

Duração: 1 hora

Nome	Nº

Problema 1. Uma amostra de sólidos divididos com massa específica de 2.89 g/cm³ e tamanho de partícula inferior ou igual a 73 mm foi classificada por elutriação multi-estágio com 4 colunas em série. Uma suspensão com 1370 g de sólido e água (viscosidade = 1 cP e massa específica de 1 g/cm³) atravessou o sistema com os resultados indicados na tabela:

Coluna	Tamanho de sedimentados (μm)	Massa de sedimentados (g)	Velocidade da suspensão (m/s)
1	$350 < d \le 730$	690	
2	$50 < d \le 350$	270	
3	$17 < d \le 50$	103	
4	$2.7 < d \le 17$	61	
Fração residual	$d \le 2.7$	246	n.a.

- a) Complete a tabela com as velocidades de escoamento (m/s) em cada coluna. [4 val]
- b) Calcule o diâmetro médio baseado em volume [2 val]
- c) Calcule o diâmetro médio baseado em número [2 val]
- d) Calcule a fração de superfície do sedimentado na coluna 3 [2 val]
- e) Quando usa a lei de Newton, qual é o tipo de atrito prevalente? Descreva-o. [2 val]

Problema 2. Usa-se um moinho de rolos com 2 m de diâmetro e 0.8 m de comprimento para reduzir o tamanho dum material sólido com massa específica de 1870 kg/m3 e resistência ao esmagamento de 22 MN/m². O moinho opera a uma frequência de 2 Hz e sabe-se que a sua capacidade real é 9% da teórica. O material de entrada tem tamanho entre 35 e 15 mm. Uma experiência demonstrou que a operação gasta 7.7 kJ/kg resultando num produto com tamanho médio de 3.7 mm

- a) Qual a distância entre rolos por forma a que o moinho opere adequadamente? [2 val]
- b) Calcule a potência do moinho nas condições descritas? [2 val]
- c) Qual seria a potência de operação se a resistência ao esmagamento fosse o dobro?
 Justifique [2 val]
- d) Entre redução, fina, intermédia e grosseira, qual a operação com gasto específico de energia, kJ/kg, superior? Justifique [2 val]

Table 3.4. Values of log Re' as a function of $\log\{(R'/\rho u^2)Re'^2\}$ for spherical particles

$\log\{(R'/\rho u^2)Re'^2\}$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2 1 0 1 2	3.919 2.908 1.874 0.738	2.018 1.007 1.967 0.817	2.117 1.105 0.008 0.895	2.216 1.203 0.148 0.972	2.315 1.301 0.236 1.048	2.414 1.398 0.324 1.124	2.513 1.495 0.410 1.199	3.620 2.612 1.591 0.495 1.273	3.720 2.711 1.686 0.577 1.346	3.819 2.810 1.781 0.659 1.419
3 4 5	1.491 2.171 2.783	1.562 2.236 2.841	1.632 2.300 2.899	1.702 2.363 2.956	1.771 2.425 3.013	1.839 2.487 3.070	1.907 2.548 3.127	1.974 2.608 3.183	2.040 2.667 3.239	2.106 2.725 3.295

RESOLUÇÃO:

Nome	Nº

Nome	Nο	

lome	Nº
------	----

Nome	Nº

Nome	Nº