Sieci komputerowe

Wykład 10 IPv6

IPv4

Źródło: http://www.nic.ad.jp/en/ip/ipv4pool/

IPv4

Źródło: https://ipv4.potaroo.net

IPv4 w Europie

Z bieżących zapisów polityki RIPE:

On application for IPv4 resources LIRs will receive IPv4 addresses according to the following:

- 1. The size of the allocation made will be exactly one /22.
- 2. The sum of all allocations made to a single LIR by the RIPE NCC after the 14th of September 2012 is limited to a maximum of 1024 IPv4 addresses (a single /22 or the equivalent thereof).
- The LIR must confirm it will make assignment(s) from the allocation.

https://ipv4.potaroo.net/

Dlaczego IPv6

- Podstawowy i najważniejszy powód
 - Więcej adresów
 - Urządzenia PDA, telefony komórkowe, wszelkie urządzenia elektroniczne...
 - Nowi użytkownicy Chiny, Indie
- IPv5?
 - Internet Stream Protocol
 - Eksperymentalny
 - QoS

NAT

- Problemy z urządzeniami np. VoIP i wieloma protokołami
- Zmniejsza tempo rozwoju aplikacji i protokołów
- Zmniejsza wydajność i niezawodność
- Ale: bez NAT trzeba szczególnie zadbać o zabezpieczenie urządzeń końcowych

Zalety większej liczby adresów

- IPv6: 6,67x10²⁷ adresów na metr kwadratowy:)
- IPv4: ok. 8,5 adresu na km kwadratowy :(
- Łatwość autokonfiguracji
- Łatwiejsze zarządzanie adresacją
- Więcej miejsca na wiele poziomów hierarchii, możliwość efektywnej agregacji tras
- NAT nie jest konieczny

Zapis adresu IPv6

- Adresy 128bit
- Reprezentacja heksadecymalna z dwukropkiem po 16 bitach
- 2001:6a0:1:b001:21d:9ff:fe05:a97
- Skompresowana forma zapisu
 - $ff01:0:0:0:0:0:0:45 \rightarrow ff01::45$
- URL: http://[2001:6a0:1:b001:21d:9ff:fe05:a97]:443/

Równoważne zapisy

- 2001:06a0:0000:0000:0000:0000:1228:57ab
- 2001:06a0:0000:0000:0000:1228:57ab
- 2001:06a0:0:0:0:0:1228:57ab
- 2001:06a0:0:0::1228:57ab
- 2001:06a0::1228:57ab
- 2001:6a0::1228:57ab

Adresacja IPv6

- ::/128 adres nieokreślony (używany aby wskazać brak adresu IPv6)
- ::1/128 adres loopback (tak jak 127.0.0.1)
- ff00::/8 multicast
 - ff02::2 wszystkie routery
 - ff02::1 wszystkie węzły
- fe80::/10 link-local unicast
- fc00:/8 unique local unicast (ULA)
- Inne global unicast (RFC 3587)

Adresy Global Unicast

- Global routing prefix identyfikacja odbiorcy jego zbioru podsieci
 - Obecnie przydzielane prefiksy: 2001, 2003, 2400...
- Subnet ID identyfikacja podsieci wewnątrz sieci odbiorcy
- LIR otrzymuje /32
- /48 do /128 przydzielane dla użytkowników końcowych

Interface ID

- Zwykle budowane wg EUI-64 (ang. Extended Unique Identifier)
 - Choć są inne metody
 - np. ustawienie ręczne
 - generowanie pseudo-losowe

EUI-64

U/L – Universal/Local – dokonuje się inwersji

Kilka ćwiczeń

Link local

- Używany przy autokonfiguracji, gdy nie ma routera
- Umożliwia komunikację w sieci lokalnej

ULA

- Unique Local IPv6 Unicast Address
- Global ID są tworzone w sposób pseudolosowy

Własności ULA

- Dobrze znany prefiks, ułatwia filtrowanie na ruterach brzegowych
- Niezależny od usługodawcy (ISP)
- W przypadku rutowania poza sieć lokalną nie wystąpi konflikt

Autokonfiguracja

- ICMPv6 (m.in. Neighbor Discovery + Protokół Multicast Listener Discovery + SAA +...)
 - Stateless Address Autoconfiguration (SAA)
 - Na początku powstaje adres link-local
 - Tworzona jest wiadomość Neighbor Solicitation z wygenerowanym adresem jako docelowym, aby wykryć konflikt, jeśli nie ma konfliktu, adres jest przypisywany do interfejsu
 - Jeśli w sieci jest router, wysyła komunikaty Router Advertisement, w których informuje hosty np. o prefiksie unicast global

RADVD

- Linux IPv6 Router Advertisement Daemon
 - Wysyła komunikaty Router Advertisement
- Istnieje także implementacja DHCPv6
 - Lepsza kontrola nad adresacją
 - Możliwość przesyłania dodatkowych parametrów, np. adresów DNS
 - DNS mogą być ogłaszane także w komunikatach RA

W IPv6 ND zamiast ARP

- Neighbor Discovery:
 - Komunikaty:
 - Neighbor Solicitation Message (DA: multicast)
 - Neighbor Solicitation Advertisement (DA: adres IPv6 pytającego)
- Nie ma komunikatów typu broadcast

ICMPv6

Typ Znaczenie

Raporty błędów

Cel nieosiągalny (Destination Unreachable, RFC4443) 2 Pakiet za duży (Packet Too Big, RFC4443) 3 Przekroczono czas (Time Exceeded, RFC4443) 4 Problem parametrów (Parameter Problem, RFC4443) 127 Zarezerowano na potrzeby rozszerzeń protokołu Informacje Żądanie echa (Echo Request RFC4443) 128 Odpowiedź echa (Echo Reply RFC4443) 129 133 Zapytanie o ruter (Router Solicitation RFC4861) 134 Ogłoszenie rutera (Router Advertisement RFC4861) 135 Zapytanie o adres sprzętowy sąsiada (Neighbor Solicitation RFC4861) 136 Ogłoszenie adresu sprzętowego sąsiada (Neighbor Advertisement RFC4861) 255 Zarezerowano na potrzeby rozszerzeń protokołu

Nagłówek IPv6

+-+-+-+	-+-+-+-	+-+-+-	+-+-+	-+	+-+	-+-+-+	+-+	-+-+-	+-+-+-	+-+
Version		•								١
+-+-+-+	-+-+-+-	+-+-+-1	+-+-	-+-+	+-+-+	-+-+-+	+-+	-+-+-	+-+-+-	+-+
1	Payload	_		•			•	-		
+-+-+-+	-+-+-+-	+-+-+-	+-+-+	-+	+-+	-+-+-+	+-+	-+-+-	+-+-+-	+-+
+										-
+			Source	e Ad	ddress	5				+
1										
+										4
+-										
+										4
			_	_						
+		De	estinat:	ion	Addre	ess				+
1										
+										4
1										
	-+-+-+-+-	. 4 4 4 4	+-+-+	_ +	+-+-	-+-+-+-	+-+		. 4 - 4 - 4 -	4-4

Własności nagłówka IP6

- Prostsza budowa w porównaniu z IPv4
 - 40 bajtów (tylko 2x długość nagłówka IPv4)
 - Adresy 128 bit
 - Brak opcji i pół związanych z fragmentacją
 - Brak sumy kontrolnej nagłówka
 - Pole Next Header rozbudowuje funkcjonalność w efektywny sposób

Next Header

IPv6 header Next Header = TCP	·								
+	 Next Header = Next Header =		TCP header + data						
+	Routing header Next Header = Fragment	Fragment header Next Header = TCP	+ fragment of TCP header + data 						

Next Header c.d.

- Nagłówki różnych typów
 - Hop-by-Hop Options
 - Routing (lista adresów routing źródłowy)
 - Fragment (obsługa fragmentacji, ale nie przez routery pośrednie)
 - Destination Options
 - Authentication
 - Encapsulating Security Payload

Migracja do IPv6

- Nie trzeba rezygnować
 - Adresy i ruting IPv4 i IPv6 mogą współistnieć na danym interfejsie lub w sieci
 - Tunelowanie IPv6 po IPv4
 - http://tunnelbroker.net/
 - Aplikacje wybierają wersje protokołu IP bazując na istnieniu rekordu AAAA w DNS
 - Systemy operacyjne różnią się algorytmem decydowania, którego protokołu użyć, jeśli obydwa są dostępne.
 - Patrz też: RFC 6555 "Happy Eyeballs: Success with Dual-Stack Hosts"

Konfiguracja tunelu

Rejestracja:

- http://tunnelbroker.net
 - modprobe ipv6
 - ip tunnel add he-ipv6 mode sit remote 216.66.84.42 local 193.0.96.15 ttl 255
 - ip link set he-ipv6 up
 - ip addr add 2001:470:1f12:116::2/64 dev he-ipv6
 - ip route add ::/0 dev he-ipv6
 - ip -6 addr