Wstęp do uczenia maszynowego Perceptron - przypomnienie

Tomasz Derek

KMS

Listopad 6, 2019

Typ uczenia

Perceptron - uczenie z nadzorowane

Ogólny zapis perceptronu progowego

$$O(x_1,...,x_n) = f(\sum_{i=1}^n x_i w_i + w_0)$$

lub też

$$O(x_1,...,x_n) = f(\sum_{i=1}^n x_i w_i - \theta)$$

Funkcja progowa

$$f(x) = \begin{cases} -1 & x < 0 \\ +1 & x \ge 0 \end{cases}$$

SPLA

SPLA = Simple Perceptron Learning Algorithm

- Wylosuj wagi o wartościach bliskich 0
- Wybieramy losowy/kolejny przykład E z danych uczących i odpowiadającą mu odpowiedź T
- Obliczamy pobudzenie sieci dla wybranego przykładu
- Obliczamy błąd
- Jeżeli błąd jest równy zero wróć do kroku 2
- W przeciwnym wypadku zaktualizuj wagi zgodnie ze wzorem

$$w_i = w_i + \eta * ERR * E$$
 $\theta = \theta - \eta * ERR$

Wróć do kroku 2

Pocket Learning Algorithm

- Wylosuj wagi o wartościach bliskich 0, przypisujemy układowi wag zerowy czas życia i zapisujemy go w kieszonce
- Przebiegnij w sposób losowy po przykładach uczących
- Oblicz błąd sieci
- Jeżeli błąd jest równy zero, zwiększ czas życia o jeden, jeżeli wynik
 jest lepszy od rekordzisty to obecny perceptron zostaje rekordzistą, w
 kieszonce zapisz wagi, a następnie wróć do kroku 2
- W przeciwnym wypadku zaktualizuj wagi zgodnie ze wzorem

$$w_i = w_i + \eta * ERR * E$$

 $\theta = \theta - \eta * ERR$

Przypisz zerowy czas życia i wróć do punktu 2.

Zakończ po przebiegnięciu odpowiedniej liczby iteracji.

Pocket Learning Algorithm with Ratchet

- Wylosuj wagi o wartościach bliskich 0, przypisujemy układowi wag zerowy czas życia i zapisujemy go w kieszonce
- Przebiegnij w sposób losowy po przykładach uczących
- Oblicz błąd sieci
- Jeżeli jest to wynik lepszy od rekordzisty i i klasyfikuje więcej przykładów niż rekordzista, to staje się nowym rekordzistą, zapisz jego wagi, a następnie wróć do kroku 2
- W przeciwnym wypadku zaktualizuj wagi zgodnie ze wzorem

$$w_i = w_i + \eta * ERR * E$$

 $\theta = \theta - \eta * ERR$

Przypisz zerowy czas życia i wróć do punktu 2.

Zakończ po przebiegnięciu odpowiedniej liczby iteracji.

Czego będziemy dziś potrzebować?

ALGEBRY

Czego będziemy dziś potrzebować?

Metody z modułu NumPy:

- dot()
- random.randn() lub zeros()

Czego będziemy dziś potrzebować?

Metody z modułu DataLoader:

- create_dataset()
- random_sample()

Koniec?

Koniec?

WHENYOURMODEL PERFORMS POOR ON TEST DATA

