PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10065339 A

(43) Date of publication of application: 06 . 03 . 98

(51) Int CI

H05K 3/46 H05K 3/40

(21) Application number: 08221437

(22) Date of filing: 22 . 08 . 96

(71) Applicant:

SONY CORP

(72) Inventor.

MATSUDA YOSHINARI

(54) MULTILAYER PRINTED WIRING BOARD AND **METHOD MANUFACTURING THERFOR**

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a multilayer printed wiring board of high reliability which enables improvement in productivity by a simple facility and cost cutting.

SOLUTION: A via hole 9 is formed through outer-layer land portions 6a, 7a of laminated outer-layer conductor circuits and inner-layer land portions 2a, 3a of laminated inner-layer conductor circuit on a multilayer printed wiring board with a plurality of conductor layers stacked via the insulating layers. And the via holes 9 is filled with conductive paste 13, heat curing of the conductive paste 13 is then performed to connect electrically the outer-layer land portions 6a, 7a and the inner-layer land portions 2a, 3a.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-65339

(43)公開日 平成10年(1998) 3月6日

(51) Int.Cl.		識別記号	庁内整理番号	FI		技術表示箇	所
H05K	3/46			H05K	3/46	N	
	3/40		7128-4E		3/40	K	

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出廢番号	特顧平8-221437	(71) 出願人 000002185 ソニー株式会社
(22)出廣日	平成8年(1996)8月22日	東京都品川区北品川6丁目7番35号
		(72)発明者 松田 良成 東京都品川区北品川6丁目7番35号 ソニ
	·	一株式会社内
		(74)代理人 弁理士 松限 秀盛

(54) 【発明の名称】 多層ブリント配線板及びその製造方法

(57)【要約】

【課題】 簡単な設備で生産性を向上し、かつ低コスト 化を図ることができると共に信頼性の高い多層ブリント 配線板を得る。

【解決手段】 絶縁層を介して複数の導体層が積層された多層ブリント配線板において、積層された外層導体回路の外層ランド部6 a. 7 a 及び内層導体回路の内層ランド部2 a. 3 a に貫通するピアホール9を形成し、このピアホール9 に導電性ペースト13を 表硬化することで外層ランド部6 a. 7 a 及び内層ランド部2 a. 3 a 間を電気的に導電接続するようにした。

【特許請求の範囲】

【請求項1】 絶縁層を介して3層以上の導体層が積層 された多層プリント配線板において、

積層された各導体層部分に貫通するビアホールを形成 し、ピアホールに導電性ペーストを孔埋め印刷し、導電 性ペーストを熱硬化することで上記導体層の外層導体及 び内層導体間を電気的に導電接続するようにしたことを 特徴とする多層プリント配線板。

【請求項2】 請求項1記載の多層ブリント配線板にお いて、

上記導電性ペーストは上記外層導体では外層表面及び上 記ピアホール孔面に露出する端面が導電接続され、上記 内層導体では上記ピアホール孔面に露出する端面が導電 接続されるととを特徴とする多層プリント配線板。

【請求項3】 絶縁層を介して3層以上の導体層が積層 された多層プリント配線板の製造方法において、

絶縁性のコア材の両表面にパターン化された導体層を形 成し、このコア材の両面にそれぞれプリプレグを介して 外層導体を加熱プレスして積層板を形成する工程と、

貫通するピアホールを形成する工程と、

上記外層導体をパターン化し、上記ピアホール周りの外 層導体部分のランド部をマスキングして上記パターン化 された外層導体上にソルダーレジストを形成する工程 ٤.

上記ピアホールに導電性ペーストを孔埋め印刷すると共 に、導電性ペーストを上記ランド部にまで印刷する工程 ٤.

上記導電性ペーストを熱硬化する工程と、

上記ランド部上に露出する導電性ペースト面を絶縁性樹 30 のである。 脂で印刷し保護する工程と、からなることを特徴とする 多層プリント配線板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、多層積層板の外層 導体と内層導体とをピアホール(層渡りの孔)に形成し た導電体によって電気的に接続するようにした多層プリ ント配線板とその製造方法に関するものである。

[0002]

【従来の技術】従来、この種ピアホールを有する4層の 40 多層プリント配線板を図4に示す。符号41が例えばガ ラスーエポキシ樹脂系からなるコア材であり、このコア 材41の上下面にパターン化された銅箔からなる内層導 体42、43が形成されている。コア材41にはプリフ レグ44、45を介してパターン化された同じく銅箔か らなる外層導体46.47が積層されて積層板48が構 成されている。

【0003】この内層導体42、43と外層導体46、 47との対応する位置において積層板48にドリルにて 貫通されたピアホール49が形成されている。そして、

このピアホール49及び外層導体46、47の孔周りで あるランド部46a、47a以外をマスキングしてメッ キ厚が3μm以下の無電解銅メッキ層50を形成し、続 いて無電解銅メッキ層50の上からメッキ厚が15μm 以上の電解銅メッキ層51を形成することによって外層 導体46,47の一部であるランド部46a,47aと ビアホール49の孔壁に露出する内層導体42,43と

[0004]

を電気的に接続している。

【発明が解決しようとする課題】ところで、ビアホール 49に無電解銅メッキ層50及び電解銅メッキ層51を 形成してランド部46a, 47aと内層導体42, 43 とを電気的に接続する方法では、メッキ層の形成の都度 に洗浄する工程が必要であり、このための水処理設備も 大がかりなものとなり、従って、生産性及びコストの点 で多くの問題がある。

【0005】本発明は、上述したような課題を解消する ためになされたもので、簡単な設備で生産性を向上し、 かつ低コスト化を図ることができると共に信頼性の高い 積層された各導体層部分に対応する位置で上記積層板に 20 多層プリント配線板及び多層プリント配線板の製造方法 を得ることを目的とする。

[0006]

【課題を解決するための手段】上述の目的を達成するた め、本発明による多層プリント配線板は、絶縁層を介し て3層以上の導体層が積層された多層プリント配線板に おいて、積層された各導体層部分に貫通するピアホール を形成し、ピアホールに導電性ペーストを孔埋め印刷 し、導電性ペーストを熱硬化することで導体層の外層導 体及び内層導体間を電気的に導電接続するようにしたも

【0007】このように構成したことで、積層板に貫通 させたピアホールに導電性ペーストを孔埋め印刷をする ことによって外層導体と内層導体との導電接続を容易に 行うことができる。

【0008】また、導電性ペーストは外層導体では外層 表面及びピアホール孔面に露出する端面が導電接続さ れ、内層導体ではピアホール孔面に露出する端面が導電 接続されるようにした。導電性ベーストは熱硬化前では ゲル状(液状インク)であるため孔埋め印刷の際、外層 導体面への密着はもとより導体端面に確実に密着し、導 電性ペーストの熱硬化によって強固に固着させることが できる。

【0009】また、本発明による多層ブリント配線板の 製造方法は、絶縁層を介して3層以上の導体層が積層さ れた多層ブリント配線板の製造方法において、絶縁性の コア材の両表面にパターン化された導体層を形成し、と のコア材の両面にそれぞれブリブレグを介して外層導体 を加熱プレスして積層板を形成する工程と、積層された 各導体層部分に対応する位置で上記積層板に貫通するビ 50 アホールを形成する工程と、外層導体をバターン化し、

ビアホール周りの外層導体部分のランド部をマスキング してパターン化された外層導体上にソルダーレジストを 形成する工程と、ピアホールに導電性ペーストを孔埋め 印刷すると共に、導電性ペーストをランド部にまで印刷 する工程と、導電性ペーストを熱硬化する工程と、ラン ド部上に露出する導電性ベースト面を絶縁性樹脂で印刷 し保護する工程と、からなる。

【0010】上述した製造方法により、積層板に貫通さ せたビアホールに導電性ペーストを孔埋め印刷を行う工 程によって製作することができる。従って、従来のよう 10 にメッキ後に洗浄するような工程も一切不要となり、生 産性を大幅に向上することができる。

[0011]

【発明の実施の形態】以下、本発明による多層プリント 配線板及びその製造方法の実施例を図面を参照して説明 する.

【0012】図1及び図2に4層構造の多層プリント配 線板の製造工程を示す。図IAは製造工程の初期の段階 であり、絶縁性のコア材1の両面には銅箔が回路パター ン化されて形成され、上面側を銅箔回路パターン2と し、下面側を銅箔回路パターン3とし、これら銅箔回路 パターン2.3は内層導体回路となる。このうち符号2 a. 3aは銅箔回路パターン2. 3の内層ランド部とな る。尚、コア材1としてはエポキシ樹脂が含浸されたガ ラス布(一例としてFR-4、CEM-3)からなり、 銅箔回路パターン2、3は厚みが12~70 µmであ

【0013】 このコア材1に対してガラス繊維をエポキ シ樹脂で含浸させた絶縁性のプリプレグ4,5とパター ン化されてない厚みが12~35µmの外層銅箔6,7 30 を用意する。

【0014】そして、上述したコア材1とプリプレグ 4.5及び外層銅箔6.7を重ね合わせ加熱状態でブレ スすることで、図1日に示すように板厚が0.8~1. 6mmの積層板8を形成する。

【0015】次に、図1Cに示すように積層板8に貫通 するピアホール9を形成する。このピアホール9は内層 導体回路の内層ランド部2 a、3 aの中央を貫通するス ルーホールであり、NCドリルにより穿孔される。尚、 ビアホール9の穿孔の際、摩擦熱によりプリプレグの一 40 部がピアホール孔面側に溶融し、いわゆるスミア10の 発生により例えば内層ランド部3 a の端面を覆うことも あるため、ヒアホール9の孔面を過マンガン酸カリによ り洗浄しスミア10を除去し清浄化する。

【0016】次に、図1Dに示すように外層銅箔6.7 をエッチング処理により外層導体回路にパターン化し、 このうち符号6a, 7aは外層ランド部となる。 続いて 外層ランド部6a, 7aをマスキングして外層導体回路 上にソルダーレジスト11、12を写真食刻法またはス クリーン印刷法により形成する。尚、ここで、外層ラン 50 【0023】本発明は、上述しかつ図面に示した実施例

ド部6a、7a及び内層ランド部2a、3aは、例えば 積層プリント配線板の導体回路の共通の電位となる部分

【0017】かくして、次の工程として図2Eに示すよ うにピアホール9内に導電性ペースト13をシルクスク リーン印刷法により孔埋め印刷する。との際、導電性ベ ースト13はピアホール9内に充填されると共に、外層 ランド部6a、7a面に導電性ペースト13が盛り上が って付着するように印刷される。

【0018】導電性ペースト13の材料としては、フェ ノール樹脂、キシレン樹脂、メラミン樹脂または各種エ ボキシ樹脂と硬化剤との組み合わせからなる熱硬化樹脂 のバインダー樹脂と希釈溶剤とを5~15重量%含有 し、その他を導電性金属粉とした液状インクである。 【0019】また、導電性金属粉としては最大外径が5

0 μ m以下程度の銀粉、銅粉、ニッケル粉、銀メッキ銅 粉、金メッキ銅粉または金メッキニッケル粉等が実用的 である。具体例としては、銅粉ペーストの場合はタツタ 電線(株)の商品名「DDペースト」、銀粉ペーストの 場合はアサヒ化学研究所(株)の商品名「LS056、 銀メッキ銅粉ペーストの場合は旭化成(株)の商品名 「AMG」が適している。

【0020】次に、積層板8を160℃の熱風乾燥炉内 に1時間投入して導電性ペースト13を熱硬化処理す る。熱処理された導電性ペースト13は図2Fに示すよ うに中央部表面が陥没状態となって体積が収縮し硬化す る。とれにより、外層ランド部6 a. 7 a の表面及びビ アホール9側に露出する端面と、内層導体回路の内層ラ ンド部2a、3aのビアホール9側に露出する端面とが 導電性ペースト13によって導電接続することができ る。尚、導電性ペースト13の導通抵抗値は、1つのビ アホール当たり約100mQ以下が確保でき、導通状態 として充分満足する値である。

【0021】最後に外層ランド部6a, 7aの表面に隆 起状に路出する導電性ペースト13上にエポキシ樹脂を オーバーコート14a,14bし、導電性ペースト13 を保護して多層プリント配線板の製作が完了する。

【0022】このように本発明による多層プリント配線 板は、積層板8に貫通したピアホール9内に導電性ペー スト13を孔埋め印刷し、この導電性ペースト13を熱 硬化させることによって、積層板の外層導体回路と内層 導体回路とを電気的に導通接続するようにしたことで、 従来技術のようにメッキ被膜により外層導体回路と内層 導体回路とを導通接続する構成と異なり、メッキ後の洗 **浄処理や大がかりな水処理設備が一切不要となり、簡単** な製造工程と設備で多層ブリント配線板の生産性を向上 することができる。従って、低コスト化を図ることがで きると共に信頼性の高い多層ブリント配線板を得ること ができる。

に限定されるものでなく、その要旨を逸脱しない範囲内 で種々の変形実施が可能である。

【0024】実施例では4層構造の多層ブリント配線板 について説明したが、3層構造以上の多層プリント配線 板に広く適用可能である。

【0025】例えば、図3は6層構造の多層プリト配線 板の例であって、両面に導体回路15,16を有する内 層のコア材17と、同じく両面に導体回路18.19を 有する上層コア材20と、さらに両面に導体回路21, 4.25を介して積層板26を構成し、との積層板26 に貫通したビアホール27に導電性ペースト28を孔埋 め印刷し、導電性ペースト28を熱硬化させることによ って、各導体回路15,16、18,19、21,22 の導体ランド部15a.16a、18a,19a、21 a、22aを導通接続することができる。

[0026]

【発明の効果】以上説明したように本発明の多層ブリン ト配線板は、絶縁層を介して3層以上の導体層が積層さ れた多層プリント配線板において、積層された各導体層 20 C. 積層板にピアホールを貫通した工程図である。 部分に貫通するピアホールを形成し、ピアホールに導電 性ペーストを孔埋め印刷し、導電性ペーストを熱硬化さ せ導体層の外層導体及び内層導体間を電気的に導電接続 するようにしたことにより、多層プリント配線板の生産 性を向上し大量生産に極めて好適であり、かつ低コスト 化を図ることができると共に信頼性の高い多層プリント 配線板となる。

【0027】また、導電性ペーストは外層導体では外層 表面及びピアホール孔面に露出する端面が導電接続さ れ、内層導体ではピアホール孔面に露出する端面が導電 30 接続されるようにしたことで、孔埋め印刷の際、外層導 体面への密着はもとより導体端面に確実に密着し、導電 性ペーストの熱硬化によって強固に固着させることがで きる。

【0028】また、本発明による多層プリント配線板の 製造方法は、絶縁性のコア材の両表面にパターン化され た導体層を形成し、このコア材の両面にそれぞれプリプォ

* レグを介して外層導体を加熱プレスして積層板を形成す る工程と、積層された各導体層部分に対応する位置で積 層板に貫通するビアホールを形成する工程と、外層導体 をパターン化し、ビアホール周りの外層導体部分のラン ド部をマスキングしてパターン化された外層導体上にソ ルダーレジストを形成する工程と、ピアホールに導電性 ペーストを孔埋め印刷すると共に、導電性ペーストをラ ンド部にまで印刷する工程と、導電性ペーストを熱硬化 する工程と、ランド部上に露出する導電性ペースト面を 22を有する下層コア材23とをそれぞれプリプレグ2 10 絶縁性樹脂で印刷し保護する工程とからなるなるので、 従来技術のようにメッキ被膜により外層導体回路と内層 導体回路とを導通接続する場合と異なり、メッキ後の洗 浄処理や大がかりな水処理設備が一切不要となり、設備 も印刷機と乾燥炉のみがあればよいため、設備コストも 安価となる。

【図面の簡単な説明】

【図1】A. 本発明による多層ブリント配線板の製造の 初期工程図である。

- B. 積層板に積層した状態の工程図である。
- D. 外層銅箔のパターン形成とソルダーレジストの形成 の工程図である。

【図2】E. ピアホールへの導電性ペーストの孔埋め印 刷の工程図である。

- F. 導電性ペーストの熱硬化の工程図である。
- G. 導電性ペーストへのオーバーコートの工程図であ

【図3】本発明による6層構造の多層プリント配線板の 構成図である。

【図4】従来の多層プリント配線板の構成図である。 【符号の説明】

1 コア材、2,3 内層導体回路、2a,3a 内層 ランド部、4,5 ブリブレグ、6,7 外層導体回 路、6a, 7a 外層ランド部、8 積層板、9ビアホ ール、11,12 ソルダーレジスト、13 導電性ペ ースト、14a、14b オーバーコート

【図4】

26 | 18a 27 28 | 24 18 20 | 18a 27 28 | 24 18 20 | 19a 27 28 | 18a 27 28 | 18a 27 28 | 18a 20 | 19a 27 28 | 18a 20 | 19a 20 | 19a