PROGRAMARE LOGICĂ SEMINAR 3 - SPECIFICAȚII ADECVATE -

Teorie:

- Un morfism de (S, Σ) -algebre $h : \mathcal{A} \to \mathcal{B}$ este o funcție S-sortată $h = \{h_s\}_{s \in S} : \{A_s\}_{s \in S} \to \{B_s\}_{s \in S}$ care verifică condiția de compatibilitate:
 - $-h_s(A_\sigma) = B_\sigma$, or. $\sigma :\to s \in \Sigma$,
 - $-h_s(A_{\sigma}(a_1,\ldots,a_n)) = B_{\sigma}(h_{s_1}(a_1),\ldots,h_{s_n}(a_n)), \text{ or. } \sigma:s_1\ldots s_n \to s \in \Sigma \text{ si or. } a_1 \in A_{s_1},\ldots,a_n \in A_{s_n}.$
- O (S, Σ) -algebră \mathcal{I} este *inițială* într-o clasă de (S, Σ) -algebre \mathfrak{K} dacă pentru orice $\mathcal{B} \in \mathfrak{K}$, există un unic (S, Σ) -morfism $f: \mathcal{I} \to \mathcal{B}$.
- O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ satisface o ecuatie conditionată $(\forall X)t \stackrel{.}{=}_s t'$ if H
 - dacă pentru orice funcție S-sortată $e: X \to A_S$, $\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$, or. $u \doteq_{s'} v \in H \Rightarrow \tilde{e}_s(t) = \tilde{e}_s(t')$.
 - dacă pentru orice morfism $f: T_{\Sigma}(X) \to A$, $f_{s'}(u) = f_{s'}(v)$, or. $u \doteq_{s'} v \in H \Rightarrow f_s(t) = f_s(t')$.
- O (S, Σ) -algebră \mathcal{A} este o Γ -algebră dacă $\mathcal{A} \models \gamma$, or. $\gamma \in \Gamma$.
- O specificație algebrică este un triplet (S, Σ, Γ) , unde (S, Σ) este o signatură multisortată și Γ este o mulțime de ecuații condiționate.
- O specificație (S, Σ, Γ) este adecvată pentru \mathcal{A} dacă \mathcal{A} este Γ -algebră inițială, i.e. $\mathcal{A} \in \mathfrak{I}_{(S, \Sigma, \Gamma)}$.

Exercițiul 1:

Fie $S = \{s\}, \Sigma = \{8 : \rightarrow s, h : s \rightarrow s\}$ şi $\Gamma = \{(\forall x)h(h(h(x))) \stackrel{.}{=} x\}.$ Determinați (S, Σ, Γ) -algebra inițială și justificați răspunsul.

Rezolvare: Considerăm (S, Σ) -algebra $\mathcal{A} = (\mathbb{Z}_3, A_8, A_h)$, unde

$$A_8 := 0$$
 şi $A_h(x) = (x+1)(mod3)$, or. $x \in \mathbb{Z}_3$.

Arătăm că \mathcal{A} este Γ -algebră, i.e. $\mathcal{A} \models (\forall x) h(h(h(x))) = x$. Fie $e: X \to \mathbb{Z}_3$, unde $X = \{x\}$. Avem:

$$\tilde{e}(h(h(h(x)))) = A_h(A_h(A_h(e(x)))) = (e(x) + 3)(mod3) = e(x) = \tilde{e}(x)$$

Arătăm că \mathcal{A} este Γ -algebră inițiala. Fie \mathcal{B} o Γ -algebră, $\mathcal{B} = (B, B_8, B_h)$.

Existența: Definim $f: \mathbb{Z}_3 \to B$ prin $f(0) := B_8$ și $f(x+1) := B_h(f(x))$, pt. $0 \le x \le 1$. Arătăm că f este morfism:

- $f(A_8) = f(0) = B_8$.
- $f(A_h(0)) = f(1) = B_h(f(0)).$
- $f(A_h(1)) = f(2) = B_h(f(1)).$
- Trebuie să arătăm $f(A_h(2)) = B_h(f(2))$.
 - $f(A_h(2)) = f(0) = B_8$
 - $B_h(f(2)) = B_h(B_h(f(1))) = B_h(B_h(B_h(f(0)))) = B_h(B_h(B_h(B_8))).$
 - Cum $\mathcal{B} \models (\forall x)h(h(h(x))) = x$, pt. $e': X \to B$, $e'(x) := B_8$, obtinem $B_h(B_h(B_h(B_h(B_h)))) = B_8$.
 - Deci $B_h(f(2)) = B_8 = f(A_h(2)).$

Unicitatea: Fie $g: A \to B$ un morfism. Arătăm că g(x) = f(x), or. $x \in \{0, 1, 2\}$, prin inducție:

- $g(0) = g(A_8) = B_8 = f(0)$,
- $g(1) = g(A_h(0)) = B_h(g(0)) = B_h(f(0)) = f(1),$
- $g(2) = g(A_h(1)) = B_h(g(1)) = B_h(f(1)) = f(2)$.

Exercitiul 2:

Scrieţi o specificaţie (S, Σ, Γ) adecvată pentru algebra $\mathcal{Z} = (I, 0, p_I)$, unde $I = \{z \in \mathbb{Z} \mid z \leq 0\}$ este mulţimea numerelor întregi negative, $0 \in I$ este constantă, iar $p_I : I \to I$ este definită prin $p_I(z) = z - 1$, or. $z \in I$. Demonstraţi că specificaţia (S, Σ, Γ) găsită este adecvată pentru \mathcal{Z} .

<u>Rezolvare:</u> Considerăm specificația $S = \{s\}$, $\Sigma = \{0 : \rightarrow s, p : s \rightarrow s\}$ şi $\Gamma = \emptyset$. Evident \mathcal{Z} este o (S, Σ) -algebră și Γ-algebră.

Arătăm că \mathcal{Z} este (S, Σ) -algebră inițială. Fie \mathcal{B} o (S, Σ) -algebră, $\mathcal{B} = (B, B_0, B_p)$.

Existența: Definim $f: I \to B$ prin $f(0) := B_0$ și $f(x-1) := B_p(f(x))$, pt. $x \le 0$. Arătăm că f este morfism:

- $f(0) = B_0$,
- $f(p_I(x)) = f(x-1) = B_n(f(x))$, or. x < 0.

Unicitatea: Fie $g: \mathcal{Z} \to \mathcal{B}$ un morfism. Arătăm prin inducție după $z \in I$ că g(x) = f(x):

- $g(0) = B_0 = f(0)$,
- $g(z-1) = g(p_I(z)) = B_p(g(z)) = B_p(f(z)) = f(z-1)$, or. z < 0.

Exercițiul 3:

Fie $S = \{s\}$, $\Sigma = \{0 : \rightarrow s, \ succ : s \rightarrow s\}$ şi $\Gamma = \{(\forall x) succ(succ(succ(succ(x)))) \stackrel{\cdot}{=} x\}$. Arătați $\check{\operatorname{ca}}(S, \Sigma, \Gamma)$ este o specificație adecvată pentru $\mathcal{A} = (\mathbb{Z}_4, 0, succ)$, unde $succ(x) := x + 1 \pmod{4}$.

Rezolvare: Se reduce la a arăta că \mathcal{A} este Γ -algebra inițială:

- (1) Γ -algebră: $\mathcal{A} \models \gamma$, or. $\gamma \in \Gamma$,
- (2) Inițială: pt. or. Γ -algebră \mathcal{B} , există un unic morfism $f: \mathcal{A} \to \mathcal{B}$.
- (1) $\mathcal{A} \models (\forall x)succ(succ(succ(succ(x)))) \stackrel{\cdot}{=} x$

Fie
$$e: X \to \mathbb{Z}_4$$
, unde $X = \{x\}$. Avem
$$\tilde{e}(succ(succ(succ(succ(x))))) = A_{succ}(A_{succ}(A_{succ}(A_{succ}(e(x)))))$$

$$= e(x) + 4 \text{mod } 4$$

$$= e(x) = \tilde{e}(x)$$

(2) Fie \mathcal{B} o Γ -algebră.

Existența: Definim $f: \mathbb{Z}_4 \to B$ prin $f(0) := B_0$ şi $f(x+1) := B_{succ}(f(x))$, pt. $0 \le x \le 2$. Arătăm că f este morfism:

- $f(A_0) = f(0) = B_0$
- $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x))$, pt. $0 \le x \le 2$
- Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{succ}(3)) = f(0) = B_0$
 - $B_{succ}(f(3)) = B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_{0}))))$
 - Cum $\mathcal{B} \models (\forall x)succ(succ(succ(succ(x)))) = x$, pt. $e': X \to B$, $e'(x) := B_0$, obtinem $B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0)))) = \tilde{e'}(succ(succ(succ(succ(x))))) = \tilde{e'}(x) = B_0$ Deci $f(A_{succ}(3)) = B_{succ}(f(3))$.

Unicitatea: Fie $g: A \to B$ un morfism.

Arătăm că g(x) = f(x), or. $x \in \{0, 1, 2, 3\}$, prin inducție:

- $g(0) = g(A_0) = B_0 = f(0)$
- $g(x+1) = g(A_{succ}(x)) = B_{succ}(g(x)) = B_{succ}(f(x)) = f(A_{succ}(x)) = f(x+1)$