MACHINE LEARNING

Klasifikasi Teks Menggunakan RNN

Dosen Pengampu:

Al-Ustadz Oddy Virgantara Putra

Disusun Oleh:

Naila Fatikhah Parwanto / 442023618086

PROGRAM STUDI TEKNIK INFORMATIKA

UNIVERSITAS DARUSSALAM GONTOR MANTINGAN

2025/1447

Abstrak:

Proyek ini mengeksplorasi klasifikasi sentimen pada IMDB Movie Reviews menggunakan Bidirectional LSTM (BiLSTM). Model terdiri dari Embedding → BiLSTM (2 layer) → Dropout → Fully-Connected dengan loss CrossEntropy dan optimizer Adam. Dilatih selama 10 epoch dengan batch size 32, model mencapai val accuracy akhir 57,5%. Hasil menunjukkan model mulai belajar (train loss turun konsisten), namun generalisasi masih terbatas (val accuracy fluktuatif). Perbaikan diarahkan pada preprocessing, pelatihan lebih lama, serta pemanfaatan embedding pra-latih (GloVe/fastText) atau arsitektur yang lebih kuat (GRU/Transformer).

I. Pendahuluan

Klasifikasi sentimen adalah task fundamental NLP. RNN—khususnya LSTM/GRU—mampu menangkap dependensi urutan kata. Penelitian ini memfokuskan implementasi BiLSTM untuk memodelkan konteks dua arah (forward–backward) pada review film, kemudian mengevaluasi performanya pada data validasi.

II. Dataset & Preprocessing

- Dataset: IMDB Movie Reviews (biner: positif/negatif).
- Representasi: tokenisasi lalu Embedding (dimensi 100).
- **Split**: train/valid (proporsi sesuai di notebook).
- Catatan: Tidak disebutkan penggunaan normalisasi khusus (stopwords, lemmatization) maupun embedding pra-latih—ini jadi salah satu peluang perbaikan.

III. Arsitektur & Konfigurasi Model

- Arsitektur:
 - o Embedding (dimensi 100)
 - o Bidirectional LSTM (hidden dim 128, num layers 2)
 - Dropout
 - o Fully-Connected output
- Aktivasi: Mekanisme LSTM menggunakan sigmoid (gate) dan tanh (state), output ke layer klasifikasi dengan CrossEntropyLoss (softmax implisit).
- Hiperparameter:

Epoch: 10

Batch size: 32

o Learning rate: 0.001

o Optimizer: Adam

o Loss: CrossEntropyLoss

IV. Hasil & Evaluasi

Kurva Pelatihan (ringkasan angka dari log)

Epoch	Train Loss	Val Loss	Val Acc
1	0.6964	0.6906	0.4750
2	0.6844	0.6948	0.4500
3	0.6743	0.6904	0.4500
4	0.6571	0.6890	0.4750
5	0.6112	0.6927	0.5500
6	0.5588	0.6678	0.5000
7	0.5114	0.5636	0.6000
8	0.4882	0.6942	0.5750
9	0.4373	0.7777	0.6250
10	0.4310	0.7793	0.5750

Observasi kunci:

- Train loss turun konsisten → model belajar representasi.
- Val accuracy fluktuatif (45–62.5%), final 57.5% → indikasi underfitting awal lalu mulai belajar, namun belum stabil (kemungkinan butuh epoch lebih panjang & regularisasi/penyesuaian lain).
- Val loss sempat turun (epoch 7), lalu naik → tanda over/underfit dinamika; perlu tuning lebih lanjut.

Catatan: Notebook menyebut **confusion matrix** dibuat, namun tidak ada printout teksnya di output. Jika plot-nya ada di sel visualisasi, tampilkan di laporan sebagai gambar lampiran dan jelaskan kelas mana yang paling sering keliru.

V. Diskusi

1. Peran fungsi aktivasi di LSTM

- Sigmoid mengatur seberapa banyak informasi masuk/keluar (input/forget/output gates).
- o **Tanh** menormalkan nilai state agar stabil. Kombinasi ini menjaga **gradients** tidak mudah hilang saat memproses urutan panjang.

2. Analisis performa

- o Embedding 100-dim + BiLSTM 2-layer (128 hidden) sudah cukup untuk baseline, tapi 10 epoch relatif pendek untuk IMDB—umumnya butuh ≥15–30 epoch untuk stabil.
- Val acc puncak 62.5% (epoch 9) menunjukkan potensi; drop di epoch 10 bisa karena early stopping belum diterapkan atau LR kurang adaptif.

3. Bottleneck & error patterns

- Sentimen ambigu/ironi sarkas: RNN baseline sering gagal tanpa fitur konteks kaya (misal attention).
- Panjang review bervariasi: perlu padding/truncation bijak dan mungkin bucketing by length.

VI. Kesimpulan

Implementasi BiLSTM pada IMDB menunjukkan val accuracy 57,5% setelah 10 epoch—model sudah belajar namun belum mencapai performa kompetitif. Arah perbaikan paling berdampak adalah menambah durasi pelatihan, pretrained embeddings, serta regularisasi & scheduling. Menambahkan baseline klasik (TF-IDF + LogReg) akan membantu memvalidasi apakah arsitektur deep learning memberi keuntungan nyata pada setup ini.

VII. Referensi Singkat

- Hochreiter & Schmidhuber (1997) LSTM.
- Kim (2014) CNN for sentence classification.
- Pennington et al. (2014) GloVe: Global Vectors for Word Representation.
- Dokumentasi PyTorch (nn.Embedding, nn.LSTM, optim.Adam, CrossEntropyLoss).

VIII. Lampiran

• Grafik Training/Validation Loss & Accuracy per epoch.

• Confusion Matrix (screenshot plot dari notebook).

• Link Kaggle: https://www.kaggle.com/code/nailafath/rnn-text-classification