ПРИЕМО-ПЕРЕДАЮЩИЕ ЭЛЕКТРОННЫЕ УСТРОЙСТВА

Лекция 10 Основные сведения о телевидении

Рассматриваемые вопросы

- 1Основные энергетические и светотехнические величины
- 2 Основные параметры зрительной системы человека
- 3 Основные принципы телевидения

Все параметры, характеризующие состояние энергии оптического излучения (лучистой энергии), могут быть выражены в светотехнических или энергетических единицах.

Количественно оптическое излучение характеризуют энергией, которая им переносится.

Параметры и характеристики, связанные с переносимой излучением энергией, называют энергетическими параметрами.

Основные энергетические и светотехнические величины, их обозначение, определение и единицы измерения регламентированы системой СИ.

Параметр		D	Единицы измерения	
энергетический	светотехнический	Выражение	энергетические	светотехнические
Энергия излучения	Световая энергия	$W = N \cdot h \cdot f$	Дж	$\mathit{Л}\mathit{M}\cdot c$
Поток излучения (лучистый поток)	Световой поток	$\Phi = \frac{dW}{dt}$	Вт	Лм (люмен)
Сила излучения (энергетическая сила света)	Сила света	$I = \frac{d\Phi}{d\Omega}$	$\frac{Bm}{cp}$	К∂ (кандела)
Плотность излучения	Светимость	$R = \frac{d\Phi}{dS}$	$\frac{Bm}{M^2}$	$\frac{J\!I\!M}{M^2}$
Энергетическая освещенность (облученность)	Освещенность	$E = \frac{d\Phi}{dS}$	$\frac{Bm}{M^2}$	$\frac{J\!M}{M^2} = J\!\kappa(J\!I\!$
Энергетическая яркость (лучистость)	Яркость	$L = \frac{dI}{dS\cos\varphi}$	$\frac{Bm}{{\scriptstyle \textit{M}}^2 \cdot cp}$	$\frac{K\partial}{M^2}$

Телесным углом Ω называют часть пространства, ограниченного конической поверхностью, образуемой множеством прямых линий, проходящих через общую точку — вершину телесного угла, и замкнутым криволинейным контуром.

Единицей измерения телесного угла служит особая величина – **стерадиан** (ср).

Телесный угол, равный одному **стерадиану**, — это угол, вершина которого расположена в центре сферы, вырезающий на её поверхности площадь, равную квадрату радиуса.

$$\Omega = 1$$
 ср, если $S = r^2$

Если такой телесный угол имеет вид кругового конуса, то угол его раскрытия составит

$$\Omega = 2 \arccos(1 - \frac{1}{2\pi}) \approx 1{,}144 pa\partial$$

(приблизительно 65,541° или 65°32′28″)

Потоком излучения (лучистым потоком) $\Phi_{\rm e}$ называется отношение переносимой потоком фотонов энергии W ко времени переноса t, т. е. это мощность излучения в заданном телесном угле:

$$\Phi_e = \frac{\Delta W}{\Delta t} = \frac{dW}{dt}$$

Единицей измерения потока излучения служит Ватт (Вт)

Под **световым потоком** $\Phi_{\rm V}$ понимают среднюю мощность излучения, оцениваемую по ее воздействию на глаз человека. ΛW ΔW

служит Люмен (Лм).

Поток излучения при попадании в человеческий глаз воспринимается избирательно

Связь между световым потоком $\Phi_{\rm V}$ и потоком излучения $\Phi_{\rm e}$

$$\Phi_V = K(\lambda) \cdot \Phi_e = K_{max} \cdot V(\lambda) \cdot \Phi_e$$

где $K(\lambda)$ – световая эффективность, \mathcal{I}_{M}/Bm ;

 K_{max} – максимальная световая эффективность;

$$V(\lambda) = K(\lambda)/K_{max}$$
 – относительная спектральная

световая эффективность глаза

Переход от энергетических величин к фотометрическим и наоборот можно проводить только в видимой части оптического спектра.

Для нормального дневного зрения на длине волны, соответствующей максимальной чувствительности глаза, поток излучения в $1 \ Bm$ эквивалентен световому потоку в $683 \ Лм$.

$$K(0,555) = K_{\text{max}} = 683 \frac{JlM}{Bm}$$

Для белого цвета с равномерным распределением энергии в видимой части спектра 1 Bm дает световой поток $\Phi_V = 220 \ {\it Лm}$.

Для других длин волн $K(\lambda)$ задаются в виде графика или таблицы.

Единицей измерения силы излучения служит Bm/cp, а единицей измерения силы света — Kandena (Kd) или Im/cp.

В системе СИ *Кандела* определяется с помощью специального эталонного источника света и является основной единицей.

По Канделе определяется единица светового потока:

1 *люмен* — световой поток, создаваемый точечным источником света силой в 1 *кд* в пределах телесного угла в 1 *ср*.

Если источник излучения нельзя считать точечным, то для его описания вводятся такие параметры, как светимость и яркость.

Плотность излучения (светимость) равна отношению потока излучения (светового потока), излучаемого светящейся площадкой во всевозможных направлениях, к её площади:

$$R_{e,v} = \frac{\Delta \Phi_{e,v}}{\Delta S} = \frac{d\Phi_{e,v}}{dS}$$

Единицей измерения **плотности излучения** является Bm/m^2 , а единицей измерения светимости — nm/m^2

Энергетическая освещённость (освещённость) некоторой поверхности равна отношению потока излучения, падающего на поверхность, к площади этой поверхности:

Единицей измерения энергетической освещенности служит Bm/m^2 , а единицей освещенности – Imule Imu

$$E_{e,v} = \frac{\Delta \Phi_{e,v}}{\Delta S} = \frac{d\Phi_{e,v}}{dS}$$

Освещенность в 1 $\Pi \kappa$ создается световым потоком в 1 $\Pi \kappa$ на площадь в 1 M^2 ; 1 $\Pi \kappa$ =1 $M \kappa$ =1 $M \kappa$ =1.

Освещенность создаваемая:

- ночным неба без Луны 0,0003 $\Pi \kappa$;
- Луной 0,2 $\Pi \kappa$; экрана в кинотеатре 20 80 $\Pi \kappa$;
- необходимая для чтения 30– $50 \, \text{Л}\kappa$;
- солнечными лучами в полдень более $100000 \, J\kappa$.

Энергетическая яркость (яркость) характеризует излучение поверхности в заданном направлении.

 $\Delta\Omega$

Она равна отношению силы излучения внутри элементарного телесного угла, опирающегося на площадку, к площади проекции этой площадки на плоскость, перпендикулярную направлению излучения.

 $L_{e,v} = \frac{\Delta I_{e,v}}{\Delta \sigma} = \frac{dI_{e,v}}{dS \cdot \cos \phi}$

Единицей измерения энергетической яркости служит $Bm/cp\cdot m^2$, а единицей измерения яркости – Ko/m^2

Человек воспринимает световое излучение зрительной системой, состоящей из:

- органа зрения глаза;
- нервной системы;
- зрительного центра коры головного мозга.

Зрительная система может быть описана целым рядом параметров, характеризующих восприятие изображения:

- световая чувствительность глаза;
- зависимость чувствительности глаза от длины волны электромагнитного излучения;
 - пространственный угол ясного зрения;
 - разрешающую способность зрительной системы;
- критическую частоту мельканий источника света; относительный разностный порог раздражения;
 - диапазон яркостей, воспринимаемых глазом;
 - минимальное время распознавания образа объекта.

Световая чувствительность глаза v — величина, обратная яркости светового пятна, которая обнаруживается глазом на черном фоне. Световая чувствительность глаза длины волны светового электромагнитного V, от. ед.

нормированная зависимость чувствительности глаза от λ.

колебания.

неодинаково и

Диапазон длин волн, которые воспринимаются человеком как световое излучение, лежит в пределах HM.

Внутри этого диапазона

0.2воздействие электромагнитного излучения характеризуется кривой видности

 $\lambda = 0.510$

 $\lambda = 0,555$

Пространственный угол ясного зрения — угол, из которого в глаз поступает основная зрительная информация, характеризующийся:

- размером в горизонтальной плоскости $\beta_{\rm g} = 15^{\circ}$,
- размером в вертикальной плоскости $\alpha_{\rm s} = 11^{\circ}$.

В целом поле зрения человека достаточно велико и составляет порядка 120° в вертикальной и горизонтальной плоскостях.

Разрешающая способность зрительной системы (острота зрения) — наименьшее угловое расстояние между двумя рядом расположенными светящимися точками, при котором наблюдатель видит эти точки раздельно.

Для «стандартного» глаза разрешающая способность составляет $\delta = 1'$.

Основные параметры зрительной системы человека **Пространственный угол ясного зрения** — угол, из которого в глаз поступает основная зрительная информация, характеризующийся:

- размером в горизонтальной плоскости $\beta_{\rm s} = 15^{\circ}$,
- размером в вертикальной плоскости $\alpha_{\rm s} = 11^{\circ}$.

В целом поле зрения человека достаточно велико и составляет порядка 120° в вертикальной и горизонтальной плоскостях.

Разрешающая способность зрительной системы (острота зрения) — наименьшее угловое расстояние между двумя рядом расположенными светящимися точками, при котором наблюдатель видит эти точки раздельно.

Для «стандартного» глаза разрешающая способность составляет $\delta = 1'$.

Зрение человека инерционно: это проявляется в том, что при прекращении действия светового потока глаз как бы продолжает «видеть» источник, кажущаяся яркость которого быстро убывает. В силу инерционных свойств зрения периодическая последовательность световых может восприниматься как непрерывное излучение. Наименьшая частота повторения импульсных возбуждений глаза, при которой человек перестает замечать импульсный характер светового излучения и воспринимает его как непрерывное, называется критической частотой мельканий $f_{\kappa p}$.

Критическая частота мельканий яркости источника зависит от: средней яркости поля наблюдения, размеров мелькающего участка.

Для яркостей дисплеев (экранов) $f_{\kappa p} = 48 \ \Gamma y$.

Важнейшей характеристикой зрения является восприятие яркости. На практике приходится различать отдельные детали яркостью (L) на некотором фоне (L_0).

При этом глаз замечает изменение яркости $\Delta L = L - L_0$, если величина отношения $\Delta L/L_0$ превышает некий порог.

Относительным разностным порогом раздражения называется минимальная величина $\Delta L/L_0$, которая может быть зафиксирована глазом. Эта величина в общем случае зависит от яркости фона.

Однако для яркостей изображения на ТВ-экране (от десятых долей до $10^2 \, \kappa \partial/m^2$) ее можно считать постоянной и равной 0,05.

Диапазон яркостей, воспринимаемый человеческим глазом, характеризуется величинами от $10^{-5} \, \kappa \partial/m^2$ до $10^4 \, \kappa \partial/m^2$.

Телевидением называется область современной радиоэлектроники, которая занимается передачей изображения предметов на расстояние.

В основе телевидения лежат два принципа:

- разбиение плоского изображения на (с помощью датчика телевизионного сигнала на элементы (пространственная дискретизация);
- последовательная во времени передачи яркости и цвета каждого из элементов изображения каналу связи (развертка изображения).

Телевизионная система (ТВ-система) в общем случае состоит из комплекта аппаратуры, обеспечивающей:

- преобразование изображения в электрический сигнал;
- передачу электрического сигнала в пункт приема;
- восстановление изображения из электрического сигнала.

Обобщенная схема ТВ-системы включает в себя оптическое устройство (ОУ), датчик ТВ-сигнала (Д), передатчик (П), канал связи (КС), приемник (Пр), электронно-оптическое устройство (ЭОУ).

На вход ТВ-системы поступает световой поток F_0 из пространства наблюдения, на выходе системы образуется световой поток $F_{\rm u}$ от ТВ-изображения на экране электронно-оптического устройства.

Оптическое устройство предназначено для преобразования светового излучения из трехмерного пространства наблюдения в плоское (двумерное) оптическое изображение на экране датчика ТВ-системы.

Датчик ТВ-сигнала преобразует двумерное оптическое изображение в **ТВ-сигнал** изображения.

Передатчик трансформирует **ТВ-сигнал** к виду, позволяющему передать его по каналу связи.

Канал связи передает сигналы с выхода передатчика на вход приемника.

Приемник усиливает принятые сигналы и преобразует их к виду, необходимому для работы электронно-оптического устройства.

Электронно-оптическое устройство преобразует электрические сигналы в оптическое изображение.

ТВ-системы (датчика и электронно-оптического устройства) может быть представлено в виде множества элементов разложения изображения, яркость и цвет которых можно считать постоянными в пределах границ элементов.

Разверткой изображения называется процесс поочередной передачи во времени информации о яркости и цвете элементов разложения изображения.

Развертка изображения осуществляется с помощью развертывающего элемента, которым может быть электронный луч, лазерный луч, отверстие в диафрагме или программно реализованный алгоритм считывания.

При перемещении **развертывающего элемента** относительно элементов разложения изображения на выходе **датчика ТВ-сигнала** формируется электрический сигнал.

Мгновенное значение сигнала пропорционально яркости элемента изображения, на который в данный момент времени направлен развертывающий элемент.

Тип разверток на приемной и передающей сторонах **ТВ-системы** должен быть одинаков, развертки должны быть синхронными и синфазными.

Устройство фототелеграфного передатчика: 1— винт подачи; 2 — диафрагма; 3 — фотоэлемент; 4 — осветитель; 5 — усилитель

Развертка может осуществляться по различным законам. В технике используют: спиральную развертку, радиальную, линейно-строчную и другие типы разверток.

а) спиральная

б) радиальная

в) линейно-строчная

Траектории движения развертывающего элемента при различных типах развертки

При спиральной развертке траектория движения РЭ представляет собой спираль. Как только РЭ достигает края экрана, он быстро возвращается в его центр и процесс повторяется вновь.

При радиальной развертке РЭ передвигается от центра экрана по радиусу, который вращается с малой угловой скоростью. По достижении края экрана РЭ быстро сдвигается в центр.

При линейно-строчной развертке развертывающий элемент перемещается от одного края экрана (например, левого) к другому с постоянной горизонтальной скоростью и одновременно с этим смещается сверху вниз с гораздо меньшей вертикальной постоянной скоростью.

Такое перемещение называется прямым ходом строчной развертки. Достигнув правого края экрана, развертывающий элемент быстро возвращается к левому краю (обратный ход строчной развертки). С нижнего края экрана, РЭ возвращается на верхний край (обратный ход кадровой развертки).

В телевидении наибольшее распространение получили линейно-строчные развертки.

При линейно-строчной развертке след, образуемый на поверхности экрана электронно-оптического преобразователя при перемещении РЭ от левого края экрана к правому, называется строкой.

Совокупность видимых сток на экране называется растром.

Полный цикл обхода всего экрана РЭ называется кадром.

Время, за которое РЭ совершает обход всего экрана и возвращается в исходное положение, называется **периодом кадровой развертки**.

Время, за которое РЭ проходит строку и возвращается к левому краю экрана, называется периодом строчной развертки.

Время, затрачиваемое на прямой ход развертки по строке, называется длительностью активной части строки.

К параметрам линейно-строчной развертки относятся: формат кадра, количество строк, частота кадров, частота строк.

Формат кадра k — отношение горизонтального размера растра (ϵ) к вертикальному (h), $\kappa = \epsilon/h$.

Раньше считалось, что размеры кадра должны соответствовать углу ясного зрения, поэтому

$$k = e/h = \alpha_{\text{s}}/\beta_{\text{s}} = 15^{\circ}/11^{\circ} \approx 4:3.$$

Количество строк z — определяется количеством элементов развертки изображения по вертикали $z = N_b$. Стандартом ТВ-вещания в России выбрано z = 625.

Частота кадров F_k . зависит от ее вида — линейно-строчные развертки бывают двух видов: **построчная** и **чересстрочная**.

Построчная развертка — при которой все строки растра просматриваются последовательно одна за другой, начиная с первой строки. Частота кадров при такой развертке выбирается исходя из условия отсутствия мерцания яркости изображения, т. е. $F_k > f_{\kappa p}$. Стандартом принято $F_k = 50 \ \Gamma u$.

Выбор такой частоты кадров приводит к следующим особенностям построчной развертки.

Во-первых, возникает избыточность количества кадров при воспроизведении изображения движущихся объектов. В силу инерционности зрения эффект плавного перемещения предмета в пространстве может быть достигнут, если передавать 16...24 отдельных его мгновенных положений (фаз) в одну секунду одним кадром.

Во-вторых, для передачи сигнала изображения требуется сравнительно большая полоса частоты.

Уменьшить полосу частот, отводимую для передачи сигнала изображения и устранить избыточность числа кадров удается путем применения **чересстрочной**

(прогрессивной) развертки, широко применяемой в вещательном ТВ.

Сущность этой развертки заключается в том, что полный кадр передается и воспроизводится в два этапа (поля).

В первом поле развертывают нечетные

строки растра, во втором — четные: количество строк в каждом поле оказывается в два раза меньше по сравнению с числом строк в кадре. Общее количество строк в кадре принято z=625, в каждом поле число строк оказывается равным 312,5. Время развертки каждого поля $T_{\rm II}=1/50$ с.

Поэтому полный цикл обхода всего экрана (период кадра) составит $T_{\rm K}=2T_{\rm \Pi}=1/25$ с, тем самым устраняется избыточность кадров при воспроизведении движения объектов.

С другой стороны, поскольку за время $T_{\rm n} = 1/50$ с РЭ при чересстрочной развертке пробегает вдвое меньше число строк, чем при построчной развертке, время развертывания одного элемента изображения оказывается вдвое большим.

Частота строк. Период строки при чересстрочной развертке может быть вычислен $T_{\rm c}=T_{\rm n}/{\rm n}_{\rm n}$, где $T_{\rm n}=210^{-2}$ с - период повторения полей;

 $n_{\rm II} = 312,5$ - количество строк в одном поле.

Частота строк при чересстрочной развертке будет равна $F_{\rm c}=1/T_{\rm c}=15625~\Gamma$ μ .

Литература

В. И. Лузин и др.

Основы телевизионной техники: Учеб. пособие. — М.: СОЛОН-Пресс, 2009. — 432 с.: ил. — (Серия «Библиотека студента»).