Demand System Asset Pricing A micro-founded asset demand system

Ralph S.J. Koijen^a Motohiro Yogo^b

 a University of Chicago, Booth School of Business, NBER, and CEPR b Princeton University and NBER

Towards an empirically-tractable model of demand

- Wish list for our model:
 - 1. Nests modern portfolio theory as a special case.
 - 2. Empirically tractable.
 - 3. Sufficiently flexible to allow for inelastic demand curves.

Towards an empirically-tractable model of demand

- Wish list for our model:
 - 1. Nests modern portfolio theory as a special case.
 - 2. Empirically tractable.
 - 3. Sufficiently flexible to allow for inelastic demand curves.
- Standard mean-variance portfolio choice implies

$$w = \frac{1}{\gamma} \Sigma^{-1} \mu.$$

If we model $\mu(n)$ as a function of characteristics of stock n, $\kappa(n)$, as in modern empirical asset pricing, it seems intractable as characteristics of all stocks matter (via Σ^{-1}).

Towards an empirically-tractable model of demand

- Wish list for our model:
 - 1. Nests modern portfolio theory as a special case.
 - 2. Empirically tractable.
 - 3. Sufficiently flexible to allow for inelastic demand curves.
- Standard mean-variance portfolio choice implies

$$w = \frac{1}{\gamma} \Sigma^{-1} \mu.$$

- If we model $\mu(n)$ as a function of characteristics of stock n, x(n), as in modern empirical asset pricing, it seems intractable as characteristics of all stocks matter (via Σ^{-1}).
- Key insight: Solution simplifies under realistic assumptions to

$$w(n)=\frac{b'x(n)}{c},$$

where c encodes the information of all other stocks.

Various micro-foundations lead to a demand system

- Various micro-foundations.
 - Mean-variance portfolio choice (Markowitz 1952).
 - ▶ Portfolio choice with hedging demand (Merton 1973).
 - Private information and imperfect competition (Kyle 1989).
 - Heterogeneous beliefs.
 - Institutional asset pricing with constraints.
 - Direct preferences for characteristics such as ESG.
- Can be expressed as the same portfolio demand function (see KRY21).
- ► However, demand elasticities depend on structural parameters in different ways.

Investor types, preferences, and technology

We consider two broad classes of investors: Quants and Fundamental investors.

Investor types, preferences, and technology

- We consider two broad classes of investors: Quants and Fundamental investors.
- ▶ We have $i = 1, ..., I_x, x = Q, F$, investors of each type.
- Investors have CARA preferences

$$\max_{\mathbf{q}_i} \mathbb{E}\left[-\exp\left(-\gamma_i A_{1i}\right)\right],$$

with risk aversion coefficients $\gamma_i = \frac{1}{\tau_i A_{i0}}$ and initial assets A_{i0} .

Investor types, preferences, and technology

- We consider two broad classes of investors: Quants and Fundamental investors.
- ▶ We have $i = 1, ..., I_x, x = Q, F$, investors of each type.
- ► Investors have CARA preferences

$$\max_{\mathbf{q}_i} \mathbb{E}\left[-\exp\left(-\gamma_i A_{1i}\right)\right],$$

with risk aversion coefficients $\gamma_i = \frac{1}{\tau_i A_{i0}}$ and initial assets A_{i0} .

- ▶ Investors allocate capital to n = 1, ..., N assets.
- Intra-period budget constraint:

$$A_{0i} = \boldsymbol{q}_i' \boldsymbol{P}_0 + Q_i^0,$$

▶ Dividends are given by D_1 , which equal P_1 in a static model.

Beliefs: Quant investors (KY19)

- ▶ Let $\mathbf{R}_1 = \mathbf{P}_1 \mathbf{P}_0$ be the (dollar) return.
- Quants reason in terms of factor models and try to discover alpha as a function of asset characteristics

$$R_1 = \mathbf{a}_i + \beta_i R_1^m + \eta_1,$$

$$\mu_i = \alpha_i + \beta_i \Lambda,$$

where $\mu_i = \mathbb{E}_i [R_1]$ and $\text{Var}(\eta_1) = \sigma^2 I$.

▶ Hence, the covariance matrix of returns is

$$\mathbf{\Sigma}_i = \boldsymbol{\beta}_i \boldsymbol{\beta}_i' + \sigma^2 \mathbf{I}.$$

Beliefs: Quant investors (KY19)

- ▶ Let $\mathbf{R}_1 = \mathbf{P}_1 \mathbf{P}_0$ be the (dollar) return.
- Quants reason in terms of factor models and try to discover alpha as a function of asset characteristics

$$R_1 = \mathbf{a}_i + \beta_i R_1^m + \eta_1,$$

$$\mu_i = \alpha_i + \beta_i \Lambda,$$

where $\mu_i = \mathbb{E}_i[R_1]$ and $\operatorname{Var}(\eta_1) = \sigma^2 I$.

▶ Hence, the covariance matrix of returns is

$$\mathbf{\Sigma}_i = \boldsymbol{\beta}_i \boldsymbol{\beta}_i' + \sigma^2 \mathbf{I}.$$

Key: Alphas and betas are affine in characteristics,

$$\beta_i(n) = \lambda_i^{\beta'} \mathbf{x}(n) + \nu_i^{\beta}(n),$$

$$\alpha_i(n) = \lambda_i^{\alpha'} \mathbf{x}(n) + \nu_i^{\alpha}(n).$$

Beliefs: Fundamental investors (KRY21)

- ▶ Let $R_1^F = D_1 P_0$ be the long-run fundamental return.
- ► Fundamental investors think about the long-run expected growth rate of fundamentals and their riskiness

$$\mathbf{D}_1 = \mathbf{g}_i + \rho_i F_1 + \epsilon_1,$$

where $Var(\epsilon_1) = \sigma^2 I$.

▶ Hence, the covariance matrix of long-horizon returns is

$$\mathbf{\Sigma}_{i}^{F} = \boldsymbol{\rho}_{i} \boldsymbol{\rho}_{i}^{\prime} + \sigma^{2} \mathbf{I}.$$

Beliefs: Fundamental investors (KRY21)

- ▶ Let $R_1^F = D_1 P_0$ be the long-run fundamental return.
- ► Fundamental investors think about the long-run expected growth rate of fundamentals and their riskiness

$$\mathbf{D}_1 = \mathbf{g}_i + \boldsymbol{\rho}_i F_1 + \boldsymbol{\epsilon}_1,$$

where $Var(\epsilon_1) = \sigma^2 I$.

▶ Hence, the covariance matrix of long-horizon returns is

$$\mathbf{\Sigma}_{i}^{F} = \boldsymbol{\rho}_{i} \boldsymbol{\rho}_{i}^{\prime} + \sigma^{2} \mathbf{I}.$$

 Key: Factor loadings and expected growth are affine in characteristics,

$$\rho_i(n) = \lambda_i^{\rho'} \mathbf{x}(n) + \nu_i^{\rho}(n),$$

$$g_i(n) = \lambda_i^{g'} \mathbf{x}(n) + \nu_i^{g}(n).$$

Demand curves

► The quant's optimal portfolio is

$$oldsymbol{q}_i^Q = rac{1}{\gamma_i} oldsymbol{\Sigma}_i^{-1} oldsymbol{\mu}_i.$$

► The optimal portfolio of the fundamental investor is

$$oldsymbol{q}_i^F = rac{1}{\gamma_i} \left(oldsymbol{\Sigma}_i^F
ight)^{-1} (oldsymbol{g}_i - oldsymbol{P}_0).$$

Key insight

▶ In both cases, the demand curve takes the form

$$\mathbf{q}_i = \frac{1}{\gamma} \left(\mathbf{v}_i \mathbf{v}_i' + \sigma^2 I \right)^{-1} \mathbf{m}_i.$$

Key insight

▶ In both cases, the demand curve takes the form

$$\mathbf{q}_i = \frac{1}{\gamma} \left(\mathbf{v}_i \mathbf{v}_i' + \sigma^2 I \right)^{-1} \mathbf{m}_i.$$

Using the Woodburry matrix identity, we have

$$q_{i} = \frac{1}{\gamma \sigma^{2}} \left(I - \frac{\mathbf{v}_{i} \mathbf{v}_{i}'}{\mathbf{v}_{i}' \mathbf{v}_{i} + \sigma^{2}} \right) \mathbf{m}_{i}$$
$$= \frac{1}{\gamma \sigma^{2}} \left(\mathbf{m}_{i} - c_{i} \mathbf{v}_{i} \right),$$

where $c_i = \frac{\mathbf{v}_i' \mathbf{m}_i}{\mathbf{v}_i' \mathbf{v}_i + \sigma^2}$ is a scalar that encodes the information of all other stocks.

- ► The demand for stock *n* only depends on the characteristics of stock *n* and a common scalar, *c_i*.
- ▶ Intuition: The factor exposure and alpha are sufficient statistics for the attractiveness of stock *n*.

Three implementations of the mean-variance portfolio

- ► Estimate mean-variance portfolio among stocks in the S&P 500 index, subject to short-sale constraints.
 - 1. Benchmark: Unrestricted mean and covariance matrix.
 - 2. Factor structure: Impose FF 5-factor model on mean and covariance.
 - 3. Characteristics: Exponential-linear function of characteristics.

Statistic	Benchmark	Factor structure	Characteristics
Mean (%)	1.1	1.5	1.5
Standard deviation (%)	4.3	6.2	5.9
Certainty equivalent (%)	1.0	1.3	1.3
Correlation:			
Factor structure	0.54		
Characteristics	0.50	0.93	

Empirical regularity: Holdings are log-normally distributed

An empirically tractable asset demand system

- ▶ Investors select stocks in a choice set $\mathcal{N}_i \subset \{1, ..., N\}$.
- ▶ The portfolio weight on stock *n* is

$$w_i(n) = \frac{\delta_i(n)}{1 + \sum_{m \in \mathcal{N}_i} \delta_i(m)},$$

where

$$\delta_i(n) = \exp(b_{0,i} + \beta_{0,i} me(n) + \beta'_{1,i} x(n)) \epsilon_i(n).$$

and

- \triangleright b_0 , i: Controls the fraction invested in the outside asset.
- $\beta_{0,i} < 1$: Controls the price elasticity of demand.
- me(n): Log market equity.
- \rightarrow x(n): Stock characteristics (e.g., log book equity, profitability).
- \triangleright $\beta_{1,i}$: Demand for characteristics.
- $\epsilon_i(n) \geq 0$: Latent demand.

An empirically tractable asset demand system

▶ The portfolio weight on stock *n* is

$$w_i(n) = \frac{\delta_i(n)}{1 + \sum_{m \in \mathcal{N}_i} \delta_i(m)},$$

where

$$\delta_i(n) = \exp(b_{0,i} + \beta_{0,i} me(n) + \beta'_{1,i} x(n)) \epsilon_i(n).$$

- A passive portfolio using market weights is replicated by
 - ▶ $\beta_{0,i} = 1$
 - ▶ $\beta_{1,i} = 0$
 - $\epsilon_i(n) = 1.$

Solve for asset prices by imposing market clearing

Market clearing

$$ME(n) = \sum_{i=1}^{I} A_i w_i(n, \mathbf{me}, \mathbf{x}, \epsilon).$$

- ▶ KY19 show that a unique equilibrium exists if demand is downward sloping for all investors (i.e., $\beta_{0,i} < 1$).
- Despite this high-dimensional, nonlinear system in asset prices, we will discuss a simple algorithm to solve it quickly.

Lessons learned

- Assumptions commonly made in empirical asset pricing,
 - 1. Factor loadings depend on characteristics,
 - 2. Alphas depend on characteristics,

have a convenient implication for optimal portfolios.

- Optimal demand for stock n only depends on that stock's characteristics and a scalar that encodes the information of all other stocks.
- We introduced an empirically-tractable model of the demand curve that adopts this structure and matches the lognormal property of portfolio weights.