CHAPTER 8: NONPARAMETRIC METHODS

Nonparametric Estimation

- 2
- □ Parametric (single global model), semiparametric (∨ small number of local models)
- □ Nonparametric: Assume similar inputs have similar outputs.
- Keep the training data; "let the data speak for itself."
- □ Find the similar past instances from the training set using a suitable distance measure and interpolate from them to find the right output.
- □ Given x, find a small number of closest training instances and interpolate from these.
- Aka lazy/memory-based/case-based/instance-based learning
- -- it stores the training examples in a lookup table and interpolate from them O(N) space complexity and time complexity for search.
- □ Lazy learning it don't compute a model with the training set, but postpone the computation of model until a test data is given.

Density Estimation

- □ Given the training set $\mathbf{X} = \{x^t\}_{t=1..N}$ drawn iid from $p(\mathbf{x})$.
- \Box For the cumulative distribution function, F(x) and the pdf, $\hat{p}(x)$:

$$\hat{F}(x) = \frac{\#(x^t \le x)}{N}$$
 and $\hat{p}(x) = \frac{1}{h} (\frac{\#(x < x^t \le x + h)}{N}),$

h is the width of window(= bin, interval).

- Divide data into bins (i.e. intervals) of size *h*.
- □ Histogram: $\hat{p}(x) = \frac{1}{h} \left(\frac{\#(x^t \text{ in the same bin as } x)}{N} \right)$,
- □ Naive estimator: and $\hat{p}(x) = \frac{1}{h} \left(\frac{\#(x \frac{h}{2} < x^t \le x + \frac{h}{2})}{N} \right) \left(= \frac{1}{2h} \left(\frac{\#(x h < x^t \le x + h)}{N} \right) \right)$

$$\Leftrightarrow \hat{p}(x) = \frac{1}{Nh} \sum_{t=1}^{N} w(\frac{x-x^t}{h})$$

with the weight function $w(u) = \begin{cases} 1 & \text{if } |u| < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$

Kernel Estimator

- □ To get a smooth estimate, use a smooth weight function, called kernel function.
- function.

 Gaussian kernel: $K(\mathbf{u}) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2})$ Kernel estimator (Parzen windows): $\hat{p}(\mathbf{x}) = \frac{1}{Nh} \sum_{t=1}^{N} K(\frac{x x^t}{h})$
 - $K(\cdot)$ decides the shape of the influences.
- □ All the x^t have an effect on the estimate at x, and this effect decreases smoothly as $|x - x^t|$ increases.
- \neg h is small \rightarrow each training instance has a large effect in a small region and no effect on distant points.
- $\ \square$ h is larger \rightarrow more overlap of the kernels and get a smoother estimate.
- \Box K(u) is maximum for u=0, decreasing symmetrically as |u| increases.
- \Box A fixed bin (i.e. window) size h.

k-Nearest Neighbor Estimator

- □ The nearest neighbor class of estimators *adapts* the *degree of smoothing* to the local density of data, which is controlled by the # of neighbors, k << N.
- □ Instead of fixing bin width h and counting the number of instances, fix the instances (neighbors) k and check bin width

$$\hat{p}(\mathbf{x}) = \frac{k}{2Nd_k(\mathbf{x})}$$

where $d_k(x)$, distance to k^{th} closest instance to x.

- □ In [a, b], for each x, $d_1(x) \le d_2(x) \le \le d_N(x)$:
 a distance from x to the points in the k^{th} nearest sample.
- □ Like a naïve estimator with $h = 2d_k(x)$.
- □ Where density is high, bins are small (i.e. small h, small interval).
- □ kNN is not a pdf since $\int_{-\infty}^{\infty} \hat{p}(x) \neq 1$.

k-Nearest Neighbor Estimator

□ To get a smoother estimate, use a kernel function whose effect decreases with increasing distance:

$$\hat{p}(\mathbf{x}) = \frac{1}{Nd_k(\mathbf{x})} \sum_{t=1}^{N} K(\frac{\mathbf{x} - \mathbf{x}^t}{d_k(\mathbf{x})})$$

- □ A kernel estimator with adaptive smoothing parameter $h=d_k(\mathbf{x})$.
- $\ \square$ The k-NN classifier assigns an instance to the class most heavily represented among its neighbors.
- More similar the instances, the more likely they belong to the same class.

Multivariate Data (d-dimensional data)

11

□ The multivariate Kernel density estimator

$$\hat{p}(\mathbf{x}) = \frac{1}{Nh^d} \sum_{t=1}^{N} K(\frac{\mathbf{x} - \mathbf{x}^t}{h})$$

with the requirement $\int_{R^d}^{\infty} K(\mathbf{x}) d\mathbf{x} = 1$.

Multivariate Gaussian kernel

□ Spheric
$$K(\mathbf{u}) = \left(\frac{1}{\sqrt{2\pi}}\right)^d \exp\left(-\frac{\|\mathbf{u}\|^2}{2}\right)$$
,

with Euclidean norm.

■ ellipsoid
$$K(\mathbf{u}) = \left(\frac{1}{\sqrt{2\pi|S|}}\right)^d \exp(-\frac{1}{2}\mathbf{u}^T \mathbf{S}^{-1}\mathbf{u})$$

using Mahalanobis distance

where S is the sample covariance matrix.

Nonparametric Classification

12

- \square Estimate the class-conditional density, $p(x|C_i)$.
- Kernel estimator of class cond. density:

$$\hat{p}(x|C_i) = \frac{1}{N_i h^d} \sum_{t=1}^N K(\frac{\mathbf{x} - \mathbf{x}^t}{h}) r_i^t \quad \text{ where } r_i^t = \begin{cases} 1 & \text{if } x^t \in C_i \\ 0 & \text{o. w.} \end{cases}$$

 $N_i = \#$ of labeled instances $\in C_i$, $N_i = \sum_t r_i^t$

Then, discriminant is:

$$g_i(x) = \hat{p}(x|C_i)\hat{P}(C_i) = \frac{1}{Nh^d} \sum_{t=1}^{N} K(\frac{x-x^t}{h}) r_i^t$$

where $\hat{P}(C_i) = \frac{N_i}{N}$.

x is assigned to $C_i = \underset{i}{argmax} g_i(x)$.

The weight of vote is given by the kernel function K, giving more weight to closer instances.

Nonparametric Classification

13

□ For the special case of kNN estimator,

$$\hat{p}(x|C_i) = \frac{k_i}{N_i V^k(x)}$$
 where

 $k_i = \#$ of neighbors out of the k nearest $\in C_i$,

 $V^k(x)$ is the volume of *d*-dim. hypersphere centered at x

with radius $r = \|\mathbf{x} - \mathbf{x}_{(k)}\|$ where is the \mathbf{k}^{th} nearest observation to \mathbf{x} :

 ${\it V}^k = r^d c_d$ where as the volume of the unit sphere in d-dim.

$$\widehat{P}(C_i|\mathbf{x}) = \frac{\widehat{p}(\mathbf{x}|C_i)\widehat{P}(C_i)}{\widehat{p}(\mathbf{x})} = \frac{k_i}{k}$$

 \square x is assigned to $C_i = \underset{i}{argmax} |C_i|$

with the most examples among the k neighbors of the input.

If all equal vote, the class with the maximum # of voters is chosen.

Nonparametric Classification

14

- □ A special case of kNN with k=1:
 - the nearest neighbor classifier with k=1.
 - The input is assigned to the class of the nearest pattern.
 - The input space is divided in the form of <u>Voronoi tessellation</u>.

х,

Condensed Nearest Neighbor

15

- \square Time/space complexity of k-NN is O(N).
- □ Find a subset Z of X that is small and is accurate in classifying X (Hart, 1968): an error doesn't increase with Z in place of X.
- □ Condensed nearest neighbor with 1-NN:
- 1-NN approximates the discriminant in a piecewise linear manner and only the instances that define the discriminant need to be kept: consistent subset. → Find the minimal consistent subset, Z.

$$E'(Z \mid X) = E(X \mid Z) + \lambda |Z|$$

Condensed Nearest Neighbor

16

- □ A greedy algorithm to find the minimal consistent subset Z.
- Incremental algorithm: Add instance if needed

- □ A local search depending on the order of the training instances → different subsets → different accuracy on the validation.
- It doesn't guarantee finding the minimal consistent subset: NPcomplete problem.

Condensed Nearest Neighbor

7

- Condensed nearest neighbor is a greedy algorithm to minimize training error and complexity, measured by the size of the stored subset.
- An error function:

```
E'(Z|X) = E(X|Z) + \lambda |Z|
where E(X|Z) is the error on X storing Z,
|Z| is the cardinality of Z,
\lambda is a trade-off b/t the error and complexity.
```

 $\Box \iff Cost(Z) = EmpLoss(Z) + \lambda Complexity(Z)$

Distance-based Classification

18

- □ In the nonparametric case, define locally adaptive distance function with kNN for each neighborhood a different distance measure, i.e. locally adaptive distance function for each neighborhood.
- □ Find a distance function D(x^r,x^s) such that if x^r and x^s belong to the same class, distance is small, and if they belong to different classes, distance is large.
- Assume a parametric model and learn its parameters using data, e.g. $D(x, x^t | M) = (x x^t)^T M(x x^t) \underline{\text{Mahalanobis distance}}$ where the parameter is the positive definite matrix M.

Note that a notation $D(x_1, x_2 | \theta)$ is a distance between x_1 and x_2 which is defined by a parameter θ , NOT a conditional distribution on θ .

□ Then, use $D(x, x^t | M)$ with kNN.

Learning a Distance Function

19

- □ $D(x, x^t | M) = (x x^t)^T M(x x^t)$ -- Mahalanobis distance where the parameter is the positive definite matrix M.
- □ Similarity-based representation using similarity scores.
- Large-margin nearest neighbor (chapter 13):
 - □ M is estimated so that distance to a neighbor with the same label < the distance to a neighbor with a different label.
- □ To avoid the overfitting in the high dimensional input:
 - Approach 1: add sparsity constraints on M.
 - \blacksquare Approach 2: use a low-rank approximation where M is factored as L^TL.
- □ $\mathbf{M} = \mathbf{L}^{\mathrm{T}} \mathbf{L}$ is $d \times d$ and \mathbf{L} is $k \times d$ with k < d.

$$D(x, x^{t}|M) = (x - x^{t})^{T} M(x - x^{t}) = (x - x^{t})^{T} L^{T} L(x - x^{t})$$

$$= (L(x - x^{t}))^{T} (L(x - x^{t})) = (Lx - Lx^{t})^{T} (Lx - Lx^{t})$$

$$= (z - z^{t})^{T} (z - z^{t}) = ||z - z^{t}||^{2}$$

where z = Lx is the k-dimensional projection of x.

Learning a Distance Function

20

□ **M**=**L**^T**L** is $d \times d$ and **L** is $k \times d$ with k < d.

$$D(x, x^{t}|M) = (x - x^{t})^{T} M(x - x^{t}) = (x - x^{t})^{T} L^{T} L(x - x^{t})$$
$$= (z - z^{t})^{T} (z - z^{t}) = ||z - z^{t}||^{2}$$

where z = Lx is the k-dimensional projection of x.

- Let's learn L instead of M.
- Mahalanobis distance in d-dim. X-space → squared Euclidean distance in k-dim. space: 3-way relationship between distances, dimensionality reduction, and feature extraction.
- Euclidean distance in the k-dim space where k is the fewest dimension of the extracted feature.
- With discrete data, *Hamming distance* counts the # of nonmatching attributes: $HD(x, x^t) = \sum_{j=1}^d \mathbb{1}(x_j \neq x_j^t)$ where $\mathbb{1}(a) = \begin{cases} 1 & \text{if } a \text{ is true} \\ 0 & \text{o. w.} \end{cases}$
- Application dependent similarity/distance measure: e.g.)
 - In vision, similarity scores for matching image part; In bioinformatics, sequence alignment scores; In natural language processing, document similarity measure.

Learning a Distance Function

21

□ If we have a similarity score function b/t two instances $S(x, x^t)$, we can define a *similarity-based representation x'* of instance x as *N*-dim. vector of scores with all x^t , with $s(x, x^t)$, t=1, .. N:

$$x' = [s(x, x^1), s(x, x^2), ... s(x, x^N),]^T$$

-- x' can be used as a vector to be handled by any learner.

K=3

Euclidean distance (circle) is not suitable, Mahalanobis distance using an **M** (ellipse) is suitable. After the data is projected along **L**, correct classification in that reduced 1-dim. space; Euclidean distance can be used.

22

Outlier Detection

23

- Find outlier/novelty points
- A Supervised 2-class classification problem
- Not a two-class problem because outliers are very few, of many types, and seldom labeled.
- Instead, one-class classification problem:
 - Once we model the typical instances, then
 - Find instances that don't fit the model.
- Training data is unlabeled, containing outliers mixed with typical instances.
- Instances with the low probability under the estimated density.
 - In parametric case: with Gaussian model, an instance with high mahalanobis distance to the mean may be an outlier.
 - In semiparametric case: a mixture of Gaussians, instance that is far from its nearest cluster center or form a single cluster by itself may be an outlier.
 - In nonparametric case: Find instances far away from other instances.

Outlier Detection

24

- In nonparametric density estimation, the estimated probability is high where there are many training instances nearby and the probability decreases as the neighborhood becomes more sparse.
- Local outlier factor compares the denseness of the neighborhood of an instance with the average denseness of the neighborhood of its neighbors.
- $d_k(x)$: distance b/t instance x and its kth nearest neighbor.
- \square N(x): the set of training instances that are in the neighborhood of x., i.e. its kNN.
- □ For $s \in N(x)$ with its $d_k(s)$, Compare $d_k(x)$ with the average of $d_k(s)$.

$$\mathrm{LOF}(\boldsymbol{x}) = \frac{d_k(\boldsymbol{x})}{\sum_{\boldsymbol{S} \in \mathcal{N}(\boldsymbol{X})} d_k(\boldsymbol{s}) / |\mathcal{N}(\boldsymbol{x})|}$$

□ LOF(x) \rightarrow 1, x is not an outlier; LOF(x) $\uparrow \rightarrow$ P(x =outlier) \uparrow

Local Outlier Factor

Nonparametric Regression

26

- Aka smoothing models
- Regressogram

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} b(x, x^{t}) r^{t}}{\sum_{t=1}^{N} b(x, x^{t})}$$

where

$$b(x, x^{t}) = \begin{cases} 1 & \text{if } x^{t} \text{ is in the same bin with } x \\ 0 & \text{otherwise} \end{cases}$$

Running Mean/Kernel Smoother

29

Running mean smoother

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} w\left(\frac{x - x^{t}}{h}\right) r^{t}}{\sum_{t=1}^{N} w\left(\frac{x - x^{t}}{h}\right)}$$

where

$$w(u) = \begin{cases} 1 & \text{if } |u| < 1 \\ 0 & \text{otherwise} \end{cases}$$

Running line smoother

Kernel smoother

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right) r^{t}}{\sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right)}$$

where K() is Gaussian

 Additive models (Hastie and Tibshirani, 1990)

How to Choose *k* or *h* ?

33

- □ When *k* or *h* is small, single instances matter; bias is small, variance is large (undersmoothing): High complexity
- □ As *k* or *h* increases, we average over more instances and variance decreases but bias increases (oversmoothing): Low complexity
- □ Cross-validation is used to finetune *k* or *h*.

