Lecture 31, Nov. 7

- **31.1 Definition** (Representative). For x, $a \in S$ with \sim m when $x \in [a]$, that is when [x] = [a], we say that x is a representative of the equivalence class [a].
- **31.2 Definition.** Let $n \in \mathbb{Z}^+$. Define a relation on \mathbb{Z} as follows. For $a, b \in \mathbb{Z}$, we define

$$a \sim b \iff n \mid (a - b)$$

 $\iff a - b = kn \text{ for some } k \in \mathbb{Z}$
 $\iff a = b + kn \text{ for some } k \in \mathbb{Z}$

More commonly, we write

$$a = b \mod n$$

when $a \sim b$, and we say that a is equal (or equivalent or congruent) to b modulo n.

Note that this relation is an equivalence class because for $a, b, c \in \mathbb{Z}$,

- 1. $a \sim a$ since $a = a + 0 \cdot n$
- 2. if $a \sim b$, say $a = b + k \cdot n$ with $k \in \mathbb{Z}$, then $b = a + (-k) \cdot n$, so $b \sim a$
- 3. if $a \sim b$, and $b \sim c$, say a = b + kn and b = c + ln with $k, l \in \mathbb{Z}$, then a = c + (l + k)n, so $a \sim c$
- **31.3 Definition.** We define the set of integers modulo n to be the quotient set

$$\mathbb{Z}_n = \mathbb{Z}/\sim = \{[a] \mid a \in \mathbb{Z}\}$$

where

$$[a] = \{x \in \mathbb{Z} \mid x \sim a\}$$

$$= \{x \in \mathbb{Z} \mid x = a \mod n\}$$

$$= \{x \in \mathbb{Z}x = a + kn \text{ for some } k \in \mathbb{Z}\}$$

$$= \{\cdots, a - 2n, a - n, a, a + n, a + 2n, \cdots\}$$

Remark. Note that for $n \in \mathbb{Z}^+$ and for $a,b \in \mathbb{Z}$, we have $a=b \mod n$ if and only if a and b have the same remainder when divided by n. That is if a=qn+r with $0 \le r < n$ and b=pn+s with $0 \le s < n$, then $a=b \mod n \iff r=s$

Proof. Suppose a = qn + r with $0 \le r < n$ and b = pn + s with $0 \le s < n$. Suppose that $a = b \mod n$, so that $n \mid (a - b)$. We have a - b = (q - p)n + (r - s). Since $n \mid (a - b)$, we have $n \mid (r - s)$. If $r \ne s$ so $r - s \ne 0$ then since $n \mid (r - s)$ we have $n \le |r - s|$. But since $0 \le r < n$ and $0 \le s < n$, we have $r - s < n - s \le n - 0 = n$, and s - r < n - r < n - 0 = n, so |r - s| < n, giving a contradiction. Thus r = s.

Conversely Suppose that r = s, then a - b = (q - p)n + (r - s) = (q - p)n, so $n \mid (a - b)$, hence $a = b \mod n$.

Since the possible remainders r with $0 \le r < n$ are $0, 1, 2, \dots, n-1$, it follows that

$$\mathbb{Z}_n = \{[0], [1], \cdots, [n-1]\}$$

and the elements listed in the set are distinct (so that \mathbb{Z}_n has exactly n elements).

Often, for $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$ we shall write the element [a] in \mathbb{Z}_n simply as $a \in \mathbb{Z}_n$. So for $a, b \in \mathbb{Z}$ we have

$$a = b \mod n \text{ in } \mathbb{Z}$$

 $\iff a = b \text{ in } \mathbb{Z}_n$

31.4 Theorem. For $n \in \mathbb{Z}$ with $n \geq 2$, \mathbb{Z}_n is a ring using the following operations: for $a, b \in \mathbb{Z}$ we define

$$[a] + [b] = [a + b]$$

and

$$[a] \cdot [b] = [ab].$$

The zero and identity elements in \mathbb{Z}_n are [0] and [1].

Let us verify that the operations are well-defined.

Proof. We need to show that for $a, b, c, d \in \mathbb{Z}$, if $a = c \mod n$ and $b = d \mod n$, then $a + b = c + d \mod n$ and $ab = cd \mod n$.

Let $a, b, c, d \in \mathbb{Z}$, Suppose $a = c \mod n$ and $b = d \mod n$, say a = c + kn and b = d + ln, then a + b = (c + d) + (l + k)n, so $a + b = c + d \mod n$, and ab = cd + (cl + kd + kln)n, so $ab = cd \mod n$.

It is easy to check that the axioms are satisfied.

For example, for $a, b, c \in \mathbb{Z}$,

$$[a] + [0] = [a + 0]$$

= $[a]$

$$[a][1] = [a \cdot 1]$$
$$= [a]$$

$$[a]([b] + [c]) = [a][(b + c)]$$

$$= [a(b + c)]$$

$$= [ab + ac]$$

$$= [ab] + [ac]$$

$$= [a][b] + [a][c]$$

31.5 Theorem (Units Modulo n). For $a, n \in \mathbb{Z}$ with $n \ge 2$.

[a] is invertible in $\mathbb{Z}_n \iff \gcd(a, n) = 1$ in \mathbb{Z}

Proof. Suppose [a] is a unit in \mathbb{Z}_n . Choose $s \in \mathbb{Z}$ so that [a][s] = 1. Then [as] = 1 and $as = 1 \mod n$. Say as = 1 + kn with $k \in \mathbb{Z}$, then as + nt = 1 with t = -k. Thus gcd(a, n) = 1.

Conversely, suppose gcd(a,b)=1. Use the Euclidean Algorithm with Back Substitution to find $s,t\in\mathbb{Z}$ such that as+nt=1. Then as=1-nt. Thus [as]=[1] in \mathbb{Z}_n , so [a][s]=1. So [a] is invertible with $[a]^{-1}=[s]$ in \mathbb{Z}_n .

31.6 Example. Determine whether 125 is a unit in \mathbb{Z}_{471} and, if so, find 125^{-1} .