Spark, GraphX, and blockchains: Building a behavioral analytics platform for forensics, fraud, and finance

Agenda

- Why the blockchain and analytics (business)
- Blockchain data complexity
- Existing challenges
- New approach
- What to look for
- Use cases

BlockCypher Background

BlockCypher: Blockchain Web Services

Our Customers

Who We Are

BlockCypher Blockchain Web Services

IDENTITY

Data Endpoint
Webhooks Websockets
New Transaction
Endpoint
Address Wallet API
Multisig Transaction

TRANSACTION

Payment Forwarding
API
Confidence Factor API
Microtransaction API
Asset API
Contract API
Address Balance
Endpoint

ANALYTICS

Analytics Engines and
Parameters
Create/Get Analytics
Job
Anomaly and Fraud
Detection

BlockCypher Allows You to...

Outsource Infrastructure

6+ months less time

Why the blockchain and blockchain analytics?

Why the Blockchain?

Decentralized Transactions

Transparency

Security

Why Blockchain Analytics?

Market Adoption

Regulation

Why Blockchain Analytics?

Technology Challenges

Blockchain Today

- data searching
- high-speed access to data for analytics

What makes a blockchain?

(the 5 minute version)

The Problem Statement

How do you create a:

- Useful
- Decentralized
- Resilient

network?

A *Useful* Network

- Founded on Cryptography to provide concrete, resilient ownership of tokens;
- Monetary policy built into the network
- A powerful scripting language to extend capabilities further:
 - Multisignature
 - Smart Contracts

01- What Makes a Blockchain

A Resilient Network

01- What Makes a Blockchain

Consensus... But of What?

A Global Transaction Ledger

A Global Transaction Ledger

A Global Transaction Ledger

A "Block Chain"

Verifiable, including Proof-of-Work and all consensus rules, back to genesis

Inputs and Outputs

01- What Makes a Blockchain

Inputs and Outputs

Outputs and inputs include **script**: code executed by all *fully validating* nodes to determine spending authority.

Pseudonymity in Bitcoin

Ownership identifiers are addresses:

- Most commonly owned by a single entity
- Sometimes a representation of not-yet-exposed code (script)

When are Identities not Identities?

HD Wallets

When are Identities not Identities?

- HD Wallets
- Pay to Script Hash (output bound to script):
 - a. Multisignature

When are Identities not Identities?

HD Wallets

a.

Pay to Script Hash (output bound to script):

Current Tools are Lacking

Agents still use manual investigation and traversal

Traditional tools lack the flexibility to evolve alongside bitcoin's usage patterns and identity distributions

Behavioral Analytics bridges the gap: focus on patterns of movements, rather than easily-manipulated properties

You need a multi-layered solution

Don't discount the human element

Building a Practical Blockchain Analytics Platform for Forensics

1. Representing the Graph

Graphs make natural blockchain representations...

Great for representing broader interactions, relationships, and trends

(plus they look cool)

03- Representing the Graph

But not all graphs are created equal.

Transformation to the Address-Address graph creates a loss of resolution and introduces assumptions

This is especially true with Spark

Implication: Operations will vary significantly in both parallelism and data locality based on edge versus vertex property distinctions.

Vertex Cut

Different graphs serve different purposes...

Address-Address

Address-Tx

Output-Output

Input-Output

Transaction-Transaction

... and have different properties

	Directed	Acyclic	Bipartite
Address/Address	Υ	N	N
Address/Transaction	Υ	N	Υ
Input/Output	Υ	Υ	Υ
Output/Output	Υ	Υ	N
Transaction/Transaction	Υ	Υ	N

Why Spark + GraphX?

Single node graph databases great for performance re: traversal, etc.

But Spark+GraphX gives:

- One infrastructure for graphs, ML models, computation
- Access to graph properties in training, eg. in-degree
- Compute + Storage scalability

2. Building the ML Pipeline

A Venn Diagram: Starting a ML Project

04- Building the ML Pipeline

A simplifying recommendation

Start with unsupervised methods and iterate:

- Faster ramp-up
- Fewer parameters to tune
- Less overfitting risk

It begins and ends with data

Feature extraction is harder than it looks...

Which features to include?

Balance risk of overfitting with need to capture relevant parameters.

... but it all comes down to Var(x)

When considering a variable, ask two questions:

- What variance does this variable introduce to the system?
- Is this variance correlated to the result I want?

Blockchain data is only one part of a larger picture

Big graphs need lots of tuning

- Edge/Vertex distinctions
 - Balance Locality, Parallelism
- Partition Strategies
- Data Denormalization
 - Eg. Reducing number, value of transactions between addresses to properties

Blockchain data has some nuance...

Global consensus follows the chain with the most work:

Blockchain data has some nuance...

Global consensus follows the chain with the most work:

Blockchain data has some nuance...

Global consensus follows the chain with the most work:

... but there are solutions.

A processing delay can address virtually all rewrite cases, but hinders real-time analytics efforts.

The answer: Lambda Architecture

Lambda Architecture

Why it works: Aggregates are slow to move...

... but what is true in the aggregate cannot predict individual measurements.

Example: Tx Clustering and Anomaly Detection

Lambda Architecture

Focus: Batching Process

Delay in processing addresses mutability concerns

Feature extraction from live node data

~20 features, including:

- Transaction shape (inputs, outputs)
- Value distribution
- Input types and ages

Data is fed into a kmeans pipeline

Spark 2.0 ML pipelines give you pipeline persistence

Streaming pipeline reuses data components

Trained model used for real-time anomaly detection

Also used to color graphs for efficient traversal decisionmaking

Also used to color graphs for efficient traversal decisionmaking

Also used to color graphs for efficient traversal decisionmaking

What to look for in Blockchain Analytics

- Infrastructure to ingest and transform metadata
- Multi-layered solution
- Graphs that address multiple purposes
- Resources for tuning graphs
- ☐ Real-time analytics (e.g. Lambda architecture)

Use Cases: Cybercrime

Ransomware \$1B in 2016

Approaches

- Reactive Follow the money
- Proactive Anomaly detection

Source: FBI, SonicWall

Demo

Use Cases

Use Case(s)	Industry	
AML and financial crimes, regulatory compliance	Financial Services	
Provider/patient demographic data analysis, Claims fraud	Healthcare	
Mobile payments, Identity management	Telecommunications	
Supply chain analytics	Manufacturing	

www.blockcypher.com

@blockcypher

Data Transformation

Machine Learning

Modeling

