Mobile Communications

3GPP Public Land Mobile Networks: GSM (2G), GPRS (2.5G), UMTS (3G)

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

- What is the architecture of the GSM (2G) network: network elements, interfaces, addresses, logical channels, protocol stack?
- ♦ How are the calls processed:
 Mobile Terminated Call, Mobile Initiated Call?
- ♦ How was GSM modified to support data in GPRS (2.5G)?
- ◆ What is the Attach procedure? What is a PDP context?
- ◆ What is the GPRS protocol stack?
- ♦ What are their key differences between 3G and 2G: radio access and architecture points of view?
- ◆ Why is power control so important in WCDMA? How is it controlled?
- ◆ How is data transferred in a WCMDA dedicated channel?

GSM(2G)

GSM - Overview

- Formerly: Groupe Spéciale Mobile (founded 1982)
- Now: Global System for Mobile Communication
- Pan-European telecom standard
 ETSI: European Telecommunications Standardisation Institute
- Seamless roaming
- Basic services provided
 voice services, short message service, data services

GSM Architecture – Public Land Mobile Network (PLMN)

GSM Architecture – Radio Subsystem (RSS)

- MS Mobile Station
 Mobile terminal equipment
- BTS Base Transceiver Station
 Transmitter, receiver and antennas
- BSC Base Station Controller control of several BTS and MS

GSM Architecture – Network Subsystem (NSS)

- Circuit switching, mobility management
- Interconnection to other networks, system control
- MSC Mobile Switching Centre: circuit switching
- ◆ HLR Home Location Register: associated to PLMN (telecom operator)
- ♦ VLR Visitor Location Register: associated to MSC
- GMSC Gateway MSC: interconnection to other networks

GSM Architecture – Operation Subsystem (OSS)

- Centralized operation, management and maintenance of GSM system
- OMC Operation and Management
 Control of the radio and network subsystems
- AuC Authentication Centre
 Executes security functions and contains security data
- EIR Equipment Identity Register
 Registration and information on Mobile Stations

Mobile Addresses

- IMSI International Mobile Subscriber Identity
 - » uniquely identifies the user; stored in the SIM card
 - » composed by
 Mobile Country Code (MCC) + Mobile Network Code (MNC) + Mobile Subscriber Identification Number (MSIN)
- MSISDN Mobile Subscriber Integrated Services Digital Network Number
 - » the telephone number
 - » associated to the service
 - » stored in the SIM card
- MSRN Mobile Station Roaming Number
 - » a temporary location dependent ISDN number; generated by local VLR for each mobile station in its area
 - » calls are routed to the MS by using the MSRN
 - » The MSRN has same structure as the MSISDN
 Country Code of visited network (CC) + National Destination Code (NDC) of visited network + Subscriber Number (SN) in current mobile network
- ◆ TMSI Temporary Mobile Subscriber Identity
 - » 32 bits
 - » local number allocated by VLR; may be changed periodically
 - » hides the IMSI over the air interface; transmitted instead of IMSI

Mobile Switching Center

- Switching of 64 kbit/s channels
- Paging and call forwarding
- Location registration and forwarding of location information

Home Location Register (HLR)

- ◆ Central master database
 - » data from every user that has subscribed the operator
 - » one database per operator
 - » may be replicated

HLR contains

- » Subscriber data
 - IMSI International Mobile Subscriber Identity
 - List of subscribed services with parameters and restrictions
- » Location data
 - current MSC/VLR address

Visitor Location Register (VLR)

- Local database
 - » data of all users currently in the domain of the VLR
 - » VLR is associated to a MSC
- For each user, VLR has information on
 - » Subscriber identity
 - IMSI International Mobile Subscriber Identity
 - » Temporary addresses
 - MSRN Mobile Station Roaming Number
 - TMSI Temporary Mobile Subscriber Identity
 - » Temporary location
 - LAI Location Area Identification

Duplex: FDD

Multiple Access: TDMA+FDMA

GSM – FDD, TDMA/FDMA

Logical Channels

Logical Channels

Channel		Direction	Application	Allocation	
TCH	TCH/H	$BTS \leftrightarrow MS$	User data	Allocated by network on	
Traffic Channels	TCH/F			demand by MS	
BCH Broadcast Channels	FCCH		Carrier synchronization	Permanent	
	SCH	$BTS \to MS$	Frame synchronisation		
Chamicis	вссн		General network information Cell information (present and adjacent)		
СССН	RACH	BTS ← MS Request SDCCH for signalling Request TCH for handover		Multiple access with slotted Alhoa contention between MS	
Common Control	AGCH	DTC \ MC	Confirmation of SDCCH or TCH request	Permanent	
Channels	PCH	BTS → MS	Allert MS to a call originated in the network		
DCCH	SDCCH		Registration / location updating Call control procedures	Allocated by network on demand	
Dedicated Control	SACCH	$BTS \leftrightarrow MS$	Control information between MS and BTS during the progress of a call or call set up	Associated to a specific TCH or SDCCH	
Channels	FACCH		Exchange of time critical control information during the progress of a call	Allocated by network or MS (*)	

^(*) Fast allocation by setting S bit; bits are stolen from TCH

Transmission Power

• Mobile station power classes

	GSM 900		GSM 1800		
8 W	39 dBm	vehicular	4 W	36 dBm	vehicular
5 W	37 dBm	portable	1 W	30 dBm	portable
2 W	33 dBm	portable	0.25 W	24 dBm	portable
0.8 W	29 dBm	portable			

usual classes

Power Control

- Implemented in uplink and downlink
- Objective: lowest power level which provides desired quality (BER)
- Procedure
 - » MS measures power received and BER and sends result on SACCH
 - » BTS sends new power level on SACCH, if and when necessary
- Control range

GSM 900	GSM 1800	Comments
5 - 39 dBm	0 - 36 dBm	effective maxima depend on cell size and MS capability control steps of 2 dB

- Channels with no power control use maximum power for the cell
 - » downlink BCH and CCCH: power set by BTS
 - » uplink RACH
 - BCCH broadcasts maximum power level for the cell
 - MS uses this value to set RACH transmission power

GSM Protocol Layers for Signaling

GSM Protocol Layers for Signaling

- CM (Connection Management)
 - » call control, short messages
- MM (Mobility Management)
 - » registration, authentication, location and handover management
- RR (Radio Resource Management)
 - » setup, maintenance and release of radio channels
 - » control of radio transmission quality

- ◆ LAPDm ("Link Access Protocol D-channel" modified)
 - » modified version of ISDN LAPD protocol

Mobile Terminated Call

- 1: calling a GSM subscriber
- 2: forwarding call to GMSC
- •3: signal call setup to HLR
- 4, 5: get routing info (MSRN) from VLR
- 6: forward routing info to GMSC
- 7: route call to current MSC
- 8, 9: get current status of MS (LAI + TMSI)
- 10, 11: paging of MS in location area
- 12, 13: MS answers paging and authentication request
- 14, 15: security checks
- 16, 17: set up connection

Mobile Terminated Call

Channel activity at radio interface

Mobile Terminated Call

Channel activity at radio interface (cont.)

Mobile Originated Call

- 1, 2: connection and authentication request
- 3, 4: security check
- 5-8: check resources (obatain circuit)
- 9-10: set up call

Mobile Originated Call

Channel activity at radio interface

Mobile Originated Call

Channel activity at radio interface

GPRS – General Packet Radio Service

GPRS - General Packet Radio Service

- Adds packet switching to GSM data transferred as packets
- Simplifies access to Internet
- Improves network efficiency

GPRS Architecture

GPRS Architecture

- ◆ Addition of 2 new network elements: SGSN, GGSN
- ♦ **SGSN:** Serving GPRS Support Node
 - » Authentication
 - » Packet switch
 - » Control of the logical link
 - » Mobility management
 - » Traffic accounting
- GGSN: Gateway GPRS Support Node
 - » Router for the IPv4/IPv6 Internet
- xGSNs network elements
 - » Interconnected by common packet network (eg. IP over Ethernet)
 - » Tunnels established between SGSN and GGSN: GTP (GPRS Tunneling Protocol)

Terminal Attachment to GPRS

- Before using GPRS
 - » terminal must perform **Attach** procedure
- During Attach
 - » Network verifies if user is subscribed
 - » Subscriber profile transferred from HLR to SGSN
 - » Temporary packet identifier assigned to subscriber: P-TMSI
- GPRS Attach may be combined with GSM attach

Combined GSM/GPRS Attach

PDP Context

- Establishment of a packet session (after successful Attach procedure)
 - » Terminal obtains IP address
 - » PDP context is defined and stored and MS, SGSN and GGSN
- PDP context contains
 - » Type of external packet network (e.g. IPv4 or IPv6)
 - » Address assigned to the MS (e.g. IPv4 address)
 - » GGSN address (default gateway)
- GGSN makes the association between IMSI and IP addresses
- Context created → terminal reachable → data can be transferred

Protocol Architecture – Data Plane

Protocol Architecture – Data Plane

- GTP GPRS Tunneling Protocol
 - » Tunnel; transports IP packets
 - » Used at the networks backbone
 - » GTP packets transported over UDP/IP

- SNDCP Subnetwork Dependent Convergence Protocol
 - » Packet transference between MS e SSGN
 - » Header compression, data protection

Protocol Architecture – Data Plane

- LLC (MS-SSGN)
 - Logical link connection between MS and SSGN; based on LAPDm (GSM)
 - In order delivery, flow control
 - Acknowledge and not-acknowledge services
- RLC
 - Reliable link between MS and BSS
 - Segments and reassembles LLC frames into RLC blocks
 - ARQ of blocks
- MAC
 - Based on slotted Aloha
 - Logical channels
- PLL+RLF (Physical Link Layer)
 - Provide physical channel for data
 - Error detection, FEC
 - Modulation; same used in GSM

Protocol Architecture – Control Plane

Interconnection to an IP Network

UMTS (3G) - WCDMA

$GSM \rightarrow TDMA$

WCDMA

Allocation of Bandwidth in WCDMA - Time/Frequency/Code Space

Comparison GSM/WCDMA

	WCDMA	GSM
Carrier spacing	5 MHz	200 kHz
Frequency reuse factor	1	1-18
Power control frequency	1500 Hz	2 Hz or lower
Quality control	Radio resource management algorithms	Network planning (frequency planning)

Spreading, Despreading

Despreading - Own vs Other Signals

Spreading Factor, Bitrate

- Chiprate = 3.84 Mchip/s
- SF=8 (chip/bit)
- Bitrate = $3.84*10^6 / 8 = 480$ kbit/s : SF \nearrow Bitrate \searrow

Spreading Codes

 \bullet Hierarchical selection of codes \rightarrow orthogonality

Uplink Capacity – Maximum Number (N) of users

- Ideal power control (every sinal received with same power)
- N users transmitting at bitrate R bit/s

$$\frac{S}{I} = \frac{S}{S(N-1)} = \frac{1}{N-1} \approx \frac{1}{N}$$

$$\frac{E_b}{I_0} = \frac{S/R}{I/W} = \frac{W}{R} \frac{S}{I} = \frac{W}{R} \frac{1}{N-1} \approx \frac{W}{RN}$$

N – number of users

S – power received form each user (W)

I – interference from other users (W)

E_b – energy received per information bit (J/bit)

 I_0 – Interference spectral density (J/Hz)

W -chip rate (chip/s)

R – information bitrate (bit/s)

- E_b/I_o decreases \rightarrow BER increases, or alternatively, for a given E_b/I_o (BER),

$$N \cong \frac{W}{R} \frac{1}{\underline{E}_b}$$

• RN ~ $\sum_{i=1}^{N} R_i$ \rightarrow must be managed \rightarrow admission control

Power Control

- Enable equal powers to be received at the Base Station
- Enable terminals to transmit at lowest possible power
 - » Low power → low interference on other terminals → more calls admitted

Power Control – Adaptation Mechanisms

Open loop control

- » Used in the uplink during call establishment
- » Power Tx determined based on the power Rx in common channel
 - terminal assumes same attenuation in downlink and uplink
 - Problem → duplex in frequency → different attenuations for both directions

Closed loop control

- » Frequent commands sent by Terminal/BS to order increase/decrease Tx power
 - one command per timeslot (1500 command/s)
- » SIR measurement → comparison with SIR objective
 - → request to increase/decrease Tx power Delta of 1 dB; range 70 dB

Power Control – Closed Loop

Network Architecture

UMTS Network Architecture

- ◆ Architecture UMTS: UTRAN + core network
- ◆ UTRAN: UMTS Terrestrial Radio Access network
- Core network
 - » Circuit domain (CS) \rightarrow MSCs, GSM, voice, video
 - » Packet domain (PS) \rightarrow xGSNs, GPRS, IP, data

Packet Domain – User Plane Protocols

Radio Interface

Protocols in the Radio Interface

- Physical (PHY)
 - » WCDMA, frame formats, modulations
- Medium Access Control (MAC)
 - » Multiple access to shared channels
- Radio Link Control (RLC)
 - » Segmentation | Flow control | Encryption
- Packet Data Convergence Protocol (PDCP)
 - » Compression of IP headers (TCP/IP, RTP/UDP/IP)
 - » Re-localization with no losses
- Broadcast/Multicast Protocol (BMC)
 - » Broadcast of common information in non-confirmed mode
- Radio Resource Control (RRC)
 - » Broadcast of system information. Paging. Cell selection
 - » Establishment of the RRC connection
 - » Mobility of the RRC connection
 - » Power control in downlink
 - » Open loop power control

Protocols between terminals and UTRAN (RNC or Node B)

Dedicated Channel - Uplink

- ◆ **DPCCH**: dedicated control channel | **DPDCH**: dedicated data channel
- DPCCH and DPDCH sent respectively as In-phase and Quadrature components of modulation
 - » Pilot symbols \rightarrow used to estimate channel response and interference (SIR)
 - » TFCI, Transport Format Combination Indicator → code, frame bitrate
 - » TPC, Transmit Power Control → controls the power to be transmitted in downlink
- Different codes for DPCCH and DPDCH

Dedicated Channel - Downlink

- » QPSK Modulation
- » DPCCH and DPDCH multiplexed in time

Homework

- Review slides
- GSM: read from Schiller, Chap. 4.1
- GPRS: read from Agilent Technologies, "Understanding General Packet Service (GPRS)", Application Note 1377
- WCDMA: use book: "Harri Holma, Antti Toskala, WCDMA for UMTS - HSPA evolution and LTE, 5th edition, John Wiley & Sons
- Answer questions at moodle