

Mcq on solving linear differential equation 5eea6a1439140 f30f369f114

Engineering Mathematics (Lovely Professional University)

Solving Linear Differential Equation Questions

Latest Solving Linear Differential Equation MCQ Objective Questions

Question 1:

View this Question Online >

Solution of the differential equation $\cos x \, dy = y (\sin x - y) \, dx$, $0 < x < \frac{\pi}{2}$ is

1. $\sec x = (\tan x + c)y$

y sec x = tan x + c

3. $y \tan x = \sec x + c$

tan x = (sec x + c).y

Stay updated with Mathematics questions & answers with Testbook. Know more about Differential Equations and ace the concept of Solution of Differential Equations and Solving Linear Differential Equation

Solving Linear Differential Equation Question 1 Detailed Solution

Concept:

Equation of the form $\frac{dy}{dx} + Py = Q$ solve by following the steps

1. find I.F =
$$e^{\int Pdx}$$

2. The solution will be y I.F = \(\)Q I.F dx + C

Formula used:

1.
$$\sin \theta / \cos \theta = \tan \theta$$

3.
$$e^{\ln x} = x$$

4.
$$\int \sec^2 x = \tan x$$

Calculation:

$$\cos x \, dy = y (\sin x - y) \, dx$$

$$\Rightarrow$$
 cos x dy = y $\frac{\sin x}{\cos x}$ - y² dx

$$\Rightarrow \frac{dy}{dx} = y \tan x - y^2 \sec x$$

$$\Rightarrow \tfrac{1}{y^2} \tfrac{dy}{dx} - \tfrac{1}{y} tanx = -secx$$

Now, let
$$y = \frac{1}{t}$$

therefore
$$\frac{1}{y^2}\frac{dy}{dx}=-\frac{dt}{dx}$$

Putting these values we get

$$-\frac{dt}{dx} - t \ tanx = -secx$$

$$\frac{dt}{dx} + t \ tanx = secx$$

Now,

$$\mathsf{I.F} = e^{\int tan \, x \, dx} = e^{\log \sec x} = \sec x$$

The solution of the equation will be

$$\Rightarrow$$
 t (I.F) = \int (I.F) sec x dx + c

$$\Rightarrow$$
 t (sec x) = \int (I.F) sec x dx + c

$$\Rightarrow$$
 t sec x = \int sec² x + c

$$\Rightarrow$$
 sec x = (tan x + c)y

.. The solution of an equation is sec x = (tan x + c)y.

Question 2:

View this Question Online >

The solution of the differential equation $\frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{1}{(1+x^2)^2}$ is:

1.
$$y(1 + x^2) = c + tan^{-1}x$$

2.
$$\frac{y}{1+x^2} = c + tan^{-1}x$$

3.
$$y \log (1 + x^2) = c + \tan^{-1}x$$

$$4. y (1 + x^2) = c + \sin^{-1}x$$

Option 1: $y(1 + x^2) = c + tan^{-1}x$

Solving Linear Differential Equation Question 2 Detailed Solution

Concept:

1) The solution of the linear differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$ is given by

$$y \times I.F = \int Q(x)(I.F)dx + C$$

Where P and Q are the functions of 'x' and I.F = $e^{\int P(x)dx}$

2)
$$\int \frac{1}{(1+x^2)} dx = \tan^{-1} x + 0$$

Given
$$\frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{1}{(1+x^2)^2}$$

This is a differential equation in the form $\frac{dy}{dx} + P(x)y = Q(x)$ Here $P(x) = \frac{2x}{1+x^2}$ and $Q(x) = \frac{1}{(1+x^2)^2}$ Integrating factor (I.F) $= e^{\int \frac{2x}{1+x^2} dx}$ $= e^{\log|1+x^2|} = 1 + y^2$ The solution of $\frac{dy}{dx} = \frac{1}{(1+x^2)^2}$

Here
$$P(x) = \frac{2x}{1+x^2}$$
 and $Q(x) = \frac{1}{(1+x^2)^2}$

:. I.F =
$$e^{\int \frac{2x}{1+x^2} dx} = e^{\log|1+x^2|} = 1 + x^2$$

The solution of the differential equation is given by:

$$y \times I.F = \int (I.F)Q(x)dx$$

$$\Rightarrow$$
 y \cdot (1 + χ^2) = $\int \frac{1+x^2}{(1+x^2)^2} dx$

$$\Rightarrow$$
 y \cdot (1 + χ^2) = $\int \frac{1}{(1+x^2)} dx$

$$y \cdot (1 + x^2) = \tan^{-1} x + c$$

The correct answer is option 1.

Question 3:

View this Question Online >

The equation of motion of a one-dimensional forced harmonic oscillator in the presence of a dissipative force is described by $\frac{\mathrm{d}^2x}{\mathrm{d}t^2}+10\frac{\mathrm{d}x}{\mathrm{d}t}+16x=6te^{-8t}+4t^2e^{-2t}$ The general form of the particular solution, in terms of constants A, B etc., is

1.
$$t(At^2 + Bt + C)e^{-2t} + (Dt + E)e^{-8t}$$

2.
$$(At^2 + Bt + C)e^{-2t} + (Dt + E)e^{-8t}$$

3.
$$t(At^2 + Bt + C)e^{-2t} + t(Dt + E)e^{-8t}$$

Answer (Detailed Solution Below)

Option 3:
$$t(At^2 + Bt + C)e^{-2t} + t(Dt + E)e^{-8t}$$

Solving Linear Differential Equation Question 3 Detailed Solution

Concept:

The forced harmonic oscillator in the presence of a dissipative force is in the form

$$y'' + py' + q = s$$

where p, q and s are constants.

Calculation:

$$\frac{d^2x}{dt^2} + 10\frac{dx}{dt} + 16x = 6te^{-8t} + 4t^2e^{-2t}$$

The roots of the characteristics equation (sushantawasthi000@gmail.com)

$$q + (k^2 + kp) = 0$$

The characteristics equation is

$$k^2 + 10k + 16 = 0$$

The roots of the equation are

$$k_1 = -8$$
 and $k_2 = -2$

The general solution is

$$x(t) = C_1 e^{-8t} + C_2 e^{-2t}$$

1000/A The particular equation can be solved by using the variation of the parameter method

$$y_1(t) \stackrel{d}{dt} C_1(t) + y_2(t) \stackrel{d}{dt} C_2(t) = 0$$

$$\frac{d}{dt}C_1(t)y_1(t) + \frac{d}{dt}C_2(t)\frac{d}{dt}y_2(t) = f(t)$$

$$f(t) = 6te^{-8t} + 4t^2e^{-2t}$$

$$e^{-2t} \frac{d}{dt} + e^{-8t} \frac{d}{dt} = 0$$

$$\frac{d}{dt}C_1(t)y_1(t) + \frac{d}{dt}C_2(t)\frac{d}{dt}y_2(t) = 6te^{-8t} + 4t^2e^{-2t}$$

-2
$$e^{-2t} \frac{d}{dt} C_2(t)$$
 - 8 $e^{-8t} \frac{d}{dt} C_1(t) = 6te^{-8t} + 4t^2e^{-2t}$

$$\frac{d}{dt} C_1(t) = \frac{-2t^2 e^{6t}}{3} - t e^{5t}$$

$$\frac{d}{dt} C_2(t) = \frac{2t^2}{3} + t e^{-t}$$

$$C_1(t) = C_3 + \int \frac{-2t^2e^{6t}}{3} - t e^{5t} dt$$

$$C_2(t) = C_4 + \int \frac{2t^2}{3} + t e^{-t} dt$$

The final answer is

$$X(t) = \frac{2t^3e^{-2t}}{9} - \frac{t^2e^{-2t}}{9} + \frac{te^{-2t}}{27} - \frac{e^{-2t}}{162}$$

The complete solution is

$$B' = t[At^2 + Bt + Cle^{-2t}]$$

Thus the Particular Integral is

$$t(At^2 + Bt + C)e^{-2t} + t(Dt + E)e^{-8t}$$

The correct answer is option (3).

Start Complete Exam Preparation

MasterClasses

Download App

Question 4:

View this Question Online >

What is the solution of the differential equation K.Com

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = x^3$$

Where c is an arbitrary constant.

1.
$$xy = x^5 + c$$

2.
$$xy = x^4 + c$$

3.
$$4xy = x^4 + c$$

4.
$$5xy = x^5 + c$$

Answer (Detailed Solution Below)

Option 4: $5xy = x^5 + c$

Solving Linear Differential Equation Question 4 Detailed Solution

Concept:

Linear differential equation:

A differential equation of the form $rac{\mathrm{d}y}{\mathrm{d}x} + Py = Q$

Where P and Q are the functions of x or constants.

The general solution of a linear differential equation of the form $rac{\mathrm{d}y}{\mathrm{d}x}+Py=Q$ is given by:

$$I. F \times y = \int (I. F) Q dx$$

Where I.F is known as Integrating Factor and it is calculated as follows: $I.\,F=e\int pdx$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = x^3$$

Comparing with the standard form we get $P=\frac{1}{x}$ and $Q=x^3$ The integrating factor is calculated as: $I. \, F=e^{\int \frac{dx}{x}}$

$$I. F = e^{\int \frac{dz}{z}}$$

Therefore, the general solution is given by:

$$I. F \times y = \int (I. F) Q dx$$

$$xy = \int x(x^3) dx$$

$$xy = \int x^4 dx$$

$$xy = \frac{x^5}{5} + K$$

$$5xy = x^5 + C$$
 where $C = 5K$

.. The correct option is (4)

Question 5:

View this Question Online >

The integrating factor of the differential equation $\frac{x^{uy}}{dx} - y = 2x^2$

e^{-y}

Answer (Detailed Solution Below)

Option 4: $\frac{1}{x}$

Solving Linear Differential Equation Question 5 Detailed Solution

Given:

$$x \frac{dy}{dx} - y = 2x^2$$

Concept:

- Com * The general form of a linear differential equation is : $\frac{dy}{dx} + P(x)y = Q(x)$
- Its general solution is $y(IF) = \int [(IF)Q(x)]dx + C$ where IF is the integrating factor = $e^{\int P(x)dx}$

Solution:

Given DE :
$$x \frac{dy}{dx} - y = 2x^2$$

$$\Rightarrow \frac{dy}{dx} - \frac{y}{x} = 2x$$

On comparing with the general form of a linear differential equation P(x) = -1/x

$$IF = e^{\int P(x)dx}$$

Now,
$$\int P(x)dx = \int (-1/x)dx$$

$$= ln(1/x)$$

$$\Rightarrow$$
 IF = $e^{\ln(1/x)} = 1/x$

Top Solving Linear Differential Equation MCQ Objective Questions

View this Question Online >

The integrating factor of the differential equation $\frac{dy}{dx} + xy = x$ is

1.
$$e^{-x^2}$$

- 4. None of these

Answer (Detailed Solution Below)

Option 2 : $e^{\frac{x^2}{2}}$

Solving Linear Differential Equation Question 6 Detailed Solution

Concept:

Integrating factor, (IF) for a differential equation, $\frac{\mathrm{d}x}{\mathrm{d}y} + \mathrm{P}x = \mathrm{Q}$, where P and Q are given estlooo continuous function of y.

$$\mathsf{IF} = \mathrm{e}^{\int \mathrm{Pdy}}$$

Calculation:

Given differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + xy = x$$

Now, this differential equation is in the form

$$\frac{dy}{dx} + yP(x) = Q(x)$$

where, P(x) = x and Q(x) = Mount of the contract of the co

Integrating Factor (I.F.) =
$$e^{\int P(x) dx}$$

I.F. = $e^{\int x dx} = e^{\frac{x^2}{2}}$

View this Question Online >

Question 7

Find the integral factor of $\frac{dy}{dx} + \frac{y}{x} = 3\sin x$

- e^x
- 2. x
- 4. none of these

Answer (Detailed Solution Below)

Option 2:x

JOK.COM Solving Linear Differential Equation Question 7 Detailed Solution

Concept:

In first order linear differential equation;

 $rac{dy}{dx} + Py = Q$, where P and Q are function of x

Integrating factor (IF) = e | P dx

" " (IE) - (O(IE) dv

Downloaded by Shushant Kumar Awasthi (sushantawasthi000@gmail.com)

$$\frac{\mathrm{dy}}{\mathrm{dx}} + \frac{\mathrm{y}}{\mathrm{x}} = 3\sin\mathrm{x}$$

$$IF = e^{\int \frac{1}{x} dx}$$

$$\Rightarrow$$
 IF = $e^{\ln x}$

View this Question Online >

What is the general solution of the differential equation $ydx - (x + 2y^2) dy = 0$?

1.
$$x = y^2 + cy$$

2.
$$x = 2cy^2$$

3.
$$x = 2y^2 + cy$$

4. None of the above

Answer (Detailed Solution Below)

Option 3:
$$x = 2y^2 + cy$$

Solving Linear Differential Equation Question 8 Detailed Solution

Concept:

Solution of Linear Differential legislation. Shushant Kumar Awasthi (sushantawasthi000@gmail.com)

If the D.E. has a form of $\frac{\mathrm{d}x}{\mathrm{d}y} + \mathrm{P}x = \mathrm{Q}$ then, where P and Q are functions of y.

The solution is given as, $x imes I.\,F. \ = \int I.\,F. \ imes \, \mathrm{Qd}y + c$

where, I.F. is integrating factor which is given as,

$$y \frac{\mathrm{d}x}{\mathrm{d}y} = x + 2y^2$$

$$\Rightarrow \frac{dx}{dy} = \frac{x}{y} + 2y$$

$$\Rightarrow \frac{dx}{dy} - \frac{x}{y} = 2y$$

 $\frac{dy}{dy} - \frac{x}{y} = 2y$ Differential equation is in form of, $\frac{dx}{dy} + Px = Q$ Integrating factor, $I. F. = e^{\int -\frac{1}{y} dy}$ $\Rightarrow I. F. = e^{-\ln y}$

$$I. F. = e^{\int -\frac{1}{y} dy}$$

$$\Rightarrow$$
 I.F. = $e^{-\ln y}$

$$\Rightarrow$$
 I. F. $= \frac{1}{y}$

Differential equation is given as,

$$x \times \frac{1}{v} = \int \frac{1}{v} \times (2y) dy + c$$

$$\Rightarrow \, \tfrac{x}{y} = 2y + c$$

$$\Rightarrow$$
 x = 2y² + cy

View this Question Online >

esilo0014.c01

Solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = 4x^2$

1.
$$x^2 + c$$

- 2. $x^3 + \frac{c}{x}$
- 3. $x^2 + \frac{c}{x}$
- 4. $x^3 + c$

Answer (Detailed Solution Below)

Option 2: $x^3 + \frac{c}{x}$

Solving Linear Differential Equation Question 9 Detailed Solution

Concept:

In first order linear differential equation;

$$rac{\mathrm{d} y}{\mathrm{d} x} + P y = Q$$
 , where P and Q are function of x

Integrating factor (IF) = $e^{\int P dx}$

$$y \times (IF) = \int Q(IF) dx$$

Calculation:

Linear differential equation is of first order

$$\frac{dy}{dx} + \frac{y}{x} = 4x^2$$

Comparing with $\frac{dy}{dx} + Py = Q$

So, P =
$$1/x$$
 and Q = $4x^2$

$$IF = e^{\int_{-\pi}^{1} dx}$$

$$\Rightarrow$$
 IF = x $(\because e^{\ln x} = x)$

Now,
$$y \times (IF) = \int Q(IF) dx$$

$$\Rightarrow$$
 y × x = $\int 4x^2 \times x \, dx$

$$\Rightarrow$$
 yx = $\int 4x^3 dx$

Integrating,

$$\Rightarrow$$
 yx = x^4 + c (where c is integration constant)

$$\Rightarrow$$
 y = $\frac{c}{x}$

Question 10

View this Question Online >

Find y(e) for
$$x^2 \frac{dy}{dx} + 4xy = 4 \frac{dx}{x^3}$$
, and y(1) = 1

- 1. 2
- 2. e
- 3. e
- 4. 5

Answer (Detailed Solution Below)

Option 2 : $\frac{3}{e^4}$

View this Question Online >

If y(x) satisfies the differential equation

$$(\sin x) \frac{dy}{dx} + y \cos x = 1$$

subject to the condition $y(\pi/2) = \pi/2$, then $y(\pi/6)$ is

- 1. 0
- 2. π/6
- 3. π/3
- 4. π/2

Answer (Detailed Solution Below)

Option 3: $\pi/3$

View this Question Online >

Solve $(2y + x) \frac{dy}{dx} = 1$

1.
$$x + y + 1 = ce^{-y}$$

2.
$$x + 2y + 2 = ce^y$$

3.
$$x + 2y + 1 = ce^y$$

4.
$$x + 2y + 2 = ce^{-y}$$

Answer (Detailed Solution Below)

Option 2 : $x + 2y + 2 = ce^{y}$

Question 13 View this Question Online >

Solve the differential equation $rac{\mathrm{d} y}{\mathrm{d} x} + y \cos x = 3 \cos x$

1.
$$ye^{-\sin x} = 3e^{-\sin x} + c$$

2.
$$ye^{-\sin x} = 3e^{\sin x} + c$$

3.
$$ye^{\sin x} = -3e^{-\sin x} + c$$

4.
$$ye^{\sin x} = 3e^{\sin x} + c$$

5. None of these

Answer (Detailed Solution Below)

Option 4 : $ye^{\sin x} = 3e^{\sin x} + c$

What is the solution of the differential equation

$$\frac{dx}{dy} + \frac{x}{y} - y^2 = 0$$
 ?

Where c is an arbitrary constant.

- 1. $xy = x^4 + c$
- 2. $xy = y^4 + c$
- 3. $4xy = y^4 + c$
- 4. $3xy = y^3 + c$

Answer (Detailed Solution Below)

Option 3: $4xy = y^4 + c$

View this Question Online >

The integrating factor of $\frac{dy}{dx} + y = \frac{x + y}{x}$ is:

- 1. xe^x
- 2. xe^{1/x}

Answer (Detailed Solution Below)

 e^{x}

Option 5: x

