1

(Mar 2021)

Assignment 2

EE24Btech11024 - G. Abhimanyu Koushik

1) The maximum value of $f(x) = \begin{vmatrix} \sin^2 x & 1 + \cos^2 x & \cos 2x \\ 1 + \sin^2 x & \cos^2 x & \cos 2x \\ \sin^2 x & \cos^2 x & \sin 2x \end{vmatrix}, x \in \mathbb{R} \text{ is:}$

d) $\frac{3}{4}$		c)	$\sqrt{5}$	b)	a) $\sqrt{7}$				
2) Let A denote the event that a 6-digit integer formed by 0, 1, 2, 3, 4, 5, 6 without repetitions, be divisible by 3. Then the probability of event A is equal to:									
(Mar 2021)									
		c)		b)	a) $\frac{4}{9}$				
	$\frac{\{x\}^2 \sin^{-1}(1-\{x\})}{\{x\}-\{x\}^3} \qquad x = x$ an or equal to x .	on $f(x) = \begin{cases} \frac{\cos^{-1}(x)}{\alpha} \\ \alpha \end{cases}$ test integer less t	the gre	be such that the end of the such that the end of the such that the end of the such that the such that the end of the end of the such that the end of the en	3) Let α where				
(Mar 2021)									
d) $\alpha = \frac{\pi}{\sqrt{2}}$	= 0	α exists c)	No suc	b)	a) $\alpha =$				
4) If (x, y, z) be an arbitrary point lying on the plane P which passes through the points $(42, 0, 0)$, $(0, 42, 0)$, and $(0, 0, 42)$, then the value of expression $3 + \frac{x-11}{(y-19)^2(z-12)^2} + \frac{y-19}{(x-11)^2(z-12)^2} + \frac{z-12}{(x-11)^2(y-19)^2} - \frac{x+y+z}{14(x-11)(y-19)(z-12)}$ is equal to									
(Mar 2021)				(z-12)	14(x-11)				
d) -45)	c)	0	b)	a) 3				
5) Consider the integral $I = \int_0^{10} \frac{[x]e^{[x]}}{e^{x-1}} dx$, where $[x]$ denotes the greatest integer less than or equal to x . Then the value of I is equal to :									
(Mar 2021)				1					
d) $9(e+1)$	(e-1)	c)	45 (e +) b)	a) 45 (a				
6) Let C be the locus of the mirror image of a point on the parabola $y^2 = 4x$ with respect to the line $y = x$. Then the equation of tangent to C at $P(2, 1)$ is:									
(Mar 2021)		to C at $P(2,1)$	1 tanger	n the equation of	y = x.				
d) $x - y = 1$	+3y=5	(4 c)	x + 2y	5 b)	a) $2x +$				
7) If $y = y(x)$ is the solution of the differential equation $\left(\frac{dy}{dx}\right) + (\tan x)y = \sin x$, $0 \le x \le \frac{\pi}{3}$, with $y(0) = 0$, then $y\left(\frac{\pi}{4}\right)$ is equal to:									
(Mar 2021)				is equal to:	tnen y				

8) Let $A = \{2, 3, 4, 5,, 30\}$ and '=' be an equivalence relation on $A \times A$, defined by $(a, b) = (c, d)$. if and only if $ad = bc$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4, 3)$ is equal to:								
(Mar 2021)			+, 3) is equal to.	ordered pair (4				
	d) 7	c) 8	b) 6	a) 5				
9) Let the lengths of intercepts on x-axis and y-axis made by the circle $x^2 + y^2 + ax + 2ay + c = 0$, $(a < 0)$ be $2\sqrt{2}$ and $2\sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x + 2y = 0$, is equal to: (Mar 2021)								
	d) $\sqrt{7}$	c) $\sqrt{11}$	b) $\sqrt{6}$	a) $\sqrt{10}$				
10) The least value of $ z $ where z is complex number which satisfies the inequality $\exp\left(\frac{(z +3)(z -1)}{ z +1 }\log_e 2\right) \ge \log_{\sqrt{2}} 5\sqrt{7}+9i , i=\sqrt{-1}$, is equal to								
(Mar 2021)			71, 1 - V 1, 15 equal to	105 \(\gamma_2\) 5 \(\frac{1}{3}\) 7				
	d) 2	c) $\sqrt{5}$	b) 3	a) 8				
11) Consider a rectangle $ABCD$ having 5, 7, 6, 9 points in the interior of the line segments AB , BC , CD , DA respectively. Let α be the number of triangles having these points from the different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then $(\beta - \alpha)$ is equal to: (Mar 2021)								
3	d) 1173	c) 717	b) 795	a) 1890				
12) If the points of intersection of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = 4b$, $b > 4$ lie on the curve $y^2 = 3x^2$, then b is equal to:								
(Mar 2021)			-	·				
	d) 10	c) 6	b) 5	a) 12				
13) Given that the inverse trigonometric functions take principal values only. Then, the number of real value of x which satisfy $\sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$ is								
(Mar 2021)			(0)					
	d) 0	c) 3	b) 2	a) 1				
14) Let $A(-1, 1)$, $B(3, 4)$ and $C(2, 0)$ be given three points. A line $y = mx$, $m > 0$, intersects lines AC and BC at point P and Q respectively. Let A_1 and A_2 be the areas of $\triangle ABC$ and $\triangle PQC$ respectively, such that $A_1 = 3A_2$, then the value of m is equal to:								
(Mar 2021)				. 4				
	d) 3	c) 2	b) 1	a) $\frac{4}{15}$				

c) $\frac{1}{2\sqrt{2}}\log_e 2$ d) $\frac{1}{4}\log_e 2$

b) $\frac{1}{2} \log_e 2$

a) $\log_e 2$

15) Let f be a real-valued function, defined on $\mathbb{R} - \{-1, 1\}$ and given by $f(x) = 3\log_e\left(\frac{|(x-1)|}{|(x+1)|}\right) - \frac{2}{x-1}$. Then in which of the following intervals, function f(x) is increasing? (Mar 2021)

a)
$$(-\infty, -1) \cup \left(\left[\frac{1}{2}, \infty \right) - \{1\} \right)$$

b) $(-1, \frac{1}{2} \right]$

c)
$$(-\infty, \infty) - \{-1, 1\}$$

d) $(-\infty, \frac{1}{2}] - \{-1\}$