simplex category(単体圏)について

Toshi2019

概要

単体圏の性質についてまとめる.

記号など

- 1 点から成る集合を {pt} で表す.
- 集合 X の基数を |X| とか # X とか $\operatorname{Card} X$ で表す.
- 圏 \mathcal{C} の始対象を $\mathcal{O}_{\mathcal{C}}$,終対象を $\operatorname{pt}_{\mathcal{C}}$ で表す.
- 圏 $\mathcal C$ の対象 X から Y への射の集合を $\operatorname{Hom}_{\mathcal C}(X,Y)$ や $\mathcal C(X,Y)$ で表す.
- 有限集合とその間の写像のなす圏を Set^f で表す。

1 単体的圏

[KS06] を参考にした.

定義 1.1. 単体圏 (simplex category)*1 Δ を次で定める.

$$\mathrm{Ob}(\mathbf{\Delta}) \coloneqq \big\{ \mathbf{有限全順序集合} \big\},$$
 $\mathrm{Hom}_{\mathbf{\Delta}}(\sigma, \tau) \coloneqq \big\{ u \colon \sigma \to \tau; \ u \ \mathrm{は順序を保つ写像} \big\}.$

射の合成は写像の合成で定める.

 Δ の部分圏 $\widetilde{\Delta}$ を次で定める.

$$\operatorname{Ob}\left(\widetilde{\boldsymbol{\Delta}}\right)\coloneqq\left\{\sigma\in\boldsymbol{\Delta};\sigma\neq\varnothing\right\},$$

$$\operatorname{Hom}_{\widetilde{\boldsymbol{\Delta}}}(\sigma,\tau)\coloneqq\left\{u\in\operatorname{Hom}_{\boldsymbol{\Delta}}(\sigma,\tau);\;u\;\mathrm{は最大元と最小元を保つ}\right\}.$$

有限全順序集合 [n,m] を $\{k \in \mathbf{Z}; n \leq k \leq m\}$ で定める. [0,n] をたんに [n] とかくことが多い.

 $^{^{*1}}$ [KS06] では, Δ のことを simplicial category(単体的圏)と呼んでいるが,[Ri16] とか [RV22] ではこう呼んでいたのでそちらに合わせる.[Lu09] では別の概念を表すのに simplicial category を使っていたので,衝突しないようにする意図もある.

以下単体圏の性質を述べる.

命題 1.2. うめこみ関手 $\iota: \Delta \hookrightarrow \mathsf{Set}^{\mathsf{f}}$ は半充満かつ忠実である.

注意 1.3. 関手 $F\colon \mathcal{C}\to \mathcal{C}'$ が半充満 (half-full) であるとは、任意の対象 $X,Y\in \mathcal{C}$ に対し、 $F(X)\cong F(Y)$ ならば、X と Y の間の同型が存在することをいう。ただし、 \mathcal{C}' における同型 $F(X)\overset{\sim}{\to} F(Y)$ は \mathcal{C} における同型 $X\to Y$ から来るものでなくともよい.

 \mathcal{C} の部分圏 \mathcal{C}' が半充満であるとは、うめこみ関手 $\mathcal{C} \hookrightarrow \mathcal{C}'$ が半充満であることをいう.

命題 1.2 の証明 まず ι が半充満であることを示す. $\sigma, \tau \in \Delta$ を $\iota(\sigma) \cong \iota(\tau)$ をみたすものとすると、 $\#\sigma = \#\tau$ である.

参考文献

- [KS06] Masaki Kashiwara, Pierre Schapira, *Categories and Sheaves*, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006.
- [La21] Markus Land, *Introduction to Infinity-Categories*, Compact Textbooks in Mathematics, Birkhäuser Cham, 2021.
- [Lu09] Jacob Lurie, *Higher Topos Theory*, Annals of Mathematics Studies 170, Princeton University Press, 2009.
- [Ri16] Emily Riehl, Category Theory in Context, Dover Publications, 2016.
- [RV22] Emily Riehl, Dominic Verity, *Elements of* ∞ -Category Theory, Cambridge Studies in Advanced Mathematics (194) Cambridge University Press, 2022.