Slide Set 6 Modello Normale Standard e Simmetria

Pietro Coretto

pcoretto@unisa.it

Corso di Analisi e Visualizzazione dei Dati (Parte I)

Corso di Laurea in "Statistica per i Big Data" (L-41) Università degli Studi di Salerno

Versione: 22 febbraio 2022 (h10:21)

Pietro Coretto ©

Modello Normale Standard e Simmetria

かへで 1 / 25

Distribuzione al limite quando $n \to \infty$

Consideriamo un campione di enormi dimensioni. Trattiamo n come se $n\to\infty$, tuttavia quando diciamo n sufficientemente grande, immaginiamo che n sia enorme ma non infinito

Per n sufficientemente grande

- il campionamento produrrà un grande numero di livelli distinti x_k . Poiché la X è continua ci aspettiamo che $n_k = 1$ per ogni x_k
- $\varepsilon = \frac{1}{n}$ sarà piccolissimo ma positivo $(\varepsilon > 0)$
- lacktriangle ogni osservazione tenderà ad avere una frequenza relativa $rac{1}{n} pprox arepsilon$

Quale effetto mi aspetto nella distribuzione di X? Pensiamo a cosa dovrebbe accadere in termini di istogramma e ECDF

lotes			
Votes			

Istogramma

• se $(x_{k-1},x_k]$ è un intervallo dove la X è densa di dati, prendendo $\Delta_k=x_k-x_{k-1}$ troppo largo mi aspetto troppe osservazioni

■ assumendo un windowing uniforme, se $n \uparrow$ devo prendere $\Delta \downarrow$. Quindi devo assicurarmi che $\Delta \to 0$ per $n \to \infty$ (ovvero il numero di classi $K \to \infty$)

Con Δ sufficientemente piccolo, $(x_{k-1}, x_k]$ sarà strettissimo, e per $x' \in (x_{k-1}, x_k]$ avrò h(x') = densità in un intorno strettissimo di x'

ECDF

■ se le osservazioni sono tutte distinte $\mathbb{F}(x_{(j)}) = \frac{j}{n}$, inoltre la ECDF salterà su ogni $x_{(j)}$

■ se $n \uparrow$ mi aspetto che $(x_{(j)} - x_{(j-1)}) \downarrow \Longrightarrow$ i salti/scalini di $\mathbb F$ diventano sempre più vicini

 \blacksquare Quanto sono alti i gradini? Poichè la $\mathbb F$ salterà su $x_{(j-1)}$ e poi subito dopo su $x_{(j)}$

$$\mathbb{F}(x_{(j)}) - \mathbb{F}(x_{(j-1)}) = \left(\frac{j}{n} - \frac{j-1}{n}\right) = \frac{1}{n} = \varepsilon$$

Pietro Coretto (C)

Modello Normale Standard e Simmetria

か q で 3 / 25

Esempio: NLSY survey (US, 1980) si rileva l'IQ, prendiamo n=250 osservazioni a caso

Notes ______

Notes ______

Esempio: NLSY survey (US, 1980) si rileva l'IQ, prendiamo $n=1000\,$ osservazioni a caso eva

Pietro Coretto © Modello Normale Standard e Simmetria

...al limite

Notes			

Notes		

Modello di densità normale standard

Adesso introduciamo una curva di densità che assumeremo come un modello di riferimento, pensiamo ad un'istogramma ideale

Immaginiamo n =grandissimo, tanto da poter costruire un istogramma con classi uniformi di ampiezza Δ =sufficientemente piccolo

Definizione (Modello normale standard)

Si Z una variabile continua con media=0 e varianza=1, la distribuzione di Z segue quella del modello *normale standard* se la densità in un intorno (piccolo a piacere) del punto x è descritta dalla seguente funzione di densità

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

Nota: il modello normale standard è anche detto "modello Gaussiano"

Pietro Coretto ©

Modello Normale Standard e Simmetria

Da@ 7/25

Votes			
lotes			

Premessa

- immaginiamo la densità normale come un ideale istogramma *finissimo* (tante barre strette in corrispondenza di tantissime classi di valori)
- l'area di una barra dell'istogramma è pari alla frequenza relativa delle osservazioni contenute in esso. Quindi la frequenza f dei dati in (a,b], è pari alla somma delle aree delle barre che coprono l'intervallo (a,b].

Quindi

- lacktriangle l'area sotto ϕ deve essere pari ad uno $\implies \int_{-\infty}^{+\infty} \phi(z) dz = 1$
- se il mio data set avesse una distribuzione approssimativamente simile al riferimento normale standard la frequenza f dei dati contenuti in (a,b] sarebbe approssimativamente

$$f = \int_{a}^{b} \phi(z) \, dz$$

Pietro Coretto ©

Modello Normale Standard e Simmetria

୬**५**℃ 9/2

Domanda: se il mio data set avesse una distribuzione approssimativamente simile a quella normale standard, quante osservazioni mi devo aspettare nell'intervallo [0,2]?

Notes		
Notes		

Quale sarebbero il bulk dei dati? Ovvero il 50% dei dati più centrali?

Pietro Coretto ©

Modello Normale Standard e Simmetria

જિલ્∵ 11 / 2

Proprietà rilevanti del modello normale

Unimodalità

la densità del modello normale standard ha un unico massimo, ovvero ${
m Mod}(z)=0=ar{z}$

Simmetria

esiste un punto $z=0~(={
m Mod}(z)=\bar{z})$ tale che la funzione di densità si comporta in modo speculare rispetto ad esso

Decadimento esponenziale delle code

nel modello normale la densità dei dati nella code della distribuzione si annulla piuttosto velocemente \implies non ci aspettiamo dati estremamente lontani dal centro della distribuzione. Su questa nozione ci torneremo presto.

Nota: collocazione della moda, simmetria, e comportamento delle code qualificano quello che in letteratura si chiama *analisi della forma di una distribuzione* (dall'inglese: *shape*)

Notes			
Notes			
Notes			
-			

Conseguenze della simmetria

Ci aspettiamo la stessa massa di dati in intervalli *simmetrici* intorno alla media=0

Pietro Coretto ©

Modello Normale Standard e Simmetria

か 9 0 0 13 / 2

Per un modello di densità unimodale e simmetrico come quello normale standard, ci aspettiamo che

moda = media = mediana

Coretto	
	(C)

Modello Normale Standard e Simmetria

少 Q C 14 / 25

Notes			

Notes			

Per un modello di densità simmetrico come quello normale standard, ci aspettiamo che fissato $\alpha \in (0,1)$

$$Med(Z) - Q_{\alpha\%} = Q_{(1-\alpha)\%} - Med(Z)$$

In particolare, per $\alpha=25\%$

$$Med(Z) - Q_{25\%} = Q_{75\%} - Med(Z) \implies Q_2 - Q_1 = Q_3 - Q_2$$

Pietro Coretto ©

Iodello Normale Standard e Simmetr

か^{へで} 15 / 25

Simmetria, asimmetria, e centralità

Distribuzioni unimodali simmetriche

- Moda = Mediana = Media le tre misure di centralità sono equivalenti
- valgono le osservazioni a proposito della simmetria del modello normale standard

Notes Notes

Distribuzioni unimodali con asimmetria positiva

- Moda < Mediana < Media le tre misure di centralità non sono equivalenti
- la densità dei dati a sinistra della mediana è più alta che a destra
- le due code si comportano in modo molto diverso

Pietro Coretto ⓒ

Nodello Normale Standard e Simmetri

୬**୯**୯ 17 / 2

Distribuzioni unimodali con asimmetria negativa

- Media < Mediana < Moda le tre misure di centralità non sono equivalenti
- la densità dei dati a destra della mediana è più alta che a sinistra
- le due code si comportano in modo molto diverso

Notes			
-			
Notes			
-			

Un modo per caratterizzare la simmetria, è il confronto con un caso ideale di simmetria come quello normale standard

Supponiamo di osservare $\{x_1, x_2, \dots, x_n\}$, e definiamo il coefficiente di asimmetria di Pearson

$$\gamma_1 = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{s_X} \right)^3 \tag{6.1}$$

Si noti che γ_1 può essere visto come il momento terzo dei dati standardizzati

- lacksquare $\gamma_1>0$: evidenza di asimmetria positiva nei dati
- lacksquare $\gamma_1 < 0$: evidenza di asimmetria negativa nei dati nei dati

 \triangle Nei dati possiamo trovare $\gamma_1 = 0.3$, è abbastanza piccolo/grande?

Pietro Coretto ©

Modello Normale Standard e Simmetri

ク۹^で 19 / 25

Notes

Simmetria, asimmetria, quantili

Distribuzioni simmetriche

- alla stessa distanza a destra oppure a sinistra della mediana i dati sono ugualmente densi
- lacktriangledown Mediana $-\,Q_{25\%}\,=\,Q_{75\%}-{
 m Mediana}$

-		
Notes		

Distribuzioni con asimmetria positiva

- mettendosi alla stessa distanza dalla mediana, i dati alla sua sinistra sono più densi che alla sua destra
- $\hspace{.1in} \blacksquare \hspace{.1in} \mathsf{Mediana} Q_{25\%} \hspace{.1in} < \hspace{.1in} Q_{75\%} \mathsf{Mediana}$

Pietro Coretto ©

Modello Normale Standard e Simmetri

か 9 0 21 / 2

Distribuzioni con asimmetria negativa

- mettendosi alla stessa distanza dalla mediana, i dati alla sua sinistra sono meno densi che alla sua destra
- lacktriangledown Mediana $-\,Q_{25\%}\,>\,Q_{75\%}-{\sf Mediana}$

Notes			
Notes			

Notes			

Queste considerazioni ci suggeriscono un altro strumento numerico per misurare la simmetria/asimmetria. Coefficiente di Yule-Bowley

$$B_{1} = \frac{(Q_{3} - \text{Med}(X)) - (\text{Med}(X) - Q_{2})}{Q_{3} - Q_{2}}$$

$$= \frac{Q_{1} + Q_{3} - 2Q_{2}}{\text{IQR}(X)}$$
(6.2)

Nota: γ_1 non dipende dall'unità di misura

- $B_1 \approx 0$: evidenza di simmetria nei dati
- lacksquare $B_1>0$: evidenza di asimmetria positiva nei dati
- lacksquare $B_1 < 0$: evidenza di asimmetria negativa nei dati

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file

Pietro Coretto ©

Modello Normale Standard e Simmetria

���° 23 / 25

Centralità e distribuzioni multimodali

Dati: "Galton's height data", n=898 soggetti

Notes		
Notes		
Notes		

Pietro Coretto © Modello Normale Standard e Simmetria 90 9 9 25 / 25

Notes		
Notes		