cs805 Assignment 1

Ray Shulang Lei 200253624 Department of Computer Science University of Regina

September 27, 2012

Abstract

This assignment is written in literate programming style, generated by noweb, rendered by LaTex, and compiled by clang++ with c++ 11 standard.

1 Question 1

Let n be a 3 tuple vector, and given that it is along V1. It is trivial that we can imply:

$$n = \frac{V1}{[|V1|, |V1|, |V1|]}$$

where
$$|V1| = \sqrt{V1_x^2 + V1_y^2 + V1_z^2}$$

Thus n is now known.

By the definition of cross product, denoted as \times here, knowning that V1 and V2 is non-collinear, we can also derive:

$$u = \frac{V2 \times V1}{[|V2 \times V1|, |V2 \times V1|, |V2 \times V1|]}$$

Finally, it is also trivial that:

$$v = n \times u$$

2 Question 2

According to the requirement, we need a function that gets the new coordination U, V, N from two vectors.

First, assuming we have the function already. Thus giving it two vecotrs, our function will get the U, V, N from them.

```
<<src/q1_main.cpp>>=
#include <iostream>
#include <typeinfo>//debugging only
#include "util.h"

int main () {
   Vecotr V1;
   decltype(V1) V2;// V2 is of same type of V1

V1 = {0,0,1000};
```

```
V2 = \{0,1,1\};
  //call our function to get the uvn. auto will be replaced by the actual time by
  auto uvn = get_uvn(V1, V2);
  for (auto vecotr : uvn) {//for each Vecotr in uvn
    for (auto num : vecotr) {//for each number in Vecotr
      std::cout<<num<<',';
    std::cout<<std::endl;
  }
  return 0;
}
I use a header file for typedefs and function declarations for more readable
<<src/util.h>>=
#ifndef VecotrS_HPP
#define VecotrS_HPP
#include <tr1/array>
typedef std::tr1::array<float, 3> Vecotr;
typedef std::tr1::array<Vecotr, 3> UVN;
UVN get_uvn(Vecotr V1, Vecotr V2);
float get_length(Vecotr);
Vecotr cross_product(Vecotr, Vecotr);
Vecotr normalize(Vecotr);
#endif
0
Finally, here is the function.
<<src/util.cpp>>=
#include "util.h"
#include <math.h>
//get u,v,n from two non-collinear vectors
UVN get_uvn(Vecotr V1, Vecotr V2) {
```

```
//get n, which is just normalized V1
  Vecotr n = normalize(V1);
  //get u, which is normalized V2 x V1
  Vecotr u = normalize(cross_product(V2, V1));
  //get v, which is normalized n x u
  Vecotr v = normalize(cross_product(n, u));
  return {u,v,n};
}
//normalize a Vecotr
Vecotr normalize(Vecotr x) {
  return { x[0]/get_length(x),
           x[1]/get_length(x),
           x[2]/get_length(x) };
}
//calculates cross product of two Vecotrs
Vecotr cross_product(Vecotr x, Vecotr y) {
  return { x[1]*y[2] - x[2]*y[1],
           x[2]*y[0] - x[0]*y[2],
           x[0]*y[1] - x[1]*y[0];
}
//calculates length of a Vecotr
float get_length(Vecotr x) {
  return sqrt(pow(x[0],2)+pow(x[1],2)+pow(x[2],2));
}
Furthermore, this is the command to link these files. Notice that I am using
-std=c++11 flag to enable c++11 features. The output binary executable
is bin/q1
<<compile_q1.sh>>=
clang++ -std=c++11 -o bin/q1 src/q1_main.cpp src/util.cpp
```

0

3 Question 3

3.1 part a

By definition of matrix multiplication,

3.2 part b

Similarly, by definition of matrix multiplication,

$$R \times R^{-1} =$$

$$\begin{bmatrix} u_x^2 + u_y^2 + u_z^2 & u_x \times v_x + u_y \times v_y + u_z \times v_y & u_x \times n_x + u_y \times n_y + u_z \times n_y & 0 \\ v_x \times u_x + v_y \times u_y + v_z \times u_z & v_x^2 + v_y^2 + v_z^2 & v_x \times n_x + v_y \times n_y + v_z \times n_z & 0 \\ u_x \times n_x + u_y \times n_y + u_z \times n_z & n_x \times v_x + n_y \times v_y + n_z \times v_z & n_x^2 + n_y^2 + n_z^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} u \times u & u \times v & u \times n & 0 \\ v \times u & v \times v & v \times n & 0 \\ n \times u & n \times v & n \times n & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

With the fact that u, v, n are all unit vectors,

$$\implies u \times u = 1, v \times v = 1, n \times n = 1$$

$$\implies \begin{bmatrix} u \times u & u \times v & u \times n & 0 \\ v \times u & v \times v & v \times n & 0 \\ n \times u & n \times v & n \times n & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & u \times v & u \times n & 0 \\ v \times u & 1 & v \times n & 0 \\ n \times u & n \times v & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

With the fact that u, v, n are orthogonal to each other,

$$\Rightarrow u \times v = 0, v \times n = 0, u \times n = 0$$

$$\Rightarrow \begin{bmatrix} 1 & u \times v & u \times n & 0 \\ v \times u & 1 & v \times n & 0 \\ n \times u & n \times v & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = I$$

3.3 part c

To get $M_{wc} = R \times T$, I need to get R and T first.

A matrix is simply 4 of 4-tuple vectors. So I defined my 4-tuple vector as Row type, and 4 Rows as Matrix type. A Point type is also defined to represent VRP, VPN, VUP, LRP, LPN and LUP.

```
<<src/matrix.h>>=
#ifndef MATRIX_H
#define MATRIX_H
#include <tr1/array>
typedef std::tr1::array<float, 3> Point;
typedef std::tr1::array<float, 4> Row;
typedef std::tr1::array<Row, 4> Matrix;
Matrix get_T(Point);
```

```
#endif
First, I need a function to get the tranformation matrix from VRP
<<src/matrix.cpp>>=
#include "matrix.h"
Matrix get_T(Point vrp) {
  Row r1 = \{1, 0, 0, -vrp[0]\};
  Row r2 = \{0, 1, 0, -vrp[1]\};
  Row r3 = \{0, 0, 1, -vrp[2]\};
  Row r4 = \{0, 0, 0, 1\};
  return {r1, r2, r3, r4};
}
0
<<src/q3pc_main.cpp>>=
#include <iostream>
#include "matrix.h"
int main(){
  Point vrp = \{6.0, 10.0, -5.0\};
  auto mt = get_T(vrp);
  for (auto row : mt) {
    for (auto num : row) {
      std::cout<<num<<',,';
    }
    std::cout<<std::endl;
  }
  return 0;
}
<<compile_q3pc.sh>>=
clang++ -std=c++11 -o bin/q3pc src/q3pc_main.cpp src/matrix.cpp
```