MATRIX FACTORIZATIONS

- A factorization of a matrix A is an equation that expresses A as a product of two or more matrices.
- Whereas matrix multiplication involves a *synthesis* of data (combining the effects of two or more linear transformations into a single matrix), matrix factorization is an *analysis* of data.

Examples?

Diagonalize matrix

 $A = PDP^{-1}$

Eigen Decomposition.

■ Theorem: The Singular Value Decomposition Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ diagonal matrix Σ whose diagonal entries are nonnegative (the first r singular values of A, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$), and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

- The columns of *U* in such a decomposition are called **left singular vectors** of *A*, and the columns of *V* are called **right singular vectors** of *A*.
- The diagonal entries of Σ are called the singular values of A

$$A = U\Sigma V^T$$

- **Proof** Let λ_i and v_i be as in Theorem , so that $\{Av_1, \ldots, Av_r\}$ is an orthogonal basis for Col A.
- Normalize each Av_i to obtain an orthonormal basis $\{u_1, \ldots, u_r\}$, where

$$u_{i} = \frac{1}{\|Av_{i}\|} Av_{i} = \frac{1}{\sigma_{1}} Av_{i}$$
(*)

And

$$Av_i = \sigma_i u_i \qquad (1 \le i \le r)$$

Now extend $\{u_1, \ldots, u_r\}$ to an orthonormal basis $\{u_1, \ldots, u_m\}$ of \mathbb{R}^m , and let

$$U = [u_1 \ u_2 \dots um]$$
 and $V = [v_1 \ v_2 \dots vm]$

By construction, U and V are orthogonal matrices.

Also, from (*),

$$AV = [Ax_1 \dots Avr \ 0 \dots 0] = [\sigma_1 u_1 \dots \sigma_r u_r \ 0 \dots 0]$$

Let *D* be the diagonal matrix with diagonal entries $\sigma_1,...,\sigma_r$, and let Σ be as follow. Then

• Since V is an orthogonal matrix, $U\Sigma V^T = AVVT = A$.

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution A construction can be divided into three steps.

- Step 1. Find an orthogonal diagonalization of A^TA . That is, find the eigenvalues of A^TA and a corresponding orthonormal set of eigenvectors
- Step 2. Set up V and Σ . Arrange the eigenvalues of A^TA in decreasing order.
- Step 3. Construct U. When A has rank r, the first r columns of U are the normalized vectors obtained from Av_1, \ldots, Av_r .

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Step 1. Find an orthogonal diagonalization of $A^{T}A$.

$$A^{T}A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$det(A^{T}A-\lambda I)=0$$

The eigenvalues are $\lambda = 2$, $\lambda = 1$, and $\lambda = 0$

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Step 1. Find an orthogonal diagonalization of A^TA .

$$A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad det(A^{T}A - \lambda I) = 0$$

Basis for
$$\lambda = 2$$
: $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$

Basis for
$$\lambda = 1$$
: $v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and Basis for $\lambda = 0$: $v_3 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$

• Step 2. Set up V and Σ . Arrange the eigenvalues of A^TA in decreasing order. The corresponding unit eigenvectors, v_1 , v_2 , and v_3 , are the right singular vectors of A.

$$V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{bmatrix}$$

• The square roots of the eigenvalues are the singular values:

$$\sigma_1 = \sqrt{2}$$
, $\sigma_2 = 1$, $\sigma_3 = 0$

• The matrix Σ is

$$\Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• Step 3. Construct U. When A has rank r, the first r columns of U are the normalized vectors obtained from Av_1, \ldots, Av_r .

$$A = U\Sigma V^T$$
 $AV = U\Sigma$

Thus

$$u_1 = \frac{1}{\sigma_1} A v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$u_2 = \frac{1}{\sigma_2} A v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Note that $\{u_1, u_2\}$ is already a basis for \mathbb{R}^2 . Thus no additional vectors are needed for U, and $U = [u_1 \ u_2]$. The singular value decomposition of A is

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}$$

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

The Singular Value Decomposition

$$\mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \times \mathbf{V}_{n \times n}^{T} \times \mathbf{V}_{n \times n}^{T}$$

$$\Sigma_{m \times n} \times \mathbf{V}_{n \times n}^{T}$$

$$\mathbf{A} \approx \mathbf{A}_k = \mathbf{U}_k \Sigma_k (\mathbf{V}_k)^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^2 + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T \qquad \qquad ||\mathbf{A} - \mathbf{A}_k||_F^2 = \sum_{i=k+1}^r \sigma_i^2$$

Image Compression

$$nk + k + km$$

nm

$$\frac{nk+k+km}{nm}$$

The Singular Value Decomposition

 10^{4}

€ 10³·

 10^{2}

$$\mathbf{A} \approx \mathbf{A}_k = \mathbf{U}_k \Sigma_k (\mathbf{V}_k)^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^2 + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$

$$\left|\left|\mathbf{A}-\mathbf{A}_{k}
ight|
ight|_{F}^{2}=\sum_{i=k+1}^{r}\sigma_{i}^{2}$$

Image Compression

- Theorem: The QR Factorization
- If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for ColA and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.
- **Proof** The columns of A form a basis $\{x_1, \ldots, x_n\}$ for Col A. Construct an orthonormal basis $\{u_1, \ldots, u_n\}$ for W = Col A with property (1) in Theorem. This basis may be constructed by the Gram-Schmidt process or some other means.

Let

$$Q = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_n]$$

For k = 1, ..., k, \mathbf{x}_k is in Span $\{\mathbf{x}_1, ..., \mathbf{x}_k\} = \text{Span}\{\mathbf{u}_1, ..., \mathbf{u}_k\}$. So there are constants, $r_{1k}, ..., r_{kk}$, such that

$$x_k = r_{1k}\mathbf{u}_1 + \dots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \dots + 0 \cdot \mathbf{u}_n$$

• We may assume that $r_{kk} \ge 0$. This shows that x_k is a linear combination of the columns of Q using as weights the entries in the vector

$$\mathbf{r}_{k} = \begin{bmatrix} r_{1k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- That is, $\mathbf{x_k} = Q\mathbf{r_k}$ for $k = 1, \dots, n$. Let $R = [\mathbf{r_1} \dots \mathbf{r_n}]$. Then $A = [\mathbf{x_1} \dots \mathbf{x_n}] = [Q\mathbf{r_1} \dots Q\mathbf{r_n}] = QR$
- The fact that R is invertible follows easily from the fact that the columns of A are linearly independent. Since R is clearly upper triangular, its nonnegative diagonal entries must be positive.

To find QR decomposition:

- 1.) Q: Use Gram-Schmidt to find orthonormal basis for column space of A
- 2.) Let $R = Q^T A$

$$A = QR$$

$$Q^{-1}A = Q^{-1}QR$$

$$Q^{-1}A = R$$

Q has orthonormal columns:

Thus
$$Q^{-1} = Q^{T}$$

Thus $R = Q^{-1}A = Q^{T}A$

THE GRAM-SCHMIDT PROCESS

The Gram-Schmidt Process

• Given a basis $\{x_1, \ldots, x_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\begin{aligned} v_1 &= x_1 \\ v_2 &= x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 \\ v_3 &= x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2 \\ \vdots \\ v_p &= xp - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} v_2 - \dots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1} \end{aligned}$$

• Then $\{v_1, \ldots, v_p\}$ is an orthogonal basis for W. In addition $Span\{v_1, \ldots, v_k\} = Span\{x_1, \ldots, x_k\} \text{ for } 1 \le k \le p \qquad (1)$

Example: Find a *QR* factorization of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

• Solution The columns of A are the vectors x_1 , x_2 , and x_3 . An orthogonal basis for Col $A = \text{Span}\{x_1, x_2, x_3\}$ was found in that example:

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

To simplify the arithmetic that follows, scale v_3 by letting $v_3 = 3v_3$. Then normalize the three vectors to obtain u_1 , u_2 , and u_3 , and use these vectors as the columns of Q:

$$Q = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}.$$

• By construction, the first k columns of Q are an orthonormal basis of Span $\{x_1, \ldots, x_k\}$.

• From the proof of Theorem, A = QR for some R. To find R, observe that $Q^TQ = I$, because the columns of Q are orthonormal. Hence

$$Q^T A = QT(QR) = IR = R$$

and

$$R = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -3/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} \\ 0 & -2/\sqrt{6} & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 3/\sqrt{12} \end{bmatrix}$$

Find the QR decomposition of

$$A = \begin{bmatrix} 1 & -1 & 6 \\ 1 & 2 & 0 \\ 1 & 3 & -1 \\ 1 & 4 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & -1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{2} & \frac{-3}{\sqrt{14}} & \frac{1}{\sqrt{10}} \\ \frac{1}{2} & 0 & \frac{-2}{\sqrt{10}} \\ \frac{1}{2} & \frac{1}{\sqrt{14}} & \frac{-1}{\sqrt{10}} \\ \frac{1}{2} & \frac{2}{\sqrt{14}} & \frac{2}{\sqrt{10}} \end{bmatrix} = Q$$

$$R = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-3}{\sqrt{14}} & 0 & \frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} \\ \frac{1}{\sqrt{10}} & \frac{-2}{\sqrt{10}} & \frac{-1}{\sqrt{10}} & \frac{2}{\sqrt{10}} \end{bmatrix} \begin{bmatrix} 1 & -1 & 6 \\ 1 & 2 & 0 \\ 1 & 3 & -1 \\ 1 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 2 \\ 0 & \frac{14}{\sqrt{14}} & \frac{-2}{\sqrt{14}} \\ 0 & 0 & \frac{5}{\sqrt{10}} \end{bmatrix}$$

Matrix A:

$$\begin{pmatrix} 1.0 & -1.0 & 4.0 \\ 1.0 & 4.0 & -2.0 \\ 1.0 & 4.0 & 2.0 \\ 1.0 & -1.0 & 0.0 \end{pmatrix}$$

Matrix with orthonormal basis:

$$\begin{pmatrix} -0.5 & 0.5 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & -0.5 & -0.5 & 0.5 \\ -0.5 & 0.5 & 0.5 & 0.5 \end{pmatrix}$$

Upper diagonal matrix:

$$\begin{pmatrix} -2.0 & -3.0 & -2.0 \\ 0.0 & -5.0 & 2.0 \\ 0.0 & 0.0 & -4.0 \\ 0.0 & -0.0 & -0.0 \end{pmatrix}$$

Find the QR decomposition of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Use Gram-Schmidt to find orthogonal basis for column space of A

$$col(A) = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\} = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}$$

$$= \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{bmatrix} \right\}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

QR Decomposition-Based Algorithm Background Subtraction

Figure 1. Sample frames of a traffic movie¹.

Figure 2. 64 Consequence frames of an instance block in its original order.

for

Figure 5. From top to bottom: original frames, foreground object detection using GMM (taken from [11]) and the proposed approach.

Figure 3. Rearrangement of blocks in Figure 2 based on their R-values' order. A can be seen, background frames has been shifted to the end.