Transcriptome Assembly

James Pease 14 July 2014

The Most Important Slide

[1] RNA-Seq is an extremely active Research area, stay current!

[2] The principles are general, the specifics will change in less than two one years.

[3] Everyone worries about processing, most errors are bad data or analysis

Basic Steps

[1] Sequence data quality control

[2] Read trimming and filtering

[3] Assembly

[4] Assembly Quality Control

FastQ file(s)

```
@SEQNAME
DNA SEQUENCE
+
QUALITY SCORES
```

Pairs can come in two files or interleaved

```
@SEQNAME1
GGACGGAGACGACATGATGTGCTGACTGTACTGTNNNNN
+
F+A42292<A<?1**:??DC@9))8??FDFF*8C#####
@SEQNAME2
GATACAACGTACACAA....</pre>
```

What is quality?

What is the probability the wrong base was read by the laser?

[1] Sequence data quality controls

Goal

check that sequencing is both good quality and unbiased

Software: FastQC, et al.

- Sequencing quality
- Contamination
- Sequencing bias

Goal

remove all non-genomic and erroneous sequence data

Software: Scythe, Trimmomatic, CutAdapt, et al.

- Trim adapters
- Trim low-quality bases
- Filter low-quality reads

Trim Adapters

CTTCTCCTTCCTGCGACGTCGCGGGCACCGCCCACGTCGCCGCGATCCGAACAGATCGGAAGAGCACA

CTTTGGTCGCTTGAACGACCCACAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGCTCATTATC

CTTCTCCTTCCTGCGACGTCGCGGGCACCGCCCACGTCGCCGCGATCCGAAC

CTTTGGTCGCTTGAACGACCCAC

Trim low-quality bases

Quality scale 3-40 (20 - 30 is usual cutoff)

```
GGACGGAGACGACATGATGTGCTGACTGTACTGTNNNNNN

E+A42292<A<?1**:??DC@9))8??FDFF*8C######

Q=37

The Bad The Ambiguous
```

Filter out short reads or reads w/ low avg. quality

GGACGGAGACGACATGATGTGCTGACTGTACTGT F+A42292<A<?1**:??DC@9))8??FDFF*8C

Average quality = 24.8

Standard Cutoff = 30bp

Minimum Length = 50bp

The most important question:

How much can you afford to lose?

Raw coverage = 5X vs. 50X

Goal

assemble the maximum number of accurate full-length transcripts

Software: Trinity*,
SoapDenovo, TransAbyss

Trimming is ESSENTIAL, before *de novo* assembly

Overlapping Reads

Assembled Transcript

Maximizing assembly coverage: Not all genes are expressed all the time.

Multiple tissues

Multiple developmental stages

Chimeric transcripts

Annotating de novo transcripts

- BLAST search against related organisms

- Gene Ontology search

- Protein domain and motifs

If you have a reference genome or closely-related genome,

you can map assembled transcripts to the genome to "fill in the gaps"

(i.e. join transcript fragments that failed to assemble into a full-length CDS)

Goal

accurately align the maximum number of reads to the reference

Software: BWA, STAR, Bowtie2, Novalign, RMAP, et al.

When you map to a genome (with introns) use a "Spliced Mapper" with gene annotation*

When you map to a transcriptome (no introns), can use a direct (unspliced) mapper

Reference

Sequence

Mapping

Quality

Score

SAM Files

SAM

Code

Read

Label

Indels

Mismatches/

Read

Sequence

Read

Quality

Why would you get a low mapping score?

- Mapping one read to more than one gene (with similar sequence regions)
- Read alignment has too many mismatches or indels (insertions/deletions)

- Did this read map?
- Did both reads in a pair map to the same gene?

Read mappers vary a lot:

- alignment algorithm
- quality filtering
- ability to use/infer reference gene annotations
- specifics of their output

Where do I get the genome annotation?

Generic Feature Format (GFF) Gene Transfer Format (GTF)

WARNING: Columns not always standard

```
AB000381 Twinscan CDS 380 401 . + 0 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan CDS 501 650 . + 2 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan CDS 700 707 . + 2 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan start_codon 380 382 . + 0 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan stop_codon 708 710 . + 0 gene_id "001"; transcript_id "001.1";
.....
```

Goal

assess the quality and accuracy of your assembly

Software: FASTX Toolkit, SAMstats

Sequence quantity:

- Total amount of sequence
 Does it seem reasonable for your organism?
- Mean transcript length
 For eukaryotes ~ 700-1000bp is common
- Do you recover long genes (several kb)?

Data use efficiency:

- What proportion of reads map back to your assembly?
- What proportion of reads map to the reference?

Mapping coverage:

- What proportion of annotated transcripts are covered by reads?
- Is there mapping bias?

The Most Important Slide

[1] RNA-Seq is an extremely active research area, stay current!

[2] The principles are general, the specifics will change in less than two one years.

[3] Everyone worries about processing, most errors are bad data or analysis

Questions?