[WEEK3]

Limiting spectral distributions.

X1, X2, ..., Xn n random samples of dimension p.

Sample covariance matrix

$$S_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}) (X_i - \overline{X})^*$$

 \overline{X} is sample mean given by $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Many traditional multivariate statistics are functions of the

eigenvalues (>i) of Sn.

In the most basic form, $T_n = \frac{1}{p} \sum_{k=1}^{p} \varphi(\lambda_k)$, $\varphi: c \to \mathbb{R}$

Example: The generalised variance can be written

$$T_n = \frac{1}{p} \log |S_n| = \frac{1}{p} \sum_{k=1}^{p} \log (3k)$$

The is a "linear spectral statistic of the sample covariance matrix on with test function $\varphi(\alpha) = \log(\alpha)$ "

First order Random matrix limits are concerned with when and how shall Tn -> c as p,n -> 00.

It concerns the "joint limit" of the p eigenvalues. (1/k) k=1

Empirical distributions and their limits

Let IMp(C) be pxp matrices with C-valued entries. and let $(\lambda k)_{k=1}^{p}$ be the eigenvalues of $A \in M_{p}(\mathbb{C})$.

Let
$$S_{\alpha}(\alpha) = \begin{cases} 1 & \text{if } \alpha = \alpha \\ 0 & \text{otherwise} \end{cases}$$

The empirical spectral distribution (ESD) of A is given by $F_{(\alpha)}^{A} := \frac{1}{\rho} \sum_{k=1}^{\rho} S_{2k}(\alpha)$

Generally, FA lakes C values. If A & Hp then FA(a) & R.

Example:
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 eigenvalues one $-i$, $+i$.
$$F^{A} = \frac{1}{2} \left(S_{i} + S_{-i} \right)$$

Take a sequence of matrices $(An)_{n\geq 1} \in Mp(\mathbb{C})$, if the sequence of corresponding ESD FAn vaguely converges to a (possibly defeative) measure F, we call F the limiting spectral distribution (LSD) of $(An)_{n\geq 1}$.

Vague convergence means that for any continuous function that is compactly supported, called φ , $F^{An}(\varphi) \rightarrow F(\varphi)$ as $n \rightarrow \infty$.

Here, we use the notation $F(\varphi) := \int_{\mathbb{R}^p} \varphi(\alpha) F(dn) \frac{(2en \text{ outside})}{a}$

COMPACT SUPPORTED.

If the distribution F is non-defective (i.e. $\int F(dn) = 1$) then vague convergence becomes weak convergence, that is, $\int F(\phi) - F(\phi)$ as $n \to \infty$

for all 4 continuous and bounded.

In our situation, we shall be dealing with sample covariance matrices (Sn). This means that:

- Support of F^{Sn} is 1R+ since Sn are Hermitian and non-negative definite.
- $F^{SN}(x) = \frac{1}{p} \sum_{k=1}^{p} 1(\lambda_k < \alpha)$ ESD.
- · Eigenvalues are random variables and ESDs (FSn) are random probability distributions on Rt.

The fundamental question is: Does the limit of (FSn) exist?

How can we show this?

The eigenvalues of a matrix are continuous functions of the entities of the matrix.

There is no closed-form solution for eigenvalues when dimension of a square matrix is greater than 4.

There are three main techniques used in RMT:

- · Method of moments.
- · Orthogonal polynomial decomposition.
- · Stieltjes transform · (ST)

We shall focus on the ST approach.

Stieltjes transform (ST)

The ST plays nearly as useful rde in RMT as the Moment-generating Function (MGF) or characteristic function (CF) in dassic probability theory.

It is defined for a measure M as.

$$S\mu(z) = \int \frac{1}{x-z} \mu(dx), \quad z \in C^+$$

The following lemma allows us to reconstruct the distribution function from its Stieltjes transform.

Lemma (Inversion): Let m be a probability measure on R.

If a < b are points of continuity of the associated dist, then $m((a,b)) = \lim_{v \to 0^+} \frac{1}{\pi} \int_{-\infty}^{\infty} Im(S_{\mu}(x+iv)) dx$.

The following lemma gives a necessary and sufficient condition for a sequence of ST to be the ST of a probability measure.

Lemma! Genonimo and Hill, 2003): Suppose that (Mn) is a sequence of probability measures on R with Stielties transforms (Sm). If $\limsup_{n\to\infty} \operatorname{Syn}(2) = \operatorname{Syn}(2)$ for all $z\in \mathbb{C}$, then there exists a probability measure μ with ST given by Syn if and only if $\limsup_{n\to\infty} \operatorname{Syn}(ix) = -1$.

In which case, mn - m in distribution.

There are some more technical results that I will now state without proof.

First, the say that a function of is holomorphic if it is complex differentiable at every point of its domain, ie. $f'(80) = \lim_{z \to 80} \frac{f(z) - f(80)}{z - z_0} \quad \text{exists.}$

Holomorphic functions are very rice:

- · Infinitary differentiable.
- . Equals to its Taylor series.

Proposition: The Stieffes transform has the following proporties:

- · Spe is holomorphic on O'The where The=Supp(M).
 - . $2 \in \mathbb{C}^+ \iff \mathrm{Sm}(z) \in \mathbb{C}^+$
- · if Mr = Rr and ze C+, then ZSm(Z) = C+
- · |Sm(2)| = dist(2, Ph) V | Im(2) |

Proposition: The mass $\mu(1)$ can be recovered through the formula $\mu(1) = \lim_{v \to \infty} -iv \operatorname{Su}(iv)$

Moreover, for all ontinuous and compactly supported $\varphi: \mathbb{R} \to \mathbb{R}$ $\mu(\varphi) = \int \varphi(x) \mu(dx) = \lim_{y \to 0} \frac{1}{\pi} \int \varphi(x) \operatorname{Im} \left[\operatorname{Sp}(x+iv) \right] dx$

Proposition: Assume that the following anditions hold for a complex-valued g(z):

- · g is holomorphic on ct
- . $g(z) \in \mathbb{C}^+$ for all $z \in \mathbb{C}^+$.
- . lim sup livg(iv)/ <∞.

The g is a ST of a bounded measure on R.

Theorem: A sequence of measures (Mr.) converges vaguely to some positive measure $\mu \iff (S_{\mu n})$ converges to S_{μ} on \mathbb{C}^+ .

The idea is that we show $S\mu n \rightarrow S\mu$ (vague conv.) and then show that μ is a probability measure by checking that $\mu(1) = 1$.

We have A positive semidefinite and symmetric. Then ESD of A is $F^A = \frac{1}{p} \sum_{j=1}^{p} S_{j}$. A pxp matrix

$$S_{A}(2) = \int \frac{1}{\alpha - 2} F^{A}(dx)$$

$$= \frac{1}{p} \sum_{k=1}^{p} \int \frac{1}{\alpha - 2} S_{\lambda k}(dx).$$

$$= \frac{1}{p} \sum_{k=1}^{p} \frac{1}{\lambda_{k} - 2}$$

$$= \frac{1}{p} tr[(A-2I)^{-1}]$$

$$tr(A+B) = tr(A) + tr(B)$$

 $tr(A^k) = \sum_{i=1}^{P} \lambda_i^k$

Trace of an invesse matrix: For nxn matrix Q, define Qk to be the submatrix obtained by dotating kith row and

Theorem (Baig Silvestein, Thm A.4): If B and Bk, k=1,...,n, ore nonsingular and Writing B'=[bke], How tr(B-1) = \(\overline{b_{-1}} \) \(\overline{b_{k}} - \overline{B_{k}} \overline{B_{k}} \) \(\overline{B_{k}} \overline{B_{k}} \) \(\overline{B_{k}} \)

blok : k'th diagonal entry of B.
Blok : Vector obtained from k'th row of B by deleting k'th entry

Applying this theorem
$$S_{A}(z) = \frac{1}{p} \sum_{k=1}^{p} \frac{1}{\alpha_{k}k - z - \alpha_{k}^{*}(A_{k}-zI)^{-1}\alpha_{k}}.$$
(**)

We would like to show that denominator is equal to $9(2, S_{A}(2)) + o(1)$

Then we can solve for
$$S_A(z) = \overline{g(z,S_A(z))}$$
.

to obtain the ST of the ESD.

Maricenko-Pastur distributions

with index y The Marcento-Roster distribution Fy,02 and scall parameter of has density $\frac{1}{2\pi xyo^2} \frac{1}{\sqrt{(b-x)(a-a)}} \quad \text{if } a \le x \le b$ $\frac{1}{2\pi xyo^2} \frac{1}{\sqrt{(b-x)(a-a)}} \frac{1}{a=o^2(1-1y^2)^2} = b = o^2(1+1y^2)^2$

$$1f \sigma^2 = 1$$
: Standard MP diff

Special case
$$y=1$$
, and $\sigma^2=1$.

$$P_{4}(\alpha) = \begin{cases} \frac{1}{2\pi\alpha} \sqrt{\alpha(4-\alpha)} & 0 < \alpha < 4. \\ 0 & \text{otherwise.} \end{cases}$$

As
$$y \rightarrow 0$$
, $F_y \rightarrow 8_1$

MP distribution for independent vectors without cross-correlation

$$Sn = \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^* - \frac{n}{n-1} x_i^* x_i^*$$

$$\approx \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^*$$
ignore

We shall sometimes write in sample vectors as pxn random matrix

$$X = (X_1, \ldots, X_n)$$

$$\Rightarrow$$
 $S_n = \frac{1}{n} \times \times^*$

Marcenkog Pastur found the LSD of the large sample Ovaniance matrix Sn.

Theorem: (MP) Suppose that the entires [xij] of X are iid complex random variables with mean zero and variance of, and $p/n \rightarrow y \in (0,\infty)$. Then, dmost surely, $FSn \rightarrow Fy$, σ^e .

MP dist.

This theorem was shown it a special case in 1960s but its influence in statistics was only recognised reconfig.

How does the MP dist, appear in the limit?

$$\frac{\sigma^2 = 1}{Py(\mathbf{z})} = \frac{1}{2\pi\alpha y} (b-2)(\alpha-\alpha) \quad \alpha \leq \alpha \leq b.$$

The Stielties transform is.

$$S(z) = \int_{a}^{b} \frac{1}{x-z} P_{y}(x) dx.$$

$$(1-y) = z + \sqrt{(z-1-y)^{2} - 4y}$$

$$= \frac{(1-y)-z+\sqrt{(z-1-y)^2-4y^7}}{2yz}$$

rearranging notice that S = S(2) satisfies the quadratic

equation

$$y25^2 + (z+y-1)s + 1 = 0.$$

The ST of the ESD of Sn is Sn(z)= tr[(Sn-zIp)]

If we can show $S_n(z) \rightarrow S(z)$ as $n \rightarrow \infty$ for every $z \in \mathbb{C}^+$, then $F^{S_n} \rightarrow F_y$.

By (*) on page 11,

Xk = X with kith row removed Xk = kith row of X, size nx1.

Assume IE ["denominator terms"] - IE ["terms with rows].

ie. random error caused by approx is small. For large p and n.

$$\mathbb{E}\left[\frac{1}{n} \propto_{k}' \overline{\propto_{k}}\right] = \frac{1}{n} \sum_{j=1}^{n} |\alpha_{kj}|^{2} = 1.$$

16

Lemma: Let u be a nxx random vector with onthes u;

that are all independent with mean 0 and unit variance.

Let Q be a (non-random) nxn complex mothix. Then

$$\mathbb{E}[u^*\mathbf{Q}u] = trQ.$$

Proof: As $u^*Qu = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{u_i} Q_{ij} u_j$.

$$\mathbb{E}[\mathbf{u}^*\mathbf{Q}\mathbf{u}] = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}[\mathbf{Q}_{ij}\mathbf{u}_{i}\mathbf{u}_{j}].$$

$$= \sum_{i=1}^{n} Q_{ii} \mathbb{E}[\overline{u_i}u_i]$$

=
$$\text{tr} Q$$
. as $\mathbb{E}[\overline{u_i}u_i] = 1$.

Conology: E[u*u] = n.

Proof: Take Q=In, Hen tra=6In=n.

(AB) $ik = \sum_{j=1}^{m} a_{ij} b_{ji} k$

$$\mathbb{E}\left[\frac{1}{n^{2}} \times_{k}^{*} \times_{k}^{*} \left(\frac{1}{n} \times_{k} \times_{k}^{*} - \mathbb{E}I_{p_{1}}\right)^{-1} \times_{k} \times_{k}^{*}\right]$$

$$= \frac{1}{n^{2}} \mathbb{E}\left[\operatorname{tr}\left\{\times_{k}^{*} \left(\frac{1}{n} \times_{k} \times_{k}^{*} - \mathbb{E}I_{p_{1}}\right)^{-1} \times_{k} \times_{k}^{*}\right]$$

$$= \frac{1}{n^{2}} \operatorname{tr}\left\{\mathbb{E}\left[\times_{k}^{*} \left(\frac{1}{n} \times_{k} \times_{k}^{*} - \mathbb{E}I_{p_{1}}\right)^{-1} \times_{k}\right]\mathbb{E}\left[\times_{k}^{*} \times_{k}^{*}\right]\right\}$$

$$= \frac{1}{n^{2}} \operatorname{tr}\left\{\mathbb{E}\left[\times_{k}^{*} \left(\frac{1}{n} \times_{k} \times_{k}^{*} - \mathbb{E}I_{p_{1}}\right)^{-1} \times_{k}\right]\right\}$$

$$= \frac{1}{n^{2}} \operatorname{tr}\left\{\mathbb{E}\left[\times_{k}^{*} \left(\frac{1}{n} \times_{k} \times_{k}^{*} - \mathbb{E}I_{p_{1}}\right)^{-1} \times_{k}\right]\right\}$$

$$= \frac{1}{n^{2}} \operatorname{tr}\left\{\mathbb{E}\left[\times_{k}^{*} \left(\frac{1}{n} \times_{k} \times_{k}^{*} - \mathbb{E}I_{p_{1}}\right)^{-1} \times_{k}\right]\right\}$$

$$= \frac{1}{n^2} \mathbb{E} \left\{ r \left\{ \left(\frac{1}{n} \times \left[\frac$$

So
$$\frac{1}{n^2} \mathbb{E} \left[tr \left\{ \left(\frac{1}{n} \times_k \times_k^* - 2I_{p-1} \right)^* \times_k \times_k^* \right\} \right]$$

$$\approx \frac{1}{n^2} \mathbb{E} \left[tr \left\{ \left(\frac{1}{n} \times \times^* - 2I_p \right)^* \times \times^* \right\} \right]$$

$$= \frac{1}{n} \mathbb{E} \left[tr \left\{ I_p + 2 \left(\frac{1}{n} \times \times^* - 2I_p \right)^* \right] \right]$$

$$= \frac{\rho}{n} + 2 \frac{\rho}{n} \mathbb{E} \left[s_n(z) \right].$$

so denominator is roughly.

$$1-2-\left\{\frac{\rho}{n}+2\frac{\rho}{n}\mathbb{E}\left[S_{n}(2)\right]\right\}$$

lots of hard waving here!

so denominator

and
$$S(z) = 1 - 2 - (y + 425(z))$$
.