This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- CQLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE CLAIMS:

Please amend the claims as follows:

- (Currently Amended) A method for the interferometric measurement of non-rotationally 1. symmetric wavefront errors on a specimen which can be capable of being brought into a plurality of rotational positions, the method comprising the steps of determining at least one measurement result being determined in each of the rotational positions, and carrying out a concluding mathematical evaluation of all measurement results being carried out, wherein the measurement is carried out in at least two measurement series (M, N), the measurement results $(M_1...M_m, N_1...N_n)$ of each of the measurement series (M, N) being determined in mutually equidistant rotational positions of the specimen, each of the measurement series (M, N) comprising a specific number n, m of measurements, m and n being natural and mutually coprime numbers, the measurement results $(M_1...M_m, N_1...N_n)$ of each of the at least two measurement series (M, N) are evaluated independently of one another for non-rotationally symmetric wavefront errors ($<W>_{n}$, $<W>_{n}$) on the specimen, the difference of the at least two non-rotationally symmetric wavefront errors $(\langle W \rangle_m, \langle W \rangle_n)$ being formed, whereupon the difference $(\langle W_m - \langle W \rangle_n)$ that is formed is computationally rotated m or n times and the results are averaged out, and whereupon at least one of the wavefront errors $(\le W \ge_m \le W \ge_n)$ is corrected with the result $(\le W \ge_m = W \ge_n \ge_m)$ averaged in this way.
- 2. (Currently Amended) The method as claimed in claim 1 or 13, wherein an interferometric absolute measurement is made.
- 3. (Currently Amended) The method as claimed in claim 1 or 13, wherein in the first measurement series (M), the m measurement results ($M_1...M_m$) are determined in m equidistant rotational positions of the specimen, whereupon the specimen is displaced into a rotational position not equidistant thereto, which is followed by the lat least one second measurement series (N) in which the n measurement results ($N_1...N_n$) are determined in the n equidistant rotational positions of the specimen.
- 4. (Currently Amended) the method as claimed in claim 1 or 13, wherein the individual

measurement results $(M_1...M_m, N_1...N_n)$ of the at least two measurement series (M, N) are determined in an unordered sequence with respect to one another.

- 5. (Canceled)
- 6. (Previously Presented) The method as claimed in claim 1, wherein the measurement results $(M_1...M_m, N_1...N_n)$ of each of the at least two measurement series (M, N) are evaluated independently of one another for non-rotationally symmetric wavefront errors $(<W>_m, <W>_n)$ on the specimen, the difference of the at least two non-rotationally symmetric wavefront errors $(<W>_m, <W>_n)$ being formed, whereupon the difference $(<W_m>-<W>_n)$ that is formed is computationally rotated m or n times and the results are averaged out and whereupon at least one of the wavefront errors $(<W>_m, <W>_n)$ is corrected with the result $(<<W>_m-<W>_n)$ averaged in this way.
- (Currently Amended) the method as claimed in claim 51, wherein the wavefront error (<W>_m,
 (W>_n) is corrected with the averaged result (<<W>_m-<W>_n) by addition.
- 8. (Currently Amended) The method as claimed in claim 613, wherein the wavefront error (<W>_m, <W>_n) is corrected with the averaged result (<<W>_m-<W>_n) by addition.
- (Currently Amended) The method as claimed in claim 51, wherein the wavefront error (<W>_m,
 is corrected with the averaged result (<<W>_m-<W>_n) by subtraction.
- 10. (Currently Amended) The method as claimed in claim 613, wherein the wavefront error (<W>_n, <W>_n) is corrected with the averaged result (<<W>_n-<W>_n) by subtraction.
- 11. (Currently Amended) the method as claimed in claim 1 or 13, wherein the rotational direction of a relative rotational movement (R) is kept unchanged during the recording of all measurement results $(M_1...M_m, N_1...N_n)$.
- 12. (Currently Amended) The method as claimed in claim 1 or 13, wherein the equidistant rotational positions of the measurement results $(M_1...M_m, N_1...N_n)$ of the individual measurement series (M, N) are respectively determined from the ratios of a complete rotation (360°) and the respective number m, n of the measurements of each of the measurement series (M, N).

13. (New) A method for the interferometric measurement of non-rotationally symmetric wavefront errors on a specimen which can be brought into a plurality of rotational positions, at least one measurement result being determined in each of the rotational positions, and a concluding mathematical evaluation of all measurement results being carried out, wherein the measurement is carried out in at least two measurement series (M, N), the measurement results $(M_1...M_{m_0}, N_1...N_n)$ of each of the measurement series (M, N) being determined in mutually equidistant rotational positions of the specimen, each of the measurement series (M, N) comprising a specific number n, m of measurements, m and n being natural and mutually coprime numbers, the measurement results $(M_1...M_{m_0}, N_1...N_n)$ of each of the at least two measurement series (M, N) are evaluated independently of one another for non-rotationally symmetric wavefront errors $(<W>_{m_0}<W>_n)$ on the specimen, the difference of the at least two non-rotationally symmetric wavefront errors $(<W>_{m_0}<W>_n)$ being formed, whereupon the difference $(<W_m>_m>-<W>_n)$ that is formed is computationally rotated m or n times and the results are averaged out and whereupon at least one of the wavefront errors $(<W>_{m_0}<W>_n)$ is corrected with the result $(<<W>_{m-}<W>_n>_n)$ averaged in this way.