UK Patent Application (19) GB (11) 2 166 453 A

(43) Application published 8 Way 1986

(21) Application No 8419820

(22) Date of filing 1 Aug 1984

(71) Applicant Ciba-Gelgy AG (Switzerland), Klybeckstrasse 141, 4002 Basie, Switzerland

(72) Inventors Emyr Phillips, Brian Holt

(74) Agent and/or Address for Service Kenneth D. Sparrow, Ciba-Geigy Plc, Patent Department, Tenax Road, Trafford Park, Manchester M17 1WT (51) INT CL⁴
B01D 53/34 C10G 19/02 27/00 C10K 1/14

(52) Domestic classification C5E 182 187 402 412 413 PH TB C1A S220 S22Y S410 S412 S413 S41Y S420 S461 S46X S46Y S471 S491 S492 S60Y S61X SB

(56) Documents cited GB 0948270

EP A1 0008640

(58) Field of search C1A C5E

(54) Purification process

(57) Process for the absorption of hydrogen sulphide impurity from gases or liquid hydrocarbons comprising: a) washing the gas or liquid hydrocarbon containing hydrogen sulphide with an aqueous alkaline solution of a1) one or more compounds having the formula I:

or a water-soluble salt thereof, wherein m is 0 or 1 and R is a hydrogen atom or a methyl or carboxy group, and a2) one or more compounds of a metal capable of existing in at least two valency states;

b) removing sulphur formed by oxidation of hydrogen sulphide; and

c) re-oxidising the hydroquinone formed by reduction of the compound of formula I

Hin. 2

10

15

30

35

40

45

50

55

60

65

20

25

40

45

Purification Process

5 The present invention relates to a purification process, especially to a process for removing hydrogen sulphide impurity from gases or liquid hydrocarbons.

The removal of hydrogen sulphide, as sulphur, from gases is described in British Patent Specification Nos. 871,233 and 948,270 in which certain anthraquinone disulphonic acids are used as oxidising agents. Subsequently, in British Patent Specification No. 2029386, there were described certain N-substituted anthraquinone sulphonamides having activity at least as high as the said anthraquinone disulphonic acids when used in processes to remove hydrogen sulphide from gases.

We have now found that the anthraquinone sulphonamide intermediates described in GB Specification No. 2029386 are also effective in processes for removing hydrogen sulphide from gases or liquid hydrocarbons.

Accordingly, the present invention provides a process for the absorption of hydrogen sulphide impurity from gases or liquid hydrocarbons comprising:

a) washing the gas of liquid hydrocarbon containing hydrogen sulphide with an aqueous alkaline solu-

a1) one or more compounds having the formula (I):

or a water-soluble salt thereof, wherein m is 0 or 1 and R is a hydrogen atom or a methyl or carboxy 30 group, and

a2) one or more compounds of a metal capable of existing in at least two valency states;

b) removing sulphur formed by oxidation of hydrogen sulphide; and

c) re-oxidising, preferably using oxygen or a gas containing oxygen, the hydroquinone formed by reduction of the compound of formula (I).

If necessary, the aqueous alkaline solution used in step a) may contain one or more chelating or sequestering agents for retaining the compounds a2) in solution.

The compounds of formula I are known compounds and may be prepared by well-known techniques. Thus, the compounds of formula I may be prepared by reacting halosulphonic acid derivatives of anthraquinone having the formula:

$$(\times c_2 s)_m$$
 $= 5c_2 X$ $=$

wherein m and R have their previous significance and X is halogen with ammonia. Compounds of formula II are known compounds which may be prepared by the method described by Kozlov et al., J. Gen. 50 Chem. Russ. 1947, 17, 289.

The compounds of formula I may also be prepared by the method described in Tr. Leningr. Khim-Farmatseut. Inst. 1960, 11, 48. This method is in fact preferred since it gives a product substantially free from chloride ions, which can cause corrosion problems in treatment plants for removing hydrogen sulphide.

The pH value of the aqueous alkaline solution used in step a) is preferably within the range of from 7 to 10, especially from 9.0 to 9.5. In these preferred pH ranges, the compound of formula I will be present in salt form, the cation of the salt being preferably sodium, potassium or ammonium, depending on the alkaline agent which is used to render alkaline the aqueous solution of the compound of formula I. If an ammonium salt of the compound of formula I is present, it may be a substituted ammonium salt e.g. an optionally substituted C₀-C₀-alkyl-ammonium salt e.g. methyl-, ethyl-, propyl-, butyl- or mono-, di- or trihydroxyethyl ammonium salts.

The compound of a metal, especially vanadium, having at least two valency states, component a2) used in step a) of the process, may be, e.g. an ortho-, meta- or pyrovanadate of ammonia, or of an alkali metal such as sodium or potassium. Examples of suitable compounds a2) are sodium ammonium vana-65 date and sodium orthovanadate.

Part, at least, of the preferred vanadium compound may be replaced by one or more metals having at least two valency states e.g. iron, copper, cobalt, chromium, manganese and nickel.

If a sequestering agent for component a2) is used, suitable examples are citric acid and tartaric acid; another convenient substance is a compound having the formula:

5

10

2

wherein R, is a aliphatic residue containing from 1 to 12 carbon atoms and optionally substituted or interrupted by one or more hydroxy and/or carboxy groups; a carbonyl group; a phenyl group; an aralkyl group containing 7 to 10 carbon atoms; and n is 1-4; as well as its salts, especially alkali metal or ammonium salts, and esters. Particularly preferred compounds of formula III are 1,1-hydroxyethylidene diphosphonic acid and methane phosphonic acid and their esters and salts.

15

10

Preferably, the amount of the compound of formula I present in the aqueous alkaline solution used in step a) is from 10 to 400 ppm, especially 20 to 100 ppm. Preferably the amount of the compound of a metal having at least two valency states present in the aqueous alkaline solution used in step a) is from 500 to 4000, especially 1000 to 2500 ppm; and preferably the amount of any sequestering agent, e.g. a compound of formula III used is within the range of from 10 to 7000 ppm, especially from 200 to 4000 ppm.

20

Example of preferred compounds of formula I are the mono- and di-sodium, -potassium and -ammo-25 nium salts of:

25

anthraquinone-2,6-disulphonamide anthraquinone-2,7-disulphonamide anthraquinone-1,5-disulphonamide anthraquinone-1,8-disulphonamide

30

and mixtures thereof.

30

Sulphur precipitated during the process of the invention may be recovered by any conventional technique e.g. filtration, before, during or after regeneration of the aqueous alkaline solution. The sulphur so recovered can be used e.g. in sulphuric acid production.

The process of the present invention can be applied successfully to any gas or liquid hydrocarbon

35

stream contaminated with hydrogen sulphide. Such gas or liquid hydrocarbon streams may also contain other pollutive gases such as certain carbon-, nitrogen- and sulphur oxides, and hydrogen, organic sulphur compounds or hydrogen cyanide, some of which may also be removed in the process of the invention. Of particular interest however is the purification of coal gas, town gas and waste gas streams, and carbon dioxide-rich gas streams obtained from the cumbustion of coal, as well as liquid hydrocarbon streams, each containing hydrogen sulphide.

40

The process of the present invention provides an efficient means of reducing the hydrogen sulphide content of gas and liquid hydrocarbon streams. For example, coke-oven gas streams containing, typically, 1.54 weight % (1500 ppm) of hydrogen sulphide, after treatment according to the process of the present invention, have a hydrogen sulphide content of the order of 0.05 weight % (50 ppm). Moreover, 45 the compounds of formula I are readily produced in a single-stage process.

45

The following Example further illustrates the present invention.

45

Example 1

A synthetic simulation of a gas-absorbing solution is prepared to give:

50

55

25g/l NaHCO₃ 5g/l Na₂CO₃ 10g/l Na₂S₂O₃ 8g/l NaCNS 3.8g/l NaVO₂

2g/l

50

The test solution has a solution pH of 9.0-9.2.

The cell in which the tests are carried out is illustrated in the accompanying Figure 1 in which the cell 60 10 consists of a 1 litre vessel containing an oyxgen electrode 11, a temperature compensation probe 12, calomel electrode 13, platinum electrode 14, air inlet 15, and an aeration sintered disc 16.

60

55

The dissolved oxygen content is measured on a dissolved oxygen meter and the redox potential measured on a high impedance digital multimeter.

Catalyst

1.5 litres of simulated gas-absorbing solution is prepared and 1 litre of the solution is transferred to the 65 cell, where the solution is oxygenated and de-oxygenated three times by alternately passing air and ni-

65

10

15

20

25

40

45

50

55

55

trogen at flow rates of 500 mls/min. The solution is finally left in a de-oxygenated state.

A minimum amount of the de-oxygenated solution is used to dissolve 3.75g of Na₂S which is then returned to the cell. Although the process is for the removal of H₂S the species formed when H₂S dissolves in an alkaline absorbing solution is the HS⁻ ion. Therefore, for ease of operation of the test, the HS⁻ ion is introduced by using Na₂S. The S⁻ ion from Na₂S gives HS⁻ at the solution pH of the simulated gas absorbing liquor. After the reduction with Na₂S, the redox potential and dissolved oxygen content are allowed to stabilise for 10 minutes while a low flow of nitrogen maintains agitation. The solution is then re-oxidised by passing air at a flow rate of 500 mls/min. The dissolved oxygen content and the redox potential are monitored continuously. The oxidation is continued until the redox potential and dissolved oxygen concentration have stabilised. The solution is then de-aerated by passing nitrogen at a flow rate of 500 mls/min, and further reduced by a fresh addition of 3.75g of Na₂S. The procedure of reduction with further Na₂S and subsequent re-oxidation by air blowing (with measurements of dissolved oxygen concentration and redox potential) is carried out three times and the precipitated sulphur is filtered off after each cycle.

The accompanying Figure 2 shows a schematic diagram of typical results obtained from the cell test. The parameters which indicate the efficiency of the catalyst system are:

The parameters which indicate the efficiency of the catalyst system are: i) t_{zow} - time for the solution to reach 20% of the saturation concentration of dissolve oxygen

ii) $t_{20\%}$ - time for the solution to reach 80% of the saturation concentration of dissolve oxygen

iii) the ratio of Es/Ef, where Es is the redox potential of the system in the fully reduced state and Ef is a 20 measure of the redox potential of the system in an oxidised state. For convenience in our test Ef is taken as the redox potential at t_{eox}.

The results quoted in Table 1 are the average of the data from three cycles of reduction and re-oxidation.

Table I shows a comparison of 2,7-anthraquinone disulphonic acid with anthraquinone -2,7-disulphon-25 amide compound of the present invention.

TABLE I

30	Example	Catalyst	Dissolved oxygen measurements		Potential measurements			30
			t _{20%} mins	t _{eos} mins	Es	Ef	Ratio Of Es/Ef	
35	-	anthraquinone-2,7- disulphonic acid anthraquinone- 2,7-disulphonamide	9	16	-430	-197	2.2	35
	ı		6	10	-452	-166	2.7	

Some of the reactions by which previously-gaseous oxygen is fixed in solution are ionic in nature and are comparatively rapid. Generally, as long as there remain ionic compounds in a reduced state in the liquor, the dissolved oxygen content remains at 5% or less of the saturation concentration of dissolved oxygen in the liquor. Therefore, the state (reduced or oxidised) or these components of the solution can be determined by measuring the dissolved oxygen concentration. The re-oxidation times t_{20%} and t_{60%} 45 therefore give indications of the rate of system re-oxidation in the presence of the various catalysts.

The process, being an oxidative process, is dependent upon redox couples. The degree of oxidation of the solution determines the redox potential. Thus the degree of oxidation is measured instantly by measuring the redox potential.

The liquor consists of a mixture of at least three redox couples. The single electrode potential is related 50 logarithmically to the concentration of the oxidised and reduced species in solution:

Potential = Standard Potential + constant × log 10 (Concentration of Oxidised forms) (Concentration of Reduced forms)

The ratio of Es/Ef has been taken by other workers to indicate the degree of re-oxidation that has occurred. The effectiveness of a catalyst can be decided from the combination of dissolved oxygen measurements and redox potential measurements. The results generally obtained with the cell test appear to fall into three main types:

i) those which have long times to t_{20%} (i.e. 30 Mins. or greater) but have a high ratio of Es/Ef (i.e. 2.2 or preater)

ii) those which have intermediate times to $t_{20\%}$ (i.e. about 10 mins) and a high ratio of Es/Ef (i.e. 2.2 or greater)

65 iii) those which have fast times to $t_{20\%}$ (i.e. 1-3 mins) but have a low-ratio of Es/Ef (i.e. <2.0)

60

65

10

15

30

35

40

45

50

55

60

The interpretation of these results is that type (i) is a slow but effective catalyst, type (ii) is an effective catalyst, and type (iii) is an ineffective catalyst.

When the dissolved oxygen concentration in the solution has reached 20 % of the saturation concentration, the majority of the redox reaction has taken place. There is ample dissolved oxygen available so 5 the time from t₂₀₁₅ to t₈₀₁₅ is mainly a function of the reactivity of the catalyst. Therefore, the smaller the time interval between t₂₀₁₅ and t₈₀₁₅ the more easily the catalyst is re-oxidised and provided the ratio of Es/ Ef is greater than 2.2, the more effective the catalyst would be in the system.

It can be seen that the compounds of formula I falls into the type (ii) category and has an activity superior to that of 2,7-anthraquinone disulphonic acid.

10 CLAIMS

1. Process for the absorption of hydrogen sulphide impurity from gases of liquid hydrocarbons comprising:

15 a) washing the gas or liquid hydrocarbon containing hydrogen sulphide with an aqueous alkaline solution of

a1) one or more compounds having the formula:

 $(H_2 N C_2 S)_m$ $SC_2 NH_2 \qquad I$ 25

or a water-soluble salt thereof, wherein m is 0 or 1 and R is a hydrogen atom or a methyl or carboxy group, and

a2) one or more compounds of a metal capable of existing in at least two valency states;

b) removing sulphur formed by oxidation of hydrogen sulphide; and

c) re-oxidising the hydroquinone formed by reduction of the compound of formula I

2. Process according to claim 1 wherein the pH value of the aqueous alkaline solution used in step a) is within the range of from 7 to 10.

3. Process according to claim 2 wherein the pH value of the aqueous alkaline solution used in step a) is within the range of from 9.0 to 9.5.

4. Process according to any of the preceding claims wherein the compound of formula I is used as its sodium, potassium or ammonium salt.

5. Process according to any of the preceding claims wherein the metal capable of existing in at least two valency states is vanadium.

6. Process according to claim 5 wherein the vanadium is used as sodium ammonium vanadate or $_{40}$ sodium orthovanadate.

7. Process according to any of the preceding claims wherein the amount of the compound of formula I used is from 10 to 400 ppm.

8. Process according to claim 7 wherein the amount of the compound of formula I used is from 20 to 100 ppm.

9. Process according to any of the preceding claims wherein the amount of the compound of a metal having at least two valency states used is from 500 to 4000 ppm.

10. Process according to claim 9 wherein the amount of the compound of a metal having at least two valency states used is from 1000 to 2500 ppm.

11. Process according to any of the preceding claims wherein the compound of formula I is the 50 mono- or di-sodium, -potassium or -ammonium salt of

anthraquinone-2,6-disulphonamide anthraquinone-2,7-disulphonamide anthraquinone-1,5-disulphonamide anthraquinone-1,8-disulphonamide

or mixtures thereof.
12. Process according to any of the preceding claims wherein, in step c), the hydroquinone formed is re-oxidised to the compound of formula I using oxygen or a gas containing oxygen.

13. Process according to any of the preceding claims wherein the process is applied to the purification of coal gas, waste gas or a carbon dioxide-rich gas stream from the combustion of coal, or to a 60liquid hydrocarbon stream, each containing hydrogen sulphide.

14. Process according to claim 1 substantially as described in the Example.