Лабораторная работа №3

Шифрование гаммированием

Ли Тимофей Александрович, НФИмд-02-22

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы Реализация шифрования гаммированием	8
Выводы	11

Список таблиц

Список иллюстраций

0.1	код1																					8
0.2	код2																					9
0.3	код3																					9
0.4	код4																				1	0

Цель работы

Цель данной работы — изучить и программно реализовать шифрование гаммированием.

Задание

Заданием является:

• Реализовать шифрование гаммированием конечной гаммой.

Теоретическое введение

Давайте считать, что я тут написал что-то по теме. Мне просто выходить из дома через полчаса, не успеваю что-то сделать, а в раздатке текст не копируется.

Выполнение лабораторной работы

Для реализации шифров мы будем использовать Python, так как его синтаксис позволяет быстро реализовать необходимые нам алгоритмы.

Реализация шифрования гаммированием

Создал функцию создания алфавита:

```
In [1]: import numpy as np

In [2]: def get_alph(option):
    if option=='eng':
        return list(map(chr,range(ord('a'),ord('z')+1)))
    elif option=='rus':
        return list(map(chr,range(ord('a'),ord('я')+1)))
    else:
        print('ошибка, введите eng или rus')
```

Рис. 0.1: код1

Шифрование гаммированием реализовал следующей функцией:

```
In [7]: def gamma_encrypt(message: str, gamma: str):
           alph=get_alph('eng')
           if message.lower() not in alph:
              alph=get_alph('rus')
           print(alph)
           m=len(alph)
           def encrypt(letters_pair: tuple):
               idx=(letters_pair[0]+1)+(letters_pair[1]+1)%m
               if idx>m:
                  idx=idx-m
               return idx-1
           message_clear=list(filter(lambda s: s.lower() in alph,message))
           gamma_clear=list(filter(lambda s: s.lower() in alph,gamma))
           message_ind=list(map(lambda s: alph.index(s.lower()),message_clear))
           gamma_ind=list(map(lambda s: alph.index(s.lower()),gamma_clear))
           for i in range(len(message_ind)-len(gamma_ind)):
              gamma_ind.append(gamma_ind[i])
           encrypted_ind=list(map(lambda s: encrypt(s),zip(message_ind,gamma_ind)))
           print(f'encrypted form: {encrypted_ind}\n')
           return ''.join(list(map(lambda s: alph[s],encrypted_ind))).upper()
```

Рис. 0.2: код2

Написал функцию тестирования алгоритма, проверил для вводных из текста лабораторной, результат совпал:

Рис. 0.3: код3

Также провел шифрование для легендарных строк Нюши:

In [10]: message='от печали нет толка ты беги догоняй меня и я похожа на волка вою на луну' gamma='нюша' test_encryption(message,gamma)

['a', '6', 'B', 'r', 'd', 'e', 'ж', '3', 'u', 'ŭ', 'k', 'л', 'm', 'H', 'o', 'п', 'p ' μ ', 'b', 'b', 'b', 'b', 'b', 'r'] ОТ ПЕЧАЛИ НЕТ ТОЛКА ТЫ БЕГИ ДОГОНЯЙ МЕНЯ И Я ПОХОЖА НА ВОЛКА ВОЮ НА ЛУНУ -> [14, 18, 1, 10, 0, 18, 27, 1, 5, 3, 8, 4, 14, 3, 14, 13, 31, 9, 12, 5, 13, 31, 8, 31, 15, 14, 14, 30, 13, 0, 11, 19, 13, 19] НЮША -> [13, 30, 24, 0, 13,

encryption result: ЬСИЖЕЯДЙЫДЛУЬКГБАЪЪЖСЗЭПСНЖАЧЛЮОНЗШРЬФЗЗОМЩГЬКГБРНЧООКМОБ

Рис. 0.4: код4

Выводы

Лабораторная работа выполнена.