Análise de Complexidade

Fundamentos

Prof. Edson Alves - UnB/FGA 2020

Sumário

- 1. Complexidade Computacional e Assintótica
- 2. Notações Big-O, Big- Ω e Big- Θ

Complexidade Computacional e

Assintótica

Complexidade Computacional

- Um mesmo problema pode ser resolvido por algoritmos diferentes, com eficiências distintas
- A complexidade computacional é uma medida de comparação da eficiência entre diferentes algoritmos
- Foi desenvolvida por Juris Hartmanis e Richard E. Stearns
- Ela indica o esforço ou custo de um algoritmo
- Critérios para esforço: tempo de desenvolvimento, recursos humanos, viabilidade
- Critérios para custo: tempo de execução e espaço em memória
- Comparações absolutas do tempo de execução entre dois algoritmos distintos devem ser realizadas na mesma máquina, e os algoritmos devem ser escritos na mesma linguagem de programação

Comparação relativa do tempo de execução

- Comparações absolutas do tempo de execução são difíceis de realizar e de pouca utilidade prática
- Sendo assim, uma alternativa é comparar relativamente os tempos de execução entre algoritmos distintos, abstraindo fatores concretos
- Neste contexto, o tempo deve ser expresso não em unidades de medidas físicas (segundos, milissegundos, etc), e sim em unidades de medidas lógicas (relação entre o número de elementos N a serem processados e o tempo t necessário para o processamento dos mesmos)
- Exemplos de medidas lógicas de tempo:

$$t = 10N$$
$$t = \log_2 N$$
$$t = f(N)$$

Complexidade assintótica

- A função que expressa o tempo em função do número de termos tende a ser bastante elaborada e difícil de se explicitar
- Por isso, geralmente considera-se apenas os termos que afetam a ordem de magnitude da função
- A ordem de magnitude é determinada pelo termo que caracteriza o comportamento da função quando o número de elementos N tende ao infinito
- \bullet Em notação matemática, t(N) caracteriza o comportamento da função f(N) se

$$\lim_{N \to \infty} \frac{f(N)}{t(N)} = c,$$

onde c é uma constante

Esta aproximação é denominada complexidade assintótica

Exemplos de complexidade assintótica

Função	Termo dominante	Ordem de magnitude
a(N) = 123	123	Constante
$b(N) = \log N$	$\log N$	Logarítmica
$c(N) = N + 7\log_3 N^2$	N	Linear
$d(N) = N^2 + 50N + 250$	N^2	Quadrática
$e(N) = N^2 + N^3$	N^3	Cúbica
$f(N) = N^4 + \sqrt[5]{N^{21}}$	$\sqrt[5]{N^{21}}$	Polinomial
$g(N)=\sinh N+N^3$	$\frac{1}{2}e^N$	Exponencial
$h(N) = e^N + N!$	$\stackrel{\circ}{N}!$	Fatorial

Visualização numérica da complexidade assintótica

A complexidade assintótica pode ser aproximada numericamente através da observação da contribuição de cada termo da função f(N) a medida que N cresce

Por exemplo, considere a função $f(N) = N^2 + 100N + \log_{10} N + 1000$

	N = 1	N = 10	N = 100	N = 1.000
1000	90,8%	47,6%	4,8%	0,1%
$\log_{10}(N)$	0,0%	0,1%	0,0%	0,0%
100N	9,1%	47,6%	47,6%	9,1%
N^2	0,1%	4,7%	47,6%	90,8%

Notações Big-O, Big- Ω e Big- Θ

Notação Big-O

Definição

Dadas duas funções de valores positivos f e g, f(n) é O(g(n)) se existem c e N positivos tais que $f(n) \le cg(n), \ \forall n \ge N$

- O Big-O é uma notação para complexidade assintótica desenvolvida em 1894 por Paul Bachmann
- ullet Em termos matemáticos, cg(n) é uma cota superior de f(n)
- \bullet Informalmente, f tende a crescer, no máximo, tão rápido quanto g a partir de um determinado ponto

Determinando c e N

- Dados f e g, como determinar c e N?
- Por exemplo, a função $f(n) = 2n^2 + 3n + 1$ é $O(n^2)$, pois

$$2n^{2} + 3n + 1 \le cn^{2}$$
$$2 + \frac{3}{n} + \frac{1}{n^{2}} \le c$$

- Assim, para todo $n\geq 1$, temos que o lado direito é menor ou igual a 6. Portanto, N=1, c=6 satisfazem a definição da notação Big-O
- ullet A melhor escolha para c e N é aquela que baseada no ponto a partir do qual o termo principal se torna e se mantém o maior termo
- Retornando à função f(n), qual é a solução da inequação $2n^2>3n?$ Resposta: n>1
- \bullet Para N=2 , temos $c=\frac{15}{4}$

Observações sobre o Big-O

- Para função anteriormente citada, a afirmação f(n) é $O(n^3)$ também é verdadeira
- De fato, f(n) é O(g(n)) para qualquer $g(n)=n^k,\,k\geq 2$
- Na prática, escolhe-se o monômio de menor grau possível
- A aproximação Big-O pode ser refinada se aplicada apenas em parte da função. Ex.:

$$\begin{split} f(n) &= O(n^2) \\ f(n) &= n^2 + O(n) \\ f(n) &= n^2 + 100n + O(\log_{10} n) \\ f(n) &= n^2 + 100n + \log_{10} n + O(1) \\ f(n) &= n^2 + 100n + \log_{10} n + 1000 \end{split}$$

Propriedades da Notação Big-O

P1. Propriedade Transitiva

Se
$$f(n) = O(g(n))$$
 e $g(n) = O(h(n))$, então

$$f(n) = O(h(n))$$

P2. Soma de funções de mesma complexidade

Se
$$f(n) = O(h(n))$$
 e $g(n) = O(h(n))$, então

$$f(n) + g(n) = O(h(n))$$

P3. Absorção de constante em monômios

A função an^k é $O(n^k)$.

Propriedades da Notação Big-O

P4. Cota superior para polinômios

A função n^k é $O(n^{k+j}), \forall j > 0$.

P5. Absorção de constante

Se f(n) = cg(n), então f(n) é O(g(n)).

P6. Equivalência entre logaritmos

A função $f(n) = \log_a n$ é $O(\log_b n)$ para quaisquer a e b positivos diferentes de 1.

P7. Normalização da base logarítmica

A função $f(n) = \log_a n$ é $O(\log n)$ para qualquer a positivo diferente de 1, com $\log n = \log_2 n$.

Notação Big-O e polinômios

Proposição.

Se f(n) é um polinômio de grau k, então f(n) é $O(n^k)$.

Demonstração: Considere os monômios $f_i(n) = a_i x^i, i = 0, 1, \dots, k$. Temos que

$$f(n) = f_k(n) + f_{k-1}(n) + \ldots + f_0(n).$$

A propriedade 3 nos diz que $f_k(n)$ é $O(n^k)$ e a propriedade 4 nos diz que $f_{k-j}(n)$ é $O(n^{(k-j)+j})=O(n^k)$.

Por fim, pela propriedade 2,

$$f(n) = \sum_{j=0}^{k} f_{k-j}(n) \in O(n^k).$$

12

Notação Big-Ω

Definição

Dadas duas funções de valores positivos f e g, f(n) é $\Omega(g(n))$ se existem c e N positivos tais que $f(n) \geq cg(n), \ \forall n \geq N$

- ullet Lê-se "f é Big-Ômega g"
- ullet Em termos matemáticos, cg(n) é uma cota inferior de f(n)
- \bullet Informalmente, f(n) cresce, no mínimo, tão rápido quanto g(n) a partir de determinado ponto
- Enquanto o Big-O se refere às cotas superiores de f(n), o Big- Ω se refere às cotas inferiores
- \bullet Equivalência: f(n) é $\Omega(g(n))$ se, e somente se, g(n) é O(f(n))
- Tanto a definição do Big-O quanto do Big- Ω permitem infinitas possibilidades para c e N.
- • É possível restringir o conjunto de escolhas para c e N através da notação Big- Θ

Notação Big-⊖

Definição

Dadas duas funções de valores positivos f e g, f(n) é $\Theta(g(n))$ se existem c_1, c_2 e N positivos tais que

$$c_1g(n) \le f(n) \le c_2g(n), \ \forall n \ge N$$

- ullet Lê-se "f é Big-Theta g", ou "f tem ordem de magnitude g"
- Equivalência: f(n) é $\Theta(g(n))$ se, e somente se, f(n) é O(g(n)) e f(n) é $\Omega(g(n))$

Exemplo da notação Big-⊖

- Seja $f(n) = 2n^2 + 3n + 1$. Sabemos que f(n) é $O(n^2)$
- Pergunta: $f(n) \in \Omega(n^2)$?

$$2n^{2} + 3n + 1 \ge c_{1}n^{2}$$
$$2 + \frac{3}{n} + \frac{1}{n^{2}} \ge c_{1}$$

- A inequação é verdadeira para $c_1=2, N=1$
- \bullet Logo f(n) é $\Omega(g(n))$ e, portanto, f(n) é $\Theta(g(n))$

Problemas possíveis

- O fato de um algoritmo ter ordem de complexidade menor do que o outro não implica que ele seja o mais eficaz em todos os casos
- Por exemplo, considere as funções $f(n) = 10^8 n$ e $g(n) = 10n^2$
- $\bullet \ \ {\rm Temos} \ {\rm que} \ f(n) \ {\rm \'e} \ O(n) \ {\rm e} \ g(n) \ {\rm \'e} \ O(n^2)$
- Para $n < 10^7$, o tempo de execução de f(n) é maior do que o de g(n)
- \bullet Apenas para valores maiores ou iguais a 10^7 é que a função f(n) se torna mais eficiente do que a função g(n)

Exemplos de complexidade (n = 10)

Classe	Notação	Número de operações	Tempo de execução ¹
constante	O(1)	1	1μ s
logarítmica	$O(\log n)$	2,3	2μ s
linear	O(n)	10	$10\mu s$
$O(n \log n)$	$O(n \log n)$	23	23μ s
quadrática	$O(n^2)$	100	$100\mu \mathrm{s}$
cúbica	$O(n^3)$	1000	1 ms
exponencial	$O(2^n)$	1024	10ms

 $^{^1}$ Uma instrução por μ s

Exemplos de complexidade (n = 100)

Classe	Notação	Número de operações	Tempo de execução ¹
constante	O(1)	1	1μ s
logarítmica	$O(\log n)$	4, 6	5μ s
linear	O(n)	100	$100 \mu \mathrm{s}$
$O(n \log n)$	$O(n \log n)$	460	$460 \mu \mathrm{s}$
quadrática	$O(n^2)$	10000	$10 \mathrm{ms}$
cúbica	$O(n^3)$	10^{6}	1s
exponencial	$O(2^n)$	10^{30}	10^7 a

 $^{^1}$ Uma instrução por μ s

Exemplos de complexidade (n = 1000)

Classe	Notação	Número de operações	Tempo de execução ¹
constante	O(1)	1	1μ s
logarítmica	$O(\log n)$	6, 9	7μ s
linear	O(n)	1000	1 ms
$O(n \log n)$	$O(n \log n)$	6907	60ms
quadrática	$O(n^2)$	10^{6}	1s
cúbica	$O(n^3)$	10^{9}	$16,7\mathrm{m}$
exponencial	$O(2^n)$	10^{301}	

 $^{^1}$ Uma instrução por μ s

Referências

1. **DROZDEK**, Adam. *Algoritmos e Estruturas de Dados em C++*, 2002.