MA345 Differential Equations & Matrix Method

Lecture: 03

Date: 8/29/2018

Professor Berezovski

COAS.301.12

Definition 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation (DE).

In order to talk about them, we will classify a differential equation by type, order, and linearity.

Classification by Type If a differential equation contains only ordinary derivatives of one or more functions with respect to a *single* independent variable it is said to be an **ordinary** differential equation (ODE). An equation involving only partial derivatives of one or more functions of two or more independent variables is called a **partial differential equation** (PDE).

Definition 2.3.1 Linear Equation

A first-order differential equation of the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x) \tag{1}$$

is said to be a linear equation in the dependent variable y.

When g(x) = 0, the linear equation (1) is said to be **homogeneous**; otherwise, it is **nonhomogeneous**.

A second-order ODE is called linear if it can be written

(1)
$$y'' + p(x)y' + q(x)y = r(x)$$

and nonlinear if it cannot be written in this form.

The distinctive feature of this equation is that it is *linear in y and its derivatives*, whereas the functions p, q, and r on the right may be any given functions of x. If the equation begins with, say, f(x)y'', then divide by f(x) to have the **standard form** (1) with y'' as the first term.

Explicit Solution

Definition 1. A function $\phi(x)$ that when substituted for y in equation (1) [or (2)] satisfies the equation for all x in the interval I is called an **explicit solution** to the equation on I.

Definition 1.1.2 Solution of an ODE

Any function ϕ , defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an nth-order ordinary differential equation reduces the equation to an identity, is said to be a **solution** of the equation on the interval.

Example 1 Show that $\phi(x) = x^2 - x^{-1}$ is an explicit solution to the linear equation

(3)
$$\frac{d^2y}{dx^2} - \frac{2}{x^2}y = 0,$$

but $\psi(x) = x^3$ is not.

$$f(x) = x^{2} - x^{-1}$$

$$f'(x) = 2x + x^{-2}$$

$$f''(x) = 2 - 2x$$

$$(2-2x^{-3})-\frac{2}{x^2}(x^2-x^{-1})=$$

$$= (2-2x^{-3}) - (2-2x^{-3}) = 0$$

X+O

XFO

$$g'=3x2$$

$$6x - \frac{2}{x^2} \cdot x^3 = 4x \neq 0$$

Example 2 Show that for any choice of the constants c_1 and c_2 , the function

$$\phi(x) = c_1 e^{-x} + c_2 e^{2x}$$

is an explicit solution to the linear equation

(4)
$$y'' - y' - 2y = 0$$
.

$$y = f(x) = c_1 e^{-x} + c_2 e^{2x}$$

$$y' = f'(x) = c_1 e^{-x} + 2c_2 e^{2x}$$

$$y' = f'(x) = c_1 e^{-x} + 4c_2 e^{2x} - (-c_1 e^{-x} + 2c_2 e^{2x}) - 2(c_1 e^{-x} + c_2 e^{2x})$$

$$= (c_1 + c_1 - 2c_1) e^{-x} + (4c_2 - 2c_2 - 2c_2) e^{2x} = 0$$

$$= 0$$

$$(-e, \infty)$$

Implicit Solution

Definition 2. A relation G(x, y) = 0 is said to be an **implicit solution** to equation (1) on the interval I if it defines one or more explicit solutions on I.

Example 4 Show that

$$(7) \qquad x + y + e^{xy} = 0$$

is an implicit solution to the nonlinear equation

(8)
$$(1+xe^{xy}) \frac{dy}{dx} + 1 + ye^{xy} = 0.$$

$$\frac{dy}{dx} + \frac{1+ye^{xy}}{1+xe^{xy}} = 0.$$

IVP - initial Value problem 1c : initial condition

$$y'(x_0) = y_0$$

$$y'(x_0) = y_1$$

$$y''(x_0) = y_2$$

Initial-Value Problem In Section 1.2 we defined an initial-value problem for a general nth-order differential equation. For a linear differential equation, an nth-order initial-value problem is

Solve:
$$a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)$$

Subject to: $y(x_0) = y_0, \quad y'(x_0) = y_1, \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$

Boundary-Value Problem Another type of problem consists of solving a linear differential equation of order two or greater in which the dependent variable y or its derivatives are specified at different points. A problem such as

Solve:
$$a_2(x) \frac{d^2y}{dx^2} + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)$$

Subject to:
$$y(a) = y_0$$
, $y(b) = y_1$

is called a two-point boundary-value problem, or simply a boundary-value problem (BVP). The prescribed values $y(a) = y_0$ and $y(b) = y_1$ are called boundary conditions (BC). A solution of the foregoing problem is a function satisfying the differential equation on some interval I, containing a and b, whose graph passes through the two points (a, y_0) and (b, y_1) .

Existence and Uniqueness of Solution

Theorem 1. Consider the initial value problem

$$\frac{dy}{dx} = f(x, y) , \qquad y(x_0) = y_0 .$$

If f and $\partial f/\partial y$ are continuous functions in some rectangle

$$R = \{(x, y) : a < x < b, c < y < d\}$$

that contains the point (x_0, y_0) , then the initial value problem has a unique solution $\phi(x)$ in some interval $x_0 - \delta < x < x_0 + \delta$, where δ is a positive number.[†]

$$\frac{dy}{dx} = g(x)$$

$$y = \int g(x)dx = G(x) + C$$

$$\frac{dy}{dx} = 1 + e^{2x}$$

$$y = \int 1 + e^{2x} dx = x + \frac{1}{2}e^{2x} + C$$

$$y = x + \frac{1}{2}e^{2x} + C$$

SOLUTION BY INTEGRATION Consider the first-order differential equation dy/dx = f(x, y). When f does not depend on the variable y, that is, f(x, y) = g(x), the differential equation

$$\frac{dy}{dx} = g(x) \tag{1}$$

can be solved by integration. If g(x) is a continuous function, then integrating both sides of (1) gives $y = \int g(x) dx = G(x) + c$, where G(x) is an antiderivative (indefinite integral) of g(x). For example, if $dy/dx = 1 + e^{2x}$, then its solution is $y = \int (1 + e^{2x}) dx$ or $y = x + \frac{1}{2}e^{2x} + c$.

DEFINITION 2.2.1 Separable Equation

A first-order differential equation of the form

$$\frac{dy}{dx} = g(x)h(y)$$

is said to be separable or to have separable variables.

$$\frac{dy}{dx} = (xe^{3x})(y^2e^{4y})$$

$$\frac{1}{y^2e^{4y}}dy = (xe^{3x})dx$$

$$\frac{dy}{dx} = y + 3m \times$$

Method for Solving Separable Equations

To solve the equation

(2)
$$\frac{dy}{dx} = g(x)p(y)$$

multiply by dx and by h(y) := 1/p(y) to obtain

$$h(y) dy = g(x) dx.$$

Then integrate both sides:

$$\int h(y) dy = \int g(x) dx,$$

$$(3) H(y) = G(x) + C,$$

where we have merged the two constants of integration into a single symbol C. The last equation gives an implicit solution to the differential equation.

Example 1 Solve the nonlinear equation

$$\frac{dy}{dx} = \frac{x-5}{y^2}.$$

$$y^2 \frac{dy}{dx} = (x-5)$$

$$y^2 \frac{dy}{dx} = (x-5)\frac{dx}{2}$$

$$\int y^2 \frac{dy}{dx} = \int (x-5)\frac{dx}{2}$$

$$\int y^3 = \frac{x^2}{2} - 5x + C$$

$$y^3 = \frac{3}{2}x^2 - 15x + 3C$$

$$y = \frac{3}{2}x^2 - 15x + K$$

EXAMPLE 1 Solving a Separable DE

Solve (1+x) dy - y dx = 0.

$$\begin{aligned} &\int dy = \int dx \\ &\int y = \int dx \\ &\int dy = \int dx \\ &\int dx$$

Solve the initial-value problem $\frac{dy}{dx} = -\frac{x}{y}$, y(4) = -3.

$$\frac{y^2}{2} = -\frac{x^2}{2} + C$$

$$A_5 = - X_5 + 5 C$$

$$x^2 + y^2 = 2c$$

$$\sqrt{\frac{1}{3}} \times \frac{1}{3} = 32$$

$$y^{2} = -\frac{z}{z} + (v - m)$$

Initial Value Problem (IVP). Bell-Shaped Curve

Solve y' = -2xy, y(0) = 1.8.

$$\int \frac{dy}{y} = \int \frac{dx}{(-2x)}$$

general solution: 4 = c. e-x2

$$1.8 = c \cdot e^0 = c$$
 $c = 1.8$

$$\int y = 1.8 e^{-x^2}$$

Fig. 10. Solution in Example 3 (bell-shaped curve)

Example 3 Solve the nonlinear equation

(9)
$$\frac{dy}{dx} = \frac{6x^5 - 2x + 1}{\cos y + e^y}.$$

$$\int (\cos y + e^y) dy = \int (6x^5 - 2x + 1) dx$$

$$\int \sin y + e^y + C_1 = x^6 - x^2 + x + C_2$$

$$\int \int \sin y + e^y = x^6 - x^2 + x + C$$

$$\int \int \sin y + e^y = x^6 - x^2 + x + C$$

$$\int \int \sin y + e^y = x^6 - x^2 + x + C$$

4 = 42 ex $\frac{dy}{dx} = y^2 e^{-x}$ I tyzdy = le x dx y = = 1. gevreval Soluta

Singular solutions