Homework 4

Polona Oblak

The homework consists of two problems. The solutions are to be submitted to the appropriate mailbox on Učilnica before the exam, but preferably in a week. The solutions should contain a clear and well explained proofs, procedures, explanations, etc.

- (1) Let $\mathcal{B} = \{\vec{q}_1, \dots, \vec{q}_n\}$ be a basis for \mathbb{R}^n and $\mathcal{B}^* = \{\beta^1, \dots, \beta^n\}$ its dual
 - (a) Show that $\beta^i(\vec{x}) = \vec{a}_i^{\top} \vec{x}$ for some $\vec{a}_1, \dots, \vec{a}_n \in \mathbb{R}^n$.
 - (b) If $\mathcal B$ is an orthonormal basis for $\mathbb R^n$, show that $\vec a_i = \vec q_i$ for i=1 $1,\ldots,n$.
- (2) Let us define $f_1(p) = p(0) + p(1)$, $f_2(p) = \int_{-1}^1 p(x) dx$, $f_3(p) = \int_0^1 p(x) dx$ and $\varphi \colon \mathbb{R}_2[x] \times \mathbb{R}_2[x] \to \mathbb{R}$ as $\varphi(p,q) = \int_0^1 p(x)q(x) \, dx$. (a) Prove that $\{f_1, f_2, f_3\}$ form a basis for $(\mathbb{R}_2[x])^*$.

 - (b) Find the basis $\mathcal{B} = \{p_1, p_2, p_3\}$ for $\mathbb{R}_2[x]$ such that $\mathcal{B}^* = \{f_1, f_2, f_3\}$.
 - (c) Show that φ is bilinear form on $\mathbb{R}_2[x]$ and express φ as a linear combination of $\{f_i \otimes f_j : i, j = 1, 2, 3\}$.

(Hint: you can do it directly. Alternatively, prove that

$$\varphi = \sum_{i=1}^{3} \sum_{j=1}^{3} \varphi(b_i, b_j) f_i \otimes f_j.)$$