```
In [1]: import pandas as pd
    import numpy as np
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
```

Out[2]:

	column_a	column_b	column_c	column_d	column_e	column_f	column_g	column_h	column_i	column_j	 column_z	column_aa	colur
0	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	 -0.51171	0.41078	-0.
1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -0.26569	-0.20468	-0.
2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -0.40220	0.58984	-0.
3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 0.90695	0.51613	1.
4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -0.65158	0.13290	-0.
346	True	False	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -0.04202	0.83479	0.
347	True	False	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 0.01361	0.93522	0.
348	True	False	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 0.03193	0.92489	0.
349	True	False	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -0.02099	0.89147	-0.
350	True	False	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -0.15114	0.81147	-0.

351 rows × 35 columns

In [3]: pd.set_option('display.max_rows',10000000000)
 pd.set_option('display.max_columns',10000000000)
 pd.set_option('display.width',95)

```
In [4]: print('This DataFrame has %d rows and %d columns'%(df.shape))
          This DataFrame has 351 rows and 35 columns
In [5]: df.head()
Out[5]:
             column a column b column c column d column e column f column g column h column i column j column k column l column m
           0
                  True
                           False
                                   0.99539
                                            -0.05889
                                                      0.85243
                                                                0.02306
                                                                          0.83398
                                                                                   -0.37708
                                                                                             1.00000
                                                                                                      0.03760
                                                                                                                0.85243
                                                                                                                        -0.17755
                                                                                                                                   0.59755
                  True
                                   1.00000
                                            -0.18829
                                                      0.93035
                                                               -0.36156
                                                                         -0.10868
                                                                                   -0.93597
                                                                                             1.00000
                                                                                                     -0.04549
                                                                                                                0.50874
                                                                                                                        -0.67743
                                                                                                                                   0.34432
           1
                           False
                                            -0.03365
                                                      1.00000
                                                                0.00485
                                                                                   -0.12062
                                                                                             0.88965
                                                                                                      0.01198
                                                                                                                         0.05346
                                                                                                                                   0.85443
           2
                  True
                           False
                                   1.00000
                                                                          1.00000
                                                                                                                0.73082
           3
                  True
                           False
                                   1.00000
                                            -0.45161
                                                      1.00000
                                                                1.00000
                                                                          0.71216
                                                                                   -1.00000
                                                                                             0.00000
                                                                                                      0.00000
                                                                                                                0.00000
                                                                                                                         0.00000
                                                                                                                                   0.00000
                                   1.00000
                                            -0.02401
                                                      0.94140
                                                                0.06531
                                                                          0.92106
                                                                                   -0.23255
                                                                                             0.77152
                                                                                                     -0.16399
                                                                                                                0.52798
                                                                                                                        -0.20275
                                                                                                                                   0.56409
                  True
                           False
         features matrix=df.iloc[:,0:34]
 In [6]:
In [7]: target vector=df.iloc[:,-1]
         print('The Feature Matrix has %d Rows and %d columns(s)'%(features matrix.shape))
          print('The Target Matrix has %d Rows and %d columns(s)'%(np.array(target vector).reshape(-1,1).shape))
          The Feature Matrix has 351 Rows and 34 columns(s)
          The Target Matrix has 351 Rows and 1 columns(s)
         features matrix standardized=StandardScaler().fit transform(features matrix)
In [11]: algorithm=LogisticRegression(penalty='12',dual=False,tol=1e-4,C=1.0,fit intercept=True,intercept scaling=1,class weight
In [12]: Logistic Regression Model=algorithm.fit(features matrix standardized,target vector)
```

```
In [15]:
       predictions=Logistic Regression Model.predict(observation)
        print('The model predicted the observation to belong to class %s'%(predictions))
        The model predicted the observation to belong to class ['g']
In [16]: print('The algoritham was trained to predict one of the two classes:%s'%(algorithm.classes ))
        The algoritham was trained to predict one of the two classes:['b' 'g']
In [17]: print(" " "The Model says the probability of the observation we passed belonging to class['b'] Is %s" " "%(algorithm.r
        print()
         The Model says the probability of the observation we passed belonging to class['b'] Is 0.007759545690611991
In [18]: print(" " "The Model says the probability of the observation we passed belonging to class['g'] Is %s" " "%(algorithm.r
         The Model says the probability of the observation we passed belonging to class['g'] Is 0.992240454309388
 In [ ]:
```