

Figure 4.1: Evaluation of the convolution x*h. (a) The function x; (b) the function h; plots of (c) $h(-\tau)$ and (d) $h(t-\tau)$ versus τ ; the functions associated with the product in the convolution integral for (e) t<-1, (f) $-1 \le t < 0$, (g) $0 \le t < 1$, and (h) $t \ge 1$; and (i) the convolution result x*h.

Answer (u).

$$x * h (t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

We need to compute
$$x*h$$
, where $\times \text{th}(t) = \int_{-\infty}^{\infty} \times (\tau) h(t-\tau) d\tau$

$$x(t) = \begin{cases} 2-t & 1 \le t < 2 \\ 0 & \text{otherwise} \end{cases} \text{ and } h(t) = \begin{cases} -t-2 & -3 \le t < -2 \\ 0 & \text{otherwise.} \end{cases}$$

First, we plot $x(\tau)$ and $h(t-\tau)$ versus τ in Figures (a) and (d), respectively.

This leads to four cases to consider as shown below.

From Figure (e), for t < -2 (i.e., t + 3 < 1), we have

$$x * h(t) = 0.$$

From Figure (f), for $-2 \le t < -1$ (i.e., $1 \le t + 3 < 2$), we have

$$x*h(t) = \int_{1}^{t+3} \underbrace{(2-\tau)(\tau-t-2)d\tau}_{\text{X(T)}}.$$
 From Figure (g), for $-1 \le t < 0$ (i.e., $1 \le t+2 < 2$), we have

$$x*h(t) = \int_{t+2}^{2} (2-\tau)(\tau-t-2)d\tau.$$
 From Figure (h), for $t > 0$ (i.e., $t+2 > 2$), we have

$$x * h(t) = 0.$$

Simplifying, we obtain

$$x * h(t) = \begin{cases} \frac{1}{6}t^3 - t - \frac{2}{3} & -2 \le t < -1 \\ -\frac{1}{6}t^3 & -1 \le t < 0 \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.1 (Commutativity of convolution). Convolution is commutative. That is, for any two functions x and h,

$$x * h = h * x. \tag{4.16}$$

In other words, the result of a convolution is not affected by the order of its operands.

Proof. We now provide a proof of the commutative property stated above. To begin, we expand the left-hand side of (4.16) as follows:

$$x*h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

$$h*x(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau.$$

Next, we perform a change of variable. Let $v = t - \tau$ which implies that $\tau = t - v$ and $d\tau = -dv$. Using this change of variable, we can rewrite the previous equation as

Remember that changing
$$= \int_{t+\infty}^{t-\infty} x(t-v)h(v)(-dv)$$
 in finity dominates Sums
$$= \int_{-\infty}^{\infty} x(t-v)h(v)(-dv)$$
 integration variable
$$= \int_{-\infty}^{\infty} x(t-v)h(v)dv$$

$$= \int_{0}^{\infty} x(t-v)h(v)dv$$
 rearrange factors
$$= \int_{-\infty}^{\infty} h(v)x(t-v)dv$$
 definition of convolution

(Note that, above, we used the fact that, for any function f, $\int_a^b f(x)dx = -\int_b^a f(x)dx$.) Thus, we have proven that convolution is commutative.