Санкт–Петербургский политехнический университет Петра Великого

Физико-механический институт Кафедра «Прикладная математика»

Отчёт по циклу лабораторных работ #3 по дисциплине «Математическая статистика»

Выполнил студент:

Турченко Михаил Константинович

группа: 5030102/90101

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2022г.

Оглавление

Постановка задачи	3
Теория	4
Представление данных	
Обработка данных	
Оптимизация	
Реализация	5
Результаты	6

Постановка задачи

Исследование из области солнечной энергетики. На рис. 1 показана схема установки для исследования фотоэлектрических характеристик.

Рис.1 Схема установки

Калибровка датчика ФП1 производится по эталону ФП2. Зависимость между квантовыми эффективностями датчиков предполагается постоянной для каждой пары наборов измерений:

$$QE_{\Phi\Pi2} = \frac{I_{\Phi\Pi2}}{I_{\Phi\Pi1}} * QE_{\Phi\Pi1}$$

 $QE_{\Phi\Pi 1,2}$ — квантовая эффективность датчиков, $I_{\Phi\Pi 1,2}$ — измеренные токи

Имеется 2 выборки данных с интервальной неопределенностью мощностью 200. Одна из них относится к эталонному датчику ФП2, другая — исследуемому датчику ФП1. Данные представлены в виде текстовых файлов.

Цель: требуется определить коэффициент $R_{21}=rac{I_{\Phi\Pi2}}{I_{\Phi\Pi1}}$

Теория

Представление данных

В первую очередь, представим данные таким образом, чтобы применить понятия статистики данных с интервальной неопределенностью. Один из распространенных способов получения интервальных результатов в первичных измерениях — «обинтерваливание» точечных значений, когда к точечному базовому значению \dot{x} , которое считывается по показаниям прибора, прибавляется интервал погрешности

$$x = \dot{x} + \varepsilon$$
, $\varepsilon = [-\varepsilon, \varepsilon]$

В данных измерениях возьмем $\varepsilon=10^{-4} \mathrm{mB}$

Тогда рассматриваемая выборка – это интервальный вектор $x=(x_1,...,x_n)$

Обработка данных

Для оценки необходима предварительная обработка данных. Зададимся линейной моделью дрейфа

$$I_{\Phi\Pi 1,2_n} = A + B * n, \qquad n = \overline{1,200}$$

Для нахождения констант A,B, а также вектора w коррекции данных поставим и решим задачу линейного программирования

$$\sum_{n=1}^{200} |w_n| \to min$$

$$A + B * n - w_n \le I_{\Phi\Pi 1, 2_n}, \qquad n = \overline{1,200}$$

$$A + B * n + w_n \le I_{\Phi\Pi 1, 2_n}, \qquad n = \overline{1,200}$$

$$w_n \ge 0$$

Решать данную задачу ЛП будем с помощью средств пакета GNU Octave на языке программирования Matlab.

Уберем «дрейфовую» компоненту данных:

$$I_{\Phi\Pi}^c = I_{\Phi\Pi} - B * n, \qquad n = \overline{1,200}$$

Оптимизация

Как было сказано, $R_{21} = rac{I_{\Phi\Pi 2}}{I_{\Phi\Pi 1}}$

Будем перебирать R_{21} , объединять две выборки:

$$x = [x_1, x_2 * R_{21}],$$

и вычислять коэффициент Жаккара:

$$JK_i = \frac{\min(\max(x_i)) - \max(\min(x_i))}{\max(\max(x_i)) - \min(\min(x_i))}$$
$$JK = \max JK_i, \quad JK \in [-1, 1]$$

Реализация

Лабораторная работа выполнена с помощью средств языков Python в среде Microsoft Visual Studio и Matlab в среде GNU Octave

Ссылка на код: MathStat/Lab #3 at main · TurchenkoMikhail/MathStat (github.com)

Результаты

Результаты измерения величины токов:

Изобразим графики линейной модели дрейфа данных, а также гистограммы значений множителей коррекции данных w:

Рис. З Линейная модель дрейфа данных

Рис. 4 Гистограммы множителей коррекции w

Результаты линейного приближения значений токов:

Для первого фотоприемника:

$$A_1 = 0.669518; B_1 = 3.38468 * 10^{-6}$$

Для второго фотоприемника:

$$A_2 = 0.729173; B_2 = 2.44801*10^{-6}$$

Рис. 5 Скорректированные модели данных

Рис. 6 Гистограммы скорректированных данных

Построим график коэффициента Жаккара в зависимости от R_{21} :

Рис. 7 Зависимость коэффициента Жаккара от R21

Результаты исследования:

$$R_{opt} = 1.089028$$
; JK = -0.1229739

Рис. 8 Гистограмма объединенных выборок при R = Ropt