Differential Amplifier

Differential Mode

Differential Mode

Common mode operation

Output:

Single ended output = $V_{D2} = V_{out}$

Double ended output = $V_{D1} - V_{D2} = V_{out}$

Input = $(V_{G1} + V_{G2})/2 = V_{cm}$

A_{cm} = Common mode gain

 $A_{cm} = V_{out} / V_{cm}$

Common Mode Rejection Ratio

 $CMRR = 20 \log |A_d/A_{cm}| dB$

Common Mode Response

Task 4

- Design a differential amplifier with a load resistance of 10k, constant current source of 2 mA and supply voltage of ±15V.
- Determine the A_d, A_{cm} and CMRR.

$$V_{od} = 358.4 \,\text{mV}$$
 , $V_1 = 10 \,\text{mV}$

$$\therefore A_d = \frac{V_{od}}{2 \,V_1} = \frac{358.4}{20}$$

$$= 17.92$$

$$V_{OCM} = 3.209 \mu V$$

= 0.003209 mV

$$A_{CM} = \frac{0.003209}{10} = 0.0003209$$

$$\therefore CMRR = 20log \left(\frac{Ad}{Acm}\right)$$

$$= 20log \left(\frac{17.92}{0.0003209}\right)$$

$$= 20 \times 4.747$$

 $= 94.94 JB$

