

Robotics I: Introduction to Robotics Chapter 6 – Trajectory Generation

Tamim Asfour

https://www.humanoids.kit.edu

Outline

- **■** Fundamentals of trajectory generation
- Programming of key points
- Interpolation types
- Approximated trajectory generation

Fundamentals of Trajectory Generation: Trajectory

The movements of a robot are regarded as

- State changes
 - Over time
 - Relative to a fixed coordinate system (Workspace, Configuration space)
- with restrictions due to
 - Constraints
 - Quality criteria
 - Secondary and boundary conditions

Fundamentals of Trajectory Generation: Problem

- Given
 - S_{Start} : State at the start time
 - $S_{Destination}$:
 State at the destination time
- Desired
 - S_i :

 Intermediate states (support points), so that the trajectory is continuous.

Trajectory Generation: Example for a Single Joint

Start conditions:

$$q(t_0) = 15^{\circ}$$

$$\dot{q}(t_0) = 0 \frac{\circ}{sec_{\circ}}$$

$$\ddot{q}(t_0) = 40 \frac{\circ}{sec^2}$$

End conditions:

$$q(t_e) = 75^{\circ}$$

$$\dot{q}(t_e) = 0 \frac{1}{sec}$$

$$\ddot{q}(t_e) = -40 \frac{1}{sec^2}$$

Acceleration $\ddot{q}(t)$

Trajectory Generation: Example for a Single Joint

Start conditions:

$$q(t_0) = 15^{\circ}$$

$$\dot{q}(t_0) = 0 \frac{\circ}{sec_{\circ}}$$

$$\ddot{q}(t_0) = 40 \frac{\circ}{sec^2}$$

End conditions:

$$q(t_e) = 75^{\circ}$$

$$\dot{q}(t_e) = 0 \frac{1}{sec}$$

$$\ddot{q}(t_e) = -40 \frac{1}{sec^2}$$

We can determine a third-degree polynomial that fulfills the conditions:

$$q(t) = -\frac{40}{9}t^3 + 20t^2 + 15$$
 $\dot{q}(t) = -\frac{40}{3}t^2 + 40t$ $\ddot{q}(t) = -\frac{80}{3}t + 40$

Trajectory Generation: Representation of the States (1)

Trajectory Generation: Representation of the States (2)

- States can be represented in
 - \blacksquare Configuration space: \mathbb{R}^n
 - Workspace: \mathbb{R}^3 , SE(3)
- Trajectory generation in the **configuration space** is closer to the control of the robot components (joints, sensors)
- Trajectory generation in the workspace is closer to the task to be solved
 - For control in the workspace, the inverse kinematics must be solved

Trajectory Generation: Interpolation

■ Interpolation of world coordinates 内插法

Interpolation of joint angles

Trajectory Generation in the Configuration Space

- Trajectory generation as a function of the joint angle states
 - The course of the path, which is specified point by point in joint space, does not have to be defined in the workspace.
- Traversing trajectories that are specified point by point:
 - **Asynchronous:** Control of the axes independently of each other
 - Applications: Spot welding, handling tasks 点焊任务,物料搬运
 - Synchronous: Axis-interpolated control
 - Movement of all axes starts and ends at the same time
 - Leading axis
 - Applications: Path welding, spray painting, assembly tasks

Trajectory Generation in the Workspace

- The trajectory is specified as a function of the **robot states**
 - Example: Description vector of the end effector
 - Position, Velocity, Acceleration
- Continuous Path (CP):
 End effector follows a well-defined path in terms of its position and orientation
- Path types
 - Linear paths 线性路径
 - Polynomial paths 多项式路径
 - Splines 样条

Trajectory Generation: Pros and Cons of the Representations

	Workspace	Configuration space
+	Path easier to formulate Interpolation is easier	 + Control of the joints is easier + Trajectory is unambiguous and respects the limits of the joint angles
_	Inverse kinematics must be solved for each point of the trajectory	 Interpolation for multiple joints
_	The planned trajectory cannot always be executed 规划的轨迹不一定总能被执行。由于关节的物理限制,某些工作空间的轨迹可能无法映射到可行的关节角度。	 Formulation of the trajectory is more complicated

Outline

- Fundamentals of trajectory generation
- Programming of key points
- Interpolation types
- Approximated trajectory generation

Direct Programming: Teach-In (1)

- Manual steering to prominent points along the path
 - Teach Box
 - Teach Panel
 - Spacemouse
 - Teach Ball

■ Functionality of a Teach Box:

- Individual movement of the joints
- Movement of the end effector in 6 degrees of freedom
- Saving and deleting waypoints
- Setting velocities
- Entering commands to operate the gripper
- Starting / stopping entire programs

Direct Programming: Teach-In (2)

- Procedure:
 - Move the robot to relevant key points on the path
 - Record the joint positions
 - Add parameters such as velocities and accelerations to the stored values
- Applications:
 - Manufacturing industry
 - Spot welding
 - Riveting
 - Handling tasks
 - Taking parcels from a conveyor belt

Direct Programming: Playback (1)

- Robot in zero-force control mode
 - Robot can be moved by the operator
 - Movement along the desired path
 - **Recording** of the **joint values** (2 options):
 - Automatically (predefined sampling frequency)
 - Manually (by pressing a button)

Applications:

- Motion sequences that are difficult to describe mathematically
- Integration of experience in craftsmanship
- Typical application areas:
 - Spray painting
 - Gluing

Direct Programming: Playback (2)

Direct Programming: Playback (3)

- Advantages
 - Fast for complex paths
 - Intuitive
- Disadvantages
 - Heavy robots are often difficult to move
 - Little space in narrow production cells poses a safety risk for the operator
 - Limited correction options
 - Optimization and control using interpolation methods is difficult (suboptimal paths)

Outline

- Fundamentals of trajectory generation
- Programming of key points
- Interpolation types
 - Point-to-point (PTP)
 - Linear and circular interpolation
 - Spline interpolation
- Approximated trajectory generation

Interpolation Types: Overview

Point-to-Point Control (PTP) (1)

- Robot performs a point-to-point movement
 - PTP: Point-to-Point
- Advantages:
 - Calculating the joint angle trajectory is simple
 - No problems with singularities
- Sequence of joint angle vectors

$$q(t_j) = (q_1(t_j), q_2(t_j), ..., q_n(t_j))^T$$

with $q_i(t_j)$: Angle of joint i at time t_j with j = 0, ..., k

Point-to-Point Control (PTP) (2)

Boundary conditions

- Start and destination states are known
- Example: Velocities at the beginning and the end are zero
- The joint positions, the joint velocities and the joint accelerations are limited (e.g. fast acceleration, slow deceleration)

$$q(t_0) = q_{Start}$$
 $q(t_e) = q_{Destination}$
 $\dot{q}(t_0) = 0$
 $\dot{q}(t_e) = 0$

$$q_{min} < q(t_j) < q_{max}$$
 $|\dot{q}(t_j)| < \dot{q}_{max}$
 $|\ddot{q}(t_j)| < \ddot{q}_{max}$

Point-to-Point Control (PTP) (3)

Control sequence

- lacktriangle Traversing time t_e
- lacktriangle Acceleration time t_a
- Start of braking time t_d
- lacktriangle Maximum velocity v_m
- \blacksquare Maximum acceleration a_m

$$s(0) = \dot{s}(0) = v(0) = 0$$

$$s(t_e) = s_e = |q_{Destination} - q_{Start}|$$

$$\dot{s}(t_e) = v(t_e) = 0$$

Calculation of the distance to be traversed

Modification of the inputs v_m , a_m

Calculation of t_e , t_a , t_d

Interpolation: Calculation of intermediate values

Determination of the joint setpoints

Interpolation for PTP with a Ramp Profile (1)

- Advantage: Simple way to compute the path parameters s(t)
- Disadvantage: The acceleration is discontinuous (unlimited jerk), which can excite natural vibrations in mechanical parts.

Interpolation for PTP with a Ramp Profile (2)

Phase I: Acceleration

$$0 \le t \le t_a$$

$$\ddot{s}(t) = a_m$$

$$\dot{s}(t) = a_m t + \dot{s}(0) \qquad \text{with } \dot{s}(0) = 0$$
$$= a_m t$$

$$s(t) = \frac{1}{2}a_m t^2 + s(0) \quad \text{with } s(0) = 0$$
$$= \frac{1}{2}a_m t^2$$

Interpolation for PTP with a Ramp Profile (3)

Phase II: Constant velocity

We know from Phase I:

$$\dot{s}(t_a) = a_m t_a = v_m \rightarrow t_a = \frac{v_m}{a_m}$$

$$s(t_a) = \frac{1}{2} a_m t_a^2$$

$$t_a \le t \le t_d$$

$$\ddot{s}(t) = 0$$

$$\dot{s}(t) = \dot{s}(t_a) = v_m$$

$$s(t) = \mathbf{v}_m(\mathbf{t} - \mathbf{t}_a) + \mathbf{s}(\mathbf{t}_a)$$

$$= v_m \left(t - \frac{v_m}{a_m} \right) + \frac{1}{2} a_m t_a^2$$

$$= v_m t - \frac{1}{2} \frac{v_m^2}{a_m}$$

Interpolation for PTP with a Ramp Profile (4)

Phase III: Braking process

$$t_d \le t \le t_e$$
 with $t_d = t_e - t_a$

$$\ddot{s}(t) = -a_m$$

$$\dot{s}(t) = -a_m(t - t_d) + \dot{s}(t_d)$$
$$= -a_m(t - t_d) + v_m$$

$$s(t) = v_m(t_e - t_a) - \frac{a_m}{2}(t_e - t)^2$$

Interpolation for PTP with a Ramp Profile (5)

Calculation of the traversing time

We know from Phase III:

$$s(t_e) = s_e = v_m(t_e - t_a)$$

Solve for
$$t_e$$
, $t_a = \frac{v_m}{a_m}$

$$t_e = \frac{s_e}{v_m} + t_a = \frac{s_e}{v_m} + \frac{v_m}{a_m}$$

Time-optimal Path

If v_m is too large in relation to the acceleration and path length: Determination of a time-optimal path according to

$$\mathbf{s}_{e} = \mathbf{t}_{a} \cdot \mathbf{v}_{m} = \frac{v_{m}^{2}}{a_{m}} \rightarrow v_{m} = \sqrt{a_{m} s_{e}}$$

Interpolation for PTP with a Sinoid Profile (1)

- Smoother movement by using a sinusoidal time function
- Advantage:
 - Less strain on the robot
- Disadvantage:
 - Longer acceleration and braking phase compared to the ramp profile
- Determination of the curve parameters for the three phases:
 - Acceleration
 - Constant velocity
 - Braking process

Interpolation for PTP with a Sinoid Profile (2)

■ Phase of acceleration

$$\ddot{s}(t) = a_m sin^2 \left(\frac{\pi}{t_a} t\right) \quad 0 \le t \le t_a$$

$$\dot{s}(t) = a_m \left(\frac{1}{2} t - \frac{t_a}{4\pi} \sin \left(\frac{2\pi}{t_a} t \right) \right)$$

$$s(t) = a_m \left(\frac{1}{4} t^2 + \frac{t_a^2}{8\pi^2} \left(\cos\left(\frac{2\pi}{t_a}t\right) - 1 \right) \right)$$

From
$$\dot{s}(t_a) = a_m \frac{1}{2} t_a = v_m$$
 follows $t_a = \frac{2v_m}{a_m}$

Phase of constant velocity

$$\ddot{s}(t) = 0 \quad t_a \le t \le t_d$$

$$\dot{s}(t) = v_m$$

$$s(t) = v_m(t - \frac{1}{2}t_a)$$

Interpolation for PTP with a Sinoid Profile (3)

Phase of the braking process

$$\dot{s}(t) = v_m - \int_{t-t_d}^{t} a(\tau - t_d) d\tau = v_m - a_m (\frac{1}{2}(t - t_d) - \frac{t_a}{4\pi} \sin\left(\frac{2\pi}{t_a}(t - t_d)\right)) \qquad t_d \le t \le t_e$$

$$s(t) = s(t_d) + \int_{t-t_d}^{t} \dot{s} (\tau - t_d) d\tau = \frac{a_m}{2} \left(t_e(t + t_a) - \frac{t^2 + t_e^2 + 2t_a^2}{2} + \frac{t_a^2}{4\pi} \left(1 - \cos\left(\frac{2\pi}{t_a}(t - t_d)\right) \right) \right)$$

Computation of the traversing time

$$t_e = \frac{s_e}{v_m} + t_a = \frac{s_e}{v_m} + \frac{2v_m}{a_m}$$

Interpolation Types: Ramp vs. Sinoid Profile

Ramp profile

Sinoid profile

Asynchronous and Synchronous PTP Paths

Asynchronous PTP Paths

- Each joint is **immediately** actuated with the **maximum acceleration**.
- Each joint movement ends independently of the others.

Synchronous PTP Paths

■ All joints start and end their movements at the same time (synchronous).

Synchronous PTP Paths: Procedure (1)

- Determine the PTP parameters for each joint i (analogous to asynchronous PTP)
 - $S_{e,i}$
 - $\mathbf{v}_{m,i}$
 - $a_{m,i}$
 - \bullet $t_{e,i}$ (traversing time)
- Determine the maximum traversing time

 - Axis with the maximum traversing time is the leading axis
- Set the maximum traversing time as the traversing time for all joints.
 - \bullet $t_{e,i} = t_e$

Synchronous PTP Paths: Procedure (2)

- Determine the new maximum velocity for all joints
 - Conversion of the traversing time und calculation of the new maximum velocity
 - Ramp profile:

$$t_e = \frac{s_{e,i}}{v_{m,i}} + \frac{v_{m,i}}{a_{m,i}} \rightarrow v_{m,i}^2 = v_{m,i} a_{m,i} t_e - s_{e,i} a_{m,i}$$

$$v_{m,i} = \frac{a_{m,i}t_e}{2} - \sqrt{\frac{a_{m,i}^2t_e^2}{4} - s_{e,i}a_{m,i}}$$

■ Analogous calculation for a **sinoid profile**:

$$v_{m,i} = \frac{a_{m,i}t_e}{4} - \sqrt{\frac{a_{m,i}^2t_e^2 - 8s_{e,i}a_{m,i}}{16}}$$

Fully Synchronous PTP Paths

- Additional consideration of the acceleration time and braking time
- Better approximation of the start and end points in the workspace
- lacksquare Determination of the leading axis with t_e and $t_a
 ightarrow t_d = t_e t_a$
- Determination of the maximum velocity and acceleration of the other axes:

$$v_{m,i} = \frac{s_{e,i}}{t_d} \qquad a_{m,i} = \frac{v_{m,i}}{t_a}$$

Disadvantage: Acceleration of each axis is predetermined

Control in the Workspace

- Continuous Path (CP)
 - End effector follows a **defined** path with regard to its position and orientation
- Pose of the end effector in the workspace
 - $\mathbf{p} = (x, y, z)^T \in \mathbb{R}^3$: Position
 - $\boldsymbol{\omega} = (\alpha, \beta, \gamma)^T \in \mathbb{R}^3$: Orientation (e.g. as Euler angles)
- Maximum velocities and accelerations in the work space:
 - $v_n \in \mathbb{R}$: Linear velocity
 - $a_p \in \mathbb{R}$: Linear acceleration
 - $v_{\omega} \in \mathbb{R}$: Angular velocity
 - $a_{\omega} \in \mathbb{R}$: Angular acceleration

Linear Interpolation (1)

$$p(t) = \boldsymbol{p}_{Start} + \frac{s_p(t)}{s_{ep}} \cdot (\boldsymbol{p}_{Destination} - \boldsymbol{p}_{Start})$$

Calculation of $s_p(t)$ with a ramp profile or a sinoid profile:

$$s_p(0) = \dot{s}_p(0) = v_p(0) = 0,$$
 $\dot{s}_p(t_e) = v_p(t_e) = 0$ $v_m = v_p, a_m = a_p, t_e = t_{ep}, t_a = t_{ap}, t_d = t_{dp}, s_e = s_{ep}, s = s_p$

Linear Interpolation (2)

Orientation in Euler angles: $\boldsymbol{\omega} = (\alpha, \beta, \gamma)^T$

$$\begin{split} s_{e\omega} &= |\boldsymbol{\omega}_{Destination} - \boldsymbol{\omega}_{Start}| \\ &= \sqrt{(\alpha_{Destination} - \alpha_{Start})^2 + (\beta_{Destination} - \beta_{Start})^2 + (\gamma_{Destination} - \gamma_{Start})^2} \end{split}$$

Calculation of $s_{\omega}(t)$ with a ramp profile or a sinoid profile:

$$v_m = v_\omega$$
, $a_m = a_\omega$, $t_e = t_{e\omega}$, $t_a = t_{a\omega}$, $t_d = t_{d\omega}$, $s_e = s_{e\omega}$, $s = s_\omega$

Synchronization of the traversing times t_{ep} (position) and $t_{e\omega}$ (orientation) $t_e = \max(t_{ep}, t_{e\omega})$

Analogous to adjusting the velocities for synchronous PTP:

If
$$t_e = t_{ep}$$
: $v_\omega = \frac{a_\omega t_e}{2} - \sqrt{\frac{a_\omega^2 t_e^2}{4} - s_{e\omega} a_\omega}$

• If
$$t_e = t_{e\omega}$$
: $v_p = \frac{a_p t_e}{2} - \sqrt{\frac{a_p^2 t_e^2}{4} - s_{ep} a_p}$

Linear Interpolation: Example

Segment-wise Path Interpolation

- The end conditions of the partial trajectory j-1 (direction, velocity, acceleration) and the start conditions of the partial trajectory j are adjusted to each other
- Partial trajectories are described separately (Example: Splines)

Interpolation with Cubic Splines (1)

Polynomial

$$f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$
 $(a_0, a_1, a_2, a_3 \in \mathbb{R})$

Given:

Starting point
$$f(0) = s_a$$

■ End point
$$f(t_e) = s_e$$

Starting velocity
$$\dot{f}(0) = v_a$$

■ End velocity
$$\dot{f}(t_e) = v_e$$

- Desired: a_0 , a_1 , a_2 , $a_3 \in \mathbb{R}$
- Goal: Determine parameters for the polynomial

Cubic Splines: Determination of the Parameters (1)

$$\dot{f}(0) = v_a$$

$$\dot{f}(t_e) = v_e$$

Cubic Splines: Determination of the Parameters (2)

$$f(0) = s_a$$

$$f(t = 0) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_0$$

$$\Rightarrow a_0 = s_a$$

$$\dot{f}(0) = v_a$$

$$\dot{f}(t=0) = a_1 + 2a_2t + 3a_3t^2 = a_1$$

$$\Rightarrow a_1 = v_a$$

$$\dot{f}(t_e) = v_e$$

$$a_1 + 2a_2t_e + 3a_3t_e^2 = v_e$$

$$v_a + 2a_2t_e + 3a_3t_e^2 = v_e$$

$$2a_2t_e = v_e - v_a - 3a_3t_e^2$$

$$a_2 = \frac{v_e - v_a}{2t_e} - \frac{3}{2}a_3t_e$$

Cubic Splines: Determination of the Parameters (3)

- $a_0 = s_a$
- $a_1 = v_a$
- $a_2 = \frac{v_e v_a}{2t_e} \frac{3}{2}a_3t_e$
- $f(t_e) = s_e$

$$a_{0} + a_{1}t_{e} + a_{2}t_{e}^{2} + a_{3}t_{e}^{3} = s_{e}$$

$$s_{a} + v_{a}t_{e} + \left(\frac{v_{e} - v_{a}}{2t_{e}} - \frac{3}{2}a_{3}t_{e}\right)t_{e}^{2} + a_{3}t_{e}^{3} = s_{e}$$

$$2v_{a}t_{e} + (v_{e} - v_{a})t_{e} - 3a_{3}t_{e}^{3} + 2a_{3}t_{e}^{3} = 2(s_{e} - s_{a})$$

$$(v_{e} + v_{a})t_{e} - a_{3}t_{e}^{3} = 2(s_{e} - s_{a})$$

$$-a_{3}t_{e}^{3} = -(v_{e} + v_{a})t_{e}$$

$$\Rightarrow a_{3} = \frac{(v_{e} + v_{a})}{t_{e}^{2}} - \frac{2(s_{e} - s_{a})}{t_{e}^{3}}$$

Cubic Splines: Determination of the Parameters (4)

- $a_0 = s_a$
- $a_1 = v_a$
- $a_2 = \frac{v_e v_a}{2t_e} \frac{3}{2}a_3t_e$
- $a_3 = \frac{(v_e + v_a)}{t_e^2} \frac{2(s_e s_a)}{t_e^3}$

$$a_{2} = \frac{v_{e} - v_{a}}{2t_{e}} - \frac{3}{2}a_{3}t_{e}$$

$$a_{2} = \frac{v_{e} - v_{a}}{2t_{e}} - \frac{3}{2}\left(\frac{(v_{e} + v_{a})}{t_{e}^{2}} - \frac{2(s_{e} - s_{a})}{t_{e}^{3}}\right)t_{e}$$

$$a_{2} = \frac{1}{2t_{e}}(v_{e} - v_{a} - 3v_{e} - 3v_{a}) + \frac{3(s_{e} - s_{a})}{t_{e}^{2}}$$

$$\Rightarrow a_{2} = \frac{3(s_{e} - s_{a})}{t_{e}^{2}} - \frac{v_{e} + 2v_{a}}{t_{e}}$$

Cubic Splines: Determination of the Parameters (5)

Cubic polynomial

$$f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Desired properties:

Starting point $f(0) = s_a$ End point $f(t_e) = s_e$ Starting velocity $\dot{f}(0) = v_a$ End velocity $\dot{f}(t_e) = v_a$

Solution:

$$f(t) = s_a + v_a t + \left(\frac{3(s_e - s_a)}{t_e^2} - \frac{v_e + 2v_a}{t_e}\right) t^2 + \left(\frac{(v_e + v_a)}{t_e^2} - \frac{2(s_e - s_a)}{t_e^3}\right) t^3$$

Spline Interpolation: Examples

Path (4 support points)

Spline interpolation

Outline

- Fundamentals of trajectory generation
- Programming of key points
- Interpolation types
- Approximated trajectory generation
 - Bernstein polynomial

Approximated Trajectory Generation: Definition

- Path interpolation:
 - The executed path traverses all support points of the trajectory

- Path approximation:
 - The support points influence the course of the path and are approximated

PTP and CP with Blending (1)

- At time point $t_j \varepsilon$, start to transfer the parameters (direction and velocity) of the partial trajectory j-1 to the parameters of the partial trajectory j.
- Usually the support point i is not reached.

PTP and CP with Blending (2)

PTP and CP with Blending (3)

Velocity blending

- Start when the velocity falls below a specified minimum value
- **Disadvantage:** Dependent on the velocity profile

Positional blending

- Start when the end effector enters the blending sphere
- Outside of the blending sphere, the path is strictly adhered to.
- Advantage: Easy to control

Approximation with Bernstein Polynomials

Bézier Curves (1)

- In contrast to cubic splines, Bézier curves do not run through all support points P_i , but are only influenced by them.
- Basis function:

$$P(t) = \sum_{i=0}^{n} B_{i,n}(t) \mathbf{P}_{i} \quad 0 \le t \le 1$$

■ $B_{i,n}(t)$: *i*-th Bernstein polynomial of degree n

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Bernstein Polynomials: Examples

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Cubic polynomials $B_{i,3}$

 $B_{i,3}$

Bézier Curves (2)

- Calculation of arbitrary intermediate positions
- \blacksquare Example: Bernstein polynomial for the cubic case (Degree n=3)

$$B_{i,3}(t) = {3 \choose i} t^i (1-t)^{3-i}$$

$$P(t) = (1-t)^3 \mathbf{P}_0 + 3(1-t)^2 t \mathbf{P}_1 + 3(1-t)t^2 \mathbf{P}_2 + t^3 \mathbf{P}_3$$

- Approaching support points from below
- No arbitrary shape 无固定形状

De Casteljau's Algorithm (1)

- Approximation of the Bézier curve:
- Efficient calculation of an approximate representation of Bézier curves using a polygonal chain
- Idea: Algorithm is based on dividing a Bézier curve and representing it by two consecutive Bézier curves
- Iterative calculation: Can be efficiently calculated even for large values of n
- lacksquare Given: n support points $oldsymbol{P}_0$, ... , $oldsymbol{P}_{n-1}$
- Start: $P_i^0 = P_i$
- Iteration k: $P_i^{k+1} = (1 t_0)P_i^k + t_0P_{i+1}^k$

De Casteljau's Algorithm (2)

Example for P_0 with k=3 and $t_0=0.25$:

- Two Bézier curves $C_1(t)$ and $C_2(t)$
- Approximation of the Bézier curve using a polygonal chain

The End!

