Homework 3

DUE: SATURDAY, FEBRUARY 8, 11:59PM

For all the problems below, assume $(\Omega,\mathcal{F},\mathbb{P})$ is a probability space.

2 HOMEWORK 3

Problem 3.1 (Warmup: eigenvalues and eigenvectors of $A + \lambda I$). Suppose $A = X\Lambda X^{-1} \in \mathcal{M}_{n \times n}(\mathbb{C})$ where $X \in \mathcal{M}_{n \times n}(\mathbb{C})$ is an invertible matrix having the eigenvectors of A as its columns, and $\Lambda \in \mathcal{M}_{n \times n}(\mathbb{C})$ is a diagonal matrix having the eigenvalues of A on its main diagonal.

a) Show that we can write the identity matrix $I_{n\times n}$ as

$$I_{n \times n} = X I_{n \times n} X^{-1}. \tag{3.1}$$

Conclude that for any $\lambda \in \mathbb{C}$,

$$\lambda I_{n \times n} = X(\lambda I_{n \times n}) X^{-1}. \tag{3.2}$$

b) For any $\lambda \in \mathbb{C}$, show that

$$A + \lambda I_{n \times n} = X(\Lambda + \lambda I_{n \times n})X^{-1} \tag{3.3}$$

c) Use part b) to show that

$$(A + \lambda I_{n \times n})X = X(\Lambda + \lambda I_{n \times n}). \tag{3.4}$$

Use this identity to identify the eigenvectors and eigenvalues of $A + \lambda I_{n \times n}$.

d) Suppose A is not an invertible matrix but its eigenvalues all have non-negative real parts (in particular we're assuming that A does not have any negative eigenvalues). Use part c) to explain why $A + \lambda I_{n \times n}$ will always be invertible for any $\mathbb{R} \ni \lambda > 0$.

Homework 3 3

Problem 3.2 (Ridge regression part II). Recall that if an $m \times n$ matrix A has independent columns, then $A^T A$ is an invertible $n \times n$ square matrix. Thus, the least squares solution \hat{x} satisfying $A^T A \hat{x} = A^T b$ can be written as

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}. \tag{3.5}$$

However, if A represents a data matrix where its rows represent samples and its columns represents features, it is very common for the columns of A to be dependent (or very close to being dependent) if there is high correlation between the feature variables. So in practice, the matrix A^TA is usually very close to being non-invertible. In statistics, this is referred to as the phenomenon of multicollinearity.

One way to combat multicollinearity is by replacing the standard least squares estimator with the ridge estimator

$$\hat{\boldsymbol{x}}_{\text{ridge}} = (A^T A + \lambda I_{n \times n})^{-1} A^T \boldsymbol{b}, \tag{3.6}$$

where $\mathbb{R} \ni \lambda > 0$ is a positive real number. Our goal in this problem is to show that for any $\lambda > 0$, the ridge estimator is well-defined, by showing that the matrix $A^T A + \lambda I_{n \times n}$ is invertible.

a) Use the spectral theorem to show that there exists an orthogonal matrix Q and a diagonal matrix Λ such that

$$A^T A = Q \Lambda Q^T. (3.7)$$

b) Show that one can write

$$A^{T}A + \lambda I_{n \times n} = Q(\Lambda + \lambda I_{n \times n})Q^{T}.$$
(3.8)

- c) Using the previous problem, how are the eigenvalues of $A^TA + \lambda I_{n \times n}$ related to eigenvalues of A^TA ?
- d) Conclude that for any $\lambda > 0$, the $n \times n$ matrix $A^T A + \lambda I_{n \times n}$ is invertible. This shows that the ridge coefficient \hat{x}_{ridge} is well-defined for any $\lambda > 0$.

4 HOMEWORK 3

Problem 3.3 (Another problem on correlation). Suppose $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ are random variables for which the pairwise correlation coefficients are all equal to $\rho \in \mathbb{R}$. In other words, for all $i, j \in \{1, \ldots, n\}$, we have $\operatorname{Corr}(X_i, X_j) = \rho$ for $i \neq j$. In this problem our goal is to find the range of possible values of ρ .

a) Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the correlation matrix of the random vector $X : \Omega \to \mathbb{R}^n$ defined via $X = (X_1 \ldots X_n)^T$. Show that

$$A = (1 - \rho)I_{n \times n} + \begin{pmatrix} \rho & \rho & \cdots & \rho \\ \rho & \rho & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & \rho \end{pmatrix} = (1 - \rho)I_{n \times n} + \rho B, \tag{3.9}$$

where $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ is a matrix with all entries equal to 1.

- b) Show that if $\lambda \in \mathbb{C}$ is an eigenvalue of B, then either $\lambda = 0$ or $\lambda = n$.
- c) Use (3.9) and part b) to show that if $\lambda \in \mathbb{C}$ is an eigenvalue of A, then either $\lambda = 1 \rho$ or $\lambda = 1 + (n-1)\rho$.
- d) Use part c) and the fact that A is positive semi-definite to show that

$$-\frac{1}{n-1} \le \rho \le 1. \tag{3.10}$$

e) Let n=3. Construct explicit examples of random variables $X_1, X_2, X_3: \Omega \to \mathbb{R}$ for which the minimum and maximum values of ρ in (3.10) are achieved. (Hint: use Homework 2 Problem 5)

Homework 3 5

Problem 3.4 (Row stochastic matrices). Later we will encounter a class of matrices referred to as *stochastic matrices* or sometimes *Markov matrices* when we discuss finite-state Markov chains. Stochastic matrices in this context are used to model the transition probabilities of a discrete dynamical system.

A matrix $M \in \mathcal{M}_{n \times n}(\mathbb{R})$ is said to be a row stochastic matrix if all of its entries are non-negative and the sum of the entries in each row is equal to 1.

- a) Translate the definition above to the following: show that $M \in \mathcal{M}_{n \times n}(\mathbb{R})$ is row stochastic iff. all the entries of M are non-negative and $M\mathbf{1}_{n \times 1} = \mathbf{1}_{n \times 1}$, where $\mathbf{1}_{n \times 1} \in \mathbb{R}^n$ is the column vector with all entries equal to 1.
- b) Show that if $M_1, \ldots, M_k \in \mathcal{M}_{n \times n}(\mathbb{R})$ are row stochastic matrices, then the product $\prod_{i=1}^k M_i = M_1 \cdots M_k \in \mathcal{M}_{n \times n}(\mathbb{R})$ is also a row stochastic matrix.

6 HOMEWORK 3

Problem 3.5 (Linear regression and cloning datasets).

Suppose one is working on a dataset with m samples, p features, and 1 target and sets up a linear regression model with a design matrix $X \in \mathcal{M}_{m \times (p+1)}(\mathbb{R})$, a target variable $\mathbf{y} \in \mathbb{R}^m$ and tries to solve for the least squares regressor $\hat{\boldsymbol{\beta}} \in \mathbb{R}^{p+1}$. After solving for the least squares regressor $\hat{\boldsymbol{\beta}}$, they then decided to "clone the data" and run the regression again to see if anything changes. For example, if the original dataset had 3 samples with one target and one predictor, then the cloned dataset would have 6 samples:

			x	y
			0	2
x	$\frac{y}{2}$		1	2
0	2		2	8
	2		0	2
2	8		1	2
			2	8

FIGURE 1. Original dataset on the left vs doubled dataset on the right

In general with $X \in \mathcal{M}_{m \times (p+1)}(\mathbb{R})$, $\mathbf{y} \in \mathbb{R}^m$, this means that instead of looking for the least squares estimator $\hat{\boldsymbol{x}} \in \mathbb{R}^{p+1}$ to $X\boldsymbol{\beta} = \mathbf{y}$, they instead try to look for the least squares estimator $\hat{\boldsymbol{\beta}}_2 \in \mathbb{R}^{p+1}$ for $X_2\boldsymbol{\beta} = \mathbf{y}_2$, where

$$X = \left(\begin{array}{c} X \\ X \end{array} \right) \in \mathcal{M}_{m \times (p+1)}(\mathbb{R}), \ X_2 = \left(\begin{array}{c} X \\ X \end{array} \right) \in \mathcal{M}_{2m \times (p+1)}(\mathbb{R}), \ \boldsymbol{y} = \left(\begin{array}{c} \boldsymbol{y} \\ \boldsymbol{y} \end{array} \right) \in \mathbb{R}^m, \ \boldsymbol{y}_2 = \left(\begin{array}{c} \boldsymbol{y} \\ \boldsymbol{y} \end{array} \right) \in \mathbb{R}^{2m}.$$

$$(3.11)$$

For example, for the dataset in Figure 1, under the standard simple linear regression model $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where we assume the random vector $\boldsymbol{\varepsilon} \sim N(0, \sigma^2 I)$, we would set up

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}, \quad \mathbf{y}_2 = \begin{pmatrix} 2 \\ 2 \\ 8 \\ 2 \\ 2 \\ 8 \end{pmatrix}. \tag{3.12}$$

Intuitively, nothing should really change because no new information has been added to the original dataset. Is this true? Let's investigate.

- a) Explain briefly why $Col(A) \neq Col(A_2)$ yet the dimensions of Col(A) and $Col(A_2)$ are the same.
- b) Show that $Null(A) = Null(A_2)$.
- c) Assuming that the original A matrix has independent columns, show that the unique least squares solution $\hat{\boldsymbol{\beta}}$ solving $A^T A \hat{\boldsymbol{\beta}} = A^T \boldsymbol{y}$ is the same as the unique least squares regressor solving $(A_2)^T A_2 \hat{\boldsymbol{\beta}} = (A_2)^T \boldsymbol{y}_2$, however in the cloned system the RSS $(\hat{\boldsymbol{\beta}})$ is larger by a factor of 2. What about the mean squared error (MSE) $\frac{\text{RSS}(\hat{\boldsymbol{\beta}})}{n}$ in the original and cloned systems? Use this observation to explain why the MSE might be preferred over RSS as a more reliable metric in practice.
- d) What about the coefficient of determination R^2 , the unbiased estimator $\hat{\sigma}^2 = \frac{\text{RSS}(\hat{\beta})}{n-p-1}$ for σ^2 , the standard errors $\text{SE}(\hat{\beta}_i)$, and also the t-statistics $t_i = \frac{\hat{\beta}_i \beta_i}{\text{SE}(\hat{\beta}_i)}$ for $1 \le i \le 2$? What would happen to the confidence intervals for β_i if we were to use the t-statistics from the cloned system?

7 Homework 3

Problem 3.6 (Characteristic functions and affine transformations of Gaussian random variables). Let $X: \Omega \to \mathbb{R}^n$ be a random vector. The characteristic function of X is defined as the function $\phi_X : \mathbb{R}^n \to \mathbb{C}$ defined via

$$\phi_{\mathbf{X}}(t) = \mathbb{E}[e^{it \cdot \mathbf{X}}] = \int_{\mathbb{R}^n} e^{it \cdot \mathbf{x}} f_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x}, \quad t \in \mathbb{R}^n.$$
(3.13)

For example, if $X \sim N(\mu, \Sigma)$, then the characteristic function $\phi_X : \mathbb{R} \to \mathbb{C}$ of X is given by

$$\phi_{\mathbf{X}}(\mathbf{t}) = \exp\left(i\boldsymbol{\mu} \cdot \mathbf{t} - \frac{1}{2}\mathbf{t}^{T}\boldsymbol{\Sigma}\mathbf{t}\right). \tag{3.14}$$

If n=1, then this says that if $X \sim N(\mu, \sigma^2)$, then the characteristic function $\phi_X : \mathbb{R} \to \mathbb{R}$ of X is given by

$$\phi_X(t) = e^{i\mu t - \frac{1}{2}\sigma^2 t^2}. (3.15)$$

The characteristic function is a powerful tool as it allows one to prove many results with ease. Below are two properties of the characteristic function that we will use in this problem.

- If $X_1, \ldots, X_n : \Omega \to \mathbb{R}^n$ are independent random vectors, then the characteristic function of their sum is the product of their individual characteristic functions.
- ullet The characteristic function of a random vector uniquely determines its distribution: if $oldsymbol{X}$ and $oldsymbol{Y}$ are random vectors such that $\phi_{X} = \phi_{Y}$, then $F_{X} = F_{Y}$, where F_{X} and F_{Y} are the cumulative distribution functions of X and Y, respectively.

These essentially follows from properties of the Fourier transform, which we will explore later in the course.

- a) Show that if X_1, \ldots, X_n are independent random variables and $X_i \sim N(\mu_i, \sigma_i^2)$, then their sum X = $X_1 + \cdots + X_n$ is also a Gaussian random variable with mean $\mu = \mu_1 + \cdots + \mu_n$ and variance $\sigma^2 = \sigma_1^2 + \cdots + \sigma_n^2$. What is the exact distribution of their mean $\bar{X} = \frac{X}{n}$? b) Suppose $X : \Omega \to \mathbb{R}^n$ is a random vector and $X \sim N(\mu, \Sigma)$. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ and $b \in \mathbb{R}^n$. Show that
- the random vector AX + b is also Gaussian with mean $A\mu + b$ and covariance matrix $A\Sigma A^T$.