INVERSE TRIGONOMETRIC FUNCTIONS (ATTENDANCE QUIZ)

COLTON GRAINGER (MATH 1300)

Your name (print clearly in capital letters):
This is an ungraded quiz that will count for attendance today. It's due at the end of recitation. Dig in!
Apéritif (definitions)
A function is a rule f that assigns to each element of a set A to exactly one element of a set B . We write
$f \colon A o B$
to display all the ingredients together. The set A is called the domain of f , and the set B is called the codomain (or range) of f . We often represent the "data" of a function $f: A \to B$ by plotting its graph . For example, the graph of the function $\operatorname{arctan}: \mathbf{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ is the set of <i>coordinate pairs</i>
$\{(t, \arctan(t)) : \text{ for all } t \text{ in the domain } \mathbf{R}\}.$
For the following questions, you may find it helpful to look at plots of the graphs of $arctangent$, $arcsine$, and $arccosine$ on the back of this sheet.
Hors d'oeuvre (multiple choice)
1. arcsin assigns elements of the set [?] to the set [?]
(A) $[-1,1] \to [0,\pi]$ (B) $[-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ (C) $[-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1,1]$ (D) All of the above (E) None of the above
Your answer:
2. arccos assigns elements of the set [?] to the set [?]
(A) $[-1,1] \to [0,\pi]$ (B) $[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$ (C) $[-\frac{\pi}{2},\frac{\pi}{2}] \to [-1,1]$ (D) All of the above (E) None of the above
Your answer:
3. One of these functions has a horizontal asymptote as $x \to +\infty$ and a horizontal asymptote as $x \to -\infty$, with the limiting values for $+\infty$ and $-\infty$ being different. Identify the function.
(A) $f(x) := \ln x $. (B) $f(x) := \arctan x$. (C) $f(x) := e^{-x}$. (D) $f(x) := e^{-x^2}$.
Your answer:

 $Date : 2019 \hbox{-} 03 \hbox{-} 06.$

DIGESTIF (TRUE OR FALSE)

- 4. Recall that an **open interval** (a, b) is the set of real numbers $\{x : a < x < b\}$. Extending this notion, we say that a subset U of \mathbf{R} is **open** if
 - for each point $x \in O$,
 - ullet there's an open interval (a,b) such that
 - the point x is an element of (a, b), and
 - the set (a, b) is contained in O.

TRUE or FALSE: The domain of arctan is open.

Your answer: _____

Graphs of the promised functions

The Cartesian plane, denoted \mathbb{R}^2 , is the set of coordinate pairs

 $\{(x,y): \text{ for all real numbers } x \text{ and } y\}.$

So, here are graphs of the inverse trigonometric functions. They are subsets of the Cartesian plane!

FIGURE 1. Arctangent

FIGURE 2. Arcsine and Arcosine

References

- Vipul Naik made the plots and wrote question 3. See https://vipulnaik.com/math-152/.
- I am borrowing cuisine as a quiz theme from Hiro Lee Tanaka.