

VAC Date: 22 Jan 2020

Project MAXI

MoC No.: R-P1-2019/059

Project Title: Install S-1401S (NHT feed filter)

Location: R-P1

Proposal for:

- □ **Gate 1 (+/-50%)**; Approval to develop and select conceptual design
- □ **Gate 2 (+/-30%)**; Approval to define and develop Basic Design and/or Front End Engineering & Design (FEED)

Gate 3 (+/-10%); Approval to perform Detailed Engineering, Procurement, and Construction

 Revise Budget; Approval for additional budget as scope and/or schedual change

Project Engineer: Nuttapon O <E-PS-MS>

Process Engineer: Jeeranun N < R-P1-TE/1520 >

Objective of Today

Project request VAC to endorse Gate 3 (+10%)

Project budget: 22 MTHB

Investment type: BAU (Maintain Reliability)

Benefit (CM): 9.58 MTHB/Year

IRR: 41.3 %

Payback: 0.82 Year

Project Schedule: 15 Aug 2019 – 31 Dec 2020

Value Assurance Checks

VES NO N/A

Paviow/Comment

Phase 1 Deliverables are required:

Phase 1 Delive	rables	s are required :	YES	NO	N/A	Review/Comment
	1)	Project Master Schedule	Υ			
	2)	EIA / EHIA approval document	Υ			
Project	3)	Project justification / Benefit calculation sheet	Υ			
General Project Deliverables Engineering Deliverables 1 Project Justification	4)	±10% project cost estimate document			Υ	
	5)	VAC Check List (Project budget more than 30 Million Bath)	Y	Υ		
	6)	Block flow PFDs P&IDs (Completed material review)	Υ			
General Project 3 Deliverables 4 Engineering Deliverables 9 10 11 Project Justification 14	7)	PHA i.e. HAZOPs, What-If, Checklist			Υ	
	8)	Heat & Material balance / Utility balance			Υ	
	9)	Equipment list	Υ			
	10)	Overall plot plans	Υ			
	11)	Single line diagram			Υ	
	12)	J-Factor (>0.2)			Υ	
6) 7) 8) Project Justification 6) 7) 8) 9) 10) 11)	13)	IRR Core uplift (>15%)	Υ			
	14)	IRR Energy /Reliability(WACC = 9.73%)			Υ	
	15)	Payback period	Υ			

Agenda

- 1. Background
- 2. Proposal
- 3. Cost estimate
- 4. Benefit and Project justification
- 5. Project schedule
- 6. Project cash flow
- 7. Risk Assessment

1.Background

NHT has one feed filter (S-1401) to removal particulate in NHT feed. When S-1401 pressure drop increases to 1 bar, S-1401 need to be cleaned. During by-pass S-1401 for cleaning, all particle in feed routes to down stream feed coalescer (S-1402) that impact to S1402 is plugged and lower performance. S-1402 cannot remove free water in NHT feed as per design and free water carry over to downstream mercury removal unit adsorbent (V-1411 A/B). The consequence of S-1402 lower performance is downstream mercury removal unit adsorbent (V-1411 A/B) is shorten cycle length because water carry over impact to adsorbent carrier weaker and with time dust is formed that tend to accumulate and increase pressure drop.

Problem

After TA 2016, feed filter (S-1401) cleaning frequency is higher impact to coalescer (S-1402) pressure drop increase and lower performance as figure 1. The impact of higher free water carry over to MRU (V-1411A/B) is adsorbent agglomerate as figure 2.

Objectives

To design another feed filter (S-1401S) to prevent particles in feed bypass to S-1402 coalescer during S-1401A cleaning that impact downstream equipment (S-1402 and V-1411A/B) high pressure drop problem.

Benefit of the project

- 1. Improve operation reliability
- 2. Extend mercury removal unit adsorbent life (V1411A/B)

Figure 1 Pressure drop of S-1401 and S-1402

Figure 2 V-1411A/B MRU adsorbent agglomerate from free water

Simplify diagram / Plot plan / Drawing

Simplify diagram / Plot plan / Drawing

2.Proposal

Project Objective:

To design new feed filter (S-1401S) to prevent particles in feed bypass to S-1402 coalescer during S-1401A cleaning that impact downstream equipment

S-1401A cleaning that impact downstream equipment (S-1402 and V-1411A/B) high pressure drop problem.

Scope of Modification:

- S-1401S filter housing with cartridges will be designed.
- The other facilities for support S-1401S such as piping, block valves, relief valve, filter foundation, operation platform and lighting.

2.Proposal

Scope of work

- Detail engineering for new filter include piping design and calculation.
- 2. Install new filter S-1401S. Rated capacity of new filter is 243 kg/hr same as existing.
- 3. Install new Relief Valve for new filter.
- 4. Install piping system.
- Install lighting and grounding system.
- 6. Modify operation platform and excess way.

3.Cost estimate

CC	OST ITEM	DESCRIPTION	TOTAL (THB)	REMARKS
1		ENGINEERING		Detail Engineering
2		PROCUREMENT	6,949,575	
	2.1	EQUIPMENT	5,544,170	
	2.1.1	MECHANICAL	5,440,000	New Filter
	2.1.2	ELECTRICAL		
	2.1.3	INSTRUMENT	104,170	New Relief valve
	2.2	BULK MATERIALS	1,405,405	
	2.2.1	PIPING	1,030,942	Piping Materials (SOUR), Valve
	2.2.2	ELECTRICAL	374,463	Lighting, power/grounding cable, junction box
	2.2.3	INSTRUMENT	-	
3		CONSTRUCTION	12,168,008	
	3.1	CIVIL WORK	26,125	Filter Foundation and Modify platform
	3.2	PIPING WORK	3,369,032	
	3.2.1	PIPING WELDING WORK (SHOP)	302,400	270 DB (1120 THB/DB)
	3.2.2	PIPING WELDING WORK (FIELD)	252,000	180 DB (1400 THB/DB)
		PIPING WORK (OTHER)	2,814,632	Demolish (Piping), NDE, Hydro Test, Cold cut
	3.3	MECHANICAL WORK	-	Filter Installation
		ELECTRICAL WORK	926,547	Lighting, Grounding
		INSTRUMENT WORK		
		PROJECT MANAGEMENT, SUPERVISION AND TAX DUTY	7 204 221	Management Cost, Transportation, Safety Management, Scaffolding, Suppervisor
4		COMMISSIONING / RUN-IN & START-UP / WARRANTY	7,304,321	Scarrounig, Suppervisor
5		OWNER COST	-	
6		CONTINGENCY (8.4%)	1,703,481	
		OVERALL PROJECT COST	22,000,000	

4. Benefit and Project justification

	Basic Assumptions	
Price Assumption:		
Feed/Product		THB/Unit
Utility	BP 2020 corporate price assumption R 1.3	THB/Unit
Others (i.e. Land Cost)		
Financial:		
Project Life Time / Depreciation	20	Years
Equity	100	%
Interest Loan Rate*	4.5	%
WACC	8.53	%
FX Rate	35.2 30.9	THB/EUR THB/USD
Tax	20	%
CPI	Corporate Assumption	%
Contingency Cost	10	%
Others:		
Operating Days	350	Days/Year
Maintenance (OPEX)	1.5	% of Investment Cost
Maintenance (CAPEX)	1	% of Investment Cost
Insurance	1	% of Investment Cost

^{*} Include Interest During Construction / Working Capital Interest /Short term Loan

4. Benefit and Project justification

Benefit calculation for S-1401S base on following items

- 1. Save S-1402 maintenance cost in between T/A cycle (36 months) from
- 2 times/cycle (Historical data in 2019) → 1 time/cycle
- 2. Utilize MRU (V1411A/B) until max pressure drop reached from 24 months → 60 months by take 70% of success on adsorbent service life

Cost saving per tim	е
Coalescer S1402 shutdown	5 MTHB
Adsorbent cost saving	27 MTHB
Maintenance cost saving	2 MTHB
Waste disposal cost saving	15 MTHB
Total benefit	49 MTHB

Benefit	Calculati	on
Investment	29	MTHB
Benefit	49	MTHB/time
Benefit avg. 20 yr.	9.58	MTHB/yr.
IRR @ 20 yr.	41.3	%
NPV @ WACC 8.53%	60.1	MTHB
Payback	0.82	Yr.

Remark investment 29 MTHB

- CAPEX 22 MTHB
- ER (CE-1011-19006) 7.843 MTHB (MoC No. R-P1-2019/111 (Tie-in))

Reviewed by Wanee S. /M-SE-SO

5.Project schedule

Prelim Target plan to completed in December 2020

5.Project schedule

Present Gate III (VAC)	Jan 2020
Engineering and Procurement	Feb 2020 - Dec 2020
Pre-Fabrication	Oct-Nov 2020
Execution	Dec-2020
Commissioning and Complete	Dec-2020

6.Project cash flow

7. Risk Assessment

Risk (Issue)	Mitigation plan (Action Item)	Risk Owner (Action By)	Expected Mitigation Completion Date (Plan Finish Date) (dd/mm/yyyy)
1. Tie-in wok (hot/cold tap) during plan in operation.	Perform tie in work during plant shutdown.	R-P1-OP/ TP-PP-PB	REF T/A 2019
2. Fail to achieve performance.	The performance test the will be performed, vendor will take full responsibility incase filter performance is not pass.	TP-PP-PB	Dec 2020
3. Existing condition, operate with bypass line during filter cleaning.(Filter need to be cleaned every 4-5 days)	Minimize time during filter cleaning (use bypass line).	R-P1-OP	Dec 2020

Thank you

Back-up

S1402 Maintenance cost & Benefit calculation

	Cost of S14	402 Shutdown		
	Service	No.	Unit	Price
	GCME Decontamination	1	job	1,554,000.00
1.	GCME Service replacement PP wool	1	job	547,062.92
Expense	Hydraulic bolt tension	1	job	222,773.75
occur	manpower	1	job	41,373.00
during	waste disposal	1	job	215,391.10
T/A	Crane	1	job	397,325.00
period	Spare part			
	Stock materials (gasket, slot)	1	lot	174,493.19
	Direct material (pp wool)	1	lot	1,902,988.04
	Summary (THB)			5,055,407.00

Benefit calculation

Gain benefit within the first year from adsorber cost \rightarrow Payback period = 0.87 yr.

MRU pressure drop trend

Based on the first period, there is no water content impacted to pressure drop, the prediction of pressure drop at 1800 days is 1.13 bar

Spent adsorbent analysis

Spent adsorbent analysis

Mercury from spent adsorbent analysis = 0.67 %wt. after service for 29 months (design 4.23 %wt.) so no concern for service 60 months.

Back-up

Filter Drawing

		MECHANIC	CAL DESIG	N DATA				
				Shell		Coil Stear	m Tracing	
Contents			-	NHT Feed (N	aphtha)	-		
Process Fluid Hazards			-	Wet H2S (H2S=300	00 ppmwt.)	-		
Design Pressure (Min / Max)			Bar G	-	42.5	-	-	
Design Temperature (Min / Max)			°C	-	170	-	-	
Operating Pressure (Min / Nor / Max)			Bar G		39	-	-	
Operating Temperature	(Min / 1	lor / Max)	°C		50	-	-	
Hydrotest Pressure			Bar G	Per Cod	le		•	
MDMT			°C	-				
Density			kg/m ³	658				
Corrosion Allowance (In	ternal / I	External)	mm	3	0	-	-	
Loveut				Loads				
Layout			.		2			
Vertical / Horizontal	•	Vertical		Vind Pressure	N/m ²	_	on K= 0.8)	
Vessel Diameter (OD)	mm	600 (VTC)	-	ıake Factor		N/	Α	
TL. To TL. Length	mm	See Sketch Drawing	-	WEIGHT				
Shell Thickness	mm	VTC		WEIGHT	l	V	0	
Head Type	mm	See Sketch Drawing	→ ' '		kg		_	
Type of Supports	-	Haft Skirt	Operat	ing	kg	V		
Insulation		N/A	Test		kg	V	C	
Insulation Thickness	mm 3	N/A	-					
Vessel Volume	m ³	VTC	-					
Fireproof		N/A						

5.Project schedule

Prelim Target plan to completed in December 2020

Maste	r Execution Plan Project New Filter S-1401S													
								20	20					
[tem	Task Name	Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	Detail Engineering work (Completed end of Y2019)													
	Engineering with Filter vendor	1		\leftrightarrow										
2	Procurement (Filter Long Lead Item)	9			←								\longrightarrow	
3	Construction Work													
	- Civil (Filter foundation/platform)	0.5												+
	- Piping work (80% completed during T/A Oct, 2019)													
	- Piping work (20% remaining)	0.5												*
	- Filter installation	0.5												*
	- Electrical work (Lighting & Grounding)	0.5												*
	- Instrument work (impulse line for PDI)	0.1												
4	Mechanical Completion	End Dec, 2020												*
5	Commissioning and PSSR	End Dec, 2020												*
6	New filter (S-1401S) in service	End Dec, 2020												7