

Università degli Studi di Ferrara

Strategie informate

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

- Distanze da Bucarest in linea d'aria delle città raggiungibili da quella iniziale (Arad): Sibiu 253, Timisoara 329, Zerind 374
- Forse è meglio visitare prima il nodo di Sibiu (anche se non c'è garanzia che a minor distanza in linea d'aria corrisponda minor distanza stradale)
- Le strategie viste finora, nello scegliere un nodo, non considerano una stima del costo per raggiungere la soluzione dallo stato del nodo: per questo sono dette non informate
- Le strategie informate selezionano il nodo n da espandere considerando una stima (euristica) h(n) di tale costo

Greedy best first

- I nodi dal costo stimato minore sono presumibilmente i più vicini alla soluzione
- Inserisce i nodi nella frontiera in ordine crescente di h(n)
- greedy_best_first(problem, h) = best_first_search(problem, h)
- In Romania seleziona il percorso, Arad-Sibiu-Fagaras-Bucarest: a ogni passo la città più vicina a Bucarest in linea d'aria fra quelle corrispondenti a nodi aperti
- Tuttavia non trova necessariamente il percorso di costo minimo (come in questo caso), in quanto non considera il costo del percorso dal nodo iniziale a quello da espandere

Esempio greedy best first search

Figure 3.17 Stages in a greedy best-first tree-like search for Bucharest with the straight-line distance heuristic h_{SLD} . Nodes are labeled with their h-values.

- Per ovviare all'inconveniente del greedy best first search si possono ordinare i nodi in base alla somma dell'euristica h(n) e del costo g(n) del percorso fra il nodo iniziale e n.
- Questo è l'algoritmo A*, corrispondente al best first search con f(n) = g(n) + h(n)

Proprietà di A*

- Completezza: sì (se il costo di ogni transizione è $\geq \epsilon > 0$)
- Ottimalità: dipende dall'euristica. (n)
- Un'euristica è ammissibile se non sovrastima il costo: $h(n) \le h^*(n)$, dove $h^*(n)$ è il costo del cammino di costo minimo da n alla soluzione
- L'algoritmo A* con euristica ammissibile è ottimale: l'ammissibilità garantisce che le soluzioni migliori saranno considerate.

Difficoltà nella soluzione di problemi con ricerca

- Qual è la formulazione migliore?
 - rappresentazione di stati e azioni
 - giusto livello di astrazione
- Incertezza
 - Un'azione può portare a uno di più stati (non determinismo)
 - Stato iniziale non noto
 - Modelli probabilistici

