Artificial Intelligence II Winter term 2020/2021 November 27, 2019

Daniel Wulff wulff@rob.uni-luebeck.de

Exercise sheet 4

Submission deadline: 10:00 on Friday, December 4, 2020

Task 1: Duality of Linear Programs (20 points)

The lecture discussed how to transform a Linear Program – the *primal problem* or just *primal* – into the dual version of the Linear Program – the *dual problem* or just *dual*. The transformation takes a Linear Program of the form

$$\max(\mathbf{c}^T\mathbf{x})$$
 subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$

and gives the dual Linear Program of the form

$$\min(\mathbf{b}^T\mathbf{y})$$
 subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$.

Equilibrium Theorem

If the feasible solutions \mathbf{x}^* and \mathbf{y}^* are optimal solutions to the primal and dual problem, respectively, then

$$\mathbf{y}_i^\star = 0 \quad \ \forall i \quad \ \, ext{for which} \quad \sum_{j=1}^n a_{i,j} x_j^\star < b_i$$

and

$$\mathbf{x}_j^\star = 0 \quad \ \forall j \quad \ \ ext{for which} \quad \ \sum_{i=1}^m a_{j,i} y_i^\star > c_j.$$

Strong Duality Theorem

If \mathbf{x}^* is an optimal solution to the primal, then there is an optimal solution \mathbf{y}^* to the dual with

$$\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{v}^*$$

Weak Duality Theorem

If ${\bf x}$ is a feasible solution to the primal and ${\bf y}$ is a feasible solution to the dual, then

$$\mathbf{b}^T \mathbf{y} \geq \mathbf{c}^T \mathbf{x}$$
.

- a) Show that the dual of the dual is the primal again. (6 points)
- b) Show that the Weak Duality Theorem follows from the Strong Duality Theorem. (6 points) (Without proof, you can assume: If there are feasible solutions to the primal and dual, then there is an optimal solution to the primal.)
- c) Draw the graphical solution of the Linear Program given below and identify the optimal solution \mathbf{x}^* as well as the so-called *carrier constraints* (see Equilibrium Theorem). Give the dual representation of the primal problem. With the help of the Equilibrium Theorem and the dual, explicitly determine the optimal solution \mathbf{y}^* of the dual problem. (8 points)

maximize $2x_1+3x_2$ subject to $x_1+2x_2 \leq 6$ $x_1 \geq 2$ $x_1 \leq 5$ $x_2 \leq 4$ where $x_1 \geq 0$

Prepare your solution as a .pdf file and submit it in moodle!