Monsoon (Jul-Sep) Catch Covariates Analysis

Table 1: Table B1. Model selection tests of GPCP precipitation as an explanatory variable for the catch S_t during spawning months (Jul-Sep) using 1983 to 2015 data. The data range is determined by the years for which SST was available in order to use a consistent dataset across covariate tests. The base model (M) with prior catch dependency was selected independently (Appendix A). To the base model, covariates are added. V_t is the covariate in same calendar year as the Jul-Sep catch. The specific hypothesis (Table 1) being tested is noted in parentheses. The models are tested as nested sets. Thus 1, 2a, 3a is a set and 1, 2b, 3b is another set. MASE is the mean absolute square error (residuals).

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1983-2015 data 1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	29.6	0.798	21.7			113.82
$V_t = \text{Jun-Jul Precipitation (S1)}$ 2. $ln(S_t) = M + \beta V_t$ 3. $ln(S_t) = M + s(V_t)$	28.6 27	0.786 0.781	19.7 21.4	0.25 1.09	0.62 0.339	115.53 115.77
$V_t = \text{Apr-May Precipitation (S2)}$ 2. $ln(S_t) = M + \beta V_t$ 3. $ln(S_t) = M + s(V_t)$	28.6 26.6	0.772 0.745	24.1 22.2	1.88 0.32	0.183 0.728	113.65 115.65

Table 2: Table B2. Model selection tests of average sea surface temperature off the Kerala coast (up to 80km offshore in boxes 2-5 in Figure 1) as the explanatory variable (V_t) for the catch during monsoon months (Jul-Sep) using 1983 to 2015 data. The hypothesis tested (Table 1) is noted in parentheses. See Table B1 for an explanation of the models.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1983-2015 data						
1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	29.6	0.798	21.7			113.82
$V_t = \text{Ave Mar-May SST (S4)}$						
2a. $ln(S_t) = M + \beta V_t$	28.6	0.804	21.4	1.04	0.318	114.81
$3a. \ln(S_t) = M + s(V_t)$	26.5	0.777	25.6	1.6	0.222	114.28
4a. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	25.6	0.766	23.5	0.25	0.602	115.9
4a. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	24.1	0.727	32	2.88	0.089	112.77
2b. $ln(S_t) = M + \beta V_{t-1}$	28.6	0.782	20.7	0.71	0.407	115.12
3b. $ln(S_t) = M + s(V_{t-1})$	26.7	0.747	24.7	1.66	0.212	114.5
$V_t = \text{Ave Oct-Dec SST (L1)}$						
$2. \ln(S_t) = M + \beta V_{t-1}$	28.6	0.801	19.1	0.04	0.843	115.76
3. $ln(S_t) = M + s(V_{t-1})$	27.1	0.811	19.1	0.65	0.489	116.63

Table 3: Table B3. Model selection tests of upwelling intensity off Cochi as the explanatory variable. See Table B1 for an explanation of the models. Two upwelling indices were tested. The nearshore-offshore temperature differential (UPW), which is the offshore (box 13) minus nearshore (box 4) SST, and the average nearshore SST along the Kerala coast (boxes 2-5). These are highly correlated but not identical. Larger (and positive) UPW indicates stronger upwelling (offshore warmer than nearshore) while smaller SST (during monsoon months) indicates stronger upwelling.

	Residual		Adj.		р	
Model	$\mathrm{d}\mathrm{f}$	MASE	R2	\mathbf{F}	value	AIC
base model (M) 1983-2015 data						
1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	29.6	0.798	21.7			113.82
$V_t = \text{Ave. Jun-Sep UPW (S4 and L2)}$						
$2a. ln(S_t) = M + \beta V_t$	28.6	0.74	28.6	3.93	0.059	111.65
$3a. \ln(S_t) = M + s(V_t)$	26.5	0.712	28.1	0.6	0.568	113.15
4a. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	25.5	0.723	26.4	0.37	0.542	114.67
4a. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	23.1	0.69	28.8	1.11	0.355	114.86
2b. $ln(S_t) = M + \beta V_{t-1}$	28.6	0.775	21.1	0.86	0.364	114.95
3b. $ln(S_t) = M + s(V_{t-1})$	26	0.737	26.7	1.65	0.21	114.08
$V_t = \text{Ave. Jun-Sep SST (S4 and L2)}$						
2a. $ln(S_t) = M + \beta V_t$	28.6	0.756	27.5	3.6	0.07	112.15
$3a. \ln(S_t) = M + s(V_t)$	26.9	0.707	35.3	2.6	0.103	109.33
4a. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	26	0.695	33.8	0.34	0.559	110.87
4a. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	24	0.686	31	0.15	0.857	113.32
$2b. \ ln(S_t) = M + \beta V_{t-1}$	28.6	0.77	21.4	1	0.326	114.83
3b. $ln(S_t) = M + s(V_{t-1})$	26.5	0.754	18.8	0.34	0.726	117.14