

Machine Learning

Multi-class Classifier

Dr. Mehran Safayani

safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Multi-class Classification

Multiclass Classification: One-Vs-Rest(All)

One-hot-vector

•Classifier 1:- [Green] vs [Red, Blue]

•Classifier 2:- [Blue] vs [Green, Red]

•Classifier 3:- [Red] vs [Blue, Green]

Multiclass Classification: One-Vs-Rest(All)

Main Dataset

Features			Classes
x1	x2	х3	G
x4	х5	х6	В
x7	х8	х9	R
x10	x11	x12	G
x13	x14	x15	В
x16	x17	x18	R

Training Dataset 1 Class:-Green

Features			Green
x1	x2	х3	+1
x4	х5	х6	-1
x7	х8	х9	-1
x10	x11	x12	+1
x13	x14	x15	-1
x16	x17	x18	-1

Test time:

$$h_{\theta}^{i}(x) = P(y = i|x)$$

$$\underset{i}{\operatorname{argmax}} h_{\theta}^{i}(x)$$

Class 1:- Green Class 2:- Blue Class 3:- Red

Training Dataset 2 Class :- Blue

Features			Blue
×1	x2	х3	-1
x4	х5	х6	+1
х7	x8	х9	-1
x10	x11	x12	-1
x13	x14	x15	+1
x16	x17	x18	-1

Training Dataset 3 Class :- Red

	Features			
x1	x2	хЗ	-1	
x4	x5	х6	-1	
x7	x8	х9	+1	
x10	x11	x12	-1	
x13	x14	x15	-1	
x16	x17	x18	+1	

Multiclass Classification: One-Vs-One

N* (N-1)/2 binary classifier models

Classifier 1: Green vs. Blue

Classifier 2: Green vs. Red

•Classifier 3: Blue vs. Red

Test time:

Each binary classifier predicts one class label. When we input the test data to the classifier, then the model with the majority counts is concluded as a result.

Multi-class classification: Softmax regression

Softmax examples

Softmax

•
$$Z = \theta x + b$$

Softmax Activation function

$$t = e^{(z)}$$
 (4,1)
 $(4,1)$ $a = \frac{e^{z}}{\sum_{j=1}^{4} tj} \Rightarrow a_{i} = \frac{t_{i}}{\sum_{j=1}^{4} tj}$
 $a = g(z)$

Softmax Activation

Softmax examples

•
$$z = \begin{bmatrix} 5 \\ 2 \\ -1 \\ 3 \end{bmatrix}$$
 $t = \begin{bmatrix} e^5 \\ e^2 \\ e^{-1} \\ e^3 \end{bmatrix} = \begin{bmatrix} 148.4 \\ 7.4 \\ 0.4 \\ 20.1 \end{bmatrix}$

$$\sum_{j=1}^{4} t_j = 176.3$$

$$a = \frac{t}{176 \cdot 3}$$

$$\begin{bmatrix} 148.4 \\ 7.4 \\ 0.4 \\ 20.1 \end{bmatrix} = \begin{bmatrix} 0.842 \\ 0.042 \\ 0.002 \\ 0.114 \end{bmatrix} = \hat{y}^{(i)} \qquad y^{(i)}_{(4,1)} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
one hot vector

Loss function: Categorical Cross Entropy

•
$$-[y \log y + (1 - y) \log(1 - y)]$$

• $L(\hat{y}, y) = -\sum_{j=1}^{4} y_j \log \hat{y}_j$
• $-y_2 \log \hat{y}_2 = -\log \hat{y}_2$ $y_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ One-hot-vector
 $Y = \begin{bmatrix} y^{(1)}, y^{(2)}, \dots, y^{(m)} \end{bmatrix} \quad \hat{Y} = \begin{bmatrix} \hat{y}^{(1)}, \hat{y}^{(2)}, \dots, \hat{y}^{(m)} \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0.3 \\ 0.2 \\ 0.3 \\ 0.2 \end{bmatrix} \quad \dots$$

Gradient descent with softmax

• اثبات كنيد:

$$dZ_{4\times 1} = \hat{y}_{4\times 1} - y_{4\times 1}$$