Feuille 15 : Dénombrement - Probabilités

I EXERCICES SUR LE DENOMBREMENT

Exercice 1

Un coffre comporte une serrure électronique. Pour l'ouvrir, on doit saisir un code de 6 caractères au choix parmi 8. Combien de codes sont possibles?

Situation assimilée à un tirage avec remise et avec ordre.

Exercice 2

Une association comprend 45 adhérents dont 18 femmes. Le conseil d'administration est constitué de 6 adhérents. Combien de conseils sont possibles, si l'on veut respecter la parité?

Il faut choisir 3 femmes et 3 hommes.

Exercice 3

Combien d'anagrammes du mot ICAM peut-on réaliser? du mot MATHEMATIQUES? Attention aux lettres en double.

Exercice 4

Combien de codes à 8 caractères comportant 3 lettres et 5 chiffres peut-on créer? Commencer par placer les lettres.

Exercice 5

Soit $n \in \mathbb{N}^*$. On place n points distincts sur un cercle et on les relie 2 à 2. Sachant que 3 de ces cordes ne sont jamais concourantes, en combien de points intérieurs au cercle ces cordes se coupent-elles? Voir à l'aide d'un schéma combien de points d'intersections sont générés par 4 points.

II EXERCICES SUR LES PROBABILITÉS

Exercice 6

Déterminer une probabilité sur $\Omega = [\![1,n]\!]$, telle que la probabilité de $\{k\}$ est proportionnelle à k. Leur somme doit valeur 1.

Exercice 7

Une urne contient 8 boules blanches et 2 boules noires. On tire successivement et sans remise 3 boules de l'urne.

- a. Quelle est la probabilité que la troisième boule tirée soit noire? Faire un arbre.
 - raire un arbre.
- **b.** Quelle est la probabilité que le tirage comporte au moins une boule noire? Passer au complémentaire.
- **c.** Sachant qu'une boule noire a été tirée, quelle est la probabilité que la première boule tirée soit noire? Appliquer la formule de Bayes.

Exercice 8

Deux ateliers notés A et B d'une même entreprise produisent chaque jour respectivement a_1 et b_1 pièces d'un même modèle M_1 et a_2 et b_2 pièces d'un autre modèle M_2 .

a. On choisit au hasard une usine et on teste une pièce. Sachant qu'il s'agit d'une pièce M_1 , quelle est la probabilité qu'elle provienne de l'atelier A?

Appliquer la formule de Bayes.

b. On a mélangé les stocks des deux usines. On prélève au hasard une pièce M_1 . Quelle est la probabilité qu'elle provienne de l'atelier A?

L'univers a changé...

Exercice 9

Dans un jeu de 52 cartes, on tire une main de 5 cartes. Déterminer les probabilités suivantes :

- a. La main contient exactement une dame et un coeur.
 - Il faut distinguer le cas où le coeur est la dame.
- b. La main contient exactement une dame, un roi et un coeur.

Il faut distinguer les deux cas où le coeur est une des deux figures souhaitées.

Exercice 10

Dans une usine, la construction d'un train d'atterrissage nécessite l'exécution de 3 tâches consécutives notées A (construction du compas), B (construction de l'amortisseur), C (construction de la contrefiche principale).

Un gestionnaire de l'entreprise a relevé sur une longue période les durées nécessaires pour effecteur chacune des trois tâches :

- * Pour A, il faut 1 ou 2 jours
- * Pour B, il faut entre 4 et 6 jours
- * Pour C, il faut 2 ou 3 jours.

L'observation conduit à admettre que pour chaque tâche les durées possibles sont équiprobables.

- a. Déterminer la probabilité de chacun des événements suivants :
 - i. N_1 : "le temps de construction dure 9 jours"
 - ii. N_2 : "le temps de construction dure au plus neuf jours"
 - iii. N_3 : "le temps de construction dure au moins 10 jours"

Faire un arbre qui représente toutes les durées possibles.

- **b.** Le temps de construction a duré 9 jours. Quelle est la probabilité que la tâche B ait été effectuée en 5 jours?
- c. Les événements suivants sont-ils indépendants?
 - i. N_1 et B_5 : "la tâche B est réalisée en 5 jours".
 - ii. B_5 et H: "le temps de construction dure 8 jours".

Exercice 11

Un prestidigitateur manipule 3 gobelets alignés numérotés 1, 2, 3 de gauche à droite. L'un des gobelets contient une balle, les deux autres sont vides.

A chaque manipulation, il inverse les deux gobelets de gauche avec une probabilité de $\frac{1}{3}$ ou les deux gobelets de droite avec une probabilité de $\frac{2}{3}$.

La balle ne peut se déplacer qu'entre deux gobelets adjacents. Au départ, elle se trouve dans le gobelet de gauche.

Pour $(i,j) \in [1,3]^2$, on note p_{ij} la probabilité que la balle passe du gobelet j au gobelet i et pour tout entier n, on note g_n la probabilité que la balle soit dans le gobelet de gauche après n manipulations, c_n la probabilité qu'elle soit dans celui du centre après n manipulations et d_n la probabilité qu'elle soit dans celui de droite après n manipulations.

- **a.** Expliciter la matrice $A = (p_{ij})_{(i,j) \in [1,3]^2}$.
- **b.** Pour tout entier n, on note $X_n = \begin{pmatrix} g_n \\ c_n \\ d_n \end{pmatrix}$. Exprimer X_{n+1} à l'aide de A et X_n .

c. On admet que les suites (g_n) et (c_n) convergent. Après avoir justifié que (d_n) converge également, déterminer leurs limites.

Exercice 12

Deux joueurs A et B disposent au début d'un jeu de a et b euros respectivement. Ils jouent à un jeu équitable. A chaque coup, le perdant donne $1 \in$ au gagnant. Le jeu s'arrête lorsque l'un des joueurs est ruiné. On note $p_{a,b}$ la probabilité que le joueur A soit ruiné.

- **a.** Exprimer $p_{a,b}$ en fonction de $p_{a+1,b-1}$ et $p_{a-1,b+1}$. Conditionner en fonction de l'issue de la première partie.
- **b.** Etudier la suite $(p_{n,a+b-n})_n$; en déduire $p_{a,b}$. C'est une suite récurrente linéaire d'ordre 2.

Exercice 13

Deux joueurs A et B jouent aux dés. A commence. S'il fait 6, il gagne la partie, s'il fait 4 ou 5 il rejoue, sinon il passe la main au joueur B auquel le même principe s'applique.

Le jeu s'arrète dès que l'un des joueurs fait 6.

On note p_n la probabilité de l'événement "A joue au n-ème coup, et q_n la probabilité de l'événement "B joue au n-ème coup.

- a. Déterminer une relation de récurrence entre p_{n+1}, p_n et q_n . Faire un arbre, en introduisant les événements A_n : "A joue au n-ème coup et B_n : "B joue au n-ème coup".
- **b.** Déterminer une relation de récurrence entre q_{n+1}, q_n et p_n .
- **c.** En considérant les suites $(p_n + q_n)$ et $(p_n q_n)$ expliciter p_n à l'aide de n.
- **d.** En déduire la probabilité que A gagne en n coups. On veut $\mathbb{P}(A \cap A_n)$.

III EXERCICES SUR LES VARIABLES ALÉATOIRES

Exercice 14

Une variable aléatoire X suit une loi binomiale $\mathcal{B}(n,p)$. Les résultats de X sont affichés par un compteur défaillant :

 \checkmark Pour $X \neq 0$, le compteur affiche la valeur correcte de X

 \checkmark Pour X=0, le compteur affiche une valeur au hasard entre 1 et n.

On note Y la valeur affichée par le compteur. Déterminer la loi de Y et son espérance.

Conditionner suivant la nullité de X.

Exercice 15

On lance une pièce de monnaie. Si on obtient "Face", on lance un dé cubique, sinon on lance à nouveau la pièce.

On suppose que la pièce et le dé sont équilibrés et que les jets sont indépendants.

On associe le nombre 1 à Face et le nombre 2 à Pile, et on définit les variables aléatoires suivantes :

X est le nombre obtenu au premier lancer;

Y est le nombre obtenu au deuxième lancer.

- a. Calculer $\mathbb{P}(X=1), \mathbb{P}(Y=2), \mathbb{P}_{Y=2}(X=1)$
- **b.** Déterminer la loi conjointe de X et Y, et en déduire la loi de Y.

Exercice 16

On dispose de 5 boîtes numérotées de 1 à 5. La boîte k contient k boules numérotées de 1 à k.

On choisit une boîte au hasard, puis on tire une boule dans la boîte.

X désigne le numéro de la boîte choisie, et Y le numéro de la boule tirée.

- a. Déterminer la loi du couple (X, Y).
- **b.** Déterminer la loi de Y et calculer son espérance.
- \mathbf{c} . Les variables X et Y sont-elles indépendantes?
- **d.** Calculer $\mathbb{P}(X = Y)$.

$$\mathbb{P}(X=Y) = \sum_{k=1}^{5} \mathbb{P}((X=k) \cap (Y=k))$$

e. Soit S = X + Y. Déterminer la loi de S puis son espérance. Utiliser la question **a**.

Exercice 17

Soit (X_n) une suite de variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre $p \in]0,1[$. Pour $n \in \mathbb{N}^*$, on note $Y_n = \frac{X_n + X_{n+1}}{2}$ et $S_n = \frac{1}{n} \sum_{k=1}^n Y_k$.

- a. Donner la loi et l'espérance de Y_n , pour $n \in \mathbb{N}^*$.
- **b.** Les variables aléatoires Y_n et Y_{n+1} sont-elles indépendantes? Considérer $\mathbb{P}((Y_n = 0) \cap (Y_{n+1} = 1))$.
- c. Montrer que pour $\varepsilon > 0$, $\lim_{n \to +\infty} \mathbb{P}(|S_n p| \ge \varepsilon) = 0$. Appliquer l'inégalité de Bienaymé Tchebychev.

Exercice 18

Un laboratoire doit examiner N prélèvements pour déterminer ceux qui contiennent un corps C donné. On admet que pour un prélèvement quelconque, la probabilité qu'il contienne le corps C est p et que les prélèvements sont indépendants.

On répartit les prélèvements en g groupes d'effectifs n (N=ng) et pour chaque groupe, on constitue un mélange à l'aide de quantités égales de chacun des n prélèvements. Si ce mélange ne contient pas le corps C, une seul analyse aura établi que chacun des n prélèvements de ce groupe ne contient le corps C. Si ce mélange contient le corps C, on analyse séparément les n prélèvements pour déterminer ceux qui contiennent le corps C; le nombre d'analyse faites pour le groupe est alors n+1.

Soit X la variable aléatoire qui donne le nombre total d'analyses effectuées.

- **a.** Que représente la variable aléatoire $Y = \frac{X g}{n}$?
- **b.** Déterminer la loi de Y.
- c. Déterminer $\mathbb{E}(X)$ et Var(X).

Exercice 19

4 paires de chaussettes de couleurs différentes se sont mélangées. On reconstitue au hasard 4 paires. Soit X le nombre de paires coordonnées. Déterminer la loi de X ainsi que son espérance.

En numérotant les paires de chaussettes, l'exercice revient à associer à une liste de 4 chiffres une liste de 4 chiffres. Il faut faire une étude au cas par cas.

Exercice 20

Un opérateur effectue n appels téléphoniques, vers n personnes distinctes ($n \geq 2$). On admet que les appels constituent n expériences aléatoires indépendantes et que pour chaque appel la probabilité d'obtenir un correspondant est $p \in]0,1[$.

X désigne la variable aléatoire égale au nombre de personnes obtenues au téléphone.

- **a.** Quelle est la loi de X?
- **b.** Ayant obtenu k personnes, l'opérateur rappelle une deuxième fois, dans les mêmes conditions, chacune des n-k personnes qu'il n'a pas réussi à joindre précédemment.

On note Y la variable aléatoire qui donne le nombre de personnes obtenues lors du second appel et Z = X + Y la variable aléatoire qui donne le nombre final de personnes obtenues. Calculer $\mathbb{P}(Z = 0)$ et $\mathbb{P}(Z = 1)$.

- **c.** Soit $k \in [0, n]$. Déterminer la loi conditionnelle de Y sachant (X = k).
- d. Déterminer la loi de Z.

 Utiliser le conditionnement de la question précédente.

Exercice 21

Dans une fête foraine, un jeu consiste à faire tourner une roue pour tomber sur une case $Gagn\acute{e}$. La probabilité de tomber sur cette case est $p \in]0,1[$. On note n le nombre de joueurs.

- a. Montrer que la variable aléatoire qui donne le nombre de joueurs gagnants à ce jeu avec au plus 2 tours de roue suit une loi binomiale de paramètres (n, p(2-p)). C'est exactement la même situation qu'à l'exercice précédent.
- b. Chaque joueur mise $1 \in$. Il peut tourner la roue au plus deux fois. S'il gagne, il touche $2 \in$. Que doit valoir p au maximum pour que le forain ait en moyenne un gain positif? Exprimer le gain moyen à l'aide de l'espérance de la variable étudiée au a.

Exercice 22

Une urne contient n jetons numérotés de 1 à n. On tire successivement avec remise N jetons dans l'urne. On note X le plus grand numéro tiré.

- **a.** Déterminer $\mathbb{P}(X \leq k)$, pour $k \in [1, n]$; en déduire la loi de X. $\mathbb{P}(X = k) = \mathbb{P}(X \leq k) \mathbb{P}(X \leq k 1)$.
- **b.** Montrer que $\mathbb{E}(X) = n \sum_{k=1}^{n} \left(\frac{k-1}{n}\right)^{N}$.
- c. En faisant apparaître une somme de Riemann, donner $\lim_{n\to+\infty} \frac{\mathbb{E}(X)}{n}$.
- **d.** Donner un équivalent simple de $\mathbb{E}(X)$ lorsque n tend vers ∞ .