HW2 IS457 85

Mon Sep 24, 2018

Part 1. Warm up

In this part, we will work with vectors and apply some functions on them.

(1) Create a Vector like this (0 0 0 3 3 3 6 6 6 9 9 9 12 12 12 15 15 15 18 18 18) with functions seq() and rep() and call it "vec" (1 pt)

Ans:

```
vec = rep(seq(0,18,3), each = 3)
vec
```

[1] 0 0 0 3 3 3 6 6 6 9 9 9 12 12 12 15 15 15 18 18 18

The above code gives us the desired sequence of elements.

(2) Calculate the fraction of elements in vec that are more than or equal to 9. (2 pts) hint: R can do vectorized operations.

Ans:

frac = sum(vec>=9)/length(vec)
frac

[1] 0.5714286

The fraction of elements in vec that are more than or equal to 9 is 0.57.

(3) Create a Vector like this (1 2 2 3 3 3 4 4 4 4 5 5 5 5 5) with functions rep() and the : operator (1 pt)

Ans:

```
vec2 = rep(1:5, c(1, 2, 3, 4, 5))
vec2
```

[1] 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5

As can be seen from the output above the code gives us the desired sequence.

Part 2. CO2 Data

(4) Use R to generate descriptions of the CO2 data which is already available with the base R installation (it is called CO2 in R. Please note that we are using the CO2 dataset and not the similarly named co2 dataset). Print out the summary of each column and the dimensions of the dataset. (2 pts.) (hint: you may find the summary() and dim() useful). Write up your descriptive findings and observations of the R output. (1 pt.)

Ans:

summary(CO2)

Plant		Туре	Treatment	conc	uptake
Qn1	: 7	Quebec :42	nonchilled:42	Min. : 95	Min. : 7.70
Qn2	: 7	Mississippi:42	chilled :42	1st Qu.: 175	1st Qu.:17.90
Qn3	: 7			Median : 350	Median :28.30
Qc1	: 7			Mean : 435	Mean :27.21
Qc3	: 7			3rd Qu.: 675	3rd Qu.:37.12
Qc2	: 7			Max. :1000	Max. :45.50
(Other	1):42				

dim(CO2)

[1] 84 5

The CO2 dataset consists of 84 observations for 5 variables. The variables are: 1) Plant – factor variable for giving unique id for each plant. 2) Type – factor variable for location of the plant. 3) Treatment – factor variable for the treatment given to the plant. 4) conc – numeric variable for concentration of CO2. 5) uptake – numeric variable the uptake rate in the plant observed.

(5) Show last 8 plants' uptake values (1 pt.)

Ans:

tail(CO2, n = 8)

```
Plant
             Type Treatment conc uptake
                        chilled 1000
                                        14.4
77
     Mc2 Mississippi
                                        10.6
78
     Mc3 Mississippi
                        chilled
                                  95
                                 175
                                        18.0
79
     Mc3 Mississippi
                        chilled
                        chilled
                                 250
                                        17.9
80
     Mc3 Mississippi
     Mc3 Mississippi
                                 350
                                        17.9
81
                        chilled
                                        17.9
82
     Mc3 Mississippi
                        chilled
                                 500
83
                                        18.9
     Mc3 Mississippi
                        chilled 675
                        chilled 1000
84
     Mc3 Mississippi
                                        19.9
```

To show the last eight uptake values of the plants we provide the value 8 to the n argument of the **tail()** function to override its default value of 6.

(6) Show all plants' uptake values except the first 20 plants'. (1 pt.)

Ans:

CO2\$uptake[-seq(1:20)]

```
[1] 45.5 14.2 24.1 30.3 34.6 32.5 35.4 38.7 9.3 27.3 35.0 38.8 38.6 37.5 42.4 [16] 15.1 21.0 38.1 34.0 38.9 39.6 41.4 10.6 19.2 26.2 30.0 30.9 32.4 35.5 12.0 [31] 22.0 30.6 31.8 32.4 31.1 31.5 11.3 19.4 25.8 27.9 28.5 28.1 27.8 10.5 14.9 [46] 18.1 18.9 19.5 22.2 21.9 7.7 11.4 12.3 13.0 12.5 13.7 14.4 10.6 18.0 17.9 [61] 17.9 17.9 18.9 19.9
```

We use subsetting by exclusion method to remove the first 20 plants' values.

(7) Calculate the mean of uptake subseted by the "Treatment" variable. (1 pt) hint: apply function family

Ans:

mean_uptake = tapply(CO2\$uptake, CO2\$Treatment, mean) mean_uptake

nonchilled chilled 30.64286 23.78333

The mean uptake value for nonchilled plants are 30.64 and for chilled plants is 23.78.

(8) Create a logical vector uptake treatment . (2 pts)

For the plants with Chilled treatment (Treatment == "chilled"), return value TRUE when uptake > 30. For the plants with Non-Chilled treatment (Treatment == "nonchilled"), return value TRUE when uptake > 40.

Ans:

uptake_treatment = as.logical((CO2\$Treatment == "nonchilled" & CO2\$uptake > 40) | (CO2\$Treatment == "chilled" & CO2\$uptake > 30)) uptake_treatment

- [27] TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
- [40] TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
- [53] FALSE FALSE
- [66] FALSE FALSE
- [79] FALSE FALSE FALSE FALSE FALSE

The above logical vector shows the truth values corresponding to the **CO2\$uptake** value greater than 30 in case of **CO2\$Treatment** value being "chilled" and **CO2\$uptake** value greater than 40 in case of **CO2\$Treatment** value being "nonchilled".

(9) Here is an alternative way to create the same vector in Q8. First, we create a numeric vector uptake_test that is 30 for each plant with chilled treatment and 40 for each plant with non-chilled treatment. To do this, first create a vector of length 2 called test_val whose first element is 40 and second element is 30. (1 pt).

Ans:

 $test_val = c(40,30)$

Create the uptake_test vector by subsetting test_val by position, where the positions could be represented based on the Treatment column in CO2. (1 pt)

uptake_test = test_val[CO2\$Treatment]

Finally, use uptake_test and the uptake column to create the desired vector, and call it uptake_treatment2. (1 pt)

uptake_treatment2 = CO2\$uptake>uptake_test
uptake_treatment2

- [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
- [14] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
- [27] TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
- [40] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
- [53] FALSE FALSE

```
[66] FALSE FALSE
[79] FALSE FALSE FALSE FALSE FALSE
```

all.equal(uptake_treatment, uptake_treatment2)

```
[1] TRUE
```

As can be seen from the above code, uptake_treatment and uptake_treatment2 vector have the same element

Part 3. San Francisco Housing Data (25 pts.)

Load the data into R.

load(url("https://www.stanford.edu/~vcs/StatData/SFHousing.rda"))

(10) (3 pts.) What objects are in SFHousing.rda? Give the name and class of each.

Ans:

names(housing)

```
[1] "county"
              "city"
                         "zip"
                                   "street"
                                              "price"
[6] "br"
                                   "year"
              "lsqft"
                         "bsqft"
                                              "date"
                         "quality" "match"
[11] "long"
               "lat"
                                               "wk"
```

str(housing)

```
'data.frame':
             281506 obs. of 15 variables:
$ county : Factor w/ 9 levels "Alameda County",..: 1 1 1 1 1 1 1 1 1 1 ...
        : Factor w/ 163 levels "Alameda", "Alamo", ...: 1 1 1 1 1 1 1 1 1 1 ...
         : Factor w/ 314 levels "94002", "94005", ...: 79 79 79 79 79 80 79 79 80 79
$ zip
$ street : chr "1220 Broadway" "429 Fair Haven Road" "2804 Fernside Boulevard" "1
316 Grove Street" ...
$ price : num 509000 504000 526000 637000 393500 ...
         : int 4 4 2 3 3 4 2 3 3 3 ...
$ br
$ lsqft : num 4420 6300 4000 2700 1780 ...
              1834 1411 1272 1168 1610 1720 854 1476 1503 1240 ...
$ bsqft : int
        : int 1910 1964 1941 1910 NA 1965 1964 1990 1986 1963 ...
$ year
       : POSIXt, format: "2003-04-27 02:00:00" ...
$ date
        : num -122 -122 -122 -122 -122 ...
$ long
        : num 37.8 37.8 37.8 37.8 .
$ lat
: Date, format: "2003-04-21" ...
$ wk
```

The housing dataset consists of the following objects along with their class.

Obj	ject Name	Object class		
1.	county	Factor		
2.	city	Factor		
3.	zip	Factor		
4.	street	Character		
5.	price	Numeric		

6.	br	Integer
7.	lsqft	Numeric
8.	bsqft	Integer
9.	year	Integer
10.	date	POSIXt
11.	long	Numeric
12.	lat	Numeric
13.	quality	Factor
14.	match	Factor
15.	wk	Date

(11) Give a summary of each object, including a summary of each variable and the dimension of the object. (4 pts)

Ans:

dim(housing)

[1] 281506 15

The above output shows the dimensions of the dataset. The summary for each variable is below.

summary(housing\$county)

Alameda Coui	nty Contra	Costa County	/	Marin County	/
	60410		59381		10450
Naj	oa County Sa	n Francisco	County	San Mateo	County
	5066		8137		22558
Santa Cla	ra County	Solano	County	Sonoma	County
	70424		23404		21676

summary(housing\$city)

Oakland	Santa	Rosa
	14730	9917
	Fremont	San Francisco
	9414	8137
	Evergreen	Antioch
	7947	7726
	Vallejo	Concord
	7183	7109
	Hayward	Fairfield
	6565	5734
	Vacaville	Richmond
	5439	5298

summary(housing\$zip)

94565	94509	95123	95687	94533	94531	94591	94536	94513
4595	4302	4023	3652	3472	3427	3369	3292	3235
94587	94583	94521	94558	95035	95125	94806	95127	94553
2896	2784	2779	2757	2676	2646	2617	2607	2549
94544	95111	94551	95020	95124	94550	94538	94534	94568
2524	2494	2467	2446	2390	2376	2279	2274	2240
95037	94561	94541	95051	95014	94539	94928	94605	95122
2237	2193	2186	2169	2126	2124	2090	2084	2063
94560	95403	94526	94590	95136	94523	94804	95008	94585
2014	2012	1958	1957	1957	1940	1931	1914	1911

0.4566	0.45==	05440	0.4500	05404	0.45.46	05404	0.400=	05600
94566	94577	95148	94589	95121	94546	95404	94087	95688
1892	1871	1856	1853	1851	1838	1797	1787	1787
95132	94520	95120	94588	95401	95118	95409	94555	94954
1778	1753	1746	1740	1734	1725	1723	1719	1711
94080	94611	94015	94547	94501	94518	95116	94603	94510
1692	1672	1648	1634	1619	1590	1590	1552	1534
95129	95476	94941	95131	94506	95407	94010	94403	94621
1532	1521	1488	1470	1454	1451	1426	1417	1414
94044	94514	94404	94066	94801	94597	94070	94947	95070
1377	1363	1355	1350	1348	1344	1343	1338	1335
94602	95492	94598	94803	94578	95135	94901	95032	(Other)
1330	1324	1312	1310	1291	1289	1288	1285	83020
NA's								
5								

summary(housing\$street)

Length Class Mode 281506 character

summary(housing\$price)

Min. 1st Qu. Median Mean 3rd Qu. Max. 22000 400000 530000 602000 700000 20000000

summary(housing\$br)

Min. 1st Qu. Median Mean 3rd Qu. Max. 1.000 2.000 3.000 3.024 4.000 8.000

summary(housing\$lsqft)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 19 4000 5760 65939 7701 418611600 21687

summary(housing\$bsqft)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 122 1121 1430 1624 1882 1868120 426

summary(housing\$year)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0 1954 1971 1966 1985 3894 9202

summary(housing\$date)

Min. 1st Qu. Median
"2003-04-27 02:00:00" "2004-02-08 02:00:00" "2004-10-24 02:00:00"

Mean 3rd Qu. Max.
"2004-11-01 18:06:12" "2005-07-24 02:00:00" "2006-06-04 02:00:00"

summary(housing\$long)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's -123.6 -122.3 -122.1 -122.1 -121.9 -121.5 23316

```
summary(housing$lat)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 36.98 37.50 37.77 37.78 38.00 38.85 23316

summary(housing\$quality)

summary(housing\$match)

summary(housing\$wk)

```
Min. 1st Qu. Median Mean 3rd Qu.
"2003-04-21" "2004-02-01" "2004-10-18" "2004-10-26" "2005-07-18"
Max.
"2006-05-29"
```

(12) After exploring the data (maybe using the summary() function), describe in words the connection between the two objects (e.g., what links them together). (2 pts)

Ans:

The county and zip objects are related in the sense that the county name can be used to determine the range of zip values for that county. These variables are also linked to the city object as the range of zip values and the county can also be decided by the city name.

(13) Describe in words two problems that you see with the data. (2 pts)

Ans:

One issue I can observe in the dataset is the use of different date formats for the **date** and **wk** variables. Using one date format can maintain data consistency in the dataset. The other issue I can find is the existence of garbage values in the **year** variable viz. 0, 1, 2, 3894, 3885, 3881 and so on. These values are either too old or in the future to hold any meaning. We could also have used a **factor** datatype instead of **integer** for the **year** variable.

(14) (2 pts.) We will work with the houses in San Francisco, Fremont, Vallejo, Concord and Livermore only. Subset the housing data frame so that we have only houses in these cities and keep only the variables county, city, zip, price, br, bsqft, and year. Call this new data frame SelectArea. This data frame should have 36686 observations and 7 variables. (Note you may need to reformat any factor variables so that they do not contain incorrect levels)

Ans:

```
cities = c("San Francisco", "Fremont", "Vallejo", "Concord", "Livermore")
col = c("county", "city", "zip", "price", "br", "bsqft", "year")
SelectArea = housing[is.element(housing$city,cities), col]
SelectArea$city = factor(SelectArea$city, levels = cities)
str(SelectArea)
'data.frame':
                  36686 obs. of 7 variables:
 $ county: Factor w/ 9 levels "Alameda County",...: 1 1 1 1 1 1 1 1 1 1 ...
 $ city : Factor w/ 5 levels "San Francisco",..: 2 2 2 2 2 2 2 2 2 2 ...
$ zip : Factor w/ 314 levels "94002","94005",..: 105 107 105 105 122 108 107 105
107 107 ...
                   538000 455000 422000 459000 438000 ...
 $ price : num
 $ br
           : int 4 3 3 3 3 1 3 2 3 3 ...
                   1871 1401 1390 1645 1688 675 1290 1254 1637 1304 ...
 $ bsqft : int
 $ year : int 1977 1963 1971 1965 1986 1987 1968 1988 NA 1962 ...
```

We subset the **housing** dataset using the **cities** vector to only include the cities we want in our **SelectArea** dataset and then use the **col** vector to include only the columns in the **housing** dataset present in the **col** vector. Finally, we refactor the **city** variable in the **SelectArea** dataset to only have five levels from the **cities** vector.

(15) (3 pts.) We are interested in making plots of price and size of house, but before we do this we will further subset the housing dataframe to remove the unusually large values. Use the quantile function to determine the 95th percentile of price and bsqft and eliminate all of those houses that are above either of these 95th percentiles. Call this new data frame SelectArea (replacing the old one) as well. It should have 33693 observations.

Ans:

```
Code to calculate the value of 95th percentile of price.

q_value_bsqft = quantile(SelectArea$bsqft, probs = c(0.95), na.rm = TRUE)

Code to calculate the value of 95th percentile of bsqft

q_value_price = quantile(SelectArea$price, probs = c(0.95), na.rm = TRUE)
```

Code to select only those rows fulfilling all the conditions

SelectArea = SelectArea[SelectArea\$price < q_value_price & SelectArea\$bsqft < q_value_bsqft & !is.na(SelectArea\$price),]
Str(SelectArea)

```
'data.frame': 33693 obs. of 7 variables:
$ county: Factor w/ 9 levels "Alameda County",..: 1 1 1 1 1 1 1 1 1 1 1 ...
$ city : Factor w/ 5 levels "San Francisco",..: 2 2 2 2 2 2 2 2 2 2 2 ...
$ zip : Factor w/ 314 levels "94002","94005",..: 105 107 105 105 122 108 107 105 107 107 ...
$ price : num 538000 455000 422000 459000 438000 ...
$ br : int 4 3 3 3 3 1 3 2 3 3 ...
$ bsqft : int 1871 1401 1390 1645 1688 675 1290 1254 1637 1304 ...
$ year : int 1977 1963 1971 1965 1986 1987 1968 1988 NA 1962 ...
```

We use the **q_value_bsqft** and **q_value_price** variables to store the value of the 95th percentile of **price** and **bsqft** variables of the **SelectArea** dataset respectively. Finally, we subset the dataset **SelectArea** by using these variables in our conditional expression.

(16) (2 pts.) Create a new vector that is called price_per_sqft by dividing the sale price by the square footage. Add this new variable to the data frame.

Ans:

SelectArea\$price_per_sqft = SelectArea\$price/SelectArea\$bsqft head(SelectArea\$price_per_sqft)

```
[1] 287.5468 324.7680 303.5971 279.0274 259.4787 320.0000
```

As can be seen from the output above the new variable **price_per_sqft** is added to the dataset **SelectArea**.

(17) (2 pts.) Create a vector called br_new, that is the number of bedrooms in the house, except when the number is greater than 5, set it (br_new) to 5.

Ans:

```
br_new = SelectArea$br
br_new[br_new>5] = 5
head(br_new)
```

[1] 4 3 3 3 3 1

(18) (4 pts. 2 + 2 - see below)

Use the heat.colors function to create a vector of 5 colors, call this vector rCols. When you call this function, set the alpha argument to 0.25.

Create a vector called brCols where each element's value corresponds to the color in rCols indexed by the number of bedrooms in the br_new. For example, if the element in br_new is 3 then the color will be the third color in rCols. (2 pts.)

Ans:

```
rCols = heat.colors(5, alpha = 0.25)
rCols
[1] "#FF000040" "#FF550040" "#FFAA0040" "#FFFF0040" "#FFFF8040"
```

```
brCols = rCols[br_new]
head(brCols)
```

```
[1] "#FFF0040" "#FFAA0040" "#FFAA0040" "#FFAA0040" "#FFAA0040" "#FFO00040"
```

We are now ready to make a plot!

```
plot(price_per_sqft ~ bsqft, data = SelectArea,
    main = "Housing prices in the San Francisco Area",
    xlab = "Size of house (square ft)",
    ylab = "Price per square foot",
    col = brCols, pch = 18, cex = 0.5)
legend(legend = 1:5, fill = rCols, "topright")
```

What's your interpretation of the plot? e.g., the trend? the cluster? the comparison? (1 pt.)

From the above plot it can be observed that as the size of the house (square ft) increases we see a decrease in the price per square foot of the house. Also, the houses with more bedrooms tend to be cheaper than the less bedrooms having the same square footage of the house. We can also observe that most of the houses have 1, 2 bedrooms are clustered below the 1250 square feet size range which makes sense as bigger houses tend to have more bedrooms.