Bayesian Parameter Inference of Markov Population Model.

Master Thesis

Submitted by

Nhat-Huy Phung

at the

Modeling of Complex, Self-organising Systems

Department of Computer and Information Science

- 1. Supervised by: Jun-. Prof. Dr. Tatjana Petrov
- 2. Supervised by: Prof. Dr. Stefan Leue

Konstanz, 2020

Contents

1	Inti	Introduction													
2	Preliminaries														
	2.1 Probabilistic model checking														
		2.1.1	Discrete-time probabilistic models	2											
		2.1.2	Temporal properties on probabilistic models	3											
		2.1.3	Parametric model and parameter synthesis	3											
	2.2	Bayesi	ian Inference	3											
		2.2.1	Bayes' theorem	3											
		2.2.2	Posterior conjugation	3											
		2.2.3	Metropolis-Hastings algorithm	3											
		2.2.4	Selection of prior distribution	3											
	2.3	•													
3	Rel	ated works													
4	Framework for parameter synthesis.														
	4.1		l construction	5 5											
	4.2		ework	5											
5	Case study 6														
	0.1	5.1.1	System description	6 6											
		5.1.2	Parametric model	6											
		5.1.3	Properties	6											
		5.1.3	Parameter synthesis	6											
	5.2	-	se bees	6											
	J.∠														
		5.2.1	System description	6											

	5.2.	2 Par	rametri	ic m	ode	el.													6
	5.2.	3 Pai	ramete	r sy	nth	esis													6
	Conclusion														7				
	6.1 Sun	nmary																	7
	6.2 Fut	ure wo	rks .																7

Acknowledgements

To the completement of this thesis, I would like to describe my deep

Abstract

something

Introduction

- Brief introduction to Markov Chain
- Brief introduction to parameterization or Markov Chains
- Applications of parameter synthesis problem.
- Description of thesis structure.

We study the parameter synthesis problem of parametric Discrete-Time Markov Chain. Markov Chain is a probabilistic model to formalize stochastic processes.

Parameter synthesis is a relatively new research area [6] This thesis is structured as follow.

- Chapter 1 introduces motivations and background for the research topic.
- Chapter 2 describes the most important definitions and theoretical background. In this chapter, we defines Discrete-Time Markov Chain formally. A brief introduction to Bayesian Inference is also included.
- Chapter 3 reviews the state-of-the-art works of other researchers on the problem of parameter synthesis.
- Chapter 4 describes the method.
- Chapter 5 describes the benchmark.
- Chapter 6 conclusion and future work.

Preliminaries

- transition system
- markov property
- discrete-time markov chain and parametric dtmc
- bayesian inference fuck this

2.1 Probabilistic model checking

2.1.1 Discrete-time probabilistic models

Definition 2.1.1 (Discrete Time Markov Chain). A Discrete Time Markov Chain (DTMC) is a tuple $(S, \mathbf{P}, S_{init}, AP, L)$ [1]

- S is a countable non-emty set of states
- $\mathbf{P}: S \times S \rightarrow [0,1]$ is the $transition\ probability$ function, s.t

$$\sum_{s' \in S} \mathbf{P}(s, s') = 1$$

• $S_{init}: S \rightarrow [0,1]$ is the initial distribution, s.t

$$\sum_{s' \in S} S_{init}(s') = 1$$

- AP is a set of atomic propositions
- $L: S \to 2^{AP}$ is the labelling function on states.

2.1.2 Temporal properties on probabilistic models

Over CTL properties, we define the set of PCTL properties, in which we ask the probability to have a CTL property satisfied.

Definition 2.1.2 (PCTL syntax). The syntax of PCTL is defined as follow

$$\Phi ::== \text{true} \mid a \mid \Phi \mid \Phi \wedge \Phi \mid \Phi \vee \Phi \mid P_{\sim p}[\phi]$$

$$\phi ::== X\Phi \mid \Phi U \Phi$$

2.1.3 Parametric model and parameter synthesis

2.2 Bayesian Inference

- 2.2.1 Bayes' theorem
- 2.2.2 Posterior conjugation
- 2.2.3 Metropolis-Hastings algorithm

2.2.4 Selection of prior distribution

The selection of prior distribution has strong effect on the result [what result specifically?] of a Bayesian inference [Citation needed].

2.3 Bayesian verification

Related works

The current research progress on probabilistic model checking is studied thoroughly by Katoen and Baier et al [1]. Katoen et al. [6] briefly summarized important aspect of probabilistic model checking.

Polgreen et al [7] presents a method for bayesian inference of pMC parameters in

The definition and model checking of DTMC and pMC is studied by [1], [4], and [6].

Bayesian inference of pMC parameters is studied in [7] and [5]. In [7], the authors developed methods to synthesize parameters to satisfy a given set of PCTL properties. In [5], the authors presented methods to perform model checking of biological system using Bayesian statistic. The authors in [5] uses a Bayesian hypothesis test, where H_0 is the null hypothesis that the model satisfies a PCTL P, and alternative hypothesis H_1 is that the system does not satisfies P. Similar approach to the parameter estimation in this project is described by [3].

In this project, we use bee colony model semantics from [2]. The methods and implementation in this project is designed to extend the results of [2] and its tool DiPS.

Framework for parameter synthesis.

- 4.1 Model construction
- 4.2 Framework

Case study

5.1 Zeroconf

5.1.1 System description

Zero configuration protocol is as protocol widely used in the internet

- 5.1.2 Parametric model
- 5.1.3 Properties
- 5.1.4 Parameter synthesis
- 5.2 Defense bees
- 5.2.1 System description
- 5.2.2 Parametric model
- 5.2.3 Parameter synthesis

Conclusion

- 6.1 Summary
- 6.2 Future works

Bibliography

- Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
- [2] Matej Hajnal et al. "Data-Informed Parameter Synthesis for Population Markov Chains". In: *International Workshop on Hybrid Systems Biology*. Springer. 2019, pp. 147–164.
- [3] Faraz Hussain et al. "Automated parameter estimation for biological models using Bayesian statistical model checking". In: *BMC bioinformatics* 16.S17 (2015), S8.
- [4] Lisa Hutschenreiter, Christel Baier, and Joachim Klein. "Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination". In: arXiv preprint arXiv:1709.02093 (2017).
- [5] Sumit K Jha et al. "A bayesian approach to model checking biological systems". In: *International conference on computational methods in systems biology*. Springer. 2009, pp. 218–234.
- [6] Joost-Pieter Katoen. "The probabilistic model checking landscape". In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. 2016, pp. 31–45.
- [7] Elizabeth Polgreen et al. "Data-efficient Bayesian verification of parametric Markov chains". In: *International Conference on Quantitative Evaluation of Systems*. Springer. 2016, pp. 35–51.