Lecture 18

Sampling and reconstruction

Preview of today's lecture

- Sampling theorem
 - ★ Establish the fundamental connection between continuous-time bandlimited signals and discrete-time signals
 - + Illustrate the impact of sampling in the time and frequency domains
- Reconstruction theorem
 - → Define the reconstruction formula
 - + Explain the role of the sinc function in reconstruction
 - → Illustrate reconstruction in time and frequency domains
- ♦ Important example
 - + Be able to illustrate spectra with and without aliasing

Lectures 2 - 3 working with signals

Lectures 4 - 7 LTI systems in the time domain

Lectures 16, 17 LTI systems in the frequency domain

$$(X(j\omega))\longrightarrow (H(j\omega))\longrightarrow Y(j\omega)$$

Lectures 8 - 10 Fourier series

Lectures II - 15 Fourier transform

Sampling theorem

Key points

- Establish the fundamental connection between continuous-time bandlimited signals and discrete-time signals
- o Illustrate the impact of sampling in the time and frequency domains

What is sampling?

lacktriangle For a given CT signal x(t)

Gorl

Kronecker delta functions

- lacktriangle The signal x(kT) is called a sampled version of x(t)
 - igspace The sampled signal is a discrete-time signal, written as x[k]
- ◆ The critical question related to sampling
 - + Is it possible to recover x(t) from x(kT) ?

Two different signals can have the same samples

Dirac delta functions

Impulse-train periodic sampling

◆ A convenient way to understand periodic sampling is through multiplying the CT signal by a periodic impulse train

Contains the same values as the sampled signal

(Dirac deltas) $- \times (37)$

Our approach to sampling in this class

Discrete-time sampled signal

In digital signal processing, as explored in ECE 101, we care about the discrete-time signal

In this class, we will study sampling from the perspective of the impulse-train signal

Important terms in sampling

- lacktriangle The periodic impulse train p(t) is the sampling function
- lacktriangle The period T is the sampling period
- lacktriangle The fundamental frequency of p(t), $\omega_s = \frac{2\pi}{T}$ is the sampling frequency

Impulse-train sampling via mathematics

- lacktriangle The sampling function $p(t) = \sum_{n=-\infty} \delta(t-nT)$
- ◆ The output signal

$$x_p(t) = x(t)p(t)$$

$$x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$

Sampled signal is here via sifting property₀

Sampled values ride the deltas

3T 4T

Impulse train of samples in the frequency domain

◆ Multiplication in time domain → convolution in frequency domain

$$X_{p}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) P(j(\omega - \theta)) d\theta$$

$$P(j\omega) = \frac{2\pi}{T} \sum_{s}^{\infty} \delta(\omega - k\omega_{s})$$

where

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

$$\omega_s = \frac{2\pi}{T}$$

Understanding the frequency domain effect

The output signal in the frequency domain

$$X_p(j\omega) = rac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

lacktriangle A superposition of shifted versions of $X(j\omega)$ scaled by $\overline{\overline{T}}$

f $\omega_s-\omega_M>\omega_M$

 $\omega_s > 2\omega_M$ then original spectrum is undistorted

Sampling theorem

- lacktriangle When is x(t) completely determined from $x_p(t)$?
- Sampling theorem
 - ullet Let x(t) be a band-limited signal with $X(j\omega)=0$ for $|\omega|>\omega_M$.
 - ightharpoonup Then, $\dot{x}(t)$ is uniquely determined by its samples $x(nT), n=0,\pm 1,\pm 2,...$

lacktriangle The product $2\omega_M$ is called the "Nyquist rate"

Ideal continuous-to-discrete converter

mathematical description

shorthand notation

$$x(t) \longrightarrow \boxed{C/D} \longrightarrow x_d[n] = x(nT)$$

Connecting the domains

	time domain	frequency domain
CT signal	x(t)	$X(j\omega)$
impulse train of samples	$x_p(t) = \sum_{n} x(nT)\delta(t - nT)$	$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$

Sampling in the frequency domain – Nyquist OK

impulse train of samples

Sampling in the frequency domain - Nyquist Not OK

CT signal $\underbrace{-\omega_M}^{X\,(j\omega)} \underbrace{\omega_M}_{X_p(j\omega)} < \omega_s < 2\omega_M$

Sampling summary

- ◆ The sampling theorem tells us when a continuous time signal may be periodically sampled with no loss
- The signal must be perfectly bandlimited and the sampling period must be small enough
- ◆ If the sampling theorem is not satisfied, it is still possible to sample the signal but aliasing will result

Classical example - the wagon wheel

Key points

Explain the wagon wheel effect

The wagon wheel effect

- Classic demo
 - https://www.youtube.com/watch?v=VNftf5qLpiA
- ◆ Another demo that shows the effect of the number of spokes
 - https://www.youtube.com/watch?v=9MN5MF72PHs&t=34s
- ◆ Typical explanation on wikipedia
 - https://en.wikipedia.org/wiki/Wagon-wheel_effect

The reason that spoked wheels seem to go backwards is explained by the Nyquist sampling theorem

Reconstruction of a signal from its samples

Key points

- Define the reconstruction formula
- Explain the role of the sinc function in reconstruction
- o Illustrate reconstruction in time and frequency domains

How to recover the original signal?

Ideally the original signal comes out if Nyquist was satisfied

Filter the reconstructed the signal

frequency domain

Ideal low pass filter

Cutoff $\frac{\pi}{T}$

Gain T

Filtering to reconstruct the signal

time domain

$$y(t) = y_p(t) * h(t)$$

$$= h(t) * \sum_{n = -\infty}^{\infty} x_d[n] \delta(t - nT)$$

$$= \sum_{n = -\infty}^{\infty} x_d[n] h(t - nT)$$

$$= \sum_{n = -\infty}^{\infty} x_d[n] \operatorname{sinc}\left(\frac{t - nT}{T}\right)$$
Reconstruction formula!

Step 2: Sinc is critical to reconstruction

Zero crossings occur exactly at the sampling intervals

Reconstructing using the sinc functions

time domain

$$\sum_{n=-\infty}^{\infty} x(nT) \operatorname{sinc}\left(\frac{t-nT}{T}\right)$$

Reconstructed signal results from a superposition of sinc functions

Ideal discrete-to-continuous converter

Reconstruction in the time and frequency domains

	time domain	frequency domain
impulse train of samples	$y_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$	$Y_p(j\omega) = X_p(j\omega)$
	$y(t) = \sum_{n=-\infty}^{\infty} x(nT) \mathrm{sinc}\left(rac{t-nT}{T} ight)$ ways bandlimited no matter the inp	$Y(j\omega) = T \mathrm{rect}\left(rac{\omega}{2\pi/T} ight) Y_p(j\omega)$ $= T \mathrm{rect}\left(rac{\omega}{2\pi/T} ight) X_p(j\omega)$

28

If Nyquist is satisfied then

◆ In the frequency domain

$$Y(j\omega) = X(j\omega)$$

♦ In the time domain

Thoughts on reconstruction

- Optimal reconstruction involves interpolation of the samples with a sinc function, with the bandwidth determined by the reconstruction frequency
- ◆ The output of the discrete-to-continuous converter is always bandlimited

◆ Aliasing is created by sampling a signal with a sampling frequency less than the Nyquist rate and thus is the "fault" of the continuous-to-discrete conversion, reconstruction just operates on the samples already given

Important example involving the sampling and reconstruction of a sinusoid

Key points

- You should be able to determine the frequency of an undersampled sinusoid after reconstruction
- When Nyquist is not satisfied, aliasing is created

Sampling a sinusoid

Consider the following signal

$$x(t) = \cos(37\pi t + \pi/4)$$

- Determine the following
 - → Nyquist frequency

$$\omega_M = 37\pi$$

→ Nyquist rate

$$2\omega_M = 74\pi$$

→ Maximum sampling period

$$T<rac{2\pi}{2\omega_M}=rac{2\pi}{74\pi}=rac{1}{37}$$
 seconds

◆ General form of sampled signal

$$x(nT) = \cos(37\pi nT + \pi/4)$$

Suppose Nyquist is satisfied

- lacktriangle Suppose that T=1/74 seconds
- ◆ Find the impulse train signal

$$x_p(t) = \sum_{n} x(nT)\delta(t - n/74)$$

$$= \sum_{n} \cos((37\pi/74)n + \pi/4)\delta(t - n/74)$$

$$= \sum_{n} \cos((\pi/2)n + \pi/4)\delta(t - n/74)$$

$$T < \frac{2\pi}{2\omega_M} = \frac{2\pi}{74\pi} = \frac{1}{37}$$

$$\omega_s = \frac{2\pi}{T} = 2\pi 74 = 148\pi$$

Find the CT transforms

• Suppose that
$$T = 1/74$$

$$T < \frac{2\pi}{2\omega_M} = \frac{2\pi}{74\pi} = \frac{1}{37}$$

$$\omega_s = \frac{2\pi}{T} = 2\pi 74 = 148\pi$$

◆ Find the CTFT

$$X(j\omega) = \pi e^{j\pi/4} \delta(\omega - 37\pi) + \pi e^{-j\pi/4} \delta(\omega + 37\pi)$$

◆ Find the CTFT of the impulse train signal

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

$$= 74 \sum_{k=-\infty}^{\infty} \left(\pi e^{j\pi/4} \delta(\omega - k148\pi - 37\pi) + \pi e^{-j\pi/4} \delta(\omega - k148\pi + 37\pi) \right)$$

Oversampling (using a rate greater than Nyquist)

T = 1/74

CT signal

$$\omega_s = \frac{2\pi}{T}$$
$$= 148\tau$$

impulse train of samples

Reconstruction (using a rate greater than Nyquist)

What if Nyquist is not satisfied?

$$T < \frac{2\pi}{\omega_s} = \frac{2\pi}{74\pi} = \frac{1}{37}$$

• Suppose that $T = \left(\frac{4}{3}\right) \frac{1}{37}$ which does not satisfy Nyquist

$$\omega_s = \frac{2\pi}{T} = \frac{111\pi}{2} = 55.5\pi$$

◆ Find the CTFT

$$X(j\omega) = \pi e^{j\pi/4} \delta(\omega - 37\pi) + \pi e^{-j\pi/4} \delta(\omega + 37\pi)$$

◆ Find the CTFT of the impulse train signal

$$\frac{1}{T} = 37\frac{3}{4} = 27.75$$

$$X_{p}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{s}))$$

$$= 27.75 \sum_{k=-\infty}^{\infty} \left(\pi e^{j\pi/4} \delta(\omega - k55.5\pi - 37\pi) + \pi e^{-j\pi/4} \delta(\omega - k55.5\pi + 37\pi) \right)$$

Undersampling (using a rate less than Nyquist)

$$T = \left(\frac{4}{3}\right) \frac{1}{37}$$

CT signal

impulse train of samples

Replica at $-\omega_s$

Original signal

Replica at ω_s

$$\omega_s - 37\pi = \frac{111 - 74}{2}\pi = 18.5\pi$$

