习题课

一、填空题

- 1. 已知 $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1} (|x|<1)$,则其和函数 S(x)=___,级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)4^n}$ 的和为___。
- 2. 已知 $\sum_{n=0}^{\infty} \frac{n+1}{n!} x^n \left(-\infty < x < +\infty \right)$,则其和函数 $S(x) = ___$,级数 $\sum_{n=0}^{\infty} \frac{n+1}{n! 2^n}$ 的和为___。
- 3. 级数 $\sum_{1}^{\infty} \frac{(-1)^n n}{(2n+1)!}$ 的和为__。

二、选择题

- 1. 设幂级数 $\sum_{n=0}^{\infty} \frac{(x-a)^n}{n}$ 在点 x=2 收敛,则实数 a 的取值范围是(
 - (A) $1 < a \le 3$; (B) $1 \le a < 3$; (C) 1 < a < 3; (D) $1 \le a \le 3$.

- 2. 将 $f(x) = \frac{1}{x}$ 展成 (x-3) 的幂级数,其收敛域为()

 - (A) (-1, 1); (B) (-6, 0); (C) (-3, 3); (D) (0, 6).

- 三、求幂级数 $\sum_{n,2^n}^{\infty}$ 的收敛域与和函数。

四、将下列函数展开成x的幂级数

- 1. $f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x x;$
- 2. $f(x) = x \arctan x \ln \sqrt{1 + x^2}$;
- 3. $f(x) = \ln(6 x x^2)$

五、将函数
$$f(x) = \frac{x+4}{2x^2-5x-3}$$
 展开成 $(x-1)$ 的幂级数。

六、将函数
$$f(x) = \arctan \frac{1-2x}{1+2x}$$
 展开成 x 的幂级数,并求 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ 的和。

七、将
$$f(x) = \frac{\pi - x}{2} (0 \le x \le \pi)$$
展开成正弦级数,并求 $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{2n-1}$ 的和。

八、解答题

- 1. 将 $f(x)=2+|x|(-1 \le x \le 1)$ 展开成以 2 为周期的傅里叶级数,并求 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和。

的和。

- 3. 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} [1 + \frac{1}{n(2n-1)}] x^{2n}$ 的收敛区间与和函数 f(x)。
- 4. 求幂级数 $\sum_{n=1}^{\infty} (\frac{1}{2n+1} 1)x^{2n}$ 在区间 (-1, 1) 内的和函数 S(x) 。
- 5. 设 $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} (0 \le x \le 1)$,求证当0 < x < 1时有

$$f(x) + f(1-x) + \ln x \cdot \ln(1-x) = C(C$$
为常数),并求C. (注 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$)