Algèbre 1

Produit tensoriel

Question 1/5

Structure de n-Lin

Réponse 1/5

k-ev

Question 2/5

Application linéaire associée à une application $u \in \mathcal{E} = n\text{-Lin}(E_1, \cdots, E_n; F)$

Réponse 2/5

$$\Phi: \mathcal{E} \longrightarrow F^{I_1 \times \dots \times I_n}
\varphi \longmapsto \left(\varphi\left(e_{i_1}^{(1)}, \dots, e_{i_n}^{(n)}\right)\right)_{(i_1, \dots, i_n) \in I_1 \times \dots \times I_n}
\text{Où } \left(e_i^{(j)}\right)_{i \in I_j} \text{ est une base de } E_j$$

Question 3/5

$$\lambda \times (e_1 \otimes \cdots \otimes e_n)$$

Réponse 3/5

$$(\lambda e_1) \otimes e_2 \otimes \cdots \otimes e_n$$

$$e_1 \otimes \cdots \otimes e_{n-1} \otimes (\lambda e_n)$$

Question 4/5

Définition du produit tensoriel de E_1, \dots, E_n des \mathbb{k} -ev de dimension finie

Réponse 4/5

Il existe $(E_1 \otimes \cdots \otimes E_n, \Pi)$ tel que $E_1 \otimes \cdots \otimes E_n$ est un k-ev et $\Pi \in n\text{-Lin}(E_1, \cdots, E_n; E_1 \otimes \cdots \otimes E_n)$ est tel que pour tout F k-ev, tout $\varphi \in n\text{-Lin}(E_1, \cdots, E_n; F)$ se factorise en un unique $\overline{\varphi}$ linéaire vérifiant $\varphi = \overline{\varphi} \circ \Pi$ $(E_1 \otimes \cdots \otimes E_n, \Pi)$ est unique à unique isomorphisme près

Question 5/5

$$e_1 \otimes \cdots \otimes e_{i-1} \otimes (e_i + e'_i) \otimes e_{i+1} \otimes \cdots \otimes e_n$$

Réponse 5/5

$$e_1 \otimes \cdots \otimes e_n + e_1 \otimes \cdots \otimes e'_i \otimes \cdots \otimes e_n$$