

Gép- és szerkezeti elemek I. BTG1 2023/24 II. Házifeladat

Készítette: Török Teréz

Neptun-kód: MAO9IR

Dátum: 2023. 11. 25.

Gyakorlatvezető: Dr. Kerényi György

TARTALOMJEGYZÉK

Feladatlap	3
Munkahenger kiválasztása	4
Kiindulási adatok	4
A választott munkahenger	4
A munkahenger méretezése	5
Minimális falvastagság számítása	5
Dugattyúrúd átmérőjének ellenőrzése	5
Anyagválasztás	6
Számítás	6
Hengerfedél vastagságának számítása	7
Anyagválasztás	7
Számítás	7
Henger ellenőrzése kihajlásra	8
Karcsúsági tényező meghatározása	9
Kritikus feszültség meghatározása	10
Törőerő	11
Megfelelés ellenőrzése	11
Tömítések kiválasztása	11
Dugattyúrúd tömítései	12
Dugattyú tömítései	16
Statikus tömítések/O-gyűrűk	19
Források	2°

FELADATLAP

FELADATLAP - HIDRAULIKUS MUNKAHENGER KIVÁLASZTÁSI FELADAT

Tantárgy:	ntárgy: Kurzus:			GÉP- ÉS
Gép- és szerkezeti elemek I., BMEGEGIBTS1		G1	(GT3	Terméktervezés Tanszék
Hallgató neve: NEPTUN kódja:		Dátum:	Félév:	,
Török Teréz	MAO9IR	2023.10.18	18 2023-2024 1. félév	

A feladat bevezetése

Hidraulikus körfolyamban az energia átvitele és vezérlése a nyomás alatt áramló munkaközeg (munkafolyadék) révén valósul meg. A körfolyam egyik eleme a munkahenger, amely a munkaközeg hidraulikus energiáját mechanikai energiává alakítja át. A hidraulikus hengerekkel véges hosszúságú egyenes vonalú mozgások állíthatók elő. A feladat célja hidraulikus munkahenger és tömítés gyártmánykatalógusok használata, és a kiválasztott alkatrészek beépítésének és alkalmazásának gyakorlása.

A feladat értékelése

Az elérhető maximális pontszám 25 pont.

Kiindulási adatok:

Üzemi nyomás:	p=	350	bar
Dugattyúátmérő:	D=	80	mm
Lökethossz:	L=	160	mm
A dugattyú üzemi sebessége:	v=	0,3	m/s
Üzemi hőmérséklet:	T=	-10+60	°C
A munkahenger kialakítása:		Rövidesa	varos

A munkahenger csatlakozásainak típusa: Gömbcsuklós hengerfej

A feladat megoldásának javasolt menete:

- 1. Végezzen piackutatást a Magyarországon fellelhető hidraulikus munkahengereket forgalmazó cégekről. Válasszon ki katalógusból a fentebb megadott adatoknak megfelelő általános rendeltetésű kettősműködésű munkahengert.
- 2. A megadott nyomás és átmérő értékekből számítsa ki a minimálisan szükséges falvastagságot és hengerfedél vastagságot. A kapott értéket pótlékolja a járulékos tényezőkkel (technológia, gyártás stb.). Ellenőrizze az 1. pontban kiválasztott munkahenger dugattyúrúdját kihajlásra a legkedvezőtlenebb beépítés esetén.
- 3. Válassza ki az 1. pontban kiválasztott munkahenger tömítéseit megfelelő katalógusból (henger és fedél tömítése, dugattyú tömítése és megvezetése, csőház tömítése, szennylehúzó gyűrű, dugattyúrúd tömítése és megvezetése).
- 4. Az 1. pontban kiválasztott munkahenger katalógusban szereplő rajzát, másolja fel egy alkalmas méretű rajzlapra, és rajzolja meg a kiválasztott tömítéseket beépítési környezetükkel a katalógusban előírt tűrésekkel, illesztésekkel és felületi érdességgel. Ügyeljen a géprajzi szabályok betartására!
- 5. Készítse el a műszaki dokumentációt.

Beadási határidő:	2023.11.29
A feladatot kiadta:	Dr. Kerényi György

Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1111 Budapest, Bertalan Lajos utca 1. • Telefon: 463-2345 • Telefax: 463-3510

A munkahenger kiválasztása

Kiindulási adatok:

Üzemi nyomás: p= 350 bar (35Mpa)

Dugattyúátmérő: D= 80 mm

Lökethossz: L= 160 mm

A dugattyú üzemi sebessége: 0,3 m/s Üzemi hőmérséklet: -10 -...- +60

A munkahenger kialakítása: rövidcsavaros A csatlakozásainak típusa: gömbcsuklós

A választott munkahenger:

A feladat megoldásának első lépéseként piackutatást végeztem a Magyarországon fellelhető hidraulikus munkahengerekről. A kutatást a kiindulási adatok figyelembevételével végeztem. Végül több katalógus áttanulmányozása után a Heiss Hydraulic + Pneumatic GmbH cégnél találtam meg a kritériumoknak megfelelő munkahengert.

(Katalógus (a megfelelő munkahenger a 16. oldalon található):

https://www.heiss.de/sites/default/files/sz_350_komplett_en.pdf?fbclid=IwAR3yjSifhOp4ssib_l28JlwOx3tD_nSB_UXowSRjT-lLUrkxKGyJEckqZl_0)

Gyártó: Heiss Hydraulic + Pneumatic GmbH

Szériaszám: Standard Cylinder Series SZ 350 Congfiguration 118

(SZ 350 - 80/50/160 - 118 - 120.003.X2)

A munkahenger méretezése és ellenőrzése

Minimálisan szükséges falvastagság számítása:

A minimálisan szükséges falvastagság meghatározásához először a dugattyúrúd méretének helyességét fogom ellenőrizni. A rúd átmérőjének méretét a katalógusban találhatjuk meg.

Pis-ton ø D f7 M20x1 M27x2 M33x2 M42x2 M48x2 D1 D2 **D8 H8**

(2.ábra)

Adatok: D = 80 mm (dugattyú)

d = 56 mm (dugattyúrúd)

A rúd átmérőjének ellenőrzése a következő képlet segítségével történik:

 $d=D\cdot\sqrt{rac{arphi-1}{arphi}}$, ám ehhez szükségünk van arphi viszonyszámra, mely a rudat terhelő F_h húzó és F_{ny} nyomóerő hányadosa.

Húzóerő számítása:

$$F_h = \frac{(D^2 - d^2) \cdot \pi}{4} p_n = \frac{(80^2 - 50^2) \cdot \pi}{4} p_n = 89723,87 \text{ N}$$

• Nyomóerő számítása:

$$F_h = \frac{D^2 \cdot \pi}{4} p_n = \frac{80^2 \cdot \pi}{4} \cdot 35 = 175929,2 \text{ N}$$

Innen a viszonyszám:

$$\frac{Fny}{Fh} = \frac{175929,2N}{89723,9N} = 1,96$$

Ez szabványos érték, tehát 2-vel számolok tovább.

Ellenőrzés:

$$d = D \cdot \sqrt{\frac{\varphi - 1}{\varphi}} = 80 \cdot \sqrt{\frac{2 - 1}{2}} = 56.5 \text{ mm}$$

→ Tehát a dugattyúrúd átmérője megfelelő.

A következő lépésben meghatározom a henger működéséhez minimálisan szükséges falvastagságot, mely a következő képlet segítségével történik:

$$S_{min} = \frac{D \cdot p}{2\frac{ReH}{n} - p}$$

Ahol: ReH a henger anyagának folyáshatára, n pedig 1,8 és 2 közötti biztonsági tényező, melyet én a feladat során 2-nek vettem.

A képletből adódik, hogy szükséges a henger anyagának meghatározása. Az anyagválasztáshoz ismét piackutatást végeztem, majd a Gimex cég katalógusából választottam, a forgalmazott hónolt acélok közül.

(A katalógus: https://www.gimex.hu/uploads/files/Gimex-Alapanyag-katalogus.pdf)

Anyagminőség	E355+SR (St 52 BK+S) 1.0580	E355 (St 52.0) 1.0580	S355J2H (St 52-3N) 1.0570	\$460NH (\$tE 460) 1.8953
Folyáshatár ReH N/mm² min.	450	335	335	440
Szakítószilárdság Rm N/mm² min.	580	490	490	570
Nyúlás A5 % min.	10	21	22	17

(3.ábra)

Ezek alapján a minimális falvastagság tehát:

$$S_{min} = \frac{80 \cdot 35}{2\frac{335}{2} - 35} = 9.3 \sim 10mm$$

A katalógus segítségével ez is ellenőrizhető, ugyanis láthatjuk, hogy a 80 mm belső átmérőhöz valóban tartozik egy 10 mm-es falvastagság.

Belső Ø (mm)	Külső Ø (mm)	Fal (mm)	Tűrés	kg/m	
76,00	90,00	7,00	Н8	14,33	•
76,20 (3")	86,20	5,00	Н8	10,01	•
76,20 (3")	88,90	6,35	Н8	12,93	•
76,20 (3")	95,25	9,525	Н8	20,14	•
80,00	90,00	5,00	Н8	10,48	•
80,00	92,00	6,00	Н8	12,73	•
80,00	95,00	7,50	Н8	16,18	٨
80,00	100,00	10,00	Н8	22,20	\wedge
80,00	105,00	12,50	Н8	28,52	•
80,00	110,00	15,00	Н8	35,14	•
80,00	127,00	23,50	Н8	59,98	•

(4.ábra)

Hengerfedél vastagságának meghatározása:

A hengerfedél vastagságának meghatározása a következő képlet segítségével történik:

$$h = 0.6 \cdot D \cdot \sqrt{\frac{p}{ReH}}$$

A megoldáshoz ismét a helyes anyag megválasztása szükséges, amit végül a Rosi Teh alkatrészeket forgalmazó cég oldalának segítségével tettem meg. (https://www.rositeh.hu/default.asp?mid=hu&pid=modul_it&wid=13546&detailid=90253)

Ők az Fe510C azaz, az S355J0 anyagból készítenek hengerfedelet. Az anyagminőség nevében a 355 a folyáshatárt jelöli, így ezzel az értékkel fogok számolni.

Így a megoldás a következő:

$$h = 0.6 \cdot 80 \cdot \sqrt{\frac{35}{\frac{355}{2}}} = 21.3mm$$

A fedél vastagságának tehát ~ 21 mm-nek kell lennie.

A henger ellenőrzése kihajlásra:

A következőkben ellenőrizni fogom a munkahengert kihajlásra. A kihajlás veszélye abban az esetben a legnagyobb, ha a henger pozitív véghelyzetben van, tehát erre kell ellenőrizni.

• Első lépésként az inerciasugarat határozzuk meg: Ez a kör keresztmetszet miatt a következő: $i = \sqrt{\frac{d}{4}} = 14 \ mm$.

• Második lépésben a rúd karcsúságát határozzuk meg:

$$\lambda = \frac{l_0}{i}$$

Ahol: i = az inerciasugár $l_0 = rúd$ kihajlásának hossza

Az l₀ esetünkben a csuklós vezetés miatt egyenlő lesz az l hosszal, mely a henger hossz és a lökethossz összegéből adódik, hiszen a hengert véghelyzetben vizsgáljuk. Innen:

 $l_0 = L + l\ddot{o}kethossz = 318 + 160 = 478 \text{ mm}$

(5.ábra)

	Pis- ton ø	40	50	63	80	100		
	D f7	28	36	45	56	70		
	М	M20x1,5	M27x2	M33x2	M42x2	M48x2		
	D1	92	102	128	140	180		
	D2	50	62	80	100	130		
	D8 H8	30	30	40	50	70		
	L	224	254	269	318	364		
1	L1	47	55	68	79	89		
	((!:1,)							

(6.*ábra*)

Így tehát a karcsúsági tényező:

$$\lambda = \frac{478}{14} = 34{,}14 \, mm$$

• Harmadik lépésben a törőerőt számítjuk ki: $F_{t\"{o}r\~{o}} = \sigma_{krit} \cdot A$

Az ehhez szükséges kritikus feszültséget a feszültség – karcsúság diagrammból tudjuk származtatni.

2. ábra. A különböző elméletek érvényességi tartománya

1. táblázat. A különböző elméletek érvényességi tartománya

	Alkalmazandó elmélet
$\lambda < \lambda_F$	Folyáshatár
$\lambda_F < \lambda < \lambda_0$	Tetmajer-egyenes
$\lambda_0 < \lambda$	Euler-hiperbola

(Forrás: MM BME, Kihajlás segédlet)
(7.ábra)

Ehhez a λ_0 :

$$\lambda_0 = \pi \cdot \sqrt{\frac{E}{0.8 \cdot ReH}}$$

Ezt csak a rúd anyagának ismeretében tudjuk meghatározni, melyet ismét a Gimex katalógusából választottam ki.

Anyagminőség	Ck45 1.1191	20MnV6 1.5217	42CrMo4V 1.7225	AISI 431 1.4057	AISI 304 1.4301	AISI 329 1.4460	E355 1.0580
Folyáshatár ReH N/mm² min.	350	360	550	600	190	460	355
Szakítószilárdság Rm N/mm² min.	600	500	800	800	500	620	490
Nyúlás A5 % min.	14	17	10	12	45	20	22

(8.ábra)

Tehát:

$$\lambda_0 = \pi \cdot \sqrt{\frac{21 \cdot 10^4}{0.8 \cdot 360}} = 84.83$$

Ekkor: $\lambda_0 > \lambda$ tehát a Tetmajer – egyenessel számolunk tovább.

táblázat. Kihajlással kapcsolatos anyagjellemzők néhány anyag esetén

Anyag	Szakítószilárdság σ_{sz} [MPa]	Folyáshatár σ_F [MPa]	Tetmajer-képlet [MPa]	λ_F	λ_0
	370	240	$308 - 1,14\lambda$	60	105
Szénacél	480	310	$467 - 2,62\lambda$	60	100
	520	360	$589 - 3,82\lambda$	60	100
Ötvözött acél	650	420	$470-2,3\lambda$	22	86
Dúralumínium	420	=	$380-2,2\lambda$	00	50
Öntöttvas		200	$0,053\lambda^2 - 12\lambda + 776$	5	80
Fenyőfa	-		$30-0,2\lambda$	0	100
Tölgyfa	-	=	$37, 5 - 0, 25\lambda$	0	100

 $\lambda < \lambda_F$ Ebben az esetben a rúd karcsúsága olyan kicsi (zömök rúd), hogy a kihajlás jelensége nem számottevő, emiatt a törőfeszültség értéke az anyag folyáshatárával egyenlő, vagyis

$$\sigma_t = \sigma_F. \tag{4}$$

 $\lambda_F < \lambda < \lambda_0$ Létezik egy átmeneti tartomány a karcsú $(\lambda_0 < \lambda)$ és zömök $(\lambda < \lambda_F)$ rudak között, ahol a törőfeszültséget a Tetmajer-féle képlettel számítjuk, ami egy egyenesnek az egyenlete:

 $\sigma_t = a - b\lambda. \tag{5}$

A fenti egyenletben szereplő a és b paraméterek az anyagtól függő konstansok. Néhány anyag esetére a 2. táblázat közli a Tetmajer-egyenes egyenletét 3 .

 $\lambda_0 < \lambda$ Ebbe a tartományba tartoznak a karcsú rudak. Ebben az esetben a törőfeszültséget az Euler-féle képlettel számítjuk:

$$\sigma_t = \left(\frac{\pi}{\lambda}\right)^2 E,\tag{6}$$

ahol E az anyag rugalmassági modulusa.

(Forrás: MM BME, Kihajlás segédlet)

(9.ábra)

Számítás:

$$\sigma_{krit} = 589 - 3,82\lambda = 589 - 3,82 \cdot 34,14 = 458,6 MPa$$

A törőerő számításához szükséges még a dugattyúrúd felülete:

$$A = \pi r^2 = (\frac{d}{2})^2 \cdot \pi = 28^2 \cdot \pi = 2463 \ mm^2$$

Innen:

$$F_{t\ddot{o}r\ddot{o}} = \sigma_{krit} \cdot A = 458.6 \cdot 2463 = 1129531.8 N$$

A keresett n értéke pedig:

$$n = \frac{F_{t\"{o}r\~{o}}}{F_{nyom\'{o}}} = \frac{1129531,8}{175929,2} = 6,4$$

A munkahenger megfelel kihajlásra, ha: $n_F > n$, esetünkben a feltétel a következőképpen teljesül: 6,4 > 3,5, tehát a henger kihajlásra megfelel.

Tömítések kiválasztása:

A munkahenger katalógusa megadja, hogy a hengerek hornyai az ISO 5597/1 és a DIN ISO 7425/1-es szabványnak felelnek meg, ez a tömítések kiválasztásakor segítségemre volt, melyeket a svéd Trelleborg tömítéseket forgalmazó cég kínálatából választottam.

(A katalógus: https://www.trelleborg.com/ecatalog/)

A Heiss hatalógus ide vonatkozó részlete:

Seal arrangement for easy service
Rod seals changeable without dismantling from the front

Seal groove and diameter according to ISO 5597/1 and DIN ISO 7425/1

Seals by default for maximum continuous duty temperatures ≤ 80°C
and velocities ≤ 1 m/s

(10.ábra)

Dugattyúrúd tömítései és megvezetései:

Először a dugattyúrúd tömítéseit választottam meg, melyek feladata a munkatér és a külvilág közötti megfelelő tömítettség biztosítása. Az általam vizsgált munkahenger relatív magas üzemi nyomáson (35 MPa) működik, ebből adódóan a dugattyúrúdat egy primer, illetve szekunder tömítéssel kell ellátni.

Primer tömítés: Zurcon, U-cup RU2 – 1db

Működési adatok:

OPERATING CONDITIONS

Pressure:	Max. 35 MPa		
Speed:	Up to 0.5 m/s		
Temperature:	Use in mineral oils:		
	-35 °C to +110 °C		
Media:	Mineral oil-based hydraulic fluids.		

(11.ábra)

Beépítés:

■ Installation Recommendation

(12.ábra)

Dugattyúrúd átmérője alapján a megfelelő tömítés:

50.0	60.0	8.0	7.0	RU2400500
56.0	66.0	7.5	6.5	RU2100560
56.0	71.0	12.5	11.5	RU2200560
63.0	78.0	12.5	11.5	RU2100630
70.0	80.0	7.5	6.5	RU2200700
80.0	95.0	12.5	11.5	RU2100800

(Dimensions and TSS Part Numbers in bold according to ISO 5597.)
(13.ábra)

Szekunder tömítés: Zurcon U-cup RU9 – 1db

Működési adatok:

OPERATING CONDITIONS

Pressure:	Up to 40 MPa
Velocity:	Up to 0.5 m/s
Temperature:	
Zurcon® Z20 Standard:	-35 °C to +110 °C
Media:	
Hydraulic fluids based	-35 °C to +110 °C
on mineral oil:	
Synthetic and natural	Up to +60 °C
ester HEES, HETG:	
Flame-retardant hydraulic	Up to +40 °C
fluids HFA/HFB:	

(14.ábra)

Beépítés:

■ Installation Recommendation

Figure 58: Installation Drawing, Dimension "S" see Figure 57

(15.ábra)

Dugattyúrúd átmérője alapján a megfelelő tömítés:

55.0	65.0	8.0	RU9000550
56.0	68.0	11.0	RU9100560
56.0	71.0	12.5	RU9000560
60.0	68.0	7.0	RU9100600
60.0	70.0	8.0	RU9200600
60.0	75.0	12.5	RU9000600
63.0	75.0	13.0	RU9100630

(Dimensions and TSS Part Numbers in bold according to ISO 5597.)

(16.ábra)

Szennylehúzó:

Szükséges még, ezeken felül a dugattyúrúdhoz egy szennylehúzó beszerelése, melynek feladata, hogy megakadályozza a szennyeződések munkatérbe való bejutását.

Zurcon, Scraper DA22 – 1db

Működési adatok:

OPERATING CONDITIONS

Atmospheric pressure
Pressures up to 2 MPa (20 bar)
a relief bore must be provided with higher
pressures
Up to 1 m/s
-35 °C to +100 °C
Mineral oils and greases
Split/Closed (depending on size)

(17.ábra)

Beépítés:

■ Installation Recommendation

Figure 189: Installation Drawing

(18.ábra)

Az átmérőnek megfelelő szennylehúzó:

00.0	00.0	0.0	00.0	1102200000
56.0	64.6	E 2	50.0	WD2210560
00.0	04.0	0.0	00.0	11022210000
56.0	66.0	6.0	59.0	WD2200560
55.5	55.5		20.0	
60.0	68.6	5.3	63.0	WD2210600
60.0	70.0	6.0	63.0	WD2200600
63.0	71.6	5.3	66.0	WD2210630
63.0	73.0	6.0	66.0	WD2200630
00.0		0.0	00.0	

(19.ábra)

Vezetőgyűrűk:

A vezető gyűrűk a rúd lineáris megvezetését szolgálják. Tekintve, hogy a munkahenger magas üzemi nyomáson működik, ezekből kettő kerül beépítésre.

HiMod Slydring for Rod – 2db

Beépítés:

■ Installation Recommendation, HiMod® Slydring® for Rod According to ISO 10766 Groove Dimension

Figure 220: Installation Drawing

(20.ábra)

A gyűrűre vonatkozó adatok:

Table 210: Installation Dimensions

Serial No.	Rod Diameter*	Groove Diameter	Groove Width	Ring Thickness
Senai No.	d_N f8/h9	D₂ H8	L₂ +0.2	W
GR43	10 - 50.0	$d_N + 3.10$	4.00	1.55
GR65	15 - 140.0	d _N + 5.00	5.60	2.50
GR69	20 - 220.0	$d_{N} + 5.00$	9.70	2.50
GR73	80 - 300.0	d _N + 5.00	15.00	2.50
GR75	200 - 300.0	$d_{N} + 5.00$	25.00	2.50
GR98	280 - 300.0	d _N + 8.00	25.00	4.00

Table 211: Recommended Radii for Groove

d _N	r _{max}
8 - 250	0.2
> 250	0.4

Table 212: Radial Clearance S₁ **

Rod Diameter d _N	S _{1 min}	S _{1 max}
8 - 20	0.20	0.30
20 - 100	0.25	0.40
101 - 250	0.30	0.60
251 - 300	0.40	0.80

 $[\]ensuremath{^{**}}$ Specifications valid only in the area of the Slydring $\ensuremath{^{\!\circ}}$, but not for the seal area.

(21.ábra)

Table 213: Recommended Gap

d _N	Ring Gap Z ₁
10 - 39	2 - 2.5
40 - 149	2-3
> 150	3 - 4

Table 214: Surface Roughness

Parameter	Mating Surface µm HiMod® Materials	Groove Surface µm
R _{max}	1.00 - 4.00	< 16.0
R_z	0.63 - 2.50	< 10.0
Ra	0.10 - 0.40	< 2.5

(23.ábra)

A választott vezetőgyűrű:

55.0	60.0	5.6	2.50	GR6500550-HM061	WR 55 60 5.6
55.0	60.0	9.7	2.50	GR6900550-HM061	WR 55 60 9.7
56.0	61.0	5.6	2.50	GR6500560-HM061	WR 56 61 5.6
56.0	61.0	9.7	2.50	GR6900560-HM061	WR 56 61 9.7
58.0	63.0	5.6	2.50	GR6500580-HM061	WR 58 63 5.6
=0.0					

(24.ábra)

A dugattyú tömítései és megvezetései:

A következőkben a dugattyú tömítéseit választom meg. Ehhez szintén a Trelleborg katalógus ide vonatkozó részét használtam.

Tömítés: Zurcon, Glyd Ring D − 1 db

Működési adatok:

OPERATING CONDITIONS

Pressure:	Up to 40 MPa
Velocity:	Up to 0.5 m/s
	0.8 m/s for limited time
Frequency:	Up to 5 Hz
Temperature:	-30° C to +110° C
	depending on O-Ring Material
Media:	Hydraulic fluids based on mineral
	oil, environmentally friendly and fire
	resistance fluids (always check O-Ring
	material compatibility)
Clearance:	The maximum permissible radial clearance
	S _{max} is shown in Table 94 as a function of
	the operating pressure and diameter
Media:	depending on O-Ring Material Hydraulic fluids based on mineral oil, environmentally friendly and fire resistance fluids (always check O-Ring material compatibility) The maximum permissible radial clearance S _{max} is shown in Table 94 as a function of

(25.ábra)

Beépítés:

■ Installation Recommendation

(26.ábra)

Az átmérőnek megfelelő tömítés:

70.00	59.00	4.20	PH4200700-Z13	56.74 x 3.53
75.00	64.00	4.20	PH4200750-Z13	63.09 x 3.53
80.00	64.50	6.30	PH4300800-Z13	62.87 x 5.33
85.00	69.50	6.30	PH4300850-Z13	69.22 x 5.33
90.00	74.50	6.30	PH4300900-Z13	72.39 x 5.33

(27.ábra)

Vezetőgyűrűk:

A dugattyúba fontos beépíteni megvezetéseket, melyek a dugattyú befeszülését hivatottak megakadályozni.

HiMod Slydring, HM061 – 2 db

Működési adatok:

OPERATING CONDITIONS

Velocity, reciprocating:	max. 0.8 m/s
Temperature:	-40 °C to +110 °C
Radial Slydring®	max. 40 N/mm ² at +25 °C
Pressure:	max. 25 N/mm ² > +60 °C

(28.ábra)

Beépítés:

■ Installation Recommendation, HiMod® Slydring® for Piston According to ISO 10766 Groove Dimension

(29.ábra)

A vezetőgyűrűre vonatkozó adatok:

Table 198: Installation Dimensions

Serial No.	Bore Diameter*	Groove Diameter	Groove Width	Ring Thickness
Serial No.	D _N H9	d₂ h8	L₂ +0.2	W
GP43	10 - 50.0	D _N - 3.10	4.00	1.55
GP65	16 - 140.0	D _N - 5.00	5.60	2.50
GP69	60 - 220.0	D _N - 5.00	9.70	2.50
GP73	130 - 300.0	D _N - 5.00	15.00	2.50
GP75	280 - 300.0	D _N - 5.00	25.00	2.50
GP98	280 - 300.0	D _N - 8.00	25.00	4.00

Table 199: Recommended Radii for Groove

D _N	r _{max}
8 - 250	0.2
> 250	0.4

Table 200: Radial Clearance S₁**

Bore Diameter D _N	S _{1 min}	S _{1 max}
8 - 20	0.20	0.30
20 - 100	0.25	0.40
101 - 250	0.30	0.60
251 - 300	0.40	0.80

 $[\]ensuremath{^{**}}$ Specifications valid only in the area of the Slydring $\ensuremath{^{\!\circ}}$, but not for the seal area.

(30.ábra)

Table 201: Recommended Gap

D _N	Ring Gap Z ₁
10 - 44	2 - 2.5
45 - 149	2 -3
> 150	3 - 4

Table 202: Surface Roughness

Parameter	Mating Surface µm HiMod® Materials	Groove Surface µm	
R _{max}	1.00 - 4.00	< 16.0	
R_{z}	0.63 - 2.50	< 10.0	
R_a	0.10 - 0.40	< 2.5	

(31.ábra)

Ezek alapján a megfelelő gyűrű:

75.0	70.0	5.6	2.50	GP6500750-HM061	WR 70 75 5.6
75.0	70.0	9.7	2.50	GP6900750-HM061	WR 70 75 9.7
75.0	70.0	15.0	2.50	GP7300750-HM061	WR 70 75 15
80.0	75.0	5.6	2.50	GP6500800-HM061	WR 75 80 5.6
80.0	75.0	9.7	2.50	GP6900800-HM061	WR 75 80 9.7

(32.ábra)

Statikus tömítések:

O – gyűrűk:

Általános adatok a beépítendő gyűrűkhöz:

Table 17: Radial clearance S - Metric

O-Ring Cross Section-Ø d ₂	up to 2	2-3	3 - 5	5 - 7	above 7
O-Ring mater	rials with h	nardness o	of 70 Shor	e A	
Pressure MPa	Radial clo	earance S			
≤ 3.50	0.08	0.09	0.10	0.13	0.15
≤ 7.00	0.05	0.07	0.08	0.09	0.10
≤ 10.50	0.03	0.04	0.05	0.07	0.08
O-Ring mater	rials with h	nardness o	of 90 Shor	e A	
Pressure MPa	Radial cle	earance S			
≤ 3.50	0.13	0.15	0.20	0.23	0.25
≤ 7.00	0.10	0.13	0.15	0.18	0.20
≤ 10.50	0.07	0.09	0.10	0.13	0.15
≤ 14.00	0.05	0.07	0.08	0.09	0.10
≤ 17.50	0.04	0.05	0.07	0.08	0.09
≤ 21.00	0.03	0.04	0.05	0.07	0.08
≤ 35.00	0.02	0.03	0.03	0.04	0.04

Table 15: Lead-in chamfers - Metric

Lead-in chamfers length Z min.		O-Ring Cross-Section-Ø d ₂
		mm
15°	20°	
2.5	1.5	up to 1.78 / 1.80
3.0	2.0	up to 2.62 / 2.65
3.5	2.5	up to 3.53 / 3.55
4.5	3.5	up to 5.33 / 5.35
5.0	4.0	up to 6.99 / 7.00
6.0	4.5	above 7.00

(33.ábra)

Felületi érdességek:

Table 19: Surface finish for 0-Ring housing – Metric

Type of Load	Surface	R.	Rz	Ra
Type of Load		ιτ _t	RZ	Na
	μm			
Radial- dynamic	Mating surface * (bore, rod, shaft)	≤ 2.5	≤ 1.6	≤ 0.4
	Groove flanks, groove diameter	≤ 10.0	≤ 6.3	≤ 1.6
Radial-static Axial-static	Mating surface Groove flanks, groove diameter	≤ 10.0 ≤ 16.0	≤ 6.3	≤ 1.6
	For pulsating pressures: Mating surface Groove flanks, groove diameter	≤ 6.3 ≤ 10.0	≤ 6.3	≤ 1.6

^{*} spiralfree grinding

(34.ábra)

Anyagválasztás:

Material Type	Hardness Shore A (± 5)	Color	Operating temperature range	Material code	Description
NBR Nitrile	70	•	-30 °C to +100 °C -22 °F to +212 °F	N7000 N7083	** (*) ISO
Butadiene Rubber		•		N7003 N7036	** (ISO
		•	-55 °C to +80 °C -67 °F to +176 °F	N7T40	***
	90	•	-25 °C to +100 °C -13 °F to +212 °F	N9019 N9002	** •

(35.ábra)

HOUSING DIMENSIONS RECOMMENDATIONS

Magasnyomású munkahenger miatt az O gyűrűk támasztógyűrűvel kiegészítve kerülnek beépítésre a következő három helyre:

- Henger és hengerfej
- Dugattyú és dugattyúrúd
 - Persely és hengerfej

Henger és hengerfej:

O-gyűrű: External Sealing, ORAR00233 NBR90 – 1db

0-Ring		Radial in	stallation	Axial ins	tallation	Radius ¹⁾
Cross-Section-Ø	Housing	depth ²⁾	Groove width	Groove depth	Groove width	Radius
d ₂	Dynamic (t)	Static (t)	b ₁ +0.25	h +0.1	b ₄ +0.2	r±0.2
			mm			
1.90	1.55	1.40	2.60	1.40	2.70	0.30
1.98	1.65	1.50	2.70	1.50	2.80	0.30
2.00	1.65	1.50	2.70	1.50	2.80	0.30
2.08	1.75	1.55	2.80	1.55	2.90	0.30
2.10	1.75	1.55	2.80	1.55	2.90	0.30
2.20	1.85	1.60	3.00	1.60	3.00	0.30
2.26	1.90	1.70	3.00	1.70	3.10	0.30
2.30	1.95	1.75	3.10	1.75	3.10	0.30
2.34	1.95	1.75	3.10	1.75	3.10	0.30
2.40	2.05	1.80	3.20	1.80	3.30	0.30
2.46	2.10	1.85	3.30	1.85	3.40	0.30
2.50	2.15	1.90	3.30	1.90	3.40	0.30
2.62*	2.25	2.00	3.60	2.00	3.80	0.30
2.65	2.25	2.00	3.60	2.00	3.80	0.30
2.70	2.30	2.05	3.60	2.05	3.80	0.30
2.80	2.40	2.10	3.70	2.10	3.90	0.60
2.92	2.50	2.20	3.90	2.20	4.00	0.60
2.95	2.50	2.20	3.90	2.20	4.00	0.60
3.00	2.60	2.30	4.00	2.30	4.00	0.60
3.10	2.70	2.40	4.10	2.40	4.10	0.60
3.50	3.05	2.65	4.60	2.65	4.70	0.60
3.53*	3.10	2.70	4.80	2.70	5.00	0.60
3.55	3.10	2.70	4.80	2.70	5.00	0.60
3.60	3.15	2.80	4.80	2.80	5.10	0.60

(36.ábra)

Table 36: Materials for AS568 / ISO 3601-1 Class A 0-Rings

Material Code	Туре	Hardness Shore A	Color
N7AS	NBR	70	Black
N9AS	NBR	90	Black
VCAS	FKM	75	Brown
V9AS	FKM	90	Black

(37.ábra)

TSS Part-No.	Size Code ISO 3601-1 AS568	Insi	de-Ø	Cross-Section-Ø			
		d ₁	Toler- ance ±	d ₂	Toler- ance ±		
		mm					
ORAR00232	232	69.44		3.53			
ORAR00233	233	72.62		3.53			
ORAR00234	234	75.79		3.53			
ORAR00235	235	78.97	0.61	3.53			

(38.ábra)

Támasztó gyűrű: BV2700800-PTFE – 1db

Bore Ø	Groove Ø	Groove	width	Radius	Back-up Ring TSS Part No. 0-Ring dimension TSS Part		TSS Part No.		O-Ring dimension
D _N H8	d ₃ h9	b₂ +0.25	b ₃ +0.25	r ±0.2	OD x W x T	Uncut (BV)	Uncut (BV) Cut (BH)		d ₁ x d ₂
					mm				
75.0	68.8	6.9	8.6	0.25	75.0 x 3.1 x 1.7	BV3100750	BH3100750	OR4006700	67.00 x 4.00
75.0	69.6	6.2	7.6	0.25	75.0 x 2.7 x 1.4	BV2700750	BH2700750	ORAR00231	66.27 x 3.53
80.0	73.8	6.9	8.6	0.25	80.0 x 3.1 x 1.7	BV3100800	BH3100800	OR4007200	72.00 x 4.00
80.0	74.6	6.2	7.6	0.25	80.0 x 2.7 x 1.4	BV2700800	BH2700800	ORAR00233	72.62 x 3.53
85.0	78.8	6.9	8.6	0.25	85.0 x 3.1 x 1.7	BV3100850	BH3100850	OR4007700	77.00 x 4.00
05.0	70.0	0.0	7.0	0.05	05.0 07.44	DIVOTOGOGO	DUIGTOOF	00400005	70.07 0.50

(39.ábra)

A kiválasztott gyűrűket ellenőrizni kell axiális, illetve radiális előfeszítésre. A feladat során én a radiális előfeszítést fogom számolni.

Adatok:
$$D_n = 80H8 d_2 = 3.53f7 t = 2.7$$

$$D = 80 + 2t = 85,4$$

Innen
$$D_{min} = 85,4$$
 és $D_{max} = 85,4063$, illetve $d_{min} = 79,929$ és $d_{max} = 79,964$

Szükséges t_{min} és t_{max} meghatározása:

$$t_{\min} = \frac{D_{\min - d_{\max}}}{2} = \frac{85,4-79,964}{2} = 2,7$$

$$t_{\text{max}} = \frac{D_{\text{max} - d_{min}}}{2} = \frac{85,463 - 79,929}{2} = 2,74$$

$$\varepsilon_{min} = \frac{d_2 - t_{max}}{d_2} \cdot 100 = \frac{3,53 - 2,74}{3,53} \cdot 100 = 22,4\%$$

$$\varepsilon_{max} = \frac{d_2 - t_{min}}{d_2} \cdot 100 = \frac{3,53 - 2,7}{3,53} \cdot 100 = 23,5\%$$

Az előfeszítés értékének 15-30% között kell lenniük, ezek alapján a tömítés megfelel.

Dugattyú és dugattyúrúd: Internal sealing, Type BU

O-gyűrű: Internal sealing, ORAR00228 NBR90 – 1db

TSS Part-No.	Size Code ISO 3601-1 AS568	Inside-Ø		Cross-S	ection-Ø	Insi	de-Ø	Cross-Section-Ø	
		d ₁	Toler- ance ±	d ₂	Toler- ance ±	d ₁	Toler- ance ±	d ₂	Toler- ance ±
			m	m			in	ch	
ORAR00220	220	34.52	0.30	3.53		1.359	0.012	0.139	
ORAR00221	221	36.09	0.30	3.53		1.421	0.012	0.139	
ORAR00222	222	37.69		3.53		1.484		0.139	
ORAR00223	223	40.87	0.38	3.53		1.609	0.015	0.139	
ORAR00224	224	44.04		3.53		1.734		0.139	
ORAR00225	225	47.22		3.53		1.859		0.139	
ORAR00226	226	50.39	0.46	3.53		1.984	0.018	0.139	
ORAR00227	227	53.57		3.53		2.109		0.139	
ORAR00228	228	56.74		3.53		2.234		0.139	
ORAR00229	229	59.92	0.54	3.53		2.359	0.000	0.139	_
ORAR00230	230	63.09	0.51	3.53		2.484	0.020	0.139	

(40.ábra)

Támasztó gyűrű: BU2700560-PT00 – 1 db

Rod Ø	Groove Ø	Groove	width	Radius	Back-up Ring dimension	TSS Part No.	0-Ring TSS Part No.	0-Ring dimension
d _N f7	d ₆ H9	b₂ +0.25	b ₃ +0.25	r ±0.2	ID x W x T			d ₁ x d ₂
45.0	50.40	6.20	7.60	0.25	45.0 x 2.7 x 1.4	BU2700450	ORAR00224	44.04 x 3.53
45.0	51.20	6.90	8.60	0.25	45.0 x 3.1 x 1.7	BU3100450	OR4004500	45.00 x 4.00
48.0	53.40	6.20	7.60	0.25	48.0 x 2.7 x 1.4	BU2700480	ORAR00225	47.22 x 3.53
48.0	54.20	6.90	8.60	0.25	48.0 x 3.1 x 1.7	BU3100480	OR4004800	48.00 x 4.00
50.0	55.40	6.20	7.60	0.25	50.0 x 2.7 x 1.4	BU2700500	ORAR00226	50.39 x 3.53
50.0	56.20	6.90	8.60	0.25	50.0 x 3.1 x 1.7	BU3100500	OR4005000	50.00 x 4.00
52.0	57.40	6.20	7.60	0.25	52.0 x 2.7 x 1.4	BU2700520	ORAR00226	50.39 x 3.53
52.0	58.20	6.90	8.60	0.25	52.0 x 3.1 x 1.7	BU3100520	OR4005200	52.00 x 4.00
55.0	60.40	6.20	7.60	0.25	55.0 x 2.7 x 1.4	BU2700550	ORAR00227	53.57 x 3.53
55.0	61.20	6.90	8.60	0.25	55.0 x 3.1 x 1.7	BU3100550	OR4005500	55.00 x 4.00
56.0	61.40	6.20	7.60	0.25	56.0 x 2.7 x 1.4	BU2700560	ORAR00228	56.74 x 3.53
56.0	62.20	6.90	8.60	0.25	56.0 x 3.1 x 1.7	BU3100560	OR4005600	56.00 x 4.00
60.0	65.40	6.20	7.60	0.25	60.0 x 2.7 x 1.4	BU2700600	ORAR00229	59.92 x 3.53

(41.ábra)

A gyűrű ellenőrzése:

Adatok:
$$D_n = 56f7 d_2 = 3.53f7 t = 2.7$$

$$D = 56 + 2t = 61,4$$

Innen
$$D_{min} = 61,329$$
 és $D_{max} = 61,364$, illetve $d_{min} = 55,929$ és $d_{max} = 55,964$

Szükséges t_{min} és t_{max} meghatározása:

$$t_{\min} = \frac{D_{\min - d_{\max}}}{2} = \frac{61,329 - 55,964}{2} = 2,6825$$

$$t_{\text{max}} = \frac{D_{\text{max} - d_{min}}}{2} = \frac{61,364 - 55,929}{2} = 2,7175$$

$$\varepsilon_{min} = \frac{d_2 - t_{max}}{d_2} \cdot 100 = \frac{3,53 - 2,7175}{3,53} \cdot 100 = 23,02\%$$

$$\varepsilon_{max} = \frac{d_2 - t_{min}}{d_2} \cdot 100 = \frac{3,53 - 2,6825}{3,53} \cdot 100 = 24\%$$

Az értékek itt is a megengedett határon belül vannak, tehát a gyűrű megfelelő.

Persely és a hengerfej: External sealing, Type BA BD

O-gyűrű: ORAR
00231 NBR 90 – 1 db $\,$

TSS Part-No.	Size Code ISO 3601-1 AS568	Inside-Ø		Cross-Se	cross-Section-Ø		de-Ø	Cros	Cross-Section-Ø	
			Toler- ance ±	d ₂	Toler- ance ±	d ₁	Toler- ance ±	d ₂	-	oler- nce ±
			mm				ı	nch		
ORAR00224	224	44.04		3.53	3	1.7	34		0.139	
ORAR00225	225	47.22		3.53	3	1.8	59		0.139	
ORAR00226	226	50.39	0.46	3.53	3	1.9	84 0.	018	0.139	
ORAR00227	227	53.57		3.53	3	2.1	09		0.139	
ORAR00228	228	56.74		3.53	3	2.2	34		0.139	
ORAR00229	229	59.92	0.54	3.53	3	2.3	59	000	0.139	
ORAR00230	230	63.09	0.51	3.53	3	2.4		020	0.139	
ORAR00231	231	66.27		3.53	3	2.6	09		0.139	
ORAR00232	232	69.44		3.53	3	2.7	34		0.139	
UBVBUUSSS	233	72.62		3 53		2.8	50		O 130	

(42.ábra)

Támasztógyűrű: BD270075 PTFE – 1db

Bore Ø	Groove Ø	Groove width		Radius	Back-up Ring dimension	TSS Part No.	0-Ring TSS Part No.	0-Ring dimension
D _N H8	d ₃ h9	b₂ +0.25	b ₃ +0.25	r ±0.2	OD x W x T			d ₁ x d ₂
55.0	48.8	6.9	8.6	0.25	55.0 x 3.1 x 1.7	BD3100550	OR4004700	47.00 x 4.00
55.0	49.6	6.2	7.6	0.25	55.0 x 2.7 x 1.4	BD2700550	ORAR00225	47.22 x 3.53
60.0	53.8	6.9	8.6	0.25	60.0 x 3.1 x 1.7	BD3100600	OR4005200	52.00 x 4.00
60.0	54.6	6.2	7.6	0.25	60.0 x 2.7 x 1.4	BD2700600	ORAR00227	53.57 x 3.53
63.0	56.8	6.9	8.6	0.25	63.0 x 3.1 x 1.7	BD3100630	OR4005500	55.00 x 4.00
63.0	57.6	6.2	7.6	0.25	63.0 x 2.7 x 1.4	BD2700630	ORAR00228	56.74 x 3.53
65.0	58.8	6.9	8.6	0.25	65.0 x 3.1 x 1.7	BD3100650	OR4005700	57.00 x 4.00
65.0	59.6	6.2	7.6	0.25	65.0 x 2.7 x 1.4	BD2700650	ORAR00228	56.74 x 3.53
70.0	63.8	6.9	8.6	0.25	70.0 x 3.1 x 1.7	BD3100700	OR4006200	62.00 x 4.00
70.0	64.6	6.2	7.6	0.25	70.0 x 2.7 x 1.4	BD2700700	ORAR00230	63.09 x 3.53
75.0	68.8	6.9	8.6	0.25	75.0 x 3.1 x 1.7	BD3100750	OR4006700	67.00 x 4.00
75.0	69.6	6.2	7.6	0.25	75.0 x 2.7 x 1.4	BD2700750	ORAR00231	66.27 x 3.53
80.0	73.8	6.9	8.6	0.25	80.0 x 3.1 x 1.7	BD3100800	OR4007200	72.00 x 4.00
80 O	746	62	7.6	0.25	800 v 27 v 1 /	RD2700800	UBVBUUSSS	72 62 v 3 53

(43.ábra)

Ellenőrzés:

Adatok:
$$D_n = 75H8 d_2 = 3.53f7 t = 2.7$$

$$D = 75 + 2t = 80,4$$

Innen
$$D_{min} = 80,4$$
 és $D_{max} = 80,4063$, illetve $d_{min} = 74,929$ és $d_{max} = 74,964$

Szükséges t_{min} és t_{max} meghatározása:

$$t_{\min} = \frac{D_{\min - d_{max}}}{2} = \frac{80,4-74,964}{2} = 2,7155$$

$$t_{\text{max}} = \frac{D_{\text{max} - d_{min}}}{2} = \frac{84,463 - 74,929}{2} = 2,767$$

$$\varepsilon_{min} = \frac{d_2 - t_{max}}{d_2} \cdot 100 = \frac{3,53 - 2,767}{3,53} \cdot 100 = 21,6\%$$

$$\varepsilon_{max} = \frac{d_2 - t_{min}}{d_2} \cdot 100 = \frac{3,53 - 2,7155}{3,53} \cdot 100 = 23,1\%$$

A választott gyűrű megfelelő.

FORRÁSOK:

Heiss katalógus: https://www.heiss.de/de/baureihen-standardzylinder/sz-350

Gimex katalógus: https://www.gimex.hu/uploads/files/Gimex-Alapanyag-katalogus.pdf

BME, MM, Mechanika II. jegyzetek

BME, GT3, Gép- és szerkezeti elemek 6-9. előadások

Dr. Grőb Péter, Hidraulikus munkahenger méretezése segédlet

Trelleborg tömítések: https://www.trelleborg.com/seals/-/media/tss-media-repository/tss_website/pdf-and-other-literature/catalogs/product_range_hu.pdf?rev=-1?&openpdf=1

Trelleborg O-gyűrűk: https://www.trelleborg.com/ecatalog/products/static-seals/back-up-rings/external-sealing-bore/type-ba-uncut-bd-cut/BD2700750-PTB6.html?ref=search