Logica — 10-1-2019

Tutte le risposte devono essere adeguatamente giustificate

1. Provare che

$$Q \to R \models \neg P \land \neg R \to \neg Q \lor P.$$

2. Stabilire se l'insieme di formule

$$\{B \land \neg A, \neg(\neg A \to C), \neg C \to A \lor \neg B\}$$

è soddisfacibile.

- 3. Sia $\mathcal{L} = \{C, G, M\}$ un linguaggio del prim'ordine, dove C, G sono simboli relazionali unari, M è simbolo relazionale binario. Si consideri la seguente interpretazione di \mathcal{L} :
 - -C(x): x è un cane;
 - -G(x): $x \in un gatto;$
 - -M(x,y): x morde y.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. C'è un gatto che non è morso da alcun cane.
- 2. Se un cane morde un gatto, allora è morso da almeno due gatti.
- 3. I cani che si mordono da soli sono morsi da tutti i gatti.
- 4. Sia $\mathcal{L} = \{f\}$ un linguaggio del prim'ordine, dove f è un simbolo funzionale unario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}}), \mathcal{B} = (\mathbb{Z}, f^{\mathcal{B}}),$ dove:
 - $-\mathbb{Z}$ è l'insieme dei numeri interi;
 - $-f^{\mathcal{A}}$ è l'operazione di successore, cio
è $f^{\mathcal{A}}(u)=u+1$ per ogni $u\in\mathbb{Z};$
 - $-f^{\mathcal{B}}$ è l'operazione di elevamento al quadrato, cioè $f^{\mathcal{B}}(u)=u^2,$ per ogni $u\in\mathbb{Z}.$

Determinare, se esiste, un enunciato φ che distingua \mathcal{A} da \mathcal{B} , cioè tale che $\mathcal{A} \models \varphi, \mathcal{B} \not\models \varphi$.

Svolgimento

- **1.** Sia i un'interpretazione tale che $i(Q \to R) = 1$, al fine di dimostrare che anche $i(\neg P \land \neg R \to \neg Q \lor P) = 1$. Poiché $i(Q \to R) = 1$, si hanno due possibilità:
 - 1) i(Q)=0. Allora $i(\neg Q)=1$ e quindi $i(\neg Q\vee P)=1$ e pertanto $i(\neg P\wedge \neg R\to \neg Q\vee P)=1$.
 - 2) i(R) = 1. Allora $i(\neg R) = 0$ e quindi $i(\neg P \land \neg R) = 0$; pertanto anche in questo caso $i(\neg P \land \neg R \rightarrow \neg Q \lor P) = 1$.
- **2.** Sia assuma che esista un'interpretazione i che soddisfa l'insieme di enunciati dato.

In particolare, $i(B \land \neg A) = 1$, da cui $i(B) = i(\neg A) = 1$, cioè $i(A) = i(\neg B) = 0$. Quindi $i(A \lor \neg B) = 0$.

Poiché $i(\neg C \to A \lor \neg B) = 1$, segue allora che $i(\neg C) = 0$, cioè i(C) = 1. Pertanto, $i(\neg A \to C) = 1$ e di conseguenza $i(\neg (\neg A \to C)) = 0$, contro l'ipotesi che i soddisfa l'insieme dato.

Un interpretazione che soddisfa l'insieme dato non può quindi esistere, e tale insieme è insoddisfacibile.

- 3. 1. $\exists x (G(x) \land \neg \exists y (C(y) \land M(y,x)))$
 - 2. $\forall x (C(x) \land \exists y (G(y) \land M(x,y)) \rightarrow \exists z \exists w (G(z) \land G(w) \land z \neq w \land M(z,x) \land M(w,x)))$
 - 3. $\forall x (C(x) \land M(x, x) \rightarrow \forall y (G(y) \rightarrow M(y, x)))$
- 4. Sull'insieme \mathbb{Z} , la funzione successore è suriettiva, il quadrato no:

$$\varphi: \forall y \exists x f(x) = y$$