

- Prelegerea 13 -Confidențialitate și autentificarea mesajelor

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Transmitere sigură a mesajelor

2. Abordări diferite pentru a combina criptarea și autentificarea

 Am văzut cum putem obține confidențialitate folosind scheme de criptare;

- Am văzut cum putem obține confidențialitate folosind scheme de criptare;
- Am văzut cum putem garanta integritatea datelor folosind MAC-uri;

- Am văzut cum putem obține confidențialitate folosind scheme de criptare;
- Am văzut cum putem garanta integritatea datelor folosind MAC-uri;
- In practică avem nevoie de ambele proprietăți de securitate: confidențialitate și integritatea datelor;

- Am văzut cum putem obține confidențialitate folosind scheme de criptare;
- Am văzut cum putem garanta integritatea datelor folosind MAC-uri;
- In practică avem nevoie de ambele proprietăți de securitate: confidențialitate și integritatea datelor;
- Nu orice combinație de schemă de criptare sigură și MAC sigur oferă cele două proprietăți de securitate!

▶ lată trei abordari uzuale pentru a combina criptarea și autentificarea mesajelor:

- lată trei abordari uzuale pentru a combina criptarea și autentificarea mesajelor:
 - 1. Criptare-şi-autentificare: criptarea şi autentifcarea se fac independent. Pentru un mesaj clar m, se transmite mesajul criptat $\langle c, t \rangle$ unde

$$c \leftarrow \operatorname{Enc}_{k_1}(m)$$
 și $t \leftarrow \operatorname{Mac}_{k_2}(m)$

La recepție, $m = \mathrm{Dec}_{k_1}(c)$ și dacă $\mathrm{Vrfy}_{k_2}(m,t) = 1$, atunci întoarce m; altfel întoarce \perp .

- lată trei abordari uzuale pentru a combina criptarea și autentificarea mesajelor:
 - 1. Criptare-şi-autentificare: criptarea şi autentificarea se fac independent. Pentru un mesaj clar m, se transmite mesajul criptat $\langle c, t \rangle$ unde

$$c \leftarrow \operatorname{Enc}_{k_1}(m)$$
 și $t \leftarrow \operatorname{Mac}_{k_2}(m)$

La recepție, $m = \mathrm{Dec}_{k_1}(c)$ și dacă $\mathrm{Vrfy}_{k_2}(m,t) = 1$, atunci întoarce m; altfel întoarce \perp .

2. Autentificare-apoi-criptare: întâi se calculează tag-ul t apoi mesajul și tag-ul sunt criptate împreună

$$t \leftarrow \operatorname{Mac}_{k_2}(m) \text{ si } c \leftarrow \operatorname{Enc}_{k_1}(m||t)$$

La recepție, $m||t = \mathrm{Dec}_{k_1}(c)$ și dacă $\mathrm{Vrfy}_{k_2}(m,t) = 1$, atunci întoarce m; altfel întoarce \perp .

3. Criptare-apoi-autentificare: întâi se criptează mesajul și apoi se calculează tag-ul

$$c \leftarrow \operatorname{Enc}_{k_1}(m)$$
 si $t \leftarrow \operatorname{Mac}_{k_2}(c)$

La recepție, se verifică întâi t înainte de a decripta c; aceasta este chiar construcția pentru schema CCA-sigură.

3. Criptare-apoi-autentificare: întâi se criptează mesajul și apoi se calculează tag-ul

$$c \leftarrow \operatorname{Enc}_{k_1}(m)$$
 si $t \leftarrow \operatorname{Mac}_{k_2}(c)$

La recepție, se verifică întâi t înainte de a decripta c; aceasta este chiar construcția pentru schema CCA-sigură.

▶ Vom analiza fiecare abordare la instanțierea cu o schemă de criptare CPA-sigură și un MAC sigur (cu tag-uri unice).

3. Criptare-apoi-autentificare: întâi se criptează mesajul și apoi se calculează tag-ul

$$c \leftarrow \operatorname{Enc}_{k_1}(m)$$
 si $t \leftarrow \operatorname{Mac}_{k_2}(c)$

La recepție, se verifică întâi t înainte de a decripta c; aceasta este chiar construcția pentru schema CCA-sigură.

- ▶ Vom analiza fiecare abordare la instanțierea cu o schemă de criptare CPA-sigură și un MAC sigur (cu tag-uri unice).
- Ne vor interesa doar acele abordări care oferă confidențialitate și integritate pentru orice schemă de criptare sigură și orice MAC sigur.

 Pentru a analiza care combinație de confidențialitate și integritate este sigură, definim ce înseamnă "combinație sigură";

- Pentru a analiza care combinație de confidențialitate și integritate este sigură, definim ce înseamnă "combinație sigură";
- ▶ Introducem noțiunea de schemă de transmitere a mesajelor

- Pentru a analiza care combinație de confidențialitate și integritate este sigură, definim ce înseamnă "combinație sigură";
- ▶ Introducem noțiunea de schemă de transmitere a mesajelor
- Fie $\Pi_E = (\operatorname{Enc}, \operatorname{Dec})$ o schemă de criptare arbitrară și $\Pi_M = (\operatorname{Mac}, \operatorname{Vrfy})$ un cod de autentificare a mesajelor. O schemă de transmitere a mesajelor $\Pi' = (\operatorname{EncMac'}, \operatorname{Dec'})$ constă din următorii algoritmi:

- Pentru a analiza care combinație de confidențialitate și integritate este sigură, definim ce înseamnă "combinație sigură";
- ▶ Introducem noțiunea de schemă de transmitere a mesajelor
- Fie $\Pi_E = (\operatorname{Enc}, \operatorname{Dec})$ o schemă de criptare arbitrară și $\Pi_M = (\operatorname{Mac}, \operatorname{Vrfy})$ un cod de autentificare a mesajelor. O schemă de transmitere a mesajelor $\Pi' = (\operatorname{EncMac'}, \operatorname{Dec'})$ constă din următorii algoritmi:
 - ► EncMac algoritm de transmitere a mesajelor care pentru o cheie (k_1, k_2) și un mesaj m, întoarce o valoare c derivată prin aplicarea unei combinații a algoritmilor Enc_{k_1} și Mac_{k_2} ;
 - ▶ Dec algoritm de decriptare care pentru o cheie (k_1, k_2) și un mesaj transmis c, aplică o combinație a algoritmilor Dec_{k_1} și $\operatorname{Vrfy}_{k_2}$, întorcand un text clar m sau simbolul \bot de eroare.

▶ Corectitudinea schemei cere ca $\forall n \ \forall (k_1, k_2) \ \forall m \in \{0, 1\}^*$

$$\mathrm{Dec'}_{k_1,k_2}(\mathit{EncMac}'_{k_1,k_2}(m)) = m$$

▶ Pentru a defini securitatea unei astfel de scheme, folosim un experiment $\operatorname{Auth}_{\mathcal{A},\Pi}(n)$:

▶ Corectitudinea schemei cere ca $\forall n \ \forall (k_1, k_2) \ \forall m \in \{0, 1\}^*$

$$\mathrm{Dec'}_{k_1,k_2}(\mathit{EncMac}'_{k_1,k_2}(m)) = m$$

Pentru a defini securitatea unei astfel de scheme, folosim un experiment $\operatorname{Auth}_{\mathcal{A},\Pi}(n)$:

▶ Output-ul experimentului este 1 dacă și numai dacă: (1) $m \neq \bot$ și (2) $m \notin \{m_1, ..., m_q\}$ unde $m = \text{Dec'}_k(c)$;

Definiție

O schemă de transmitere a mesajelor Π' oferă comunicare autentificată dacă pentru orice adversar polinomial $\mathcal A$ există o funcție neglijabilă negl așa încât

$$Pr[Auth_{\mathcal{A},\Pi}(n)=1] \leq negl(n).$$

Definiție

O schemă de transmitere a mesajelor Π' oferă comunicare autentificată dacă pentru orice adversar polinomial $\mathcal A$ există o funcție neglijabilă negl așa încât

$$Pr[Auth_{\mathcal{A},\Pi}(n)=1] \leq negl(n).$$

Definiție

O schemă de transmitere a mesajelor Π' este sigură dacă este o schemă de criptare CCA-sigură și oferă comunicare autentificată.

Securitate Criptare-și-autentificare

- ► Revenim la cele trei combinații de criptare și autentificare:
- 1. Criptare-și-autentificare

Securitate Criptare-și-autentificare

- ► Revenim la cele trei combinații de criptare și autentificare:
- 1. Criptare-și-autentificare

► Combinația aceasta **nu** este neaparat sigură; un MAC sigur nu implică nici un fel de confidențialitate;

Securitate Criptare-și-autentificare

► Revenim la cele trei combinații de criptare și autentificare:

1. Criptare-și-autentificare

- Combinația aceasta nu este neaparat sigură; un MAC sigur nu implică nici un fel de confidențialitate;
- ▶ Dacă ($\operatorname{Mac},\operatorname{Vrfy}$) este un MAC sigur atunci și schema definită de $\operatorname{Mac}_k'(m)=(m,\operatorname{Mac}_k(m))$ este un MAC sigur dar dezvăluie mesajul m

2. Autentificare-apoi-criptare

2. Autentificare-apoi-criptare

Combinația aceasta nu este neapărat sigură;

2. Autentificare-apoi-criptare

- Combinația aceasta nu este neapărat sigură;
- Se poate construi o schemă de criptare CPA-sigură care împreuna cu orice MAC sigur nu poate fi CCA-sigură;

2. Autentificare-apoi-criptare

- Combinația aceasta nu este neapărat sigură;
- Se poate construi o schemă de criptare CPA-sigură care împreuna cu orice MAC sigur nu poate fi CCA-sigură;
- ▶ Definim Transform(*m*) astfel:
 - orice 0 din m se transformă în 00;
 - ▶ orice 1 din *m* se transformă arbitrar în 01 sau 10;

Definim Enc_k(m) = Enc'_k(Transform(m)) unde Enc' reprezintă criptare în modul CTR folosind o funcție pseudoaleatoare;

Arătăm că o combinație de tipul autentificare-apoi-criptare a schemei de criptare de mai sus cu orice MAC nu este sigură la un atac de tip CCA.

- Arătăm că o combinație de tipul autentificare-apoi-criptare a schemei de criptare de mai sus cu orice MAC nu este sigură la un atac de tip CCA.
- Atacul funcționează atâta timp cât un adversar poate verifica dacă un text criptat dat este valid;

- Arătăm că o combinație de tipul autentificare-apoi-criptare a schemei de criptare de mai sus cu orice MAC nu este sigură la un atac de tip CCA.
- Atacul funcționează atâta timp cât un adversar poate verifica dacă un text criptat dat este valid;
- Fiind dată o provocare $c = \operatorname{Enc}'_{k_1}(\operatorname{Transform}(m||\operatorname{Mac}_{k_2}(m)))$, atacatorul modifică primii doi biți din al 2-lea bloc al lui c și verifică dacă rezultatul este valid;

- Arătăm că o combinație de tipul autentificare-apoi-criptare a schemei de criptare de mai sus cu orice MAC nu este sigură la un atac de tip CCA.
- Atacul funcționează atâta timp cât un adversar poate verifica dacă un text criptat dat este valid;
- Fiind dată o provocare $c = \operatorname{Enc}'_{k_1}(\operatorname{Transform}(m||\operatorname{Mac}_{k_2}(m)))$, atacatorul modifică primii doi biți din al 2-lea bloc al lui c și verifică dacă rezultatul este valid;
- ▶ Dacă primul bit al mesajului clar m este 1, atunci c modificat este valid;

- Arătăm că o combinație de tipul autentificare-apoi-criptare a schemei de criptare de mai sus cu orice MAC nu este sigură la un atac de tip CCA.
- Atacul funcționează atâta timp cât un adversar poate verifica dacă un text criptat dat este valid;
- Fiind dată o provocare $c = \operatorname{Enc}'_{k_1}(\operatorname{Transform}(m||\operatorname{Mac}_{k_2}(m)))$, atacatorul modifică primii doi biți din al 2-lea bloc al lui c și verifică dacă rezultatul este valid;
- ▶ Dacă primul bit al mesajului clar m este 1, atunci c modificat este valid;
- ▶ Intrebare: De ce?

Pentru că în acest caz, primii doi biți ai lui Transform(m) sunt 01 sau 10 și o modificare a lor oferă o codificare validă a lui m.

- Pentru că în acest caz, primii doi biți ai lui Transform(m) sunt 01 sau 10 și o modificare a lor oferă o codificare validă a lui m.
- ► Tag-ul rămâne valid pentru că este aplicat pe *m*;

- Pentru că în acest caz, primii doi biți ai lui Transform(m) sunt 01 sau 10 și o modificare a lor oferă o codificare validă a lui m.
- ► Tag-ul rămâne valid pentru că este aplicat pe m;
- ▶ Dacă însă primul bit al lui m este 0, c modificat nu este valid...

Securitate Autentificare-apoi-criptare

- Pentru că în acest caz, primii doi biți ai lui Transform(m) sunt 01 sau 10 și o modificare a lor oferă o codificare validă a lui m.
- ► Tag-ul rămâne valid pentru că este aplicat pe *m*;
- Dacă însă primul bit al lui m este 0, c modificat nu este valid...
- ... pentru că primii doi biţi din Transform(m) sunt 00 şi prin complementare devin 11;

Securitate Autentificare-apoi-criptare

- Pentru că în acest caz, primii doi biți ai lui Transform(m) sunt 01 sau 10 și o modificare a lor oferă o codificare validă a lui m.
- ► Tag-ul rămâne valid pentru că este aplicat pe *m*;
- Dacă însă primul bit al lui m este 0, c modificat nu este valid...
- ... pentru că primii doi biţi din Transform(m) sunt 00 şi prin complementare devin 11;
- ► Atacul poate fi aplicat pe fiecare bit din *m*, recuperând astfel întreg mesajul *m*.

- ► Totusi, anumite instanțieri ale acestei combinații pot fi sigure;
- ▶ O astfel de combinație este folosita și în SSL.

Securitate Criptare-apoi-autentificare

3. Criptare-apoi-autentificare

Securitate Criptare-apoi-autentificare

3. Criptare-apoi-autentificare

 Combinația aceasta este întotdeauna sigură; se folosește în IPsec;

Securitate Criptare-apoi-autentificare

3. Criptare-apoi-autentificare

- Combinația aceasta este întotdeauna sigură; se folosește în IPsec;
- Deși folosim aceeași construcție pentru a obține securitate CCA și transmitere sigură a mesajelor, scopurile urmărite sunt diferite în fiecare caz;

 Pentru scopuri diferite de securitate trebuie să folosim întotdeauna chei diferite;

- Pentru scopuri diferite de securitate trebuie să folosim întotdeauna chei diferite;
- Să urmărim ce se întâmplă dacă folosim metoda criptare-apoi-autentificare atunci când folosim aceeași cheie k atât pentru criptare cât și pentru autentificare;

- Pentru scopuri diferite de securitate trebuie să folosim întotdeauna chei diferite;
- Să urmărim ce se întâmplă dacă folosim metoda criptare-apoi-autentificare atunci când folosim aceeași cheie k atât pentru criptare cât și pentru autentificare;
- ▶ Definim $\operatorname{Enc}_k(m) = F_k(m||r)$, pentru $m \in \{0,1\}^{n/2}$, $r \leftarrow^R \{0,1\}^{n/2}$, iar $F_k(\cdot)$ o permutare pseudoaleatoare;

- Pentru scopuri diferite de securitate trebuie să folosim întotdeauna chei diferite;
- Să urmărim ce se întâmplă dacă folosim metoda criptare-apoi-autentificare atunci când folosim aceeași cheie k atât pentru criptare cât și pentru autentificare;
- ▶ Definim $\operatorname{Enc}_k(m) = F_k(m||r)$, pentru $m \in \{0,1\}^{n/2}$, $r \leftarrow^R \{0,1\}^{n/2}$, iar $F_k(\cdot)$ o permutare pseudoaleatoare;
- ▶ Definim $\operatorname{Mac}_k(c) = F_k^{-1}(c)$;

- Pentru scopuri diferite de securitate trebuie să folosim întotdeauna chei diferite;
- Să urmărim ce se întâmplă dacă folosim metoda criptare-apoi-autentificare atunci când folosim aceeași cheie k atât pentru criptare cât și pentru autentificare;
- ▶ Definim $\operatorname{Enc}_k(m) = F_k(m||r)$, pentru $m \in \{0,1\}^{n/2}$, $r \leftarrow^R \{0,1\}^{n/2}$, iar $F_k(\cdot)$ o permutare pseudoaleatoare;
- ▶ Definim $\operatorname{Mac}_k(c) = F_k^{-1}(c)$;
- Schema de criptare şi MAC-ul sunt sigure dar...

- Pentru scopuri diferite de securitate trebuie să folosim întotdeauna chei diferite;
- Să urmărim ce se întâmplă dacă folosim metoda criptare-apoi-autentificare atunci când folosim aceeași cheie k atât pentru criptare cât și pentru autentificare;
- ▶ Definim $\operatorname{Enc}_k(m) = F_k(m||r)$, pentru $m \in \{0,1\}^{n/2}$, $r \leftarrow^R \{0,1\}^{n/2}$, iar $F_k(\cdot)$ o permutare pseudoaleatoare;
- ▶ Definim $\operatorname{Mac}_k(c) = F_k^{-1}(c)$;
- Schema de criptare şi MAC-ul sunt sigure dar...
- $\langle \operatorname{Enc}_k(m), \operatorname{Mac}_k(\operatorname{Enc}_k(m)) \rangle = \langle F_k(m||r), F_k^{-1}(F_k(m||r)) \rangle = \langle F_k(m||r), m||r \rangle.$

Important de reținut!

- Metoda sigură de a combina criptarea și autentificarea este criptare-apoi-autentificare;
- ► Este important să se foloseasca chei simetrice diferite pentru a atinge scopuri diferite (criptare și autentificare).