

UNIVERSITY OF GHANA

(All rights reserved)

BACHELOR OF SCIENCE IN ENGINEERING

SECOND SEMESTER EXAMINATIONS: 2014/2015

CPEN 302: Computer System Engineering (2 Credits)

Instructions: Attempt all questions

Time Allowed: 2 Hours

All abbreviations have their usual meaning.

QUESTION 1 (33 Marks)

- a) Describe the following terms:
 - Stripline (3 Marks)
 - Microstrip (3 Marks)
- b) Explain the phenomenon of reflection and characterize it for the following cases:
 - Line terminated in short-circuit (3 Marks)
 - Line terminated in open circuit (3 Marks)
- c) Describe two different tools used to solve the problem of multiple reflection with transmission line.

 (6 Marks)
- d) Develop an equivalent circuit model of loss-free transmission line 10 in. long for the cross section shown in figure 1. Assume that the driver has a minimum rise time of 2.5 ns and the dielectric constant is 4.9. Consider H=30 mils, W=7 mils, T=0.8 mils.

Figure 1: Model of line impedance

Note:

$$Z_{o} = \frac{60}{\sqrt{\epsilon_{r}}} \ln \left(\frac{4H}{0.67\pi (T + 0.8W)} \right)$$
 (15 Marks)

QUESTION 2 (31 Marks)

- a) Describe with the aid of diagrams, cross-talk due to:
 - capacitive coupling to a floating line

(3 Marks)

- capacitive coupling to a driven capacitive line.

(3 Marks)

b) Discuss five countermeasures used to overcome transmission line cross-talk

(10 Marks)

c) Classify the following noise as either internal or external and provide a definition for each of them:

 Transmitter and receiver offset 	(3 Marks)
- Power supply noise	(3 Marks)
- Timing noise	(3 Marks)
- Johnson noise	(3 Marks)
- Electromagnetic interference	(3 Marks)

QUESTION 3 (36 Marks)

The attenuation of a signal travelling down a line can be modeled by the equation below:

$$V(s, x) = V(s, 0) \cdot \exp(-Ax)$$

Where A is the propagation constant given by the equation below

$$A = [(G + Cs) \cdot (R + Ls)]^{\frac{1}{2}}$$

a) Consider the network of figure 2 which consists of the model of the transmission line and evaluate the magnitude and phase of the propagation constant A above at a frequency of 100 KHz.

Figure 2: Model of Transmission line

(10 Marks)

- b) What happens to the signal V(s, x) in the following cases
 - a. Only the resistor doubles

(3 Marks)

	b. Only the capacitor doubles	(3 Marks)
	c. Only the inductance triples	(3 Marks)
c)	Explain your observations from Q3 b)	(6 Marks)
d)	Describe the following concepts:	
	- Timing convention	(2.5 Marks)
	- Signaling convention.	(2.5 Marks)
e)	Differentiate between single supply noise and differential supply noise	(6 Marks)

Examiner: Amevi Acakpovi