TABLE OF CONTENT

CHAPTER No	TITLE	PAGE No
	ABSTRACT	i
	LIST OF FIGURES	vi
	LIST OF TABLES	vii
	LIST OF ABBREVIATIONS	viii
1.	INTRODUCTION	
	1.1 OVERVIEW	1
	1.2 PROBLEM STATEMENT	2
	1.3 OBJECTIVE	2
	1.4 PROPOSED SOLUTION	3
	1.5 ORGANIZATION OF THESIS	3
2.	LITERATURE REVIEW	4
	2.1 INTRODUCTION	4
3.	2.2 RELATED WORKS	5
	2.2 SUMMARY	7
	SYSTEM DESIGN	9
	3.1 PROPOSED SYSTEM OVERVIEW	9
	3.2 DATASET	10

	3.3 FEATURE EXTRACTION USING	
	PRETRAINED CNN'S	11
	3.4 CLASSIFICATION ALGORITHMS	
	AND METHODOLOGY	13
	3.5 PERFORMANCE METRICES	14
4.	IMPLEMENTATION AND RESULTS	15
	4.1 SYSTEM ARCHITECTURE	17
	4.2 IMPLEMENTATION SETUP	18
	4.3 FEATURE EXTRACTION RESULTS	19
	4.4 CLASSIFICATION RESULTS FOR	
	BINARY AND MULTI-CLASS TASKS	20
	4.5 EVALUATION USING PERFORMANCE	
	METRICES	21
	4.6 DISCUSSION ON RESULTS	23
5.	CONCLUSION AND FUTURE WORK	25
	5.1 CONCLUSION	25
	5.2 FUTURE WORK	25
6.	REFERENCES	25

LIST OF FIGURES

FIGURE No	TITLE	PAGE No
1.1	Overview of the Tomato Quality Grading System	2
3.1	Proposed Automated Tomato Quality Grading System	9
3.2	Sample images from the dataset showcasing	
	The four original classes	10
3.3	Feature Extraction Process using Pre-trained	
	CNN Models	12
3.4	Illustration of confusion matrices: (a) Binary	
	Confusion matrix; (b) Multiclass confusion matrix	16
4.1	System Architecture of the Automated Tomato	
	Quality Grading System	18
4.2	Classification Model Accuracy	22
4.3	Classification Model Confusion Matrix	23

LIST OF TABLES

FIGURE No	TITLE	PAGE No
3.1	Class Distribution of the Dataset Before and	
	After Augmentation	11
3.2	Key Features of Pre-trained CNN Models	
	for Feature Extraction	13
3.3	Hyperparameters for Traditional Machine Learning	
	Classifiers	14
4.1	On-Premise Server Specifications	19
4.2	Binary Model Performance Comparison	21
4.3	Multi-Class Model Performance Comparison	22

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

SVM Support Vector Machine

KNN K-Nearest Neighbours

TP True Positive

TN True Negative

FP False Positive

FN False Negative

TPR True Positive Rate

FPR False Positive Rate

LLM Large Language Model

YOLO You Only Look Once

TiB Tebibyte