Bitacora

Oro IMO 2025

Emmanuel Buenrostro

16 October 2024

Contents

	Problems			
	1.1	Octob	er	1
	Solutions			
	2.1	October		
		2.1.1	No primitive roots mod 2^n	1
		2.1.2	Japan 1996/2	3

§1 Problems

§1.1 October

Problem 1.1 (No primitive roots mod 2^n). Show that there are no primitive roots modulo 2^n for $n \geq 3$. That is, show there is no integer g such that g, g^2, g^3, \ldots every odd residue modulo 2^n .

Problem 1.2 (Japan 1996/2). Let m and n be odd positive integers with gcd(m, n) = 1. Evaluate

$$\gcd(5^m + 7^m, 5^n + 7^n).$$

Problem 1.3 (OMM 2020/6). Sea $n \ge 2$ un número entero. Sean x_1, x_2, \ldots, x_n números reales distintos de 0 que satisfacen la ecuación

$$\left(x_1 + \frac{1}{x_2}\right) \left(x_2 + \frac{1}{x_3}\right) \cdots \left(x_n + \frac{1}{x_1}\right) = \left(x_1^2 + \frac{1}{x_2^2}\right) \left(x_2^2 + \frac{1}{x_3^2}\right) \cdots \left(x_n^2 + \frac{1}{x_1^2}\right)$$

Problem 1.4 (OMM 2007/6). Sea ABC un triángulo tal que AB > AC > BC. Sea D un punto sobre el lado AB de tal manera que CD = BC, y sea M el punto medio del lado AC. Muestra que BD = AC si y sólo si $\angle BAC = 2\angle ABM$.

Problem 1.5 (IMO 1968/1). Find all triangles whose side lengths are consecutive integers, and one of whose angles is twice another.

§2 Solutions

§2.1 October

§2.1.1 No primitive roots mod 2^n

No primitive roots mod 2^n

Show that there are no primitive roots modulo 2^n for $n \geq 3$. That is, show there is no integer g such that g, g^2 , g^3 , ...covers every odd residue modulo 2^n .

Solution. We have that
$$g^{2^{n-1}} \equiv 1 \pmod{2^n}$$
 because $\varphi(2^n) = 2^{n-1}$ then
$$g^{2^{n-2}} \equiv -1 \pmod{2^n}$$

because we have 2^{n-1} different odd residues, and if $g^{2^{n-2}}$ were 1, we would have a cicle

of size 2^{n-2} and that's a contradiction. Then for $n \ge 3$ we have 2^{n-2} is even and $g^{2^{n-2}}$ is a square so -1 is a quadratic residue $\mod 2^n$, so it's a quadratic residue $\mod 8$, but that's false.

Then g doesn't exist.

§2.1.2 Japan 1996/2

Japan 1996/2

Let m and n be odd positive integers with gcd(m, n) = 1. Evaluate

$$\gcd(5^m + 7^m, 5^n + 7^n).$$

Solution. WLOG m > n (If m = n = 1 then the value is 12) Let $d = \gcd(5^m + 7^m, 5^n + 7^n)$. then $\left(\frac{5}{7}\right)^m \equiv \left(\frac{5}{7}\right)^n \equiv -1 \pmod{d}$. By Bezout we have x, y integers such that mx + ny = 1 and we have

$$\left(\frac{5}{7}\right) \equiv \left(\frac{5}{7}\right)^{mx} \cdot \left(\frac{5}{7}\right)^{ny} \equiv (-1)^{x+y} \pmod{d}$$

If x + y is even we have that x, y have the same parity and mx, ny also have the same parity then mx + ny is even but mx + ny is 1 so this is impossible. Then

$$\left(\frac{5}{7}\right) \equiv -1 \pmod{d}$$

And $5 \equiv -7 \pmod{d}$ then $d \mid 12$. And we're going to prove that d = 12. First, $4 \mid d$ because

$$5^m + 7^m \equiv 1^m + (-1)^m \equiv 1 - 1 \equiv 0 \pmod{4}$$

and

$$5^m + 7^m \equiv (-1)^m + 1^m \equiv -1 + 1 \equiv 0 \pmod{3}$$

then $12 \mid 5^m + 7^m$ and it's analogously for n, then $12 \mid d \mid 12$ and d = 12.