

Continuously Generalizing Buildings to Built-up Areas by Aggregating and Growing

Dongliang Peng¹, Guillaume Touya²

¹Chair of Computer Science I, University of Würzburg, Germany ²COGIT, IGN, France

zoom out

(Google Maps)

Map Generalization...

... is about deriving a smaller-scale map from exsiting map.

Map Generalization...

... is about deriving a smaller-scale map from exsiting map.

Typical generalization operators (ESRI 1996):

Continuous Map Generalization...

... is to derive a series of maps with smooth changes.

t = 0.9

t = 1

t = 0.6 t = 0.7 t = 0.8

$$M_t = M_s + t \cdot (M_g - M_s)$$

Outline

- Introduction
- Methodology
- Case Study
- Concluding Remarks

Three Types of Buffering

buffering using miter joins to keep right angles

$$d_{G,t} = t \cdot d_{G}$$

 d_{G} : input

buffering using miter joins to keep right angles

$$d_{G,t} = t \cdot d_{G}$$

 d_{G} : input

buffering using miter joins to keep right angles

squaring if spikes are too long: distance larger than $\alpha d_{G,t}$, where we set $\alpha = 1.5$

$$d_{\mathsf{E},t} = t \cdot \frac{\ell}{2} M_{\mathsf{g}}$$

 $\ell = 0.3 \, \mathsf{mm}$

avoid breaking:

$$d_{\mathrm{D},t} = rac{d_{\mathrm{G},t} - d_{\mathrm{E},t}}{lpha - 1}$$


```
\Box \Box \Box original buildings t=0
```


bridge grow
$$t = 0.6$$

Iteratively Aggregating

Iteratively Aggregating

Iteratively Aggregating

Iteratively Aggregating

Iteratively Aggregating

two buildings are too close: distance $< d_{\varepsilon,t}$

Iteratively Aggregating

two buildings are too close: distance $< d_{\varepsilon,t}$

Simplifying Using Imai-Iri Algorithm

Finding all valid shortcuts

Simplifying Using Imai-Iri Algorithm

- Finding all valid shortcuts
- Finding a sequence of valid shortcus with the least number using breadth-first search

$$d_{\ell,t} = \ell \cdot M_t$$

 $\ell = 0.3 \,\mathrm{mm}$

Clipping by Goal Shape

Using the goal shape, at time t=1, to clip the intermediate-scale results

Clipping by Goal Shape

Using the goal shape, at time t=1, to clip the intermediate-scale results

In this way, we avoid that an intermeidate-scale results may exceed the goal shapes

Eliminating Small Buildings and Holes

• For a group building that will be aggregated at time t=1, we eliminate them if their total area at any time t is smaller than a_t .

$$a_t = a \cdot M_t^2$$
, where $a = 0.16 \, \mathrm{mm}^2$

Eliminating Small Buildings and Holes

• For a group building that will be aggregated at time t=1, we eliminate them if their total area at any time t is smaller than a_t .

$$a_t = a \cdot M_t^2$$
, where $a = 0.16 \, \mathrm{mm}^2$

• Removing a hole if its area is smaller than $a_{h,t}$ $a_{h,t} = a_h \cdot M_t^2$, where $a_h = 8 \text{ mm}^2$

Running Time

- Operations like growing, dilation, eorsion, merge, and clip cost time $O(n^2)$. We may need to iteratively do O(n) times, which increases our running time to $O(n^3)$
- Our version of Imai–Iri simplification algorithm takes time $O(n^3)$.

Outline

- Introduction
- Methodology
- Case Study
- Concluding Remarks

Case Study

Environment

- C# (using the .NET Framework 4.5)
- ArcObjects SDK 10.4.1
- Windows 7, 3.3 GHz dual core CPU, 8 GB RAM
- Time measure: Stopwatch (a class in C#)
- CLIPPER: buffering, dilation, erosion, and merge

Data

four towns in France,at scale 1 : 15,000,from IGN, 2,590 buildings, in total 19,255 edges, we set $d_G=25\,\mathrm{m}$, and thus $d_{\mathrm{D},t}=t\cdot35\,\mathrm{m}$ and $d_{\mathrm{E},t}=t\cdot7.5\,\mathrm{m}$

Result

• 93.6 s for computing the goal shapes, where Imai–Iri algorithm simplifies 2,095 edges to 1,102 edges

Result

- 93.6 s for computing the goal shapes, where Imai–Iri algorithm simplifies 2,095 edges to 1,102 edges
- 668.2 s for computing a sequence of 10 maps

A sequence of maps

Outline

- Our Example Problem
- Methodology
- Case Study
- Concluding Remarks

Concluding Remarks

Advantages of our method:

- The buildings grow continuously and are simplified.
- Right angles of buildings are preserved during growing
- Distances between buildings are larger than a specified threshold.

Concluding Remarks

Advantages of our method:

- The buildings grow continuously and are simplified.
- Right angles of buildings are preserved during growing
- Distances between buildings are larger than a specified threshold.

Open problems:

- For a given map and scale, how many buildings should be kept after generalization?
- Again, how much total area of buildings should be kept?
 What about the total number of edges?
- How to design a meaningful user study to evaluate results?

Concluding Remarks

Advantages of our method:

- The buildings grow continuously and are simplified.
- Right angles of buildings are preserved during growing
- Distances between buildings are larger than a specified threshold.

Open problems:

- For a given map and scale, how many buildings should be kept after generalization?
- Again, how much total area of buildings should be kept? What about the total number of edges?
- How to design a meaningful user study to evaluate results?

Looking for a **POSTGOC** position!