Project: Medical Appointment No Show

1. Introduction

This <u>dataset (https://www.kaggle.com/joniarroba/noshowappointments)</u> collects information from almost 100k medical appointments in Brazil and is **focused on the question of whether or not patients show up for their appointment.** A number of characteristics about the patient are included in each row.

- · PatientId: Identification of a patient
- AppointmentID: Identification of each appointment
- · Gender: Male or Female
- DataMarcacaoConsulta: The day of the actuall appointment, when they have to visit the doctor
- DataAgendamento: The day someone called or registered the appointment
- Age: How old is the patient
- Neighbourhood: Where the appointment takes place
- Scholarship: True or False, indicates if the patient is in the Bolsa Familia program
- · Hipertension: True or False
- · Diabetes: True or False
- · Alcoholism: True or False
- · Handcap: True or False
- SMS_received: 1 or more messages sent to the patient
- No-show "No" indicates if the patient showed up to their appointment and "Yes" if they didn't show up

```
In [1]: # first let's add important libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

#Import data from the file
df = pd.read_csv("KaggleV2-May-2016.csv")
```

```
In [2]: #Check how the data looks like
df.head(5)
```

Out[2]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood	Scholarship	Hipertension	Diabetes	Alcoholism	На
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA	0	1	0	0	
1	5.589978e+14	5642503	М	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	0	0	0	0	
2	4.262962e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA	0	0	0	0	
3	8.679512e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI	0	0	0	0	
4	8.841186e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	0	1	1	0	

```
In [3]: # Check from which time periods these apointments are from
df.AppointmentDay.min(), df.AppointmentDay.max()
```

Out[3]: ('2016-04-29T00:00:00Z', '2016-06-08T00:00:00Z')

In [4]: # Check the shape of our data
df.shape

Out[4]: (110527, 14)

In [5]: # Check data types df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 110527 entries, 0 to 110526 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	PatientId	110527 non-null	float64
1	AppointmentID	110527 non-null	int64
2	Gender	110527 non-null	object
3	ScheduledDay	110527 non-null	object
4	AppointmentDay	110527 non-null	object
5	Age	110527 non-null	int64
6	Neighbourhood	110527 non-null	object
7	Scholarship	110527 non-null	int64
8	Hipertension	110527 non-null	int64
9	Diabetes	110527 non-null	int64
10	Alcoholism	110527 non-null	int64
11	Handcap	110527 non-null	int64
12	SMS_received	110527 non-null	int64
13	No-show	110527 non-null	object
dtyp	es: float64(1),	<pre>int64(8), object(</pre>	5)

memory usage: 11.8+ MB

```
In [6]: # Check missing values
        df.isnull().sum()
Out[6]: PatientId
        AppointmentID
                          0
        Gender
        ScheduledDay
                          0
        AppointmentDay
        Age
                          0
        Neighbourhood
                          0
        Scholarship
        Hipertension
        Diabetes
        Alcoholism
        Handcap
        SMS received
        No-show
        dtype: int64
In [7]: # Check unique values
        df.nunique()
Out[7]: PatientId
                           62299
        AppointmentID
                          110527
        Gender
                               2
        ScheduledDay
                          103549
        AppointmentDay
                              27
        Age
                             104
        Neighbourhood
                              81
        Scholarship
                               2
        Hipertension
                               2
                               2
        Diabetes
        Alcoholism
                               2
                               5
```

Handcap

No-show

SMS received

dtype: int64

2

2

In [8]: # Check numerical attributes
df.describe()

Out[8]:

	PatientId	AppointmentID	Age	Scholarship	Hipertension	Diabetes	Alcoholism	Handcap	SMS_received	
count	1.105270e+05	1.105270e+05	110527.000000	110527.000000	110527.000000	110527.000000	110527.000000	110527.000000	110527.000000	
mean	1.474963e+14	5.675305e+06	37.088874	0.098266	0.197246	0.071865	0.030400	0.022248	0.321026	
std	2.560949e+14	7.129575e+04	23.110205	0.297675	0.397921	0.258265	0.171686	0.161543	0.466873	
min	3.921784e+04	5.030230e+06	-1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	4.172614e+12	5.640286e+06	18.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	3.173184e+13	5.680573e+06	37.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	9.439172e+13	5.725524e+06	55.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	
max	9.999816e+14	5.790484e+06	115.000000	1.000000	1.000000	1.000000	1.000000	4.000000	1.000000	

In [9]: # Observing data through visualization
df.hist(figsize=(8,8));

Observations

- We have 110,527 rows who are represnting our patients whereas 14 columns are patient's aattributes.
- These appointments are of 2 months from '2016-04-29' to '2016-06-08'.
- Avereage age of the patients is approximately 37.
- 9 percent of the patients does not have a scholarship
- On average patients suffers from, Hipertension 19%, Diabetes 7%, Alcoholism 3% and handicap 2%.

Questions

The questions that comes into my mind after my observation so far:

- The most important factor that is influencing the patient to no showing the medical appointment?
- Relation between variables that can lead us to some special kind of people or group?
- Which months or days influences mostly on patient not showing up for the appointment?
- Does the waiting time influenced on not showing up for the appointment?
- Is there any specific gender who is not showing up for the appointment?

Data Wrangling

Analyzing data and trying to figure out which values, variables or columns can be fixed. Figuring out missing, weird and duplicated values.

```
In [10]: # checking for general data duplicates
    df.duplicated().sum()

Out[10]: 0

In [11]: # checking for Patient Id duplicates
    df.PatientId.duplicated().sum()

Out[11]: 48228
```

Patient Id

This is an important variable, as we can see patients have tried making new appointments as well.

```
In [12]: # checking for Appointment ID duplicates
df.AppointmentID.duplicated().sum()
```

Out[12]: 0

In [13]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 110527 entries, 0 to 110526
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	PatientId	110527 non-null	float64
1	AppointmentID	110527 non-null	int64
2	Gender	110527 non-null	object
3	ScheduledDay	110527 non-null	object
4	AppointmentDay	110527 non-null	object
5	Age	110527 non-null	int64
6	Neighbourhood	110527 non-null	object
7	Scholarship	110527 non-null	int64
8	Hipertension	110527 non-null	int64
9	Diabetes	110527 non-null	int64
10	Alcoholism	110527 non-null	int64
11	Handcap	110527 non-null	int64
12	SMS_received	110527 non-null	int64
13	No-show	110527 non-null	object
dtyp	es: float64(1),	<pre>int64(8), object(</pre>	5)
memo	ry usage: 11.8+	MB	

```
In [14]: df.head()
```

Out[14]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood	Scholarship	Hipertension	Diabetes	Alcoholism	На
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA	0	1	0	0	
1	5.589978e+14	5642503	М	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	0	0	0	0	
2	4.262962e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA	0	0	0	0	
3	8.679512e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI	0	0	0	0	
4	8.841186e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	0	1	1	0	

Observations after data wrangling

As we can see we can most of the values are in a good shape, means we dont have much to do with these, but still we can fix few things:

- We can fix data types of ScheduledDay and AppointmentDay
- PatientId can be converted into strings
- · AppointmentId is not needed
- Handcap values need to have a closer look as you can see here
 (https://www.kaggle.com/joniarroba/noshowappointments/discussion/29699#229356). It has a range of values from 0 to 4, which tells us about how many disablities one patient have.
- Removing negative values in age column

Data Cleaning

We will start from fixing things we have mentioned above in our observations.

In additiont to that we will:

- · rename the coulums for fixing typos
- formating Handcap, as we only need to know if someone is Handicapped or not.
- adding new column of waiting time, as it might help us in figuring out, how much this factors effect not showing up for the appointment.

```
In [15]: # removing appointmentID column
         df.drop(['AppointmentID'], axis=1, inplace=True)
         df.columns
Out[15]: Index(['PatientId', 'Gender', 'ScheduledDay', 'AppointmentDay', 'Age',
                'Neighbourhood', 'Scholarship', 'Hipertension', 'Diabetes',
                'Alcoholism', 'Handcap', 'SMS received', 'No-show'],
               dtype='object')
In [16]: # renaming all columns to fix typos for simple exploration
         df.rename(columns={'PatientId': 'patient id', 'ScheduledDay': 'scheduled day', 'AppointmentDay': 'appointment de
         df.rename(columns=lambda x: x.lower(), inplace=True)
         df.columns
Out[16]: Index(['patient id', 'gender', 'scheduled day', 'appointment day', 'age',
                 'neighbourhood', 'scholarship', 'hipertension', 'diabetes',
                'alcoholism', 'handicap', 'received sms', 'no show'],
               dtype='object')
In [17]: # formatting patient id to string
         df.patient id = df.patient id.apply(lambda patient: str(int(patient)))
```

```
In [18]: # formatting the date time 'scheduled day' and 'appointment day' columns
         # i'm just testing different forms of time conversion here
         df.scheduled day = pd.to datetime(df.scheduled day)
         df.appointment day = pd.to datetime(df.appointment day)
         df.scheduled day.head(1), df.appointment day.head(1)
Out[18]: (0
              2016-04-29 18:38:08+00:00
          Name: scheduled day, dtype: datetime64[ns, UTC],
              2016-04-29 00:00:00+00:00
          Name: appointment day, dtype: datetime64[ns, UTC])
In [19]: # Removing the record with negative Age
         df[df['age'] < 0].index
         df.drop(df[df['age'] < 0].index, inplace=True)</pre>
In [20]: # Converting handicap variable values to 0 and 1
         df.loc[df.handicap > 1, 'handicap'] = 1
         df.handicap.unique()
Out[20]: array([0, 1])
In [21]: # creating a new column "appointment waiting time"
         df["appointment waiting days"] = df.appointment day - df.scheduled day
         df.appointment waiting days.head()
         #converting weird values of this column into absolute values
         df.appointment waiting days = df.appointment waiting days.abs().dt.days
In [22]: df['month'] = df['appointment day'].dt.month name()
         df['day'] = df['appointment day'].dt.day name()
```

In [23]: #Lets have a look how our data looks like now
df.head()

Out[23]:

	patient_id	gender	scheduled_day	appointment_day	age	neighbourhood	scholarship	hipertension	diabetes	alcoholism	handicap	recei
0	29872499824296	F	2016-04-29 18:38:08+00:00	2016-04-29 00:00:00+00:00	62	JARDIM DA PENHA	0	1	0	0	0	
1	558997776694438	М	2016-04-29 16:08:27+00:00	2016-04-29 00:00:00+00:00	56	JARDIM DA PENHA	0	0	0	0	0	
2	4262962299951	F	2016-04-29 16:19:04+00:00	2016-04-29 00:00:00+00:00	62	MATA DA PRAIA	0	0	0	0	0	
3	867951213174	F	2016-04-29 17:29:31+00:00	2016-04-29 00:00:00+00:00	8	PONTAL DE CAMBURI	0	0	0	0	0	
4	8841186448183	F	2016-04-29 16:07:23+00:00	2016-04-29 00:00:00+00:00	56	JARDIM DA PENHA	0	1	1	0	0	

Exploratory Data Analysis

In [24]: df.describe()

Out[24]:

appointment_waiting_day	received_sms	handicap	alcoholism	diabetes	hipertension	scholarship	age	
110526.00000	110526.000000	110526.000000	110526.000000	110526.000000	110526.000000	110526.000000	110526.000000	count
9.532918	0.321029	0.020276	0.030400	0.071865	0.197248	0.098266	37.089219	mean
15.027724	0.466874	0.140943	0.171686	0.258266	0.397923	0.297676	23.110026	std
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	min
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	18.000000	25%
3.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	37.000000	50%
14.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	55.000000	75%
178.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	115.000000	max


```
In [26]: sns.set(style="ticks")

df.hist(figsize=(15,10));
```


As we can clearly see here:

- most of the patients are less than 70 years of age
- patients with alocholism were lesser than diabetes whereas hipertension seems to be more common with patient
- most of the patient did not recieve messages as compare to the one who recieved it
- very few patients has scholarship

We will have to choose these numerical varaiables to explore more to get to the bottom of the problem:

- age
- appointment_waiting_time
- sms

Whereas we can explore the above mentioned variable with mixing it up with the categorical variables given below:

- gender
- patient_id
- neighbourhood
- month and day

```
In [27]: df.shape
Out[27]: (110526, 16)
In [28]: temp = df['no_show'].value_counts()
    x_marker = ['Yes', 'No']
    plt.pie(temp, labels = x_marker, autopct='%1.1f%%', shadow=True, startangle=90)
    plt.title('Show-up Ratio');
```


This figure show us:

- 79.8% of the patient show up wheras,
- 20.2% patients does not show up for the appointment.

```
In [29]: temp = df['day'].value_counts()
# .to_list()
x_marker = df['day'].value_counts().index.tolist()
plt.pie(temp, labels = x_marker, autopct='%1.1f%%', shadow=True, startangle=90,counterclock=False)
plt.title('Monthly Show-up');
```


- Patients have appointments throughout the week, whereas
- the number of appointments in the start of the week are higher and decreases going down to Friday, and
- there are no appointments on saturday

```
In [30]: temp = df['month'].value_counts()
# .to_list()
x_marker = df['month'].value_counts().index.tolist()
plt.pie(temp, labels = x_marker, autopct='%1.1f%%', shadow=True, startangle=90,counterclock=False)
plt.title('Monthly Show-up');
```


• that according to our dataset most of the patients had an appointmnet in May, then in June and very few in April

Answering Questions

Relation between variables that can lead us to some special kind of people or group?

• • • •

We have also tried to group few variables to get some insight:

- · day and gender
- · month and gender
- · sms and gender
- · waiting time and no show
- age and no show
- neighnourhood and no show
- month and no show
- · days and no show

Is there any specific gender who is not showing up for the appointment?

We explored days and months with gender and sms with gender to get an idea if Gender has any role to play in not showing for the appointment.

```
In [31]: df.groupby('day').count()

sns.countplot(data=df, x='day', hue='gender');
plt.legend(['Male','Female'], title='gender');
plt.xlabel('Day of the week')
plt.ylabel('Total no of Show-up')
plt.title('Show-up based on the Day of the Week(Gender based)');
```


- Patients have appointments throughout the week, whereas
- the number of appointments in the start of the week are higher and decreases going down to Friday, and
- there are no appointments on saturday

In addition to that:

• we can clearly see the male patients are higher in number through out the week in comparison to female patients.

```
In [32]: df.groupby('month').count()

sns.countplot(data=df, x='month', hue='gender');
plt.legend(['Male','Female'], title='gender');
plt.xlabel('Month')
plt.ylabel('Total no of Show-up')
plt.title('Show-up based on Month (Gender based)');
```


• that according to our dataset most of the patients had an appointment in May, then in June and very few in April

In additio to that:

- if we group gender with the number of patients monthly,
- we can see that the difference between the number of male patients and the female patient is high in May, which decrease in June and April.

```
In [33]: df['received_sms'].hist();
```


• a lot of patients did not receive any sms

```
In [34]: df.groupby('received_sms').count()

sns.countplot(data=df, x='received_sms', hue='no_show');
plt.legend(['Yes','No'], title='no show');
plt.xlabel('sms')
plt.ylabel('Total no of Show-up')
plt.title('Show-up based on Month (Gender based)');
```


• a lot of patients did not receive any sms and by grouping it with gender does not change the stats.

- that there are few neighbourhood, from where people comes in large number for appointments and
- it is hard to identify which thing is affecting to not showing up for the appointment.

```
In [36]: age_groupped = df.groupby(['age', 'no_show']).count().unstack().patient_id
    age_groupped["sum"] = age_groupped['No'] + age_groupped['Yes']
    age_groupped.sort_values(by="sum", inplace=True)

# plotting our data
plt.figure(figsize=(10, 20))

# bar chart
plt.barh(age_groupped.index, age_groupped['No'].values)
plt.barh(age_groupped.index, age_groupped['Yes'].values)

# configs
plt.xlabel("Total no. of patients")
plt.ylabel("Age")
plt.legend(["Yes", "No"])

plt.title("Total no. of patients by not showing up for the appointment groupped by age")
plt.show();
```


• that older people tend to show up for the appointment as compare to younger people.

Does the waiting time influenced on not showing up for the appointment?

We grouped waiting time with the patients who are showing or not at the appointment to get an insight as well.

In [37]: df['appointment_waiting_days'].hist();

This figure show us:

- that waiting time is less than 3 days for most of the people,
- and very few have to wait for more than 20 days of waiting.

```
In [38]: waiting_time_groupped = df.groupby(['appointment_waiting_days', 'no_show']).count().unstack().patient_id
    waiting_time_groupped["sum"] = waiting_time_groupped['No'] + waiting_time_groupped['Yes']
    waiting_time_groupped.sort_values(by="sum", inplace=True)

    # plotting our data
    plt.figure(figsize=(10, 20))

# bar chart
    plt.barh(waiting_time_groupped.index, waiting_time_groupped['No'].values)
    plt.barh(waiting_time_groupped.index, waiting_time_groupped['Yes'].values)

# configs
    plt.xlabel("Total no. of patients")
    plt.ylabel("Appointment Watiting Time")
    plt.legend(["Yes", "No"])

plt.title("Total no. of patients by not showing up for the appointment groupped by appointment waiting time")
    plt.show();
```


Which months or days influences mostly on patient not showing up for the appointment?

We can see in the figure below:

- that the number of patients showing up or not, monthly and day wise.
- that most of the patients applied for May, then June and very few in April.
- that most of numbers of patients come in working days and wednesday is the day with the maximum numbers geeting appointment.

In [39]: df['day'].hist();


```
In [40]: day_groupped = df.groupby(['day', 'no_show']).count().unstack().patient_id
day_groupped("sum") = day_groupped['No'] + day_groupped['Yes']
day_groupped.sort_values(by="sum", inplace=True)

# plotting our data
plt.figure(figsize=(10, 20))

# bar chart
plt.barh(day_groupped.index, day_groupped['No'].values)
plt.barh(day_groupped.index, day_groupped['Yes'].values)

# configs
plt.xlabel("Total no. of patients")
plt.ylabel("Days of the week")
plt.legend(["Yes", "No"])

plt.title("Total no. of patients by not showing up for the appointment groupped by days of the week")
plt.show();
```



```
In [41]: month_groupped = df.groupby(['month', 'no_show']).count().unstack().patient_id
month_groupped["sum"] = month_groupped['No'] + month_groupped['Yes']
month_groupped.sort_values(by="sum", inplace=True)
month_groupped.dropna(inplace=True)

# plotting our data
plt.figure(figsize=(10, 20))

# bar chart
plt.barh(month_groupped.index, month_groupped['No'].values)
plt.barh(month_groupped.index, month_groupped['Yes'].values)

# configs
plt.xlabel("Total no. of patients")
plt.ylabel("Month")
plt.legend(["Yes", "No"])

plt.title("Total no. of patients by not showing up for the appointment groupped by month")
plt.show();
```


Dataset/Analysis limitations

During our entire report we faced limitations and challenges.

- · Dataset is not properly explained, we have to figure out few things with the help o forum
- No confirmation of the originality of the data, even though it is public services that the author clarified here (https://www.kaggle.com/joniarroba/noshowappointments/discussion/28825161646)
- There is inconisistency in the data as we are not sure that the data is complete or taken in same quantity region wise.
- Some information like 'handicap' was not clearly stated, as there were 5 posible values in it without explaination, and which we have to figure out on our own later with the help of forum.
- There are a few inconsistences on the dataset that need to be verified for example, negative age values and weird scheduling dates
- There is still posibility of exploring this data more and to get more insights but it can be done with experience.

Conclusion

There is not a clear conclusion but here are the answers to question according to analysis done above:

- 1. The most important factor that is influencing the patient to no showing the medical appointment?
 - I did not find any specific factor influencing the patient to not showing for the medical appointments, but we have tried to group few variables to get some intersting insights.

After analysing the data provided, I have found some interesting insights which are following:

- Patient ID
 - There were 48228 duplicated patients ID, which shows people have been taking appointments again and again.
- Age
 - There are mor younger people taking appointments as compare to older people, most of the people are of less than age 60.
- Waiting time

• 50 percent of the patients have to wait approximately for 3 days, where as people after 75 percentile has to wait for more than 14 days, with maximum reaching to 178 days.

• sms

• Most of the patient did not receive sms, but this doesnt help us in getting some meaningful information with respect to patietns not showing up for the appointment.

Gender

• There is a big difference on the amount of woman attending to consultations compared to the men.

scholarship

Very few people had scholarship