Numpy

Dimensions

2D array

1D array

shape: (4,)

shape: (2, 3)

axis

3-Dimensions

3 (2, 2, 2) (Row,Col,Depth/layers)

Numpy -3d

shape =
$$(t*40, 6)$$

Numpy 3d

	0.0	0.1	0.2	1.0	11	12	20	21	22		l .
	0,0	0,1	0,2	1,0	.,,	1,4-	2.,0	-, ,	-,-		l .
											1

3-D Data

- Panel data can be represented in three dimensions. Data that tracks attributes of a cohort (group) of individuals over time could be structured as (respondents, dates, attributes). The 1979 National Longitudinal Survey of Youth follows 12,686 respondents over 27 years.
- Assuming that you have ~500 directly asked or derived data points per individual, per year, this data would have shape (12686, 27, 500) for a total of 177,604,000 data points.

4-D data

 Color-image data for multiple images is typically stored in four dimensions. Each image is a threedimensional array of (height, width, channels), where the channels are usually red, green, and blue (RGB) values. A collection of images is then just (image number, height, width, channels). One thousand 256x256 RGB images would have shape (1000, 256, 256, 3). (An extended representation is RGBA, where the A-alphadenotes the level of opacity.)