# Computation and Normal Forms in LC

### Lambda Calculus is a formal language

The expressions are strings in a formal language **LC**:

- "<name>" ∈ LC.
- If  $e \in LC$ , then " $\lambda$ <name>.  $e'' \in LC$
- If  $e1 \in LC$  and  $e2 \in LC$ , then "e1 e2"  $\in LC$ .
- If e ∈ LC, then "(e) ∈ LC"

#### Rewrite rules are string operations

- Alpha conversion
- Beta reduction
- Eta reduction



#### Normal forms



Ken Q Pu, Faculty of Science, Ontario Tech University

#### Normal forms

The normal form of **e** is an expression that can be derived from **e** using alpha, beta, and eta rules, but no further beta reductions are possible.



#### Computation in Lambda Calculus



# Challenges with computation

- Ambiguity in selecting rewriting rules
- Termination

# Ambiguity of reduction



Ken Q Pu, Faculty of Science, Ontario Tech University

# Uniqueness of normal forms

#### **Church-Rosser Theorem**, 1936

If  $a \rightarrow_{\star} b$  and  $a \rightarrow_{\star} c$ , then there exists some expression d such that  $b \rightarrow_{\star} d$  and  $c \rightarrow_{\star} d$ .



#### **Consequence of Church-Rosser Theorem**

Every expression has at most **one** normal form modulo alpha conversion.

#### **Termination**

#### **Consequence of Church-Rosser Theorem**

Every expression has at most **One** normal form modulo alpha conversion.



# Comparison with Turing Machine



# Challenge

#### Consider the following decision problem:

Given a LC expression, does it have a normal form?

Can you prove that there is no general algorithm to solve this problem?

Namely, this problem is undecidable.