### NAVEEN C H CSE(CYBER SECURITY)

231901033

**EXPERIMENT: 2** 

DATE:01.08.2024

#### Create the following tables with the given structure.

#### **EMPLOYEES TABLE**

| NAME           | NULL?    | ТҮРЕ        |
|----------------|----------|-------------|
| Employee_id    | Not null | Number(6)   |
| First_Name     |          | Varchar(20) |
| Last_Name      | Not null | Varchar(25) |
| Email          | Not null | Varchar(25) |
| Phone_Number   |          | Varchar(20) |
| Hire_date      | Not null | Date        |
| Job_id         | Not null | Varchar(10) |
| Salary         |          | Number(8,2) |
| Commission_pct |          | Number(2,2) |
| Manager_id     |          | Number(6)   |
| Department_id  |          | Number(4)   |

CREATE TABLE Employees (
Employee\_id NUMBER(6) NOT
NULL, First\_Name VARCHAR2(20),
Last\_Name VARCHAR2(25) NOT NULL,
Email VARCHAR2(25) NOT NULL,
Phone\_Number VARCHAR2(20),
Hire\_date DATE NOT NULL,
Job\_id VARCHAR2(10) NOT NULL,
Salary NUMBER(8,2),
Commission\_pct NUMBER(2,2),
Manager\_id NUMBER(6),
Department\_id NUMBER(4));

INSERT into Employees values(101, 'John', 'Doe', 'john.doe@example.com', '123-456-7890', '09-08-2000', 'IT\_PROG', 60000.00, NULL, 100, 10);

INSERT into Employees values(102, 'Jane', 'Smith', 'jane.smith@example.com', '234-567-8901','09-04-2004', 'HR MAN', 75000.00, 0.05, 101, 20);

INSERT into Employees values(103,'Mike','Johnson', 'mike.johnson@example.com','345-678-9012','05-23-2003','SA\_REP', 4000.00,0.10, 102,80);

INSERT into Employees values(104, 'Emily', 'Austin', 'emily.austin@example.com', '456-789-0123', '03-30-2001','FI MGR', 3000.00, 0.01, 103, 40);

(a) Find out the employee id, names, salaries of all the employees

SELECT Employee\_id,First\_name,Last\_Name,Salary from Employees;

| EMPLOYEE_ID | FIRST_NAME | LAST_NAME | SALARY |
|-------------|------------|-----------|--------|
| 101         | John       | Doe       | 60000  |
| 102         | Jane       | Smith     | 75000  |
| 103         | Mike       | Johnson   | 4000   |
| 104         | Emily      | Austin    | 3000   |

(b) List out the employees who works under manager 100

SELECT Employee id, First name, Last name FROM employees where Manager id=100;

| EMPLOYEE_ID | FIRST_NAME | LAST_NAME |
|-------------|------------|-----------|
| 101         | John       | Doe       |

(c) Find the names of the employees who have a salary greater than or equal to

4800 SELECT First\_Name, Last\_Name FROM Employees where

salary>=4800;

| FIRST_NAME | LAST_NAME |
|------------|-----------|
| John       | Doe       |
| Jane       | Smith     |

(d) List out the employees whose last name is ='AUSTIN'

SELECT Employee id, First Name, Last Name FROM employees WHERE Last Name='Austin';



(e) Find the names of the employees who works in departments 60,70 and 80

SELECT First Name, Last Name FROM employees WHERE Department id IN(60,70,80);



(f) Display the unique Manager Id.

SELECT distinct Manager id FROM employees;



Create an Emp table with the following fields: (EmpNo, EmpName, Job,Basic, DA, HRA,PF, GrossPay, NetPay) (Calculate DA as 30% of Basic and HRA as 40% of Basic)

```
CREATE TABLE Emp
(
EmpNO NUMBER(4),
EmpName VARCHAR(25),
Job VARCHAR(25),
Basic NUMBER(10,2),
DA NUMBER(10,2) as (Basic*0.30),
HRA NUMBER(10,2) as (Basic*0.40),
PF NUMBER(10,2),
GrossPay NUMBER(10,2),
NetPay NUMBER(10,2)
);
```

| EMP |              | Data Type | Length          | Precision | Scale | Primary Key | Nullable | Default         | Comment  |
|-----|--------------|-----------|-----------------|-----------|-------|-------------|----------|-----------------|----------|
|     | <u>EMPNO</u> | NUMBER    | 21              | 4         | 0     | 2           | ~        | -               | -        |
|     | EMPNAME      | VARCHAR2  | 25              | -         | -     | ·=          | /        | -               | ÷        |
| :   | JOB          | VARCHAR2  | 25              | -         | -     | -           | /        | 7               | -        |
|     | BASIC        | NUMBER    |                 | 10        | 2     | -           | ~        | -               | -        |
|     | DA           | NUMBER    | _               | 10        | 2     | -           | /        | "BASIC"*0.30    | -        |
|     | HRA          | NUMBER    | <del>=</del> // | 10        | 2     | -           | /        | "BASIC"*0.40    | -        |
|     | <u>PF</u>    | NUMBER    | -               | 10        | 2     |             | /        | . <del></del> ) | <u> </u> |
|     | GROSSPAY     | NUMBER    | -               | 10        | 2     | -           | /        | -               | -        |
|     | NETPAY       | NUMBER    | ÷)              | 10        | 2     | -           | /        | -               | -        |

(a) Insert Five Records and calculate GrossPay and NetPay.

INSERT into Emp (EmpNo,EmpName,Job,Basic,PF) values (1,'john','manager',50000,5000);
INSERT into Emp(EmpNo,EmpName,Job,Basic,PF) values (2,'Alice','developer',40000,4000);
INSERT into Emp(EmpNo,EmpName,Job,Basic,PF) values (3,'Jane','designer',45000,4500);
INSERT into Emp(EmpNo,EmpName,Job,Basic,PF) values (4,'Smith','analyst',35000,3500);
INSERT into Emp(EmpNo,EmpName,Job,Basic,PF) values (5,'David','Tester',30000,3000);
UPDATE Emp set GrossPay=Basic+DA+HRA;
UPDATE Emp set NetPay=Basic -PF;

| EMPNO | EMPNAME | JOB       | BASIC | DA    | HRA   | PF   | GROSSPAY | NETPAY |
|-------|---------|-----------|-------|-------|-------|------|----------|--------|
| 3     | Jane    | designer  | 45000 | 13500 | 18000 | 4500 | 76500    | 40500  |
| 1     | john    | manager   | 50000 | 15000 | 20000 | 5000 | 85000    | 45000  |
| 2     | Alice   | developer | 40000 | 12000 | 16000 | 4000 | 68000    | 36000  |
| 4     | Smith   | analyst   | 35000 | 10500 | 14000 | 3500 | 59500    | 31500  |
| 5     | David   | Tester    | 30000 | 9000  | 12000 | 3000 | 51000    | 27000  |

(b) Display the employees whose Basic is lowest in each department. SELECT \*from Emp where Basic=(select min(Basic) from emp);

| EMPNO | EMPNAME | JOB    | BASIC | DA   | HRA   | PF   | GROSSPAY | NETPAY |
|-------|---------|--------|-------|------|-------|------|----------|--------|
| 5     | David   | Tester | 30000 | 9000 | 12000 | 3000 | 51000    | 27000  |

## (c) If Net Pay is less than

SELECT \*from Emp where NetPay=(select min(NetPay) from emp);

| EMPNO | EMPNAME | JOB    | BASIC | DA   | HRA   | PF   | GROSSPAY | NETPAY |
|-------|---------|--------|-------|------|-------|------|----------|--------|
| 5     | David   | Tester | 30000 | 9000 | 12000 | 3000 | 51000    | 27000  |

<sup>1</sup> rows returned in 0.01 seconds <u>Download</u>

### **DEPARTMENT TABLE**

| NAME        | NULL?    | ТҮРЕ        |
|-------------|----------|-------------|
| Dept_id     | Not null | Number(6)   |
| Dept_name   | Not null | Varchar(20) |
| Manager_id  |          | Number(6)   |
| Location_id |          | Number(4)   |

# JOB\_GRADE TABLE

| NAME        | NULL? | ТҮРЕ       |
|-------------|-------|------------|
| Grade_level |       | Varchar(2) |
| Lowest_sal  |       | Number     |
| Highest_sal |       | Number     |

#### **LOCATION TABLE**

| NAME           | NULL?    | ТҮРЕ        |
|----------------|----------|-------------|
| Location_id    | Not null | Number(4)   |
| St_addr        |          | Varchar(40) |
| Postal_code    |          | Varchar(12) |
| City           | Not null | Varchar(30) |
| State_province |          | Varchar(25) |
| Country_id     |          | Char(2)     |

1. Create the DEPT table based on the DEPARTMENT following the table instance chartbelow. Confirm that the table is created.

| Column name  | ID          | NAME     |
|--------------|-------------|----------|
| Key Type     | Primary Key |          |
| Nulls/Unique | NOT NULL    | NOT NULL |
| FK table     | Department  |          |
| FK column    | Dept_id     |          |
| Data Type    | Number      | Varchar2 |
| Length       | 7           | 25       |

# CREATE TABLE DEPT

ID NUMBER(7) PRIMARY KEY NOT NULL, NAME VARCHAR2(25) NOT NULL, Dept\_id NUMBER(6) NOT NULL, CONSTRAINT FK\_Dept\_DeptID FOREIGN KEY (Dept\_id) REFERENCES DEPARTMENT(Dept\_id)

);

| Table | Column    | Data Type | Length | Precision | Scale | Primary Key    | Nullable | Default | Comment |
|-------|-----------|-----------|--------|-----------|-------|----------------|----------|---------|---------|
| DEPT  | <u>ID</u> | NUMBER    | -      | 7         | 0     | 1              | -        | -       | Ī.      |
|       | NAME      | VARCHAR2  | 25     | ·=        | 21    | 12             | -        | 14:1    | 21      |
|       | DEPT_ID   | NUMBER    | -      | 6         | 0     | A <del>H</del> | -        | -       | -       |
|       |           |           |        |           |       |                |          | 1       | - 3     |

2. Create the EMP table based on the following instance chart. Confirm that the table iscreated.

| Column name  | ID          | LAST_NAME | FIRST_NAME | DEPT_ID |
|--------------|-------------|-----------|------------|---------|
| Key Type     | Primary Key |           |            |         |
| Nulls/Unique | NOT NULL    | NOT NULL  |            |         |
| FK table     |             |           |            |         |
| FK column    |             |           |            |         |
| Data Type    | Number      | Varchar2  | Varchar2   | Number  |
| Length       | 7           | 25        | 25         | 7       |

```
CREATE TABLE EMP (
ID NUMBER(7) PRIMARY KEY,
LAST_NAME VARCHAR2(25) NOT NULL,
FIRST_NAME VARCHAR2(25) NOT NULL,
DEPT_ID NUMBER(7)
);
```

| 7.11. |            |           | Lamadh | B         | Carlo | B.i              | Noullable | Defeult | 6       |
|-------|------------|-----------|--------|-----------|-------|------------------|-----------|---------|---------|
| Table | Column     | Data Type | Length | Precision | Scale | Primary Key      | Nullable  | Default | Comment |
| EMP   | <u>ID</u>  | NUMBER    | -      | 7         | 0     | 1                | -         | -       |         |
|       | LAST_NAME  | VARCHAR2  | 25     | ×=        | 1-    | · =              | =:        | -       | -       |
|       | FIRST_NAME | VARCHAR2  | 25     | -         | 17    | ; <del>-</del>   |           | -       |         |
|       | DEPT_ID    | NUMBER    | -      | 7         | 0     | ( <del>=</del> ) | ~         | -       | 17      |
|       |            |           |        |           |       |                  |           | 1       | - 4     |

3. Modify the EMP table to allow for longer employee last names. Confirm the modification.(Hint: Increase the size to 50)

ALTER table Emp MODIFY Last\_name varchar(50);

| ,          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |        |                |       |             |          |         |         |
|------------|-----------------------------------------|-----------|--------|----------------|-------|-------------|----------|---------|---------|
| Table      | Column                                  | Data Type | Length | Precision      | Scale | Primary Key | Nullable | Default | Comment |
| <u>EMP</u> | <u>ID</u>                               | NUMBER    | -      | 7              | 0     | 1           | -        | -       | -       |
|            | LAST_NAME                               | VARCHAR2  | 50     | -              | -     | <b>\$</b>   | -        | -       | -       |
|            | FIRST_NAME                              | VARCHAR2  | 25     | l <del>e</del> | -     | -           | =        | -       | -       |
|            | DEPT_ID                                 | NUMBER    | -      | 7              | 0     | <b></b> ()  | /        | -       | -       |
|            |                                         |           |        |                |       |             |          | 1       | - 4     |

4. Create the EMPLOYEES2 table based on the structure of EMPLOYEES table. Include Only the Employee\_id, First\_name, Last\_name, Salary and Dept\_id coloumns. Name the columns Id, First\_name, Last\_name, salary and Dept\_id respectively.

#### CREATE TABLE EMPLOYEES2 AS SELECT

Employee\_id AS
Id, First\_Name,
Last\_Name,
Salary,
Department\_id as dept\_id
FROM EMPLOYEES;

|       | <u> </u>   |           |        |           |       |             |          |         |         |
|-------|------------|-----------|--------|-----------|-------|-------------|----------|---------|---------|
| Table | Column     | Data Type | Length | Precision | Scale | Primary Key | Nullable | Default | Comment |
| EMP   | <u>ID</u>  | NUMBER    | -      | 7         | 0     | 1           | =        | =       | -       |
|       | LAST_NAME  | VARCHAR2  | 50     | -         | -     | <u> </u>    | -        | -       | -       |
|       | FIRST_NAME | VARCHAR2  | 25     | 17        | -     | <b>-</b> 0  | =        | =       | -       |
|       | DEPT ID    | NUMBER    | •      | 7         | 0     | #)          | ~        | -       | -       |
|       |            |           |        |           |       |             |          | 1       | - 4     |

5. Drop the EMP table.

DROP table Emp;

6. Rename the EMPLOYEES2 table as

ALTER table Employees2 rename to Emp;

7. Add a comment on DEPT and EMP tables. Confirm the modification by describing the table.

Comment on table DEPT is 'Table for storing dept details;

Comment on table EMP is Table for storing employee details;

8. Drop the First\_name column from the EMP table and confirm it.

ALTER table Emp Drop column First Name;

| ID  | LAST_NAME | SALARY | DEPT_ID |
|-----|-----------|--------|---------|
| 101 | Doe       | 60000  | 10      |
| 102 | Smith     | 75000  | 20      |
| 103 | Johnson   | 4000   | 80      |
| 104 | Austin    | 3000   | 40      |