Podstawy Automatyki - Sprawdzian 1

1 Człony

k - współczynnik wzmocnienia

T - stała czasowa inercji / całkowania / opóźnienie

 ξ - współczynnik tłumienia $\in (0,1)$

 ω_0 - pulsacja oscylacji własnych

1.1 Obiekty proporcjonalne

1.1.1 Obiekt wzmacniający idealny

$$y(t) = kx(t)$$

$$G(s) = k$$

Zastosowania: wzmacniacz bezinercyjny, maszyny proste

1.1.2 Obiekt wzmacniający rzeczywisty

$$T\frac{dy(t)}{dt} + y(t) = kx(t)$$

$$G(s) = \frac{k}{1+sT}$$

Zastosowania: wzmacniacz rzeczywisty, maszyny proste, zawór

1.1.3 Obiekt inercyjny n-tego rzędu

$$T_1T_2...T_n\frac{d^ny(t)}{dt^n} + ... + (T_1 + T_2 + ...T_n)\frac{dy(t)}{dt} + y(t) = kx(t)$$

$$G(s) = \frac{k}{(1+sT_1)(1+sT_2)...(1+sT_n)}$$

Zastosowania drugiego rzędu: maszyny proste, zawory z niekorzystnymi zjawiskami Zastosowania n-tego rzędu: złożone układy hydrauliczne, mechaniczne i elektryczne

1.2 Obiekt oscylacyjny

$$T^2 \frac{d^2 y(t)}{dt^2} + 2\xi T \frac{dy(t)}{dt} + y(t) = kx(t)$$

$$G(s) = \frac{k\omega_0^2}{s^2 + 2\xi\omega_0 s + \omega_0^2}$$

Zastosowania: układy mechaniczne oscylujące (masa i sprężyna), elektryczny układ drgający, wahadło

1.3 Obiekty różniczkujące

1.3.1 Obiekt różniczkujący idealny

$$y(t) = k \frac{dx(t)}{dt}$$

$$G(s) = ks$$

Zastosowania: brak

1.3.2 Obiekt różniczkujący rzeczywisty

$$T\frac{dy(t)}{dt} + y(t) = k\frac{dx(t)}{dt}$$

$$G(s) = \frac{ks}{1+sT}$$

Zastosowania: cewka indukcyjna, tłumik hydrauliczny, tarcie mechaniczne

2

1.4 Obiekty całkujące

1.4.1 Obiekt całkujący idealny

$$y(t) = k \int_0^t x(\tau) d\tau$$

$$G(s) = \frac{k}{s}$$

Zastosowania: kondensator idealny

1.4.2 Obiekt całkujący rzeczywisty

$$T\frac{dy(t)}{dt} + y(t) = k \int_0^t x(\tau)d\tau$$

$$G(s) = \frac{k}{s(1+sT)}$$

 ${f Zastosowania:}$ kondensator, zbiornik cieczy

1.5 Obiekt opóźniający

$$y(t) = x(t - T)$$

$$G(s) = e^{-sT}$$

Zastosowania: transporter taśmowy

2 Definicje

2.1 Transmitancja operatorowa

$$G(s) = \frac{Y(s)}{X(s)}$$

Stosunek transformaty Laplace'a odpowiedzi do transformaty Laplace'a wymuszenia, przy zerowych warunkach początkowych.

2.2 Charakterystyka czasowa

Przebieg czasowy wyjścia, wywołany wymuszeniem.

2.3 Transmitancja widmowa

Stosuek zespolonej składowej odpowiedzi do zespolonej składowej wymuszenia sinusoidalnego. Wykres transmitancji widmowej na płaszczyźnie Gaussa nazywamy charakterystyką amplitudowo-fazową.

$$G(j\omega) = \frac{\hat{Y}_W}{\hat{X}} = \frac{A_X e^{j\omega t}}{A_{Y_W} e^{j(\omega t + \phi)}} = P(\omega) + jQ(\omega)$$

3 Charakterystyki

3.1 Charakterystyka impulsowa

$$\delta(t) = g(t) = \begin{cases} \infty, & \text{dla } t = 0 \\ 0, & \text{dla } t \neq 0 \end{cases} \text{ oraz } X(s) = 1$$

3.2 Charakterystyka skokowa

$$\mathbf{1}(t) = h(t) = \begin{cases} 1, & \text{dla } t \ge 0 \\ 0, & \text{dla } t < 0 \end{cases} \text{ oraz } X(s) = \frac{1}{s}$$

3.3 Logarytmiczna charakterystyka amplitudowa

$$\frac{|Y|}{|X|} = \sqrt[20]{10} \to 20 \log \frac{|Y|}{|X|} = \log 10 = 1$$

3