

	Α	В	С	D	Ε
Q61		X			
Q62		X			
Q63			X		
Q64				X	
Q65				X	
Q66	X				
Q67			X		
Q68		X			
Q69		X			
Q70	X				
Q71	X				
Q72				X	
Q73					X
Q74			X		
Q75		X			
Q76		X			
Q77		X			
Q78	X				
Q79		X			
Q80			X		

BERNA XITEORIA I BANKA BERNA XITEORIA O BIN BERNA I GALLIA BERNAI ET COTA BURTA A BURDIA

الدهاهطانة المعاديها: ورزع الدرع الوكدية والتستقيمين العجاري. والمتعادم السارعان العاد

Royaume du Meroc

lainstère de l'iducation Nationale, de la Pormulent Profession et la de l'Enseignement Supénéur et de la Recherche Scientifique

مدة الإنجاز: 3 ساعات

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 خشت 2020 الصيغة العربية للاختبار

تعلیات

ملاحظات وتوجيهات هامة

- 1. يتكون اختبار المباراة من أربع مكونات، وتتحدد مدة إنجازه الإجالية في 3 ساعات؛
 - 2. لكل سؤال خمسة أجوبة مقترحة (A-B-C-D-E) واحدة منها فقط صحيحة؛
 - 3. تخصص ورقة واحدة للإجابة لكل مترشح (ة) ولا يمكن تغييرها؛
- 4. تتم الإجابة في الحانة المقابلة للإجابة الصحيحة بورقة الإجابة (Feuille Réponse)، من خلال وضع علامة × على الشكل التالي:
 - 🗵 أو تظليلها كما يلي: 🔳 وذلك باستعال قلم الحبر الجاف (أزرق أو أسود)؛
 - 5. لا يسمح باستعال الآلة الحاسبة؛
 - 6. لا يسمح باستعال المُبَيِّض (Blanco) في ورقة الإجابة (Feuille Réponse)؛
 - 7. تعتبر أي نقطة أقل أو تساوي 3/20 في مكون واحد على الأقل من المكونات الأربع لاختبار المباراة نقطة موجبة للإقصاء؛
 - 8. كل جواب خاطئ على أي سؤال من أسئلة الاختبار ينقط بصفر.

مكونات الاختبار:

- 9. يتضمن اختبار المباراة 80 سؤالا من صنف الاختيار من متعدد (QCM) موزعة على المكونات الأربعة للاختبار كما يلي:
 - المكون 1: علوم الحياة: من السؤال Q1 إلى السؤال Q20؛
 - المكون 2: الفيزياء: من السؤال Q21 إلى السؤال Q40؛
 - المكون 3: الكيمياء: من السؤال Q41 إلى السؤال Q60؛
 - المكون 4: الرياضيات: من السؤال Q61 إلى السؤال Q80.

التنقيط:

10. يتم تنقيط كل سؤال من أسئلة كل مكون من مكونات الاختبار وفق درجة صعوبته وأهميته ضمن الإطار المرجعي للمباراة بنقطة واحدة أو نقطتان أو ثلاث نقط.

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 الصيغة العربية للاختبار

المكون 1: علوم الحياة المعامل: 1	
يتم تعبير الخبر الوراثي عند ذوات النواة الحقيقة عبر مرحلتين:	Q1
النسخ في مستوى السيتوبلازم والترجمة في مستوى النواة؛	A
المضاعفة في مستوى النواة والنسخ في مستوى السيتوبلازم؛	В
المضاعفة في مستوى النواة والترجمة في مستوى السيتوبلازم؛	C
المضاعفة في مستوى السيتوبلازم والترجمة في مستوى النواة؛	D
النسخ في مستوى النواة والترجمة في مستوى السيتوبلازم.	Е
خلال الطور الاستوائي من الانقسام غير المباشر يتشكل كل صبغي من:	Q2
صُبْيْغِيَيْن مكثفين يتكون كل منهما من خُبِيْط واحد من ADN؛	Ā
صُبَيْغِي واحد غير مكثف يتكون من خُييْطين من ADN؛	В
صُنبِيْغِيَيْن مكثفين يتكون كل منهما من خُييْطين من ADN؛	С
صُبَيْغِي واحد غير مكثف يتكون من خُبيْط واحد من ADN؛	D
صُنبِنْ غِيرِ مكثفين يتكون كل منهما من خُينِطين من ADN.	Е
يرتبط قانون نقاوة الأمشاج ب:	Q3
التقاء الحليلين المحددين للمظهرين الخارجيين المتعارضين عند الهجين؟	A
افتراق حليلي المورثة المحددين للمظهرين الخارجيين المتعارضين خلال تشكل الأمشاج عند	В
الافتراق المستقل لأزواج الحليلات المسؤولة عن صفتين مختلفتين خلال تشكل الأمشاج عند ا	С
الافتراق المستقل لأزواج الحليلات المسؤولة عن صفتين مختلفتين خلال تشكل الأمشاج عند ه الاقتران؛	D
النقاء الحليلين المحددين للمظهرين الخارجيين المتعارضين عند متشابه الاقتران.	E
CATANIA LIBI CALEGADA	04
يتضمن كل ARN ناقل (ARNt): مضاد وحدة رمزية يرتبط بـ ARNm ليُؤمِّنَ الترجمة؛	Q4
مصاد و حده رمزية ترتبط بـ ARNm لَتُؤَمِّنَ النسخ؛	A B
مضاد وحدة رمزية يرتبط بـ ARNm ليُؤمَّنَ المضاعفة؛	C
مضاد وحدة رمزية يرتبط بـ ARNm ليُؤمِّنَ النسخ؛	D
وحدة رمزية ترتبط بـ ARNm لتُوَمِّنَ الترجمة.	E
الخريطة العاملية (الخريطة الوراثية) هي تمثيل بياني لتموضع:	05
الحريصة العملية (العريضة الوراثية) هي تمليل بياتي للموضع: الصبغيات يتم إنجاز ها بناء على حساب نسبة المورثات المرتبطة عند الخلف إثر تزاوج اختبا	Q5
الصبغيات يتم إنجازها بناء على حساب نسبة التركيبات المديدة عند الخلف إثر تزاوج اختبار	A
المورثات على الصبغيات يتم إنجازها بناء على حساب نسبة المورثات المستقلة عند الخلف إث	В
الموريات على الصبعيات يتم إلجارها بناء على حساب نسبه الموريات المستعلة علا المنه المديد إ	C
	-
الصبغيات يتم إنجازها بناء على حساب نسبة المورثات المستقلة عند الخلف إثر تزاوج اختبار	D

الصفحة 3 20	مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 عشت 2020 الصيغة العربية للاختبار
	 Q6 بخصوص الطفرات:

بخصوص الطفرات:	Q6
تكون دائما مفيدة للفرد الحامل لها؟	A
تخفض من التنوع الوراثي للساكنة؛	В
يمكن أن تُعطي القرد الحامل لها أفضلية انتقائية؟	С
تنقل إلى الخلف حينما تصيب الخلايا الجسدية؛	D
تنجم عنها دائما أمراض وراثية.	Е

تطور الساكنة:	Q7
يرتبط بتغيرات وراثية عشوائية مستقلة عن خصائص الوسط؛	A
تتدخل فيه اليات تُمكِّن من تنويع وتعقيد الذخيرة الوراثية مما يؤدي دائما إلى ظهور مظاهر خارجية تفضيلية؛	В
يرتبط دائما بارتفاع التنوع الوراثي داخل الساكنة؛	С
تتدخل فيه اليات تمكن من تنويع وتعقيد الذخيرة الوراثية مما يؤدي دائما إلى ظهور مظاهر خارجية غير تفضيلية؟	D
مستحيل دون تغير المحتوى الجيني للساكنة.	Е

جزيئة ARN:	Q8
لا تتواجد إلا في سيتوبلازم الخلية؛	A
لا ترتبط أبدا بأي بروتيين؛	В
تتكون من أربعة نوكليوتيدات: A و T و G و C؟	С
يقتصر تدخلها على نسخ المورثات؟	D
يمكن أن تتضمن وحدات رمزية بدون معنى.	Е

في التشخيص قبل ولادي عند الإنسان، هناك عدة تقنيات تُمَكِّن من إنجاز الخريطة الصبغية من بينها التقنيتين الآتيتين:	Q9
أخذ عينة من السائل السلوي واقتطاع عينة من الخلايا الحميلية؛	A
التصوير بالأشعة واقتطاع عينة من الخلايا الحميلية؛	В
التصوير بالصدى وأخذ عينة من السائل السلوي؛	С
التصوير بالصدى واقتطاع عينة من الخلايا الحميلية ؛	D
التصوير بالأشعة وأخذ عينة من السائل السلوي.	Е

النوع:	Q10
أقل تُنوعا وراثيا من الساكنة؛	A
توزيعه الجغرافي محدود؛	В
يتم تعريفه بالاقتصار على معيار التشابه في المظهر الخارجي؛	С
لا تظهر فيه تغيرات في الأنماط الوراثية بين الأفراد؛	D
يخضع لعوامل التغير الوراثي.	Е

	الصفحة
	4
1	/20

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 الصيغة العربية للاختبار

Q11	نعتبر التزاوجات الآتية: التزاوج 1: بين دجاجة من سلالة نقية ذات عُرف مُورًد وديك ذو عُرف عاد: أعطى هذا التزاوج خلفا يتكون من أفراد ذات عُرف مُورًد. التزاوج 2: بين ديك و دجاجة لهما أرجل قصيرة: أعطى هذا التزاوج خلفا يتكون 2/3 من الأفراد بأرجل قصيرة و قد 1/3 من الأفراد بأرجل عادية. التزاوج 3: بين ديك بعُرف مُورَد وأرجل قصيرة و دجاجة بعُرف عاد وأرجل عادية: أعطى هذا التزاوج خلفا يتكون من %50 من الأفراد بعرف مُورَد وأرجل قصيرة و 50% من الأفراد بعرف مُورد وأرجل قصيرة و 50% من الأفراد بعرف مُورد وأرجل عادية. وأرجل عادية. الطلاقا من مختلف هذه التزاوجات، وعلما أن المورثتين المدروستين مستقلتين، يمكن كتابة النمط الوراثي لديك التزاوج 3 على النحو الآتي: (نرمز لشكل العرف بـ R و r و لشكل الأرجل بـ C و C)
A	(R//r, C//C)
В	(R//r, C//c)
С	(R//R, C//c)
D	(R//R, C//C)
E	(R/r, c/c)

7							لحميل:	بغيةا	لة الص	لخريط	لأتية ا	ِ تُيقة ا	تقدم الو	
		2	3	4	\$ 5									
	6	7	8	·)	10		12							Q12
	13	14) 15		16	17	18							
	19	海臺 20	21	& € 22	ja i	X	A Y							
لة عن	=1+2n+1 ناتج	47 -	حميل ذكر	لخلية	فريطة	هذه الذ		ن نسا	ا بمكن أ	ِثيقة ب	لذه الو			
							تنتج أن					:	التحام	Δ
مهيدي [[؛	ل الطور الت	ات خلا	ع الصبغيا	ي توزيـ	خلل في	م عن	تنتج أن	ة مع ه	ة عاديا	صبغيا	طته ال	: ج خریہ	التحام مشي	A
مهيدي [[؛		ات خلا	ع الصبغيا	ي توزيـ	خلل في	م عن	تنتج أن	ة مع ه	ة عاديا	صبغيا	طته ال ريطتي	: ج خرید جین خ	التحام مشيع مشي	A B
مهيدي 11؛ ملال الطور	ل الطور الت	ات خلا نوزیع ا	ع الصبغيا خلل في ن	ي توزي ما عن	خلل ف _و کل منه	جم عن ناجمة ا	تنتج أن مشيج ناد عاديتين	ة مع ه غير	ة عاديا صبغية	صبغيا هما الد	طته الد ريطتي [؟ ريطتي	: جين خريد صىال <i>ي</i> جين خ	التحام مشيع مشيد الإنف مشيد	
مهيدي [[؟ ملال الطور ملال الطور	ل الطور الت الصبغيات ذ الصبغيات ذ	ات خلا نوزیع ا نوزیع ا	ع الصبغيا خلل في ن خلل في ن	ي توزي ما عن ما عن	خلل فو کل منه کل منه	بم عن ناجمة ا	تنتج أن مشيج ناد عاديتين عاديتين	ة مع ه غير غير	ة عاديا صبغية صبغية	صبغيا هما الم	طته الد ريطتي [؟ ريطتي []؟	: جين خريد صيال <i>ي</i> جين خ صيالي	التحام مشيع مشيد الإنف مشيد الإنف	В
مهيدي [[؟ علال الطور علال الطور انفصالي [؟	ل الطور الت لصبغيات خ	ات خلا نوزیع ا نوزیع ا ات خلا	ع الصبغيا خلل في ن خلل في ن خلل في ن	ي توزير ما عن ما عن ي توزير	خلل فع کل منه کل منه خلل فع	م عن ناجمة المادة الما	تنتج أن مشيج ناد عاديتين عاديتين مشيج ناد	ة مع ه غير غير غير	ة عادية صبغية صبغية صبغية	صبغياً هما الم	طته الد ريطتير ريطتير ريطتير طته ال	: ج خريد حمالي جين خ صالي حمالي	التحام مشيع الانف مشيد الانف مشيع	ВС

مضاد الوحدة الرمزية لـ ARNt المقابل للوحدة الرمزية CAG الرامزة للحمض الأميني Gln هو:	Q14
5'-CUU-3'	A
5'-GUC-3'	В
5'-GTG-3'	С
5'-CUG-3'	D
5'-GTC-3'	Е

الصفحة	Marion C
6	1
20	

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 الصيغة العربية للاختبار

تردد إصابة الذكور بمرض وراثي متنحي مرتبط بالصبغي الجنسي X يسمى بمتلازمة Hunter هو 1/1000. تردد إصابة الإناث بهذا المرض هو: (باعتبار الساكنة في حالة توازن)	Q16
1/100 000	Α
1/150 000	В
1/50 000	С
1/10000	D
1/1000 000	Е

ire فر على ثلاث أنزيمات الفصل التالية التي تقطع ADN في مواقع محددة: Hpa 1 Hind III Fco RI 5'—GTTAAC_3' 3'—CTTAAG_5' 3'—TTCGAA_5' 6 AATTC_3' 4 AGCTT_3' 3'—CTTAAG_5' 6 AATTC_5' 4 ADN الأتية: 5'—ATGTATGGTGGTTTTTTATAGAATTCGCAA 5' TACATACCACCAAAAAATATCTTAAGCGTT 1' TACATACCACCAAAAAAATATCTTAAGCGTT	Q17
ستتعرض متتالية ADN أعلاه للقطع من طرف: Hpa 1	A
Hpa 1 و Eco RI	В
Eco RI	С
Eco RI Hind III	D
Hpa 1.	E

(4)

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة المربية للاختبار

أراد بستاني تحسين حديقة زهور، ومن اجل ذلك زاوج بين نبتة ذات أزهار بيضاء وسيقان ملساء مع نبتة	
ُذَاتُ أَزَ هَارٌ وَرِدِيةً وَسَيْقَانَ مُشَوِّكَةً. حَصَلَ عَلَى جَيْلُ أُولَ F1 يَتَكُونَ مِنْ نَبَاتَاتَ ذَاتُ أَزَ هَارَ وَرِدِيةً وَسَيْقَانَ	
مُشَوِّكَة. أعطي التزاوج بين أفراد F1 النتائج الآتية:	Q19
- 126 نبتة بأزهار وردية وسيقان مُشَوَّكَة؟ ﴿ ﴿ وَ نَبِنَةَ بِأَزَهَارِ وَرَدِيةً وَسَيْقَانَ مَلْسَاء	Q19
- 52 نبتة بأزهار بيضاء وسيقان مُشَوِّكَة؛ - 21 نبتة بأزهار بيضاء وسيقان ملساء.	
تدل أعداد المظاهر الخارجية المحصل عليها في الجيل الثاني F2 على أن المورثتان المدروستان:	
مر تبطتان وأن المظاهر الخارجية الجديدة ناتجة عن تخليط ضمصبغي خلال تشكل الأمشاج عند هجناء ٢٦؛	A
مستقلتان وأن المظاهر الخارجية الجديدة ناتجة عن تخليط ضمصبغي خلال تشكل الأمشاج عند هجناء F1؛	В
مرتبطتان وأن المظاهر الخارجية الجديدة ناتجة عن تخليط بيصبغي خلال تشكل الأمشاج عند هجناء F1؛	С
مستقلتان وأن المظاهر الخارجية الجديدة ناتجة عن تخليط بيصبغي خلال تشكل الأمشاج عند هجناء F1؛	D
مستقلتان وأن المظاهر الخارجية الجديدة ناتجة عن تخليط ضمصبغي متبوع بتخليط بيصبغي خلال تشكل	Е
الأمشاج عند هجناء F1.	E

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت 2020 الصفحة العربية للاختبار الصيغة العربية للاختبار 2020 عشت 2020 عشت 2020
المكون 2 : الفيزياء المعامل : 1
انتشار موجة على سطح الماء: (6 نقط)
نحدث ، عند اللحظة $t_0=0$ ، بواسطة هزاز لحوض الموجات، في النقطة S من السطح الحر للماء، موجة متوالية جيبية ترددها S . استطالة النقطة S هي S هي S . S هي S . يعطي الشكل أسفله مقطعا رأسيا لسطح الماء عند اللحظة S . S الماء عند
0 1 2 3 4 5 6 7 8 9 (cm)
Q21. قيمة طول الموجة هي:Q21. قيمة طول الموجة هي:A $\lambda = 0.5 \text{ cm}$ B $\lambda = 2.5 \text{ cm}$ C $\lambda = 1 \text{ cm}$ D $\lambda = 2 \text{ cm}$ E $\lambda = 1.5 \text{ cm}$
Q22. سرعة انتشار الموجة على سطح الماء هي:
A $v = 0.20 \text{ m.s}^{-1}$ B $v = 0.25 \text{ m.s}^{-1}$ C $v = 0.30 \text{ m.s}^{-1}$ D $v = 0.40 \text{ m.s}^{-1}$ E $v = 0.45 \text{ m.s}^{-1}$
Q23. استطالة نقطة M من سطح الماء توجد على المسافة $0,4m$ من S هي:
A $y_M(t) = 5.10^{-3} \cdot \sin(20\pi t - \pi)$ B $y_M(t) = 5.10^{-3} \cdot \cos(20\pi t - \pi)$ C $y_M(t) = 5.10^{-3} \cdot \cos(40\pi t + \pi)$ D $y_M(t) = 5.10^{-3} \cdot \cos(40\pi t)$ E $y_M(t) = 5.10^{-3} \cdot \cos(30\pi t)$
انتشار موجة في وسط شفاف: (3 نقط)
طول الموجة الإشعاع مرئي تردده $ u = 5.10^{14} Hz$ في وسط شفاف معامل انكساره n هو $\lambda = 400 nm$ هو $\lambda = 1.08 m.s^{-1}$.
Q24. قيمة طول الموجة λ_0 للإشعاع الضوئي في الفراغ هي: A $\lambda_0 = 760 nm$ B $\lambda_0 = 850 nm$ C $\lambda_0 = 600 nm$ D $\lambda_0 = 570 nm$ E $\lambda_0 = 320 nm$
Q25. قيمة معامل الانكسار هي: Q25. قيمة معامل الانكسار هي: $n = 1,33$ $ \mathbf{B} $ $n = 1,5$ $ \mathbf{C} $ $ n = 1,8$ $ \mathbf{D} $ $ n = 2,0$ $ \mathbf{E} $ $ n = 1,0$

الموجّات في مجال الطب: (7 نقط)

ينسبب انقباض القلب في تعزيز الدورة الدموية، مما يؤدي إلى انبعاث موجة (النبض: le pouls) تنتشر في الشرابين، حيث تتمدد أغشيتها عند ارتفاع ضغط الدم.

يعبر عن سرعة انتشار النبض بالعلاقة $\frac{1}{\sqrt{\rho.D}} = v$ حيث ρ الكتلة الحجمية للدم و D معامل يميز مرونة الشريان.

بالنسبة لشخص : $D = \frac{0.5}{\Delta P}$ ، حيث ΔP يمثل تغير الضغط الدموي الناتج عن النبض.

معطيات:

$$\sqrt{20} = 4.5$$
 § $\sqrt{13} = 3.6$ § $\Delta P = 5 \text{ cmHg}$ § $\rho = 10^3 \text{kg.m}^{-3}$ § $1 \text{ cmHg} = 1.3 \text{ kPa}$

باراة وأوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 الصبغة العرببة للاختبار

D هو: D هو:

 $L.M^{-1}.T^{-2}$ \mathbf{C} $LM^{-2}T^{-2}$ $L.M.T^2$ $L.M^{-1}.T^{2}$ $L.M^{-1}.T^{-1}$ D A

O27. قيمة سرعة انتشار النبض هي:

 $C = 5.0 \text{ m.s}^{-1}$ **D** $v = 2.6 \text{ m.s}^{-1}$ **E** $v = 3.6 \text{ m.s}^{-1}$ $\mathbf{B} = v = 4.0 \text{ m.s}^{-1}$ $v = 4.5 \text{ m.s}^{-1}$

Q28. يأخذ الشخص على التوالي نبضه على مستوى نقطة M من العنق ثم على مستوى نقطة N من المعصم. توجد النقطة M على المسافة 20 cm من القلب والنقطة N على المسافة 80 cm من القلب. نعتبر أن النبض ينتشر بالسرعة نفسها بين القلب و النقطة M وبين القلب و النقطة N.

التأخر الزمني بين وصول النبض إلى M ووصوله إلى N هو:

 $\Delta t = 0.17 \text{ s}$ $\Delta t = 0.22 \text{ s}$ $\Delta t = 1.7 \text{ s}$ C $\Delta t = 170 \text{ s}$ $\Delta t = 6 \text{ s}$

انتشار تشوه: (4 نقط)

تعطى الوثيقة جانبه، استطالة حركة نقطة M خلال انتشار تشوه طول حبل. توجد النقطة M على المسافة $1.5 \, \mathrm{m}$ من المنبع S $t_0 = 0$ عند اللحظة انطلق من S عند اللحظة

029. يصل التشوه إلى النقطة M عند اللحظة:

t = 0.50 st = 0.20 sB t = 0.10 s \mathbf{C} t = 0.15 sA D t = 0.25 s

030. طول التشوه هو:

 $\ell = 0.175 \text{ m}$ \mathbf{B} $\ell = 0.255 \text{ m}$ C $\ell = 0.375 \text{ m}$ $\ell = 0.320 \text{ m}$ $E = \ell = 0,125 \text{ m}$ A D

حيود الضوء: (6 نقط)

نضىء خيطا رفيعا قطره a بواسطة جهاز لازر يبعث إشعاعا طول موجته $D=1.5~\mathrm{m}$ نشاهد شكلا للحيود على شاشة توجد على المسافة $Q=670~\mathrm{nm}$ $L_1 = 2 \text{ cm}$ من الخيط عرض البقعة المركزية هو نعوض جهاز اللازر بجهاز لازر آخر يعطى إشعاعا طول موجته

 L_1 عرض البقعة المركزية في هذه الحالة هو $\lambda_2 = 560 \text{ nm}$

 $\frac{56}{67} = 0.84$:

Q31. قيمة م المي:

 $L_2 = 1.5 \text{ cm}$ $L_2 = 2,6 \text{ cm}$ $L_2 = 1.7 \text{ cm}$ $L_2 = 2.3 \text{ cm}$ E $L_1 = 3, 2 \text{ cm}$ A B C D

O32. بالنسبة للإشعاعين، الفرق الزاوي الأكبر هو:

 $\theta = 9.2.10^{-2} \text{ rad}$ $\theta = 5.7.10^{-3}$ rad B $\theta = 8.3.10^{-2} \text{ rad}$ C $\theta = 6.7.10^{-3} \text{ rad}$ E $\theta = 2.4.10^{-2} \text{ rad}$

Principal Company of the Company of	Comment of the contract of the
الصفحة	مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت 2020
10	الصيغة العربية للاختبار
20	J
10 20	

تفتت الحديد (5 : (4 نقط)

الحديد $f_0 = 0$ إشعاعي النشاط الإشعاعي β^- . نتوفر ، عند اللحظة a(t) = 0 ، على عينة من الحديد $\frac{59}{26}Fe$ بقيس . (jours أيام، النشاط الإشعاعي a(t) للعينة. نلاحظ أن a(t) = 1,17 . (يعبر عن a(t) بالوحدة a(t)).

معطيات:

- $N(t) = N_0.e^{-\lambda t}$ يكتب يكتب أنون التناقص الإشعاعي يكتب
 - ln(1.17) = 0.157 •

033. النواة المتولدة خلال هذا التفتت هي:

, essenting the con-	First professional companies of submide day procedures and a second companies of the compan		they down a his more in the control co				· •			·~~~
A	⁵⁹ Cr	В	⁵⁹ ₂₅ Mn	C	⁵⁸ Co	D	⁵⁹ Co	E	⁶⁰ ₂₆ Fe	

Q34. قيمة الثابتة الإشعاعية للحديد Fe هي:

****				20	
A	$\lambda = 1,57.10^{-4} \text{ jours}^{-1}$	В	$\lambda = 1,57.10^{-2} \text{ jours}^{-1}$	C	$\lambda = 1,57.10^{-7} \text{s}^{-1}$
D	$\lambda = 1,57.10^{-2} s^{-1}$	E	$\lambda = 1,57.10^{-6} jours^{-1}$		

التَّفْتَتَاتُ الْمَتُوالِيةُ لَلْبِيزُمُوثُ 222: (3 نقط)

 $^{212}_{83}Bi \xrightarrow{(1)} ^{212}_{Z_1}Po \xrightarrow{\alpha} ^{42}_{82}Pb$ نواة البيزموث $^{212}_{82}Bi \xrightarrow{(1)} ^{212}_{Z_1}Po \xrightarrow{\alpha} ^{212}_{82}Pb$ نواة البيزموث البيزموث المناط. تعطي الكتابة التالية، تفتتين متتاليين لهذه النواة:

A_2 و Z_1 وقيمتي (1) هي: Q35. طراز التفتت (1) وقيمتي

A	α	$Z_1 = 84$	$A_2 = 208$
В	$eta^{\scriptscriptstyle -}$	$Z_1 = 84$	$A_2 = 208$
C	$eta^{\scriptscriptstyle +}$	$Z_1 = 82$	$A_2 = 208$
D	α	$Z_1 = 81$	$A_2 = 208$
Е	$oldsymbol{eta}^-$	$Z_1 = 84$	$A_2 = 212$

دراسة عينة مشعة : (7 نقط)

تحتوي صخرة مشعة كتلتها $m_0 = 1$ عند اللحظة $t_0 = 0$ ، على 0.5% من الأور انيوم 235.

- $t_{1:2} = 7.10^{8} ans = 2,20.10^{16} s$: 235 غمر النصف للأورانيوم •
- $M(U) = 235 \text{ g.mol}^{-1}$ $N_A = 6.02.10^{23} \text{ mol}^{-1}$ $\frac{64}{11} = 5.82$ $47 \times 0.128 = 6.02$ $\ln 2 = 0.7$

ور الأورانيوم 235 في الصخرة عند اللحظة $t_0=0$ هو: Q36

A $N_a = 2.35.10^{24}$ B $N_a = 1.28.10^{25}$	$C = N_1 = 6.02 \cdot 10^{25}$	$\mathbf{D} = V = 7.25 \cdot 10^{26}$	$F = N = 8.50 \cdot 10^{26}$
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10 1 0 0,000.00	$N_0 = 7,25.10$	E No - 0, 20.10

ون النشاط الإشعاعي a_0 للأورانيوم 235 في الصخرة عند $a_0 = 0$ هو:

A
$$a_0 = 7.10^8 Bq$$
 B $a_0 = 6.10^8 Bq$ **C** $a_0 = 4.07.10^8 Bq$ **D** $a_0 = 3.10^7 Bq$ **E** $a_0 = 1.5.10^7 Bq$

Q38. عند اللحظة 28.10° و 28.10° النشاط الإشعاعي للأورانيوم 235 هو:

because the course of the cour		A	$0.5.a_{0}$	В	0,25.a ₀	C	0,125.a ₀	D	$6,25.10^{-2}.a_0$	E	$3,125.10^{-2}.a_0$
--	--	---	-------------	---	---------------------	---	----------------------	---	--------------------	---	---------------------

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 مباراة ولوج كليات المطب

تركيب ثواة مشعة: (3 نقط)

lpha ينتج عن تفتت نواة الراديوم $lpha^{226}Ra$ ، نواة متولدة $lpha^{7}Rn$ ودقيقة

Q39. قيمتا x و ر هما:

A $x = 88$; $y=226$	B $x = 87$; $y=226$	C $x = 87 : y=222$	D $x = 86$; $y=222$	E $x = 89$; $y=226$

Q40. تركيب النواة المتولدة Rn به هو:

Jran.	the title of leading tracking from a few o	rative from a direct interesting that the fact that from another man and a people case.		ANY TOTAL COMMISSION OF THE PROPERTY OF THE PR	 CONTRACTOR MANAGEMENT PROPERTY AND ADMINISTRAÇÃO AND ADMINISTRAÇÃO AND ADMINISTRAÇÃO ADMINISTRAÇÃO A PROPERTY A PROPERTY A PROPERTY AND ADMINISTRAÇÃO A PROPERTY A PR	changled of en you paragraph of a sa	et un interes de la companyation de			
The second second	Δ	86 بروتون	B	86 بروتون	87 بروتون	n	89 بروتون	F	88 بروتون	
***************************************	Λ.	222 نوترون		136 نوترون	135نوترون	D	137 نوترون		138 نوترون	ŀ

المعامل: 1

المكون 3: الكيمياء

التتبع الزمني لتحول كيمياني: (6 نقط)

ندخل في حوجلة كمية من مسحوق الزنك، ونصب عليه حجما $V = 75\,m$ من محلول مائي لحمض الكبريتيك. معادلة التفاعل الحاصل هي: $Zn_{(s)} + 2H_3O_{(aq)}^- \longrightarrow Zn_{(aq)}^{2+} + H_{2(g)} + 2H_2O_{(l)}$ يمثل منحنى الشكل جانبه تغير ات التقدم T للتفاعل بدلالة الزمن. معطيات:

- يعبر عن السرعة الحجمية المتوسطة للتفاعل يعبر عن السرعة الحجمية المتوسطة للتفاعل بالعلاقة: $v_{moy}=\frac{1}{V}.\frac{\Delta x}{\Delta t}$ الحجم الكلي للخليط.
 - $75 \times 45 = 3375$! $3375 \times 35 \approx 1,19.10^5$

Q41 . قيمة التقدم النهائي . Q41

A $x_f = 29.8 mmol$ **B** $x_f = 28.5 mmol$ **C** $x_f = 27.8 mmol$ **D** $x_f = 25.6 mmol$ **E** $x_f = 29.8 mol$

Q42 . قيمة زمن نصف التفاعل هي:

A $t_{1/2} = 60 \,\text{min}$ **B** $t_{1,2} = 45 \,\text{min}$ **C** $t_{1/2} = 40 \,\text{min}$ **D** $t_{1,2} = 35 \,\text{min}$ **E** $t_{1/2} = 30 \,\text{min}$

وم السرعة الحجمية المتوسطة للتفاعل بين اللحظتين $t_0=0$ و $t_1=90\,\mathrm{min}$ هي:

***************************************	property transfer and management and individual and				-
A	$v_{mov} = 4.10^{-3} mol.L^{-1}.min^{-1}$	В	$v_{moy} = 5,33.10^{-3} mol.L^{-1}. min^{-1}$	C	$v_{moy} = 6,67.10^{-3} mol.L^{-1}. min^{-1}$
D	$v_{moy} = 8.10^{-3} mol. L^{-1}. min^{-1}$	E	$v_{moy} = 3,5.10^{-3} mol.L^{-1}.min^{-1}$		дания вывый 1 (III) жиль пара с дольно учество на должно почений на продуство на продуство на продуство на прод

التطور الزمنى لمجموعة كيميانية: (9 نقط)

عند اللحظة $t_0 = 0$ نضيف حجما من الماء الأوكسيجيني إلى حجم من محلول برمنغنات البوتاسيوم المحمض. يتأكسد الماء الأوكسيجيني $H_2O_{2(l)}$ بأيونات البرمنغنات $MnO_{-4(uv)}^{-1}$ وفق المعادلة:

 $5H_2O_{2(l)}+2MnO_{4(aq)}^-+6H_{(aq)}^+\to 5O_{2(g)}+2Mn_{(aq)}^{2+}+8H_2O_{(l)}$ يعطى الجدول أسفله التطور الزمنى لتركيز الأيونات

t(min)	0	4	8		24	44	66	100	120
$\left[Mn_{(aq)}^{2+}\right](mol.L^{-1})$	0	0,10	0,20	0,28	0,40	0,50	0,54	0,56	0,56

معطيات: المجم المولي : $V_m = 24 \ L.mol^{-1}$: متفاعل محد $V_m = 24 \ L.mol^{-1}$: متفاعل محد

Q44 . المزدوجتان (مختزل/ مؤكسد) المتدخلتان في التفاعل هما:

 \mathbf{A} التفاعل هي: $\mathbf{Q45}$. فيمة زمن نصف التفاعل هي: \mathbf{A} التفاع

الصفحة	مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 ــ غشت 2020
13/	الصيغة العربية للاختبار
20	
	والم والم الم الم الم الم والم الم الم الم الم الم الم الم الم الم
A	A $v = 48.10^{-2} L$ B $v = 4.8.10^{-2} L$ C $v = 36.10^{-2} L$ D $v = 12.10^{-2} L$ E $v = 24.10^{-2} L$
	م م الله الله الله الله الله الله الله ا
	\mathbf{A} $n_0 = 5, 6.10^{-2} \ mol$ \mathbf{B} $n_0 = 2, 8.10^{-3} \ mol$ \mathbf{C} $n_0 = 1, 4.10^{-2} \ mol$
	The state of the s
	$\mathbf{D} \mid n_0 = 1, 4.10^{-3} mol \mathbf{E} \mid n_0 = 2, 8.10^{-2} mol$
	المحلول الماني لحمض الإيثانويك : (4 نقط)
	نعتبر محلولا مائيا (S) لحمض الإيثانويك تركيزه $C=10^{-2}mol.L^{-1}$. أعطى قياس موصلية المحلول (S) القيمة
	$\sigma = 1,56.10^{-2} S.m^{-1}$
	$\log 2 = 0.3$! $\lambda_2 = \lambda_{\text{CH,COO}^-} = 4 mS.m^2. \text{mol}^{-1}$! $\lambda_1 = \lambda_{H,O^-} = 35 mS.m^2. \text{mol}^{-1}$!
	نعرف نسبة النقدم النهائي بالعلاقة: $-\frac{\lambda^{\prime}}{2}= au$
	\mathcal{X}_{max}
	Q48 . تركيز أيونات الأوكسونيوم في المحلول (S) هو:
	$\mathbf{D} \left[H_3 O_{(aq)}^+ \right] = 4.10^{-5} mol. L^{-1} \mathbf{E} \left[H_3 O_{(aq)}^+ \right] = 8.10^{-5} mol. L^{-1}$
	pH . Expand pH in the property of pH is a parameter pH in the property of pH in the propert
	A $pH = 3,1$ B $pH = 3,4$ C $pH = 3,6$ D $pH = 3,8$ E $pH = 4,2$
	A ph s, b ph s, c ph s, b ph s, E ph s.
	Q 50 . قيمة نسبة التقدم النهائي للتفاعل هي:
	A $\tau = 4\%$ B $\tau = 2\%$ C $\tau = 1\%$ D $\tau = 0, 4\%$ E $\tau = 0, 2\%$
9 9	دراسة قرص الإيبوبروفين: (3 نقط)
J	نذيب قرصا من الإيبوبروفين في الحجم V_{g} من الماء فنحصل على محلول مائي S). نعاير المحلول S) بواسطة محلو
	. $V_{B,E}=9,7\;mL$ مائي لهيدروكسيد الصوديوم تركيزه $C_B=0,20\;mol.L^{-1}$. الحجم المضاف عند التكافؤ هو
	$M(ibuprofene) = 206 \ g.mol^{-1}$: معطی
	Q51 . قيمة كتلة الإيبوبروفين الموجودة في القرص هي:
A n	$m_{ibu} = 0,4 \ mg$ B $m_{ibu} = 4 \ mg$ C $m_{ibu} = 4.10^{-2} \ mg$ D $m_{ibu} = 400 \ mg$ E $m_{ibu} = 500 \ mg$
	درجة الحمضية لخل: (5 نقط)
	نأخذ الكتلة $m=10g$ من خل تجاري، ونضيف إليها الماء للحصول على محلول مائي (S_A) لحمض الإيثانويك
، کسید	M = 10g . We can be seen that $M = 20$. We can be seen that $M = 10g$. The contraction of $M = 10g$.
 -	حجمه $V=100 mL$
	$V_{B,\mathcal{E}}=16.4~mL$ الصوديوم تركيزه $C_{B}=0.10~mol.L^{-1}$. الحجم المضاف عند التكافؤ هو
	معطيات:
	 تمثل درجة الحمضية لخل تجاري كتلة حمض الإيثانويك الخالص بـ (g) الموجودة في g 100 من الخل.
	$pK_A(CH_3COOH_{(aq)} / CH_3COO_{(aq)}) = 4.8$ • $M(CH_3COOH) = 60 \text{ g mol}^{-1}$
*** ***	Q52 درجة حمضية هذا الخل هي:
5 5	A 7° B 4,9° C 11,2° D 9° E 12°

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 مباراة ولوج كليات الطب والصيغة العربية للاختبار

الماني التقدم النهائي للتفاعل و pH الوسط التفاعلي بالنسبة للحجم $V_{\scriptscriptstyle B}=8,2~mL$ هما: Q53

	D	1 T
A	$x_f = 8, 2.10^{-4} mol$	pH = 4
В	$x_f = 4, 2.10^{-4} mol$	pH = 4.8
C	$x_f = 4, 2.10^{-4} mol$	pH = 4
D	$x_f = 6, 2.10^{-4} mol$	pH = 5
E	$x_f = 8, 2.10^{-4} mol$	pH = 4.8

المحلول المائي لحمض البنزويك: (6 نقط)

قيمة pH محلول مائي (S) لحمض البنزويك حجمه V=1 وتركيزه V=1 وتركيزه $C=0.1mol.L^{-1}$ عند درجة الحرارة V=1 . PH=2.6

. $1-10^{-1.6} \approx 1$! $10^{0.4} = 2.5$! $10^{0.8} = 6.3$:

054. قيمة التقدم النهائي لتفاعل حمض البنزويك مع الماء هي:

A	$x_f = 2, 5.10^{-3} mol$	1	$x_f = 1, 4.10^{-3} mol$	C	$x_f = 2.5.10^{-2} mol$
D	$x_f = 4.10^{-2} mol$	E	$x_f = 6.10^{-2} mol$		

بالعلاقة: $(C_6H_5COOH_{(aq)} \, / \, C_6H_5COO_{(aq)}^-)$ بالعلاقة: K_A بالعلاقة: Q55

$ \begin{vmatrix} \mathbf{A} & K_A = \frac{10^{-pH}}{C - 10^{-pH}} & \mathbf{B} & K_A = \frac{10^{-2pH}}{C(1 - 10^{-pH})} & \mathbf{C} & K_A = \frac{10^{-2pH}}{C - 10^{-pH}} & \mathbf{D} & K_A = \frac{C.10^{-2pH}}{1 - 10^{-pH}} & \mathbf{E} $	$K_{A} = \frac{10^{-pH}}{C - 10^{-2pH}}$
--	--

 $(C_6H_5COOH_{(aq)} \ / \ C_6H_5COO^-_{(aq)})$ هي: المزدوجة المز

provide an analysis of the second contract of	
	The state of the s
$\mathbf{I} \mathbf{A} + \mathbf{V} = \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{P} + \mathbf{D} + \mathbf{V} = \mathbf{C} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{P}$	C V 110-4 TD V C 2 10-10 TD VC
A	1 () K = 4 () 1 () K = 6 3 () K = A + O
11, 12, 210	

المحلول المائي للأمونياك: (5 نقط)

 $\log \frac{[NH_3]}{[NH_4^+]} = 1.1$: المحلول ماني (S) للأمونياك تركيزه DH = 10.3 القيمة DH = 10.3 العطى قياس DH = 1.1

Q57 . تعبير نسبة التقدم النهائي للتفاعل الحاصل هي:

$\begin{bmatrix} \mathbf{A} & \tau = \frac{10^{-pH}}{C.K_c} & \mathbf{B} & \tau = \frac{10^{pH}}{C.K_c} & \mathbf{C} & \tau = \frac{10^{-pH}.K_c}{C} & \mathbf{D} & \tau = \frac{10^{pH}.K_c}{C} & \mathbf{E} & \tau = \frac{C.10^{pH}}{K_c} \end{bmatrix}$

يمة $pK_{4(qq)}/NH_{3(qq)}$ قيمة بالمزدوجة ($pK_{4(qq)}/NH_{3(qq)}$) هي:

				distribution of the second		
	merchant accompanies of the contraction of the cont					

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 مباراة ولوج كليات الطب والصيغة العربية للاختبار

تَفَاعل حمض اللاكتيك مع هيدروكسيد الصوديوم: (5 نقط)

نضيف إلى الحجم $C_A = 3.10^{-2} \, mol.L^{-1}$ تركيزه $C_3 H_6 O_3$ تركيزه الحجم $V_A = 20 mL$ من محلول مائي لحمض اللاكتيك PH = 3.3 قيمة PH = 3.3 الخليط هي PH = 3.3 قيمة PH = 3.3 الخليط هي PH = 3.3 معطى: $10^{-10.7} = 2.10^{-1}$

يعبر عن التقدم النهائي x_r للتفاعل الحاصل بالعلاقة:

$$\begin{array}{|c|c|c|c|c|c|} \hline \mathbf{A} & x_f = C_B . V_B - (V_A + V_B) . 10^{pH - pK_e} & \mathbf{B} & x_f = C_A . V_A - (V_A + V_B) . 10^{pH - pK_e} & \mathbf{C} & x_f = C_B . V_B + (V_A + V_B) . 10^{pH - pK_e} \\ \hline \mathbf{D} & x_f = C_A . V_A + (V_A + V_B) . 10^{pH - pK_e} & \mathbf{E} & x_f = C_A . V_A + (V_A + V_B) . 10^{pK_e - pH} \\ \hline \end{array}$$

ا هي: $\left[C_3 H_5 O_{3(aq)}^- ight]$ هي: $\mathbf{Q60}$

A	$\left[C_3 H_5 O_{3(aq)}^{-} \right] = 5.10^{-2} mol. L^{-1}$	В	$\left[C_3H_5O_{3(aq)}^{-}\right] = 2.10^{-2} mol.L^{-1}$	C	$\left[C_3H_5O_{3(aq)}^{-1}\right] = 1,5.10^{-2} mol.L^{-1}$
E	$\left[C_3 H_5 O_{3(aq)}^{-} \right] = 5.10^{-3} mol. L^{-1}$	E	$\left[C_3H_5O_{3(aq)}^{-}\right] = 1,5.10^{-4} mol.L^{-1}$		

20

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت 2020 الصيغة العربية للاختبار

(معامل:1)

المكون 4: الرياضيات

إذا كان z عدد عقدي معياره $\sqrt{2}$ و عمدته $\frac{\pi}{2}$ فإن z^8 يساوي:

$$A = 8 + i8\sqrt{3}$$

$$\boxed{B}$$
 $-8+i8\sqrt{3}$ \boxed{C} $-8-i8\sqrt{3}$

$$C$$
 $-8-i8\sqrt{3}$

$$D = 8 - i8\sqrt{3}$$

$$E$$
 $4+i4\sqrt{3}$

إذا كان θ عدد حقيقي فإن $\cos^3 \theta$ يساوي:

$$\boxed{A} \quad \frac{1}{8}(\cos 3\theta + 3\cos \theta)$$

$$\boxed{A} \quad \frac{1}{8}(\cos 3\theta + 3\cos \theta) \qquad \boxed{B} \quad \frac{1}{4}(\cos 3\theta + 3\cos \theta) \qquad \boxed{C} \quad \frac{1}{4}(\sin 3\theta + 3\sin \theta)$$

$$C$$
 $\frac{1}{4}(\sin 3\theta + 3\sin \theta)$

$$\boxed{D}$$
 $\frac{1}{8}(3\cos\theta-\cos3\theta)$

$$\boxed{E}$$
 $\frac{1}{8}(\sin 3\theta + 3\sin \theta)$

اذا كان
$$x$$
 من المجال $0,1$ فإن $[0,1]$ فإن $[0,1]$ تساوي :

$$A + \infty$$

$$B$$
 $-\infty$

$$C = 0$$

$$D - 1$$

$$f:x\mapsto f(x)=rac{1}{x-1}ln\left(1+rac{1}{x}
ight)$$
 هي:

$$\boxed{A} \]-\infty,-1[\cup\,]0,+\infty[\qquad \boxed{B} \]-1,1[\,\cup\,]1,+\infty[\qquad \boxed{C} \]-\infty,-1[\,\cup\,]1,+\infty[$$

$$B$$
 $]-1,1[\cup]1,+\infty[$

$$C$$
] $-\infty$, -1 [\cup]1, $+\infty$ [

$$\boxed{D}$$
 $]-\infty,-1[\cup]0,1[\cup]1,+\infty[$ \boxed{E} $]-1,1[$

$$[E]$$
 $]-1,1[$

إذا كان
$$f'(x) = (x^2 - x)e^{\frac{1}{x}}$$
 فإن $f'(x)$ تصاوي:

$$\boxed{A} (2x-1)e^{\frac{1}{x}}$$

$$\boxed{B} \left(1 - \frac{1}{x}\right)e^{\frac{1}{x}}$$

$$\boxed{B} \left(1 - \frac{1}{x}\right)e^{\frac{1}{x}} \qquad \boxed{C} \left(\frac{1}{x} - 1\right)e^{\frac{1}{x}}$$

$$\boxed{D} \quad \left(2x-2+\frac{1}{x}\right)e^{\frac{1}{x}}$$

$$E$$
 $\left(2x-\frac{1}{x}\right)e^{\frac{1}{x}}$

20

باراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 ـ غشت 2020

:Q66

$$arg(z+1)\equiv rac{\pi}{3} \ [2\pi]$$
 و $arg(z-1)\equiv rac{2\pi}{3} \ [2\pi]$ و عدد عقدي بحيث: والمان z عدد عقدي بحيث:

 $A \sqrt{3}i$

B $2\sqrt{3}i$

فإن z يساوي: \boxed{C} $-\sqrt{3}i$ \boxed{D} $-2\sqrt{3}i$ \boxed{E} $1+\sqrt{3}i$

|z| يساوي: $z=1+ie^{irac{ heta}{2}}$ إذا كان $z=1+ie^{irac{ heta}{2}}$

A

B $2\cos\frac{\theta}{2}$ C $2\cos\frac{\theta+\pi}{4}$ D $\cos\frac{\theta+\pi}{4}$ E $2\sin\frac{\theta}{4}$

 $\lim_{n\to+\infty} \left(\frac{n-1}{n+1}\right)^{2n}$ لدينا

A0 |B|

 e^{4} C

D

|E|

:Q69

إذا كانت $q=rac{1}{3}$ متتالية هندسية حدها الأول $u_1=2$ و أساسها $q=rac{1}{3}$ فإن

 $(n \ge 1)$ يساوي: $(n \ge 1)$ يساوي: $(n \ge 1)$ $u_1 \times u_2 \times u_3 \times ... \times u_n$ الجداء $(n \ge 1)$ $(n \ge 1)$ (n

 $\boxed{A} \ 2^n.3^{\frac{n(n-1)}{2}}$

 $(\forall x \in \mathbb{R})$; f(x) = (x-5)(x-4)(x-3)(x-2)(x-1) إذا كان

فإن f'(1) يساوي:

A24 |B|1 |C|

D

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 ـ غثت 2020 الصيغة العربية للأختبار

$$f(x) = \frac{2\ln x}{x(1+(\ln x)^2)}$$
لتكن f الدالة المعرفة بما يلي:

الدالة الأصلية للدالة f على المجال $]0,+\infty$ و التي تنعدم في 1 هي:

$$\boxed{A} \quad ln((lnx)^2 + 1)$$

$$B$$
 $(ln x)^2$

$$C$$
 $2x ln((lnx)^2 + 1)$

$$\boxed{D} \quad \frac{x \ln x}{\ln x + 1}$$

$$\boxed{E} \quad \frac{2\ln x}{\left(\ln x\right)^2 + 1}$$

التكامل
$$\int_0^1 \frac{2t+3}{t+2} dt$$
 يساوي:

$$\boxed{A}$$
 $ln\frac{3}{2}$

$$\boxed{B}$$
 $2 + ln \frac{3}{2}$

$$C$$
 $2-ln\frac{2}{3}$

$$\boxed{A} ln\frac{3}{2}$$
 $\boxed{B} 2 + ln\frac{3}{2}$ $\boxed{C} 2 - ln\frac{2}{3}$ $\boxed{D} 2 + ln\frac{2}{3}$ $\boxed{E} ln\frac{2}{3}$

$$E ln \frac{2}{3}$$

:073

 $(O, \stackrel{
ightarrow}{u}, \stackrel{
ightarrow}{v})$ المستوى العقدي منشوب إلى معلم متعامد ممنظم

مجموعة النقط M التي لحقها z بحيث $\mathbb{R} \in \mathbb{R}$ هي:

المحور الحقيقي محروم من النقطة

الدانرة التي مركز ها O و شعاعها B

B(1) المحور الحقيقي محروم من النقطتين

B(1) و A(-1) الدائرة التي مركزها O و شعاعها 1محرومة من النقطتين |D|

EI اتحاد المحور الحقيقي محروم من النقطة O و الدائرة التي مركز ها O و شعاعها

:Q74

$$(\forall n \in \mathbb{N})$$
 ; $w_{n+1} = (w_n - 1)^2 + 1$ يتكن $(w_n)_{n \in \mathbb{N}}$ يتكن المنتالية المعرفة بما يلي: $w_0 = \frac{1}{2}$

اذا كانت $\lim_{n \to +\infty} w_n$ متقاربة فإن $(w_n)_{n \in \mathbb{N}}$ تساوي:

$$A = 0$$

$$B$$
 2

$$\boxed{D} \quad \frac{1}{2}$$

$$E$$
 -1

(4)

 \overline{A}

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020–2021 – غشت 2020 الصيغة العربية للاختيار

.075

$$f(x)=1+x\ln\sqrt{1+rac{a}{x}}$$
 ليكن a من المجال a الدالة المعرفة بما يلي: a الدالة المعرفة بما يلي:

 $\lim_{x\to+\infty} f(x)$ لدينا

 \boxed{B} $1+\frac{a}{2}$ \boxed{C} 1+a \boxed{D} $+\infty$ \boxed{E} a

:Q76

AB = AC = 10: ليكن ABC مثلث متساوي الساقين رأسه A بحيث ABC ليكن المثلث ABC هي:

المساحة القصوية للمثلث ABC هي:

 $\boxed{A} \quad 25\frac{\sqrt{2}}{2} \qquad \boxed{B} \quad 50 \qquad \boxed{C} \quad 100 \qquad \boxed{D} \quad 10 \qquad \boxed{E} \quad 5\sqrt{2}$

:Q77

إذا كان $(f^{-1})'(2)$ فإن العدد المشتق $f(x)=x^3+3\ln x+1$ إذا كان

 $\boxed{A} \quad \frac{1}{3} \qquad \boxed{B} \quad \frac{1}{6} \qquad \boxed{C} \quad \frac{1}{5} \qquad \boxed{D} \quad \frac{1}{4} \qquad \boxed{E} \quad \frac{1}{2}$

:Q78

 $\int_0^{\frac{\pi}{2}} sin(x)e^x dx$ يساوي:

:Q79

 $(\forall x\in\mathbb{R})$; $f(x)=e^{-rac{x^2}{2}}$ نعتبر الدالة f المعرفة بما يلي: $f(x)=e^{-rac{x^2}{2}}$ على المجال $f(x)=e^{-rac{x^2}{2}}$ هو:

 $\boxed{B} \qquad -\frac{1}{\sqrt{e}} \le f'(x) \le 0$

 $\boxed{D} \qquad 0 \le f'(x) \le \sqrt{e}$

 \overline{E} $-\frac{1}{\sqrt{a}} \le f'(x) \le -\frac{1}{2}$

 $0 \le f'(x) \le \frac{1}{\sqrt{a}}$

C $-\frac{1}{2} \le f'(x) \le 0$

(4) 20

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 _ غشت 2020 الصيغة العربية للاختبار

:Q80

. لتكن $f(x) = \sqrt{x^3 + 2x^2 + 3} - ax\sqrt{x + b}$ لتكن

تقبل نهایة منتهیة عند ∞ اذا و فقط اذا کان:

a > 0 b > 0

B a=1 b>0 C a=1 b=2

Da = 1 و b = 0 E a > 0 b = 0

انتهى

HAXINA EH I HEHOSO

المملكة المغربية وزارة التربية الرئمنية والتكوين الممني والتمليم المالي والبحث الملمي

Royaume du Maroc

Ministère de l'Education Nationale, de la Formation Professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique

مدة الإنجاز: 3 ساعات

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 الصيغة الفرنسية للاختبار

Consignes

Notes et instructions importantes :

- 1. L'épreuve est constituée de quatre composantes d'une durée totale de 3 heures ;
- 2. Chaque question comporte 5 réponses (A, B, C, D et E) dont une seule réponse est juste ;
- 3. Chaque candidat(e) a le droit d'utiliser une seule feuille réponse non remplaçable ;
- 4. Avec un stylo à bille (bleu ou noir) cochez <u>sur la feuille réponse</u> à l'intérieur de la case correspondante à chaque réponse juste de la manière suivante : ⊠ ou remplissez cette case de la manière suivante : ;
- 5. L'utilisation de la calculatrice est INTERDITE;
- 6. L'utilisation du Blanco sur la feuille réponse est INTERDITE;
- 7. Chaque note inférieure ou égale à 3/20 dans une composante au moins, des quatre composantes de l'épreuve est considérée comme note éliminatoire ;
- 8. Toute réponse fausse pour chaque question vaut 0.

Composantes et caractéristiques de l'épreuve :

- 9. L'épreuve comporte 80 QCM réparties en quatre composantes :
- Composante 1 : Sciences de la Vie de la question Q1 à la question Q20 ;
- Composante 2 : Physique de la question Q21 à la question Q40 ;
- Composante 3 : Chimie de la question Q41 à la question Q60 ;
- Composante 4 : Mathématiques de la question Q61 à la question Q80.

Notation:

10. Chaque question sera notée, selon son degré de difficulté et son importance dans le cadre de référence de l'épreuve, d'un point ou de deux points ou de trois points.

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 الصيغة الفرنسية للاختبار

Composante 1 : Sciences de la vie Coefficient : 1

Q1	L'expression de l'information génétique chez les eucaryotes passe par deux étapes :	
A	La transcription au niveau du cytoplasme et la traduction au niveau du noyau;	
В	La réplication au niveau du noyau et la transcription au niveau du cytoplasme ;	
С	La réplication au niveau du noyau et la traduction au niveau du cytoplasme ;	
D	La réplication au niveau du cytoplasme et la traduction au niveau du noyau;	
Е	La transcription au niveau du noyau et la traduction au niveau du cytoplasme.	

Q2	Durant la métaphase de la mitose, les chromosomes :	
A	sont à deux chromatides condensées constituées chacune d'un brin d'ADN;	
В	sont à une chromatide décondensée constituée de deux brins d'ADN;	
C	sont à deux chromatides condensées constituées chacune de deux brins d'ADN;	
D	sont à une chromatide décondensée constituée d'un brin d'ADN;	
Е	sont à deux chromatides décondensées constituées chacune de deux brins d'ADN.	

Q3	La loi de pureté des gamètes dit qu'il y a :	
Α	association des allèles responsables des deux phénotypes différents d'un caractère chez	
	l'hybride lors de la formation des gamètes ;	
В	séparation des allèles réunis chez l'hybride lors de la formation des gamètes ;	
C	séparation indépendante des allèles responsables des deux caractères lors de la formation	
	des gamètes chez l'hybride ;	
D	séparation indépendante des allèles responsables des deux caractères lors de la formation	
	des gamètes chez l'homozygote ;	
Е	association des allèles responsables des deux phénotypes différents d'un caractère chez	
L	l'homozygote lors de la formation des gamètes.	

Q4	L'ARN de transfert (ARNt):	
A	s'associe par son anti-codon à l'ARNm pour assurer la traduction;	
В	s'associe par son codon à l'ARNm pour assurer la transcription;	
С	s'associe par son anti-codon à l'ARNm pour assurer la réplication;	
D	s'associe par son anti-codon à l'ARNm pour assurer la transcription;	
Е	s'associe par son codon à l'ARNm pour assurer la traduction.	

Q5	La carte génétique (carte factorielle) est une représentation sous forme d'un graphique du positionnement :	
A	des chromosomes réalisée en se basant sur le calcul du pourcentage des gènes liés lors d'un croisement-test;	
В	des chromosomes réalisée en se basant sur le calcul du pourcentage des recombinés lors d'un croisement-test;	
С	des gènes sur les chromosomes réalisée en se basant sur le calcul du pourcentage des gène indépendants lors d'un croisement-test;	
D	des chromosomes réalisée en se basant sur le calcul du pourcentage des gènes indépendant lors d'un croisement-test;	
Е	des gènes sur les chromosomes réalisée en se basant sur le calcul du pourcentage des recombinés lors d'un croisement-test;	

Q6	Concernant les mutations :	
A	Elles sont toujours avantageuses à celui qui les porte;	
В	Elles diminuent la diversité génétique au sein des populations ;	
С	Elles peuvent apporter un avantage sélectif à l'individu porteur de la mutation;	
D	Elles sont transmissibles aux générations futures lorsqu'elles atteignent les cellules somatiques;	
Е	Elles entraînent toujours des maladies génétiques héréditaires.	

Q7	L'évolution d'une population :	
A	repose sur des innovations génétiques aléatoires et indépendantes des caractéristiques du milieu;	
В	fait intervenir des mécanismes de diversification et de complexification des génomes qui aboutissent toujours à des nouveautés phénotypiques "avantageuses";	
C	est due toujours à une augmentation de la diversité génétique au sein de la population ;	
D	fait intervenir des mécanismes de diversification et de complexification des génomes qui aboutissent toujours à des nouveautés phénotypiques "désavantageuses";	
Е	est impossible sans modifications du pool génique de cette population.	

Q8	Un ARN est une molécule :	
A	Qui n'existe que dans le cytoplasme des cellules ;	
В	ui ne se lie jamais à une protéine ;	
C	Constituée des 4 nucléotides : A, T, G et C;	
D	Qui n'intervient que dans la transcription des gènes;	
E	qui peut renfermer des codons non-sens.	

Q 9	Dans le diagnostic prénatal chez l'homme, parmi les techniques de prélèveme utilisées pour la réalisation du caryotype, on trouve :	
A	l'amniocentèse et la choriocentèse ;	
В	la radiographie et la choriocentèse ;	
С	l'échographie et l'amniocentèse ;	
D	l'échographie et la choriocentèse ;	
Е	la radiographie et l'amniocentèse.	

Q10	Une espèce :	
A	est moins diversifié génétiquement qu'une population ;	
В	a une répartition géographique limitée ;	
С	se définit strictement par le critère de ressemblance phénotypique;	
D	ne présente pas de variations génotypiques inter-individuelles ;	
E	est soumise aux facteurs de diversité génétique.	

فحة	الصا
4	\supset
/	20

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 مباراة ولوج كليات الطب والصيغة الفرنسية للاختبار

	Soit les croisements suivants :
	<u>Croisement 1</u> : On croise une poule de race pure à crête rosacée avec un coq à crête simple :
ì	on obtient alors uniquement des poulets à crête rosacée.
	Croisement 2 : dans la descendance de poulets à pattes courtes, on obtient toujours à la fois
	des poulets à pattes courtes et des poulets à pattes normales, dont les proportions de deux
	poulets à pattes courtes pour un poulet à pattes normales.
Q11	<u>Croisement 3</u> : on croise un coq à crête rosacée et à pattes courtes avec une poule à crête
	simple et à pattes normales. On obtient dans la descendance 50% de poulets à crête rosacée et
	à pattes courtes et 50 % de poulets à crête rosacée et à pattes normales.
	En se basant sur ces trois croisements, et sachant que les deux gènes étudiés sont
	indépendants, on peut écrire ainsi le génotype du coq du croisement 3:
	(Avec : R et r pour la forme de la crête et C et c pour la forme des pattes)
A	(R/r, C//C)
В	(R//r, C//c)
С	(R//R, C//c)
D	(R//R, C//C)
Е	(R/r, c//c)

١	فحة	الص
	6	7
	/	20

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 الصيغة الفرنسية للاختبار

Q16	La fréquence d'apparition dans le sexe masculin du syndrome de Hunter, maladie récessive liée au chromosome X est de 1/1000.						
410	La fréquence d'apparition de la maladie dans le sexe féminin est :						
	(la population est en équilibre selon Hardy Weinberg)						
A	1/100 000						
В	1/150 000						
С	1/50 000						
D	1/10000						
Е	1/1000 000						

Q17	On dispose des enzymes de restrictions suivantes qui découpent l'ADN en des endroits précis : Hpa 1 Hind III Eco RI 5'—GTTAAC—3' 5'—AAGCTT—3' 5'—GAATTC—3' 3'—CAATTG—5' 3'—TTCGAA—5' 3'—CTTAAG—5' L'enzyme ou les enzymes qui peuvent agir sur la séquence d'ADN suivante : 5'—ATGTATGGTGGTTTTTTATAGAATTCGCAA—3' 3'—TACATACCACCAAAAAATATCTTAAGCGTT—5'
A	est Hpa 1;
-	contilled 1 of E-s DI
В	sont Hpa 1 et Eco RI;
C	est Eco RI;

	Les figures suivantes représentent quelques étapes de la méiose.							
Q18	Centromère Fuseau de division Chromosome à deux chromatides division 3 Sillon de division							
	L'analyse de ces figures montre que :							
A	la figure 1 représente une cellule en prophase I qui permet le brassage intrachromosomique et la figure 3 représente une cellule en anaphase I qui permet le brassage interchromosomique ;							
В	la figure 2 représente une cellule en métaphase I qui permet le brassage intrachromosomique et la figure 3 représente une cellule en anaphase I qui permet le brassage interchromosomique;							
С	la figure 3 représente une cellule en anaphase I qui permet le brassage interchromosomique et la figure 4 représente une cellule en télophase I qui précède au brassage interchromosomique;							
D	la figure 1 représente une cellule en prophase I qui permet le brassage intrachromosomique et la figure 4 représente une cellule en télophase I qui précède au brassage interchromosomique;							
Е	la figure 2 représente une cellule en métaphase I qui permet le brassage intrachromosomique et la figure 4 représente une cellule en télophase I qui suit le brassage interchromosomique.							

الصفحة 7 20		مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 غشت 2020 الصيغة الفرنسية للاختبار
-------------------	--	--

Q19	Un horticulteur voudrait améliorer son jardin à fleurs. Pour cela, il a croisé une plante P1, à fleurs blanches et à pied lisse, avec une plante P2 à fleurs roses et à pied épineux. La première génération F1 est composée de plantes à fleurs roses et à pied épineux. Un croisement effectué entre des individus hybrides F1 donne une génération constituée par : - 126 plantes à fleurs roses et à pied épineux; - 59 plantes à fleurs roses et à pied lisse; - 52 plantes à fleurs blanches et à pied épineux; - 21 plantes à fleurs blanches et à pied lisse.
	Les proportions des phénotypes obtenus à la génération F2 s'expliquent comme suit :
A	Les deux gènes étudiés sont liés et les nouveaux phénotypes résultent d'un brassage intrachromsomique lors de la formation des gamètes chez les hybrides F1;
В	Les deux gènes étudiés sont indépendants et les nouveaux phénotypes résultent d'un brassage intrachromsomique lors de la formation des gamètes chez les hybrides F1;
С	Les deux gènes étudiés sont liés et les nouveaux phénotypes résultent d'un brassage interchromsomique lors de la formation des gamètes chez les hybrides F1;
D	Les deux gènes étudiés sont indépendants et les nouveaux phénotypes résultent d'un brassage interchromsomique lors de la formation des gamètes chez les hybrides F1;
Е	Les deux gènes étudiés sont indépendants et les nouveaux phénotypes résultent d'un brassage intrachromosomique suivi d'un brassage interchromsomique lors de la formation des gamètes chez les hybrides F1.

باراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 الصيغة الفرنسية للاختبار H20 Composante 2: Physique Coefficient: 1 Propagation d'une onde à la surface de l'eau : (6 points) À l'aide du vibreur d'une cuve à onde, on crée à $t_0=0$, au point S de la surface libre de l'eau une onde progressive sinusoïdale de fréquence N. L'élongation du point S est $y_s(t) = 5.10^{-3} \cdot \cos(2\pi \cdot N \cdot t)$. La figure ci-dessous représente une coupe transversale de la surface de l'eau à l'instant t = 0, 1 s.

0 1 2 3 5 6 (cm

Q21. La valeur de la longueur d'onde est :

 $\lambda = 0.5$ cm $\lambda = 2.5$ cm $\lambda = 1 \text{ cm}$ $\lambda = 1,5$ cm D $\lambda = 2$ em

Q22. La vitesse de propagation de l'onde à la surface de l'eau est:

 $E \mid v = 0,45 \text{ m.s}^{-1}$ $v = 0.20 \text{ m.s}^{-1}$ $\mathbf{B} = v = 0.25 \text{ m.s}^{-1}$ $C = 0.30 \text{ m.s}^{-1}$ $v = 0.40 \text{ m.s}^{-1}$

Q23. L'élongation d'un point M de la surface de l'eau situé à 0,4m de S est :

 $y_M(t) = 5.10^{-3} \cdot \sin(20\pi t - \pi)$ **B** $y_M(t) = 5.10^{-3} \cdot \cos(20\pi t - \pi)$ **C** $y_M(t) = 5.10^{-3} \cdot \cos(40\pi t + \pi)$ $y_M(t) = 5.10^{-3} \cdot \cos(40\pi t)$ **E** $y_M(t) = 5.10^{-3} \cdot \cos(30\pi t)$ D

Propagation d'une onde dans un milieu transparent : (3 points)

Une radiation lumineuse visible de fréquence $v = 5.10^{14} Hz$ a une longueur d'onde $\lambda = 400 \, nm$ dans un milieu transparent d'indice n.

Donnée: Vitesse de propagation de la lumière dans le vide: $c = 3.10^8 \, m.s^{-1}$

Q24. La valeur de la longueur d'onde λ_0 de la radiation lumineuse dans le vide est:

 $\lambda_0 = 760 \, nm$ $\lambda_0 = 850 \, nm$ C $\lambda_{\rm n} = 600 \, nm$ $\lambda_{\rm n} = 570 \, nm$ $\lambda_{\rm n} = 320 \ nm$

Q25. La valeur de l'indice est:

n = 1,33n = 1, 5 \mathbf{C} n = 1.8D n = 2.0 \mathbf{E} n = 1, 0

Ondes dans le domaine médical : (7 points)

Lorsqu'un cœur se contracte pour relancer la circulation sanguine, il provoque l'émission d'une onde, le pouls, qui se propage le long des artères : leurs parois se dilatent lorsque la pression sanguine augmente.

La célérité du pouls est donnée par la relation $v = \frac{1}{\sqrt{\rho_i D}}$ ou ρ est la masse volumique du sang et D un

coefficient caractérisant l'élasticité de l'artère. Pour une personne, on donne $D = \frac{0.5}{\Delta P}$ (S.I), avec ΔP la variation de la pression sanguine due au pouls.

Données:

• $1 cmHg = 1.3 \ kPa$; $\rho = 10^3 kg .m^{-3}$; $\Delta P = 5 \ cmHg$; $\sqrt{13} = 3.6$; $\sqrt{20} = 4.5$

باراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 الصيغة الفرنسية للاختبار

Q26. La dimension du coefficient D est :

T 1 T-1 T-2		T 1 (777)		r r r-1 m-1		
1. N/I - I -		$L.M.T^-$	1 M 1 7 2			
				1. M 1		$L.M^{-}.I^{-}$
	1 1/2		11.111 .1	: AutoLVL of	1 11/2	
						: 27.272 0.2

Q27. La valeur de la célérité du pouls vaut :

A $v = 3.6 \text{ m.s}^{-1}$ B $v = 4.0 \text{ m.s}^{-1}$ C $v = 5.0 \text{ m.s}^{-1}$ D $v = 2.6 \text{ m.s}^{-1}$ E $v = 4.5 \text{ m.s}^{-1}$	

Q28. La personne prend son pouls simultanément au niveau d'un point M du cou puis au niveau d'un point N du poignet. Le point M se trouve à 20 cm du cœur et le point N à 80 cm du cœur. On considère que la célérité de propagation du pouls entre le cœur et le point M est la même que celle entre le cœur et le point N.

Le décalage horaire entre l'arrivée du pouls en M et l'arrivée en N vaut :

$\mathbf{A} \Delta t = 0,1$	7 s B	$\Delta t = 1,7 \text{ s}$	C	$\Delta t = 170 \text{ s}$	D	$\Delta t = 6 \text{ s}$	E	$\Delta t = 0,22 \text{ s}$

Propagation d'une perturbation : (4 points)

Le document ci-contre donne l'élongation du mouvement d'un point M lors de la propagation d'une perturbation le long d'une corde. Le point M est situé à 1,5 m de la source S. On considère que la perturbation a commencé en S, à l'instant $t_0 = 0$.

O29. La perturbation atteint le point M à l'instant :

A	t = 0,50 s	В	t = 0,10 s	C	t = 0,20 s	D	t = 0,15 s	E	t = 0,25 s
---	-------------	---	-------------	---	-------------	---	-------------	---	-------------

Q30. La longueur de la perturbation est :

					: // 0.10/
A $\ell = 0.175 \text{ m}$ B $\ell = 0.255 \text{ m}$	$\ell = 0.375 \text{ m}$	n	l = 0.320 m	E	

Diffraction de la lumière : (6 points)

On éclaire un fil très fin de diamètre a par un Laser qui émet une radiation de longueur d'onde $\lambda_1 = 670 \text{ nm}$. On observe une figure de diffraction sur un écran situé à la distance D = 1,5 m du fil. La largeur de la tache centrale est $L_{\rm l}=2~{\rm cm}$.

On remplace le laser par un autre qui émet une radiation de ce cas est notée L_2 .

Q31. La valeur de L_2 est :

A
$$L_2 = 1,5 \text{ cm}$$
 B $L_2 = 1,7 \text{ cm}$ **C** $L_2 = 2,3 \text{ cm}$ **D** $L_2 = 2,6 \text{ cm}$ **E** $L_2 = 3,2 \text{ cm}$

O32. Pour les deux radiations, l'écart angulaire le plus grand est :

			-,	. 6	in particular out t	
A	$\theta = 9, 2.10^{-2} \text{ rad}$	В	$\theta = 8,3.10^{-2} \text{ rad}$	C	$\theta = 5, 7.10^{-3} \text{ rad}$	
D	$\theta = 6, 7.10^{-3} \text{ rad}$	E	$\theta = 2,4.10^{-2} \text{ rad}$		for an annual property of the second	

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت 2020 الصيغة الفرنسية للاختبار

Désintégration du Fer 59 : (4 points)

Le Fer $_{26}^{59}$ Fe est radioactif β^- . On dispose, à l'instant $t_0 = 0$, d'un échantillon de Fer, $_{26}^{59}$ Fe, d'activité a_0 . Chaque dix jours, on mesure l'activité a(t) de cet échantillon.

On remarque que $\frac{a(t)}{a(t+10)} = 1,17$; (t exprimé en jours).

Données:

- La loi de décroissance radioactive s'écrit $N(t) = N_0 e^{-\lambda t}$
- ln(1,17) = 0,157

Q33. Le noyau fils formé lors de cette désintégration est :

i	50 .	1 1	=0	1 1		1 1		***************************************	**************************************	*******	
: A	37.77	7000	74 7 6		50		50	i name i			
: /%	1 14	4 89 4	- 1 A A		30/7	1 100	39 ~	3 1/1 2	60		
: A		1 10	Mn	1 4 1	10		~ / / ^	: H. I	0U T.	•	
:	1/4		75 47410	1 1 2	17 00		0.00 (1)	1 304 1	HD		
2	: 27	i :	23	:	,,		77 00	1 - 1	27.16		
E		1 1				1 1	41	1 1	/n		

Q34. La valeur de la constante radioactive du Fer 59 Fe est :

21		/ · · · · · · · · · · · · · · · · · · ·		20		
***************************************	A	$\lambda = 1,57.10^{-4} jours^{-1}$	В	$\lambda = 1,57.10^{-2} jours^{-1}$	C	$\lambda = 1,57.10^{-7} s^{-1}$
***************************************	D	$\lambda = 1,57.10^{-2} \text{s}^{-1}$	E	$\lambda = 1,57.10^{-6} jours^{-1}$		

Désintégrations successives du Bismuth 212 : (3 points)

Le noyau de Bismuth $^{212}_{83}Bi$ est radioactif. L'écriture suivante donne deux désintégrations successives de ce noyau : $^{212}_{83}Bi$ $\xrightarrow{(1)}$ $^{212}_{Z_1}Po$ $\xrightarrow{\alpha}$ $^{A2}_{82}Pb$

Q35. Le type de la désintégration (1) et les valeurs de Z_1 et A_2 sont :

A	α	$Z_1 = 84$	$A_2 = 208$
В	$oldsymbol{eta}^{\scriptscriptstyle -}$	$Z_{1} = 84$	$A_2 = 208$
C	$eta^{\scriptscriptstyle +}$	$Z_{1} = 82$	$A_2 = 208$
D	α	$Z_1 = 81$	$A_2 = 208$
E	$oldsymbol{eta}^{\scriptscriptstyle -}$	$Z_{1} = 84$	$A_2 = 212$

Étude d'un échantillon radioactif: (7 points)

Une roche radioactive de masse $m_0 = 1$ tonne contient à l'instant $t_0 = 0$, 0,5% d'Uranium 235.

Données :

- Demi-vie de l'Uranium 235 : $t_{1/2} = 7.10^8 \, ans = 2,20.10^{16} \, s$.
- $\ln 2 = 0.7$; $47 \times 0.128 = 6.02$; $\frac{64}{11} = 5.82$; $N_A = 6.02.10^{23} \ mol^{-1}$; $M(U) = 235 \ g.mol^{-1}$

Q36. Le nombre de noyaux d'Uranium 235 dans la roche à l'instant $t_0 = 0$ est :

	N/ 225 1024				
A	$N_0 = 2.35.10^{24}$	B	$N_0 = 1.28.10^{25}$		

Q37. L'activité a_0 de l'Uranium 235 dans la roche à l'instant $t_0 = 0$ est :

A
$$a_0 = 7.10^8 Bq$$
 B $a_0 = 6.10^8 Bq$ **C** $a_0 = 4,07.10^8 Bq$ **D** $a_0 = 3.10^7 Bq$ **E** $a_0 = 1,5.10^7 Bq$

Q38. À l'instant $t = 28.10^8$ ans, l'activité de l'Uranium 235 est :

			0.107				
	$0, 3.a_0$	0,20.00				1 M. 1	
			! V ₁ 1 2 2 1 1 1 1				
				1 10	U, LU ,U_		J.12J.1U .Un

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت 2020 الصيغة الفرنسية للاختبار

Composition d'un noyau radioactif: (3 points)

Le noyau de Radium $^{226}_{88}Ra$ se désintègre en donnant un noyau fils y_RRn et une particule α .

Q39. Les valeurs de x et y sont :

A x = 88; y=226 **B** x = 87; y=226 **C** x = 87; y=222 **D** x = 86; y=222 **E** x = 89; y=226

Q40. La composition du noyau fils ^y_rRn est:

A	86 protons	В	86 protons	С	87 protons	n	89 protons	ישו	88 protons	
	222 neutrons		136 neutrons		135 neutrons	ע	137 neutrons	L	138 neutrons	-

Composante 3 : Chimie

Coefficient: 1

Suivi temporel d'une transformation chimique : (6 points)

On introduit dans un ballon, une quantité de poudre de Zinc, et on y verse à un volume $V = 75 \, mL$ d'une solution aqueuse d'acide sulfurique. La réaction qui se produit a pour équation: $Zn_{(s)} + 2H_3O^+_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + H_{2(g)} + 2H_2O_{(l)}$ La courbe ci-contre représente les variations de l'avancement x de la réaction en fonction du temps. **Données:**

$$75 \times 45 = 3375$$

Q41. L'avancement final x_t vaut:

Q42. La valeur du temps de demi-réaction vaut:

A $t_{1/2} = 60 \text{min}$	В	$t_{1/2} = 45 \mathrm{min}$	C	$t_{1/2} = 40 \mathrm{min}$	D	$t_{1/2} = 35 \mathrm{min}$	E	$t_{1/2} = 30 \text{min}$	

Q43. La valeur de la vitesse volumique moyenne de la réaction entre $t_0 = 0$ et $t_1 = 90 \,\mathrm{min}$ vaut:

	A	$v_{moy} = 4.10^{-3} mol.L^{-1}.min^{-1}$	В	$v_{moy} = 5,33.10^{-3} mol.L^{-1}.min^{-1}$	C	$v_{moy} = 6,67.10^{-3} mol.L^{-1}. min^{-1}$
-	D	$v_{moy} = 8.10^{-3} mol.L^{-1}.min^{-1}$	E	$v_{moy} = 3,5.10^{-3} mol.L^{-1}.min^{-1}$		

Evolution temporel d'un système chimique : (9 points)

À $t_0 = 0$ on ajoute un volume d'eau oxygénée à un volume d'une solution de permanganate de potassium acidifié. L'eau oxygénée $H_2O_{2(l)}$ est oxydée par les ions permanganate $MnO_{4(aq)}^-$ selon l'équation:

$$5H_2O_{2(l)} + 2MnO_{4(aq)}^- + 6H_{(aq)}^+ \rightarrow 5O_{2(g)} + 2Mn_{(aq)}^{2+} + 8H_2O_{(l)}$$

Le tableau ci-dessous présente l'évolution temporelle de la concentration des ions $Mn_{(aq)}^{2+}$.

t(min)	0	4	8	8 14 24			66	66 100		
$\left[\mathit{Mn}^{2+}_{(aq)}\right](mol.L^{-1})$	0	0,10	0,20	0,28	0,40	0,50	0,54	0,56	0,56	

Données:

- Volume molaire $V_m = 24 L.mol^{-1}$; Volume du mélange : $V = 10 \, mL$; $H_2 O_{2(l)}$: réactif limitant.

Q44. Les couples (ox/réd) participant à cette réaction sont :

Q45. La valeur du temps de demi-réaction est :

Q46. Le volume du dioxygène formé à l'instant t = 24 min vaut:

A
$$v = 48.10^{-2}L$$
 B $v = 4,8.10^{-2}L$ **C** $v = 36.10^{-2}L$ **D** $v = 12.10^{-2}L$ **E** $v = 24.10^{-2}L$

Solution aqueuse d'acide éthanoïque : (4 points)

On considère une solution aqueuse (S) d'acide éthanoïque de concentration $C = 10^{-2} \, mol. L^{-1}$. La mesure de la conductivité de la solution (S) a donné $\sigma = 1,56.10^{-2} \, S.m^{-1}$.

Données: $\lambda_1 = \lambda_{H,O^+} = 35 \, mS.m^2. \, \text{mol}^{-1}$; $\lambda_2 = \lambda_{CH,COO^-} = 4 \, mS.m^2. \, \text{mol}^{-1}$; $\log 2 = 0.3$

On définit le taux d'avancement final par la relation: $\tau = \frac{x_f}{x_{min}}$

Q48. La concentration des ions oxonium dans cette solution est :

 $n_0 = 1, 4.10^{+3} \, mol$ **E** $n_0 = 2, 8.10^{-2} \, mol$

,					
A	$\left[H_3 O_{(aq)}^+ \right] = 8.10^{-4} mol. L^{-1}$	В	$[H_3O_{(aq)}^+] = 4.10^{-4} mol.L^{-1}$	C	$[H_3O_{(aq)}^+] = 2.10^{-4} mol.L^{-1}$
D	$[H_3O_{(aq)}^+] = 4.10^{-5} mol.L^{-1}$	E	$[H_3O_{(aq)}^+] = 8.10^{-5} mol.L^{-1}$	i	de la companya de la

Q49. La valeur du pH du mélange à l'équilibre est :

\mathbf{A} pE	I = 3,1	В	pH = 3,4	C	pH = 3,6	D	pH = 3,8	E	pH = 4,2

Q50. Le taux d'avancement final de la réaction est :

			10/		
					~ - /\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	1 10	L L/U			

Étude d'un comprimé d'ibuprofène ; (3 points)

On dissout un comprimé d'ibuprofène dans un volume V_e d'eau pour obtenir une solution aqueuse (S). On titre la solution (S) par une solution aqueuse d'hydroxyde de sodium de concentration $C_B = 0,20 \ mol.L^{-1}$. Le volume versé à l'équivalence est $V_{B,E} = 9,7 \ mL$.

Donnée: $M(ibuprofène) = 206 \text{ g.mol}^{-1}$.

Q51. La masse d'ibuprofène contenue dans le comprimé étudié vaut :

£******			·	**************************************							
- 4	A	$m_{ibu} = 0,4 mg$	В	$m_{ibu} = 4 mg$	C	$m_{ibu} = 4.10^{-2} mg$	D	$m_{ibu} = 400 \text{ mg}$	E	$m_{ibu} = 500 mg$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Degré d'acidité d'un vinaigre : (5 points)

On prend la masse $m=10\,g$ d'un vinaigre commercial, et on y ajoute de l'eau pour obtenir une solution aqueuse (S_A) d'acide éthanoïque $CH_3COOH_{(aq)}$ de volume $V=100\,mL$. On dose $V_A=20\,mL$ de la solution (S_A) par une solution aqueuse (S_B) d'hydroxyde de sodium de concentration $C_B=0,10\,mol.L^{-1}$. Le volume versé à l'équivalence est $V_{B.E}=16,4\,mL$.

Données:

- Le degré d'acidité d'un vinaigre commercial représente la masse d'acide éthanoïque pur en (g) contenu dans 100 g de vinaigre.
- $M(CH_3COOH) = 60 \text{ g.mol}^{-1}$; $pK_A(CH_3COOH_{(aq)} / CH_3COO_{(aq)}^-) = 4.8$

Q52. Le degré d'acidité de ce vinaigre vaut :

*********				,					
	_		4.00	~	4.4.00				
- Ι Δ	. 7	° ! K	1 4 9°		11.70	1 D 1	0.0	100	ŧ
1.41	1	1,10	1 197		1192		9	-12	1

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 مباراة ولوج كليات الطب والصيغة الفرنسية للاختبار

Q53 . Les valeurs de l'avancement maximal de la réaction et du pH du milieu réactionnel pour le volume $V_B=8,2\ mL$ sont :

	B 0,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
A	$x_f = 8, 2.10^{\frac{14}{1}} mol$	$pH \stackrel{\perp}{=} 4$
В	$x_f = 4, 2.10^{-4} mol$	pH = 4,8
C	$x_f = 4, 2.10^{-4} mol$	<i>pH</i> = 4
D	$x_f = 6, 2.10^{-4} mol$	<i>pH</i> = 5
E	$x_f = 8, 2.10^{-4} mol$	pH = 4,8

Solution aqueuse d'acide benzoïque : (6 points)

Le pH d'une solution aqueuse (S) d'acide benzoïque de volume V=1L et de concentration $C=0,1mol.L^{-1}$, à $25\,^{\circ}C$, est pH=2,6.

Données: $10^{0.8} = 6.3$; $10^{0.4} = 2.5$; $1-10^{-1.6} \approx 1$

Q54. L'avancement final de la réaction de l'acide benzoïque avec l'eau est:

A	$x_f = 2,5.10^{-3} mol$	В	$x_f = 1, 4.10^{-3} mol$	C	$x_f = 2,5.10^{-2} mol$
D	$x_f = 4.10^{-2} mol$	E	$x_f = 6.10^{-2} mol$		And the second s

Q55. La constante d'acidité K_A du couple $(C_6H_5COOH_{(aq)}/C_6H_5COO_{(aq)}^-)$ a pour expression:

Q56. La valeur de la constante d'acidité K_A du couple $(C_6H_5COOH_{(aq)} / C_6H_5COO_{(aq)}^-)$ est:

Management to the state of the			1 47
A $K_A = 2.10^{-5}$ B $K_A = 6,3.10^{-5}$	C $K_A = 4.10^{-4}$ D	$K_4 = 6,3.10^{-10}$	$E K_A = 4.10^{-7}$

Solution aqueuse d'ammoniac : (5 points)

La mesure du pH d'une solution aqueuse (S) d'ammoniac de concentration C, a donné pH=10,3.

Pour cette solution : $\log \frac{[NH_3]}{[NH_4^+]} = 1,1$.

Q57. Le taux d'avancement final de la réaction qui se produit a pour expression:

A	$\tau = -$	В	$\tau = \frac{10^{pH}}{C.K_e}$	С	$\tau = \frac{10^{-pH}.K_e}{C}$	D	$\tau = \frac{10^{pH}.K_e}{C}$	E	$\tau = \frac{C.10^{pH}}{K_e}$
---	------------	---	--------------------------------	---	---------------------------------	---	--------------------------------	---	--------------------------------

Q58. La valeur de pK_A du couple $(NH_{4(aq)}^+ / NH_{3(aq)})$ vaut :

£						 		
I A I	77 00		TT - 4				1	-
I A I	nK = 9 X	1 12 1	nK = 5.4		nK = 10.3	nK - A1		nV = 0.2
1.7%	$p_{IL_A} = j, 0$: D :	PIL A Do		$p_{IX_A} - 10,5$	 $DX_A = 4.1$	1 11.	U_{I}
II.		1 - 1	- 11	_	* //	 	,	F = A

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت 2020 الصيغة الفرنسية للاختبار

Réaction d'acide lactique avec l'hydroxyde de sodium : (5 points)

On ajoute au volume $V_A = 20\,mL$ d'une solution aqueuse d'acide lactique $C_3H_6O_3$ de concentration $C_A = 3.10^{-2}\,mol.L^{-1}$, le volume $V_B = 10\,mL$ d'une solution aqueuse d'hydroxyde de sodium de concentration $C_B = 1, 5.10^{-2}\,mol.L^{-1}$. Le pH du mélange est pH = 3,3.

Donnée: $10^{-10.7} = 2.10^{-11}$

Q59. L'avancement final x_f de la réaction qui a eu lieu a pour expression:

A	$x_f = C_B \cdot V_B - (V_A + V_B) \cdot 10^{pH - pK_e}$	В	$x_f = C_A \cdot V_A - (V_A + V_B) \cdot 10^{pH - pK_e}$	C	$x_f = C_B \cdot V_B + (V_A + V_B) \cdot 10^{pH - pK_e}$
D	$x_f = C_A \cdot V_A + (V_A + V_B) \cdot 10^{pH - pK_e}$	E	$x_f = C_A \cdot V_A + (V_A + V_B) \cdot 10^{pK_c - pH}$		

Q60. La valeur de la concentration $\left\lceil C_3 H_5 O_{3(aq)}^{-} \right\rceil$ est:

A	$\left[C_3H_5O_{3(aq)}^{-}\right] = 5.10^{-2} mol.L^{-1}$	$\mathbf{B} \left[C_3 H_5 O_{3(aq)}^{-} \right] = 2.10^{-2} mol. L^{-1}$	$C \left[C_3 H_5 O_{3(aq)}^{-} \right] = 1, 5.10^{-2} mol. L^{-1}$
D	$\left[C_3H_5O_{3(aq)}^{-}\right] = 5.10^{-3} mol.L^{-1}$	$\mathbb{E}\left[C_3H_5O_{3(aq)}^{-}\right] = 1,5.10^{-4} mol.L^{-1}$	

باراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 الصيغة الفرنسية للاختبار

Composante 4: MATHEMATIQUES (Coefficient:1)

Q61:

Si z est le nombre complexe de module $\sqrt{2}$ et d'argument $\frac{\pi}{3}$, alors z^8 est égal à :

$$A = 8 + i8\sqrt{3}$$

$$B = -8 + i8\sqrt{3}$$

$$C$$
 $-8-i8\sqrt{3}$

$$D = 8 - i8\sqrt{3}$$

$$E$$
 $4+i4\sqrt{3}$

O62:

Si θ est un nombre réel, alors $\cos^3 \theta$ est égal à :

$$\boxed{A} \frac{1}{8}(\cos 3\theta + 3\cos \theta)$$

$$\boxed{B} \frac{1}{4} (\cos 3\theta + 3\cos \theta)$$

$$\boxed{A} \quad \frac{1}{8}(\cos 3\theta + 3\cos \theta) \qquad \boxed{B} \quad \frac{1}{4}(\cos 3\theta + 3\cos \theta) \qquad \boxed{C} \quad \frac{1}{4}(\sin 3\theta + 3\sin \theta)$$

$$\boxed{D} \quad \frac{1}{8} (3\cos\theta - \cos 3\theta)$$

$$E \frac{1}{8} (\sin 3\theta + 3\sin \theta)$$

Si $x \in]0,1[$, alors $\lim_{n \to +\infty} (1-x)^n (1+x)^n$ est égale à :

$$A + \infty$$
 $B - \infty$ $C = 0$

$$B - \infty$$

$$C \mid 0$$

$$D - 1$$

$$E$$
 1

Q64:

Le domaine de définition de la fonction f définie par $f(x) = \frac{1}{x-1} ln \left(1 + \frac{1}{x}\right)$ est :

$$\boxed{A}]-\infty,-1[\cup]0,+\infty[$$

$$B$$
 $]-1,1[\cup]1,+\infty[$

$$\boxed{A} \]-\infty,-1[\cup\,]0,+\infty[\qquad \boxed{B} \]-1,1[\,\cup\,]1,+\infty[\qquad \boxed{C} \]-\infty,-1[\,\cup\,]1,+\infty[$$

$$\boxed{D}$$
 $]-\infty,-1[\cup]0,1[\cup]1,+\infty[$ \boxed{E} $]-1,1[$

$$E$$
]-1,1[

باراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت 2020 الصيغة الفرنسية للاختبار

O65:

Si $f(x) = (x^2 - x)e^{\frac{1}{x}}$ alors f'(x) est égale à :

$$\boxed{A} (2x-1)e^{\frac{1}{x}}$$

$$\boxed{B} \left(1 - \frac{1}{x}\right)e^{\frac{1}{x}}$$

$$\boxed{A} (2x-1)e^{\frac{1}{x}} \qquad \boxed{B} \left(1-\frac{1}{x}\right)e^{\frac{1}{x}} \qquad \boxed{C} \left(\frac{1}{x}-1\right)e^{\frac{1}{x}}$$

$$\boxed{D} \quad \left(2x-2+\frac{1}{x}\right)e^{\frac{1}{x}}$$

$$[E]$$
 $\left(2x-\frac{1}{x}\right)e^{\frac{1}{x}}$

Q66:

Si z est un nombre complexe tel que :

$$arg(z-1) \equiv \frac{2\pi}{3} [2\pi]$$
 et $arg(z+1) \equiv \frac{\pi}{3} [2\pi]$

alors z est égal à :

$$A$$
 $\sqrt{3}i$

$$B$$
 $2\sqrt{3}i$

$$C$$
 $-\sqrt{3}i$

$$D -2\sqrt{3}i$$

$$E$$
 $1+\sqrt{3}i$

Q67:

Si $z=1+ie^{i\frac{\theta}{2}}$ où $\theta\in]-\pi,\pi[$ alors |z| est égal à :

$$A = 2$$

$$B = 2\cos\frac{\theta}{2}$$

$$A = 2$$
 $B = 2\cos\frac{\theta}{2}$ $C = 2\cos\frac{\theta+\pi}{4}$ $D = \cos\frac{\theta+\pi}{4}$ $E = 2\sin\frac{\theta}{4}$

$$D \cos \frac{\theta + \tau}{4}$$

$$E$$
 2 $sin\frac{\theta}{4}$

Q68:

On a $\lim_{n\to+\infty} \left(\frac{n-1}{n+1}\right)^{2n}$ est égale à :

$$e^{-4}$$

$$C e^4$$

$$|E|$$
 1

Q69:

Si $(u_n)_{n\in\mathbb{N}^*}$ une suite géométrique de premier terme $u_1=2$ et de raison $q=\frac{1}{2}$

 $u_1 \times u_2 \times u_3 \times ... \times u_n \quad (n \ge 1)$ est égal à : alors le produit

$$\underbrace{B} \frac{2^n}{3^{\frac{n(n-1)}{2}}}$$

$$C \frac{2^{n'}}{\sqrt{3}}$$

$$D 2^n.3^{\frac{n(n+1)}{2}}$$

$$\frac{1}{2^n \cdot 3^{\frac{n(n-1)}{2}}}$$

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة المختبار

Si
$$(\forall x \in \mathbb{R})$$
; $f(x) = (x-5)(x-4)(x-3)(x-2)(x-1)$ alors $f'(1)$ est égale à :

A 24 B 1 C 0 D 5 E -24

Q71:

Soit
$$f$$
 la fonction définie par : $f(x) = \frac{2 \ln x}{x (1 + (\ln x)^2)}$

La primitive de f sur $]0,+\infty[$ qui s'annule en 1 est :

$$\boxed{A} \quad ln((\ln x)^2 + 1) \qquad \boxed{B} \quad (\ln x)^2$$

$$B$$
 $(lnx)^2$

$$\boxed{C} \quad 2\ln((\ln x)^2 + 1)$$

$$\boxed{D} \quad \frac{x \ln x}{\ln x + 1}$$

$$\boxed{E} \quad \frac{2\ln x}{\left(\ln x\right)^2 + 1}$$

Q72:

L'intégrale
$$\int_0^1 \frac{2t+3}{t+2} dt$$
 est égale à :

$$A ln \frac{3}{2}$$

$$\boxed{B}$$
 2 + $ln\frac{3}{2}$

$$C$$
 $2-ln\frac{2}{3}$

$$\boxed{A} \ln \frac{3}{2} \qquad \boxed{B} 2 + \ln \frac{3}{2} \qquad \boxed{C} 2 - \ln \frac{2}{3} \qquad \boxed{D} 2 + \ln \frac{2}{3} \qquad \boxed{E} \ln \frac{2}{3}$$

$$E \ln \frac{2}{3}$$

Q73:

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v})

L'ensemble des points M d'affixe z tel que : $z + \frac{1}{z} \in \mathbb{R}$ est :

- |A|L'axe des réels privé du point O
- |B|Le cercle de centre O et de rayon 1
- |C|L'axe des réels privé des deux points A(-1) et B(1)
- |D|Le cercle de centre O et de rayon 1 privé des deux points A(-1) et B(1)
- |E|L'axe des réels privé du point O union le cercle de centre O et de rayon 1

باراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 - غشت 2020 الصيغة الفرنسية للاختبار

O74:

Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par : $w_0 = \frac{1}{2}$ et $(\forall n \in \mathbb{N})$; $w_{n+1} = (w_n - 1)^2 + 1$

Si $(w_n)_{n\in\mathbb{N}}$ est convergente alors $\lim_{n\to+\infty} w_n$ est égale à :

|A|0 |B|

<u>C</u> 1

 $D = \frac{1}{2}$ E = -1

O75:

Soit $a \in]0,+\infty[$ et f la fonction définie par : $f(x)=1+x\ln\sqrt{1+\frac{a}{x}}$, alors

 $\lim_{x \to +\infty} f(x)$ est égale à :

A = 1

 $\boxed{B} 1 + \frac{a}{2} \qquad \boxed{C} 1 + a \qquad \boxed{D} + \infty$

|E| a

O76:

Soit ABC un triangle isocèle en A tel que : AB = AC = 10

L'aire maximale du triangle ABC est :

 $25\frac{\sqrt{2}}{2}$ |A|

|B|50 |C|100

|D|10 $E = 5\sqrt{2}$

Q77:

Si $(\forall x \in \mathbb{R}_{+}^{*})$; $f(x) = x^{3} + 3\ln x + 1$ alors le nombre dérivé $(f^{-1})'(2)$ est égal à:

 \boxed{B} $\frac{1}{6}$

 $C = \frac{1}{5}$

D

E

Q78:

L'intégrale $\int_0^1 \sin(x)e^x dx$ est égale à :

 $\boxed{A} \quad \frac{1 + e^{\frac{\pi}{2}}}{2} \quad \boxed{B} \quad \frac{e + e^{\frac{\pi}{2}}}{2} \quad \boxed{C} \quad \frac{1 - e^{\frac{\pi}{2}}}{2} \quad \boxed{D} \quad 1 + e^{\frac{\pi}{2}} \quad \boxed{E} \quad 1 - e^{\frac{\pi}{2}}$

مباراة ولوج كليات الطب والصيدلة وكليتي طب الأسنان برسم السنة الجامعية 2020-2021 – غشت **2020** الصيغة الفرنسية للاختبار

Q79:

On considère la fonction f définie par : $(\forall x \in \mathbb{R})$ $f(x) = e^{-\frac{x^2}{2}}$

Un encadrement de f'(x) sur l'intervalle [0,1] est :

 $\boxed{A} \quad 0 \le f'(x) \le \frac{1}{\sqrt{e}}$

 \boxed{B} $-\frac{1}{\sqrt{e}} \le f'(x) \le 0$

 $\boxed{C} \quad -\frac{1}{2} \le f'(x) \le 0$

 $\boxed{D} \qquad 0 \le f'(x) \le \sqrt{e}$

 $\boxed{E} \quad -\frac{1}{\sqrt{e}} \le f'(x) \le -\frac{1}{2}$

Q80:

Soit $f(x) = \sqrt{x^3 + 2x^2 + 3} - ax\sqrt{x + b}$ avec a et b deux réels donnés.

f admet une limite finie en $+\infty$ si et seulement si :

 $\boxed{A} \quad a > 0 \text{ et } b > 0$

B a=1 et b>0

C $a \Rightarrow 1$ et b=2

D a=1 et b=0

|E| a > 0 et b = 0

FIN