Assignment in Pto jet lity Podeling Petelp

FM321: Risk Management and Modelling

https://tutorcs.com

Linyan Zhu

WeChat: CStutorcs

I SE FM321

ullet Previously, we wrote down several models for Σ_t

Assignment Project Exam Help

$\underset{ttps://tutores.com}{\text{https:}} / \underset{tutores.com}{\text{https:}} / / \underset{tutores.com}{\text{https:}} / \underset{tutores.com}{\text{ht$

• Correlation models: $\Sigma_t = D_t C_t D_t$, where $D_t = diag\{\sigma_{1,t},...,\sigma_{N,t}\}$ and C_t correlation.

- Constant conditional correlation models (CCC): $C_t = C$
- Dynamic conditional correlation models (DCC)

Assignment Project Exam Help

. https://tutoresincom

WeChat: cstutorcs
What is a common issue with the models above?

The curse of dimensionality

Managers deal with large universes.

Assignment Project Exam Help

- · https://tutorc/s.com
- Financial institutions can have tens of thousands of assets, if not mwechat: cstutorcs
- None of the models we have discussed so far can be scaled to that number of securities.

The idea of factor models

 Correlations among asset returns arise from a small number of common sources of risk (called risk factors).

Assignment Project Exam Help

where

https://tutercs.com

• β is an $N \times K$ matrix of factor exposures (containing the exposure of each security to each factor).

- f is an $K \times 1$ vector of factor returns.
- \bullet is an $N \times 1$ vector of residual returns for the securities.

The idea of factor models

• If we assume $cov(f_t, \epsilon_t) = 0$, we have

Assignment Project Exam Help

- Then we can just model $\Sigma_{f,t}$ and $\Sigma_{\epsilon,t}$.
- · https://tutorcs.com
 - The $N \times K$ factor exposures in β (can be constant or time-varying);

Whethatement stutores

- ullet the N non-zero elements of $\Sigma_{\epsilon,t}$.
- The total number of parameters is $N(K+1) + \frac{1}{2}K(K+1)$, which is linear in N.

How to find the risk factors f_t ?

Examples motivated by economic or finance theory:

Assignment Project Exam Help

• Country risk

https://tutorcs.com

Macroeconomic risk factors

 We are going to discuss one statistical way of constructing risk factors, i.e. principal component analysis (PCA)

Assignment Project Exam Help Principal component analysis

https://tutoress.comtion

Figure: Scatterplot of daily returns of GE and JPM stocks

By plotting the returns on this coordinate, a natural basis to express

Assignment $\Pr_{r_t = \binom{r_t, t}{r_t} = \binom{r_t, t}{r_t} \binom{r_t, t}{r_t} \binom{r_t, t}{r_t} \binom{r_t, t}{r_t} \binom{r_t, t}{r_t}$

https://tutorcs.com

• The naive basis reflects the way we gathered the data, but it may fail to uncover the simpler structure that underlie the data.

WeChat: cstutorcs

Is there another basis, which is a linear combination of the naive

basis, that best re-expresses the data?

• Let's define a new direction by vector (w_1, w_2) which yields

Assignment Project Exam Help

as a projection of r_t on to that direction.

https://tutorcs.com

• Let's define a new direction by vector (w_1, w_2) which yields

Assignment Project Exam Help

as a projection of r_t on to that direction.

https://tutorcs.com

• What do we mean by "best re-express"?

• Let's define a new direction by vector (w_1, w_2) which yields

Assignment Project Exam Help

as a projection of r_t on to that direction.

https://tutorcs.com

- What do we mean by "best re-express"?
- We assume that the direction with largest valuable of data contains the most interesting dynamics.

Figure: Scatterplot of daily returns of GE and JPM stocks

Figure: Scatterplot of daily returns of GE and JPM stocks

• More generally, we have N assets.

Assignment Project LExam Help

- First look for a direction in the *N*-dimensional space denoted with a **N-ly10** sctor **p₁** spate of the long ariance in that direction
- Find another direction along which variance is maximized, however, restrict the seal of the all directions the pendicular to all previous selected directions. Save this vector as p_i .
- Repeat this procedure until K vectors ($K \leq N$) are selected.

• Put all these vectors into a matrix P

Assignment (Profect Exam Help

P is orthonormal because $p_i p_j' = 0$ if $i \neq j$ and $p_i p_i' = 1$. **https:**//tutorcs.com

P transforms original return data into

so that \tilde{r}_t has a diagonal variance-covariance matrix and its diagonal elements decline in value from the top-left to the bottom-right.

PCA: implementable by eigen decomposition

PCA can be implemented simply by eigen decomposition.

Assignment Project Exam Help

• It turns out that to diagonalize $Var(\tilde{r}_t)$, we can simply set p_i to be the eigenvector of $Var(r_t)$ associated with its i-th largest eigenvalue. https://tutorcs.com

• p_1, \ldots, p_K are called the principal components.

WeChat: cstutorcs

• The variance associated with p_i , or the i-th eigenvalue, quantifies how important the direction p_i is for capturing the dynamics of data.

PCA: example

Consider a portfolio with four stocks: C, AAPL, MSFT, JPM.

ASSIGNMential temporary Oilect Esxam Help

AAPL

AAPL

MSFT

0.586 0.471 0.151 0.684

0.414 -0.690 0.593 0.019

0.482 -0.384 -0.785 0.060

0.556 0.393 0.093 -0.726

https://tutorcs.com/
0.542 0.221 0.148 0.089

• What does each column mean?

WeChat: cstutorcs

• What does Pct. Total Var. mean?

Benefits of PCA

• From the point of view of risk modeling, the procedure has a few benefits from a computational and conceptual perspective:

Assignment over it must be contained alone, so the informational requirements are low.

high-dimensional problems.

- For example for multivariate volatility modelling, the principal communent of factors in the model) for partfolios of the underlying securities, so their variance can be readily computed.
 - The factors are orthogonal by construction, so their covariance is zero, simplifying some of the estimation of covariance matrix.

Challenges associated with PCA

 One needs to decide how many principal components to include in the factor model, which is usually done on the basis of:

Assignmente arostsojtect Exam Help

 Economic interpretation (does it seem to reflect a recognizable reason of an economic or financial nature that would cause

https://tutorcs.com

- While there are statistical techniques to help with this decision, there are no definite rules, and judgement often plays a part in that process.
- PCA requires large data, i.e. Structure.

 PCA requires large data, i.e. Structure of securities, relative to the number of factors in order to properly identify the factor structure.
- The principal components and the factors can sometimes be hard to interpret.

Assignment Project Exam Help Orthogonal GARCH (O-GARCH)

https://tutoksacomarch

• The Orthogonal GARCH procedure consists of the following steps:

Assignment Project. Example Help

 $\Sigma_t = \beta \Sigma_{f,t} \beta' + \Sigma_{\epsilon_i,t}$

https://tutorcs.com Estimate a univariate volatility model for factor variances, which are diagonal elements of $\Sigma_{f,t}$ (usually GARCH(1, 1));

Topporte the model's estimate of conditional variance for each of the

• For each period t, use the estimated betas, residual variances (time-invariant or time-varying), and estimated factor variances to compute an estimate of the conditional variance matrix $\hat{\Sigma}_t$

Applying O-GARCH to our example with two stocks, GE and JPM), we obtain the following estimates for GE-volatility:

Assignment Project Exam Help

The following are the estimates for JPM volatility:

Assignment Project Exam Help

As expected, correlations vary over time in a way that reflects the

Assignment Project Exam Help

Assignment Project Exam Help $Var(r_i) = \beta_i^2 \sigma_M^2 + \sigma_c^2$

 $\begin{array}{l} \text{https:} // tutorcs.com \end{array}$

$$We Chat: \frac{\beta_i \beta_j \sigma_M^2}{\sqrt{S^2 t^2 u^4 t^2 c^2 S^4 \sigma_{\epsilon_j}^2}}$$

Implication of factor models for correlations

• The higher the ratio of idiosyncratic risk to market risk in either

Assignment Project Exam Help

• If we use a time-varying model for market risk (e.g., GARCH), this will endogenously generate higher correlations between securities when σ_{ij}^2 rises relatively to the σ_{ij}^2 . Which is what typically happens in times of market crisis.

WeChat: cstutorcs

Therefore, time-varying correlations do not necessarily have to be

modeled as a separate phenomenon in the context of factor models, if time-varying volatility is already incorporated in the model.