9.3 哈希表

9.3.1 哈希表的基本概念

在前面讨论的各种结构(线性表、树等)中,记录在结构中的相对位置是随机的,和记录的关键字之间不存在确定的关系,因此,在结构中查找记录时需进行一系列和关键字的比较。这一类查找方法建立在"比较"的基础上。查找的效率依赖于查找过程中所进行的比较次数。

● 理想的情况是希望不经过任何比较,一次存取便能得到所查记录,为此,需在记录的存储位置和它的关键字之间建立一个确定的对应关系f(key),由此,不需进行比较便可直接取得所查记录。在此,我们称这个对应关系f(key)为哈希(Hash)函数,或者散列函数,按这个思想建立的表为哈希表(散列表)。

9.3.1 哈希表的基本概念

□ 哈希表 (Hash Table) 又称散列表, 是除顺序存储 结构、链式存储结构和索引表存储结构之外的又一 种存储结构。

学生 成绩表

学号	姓名	分数
201201	王实	85
201205	李斌	82
201206	刘英	92
201202	张山	78
201204	陈功	90

地址	学号	姓名	分数
0			
1			
2			
3			
4			
5			

学生 成绩表

学号	姓名	分数
201201	王实	85
201205	李斌	82
201206	刘英	92
201202	张山	78
201204	陈功	90

■ 哈希表长度m=6 (存储单元的地址为0~5) □ 记录个数n=5 □ 哈希函数: h(学号) = 学号-201201

地址	学号	姓名	分数
0	201201	王实	85
1	201202	张山	78
2			
3	201204	陈功	90
4	201205	李斌	82
5	201206	刘英	92

地址	学号	姓名	分数	_	
0	201201	王实	85		
1	201202	张山	78		
2					
3	201204	陈功	90	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	哈希表
4	201205	李斌	82		(哈希空间)
5	201206	刘英	92		
				_	

哈希函数: h(学号) = 学号-201201

查找201204的学生姓名

- h(201204) = 201204 201201 = 3
- 地址3的记录姓名为"陈功"

0(1), 按关键字查找速度快

问题1

哈希函数: h(学号) = 学号-201201

- ▶ 如果n=30, m=35, 但学号分布分散。
- > 学号201201, h(201201)=201201-201201=0
- **>** ...
- > 学号201250, h(201250)=201250-201201=49 ?

哈希函数: h(学号) = (学号-201201) % m

- > 学号201201, h(201201)=(201201-201201)%35=0
- **>** ...
- ▶ 学号201250, h(201250)=(201250-201201)=49%35=14

问题2

哈希函数: h(学号) = (学号-201201) % m

- h(201204) = (201204 201201)%35 = 3
- 如果存在一个学号为201239

h(201239)=(201239-201201)%35=38%35=3?

- 可能存在这样的问题,对于两个关键字 k_i 和 k_j ($i \neq j$),有 $k_i \neq k_j$ ($i \neq j$),但 $h(k_i) = h(k_j)$ 。把这种现象叫做发生了冲突,称 k_i 、 k_j 为同义词。
- 如果出现了冲突,后存储的记录会覆盖前面存储的记录。这是不允许的!

1

需要解决哈希冲突

哈希函数通常是一种压缩映象,所以冲突不可避免, 只能尽量减少;当冲突发生时,应该有处理冲突的方法。

设计一个散列表应包括:

- ① 散列表的空间范围,即确定散列函数的值域;
- ② 构造合适的散列函数,使得对于所有可能的元素(记录的关键字),函数值均在散列表的地址空间范围内,且出现冲突的可能尽量小;
- ③ 处理冲突的方法。即当冲突出现时如何解决。

9.3.2 哈希函数构造方法

构造哈希函数的目标:

- ▶ (1) 使得到的哈希地址尽可能均匀地分布在m个连续内存单元地址上, 所谓"均匀"(uniform)是指发生冲突的可能性尽可能最少。
- ▶ (2)同时使计算过程尽可能简单以达到尽可能高的时间效率。
- 根据关键字的结构和分布的不同,有多种构造哈希函数的方法。

1. 直接定址法

- □ 以关键字key本身或关键字加上某个数值常量c作为哈希 地址的方法。即h(key)=key+c。
- ✓ 这种哈希函数计算简单,并且不可能有冲突发生。
- □ 当关键字的分布基本连续时,可用直接定址法的哈希函数;否则,若关键字分布不连续将造成内存单元的大量浪费。

学生 成绩表

学号	姓名	分数
201201	王实	85
201205	李斌	82
201206	刘英	92
201202	张山	78
201204	陈功	90

■ 哈希表长度m=6 (存储单元的地址为0~5) 记录个数n=5 ■ 哈希函数: h(学号) = 学号-201201

地址	学号	姓名	分数
0	201201	王实	85
1	201202	张山	78
2			
3	201204	陈功	90
4	201205	李斌	82
5	201206	刘英	92

2. 除留余数法

- 用关键字key除以某个不大于哈希表长度m的数p所得的 余数作为哈希地址的方法。
- 除留余数法的哈希函数h(key)为:
 h(key)=key mod p (mod为求余运算, p≤m)
- ◆ p最好是质数 (素数)。

3. 数字分析法

- 提取关键字中取值较均匀的数字位作为哈希地址的方法。
- □ 适合于所有关键字值都已知的情况,并需要对关键字中每一位的取值分布情况进行分析。

位序	1	2	3	4	5	6	7	8
	9	2	3	1	7	6	0	2
	9	2	3	2	6	8	7	5
	9	2	7	3	9	6	2	8
	9	2	3	4	3	6	3	4
	9	2	7	0	6	8	1	6
	9	2	7	7	4	6	3	8
	9	2	3	8	1	2	6	2
	9	2	3	9	4	2	2	0

哈希地址的集合为{2,75,28,34,16,38,62,20}

【示例】 假设哈希表长度m=13,采用除留余数法哈希函数建立如下关键字集合的哈希表(16,74,60,43,54,90,46,31,29,88,77),共11个关键字。

解: *n*=11, *m*=13, 设计除留余数法的哈希函数为: h(k)=k mod p

p应为小于等于m的素数,设p=13。

注意: 存在哈希冲突。

— END