

科学计算

赖俊 浙江大学数学科学学院

第六章 解线性方程组的直接法

- ▶ Gauss消去法
- 主元素法
- ▶ LU分解
- ▶ LL「分解和LDL「分解

引言

解线性代数方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

- 矩阵方程Ax = b常用增广矩阵表示 $(A \mid b)$
- ▶ 解法
 - 。直接法:用有限步计算得到准确解
 - 。 迭代法: 给出一个近似解序列

直接法

- Crame法则计算量太大,以(n + 1)!计,不实用(11! = 39916800)
- 高斯消去法计算量以n³计
- ▶直接法
 - 。解线性代数方程组
 - 。求行列式
 - 。求逆矩阵

三角方程组

▶ 例1:向前代入消去法

$$\begin{bmatrix} 1 & & & 3 \\ 2 & 1 & & 1 \\ -1 & 2 & 1 & -7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & & & 3 \\ -5 & & & 6 \end{bmatrix}$$

▶ 例2:向后代入消去法(回代)

$$\begin{bmatrix} 2 & 2 & 3 & 3 \\ 3 & 1 & -5 \\ 6 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 1 \end{bmatrix}$$

三角方程组

▶ 一般情况

$$u_{11}x_1 + u_{12}x_2 + \dots + u_{1n}x_n = g_1$$

$$u_{22}x_2 + \dots + u_{2n}x_n = g_2$$

for
$$u_{nn}$$

 $x_k = \frac{x_{k-1} x_{k+1} x_{k+1} - \dots - x_{k} x_{n}}{u_{kk}}$

end

三角方程组

- ▶ 算法注记
 - 。程序实现时x, g可共用一组单元,即回代就地完成
 - 。回代加法和乘法运算各 $\frac{n(n-1)}{2}$,除法n次
 - 。亦可解出一未知数即代入其它方程, 消去该未知 数
 - 。其它形式三角方程组可类似计算

Gauss消去法算例

▶ 例1:

 [2 2 3 3 7]
 [4 7 7 1 18]
 [-2 4 5 -7 7]
 [-2 4 5 -7 7]
 [-4 5 1]
 [-2 4 5 6]
 [-4 5 6]
 [-4 5 6]
 [-4 5 6]
 [-4 5 6]
 [-4 5 6]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4 7]
 [-4

k = 2: 3行减2行2倍

回代

2	2	3	3	7
4	7	7	1	18
-2	4	5	-7	7
2	2	3	3	7
2	3	1	-5	4
-1	6	8	-4	14
2	2	3	3	7
2	3	1	-5	4
-1	2	6	6	6
1			2	1
	1		-2	1
		1	1	1

顺序消元

算法 for k = 1: n - 1if $a_{kk} \neq 0$ for i = k + 1: n $m_{ik} = a_{ik}/a_{kk} \qquad \{m_{ik} \, \overline{\mathbf{1}} \, \overline{\mathbf{1}}$ i行= i行- k行× m_{ik} {前k列元素不在内} end else stop end end

Gauss消去法运算量

乘除法运算工作量

第k步消元: $m_{ik}: n-k$ 次除法, $a_{ii}^{(k+1)}: (n-k)^2$ 次乘法,

 $b_i^{(k+1)}: n-k$ 次乘法, $(i, j=k+1,\dots,n)$.

消元过程乘除法次数: $\sum_{k=1}^{n-1} (n-k)^2 + 2\sum_{k=1}^{n-1} (n-k) = \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n$

Gauss消去法

 \triangleright 如果矩阵A本身是三对角矩阵,则计算量可以进一步降低到O(n),此时消去法也称为追赶法

Gauss消去法求行列式

▶ 行列式

- $det(A_k) = det(U_k) = u_{11}u_{22} \cdots u_{kk}, k = 1, 2, \cdots, n$ U是顺序消元过程结束时的上三角矩阵. A_k 和 U_k 分别是A和U的k阶主子阵
- 。例1中系数矩阵的行列式等于2×3×6=36.

定理 约化的主元素 $a_{ii}^{(i)} \neq 0 (i = 1, 2, \dots, k) \Leftrightarrow A$ 的顺序主子式 $D_i \neq 0 (i = 1, 2, \dots, k)$,即

$$D_{i} = \begin{vmatrix} a_{11} & \cdots & a_{1i} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} \end{vmatrix} \neq 0, \ (i = 1, 2, \dots, k).$$

Gauss消去法求逆矩阵

▶逆矩阵

- 解n个方程组(A|I), 其中I是单位矩阵.
- 。需加法乘法各为 $n^3 + O(n^2)$
- 。例中系数矩阵的逆,写出增广矩阵,消元得

$$\begin{pmatrix} 2 & 2 & 3 & 1 & 0 & 0 \\ 4 & 7 & 7 & 0 & 1 & 0 \\ -2 & 4 & 5 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 2 & 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & -2 & 1 & 0 \\ 0 & 0 & 6 & 5 & -2 & 1 \end{pmatrix}$$

最后解出

$$\begin{pmatrix}
1 & 0 & 0 & 7/36 & 1/18 & -7/36 \\
0 & 1 & 0 & -17/18 & -4/9 & -1/18 \\
0 & 0 & 1 & 5/6 & -1/3 & 1/6
\end{pmatrix}$$

Gauss消去法矩阵解释

- 消去法矩阵解释
 - 。消第k个元, (2), 相当于左乘矩阵 $M_k = I m_k e_k^T$ $m_k = (0, \dots, 0, m_{k+1, k, \dots}, m_{nk})^{\mathrm{T}}, e_k$ 单位向量
 - 。消元结果得上三角方程组
 - $M(A|b) = (U|g), M = M_{n-1}M_{n-2} \cdots M_1$

•
$$MA = U, Mb = g$$

• $A = LU, L = M^{-1} = \begin{bmatrix} 1 & & & & \\ m_{21} & 1 & & & \\ m_{31} & m_{32} & 1 & & \\ \vdots & \vdots & \vdots & \ddots & \\ m_{n1} & m_{n2} & m_{n3} & \cdots & 1 \end{bmatrix}$

消去法实现LU分解

▶ 例1(续)

$$\begin{bmatrix} 2 & 2 & 3 \\ 4 & 7 & 7 \\ -2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 & 1 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 3 \\ 3 & 1 \\ 6 \end{bmatrix}$$

▶ LU分解: 顺序主子式非零, $det(A_k) \neq 0, k = 1, 2, \cdots, n - 1$ 则可唯一分解A = LU,单位下三角阵与上三角阵之积

$$L = \begin{bmatrix} 1 & & & & & \\ l_{21} & 1 & & & & \\ l_{31} & l_{32} & 1 & & & \\ \vdots & \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix}, U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ & u_{22} & u_{23} & \cdots & u_{2n} \\ & & & u_{33} & \cdots & u_{3n} \\ & & & & \ddots & \\ & & & & & u_{nn} \end{bmatrix}$$

LU分解

- ▶ 方法
 - 。消去法实现LU分解
 - 。直接LU分解(紧凑Gauss消去法)
 - 解方程A = LU确定 I_{il}, u_{ki}
 - 追踪顺序消元所得L,U元素的历史确定 I_{il},u_{ki}
- ▶ 直接LU分解公式

$$\begin{aligned} u_{ki} &= a_{kj} - m_{k1} u_{1j} - m_{k2} u_{2j} - \dots - m_{k,k-1} u_{k-1,j}, \\ j &= k, k+1, \dots, n \\ m_{ik} &= \frac{a_{ik} - m_{i1} u_{1k} - m_{i2} u_{2k} - \dots - m_{i,k-1} u_{k-1,k}}{u_{kk}} \\ i &= k, k+1, \dots, n \end{aligned}$$

直接LU分解

) 算法: for k = 1: n - 1for j = k: n $u_{kj} = a_{kj} - I_{k1}u_{1j} - I_{k2}u_{2j} - \dots - I_{k,k-1}u_{k-1,j}$ end for i = k + 1: n $I_{ik} = \frac{a_{ik} - I_{i1}u_{1k} - I_{i2}u_{2k} - \dots - I_{i,k-1}u_{k-1,k}}{1}$ end end u_{ki}, I_i 可置A中.

直接LU分解

计算表格

$u_{11}=a_{11}$	$u_{12}=a_{12}$	$u_{13}=a_{13}$
$l_{21}=a_{21}/u_{11}$	$u_{22}=a_{22}-l_{21}u_{12}$	$u_{23}=a_{23}-l_{21}u_{13}$
$l_{31}=a_{31}/u_{11}$	$l_{32}=(a_{32}-l_{31}u_{12})/u_{22}$	$u_{33}=a_{33}-l_{31}u_{13}-l_{32}u_{23}$

- 。也可逐行算,或逐列算,或其它可行次序算
- ▶应用
 - 解Ax = b: 分解A = LU解Ly = b求y解Ux = y求x
 - 计算 $det(A) = det(L) det(U) = u_{11}u_{22} \cdots u_{nn}$

其它形式的分解

▶ A = LU(L下三角矩阵,U单位上三角矩阵)

$u_{11}=a_{11}$	$u_{12}=a_{12}$	$u_{13}=a_{13}$
$l_{21}=a_{21}/u_{11}$	$u_{22}=a_{22}-l_{21}u_{12}$	$u_{23}=a_{23}-l_{21}u_{13}$
$l_{31}=a_{31}/u_{11}$	$l_{32}=(a_{32}-l_{31}u_{12})/u_{22}$	$u_{33}=a_{33}-l_{31}u_{13}-l_{32}u_{23}$

LDR

for
$$j=1$$
n

分解

for
$$i=2j$$

$$a_{ij} = a_{ij} - a_{i1}a_{1j} - a_{i2}a_{2j} - \dots - a_{i,i-1}a_{i-1,j}$$
 (计算 u_{ij})

end

for
$$i=j+1$$
 n
 $a_{ij}=(a_{ij}-a_{i1}a_{1j}-a_{i2}a_{2j}-\cdots-a_{i,j-1}a_{j-1,j})/a_{jj}$ (计算 l_{ij})

end

for
$$i=1$$
 $j-1$ $a_{ij}=a_{ij}/a_{ii}$ (计算 r_{ij})

end

小主元扩大误差

▶ 例2 顺序消去法, 用精确运算:

$$\begin{bmatrix} 0.0001 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0.0001 & 1 & 1 \\ 0 & -9999 & -9998 \end{bmatrix}$$

得(10000/9999, 9998/9999) \approx (1. 0001, 0. 9999) 若在十进三位尾数舍入的浮点计算机系统中运算, 第二行将是(0 - 10000 | -10000) 得到解 $x_2 = 1$, $x_1 = 0$.与真解相去甚远.

▶ 把两个方程 (两行) 交换次序再消元, 得解 $x_2 = 1, x_1 = 1$, 与 真解很近:

$$\begin{bmatrix} 0.0001 & 1 & | & 1 \\ 1 & 1 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & | & 2 \\ 0.0001 & 1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & | & 2 \\ 0 & 1 & | & 1 \end{bmatrix}$$

主元素法

- 列主元素法:在每次消元前先选该列中绝对值最大的做主元(交换两行,每行包括右端项!).
 - 。列主元素法乘数 m_{ik} 绝对值不大于1,不会增加误差
 - 。列主元素法用来求行列式时要注意两行交换行列式变号.

- ▶ 全主元素法: 在整个右下 $(n-k) \times (n-k)$ 矩阵找绝对值最大的做主元(交换行及列).
 - 这对误差控制有利,但搜索太费时.通常列主元素法误差控制就已可以了.

列主元素法

```
for k=1:n-1

    找 p: |a_{pk}| = \max(|a_{kk}|, |a_{k+1,k}|, \dots, |a_{nk}|)

    p \leftrightarrow \mathbb{R}

i_k = p

    if a_{kk} \neq 0

    for i = k+1:n

m_{ik} = a_{ik}/a_{kk}

(i) = (i) - (k) \times m_{ik}

    end

else stop

end

end
```

列主元素法算例

▶ 例3 列主元素法解方程组

$$\begin{bmatrix} 2 & 2 & 0 & | & 6 \\ 1 & 1 & 2 & | & 9 \\ 2 & 1 & 1 & | & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 & | & 6 \\ (1/2) & 0 & 2 & | & 6 \\ (1) & -1 & 1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 & | & 6 \\ (1) & -1 & 1 & | & 1 \\ (1/2) & 0 & 2 & | & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

括号内是乘数, k=2时2, 3行交换.

▶ LU分解

$$\begin{bmatrix} 1 & & & \\ & & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ 1/2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ & -1 & 1 \\ & & 2 \end{bmatrix}$$

即列主元素法实现了LU分解: PA = LU, P是行交换结果的排列阵.

列主元LU分解

- ▶ 列主元素法实现LU分解
 - 。如上例, 只要记住交换 历史
- ▶ 直接列主元LU分解
 - 。修改直接LU分解加入选 主元
 - 算法如右(可就地完成: I_{ik}, u_{kj} 置A中)

```
for k=1:n-1
       for i=k:n
              a_{ik} = a_{ik} - l_{i1} u_{1k} - l_{i2} u_{2k} - \cdots - l_{ik-1} u_{k-1k}
       end
       找 p: |a_{pk}| = \max(|a_{kk}|, |a_{k+1,k}|, \dots, |a_{nk}|)
       (p) \leftrightarrow (k)
       i_k=p
       for j=k+1:n
              u_{kj} = a_{kj} - l_{k1}u_{1j} - l_{k2}u_{2j} - \cdots - l_{k,k-1}u_{k-1,j}
       end (u_{kk}=a_{kk})
       for i=k+1:n
              l_{ik} = a_{ik}/u_{kk}
        end
end
```

实对称阵分解

- 对称阵性质
 - 顺序主子式非零时可作LU分解A = LU, 且有 $U = DL^T$, D是 U对角元构成的对角阵. 因而 $A = LDL^T$, L单位下三角阵, D对角阵, 称 LDL^T 分解或改进的Cholesky分解.
 - 。正定时, 顺序主子式全正,D可开平方根, 乃有 $A = LL^T$,L下三角阵, 对角元全正, 称 LL^T 分解或Cholesky分解.
 - 。对称阵可只存储下(上)三角部分.

LDLT分解

计算表格

。表格1

$d_1 = u_{11}$	$u_{12}=a_{12}$	$u_{13}=a_{13}$
$=a_{11}$	$l_{21}=u_{12}/d_1$	$l_{31}=u_{13}/d_1$
	$d_2 = u_{22} = a_{22} - l_{21}u_{12}$	$u_{23}=a_{23}-l_{21}u_{13}$
		$l_{32}=u_{23}/d_2$
		$u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23}$

• 表格2

$d_1 = a_{11}$		
$t_1 = a_{21} l_{21} = t_1/d_1$	$d_2 = a_{22} - t_1 l_{21}$	
$t_1 = a_{31} l_{31} = t_1/d_1$	$t_2 = a_{32} - t_1 l_{21}$ $l_{32} = t_2 / d_2$	$d_3 = a_{33} - t_1 l_{31} - t_2 l_{32}$

· 注意二表格关系,程序实现时,表格1宜逐列算,表格2宜逐行 算.

LDLT分解算例

▶ 例4

- 。按表格1计算, L帮助理解可不写
- 分解后依次求 $g,y,x(Lg=b,Dy=g,L^Tx=y)$

1	1	2	2		
(1)	5	0	-4		
(2)	(0)	14	16	y	X
1	(1), <mark>1</mark>	(2), <mark>2</mark>	2	2	2+1-2=1
1	5-1=4	(0-2),-2/4	-4-2=-6	-6/4=-3/2	-3/2+1/2=-1
2	-1/2	14-4-1=9	16-3-4=9	9/9=1	1

LLT分解

- **)** 计算表格
 - 。表格1

$l_{11}=a_{11}^{1/2}$	$l_{21} = a_{12}/l_{11}$	$l_{31}=a_{13}/l_{11}$
	$l_{22} = (a_{22} - l_{21}^2)^{1/2}$	$l_{32} = (a_{23} - l_{21}l_{31})/l_{22}$
		$l_{33} = (a_{33} - l_{31}^2 - l_{32}^2)^{1/2}$

• 表格2

$l_{11}=a_{11}^{1/2}$		
$l_{21} = a_{21}/l_{11}$	$l_{22} = (a_{22} - l_{21}^2)^{1/2}$	
$l_{31} = a_{31}/l_{11}$	$l_{32} = (a_{32} - l_{31}l_{21})/l_{22}$	$l_{33} = (a_{33} - l_{31}^2 - l_{32}^2)^{1/2}$

。二表格逐行逐列计算皆宜.

LLT分解算例

▶ 例5

- \circ 按表格2计算, L^T 帮助理解可不写
- 分解后依次求g, $x(Lg = b, L^T x = g)$

1	(1)	(2)	2	
1	5	(0)	-4	
2	0	14	16	
1	1	2	2	2+1-2=1
1	$(5-1=4)^{1/2}=2$	-1	(-4-2)/2=-3	(-3+1)/2=-1
2	(0-2)/2=-1	$(14-4-1=9)^{1/2}=3$	(16-3-4)/3=3	3/3=1