IMA205 - TP1 - Theoretical Questions

Théo ROUVET

5 février 2020

J'ai parfois noté p la taille de l'espace des features au lieu de d. On peut donc considérer dans ce qui suit que d = p.

1 Ordinary Least Squares

1.1 Espérance de $\tilde{\beta}$

$$\mathbb{E}(\tilde{\beta}) = \mathbb{E}(Cy) = \mathbb{E}((H+D)y) = \mathbb{E}(\beta^*) + \mathbb{E}(Dy) = \beta + \mathbb{E}(Dy)$$

On peut considérer un **design du type fixe** $y = x\beta + \epsilon$, tel que ϵ est un bruit blanc additif (d'espérance nulle). En injectant cette expression, on obtient :

$$\mathbb{E}(\tilde{\beta}) = \beta + \mathbb{E}(D(x\beta + \epsilon)) = \beta + \mathbb{E}(D)x\beta + \mathbb{E}(D\epsilon)$$

On peut supposer de plus que D est déterministe pour pouvoir continuer le calcul. On obtient par la suite :

$$\mathbb{E}(\tilde{\beta}) = \beta + Dx\beta$$

Ainsi, compte-tenu des hypothèses précédentes, $\tilde{\beta}$ est non biaisé si et seulement si $Dx\beta=0$.

1.2 Variance de $\tilde{\beta}$

Calculons à présent la variance de $\tilde{\beta}$ pour montrer que l'OLS est l'estimateur non biaisé qui donne la plus petite variance.

En supposant que β^* et Dy sont indépendants, on écrit :

$$\begin{split} Var(\tilde{\beta}) &= Var(\beta^* + Dy) \\ &= Var(\beta^*) + DVar(y)D^T \\ &= (x^Tx)^{-1}x^TVar(y)x(x^Tx)^{-1} + DVar(y)D^T \end{split}$$

Or, on peut écrire que $Var(y)=Var(x\beta+\epsilon)=Var(\epsilon)=\sigma^2I_p$ en **reprenant l'hypothèse du bruit blanc** précédente.

On a ensuite $Var(\tilde{\beta}) = \sigma^2(x^Tx)^{-1}I_p + \sigma^2DD^T$ i.e. $Var(\tilde{\beta}) = Var(\beta^*) + \sigma^2DD^T$

Or, DD^T est une matrice symétrique et positive, et $\sigma^2 \geqslant 0$, donc $Var(\tilde{\beta}) \geqslant Var(\beta^*)$.

L'inégalité est stricte si et seulement si $DD^T \neq 0$ et $\sigma \neq 0$. On obtient bien que l'OLS est l'estimateur non biaisé qui donne la plus petite variance.

2 Ridge regression

Question 1 2.1

On sait que l'estimateur Ridge est tel que $\beta^*_{\text{ridge}} = (x^T x + \lambda I_p)^{-1} x^T y$, donc par passage à l'espérance, $\mathbb{E}(\beta^*_{\text{ridge}}) = \mathbb{E}((x^T x + \lambda I_p)^{-1} x^T y) = (x^T x + \lambda I_p)^{-1} x^T y$ $(\lambda I_p)^{-1}x^Tx\beta$ en reprenant le design d'OLS, avec x déterministe et $y=x\beta+\epsilon$ avec ϵ centré.

Si $\lambda = 0$, on trouve une OLS et $\mathbb{E}(\beta_{\text{ridge}}^*) = \beta$.

Si $\lambda>0$, il s'agit bien d'un Ridge et on a $(x^Tx+\lambda I_p)^{-1}x^Tx\neq I_n$ ce qui entraı̂ne $\mathbb{E}(\beta^*_{\text{ridge}}) \neq \beta$ i.e. β^*_{ridge} est biaisé.

Question 2 2.2

On résout en utilisant la décomposition SVD:

$$\begin{split} \beta_{\text{ridge}}^* &= (x^T x + \lambda I_p)^{-1} x^T y \\ &= (V D U^T U D V^T + \lambda I_p)^{-1} x^T y \\ &= (V D^2 V^T + \lambda V V^T)^{-1} x^T y \\ &= V (D^2 + \lambda I_p)^{-1} V^T V D U^T y \\ \beta_{\text{ridge}}^* &= V (D^2 + \lambda I_p)^{-1} D U^T y \end{split}$$

Comme $D=diag(d_1,d_2,...,d_p)$, on a $D^2+\lambda I_p=diag(d_1^2+\lambda,d_2^2+\lambda,...,d_p^2+\lambda)$. Cette matrice est clairement inversible comme les d_i sont positifs et $\lambda>0$. On a donc $(D^2+\lambda I_p)^{-1}=diag(\frac{1}{d_1^2+\lambda},\frac{1}{d_2^2+\lambda},...,\frac{1}{d_p^2+\lambda})$ Cette décomposition est utile quand on souhaite accélerer le calcul de

l'inversion de la matrice $x^T x + \lambda I_p$.

Question 3 2.3

 $Var(\beta^*_{\mathrm{ridge}}) = Var((x^Tx + \lambda I_p)^{-1}x^Ty) = Var((x^Tx + \lambda I_p)^{-1}x^T(x\beta + \epsilon))$ Comme supposé au-dessus, x est déterministe donc Var(x) = 0. Par ailleurs, en supposant que $Var(\epsilon) = \sigma^2 I_n$, on obtient :

$$\begin{split} Var(\boldsymbol{\beta}_{\mathrm{ridge}}^*) &= Var((\boldsymbol{x}^T\boldsymbol{x} + \lambda \boldsymbol{I}_p)^{-1}\boldsymbol{x}^T\boldsymbol{\epsilon}) \\ Var(\boldsymbol{\beta}_{\mathrm{ridge}}^*) &= \sigma^2(\boldsymbol{x}^T\boldsymbol{x} + \lambda \boldsymbol{I}_p)^{-1}\boldsymbol{x}^T\boldsymbol{x}(\boldsymbol{x}^T\boldsymbol{x} + \lambda \boldsymbol{I}_p)^{-1} \\ Var(\boldsymbol{\beta}_{\mathrm{ridge}}^*) &= \sigma^2V(D^2 + \lambda \boldsymbol{I}_p)^{-1}V^TVDU^TUDV^TV(D^2 + \lambda \boldsymbol{I}_p)^{-1}V^T \\ Var(\boldsymbol{\beta}_{\mathrm{ridge}}^*) &= \sigma^2V(D^2 + \lambda \boldsymbol{I}_p)^{-1}D^2(D^2 + \lambda \boldsymbol{I}_p)^{-1}V^T \\ Var(\boldsymbol{\beta}_{\mathrm{ridge}}^*) &= \sigma^2\sum_{k=1}^p \frac{d_k^2}{(d_k^2 + \lambda)^2}v_kv_k^T \\ \\ \mathrm{Or}, \, Var(\boldsymbol{\beta}_{\mathrm{OLS}}^*) &= \sigma^2VD^{-2}V^T = \sigma^2\sum_{k=1}^p \frac{1}{d_k^2}v_kv_k^T \\ \\ \mathrm{Comme} \, \, \frac{d_k^2}{(d_t^2 + \lambda)^2} &< \frac{1}{d_t^2}, \, \text{on a} \, Var(\boldsymbol{\beta}_{\mathrm{ridge}}^*) &< Var(\boldsymbol{\beta}_{\mathrm{OLS}}^*) \end{split}$$

2.4 Question 4

Plus λ augmente, plus $Var(\beta_{\text{ridge}}^*)$ diminue. En effet, $Var(\beta_{\text{ridge}}^*) = \sigma^2 \sum_{k=1}^p \frac{d_k^2}{(d_k^2 + \lambda)^2} v_k v_k^T$ est une fonction décroissante de λ .

Regardons à présent le biais :

$$\mathbb{E}[\beta_{Ridge}^*] = \mathbb{E}[(x^T x + \lambda I_p)^{-1} x^T y]$$

$$= \mathbb{E}[(x^T x + \lambda I_p)^{-1} x^T (x\beta + \epsilon)]$$

$$= \mathbb{E}[(x^T x + \lambda I_p)^{-1} (x^T x\beta + x^T \epsilon + \lambda \beta - \lambda \beta)]$$

$$= \beta - \lambda (x^T x + \lambda I_p)^{-1} \beta$$

$$\Rightarrow biais_{\beta}(\beta_{Ridge}^*) = -\lambda (x^T x + \lambda I_p)^{-1} \beta$$

En diagonalisant la matrice $x^Tx + \lambda I_p = P(\Delta + \lambda I_p)P^T$, on obtient que $biais_{\beta}(\beta^*_{Ridge}) = -P^T(\frac{\Delta}{\lambda} + I_p)^{-1}P\beta$, donc lorsque λ augmente, le biais tend vers une certaine constante de la forme $-P^T\Gamma_{\infty}P\beta$.

2.5 Question 5

En supposant que $x^T x = I_p$, on obtient :

$$\beta_{\text{ridge}}^* = (x^T x + \lambda I_p)^{-1} x^T y$$

$$= ((\lambda + 1)I_p)^{-1} x^T y$$

$$= \frac{1}{\lambda + 1} x^T y$$

$$\beta_{\text{OLS}}^* = (x^T x)^{-1} x^T y = x^T y$$

On a donc bien $\beta_{\text{ridge}}^* = \frac{\beta_{\text{oLS}}^*}{\lambda + 1}$ lorsque $x^T x = I_p$.

3 Elastic Net

Par définition, on a:

$$\begin{split} \beta_{ElNet}^* &= \arg \min_{\beta} ||y_c - x_c \beta||_2^2 + \lambda_2 ||\beta||_2^2 + \lambda_1 ||\beta||_1 \\ &= \arg \min_{\beta} y_c^T y_c + \beta^T x_c^T x_c \beta - 2\beta^T x_c^T y_c + \lambda_2 ||\beta||_2^2 + \lambda_1 \sum_{j=1}^d |\beta_i| \\ &= \arg \min_{\beta} \beta^T \beta - 2\beta^T (x_c^T x_c)^{-1} x_c^T y_c + \lambda_2 ||\beta||_2^2 + \lambda_1 \sum_{j=1}^d |\beta_i| \\ &= \arg \min_{\beta} ||\beta||_2^2 - 2\beta^T \beta_{OLS}^* + \lambda_2 ||\beta||_2^2 + \lambda_1 \sum_{j=1}^d |\beta_i| \\ &= \arg \min_{\beta} - 2\beta^T \beta_{OLS}^* + (\lambda_2 + 1) ||\beta||_2^2 + \lambda_1 \sum_{j=1}^d |\beta_i| \\ \beta_{ElNet}^* &= \arg \min_{\beta} \sum_{j=1}^d (-2\beta_j \beta_{OLS,j}^* + (\lambda_2 + 1) \beta_j^2 + \lambda_1 |\beta_j|) \end{split}$$

On peut chercher l'argmin pour chaque terme. On a pour tout j:

$$\begin{split} \beta_{ElNet,j}^* &= \arg\min_{\beta_j} - 2\beta_j \beta_{OLS,j}^* + (\lambda_2 + 1)\beta_j^2 + \lambda_1 |\beta_j| \\ &= \arg\min_{\beta_j} \left\{ \begin{array}{ll} -2\beta_j \beta_{OLS,j}^* + (\lambda_2 + 1)\beta_j^2 + \lambda_1 \beta_j & \text{si } \beta \geq 0 \\ 2\beta_j \beta_{OLS,j}^* + (\lambda_2 + 1)\beta_j^2 - \lambda_1 \beta_j & \text{si } \beta < 0 \end{array} \right. \\ &= \left\{ \begin{array}{ll} \frac{2\beta_{OLS,j}^* - \lambda_1}{2(\lambda_2 + 1)} & \text{si } \beta \geq 0 \\ \frac{2\beta_{OLS,j}^* + \lambda_1}{2(\lambda_2 + 1)} & \text{si } \beta < 0 \end{array} \right. \\ \beta_{ElNet,j}^* &= \frac{\beta_{OLS}^* \pm \frac{\lambda_1}{2}}{1 - \lambda_2} \end{split}$$

4 LDA

Si la covariance de chaque classe est différente, on ne peut plus simplifier par $\frac{1}{|\Sigma|^{1/2}}$ pour toutes les classes. Ainsi, toute la LDA ne peut plus s'appliquer car f^* n'est plus une "linear discriminant function". Dans ce cas, il faut utiliser la QDA.

```
\begin{split} f^*(x_j) &= argmax_{C_k} P_{C_k}(x_j) \pi_{C_k} \\ &= argmin_{C_k} - 2log(P_{C_k}(x_j) \pi_{C_k} \\ &\propto argmin_{C_k} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + log(|\Sigma_k|) - 2log(\pi_{C_k}) \\ &= argmin_{C_k} x^T \Sigma_k^{-1} x - x^T \cdot 2\Sigma_k^{-1} \mu_k + (\mu_k^T \Sigma_k^{-1} \mu_k - 2log(\pi_{C_k}) + log(|\Sigma_k|)) \\ &= argmin_{C_k} x^T c_k x + x^T b_k + a_k \end{split}
```

On voit qu'ici, f^* est une fonction discriminante quadratique (et donc non linéaire). En effet, le terme $x^Tc_kx=x^T\Sigma_k^{-1}x$ intervient, i.e. la matrice de covariance de chaque classe intervient.