Pset 1.5 Written Exercises

4.1)

(The figures are illustrated in the diagrams below, not to scale)

4.2)

The equation $\xrightarrow{t} = \xrightarrow{t} ST$ indicates a scale by two with respect to the original frame, then translates it by one unit with respect to the new frame, so the origin moves by **two units** of the original frame.

4.3)

- \checkmark R is Rotation by \emptyset , T is translation by d_1 in the x direction and then d_2 in the y direction
- ✓ A generic rotation in 2D can be represented as:

$$\begin{bmatrix} \cos \emptyset & -\sin \emptyset \\ \sin \emptyset & \cos \emptyset \end{bmatrix}$$

✓ In both cases, where $\frac{1}{b} = \frac{1}{a}$ RT and $\frac{1}{b} = \frac{1}{a}$ TR, then the rotation is the same. The matrix of rotation should be:

$$\begin{bmatrix} \cos\emptyset & -\sin\emptyset & 0 \\ \sin\emptyset & \cos\emptyset & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

✓ If we look at the equation $\frac{1}{b} = \frac{1}{a}$ RT and we do the rotation first, then we should do then translation with respect to the *local frame*, which means that we should translate d_3 units in the x direction and d_4 in the y direction. This matrix can be represented as:

$$\begin{bmatrix} 1 & 0 & d_3 \\ 0 & 1 & d_4 \\ 0 & 0 & 1 \end{bmatrix}$$

If instead we look at the equation $\underset{b}{\rightarrow}^t = \underset{a}{\rightarrow}^t TR$ and we do the rotation first, then we should do then translation with respect to the *global frame*, which means that we should translate d_1 units in the x direction and d_2 in the y direction. This matrix can be represented as:

$$\begin{bmatrix} 1 & 0 & d_1 \\ 0 & 1 & d_2 \\ 0 & 0 & 1 \end{bmatrix}$$

 \checkmark So to summarize, for the equation $\underset{b}{\rightarrow}^{t} = \underset{a}{\rightarrow}^{t} RT$

$${\sf R} \ = \ \begin{bmatrix} \cos \emptyset & -\sin \emptyset & 0 \\ \sin \emptyset & \cos \emptyset & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad {\sf T} \ = \ \begin{bmatrix} 1 & 0 & d_3 \\ 0 & 1 & d_4 \\ 0 & 0 & 1 \end{bmatrix}$$

for the equation $\underset{b}{\rightarrow}^{t} = \underset{a}{\rightarrow}^{t} TR$

4.4)

M can be thought of as the composition of two transformations: the transformation that takes $\underset{b}{\rightarrow^t}$ to $\underset{b}{\rightarrow^t}$, and then the transformation that takes $\underset{b}{\rightarrow^t}$ to $\underset{c}{\rightarrow^t}$. We know that the first transformation is expressed by the matrix N, which we can think of as a translation up and to the right of distance d followed by a rotation by the angle β . We see that the second transformation can also be expressed as a translation of distance d and a rotation by an undetermined angle. Because it translates down and to the left, we can think of the second transformation as N⁻¹. However, M is clearly not as simple as NN⁻¹ (the identity matrix), and we can see that there is an intermediate transformation, which is simply rotation by \emptyset , since the β rotations cancel out.

Therefore M =
$$N\begin{bmatrix} cos\emptyset & -sin\emptyset & 0\\ sin\emptyset & cos\emptyset & 0\\ 0 & 0 & 1 \end{bmatrix} N^{-1}$$