Model Question Paper-II with effect from 2021 USN

Second Semester B.E Degree ExaminationAdvanced Calculus and Numerical Methods (21MAT21)

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

		Module -1	Marks	
Q.01	a	Evaluate $\int \int xy dx dy$ over the region bounded by the x-axis, ordinate $x = 2a$ and the curve $x^2 = 4ay$		
	b	Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$ and $z = 0$, by using double integration	07	
	c	Show that $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta \times \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$	07	
	I	OR		
Q.02	a	Change the order of integration and hence evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$	06	
	b	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dxdydz$	07	
	С	Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	07	
		Module-2		
Q. 03	a	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$	06	
	b	If $\vec{F} = x^2 y \hat{\imath} + y^2 z \hat{\jmath} + z^2 x \hat{k}$, find $Curl(Curl\vec{F})$	07	
	С	Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.	07	
	1	OR		
Q.04	a	If $\vec{F} = (5xy - 6x^2)\hat{\imath} + (2y - 4x)\hat{\jmath}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the curve $C: y = x^3$ in the xy -plane from the point $(1,1)$ to $(2,8)$	06	
	b	Using Green's theorem, evaluate $\int_C (xy + y^2) dx + x^2 dy$, where C is bounded by $y = x$ and $y = x^2$	07	
	С	Using Stoke's theorem, evaluate $\oint_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x^2 + y^2) - 2xy$, taken around the rectangle whose vertices are $(a,0)$, (a,b) , $(-a,b)$, $(-a,0)$.	07	
		Module-3		
Q. 05	a	Form the partial differential equation from the relation $z = f(x + at) + g(x - at)$.	06	
	b	Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial z}{\partial x} - 4z = 0$, given that when $x = 0$, $z = 1$ and $\frac{\partial z}{\partial x} = y$	07	

	c	Derive one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	07			
		OR				
Q. 06	a	Form the partial differential equation from $f(x + y + z, x^2 + y^2 + z^2) = 0$				
	b	Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$ and $z = 0$ when y is an odd multiple of $\frac{\pi}{2}$.	07			
	c Solve $x(y^2 - z^2)p + y(z^2 - x^2)q - z(x^2 - y^2) = 0$					
		Module-4				
Q. 07	a					
	b Using Newton's forward interpolation find y at $x = 5$ from the data $\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	c	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos\theta} d\theta$ by taking 7 ordinates by Simpson's $(1/3)^{rd}$ rule.	07			
	•	OR				
Q. 08	a	Using the Newton-Raphson method, find the root of $3x = cosx + 1$ correct four decimal places.				
	b	Using Newton's divided difference interpolation find $f(9)$, Given that $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07			
	С	Evaluate $\int_0^1 \frac{dx}{1+x^2}$, using Simpson's $(3/8)^{th}$ rule by taking 7 ordinates.	07			
	1	Module-5				
Q. 09	a	Use the Taylor series method to find $y(0.2)$ from $\frac{dy}{dx} = x^2y - 1$, with $y(0) = 1$				
	b	By using modified Euler's method, find y(0.2), taking h = 0.1 from $\frac{dy}{dx} = \frac{y-x}{y+x}$, with $y(0) = 1$				
	С	Applying Milne's Predictor-Corrector method, find y(0.8), from $\frac{dy}{dx} = x^3 + y$, given that $y(0) = 2$, $y(0.2) = 2.073$, $y(0.4) = 2.452$, $y(0.6) = 3.023$				
Q.10	a	Employ Taylor's series method to evaluate $y(0.2)$, taking $h = 0.1$ from $\frac{dy}{dx} = e^x - y^2$, with $y(0) = 1$				
	b	Using the Runge-Kutta method of order 4, find y at x = 0.1, given that $\frac{dy}{dx} = 3e^x + 2y, y(0) = 1$				
	С	Applying Milne's Predictor - Corrector method, to find y(1.4), from $\frac{dy}{dx} = x^2 + \frac{y}{2}$, given that $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4549$, $y(1.3) = 2.7514$				

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome					
Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome	
Q.1	(a)	L2	CO 01	PO 02	
	(b)	L3	CO 01	PO 03	
	(c)	L2	CO 01	PO 02	
Q.2	(a)	L2	CO 01	PO 02	
	(b)	L2	CO 01	PO 02	
	(c)	L2	CO 01	PO 02	
Q.3	(a)	L2	CO 02	PO 01	
	(b)	L2	CO 02	PO 02	
	(c)	L2	CO 02	PO 02	
Q.4	(a)	L2	CO 02	PO 02	
	(b)	L3	CO 02	PO 03	
	(c)	L3	CO 02	PO 03	
Q.5	(a)	L2	CO 03	PO 01	
	(b)	L2	CO 03	PO 02	
	(c)	L3	CO 03	PO 03	
Q.6	(a)	L2	CO 03	PO 02	
	(b)	L2	CO 03	PO 02	
	(c)	L2	CO 03	PO 02	
Q.7	(a)	L2	CO 04	PO 01	
	(b)	L2	CO 04	PO 01	
	(c)	L2	CO 04	PO 02	
Q.8	(a)	L2	CO 04	PO 01	

	(b)	L2		CO 04	PO 01	
	(c)	L2		CO 04	PO 02	
Q.9	(a)	L2		CO 05	PO 01	
Q.J	(a)	11 2		00 00	1001	
	(b)	L2		CO 05	PO 01	
	()				70.00	
	(c)	L2		CO 05	PO 02	
Q.10	(a)	L2		CO 05	PO 01	
Q. 20	()					
	(b)	L2		CO 05	PO 02	
	(-)	1.2		CO 05	DO 02	
	(c)	L2		CO 05	PO 02	
	Lower order thinking skills					
Bloom'	_	Remembering	Understanding		Applying	
Taxonomy Levels		(knowledge): L ₁	(Comprehension): L ₂		(Application): L_3	
		Higher-order thinking skills				
		Analyzing	Valuating		Creating	
		(Analysis): L ₄	(Evaluation): L ₅		(Synthesis): L ₆	