Basic Concepts

jqhuang@mail.hust.edu.cn

Outlines

• Resistor、Inductor、Capacitor: Lead vs. Lag

• Impedance vs. Admittance

- Quality Factor (Q) of Inductor
 - vs. Quality Factor (Q) of resonance circuit

1 Resistor

$$u = \sqrt{2} U \sin \omega t$$

$$i = \frac{u}{R} = \sqrt{2} \frac{U}{R} \sin \omega t = \sqrt{2} I \sin \omega t$$

$$U = IR$$

Vector relation

2 Inductor

$$u = L \frac{di}{dt}$$
If $i = \sqrt{2}I \sin \omega t$

Then $u = L \frac{di}{dt} = \sqrt{2}I \cdot \omega L \cos \omega t$

$$= \sqrt{2}I \omega L \sin(\omega t + 90^{\circ})$$

$$= \sqrt{2}U \sin(\omega t + 90^{\circ})$$

2 Inductor Voltage leads Current

$$i = \sqrt{2}I\sin\omega t$$

$$u = \sqrt{2} \underline{I} \omega \underline{L} \sin(\omega t + 90^{\circ})$$
$$= \sqrt{2} \underline{U} \sin(\omega t + 90^{\circ})$$

- 1. Frequency is same
- 2. Phase diff 90° (u leads i 90°)

Inductance

$$u = \sqrt{2} I \omega L \sin(\omega t + 90^{\circ})$$
$$= \sqrt{2} U \sin(\omega t + 90^{\circ})$$

Root-Mean-Square(RMS)
$$U = I\omega L$$

Def:

$$X_L = \omega L$$

 (Ω)

3 Capacitor

$$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

If
$$u = \sqrt{2}U \sin \omega t$$

Then
$$i = C \frac{du}{dt} = \sqrt{2}UC\omega\cos\omega t$$

 $= \sqrt{2}U\omega C \cdot \sin(\omega t + 90^{\circ})$

3 Capacitor Voltage lags Current

$$\begin{cases} u = \sqrt{2}U \sin \omega t \\ i = \sqrt{2}U\omega C \cdot \sin(\omega t + 90^{\circ}) \end{cases}$$

- 1. Frequency is same
- 2. Phase diff 90° (u lags i 90°)

İ leads

Captance
$$\begin{cases} u = \sqrt{2}U \sin \omega t \\ i = \sqrt{2}U\omega C \cdot \sin(\omega t + 90^{\circ}) \end{cases}$$

Root-Mean-Square(RMS) $U = \frac{1}{\omega C} I$

$$U = \frac{1}{\omega C} I$$

Def:

$$X_C = \frac{1}{\omega C} \quad (\Omega)$$

Power $p = i \cdot u = -UI \sin 2\omega t$

Impedance vs. Admittance

Impedance vs. Admittance

Impedance Triangle

Impedance vs. Admittance

Inductor Q vs. Resonator Q

Inductor Quality Factor (Q)

≻Definition

$$Q = \frac{\omega L}{R}$$

Physical Significance

- Q reflects energy loss of inductor
- The bigger Q, the less loss, the higher efficiency
- Compared with resonator Q (see Chapter 2)

Q & A