TATA24, TENTAMEN 2019-01-16 SVAR OCH KORTFATTADE LÖSNINGSSKISSER

1. Normalekvationen är

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

som har den enda lösningen $x_1 = \frac{1}{2}, x_2 = 1.$

Svar: $(x_1, x_2) = (\frac{1}{2}, 1).$

2. Elementära radoperationer ger $\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 2 & -1 & 0 & 1 & 0 \\ -3 & -1 & -1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -3 & 1 & -1 \\ 0 & 1 & 0 & 4 & -1 & 1 \\ 0 & 0 & 1 & 5 & -2 & 1 \end{pmatrix}.$

Svar:
$$\begin{pmatrix} -3 & 1 & -1 \\ 4 & -1 & 1 \\ 5 & -2 & 1 \end{pmatrix}$$
.

3. Svar: $2x_1 + 5x_2 - 4x_3 = -3$.

4. Svar: Det enda egenvärdet är 6, med egenrum [(1, -2)].

5. Svar: −2.

6. Basvektorernas bilder är F((1,0)) = F((1,2)) - 2F((0,1)) = (1,2,3) - 2(-1,1,0) = (3,0,3) och F((0,1)) = (-1,1,0).

och
$$F((0,1)) = (-1,1,0)$$
.
Svar: $\begin{pmatrix} 3 & -1 \\ 0 & 1 \\ 3 & 0 \end{pmatrix}$.

7. Vi skapar en ortogonal bas för V med Gram-Schmidt; normering ger sedan en ON-bas:

$$\begin{aligned} \mathbf{b_1} &= (1,0,2,1) \\ \mathbf{b_2} &= (1,1,-3,-1) - (1,1,-3,-1)_{\parallel \mathbf{b_1}} = (1,1,-3,-1) + (1,0,2,1) = (2,1,-1,0) \\ \mathbf{b_3} &= (-3,-1,5,-1) - (-3,-1,5,-1)_{\parallel \mathbf{b_1}} - (-3,-1,5,-1)_{\parallel \mathbf{b_2}} \\ &= (-3,-1,5,-1) - (1,0,2,1) + 2(2,1,-1,0) = (0,1,1,-2). \end{aligned}$$

Nu kan \mathbb{V}^{\perp} beskrivas som lösningsrummet till (exempelvis) ekvationssystemet

$$\begin{cases} x_1 + 2x_3 + x_4 = 0, \\ 2x_1 + x_2 - x_3 = 0, \\ x_2 + x_3 - 2x_4 = 0. \end{cases}$$

Dess lösningar är $(x_1, x_2, x_3, x_4) = t(-1, 2, 0, 1), t \in \mathbb{R}.$

Svar:
$$\left(\frac{1}{\sqrt{6}}(1,0,2,1) - \frac{1}{\sqrt{6}}(2,1,-1,0) - \frac{1}{\sqrt{6}}(0,1,1,-2)\right)$$
 respektive $\left(\frac{1}{\sqrt{6}}(-1,2,0,1)\right)$.

8. Koefficientmatrisen A har egenvärdena 1 och 3 med egenrummen $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ respektive $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Med denna information kan vi diagonalisera A och få

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ -4 & -1 \end{pmatrix}^n \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 1^n & 0 \\ 0 & 3^n \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 3^n \\ -2 & -3^n \end{pmatrix} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} -3 + 4 \cdot 3^n \\ 6 - 4 \cdot 3^n \end{pmatrix} .$$

Svar: $a_n = -3 + 4 \cdot 3^n$, $b_n = 6 - 4 \cdot 3^n$

9. Med $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ kan vänsterledet i ellipsoidens ekvation skrivas $Q(\underline{e}X) = X^t A X$, där

$$A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}.$$

Dess egenvärden är 3 och 6. (De är positiva, så ekvationen beskriver verkligen en ellipsoid.) Eftersom $Q(\mathbf{u}) \leq 6|\mathbf{u}|^2$, så gäller för \mathbf{u} på ellipsoiden att $|\mathbf{u}| \geq \sqrt{8/6} = 2/\sqrt{3}$. Vidare uppnås likhet, det vill säga minsta möjliga $|\mathbf{u}|$, precis då $\mathbf{u} = \underline{e}X$ där X är en egenvektor till A med egenvärde 6.

Egenrummet som hör till 6 spänns upp av $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, så vi söker de $\mathbf{u} = t(1, -1, 1)$ som ligger

på ellipsoiden. Det gäller om och endast om $t = \pm \frac{2}{3}$ (sätt in i ellipsoidens ekvation och lös ut t, alternativt använd villkoret att $|\mathbf{u}| = 2/\sqrt{3}$).

Svar:
$$(x_1, x_2, x_3) = \pm \frac{2}{3}(1, -1, 1).$$

10.

- (a) Svar: Att $\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_m \mathbf{u}_m = \mathbf{0}$ medför $\lambda_1 = \lambda_2 = \dots = \lambda_m = 0$. (b) Låt $(\cdot|\cdot)$ beteckna \mathbb{V} :s skalärprodukt. Antag att $\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_m \mathbf{u}_m = \mathbf{0}$. Tag $i \in \{1, 2, \dots, m\}$. Det måste visas att $\lambda_i = 0$. Notera att

$$0 = (\mathbf{0}|\mathbf{u}_i) = (\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_m \mathbf{u}_m |\mathbf{u}_i) = \lambda_i |\mathbf{u}_i|^2,$$

där sista likheten följer av att \mathbf{u}_i och \mathbf{u}_j är ortogonala om $i \neq j$. Eftersom $\mathbf{u}_i \neq \mathbf{0}$ gäller $|\mathbf{u}_i| > 0$ och därför måste $\lambda_i = 0$, som önskat.