Monic: left cancellation.

$$C \xrightarrow{g_1} A \xrightarrow{f} B$$

$$f g_1 = f g_2 \Rightarrow g_1 = g_2$$

Epic: Right Cancellation $A \xrightarrow{f} B \xrightarrow{h_1} C$ $h_1f = h_2f \implies h_2 = h_0$

Basic Facts

$$A \xrightarrow{f} B \xrightarrow{g} C$$

fig monie (epic) \Rightarrow gf monie (epic),

gf monie (epic) \Rightarrow f monie (g epic).

A
$$\beta$$
 B if $gf=1$ then f is monic ag is spic.

Example: in Set, R-mod, Grp, monic \Leftrightarrow injective & epic \iff surjective.

Pf (\Rightarrow) · Suppose f is not injective. Let $C = \ker(f)$. $C \neq 0$. (R-mod) Let $g: C \longrightarrow A$. Then fo = fg but $o \neq g$.

(R-mod) Let $g: C \longrightarrow A$. Then fo = fg but $o \neq g$.

• Suppose f: c not surjective. Let I = Im(f). Let $g: B \longrightarrow B/_{Im(f)}$. Then fo = fg but $f \neq 0$ since fo = fg but fo = fg.

!!

coker(f).

For groups, the first argument works but the second doesn't (coker is not necessarily in the contegory).

 $D = \{(a_i a) \mid a \in A\}.$

maps $g_1, g_2 : K \longrightarrow A$ are projections onto $1^{3+} \ \ 2^{n^2}$ factors.

Trum $fg_1 = fg_2$ but $g_1 \neq g_2$ A

A

Since $\exists (a_1, a_2) \in K \setminus D$.

B

B

B

Counterexample: Z Q is epic.

slight generalization: R- any commeny S- any mult. Closed subset

R S'R is epic but not necessarily surj.