Cheerful facts about Pascal's triangle

Eric Rowland

Hofstra University

Many Cheerful Facts — Summer Seminar Hofstra University, 2020–6–8

Binomial coefficients

What do powers of x + y look like?

$$(x + y)^{0} = 1$$

$$(x + y)^{1} = x + y$$

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

Coefficient of $x^{n-m}y^m$ in $(x+y)^n$:

	m=0	1	2	3	4
n = 0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1

The number at position (n, m) is denoted $\binom{n}{m}$. For example, $\binom{4}{2} = 6$.

Pascal's triangle

Blaise Pascal (1623–1662) Portrait by an unknown artist (public domain)

Reflection symmetry:
$$\binom{n}{m} = \binom{n}{n-m}$$
. For example, $\binom{4}{1} = 4 = \binom{4}{3}$.

Why?

$$\binom{n}{m}$$
 = coefficient of $x^{n-m}y^m$ in $(x+y)^n$ (definition)
= coefficient of $y^{n-m}x^m$ in $(y+x)^n$ (swap x, y)
= coefficient of x^my^{n-m} in $(x+y)^n$ (rearrange)
= $\binom{n}{n-m}$.

Odd binomial coefficients

Which numbers in Pascal's triangle are odd? First 128 rows:

This is a fractal — we see the same features on different scales.

Four slices

$$\binom{2n+0}{2m+1}$$

$$\binom{2n+1}{2m+0}$$

$$\binom{2n+1}{2m+1}$$

If
$$r=0$$
 and $s=1$, then $\binom{2n+r}{2m+s}=\binom{2n+0}{2m+1}$ is even. Otherwise, $\binom{2n+r}{2m+s}$ has the same parity as $\binom{n}{m}$.

What's special about r = 0, s = 1?

$$\binom{0}{0} = 1$$

$$\binom{0}{1} = 0$$

$$\binom{1}{0} = 1$$

$$\binom{1}{1} = 1$$

Parity

We write $a \equiv b \mod 2$ if a and b have the same parity.

If $0 \le r \le 1$ and $0 \le s \le 1$, then

Can we generalize 2?

Even numbers leave remainder 0 when divided by 2; odd numbers leave remainder 1.

Modulo 3

Every number leaves remainder 0, 1, or 2 when divided by 3.

Modulo 5

Lucas' theorem

 $a \equiv b \mod m$ if a and b leave the same remainder when divided by m.

Theorem (Édouard Lucas, 1878)

Let p be a prime number.

If
$$0 \le r \le p-1$$
, $0 \le s \le p-1$, $n \ge 0$, and $m \ge 0$, then

$$\binom{pn+r}{pm+s} \equiv \binom{n}{m} \binom{r}{s} \mod p.$$

Example

Let p = 5.

Directly: $\binom{19}{6} = 27132 \equiv 2 \mod 5$.

By Lucas' theorem: $\binom{19}{6} = \binom{3 \cdot 5 + 4}{1 \cdot 5 + 1} \equiv \binom{3}{1} \binom{4}{1} = 3 \cdot 4 = 12 \equiv 2 \mod 5$.

Iterating Lucas' theorem

Example

Computing $\binom{1956}{1865}$ mod 7 is easy, though $\binom{1956}{1865} \approx 2.88 \times 10^{158}$ is large:

This is equivalent to writing 1956 and 1865 in base 7:

$$1956 = 5 \cdot 7^3 + 4 \cdot 7^2 + 6 \cdot 7 + 3$$
$$1865 = 5 \cdot 7^3 + 3 \cdot 7^2 + 0 \cdot 7 + 3.$$

If $n_{\ell}, \ldots, n_1, n_0, m_{\ell}, \ldots, m_1, m_0$ are numbers between 0 and p-1, then

$$\binom{n_\ell p^\ell + \cdots + n_1 p + n_0}{m_\ell p^\ell + \cdots + m_1 p + m_0} \equiv \binom{n_\ell}{m_\ell} \cdots \binom{n_1}{m_1} \binom{n_0}{m_0} \mod p.$$

Modulo 6

What about non-primes?

Modulo 4

Squares of primes

Does Lucas' theorem work modulo p^2 ?

That is,

$$\binom{pn+r}{pm+s}\stackrel{?}{=}\binom{n}{m}\binom{r}{s}\mod p^2.$$

Example

Let p = 2.

$$\begin{pmatrix} 2 \cdot 1 + 0 \\ 2 \cdot 0 + 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2 \not\equiv 0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mod 4$$

It doesn't work!

Partial generalizations

However, for the digits r = 0 and s = 0,

$$\binom{pn}{pm} \equiv \binom{n}{m} \mod p^2.$$

 $\binom{0}{0} = 1$

Ljunggren (1949): If $p \ge 5$, then

$$\binom{pn}{pm} \equiv \binom{n}{m} \mod p^3.$$

Bailey (1990): If $p \ge 5$, $0 \le r \le p-1$, and $0 \le s \le p-1$, then

$$\binom{p^3n+r}{p^3m+s} \equiv \binom{n}{m}\binom{r}{s} \mod p^3.$$

Restricted digits

For which digit pairs (r, s) does Lucas' theorem hold modulo p^2 ?

Let D(p) be the set of pairs (r, s) such that

$$\binom{pn+r}{pm+s} \equiv \binom{n}{m} \binom{r}{s} \mod p^2$$

for all $n \ge 0$ and $m \ge 0$.

Experimentally...

$$D(2) = \{(0,0)\}$$

$$D(3) = \{(0,0), (2,0), (2,2)\}$$

$$D(5) = \{(0,0), (4,0), (4,4)\}$$

Since $\binom{pn}{pm} \equiv \binom{n}{m} \mod p^2$, D(p) contains the pair (0,0).

p = 7

$$D(7) = \{(0,0), (4,2), (6,0), (6,6)\}$$

Example

$$\binom{12002}{7156} \equiv \binom{4}{2} \binom{6}{6} \binom{6}{6} \binom{6}{6} \binom{6}{2} \equiv 6 \cdot 1 \cdot 1 \cdot 1 \cdot 6 = 36 \mod 7^2.$$

p = 11

$$\begin{split} D(11) &= \\ \{(0,0),(3,0),(3,3),(7,0),(7,7),(10,0),(10,3),(10,7),(10,10)\} \end{split}$$

Other primes

D(p) seems to possess the symmetries of the equilateral triangle!

Reflection symmetry through the vertical axis follows (after a little work) from reflection symmetry in Pascal's triangle.

Rotation

Where does rotation by 120° take a point (r, s)?

The first reflection maps (r, s) to (r, r - s). The second reflection maps (r, s) to (p - 1 - r + s, s). The rotation maps (r, s) to (p - 1 - s, r - s).

The three binomial coefficients visited by the orbit of (r, s) are

$$\binom{r}{s}$$
, $\binom{p-1-s}{r-s}$, $\binom{p-1-r+s}{p-1-r}$.

Lucas' theorem modulo p^2

If $0 \le s \le r \le p-1$, then

$$\binom{r}{s} \equiv (-1)^{r-s} \binom{p-1-s}{r-s} \mod p.$$

Theorem (Rowland, 2020+)

Let p be a prime number, let $0 \le r \le p-1$, and let $0 \le s \le p-1$. The statement

$$\binom{pn+r}{pm+s} \equiv \binom{n}{m} \binom{r}{s} \mod p^2$$

holds for all $n \ge 0$ and $m \ge 0$ precisely when $s \le r$ and

$$\binom{r}{s} \equiv (-1)^{r-s} \binom{p-1-s}{r-s} \equiv (-1)^s \binom{p-1-r+s}{p-1-r} \mod p^2.$$

A general congruence

Let
$$\frac{H_n}{I} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$$
 be the *n*th harmonic number.

If $0 \le r \le p-1$, the denominator of H_r is not divisible by p. So we can interpret H_r modulo p by clearing denominators.

Theorem

Let p be a prime number.

If $0 \le s \le r \le p-1$, $n \ge 0$, and $m \ge 0$, then

$$\binom{pn+r}{pm+s} \equiv \binom{n}{m} \binom{r}{s} (1 + pn(H_r - H_{r-s}) + pm(H_{r-s} - H_s)) \mod p^2$$

Conversion

Lemma

If $0 \le s \le r \le p-1$, then $H_r \equiv H_s \mod p$ precisely when

$$\binom{r}{s} \equiv (-1)^{r-s} \binom{p-1-s}{r-s} \mod p^2.$$

Why do harmonic numbers arise? $\binom{n}{m} = \frac{n!}{m!(n-m)!}$

$$(p-1-s)! = \prod_{i=s+1}^{p-1} (p-i)$$

$$\equiv \prod_{i=s+1}^{p-1} (-i) + p(-1)^{p-1-s} \frac{(p-1)!}{s!} \sum_{i=s+1}^{p-1} \frac{1}{-i} \mod p^2$$

$$= (-1)^{p-1-s} \frac{(p-1)!}{s!} (1 - p(H_{p-1} - H_s)).$$