Rohit Tripathy

#5 225 South River Road West Lafayette, IN, USA

+1-765-476-6988rtripath@purdue.edu

Education

Purdue University

West Lafayette, IN

PhD., Mechanical Engineering; GPA - 3.93/4.0

January. 2016 - Dec 2019 (expected)

- Advisor: Prof. Ilias Bilionis
- Relevant courses: Uncertainty Quantification, Computational Methods in Optimization, Stochastic Processes, Monte Carlo Methods, Bayesian Data Analysis.

Purdue University

West Lafayette, IN

MS., Mechanical Engineering; GPA - 3.61/4.0

August 2014-December 2015

- Relevant courses: Decision Theory and Bayesian Statistics, Finite Element Method, Computational Fluid Dynamics, Atomistic Simulations, Fluid Mechanics, Numerical Methods.

VIT University

Vellore, India

B. Tech., Mechanical Engineering; GPA - 9.04/10.0.

July 2010-May 2014

Work Experience

• Givens Associate, Argonne National Laboratory, Lemont, IL (June 2017 - August 2017).

Research Experience

Predictive Science Lab, Purdue University

West Lafayette, IN

Graduate Research Assistant

August 2014 - Present

- Research focused on surrogate modeling for uncertainty quantification.
- Developed a gradient-free, dimensionality reduction technique called active subspace Gaussian process regression (ASPGP).
- Currently working on deep neural networks for uncertainty quantification.

Math. and Computer Science (MCS) division, Argonne National Lab

Lemont, IL

Givens associate (PhD intern)

June 2017 - August 2017

- Explored the use of machine learning methods for wind speed forecasting. In particular, used deep learning techniques for sequence modeling such as LSTMs.

Publications

• Rohit Tripathy, Ilias Bilionis, and Marcial Gonzalez. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation. Journal of Computational Physics 321 (2016): 191-223.

Talks / Presentations

SIAM AN 2017 Pittsburgh, PA

High dimensional multifidelity uncertainty quantification with deep neural networks. July 2017

SIAM DR 2017 Pittsburgh, PA

Discovering nonlinear active subspaces using deep neural networks. July 2017

SIAM CSE 2017 Atlanta, GA March 2017

Learning multiscale stochastic FEM basis functions with deep neural networks.

ASME Verification and Validation (V&V) Symposium

Probabilistic Active subspaces.

SIAM Purdue CSESC 2016

A novel method for gradient-free dimensionality reduction.

Las Vegas, NV

May 2016

Purdue University

March 2016

Selected Coursework Projects

Optimization over the Stiefel Manifold

Computational methods in optimization course, CS 520

Jan 2016 - May 2016

 Implemented, in Python, a modified form of gradient descent on manifold space, with update scheme based on the Cayley transform.

Finite element solver for a plane stress hypoelasticity problem

Finite Element Methods course, ME 681.

Jan. 2015 - May 2015

 Implemented in Python from scratch a nonlinear finite element solver for 2D hypoelasticity problem for a square plate.

2-D Incompressible Navier Stokes solver

Computational Fluid Dynamics course, ME 614

Jan. 2015 - May 2015

 Implemented, in Python, from scratch, a fully conservative finite difference solver with a staggered grid formulation to solve the lid driven cavity problem.

Skills

Languages (In order of comfort): Python, R, MATLAB.

Deep Learning frameworks: Familiarity with caffe, Theano and tensorflow.

Other software: LATEX, git.

Academic Interests

Uncertainty Quantification, Machine Learning, Deep learning and Artificial Intelligence, Data Analysis, Finite Element methods. Computational physics.

Professional Memberships

- Academic and Professional Development (APD) Committee of Purdue Graduate Student Government (PGSG) [September 2014 April 2015].
- Society of Industrial and Applied Mathematics (SIAM) student member [August 2015- present].
- SIAM Purdue chapter Treasurer [August 2016 present].
- American Society of Mechanical Engineers (ASME) student member [January 2016-present].

Mentorship Experience

Mentored NCN-SURF student interns in the Predictive Science Lab in 2015 and 2016.

Links

• LinkedIn: http://tinyurl.com/p4myxe8.

• Bitbucket: https://bitbucket.org/rohitkt10/.

• Active subspace project github: https://github.com/PredictiveScienceLab/py-aspgp.