!pip install seaborn

Requirement already satisfied: seaborn in /opt/anaconda3/lib/python3.12/site-packages (0.13.2)
Requirement already satisfied: numpy!=1.24.0,>=1.20 in /opt/anaconda3/lib/python3.12/site-packages (from seaborn) (1.26.4)
Requirement already satisfied: pandas>=1.2 in /opt/anaconda3/lib/python3.12/site-packages (from seaborn) (2.2.2)
Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.2.0)
Requirement already satisfied: contourpy>=1.0.1 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.51.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.4)
Requirement already satisfied: packaging>=20.0 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.3.2)
Requirement already satisfied: pillow>=8 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (10.3.0)
Requirement already satisfied: pyton-dateutil>=2.7 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.c)
Requirement already satisfied: pyton-dateutil>=2.7 in /opt/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.c)
Requirement already satisfied: pyton-dateutil>=2.7 in /opt/anaconda3/lib/python3.12/site-packages (from pandas>=1.2->seaborn) (2.024.1)
Requirement already satisfied: tzdata>=2022.7 in /opt/anaconda3/lib/python3.12/site-packages (from pandas>=1.2->seaborn) (2023.3)
Requirement already satisfied: six>=1.5 in /opt/anaconda3/lib/python3.12/site-packages (from pandas>=1.2->seaborn) (2023.3)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import seaborn as sn

data = pd.read csv("/Users/kavanamanvi/Desktop/PML/Final Project/heart.csv")

data.head()

→		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
	0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0
	1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
	2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0
	3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1
	4	54	М	NAP	150	195	0	Normal	122	N	0.0	Up	0

Data Information

data.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 918 entries, 0 to 917
 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	Oldpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64
dtype	es: float64(1),	int64(6), object	(5)
memoi	ry usage: 86.2+	KB	

Check for None values in features

data.isna().sum()

Comment

1. There are no None values/empty values

Data Description

data.describe().T

	count	mean	std	min	25%	50%	75%	max
Age	918.0	53.510893	9.432617	28.0	47.00	54.0	60.0	77.0
RestingBP	918.0	132.396514	18.514154	0.0	120.00	130.0	140.0	200.0
Cholesterol	918.0	198.799564	109.384145	0.0	173.25	223.0	267.0	603.0
FastingBS	918.0	0.233115	0.423046	0.0	0.00	0.0	0.0	1.0
MaxHR	918.0	136.809368	25.460334	60.0	120.00	138.0	156.0	202.0
Oldpeak	918.0	0.887364	1.066570	-2.6	0.00	0.6	1.5	6.2
HeartDisease	918.0	0.553377	0.497414	0.0	0.00	1.0	1.0	1.0

data.describe(include=['0']).T

	count	unique	top	freq
Sex	918	2	М	725
ChestPainType	918	4	ASY	496
RestingECG	918	3	Normal	552
ExerciseAngina	918	2	N	547
ST_Slope	918	3	Flat	460

Exploratory Data Analysis

Check for correlation

```
correlation_data = data.drop(columns = ["Sex", "ChestPainType", "RestingECG", "ExerciseAngina", "ST_Slope"]).corr()
correlation_data
```

		۰
-	۸.	÷
	7	3

	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	HeartDisease
Age	1.000000	0.254399	-0.095282	0.198039	-0.382045	0.258612	0.282039
RestingBP	0.254399	1.000000	0.100893	0.070193	-0.112135	0.164803	0.107589
Cholesterol	-0.095282	0.100893	1.000000	-0.260974	0.235792	0.050148	-0.232741
FastingBS	0.198039	0.070193	-0.260974	1.000000	-0.131438	0.052698	0.267291
MaxHR	-0.382045	-0.112135	0.235792	-0.131438	1.000000	-0.160691	-0.400421
Oldpeak	0.258612	0.164803	0.050148	0.052698	-0.160691	1.000000	0.403951
HeartDisease	0.282039	0.107589	-0.232741	0.267291	-0.400421	0.403951	1.000000

sn.heatmap(correlation_data, annot=True)

Comments on Correlation

- 1. From the correlation matrix and heatmap correlation table, there are no features that are correlated with each other.
- 2. There is no need to drop any feature/column from the data
- How "Age' Feature is effecting Heart Failure?

Or Is Age is perfect predictor of Heart Failure?

```
def pdf cdf graph(feature name):
    heart disease = data[data["HeartDisease"]==1]
    normal = data[data["HeartDisease"]==0]
    counts1, bin edges1 = np.histogram(heart disease[feature name], bins=10, density=True)
    counts2, bin edges2 = np.histogram(normal[feature name], bins=10, density=True)
    pdf heart disease = counts1/sum(counts1)
    pdf normal = counts2/sum(counts2)
   cdf_heart_disease = np.cumsum(pdf_heart_disease)
   cdf normal = np.cumsum(pdf normal)
    figure(figsize=(8,8))
   plt.plot(bin_edges1[1:], pdf_heart_disease, label = "pdf_heart_disease")
   plt.plot(bin edges1[1:], cdf heart disease, label = "cdf heart disease")
   plt.plot(bin_edges2[1:], pdf_normal, label = "pdf_normal")
   plt.plot(bin_edges2[1:], cdf_normal, label = "cdf_normal")
    plt.legend(loc = "upper left")
    plt.xlabel(feature name)
    plt.show()
```

pdf_cdf_graph("Age")

→ How RestingBP is impacting traget varibale

pdf_cdf_graph("RestingBP")

→ How Cholestrol is impacting target variable

pdf_cdf_graph("Cholesterol")

→ How MaxHR can differentiating traget variable

pdf_cdf_graph("MaxHR")

→ How Oldpeak is differentiating target variable?

pdf_cdf_graph("Oldpeak")


```
numerical_features = ["Oldpeak", "MaxHR", "Cholesterol", "RestingBP", "Age"]
for feature in numerical_features:
    sn.boxplot(x = "HeartDisease", y=feature, data=data)
    plt.show()
```


Comments on numerical feature analysis

- 1. All the numeircal features doesn't show much impact on target variable.
- 2. All the pdf and cdf graphs of all numericla features doesn't show much variation in differentiating target variable.
- 3. These numerical features pdfs and cdfs grpahs overlaps between heart disease and normal traget variable.
- 4. But from data description from kaggle, all these numerical features are important in differentiating target variable.
- 5. From Box cox plot also most of data differentiating Heart Disease and Normal are over laped.
- 6. In general, from data description, these fetaures should differentiate the target varibale and the reason for not shoing difference is due to some noise in the data

Analysis on categorical variables

```
categorical_features = list(data.describe(include=['0']).columns)

categorical_features.append("FastingBS")

for cat_features in categorical_features:
    data[cat_features].value_counts().plot(kind = 'bar')
    plt.show()
```


Comment on Bar plot

- 1. From bar plot on categorical fetaures, catogrical class values are not well balanced.
- 2. In "sex" feature, male(70%) data dominates female(30%).
- 3. In ST_Slope, Flat class domintaes Down class major scale.
- 4. In ExcerciseAngina, No class are more in number than yes class.
- 5. For RestingECVG feature, Normal dominates ST class.
- 6. ChestPainType, ASY dominates TA.

```
for feature in categorical features:
    print(data.groupby([feature, "HeartDisease"])["HeartDisease"].count())
    Sex HeartDisease
         0
                          143
         1
                           50
         0
                          267
                          458
    Name: HeartDisease, dtype: int64
    ChestPainType HeartDisease
    ASY
                                    104
                    1
                                    392
    ATA
                                    149
                                     24
    NAP
                                    131
                                     72
                    1
    TA
                    0
                                     26
                                     20
    Name: HeartDisease, dtype: int64
    RestingECG HeartDisease
    LVH
                                  82
                                 106
    Normal
                                 267
                                 285
    ST
                                  61
                                 117
    Name: HeartDisease, dtype: int64
    ExerciseAngina HeartDisease
    Ν
                     0
                                     355
                                     192
                     1
                     0
                                      55
                                     316
    Name: HeartDisease, dtype: int64
    ST_Slope HeartDisease
               0
    Down
                                14
                                49
               1
```

```
Flat
          0
                           79
          1
                          381
                          317
Up
                           78
Name: HeartDisease, dtype: int64
FastingBS HeartDisease
                           366
           1
                           338
           0
1
                            44
                           170
Name: HeartDisease, dtype: int64
```

Encoding Feature and standardising numerical values

Final_Project.ipynb - Colab

$\overline{\Rightarrow}$		Sex_F	Sex_M	${\tt ChestPainType_ASY}$	ChestPainType_ATA	ChestPainType_NAP	ChestPainType_TA	${\tt RestingECG_LVH}$	RestingECG_Normal	${\tt RestingECG_ST}$	Exerc:
	0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	
	1	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	
	2	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	
	3	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	
	4	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	
	913	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	
	914	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	
	915	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	
	916	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	
	917	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	

918 rows × 21 columns

SVM

20/11/2024, 09:55

```
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler

# Separate features and target
X = final_df.drop('HeartDisease', axis=1)
y = final_df['HeartDisease']

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create and train the SVM model
svm_model = SVC(kernel='linear', random_state=42)
svm_model.fit(X_train, y_train)
```

```
SVC(kernel='linear', random_state=42)
```

```
# Make predictions on the test set
y pred = svm model.predict(X test)
# Evaluate the model
print("Confusion Matrix:")
print(confusion matrix(y test, y pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
→ Confusion Matrix:
     [[67 10]
     [17 90]]
    Classification Report:
                  precision
                               recall f1-score
                                                 support
               0
                       0.80
                                 0.87
                                            0.83
                                                       77
               1
                       0.90
                                 0.84
                                            0.87
                                                       107
                                            0.85
        accuracy
                                                       184
                        0.85
                                 0.86
                                            0.85
                                                       184
       macro avg
```

0.85

0.85

184

SVM: Grid Search to find optimal parameters

0.86

weighted avg

```
from sklearn.model_selection import GridSearchCV

param_grid = {
    'C': [0.1, 1, 10, 100],
    'gamma': [1, 0.1, 0.01, 0.001],
    'kernel': ['rbf', 'linear','poly','sigmoid']
}

svm_grid_search = GridSearchCV(SVC(), param_grid, cv=5)
svm_grid_search.fit(X_train, y_train)
```


print("Best parameters:", svm_grid_search.best_params_)
svm_best_model = svm_grid_search.best_estimator_

Best parameters: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}

from sklearn.metrics import ConfusionMatrixDisplay

ConfusionMatrixDisplay.from_estimator(svm_best_model, X_test, y_test)
plt.title("Confusion Matrix (SVM)")
plt.show()


```
# Evaluate on the training data

y_train_pred = svm_best_model.predict(X_train)

print("\nClassification Report with Best Model (Training Data):")

print(classification_report(y_train, y_train_pred))
```

Classification Report with Best Model (Training Data): precision recall f1-score support 0.92 0.85 0.89 333 1 0.88 0.94 0.91 401 0.90 734 accuracy 734 0.90 0.90 0.90 macro avq weighted avg 0.90 0.90 0.90 734

```
# Evaluate on the test data
y_pred = svm_best_model.predict(X_test)
print("\nClassification Report with Best Model (Test Data):")
print(classification_report(y_test, y_pred))
```

→	Classificatio		del (Test f1-score	Data): support	
	0 1	0.85 0.87	0.82 0.90	0.83 0.88	77 107
	accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	184 184 184

Descision Tree

data_df=data
data_df

→	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0
1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0
3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1
4	54	М	NAP	150	195	0	Normal	122	N	0.0	Up	0
913	45	М	TA	110	264	0	Normal	132	N	1.2	Flat	1
914	68	М	ASY	144	193	1	Normal	141	N	3.4	Flat	1
915	57	М	ASY	130	131	0	Normal	115	Υ	1.2	Flat	1
916	57	F	ATA	130	236	0	LVH	174	N	0.0	Flat	1
917	38	М	NAP	138	175	0	Normal	173	N	0.0	Up	0

918 rows x 12 columns

```
# Preprocessing
le = LabelEncoder()
categorical_columns = ['Sex', 'ChestPainType', 'RestingECG', 'ExerciseAngina', 'ST_Slope']
for col in categorical_columns:
    data_df[col] = le.fit_transform(data_df[col])

# Separate features and target
X_tree = data_df.drop('HeartDisease', axis=1)
y_tree = data_df['HeartDisease']

# Split the data into training and testing sets
X_train_tree, X_test_tree, y_train_tree, y_test_tree = train_test_split(X_tree, y_tree, test_size=0.2, random_state=42)

from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
```

dt_classifier = DecisionTreeClassifier(random_state=42)

Create and train the decision tree classifier

```
20/11/2024.09:55
                                                                                             Final_Project.ipynb - Colab
    dt classifier.fit(X train tree, y train tree)
    \overline{2}
                   DecisionTreeClassifier
                                                   (i) (?)
          DecisionTreeClassifier(random state=42)
```

Make predictions on the test set y_pred = dt_classifier.predict(X_test_tree)

from sklearn.metrics import accuracy_score, classification_report

Evaluate the model accuracy = accuracy score(y test tree, y pred) print(f"Accuracy: {accuracy:.2f}")

→ Accuracy: 0.78

Print the classification report print("\nClassification Report:") print(classification_report(y_test_tree, y_pred))

→ Classification Report: precision recall f1-score support 0.70 0.83 0.76 77 1 0.86 0.75 0.80 107 0.78 184 accuracy 0.78 0.79 0.78 184 macro avg weighted avg 0.79 0.78 0.78 184

```
# Feature importance
feature_importance = pd.DataFrame({'feature': X_tree.columns, 'importance': dt_classifier.feature_importances_})
feature_importance = feature_importance.sort_values('importance', ascending=False)
print("\nFeature Importance:")
print(feature_importance)
```

→

Feature Importance:

```
feature importance
         ST Slope
10
                     0.404613
7
            MaxHR
                     0.107363
4
      Cholesterol
                     0.107085
0
              Age
                     0.099090
          0ldpeak
                     0.071004
2
    ChestPainType
                     0.058537
3
        RestinaBP
                     0.037457
1
               Sex
                     0.035152
8
   ExerciseAngina
                     0.030485
5
        FastingBS
                     0.028976
       RestingECG
                     0.020238
```

Find best model: Decision Tree

```
# Define parameter grid
param_grid = {
    'criterion': ['gini', 'entropy'],
    'max depth': [None, 1,2,3,4,5, 10, 15, 20],
    'min samples split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'max_features': ['sqrt', 'log2', None],
    'class weight': [None, 'balanced']
# Create a decision tree classifier
dt = DecisionTreeClassifier(random_state=42)
# Perform grid search
dt grid search = GridSearchCV(estimator=dt, param grid=param grid, cv=5, n jobs=-1, verbose=0)
dt_grid_search.fit(X_train_tree, y_train_tree)
\overline{\mathbf{T}}
                 GridSearchCV
      ▶ estimator: DecisionTreeClassifier
            DecisionTreeClassifier ?
# Get the best model
dt best model = dt grid search.best estimator
```

```
# Make predictions on the test set
y pred = dt best model.predict(X test tree)
# Print results
print("Best parameters:", dt grid search.best params )
→ Best parameters: {'class weight': None, 'criterion': 'gini', 'max depth': 4, 'max features': None, 'min samples leaf': 4, 'min samples split': 2}
print("\nAccuracy:", accuracy_score(y_test_tree, y_pred))
\overline{2}
    Accuracy: 0.875
# Generate predictions for the training set
v train pred = dt best model.predict(X train tree)
# Print classification reports
print("\nClassification Report - Training Set:")
print(classification_report(y_train_tree, y_train_pred))
→
    Classification Report - Training Set:
                   precision
                                recall f1-score
                                                   support
                                            0.85
                        0.91
                                  0.80
                                                       333
                1
                        0.85
                                  0.94
                                            0.89
                                                       401
                                            0.87
                                                       734
         accuracy
        macro avg
                        0.88
                                  0.87
                                            0.87
                                                       734
                        0.88
                                  0.87
                                            0.87
                                                       734
    weighted avg
# Generate predictions for the test set
y test pred = dt best model.predict(X test tree)
print("\nClassification Report - Test Set:")
print(classification report(y test tree, y test pred))
→
    Classification Report - Test Set:
                   precision
                                recall f1-score
                                                   support
                        0.85
                                  0.86
                                            0.85
                                                        77
                        0.90
                                  0.89
                                            0.89
                                                       107
                                            0.88
                                                       184
         accuracy
```

macro avg 0.87 0.87 0.87 184 weighted avg 0.88 0.88 0.88 184

```
# Feature importance
feature importance = pd.DataFrame({'feature': X tree.columns, 'importance': dt best model.feature importances })
feature importance = feature importance.sort values('importance', ascending=False)
print("\nFeature Importance:")
print(feature importance)
→
    Feature Importance:
               feature importance
    10
              ST_Slope
                          0.643433
         ChestPainType
                          0.090923
           Cholesterol
                          0.083084
    1
                   Sex
                          0.056825
        ExerciseAngina
                          0.041931
                 MaxHR
                          0.038682
    5
             FastingBS
                          0.021597
    0
                          0.013058
                   Age
               0ldpeak
                          0.010466
    3
             RestingBP
                          0.000000
            RestingECG
                          0.000000
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
# Create a plot for the decision tree
plt.figure(figsize=(20, 10)) # Adjust the figure size as needed
plot tree(
    dt_best_model,
    feature_names=X_train_tree.columns, # Replace with actual feature names if available
    class names=[str(cls) for cls in dt best model.classes ], # Replace with actual class names if available
   filled=True,
    rounded=True,
    fontsize=10
plt.title("Decision Tree Visualization")
plt.show()
```

Decision Tree Visualization

Random Forest: Bagging

```
from sklearn.ensemble import RandomForestClassifier
# Bagging: Random Forest
rf classifier = RandomForestClassifier(n estimators=100, random state=42)
```

```
rf_classifier.fit(X_train_tree, y_train_tree)
rf_predictions = rf_classifier.predict(X_test_tree)

print("Random Forest (Bagging) Results:")
print("Accuracy:", accuracy_score(y_test_tree, rf_predictions))

Random Forest (Bagging) Results:
    Accuracy: 0.8804347826086957

# Predictions for the training set
rf_train_predictions = rf_classifier.predict(X_train_tree)

# Classification report for training data
print("\nClassification Report - Training Set:")
print(classification_report(y_train_tree, rf_train_predictions))
```

₹	Classification	n Report –	Training S	et:	
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	333
	1	1.00	1.00	1.00	401
	accuracy			1.00	734
	macro avg	1.00	1.00	1.00	734
	weighted avg	1.00	1.00	1.00	734

```
# Predictions for the test set
rf_test_predictions = rf_classifier.predict(X_test_tree)

# Classification report for test data
print("\nClassification Report - Test Set:")
print(classification_report(y_test_tree, rf_test_predictions))
```

₹	Classific	catio	n Report – precision		f1-score	support
		0 1	0.86 0.90	0.86 0.90	0.86 0.90	77 107
	accui macro weighted	avg	0.88 0.88	0.88 0.88	0.88 0.88 0.88	184 184 184

```
# Feature importance for Random Forest
feature importance rf = pd.DataFrame({'feature': X tree.columns, 'importance': rf classifier.feature importances })
print("\nTop 5 important features (Random Forest):")
print(feature importance rf.sort values('importance', ascending=False).head())
\rightarrow
    Top 5 important features (Random Forest):
               feature importance
              ST Slope 0.241312
    10
    9
               Oldpeak 0.123073
           Cholesterol 0.107227
    4
    7
                 MaxHR 0.103848
        ExerciseAngina
                          0.100046
import matplotlib.pyplot as plt
import numpy as np
from sklearn.inspection import PartialDependenceDisplay
# Extract feature names
feature names = X train tree.columns # Assuming X train tree is a DataFrame
# Plot feature importances
plt.figure(figsize=(10, 6))
importances = rf classifier.feature importances
indices = np.argsort(importances)[::-1]
plt.title("Feature Importances in Random Forest")
plt.bar(range(X train tree.shape[1]), importances[indices])
plt.xticks(range(X_train_tree.shape[1]), feature_names[indices], rotation=90)
plt.tight layout()
plt.show()
# Plot partial dependence for top two features
fig, ax = plt.subplots(figsize=(10, 6))
PartialDependenceDisplay.from estimator(
    rf_classifier,
    X train tree.
    features=[indices[0], indices[1]], # Indices of top 2 features
    feature names=feature names,
    ax=ax
plt.tight layout()
plt.show()
```

 $\overline{\Rightarrow}$

- 1. A bar plot of feature importances, showing which features the Random Forest model considers most important for classification.
- 2. A partial dependence plot for the two most important features, illustrating how these features affect the model's predictions.

GradientBoosting/: Boosting

```
20/11/2024.09:55
                                                                               Final Project.ipynb - Colab
   print("\nClassification Report - Training Set:")
   print(classification report(y train, gb train predictions))
    →
        Classification Report - Training Set:
                      precision
                                   recall f1-score
                                                     support
                   0
                            0.94
                                      0.93
                                                0.93
                                                           333
                   1
                            0.94
                                     0.95
                                                0.95
                                                           401
                                                0.94
                                                           734
            accuracy
                            0.94
           macro avo
                                      0.94
                                                0.94
                                                           734
        weighted avg
                           0.94
                                     0.94
                                                0.94
                                                           734
   # Predictions for the test set
   qb test predictions = qb classifier.predict(X test tree)
   # Classification report for the test set
   print("\nClassification Report - Test Set:")
   print(classification report(y test, qb test predictions))
    →
        Classification Report - Test Set:
                      precision
                                    recall f1-score
                                                       support
                   0
                            0.82
                                      0.90
                                                0.86
                                                            77
                   1
                           0.92
                                     0.86
                                                0.89
                                                           107
                                                0.88
                                                           184
            accuracy
           macro avq
                            0.87
                                      0.88
                                                0.87
                                                           184
        weighted avg
                           0.88
                                      0.88
                                                0.88
                                                           184
   # Feature importance for Gradient Boosting
   feature importance qb = pd.DataFrame({'feature': X tree.columns, 'importance': qb classifier.feature importances })
   print("\nTop 5 important features (Gradient Boosting):")
   print(feature importance qb.sort values('importance', ascending=False).head())
        Top 5 important features (Gradient Boosting):
                   feature importance
        10
                  ST Slope
                              0.474190
                   0ldpeak
                              0.093711
        4
               Cholesterol
                              0.088439
```

0.083655

0.062131

ChestPainType

ExerciseAngina

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn.inspection import PartialDependenceDisplay
# Assuming X_train_tree is a DataFrame with named columns
feature names = X train tree.columns.tolist()
# Plot feature importances
plt.figure(figsize=(10, 6))
importances = gb classifier.feature importances
indices = np.argsort(importances)[::-1]
plt.title("Feature Importances in Gradient Boosting")
plt.bar(range(len(feature names)), importances[indices])
plt.xticks(range(len(feature names)), [feature names[i] for i in indices], rotation=90)
plt.tight layout()
plt.show()
# Plot partial dependence for top two features
fig, ax = plt.subplots(figsize=(10, 6))
PartialDependenceDisplay.from estimator(gb classifier, X train tree,
                                        features=[feature_names[indices[0]], feature_names[indices[1]]],
                                        feature_names=feature_names, ax=ax)
plt.tight layout()
plt.show()
```