathcal{U} , μ -equivalent if

$$\mu(W_i) > 0 \rightarrow \mu(W_i) = \mu(W_i \cap V_j) \text{ for some } j \quad \text{ and } \\ \mu(V_j) > 0 \rightarrow \mu(V_j) = \mu(W_i \cap V_j) \text{ for some } i$$

- Such collections identify the same sets of utilities up to a measure zero
- \diamond Take [0,1] with λ the Lebesgue measure. The following are λ -equivalent:
 - $\diamond \{[0, \frac{1}{2}), (\frac{1}{2}, 1]\}; \{[0, \frac{1}{2}), \{\frac{1}{2}\}, (\frac{1}{2}, 1]\}, \{[0, \frac{1}{2}], [\frac{1}{2}, 1]\}$

Rich Experimental Settings

We say a set of experiments $\mathbb E$ is *rich* if

- (1) $(A, \mathscr{P}) \in \mathbb{E} \to (A, \mathscr{Q}) \in \mathbb{E}$ whenever \mathscr{Q} is a coarsening of \mathscr{P}
- (2) For any finite Ω -measurable partition of \mathcal{U} , there exists an experiment (A,\mathscr{P}) such that $\{W_{A,P}\}_{P\in\mathscr{P}}$ is μ equivalent

- Any partition can be approximated up to 0 probability events
- $\diamond~$ For the EU model, the set of all experiments is rich for any "regular" μ

Primitive

- ♦ Our primitive is a ranking ≽ over the set of all random experiments
- \diamond A *random experiment* is a lottery over some (fixed) rich set $\mathbb E$

"Two experiments that identify the sets of parameters are equally valued"

(P1) - Structural Invariance

If $\{W_{A,P}|P\in\mathscr{P}\}$ is μ -equivalent to $\{W_{B,Q}|Q\in\mathscr{Q}\}$ then $(A,\mathscr{P})\sim(B,\mathscr{Q})$.

- Structural properties of experiments are irrelevant
- Also, 0-probability events are irrelevant

Consider our EU maximizing subject choosing lotteries over $\{a, b, c\}$.

EXP A: $A = \{a, \frac{1}{2}a + \frac{1}{2}b, \frac{1}{2}a + \frac{1}{2}c, \frac{1}{2}b + \frac{1}{2}c\}$

EXP B : $B = \{a, b, c\}$

 $A' = \{ \frac{6}{10}b + \frac{4}{10}c, \frac{4}{10}b + \frac{6}{10}c \}.$

 $B' = \{\frac{2}{3}a + \frac{1}{3}b, \frac{2}{3}a + \frac{1}{3}c, \frac{1}{3}a + \frac{1}{3}b + \frac{1}{3}c\}.$

Linearity states that

 $x \in \arg\max_{A} u(\cdot)$ $y \in \arg\max_{B} u(\cdot)$ if and only if $\alpha x + (1-\alpha)y \in \arg\max_{\alpha A + (1-\alpha)B} u(\cdot)$

 \diamond Therefore, observing A followed by A' is equivalent to observing $\frac{1}{2}A + \frac{1}{2}A'$

- Structural invariance reflects the symmetries of the given domain
- ♦ With linear utility, the symmetry is *translation invariance*:

Structural Invariance for Expected Utility

$$(A, \{P_1, \dots P_n\}) \sim (A + B, \{P_1 + B, \dots P_n + B\})$$

This isn't exactly correct, since $\{P_1+B,\ldots P_n+B\}$ might have overlaps....

"Experiments that induce sharper identification are (weakly) better"

(P2) - Information Monotonicity

If \mathscr{P} refines \mathscr{Q} then $(A,\mathscr{P})\succcurlyeq (A,\mathscr{Q}).$

⋄ Preference respects Blackwell order

"The value of identification not depend on counterfactuals"

(P3) - Identification Separability

$$\frac{1}{2}(A,\mathscr{P}) + \frac{1}{2}(A,\mathscr{Q}) \sim \frac{1}{2}(A,\mathscr{P}_B\mathscr{Q}) + \frac{1}{2}(A,\mathscr{Q}_B\mathscr{P}).$$

 \diamond \mathscr{P} and \mathscr{Q} partitions of A and $B\subseteq A$, then $\mathscr{P}_B\mathscr{Q}$ denotes the partition that coincides with \mathscr{P} over B and with \mathscr{Q} over $A\setminus B$

Consider decision problem A (from before) with the following partitions

 \diamond The set B is the two south-east lotteries (in teal)

Theorem

Let \succeq be an expected utility preference, represented by index $F: \mathbb{E} \to \mathbb{R}$.

Then \succeq satisfies P1-3 if and only if there exists a $\tau:\Omega\to\mathbb{R}$ such that:

Then
$$\geqslant$$
 satisfies P1-3 if and only if there exists a $\tau: \mathcal{U} \to \mathbb{R}$ such that:

 $F(A, \mathcal{P}) = \sum \tau(W_{A,P}) \mu(W_{A,P})$

- with $W \subseteq V$ implies

 $\diamond \tau(W)\mu(W|V) + \tau(V \setminus W)(1 - \mu(W|V)) > \tau(V)$

 ϕ $\mu(W) = \mu(V)$ implies $\tau(W) = \tau(V)$

Representation reflects our normative principles:

$$F(A, \mathcal{P}) = \sum_{P \in \mathcal{P}} \tau(W_{A,P}) \mu(W_{A,P})$$

- \diamond Only dependents on $W_{A,P} \rightarrow$ Structural Invariance

♦ Additive → Identification Separability

$$\Rightarrow \tau(W)u(W|V) + \tau(V \setminus W)(1 - u(W|V)) > \tau(V) \rightarrow Monotonicity$$

 $\diamond \tau(W)\mu(W|V) + \tau(V \setminus W)(1 - \mu(W|V)) \ge \tau(V) \to \text{Monotonicity}$

In the paper we:

- Specify our axioms to the entropy minimization case
- ♦ Consider a prior free model
 - \diamond τ "includes" the probability
- Show how our model can capture dynamic experiments

