

St
$$(f(c))$$
 di $= c$

St $(f(c))$ $= di$ $= c$
 $f(c)$ $= di$ $= di$
 $f(c)$ $=$

2, as alway, is the shoolow price => If you tighten the constraint by t-vait (i.e. I unit more of the consumption basket), the abjective function (i.e. expenditure) moreoses by 2 For 1-unt home you need to pay λ have $\lambda = \lambda PRICE OF THE CONSUMPTION BASKET <math>\lambda = \left(\int P(t)^{1-\epsilon} dt\right)^{\frac{1}{1-\epsilon}}$ CCI)= (PCI) C => DEMAND FUNCTION function (p(i) C(i) di the expeditive

without
$$\rho(i)$$
 (i) di

$$\rho(i) \left(\rho(i) \right) \left(\rho(i) \right) = \left(\rho(i) \right) \rho \quad C = \left(\rho(i) \right) \quad \rho(i) \quad$$

From $\rho \in [\rho(i)] = [$

Where
$$\hat{y}_{t}$$
 effects level of a pot $\hat{y}_{t} = \hat{y}_{t} - \hat{y}_{t}$.

Where \hat{y}_{t} effects level of a pot $\hat{y}_{t} = \hat{y}_{t} = \hat{y}_{t} + \hat{y}_{t} + \hat{y}_{t} = \hat{y}_{t} + \hat{y}$

 $|S \times X_{t} = \mathcal{L}_{t} \left[X_{t+1} - G \left(i_{t} - \mathcal{U}_{t+1} \right) \right] +$