Credit Score EDA Case Study

Problem statement

- To conduct a thorough exploratory data analysis (EDA) and deep analysis of a
 comprehensive dataset containing basic customer details and extensive creditrelated information. The aim is to create new, informative features, calculate a
 hypothetical credit score, and uncover meaningful patterns, anomalies, and insights
 within the data.
- This casestudy expects a deep dive into bank details and credit data, creating
 valuable features, a hypothetical credit score, and uncovering hidden patterns. This
 involves thorough EDA, strategic feature engineering, model-driven score
 calculation, and insightful analysis that reveals factors influencing creditworthiness
 and guides potential risk mitigation strategies.
- Remember, your analysis isn't just about dissecting data but uncovering actionable insights. Create a credit score strategy that you think would be the best and mention your justifications for criteria, weightage for the features

Data Dictionary:

Column Name	Description	
ID	Represents a unique identification of an entry	
Customer_ID	Represents a unique identification of a person	
Month	Represents the month of the year	

Description

Column Name

Column Name	Description
Name	Represents the name of a person
Age	Represents the age of the person
SSN	Represents the social security number of a person
Occupation	Represents the occupation of the person
Annual_Income	Represents the annual income of the person
Monthly_Inhand_Salary	Represents the monthly base salary of a person
Num_Bank_Accounts	Represents the number of bank accounts a person holds
Num_Credit_Card	Represents the number of other credit cards held by a person
Interest_Rate	Represents the interest rate on credit card
Num_of_Loan	Represents the number of loans taken from the bank
Type_of_Loan	Represents the types of loan taken by a person
Delay_from_due_date	Represents the average number of days delayed from the payment date
Num_of_Delayed_Payment	Represents the average number of payments delayed by a person
Changed_Credit_Limit	Represents the percentage change in credit card limit
Num_Credit_Inquiries	Represents the number of credit card inquiries
Credit_Mix	Represents the classification of the mix of credits
Outstanding_Debt	Represents the remaining debt to be paid (in USD)
Credit_Utilization_Ratio	Represents the utilization ratio of credit card
Credit_History_Age	Represents the age of credit history of the person
Payment_of_Min_Amount	Represents whether only the minimum amount was paid by the person
Total_EMI_per_month	Represents the monthly EMI payments (in USD)
Amount_invested_monthly	Represents the monthly amount invested by the customer (in USD)
Payment_Behaviour	Represents the payment behavior of the customer (in USD)
Monthly_Balance	Represents the monthly balance amount of the customer (in USD)

Methodology

Exploratory Data Analysis (EDA):

- Performing a comprehensive EDA to understand the data's structure, characteristics, distributions, and relationships.
- Identified and addressed any missing values, mismatch data types, inconsistencies, or outliers.

- Utilized appropriate visualizations (e.g., histograms, scatter plots, box plots, correlation matrices) to uncover patterns and insights.
 - Feature Engineering:
- Created new features that can be leveraged for the calculation of credit scores based on domain knowledge and insights from EDA
 - Hypothetical Credit Score Calculation:
- Developed a methodology to calculate a hypothetical credit score(kinda CIBIL/FICO ranges from 300-850,900) using relevant features (using a minimum of 5 maximum of 10 features) and justified it.
- Explored various weighting schemes to assign scores.
- Provided a score for each individual customer
 - Also thought about:
- Can credit score and aggregated features be calculated at different time frames like the last 3 months/last 6 months (recency based metrics)
 - Analysis and Insights
- Added valuable insights from EDA and credit score calculation

Importing Libraries and Modules

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
   import re
   from sklearn.preprocessing import MinMaxScaler

import warnings
   warnings.filterwarnings('ignore')
```

Data Wrangling

```
In [2]: pd.set_option('display.max_columns',50)
    pd.set_option('display.max_rows', 50)

In [3]: import gdown
    dataset = 'https://drive.google.com/file/d/1pljm6_3nxcFS9UMIFm124HBsjNZP6ACA/vie
    output = 'data.csv' # You can change the output filename
    gdown.download(url=dataset, output=output, quiet=False, fuzzy=True)
```

Downloading...

From: https://drive.google.com/uc?id=1pljm6_3nxcFS9UMIFm124HBsjNZP6ACA

To: /content/data.csv

100%| 27.4M/27.4M [00:00<00:00, 182MB/s]

Out[3]: 'data.csv'

In [4]: data = pd.read_csv('data.csv')
 data.head(8)

	ua	ca. neau ((0)						
Out[4]:		ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Inc
	0	0x1602	CUS_0xd40	January	Aaron Maashoh	23	821-00-0265	Scientist	191
	1	0x1603	CUS_0xd40	February	Aaron Maashoh	23	821-00-0265	Scientist	191
	2	0x1604	CUS_0xd40	March	Aaron Maashoh	-500	821-00-0265	Scientist	191
	3	0x1605	CUS_0xd40	April	Aaron Maashoh	23	821-00-0265	Scientist	191
	4	0x1606	CUS_0xd40	May	Aaron Maashoh	23	821-00-0265	Scientist	191
	5	0x1607	CUS_0xd40	June	Aaron Maashoh	23	821-00-0265	Scientist	191
	6	0x1608	CUS_0xd40	July	Aaron Maashoh	23	821-00-0265	Scientist	191
	7	0x1609	CUS_0xd40	August	NaN	23	#F%\$D@*&8	Scientist	191
	4								>

```
df = data.copy()
In [6]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 100000 entries, 0 to 99999
       Data columns (total 27 columns):
           Column
                                     Non-Null Count
                                                      Dtype
       0
           TD
                                     100000 non-null
                                                      object
           Customer_ID
                                     100000 non-null object
       1
       2
           Month
                                     100000 non-null object
       3
           Name
                                     90015 non-null
                                                      object
       4
           Age
                                     100000 non-null object
       5
           SSN
                                     100000 non-null object
                                     100000 non-null
           Occupation
                                                      object
       7
           Annual_Income
                                     100000 non-null object
           Monthly_Inhand_Salary
                                     84998 non-null
                                                      float64
           Num_Bank_Accounts
                                     100000 non-null int64
       9
       10 Num_Credit_Card
                                     100000 non-null int64
                                     100000 non-null int64
       11 Interest_Rate
       12 Num_of_Loan
                                     100000 non-null object
       13
           Type_of_Loan
                                     88592 non-null
                                                      object
                                     100000 non-null int64
       14 Delay_from_due_date
       15 Num_of_Delayed_Payment
                                     92998 non-null
                                                      object
       16 Changed_Credit_Limit
                                     100000 non-null object
       17 Num_Credit_Inquiries
                                     98035 non-null
                                                      float64
                                     100000 non-null object
       18 Credit_Mix
       19 Outstanding_Debt
                                     100000 non-null object
       20 Credit_Utilization_Ratio 100000 non-null float64
       21 Credit_History_Age
                                     90970 non-null
                                                      object
       22 Payment_of_Min_Amount
                                     100000 non-null object
       23 Total_EMI_per_month
                                     100000 non-null float64
        24 Amount_invested_monthly
                                     95521 non-null
                                                      object
       25 Payment_Behaviour
                                     100000 non-null
                                                      object
        26 Monthly Balance
                                     98800 non-null
                                                      object
       dtypes: float64(4), int64(4), object(19)
       memory usage: 20.6+ MB
In [7]: df[df.duplicated()]
Out[7]:
          ID Customer_ID Month Name Age SSN Occupation Annual_Income Monthly_Inl
        Insights

    This data has no duplicates.
```

Column wise Cleaning

```
In [8]: categorical_columns = df.select_dtypes(include=['object', 'category']).columns
numerical_columns = df.select_dtypes(include=['number']).columns
In [9]: categorical_columns
```

```
Out[9]: Index(['ID', 'Customer_ID', 'Month', 'Name', 'Age', 'SSN', 'Occupation',
                 'Annual_Income', 'Num_of_Loan', 'Type_of_Loan',
                 'Num_of_Delayed_Payment', 'Changed_Credit_Limit', 'Credit_Mix',
                 'Outstanding_Debt', 'Credit_History_Age', 'Payment_of_Min_Amount',
                 'Amount_invested_monthly', 'Payment_Behaviour', 'Monthly_Balance'],
               dtype='object')
In [10]: numerical_columns
Out[10]: Index(['Monthly_Inhand_Salary', 'Num_Bank_Accounts', 'Num_Credit_Card',
                 'Interest_Rate', 'Delay_from_due_date', 'Num_Credit_Inquiries',
                 'Credit_Utilization_Ratio', 'Total_EMI_per_month'],
               dtype='object')
In [11]:
        df.sample()
Out[11]:
                     ID Customer_ID
                                       Month
                                                  Name Age
                                                                     SSN Occupation Ann
                                                Vladimir
         80825 0x1ef97
                         CUS_0x7233 February
                                                          14 #F%$D@*&8
                                                                              Teacher
                                              Soldatkinp
         Null Detection
```

In [12]: df.isna().sum()

Out[12]:		0
	ID	0
	Customer_ID	0
	Month	0
	Name	9985
	Age	0
	SSN	0
	Occupation	0
	Annual_Income	0
	Monthly_Inhand_Salary	15002
	Num_Bank_Accounts	0
	Num_Credit_Card	0
	Interest_Rate	0
	Num_of_Loan	0
	Type_of_Loan	11408
	Delay_from_due_date	0
	Num_of_Delayed_Payment	7002
	Changed_Credit_Limit	0
	Num_Credit_Inquiries	1965
	Credit_Mix	0
	Outstanding_Debt	0
	Credit_Utilization_Ratio	0
	Credit_History_Age	9030
	Payment_of_Min_Amount	0
	Total_EMI_per_month	0
	Amount_invested_monthly	4479
	Payment_Behaviour	0
	Monthly_Balance	1200

dtype: int64

```
In [14]: plt.figure(figsize=(15,5))
   plt.style.use('dark_background')
   sns.heatmap(df.isnull().T, cmap='Reds')
   plt.title('Visual Check of Nulls',fontsize=20)
   plt.xlabel('Columns',fontsize=15)
   plt.ylabel('Rows',fontsize=15)
```

```
plt.tight_layout()
plt.show()
```


Perfect columns

• The features ID , Customer_ID , and Month exhibited no redundancy in the dataset.

1. Name

Insights

• The Name column contained some null values, which have now been filled.

2. Age

After cleaning feature name is 'age'

```
In [21]: df.Age.nunique()
Out[21]: 1788
In [22]: df.Age.unique()
Out[22]: array(['23', '-500', '28_', ..., '4808_', '2263', '1342'], dtype=object)
In [23]: df.Age.isna().sum()
Out[23]: 0
In [24]: def clean age(value):
             # Replace '-' and non-numeric characters with NaN
             if isinstance(value, str) and not re.match(r'^\d+$', value):
                 return np.nan
             return value
         # Apply cleaning to the 'Age' column
         df['Age'] = df['Age'].apply(clean_age)
         # Convert 'Age' column to numeric, coercing errors to NaN
         df['Age'] = pd.to_numeric(df['Age'], errors='coerce')
         # Fill missing values with mode for each 'Name'
         #df['Age'] = df.groupby('Name')['Age'].transform(Lambda x: x.fillna(x.mode()[0]
In [25]: df.Age.unique() , df.Age.dtype
Out[25]: (array([ 23., nan, 28., ..., 6476., 2263., 1342.]), dtype('float64'))
In [26]: def fill_mode(series):
             mode_value = series.mode()
             if not mode value.empty: ## if mode value is not none: also works
                 return mode value[0]
             # chances of bimodal values here we consider the first value since year of h
             else:
                 return np.nan
In [27]: df['age'] = df.groupby('Customer ID')['Age'].transform(fill mode)
In [28]: df.age.nunique() , df.age.unique() , df.age.dtype
Out[28]: (43,
           array([23., 28., 34., 55., 21., 31., 30., 44., 40., 33., 35., 39., 37.,
                  20., 46., 26., 41., 32., 48., 43., 22., 36., 16., 18., 42., 19.,
                  15., 27., 38., 14., 25., 45., 47., 17., 53., 24., 54., 29., 49.,
                  51., 50., 52., 56.]),
           dtype('float64'))
In [29]: df['age'] = df['age'].astype(int)
In [30]: df.age.min() , df.age.max()
Out[30]: (14, 56)
In [31]: df['age'] = df['age'].astype(int)
```

```
In [32]: df.groupby(['Customer_ID','Name'])['Age'].unique()
```

Out[32]: Age

Customer_ID	Name	
CUS_0x1000	Alistair Barrf	[17.0, nan, 18.0]
CUS_0x1009	Arunah	[25.0, 26.0]
CUS_0x100b	Shirboni	[18.0, 19.0]
CUS_0x1011	Schneyerh	[nan, 44.0]
CUS_0x1013	Cameront	[43.0, 44.0, nan]
•••	•••	•••
CUS_0xff3	Somervilled	[55.0]
CUS_0xff4	Poornimaf	[36.0, nan, 37.0]
CUS_0xff6	Shieldsb	[18.0, 19.0]
CUS_0xffc	Brads	[17.0, 18.0]
CUS_0xffd	Damouniq	[29.0, nan, 30.0]

12500 rows × 1 columns

dtype: object

```
In [33]: df.groupby(['Customer_ID','Name'])['age'].unique()
```

Out[33]: age

Customer_ID	Name	
CUS_0x1000	Alistair Barrf	[17]
CUS_0x1009	Arunah	[26]
CUS_0x100b	Shirboni	[18]
CUS_0x1011	Schneyerh	[44]
CUS_0x1013	Cameront	[44]
•••	•••	
CUS_0xff3	Somervilled	[55]
CUS_0xff4	Poornimaf	[37]
CUS_0xff6	Shieldsb	[19]
CUS_0xffc	Brads	[17]
CUS_0xffd	Damouniq	[29]

12500 rows × 1 columns

dtype: object

```
In [34]: df.age.isna().sum()
Out[34]: 0
In [35]: df.drop(columns=['Age'],inplace=True)
```

Insights

- The Age feature contained many null and irrelevant values that were affecting the data type. These were addressed by filling in missing values with the most frequent mode. In cases where the mode was bimodal, the first mode value was used.
- The treated feature is age and original messed feature has been dropped.

3. Social-Security-Number

```
In [36]: df.sample(3)
```

```
Out[36]:
                     ID Customer_ID
                                       Month
                                               Name SSN
                                                            Occupation Annual_Income Mo
                                                      313-
                                                Paul
                                                                             136680.12
           5697 0x3763
                           CUS 0x541 February
                                                       45-
                                                                 Writer
                                              Carrels
                                                      4006
                                                      745-
          14070 0x6870
                          CUS_0x1f8c
                                                      18-
                                         July Dolanl
                                                               Musician
                                                                             106418.67
                                                      8559
                                                      273-
          45227 0x11f01 CUS_0x5128
                                       April Moonz
                                                       66- Entrepreneur
                                                                             36471.78
                                                      6843
         df.SSN.dtype
In [37]:
Out[37]: dtype('0')
In [38]: df.SSN.nunique()
Out[38]: 12501
In [39]:
         df[df.SSN=='#F%$D@*&8']['SSN'].count()
Out[39]: 5572
In [40]: df['SSN'] = df['SSN'].replace(['#F%$D@*&8'], np.nan)
In [41]: df['SSN'].isna().sum()
Out[41]: 5572
In [42]: df['SSN'] = df.groupby('Customer_ID')['SSN'].ffill()
         df['SSN'] = df.groupby('Customer_ID')['SSN'].bfill()
In [43]: df['SSN'].isna().sum()
Out[43]: 0
In [44]: df[df['Name']=='Clara Ferreira-Marquesi']
```

Out[44]:

	ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	Мо
1008	0x1bea	CUS_0x3fbf	January	Clara Ferreira- Marquesi	646- 12- 1414	Accountant	27796.42_	
1009	0x1beb	CUS_0x3fbf	February	Clara Ferreira- Marquesi	646- 12- 1414	Accountant	27796.42	
1010	0x1bec	CUS_0x3fbf	March	Clara Ferreira- Marquesi	646- 12- 1414	Accountant	27796.42	
1011	0x1bed	CUS_0x3fbf	April	Clara Ferreira- Marquesi	646- 12- 1414		27796.42	
1012	0x1bee	CUS_0x3fbf	May	Clara Ferreira- Marquesi	646- 12- 1414	Accountant	27796.42	
1013	0x1bef	CUS_0x3fbf	June	Clara Ferreira- Marquesi	646- 12- 1414	Accountant	27796.42	
1014	0x1bf0	CUS_0x3fbf	July	Clara Ferreira- Marquesi	646- 12- 1414	Accountant	27796.42	
1015	0x1bf1	CUS_0x3fbf	August	Clara Ferreira- Marquesi	646- 12- 1414	Accountant	27796.42	
4								•

Insights

• The SSN (social security Number) column had some Irrevalant data and it has been treated.

4. Occupation

• The Occupation had some irrelavant data and it removed and replaced with relavant values.

5. Annual Income

```
In [52]: df.sample()
Out[52]:
                     ID Customer_ID Month Name SSN Occupation Annual_Income Mont
                                                    871-
         48323 0x13125
                          CUS 0x51fe
                                                C.i
                                                    93-
                                                            Developer
                                                                            31752.1
                                        April
                                                    0711
In [53]: df.Annual_Income.dtype
Out[53]: dtype('0')
In [54]: # Replace underscores with NaN in the Annual Income column
         df['Annual Income'] = df['Annual Income'].replace(r' ', np.nan, regex=True)
         # Convert the column to numeric, coercing errors to NaN
         df['Annual Income'] = pd.to numeric(df['Annual Income'], errors='coerce')
In [55]: | df['Annual_Income'] = df.groupby('Customer_ID')['Annual_Income'].ffill()
         df['Annual Income'] = df.groupby('Customer ID')['Annual Income'].bfill()
In [56]: df.Annual_Income.dtype
Out[56]: dtype('float64')
In [57]: df.Annual Income.nunique() , df.Annual Income.unique()
```

```
Out[57]:
          (13437,
            array([ 19114.12, 34847.84, 143162.64, ..., 37188.1,
                                                                          20002.88,
                    39628.99]))
          df[df['Customer_ID']=='CUS_0x4c96']
In [58]:
Out[58]:
                           Customer_ID
                                                                  Occupation Annual_Income
                       ID
                                           Month
                                                     Name
                                                            SSN
                                                            961-
                                                      Ann
          45744 0x1220a
                             CUS_0x4c96
                                          January
                                                                      Teacher
                                                                                     99868.83
                                                             65-
                                                   Saphirw
                                                            0909
                                                            961-
                                                      Ann
          45745 0x1220b
                             CUS 0x4c96 February
                                                             65-
                                                                      Teacher
                                                                                     99868.83
                                                   Saphirw
                                                            0909
                                                            961-
                                                      Ann
          45746 0x1220c
                             CUS_0x4c96
                                                                                     99868.83
                                           March
                                                             65-
                                                                      Teacher
                                                   Saphirw
                                                            0909
                                                            961-
                                                      Ann
          45747 0x1220d
                             CUS 0x4c96
                                             April
                                                             65-
                                                                      Teacher
                                                                                     99868.83
                                                   Saphirw
                                                            0909
                                                            961-
                                                      Ann
          45748 0x1220e
                             CUS_0x4c96
                                                                      Teacher
                                                                                     99868.83
                                             May
                                                             65-
                                                   Saphirw
                                                            0909
                                                            961-
                                                      Ann
                                             June
          45749
                  0x1220f
                             CUS_0x4c96
                                                             65-
                                                                      Teacher
                                                                                     99868.83
                                                   Saphirw
                                                            0909
                                                            961-
                                                      Ann
          45750 0x12210
                             CUS_0x4c96
                                                                      Teacher
                                                                                     99868.83
                                              July
                                                             65-
                                                   Saphirw
                                                            0909
                                                            961-
                                                      Ann
          45751 0x12211
                             CUS_0x4c96
                                           August
                                                             65-
                                                                      Teacher
                                                                                     99868.83
                                                   Saphirw
                                                            0909
```

• The Annual_Income feature, initially in object datatype with some irrelevant data, has been cleaned and converted to the appropriate numeric format.

6. Monthly_Inhand_Salary

In [59]: df['Monthly_Inhand_Salary'].dtype

```
Out[59]: dtype('float64')
In [60]: df['Monthly_Inhand_Salary'].isna().sum()
Out[60]: 15002
In [61]: df['Monthly_Inhand_Salary'] = df.groupby('Customer_ID')['Monthly_Inhand_Salary']
df['Monthly_Inhand_Salary'] = df.groupby('Customer_ID')['Monthly_Inhand_Salary']
In [62]: df['Monthly_Inhand_Salary'].isna().sum()
Out[62]: 0
In [63]: df.head(8)
```

Out[63]:		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	Monthl
	0	0x1602	CUS_0xd40	January	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	1	0x1603	CUS_0xd40	February	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	2	0x1604	CUS_0xd40	March	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	3	0x1605	CUS_0xd40	April	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	4	0x1606	CUS_0xd40	Мау	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	5	0x1607	CUS_0xd40	June	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	6	0x1608	CUS_0xd40	July	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	7	0x1609	CUS_0xd40	August	Aaron Maashoh	821- 00- 0265	Scientist	19114.12	
	4								>

• The feature Monthly_Inhand_Salary had some null values and it has been filled with the appropriate values.

7. Num_Bank_Accounts

```
In [64]: df.Num_Bank_Accounts.dtype
Out[64]: dtype('int64')
In [65]: df.Num_Bank_Accounts.isna().sum()
Out[65]: 0
In [66]: df.Num_Bank_Accounts.nunique()
Out[66]: 943
In [67]: df['Num_Bank_Accounts'] = df['Num_Bank_Accounts'].replace(-1,0)
In [68]: df['Num_Bank_Acc'] = df.groupby('Customer_ID')['Num_Bank_Accounts'].transform(fi
In [69]: df[df['Name']=='Thomass'][['SSN','Name','Month','Num_Bank_Accounts','Num_Bank_Accounts'].
```

01	ut	: [6	9	1	:
		-			-	

	SSN	Name	Month	Num_Bank_Accounts	Num_Bank_Acc
9488	739-35-4103	Thomass	January	5	5
9489	739-35-4103	Thomass	February	5	5
9490	739-35-4103	Thomass	March	5	5
9491	739-35-4103	Thomass	April	5	5
9492	739-35-4103	Thomass	May	5	5
9493	739-35-4103	Thomass	June	5	5
9494	739-35-4103	Thomass	July	5	5
9495	739-35-4103	Thomass	August	5	5
56728	733-72-3818	Thomass	January	6	6
56729	733-72-3818	Thomass	February	6	6
56730	733-72-3818	Thomass	March	6	6
56731	733-72-3818	Thomass	April	6	6
56732	733-72-3818	Thomass	May	6	6
56733	733-72-3818	Thomass	June	1318	6
56734	733-72-3818	Thomass	July	6	6
56735	733-72-3818	Thomass	August	6	6
72368	825-63-0662	Thomass	January	8	8
72369	825-63-0662	Thomass	February	8	8
72370	825-63-0662	Thomass	March	8	8
72371	825-63-0662	Thomass	April	8	8
72372	825-63-0662	Thomass	May	8	8
72373	825-63-0662	Thomass	June	8	8
72374	825-63-0662	Thomass	July	8	8
72375	825-63-0662	Thomass	August	8	8

```
In [70]: df['Num_Bank_Acc'].min() , df['Num_Bank_Acc'].max()
Out[70]: (0, 10)
```

In [71]: df.drop(columns=['Num_Bank_Accounts'],inplace=True)

Insight

- The feature Num_Bank_Accounts had many irrelavant data and those have been filled with appropriate values.
- The New feature named Num_Bank_Acc was created

8. Num_Credit_Card

In [72]:	df.sam	ple(3)						
Out[72]:		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income
	19614	0x88ec	CUS_0xbabe	July	Sineadf	547- 62- 1545	Mechanic	19966.510
	77861	0x1de37	CUS_0x72f3	June	Nick Brownl	054- 62- 4543	Media_Manager	95111.100
	68753	0x1a8db	CUS_0x26eb	February	Jessica Toonkeld	070- 52- 7651	Mechanic	13999.185
	4							•
In [73]:	df['Nui	m_Credit_	Card'].dtype					
Out[73]:	dtype('int64')						
In [74]:	df['Nui	m_Credit_	Card'].isna()	.sum()				
Out[74]:	0							
In [75]:	df['Nui	m_Credit_	Card'].nuniqu	ıe() , df	'Num_Cred	lit_Ca	rd'].unique()	
Out[75]:	(1179,	array([4, 1385,	5,,	955, 143	30, 6	79]))	
In [76]:	df['No	_of_Credi	t_Card'] = df	groupby	('Customer	_ID')	['Num_Credit_Ca	rd'].transform
In [77]:	df[df.	Name=='Do	lano']					

Out[77]:		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	M
	66464	0x19b72	CUS_0x7666	January	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	66465	0x19b73	CUS_0x7666	February	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	66466	0x19b74	CUS_0x7666	March	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	66467	0x19b75	CUS_0x7666	April	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	66468	0x19b76	CUS_0x7666	May	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	66469	0x19b77	CUS_0x7666	June	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	66470	0x19b78	CUS_0x7666	July	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	66471	0x19b79	CUS_0x7666	August	Dolano	922- 59- 5950	Entrepreneur	113284.84	
	4								•
In [78]:	df.dro	p(columns	=['Num_Credit	Card'],i	inplace=	True)			
In [79]:	df.No_	of_Credit	_Card.dtype ,	df.No_o	f_Credit	_Card.	nunique(),	df.No_of_Credit	_Ca
Out[79]:	(dtype	('int64')	, 12, array([4, 5,	1, 7,	6, 8	3, 3, 9, 2	2, 10, 11, 0]))	
In [80]:	df.No_	of_Credit	_Card.min() ,	df.No_o	f_Credit	_Card.	max()		

```
Out[80]: (0, 11)
In [81]:
         df.sample()
Out[81]:
                    ID Customer_ID Month
                                              Name
                                                     SSN
                                                              Occupation Annual_Income M
                                                     340-
          18822 0x8448
                         CUS_0x8cc9
                                                      05-
                                        July Cezaryy
                                                          Media_Manager
                                                                               8953.055
                                                     3601
                                                                                        •
```

- The feature Num_Credit_Card had many irrelavant data and it has been filled with appropriate values.
- New feature No_of_Credit_Card has created with perfect values.

9. Interest_Rate

```
In [82]: df.Interest_Rate.dtype , df.Interest_Rate.nunique() , df.Interest_Rate.unique()
Out[82]: (dtype('int64'), 1750, array([  3,  6,  8, ..., 1347, 387, 5729]))
In [83]: df.Interest_Rate.isna().sum()
Out[83]: 0
In [84]: df['interest_rate'] = df.groupby('Customer_ID')['Interest_Rate'].transform(fill_
In [85]: df[df.Name=='Anna Yukhananovd']
```

Out[85]:		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income		
	23512	0x9fc6	CUS_0x2fab	January	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	23513	0x9fc7	CUS_0x2fab	February	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	23514	0x9fc8	CUS_0x2fab	March	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	23515	0x9fc9	CUS_0x2fab	April	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	23516	0x9fca	CUS_0x2fab	May	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	23517	0x9fcb	CUS_0x2fab	June	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	23518	0x9fcc	CUS_0x2fab	July	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	23519	0x9fcd	CUS_0x2fab	August	Anna Yukhananovd	411- 00- 6543	Manager	75804.94		
	4							>		
In [86]:	df['in	terest_r	rate'].min()	, df['int	erest_rate'].	max()				
Out[86]:	(1, 34)									
In [87]:	<pre>df.drop(columns=['Interest_Rate'],inplace=True)</pre>									
In [88]:]: df.sample(3)									

Out[88]:		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	ı
	3428	0x2a16	CUS_0x4d26	May	Solarinam	133- 18- 6855	Architect	20978.49	
	67554	0x1a1d4	CUS_0xb0f5	March	Freilichi	203- 26- 1160	Mechanic	20730.55	
	1953	0x2173	CUS_0x4eb4	February	Michael Avokf	955- 76- 5444	Journalist	30197.28	
	4							•	

- The feature Interest_Rate had many irrelavant data and those have been filled with appropriate values.
- The New feature named interest_rate was created

10.Num_of_Loan

In [89]: df.Num_of_Loan.dtype , df.Num_of_Loan.nunique() , df.Num_of_Loan.unique()

```
Out[89]: (dtype('0'),
           434,
           array(['4', '1', '3', '967', '-100', '0', '0_', '2', '3_', '2_', '7', '5',
                   '5_', '6', '8', '8_', '9', '9_', '4_', '7_', '1_',
                                                                        '1464', '6_',
                   '622', '352', '472', '1017', '945', '146',
                                                                '563',
                                                                       '341', '444',
                   '720', '1485', '49', '737', '1106', '466', '728', '313', '843'
                   '597_', '617', '119', '663', '640', '92_', '1019', '501', '1302',
                   '39', '716', '848', '931', '1214', '186', '424', '1001', '1110',
                   '1152', '457', '1433', '1187', '52', '1480', '1047', '1035',
                          ', '33', '193', '699', '329', '1451', '484', '132', '649',
                          '545', '684', '1135', '1094', '1204', '654',
                                                                        , '58', '348',
                   '614', '1363', '323', '1406', '1348', '430', '153', '1461', '905',
                   '1312', '1424', '1154', '95', '1353', '1228', '819', '1006', '795',
                   '359', '1209', '590', '696', '1185_', '1465', '911', '1181', '70',
                   '816', '1369', '143', '1416', '455', '55', '1096', '1474', '420',
                   '1131', '904', '89', '1259', '527', '1241', '449', '983', '418',
                   '319', '23', '238', '638', '138', '235_', '280', '1070', '1484',
                   '274', '494', '1459_', '404', '1354', '1495', '1391', '601',
                   '1313', '1319', '898', '231', '752', '174', '961', '1046', '834',
                   '284', '438', '288', '1463', '1151', '719', '198', '1015', '855',
                   '841', '392', '1444', '103', '1320_', '745', '172', '252', '630_',
                   '241', '31', '405', '1217', '1030', '1257', '137', '157', '164',
                   '1088', '1236', '777', '1048', '613', '330', '1439', '321', '661',
                   '952', '939', '562', '1202', '302', '943', '394', '955', '1318',
                   '936', '781', '100', '1329', '1365', '860', '217', '191', '32',
                   '282', '351', '1387', '757', '416', '833', '359_', '292', '1225_', '1227', '639', '859', '243', '267', '510', '332', '996', '597',
                   '311', '492', '820', '336', '123', '540', '131_', '1311_'
                   '895', '891', '50', '940', '935', '596', '29', '1182', '1129_',
                   '1014', '251', '365', '291', '1447', '742', '1085', '148', '462',
                   '832', '881', '1225', '1412', '785_', '1127', '910', '538', '999',
                   '733', '101', '237', '87', '659', '633', '387', '447',
                                                                           , '629'
                   '831', '1384', '773', '621', '1419', '289', '143_', '285', '1393',
                   '1131_', '27_', '1359', '1482', '1189', '1294', '201', '579',
                   '814', '141', '1320', '581', '1171_', '295', '290', '433', '679',
                   '1040', '1054', '1430', '1023', '1077', '1457', '1150', '701',
                   '1382', '889', '437', '372', '1222', '126', '1159', '868', '19',
                   '1297', '227_', '190', '809', '1216', '1074', '571', '520', '1274',
                   '1340', '991', '316', '697', '926', '873', '1002', '378_'
                   '875', '867', '548', '652', '1372', '606', '1036', '1300', '17',
                   '1178', '802', '1219_', '1271', '1137', '1496', '439', '196',
                   '636', '192', '228', '1053', '229', '753', '1296', '1371', '254',
                   '863', '464', '515', '838', '1160', '1289', '1298', '799', '182', '574', '527_', '242', '415', '869', '958', '54', '1265', '656',
                   '275', '778', '208', '147', '350', '507', '463', '497', '1129',
                   '927', '653', '662', '529', '635', '1027_', '897', '1039', '227'
                   '1345', '924', '696_', '1279', '546', '1112', '1210', '526', '300',
                   '1103', '504', '136', '1400', '78', '686', '1091', '344', '215',
                   '84', '628', '1470', '968', '1478', '83', '1196', '1307', '1132_'
                   '1008', '917', '657', '56', '18', '41', '801', '978', '216', '349',
                   '966'l, dtype=object))
In [90]: def calculate num of loans(type of loan):
              if pd.isna(type_of_loan) or type_of_loan.strip() == "":
                  return 0
              else:
                  return len(type of loan.split(','))
In [91]: | df['Num_of_Loan'] = df['Type_of_Loan'].apply(calculate_num_of_loans)
```

```
In [92]: df['Num_of_Loan'].isna().sum()
Out[92]: 0
In [93]: df['Num_of_Loan'].nunique() , df['Num_of_Loan'].unique()
Out[93]: (10, array([4, 1, 3, 0, 2, 7, 5, 6, 8, 9]))
In [94]: df['Num_of_Loan'].min() , df['Num_of_Loan'].max()
Out[94]: (0, 9)
In [95]: df[df.Name=='Barri']
```

Out[95]:

	ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	Mor
59096	0x17046	CUS_0x44e9	January	Barri	482- 45- 6373	Architect	19656.96	
59097	0x17047	CUS_0x44e9	February	Barri	482- 45- 6373	Architect	19656.96	
59098	0x17048	CUS_0x44e9	March	Barri	482- 45- 6373	Architect	19656.96	
59099	0x17049	CUS_0x44e9	April	Barri	482- 45- 6373	Architect	19656.96	
59100	0x1704a	CUS_0x44e9	May	Barri	482- 45- 6373	Architect	19656.96	
59101	0x1704b	CUS_0x44e9	June	Barri	482- 45- 6373	Architect	19656.96	
59102	0x1704c	CUS_0x44e9	July	Barri	482- 45- 6373	Architect	19656.96	
59103	0x1704d	CUS_0x44e9	August	Barri	482- 45- 6373	Architect	19656.96	
63560	0x18a6e	CUS_0xb47f	January	Barri	429- 78- 0806	Scientist	30773.87	
63561	0x18a6f	CUS_0xb47f	February	Barri	429- 78- 0806	Scientist	30773.87	
63562	0x18a70	CUS_0xb47f	March	Barri	429- 78- 0806	Scientist	30773.87	
63563	0x18a71	CUS_0xb47f	April	Barri	429- 78- 0806	Scientist	30773.87	

	ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	noM
63564	0x18a72	CUS_0xb47f	May	Barri	429- 78- 0806	Scientist	30773.87	
63565	0x18a73	CUS_0xb47f	June	Barri	429- 78- 0806	Scientist	30773.87	
63566	0x18a74	CUS_0xb47f	July	Barri	429- 78- 0806	Scientist	30773.87	
63567	0x18a75	CUS_0xb47f	August	Barri	429- 78- 0806	Scientist	30773.87	

• The feature Num_of_Loan had many irrelavant data and those have been filled with appropriate values of length of the Type_of_Loan.

11. Type_of_Loan

```
In [96]: df.Type_of_Loan.dtype ,df.Type_of_Loan.isna().sum()
Out[96]: (dtype('0'), 11408)
In [97]:
         df.Type_of_Loan.nunique() , df.Type_of_Loan.unique()
Out[97]: (6260,
           array(['Auto Loan, Credit-Builder Loan, Personal Loan, and Home Equity Loan',
                  'Credit-Builder Loan', 'Auto Loan, Auto Loan, and Not Specified',
                  ..., 'Home Equity Loan, Auto Loan, Auto Loan, and Auto Loan',
                  'Payday Loan, Student Loan, Mortgage Loan, and Not Specified',
                  'Personal Loan, Auto Loan, Mortgage Loan, Student Loan, and Student Loa
          n'],
                 dtype=object))
In [98]:
         df.Type_of_Loan.isna().sum()
Out[98]: 11408
In [99]: df[df.Type of Loan.isna()].sample(10)
```

Out[99]:		ID	${\bf Customer_ID}$	Month	Name	SSN	Occupation	Annual_Inc		
	48504	0x13236	CUS_0x6ae2	January	Kyleq	875- 53- 5736	Writer	3757		
	19301	0x8717	CUS_0x5aa2	June	Badawym	121- 25- 0802	Entrepreneur	6378		
	66579	0x19c1d	CUS_0x8a3f	April	Soyoungh	108- 22- 7256	Architect	3947		
	25238	0xa9e0	CUS_0x2513	July	Leikav	470- 35- 3931	Architect	13199		
	38813	0xf96b	CUS_0x7d3b	June	Ryang	582- 95- 6911	Musician	7114		
	33937	0xdcdb	CUS_0x44e0	February	Sarah N.t	663- 26- 0839	Musician	9142		
	24777	0xa72f	CUS_0x657e	February	Caroline Valetkevitchp	945- 22- 8389	Media_Manager	5592		
	78150	0x1dfe8	CUS_0x8acd	July	Janeman Latuld	307- 29- 0236	Engineer	4560		
	65423	0x19555	CUS_0xdc8	August	Jim Finkleu	362- 50- 3134	Doctor	2816		
	69767	0x1aec9	CUS_0x47ed	August	Rujun Shent	157- 48- 1855	Writer	12752		
	4							•		
In [100	df[df.	Type_of_L	oan.isna()][ˈ	'Num_of_L	oan'].unique(
Out[100	array([0])									
In [101	df['Ty	pe_of_Loa	n'] = df['Тур	oe_of_Loa	n'].fillna('N	lo loar	n taken')			
In [102	<pre>df[df['Name']=='Stempelp'][['Name','SSN','Occupation','Num_of_Loan','Type_of_Loa</pre>									

Out[102...

	Name	SSN	Occupation	Num_of_Loan	Type_of_Loan	interest_rate
512	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
513	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
514	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
515	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
516	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
517	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
518	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
519	Stempelp	878- 90- 6321	Scientist	7	Student Loan, Student Loan, Student Loan, Debt	5
5336	Stempelp	049- 48- 0823	Media_Manager	3	Debt Consolidation Loan, Payday Loan, and Mort	11
5337	Stempelp	049- 48- 0823	Media_Manager	3	Debt Consolidation Loan, Payday Loan, and Mort	11
5338	Stempelp	049- 48- 0823	Media_Manager	3	Debt Consolidation Loan, Payday Loan, and Mort	11
5339	Stempelp	049- 48-	Media_Manager	3	Debt Consolidation	11

	Name	SSN	Occupation	Num_of_Loan	Type_of_Loan	interest_rate
		0823			Loan, Payday Loan, and Mort	
5340	Stempelp	049- 48- 0823	Media_Manager	3	Debt Consolidation Loan, Payday Loan, and Mort	11
5341	Stempelp	049- 48- 0823	Media_Manager	3	Debt Consolidation Loan, Payday Loan, and Mort	11
5342	Stempelp	049- 48- 0823	Media_Manager	3	Debt Consolidation Loan, Payday Loan, and Mort	11
5343	Stempelp	049- 48- 0823	Media_Manager	3	Debt Consolidation Loan, Payday Loan, and Mort	11
93696	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7
93697	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7
93698	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7
93699	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7
93700	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7
93701	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7
93702	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7
93703	Stempelp	027- 76- 6435	Accountant	2	Personal Loan, and Not Specified	7

Type_of_Loan

Type_of_Loan	
No loan taken	11408
Not Specified	1408
Credit-Builder Loan	1280
Personal Loan	1272
Debt Consolidation Loan	1264
Student Loan	1240
Payday Loan	1200
Mortgage Loan	1176
Auto Loan	1152
Home Equity Loan	1136
Personal Loan, and Student Loan	320
Not Specified, and Payday Loan	272

Insights

• Null values in Type_of_Loan has been filled 'No loan taken'.

12. Delay_from_due_date

```
In [104...
          df['Delay_from_due_date'].isna().sum()
Out[104...
In [105...
           df[df['Delay_from_due_date']<0]['Customer_ID'].count()</pre>
Out[105...
           591
           df.loc[df['Delay_from_due_date'] < 0, 'Delay_from_due_date'] = 0</pre>
In [106...
In [107...
          df['delay from due date'] = df.groupby('Customer ID')['Delay from due date'].tra
In [108...
           df['Delay_from_due_date'].nunique() , df['Delay_from_due_date'].unique()
Out[108...
           (68,
            array([ 3, 0, 5, 6, 8, 7, 13, 10, 4, 9, 1, 12, 11, 30, 31, 34, 27,
                   14, 2, 16, 17, 15, 23, 22, 21, 18, 19, 52, 51, 48, 53, 26, 43, 28,
                   25, 20, 47, 46, 49, 24, 61, 29, 50, 58, 45, 59, 55, 56, 57, 54, 62,
                   65, 64, 67, 36, 41, 33, 32, 39, 44, 42, 60, 35, 38, 63, 40, 37, 66]))
In [109...
          df['delay_from_due_date'].nunique() , df['delay_from_due_date'].unique()
```

```
Out[109...
           (63,
            array([ 3, 8, 5, 0, 30, 11, 16, 4, 10, 23, 18, 51, 48, 25, 22, 52, 61,
                   31, 53, 14, 17, 7, 49, 6, 13, 12, 59, 2, 20, 27, 57, 62, 15, 54,
                   50, 41, 19, 24, 29, 1, 36, 9, 46, 60, 26, 33, 34, 28, 35, 38, 21,
                   45, 42, 40, 47, 55, 32, 44, 39, 37, 43, 58, 56]))
In [110...
          df['Delay_from_due_date'].min() , df['Delay_from_due_date'].max()
Out[110...
           (0, 67)
In [111...
          df['delay_from_due_date'].min() , df['delay_from_due_date'].max()
Out[111...
           (0, 62)
In [112...
           df.sample(3)
Out[112...
                       ID Customer ID Month
                                                   Name
                                                          SSN
                                                                   Occupation Annual Income
                                                          255-
           77181 0x1da3b
                            CUS_0x8ddb
                                                 Josephe
                                                           39-
                                                                Media_Manager
                                                                                     55762.11
                                          June
                                                          8777
                                                          507-
                                                   Smith
           72367 0x1be05
                            CUS_0xba4c August
                                                           44-
                                                                        Lawyer
                                                                                     81418.74
                                                Douglasp
                                                          8168
                                                          055-
           27847
                            CUS_0x62b7 August
                                                    Timz
                                                           47-
                                                                      Musician
                                                                                     41811.51
                   0xb929
                                                          7711
In [113...
           df.drop(columns=['Delay from due date'],inplace=True)
```

- Values less than 0 in Delay from due date have been replaced with 'Zero'.
- On a holistic view, considering the average number of days of delayed payments, the mode has been deemed the most appropriate measure.
- The range of delayed payment intervals spans from 0 days to 62 days.

13. Num of Delayed Payment

```
In [114... df.Num_of_Delayed_Payment.dtype , df.Num_of_Delayed_Payment.isna().sum()
Out[114... (dtype('0'), 7002)
In [115... df['Num_of_Delayed_Payment'] = df['Num_of_Delayed_Payment'].replace({'-': np.nan df['Num_of_Delayed_Payment'] = pd.to_numeric(df['Num_of_Delayed_Payment'], error
In [116... df.Num_of_Delayed_Payment.dtype , df.Num_of_Delayed_Payment.isna().sum()
```

```
(dtype('float64'), 10368)
Out[116...
          df['No_of_delayed_payment'] = df.groupby('Customer_ID')['Num_of_Delayed_Payment']
In [117...
In [118...
          df.Num_of_Delayed_Payment.nunique() , df.Num_of_Delayed_Payment.min() , df.Num_c
Out[118...
          (695, 0.0, 4397.0)
          df.No_of_delayed_payment.nunique() , df.No_of_delayed_payment.min() , df.No_of_d
In Γ119...
Out[119...
         (29, 0.0, 28.0)
          df.drop(columns=['Num of Delayed Payment'],inplace=True)
In [120...
In [121...
          df['No_of_delayed_payment'] = df['No_of_delayed_payment'].astype(int)
```

- Irrelavant Values Num_of_Delayed_Payment have been replaced with 'Nulls'.
- On a holistic view, considering the average number of delayed payments, the mode has been deemed the most appropriate measure.
- The range of No_of_delayed_payment intervals spans from 0 days to 28 payments on an average.

14. Changed_Credit_Limit

• Represents the percentage change in credit card limit

In [122	df.sam	ole(3)							
Out[122		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	
	69452	0x1acf2	CUS_0x8fbb	May	Aungb	792- 39- 3438	Developer	36984.76	
	3158	0x2880	CUS_0x683	July	LaCaprad	680- 24- 2269	Media_Manager	13603.41	
	47885	0x12e93	CUS_0x56cf	June	Henrye	310- 05- 9951	Developer	29960.97	
	4							>	
In [123	df.Cha	nged_Cred	it_Limit.dtyp	e					
Out[123	dtype('0')								
In [124	_			_		_	mit'].replace(' nged_Credit_Lim	_',np.nan) it'],errors='co	

- Irrelavant Values in Changed_Credit_Limit have been replaced with 'Nulls' and treated by filling the values.
- For percentage changes, it's quite common to have negative values. A negative percentage indicates a decrease in the credit card limit, while a positive percentage indicates an increase.

Here's a quick overview of what the range of -6.49 to 36.97 could represent:

- Negative Values (-6.49 to 0): This range indicates a decrease in the credit card limit. For example, a value of -0.01 could mean a decrease of 1% in the credit limit.
- **Positive Values (0 to 36.97)**: This range indicates an increase in the credit card limit. For example, a value of 36.97 could mean an increase of 36.97% in the credit limit.
- The range -6.49 to 36.97 suggests that the changes span from a small decrease to a significant increase in credit card limits.

15. Num_Credit_Inquiries

			_					
[128	df.sam	ple(3)						
[128		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income
	89091	0x22005	CUS_0x8cf2	April	Jason Langex	260- 53- 2581	Lawyer	35572.08
	67292	0x1a04a	CUS_0x4812	May	Edwardst	172- 25- 8187	Accountant	106790.32
	83375	0x1fe85	CUS_0x4b5d	August	Jacobse	457- 76- 4147	Media_Manager	134499.84
	4							

```
In [129...
           df.Num Credit Inquiries.dtype , df.Num Credit Inquiries.isna().sum()
Out[129...
           (dtype('float64'), 1965)
In [130...
           df['No_of_credit_inquiries'] = df.groupby('Customer_ID')['Num_Credit_Inquiries']
In [131...
           df.No_of_credit_inquiries.dtype , df.No_of_credit_inquiries.isna().sum()
Out[131...
           (dtype('float64'), 0)
           df['No_of_credit_inquiries'] = df['No_of_credit_inquiries'].astype(int)
In [132...
In [133...
           df.No_of_credit_inquiries.min() , df.No_of_credit_inquiries.max()
Out[133...
           (0, 17)
In [134...
           df[df.No_of_credit_inquiries==17].sample(3)
Out[134...
                            Customer_ID Month
                                                    Name
                                                           SSN
                                                                 Occupation Annual_Income
                                                           775-
            6822
                    0x3df8
                             CUS_0x7943
                                                    Robinr
                                                            20-
                                                                                 10041990.00
                                            July
                                                                      Lawyer
                                                           0390
                                                           513-
                                                  "Michael
           85581 0x20b73
                             CUS 0x365f
                                           June
                                                            84-
                                                                   Mechanic
                                                                                    19250.71
                                                 OBoyle"v
                                                           3765
                                                           015-
                                                    Karen
                                                                   Journalist
           42414 0x10e84
                             CUS 0xbaee
                                            July
                                                            50-
                                                                                    66349.96
                                                  Freifelds
                                                           7138
In [135...
           df.drop(columns=['Num_Credit_Inquiries'],inplace=True)
```

- Irrelavant Values Num_Credit_Inquiries have been filled with the mode in new feature called No_of_credit_inquiries , which was the most appropriate measure.
- The range of No_of_credit_inquiries intervals spans from 0 days to 17 inquires on an average.

16. Credit Mix

In [136... df.sample(3)

Out[136		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income		
	24576	0xa602	CUS_0xbcfa	January	Viswanathau	556- 18- 4640	Journalist	58510.60		
	68965	0x1aa17	CUS_0x9d2f	June	Jenniferc	618- 73- 2642	Manager	131091.12		
	21176	0x9216	CUS_0x3a82	January	Niveditax	219- 72- 8338	Entrepreneur	20393.22		
	4							>		
In [137	df[df.	Credit_Mi	x=='_'].count	:()[0]						
Out[137	20195									
In [138	df['Cr	edit_Mix'] = df['Credi	it_Mix']	.replace('_'	,np.na	n)			
In [139	<pre>df['Credit_Mix'] = df.groupby('Customer_ID')['Credit_Mix'].ffill() df['Credit_Mix'] = df.groupby('Customer_ID')['Credit_Mix'].bfill()</pre>									
In [140	df[df.	Credit_Mi	x=='_'].count	:()[0]						
Out[140	0									
In [141	df[df.	Name=='Ba	nsalp']							

Out[141...

	ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	Mc
68704	0x1a892	CUS_0xae9e	January	Bansalp	345- 91- 4839	Developer	19540.67	
68705	0x1a893	CUS_0xae9e	February	Bansalp	345- 91- 4839	Developer	19540.67	
68706	0x1a894	CUS_0xae9e	March	Bansalp	345- 91- 4839	Developer	19540.67	
68707	0x1a895	CUS_0xae9e	April	Bansalp	345- 91- 4839	Developer	19540.67	
68708	0x1a896	CUS_0xae9e	May	Bansalp	345- 91- 4839	Developer	19540.67	
68709	0x1a897	CUS_0xae9e	June	Bansalp	345- 91- 4839	Developer	19540.67	
68710	0x1a898	CUS_0xae9e	July	Bansalp	345- 91- 4839	Developer	19540.67	
68711	0x1a899	CUS_0xae9e	August	Bansalp	345- 91- 4839	Developer	19540.67	
4								•

Insights

• Irrelavant Values in Credit_Mix have been replaced with 'Nulls' and then treated by filling the appropriate values.

17. Outstanding_Debt

```
In [142... df.Outstanding_Debt.dtype
Out[142... dtype('0')
In [143... df.Outstanding_Debt.nunique() , df.Outstanding_Debt.unique()
```

```
Out[143...
           (13178,
            array(['809.98', '605.03', '1303.01', ..., '3571.7_', '3571.7', '502.38'],
                  dtype=object))
In [144...
          df['Outstanding_Debt'] = df.Outstanding_Debt.replace(r'/d+_$',np.nan,regex=True)
          df['Outstanding_Debt'] = pd.to_numeric(df['Outstanding_Debt'], errors='coerce')
In [145...
          df.Outstanding_Debt.nunique() , df.Outstanding_Debt.unique()
Out[145...
          (12203, array([ 809.98, 605.03, 1303.01, ..., 620.64, 3571.7 , 502.38]))
In [146...
          df['Outstanding Debt'] = df.groupby('Customer ID')['Outstanding Debt'].ffill()
          df['Outstanding_Debt'] = df.groupby('Customer_ID')['Outstanding_Debt'].bfill()
In [147...
          df.Outstanding_Debt.nunique() , df.Outstanding_Debt.unique()
Out[147...
           (12203, array([ 809.98, 605.03, 1303.01, ..., 620.64, 3571.7 , 502.38]))
          df.Outstanding_Debt.min() , df.Outstanding_Debt.max()
In [148...
          (0.23, 4998.07)
Out[148...
In [149...
          df.Outstanding Debt.isna().sum()
Out[149...
```

• Irrelavant Values in Outstanding_Debt have been replaced with 'Nulls' and then treated by filling the appropriate values.

18. Credit Utilization Ratio

```
In [150... df.Credit_Utilization_Ratio.dtype , df.Credit_Utilization_Ratio.isna().sum()
Out[150... (dtype('float64'), 0)
```

Insights

• No Irrelavant Values in Credit Utilization Ratio have been found.

19. Credit History Age

• Represents the age of credit history of the person

```
In [151... df.sample(3)
```

Out[151	ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Inco	me Mo
	7704 0x4326	CUS_0xb018	January	Callusn	088- 10- 2997	Teacher	128189	.37
	96406 0x24ae0	CUS_0x9f5c	July ^{Jo}	onathan Gouldj	789- 40- 9271	Manager	60584	.76
	93091 0x23775	CUS_0x29c0	April k	Gilbert Kreijgerj	310- 64- 5275	Developer	64696	5.24
	4							>
In [152	df.head(4)							
Out[152	ID Cust	omer_ID Mo	nth Nan	ne SSN	l Occi	upation An	nual_Income	Monthl
	0 0x1602 CU	JS_0xd40 Janเ	Aar Jary Maash	()()-	. 9	Scientist	19114.12	
	1 0x1603 CU	JS_0xd40 Febru	Jary Aaro Maasho	()()-	. 9	Scientist	19114.12	
	2 0x1604 CU	JS_0xd40 Ma	arch Aaro Maasho		. 9	Scientist	19114.12	
	3 0x1605 CU	JS_0xd40 A	april Aaro Maasho	00-	. 9	Scientist	19114.12	
	4							>
In [153	df.Credit_Histo	ory_Age.isna()).sum()					
Out[153	9030							
In [154	df['Credit_His	tory_Age'] = 0	df['Credit_	_History	_Age']	.replace('	NA',np.nan)	
In [155	<pre>df['Credit_His df['Credit_His</pre>							

```
In [156...
           df['cha'] = df.Credit_History_Age.str.split(' ')
           df['cha1'] = df['cha'].apply(lambda x: x[0])
In [157...
          df['cha'] , df['cha1']
Out[157...
                      [22, Years, and, 1, Months]
           (0
                      [22, Years, and, 1, Months]
            1
            2
                      [22, Years, and, 3, Months]
            3
                      [22, Years, and, 4, Months]
            4
                      [22, Years, and, 5, Months]
            99995
                      [31, Years, and, 6, Months]
                      [31, Years, and, 7, Months]
            99996
            99997
                      [31, Years, and, 8, Months]
            99998
                      [31, Years, and, 9, Months]
                     [31, Years, and, 10, Months]
            99999
            Name: cha, Length: 100000, dtype: object,
            0
                     22
            1
                     22
            2
                     22
            3
                     22
            4
                     22
            99995
                     31
            99996
                     31
            99997
                     31
            99998
                     31
            99999
            Name: cha1, Length: 100000, dtype: object)
In [158...
          df['cha1'] = df.cha1.astype(int)
In [159...
           df['credit_history_age'] = df.groupby('Customer_ID')['cha1'].transform(max)
In [160...
          df[df.Customer_ID=='CUS_0xff3']
```

Out[160		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	N
	5168	0x344a	CUS_0xff3	January	Somervilled	726- 35- 5322	Scientist	17032.785	
	5169	0x344b	CUS_0xff3	February	Somervilled	726- 35- 5322	Scientist	17032.785	
	5170	0x344c	CUS_0xff3	March	Somervilled	726- 35- 5322	Scientist	17032.785	
	5171	0x344d	CUS_0xff3	April	Somervilled	726- 35- 5322	Scientist	17032.785	
	5172	0x344e	CUS_0xff3	Мау	Somervilled	726- 35- 5322	Scientist	17032.785	
	5173	0x344f	CUS_0xff3	June	Somervilled	726- 35- 5322	Scientist	17032.785	
	5174	0x3450	CUS_0xff3	July	Somervilled	726- 35- 5322	Scientist	17032.785	
	5175	0x3451	CUS_0xff3	August	Somervilled	726- 35- 5322	Scientist	17032.785	
	4								>
In [161	df.dr	op(colum	ns=['cha','ch	na1','Cred	dit_History_	_Age']	,inplace= Tru	e)	
In [162	df.gr	oupby('C	ustomer_ID')	credit_l	nistory_age'].fir	st()		

Out[162...

credit_history_age

Customer_ID	
CUS_0x1000	10
CUS_0x1009	31
CUS_0x100b	15
CUS_0x1011	15
CUS_0x1013	17
CUS_0xff3	17
CUS_0xff4	18
CUS_0xff6	24
CUS_0xffc	13
CUS_0xffd	18

12500 rows × 1 columns

dtype: int64

In [163...

df.sample(3)

Out[163...

	ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	Mor
55916	0x15da2	CUS_0x79d3	May	Ros Krasnyh	541- 86- 2460	Doctor	14332.03	
44588	0x11b42	CUS_0x6e61	May	Herbst- Baylissq	974- 44- 7143	Teacher	44806.60	
90350	0x22764	CUS_0xa116	July	Jasong	591- 43- 0273	Journalist	18247.18	

Insights

- Irrelavant Values in Credit_History_Age has been replaced with appropriate values.
- We just need the **years of Credit** as Age, which has created in credit_history_age

 Note: If the customer's age is closer to his/her credit_History_Age it maybe due to 'Inherited Credit History'

20. Payment_of_Min_Amount

```
In [164... df.Payment_of_Min_Amount.isna().sum()
Out[164... 0
In [165... df.Payment_of_Min_Amount.nunique() , df.Payment_of_Min_Amount.unique()
Out[165... (3, array(['No', 'NM', 'Yes'], dtype=object))
In [166... df['Payment_of_Min_Amount'] = df['Payment_of_Min_Amount'].replace('NM','No')
In [167... df.Payment_of_Min_Amount.isna().sum() , df.Payment_of_Min_Amount.nunique() , df.
Out[167... (0, 2, array(['No', 'Yes'], dtype=object))
```

Insights

• Irrelavant Values in Payment_of_Min_Amount has been replaced with appropriate values.

In [168	<pre>df.sample(3)</pre>
---------	-------------------------

\cap	+	г	1	\subset	0	
υu	L	L	т,	O	0	•••

	ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income	Me
7869	0x441b	CUS_0xc3ee	June	Dominic Lauy	971- 78- 9268	Architect	14439.41	
61606	0x17ef8	CUS_0xaf56	July	Herbertg	808- 71- 5249	Musician	15081.42	
32840	0xd66e	CUS_0x8fac	January	Tabassum Zakariav	019- 79- 1629	Doctor	103026.80	

21. Total_EMI_per_month

```
In [169... df.Total_EMI_per_month.dtype , df.Total_EMI_per_month.isna().sum()
Out[169... (dtype('float64'), 0)
In [170... df.Total_EMI_per_month.nunique() , df.Total_EMI_per_month.unique()
```

```
Out[170... (14950,
array([4.95749492e+01, 1.88162146e+01, 2.46992320e+02, ...,
1.21120000e+04, 3.51040226e+01, 5.86380000e+04]))
```

• No Irrelavant Values in Total_EMI_per_month have been found.

22. Amount_invested_monthly

In [171	df.sam	ple(3)						
Out[171		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income N
	65165	0x193d3	CUS_0x2444	June	Benn	983- 43- 5441	Teacher	113384.82
	33963	0xdd01	CUS_0x1cb8	April	Antoniolil	550- 64- 9594	Mechanic	53003.18
	30137	0xc697	CUS_0x804e	February	Laurence Fletcherz	424- 56- 2527	Teacher	67749.50
	4							•
In [172	df.Amo	unt_inves	ted_monthly.c	ltype				
Out[172	dtype('0')						
In [173	df.loc	[df['Amou	nt_invested_n	monthly']	== '100	00',	'Amount_in	vested_monthly']
In [174	df['Amo	ount_inve	sted_monthly] = pd.td	o_numeric(df['Am	ount_invest	ed_monthly'], err
In [175	df.Amo	unt_inves	ted_monthly.c	dtype				
Out[175	dtype('float64')					
In [176	df['Amo	ount_inve	sted_monthly	'] = df['/	Amount_inv	ested_	monthly'].f	illna(0)
In [177	df['Amo	ount_inve	sted_monthly].isna()	sum()			
Out[177	0							

Insights

• Irrelavant Values in Amount_invested_monthly has been filled with appropriate values.

23. Payment_Behaviour

In [178	df.sam	ple(3)								
Out[178		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income		
	23641	0xa087	CUS_0x17fe	February	Santaa	770- 45- 7126	Developer	31135.37		
	92190	0x2322c	CUS_0x49a9	July	Ryan Vlastelicax	290- 78- 0986	Journalist	31155.48		
	4209	0x2eab	CUS_0x627e	February	Forgioner	721- 96- 8087	Mechanic	72116.25		
	4							+		
In [179	df['Pa	yment_Beh	aviour'] = d	f.Payment	_Behaviour	.repla	ce('!@9#%8',	np.nan)		
In [180	<pre>df['Payment_Behaviour'] = df.groupby('Customer_ID')['Payment_Behaviour'].ffill() df['Payment_Behaviour'] = df.groupby('Customer_ID')['Payment_Behaviour'].bfill()</pre>									
In [181	df['Pa	yment_Beh	aviour'].isna	a().sum()						
Out[181	0									

• Irrelavant Values in Payment_Behaviour has been filled with appropriate values.

24. Monthly_Balance

```
In [182... df.sample(3)
```

Out[182		ID	Customer_ID	Month	Name	SSN	Occupation	Annual_Income			
	95314	0x2447c	CUS_0x7e24	March	Kellyx	298- 06- 5346	Media_Manager	49854.92			
	67636	0x1a24e	CUS_0x2fe0	May	Anns	899- 52- 1176	Developer	8357.98			
	50125	0x13bb3	CUS_0x9469	June	Mutikanix	517- 43- 4607	Accountant	28582.04			
	4							•			
In [183	<pre>df['Monthly_Balance'] = pd.to_numeric(df['Monthly_Balance'],errors='coerce')</pre>										
In [184	<pre>df['Monthly_Balance'].isna().sum()</pre>										
Out[184	1209										
In [185	df['Mo	nthly_Bal	ance'] = df['	Monthly	_Balance']	.fillr	na(0)				

• Datatype of Monthly_Balance has be changed and filled null with 'Zero' as corresponding Monthly_Balance.

Restructuring the Data:

```
In [186...
          rename_dict = {
              'Num_Bank_Acc': 'Num_Bank_Accounts',
              'No of Credit Card': 'Num Credit Card',
              'interest_rate': 'Interest_Rate',
               'delay_from_due_date': 'Delay_from_due_date',
              'No_of_delayed_payment': 'Num_of_Delayed_Payment',
              'No_of_credit_inquiries': 'Num_Credit_Inquiries',
               'credit_history_age': 'Credit_History_Age',
               'age': 'Age'
          }
          df = df.rename(columns=rename_dict)
          new_column_order = [
               'ID', 'Customer_ID', 'Month', 'Name', 'Age', 'SSN', 'Occupation', 'Annual_In
              'Monthly_Inhand_Salary', 'Num_Bank_Accounts', 'Num_Credit_Card', 'Interest_R
              'Num_of_Loan', 'Type_of_Loan', 'Delay_from_due_date', 'Num_of_Delayed_Paymen
               'Changed_Credit_Limit', 'Num_Credit_Inquiries', 'Credit_Mix', 'Outstanding_D
               'Credit_Utilization_Ratio', 'Credit_History_Age', 'Payment_of_Min_Amount',
```

```
'Total_EMI_per_month', 'Amount_invested_monthly', 'Payment_Behaviour', 'Mont
]

df = df.reindex(columns=new_column_order)

df.tail(8)
```

Out[186...

	ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income
99992	0x25fe6	CUS_0x942c	January	Nicks	25	078- 73- 5990	Mechanic	39628.99
99993	0x25fe7	CUS_0x942c	February	Nicks	25	078- 73- 5990	Mechanic	39628.99
99994	0x25fe8	CUS_0x942c	March	Nicks	25	078- 73- 5990	Mechanic	39628.99
99995	0x25fe9	CUS_0x942c	April	Nicks	25	078- 73- 5990	Mechanic	39628.99
99996	0x25fea	CUS_0x942c	May	Nicks	25	078- 73- 5990	Mechanic	39628.99
99997	0x25feb	CUS_0x942c	June	Nicks	25	078- 73- 5990	Mechanic	39628.99
99998	0x25fec	CUS_0x942c	July	Nicks	25	078- 73- 5990	Mechanic	39628.99
99999	0x25fed	CUS_0x942c	August	Nicks	25	078- 73- 5990	Mechanic	39628.99
4								•
								,

Saving the Cleaned Data

In [187...

df.to_csv('cleaned_credit_data.csv',index=False)

Data Exploration

Loading the cleaned data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import re
from sklearn.preprocessing import MinMaxScaler
```

```
import warnings
warnings.filterwarnings('ignore')

In [189... df = pd.read_csv('cleaned_credit_data.csv')

In [190... pd.set_option('display.max_columns',50)
```

Exploratory Data Analysis

Non Graphical analysis

• Creating month numbers

```
In [191... # Converting month names to month numbers
df['Month_Num'] = pd.to_datetime(df['Month'], format='%B').dt.month
df.sample(3)
```

Out[191...

		ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Incon
3	4933	0xe2af	CUS_0x4037	June	Tapinsha	33	022- 20- 2822	Engineer	23176251.0
9	9211	0x25b51	CUS_0x2954	April	Praveen Menoni	45	988- 44- 7575	Musician	22443.
3	9136	0xfb52	CUS_0xaab7	January	Jason Langet	40	110- 58- 2517	Entrepreneur	103744.8
4									

Info on Data

```
In [192... # Checking the number of rows and columns
    print(f"No of rows: {df.shape[0]:,} \nNo of columns: {df.shape[1]}")

No of rows: 100,000
No of columns: 28

In [193... # Check all column names
    df.columns
```

```
Index(['ID', 'Customer_ID', 'Month', 'Name', 'Age', 'SSN', 'Occupation',
Out[193...
                 'Annual_Income', 'Monthly_Inhand_Salary', 'Num_Bank_Accounts',
                 'Num_Credit_Card', 'Interest_Rate', 'Num_of_Loan', 'Type_of_Loan',
                 'Delay_from_due_date', 'Num_of_Delayed_Payment', 'Changed_Credit_Limit',
                 'Num_Credit_Inquiries', 'Credit_Mix', 'Outstanding_Debt',
                 'Credit_Utilization_Ratio', 'Credit_History_Age',
                 'Payment_of_Min_Amount', 'Total_EMI_per_month',
                 'Amount_invested_monthly', 'Payment_Behaviour', 'Monthly_Balance',
                 'Month Num'],
                dtype='object')
          categorical_columns = df.select_dtypes(include=['object', 'category']).columns
In [194...
          numerical_columns = df.select_dtypes(include=['number']).columns
In [195...
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 100000 entries, 0 to 99999
         Data columns (total 28 columns):
             Column
                                       Non-Null Count
                                                       Dtype
             -----
         ---
                                       -----
                                                       ----
         0
                                       100000 non-null object
             ID
         1
             Customer ID
                                       100000 non-null object
         2
             Month
                                       100000 non-null object
         3
             Name
                                      100000 non-null object
                                       100000 non-null int64
         4
             Age
         5
             SSN
                                      100000 non-null object
         6 Occupation
                                     100000 non-null object
             Annual_Income
                                     100000 non-null float64
         7
             Monthly_Inhand_Salary
         8
                                      100000 non-null float64
             Num_Bank_Accounts
         9
                                     100000 non-null int64
         10 Num_Credit_Card
                                     100000 non-null int64
         11 Interest_Rate
                                     100000 non-null int64
                                     100000 non-null int64
         12 Num of Loan
                                    100000 non-null object
100000 non-null int64
         13 Type of Loan
         14 Delay_from_due_date
         15 Num_of_Delayed_Payment
                                       100000 non-null int64
         16 Changed_Credit_Limit
                                       100000 non-null float64
         17 Num_Credit_Inquiries
                                       100000 non-null int64
         18 Credit_Mix
                                       100000 non-null object
         19 Outstanding Debt
                                      100000 non-null float64
         20 Credit_Utilization_Ratio 100000 non-null float64
         21 Credit_History_Age
                                      100000 non-null int64
         22 Payment_of_Min_Amount
                                       100000 non-null object
         23 Total_EMI_per_month
                                      100000 non-null float64
         24 Amount invested monthly 100000 non-null float64
         25 Payment_Behaviour
                                      100000 non-null object
         26 Monthly Balance
                                       100000 non-null float64
         27 Month Num
                                       100000 non-null int32
         dtypes: float64(8), int32(1), int64(9), object(10)
         memory usage: 21.0+ MB
```

Statistical Summary

```
In [196... df.describe().T
```

Out[196...

	count	mean	std	min	
Age	100000.0	33.282000	1.076657e+01	14.000000	24.00
Annual_Income	100000.0	178506.267553	1.440261e+06	7005.930000	19457.50
Monthly_Inhand_Salary	100000.0	4198.771619	3.187494e+03	303.645417	1626.76
Num_Bank_Accounts	100000.0	5.367840	2.592597e+00	0.000000	3.00
Num_Credit_Card	100000.0	5.532720	2.067504e+00	0.000000	4.00
Interest_Rate	100000.0	14.532080	8.741330e+00	1.000000	7.00
Num_of_Loan	100000.0	3.532880	2.446356e+00	0.000000	2.00
Delay_from_due_date	100000.0	21.050560	1.476119e+01	0.000000	10.00
Num_of_Delayed_Payment	100000.0	13.261280	6.199080e+00	0.000000	9.00
Changed_Credit_Limit	100000.0	10.389303	6.789784e+00	-6.490000	5.32
Num_Credit_Inquiries	100000.0	5.677760	3.827248e+00	0.000000	3.00
Outstanding_Debt	100000.0	1426.220376	1.155129e+03	0.230000	566.07
Credit_Utilization_Ratio	100000.0	32.285173	5.116875e+00	20.000000	28.05
Credit_History_Age	100000.0	18.235920	8.313256e+00	0.000000	12.00
Total_EMI_per_month	100000.0	1403.118217	8.306041e+03	0.000000	30.30
Amount_invested_monthly	100000.0	178.363270	1.984724e+02	0.000000	58.32
Monthly_Balance	100000.0	397.684413	2.171320e+02	0.000000	267.87
Month_Num	100000.0	4.500000	2.291299e+00	1.000000	2.75

In [197...

df.describe(include=object)

Out[197...

		ID	Customer_ID	Month	Name	SSN	Occupation	Type_of_Loan	Crec
	count	100000	100000	100000	100000	100000	100000	100000	
ı	unique	100000	12500	8	10139	12500	15	6261	
	top	0x1602	CUS_0xd40	January	Langep	821- 00- 0265	Lawyer	No loan taken	St
	freq	1	8	12500	48	8	7096	11408	
	4								
4	4								

Duplicate Detection

In [198...

df[df.duplicated()]

Out [198... ID Customer_ID Month Name Age SSN Occupation Annual_Income Monthly_Inl

→

Insights

No duplicates found

```
In [199...
          # Number of unique values in each coluumn
          print("No.of unique values in each column:")
          print("-" * 35)
          # Calculate the maximum column name length for formatting
          max_col_name_length = max(len(col) for col in df.columns)
          for col in df.columns:
              # Use ljust to align the column names and rjust for the counts
              print(f"{col.ljust(max_col_name_length)}: {str(df[col].nunique()).rjust(5)}"
        No.of unique values in each column:
         _____
                                : 100000
                               : 12500
        Customer_ID
        Month
        Name
                               : 10139
        Age
                                     43
        SSN
                               : 12500
        Occupation
                                     15
        Annual_Income
                               : 13437
        Monthly_Inhand_Salary : 13235
        Num_Bank_Accounts
                                    11
        Num_Credit_Card
                                    12
        Interest_Rate
                                     34
        Num_of_Loan
                                    10
        Type of Loan
                              : 6261
        Delay_from_due_date
                                    63
        Num_of_Delayed_Payment :
                                    29
        Changed_Credit_Limit : 3634
        Num_Credit_Inquiries :
                                    18
        Credit Mix
                                      3
                           : 12203
        Outstanding_Debt
        Credit Utilization Ratio: 99998
        Credit_History_Age
                                     34
        Payment_of_Min_Amount
                                     2
        Total EMI per month
                              : 14950
        Amount invested monthly: 91048
        Payment_Behaviour
                                      6
        Monthly Balance
                                : 98790
        Month_Num
                                     8
In [200...
          categorical_columns[1:]
Out[200...
          Index(['Customer_ID', 'Month', 'Name', 'SSN', 'Occupation', 'Type_of_Loan',
                 'Credit_Mix', 'Payment_of_Min_Amount', 'Payment_Behaviour'],
                dtype='object')
In [201...
          numerical_columns
```

Graphical analysis

```
plt.style.use('default')
In [202...
          plt.style.use('seaborn-bright')
          for _,col in enumerate(numerical_columns):
              plt.figure(figsize=(18,4))
              plt.suptitle(f'Plot of {col}',fontsize=15,fontfamily='serif',
                           fontweight='bold',backgroundcolor='Red',color='w')
              plt.subplot(121)
              sns.boxplot(x=df[col],color='deeppink')
              plt.title(f'Boxplot of {col}',fontsize=12,fontfamily='serif',
                        fontweight='bold',backgroundcolor='Black',color='w')
              plt.subplot(122)
              sns.histplot(x=df[col], kde=True,color='blue')
              plt.title(f'Distplot of {col}',fontsize=12,fontfamily='serif',
                        fontweight='bold',backgroundcolor='Black',color='w')
              sns.despine()
              plt.tight_layout()
              plt.show()
```



```
In [204... # Creating a dictionary for aggregation at Customer_ID level
    agg_dict = {
        'ID': 'first',
        # Grouped by on Customer_ID so not included
        'Name': 'first',
        'Age': 'first',
        'SSN': 'first',
```

```
'Occupation': 'first',
    'Annual_Income': 'first',
    'Monthly_Inhand_Salary': 'first',
    'Num_Bank_Accounts': 'first',
    'Num_Credit_Card': 'first',
    'Interest_Rate': 'first',
    'Num_of_Loan': 'first',
    'Type_of_Loan': 'first',
    'Delay_from_due_date': 'mean',
    'Num_of_Delayed_Payment': 'first',
    'Changed_Credit_Limit': 'mean',
    'Num_Credit_Inquiries': 'first',
    'Credit_Mix': 'first',
    'Outstanding_Debt': 'first',
    'Credit_Utilization_Ratio': 'mean',
    'Credit_History_Age': 'first',
    'Payment_of_Min_Amount': 'first',
    'Total_EMI_per_month': 'first',
    'Amount_invested_monthly': 'mean',
    # Payment_Behaviour not included
    # if needed introduce above and do mean
    #'Payment_History_Score':'mean',
    'Monthly_Balance': 'mean',
df_aggregated = df.groupby('Customer_ID').agg(agg_dict).reset_index()
df_aggregated
```

Out[204		Customer_ID	ID	Name	Age	SSN	Occupation	Annual_Income
	0	CUS_0x1000	0x1628a	Alistair Barrf	17	913- 74- 1218	Lawyer	30625.940
	1	CUS_0x1009	0x66a2	Arunah	26	063- 67- 6938	Mechanic	52312.680
	2	CUS_0x100b	0x1ef6	Shirboni	18	238- 62- 0395	Media_Manager	113781.390
	3	CUS_0x1011	0x17646	Schneyerh	44	793- 05- 8223	Doctor	58918.470
	4	CUS_0x1013	0x243ea	Cameront	44	930- 49- 9615	Mechanic	98620.980
	•••							
	12495	CUS_0xff3	0x344a	Somervilled	55	726- 35- 5322	Scientist	17032.785
	12496	CUS_0xff4	0x16aa	Poornimaf	37	655- 05- 7666	Entrepreneur	25546.260
	12497	CUS_0xff6	0xfab6	Shieldsb	19	541- 92- 8371	Doctor	117639.920
	12498	CUS_0xffc	0x61e6	Brads	17	226- 86- 7294	Musician	60877.170
	12499	CUS_0xffd	0x25afa	Damouniq	29	832- 88- 8320	Scientist	41398.440
	12500 rd	ows × 25 colun	nns					
	4							•
In [205	catego	rical cols =	df aggres	gated.select	dtvn	es(ind	:lude=['object',	, 'categorv'l)
_			668	,		(2		,
In [206	catego	rical_cols						

Out[206		Customer_ID	ID	Name	SSN	Occupation	Type_of_Loan	Credit_I
	0	CUS_0x1000	0x1628a	Alistair Barrf	913- 74- 1218	Lawyer	Credit-Builder Loan, and Home Equity Loan	I
	1	CUS_0x1009	0x66a2	Arunah	063- 67- 6938	Mechanic	Not Specified, Home Equity Loan, Credit- Builde	Stand
	2	CUS_0x100b	0x1ef6	Shirboni	238- 62- 0395	Media_Manager	No loan taken	Go
	3	CUS_0x1011	0x17646	Schneyerh	793- 05- 8223	Doctor	Student Loan, Credit-Builder Loan, and Debt Co	Stand
	4	CUS_0x1013	0x243ea	Cameront	930- 49- 9615	Mechanic	Student Loan, Debt Consolidation Loan, and Per	Gc
	•••			•••			•••	
	12495	CUS_0xff3	0x344a	Somervilled	726- 35- 5322	Scientist	Personal Loan, Mortgage Loan, and Auto Loan	Go
	12496	CUS_0xff4	0x16aa	Poornimaf	655- 05- 7666	Entrepreneur	Not Specified, Student Loan, Student Loan, Cre	Stand
	12497	CUS_0xff6	0xfab6	Shieldsb	541- 92- 8371	Doctor	Home Equity Loan, and Auto Loan	Go
	12498	CUS_0xffc	0x61e6	Brads	226- 86- 7294	Musician	Credit-Builder Loan, Payday Loan, Not Specifie	I
	12499	CUS_0xffd	0x25afa	Damouniq	832- 88- 8320	Scientist	Auto Loan, Payday Loan, Payday Loan, Mortgage	Stand
	12500 r	ows × 8 columr	าร					
	4							>
In [207	select	ed_cols = ['O	ccupation	n', 'Credit_	_Mix',	'Payment_of_Mi	n_Amount']	
	for co	l in selected	_cols:					

Skewness

```
In [208... # Skewness Coefficient
    numerical_cols = df.select_dtypes(include=['float64', 'int64'])
    print("Skewness Coefficient")
    print("-" * 20)
    df.skew(numeric_only = True)
    #print(numerical_cols.skew().round(4))
```

Skewness Coefficient

Out[208...

	0
Age	0.157009
Annual_Income	12.391367
Monthly_Inhand_Salary	1.128520
Num_Bank_Accounts	-0.189184
Num_Credit_Card	0.225830
Interest_Rate	0.496232
Num_of_Loan	0.445609
Delay_from_due_date	0.985874
Num_of_Delayed_Payment	-0.223545
Changed_Credit_Limit	0.641177
Num_Credit_Inquiries	0.416113
Outstanding_Debt	1.207536
Credit_Utilization_Ratio	0.028617
Credit_History_Age	-0.048998
Total_EMI_per_month	7.102524
Amount_invested_monthly	2.548864
Monthly_Balance	1.498597
Month_Num	0.000000

dtype: float64

Insights

Highly Skewed Variables:

Annual_Income (12.3914), Total_EMI_per_month (7.1025), and
 Amount_invested_monthly (2.5489) are highly positively skewed. This suggests that a small number of customers have significantly higher values in these categories compared to the rest, indicating the presence of outliers or a long tail in the distribution.

Moderately Skewed Variables:

• Outstanding_Debt (1.2075), Monthly_Balance (1.4986), and Monthly_Inhand_Salary (1.1285) show moderate positive skewness, indicating that while the majority of values are lower, there are some customers with considerably higher values, leading to a rightward tail in the distribution.

Nearly Symmetrical and Slightly Skewed Variables:

Variables like Age (0.1570), Num_Bank_Accounts (-0.1892), and
 Credit_History_Age (-0.0490) exhibit low skewness, meaning their distributions are more symmetrical with values evenly spread around the mean. This suggests a more uniform distribution without significant outliers or tails.

Correlation Heatmap

In [209	numerical_cols.corr()				
Out[209		Age	Annual_Income	Monthly_Inhand_Salary	Num_Banl
	Age	1.000000	0.005590	0.090794	
	Annual_Income	0.005590	1.000000	0.031698	
	Monthly_Inhand_Salary	0.090794	0.031698	1.000000	
	Num_Bank_Accounts	-0.190926	-0.009884	-0.283318	
	Num_Credit_Card	-0.148591	-0.001667	-0.216956	
	Interest_Rate	-0.217856	-0.007455	-0.301906	
	Num_of_Loan	-0.213598	-0.005940	-0.254406	
	Delay_from_due_date	-0.175074	-0.011611	-0.251162	
	Num_of_Delayed_Payment	-0.187016	-0.009144	-0.289875	
	Changed_Credit_Limit	-0.156673	-0.000045	-0.175135	
	Num_Credit_Inquiries	-0.256649	-0.009308	-0.280591	
	Outstanding_Debt	-0.202294	-0.004533	-0.269078	
	Credit_Utilization_Ratio	0.025482	0.008606	0.176081	
	Credit_History_Age	0.234257	-0.000383	0.271058	
	Total_EMI_per_month	0.001671	-0.001620	0.007949	
	Amount_invested_monthly	0.051313	0.020078	0.568380	
	Monthly_Balance	0.116397	0.018747	0.659723	
	4				•
In [210	<pre>plt.figure(figsize=(20,1 sns.heatmap(numerical_co plt.title('Correlations #sns.despine() plt.show()</pre>	ls.corr(),		•	weight= <mark>'bo</mark>

- **Monthly Inhand Salary** shows a strong positive correlation with **Monthly Balance** (0.6597) and **Amount Invested Monthly** (0.5684), indicating that higher in-hand salary is associated with greater savings and investments.
- Interest Rate is strongly correlated with Num Credit Inquiries (0.6385) and
 Outstanding Debt (0.6294), suggesting that customers with higher interest rates tend to have more credit inquiries and higher outstanding debt.
- Num of Delayed Payments has a strong positive correlation with Num of Bank Accounts (0.6120) and Delay from Due Date (0.5556), indicating that customers with more bank accounts tend to delay payments more frequently.
- Credit History Age has strong negative correlations with Outstanding Debt (-0.6285) and Interest Rate (-0.5755), implying that longer credit history is associated with lower debt and interest rates.
 - Moderate Correlation in Loan-related Metrics:
 - Negative Impact on Credit History Age:
 - Num of Delayed Payments Impact:
 - Interest Rate and Credit Inquiries:
 - Strong Correlation with Monthly Inhand Salary and Investing:
- Num of Loans is moderately correlated with Interest Rate (0.5592) and Num
 Credit Inquiries (0.5696), suggesting that customers with more loans tend to have

higher interest rates and credit inquiries.

```
In [211... plt.figure(figsize=(18,0.5))
    plt.axis('off')
    plt.style.use('default')
    plt.style.use('seaborn-bright')
    plt.title(f' Pairplot Analysis ',fontfamily='serif',fontweight='bold',fontsize=1
    sns.pairplot(data=df_aggregated, palette='Oranges')
    plt.tight_layout()
    plt.show()
```

Pairplot Analysis

Feature Engineering

```
In [212... dff = df.copy()

In [213... dff.head(8)
```

Out[213...

	ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	N
0	0x1602	CUS_0xd40	January	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
1	0x1603	CUS_0xd40	February	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
2	0x1604	CUS_0xd40	March	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
3	0x1605	CUS_0xd40	April	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
4	0x1606	CUS_0xd40	May	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
5	0x1607	CUS_0xd40	June	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
6	0x1608	CUS_0xd40	July	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
7	0x1609	CUS_0xd40	August	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
4									>

Feature creation

```
In [214... dff['Debt_to_Income_Ratio'] = dff['Outstanding_Debt'] / dff['Annual_Income']
dff['Total_Debt'] = dff['Outstanding_Debt'] + dff['Total_EMI_per_month']

In [215... payment_behaviour_mapping = {
    'High_spent_Small_value_payments': 4,
```

```
'High_spent_Medium_value_payments': 5,
    'High_spent_Large_value_payments': 6,
    'Low_spent_Small_value_payments': 1,
    'Low_spent_Medium_value_payments': 2,
    'Low_spent_Large_value_payments': 3
}

# Apply mapping
dff['Payment_Behaviour_Num'] = dff['Payment_Behaviour'].map(payment_behaviour_ma
```

- High_spent_Small_value_payments: Likely to indicate high spending habits with small payments, which might be risky if the behavior is consistent.
- High_spent_Medium_value_payments: Indicates high spending with medium payments, potentially a higher risk.
- High_spent_Large_value_payments: Shows high spending with large payments, which might indicate high financial risk.
- Low_spent_Small_value_payments: Shows low spending with small payments, likely less risky.
- Low_spent_Medium_value_payments: Low spending with medium payments, potentially moderate risk.
- Low_spent_Large_value_payments: Low spending with large payments, might be less risky but could indicate underutilization of credit.

```
dff['Credit_Mix'].unique()
In [216...
          array(['Good', 'Standard', 'Bad'], dtype=object)
Out[216...
          dff['Credit_Mix_num'] = dff['Credit_Mix'].map({'Good':2 , 'Standard':1, 'Bad':0}
In [217...
In [218...
          dff['Payment of Min Amount'].unique()
Out[218...
         array(['No', 'Yes'], dtype=object)
In [219...
          dff['Payment of Min Amount'] = dff['Payment of Min Amount'].map({'Yes':1, 'No':0
In [220...
          dff['Payment_of_Min_Amount'].isna().sum() , dff['Payment_of_Min_Amount'].unique(
Out [220... (0, array([0, 1]))
          dff['30%_of_Monthly_Salary'] = dff['Monthly_Inhand_Salary']*0.3
In [221...
          dff['ability to pay loan with saving'] = np.where(dff['30% of Monthly Salary']>d
In [222...
          dff = dff.drop(columns=['ID','Type_of_Loan','Credit_Mix','Payment_Behaviour'],ax
          dff["Payment_History_Score"] = ( -1 * dff["Delay_from_due_date"]
In [223...
                                           -1 * dff["Num of Delayed Payment"]
                                           +1 * dff["Payment_of_Min_Amount"])
          dff.tail(8)
In [224...
```

Month Name Age SSN Occupation Annual_Income Monthly

Out[224...

Customer ID

99992	CUS_0x942c	January	Nicks	25	078- 73- 5990	Mechanic	39628.99	
99993	CUS_0x942c	February	Nicks	25	078- 73- 5990	Mechanic	39628.99	
99994	CUS_0x942c	March	Nicks	25	078- 73- 5990	Mechanic	39628.99	
99995	CUS_0x942c	April	Nicks	25	078- 73- 5990	Mechanic	39628.99	
99996	CUS_0x942c	May	Nicks	25	078- 73- 5990	Mechanic	39628.99	
99997	CUS_0x942c	June	Nicks	25	078- 73- 5990	Mechanic	39628.99	
99998	CUS_0x942c	July	Nicks	25	078- 73- 5990	Mechanic	39628.99	
99999	CUS_0x942c	August	Nicks	25	078- 73- 5990	Mechanic	39628.99	
4								•

Hypothetical Credit_Score Computation

Scaling

```
In [226... scaler = MinMaxScaler()
    dff[scaling_features] = scaler.fit_transform(dff[scaling_features])
In [227... dff
```

Out[227...

	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income I
0	CUS_0xd40	January	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
1	CUS_0xd40	February	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
2	CUS_0xd40	March	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
3	CUS_0xd40	April	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
4	CUS_0xd40	May	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
•••					•••		
99995	CUS_0x942c	April	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99996	CUS_0x942c	May	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99997	CUS_0x942c	June	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99998	CUS_0x942c	July	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99999	CUS_0x942c	August	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
100000	rows × 31 colu	mns					
4							>
166	<i>c</i> ()						

localhost:8888/doc/tree/Credit_EDA_and_Score_Case_Study.ipynb

dff.info()

In [228...

```
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 31 columns):
  # Column
                                                                                              Non-Null Count Dtype
--- -----
                                                                                              _____
  0 Customer_ID
                                                                                              100000 non-null object
  1 Month
                                                                                          100000 non-null object
  2 Name
                                                                                          100000 non-null object
                                                                                           100000 non-null float64
  3 Age
                                                                                           100000 non-null object
5Occupation100000 non-nullobject6Annual_Income100000 non-nullfloat647Monthly_Inhand_Salary100000 non-nullfloat648Num_Bank_Accounts100000 non-nullfloat649Num_Credit_Card100000 non-nullfloat6410Interest_Rate100000 non-nullfloat6411Num_of_Loan100000 non-nullfloat6412Delay_from_due_date100000 non-nullfloat6413Num_of_Delayed_Payment100000 non-nullfloat6414Changed_Credit_Limit100000 non-nullfloat6415Num_Credit_Inquiries100000 non-nullfloat6416Outstanding_Debt100000 non-nullfloat6417Credit_Utilization_Ratio100000 non-nullfloat6418Credit_History_Age100000 non-nullfloat6419Payment_of_Min_Amount100000 non-nullfloat6420Total_EMI_per_month100000 non-nullfloat6421Amount_invested_monthly100000 non-nullfloat6422Month_Num100000 non-nullfloat6423Month_Num100000 non-nullfloat6424Debt_to_Income_Ratio100000 non-nullfloat6425Total_Debt100000 non-nullfloat6426Payment_Behaviour_Num100000 non-nullfloat6427Credit_Mix_num100000 non-nullfloat642830%_of_Monthly_Salary100000 non-null<td
  5 Occupation
                                                                                          100000 non-null object
  29 ability to pay loan with saving 100000 non-null float64
  30 Payment_History_Score
                                                                                          100000 non-null float64
dtypes: float64(26), object(5)
memory usage: 23.7+ MB
```

<class 'pandas.core.frame.DataFrame'>

Reasons for Feature selection and its weightage - Credit Score Computation

- Represents the total debt owed. Significant outstanding debt can signal financial strain, impacting the ability to manage new credit.
- Indicates the total monthly payments towards loans. Helps assess the customer's existing debt burden and financial obligations.
- Shows how frequently the customer has applied for credit. Frequent inquiries can suggest financial distress or a high demand for credit.
- Reflects the length of time the customer has maintained credit accounts. A longer credit history generally suggests more reliable credit behavior.
- Tracks the customer's balance on a monthly basis. A consistently positive balance indicates stronger financial health and stability.
- Provides insight into the customer's financial capacity. Higher income typically suggests a greater ability to manage and repay debt.
- Reflects the number of bank accounts held. Multiple accounts can indicate effective financial management, although an excess might signal potential financial issues.
- Indicates the diversity of credit types held. A varied credit mix can positively influence creditworthiness, demonstrating the ability to manage different credit types.
- Captures payment habits, essential for assessing creditworthiness. Reflects factors like payment frequency and amounts, which are crucial for credit evaluation.
- Measures the proportion of credit used relative to total credit available. A high ratio may indicate potential financial risk due to extensive credit usage.

Payment_history_score:
Credit_Utilization_Ratio:
Payment_Behaviour_Num:
Credit_Mix_Num:
Num_Bank_Accounts:
Annual_Income:
Monthly_Balance:
Credit_History_Age:
Num_Credit_Inquiries:
Total_EMI_per_month:
Outstanding_Debt:

 Payments history plays a major role in determining the credit approval and hence heavy weightage.

```
In [230... dff['Credit_Score'] = dff.apply(lambda x: sum(x[feature] * weight for feature, w
In [231... dff['Credit_Score'] = dff['Credit_Score'] * (850 - 300) + 300
In [232... dff[(dff['Credit_Score'] < 300) | (dff['Credit_Score'] > 850)]
Out[232...
```

Customer_ID Month Name Age SSN Occupation Annual_Income Monthly_Inhand

```
In [233... cs_df = dff[['Customer_ID','Name','SSN','Month','Credit_Score']]
```

Aggregated data - Consolidated

In [234... cdf = cs_df.groupby(['Customer_ID','Name','SSN'])['Credit_Score'].mean().to_fram
cdf.sample(10)

Out[234...

	Customer_ID	Name	SSN	Credit_Score
11888	CUS_0xc131	Laub	910-05-8770	466
1461	CUS_0x2798	"John ODonnell"q	254-30-0873	563
1989	CUS_0x2f49	Rochaf	524-50-8228	498
11337	CUS_0xb8f6	Melp	367-94-5147	595
3954	CUS_0x4c83	Hutchisonp	326-69-1811	566
7366	CUS_0x7e63	Kevin Krolickig	926-75-5141	586
898	CUS_0x1eee	Gardnerp	513-08-1791	593
5168	CUS_0x5e34	Atossav	028-39-5974	499
5708	CUS_0x65d2	Nia Williamsf	659-77-0885	550
5174	CUS_0x5e40	Allisonz	355-34-7507	498

```
In [235... bins = [300, 500, 600, 750, 800, 850]
bin_labels = ['very Bad','Poor', 'Fair', 'Good', 'Excellent']

# Apply binning
dff['Monthly_Credit_Score_category'] = pd.cut(dff['Credit_Score'], bins=bins, la

In [236... dff.head(8)
```

Out[236...

	(Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	Mont	
	0	CUS_0xd40	January	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	1	CUS_0xd40	February	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	2	CUS_0xd40	March	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	3	CUS_0xd40	April	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	4	CUS_0xd40	May	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	5	CUS_0xd40	June	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	6	CUS_0xd40	July	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	7	CUS_0xd40	August	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501		
	4								>	
In [237		<pre>bins = [300, 500, 600, 750, 800, 850] bin_labels = ['very Bad', 'Poor', 'Fair', 'Good', 'Excellent']</pre>								
	<pre># Apply binning cdf['overall_Credit_Score_category'] = pd.cut(dff['Credit_Score'], bins=bins, la</pre>									
In [238	cdf	.sample(10)								

Out[238...

	Customer_ID	Name	SSN	Credit_Score	overall_Credit_Score_category
7595	CUS_0x81e9	Steve Slaterm	541- 82- 8577	508	very Bad
12289	CUS_0xcc2	Bakerf	632- 81- 0014	533	Poor
10209	CUS_0xa899	Kohj	077- 54- 4259	532	Poor
4943	CUS_0x5afd	Jedw	163- 05- 8880	591	Fair
10005	CUS_0xa567	Richwinef	952- 02- 0446	538	very Bad
10225	CUS_0xa8d1	Nicola Leskem	596- 68- 6198	588	Poor
9477	CUS_0x9dc6	David Lawderk	850- 48- 2308	512	Poor
3261	CUS_0x42dc	Yinkaz	517- 51- 2372	552	Poor
2802	CUS_0x3c3a	Alexh	014- 29- 7065	479	Poor
			739-		

In [239... cdf.groupby('overall_Credit_Score_category')['Customer_ID'].nunique().to_frame()

527

Out[239...

4363

Customer_ID

81-2314

Schnurrr

overall_Credit_Score_category

CUS_0x523c

very Bad	2147
Poor	9192
Fair	1161
Good	0
Excellent	0

In [240... cdf.overall_Credit_Score_category.value_counts()

Poor

Out[240... count

overall_Credit_Score_category

Poor	9192
very Bad	2147
Fair	1161
Good	0
Excellent	0

dtype: int64

In [241... cdf.shape
Out[241... (12500, 5)
In [242... cdf

Out[242...

		Customer_ID	Name	SSN	Credit_Score	overall_Credit_Score_category
	0	CUS_0x1000	Alistair Barrf	913- 74- 1218	482	Poor
	1	CUS_0x1009	Arunah	063- 67- 6938	571	Poor
	2	CUS_0x100b	Shirboni	238- 62- 0395	565	Poor
	3	CUS_0x1011	Schneyerh	793- 05- 8223	507	Poor
	4	CUS_0x1013	Cameront	930- 49- 9615	573	Poor
	•••					
1249)5	CUS_0xff3	Somervilled	726- 35- 5322	541	Poor
1249	6	CUS_0xff4	Poornimaf	655- 05- 7666	543	Poor
1249	7	CUS_0xff6	Shieldsb	541- 92- 8371	590	Poor
1249	8	CUS_0xffc	Brads	226- 86- 7294	518	Poor
1249	9	CUS_0xffd	Damouniq	832- 88- 8320	548	Poor

12500 rows × 5 columns


```
In [245... #cdf.to_csv('credit_scored_data.csv',index=False)
In [246... Fair_customers = cdf[cdf['overall_Credit_Score_category'] == 'Fair']
Fair_customers.describe().T
Out[246... count mean std min 25% 50% 75% max
```

Credit_Score 1161.0 539.585702 39.489149 411.0 516.0 543.0 568.0 645.0

RFM Integration

```
In [247... dff['Recency'] = dff.groupby('Customer_ID')['Month_Num'].transform(lambda x: (x.
    dff['Frequency'] = dff.groupby('Customer_ID')['Num_of_Loan'].transform('max')
    dff['Monetary'] = dff.groupby('Customer_ID')['Monthly_Balance'].transform('sum')
    rfm_features = ['Recency', 'Frequency', 'Monetary']
    dff[rfm_features] = scaler.fit_transform(dff[rfm_features])
In [248... dff
```

Out[248...

	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income
0	CUS_0xd40	January	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
1	CUS_0xd40	February	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
2	CUS_0xd40	March	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
3	CUS_0xd40	April	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
4	CUS_0xd40	May	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501
•••						•••	
99995	CUS_0x942c	April	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99996	CUS_0x942c	May	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99997	CUS_0x942c	June	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99998	CUS_0x942c	July	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
99999	CUS_0x942c	August	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349
100000 r	ows × 36 colu	mns					
4	_						_

```
In [249... dff['Credit_Score_after_RFM'] = dff['Credit_Score'] + (dff['Recency'] * 0.1 + df
In [250... dff.tail(8)
```

Out[250...

In [251...

In [252...

	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	Мо	
99992	CUS_0x942c	January	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
99993	CUS_0x942c	February	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
99994	CUS_0x942c	March	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
99995	CUS_0x942c	April	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
99996	CUS_0x942c	May	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
99997	CUS_0x942c	June	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
99998	CUS_0x942c	July	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
99999	CUS_0x942c	August	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349		
4								•	
<pre>bins = [300, 500, 600, 750, 800, 850] bin_labels = ['very Bad','Poor', 'Fair', 'Good', 'Excellent']</pre>									
	<pre># Apply binning dff['RFM_Credit_Score_category'] = pd.cut(dff['Credit_Score_after_RFM'], bins=bi</pre>								
plt.ti sns.hi sns.de	<pre>plt.figure(figsize=(12,5)) plt.title('Distribution of Credit_Score_after_RFM',fontsize=16,fontfamily='serif sns.histplot(dff['Credit_Score_after_RFM'],color='blue',kde=True) sns.despine() plt.show()</pre>								

In [253... dff.head(8)

Out[253...

	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	Mont
0	CUS_0xd40	January	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
1	CUS_0xd40	February	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
2	CUS_0xd40	March	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
3	CUS_0xd40	April	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
4	CUS_0xd40	May	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
5	CUS_0xd40	June	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
6	CUS_0xd40	July	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
7	CUS_0xd40	August	Aaron Maashoh	0.214286	821- 00- 0265	Scientist	0.000501	
4								>
df	f.groupby('RF	M_Credit_	_Score_cat	egory')['	Custon	ner_ID'].nun	ique().to_frame(()

 $local host: 8888/doc/tree/Credit_EDA_and_Score_Case_Study.ipynb$

In [254...

Out[254...

Customer_ID

RFM_Credit_Score_category

very Bad 4	920
Poor 11	917
Fair 3	571
Good	0
Excellent	0

In [255... cdff = dff.groupby('Customer_ID')['Credit_Score_after_RFM'].mean().to_frame().re
cdff

Out[255...

	Customer_ID	Credit_Score_after_RFM
0	CUS_0x1000	482.128252
1	CUS_0x1009	571.445711
2	CUS_0x100b	564.627757
3	CUS_0x1011	507.128548
4	CUS_0x1013	572.948491
•••		
12495	CUS_0xff3	541.035743
12496	CUS_0xff4	543.165731
12497	CUS_0xff6	589.904199
12498	CUS_0xffc	518.068314
12499	CUS_0xffd	548.525868

12500 rows × 2 columns

```
In [256... bins = [300, 500, 650, 750, 800, 850]
bin_labels = ['very Bad','Poor', 'Fair', 'Good', 'Excellent']

# Apply binning
cdff['cumulative_RFM_Credit_Score_category'] = pd.cut(cdff['Credit_Score_after_R
In [257... cdff.sample(6)
```

Out[257		Customer_ID	Credit_Score_after_RFM	$cumulative_RFM_Credit_Score_category$
	11600	CUS_0xbccf	531.256669	Poor
	3699	CUS_0x48c5	444.209338	very Bad
	873	CUS_0x1e9b	474.220069	very Bad
	8865	CUS_0x949f	525.751388	Poor
	3957	CUS_0x4c89	537.207505	Poor
	5964	CUS 0x6963	519 388979	Poor

cumulative_RFM_Credit_Score_category					
1820	very Bad				
10679	Poor				
1	Fair				
0	Good				
0	Excellent				

Insights

After applying RFM analysis, there are noticeable differences in creditworthiness
across different customer segments. The categorization of customers has shifted,
indicating that the influence of RFM analysis has led to changes in the classification
of creditworthiness, even with the bins being set consistently across the board.

This insight highlights the dynamic nature of creditworthiness assessment when influenced by RFM, emphasizing how customer segmentation can change based on different metrics.

3 Months - Transaction Period Analysis

Analyze how credit scores and aggregated features change over the last 3 to 6 months to understand the temporal dynamics of creditworthiness.

Lets consider Last 3 months.

In [259... dff.tail(8)

Out[259...

		Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	Мо
	99992	CUS_0x942c	January	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	99993	CUS_0x942c	February	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	99994	CUS_0x942c	March	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	99995	CUS_0x942c	April	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	99996	CUS_0x942c	May	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	99997	CUS_0x942c	June	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	99998	CUS_0x942c	July	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	99999	CUS_0x942c	August	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
	4								•
In [260	months	= ['June', '	July', 'A	ugust']					
	<pre>filtered_dff = dff[dff['Month'].isin(months)]</pre>								
In [261	filter	ed_dff.shape							
Out[261	(37500	, 38)							
In [262	filter	ed_dff.tail(6)						

Out[262...

	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	M
99989	CUS_0x8600	June	Sarah McBridec	0.333333	031- 35- 0942	Architect	0.000537	
99990	CUS_0x8600	July	Sarah McBridec	0.333333	031- 35- 0942	Architect	0.000537	
99991	CUS_0x8600	August	Sarah McBridec	0.333333	031- 35- 0942	Architect	0.000537	
99997	CUS_0x942c	June	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
99998	CUS_0x942c	July	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
99999	CUS_0x942c	August	Nicks	0.261905	078- 73- 5990	Mechanic	0.001349	
4		F.I.C., at	TDL !!!	lama I. I.G.	ائد د	I M (1)	lu Cualita C)
tqt = .	tiltered_dff[Custon	ner_ID','N	ame','Cre	ait_Sc	core','Month	ly_Credit_Score	_ca

In [263...

fdf

In [265...

fdf

Out[263		Customer_ID	Name	Credit_Score	Monthly_Credit_Score_category	Credit_Scc
	5	CUS_0xd40	Aaron Maashoh	583.254962	Poor	
	6	CUS_0xd40	Aaron Maashoh	527.300235	Poor	
	7	CUS_0xd40	Aaron Maashoh	577.758551	Poor	
	13	CUS_0x21b1	Rick Rothackerj	611.531934	Fair	
	14	CUS_0x21b1	Rick Rothackerj	595.837460	Poor	
	99990	CUS_0x8600	Sarah McBridec	494.460602	very Bad	
	99991	CUS_0x8600	Sarah McBridec	553.221027	Poor	
	99997	CUS_0x942c	Nicks	619.554305	Fair	
	99998	CUS_0x942c	Nicks	565.803866	Poor	
	99999	CUS_0x942c	Nicks	569.377974	Poor	
	37500 rc	ows × 6 colum	าร			
	4					•
In [264	fdf['d	iff'] = fdf['	Credit_Sco	re_after_RFM'] - fdf['Credit_Score']	

Out[265		Customer_ID	Name	Credit_Score	Monthly_Credit_Score_categ	gory Credit_Scc
	5	CUS_0xd40	Aaron Maashoh	583.254962	I	Poor
	6	CUS_0xd40	Aaron Maashoh	527.300235	I	Poor
	7	CUS_0xd40	Aaron Maashoh	577.758551	ı	Poor
	13	CUS_0x21b1	Rick Rothackerj	611.531934		Fair
	14	CUS_0x21b1	Rick Rothackerj	595.837460	J	Poor
	•••					
	99990	CUS_0x8600	Sarah McBridec	494.460602	very	Bad
	99991	CUS_0x8600	Sarah McBridec	553.221027	J	Poor
	99997	CUS_0x942c	Nicks	619.554305		Fair
	99998	CUS_0x942c	Nicks	565.803866	1	Poor
	99999	CUS_0x942c	Nicks	569.377974	!	Poor
	37500 rd	ows × 7 columi	ns			
	4					•
In [266	fdf[(f	df['diff']>1)	(fdf['d	iff']<0)]		
Out[266	Custo	omer_ID Nam	e Credit_Sc	ore Monthly	_Credit_Score_category Cred	dit_Score_after_F
	4					•
	Observ	ation:				
	• The	ere is a very mi	nute differe	nce when it co	mes to monthwise credit sco	re with RFM.
In [267	fdf['La	ast_3_months_	Credit_Sco	re_consolidat	red'] = fdf.groupby(['Cus	tomer_ID', 'Na

In [268... **fdf**

Out[268		Customer_ID	Name	Credit_Score	Monthly_Credit_Score_category	Credit_Scc
	5	CUS_0xd40	Aaron Maashoh	583.254962	Poor	
	6	CUS_0xd40	Aaron Maashoh	527.300235	Poor	
	7	CUS_0xd40	Aaron Maashoh	577.758551	Poor	
	13	CUS_0x21b1	Rick Rothackerj	611.531934	Fair	
	14	CUS_0x21b1	Rick Rothackerj	595.837460	Poor	
	•••					
	99990	CUS_0x8600	Sarah McBridec	494.460602	very Bad	
	99991	CUS_0x8600	Sarah McBridec	553.221027	Poor	
	99997	CUS_0x942c	Nicks	619.554305	Fair	
	99998	CUS_0x942c	Nicks	565.803866	Poor	
	99999	CUS_0x942c	Nicks	569.377974	Poor	
	37500 ro	ws × 8 columi	าร			
	4					>
In [269	bin_lab		Bad', 'Poo	r', 'Fair', '	<pre>Good', 'Excellent'] = pd.cut(fdf['Last_3_months_</pre>	_Credit_Sc
In [270	13m = f	df[['Custome	r_ID','Nam	e','Last_3_mc	onths_Credit_Score_consolidate	ed','last_
In [271	13m_uni	que = 13m.dr	op_duplica [.]	tes(subset=['	Customer_ID', 'Name'], keep=	'first')

13m_unique.sample(10)

In [272...

Out[272		Customer_ID	Name	Last_3_months_Credit_Score_consolidated	last_3_mc
	86925	CUS_0x3ace	Shirbonf	516.765222	
	12797	CUS_0x4716	, Asiac	499.892734	
	77237	CUS_0x84b8	Georgiopoulosb	556.060065	
	2421	CUS_0x9983	Julien Toyerb	556.372378	1
	30525	CUS_0x46c3	Kaiserc	539.516670)
	46789	CUS_0x5f1b	McCrankn	508.457545	
	79597	CUS_0x7594	Langeo	522.405475	
	33117	CUS_0x44e	Baertleiny	550.549917	
	29805	CUS_0x4a6	Oliviaj	531.750484	
	44725	CUS_0x26d0	Peter Dinklohz	566.617329	1
	4				
					•
In [273	13m_uni	ique.groupby('last_3_months_	<pre>Credit_Score_category')['Customer_ID</pre>	'].nunique
Out[273				Customer_ID	

last_3_months_Credit_Score_category

1985	very Bad
10501	Poor
14	Fair
0	Good
0	Excellent

```
In [274...
          import plotly.graph_objects as go
          from PIL import Image
          credit_score_input = int(input('Enter your Credit Score - '))
          # Define the gauge plot
          fig = go.Figure(go.Indicator(
              mode="gauge+number+delta",
              value=credit_score_input,
              title={'text': "Credit Score"},
              delta={'reference': 850, 'increasing': {'color': "green"}},
              gauge={
                   'axis': {'range': [300, 850], 'tickwidth': 1, 'tickcolor': "darkblue"},
                   'bar': {'color': "darkblue"},
                   'bgcolor': "white",
                   'steps': [
                      {'range': [300, 550], 'color': 'red'},
                      {'range': [550, 650], 'color': 'orange'},
                      {'range': [650, 750], 'color': 'yellow'},
                      {'range': [750, 850], 'color': 'green'}],
                   'threshold': {
```

Enter your Credit Score - 786 <Figure size 640x480 with 0 Axes>

```
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(figsize=(1,0.5))
# Path to your image file
img_path = 'new_image.png'
# Load and display the image
img = mpimg.imread(img_path)
plt.imshow(img) # Display the image data
plt.axis('off') # Hide axis
plt.tight_layout()
fig.show()
```

Insights on Analysis

Updation of the numbers from above

Overall Credit Score Categories:

Very Bad: 7412
Poor: 5076
Fair: 12
Good: 0
Excellent: 0

Observation: Most customers fall into the "Very Bad" or "Poor" categories, with very few in the "Fair" category and none in the "Good" or "Excellent" categories.

Cumulative RFM Credit Score Categories:

Very Bad: 7788
 Poor: 4712
 Fair: 0
 Good: 0
 Excellent: 0

Observation: After integrating RFM factors, the number of customers in the "Very Bad" category has increased, while those in the "Poor" category have decreased. No customers fall into the "Fair," "Good," or "Excellent" categories.

Last 3 Months Credit Score Categories:

Very Bad: 7761
 Poor: 4739
 Fair: 0
 Good: 0
 Excellent: 0

Observation: Similar to the cumulative RFM scores, the "Very Bad" and "Poor" categories dominate, with no customers in the higher categories.

Possible Reasons

High Proportion in "Very Bad" and "Poor" Categories:

- The dominance of the "Very Bad" and "Poor" categories across all models suggests a high level of credit risk among customers.
- Possible Factors: High levels of outstanding debt, poor payment behavior, high
 credit utilization, or recent negative changes in financial behavior could contribute
 to these scores.

No Customers in Higher Categories Post-RFM Integration:

- The complete absence of "Fair," "Good," and "Excellent" categories after integrating RFM features indicates that RFM factors might be emphasizing risks or penalizing certain credit behaviors heavily.
- **Possible Factors**: The integration of RFM features may have introduced stricter criteria or revealed high-risk patterns not captured previously.

Stable Distribution in Last 3 Months:

- The consistency in the distribution for the last 3 months mirrors the cumulative RFM scores, suggesting that recent credit behavior aligns with the longer-term integrated RFM analysis.
- **Possible Factors**: Recent credit behaviors might be reflective of ongoing financial issues or consistent poor credit management.

Summary

- Overall, both the cumulative and recent transaction-based analyses indicate a high proportion of customers in the "Very Bad" and "Poor" categories, suggesting significant credit risk.
- The integration of RFM features has intensified this trend, possibly due to the introduction of more granular risk factors.
- This highlights the need for targeted financial interventions or improved credit management practices among customers.

Recommendations & Suggestions

Refine Credit Scoring Models:

- **Action**: Integrate RFM and advanced metrics into credit scoring models to enhance accuracy and identify high-risk customers.
- Benefit: Improved prediction of creditworthiness and risk management.

Enhance Customer Engagement:

- Action: Implement proactive communication strategies, such as alerts and reminders, to encourage timely payments.
- Benefit: Reduced missed payments and improved credit behavior.

Develop Financial Education Programs:

- **Action**: Offer targeted financial literacy resources to help customers manage debt and improve credit scores.
- Benefit: Better customer financial health and responsible credit usage.

Adjust Credit Limits Strategically:

 Action: Regularly review and adjust credit limits based on current credit utilization and payment behavior. • **Benefit**: Better alignment of credit limits with customers' repayment ability and risk mitigation.

Leverage Predictive Analytics:

- **Action**: Use predictive analytics to identify potential credit risks early and take preemptive actions.
- Benefit: Timely risk management and reduced likelihood of defaults.

Incentivize Positive Credit Behaviors:

- **Action**: Reward customers for improved credit management and responsible behavior.
- Benefit: Encourages better credit practices and enhances overall credit profiles.