學號:R07922163 系級: 資工所二 姓名:徐浩翔

1. (0.5%) 請比較你實作的generative model、logistic regression 的準確率,何者較佳?

使用 logistic regression 做出來的效果比較好,下表為在 kaggle hw2 上的表現

	private	public
logistic regression	0.84989	0.85552
generative model	0.84387	0.84373

其中不管是公開或是隱藏的測試資料皆為 logistic regression比較好

而我上傳了一份全部預測零的csv檔到kaggle hw2

在public 及private 上分別得到

0.76474與0.76282的預測正確率

表示資料大部分都屬於第零類(收入不超過美金50K)

因此generative model會受到先驗機率影響,得出來的預測值自然會比較小,所以表現比logistic regression差

2. (0.5%) 請實作特徵標準化(feature normalization)並討論其對於你的模型準確率的影響

在以logistic regression當作模型的狀況下

沒有標準化的資料在經過exponential時會overflow

而在kaggle hw2上的預測正確率只有0.78599

只比預測全部都是零的高0.02左右

因為若沒有經過normalization有些feature的數值範圍是10 00~2000有些是0~10

這樣在trainning時會給數值範圍比較小的有比較高的權重讓這個feature dominate預測結果但不應該這樣子所以會讓模型的準確率降很多

3. (1%) 請說明你實作的best model, 其訓練方式和準確率為何?

我使用的是 sklearn ensemble 中的gradient boosting classifier 其中跑得最的好的一些參數為:

Gradient Boosting Classifier(n_estimators = 1000, validation_fr action=0.01, n_iter_no_change=50)

將1%的資料做為validation set 防止model overfitting 超過50次迭代驗證集的loss沒下降就early stopping

以下是使用 gradient boosting classifier在kaggle hw2上的結果

private	publice	
0.86500	0.87272	
0.87274	0.87936	
0.87274	0.88083	
0.87274	0.88132(publice最高的正	.確率)
0.87286	0.87960	
0.87372(ttpriv	ate第一高但未選擇)	0.87936

另外我也有試過做五次gradient boosting 然後將每次結果做voting 三個以上的model預測1就將值設為一否則為0結果在public上會比單一model多預測錯一到兩筆但在private上得到了leaderboard第四名的成績其中public 更有第一高的正確率。

4. (3%) Refer to math problem

https://hackmd.io/0fDimgO7RaSCPpD_minSGQ?both

= OTI detC11 + OTE C12 -- OTIMEIN #P CIME cofactor matrix

(c) 為互扣掉i列i行所得的 m-1xm-1 矩阵 = Oxider Cai+ Ox2 Ciz -+ Oxi Caj+ --- Gam Cam

Aladetz) 1 Cis to題目左式為 decz Cij

classical adjains matrix adj(A) = CT (= [cn - cnm] (cm - cnm)

 $A^{-1} = \frac{1}{\det(A)} \operatorname{odj}(A)$ in $\operatorname{oj} Z^{-1} e_{i}^{-1} = \overline{Z}_{j,i}^{-1} \left(\operatorname{ER} A t \right)$

[(hx, E|x) = P(x, |Cx) P(x|Cx) -- P(xn, |Cx) # WLOG tix tax -- tnx =1 3-101) · N(x, M,Z) N(X, M,Z) - N(x, M,Z) $= \left(\frac{1}{(2\pi)^{\frac{3}{2}}} \frac{-(\chi_1 - M_2) Z'(\chi_1 - M_2)}{|Z|^{\frac{3}{2}} |Z|^{\frac{3}{2}}} \right) \cdot \left(\frac{1}{(2\pi)^{\frac{3}{2}}} \frac{(\chi_1 - M_2) Z'(\chi_1 - M_2)}{|Z|^{\frac{3}{2}}} \right)$ 取In In(L(ν, Σ(x)) = (- D ln 2π + 1 ln | Σ | - 1 (π- Mz) Σ (x- Mz)) + + (- 2 ln 2π + 1 (x- Mz)) 3 lo(1(Mexix)) = = = = = (- = (x,-Mx) - (x,-Mx) =)) + + = (-= (x,-Mx) =)) = - \(\frac{1}{\chi_1 - \lambda_K} - \frac{1}{\chi} (\gamma_2 - \lambda_1 (\gamma_2 - \lambda_1) - - \frac{1}{\chi} (\gamma_2 - \lambda_K) = \(\tilde{O} \) .: Z' is covariance matthix is symmetric and nonsingular =) ラカーではガーウ 京(X)-MK)=0 MK = 学校 = 1 とtik (: tik Xi = 0 is i=nk)

(NK為題 NK符 敬來不及改)

(NK為題 NK符 敬來不及改)

3-16) similarly to (a) In(L(Nr. Z | X) (- D lin 21 - 2 lin | Z | - 2 (7, - Mr) 2 (x, - Mr))+ th([]c 1) - th(c 2[]) + (- Delaza - 1/2 ln | Z| - 1/2 (Xno ln) (Xno ln)) => ln(L(M,Z|X))=(= 2l,27+=2n|Z'|-= (+)(x,-M,(x,-M,Z')). + (- 2 lo 2/2 + 1 lo 2) - 2 (tr ((xnx-Mx)(xnx-Mx)(Z)))) [(\(\lambda_{\text{in}} \frac{7}{2} \) = \(\frac{1}{2} \frac{7}{2} \frac{1}{2} \frac{7}{2} \frac{1}{2} \frac $\left(-\frac{\ln |\Sigma|}{2} - \left(\sum^{-1}\right)^{T}$ by problem and Σ is covariance matrix is symmetric) Share I so need to find L(M, Z|x') L(M, Z|x2) - L(Mx, Z|x*) and x', x2 - x* AXEX XYECK ラ取りすっず WLOG X'為(X1-Xnx) $\left(\frac{h_1}{2}\sum_{i=1}^{N_1}(\chi_i-M_1)(\chi_i-M_1)\right) + - \left(\frac{n_k}{2}\sum_{i=1}^{N_1}(\chi_i-M_k)(\chi_i-M_k)\right) = 0$ $\exists \frac{1}{2} = \frac{1}{2} \frac{N_{k}}{N} S_{k} \times \frac{N_$