House Price Prediction

Submitted By:

-Swati Jaiswal

Overview

 Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement celling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

Used library in this system

- Raw data of houses taken from Kaggle website where 550 data of houses are taken.
- Uploaded to Jupiter notebook at the place of workstation
- Imported pandas which is used for working with datasets; allows us to analyze big data.

Used library in this system

- Import **math**: This module provides access to the mathematical functions
- Import matplotlib pyplot: Pyplot is a collection of functions in the popular visualization package Matplotlib. such as creating a figure, creating a plotting
- **Seaborn** is a library for making statistical graphics in Python area, plotting lines, adding plot labels, etc.

Used library in this system

- Import numpy: mathematical operations and scientific calculations.
- The **line warnings.filterwarnings**('ignore') is used in Python to suppress warning messages.
- **Sklearn**: sklearn is efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.

- Imported all required libraries required for the project.
- pd.read_csv helps to work with dataset.
- house.head() is used to display the data in the datasets.
- house.shape(): It provides the dimensions of a DataFrame or Series.(rows and columns)

- Info() is used to get information of current data (i.e.
 Column and Datatype)
- Isnull().sum() is used to identify null value in datasets (i.e. among 550 data)

- House.Price.describe(): to generate summary statistics for price column only.
- House.dtypes: to know the data type of different columns.

- Duplicate().sum is used to identify duplicate data in dataset. Hence, I have not found duplicate data (....set() to remove duplicate).
- house.select_dtypes(include=['int64', 'float64']: This selects only the columns in the DataFrame house that contain numerical data types (int64 for integers and float64 for floating-point numbers).

Correlation Heatmap

- plt.show(): Finds how strongly each number column is related to the others.
- The heatmap makes it easier to see which factors impact house prices.

Histogram of all numerical features

 Creates histograms(graphical representation) to show the distribution of different values in the dataset.

Function to plot categorical features

- Defines a function to make bar charts of categories like "air conditioning" and "furnishing status".
- Helps understand how common different house features are.

Distribution of Price

 plt.show(): Shows how house prices are spread out (most houses are in what price range?)

• Outlier: It refers data point that significantly differs from the majority of the other data points in a dataset. These values can arise due to variability in the data, measurement errors, or other anomalies.

- Uses boxplots to check if any values are too high or too low compared to the normal range.
- House.get_dummies(house,columns=categorical_features, drop_first=True)
- Converts categorical features (like "furnishingstatus": 'furnished' or 'unfurnished') into numbers.
- The drop_first=True helps avoid unnecessary extra columns.

- X = df_encoded.drop(['price'], axis=1)#input
- y = df_encoded['price']# output

[Separates the data into inputs (features) and output (house price to predict)]

- X_train, X_test, y_train, y_test = train_test_split (X,y,test_size=0.2)
- Splits the dataset into 80% training data (to train the model) and 20% test data (to check how well it predicts).

 Adjusts the scale of numerical values (important for Linear Regression).

Function to evaluate regression models

- Train Decision Tree Model, Train Random Forest Model, Train Linear Regression Model
- Prints how well each model performs.

Expected Accuracy (R² Score)

- Random Forest: ~85-92%
- Decision Tree: ~80-88%
- Linear Regression: ~75-85%

Predicting price for a new house

- Creates a new house with custom features.
- Uses the trained model to predict its price.

