

INTELIGÊNCIA ARTIFICAL

LUCAS GEORGES HELAL

Máquina de Vetor de Suporte

Support Vector Machine - SVM

Conceitos introdutórios

Exemplos

SVM: História

- Teoricamente bem motivado: desenvolvido a partir da Teoria de Aprendizagem Estatística (Vapnik & Chervonenkis) desde os anos 60
- SVM foi apresentado na conferência de (COLT, 1992) por Boser, Guyon & Vapnik
- Empiricamente possui boa performace: tem aplicações de sucesso em muitos campos (biometria, texto, reconhecimento de imagens)

SVM: História

- Site centralizado: www.kernel-machines.org
- Muitos livros didáticos, por ex: "An introduction to Support Vector Machines" por Cristianini e Shawe-Taylor
- Uma grande e diversificada comunidade trabalhando nele: de aprendizagem de máquina, otimização, estatística, redes neurais, etc

SVM

- Linear
- Não Linear

SVM: Linear

Qual reta melhor divide os dados?

SVM: Linear

SVM: Não Linear

Input Space

Feature Space

SVM: Kernel funções

- Linear: $K(X,Y) = X^T Y$
- Polynomial de grau d: $K(X,Y) = (X^TY + 1)^d$
- Gaussian Radial Basis Function (RBF): $K(X,Y) = e^{-\frac{1}{2\sigma^2}}$
- Tanh Kernel: $K(X,Y) = \tanh(\rho(X^TY) \delta)$

SVM: Kernel funções

SVM: Kernel funções

SVM: OVA x OVO

- O SVM por definição funciona com um K = 2
- Quando K > 2:
 - One-Versus-All (OVA), Um-Contra-Todos:
 - Classes Positivas versos N\u00e3o positivas
 - One-Versus-One (OVO), Um-Contra-Um:
 - Classifica em pares

SVM: Exemplo

- Por ex: A base de reconhecimento de manuscritos MNIST
 - 60.000 amostras de treino
 - 10.000 amostras de teste
 - Imagens 28x28
 - SVM Linear: ~8,5% tx de erro
 - SVM Polynomial: ~1% tx de erro

100	12			2	15				
Z	0	4	1	9	2	1	3		4
3	5	3	6	1	7	2	8	6	9
ч	0	9	1	1	2	4	3	2	7
3	8	6	9	0	5	6	0	7	6
1	8	1	9	3	9	8	5	3	3
3	0	7	4	9	8	0	9	4	1
4	4	6	0	4	5	6	Ī	\bigcirc	0
1	2		6	3	0	2	1	1	7
් පි	0	2	6	7	8	3	9	0	4
6	2	4	6	8	0	7	8	3	1

SVMs: Software

- Muitos softwares/bibliotecas de SVM:
 - LibSVM (C++)
 - SVMLight (C)
 - WEKA (JAVA)
 - Torch (C++)
 - scikit-learn (Python)
 - Spider (Matlab)

SVM: Conclusão

 Ajustar os parâmetros do SVM é uma arte: a seleção de um kernel específico e os parâmetros normalmente são feitos de maneira empírica

O classificador SVM tem demonstrado bons resultados na literatura

Obrigado :D

- lucasghelal@gmail.com
- https://github.com/LucasHelal/estagio-docencia-ia

