UMA205: Introduction to Algebraic Structures

Naman Mishra

January 2024

Contents

1	Peano's Axioms	3	
2	Axioms of Set Theory (ZFC)	10	Lecture 01: Wed 03 Jan

The Course

Instructor: Prof. Arvind Ayyer

Office: X-15

Office hours: TBD

Lecture hours: MWF 11:00–11:50 Tutorial hours: Tue 9:00–9:50

80% attendance is mandatory.

Prerequisites: UMA101 and UMA102 Texts: Several

• Analysis I, Terence Tao.

Grading

(20%) Quizzes on alternate Tuesdays, worst dropped. No makeup quizzes, but if a quiz is missed for a medical reason (with certificate), that quiz will be dropped.

(30%) Midterm

(50%) Final

Homeworks after every class, ungraded. Exams are closed book and closed notes, with no electronic devices allowed.

Aims of the Course

- Deal with formal mathematical structures.
- Learning the axiomatic method.
- See how more complicated structures arise from simpler ones.

Chapter 1

Peano's Axioms

We try to formulate two fundamental quantities: 0 and the successor function $n \mapsto n_{++}$.

- (P1) 0 is a natural number.
- (P2) If n is a natural number, so is n_{++} .
- (P3) 0 is not the successor of any natural number.
- (P4) Different natural numbers have different successors.
- (P5) (Principle of mathematical induction) Let P(n) be any "property" for a natural number n. Suppose that P(0) is true, and that $P(n_{++})$ is true whenever P(n) is true. Then P is true for all natural numbers.

Denote the set of natural numbers by \mathbb{N} . (Any two sets satisfying the Peano axioms are isomorphic.) Note that \mathbb{N} is itself infinite, but all of its elements are finite.

Proof. 0 is finite. If n is finite, then n_{++} is finite. Thus, by induction, all natural numbers are finite. (But wtf is a finite number?)

Remarks.

- There exist number systems which admit infinite numbers. For example, cardinals, ordinals, etc.
- This way of thinking is *axiomatic*, but not constructive.

Definition 1.1 (Addition). Suppose $m, n \in \mathbb{N}$. We define the binary operation + by setting 0 + m = m. Suppose we have defined n + m. Then we inductively define $n_{++} + m = (n + m)_{++}$.

Lecture 02: Mon 08 Jan '24

For example, note that $1 + m = (0 + m)_{++} = m_{++}$.

Lemma 1.2. For $n \in \mathbb{N}$, we have n + 0 = n.

Proof.
$$0+0=0$$
. If $n+0=n$, then $n_{++}+0=(n+0)_{++}=n_{++}$.

Lemma 1.3. For $m, n \in \mathbb{N}$, we have $n + m_{++} = (n + m)_{++}$.

Proof. Fix m and induct on n. For n = 0, we have $0 + m_{++} = m_{++} = (0 + m)_{++}$. Suppose $n + m_{++} = (n + m)_{++}$. Then

$$n_{++} + m_{++} = (n + m_{++})_{++}$$
 (definition)
= $((n + m)_{++})_{++}$ (hypothesis)
= $(n_{++} + m)_{++}$ (definition)

as desired. \Box

Exercise 1.4. (Commutativity) For $m, n \in \mathbb{N}$, we have n + m = m + n.

Proof. Fix m and induct on n. For n = 0, we have 0 + m = m = m + 0. Suppose n + m = m + n. Then

$$n_{++} + m = (n + m)_{++}$$
 (definition)
= $(m + n)_{++}$ (hypothesis)
= $m + n_{++}$

by the previous lemma.

Problem 0.1. (Associativity) For $m, n, p \in \mathbb{N}$, we have (m+n) + p = m + (n+p).

Proof. Induct on m. (0+n) + p = n + p = 0 + (n+p). Suppose (m+n) + p = m + (n+p). Then

$$(m_{++} + n) + p = (m + n)_{++} + p$$
 (definition)
= $((m + n) + p)_{++}$ (definition)
= $(m + (n + p))_{++}$ (hypothesis)
= $m_{++} + (n + p)$. (definition)

This closes the induction.

Problem 0.2. (Cancellation) For $m, n, p \in \mathbb{N}$, if m + n = m + p, then n = p.

Proof. Induct on m. 0 + n = 0 + p implies n = p.

Suppose m + n = m + p implies n = p. Then $m_{++} + n = m_{++} + p$ implies $(m+n)_{++} = (m+p)_{++}$ and so m+n = m+p by (P4). By the inductive hypothesis, n = p.

Definition 1.5 (Positive). A natural number is positive if it is not 0.

Proposition 1.6. If a is positive and $b \in \mathbb{N}$, then a + b is positive.

Proof. Induct on b. a + 0 = a is positive. $a + b_{++} = (a + b)_{++}$ is positive since 0 is not the successor of any natural number.

Problem 0.3. If m, n in \mathbb{N} with m + n = 0, then m = n = 0.

Proof. Contrapositive of the previous proposition, with commutativity. \Box

Problem 0.4. Let a be positive. Then there exists a unique $b \in \mathbb{N}$ such that $a = b_{++}$.

Proof. Let P(n) be that n is zero or there exists a unique $b \in \mathbb{N}$ such that $n = b_{++}$. P(0) is true.

Suppose P(n) is true. n_{++} is non-zero, successor of n and only n, by (P3) and (P4). Thus $P(n_{++})$ is true.

Definition 1.7 (Order). Let $m, n \in \mathbb{N}$. We say that n is greater than or equal to m, written $n \geq m$ or $m \leq n$, if n = m + a for some $a \in \mathbb{N}$.

Similarly, we say that n is (strictly) greater than m, written n > m or m < n, if $n \ge m$ and $n \ne m$.

Note that $n_{++} > n$, so there is no largest natural number.

Proposition 1.8. Let $a, b, c \in \mathbb{N}$. Then

- 1) $a \ge a$ (reflexivity),
- 2) $a \ge b$ and $b \ge a$ implies a = b (antisymmetry),
- 3) $a \ge b$ and $b \ge c$ implies $a \ge c$ (transitivity),
- $4) \ a \ge b \iff a + c \ge b + c,$
- 5) $a > b \iff a \ge b_{++}$,
- 6) $a > b \iff a = b + c$ for some positive c.

Proof.

- 1) a = a + 0.
- 2) a = b + c and b = a + d implies a = a + (c + d). By cancellation, c + d = 0 and so c = d = 0.
- 3) a = b + m and b = c + n implies a = c + (m + n).
- 4) $a = b + m \iff (a + c) = (b + c) + m$.
- 5) From 6), $a > b \iff a = b + c$ for some positive c, iff $a = b + d_{++} = b_{++} + d$.
- 6) $a > b \iff a = b + c$ but $a \neq b$. Since $a \neq b$, c cannot be zero. Conversely, if c is positive, $a \neq b$.

Proposition 1.9 (Trichotomy). Let $a, b \in \mathbb{N}$. Then exactly one of the following holds: a > b, a = b, or a < b.

Proof. We first prove that no more than one of the three holds. a = b cannot hold simultaneously with a > b or a < b by their definitions. Suppose a > b and a < b. Then a = b + c and b = a + d for some positive c and d. Thus a = a + (c + d) and so c + d = 0, a contradiction.

We now prove that at least one of the three holds by induction on a. Since b=0+b, either 0=b or b>0. Suppose at least one of $a \ge b$ and a < b holds. If a=b+c, then $a_{++}=b+(c_{++})$ and so $a_{++}>b$. If a < b, then by proposition 1.8(5), $a_{++} \le b$. This completes the induction.

Proposition 1.10 (Strong induction). Let $m_0 \in \mathbb{N}$ and let P(m) be a property for all $m \in \mathbb{N}$. Suppose for all $m \geq m_0$, we have the following: if P(m') holds for all $m_0 \leq m' < m$, then P(m) holds. Then P(m) holds for all $m \geq m_0$.

Note that the inductive step is vacuously true for $m = m_0$.

Proof. Define Q(m) to be "P(m') holds for all $m_0 \le m' < m$ ". Q(0) holds vacuously, since there are no m' < 0.

Suppose Q(m) holds. If $m < m_0$, then $Q(m_{++})$ holds vacuously, since $m_{++} \le m_0$ and so no m' satisfies $m_0 \le m' < m_{++} \le m_0$.

Now if $m \ge m_0$, then Q(m) and the proposition imply P(m). Thus P(m') holds for all $m_0 \le m' \le m \iff m_0 \le m' < m_{++}$. Thus $Q(m_{++})$ holds. \square

Problem 0.5 (Backwards induction). Let $m_0 \in \mathbb{N}$, and let P(m) be a property pertaining to the natural numbers such that whenever $P(m_{++})$ is true, then P(m) is true. Suppose that $P(m_0)$ is also true. Prove that P(m) is true for all natural numbers $m \leq m_0$.

Proof. Define Q(m) to be "if P(m) is true, then P(m') is true for all $m' \le m$ ". Q(0) holds vacuously, since $m' \le 0$ implies m' = 0.

Suppose Q(m) holds. Then if $P(m_{++})$ is true, so is P(m), and by the inductive hypothesis, P(m') is true for all $m' \leq m$. Thus $Q(m_{++})$ holds. Thus Q(m) holds for all $m \in \mathbb{N}$.

In particular, $Q(m_0)$ holds, and so P(m') is true for all $m' \leq m_0$.

From now on, we will assume the usual laws of addition.

Definition 1.11 (Multiplication). Let $m \in \mathbb{N}$. The binary operation multiplication, denoted by *, is defined as follows. Set 0 * m = 0. Then define it inductively as follows. If we know n*m, set $n_{++}*m = (n*m) + m$.

Lemma 1.12. Let $m, n \in \mathbb{N}$, Then m * n = n * m.

Proof. First note that m*0 = 0, since 0*0 = 0 and $m_{++}*0 = m*0+0 = m*0$.

Next note that $n * m_{++} = (n * m) + n$, since $0 * m_{++} = 0 = (0 * m) + 0$, and $n_{++} * m_{++} = (n * m_{++}) + m_{++}$ which is equal to $(n * m) + n + m_{++} = (n * m) + m + n_{++} = (n_{++} * m) + n_{++}$ by the inductive hypothesis.

Finally, 0 * n = n * 0, and $m_{++} * n = n * m_{++}$ gives m * n = n * m by induction on m.

We use the notation mn for m*n and also employ the usual convention for precedence, so that mn + p means (m*n) + p and not m*(n+p).

Lemma 1.13. Let $m, n \in \mathbb{N}$. Then mn = 0 iff at least one of m and n is 0.

Proof. The 'if' direction is clear. Suppose m, n are positive. Then $m = \tilde{m}_{++}$ for some $\tilde{m} \in \mathbb{N}$.

$$mn = (\tilde{m}_{++})n$$
$$= (\tilde{m}n) + n$$

which is positive since n is positive.

Proposition 1.14 (Distributivity). For $a, b, c \in \mathbb{N}$, we have a(b+c) = ab + ac and (b+c)a = ba + ca.

Proof. Prove the first by induction on a. 0(b+c)=0=0+0=0b+0c.

Suppose a(b+c) = ab + ac. Then

$$a_{++}(b+c) = a(b+c) + (b+c)$$
 (definition)

$$= (ab+ac) + (b+c)$$
 (hypothesis)

$$= (ab+b) + (ac+c)$$

$$= a_{++}b + a_{++}c.$$
 (definition)

The second equality follows from the first by commutativity.

Problem 0.6. (Associativity) For $a, b, c \in \mathbb{N}$, we have (ab)c = a(bc).

Proof. Induct on a. (0b)c = 0c = 0 = 0(bc).

Suppose (ab)c = a(bc). Then

$$(a_{++}b)c = (ab+b)c$$
 (definition)
 $= (ab)c + bc$ (distributivity)
 $= a(bc) + bc$ (hypothesis)
 $= a_{++}(bc)$

by definition.

Problem 0.7. (Order preservation) For $a, b, c \in \mathbb{N}$ with a < b and $c \neq 0$, we have ac < bc.

Proof. Induct on c with base case c = 1. If ac < bc, then ac + a < bc + a but bc + a < bc + b, both by order preservation under addition. By transitivity, ac + a < bc + b and so $ac_{++} < bc_{++}$.

Problem 0.8. (Cancellation) For $a, b, c \in \mathbb{N}$ with ac = bc and $c \neq 0$, we have a = b.

Proof. From trichotomy and order preservation.

Proposition 1.15 (Euclidean algorithm). Let $n \in \mathbb{N}$ and m be positive. Then there exist unique $q, r \in \mathbb{N}$ such that n = qm + r and r < m. We call q the quotient and r the remainder.

Proof. We first prove uniqueness. Suppose n = qm + r = q'm + r'. If $q < q' \iff q_{++} \le q'$, then $qm + r < qm + m = q_{++}m \le q'm \le q'm + r'$, a contradiction. Similarly, q' < q is impossible. This leaves q = q'. Then qm + r = q'm + r' gives r = r' by cancellation.

For existence, we induct on n. 0 = 0m + 0. Suppose n = qm + r. Then $n_{++} = qm + r_{++}$. If $r_{++} < m$, we are done. Otherwise, $r_{++} = m$ (since $r < m \iff r_{++} \le m$) and so $n_{++} = (q_{++})m + 0$.

This proposition allows us to divide.

Definition 1.16 (Exponentiation). Let m be positive. The binary operation exponentiation can be defined inductively as $m^0 = 1$ and $m^{n++} = m^n m$. We further define $0^k = 0$ for all positive k.

Lecture 03: Mon 08 Jan '24

Chapter 2

Axioms of Set Theory (ZFC)

Definition 2.1 (Set). A set is a well-defined collection of objects, which we call elements. We will write $x \in A$ to say that x is an element of A.

Well-defined means that given any object, we can state without ambiguity whether it is an element of the set or not.

Axiom 2.1. Sets are themselves objects. If A and B are sets, it is meaningful to ask whether A is an element of B.

Axiom 2.2 (Extensionality). Two sets A and B are equal, written A = B, if every element of A is a member of B and vice versa.

Axiom 2.3 (Existence). There exists a set, denoted by \emptyset or $\{\}$, known as the empty set, which does not contain any elements, $i.e., x \notin \emptyset$ for all objects x.

Problem 0.9. \varnothing is unique.

Proof. Suppose \varnothing and \varnothing' are both empty sets. Then $x \in \varnothing \iff x \in \varnothing'$ since both are always false.

Lemma 2.2 (Single choice). Let A be a non-empty set. Then there exists an object x such that $x \in A$.

Proof. If not, then $x \notin A$ for all objects x and so $A = \emptyset$.

Thus, we can choose an element of A to certify its non-emptiness.

Axiom 2.4 (Pairing). If a is an object, there exists a set, denoted $\{a\}$, whose only element is a. Similarly, if a and b are objects, there exists a set, denoted $\{a,b\}$, whose only elements are a and b.

For example, we can now construct \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}\}$, etc, all of which are distinct.

Axiom 2.5 (Pairwise union). Given sets A and B, there exists a set, denoted $A \cup B$, called the union of A and B, which consists of exactly the elements in A, B, or both.

Problem 0.10. $A \cup B = B \cup A$.

Proof. By commutativity of \vee .

Problem 0.11. $(A \cup B) \cup C = A \cup (B \cup C)$.

Proof. By associativity of \vee .

Definition 2.3 (Subset). A is a subset of B if every element of A is also an element of B, denoted $A \subseteq B$.

Axiom 2.6 (Specification). (also called Separation). Let A be a set and let P(x) be a property for every $x \in A$. Then there exists a set $S = \{x \in A \mid P(x)\}$ where $x \in S$ iff $x \in A$ and P(x) is true.

We can now define the intersection, $A \cap B$, and difference, $A \setminus B$, of sets A and B.

Definition 2.4. Let A and B be sets. we define the intersection $A \cap B = \{x \in A \mid x \in B\}$ and the difference $A \setminus B = \{x \in A \mid x \notin B\}$. A and B are said to be disjoint if $A \cap B = \emptyset$.

Recall that sets form a Boolean algebra under the operations \cup , \cap , and \setminus . For example, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, de Morgan's laws, etc.

Axiom 2.7 (Replacement). Let A be a set and let P(x,y) be a property for every $x \in A$ and every object y, such that for every $x \in A$ there is at most one y for which P(x,y) is true. Then there exists a set $S = \{y \mid P(x,y) \text{ is true for some } x \in A\}$. That is, $y \in S$ iff P(x,y) is true for some $x \in A$.

Examples.

- Let $A = \{7, 9, 22\}$ and $P(x, y) \equiv y = x_{++}$. Then $S = \{8, 10, 23\}$.
- Let $A = \{7, 9, 22\}$ and $P(x, y) \equiv y = 1$. Then $S = \{1\}$.

Axiom 2.8 (Infinity). There exists a set, denoted \mathbb{N} , whose objects are called natural numbers, *i.e.*, an object $0 \in \mathbb{N}$, and n_{++} for every $n \in \mathbb{N}$, such that the Peano axioms hold.

Axiom 2.9 (Foundation). (also called Regularity). If A is a non-empty set, then there exists at least one $x \in A$ which is either not a set or is disjoint from A.

For example, if $A = \{\{1,2\}, \{1,2,\{1,2\}\}\}\$, then $\{1,2\}$ is an element of A which is disjoint from A.

Lecture 04: Wed
10 Jan
'24

Definition 2.5 (Cartesian product). Let A and B be sets. Then $A \times B = \{(a,b) \mid a \in A, b \in B\}$ is called the *Cartesian product* of A and B.

This exists by virtue of the axiom of powers (2.10).

Definition 2.6 (Relation). Let A and B be sets. Then a subset R of $A \times B$ is called a (binary) *relation* from A to B. If B = A, we say that R is a relation on A.

We define some properties of relations.

Definition 2.7. Let R be a relation on a set A. We say that R is

- (i) **reflexive** if $(a, a) \in R$ for all $a \in A$,
- (ii) symmetric if $(a, b) \in R \implies (b, a) \in R$,
- (iii) antisymmetric if $(a, b) \in R \land (b, a) \in R \implies a = b$,
- (iv) transitive if $(a, b) \in R \land (b, c) \in R \implies (a, c) \in R$.

If R satisfies (i), (ii) and (iv), it is said to be an equivalence relation. We write $a \sim_R b$ for $(a, b) \in R$.

If R satisfies (i), (iii) and (iv), it is a partial order. We write $a \leq_R b$ or $a \geq_R b$ for $(a,b) \in R$.

Definition 2.8 (Equivalence class). Let X be a set and \sim_R an equivalence relation on X. The equivalence class associated with $x \in X$ is

$$[x] = \{ y \in X \mid y \sim_R x \}.$$

Definition 2.9 (Partition). A (set) partition of a set X is a family $\{X_{\alpha} \mid \alpha \in I\}$, where I is some indexing set, such that,

- (i) $X_{\alpha} \cap X_{\beta} = \emptyset$ for all $\alpha \neq \beta \in I$,
- (ii) $\bigcup_{\alpha \in I} X_{\alpha} = X$.

This is also written as simply

$$\bigsqcup_{\alpha \in I} X_{\alpha} = X.$$

Proposition 2.10 (Fundamental theorem of equivalence relations). Let X be a set and \sim_R an equivalence relation on X. Then the family of equivalence classes $\{[x] \mid x \in X\}$ forms a partition of X. Conversely, every partition arises from an equivalence relation.

Proof. Exercise.

Definition 2.11. Let X be a set and \sim_R an equivalence relation on X. Then the set $X/\sim_R = \{[x] \mid x \in X\}$ is called the *quotient set* of X by R.

Examples.

• Consider N with the relation $a \sim_R b \iff a \equiv b \pmod{3}$. The

quotient set \mathbb{N}/R is $\{[0], [1], [2]\}$, which is morally the same as $\{0, 1, 2\}$.

- For any set A with the equality relation =, the quotient set A/= is the (morally) the same as A.
- Consider \mathbb{R}^2 with $(x,y) \sim (z,w)$ if $x^2 + y^2 = z^2 + w^2$. Then $\mathbb{R}^2/\sim = \{[(r,0)] \mid r \in \mathbb{R}\}$ which is morally just the set of non-negative reals.

Definition 2.12 (Function). Let A and B be sets. A relation f from A to B is said to be a function if for all $a \in A$, there exists a unique $b \in B$ such that $(a, b) \in f$.

A is said to be the *domain*, B is said to be the *range* or *codomain* of f. For a subset $C \subseteq A$, the image of C under f is $f(C) = \{f(a) \mid a \in C\}$.

For a subset $D \subseteq B$, the *preimage* or *inverse image* of D under f is $f^{-1}(D) = \{a \in A \mid f(a) \in D\}.$

Note that f(C) exists by the axiom of replacement.

Examples.

• $A = B = \mathbb{N}$, $f(a) = a_{++}$. Then $f(\mathbb{N}) = \mathbb{N} \setminus \{0\}$.

$$f^{-1}(\{a\}) = \begin{cases} \{a-1\} & \text{if } a > 0\\ \emptyset & \text{if } a = 0 \end{cases}$$

Definition 2.13. Two functions f and g with the same domain X and range Y are equal if f(x) = g(x) for all $x \in X$.

Definition 2.14 (Composition). If $f: X \to Y$ and $g: Y \to Z$, then the *composition* $g \circ f$ is a function $g \circ f: X \to Z$ given by

$$(g \circ f)(x) = g(f(x)).$$

Definition 2.15. A function $f: A \to B$ is said to be

- injective, if f(x) = f(y) implies x = y,
- surjective, if f(A) = B,
- bijective, if it is both injective and surjective.
- an involution, if f(f(x)) = x for all $x \in A$.

Lecture 05: Fri 12 Jan '24

Exercise 2.16. Let $f: A \to B$ be an involution. Show that f is bijective.

Solution. f is surjective since everything is in the range. Injective since $f(x) = f(y) \implies f(f(x)) = f(f(y)) \implies x = y$.

A function is bijective iff for any $b \in B$ there is a unique $a \in A$ such that f(a) = b.

Definition 2.17. Let $f: A \to B$ be bijective. The *inverse* of f is the function $f^{-1}: B \to A$ where $f^{-1}(b)$ is the unique $a \in A$ such that f(a) = b.

Axiom 2.10 (Powers). Let X and Y be sets. Then there exists a set, denoted Y^X , consisting of all functions from $X \to Y$.

Exercise 2.18. Let X be a set. Then $\{Y \mid Y \subseteq X\}$ is also a set.

Solution. The property $P(F, X_F)$ given by

$$P(F, X_F) \iff F \in 2^X \land X_F = \{x \in X \mid F(x) = 1\}$$

is satisfied by at most one X_F for any F. Thus applying the axiom of replacement on 2^S gives the desired set.

Axiom 2.11 (Unions). Let A be a set whose elements are also sets. Then there exists a set, denoted $\bigcup A$, whose elements are the elements of the elements of A. Thus $x \in \bigcup A \iff x \in S$ for some $S \in A$.

Remarks. This axiom implies axiom 2.5.

Let I be a set such that A_{α} is a set for all $\alpha \in I$. Then $\{A_{\alpha} \mid \alpha \in I\}$ is a set by the axiom of replacement. Thus $\bigcup_{\alpha \in I} A_{\alpha}$ is a set.

Definition 2.19. Two sets X and Y are said to have the same *cardinality* if there exists a bijection $f: X \to Y$.

Let $n \in \mathbb{N}$. If a set X has the same cardinality as $\{0, 1, \dots, n-1\}$, then X is said to be *finite* and have cardinality n.

Definition 2.20. A set X is countably infinite or countable if it has the same cardinality as \mathbb{N} , is at most countable if it is finite or countable, and is uncountable otherwise.

Exercise 2.21. Let m < n be naturals. Show that there is

- (i) no surjection from [m] to $[n]^1$.
- (ii) no injection from [n] to [m].
- (iii) a bijection from [a] to [b] iff a = b.

Exercise 2.22 (Properties of countable sets).

- (i) If X and Y are countable, then so is $X \cup Y$.
- (ii) The set $\{(n,m) \in \mathbb{N} \times \mathbb{N} \mid 0 \le m \le n\}$ is countable.
- (iii) $\mathbb{N} \times \mathbb{N}$ is countable.

Theorem 2.23. Let X be an arbitrary set. Then X and 2^X cannot have the same cardinality.

Proof. Let $f: X \to 2^X$. Consider $A = \{x \in X \mid x \notin f(x)\} \subseteq X$. So $A \in 2^X$. Since for any $x \in X$, $x \in A \iff x \notin f(x)$, we have $f(x) \neq A$ for all $x \in X$. Thus f is not surjective.

News: Quiz 1 tomorrow. Material upto and including lecture 6.

Definition 2.24. Let I be a possibly infinite indexing set and for all $\alpha \in I$ let X_{α} be a set. Then its (possibly infinite) Cartesian product is defined as

$$\prod_{\alpha \in I} X_{\alpha} = \left\{ (x_{\alpha})_{\alpha \in I} \in \left(\bigcup_{\beta \in I} X_{\beta} \right)^{I} \mid x_{\alpha} \in X_{\alpha} \text{ for all } \alpha \in I \right\}$$

Exercise 2.25. For any sets I and X, $\prod_{\alpha \in I} X = X^I$.

Axiom 2.12 (Choice). Let I be a set and for all $\alpha \in I$ let $X_{\alpha} \neq \emptyset$. Then $\prod_{\alpha \in I} X_{\alpha}$ is non-empty.

Definition 2.26. A choice function on X is a function $f: 2^X \setminus \emptyset \to X$ such that for all non-empty $S \subseteq X$, $f(S) \in S$.

Fact 2.27. The existence of a choice function for every X is equivalent to the axiom of choice.

Lecture 06: Mon 15 Jan '24

 $^{^{1}[}n] = \{1, \ldots, n\}$

Remarks. A variant of AoC is the axiom of countable choice, which requires I to be at most countable.

Lemma 2.28. Let E be a bounded above non-empty subset of \mathbb{R} . Then there exists a sequence $(a_n)_{n\in\mathbb{N}}$ such that $a_n\in E$ for all n and $\lim_{n\to\infty}a_n=\sup E$.

Proof. Let $X_n = \{x \in E \mid \sup E - \frac{1}{n} \le x \le \sup E\}$. Each X_n is non-empty. By AoC, there exists a sequence $(a_n)_{n \in \mathbb{N}}$ such that for all $n, a_n \in X_n$. Thus $a_n \in E$ for all n and $\lim_{n \to \infty} a_n = \sup E$.

Definition 2.29. Let (P, \leq) be a poset. A subset $Y \subseteq P$ is called a *chain* or *totally ordered* if for any $y, y' \in Y$, either $y \leq y'$ or $y' \leq y$.

Definition 2.30. Let (P, \leq) be a poset and $Y \subseteq P$. We say that y is a *minimal* (resp. *maximal*) element of Y if there is no $y' \in Y$ such that y' < y (resp. y' > y).

Definition 2.31. Let (P, \leq) be a poset and $Y \subseteq P$ be a chain. We say that Y is *well-ordered* if every non-empty subset of Y has a minimal element.

Axiom 2.12 (Well-ordering principle). Given any set X, there exists a well-ordering on X.

Axiom 2.12 (Zorn's lemma). Let (X, \leq) be a non-empty poset such that every chain Y of X has an upper bound (there exists an $x \in X$ such that $y \leq x$ for all $y \in Y$). Then X has a maximal element.

Fact 2.32. The axiom of choice, well-ordering principle, and Zorn's lemma are equivalent.

Proof. **Zorn** \Longrightarrow **AoC.** Let $X \neq \emptyset$ and let P be the set of ordered pairs (Y, f) where $Y \subseteq X$ and f is a choice function on Y. Define $(Y, f) \leq (Y', f')$ if $Y \subseteq Y'$ and $f'|_Y = f$. P is non-empty because $\{x\} \subseteq X$ has a choice function for all $x \in X$.

Let C be a chain in P. Then let $\overline{Y} = \bigcup_{(Y,f)\in C} Y$ and define \overline{f} by setting $\overline{f}(S) = f(S)$ for any f for which f(S) is defined. Then $(\overline{Y}, \overline{f})$ is an upper bound for C.

By Zorn's lemma, there exists a maximal element of P, say (Y, f). If $x \in X \setminus Y$, we can extend f to $Y \cup \{x\}$ by defining f(S) = x for any S containing x. This contradicts the maximality of (Y, f). Thus $X \setminus Y$ must be empty, and so f is a choice function on X.

AoC \Longrightarrow **Zorn.** Let P be a poset whose every chain has an upper bound. Suppose P has no maximal element. Pick $x_0 \in P$ using a choice function. Since x_0 is not maximal, there exists an x_1 larger than x_0 , and x_2 larger than x_1 , and so on. This gives a chain $x_0 < x_1 < x_2 < \ldots$ But then x_{ω} is an upper bound for this chain. This gives another chain $x_{\omega} < x_{\omega+1} < \ldots$ But then $x_{2\omega}$ is an upper bound for this chain.

Continuing in this way, we get a chain which is "larger" than P itself, a contradiction.