Valeur-Absolue

Exercice 1 Résoudre dans \mathbb{R} l'inéquation |2x-3|>2

Exercice 2 Résoudre dans \mathbb{R} l'inéquation

$$|x-1| < |3x-2|$$

Exercice 3 Résoudre l'inéquation $x + |x| \leq |2x + 1|$

Exercice 4 Soit m un paramètre réel.

Résoudre dans R l'équation

$$|x - m| = 2x + |m + 1|$$

Exercice 5 Soit m un paramètre réel. Résoudre l'équation

$$|x| = |2x + m|$$

Exercice 6 On suppose donné la représentation graphique d'une fonction f définie de \mathbb{R} dans \mathbb{R} . Comment obtenir la représentation graphique de

$$g: x \mapsto |f(x)|$$
?

$$h: x \mapsto f(|x|)$$
?

Exercice 7 Montrer que la fonction valeur absolue n'est pas affine sur \mathbb{R} .

Exercice 8 Représenter graphiquement la fonction $f: x \mapsto ||x+1| - |2x-1||$

Exercice 9 On considère la fonction f définie sur \mathbb{R} , par

$$f(x) = -4 - 2x \text{ si } x \leqslant -1$$

$$f(x) = -2 \text{ si } -1 < x \leqslant -\frac{2}{3}$$

$$f(x) = 6x + 2 \text{ si } -\frac{2}{3} < x \leqslant \frac{1}{2}$$

$$f(x) = 4 + 2x \text{ si } x > \frac{1}{2}.$$

Écrire f comme somme ou différence de fonctions du type $x \mapsto |ax + b|$

Exercice 10 Résoudre dans \mathbb{R} l'équation |2x+1|=4

Exercice 11 Résoudre dans \mathbb{R} l'équation |x+3|=|2x-4|

Exercice 12 Résoudre dans \mathbb{R} l'équation 1 + |x - 1| = |3x + 4|

Exercice 13 Étudier la dérivabilité sur \mathbb{R} de la fonction $x \mapsto |x^7 + 3x^6 - 6x^5 - 28x^4 - 24x^3|$

Exercice 14 Résoudre dans \mathbb{R} l'équation

$$|x+m| = m+1+|x-m|$$

où m est un paramètre réel.

Exercice 15 Déterminer les cas d'égalité dans les inégalités triangulaires

Exercice 16 Représenter graphiquement la fonction

$$x \mapsto |x+2| + |x+4| - |x-3|$$

Exercice 17 Montrer que pour tout x réel et tout entier naturel n:

$$|\sin(nx)| \le n|\sin x|$$

Exercice 18 Déterminer les primitives sur \mathbb{R} de la fonction $x \mapsto |x|$.

Exercice 19 Soit $f: x \mapsto |x+4| - |x-2| + |x-5|$

Déterminer en fonction du réel m le nombre de solutions réelles de l'équation f(x) = m.

Exercice 20 Calculer

$$\int_{0}^{6} ||x-3|-|x-2|| \cdot dx$$

Exercice 21 Démontrer :

$$\forall x, y \in \mathbb{R} \quad |x| + |y| \leqslant |x + y| + |x - y|$$

Exercice 22 Démontrer :

$$\forall x, y \in \mathbb{R} \quad 1 + |xy - 1| \le (1 + |x - 1|) \cdot (1 + |y - 1|)$$

Exercice 23 Démontrer :

$$\forall x, y \in \mathbb{R} \quad \frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$$

Exercice 24 Démontrer :

$$\forall x, y \in \mathbb{R}^* \quad \max(|x|, |y|) \cdot \left| \frac{x}{|x|} - \frac{y}{|y|} \right| \leqslant 2|x - y|$$

$$\forall x, y \in \mathbb{R} \quad \max(x, y) = \frac{x + y + |x - y|}{2}$$

 \blacksquare Trouver une formule pour $\min(x,y)$