

planetmath.org

Math for the people, by the people.

support of integrable function is σ -finite

 ${\bf Canonical\ name} \quad {\bf SupportOfIntegrableFunctionIssigma finite}$

Date of creation 2013-03-22 18:38:47 Last modified on 2013-03-22 18:38:47 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Theorem Classification msc 26A42 Classification msc 28A25

 $Related\ topic \\ Support Of Integrable Function With Respect To Counting Measure Is Countable$

Defines L^p functions have σ -finite support

Theroem - Let (X, \mathcal{B}, μ) be a measure space and $f: X \to \mathbb{C}$ a measurable function. If f is integrable, then the support of f is http://planetmath.org/SigmaFiniteofinite.

It follows easily from this result that any function in an http://planetmath.org/LpSpace L^p -space, with $1 \le p < \infty$, must have σ -finite support.

: Let $A_0 := [1, \infty[$, and for each $n \in \mathbb{N}$ let $A_n := [\frac{1}{n+1}, \frac{1}{n}[$. Since f is integrable, we must necessarily have $\mu(|f|^{-1}(A_n)) < \infty$ for each $n \in \mathbb{N} \cup \{0\}$, because

$$\mu(|f|^{-1}(A_n)) \cdot \frac{1}{n+1} \le \int_{|f|^{-1}(A_n)} |f| \ d\mu \le \int_X |f| \ d\mu < \infty.$$

Since f and |f| have the same support, and the support of the latter is supp $|f| = \bigcup_{n=0}^{\infty} |f|^{-1}(A_n)$, it follows that the support of f is σ -finite. \square