Bayesian inference

Use Case: Phone number scanner App

Aldo Narvaez Cao Romero

Why a phone number scanner?

How does it work?

- It was used the Gaussian Bayes algorithm as a cornerstone in the App.
- We take a collection of encoded handwritten numbers to use them has a database.

Effectiveness

It was found a 99% of accuracy in the model.

What happen with 9?

A 9 was predicted when, actually, it was a 7...

...or a 4

Why people would use our App?

- Its practicality.
- Its fast uploading due to its simplicity.
- Comfortable and useful advertisements

Why you should invest in our project?

- Its low cost due to simplicity.
- Is is expected a great amount of income from the advertisements.
- An idea based on an innovative technology.

Final remarks

- It was presented a new App to recognize handwritten phone numbers with an easy user interface
- We apply the Gaussian-Bayes algorithm and it was found an accuracy of 99% to recognize numbers
- It was presented a confusion matrix to analyse the values that went wrong during the prediction.
- There were given some arguments to proof how this app can be useful and why you should invest on it.

Appendix

Training and Test data respectively

	Unnamed: 0)	index	labels	0	1	2	3	4	5	6		774	775	776	777	778	779	780	781	782	783
0	0)	0	5	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1	1		1	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2	2	2	2	4	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3	3	3	3	1	0	0	0	0	0	0	0	1000	0	0	0	0	0	0	0	0	0	0
4	4		4	9	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
	Unnamed: 0	9	index	labels	0	1	2	3	4	5	6		774	775	776	777	778	779	780	781	782	783
0	Unnamed: 0		index 0						0				774 0	775	776	777 0	778	779 0	780	781	782	783
0	C						0	0		0	0											
	1	0	0	5 0	0	0	0	0	0	0	0	***	0	0	0	0	0	0	0	0	0	0
1	1 2	1	0	5 0 4	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	0 0 0		0	0	0	0	0	0	0	0	0	0

Predictions

Test Data

	Actual	Predict
0	7	7
1	2	2
2	1	1
3	0	0
4	4	4
5	1	1
6	4	4
7	9	9
8	5	5
9	9	9

Training Data

-	Actual	prediction
0	5	5
1	0	0
2	4	4
3	1	1
4	9	9
5	2	2
6	1	1
7	3	3
8	1	1
9	4	4

Confusion matrix for the Training data

