Выполнение расчетного задания по дисциплине Тепломассообмен в среде

Mathematica 14

Студент: Маркаров М.Г.

Группа: ТФ-13-22

Задача № 1

Задача 1.

В три стальные трубы $(d_2x\delta=130x4 \text{ мм})$, расположенные на открытом воздухе с температурой 10°C поступает горячая вода при температуре 110°C и давлении 5 МПа, которая движется со скоростью 21 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0.045 Bт/м·K. Определить длину трубы если на выходе из нее температура воды уменьшилась на 30°C . Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 1.1 Bт/м·K и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ϵ =0,8, коэффициент теплоотдачи 9.6 Bт/м²-K. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 9.6 Bт/m²-K. Построить графики $t_{\text{ж}}(x)$, $q_{\text{L}}(x)$, $q_{\text{C}}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

```
Данные из условия:
```

```
d2=130(mm);\delta=4(mm) - геометрия труб ; tAir=10 (°C)-температура воздуха;tLiquid1=110(°C)-температура горячей воды на входе (как t_{\varkappa l}) ; p=5(MPa)- давление горячей воды;w=21(km/h) - скорость течения горячей воды; \lambda MinWool=0.045(W/m*K);\delta MinWool=50(mm); tLiquid2=110-30=80(°C)-температура горячей воды на выходе(как t_{\varkappa 2}) ; \lambda Concrete=1.1(W/m K);\delta Concrete=50(mm);\epsilon=0.8-излучательная способность поверхности материала труб; \alpha=9.6 (W/m² K)-коэффициент теплоотдачи
```

```
In[1]:= d2 = 130 * 10^{-3};

\delta = 4 * 10^{-3};

tAir = 10;

tLiquid1 = 110;

p = 5 * 10^{6};

w = 21 / 3.6;

\lambda MinWool = 0.045;

\delta MinWool = 50 * 10^{-3};

tLiquid2 = 80;

\lambda Concrete = 1.1;

\delta Concrete = 50 * 10^{-3};

\epsilon = 0.8;

\alpha = 9.6;
```

Сталь берем нержавеющую, ее коэффициент теплопроводности λSteel (W/m K) берем как const в виду слабой зависимости от температуры:

```
In[4]:= \lambda Steel = 14.4;
```

Изобарную (p=5MPa)теплоемкость и плотность воды при tLiquid1 и tLiquid2 найдем через REFPROP:

```
cp:
tLiquid1=110 (°C)
cp1=4.2169 (kJ/kg K)
```

tLiquid2=80 (°C)

cp2=4.1863 (kJ/kg K)

плотность:

tLiquid1=110 (°C)

 ρ 1=953.25 (kg/m^3)

tLiquid2=80 (°C) ρ2=973.94 (kg / m³)

ln[5]:= cp1 = 4.2169; cp2 = 4.1863; ρ 1 = 953.25; ρ 2 = 973.94;

Средняя удельная изобарная теплоемкость cpAverage(kJ/kg K)

$$In[6]:=$$
 cpAverage = $\frac{cp1 + cp2}{2}$
Out[6]= 4.2016

Средняя плотность воды ρ Average (kg $/ m^3$)

$$ln[7] = \rho Average = \frac{\rho 1 + \rho 2}{2}$$

Out[7]= **963.595**

Массовый расход воды G(kg/s)

$$ln[8]:= G = \pi * \left(\frac{d2 - 2 * \delta}{2}\right)^2 * w * \rho Average$$

Out[8] = 65.708397

Найдем диаметры *d1*, *d3* (*m*)

$$In[9]:=$$
 $d1 = d2 - 2 \delta // N$ _ _ ЧИСЛЕННОЕ П $Out[9]=$ 0.122 $In[10]:=$ $d3 = d2 + 2 \delta // N$ _ _ ЧИСЛЕННОЕ П $Out[10]=$ 0.138

Найдем линейный коэффициент теплопередачи для трубы с ватной изоляцией KlinearMinWool (W/m K)

$$In[11]:= KlinearMinWool = \frac{1}{\frac{1}{\alpha*d1} + \frac{1}{2\lambda Steel} * Log\left[\frac{d2}{d1}\right] + \frac{1}{2\lambda MinWool} * Log\left[\frac{d3}{d2}\right] + \frac{1}{\alpha*d3}}$$
Out[11]=
$$0.43967477$$

Применяя формулу Шухова найдем расстояние(длину трубы) на котором будет выполняться условие разности температур на входе и выходе в трубу с изоляцией из минеральной ваты:

$$In[12]$$
:= First NSolve tLiquid2 == tAir + (tLiquid1 - tAir) * Exp $\left[\frac{-\text{KlinearMinWool}}{\text{показат}G_{n}^{*}} * \pi * x\right], x$ Out[12]=
$$\{x \to 71.289696\}$$

Таким образом длина трубы равна 71.289696m)

In[13]:= L = 71.289696;

Найдем линейный коэффициент теплопередачи для трубы с бетонной изоляцией KlinearConcrete (W/m K)

$$In[14] := \text{ KlinearConcrete} = \frac{1}{\frac{1}{\alpha*d1} + \frac{1}{2\lambda \text{Steel}} * \text{Log}\left[\frac{d2}{d1}\right] + \frac{1}{2\lambda \text{Concrete}} * \text{Log}\left[\frac{d3}{d2}\right] + \frac{1}{\alpha*d3}}$$

0.61049819

Out[14]=

6 | №1.пь По формуле Шухова найдем температуру на выходе из трубы с бетонной изоляцией:

```
In[15]:= t[x_, k_] := tAir + (tLiquid1 - tAir) * Exp \left[ \frac{-k}{noka3} * \pi * x \right]
In[16]:= t[L, KlinearConcrete]
Out[16]:= 70.941787
```

Найдем линейный коэффициент теплопередачи для трубы без изоляции KlinearRaw (W/m K)

```
In[17] := KlinearRaw = \frac{1}{\frac{1}{\alpha * d1} + \frac{1}{2 \, \lambda Steel} * Log[\frac{d2}{d1}] + \frac{1}{\alpha * d3}}
Out[17] = 0.62078588
```

По формуле Шухова найдем температуру на выходе из трубы без изоляции:

```
In[18]:= t[L, KlinearRaw]
Out[18]=
70.435306
```

Функция теплового потока и плотности теплового потока:

```
In[19]:= Q[x_, k_] := k * \pi * (t[x, k] - tAir) * x;

qLinear[x_, k_] := k * \pi * (t[x, k] - tAir);
```

Тепловой поток Q(W) и его линейная плотность gLinear(W/m) для голой трубы:

Тепловой поток Q(W) и его линейная плотность qLinear(W/m) для трубы с бетонной изоляцией:

Тепловой поток Q(W) и его линейная плотность qLinear(W/m) для трубы с ватной изоляцией:

Произведем расчеты по другому:

```
\label{eq:ln[27]:= qLinearAdditional[k_]:= k*\pi*} \left( \frac{\text{tLiquid1} + \text{tLiquid2}}{2} - \text{tAir} \right)
```

```
Запишем баланс энергий:
```

```
Q=qLinear*L=G*cpAverage*(tLiquid1-tLiquid2)=\pi * \left(\frac{d1}{2}\right)^2 * w * cpAverage * \rhoAverage * (tLiquid1 – tLiquid2),отсюда можно найти L:
```

```
In[28]:= NSolve [qLinearAdditional[KlinearMinWool] * x == \pi * \left(\frac{d1}{2}\right)^2 * w * cpAverage * \rhoAverage * (tLiquid1 - tLiquid2), x]
```

Out[28]= $\{\; \{\, x \,\to\, 70.543417 \}\; \}\;$

Таким образом длина трубы по этому способу равна Ladditional(m)

In[29]:= Ladditional = 70.543417;

Выразим tLiquid2 из линейной плотности теплового потока как переменную:

$$\pi * \left(\frac{d1}{2}\right)^2 * w * cpAverage * \rho Average * (tLiquid1 - tLiquid2asVariable), tLiquid2asVariable$$

 $\left\{ \left\{ \text{tLiquid2asVariable} \rightarrow \frac{30\,368.844 - 141.37167 \, k \, x}{276.0804 + 1.5707963 \, k \, x} \right\} \right\}$

$$ln[31]:=$$
 tLiquid2asVariable[k_, x_] :=
$$\frac{30\,368.844 - 141.37167 * k * x}{276.0804 + 1.5707963 * k * x}$$

Теперь найдем температуры на выходе из трубы с бетонной изоляцией и трубы без изоляции.

Бетонная изоляция:

In[32]:= tLiquid2asVariable[KlinearConcrete, Ladditional]

Out[32]= **70.638269**

Голая труба:

In[33]:= tLiquid2asVariable[KlinearRaw, Ladditional]

70.107276

Out[33]=

80

Изобразим функциональные зависимости температуры жидкости в точке χ , где χ -обобщенное расстояние(длина трубы)

```
ln[34]:= Plot[{t[\chi, KlinearConcrete], t[\chi, KlinearMinWool], t[\chi, KlinearRaw]},
       _график функции
         \{\chi, 0, L\}, PlotLabel → "Расчет по формуле Шухова", PlotTheme → "Scientific",
                    пометка графика
                                                                  тематический стиль графика
         PlotLegends → {"Concrete(Шухов)", "Mineral Wool(Шухов)", "Raw tube(Шухов)"},
         _легенды графика
         ImageSize → Large, GridLines → Automatic]
         размер изоб⋯ [круп⋯ | линии коорд⋯ [автоматический
Out[34]=
                                              Расчет по формуле Шухова
        110
        100
                                                                                                            Concrete(Шухов)
                                                                                                            Mineral Wool(Шухов)
        90
                                                                                                            Raw tube(Шухов)
        80
       Plot[{tLiquid2asVariable[KlinearConcrete, \chi], tLiquid2asVariable[KlinearMinWool, \chi],
          tLiquid2asVariable[KlinearRaw, \chi]}, {\chi, 0, L}, PlotLabel \rightarrow "Расчет через баланс энергий",
                                                               пометка графика
         PlotTheme → "Scientific", PlotLegends → {"Concrete(баланс)", "Mineral Wool(баланс)", "Raw tube(баланс)"},
         тематический стиль графика
                                      легенды графика
         ImageSize → Large, GridLines → Automatic]
         размер изоб⋯ [круп⋯ | линии коорд⋯ [автоматический
Out[35]=
                                             Расчет через баланс энергий
        110
        100
                                                                                                            Concrete(баланс)
        90
                                                                                                            Mineral Wool(баланс)
```

Raw tube(баланс)

Сопоставим функции температур в одной системе координат:

Out[36]=

Точно так же изобразим функции линейных плотностей тепловых потоков. Для начала введем функцию линейной плотности теплового потока при расчете методом баланса энергий:

$$In[37]:=$$
 qLinearAdditionalFunction[k_] := k * π * $\left(\frac{tLiquid1 - tLiquid2}{2} - tAir\right)$

Покажем графики линейных плотностей тепловых потоков в одной координатной плоскости ql(W/m):

```
ln[38]:= Plot[{qLinear[\chi, KlinearConcrete], qLinear[\chi, KlinearMinWool],
     _график функции
        qLinear[\chi, KlinearRaw], qLinearAdditionalFunction[KlinearConcrete],
        qLinearAdditionalFunction[KlinearMinWool], qLinearAdditionalFunction[KlinearRaw]},
       \{\chi, 0, L\}, PlotLabel \rightarrow "Cpabhehue pacчетов ql", PlotTheme \rightarrow "Scientific",
                                                          тематический стиль графика
       PlotLegends → {"Concrete Шухов", "Mineral Wool Шухов", "Raw tube Шухов", "Concrete Баланс",
       _легенды графика
         "Mineral Wool Баланс", "Raw tube Баланс"}, ImageSize → Large, GridLines → Automatic]
```

размер изоб⋯ круп⋯ инии коорд⋯ автоматический

Теперь построим поверхностные плотности тепловых потоков qc (W/m^2):

In[39]:= qcShuhov[x_, k_] :=
$$\frac{\text{qLinear}[x, k]}{\pi * \text{d1}}$$
; qcBalance[k_] := $\frac{\text{qLinearAdditionalFunction}[k]}{\pi * \text{d1}}$;

```
\ln[40] = \text{Plot}[\{\text{qcShuhov}[\chi, \text{KlinearConcrete}], \text{qcShuhov}[\chi, \text{KlinearMinWool}], \text{qcShuhov}[\chi, \text{KlinearRaw}],
      график функции
         qcBalance[KlinearConcrete], qcBalance[KlinearMinWool], qcBalance[KlinearRaw]},
        \{\chi, 0, L\}, PlotLabel \rightarrow "Cpabhehue pacчетов qc", PlotTheme \rightarrow "Scientific",
                     пометка графика
                                                                   тематический стиль графика
        PlotLegends → {"Concrete Шухов", "Mineral Wool Шухов", "Raw tube Шухов", "Concrete Баланс",
```

Out[40]=

_легенды графика "Mineral Wool Баланс", "Raw tube Баланс"}, ImageSize → Large, GridLines → Automatic]

Сравнение расчетов ос 400 Concrete Шухов Mineral Wool Шухов 300 Raw tube Шухов Concrete Баланс 200 Mineral Wool Баланс Raw tube Баланс 100

размер изоб··· круп··· линии коорд··· автоматический

Найдем среднее значение линейной плотности теплового потока(W/m):

Среднее значение температуры на поверхности труб:

Среднее значение температуры на поверхности труб:

In[44]:= NSolve
$$\left[\left\{ \text{qLinearAverageWithoutInsulation} =: \pi * \frac{\text{twWithoutIns} - \text{tAir}}{\frac{1}{\alpha * \text{d2}}} \right\} \right]$$
,

qLinearAverageConcreteInsulation =: $\pi * \frac{\text{twConcreteIns} - \text{tAir}}{\frac{1}{\alpha * \text{d3}}} \right]$,
qLinearAverageMinWoolInsulation =: $\pi * \frac{\text{twMinWoolIns} - \text{tAir}}{\frac{1}{\alpha * \text{d3}}} \right\}$, {twWithoutIns, twConcreteIns, twMinWoolIns} $\left[\frac{1}{\alpha * \text{d3}} \right]$

 $\{\{\mathsf{twWithoutIns} \rightarrow 49.902233, \mathsf{twConcreteIns} \rightarrow 47.082831, \mathsf{twMinWoolIns} \rightarrow 38.209809\}\}$ In[45]:= twWithoutIns = 49.902233; twConcreteIns = 47.0828314; twMinWoolIns = 38.209809;

```
\sigma- константа Стефана – Больцмана(W/m^2 K^4)
   In[46]:= \sigma = 5.671 * 10^-8;
                Переведем температуры на поверхности труб и температуру воздуха в абсолютные
                единицы(Кельвины)
   In[47]:= TwWithoutIns = twWithoutIns + 273.15;
                    TwConcreteIns = twConcreteIns + 273.15;
                    TwMinWoolIns = twMinWoolIns + 273.15;
                    Tair = tAir + 273.15;
                Найдем результирующую плотность потока излучения Eres(W/m^2):
   ln[48] = EresMinWool = \epsilon * \sigma * (TwMinWoolIns^4 - Tair^4)
Out[48]=
                    134.76391
   In[49]:= EresConcrete = \epsilon * \sigma * (TwConcreteIns^4 - Tair^4)
Out[49]=
                    185.48494
   In[50]:= EresWithoutIns = \epsilon * \sigma * (TwWithoutIns^4 - Tair^4)
Out[50]=
                    202.51026
                Найдем эквивалентный коэффициент теплоотдачи излучением \alphaEqv (W/m^2 K):
   In[51]:= \alphaEqvMinWool = -
                                                            TwMinWoolIns - Tair
Out[51]=
                    4.7772003
                                                                     EresConcrete
   In[52]:= αEqvConcrete = -
                                                                TwConcreteIns - Tair
Out[52]=
                    5.0019089
                                                                        EresWithoutIns
   In[53]:= \alphaEqvWithoutIns = -
                                                                      TwWithoutIns - Tair
                    5.0751612
   In[54]:= \mbox{MradMinWool} = \frac{1}{\alpha*\mbox{d1}} + \frac{1}{2\mbox{\ensuremath{\mbox{NSteel}}}} \\ \times \mbox{Log} \left[ \frac{\mbox{d2}}{\mbox{d1}} \right] + \frac{1}{2\mbox{\ensuremath{\mbox{NSteel}}}} \\ \times \mbox{Log} \left[ \frac{\mbox{d3}}{\mbox{d3}} \right] + \frac{1}{(\mbox{\ensuremath{\mbox{\mbox{\mbox{$\mbox{d3}}$}}}} \\ \times \mbox{Log} \left[ \frac{\mbox{d3}}{\mbox{d2}} \right] + \frac{1}{(\mbox{\ensuremath{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\
Out[54]=
                   MradConcrete = \frac{1}{\alpha * d1} + \frac{1}{2 \lambda Steel} * Log \left[\frac{d2}{d}\right] + \frac{1}{2 \lambda Concrete} * Log \left[\frac{d3}{d}\right] + \frac{1}{(\alpha * d \alpha Egy Concrete)} * d3
Out[55]=
                    1.3794379
   In[56]:= MradWithoutIns = \frac{1}{\alpha * d1} + \frac{1}{2 \lambda Steel} * Log \left[\frac{d2}{d1}\right] + \frac{1}{(grator EgyWithoutIns) * d3}
Out[56]=
                    1.3498156
```

12 | №1.nb

Учтем излучение

```
In[57]:= P = \left(\frac{d1}{2}\right)^2 * w * \rho Average * cp Average
```

87.879121

$$\label{eq:local_$$

Линейная плотность потока излучения для трубы с ватной изоляцией:

In[59]:= qLinearRadiationMinWool[x_] :=
$$\pi * \frac{\left(\frac{\text{tLiquid1+tLiquid2RadiationVariable[MradMinWool,x]}}{2} - \text{tAir}\right)}{\frac{1}{\alpha * \text{d1}} + \frac{1}{2 \text{ λSteel}} * \text{Log}\left[\frac{\text{d2}}{\text{d1}}\right] + \frac{1}{2 \text{ λConcrete}} * \text{Log}\left[\frac{\text{d3}}{\text{d2}}\right] + \frac{1}{(\alpha + \alpha \text{EqvMinWool}) * \text{d3}}}$$

Из баланса энергий найдем длину трубы:

$$\pi \star \left(\frac{\text{d1}}{2}\right)^2 \star \text{w} \star \rho \text{Average} \star \text{cpAverage} \star (\text{tLiquid1-tLiquid2}), \text{Len} \right]$$
 {{Len \rightarrow 135.1684}}

Если учитывать излучение тогда длина трубы будет другой(m):

In[61]:= LwithRadiation = 135.1683998;

Линейная плотность потока излучения трубы с ватной изоляцией:(W/m)

62]:= qLinearRadiationMinWool[LwithRadiation]

164.10401

Для трубы без изоляции : (W/m^2)

In[63]:= qLinearRadiationWithoutIns[x_] :=
$$\pi * \frac{\left(\frac{\text{tLiquid1+tLiquid2RadiationVariable[MradWithoutIns,x]}}{2} - \text{tAir}\right)}{\frac{1}{\alpha * d1} + \frac{1}{2 \cdot \text{Steel}} * \text{Log}\left[\frac{d2}{d1}\right] + \frac{1}{(\alpha * \alpha \in \text{FurWithoutIns}) * d3}}$$

In[64]:= qLinearRadiationWithoutIns[LwithRadiation]

148.26706

Out[64]=

In[65]:= tLiquid2RadiationVariableWithoutIns = tLiquid2RadiationVariable[MradWithoutIns, LwithRadiation]

37 40875

Для трубы с изоляцией из бетона:

In [66]:= qLinearRadiationConcrete [x_] :=
$$\pi * \frac{\left(\frac{\text{tLiquid1+tLiquid2RadiationVariable}[MradConcrete,x]}{2} - \text{tAir}\right)}{\frac{1}{\alpha * d1} + \frac{1}{2 * \text{NSteel}} * \text{Log}\left[\frac{d2}{d1}\right] + \frac{1}{2 * \text{NSteel}} * \text{Log}\left[\frac{d3}{d2}\right] + \frac{1}{(\alpha + \alpha \text{EqcyConcrete}) * d3}}$$

In[67]:= qLinearRadiationConcrete[LwithRadiation]

146.22284

Out[67]=

In[68]:= tLiquid2RadiationVariable[MradConcrete, LwithRadiation]

38.409597

```
14 | №1.nb
      Рассчитаем потери теплоты:
 In[69]:= QradConcrete[x] := qLinearRadiationConcrete[x] * x;
       QradMinWool[x] := qLinearRadiationMinWool[x] * x;
       QradWithoutIns[x] := qLinearRadiationWithoutIns[x] * x;
      Потери теплоты в трубе с бетонной изоляцией:(W)
 In[72]:= QradConcrete[LwithRadiation]
Out[72]=
       19764.707
      Потери теплоты в трубе с ватной изоляцией: (W)
 In[73]:= QradMinWool[LwithRadiation]
Out[73]=
       22181.676
       QradWithoutIns[LwithRadiation]
Out[74]=
       20041.021
      Сравним расчеты температуры(Шухов/Излучение):
 ln[75]:= Plot[{t[\chi, KlinearConcrete], t[\chi, KlinearMinWool], t[\chi, KlinearRaw],
       график функции
         \verb|tLiquid2RadiationVariable[MradConcrete, <math>\chi$], \verb|tLiquid2RadiationVariable[MradMinWool, <math>\chi$], 
         {\tt tLiquid2RadiationVariable[MradWithoutIns,\,\chi]\,\},\,\{\chi,\,\emptyset,\,\mathsf{L}\},}
        PlotLabel → "Сравнение расчетов t_{m2} Шухов/Излучение", PlotTheme → "Scientific",
        пометка графика
                                                                 тематический стиль графика
        PlotLegends → {"Concrete Шухов", "Mineral Wool Шухов", "Raw tube Шухов", "Concrete Излучение",
        легенды графика
           "Mineral Wool Излучение", "Raw tube Излучение"}, ImageSize → Large, GridLines → Automatic]
                                                               Out[75]=
                                     Сравнение расчетов t_{\text{ж2}} Шухов/Излучение
       110
       100
                                                                                                    Concrete Шухов
                                                                                                    Mineral Wool Шухов
        90
                                                                                                    Raw tube Шухов
                                                                                                    Concrete Излучение
                                                                                                    Mineral Wool Излучение
        80
                                                                                                    Raw tube Излучение
```

40

50

70

10

20

Сравним расчеты линейной плотности потоков тепла/излучения (Шухов/Излучение):

Соберем все результаты выше воедино.

Способ основанный на формуле Шухова.

Температуры жидкости на выходе(°С):(порядок:бетон,вата,без изоляции)

```
In[77]:= t[L, KlinearConcrete]
Out[77]:= 70.941787
In[78]:= t[L, KlinearMinWool]
Out[78]:= 80.
In[79]:= t[L, KlinearRaw]
Out[79]:= 70.435306
```

Тепловой поток(W):(порядок:бетон,вата,без изоляции)

```
Out[82]=
      8402.513
     Способ основанный на методе баланса энергии.
     Температуры жидкости на выходе(°С):(порядок:бетон, вата, без изоляции)
 In[83]:= tLiquid2asVariable[KlinearConcrete, Ladditional]
Out[83]=
      70.638269
 In[84]:= tLiquid2asVariable[KlinearMinWool, Ladditional]
 In[85]:= tLiquid2asVariable[KlinearRaw, Ladditional]
Out[85]=
       70.107276
     Тепловой поток(W):(порядок:бетон,вата,без изоляции)
 In[86]:= Qadditional[k_, x_] := qLinear[x, k] * x;
 In[87]:= Qadditional[KlinearConcrete, Ladditional]
Out[87]=
      8288.148
      Qadditional[KlinearMinWool, Ladditional]
 In[88]:=
Out[88]=
      6846.3249
 In[89]:= Qadditional[KlinearRaw, Ladditional]
Out[89]=
      8358.5015
     Способ с учетом излучения. Температуры жидкости на выходе(°С):(порядок:бетон, вата, без
     изоляции)
 In[90]:= tLiquid2RadiationVariable[MradConcrete, LwithRadiation]
Out[90]=
      38.409597
 In[91]:= tLiquid2RadiationVariable[MradMinWool, LwithRadiation]
Out[91]=
      54.922755
 In[92]:= tLiquid2RadiationVariable[MradWithoutIns, LwithRadiation]
Out[92]=
      37.40875
     Поток излучения(W):(порядок:бетон,вата,без изоляции)
 In[93]:= QradConcrete[LwithRadiation]
Out[93]=
       19764.707
 In[94]:= QradMinWool[LwithRadiation]
Out[94]=
       22181.676
      QradWithoutIns[LwithRadiation]
 In[95]:=
Out[95]=
      20041.021
```

16 | *№1.nb*

In[82]:= Q[L, KlinearRaw]

Найдем критический диаметр при бетонной и ватной изоляциях

In[97]:= dCriticalConcrete = d2 +
$$\frac{2 \lambda Concrete}{\alpha}$$

0.35916667

Out[97]=

Мы не дотягиваем до критического диаметра и поэтому изоляция из бетона не эффективна.

In[98]:=
$$dCriticalMinWool = d2 + \frac{2 \lambda MinWool}{\alpha}$$
Out[98]=

0.139375

Мы близки к критическому диаметру, но изоляция все равно не эффективна, ее нужно увеличить до критического, а потом и до эффективного диаметра для существенного уменьшения потерь.