Exercises: Week 1
Econometrics Prof. Conlon

Ulrich Atz

2021-02-02

```
library(tidyverse)
library(broom)
```

1. Let's start by writing a function that generates fake data

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i$$

```
# Set some default values
n obs <- 1e3
beta <- 1:3
x1 var <- 0.5
x2_var <- 1.5
e_var <- 2
# Assume centered means for simplicity
generate_sample <- function(n_obs, beta, x1_var, x2_var, e_var, e_type){</pre>
  x1 <- rnorm(n_obs, sd = sqrt(x1_var))</pre>
  x2 <- rnorm(n_obs, sd = sqrt(x2_var))</pre>
  if (e_type == "normal") {e <- rnorm(n_obs,</pre>
                                             sd = sqrt(e var))}
  if (e_type == "uniform") {e <- runif(n_obs,</pre>
                                              \min = -\operatorname{sqrt}(e_{\operatorname{var}}*12)/2,
                                              max = sqrt(e_var*12)/2)
    y \leftarrow beta[1] + beta[2]*x1 + beta[3]*x2 + e
  sample <- tibble(y, x1, x2)</pre>
  return(sample)
```

I derive the correct uniform lower and upper bounds from the variance formula: ¹

$$Var[X_{uniform}] = E[X^2] - E[X]^2 = \frac{(b-a)^2}{12}$$

```
sample <- generate_sample(n_obs, beta, x1_var, x2_var, e_var, e_type = "normal")</pre>
```

The function should take the following arguments:

- n_obs: number of observations in the sample
- beta: a vector of coefficients

 $^{^{1}} Uniform\ variance\ via\ https://www.statlect.com/probability-distributions/uniform-distribution$

- x1_var: a variance/scale parameter for x1
- x2_var: a variance/scale parameter for x2
- e var: a variance/scale parameter for e i
- e_type: a distribution type for the residual (maybe uniform or normal?)
- 2. Now let's write a function that takes the same arguments and also takes as an argument the number of simulated datasets (say 1000?)

3. Let's write a function that takes in a single dataset and runs a regression and calculates the output (let's keep the estimates of $\widehat{\beta}$ and it's standard error, R^2 , MSE, and let's evaluate the a t-statistic for the hypothesis that $H_0: \beta = a$ for some choice of a). It will be helpful to return everything in a data frame.

reg_out(thousand_samples[[1]], 0:2)

```
## # A tibble: 3 x 8
##
     term
                 estimate std.error statistic
                                                  p.value custom_t
                                                                      r2
                                                                            mse
##
     <chr>>
                    <dbl>
                               <dbl>
                                         <dbl>
                                                    <dbl>
                                                             <dbl> <dbl> <dbl>
                              0.0445
                                          21.7 5.40e- 86
## 1 (Intercept)
                    0.966
                                                              21.7 0.890 1.97
## 2 x1
                    2.00
                              0.0640
                                          31.3 4.53e-150
                                                              15.6 0.890 1.97
## 3 x2
                              0.0364
                    3.04
                                          83.6 0.
                                                              28.7 0.890 1.97
```

4. Plot the distribution of $\widehat{\beta}_1$ when the sample size is n = 100 and see how it compares when e_i is uniform vs. when it is normal across the 1000 samples.

```
get_beta <- function(x){
  tmp <- reg_out(x) %>%
    pull(estimate) %>%
    nth(2) # beta1
}
sapply(hundred_samples, get_beta) %>%
  hist(main = "Beta_1 histogram for N = 100", breaks = 20)
```

Beta_1 histogram for N = 100


```
sapply(hundred_samples_unif, get_beta) %>%
hist(main = "Beta_1 histogram for N = 100 (uniform errors)", breaks = 20)
```

Beta_1 histogram for N = 100 (uniform errors)


```
sapply(thousand_samples, get_beta) %>%
hist(main = "Beta_1 histogram for N = 1000", breaks = 20)
```

Beta_1 histogram for N = 1000

sapply(thousand_samples_unif, get_beta) %>%
hist(main = "Beta_1 histogram for N = 1000 (uniform errors)", breaks = 20)

Beta_1 histogram for N = 1000 (uniform errors)

5. Make a table that shows how $\widehat{\beta}_1$ and computes the mean, the standard deviation, the 5th and 95th percentile, and compare that to the asymptotic standard error under different assumptions about the error distribution.

6.	How does changing the precise quantification?	variance	of x_1	and	x_2	and	e_i a	affect	the	results?	Can you	provide	a relativ	е