Instantly share code, notes, and snippets.

# shagunsodhani / How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation.md

Created 6 years ago



Notes for paper titled "How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation"

How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation.md

# How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation

# Introduction

- The paper explores the strengths and weaknesses of different evaluation metrics for end-to-end dialogue systems(in unsupervised setting).
- · Link to the paper

# **Property Services Property Services Prope**

# **Word Based Similarity Metric**

#### **BLEU**

 Analyses the co-occurrences of n-grams in the ground truth and the proposed responses.

- BLEU-N: N-gram precision for the entire dataset.
- Brevity penalty added to avoid bias towards short sentences.

#### **METEOR**

- Create explicit alignment between candidate and target response (using Wordnet, stemmed token etc).
- Compute the harmonic mean of precision and recall between proposed and ground truth.

#### **ROGUE**

 F-measure based on Longest Common Subsequence (LCS) between candidate and target response.

### **Embedding Based Metric**

#### **Greedy Matching**

- Each token in actual response is greedily matched with each token in predicted response based on cosine similarity of word embedding (and vice-versa).
- Total score is averaged over all words.

#### **Embedding Average**

- Calculate sentence level embedding by averaging word level embeddings
- Compare sentence level embeddings between candidate and target sentences.

#### **Vector Extrema**

- For each dimension in the word vector, take the most extreme value amongst all word vectors in the sentence, and use that value in the sentence-level embedding.
- Idea is that by taking the maxima along each dimension, we can ignore the common words (which will be pulled towards the origin in the vector space).

# **Dialogue Models Considered**

#### **Retrieval Models**

#### **TF-IDF**

- Compute the TF-IDF vectors for each context and response in the corpus.
- C-TFIDF computes the cosine similarity between an input context and all other contexts in the corpus and returns the response with the highest score.

 R-TFIDF computes the cosine similarity between the input context and each response directly.

#### **Dual Encoder**

- Two RNNs which respectively compute the vector representation of the input context and response.
- Then calculate the probability that given response is the ground truth response given the context.

#### **Generative Models**

#### **LSTM** language model

- LSTM model trained to predict the next word in the (context, response) pair.
- Given a context, model encodes it with the LSTM and generates a response using a greedy beam search procedure.

#### **Hierarchical Recurrent Encoder-Decoder (HRED)**

- Uses a hierarchy of encoders.
- Each utterance in the context passes through an 'utterance-level' encoder and the output of these encoders is passed through another 'context-level' decoder.
- Better handling of long-term dependencies as compared to the conventional Encoder-Decoder.

# **Observations**

- Human survey to determine the correlation between human judgement on the quality of responses, and the score assigned by each metric.
- Metrics (especially BLEU-4 and BLEU-3) correlate poorly with human evaluation.
- Best performing metric:
  - Using word-overlaps BLEU-2 score
  - Using word embeddings vector average
- Embedding-based metrics would benefit from a weighting of word saliency.
- BLEU could still be a good evaluation metric in constrained tasks like mapping dialogue acts to natural language sentences.