Lab2. Red Wine Quality Data Analysis using NumPy Part-II

Rollno:225229104

```
In [3]: import numpy as np
In [4]: wines = np.genfromtxt("winequality-red.csv", delimiter=";", skip_header=1)
```

NumPy Aggregation Methods

Find sum of all residual sugar values

```
In [5]: p=wines[:,3]
sum(p)
Out[5]: 4059.5500000000003
```

Find sums of every feature value. There are 12 features altogether

Find sum of every row

What is its size?

```
In [8]: len(wines)
Out[8]: 1599
```

What is the maximum residual sugar value in red wines data?

```
In [9]: z=wines[:,3]
z=z.astype('int32')
z
Out[9]: array([1, 2, 2, ..., 2, 2, 3])
```

find its maximum residual sugar value

```
In [10]: max(z)
Out[10]: 15
```

What is the minimum residual sugar value in red wines data?

```
In [11]: min(z)
Out[11]: 0
```

What is the average residual sugar value in red wines data?

What is 25 percentile residual sugar value?

What is 75 percentile residual sugar value?

Find the average of each feature value

NumPy Array Comparisons

Show all wines with quality > 5

```
In [16]: wines[:,11]>5
Out[16]: array([False, False, ..., True, False, True])
```

Show all wines with quality > 7

```
In [17]: wines[:,11]>7
Out[17]: array([False, False, ..., False, False, False])
```

check if any wines value is True for the condition quality > 7

```
In [18]: x=wines[:,11]>7
True in x
```

Out[18]: True

Show first 3 rows where wine quality > 7, call it high_quality

```
In [19]: high_quality =wines[:,11]>7
high_quality

Out[19]: array([False, False, False, False, False, False])
```

Show only top 3 rows and all columns of high_quality wines data

Show wines with a lot of alcohol > 10 and high wine quality > 7

```
In [21]: xy=(wines[:,10]>10)&(wines[:,11]>7)
xy
Out[21]: array([False, False, False, False, False, False])
```

show only alcohol and wine quality columns

```
In [22]: |wines[xy,10:]
Out[22]: array([[12.8,
                        8. ],
                       8.],
                [12.6,
                [12.9, 8.],
                [13.4,
                       8.],
                [11.7,
                       8.],
                \lceil 11.
                       8. ],
                「11. ,
                       8.],
                [14.]
                       8. ],
                [12.7,
                       8. ],
                [12.5,
                       8. ],
                [11.8, 8.],
                [13.1, 8.],
                [11.7, 8.],
                [14., 8.],
                [11.3, 8.],
                [11.4, 8.]]
```

Combining NumPy Arrays

Combine red wine and white wine data

Open white wine dataset

```
In [23]: white_wines = np.genfromtxt("winequality-white.csv", delimiter=";", skip_header=1
```

Show size of white_wines

```
In [24]: white_wines.shape
Out[24]: (4898, 12)
```

combine wines and white_wines data frames using vstack and call it all_wines

```
In [25]: all_wines=np.vstack((wines,white_wines))
In [26]: all_wines.shape
Out[26]: (6497, 12)
```

Combine wines and white_wines data frames using concatenate method

```
In [27]: all_wines1=np.concatenate((wines,white_wines),axis=0)
all_wines1.shape

Out[27]: (6497, 12)
```

Matrix Operations and Reshape

Find Transpose of wines and print its size

```
In [28]: tranpose=wines.T
tranpose.shape
Out[28]: (12, 1599)
```

Convert wines data into 1D array

```
In [29]: wines.ravel()
Out[29]: array([ 7.4 ,  0.7 ,  0. , ...,  0.66, 11. ,  6. ])
In [30]: wines.ravel().shape
Out[30]: (19188,)
```

Reshape second row of wines into a 2-dimensional array with 2 rows and 6 columns

Sort alcohol column Ascending Order

```
In [34]: sorted_alcohol=np.sort(wines[:,-2])
    sorted_alcohol

Out[34]: array([ 8.4,  8.4,  8.5, ..., 14. , 14. , 14.9])
```

Make sorting to take place in-place

```
In [35]: wines[:,-2].sort()
In [36]: wines[:,-2]
Out[36]: array([ 8.4,  8.4,  8.5, ..., 14. , 14. , 14.9])
```

Sort alcohol column Descending Order

```
In [38]: sorted_alcohol_desc=np.sort(wines[:,10])[::-1]
    sorted_alcohol_desc

Out[38]: array([14.9, 14. , 14. , ..., 8.5, 8.4, 8.4])
```

Will original data be modified?. Check top 10 rows

```
In [39]: wines[:,-2]
Out[39]: array([ 8.4, 8.4, 8.5, ..., 14. , 14.9])
```