

Autonomous Multiple Cycle Farming in Space

Dominic Allard, Philip Bernhard, Joshua Calhoun, Courtney Cline, Giampiero Corsbie, Timothy Frazier, Kali Jenson, Bryce Johnson, & Christopher Millsap

Faculty Advisor(s): Dr. Elisabeth Kames, Dept. of Mechanical Engineering, & Dr. Philip Chan, Dept. of Computer Science, Florida Institute of Technology

MOTIVATION

- Space exploration expanding rapidly and the need to accommodate life beyond Earth.
- To grow food autonomously in space that can support humans reliably, without compromising valuable time, or energy, from other missions.

PROJECT GOAL

- To build an Autonomous Multiple Cycle
 Farming Chamber that seeds, grows, and
 notifies crew that crop is ready for harvest.
- Streamline the Growth Chamber configuration for multiple farming cycles by creating a web application user station.

FARMING CHAMBER & USER STATION

- Growth Chamber runs autonomously based on botanist and astronaut configurations and the
- User Station allows users to manually control, update configurations, and view reports (not shown)

Chamber

Phase 1

START:

activate Light with intensity: 90 lux

activate MoistureSensor with frequency: 7.2 sec ▼

activate HeightSensor with frequency: 20 sec ▼

User station

	♣ Growth Chamber User Station		Hello, User
*	Filters: Is act	Farming Chamber 1	ces: Enter query
	Select Device:	Manual Control:	
		► Start ■ Pause	
	Farming Cham	් Restart ර Shutdown	
		Add water to: Remove water: Tray A Tray A	
		Add water to: Remove water: Tray B	
		Reset seeding arm	
		Back Close	

GROWTH CHAMBER DESIGN

WATER DELIVERY

Comprised of an aluminum tank, that controls the intake and outflow of water nutrient solution with a linear actuated plunger while solenoid valves control the direction of the water through commands of the software.

SEEDING SYSTEM

 The End Effector is capable of planting seeds in microgravity by forcing seeds out with filament driven by a stepper motor. The seeds are precisely placed into their respective tray hole.

TESTING & VALIDATION

 Multiple iterations of the tray were tested through growth cycles, in order to achieve the requirement of 70% harvest.

 Circuitry and software was also successfully tested over several weeks, proving the autonomous capabilities of the system.

COST ANALYSIS

Component	Cost
Planting System & End Effector	\$560.21
Water Delivery & Tray	\$329.16
Lighting & Electrical	\$83.95
Miscellaneous & Case	\$341.74
Total	\$1315.06

FUTURE PLANS

It is with great pleasure to announce that we have already submitted the Autonomous Multiple Cycle Farming System concept to two different NASA programs: "Technology Advancement Utilizing Suborbital Flight Opportunities 'Tech Flights'," as well as "Student Payload Opportunity with Citizen Science (SPOCS)" at Johnson Space Center.

ACKNOWLEDGEMENTS

We would like to thank Ralph F. Fritsche of NASA Kennedy Space Center who advised us since the beginning about important areas in the current industry. We would also like to thank Dr. Lisa Kames, and Dr. Markus Wilde of Florida Institute of Technology for their commitment on future endeavors.