Assignment 4 Data Wrangling

Nicholas Jacob and Zayne Mclaughlin

2024-09-05

1. Loading the housing data and calculating the age, ageSinceRemodel, and ageofGarage columns.

```
housingData = read.csv("housingData-1.csv")

housingData <- housingData %>%

dplyr::mutate(age = YrSold - YearBuilt, ageSinceRemodel = YrSold - YearRemodAdd, ageofGarage = YrSold

1.b.

Selecting only the numeric variables from the housing dataset

housingNumeric <- housingData %>%

dplyr::select(where(is.numeric))

1.c.

Selecting only the character variables from the housing dataset and converting them to factors.

housingFactor <- housingData %>%
```

```
housingFactor <- housingData %>%
  dplyr::select(where(is.character))%>%
  mutate_all(factor)
```

1.d.

Using glimpse to check the structure of the new housingFactor and housingNumeric tibbles.

glimpse(housingFactor)

```
## Rows: 1.000
## Columns: 38
## $ MSZoning
                                                                     <fct> RL, RL, RL, RL, RL, RL, RL, RM, RL, RL, RL, RL, RL, RL, R-
                                                                      <fct> NA, NA, NA, NA, NA, NA, NA, Pave, NA, NA, NA, NA, NA, NA, ~
## $ Alley
## $ LotShape
                                                                     <fct> IR1, IR1, IR1, IR1, Reg, Reg, Reg, IR1, Reg, IR1, IR1, Re~
## $ LandContour
                                                                    <fct> Lvl, Low, Lvl, Bnk, Lvl, Lvl, Lvl, Lvl, Lvl, Lvl, Lvl, Lv-
## $ LotConfig
                                                                     <fct> CulDSac, Inside, other, Inside, Inside, Inside, Corner, C~
                                                                     <fct> Gtl, Mod, Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, Mod, Gtl, Gtl, Gt~
## $ LandSlope
## $ Neighborhood <fct> NAmes, ClearCr, Sawyer, Crawfor, NAmes, CollgCr, Sawyer, ~
## $ Condition1
                                                                     <fct> Norm, Norm, Feedr, Norm, Norm,
## $ BldgType
                                                                     <fct> 1Fam, 
                                                                     <fct> 1Story, 1Story, 1Story, 2Story, 1Story, 2Story, 1Story, 2~
## $ HouseStyle
                                                                     <fct> Gable, Gable, Gable, Gable, Gable, Gable, Hip, other, Gab~
## $ RoofStyle
## $ Exterior1st
                                                                    <fct> Plywood, Wd Sdng, VinylSd, Wd Sdng, HdBoard, VinylSd, HdB~
## $ Exterior2nd
                                                                    <fct> Plywood, Wd Sdng, VinylSd, Wd Sdng, HdBoard, VinylSd, HdB~
## $ MasVnrType
                                                                     <fct> BrkFace, BrkCmn, None, None, None, BrkFace, None, None, B~
## $ ExterQual
                                                                     <fct> Avg, Avg, Avg, Avg, Avg, AboveAvg, Avg, AboveAvg, Avg, Av~
## $ ExterCond
                                                                     <fct> CBlock, CBlock, CBlock, CBlock, PConc, CBlock, ot~
## $ Foundation
```

```
## $ BsmtQual
             <fct> Avg, Avg, Avg, Avg, Avg, AboveAvg, Avg, Avg, Avg, AboveAv~
## $ BsmtCond
             <fct> Avg, Avg, Avg, Avg, Avg, Avg, BelowAvg, Avg, Avg, Av~
## $ BsmtExposure <fct> Mn, Av, No, No, No, No, No, No, Gd, No, No, Av, No, Gd, N~
## $ BsmtFinType1 <fct> BLQ, Rec, BLQ, BLQ, Rec, Unf, GLQ, Unf, GLQ, Unf, BLQ, GL~
## $ BsmtFinType2 <fct> Rec, Unf, Unf, Unf, Unf, Unf, Unf, Unf, LwQ, Unf, Unf, Un-
## $ Heating
             <fct> GasA, GasA, GasA, GasA, GasA, GasA, GasA, other, GasA, Ga~
## $ HeatingQC
             <fct> AboveAvg, BelowAvg, AboveAvg, BelowAvg, Avg, AboveAvg, Av~
             <fct> Y, Y, Y, Y, Y, Y, Y, N, Y, Y, Y, Y, Y, Y, N, N, Y, Y, Y, ~
## $ CentralAir
## $ Electrical
             <fct> SBrkr, SBrkr, SBrkr, SBrkr, SBrkr, SBrkr, SBrkr, S-
## $ KitchenQual
             <fct> Avg, Avg, AboveAvg, AboveAvg, Avg, AboveAvg, Avg, AboveAv~
## $ Functional
             ## $ FireplaceQu
             <fct> BelowAvg, NA, NA, AboveAvg, AboveAvg, NA, NA, AboveAvg, N~
## $ GarageType
             <fct> Attchd, Attchd, Attchd, Attchd, Attchd, Attchd, Detchd, D~
## $ GarageFinish <fct> RFn, Unf, RFn, Unf, RFn, RFn, Unf, Unf, RFn, Fin, RFn, Fi~
## $ GarageQual
             ## $ GarageCond
             ## $ PavedDrive
             <fct> Y, N, Y, P, Y, Y, Y, N, Y, Y, Y, Y, Y, Y, Y, N, Y, N, Y, ~
## $ PoolQC
             ## $ Fence
             ## $ MiscFeature
## $ SaleType
```

glimpse(housingNumeric)

```
## Rows: 1,000
## Columns: 39
## $ Id
                    <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
## $ MSSubClass
                    <int> 20, 20, 20, 70, 20, 60, 20, 70, 60, 60, 20, 120, 60, 2~
## $ LotFrontage
                    <int> NA, NA, 57, NA, 80, 72, 80, 65, 80, 93, 100, 43, 75, 8~
## $ LotArea
                    <int> 11000, 36500, 9764, 7500, 9200, 11317, 8480, 11700, 97~
## $ OverallQual
                    <int> 5, 5, 5, 6, 6, 7, 5, 7, 6, 6, 6, 7, 6, 6, 6, 4, 5, 6, ~
## $ OverallCond
                    <int> 6, 5, 7, 7, 6, 5, 6, 7, 6, 5, 5, 5, 6, 8, 4, 2, 5, 7, ~
                    <int> 1966, 1964, 1967, 1942, 1965, 2003, 1963, 1880, 1964, ~
## $ YearBuilt
## $ YearRemodAdd
                    <int> 1966, 1964, 2003, 1950, 1965, 2003, 1963, 2003, 1964, ~
## $ MasVnrArea
                    <int> 200, 621, 0, 0, 0, 101, 0, 0, 360, 318, 272, 16, 140, ~
## $ BsmtFinSF1
                    <int> 740, 812, 702, 547, 892, 0, 630, 0, 674, 0, 490, 16, 5~
                    <int> 230, 0, 0, 0, 0, 0, 0, 106, 0, 0, 0, 0, 0, 0, 12~
## $ BsmtFinSF2
## $ BsmtUnfSF
                    <int> 184, 812, 192, 224, 244, 840, 340, 1240, 0, 936, 935, ~
## $ TotalBsmtSF
                    <int> 1154, 1624, 894, 771, 1136, 840, 970, 1240, 780, 936, ~
## $ X1stFlrSF
                    <int> 1154, 1582, 894, 753, 1136, 840, 970, 1320, 798, 962, ~
                    <int> 0, 0, 0, 741, 0, 828, 0, 1320, 813, 830, 0, 0, 728, 0,~
## $ X2ndFlrSF
## $ LowQualFinSF
                    ## $ GrLivArea
                    <int> 1154, 1582, 894, 1494, 1136, 1668, 970, 2640, 1611, 17~
## $ BsmtFullBath
                    <int> 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, ~
## $ BsmtHalfBath
                    <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ~
## $ FullBath
                    <int> 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, ~
## $ HalfBath
                    <int> 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, ~
## $ BedroomAbvGr
                    <int> 3, 4, 3, 3, 3, 3, 2, 4, 4, 3, 3, 2, 3, 3, 4, 4, 2, 2, ~
## $ KitchenAbvGr
                    ## $ TotRmsAbvGrd
                    <int> 6, 7, 5, 7, 5, 8, 5, 8, 7, 8, 7, 7, 6, 6, 6, 8, 6, 5, ~
## $ Fireplaces
                    <int> 1, 0, 0, 2, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, ~
## $ GarageYrBlt
                    <int> 1966, 1964, 1967, 1942, 1965, 2003, 1996, 1950, 1964, ~
## $ GarageCars
                    <int> 2, 2, 2, 1, 1, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1, 3, 2, 1, ~
## $ GarageArea
                    <int> 480, 390, 450, 213, 384, 500, 624, 864, 442, 451, 576,~
## $ WoodDeckSF
                    <int> 0, 168, 0, 0, 426, 144, 0, 181, 328, 0, 0, 143, 252, 2~
```

```
## $ OpenPorchSF
                  <int> 58, 198, 0, 0, 0, 68, 24, 0, 128, 0, 0, 20, 0, 0, 66, ~
                  <int> 0, 0, 0, 224, 0, 0, 192, 386, 189, 0, 407, 0, 0, 0, 13~
## $ EncPorchSF
## $ PoolArea
                  ## $ MiscVal
## $ MoSold
                  <int> 11, 6, 5, 11, 7, 9, 7, 5, 6, 5, 7, 5, 7, 5, 5, 5, 4, 5~
## $ YrSold
                  <int> 2009, 2006, 2008, 2009, 2008, 2007, 2007, 2009, 2008, ~
## $ SalePrice
                  <int> 154000, 190000, 130000, 177500, 140000, 180000, 132500~
                  <int> 43, 42, 41, 67, 43, 4, 44, 129, 44, 8, 44, 4, 32, 31, ~
## $ age
## $ ageSinceRemodel <int> 43, 42, 5, 59, 43, 4, 44, 6, 44, 8, 44, 3, 32, 31, 60,~
## $ ageofGarage
                  <int> 43, 42, 41, 67, 43, 4, 11, 59, 44, 8, 44, 4, 32, 31, 9~
1.e.
```

The following functions create a Q_1 and Q_3 function that takes a vector x and an optional na.rm which by default has been set to true. Then it calls the quantile function and extracts the second and the fourth element from the five number summary giving just the Q_1 and Q_3 .

```
Q1<-function(x,na.rm=TRUE) {
quantile(x,na.rm=na.rm)[2]
}
Q3<-function(x,na.rm=TRUE) {
quantile(x,na.rm=na.rm)[4]
}</pre>
```

1.f. Here is a function that will do the numeric computations for us.

```
myNumericSummary <- function(x){
   c(length(x), n_distinct(x), sum(is.na(x)), mean(x, na.rm=TRUE),
   min(x,na.rm=TRUE), Q1(x,na.rm=TRUE), median(x,na.rm=TRUE), Q3(x,na.rm=TRUE),
   max(x,na.rm=TRUE), sd(x,na.rm=TRUE))
}</pre>
```

1.g.

I think this is what was intended. I did get this to work with summarise_all as well without the additional commands of across and where

```
numericSummary <- housingNumeric %>%
summarise_all(myNumericSummary) #Applying the custom myNumericSummary function to all variables in th
glimpse(numericSummary)
```

```
## Rows: 10
## Columns: 39
                     <dbl> 1000.0000, 1000.0000, 0.0000, 500.5000, 1.0000, 250.75~
## $ Id
                     <dbl> 1000.00000, 13.00000, 0.00000, 57.18500, 20.00000, 20.~
## $ MSSubClass
## $ LotFrontage
                     <dbl> 1000.00000, 102.00000, 207.00000, 68.74527, 21.00000, ~
## $ LotArea
                     <dbl> 1000.000, 760.000, 0.000, 10424.881, 1477.000, 7500.00~
                     <dbl> 1000.000000, 10.000000, 0.000000, 5.979000, 1.000000, ~
## $ OverallQual
                     <dbl> 1000.000000, 8.000000, 0.000000, 5.638000, 2.000000, 5~
## $ OverallCond
                     <dbl> 1000.00000, 108.00000, 0.00000, 1969.83600, 1875.00000~
## $ YearBuilt
## $ YearRemodAdd
                     <dbl> 1000.00000, 61.00000, 0.00000, 1984.10800, 1950.00000,~
## $ MasVnrArea
                     <dbl> 1000.00000, 249.00000, 4.00000, 95.41767, 0.00000, 0.0~
## $ BsmtFinSF1
                     <dbl> 1000.0000, 490.0000, 0.0000, 438.6860, 0.0000, 0.0000,~
## $ BsmtFinSF2
                     <dbl> 1000.000, 107.000, 0.000, 44.296, 0.000, 0.000, 0.000,~
## $ BsmtUnfSF
                     <dbl> 1000.0000, 598.0000, 0.0000, 535.0780, 0.0000, 208.000~
## $ TotalBsmtSF
                     <dbl> 1000.0000, 549.0000, 0.0000, 1018.0600, 0.0000, 793.00~
## $ X1stFlrSF
                     <dbl> 1000.0000, 581.0000, 0.0000, 1131.2510, 334.0000, 868.~
```

```
<dbl> 1000.0000, 306.0000, 0.0000, 346.2790, 0.0000, 0.0000,~
## $ X2ndFlrSF
## $ LowQualFinSF
                     <dbl> 1000.00000, 15.00000, 0.00000, 4.99100, 0.00000, 0.000~
                     <dbl> 1000.000, 664.000, 0.000, 1482.521, 334.000, 1110.750,~
## $ GrLivArea
                     <dbl> 1000.0000000, 3.0000000, 0.0000000, 0.4270000, 0.00000~
## $ BsmtFullBath
                     <dbl> 1000.0000000, 2.0000000, 0.0000000, 0.0590000, 0.00000~
## $ BsmtHalfBath
                     <dbl> 1000.0000000, 4.0000000, 0.0000000, 1.5290000, 0.00000~
## $ FullBath
## $ HalfBath
                     <dbl> 1000.0000000, 3.0000000, 0.0000000, 0.3840000, 0.00000~
## $ BedroomAbvGr
                     <dbl> 1000.0000000, 7.0000000, 0.0000000, 2.8650000, 0.00000~
## $ KitchenAbvGr
                     <dbl> 1000.0000000, 3.0000000, 0.0000000, 1.0410000, 1.00000~
## $ TotRmsAbvGrd
                     <dbl> 1000.000000, 11.000000, 0.000000, 6.410000, 2.000000, ~
## $ Fireplaces
                     <dbl> 1000.0000000, 4.0000000, 0.0000000, 0.6180000, 0.00000~
                     <dbl> 1000.00000, 94.00000, 53.00000, 1976.93770, 1906.00000~
## $ GarageYrBlt
                     <dbl> 1000.0000000, 5.0000000, 0.0000000, 1.7200000, 0.00000~
## $ GarageCars
                     <dbl> 1000.0000, 353.0000, 0.0000, 458.3290, 0.0000, 318.750~
## $ GarageArea
## $ WoodDeckSF
                     <dbl> 1000.0000, 226.0000, 0.0000, 94.5550, 0.0000, 0.0000, ~
                     <dbl> 1000.00000, 169.00000, 0.00000, 43.61000, 0.00000, 0.0~
## $ OpenPorchSF
## $ EncPorchSF
                     <dbl> 1000.0000, 122.0000, 0.0000, 40.6410, 0.0000, 0.0000, ~
                     <dbl> 1000.00000, 3.00000, 0.00000, 1.22400, 0.00000, 0.0000~
## $ PoolArea
                     <dbl> 1000.0000, 14.0000, 0.0000, 27.2100, 0.0000, 0.0000, 0~
## $ MiscVal
                     <dbl> 1000.000000, 12.000000, 0.000000, 6.207000, 1.000000, ~
## $ MoSold
## $ YrSold
                     <dbl> 1000.00000, 5.00000, 0.00000, 2007.91900, 2006.00000, ~
## $ SalePrice
                     <dbl> 1000.00, 477.00, 0.00, 174560.61, 39300.00, 130000.00,~
                     <dbl> 1000.00000, 115.00000, 0.00000, 38.08300, 1.00000, 10.~
## $ age
## $ ageSinceRemodel <dbl> 1000.00000, 61.00000, 0.00000, 23.81100, 0.00000, 6.00~
                     <dbl> 1000.00000, 97.00000, 53.00000, 30.97254, 0.00000, 9.0~
## $ ageofGarage
1.h.
```

Adding descriptive stat names as the first column to the numeric summary table.

1.i.

variable	n	missing 1	missing_	p ct nique	unique_	pctmean	min	Q1	median	Q3	max	sd
Id	1000	0	0.0	1000	100.0	500.500	1	251	500	750.2	1000	288.819
MSSubClass	1000	0	0.0	13	1.3	57.185	20	20	50	70.0	190	41.875
LotFrontage	1000	207	20.7	102	10.2	68.745	21	58	68	80.0	313	23.198
LotArea	1000	0	0.0	760	76.0	10424.88	11477	7500	9422	11423.5	21524	5 9940.619
OverallQual	1000	0	0.0	10	1.0	5.979	1	5	6	7.0	10	1.310
OverallCond	1000	0	0.0	8	0.8	5.638	2	5	5	6.0	9	1.114
VoarBuilt	1000	Ω	0.0	108	10.8	1060 836	1875	105/	1071	1008 0	2009	20 110

variable	n	missing	missing_	_p ct nique	unique_	_pct mean	min	Q1	media	n Q3	max	sd
YearRemod	Add00 0	0	0.0	61	6.1	1984.108	1950	1967	1992	2002.0	2010	20.116
MasVnrArea	a 1000	4	0.4	249	24.9	95.418	0	0	0	146.2	1600	177.318
BsmtFinSF	1 1000	0	0.0	490	49.0	438.686	0	0	400	700.0	1880	405.837
BsmtFinSF2	2 1000	0	0.0	107	10.7	44.296	0	0	0	0.0	1127	150.493
BsmtUnfSF	1000	0	0.0	598	59.8	535.078	0	208	441	779.2	2153	417.944
TotalBsmtS	F1000	0	0.0	549	54.9	1018.060	0	793	962	1223.5	3206	403.641
X1stFlrSF	1000	0	0.0	581	58.1	1131.251	334	868	1060	1327.2	3228	350.862
X2ndFlrSF	1000	0	0.0	306	30.6	346.279	0	0	0	735.0	1872	426.395
LowQualFir	nS F 000	0	0.0	15	1.5	4.991	0	0	0	0.0	528	45.295
$\operatorname{GrLivArea}$	1000	0	0.0	664	66.4	1482.521	334	1111	1442	1735.0	4316	490.566
BsmtFullBa	th1000	0	0.0	3	0.3	0.427	0	0	0	1.0	2	0.509
BsmtHalfBa	t11000	0	0.0	2	0.2	0.059	0	0	0	0.0	1	0.236
FullBath	1000	0	0.0	4	0.4	1.529	0	1	2	2.0	3	0.531
HalfBath	1000	0	0.0	3	0.3	0.384	0	0	0	1.0	2	0.501
BedroomAb		0	0.0	7	0.7	2.865	0	2	3	3.0	6	0.791
KitchenAbv		0	0.0	3	0.3	1.041	1	1	1	1.0	3	0.203
TotRmsAbv	Gh@DO	0	0.0	11	1.1	6.410	2	5	6	7.0	12	1.562
Fireplaces	1000	0	0.0	4	0.4	0.618	0	0	1	1.0	3	0.642
GarageYrBl	t 1000	53	5.3	94	9.4	1976.938	1906	1960	1977	1999.0	2009	23.592
GarageCars	1000	0	0.0	5	0.5	1.720	0	1	2	2.0	4	0.714
GarageArea		0	0.0	353	35.3	458.329	0	319	470	572.0	1356	197.780
WoodDeckS	F1000	0	0.0	226	22.6	94.555	0	0	0	168.0	857	127.144
OpenPorchS	SF1000	0	0.0	169	16.9	43.610	0	0	22	64.0	547	61.915
EncPorchSF	1000	0	0.0	122	12.2	40.641	0	0	0	0.0	508	82.139
PoolArea	1000	0	0.0	3	0.3	1.224	0	0	0	0.0	648	27.403
MiscVal	1000	0	0.0	14	1.4	27.210	0	0	0	0.0	3500	190.707
MoSold	1000	0	0.0	12	1.2	6.207	1	4	6	8.0	12	2.626
YrSold	1000	0	0.0	5	0.5	2007.919	2006	2007	2008	2009.0	2010	1.318
SalePrice	1000	0	0.0	477	47.7	174560.60	0 3 9300	130000	16000	0 205000.	075500	0 69329.319
age	1000	0	0.0	115	11.5	38.083	1	10	37	55.0	135	29.109
ageSinceRer	n dd0 D	0	0.0	61	6.1	23.811	0	6	16	41.2	60	20.033
ageofGarage	e 1000	53	5.3	97	9.7	30.973	0	9	30	48.0	102	23.563

1.j.

Helper functions to compute the modes of a vector, including the first, second, and least common modes, as well as their frequencies.

```
getmodes <- function(v,type=1) {
tbl <- table(v)
m1<-which.max(tbl)
if (type==1) {
  return (names(m1)) #1st mode
}
else if (type==2) {
  return (names(which.max(tbl[-m1]))) #2nd mode
}
else if (type==-1) {
  return (names(which.min(tbl))) #least common mode
}
else {
  stop("Invalid type selected")</pre>
```

```
}
}
getmodesCnt <- function(v,type=1) {</pre>
tbl <- table(v)
m1<-which.max(tbl)</pre>
if (type==1) {
return (max(tbl)) #1st mode freq
else if (type==2) {
return (max(tbl[-m1])) #2nd mode freq
else if (type==-1) {
return (min(tbl)) #least common freq
}
else {
stop("Invalid type selected")
}
}
Next, I'll package all the functions (that don't rely on another computation) together
myCategoricalSummary <- function(x){</pre>
  c(length(x),sum(is.na(x)), n_distinct(x),
  getmodes(x,1), getmodesCnt(x,1), getmodes(x,2), getmodesCnt(x,2), getmodes(x,-1), getmodesCnt(x,-1))
}
myCategoricalSummary(housingData$MSZoning)
## [1] "1000" "0"
                      "4"
                             "RL"
                                    "803" "RM"
                                                   "151"
                                                         "RH"
                                                                 "10"
Test looks good. Now we summarize all the data.
factorSummary <- housingFactor %>%
  summarise_all(myCategoricalSummary)
factorSummary<-cbind(stat=c("n", "missing", "unique",</pre>
                              "1st mode", "first_mode_freq", "2nd mode",
                             "second_mode_freq", "least common", "least common freq"),
                     factorSummary) #add titles becarefule to omit spaces for ones we need again.
glimpse(factorSummary)
## Rows: 9
## Columns: 39
                  <chr> "n", "missing", "unique", "1st mode", "first_mode_freq", ~
## $ stat
                  <chr> "1000", "0", "4", "RL", "803", "RM", "151", "RH", "10"
## $ MSZoning
                  <chr> "1000", "938", "3", "Grvl", "40", "Pave", "22", "Pave", "~
## $ Alley
                  <chr> "1000", "0", "4", "Reg", "633", "IR1", "330", "IR3", "7"
## $ LotShape
## $ LandContour <chr> "1000", "0", "4", "Lv1", "905", "Bnk", "40", "Low", "26"
                  <chr> "1000", "0", "4", "Inside", "711", "Corner", "179", "othe~
## $ LotConfig
                  <chr> "1000", "0", "3", "Gtl", "946", "Mod", "48", "Sev", "6"
## $ LandSlope
## $ Neighborhood <chr> "1000", "0", "18", "NAmes", "167", "CollgCr", "113", "Tim~
                  <chr> "1000", "0", "6", "Norm", "871", "Feedr", "51", "PosA", "~
## $ Condition1
                  <chr> "1000", "0", "5", "1Fam", "837", "TwnhsE", "81", "2fmCon"~
## $ BldgType
                  <chr> "1000", "0", "8", "1Story", "488", "2Story", "310", "2.5F~
## $ HouseStyle
                  <chr> "1000", "0", "3", "Gable", "795", "Hip", "184", "other", ~
## $ RoofStyle
## $ Exterior1st <chr> "1000", "0", "8", "VinylSd", "328", "HdBoard", "175", "Ce~
```

```
## $ Exterior2nd <chr> "1000", "0", "9", "VinylSd", "320", "HdBoard", "159", "Br~
                  <chr> "1000", "4", "5", "None", "617", "BrkFace", "313", "BrkCm~
## $ MasVnrType
                  <chr> "1000", "0", "3", "Avg", "657", "AboveAvg", "336", "Below~
## $ ExterQual
                  <chr> "1000", "0", "3", "Avg", "880", "AboveAvg", "103", "Below~
## $ ExterCond
                  <chr> "1000", "0", "4", "CBlock", "463", "PConc", "414", "other~
## $ Foundation
## $ BsmtQual
                  <chr> "1000", "31", "4", "AboveAvg", "488", "Avg", "459", "Belo~
## $ BsmtCond
                  <chr> "1000", "31", "4", "Avg", "903", "AboveAvg", "37", "Below~
## $ BsmtExposure <chr> "1000", "32", "5", "No", "668", "Av", "140", "Mn", "76"
## $ BsmtFinType1 <chr> "1000", "31", "7", "GLQ", "273", "Unf", "265", "LwQ", "52"
## $ BsmtFinType2 <chr> "1000", "32", "7", "Unf", "853", "Rec", "36", "ALQ", "11"
                  <chr> "1000", "0", "2", "GasA", "974", "other", "26", "other", ~
## $ Heating
                  <chr> "1000", "0", "3", "AboveAvg", "664", "Avg", "300", "Below~
## $ HeatingQC
                  <chr> "1000", "0", "2", "Y", "936", "N", "64", "N", "64"
## $ CentralAir
                  <chr> "1000", "1", "5", "SBrkr", "908", "FuseA", "72", "FuseP",~
## $ Electrical
## $ KitchenQual <chr> "1000", "0", "3", "Avg", "534", "AboveAvg", "439", "Below~
                  <chr> "1000", "0", "6", "Typ", "924", "Min2", "26", "Maj2", "4"
## $ Functional
## $ FireplaceQu <chr> "1000", "466", "4", "AboveAvg", "250", "Avg", "240", "Bel~
                  <chr> "1000", "53", "7", "Attchd", "601", "Detchd", "280", "2Ty~
## $ GarageType
## $ GarageFinish <chr> "1000", "53", "4", "Unf", "434", "RFn", "291", "Fin", "22~
                  <chr> "1000", "53", "4", "Avg", "907", "BelowAvg", "33", "Above~
## $ GarageQual
                  <chr> "1000", "53", "4", "Avg", "910", "BelowAvg", "31", "Above~
## $ GarageCond
## $ PavedDrive
                  <chr> "1000", "0", "3", "Y", "912", "N", "62", "P", "26"
## $ PoolQC
                  <chr> "1000", "998", "3", "Fa", "1", "Gd", "1", "Fa", "1"
                  <chr> "1000", "805", "5", "MnPrv", "108", "GdPrv", "40", "MnWw"~
## $ Fence
## $ MiscFeature <chr> "1000", "966", "3", "Shed", "32", "Othr", "2", "Othr", "2"
## $ SaleType
                  <chr> "1000", "0", "2", "WD", "971", "other", "29", "other", "2~
factorSummaryFinal <- factorSummary %>%
  tidyr::pivot_longer("MSZoning":"SaleType", names_to = "variable", values_to = "value") %>%
  tidyr::pivot_wider(names_from = stat, values_from = value) %>%
  dplyr::mutate(missing_pct = 100*as.numeric(missing)/as.numeric(n), #compute missing_pct
         unique_pct = 100*as.numeric(unique)/as.numeric(n), #unique percent
         freqRatio = as.numeric(first_mode_freq)/as.numeric(second_mode_freq)) %>% #freqRatio as define
  dplyr::select(variable, n, missing, missing_pct, unique, unique_pct,freqRatio, everything())
options(digits=3)
options(scipen=99)
factorSummaryFinal %>% kable() #display nicely
```

									least	least
					1st		2nd		com-	common
variable n	$missing missing_$	_pnt queuni	que_	_fretqRat	imode	first_{-}	$\underline{}$ $\phantom{$	second_r	mo de onfreq	freq
MSZoning 000	0.0	4 (0.4	5.32	RL	803	RM	151	RH	10
Alley 1000	938 93.8	3 (0.3	1.82	Grvl	40	Pave	22	Pave	22
LotShape1000	0.0	4 (0.4	1.92	Reg	633	IR1	330	IR3	7
LandCont L000	0.0	4 (0.4	22.62	Lvl	905	Bnk	40	Low	26
LotConfig1000	0.0	4 (0.4	3.97	Inside	711	Corner	: 179	other	38
LandSlop&000	0.0	3 (0.3	19.71	Gtl	946	Mod	48	Sev	6
Neighborli 000	0.0	18 1	1.8	1.48	NAmes	167	CollgC	r113	Timber	20
Condition 11000	0.0	6 (0.6	17.08	Norm	871	Feedr	51	PosA	7
BldgType1000	0.0	5 (0.5	10.33	1Fam	837	Twnhs	₽ 81	2 fm Con	20
HouseStyle000	0.0	8 (0.8	1.57	1Story	488	2Story	310	2.5Fin	5
RoofStyle1000	0.0	3 (0.3	4.32	Gable	795	Hip	184	other	21
Exterior1st000	0.0	8 (0.8	1.87	VinylS	d328	HdBoa	ırb75	CemntBo	136

											least	least
					_	1st		2n			com-	common
variable n	mis	singmissing	_pni	queunique_	_fretqRa	timode	$\operatorname{first}_{_}$	_mode <u>m</u> f	breleq	$second_{_}$	_mo de onfreq	freq
Exterior211d00	0	0.0	9	0.9	2.01	Vinyl	Sd320	Но	dBoa	ır l 59	BrkFace	24
MasVnrT ≵p@ 0	4	0.4	5	0.5	1.97	None	617	Br	kFac	c 6 13	BrkCmn	8
ExterQual000	0	0.0	3	0.3	1.96	Avg	657	Al	oove.	A3/3g6	BelowAv	g7
ExterCond000	0	0.0	3	0.3	8.54	Avg	880	Al	oove.	A1/023	BelowAv	g17
Foundation000	0	0.0	4	0.4	1.12	CBloc	k463	PO	Conc	414	other	27
BsmtQuall000	31	3.1	4	0.4	1.06	Above	A488	Av	/g	459	BelowAv	g22
BsmtCond1000	31	3.1	4	0.4	24.41	Avg	903	Al	oove.	A3⁄g	BelowAv	g29
BsmtExp ds00 0	e32	3.2	5	0.5	4.77	No	668	Av	7	140	${ m Mn}$	76
BsmtFinTly000	131	3.1	7	0.7	1.03	GLQ	273	Uı	nf	265	LwQ	52
BsmtFinTly000	232	3.2	7	0.7	23.69	Unf	853	$R\epsilon$	ec	36	ALQ	11
Heating 1000	0	0.0	2	0.2	37.46	GasA	974	ot]	$_{ m her}$	26	other	26
HeatingQ0000	0	0.0	3	0.3	2.21	Above	A664	Av	/g	300	BelowAv	g36
CentralAir000	0	0.0	2	0.2	14.62	Y	936	N		64	N	64
Electrical 1000	1	0.1	5	0.5	12.61	SBrkr	908	Fu	seA	72	FuseP	2
KitchenQ 1100 0	0	0.0	3	0.3	1.22	Avg	534	Al	oove.	A43 9	BelowAv	g27
Functiona 1000	0	0.0	6	0.6	35.54	Typ	924	M	in2	26	Maj2	4
Fireplace Q0000	466	46.6	4	0.4	1.04	Above	A2/50	Av	/g	240	BelowAv	g44
GarageTyp000	53	5.3	7	0.7	2.15	Attche	d601	$\mathrm{D}\epsilon$	etcho	1280	2Types	3
GarageFin 19000	53	5.3	4	0.4	1.49	Unf	434	RI	Fn	291	Fin	222
GarageQulal00	53	5.3	4	0.4	27.48	Avg	907	$\mathrm{B}\epsilon$	elow	Asg	AboveAv	·gī
GarageColo000	53	5.3	4	0.4	29.36	Avg	910	$\mathrm{B}\epsilon$	elow	A3g	AboveAv	· g 6
PavedDri 1 000	0	0.0	3	0.3	14.71	Y	912	N		62	P	26
PoolQC 1000	998	99.8	3	0.3	1.00	Fa	1	G_0	d	1	Fa	1
Fence 1000			5	0.5	2.70	MnPr	v 108	Go	dPrv	40	MnWw	8
MiscFeatuli000	966	96.6	3	0.3	16.00	Shed	32	Ot	$_{ m thr}$	2	Othr	2
SaleType 1000	0	0.0	2	0.2	33.48	WD	971	otl	her	29	other	29

2.a.

I notice two examples of skewed data, YearBuilt and SalePrice. The skews are in opposite directions so that is fun! First I try the Year built. Here is the visualization.

```
yb <- ggplot(data = housingData, aes(x = YearBuilt)) +
  geom_histogram() +
  ggtitle("Year Built is Skewed") +
  xlab("Year Built")
yb</pre>
```

Year Built is Skewed

Very bimodal and skewed to the current time. Apply the boxcox function.

b<-boxcox(lm(housingData\$YearBuilt~1), lambda = seq(-4,50,1/10)) #tweaked the limits until found the co


```
lambda <- b$x[which.max(b$y)] #find the max
lambda</pre>
```

[1] 21.3

This is the optimal λ .

```
mytitle <- paste("Boxcox with lambda=", lambda)
ybm <- housingData %>%
  mutate(YearBuiltMod = (YearBuilt^lambda-1)/lambda) %>%
  ggplot( aes(x = YearBuiltMod)) +
  geom_histogram() +
  ggtitle(mytitle) +
  xlab("Year Built")

grid.arrange(yb,ybm, nrow = 1)
```


This is much better but by no means perfect. Looks like the year built was quite a difficult column due to the bi-modal distribution.

I am going to look at the Sale Price. These are notorious for not being normal.

```
sp <- ggplot(data = housingData, aes(x = SalePrice)) +
  geom_histogram() +
  ggtitle("Sale Price is Skewed") +
  xlab("Sale Price")
sp</pre>
```


b<-boxcox(lm(housingData\$SalePrice~1), lambda = seq(-4,4,1/10))


```
lambda <- b$x[which.max(b$y)]
lambda

## [1] -0.121

mytitle <- paste("Boxcox with lambda=", lambda)

spm <- housingData %>%
    mutate(SalePriceMod = (SalePrice^lambda -1)/lambda) %>%
    ggplot( aes(x = SalePriceMod)) +
    geom_histogram() +
    ggtitle(mytitle) +
    xlab("Sale Price")

grid.arrange(sp,spm, nrow = 1)
```


That looks much better. Quite normal and ready for analysis.

2.b.i.

Looking to LotFrontage, we see lots of missing values.

```
missing <- is.na(housingData$LotFrontage) #find the missing values
sum(missing) #give a total
```

[1] 207

We impute first by replacing it with the mean.

```
avg <- mean(housingData$LotFrontage, na.rm = TRUE) #get the mean before imputing
housingData <- housingData %>%
mutate(LFMean = if_else(is.na(LotFrontage), avg,LotFrontage)) #create a new column imputed with the mean before imputing
```

b.ii.

Now we'll impute with a linear regression and some error depending on that regression. Since we are trying to predict something about the lot, I keep only variables with information about the outside of the house. I could not use Alley because it did not have enough levels to fit the linear model. I could not use LotShape due to some shapes not being in the training data. I could not use Fence either due to many missing values.

```
names(housingData)[c(4,5,8,9)] #find the names of variables that will work
## [1] "LotFrontage" "LotArea" "LandContour" "LotConfig"
fit <- lm(LotFrontage ~ ., data=housingData[,names(housingData)[c(4,5,8,9)]]) #do linear fit
summary(fit)</pre>
```

```
##
## Call:
## lm(formula = LotFrontage ~ ., data = housingData[, names(housingData)[c(4,
       5, 8, 9)]])
##
##
## Residuals:
      Min
               10 Median
                                30
                                      Max
                    -0.33
## -115.31 -11.03
                             10.11 219.58
##
## Coefficients:
                    Estimate Std. Error t value
                                                             Pr(>|t|)
## (Intercept)
                                3.99768
                                         18.31 < 0.0000000000000000 ***
                    73.18464
                                          11.48 < 0.0000000000000000 ***
## LotArea
                     0.00103
                                0.00009
## LandContourHLS
                                5.33736
                     6.57561
                                          1.23
                                                                0.218
## LandContourLow
                   -15.37132
                                7.66387
                                          -2.01
                                                                0.045 *
## LandContourLvl
                    -1.66336
                                3.56385
                                           -0.47
                                                                0.641
## LotConfigCulDSac -30.01658
                                          -7.54
                                                     0.0000000000013 ***
                                3.97942
## LotConfigInside
                   -14.91123
                                1.95984
                                          -7.61
                                                     0.0000000000008 ***
## LotConfigother
                                4.33070
                                          -5.07
                                                     0.00000049743063 ***
                   -21.95523
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 20.5 on 785 degrees of freedom
     (207 observations deleted due to missingness)
## Multiple R-squared: 0.224, Adjusted R-squared: 0.217
## F-statistic: 32.4 on 7 and 785 DF, p-value: <0.00000000000000000
```

We see that the fit is decent with most of the variables that we have used showing significance.

Now we make predictions and impute.

```
pred <- predict(fit,housingData[,names(housingData)[c(4,5,8,9)]] ) #create predictions
se <- summary(fit)[[6]] #standard error of the fit
housingData <- housingData%>%
   mutate(LFLM = if_else(is.na(LotFrontage),pred + rnorm(length(pred),0,se),LotFrontage)) #add the new companies.
```

b.iii.

We use the mice package for predictive mean matching. Here I used LotArea and SalePrice to build the model. This package would not work with any missing values.

```
housingData$LFPMM <- housingData$LotFrontage #create a new column with all the values
housingData[missing,"LFPMM"] = mice.impute.pmm(housingData$LotFrontage,!missing,housingData[,names(hou
```

b.iv.

Time to visualize.

```
colors <- c("Original" = "blue", "Impute with Mean" = "yellow", "Impute with Regression" = "red", "Impu
g1 <- ggplot(housingData)+
    geom_histogram(aes(x = LotFrontage, fill = "Original"),alpha = 0.5) +
    geom_histogram(aes(x = LFMean, fill = "Impute with Mean"),alpha = 0.5) +
    labs(title = "Impute by Mean", fill = "legend")+
    scale_color_manual(values = colors) +
    coord_cartesian(xlim = c(0,350))
g2 <- ggplot(housingData)+
    geom_histogram(aes(x = LotFrontage, fill = "Original"),alpha = 0.5) +
    geom_histogram(aes(x = LFLM, fill = "Impute with Regression"),alpha = 0.5) +</pre>
```

```
labs(title = "Impute by Regression", fill = "legend")+
scale_color_manual(values = colors) +
coord_cartesian(xlim = c(0,350))
g3 <- ggplot(housingData)+
geom_histogram(aes(x = LotFrontage, fill = "Original"),alpha = 0.5) +
geom_histogram(aes(x = LFPMM, fill = "Impute with PMM"),alpha = 0.5) +
labs(title = "Impute by PMM", fill = "legend")+
scale_color_manual(values = colors) +
coord_cartesian(xlim = c(0,350))</pre>
grid.arrange(g1,g2,g3)
```

Impute by Mean

Impute by Regression

Impute by PMM

We see some of what was expected. The mean imputation really returns that same value a lot. The regression imputation is better and the pmm seems best.

2.c. Create 5 levels for the variable Exterior1st. Here is the original counts sorted.

```
housingData %>%

dplyr::count(Exterior1st, sort = TRUE) #somewhere I masked the dplyr count function
```

```
## Exterior1st n
## 1 VinylSd 328
## 2 HdBoard 175
## 3 MetalSd 153
## 4 Wd Sdng 141
## 5 Plywood 73
## 6 other 52
```

```
## 7
         BrkFace
## 8
         CemntBd
                  36
housingData %>%
  mutate(Exterior1st = fct_lump(Exterior1st,n=4)) %% #this will create 4 categories with the 5th being
  dplyr::count(Exterior1st, sort = TRUE)
##
     Exterior1st
                    n
## 1
         VinylSd 328
## 2
           Other 203
         HdBoard 175
## 3
## 4
         MetalSd 153
## 5
         Wd Sdng 141
2.d.i.
We use dplyr again for this noticing that some of the functions need to be called with package name.
housingData %>%
  dplyr::group_by(Neighborhood) %>%
  dplyr::summarise(average = mean(SalePrice)) %>%
  arrange(desc(average))
## # A tibble: 18 x 2
##
      Neighborhood average
##
      <chr>
                      <dbl>
##
   1 NoRidge
                    328794.
   2 NridgHt
                    283057.
## 3 Timber
                    241940
## 4 ClearCr
                    218265.
## 5 Somerst
                    211678.
## 6 Crawfor
                    209766.
## 7 CollgCr
                    194942.
## 8 NWAmes
                    191823.
## 9 Gilbert
                    189466.
## 10 SawyerW
                    183971.
## 11 other
                    170248.
## 12 Mitchel
                    154788.
## 13 NAmes
                    146669.
## 14 Sawyer
                    134708.
## 15 Edwards
                    128772.
## 16 OldTown
                    126023.
## 17 BrkSide
                    124844.
## 18 IDOTRR
                    114319.
2.d.ii. Create a boxplot of the saleprice with neighborhoods.
ggplot(housingData, aes(y = SalePrice, x = Neighborhood)) +
  geom_boxplot()
```


Neighborhood

2.d.iii.

```
housingData <- housingData %>%
  mutate(Neighborhood = factor(Neighborhood)) %>% #turn the data into a factor
  mutate(Neighborhood = fct_reorder(Neighborhood, SalePrice, .desc = TRUE)) #reorder the data uses media
```

2.d.iv.

Since the data has been reordered, we only need to call ggplot.

```
housingData %>%
  ggplot(aes(x= Neighborhood, y = SalePrice)) +
  geom_boxplot() +
  labs(title = "Sale Price Box Plot", x = "Neighborhood")+
  scale_x_discrete(guide = guide_axis(n.dodge=3)) #just to get the variables to dodge
```

Sale Price Box Plot

