Estimadores e Análise de Regressão Linear

Problema 1

Encontre os estimadores de momentos, de máxima verossimilhança e de Bayes para os parâmetros (μ, σ^2) considerando uma amostra aleatória com distribuição normal em que μ e σ^2 são desconhecidos.

Solução

Estimador de Momentos:

$$\hat{\mu}_{MM} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}_{MM}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu}_{MM})^2$$

Estimador de Máxima Verossimilhança:

$$\hat{\mu}_{MV} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}_{MV}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu}_{MV})^2$$

Estimador Bayesiano: Supondo distribuições a priori:

$$\mu \sim N(\mu_0, \tau^2), \quad \sigma^2 \sim \text{Inv-Gamma}(\alpha, \beta)$$

Os estimadores a posteriori podem ser calculados numericamente.

Problema 2

Mostre que os métodos de mínimos quadrados e de máxima verossimilhança produzem os mesmos estimadores dos parâmetros no modelo de regressão linear simples.

Solução

Modelo: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, com $\epsilon_i \sim N(0, \sigma^2)$.

Estimadores de Mínimos Quadrados:

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}, \quad \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Estimadores de Máxima Verossimilhança: Os mesmos estimadores são obtidos ao maximizar a função de verossimilhança:

$$L(\beta_0, \beta_1, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

Problema 3

Use 5 métodos numéricos para encontrar os estimadores de máxima verossimilhança e de mínimos quadrados dos parâmetros no modelo de regressão linear simples no exemplo a seguir. Compare com as estimativas usando os estimadores em 2.

Dados do Problema

Estresse Normal (x)	Resistência ao Corte (y)
26.8	26.5
25.4	27.3
28.9	24.2
23.6	27.1
27.7	23.6
23.9	25.9
24.7	26.3
28.1	22.5
26.9	21.7
27.4	21.4
22.6	25.8
25.6	24.9

Código em Python

```
import numpy as np
          import pandas as pd
         from scipy import stats
         from scipy.optimize import minimize
          import matplotlib.pyplot as plt
          from sklearn.linear_model import LinearRegression
          # Dados do problema
          x = np.array([26.8, 25.4, 28.9, 23.6, 27.7, 23.9, 24.7, 28.1,
                      26.9, 27.4, 22.6, 25.6])
          y = np.array([26.5, 27.3, 24.2, 27.1, 23.6, 25.9, 26.3, 22.5,
10
                      21.7, 21.4, 25.8, 24.9])
11
          # 1. M nimos Quadrados usando numpy
12
          def calc_ols(x, y):
13
                           x_mean = np.mean(x)
14
                           y_{mean} = np.mean(y)
15
16
                           beta1 = np.sum((x - x_mean) * (y - y_mean)) / np.sum((x - y_mean))
17
                                       x_{mean})**2)
                           beta0 = y_mean - beta1 * x_mean
18
19
                           return beta0, beta1
20
21
          # 2. M xima Verossimilhan a usando stats
          def calc_mle(x, y):
```

```
# Usando sklearn para garantir estabilidade num rica
       model = LinearRegression()
25
       X = x.reshape(-1, 1)
26
       model.fit(X, y)
27
28
       beta0 = model.intercept_
29
       beta1 = model.coef_[0]
30
31
       # Calculando sigma (erro padr o)
32
       y_pred = beta0 + beta1 * x
33
       sigma = np.sqrt(np.sum((y - y_pred)**2) / (len(x) - 2))
34
35
       return beta0, beta1, sigma
36
37
  # 3. M todo Bayesiano usando Metropolis-Hastings melhorado
38
  def mcmc_regression(x, y, iterations=10000, burnin=1000):
39
       n = len(x)
40
41
       # Valores iniciais usando OLS
42
       beta0_init, beta1_init = calc_ols(x, y)
43
44
       # Arrays para armazenar as cadeias
45
       beta0_chain = np.zeros(iterations)
46
       beta1_chain = np.zeros(iterations)
47
48
       # Valores atuais
49
       beta0 = beta0_init
50
       beta1 = beta1_init
51
52
       # Vari ncia das propostas
53
       prop_var = np.array([0.1, 0.01]) # Para beta0 e beta1
55
       # Log likelihood function
56
       def log_likelihood(beta0, beta1):
57
           y_pred = beta0 + beta1 * x
58
           return -0.5 * np.sum((y - y_pred)**2) # Simplificada
59
              para estabilidade
60
       # MCMC loop
61
       for i in range(iterations):
62
           # Atualizar beta0
63
           beta0_prop = beta0 + np.random.normal(0, prop_var[0])
64
           log_ratio = log_likelihood(beta0_prop, beta1) -
65
              log_likelihood(beta0, beta1)
66
           if np.log(np.random.random()) < log_ratio:</pre>
67
                beta0 = beta0_prop
68
69
           # Atualizar beta1
70
           beta1_prop = beta1 + np.random.normal(0, prop_var[1])
71
```

```
log_ratio = log_likelihood(beta0, beta1_prop) -
72
               log_likelihood(beta0, beta1)
73
            if np.log(np.random.random()) < log_ratio:</pre>
74
                beta1 = beta1_prop
75
76
            beta0_chain[i] = beta0
77
            beta1_chain[i] = beta1
79
       # Descartar burn-in e retornar m dias
80
       return (np.mean(beta0_chain[burnin:]), np.mean(beta1_chain[
81
          burnin:]),
                beta0_chain[burnin:], beta1_chain[burnin:])
82
   # 4. Bootstrap com intervalos de confian a
84
   def bootstrap_analysis(x, y, n_bootstrap=1000):
85
       beta0_boot = []
86
       beta1_boot = []
87
88
       for _ in range(n_bootstrap):
            indices = np.random.randint(0, len(x), len(x))
90
            x_boot = x[indices]
91
            y_boot = y[indices]
92
93
            beta0, beta1 = calc_ols(x_boot, y_boot)
            beta0_boot.append(beta0)
            beta1_boot.append(beta1)
96
97
       return (np.mean(beta0_boot), np.mean(beta1_boot),
98
                np.percentile(beta0_boot, [2.5, 97.5]),
99
                np.percentile(beta1_boot, [2.5, 97.5]))
100
101
   # Calcular todas as estimativas
102
   beta0_ols, beta1_ols = calc_ols(x, y)
103
   beta0_mle, beta1_mle, sigma_mle = calc_mle(x, y)
104
   beta0_bayes, beta1_bayes, beta0_chain, beta1_chain =
105
      mcmc_regression(x, y)
   beta0_boot, beta1_boot, ci_beta0, ci_beta1 = bootstrap_analysis(x
106
      , y)
107
   # Calcular R e erro padr o
108
   y_pred = beta0_ols + beta1_ols * x
109
   r2 = 1 - np.sum((y - y_pred)**2) / np.sum((y - np.mean(y))**2)
   se = np.sqrt(np.sum((y - y_pred)**2) / (len(x) - 2))
111
112
   # Imprimir resultados
113
   print("""
114
   Resultados Detalhados da An lise:
116
   1. M nimos Quadrados Ordin rios:
117
            = \{:.4f\}
118
```

```
= \{:.4f\}
119
120
   2. M xima Verossimilhan a:
121
             = \{:.4f\}
122
             = \{:.4f\}
123
          = \{:.4f\}
124
125
   3. Estimativa Bayesiana (m dia posterior):
126
             = \{:.4f\}
127
             = \{:.4f\}
128
129
   4. Bootstrap (com IC 95%):
130
             = \{:.4f\} [\{:.4f\}, \{:.4f\}]
131
             = \{:.4f\} [\{:.4f\}, \{:.4f\}]
132
133
   An lise de Qualidade do Ajuste:
134
       = \{:.4f\}
135
   Erro Padr o da Regress o = {:.4f}
136
137
   Interpreta
                   0:
138
   1. O modelo explica {:.1f}% da variabilidade nos dados
139
   2. Para cada unidade de aumento no estresse normal:
140
       - A resist ncia ao corte muda em {:.3f} unidades
141
   3. O intercepto de {:.3f} representa a resist ncia ao corte
142
      esperada
       quando o estresse normal
143
                                      zero
   """.format(
144
       beta0_ols, beta1_ols,
145
        beta0_mle, beta1_mle, sigma_mle,
146
        beta0_bayes, beta1_bayes,
147
        beta0_boot, ci_beta0[0], ci_beta0[1],
148
        beta1_boot, ci_beta1[0], ci_beta1[1],
149
        r2, se,
150
        r2*100,
151
        beta1_ols,
152
        beta0_ols
153
   ))
154
155
   # Criar visualiza
156
   plt.figure(figsize=(12, 8))
157
158
   # Plot principal
159
   plt.subplot(2, 1, 1)
160
   plt.scatter(x, y, color='blue', alpha=0.5, label='Dados_
161
      Observados')
   x_range = np.linspace(min(x)-1, max(x)+1, 100)
162
   plt.plot(x_range, beta0_ols + beta1_ols * x_range, 'r-', label='
163
       Regress ou OLS')
164
   # Intervalos de confian a do bootstrap
165
166 | y_boot_lower = ci_beta0[0] + ci_beta1[0] * x_range
```

```
y_boot_upper = ci_beta0[1] + ci_beta1[1] * x_range
   plt.fill_between(x_range, y_boot_lower, y_boot_upper, color='gray
      ', alpha=0.2, label='ICu95%u(Bootstrap)')
169
   plt.xlabel('Estresse_Normal_(X)')
170
   plt.ylabel('Resist nciauaouCorteu(Y)')
171
   plt.title('Regress ouLinearucomuIntervalosudeuConfian a')
172
   plt.legend()
   plt.grid(True)
174
175
   # Diagn stico de res duos
176
   plt.subplot(2, 1, 2)
177
   residuos = y - y_pred
178
   plt.scatter(y_pred, residuos, alpha=0.5)
   plt.axhline(y=0, color='r', linestyle='--')
   plt.xlabel('Valores_Preditos')
181
   plt.ylabel('Res duos')
182
   plt.title('Diagn sticoudeuRes duos')
183
   plt.grid(True)
184
   plt.tight_layout()
186
   plt.savefig('regressao_diagnostico.png')
187
   plt.close()
188
```

Listing 1: Código para estimadores numéricos

Resultados

- Mínimos Quadrados: $\hat{\beta}_0 = ..., \hat{\beta}_1 = ...$
- Máxima Verossimilhança: $\hat{\beta}_0 = ..., \ \hat{\beta}_1 = ..., \ \hat{\sigma} = ...$
- Estimativa Bayesiana: $\hat{\beta}_0 = ..., \, \hat{\beta}_1 = ...$
- Bootstrap: $\hat{\beta}_0 = ..., \hat{\beta}_1 = ... \text{ (IC: [..., ...])}$

Visualizações

Figure 1: Gráfico da regressão linear com intervalos de confiança e diagnóstico de resíduos.