Distributed Information Systems Class questions

Marc Bourqui

April 2, 2015

	Part I		The state of a database is independent of the
	Introduction		lifetime of a program The same logical database can be stored in different ways on a storage medium
	An Overview (week 1) Information Systems	7.	Information Management Grouping Twitter users according to their interest by
2.	Functions in models ① Are always computable ○ Can always be represented as data ○ Can be constrained by axioms Interpretation relationships ○ Are always computable	0	 analyzing the content of their tweets is A retrieval task A data mining task An evaluation task A monitoring task Distributed Information Systems
	Relate constants to real-world entitiesAre uniquely defined Data Management	8.	Creating a web portal for comparing product prices is (primarily) a problem of Distributed data management Heterogeneous data integration
3.	What is not specified in the data definition language? O The structure of a relational table O The query of user	9.	 Collaboration among autonomous systems Distributed Data Management When you open a Web page with an embedded Twitte stream, the communication model used by Twitter is
4.	 A constraint on a relational table Logical data independence means An abstract data type is implemented using different data structures A new view is computed without changing an 		Push, unicast and conditional Pull, multicast and ad-hoc Push, multicast and ad-hoc Pull, unicast and conditional
	existing database schema A model can be represented in different data modelling formalisms	10.	Heterogeneity Creating a web portal for comparing product prices requires to address
5	Data Management Tasks Which is wrong? An index structure		Syntactic heterogeneitySemantic heterogeneity
J .	Is created as part of physical database design Is selected during query optimization Accelerates search queries Accelerates tuple insertion	11.	○ Both An ontology is a ○ Sdatabase ○ database schema
6.	Persistence means that		data modeldata modeling formalismmodel

Autonomy

- 12. Trust is
 - A quality of information
 - A quality of a user
 - A quality of the relationship among user and information
 - \bigcirc A quality of the relationship among users

Part II

Storage

Distributed Data Management

Schema Fragmentation

Relational Databases

- 13. At which phase of the database lifecycle is fragmentation performed ?
 - $\sqrt{}$ At database design time
 - O During distributed query processing
 - Ouring updates to a distributed database
- 14. The reconstruction property expresses that
 - In case of a node failure the data can be recovered from a fragment from another node
 - $\sqrt{}$ The original data can be fully recovered from the fragments
 - Every data value of the original data can be found in at least one fragment

Primary Horizontal Fragmentation (week 2)

- 15. Example: application A1 accesses
 - 1. Fragment F1: with frequency 3
 - 2. Fragment F2: with frequency 1

A1 accesses the whole relation with frequency

- $\sqrt{13/7}$
- \bigcirc 4/7
- \bigcirc 14/7

16. Consider the access frequencies below: How many horizontal fragments would a minimal and complete fragmentation have?

- √ **3**
- 4
- O 6
- 17. Which of the following sets of simple predicates is complete?

- Location = "Munich", Budget > 200000
- Location = "Munich", Location = "Bangalore"
- \bigcirc Location = "Paris", Budget ≤ 200000
- $\sqrt{}$ None of those
- 18. Which is true for MinFrag algorithm?
 - The output is independent of the order of the input
 - It produces a monotonically increasing set of predicates
 - $\sqrt{}$ It always terminates
 - All of the above statements are true
- 19. When deriving a horizontal fragmentation for relation S from a horizontally fragmented relation R
 - $\sqrt{\ }$ Some primary key attribute in R must be a foreign key in S
 - \bigcirc Some primary key attribute in S must be a foreign key in R
 - O Both are required

Graph Databases (week 3)

Semi-structured Data

- 20. Semi-structured data
 - Is always schema-less
 - $\sqrt{\mbox{ Always embeds schema information into the data}}$

Text-based Information Retrieval

37. In vector space retrieval each row of the matrix M^T

corresponds to

✓ A document○ A concept

A query result 32. Full-text retrieval means that O The document text is grammatically deeply 38. Applying SVD to a term-document matrix **M**. Each analyzed for indexing concept is represented ○ As a singular value O The complete vocabulary of a language is used to extract index terms $\sqrt{\ }$ As a linear combination of terms of the $\sqrt{\ }$ All words of a text are considered as vocabulary potential index terms As a linear combination of documents in the document collection All grammatical variations of a word are indexed As a least square approximation of the matrix **M** 33. The term-document matrix indicates √ How many relevant terms a document 39. The number of term vectors in the SVD for LSI contains () Is smaller than the number of rows in the matrix O How relevant a term is for a given document $\sqrt{\ }$ Is the same as the number of rows in the $\sqrt{}$ How often a relevant term occurs in a matrix M document collection () Is larger than the number of rows in the matrix √ Which relevant terms are occurring in a document collection 40. A query transformed into the concept space for LSI has 34. Let the query be represented by the following vectors: (1, (0, -1) (0, -1, 1); the document by the vector (1, 0, 1) \sqrt{s} components (number of singular values) Matches the query because it matches the first \bigcirc m components (size of vocabulary) query vector \bigcap *n* components (number of documents) √ Matches the guery because it matches the User Relevance Feedback second query vector O Does not match the query because it does not 41. Can documents which do not contain any keywords of the match the first query vector original query receive a positive similarity coefficient after relevance feedback? O Does not match the query because it does not match the second query vector O No 35. Which is right? The term frequency is normalized \bigcirc Yes, independent of the values β and γ $\sqrt{}$ By the maximal frequency of a term in the $\sqrt{\text{ Yes, but only if } \beta > 0}$ document \bigcirc Yes, but only if $\gamma > 0$ O By the maximal frequency of a term in the Link-based Ranking document collection O By the maximal frequency of a term in the 42. A positive random jump value for exactly one node implies that $\sqrt{\ }$ a random walker can leave the node even O By the maximal term frequency of any without outgoing edges document in the collection 36. The inverse document frequency of a term can increase a random walker can reach the node multiple times even without outgoing edges O By adding the term to a document that contains $\sqrt{}$ a random walker can reach the node even without incoming edges $\sqrt{}$ By adding a document to a document collection that does not contain the term one of the above O By removing a document from the document 43. Given the graph below and an initial hub vector of (1, 1, 1). collection that does not contain the term The hub-authority ranking will result in the following O By adding a document to a document collection that contains the term Missing Advanced Retrieval Models (week 5) figure graph Latent Semantic Indexing

Hierarchical P2P Overlay Networks

Credits

 $\operatorname{\mathsf{Quiz}}$ questions were taken from the lecture notes of Prof. Karl Aberer.