Naam:			
Studienummer:			
Naam docent:			

Tabel van BB en eenvoudig rekenapparaat toegestaan

Kort antwoordvragen:(Alleen antwoord volstaat)

normering: opg1: 4p, opg2: 2p, opg3: 2p, opg4: 2p, opg5: 2p, opg6 2p, opg7: 2p, opg8: 3p, opg9: 3p, opg10: 2p, opg11: 15p, opg12: 6p

1. Onderstaande plaatjes (aangeven met Romeinse cijfers) horen bij de vectorvelden \mathbf{F}_1 t/m \mathbf{F}_4 :

- $\mathbf{F}_1 = \langle y, x \rangle$
- $\mathbf{F}_2 = \langle 1, \sin(y) \rangle$
- $\mathbf{F}_3 = \langle x-2, x+1 \rangle$
- $\mathbf{F}_4 = \langle y, \frac{1}{x} \rangle$

Vul in de tabel de juiste Romeinse cijfers in.

2. Gegeven de spiraal $\mathbf{r}(t) = \langle 3\cos(t), 3\sin(t), 4t \rangle$ met $t \in [0, 4\pi]$

3. Bereken $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ waarbij \mathcal{C} de kromme $x=t^2,y=t^3,z=t^2$ is voor $t\in[0,1]$, en $\mathbf{F}(x,y,z)=\langle z,x,y\rangle$.

De lijnintegraal is gelijk aan	1/2	(20
	2/.)	(L P)

Fotael 8p 4. Gegeven het conservatieve vectorveld $\mathbb{F}(x,y,z) = \langle yz,xz,xy \rangle$, d.w.z. er is een functie ϕ met $\nabla \phi(x,y,z) = \mathbb{F}(x,y,z)$. Verder is er een nette kromme \mathcal{C} die loopt van A(1,1,1) naar B(2,3,4).

Dan

$\phi(x, y, z)$ is bijvoorbeeld	XYZ
$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is gelijk aan	23

5. Gegeven de kromme C, $x^4 + y^4 = 1$, die doorlopen wordt van (1,0) naar (0,1) en het vectorveld $\mathbf{F}(x,y,z) = \langle 2x+y,x \rangle$.

Dan

$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ is gelijk aan	-1	
---	----	--

6. Gegeven het vectorveld $\mathbf{F}(x, y, z) = \langle x, xy, xyz \rangle$

Dan

$\nabla(\nabla\cdot\mathbf{F}(x,y,z))$ is gelijk aan	(1+7,x,0)	(DP
$(\nabla \times \mathbf{F})(x, y, z)$ is gelijk aan	(x=,-12,y)	() p

7. Gegeven het oppervlak S, $y^2 + z^2 = 4$, met x tussen 0 en 5 dat ligt in het eerste octant. Geef een parametrisering van S met een domein D.

Een parametrisering van S is	Lx, 20050	25ino) (ip)
Het bijbehorende domein D is	05x55	,030	¿17/2(1p)

8. Gegeven het oppervlak S, $z = \sqrt{x^2 + y^2}$, met z tussen 0 en 2.

De oppervlakte van \mathcal{S} is	417 VZ	
-------------------------------------	--------	--

9. Gegeven de cilinder C, $x^2 + y^2 = 1$ met z tussen 0 en 2, en het vectorveld $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$. De normaal \mathbf{n} op de cilinder is naar buiten gericht. Bereken de flux $\int \int_C \mathbf{F} \cdot \mathbf{n} dS$.

De flux $\int \int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} dS$ is gelijk aan	417	
--	-----	--

10. Gegeven de reeksen:

•
$$R1: \sum_{n=1}^{\infty} \frac{n}{n+2}$$
.

•
$$R2: \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$
.

•
$$R3: \sum_{n=1}^{\infty} \left(\frac{n}{5^n}\right)^n$$
.

•
$$R4$$
: $\sum_{n=1}^{\infty} \frac{1}{2n}$.

Vul in convergent of divergent

	v S
Reeks $R1$ is	Divergent /2
Reeks $R2$ is	COM DEN COLOR
Reeks $R3$ is	
Reeks $R4$ is	cht ver en mix.
	1/2

Open vragen: (antwoord met uitwerking volstaat)

11. Gegeven:

- Het vector veld $\mathbf{F}(x, y, z) = \langle -y, x, -2 \rangle$
- De (open) kegel K bepaald door $z^2 = x^2 + y^2$, met $0 \le z \le 4$, ge-oriënteerd met naar beneden wijzende normaal.
- \bullet De cirkelschijf ${\mathcal D}$ die de kegel afsluit bij z=4 waarbij de normaal naar boven is gekozen.
- (a) i. Geef een parametrisering met juiste grenzen van K.

ii. Bereken "direct" $\int \int_{\mathcal{K}} \mathbf{F} \cdot \mathbf{n} dS$.

$$\frac{7}{2} = \langle \cos 6, \sin 6, 1 \rangle, \frac{7}{3} = \langle -2\sin 6, 2\cos 6, 0 \rangle$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\sin 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2 \rangle \text{ (normall 1)}$$

$$\frac{7}{2} \times \frac{7}{6} = \langle -2\cos 6, -2\cos 6, -2\cos 6, 2\cos 6,$$

- (b) Bereken "direct" $\int_{\mathcal{D}} \mathbf{F} \cdot \mathbf{n} dS$. $\int_{\mathcal{C}} -\lambda dS \qquad \left(\mathbf{N} = \langle 0, 0, 1 \rangle \right)$ $\text{Circles Schiff} = -32 \Pi.$
- (c) Bereken divF en rotF.

 divF=0 0, 20 +F= (0,0,2)
- (d) Waarom geldt $\iint_{\mathcal{K}} \mathbf{F} \cdot \mathbf{n} dS = -\iint_{\mathcal{D}} \mathbf{F} \cdot \mathbf{n} dS$?

(e) Laat C_1 de snijkromme zijn van de kegel $\mathcal K$ met het vlak α , x+y+z=1, die van bovenaf met de wijzers van de klok wordt doorlopen. Deze kromme is een ellips die in het vlak α een gebied insluit met oppervlakte A. Druk $\int_{C_1} \mathbf F \cdot d\mathbf r$ uit in A.

In het vlak
$$\alpha$$
 een gebied insluit met oppervlakte A . Druk J_{c_1} Four til in A .

$$\begin{cases}
1 & \text{or } F \circ \text{N} \text{ of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } F \circ \text{N} \text{ of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS \\
0 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S = \int F \circ dS
\end{cases}$$

$$\begin{cases}
1 & \text{of } S$$

(f) Is ${\bf F}$ conservatief?, zo ja geef een potentiaalfunctie.

- 12. Gegeven de functie $f(x) = \sin(x)$.
 - (a) Toon aan dat de Taylorreeks van f om a = 0 gegeven wordt door $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$. $\begin{cases} (2k) \\ (3k) \\ (3k$
 - (b) Bepaal het convergentie-gebied van de Taylorreeks.

 (c) Alumbur $\left| \frac{(-1)^{k+1} x^{2k+3} (2k+1)!}{(-1)^k x^{2k+1} (2k+3)!} \right| = |x|^2$ (c) Parallel 13 1 7 1 (2k+3)!
 - (c) Bepaal zelf de Taylorreeksen om a = 0, t/m de derde macht van: i. $\frac{1}{2+x}$. $= \frac{1}{1+\frac{1}{2}} \cdot \frac{1}{2} = \frac{1}{2} \left(1 - \frac{1}{2} + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^3 + \cdots \right)$
 - ii. e^{2x} . $= 1+2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \frac{(2x)^3}{1!} + \frac{(2x$
 - iv. $\sqrt{1+x} = (1+x)^{\frac{1}{2}} = 1+\frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{21}x^{2} + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{31}x^{3} + \cdots$

•