

1966

Hydrology of the Carbonate Rocks of the Lancaster 15-minute Quadrangle, Pennsylvania

Harold Meisler
Albert E. Becher

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF INTERNAL AFFAIRS
Genevieve Blatt, Secretary

BUREAU OF
TOPOGRAPHIC AND GEOLOGIC SURVEY
Arthur A. Socolow, State Geologist

PY6345/4.17/8

PENNSYLVANIA STATE LIBRARY DOCUMENTS SEVELON

Hydrology of the Carbonate Rocks of the Lancaster 15-minute Quadrangle, Pennsylvania

by Harold Meisler and Albert E. Becher

U. S. Geological Survey

Prepared by the United States Geological Survey, Ground Water Branch, in cooperation with the Pennsylvania Geological Survey

PENNSYLVANIA GEOLOGICAL SURVEY
FOURTH SERIES
HARRISBURG

1966

CONTENTS

		Page
Abstrac		1
Introdu	ction	1
Pu	pose and scope of the study	1
Lo	ation and geographic setting	2
Ме	chods of investigation	2
Pre	vious investigations .	2
We	ll-numbering system	4
Cli	mate	5
Acl	nowledgments	6
Geology		6
Hydrolo	gy	6
Pri	nciples	6
Wa	ter-bearing properties of the carbonate rocks	9
Quality	of water	14
Conclus	ons	16
Referen	ces	18
	ILLUSTRATIONS	
	FIGURES	
		Page
Figure	1. Maps showing the location and geology	3
	2. Diagram showing well-numbering system	4
	3. Hydrographs of wells 005-623-2 and 006-623-17 and precipitation at Landisville	8
	4. Graph showing the cumulative frequency distribution of specific capacities of 247 wells	10

FIGURES-Continued

Page			
12	Graph showing the cumulative frequency distribution of specific capacities of wells grouped according to topographic position	5.	
13	Graph showing the cumulative frequency distribution of specific capacities of wells grouped according to depth	6.	
17	Graph showing the relation of field determinations of specific conductance to dissolved-solids content.	7.	
	PLATE		
pocket	Map showing the location of wells and springs and the specific capacities of selected wells in the carbonate rocks of the Lancaster quadrangle, Pennsylvania	1.	PLATE
Page	TABLES		
7	Generalized section of the Cambrian and Ordovician strata in the Lancaster quadrangle	1.	TABLE
14	Median specific capacities of wells grouped according to well depths	2.	
15	Summary of chemical quality of ground water	3.	
20	Record of wells	4.	
34	Record of springs	5.	
35	Chemical analyses of ground water in the Lancaster quadrangle	6.	

PROGRESS REPORT ON THE HYDROLOGY OF THE CARBONATE ROCKS OF THE LANCASTER 15-MINUTE QUADRANGLE, PENNSYLVANIA

By
HAROLD MEISLER AND ALBERT E. BECHER

ABSTRACT

Limestone and dolomite strata of Cambrian and Ordovician age underlie a lowland that occupies about 60 percent of the Lancaster quadrangle. The stratigraphic units, from oldest to youngest, are the Vintage, Kinzers, Ledger, and Elbrook Formations and the Conococheague Group of Cambrian age; and the Beckmantown Group and Conestoga Formation of Ordovician age.

The lowland contains several anticlinal ridges that are underlain by Lower Cambrian quartzites, schists, slates, and phyllites of the Chickies, Harpers, and Antietam Formations. It is bordered on the north by highlands underlain by shale of the Cocalico Formation of Ordovician age.

Ground water in the carbonate rocks occurs within bedding and cleavage planes, and in joints, faults, and other fractures. Where these openings have been enlarged by solution, large amounts of water are available. The number and size of openings and the degree of interconnection between them determine the ability of the rocks to transmit water.

Specific capacities of 247 wells pumped for 1 hour range from 0.02 to 600 gpm (gallons per minute) per foot of drawdown; the median specific capacity is 0.91. Twenty-five percent of the specific capacities are less than 0.14, and 75 percent are less than 5.0.

Specific capacities of wells in valleys are generally greater than those of wells on ridges. Of 16 wells having specific capacities greater than 50, 12 are in valleys, 1 is on a fidge, and 3 are in intermediate topographic positions.

Large-capacity wells tend to be shallower than small-capacity wells. The median specific capacity is 4.8 gpm per foot of drawdown for wells less than 50 feet deep, 2.5 for wells 50 to 99 feet deep, 0.51 for wells 100 to 199 feet deep, and 0.08 for wells 200 to 600 feet deep.

Ground water in the carbonate rocks is of the calcium bicarbonate type. The water is very hard—approximately 90 percent of 37 wells sampled have more than 270 ppm (parts per million) hardness. The median hardness is 308 ppm. Thirteen of the 37 wells sampled contain more than 45 ppm nitrate (maximum concentration considered acceptable by the U. S. Public Health Service), and the median nitrate concentration is 33 ppm.

INTRODUCTION

PURPOSE AND SCOPE OF THE STUDY

Lancaster County, long known as a rich agricultural region, has a rapidly growing industrial complex, chiefly in the vicinity of the city of Lancaster. Urban expansion and suburban development have kept pace with this growth, and the demand for water to supply both domestic and industrial needs has increased. Some of the demand is being met by ground water.

The greatest potential source of ground water in Lancaster County is the crystalline carbonate rocks that underlie nearly half the county. An evaluation of the occurrence, movement, and quality of ground water in these rocks is necessary for the efficient development of the resource. In September 1962, the U. S. Geological Survey, in cooperation with the Pennsylvania Geological Survey, began a study of the geology and hydrology of carbonate rocks of the Lancaster 15-minute quadrangle.

This report contains basic hydrologic and chemical data collected in the area. A more complete report will be prepared upon completion of the study, in 1967.

LOCATION AND GEOGRAPHIC SETTING

The area underlain by carbonate rocks in the Lancaster 15-minute quadrangle in Pennsylvania is shown in Figure 1. This 15-minute quadrangle is divided into the Manheim, Lititz, Lancaster, and Columbia East 71/2-minute quadrangles.

The carbonate rocks underlie a gently rolling lowland throughout much of the Lancaster quadrangle. Interspersed throughout the lowland and along its northern boundary are rocks that are more resistant to erosion than the carbonates. These rocks form hills that rise 300 to 600 feet above the lowland.

Chickies Creek and Conestoga Creek drain almost all of the Lancaster 15-minute quadrangle. (See Plate 1.) They flow southwestward across the quadrangle into the Susquehanna River. Chickies Creek drains the western one-third of the quadrangle; Conestoga Creek and its tributary, Little Conestoga Creek, drain the eastern two-thirds of the quadrangle.

METHODS OF INVESTIGATION

Approximately 500 municipal, industrial, and domestic wells and springs were inventoried during this investigation. The well records are given in Table 1, and the spring records in Table 2. Locations of wells and springs are shown in Plate 1. Short-term (1-hour) pumping tests were made at 247 wells in order to determine specific capacities of the wells. Continuous water-level records were obtained at 5 wells.

Ground-water samples were collected from 37 wells and springs, and complete analyses of the samples were made by the Quality of Water Branch, U. S. Geological Survey. Hardness as CaCO₃ and specific conductance of water from approximately 450 wells were determined in the field.

PREVIOUS INVESTIGATIONS

The occurrence of ground water in the Lancaster quadrangle is discussed by Hall (1934) as part of a reconnaissance report on ground water in southeastern Pennsylvania.

Figure 1. Maps showing the location and geology of the Lancaster quadrangle.

The geology of the Lancaster 15-minute quadrangle is described by Jonas and Stose (1930) in Pennsylvania Geological Survey Atlas 168. Although this report is a cooperative product of the Pennsylvania Topographic and Geologic Survey and the U. S. Geological Survey, the geologic nomenclature accords with that of the State Survey; it differs some from that of the U. S. Geological Survey.

WELL-NUMBERING SYSTEM

The well-numbering system used in this report shows the location of wells and springs according to the latitude and longitude system illustrated in Figure 2.

Well 006-618-2 was the second well inventoried in the 1-minute area north of the 40°06' parallel of latitude and west af the 76°18' meridian of langitude.

Figure 2. Diogram showing the well-numbering system.

The latitude and longitude system consists of a statewide grid of 1-minute parallels of latitude and 1-minute meridians of longitude. Within a 1-minute area wells are numbered and springs are lettered consecutively in the order inventoried. For example, in the number 006-618-2, which was assigned to a well near Neffsville in Lancaster County, the first segment (006) is composed of the last digit of the degrees (40) and the two digits of the minutes (06) that define the latitude on the south side of a

1-minute quadrangle; the second segment (618) consists of the last digit of the degrees (76) and the two digits of the minutes (18) that define the longitude on the east side of a 1-minute quadrangle; and the last segment (2) indicates the consecutive number assigned to the well as it was inventoried. (See Plate 1.) Similarly, the spring numbered 005-629-A was the first spring inventoried in the 1-minute quadrangle north of the 40°05' parallel of latitude and west of the 76°29' meridian of longitude.

CLIMATE

In Lancaster County summers are long, temperature extremes are moderate, and rainfall is abundant. The average annual precipitation at the U. S. Weather Bureau station at Lancaster for the years 1931 through 1955 was 43.13 inches. The average yearly temperature for the same period was 52.06° F. Approximately 33 percent of the total yearly rainfall takes place in June, July, and August, and 57 percent occurs in the 6-month period from April through September. Summer precipitation is predominantly of the thunderstorm type, and therefore is highly variable in quantity and areal distribution. Winter precipitation is related to a more general weather pattern, and therefore is more uniform in quantity and areal distribution. The following table gives the average monthly rainfall and temperature at Lancaster for the years 1931 through 1955.

Average monthly precipitation (in inches) and temperature (in degrees Fahrenheit) at the U. S. Weather Bureau, Lancaster, 1931-55

(From	Kauffman,	1960)
-------	-----------	-------

Month	Precipitation	Temperature
January	3.16	30.4
February	2.61	31.1
March	3.45	40.1
April	3.45	49.8
May	3.54	61.3
June	4.01	70.2
July	4.85	74.5
August	5.28	72.3
September	3.31	65.3
October	3.27	54.0
November	3.21	42.9
December	2.99	32.8

ACKNOWLEDGMENTS

The authors are indebted to the many civic and business organizations, industrial firms, and individual well owners who allowed access to their wells for pumping tests, water-level measurements, and the collection of water samples. Especially helpful were Lititz Water Co., Millersville Borough Authority, Quaker State Metals Co., and U. S. Asbestos Co.

GEOLOGY

Limestone and dolomite of Cambrian and Ordovician age occupy a broad east-west-trending belt across central Lancaster County. These rocks form a lowland that is interrupted by anticlinal ridges in which Lower Cambrian quartzites, quartz schists, slates, and phyllites are exposed. The northern boundary of the carbonate rocks in the Lancaster quadrangle is formed by shale of the overlying Cocalico Formation of Ordovician age.

The sequence of Cambrian and Ordovician rocks in the Lancaster quadrangle, according to Jonas and Stose (1930), is given in Table 1.

The areal distribution of these strata in the Lancaster quadrangle is shown in Figure 1. The largest exposures of the quartzites, schists, and phyllites of the Antietam, Harpers, and Chickies Formations are in a complexly folded and faulted anticlinorium in the southwestern part of the quadrangle. In general, progressively younger strata crops out northward across the area. However, the Conestoga Formation, possibly the youngest carbonate-rock formation in the quadrangle, unconformably overlaps the Vintage, Kinzers, and Ledger Formations in the southern part of the quadrangle.

The structure of the Cambrian and Ordovician rocks in the Lancaster quadrangle is extremely complex, the strata being intensely folded and, in places, intricately faulted.

HYDROLOGY

PRINCIPLES

Ground water is the subsurface water in that part of the zone of saturation in which the interconnected pores, crevices, and other openings in the rock are filled with water under pressure equal to or greater than atmospheric. Rocks that are capable of yielding usable supplies of ground water to wells or springs are called aquifers. The openings that contain and transmit water in an aquifer are classified as primary or secondary. Primary openings are the interstitial voids formed during deposition of the sediments. The secondary openings are formed as a result of crustal

Table 1. Generalized section of the Cambrian and Ordovician strata in the Lancaster quadrangle, Pennsylvania

(Modified from Jonas and Stose, 1930)

System	Group or formation	Predominant physical character
	Cocalico Formation	Dark-gray to bluish-black shale.
Ordovician	Conestoga Formation	Blue thin-bedded limestone containing argillaceous partings; closely folded.
	Beekmantown Group	Light-bluish-gray limestone, magnesian limestone, and dark-gray dolomite.
	Conococheague Group	Light- to dark-bluish-gray limestone and dark-gray dolomite; some beds are argillaceous and siliceous.
	Elbrook Formation	Light-gray to white laminated magnesian limestone containing sericitic partings.
	Ledger Formation	Light-gray, mottled, massive pure coarsely crystalline dolomite.
Cambrian	Kinzers Formation	Gray to blue shale overlain by gray and white spotted limestone containing interbeds of blue sandy dolomite.
	Vintage Formation	Dark-gray, knotty, argillaceous dolomite containing impure light-gray marble at base.
	Antietam Formation	Gray quartzite and quartz schist.
	Harpers Formation	Light-gray phyllite and dark-banded slate.
	Chickies Formation	Light-gray and white massive quartzite and quartz schist.

movement, solution, or rock-weathering processes that take place after the rock is formed.

Ground water in the carbonate rocks of the Lancaster quadrangle occurs almost entirely in the secondary openings. Water-filled openings along bedding and cleavage planes, joints, and faults can supply small to moderate amounts of water for domestic and farm use. Where these openings have been enlarged by solution, larger amounts of water are available for industrial and municipal use. The number and size of the openings and the degree of interconnection between them determine the ability of the carbonate rocks to transmit water to wells and springs.

Ground water may occur under either water-table or artesian conditions. Under water-table conditions, ground water is not confined, and the upper surface of the zone of saturation—called the water table—is

Figure 3. Hydrographs of wells 005-623-2 and 006-623-17 and precipitation at Landisville.

free to fluctuate. Where ground water is confined under hydrostatic pressure in a permeable rock by relatively impermeable overlying rocks, the water occurs under artesian conditions. When an artesian aquifer is penetrated by a well, the water will rise in the well above the upper surface of the aquifer to a level called the peizometric surface.

In the carbonate rocks of the Lancaster quadrangle, ground water is confined within crevices and solution channels. When a well penetrates such a water-bearing opening, the water will rise in the well above the level of the opening, and might be considered artesian. However, as there are no sharply defined aquifers or confining beds, the carbonate rocks should be thought of as a complex, nonhomogeneous water-table aquifer.

Precipitation is the source of all ground water in the carbonate rocks of the Lancaster quadrangle. The precipitation infiltrates downward through the soil and rock openings to the water table. Within the zone of saturation, ground water moves downward and laterally through rock openings from areas of recharge (where hydraulic potentials are high) to points of discharge (where hydraulic potentials are low). Discharge takes place primarily through springs, streams, and wells.

Under natural conditions, and over long periods of time, the amount of discharge from an aquifer is equal to the amount of recharge to the aquifer. Ground-water levels fluctuate in response to recharge and discharge—rising when recharge exceeds discharge and declining when discharge exceeds recharge.

Figure 3 shows hydrographs of wells 005-623-2 and 006-623-17 and precipitation for the calendar year 1964. Both wells show a general water-level rise from January to early May and a decline from May to November. Water levels generally decline during the growing season, because much of the precipitation is intercepted by vegetation before it can reach the water table. The lack of substantial recharge during the growing season is illustrated in another way by the hydrographs. Large water-level fluctuations in response to rainfall occur during the period from January to early May, whereas only small fluctuations occur during the period from May to December.

WATER-BEARING PROPERTIES OF THE CARBONATE ROCKS

Pumping tests I hour long were made on 247 wells in order to evaluate the ability of the carbonate rocks to yield water to wells. The results of the tests are given as the specific capacity of each well for I hour of pumping. Specific capacity is defined as the yield of a well per unit decline of water level, and is usually expressed as gallons per minute per foot of drawdown (gpm per ft).

Figure 4. Graph showing the cumulative frequency distribution of specific capacities of 247 wells.

The principal use of these specific capacities is to permit comparison between wells that tap different geologic units, are situated in different topographic locations, or are drilled to different depths. In addition, these computations are useful in indicating, in a general way, the suitability of wells for various purposes. Wells in the carbonate rocks that have specific capacities of less than 0.08 gpm per ft are usually inadequate or barely adequate for domestic use. Specific capacities of 0.08 and 0.3 gpm per ft are generally sufficient for domestic use. Wells having specific capacities of 0.1 to 0.7 may be adequate for farm and commercial use. Wells having specific capacities of 0.5 to 5 are generally suitable for small public supplies and some industries. Wells having specific capacities greater than 5 are generally suitable for public supply and industrial use.

Specific capacities of the 247 test wells range from 0.02 to 600, and the median is 0.91. The cumulative frequency distribution of specific capacities is shown in Figure 4. Seventeen percent of the specific capacities are less than 0.08 (the minimum considered suitable for domestic use) and 75 percent are less than 5.0 (the minimum sufficient for public supply or industrial use).

These calculated specific capacities have two shortcomings. First, a 1-hour test is inadequate to determine the performance of a well over long periods. Second, the wells in most cases were pumped at relatively low rates, generally between 5 and 15 gpm. In aquifers as heterogeneous as the carbonate rocks, the specific capacity of a well determined at a low pumping rate may not be indicative of the well's specific capacity at a much higher pumping rate.

Most of the cumulative frequency-distribution plot of specific capacities approximates a straight line, indicating that specific capacities have a lognormal distribution. The points on the lower end of the graph are above this straight line largely because the calculated specific capacities include the effect of water stored in the borehole. In a 6-inch well, approximately 0.025 gpm per ft of the specific capacity at the end of 1 hour of pumping is directly attributable to water stored in the borehole; therefore, in wells of very low specific capacity, the effect of such stored water is substantial, and in wells of moderate or high specific capacity, the effect is negligible.

Specific capacities of pumped wells appear to be related to topography. Figure 5 shows the percentage distribution of specific capacities (grouped according to topographic position) of all wells except those in the Conestoga Formation. Wells in the Conestoga Formation were not included, because the Conestoga's topography differs markedly from that of the other carbonate formations and the topography is not readily divided into similar topographic positions. Of 183 wells plotted in Figure 5, 70 are in valleys, 37 are on ridges, and 76 are in intermediate

Figure 5. Graph showing the cumulative frequency distribution of specific capacities of wells grouped according to tapagraphic position.

Figure 6. Graph showing the cumulative frequency distribution af specific capacities of wells grouped according to depth.

topographic positions. Specific capacities of wells in valleys are generally greater than those of wells on ridges. Specific capacities of wells in topographic positions intermediate between ridges and valleys are generally greater than those of wells on the ridges but are less than those of wells in the valleys. Probably the clearest indication of differences between the specific capacities of wells in the three topographic positions is given by the distribution of wells having high specific capacities. Twelve of the 16 wells having specific capacities greater than 50 gpm per ft are in valleys, 3 are intermediate in position, and only 1 is on a ridge. Of 9 wells having specific capacities greater than 100 gpm per ft, 7 are in valleys, 2 are in intermediate positions, and none are on ridges.

Specific capacities of wells appear to be related to the depths of the wells. Figure 6 shows the percentage distribution of specific capacities of wells grouped according to their depth. In general, shallow wells have the highest specific capacities and deeper wells have the lowest specific capacities. This relationship is shown also in Table 2, which gives the median specific capacity for wells grouped according to depth. Median

Table 2. Median specific capacities of wells grouped according to well depths

Depth of wells (feet below land surface)	Median specific capacity (gpm per ft of drawdown)	Number of wells
Less than 50	4.8	13
50-99	2.5	70
100-199	.51	81
200-600	.08	32

specific capacity decreases from 4.8, for wells less than 50 feet deep, to 0.08 for wells 200 to 600 feet deep.

This relationship of specific capacity to well depth indicates that in those areas where little or no water occurs at shallow depth it is unlikely that the yield of a well can be increased appreciably by deepening the well; instead the possibility of obtaining an adequate supply of water is increased by drilling another well.

QUALITY OF WATER

Dissolved mineral matter in ground water is derived from soluble mineral matter in the atmosphere, soil, and rocks through which the water moves. The chemical quality of ground water is thus governed chiefly by the nature of the soil and rock through which the water passes, by the length of time the water has been in contact with these materials, and by human activities such as the disposal of waste and the use of fertilizer and insecticides.

Forty-seven chemical analyses of water from 37 wells and springs in the carbonate rocks of the Lancaster quadrangle are given in Table 6. The discussion that follows is based upon 37 of these samples—one from each well or spring.

Ground water in the carbonate rocks of the Lancaster quadrangle is of the calcium bicarbonate type. The major cations in the water, in order of abundance, are calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K). The major anions, in order of abundance, are bicarbonate (HCO $_3$), sulfate (SO $_4$), nitrate (NO $_3$), chloride (Cl), and fluoride (F).

The median, 10-percentile, and 90-percentile concentrations of each of these constituents and of other constituents and properties of the ground water are given in Table 3.

Table 3. Summary of chemical quality of ground water

Constituent or property		ation in ppm, except	for pH^1
Constituent or property –	10 percentile ²	Median	90 percentile ³
Iron (Fe)	0.05	0.11	0.68
Calcium (Ca)	58	83	133
Magnesium (Mg)	12	23	45
Sodium (Na)	2.9	6.2	26
Potassium (K)	1.0	2.4	7.0
Bicarbonate (HCO ₃)	189	286	376
Sulfate (SO ₄)	11	46	93
Chloride (C1)	7.2	16	46
Fluoride (F)	.0	.1	.2
Nitrate (NO ₃)	3.8	33	100
ABS	.01	.07	.14
Dissolved solids	270	391	568
Total hardness (as CaCO	3) 232	308	430
рН	7.20	7.46	7.75

¹ Based on 37 samples, except ABS which is based on 35 samples.

² Ten percent of samples have concentrations less than the value shown.

³ Ninety percent of samples have concentrations less than the value shown.

A few of these constituents are present in undesirably large quantities in the water from some wells and thus limit the usefulness of the water or require the water to be treated. Hardness in water forms scale in boilers, water heaters, and pipes, and consumes soap. Water from the carbonate rocks is very hard—only one well of the 37 wells sampled yielded water having a hardness of less than 200 ppm.

According to the U. S. Department of Health, Education, and Welfare (1962, p. 48-50), water containing more than 45 ppm nitrate is potentially dangerous when used in infant feeding. Infant methemoglobinemia, a disease characterized by certain blood changes and cyanosis, may be caused by the high nitrate concentrations in the water. Thirteen of the 37 sampled wells yielded water containing more than 45 ppm nitrate.

Iron in excessive amounts stains laundry a reddish-brown color and imparts an objectionable taste to water. The maximum iron content of drinking water recommended by the U. S. Department of Health, Education, and Welfare (1962, p. 43) is 0.3 ppm. The iron concentration exceeded 0.3 ppm in water from five wells in the Lancaster quadrangle.

The specific conductance of water is the ability of the water to conduct an electric current. It is generally expressed in micromhos per centimeter at 25°C. Field determinations of specific conductance were made on samples from approximately 460 wells, including 44 of the 47 samples sent to the laboratory for complete chemical analysis. The relation between field determinations of specific conductance and dissolved-solids content of the 44 samples is shown on Figure 7. The coefficient of correlation is 0.97 (the coefficient of correlation is 1.00 for a perfect correlation). Because of this close correlation, Figure 7 can be used to convert the 460 field determinations of specific conductance shown in Table 4 to dissolved-solids content.

CONCLUSIONS

Ground water in the carbonate rocks occurs in bedding and cleavage planes, joints, faults, and other fractures. Where these openings have been enlarged by solution, large amounts of water may be available. The number and size of the openings and the degree of interconnection between them determine the ability of the carbonate rocks to transmit water.

The specific capacities of 247 wells were determined in order to evaluate the ability of the carbonate rocks to yield water to wells. The specific capacities, determined from 1-hour pumping tests, ranged from 0.02 to 600 gpm per foot. Twenty-five percent were less than 0.14, 50 percent were less than 0.91, and 75 percent were less than 5.0.

Specific capacities of wells in carbonate rocks appear to be related to topography, and wells in valleys generally have the greatest specific capacities. Of 16 wells having specific capacities greater than 50, 12 are

17

Figure 7. Groph showing the relation of field determinations of specific conductonce to dissolved-solids content.

in valleys, 3 are intermediate in topographic position, and 1 is on a ridge. Of 9 wells having specific capacities greater than 100, 7 are in valleys, and 2 are in intermediate positions.

A general relationship exists also between specific capacities and depths of wells. Shallow wells generally have the highest specific capacities, and deeper wells have the lowest. Median specific capacity is 4.8 gpm per ft for wells less than 50 feet deep, 2.5 for wells 50 to 99 feet deep, 0.51 for wells 100 to 199 feet deep, and 0.08 for wells 200 to 600 feet deep. In areas where little water is encountered at shallow depths, it is unlikely

that the yield of a well can be increased appreciably by deepening the well. The probability of finding moderate quantities of water in the carbonate rocks, therefore, is increased by drilling several shallow wells instead of one deep well.

Ground water in the carbonate rocks is of the calcium bicarbonate type. The water is very hard—only 1 of 37 wells sampled has a hardness of less than 200 ppm. Nitrate contamination is common, as 13 of the 37 wells sampled contain more than 45 ppm nitrate, the maximum considered acceptable by the U. S. Department of Health, Education, and Welfare.

REFERENCES

- Gray, Carlyle, Shepps, V. C., and others (1960), Geologic map of Pennsylvania, Pennsylvania Geol. Survey.
- Hall, G. M. (1934), Ground water in southeastern Pennsylvania, Pennsylvania Geol. Survey, 4th ser., Bull. W-2, 255 p.
- Jonas, A. I., and Stose, G. W. (1930), Geology and mineral resources of the Lancaster quadrangle, Pennsylvania, Pennsylvania Geol. Survey, 4th ser., Geol. Atlas 168, 103 p.
- Kauffman, N. M. (1960), Climates of the states, Pennsylvania, U. S. Department of Commerce, Weather Bureau, 20 p.
- U. S. Department of Health, Education, and Welfare, Public Health Service (1962), Drinking water standards, Pub. No. 956, 61 p.

TABLES 4, 5, and 6

Record of wells Table 4.

Well number: See text for description of well-numbering system.

Method of construction: Drl, drilled.

Well number

Static water-level: R, reported.
Use: A, air conditioning; C, commercial; D, domestic; I, industrial; Irr, irrigation: 0, observation; Ps. public supply; S, stock; U, unused. CaCO3 (grains per gallon) (Field analysis) 1 Water quality Hardness as ance (micromhos at 25°C) Specific conduct-Use 02 02 02 02 A \dot{A} $\dot{A$ (gpm per foot) Specific capacity Depth below land Surface (feet) water level 4 6 8-28-63 9- 6-63 9-13-63 8-28-63 8-28-63 8-23-63 8-30-63 8-30-63 9- 4-63 5-21-63 9- 4-63 8-16-63 8-19-63 $\begin{array}{c} 5 - 24 - 63 \\ \mathbf{5} - 24 - 63 \\ \mathbf{5} - 21 - 63 \\ \mathbf{5} - 27 - 63 \\ \mathbf{5} - 28 - 63 \\ \mathbf{5} - 28 - 63 \\ \mathbf{6} - 14 - 63 \\ \mathbf{6} - 13 - 63 \\ \mathbf{6} - 13 - 63 \end{array}$ Static 9 - 11 - 63Date measured of easing (feet) 2 40 20 Depth to bottom 24 24 24 24 22 22 22 *** œ 路路路 12 12 12 12 12 12 Total depth (feet) 206 65 82 44 45 502 300 1120 150 38 180 230 200 70 50 85 57 53 53 53 90 22 casing (inches) Diameter of Method of construction $1963 \\ 1948$ 1963 1949 953 953 953 953 949 952 955 963 960 954 1958 952 961 945 960 900 1953 Date completed P. Myers Martin Fischer R. Myers' Sons, Inc. Myers' Sons, Inc. E. Miller Myers' Sons, Inc. Myers R. Myers' Sons, Inc. R. Myers' Sons, Inc. Myers Myers' Sons, Inc. Martin Fischer Driller E. Miller Wm. Myers Wm. Myers Myers مز مز به به به ن به Millersville Borough Authority Phares W. Livengood Clarena K. Keener Sterling Elmer Melvin M. Groff Theodore Eastridge L. Ralph Frey Richard H. Witmer Robert S. Shenk Mrs. Elmer Charles Robert H. Rohrer 19nw0 John M. Hoffman Howard Shaub Paul H. Rohrer Jacob L. Hess David K. Miller Norman E. Davis Sarry McComsey Cameron Hawley Edward Broomer Robert D. Shoff Aaron Brubaker Abram Kilheffer Elton Hostetter H. R. Albright Paul Moseman Steward Grim Roy Eshelman Sam Sinopoli Lee Brenner Fotal depth: R, reported. 616-1618-1 620 - 1622-1 625-1 628-1619-1623 - 1001-615-1 000-615-1

																													-	- 1	
16	14	13 15 25 25	12 24 4	10	2000	250 200 200 200 200 200 200 200 200 200	25.5	∞ -	7	21	127	-	11	18	CT 1	12	11	ۍ <u>د</u>	9.6 9.6	19	14	16	0.71		16	16 7.	12		13 96	18	
750	640	850 750 720	540 950	380	225 230 230 230	700 1390	1130	$\frac{1210}{1100}$	0011	950	ე 0 1-0 1-0 0	2	540	550	440	450	370	340	000		290	590	860		610	700 200 200	475		1950 1995	775	
טפר	900	2000	s S			⊃ ∞ ⊢	D, S	- ـ	, -, -	ئ ت؛	ع ۵	Q	D	೮	⊃ v2	ప	D	O 6	J Ž	Ĝ	82	Q f	۾ د	- H	Q	ة ۵	e o	D	ם ב	a a	
2.6 .09	16	0.8 .43 .51	13 3.2 4	1.2	1.6	.0°.	16	30	∞ 61	4.5	14. 96	0.03	00	920	. c.	1,4	31	.12	90.	.58	.42	79.	9 :i ç	0.7	œ	17	.91	9.	± 20 20 20 20 20 20 20 20 20 20 20 20 20	.12	
80 83 80 83 80 83	5 61 6 41 6	70 40 48 88	252	0 0 7 0 0 7	9	91	4.	201 601	1817	20	<u>-</u> +	55	38	* •	4 0 8	17	6	L- 6	7.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00	- 61 - 41	50	22		20 R	17	320	1 00	34	0 00 0 00	30	
9- 6-63 8-28-63 9- 5-63	8-30-63	8-27-63 8-22-63 5-24-63	8-26-63 5-23-63 8-55-63	5-27-63	6- 7-63	8-6-63	8-13-63	8-19-63 8-27-63	9-1-63 9-5-63	8-30-63	9- 0-63 9- 3-63	9- 3-63	8-27-63	6-13-63	5-20-63 5-20-63	5-21-63	5-23-63	6-12-63	6- 7-63	8- 6-63	8-8-63	8-14-63	8-22-03		8-1-63	8-26-63	8-15-63	8-16-63	8-19-63	8-26-63	
	35	30	18						160	007											4	- - ι	ය ද ස	0.0							
80 R		110 R 90 R	20	90 R		400 R		152	155 155 R	# # # # # # # # # # # # # # # # # # #			136		129 K 100 R									475 R			<50 R	อื่อ	6# /	80 R	
9 9	9	့	တ္လ	9 9	. 99	ယယ္တ	90	သောင	ာတောင	9 9	တင	9	9	ဖ္ ပ	၁ၑၟ	9	9	9 9	-	9	9	9	20	၀ မ	9	တ္ဖ	ာဖ	9	တ္ဖ	9	
11 T	E E E			Drl Drl	DEC.		E E :	Z Z		E 2	_ _ _ _	Drl	Drl	D'I	D I	Drl	Dr1	Did Tid	Drl	Drl	Drl	Drl	1 2	Drl	Drl	בים הים	Drl	Drl	בים חבים	I I	
	1949	1959 1959 1961	1958	1952	$\frac{1952}{1900}$	1947	1948	1949	1936 1994	1934	1958 1933	1926		1046	1340		1935	1953	1959	1950	1963	1001	1934	1001		1956	1953				
Herr The Pump Man	P. Myers	Wm. Myers R. Myers' Sons, Inc. do	Martin Fischer	R. Myers' Sons, Inc.	R. Myers' Sons, Inc.	P. Myers	op			Ben Miller	Myers		R. Myers' Sons, Inc.		Miller			Martin Fischer	Martin Fischer	R. Myers' Sons, Inc.	P. Myers	do	Miller Yours' Cong Inc	_		R. Myers' Sons, Inc.	R. Myers' Sons, Inc.				
Rockford Museum Maynard Southard David T Comenhafer	Richard Fitzgerald	Robert Hudson John M. Kilheffer L. Howard Martin	H. H. Haverstick, Jr. Ivan Charles, Sr. Harold Wilkinson	Ray W. Gibble Charles S Habecker	Jacob Siegrist Morris Kauffman	K. P. Williams Charles B. Hess Dormatit Co	James R. Landis	John G. Fetter Eher Reese	Watt and Shand	Charles Spidle	Kobert McMurtrie Harry L. Overton	A. D. Medsger	Harry Kreidy	Gulf Oil Corp. Ergnt Honno	Flain meine Ben E. Mann Estate	Garden Spot Air Park Inc.	Amos Burkhart	Martin Fischer Manniae Buth	William Dellet	Benjamin F. Haum	Robert Glass	H. Eshelman	Consumor Lea Co	do	Mr. Esbenshade	Julia Hagen Calder Mfg Co	Joseph B. Resch	Jessee Epps	Mr. Brubaker Glenn Huber	Mrs. Louis Lockwood	
619-1	300	621-1 622-1 622-1	623-1	001-625-1	3 628-1	$\frac{2}{002-615-1}$	300	616-1	618-1	619-1	621-1	63	8	622-1	1-620 2	624-1	C 1 (300	627-1	003-615-1	C1	616-1	617.1	7-110	60	618-1	620-1	621-1	53 CC	ক	

Record of wells—Continued

Table 4.

Hardness as CaCOa (grains per gallon) Water quality (Field analysis) 1 ည်တေသ 0 6 **-**66 18 11 11 11 11 11 11 11 26 3 315 370 300 900 450 925 840 ance (micromhos at 25°C) 340 325 170 320 350 -ponpuos syroads əsn Ø 02 02 ¢ ď 0.160.03 .09 0.17(gpm per foot) 1.5 Specific capacity Depth below land Depth below land Static water level 223 223 224 224 230 233 233 233 240 253 112 227 227 227 227 238 247 247 247 247 $\begin{array}{c} 8-16-63\\ 6-27-63\\ 10-12-62\\ 10-12-62\\ 10-23-62\\ 10-23-62\\ 10-23-62\\ 10-23-62\\ 10-9-9-62\\ 10-9-9-62\\ \end{array}$ $\begin{array}{c} 10 - 9 - 62 \\ 10 - 9 - 62 \\ 10 - 23 - 62 \\ 10 - 23 - 62 \\ 10 - 24 - 62 \\ 10 - 24 - 62 \\ 10 - 24 - 62 \\ 10 - 24 - 62 \\ \end{array}$ $\begin{array}{c} 10 \cdot 10 \cdot 62 \\ 10 \cdot 12 \cdot 62 \\ 6 \cdot 12 \cdot 62 \\ 10 \cdot 10 \cdot 62 \\ 10 \cdot 10 \cdot 62 \end{array}$ 10-24-62 10-24-62 $\begin{array}{c} 10-24-62 \\ 10-24-62 \\ 10-24-62 \\ 10-24-62 \end{array}$ $\begin{array}{c} 10 - 24 - 62 \\ 10 - 24 - 62 \\ 10 - 24 - 62 \end{array}$ 0-24-620 - 10 - 62[0-10-62]Date measured Depth to bottom of easing (feet) 00 69 2 80 R 160-180 24 24 24 まま 24 24 2 24 24 24 24 $\frac{142}{228}$ Total depth (feet) 44 65 95 90 42 5220 009 27 28 78 78 127 200 298 25 casing (inches) တစ္ တစ္ တစ္ တစ္ ဖ ဖ 00 ယ္ Diameter of construction Dr.I F Method of 194619631962 1961 1959 958 $1962 \\ 1958$ 1948 1951 Date completed H. K. Honberger Sons Honberger Sons K. Honberger Sons K. Honberger Sons K. Honberger Sons K. Honberger Sons Aaron W. Martin Driller H. K. Hor Kauffman H. K. Hor ۲. Ξ Musser Potatoe Chips, Inc. West Hempfield Township Clayton Diffenderfer Chris Miller Estate Sander Machine Co. Amos K. Mellinger Owner Eugene Hinerdeer Haldy Becker Robert M. Steffy David H. Hubley Jacob L. Charles Minnie Habacker Burrichter I. Arthur Swarr John C. Butzer Dave Hostetter Joseph Sebelist Howard Witmer John H. Conrad Margaret Ness Jarl Slinkman oseph Forrest oseph Forrest Ralph Hubley Jacob Bowers Alma Ditzler Edward Getz loyd Miller C. L. Heller Moses Shirk Shoab 628-262901 to 4 to œ 410 91-8 622-1 2 624-1625-1 01 00 004 - 615 - 1616-1 627 - 1626 - 1Well number

24 22 22 23 23 23 11 11 12 14 17 17 17	$\frac{18}{10}$	∞ ೧	13 11 15 15	16 16 9 12	######################################	12 11 13
1090 640 980 650 1040 960 590 590 1250	$725 \\ 480$	400 450	350 520 450 410 600	690 800 450 470	575 500 630	500 470 510
S. L. C.	T O O	s D Q C	တင်သန္တီဝိ: တေသ	ගග ⊃ග⊡ධ්ටිග ි	- s c	р, s
88 20 60 8 2 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.2	8.8	$\frac{0.04}{30}$			
191 833 833 833 833 833 833 833 833 833 83	13	15 8 46	31 6 16 16	4 658 658 658 7	38 20 27	17.
7-25-63 7-29-63 7-29-63 7-29-63 7-31-63 6-14-63 7-1-63 7-2-63 7-3-63 7-3-63 7-7-63 7-7-8-63	$\begin{array}{c} 6-24-63 \\ 10-25-62 \end{array}$	10-25-62 $10-25-62$ $8-20-63$ $10-22-62$	$\begin{array}{c} 10-25-62\\ 10-9-62\\ 10-9-62\\ 10-22-62\\ 10-22-62\\ \end{array}$	10-22-62 10-22-62 10-23-62 10-23-62 10-5-62 10-5-62 10-5-62	$\begin{array}{ccc} 10 & 5 - 62 \\ 10 & 8 - 62 \\ 10 & 9 - 62 \end{array}$	10-9-62 $10-9-62$
21 44469440120 444 22 66446140100 444	22	13			65	
118 160 B 1101 B 101 C 2022 B 2022 B 2022 B 1122 B		18 12 26 K 49	35 8 855 R 60 R	2016 2018 2018 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50	165 R 88 R 30	20 33
	9	9	9	99	9 9	
	Drl Dug	Dug Drl Dug	Dug Dug Drl Drl	Dug Dug Drl Dug	Dri Dri Dug	Drl Dug Dug Drl
1947 1960 1930 1938 1938 1959 1962 1962 1962 1962 1962 1962 1962 196	Drl 1953 Drl Dug	Dug Dug 1948 Drl Dug	Dug Dug Drl Drl 1955 Drl	Dug Dug Dug 1915 Drl Dug	Dri Dri Dug	Drl Dug Dug Drl
	Fischer 1953				R. Myers' Sons, Inc. Drl Drl Dug	Dri Dug Dug Dri
Tonberger Sons 1947 1960 1930 1930 1938 1959 1962 1962 1962 1962 1962 1962 1962 1962 1962 1962 1962 1962	do Martin Fischer 1953		er 1 ater Authority H. K. Honberger Sons R. Myers' Sons, Inc. 1955	rs' Sons, Inc. 1915	Sons, Inc.	Daniel G. Forrey Dug Elmer Musser Drl

Table 4. Record of wells—Continued

uality	Hardness as Salono Bardness as Salono Bardness as Salono Bardness as per gallono Bardness as per gallo	17	14	15 14	12 20 19	12	15	77	13	$\frac{16}{27}$	19	13	19	16	132	20	8 8 8 8 8 8	112
Water quality	Specific conduct-	650	450	500 540	750 750	440	290	857 057 077	200	450 750	100	2000	650	740 650	1040 580	006	$\frac{1200}{980}$	750 650
	9sU	D, S Ps, I	D, S) <u>a</u> a	s D's	D C C		Ö, C		D, S D		s c c c		, , , , ,		Ps &		D, S
	Specific capacity (gpm per foot)		200	0.1	0.05			66.0	1	0.62			9	0.30	2.4			
ater level	Depth below land surface (feet)	13	31	8 8 8 8 8 8	26 49 7	16 10	36 15	15	8 8 8	26	2.2 4.4	30 14 5	0 T C	2 8 70 9 4 0	29 64	36 41	5.4 2.8 3.8	37
Static water level	Date measured	$\frac{10-22-62}{10-22-62}$		10 - 2 - 62 $10 - 2 - 62$		10 - 2 - 62 $10 - 2 - 62$	10 - 2 - 62 $10 - 5 - 62$	10 - 5 - 62 $10 - 5 - 62$	10 - 5 - 62 $9 - 24 - 62$	9-24-62 $9-24-62$	9-24-62 $9-24-62$	10-10-62 10-24-62	9-24-62	9-24-62 $9-25-62$ $9-25-62$	9-25-62 $10-12-62$	$\begin{array}{c} 10-12-62 \\ 9-25-62 \end{array}$	9-25-62 9-25-62	9-25-62 9-26-62
	Depth to bottom of casing (feet)		11												09	09	16	
(feel) diqeb latoT	20 175 R	36		30 R 200 R		105 R 19	21 >195 R	12 20 20	30 R	30 150	15 R	16 97 B	940 R 90 R	58 425 R		143 R	72 41
	Diameter of casing (inches)	9	9	9	9	9	9	ç	>	9		હ	. .	ာမာ	9	999	တ္	9
	Method of construction	Dug Dr1	Dug Drl	Dug Drl	Dug Drl Drl	Dug Drl	Drl Dug	Dug	Dug	Drl Drl	Drl	Dug Dug	Dug		Drl	Dri		Drl Dug
	Date completed	1947	1960	1960	1953 1936	2	1936	1954			1900			1956	$\frac{1908}{1958}$	1957	6	1940
	Driller		H. K. Honberger Sons	Sam Kaylor	Martin Fischer Peter Shēm	R. Myers' Sons, Inc.	do					P Muses Cone Inc		R. Myers' Sons, Inc.	H. K. Honberger Sons	op	Sons,	R. Myers' Sons, Inc.
	19UWO	Robert Bender Amherst Industries	Paul E. McKinney do	Daniel H. Fox R. J. Kline	do Ernest J. Sauder do	do Lloyd Nolt	do do	R. B. Nolt I. Harlan Burkhart	E. Robert Nolt John Melhorn	Paul Conley Herbert Hilkemeir	Faul_Conley	Howard Musser Emma Musser Honey Millor	do do Ames Narin	Chris Nolt, Sr. Nissley Estate	Robert Lichtz Lloyd Miller	do Henry Mellinger Forneth Algebraic	Aenneth Alexander Lloyd Derr Welligm V Figure	William K. Fogle Charles Gantz
	Well number	9	004 - 626 - 1	€5 4	1001	· ∞ တ	11	21 22	$\frac{14}{14}$	63 co •	4	5 6 6 1	ଟେସ ଫ ମ	4 ro	9	629-1	M 00 ≥	#10

111 151 160 160 160 170 170 170 170 170 170 170 170 170 17	28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29
6 6 40 70 70 70 70 70 70 70 70 70 70 70 70 70	1700 925 950 950 950 605 605 600 600 600 600 600 600 600 6
ପ୍ରସ୍ଥ୍ୟର ପ୍ରସ୍ଥର ପ୍ରସ	r
0.15 0.1 .1 .36 6.8 3.8 7.4 .38 .38 .36 .59 .65 .66 .65	0.09 0.91 28 0.05 0.06 0.06
0 0000 0100000000000000000000000000000	0 6 0 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	11- 1-62 11- 1-62 11- 1-62 11- 1-62 11- 2-62 11- 2-63 6-18-63 6-18-63 6-18-63 10-23-62 10-23-62 10-25-62 10-25-62 10-25-62 10-25-62 10-25-62 11- 1-62 11- 1-62 11- 1-62 11- 1-62 11- 1-62 11- 1-62 11- 1-62 11- 1-62 11- 1-62
20 20 20	53
200 R 60 R 60 R 123 R 70 R 160 R 160 R 143 R 69 R 143 R 141 R 141 R	232 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
တတ္ထက္လက္တရာ တတ္ တတ္ တ	0 4 0 0 0 0 d d 0
	D D D D D D D D D D D D D D D D D D D
1950 1963 1948 1955 1955 1956 1960 1960 1953	1957 1943 1962 1962 1964 1954 1959 1956
H. K. Honberger Sons R. Myers' Sons, Inc. R. Myers' Sons, Inc. Ernst R. Myers' Sons, Inc. P. Myers R. Myers' Sons, Inc. R. Myers' Sons, Inc. R. Myers' Sons, Inc. R. Myers' Sons, Inc.	do R. Myers' Sons, Inc. H. K. Honberger Sons H. K. Honberger Sons R. Myers' Sons, Inc. Sam Kaylor R. Myers' Sons, Inc. R. Myers' Sons, Inc.
Charles Fogie Warren Fletcher Donald L. Miller do C. S. Loechner Clyde Mumma Cyrus Graybill C. Sinz E. E. Murry Elmer Landis E. J. Danz Charles C. Dombach Robert T. Campbell Mrs. M. L. Smith Bell Telephone Co. S. Clyde Weaver, Inc. Walter E. Evans Filmer K. Kreider P. G. Gingrich Selena Landis	John S. Landis do Wayne Hottenstein J. Mark Swarr Landis Metzler do Beulan E. Neff Schurt Propane Co. W. Scott Nissley Benjamin Landis do Ama Bowers Lloyd Denlinger John Hartman do W. E. Alexander Martin B. Thomas Earl Landis do W. E. Alexander Martin B. Gochnauer John B. Gochnauer do Leroy Bricker G. Nelson Arthur Miller
6 8 9 10 11 12 005-615-1 616-1 617-1 618-1 619-1 620-1 621-1	25 26 27 28 28 28 28 28 28 29 20 20 21 21 21 21 21 21 21 21 21 21

1	_	per gallon)	•														
	quality	Hardness as CaCos (grains	12 8	$\begin{array}{c} 21 \\ 20 \end{array}$	12	$\frac{17}{23}$	17	18		18	20 17 14	14	30	13	13	18	17
	Water quality	Specific conduct- ance (micromhos (9°62 th	480 350	810 745	480	740 960	640	640		650	800 640 640	530 625	$\frac{1200}{450}$	520	525	710	640
		θSΩ	u D. s U	SDC	2 w =	യ യയ	S. D. S	a	n	D, S	o D S S	99	Ωw	D, S		s D, E	D, S
		Specific capacity (gpm per foot)				0.64		1.7					1.2	1	1.6	0.95	
	iter level	Depth below land	128 138 138 128	12 16 33 91	# 61 6 # 60 7	4 60 61 6	178	23 29	30	44 44 53	3.23 1.34 1.0	11 36	26 19	32	33 98	296	16
	Static water level	Date measured	$\begin{array}{c} 10 - 22 - 62 \\ 10 - 22 - 62 \\ 10 - 22 - 62 \\ 10 - 26 - 62 \\ 10 - 26 - 62 \\ 10 - 30 - 62 \\ \end{array}$	10-30-62 $9-24-62$ $9-24-62$ $10-5-62$	10-8-62	10- 8-62 10- 8-62 10- 8-62	10-1-62	10 - 1 - 62 $10 - 1 - 62$ $10 - 1 - 62$	10 - 1 - 62 $10 - 2 - 62$	10 - 2 - 62 $10 - 8 - 62$	10- 8-62 9-20-62 9-20-62	9-20-62 9-20-62	9-20-62	9-28-62	9-28-62	10- 1-62	10- 1-62
		Depth to bottom (1991) gaisso lo				35		20									
	(Total depth (feet	17 22 29 10 16	26 95 21 67 67		230 R 88 R	545 R	193 192 R 29	4 6 6 5 5	159 29	300 R 40 R 26	12	36 46	34	120 R 29	150 R	e e
		Diameter of casing (inches)	t -	9 9		9	9	တ္ မ	9	9	9		9	,		9	,
		Method of construction	Dug Drl Dug Dug Dug	Dug Drl Drl Drl	Dug		Dri	Dri Dug	Drl Dug	Drl Dug	Dug Dug	Dug Drl	Dug Dri	Dug	Drl	Dri	Dug
		Date completed				$\frac{1959}{1950}$					1960			1870	1941	1930	
		Driller				R. Myers' Sons, Inc. M. A. Stoltzfuss		Sam Kaylor			R. Myers' Sons, Inc.				R. Myers' Sons, Inc.	Gill	
		тэпиО		Henry J. Wickenheiser Harry S. Mumma do Raymond Hess Edward Wisclar	do do Paris Paris	J. Clayton Bender do John L. Charles Ron Hace	J. Miller Eshelman & Son, Inc.	J. Allier Espelman & Son, Inc. J. Lester Charles do	Minnie Gantz	Jacob Burkhart	J. H. Nissley do	John Nissley Mrs. Amos Newcombe	Mrs. Elizabeth Newcomer	Joseph A. Hook	do Henry Eby	E. W. Wissler	J. Newcomer
		Well number	61 60 4 10 60 F-	8 9 10 625-1	າ ຄາ ເ	4 TO O F	626-1	¹ 1 €2 ♣4	io.	9	627-1	ಬ 4	က တ	2	∞ ၈	10	12

									21
17 16 18	11 14 18	5 23 5	23 12 28 28	26 15 18 18	18 19 13 13	16 14 16	13 13 15 15 23	36 14 13 13 22 28	17
625 610 600	450 480 780	690 750	$\begin{array}{c} 1000 \\ 1000 \\ 1000 \end{array}$	840 400 650 650	760 980 990 550	700 680 525	1410 535 950 640 675	3000 620 655 490 790 945	57 52 52
8 20 20 20		-		တ်ဝန်မြင် တောင်းကို	igi-aac		o o o o o o o o o o o o o o o o o o o	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D c s D
.21	0.12	0.07	(0.08 1.1 7.3 .06	71. 4.1 7.		0.09		
235 1922 19	8448 62 83	34 91 47	2000 2000 8000 8000 8000 8000 8000 8000	33 13 38 38	1 0 8 1 c 1 0 4 8 8 8	000000000000000000000000000000000000000	351520 351520 351530	21 13 13 14 11 11 14	18 11 34 17
10- 1-62 10- 1-62 9-20-62 9-20-62	9-20-62 9-20-62 9-20-62 9-20-62	9-20-62 $9-21-62$ $9-21-62$	9-21-62 9-21-62 9-21-62 9-21-62	9-21-62 7-17-63 7-19-63 7-11-63	7-16-63 $8-5-63$ $7-10-63$ $7-11-63$ $6-9-63$	7 - 8 - 63 $9 - 17 - 63$ $6 - 5 - 63$ $10 - 31 - 62$	10-31-62 10-31-62 10-31-62 11- 2-62 11- 2-62 11- 2-62 6-10-63	9-17-63 $9-26-62$ $9-26-62$ $9-26-62$ $9-26-62$ $9-26-62$ $9-26-62$	9-26-62 $9-26-62$ $9-28-62$ $10-30-62$
20	20		12	22		13			
190 R 35	189 R 60 R		160 K 55 R 141 R 47	75 R 110 R 200 R	126 265 R 57 84 R 80 B		35 K 27 28 R 28 R 27 27 160 R	28 T 28 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26 125 151 125 R
မှ မ မ	9	9 (9 6-	ကလောက	ာဗထတမ	10 6 6	9	9 9	9 9
Drd Drd Drd Drd	Dri Dri Dng	Dug Dug	Drl Dug Drl Dug	ZZZZZ		Dri Dri Dag	Drl Dug Dug Dug Dug	Dri Dri Dug Dug Dri	Dug Drl Drl
1957 1850	1932	1937	1923 1959	1926 1963 1958	1920 1920 1929 1941	1942 1920 1941 1951	1951	1957	1932 1957
R. Myers' Sons, Inc.	Herr The Pump Man R. Myers' Sons, Inc.	R. Myers' Sons, Inc.	R. Myers' Sons, Inc.	R. Myers' Sons, Inc.	ao R. Myers' Sons, Inc.	R. Myers' Sons, Inc.	R. Myers' Sons, Inc.		R. Myers' Sons, Inc.
13 14 Eshelman's Quarry 628-1 Engel Bros.			629-1 Lloyd Swarr 2 Jacob Ginder 3 Benjamin Ginder 4 Paul Erb 5 Paniel Stoltzfus	6 do do 006-615-1 John H. Shirk 2 Meronite Mission Board 616-1 Fira D. Landis		- · · · -		9 Nora Landis 9 2 Wenger 2 do 3 Henry S. Lehman 4 Nelson Cooper 5 Henry Kettering 6 do 7 do	Mrs. Clyd Edw

Table 4. Record of wells—Continued

alysis) 1	Hardness s CaCO3 (gr per gallon	21 21 44 61		26 15	16 11 23	27 17 18 18 18	28 16	117	15 15 21	19	31	16 16	17 16	15 21	17
	Specific co ance (mici at 25°C)	$\frac{1230}{1480}$		$\frac{1120}{600}$	690 440 1000	630	995 625	710 535	700 802 802	755	1070 555	605 655 655	640 775	570 770	715
	əzU	2, D, S	•ddc		0,0,0 8 88	S S S	ממר	S. D. S.	S, Irr D, S	D	ಯಯರ	s angen		D, Irr D, S,	D, S
	Specific (gpm per	29			0.11							0.05		0.03	
bns wol	Depth be	386 33 8	20 00 11 C	31 11 26	=82°	12.5	12 13 13	10	313 R	©1 ∞	22 14 R	-1 33 IS C	∞ 10 m of or or	∞ £1 €	5 10
Static water level	Date mes	$10-30-62 \\ 10-30-62 \\ 10-30-62$	$\begin{array}{c} 10.30.62 \\ 10.30.62 \\ 10.30.62 \\ 10.30.62 \end{array}$	10-30-62 $10-31-62$ $10-31-62$	10-31-62 $10-30-62$ $10-31-62$	10-30-62 9-24-62	9-24-62 $9-24-62$ $9-24-62$	9-24-62 9-25-62	9-25-62 9-25-62 9-25-62	9-25-62	9-25-62 9-25-62	9-25-62 9-25-62 9-28-62 9-28-62	9-28-62 $9-28-62$ $11-7-62$	11-16-62 $11-16-62$ $11-16-62$	11-16-62
	Depth to											12			
(1991) dig	Total dep	220 R 96 R	27 63 R 400 R		142 27	204 R	40 R	11	15 R	44 120 R	122 300 R	24 225 R 160 R	163 37	16 170 R 37	- o
	Diamete Casing (9			9	9						99	9		
	Method	Drl Drl	Drg Drg	Dri Dug	Dug Drl Dug	בים סבו	Drl Dug	Dug Dug	Dug Dug	Dri Dri		Dug Drl Drl	Drl Drl Dug	Dug Drl Dug	Dug
npleted	Date cor				1958	1942					1962	1947 1958	1960		
	Driller		R. Myers' Sons, Inc. R. Myers' Sons, Inc.	ρ	Martin Fisher						R. Myers' Sons, Inc.	R. Myers' Sons, Inc. R. Myers' Sons, Inc.			
	Owner	John B. Noll do do	John F. Cope do John F. Cope	blam Bollinger Daniel Rohrer, Jr.	Leroy Hottenstein do	Arthur J. Ulrich John G. Weidler do	do Willis Weaver	do Emma Gaul Amos Roland	do Albert Nissley	do do	Kendig Rohrer	J. Robert Eshelman Wm. C. Burkhardt Charles Sload	Mrs. Marle Keineare do Henry Rohrer Crotte E Mohrek	Gustal E. Malinorg William Dyer do	Menna W. Heisey
mber	ınu IIəW		15 17	10 10 10 10 10	1 61 63 1 61 63	624-1	100 4 1:		∙တတ္	11	12	14 15 16	17 19 19	22 22 25	53

																									29	
24 19	18	19	25	17	12	18		124	,	14 14	121	20	16	11	13	10	12	13	17	15 8	11	55	10	21	20	
980	006	680 525	1275 1300	690	580	640		700 600		640 725	200	900	740	200	009	650	550	570 750	200	425 600	$\frac{400}{880}$	590 550	420	028	730	
													••		_							_				
s a	SQ.	D, S	an	ς. Σ		חם	<u> </u>	20	þ	D, S	D	Q	D, S		D, S U	Q		D.S.		D	റ്റ	-	်င္က လေ		=	
0.03						0.04		67					0.02					74	4.8			00 1.5)		0.05	
47 19 8	12.	: 11	14	113	41	27 69	19	61 +	30	23 39	17	19	63 62 63	25 9	15 17	÷	10	36 36	59 63	50 65 50 65	58 41	10 10 12 01	51	9.7 2.7	C 01	
10-29-62 10-30-62 10-30-62	$\frac{11-16-62}{11-19-62}$	$\frac{11-19-62}{11-19-62}$	$\frac{11-19-62}{11-19-62}$	11-19-62	10-29-62	10-29-62 $10-99-62$	10-29-62 $10-29-62$	10-29-62	11-23-62	9-28-62 $9-28-62$	9-28-62 $9-28-62$	9-28-62 $9-28-62$	9-28-62 $9-28-62$	10-1-62 $10-1-62$	10-29-62 11-28-62 11-28-62	20-82-11	11-29-62	$\frac{11-29-62}{9-28-62}$	9-28-62 9-28-62	$\frac{9-28-62}{9-28-62}$	10 - 8 - 62 $10 - 30 - 62$	11-29-62	11-29-62	9-19-62 $11-28-62$	$\frac{11-28-62}{11-28-62}$	
ı												20		50								53			ø	
200 R 190 R 12	2 TO 80	175 R 92 R		16 38	00	940 B		65 R		15 49		102 R		243 R 29	125 R 125 R	80	43 500 R	88	65 82	200 R	62	233 R	53	55	86 127 R	
																				9				:o		
9	9	9			9								တ္ ထ							_		99	,	-		
			Dug Dug	Dug		Drl	Dug	T T T	Dng	Dug Dug	Dug Drl	Dug Drl			Dug Drl Drl	Drl	Dug Drl	Drl Dug	Dug Drl		Dug Drl			Dug	Drl Drl	
				Dug		Drl	Dug	Drl 1961 Drl		Dug Dug	Dug Drl	Dug 1952 Drl	Drl Drl		Dug 1961 Drl 1961 Drl	Drl		1957 Drl 1800 Dug			Dug Drl				Drl 1957 Drl	
Sons 1936 Drl		Drl 1959 Drl		Dug		Drl Drl	Dug	Sons 1961		Dug Dug	Dug Dr1	Inc. 1952	Drl Drl	Inc. 1959 Drl Dug	. Inc. 1961 1961	Drl	. Inc. 1936			Dug r Sons 1956 Drl	Dug Drl	Inc, 1950 Drl			Inc. 1957	
Drl S 1936 Drl Dug		gr L		Dug		Drl Drl	Dr.t Dug	1961		Dug Dug	Dug Dr1	1952	Drl Drl	. 1959 Drl Dug	19 61 1961	Dug Drl	1936			Sons 1956 Drl	Dug Dr1	1950 Drl			1957	
Sons 1936 Drl		Drl 1959 Drl		a place	ruction Co. Drl		K. U. Steinmetz Enos W. Witmer Dug	H. K. Honberger Sons 1961				Inc. 1952	Drl Drl	R. Myers' Sons, Inc. 1959 Drl Dug	. Inc. 1961 1961	Harold W. Wert Drl	. Inc. 1936	1957		Dug H. K. Honberger Sons 1956 Drl	Donald Newcomer Dug John S. Haines Drl	Inc, 1950 Drl	Dug		Inc. 1957	

Table 4. Record of wells—Continued

,		
uality Ilysis) Hardness as CaCos (grains per gallon)	49498444 498999999999999999999999999999	13 16
Water quality Specific conduct- ance (micromhos at 25°C) Hardness as CaCos (grains plantaments) Agricultuments Randness as	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	068 830
92U	and the second s	D, S S S
Specific eapacity (gom per foot)	13.0 1.4 	
Depth below land (1991) sanface (1991)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23
bernessured bennessured bennessured bennessured bennessured dided deed deed deed deed bennessured bestnessured bennessured bestnessured bennessured be	7-19-63 7-19-63 7-18-63 7-17-6-63 7-21-63 7-21-63 7-21-63 7-21-63 7-16-63 7-16-63 11-5-62 11-5-62 11-5-62 11-15-62 11-15-62 11-15-62 11-15-62 11-15-62 11-15-62 11-15-62 11-15-62 11-16-63 11-16	11- 6-62 11- 6-62
motto ot the Dector	7 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Total depth (feet)	200	20 20
Diameter of casing (inches)	တ္တက္လက္လက္လက္လက္လက္လက္လက္လက္လက္လက္လက္လက္လက	9
Method of construction		Dr1 Dug
Date completed	1952 1952 1962 1962 1963 1963 1964 1965 1966 1978 1978 1978 1978 1978 1978 1978 1978	
Driller	H. K. Honberger Sons R. Myers' Sons, Inc. do do H. K. Honberger Sons Samuel Kaylor R. Myers' Sons, Inc. do do H. K. Honberger Sons R. Myers' Sons, Inc. Sam Kaylor R. Myers' Sons, Inc. Go R. Myers' Sons, Inc. R. Myers' Sons, Inc. R. Myers' Sons, Inc.	
төпиО	Henry E. Shenk Edward Hess Maurice Young D. Martin Zinmerman Warren Snyder Jacob Toews R. D. Buckwalter do Mrs. Helen Thomas Enos Good Henry Delp Dalle L. Landis Ivan Snyder Willis Peifer Willis Peifer Willis Peifer Willis Peifer Ann Landis G. Longenecker do Mary Grayle A. H. Whistler Aaron L. Martin do Many Grayle A. H. Whistler Annon L. Martin do Titus Nolt Robert N. Miller John L. Cassel Good Henry W. Stauffer Merry W. Stauffer	Amos Sauder
Well number	615-1 616-1 618-1 618-1 7 82-1 621-1 621-1 7 621-1 10 10 10 10 624-1 7 7 621-1 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	4

																													-	
13	12	15	16	14 13	13	17	er .	12	G &	14	122	14	14	15	61 63			125	61	13	12		•	12	10	14	10	14	13	
550 590	600	640	650	525 590	570 740	740	2	500	400	620	790 540	099	650	630	1140			000 200 200	070	635	200		1	010 500	460	580	400	552	705	
D. S.	& ⊃_,⊗	ΩD		0,0 8 8	ř D	s. L	: =	S S	2 02 2 02 2 03	Ir.	<u> </u>	s `⊂`;	20 D C		, , ,	n	םם	S S		s ∵:	D. S.	Ω	S. Irr		D, S	<u> </u>	2	s C	<u>ء</u> د	
	0.93				œ Ic								8.7					0.02		009				0.18						
24 26 14	13 20	18 16	$\frac{20}{15}$	55 56 50 50 50 50 50 50 50 50 50 50 50 50 50	2 2 2 3 3	105	3000	61 e	44.6	88	3.0 4.0	7-	d 1~	77:	41	333	37	49 30	41	က ရ က က	0 00 0 0 00 0 0 00 0	33 8 4 7	47	0 10 21 00	09	65		25	3 6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11- 7-62 11- 9-62	11 - 9 - 62 $11 - 9 - 62$	11 - 9.62 $11 - 14.62$	11 - 7 - 62 $11 - 15 - 62$	$\frac{11-15-62}{11-15-62}$	$\frac{11-16-62}{11-16-62}$	11-16-62	11-16-62	11-19-62	11-19-62 $11-19-62$	$\frac{11-19-62}{11-21-62}$	11-21-62	$\frac{11-21-62}{11-21-62}$	11-21-62	11-21-62 $11-21-62$	11-21-62	11-21-62 $11-21-62$	11-23-62	11-23-62 $11-23-62$	11-23-62 $11-23-69$	11-23-62	11-26-62 $11-26-62$	11-26-62	11-26-62 $11-26-62$	11-26-62	11-26-62	11-26-62 $11-26-62$	11-27-62	11-20-62 $11-27-62$	
30						200																					65			
27 250 R 17	16 180 R		23 18	306 R 98 R		>600 R	588 176	9 00 C	60 80 R		160 R 34		180 80 R	150 R	42 200 R	40	25.4 4.8 8.8	156 44	43	180 R 42	45	4.8 4.8	100 R	203	62	94 R		80 R	33 120 R	
9	9	9		9	9	9			9		9	¢	၁ မှ	9						မ			c	ວນດ	,	9	9	9		
Dug Drl Dug	Dug Drl	Drl Dug	Dug Dug	T T	Drd Dag		Dug	Dug	đZ Ž	Drig	D'rl D'ug	P T	וים סבו	Drl	Dug	Dug	Dug	Drd	Dug	Dr.	Dug	Dug Dug	L D		Dug	Drl	Ē	Dri	Dr.	
1961		1930		$1945 \\ 1943$	1957						1961	000	1907	1957				1930					1080	1958			1942		1948	
R. Myers' Sons, Inc.		R. Myers' Sons, Inc.		R. Myers' Sons, Inc.	op	R. Myers' Sons, Inc.			R. Myers' Sons, Inc.		R. Myers' Sons, Inc.			R. Myers' Sons, Inc.		D Meane' Cone Inc				R. Myers' Sons, Inc.			H. K. Honberger Sons	n. Myers Sous, Inc.			H. K. Honberger Sons	R. Myers' Sons, Inc.	R. Myers' Sons, Inc.	
John M. Becker Willis Z. Esbenshade	Clayton R. Nissley Leroy Esbenshade	Lucy C. Gross Trust Estate	do Harry Becker	John N. Metzler Mrs. John Eby	do Leon Schnupp	Wilmer Esbenshade	qo	John N. Metzler	Howard Brubaker Donosylvania Stata University	do do state ourseistey	J. Earl Witmer E. Witmer	op ,	Jacob H. Harnish Nissley Erb	C. Robert Fry	H. Henry Martin	Roy Henny	ao Lester Gehman	Henry L. Shelley		J. Harold Esbenshade Lerov Konn		Harry K. Shenk Harry Musser, Jr.		00 Q0	Levi Snyder	Benjamin S. Ebersole Iones B. Brubaker	W. S. Carter	Amos N. Shelley	uo Clarence Douple	
1091	-∞ი	10	13	625-1	ಣ ₹	4 TO CE	t-	∞ ≎	10	12	626-1	100	4 ro	9	t-	627-1	ಚ ಣ	4 K	,	φ t-	- 00	9 628-1		51 cc	4	ro a) t-	∞ •	12	

	nality elysis) 1	Hardness as CaCOs (grains per gallon)	16	$\begin{array}{c} 12 \\ 20 \end{array}$	12	45.55	155	16 14	15	13	18 13	19 16 16	11	17	14 10	12 13
	Water quality	Specific conduct- ange (micromhos) f 25°C)	069	$500 \\ 810$	500 500 500 500	630 510	700 200 200	670 520	525	490 800	370 370 570	690 600 575	520	650	600 450	530 620
		əsU	D, S	& ⊙ () & ;	D, S	s O O O O	တွင် လူတိုင်း	2, 2, 8	o a i	S D, S	B, S	i, s		, A Q 8 & 8	s S,C	I S
		Specific capacity (gpm per foot)		0.04	1.6	0.05	i 75 e	$\frac{1.2}{.05}$			1.7	13	ž 7	0.15 .03 .35	.05 6.3 6.3	1.0 .14 350
-	ter level	Depth below land surface (feet)	50 50	25 28 28 38	0118	2014 80 H	3.0 44	88 4 8 8 83 8	27 21 21	27 67 67 6 4. 63 68 F	23. 10 10	ග ස ස ස ස	4000 21014	48 53 53	72 39	ာ့တစ
	Static water level	Date measured	11-27-62	11-21-62 11-27-62 11-28-62	$\frac{11-28-62}{11-28-62}$	7-22-63 6-28-63	8-15-63 6-27-63	7-15-63	11- 9-62 11- 9-62	11 - 9-62 $11-14-62$ $11-14-62$	11-14-62 $11-15-62$ $11-14-62$	11-14-62 11-15-62 11-15-62	11-15-62 $11-21-62$ $11-21-62$	7-25-62 $7-25-63$ $7-26-63$	7-22-63	8- 1-63 8- 2-63
		Depth to bottom (1991)									20	12		35		
	(1991) Afgeb latoT	64	22 168 R	25 R		180 R 100 R	G	98 R		23 n 180 R	11 66 150 R	59 44	265 R 101 R		135 R 27 R
		Diameter of casing (inches)		•	D	9 (စ္တစ္	99	9	9 9	9	မှာမ		သတတ	999	စ္တေ
		Method of construction	Dug Drl	Dug Dri				FG C	Drl	Dag Dag	Dug	Dag Dri				
-		Date completed				1959	1955 1955 1959	1951	1924	1901	1961	1957		$\frac{1948}{1941}$	1953	1950
		Priller					R. Myers' Sons, Inc.		R. Myers' Sons, Inc.		R. Myers' Sons, Inc.	R. Myers' Sons, Inc.		R. Myers' Sons, Inc.	Aaron Martin	R. Myers' Sons, Inc.
		Очпет	Gruber Bros.	Acy Saucer David G. Miller James Garber	J. B. HOSTETTEL do Mr. Thomps	G. P. Wenger Paul Coble	Lanco Earl Minnich John D. Burkholder	Affred Longer Ivan Hoover Leby V. Googl	A. H. Weidman	ao Manheim Auto Auction Kaufinan Menonite Church	Paul G. Brubaker John K. Cassell	ab do Andrew N. Miller	uo Isaac Garman Isaac Garman Tetta Itoman	Aan Balmer Harold Spangler	Richard Hess Titus B. Martin George Wiles	Samuel Kulp Animal Trap Co.
		Well number	13	629-1	১০ বন ম	008-616-1 618-1	620-1 620-1	622-1	7-620 620	0 4.70 A	624-1	626-1 4	ეთ 4 გ	009-615-1	616-1 2 $617-1$	10100

		119 120 17		23 114 18 114 18		11522011
55 55 55 55 55 55 55 55 55 55 55 55 55	480 500 550 650 800	009 069 069	830 1100	1100 600 730 510 550	606 530 530 560 660	550 500 500 660 660 680 520
Dr I I Dr Ps			Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			S S S
500 500 500 500	.05 .54	.15 .15 16 0.07	30 0.06 6	1.9 3.8 3.8 1.90 1.90	0.06 .03 .16	47 47 72 72 10 10 61 61
16 9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4.05.44 4.05.44 9.05.44	60 60 61 61	3 3 2 1 2 3 3 4 4 4 5 4 4 5 4 4 4 4 4 4 4 4 4 4 4	81 4 4 6 4 1 8 8 8 6 6 6	17 R 83 R 12 12	0.00000000
7-29-63	8-20-63 8-20-63 6-28-63	6-25-63 6-25-63 7-12-63 7-12-63	6-26-63 7-11-63 1956 7-11-63	7-25-63 8-14-63 7-29-63 6-26-63 6-25-63	8-15-63 8-14-63 8-19-63	7-31-63 8- 2-63 8- 2-63 7-31-63 8- 14-63 8- 1-63 7-31-63
12		50	33	# 9	30 30 21	40
132 R 42 R 123 R 27 R 91 R 66 R			100 R 145 R 265 R 200 R 300 R 312 R			156 R 42 R 102 R 240 R 260 R
6 10 10 10	မြေပာပ	ဗောမ္	တ္ဆမတ္တ	တက္ကာတာကသက	းထတ္ မာဇာ	ာတတ္ထုတ္တုတ္
1961 1930 194 2	$\frac{1962}{1960}$	1943 1953	1957 1937 1956 1956 1956	1951 1954 1955	1957 1962 1963 1963	1959 1959 1925 1959 1960
R. Myers' Sons, Inc. R. Myers' Sons, Inc.	R. Myers' Sons, Inc. do	R. Myers' Sons, Inc.		n. Myers Sous, Mc. do M. A. Stoltzfuss	R. Myers' Sons, Inc. Samuel Kaylor R. Myers' Sons, Inc. Grant	R. Myers' Sons, Inc. do Robert Grant John and Alan Mays
Robert Risser Morgan Paper Co. do Lititz Water Co. do do	Paul Scot John Josep	Carl Lougenecker Paul E. Balmer Frank Earhart	Paul Sauder Clarence Keener do David Moseman U. S. Asbestos Co.		A. Robert Satem Noath Kreider & Sons Melvin Oberholtzer Edward K. Bollinger Paul B. Martin Jacob Holsinger	
618-1- 1-618-4-70-3-1-	8 9 9 619-1	620-1 2 3	621-1 622-1 2 623-1 3	4 010-615-1 2 618-1 619-1 620-1	$\begin{array}{c} 621-1 \\ 622-1 \\ 622-1 \\ 011-615-1 \\ 2 \\ 616-1 \\ 9 \end{array}$	012-615-1 2 3 616-1 616-1 013-615-1

1 Date of field analysis measurement is the same as shown for static water level.

Table 5. Record of springs

nunsed.
j.
stock;
Š,
public supply;
public
Ps,
irrigation;
Irr,
domestic;
Ü,
commercial;
Ú
Use:

					Water	Water Quality (Field analysis)	alysis)
	Owner	Topographic position	Estimated yield (gpm)	Use	Date measured	Specific conductance (micromhos at 25°C)	Hardness as CaCo ₃ (grains Fer gallon)
003-625-A 004-620-A 626-A 626-A 628-A 628-A 628-A 628-A 626-B 626-B 626-B 626-B 626-B 626-A 626-B 626-A 626-A 626-A 626-A 626-A 626-A 626-A 626-A 627-A 627-A 627-A	Latan Heisey Ray Rice Willis Esbenshade East Hempfield Water Authority R. B. Nolt John Melhorn Rebecca Heisey Amos R. Herr Raymond Hess B. B. Brannerman Estate Wilbur Heistand James Newcomer Alvin Reist East Petersburg Water Authority Clarence Metzler Elam Bollinger Hottenstein Bros.	Valley floor do d	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D, S D, S P, S D, S D, S D, S Trr	10-24-62 10-24-63 6-17-63 10-22-62 10-5-62 10-5-62 10-8-62 10-8-62 10-8-62 9-24-62 10-8-62 10-8-62 10-8-62 9-24-62 10-8-62 9-24-62 9-24-62 9-24-62 9-24-62 9-24-62 9-24-63	250 250 250 250 250 250 250 250 250 250	2880 7 :01121 20142 201421 20142 2
	Menno W. Heisey Ivan H. Snyder Iohn H. Metzler James Ganber	Valley hoor do do Head of draw	တ	D. S D	11-10-62 5-31-63 11- 7-62 11-28-62	0000 0000 0400 0000	112 122 8

indicated)
as
except
er million
per
parts
i
(Results

1		ı																				
	ιHq		7.26 7.53 7.47	7.24	7.23	7.21	7.14	7.46	7.34 7.7	7.61	7.53	7.30	7.68	7.47	7.34	7.67	7.83	7.72	7.30	7.31	7.49	7.32
ance t	Specific conduct (D°Cs) (D°S)		742 741 688	804 588	758	1,380	810 467	582	81 70 70 70 70	454 454	1650 1925	923	101	1675	670 1495	413	520	310	1900	658	742	1655
ness	Non-car-		163 117 127	109	157	346 143	86	00 X	100	27 24	$\frac{90}{118}$	111	170 c	114	о С и	38	1 1 1 1	ç ç	134	79	80	47
Hardness as CaCOs	Calcium, Magnesium		370 300 301	415 274	387 430	630 430	24.0 23.0 20.0 20.0	308 308 309	430	583 583 783	344 448	436	101 101 101 101	340	340	192	241	282	384	279	352	316
	Davlossi sbilos		481 459 425	496 398	494 601	919 586	505 505	342 330	476	200 200	363 554	55.0 55.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	280	379	412 524	240	298	525 195	568	414	424	360
	SAA		0.12 .10	90.	133	[2] [1]	.06 14	0.09	10		:	0.0		CI.	.02	.01	60.	40. 10.) ·	.03	90.	
	Nitrate (NO3)		73 73 85	18	14.9 14.9	101 101 101 101 101 101 101 101 101 101	222	57	39	. 1 . 2	.5	36	192	46	302	39	200	9 6 5 75	102	69	14	851
	Fluoride (F)		0.2	T. 6	i-i-c	-:-		0	0.0	йÖ	-:0:	oʻ c	jo	9.7	9.0		<u>-:</u> •		. –	ej c	<u>٠</u>	0.
	ebiroldD (ID)		26 62 36	29 44	17 17 46	55 44 44	20 00 00 00 00	9.8 8.8	127	4.00 4.00	19 36	32	6,4	34 16	18	4.7	11	4 G	33	24	14	8.6
	otsilu2 (408)	\	32 40 40																			
	Bicarbonate (HCO_3) ¹	Count	2222 2244 213	$\frac{376}{157}$	286 250	351	396 210	294 296	403	330	$\frac{311}{408}$	193	243	279	306	188	236	114	309	245	338	338
	muissatoT (X)	aster	9.91 4.4.70	es – ei rë	11.0 70.0	34.5	90 90 90 90 90 90 90 90 90 90 90 90 90 9	4.6	4.0	10:2	91 PO O O	0 h	i — - i ni c	12.0	0.7	0.4	1.8	0 6 0 10	32	24 7	14	4.2
	muibo2	1 ()	9.1 29 14																			
	muisəngald (gld)		19 16 16	129	17.0	170 - 140	122	324	14.	0 0 0 0	40 12	49	100	300	90	122	42	32	45	35	33.0	12
	Calcium (Ga)		117 94 94	118	128	164	133	622	83	59 29	25 25 27 27	46	900	752	27.0	4. 4. 0. 0.1	70 J	δ. 4 8 8	80	59	87	107
	letoT esenegnem (nl4)		0.00	9,8	98	ioi S	900	133	0.0		==	98	90.	8.1.	9. <u>-</u>	30.	00.) () ()	90.	00.	00.	.43
	noti IstoT (94)		2.1 .0.4 .0.0	80.	200	500	4.	0.07	20.5	.12	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	0.04	900	.080.	0.0		.05	, i.e.	.07	0.5	.03	.48
	Silies (sOis)		10 9.6 5.5	11:	125	2 × 2	100	1.0 1.0	o o o o	ນ ∞ ພໍ∞່	6.3	7.9	9.6	∞ ∞ vici	7.6	6.6	7.7	o o o in	8.80	7.3	7.7	7.7
	Temperature		ი გან 444 გან	7.45.7 7.50 7.50		5.4.5 7.5.5	2000 40	ю 4.п	101 002 1	6.25 6.35 6.75	25 25 25 25	υς 1 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.	. 4.2.	56.5 56	ւ Տու	6 75 6 45	156 1	υ π 4 κ υ	54.	00 00 00 00	54 54	54.5
	Date of collection						10-18-63												10-3-63	4-16-64	4-17-63	10-3-63
	Well or Spring number		$\begin{array}{c} 000-615-2 \\ 616-1 \\ 616-1 \end{array}$	620-2	001-622-1	002-615-1	693.9	003-615-2	2-2-2-0-0	616-1	617-3 618-1	618-1	626-2	005-620-1	620-1	621-1	623-2	-15 A-629	006-617-1	617-1	627-4	007 - 620 - 2

1		ı													
		¹Hq	7.26	7.46	7.42	7.55	7.31	7.58	7.20	7.36	7.51	7.53	7.43	7.48	
		Specific conduction (micromhore)	612	713	536	518	0991	665	266	992	1680	628	1515	1500 523	1
	Hardness as CaCO ₃	Non-car- bonate												49 50	
	Hard as Ca	,muisleD muisengeM	290	269	266	248	348	338	269	343	308	312	260	244 278	3
		oevlossi Q sbilos	379	424	309	282	399	395	391	465	370	389	301	270	
		SBA	.02	.05	Ξ.	.10		00:	.03	60:		00.		-10	
		etertiN (sON)	58	39	46	33	ci	сi	3.x	100	12]	30	34	37	5
		əbiroul쥑 (뒥)	0.	0	-	0.	Τ.	0.	0.	0.	Η.	0.	Τ.	-:-	<u>:</u>
		Ohloride (ID)	12	10	14	9.3	8.0	8.4	17	34	13	19	13	8.0	>
		offilus (4OS)	25	42	7.4	21	26	22	105	21	54	35	16	9	4
		Bicarbona (HCO ₃)												24.0 24.0 21.0	
	ι	Potassiun (K)	7.0	2	1.0	1.5	5.	2.0	c]	0.9	1.0	2.0	1.5	1.0	3
4		muibo2 (sN)	35	30.0	4.	5.0	6.5	8.0	11	22	4.5	0.9	6.0	დ. ₹). †
4	u	nisəngaM (gM)	6											18	
1		muiəlsƏ (sə)	101	000	8	8	101	96	83	83	75	74	83	69	4
	ә	letoT senrgnem (nM)	9	0.7	10	030	0.80	00.	2.	00.	.07	00.	.05	.04	2
	τ	nori IstoT (94)	00	200	9	000	2.5	32	6	.14	1.78	.07	.11	800	9
		soilie (sOis)	ν. α	9.0	, oc	o oc	7.5	14	19	8.57	=	10	8.7	7.9	T.,
	F.6	Temperatu (T°)	R C	210	910	ъ.	220	54	55.5	54	45	33	53	10 H 4 c H	0.00
		Pate of -oslico noit	4-16-64	4-10-63	6-20-63	4- 4-63	10-21-63	4-17-64	4-17-63	4-16-63	10-23-63	4-23-64	10 - 23 - 63	10-21-63	4-11-04
		o lleW Spring redmun	6-069	6000	6.27-6	858-3	008-619-1	619-1	624 - 1	626-1	009-616-1	616-1	618-6	012-615-2	010-F

¹ Determined at collection site.