Power

Brian Caffo, Jeff Leek, Roger Peng

May 19, 2016

Power

- Power is the probability of rejecting the null hypothesis when it is false
- Ergo, power (as its name would suggest) is a good thing; you want more power
- ▶ A type II error (a bad thing, as its name would suggest) is failing to reject the null hypothesis when it's false; the probability of a type II error is usually called β
- ▶ Note Power = 1β

Notes

- Consider our previous example involving RDI
- $H_0: \mu = 30 \text{ versus } H_a: \mu > 30$
- Then power is

$$P\left(\frac{\bar{X}-30}{s/\sqrt{n}}>t_{1-\alpha,n-1}\mid \mu=\mu_a\right)$$

- Note that this is a function that depends on the specific value of $\mu_a!$
- lacktriangle Notice as μ_a approaches 30 the power approaches α

Calculating power for Gaussian data

Assume that n is large and that we know σ

$$1 - \beta = P\left(\frac{\bar{X} - 30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_{a}\right)$$

$$= P\left(\frac{\bar{X} - \mu_{a} + \mu_{a} - 30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_{a}\right)$$

$$= P\left(\frac{\bar{X} - \mu_{a}}{\sigma/\sqrt{n}} > z_{1-\alpha} - \frac{\mu_{a} - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_{a}\right)$$

$$= P\left(Z > z_{1-\alpha} - \frac{\mu_{a} - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_{a}\right)$$

Example continued

- Suppose that we wanted to detect a increase in mean RDI of at least 2 events / hour (above 30).
- Assume normality and that the sample in question will have a standard deviation of 4;
- What would be the power if we took a sample size of 16?
- $Z_{1-\alpha} = 1.645$
- $\frac{\mu_a-30}{\sigma/\sqrt{n}}=2/(4/\sqrt{16})=2$
- P(Z > 1.645 2) = P(Z > -0.355) = 64%

[1] 0.6387052

Note

- ▶ Consider $H_0: \mu = \mu_0$ and $H_a: \mu > \mu_0$ with $\mu = \mu_a$ under H_a .
- ▶ Under H_0 the statistic $Z = \frac{\sqrt{n}(\bar{X} \mu_0)}{\sigma}$ is N(0, 1)
- ▶ Under H_a Z is $N\left(\frac{\sqrt{n}(\mu_a-\mu_0)}{\sigma},1\right)$
- We reject if $Z > \hat{Z}_{1-\alpha}$

```
sigma <- 10; mu_0 = 0; mu_a = 2; n <- 100; alpha = .05
plot(c(-3, 6),c(0, dnorm(0)), type = "n", frame = FALSE, x:
xvals <- seq(-3, 6, length = 1000)
lines(xvals, dnorm(xvals), type = "l", lwd = 3)
lines(xvals, dnorm(xvals, mean = sqrt(n) * (mu_a - mu_0) /
abline(v = qnorm(1 - alpha))</pre>
```


Question

▶ When testing H_a : $\mu > \mu_0$, notice if power is $1 - \beta$, then

$$1 - \beta = P\left(Z > z_{1-\alpha} - \frac{\mu_{\mathsf{a}} - \mu_{\mathsf{0}}}{\sigma/\sqrt{n}} \mid \mu = \mu_{\mathsf{a}}\right) = P(Z > z_{\beta})$$

This yields the equation

$$z_{1-\alpha} - \frac{\sqrt{n}(\mu_{\mathsf{a}} - \mu_{\mathsf{0}})}{\sigma} = z_{\beta}$$

- ▶ Unknowns: μ_a , σ , n, β
- Knowns: μ_0 , α
- Specify any 3 of the unknowns and you can solve for the remainder

Notes

- ▶ The calculation for H_a : $\mu < \mu_0$ is similar
- ▶ For H_a : $\mu \neq \mu_0$ calculate the one sided power using $\alpha/2$ (this is only approximately right, it excludes the probability of getting a large TS in the opposite direction of the truth)
- ightharpoonup Power goes up as lpha gets larger
- Power of a one sided test is greater than the power of the associated two sided test
- ▶ Power goes up as μ_1 gets further away from μ_0
- Power goes up as n goes up
- ▶ Power doesn't need μ_a , σ and n, instead only $\frac{\sqrt{\tilde{n}(\mu_a \mu_0)}}{\sigma}$
- ► The quantity $\frac{\mu_a \mu_0}{\sigma}$ is called the effect size, the difference in the means in standard deviation units.
- Being unit free, it has some hope of interpretability across settings

T-test power

- Consider calculating power for a Gossett's T test for our example
- The power is

$$P\left(\frac{\bar{X}-\mu_0}{S/\sqrt{n}}>t_{1-\alpha,n-1}\mid \mu=\mu_a\right)$$

- Calcuting this requires the non-central t distribution.
- power.t.test does this very well
- Omit one of the arguments and it solves for it

Example

```
power.t.test(n = 16, delta = 2 / 4, sd=1, type = "one.samp"
## [1] 0.6040329
power.t.test(n = 16, delta = 2, sd=4, type = "one.sample",
## [1] 0.6040329
power.t.test(n = 16, delta = 100, sd=200, type = "one.samp")
## [1] 0.6040329
```

Example

```
power.t.test(power = .8, delta = 2 / 4, sd=1, type = "one.s
## [1] 26.13751
power.t.test(power = .8, delta = 2, sd=4, type = "one.samp")
## [1] 26.13751
power.t.test(power = .8, delta = 100, sd=200, type = "one.s
## [1] 26.13751
```