CS390 Computational Game Theory and Mechanism Design July 3, 2013

Lecture 2, Part 1

Scribed by Yanqing Peng, Jiachen Shi, Zhuoyue Zhao

1 Order independence

Consider a Normal-Form game as follow:

When doing the *Iterated Elimination of Strictly Dominated Strategies*, we may have two different ways:

We notice that the order of elimination does not matter. We will prove it as a theorem. The following lemma tells us that there always exist w satisfying

Lemma 1 (Diamond Property) For all $x, y, z \in S$, if y and z are two different results of doing IESD on x, then there exists $w \in S$ such that w is the result of doing IESD on either x or y.

Proof. Let's focus on pure strategies. In fact, there won't be anything new to do when proving the mixed strategy version but just turn into calculating probability distributions. Since y and z are different sets, there exists $y' \in y, y' \notin z$. Namely, y' is strictly dominated by some z'_0 . $z'_0 \succ y'$ in x, so $z'_0 \succ y'$ in y. If $z'_0 \in y$, then we can eliminate y' from y. Otherwise, there exist $z'_1 \succ z'_0$, and check whether z_1 is in y. If not, do the same step until get $y' \prec z'_0 \prec z'_1 \prec \cdots \prec \hat{z}, \hat{z} \in y$. The strategy profile \hat{z} must exist since y is finite. So we can always eliminate y' from y.

Analogously, we can eliminate all elements in $y \otimes z$. Let $w = y \cap z$, then w is exactly the set we want to get.

Theorem 2 (Order independence) The sets of strategy profiles surviving two arbitrary elimination orders are identical.

Proof. All the necessary intuition is contained in the following picture.

If you start from a set of strategy profiles x and get two different sets y and z, you can always eliminate some strategy profiles from both of them and get the same set w. \square

2 Nash equilibrium and iterated elimination of strictly dominated strategies

The first relation to show is that any pure strategy in a Nash equilibrium is not strictly dominated. To show that, we will introduce a lemma from [OR94, p33].

Lemma 3 Let G = (N, S, u) be a finite normal-form game. Then $a^* \in \times_{i \in N} \Delta(A_i)$ is a mixed strategy Nash equilibrium of G if and only if for every player $i \in N$, every pure strategy in $supp(a_i^*)$ is a best response to a_{-i}^* . [1]

Theorem 4 If s_i appears in a Nash equilibrium, then it is not strictly dominated.

Proof. Let σ be a Nash equilibrium and s_i be a pure strategy of player i. If s_i appears in the Nash equilibrium, that's to say $\sigma_i(s_i) > 0$, then according to lemma 3, $s_i \in B_i(\sigma_{-i})$.

If $\exists \hat{\sigma}_i \succ s_i$, then $u_i(s_i, \sigma_{-i}) < u_i(\hat{\sigma}_i, \sigma_{-i})$, which contradicts the argument that s_i is the best response to σ_{-i} .

Therefore, s_i is not strictly dominated.

The next to show is that the support of a Nash equilibrium survives IESD.

Theorem 5 If S^K survives iterated elimination of strictly dominated strategies and σ is a Nash equilibrium, then $supp(\sigma) \subseteq S^K$.

Proof. Prove by induction:

Initial step: σ is a Nash equilibrium of the game (N, S^0, u) . $supp(\sigma)$ is a subset of the set of all the pure strategy profiles, so $supp(\sigma) \in S^0$.

Induction step: Suppose σ is a Nash equilibrium of the game (N, S^k, u) and $supp(\sigma) \in S^k$ $(0 \le k \le K - 1)$. From theorem 4 we know $\forall s_i$ that satisfies $\sigma_i(s_i) > 0$ is not strictly dominated, so s_i stays in S_i^{k+1} . Therefore, $supp(\sigma) \in S^{k+1}$. Since σ is a Nash equilibrium on the set s^k , σ is still a Nash equilibrium on its subset s^{k+1} because considering the fact that no new profile appears in the subset S_{k+1} , for any player i, σ_i is still the best response to σ_{-i} .

Therefore, $supp(\sigma) \in S^K$.

3 Never-best responses

Definition 1 A strategy s_i is a never-best-response if $\forall \sigma_i \in \Delta(S_i), s_i \notin B_i(\sigma_i)$.

Theorem 1 A strategy s_i is strictly dominated if and only if it is a never-best-response.

Proof

First, we prove that if a strategy s_i is strictly dominated, it is a never-best-response.

Because s_i is strictly dominated,

$$\exists \sigma_i, s.t. \quad \forall s_{-i} : \ u_i(s_i, s_{-i}) < u_i(\sigma_i, s_{-i})$$

$$\forall \sigma_i \in \delta(S_i) \ u_i(s_i, \sigma_{-i}) = \sum_{s_{-i}} \sigma_{-i}(s_{-i}) u_i(s_i, s_{-i})$$

$$<\sum_{s_{-i}} \sigma_{-i}(s_{-i})u_i(\sigma_i, s_{-i}) = u_i(\sigma_i, \sigma_{-i})$$

so we can see that $s_i \notin B_i(\sigma_{-i})$, that is to say s_i is a never-best-reponse.

Second, we prove that if a strategy s_i is a never-best-response, it is strictly dominated.

We can construct a 2-player zero-sum game.

Assign:

player i is player 1 and player -i is player 2;

$$A_1 = S_1 \setminus S_i \ A_2 = S_{-i};$$

 $v_1(s'_i, s_{-i}) = u_i(s'_i, s_{-i}) - u_i(s_i, s_{-i}) ; v_2(s'_i, s_{-i}) = -v_1$

Because s_i is a never-best-response,so:

$$\forall \sigma_{-i} \in \delta(S_{-i}) = \delta(A_2), \ \exists s_i' \neq s_i, \ s.t.u_i(s_i', \sigma_{-i}) > u_i(s_i, \sigma_{-i})$$

$$\implies v_1(s_1', \sigma_{-i}) > 0$$

$$\implies \forall \sigma_{-i} \in \delta(A_2), \ max_{\sigma_1 \in \delta(A_1)}v_1(\sigma_1, \sigma_{-i}) > 0$$

$$\implies min_{\sigma_{-i} \ in\delta(A_2)} \ max_{\sigma_1 \ in\delta(A_2)}v_1(\sigma_1, \sigma_{-i}) > 0$$

$$\implies max_{\sigma_1 \ in\delta(A_1)} \ min_{\sigma_{-i} \ in\delta(A_2)}v_1(\sigma_1, \sigma_{-i}) > 0$$

Let $\sigma_1^* \in argmax_{\sigma_1} \ min_{\sigma_{-i}}v_1(\sigma_1, \sigma_{-i})$

$$\implies \min_{\sigma_{-i} \in \delta(A_2)} v_1(\sigma_1^*, \sigma_{-i}) > 0$$

$$\implies \forall \sigma_{-i} \in \delta(A_2) v_1(\sigma_1^*, \sigma_{-i}) > 0$$

$$\implies \forall s_{-i} \in S_{-i} v_1(\sigma_1^*, s_{-i}) > 0$$

$$= u_1(\sigma_1^*, s_{-i}) - u_1(s_1, s_{-i}) > 0$$

$$\implies s_i \prec \sigma_1^* \in \delta(A_1) = \delta(S_1 s_i)$$

That is to say, s_i is strictly dominated.

4 Acknowledgment

Section 1 is written by Yanqing Peng. Section 2 is written by Zhuoyue Zhao. Section 3 is written by Jiachen Shi.

References

- [1] M. J. Osborne and A. Rubinstein. A course in game theory. MIT Press, 1994.
- [2] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (eds). *Algorithmic game theory*. Cambridge University Press, 2007. (Available at http://www.cambridge.org/journals/nisan/downloads/Nisan_Non-printable.pdf.)
- [3] Jing Chen and Silvio Micali. The order independence of iterated dominance in extensive games. Theoretical Economics 8, 125–163, 2013.