A THEORETICAL STUDY OF THE IMPLICATIONS OF RESOURCE COMPETITION FOR ADAPTIVE THERAPY OF CASTRATION-RESISTANT PROSTATE CANCER

THESIS DEFENCE

Harshavardhan BV Supervisor: Prof. Sutirth Dey July 2021

IISER Pune

CONVENTIONAL AND ADAPTIVE THERAPY

- Conventional therapy @ MTD → ↓ tumour burden (Frei & Canellos, 1980)
- Heterogenous sensitivity → sens. × → resst. (Scott & Marusyk, 2017)
- \cdot AT = \downarrow , \sim dose \rightarrow sens. \checkmark (Gatenby et al., 2009)
- Drug holiday sens. $\rightarrow \downarrow$ resst.
- AT outcome ← competition

Figure 1: Competitive release under SOC

Figure 2: Control under AT

SYSTEM OF STUDY

- · Castration-Resistant Prostate Cancer (CRPC)
- AR pathway: prostate cells \rightarrow cancer (Heinlein & Chang, 2004)
- · Therapy: ADT + Abiraterone

Cell type	Test. dependent	Test. Producing	Ab. sensitive	Mechanism
T ⁺	Yes	No	Yes	N/A
T^p	Yes	Yes	Yes	Cholesterol $\xrightarrow{CYP17\alpha}$ Test.
T	No	No	No	AR μ^n

SYSTEM OF EQUATIONS

- Logistic framework w/ dynamic carrying capacity ≈ env. condn.
- Environment = resource = $\{O_2, test\}$
- · No μ^n , no spatial structure, well mixed
- Defined $\mathbb{R}_{\geq 0}$, $y_i < 1 = \text{extinction}$

Figure 3: $f_i(res)$

$$\frac{dy_i}{dt} = r_i y_i \left(1 - \frac{\sum_j y_j}{1 + K_{i,max} f_i(O_2) f_i(test)}\right) - \delta_i y_i \tag{1}$$

$$\frac{dO_2}{dt} = p_{O_2} - \sum_i \mu_{O_2,i} y_i - \lambda_{O_2} O_2$$
 (2)

$$\frac{dtest}{dt} = p_{test}y_{TP} - \sum_{i} \mu_{test,i}y_{i} - \lambda_{test}test$$
 (3)

$$f_{i}(res) = \begin{cases} 1 & \text{if } ul_{res,i} \leq res \\ \frac{res - ll_{res,i}}{ul_{res,i} - ll_{res,i}} & \text{if } ll_{res,i} < res < ul_{res,i} \\ 0 & \text{if } res \leq ll_{res,i} \end{cases}$$
(4)

 $i \in \{T^+, T^p, T^-\}$ and $res \in \{O_2, test\}$.

Cell-types Interactions and
Competition outcomes

Figure 4: Final T^p ratio of pairwise T^p-T^+ . SF: O_2 prodn., C: T^p test limits, R: T^+ O_2 limits.

· Coexist: T^p no/mod. + T^- low

• Tot. popn. vs Initial propn.

Figure 5: Final T^p ratio of pairwise $T^+ - T^p$

· Coexist: limitation same

· Coexist: mod.

Figure 5: Final T^{p} ratio of pairwise $\mathit{T}^{+} - \mathit{T}^{p}$

 \cdot Similar: symmetric limitation

ALL CELL TYPE CASES

Figure 6: Final ratio of all cell types. C: O_2 limits , R: test limits and SF: seeding propn.

- · Homogenous: test private resource
- No vs Mod: Weak vs Strong interspecific

• O_2 : 3 zones of effect

THERAPY IMPLEMENTATION

Therapy: boolean - 1 = MTD

$$p_{test}(abi) = \begin{cases} p_{test,max} & \text{if } abi = 0 \\ p_{test,min} & \text{if } abi = 1 \end{cases}$$
(5)
$$r_i(dtx) = \begin{cases} r_{i,max} & \text{if } dtx = 0 \\ r_{i,min} & \text{if } dtx = 1 \end{cases}$$
(6)

$$r_i(dtx) = \begin{cases} r_{i,max} & \text{if } dtx = 0 \\ r_{i,min} & \text{if } dtx = 1 \end{cases}$$
 (6)

SOC: dose at MTD from start

$$dose(x,t) = 1 \quad \forall \ t,x \tag{7}$$

· AT: binary mode, switch on/off therapy

$$dose(x,t) = \begin{cases} 0 & \text{if } dose(x,t-\Delta t) = 0 \text{ and } x < \text{On} \\ 1 & \text{if } dose(x,t-\Delta t) = 0 \text{ and } x \ge \text{On} \\ 1 & \text{if } dose(x,t-\Delta t) = 1 \text{ and } x > \text{Off} \\ 0 & \text{if } dose(x,t-\Delta t) = 1 \text{ and } x \le \text{Off} \end{cases}$$
(8)

STANDARD OF CARE (SOC)

Figure 7: Final ratio of all cell types under standard-of-care. C: O2 limits , R: test limits and SF: seeding propn.

 $\cdot T^+, T^p$ extinct: all cases

· test: insufficient

ADAPTIVE THERAPY (AT) THRESHOLDS

Figure 8: Standardisation of threshold for AT, C: On-Off threshold, R: $\mathit{T}^p:\mathit{T}^+:\mathit{T}^-$ Seeding

- 50% rule
- Low threshold: T^- inhibits
- · High threshold: better (Hansen & Read, 2020)

- · Too high: no therapy
- · On: 6000, Off: 4000
- Popn. size $T^+ T^p$

Figure 9: Time-series of all cell types with AT. C: O2 limits, R: test limits and SF: seeding propn. (On:6000, Off:4000)

- Higher $T^+ T^p$: more treatable
- · test mod.: extinct from comp.

Apply therapy - T⁻ quickly replace

 → tot. popn. high

Figure 10: Time-series of all cell types with AT delayed by 200 days. C: O2 limits, R: test limits and SF: seeding propn. (On:6000, Off:4000)

• Speculate: delay $\rightarrow T^+ - T^p \uparrow$

- · No advantage \leftarrow no variability
- Physiological cost

Figure 11: Time-series of all cell types with combination AT of abi and dtx. C: O_2 limits, R: test limits and SF: seeding propn. abi(O_1 :6000, Off:4000; $T^+ + T^p$), dtx(O_1 :6000, Off:4000; $T^+ + T^p + T^-$)

- Hormone-specific + cytoxic (West et al., 2019)
- Test-of-concept: abi $T^+ T^p$, dtx total

$$\cdot$$
 –ve effect on T^+ – T^p vs +ve effect $\downarrow T^-$

SUMMARY

- Res. levels \rightarrow compe. strength
- Limit balance → coexist
- · SOC: ↑ test limit
- AT: influence $\propto T^+ T^p$
- Higher threshold: ↑ success, ↑ physiological cost
- Assumptions: carrying capacity
- · Mechanistic vs Data-driven
- Future work: IBM, Spatial, Plasticity, Heterogeneity

REFERENCES

Frei, E., & Canellos, G. P. (1980). Dose: A critical factor in cancer chemotherapy. The American Journal of Medicine, 69(4), 585–594. https://doi.org/https://doi.org/10.1016/0002-9343(80)90472-6

Gatenby, R. A., Silva, A. S., Gillies, R. J., & Frieden, B. R. (2009). Adaptive therapy. Cancer Research, 69(11), 4894–4903. https://doi.org/10.1158/0008-5472.CAN-08-3658

Hansen, E., & Read, A. F. (2020). Modifying adaptive therapy to enhance competitive suppression. *Cancers*, 12(12). https://doi.org/10.3390/cancers12123556

Heinlein, C. A., & Chang, C. (2004). Androgen Receptor in Prostate Cancer. Endocrine Reviews, 25(2), 276–308. https://doi.org/10.1210/er.2002-0032

Scott, J., & Marusyk, A. (2017). Somatic clonal evolution: A selection-centric perspective [Evolutionary principles - heterogeneity in cancer?]. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1867(2), 139–150. https://doi.org/https://doi.org/10.1016/j.bbcan.2017.01.006

West, J. B., Dinh, M. N., Brown, J. S., Zhang, J., Anderson, A. R., & Gatenby, R. A. (2019). Multidrug cancer therapy in metastatic castrate-resistant prostate cancer: An evolution-based strategy. Clinical Cancer Research, 25(14), 4413–4421. https://doi.org/10.1158/1078-0432.CCR-19-0006