Санкт-Петербургский Национальный Исследовательский Университет Информационных технологий, механики и оптики

Лабораторная работа #7 Построение и исследование моделей регрессионного анализа.

Выполнил: Канева Тамара Игоревна Группа № К3121 Проверила: Казанова Полина Петровна

Цель работы:

Изучить средства программы Microsoft Excel для регрессионного анализа данных.

Задачи:

Познакомиться с понятием корреляции и различными видами регрессии.

Ход работы:

Задание 1.

Для исходных данных (рис. 1) вычислим корреляцию попарно между признаками, применяя функцию "КОРРЕЛ".

у		x
	6	2
	13	5
	23	9
	5	3
	22	8

Рис. 1. Исходные данные.

В результате мы получим коэффициент корреляции, равный 0.98453529.

Сделаем то же самое, но теперь с помощью функции "Корреляция", находящейся в пакете "Анализ данных". Перед нами откроется окно "Корреляция" (рис. 2), в которое вводим необходимые параметры.

Рис. 2. Окно "Корреляция".

На выходе получаем следующую таблицу (рис. 3), из которой мы видим, что коэффициент корреляции такой же как и при предыдущей попытки вычисления.

	Столбец 1	Столбец 2
Столбец 1	1	
Столбец 2	0,98453529	1

Рис. 3. Вывод функции "Корреляция".

Использовать можно обе функции, но функция "Корреляция" даёт более полный ответ на запрос, нежели "КОРРЕЛ".

Задание 2.

Подсчитаем коэффициент корреляции для данных, представленных в таблице (рис. 4).

x	12,1	14,7	20,5	16,6	19
v	53.2	44.2	51.4	45.5	34

Рис. 4. Исходные данные.

Воспользовавшись функцией "КОРРЕЛ", получим коэффициент корреляции, равный -0.3636188.

Задание 3.

На основе данных, представленных в таблице (рис. 5), построим линейную модель и проведём её анализ.

7	483
6	489
7	486
8	563
9	570
9	559
9	594
9	575
6	464
9	647

Рис. 5. Исходные данные.

Определим параметры уравнения регрессии помощью метода наименьших квадратов, который реализован в Excel. Для этого используем функцию "Регрессия" в пакете "Анализ данных". В результате ее выполнения появится несколько таблиц (рис. 6).

Рис. 6. Результат выполнения функции "Регрессия".

Основываясь на данных их таблиц на рисунке 6, можем сделать следующие выводы:

- 1. Уравнение регрессии имеет вид: y=-2.557x+0.019.
- 2. Значение коэффициента детерминации, равного 0,79 показывает, что количество работников существенно влияет на объём производства, что подтверждает правильность включения его в построенную модель.
- 3. Рассчитанный уровень значимости, равный 0.0006 и меньший 0,05 подтверждает значимость величины коэффициента детерминации.
- 4. P-Значение для переменной, равное 0,0006 и меньшее 0,05 подтверждает значимость коэффициента $b_{\rm l}$.
- 5. P-Значение для коэффициента b_0 превышает 0,05, это означает, что данный коэффициент для модели не является значимым и его можно опустить, т.е. график модели будет проходить через точку начала координат.

Тогда раз коэффициент b_0 не является значимым, то модель можно построить без его учета (рис. 7).

вывод ито								
грессионная	статистик	а						
Множествен	0,99702732							
R-квадрат	0,99406348							
Нормирован	0,88295237							
Стандартная	0,64922476							
Наблюдения	10							
Дисперсионн	ный анализ							
	df	SS	MS	F	начимость І	=		
Регрессия	1	635,206565	635,206565	1507,04018	2,1303E-10			
Остаток	9	3,79343507	0,42149279					
Итого	10	639						
К	эффициент	дартная ош	-статистик	Р-Значение	Нижние 95%	Верхние 95%	lижние 95,0%	ерхние 95,0
Ү-пересечен	0	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д
Переменная	0.01459909	0,00037607	38,8206154	2,4816E-11	0,01374837	0,01544981	0,01374837	0,01544981

Рис. 6. Результат выполнения функции "Регрессия" с включенным флагом "Константа-ноль".

Тогда:

- 1. Уравнение регрессии имеет вид: y=0.016x.
- 2. Значение коэффициента детерминации, равного 0,99 показывает, что количество работников существенно влияет на объём производства, что подтверждает правильность включения его в построенную модель.
- 3. Рассчитанный уровень значимости, равный 2.1303Е-10 и меньший 0,05 подтверждает значимость величины коэффициента детерминации.
- 4. P-Значение для срока службы, равное 2.4816E-11 и меньшее 0,05 подтверждает значимость коэффициента $b_{\rm l}$.

Задание 4.

Построим модель зависимости величины заработной платы от стажа работы и пола сотрудника (рис. 7).

з/п	стаж	пол
38900	15	0
28700	2	1
31600	4	1
33800	13	0
31890	16	0
45000	35	0
24313	10	1
22700	8	1
36300	20	0
32350	7	0
31800	5	0

Рис. 7. Исходные данные.

вывод ито	ГОВ							
егрессионная	статистик	а						
, Множествен								
R-квадрат	0,70755457							
Нормирован	0,63444321							
Стандартная	3788,08022							
Наблюдения	11							
Дисперсионн	ный анализ							
	df	SS	MS	F	начимость І	=		
Регрессия	2	277743190	138871595	9,67776536	0,00731441			
Остаток	8	114796414	14349551,8					
Итого	10	392539605						
К	эффициент	дартная ош	-статистик	Р-Значение	Нижние 95%	Верхние 95%	łижние <i>95,0</i> %	ерхние 95,0%
Ү-пересечен	30189,6179	2790,62977	10,8182096	4,7048E-06	23754,4141	36624,8217	23754,4141	36624,8217
стаж	348,762835	151,057805	2,30880381	0,04978196	0,42291287	697,102757	0,42291287	697,102757
пол	-5453,9449	2802,57739	-1 9460461	0,08752518	-11916,7	1008,81014	-11916,7	1008,81014

Рис. 8. Полученная линейная модель.

Построив модель заметим, что чем больше стаж работника, тем больше ему платят (коэффициент при переменной, отвечающей за стаж, положителен). В то же время женщинам платят меньше (коэффициент при переменной, отвечающей за пол, отрицателен, а сама переменная равна 1 в случае, когда речь идет о женщине).

Однако заметим, что коэффициент при переменной, отвечающей за пол, не существенен, то есть модель не адекватна. Поэтому построим модель без учета этой переменной (рис. 9).

Новая модель адекватна, а уравнение регрессии имеет вид y=504.9455x+26289.5776.

вывод ито	ГОВ							
егрессионная	статистик	а						
Множествен	0,75439692							
R-квадрат	0,56911472							
Нормирован	0,52123858							
Стандартная	4335,12192							
Наблюдения	11							
Дисперсионн	ый анализ							
	df	SS	MS	F	начимость І	=		
Регрессия	1	223400066	223400066	11,88723	0,00730018			
Остаток	9	169139538	18793282					
Итого	10	392539605						
К	эффициент	дартная ош	-статистик	Р-Значение	Нижние 95%	Верхние 95%	łижние <i>95,0</i> %	ерхние 95,(
Ү-пересечен	26289,5776	2222,41648	11,8292758	8,6987E-07	21262,1222	31317,033	21262,1222	31317,03
стаж	EON ONEEDO	146 454000	2 44770625	0.00720010	172 641205	836,249751	172 641205	926 24075

Рис. 9. Полученная линейная модель, не учитывающая пол работника.

Задание 5.

Определим по данным (рис. 10) параметры уравнения линейной регрессии (рис. 11) и проведём его анализ.

прибыль	средства	фонды
188	129	510
78	64	190
93	69	240
152	87	470
55	47	110
161	102	420

Рис. 10. Исходные данные.

вывод ито	IOR							
грессионная	статистик	а						
Множествен	0,9972714							
R-квадрат	0,99455024							
Нормирован	0,99091707							
Стандартная	5,05002558							
Наблюдения	6							
Дисперсионн	ый анализ							
	df	SS	MS	F	начимость і	F		
Регрессия	2	13962,3251	6981,16253	273,741469	0,00040231			
Остаток	3	76,508275	25,5027583					
Итого	5	14038,8333						
Ко	эффициент	дартная ош	-статистик	Р-Значение	Нижние 95%	Верхние 95%	łижние <i>95,0</i> %	ерхние 95,0
Ү-пересечен	-1,943423	7,62541782	-0,2548612	0,81530285	-26,210906	22,3240598	-26,210906	22,324059
средства	0,69499204	0,19685945	3,53039707	0,03862823	0,0684974	1,32148667	0,0684974	1,3214866
фонды	0.20234768	0.03519963	5.74857343	0.01045664	0.09032674	0,31436863	0.09032674	0.3143686

Рис. 11. Полученная линейная модель.

Из полученных таблиц мы видим, что свободный член уравнения не существенен. Построим другую линейную модель, но с флагом "Константа-ноль" (рис. 12).

Из полученных таблиц мы видим, что модель адекватна. Также мы видим, что полученная прибыль зависит только от оборотных средств и основных фондов, а все прочие факторы не вносят заметных изменений в поведение модели (и предприятий, соответственно).

вывод ито	ГОВ							
грессионная	статистик	а						
Множествен								
R-квадрат	0,99923463							
Нормирован	0,74904329							
Стандартная	4,42054258							
Наблюдения	6							
Дисперсионн	ный анализ							
	df	SS	MS	F	начимость Р			
Регрессия	2	102048,835	51024,4176	2611,12041	1,3757E-05			
Остаток	4	78,1647868	19,5411967					
Итого	6	102127						
К	эффициент	дартная ош	-статистик	Р-Значение	Нижние 95%	Верхние 95%	łижние <i>95,0</i> %	ерхние 95,0%
Ү-пересечен	0	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д
средства	0,65646781	0,11039484	5,94654424	0,0040119	0,34996259	0,96297302	0,34996259	0,96297302
фонды	0.20666567	0.02700801	7,65201292	0,0015673	0.1316794	0,28165194	0.1316794	0,28165194

Рис. 12. Новая полученная линейная модель.

Вывод:

В ходе этой лабораторной работы мы научились решать практические задачи, связанные с различными видами регрессии.

Ответы на контрольные вопросы:

- 1. Регрессионная модель модель отражающая влияние одной или нескольких независимых переменных на одну зависимую. Мы рассматриваем линейные регрессионные модели.
- 2. Общий вид регрессионной модели: y = f(x1, x2, ..., xn), где y зависимая переменная, x1, x2, ..., xn независимые переменные, a f некоторая функция от n переменных, задающая необходимое соотношение.
- 3. Значимость коэффициента регрессии проверяется на основе Р-значения: если оно меньше или равно 0.05, то коэффициент значимый.
- 4. При определении коэффициентов регрессионной модели обычно применяется метод наименьших квадратов.