Implémentation d'un moteur de requêtes SQL simples

Bouzidi Belkacem - Elhouiti Chakib Kezzoul Massili - Zeroual Ramzi Yang Fei

Université de Montpellier

19 mai 2019

Sommaire

1 Introduction

Presentaion du projet et orgaisation Présentation du SQL et des bases de données

Modélisation

Structure de données Structure de la requête

3 Implémentation

Les grandes lignes Le développement

- Oémonstration
- 6 Conclusion

Perspective

1 Introduction

Presentaion du projet et orgaisation Présentation du SQL et des bases de donnée

- Modélisation
- 6 Implémentation
- 4 Démonstration
- G Conclusion

Introduction

Presentation du projet

- ▶ Projet choisi : conception et développement d'un moteur d'évaluation de requêtes SQL en mémoire vive.
- ► Forme des requêtes :
 - SELECT : Projection
 - FROM : Jointure
 - WHERE : Selection
- Fichiers pris en charge : un ou plusieurs fichiers CSV
 - Un fichier CSV est un fichier texte
 - Une Ligne du texte correspond à une ligne du tableau
 - Les virgules correspondent aux séparations entre les colonnes

Objectif de l'application

Introduction

Organisation

- Réunions :
 - Etudiants : trois à quatre fois par semaine
 - Encadrante : une fois par semaine
- ► Decoupage du projet :
 - Phase de modélisation
 - Phase de développement
 - Finalisation du projet
- Outils de collaboration : GitLab

Présentation

SQL et les bases de données

Base de données

Une base de données (en anglais database), permet de stocker et de manipuler des données brutes ou d'informations.

Système de gestion de base de données

Un SGBD est un logiciel système servant à stocker, à manipuler ou gérer, et à partager des informations dans une base de données, en garantissant la qualité, la pérennité et la confidentialité des informations, tout en cachant la complexité des opérations.

SGBD les plus utilisés :

- Oracle Database
- MySQL

Structered Query Languages

Intérpreteur de requêtes SQL

Le SQL est un langage informatique normalisé servant à exploiter des bases de données relationnelles.

Les requêtes SQL considéré par notre programme sont sous cette forme :

```
SELECT nomAttribut1,...,nomAttribut2
FROM nomTable1,..., nomTable2
WHERE nomAttributX = nomAttributY OR ... AND nomAttributZ = ZZ
```


- Introduction
- 2 Modélisation

Structure de données Structure de la requête

- 6 Implémentation
- 4 Démonstration
- G Conclusion

Modélisation

Découpage de la conception en deux parties principales :

- Structuration des données
- ► Structure de la requête SQL

choix de l'approche

Nous avons choisis de modéliser ces deux sous parties, en utilisant l'approche orientée objet qui est parfaitement adaptée à notre problème.

Structuration des données

Structure de la requête

- Introduction
- Modélisation
- 3 Implémentation Les grandes lignes Le développement
- 4 Démonstration
- Conclusion

Implémentation

Les grandes lignes de l'implémentation :

- ► Choix du C++ comme langage de programmation,
- Répartition du développement en trois parties principales :
 - Chargement des données,
 - Intérpretationet éxecution de la requête,
 - Restitution des données.
- Utilisation du programme,
- Phases de tests.

Le développement Développement

Chargement des données

- ► Implémentation des classes,
- ► Interpréter un fichier CSV,
- Fonction strsplit,
- Parser toutes les lignes du fichiers CSV,

Développement

La requête

Intérpretation

Nous nous sommes occupés à trouver une manière de découper la requête afin de stocker chaque partie dans l'attribut correspondant.

- ► Select,
- From,
- ▶ Where.

Éxecution

Notre application exécute la requête en trois étapes consécutives et complémentaires pour effectuer le traitement nécessaire.

- Le produit cartésien,
- La selection.
- La projection.

- Introduction
- 2 Modélisation
- **3** Implémentation
- 4 Démonstration
- Conclusion

- Introduction
- 2 Modélisation
- **3** Implémentation
- 4 Démonstration
- **6** Conclusion

Perspective

Perspective

Voici quelques idées afin d'améliorer le programme :

- Optimisation en mémoire :
 - Projection partielle
 - Exécuter les conditions de sélection sur chaque tables individuellement
 - Écrire le résultat du produit cartésien dans un fichier temporaire
- Opérateur :
 - LIKE
 - BETWEEN
 - IN
- ► Commandes :
 - GROUP BY
 - HAVING
 - AS
- Fonctions d'agrégation :
 - MAX et MIN
 - COUNT
 - SUM
 - AVG

