Serieak

- 1. Serieen konbergentzia
- 2. Serieen konbergentzia aztertzeko irizpideak

Serieen Konbergentzia

 $\sum_{n=1}^{\infty} (a_n)$ serie konbergente bat bada, $S = \lim_{n \to \infty} [S(n)]$ izanik, orduan S zenbaki errealari seriearen **batura** deritzo:

$$S = \lim_{n \to \infty} [S(n)] = \sum_{n=1}^{\infty} (a_n)$$

 $\sum_{n=1}^{\infty} (a_n)$ serie bat konbergentea izateko, beharrezkoa da (**baina ez nahikoa**):

$$\lim_{n\to\infty} [a_n] = 0$$

Serieen Konbergentzia

Serie konbergenteen oinarrizko propietateak:

Izan bitez $\sum_{n=1}^{\infty} (a_n)$ eta $\sum_{n=1}^{\infty} (b_n)$ bi serie konbergente, non haien batura partzialak S_a eta S_b diren. Orduan:

- 1- $\sum_{n=1}^{\infty} (a_n + b_n)$ seriea konbergentea da eta bere batura $S_a + S_b$ da.
- 2- $\forall \lambda \in \mathbf{R}$ izanik, $\sum_{n=1}^{\infty} \lambda(a_n)$ seriea konbergentea da eta bere batura λS_a da.
- 3- $\forall \lambda, \mu \in \mathbf{R}$ izanik, $\sum_{n=1}^{\infty} [\lambda(a_n) + \mu(b_n)]$ seriea konbergentea da eta bere batura $\lambda S_a + \mu S_b$ da.

Baina, nola jakin $\sum_{n=1}^{\infty} (a_n)$ konbergentea den ala ez?

Hurrengo ataletan Irizpide batzuk ikasiko ditugu konbergentzia aztertzeko

Gai positiboko serieak:

Izan bedi $\sum_{n=1}^{\infty} (a_n)$ serie bat, serie hau gai positibozko serie izango da baldin eta $a_n > 0 \ \forall n \in \mathbb{N}$.

 $\sum_{n=1}^{\infty} (a_n)$ serie bati non $a_n = \frac{1}{n^k}$ serie harmoniko orokortua deritzo non k konstante erreala baita. Serie harmonikoa konbergentea da, baldin eta soilik baldin k>1.

Gai positiboko serieak aztertzeko hurrengo irizpideak erabil ditzakegu:

- Zatiduraren Irizpidea (D'Alembert)
- Raabe-ren Irizpidea
- Erroaren Irizpidea
- Konparaziozko Irizpidea

Zatiduraren Irizpidea:

 $\sum_{n=1}^{\infty} (a_n)$ gai positibozko serie bat baldin bada eta $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ existitzen bada. Orduan:

- \Box L<1 bada, $\sum_{n=1}^{\infty} (a_n)$ serie konbergentea da.
- □ L>1 bada, $\sum_{n=1}^{\infty} (a_n)$ serie dibergentea da.
- \Box L=1 bada, zalantzazko kasua da.

Adibidea: $\sum_{n=1}^{\infty} \left(\frac{n^2}{(n+1)!} \right)$

Raabe-ren Irizpidea:

 $\sum_{n=1}^{\infty} (a_n)$ gai positibozko serie bat baldin bada eta $\lim_{n\to\infty} n[1-\frac{a_{n+1}}{a_n}]=L$ existitzen bada. Orduan:

- □ L>1 bada, $\sum_{n=1}^{\infty} (a_n)$ serie konbergentea da.
- □ L<1 bada, $\sum_{n=1}^{\infty} (a_n)$ serie dibergentea da.
- \Box L=1 bada, zalantzazko kasua da.

Erroaren Irizpidea:

 $\sum_{n=1}^{\infty} (a_n)$ gai positibozko serie bat baldin bada eta $\lim_{n\to\infty} \sqrt[n]{a_n} = L$ existitzen bada. Orduan:

- □ L<1 bada, $\sum_{n=1}^{\infty} (a_n)$ serie konbergentea da.
- □ L>1 bada, $\sum_{n=1}^{\infty} (a_n)$ serie dibergentea da.
- □ L=1 bada, zalantzazko kasua da.

Adibidea: $\sum_{n=1}^{\infty} (n^3 e^{-n^2})$

Konparaziozko irizpidea:

Izan bitez $\sum_{n=1}^{\infty} (a_n)$ eta $\sum_{n=1}^{\infty} (b_n)$ gai positibozko bi serie:

- □ $a_n \le b_n \ \forall n \in \mathbb{N}$ bada eta $\sum_{n=1}^{\infty} (b_n)$ konbergentea bada orduan $\sum_{n=1}^{\infty} (a_n)$ konbergentea da.
- □ $a_n \le b_n \ \forall n \in \mathbb{N}$ bada eta $\sum_{n=1}^{\infty} (a_n)$ dibergentea bada orduan $\sum_{n=1}^{\infty} (b_n)$ dibergentea da.

Adibidea: $\sum_{n=1}^{\infty} \left(\frac{1}{n^k} \right)$

Serie Alternatuak:

Izan bedi $\sum_{n=1}^{\infty} (a_n)$ serie bat, serie alternatua izango da baldin eta

$$a_n a_{n+1} \le 0 \ \forall n \in \mathbb{N}$$
. Adibidea: $\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n} \right) = -1 + 1/2 - 1/3 + \dots + \frac{1}{n}$

Serie alternatuaren konbergentzia aztertzeko Leibnitz-en irizpidea erabil dezakegu:

Leibnitz-en Irizpidea:

 $\sum_{n=1}^{\infty} (a_n)$ serie alternatu batek $\lim_{n\to\infty} [a_n] = 0$ egiaztatzen badu eta $|a_{n+1}| \le |a_n| \quad \forall n \in \mathbb{N}$ bada, orduan seriea konbergentea da.

Serie Absolutuki Konbergenteak

Izan bedi $\sum_{n=1}^{\infty} (a_n)$ serie bat, serie honi absolutuki konbergente deritzo baldin eta $\sum_{n=1}^{\infty} (|a_n|)$ gai positibozko seriea konbergentea bada.

Edozein serie absolutuki konbergentea dena konbergentea da.

Serie Bereziak

 $\sum_{n=1}^{\infty} (a_n)$ serie bati non $a_n = a_1 r^{n-1} r \neq 1$, arrazoidun **serie geometriko** deritzo. Serie geometrikoaren batura partziala:

$$S(n) = \frac{a_n r - a_1}{r - 1} = \frac{r^n - 1}{r - 1} a_1$$

Serie geometrikoa konbergentea da baldin eta soilik baldin |r|<1bada, eta orduan bere batura:

$$S = \frac{a_1}{1 - r}$$

Serie Bereziak

 $\sum_{n=1}^{\infty} (a_n)$ serie bati non $a_n = [a_1 + (n-1)r_1] \cdot r_2^{n-1}$, r_1 arrazoi aritmetikodun eta $r_2 \neq 1$ arrazoi geometrikodun **serie aritmetiko-geometriko** deritzo. Serie aritmetiko-geometrikoaren batura partziala:

$$S(n) = \left(\frac{a_1(1 - r_2^n)}{1 - r_2}\right) + \frac{r_1 r_2 [1 - n r_2^{n-1} + (n-1) r_2^n]}{(1 - r_2)^2}$$

Serie aritmetiko-geometrikoa konbergentea da baldin eta soilik baldin $|r_2|$ <1bada, eta orduan bere batura:

$$S = \left(\frac{a_1}{1 - r_2}\right) + \frac{r_1 r_2}{(1 - r_2)^2}$$

Serie Bereziak

 $\sum_{n=1}^{\infty} (a_n)$ serie bati non $\frac{a_{n+1}}{a_n} = \frac{pn+q}{pn+r}$ egiaztatzen baita, p,q eta r zenbaki errealak izanik eta $p \neq 0$ eta $(r-q)/p \neq 1$ **serie hipergeometriko** deritzo. Serie hipergeometrikoaren batura partziala:

$$S(n) = \frac{(p \cdot n + q)a_n - a_1 \cdot r}{p + q - r}$$

Serie hipergeometrikoa konbergentea da baldin eta soilik baldin (r-q)/p > 1 bada, eta orduan bere batura:

$$S = \frac{a_1 \cdot r}{r - p + q}$$