0.1 其他

例题 0.1 (1) 设 |A| 是 n 阶行列式, |A| 的第 (i, j) 元素 $a_{ij} = \max\{i, j\}$, 试求 |A| 的值.

(2) 设 |A| 是 n 阶行列式, |A| 的第 (i,j) 元素 $a_{ij} = |i-j|$, 试求 |A| 的值.

解 (1) 写出行列式为

$$\begin{vmatrix}
1 & 2 & 3 & \cdots & n \\
2 & 2 & 3 & \cdots & n \\
3 & 3 & 3 & \cdots & n \\
\vdots & \vdots & \vdots & & \vdots \\
n & n & n & \cdots & n
\end{vmatrix}$$

依次将第i行乘以-1加到第i-1行上去 $(i=2,\cdots,n)$,就可以得到一个下三角行列式,求得值为 $(-1)^{n-1}n$. 此即

$$\begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & n \\ 3 & 3 & 3 & \cdots & n \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & \cdots & 0 \\ -1 & -1 & 0 & \cdots & 0 \\ -1 & -1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n \end{vmatrix} = (-1)^{n-1} n.$$

(2) 写出行列式为

$$\begin{vmatrix}
0 & 1 & 2 & \cdots & n-1 \\
1 & 0 & 1 & \cdots & n-2 \\
2 & 1 & 0 & \cdots & n-3 \\
\vdots & \vdots & \vdots & \vdots \\
n-1 & n-2 & n-3 & \cdots & 0
\end{vmatrix}$$

从最后一列起每一列减去前一列, 再将得到的行列式的最后一行加到前面的每一行上去, 就可以得到一个下三角行列式, 求得值为 $(-1)^{n-1}(n-1)2^{n-2}$. 此即

$$\begin{vmatrix} 0 & 1 & 2 & \cdots & n-1 \\ 1 & 0 & 1 & \cdots & n-2 \\ 2 & 1 & 0 & \cdots & n-3 \\ \vdots & \vdots & \vdots & & \vdots \\ n-1 & n-2 & n-3 & \cdots & 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & -1 & 1 & \cdots & 1 \\ 2 & -1 & -1 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ n-1 & -1 & -1 & \cdots & -1 \end{vmatrix} = \begin{vmatrix} n-1 & 0 & 0 & \cdots & 0 \\ n+2 & -2 & 0 & \cdots & 0 \\ n+1 & -2 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ n-1 & -1 & -1 & \cdots & -1 \end{vmatrix} = (-1)^{n-1} (n-1) 2^{n-2}.$$

例题 0.2 求下列 n 阶行列式的值:

$$|A| = \begin{vmatrix} (x - a_1)^2 & a_2^2 & \cdots & a_n^2 \\ a_1^2 & (x - a_2)^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^2 & a_2^2 & \cdots & (x - a_n)^2 \end{vmatrix}.$$

笔记 注意到这个行列式每行元素除了主对角元素外,其余位置元素都相同.因此这个行列式是推广的"爪"型行列式。

解

$$|A| = \begin{vmatrix} (x - a_1)^2 & a_2^2 & \cdots & a_n^2 \\ a_1^2 & (x - a_2)^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^2 & a_2^2 & \cdots & (x - a_n)^2 \end{vmatrix} = \begin{vmatrix} (x - a_1)^2 & a_2^2 & \cdots & a_n^2 \\ 2a_1x - x^2 & x^2 - 2a_2x & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 2a_1x - x^2 & 0 & \cdots & x^2 - 2a_nx \end{vmatrix}$$

1

$$\frac{\|\hat{x}\|_{\infty}^{n}\|\hat{x}\|_{\infty}^{n}}{\|\hat{x}\|_{\infty}^{n}} (x - a_{1})^{2} \prod_{i=2}^{n} (x^{2} - 2a_{i}x) - \sum_{i=2}^{n} a_{i}^{2} (2a_{1}x - x^{2}) (x^{2} - 2a_{2}x) \cdots (x^{2} - 2a_{i}x) \cdots (x^{2} - 2a_{n}x)$$

$$= (x - a_{1})^{2} \prod_{i=2}^{n} (x^{2} - 2a_{i}x) + \sum_{i=2}^{n} a_{i}^{2} (x^{2} - 2a_{1}x) (x^{2} - 2a_{2}x) \cdots (x^{2} - 2a_{i}x) \cdots (x^{2} - 2a_{n}x)$$

$$= (x - a_{1})^{2} \prod_{i=2}^{n} (x^{2} - 2a_{i}x) + \sum_{i=2}^{n} (x^{2} - 2a_{1}x) \cdots (x^{2} - 2a_{i-1}x) a_{i}^{2} (x^{2} - 2a_{i+1}x) \cdots (x^{2} - 2a_{n}x)$$

$$= \left[(x^{2} - 2a_{1}x) + a_{1}^{2} \right] \prod_{i=2}^{n} (x^{2} - 2a_{i}x) + \sum_{i=2}^{n} (x^{2} - 2a_{i}x) \cdots (x^{2} - 2a_{i-1}x) a_{i}^{2} (x^{2} - 2a_{i+1}x) \cdots (x^{2} - 2a_{n}x)$$

$$= \prod_{i=1}^{n} (x^{2} - 2a_{i}x) + \sum_{i=1}^{n} (x^{2} - 2a_{1}x) \cdots (x^{2} - 2a_{i-1}x) a_{i}^{2} (x^{2} - 2a_{i+1}x) \cdots (x^{2} - 2a_{n}x).$$

例题 0.3 求下列行列式式的值:

$$|\mathbf{A}| = \begin{vmatrix} (a+b)^2 & c^2 & c^2 \\ a^2 & (b+c)^2 & a^2 \\ b^2 & b^2 & (c+a)^2 \end{vmatrix}.$$

解 解法一:

$$|A| = \begin{vmatrix} (a+b)^2 & c^2 & c^2 \\ a^2 & (b+c)^2 & a^2 \\ b^2 & b^2 & (c+a)^2 \end{vmatrix} = \begin{vmatrix} -j_1 + j_1 \\ i=1,2 \end{vmatrix} \begin{vmatrix} (a+b)^2 - c^2 & c^2 & 0 \\ a^2 - (b+c)^2 & a^2 - (b+c)^2 \\ 0 & b^2 & (c+a)^2 - b^2 \end{vmatrix}$$

$$= (a+b+c)^2 \begin{vmatrix} a+b-c & c^2 & 0 \\ a-b-c & (b+c)^2 & a-b-c \\ 0 & b^2 & a+c-b \end{vmatrix} = \begin{vmatrix} -r_1 + r_2 \\ i=1,2 \end{vmatrix} (a+b+c)^2 \begin{vmatrix} a+b-c & c^2 & 0 \\ -2b & 2bc & -2c \\ 0 & b^2 & a+c-b \end{vmatrix}$$

$$= \frac{c^2}{2}j_1 + j_2}{\frac{b}{2}j_3 + j_2} (a+b+c)^2 \begin{vmatrix} a+b-c & \frac{c}{2}(a+b+c) & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2}(a+b+c) & a+c-b \end{vmatrix} = (a+b+c)^3 \begin{vmatrix} a+b-c & \frac{c}{2} & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2} & a+c-b \end{vmatrix}$$

解法二(求根法):

例题 0.4 证明: 若一个 n(n > 1) 阶行列式中元素或为 1 或为 -1, 则其值必为偶数.

证明 将该行列式的任意一行加到另一行上去得到的行列式有一行元素全是偶数(注意:零也是偶数),由行列式的基本性质知道,可将因子 2 提出,剩下的行列式的元素都是整数,其值也是整数,乘以 2 后必是偶数. □

例题 0.5 n 阶行列式 |A| 的值为 c, 若从第二列开始每一列加上它前面的一列, 同时对第一列加上 |A| 的第 n 列, 求得到的新行列式 |B| 的值.

解

$$|\mathbf{B}| = |\alpha_1 + \alpha_n, \alpha_2 + \alpha_1, \cdots, \alpha_n + \alpha_{n-1}|$$

$$= |\alpha_1, \alpha_2, \cdots, \alpha_n| + |\alpha_n, \alpha_1, \cdots, \alpha_{n-1}| + \sum_{1 \leqslant k \leqslant n-2} \sum_{2 \leqslant j_1 \leqslant j_2 \leqslant \cdots \leqslant j_k \leqslant n} \frac{1 \cdots j_1 \cdots j_2 \cdots j_k \cdots n}{|\alpha_n, \cdots, \alpha_{j_1+1}, \cdots, \alpha_{j_2+1}, \cdots, \alpha_{j_k+1}, \cdots, \alpha_{n-1}|}$$

$$+\sum_{1\leqslant k\leqslant n-2}\sum_{2\leqslant j_1\leqslant j_2\leqslant \cdots\leqslant j_k\leqslant n}\frac{1\cdots j_1\cdots j_2\cdots j_k\cdots n}{|\alpha_1,\cdots,\alpha_{j_1+1},\cdots,\alpha_{j_2+1},\cdots,\alpha_{j_k+1},\cdots,\alpha_{n-1}|}.$$

$$= |\alpha_1, \alpha_2, \cdots, \alpha_n| + |\alpha_n, \alpha_1, \cdots, \alpha_{n-1}| = c + (-1)^{n-1} |\alpha_1, \alpha_2, \cdots, \alpha_n|$$

$$= c + (-1)^{n-1} c =$$

$$\begin{cases} 0, n$$
 偶数
$$2c, n$$
 奇数

例题 0.6 令

$$(a_1 a_2 \cdots a_n) = \begin{vmatrix} a_1 & 1 \\ -1 & a_2 & 1 \\ & -1 & a_3 & \ddots \\ & & \ddots & \ddots & 1 \\ & & & -1 & a_n \end{vmatrix},$$

证明关于连分数的如下等式成立:

$$a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_n - 1 + \frac{1}{dn}}}} = \frac{(a_1 a_2 \dots a_n)}{(a_2 a_3 \dots a_n)}.$$

解 假设等式对 $\forall n \leq k-1, k \in \mathbb{N}_+$ 都成立. 则当 n=k 时, 将行列式 (a_1a_2, \cdots, a_k) 按第一列展开得

$$(a_1 a_2 \cdots a_k) = \begin{vmatrix} a_1 & 1 & & & \\ -1 & a_2 & 1 & & \\ & -1 & a_3 & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & -1 & a_k \end{vmatrix} = a_1 \begin{vmatrix} a_2 & 1 & & & \\ -1 & a_3 & \ddots & & \\ & \ddots & \ddots & 1 \\ & & -1 & a_k \end{vmatrix} + \begin{vmatrix} a_3 & 1 & & \\ -1 & a_4 & \ddots & \\ & \ddots & \ddots & 1 \\ & & & -1 & a_k \end{vmatrix}$$

$$= a_1 (a_2 a_3 \cdots a_k) + (a_3 a_4 \cdots a_k).$$

从而

$$\frac{(a_1 a_2 \cdots a_k)}{(a_2 a_3 \cdots a_k)} = a_1 + \frac{(a_3 a_4 \cdots a_k)}{(a_2 a_3 \cdots a_k)} = a_1 + \frac{1}{\frac{(a_2 a_3 \cdots a_k)}{(a_3 a_4 \cdots a_k)}}.$$

于是由归纳假设可知

$$\frac{(a_1 a_2 \cdots a_k)}{(a_2 a_3 \cdots a_k)} = a_1 + \frac{1}{\frac{(a_2 a_3 \cdots a_k)}{(a_3 a_4 \cdots a_k)}} = a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_{n-1} + \frac{1}{n-1}}}}.$$

故由数学归纳法可知结论成立.

例题 **0.7** 设 |A| 是 n 阶行列式,|A| 的第 (i, j) 元素 $a_{ij} = \max\{i, j\}$, 试求 |A| 的值.

$$|A| = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & n \\ 3 & 3 & 3 & \cdots & n \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n \end{vmatrix} \xrightarrow{\begin{array}{c} -r_i + r_{i-1} \\ i = n, n - 1, \cdots, 2 \\ \end{array}} \begin{vmatrix} -1 & 0 & 0 & \cdots & 0 \\ 2 & -1 & 0 & \cdots & 0 \\ 3 & 3 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n \end{vmatrix} = (-1)^{n-1} n.$$

例题 0.8 设 |A| 是 n 阶行列式,|A| 的第 (i,j) 元素 $a_{ij}=|i-j|$, 试求 |A| 的值.

笔记 注意: 这只是一个对称行列式, 不是循环行列式. 类似这种每行、每列元素有一定的等差递进关系的行列式, 都可以先尝试用每一列减去前面一列.

解

$$|A| = \begin{vmatrix} 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 1 & 0 & 1 & \cdots & n-3 & n-2 \\ 2 & 1 & 0 & \cdots & n-4 & n-3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n-2 & n-3 & \cdots & 1 & 0 \end{vmatrix} \xrightarrow{\frac{-j_{i-1}+j_i}{i=n,n-1,\cdots,2}} \begin{vmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ 1 & -1 & 1 & \cdots & 1 & 1 \\ 2 & -1 & -1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ n & -2 & 0 & \cdots & 0 & 0 \\ n & -2 & 0 & \cdots & 0 & 0 \\ n+1 & -2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & -1 & -1 & \cdots & -1 & -1 \end{vmatrix} = (-2)^{n-2}(n-1).$$

例题 0.9 求下列 n 阶行列式的值:

$$|A| = \begin{vmatrix} 1 & x_1(x_1 - a) & x_1^2(x_1 - a) & \cdots & x_1^{n-1}(x_1 - a) \\ 1 & x_2(x_2 - a) & x_2^2(x_2 - a) & \cdots & x_2^{n-1}(x_2 - a) \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 1 & x_n(x_n - a) & x_n^2(x_n - a) & \cdots & x_n^{n-1}(x_n - a) \end{vmatrix}.$$

笔记 当行列式的行或列有一定的规律性时,但是由于缺少一行或一列导致这个行列式行或列的规律性并不完整. 此时我们可以尝试升阶法补全这个行列式行或列的规律,再对行列式进行化简.

本题若直接使用大拆分法会得到比较多的行列式,而且每个行列式并不是完整的 Vandermode 行列式. 后续求解很繁琐,因此不采取大拆分法.

$$|\mathbf{B}| = \begin{vmatrix} 1 & x_1 & x_1^2 & x_1^3 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & x_2^3 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & \cdots & x_n^n \\ 1 & y & y^2 & y^3 & \cdots & y^n \end{vmatrix} = \prod_{k=1}^n (y - x_k) \prod_{1 \leq i < j \leq n} (x_j - x_i).$$

由上式可知,|B| 可以看作一个关于 y 的 n 次多项式. 将 |B| 按最后一行展开得到

$$|\mathbf{B}| = \sum_{i=1}^{n+1} (-1)^{n+i} B_{n+1,i} y^{i-1},$$
 其中 B_{ni} 是 $|\mathbf{B}|$ 的第 $(n+1,i)$ 元的余子式, $i = 1, 2, \cdots, n+1$.

从而

$$|\mathbf{B}| = (-1)^{n+2} B_{n+1,1} + \sum_{i=2}^{n+1} (-1)^{n+i+1} B_{n+1,i} y^{i-2} (y-a) = \prod_{k=1}^{n} (y-x_k) \prod_{1 \le i < j \le n} (x_j - x_i).$$
 (1)

又易知 $B_{n+1,2}=|A|$, 而当 a=0 时, 由等式(1)可知,|B| 中 y 前面的系数只有 $B_{n+1,2}$. 比较等式(1)两边 y 的系数可得

$$(-1)^{n+3}|A| = (-1)^{n+3}B_{n+1,2} = \prod_{1 \le i < i \le n} (x_j - x_i) \left(\sum_{i=1}^n (-x_1) \cdots (-x_{i-1})(-x_{i+1}) \cdots (-x_n) \right).$$

于是
$$|A| = (-1)^{n+3} (-1)^{n-1} \prod_{1 \leqslant i < j \leqslant n} (x_j - x_i) \left(\sum_{i=1}^n x_1 \cdots x_{i-1} x_{i+1} \cdots x_n \right) = \prod_{1 \leqslant i < j \leqslant n} (x_j - x_i) \left(\sum_{i=1}^n x_1 \cdots x_{i-1} x_{i+1} \cdots x_n \right).$$
 当 $a \neq 0$ 时,由等式(1)可知, $|B|$ 中 y 前面的系数不只有 $B_{n+1,2}$,但是,我们比较等式(1)两边的常数项可得

$$(-1)^{n+2}B_{n+1,1} - a(-1)^{n+3}B_{n+1,2} = \prod_{1 \le i < j \le n} (x_j - x_i) \prod_{k=1}^n (-x_k).$$
 (2)

又因为

$$B_{n+1,1} = \begin{vmatrix} x_1 - a & x_1(x_1 - a) & x_1^2(x_1 - a) & \cdots & x_1^{n-1}(x_1 - a) \\ x_2 - a & x_2(x_2 - a) & x_2^2(x_2 - a) & \cdots & x_2^{n-1}(x_2 - a) \\ \vdots & \vdots & & \vdots & & \vdots \\ x_n - a & x_n(x_n - a) & x_n^2(x_n - a) & \cdots & x_n^{n-1}(x_n - a) \end{vmatrix}$$

$$= \prod_{i=1}^n (x_i - a) \begin{vmatrix} 1 & x_1 & x_1^2 & x_1^3 & \cdots & x_n^{n-1} \\ 1 & x_2 & x_2^2 & x_2^3 & \cdots & x_n^{n-1} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{i=1}^n (x_i - a) \prod_{1 \leqslant i < j \leqslant n} (x_j - x_i).$$

所以再结合等式(2)可得

$$-a(-1)^{n+3}|A| = -a(-1)^{n+3}B_{n+1,2} = \prod_{1 \leq i < j \leq n} (x_j - x_i) \prod_{k=1}^n (-x_k) - (-1)^{n+2}B_{n+1,1}$$

$$= (-1)^n \prod_{k=1}^n x_k \prod_{1 \leq i < j \leq n} (x_j - x_i) + (-1)^{n+1} \prod_{i=1}^n (x_i - a) \prod_{1 \leq i < j \leq n} (x_j - x_i)$$

$$= (-1)^n \prod_{1 \leq i < j \leq n} (x_j - x_i) \left[\prod_{k=1}^n x_k - \prod_{i=1}^n (x_i - a) \right].$$
故此时 |A| = \bigcup_{1 \leq i < j \leq n} (x_j - x_i) \left(\int_{i=1}^n x_k - \int_{i=1}^n (x_i - a) \right).

例题 0.10 求下列行列式式的值 (n 为偶数)

$$I = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ 2 & 2^2 & \cdots & 2^n & 2^{n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n & n^2 & \cdots & n^n & n^{n+1} \\ \frac{n}{2} & \frac{n^2}{3} & \cdots & \frac{n^n}{n+1} & \frac{n^{n+1}}{n+2} \end{vmatrix}.$$

笔记 应用行列式函数求导求行列式的值.

解 令
$$G(x) = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ 2 & 2^2 & \cdots & 2^n & 2^{n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n & n^2 & \cdots & n^n & n^{n+1} \\ \frac{x^2}{2} & \frac{x^3}{3} & \cdots & \frac{x^{n+1}}{n+1} & \frac{x^{n+2}}{n+2} \end{vmatrix}$$
, 则 $I = \frac{G(n)}{n}$ 且 $G(0) = 0$. 利用行列式求导公式,可得
$$G'(x) = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ 2 & 2^2 & \cdots & 2^n & 2^{n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n & n^2 & \cdots & n^n & n^{n+1} \\ x & x^2 & \cdots & x^n & x^{n+1} \end{vmatrix} = n!x \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & \cdots & 2^{n-1} & 2^n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & n & \cdots & n^{n-1} & n^n \\ 1 & x & \cdots & x^{n-1} & x^n \end{vmatrix} = n! \prod_{1 \leq i < j \leq n} (j-i) \prod_{k=0}^{n} (x-k).$$

因此

$$I = \frac{G(n)}{n} = \frac{\int_0^n G'(x) dx}{n} = (n-1)! \prod_{1 \leqslant i < j \leqslant n} (j-i) \int_0^n \prod_{k=0}^n (x-k) dx$$

$$\stackrel{\boxtimes \exists \neq \emptyset}{=} (n-1)! \prod_{1 \leqslant i < j \leqslant n} (j-i) \int_0^n \prod_{k=0}^n (n-k-x) dx$$

$$= (-1)^{n+1} (n-1)! \prod_{1 \leqslant i < j \leqslant n} (j-i) \int_0^n \prod_{k=0}^n (x-k) dx$$

$$= (-1)^{n+1} I.$$

由于 n 为偶数, 所以 $(-1)^{n+1} = -1$. 于是 I = -I. 故 I = 0.

例题 0.11 解方程

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 2 & 3 & 13 \\ 1 & 1 & 8 & 30 \\ 1 & x & x^2 & x^3 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 6 & 14 \\ 1 & 1 & 8 & 30 \\ 1 & x & x^2 & x^3 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 0 & 3 & 8 & 34 \\ 1 & x & x^2 & x^3 \end{vmatrix} = 0.$$

解 由行列式的性质

方程左边 =
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 1 & 1 & 8 & 30 \\ 1 & x & x^2 & x^3 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 0 & 3 & 8 & 34 \\ 1 & x & x^2 & x^3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & x & x^2 & x^3 \end{vmatrix}.$$

这是一 Vandermonde(范德蒙德) 行列式, 它为关于 x 的次数 \leq 3 的多项式. 所以上述方程最多有 3 个不同的根. 由行列式性质直接观察可知 x=1,3,4 是方程的根. 故方程的根为 $x_1=1,x_2=3,x_3=4$.

例题 0.12 计算

$$D_n = \begin{vmatrix} \sin(\alpha_1 - \beta_1) & \sin(\alpha_1 - \beta_2) & \cdots & \sin(\alpha_1 - \beta_n) \\ \sin(\alpha_2 - \beta_1) & \sin(\alpha_2 - \beta_2) & \cdots & \sin(\alpha_2 - \beta_n) \\ \vdots & \vdots & & \vdots \\ \sin(\alpha_n - \beta_1) & \sin(\alpha_n - \beta_2) & \cdots & \sin(\alpha_n - \beta_n) \end{vmatrix}.$$

 \mathbf{H} $D_1 = \sin(\alpha_1 - \beta_1)$. 当 $n \ge 2$ 时,

$$D_n = \begin{pmatrix} \sin \alpha_1 & \cos \alpha_1 \\ \sin \alpha_2 & \cos \alpha_2 \\ \vdots & \vdots \\ \sin \alpha_n & \cos \alpha_n \end{pmatrix} \begin{pmatrix} \cos \beta_1 & \cos \beta_2 & \cdots & \cos \beta_n \\ -\sin \beta_1 & -\sin \beta_2 & \cdots & -\sin \beta_n \end{pmatrix}.$$

所以当n=2时,

$$D_2 = \begin{vmatrix} \sin \alpha_1 & \cos \alpha_1 \\ \sin \alpha_2 & \cos \alpha_2 \end{vmatrix} \cdot \begin{vmatrix} \cos \beta_1 & \cos \beta_2 \\ -\sin \beta_1 & -\sin \beta_2 \end{vmatrix}$$
$$= (\sin \alpha_1 \cos \alpha_2 - \cos \alpha_1 \sin \alpha_2)(-\sin \beta_2 \cos \beta_1 + \cos \beta_2 \sin \beta_1)$$
$$= \sin(\alpha_1 - \alpha_2) \sin(\beta_1 - \beta_2).$$

当 $n \ge 3$ 时,

$$D_{n} = \begin{vmatrix} \sin \alpha_{1} & \cos \alpha_{1} & 0 & \cdots & 0 \\ \sin \alpha_{2} & \cos \alpha_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ \sin \alpha_{n} & \cos \alpha_{n} & 0 & \cdots & 0 \end{vmatrix} \begin{vmatrix} \cos \beta_{1} & \cos \beta_{2} & \cdots & \cos \beta_{n} \\ -\sin \beta_{1} & -\sin \beta_{2} & \cdots & -\sin \beta_{n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{vmatrix}$$

$$= \begin{vmatrix} \sin \alpha_{1} & \cos \alpha_{1} & 0 & \cdots & 0 \\ \sin \alpha_{2} & \cos \alpha_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ \sin \alpha_{n} & \cos \alpha_{n} & 0 & \cdots & 0 \end{vmatrix} \begin{vmatrix} \cos \beta_{1} & \cos \beta_{2} & \cdots & \cos \beta_{n} \\ -\sin \beta_{1} & -\sin \beta_{2} & \cdots & -\sin \beta_{n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{vmatrix} = 0.$$

例题 **0.13** 计算
$$D = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-2} & a_2^{n-2} & \cdots & a_n^{n-2} \\ a_1^{n-1} + \frac{x}{a_1^2} & a_2^{n-1} + \frac{x}{a_2^2} & \cdots & a_n^{n-1} + \frac{x}{a_n^2} \end{vmatrix}, n \geqslant 2.$$

解

$$D = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-2} & a_2^{n-2} & \cdots & a_n^{n-2} \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{vmatrix} + \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-2} & a_2^{n-2} & \cdots & a_n^{n-2} \\ \frac{x}{a_1^2} & \frac{x}{a_2^2} & \cdots & \frac{x}{a_n^2} \end{vmatrix}$$
$$= \prod_{1 \le j < i \le n} (a_i - a_j) + \frac{x}{a_1^2} A_{n1} + \frac{x}{a_2^2} A_{n2} + \cdots + \frac{x}{a_n^2} A_{nn},$$

其中

$$A_{n1} = (-1)^{n+1} \begin{vmatrix} 1 & \cdots & 1 \\ a_2 & \cdots & a_n \\ a_2^2 & \cdots & a_n^2 \\ \vdots & & \vdots \\ a_2^{n-2} & \cdots & a_n^{n-2} \end{vmatrix} = (-1)^{n+1} \prod_{2 \le j < i \le n} (a_i - a_j),$$

$$\begin{vmatrix} 1 & \cdots & 1 & 1 & \cdots & 1 \\ a_1 & \cdots & a_{t-1} & a_{t+1} & \cdots & a_n \end{vmatrix}$$

$$A_{nt} = (-1)^{n+t} \begin{vmatrix} 1 & \cdots & 1 & 1 & \cdots & 1 \\ a_1 & \cdots & a_{t-1} & a_{t+1} & \cdots & a_n \\ \vdots & & \vdots & & \vdots \\ a_1^{n-2} & \cdots & a_{t-1}^{n-2} & a_{t+1}^{n-2} & \cdots & a_n^{n-2} \end{vmatrix} = (-1)^{n+t} \prod_{\substack{1 \leq j < i \leq n, \\ i \neq t, j \neq t}} (a_i - a_j),$$

$$A_{nn} = (-1)^{n+n} \prod_{\substack{j < i \\ i, j \in \{1, 2, \dots, n-1\}}} (a_i - a_j),$$

所以

$$D = \prod_{1 \leq j < i \leq n} (a_i - a_j) + \sum_{t=1}^n (-1)^{n+t} \frac{x}{a_t^2} \prod_{\substack{j < i \\ i, j \in [n] \setminus \{t\}}} (a_i - a_j),$$

其中
$$[n] = \{1, 2, \dots, n\}.$$