Permutation gates in the third level of the Clifford hierarchy

Zhiyang He*, Luke Robitaille*, and Xinyu Tan*

*Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

The Clifford hierarchy

• Let $\mathcal{C}_1 = \mathcal{P}$ be the Pauli group on n qubits, and inductively define $\mathcal{C}_k = \{U : \forall P \in \mathcal{P}, UPU^{-1} \in \mathcal{C}_{k-1}\}.$

The Clifford Hierarchy is defined as $\mathcal{CH}:=\cup_{k=1}^{\infty}\mathcal{C}_k$; we say \mathcal{C}_k is its kth layer.

- $C_1 \subseteq C_2 \subseteq C_3 \subseteq \cdots$ where C_1 is the Pauli group, and C_2 is the Clifford group. Non-Clifford gates are necessary for universal quantum computation!
- The Clifford hierarchy was introduced by Gottesman and Chuang [1] in 1999 in the context of gate teleportation, but has since been studied in its own right.
- For $k \geq 3$, C_k is not a group! For such a fundamental object in quantum computation, the structure of \mathcal{CH} is not well understood.

What is known?

There has been lots of work aiming to understand the structure of \mathcal{CH} or \mathcal{C}_3 .

- A semi-Clifford gate is $\phi_1 d\phi_2$ for Clifford gates ϕ_1, ϕ_2 and diagonal gate d.
- A generalized semi-Clifford gate is $\phi_1\pi d\phi_2$ for Clifford gates ϕ_1,ϕ_2 , permutation gate π , and diagonal gate d.
- ullet Zeng, Chen, and Chuang [2] conjectured in 2007 that all elements of \mathcal{C}_3 are semi-Clifford, and all elements of \mathcal{CH} are generalized semi-Clifford.
- Beigi and Shor [3] showed in 2008 that all elements of \mathcal{C}_3 are generalized semi-Clifford. We don't know if this is true for higher levels!
- Gottesman and Mochon [3] gave a non-semi-Clifford element of \mathcal{C}_3 on n=7 qubits, as shown in Figure 1. Before our paper, this was the only known example of a non-semi-Clifford \mathcal{C}_3 gate!

Figure 1: $CSWAP_{7,1,6}CSWAP_{7,2,5}CSWAP_{7,3,4} \cdot CCZ_{1,2,4}CCZ_{1,3,5}CCZ_{2,3,6}CCZ_{4,5,6}$.

Permutation gates in C_3 are staircases

- A permutation gate is a gate that permutes the computational basis states; there are $(2^n)!$ permutation gates on n qubits.
- ullet For example, X gates and CNOT gates are permutation gates.
- A Toffoli gate acts on three qubits by

$$|a_1\rangle\otimes|a_2\rangle\otimes|a_3\rangle\mapsto|a_1\rangle\otimes|a_2\rangle\otimes|a_3+a_1a_2\rangle.$$

We denote by $TOF_{i,j,k}$ a Toffoli gate with qubits i and j as controls and qubit kas target.

Figure 2: This circuit is for $TOF_{1,2,4}TOF_{1,3,4}TOF_{1,2,3}$.

- Permutation gates are important for implementing circuits and algorithms, such as a quantum adder.
- We say that a product of distinct Toffoli gates is in staircase form if
- each gate $TOF_{i,j,k}$ that appears has i < j < k, and
- the target qubits are in nondecreasing order in the order the gates are applied. For example, Figures 2 and 3 are in staircase form.

Result 1: Any permutation gate in \mathcal{C}_3 can be written as a product of Toffoli gates in staircase form, up to multiplying by Clifford permutations on both sides.

• However, not every product of Toffoli gates in staircase form is in \mathcal{C}_3 .

A family of non-semi-Clifford C_3 permutations

We reject two conjectures of Anderson [4]:

Result 2: Not all permutations in C_3 are semi-Clifford, and n=7 is the smallest number of qubits for which a non-semi-Clifford \mathcal{C}_3 permutation gate exists.

Figure 3: The above gate, denoted as U_3 , is in \mathcal{C}_3 but not semi-Clifford because $U_3^{-1} \notin \mathcal{C}_3$. In fact, this gate is conjugate to the gate in Figure 1 by a Clifford gate.

ullet More surprisingly, this U_3 gate in Figure 3 is the first gate in an infinite family!

Result 3: For each $k \geq 3$, we find a permutation gate U_k on $n = 2^k - 1$ qubits such that $U_k \in \mathcal{C}_3$ but $U_k^{-1} \notin \mathcal{C}_k$. Furthermore, U_k achieves the minimal number of qubits for a C_3 permutation containing a degree-k monomial (e.g., U_3 has $a_1a_2a_4$).

- Construction of U_k :
- for each pair of indices i < j that do not have any 1s in the same place as each other in binary, apply $TOF_{i,j,i+j}$;
- specifically, apply these Toffoli gates in nondecreasing order of target gate (so the result is in staircase form).
- What does this family of gates mean operationally?—There exist gates with cheap fault-tolerant implementation via gate teleportation (level-three), yet whose inverses can be made arbitrarily costly (can lie at any prescribed level).

A bijection to descending multiplications

- We say that a map $\mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2^n$, denoted by juxtaposition, is a descending multiplication if
 - it is linear in each coordinate (distributive), associative, and commutative,
- for all $i\in[n]$, we have $e_ie_i=e_i^2=0$, and for all $i< j\in[n]$, we have e_ie_j is in the span of $\{e_k: k>j\}$.

Here e_1, \ldots, e_n is the standard basis of \mathbb{F}_2^n .

Result 4: There is a bijection between descending multiplications and permutations in \mathcal{C}_3 that can be written in staircase form.

• A multiplication and its corresponding gate π satisfy $\pi | e_i + e_j \rangle = | e_i + e_j + e_i e_j \rangle$.

Summary of our main results

- Any permutation in \mathcal{C}_3 can be written, up to multiplying by Clifford permutations on both sides, as a product of Toffoli gates in staircase form.
- \exists permutation gate U_k on $n=2^k-1$ qubits with $U_k\in\mathcal{C}_3$ but $U_k^{-1}\in\mathcal{C}_k$. U_k minimizes the number of qubits for a \mathcal{C}_3 permutation with a degree-k monomial.
- The smallest number of qubits for which there exists a non-semi-Clifford permutation in C_3 is n=7.
- ullet There is a bijection between descending multiplications and permutations in \mathcal{C}_3 that can be written in staircase form.

References

- 1 D. Gottesman and I. L. Chuang, "Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations," *Nature*, vol. 402, no. 6760, pp. 390–393, Nov. 1999. DOI: 10.1038/46503. [Online]. Available: http://dx.doi.org/10.1038/46503.
- 2 B. Zeng et al., "Semi-Clifford operations, structure of C_k hierarchy, and gate complexity for fault-tolerant quantum computation," Phys. Rev. A, vol. 77, p. 042313, 4 Apr. 2008. DOI: 10.1103/PhysRevA.77.042313. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.77.042313.
- **3** S. Beigi and P. W. Shor, C_3 , semi-Clifford and generalized semi-Clifford operations, 2009. arXiv: 0810.5108 [quant-ph]. [Online]. Available: https://arxiv.org/abs/0810.5108.
- 4 J. T. Anderson, "On groups in the qubit Clifford hierarchy," Quantum, vol. 8, p. 1370, Jun. 2024. DOI: 10.22331/q-2024-06-13-1370. [Online]. Available: http://dx.doi.org/10.22331/q-2024-06-13-1370.