Podsumowanie

Przybliżanie funkcji różnymi metodami interpolacji oraz aproksymacji

1. Informacje techniczne

Zadanie zostało wykonane w języku Python3 na komputerze z systemem Windows 11, procesorem Intel i7-11800H, 2x8GB pamięci RAM o szybkości 3200MHz.

2. Zadana funkcja

$$f(x) = e^{-k \cdot \sin(m \cdot x)} + k \cdot \sin(m \cdot x) - 1$$

gdzie $k = 4, m = 1, x \in [-4\pi, 3\pi]$

Funkcja f(x) w zadanym przedziale posiada 8 równoodległych miejsc zerowych. Z tego powodu zarówno dla aproksymacji jak i interpolacji dowolnymi metodami dla 8 równoodległych węzłów będziemy dostawać przybliżenie będące funkcją stałą przyjmującą wartość 0.

Dodatkowo należy zauważyć, że f(x) jest funkcją okresową o okresie równym okresowi sinusa, czyli 2π .

3. Wyznaczanie dokładności przybliżenia

W celu określenia z jaką dokładnością przybliżamy funkcję f(x) będziemy obliczać błędy bezwzględne i średniokwadratowe.

Niech K = 1000 oznacza liczbę równomiernie rozłożonych w przedziale punktów $x_1, x_1, ..., x_K$, dla których obliczamy błędy przybliżenia.

Błąd bezwzględny:

$$\max_{\mathbf{x} \in \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K\}} |f(\mathbf{x}) - \mathsf{S}(\mathbf{x})|$$

Błąd średniokwadratowy:

$$\frac{1}{K} \sum_{x \in \{x_1, x_2, \dots, x_K\}} \left(f(x) - S(x) \right)^2$$

4. Interpolacja, a aproksymacja

Interpolacja to metoda numeryczna polegająca na wyznaczaniu w danym przedziale tzw. funkcji interpolującej, która przyjmuje w nim z góry zadane wartości, w ustalonych punktach nazywanych węzłami interpolacji.

Aproksymacja polega na przybliżaniu funkcji inną funkcją zwaną funkcją aproksymującą na podstawie zadanych punktów nazywanych węzłami aproksymacji.

Różnica pomiędzy aproksymacją a interpolacją polega na tym, że w przypadku interpolacji uzyskiwana funkcja przybliżająca musi przechodzić dokładnie przez zadane punkty, natomiast w przypadku aproksymacji już nie.

4.1. Użyte metody interpolacji

- Lagrange'a,
- Lagrange'a z wzorem Newtona
- Hermite'a oparta na wzorze Newtona
- Interpolacja funkcjami sklejanymi

4.2. Użyte metody aproksymacji

- Aproksymacja średniokwadratowa wielomianami algebraicznymi
- Aproksymacja średniokwadratowa wielomianami trygonometrycznymi

5. Objaśnienia pojęć związanych z interpolacją

5.1. Efekt Runge'go

Efekt Runge'go to zjawisko pogorszenia jakości interpolacji wielomianowej, mimo zwiększenia liczby jej węzłów. Początkowo, ze wzrostem liczby węzłów n, przybliżenie poprawia się. Jednak po dalszym wzroście n, zaczyna się pogarszać, co jest szczególnie widoczne na końcach przedziałów, gdzie wielomian interpolacyjny osiąga wartości znacznie większe od interpolowanej funkcji.

5.2. Węzły Czebyszewa

Węzły Czebyszewa są często używane w interpolacji wielomianowej, ponieważ wynikowy wielomian interpolacyjny minimalizuje efekt Runge'go, czyli właśnie wspomniane wyżej, duże oscylacje wielomianu interpolacyjnego przy krańcach przedziału. Obliczane są one zgodnie z następującym wzorem:

$$x_k = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{(2k-1)}{2n}\right), \quad k = 1, ..., n$$

6. Porównanie metod interpolacji wielomianowej

Uwaga 1. Wielomian z najmniejszym błędem średniokwadratowym jest przyjmowany za wielomian najlepiej przybliżający zadaną funkcję.

6.1. Interpolacja Lagrange'a

6.1.1 Pierwsze wystąpienie efektu Runge'go:

Dla interpolacji Lagrange'a (również wzorem Newtona) obserwujemy efekt Runge'go już od 9 węzłów rozłożonych równomiernie. Jest on skutecznie minimalizowany przez węzły Czebyszewa, co możemy zobaczyć na wykresie 6.1.2.2.

6.1.2. Wielomian interpolacyjny najlepiej przybliżający zadaną funkcję

Interpolacja Lagrange'a

	Rozłożenie równomierne		Węzły Czebyszewa	
	Błąd Błąd		Błąd	Błąd
	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
Interpolacja Lagrange'a	253.7096	47.7077	4.0256e-28	1.35e-13

Tabela 6.1.3.1 Wartości błędów

Dla równomiernego rozkładu węzłów najlepszy wynik dostajemy dla 4 węzłów, natomiast dla rozkładu Czebyszewa – 273 węzłów.

Interpolacja Lagrange'a metodą Newtona

	Rozłożenie równomierne		Węzły Czebyszewa	
	Błąd Błąd		Błąd	Błąd
	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
Wzór Newtona	253.7096	47.7077	4.9001	8.7716

Tabela 6.1.3.2 Wartości błędów

Dla równomiernego rozkładu węzłów najlepszy wynik dostajemy dla 4 węzłów, natomiast dla rozkładu Czebyszewa – 40 węzłów.

6.1.3. Obserwacje i wnioski

- Dla równomiernego rozkładu węzłów interpolacji bardzo szybko pojawia się efekt Runge'go, znacznie pogarszający jakość interpolacji wielomianowej. W naszym wypadku zaobserwowaliśmy go już od 9 węzłów.
- Wykorzystanie węzłów Czebyszewa skutecznie minimalizuje efekt Runge'go.
- Ze względu na duży koszt obliczeń wielomian interpolacyjny Lagrange'a bez wzoru Newtona nie znajduje zastosowania w praktyce. Mogliśmy to zaobserwować podczas szukania najlepszego wielomianu. Sprwadzenie wszystkich wielomianów o stopniach z przedziału 1-350 zajęło aż 25 minut.
- Dla liczby węzłów większej niż około 40, interpolacja Lagrange'a metodą Newtona dla węzłów Czebyszewa, zaczyna tracić dokładność na lewym krańcu przedziału. Jest to spowodowane niedokładnością zapisu liczb zmiennoprzecinkowych w pamięci komputera i sposobem obliczania wartości wielomianu.

6.2. Interpolacja Hermite'a

6.2.1. Pierwsze wystąpienie efektu Runge'go:

Dla interpolacji Hermite'a obserwujemy efekt Runge'go już od 5 węzłów rozłożonych równomiernie, czyli od 9 stopnia wielomianu.

6.2.2. Wielomian interpolacyjny Hermite'a najlepiej przybliżający zadaną funkcję

	Rozłożenie równomierne		Węzły Czebyszewa	
	Błąd Błąd		Błąd	Błąd
	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
Interpolacja Hermite'a	279.9968	51.4241	14.3239	17.2323

Tabela 6.2.2.1 Wartości błędów

Dla równomiernego rozkładu węzłów najlepszy wynik dostajemy dla 4 węzłów, natomiast dla rozkładu Czebyszewa – 20 węzłów.

6.2.3 Obserwacje i wnioski

- Dla równomiernego rozkładu węzłów interpolacji Hermite'a obserwujemy efekt Runge'go już od 5 węzłów. Ma to miejsce dla mniejszej liczby węzłów niż w przypadku interpolacji Lagrange'a ponieważ dla n węzłów uzyskujemy wielomian stopnia 2n-1.
- Podobnie jak dla interpolacji Lagrange'a metodą Newtona, dla liczby węzłów większej niż około 20, interpolacja Hermite'a dla węzłów Czebyszewa zaczyna tracić dokładność na lewym krańcu przedziału. Jest to spowodowane niedokładnością zapisu liczb zmiennoprzecinkowych w pamięci komputera i sposobem obliczania wartości wielomianu.
- Interpolacja Hermite'a jest również oparta na wzorze Newtona, przez co otrzymywane wielomiany interpolujące o równych stopniach są do siebie bardzo zbliżone, co widać np. na poniższych wykresach, w obu przypadkach otrzymujemy wielomian interpolacyjny 39 stopnia.

6.3. Interpolacja funkcjami sklejanymi drugiego i trzeciego stopnia

Przyjęte warunki brzegowe dla funkcji sklejanych drugiego stopnia:

- Natural spline (splajn naturalny) $S_0'(x_0) = 0$
- Clamped boundary (splajn zaciskany) $S_0'(x_0) = f_0'(x_0)$

Przyjęte warunki brzegowe dla funkcji sklejanych trzeciego stopnia:

- Natural spline (splajn naturalny) $S_0^{"}(x_0) = S_{n-1}^{"}(x_n) = 0$
- Cubic spline (splajn sześcienny) $S_0^{\prime\prime\prime}(x_0) = C_0^{\prime\prime\prime}$ oraz $S_{n-1}^{\prime\prime\prime}(x_{n-1}) = C_{n-1}^{\prime\prime\prime}$

6.3.1. Wpływ warunków brzegowych na otrzymywane wielomiany interpolacyjne

 \bullet N=6

W przypadku funkcji sklejanej 2-go stopnia dla 6 węzłów możemy zobaczyć wpływ warunków brzegowych na otrzymaną funkcję. W przypadku clamped boundary początek funkcji sklejanej jest podobny do linii prostej, o nachyleniu równym pochodnej w pierwszym punkcie.

N=5

W przypadku funkcji sklejanej 3-go stopnia dla 5 węzłów, możemy zauważyć, że natural spline ma mniejsze oscylacje w pierwszym i ostatnim przedziale, tzn. wolniej zmienia swoją wartość niż cubic function. Jest to spowodowane tym, że dla naturalnego warunku brzegowego założyliśmy, że wartość drugiej pochodnej na krańcach przedziału jest równa 0.

6.3.2. Porównanie funkcji sklejanych drugiego i trzeciego stopnia

• N = 20

Funkcje 2-go stopnia

Funkcje 3-go stopnia

		•		·
	Natural spline	Clamped	Natural spline	Cubic
	Naturai spiirie	boundary	ivaturai spiirie	Function
Błąd bezwzględny	55.2249	55.8968	20.5448	20.5448
Błąd średniokwadratowy	554.5991	572.4569	23.051	23.0505

Tabela 6.3.2.1 Wartości błędów interpolacji dla 20 węzłów

Jak możemy zobaczyć na wykresach 6.3.2.1 i 6.3.2.2 oraz w tabeli 6.3.2.1, funkcja sklejana 3-go stopnia przybliża interpolowaną funkcję z większą dokładnością. Spline 2-go. stopnia charakteryzują duże oscylacje w środku przedziału.

• N = 44 i N = 50 (dla funkcji sklejanej 2-go stopnia):

44 węzłów

50 węzłów

	Błąd	Błąd	Błąd	Błąd
	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
Natural spline	2.8859	4.9125	0.1109	1.3854
Clamped boundary	2.3974	4.6383	0.1506	1.6133

Tabela 6.3.2.2 Wartości błędów interpolacji dla funkcji sklejanej 2-go. stopnia.

Wraz z rosnącą liczbą węzłów, oscylacje funkcji sklejanej drugiego stopnia maleją, a jej dokładność przybliżenia rośnie. Od 50 węzłów oscylacje nie są już widoczne na wykresie.

• N = 500

Funkcje 2-go stopnia

Funkcje 3-go stopnia

	, <u> </u>		, ,	, ,	
	Natural spline	Clamped	Natural spline	Cubic	
	Maturai Spiirie	boundary	Matural Spillie	Function	
Błąd bezwzględny	4.9841e-04	0.003628	1.418e-03	2.5618e-05	
Błąd średniokwadratowy	1.9266e-08	0.000007	4.3605e-09	2.5218e-11	

Tabela 6.3.2.3 Wartości błędów interpolacji dla 500 węzłów

Dla funkcji sklejanej 2-go stopnia możemy zauważyć, że natural spline jest znacznie bardziej dokładny od clamped boundary. Mimo to funkcja 3-go stopnia jest bardziej dokładna. W jej przypadku cubic function wykazuje się lepszym dopasowaniem od natural spline.

Tabela błędów dla funkcji sklejanych 2-go stopnia.

	Natural S	Natural Spline		undary
Liczba węzłów	Błąd	Błąd	Błąd	Błąd
LICZDa Węziow	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
6	992.0763	87.5008	763.0620	77.4795
8	288.1865	49.5978	288.1865	49.5978
12	233.3475	57.1714	236.9816	57.8375
20	554.5991	55.2248	572.4568	55.8968
35	135.4298	26.1213	130.2534	25.7463
36	1.1506	3.3847	0.8657	3.0232
500	1.9266e-08	4.9841e-04	0.000007	0.003628
10000	1.9266e-08	4.9841e-04	0.000007	0.003628

Tabela 5.1.1 Wartości błędów dla funkcji sklejanych 2-go stopnia

Tabela błędów dla funkcji sklejanych 3-go stopnia.

	Natural S	Natural Spline		ction
Liczba węzłów	Błąd	Błąd	Błąd	Błąd
LICZDA WĘZIOW	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
6	490.6407	57.3471	586.7074	56.0249
8	288.1865	49.5978	288.1865	49.5978
12	178.6428	43.9250	183.5100	43.9177
20	23.0510	20.5448	23.0505	20.5448
35	0.5600	2.9416	0.5593	2.9416
36	0.9871	3.2927	0.9865	3.2927
500	4.3605e-09	1.418e-03	2.5218e-11	2.5618e-05
10000	4.3605e-09	1.418e-03	2.5218e-11	2.5618e-05

Tabela 5.2.1 Wartości błędów dla funkcji sklejanych 3-go stopnia

6.3.3. Obserwacje i wnioski

- Funkcje sklejane 3-go stopnia przybliżają interpolowaną funkcję z większą dokładnością, niż funkcje sklejane 2-go stopnia.
- W zależności od warunków brzegowych, które zastosujemy, otrzymane funkcje sklejana różnią się na tych brzegach, co jest widoczna na wykresach dla małej liczby węzłów.
- W przypadku funkcji sklejanych 2-go stopnia warunek brzegowy natural spline pozwala przybliżać funkcje z większą dokładnością niż clamped boundary.

- Za pomocą interpolacji funkcjami sklejanymi możemy otrzymywać bardzo dokładne przybliżenia, zwiększanie liczby węzłów powoduje wzrost dokładności przybliżenia.
- Ponieważ wynikowa funkcja sklejana składa się z n-1 funkcji składowych o niskich stopniach, efekt Runge'go się nie pojawia.

7. Porównanie metod aproksymacji średniokwadratowej

Uwaga 7.1: Będziemy przyjmować, że waga każdego węzła jest równa 1.

Uwaga 7.2: Przyjmijmy, że liczbę węzłów oznaczamy przez N, a stopień wielomianu przez m.

7.1. Aproksymacja wielomianami algebraicznymi

Przyjmijmy za nasze funkcje bazowe ciąg jednomianów $\varphi_i(x) = x^j, j = 0,1,...,m$.

7.1.1 Porównanie aproksymacji ze względu na stopień wielomianu m.

•
$$N = 20$$

Błąd bezwzględny Błąd średniokwadratowy

m=5	40.9773	190.3698
m=8	38.1019	171.3383
m=10	27.2027	116.9346
m=11	27.2027	116.9346
m=13	24.8648	91.3518
m=14	134.1868	950.6768

Tabela 7.1.1.1 Wartości błędów aproksymacji dla 20 węzłów

Dla większego m otrzymywane funkcje aproksymacyjne są w stanie bardziej dopasować się do wykresu funkcji, natomiast mniejsze m daje bardziej uśrednione wartości (wykres 4.2.3). Gdy jednak m będzie znacznie większe od połowy liczby węzłów, to gwałtownie zaczną rosnąć oscylacje na brzegach.

7.1.2 Porównanie aproksymacji ze względu na liczbę węzłów N.

•
$$N = 10, 15, m = 4, 5, 6$$

Błąd bezwzględny Błąd średniokwadratowy

	N=10	N=15	N=10	N=15
m=4	46.7139	37.4535	244.0448	197.4434
m=5	46.7139	37.4535	244.0448	197.4434
m=6	60.9568	40.3216	371.5003	197.1768

Tabela 7.1.2.1 Wartości błędów aproksymacji dla 10 i 15 węzłów

Większa liczba węzłów w każdym przypadku dla wybranych m poprawia dokładność aproksymacji. Ma to jednak miejsce tylko do pewnego momentu, później otrzymywane wyniki są do siebie bardzo zbliżone.

Tabela z błędami średniokwadratowymi

Liczba węzłów

m	5	10	15	20	25	30	35	40
3	404.4590	201.9546	204.982	197.8909	197.9326	197.9178	197.9118	197.9065
4	700.7447	244.0448	197.4434	190.3698	190.0269	189.9078	189.8267	189.7668
5		244.0448	197.4434	190.3698	190.0269	189.9078	189.8267	189.7668
6		371.5003	197.1768	189.3974	188.5584	188.5503	188.5424	188.5361
10			457.4556	116.9346	107.0751	105.3827	104.7735	104.3446
11			457.4556	116.9346	107.0751	105.3827	104.7735	104.3446
12			2242.9174	91.3518	87.023	86.9599	86.9433	86.9321
13			2242.9174	91.3518	87.0230	86.9599	86.9433	86.9321
15				950.6755	112.4408	88.5376	85.0682	84.2391
20					65978.0562	3186466.8656	39.0312	153.2187
25						32321281.2362	3428.4843	417.7176

Tabela 7.1.1 Wartości błędów średniokwadratowych dla aproksymacji średniokwadratowej wielomianami algebraicznymi

W tabeli 7.1.2.2 możemy zaobserwować, że dla stopni wielomianów większych od **12** otrzymywane błędy są bardzo do siebie zbliżone lub ewentualnie gorsze.

7.2. Aproksymacja wielomianami trygonometrycznymi

Gdy dokonujemy aproksymacji funkcji okresowej, często lepsze, dokładniejsze rezultaty uzyskamy z pomocą rodziny wielomianów trygonometrycznych. Naszym ciągiem funkcji bazowych będzie:

$$\varphi_i(x) = 1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots, \sin(mx), \cos(mx)$$

Aby problem aproksymacji był dobrze uwarunkowany w przypadku wielomianów trygonometrycznych należy przyjąć następujące ograniczenie:

$$m \le \left| \frac{N-1}{2} \right| \tag{7.2.1}$$

7.2.1. Porównanie aproksymacji ze względu na stopień wielomianu m.

$\bullet \quad N = 20$

Błąd bezwzględny Błąd średniokwadratowy

		•
m=3	33.3901	143.4580
m=4	25.3567	97.1268
m=5	29.9077	94.4257
m=6	28.6236	92.6790
m=7	16.8823	29.9357

Tabela 7.2.1.1 Wartości błędów aproksymacji dla 20 węzłów

Widzimy, że zwiększając stopień wielomianu, rośnie dokładność przybliżenia.

$\bullet \quad N = 50$

	Błąd bezwzględny	Błąd średniokwadratowy
m=12	5.5273	3.8203
m=13	4.9213	3.6309
m=14	2.5720	0.7506
m=18	1.4875	0.1669
m=19	1.4404	0.1582
m=20	1.3845	0.1564

Tabela 7.2.1.2 Wartości błędów aproksymacji dla 50 węzłów

Dla 50 węzłów otrzymujemy już całkiem dobre przybliżenie aproksymowanej funkcji. Możemy zaobserwować, że dalej dla większego stopnia wielomianu uzyskujemy coraz lepsze przybliżenie, jednak od m=18 otrzymywane błędy są bardzo do siebie zbliżone i następuje jedynie nieznaczna poprawa.

7.2.2 Porównanie aproksymacji ze względu na liczbę węzłów N.

•
$$N = 10,20, m = 3,4$$

Błąd bezwzględny Błąd średniokwadratowy

	N=10	N=20	N=10	N=20
m=3	50.2330	33.3901	251.6132	143.4580
m=4	37.0141	25.3567	211.1870	97.1268

Tabela 7.2.2.1Wartości błędów aproksymacji dla 10 i 20 węzłów

Widzimy, że dla większej liczby węzłów, przy tym samym m, dostajemy funkcje dokładniejsze aproksymujące. Jednak podobnie jak w przypadku aproksymacji wielomianami algebraicznymi, ma to miejsce tylko do pewnego momentu. Później otrzymywane wyniki są do siebie bardzo zbliżone.

Tabela z błędami średniokwadratowymi

Liczba węzłów

						•			
m	10	15	25	35	45	55	65	75	100
3	251.61320	153.434731	142.87980	142.87455	142.82950	142.80629	142.79298	142.78466	142.77373
4	211.18704	115.939145	96.285272	96.272294	96.210639	96.179289	96.161270	96.149970	96.135055
5		112.467543	91.199578	91.191288	91.127980	91.095946	91.077567	91.066056	91.050895
7		100.974931	26.455339	26.356101	26.274556	26.231927	26.207420	26.192051	26.171775
12			7.071905	3.938703	3.847045	3.800507	3.773802	3.757046	3.734923
15				0.841904	0.711874	0.664740	0.637737	0.620796	0.598429
18					0.194331	0.146715	0.119659	0.102686	0.080276
20					0.186657	0.136198	0.109139	0.092165	0.069755
23						0.098474	0.071395	0.054418	0.032004
25						0.095565	0.068470	0.051492	0.029078
30							0.068232	0.051252	0.028837

Tabela 7.2.1 Wartości błędów średniokwadratowych dla aproksymacji średniokwadratowej trygonometrycznej

W tabeli 7.2.1 na zielono zaznaczone zostały wyniki uzyskane dla stopnia wielomianu równego 18. Możemy zobaczyć, że zgodnie z wcześniejszymi obserwacjami, dla większego stopnia otrzymujemy już zbliżoną dokładność. Dodatkowo z powyższej tabeli również możemy zaobserwować, że zwiększanie liczby węzłów dla danego stopnia wielomianu, zmniejsza błędy tylko do pewnego momentu i dodatkowo poprawa dokładności jest mniejsza niż jeżeli zmieniamy stopień wielomianu.

7.3. Porównanie aproksymacji średniokwadratowych

Liczba węzłów

m	10	15	25	35	45	55	65	75	100
3	201.95461 0	204.982	197.9326	197.9118	197.9028	197.8980	197.8951	197.8932	197.8906
4	244.04479 2	197.4434	190.0269	189.8267	189.7233	189.6659	189.6309	189.6082	189.5772
5		197.4434	190.0269	189.8267	189.7233	189.6659	189.6309	189.6082	189.5772
7		197.1768	188.5584	188.5424	188.5308	188.5228	188.5173	188.5135	188.5077
12			87.023	86.9433	86.9271	86.9237	86.9228	86.9226	86.9224
15				85.0682	83.9541	83.7544	83.6619	83.5932	83.4626
18					81.8497	72.0295	70.2550	69.7933	69.3835
20					103.5924	35.3469	36.3135	34.4151	43.2462
23						47.7668	57.9604	51.4186	72.0448
25						80.1098	48.0993	136.8626	40.9015
30							70.2704	19.9791	23.8172

Tabela 7.3.1 Wartości błędów średniokwadratowych dla aproksymacji średniokwadratowej wielomianami algebraicznymi

Liczba węzłów

m	10	15	25	35	45	55	65	75	100
3	251.61320	153.434731	142.87980	142.87455	142.82950	142.80629	142.79298	142.78466	142.77373
4	211.18704	115.939145	96.285272	96.272294	96.210639	96.179289	96.161270	96.149970	96.135055
5		112.467543	91.199578	91.191288	91.127980	91.095946	91.077567	91.066056	91.050895
7	_	100.974931	26.455339	26.356101	26.274556	26.231927	26.207420	26.192051	26.171775
12	_		7.071905	3.938703	3.847045	3.800507	3.773802	3.757046	3.734923
15	_			0.841904	0.711874	0.664740	0.637737	0.620796	0.598429
18	_				0.194331	0.146715	0.119659	0.102686	0.080276
20					0.186657	0.136198	0.109139	0.092165	0.069755
23	_					0.098474	0.071395	0.054418	0.032004
25	_					0.095565	0.068470	0.051492	0.029078
30	_						0.068232	0.051252	0.028837

Tabela 7.3.2 Wartości błędów średniokwadratowych dla aproksymacji średniokwadratowej trygonometrycznej

W tabeli 7.3.2 kolorem zielonym zostały zaznaczone wartości, które są mniejsze od wartości w tabeli 7.3.1. Widzimy zatem, że dla zadanej funkcji aproksymacja wielomianami trygonometrycznymi pozwala uzyskać znacznie bardziej dokładne przybliżenie od aproksymacji wielomianami algebraicznymi. Jest tak dlatego, że nasza funkcja jest okresowa i ciągła w zadanym przedziale, dlatego najlepsze przybliżenie uzyskujemy wykorzystując aproksymację wielomianami trygonometrycznymi.

7.4. Obserwacje i wnioski

- Dokładność aproksymacji wzrasta wraz z zwiększaniem się liczby węzłów tylko do pewnego momentu, zależnego od wartości m. Później otrzymywane funkcje są do siebie bardzo zbliżone.
- Wykorzystując aproksymację średniokwadratową wielomianami trygonometrycznymi należy w odpowiedni sposób dobierać liczbę węzłów oraz stopień wielomianu. Nie powinniśmy przekraczać ograniczenia $m \leq \left\lfloor \frac{N-1}{2} \right\rfloor$, ponieważ dostajemy wtedy złe wyniki.
- Od pewnego m zaczynamy dostawać bardzo zbliżone błędy. W przypadku aproksymacji wielomianami algebraicznymi jest to od m = 12, a trygonometrycznymi m = 18.
- Aproksymacja wielomianami trygonometrycznymi zadanej funkcji jest znacznie bardziej dokładna, ponieważ jest ona ciągła i okresowa w zadanym przedziale.