UNCLASSIFIED

AD NUMBER AD911537 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution: Further dissemination only as directed by Commander, Naval Air Systems Command, Attn: AIR-320, Department of the Navy, Washington, DC, 31 Jan 1973, or higher DoD authority. **AUTHORITY** USNASC Ltr, 8 Apr 1974

MODEL WIND TUNNEL TESTS OF A REVERSE VELOCITY ROTOR SYSTEM

FINAL REPORT BY

J.R. Ewans and T.A. Krauss

Prepared for Naval Air Systems Command Under Contract No. N00019-71-C-0506

BY

FAIRCHILD

Fairchild Republic Division Farmingdale, New York 11735

DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY TEST & EVALUATION

DATE: January 31, 1973

Other requests for this document must be referred to Commander, Naval Air Systems Command, AIR-320, Department of the Navy, Washington, D. C.

UNCLASSIFIED

UNCLASSIFIED

HC144R1070

MODEL WIND TVINNEL TRETT OF A REVERSE VELOCITY ROTCK SYSTEM

FINAL REPORT

BY

J.R. Ewans and T.A. Krauss

Prepared for Naval Air Systems Command Under Contract No. N00019-71-C-0506

BY

FAIRCHILD

Fairchild Republic Division Farmingdale, New York 11735,

DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY TEST & EVALUATION
DATE: JANUARY 31, 1973

Other requests for this document must be referred to Commander, Naval Air Systems Command, AIR-320, Department of the Navy, Washington, D. C.

FAIROHILD

HC144R1070

The authors wish to acknowledge the work performed by staff at other organizations, namely, Naval Air Systems Command, National Aeronautics and Space Administration (Ames Research Center and Langley Research Center), Arnold Research Organization, and by their colleagues at Fairchild Republic.

TABLE OF CONTENTS

Section		Page	
	Summary		
1.	Introduction	1	
1.1	The Reverse Velocity Rotor Concept	1	
1.2	Previous Work	1	
1.3	Purpose of Test	2	
1.4	Description of Model and Test Rig	2	
1.5	Test Procedures	7	
1.6	Test Conditions	8	
1.7	Scheduled Lift Coefficient	9	
2.	Results - Performance	10	
2.1	Aerodynamic Tares	10	
2.2	Tabulated and Plotted Results	10	
2.3	Rotor Lift	10	
2.4	Rotor Lift-Drag Ratio	11	
2.5	Rotor Torque	12	
2.6	Accuracy	13	
3.	Results - Rotor Control	14	
3.1	Control Angle	14	
3.2	Collective Control Power	14	
3.3	Rotor Sensitivity	14	
3.4	Control Phasing	15	
3.5	Rotor Flapping	16	
4.	Results - Rotor Blade Dynamics	17	
4.1	Rotor Blade Resonances	17	
4.2	Vibratory Flapwise Bending Stresses	18	
5.	Theoretical Prediction of Rotor Performance and Comparison with Test Results	20	
5.1	Airfoil Section Data	20	
5.2	Performance Prediction	21	
5.3	Comparison of Measured and Predicted Results	21	
5.4	Effect of Reynolds Number on Rotor Performance	22	

PAIRCHILD HEPUBLIC DIVISION

HC144R1070

TABLE OF CONTENTS (Cont'd)

	Page
Full Scale Rotor Performance	22
Comparison with Previous Performance Prediction	23
Conclusions and Recommendations	25
References	27
Tables	28
Figures	33
Airfoil Section Development	135
Rotor Test Results	143
Airfoil Tests	169
Airfoil Section Data	229
	Comparison with Previous Performance Prediction Conclusions and Recommendations References Tables Figures Airfoil Section Development Rotor Test Results Airfoil Tests

HC144R1070

SUMMARY

Contract No. N00019-71-C-0506 was awarded in July 1971 to Republic Aviation Division of Fairchild Hiller Corporation to cover the design, manufacture and test of a one-seventh scale reverse velocity rotor system with the goal of substantiating the results that had been predicted for this system in previous analytical studies. Additionally, two-dimensional wind tunnel tests were made on three airfoil sections of the model rotor blade to give data for comparison of the measured performance with that predicted.

The 8 ft diameter 4 bladed model rotor was provided with remote operation of the controls and shaft angle. The hydraulic drive system permitted both normal powered operation and braking of the rotor. Tests were conducted in the 12 ft pressure wind tunnel at NASA Ames during June and July 1972. The tests did not cover the whole range of conditions desired, but results were obtained at advance ratios from 0.3 to 2.46 and at tunnel speeds up to 350 knots.

Significant results of the tests were the freedom of the rotor from instability, and the ability to trim the rotor laterally and longitudinally under all conditions.

After allowance had been made for the effect of Reynolds number, the performance of the model rotor was found to be similar to that predicted in the previous analytical studies and to further predictions based on the two-dimensional model airfoil tests. The rotor response to control angle was greater than predicted at high advance ratios; however, the effective lift/drag ratios were generally in good agreement.

It is recommended that further tests be performed with this model to expand the envelope of test conditions, particularly to include testing with two-per-rev control angle input.

LIST OF TABLES

		Page
1 - I	Rotor Characteristics	28
2-I	Measured Effective Lift/Drag Ratios	29
2-II	Test Conditions for Zero Torque and 1g Lift Coefficient	30
5-I	Comparison of Rotor Characteristics - Phase I Study vs. Phase II Model	31
A-I	Airfoil Section Development - Input Parameters	138
A-II	Ordinates of Root Airfoil Section	139
A-III	Ordinates of Tip Airfoil Section	141
В	Tabulated Results of Rotor Tests	146
C-I	Location of Orifices in 18-inch Chord Airfoil Sections	170
C-II	Schedule of Airfoil Section Pressure Plotting Tests Made in Langley L.T.P.T.	171

FAIRCHILD REPUBLIC DIVISION

HC144R1070

LIST OF FIGURES

			Page
1.1	Installation of Reverse Velocity R Ames 12 ft Pressure Tunnel	otor Test Rig in NASA	33
1.2	Three-Quarter Rear View of Reve Rig (Fairing Removed)	erse Velocity Rotor Test	34
1.3	Geometric Layout of Model		35
1.4	Model Rotor Airfoil Sections		36
1.5	Section Properties - 1/7 Scale Mo	odel RVR Rotor Blade	37
1.6	Section Properties - Scale Model	RVR Rotor Blade (Cont'd)	38
1.7	Section Properties - Scale Model	RVR Rotor Blade (Concluded)	39
1.8	Predicted and Measured Flapwise RVR Rotor Blade	Stiffness - 1/7 Scale Model	40
1.9	Predicted and Measured Torsions RVR Rotor Blade	l Stiffness - 1/7 Scale Model	41
1.10	Natural Frequency Spectrum - 1/Blade	7 Scale Model RVR Rotor	42
1.11	Control System		43
1.12	Control System Dimensions		44
1.13	Operating Envelope and Test Cond	ditions - Reduced Pressure	45
1.14	Operating Envelope and Test Conc Pressure	ditions - Atmospheric	46
1.15	Scheduled Rotor Lift Coefficient f	or 1g Level Flight	47
2.1	Hub Tare Corrections to Lift and	Drag	48
2.2	Hub Tare Corrections to Lift		49
2.3	Hub Tare Corrections to Balance	Pitching Moment Coefficient	50
2.4	Measured Rotor Performance - μ	= .46, runs 29 & 30	52
2.5	μ	= .64, runs 31 & 32	54
2.6	μ	= .87, runs 35 & 36	56
2.7	μ	= .98, run 41	58
2.8	μ	= 1.15, run 42	60
2.9	μ	= 1.15, run 45	62
2.10	μ	. = 1.40, run 43	64
2.11	μ	= 1.40, run 46	66
2 12	•	= 1 66 run 47	68

THE RESERVE OF THE PROPERTY OF

HC144R1070

LIST OF FIGURES (Cont'd)

		Page
2.13	Measured Rotor Performance - μ = 1.75, run 44	70
2.14	$\mu = 2.16$, run 48	72
2.15	$\mu = 2.47$, run 49	74
2.16	μ = .29, run 50	76
2.17	μ = .46, run 51	78
2.18	$\mu = .57$, run 52	80
2.19	$\mu = .72$, run 57	82
2.20	μ = .82, run 56	84
2.21	μ = .94, run 55	86
2.22	$\mu = 1.00$, run 59	88
2.23	$\mu = 1.15$, run 54	90
2.24	μ = 1.50, run 53	92
2.25	Rotor Lift Coefficient Ratio vs Advance Ratio	94
2.26	Rotor Lift Coefficient Ratio vs Advance Ratio	95
2.27	Maximum Effective Lift - Drag Ratio Achieved vs Advance Ratio	96
2.28	Effective Lift - Drag Ratio at 8 lb per sq ft Disc Loading	97
2.29	Effective Lift - Drag Ratio vs Rotor Lift Coefficient	98
2.30	Tip Path Plane Angle for Level Flight and Zero Torque vs Advance Ratio	99
3.1	Rotor Control - μ = .29, run 50	100
3.2	μ = .46, run 51	101
3.3	μ = .72, run 57	102
3.4	μ = .94, run 55	103
3.5	μ = 1.15, run 54	104
3.6	$\mu = 1.45, \text{ run } 60$	105
3.7	μ = 1.50, run 53	106
3.8	μ = 1.40, run 46	107
3.9	Collective Control Power at 5 Deg Tip Path Plane	108
3.10	Rotor Tip Path Plane Derivative with Respect to Control Axis Angle at Constant Rolling Moment	109

HR144R1070

LIST OF FIGURES (Cont'd)

		Page
3.11	Theoretical Phase Angle of Flapping Response to One-Per-Rev Cyclic Input in Hover	110
3.12	Rotor Flapping	111
4.1	Typical Traces of Flapwise Vibratory Moments Near Resonances - Outboard Station ~ .71R	112
4.2	Measured Vibratory Flapwise Bending Moments at Critical Stations	114
4.3	Typical Theoretical Spanwise Distributions of Vibratory Flapwise Bending Moment	115
4.4	Measured Vibratory Flapwise Bending Moments at Scheduled Flight Conditions	116
	Comparison of Measured and Predicted Rotor Performance	
5.1	$\mu = .29$	117
5.2	$\mu = .29$	119
5.3	μ ÷ .46	120
5,4	$\mu = .57$	121
5,5	$\mu = .72$	122
5.6	μ = .82	123
5.7	$\mu = .94$	124
5.8	$\mu = 1.15$	125
5.9	$\boldsymbol{\mu} = 1.50$	126
5.10	$\mu = 1.66$	127
5.11	μ = 2.16	128
5.12	$\mu = 2.47$	129
5.13	Comparison of Predicted and Measured Maximum Effective Lift/Drag Ratio	130
5.14	Effect of Reynolds Number on Predicted Maximum Effective Lift/Drag Ratio	131
5.15	Full Scale Maximum Effective Lift/Drag Ratio	132
5.16	Comparison of Full Scale Rotor Performance with Prediction of Phase I	133
5.17	Effect of Change of Delta-3 Lock Number and Altitude	1 34

HC144R1070

LIST OF SYMBOLS

a	Linear lift curve slope
b	Number of blades
c	Rotor blade chord, inches
c _b ,c _t ,c _m	Airfoil section camber
$^{c}^{d}$	Airfoil section drag coefficient
$c_{\mathbf{l}}$	Airfoil section lift coefficient
C _m	Airfoil section moment coefficient
CD or CDB	Rotor drag coefficient = $D/\pi \rho R^4 \Omega^2$
C _H	Rotor H - force coefficient = $H/\pi \rho R^4 \Omega^2$
CL or CLR	Rotor lift coefficient = $L/\pi \rho R^4 \Omega^2$
C _M	Moment coefficient
c	Rotor torque coefficient = $Q/\pi \sim R^5\Omega^2$
$c_{\mathbf{T}}$	Rotor thrust coefficient = $T/\pi \rho R^4 \Omega^2$
$\mathbf{c}_{\mathbf{X}}$	Coefficient of X force
$c_{\mathbf{Z}}$	Coefficient of Z force
D	Rotor drag force in flight coordinate system, positive aft, lbs
$D_{\mathbf{E}}$	Equivalent drag force of rotor, lbs
^е β	Spanwise offset of fiapping hinge from centerline of rotation, feet
g	Acceleration due to gravity, ft/sec ²
Н	Longitudinal component of rotor resultant force in shaft axis system, positive aft, lb
i _β	Blade mass moment of inertia about flap hinge, slug-ft ²
K _B	Angular spring rate about flapping hinge, in-lb/rad.
K _Δ	Angular spring rate about blade pitch axis, in-lb/rad.

HC144R1070

L	Rotor lift, flight coordinate axis, lbs
M	Mach number
$\mathbf{P}_{\mathbf{t}}$	Wind tunnel total pressure
q	Dynamic pressure = $\frac{1}{2} \rho V^2$, lb/ft ²
Q	Steady rotor torque, ft-lb
r	Airfoil section radius
R	Rotor blade radius, ft
R or RN	Reynolds number
t	Airfoil maximum thickness, inches
T	Rotor thrust, shaft axis, positive up, lb
v	Forward velocity of aircraft, ft/sec
w	Aircraft gross weight, lb
x	Non-dimensional blade station from centerline of rotation
x	Rotor propulsive force, positive aft, Ib
y	Non-dimensional blade distances normal to the blade chord
α	Local blade element aerodynamic angle of attack, degrees = 0 - \$\phi\$
α_{CA}	Control axis angle with respect to normal to flight velocity (= $\alpha_s + \theta_{1s}$)
$\alpha_{\mathbf{g}}$	Aft tilt angle of rotor shaft with respect to normal to flight velocity vector, deg
$\alpha_{ extsf{fPP}}$	Inclination of rotor tip path plane to wind axis, positive aft
β	Blade flapping anyle with respect to normal to shaft, positive up, deg
$\boldsymbol{\beta}_{\mathbf{o}}$	Rotor coning angle
β_{1c}	1st harmonic longitudinal flap angle
eta_{1s}	1st harmonic lateral flap angle
γ	Blade Lock number = ρ ac R^4/I_{β}
	•

o 3	Pitch-flap coupling angle
•	Blade pitch angle, positive nose up, deg
•o	Collective pitch angle at centerline of rotation, deg
• _t	Blade linear built-in twist angle, deg
9 1c	1st harmonic lateral cyclic pitch angle, deg
9 ₁₈	1st harmonic longitudinal cyclic pitch angle, deg
9 ₇₅	Collective pitch angle at 75% blade radius = θ_0 + .75 θ_t , deg
μ	Rotor advance ratio = $V \cos \alpha_8/R \Omega$
P	Air density, slug/ft ³
σ	Rotor solidity ratio, = bc/\pi R
$\sigma_{oldsymbol{eta}}$	Static moment of blade about flapping hinge, slug-ft
Ψ	Blade azimuth angle measured in direction of rotation from aft position, deg
Ω	Rotor angular velocity, rad/sec

HC144R1070

1. INTRODUCTION

1.1 The Reverse Velocity Rotor Concept

Present day helicopters are speed limited due to three effects, namely stalling of the tip of the retreating blade, loss of lift due to reverse flow over the inboard part of the retreating blade and compressibility on the tip of the advancing blade.

The Reverse Velocity Rotor System is designed to remove these limitations and make possible cruising speeds up to 350 knots. At high forward speeds the rotor is slowed so that the flow on the retreating blade is reversed and lift is generated with a negative pitch angle making a positive angle of attack to the reverse flow. At the same time the velocity at the tip of the advancing blade is reduced so that compressibility effects are considerably reduced or avoided. Eince the rotor blades are required to operate in reverse flow, a "reversible" airfoil section is used having a rounded trailing edge to give reasonable lift and drag characteristics in reverse flow.

In the region where appreciable mixed flow exists on the retreating blade (advance ratios from .4 to 1.0), a twice-per-revolution cyclic input of control angle to the rotor blades control system is utilized to control the lift distribution around the aximuth.

The three essential components of the reverse velocity concept are therefore;

- a) Reduced rotor rpm at high forward speed
- b) Rotor blade airfoil section suitable for reverse flow
- c) Higher harmonic feathering

Except in hover and low speed forward flight, the rotor of a RVR helicopter will operate in or near to an auto-rotative condition with auxiliary propulsion of the vehicle.

1.2 Previous Work

A theoretical feasibility study (designated Phase I) of the RVR rotor system was performed by Fairchild under contract from Naval Air Systems Command. The Phase I study covered rotor performance, rotor blade stability, rotor control, and preliminary design of RVR vehicles and is reported in Reference 1. It was concluded

HC144R1070

in this report that development of the system appeared feasible and that the achievable performance level would be satisfactory.

1.3 Purpose of Test

After review of the report, it was concluded that the next step was to confirm these conclusions by model tests in a high speed wind tunnel. This has been designated Phase II, and is the subject of this report.

The main goals of the Phase II test were:

- 1. Measurement of rotor lift at intermediate advance ratios and the effect of two per rev pitch
- 2. Measurement of rotor lift-drag ratio at high advance ratios

Other areas to be investigated were:

- 3. Rotor control characteristics
- 4. Rotor blade dynamic stability
- 5. Blade fatigue loads at high advance ratio
- 6. Windmilling characteristics

An additional requirement of the program was that the rotor blades would be approximately dynamically scaled models of those on a realistic RVR rotor. Because of the possibility of unforeseen rotor blade instabilities at high advance ratios, it was decided that use of a pressure tunnel was desirable; rotor characteristics could be initially determined at low tunnel pressure where instabilities are less likely due to the low Lock numbers in both the torsion and flapping modes. This led to the choice of the 12 foot pressure tunnel at the NASA Ames facility. It was also decided to make the rotor a 1/7 geometrically scaled model of the full scale design developed in Reference 1.

1.4 Description of Model and Test Rig

1.4.1 General

The rotor shaft bearings, the control system and the hydraulic drive system are all mounted on a baseplate carried on a NASA Ames 2.5 in dia. High Endurance Balance, which is in turn mounted in a Y-shaped support frame on a pedestal bolted to the

floor of the tunnel. The support arm is pivoted on the pedestal so that the shaft angle can be varied in the range 5° forward to 15° aft using the wind tunnel incidence gear. The whole unit is enclosed in upper and lower fairings which give clearance for the blades and control system.

Figure 1.1 shows the installation in the NASA Ames 12 ft pressure tunnel. Figure 1.2 is a three-quarter rear view with fairing removed, showing the support frame, balance location, etc.

The whole of the airloads on the blades, hub, hub fairing and on the parts of the control system not shielded by the upper fairing are measured in six components on the balance, the geometric relationship being as shown in Figure 1.3.

1.4.2 Rotor Blades

Blade geometry is given in Table 1.I The rotor blades are of constant chord with a root cutout at 23 percent radius. The Fairchild developed reversible airfoil sections are a 1.5 percent cambered 6% thick section at the tip and a 3.5 percent cambered 18% thick section at the root, with linear taper from root to tip. The method of developing the airfoil sections is given in Appendix A. The airfoil sections at root, tip and mid-span are shown in Figure 1.4 and ordinates for these sections are given in Tables A-II and A-III. Pressure distribution and wake surveys tests were made on two-dimensional models of each of the sections in both forward and reverse flow in the 3 ft by 7 ft Low Turbulence Pressure Tunnel at NASA Langley, and are reported in Appendix C.

The construction of the blades consists of aluminum upper and lower skins with thickness variations chordwise and spanwise formed by chemical milling. A C-spar bonded to the skins over the full span at the chordwise change of thickness is machined integrally with the root end attachment. The skins are bonded to an aluminum wedge at the trailing edge and a bronze wedge at the leading edge which also serves as a balance weight. An aluminum honey-comb core is machined to the internal contour and serves as a shear tie between the upper and lower skins as well as a forming core for the bonding operation. Strain gages were bonded at three spanwise positions on two of the blades.

The rotor blade was designed with maximum torsional stiffness at minimum weight as a prime concern. The bonded metal structure was found to be the minimum cost and minimum risk approach to achieving this. The resulting blade Lock number was 2.3 at sea level which is much less than that of conventional helicopter rotor blades.

.HC144R1070

The rotor shear center and pitch axis were placed at 27.5 percent chord and the section c.g. near 30 percent chord. This configuration was found to be near optimum from studies of flap-torsion dynamic instability at high advance ratio (See Section 4 of Reference 1). Plots of the rotor blade physical properties are shown in Figures 1.5, 1.6 and 1.7. A comparison of measured and theoretical spanwise variation of bending and torsional stiffness is given in Figures 1.8 and 1.9.

The natural frequency spectrum of the rotor blade modes in a vacuum are shown in Figure 1.10.

1.4.3 Rotor Hub

The rotor hub is a 4-bladed fully articulated type with provisions made for various values of delta-3 feedback; however, due to lack of time only a delta-3 angle of 26.5 degrees was used in this series of tests. The concident flap and lag hinges are positioned at 6.5 percent of the blade radius.

Mechanical damping of the blades is provided about the drag hinge by rotary viscous dampers mounted above the rotor hub. The dampers provide a critical damping of approximately . 20 about the lag hinge to minimize the potential of a ground resonance-type instability of the rotor mounted on the flexible balance.

A fiberglass fairing with cut-outs to permit blade flapping is mounted over the hub.

1.4.4 Control System

THE RESERVE OF THE PERSON NAMED IN COLUMN

The control system consists of a conventional three-actuator-controlled swashplate to provide collective and one-per-rev pitch with the actuators set at 90°, 180° and 270°. The actuators are remotely operated with controls both for collective, longitudinal cyclic and lateral cyclic and for individual actuators.

Instead of operating the incidence rods directly, however, the swashplate outer-ring carries four levers which serve for the addition of the two-per-rev input to the swashplate motion. This system was based on the design work done in Section 5 of Reference 1, and is illustrated in Figures 1.11 and 1.12.

The two-per-rev motion is generated by a crank on a shaft driven at twice rotor rpm, then passed through a variable amplitude mechanism to a sleeve between the shaft and the one-per-rev swashplate. At the top of the sleeve is mounted a bearing which permits the non-rotating two-per-rev motion to be made

rotating, and transferred, in the case of two blades directly to the mixing levers and in the case of the other two blades to rocker arms positioned on top of the hub and thence to the mixing levers.

Amplitude of the two-per-rev motion is controlled by a remotely operated D.C. actuator.

Because of the appreciable mass of the vertically oscillating sleeve, two weights are mounted near the base of the rotor shaft and connected to the sleeve through levers to balance out the oscillatory motion.

1.4.5 Drive System

The rotor is driven through a toothed belt by a hydraulic motor mounted on the baseplate; the belt passes around the hydraulic rotor drive pulley (21 teeth), the rotor shaft pulley (60 teeth) and the two-per-rev generator drive pulley (30 teeth). The ratio of hydraulic motor rpm to rotor shaft rpm is 2.857:1 and the ratio of the two-per-rev generator rpm to rotor shaft rpm is 2.0:1. When it is not required to operate the two-per-rev mechanism, a shorter belt can be fitted around the hydraulic motor drive pulley and the rotor shaft pulley only, and the two-per-rev sleeve locked in its central position. The phasing of the two-per-rev input to the main rotor shaft is accomplished by the relationship of the rotor and two-per-rev pulleys; phasing can readily be changed after slackening off the drive belt.

The hydraulic motor is driven by a self-contained hydraulic power pack located outside the wind tunnel shell, consisting of an electric motor, pumps, reservoir, filters, control and relief valves, etc. The power pack can be remotely controlled from the wind tunnel control room. Provision is made for controlled braking of the rotor to prevent overspeeding in the windmilling case, and also for automatic control of rotor speed.

Since the hydraulic motor is mounted on the metric part of the system, connection between it and the pedestal is through pressure-balanced swivel joints. It was not possible to measure any tare effects due to the load path across these swivels and pipes. The swivels also allow for the change of alignment of the hydraulic piping when the rotor shaft angle is altered.

HC144R1070

1.4.6 Instrumentation

The rotor blades were fitted with bending bridges measuring flapwise bending stress at 3 blade stations namely: .37, .51 and .71 radius, chosen as the most critical blade stations based on theoretical bending moment distributions calculated over the test spectrum. The gages were mounted internally so as not to affect the airfoil characteristics. Vibratory chordwise blade stresses were monitored by axial strain gage measurements on the lag damper rod linkage which is equivalent to monitoring the root vibratory moment. Though these stresses were monitored primarily as an indication of approaching instability, this moment in conjunction with theoretical chordwise vibratory moment distributions on the blade allowed for monitoring stresses at the critical span stations. Axial strain was measured on the pitch link for purposes of monitoring both control system stresses and blade torsional loads. Bending bridges mounted on flex beams which were deflected by cams were used for monitoring flap angle, lead-lag angle, and pitch angle at the blade root.

All of the above quantities were displayed on oscilloscopes which were triggered from a pulse at zero azimuth position on number 1 blade to indicate the phasing of the response on the scopes; this was of prime importance for efficient trimming of the rotor flapping at each test point. The dynamic information for each was also displayed on an oscillograph during the test as well as recorded on magnetic tape.

Transducers were used to measure hydraulic pressures at the input and output side of the hydraulic motor; this was intended for the purpose of correcting pressure tares; however, tests indicated that this was an insignificant correction.

The positions of the electric actuators which govern the swashplate motion and two-per-rev amplitude were measured using linear potentiometers of infinite resolution. These voltages were read in the control room using indicating millivolt potentiometers or 'Imps'. The pots were wired and calibrated in terms of collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and two-per-rev pitch amplitude.

Rotor speed was measured by the voltage output of a D.C. generator driven by the hydraulic motor. A second indication of rotor speed was obtained by using a magnetic pickup triggered by a 30 tooth gear on the rotor shaft; the output was directed to a counter which digitally displayed the RPM.

PAIRCHILD

HC144R1070

The voltage output from the NASA balance gages was filtered through the "Imps" so that only the steady values remained; these were displayed in raw form on the "Imps" so that rolling moment at balance, rotor thrust, rotor drag and side force could be monitored during testing. The balance vibratory loads were also displayed on an oscillograph for monitoring of balance stresses and/or resonant conditions.

All the non-vibratory information i.e., rotor speed, steady balance loads, control positions in terms of collective, longitudinal, lateral, and 2/rev amplitude, coning angle, and hydraulic pressures were automatically recorded at each test run on paper tape. The balance data was corrected for the primary interactions on a computer with overnight turn-around time. The rotor behavior was made visible in the control room by means of closed circuit television and the entire test was recorded on video tape.

1.5 Test Procedures

The tests were made in the NASA Ames, 12-foot Pressure Tunnel, a variable density, low turbulence wind tunnel, and covered the range of advance ratios from 0.4 to 2.5 at tunnel speeds from 100 to 350 knots. To develop familiarity with the operation and control of the model, initial tests were made at a tunnel total pressure of approximately 12 inches of mercury (density .0008 slugs per cu ft); later testing was at approximately atmospheric pressure (density .0020 slugs per cu ft).

The first series of tests was made with a dummy balance to explore the behavior of the rotor and the capability of controlling it at advance ratios from 0.14 up to 2.0. No problems were encountered, and the program was continued with a NASA Ames 2-1/2 inch two-plane Mark III balance; this was later replaced by a NASA Ames 2-1/2 inch two-plane high endurance balance. As a result of failures of balance bridges, not all the desired test data was obtained.

In general a run consisted of setting the tunnel pressure, tunnel Mach number, and rotor speed at constant values. The shaft angle was then varied from zero (perpendicular to the free stream velocity) to between 5 degrees forward and 12.5 degrees aft. At each shaft angle various settings of collective pitch were made; at each collective setting longitudinal and lateral cyclic pitch were adjusted to produce zero longitudinal flapping with respect to the shaft and zero rolling moment (the roll axis of the balance is localed at approximately the C.G. axis with respect to the rotor center of a realistically scaled helicopter). Thus the shaft angle became the tip path plane angle. The

rolling moment shown on the balance was accurately nulled while longitudinal flapping was kept to within one degree. When two-per-rev pitch was a variable, the same procedure as above was used except that for each collective setting the two-per-rev pitch amplitude was varied and the rotor trimmed as above for each two-per-rev setting.

As shaft angle was increased and/or the rotor controlled to flap backwards, auto-rotative conditions were reached. When the rotor torque was sufficient to overcome the friction of the control and drive systems and the hydraulic losses, the hydraulic braking control was brought into use to prevent overspeeding of the rotor and maintain the desired rpm. By this means testing was continued into the negative torque region.

After the operator had gained experience it was found possible, by operation of the lateral and longitudinal controls, to control rpm around the zero torque region, with the dump-valve opened to by-pass the hydraulic system.

In addition to the six-component balance data, rotor dynamic quantities were also recorded including azimuthal variations of blade lag and flapping motions, blade bending moments and the lag damping moments; these are considered in Section 4.

The usual tunnel corrections used to adjust data for the effects of wall interference have been applied to the data. These conventional wall corrections are expected to be satisfactory for rotor models operating at advance ratios above 0.3. No attempt has been made to account for aerodynamic interference from the model and support fairings.

1.6 Test Conditions

The relationship between wind tunnel speed, rotor rpm and advance ratio for the model rotor is shown in Figures 1.13 and 1.14. On these figures are indicated the values at which tests were made, designated by run number, for 0.40 atmosphere density and 1.0 atmosphere density respectively.

The maximum Reynolds number for the model and full scale blades occurs at the tip of the advancing blade, and has the following values:

full scale rotor blade, 19 million model blade at approximately atmospheric pressure, 2.4 million model blade at 40% atmosphere, 1.0 million

HC144R1070

1.7 Scheduled Lift Coefficient

The RVR concept requires the reduction of rotor speed as vehicle speed is increased, and the rotor lift coefficient for 1g level flight will therefore vary over the flight regime. Generally speaking, it is desirable to keep the rotor speed up to the limits of maximum rpm or of tip Mach number for advance ratios below unity and to reduce rotor rpm once reverse flow has been fully established over the retreating blade at advance ratios greater than one.

An optimum schedule of rotor rpm has yet to be established, but the following values were assumed for the purpose of interpreting the results of these tests: from the hover, 100% rpm until a tip Mach number of 0.92 is attained; then a progressive reduction of rpm maintaining this Mach number until the forward speed attains 300 knots at an advance ratio of about 1.0; then a reduction of rpm at 300 knots until tip Mach number equals 0.8 at an advance ratio of 1.2; at all higher speeds the tip Mach number is maintained at this value.

The model rotor was sized to carry a 1g scaled lift of 400 lbs corresponding to a disc loading of 8 lb per sq ft. This, in conjunction with the above velocity-rpm schedule, defines the lift coefficient versus advance ratio curve; thus the 1g lift condition can be related to advance ratio alone regardless of the velocity-rpm combination. Figure 1.15 shows this schedule of rotor lift coefficient as a function of advance ratio for this rotor system, assuming sea level standard conditions.

The scheduled velocity-rpm line is shown superimposed on plots of the test data runs in Figure 1.13 for the 40 percent atmosphere runs and Figure 1.14 for the one atmosphere runs. Note that for both tunnel density conditions considerable data was taken that is representative of the scheduled condition in which advance ratio and tip Mach number are both correctly represented.

2. RESULTS - PERFORMANCE

2.1 Aerodynamic Tares

Aerodynamic tares were taken at each tunnel density tested by taking balance readings with rotor blades removed at various tunnel speeds, each time varying shaft angle and rotor speed. The latter had only a small effect on the tares, and an average value has been used in analysis. The tare corrections for force along the balance axis and at right angles to the balance axis and for pitching moment are shown in Figures 2.1, 2.2 and 2.3. Due to failure of the axial component of the balance, X-direction tares were not obtained at high density. The corresponding values from low density (Fig. 2.1) have therefore been used.

The drag tares and lift tares were found in some cases to be a large percentage of the total balance load. Torque tares were found to be negligible.

2.2 Tabulated and Plotted Results

The results for each data point, namely rotor lift, drag, and torque data corrected for weight and aerodynamic tares and the control angles used are presented in Appendix B of this report. For each setting of rotor shaft angle and collective pitch the lateral and longitudinal cyclic pitch were adjusted to produce zero rolling moment about the balance axis and approximately zero longitudinal flapping with respect to the shaft. Points which were not trimmed were identified by investigating the flapping oscillograph traces so that rotor tip path plane could be determined for each run.

For each significant run, rotor lift coefficient, effective lift/drag ratio, torque coefficient and drag coefficient have been plotted versus collective pitch for constant tip path plane angles in Figures 2.4 through 2.24.

2.3 Rotor Lift

A STATE OF THE PARTY OF THE PAR

For each advance ratio the 1g lift coefficient level obtained from Figure 1.15 has been indicated on the lift coefficient curves of Figures 2.4 through 2.24. The exact requirements for lifting ability of a high speed rotor system are not fully defined at this stage: for example the airflow over the fuselage, mast fairing and hub will provide appreciable lift on a high speed helicopter. However, if this is neglected, it will be seen that a requirement for 1.3g maneuver capability at a disc loading of 8 lb/sq ft

at sea level standard conditions can be met or exceeded for all advance ratios outside the range of 0.7 to 1.5 without exceeding a tip path plane angle of ten degrees.

Rotor lift coefficient divided by the lift coefficient at 1g conditions was plotted as a function of advance ratio for constant values of controlaxis angle at constant tip path plane angles of 5 deg and 10 deg in Figures 2.25 and 2.26, respectively. The curves for both values of tip path plane show that for advance ratios below about 1.0, lower values of control axis angle produce more lift; beyond this advance ratio, lift increases with increase of control axis angle. For the 5° tip path plane case, the available lift is seen to drop below the 1g level over a wide range of advance ratios (from .5 to 1.4) for control axis variations between 0 and 7 degrees. When the tip path plane angle is increased to 10 degrees, a disc loading of 8 lb/sq ft can be achieved at all advance ratios.

Theoretical studies have verified this trend and have indicated that for approximately this same control axis range and tip path plane, the addition of moderate values of two-per-rev cosine phased pitch will increase the available lift in laterally trimmed flight to a minimum of 1.3g's over the full advance ratio range for this rotor.

It is noted that the lateral trim requirements were less than 6 degrees for all 1g conditions.

2.4 Rotor Lift-Drag Ratio

Rotor performance can be assessed by the parameter effective lift/drag ratio, defined by converting the total rotor power required into a force and adding to this the rotor drag (or subtracting the rotor propulsive force). In equation form:

$$L/D_E = L/(\frac{550 \text{ RHP}}{V} + D)$$

The effective lift-drag ratio of the rotor blades was computed by subtracting the aerodynamic hub tares from the measured rotor forces and moments and calculating the effective drag due to the combined effect of drag force and rotor torque. For those cases where the rotor torque was negative, i.e., the airloads were tending to speed up rotor, the torque was assumed to be transferred to a usable propulsive system (e.g., tail propeller) at 100 percent efficiency.

It will be seen from Figures 2.4 through 2.24 that at low advance ratios $(\mu = .29 \text{ Fig. } 2.16)$ in the conventional helicopter range, rotor efficiency increases with decreasing tip path plane angle, i.e., as the rotor moves into the propulsive region. Effective lift/drag ratios of 8 were measured, and this is maintained up to advance ratios of at least .46 (Fig. 2.17). In the range of intermediate advance ratios, effective lift/drag ratio falls off to a minimum of about 6 at an advance ratio near 0.8. At higher advance ratios the lift/drag ratio again increases, with a value of 8 at advance ratios of 1.0 through 1.4, and thereafter increasing to the order of 12 at advance ratios above 2.

The maximum achieved values of the effective lift/drag ratio are given in Table 2-I and plotted vs advance ratio in Figure 2.27. The lift coefficients corresponding to these maximum values may not be those for level flight at the assumed rotor disc loading of 8 lb per sq ft, and effective lift/drag ratios at the latter condition are also given in Table 2-I and plotted in Figure 2.28 for the range of advance ratios. Figure 2.29 shows the effect of lift coefficient in detail for an advance ratio of 1.5. In this case better cruise efficiency would have been obtained if a reduced disc loading had been selected. An alternative may be the use of small amounts of two-per-rev control which was shown in reference 1 to have a significant effect on the conditions under which best effective lift/drag ratic was obtained.

2.5 Rotor Torque

Although not essential to the RVR system it is desirable that when operating at reduced rpm the rotor should be in an auto-rotative condition at zero torque. At the same time, the lift must be appropriate to level flight and the rotor trimmed. From figures 2.4 through 2.24 the combination of collective control angle and tip path plane angle that meets these conditions can be determined, and figure 2.30 shows the tip path plane angle for zero torque and a lift coefficient corresponding to the scheduled combination of vehicle speed and rotor rpm for 8 lb/sq ft disk loading as a function of advance ratio. As was shown in figures 2.25 and 2.26, without using two-per-rev control large flapping angles would be required in the advance ratio range of 0.9 to 1.3. Outside this range, however, figure 2.30 shows that zero torque and the scheduled lift coefficient conditions can be met at practical tip path plane angles. At high advance ratios the necessary tip path plane angle decreases rapidly with increase of advance ratio.

HC144R1070

The use of two-per-rev control has been shown in Section 2.5 of reference 1 both to increase the lift available at intermediate advance ratios and to provide a control over torque.

2.6 Accuracy

The net value of the lift on the rotor blades is the difference between the total measured lift and the lift on the hub minus the weight of the model. The net value of the drag is the difference between the total measured drag and hub drag. The net values of both the lift and the drag are therefore the differences between two relatively large quantities, and are subject to magnification of any inaccuracies in measurement. In general, the plotted points for lift and effective lift/drag ratio (figures 2.4 through 2.24)show little scatter, but they may be subject to systematic errors, for example the effect of the rotor lift on the flow field around the hub and therefore on hub lift and drag.

HC144R1070

3. RESULTS - ROTOR CONTROL

3.1 Control Angle

Figures 3.1 through 3.8 show, for the range of advance ratios, the relation-ship between control angle, tip path plane and collective pitch with the rotor trimmed laterally at all times. With one exception results are given for the tests at atmospheric tunnel pressure only, since at the reduced tunnel pressure the Lock number is not representative of the full scale rotor. Figure 3.8, however, gives results for tests at low pressure at an advance ratio of 1.4 and may be compared with Figure 3.7 for atmospheric pressure and the same advance ratio.

3.2 Collective Control Power

The relationship between collective control angle and lift coefficient for a trimmed rotor at constant tip path plane can be derived from Figures 2.4 through 2.24. It will be seen that at low advance ratios lift increases with increasing collective pitch at constant tip path plane angle; as advance ratio is increased the slopes of the curves decrease until collective has no effect on lift at an advance ratio of 0.9. Beyond this advance ratio the rotor thrust is seen to decrease with increased collective pitch requiring negative values to achieve the required lift. Figure 3.9 shows a plot of the slope of the lift coefficient vs collective curve as a function of advance ratio for a 5 degree tip path plane. At the proposed high advance ratios corresponding to reverse velocity cruise flight ($\mu > 1.4$) collective may once again be a meaningful control but in the reverse sense than for low advance ratio flight.

3.3 Rotor Sensitivity

As rotor advance ratio is increased, it is well known that the rotor becomes increasingly sensitive to control inputs and gusts. Positive delta-3 (pitch-flap coupling) was determined from previous analytical studies to be effective in reducing this sensitivity and the rotor had provisions for incorporating delta-3 angles of 0, 26.5, and 45 degrees. For this test only the intermediate value of 26.5 degrees was used.

Rotor sensitivity is shown in Figure 3.10 where the change in tip path plane angle per degree of control axis angle is plotted as a function of advance ratio. It is noted that this is not a pure derivative since lateral cyclic pitch was varied as required to retrim the rolling moment to zero. The curve shows that the derivative approaches unity at low advance ratios as expected for this moderate value of delta-3. At RVR type advance ratios ($\mu > 1.2$) the derivative approaches 2.5 times the low advance ratio value. At higher advance ratios the sensitivity is seen to decrease.

This sensitivity increase is in good agreement with theoretical calculations. The square symbols show theoretical points calculated at various advance ratios for the model rotor. The decrease in sensitivity at high advance ratios is also as predicted by theory. The theoretical predictions calculated beyond the advance ratio range of the test indicate that the tip path plane sensitivity to control axis input continues to decrease so that at an advance ratio of 2.5 the derivative (at constant lateral flapping) reduces to .80 which is near the value at hover.

3.4 Control Phasing

The phasing between the maximum one-per-rev pitch amplitude and the maximum one-per-rev flapping amplitude is a function of the flapping frequency, flap aerodynamic damping and the delta-3 angle. The theoretical phase angle of the rotor at one atmosphere in hover as a function of delta-3 is shown in Figure 3.11. The low Lock number of the model blades provided relatively low critical damping ratios especially in the low density conditions. This coupled with the hinge offset effect on frequency resulted in the following phase angles calculated in hover:

- 45.7 degrees at one atmosphere density
- 30.9 degrees at 40% atmosphere density

These low values of phase angle resulted in a strong coupling of the conventional longitudinal and lateral controls. In the low density conditions the conventional longitudinal cyclic control was used primarily to trim rolling moment and the lateral control was used primarily to trim the fore and aft flapping. The control angles required for trim in the low density condition are thus not typical for full scale comparison unless significantly more delta-3 was used on the full scale rotor such that the phase angle calculated in hover approached 30 degrees. The one atmosphere runs should, however, be representative of full scale control.

HC144R1070

It should be noted that even with zero pitch-flap coupling the hinge offset effect produces a phase angle of 65 degrees. For practical values of delta-3 (0 to 45 degrees) the phase angle decreases approximately .7 degrees for every 1 degree increase in delta-3.

3.5 Rotor Flapping

A CONTRACTOR OF THE PARTY OF TH

Typical traces of rotor flapping at various advance ratios and near trimmed 1g lift coefficients are shown in Figure 3.12. Because of the low Lock number of the model rotor blades, the maximum coning angle encountered at these conditions is quite small. At the low advance ratio condition, the coning and all harmonics of flapping are seen to be negligible with the rotor trimmed normal to the shaft. At the .46 advance ratio, the flapping is seen to be primarily low amplitude and of two-per-rev frequency; coning angle is again almost negligible (less than one degree). At the intermediate advance ratio of .82 the flapping is again primarily two-per-rev though higher harmonics are becoming evident. Finally at the high advance ratio of 1.5 the higher harmonic content is more evident though the primary frequency is two-per-rev; the two-per-rev amplitude is near two degrees and the coning angle is approximately 2.5 degrees.

No detrimental effects of two-per-rev flapping were obvious though amplitudes near 2 degrees which appeared at the high advance ratios may cause local stalling conditions to occur. Since two-per-rev pitch is not required for lift generation at high advance ratios, this control may be useful in trimming out the two-per-rev flapping should it become desirable to do so.

4. RESULTS - ROTOR BLADE DYNAMICS

4.1 Rotor Blade Resonances

Inherent in the RVR concept is a wide variation of rotor speed during operation from hover to cruise flight. In order to predetermine rotor speed ranges which would produce potentially high blade loads, the frequencies of the bending and torsion modes were calculated during the blade design stage using finite element theory including centrifugal stiffening. The results are shown in Figure 1.10. The flap bending modes were of major concern since these modes have frequencies near the low rotor harmonics where the aerodynamic excitation is relatively high.

During the tunnel test the blade flapwise frequencies were determined near each operating condition by varying the rotor speed at a given advance ratio and noting where the flapwise bending vibratory stresses reached a maximum value. The flapwise modes were found to occur at almost exactly the predicted values. Amplification of flapwise bending loads were noted in the following areas; examples of the flap bending moment traces near these conditions are given in Figure 4.1:

•	1670 rpm	A clear 5/rev frequency was noted in the bending traces
	(100% rpm)	which is near where the 3rd flap mode crosses 5/rev
		frequency.

- 1050 rpm A clear 3/rev frequency was noted in the bending traces (63% rpm) with high amplitude. This is the rpm where the theoretical 2nd flap mode crosses 3/rev.
- At high advance ratio, a 10/rev low amplitude frequency
 (41% rpm) was noted in the bending traces over a narrow rpm range.
 The theoretical 3rd flap mode is seen to cross 10/rev at
 this rpm. This was noted at low density conditions where
 the damping was small.
- 650 rpm A 4/rev frequency of relatively high amplitude was noted (39% rpm) which is near the rpm where the second flap mode crosses 4/rev.

No appreciable shift in these resonant rpms was noted as advance ratio was changed indicating that the aerodynamic effects even at advance ratios near 2.0 have small

PAIRCHILD

HC144R1070

influence on the resonant frequencies. This is an important finding which allows the use of natural frequency spectra (assumed in a vacuum) to pinpoint areas of high blade loads for the complete advance ratio range.

Resonances of the 3rd flap mode with 6, 7, and 8 and 9/rev were not noted because the rpm band to excite these high frequencies is generally small and amplification is not expected unless the model test conditions were very near these points. Even when operating continually right on the high amplitude 1050 rpm at high advance ratio and high lift coefficient, the bending stresses were less than double the very conservative endurance limit placed on the dynamically scaled blades.

No resonances or amplification were noted in the chordwise vibratory stresses (as noted by the damper arm load) nor were any expected since the chordwise modes only cross integer rpm multiples above 9/rev in the operating range. (See Figure 1.10). No data on resonance of the torsional mode is available.

4, 2 Vibratory Flapwise Bending Stresses

Vibratory bending stresses increase substantially with advance ratio due to the increased aerodynamic excitation caused by the complex flow field. To demonstrate this, data runs at 1g lift coefficient were chosen at a constant non-resonant rotor speed of 830 rpm. Thus, the effect of resonant amplification was held constant at various advance ratios. The vibratory bending moments at the 3 spanwise strain gage locations are shown in Figure 4.2. These are from the low density runs where there was sufficient data at constant rotor speed; thus, although the magnitude of the moments are not meaningful, the trend with advance ratio should be representative.

The curves show that as advance ratio is increased from that of present day helicopter limits (μ > .4) to the high advance ratios required for RVR flight, the bending moments increase by a factor of over 3 for all gage locations. The bending moment is seen to at first increase most rapidly at the inboard station. At the high sdvance ratios the inboard moments level out and the center span bending moments also begin to do the same. The outboard moments however are seen to increase even more rapidly.

This trend is similar to that predicted by theoretical analysis. Figure 4.3 shows plots of typical estimated spanwise distributions of flapwise vibratory moment

HC144R1070

for a blade similar to the model rotor blades tested. Because the moments are calculated at different non-resonant rotor speeds and different air density than used in Figure 4.2, no scale is shown on the ordinate. The distributions show a rapid increase in bending moment as advance ratio is increased from .4 to .7 at the inboard end. At the 1.4 advance ratio condition the inboard moment (.37R) is seen to drop slightly, a small increase occurs in the center location (.51R) and very significant increase in the outboard moment. This may be due to the increasing amount of reverse flow on the outboard part of the span at the higher advance ratios.

To obtain realistic scaled rotor blade loads over the proposed advance ratio range, runs were selected near sea level atmosphere conditions so that aerodynamic damping effects would be realistic. Data runs were also chosen near the scheduled rotor speed condition for each given advance ratio so that near resonant rpm effects would be represented. The moments at the center and outboard stations are shown in Figure 4.4; the inboard bending gage output was not available for all the conditions investigated and is not plotted.

The full scale moments show the near resonant condition at $\mu=1.0$ (1170 rpm near 1/3 the frequency of the 2nd flap mode) produces more amplification in the outboard gage than the center gages (though this is not evident from the normalized mode moment shape).

5. THEORETICAL PREDICTION OF ROTOR PERFORMANCE AND COMPARISON WITH TEST RESULTS

5.1 Airfoil Section Data

The state of the s

The airfoil sections at the root, mid-span and tip of the model rotor blades were tested in both forward and reverse flow over a range of Reynolds numbers at low Mach number in the Langley Low Turbulence Pressure Tunnel. The tests are described and the results given in Appendix C.

The approximate maximum Reynolds number values appropriate to the model and full scale conditions achieved on the tip of the advancing blade are as follows:

Model tests, average density .00086 slugs/ft³: 1.0 million Model tests, average density .00212 slugs/ft³: 2.4 million Full scale, sea level density .002378 slugs/ft³: 20 million

In the performance prediction program, to avoid the complication of tables of aerodynamic data dependent on Reynolds number as well as Mach number, aerodynamic data has been selected according to average Reynolds numbers appropriate to the condition in which the blade section is operating. For the comparison with the model test results, section drag coefficients, which have a greater effect on rotor performance at the higher rotor speeds and reduced angles of attack, were selected appropriate to the Reynolds number range of 1.0 to 2.0 million. The slope of the curve of section lift coefficient was found to vary only slightly with Reynolds number, and was obtained from data at 1 million. When blade sections are operating near maximum lift, they will be at reduced velocity and therefore at reduced Reynolds number - values appropriate to a Reynolds number of 0.4 million were selected.

For the prediction of full scale rotor performance it was indicated that there will be little or no variation of either lift or drag data above a Reynolds number of 12 million and data measured at this Reynolds number was therefore used.

After determining the data to be used at low Mach number and over the angle of attack range tested, it is necessary to extend it to cover all Mach numbers up to 0.92 and for the full angle of attack range of 360 degrees. This was done by the methods of reference 1, and using data from reference 2. The lift and drag coefficients so determined for the 6%, 12% and 18% sections are given in Appendix D.

HC144R1070

For the purpose of selecting the aerodynamic data to be used in the rotor performance prediction program, the rotor blade was divided into five equal spanwise units. The data for 6%, 12% and 18% sections was therefore interpolated on a linear basis to give data for 7.2%, 9.6%, 12%, 14.4% and 16.8% sections.

5.2 Performance Prediction

The Fairchild rotor performance computation program ("Aero") has been improved in detail, but is substantially as described in Appendix "B" of reference 1. For the purpose of comparisons with model tests, the "low Reynolds number data" as described in Section 5.1 was utilized, together with the geometric characteristics of the model rotor as given in Table 1-I. The air density, rpm, tunnel speed and speed of sound corresponding to the mean value of a particular run have been utilized, and the program run at a matrix of values of collective pitch angle and control angle, with the rotor balanced to be in lateral trim. Since previous work had shown that the effect of shaft angle with an articulated rotor was small, this was neglected.

The results of these calculations are plotted in Figures 5.1 through 5.12.

5.3 Comparison of Predicted and Measured Results

Initially, comparison was made between the values of tip path plane angle, rotor lift coefficient and equivalent lift/drag ratio measured and calculated at the same values of collective and longitudinal control angles, assuming the rotor to be trimmed laterally in both cases. There is good agreement at low advance ratios, (see figure 5.1) but not at intermediate and high advance ratios; this may be due to a number of factors, for example, changes in velocity and flow direction caused by the presence of the upper fairing. It was found that a better basis for comparison was equivalent lift/drag ratio versus rotor lift coefficient, and this has been used in Figures 5.2 through 5.12.

The maximum values of equivalent lift/drag ratio for both measured and predicted conditions obtained from Figures 5.2 through 5.12 have been plotted in Figure 5.13. Agreement is good in the advance ratio range of 0.5 to 1.0. One cause of the differences at lower and higher advance ratios may be that although in the case of the predicted data sufficient combinations of collective pitch and control angles were utilized to give certainty that the peak value had been obtained, the tests may not have been made at the conditions that would give a maximum. A further cause of difference is

the aerodynamic data; while that at low Mach number had been based on comprehensive tests on the three airfoil sections at the Reynolds number conditions of the model rotor tests (data reported in Appendix C), the effects of Mach number were estimated. Comparing the measured and predicted values at an advance ratio of .45 where the advancing blade tip Mach number is .89 indicates that the extent of the drag rise on the tip section may have been over-estimated.

At higher advance ratios the amount of experimental data is limited and the results scattered; nevertheless it can be seen that the prediction method overestimates rotor performance. This can be corrected by reducing the optional cut-off of maximum lift coefficient in radial flow which is an input to the prediction program.

5.4 Effect of Reynolds Number on Rotor Performance

The prediction of rotor performance was repeated for the same cases that were used in the comparison of the preceding paragraph, but using the full-scale Reynolds number data that were developed from the model airfoil section tests and presented in Appendix D, Figures D19 through D36. Again the span was divided into five sections with data corresponding to thickness-chord ratios of 16.8%, 14.4%, 12.0%, 9.6% and 7.2%. The values of maximum effective lift/drag ratio that were obtained are plotted in Figure 5.14 and compared with the corresponding values for low Reynolds number obtained from Figure 5.13.

It will be seen that at intermediate and high advance ratios the effect of Reynolds number is very considerable. This is due both to the reduction of drag of the airfoil section and the increase in lift at large angles of attack; the latter enables the rotor to operate at a smaller flapping angle for the same thrust.

5.5 Full Scale Rotor Performance

The best curve through the measured points (Table 2-I and Fig. 5.13) has been modified for the predicted effect of Reynolds number (Fig. 5.14) to give the expected full scale performance of a rotor having both the scaled-up physical characteristics and the aerodynamic sections of the model rotor. This is presented in Figure 5.15, which shows the maximum effective lift/drag ratio and the effective lift/drag ratio at a disk loading of 8 lb per sq ft.

5.6 Comparison with Previous Performance Prediction

Figure 5.16 compares the performance now expected for a full scale reverse velocity rotor having the characteristics of the model rotor with the results obtained in previous predictions (Figure 2.38 of reference 1), corrected to be at zero two-per-rev. The characteristics of the two rotors are compared in Table 5-I. In the range of advance ratio from 0.6 to 1.6 the performance of the reference 1 rotor is slightly better. In order to investigate this further, the effect of specific differences between the rotors was predicted.

Performance runs were made with the physical dimensions and aerodynamic data of the rotor number 2 of Table 2-I of reference 1, which will be referred to as "1039" rotor, and with specific variations of characteristics. The results for the basic "1039" rotor operated with zero two-per-rev and a thrust of 20,000 lbs are given in Figure 5.16 for the eight cases considered in reference 1 as follows:

Case	Speed Knots	RPM	Advance Ratio	Fig. of Ref 1
1	250	91%	. 66	2.29
2	250	80%	.75	2.30
3	250	60%	1.005	2.31
4	300	80%	. 92	2.32
5	300	60%	1.21	2.33
6	300	50%	1.41	2.34
7	350	60%	1.407	2.35
8	350	50%	1.689	2.36

In each case the calculations were performed for three values of control angle and the results given for the optimum control angle.

The effect of individual changes to the following parameters was investigated for cases 2, 5, 6 and 8 of the above table.

• Delta 3, from zero to 26.5 degrees

- Lock number per blade from 6,0 to 3,0
- Atmospheric conditions, from 91.5°F and 3000 ft to standard sea level conditions (59°F) changing density from .001998 slugs/ft³ to .002378 slugs/ft³ and the speed of sound from 1150 ft/sec to 1117 ft/sec. (Note that a change of density also changes the Lock number.)

FAIRCHILD

HC144R1070

The results are shown in Figure 5.17. As might be expected, the purely geometrical change of delta-3 has no effect on rotor performance. Both the reduction in altitude and the increase of blade inertia cause a significant improvement in rotor performance, with the exception that at 350 knots the increase of Mach number on the tip of the advancing blade causes a loss of performance. The combined effect of all three changes is also shown in Figure 5.17.

It would appear from this that the cause of differences in performance shown in Figure 5.16 must be due to differences in the aerodynamic data.

6. CONCLUSIONS AND RECOMMENDATIONS

The tests conducted on a model 8 ft diameter 4-blade rotor with reversible airfoil sections demonstrated that it could be operated satisfactorily at advance ratios up to 2.5 and speeds up to 350 knots. Control was maintained throughout by conventional controls, both in power, in free auto-rotation and in the braking modes. Operation was free of dynamic instability.

Two-dimensional tests were performed over a range of Reynolds numbers on the root, mid-span and tip airfoil sections of the rotor blades to give data for the prediction of the rotor performance using the Fairchild rotor performance program. When using airfoil data appropriate to the Reynolds number of the model tests, there was generally good agreement between measured and predicted effective lift/drag ratio. With data appropriate to full-scale Reynolds numbers, a substantial improvement in effective lift/drag ratio was predicted. It appears from this and from the results of the estimates made of other changes in rotor characteristics that the overall rotor performance is sensitive to the properties of the airfoil sections selected for the blade.

It is recommended that further tests be conducted with this model to more completely cover the range of test conditions, and to include testing with two-per-rev blade pitch angle input. A comprehensive study of the effect of airfoil section on rotor performance leading to the selection of optimum rotor blade sections along the span is considered an essential step before proceeding to the development of a full scale rotor.

This page intentionally left blank.

REFERENCES

- 1. Staff of Fairchild Republic Division, Analytical Study of the Reverse Velocity Rotor System, Fairchild HC122R1039, October 1971.
- 2. W. H. Tanner, Charts fo. Estimating Rotary Wing Performance in Hover and at High Forward Speeds, NASA CR-114, November 1964.

TABLE 1-I. ROTOR CHARACTERISTICS

Item	Value
Scaled Vehicle Gross Weight	400 lb
Disk Loading	8.0 lb/sq ft
Solidity	.133
Hover Tip Speed	700 ft/sec
Number of Blades	4
Rotor Radius	48.36 in.
Blade Chord (Constant)	5.0 in.
Blade Linear Twist	0
Root Cutoff/Blade Radius	.23
Flapping Inertia per Blade	2972 lb/in.^2
Flapping Moment per Blade	132 lb/in.
Torsional Inertia per Blade	5.0 lb/in.^2
Lock Number (sea level atmosphere)	2.3
Lag Hinge Offset/Rotor Radius	. 065
Pitch Flap Coupling Angle - Delta-3	26.5 deg*

^{*} Other values available were not used during this test program.

FAIRCHILD

TABLE 2-I. MEASURED EFFECTIVE LIFT-DRAG RATIOS (See Figures 2, 27 and 2, 28)

Figure No.	Advance Ratio	Maxi L/D _E	mum L/D _E Atα _{TPP}	At Disc Load L/D _E	ling = 8 lb/sq ft At α_{TPP}
Low Density		- 			
2.4	.46	6.4	5°	5.9	5*
2.5	.64	4.2	5°	3.3	5*
2.6	.87	8	10°	Not achieved	
2.7	.98	7.8	7.5°	7.0	9°
. 2.8	1.15	7.8	5°	7.0	8°
2.9	1.15	6.5	7.5°	6.5	7.5°
2.10	1.40	7.7	5°	7.6	7°
2.11	1.40	8.2	7.5°	8.0	7°
2.12	1.66	9.8	0	9.5	2.5°
2.13	1.75	27	5°	23	5°
2.14	2.16	18	0	18	0
2.15	2.47	12.5	0	12.5	0
High Density	t.				
2.16	. 29	7.8	-2°	7.8	-4°
2.17	. 46	8.2	5°	8	4*
2.18	. 57	7.4	0	6,8	5°
2.19	.72	5.8	5 *	5.8	8°
2.20	. 82	5.6	5° & 10°	5.4	8°
2.21	. 94	7.2	5°	7.0	8°
2.22	1.00		No drag	results	
2,23	1.15	7.0	5°	Not a	achieved
2,24	1.50	10.6	0°	9.2	2°

PAIROHILD

TABLE 2-II. TEST CONDITIONS FOR ZERO TORQUE AND 1G LIFT-COEFFICIENT

Figure Number	Run Number	Pressure (in, Hg.)	μ	θ _o (deg)	αTPP (deg)
2.6	35/36	12	.87	2	13
2.10	43	12	1.40	3.5	11
2.12	47	12	1.66	2	8.5
2.13	44	12	1.75	1	6
2.14	48	12	2.16	0,5	2
2.16	50	30	. 29	1.5	8
2.17	51	30	.46	2.9	7
2.18	52	30	. 57	4.5	6
2.19	57	30	.72	4	7.5
2.20	56	30	. 82	5	9

PAIROHILD

TABLE 5-1 COMPARISON OF ROTOR CHARACTERISTICS PHASE I STUDY VS. PHASE II MODEL

Characteristic	Phase I Study	Phase II Model
Radius - inches	338	48.36
Chord - inches	35.2	5.00
Root cutout - non dim.	.150	. 232
Root airfoil thickness ratio - non dim.	. 150	.180
Tip airfoil thickness ratio - non dim.	.060	.060
Twist angle - deg.	0	0
Number of blades	4	4
Solidity - non dim.	.133	. 133
Normal tip speed - ft/sec	700	700
Normal disk loading - lb/sq ft	8	8
Flap hinge offset* - non dim.	0	.085
Flapping inertia per blade lb/in ²	16,5 i x10 ⁶	2972
Flapping moment lb/in	75,000	132
Flapping root spring, non dim.	2.46x10 ⁶	0
Lock number per blade	6.0	2.3
Delta - 3 - degrees	0	26.5
Flap frequency at normal tip speed - non dim.	1.05	1.07
Aerodynamic data assumptions:		
Number of spanwise stations	2	5
Thickness - chord ratio at stations	12% 7%	16.8% 14.4% 12.0% 9.6% 7.2%
Maximum lift coefficient in radial flow option	3.5	2.5
Atmospheric conditions:		
Altitude - feet	3000	Sea level
Temperature - *F	91.5	59
Density - slugs/ft ³	,001998	.002378
Speed of sound - ft/sec	1150	1117

^{*} The Phase I rotor was hingeless simulated by a flapping spring at a zero offset hinge. The Phase II rotor is fully articulated.

This page intentionally left blank.

INSTALLATION OF REVERSE VELOCITY ROTOR TEST RIG IN NASA AMES 12 FT PRESSURE TUNNEL

Figure 1.2

THREE-QUARTER REAR VIEW OF REVERSE VELOCITY ROTOR TEST RIG (Fairing Removed)

Figure 1.3

REVERSE VELOCITY ROTOR TEST RIG - GEOMETRIC LAYOUT

MODEL ROTOR AIRFOIL SECTIONS

SECTION PROPERTIES - 1/7 SCALE MODEL RVR ROTOR BLADE

SECTION PROPERTIES - SCALE MODEL RVR ROTOR BLADE (CONTINUED)

SECTION PROPERTIES - SCALE MODEL RVR ROTOR BLADE (CONCLUDED)

PREDICTED AND MEASURED FLAPWISE STIFFNESS 1/7 SCALE MODEL RVR ROTOR BLADE Deflection with 10 lbs load applied at . 95 radius

O = Measured, qualification blade

Spanwise Station, x/R

PREDICTED AND MEASURED TORSIONAL STIFFNESS 1/7 SCALE MODEL RVR ROTOR BLADE

Deflection with 100 in. lb. torque applied at .95 radius

O = Measured, qualification blade

Spanwise Station, x/R

NATURAL FREQUENCY SPECTRUM - 1/7 SCALE MODEL RVR ROTOR BLADE

の関係を大学の関係の関係が関係が対象を含めています。 そのでは、「これのは、「これのは、これのは、これのは、これのは、これのないできない。」というできない。 これのない これの

CONTROL SYSTEM 1/7 SCALE R.V.R MODEL

Figure 1.12

REVERSE VELOCITY ROTOR TEST RIG - CONTROL SYSTEM DIMENSIONS

をでいれていては、これをというなどのできないとのは、これではないないできないとのできない。 これのできない これのできな

OPERATING ENVELOPE AND TEST CONDITIONS - ATMOSPHERIC PRESSURE

HUB TARE CORRECTIONS TO NORMAL AND AXIAL FORCE COEFFICIENTS Tunnel Pressure - 12 in. Mercury

HUB TARE CORRECTIONS TO NORMAL FORCE COEFFICIENT

This page intentionally left blank.

MEASURED ROTOR PERFORMANCE

 μ = .46, 1670 r.p.m., 187 knots, M_{1,90} = .89, ρ = .00090, runs 29&30

MEASURED ROTOR PERFORMANCE μ = .46, 1670 r.p.m., 187 knots, $M_{1, 90}$ = .89, ρ = .00090, runs 29&30

MEASURED ROTOR PERFORMANCE

 μ =.64, 1500 r.p.m., 230 knots, $M_{1,90}$ = .90, ρ = .00089, runs 31 & 32

MEASURED ROTOR PERFORMANCE μ =.64, 1500 r.p.m., 230 knots, $M_{1,90}$ = .90, ρ = .00089, runs 31 & 32

MEASURED ROTOR PERFORMANCE μ = .87, 1330 r.p.m., 281 knots, $M_{1,90}$ = .92, ρ = .00086, runs 35&36

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE $\mu = .87, \ 1330 \text{ r.p.m., } 281 \text{ knots, } M_{1, \ 90} = .92, \ \rho = .00086, \ \text{runs } 35\&36$

MEASURED ROTOR PERFORMANCE

 μ = .98, 1170 r.p.m., 288 knots, $M_{1,90}$ = .84, ρ = .00087, run 41

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE μ =.98, 1170 r.p.m., 288 knots, $M_{1,90}$ =.84, ρ =.00087, run 41

 μ = 1.15, 1000 r.p.m., 287 knots, $M_{1,90}$ = .79, ρ = .00085, run 42

MEASURED ROTOR PERFORMANCE

 μ = 1.15, 1000 r.p.m., 287 knots, $M_{l,90}$ = .79, ρ = .00085, run 42

MEASURED ROTOR PERFORMANCE

 μ = 1.15, 1167 r.p.m., 350 knots, $M_{1,90}$ = .93, ρ = .00084, run 45

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE

 μ = 1.15, 1167 r.p.m., 350 knots, M_{1, 90} = .93, ρ = .00084, run 45

63

MEASURED ROTOR PERFORMANCE

 $\mu = 1.40$, 833 r.p.m., 290 knots, $M_{1,90} = .73$, $\rho = .00085$, run 43

MEASURED ROTOR PERFORMANCE

 μ = 1.40, 833 r.p.m., 290 knots, M_{1, 90} = .73, ρ = .00085, run 43

Collective Pitch - Degrees

HC1441070

 μ = 1.40, 970 r.p.m., 345 knots, $M_{1, 90}$ = .86, ρ = .00084, run 46

MEASURED ROTOR PERFORMANCE

 μ = 1.40, 970 r.p.m., 345 knots, $M_{1, 90}$ = .86, ρ = .00084, run 46

 $\mu = 1.66$, 833 r.p.m., 346 knots, $M_{1,90} = .81$, $\rho = .000$ 84, run 47

HB144R1070

MEASURED ROTOR PERFORMANCE μ = 1.66, 833 r.p.m., 346 knots, $M_{1,90}$ = .81, ρ = .00084, run 47

MEASURED ROTOR PERFORMANCE

 μ =1.75, 656 r.p.m., 292 knots, $M_{1, 90}$ = .67, ρ = .00085, run 44

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE

 μ = 1.75, 656 r.p.m., 292 knots, M_{1, 90} = .67, ρ = .00085, run 44

Collective Pitch - Degrees

72

 μ = 2.16, 643 r.p.m., 347 knots, $M_{1, 90}$ = .75, ρ =.00084, run 48

73

MEASURED ROTOR PERFORMANCE

 μ = 2.47, 560 r.p.m., 350 knots, M_{1, 90} = .72, ρ = .00084, run 49

 $\mu = 2.47$, 560 r.p.m., 350 knots, $M_{1, 90} = .72$, $\rho = .00084$, run 49 $\alpha_{TPP} = 0$

Collective Pitch - Degrees

 μ = .29, 1670 r.p.m, 121 knots, $M_{1, 90}^{-}$.79, ρ = .0023, run 50

 μ = .29, 1670 r.p.m., 121 Knots, M_{1, 90} = .79, ρ = .0023, run 50

MEASURED ROTOR PERFORMANCE

 μ = .46, 1670 r.p.m., 191 knots, $M_{1, 90}$ = .89, ρ = .0022, run 51

MEASURED ROTOR PERFORMANCE

Collective Pitch - Degrees

 μ = .57, 1330 r.p.m., 192 knots, M_{1, 90} =.76, ρ = .0022, run 52

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE

 μ = .57, 1330 r.p.m., 192 knots, M_{1, 90} = .76, ρ = .0022, run 52

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE μ = .72, 1350 r.p.m., 243 knots, $M_{1.90}$ = .61, ρ = .0021, run 57

Collective Pitch - Degrees

 μ = .72, 1350 r.p.m., 243 knots, M_{1,90} = .61, ρ = .0021, run 57

Figure 2.20A

MEASURED ROTOR PERFORMANCE

 μ = .82, 1170 r.p.m., 243 knots, $M_{1,90}$ = .65, ρ = .0021, run 56

Commence of the second second

Collective Pitch - Degrees

u = .82, 1170 r.p.m., 243 knots, $M_{1,90} = .65$, $\rho = .0021$, run 56

 μ = .94, 1050 r.p.m., 243 knots, $M_{1,90}$ = .68, ρ = .0021, run 55

Collective Pitch - Degrees

 $\mu = 1.60$, 1170 r.p.m., 295 knots, $M_{1,90} = .85$, $\rho = .0020$, run 59

Figure 2.22B

HC144R1070

MEASURED ROTOR PERFORMANCE

 $\mu = 1.00$, 1170 r.p.m., 295 knots, M_{1} , 90 = .85, $\rho = .0020$, run 59 (Drag data not available)

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE $\mu = 1.15$, 833 r.p.m., 239 knots, $M_{1,90} = .66$, $\rho = .0021$, run 54

A STATE OF THE PARTY OF THE PAR

MEASURED ROTOR PERFORMANCE u=1.15, 833 r.p.m., 239 knots, $M_{1,90}=.66$, $\rho=.0021$, run 54

Collective Pitch - Degrees

MEASURED ROTOR PERFORMANCE

u = 1.50, 660 r.p.m., 243 knots, $M_{1,90} = .59$, $\rho = .0021$, run 53

MEASURED ROTOR PERFORMANCE μ = 1.50, 660 r.p.m., 243 knots, $M_{1,90}$ = .59, ρ = .0021, run 53

ROTOR LIFT COEFFICIENT RATIO VS. ADVANCE RATIO

HC144R1070

MAXIMUM EFFECTIVE LIFT - DRAG RATIO MEASURED VS ADVANCE RATIO

HC144R1070

MEASURED EFFECTIVE LIFT - DRAG RATIO AT 8 LB. PER SQ. FT. DISC LOADING VS ADVANCE RATIO

EFFECTIVE LIFT-DRAG RATIO VS ROTOR LIFT COEFFICIENT

 μ = 1.50, 660 rpm, 243 knots, $M_{1,90}$ = .59, ρ = .002, Run 53.

Rotor Lift Coefficient

TIP PATH PLANE ANGLE FOR LEVEL FLIGHT AND ZERO TORQUE VS ADVANCE RATIO

HC144R1070

ROTOR CONTROL $\mu = .29, \ 1670 \ \text{r.p.m.}, \ 121 \ \text{knots}, \ M_{1,90} = .79, \ o = .0023, \ \text{run } 50$ (Rotor trimmed laterally and longitudinally)

ROTOR CONTROL

 μ = .46, 1670 r.p.m., 191 knots, $M_{1,90}$ = .89, ρ = .0022, run 51

ROTOR CONTROL

 μ = .72, 1350 rpm, 243 knots, M_{1,90} = .61, ρ = .0021, Run 57 (Rotor trimmed laterally and longitudinally)

Collective Pitch - Degrees

ROTOR CONTROL

 μ = .94, 1050 r.p.m., 243 knots, $M_{1.90}$ = .68, ρ = .0021, Run 55

Collective Pitch - Degrees

HC144R1070

ROTOR CONTROL

 μ = 1.15, 833 r.p.m., 239 knots, $M_{1,90}^{-1}$.66, ρ = .0021, Run 54

ROTOR CONTROL

 $\mu = 1.45$, 820 r.p.m., 293 knots, $M_{1.90} = .75$, $\rho = .00205$, Run 60

Collective Pitch - Degrees

HC144R1070

ROTOR CONTROL

 $\mu = 1.50$, 660 r.p.m., 243 knots, $M_{1,00} = .59$, $\rho = .0021$, Run 53

ROTOR CONTROL

 $\mu = 1.40$, 970 r.p.m., 345 knots, $M_{1,90} = .86$, $\rho = .00084$, Run 46

COLLECTIVE CONTROL POWER AT 5 DEG TIP PATH PLANE

(Rotor Trimmed Laterally and Longitudinally) ρ = .002 slugs/ft 3

ROTOR TIP PATH PLANE DERIVATIVE WITH RESPECT TO CONTROL AXIS ANGLE AT CONSTANT ROLLING MOMENT

(Lateral Control Adjusted to Keep Rolling Moment Zero During Variations in Control Axis Angle)

 $\rho = .0020$ slugs/ft³

THEORETICAL PHASE ANGLE OF FLAPPING RESPONSE TO ONE-PER-REV CYCLIC INPUT IN HOVER

Delta-3, Degrees

ROTOR FLAPPING

Trimmed 1g conditions, $\rho = .002$ Traces shown are one rotor revolution from 0° to 360° azimuth

$$\mu = .29$$
 $C_L = .0081$ Run 50

Flap angle, deg

$$\mu = .46$$
 $C_L = .0079$ Run 51

Flap angle, deg

$$\mu = .82$$
 $C_L = .0116$ Run 56

Flap angle, deg

$$\mu = 1.5$$
 C_L = .029 Run 53

Flap angle, deg

TYPICAL TRACES OF FLAPWISE VIBRATORY MOMENTS NEAR RESONANCES - OUTBOARD STATION ~ .71R

Resonance of 2nd Flap Mode at 3/Rev

Up Bending

1670 rpm Run 51 Correlate 593

TYPICAL TRACES OF FLAPWISE VIBRATORY MOMENTS NEAR RESONANCES - OUTBOARD STATION ~ .71R

Resonance of 2nd Flap Mode at 4/Rev

Resonance of 3rd Flap Mode at 10/Rev 635 rpm,Run 44, Correlate 449

MEASURED VIBRATORY FLAPWISE BENDING MOMENTS AT CRITICAL STATIONS

(One half peak-to-peak values)

1g Lift coefficients, 830 rpm, $\rho = .0008 \text{ slugs/ft}^3$

TYPICAL THEORETICAL SPANWISE DISTRIBUTIONS OF VIBRATORY FLAPWISE BENDING MOMENT

At 1g Lift Coefficients. Non-resonant r.p.m.

Blade Station, x/R

HC144R1070

Figure 4.4

MEASURED VIBRATORY FLAPWISE BENDING MOMENTS AT SCHEDULED FLIGHT CONDITIONS

(One half peak-to-peak values) $\rho = .002 \text{ slugs/ft}^3$

COMPARISON OF PREDICTED AND MEASURED ROTOR PERFORMANCE μ = .29, 1670 r.p.m, 121 knots, $M_{1, 90}$ = .79, ρ = .0023, run 50

COMPARISON OF PREDICTED AND MEASURED ROTOR PERFORMANCE μ = .29, 1670 r.p.m., 121 Knots, M_{1, 90} = .79, ρ = .0023, run 50

COMPARISON OF PREDICTED AND MEASURED ROTOR PERFORMANCE μ = .29, 1670 r.p.m., 121 Knots, $M_{1, 90}$ = .79, ρ = .0023, run 50

C_{LR}

 $c_{\mathtt{L}_{R}}$

COMPARISON OF PREDICTED AND MEASURED ROTOR PERFORMANCE μ = .82, 1170 r.p.m., 243 knots, M_{1, 90} = .65, ρ = .0021, run 56

COMPARISON OF PREDICTED AND MEASURED ROTOR PERFORMANCE μ = 1.15, 838 r.p.m., 239 knots, $M_{1,90}$ = .66, ρ = .0021, run 54

COMPARISON OF PREDICTED AND MEASURED ROTOR PEFORMANCE μ = 1.50, 660 r.p.m., 243 knots. $M_{1,90}$ = .59, ρ = .0021, run 53

COMPARISON OF PREDICTED AND MEASURED ROTOR PERFORMANCE μ = 2.16, 643 r.p.m., 347 knots, M_{1, 90} = .75, ρ = .00084, run 48

COMPARISON OF PREDICTED AND MEASURED ROTOR PERFORMANCE μ = 2.47, 560 r.p.m., 350 knots, $M_{1, 90}$ = .72, ρ = .00084, run 49

2.0

Advance Ratio

1.2

1.6

.8

EFFECT OF REYNOLDS NUMBER ON PREDICTED ROTOR PERFORMANCE - MODEL ROTOR, 18% TO 6%

FULL-SCALE EFFECTIVE LIFT-DRAG RATIO - MAXIMUM AND AT 8 LB, PER SQ, FT, DISK LOADING

134

FAIRCHILD BEPUBLIC DIVIBION

HC144R1070

APPENDIX A AIRFOIL SECTION DEVELOPMENT

A1 General

The airfoil sections used in the blade design have been completely defined on a mathematical basis, that is, they are derived from separate equations defining the camber line ordinates and thickness distribution. These equations have been coded in Fairchild Republic digital computer program RAD T620279, and can be used to generate a wide variety of airfoil shapes with either rounded trailing-edge thickness distributions suitable for the RVR concept or conventional sharp trailing edge forms.

A2 Mathematical Airfoil Definition

A2.1 Surface Ordinates

The upper and lower surface ordinates, y_u and y_ℓ , respectively are determined from the following relations (see sketch)

$$y_{tt} = y_{tt} + y_{tt} \tag{1}$$

$$y_{\ell} = y_{c} - y_{t} \tag{2}$$

where y_c and y_t devote the mathematical camber line and thickness distribution function respectively, described next.

A2.2 Thickness Distribution

Two separate functions are used to generate the thickness distribution: one equation is used forward of the maximum thickness location; and another for the portion aft of that location. Thus for the fore section, that is, for $0 \le x \le x_t$ (where x_t location, in fraction of chord, of maximum thickness)

$$y_t = b_0 \sqrt{x + b_1 + b_2} x^2$$
 (3)

HC144R1070

and for the aft section i.e., for $x_t \le x \le 1.0$

$$y_t = c_0 \sqrt{1-x} + c_1 (1-x) + c_2 (1-x)^2 + c_3 (1-x)^3$$
 (4)

It is to be noted that these functions representing the fore and aft sections of the thickness distribution are constrained to have the same value of the second derivative at the "join", which is taken to be the station, $x = x_t$, at which the thickness is maximum. This ensures that the curvature of the thickness distribution is continuous along the length of the airfoil.

It should also be noted that the coordinates x and y_t appearing here are dimensionless, that is to say, they have been normalized with respect to the chord length, c.

The coefficients of the various terms in equations (1) and (2) above are dependent upon the following geometric parameters:

 x_{+} = chordwise location of maximum thickness

 r_{Le} = leading edge radius (fraction of chord)

t_m = semi-maximum thickness ratio

r_{te} = trailing edge semi-thickness

A2.2 Camber line

The camber line function y_c is given by two curves, one for the camber line portion forward of the maximum camber location, and one for the portion aft of this location. Thus, for $x \le x_c$ (where $x_c = \max$ camber location fraction of chord):

$$y_c = a_1 x + a_2 x^2 + a_3 x^3$$
 (5)
and for $x \ge x_c$
 $y_c = d_1 (1-x) + d_2 (1-x)^2 + d_3 (1-x)^3 + d_4 (1-x)^4$ (6)

The coefficients in the equations (5) and (6) are determined by the following geometric parameters, together with the requirement that the second derivative (and hence the camber line curvature) be continuous at the join of the fore and aft section camber lines:

 x_c = chordwise location of maximum camber

c_ = maximum camber, fraction of chord

c_b = slope of camber line at leading edge

c = slope of camber line at trailing edge

A3 Sections Developed for the Model

For all sections used on the blade the maximum thickness and maximum camber are both located at 40% chord: For the root section of the rotor an 18% thick section with 3.7% camber was selected. The tip section is of 6% thickness with 1.3% camber. This reduced camber in the tip section was dictated by manufacturing considerations, in that avoidance of concavity on the under surface of the blade led to a significant reduction of cost. Use of 1.3% camber at the tip eliminated the concavity that would have resulted has a 2-1/2% camber been used along the entire blade. Consequently, the section at the semi-span station is of 12% thickness with 2.5% camber.

Tabulated ordinates for the root (18%) and tip (6%) sections are given in tables A-I and A-II, and the sections are illustrated in Figure 1.4 of the main report.

It is noted that the sections selected for the rotor differ slightly from the modified 0012 section tested previously (Ref. 1). The difference in geometry is restricted to the region of the trailing region and consists primarily of a slight thickening and a better shaped round trailing edge based on the above mentioned mathematical approach which is described briefly below. These changes were expected to yield an improvement in maximum lift coefficients for both forward and reverse flow, as well as improved transonic aerodynamic characteristics.

FAIRCHILD REPUBLIC DIVISION

HC144R1070

TABLE A-1. AIRFOIL SECTION DEVELOPMENT - INPUT PARAMETERS

Input Parameters	Root Section	Tip Section
Max Camber Location, x _c	. 400000	. 400000
Max Thickness Location, x	. 400000	.400000
Trailing Edge Semi-Thickness	0	0
Trailing Edge Semi-Angle	0	0
Max Semi-Thickness, t _m	.090000	.030000
Max Camber, c _m	.037000	.013000
Slope of Camber Line at Trailing Edge, c	.148000	.052000
Slope of Camber Line at Leading Edge, ch	. 222000	.078000
Leading Edge Radius R _L	. 039487	.004387
Trailing Edge Radius, R _T	.010000	.002870

FAIRCHILD REPUBLIC DIVISION

HC144R1070

Copy available to DDC does not permit fully legible reproduction

TABLE A-II. ORDINATES OF ROOT AIRFOIL SECTION 18 Percent Thick, 3.7 Percent Camber

	x	y _u	y,	y _o	y _t	2y _t	
			_				
1	0.7 0.7(5070	**************************************	##0 -C#017689	0.0 0.001100	0.0 0.018789	0.0 0.037577	
·				01002179	· 0.085937	0.051873	•
4	0.015000	0.034406	-0.027938	0.003237	0.031169	0.062338	
5	0.020000	0.039585	-0.031135	0+074875	0.035410	0.770820	
6 7	**************************************	0.046317	-r.133723 -0.135882	0.006297	9.039017 0.042173	0.078034 2.984347	
ė	0.735002	0.052256	-0.037719	0.007270	0.044988	7.05977	
					0 . 0 4 7 5 3 3		-
111	U.045000	0.059025	-0.140669	1.009168	0.049557	0.097714	
11	0+059000 / 0+055000	0.062094 0.064966	-0+04190 <i>8</i> -0+042987	0.01008 Pepolo.0	0.051996 0.053977	0.103992 0.107954	
- 13	0.460000	C+067692	-0.043949	0.011871	0.055521	0 • 111641	
14	0.065000	C.070379	-0.044610	0.712735	0.057546	0.115789	
					······································	-0-110724-	-
16	0.074000	C . 0.75090	-0.04627R	0.014406	0.060664	0 - 121 36A	
17 19	1.001000 1.005000	0.077334 C.079482	-0.046905 -0.047473	0.015214 0.016905	0.062120 0.063478	0 • 124 247	
19	0.794000	0.081541	-0.047987	0.016777	2.064764	0.129529	
70	0.795000	0.053517	-0.048454	0.017532	0.055985	9 • 1 31 97 1	•
				0.0 18864 ·		··· 0 . 1 34 292 ··	-
27	0.110000	(· • · A9905	-0.749613	0.019691	A.069304	0.13860	
# 7 2 4	0.120000	0.092313 0.09393	-0.050221 -0.050726	0.021746	0.071267 2.073059	0.146115	
75	C.140COO	0.099256	-0.751144	0.023556	0.074700	0-149400	
26	0.150000	0.110926	-11.051470	0.024718	0.076205	0.152410	
~~ 47	0.140000			0-025811	0.077587	0.155175	-
24	r.170000	0.1.5705	-0.052(12 -0.052205	0.026947 0.027927	0.078859 0.0000 <i>2</i> 0	0.157717	
29 31	0.140000 0.140000	0.117850	-0.052364	0.028747	0.001104	0.162208	
31	0.20000	0.111493	-0.152493	0.089500	0.092093	0-164167	73 O
32	^ · 210000	0.113408	-0.05249A	0.737405	0.963773	0.166706	Paris Copy
31.		<u>-0-114994</u>		0.031166	0.08363A -	0.167676	<u> </u>
34 35	0,237000 0,249000	0.116457 C.117805	-0.052749 -0.052803	0.031864 0.038501	0.084603 U.085304	0.169207 0.170608	<u>⊶</u> 3
36	0.250000	6.119041	-0.032845	0.033198	C.055943	2 . 173 686	rediable
37	6.260000	0.120170	-0,052879	7.733646	0.056574	0.173749	_ ફું
38	7.270000	0.121179	-(.052904	r.434147	C=087082	0.174103	legil
		0.122130		0.034602	0.037527 0.037954	0 • 175054 0 • 175908	ूँ इ. इ
41	0.300000	0 +123715	-0.052953	0.035361	0.085334	7.176668	ø ↔
42	0.310000	0.124376	-0.052963	0.03570A	0.088670	0.177340	o repr
43	0.320000	G • 18495H	-(.052971	0.035994	0.088964	0.177928	
44	0.530000	0.125459	-0.052977	0.eD 36241 	0.089218 	0.178436)DC dose not reproduction
46		- 4+125484 0-126236	-0.052983 - -0.052967	0.036624	2.089418		~ ក្នុង
47	0.360000	0.126518	-0.052991	0.036763	0.089755	0.179509	
44	0.370000	0.126733	-r.052999	0.036869	0.009864	0.179727	- 4
49	0.30000	0.126503	-6.052998	0.036943	0.087740	0.179860	•
51	0.390000	0.126971	-(.752999	0.036986	0.00000	0.179970	
51 52	0.400000 0.410000	0.127000	-0.053000 -0.052999	0.037000 0.036986	0.040710 1.047785	0.180201 0.177971	
						4.179883-	
54	0.431100	0.12674A	-0.0529BR	0.036580	0.00986	0.179736	
45	0.449000	0 - 1 26 75 5	-0.052976	0.435796	0.089765	0.179531	
54 47	0.450000 0.460000	0+126709	-0.052958 -0.052958	0.736675 0.936536	0.0A9633 0.089471	0.179266	
7/ 59	0.470000	0 - 1 25/55	-4.025838	0.336380	0.089279	0.178942 0.178558	
، مُعَــــ							-
69,	0.4491.000	C+124003	-0.052R05	0.73499	0.005005	4.177609	
61.	or ቀ ዲላ ሁለድለ	0.124301	-0.052742	0.035700	0.088522	0.177044	

FAIRCHILD REPUBLIC DIVISION

HC144R1070

TABLE A-II (Continued)

	x	` v	v	v	••	0
		y _u	y ₂	$\mathbf{y_c}$	y _t ,	$^{2}\mathrm{y}_{t}$
62	0.510000	0.123749	-0.052668	0 • 0 35541	0.088209	0.176418
,63 64	0.520000	1.123146	-0.052582	C+035283	9.087865	0.175730
-64	- 11.6 ₹ ₹ 11.600 	G + 1 2 2 4 9 A		C . 13500 A	0.087490	0.174979
66	0.550000	0+121799 0+121751	-0+052368 -0+052240		0.087083	0-174167
67	0.56-000	0.120256	-1.052097	0.034406 0.034079	0.086646	0.173291
68	0.57000C	0.117412	-1-151937	0.033737	0.086176 0.085675	0.172352
6.9	0.58000C	0+118519	-0.051762	0.033379	1.085140	0+171349 0+1702A1
77	~59"n@0	0.117578	-0.051569	0.037364	1.084574	0.169147
71		^ + 1 1 6 H A A	-0-051359	0.032615	0.083974	0.167947
72 73	0.450000 0.4610000	0+115550	-1.051130	0.032219	0.083340	0.166680
74	7.630000	^+114462 ^+113324	+4.050AA3	0.031784	^.^A2673	0.165345
75	0.641000	7.112136	-^+050617 -0+050331	0 • 9 31 354 0 • 9 30 49 2	0.091971	0.163941
75	0.650000	0.111897	-0.050025	0.030436	0.081234 0.080461	0.162468
-77	—^. 66449 д —.		-1.049499	·· 0 . n 20954 ··	4 + 0 7 9 6 5 3	7.160923 - 0.159305 —
7.8		0.108263	-0.049351	0.029456	1.078807	0.157614
79	0.480000	0.106966	-0.048982	0.028942	0.077924	0.155846
AC.	0.690000	N.IL5415	-0.048591	0.029412	0.077(03	0.154006
81 83	0.705000	0.103908	-0-048177	0.027866	0.076143	0.152085
······ # \$ ···	0.71(000 0.726000	0.102344 0.100721	-9.047749	0.027302	0.075042	0.150764
84	0.730000	^+0791 19	-0.047279 -0.046794	0.026721	4.074000	- 0.14900 [
45	0.740000	0.097294	-0-046284	0 • 7 26 1 2 2 0 • 0 25 5 1 5	0.072916 0.071789	0.145833
66	7.75/000	C.195486	-7.34574B	0.024969	2.070617	0.143578
A7	0.760000	0.093611	-0.045186	0.024213	0.069398	0.141234 0.138797
88	C.770000	0.091568	-0.044595	0.023537	0.068132	0.136264
	-4.74114-	0.0A94K4	-n-043974_	0 + 122939	4.066A15	
91) 91	0.790000 N-800000	C+0A7566	-G-C43327	0.022120	7.05447	0.130893
92	0.900000 1.910000	0.085401 0.083156	-6.042646	0.021378	0.064024	0.128047
9.3	1.950000	0.090925	-0.041931 -0.041181	0.010012	1.062543	0.125087
94	2+430000	0.078405	-0.040393	0.019822 0.019306	0.061003 0.059399	0.122006
		-0-075804	-0.039564 -	0.018143	0.057727	0.118798 4.1184 88
96	0.855000	0.073276	-0.038690	0.017293	0.055983	0.111966
97 98	6.466440	0407055	-0.037767	0.016394	0.054161	0.108322
00	0.470000 //.480000	0.067719	-0.036789	0.015465	0.052254	1.104508
100	7.890000	0.034759 0.061664	-0.036751 -0.034643	0.014504	0.050256	0.100509
101	2.900000	14059422	-0+033455	0.013511 0.012463	0.048153	0.096307
1(2	0.965000	0.056746	-C+032827	0.011955	0.045938 0.044784	0.091877 0.089367
	- 4.910404		-0.072174	- 94911420	0.043595	- 0.087189 ·-
194	0.915000	0.053244	~~.33149T	0.110975	0.242369	0.084737
105	0.920000 0.92500	0.051423	-1'+1'30782	0.012321	0.041103	0.082206
107	0.925000	0.049550 0.047620	-0 - 0 20255	C+009756	2.039794	0.079588
10.0	0.935000	0.045628	-1.029255 -4.028431	0.009192	0.038438	0.076875
			-0.4.27560	######################################	0.037030	0.074060
110	0.945000	0.041434	-0.1125635	C.007399	7.034034	- 0.0711 24
111	0.950000	0 af 39216	-0+125648	0.006784	0.032432	0.068069 0.064664
112	0.955900	0.036904	-0.024588	0.006159	0.030746	0.061492
117	6.960000	0.034494	-0.053445	0 - 7:5521	0.028963	0.057927
114 	- 0 •965 ^00 - 0 •97 ^^ 0	0.031938	-C+C2P193	0.004873	0.027046	0.054131
114	0.975000	1 49 99 9 4 1	-0.020A15	0.004613	-0+055059	··· \$10500 56
117	C+9811 00	0+026356 0+023229	-0.019273 -0.017513	0.003541	0.022815	0.045629
118	7.984100	0.019767	-0.015443	0.002958 0.002162	0.020371	0.040742
119	0.99000	0.615791	-0.012881	7.001454	0+017605 0+014335	0.035209
120	C+995000 1	0.010832	-0.009365	0.702733	0.010099	0.028671 0.020197
121	- tenning	→€ •00^000	-0.0000000	7.100700		· 0.020197

TABLE A-III. ORDINATES OF TIP AIRFOIL SECTION 6 Percent Thick, 1.3 Percent Camber

	x	y _u	y į	y _c	$\mathbf{y_t}$	$2y_t$
•	0.0	5.0	0.0	0.0		· •
2	0.005000	0.006547	-0.005877	0.010386	0.0 0.006243	0.0 0.012526
	- 0.01 0000 -	· 0. 009411-		0.000765	0.008646	-0.017291 -
•	0.015000	0.011527,	-0.009252	0.001137	0.010390	0.020779
5	0.020100	0. 01 33 05	-0.010301	0.001502	0.011801	0.023607
6 7	0.025000	0.014865	-0.011146	0.001860	0.013006	0.026011
Ŕ	0.039966 0.035666	0.016269	-0.011847	0.002211	0.01405A	0.028116
i	- 0.040000	0.017550 0.018736-	-0.012442	0.002554	0.014996	0.029793
10	2.945000	0.019940	-0+012983 -0+013398	0.002691	0.015844 -	04031689
11	0.050000	0.020977	-0.013747	0.003221 0.003545	0.016619	0.033238
12	0.055090	0.021953	-0.014131	0.003961	0.017332 0.017992	0.034664 0.035985
17	0.060000	0.022778	-0.014436	0.004171	0.018607	0.037214
14	0.0A5000	0.023655	-0.014707	0.004474	0.019182	0.034363
	0.07000	0,024492		0 .00 4771	0.019721	- 0.039441
16 17	0.075000 0.080000	0.025290	-0.015166	0.005062	0.020228	0.040456
19	0.0A5000	0.026052	-0.015361	0.005346	0.020707	0.041413
- 19	- 0.09enon	0.026782 0.027489	-0.015936	0.005623	0.021159	0.042318
20	0.095000	0. 02A135	-0.015694 -0.015935	0.005595 0.006160	0.021588	0.043176
			-0.019967-	04004414	0.021995 0.022382	0.043998 - 0.044764
22	0.110000	0.030020	-0.016193	0.000919	0.023101	0.046203
	0.120000	0.071157	-0.016361	0.007394	0.023756	0.047511 -
24	0.130000	0.032200	-C.016508	0.007847	0.024353	0.048706
76	0.140000 0.150000	0.033176	-0.016624	0.008276	0.024900	0.049990
	0.150nno	0.0740 <i>8</i> 5 	-0.016718	0.008684	0.025402	0.050803
28	0.170000	0.035719	0.016794 -0.016594	- 0 400 9069 -	-0.025862	0.041729
- 29-	0.180000	0.036451	-0.016901	0.009433 0.009775	0.0262AA 0.026676	0.052572
30	0.190000	0.037132	-0.016937	0.010098	0.027035	0.05335 <i>2</i> 0.054069
31	- 0.200000	0.037764	-0.016964 -	0.010400	-0.027364	0.054729
32	0-210000	0.038390	-0.016945	E85010.0	0.027668	0.055335
3 +	04220000	- 0 .038899-	0+015999		0.02794b ·-	·· 04055899 ···
- 35	04240000	0.039391 0.019454	-0.017009	0.011192	0.020201	0.056402
36	0.250000	0.040277	-0.017015 -0.017019	0.011419	0.028435	0.056859
37	0.260000	E 660 40 40	-0.017020	0.011822	0.028648 0.028841	0.057P9B 0.0576A3
36	0.270000	0.041015	-0.017020	0.011998	0.027017	0.058034
	0+ 28 00 00		-0.01701A	- 0.01715A	- 0.029176	- 0.05A35t
40 41	0.290000	0.041620	-0.017016	0.012302	0.029317	0.059636
42	0+300000 0+310000	0.041976	0.017013	0.012431	0.029445	0.058849
- 43	··· 0.380000 ·-	0.0421QT 0.042301	-0.017011	0.012546	0.029557	0.064113
44	0.330000	0.042473	-0.017006	0.012646	0.029455	0.059309
+		- 0:04 261 8 -	-0.017004	04012A0T	0+029739 0+029 811	0.059479 0.059622
46	0.350000	0.042739	-0.017003	0.012868	0.029871	0.059741
47	0.30000	- 0:042035 -	-0.017001	- 0.012017 -	0.029918	0.059836
48	0.370000	0.042909	-0.017001	0.012954	0.029955	0.059909
50	0#380000 00000	0.042960 0.042990	-0.017000	0+012460	0.029980	0.059960
··· 91 ·	0.400000	0.043000	-0.017000 -0.017000	0.012945	0.029998	0.059990
92	0.410000	0.042790	-0.017000	0.012995	0.030000 0.029995	0.060000
	- 0.42 0000		-0.017000		-0.029981	0.659790
54	0.430000	0.042915	-0.016999	0.012958	0.029957	0.059914
55	0.440000	- 0.042850	-0.014999	0.012926	0.029924	0.059848
56 97	0.450000 0.460000	0.042768	-0.016976	0.012585	0.0298A2	0.059743
56	0.470000	0.04264R	-0.016943 -0.016948	0.01283R	0.029830	0.059661
- 40	n. 480000	-01042420-	0.016984	0.012789 	0.029770 0.029701	0.059541
60	0.490000	0.042272	-0.016976	0.012649	0.029624	0.099403
61 -	0. 500000	0004 21 0,0	-0.016957	0.012971	0.029538	0.057076

TABLE A-III (Continued)

	x	••				
	^	y ₁₁	$\mathbf{y}_{oldsymbol{\ell}}$	y _c	$\mathbf{y_t}$	$2y_t$
		•	~	C		· t
62	0.510000	0.041731	-0.016956	0.012487	0.029444	0.058447
63	0.420000	0.041735	-0.016944	0.012397	0.027341	0.058662
44	0.530000	0.041530	-0.016930	0.012300	0.079230	0.058460
— 69 -	<u> </u>		-04010914	-0.012197-	0.029111	0.098289
66	0.550000	0.041077	-0.016596	0.0120AA	0.028984	0.05796R
67	0.460000	0.040923	-0.016875	0.011974	0.025849	0.037678
# #	0.570000	0. 04 0559	-0.016652	0.011854	0.028706	0.057412
64	0.580000	04 04 02 82	-0.916827	0.011725	0.028555	0.057110
70	0.590000	0.019992	-0.016900	0.011596	0.028396	0.056792
	0. 600000	- 01039689 -		0.011459 -	0.02A2P9 -	-0.05645A -
72	0.610000	0.037371	-0.016737	0.011317	0.028054	0.056109
77	0.620000	0.039041	-0.016702	0.011169	0.027879	0.055743
74	0.630000	0.018697	-0.014665	0.011016	0.027681	0.055362
74	0.640000	· 0.038340	-04016625	0.010454	0.077442	0.054954
74	0.550000	0.037767	-0.016592	0.010494	0.027275	0.054550
77-		04037594 -	0.016536-	0.0 10524	0.027000-	- 0.054120 -
78	0.470000	0.037146	-0.015497	0.010349	0.026816	0.053673
74	0.680000	0.036771	-0.014435	0.010169	0.025674	0.053208
40	0.690000	0.036346	-0.016381	0.009983	0.026363	0.052727
- A1	· 0.70000	- 0.035904	-0.016323	04009791	0.026113	0.052277
42	0.710000	0.035447	-0.016761	0.009593	0.025854	0.051706
	0. 770000		0.014196-	- 04009189	01025549-	-0.091170 -
84	0.730000	0.034484	-0.016124	0.009176	0.025306	0.050612
55	· C. 740000 ·	0.033977	-0.016955	0.000001	0.025016	0.090032
86	0.750000	0.013453	-0.01597A	0.008738	0.074716	0.049431
- A7··	- 0.760000	- 0.032911	-0.015896	0.008507	0.024403	0.048807
44	0.770000	0.032348	-0.015809	0.008270	0.024079	0.048157
	0 + 78000 0	 0+031766	0.015716	-0.000029-		0.047482
90	0. 790000	C. 031161	-0.015617	0.007772	0.027359	0.046778
91	0.800000	- 0.030933	-0.015511	0.007511	0.023022	0.046045
72	D. A1 0000	0.029881	-0.015397	0.007242	0.077679	0.045278
43	· 04 AZ 00 00	0.029703	-0.015274	0.006964	0.022230	0.044477
74	0. #30000	0. 08 94 96	-0.015140	0.006678	0.021018	0.043636
	0+040000	~~~0+ 027750 —		-0-006398-	-0.0E1376	-0.042798
96	0.850000	0.0269A7	-0.014835	0.006076	0.020911	0.041022
97	· 0• 46 00 00	0.026179	-0.014659	0.005740	0.020414 -	0.040838
70	0.870000	0.028331	-0.014464	0.008434	0.019898	0.039798
99	0.660000	0.084439	-0.014247	0.005096	- 0.019343	0.038686
100	0. A900 00	0.023496	-0.014002	0.004747	0.018749	0.037496
101	0.90000	0.022497	-0.013795	0.004386	0.014111	0.016822
109	0.905000	0.021973	-0.013872	0.004201	0.017773	0.035545
104				-0.00401J		
105-	0.915000	C, 02 0A71	-0.013231	0.00 3621	0.017052	0.034105
105	-0. 92 00 00 0. 92 50 00	0.020293	-0.013041	0.003626	0.016667	0.037335
107	0.930000	0.019491	-0.012436	0.003426	0.016744	0.032927
107	0.430000	0.019069	-0.012617	0.00.1226	0.015837	0.031678
		0.018412	-0.017370	0.003021	0.015791	0.030781
110	0.945000	0, 01 777A	0.012104	- 0.007A12	~ 0.014916	0.029A32 -
. 111	0.930000	0.017011	-0.011617	0.007600	0.014412	0.0PM#23
112	0.955000	·· 0.016256	-0.011489	0.002394	0.013873	0.027746
113 -		0.01545A	-0.011130	0.002164	0.013294	0.026585
114	0. 765000	· 0.014608	-0.010729	0.001940	04012664	0.025336
-119-		0.013697	40.010273	0.001712	0.011988	4.623970
116			0.009752	-0 100 tann	01011272	
117	0.975000	0.011534	-0.009146	0.001244	0.010390	0.020780
116	0. 99 00 00	0.010434	~0.0084RA	0.001004	0.000274	0.018860
	0.985000 	0.009062	-0.007843	0.000760	0.006363	0.016606
120		0.007424	-0.006402	0.000811	0.006913	0.013875
-121-	0.999000	0.005270	-0.004755	0.000258	0.005013	0.010025
164	1+000000		- 0 +0+0+0-0 —	·- 0100000		

HC144R1070

APPENDIX B

ROTOR TEST RESULTS

Results are reproduced from NASA provided print-out. They have been corrected for tares. See Section 2.1.

FAIRCHILD REPUBLIC DIVISION

HC144R1070

KEY TO ABBREVIATIONS - ROTOR TEST RESULTS

M	M_{∞}	free-stream Mach number
R	R	Reynolds number, millions per foot
PT	$P_{t_{\infty}}$	free-stream total pressure, lb per sq ft
Q	q _{oo}	free-stream dynamic pressure, lb per sq ft
TT	T _t	free-stream total temperature, °F
RHO	ρ x 100	free-stream density, slugs/ft ³
GAMA	γ	blade lock number ρ_{∞} (a) (c) $(b^4)/I_{\beta}$
РНІ	$oldsymbol{arphi}_{2}$	two-per-rev phasing, degrees
DEL 3	δ ₃	flapping hinge cant, degrees
CORR		data correlation number
THEZ	θο	collective pitch, degrees
THEC	$\theta_{1_{\mathbf{C}}}$	cyclic pitch (cosine), degrees
THES	6 ₁₈	cyclic pitch (sine), degrees
ALFA	α	angle of attack of model reference axis, degrees
v	v_{∞}	free-stream velocity, ft/sec
VTIP	ΩR	tip speed, RPM $(\pi/30)$ (b), ft/sec
MU	μ	advance ratio, $V_{\infty} (\cos \alpha) / \Omega R$
LAMB	λ	inflow ratio, $-\mu$ (tan α) + 0.5 $C_{T}^{*}/(\lambda^{2} + \mu^{2})^{\frac{1}{2}}$
CZ	C _N	normal-force coefficient, normal force/ q_{∞} 8
CX	$^{\mathbf{C}}_{\mathbf{A}}$	axial-force coefficient, axial force/ q_{∞} 8
СРМ	C _m	pitching-moment coefficient, pitching moment/qSc
CRM	C _ℓ	rolling-moment coefficient, rolling moment/ q_{∞} sb
CL	$c_{\mathtt{L}}$	lift coefficient, lift/q _∞ S

FAIRCHILD REPUBLIC DIVISION

HC144R1070

KEY TO ABBREVIATIONS - ROTOR TEST RESULTS (Cont'd)

CD	$\mathbf{c}^{\mathbf{D}}$	drag coefficient, drag/q _e S
CT	$\mathbf{c_T}$	thrust coefficient, $\frac{1}{2} C_N (V_{\infty} / \Omega R)^2$
СН	C ^H	in-plane force coefficient, $\frac{1}{2} C_A (V_{\infty}/\Omega R)^2$
CQ	Cq	torque coefficient, $10 \times \frac{1}{8} C_n (V_{\infty}/\Omega R)^2$
CLR	$\mathbf{c}_{\mathbf{L_R}}$	rotor lift coefficient, $\frac{1}{R}C_L(V_{\infty}/\Omega R)^2$
CDR	$c_{D_{\!R}}$	rotor drag coefficient, $\frac{1}{2} C_D (V_{\infty} / \Omega R)^2$
TOD	(L/D) _R	rotor lift-to-drag ratio, $C_{L_R} / [C_q (\Omega R/V_{\infty}) + C_{D_R}]$
DL	DL	disc loading, $C_L q_{\infty}$, Ib/ft^2
CRB	C _L Bal	balance axis rolling-moment coefficient, balance rolling-moment/ \mathbf{q}_{ϖ} Sb

HC144R1070

APPENDIX B. ROTOR TEST RESULTS TARES - RUNS 37, 38

296 00.02-00.10 00.05 00.04 160.7 281.5 .0167 .0153 .0020000 297 00.01-00.23 00.03 00.04 161.3 420.6 .0177 .0165 .0011000 298 00.07-00.18 00.07 00.03 161.9 562.1 .0158 .0139 .6021000 299 00.17-00.28 00.06 00.03 161.9 702.0 .0174 .0168 .6010001 300-00.01-00.04 00.04 05.01 162.0 278.1 .0247 .0135 .0048001 301 00.06-00.05 00.07 05.01 162.0 419.7 .0226 .0130 .0045001 302 00.16-00.15 00.06 05.00 162.0 360.5 .0211 .0098 .0054001 303 00.11-00.25 00.07 05.00 162.0 700.4 .0204 .0110 .0058001 304 00.04-00.18 00.06 10.05 161.6 279.8 .0310 .0090 .0061003	25 .0307 .0158

RUN L TN TST P DATE TIME M RHC GAMA PHI DEL3 0626 1620 0,286 0,798 0899, 048,7 076,5 ,0938 00,79 000,0 26,00 38 1 12 614 1 VTIP CORR THEZ THEC THES . ALFA CΖ CRM 911 00.03-00.11 00.07-00.01 322.3 277.3 .0230 .0171 .0008-.0001 .0230 .0171 \$12 CC.05-CC.09 CC.06 -CC.C1 322.9 416.4 .0222 .0179
\$13 CC.14-CC.21 CC.C7 -CC.C1 323.2 56C.5 .0221 .017C .0007-.0002 .0222 .0179 .0010-.0003 .0221 .0170 314 00,12-00,19 00,08-00,01 323,2 697.0 .0230 .0173 .0008-.0004 .0220 .0173 \$15 00.00-00.13 00.03 02.49 323.1 278.1 0255 0171 \$16 00.10-00.07 00.06 02.50 323.4 416.4 0250 0171 \$17 00.08-00.17 00.06 02.49 323.0 561.3 0245 0161 .0012-.0002 .0247 .0182 .C242 .C182 .0015-.0004 .0238 .0172 318 00,09-00,13 00,08 02,49 323,1 700,4 .0236 .C163 .0173 .0015-.0005 319 00,06-00,06 00,06 05.01 322.9 280.6 .0269 .0158 .0255 .0181 .0018-.0003 320 CC.18-CC.13 CC.06 C4.99 323.2 419.7 321 CC.12-CC.C1 CC.08 C5.CC 322.9 56C:5 322 CC.12-CC.22 CC.06 C5.CC 322.9 7CC.4 323 CC.06-CC.C1 CC.06 C7.47 322.7 279.8 .0268 .0171 .0018-.0004 .0252 .0193 .0276 .0146 .0021-.0005 .0262 .0171 .0263 .0152 .0020 .0066 .0240 .0175 07.47 322.7 279.8 .0283 .0150 .0028-.0005 .0261 .0185 324 00,11-00,12 00,07 07,47 323.0 416.4 .0267 .0188 .0289 .0151 .0024-.0006 325 00.12-00.09 00.07 326 00.11-00.21 00.09 07.47 323.5 558.8, .0268 .0140 .0028-.0007 .0268 .0176 .0290 .0147 .0024-.0008 .0269 .0315 .0132 .0029-.0006 .0287 07.48 323.4 698.7 .0024-.0008 .0269 .0183 327 00.02-00.06 00.08 09.98 323.4 277.3 .0185 328 00.04-00.01 00.08 09.97 323.2 422.2 .0316 .0150 .0027-.0008 .0255 .0203 329 00.13-00.04 00.07 09.98 323.2 561.3 .0315 .0129 .0032-.0009 .0288 .0182 330 00.13-00.23 00.07 09.98 323.2 698.7 .0314 .0134 .0030-.0010 .0286 .0167 .0203

TOTAL TOTAL THE CONTROL OF THE CON

HC144R1070

APPENDIX B. ROTOR TEST RESULTS (Continued) TARES - RUNS 39, 40

RUN	L	TN	T	3 T	P		DATE	11	ME	M	R	PT	9	TT	RHO	GAMA	PHI	DELS
39	1	12	6	14	1					0.433					.3895	00.75	0000	24.00
		COF	₹R	TH	EZ '	TH	FC	THE	5	ALFA	V	VTIP	C7	CX	CPM	CRM	CL	CD
							203	00.	22	-00.03	486.4	282.1	-0211	-C174	10007			.0174
		3	32	CC	.07-	CO	113	88.	27	-00.03	487.1	420.4	.0280	-C181		0001		
		3	33	CC	13-	30	.ii	SC.	27	-00,03	487.0	541-3	.C284	-0174		0002		
		3	34	CC	CB	ČČ	.2c	åå.	CB	-00.03	487.6	700.4	.0231	.0174		0002		
		3	35	CC	.ci-	٥Ġ	.13	50.	04	02.52	486.9	280.4	.0250	,0173	10010			.0183
					10-					02.53	488.0	419.7	.0250	.0173	-0010			.0184
					10-					02.53	486.9	561.3	.0254	.0173				.0184
					.20-						487.4	697.0	.0254	.6171				.0182
					10-						485.7	279.3	.3271	.0167	-0015			.0190
		3	40	CC	.13-	CC	.13	00.	60	34.95	485.7	429.8	_0280	.0168	-0513			.0192
		3	41	00	.10-	CC	.04	00.	26	34.96	487.6	559.6	CZBC	.0169	10014			.0192
		3	+2	CC	.13-	C C	.14	00,	80	04,96	408.3	697.9	.0272	_0164	_0019			.0187
		3	43	CC	.01-	CC	.09	00,	36	37.47	488.2	276.5	.0296	.0160	.0016			.0197
		3	44	ÇÇ	.12-	CC	.14	00,	28	27.48	491.0	417.2	.0298	_0159	.0011		.0275	.3196
					.06-					37.47	490,2	562.1	.0298	.0156	.001			.3194
					. 13-					27.48	489.8	697.9	2297	_0157	-001	30004	,0274	.3195
		3	47	00	. 27-	CO	.16	٥٥,	06	69.92	489.7	201.5	.0316	.0145	.002			.0197
		3	48	23	.57_	33	.21	œ,	.≎8	29.92	489,4	439,0	.0311	.0143	.002	2-,0004	.0282	.0195
		3	49	00	.10-	CC	.17	CC.	.08	09.92	489.5	561.3	.0308	.0143				.3194
		3	5C	CC	.15-	CC	.20	00,	, 09 ,	09.93	489,2	697.0	.0316	.0144	.002	2_,0009	.0287	.0197

RUN L TN TST P 40 1 12 514 1 TT DATE TIME H PT AMAD CHR PHI DEL3 2626 1658 2.528 1.326 2940. 142.2 097.5 .0867 00.73 000.0 26.00 COPR THEZ THEC THES VTIP CZ CX CPM CRM CD 351-00.07 00.14 00.03 30.31 572.7 286.5 .. C230 .C176 .0008-.0001 .0230 .0174 352 00.02 00.14 00.04 353 00.00 00.10 00.04 354_00.01 00.05 00.03 355_00.02 00.26 00.06 00,01 572.8 418.0 .0232 .0179 .0007-.0001 .0232 .0179 00,02 572,7 561.3 .0236 .0178 .0007-.0002 .0236 .0178 CO.C1 573.2 699.5 .C233 .C178 CZ.53 574.3 262.3 .C258 .C177 .0007-.0002 .0231 .0178 .0008-.0001 .0250 .0188 956 00,00 357_00.00 358 00.00 00.21 00.07 00.20 00.04 00.10 00.02 .0009-.0001 .0246 .0187 574.0 423.9 .0254 .0256 02,53 .0176 02,53 574.7 559.6 .0174 .C176 .0253 02.53 575.4 702.9 .0167 .0241 .0009-.0002 359-00.08 00.14 00.02 05.03 574.4 289.0 .0275 .0167 .0014-.0002 .0259 .0191 .0013-.0002 .0267 .0193 .0192 360 00.00 00.20 00.04 361-00.03 00.07 00.01 362 00.01 00.02 00.03 05.04 576.0 428.9 05.04 575.9 561.3 .0278 .0280 .0166 .0192 05.02 575.7 698.7 .0278 .0169 .0013 .0003 .0262 .0192 363-00,04 00,12 00,03 07.46 576,1 290,7 .0296 .0159 .0017-.0002 .0273 .0196 364-00.01 00.08 00.04 575.9 420.6 07.47 .0297 .0162 .0015-.0003 .0274 .0199 365 CC.C1 CC.18 CC.C4 366 CC.C2.CC.C2 CC.C4 27.46 575.8 562.1 ,C300 .C161 .0016-.0003 .0277 .0199 576.0 702.0 .0299 .0161 574.0 284.0 .0314 .0152 67.46 .0014-.0004 .0198 .0275 367.00.04 00.15 00.02 368 00.00 00.12 00.04 369 00.02 00.10 00.06 29.97 .0020-.0003 .0283 .0204 09.98 574.7 439.8 .0309 .0151 09.99 575.7 562.1 .0310 .0150 09.99 574.8 701.2 .0312 .0153 .0151 .0019-.0004 .0278 .0203 .0202 .0020-.0004 .0279 370 60,64-66,62 66,64 .0019-.0004 .0281

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 29, 30, 31, 32

RUN L TH 15T F DATE TIME N E PT 0 TT RHO GAMA PHI DEL9 29 1 12 014 1 7621 1701 0.292 0.776 0845. 047.5 069.1 .0893 00.75 000.0 26.00 CORR THEC THES ALFA V VTIP MU LAMB CZ CX CPM 299-00.05-01.57 03.81 05.00 326.3 697.9 0.466-.0343 .0550 .0028 .0016 294 02.04-01.37 05.16 05.05 327.6 697.9 0.468-.0329 .0719 .0013 .0044 299-02.12-01.09 02.21 04.93 322.5 703.7 0.457-.0355 .0345 .0037 .0028

RUN L TH TST P DITE TIME M R PT G TT RHD GAMA PHI DEL3
31 1 2 914 1 0521 1010 0.358 0.934 0858. 070.5 076.4 .0878 00.73 000.0 26.00

CORR THEZ THEC THES ALFA V VTIP MU LAME CZ CX CPM
240-00.10-32.34 02.82 -00.05 401.8 626.6 0.640 .0014 .0050 .0030 -.0030
241 01.96-02.37 04.27 -00.03 401.2 628.3 0.639 .0021 .0109 .0031 -.0014
242 04.03-02.44 05.9 -00.01 401.9 680.0 0.638 .0029 .0177 .0030 -.0008
243 00.05-32.79 07.59 00.01 401.9 680.0 0.638 .0036 .0235 .0028 -.0012
244 09.71 00.96 06.27 00.04 402.4 633.3 0.635 .0048 .0394 .0040 .0114
245 09.69 04.02 05.35 00.07 403.0 680.0 0.640 .0060 .0426 .0046 .0218
246 09.86 08.79 04.46 00.07 401.9 680.0 0.640 .0057 .0423 .0166 .0346
247.00.41 02.65 00.99 -00.02 403.7 680.0 0.641 .0026 .0259 .0054 .0248

permit fully legible reproduction

Copy available to DDC does not permit fully legible reproduction

.0005 .0715	.0076 .0060	CH CQ CLR .003 .0014 .0060 .0001 .0020 .0079 .0004 .0017 .0036	.0008 06.27 03.43	.0003 234
CRM CL .0002 .0219 .0001 .0434 .00010038	.0035 .0023	GH 'CQ CLR .0004 .0032 .0023 .0003 .0034 .0046 .0004 .00400004	.0004 02.18 01.01 .0003 04.43 01.99	.0002 237
CRM CL .0050 .0050 .0109 .0109 .0235 .0001 .0334 .0002 .0426 .0004 .0403 .0001 .0150 .0002 .0259	.0030 .0010 .0031 .0022 .0030 .0036 .0028 .0048 .0041 .0067 .0166 .0082 .0041 .0031	CH CQ CLR .0006 .0063 .0010 .0006 .0052 .0022 .0006 .0070 .0036 .0006 .0085 .0048 .0008 .0048 .0067 .0009 .0063 .0067 .0034 .0118 .0022 .0008 .0024 .0031	.0006 00.64 00.35 .0006 01.53 00.77 .0006 02.12 01.25 .0006 02.51 01.66 .0008 04.25 02.36 .0010 04.50 03.03 .0034 01.57 02.85	.0001 Z41 .0001 Z42 .0002 Z43 .0001 Z44 .0002 Z45 .0004 Z46
.0001 .0226 .0002 .0327 .0005 .0615 .0001 .0148 .0001 .0298 .0000 .0075	.0049 .0047 .0050 .0068 .0087 .0128 .0048 .0032 .0076 .0063	CH CQ CLR .0006 .0170 .0047 .0004 .0078 .0068 .0006 .0074 .0127 .0007 .0063 .0031 .00100004 .0061 .0008 .0064 .0016	.0010 03.01 02.34 .0018 04.32 04.38 .0010 01.56 01.06 .0016 04.07 02.13	.0001 249 .0002 250 .0005 251 .0001 252 .0001 253

THE PERSON NAMED IN COLUMN TO SERVICE OF THE PERSON NAMED IN COLUMN TO SERVICE

HC144R1070

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 35, 36, 41

```
PHI
                                                                                                                                        DELS
                                                                                                           RHO GAMA
                                                               R
                                                                                     ۵
RUN L TH TST P
                                 DITE TIME M
                                 Co21 1248 0.433 1.108 0898. 103.7 093.2 .0863 00.72 000.0 26.00
 35 1 12 614 1
                                                     ALFA
                                                                          VTIP
                                                                                                LAHB
                                                                                                             CZ
                                                                                                                                   CPM
                                                                                       NU
          CORR THEZ THEC
                                      THES
            276-00-01 00:12 01:95 -00:07 490:0 559:6 0:876 .0026 .0067 .0012 277 02:11-00:53 03:72:400:07 489:9 557:9 0:878 .0026 .0068 .0017 278 03:90-00:20 05:20 -00:06 490:3 561:3 0:874 .0028 .0084 .0021
                                                                                                                                  .0334
                                                                                                                                   .0034
                                                                                                                                   .0046
            279_02.01 00.10 00.11 _00.08 491.1 562.1 0.874 .0021 _0041 .0014 280 02.94 08.94 11.95 _00.03 492.0 559.6 0.879 .0049 _0203 .0035 281_02.99_00.02_01.02 _00.09 493.5 565.5 0.873 .0018 .0023 .0012
                                                                                                                                   .0039
                                                                                                                                   .0253
```

```
PHI
                                                                                                                 AMAD CHS
                                                                                                                                                DFL3
                                                                                                    TT
                                   DITE TIME N
RUN L TN TST P
                                   0/21 1313 0.434 1.105 0907. 105.1 099.5 .0862 00.72 000.0 26.00
 36 1 12 514 1
                                                                                                                  CZ
                                                                              VTIP
                                                                                           110
                                                        ALFA
             282-00.09-02.13 (4.40 05.00 493.9 563.0 0.874-.0736 .0130 .0004 .0017 283 00.02.05.08 05.04 493.9 563.0 0.874-.0736 .0130 .0005 .0005 284 00.05 03.94 02.71 05.07 492.7 563.8 0.870-.0708 .0294 .0015 .0005 .0145 285.02.07-01.77 02.62 05.01 492.8 562.1 0.873-.0738 .0125 .0005 .0015
           CORR THEZ THEC
                                         Trê 5
                                                                                                                                         .0187
             286-02.18 05.62 00.54 05.06 492.3 559.6 0.876-.0720 .0253 .0004 287-02.00-06.29 03.61 04.94 493.0 563.8 0.871-.0762-.0040 .0013
```

```
DATE TIME M R PT Q TT RHO GAMA PHI DEL3 0526 2206 0.434 1.129 0883. 102.1 078.1 .0872 00.73 000.0 26.00
PUR L TN TST P
   41 1 12 614 1
                                                                                                                                                                                                                                                     LAMB
                                                                                                                                       ALFA
                                                                                                                                                                                              VTIP
                                                                                                                                                                                                                              71U
                           CORR THEZ THEC
                                                                                                   THES
                              379 CC.08-02.37 02.28 -CC.12 483.9 490.1 0.987 .0035 .0060 .0014 380.41.94-02.32 00.55 .00.12 484.5 490.9 0.987 .0033 .0048 .0015 381-03.99-02.28-01.62 .00.11 484.8 490.9 0.988 .0034 .0058 .0017
                                                                                                                                                                                                                                                                                                                                       .0006
                                                                                                                                                                                                                                                                                                                                         .0005
                               382 01.85-01.90 03.72 -00.11 485.9 490.1 0.991 .0035 .0061 .0014
                                                                                                                                                                                                                                                                                                                                       .0018
                                383 04.13.01.93 05.82'.00.11 485.1 489.3 0.991 .0034 .0058 .0026 .0020 384.04.00.03.79 01.06 04.89 486.1 489.3 0.990..0812 .0140 .0009 -.0010
                                                                                                                                     C4.90 487.0 490.9 C.988..0809 .0153 .0012 .0009 C4.89 487.0 491.8 C.987..0808 .0149 .0015 .0007 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 
                                385 03.88-03.85 37.69
                                386_00.03_03.98 04.65
                                387_00.04-04.00 05.61
388_03.98_04.06 02.26
                                                                                                                                        07.49 487.6 491.8 C.983-.1242 .0206 .0005 ..0001
                                389 02.96_03.03 03.32 07.48 487.9 490.1 0.987...1244 .0212 .0003 ..0004 390 00.07.04.79 06.94 09.96 488.7 491.8 0.979...1647 .0289...0004 .0006
                                 391-04.93-04.49 03.49 09.96 487.8 490.9 0.979-.1650 .0274 .0015 -.0002
```

PAIRCHILD

HC144R1070

```
CRM CL CD CT CH CQ CLR CDR LOD DL CR8 CORR .0000 .0067 .0012 .0026 .0005 .0044 .0026 .0004 .02.68 .00.69 .0000 .276 .0000 .0068 .0017 .0026 .0006 .0064 .0026 .0006 .01.92 .00.70-.0000 .277 -.0001 .0084 .0021 .0032 .0008 .0038 .0032 .0008 .02.58 .00.87-.0001 .278 .0000 .0041 .0014 .0016 .0005 .0188 .0016 .0005 .00.89 .00.43-.0000 .279 .0002 .0203 .0035 .0078 .0014 .0100 .0078 .0014 .03.13 .02.11-.0002 .280 .0001 .0023 .0011 .0009 .0004 .0064 .0009 .0004 .00.75 .00.24 .0001 .281
```

```
CRM CL CD CT CH CG CLR CDR LOD DL CR8 CD°R .0000 .0129 .0016 .0090 .0002 .0250 .0050 .0006 .04.24 01.36 .0000 .282 .0001 .0104 .0014 .0004 .0002 .0252 .0040 .0005 01.17 01.09 .0001 .283 .0001 .0292 .0041 .0112 .0006-.0003 .0111 .0016 .07.28 03.05 .0001 .284 .0000 .0124 .0016 .0048 .0002 .0041 .0047 .0006 .04.35 01.29-.0000 .285 .0000 .0252 .0026 .0098 .0002-.0005 .0097 .0010 10.22 02.63 .0000 .286 .0000-.0041 .0009 -.0015 .0005 .0094-.0016 .0004-01.08-00.43 .0000 .287
```

```
CRM CL CD -.0004 0004 .0014 .0005 .0048 .0014
                                                                                                                         DL
                                                                               CLR
                                                                                                          LOD
                                            CT
                                                         CH
                                                                     CG
                                                                                            CDR
                                                                                                                                 CRB
                                                                                                                                              CORR
                                          .0029 .0007 .0037 .0029 .0007 02.71 00.61-.0004 .0023 .0007 .0043 .0028 .0007 02.04 00.49-.0005 .0029 .0008 02.20 00.60-.0003
                                                                                                                                                  379
                                                                                                                                                  380
-.0003 .0088 .0017
                                                                                                                                                  381
                                          .0030 .0007 .0031 .0030 .0007 03.05 00.63.0005 .0028 .0013 .0025 .0026 .0013 01.89 00.59.0005 .0021 .0069 .0010 05.46 01.43.0005
                                                                                                                                                  382
-.0005 .0056 .0025
-.0005 .0139 .0021
                                                                                                                                                  383
                                                                                                                                                  384
                                          .0009 .0009 .0021 .0009 .0012 05.48 01.43-.0005 .0075 .0006 .0021 .0075 .0012 05.17 01.96-.0006 .0073 .0007 .0002 .0013 04.63 01.52-.0005 .0106 .0001-.0007 .0105 .0014 07.65 02.23-.0005 .0101 .0003-.0017 .0100 .0016 07.10 02.11-.0006 .0105 .0002 .0029 .0104 .0015 05.73 02.17-.0006 .0142-.0002-.0022 .0141 .0023 06.79 02.96-.0007
-.0004 .0152 .0025
                                                                                                                                                  385
-.0005 .0147 .0027
                                                                                                                                                  386
__0005 .0216 .0030
                                                                                                                                                 387
-.0006 .0204 .0032
                                                                                                                                                  386
389
                                                                                                                                                  390
                                          .0135 .0008..0092 .0132 .0031 05.15 02.77..0006
```

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 42, 43

```
DATE TIME M R PT G TT RHC GAMA PHI DEL3
0627 0854 0,432 1,090 0858, 098.7 079.9 .0845 00,71 000,0 26,00
RUN L TN TST P
 42 1 12 614 1
                                                                                       LANB
                                                        ٧
                                                                   VTIP
          397 00.03-02.15 02.03 -00.12 483.1 419.7 1.151 .0040 .0053 .0014
398 02.06-02.70 04.05 -00.13 482.7 419.7 1.150 .0035 .0035 .0016
399 04.01-03.15 06.05 -00.15 483.2 418.0 1.156 .0031 .0007 .0019
400_02.06-01.62-00.11 -00.11 483.4 420.6 1.149 .0048 .0091 .0017
401_04.04-01.84-02.22 -00.11 484.8 423.1 1.146 .0048 .0091 .0017
         CORR THEZ THEC THES
                                                                                                                   .0009
                                                                                                                      .0007
                                                                                                                      .0003
                                                                                                                      .0012
          .0015
            420-02.10-05.13 05.32
421-04.09-05.30 03.44
422-06.14-05.15 01.41
                                                 10.02 488.9 426.4 1.129..1910 .0294 .0000 .0005 10.01 489.6 423.9 1.137..1924 .0287 .0001 .0005 10.01 490.1 424.7 1.136..1924 .0286..0014 ..0000
             423-00-05-06-11 07-14
  RUN L TH TST P DATE TIME M R PT G TT RHO GAMA PHI DELS
43 1 12 614 1 0627 0940 0.434 1.086 0861. 102.1 093.5 .0846 00.71 000.0 26.00
```

Decruit Adia legible tebroduction

```
CRM
                                                                                                             CD
                                                                                                                                                                 CT
                                                                                                                                                                                                               CH
                                                                                                                                                                                                                                                                                                                                                                                                                                                DL
                                                                                                                                                                                                                                                            CO
                                                                                                                                                                                                                                                                                           CLR CDR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CRB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CORR
                                                                                                                                                                                                                                                                                                                                                                                        LOU
-0004 0053 0014 0035 0009 0030 0035 0009 0300 00.53-0004 0003 0016 0022 0011 0033 0022 0011 01.62 00.33-0004 0005 0007 0013 0004 0013 0004 0013 0004 0013 0004 0013 0004 0013 00051 0009 04.35 00.74-0005 0007 0013 0016 0007 0011 0009 0031 0000 0011 0005 00.76-0005 0007 0013 0016 0001 0003 00051 0009 0011 0005 00.76-0005 0005 0001 0017 0006 0011 0005 0011 0005 0005 0017 0006 0011 0005 0017 0006 0011 0005 0017 0006 0017 0006 0011 0005 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0017 0006 0007 0006 0017 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0007 0006 0007 0006 0007 0006 0006 0007 0006 0006 0006 0006 0006 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            397
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              398
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           399
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              401
    -.0004-.0039 .0026 -.0027 .0016 .0030-.0026 .0017-01.31-00.38-.0004 .0005 .0047 .0012 .0031 .0006 .0035 .0031 .0008 .02.95 .00.47-.0005 .0031 .0006 .0035 .0031 .0008 .0009 .00.47-.0004 .0012 .0014 .0008 .0009 .00.47-.0004 .0012 .0014 .0008 .0009 .00.47-.0004 .0012 .0014 .0008 .0009 .00.47-.0004 .0008 .0009 .00.47-.0004 .0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .00.47-.0008 .0009 .0008 .0009 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0009 .0008 .0008 .0009 .0008 .0008 .0009 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 .0008 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             405
 ...0005 .0047 .0012
...0004 .0012 .0014
...0005 .0059 .0015
...0007 .0168 .0021
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               436
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              407
                                                                                                                                                     .0039 .0012 .0044 .0039 .0010 02.85 00.59-.0005 .0115 .0004 .0010 .0114 .0014 07.53 01.69-.0007
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              408
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             409
                                                                                                                                                       .0103 .0005 .0020 .0102 .0014 06.48 01.52-.0006 .0090 .0007 .0026 .0089 .0015 05.27 01.32-.0005 .0121 .0006-.0007 .0120 .0016 07.70 01.83-.0006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             410
   -.0005 .0131 .0022
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              411
     -.0006 .0161 .0024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        412
                                                                                                                                                       .0129 .0009-.0027 .0127 .0020 07.17 01.89-.0006 .0129 .0003 .0005 .0127 .0022 06.32 02.10-.0006 .0134 .0004 .0020 .0132 .0021 05.73 01.98-.0005 .0145 .0005-.0050 .0146 .0024 07.42 02.42-.0006 .0168 .0010-.0072 .0165 .0032 06.43 02.48-.0006 .0157-.0002-.0009 .0156 .0018 09.03 02.28-.0006 .0030 0008-.0050 .0024 .0041 08.45 03.44-.0006
     -.0006 .0187 .0029
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        413
     -.0006 .0208 .0032
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          414
    -.0005 .0196 .0032
-.0006 .0239 .0040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         415
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           416
     -.0006 .0244 .0047
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           417
 -.0006 .0226 .0026
-.0007 .0302 .0061
-.0006 .0296 .0058
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               418
                                                                                                                                                       .0208 .0005-.0050 .0204 .0041 05.56 03.04-.0007 .0201 .0004-.0075 .0197 .0038 06.17 03.00-.0066 .0193 .0006-.0096 .0190 .0034 07.51 02.92-.0006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            419
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               420
    -.0006 .0289 .0051
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                421
    -.0005 .0282 .0051
                                                                                                                                                         .0191 .0001-.0128 .0188 .0034 08.28 02.86-.0005 .0191-.0009-.0037 .0189 .0024 09.11 02.89-.0006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               422
     -.0006 .0284 .0036
```

CRM	CL	CO	CT	CH	CO	CLR	CDR	LCD	DL CRB	CORR
0004	.0052	.0022	-00m1	.0022	.0038	400ml	-0022	02409	00.530004	424
0005	.8111	.0020								425
0006									01.130005	
									01.580006	426
_,0004			,0015	.0024	.0045	.0015	.0024	00.54	00,15=,0004	427
0003.	0035	.0031	0032	_CCZ8	-CQ37	0032	.CCZB.	.01.04.	-00,36-,0003	428
0005	.0182	10023							01.86-,0005	429
0005									01.51-,0005	430
0004			.0170	.0004	,0056	.0177	0002	23.33	00001-0000	_ ~
									00.970004	431
0005			.0197	_0010	5516	.0166	.0027	C7.64	02,05-,0005	432
0004	.0216	.0036	_C214	10017.	0075	.0212	_0035	87.86	02,21-,0004	433
0006	.0243	.0052							02.480006	434
0006	.0235	.0033							02,40-,0006	435
0006										
									02,17-,0006	436
5556		·							01.930006	437
5867	.0239	.0037	.0235	_ 0005.	0044	.0232	.0034	37.11	02,44-,0007	438
0007	.0252	.0047	10255	.0014	0095	_025l	_0047	06.24	02,57-,0007	439
0005									02.66-,0005	440
0006										441
									02.90-,0006	
0007									02.770007	442
0006	.0301	.0067	.0308	.0014	0108	.0301	.5367	25.10	03.07-,0006	443
0005	.0308	.0069	20300	20014	0171	.0293	_0066	35.47	03.14-,0005	444
0007	.0318	20094	-				· • • ·		03.24-,0007	445
										~ ~ ,

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 44, 45

Administration of the state of

```
PHI DELS
                                                                  RHO GAMA
RUN L T! TST P
                     DATE TIME M
     0527 1048 0.434 1.097 0888. 102.7 093.0 .0853 00.72 000.0 26.00
 44 1 12 614 1
      45 1 12 614 1
        497_02.03_01.97_02.54_02.45 580.5 491.8 1.179 .0522 .0057 .0018 .0004 498_03.98_02.03_038_02.45 580.2 491.8 1.179 .0525 .0071 .0026 -.0000 499_04.11_01.98_04.64_02.44 580.7 495.1 1.172 .0523 .0080 .0026 .0000 500_05.05_01.76_06.73_02.44 580.9 490.0 1.170 .0527 .0100 .0027 .0007 .0007
        501-00.01-03.97 02.90 02.71 582.7 423.1 1.376-.0601 .0147 .0009 .0008
```

	_		
CRM CL CD	CT CH CD	CLR CDR LOD	DL CRB CORR
0006 -01680021	_044400550017	.04440055-07.92	01.730006 446
-,0064 ,0082-,0004	-01240009 -0049	.01240009-18.99	00 44- 0004 445
0002 .01480014	-0224C021 -0021	.02240021-11.55	00,84-,0004 447
	-01460026 -0046	0140 0000 04 04	01.52-,0002 448
0004 .01100019	0104-1054 10044	.01690029-06.54	51.130054 449
0006 .0194 .0008	**************************************	.0292 .0013 32.74	02,00-,0006 450
00040004 .0011	0007 .0017 .0055	-,0007 ,0017-00,33	-80,84-,8664 461
•0000 .co31 .cce	5546 .5513 .6523	.0046 .0013 03.25	CC_32 _0CCC _452
0005 .0196 .0008	.02920013 .0010	.0292 .0012 22.71	02.02-0005 455
0005 _0240 _0012		.0366 .0018 29.08	02.48-,0005 454
0006 .0270 .0025	.0417 .00020226		02.790006 455
0004 .0906 .0046			
£.0007 .0910 .0035		.0465 .0052 10.88	
.0001 .0269 .0034	-0434 8000 4640-	.0411 .0092 08.61	03.22-,0007 457
	CAA1	10.01	02.81 .0001 498
0006 .0305 .0046		.0456 .0069 07.62	03.18-,0006 459
0005 .0311 .0053			03.240005 460
0006 .0938 .0067			03.52-,0006 461
0007 .0356 .0078	.0565 .00490621	.0573 .0126 06.28	03.700007 462
0006 .0342 .0075	0529 .00440578	.0519 .0114 Ca.45	03.55-0006 463
-,6007 .0325 .0040	- 2051800270100	.0514 .CC64 CB.8C	03.380007 464
0007 .0358 .0045	.060600300235	.0602 .0076 09.52	03.72-0007 465
0004 .0329 .0038		40543 400A3 10400	03.440004 466
0006 .0341 .0035	.054900410191	.0568 .0059 11.76	03.880004 449
0007 .0385 .0076	-CARE -00120420	.0623 .0123 06.26	
007 .0353 .0070	0503 0012-0350	.0582 .0115 06.06	C4.0Z0007 468
	CARD COLD CRES	0103 0113 08000	03.690007 469
0007 .0378 .0093	00039 00042-00033	.C622 .C153 C5.C9	03.940007 470
0004 -00400002	.0064 .0000 .0026	.00640003-54.22	00.410004 471
0005 -01780005	.0290 .00050041	.02900008-28.44	C1.86CCC5 472
0005 .01160011		.C188CC17-11.67	01.210005 473
00030081 .0020	0134 .0027 .0038	0132 .0033-03.77	-00.850003 474
CRM CL CD0005 .0078 .0016 .0026 .0042 .0026 .0016 .0016 .0016 .0016 .0016 .0028 .0005 .0133 .0028	0028 0017 0049 0086 0011 0043 0069 0013 0049 0089 0015 0037	.0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82	00.58-0004 476 01.76-0011 477 01.39-0004 478 01.83-0005 479
	0 .0051 .0012 .0049 0 .0028 .0017 .0049 0 .0086 .0011 .0043 0 .0069 .0013 .0049 0 .0089 .0015 .0037 0 .0095 .0025 .0032	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82	01.070009 475 00.580004 476 01.760011 477 01.390004 478 01.830005 479
	0 .0051 .0012 .0049 0 .0028 .0017 .0049 0 .0086 .0011 .0043 0 .0089 .0013 .0039 0 .0095 .0023 .0032 0 .0095 .0028 .0032	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0023 03.75 .0131 .0019 06.18	01:07-0005 475 00:58-0004 476 01:76-0011 477 01:39-0005 479 01:96-0005 481 02:66-0006 481
	0 .0051 .0012 .0049 0 .0028 .0017 .0049 0 .0086 .0011 .0043 0 .0089 .0015 .0037 0 .0095 .0023 .0037 0 .0095 .0028 .0020 0 .0132 .0008 .0020	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61	01:07-0005 475 00:58-0004 476 01:76-0011 477 01:39-0005 479 01:96-0005 481 02:66-0006 481
	0.0551 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0089 .0015 .0037 .0089 .0025 .0037 .0132 .0008 .0020 .0130 .0006 .0020	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61	C1.070009 475 C0.580004 476 C1.760011 477 C1.390005 479 C1.960005 481 C2.660006 462 C2.730004 433
	0.0591 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0069 .0013 .0049 .0089 .0015 .0037 .0095 .0023 .0032 .0132 .0008 .0020 .0130 .0006 .0020 .0135 .0010 .0005	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0134 .0018 06.61 .0134 .0018 05.93	C1.070009 475 C0.580004 476 C1.760011 477 C1.390005 479 C1.960005 480 C2.660006 461 C2.660004 433 C2.860006 464
	0.0591 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0049 .0089 .0013 .0049 .0089 .0015 .0037 .0095 .0023 .0032 .0132 .0008 .0020 .0130 .0006 .0020 .0135 .0010 .0009	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0134 .0018 06.61 .0134 .0018 05.61	C1.070009 475 C0.580004 476 C1.760011 477 C1.390005 479 C1.960005 480 C2.660006 481 C2.660006 463 C2.860006 463 C2.860006 464 C3.050006 485
	0051 .0012 .0049 0028 .0017 .0049 0086 .0011 .0049 0089 .0013 .0049 0089 .0015 .0037 0095 .0023 .0032 0132 .0008 .0022 0130 .0006 .0022 0135 .0010 .0005 0151 .00300051	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0018 05.61 .0148 .0043 03.80 .0173 .0027 06.52	01.070009 475 00.580004 476 01.760011 477 01.390005 478 01.830005 480 02.660006 481 02.660006 462 02.800006 483 02.800006 485 03.050006 485 03.580006 486
	0.051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0089 .0013 .0049 .0089 .0015 .0037 .0095 .0023 .0032 .0132 .0008 .0022 .0135 .0010 .0005 .0138 .0019 .0025 .0138 .0019 .0025 .0151 .0004 .005	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.93 .0136 .0031 04.68 .0148 .0043 03.80 .0148 .0025 06.52	01.070009 475 00.580004 476 01.760011 477 01.390005 478 01.830005 480 02.660006 481 02.660006 462 02.660006 464 02.800006 464 03.550006 486
	0.051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0069 .0013 .0049 .0089 .0015 .0032 .0095 .0023 .0032 .0132 .0008 .0022 .0135 .0010 .0005 .0138 .0019 .0025 .0151 .0030 .0051 .0175 .0030 .0099 .0164 .0003 .0009	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.93 .0136 .0031 04.68 .0148 .0043 03.80 .0148 .0043 03.80 .0148 .0025 06.52 .0164 .0032 05.38	01.070009 475 00.580004 476 01.760011 477 01.390005 478 01.830005 480 02.660006 481 02.660006 482 02.800006 484 02.800006 484 03.050006 485 03.580006 487 03.580006 487
	0.051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0069 .0013 .0049 .0089 .0015 .0032 .0095 .0023 .0032 .0132 .0008 .0022 .0135 .0010 .0005 .0138 .0019 .0025 .0151 .0030 .0051 .0175 .0004 .0009 .0166 .0010 .0017	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0015 04.00 .0089 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.93 .0136 .0031 04.68 .0148 .0043 03.80 .0173 .0027 06.52 .0164 .0032 05.48 .0164 .0032 05.48	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.680005 479 01.960006 481 02.660006 482 02.730006 484 03.050006 486 03.550006 486 03.550006 487 03.550006 487 03.500006 487
	0.051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0069 .0015 .0037 .0095 .0023 .0037 .0132 .0008 .0022 .0132 .0008 .0022 .0135 .0010 .0005 .0138 .0019 .0025 .0138 .0019 .0025 .0151 .0030 .0009 .0166 .0010 .0009 .0166 .0010 .0010	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.92 .0136 .0031 04.68 .0148 .0043 03.80 .0173 .0025 06.44 .0164 .0025 05.44	01.070009 475 00.580004 476 01.760011 477 01.390005 478 01.830005 480 02.660006 481 02.660006 482 02.800006 484 02.800006 484 03.050006 485 03.580006 487 03.580006 487
	0051 .0012 .0049 0028 .0017 .0049 .0086 .0011 .0043 .0089 .0013 .0049 .0089 .0015 .0037 .0099 .0023 .0032 .0132 .0008 .0022 .0135 .0010 .0005 .0138 .0010 .0005 .0151 .0030 .0005 .0151 .0030 .0009 .0164 .0003 .0009 .0164 .0003 .0009 .0169 .0030 .0040	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.92 .0136 .0031 04.68 .0148 .0043 03.80 .0173 .0025 06.44 .0164 .0025 05.44	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.680005 481 02.660006 462 02.730006 484 03.050006 486 03.550006 486 03.550006 487 03.550006 487 03.550006 487 03.290005 489
	0.051 .0012 .0049 0028 .0017 .0049 0028 .0011 .0043 0069 .0013 .0049 0089 .0015 .0037 0095 .0023 .0032 0132 .0008 .0022 0135 .0010 .0005 0138 .0019 .0025 0138 .0019 .0025 0151 .0030 .0009 0166 .0010 .0009 0166 .0010 .0014 0172 .0022 .0040	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.92 .0136 .0031 04.68 .0148 .0043 03.80 .0173 .0027 06.52 .0163 .0025 06.44 .0164 .0032 05.38 .0164 .0045 04.14 .0164 .0050 04.19	C1.070009 475 C0.580004 476 C1.760011 477 C1.390005 479 C1.830005 480 C2.660006 481 C2.660006 482 C2.730006 486 C3.550006 486 C3.550006 487 O3.300006 488 O3.550006 489 O3.290005 489 C3.700024 491
	0051 .0012 .0049 0028 .0017 .0049 0028 .0017 .0049 0038 .0017 .0049 0049 .0013 .0049 0059 .0013 .0037 0059 .0023 .0032 0132 .0008 .0022 0135 .0010 .0025 0136 .0010 .0055 0151 .0034 .0059 0151 .0034 .0059 0154 .0003 .0009 0166 .0010 .0054 0169 .0030 .0054 0169 .0030 .0054 0169 .0034 .0054	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0013 04.00 .0089 .0013 04.00 .0099 .0015 04.87 .0195 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0021 06.68 .0148 .0031 04.68 .0148 .0025 06.44 .0164 .0032 05.38 .0168 .0044 04.14 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0165 .0042 06.41	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.830005 480 02.660006 481 02.660006 483 02.800006 484 03.050006 486 03.550006 487 03.550006 489 03.450005 489 03.450005 490 03.290004 492
	0051 .0012 .0049 0028 .0017 .0049 0028 .0017 .0049 0038 .0017 .0049 0049 .0013 .0049 0059 .0013 .0037 0059 .0023 .0032 0132 .0008 .0022 0135 .0010 .0025 0136 .0010 .0025 0151 .0030 .0051 0175 .0030 .0051 0175 .0030 .0054 0164 .0003 .0009 0166 .0010 .0054 0169 .0030 .0054 0169 .0030 .0054	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0015 03.87 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0021 05.92 .0136 .0031 04.68 .0148 .0048 03.80 .0148 .0025 06.54 .0164 .0025 06.54 .0164 .0025 06.44 .0164 .0025 08.49 .0165 .0044 04.14 .0164 .0051 08.49 .0165 .0056 03.20	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.830005 480 02.660006 481 02.660006 483 02.800006 484 03.550006 486 03.550006 487 03.550006 489 03.450005 489 03.290005 490 03.290004 492
	0051 .0012 .0049 0028 .0017 .0049 0028 .0017 .0049 0038 .0017 .0049 0039 .0013 .0049 0039 .0013 .0037 0039 .0023 .0032 0132 .0008 .0022 0135 .0010 .0025 0136 .0010 .0025 0151 .0030 .0051 0175 .0030 .0051 0172 .0022 .0040 0166 .0010 .0054 0169 .0030 .0054 0169 .0034 .0054 0169 .0034 .0054 0168 .0014 .0065	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0015 04.82 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0021 04.68 .0148 .0041 04.68 .0148 .0043 05.93 .0164 .0025 06.54 .0164 .0032 05.38 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0050 06.14 .0164 .0050 06.14 .0164 .0050 06.14 .0164 .0050 06.14	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.960005 479 02.660006 481 02.660006 482 02.800006 483 02.800006 483 03.550006 483 03.550006 489 03.290005 489 03.290005 489 03.290005 490 03.290005 491
	0051 .0012 .0049 0028 .0017 .0049 0028 .0017 .0049 0036 .0011 .0043 0059 .0013 .0037 0059 .0023 .0037 0132 .0008 .0022 0135 .0010 .0005 0136 .0010 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005 0151 .0004 .0005	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0195 .0015 04.82 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.93 .0136 .0031 04.68 .0148 .0025 06.52 .0163 .0025 06.52 .0164 .0032 05.38 .0164 .0051 03.80 .0164 .0051 03.80 .0164 .0051 03.80 .0164 .0051 03.80 .0164 .0051 03.80 .0164 .0051 04.19 .0164 .0051 03.80 .0164 .0051 03.80 .0164 .0051 03.80 .0164 .0051 03.80 .0164 .0051 03.80	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.830005 479 02.660006 481 02.660006 482 02.800006 484 03.050006 485 03.550006 487 03.300006 489 03.450005 489 03.450005 489 03.450005 489 03.450005 489 03.290005 490 03.290005 490
	0051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0069 .0013 .0049 .0089 .0013 .0032 .0099 .0023 .0032 .0132 .0008 .0022 .0135 .0010 .0005 .0138 .0010 .0005 .0138 .0019 .0025 .0151 .0030 .0025 .0151 .0030 .0096 .0166 .0010 .0051 .0172 .0022 .0040 .0169 .0030 .0054 .0169 .0030 .0054 .0169 .0030 .0054 .0168 .0014 .0063 .0168 .0014 .0063 .0168 .0014 .0063 .0168 .0014 .0063	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0025 04.82 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.93 .0136 .0031 04.68 .0148 .0023 05.93 .0148 .0027 06.52 .0163 .0027 06.52 .0164 .0032 05.38 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.20 .0021 .0015 03.20 .0021 .0017 00.044	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.830005 479 02.660006 481 02.660006 484 03.050006 485 03.580006 486 03.580006 486 03.580006 489 03.450005 489 03.450005 489 03.290005 499 03.290005 499 03.290005 499
	0051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0069 .0013 .0049 .0095 .0023 .0037 .0192 .0008 .0022 .0132 .0008 .0022 .0135 .0010 .0005 .0138 .0019 .0025 .0138 .0019 .0025 .0151 .0034 .0009 .0166 .0012 .0054 .0169 .0024 .0054 .0169 .0034 .0054 .0169 .0036 .0054 .0168 .0014 .0055 .0168 .0034 .0056 .0168 .0034 .0056	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0089 .0015 04.82 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0022 05.93 .0136 .0031 04.68 .0148 .0043 03.80 .0148 .0045 04.38 .0164 .0025 06.38 .0164 .0025 06.38 .0164 .0025 04.19 .0164 .0051 08.49 .0164 .0051 08.49 .0164 .0051 08.49 .0164 .0051 08.49 .0164 .0051 08.49 .0162 .0056 03.20 .0021 .0017 .00-74	01.070009 475 00.580004 476 01.760011 477 01.390004 478 01.830005 479 01.960005 481 02.660006 482 02.730006 483 02.800006 486 03.050006 486 03.550006 486 03.550006 486 03.450006 488 03.450006 488 03.450006 488 03.450006 488 03.450006 488 03.450006 488 03.450006 488 03.450006 488 03.450006 488 03.450006 488
	0051 .0012 .0049 .0028 .0017 .0049 .0028 .0017 .0049 .0036 .0011 .0043 .0069 .0013 .0049 .0037 .0023 .0032 .0132 .0008 .0022 .0132 .0008 .0022 .0135 .0010 .0025 .0136 .0010 .0025 .0151 .0030 .0059 .0151 .0030 .0059 .0154 .0003 .0009 .0164 .0003 .0009 .0164 .0003 .0009 .0168 .0030 .0054 .0169 .0030 .0054 .0168 .0034 .0063 .020 .0014 .0065 .020 .0017 .0065 .0000 .0017 .0065 .0000 .0017 .0065 .0000 .0018 .0070	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0023 03.75 .0131 .0019 06.18 .0129 .0018 04.61 .0134 .0021 04.80 .0148 .0021 04.80 .0148 .0022 05.98 .0168 .0025 06.44 .0164 .0022 05.38 .0168 .0044 04.14 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0164 .0051 03.49 .0162 .0056 03.20 .0011 .0017 .00-04	01.070009 475 00.580004 476 01.760011 477 01.390005 478 01.830005 480 01.960006 481 02.660006 484 02.660006 484 02.850006 486 03.550006 486 03.550006 487 03.300006 488 03.450005 489 03.450005 490 03.290005 490 03.290005 490 03.290005 490 03.290005 490 03.290005 490 03.290005 490
	0051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0043 .0069 .0013 .0049 .0095 .0023 .0037 .0132 .0008 .0022 .0132 .0008 .0022 .0135 .0010 .0025 .0136 .0030 .0051 .0138 .0010 .0055 .0151 .0030 .0051 .0164 .0003 .0009 .0166 .0010 .0055 .0169 .0030 .0054 .0169 .0030 .0054 .0169 .0030 .0054 .0168 .0034 .0065 .0168 .0034 .0065 .0169 .0036 .0054 .0168 .0036 .0054 .0168 .0036 .0054 .0068 .0036 .0055 .00649 .0012 .0068 .0055 .0018 .0066	.0051 .0012 03.12 .0028 .0017 01.29 .0086 .0013 04.00 .0069 .0013 04.00 .0095 .0025 04.82 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0021 05.92 .0136 .0031 04.68 .0148 .0032 05.92 .0168 .0044 04.14 .0164 .0032 05.38 .0168 .0044 04.14 .0164 .0051 08.49 .0164 .0051 08.49 .0162 .0056 03.20 .0015 .0017 .00.04 .0050 .0011 02.30 .0056 .0015 02.63	01.070009 475 00.580004 476 01.760011 477 01.390005 479 01.960005 480 02.660006 481 02.660006 483 02.860006 484 03.050006 486 03.550006 487 03.550006 487 03.550006 489 03.450005 499 03.290004 492 03.260005 499 00.420004 495 00.420004 495 00.420004 495 00.320004 495 00.320004 495
	0051 .0012 .0049 .0028 .0017 .0049 .0086 .0011 .0049 .0089 .0013 .0049 .0089 .0013 .0037 .0089 .0013 .0037 .0132 .0008 .0022 .0132 .0008 .0022 .0135 .0010 .0005 .0136 .0010 .0051 .0151 .0004 .0051 .0151 .0004 .0051 .0164 .0010 .0051 .0164 .0010 .0054 .0168 .0010 .0054 .0169 .0030 .0054 .0168 .0034 .0065 .0168 .0034 .0065 .0168 .0034 .0065 .0000 .0017 .0062 .0000 .0018 .0066 .0049 .0018 .0070	.0051 .0012 05.12 .0028 .0017 01.29 .0086 .0011 05.80 .0069 .0013 04.00 .0095 .0015 04.82 .0131 .0019 06.18 .0129 .0018 06.61 .0134 .0021 05.92 .0136 .0021 03.80 .0148 .0041 03.80 .0148 .0042 05.93 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0164 .0025 06.44 .0165 .0025 06.44 .0166 .0025 06.44 .0167 .0025 06.44 .0025 0025 06.44 .0025 0025 06.44 .0025 0025 06.44 .0025 0025 06.44 .0025 0025 06.44	01.070009 475 00.580004 476 01.760011 477 01.390005 478 01.830005 480 01.960006 481 02.660006 484 02.660006 484 02.850006 486 03.550006 486 03.550006 487 03.300006 488 03.450005 489 03.450005 490 03.290005 490 03.290005 490 03.290005 490 03.290005 490 03.290005 490 03.290005 490

į

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 46, 47, 48

```
DATE TIME M R PT G TT KHO GAMA PHI DELS CO27 1334 0.509 1.252 0934, 141.6 114.1 .0836 00.70 000.0 26.00
RUN L TN TET P
                                                                  M SELT STAD
    46 1 12 514 1
                                                                                                                       ALFA
                                                                                                                                                                                                   '1U
                                                                                                                                                                                                                      LA"B
                                                                                                                                                                                                                                                                           CX
                                                                                                                                                                      VTIP
                        CORR THEZ THEC THES
                           502 00.00-03.7: 71.69 -00.01 582.1 401.3 1.451 .0028 .0071 .0017 -.0006 503 01.92-03.07 03.69 -0003 582.8 399.6 1.458 .0020 .0037 .0018 -.0000 504 03.93-03.65 05.92 -00.05 582.9 401.3 1.458 .0005-0019 .0027 -.0005
                            805_01.89_02.95_00.82 00.01 582.4 399.6 1.457 .0045 .0131 .0016 .0007 806_03.96_04.11_02.77 00.01 582.3 410.5 1.419 .0047 .0139 .0022 -.0006 507_06.03_03.98_05.23 00.01 582.4 410.5 1.419 .0053 .0160 .0037 .0004
                            $08_00.09_05.32 04.1 04.97 582.6 417.2 1.591_.1146 .0184 .0007 _.0004 509 01.90_05.93 06.22 04.95 583.0 407.2 1.427_.1184 .0144 .0008 _.0015 510 03.94_06.06 08.33 04.95 583.0 408.0 1.424_.1197 .0104 .0017 _.0018 511_02.00_05.82 02.36 04.95 583.3 411.3 1.410_.1163 .0189 .0009 _.0009
                            511-02.00003.02 00.14 04.97 582.2 427.3 1.357-.1108 .0213 .0019 -0000 512_04.04-05.68 00.14 04.97 582.2 427.3 1.357-.1108 .0241 .0044 .0062 513_06.14-05.09_02.29 04.99 583.5 413.0 1.407-.1144 .0241 .0044 .0062 614_04.95_05.47-00.61 04.99 584.2 426.1 1.360-.1109 .0227 .0030 .0004
                             $14-04.95-05.47-00.61
$15-03.12-06.21 02.50
                                                                                                                       07.48 584.1 423.1 1.369-.1710 .0253 .001e -.0003
                              $16_03.96_06.08 01.5, 07.50 584.5 401.3 1.444_.1800 .0278 .0025 -.0003 $17_02.08_06.59 03.74 07.46 584.6 397.9 1.457_.1820 .0250 .0006 -.0003 $18_00.03_06.12 05.40 07.47 585.4 413.9 1.402_.1754 .0244_.0001 .0003
                              518-00.03-06.12 05.46 07.47 585.4 413.9 1.402-.1754 .0244-.0001 .0003 519 02.02-16.45 07.50 07.47 586.1 400.4 1.451-.1821 .0222 .0000 -.0005
                                                                                                                                                                                                                                              AMAD CHP
                                                                                                                                                                                                                                                                                                 PHI DELS
                                                                                                                                                                                                C
                                                                                                                                                                                                                         TT
 RUY L TN TST P
                                                                              DATE TIME N
                                                                              CE27 1402 0,509 1,253 0942, 143,4 118,5 ,0837 00,70 000,0 26.00
      47 1 12 514 1
                                                                                                                                                                                                                      LA-3
                                                                                                                                                                                                                                                   ÇΖ
                          CORR THEZ THEC THES
                                                                                                                       ALFA
                                                                                                                                                  ٧
                                                                                                                                                                                                    .′∪
                                                                                                                                                                       VTIP
                             $20-00,05-04.36 01.32 -00.01 585.4 $51.2 1.672 .0042 .0094 .0013 -.0004 $21 01.92-03.73 03.54 .00.02 584.7 $52.7 1.658 .0019 .0029 .0015 -.0002 522 03.92-04.39 .0.53 .00.06 586.0 351.0 1.669-.0008-.0058 .0028 -.0011
                           522 39.92-04.39 10.53 -00.06 586.0 351.0 1.669-.008-.0056 .0028 -.0011 523-02.02-04.84-01.02 .00.02 585.6 351.9 1.664 .0057 .0148 .0014 -.0006 524-03.99-04.14-03.5- .00.03 585.1 351.0 1.667 .0074 .0200 .0028 .0005 525-06.06-03.97-16.3- .00.05 584.2 340.0 1.688 .0090 .0246 .0046 .0017 526-04.97-04.20-14.50 .00.4 584.5 354.4 1.650 .0079 .0221 .0031 .0010 527-00.01-05.52 74.05 .04.97 584.5 351.9 1.655-.1356 .0198 .0005 -.0004 528 02.08-05.88 02.08 .0005 .004.96 585.0 340.5 1.672-.1379 .0172 .0006 .0001 529-02.04-06.40 .01.71 .05.00 585.1 348.5 1.673-.1362 .0243 .0012 .0003 530-04.03-05.94-00.34 .04.99 585.1 373.6 1.560-.1257 .0270 .0025 .0009 531-06.03-05.43-02.81 .05.00 585.5 353.5 1.650-.1320 .0297 .0039 .0016 532-03.05-06.19 .00.91 .04.93 585.6 351.9 1.658-.1342 .0249 .0011 .0002 533-01.21-06.81 .04.02 .07.46 585.7 352.7 1.6647-.2041 .0281 .0003 .0007 534-04.13-06.39 .00.81 .07.46 585.7 352.7 1.6647-.2041 .0281 .0003 .0007 534-04.13-06.39 .00.81 .07.46 586.2 353.5 1.644-.2043 .0265-.0000 .0007 535-00.11-07.34 .05.15 .07.46 586.2 353.5 1.644-.2043 .0265-.0000 .0001 .0009 535-00.11-07.34 .05.15 .07.46 586.2 353.5 1.644-.2043 .0265-.0000 .0001 .0001 537 .01.96-08.41 .07.5- .07.46 586.2 353.5 1.644-.2043 .0265-.0000 .0001 .0001 537 .01.96-08.41 .07.5- .07.44 587.0 349.3 1.666-.2086 .0211-.0000 -.0014
                               937 01.96-08.41 07.5-
                                                                                                                        07.44 587.0 349.3 1.666-.2086 .0211-.0000 -.CC14
   RUN L TO TST P
                                                                                DITE TIME M
                                                                                                                                                                                                   Q
                                                                                                                                                                                                                           17
                                                                                                                                                                                                                                                  RHO GAMA
                                                                                                                                                                                                                                                                                                   PHI
                                                                                0527 1433 0,509 1,254 0949, 144,2 121,2 ,7839 00,70 000,0 26.00
        46 1 12 614 1
                                                                                                                                                ٧
                                                                                                                                                                         VTIP 4U LANG
                                                                                                                                                                                                                                                  CZ
                            COPR THEZ THEC THES ALFA
                                                                                                                                                                                                                                                                          CX
                                                                                                                                                                                                                                                                                                     CPM.
                                 538 00.38-04.94 01.10 00.00 586.4 285.7 2.053 .0078 .0153 .0010
                                                                                                                                                                                                                                                                                                 .0008
                               538 00.38-04.94 11.10 00.00 586.4 285.7 2.053 .0078 .0153 .0010 .0008 539-01.61-06.68-01.73 00.02 586.8 269.8 2.175 .0104 .0203 .0013 .0003 540-02.85-05.53-03.37 00.03 585.7 270.6 2.164 .0127 .0256 .0024 .0015 541 01.27-09.87 04.42 04.93 586.2 279.0 2.094-.1678 .0240 .0008 .0003 542 01.70-09.07 05.83 04.91 587.0 273.1 2.142-.1748 .0174 .0012 -.0009 543-022.53-07.02 00.13 04.96 585.6 268.1 2.176-.1703 .0340 .0024 .0028 544 00.17-07.59 03.3+ 04.94 586.5 269.8 2.166-.1717 .0287 .0014 .0018 545 00.77-04.04 01.62-.02.07 587.3 267.2 2.196 .0754-.0019 .0014 .0008 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0022 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0028 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0028 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0028 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0028 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0028 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 -.0028 546 01.84-04.51 04.17 -02.11 586.5 270.6 2.166 .0725-.0136 .0028 546 01.84-04.51 04.17 -02.11 586.5 270.6 270 04.10 04.10 04.10 04.10 04.10 04.10 04.10 04.10 04.10 04.10 04.10 04.10 04.10
                                947_0Z,95-05,56-05,31 _Q1.99 586.8 267.2 2.194 .0882 .0222 .0017 .0018
```

FAIRCHILD REPUBLIC DIVIBION

HC144R1070

Copy available to DDC does not permit fully legible reproduction

```
CRM CL CC CT CH CQ CLR CDR LGD DL CRS
-.0003 .0071 .0017 .0075 .0018 .0053 .0018 03.55 Cl.01-.0003
-.0003 .0037 .0018 .0040 .0019 .0051 .0040 .0019 Cl.73 0C.53-.0003
-.0004-.0019 .0027 .0020 .0028 .0043-.0020 .0028.00.64.00.27-.0004
-.0005 .0131 .0016 .0139 .0017 .0029 .0139 .0017 07.17 Cl.85-.0005
-.0004 .0139 .0022 .0140 .0022 .0034 .0140 .0022 05.74 Cl.97-.0004
-.0005 .0160 .0037 .0161 .0037-.0025 .0141 .0037 04.58 02.26-.0005
-.0005 .0163 .0022 .0160 .0036 .0017 .0179 .0022 07.72 02.60-.0005
-.0005 .0143 .0020 .0146 .0008 .0017 .0179 .0022 07.72 02.60-.0005
-.0005 .0143 .0020 .0146 .0008 .0047 .0146 .0021 .06.08 02.03-.0005
-.0005 .0148 .0025 .0190 .0009 .0004 .0188 .0025 07.35 02.66-.0005
-.0005 .0188 .0025 .0190 .0009 .0004 .0188 .0025 07.35 02.66-.0005
-.0005 .0188 .0025 .0190 .0009 .0004 .0188 .0025 07.35 02.66-.0005
-.0005 .0243 .0037 .0200 .0017-.0052 .0147 .0035 06.42 03.01-.0007
-.0004 .0236 .0065 .0240 .0044-.0144 .0236 .0065 04.33 03.36-.0004
-.0005 .0223 .0059 .0211 .0026-.0177 .0208 .0065 05.12 03.19-.0005
-.0005 .0249 .0049 .0241 .0015-.0086 .0237 .0046 05.12 03.19-.0005
-.0005 .0247 .0039 .0241 .0015-.0086 .0237 .0046 05.12 03.19-.0005
-.0005 .0247 .0039 .0269 .0007-.0134 .0286 .0065 05.15 03.89-.0005
-.0005 .0247 .0039 .0269 .0007-.0134 .0286 .0065 05.15 03.89-.0005
-.0005 .0242 .0031 .0244-.0001-.0026 .0242 .0031 08.32 03.47-.0006
-.0005 .0242 .0031 .0244-.0001-.0026 .0242 .0031 08.32 03.47-.0006
-.0005 .0242 .0031 .0244-.0001-.0026 .0242 .0031 08.32 03.47-.0006
              CRM
                                                                                  CL
                                                                                                                                                                                                            CT
                                                                                                                                                                                                                                                                       CH . CO
                                                                                                                                                                                                                                                                                                                                                                                  CLA
                                                                                                                                                                                                                                                                                                                                                                                                                                           CDR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LCD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CRB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     COPR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              502
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              303
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              504
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             505
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            506
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             577
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             508
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            509
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            511
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             512
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            513
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          514
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            515
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            516
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          517
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         518
```

```
CKM
                     CD
                               CT
                                                CC
                                                               CD4
                                                                        LCD
                                                                                  DL CFE
                                       CH
                                                      CLA
 -.0005 .0094 .0013
                            .0132 .0013 .0053 .0192 .0018 J6.30 01.35-.000s
                                                                                                  420
521
                                                                                                   522
                                                                                                   523
                                                                                                   924
                                                                                                   525
                                                                                                    526
                                                                                                    527
                                                                                                   529
                             .0342 .0016-.0081 .0339 .0047 07.98 03.46-.0006 .0331 .0031-.0173 .0327 .0060 06.75 03.83-.0005 .0407 .0053-.0328 .0411 .0089 05.83 04.20-.006 .0344 .0015-.0112 .0342 .0045 06.91 03.55-.005
 -.0006 .0241 .0034
                                                                                                   529
 -.0005 .0267 .0049
-.0006 .0292 .0065
                                                                                                   530
                                                                                                    231
-.0005 .0247 .0033
                                                                                                   532
 -.0006 .0279 .0040
                             .0368 .0005-.0127 .03:4 .0055 08.13 04.01-.0006
                                                                                                   533
                             .0423 .0021-.0284 .0416 .0086 06.04 04.42-.0006 .0385 .0005-.0165 .0381 .0055 08.41 04.11-.0006 .0365-.0001-.0068 .0362 .0047 08.46 03.79-.0005
-.0006 .0307 .0064
                                                                                                   934
..0006 .0287 .0042
-.0005 .0263 .0034
-.0005 .0209 .0027
                                                                                                    535
                                                                                                    536
                             .0298-.0001 .0041 .0296 .0038 07.30 03.02-.0005
```

```
CLR
                                                                                                                                                                                                                                                                                                                                                           CDP
                                                                                                                                                                                                                                                                                                                                                                                                           LOD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                0L
                                                                     CL
               CRM
                                                                                                                    Cυ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COLE
                                                                                                                                                                  .0322 .0020 .0008 .0322 .0020 15.43 02.21-.0005
      -.0005 .0153 .0010
-.0005 .0203 .0013
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ₹36
                                                                                                                                                                 .0485 .0030..0065 .0460 .0030 17.96 02.93..0005 .0485 .0057..0252 .0660 .0057 13.14 03.69..0004 .0531 .0017-.0072 .0527 .0063 08.89 03.45-.0009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             533
-.0004 .0256 .0024 .0057 .0257 .0252 .0600 .0357 13.14 03.69-.0004 .0004 .0256 .0024 .0557 .0252 .0600 .0357 13.14 03.69-.0004 .0004 .0239 .0028 .0531 .0017-.072 .0527 .0063 08.89 03.45-.0009 .0006 .0172 .0026 .0401 .0027 .0042 .0397 .0061 06.31 02.49-.0006 .0004 .0337 .0053 .0412 .0056-.0554 .0804 .0126 07.99 04.82-.0004 .0006 .0285 .0039 .0679 .0034-.0170 .0674 .0092 07.98 04.12-.0006 .0004 .0004 .0035-01.12-00.27-.0004 .0002 .0004 .0035-01.12-00.27-.0004 .0002 .0004 .0035-01.12-00.27-.0004 .0002 .0004 .0002 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            541
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           542
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              543
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              544
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              545
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              244
  __.0006 .0222 .0009 .0534 .0041-.0147 .0525 .0023 33.76 03.21-.0006
```

FAIRCHILD BEPUBLIC DIVISION

HC144R1070

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 49, 50

RUN L TN TST P 49 1 12 614 1 PHI DELS PT RHO GAMA DATE TIME M R Ω TT 0627 1505 C.508 1.254 0953. 144.5 122.7 .0841 00.71 000.0 26.00 CORR THEZ THEC THES MU LAMB VTIP 548-00.99-06.64-01.98 00.13 586.2 244.6 2.396 .0099 .0259 .0026 549-01.12-06.37-02.82 00.16 586.4 231.2 2.536 .0121 .0300 .0034 550-00.17-06.96-00.98 00.13 586.7 237.1 2.475 .0097 .0250 .0021 .0016 .0000

RUN L TN TST P DATE TIME M PHI DELB TT RHO GAMA 50 Î 12 614 1 0627 2022 0.182 1.229 2123. 048.0 074.3 .2279 01.91 000.0 26.00 LAMB CZ MU CORR THEZ THEC v VTIP THES ALFA 00.06 205.2 702.0 0.292 .0039 .0574 .0044 -.0087 555 00.01-01.75 01.34 556 02.00_01.93 01.86 00.26 205.1 701.2 0.292 .0074 .0039 _.0008 557 04.08_02.30 02.77 00.45 202.7 699.5 0.290 .0102 .1736 .0015 .0026 558 05.94_02.60 03.70 00.68 204.5 702.0 0.291 .0141 .2409 .0005 .0026 559 07.01_02.69 04.40 00.72 205.5 681.9 0.301 .0152 .2525 .0010 .0026 560_02.17_00.91_00.24 _00.18 205.5 699.5 0.294 .0000_.0125 .0044 .0008 560_02.21 14.01 03 _02.40 208.3 701.2 0.294 .0000_.0125 .0044 561 00.23-01.16 01.03 L02.40 205.3 701.2 0.293 .0149 .0360 .0040 562 02.02-01.32 01.55 L02.21 204.4 702.0 0.291 .0160 .0932 .0043 563 04.01-01.64 02.34 L02.00 203.4 702.0 0.290 .0212 .1543 .0036 564 06.05-01.95 03.32 L01.77 204.1 701.2 0.291 .0248 .2181 .0029 .0030 .0048 .0059 505 00.00-01.01 00.80 -03.92 205.7 702.9 0.291 .0248 .4181 .0029 .0059 505 00.00-01.01 00.80 -03.92 205.7 702.9 0.292 .0205 .0068 .0026 .0004 566 01.91-01.49 01.47 -03.74 205.5 701.2 0.292 .0235 .0599 .0027 .0009 567 03.99-01.73 02.31 -03.51 204.3 699.5 0.291 .0269 .1247 .0025 .0026 568 05.94-02.00 03.18 -03.29 202.3 699.5 0.289 .0305 .1935 .0025 .0043 569-02.17-00.12-01.24 -04.17 205.0 700.4 0.292 .0144-.0461 .0016 .0068 577 CZ.CC-C2.77 CZ.63 CB.11 205.3 697.9 C.Z91-.0Z64 .Z04Z .CC71 -.Q004 578 CJ.94-C3.20 C3.65 C8.28 Z06.8 699.5 C.Z93-.CZ36 .Z551-.CC25 .Q006 579 C6.C1-C3.57 C5.17 C8.41 ZC6.2 699.5 C.Z9Z-.CZ14 .Z9Z5-.CC45 -.Q014 580 C1.9C-C7.72 CZ.76 CC.24 ZC4.4 7C1.2 C.Z91 .CC43 .C764-.CC07 -.Q418 581 CZ.CZ-C4.11 CZ.84 CC.30 ZC5.3 7C4.6 C.Z91 .CC52 .CGC2 .CC02 -.Q191 582 C1.98-CC.2 CZ.81 CC.35 ZC5.1 7C2.9 C.Z9Z .CC61 .1C84 .CC39 .CC72 583 CZ.4C C3.63 C3.C2 CC.30 ZC5.C 7C2.C C.Z9Z .CC61 .1C84 .CC39 .CC72 583 CZ.4C C3.63 C3.C2 CC.30 ZC5.C 7C2.C C.Z9Z .CC64 .CT71-.CC15 .Q3Z0 584 CZ.56-CZ.37 C5.96 CC.32 ZC5.7 7C2.C C.Z9Z .CC64 .CT71-.CC15 .Q3Z0 585 C1.3Z-C1.56-CC.18 CC.35 ZC5.7 7C2.C C.Z9Z .CC62 .1C47 .CC15 .Q1Z0 586 C1.99-C1.64-CC.11 CC.42 ZC4.3 7C3.7 C.Z9C .CC73 .1297 .CC62 .C124 .CC.49 ZC5.7 7C2.9 C.Z93 .CC83 .1476 .CC92 .C254

CRM	CL	CD	CT	CH	CQ	CLR	CDR	LOD	DL	CRB	CORR
0006	.0259	.0027	.0743	.0075-	.0278	.0743	.0077	11.42	03.74	-,0006	548
0005	.0300	.0035	.0966	.5111-	.0592	•3966	.0113	10.71	04.35.		549
0006	• CZ5C	.cczl	.0765	.0063-	.5186	.0745	.3065	13,34	C3.62.	0006	55 0

Copy avadiable to DDC does not commit fully legible reproduction

# =1/	•			- .						
CRM	CL	CD	CT			CLR			DL CRB	CORR
0004		.0045	.0025	.CCGZ	.0021				02.75000	
	.1133	.0044	.0048	.0002	.0022				05.43-,001	
	.1710	.0028	.0073	.0001	.0026	.0073			08.09001	
	.2409	.0033	.0102	.0000	.0035	.0102			11,47331	
-,0521		.0041	.0115	.0000	.0043	.0115			12,12-,001	
0004.		.0045	0005	.cccz		0005	.0002.	.00.51	-00,60-,000	5 560
0000		.0024	.0015	.0002	.0022	.0015	.0001	01.78	01.73-,000	5 561
0012		.0007	.0048	,0002	.0025		.0000	54.51	34,43-,331	2 562
0015	.1543-	.,0016	.0065	.CCCZ	.0029	.0065	0301	C6.92	07.26001	4 563
	.2181-		.0092	.0001	.0039	.0092	0002	67.80	10.34-,001	9 564
0003	.0070	.0022	.0003	.0001	.5023	.0003	.0001	00.34	00.34000	3 565
00008	.0599-	-,0012	.0026	.0001	.0026	.0026.	0001	03.12	02.88000	8 566
0014	.1246-	0051	.0053	.0001	.0031	.0053	0002	36.18	05.92-,001	3 567
0019	.1933-	-,0086	.0081	.0001	.0041	.0081	0004	07.58	09.00001	8 568
0000-	.0658	.0064	0028	.0001	.0028.	0028	.0003.	.02.29	-03.15000	1 569
0015	.1167	.0173	20050		.0011				05.52001	
0016	.1746	.0218	.0075	.0002	.0009				08.30001	
0022	.2392	.0259	20101	-0001	.0011				11.21002	
0021	.2798	.0259	.0120	ccii	.0026				13.45002	
	.2982	.0305	.0128	0000	.0034				14.20-,001	
	.0559	.0107	-0024	.0052					02.68-,001	
0017	.1448	.0300	.0063	.0004	.0003	.0062	.0013	04.51	36,93-,331	7 576
0015	.2012	.0359		.0003	.0000	.0087	.0016	05.55	09.65-,001	5 577
0014	.2528	.0343			.0006	.0113	.0015	36.55	12,30-,001	4 578
0021	.2901	.383	.0127	0082	.0024				14.03002	
0192	.0764-	0004			.0031		0000			
3024	.0920	.0057		.0000	.0025				04.41002	
.0103	1084	.0046		20002	.0022				05.19 .010	
	.0920-				.0030		0003		04.40 .024	
	.0771-			0001					03.72 .019	
0084					.0015		.0003	05.64	05.03-1006	
0098	•	• ,		20003			.0003		66.16009	
0212				20004					07.11021	
						7	4			

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 51, 52

DATE TIME M R PT Q TT RHO GAMA PHI DEL3 0527 2119 0.286 1.874 2121. 115.0 078.8 .2204 01.85 000.0 26.00 PHI DEL3 RUN L TH TST P 51 1 12 614 1 NU LAMB CZ CORR THEZ THEC THES ALFA ٧ VTIP CX 588-00.32-01.55 00.77 00.02 323.1 697.9 0.463 .0013 .0125 .0033 -.0007 589 01.84-00.63 01.55 00.11 323.4 699.5 0.462 .0035 .0386 .0040 .0040 589 01.84-00.63 01.55 00.11 323.4 699.5 0.462 .0035 .0386 .0040 .0040 590 04.00-02.29 03.75 00.15 323.8 698.7 0.463 .0045 .0496 .0027 ...0019 591 08.03-02.76 05.23 00.21 324.0 699.5 0.463 .0062 .0680 .0020 ...0020 592-02.01-01.71-00.62 .00.04 323.4 702.0 0.461-.0005-.0068 .0034 -..0019 593-04.02-01.29-01.85 .00.10 323.1 700.4 0.461-.0021-.0250 .0028 -..0029 594_00.08_01.50 01.94 05.03 323.4 699.5 0.461_.0352 .0457 .0046 .0016 595 02.04_02.02 03.32 05.08 323.4 700.4 0.460_.0337 .0622 .0037 .0012 596 03.98_00.78 (4.43 05.13 323.5 700.4 0.460_.0325 .0756 .0001 .0071 597 05.94_01.32 06.06 05.17 323.5 697.9 0.462_.0316 .0872_.0003 .0063 598_02.05_02.13 01.07 04.95 328.9 703.7 0.459_.0369 .0242 .0039 _.0022 599_04.06_01.55_00.77 04.90 324.0 700.4 0.461_.0385 .0085 .0043 _.0009 600_00.04_01.85 02.66 07.58 323.4 702.9 0.456_.0539 .0587 .0055 .0013 601 01.86_02.05 03.92 07.63 324.1 701.2 0.458_.0529 .0731 .0020 .0026 602 04.00_01.89 05.37 07.68 324.7 702.9 0.458_.0518 .0863_.0004 .0040 07.71 323.1 714.6 0.448..0497 .0967..0000 .0045 07.50 324.4 702.9 0.458..0557 .0400 .0064 ..0004 07.45 324.1 701.2 0.458..0573 .0230 .0062 ..0006 603 00.00-01.98 06.86 604_02.02_01.87 01.37 605-03,97-01,74-00,02 606-00,01-01,91 03,20 10.04 323.6 707.9 0.450..0717 .0725 .0058 607 01.59-01.81 04.54 10.10 323.6 701.2 0.454-.0714 .0831 .0031 608 03.93-02.32 (6.06 10.17 323.8 703.7 0.453-.0701 .0968 .0012 .0041 .0033 609-02,07-01,63 01,46 10,02 324,1 699,5 0,456-,0744 ,0532 ,0093

FUN L TH TST P DATE TIME M R FT Q TT RHD GAMA PHI DEL3 52 1 12 614 1 0627 2203 0.286 1.852 2122. 115.1 083.9 .2164 01.83 000.0 26.00

COPR THEZ THEC THES ALFA V VTIP MU LAMB CZ CX CPM 610-00-11-01-98 01-02 -00-07 324-7 565-5 0-574 -0014 -0047 -0021 --0003 611 01.86-01.19 02.02 L00.03 324.4 563.8 0.575 .002E .0171 .0024 612 03.99-02.12 04.1E .00.01 324.4 560.5 0.579 .0036 .0246 .0022 613 05.98-01.66 05.29 00.04 324.6 563.0 0.577 .0051 .0385 .0027 614-01.98-01.22-00.99 .00.09 323.6 563.0 0.575 .0005-.0023 .0022 .0033 .0015 .0037 ,0019 614-01.98-01.23-00.96 -00.09 323-6 563-0 0.575 .0005-.0023 .0022 615-00.04-01.97 02.55 05.04 323.6 565.5 0.570-.0461 .0293 .0035 616 02.07-02.15 04.05 05.06 324.2 562.1 0.574-.0454 .0383 .0028 617 03.90-02.13 05.25 05.10 323-7 562.1 0.574-.0442 .0486 .0028 612 05.94-03.17 07.05 05.13 324.2 563.3 0.573-.0432 .0571 .0020 619-02.06-01.42 00.95 05.01 324.1 567.2 0.569-.0470 .0204 .0035 620-04.04-01.02-00.93 04.97 324.0 564.6 0.572-.0479 .0126 .0036 622-07.02 00.11-02.83 04.99 323.6 563.0 0.573-.0489 .0043 .0036 622-07.02 00.11-02.83 04.99 323.8 562.1 0.574-.0480 .0148 .0079 623-01.09 00.63 00.12 05.05 324-7 559-6 0.578-.0461 .0345 .0051 .0022 .0027 .0039 .0019 .0027 .CC38 .0038 622_07.02 00.11_08.33 623_01.08 00.42 00.12 .0137 05.05 324.7 559.6 C.578-.0461 .0345 .0051 05.05 324.7 611.6 0.529-.0420 .0359 .0021 05.06 324.4 645.9 0.500-.0396 .0372 .0022 05.08 324.0 676.4 0.479-.0375 .0426 .0037 .0113 624_01.01 01.27_00.21 625_00.54 01.64_00.23 .0138 .0152 .0157 625-00,41 01,36-00,13 05.04 324.6 559.6 0.578..0460 .0346 .0050 07.66 324.5 563.8 0.570..0708 .0410 .0030 07.70 324.2 563.0 0.571..0700 .0494 .0028 627-01,12 00,8/ 00,02 .0111 628 00.05.02.25 03.36 629 02.04.02.76 04.82 .0035 .0026 07.72 324.3 563.0 0.571-.0101 .0580 .0023 .0019 07.77 324.0 565.5 0.568-.017 .0678 .0014 .0018 07.68 323.5 565.5 0.567-.0702 .0435 .0025 -.0014 07.63 324.0 570.5 0.563-.0712 .0295 .0063 .0018 07.43 324.0 570.5 0.563-.0712 .0295 .0063 .0018 530 49.95403.25 06.23 631 06.00-03.66 07.82 632 01.96-03.95 05.29 633-02.13-02.23 01.92 634-04,05-01,80 00,25 C7.60 324.2 565.5 C.568-.0730 .0200 .0053 .0017 07.53 324.1 563.0 0.571-.0742 .0114 .0047 .0007 .0007 .0007 .0007 .0007 .0000 .0048 .0060 .09.90 324.9 565.5 0.566-.0931 .0395 .0023 -.0042 635-05,93-01,61-01,21 636-09.65-01.01 02.36 637-00.12-04.76 05.03 698 (3.87-05.70 07.85 639-03.85-02.27 01.22 09.93 324.5 564.6 0.566-.0910 .0562 .0005 -.0051 C9.87 324.3 566.3 0.564-.0938 .0309 .0061 .0013 640-01.93-02.75 02.80 09.90 324.6 567.2 0.564-.0929 .0384 .0039

FAIRCHILD REPUBLIC DIVISION

HC144R1070

CPri	CL	CD	CT	CH	CQ	CLR	CDR	LCO	CL	CAB	CURR
0004			-0013	.0004	.0025	.0013	.0004	51.48	31.4	40004	
cca										40006	
3006										1-,0006	390
0007										5-,0007	591
			-0007							80003	
 0003.											592
0001			0527							70001	493
0208	40451	.0096								80008	594
0009	.0617	.009 <i>2</i>								80709	545
0010	.0753	.0069	.CCA1	_0000	.0011	-0076	.0007	29.19	08.6	50010	595
0010		·								80010	597
0006		-								30006	599
_,0006			0.00	0009	0024	0000	.0005	68.53	00.0	30006	599
			2243	0005	0017	0041	0014	38.37	06.4	0-000	• •
00008			-0362	200.00	2002	^^7	0013	02421	^6 3	0000B	6.00
0010			- GC 18	.0002			.0012	00.79	VD. 7	20010	601
0010	.0856	.5111	,5502.	0000	. 5006	-02c1	.0012	46,93	9.8	80017	605
0010	.0958	.0129	0099	0000	.CSZ4	.5098	.0013	35.26	10.9	75010	603
0007	_0388	.5116	.0043	_0007	-,5004	.0041	.0012	C3.56	34,4	70007	604
0006			10025	10007	.0008	.0023	.0010	02.06	02.5	30006	€05
cose		-	20076	10006	0022	10074	20019	05.07	28.0	70008	606
0011			50.60	.0003	Sc 14	.00/7	6010	05.48	29.3	10011	627
			0103	3001	- 0003	2101	0016	25.37	10.0	05009	-
0009											608
0509	• ~ \$ 0 8	40184	⊕ ₩₩ ⊅ 7	.0010	-,0021	•00:4		~34Y~	~3.B	30009	609

	CL		CT			CLR		LOD			CORR
0004	.0047		,0006	<u>.</u> ç304		.0018				40004	61C
0007	.0171	.0024	.QC26	.0004		.0018				70007	611
	.0246	.0022	.0:41	.0004		.00-1	.0004	35.96	22.8	2-,0005	612
0007	.0385	.0027	.0064	.0004		.0064	.0004	27.52	04.4	3-,0007	413
0004.	0023	.0022	0104	.00:4	.0524.	00:4	.0004	.00.49.	.00.2	60004	014
0007	.0289	.0061	.0045	.COO6-	,000B	.0047	.0010	35.56	03.3	10007	615
0006		.0062	.0064	.0005-		.00:3	.0010	26.98	04.3	50006	616
0009	.0482	.0071	CORL	20005-		.00:0	.5012	07.07	25.5	10009	617
CCC2	.0567	.0071	.0.94	,0003	.0015	.00-4	.5012			30001	618
3006	.0200	.0053	.0733	.0075-	.0005	.0033	.0009	24.27	02.3	00006	619
000		.0047	.0321	.0006-		.0000				1-,0006	980
0005	.0040	.0039	.0007	.0002	.0014	. 00:7				5-,0005	621
0071	.0141	20061	.0125	.0013-		.0023	.0015	22.12		15371	622
0005	.0339	.0561	3356	-0669-	60737	.0037	.0014			0009	623
0009	.0355	.0052	\$5551	.0003-	.0032	.0050		36.80	04.0	0009	624
0009	.0369	.0055	.0047	.0003-		. 3047	.0007	36.82		30009	625
00009	.0421	.0074	0049	.0004-		.3349	.0009	12.62		20009	424
000H	.0340	.0081	0058	. SSSE-		10017	.0014			0006	627
0007	.0402	00.85	.0066	.00054		.0047	.0014			0007	625
0007	.0486	0094	COAZ	.0005-		.00:1	.0016	26.69		70007	62¢
0009	.0571	3100	5096	0004-		.00 5	.0017	26.32		0009	630
1.000%	.0670	0105	.0111	.0002	2000	.0110	.0017	35.82		70008	631
0006	.0427	\$22.3	.0071	.0004-		.0070	.0014			0006	5?2
3000	.0286	S1 E4	0046	20007-		.0046	.0014			70008	633
2,0006	.0192	2079	0033	.0005-		.0071	.0013		02.2	6000.	
0006	.0106	10062	.0:19	.0006		.0018	.0010	31.62		2-,0006	635
0007	.0388	.5150	.0067	SCC8-		.00.5	.0017	06.32		30007	636
	10386	20051	0065	0004-		.0044	.0015			40006	637
0006		10102	.0093	.0001-		.0001	.0017				632
0006	.0294	.0113	.0051	.0010-	-	-00AB	.0018			1 0006	639
			.5063	.0006-		.0041				70006	
 0006	.0371	.0104	• ~ ~ 63	*		♦ nnu T	.0017	~7.47	~~. £	7-,0006	545

Cepy available to DDC does not permit fully legible reproductions

HC144R1070

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 53, 54, 55

```
RHO GAMA PHI DELS
                                                                               TT
                                                             DT
                                                                      Q
RUN L TN TST P
                            DATE TIME M
                                                    R
                           C628 2215 0.358 2.245 2120. 173.7 087.6 .2120 01.78 000.0 26.00
 54 1 12 514 1
        CORR THEZ THEC THES ALFA V
                                                             VTIP MU LAMB CZ
          609-01.30-02.66-00.22 -00.12 404.8 350.2 1.156 .0046 .0072 .0017 .0004 670-04.20-02.00-03.84 -00.11 405.0 360.2 1.124 .0052 .0166 .0021 .0014 671-06.25-01.93-06.04 -00.11 405.0 360.2 1.124 .0052 .0166 .0021 .0014 671-06.25-01.93-06.04 -00.10 405.7 353.5 1.148 .0054 .0120 .0028 .0015 472 01.42-02.04 02.38 -00.02 405.9 353.5 1.148 .0024 .0072 .0013 .0013
          675 00.09-03.81 03.43 04.93 405.6 355.2 1.138-.0931 .0174 .0015 .0009
          674_02,39-03,75 00,95 04.93 405.6 364.4 1.109-.0907 .0178 .0016 .CCC8
          676 00,10-05,45 04,10
                                           C4.92 407.3 356.0 1.140-.0941 .0139 .0012 -.0002
          677 02.08-04.85 05.70
                                           C7.34 407.1 358.6 1.126-.1394 .020C .C010 -.0006
C7.36 406.8 351.0 1.149-.1423 .0214 .0016 .0001
C7.34 406.9 351.0 1.150-.1421 .0206 .0018 -.0002
          678-00,13-05,81 04.92
          679-02,29-05,36 02,72
          600-02.33-05.68 02.79
661-04.22-05.03 00.78
          681_04.22_05.03 00.78 07.36 407.3 363.6 1.111_.1373 .0224 .0029 .0004 882 02.04-05.59 06.99 07.34 407.9 351.9 1.150_.1420 .0211 .0012 .0001
```

0004 .0084	0012 .0048 0088 .0228 0021 .0197 0028 .0222 0038 .0202 0041 .0272 0052 .0275 0065 .0277 0066 .0320 0036 .0254 .0360 .0296	.0013 .0022 .00440146 .00070030 .00110012 .00150122 .00230190 .00330243	.0140 .0018 .0179 .0021 .0048 .0018 .0228 .0044 .0198 .0032 .0198 .0032 .0269 .0047 .0271 .0057 .0272 .0068 .0315 .0080 .0274 .0058	7.59 10.32 25.25 26.66 28.75 28.75 27.78 27.78 25.48 26.74 26.74 26.74 26.26	02.88m_0005 649 00.76m_0004 651 02.90m_0005 652 03.34m_0005 652 04.00m_0005 660 04.10m_0005 660 04.10m_0005 663 04.33m_0005 663 04.31m_0005 663 04.51m_0005 665 04.65m_0006 666 04.65m_0006 666
	0021 0067 0028 0079 0013 0047 0028 0113 0093 0110 0042 0132 0024 0091 0024 0091 0035 0144 0044 0138 0057 0141	.00180010	.0067 .0019 .0079 .0018 .0047 .0009 .0112 .0018 .0190 .0028 .0078 .0019 .0090 .0016 .0127 .0028 .0141 .0028 .0146 .0080	24.94 24.57 25.26 26.44 26.26 25.92 26.17 25.61	01.830005 670 02.100005 671 01.260005 672 02.990005 675 03.390005 675 02.060005 675 02.400005 676 03.440005 676 03.660005 678 03.660005 680 03.810005 680
	0018 .0023 0014 .0019 0028 .0072 0027 .0075 0028 .0075 0034 .0071 0048 .0081 0058 .0078 0059 .0125 0059 .0125	.0008 .0028 .0008 .0024 .0007 .0026 .0006 .0019 .0006 .0013 .0006 .0023 .0009 .0052 .0012 .0052 .0002 .0047 .0005 .0064	.0019 .0006 .0071 .0013 .0074 .0013 .0070 .0012 .0080 .0020 .0076 .0024 .0123 .0024 .0124 .0023 .0114 .0023	2.26 22.23 22.23 25.83 27.14 25.43 26.23 26.23 26.23 26.23 26.23 26.23	00.890005 684 00.980004 685 00.720005 692 02.760005 693 02.920005 693 02.920005 695 03.410005 695 03.410005 696 04.780005 698 04.780005 698 04.580005 700

HC144R1070

ia

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 56, 57

```
RUN L TN TST P DATE TIME M R PT Q TT RHO GAMA PHI DELS

CORR TMEZ THEC TMES ALFA V VTIP MU LAMB CZ CX CPM

T03-02.00-02.02-02.02-03-5 -00.05 410.7 499.3 0.823 .0008 .0004 .0024 .0024

T05 01.94-01.53 .22.93 .00.02 410.5 498.5 0.824 .0019 .0080 .0017 .0021

T05 01.94-01.53 .22.93 .00.02 410.5 498.5 0.824 .0019 .0080 .0017 .0021

T06 01.41 03.60 00.32 00.02 410.7 496.8 0.827 .0036 .0186-.0066 .0122

T07 03.78-01.43 .44.57 .00.01 410.8 490.9 0.837 .0025 .0114 .0024 .0023

T08-04.20-00.71-03.29 .00.02 410.9 495.1 0.830 .0014 .0055 .0021 .0023

T09-00.25-02.43 02.97 04.93 410.8 491.8 0.832-.0681 .0181 .0023 .0015

T10 01.89-03.57 07.02 04.93 410.9 491.8 0.832-.0678 .0191 .0022 .0068

T11 04.66-03.57 07.02 04.93 410.9 491.8 0.832-.0678 .0191 .0023 .0005

T12 05.89-04.11 06.70 04.95 410.8 500.1 0.818-.0663 .0218 .0024 .0001

T13-02.23-02.57 01.46 04.92 411.0 493.4 0.832-.0684 .0149 .0023 .0008

T14-04.05-01.70-00.80 04.93 410.8 500.1 0.818-.0663 .0218 .0024 .0001

T15 00.14-04.31 05.81 09.99 411.3 494.3 0.818-.0680 .0160 .0023 .0008

T15 00.14-04.31 05.81 09.99 411.3 494.3 0.818-.0680 .0160 .0023 .0008

T17 03.90-04.61 08.82 10.01 411.0 490.9 0.824-.1376 .0374 .0010 .0006

T18-02.10-03.34 03.62 09.99 411.1 492.6 0.822-.1380 .0312 .0025 .0001
```

HC144R1070

```
CT
                                    CH
                                                   CLR
                                                                   LOD
                                            CO
                                                           CDR
                                                                                           CORR
                                                                             DL
                                                                                   CRB
 CRM
                   CD
-.0004
         .0504 .0024
                          .0001
                                  +000 -70.00 St.00 8000 too. 4500 8000.
                                                                                             703
                          .0027 .0006
                                          .0013 .0027 .0006 03.76
                                                                           01,40-,0006
                                                                                             704
         .0080 .0017
_,0004
                                                                                             705
_,0005
         .0089 .0021
                           .0031 .0007 .0014
                                                  .0021 .0007 08.43
                                                                           01.55-,0005
                          .0064-.0002-.0022 .0064-.0002-13-27 03.24-.0007
                                                                                             706
-.0007
         .0186-,0006
                          .0040 .0008 .0014 .0040 .0008 03.95 01.99-,0005 .0019 .0007 .0020 .0019 .0007 01.99 00.96-.0005 .0063 .0063 .0068 .0008-.0008 .0068 .0013 05.15 03.27-.0005 .0067 .0068 .0013 05.15 03.27-.0005
_,0005
                                                                                             707
         .0114 .0024
                                                                                             708
_,0005
         .0055 .0021
                                                                                             709
-.0007
         .0178 .0038
                                                                                             71¢
-.0005
         .0188 .0038
         .0202 .0038
                          .0071 .0007 .0001 .0070 .0013 05.33 03.53-.0005 .0073 .0008 .0014 .0072 .0014 04.54 03.74-.0005
__.0005
                                                                                             711
-,0005
                                                                                             712
         .0215 .0042
                          .0052 .0008-.0009 .0051 .0012 04.55 02.56-.0005 .0055 .0010-.0021 .0054 .0015 04.41 02.73-.0005
                                                                                             713.
-,0005
         .0147 .0035
-.0005
                                                                                             714.
         .0157 .0043
                          .0110 .0006-.0042 .0108 .0025 05.48 05.43-.0006 .0113 .0004-.0029 .0111 .0024 05.43 05.73-.0006
-.0006
         .0311 .0071
                                                                                             715
-.0006
                                                                                             716
         .0329 .0071
                           .0131 .0003-.0016 .0129 .CC26 05.28 C6.38-,CCC6
                                                                                             717
-.0006 .0367 .0075
                           .0109 .0009-.0067 .0106 .0027 05.45 05.28-,0006
                                                                                             718.
-.0006 .0303 .0079
                          .0093 .0012-.0097 .0089 .0028 04.15 04.47-,0005
                                                                                             719.
__0005 .0256 .0081
```

```
CRM
                CD
                        CT
                               CH
                                     ÇQ
                                           CLR
                                                  CDR
                                                         LOD
                                                                 DL
                                                                       CRB
                                                                              CORR
       .0076
                      .0020 .0007 .0019 .0020 .0007 02.09 01.32-.0004
-.0004
              .0026
                                                                               720.
-,0003
                      .0029 .0007 .0019
.0039 .0007 .0022
       .0108 .0025
                                           .0029 .0007 03.11
                                                                01.90-.0005
                                                                               721
       .0146 .0027
                                           .0039 .0007 03.78
-,0005
                                                                02.56-,0005
                                                                               722
-.0005
-.0005 .0204 .0031
-.0005 .0231 .0031
                      .0054 .0008 .0024
                                           .0054 .0008 04.72 03.56-.0005
                                                                               723
                      .0061 .0008 .0041
.0018 .0007 .0017
                                           .00/1 .0008 04.39 04.04-.0005
                                                                               724
-.0005 .0064 .0027
                                                                               725.
                             .0007 .0004
                                                 .0011 04.08.02.99-.0004
-.0004
                      .0046
                                           .0046
       .0172 .0040
                                                                               726
              .0048
                             .0007-.0013
-.0006
        .3228
                      .0060
                                           .0059 .0013 05.50 03.96-,0006
                                                                               727
               .0054
                       .0075
                             .0008-.0013
                                           .0074 .0014 05.94
-.0004
        .C278
                                                                04.86-,0006
                                                                               728
               .0047
                       .0070 .0006 .0005
.0077 .0006 .0022
                       .0070
-.0004
        .0265
                                           .0069 .0012 05.33 04.62-,0006
                                                                               729
                                                  .0012 04.88
-,0005
       .0290
              .0048
                                           .0076
                                                                05.04-.0005
                                                                               730
       .0160
                       .0043
                             .0005-.0002
-.0005
              .0031
                                           .0042 .0008 05.31 02.79-.0005
                                                                               731
              .0086
                       .0098 .0006-.0037
                                                  .0023 05.34
-.0006
       .0340
                                           .0095
                                                                06.23-.0006
                                                                               732
                      .0109 .0004-.0025
.0116 .0002-.0007
-.0006
                                          .0107 .0023 05.55 06.99-.0006.
.0114 .0022 05.46 07.48-.0007
                                                                               733
        .3399
              .0085
-.0007 .0429
              .0082
                                                                               734
              .0082
                             0008-.0042
-.5007 .5293
                       .0082
                                           .0079 .0022 04.85
                                                                05.11-.0007
                                                                               735
              .0092
__0005 .0254
                                          20068
                                                  10025 03.42 04.43-10005
```

HC144R1070

APPENDIX B. ROTOR TEST RESULTS (Continued) RUNS 59, 60

```
DATE TIME M R. PT Q TT RHO GAMA PHI DEL3
0630 1446 0.434 2.533 2104. 243.5 104.5 .1982 01.66 000.0 26.00
RUN L TN TST P
 59 1 12 614 1
                                                                                     LAMB
                                                                              MU
          CORR THEZ THEC THES
                                                ALFA
                                                           ٧
                                                                   VTIP
                                               -00.03 495.7 493.4 1.005 .0019 .0051 .0049
           792-00,10-02,45 00,74
                                                                                                                    -.3007
                                               .00.04 496.5 493.4 1.006 .0015 .0037 .0044
                                                                                                                    -.0014
           753 01.91-02.95 02.93
                                               .00,04 496.5 495.1 1.002 .0014 .0090 .0043
                                                                                                                     -. 0017
           754 03.88-03.29 04.86
                                               .00.02 496.7 494.3 1.005 .0020 .0069 .0054
                                                                                                                    -.0001
           755-02.03-01.84-01.29
                                               .00.02 496.5 494.3 1.005 .0025 .0086 .0066
                                                                                                                      .0007
           756-04.05-01.42-03.73
                                               .00.01 496.5 494.3 1.005 .0029 .0106 .0078
                                                                                                                      . 8000
           797-06,15-00,95-05,89
                                                05.00 497.5 490.0 1.010m.0847 .0138 .0054
05.00 498.5 490 .013m.0855 .0129 .0047
04.99 498.0 49 .009m.0856 .0096 .0042
                                                                                                                     -.0020
           758 00,19-04.18 03.61
                                                05.00 498.5 491 .013.0055 .0123 .0047 .0.99 498.0 49 .009.0856 .0096 .0042 .05.01 497.9 490.1 1.012.0845 .0164 .0086 .05.00 497.2 493.4 1.004.0834 .0178 .0085
                                                                                                                     -.0025
           759 01.82-04.76 35.23
760 03.82-05.34 07.34
                                                                                                                    -.0032
                                                                                                                    -.0011
           761-02,16-03,36 01,18
                                                                                                                     -.0005
            762-04.13-02.84-00.94
            763-06,23-02,29-03,42
                                                05.02 497.3 493.4 1.004..0893 .0191 .0112
                                                                                                                     .0004
                                                07.40 498.6 490.9 1.007...1259 .0195 .0063
07.40 499.1 490.9 1.008...1261 .0188 .0057
07.39 499.1 493.4 1.003...1255 .0180 .0052
                                                                                                                     -.0021
            764 00.13-04.65 04.72
           765 01.88-05.15 06.31
766 04.16-05.77 08.32
767-01.91-04.20 02.66
768-04.02-03.95 00.50
                                                                                                                     -.0025
                                                                                                                     -.0029
                                                C7.39 499.1 493.4 1.003-.1253 .0261 .0072 C7.41 499.1 493.4 1.003-.1253 .0261 .0074 C7.40 499.5 493.4 1.004-.1250 .0210 .0095 C7.41 499.3 493.4 1.003-.1251 .0213 .0119 10.03 500.1 491.8 1.001-.1699 .0285 .0074 10.04 500.5 491.8 1.002-.1702 .0286 .0065 10.04 500.2 492.6 1.000-.1700 .0280 .0059 10.03 499.8 494.3 0.996-.1691 .0272 .0093 10.03 499.8 494.3 0.996-.1691 .0272 .0093
                                                                                                                     -.0017
                                                                                                                     -.0012
                                                                                                                     -.0015
            769-05.94-03.51-01.40
                                                                                                                     -.0014
            770 00,16-05,10 05,68
            771 02.03-05.51 07.25
                                                                                                                     -.CC17
            772 03,31-05,71 08.46
                                                                                                                     -.0016
            773-01.93-04.48 03.74
774-04.07-04.00 01.50
                                                                                                                     -,0012
                                                10.03 499.8 494.3 0.995..1091 .0272 .0073
10.03 499.5 494.3 0.995..1696 .0251 .0107
11.92 500.1 493.4 0.992..2014 .0312 .0080
11.92 500.9 492.6 0.995..2021 .0314 .0062
11.92 500.3 492.6 0.994..2018 .0319 .0053
                                                                                                                     -.0004
                                                                                                                     -. 0024
            775_00,13-06,00 06,43
            776 01.86-06.49 08.22
777 02.96-06.37 08.80
                                                                                                                     -. 6026
                                                                                                                      -.0014
                                                 11.92 499.1 493.4 0.990..2012 .0375 .0093
                                                                                                                      -. 0017
            778-02,04-05,28 04.54
                                                 14.04 497.7 493.4 0.979-.2367 .0314 .0038
                                                                                                                       .0000
            779 00,08-05,59 (6.68
                                                                                                                   PHI DELS
                               CATE TIVE P R PT Q TT RHO GAMA PM DELS C703 1825 C.433 2.634 2117. 244.4 089.6 .2048 01.72 000.0 26.00
                                                                                               RHO GAMA
 RUN L TN TST P
   60 1 12 614 1
                                                                                                                       CPH
                                                          ٧
                                                                    VTIP
                                                                                       LAMB
           CORR THEZ THEC THES
                                                  ALFA
                                                                               MU
                                                                                                  CZ
             794-00.13-03.15 00.23 -00.07 488.5 350.2 1.395 .0054 .0164
795 02.12-04.05 03.27 -00.13 489.7 346.8 1.412 .0040 .0022
             796 03,82-04,93 05,93 -00,14 490,2 346.8 1.413 .0018-.0045
             797-02,67-03,70-02,59 -00,08 490,3 345,2 1,421 .0064 .0124
             798_03.97_03,43_04.30 .00.07 491.3 346.8 1.416 .0072 .0158 799_06.44_03.93_07.54 _00.07 491.1 346.0 1.420 .0073 .0157
             #CC-CC.6C-C3.29-CC.20 -CC.C9 491.0 346.8 1.416 .CC59 .C166
             801 60,10-05,49 02.79
                                                  25.01 493.2 347.7 1.413-.1175 .0182
             #02 01.96-05.52 04.75
#03 03.82-06.23 07.14
#04-02.20-06.28 00.74
                                                 05.00 492.5 346.5 1.408-.1174 .0163
04.98 495.7 347.7 1.420-.1199 .0109
                                                  05.01 493.9 392.7 1.395-.1162 .0176
                                                  05.02 493.8 347.7 1.415-.1177 .0184
             805-04,29-06,13-01,73
                                                  05.C1 493.7 346.8 1.418-.1174 .C195
             806~06.22~06.45~03.78
                                                 C7.49 494.6 349.3 1.4C4-.1775 .C197
C7.48 496.0 348.5 1.411-.1783 .C194
C7.47 495.5 346.8 1.417-.1803 .C155
C7.48 495.7 346.0 1.420-.1790 .C212
             807 00.05.07.00 04.25
808 01.86-06.75 05.84
             809 03.76-07.19 07.87
810-01.95-07.07 02.14
             811-04,10-07,30-00,01
                                                  C7.48 494.9 344.3 1.425-.1795 .C214
                                                  27.92 493.5 347.7 1.407-.1774 .0221
29.94 496.2 347.7 1.406-.2380 .0236
             612-06,52-06,62-02,71
             815 00.24-08.16 05.70
814 02.01-08.52 07.33
                                                  09.94 496.5 345.2 1.417-.2395 .0244
09.94 496.7 345.2 1.418-.2399 .0236
             815 03.98-00.21 09.2..
                                                  09.95 446.0 348.4 1.4 2-. 2172 .0244
             816-01.35-07.80 04.15
                                                    9,93 495.5 34
             817-04.05-07.19 01.5
                                                                               ..4 4. .2365 .0248
             018-05.97-07.30-00.21
                                                                              4.9
                                                   .9.94 456.1 346.
                                                                                                     747
                                                  12,44 494.7 349.
                                                                              ..... 0 ......
             819 00.02-08.39 07.21
                                                  12.43 497.7 345. 1.4:8-.35 : . 484
12.42 497.1 346 1.403-.2966 .0:02
             820 01.84-11.06.08.84
821-01.89-08.04 05.50
                                                  12.43 496.5 345 > 1.4 5-.24+7
             822-04,07-07.72 03.46
```

FAIRCHILD REPUBLIC DIVISION

HC144R1070

0003 .0063 0004 .0086 0004 .0106 0004 .0119 0002 .0092 0004 .0178 0004 .0170 0004 .0170 0004 .0170	.0081 .00 .0100 .00 .0129 .00 .0088 .01 .00875 .00 .0100 .01 .0121 .01 .0123 .01 .0146 .01 .0149 .01 .0149 .01 .0149 .01 .0148 .01 .0149 .01	10 .0022 .0034 15 .0022 .0036 32 .0027 .0031 44 .0033 .0026 71 .0027 .0026 44 .0025 .0025 49 .0022 .0034 90 .0034 .0026 97 .0037 .0067 97 .0037 .0067 97 .0027 .0026	.0015 .0022 .0027 .0027 .0044 .0033 .0044 .0034 .0045 .0034 .0047 .0024 .0047 .0024 .0047 .0042 .0047 .0042 .0047 .0051 .0047 .0051 .0047 .0051 .0148 .0051 .0148 .0051 .0148 .0051 .0148 .0051 .0148 .0051 .0148 .0051	720.405 01.0	20.90003 20.74003 21.54603 22.136004 22.576004 23.23006 23.23006 23.23006 24.116004 24.37005 24.49006 24.36006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006 24.76006	C75345678901234567877777777777777777777777777777777777
CR 0003		01		LCD	CRB	916 919 920 921

FAIRCHILD REPUBLIC DIVISION

HC144R1070

This page intentionally left blank.

APPENDIX C AIRFOIL TESTS

C1 Models

To provide a basis for the prediction of rotor performance, three 18-inch chord airfoil models were constructed to the ordinates of the root (18% thick), midspan (12% thick) and tip(6% thick) rotor blade airfoil sections. The 12% and 18% models were constructed in aluminum and the 6% model in steel. The models were fitted with orifices for pressure measurements at the stations shown in Table C-1.

C2 Wind Tunnel and Test Procedure

Pressure plotting tests were conducted in the 3 ft by 7-1/2 ft Low Turbulence Pressure Tunnel at NASA Langley Research Center during August 1972. Each model was tested with flow in both the forward and the reverse direction over the range of angles of attack from -10° to +24°, with the model rotating about 50% chord. Pressures were measured at the orifices detailed in Table C-1 and on a 96 port rake 33 inches downstream of the trailing edge of the model.

C3 Test Conditions

The tests were intended to cover both the low Reynolds numbers appropriate to the model rotor tests and the high Reynolds numbers experienced on the blades of a full scale helicopter. The conditions tested are shown in Table C-2. Most tests were made with the models smooth, but some tests at the lower Reynolds numbers were made with grit added to the surface in the leading edge area to induce transition. Number 80 grit was used in a band one-tenth inch wide at 5% chord (.9 in. aft of the leading edge).

C Results

Lift coefficient, drag coefficient and moment coefficient were obtained from the measured pressures by NASA Langley using the conventional computational methods, and are plotted in figures C1 through C28. Table C-2 provides a key to these figures.

REPRODUCED FROM BEST AVAILABLE COPY

TABLE C-I. LOCATION OF ORIFICES IN 18-INCH CHORD AIRFOIL SECTIONS (UPPER AND LOWER SURFACES)

Percentage Chord	Inches from Leading Edge
0	0
. 3	.054
. 6	.108
1.2	.162
1,6	. 282
2.0	. 36 0
2.5	.450
3.75	.675
5.0	. 900
7.5	1.350
10.0	1.800
15.0	2.700
20.0	3.600
25.0	4.500
30.0	5.400
40.0	7.200
50.0	9.000
60.0	10.800
70.0	12.600
75.0	13.500
80.0	14.400
85.0	15.300
90.0	16.200
92.5	16.650
95.0	17.100
96.25	17.325
97.5	17.550
98.0	17.640
98.5	17.730
99.0	17.820
99.5	17.910
100.0	18.000
1/3 Span	5.400
	12.600
2/3 Span	5.400
-	12.600

A STATE OF THE STA

TABLE C-2. SCHEDULE OF AIRFOIL SECTION PRESSURE PLOTTING TESTS MADE IN LANGLEY LTPT

Reynolds Number			Figure Number 6% 12% 18%					3%
(million)	M	Grit	Forward					
.9395	. 26	off	1	5	10	15	20	24
2.5-2.6	.26	off	1	5	10	15	20	24
7.6-7.7	. 26	off	1	5	10	15	20	24
11.65-12.0	. 26	off	1	-	10	-	20	-
.9396	. 26	on	2	6	11	16	21	25
2.5-2.6	. 26	on	3	7	12	17	22	26
7.6-7.7	. 26	on	-	8	-	18	-	27
11.65	. 26	on	-	-	13	-	-	-
2.26-2.6	.16	off	4	9	14	19	23	28
2,26=2.6	. 35	off	4	9	14	19	23	28

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD, M = 0.26; R = 0.93 x 10⁶

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M=0.26; $R=0.93\times10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; R = 2.60 x 10⁶

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT BVR AIRFOIL WITH LEADING EDGE FORWARD. M=0.26; $R=2.60\times10^8$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. R = 2.6 x 106, MODEL SMOOTH

TWO DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. $R=2.6\times10^6$, MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTIC : OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; $R = 0.93 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 0.93 x 106

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 2.60 x 106

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; $R = 2.60 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6 PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; $R = 7.7 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6 PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 7.7 x 106

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. R = 2.60×10^6 ; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 6-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. $R = 2.60 \times 10^{5}$; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD, M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; R = 0.93 x 106

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; R = 0.93 x 10⁶

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; R = 2.5×10^6

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; $R = 2.5 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M=0.26; $R=11.65\times10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; $R = 11.65 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. $R = 2.50 \times 10^6$; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. $R=2.50\times10^6$; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 0.96 x 106

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; $R = 0.96 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; $R = 2.50 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 2.50 x 10^6

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 7.60 x 10^6

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M=0.26; $R=7.60\times10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. $R=2.56 \times 10^6$; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF A 12-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. $R=2.56\times10^6;\ MODEL\ SMOOTH$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; $R = 0.94 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; $R = 0.94 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; $R = 2.5 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. M = 0.26; R = 2.5 x 10⁶

Control of the Contro

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. R = 2.50×10^6 ; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH LEADING EDGE FORWARD. $R = 2.50 \times 106$; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; MODEL SMOOTH

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 0.95 x 106

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. $M=0.26; R=0.95 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 2.50×10^6

the Manager

FAIRCHILD REPUBLIC DIVISION

HC144R1070

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; R = 2.50 x 106

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M=0.26; $R=7.70\times10^6$

FAIROHILD

HC144R1070

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. M = 0.26; $R = 7.70 \times 10^6$

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. $R=2.50\times10^8; MODEL SMOOTH$

A STATE OF THE PROPERTY OF THE

TWO-DIMENSIONAL SECTION CHARACTERISTICS OF AN 18-PERCENT RVR AIRFOIL WITH TRAILING EDGE FORWARD. $R=2.50\times10^6$; MODEL SMOOTH

This page intentionally left blank.

PAIROHILD

HC144R1070

APPENDIX D

AIRFOIL SECTION DATA

This appendix contains the two sets of airfoil section lift and drag data developed as described in Section 5.1 from the results of the Langley Low Turbulence Pressure Tunnel tests. The first set (Figs D1 through D18) is developed for the Reynolds number range used in the model rotor tests, and the second set (Figs D19 through D36) corresponds to the Reynolds number range of a full scale rotor.

Figure D. 1

SECTION LIFT COEFFICIENT - 6% AIRFOIL, FORWARD MODEL REYNOLDS NUMBER

Figure D. 2

SECTION LIFT COEFFICIENT -6% AIRFOIL, REVERSE MODEL REYNOLDS NUMBER

SECTION DRAG COEFFICIENT - 6% AIRFOIL, FORWARD MODEL REYNOLDS NUMBER

Figure D.5

SECTION DRAG COEFFICIENT - 6% AIRFOIL, REVERSE MODEL REYNOLDS NUMBER

SECTION LIFT COEFFICIENT - 12% AIRFOIL, FORWARD MODEL REYNOLDS NUMBER

FAIROHILD

HC144R1070

Figure D. 8

SECTION LIFT COEFFICIENT - 12% AIRFOIL, REVERSE MODEL REYNOLDS NUMBER

SECTION LIFT COEFFICIENT THROUGH 360° ANGLE OF ATTACK 12% AIRFOIL - MODEL REYNOLDS NUMBER

Figure D. 10

Angle of Attack, Degrees

SECTION DRAG COEFFICIENT - 12% AIRFOIL, FORWARD MODEL REYNOLDS NUMBER

SECTION DRAG COEFFICIENT - 12% AIRFOIL, REVERSE MODEL REYNOLDS NUMBER

Angle of Attack, Degrees

Figure D. 12

320 280 SECTION DRAG COEFFICIENT THROUGH 360" ANGLE OF ATTACK 12% AIRFOLL - MODEL REYNOLDS NUMBER Angle of Attack, Degrees Drag Coefficient C_d 1.2 æ

241

ļ

Figure D. 13

SECTION LIFT COEFFICIENT - 18% AIRFOIL, FORWARD MODEL REYNOLDS NUMBER

Figure D. 14

SECTION LIFT COEFFICIENT - 18% AIRFOIL, REVERSE MODEL REYNOLDS NUMBER

•

M=.8 SECTION LIFT COEFFICIENT THROUGH 360° ANGLE OF ATTACK 18% AIRFOIL - MODEL REYNOLDS NUMBER 280 Angle of Attack, Deg 240 - M=.6 -M=.26 M=.9 160 120 80 M= 9 Lift Coefficient C_{L} 9.1 1.2 Φ, 4.-. 3 -1.2

Figure D. 16

Figure D. 17

SECTION DRAG COEFFICIENT - 18% AIRFOIL, REVERSE MODEL REYNOLDS NUMBER

Figure D. 19

SECTION LIFT COEFFICIENT - 6% AIRFOIL, FORWARD FULL SCALE REYNOLDS NUMBER

Figure D. 20

SECTION LIFT COEFFICIENT - 6% AIRFOIL, REVERSE FULL SCALE REYNOLDS NUMBER

Figure D. 22

SECTION DRAG COEFFICIENT - 6% AIRFOIL, FORWARD FULL SCALE REYNOLDS NUMBER

Figure D.23

SECTION DRAG COEFFICIENT - 6% AIRFOIL, REVERSE FULL SCALE REYNOLDS NUMBER

SECTION LIFT COEFFICIENT - 12% AIRFOIL, FORWARD FULL SCALE REYNOLDS NUMBER

FigureD, 26

SECTION LIFT COEFFICIENT - 12% AIRFOIL, REVERSE FULL SCALE REYNOLDS NUMBER

FAIRCHILD

HC144R1070

Figure D. 28

SECTION DRAG COEFFICIENT - 12% AIRFOIL, FORWARD FULL SCALE REYNOLDS NUMBER

Figure D.29

SECTION DRAG COEFFICIENT - 12% AIRFOIL, REVERSE FULL SCALE REYNOLDS NUMBER

の問題の情報を見るがなる。 こうへんこうじゅうかんけんじゅうしんぎょうご

小野は 大田田という

Figure D. 31

SECTION LIFT COEFFICIENT - 18% AIRFOIL, FORWARD FULL SCALE REYNOLDS NUMBER

ीरीक विकास विवास है है है जा रहा है है है

HC144R1070

Figure D. 32

SECTION DRAG COEFFICIENT - 18% AIRFOIL, FORWARD FULL SCALE REYNOLDS NUMBER

Angle of Attack, Degrees

Figure D. 35

SECTION DRAG COEFFICIENT - 18% AIRFOIL, REVERSE FULL SCALE REYNOLDS NUMBER

Angle of Attack, Degrees

FAIRCHILD

HC144R1070

This page intentionally left blank.

υ	n	U	ш	Ų,	B	ш	ĸ	o	u	

VUCUME .	NT CONTROL DATA - R & D					
(Security classification of title, body of abstract a						
1. ORIGINATING ACTIVITY (Corporate author)	Ze. REPORT	M. REPORT SECURITY CLASSIFICATION				
Fairchild Industries, Inc.		Unclassified				
Fairchild Republic Company	28. GROUP	PT /A				
Farmingdale, N. Y. 11735		N/A				
3. REPORT TITLE						
Model Wind Tunnel Tests of a Rever	rse Velocity Rotor System					
4. DESCRIPTIVE NOTES (Type of report and inclusive date						
Final Report	·• ·					
S- AUTHOR(S) (First name, middle initial, last name)						
J. R. Ewans, T. A. Krauss						
•						
A REPORT DATE	78. TOTAL NO. OF PAGES	75. NO OF REFS				
January 31, 1973	280	2				
SAL CONTRACT OR GRANT NO.	SE, ORIGINATOR'S REPORT NU	MBER(S)				
N00019-71-C-0506						
b. PROJECT NO	HC144R107	HC144R1070				
r	l					
с.	Sb. OTHER REPORT NO(S) (Any this report)	Sb. OTHER REPORT NO(S) (Any other numbers that may be assigned this mooth)				
	i i					
d.						
IA DISTRICTION OF THEMS	and grane	· Samuel State				
This description street insubject	ort comba and trans					
This describent is subject pecial	(C. P. 11)	the Naval				
This describent is subject government is subject Helm with Air yster comm	7	the Navai				
This describent is subject pecial	(C. P. 11)	the Navai				
This describent is subject government is subject Helm with Air yster comm	12: SPONSORING MILITARY AC	the Navai				
This describent is subject government is subject Helm with Air yster comm	12 SPONSORING MILITARY AC NAVAL AIR S	the Naval				

the goal of substantiating the results that had been predicted for this system in previous analytical studies. The 8 ft diameter 4 bladed hydraulically powered model rotor was provided with remote operation of the controls and shaft angle. Tests were conducted in the 12 ft pressure wind tunnel at NASA Ames during June and July 1972. The tests did not cover the whole range of conditions desired, but results were obtained at advance ratios from 0,3 to 2,46 and at tunnel speeds up to 350 knots.

Significant results of the tests were the freedom of the rotor from instability, and the ability to trim the rotor laterally and longitudinally under all conditions. Reasonable agreement was found between the measured performance of the model rotor and that predicted using the results of two-dimensional wind tunnel tests made on three reversible airfoil sections of the model rotor blade.

It is recommended that further tests be performed with this model to expand the envelope of test conditions, particularly to include testing with two-per-rev control angle input.

Unclassified

Unclassified Security Classification

The second secon

Security Classification	Security Classification			K 9	LINK C		
KEY WORDS	ROLE	wt	ROLE	₩Ŧ	ROLE	WT	
Reverse Velocity Rotor							
Reversible Airfoil-Rotor Blade							
Two per Rev Pitch							
Radial Flow							
Reverse Flow]						
Lift to Drag Ratio					ļ		
High Advance Ratio							
High Speed Helicopter							
Helicopter Two per Rev Control System Mechanism							
Rotor Blade Stability							
Rotor Control							
Rotor Dynamics							
Model Rotor Wind Tunnel Test	ļ						
Airfoil Wind Tunnel Test				ļ			
Predicted Rotor Performance	ŀ					1	
						ļ	
					į		
		ł	Ì	1	ĺ		
		Ì		l			
			1				
				1	İ		
			İ	ļ			
	İ				1		
				1		ł	
}							
					ļ		
	1						
1							
		i	}		1		
				1	1		
	ļ				1		

Unclassified	l
--------------	---