Course Code	21CYB101J	Course Name		Chemistry		Course Categor	В	Engineering S	cience	1 3	T 1	P 2	C 5
Pre-requis	site s		Co-requisite Courses	Nil		Pro	gressive ourses	Nil					
Course O	ffering Departm	nent Chemis	try		Data Book / Codes/Standards	Peri	dic Table	ie					

Course Learning Rationale (CLR):		The purpose of learning this course is to:					
,		rties of elements for bulk property manipulation towards technological advancement and					
		electrochemistry, such as corrosion, using thermodynamic principles and measure the act					
		eactions towards the design of fine chemical and drug molecules for industries and measured Eductance of aqueous solution					
CLR-4:	Brief outline, reaction type	es and applications of polymers and determine average molecular weight of the polymer					
		terization and applications of advanced engineering materials and measure the acidic strength					

	of aquious solution		Sering	m A	1 & I	is, D	n To	8	nme		dual &	unic	t Mg	I guc
Course	Outcomes (CO):	At the end of this course, learners will be able to:	Engine	Proble	Design	Analys	Modern	Society	Enviro	Ethics	Individ	Comm	Projec	Life L
CO-1 :	Rationalize bulk properties alkalinity	using periodic properties of elements, evaluate water quality parameters like hardness and	3	-	3	2	-	-	-	-	-	-	-	-
CO-2:	CO-2: Utilize the concepts of thermodynamics in understanding thermodynamically driven chemical reactions, determine acidic strength and redox potentials of aqueous solution				3	-	-	-	-	-	-	-	-	-
CO-3:	CO-3: Perceive the importance of stereochemistry in synthesizing organic molecules applied in pharmaceutical industries, determine acidic strength and conductance of aqueous solution			3	3	2	-	-	-	-	-	-	-	-
CO-4:	Utilize the concepts of polyn polymer	ner processing for various technological applications, determine average molecular weight of the	3	-	3	3	-	-	-	-	-	-	-	-
CO-5 :	Analyze the importance of e strength of aqueous solution	advanced processing techniques towards engineering applications and measure the acidic	3	-	3	-	3	-	-	-	-	-	-	-

Unit-1: PERIODIC PROPERTIES

18 Hours

Program Outcomes (PO)

(1- Low, 2 – Medium, or High-3)

nt & Sustainability

10

& Team Work

11

12

5 6

esign, Research

g Knowledge

Coordination numbers and geometries - Crystal field theory - Octahedral & Tetrahedral complexes - Optical & magnetic properties of transition metal complexes - Isomerism in transitional metal compounds - Effective nuclear charge, penetration of orbitals - variations of orbital energies of atoms in the periodic table - Electronic configurations, atomic and ionic sizes - ionization energies, electron affinity and electronegativity - Hard soft acids and bases

Experiments:

- Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration
- Determination of hardness (Ca2+) of water using EDTA Complexometry method.

Unit-2: USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA

18 Hours

Thermodynamic functions: Energy, Entropy and free energy - Estimation of entropy & free energies - Free energy and emf. Cell potentials - The Nernst equation and applications - Acid base, oxidation reduction - Solubility equilibria - Corrosion - Free energy of a corrosion reaction - Pourbaix diagram Salient Features and phase diagram for Iron.

Experiments:

- Determination of strength of an acid by Conductometry.
- Determination of ferrous ion using potassium dichromate by Potentiometric titration

Unit-3: STEREOCHEMISTRY AND ORGANIC REACTIONS

18 Hours

Representations of 3 dimensional structures - structural isomers and stereoisomers - configurations and symmetry and chirality - enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis - Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings - Synthesis of a commonly used drug molecule.

Experiments:

- Estimation of amount of chloride content of a water sample.
- Determination of the strength of a mixture of acetic acid and hydrochloric acid by Conductometry.

Unit-4: POLYMERS 18 Hours

Introduction to concept of macromolecules - Tacticity - Classification of Polymers - Thermoplastics, Thermosets and Elastomers - Types of Polymerization - Important addition and condensation polymers – synthesis and properties – Polypropylene, polystyrene, PVC, Teflon, Nylon, PET, Polyurethane and Synthetic rubber, Conducting polymers – introduction, types – n and p doping, examples (polyacetylene and P3HT), applications.

Experiments:

Determination of molecular weight of polymer by viscosity average method.

Unit-5: ADVANCED ENGINEERING MATERIALS

18 Hours

Mechanical properties of solid – stress-strain relationship - Tensile strength, Hardness, Fatigue, Impact strength, Creep – Composite materials - introduction - Types of composites - Fibre Reinforced Composites. Particle Reinforced Composites. Metal Matrix Composites. Ceramic Matrix Composites. Examples and applications. Surface Characterisation techniques - XRD and XPS

Experiments:

• Determination of strength of an acid using pH meter.

	1. B. H. Mahan, R. J. Meyers, University Chemistry, 4th ed., Pearson publishers, 2009.	4. Peter W. Atkins, Julio de Paula, James Keeler, Physical Chemistry, 11th ed., Oxford publishers, 2018
Learning	2. M. J. Sienko, R. A. Plane, Chemistry: Principles and Applications, 3rd ed., McGraw-Hill	5. K. P. C. Vollhardt, N. E. Schore, Organic Chemistry: Structure and Function 7 th ed., Freeman, 2014
Resources	publishers, 1980	6. W. D. Callister, D. G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed., Wiley, 2009
	3. B. L. Tembe, Kamaluddin, M. S. Krishnan, Engineering Chemistry (NPTEL Web-book)	7. J. C. Kuriacose, J. Rajaram, Chemistry in Engineering and Technology, Tata McGraw-Hill Education, 1984

			By The CoE						
	Bloom's Level of Thinking	CLA-I A uni	mative verage of t test 5%)	Lea CLA-II-	Long* rning Practice 5%)	Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	10	-	20	-	10	-		
Level 2	Understand	30	-	20	-	30	-		
Level 3	Apply	30	-	20	-	30	-		
Level 4	Analyze	30	-	40	-	30	-		
Level 5	Evaluate	-	-	-	-	-	-		
Level 6	Create	-	-	-	-	-	-		
	Total	10	00 %	10	0 %	100) %		

Course Designers							
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts					
1. Dr. Ravikiran Allada, Head R&D, Analytical,							
Novugen Pharma, Malaysia,	1. Prof. G. Sekar, IIT Madras, gsekar@iitm.ac.in	1. Prof. M. Arthanareeswari, SRMIST					
ravianalytical@gmail.com							
2. Dr. Sudarshan Mahapatra, General Manager,	2. Prof. Kanishka Biswas, JNCASR Bengaluru,						
Encube Ethicals Pvt. Ltd., Mumbai,	kanishka@jncasr.ac.in	2. Dr. K. Ananthanarayanan, SRMIST					
sudarshan.m@encubeethicals.com	Kamshka(w)ncasi.ac.m						