Variational methods for finding ground states of quantum systems

Jonathan Schümann

Dezember 12, 2024

Outline

- 1. Physical task
- 2. Numerical task
 - 2.1. Simple sampling
 - 2.2. Importance sampling
- 3. Examples

Physical task

Stationary Schrödinger equation

• given a Hilbert space ${\cal H}$ and a Hamiltonian ${\cal H}$ the stationary Schrödinger equation reads:

$$H\psi_{i,\alpha}(\mathbf{x}) = E_i\psi_{i,\alpha}(\mathbf{x}), \ \psi_{i,\alpha} \in \mathcal{H}, E_i \in \mathbb{R}$$

Stationary Schrödinger equation

• given a Hilbert space ${\cal H}$ and a Hamiltonian ${\cal H}$ the stationary Schrödinger equation reads:

$$H\psi_{i,\alpha}(\mathbf{x}) = E_i\psi_{i,\alpha}(\mathbf{x}), \ \psi_{i,\alpha} \in \mathcal{H}, E_i \in \mathbb{R}$$

• task: find the groundstate energy $E_0 \le E_i \, \forall i$

Stationary Schrödinger equation

• given a Hilbert space ${\cal H}$ and a Hamiltonian ${\cal H}$ the stationary Schrödinger equation reads:

$$H\psi_{i,\alpha}(\mathbf{x}) = E_i\psi_{i,\alpha}(\mathbf{x}), \ \psi_{i,\alpha} \in \mathcal{H}, E_i \in \mathbb{R}$$

- task: find the groundstate energy $E_0 \le E_i \, \forall i$
- rarely analytically solvable

• if H is discretized by a $(n \times n)$ -matrix the time complexity is $\mathcal{O}(n^3)$ \Rightarrow high spatial resolution is computationally expensive

- if H is discretized by a $(n \times n)$ -matrix the time complexity is $\mathcal{O}(n^3)$ \Rightarrow high spatial resolution is computationally expensive
- difficult to implement boundary conditions

- if H is discretized by a $(n \times n)$ -matrix the time complexity is $\mathcal{O}(n^3)$ \Rightarrow high spatial resolution is computationally expensive
- difficult to implement boundary conditions
- we're not interested in any other eigenenergies E_i , $i \neq 0$

- if H is discretized by a $(n \times n)$ -matrix the time complexity is $\mathcal{O}(n^3)$ \Rightarrow high spatial resolution is computationally expensive
- difficult to implement boundary conditions
- we're not interested in any other eigenenergies E_i , $i \neq 0$
- we're not interested in the wavefunctions $\psi_i(\mathbf{x})$

- if H is discretized by a $(n \times n)$ -matrix the time complexity is $\mathcal{O}(n^3)$ \Rightarrow high spatial resolution is computationally expensive
- difficult to implement boundary conditions
- we're not interested in any other eigenenergies E_i , $i \neq 0$
- we're not interested in the wavefunctions $\psi_i(\mathbf{x})$
- no physical intuition is used

• consider only one spatial dimension $(\mathbf{x} = x)$

- consider only one spatial dimension ($\mathbf{x} = x$)
- we're interested in bound states $\Rightarrow \psi_0(x)$ can be assumed to be real function
- choose a physically reasonable variational ansatz $\psi(x;\lambda)$

- consider only one spatial dimension $(\mathbf{x} = x)$
- we're interested in bound states $\Rightarrow \psi_0(x)$ can be assumed to be real function
- choose a physically reasonable variational ansatz $\psi(x;\lambda)$
- one can find an upper bound for the groundstate energy:

$$E_0 \le E[\psi(x;\lambda)] = E(\lambda) = \frac{\int_{-\infty}^{\infty} dx \psi(x;\lambda) H \psi(x;\lambda)}{\int_{-\infty}^{\infty} dx \psi(x;\lambda) \psi(x;\lambda)}$$

- consider only one spatial dimension $(\mathbf{x} = x)$
- we're interested in bound states $\Rightarrow \psi_0(x)$ can be assumed to be real function
- choose a physically reasonable variational ansatz $\psi(x; \lambda)$
- one can find an upper bound for the groundstate energy:

$$E_0 \le E[\psi(x;\lambda)] = E(\lambda) = \frac{\int_{-\infty}^{\infty} dx \psi(x;\lambda) H \psi(x;\lambda)}{\int_{-\infty}^{\infty} dx \psi(x;\lambda) \psi(x;\lambda)}$$

ullet solve the integral and find the minimizing variational parameter λ_{min}

Numerical task

• let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_B dx^D f(\mathbf{x})$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_{B} dx^{D} f(\mathbf{x})$
- discretize *B* into *M* cells of volume $a^D = \frac{\text{vol}(B)}{M}$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_B dx^D f(\mathbf{x})$
- discretize *B* into *M* cells of volume $a^D = \frac{\text{vol}(B)}{M}$
- general quadrature rule: $S_M^Q = \sum_{j=1}^M w_j f(\mathbf{x_j})$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_B dx^D f(\mathbf{x})$
- discretize *B* into *M* cells of volume $a^D = \frac{\text{vol}(B)}{M}$
- general quadrature rule: $S_M^Q = \sum_{j=1}^M w_j f(\mathbf{x_j})$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_B dx^D f(\mathbf{x})$
- discretize *B* into *M* cells of volume $a^D = \frac{\text{vol}(B)}{M}$
- general quadrature rule: $S_M^Q = \sum_{j=1}^M w_j f(\mathbf{x_j})$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_B dx^D f(\mathbf{x})$
- discretize *B* into *M* cells of volume $a^D = \frac{\text{vol}(B)}{M}$
- general quadrature rule: $S_M^Q = \sum_{j=1}^M w_j f(\mathbf{x_j})$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_B dx^D f(\mathbf{x})$
- discretize *B* into *M* cells of volume $a^D = \frac{\text{vol}(B)}{M}$
- general quadrature rule: $S_M^Q = \sum_{j=1}^M w_j f(\mathbf{x_j})$

• error of quadrature rule of order k: $|S_M^Q - I| \propto a^k \propto M^{-\frac{k}{D}}$

- let B be a domain $B \subset \mathbb{R}^D$ and f a function $f : \mathbb{R}^D \to \mathbb{R}$
- task: approximate the integral $I = \int_B dx^D f(\mathbf{x})$
- discretize *B* into *M* cells of volume $a^D = \frac{\text{vol}(B)}{M}$
- general quadrature rule: $S_M^Q = \sum_{j=1}^M w_j f(\mathbf{x_j})$

- error of quadrature rule of order k: $|S_M^Q I| \propto a^k \propto M^{-\frac{k}{D}}$
- problem: slow convergence for high dimension D

• interpret X as a random variable with probability distribution $\rho(\mathbf{x}) = \frac{1}{\operatorname{vol}(B)}$

- interpret X as a random variable with probability distribution $\rho(\mathbf{x}) = \frac{1}{\operatorname{vol}(B)}$
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} f(\mathbf{x}) \frac{\operatorname{vol}(B)}{\operatorname{vol}(B)} = \left(\int_{B} dx^{D} f(\mathbf{x}) \rho(\mathbf{x}) \right) \operatorname{vol}(B) = \mathbb{E}[f(X)] \operatorname{vol}(B)$$

- interpret X as a random variable with probability distribution $\rho(\mathbf{x}) = \frac{1}{\text{vol}(B)}$
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} f(\mathbf{x}) \frac{\text{vol}(B)}{\text{vol}(B)} = \left(\int_{B} dx^{D} f(\mathbf{x}) \rho(\mathbf{x}) \right) \text{vol}(B) = \mathbb{E}[f(X)] \text{vol}(B)$$

• generate M random sample points $\mathbf{x_j} \in B$ with distribution $\rho(\mathbf{x})$

- interpret X as a random variable with probability distribution $\rho(\mathbf{x}) = \frac{1}{\text{vol}(B)}$
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} f(\mathbf{x}) \frac{\operatorname{vol}(B)}{\operatorname{vol}(B)} = \left(\int_{B} dx^{D} f(\mathbf{x}) \rho(\mathbf{x}) \right) \operatorname{vol}(B) = \mathbb{E}[f(X)] \operatorname{vol}(B)$$

- generate M random sample points $x_i \in B$ with distribution $\rho(x)$
- approximate the expectation value by an average:

$$\mathbb{E}[f(X)] \approx \operatorname{avg}(f) = \frac{1}{M} \sum_{j=1}^{M} f(\mathbf{x_j})$$

- interpret X as a random variable with probability distribution $\rho(\mathbf{x}) = \frac{1}{\operatorname{vol}(B)}$
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} f(\mathbf{x}) \frac{\operatorname{vol}(B)}{\operatorname{vol}(B)} = \left(\int_{B} dx^{D} f(\mathbf{x}) \rho(\mathbf{x}) \right) \operatorname{vol}(B) = \mathbb{E}[f(X)] \operatorname{vol}(B)$$

- generate M random sample points $x_i \in B$ with distribution $\rho(x)$
- approximate the expectation value by an average:

$$\mathbb{E}[f(X)] \approx \operatorname{avg}(f) = \frac{1}{M} \sum_{i=1}^{M} f(\mathbf{x_j})$$

Monte-Carlo sum:

$$S_M^{MC} = \text{vol}(B) \text{ avg}(f) = \frac{\text{vol}(B)}{M} \sum_{j=1}^{M} f(\mathbf{x_j})$$

• Monte-Carlo sum: $S_M^{MC} = \text{vol}(B) \text{ avg}(f) = \frac{\text{vol}(B)}{M} \sum_{j=1}^{M} f(\mathbf{x_j})$

• Monte-Carlo sum: $S_M^{MC} = \text{vol}(B) \text{ avg}(f) = \frac{\text{vol}(B)}{M} \sum_{j=1}^{M} f(\mathbf{x_j})$

• the Monte-Carlo sum is a normal distributed random variable

$$P(S_M^{MC}) = \frac{1}{\sqrt{2\pi}\sigma_M} \exp\left(-\frac{(S_M^{MC} - I)^2}{2\sigma_M^2}\right)$$

• the Monte-Carlo sum is a normal distributed random variable

$$P(S_M^{MC}) = \frac{1}{\sqrt{2\pi}\sigma_M} \exp\left(-\frac{(S_M^{MC} - I)^2}{2\sigma_M^2}\right)$$

• approximate the integral by averaging N Monte-Carlo sums:

$$I \approx \frac{1}{N} \sum_{i=1}^{N} (S_M^{MC})^{(i)} = \frac{1}{N} \frac{\text{vol}(B)}{M} \sum_{i=1}^{N} \sum_{j=1}^{M} f(\mathbf{x}_j^{(i)})$$

• the Monte-Carlo sum is a normal distributed random variable

$$P(S_M^{MC}) = \frac{1}{\sqrt{2\pi}\sigma_M} \exp\left(-\frac{(S_M^{MC} - I)^2}{2\sigma_M^2}\right)$$

• approximate the integral by averaging N Monte-Carlo sums:

$$I \approx \frac{1}{N} \sum_{i=1}^{N} (S_{M}^{MC})^{(i)} = \frac{1}{N} \frac{\text{vol}(B)}{M} \sum_{i=1}^{N} \sum_{j=1}^{M} f(\mathbf{x_{j}^{(i)}})$$

• problem: vol(B) might be unknown and σ_M might be very large

• high σ_M for rapidly changing f(x):

• choose a probability distribution $\rho(\mathbf{x})$ such that $g(\mathbf{x}) := \frac{f(\mathbf{x})}{\rho(\mathbf{x})}$ varies slowly

- choose a probability distribution $\rho(\mathbf{x})$ such that $g(\mathbf{x}) := \frac{f(\mathbf{x})}{\rho(\mathbf{x})}$ varies slowly
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} \frac{\rho(\mathbf{x})}{\rho(\mathbf{x})} f(\mathbf{x}) = \int_{B} dx^{D} \rho(\mathbf{x}) g(\mathbf{x}) = \mathbb{E}[g(X)]$$

- choose a probability distribution $\rho(\mathbf{x})$ such that $g(\mathbf{x}) := \frac{f(\mathbf{x})}{\rho(\mathbf{x})}$ varies slowly
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} \frac{\rho(\mathbf{x})}{\rho(\mathbf{x})} f(\mathbf{x}) = \int_{B} dx^{D} \rho(\mathbf{x}) g(\mathbf{x}) = \mathbb{E}[g(X)]$$

• generate M random sample points $\mathbf{x_i} \in B$ with distribution $\rho(\mathbf{x})$

- choose a probability distribution $\rho(\mathbf{x})$ such that $g(\mathbf{x}) := \frac{f(\mathbf{x})}{\rho(\mathbf{x})}$ varies slowly
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} \frac{\rho(\mathbf{x})}{\rho(\mathbf{x})} f(\mathbf{x}) = \int_{B} dx^{D} \rho(\mathbf{x}) g(\mathbf{x}) = \mathbb{E}[g(X)]$$

- generate M random sample points $\mathbf{x_i} \in B$ with distribution $\rho(\mathbf{x})$
- Monte-carlo sum:

$$S_M^{MC} = \frac{1}{M} \sum_{i=1}^M g(\mathbf{x_j})$$

- choose a probability distribution $\rho(\mathbf{x})$ such that $g(\mathbf{x}) := \frac{f(\mathbf{x})}{\rho(\mathbf{x})}$ varies slowly
- rewrite the integral:

$$I = \int_{B} dx^{D} f(\mathbf{x}) = \int_{B} dx^{D} \frac{\rho(\mathbf{x})}{\rho(\mathbf{x})} f(\mathbf{x}) = \int_{B} dx^{D} \rho(\mathbf{x}) g(\mathbf{x}) = \mathbb{E}[g(X)]$$

- generate M random sample points $\mathbf{x_i} \in B$ with distribution $\rho(\mathbf{x})$
- Monte-carlo sum:

$$S_M^{MC} = \frac{1}{M} \sum_{j=1}^M g(\mathbf{x_j})$$

approximate the integral by averaging N Monte-Carlo sums:

$$I \approx \frac{1}{N} \sum_{i=1}^{N} (S_{M}^{MC})^{(i)} = \frac{1}{N} \frac{1}{M} \sum_{i=1}^{N} \sum_{j=1}^{M} g(\mathbf{x}_{\mathbf{j}}^{(i)})$$

Importance sampling for variational methods

• our goal is to calculate the variational energy $E(\lambda)$:

$$E(\lambda) = \frac{\int_{-\infty}^{\infty} dx \psi(x; \lambda) H \psi(x; \lambda)}{\int_{-\infty}^{\infty} dx \psi(x; \lambda) \psi(x; \lambda)} = \int_{-\infty}^{\infty} dx \left(\frac{\psi^{2}(x; \lambda)}{\int_{-\infty}^{\infty} dx \psi^{2}(x; \lambda)} \frac{H \psi(x; \lambda)}{\psi(x; \lambda)} \right)$$

Importance sampling for variational methods

• our goal is to calculate the variational energy $E(\lambda)$:

$$E(\lambda) = \frac{\int_{-\infty}^{\infty} dx \psi(x; \lambda) H \psi(x; \lambda)}{\int_{-\infty}^{\infty} dx \psi(x; \lambda) \psi(x; \lambda)} = \int_{-\infty}^{\infty} dx \left(\frac{\psi^{2}(x; \lambda)}{\int_{-\infty}^{\infty} dx \psi^{2}(x; \lambda)} \frac{H \psi(x; \lambda)}{\psi(x; \lambda)} \right)$$

• define:

$$\rho(\mathbf{x};\lambda) = \frac{\psi^2(\mathbf{x};\lambda)}{\int_{-\infty}^{\infty} d\mathbf{x} \psi^2(\mathbf{x};\lambda)} \text{ and } E_{local}(\mathbf{x};\lambda) = \frac{H\psi(\mathbf{x};\lambda)}{\psi(\mathbf{x};\lambda)}$$

Importance sampling for variational methods

• our goal is to calculate the variational energy $E(\lambda)$:

$$E(\lambda) = \frac{\int_{-\infty}^{\infty} dx \psi(x; \lambda) H \psi(x; \lambda)}{\int_{-\infty}^{\infty} dx \psi(x; \lambda) \psi(x; \lambda)} = \int_{-\infty}^{\infty} dx \left(\frac{\psi^{2}(x; \lambda)}{\int_{-\infty}^{\infty} dx \psi^{2}(x; \lambda)} \frac{H \psi(x; \lambda)}{\psi(x; \lambda)} \right)$$

• define:

$$\rho(x;\lambda) = \frac{\psi^2(x;\lambda)}{\int_{-\infty}^{\infty} dx \psi^2(x;\lambda)} \text{ and } E_{local}(x;\lambda) = \frac{H\psi(x;\lambda)}{\psi(x;\lambda)}$$

• using importance sampling we find:

$$E(\lambda) = \int_{-\infty}^{\infty} dx \rho(x; \lambda) E_{local}(x; \lambda) \approx \frac{1}{N} \frac{1}{M} \sum_{i=1}^{N} \sum_{j=1}^{M} E_{local}(x; \lambda) (x_{j}^{(i)}; \lambda)$$

Examples

• Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} x^2$ $(\hbar = m = 1)$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} x^2$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{\mathrm{Gauss}}(\mathbf{x};\lambda) = \mathrm{e}^{-\lambda \mathbf{x}^2}$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} x^2$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{Gauss}(x; \lambda) = e^{-\lambda x^2}$
- local energy: $E_{local} = \frac{H\psi(x;\lambda)}{\psi(x;\lambda)} = \lambda 2\lambda^2 x^2 + \frac{1}{2}x^2$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} x^2$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{Gauss}(x; \lambda) = e^{-\lambda x^2}$
- local energy: $E_{local}=rac{H\psi(x;\lambda)}{\psi(x;\lambda)}=\lambda-2\lambda^2x^2+rac{1}{2}x^2$
- exact solution: $E_0 = \frac{1}{2}$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} x^2$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{Gauss}(x; \lambda) = e^{-\lambda x^2}$
- local energy: $E_{local} = \frac{H\psi(x;\lambda)}{\psi(x;\lambda)} = \lambda 2\lambda^2 x^2 + \frac{1}{2}x^2$
- exact solution: $E_0 = \frac{1}{2}$
- for $\lambda = \frac{1}{2}$ the variational ansatz is the exact solution

$$\Rightarrow E(x; \lambda = \frac{1}{2}) \equiv E_0 = \frac{1}{2}$$

Monte-Carlo method vs. Importance Sampling

Monte-Carlo method vs. Importance Sampling

Monte-Carlo method vs. Importance Sampling

Harmonic Oscillator - Groundstate

Harmonic Oscillator - Groundstate

• Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} - \mathrm{sech}^2(x)$ $(\hbar = m = 1)$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} \mathrm{sech}^2(x)$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{\mathrm{Gauss}}(\mathbf{x};\lambda) = \mathrm{e}^{-\lambda \mathbf{x}^2}$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} \operatorname{sech}^2(x)$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{Gauss}(x; \lambda) = e^{-\lambda x^2}$
- local energy: $E_{local} = \lambda 2\lambda^2 x^2 \mathrm{sech}^2(x)$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} \operatorname{sech}^2(x)$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{Gauss}(x; \lambda) = e^{-\lambda x^2}$
- local energy: $E_{local} = \lambda 2\lambda^2 x^2 \operatorname{sech}^2(x)$
- exact solution: $E_0 = -\frac{1}{2}$

- Hamiltonian: $H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} \operatorname{sech}^2(x)$ $(\hbar = m = 1)$
- variational ansatz: $\psi_{Gauss}(x; \lambda) = e^{-\lambda x^2}$
- local energy: $E_{local} = \lambda 2\lambda^2 x^2 \operatorname{sech}^2(x)$
- exact solution: $E_0 = -\frac{1}{2}$
- the variational ansatz is not the exact solution $\Rightarrow E_0 < E(x; \lambda_{min})$

Pöschl-Teller-Potential - Groundstate

• assume no angular momentum (l = 0)

- assume no angular momentum (l = 0)
- radial Hamiltonian: $H = -\frac{1}{r}\frac{\partial}{\partial r} \frac{1}{2}\frac{\partial^2}{\partial r^2} \frac{1}{r}$ $(\hbar = e = m_e = 4\pi\epsilon_0 = 1)$

- assume no angular momentum (l = 0)
- radial Hamiltonian: $H = -\frac{1}{r}\frac{\partial}{\partial r} \frac{1}{2}\frac{\partial^2}{\partial r^2} \frac{1}{r}$ $(\hbar = e = m_e = 4\pi\epsilon_0 = 1)$
- variational ansatz: $R_{\text{exp}}(r; \lambda) = e^{-\lambda r}$

- assume no angular momentum (l = 0)
- radial Hamiltonian: $H = -\frac{1}{r}\frac{\partial}{\partial r} \frac{1}{2}\frac{\partial^2}{\partial r^2} \frac{1}{r}$ $(\hbar = e = m_e = 4\pi\epsilon_0 = 1)$
- variational ansatz: $R_{exp}(r; \lambda) = e^{-\lambda r}$
- local energy: $E_{local} = \frac{\lambda}{r} \frac{\lambda^2}{2} \frac{1}{r}$

- assume no angular momentum (l = 0)
- radial Hamiltonian: $H = -\frac{1}{r}\frac{\partial}{\partial r} \frac{1}{2}\frac{\partial^2}{\partial r^2} \frac{1}{r}$ $(\hbar = e = m_e = 4\pi\epsilon_0 = 1)$
- variational ansatz: $R_{\text{exp}}(r; \lambda) = e^{-\lambda r}$
- local energy: $E_{local} = \frac{\lambda}{r} \frac{\lambda^2}{2} \frac{1}{r}$
- exact solution: $E_0 = -\frac{1}{2}$

- assume no angular momentum (l = 0)
- radial Hamiltonian: $H = -\frac{1}{r}\frac{\partial}{\partial r} \frac{1}{2}\frac{\partial^2}{\partial r^2} \frac{1}{r}$ $(\hbar = e = m_e = 4\pi\epsilon_0 = 1)$
- variational ansatz: $R_{\text{exp}}(r; \lambda) = e^{-\lambda r}$
- local energy: $E_{local} = \frac{\lambda}{r} \frac{\lambda^2}{2} \frac{1}{r}$
- exact solution: $E_0 = -\frac{1}{2}$
- for $\lambda=1$ the variational ansatz is the exact solution

$$\Rightarrow E(x; \lambda = 1) \equiv E_0 = -\frac{1}{2}$$

Hydrogen atom - Groundstate

Hydrogen atom with exponentially decaying trial function.

Conclusion

1. using variational methods we can find an upper bound for the groundstate energy $E_0 \leq E(\lambda)$ of a quantum system if we have a good guess for the wavefunction

Conclusion

- 1. using variational methods we can find an upper bound for the groundstate energy $E_0 \leq E(\lambda)$ of a quantum system if we have a good guess for the wavefunction
- 2. for many particles this involves solving high dimensional integrals for which stochastical integration methods are superior to quadrature rules

Conclusion

- 1. using variational methods we can find an upper bound for the groundstate energy $E_0 \leq E(\lambda)$ of a quantum system if we have a good guess for the wavefunction
- 2. for many particles this involves solving high dimensional integrals for which stochastical integration methods are superior to quadrature rules
- 3. using importance sampling rather than simple sampling reduces the error and therefore the needed computation time significantly