

Seminar: Digital Pathology and Deep Learning

Weakly supervised learning for Digital Pathology

Tuhin Mallick

Agenda

- Motivation
- Introduction
 - The Cost of Annotations
 - Strongly versus Weakly Supervised learning
 - Sources of Information
 - Challenges
- Paper Discussion
 - Literature Review
 - Proposed Methodology
 - Experimental Results
 - Conclusions
- Summary

Motivation

Annotations done by pathologist

Challenges for fully supervised learning for Whole Slide Image analysis

Pixel-wise annotations are prohibitive

Ambiguous regions cannot be distinguished

Weakly Supervised Learning is appealing

Large number of imagelevel labels

Small number of coarse annotations are required

The Cost of Annotations

{Motorbike(image), Person(image-level)}

{Motorbike(point), Person(point)}

{Motorbike(b-box), Person(b-box)}

{Motorbike(pixel labels) Person(pixel labels)}

Image classification

Instance spotting

Object detection

Semantic segmentation

1 second per instance

2.4 second per instance

10 second per instance

78 second per instance

Time taken for annotation ---

Source: Olga Russakovsky, Amy L. Bearman, Vittorio Ferrari, Fei-Fei Li:

What's the point: Semantic segmentation with point supervision. CoRR abs/1506.02106 (2015)

What is Weakly Supervised Learning?

Fully supervised → Directly supervised

For each input, the desired output is provided Weakly supervised → Indirectly supervised

Partial annotation of few points are provided

Source: Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick: Microsoft COCO: Common Objects inontext. CoRR abs/1405.0312 (2014)

Strongly vs. Weakly Supervised Learning

Sources of Information

What is believed to be true independent of any particular image sample

indirect supervision received for each image

Priors and Hints

Priors: Explicit and Implicit

- Size
- Shape
- Location
- Number of instances
- Contrast (boundaries, saliency)
- Class distribution
- Similarity across images
- Similarity with external images

Priors and Hints

Hints

- Image labels
- Image captions
- Video labels
- Transfer across images
- Clicks inside images
- Object bounding boxes
- Scribbles

Challenges

Generic Object Recognition

Intra-class variations

- Appearance
- Viewpoint
- Scale
- Aspect Ratio
- Background clutter
- Occlusions

Large variations introduced during the image acquisition process

Variations of biological structures and textures

Source : Lin, Huangjing & Chen, Hao & Dou, Qi & Wang, Liansheng & Qin, Jing & Heng, Pheng-Ann. (2018).

ScanNet: A Fast and Dense Scanning Framework for Metastatic Breast Cancer Detection from Whole-Slide Images. 10.1109/WACV.2018.00065.

Challenges

Mimics

Source: Lin, Huangjing & Chen, Hao & Dou, Qi & Wang, Liansheng & Qin, Jing & Heng, Pheng-Ann. (2018).

ScanNet: A Fast and Dense Scanning Framework for Metastatic Breast Cancer Detection from Whole-Slide Images. 10.1109/WACV.2018.00065.

Paper Discussion

To maximize the use of WSI labels readily available in clinical practice, *Wang et al.* presented a weakly supervised approach for fast and efficient classification of WSI of lung cancer.

Major Contribution

- Use of image-level labels with small number of coarse annotations
- Fully connected network to retrieve discriminative regions
- Different context-aware block selection and feature aggregation methods

Largest fine-grained lung cancer WSI dataset for comprehensive analysis

Literature Review

- Lung Cancer is a group of diseases characterized by abnormal growths (cancers) that has started in the lungs
- Lung cancer is literally the biggest cancer killer worldwide causing more deaths than breast and prostate cancer put together all over the world.
- To sum it up every 30 seconds, someone, somewhere in the world dies of lung cancer.

Image Source : https://www.lungcancereurope.eu/lung-cancer/

Types of Lung Cancer

Distribution of malignant neuplasms of the lungs by histological type and sex

Source : Zentrum für Krebsregisterdate

Whole Slide Images

- One WSI may contain more than 10 billion pixels
- Only Image-level labels are available
 - Tumor regions are sparsely distributed (10%~90%) in WSIs.
 - Ground truth labels of individual extracted patches are unknown

A digital pathology whole slide image

Source: Liu, Feng & Hernández-Cabronero, Miguel & Sanchez, Victor & Marcellin, Michael & Bilgin, Ali. (2017). The Current Role of Image Compression Standards in Medical Imaging. Information. 8. 131. 10.3390/info8040131.

Related Works

Bejnord et al. 2015

Features

- Features: local binary patterns, HSD color histogram
- Classifier : Random forest classifier

- Handcrafted features like color histogram from manually selected ROIs
- Inability to learn discriminative patterns automatically from WSIs

Source: B. E. Bejnordi et al., "Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole slide histopathology images," J. Med. Image., vol. 4, no. 4, 2017, Art. no. 044504.

Related Works

Hou et al. 2016

- Features: EM based with patch-level CNN,
 statistic features from discriminative regions
- Classifier: Count based feature fusion model

Computationally expensive

Source: L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz, "Patch-based convolutional neural network for whole slide tissue image classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,

Proposed Method

(a) Discriminative patch prediction

(b) Context-aware feature selection and aggregation

(c) WSI- level prediction

Discriminative patch prediction

Fast prediction via FCN

Source : Lin, Huangjing & Chen, Hao & Dou, Qi & Wang, Liansheng & Qin, Jing & Heng, Pheng-Ann. (2018).

ScanNet: A Fast and Dense Scanning Framework for Metastatic Breast Cancer Detection from Whole-Slide Images. 10.1109/WACV.2018.00065.

Coarse Annotations

Illustrations of non — exhaustive annotations by experienced pathologist

Context- aware Block Selection

All previous works uses Discriminative patches

Drawbacks:

- Feature redundancy
- Outliers/mimics

Simplified example of a block with 3 x 3 overlapped patches.

Context- aware Block Selection

Rich Contextual information is guite important:

Tumor area is generally larger than patch

A block refers to a number of overlapped patches

Each patch owns a probability vector from the last layer

For each class, a block is considered discriminative if it exceeds a certain threshold τ

block

Feature Aggregation

Goal: To find a good holistic feature descriptor for each WSI

Positive evidence :

It support the **existence** of cancer/non-cancer class that is consistent with the ground truth

Negative evidence :

It manifests the **absence** of any other classes

Source: Wang, Xi & Chen, Hao & Gan, Caixia & Lin, Huangjing & Dou, Qi & Tsougenis, Efstratios & Huang, Qitao & Cai, Muyan & Heng, Pheng-Ann. (2019).

Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis. IEEE Transactions on Cybernetics. PPWH18.40!.1109/FCYBI.2019.1

Feature Aggregation

Three-stage feature aggregation

Feature Aggregation

Three-stage feature aggregation

Strategies for Feature Aggregation

Global Descriptor

$$D_g = concat\{D_{c_1}, D_{c_2}, \dots D_{c_c}\}$$

 D_b = block descriptor

 D_c = class descriptor

 D_g = global descriptor

N = no. of discriminative blocks

p = probability
f = feature

Different pooling strategies for Block descriptor

Different pooling strategies for Class descriptor

WSI Level Prediction

Standard random forest for WSI-level prediction

Dataset

939 lung cancer WSIs containing 4 classes collected from Sun Yat-Sen University Cancer Centre (SUCC):

- Normal (NORM: 68)
- Squamous Carcinoma (SC: 361)
- Adenocarcinoma (ADC: 390)
- Small Cell Lung Carcinoma (SCLC: 120)

Only 59 WSIs have coarse annotations

Raw WS

Segmented tissue regions denoted by blue rectangles

Configuration to training datasets

M1: D1 and D3 (59 C and 53 NC) + typical cross entropy loss function

C: Cancer images

M2: D1 and D3 (59 C and 53 NC) + weighted loss function

NC: Non-cancer images

M3: D1, D2 and D3 (701 C and 53 NC) + typical cross entropy loss function

M4: D1, D2 and D3 (701 C and 53 NC) + weighted loss function

		Squamous Carcinoma	Small Cell	Adenocarcinoma	Small Cell Lung Carcinoma	Normal
Training	D1	59	21	20	18	-
	D2	642	267	293	82	-
	D3	-	-	-	-	53
Testing	D4	170	73	77	20	15

Data Distribution in database

1. Majority Pooling

- Obtain a score map by employing CNN on testing WSI
- Prediction of each location votes to four classes
- Category with majority vote is taken as prediction of image

2. Average Pooling

- Calculate the average probability of the locations on the test WSI
- Score map for each class channel
- Category with highest average probability is taken as image-level prediction

3. **Max Pooling**

- Select the maximum probability for each class channel
- Score map for each class channel
- Category with highest max-pooling probability is taken as image-level prediction

4. Count-based RF

- Count the number of all cancer and non-cancer type prediction in test WSI
- Score map to form a prediction histogram of classes
- Four bit histogram is fed into an RF classifier for the image-level prediction

5. Component-Based RF

- Connected component with the largest area for each class is chosen as the ROI
- Obtain different features of this ROI for each test WSI score map
- RF classifier takes the feature vector as input to get the final prediction

Qualitative evaluation

Method	M1	М2	М3	M4
${\it MajorityVoting}$	0.708	0.719	0.665	0.697
Average Pooling	0.730	0.735	0.676	0.703
MaxPooling	0.530	0.681	0.616	0.627
Count – based RF	0.770	0.783	0.875	0.930
Component — based RF	0.748	0.759	0.909	0.935
$CNN-AvgFeat-MeanPool-based\ RF$	0.786	0.812	0.928	0.955
CNN — MaxFeat — MeanPool — based RF	0.732	0.824	0.953	0.971
${\it CNN-WeightedFeat-MeanPool-based~RF}$	0.767	0.858	0.932	0.960
CNN — AvgFeat — Norm3 — based RF	0.816	0.843	0.943	0.962
CNN — MaxFeat — Norm3 — based RF	0.778	0.827	0.931	0.965
CNN — WeightedFeat — Norm3 — based RF	0.789	0.811	0.941	0.973

Ablation Study: Results from different training datasets and feature selection method

Qualitative evaluation

Visualization of discriminative region detection. (a) WSI. (b) Ground Truth. (c) M3: Heatmap. (d) M4: Heatmap

Conclusions

- Weakly supervised learning method to address the whole slide lung cancer image classification problem with minimum annotation effort.
- Proposed weighted loss function for the CNN
- Explored different context aware block selection and feature aggregation methods
- Constructed and validated the performance based on SUCC dataset.

Future scope

- Automated feature selection and aggregation by adaptive learning
- Replace the RF classifier with MLP classifier to make it end-to-end
- Use more lung cancer datasets to validate the generalization capability

Summary

- Computer vision requires lots of data; data is expensive
- Weakly supervised learning method can be used to address the whole slide lung cancer image classification problem with
 - Minimum annotation effort
 - Features extracted by CNN are the ideal substitute of handcrafted features
 - Alleviate the bottleneck of expert annotation cost
 - Advance the progress of computer-aided histology image analysis

Thank you for your attention!