Lösningsförslag

Elementær diskret matematikk, MA0301, våren 2011

Oppgave 1

Varje ord motsvarar en permutation av storlek 5 från de 9 bokstäverna i TRONDHEIM. Alltså är antalet sökta ord $P(9,5) = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$. På liknande sätt får vi att det finns P(8,5) sådana ord som inte innehåller bokstaven O. Antalet ord som innehåller bokstaven O är alltså $P(9,5) - P(8,5) = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 - 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 = (9-4) \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 8 \cdot 7 \cdot 6 \cdot 5^2$.

Oppgave 2

Binomialteoremet ger

$$(3+4x^2)^{12} = \sum_{k=0}^{12} {12 \choose k} 3^{12-k} 4^k x^{2k}.$$

Koefficienten till x^{10} motsvarar 2k = 10, det vill säga k = 5. Därmed är koefficienten till x^{10} :

$$\begin{pmatrix} 12 \\ 5 \end{pmatrix} 3^{12-5} 4^5 = \begin{pmatrix} 12 \\ 5 \end{pmatrix} 3^7 4^5 = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{5 \cdot 4 \cdot 3 \cdot 2} 3^7 2^{10} = 11 \cdot 3^9 \cdot 2^{13}.$$

Oppgave 3

Följande resonemang visar att argumentet är giltigt:

Steg	Motivation
1) q	Premiss
$2) \neg \neg q$	Dubbelnegation: 1)
3) $p \rightarrow \neg q$	Premiss
$4) \neg p$	Modus Tollens: $2), 3)$
5) $p \vee r$	Premiss
6) r	Disjunktiv syllogism: 4), 5)
7) $r \wedge q$	Konjunktion: 1), 6)
8) $(r \wedge q) \rightarrow s$	Premiss
9) s	Modus Ponens: 7), 8)

Oppgave 4

Vi bevisar att

$$a_n = \frac{3^n + 1}{2}$$

med induktion över n. Först verifierar vi basfallet

$$a_0 = 1 = \frac{2}{2} = \frac{3^0 + 1}{2}.$$

Därefter tar vi induktionssteget. Låt $k \geq 0$ och antag att

$$a_k = \frac{3^k + 1}{2}.$$

Enligt rekursionsformeln gäller då att

$$a_{k+1} = 3a_k - 1 = 3\frac{3^k + 1}{2} - 1 = \frac{3^{k+1} + 3 - 2}{2} = \frac{3^{k+1} + 1}{2}.$$

Enligt induktionsprincipen följer att

$$a_n = \frac{3^n + 1}{2}$$

för alla naturliga tal n.

Oppgave 5

a) Definiera $f: A \to B$ genom

$$f(a) = 1, f(b) = 2, f(c) = 3$$

och $g:B\to A$ genom

$$g(1) = a$$
, $g(2) = b$, $g(3) = c$, $g(4) = c$.

Då är $g \circ f$ indentitetsfunktionen på A och därmed bijektiv. Dessutom är inversen $(g \circ f)^{-1}$ också indentitetsfunktionen på A, det vill säga

$$(g \circ f)^{-1}(a) = a, \ (g \circ f)^{-1}(b) = b, \ (g \circ f)^{-1}(c) = c.$$

b) Definiera $f: A \to B$ genom

$$f(a) = 1, f(b) = 2, f(c) = 3$$

och $g: B \to A$ genom

$$g(1) = a, \ g(2) = a, \ g(3) = b, \ g(4) = c.$$

Då är f injektiv eftersom f(a), f(b) och f(c) alla är olika. Dessutom är $g(B) = \{a, b, c\}$, vilket ger att g är surjektiv. Vi beräknar nu

$$(g \circ f)(a) = a, \ (g \circ f)(b) = a, \ (g \circ f)(c) = b,$$

vilket visar att $(g \circ f)$ inte är bijektiv. Till exempel ser vi att $(g \circ f)(a) = a = (g \circ f)(b)$ och alltså är $(g \circ f)$ inte injektiv.

Oppgave 6

Om vi kör Kruskal's algoritm i 5 steg så får vi delgrafen

I de 2 följande stegen kan vi välja en av kanterna $\{g,f\}$, $\{d,f\}$ och en av kanterna $\{b,c\}$, $\{e,c\}$. Det ger $2 \cdot 2 = 4$ möjliga val vilka resulterar följande minimala utspännande träd:

Oppgave 7

Vi söker en maskin med inputalfabet och outputalfabet $\{0,1\}$. Den ska ge output som slutar med 1 om och endast om input ligger i $\{01\}^*\{11\}\{10\}^*$. Vi kallar starttillståndet s_0 . Ett exempel på en sådan maskin är

Vi kan kontrollera att M känner igen $\{01\}^*\{11\}\{10\}^*$ genom att verifiera att M befinner sig i tillstånd s_i om och endast om M har läst in en sträng från språket L_i där

$$\begin{array}{ll} L_0 = \{01\}^*, & L_1 = \{01\}^*\{1\}, & L_2 = \{01\}^*\{11\}\{10\}^*, \\ L_3 = \{01\}^*\{0\}, & L_4 = \{0,1\}^* \setminus (\bigcup_{j \neq 4} L_j), & L_5 = \{01\}^*\{11\}\{10\}^*\{1\}. \end{array}$$

Oppgave 8

Vi beräknar graderna av alla noder:

Eftersom antalet noder av grad 3 är olika i alla fall utom för G_1 och G_4 så är den enda möjligheten att G_1 och G_4 är isomorfa. Att G_1 är isomorf G_4 visar vi genom att hitta en isomorfism f från G_1 till G_2 :

Oppgave 9

a) Relationen \mathcal{R} är en delvis ordning.

1. Reflexsiv: Låt $f \in F$. Då gäller att $f(x) \leq f(x)$ för alla $x \in \mathbb{Z}$. Alltså gäller $f\mathcal{R}f$.

2. Transitiv: Låt $f, g, h \in F$ så att $f\mathcal{R}g$ och $g\mathcal{R}h$. Då gäller att $f(x) \leq g(x) \leq h(x)$ för alla $x \in \mathbb{Z}$. Alltså gäller att $f(x) \leq h(x)$ för alla $x \in \mathbb{Z}$ och därmed är $f\mathcal{R}h$.

3. Antisymmetrisk: Låt $f, g \in F$ så att $f\mathcal{R}g$ och $g\mathcal{R}f$. Då gäller att $f(x) \leq g(x) \leq f(x)$ för alla $x \in \mathbb{Z}$. Alltså gäller att f(x) = g(x) för alla $x \in \mathbb{Z}$ och därmed är f = g.

b) Relationen S är inte en delvis ordning. Mer precist gäller att S varken är transitiv eller antisymmetrisk. Definiera $f, g, h \in F$ genom f(x) = 1, h(x) = 0 för alla $x \in \mathbb{Z}$ och

$$g(x) = \begin{cases} 1 & x \le 0, \\ 0 & x > 0. \end{cases}$$

Då är $f(0) = 1 \le 1 = g(0)$ och $g(1) = 0 \le 0 = h(1)$. Alltså är fSg och gSh. Men f(x) = 1 > 0 = h(x) gäller för alla $x \in \mathbb{Z}$. Alltså är f inte relaterad till h och därmed är S inte transitiv. Dessutom gäller att $g(0) = 1 \le 1 = f(0)$ vilket ger gSf. Eftersom $f \ne g$ så är S inte antisymmtrisk.

4

Oppgave 10

När Dijkstra's algoritm kör så besöks noderna i följande ordning: $a,\ b,\ d,\ e,\ f,\ c.$ Under tiden tilldelas dessa etiketter:

Därmed är a-b-e-f-c den kortaste vägen från a till c.