Escuela Rafael Díaz Serdán 3° de Secundaria (2024-2025)

Ciencias y Tecnología: Química

Examen de la Unidad 2 Prof.: Julio César Melchor Pinto

Soluciones Nombre del alumno: Fecha: Evaluador: Instrucciones: Lee con atención cada pregunta y rea-Al comenzar este examen, aceptas las siguientes reglas: liza lo que se te pide. Desarrolla tus X No se permite salir del salón de clases. respuestas en el espacio determinado X No se permite intercambiar o prestar ningún tipo de material. para cada solución. De ser necesario, X No se permite el uso de **celular** o cualquier **otro dispositivo**. utiliza una hoja en blanco por separa-X No se permite el uso de apuntes, libros, notas o formularios. do, anotando en ella tu nombre com-X No se permite **mirar** el examen de otros alumnos. pleto, el número del problema y la so-X No se permite la **comunicación** oral o escrita con otros alumnos. lución propuesta. Si no consideraste alguna de estas reglas, comunícalo a tu profesor. Calificación: Aprendizajes a evaluar: Pregunta 🔽 Deduce información acerca de la estructura atómica a partir de da-Puntos 10 10 10 10 10 tos experimentales sobre propiedades atómicas periódicas. Obtenidos 🔽 Representa y diferencia mediante esquemas, modelos y simbología Pregunta 9 10 11 12 Total química, elementos y compuestos, así como átomos y moléculas. 100 Puntos 10 5 5 5 10 Karplica y predice propiedades físicas de los materiales con base en Obtenidos modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas. de 10 pts| Señala en cada uno de los enunciados si la sentencia es falsa o verdadera. Los electrones de valencia se encuentran siempre La masa de un neutrón es similar a la del protón. en el último nivel de energía. ☐ Falso ✓ Verdadero ✓ Verdadero ☐ Falso En la fórmula de la Taurina, 4C₂H₇NO₃S, el nú-La fórmula H₂O expresa que la molécula de agua mero 4 indica que hay 4 átomos de carbono. está constituida por dos átomos de oxígeno y uno ☐ Verdadero **✓** Falso de hidrógeno. ☐ Verdadero **☑** Falso El número de masa representa la suma de protones y neutrones. Los subíndices expresan el número de átomos de ✓ Verdadero ☐ Falso los elementos presentes en una molécula o unidad fórmula. El número total de electrones en un átomo lo de-✓ Verdadero ☐ Falso termina el grupo al que pertenece. El neutrón es una partícula subatómica que se en-☐ Verdadero **☑** Falso cuentra girando alrededor del núcleo atómico. En una fórmula química, los coeficientes indican □ Verdadero ✓ Falso el número de moléculas o unidades fórmula; así

sustancia.

✓ Verdadero

como también el número de moles presentes de la

☐ Falso

Los metales son maleables, dúctiles y buenos con-

ductores del calor y la electricidad.

✓ Verdadero ☐ Falso

- de 10 pts | Relaciona la especie química con la cantidad de protones y electrones de valencia.
 - **A**. Ión de Hierro (Fe^{3+})

E. Litio (Li)

I. Ión de Potasio (K⁺)

 K^{+}

B. Fósforo (P)

 \mathbf{F} . Ión de Aluminio (Al³⁺)

D. Ión de Nitrógeno (N³⁻)

 N_{3}

Li

J. Ión de Cloro (Cl⁻)

C. Ión de Flúor (F⁻)

G. Ión de Berilio (Be⁻)

- <u>F</u> 13 protones y 8 electrones de valencia.
- <u>G</u> 17 protones y 8 electrones de valencia.
- <u>C</u> 9 protones y 8 electrones de valencia.
- <u>B</u> 4 protones y 3 electrones de valencia.
- <u>H</u> 16 protones y 4 electrones de valencia.

- J 15 protones y 5 electrones de valencia.
- D 26 protones y 2 electrones de valencia.
- A 7 protones y 8 electrones de valencia.
- I 3 protones y 1 electrón de valencia.
- <u>E</u> 19 protones y 8 electrones de valencia.
- de 5 pts Relaciona cada concepto con su definición.
 - <u>B</u> Diagrama de esferas y barras.
 - D Diagrama de esferas.
 - A Fórmula condensada.
 - <u>C</u> Fórmula estructural.

- A. Las sustancias se representan sólo con símbolos atómicos.
- B. Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C. Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- D. Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

- 4 [_del0pts] Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.
 - (4a) 2 Na + ZnI₂ \longrightarrow 2 NaI + Zn
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4b) $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4c) Zn(s) + 2 HCl(ac) \longrightarrow ZnCl₂(ac) + H₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4d) 2 C(s) + O₂(g) \longrightarrow 2 CO(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4e) 2 Na + H₂O \longrightarrow 2 NaOH + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento

- - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4g) Mg(s) + H₂O(l) \longrightarrow Mg(OH)₂(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4h) Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4i) 2 NaCl(s) \longrightarrow 2 Na(s) + Cl₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4j) SO₂(g) + H₂O(l) \longrightarrow H₂SO₃(ac)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- 5 [_ de 10 pts] Balancea la siguiente ecuación química:

$$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$$

Solución:

Hay 2 N en los reactivos y 1 N en el producto, por lo que hay que multiplicar a NO_2 por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + H_2O$$

Hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar a H₂O por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + 2H_2O$$

Hay 2 O en los reactivos y 6 O en los productos, por lo que hay que multiplicar a O_2 por 3. Y la ecuación balanceada es:

$$N_2H_4 + 3O_2 \longrightarrow 2NO_2 + 2H_2O$$

6 | de 10 pts | Balancea la siguiente ecuación química:

$$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$$

Solución:

Hay 2 C en los reactivos y 1 C en los productos, por lo que hay que multiplicar por 2 al CO₂.

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + H_2O$$

Ahora, hay 6 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 3 al H₂O.

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + 3H_2O$$

Hay 3 O en los reactivos y 7 O en los productos, por lo que hay que multiplicar por 3 al O_2 . Y la ecuación balanceada es:

$$C_2H_6O+3\,O_2 \longrightarrow 2\,CO_2+3\,H_2O$$

7 [_ de 10 pts] Balancea la siguiente ecuación química:

$$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$$

Solución:

Hay 4 H en el reactivo y 2 en el producto, por lo que el coeficiente de H2O es 2.

$$NH_4NO_3 \longrightarrow N_2 + 2H_2O + O_2$$

Hay 3 O en los reactivos y 4 los productos, por lo que si intentamos dar al O_2 un coeficiente de 1/2, nos da 3 oxígenos en ambos lados.

$$NH_4NO_3 \longrightarrow N_2 + 2H_2O + \frac{1}{2}O_2$$

Dado que usualmente no se usan fracciones como coeficientes, multiplicamos todo por 2 para deshacernos de la fracción, y la ecuación balanceada es:

$$2\,\mathrm{NH_4NO_3} \longrightarrow 2\,\mathrm{N_2} + 4\,\mathrm{H_2O} + \mathrm{O_2}$$

- 8 [_de 10 pts] Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.
 - 8a Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.

Solución:

El número atómico Z se relaciona con la cantidad de protones en un átomo. Si consideramos un átomo eléctricamente neutro, la cantidad de electrones deberá ser la misma.

En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

Solución:

 $10,000 \times 2 \text{ mm} = 20,000 \text{ mm} = 20m$

- Ciencias y Technologia. Soluciones Per Examen de la Ci
- 9 [_@5pts] Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:
 - (9a) ¿Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A. El potencial de Ionización y el carácter metálico
 - B. El carácter no metálico y el potencial de ionización
 - C. La electronegatividad y la afinidad electrónica
 - D. El carácter metálico y la electronegatividad
 - E. Ninguna de las anteriores
 - 9b) ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A. El radio atómico y el radio iónico
 - B. El carácter metálico y la afinidad electrónica
 - C. La electronegatividad y el radio atómico
 - D. Potencial de ionización y electronegatividad
 - E. Ninguna de las anteriores
 - 9c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - A. Derecha y hacia arriba
 - B. Derecha y hacia abajo
 - C. Izquierda y hacia arriba
 - D. Izquierda y hacia abajo

- (9d) El tamaño de los átomos aumenta cuando:
 - A. Se incrementa el número de perío-
 - B. Disminuye el número de período
 - C. Se incrementa el número de grupo
 - D. Disminuye el número de bloque
 - E. Ninguna de las anteriores
- 9e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - A. Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B. Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C. Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - D. Todos son correctos

10 [_de 5 pts] Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (n) y electrones (-).

Especie	Símbolo	\oplus	n	<u>-</u>
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

11) [_de5pts] Escribe el grupo (familia), el período y el tipo de clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla

Elemento	${\rm Grupo/Familia}$	Período	Tipo
Paladio			
Oro			
${ m Arg\'on}$			
Samario			
Talio			

- (12) [_de 10 pts] Relaciona cada elemento con las características que le corresponden.
 - (12a) E Titanio
 - (12b) <u>J</u> Oro
 - (12c) D Helio
 - 12d A Boro
 - 12e I Radón
 - 12f) F Yodo
 - (12g) H Bismuto
 - (12h) G Radio
 - (12i) B Galio
 - (12j) C Silicio

- A. Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
- ${\bf B}$. Elemento metálico con ${\bf Z}=31$.
- C. Elemento metaloide, ubicado en el tercer período de la tabla periódica.
- D. Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
- E. Elemento con 22 protones y 22 electrones.
- F. Elemento de la familia de los Halógenos con 74 neutrones.
- G. Elemento de la familia de metales alcalino-terreos con 138 neutrones.
- **H**. Elemento con Z = 83.
- I. Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
- J. Metal brillante utilizado en joyería.

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H}\overset{4.0025}{\text{Helio}}$	$\sum_{\text{Neón}}^{10} \overset{20.180}{\text{e}}$	$\frac{18}{A}$ 39.948	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\overset{54}{\overset{131.29}{\times}}\overset{\text{131.29}}{\overset{\text{Xenón}}{\times}}$	$\mathop{Rad\acute{\circ}n}\limits^{86}_{\text{Rad\acute{o}n}}$	0	$\overset{71}{\text{Luterio}}$	103 262		
	17 VIIA	9 18.998 Fluor	$\bigcup_{Cloro}^{17\ 35.453}$	$\overset{35}{B}^{79.904}$	53 126.9 Yodo	$\mathop{\mathrm{At}}_{\mathop{Astato}}^{210}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70} \sum_{\text{Tris}}^{173.04}$	102 259 Nobelio		
	16 VIA	8 15.999 Oxígeno	$\overset{16}{\mathbf{S}}\overset{32.065}{\mathbf{S}}$	$\overset{34}{\mathrm{Se}}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{LV}$ Libermonio	\sum_{Tulio}^{69}	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{C}}$		
	15 VA	$\sum_{\text{Nitrógeno}}^{7}$	$\sum_{\text{Fósforo}}^{15 30.974}$	${\overset{33}{A}}_{\text{Arsénico}}$	$\overset{51}{\mathbf{Sb}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{Bismuto}$	${\displaystyle \frac{115}{M}} {\displaystyle \sum_{\text{Moscovio}}^{288}}$	$\frac{68}{\text{Erbio}}$	100 257 Frmio		
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	$\overset{14}{S}\overset{28.086}{\text{Silicio}}$	$\overset{32}{G}\overset{72.64}{e}$ Germanio	$\mathop{\mathbf{Sn}}_{\mathbf{n}}^{118.71}$ Estaño	\Pr_{Plomo}^{82}	114 289 Flerovio	$\overset{\textbf{67}}{H}\overset{164.93}{\text{Polmio}}$	99 252 Einsteinio		
	13 IIIA	5 Boro	$\prod_{\text{Aluminio}}^{13} \text{26.982}$	$\overset{31}{ ext{Galio}}$	$\overset{49}{\text{Indo}}^{114.82}$	81 204.38 Talio	$\overset{113}{N}\overset{284}{n}$	$\bigcup_{\text{Disprosio}}^{66}$	$\bigcup_{\text{Californio}}^{98}$		
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{\text{Cadmio}}$	$\overset{80}{H}\overset{200.59}{S}$	$\overset{\text{112}}{C}\overset{285}{n}$	$\prod_{Terbio}^{65-158.93}$	$\frac{97}{B} \frac{247}{K}$ Berkelio		
			11 IB	$\bigcup_{\text{Cobre}}^{29-63.546}$	$^{47}_{ m Ag}$	$\overset{79}{\mathrm{Au}}^{196.97}_{\mathrm{Oro}}$	$\underset{\text{Roentgenio}}{Rg}$	$\overset{64}{\text{Cd}}\overset{157.25}{\text{d}}$	96 247 Curio		
			10 VIIIB	$N_{\rm iquel}^{28}$	$\overset{\textbf{46}}{P}\overset{\textbf{106.42}}{\text{Paladio}}$	$\Pr^{78 195.08}_{\text{Platino}}$	110 281 DS	$\overset{63}{\text{Europio}}$	$\underset{\text{Americio}}{95}$		
			9 VIIIB	$\bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{S8.933}}^{58.933}$	$\mathop{\mathrm{Rh}}_{\mathrm{rodio}}^{45}$	$\frac{77}{192.22}$		$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{\text{Plutonio}}$		
			8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Ruthenio}^{44}$	$\overset{76}{\text{OSmio}}$	108 277 Hassio	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio		
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{M}\overset{54.938}{n}$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Renio}_{\text{Renio}}$	$\underset{\text{Bohrio}}{\underline{107}} \overset{264}{\text{B}}$	60 144.24 Neodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$		
	Simbología:	Negro: N Gris: Sir	6 VIB	$\bigvee_{\text{Cromo}}^{24}$	42 95.94 Molybdeno	$\bigvee_{\text{Tungstenio}}^{74} 183.84$	$\overset{106}{S}\overset{266}{8}$	$\sum_{ ext{Praseodymio}}^{ ext{59}}$	$\overset{91}{P}\overset{231.04}{\mathbf{a}}$ Protactinio		
	Sim	$\mathbf{S}_{Simbolo}$	5 VB	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	$\overset{41}{N}\overset{92.906}{\text{Niobio}}$	$\overset{73}{ ext{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105} \sum_{\text{Dubnio}}^{262}$	$ \begin{array}{c} 58 140.12 \\ \mathbf{C} \\ \mathbf{Cerio} \end{array} $	$\prod_{\text{Torio}}^{90-232.04}$		
				4 IVB	$\prod_{\text{Titanio}}^{22}$	$\overset{40~91.224}{Zr}$ Circonio	$\mathop{\rm Hafnio}_{Hafnio}^{72}$	$\frac{104}{\mathrm{R}}$	$\overset{57}{La}_{\mathrm{lantánido}}^{138.91}$	$\overset{89}{Ac}^{227}$	
			3 IIIB	$\overset{21}{S}\overset{44.956}{c}$	$\sum_{\text{ltrio}}^{39 88.906}$	57-71 * Lantánido		s -terreos	and the second second	nidos	
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Magnesio}}^{24.305}$	$\overset{20}{\text{Calcio}}$	$\overset{38}{\mathrm{ST}}\overset{87.62}{\mathrm{r}}$ Stroncio	$\mathop{Bario}\limits_{\text{Bario}}$	$\mathop{Radio}^{88}_{226}$	Alcalino Alcalino	le J J	obles los/Actín	
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	3 6.941 Litio	$\overset{11}{N}\overset{22.990}{\mathrm{Sodio}}$	$\sum_{\text{Potasio}}^{19 \ 39.098}$	$\mathop{Rb}^{37}_{\text{Rubidio}}$	$\overset{55}{\overset{132.91}{\overset{\mathbf{C}}{\overset{\mathbf{S}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}\overset{\mathbf{C}}{\overset{\mathbf{C}}}\overset{\mathbf{C}}}\overset{\mathbf{C}}{\overset{\mathbf{C}}}\overset{\mathbf{C}}{\overset{\mathbf{C}}}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}{\overset{\mathbf{C}}}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}{\overset{\mathbf{C}}}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}}{\overset{\mathbf{C}}}}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}}{\overset{\mathbf{C}}}}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}}}{\overset{\mathbf{C}}}}}{\overset{\mathbf{C}}}}}{\overset{\mathbf{C}}}}}}}}}}$	$\frac{87}{Fr}$	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno	Gases Inobles Lantánidos/Actínidos	
		7	æ	4	വ	9	_				