Bond Trading System

Kenneth Shinn

3 Parts

- Business Cycles Indicator (Inflation and GDP)
 - Aims to measure current location in a business cycle
- Signal Generator (one country and multiple countries)
 - Generates positions given the indicator
- Returns Calculator (one country and multiple countries)
 - Calculates daily returns given the positions

Business Cycles Indicator Desiderata

- Measure current location in a business cycle
 - High GDP and Inflation growth signify expanding economy
 - Expanding economy will lead to increases in the interest rate, decreasing value of bonds
- Quantify period GDP and Inflation growth as one easily interpretable and consistent number
 - The number should have a similar "impact" regardless of the date

Business Cycles Indicator Implementation

- 1. Calculate percent change of Real GDP and inflation
- Calculate z-scores of RGDP and inflation growth using rolling means and SD
- 3. For each date, take a weighted average (RGDP 2, inflation 1) of the relevant z-scores.
- 4. Turn that weighted average of z's into a z-score with respect to all weighted average z's up until that date.

We are left with a data frame of values describing combined RGDP and inflation growth with respect to mean combined RGDP and inflation growth up until that date. This is our proxy for determining location in a business cycle. Positive values indicate to expansionary periods and negative values indicate recessionary periods.

Does it actually measure what we want it to?

Let's take a look at USA, CAN, and AUS.

Potential?

Signal Generator Desiderata

- Output position in [-1,1] for each date that we have an indicator
- For system signal generation, we want:
 - Positions corresponding to the relative indicator values for the countries
 - Global neutral positions

Signal Generator Implementation

Single country case:

- 1. If the indicator is > 0.5 or < -0.5, go fully short (-1) or long (1), respectively
- 2. Otherwise, our position is -1 * indicator / 0.5

Multiple country system case:

- 1. Calculate weighted sum of the indicators, call this α
- 2. Subtract α from each indicator to get the global neutral signals
- 3. Multiply by -1 to account for inverse relationship
- 4. Find signal with greatest absolute value, σ
- 5. Divide all signals by σ to normalize

Indicator to Signal Example (One Country)

date		date	
1990-01	0.249998	1990-01	-0.499997
1990-02	0.448681	1990-02	-0.897361
1990-03	0.850297	1990-03	-1.000000
1990-04	-0.950047	1990-04	1.000000
1990-05	-1.141112	1990-05	1.000000
1990-06	-0.526637	1990-06	1.000000
1990-07	-0.987528	1990-07	1.000000

Indicator

Signal

Indicator to Signal Example (Multi-Country)

country date	USA	CAN	AUS	country date	USA	CAN	AUS
2020-04	-11.777663	-1.641014	-3.461253	2020-04	-11.777663	-1.641014	-3.461253
2020-05	-9.627129	-1.628568	-3.356703	2020-05	-9.627129	-1.628568	-3.356703
2020-06	-8.250509	0.594086	-1.803584	2020-06	-8.250509	0.594086	-1.803584
2020-07	-0.689559	-1.128130	-1.781613	2020-07	-0.689559	-1.128130	-1.781613
2020-08	-0.686999	-1.123728	-1.768709	2020-08	-0.686999	-1.123728	-1.768709
country	USA	CAN	AUS	country	USA	CAN	AUS
date				date			
2020-04	1.000000 -	-0.647962	-0.352038	2020-04	0.835224	-1.000000	-0.670449
2020-05	1.000000 -	-0.681667	-0.318333	2020-05	0.805009	-1.000000	-0.610018
2020-06	1.000000 -	-0.735196	-0.264804	2020-06	0.761270	-1.000000	-0.522540
2020-07	-0.876879 -	-0.123121	1.000000	2020-07	-0.539410	0.078820	1.000000
2020-08	-0.879392 -	-0.120608	1.000000	2020-08	-0.540677	0.081355	1.000000

Equal Weights

USA: 2, CAN: 1, AUS: 1

Returns Calculator

Calculates the sum of all countries' weights*returns, where returns are position*lagged_returns for each country

USA Performance

Performance in US bond market

Portfolio Returns Mean, SD, and Sharpe Ratio 0.056329299811112045 0.08111919704155976

0.6944015950041132

Active Money Made: 2.4610426613722742 Passive Money Made: 3.1077267087451617 Long Returns Mean, SD, and Sharpe Ratio

0.07210208145435303

0.09083420174533659

0.793776794081363

Returns Correlation 0.3099274194204633

Signals in US bond market

1996 - 1999 Bad Performance

Comparing to GDP Only

Comparing to Inflation Only

Active Money Made: 0.642947509702854 Passive Money Made: 3.1077267087451617

50% Fully Long and 50% Active Management

Combined Portfolio Returns Mean, SD, and Sharpe Ratio

0.06324909886977038

0.07988167499313319

0.7917848351979027

Long Returns Mean, SD, and Sharpe Ratio

0.07210208145435303

0.09083420174533659

0.793776794081363

Active Money Made: 2.744754422777288
Passive Money Made: 3.1077267087451617

Adjusting for Risk in Combined Portfolio

Risk Adjusted Returns Mean, SD, and Sharpe Ratio 0.07607189084986264 0.09442757580982067 0.805610969014742

Active Money Made: 3.292684554041681
Passive Money Made: 3.1077267087451617

Long Returns Mean, SD, and Sharpe Ratio 0.07210208145435303 0.09083420174533659

0.793776794081363

USA, CAN, AUS Performance

Performance in USA, CAN, AUS

Portfolio Returns Mean, SD, and Sharpe Ratio 0.002652235341357021 0.017156852097767447 0.15458752725986055

Active Money Made: 0.08894329001648807 Passive Money Made: 2.5554845417424823 Long Returns Mean, SD, and Sharpe Ratio

0.07201423984868398

0.07781630463530527

0.9254389576347359

Returns Correlation 0.02745736290119818

Signals in USA, CAN, AUS

50% Fully Long and 50% Global Neutral

Combined Portfolio Returns Mean, SD, and Sharpe Ratio 0.0373332375950205

0.041427028439508455 0.9011806784436474

Active Money Made: 1.3222139158794899 Passive Money Made: 2.5554845417424823 Long Returns Mean, SD, and Sharpe Ratio

0.07201423984868398

0.07781630463530527

0.9254389576347359

Adjusting for Risk in Combined Portfolio

Risk Adjusted Returns Mean, SD, and Sharpe Ratio 0.049258037288359396

0.05480870277788834

0.8987265669829306

0.07201423984868398

0.07781630463530527

0.9254389576347359

Active Money Made: 1.745678630373563 Passive Money Made: 2.5554845417424823

Points of Failure

Linkage doesn't always exist

- Looking back at one country setting, GDP and Inflation can grow alongside bond returns for a variety of reasons
- Improve by adding more factors to make business cycle estimation more accurate and building more indicators to fall back on when the business cycle indicator fails

Low frequency of data

- We're essentially evaluating at the beginning of the month whether to go long/short for the whole month. Potentially, something detrimental could happen to the market on the second day of the month, and we'd be trading blindly for ~20 business days.
- Improve by adding indicators that have a higher frequency of data

Naive beginning

- Z-scores are defined with respect to a mean and SD, and these estimates are less accurate closer to the start of the data (1980)
- Improve by expanding the data's history