浙江工业大学 2022/2023 学年第二学期 概率论与数理统计A(48学时)期末考试试卷

	学号:	姓名:	
	班级:	任课教师:	_
分位点数	据:		
$t_{0.0}$	$t_{0.025}(9) = 2.2622, t_{0.025}(8) = 2.2622$	$= 2.3060, t_{0.05}(9) = 1.8331, t_{0.05}(8)$) = 1.8595
一. 选择题	(每题 3 分, 共 24 分)		
1. 随机事	件 A 和 B 恰有一个发生的	力概率为	()
(A) P	(A) + P(B) - P(AB)	(B) $P(A) + P(B)$	
(C) P((A) + P(B) - 2P(AB)	(D) $P(A) - P(B)$	
2. 设 P(A	$P(A B) = \frac{1}{2}, P(B) = \frac{1}{3}, P(A B)$	$P(A \overline{B})$,则 $P(B A) =$	()
(A) $\frac{1}{3}$	(B) 2/5	(C) $\frac{1}{2}$ (D) $\frac{2}{3}$	
3. 设盒中	有 3 种颜色的卡片各 2 张.	从中随机抽取卡片,每次1张,不过	放回,直到每种颜色
的卡片	至少被被抽出1张为止. 记	$ar{X}$ 为抽出的卡片数,则	()
(A) P($(X=3) = \frac{1}{3}, EX = \frac{19}{5}$	(B) $P(X=3) = \frac{1}{3}, EX = 4$	1
(C) P($(X=3) = \frac{2}{5}, EX = \frac{19}{5}$	(D) $P(X=3) = \frac{2}{5}, EX = 4$	4
4. 设 X 的	的密度函数 $f(x) = \frac{1}{\sqrt{2\pi}} [e^{-\frac{x}{2\pi}}]$	$\frac{x^2}{2\sigma^2} + e^{-\frac{(x-1)^2}{2\sigma^2}}, -\infty < x < \infty, $	()
(A) σ^2	$=\frac{1}{4}, EX = \frac{1}{2}$	(B) $\sigma^2 = \frac{1}{4}, EX = 1$	
(C) σ^2	$= \frac{1}{2}, EX = \frac{1}{2}$	(D) $\sigma^2 = \frac{1}{2}, EX = 1$	
5. 设总体	$X \sim N(0, \sigma^2)$, X_1, X_2, \cdots		
	\sqrt{A}	$\frac{B(X_4 - X_5)}{AX_1^2 + (X_2 + X_3)^2} \sim t(2),$	
则			()
(A) A	=2, B=1	(B) $A = 2, B = \sqrt{2}$	
	$= 1. B = \frac{\sqrt{2}}{2}$	(D) $A = 1$, $B = \frac{1}{3}$	

6.	设 X_1, X_2, X_3 相互独立, 且 $X_1 \sim N(\mu, 1), X_2 \sim N(\mu, 2), X_3 \sim N(\mu, 3)$, 则下列选项					
	中 μ 的最有效的无例	扁估计是			()	
	(A) $\frac{1}{6}X_1 + \frac{1}{6}X_2 + \frac{1}{6}X_3 + \frac{1}{6}X_4 + \frac{1}{6}X_5 +$	$\frac{1}{5}X_3$	(B) $\frac{1}{3}X_1 +$	$\frac{1}{6}X_2 + \frac{1}{9}X_3$		
	(C) $\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3 + \frac{1}{3}X_4 + \frac{1}{3}X_5 +$	$\frac{1}{3}X_3$	(D) $\frac{1}{2}X_1 +$	$\frac{1}{3}X_2 + \frac{1}{6}X_3$		
7.	_	(x^2) , (X_1, X_2, \cdots, X_n) $(x^2 - \alpha)$ 的单侧置信下限		为样本均值, S^2 为样	本方差,则 ()	
				$\langle T \rangle = S^2$	()	
	(A) $\frac{\chi^2}{\chi^2_{1-\alpha}(n-1)}$	(B) $\frac{\chi^2}{\chi^2_{\alpha}(n-1)}$	$(C) \frac{\varepsilon}{\chi_{1-\alpha}^2(n-1)}$	$(D) \frac{S^2}{\chi_{\alpha}^2(n-1)}$		
8.		$ heta$),根据 X 的样本 $ x_1 >c$ },显著水平		見设检验: $H_0: heta=1 ext{ vs}$ $c=$	$H_1: \theta = 2.$ ()	
	(A) 0.1	(B) 0.2	(C) 0.9	(D) 1.8		
<u> +</u>	真空题(每空 2 分,	共 16 分)				
9.		生火灾事故的次数服。 勺概率是		(2),则该地区一年内发	生的火灾事	
		(1.		$x > \frac{\pi}{2}$.		
10.	设连续型变量 X 的	分布函数 $F(x) = \int_{-\Lambda}^{-\pi}$	L R and m	$x > \frac{\pi}{2}$, $0 \le x \le \frac{\pi}{2}, \text{ 则 } A = \underline{\qquad}$ $x < 0,$		
10.	人之以上人主 11 时,		$+D\cos x$,	$0 \le x \le \frac{1}{2}$, 11		
		•		x < 0,		
	$B = \underline{\hspace{1cm}}$	·				
11.	设 $X \sim U(0,1)$, Y	$X = aX + b$, $\coprod EY$	= a, DY =	b,则 a =	, b =	
12.		=2,DX=3,DY=		Y独立. 若 $Z=2X$	+Y-1,	
13.	设 $EX = 3, E(X^2)$:	= 12,则根据切比雪	夫不等式, <i>P</i>	$(0 < X < 6) \ge \underline{\hspace{1cm}}$		
三.	解答题(共 60 分)					
14.	概率分别为 0.5,0.4. 游戏, 直到某关卡通卡继续游戏。	从甲、乙两人中随机 6关失败或完全通关为	l选取一人首名 7止,若其在非	分别为 0.6,0.5,乙通过这 在上场,通过一关卡后可 表关卡失败,则另一人上 通关,求甲先上场的概率	继续下一关 场从当前关	

15. (8 分) 设随机变量 X 的密度函数

$$f(x) = \begin{cases} ax^2 + b, & -1 < x < 2, \\ 0, & \text{ 其他.} \end{cases}$$

且 EX = 1. (1) 求常数 a, b; (2) 计算 $E(X^3)$.

16. (8 分) 设 X,Y 的联合分布表为

X Y	1	2	3
-1	1/3	1/6	1/4
1	a	b	c

(1) 若 X, Y 独立, 求 a, b, c; (2) 若 X, Y 不相关, 且 $P(X + Y \ge 3) = \frac{1}{6}$, 求 a, b, c.

17. (16 分) 设随机变量 (X,Y) 的密度函数是

$$f(x,y) = \begin{cases} C(x+y)e^{-y}, & 0 < x < y, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) 验证 $C = \frac{1}{3}$; (2) 计算 P(Y > 2X); (3) 求 Z = X + Y 的密度函数 $f_Z(z)$;
- (4) 求条件密度 $f_{X|Y}(x|y)$, 并求 $P(X > \frac{1}{2}|Y = 1)$.
- 18. (10 分)设总体 X 的分布列为

$$\begin{array}{|c|c|c|c|c|} \hline X & 1 & 2 & 3 \\ \hline P & \theta & \theta - \theta^2 & (1 - \theta)^2 \\ \hline \end{array}$$

其中未知参数 $\theta \in (0,1)$. 根据 X 的样本 1,1,3,2,3,求: (1) θ 的矩估计值; (2) θ 的最大似然估计值.

19. (10 分) 设某种饮料的维 C 含量(单位: mg/l)服从正态分布. 现抽取该种饮料 9 瓶,测量维 C 含量(单位: mg/l)的样本均值 $\overline{x}=21.5$,样本标准差 s=2. 取显著性水平 $\alpha=0.05$,能否认为该种饮料的维 C 含量的平均值为 20 mg/l?