(j)
$$x[n] = \left(\frac{1}{2}\right)^n u[n-4]$$

$$h[n] = 4^n u[2-n]$$

Figura P3.1

(c)

- 3.2. Para cada uno de los siguientes pares de formas de onda, utilice la integral de convolución para encontrar la respuesta y(t) a la entrada x(t) del sistema LTI cuya respuesta al impulso es h(t). Dibuje sus resultados.
 - (a) $x(t) = e^{-\alpha t}u(t)$ (Obtenga el resultado cuando $\alpha \neq \beta$ y cuando $\alpha = \beta$.) $h(t) = e^{-\beta t} u(t)$
 - (b) x(t) = u(t) 2u(t-2) + u(t-5) $h(t) = e^{2t}u(1-t)$
 - (c) $x(t) = e^{-3t}u(t)$
 - h(t) = u(t .1)
 - (d) $x(t) = e^{-2t}u(t+2) + e^{3t}u(-t+2)$ $h(t) = e^t u(t-1)$
 - (e) $x(t) = \begin{cases} e^t, & t < 0 \\ e^{5t} 2e^{-t}, & t > 0 \end{cases}$ h(t) dada en la figura P3.2(a)
 - (f) x(t) y h(t) dadas en la figura P3.2(b)

h(t)

(a)

h(t)

(g) x(t) dada en la figura P3.2(c).

(i) x(t) y h(t) dadas en la figura P3.2(e). (j) x(t) y h(t) dadas en la figura P3.2(f).

(h) $x(t) = \delta(t) - 2\delta(t-1) + \delta(t-2)$, y h(t) dada en la figura P3.2(d).

x(t)

h(t) = u(-2 - t)

Pendiente = a

Figura P3.2

Cap. 3

Cap. 3