Retour sur trace & Induction

Programme de colle

Semaine 19 (03 février 2025 – 08 février 2024)

Programme

Retour sur trace

- Exploration exhaustive : concept, limites de l'approche.
- Exploration exhaustive par une fonction récursive, en construisant une solution choix après choix.
- Fonction de rejet et retour sur trace. L'importance de l'ordre dans lequel on fait les choix a été illustré sur des exemples, mais n'est pas un attendu.
- Limites de l'analyse de complexité pire des cas pour un retour sur trace.
- Exemples traités : n dames, subset sum (avec des entiers positifs), tour ouvert du cavalier d'Euler, mot ternaire sans carré.

Induction

L'objectif n'est pas de faire de la théorie des ordres, mais de reconnaitre les contextes où l'on peut faire un raisonnement par induction et de savoir en rédiger un.

- Relation d'équivalence.
- Relation d'ordre. Prédecesseur, prédecesseur strict, prédecesseur immédiat. Ordre partiel, ordre total.
- Relation d'ordre bien fondée.
- Thm : on peut faire des raisonnements par induction si et seulement si l'ordre est bien fondé.
- Ex : nombre d'objets dans un mobile de Calder (un arbre binaire strict à f feuilles a f-1 noeuds internes).

- Ordre produit : définition, conservation du caractère bien fondé, nontotalité.
- Ordre lexicographique : définition, conservation du caractère bien fondé, conservation de la totalité.
- Ex : preuve du fait que la fonction Ackerman est au-moins sur-linéaire en son second argument.
- Ordre engendré par une relation acyclique.
- Ensembles inductifs : un ensemble défini apr induction est l'ensemble des éléments que l'on obtient en appliquant un nombre fini de fois les règles de construction.
- Induction structurelle.

Les arbres n'ont pas encore été vus.

Et plus

Tout ce qui a été fait depuis le début de l'année est au programme. De plus, certains exercices peuvent tout à fait s'écarter du programme pour tester votre réactivité face à l'inconnu.

Questions de cours

Toute colle commencera par une de ces questions de cours, notée sur 10/20. Une tolérance vis-à-vis de la syntaxe pourra être appliquée sur les questions d'implémentations si l'élève n'est pas sur machine.

• Les questions de cours des semaines précédentes.

• On conidère la fonction suivante :

$$A:(n,x)\in\mathbb{N}\times\mathbb{N}\mapsto\begin{cases}x+1\text{ si }\mathbf{n}=0\\A(n-1,1)\text{ si }x=0\\A(n-1,A(n,x-1))\text{sinon}\end{cases}$$

Prouver par induction bien fondée sur $(\mathbb{N}^2, \leq_{lex})$ que pour tous n et x on a A(n, x) > x.

• Proposer en OCaml une fonction qui réalise la fusion triée de deux listes triées 10 et 11 . Prouver sa terminaison, et expliquer à l'oral sa correction.