Efficient Quasi-Monte Carlo Integration by Adjusting the Derivation-sensitivity Parameter of Walsh Figure of Merit

Ryuichi OHORI

Graduate School of Mathematical Sciences, The University of Tokyo

MSJ Spring Meeting 2015

This work is supported by the Program for Leading Graduate Schools, MEXT, Japan.

Quasi–Monte Carlo Integration over $[0..1)^s$

Approximate

$$I_f := \int_{[0..1)^s} f(x) \, dx$$

by

$$I_f^P := \frac{1}{|P|} \sum_{x \in P} f(x)$$

with some good finite subset $P \subset [0..1)^s$

$$\operatorname{err}_f^P := I_f^P - I_f$$

Walsh figure of merit

Let c be a parameter. If $P \subset [0..1)^s$ is a digital net, then

$$\left|\operatorname{err}_f^P\right| \le \|f\|_c W_c(P)$$

Good digital net P has small $W_c(P)$

Walsh figure of merit

Let c be a parameter. If $P \subset [0..1)^s$ is a digital net, then

$$\left|\operatorname{err}_{f}^{P}\right| \leq \left\|f\right\|_{c} W_{c}(P)$$

Good digital net P has small $W_c(P)$

Walsh figure of merit

If $P \subset [0..1)^s$ is a digital net, then

$$L_c W_c(P) \le \operatorname{err}_g^P \le \|g\|_c W_c(P)$$

where

$$g(x) = \exp\left(-2^c \sum_{0 \le i < s} x_i\right)$$

Aim of this research

We provide digital nets P with small $W_c(P)$ for $4 \le s \le 16$ and $|P| = 2^m$ where $8 \le m \le 30$ How to choose c?

Aim of this research

We provide digital nets P with small $W_c(P)$ for $4 \le s \le 16$ and $|P| = 2^m$ where $8 \le m \le 30$ How to choose c?

Derivation-sensitivity Parameter c

Parameter c controls the space \mathcal{F}_c of the functions f where

$$\left|\operatorname{err}_{f}^{P}\right| \leq \left\|f\right\|_{c} W_{c}(P)$$

holds

We choose c according to the dimensionality s and the size m

Derivation-sensitivity Parameter c

Parameter c controls the space \mathcal{F}_c of the functions f where

$$\left|\operatorname{err}_{f}^{P}\right| \leq \left\|f\right\|_{c} W_{c}(P)$$

holds

We choose c according to the dimensionality s and the size m

Result

- Digital nets obtained by this method is available on GitHub: http://github.com/majiang/adjust-dsp
- Example code is provided as a D library: http://code.dlang.org/packages/digitalnet

You can perform efficient QMC over tonight!

Result

- Digital nets obtained by this method is available on GitHub: http://github.com/majiang/adjust-dsp
- Example code is provided as a D library: http://code.dlang.org/packages/digitalnet

You can perform efficient QMC over tonight!

Result: slope of $(m, \lg W_{c(s,m_0)}(P_m))$

m_0	s = 4	5	6	7	8	9	10	11	12	13	14	15	16
8	-2.30												
9	-1.97			-1.95	-1.97		-1.97						
10	-1.85	-1.81	-1.80	-1.74	-1.70	-1.72	-1.68	-1.68	-1.69	-1.70	-1.74	-1.72	-1.76
11	-1.78	-1.71	-1.70	-1.64	-1.59	-1.59	-1.55	-1.53	-1.53	-1.52	-1.54	-1.51	-1.52
12	-1.72	-1.65	-1.64	-1.57	-1.52	-1.52	-1.47	-1.45	-1.45	-1.43	-1.45	-1.42	-1.41
13	-1.68	-1.60	-1.59	-1.52	-1.47	-1.46	-1.42	-1.40	-1.39	-1.37	-1.38	-1.36	-1.35
14	-1.63	-1.55	-1.54	-1.48	-1.43	-1.42	-1.37	-1.36	-1.34	-1.33	-1.33	-1.31	-1.30
15	-1.59	-1.52	-1.51	-1.44	-1.40	-1.38	-1.34	-1.32	-1.31	-1.29	-1.29	-1.27	-1.26
16	-1.55	-1.48	-1.48	-1.41	-1.37	-1.35	-1.31	-1.29	-1.28	-1.26	-1.26	-1.24	-1.23
17	-1.50	-1.45	-1.45	-1.39	-1.34	-1.32	-1.28	-1.26	-1.25	-1.23	-1.23	-1.21	-1.20
18	-1.45	-1.42	-1.42	-1.36	-1.31	-1.29	-1.25	-1.24	-1.23	-1.21	-1.20	-1.19	-1.18
19	-1.39	-1.39	-1.39	-1.33	-1.29	-1.26	-1.23	-1.22	-1.20	-1.19	-1.18	-1.17	-1.16
20	-1.33	-1.36	-1.36	-1.31	-1.27	-1.24	-1.21	-1.20	-1.18	-1.17	-1.16	-1.15	-1.14
21	-1.25	-1.32	-1.34	-1.29	-1.24	-1.22	-1.19	-1.18	-1.16	-1.15	-1.14	-1.13	-1.12
22	-1.17	-1.29	-1.31	-1.26	-1.22	-1.20	-1.17	-1.16	-1.15	-1.13	-1.13	-1.12	-1.11
23	-1.08	-1.25	-1.28	-1.24	-1.20	-1.18	-1.16	-1.14	-1.13	-1.12	-1.11	-1.10	-1.10
24		-1.21	-1.25	-1.22	-1.19	-1.16	-1.14	-1.13	-1.12	-1.11	-1.10	-1.09	-1.08
25		-1.16	-1.22	-1.19	-1.17	-1.14	-1.13	-1.12	-1.11	-1.09	-1.09	-1.08	-1.07
26		-1.11	-1.19	-1.17	-1.15	-1.13	-1.11	-1.10	-1.09	-1.08	-1.08	-1.07	-1.06
27		-1.07	-1.16	-1.15	-1.13	-1.11	-1.10	-1.09	-1.08	-1.07	-1.07	-1.06	-1.06
28		-1.02	-1.13	-1.13	-1.11	-1.10	-1.09	-1.08	-1.07	-1.06	-1.06	-1.05	-1.05
29			-1.09	-1.11	-1.10	-1.09	-1.08	-1.07	-1.06	-1.06	-1.05	-1.05	-1.04
30			-1.06	-1.09	-1.08	-1.07	-1.07	-1.06	-1.05	-1.05	-1.04	-1.04	-1.04

Summary

- Adjusts the derivation-sensitivity parameter (D.S.P.) of Walsh figure of merit (WAFOM)
- Provides digital nets $P \subset [0..1)^s$ with $|P| = 2^m$ for 4 < s < 16 and 8 < m < 30
- Slides, digital nets and example code are on http://goo.gl/kmwvJB

Summary

- Adjusts the derivation-sensitivity parameter (D.S.P.) of Walsh figure of merit (WAFOM)
- Provides digital nets $P \subset [0..1)^s$ with $|P| = 2^m$ for 4 < s < 16 and 8 < m < 30
- Slides, digital nets and example code are on http: //goo.gl/kmwvJB

Thank you for listening.