Curs 9:

Tehnica divizării (II).

Sortare eficientă

- Metodele elementare de sortare aparţin lui O(n²)
- Idee de eficientizare a procesului de sortare:
 - Se împarte secvența inițială în două subsecvențe
 - Se sortează fiecare subsecvență
 - Se combină subsecvențele sortate

Sortare rapidă (quicksort)

Idee:

- Se reorganizează şi se imparte tabloul x[1..n] în două subtablouri x[1..q] şi x[q+1..n] astfel încât elementele lui x[1..q] sunt mai mici decât x[q+1..n]
- Se sortează fiecare dintre subtablouri aplicând aceeași strategie
- Se concatenează subtablourile sortate
- Creator: Tony Hoare (1962)

Exemplu 1

- Un element x[q] având proprietățile:
 - (a) x[q] >= x[i], for all i < q
- (b) x[q]<=x[i], for all i>q
 este denumit pivot
 - Un pivot este un element aflat pe poziția sa finală
 - Un bun pivot împarte tabloul curent în două subtablouri având dimensiuni apropiate (partiționare echilibrată)
 - Uneori pivotul împarte tabloul în mod neechilibrat
 - Alteori nu există un astfel de pivot (de ex. (3 1 2)). In acest caz trebuie creat un pivot prin interschimbarea elementelor

- O poziție q având proprietatea:
 - (a) x[i]<=x[j], pentru 1<=i<=q si q+1<=j<=n

Este denumită poziție de partiționare

- O poziție de partiționare bună divide tabloul curent în subtablouri de dimensiuni apropiate
- Uneori poziția de partiționare divide tabloul în mod neechilibrat
- Alteori nu există o poziție de partiționare. In acest caz se creează o astfel de poziție prin interschimbarea unor elemente

Varianta ce utilizează pivot:

```
quicksort1(x[s..d])

IF s<d THEN

q \leftarrow pivot(x[s..d])

x[s..q-1] \leftarrow quicksort1(x[s..q-1])

x[q+1..d] \leftarrow quicksort1(x[q+1..d])

ENDIF

RETURN x[s..d]
```

Varianta ce utilizează poziție de partiționare:

```
quicksort2(x[s..d])

IF s<d THEN

q ← partitie(x[s..d])

x[s..q] ← quicksort2(x[s..q])

x[q+1..d] ← quicksort2(x[q+1..d])

ENDIF

RETURN x[s..d]
```

Construirea unui pivot:

- Se alege o valoare arbitrară din tablou (prima, ultima sau una aleatoare) aceasta va reprezenta valoarea pivotului
- Se rearanjează elementele tabloului astfel încât toate elementele care sunt mai mici decât valoarea aleasă să se afle în prima parte a tabloului iar valorile mai mari decât pivotul să se afle în partea a doua a tabloului
- Se plasează valoarea pivotului pe poziția sa finală (astfel încât toate elementele din stânga sa să fie mai mici iar toate elementele din dreapta sa să fie mai mari)

O idee de rearanjare a elementelor:

- Se folosesc doi indicatori: unul care pornește de la primul element iar celălalt care pornește de la ultimul element
- Se măresc respectiv micșorează indicatorii până când se identifică o inversiune.

Inversiune: pereche de indici i<j cu proprietatea că x[i]>pivot și x[j]<pivot

- Se repară inversiunea prin interschimbarea elementelor
- Se continuă procesul până când indicatorii se "intersectează"

Construirea unui pivot

4 1 2 3 4 8 7 5

- Se alege valoarea pivotului: 4 (ultima valoare din tablou)
- Se plasează o santinelă înaintea primei poziții a tabloului (doar pentru tabloul inițial)

$$i=0, j=7$$

 $i=2, j=6$

$$i=3, j=4$$

i=4, j=3 (indicatorii s-au încrucișat)
Pivotul este plasat pe poziția sa
finală

```
pivot(x[s..d])
  v \leftarrow x[d]
  i ← s-1
  i \leftarrow d
  WHILE i<j DO
     REPEAT i \leftarrow i+1 UNTIL x[i] >= v
     REPEAT j \leftarrow j-1 UNTIL x[j] <= v
     IF i<j THEN x[i]↔x[j] ENDIF
 ENDWHILE
 x[i] \leftrightarrow x[d]
 RETURN i
```

Observatii:

- x[d] joacă rolul unei santinele la extremitatea dreaptă
- La extremitatea stângă se plasează explicit o valoare santinelă x[0]=v (doar pentru tabloul inițial x[1..n])
- Condiţiile x[i]>=v, x[j]<=v permit oprirea căutarii când sunt întâlnite santinelele. De asemenea permit obţinerea unei partiţionări echilibrate atunci cand tabloul conţine elemente identice
- La sfârșitul ciclului while indicatorii satisfac fie i=j fie i=j+1

```
pivot(x[s..d])
  v \leftarrow x[d]
  i ← s-1
  i \leftarrow d
  WHILE i<j DO
     REPEAT i \leftarrow i+1 UNTIL x[i]>=v
     REPEAT j \leftarrow j-1 UNTIL x[j] <= v
     IF i < j THEN x[i] \leftrightarrow x[j] ENDIF
 ENDWHILE
 x[i] \leftrightarrow x[d]
 RETURN i
```

Corectitudine:

Invariant:

Dacă i<j atunci $x[k] \le v$ for k = s...i x[k] > v for k = j...d

Dacă i>=j atunci $x[k] \le v$ for k=s..i x[k] > v for k=j+1..d

```
pivot(x[s..d])
  v \leftarrow x[d]
  i ← s-1
  i \leftarrow d
  WHILE i<j DO
     REPEAT i \leftarrow i+1 UNTIL x[i] >= v
     REPEAT j \leftarrow j-1 UNTIL x[j] <= v
     IF i < j THEN x[i] \leftrightarrow x[j] ENDIF
  ENDWHILE
 x[i] \leftrightarrow x[d]
 RETURN i
```

Eficiența:

Dimensiune pb.: n=d-s+1

Op. dominantă: comparația în care intervin elemente ale lui x

Deci T(n) aparţine lui Θ (n)

Obs: poziția pivotului nu împarte întotdeauna tabloul în mod echilibrat

Partiționare echilibrată:

- Tabloul este împărțit în două subtablouri de dimensiuni apropiate de n/2
- Dacă fiecare partiționare este echilibrată atunci algoritmul execută mai puține operații (corespunde celui mai favorabil caz)

Partiționare neechilibrată:

- Tabloul este împărțit într-un subtablou cu (n-1) elemente, pivotul și un subtablou vid
- Dacă fiecare partiționare este neechilibrată atunci algoritmul execută mai multe operații (corespunde celui mai defavorabil caz)

Analiza în cazul cel mai defavorabil:

$$T(n) = \begin{cases} 0 & \text{if } n=1 \\ \\ T(n-1)+n+1, \text{ if } n>1 \end{cases}$$

Substituție inversă:

$$T(n)=T(n-1)+(n+1)$$
 $T(n-1)=T(n-2)+n$
...
 $T(2)=T(1)+3$
 $T(1)=0$
...
 $T(n)=(n+1)(n+2)/2-3$

In cel mai defavorabil caz algoritmul este de complexitate pătratică

Deci sortarea rapidă aparține lui O(n²)

Analiza în cazul cel mai favorabil:

$$T(n) = \begin{cases} 0, & \text{if } n=1 \\ 2T(n/2) + n, & \text{if } n > 1 \end{cases}$$

Aplicând cazul al doilea al teoremei "master" (pentru k=2,m=2,d=1) rezultă că în cel mai favorabil caz ordinul de complexitate este nlog(n)

Deci algoritmul de sortare rapidă aparține lui $\Omega(n\log(n))$ si lui $O(n^2)$

Analiza în cazul mediu ar putea fi utilă

Analiza în cazul mediu.

Ipoteze:

- Fiecare pas de partiţionare necesită cel mult (n+1) comparaţii
- Există n poziții posibile pentru pivot. Presupunem că fiecare dintre aceste poziții are aceeași șansă de a fi selectată (Prob(q)=1/n)
- Dacă pivotul se află pe poziția q atunci numărul de comparații satisface

$$T_q(n)=T(q-1)+T(n-q)+(n+1)$$

Numărul mediu de comparații este

$$\begin{split} T_a(n) &= (T_1(n) + \ldots + T_n(n))/n \\ &= ((T_a(0) + T_a(n-1)) + (T_a(1) + T_a(n-2)) + \ldots + (T_a(n-1) + T_a(0)))/n + (n+1) \\ &= 2(T_a(0) + T_a(1) + \ldots + T_a(n-1))/n + (n+1) \end{split}$$

Deci

$$n T_a(n) = 2(T_a(0)+T_a(1)+...+T_a(n-1))+n(n+1)$$

$$(n-1)T_a(n-1)=2(T_a(0)+T_a(1)+...+T_a(n-2))+(n-1)n$$

Calculând diferența dintre ultimele două egalități:

$$nT_a(n)=(n+1)T_a(n-1)+2n$$

 $T_a(n)=(n+1)/n$ $T_a(n-1)+2$

Analiza în cazul mediu.

Prin substituție inversă:

$$\begin{split} T_a(n) &= (n+1)/n \ T_a(n-1) + 2 \\ T_a(n-1) &= n/(n-1) \ T_a(n-2) + 2 \ |*(n+1)/n \\ T_a(n-2) &= (n-1)/(n-2) \ T_a(n-3) + 2 \ |*(n+1)/(n-1) \\ \dots \\ T_a(2) &= 3/2 \ T_a(1) + 2 \ |*(n+1)/3 \\ T_a(1) &= 0 \ |*(n+1)/2 \\ \dots \end{split}$$

 $T_a(n) = 2+2(n+1)(1/n+1/(n-1)+...+1/3) \approx 2(n+1)(\ln n - \ln 3) + 2$ In cazul mediu ordinul de complexitate este nlog(n)

Sortare rapidă -variante

Λ I ₄		-I -	and the state of the state of	_	and the second control of
Alta \	varianta	ae	construire	a	DIVOTUIUI

```
pivot(x[s..d])
  v \leftarrow x[s]
  i \leftarrow s
  FOR j \leftarrow s+1,d
```

$$x[i] \leftrightarrow x[j]$$

ENDIF

ENDFOR

 $x[s] \leftrightarrow x[i]$

RETURN i

Invariant: x[k]<=v pentru s<=k<=i x[k]>v pentru i<k<=j-1

$$v=3, i=1,j=2$$

$$i=3, j=5$$

$$i=3, j=8$$

Plasare pivot:

1237548

Pozitie pivot: 3

Ordin complexitate construire pivot: O(n)

Sortare rapidă-variante

Construirea unei poziții de partitionare	3752148	v=3		
Partiție(x[sd])	3752148	i=2, j=5		
v ← x[s] i ← s-1 j ← d+1	3 1 5 2 7 4 8	i=3, j=4		
WHILE i <j do<br="">REPEAT i ← i+1 UNTIL x[i]>=v</j>	3125748	i=4, j=3		
REPEAT $j \leftarrow j-1$ UNTIL $x[j] <= v$ IF $i < j$ THEN $x[i] \leftrightarrow x[j]$	Poziție de partiționare: 3			
ENDIF ENDWHILE	Ordin complexitate: O(n)			
RETURN į				

Obs: Algoritmul de partiționare este folosit în algoritmul quicksort2

Sumar

MergeSort – O(nlog(n))

QuickSort - O(nlog(n))

Merge sort

Quicksort

Divizare

O(1) O(n)
Determinare Construire
indice mijloc pivot

Combinare

O(n) O(1)
Interclasare Concatenare

Intrebare (intermediară)

Există algoritm de sortare bazat pe compararea elementelor din tablou care să necesite mai puţin de nlog(n) comparaţii (în cel mai defavorabil caz)?

Răspuns: NU

Justificare:

- algoritmii de sortare bazaţi pe comparaţii efectuează la fiecare etapă o comparaţie pentru a decide dacă schimbă sau nu poziţia unor elemente;
- principiul funcționării acestor algoritmi poate fi descris utilizând un arbore binar de decizie

Complexitatea sortării bazate pe comparații

Exemplu de arbore binar de decizie (n=3, [a1,a2,a3]):

Obs: fiecare dintre cele n! variante de rearanjare a listei de valori trebuie să apară în cel puțin o frunză a arborelui

Complexitatea sortării bazate pe comparații

Obs:

- fiecare dintre cele n! variante de rearanjare a listei de valori trebuie să apară în cel puțin o frunză a arborelui
- Procesul de sortare corespunzător unei liste date corespunde parcurgerii unei ramuri în arbore pornind de la rădăcină până la un nod frunză
- Numărul de comparații în cazul cel mai defavorabil este corelat cu lungimea celei mai lungi ramuri din arbore = înălțimea arborelui = h
- Numărul maxim de frunze ale unui arbore binar de înalțime h este
 2^h

Deci

n! <= nr frunze<= 2h

Complexitatea sortării bazate pe comparații

Deci

$$n! \le nr frunze \le 2^h$$

Adică

log n!<=h

Folosind aproximarea
$$n! \cong \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 (formula lui Stirling)

Rezultă că $h \ge \log n! = \Theta(n \log n)$

Alte aplicații ale divizării: selecția celui de al k-lea element

Fiind dat un tablou x[1..n] (neordonat), se consideră problema determinării celui de al k-lea element în ordine crescătoare

Exemplu: x=[4,1,5,3,8,6]

k=1 => 1 (cel mai mic element)

k=3 => 4

K=6 => 8 (cel mai mare element)

Variante de rezolvare:

- Sortare x[1..n] => O(nlogn)
- Sortare parţială prin selecţie => O(kn) eficient doar pentru k mic (sau apropiat de n)

Există variantă mai eficientă?

Alte aplicații ale divizării: selecția celui de al k-lea element

Idee: se folosește strategia de partiționare de la quicksort și, în funcție de relația dintre valoarea curentă a lui k și numărul de elemente din x[s..q] se continuă căutarea în prima parte (x[s..q]) sau în a doua parte (x[q+1..d])

Obs: dacă pentru apelul inițial k este între 1și n, la fiecare dintre apeluri, k va fi între 1 și d-s+1 (k e rangul unui element dar nu indicele elementului)

```
Selectie(x[s..d],k)

if s==d then return x[s]

else

q←partitie(x[s..d])

r ← q-s+1

if k<=r then return selectie(x[s..q],k)

else return selectie(x[q+1..d],k-r)

endif

endif
```

Alte aplicații ale divizării: selecția celui de al k-lea element

```
Selectie(x[s..d],k)

if s==d then return x[s]

else

q \leftarrow partitie(x[s..d])

r \leftarrow q\text{-s+1}

if k<=r then return selectie(x[s..q],k)

else return selectie(x[q+1..d],k-r)

endif

endif
```

Cazul cel mai favorabil (partiționare echilibrată):

$$T(n) = \begin{cases} 0 & n=1 \\ & & \\ T(n/2) + n & n > 1 \end{cases}$$

$$\Rightarrow$$
 (t. Master, caz 1: m=2,k=1,d=1)

T(n) aparține lui O(n)

Se consideră o grilă pătratică de latură n=2^k în care una dintre celule este marcată (interzisă). Se pune problema acoperirii grilei cu piese constituite din 3 celule plasate în forma de L (patru variante ce pot fi obținute prin rotire cu câte 90 grade)

Idee: se reduce problema la 4 probleme similare de dimensiune 2^k prin plasarea unei piese în zona centrală, astfel încât să se ocupe o celulă în fiecare dintre cele 3 zone care au toate celulele libere

Idee: se aplică aceeași strategie pentru zona din stânga sus

Idee: ... se aplică aceeași strategie pentru zona din dreapta sus

Idee: ... se aplică aceeași strategie pentru zona din dreapta sus

Idee: apoi pentru zona din dreapta jos și în final pentru zona din stânga jos

Obs: nu contează ordinea în care sunt rezolvate subproblemele

Idee: apoi pentru zona din dreapta jos

Idee: ... și în final pentru zona din stânga jos

Obs: nu contează ordinea în care sunt rezolvate subproblemele

Idee algoritm:

```
nr \leftarrow 0; // nr ordine piesa
Triomino(i1,j1,i2,j2,ih,jh) // i1,j1,i2,j2=indici colturi grila, ih,jh=indici celula ocupata
 if ((i2-i1==1) and (j2-j1==1)) then <completare cele 3 celule libere>
 else
   imij \leftarrow (i1+i2)/2; jmij \leftarrow (j1+j2)/2 // calcul indici mijloc
   if (ih<=imij) and (jh<=jmij) then // celula ocupata e in subgrila stanga sus
       a[imij][jmij+1] \leftarrow nr; a[imij+1][jmij] \leftarrow nr; a[imij+1][jmij+1] \leftarrow nr; nr=nr+1;
       triomino(i1,j1,imij,jmij,ih,jh);
                                          // subgrila stanga jos
       triomino(i1,jmij+1,imij,j2,imij,jmij+1); // subgrila dreapta sus
       triomino(imij+1,jmij+1,i2,j2,imij+1,jmij+1); // subgrila dreapta jos
       triomino(imij+1,j1,i2,jmij,imij+1,jmij); // subgrila stanga jos
  if ((ih<=imij) and (jh>jmij)) then .... // subgrila dreapta sus
  if ((ih>imij) and (jh>jmij)) then .... // subgrila dreapta jos
  if ((ih>imij) and (jh<=jmij)) then .... // subgrila stanga jos
```

Cursul următor va fi despre...

... tehnica căutarii local optimale

... și aplicații

Intrebare de final

Se consideră tabloul:

[6,9,8,5,3,2,4]

Care dintre valorile următoare poate fi considerată pivot în cazul în care se dorește ordonare descrescătoare folosind quicksort?

- a) 9
- b) 5
- c) 4
- d) 6