FENT Ser. No. 09/840,527 Atty Docket No. 2581/10

IN THE CLAIMS:

- 1. 20 (Cancelled)
- 21. (Presently Amended) A process for making a fluorovinyl ether of formula CFX=CXOCF₂OR

wherein:

- 1) R is a C₂-C₆ linear or branched perfluoroalkyl group, a C₅-C₆ cyclic perfluoroalkyl group, or a linear or branched perfluorooxyalkyl group comprising 2 to 6 carbon atoms and 1 to 3 oxygen atoms;
- 2) up to two fluorine atoms of the perfluoroalkyl group or the perfluorooxyalkyl group can be independently replaced with an atom selected from the group consisting of H, Cl, Br, and I; and
- 3) X is F or H; comprising the steps of
 - a) contacting hypofluorite, $CF_2(OF)_2$, with a first olefin of structure $R_1R_2C=CR_3R_4$, wherein R_1 and R_4 are the same or different and selected from H and F, and R_2 and R_3 are the same or different and selected from H and Cl, to form a first intermediate hypofluorite of structure

and

b) contacting the first intermediate hypofluorite (VI) with a second olefin having structure $R_5R_6C^1=C^2R_7R_8$ $R_5R_6C^2=C^1R_7R_8$ to form a second itermediate hypofluorite

F-
$$CR_1R_2$$
- CR_3R_4 - OCF_2O - $C^2R_5R_6$ - $C^1R_7R_8$ -F
(VII)

wherein R_5 , R_6 , R_7 , and R_8 are F; or one of R_5 , R_6 , R_7 , and R_8 is a C_1 - C_4 linear or branched perfluoroalkyl group and the others of R_5 , R_6 , R_7 , and R_8 are F; or one of R_5 , R_6 , R_7 , and R_8 is a C_1 - C_4 linear or branched perfluorooxyalkyl group containing from one to three oxygen atoms and the others of R_5 , R_6 , R_7 , and R_8 are F; or either pairing R_5 and R_7 or R_6 and R_8 , together with the carbon atoms to which they are attached, are linked

TENT Ser. No. 09/840,527 Atty Docket No. 2581/10

to form a perfluorinated C_5 - C_6 cycloalkyl group and the others of R_5 , R_6 , R_7 , and R_8 not so linked are F;

and

or Spire

c) when R₂ and R₃ are both Cl, subjecting the second intermediate (VII) to a dehalogenation reaction, or, when one of R₂ and R₃ is H, subjecting the second intermediate (VII) to a dehydrohalogenation reaction;

with the proviso that when one of R_5 , R_6 , R_7 or R_8 is a C_2 - C_4 linear or branched fluoroalky group or a C_2 - C_4 linear or branched fluoroalkoxy group comprising from one to three oxygen atoms; then one or two of the remaining three of R_5 , R_6 , R_7 , and R_8 are F and the remaining one or two of R_5 , R_6 , R_7 , R_8 are selected from H, Cl, Br, and I, with the proviso that, where only one of said remaining three of R_5 , R_6 , R_7 , and R_8 is F, then the remaining two of R_5 , R_6 , R_7 , and R_8 are the same and linked to the same carbon atom; and further with the proviso that when R_5 and R_7 together with the carbon to which they are attached, or R_6 and R_8 together with the carbon atom to which they are attached, are linked to form a cyclic then one of the remaining two of R_5 , R_6 , R_7 , and R_8 is F and the other is selected from H, Cl, Br, and I.

- 22. The process of claim 21 wherein the second olefin is reacted with hypofluorite in place of first olefin and the first intermediate hypofluorite is then reacted with the first olefin.
- 23. The process of claim 21 wherein the contacting is in a continuous process in which the mole amount of hypofluorite contacted is equal to or greater than the mole amount of first olefin R₁R₂C=R₃R₄ contacted and further wherein the residence time in the reactor is between about 0.05 and about 120 seconds, the temperature is between about -40° and about -150°C, and the first intermediate hypofluorite of the reaction of the first olefin with hypofluotite is continuously reacted with the second olefin.
- 24. (Presently Amended) A process according to claim 21 wherein the concentration of second olefin $R_5R_6C=CR_7R_8$ $R_5R_6C^2=C^1R_7R_8$ is constant and greater than about 0.01M and the temperature is between about -20°C to -100° C.

TENT
Ser. No. 09/840,527
Atty Docket No. 2581/10

- 25. The process of claim 24 wherein the concentration of second olefin is equal to or greater than about 3M.
- 26. (Presently Amended) In a process for making a fluorovinyl ether of structure: CFX=CXOCF2OR

wherein:

- 1) R is a C₂-C₆ linear or branched perfluoroalkyl group, a C₅-C₆ cyclic perfluoroalkyl group, or a linear or branched perfluorooxyalkyl group comprising 2 to 6 carbon atoms and 1 to 3 oxygen atoms;
- 2) up to two fluorine atoms of the perfluoroalkyl group or the perfluorooxyalkyl group can be independently replaced with an atom selected from the group consisting of H, Cl, Br, and I; and
- 3) X is F or H;

the step of:

contacting a first fluoroalkene with a hypofluorite to form a first intermediate; then contacting the first intermediate with a second fluoroalkene to form a second intermediate;

- 1) the hypofluorite is of structure $X_1X_2C(OF)_2$ wherein X_1 and X_2 are the same or different and selected from F and CF_3 ; and
- 2) the first and second fluoroalkenes may be the same or different and are selected from R^A₁R^A₂C=CR^A₃R^A₄ and R^A₄R^A₅C=CR^A₇R^A₈ wherein each of R^A₁, R^A₂, R^A₃, R^A₄, R^A₅, R^A₆, R^A₇, and R^A₈ are the same or different and are selected from the group consisting of H, F, Cl, Br, L, -CF₂OSO₂F, -SO₂F, -C(O)F, C₁-C₅ linear or branched perfluoroalkyl, and linear or branched oxyperfluoroalkyl.