Ternary weight networks

• Fengfu Li, Bo Zhang, Bin Liu

Caffe

• 2016

Overview

- introduce ternary weight networks (TWNs) neural networks with weights constrained to +1, **0** and -1
- achieve up to 16x or 32x model compression rate
- gains 38x more stronger expressive abilities than the binary counterpart
- slightly worse than the full precision counterparts but outperforms the analogous binary precision counterparts a lot.
- need fewer multiplications compared with the full precision counterparts (like binary network)

Ternary weight networks

 Compared with the BPWNs, TWNs own an extra 0 state. But 0 terms need not be accumulated for any multiple operations. Thus, the multiply-accumulate operations in TWNs keep unchanged compared with binary precision counterparts.

$$\begin{cases}
\mathbf{Z} = \mathbf{X} * \mathbf{W} \approx \mathbf{X} * (\alpha \mathbf{W}^{t}) = (\alpha \mathbf{X}) \oplus \mathbf{W}^{t} \\
\mathbf{X}^{\text{next}} = g(\mathbf{Z})
\end{cases}$$

$$\mathbf{W}_{i}^{t} = f_{t}(\mathbf{W}_{i}|\Delta) = \begin{cases}
+1, & \text{if } \mathbf{W}_{i} > \Delta \\
0, & \text{if } |\mathbf{W}_{i}| \leq \Delta \\
-1, & \text{if } \mathbf{W}_{i} < -\Delta
\end{cases}$$

$$\alpha^{*}, \Delta^{*} = \underset{\alpha > 0}{\text{arg min}} (|\mathbf{I}_{\Delta}|\alpha^{2} - 2(\sum |\mathbf{W}_{i}|)\alpha + c_{\Delta})$$

$$(2)$$

where $\mathbf{I}_{\Delta} = \{i \big| |\mathbf{W}_i| > \Delta\}$ and $|\mathbf{I}_{\Delta}|$ denotes the number of elements in \mathbf{I}_{Δ} ; $c_{\Delta} = \sum_{i \in \mathbf{I}_{\Delta}^c} \mathbf{W}_i^2$ is a α -independent constant. Thus, for any given Δ , the optimal α can be computed as follows,

$$\alpha_{\Delta}^* = \frac{1}{|\mathbf{I}_{\Delta}|} \sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_i|. \tag{5}$$

By substituting α_{Δ}^* into (4), we get a Δ -dependent equation, which can be simplified as follows,

$$\Delta^* = \underset{\Delta>0}{\arg\max} \frac{1}{|I_{\Delta}|} \left(\sum_{i \in I_{\Delta}} |W_i| \right)^2 \tag{6}$$

由于 Problem (6) has no straightforward solutions. 作如下操作

equals to $0.75 \cdot \mathrm{E}(|\mathbf{W}|)$. Thus, we can use a rule of thumb that $\Delta^* \approx 0.7 \cdot \mathrm{E}(|\mathbf{W}|) \approx \frac{0.7}{n} \sum_{i=1}^n |\mathbf{W}_i|$ for fast and easy computation.

Experiments

Table 1: Network architecture and parameters setting for different datasets.

	MNIST	CIFAR-10	ImageNet
network architecture weight decay	LeNet-5 1e-4	VGG-7 1e-4	ResNet-18(B) 1e-4
mini-batch size of BN	50	100	$64 (\times 4)^2$
initial learning rate learning rate decay ³ epochs	0.01 15, 25	0.1 80, 120	0.1 30, 40, 50
momentum	0.9	0.9	0.9

Table 2: Validation accuracies (%). Results on ImageNet are with ResNet-18 / ResNet-18B.

	MNIST	CIFAR-10	ImageNet (top-1)	ImageNet (top-5)
TWNs	99.35	92.56	61.8 / 65.3	84.2 / 86.2
BPWNs	99.05	90.18	57.5 / 61.6	81.2 / 83.9
FPWNs	99.41	92.88	65.4 / 67.6	86.76 / 88.0
BinaryConnect	98.82	91.73	-	-
Binarized Neural Networks	88.6	89.85	-	-
Binary Weight Networks	-	-	60.8	83.0
XNOR-Net	-	-	51.2	73.2