(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 15 mai 2003 (15.05.2003)

PCT

(10) Numéro de publication internationale WO 03/040366 A2

(51) Classification internationale des brevets⁷:
C12N 15/11, A61K 31/713

[FR/FR]; 47 ter, rue Hippolyte Maindron, F-75014 Paris (FR).

(21) Numéro de la demande internationale : PCT/FR02/03843 (74) Mandataire: BREESE, Pierre; Breesé-Majerowicz, 3, avenue de l'Opéra, F-75001 Paris (FR).

(22) Date de dépôt international :

8 novembre 2002 (08.11.2002)

(26) Langue de publication :

français

(25) Langue de dépôt :

. .

français

(30) Données relatives à la priorité: 01/14549 9 novembre 2001 (09.11.2001) F

02/04474 10 avril 2002 (10.04.2002) FR

(71) Déposant (pour tous les États désignés sauf US) : CENTRE NATIONAL DE LA RECHERCHE SCI-ENTIFIQUE -CNRS- [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cedex 16 (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement):
HAREL-BELLAN, Annick [FR/FR]; 50, boulevard
Saint-Germain, F-75005 Paris (FR). AIT-SI-ALI, Slimane [FR/FR]; 36, rue de la Chapelle, F-94800 Villejuif
(FR). CABON-GEORGET, Florence [FR/FR]; 85bis,
rue Louise Aglaé Cretté, F-94400 Vitry sur Seine (FR).
CHAUCHEREAU, Anne [FR/FR]; 40, rue de Bellevue,
F-92260 Fontenay-aux-Roses (FR). DAUTRY, François

(81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

 sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: INHIBITOR OLIGONUCLEOTIDES AND THEIR USE FOR SPECIFIC REPRESSION OF A GENE

(54) Titre: OLIGONUCLEOTIDES INHIBITEURS ET LEUR UTILISATION POUR REPRIMER SPECIFIQUEMENT UN GENE

(57) Abstract: The invention concerns a double-stranded oligonucleotide characterized in that it consists of two complementary oligonucleotide sequences forming a hybrid comprising each at one of their 3' or 5' ends one to five non-matched nucleotides forming single-stranded ends overlapping from the hybrid, one of said oligonucleotide sequences being substantially complementary of a target sequence belonging to a DNA or RNA molecule to be specifically repressed. The invention also concerns the use of said oligonucleotides in pharmaceutical compositions for treating cancers.

(57) Abrégé: L'invention a pour objet un oligonucléotide double brin caractérisé en ce qu'il est constitué de deux séquences oligonucléotidiques complémentaires formant un hybride comprenant chacune à l'une de leurs extrémités 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride, l'une desdites séquences oligonucléotidiques étant substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN à réprimer spécifiquement. L'invention se rapporte aussi à l'utilisation desdits oligonucléotides dans des compositions pharmaceutiques notamment pour le traitement des cancers.

10

15

20

25

30

35

OLIGONUCLEOTIDES INHIBITEURS ET LEUR UTILISATION POUR REPRIMER SPECIFIQUEMENT UN GENE.

La présente invention concerne le domaine de l'investigation et du traitement génétiques de pathologies maladies les notamment les cancers ou humaines, infectieuses. Plus particulièrement, l'invention vise à offrir des moyens pour déterminer la fonction d'un gène ou d'une famille de gènes impliqués dans un processus cellulaire, et pour réprimer un gène nocif responsable d'une pathologie chez l'homme ou l'animal. L'invention se rapporte aux agents actifs pour la mise en œuvre de ces méthodes et les compositions les contenant.

On connaît dans l'art antérieur, des techniques d'inhiber anti-sens permettant d'oligonucléotides spécifiquement un gène dans les cellules de mammifères. Ces techniques sont basées sur l'introduction dans les cellules d'un court oligonucléotide d'ADN complémentaire du gene cible. Cet oligonucléotide induit la dégradation de l'ARN messager transcrit par le gène cible. Un autre mode d'action des anti-sens consiste à introduire dans la cellule un oligonucléotide d'ADN qui va former une triple hélice avec le gène cible. La formation de cette triple hélice réprime le gène soit en bloquant l'accès pour des protéines activatrices, soit dans des approches plus sophistiquées, en induisant la dégradation du gène. Aucune de ces approches ne semble s'appuyer sur un mécanisme cellulaire existant dans les cellules de mammifères, et elles se sont avérés peu efficaces. En effet, l'utilisation des anti-sens en clinique est réduite à quelques cas très il n'y a aucune utilisation possible des et oligonucléotides formant triple hélice.

La méthode de l'invention est basée sur l'interférence ARN désigné aussi « RNA'inh » ou « RNAi » ou

10

15

20

25

30

encore co-suppression, qui a été mise en évidence dans les plantes. Chez les plantes, il a été observé que l'introduction d'un long ARN double brin, correspondant à un gène, induit la répression spécifique et efficace du gène ciblé. Le mécanisme de cette interférence comporte la dégradation de l'ARN double brin en courts duplex d'oligonucléotides de 20 à 22 nucléotides.

Les Inventeurs ont maintenant montré que ce principe peut s'appliquer à des gènes de mammifères qui jouent un rôle important dans le contrôle du destin cellulaire.

L'approche « RNA'inh » plus généralement dénommée selon l'invention oligonucléotides inhibiteurs ou ARNi s'appuie sur un mécanisme cellulaire dont l'importance est soulignée par son grand degré de conservation puisque ce mécanisme est conservé à travers les règnes et les espèces et a été montré non seulement chez la plante, mais aussi chez le vers Caenorhabditis Elegans et la levure et les mammifères, homme et souris.

Les travaux de recherche réalisés dans le cadre de l'invention ont montré que cette approche est beaucoup plus efficace pour réprimer spécifiquement les gènes que les techniques envisagées dans l'art antérieur. En outre, elle réunit potentiellement les avantages des anti-sens et des anti-gènes. En effet, chez la plante, la co-suppression s'effectue au niveau post-transcriptionnel, sur l'ARN mature, mais aussi au niveau transcriptionnel, donc sur le gène lui-même. En effet, la répression se transmet de génération en génération et permettrait donc de réprimer un gène de façon prolongée voire définitive.

L'invention a donc pour objet un oligonucléotide double brin pour être utilisé dans un processus d'interférence ARN (RNAi) caractérisé en ce qu'il est constitué de deux séquences oligonucléotidiques complémentaires comprenant chacune à l'une de leurs

BNSDOCID: <WO 03040366A2_!..>

10

15

20

25

30

extrémités 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride, l'une desdites séquences oligonucléotidiques étant substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN cible que l'on souhaite réprimer spécifiquement. Cet ADN ou ARN peut être de toute nature, il peut s'agir par exemple d'ARN messager ou ribosomique ou encore de préférence d'un gène.

Avantageusement, chacune des deux séquences oligonucléotidiques complémentaires comprend à la même extrémité 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride.

Avantageusement les deux séquences oligonucléotidiques ont la même taille.

Du fait de la loi d'appariement des bases, on désignera aussi indistinctement ci-après par oligonucléotide de l'invention, l'une ou l'autre des séquences de l'oligonucléotide double brin de l'invention qui est complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN que l'on souhaite réprimer spécifiquement et qui peut donc être aussi simple ou double brin(s).

Les oligonucléotides de l'invention peuvent être de nature ribonucléotidique, désoxy ribonucléotidique ou mixte. On préfère toutefois que l'oligonucléotide complémentaire de la séquence cible, aussi désigné brin antisens, soit majoritairement de nature ribonucléotidique. Le brin sens peut être de nature ribonucléotidique désoxy ribonucléotidique ou mixte. Des exemples d'oligonucléotides de l'invention de type ARN/ARN ou ADN/ARN sont donnés dans la partie expérimentale ci-après.

En effet, les hybrides ARN/ARN sont plus stables que les hybrides ADN/ADN ou ADN/ARN et beaucoup plus stables que les acides nucléiques simples brins utilisés dans des stratégies anti-sens.

10

15

20

25

30

On entend aussi par oligonucléotide, un polynucléotide de 2 à 100, et plus généralement de 5 à 50, nucléotides de type ribo-, désoxyribo- ou mixte.

La partie de la séquence oligonucléotidique qui est hybridée et complémentaire de la séquence cible a de préférence une taille comprise entre 15 et 25 nucléotides et tout préférentiellement de 20 à 23 nucléotides.

Les oligonucléotides doubles brins de l'invention comprennent, de préférence à l'extrémité 3' de chaque brin, de 1 à 5 nucléotides de préférence de 2 à 3 et tout préférentiellement 2 nucléotides débordant de l'hybride. Ces nucléotides débordant de l'hybride peuvent être ou non complémentaire de la séquence cible. Ainsi, dans une forme de réalisation particulière de l'invention, les nucléotides débordant de l'hybride sont des nucléotides quelconque par exemple des Thymines.

On peut représenter un oligonucléotide double brin de l'invention de la façon suivante, où chaque tiret correspond à un nucléotide et où chaque brin comprend à son extrémité 3' deux thymines débordant de l'hydride :

La séquence des oligonucléotides de l'invention est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène que l'on souhaite réprimer spécifiquement. Bien que l'on préfère des oligonucléotides parfaitement complémentaires de la séquence cible, on entend par substantiellement complémentaire, le fait que la séquence oligonucléotidique peut comprendre quelques nucléotides mutés par rapport à la séquence cible dès lors que les propriétés de répression du gène visé ne sont pas altérées. Ainsi, une séquence oligonucléotidique de l'invention peut comprendre de 1 à 3 nucléotides mutés.

Ces nucléotides mutés peuvent donc être ceux débordant de l'hybride ou des nucléotides à l'intérieur de la séquence oligonucléotide.

Ainsi un oligonucléotide de l'invention peut être un hybride parfait ou comprendre un ou plusieurs mismatch au sein du double brin. On préfère toutefois que la partie de la séquence oligonucléotidique qui est hybridée soit parfaitement complémentaire de la séquence cible alors que les nucléotides débordant de l'hybride peuvent être quelconques et notamment des thymines. On entend ainsi également par parfaitement complémentaire le l'oligonucléotide de l'invention fait que complémentaire d'une séquence qui appartient à un ADN ou ARN d'un gène muté. Les oligonucléotides de l'invention peuvent permettre ainsi de discriminer entre la séquence du qène sauvage et du gène muté ce qui peut présenter un intérêt particulier tant dans l'analyse des gènes que dans les utilisations thérapeutiques des oligonucléotides de l'invention.

20

25

30

35

5

10

15

Les oligonucléotides de l'invention sont généralement constitués de bases nucléotidiques naturelles (A, T, G, C, U), mais peuvent aussi comprendre des nucléotides modifiés ou des nucléotides portant des groupements réactifs ou des agents de pontage ou agents intercalant pouvant réagir avec la séquence cible complémentaire à l'oligonucléotide.

Les oligonucléotides de l'invention peuvent être préparés par les méthodes conventionnelles de synthèse chimique ou biologique des oligonucléotides.

L'invention envisage aussi les oligonucléotides couplés à des substances favorisant ou permettant leur pénétration, le ciblage ou l'adressage dans les cellules, il peut s'agit de lipides, de protéines, polypeptides ou peptides ou de toute autre substance naturelle ou

10

15

20

25

30

synthétique. En effet, les oligonucléotides de l'invention sont destinés à être internalisés dans les cellules et avantageusement dans certains cas, jusque dans le noyau des cellules, où ils vont interagir avec des molécules d'acide nucléiques portant la séquence cible de l'oligonucléotide. De même, il peut être intéressant de favoriser leur pénétration dans un tissu particulier comme une tumeur, l'os, etc.

Les oligonucléotides de l'invention sont utiles pour réprimer de manière très efficace et très spécifique un gène ou un ensemble de gènes et donc pour le traitement de nombreuses pathologies humaines. Ils constituent aussi un outil de recherche pour l'investigation et la compréhension de la fonction de gènes. L'invention à donc pour objet des compositions pharmaceutiques comprenant un oligonucléotide ou un ensemble de nucléotides différents et l'utilisation de ces oligonucléotides, seuls ou couplés à des substances de transport, comme médicament.

Les oligonucléotides de l'invention peuvent être mis en œuvre dans des applications ex vivo par exemple lors de greffe. Ainsi, les oligonucléotides peuvent être soit transfectés dans des cellules, notamment tumorales, qui seront ensuite injectées soit injectés dans les tissus par exemple des tumeurs déjà développées, par exemple par voie locale, systémique ou aérosols etc, avec agents de vectorisation éventuellement nécessaires.

Les oligonucléotides seront utilisés à des concentrations suffisantes en fonction de l'application et de la forme d'administration utilisée avec des excipients pharmaceutiques appropriés. Suivant la nature des oligonucléotides (ADN/ARN ou ARN/ARN) des doses différentes pourront être utilisées pour obtenir l'effet biologique recherché.

10

15

20

25

30

35

Les oligonucléotides de l'invention sont également utiles comme outils de diagnostic permettant d'établir in vitro le profil génétique d'un patient à partir d'un échantillon cellulaire de celui-ci. La mise en œuvre des oligonucléotides de l'invention dans un tel procédé d'analyse permet de connaître ou d'anticiper la réponse des cellules cancéreuses de ce patient et d'établir un traitement personnalisé ou encore d'ajuster le traitement d'un patient.

Les oligonucléotides de l'invention présentent plusieurs avantages par rapport aux agents chimiothérapeutiques classiques :

- Les hybrides ARN-ARN sont plus stables que les hybrides ADN-ADN ou ADN-ARN et beaucoup plus stables que les acides nucléiques simples brins utilisés dans des stratégies anti-sens.

- Ils constituent des composés naturels, aucune réaction immunologique ou d'intolérance médicamenteuse n'est a priori à craindre.

- Les expériences de transfections réalisées dans le cadre de l'invention montrent une bien meilleure pénétration des RNAi dans les cellules tumorales que celle obtenue avec des plasmides. Ce point est essentiel dans le cas de cellules tumorales qui sont généralement très difficiles à transfecter.

- Les expériences d'injection systémique de siRNA in vivo montrent une très bonne pénétration de ces molécules dans les tissus.

- Il est aisé de mélanger plusieurs RNAi entre eux afin de prendre pour cibles plusieurs gènes cellulaires en même temps.

Les oligonucléotides de l'invention et les compositions les contenant sont utiles pour le traitement ou la prévention des maladies infectieuses ou virales, en

particulier le SIDA, les maladies infectieuses non conventionnelles, en particulier ESB et Kreutzfeld Jacob. Ils sont tout particulièrement indiqués pour traiter des maladies virales à l'origine de cancers. Le tableau cidessous rapporte des exemples de virus impliqués dans des pathologies cancéreuses chez l'homme.

Tableau 1

Virus	Type de cancer humain associé
Virus de l'hépatite B (VHB)	
Virus d'Epstein-Barr (EBV)	Lymphome de Burkitt, cancer nasopharyngé, maladie de Hodgkin, lymphomes non hodgkiniens, cancer gastrique, cancer du sein.
Herpèsvirus humain 8 ou HHV-8/KSHV	Sarcome de Kaposi (SK), lymphomes primitif des séreuses (PEL), maladie de Castelman multifocale (MCD)
VPH	Col de l'utérus, tête, cou, peau, nasopharynx
Virus des lymphocytes T (HTLV)	
Virus de l'hépatite C (VHC)	Carcinome du foie

Les oligonucléotides de l'invention et les compositions les contenant sont encore utiles pour le traitement ou la prévention des maladies liées à une hypervascularisation comme la dégénérescence maculaire liée à l'age, l'angiogénèse tumorale, les rétinopathies diabétiques, le psoriasis, l'arthrite rhumatoïde.

Les travaux de recherche réalisés dans le cadre que ces montrer l'invention ont permis de oligonucléotides sont particulièrement adaptés pour réprimer des gènes nocifs impliqués dans la cancérisation tout particulièrement utiles pour et sont donc prévention des cancers traitement ou la généralement des maladies oncologiques.

Un traitement anti-cancéreux idéal doit entraîner la mort de la cellule tumorale tout en évitant

10

5

15

les phénomènes de résistance. La mort cellulaire peut être obtenue par :

- Inhibition de la division cellulaire, blocage du cycle cellulaire,
- Induction de l'apoptose des cellules tumorales,
 - Induction de la sénescence,
 - Induction de la nécrose,
- Induction de la différenciation. Dans ce cas, les traitements conduisent la cellule à redevenir normale.

Ainsi, l'invention s'intéresse tout particulièrement à un oligonucléotide ou un ensemble d'oligonucléotides différents, comportant chacun une séquence oligonucléotidique complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène dont la répression induit l'apoptose, ou la sénescence, ou la nécrose, ou la différenciation des cellules tumorales ou empêche leur division ou plusieurs de ces phénomènes.

20

25

30

35

15

5

10

L'induction de l'apoptose des cellules tumorales est basée sur le fait que la fonction de nombreux gènes cellulaires (par exemple membres de la famille BCL2, BCL XL) est de protéger les cellules de l'apoptose. La perte d'expression de ces gènes induite par RNAi permet donc le passage en apoptose.

La mort cellulaire peut également être provoquée par la perte d'adhésion des cellules à la matrice (anoikis). Cet effet peut être obtenue en perturbant la balance entre protéases et inhibiteurs de protéases dans les tumeurs et leur environnement stromal. Cette perturbation a par ailleurs pour effet de diminuer les capacités des cellules tumorales à envahir les tissus sains et à se métastaser. Les siRNA peuvent donc être utilisés pour empêcher la synthèse de protéines des familles des

10

15

20

25

30

35

métallo protéases matricielles (MMP), des métallo protéases matricielles membranaires, de leurs inhibiteurs (TIMPs), ainsi que celle des activateurs des inhibiteurs des protéases comme par exemple PAI-1 et des protéases elles-mêmes comme par exemple l'urokinase.

L'induction de la sénescence repose sur le fait que les cellules normales ne peuvent se diviser qu'un nombre limité de fois. Ce nombre est programmé, environ 50 divisions par exemple pour des fibroblastes embryonnaires, et "mesuré" par la longueur des télomères qui se raccourcit au fur et à mesure des divisions cellulaires. En deçà d'une certaine taille, les télomères ne sont plus fonctionnels et la cellule, incapable de se diviser, entre en sénescence. Dans les cellules germinales cependant, cette longueur est maintenue constante par l'action d'une enzyme, télomérase. La télomérase est ré-exprimée dans de nombreux cancers, ce qui permet aux cellules tumorales de se multiplier indéfiniment. Un RNAi bloquant l'expression de la télomérase serait sans conséquence sur les cellules somatiques normales et devrait conduire les cellules tumorales vers la sénescence.

Le blocage de la division cellulaire conduit également les cellules à la sénescence. Ce blocage peut être obtenu en inhibant des récepteurs cellulaires essentiels. Ces récepteurs peuvent appartenir suivant la nature de la cellule soit à la classe des récepteurs des facteurs de croissance (EGF, SST2, PDGF, FGF notamment), que ceux-ci soient ou non mutés, soit à celle des récepteurs nucléaires d'hormones (androgènes, æstrogènes, glucocorticoïdes notamment).

Les récepteurs d'hormones sont fréquemment mutés dans les cancers, et l'invention concerne dans ce cas l'utilisation d'oligonucléotides reconnaissant les formes mutées de ces récepteurs et qui n'inhibent pas la synthèse

10

15

20

25

30

35

des formes sauvages. Ceci permet par exemple dans le cas des carcinomes prostatiques devenus résistants par mutation du récepteur des androgènes de traiter par voie systémique les patients avec des siRNA qui bloquent la synthèse du récepteur muté sans induire d'effets de castration liés à l'inhibition des formes sauvage du récepteur dans d'autres organes. Un exemple d'utilisation d'oligonucléotides reconnaissant des formes mutées du récepteur est présenté.

Le cycle cellulaire peut également être arrêté en inhibant la synthèse de protéines indispensables à son déroulement comme par exemple les cyclines, kinases dépendantes des cyclines, enzymes de réplication de l'ADN, facteurs de transcription tels que E2F.

L'induction de la nécrose résulte du besoin des nutriments. tumorales en oxygène et en cellules Initialement une tumeur assure son développement à partir des vaisseaux préexistants de l'hôte. Au-delà de 1 à 2 mm de diamètre, les cellules situées au centre de la tumeur se trouvent en hypoxie. Cette hypoxie, par l'intermédiaire d'une proline hydroxylase, entraîne la stabilisation du facteur de transcription $Hifl\alpha$, dont la séquence SEQ NO. 59 est donnée en annexe, qui, en se fixant sur des séquences HRE dans les promoteurs de ses gènes cibles, déclenche la réaction hypoxique. Cette réaction conduit à l'activation d'une centaine de gènes permettant d'activer notamment la voie de la glycolyse anaérobie, la réponse au stress et l'angiogénèse. Ce dernier mécanisme active en particulier le gène du VEGF, dont la séquence SEQ ID NO. 60 est donnée en annexe, principal facteur angiogénique tumoral.

Ainsi des oligonucléotides selon l'invention bloquant par exemple l'expression du facteur de transcription Hiflα ou par exemple celle du VEGF mettent les cellules tumorales dans l'incapacité à monter une

10

15

20

25

30

35

réponse hypoxique ou angiogénique. L'angiogénèse est un mécanisme normalement réprimé chez l'adulte à l'exception du cycle menstruel (utérus ovaires). L'inhibition de ce mécanisme a donc peu de conséquences pour les tissus normaux.

En conséquence, l'invention se rapporte à un oligonucléotide dont l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager du gène codant :

- le facteur de transcription $Hifl\alpha$;
- une ou plusieurs des isoformes du VEGF A ou d'un membre de la famille de ce facteur de croissance.

Dans certains cancers, le phénotype tumoral ou est maintenu par, l'expression d'une résulte de, protéine normalement absente des cellules normales. Cette protéine peut résulter de l'expression actuelle ou ancienne d'un génome viral dans la cellule comme celui du virus du papillome, HPV, ou du virus de l'hépatite B. Cette protéine également résulter de la mutation (ponctuelle, délétion, insertion) d'un gène cellulaire normal. Dans ce cas, il est fréquent que la protéine mutée ainsi produite possède des propriétés transdominantes négatives par rapport à la protéine normale. La spécificité des siRNA permet d'inhiber la synthèse de la protéine mutante sans bloquer la synthèse des protéines sauvages. Deux exemples concernant des formes mutées de la protéine p53 et du récepteur des androgènes sont rapportés dans la partie expérimentale ci-après.

Les travaux de recherche réalisés dans le cadre de l'invention ont permis de montrer que ces oligonucléotides sont particulièrement adaptés pour réprimer des gènes nocifs impliqués dans la cancérisation et tout particulièrement à ceux conduisant à la formation

10

15

20

25

30

35

de protéine de fusion dans les cellules cancéreuses, comme la protéine de fusion PML-RAR alfa.

En conséquence, l'invention se rapporte tout particulièrement à des oligonucléotides dont la séquence est complémentaire d'une séquence cible appartenant à un gène résultant d'une translocation chromosomique de façon à inhiber les effets de la protéine de fusion exprimée par ce gène. Ainsi, la séquence cible est celle correspondant à la séquence de la jonction de la protéine de fusion.

Le tableau 2 de l'annexe A à la fin de la présente description est une liste non exhaustive des protéines de fusion représentant des cibles thérapeutiques ou diagnostiques pour les oligonucléotides de l'invention.

Le fait de cibler avec un oligonucléotide de l'invention, la jonction entre deux gènes, par exemple les deux gènes pml et $rar\alpha$, permet d'aboutir à l'inhibition spécifique de la protéine de fusion sans affecter le rôle biologique des protéines naturelles qui peuvent être codées par le second allèle. Cette forme de mise en œuvre de l'invention englobe donc toutes les protéines de fusion impliquées dans la cancérogénèse, particulièrement les leucémies. Les formes réciproques si elles existent, ainsi que tous les variants des protéines de fusion citées en annexe constituent également des cibles de l'invention. particulièrement, donc tout concerne L'invention l'utilisation des oligonucléotides comme défini ci-dessus pour la préparation d'une composition pharmaceutique résultant de maladies des traitement destinée au tout fusion, protéine de l'expression d'une particulièrement dans les cancers.

Les thérapies anti-cancéreuses actuelles prennent pour cible les cellules cancéreuses, par différentes approches, prises isolément ou combinées entre elles (chimiothérapie, chirurgie, radiothérapie, immunothérapie). Les échecs thérapeutiques sont massivement

10

15

20

25

30

dus soit à des cellules n'ayant pas été atteintes par le traitement soit, et majoritairement, à des cellules ayant muté en réponse au traitement. Cette capacité de mutation est grandement facilitée par l'instabilité génétique des cellules tumorales. L'inhibition de la vascularisation tumorale, privant les cellules d'oxygène et de nutriments, a depuis quelques années ouvert de nouvelles perspectives en cancérologie. Cette thérapeutiques complémentaire des précédentes, prend pour cible la cellule endothéliale normale de l'hôte, génétiquement stable, et donc théoriquement peu susceptible de muter. De nombreux essais cliniques visant à inhiber l'angiogénèse tumorale par différentes approches sont en cours dans le monde. Cependant, les premiers résultats rapportés semblent assez décevants.

Les Inventeurs ont démontré que des tumeurs sont capables de compenser les effets d'inhibiteurs de l'angiogénèse, en sélectionnant des sous-populations de cellules sécrétant de fortes concentrations de facteurs pro angiogéniques.

Les tumeurs ne sont pas constituées de cellules homogènes quant à leur expression génique. Ceci est attesté par de très nombreuses études dans lesquelles des immunomarquages ont été réalisés pour une grande variété d'antigènes dans les tumeurs. Macroscopiquement, une tumeur est fréquemment composée de régions hautement vascularisées côtoyant des zones de nécrose ou au contraire avasculaires.

Cette hétérogénéité tumorale favorise l'échappement des tumeurs aux traitements appliqués, quelle qu'en soit la nature. Plus la diversité de l'expression génique dans une tumeur est grande plus la probabilité qu'il existe au moins une cellule capable de résister à un agent anti-tumoral est en effet élevée. Il apparaît dès lors essentiel d'associer différentes stratégies afin de

10

15

20

25

30

35

réduire tout d'abord l'hétérogénéité tumorale et d'éviter les phénomènes d'échappement.

L'invention s'intéresse tout particulièrement à des siRNAs inhibiteurs de l'expression de gènes responsables de l'inactivation de la p53 et à leur utilisation dans le traitement des cancers. La p53 est le produit d'un gène suppresseur de tumeurs ou anti-oncogène, muté dans plus de 50% des tumeurs chez l'homme. La p53 est ainsi considérée comme un « gardien du génome ». Elle est activée dans les cellules en cas de stress génotoxique et participe à divers processus dont l'induction du processus de mort programmée.

Dans 74% des cas de mutation monoallélique, l'inactivation de la p53 est due à une mutation ponctuelle aboutissant à l'expression d'une protéine de taille normale, mais mutée. On considère généralement que la forme mutée forme des hétéromères avec le produit de l'allèle sauvage sur lequel elle agit comme un « transdominant négatif » et bloque son activité. La forme mutante semble également avoir une activité oncogénique en elle-même. Ainsi, des formes mutées de la p53 sont capables d'activer le gène MDR, qui facilite la résistance des cellules cancéreuses aux chimiothérapies. De plus, l'expression de mutants de la p53 est associée à une plus forte angiogenèse tumorale, sans doute en raison du fait que les formes mutantes de la p53 ne sont plus capables de stimuler la transcription du gène de la thrombospondine, l'un des plus puissants répresseurs de l'angiogénèse, et activent le VEGF et le bFGF, deux puissants activateurs de l'angiogénèse. De plus, les cellules dans lesquelles une forme mutée de la p53 s'exprime perdent divers niveaux de régulation. particulier elles ne sont plus capables d'entamer un processus de mort programmée, qui constitue l'un des processus majeurs de protection contre la tumorigenèse. La

10

15

20

25

30

35

restauration d'une activité p53 sauvage entraîne, dans des cellules tumorales en culture, la restauration de cette réponse cellulaire. Ainsi, l'inhibition de l'expression des formes mutées de la p53 représente potentiellement un outil puissant en thérapie anti-cancéreuse.

Il n'y a, à l'heure actuelle, aucun moyen efficace de restaurer une activité p53 dans les cellules cancéreuses humaines. En ce qui concerne les cancers dans lesquels les deux allèles sont inactivés, des tentatives de restauration de l'activité p53 par thérapie génique sont envisagées. Ces approches sont compliquées par l'utilisation de vecteurs viraux et se montrent pour le moment peu efficaces.

par ailleurs, il a été observé spécifiquement dans les cancers cervicaux liés à l'infection par le virus HPV des cellules du col de l'utérus, que la p53 peut-être inactivée par la surexpression d'une protéine virale. En effet, ce virus code pour une protéine, la protéine E6, qui inactive la p53. Dans ce type de cancers, c'est l'inhibition de la protéine E6 qui pourra restaurer une activité p53 sauvage.

L'invention vise à offrir de nouveaux moyens permettant d'activer la p53 en inhibant l'expression de gènes responsables de son inactivation. Les travaux de recherche réalisés dans le cadre de la présente invention ont permis de mettre en évidence qu'il était ainsi possible de réprimer de manière très efficace et très spécifique l'expression d'une forme mutante de la p53.

L'invention concerne des oligonucléotides présentant une séquence complémentaire d'une séquence polynucléotidique spécifique du gène de la p53 mutée. Il s'agit donc d'oligonucléotides dont la séquence porte une mutation par rapport à la séquence de la p53 sauvage. La séquence du gène sauvage de la p53 est indiquée dans la liste de séquences en annexe sous le numéro SEQ ID NO.1.

Les différentes mutations pouvant intervenir sur la séquence de la p53 sont indiquées dans le tableau 3 de l'annexe B à la fin de la présente description.

Les mutations les plus fréquemment observées dans les pathologies cancéreuses sont reportées dans le tableau 4 ci-après.

Tableau 4

Position	P53 sauvage	SEQ	ID	No.	·
R273H	GAGGTGCGTGTTTGTGC	SEQ	ID	No.	61
R248Q	gcaTgaaccggaggcccaT	SEQ	ID	No.	62
R248W	gcaTgaaccggaggcccaT	SEQ	ID	No.	63
R249S	gcaTgaaccggaggcccaT	SEQ	ID	No.	64
G245S	CTGCATGGGCGGCATGAAC	SEQ	ID	No.	65
R282W	TGGGAGAGACCGGCGCACA	SEQ	ID	No.	66
R175H	TGTGAGGCACTGCCCCCAC	SEQ	ID	No.	67
C242S	TAACAGTTCCTGCATGGGCG	SEQ	ID	No.	68
Position	P53 mutée				
R273H	GAGGTGCATGTTTGTGC	SEQ	ID	No.	69
R248Q	gcaTgaacCAgaggcccaT	SEQ	ID	No.	70
R248W	GCATGAACTGGAGGC CAT	SEQ	ID	No.	71
R249S	gcaTgaaccggagTcccaT	SEQ	ID	No.	72
G245S	CTGCATGGGCAGCATGAAC	SEQ	ID	No.	73
R282W	TGGGAGAGACTGGCGCACA	SEQ	ID	No.	74
R175H	TGTGAGGCGCTGCCCCAC	SEQ	ID	No.	75
C242S	TAACAGTTCCTCCATGGGCG	SEQ	ID	No.	76
L					

Ainsi, des oligonucléotides selon l'invention sont complémentaires d'une séquence cible appartenant au gène de la p53 muté portant l'une au moins des mutations données dans le tableau 3 et tout particulièrement l'une au moins des mutations du tableau 4 ci-dessus.

Ces oligonucléotides sont capables de discriminer de manière efficace entre la forme sauvage et la forme mutée de la p53. En effet, la stratégie est de bloquer l'expression de la forme mutée pour réactiver la

10

15

20

25

30

35

forme sauvage et induire dans les cellules un processus de mort programmée pour lequel la forme sauvage est indispensable, et/ou bloquer tout autre processus induit par la forme mutée de la p53. En outre, cette capacité de discrimination des oligonucléotides de l'invention permet de ne toucher que les cellules cancéreuses et d'épargner les cellules normales, qui n'expriment pas cette forme mutée de la p53.

L'invention a donc aussi pour objet le traitement ou la prévention des maladies induites par une inactivation de la protéine p53 et tout particulièrement les cancers résultant de l'expression de la protéine p53 mutée et les cancers résultant de l'expression de gènes inhibiteurs de la p53. L'invention a encore pour objet de prévenir l'apparition de cancers chez les sujets exprimant une forme mutée de la p53, comme dans le cas du syndrome de Li Fraumeni.

La P53 peut être inactivée à travers plusieurs mécanismes distincts. En particulier, dans la majorité des cancers cervicaux, la P53 est inactivée par une protéine codée par le virus du papillome humain, la protéine E6. E6 entraîne l'ubiquitinylation de la P53 ce qui conduit à sa dégradation par le protéasome. Dans ce cas, l'expression de la P53 peut être restaurée par l'inhibition de l'expression de la protéine E6. L'invention concerne également des oligonucléotides présentant une séquence complémentaire d'une séquence polynucléotidique spécifique du gène de la protéine E6 de HPV. La séquence du gène de la protéine E6 de HPV est donnée à la figure 6A ainsi que dans la liste de séquences en annexe sous le numéro SEQ ID NO 2.

Comme indiqué précédemment, une stratégie selon l'invention a pour but de bloquer à l'aide de RNAi l'expression du récepteur des androgènes dans les carcinomes. La séquence du récepteur des androgènes est

10

15

20

25

30

donnée dans la liste de séquence en annexe sous le numéro SEQ ID NO. 77. Pour traiter les carcinomes avant qu'ils ne soient devenus résistants ou ceux qui le sont devenus par amplification du récepteur sans mutation, homologues d'une région pour laquelle aucune mutation n'a été décrite dans les banques de données des mutations du récepteur des androgènes (notés siRNA AR) ont été utilisés. Pour traiter spécifiquement les carcinomes prostatiques devenus androgéno résistants par mutation, un séquençage de l'ARNm codant pour le récepteur sera effectué dans les cellules du patient afin de concevoir une séquence spécifique de la mutation, permettant de traiter le patient sans conséquence pour les cellules normales. Un exemple est reconnaissant siRNA l'utilisation de par spécifiquement la mutation du récepteur des androgènes présente dans la lignée cellulaire LNCaP (siRNA LNCaP).

En conséquence, l'invention se rapporte à des oligonucléotides substantiellement complémentaires d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager codant le récepteur aux androgènes muté ou non muté. Il s'agit par exemple du récepteur aux androgènes portant l'une au moins des mutations données dans le tableau 5 de l'annexe C. Ces oligonucléotides de l'invention spécifiques du récepteur aux androgènes sont utiles pour traiter ou prévenir les maladies androgénodépendantes, comme par exemple le cancer de la prostate.

D'autres avantages et caractéristiques de l'invention apparaîtront des exemples qui suivent concernant :

- Exemple 1 : Inhibition de la protéine PML-RAR α associée à la leucémie aiguë promyélocytaire (APL).
- Exemple 2 : Inhibition de l'angiogénèse tumorale induite par le VEGF.

15

20

25

30

35

- Exemple 3 : Inhibition de la réponse hypoxique induite par HIF1 α .
- Exemple 4 : Inhibition des formes sauvages ou mutantes des récepteurs des androgènes dans les cellules de carcinome prostatique.
- Exemple 5 : Inhibition des formes sauvages ou mutantes de la protéine p53.
- Exemple 6 : Inhibition de la protéine virale
- Exemple 7 : Utilisation des hybrides ADN/ARN pour inhiber l'expression de différentes protéines.
 - Exemple 8 : Administration in vivo de siRNA par différentes voies.

Il est fait référence dans les exemples aux figures dans lesquelles :

- La figure 1A est une représentation schématique des protéines RARα, PML et de la protéine de fusion associée, PML-RARα. La figure 1B représente les résultats de transfections avec un siRNA dirigé contre PML-RARα.
- 2 concerne l'inhibition La figure l'expression du VEGF par des siRNA dirigés contre cette protéine et les conséquences de cette inhibition. La figure représente l'immunodétection du VEGF dans des cellules cJ4 ou LNCaP transfectées par le siRNA contrôle ou un siRNA dirigé contre le VEGF. La figure 2B représente quantification par ELISA du VEGF dans le milieu conditionné des cellules cj4 transfectées par le siRNA contrôle ou le siRNA VEGF en fonction du temps après la transfection. La figure 2C représente la courbe de croissance chez des souris nudes de tumeurs provenant de l'injection sous cutanée de 106 cellules cJ4 non transfectées, transfectées par le siRNA contrôle ou le siRNA VEGF. La figure 2D représente l'aspect des tumeurs au jour 7 après injection des cellules. La figure 2E représente l'immunodétection du

10

15

20

25

30

35

VEGF dans des tumeurs provenant de l'injection de cellules cj4 transfectées avec le siRNA contrôle ou le siRNA VEGF après 12 jours de développement in vivo.

- La figure 3 concerne l'effet de l'inhibition par un siRNA spécifique de l'expression d'un facteur de transcription, HIFlalpha, sur la réponse transcriptionnelle à l'hypoxie. La figure représente la mesure de l'activité d'un reporter VEGF luciférase en réponse à l'hypoxie dans des cellules cJ4 non transfectées, transfectées par le siRNA contrôle ou par le siRNA dirigé contre HIFlalpha.

- La figure 4 concerne l'inhibition par des siRNA spécifiques de l'expression du récepteur conséquences cellules les et androgènes dans des fonctionnelles de ces inhibitions. La figure 4A représente la détection par immunoblot de l'expression du récepteur des androgènes 48h après transfection des cellules LNCaP par un siRNA contrôle ou un siRNA dirigé contre récepteur des androgènes (AR). La figure 4B représente la mesure de l'activité d'un reporter 4xARE luciferase au lignée LNCaP dans divers clones de la R1881 transfectée, ou transfectée par le siRNA contrôle ou le siRNA AR. La figure 4C représente la comparaison de la réponse au R1881 de cellules LNCaP non transfectées (100%), et des cellules LNCaP transfectées par un siRNA contrôle, un siRNA dirigé contre le récepteur des androgènes (AR) ou siRNA reconnaissant spécifiquement une mutation ponctuelle présente dans le récepteur des androgènes de la lignée LNCaP. La figure 4D représente la croissance chez des souris nudes de tumeurs résultant de l'injection sous cutanée de cellules LNCaP transfectées par un contrôle ou par un siRNA dirigé contre le récepteur des androgènes. La figure 4E représente la croissance de tumeurs LNCaP chez des souris ayant reçu au 40e jour après implantation des cellules une injection intraveineuse dans la veine de la queue de 2µg de siRNA dirigés contre le VEGF

10

15

20

25

30

35

ou de siRNA contrôle. La figure 4F représente la croissance de tumeurs LNCaP chez des souris ayant reçu au 34e et au 40e jour après implantation des cellules tumorales une injection intrapéritonéale de 2µg de siRNA dirigé contre le récepteur des androgènes ou de siRNA contrôle.

l'inhibition concerne figure 5 l'expression de formes sauvages ou mutantes de la p53 par des siRNA et des conséquences fonctionnelles de ces inhibitions. La figure 5A représente la séquence de protéine p53 humaine. La figure 5B représente l'inhibition spécifique et dépendante de la dose par des siRNA de l'expression de formes sauvages ou mutantes de la p53 l'exprimant des cellules ne transfectées dans représente l'inhibition fiqure 5C initialement. La spécifique par des siRNA de l'expression simultanée ou non de formes sauvages ou mutantes de la p53 transfectées dans des cellules ne l'exprimant pas initialement. La figure 5D représente l'inhibition de l'expression de la p53 endogène sauvage ou d'une forme mutante transfectée de p53 par des siRNA. La figure 5E représente l'effet de l'inhibition de la p53 par des siRNA sur la résistance à un stress génotoxique. Les figures 5 F, G, H et I montrent l'inhibition de l'expression d'un forme mutante de la p53 dans les cellules d'un patient atteint du syndrome de Li Fraumeni sur le niveau de l'ARNm (5G), et l'expression de la protéine par immunoblot (GF) ou en immunofluorescence indirecte (5H) et les conséquences sur la résistance de ces cellules à un stress génotoxique. La figure 5J montre l'inhibition par les siRNA spécifiques de la transcription dépendante de la p53 dans des cellules exprimant par transfection des formes sauvages ou mutantes de la p53. La figure 5K montre l'inhibition de l'expression d'un des gènes cibles de la p53, la p21, protéine inhibitrice de la prolifération cellulaire, par la coexpression de formes mutantes de la p53 et la restauration de cette expression

10

15

20

25

30

35

par traitement des cellules avec un siRNA inhibant la synthèse de la forme mutante de la p53.

23

concerne l'inhibition figure 6 l'expression de la protéine E6 du virus du papillome humain HPV par des siRNA spécifiques et les conséquences de cette inhibition. La figure 6 A représente la séquence de représente figure 6B protéine HPV. La l'inhibition par des siRNA spécifiques de l'expression de la protéine E6 de HPV dans des cellules qui expriment ce virus, sur l'expression de la p53 et de la p21. Les figures et 6D représentent l'effet de l'inhibition de l'expression de la protéine E6 de HPV sur le cycle cellulaire.

- La figure 7 concerne l'utilisation de siRNA hybrides, comportant des bases ADN et des bases ARN. Les figures 7A et 7B représentent l'effet de siRNA hybrides. la GFP exprimée par sur l'expression de transfection dans des cellules. La figure 7C compare l'effet de siRNA ARN/ARN, ADN/ARN ou ARN/ADN à dose constante sur l'inhibition de la transcription induite par le récepteur des androgènes. Les figures 7D représentent les effets d'une substitution de bases ARN par des bases ADN dans la séquence de siRNA inhibant la synthèse de la p53.

- La figure 8 concerne l'inhibition de la luciférase dans des tumeurs exprimant cette enzyme par injection de siRNA par voie sous cutanée, ou intra-tumorale ou intra-péritonéale ou intra-veineuse

EXEMPLE 1 : INHIBITION DE LA PROTEINE PML-RARα ASSOCIEE A LA LEUCEMIE AIGUË PROMYELOCYTAIRE (APL).

I - Introduction.

La leucémie aiguë promyélocytaire (APL) est due à la translocation t(15 ;17) sur le chromosome 15. Chez les patients atteints, le récepteur de l'acide rétinoïque RAR α

10

15

20

25

30

35

(RARα) est fusionné à la protéine PML (promyelocytic leukemia protein) générant ainsi la protéine de fusion PML-RARα. Jusqu'à ce jour, cinq protéines de fusion mettant en jeu le RARα ont été identifiées. Tous ces types de leucémies impliquent le récepteur RARα et sont cliniquement similaires, ce qui suggère que la rupture de la voie de transduction de l'acide rétinoique est cruciale dans la pathogenèse des leucémies APL.

La protéine de fusion PML-RARQ a gardé les domaines de liaison à l'ADN et à l'acide rétinoïque du RAR α . Il a été montré que la protéine de fusion PML-RAR α réprime l'expression des gènes cibles de l'acide rétinoique et provoque ainsi le blocage de la différenciation des cellules promyélocytaires. Seule l'administration de doses pharmacologiques d'acide rétinoique permet la levée de la répression transcriptionnelle exercée par PML-RARα et la reprise de la différenciation cellulaire. En outre, la portion protéique PML de la protéine de fusion pourrait également intervenir dans le mécanisme du blocage de la voie de transduction par l'acide rétinoique. Dans la mesure où PML fonctionne comme un inhibiteur de croissance et un et qu'elle est nécessaire pour apoptotique l'expression de certains gènes par induit rétinoïque, l'effet dominant négatif de PML-RARα sur PML pourrait permettre aux cellules d'acquérir une capacité de croissance, une résistance à l'apoptose et un arrêt de la différenciation.

Des études de biologie cellulaire sur PML ont montré que cette protéine possède une localisation particulière dans le noyau, dans des structures particulières appelées corps nucléaires. Il semble que le rôle de ces structures soit en relation directe avec le rôle antioncogène de PML. Dans les cellules malignes APL, la protéine PML-RARα provoque, par hétérodimérisation avec PML, la délocalisation de PML des corps nucléaires vers des

WO 03/040366 25

structures microponctuées pouvant correspondre à des sites d'ancrage de PML-RARQ sur la chromatine. Cette délocalisation pourrait bloquer la fonction pro-apoptotique de PML et son rôle dans la différenciation myéloïde. Plusieurs équipes ont montré que le traitement combiné à l'acide rétinoïque et à l'AS203 sur des lignées cellulaires qui expriment la protéine de fusion PML-RARlpha permet la dégradation des protéines de fusion en même temps qu'une relocalisation de PML sur les corps nucléaires. Cette réorganisation des corps nucléaires restaure les fonctions de PML et contribue à la reprise de la différenciation.

PCT/FR02/03843

Finalement, la protéine chimère PML-RARα aurait donc un double effet dominant négatif, sur RARα et sur PML, en permettant à la fois aux cellules d'échapper à l'apoptose et de bloquer la différenciation des promyélocytes ainsi transformés.

Plus de 98% des patients atteints par la leucémie APL présentent la translocation t(15;17)(q22;q21) qui conduit à la formation de gènes fusionnés PML-RARαet RARα-PML. Il existe deux sous-types de protéines de fusion PML-RARα, les fusions S (short) et L (Long). La forme longue de la protéine de fusion PML-RARα correspondant à une protéine de 955 acides aminés représente la forme majoritairement exprimée et a donc été prise comme modèle dans cette étude (Annexes A, B et C). Cette protéine comporte les acides aminés 1 à 552 de la protéine PML fusionnés avec les acides aminés 59 à 462 du récepteur α de l'acide rétinoïque (RARα).

II - <u>Préparation et administration des</u> <u>oligonucléotides</u>.

Des oligonucléotides RNA complémentaires correspondant à la séquence de la jonction du gène de la protéine de fusion, soit 10 nucléotides du gène PML et 10 nucléotides du gène RAR α ont été synthétisés avec adjonction de deux déoxythymidines en 3' (Figure 1). Ces

5

10

15

20

25

30

oligonucléotides ont été hybridés et l'obtention de l'oligonucléotide double-brin a été vérifiée sur gel d'acrylamide.

Les séquences des siRNA PML-RAR et contrôle utilisés (5'-3') sont données ci-dessous.

Contrôle:

FW:

5

10

15

20

25

[CAUGUCAUGUGUCACAUCUC] ARN [TT] ADN (SEQ ID NO.3)

REV:

[GAGAUGUGACACAUGACAUG] ARN [TT] ADN (SEQ ID NO.4)

PR:

Sens:

[GGGGAGGCAGCCAUUGAGAC]ARN[TT]ADN (SEQ ID NO.5)

Antisens :

[GUCUCAAUGGCUGCCUCCCC] ARN [TT] ADN (SEQ ID NO.6)

III - Résultats.

Des fibrobastes NIH3T3 ont été cotransfectés avec de la lipofectamine par un vecteur d'expression de la protéine PML-RARα (100ng) et par 500ng de siRNA contrôle (C) ou dirigés contre PML-RARα (PR). 48 h après transfection, un western blot (Figure 1B) a été réalisé sur des extraits cellulaires totaux en utilisant un anticorps qui reconnaît la protéine RARα, entière ou sous forme de protéine de fusion.

La figure 1B montre que la transfection du siRNA PR inhibe très fortement l'expression de la protéine de fusion PML-RAR α par rapport aux cellules transfectées avec le siRNA contrôle (C), sans modifier l'expression de la protéine RAR α .

30

35

EXEMPLE 2: INHIBITION DE L'ANGIOGENESE TUMORALE PAR LE VEGF.

I - Introduction.

Le VEGF (vascular endothelial growth factor) est l'un des plus puissants facteurs angiogéniques

10

identifiés. Ces facteurs sont surexprimés dans de nombreuses situations d'hypervascularisation pathologiques et notamment dans le développement tumoral. L'inhibition de cette angiogénèse permet de bloquer la croissance tumorale. Notre procédé a pour but d'inhiber l'angiogénèse tumorale en bloquant l'expression de l'un de ces facteurs angiogéniques et dans cet exemple celui du VEGF par les cellules tumorales.

II - <u>Préparation et administration des</u> oligonucléotides.

Deux oligonucléotides RNA, complémentaires d'une région de la séquence codante du VEGF humain, conservée chez le rat et la souris ont été synthétisés. Deux déoxynucléotides (TT) ont été ajoutés en 3'

- Séquence des RNAi VEGF :

- 5' [AUGUGAAUGCAGACCAAAGAA] RNA-TT[DNA] (SEQ ID NO. 7)
- 5' [UUCUUUGGUCUGCAUUCACAU] RNA-TT [DNA] (SEQ ID NO. 8)
 - Séquence des RNAi contrôle :
- 5' [CAUGUCAUGUGUCACAUCUC] RNA-TT [DNA] (SEQ ID NO. 9)
- 5' [GAGAUGUGACACAUGACAUg] RNA-TT [DNA] (SEQ ID NO. 10)

Ces oligonucléotides ou des oligonucléotides contrôle, dont la séquence ne présente aucune homologie avec les séquences répertoriées dans les bases de données, ont été hybridés et transfectés en utilisant le kit polyfect (Qiagen) dans des cellules d'un fibrosarcome de rat (cJ4) ou dans les cellules humaines du carcinome prostatique LNCaP.

III - Résultats.

48h après transfection, une immunofluorescence indirecte a été réalisée pour détecter l'expression de la protéine dans les cellules. La figure 2A montre une inhibition massive de l'expression du VEGF.

Pour quantifier cet effet, un dosage du VEGF dans des cellules cJ4 transfectées en parallèle avec le RNAi contrôle ou avec le RNAi VEGF a été effectué par ELISA

25

30

10

15

20

25

30

35

(quantikine, R&D). Les cellules ont été incubées 48h avant le dosage dans un milieu contenant 1% de sérum. Le dosage a été réalisé 4 jours et 6 jours après la transfection. Dans ces conditions, la figure 2B montre une inhibition de la sécrétion de VEGF de 85% à 4 jours et de 75% à 6 jours et de 60% à 13 jours dans les cellules transfectées avec le RNAi VEGF comparé à celles transfectées avec le RNAi contrôle (figure 2B).

L'effet de l'inhibition de l'expression de VEGF par les cellules tumorales a été testé in vivo : 3 jours après transfection, trois groupes de 4 souris nudes femelles de 4 semaines ont été injectés en sous cutané à raison de un million de cellules par souris : Le premier groupe a été injecté avec des cellules non transfectées, le second avec des cellules transfectées par le RNAi contrôle, le troisième par des cellules transfectées avec le RNAi VEGF. Aucune sélection des cellules transfectées n'a été effectuée avant l'injection.

La croissance tumorale a été suivie en mesurant le volume des tumeurs à intervalles réguliers (figure 2C).

figures 2C et 2D ne montrent aucune Les différence significative entre les tailles des tumeurs des groupes A et B. Une très forte réduction du volume tumoral est observée dans le groupe C. L'aspect des tumeurs, beaucoup plus blanches dans le groupe C (Fig 2D) traduit une diminution marquée de la vascularisation tumorale. Après sacrifice des animaux, au jour 12 après l'injection, été disséquées, fixées ont immunodétection du VEGF réalisée sur des coupes de ces réduction forte très observe une On l'expression du VEGF dans les tumeurs du groupe C comparaison avec celles du groupe B (Figure 2E).

Dans une autre expérience, des tumeurs ont été induites chez des souris nudes males par injection de cellules du carcinome prostatique LNCaP. 40 jours après

injection, le volume des tumeurs ayant atteint 1 à 1,5cm³, les souris ont été divisées en deux groupes. Le premier groupe (4 souris) a reçu une injection intraveineuse dans la veine de la queue de 2 microgrammes de siRNA contrôle dans 100µl de PBS. Le second groupe a reçu une dose équivalente de siRNA VEGF dans les mêmes conditions. On observe que le siRNA VEGF, mais pas le siRNA contrôle, induit un arrêt transitoire de la croissance tumorale. (fiqure 4D).

10

15

20

25

5

EXEMPLE 3: INHIBITION DE LA REPONSE HYPOXIQUE.

I - Introduction.

capables de se sont Certaines tumeurs développer dans des conditions de forte anoxie. On observe très fréquemment dans les tumeurs des régions très peu vascularisées. Cette faible sensibilité à l'hypoxie a deux conséquences : d'une part un traitement anti-angiogénique a peu de chances d'être efficace sur ces tumeurs ou ces sous populations tumorales. D'autre part, cette vascularisation rend difficile la délivrance de molécules thérapeutiques. Le facteur de transcription $Hifl\alpha$ régule l'activité de plus de 100 gènes permettant la réponse hypoxique. L'inhibition de ce facteur de transcription dans les tumeurs hypoxiques a pour but de bloquer leur croissance.

II - Préparation des oligonucléotides.

- RNAi Hif 1α

- 5' [CAUGUGACCAUGAGGAAAUGA] RNA-TT [DNA] (SEQ ID NO. 11)
- 5 [UCAUUUCCUCAUGGUCACAUG] RNA-TT[DNA] (SEQ ID NO. 12)

30

35

- RNAi contrôle
- 5' [GAUAGCAAUGACGAAUGCGUA] RNA-TT [DNA] (SEQ ID NO. 13)
- 5' [UACGCAUUCGUCAUUGCUAUC] RNA-TT [DNA] (SEQ ID NO. 14)

III - Résultats.

Le promoteur du VEGF contient un élément de réponse au facteur de transcription $\text{Hifl}\alpha$. Pour tester in

10

15

20

25

30

35

vitro l'effet d'un RNAi dirigé contre Hifl α , nous avons transfecté des cellules cJ4 avec un vecteur reporter VEGF-luciférase, seul ou en association avec un RNAi Hifl α ou contrôle.

24h après transfection, les cellules ont été incubées pendant 18h en milieu sans sérum, additionné ou non de chlorure de Cobalt 100µM afin de produire des conditions hypoxiques puis l'activité luciférase a été mesurée.

La figure 3 montre une inhibition complète de l'induction de la réponse du promoteur VEGF à l'hypoxie a été observée lorsque les cellules sont transfectées avec le RNAi Hiflα mais pas avec le RNAi contrôle.

<u>EXEMPLE 4</u>: inhibition des formes sauvages ou <u>mutantes des récepteurs des androgènes dans les carcinomes prostatiques.</u>

I - Introduction.

Les carcinomes prostatiques sont la deuxième cause de mortalité par cancer pour les hommes dans les pays industrialisés. En France, ils sont la cause de plus de 9500 morts par an. Les cellules épithéliales prostatiques sont dépendantes des androgènes pour leur croissance. Les carcinomes prostatiques sont initialement androgénodépendants. Une castration chimique permet dans un premier temps de bloquer la croissance du carcinome. Cependant dans les cas, ces carcinomes deviennent androgénoindépendants et leur pronostic est alors très pessimiste. Cette androgéno-indépendance est due suivant les individus le plus souvent à une mutation du récepteur (lui conférant oestrogènes ou exemple une réponse aux glucocorticoïdes) ou à une amplification du récepteur.

II - Préparation des oligonucléotides.

Deux oligonucléotides ARN, complémentaires d'une région de la séquence codante du récepteur androgène

(AR) non muté humain, ont été synthétisés. Deux déoxynucléotides (TT) ont été ajoutés en 3'. Dans d'autres expériences, des siRNA, dénommés LNCaP, reconnaissant spécifiquement la mutation du récepteur des androgènes (T877A) dans les cellules de carcinome prostatique humain

PCT/FR02/03843

- AR :

LNCaP ont été utilisés.

- 5 ' [GACUCAGCUGCCCCAUCCACG] ARN-TT [ADN] (SEQ ID NO.15)
- 5 ' [CGUGGAUGGGGCAGCUGAGUC] ARN-TT [ADN] (SEQ ID NO.16)
- <u>Contrôle</u>:

WO 03/040366

5

15

20

25

30

35

- 5' [GAUAGCAAUGACGAAUGCGUA] ARN-TT [ADN] (SEQ ID NO.17)
- 5 ' [UACGCAUUCGUCAUUGCUAUC] ARN-TT [ADN] (SEQ ID NO.18)

- LNCap :

- 5' [GCAUCAGUUCGCUUUUGAC] ARN -TT [ADN] (SEQ ID NO.19)
 - 5' [GUCAAAAGCGAACUGAUGC] ARN -TT [ADN] (SEQ ID NO.20)

Plusieurs sous-clones de la lignée de carcinome prostatique humaine LNCaP ont été utilisés dans cette étude. La lignée originale, LNCaP, est androgéno-dépendante. Les cellules LN70, obtenues par passages répétés de la lignée LNCaP in vitro, ont une diminution de leur réponse aux androgènes. Le clone LNS5, obtenu après passage des cellules chez l'animal, est androgéno-résistant.

III - <u>Résultats</u>.

Des cellules LNCaP ont été transfectées in vitro avec des siRNA AR ou des siRNA contrôle en utilisant l'agent de transfection polyfect (qiagen). 48h après transfection, les cellules ont été détachées de leur support. La moitié des cellules a été utilisée pour réaliser une détection par western blot du récepteur des androgènes, l'autre moitié a été remise en culture. Le récepteur des androgènes (bande à 110 kDa) n'est plus détectable par western dans les cellules transfectées par le siRNA AR (Figure 4A). Les cellules transfectées par le

10

15

20

25

30

siRNA remises en culture se sont avérées incapables de poursuivre leur croissance, contrairement aux cellules transfectées par le siRNA contrôle.

Le niveau de réponse aux androgènes a été mesuré en transfectant différents clones cellulaires de la lignée LNCaP avec un vecteur rapporteur plaçant la séquence codante de la luciférase en aval d'un promoteur minimal flanqué de 4 répétitions de l'élément de réponse aux androgènes (4xARE). Après transfection, les cellules ont été incubées pendant 18h en absence de sérum et en présence ou en absence d'un analogue métaboliquement stable de la dihydro testostérone, le R1881 (NEN). Le rapport des activités luciférases dans ces deux conditions permet de mesurer le niveau de réponse aux androgènes du vecteur reporter.

Nous avons mesuré l'effet de la cotransfection dans ces cellules du RNAi contrôle ou du RNAi AR sur la réponse aux androgènes des différents clones de la lignée LNCaP.

La figure 4B montre une inhibition complète de la réponse aux androgènes dans les deux clones sensibles aux androgènes : LNCaP et LNCaP p70. Cette méthode ne permet pas de mesurer la réponse du clone LNS5, androgéno-résistant, au traitement par le RNAi AR.

Le récepteur des androgènes présent dans la lignée LNCaP est porteur d'une mutation. Nous avons utilisé deux siRNA différents pour inhiber sa synthèse, le siRNA AR précédemment utilisé et le siRNA LNCaP reconnaissant spécifiquement la mutation LNCaP. La réponse aux androgènes a été mesurée comme dans l'expérience 4B (Figure 4C).

Pour étudier l'effet de l'inhibition de l'expression du récepteur des androgènes sur la croissance tumorale in vivo des cellules de carcinome prostatique, des cellules du carcinome LNCaP, transfectées par un siRNA contrôle (groupe A) ou AR (groupe B) ont été injectées en

sous cutané à des souris nudes males. La croissance tumorale a été suivie à intervalles réguliers. On observe que les tumeurs des animaux du groupe B ont démarré plus tardivement que celles du groupe A et que le volume des tumeurs du groupe B au 48e jour est nettement plus petit que celui des tumeurs du groupe A (Figure 4D).

PCT/FR02/03843

Dans une autre expérience, des cellules LNCaP ont été injectées chez des souris nudes males. Lorsque, au 34e jour, les tumeurs ont atteint un volume compris entre 1,2 et 1,5 cm³, les souris ont reçu par voie intrapéritonéale une injection de 2µg de siRNA contrôle ou AR dans 100µl de PBS. Cette injection a été répétée au 40e jour. On observe que l'administration de siRNA AR entraîne un ralentissement de la croissance tumorale (Figure 4E).

15

20

25

. 5

10

EXEMPLE 5 : Inhibition des formes sauvages ou mutantes de la protéine p53.

I - Préparation des oligonucléotides.

Les trois siRNAs dont la séquence est indiquée ci-dessous ont été préparés, l'un dirigé contre la forme sauvage de la p53, et l'autre dirigé contre la forme mutée exprimée chez un patient et ayant donné lieu à l'établissement d'une lignée.

Cette mutation correspond à l'une des trois observées le plus fréquemment dans les tumeurs humaines.

- p53 sauvage :

Sense: [GCAUGAACCGGAGGCCCAU] ARN [TT] ADN (SEQ ID NO.21)

Anti: [AUGGGCCUCCGGUUCAUGC] ARN [TT] ADN (SEQ ID NO.22)

- p53 MT1 (r248w) :

30 Sense: [GCAUGAACUGGAGGCCCAU] ARN [TT] ADN (SEQ ID NO.23)

Anti: [AUGGGCCUCCAGUUCAUGC] ARN [TT] ADN (SEQ ID NO.24)

- p53 MT2 (r248w) :

Sense: [UCAUGAACUGGAGGCCCAU] ARN [TT] ADN (SEQ ID NO.25)

Anti: [AUGGGCCUCCAGUUCAUGA] ARN [TT] ADN (SEQ ID NO.26)

10

15

20

25

30

Les nucléotides soulignés dans la p53 sauvage sont ceux qui sont mutés dans la forme mutante et qui sont en italique dans les séquences des formes mutées de la p53 mutée (p53 MT1 et MT2). Les bases en gras ci-dessus sont des mutations qui ont été introduites pour augmenter la spécificité.

II - Résultats.

Comme montré sur la figure 5B, les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine) par des vecteurs d'expression (400 ng) de la p53 sauvage (WT) ou mutée (mt). Les siRNAs (en dose croissante : 0, 125 ng, 250 ng, 500 ng et 1000 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT1 et MT2), ou un siRNA irrelevant (C) ont été transfectés en même temps. Les cellules ont été collectées 24 heures après, et analysées par Western blot avec un anticorps dirigé contre la p53.

Comme montré sur la figure 5C, les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine) par des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (mt) ou un mélange des deux (WT+MT), comme indiqué. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT1), ou un siRNA irrelevant (C) ont été transfectés en même temps. Les cellules ont été collectées 24 heures après, et analysées par Western blot (ib : immunoblot) avec un anticorps dirigé contre la p53 (D01, Santa Cruz), ou l'actine cellulaire (Sigma) pour contrôler la quantité de protéines utilisée dans le test.

Comme montré sur la figure 5D, des cellules U2OS (ostéosarcome humain exprimant une forme sauvage de la p53) ont été transfectées de façon stable soit par un vecteur exprimant une forme mutante de la P53 (R248W) soit par le vecteur vide correspondant (pCDNA3). Ces lignées ont

WO 03/040366 PCT/FR02/03843

été transfectées par les siRNA indiqués et l'expression des protéines indiquées a été détectée par western blot.

Dans tous les cas, le siRNA dirigé contre la forme mutée de la protéine inhibe la forme mutée et le siRNA dirigé contre la forme sauvage inhibe la forme sauvage. De plus, il n'y a pas de « réaction croisée », puisque le siRNA dirigé contre la forme sauvage n'a pas d'effet sur la forme mutée et réciproquement. Il faut noter que l'expression du mutant stabilise la protéine sauvage lorsqu'elle est co-exprimée. En conséquence, l'inhibition du mutant ramène, par cet effet indirect, la forme sauvage à son niveau de base, sans qu'il n'y ait inhibition de l'expression de la protéine.

Comme montré sur la figure 5E, les cellules utilisées dans la figure 5D ont été transfectées par les siRNA indiqués. Les cellules ont ensuite été soumises à un stress génotoxique par traitement à la doxorubicine (200 ng/ml) pendant 24h.La Figure 5E montre l'analyse du cycle cellulaire de ces cellules par incorporation de Iodure de propidium et analyse au FACS. Les cellules non transfectées avec la forme mutante, et donc n'exprimant que la forme sauvage (cellules PCDNA) montrent un fort pourcentage d'arrêt en Gl en présence de dauxorubicine. Le traitement de ces cellules par le siRNA sauvage, en diminuant la p53 sauvage, réduit cet arrêt en G1. Les cellules qui expriment la forme mutée et sauvage (R248W) s'arrêtent peu en G1 en présence de dauxorubicine, montrant que la forme mutée inhibe l'activité de la forme sauvage. Quand ces cellules sont traitées avec le siRNA mt1, elles récupèrent une capacité normale (à comparer avec les contrôles PCDNA non traitées) de s'arrêter en G1, montrant la restauration de l'activité p53 sauvage dans ces cellules.

Comme montré sur les figures 5 F, G, H, les cellules MDA 087 (provenant d'un patient atteint d'un syndrome de Li Fraumeni et exprimant le mutant R248W) ont

. 5

10

15

20

25

30

10

15

20

25

30

35

été transfectées avec un siRNA dirigé contre la forme mutante (MT1) de la p53, ou encore avec un siRNA irrelevant (C) (1,6 µg). L'expression de la P53 a été détectée dans ces cellules par western blot (Figure 5F), les ARN messagers ont été mesurés par PCR quantitative (Light cycler, Roche) (Figure 5G) ou immunofluorescence (Figure 5H).

Les cellules MDA 087 ont été transfectées avec un siRNA reconnaissant la forme sauvage (WT) ou la forme mutée de la p53 (mt1) ou encore par un siRNA contrôle puis soumises à un stress génotoxique par traitement à la doxorubicine (200 ng/ml) pendant 24h. L'expression de la forme mutante de la p53 a été détectée par western blot dans les cellules. On observe que les cellules ayant reçu le siRNA mt1 ne sont pas capables de stabiliser la p53 en réponse à la dauxorubicine (Figure 5I).

La figure 5J montre l'effet des siRNA mt1 et mt2 dans des cellules qui expriment les formes sauvages et mutées de la p53. Les cellules H1299-NCI, qui n'expriment (en utilisant la la p53, ont été transfectées lipofectamine) par un vecteur reporter comportant le gène de la luciférase sous contrôle d'un élément de réponse à la p53 et des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (MT) ou un mélange des deux (WT+MT), comme indiqué. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (mt1, mt2), ou un siRNA irrelevant (C) ont été transfectés en même temps. Les cellules ont été collectées 24 heures après et analysées pour l'expression de la luciférase. La p53 sauvage seule active le vecteur reporter, et la co-expression de la forme mutante inhibe cette activité. La co-transfection du siRNA sauvage inhibe l'expression de la protéine sauvage et donc l'activation résiduelle du gène reporter. Lа transfection des siRNAs mt1 ou mt2, au contraire, restaure cette activation en bloquant sélectivement l'expression de

WO 03/040366 37

la forme mutée et en empêchant l'effet de transdominant négatif qu'elle exerce sur la forme p53 sauvage.

PCT/FR02/03843 ·

La figure 5K montre un résultat similaire sur l'expression d'une des cibles de la p53, la protéine inhibitrice de la prolifération cellulaire p21, dans des cellules traitées comme dans la figure 5F. L'expression de la p21, détectée par western blot est activée par la p53 sauvage et inhibée lorsque le mutant est co-exprimé. Cette inhibition est levée en présence du siRNA mt1.

10

5

EXEMPLE 6 : Inhibition de la protéine virale E6.

I - Préparation des oligonucléotides.

Un siRNA dirigé contre la protéine E6 de HPV a également été préparé. Il répond à la séquence suivante :

15

20

25

30

- HPV-16-S2

Sens: 5' [CCACAGUUAUGCACAGAGC] ARN [TT] ADN (SEQ ID NO.27)

Anti: 5' [GCUCUGUGCAUAACUUGG] ARN [TT]] ADN (SEQ ID NO.28)

II - Résultats.

CasKi et SiHA, exprimant toutes deux la protéine E6 de HPV ont été transfectées avec les siRNA indiqués, traitées ou non comme indiqué par la doxorubicine et analysées par western blot en utilisant les anticorps indiqués. Le traitement des cellules par le siRNA E6 induit une augmentation de l'expression de P53. Cette expression de p53 se traduit par une augmentation de l'expression de la protéine p21.

Comme montré sur la figure 6C, le cycle cellulaire de cellules SiHA traitées comme dans la figure 6B a été analysé par FACS. La figure représente une expérience caractéristique. On observe une augmentation de cellules en phase G1 (Figure 6D) dans les cellules traitées par le siRNA E6, augmentation qui est également observée dans ces cellules lorsqu'elles sont traitées par la doxorubicine.

10

15

20

25

30

EXEMPLE 7 : Effet des oligonucléotides ARN/ARN et des hybrides ADN/ARN.

I - Introduction.

l'utilisation envisage L'invention d'oligonucléotides hybrides ADN/ARN comme alternative aux oligonucléotides ARN/ARN pour inhiber spécifiquement. l'expression d'un gène. Dans le cas des hybrides ADN/ARN, le brin sens est préférentiellement de nature ADN et le brin anti-sens de nature ARN. Les autres aspects ayant trait notamment à la taille des oligonucléotides, à la nature des extrémités 3' et au mode de synthèse sont les oligonucléotides ARN/ARN. les que pour applications de ces hybrides ADN/ARN sont identiques à celles précédemment décrites pour les siRNA ARN/ARN, applications concerne les qui notamment en ce thérapeutiques, à visées diagnostic ou de validation de gènes. Les doses d'oligonucléotides employées pour obtenir les mêmes effets avec les hybrides ADN/ARN et les ARN/ARN peuvent cependant être différentes

II - Préparation des oligonucléotides.

Le brin sens est celui dont la séquence est identique à celle de l'ARN messager. Le brin antisens est le brin complémentaire du brin sens. Par convention, dans un duplexe, la nature des brins est indiquée dans l'ordre sens/antisens. Ainsi par exemple, un hybride ADN/ARN, noté D/R est un oligonucléotide dont le brin sens est de nature ADN et le brin antisens, est de nature ARN et de séquence complémentaire de l'ARN messager.

Dans les expériences décrites, les oligonucléotides dont la séquence est indiquée ci-dessous ont été utilisés.

- Pour la GFP :

GFP :

35 Sens : [GCAAGCTGACCCTGAAGTTCAT] ADN (SEQ ID NO.29)

```
Antisens: [GAACUUCAGGGUCAGCUUGCCG] ARN (SEQ ID NO.30)
         Contrôle GFP :
         Sens : [CAUGUCAUGUGUCACAUCUC] ARN [TT] ADN (SEQ ID NO.31)
         Antisens : [GAGAUGUGACACAUGACAUG] ARN [TT] ADN (SEQ ID NO.32)
 5
                        Pour le LNCaP : Les bases soulignées ci-
         dessous correspondant à la mutation du récepteur des
         androgènes exprimée dans les cellules du carcinome
         prostatique humain (LNCap).
                     LNCaP:
10
         Sens:
         [GCATCAGTTCGCTTTTGACTT] ADN (SEQ ID NO.33)
         [GCAUCAGUUCGCUUUUGAC] ARN-TT [ADN] (SEQ ID NO.34)
         Antisens :
         [GTCAAAAGCGAACTGATGCTT] ADN (SEQ ID NO.35)
         [GUCAAAAGCGAACUGAUGC]ARN-TT[ADN] (SEQ ID NO.36)
15
                     Contrôle LNCaP :
         Sens:
         [GUUCGGUCUGCUUACACUA] ARN-TT [ADN] (SEQ ID NO.37)
         Antisens :
20
         [UAGUGUAAGCAGACCGAAC] ARN-TT[ADN] (SEQ ID NO.38)
                     - Pour la P53 :
                   Les brins ADN des hybrides notés H1 comportent
         des bases ARN (U, soulignées).
                     La mutation présente dans les oligonucléotides
25
         MT1 est indiquée en italique.
                     WT:
         Sens: 5' [GCAUGAACCGGAGGCCCAU] ARN [TT] ADN (SEQ ID NO.39)
        Anti: 5' [AUGGGCCUCCGGUUCAUGC] ARN [TT] ADN (SEQ ID NO.40)
                    wt H1 D/R :
30
        Sens: 5' [GCAUGAACCGGAGGCCCAUTT] ADN (SEQ ID NO.41)
        Anti: 5' [AUGGGCCUCCGGUUCAUGC] ARN [TT] ADN (SEO ID NO.42)
                    wt H1 R/D :
        Sens: 5'[GCAUGAACCGGAGGCCCAU]ARN[TT]ADN (SEQ ID NO.43)
        Anti: 5' [AUGGGCCUCCGGUUCAUGCTT] ADN (SEQ ID NO.44)
35
                    wt H2 D/R :
```

15

20

25

30

Sens: 5' [GCATGAACCGGAGGCCCATTT] ADN (SEQ ID NO.45)

Anti: 5'[AUGGGCCUCCGGUUCAUGC]ARN[TT]ADN (SEQ ID NO.46)

wt H2 R/D:

Sens: 5' [GCAUGAACCGGAGGCCCAU] ARN [TT] ADN (SEQ ID NO.47)

Anti: 5'ATGGGCCUTCCGGTTCATGCTT]ADN (SEQ ID NO.48)

Mt1 (r248w) **:

Sens: 5' [GCAUGAAC UGGAGGCCCAU] ARN [TT] ADN (SEQ ID NO.49)

Anti: 5'[AUGGGCCUCCAGUUCAUGC]ARN[TT]ADN (SEQ ID NO.50)

Mt1 H1 D/R :

10 Sens : 5' [GCAUGAACUGGAGGCCCAUTT] ADN (SEQ ID NO.51)

Anti : 5' [AUGGGCCUCCAGUUCAUGC] ARN [TT] ADN (SEQ ID NO.52)

Mt1 H1 R/D :

Sens: 5'[GCAUGAACUGGAGGCCCAU]ARN[TT]ADN (SEQ ID NO.53)

Anti: 5'AUGGGCCUCCAGUUCAUGCTT] ADN (SEQ ID NO.54)

Mt1 H2 D/R :

Sens: 5'[GCATGAACTGGAGGCCCATTT] ADN (SEQ ID NO.55)

Anti: 5' [AUGGGCCUCCAGUUCAUGC] ARN [TT] ADN (SEQ ID NO.56)

Mt1 H2 R/D :

Sens: 5' [GCATGAACTGGAGGCCCAT] ARN [TT] ADN (SEQ ID NO.57)

Anti: 5' [AUGGGCCUCCAGUUCAUGCTT] ADN (SEQ ID NO.58)

II - Résultats.

1) <u>Inhibition de la GFP (Green Fluorescent</u> Protein) par les hybrides ADN/ARN.

Les siRNAs contrôle (R/R) ou GFP (D/R) en doses croissantes ont été introduits par transfection en utilisant le kit Polyfect dans les myoblastes de souris C2C12, en même temps qu'un vecteur d'expression de la GFP. Le niveau de GFP a été suivi par Western Blot (Figure 7A) et par mesure directe de la fluorescence émise par la GFP à l'aide d'un fluorimètre (Figure 7B). On observe une forte inhibition (jusqu'à 80%) de l'expression de la GFP par les siRNA hybrides ADN/ARN.

2) <u>Inhibition du récepteur des androgènes par</u> les hybrides ADN/ARN.

10

15

20

25

30

35

Les cellules LNCaP ont été transfectées avec un vecteur reporteur mettant la luciférase sous le contrôle d'un promoteur contenant 4 éléments de réponse au récepteur des androgènes. 24h plus tard, Les siRNA R/R, D/R ou R/D indiqués sur la figure ont été transfectés par l'agent de transfection Transit-tKO (Mirus) à raison de 250ng de chaque double brin pour 80000 cellules. Les cellules ont été incubées en milieu complet contenant des androgènes et l'activité luciférase, normalisée par rapport à la quantité de protéines de chaque échantillon, a été mesurée 24h plus tard (Figure 7C). Les hybrides R/D n'ont pas montré d'activité inhibitrice dans cette expérience. Les hybrides LNCaP D/R inhibent aussi efficacement que les siRNA R/R le récepteur des androgènes.

3) <u>Inhibition de la p53 par les hybrides</u> ADN/ARN.

La figure 7D montre que les hybrides H1 D/R sont aussi efficaces que les R/R pour inhiber l'expression des gènes. Les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine) par des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (MT) ou un mélange des deux (WT+MT), comme indiqué. Un vecteur CMV-GFP a été transfecté également comme contrôle interne. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT), ou un siRNA irrelevant (CTRL) ont été transfectées en même temps. Les cellules ont été collectées 24 heures après, et analysées par Western blot avec un anticorps dirigé contre la p53 (DO1, Santa Cruz), ou la GFP (Santa-Cruz) pour contrôler l'efficacité de transfection. Note : l'expression de la forme mutée de la protéine stabilise la forme sauvage.

La figure 7E montre que les hybrides H2 D/R sont aussi efficaces que les R/R pour inhiber l'expression des gènes. Les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine)

10

15

20

25

30

par des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (MT) ou un mélange des deux (WT+MT), comme indiqué. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT), ou un siRNA irrelevant (C) ont été transfectées en même temps. Les cellules ont été collectées 24 heures après, et analysées par Western blot avec un anticorps dirigé contre la p53 (DO1, Santa Cruz).

EXEMPLE 8 : Administration in vivo de siRNA par différentes voies.

Des cellules tumorales exprimant la luciférase de façon stable ont été injectées en sous cutané à des souris nudes (1 million de cellules dans le flanc droit). Au 8e jour de la croissance tumorale, les tumeurs ayant un volume moyen de 200 mm3 ont été injectées soit avec des siRNA contrôles (séquence mélangée de HIF1 alpha, voir exemple 3) soit avec un siRNA dirigé contre la luciférase. Les siRNA contrôles (3 µg/souris) ont été injectés dans un volume de 50µl de PBS par voie sous cutanée dans le flanc de l'animal.

Les siRNA Luciférase ont été injectés à raison de 3µg/souris (3 animaux dans chaque groupe) dans 50 µl de PBS par voie sous cutanée (sc), ou par voie intrapéritonéale (ip) ou par voie intra-veineuse(iv) (veine de la queue) ou par voie intratumorale (it). Dans ce dernier cas, les siRNA luciferase (3µg/souris) ont été dilués dans 20µl de PBS seulement.

Trois jours après l'injection des siRNA, les animaux ont été sacrifiés, les tumeurs ont été prélevées, homogénéisées à l'aide d'un broyeur polytron. Sur les homogénats, un dosage de protéines et une mesure de l'activité luciférase dans un luminimètre ont été réalisés.

Les résultats représentés à la figure 8 montrent l'activité luciférase rapportée à la quantité de protéine.

5

¥
exe
Ann

		T	références
Maladie	Proteine de Jusion	I ransiocation curomosomique	T. T. T. 1001 66.675
APL (acute promyelocytic	PML-RARalpha	t(15;17)(q22;q21)	De 1 ne et al. Cell 1991, 00:0/3
leukaemia)	PLZF-RARalpha	t(11;17)(q23;q21)	Cilcii 2 et al. Embo 3 1993, 12:1101 Deduce DI et al Blood 1006, 87:882
	NPM-RARalpha	t(5;17)(q32;q12)	Kedner KL et al. Drood 1970, 07.882
	NuMA-RARalpha	1(5;17)(413;421)	Wells RA et al. Leukemia 1996, 10:/35
	STAT5beta/RARalpha		Amould C et al. Hum. Mol. Genet. 1999, 8:1741
ATT (acute lymphoblastic		t(12;21) (p13;q22)	
lenkaemia)	BCR/ABL	t(9;22)(q34;q11)	
leunaeima)	MLL/AF4	((4;11)(q21;q23)	Domer PH et al. Proc Natl Acad Sci USA 1993, 90:7884-8
· · · · · · · · · · · · · · · · · · ·	ALL-translocation	t(12;21)(q12;q22)	20017 244 - 01
	CALM/AF10	t(10;11)(p12-p13;q14-q21)	Dreyling MH et al. Proc Natl Acad Sci U SA 1990,
	ALL1/AF4	t(4;11)	93:4804
	E2A/HLF	t(17;19)(q22;p13)	Janssen JW et al. Blood 1994, 84:3835
			muliger of et al. Oenes 201 1772, 011000
AML (acute myeloid leukemia)	TLS/FUS-ERG	t(16;21)(p11;q22) AML(M7)	Ionikawa H et al. Cancer Aes 1994, 34,2003
	MLL-AF10	((10;11)(p12-p13;423)	Shihiwa et al Genes Chromosomes Cancer 2001, 32:1
	MLL-ABII	4(10;11)	Daniel Con of Concer Pee 2001 61-5374
	HLXB9-ETV6	t(7;12)(q36;p13)	Beverioo et al. Cancel Ares 2001, 01:3374
	MLL-ELL	t(11;19)(q23;p13.1)	Kubnitz Jr et al. <i>Biood</i> 1990, 07:4004
	CBFbeta/MYH11	[nv[16]	Tobal K et al. Br J Haematol 1993, 91:104
	AMI 1-MTG8	t(8:21)	Miyoshi et al. EMBO J 1993, 12:2/15
	TEL TRKC	t(12:15)(p13:q25)	Eguch et al. Blood, 1999, 93:1355
	ANG TETO	1(8:21)	Kusec R et al. Leukemia, 1994, 8:735
	CA1 M/A F10	*(10-11)(n12-p13:a14-q21)	Dreyling MH et al. Proc Nail Acad Sci USA 1996,
	ETY/C DTI	+(4·12)(011-012:013)	93:4804
		inv(16) (p13.022)	Cools et al. <i>Blood</i> 1999, 94:1820
	CBroed-Sivilar	116.21)(n11.a22)	Wijmenga C et al. Proc Natl Acad Sci USA 1996,
	NA7/ 430	t(6:9) (n23: n34)	93:1630
	DEN CAIN	*(9:11)(n22:423)	Panagopoulos I et al. Genes Chromosomes Cancer, 1994,
	MILL-AL9	(1103)	11:256
	MILL-END	#(4·11)(021:023)	on Lindern M et al. Mol Cell Biol, 1992, 12:1687
	NAT I A EK	1(1)(027:23)	Super HJ et al. Blood, 1995, 85:855
	INILL-ALTO	k(3,11)(4,23,021)	Schreiner SA et al. Leukemia 1999, 13:1525
	MLL-AFI	((11),1/(425,421) ((X·11)(a13:a23),	Domer PH et al. Proc Natl Acad Sci US A 1993, 90:7884
	MI I - A FI I		Tanabe S et al. Genes Chromosomes Cancer 1996, 15:206
·	אלוזיין אלייין אלייין	(1011) (021.023)	Prasad R et al. Proc Natl Acad Sci US A 1994, 91:8107
	MLL-Arid	(1,1,1)	

Annexe A(2)

Maladie	Protéine de fusion	Translocation chromosomique	références
	MLL self		Borkhardt A et al. Oncogene 1997,14:195
		t(11;16)(q23;p13)	So CW et al. Leukemia 2000, 14:594
	AML1-ETO	((8;21)	Busson-Le Coniat M et al. Leukemia 1999, 13:302
			So CW et al. Cancer Res 1997, 57:117
			Faki T et al. Blood 1997, 89:3945
			Erickson P et al. Blood 1992, 80:1825
MDS/AML (myelodysplasia/acute myeloid leukemia)	NPM-MLF1	1(3;5)(q25,1;q34)	Yoneda-Kato N et al. Oncogene 1996, 12:265
CML (chronic myelogenous	Bcr-Abl/p210	<u>-</u>	Ben-Neriah Y et al. Science 1986, 233:212
leukemia)	AML1-MDS1-EVII	(3;21)(q26;q22)	Fears S et al. Proc Natl Acad Sci USA 1996, 93:1642
-	(AME)		
BpALL (cell acute lymphoblastic	TEL-AML1	t(12;21) (p13;q22)	Golub TR et al. Proc Natl Acad Sci USA 1995, 92:4917
leukemia)			
MPD (myeloproliferative disease)	TEL-JAK2	t(9;12)(p24;q13)	Lacronique et al. Science 1997, 278:1309
	TEL-PDGFbetaR	t(5;12)(q33;p13)	Jousset C et al. EMBO J, 1997, 16:69
	TEL-TRKC	t(12;15)(p13;q25)	Eguch et al. Blood, 1999, 93:1355
CMML (chronic myelomonocytic	involving PDGFbetaR	t(5;17)(q33;p13)	Magnusson et al. Blood 2001 98:2518
leukemia)	HIP1/PDGFbetaR	t(5;7)(q33;q11.2)	Ross TS et al. Blood 1998, 91:4419
	TEL/PDGFbetaR	t(5;12)(q33;p13)	Iomasson MH et al. Blood 1999, 93:1707
MALT (gastric mucosa-associated lymphoid tissue lymphoma)	API2-MALT1	t(11;18)(q21;q21)	Motegi M et al. <i>Am J Pathol</i> 2000, 156 :807
ALCL (anaplastic large cell	NPM-ALK	t(2;5)(p23;q35)	Waggott W et al. Br J Haematol 1995, 89:905
lymphoma)	SU-DHL-1	t(2;5) inv(2)(2)3035)	Siminovitch K.A. et al., Blood 1986, 67:391 Collecti G.W. et al. 4m 1 Perhol 2000, 156:781
	d translocation	1(2;17)(p23;q25)	Maes et al. Am J Pathol 2001, 158:2185
MPD (myeloproliferative disease)	NUP98-HOXA9	t(7;11)(p15;p15)	Nakamura T et al. Nat Genet 1996, 12:154

APP (amyloid precursor protein) in	APP+1 (38-kDa)		Hersberger et al. J Neurochem 2001 76(5):1308-14
sporadic Alzheimer's disease (AD)			
or Down's syndrome			
	\$ A P. C.	(3/10)(=11.0,=11.0)	Orew AT et al FWBO 11995 14:2333
primary pleural monophasic	SYT-SSXI	t(X;18)(p11.2;q11.2)	
synovial sarcomas (SS)	SYT-SSX2	t(X;18)(p11.2;q11.2)	Crew AJ et al. EMBO J 1995,14:2333
Domotofihrogarooma prohiberans	DGFB	t(17:22)	O'Brien KP et al. Genes Chromosomes Cancer 1998,
Definition obtained by order and			23:187
(DF)	icallangement		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
ARMS (pediatric alveolar	EWS-FLII	-	Athale et al. J Fediair Themaior Oncol 2001, 23:77
rhahdomyosarcoma)	EWS-ERG	t(11;22)(q24;q12)	Sorensen PH et al. Nat Genet 1994, 6:140
ECET (Ewing serroms family of	PAX3.FKHR	t(2:13) (a35:a14)	Fredericks WJ et al. Mol Cell Biol 1995,15:1522
ESET (EWING Sarcound raining or	DAYZEVHR	k(1-13)(n36:a14)	Barr FG et al. Hum Mol Genet 1996, 5:15
rumors)	יייייי יייייי	(01:00)(01:1)	Benjamín et al. Med Pediatr Oncol 1996 27(5):434-9
DSRCT (desmoplastic smail round	EWS-WII	((11.22)(pio.412)	Ridelia I ambert et al Hum Pathol 1999, 30:78
cell tumors)	EWS/FI-1	(715,476) (77-11)	Month Language of the Control of the
MM (multiple myeloma)	IGH-MMSET	t(4;14)(p16.3; q32)	Malgeri et al. Cancer Res 2000 60:4038
MPD (stem cell myeloproliferative	FGFR1-CEP110	t(8;9)(p12;q33)	Guasch et al. Blood 2000 95:1788
disorder)			
Ewing sarcoma (ES)-peripheral	EWS-FEV	t(2;22)(q13;q22,t(3;18)	Llombart-Bosch et al. Diagn Mol Pathol 2000, 9:13/
primitive neuroectodermal tumor		(p21;q23)	3370.63 6001 - 4
(nPNET)	EWS-FLII	t(11;22;14)(q24;q12;q11)	Bonin G et al. Cancer Kes 1993, 53:3033
	EWS-ERG	t(21;22)(q22;q12)	Sorensen PH et al. Nat Genet. 1994, 6:146
	ETV6/CBFA2	t(12:21)(p12;q22)	Fears S et al. Genes Chromosomes Cancer 1996, 17:127
MI & (mixoid linesarcomas)	FUS/CHOP	k(12:16) (a13:p11)	Rabbitts TH et al. Nat Genet 1993, 4:175
(mino model provini) Crivi	EWS/CHOP	t(12;22;20)(q13;q12;q11)	Zinszner H et al. Genes Dev 1994, 8:2513

Annexe B(1)

. .				a .	Parant	Codon	T4	Codon	Event
Codon	Event	Codon	Event	Codon	Event C->G	217	Event	202	Ins
248	G->A	129	C->A	189	G->T	239	Stop at 219 Stop at 259	247	Ins
248	C->T	281	A->G	290 136	Stop at 169	187	G->C	171	Ins
282	C->T	293	Fr.	201	Stop at 109 Stop at 208	273	Stop at 343	203	Ins
175	G->A	157	DEL	275	Stop at 344	182	C->T	290	Stop at 303
196	C->T	161	C->A	132	Stop at 148	263	Stop at 344	233	del
213	G->A	195	A->T	176	Stop at 140	307	Stop at 344	210	Stop at 244
234	T->C	197	G->C	191	del	261	Stop at 344	201	G->A
237	T->G	342 135	Fr. G->C	218	G->A	285	Stop at 344	92	Ins
244	G->T	145	T->A	234	T->A	159	G->A	44	Fr.
256	A->G A->G	276	G->C	136	C->A	168	C->T	109	ins
259	A->G	270	0->0	130	G->C/G-	100		107	G->A/G-
260	T->G	173	G->T	245	>A	230	C->T	279	>A
245	G->T	270	T->G	126	Stop at 148	228	A->C	168	Stop at 170
278	C->T	158	G->C	259	G->C	230	C->A	153	Stop at 178
134	T->A	152	Fr.	171	G->C	287	Stop at 300	247	C->A
194	C->T	132	G->T	197	T->A	269	Stop at 343	272	Stop at 305
273	G->A	288	A->C	236	T->G	227	Stop at 227	137	Stop at 169
309	C->T	247	A->T	239	C->A	231	Stop at 238	148	Stop at 180
274	T->A	273	G->C	288	A->T	275	G->C	157	Stop at 180
156	G->C	283	G->C	161	Fr.	142	T->C	191	Stop at 208
245	G->A	109	Fr.	164	Fr.	312	C->G	243	Stop at 260
193	A->G	174	G->C	142	Stop at 148	282	C->G/G->C	251	C->A
229	T->A	300	C->G	240	A->C	235	Stop at 244	242	C->A
237	G->A	205	A->G	137	T->C	156	Stop at 179	244	C->A
277	G->T	224	G->T	100	G->A	207	A->G	239	C->G
194	T->G	168	A->T	106	C->G	179	Stop at 246	142	T->A
242	G->C	167	Fr.	215	A->G	210	Stop at 214	248	C->A
246	G->C	136	C->G	246	Fr.	315	T->C	177	Stop at 246
68	G->T	164	A->C	117	G->A	229	Stop at 229	296	Fr.
147	T->A	179	C->G	271	Stop at 344	167	A->C	303	C->T
151	C->A	187	G->T	324	T->G	256	Stop at 343	140	C->A
209	A->T	201	Stop at 246	346	Fr.	176	Stop at 176	268	C->T
213	C->T	213	C->A	174	Stop at 246	309	Stop at 336	254	A->C
214	A->G	238	G->T T->G/C-	170	Stop at 177	270	Stop at 344	291	G->A
248	G->T	113	>T	234	T->G	129	G->A	139	Stop at 148
266	G->T	143	G->T	354	A->G	46	Stop at 50	251	A->G
273	C->T	160	G->T	259	Stop at 344	160	T->G	221	Stop at 224
273	G->T	198	G->T	319	Stop at 344	56	A->T	237	A->T/G->T
282	C->G	203	G->T	332	Ins	74	Stop at 144	234	Stop at 234
334	G->T	238	T->A	340	Ins	118	A->G	215	T->A
342	C->T	272	G->C	177	del	257	del	191	T->A
132	A->C	276	Ins	179	T->A	192	G->T	290	C->A
249	G->C	277	T->G	190	Stop at 246	294	G->T/G->C	60	A->T
280	G->A	302	G->T	254	Ins	240	del	93	C->A
285	G->A	131	C->G	194	C->A	306	G->T	143	T->C/G->C
241	C->T	168	A->G	172	T->A	175	C->G/G- >A	319	G->T
			•		G->T/T-		-		
249	G->T	258	G->T	173	>G	246	Stop at 261	110	Stop at 122
158	G->A	278	C->A	261	T->C	279	Stop at 305	190	T->G
163	T->C	285	G->C	266	A->G	146	T->G/G->T	192	C->G
176	G->A	287	G->A	199	Fr.	154	Stop at 169	126	T->G/A->G

Annexe B(2)

		Codon	Event	Codon	Event	Codon	Event	Codon	Event
Codon	Event	294	Fr.	236	C->G	132	del	273	Stop at 305
206	Fr.		Fr.	168	C->G	175	Stop at 175	266	Stop at 344
234	A->G	236		201	G->C	152	Stop at 165	64	Stop at 122
238	G->A	301	Ins	201					
254	A->G/T- >A	228	A->G	203	Stop at 208	260	Stop at 262	103	C->A
234	-74				C->A/C-			2.42	
287	G->T	175	Fr.	250	>G	194	Stop at 246	343	A->G
143	Fr.	282	G->T	283	G->T	170	C->A	317	Stop at 344
205	A->T	152	Stop at 180	256	C->A	213	C->G	125	Stop at 148
262	Fr.	177	C->G	245	C->T	213	A->C	239	A->G/C->T
171	G->T	216	T->A	342	G->C	232	A->G	119	Fr.
126	C->G	232	T->G	243	G->A	294	G->C	162	T->G/C->G
138	Fr.	275	Stop at 305	296	A->G	240	T->A	12	C->A/C->G
223	C->T	216	G->T	68	G->C	223	C->G	247	C->G
274	G->T	137·	Fr.	102	C->T	171	A->C	190	T->A T->C
218	Fr.	251	T->G	104	G->C	328	T->G	240	
246	A->G	252	Ins	117	G->C	150	C->T	315	C->T
250	Fr.	254	T->A	175	Stop at 246	252	C->A	313	C->T
143	T->C	49	G->C	138	Stop at 169	256	Stop at 342	42	G->T
173	G->A	53	G->T	215	T->G	200	Stop at 246	73	G->T
242	G->T	60	C->T	247	Stop at 262	239	del	231	C->A
190	Fr.	202	G->T	104	C->T	215	A->T	172	Stop at 173
246	T->C	204	A->G	297	A->C	147	Stop at 169	211	Stop at 214
157	G->T	265	T->A	252	T->C	276	G->A	150	Stop at 180 C->A
239	Fr.	135	T->C	276	C->T	210	A->C	145	C->G
240	A->T	147	G->A	349	A->C	182	T->C	335	G->A/A-
					G->A/T-	161	G->A/C->T	285	>G > A A = = = = = = = = = = = = = = = = =
238	T->C	153	C->T	173	>G/G->T	161 83	C->A	85	Stop at 122
35	Stop at 42	170	G->T	225	G->C	304	Stop at 344	98	C->T
47	C->T	260	C->T	250	del	225	ins	113	C->T
89	Fr.	255	Stop at 263		A->G	314	Stop at 344	87	Stop at 148
102	Fr.	139	G->C	166	T->A C->A	301	A->G	97	C->T
141	C->G	234	A->C	156	A->G	224	G->A	217	Stop at 246
144	C->T	152	C->A	291 305	A->G	112	C->G	226	G->T
146	G->A	170	C->T	305 306	A->T	163	C->A	278	T->A
158	G->T	175	G->C	296	C->T	299	T->A	145	C->T
161	G->A	240	A->G	267	del	251	del	133	Stop at 148
164	G->T	259	G->T	151	Stop at 169		Stop at 180	136	A->C
165	Ins	87	Fr.	228	Stop at 238		G->T	239	A->T/C->A
176	C->G	142	.Fr.	220	Stop 20 20 0			•	G->A/C-
101	Fr.	175	C->G	165	Stop at 180	177	C->A/C->T		>A
191	G->T	126	A->G	176	C->A	236	A->C	252	T->A
215	0->1	120							G->A/C-
217	G->T	128	T->G	192	A->G	243	T->C	244	>A 2: 1205
220	A->G	128	C->T	167	Ins	137	G->A	299	Stop at 305
224	G->C	134	T->C	166	T->C	218	G->C	305	A->T/G->A
242	C->G	172	Fr.	120	A->G	277	G->C	310	A->C
259	A->T	237	T->A	150	C->A	54	Fr.	322	C->G
267	G->C	193	A->C	155	A->C	40	Ins	323	Stop at 344
291	A->T	213	Fr.	203	Stop at 246		Stop at 166		C->G
298	G->T	246	G->A	221	A->G	168	C->G/A->T		G->C
182	C->A	235	Fr.	50	Stop at 109	249	G->T/G->T	323	T->G
	Stop at				04 . 040	120	C->4	201	T->A
233	239	329	Fr.	191	Stop at 243	139	C->A	. 201	T TF
	•								

Annexe B(3)

				0.1	T-ram4	0.1		O-4	Errant
Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
173	T->C	155	A->G	205	T->C	209	G->T	190	T->C
251	A->C	7	G->C	210	Stop at 246	184	Stop at 207	278	T->C
219	Fr.	56	G->T	110	C->G	146	G->T	305	G->C
280	A->T	104	Fr. G->A/G-	166	C->A	250	C->A	176	del
126	T->A	245	>A	269	G->T	74	Stop at 122	217	T->G
132	G->C	317	C->T	155	Stop at 179	225	del	174	A->C
181	C->T	125	G->A	155	Stop at 169	253	C->A	289	C->G
184	G->T	214	Fr.	156	Stop at 169	269	INS	234	C->G
220	T->C	248	G->C	162	C->T	184	T->C	232	A->C
266	G->A	307	lns	196	A->G	304	T->G	317	A->T
279	G->A	152	G->T	213.	Stop at 246	204	A->C	132	Fr.
305	Ins	178	C->G	214	C->T	66	Stop at 145	299	Fr.
220	A->C	253	C->T	269	C->T	259	Stop at 263	158	C->G/G->T
284	A->C	270	T->C	287	A->G	263	Stop at 271	142	Stop at 169
280	G->C	281	C->A	313	C->G	280	Stop at 344	203	Stop at 207
,	Stop at		*				-		
172	231 Stop at	216	Fr.	108	Stop at 144	237	Stop at 246	248	G->C/G->C
174	176	131	Fr.	321	A->G	289	C->A	256	A->C
224	Ins	141	Ins	244	C->T	315	Stop at 344	262	Stop at 343
	Stop at								
251	344 ·	140	Fr.	198	Stop at 246	312	C->T	301	Stop at 343
261	del	163	T->A	135	Ins	145	C->G	335	G->A
181	G->A	178	A->C	187	Stop at 246	169	G->T	179	Fr.
265	C->T	186	G->T	264	del	184	G->A	341	Stop at 344
272	T->C	208	A->T	52	C->T	364	G->A	103	C->G
136	C->T	255	Fr.	141	G->C	144	del	159	Stop at 179
281	G->T	307	G->A	167	A->G	146	Stop at 169	189	Stop at 246
316	C->T	130	T->G	84	C->T	190	C->A	274	Stop at 304
130	C->G	356	G->T	122	Stop at 169	249	A->C	149	Fr.
234	C->A	43	T->C	140	A->T	214	T->A	183	Stop at 183
368	Fr.	159	G->C	153	Ins	204	G->A G->A/C-	227	Stop at 245
301	Fr.	280	Ins	173	Fr.	242	>G	292	Stop at 343
148	Fr.	327	Fr.	186	Fr.	208	Stop at 241	178	A->G
176	G->T	87	C->A	152	C->G	158	Stop at 180	251	Stop at 343
152	C->T	156	G->T	171	A->G	217	Stop at 221	252	Stop at 263
248	C->G	158	C->G	180	G->T	262	Stop at 344	64	Fr.
255	T->G	161	G->T	202	G->A	239	Stop at 246	89	Stop at 122
271	Fr.	173	Stop at 180	227	T->G	205	Stop at 246	108	Stop at 122
274	Fr.	199	G->T	298	G->A	214	T->C	110	Ins
225	G->A	144	Fr.	303	G->A	297	ins	124	Stop at 124
176	T->A	233	Fr.	261	Ins	268	Fr.	285	del
135	Fr.	275	T->G	276	C->G	256	A->T	342	del
135	C->G	162	T->G	3 05	Fr.	223	C->A	313	A->T
151	C->T	178	Fr.	117	Stop at 122	26	Stop at 43	217	T->A
159	C->T	256	Fr.	155	Stop at 177	186	A->T	167	Stop at 169
179	A->G	225	Fr.	277	T->A	214	Stop at 246	278	C->T/T->C
306	C->T	148	T->A	298	A->C	245	C->A	290	Stop at 304
174	G->A	187	G->A C->A/C-	141	C->T	287	G->C	173	Stop at 173
208	Fr.	250	>A	115	T->C	96	C->T	259	C->T
126	Fr.	254	T->G	119	G->A	164	Stop at 166	288	T->A
173	del	257	T->C	120	Fr.	255	Ins	207	T->A

Annexe B(4)

	<u>.</u> .	Codon	Event	Codon	Event	Codon	Event	Codon	Event
Codon	Event	275	T->C	127	T->A	275	del	197	Stop at 208
192	C->T	213	G->T/G-	127				:	
200	E-	216	>T	133	Fr.	284	ins	214	A->T
209	Fr. T->G	149	T->C	144	A->T	161	G->C	127	C->G
216		240	G->T	187	T->C	246	A->T/G->T	337	G->C
258	G->A	65	A->T	205	T->A	199	G->C	102	Stop at 122.
282	G->C	125	C->T	209	A->G	195	Stop at 246	187	Stop at 202
308	Fr.	166	C->T	237	A->T	275	Fr.	100	A->G
332	Fr.	242	C->T	337	G->T	283	Stop at 305	140	Stop at 143
173	T->G	263	A->C	342	G->A	233	ins	176	Stop at 179
249	Fr.	139	G->T	37 7	C->A	127	Stop at 169	235	Ins
275	G->A	165	A->T	93 .	C->T	138	G->A	250	Stop at 262
294	G->T		T->G	202	C->T	208	A->T/C->T	284	Stop at 305
316	Fr.	241	T->A	199	Stop at 246	106	del	132	G->A
159	C->A	255		252	C->T	245	G->C/G->T	129	C->T
118	Ins	265	Fr.	254	C->T	212	Stop at 246	210	C->T
277	G->A	279	Fr.	262.	G->A	133	G->A	232	C->T
244	G->C	241	Fr.	263	A->G	124	T->C	257	C->T
264	Fr.	151	C->G	203	A-2 G		_		
	C->T/C-	156	Fr.	274	Stop at 344	51	Stop at 122	164	Stop at 169
278	>T	170	A->T	293	Stop at 344	170	G->A	249	del
177	C->T	204	G->T	156	C->G	150	del	187	Fr.
179	C->T	249	A->G	157	Stop at 169	85	Stop at 143	210	Fr.
281	C->T	280	G->T	92	C->T	195	T->A	207	T->C
141	G->A	2,80	U		- :				
283	Stop at 344	281	A->C	201	G->T	314	Stop at 338	226	G->C
203	Stop at							1.60	C->G/C->G
136	148	94	T->A	202	Stop at 246		Stop at 340	168	•
286	G->A	153	C->A	222	C->T	67	Stop at 122	185	A->G
109	C->A	172	T->C	223	Stop at 246	255	Stop at 344	198	Stop at 208 G->C
164	A->G	173	T->A	264	Stop at 344	163	del	208	G-2C
	. "				C->A/G-	101	Stop at 246	331	A->C
238	G->C .	296	C->G	273	>A	191	Stop at 257	320	Stop at 336
110	G->T	284	A->G	316	C->A	255	Stop at 257	. 329	A->C/G-
			C > T	271	Ins	262	Stop at 263	- 331	>A
113	T->G	135	G->T	129	Fr.	264	C->A	338	T->A
162	C->G	31	G->A	192	Ins	348	G->T	280	Fr.
183	C->G	72	Fr.	172	ПЗ				
0.07	Stop at	91	G->A	307	G->T	232	Stop at 246	290	Fr.
287	344	110	Fr.	220	T->A	170	ins	297	Fr.
152	G->A	154	Fr.	285	A->G	114	T->A	297	C->G
138	C->T	158	Fr.	226	G->A	343	G->T	136	Stop at 164
278	C->G	167	C->T	137	Ins	26	Stop at 36	149	Stop at 180
236	T->C	178	Stop at 180		Ins	137	G->T	221	Stop at 246
237	A->G	176	Stop at 208		Fr.	145	G->C	228	ins
289	T->A	193	G->A	135	del	146	T->C	243	Stop at 340
237	G->T	199	G->A	102	Stop at 116	_	A->T	292	Stop at 304
136	Ins	199	U~A	102	G->A/A-			17	
99	Stop at 147	227	Ins	324	>G	296	A->T	328	del
フブ	Stop at		G->T/G-	*		•		222	Cham -+ 245
134	169	248	T <	27	Fr.	164	G->A	338	Stop at 346
134			T->C/G-				T > C	242	A->C
242	T->C	265	> T	162	del	148	T->G	243	T->A
193	C->T	272	T->A	277	Ins	274	del	348	1/A
	•								

Codon	Event	Codor	Event	Codor	ı Event	Codor	e Event	Codon	Event
188	Fr.	274	T->G	135	T->G	211	Stop at 215		C->T
	Stop at	271	1-0	155	170	211	310p at 213) 304	C-21
152	169	349	Fr.	69	C->G	239	A->T	228	G->T
57	Fr.	203	Fr.	242	T->G	313	ins	370	A->C
281	C->G	205	T->G	157	G->A	327	T->G	149	C->T/C->T
•	Stop at								
260	263	205	A->C	198 .	G->C	211	C->A	158	C->T/G->A
132	A->T	246	A->T	157	T->G	246.	Stop at 246	240	G->A
249	Stop at 263	202	C44 206	- 270	0.0	1.62	G . T	a - a	
167	203 G->T	282 133	Stop at 305	5 279 134	G->C	163	C->T	258	Stop at 263
107	G->1 A->T	162	A->C A->T	239	Ins Stop at 263	252 3 129	del	317	C->A
24	A->T	174	A->1 A->T	168	Stop at 169		del G->C	262	T->A
175	C->T	253	C->G	134	Fr.	253	A->C	263	A->T
358	G->A	131	A->G	253	A->T	233 274	_	163	T->G
175	Ins	137	T->A	254	A->1 A->T	154	Ins C->A	312 301	Fr. C->A
1,0	1110	137	1-11	254	A-> 1	154	C-ZA	301	G->A/G-
115	C->T	141	Fr.	247	A->G	183	C->T	226	>A
103	Fr.	157	T->A	235	A->T	225	T->A	200	A->C/A->C
237	Fr.	157	Fr.	176	Stop at 243	149	ins	207	G->C
250	C->T	176	Ins	163	Stop at 169	171	Fr.	226	Stop at 227
365	A->G	240	Fr.	248	Stop at 344	287	A->T	266	•
271	G->A	274	T->C	289	Stop at 304	133	G->T	113	del
320	G->C	46	Fr.	163	Fr.	137	C->A	226	Fr.
349	G->T	112	Fr.	207	Fr.	148	G->T	94	C->A
126	del	295	C->T	251	A->T	246	A->C	127	Fr.
36	G->A	193	T->A	112	Stop at 120		T->C	133	Stop at 145
76	Fr.	221	G->T	120	Stop at 122		T->C	153	Stop at 180
241	C->G	227	Fr.	231	C->T	297	C->A	75	C->T
281	G->C	241	C->A	212	Stop at 214		G->A	116	Stop at 122
244	G->A	281	G->A	179	A->C	244	C->G	184	del
218	T->G Stop at	316	Ins	174	G->T	221	Stop at 222	106	Stop at 122
256	344	344	Fr.	232	del	243	T->A	69	Ston at 147
	A->C/G-	J	•••	232	doi	243	I-A	09	Stop at 147
280	>C	145	T->G	173	Stop at 195	308	C->G	298	Stop at 344
258	A->G	145	T->C	273	Stop at 344	189	C->A	182	ins
270	T->A	194	T->C	143	T->A	239		133	del
176	T->G	162	A->G	161	C->T	142	C->G	163	Stop at 168
	Stop at				_				
171	231 Stor et	315	Ins	72	Stop at 120	295	C->A	174	del
251	Stop at 263	203	T->A	265	del	156	Ctom at 160	220	m > 0
337	C->T	273	Ins	214	Stop at 214	213	Stop at 168	330	T->G
266	G->C	62	G->T	107	Stop at 214 Stop at 147	243	Stop at 245 Stop at 244	125 258	C->G
203	G->C	71	Fr.		Ins	289	C->T	330	Stop at 344
	Stop at	. • •	•••	317	шз	20)	C->1	330	Stop at 335
241	252	128	Fr.	165	C->A	211	del	113	T->C
193	A->T	203	T->C	99	Stop at 122	220	Stop at 244	265	T->G
255	A->G	254	C->G	36	C->T	229.	T->G	126	T->C
194	C->G	282	Fr.	245	Ins	253	del	214	Stop at 218
	Stop at								
342	342	258	G->C	76	C->T	302	Stop at 303	284	C->T
	Ins		Fr.		T->A		A->G	96	ins
257	C->G	139	A->C	165	A->C	212	Stop at 244	62	Stop at 121

Tablea	iu J				, ,				·
Codon	Event	Codon	Event	Codon	Évent	Codon	Event	Codon	Event
282	ins	215	A->C	269	Fr. G->T/C-	129	Stop at 145	285	A->C
245	G->C	243	Ins	245	>A	190	del	358	G->T
209	ins	295	Fr.	208	G->A	216	Stop at 221	122	G->A
239	ins	285	A->T	236	C->T	275	Stop at 304	69	Stop at 122
	T->G	170	Stop at 179	294	G->A	150	ins	155	C->T/C->G
179	1-20	1,70	Stop at 177						G->A/C-
314	C->T	208	Stop at 246	251	Fr.	188	C->G	245	>G
155	C->T	209	Stop at 214	215	Ins	220	Ins	181	C->G
	Stop at				0.5	200	4.50	185	Ins
249	344	240	Stop at 263	154	C->T	292	A->C	52	Stop at 56
116	C->G	141	G->T	293	G->C	305 48	G->T A->T/C->T	112	Stop at 122
163	A->G	151	Fr.	161	C->G		A->1/C->1 C->G	165	Stop at 169
173	G->C	182	Stop at 246	56	G->A	154	Fr.	323	del
255	C->T	140	A->G	139	G->A	150	C->A	67	C->G
255	C->G	142	C->T	222	G->C	329 80	C->A C->T	148	A->T
218	T->C	169	T->A	302	Stop at 344	00	C->1	140	22-2
201	Stop at	170	A->G	144	Stop at 169	243	T->G	230	Stop at 246
301	344 A->T	271	A->G	166	T->G	104	Stop at 148	95	Stop at 148
271 286	A->1 A->G	331	C->T	149	T->A	117	Stop at 148	276	Stop at 286
286 294	A->G A->G	194	Stop at 245	204	del	138	C->A	249	Stop at 342
294	A->0		T->G/T-						
264	C->T	113	>G	127	C->A	248	C->T/G->C	208	del
235	A->G	165	C->T	289	T->C	167	G->A	163	Stop at 163
249	A->T	176	Stop at 246	261	A->G	214	C->G	213	A->G
216	G->A	207	T->G	269	A->G	272	Fr.	282	Stop at 304
215	G->A	297	C->T	128	Stop at 169	186	A->G	295	Stop at 344
272	G->A	141	T->G	159	Stop at 169	147	Ins	160	del
	Stop at		0.0	204	Two	261	T->G	233	A->T
267	344	181	G->C	204 242	Ins Stop at 242	240	T->G	186	T->C
242	G->A	229	Fr.	237	del	288	Fr.	243	T->C/G->A
195	T->C	276	Fr. Stop at 169	284	Stop at 304	286	A->G/A->T		C->A
172	G->T	149 193	C->G	331	G->T	126	Stop at 169	144	G->T
239	A->G	293	Stop at 304	130	T->A	182	Fr.	231	Fr.
262	G->T	293 147	Fr.	39	C->T	298	Fr.	254	Fr.
255	T->C A->C	286	G->T	352	G->C	220	T->G	266	ins
286 283	G->A	287	Stop at 303	209	Stop at 246	269.	G->A	258	A->C
190	C->T	293	G->A	90	C->T	232	Fr.	239	Stop at 261
154	G->A	295	T->C	111	G->A	131	del	262	G->C/G->C
154	Stop at		_					•	8 2
272	344	215	Fr.	119	C->T	261	Fr.	296	Stop at 334
143	G->A	333	Fr.	141	T->C	111	T->A	284	del
271	A->C	28	A->C	202	T->C	285	Fr.	150	A->C
133	T->A	67	C->T	326	A->G	266	G->A/A->T	225	G->T
174	Fr.	288	A->G	36	G->T	162	Stop at 169	247	Fr.
132	A->G	276	del	68	A->G	208	Ins	322	C->T
252	Fr.	292	Fr.	117	G->T	250	Ins	85	Stop at 117
330	T->A	189	C->T	145	G->T G->A/T-	130	Stop at 169	. 86	ins
179	C->A	210	A->G	215	>A	289	Fr.	189	Fr.
309	C->G	217	T->C	325	G->A	198	Fr.	315	Fr.
212	ins	135	Stop at 169	112	G->A	302	Fr.	169	Stop at 180
175	G->T	165	A->G	308	G->A	137	C->T	245	G->T/G->T
113	- -	-					-		

WO 03/040366 Tableau 3

Annexe B(7)

× 40100									
Codon	Event	Codon	Event	Codon	Event	Codon	Event.	Codon	Event C->A/G-
153	C->G C->G/G-	234	del	63	C->T	191	Ins	175	>C/C->G
145	>T	218	del	104	A->T	186	G->A	71	C->T
277	Fr.	100	C->T	212	T->C	237	ins	72	Stop at 148
275	G->T	169	G->A	217	G->A	230	A->G	98	T->A
110	C->T	158	Stop at 179		T->C	184	A->G	287	Stop at 304
232	T->A C->A/C-	143	Stop at 169		C->T	157	ins	162	A->G/C->T
151	>T	200	Ins	299	G->C	95	T->A/T->G	130	T->C
218	G->T	185	Stop at 246		T->C	314	Fr.	215	Stop at 243
139	A->G	11	G->A	127	T->C	306	A->G	204	Stop at 207
250	C->G	217	G->C	162	Ins	45	C->A	315	Stop at 336
280	A->C	72	Stop at 122		G->T	100	Fr.	33	Stop at 43
127	C->T	105	G->T	257	Ins	162	Fr.	41	Stop at 43
176	G->C	221	G->A	341	T->G	319	Fr.	80	Stop at 120
274	G->C	253	A->G	242	Stop at 246	113	Fr.	96	Stop at 147
246	T->G	300	Stop at 344		del	126	C->A	207	Stop at 212
	Stop at		•						•
229	238	250	Stop at 342	257	T->G	196	Stop at 246 G->A/C-	215	Stop at 245
247	A->C	135	T->A C->T/C-	229	T->C	175	>G	224	Stop at 246
290	G->A Stop at	159	>T	196	G->A	182	T->G	260	del
219	246 Stop at	249	G->A	200	A->G	190	C->G	276	Stop at 339
88	122	198	A->G	278	Stop at 344	141	Stop at 148	290	Stop at 339
254	T->C	238	T->G	144	G->C	166	Stop at 180	300	Stop at 343
283	C->G	243	A->T	158	Stop at 169	345	Stop at 369	51	Stop at 121
299	G->A	259	G->A	252	Stop at 344	192	C->A	301	Stop at 303
346	G->A	268	A->G	241	Stop at 261 C->T/G-	65	Fr.	236	A->C/C->G
116	T->C	287	Fr.	282	> A '	185	G->T	83	C->T
150	A->G	302	G->A	276	G->T	181	C->A	237	T->C
95	T->C	189	G->C	196	C->A	190	Stop at 208	156	ins
54	T->A	212	Fr.	193	T->C	155	C->G	128	C->G
256	C->T	51	G->T	160	A->C	242	G->T/C->T	243	T->G/G->C
309	C->A	160	G->C	243	A->G	269	A->T	133	A->G
109	T->C	207	Ins	206	Stop at 246	283	Fr.	125	C->A
265	T->C Stop at	147	T->G	194	T->A	189	G->A G->A/G-	62	A->G
139	169	177	Fr.	212	T->A	244	>C	54	C->T
154	G->T	121	Fr.	169	A->G	138	Stop at 148	84	C->G
179	A->T	147	T->C	183	T->C	188	Stop at 208	202	G->C/T->G
255	del Stop at	160	A->G	77	C->G	246	del	319	A->C
342	344	230	Fr.	188	Ins G->T/C-	180	G->C	138	C->G
11	G->C Stop at	237	A->C	158	>T	175	del	229	T->A/G->A
121	122	47	Stop at 121	194	Stop at 207	290	Stop at 301	101	Stop at 122
34 .	ins	78	Fr.	253	Ins	271	del	278	Stop at 304
53	G->A	81	Stop at 122	360	Stop at 369	156	Stop at 180	339	Fr.
144	A->C	108	Stop at 146	191	C->G		C->A	303	G->T
280	A->G	110	G->C	141	T->A	112	C->A	247	Stop at 344

Tablea	03/040300 ni 3		•	An	nexe B(8)		. •	ing April	
				Codon	Event	Codon	Event	Codon	Event
Codon	Event	Codon	Event	303	A->T	193	C->A	299	Ins
326	G->T	156	C->T	303	A-> I				1
. 220	Stop at	217	del	49	Ins	222	Fr.	293	del
332	344	242	T->A	62	Stop at 141	228	Stop at 245	247	Stop at 343
256	Ins	242	Stop at 340	103	del	145	del	.5	C->T
283	C->T	243 251	Ins	105	del	148	Stop at 167	123	C->T
232	T->C	231 91	G->T	121	del	140	Stop at 168	126	C->T
184	Fr.		A->G	124	Ins	171	Stop at 180	320	G->A
273	C->G	136	G->C	124	Stop at 167	304	Fr.	356	G->A
133	T->C	146 164	A->T	338	Stop at 343	159	ins	379	G->A
272	G->T		Fr.	336	G->T	261	G->A	154	Stop at 180
293	G->T	194 255	A->T	124	C->G	304	A->G	164	G->C
267	G->A	339	Ins	284	A->T	222	G->T	75	C->G
325	G->T	359 35	G->T	144	G->A	291	G->C	163	Stop at 165
71	Ins		G->T	227	C->T	147	T->A/T->A	238	Stop at 244
120	A->T	213 261	Stop at 263	208	G->T	216	G->C	8	C->T
151	Ins	299	T->C	228	G->A	91	Ins	15	A->C
307	Fr.	204	1.⇒C A->T	196	G->T	311	A->C	61	A->G
108	Fr. T->A	47	Fr.	195	C->G	334	Stop at 344.	72	C->T
257	Stop at	47					_		1
257	344	178	C->A	272	T->G	211	T->C	102	ins
138	G->T	257	G->A	5 3	G->C	197	G->T	104	G->T
155	C->A	341	C->T	290	C->G	202	C->A	106	A->G
133	O 1 -			•	A->T/A-		a	265	C->T
167	C->A	290	C->T	292	>T	219	C->A	365 10	C->T
174	A->G	169	T->C	245	Stop at 246		G->C	21	C->T
181	G->T	233	C->T	188	Stop at 246	163	A->C G->C/A-	21	C->1
				288	Stop at 344	271	>G > C/A-	361	G->A
241	T->A	198	G->A	288 176	Fr.	238	Fr.	364	C->T
305	A->T	200	Fr.	148	Stop at 179	206	T->A	385	T->C
273	C->A	228	C->G	161	Stop at 169		del	307	A->G
219	C->T	236	C->A G->T/C-	101	Stop at 105	3.5			
251	C->G	245	>T	211	Stop at 246	94	Stop at 122	161	G->T/C->T
251	C->G C->G	249	Ins	244	Stop at 246		Stop at 236	241	Stop at 263
233	Stop at	. 247			-				
215	246	251	T->A	247	del	107	C->A	327	Stop at 335
216	Ins	258	Fr.	260	Stop at 344		Fr.	157	T->C
344	T->C	278	Ins	216	T->C	69	Fr.	132	Stop at 169
213	G->C	279	Ins	231	A->T	204	Fr.	221	A->C
82	C->T	296	A->C	208	C->A	305	A->C/G->T		G->C
151	del	255	Stop at 343	301	C->G	269	Stop at 344		Stop at 179
180	G->A	290	Stop at 344		C->G	230	Stop at 238		Stop at 305
337	G->A	137	Stop at 145		G->C	227	Stop at 228		G->C
281	A->T	155	Fr.	243	G->C	363	G->A	215	Stop at 221
133	T->G	206	Ins	159	G->T	253	Fr.	179	Stop at 148
236	del	242	Ins	33	Ins	250	Stop at 344		Stop at 148
306	G->C	300	Fr.	192	del	259	C->A	256	Stop at 169
227	T->A	191	T->C	312	C->A	167	del	131	Stop at 169
138	G->C	191	C->A	321	Stop at 344	173	Stop at 246	143	Stop at 167
	Stop at		.	000	C->G/C-	212	Fr.	158	C->T/G->T
178	246	246	T->A	283	>G	313	Г1.	120	<u> </u>
	C->T/A-	268	A->T	285	G->T	346	Ins	207	A->T
213	>G	258	Ins	283	C->A	293	Ins	245	Stop at 262
191	Stop at	143	LIIS	203	J - 11	- -	-		* *

WO 03/040366

Annexe B(9)

Tableau 3

Codon Event Event Codon Event Event Codon Event Codon Codon 207 258 Stop at 291 224 A->T A->G 216 del 159 Fr. 236 Stop at 167 266 Stop at 271 C->T 158 G->C Stop at 178 318 196 165 G->C/C-154 Stop at 167 284 Stop at 344 >G/C->G 119 168 156 G->A Ins 283 Stop at 304 285 ins T->G 344 G -> T169 del 339 290 Stop at 246 284 C->A ins 195 216 T->G 166 C->G Stop at 176 G->T/C->T 294 Stop at 344 $G \rightarrow C$ 240 184 246 191 C->T Stop at 308 Stop at 344 47 C->T/C->T 306 Stop at 344 279 344 152 Ins Stop at 50 C->T/C->T 49 A->T151 C->T 168 A->C210 140 C->T/C->T 254 Stop at 260 G->C 198 A->T 88 282 C->A 209 Fr. 71 C->A 301 Stop at 305 273 G->A T->A209 162 Stop at 344 T->C 311 del 162 T->G 138 251 C->T 214 Stop at Stop at 173 180 A->G320 Stop at 344 171 166 Fr. 241 246 G->A/G-Stop at 163 324 Stop at 344 Stop at 344 174 150 265 Ins 248 >A Stop at 209 A->C 218 Stop at 219 244 Stop at 263 362 369 163 C->G C->A 265 208 C->T 182 T->AStop at 215 218 ins 81 G->A/G-C->A 222 Stop at 246 Stop at 304 228 285 224 211 Ins >A C->A G->C 248 296 Fr. 236 T->A286 197 T->G G->A/G->T 205 ins C->T 130 C->A 282 267 301 C->TA->T 77 Fr. Fr. 61 G->C 148 G->A 201 157 Stop at 344 C->T T->C 86 133 Stop at 169 330 75 G->A 282 C->T G->A 112 Stop at 148 76 174 Stop at 179 131 276 C->A C->T/C-Stop at 239 295 C->G 320 ins 239 A->C 236 >T 250 340 G->A 125 G->T236 Ins 244 Fr. 279 G->TC->T/C-238 del 144 A->G 266 Fr. 271 G->T 219 **>T** C->T/C-Stop at 148 T->G 135 278 Fr. 313 Stop at 334 126 152 >T Stop at 336 171 G->A240 Stop at 262 234 T->C/C->G 316 C->T157 T->A/C->A del 165 Fr. 234 G->A 266 C->T 229 158 C->G/C-C->T/C-A->T C->T/A->C Stop at 344 101 233 161 276 >A 222 >T 206 T->A/G->T C->A .166 Ins 254 Stop at 344 168 195 C->T G->A/G-226 C->A 150 Stop at 169 217 >A 241 T->C 291 G->TG->C 302 A->T 222 C->A 169 Fr. 154 192 Ins C->T/C-C->G A->T 260 218 T->A 167 G->A 177 >T 333 A->C A->G/T->A C->T 148 220 G->C 228 del 202 369 C->T/C-Stop at 246 155 Stop at 180 233 C->A G->A250 >G 141 203 G->C 195 del 325 A->T221 G->C C->G 261 232 A->T248 del 185 G->A 303 G->C 226 C->T188 275 T->A 186 Stop at 208 G->A 215 T->C 182 224 Fr. 230 Stop at 239 184 Stop at 185 85 C->T 177 C->A 199 A->G 303 Stop at 344 187 Stop at 208 C->T 89 T->C 271 G->C 277 279 234 C->T del 292 A->T101 A->G 176 T->C A->T/A-153 Fr. 235 Stop at 239 C->T132 227 T->C 300

WU	03/040300		•						4.1.4
Tablea	au 3			Ant	nexe B(10)				
Codon	Event	Codon	Event	Codon	Event >G	Codon	Event	Codon	Event
327	T->C	319	A->T	160	G->A	235	A->C	.141	Stop at 169
247	C->T	195	Fr.	46	C->T	82	Stop at 145	264	T->C
135	C->T	269	G->C	122	G->T	196	Fr.	76 .	A->T
211	C->T	172	T->G	108	G->A	275	ins	96	T->C
149	C->T C->T/C-	35	G->C	103	C->T G->C/A-	82	ins	308	C->A
142	>T C->T/C-	90	Fr.	281	>G/C->G	273	T->G	96	C->G
138	>T	135	C->A	105	C->T C->T/G-	276	Stop at 305	206	G->A
178	C->T C->T/C-	131	A->T	273	>A	254	A->G	241	Ins
241	>T	155	del	140	Stop at 148	225 .	T->G	111	T->G
130	C->T C->T/C-	228	Stop at 239	270	Stop at 337	246	G->T	238	Ins
127	>T	292	Stop at 305	190	Stop at 195	93	G->A	347	C->G
135	G->A	387	del	275	Stop at 341	254	C->A	154	G->T/C->T
211	A->G	231	A->G	143	Stop at 148	294	Ins	212	T->G
286	Fr.	268	A->C	107	C->G	139	Fr.	260	C->A
168	Fr.	179	T->C	194	Stop at 206	356	G->C	123	Stop at 148
175	C->A	232	A->T	271	Stop at 343	182	G->C	146	T->G
381	Fr.	134	T->G	254	del	73	Stop at 122	73	T->A
263	Fr.	274	G->A	255	Stop at 262	76	C->G	165	G->T
292	A->G	243	Stop at 246	322	A->C	150	Stop at 165	313	G->A
	• .	131	A->C	323	Stop at 340	214	Stop at 220	130 133 289	ins A->T Ins

:	ramily history Reference	19 8 8	pos Bruggenwirth et al; J Steroid Biochem Mol Biol 58:569-675, 1996	Tilley et al; Clinical Cancer Res. 2: 277- 285, 1996	Urushibata et al; 10th. Int. Cong. Endocrinol Abstr. P3-706, 1996	Tilley et al; Clinical Cancer Res. 2: 277-	pos Kooy et al; Am J Med Genet. 85: 389-393.	LaSpada et al; Nature 352:77, 1991	Schoenberg et al; Bioch. & Biophys Res Comm 198: 74-80 1994	Watanabe et al, Jpn J Clin Oncol 27: 389-393,	Watanabe et al, Jpn J Clin Oncol 27: 389-393, 1997
	Sex of External rearing Genitalia	Ambiguous	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
1	rearing	Male	Female	Male	Male	Male	Male	Male	Male	Malc	Male
200	Comments	20-50% reduction in mutant protein	I nt insertion causing frameshift & stop in Codon 180	Also Phe891Leu (TTT to CTT) mut. Somatic mutation	30 nt. deletion Somatic mutation	Somatic mutation	3 affected siblings - normal CAG = 23	Expansion of polyglutamine repeat	Contraction of poly Gln repeats (24 to 18) Somatic mutation	Deletion of 1polyGln Male repeat (23-22) Somatic mutation	Insertion of 1polyGln Male repeat (21-22) in 2 diff patients.Som mut
Androgen Binding	Bınax Kd k	high	zero				normal normal				
i			Ze				<u>u</u>				
Exon 1 tracts				ı		,	∞	> 40	18	52	22
Change I		Glu⇒Lys <u>G</u> AA⇒ <u>A</u> AA	$Gly \Rightarrow 0$ $GGC \Rightarrow +C$	Leu⇒Ser T <u>T</u> G⇒T <u>C</u> G	11 11	Leu \Rightarrow Gln $C\underline{\Gamma}G \Rightarrow C\underline{A}G$	î î	11 11	î î	11 11	î î
Pathogenicity proven CpG Position Exon 1 Amino acid	spot Base	4	051	054 523	057	057 532	058	058-078	058-078	058-078	058-078
Pathogenicity proven Cpd Exon 11.4	on ds	* E	1 Nterm	1 Nterm	Nterm	1 Nterm	1 Nterm	1 Nterm	1 Nterm	1 Nterm	1 Nterm
Pathol Pro Exon	Domain	ltuf. 1 Nterm	ion 1 Ntc	itati Z		itut. Ž		ion 1 Žįt		on Zg 1	ion 1 Nfc
ıtation	type	Substitut. 1	Insertion 1	Substitut	Deleti	Substitut 1	Deletion	Insert	Deletion	Deletion 1 N	Insertion 1
P Accession # Mutation	Phenotype type	PAIS	0002 CAIS	0003 Prostate	0004 Laryngea Deletion cancer	0005 Prostate	0411 Mental Retard.	0006 Kennedy Insertion 1 Syndrome	0007 Prostate	0324 Prostate cancer	0325 Prostate cancer
Acces	ਜ਼ੂ 	0001 PAIS	0000	0003	0004	0000	0411	9000	0000	0324	0325

			_			•						•	<u> </u>
Family history Reference	Wallin et al; J Pathology 189: 559-653, 1999	neg Zoppi et al; J Clin Inv 19:1105, 1993	pos Zhu et al; J Clin Endocrinol & metab 84: 1590-1594, 1999	Tilley et al; Clinical Cancer Res. 2: 277- 285, 1996	Gottlieb et al; Hum Mutat. 14: 527-539, 1999	Chelnski et al. The Prostate 47: 66-75, 2001	neg Gottlieb et al; Hum Mutat: 14: 527-539, 1999	Tilley et al; Clinical Cancer Res. 2: 277- 285, 1996	Gottlieb et al; Hum Mutat. 14: 527-539, 1999	Gottlieb et al; Hum Mutat. 14: 527-539, 1999	neg Batch et al; Hum Mol Genet 1: 497, 1992	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Hiort et al; Am J Med Genet. 63: 218-222, 1996
External Genitalia	Normal	Normal	Normal	Normal	Normal	Normal	Normal.	Normal	Normal	Female Normal	Normal	Normal	Female Normal
Sex of rearing	Male	Female	Female	Male	Female	Male	Female	Male	Female		Female	Female	Female
n Binding Thermolabile Comments	Contraction of poly Gin repeats (20 to 18) Somatic mutation	Normal upregulation. Female Normal	either 1nt. insert or 2nt, delframeshift & stop in codon 80	Also Leu830Pro (CIT to CCT) mut. Somatic mutation	Int. insertion causing Female frameshift and stop in codon 91	AR indep.+Leu57Gln Male & His 874Tyr mut. + Duplication of exon 3	1 nt. deletion causing frameshift and stop in codon 172	AlsoTrp798Stop (TGG to TGA) mut. Somatic mutation		Int. deletion causing frameshift and stop at codon 172	1 nt deletion causing frameshift & stop in Codon 172	1 nt deletion causing frameshift & stop in Codon 172	Deletion of Codons 140-148 Stop in Codon 154
Androgen Binding Thermolabil		normal high											
		low	<u> </u>		zero		zero		<u> </u>	zero	zero		
Exon 1 tracts Poly Poly Gln# Gly#						119	72		27	75	·.		 .
Exon 1 Poly Gin#	18												
		- 12	<u></u>	(2)	. 25 G	27	G .	——————————————————————————————————————	P 25	. G	, <u>9</u>	20 D	·
Change Amino acid Base	1 11	Gln ⇒ Stop CAG ⇒ <u>T</u> AG	Gln ➡ Gln CAG ➡ CAAG	$Gln \Rightarrow Arg$ $C\underline{A}G \Rightarrow C\underline{G}G$	Gln⇒Gln 25 CAG⇒ CAAG	Glu⇒Asp 27 ⇒	Pro ⇒ Pro 12 CCAC ⇒ CCG	Gln ⇒ His CA <u>G</u> ⇒ CA <u>T</u>	Gln⇒ Stop 25 CAA⇒ <u>T</u> AA	Pro ⇒ Pro 23 CC∆C ⇒ CCG	Arg⇒ Arg AdaA ⇒ AGG	Arg⇒ Arg AGAA ⇒ AGG	îî
pg Position ot Amino acid Av		060 Gln ⇒ Stop 540 <u>CAG ⇒ TAG</u>	060 Gln ⇒ Gln 542 CAG ⇒ CAAG	$064 \qquad Gln \Rightarrow Arg$ $550 \qquad C\underline{A}G \Rightarrow C\underline{G}G$				112 Gln \Rightarrow His 698 $CAG \Rightarrow CAT$			127 Arg \Rightarrow Arg 743 AGA \Rightarrow AGG	127 Arg⇒Arg 743 AGAA ⇒AGG	140
pg Position ot Amino acid Av	058-078	060	060	550	term 617 CAG⇒CAAG	91 Glu⇒Asp 635 ⇒	102 Pro⇒Pro 668 CCΔC⇒ CCG	Merm 698	term 699 CAA⇒IAA	125 Pro⇒Pro 738 CC∆C⇒CCG	erm 127	127	·
nthogenicity proven CpG Position Exon hot Amino acid Al Domain spot Buse	058-078	060			Gln ⇒ Gln CAG ⇒ cAAG	Substitut 1 91 Glu \Rightarrow Asp Nterm 635 \Rightarrow	Pro ⇒ Pro CCAC ⇒ CCG		Gln⇒Stop <u>C</u> AA⇒ <u>T</u> AA	Pro ⇒ Pro CC∆C ⇒ CCG	127		140
Pathogenicity proven Coc Position Mutation Exon hot Amino acid As	058-078	060	1 Nterm 542	Nterm 550	term 617 CAG⇒CAAG	91 Glu⇒Asp 635 ⇒	1 102 Pro⇒Pro Nterm 668 CCΔC⇒ CCG	Merm 698	term 699 CAA⇒IAA	1 125 Pro⇒Pro Nterm 738 CCΔC⇒CCG	1 127 Nterm 743	1 Nterm 127 743	Nierm 140

Family	Copelli et al; Asian J Androl 1: 73-77, 1999	Gacobini et al. Hum Genet. 108; 176, 2001	Hiort et al; Am J Med Genet. 63: 218-222,	Holterhus et al. J Clin Endocrinol. 82: 3584-	neg Gottlieb et al; Hum Mutat. 14: 527-539,	Tilley et al; Clinical Cancer Res. 2: 277-	Komori et al; J Obstetrics & Gynocol.	23: 277-81, 1997 Taplin et al; 37th meeting ASCO 20:	Abstr, 1738 2001 neg Batch et al; Hum Mol Genet 1:497, 1992	Taplin et al; 37th meeting ASCO 20; Aber 1738 2001	Macke et al; Am J Human Genetics 53:	844-852, 1993 Ahmed et al; J Clin Endocrinol & Metab 85;	658-665, 2000 Wang et al; Clinical Genetics 54: 185-192, 1998
External Conitolic		Normal	Normal	Female Ambiguous	Normal	Normal	Female Normal	Normal	Female Normal	Normal	Normal	Normal	Normal
Sex of	Female	Female	Female	Female	Female	Male	Female	Male	Female	Male	Male	Female	Male
n Binding Thermolabile Comments				Somatic mosaic mut. causes partial		Somatic mutation	Also 1 nt deletion in Codon 597 causing	ted with utamide - somatic	4 nt insertion causing frameshift & stop in Codon 232	າ e - silent omat, mut,		Frameshift & stop in codon 232?	
Androge	1			low normal	zero				zero			zero	
Exon 1 tracts Poly Poly Gln# Gly#					24								
Exon 1 Poly Gln#					56	· ·							
in Change id Amino acid Base	Glu⇒Stop GAG⇒ <u>T</u> AG	Glu⇒Stop <u>G</u> AG⇒ <u>T</u> AG	Leu⇒Stop T <u>T</u> A⇒T <u>G</u> A	Leu⇒Stop T <u>T</u> A⇒T <u>G</u> A	Leu⇒Stop 26 T <u>T</u> A⇒T <u>C</u> A	Lys⇒Arg A <u>A</u> A⇒A <u>G</u> A	$Gln \Rightarrow Arg$ $C\underline{A}A \Rightarrow C\underline{G}A$	$Glu \Rightarrow Gly$ $G\underline{A}A \Rightarrow G\underline{G}A$	Glu ♣	Glu⇒Glu GA <u>A</u> ⇒GA <u>G</u>	Ser⇒Arg AG <u>C</u> ⇒AG <u>G</u>	Arg⇒Lys AΔGA⇒AAG	Arg⇒ Arg AG <u>G</u> ⇒ AG <u>A</u>
ty CpG Position hot Amino acid spot Base	153 819	153 819	172 876	172 876	172 876	1180	194 943	198 955	202	202	205	208	210
Pathogenicity proven C Exon bh		term	1 Nterm	term	term	Nterm	1 Nterm	1 Nterm	1 Nterm	1 Nterm	1 Nterm	1 Nterm	Nterm
Patho Putation Ex type Doi	Substitut 1	Substitut, 1 Nterm	Substitut, 1	Substitut, 1 Nterm	Substitut, 1 Nterm	Substitut 1	Substitut 1	Substitut 1	Insertion 1	Substitut, 1	Substitut, 1 Nt	Deletion 1	Substitut 1 Nt
e.l						0014 Prostate	CAIS	0551 Prostate cancer	CAIS	0549 Prostate cancer	0395 Normal	cais	MAIS
Acces	0516 CAIS	0523 CAIS	0013 CAIS	0316 PAIS	0420 CAIS	0014	0319 CAIS	0551	0015 CAIS	0549	0395	0437 CAIS	0376 MAIS

Family bistory Reference	Batch et al; Hum Mol Genet 1:497, 1992	Hiort et al; Eur J Pediatr 153: 317-321, 1994	Lu et al; Clinical Genetics 49: 323-324. 1996	Wang et al; Clinical Genetics 54: 185-192, 1998	Macke et al; Am J Human Genetics 53: 844-852, 1993	Wang et al; Clinical Genetics 54: 185-192, 1998	Gottlieb et al; Hum Mutat. 14: 527-539, 1999	neg Gottlieb et al; Hum Mutat. 14: 527-539, 1999	Gottlieb et al; Hum Mutat. 14: 527-539, 1999	pos Gottlieb et al; Hum Mutat, 14: 527-539, 1999	Gottlieb et al, Hum Mutat. 14: 527-539, 1999	Wang et al; Clinical Genetics 54: 185-192, 1998	Wang et al; Clinical Genetics 54: 185-192, 1998
External Genitalia	Normal	Normal	Normal	Normal	Normal	Normal	Female Normal	Normal	Ambiguous	Ambiguous	Normal	Normal	Normal
Sex of rearing	Male		Male	Male	Male	Male	Female	Female	Male	Male	Male	Male	Male
÷	Silent mutation - Dolymorphism detected in 8% popul.	Silent mut.polymorph Male -detected in 14% of X chromosomes	Silent mutation polymorphism	Silent mutation polymorphism	Silent mut.polymorph Male detected in 10% of X chromosomes	Silent mutation polymorphism - 4 patients with infertility	Silent mutation -negligible level of mRNA & hAR	Silent mutation -	Silent mutation -	Silent mutation -	Silent mutation -	servere oligospermia- 20% lower transactivation	
Androgen Binding Thermolabile Comments			-				v low	normal normal	v low	normal high	normal high	normal normal norm	
_							24	. 53	24	77	16	23	
Exon 1 tracts Poly Poly Gin# Gly#							7 55	4 21	A 23	19			
Change E Amino acid Base	$Glu \Rightarrow Glu$ $GA\underline{G} \Rightarrow GA\underline{A}$	$Glu \Rightarrow Glu$	Glu⇒Glu GA <u>G</u> ⇒GA <u>A</u>	Glu⇒Glu GA <u>G</u> ⇒GA <u>A</u>	Glu⇒Glu GA <u>G</u> ⇒GA <u>A</u>	$Glu \Rightarrow Glu$ $GA\underline{G} \Rightarrow GA\underline{A}$	$Glu \Rightarrow Glu \qquad 22$ $GA\underline{G} \Rightarrow GA\underline{A}$	Glu⇒Glu GA <u>G</u> ⇒GA <u>A</u>	Glu⇒Glu GA <u>G</u> ⇒GA <u>A</u>	Glu⇒Glu GA <u>G</u> ⇒GA <u>A</u>	$Glu \Rightarrow Glu$ $GA\underline{G} \Rightarrow GA\underline{A}$	$Gly \Rightarrow Arg$ $\underline{GGG} \Rightarrow \underline{AGG}$	Gly ⇒ Arg QGG ⇒ <u>A</u> GG
hogenicity proven CpG Position Sxon hot Amino acid tomain snot Base		211	211	211.	211	211 995	211	211	211	211	211	214	214
Pathogenicity proven C Exon b		erm	1 Nterm	Nterm	. 1 Nterm	1 Nterm	1 Nterm	1 Nterm	Nterm	1 Vterm	Nterm	1 Nterm	Nterm
Pathol pr Mutation Ex type Don	Substitut 1	Substitut 1 Nterm	Substitut 1	Substitut 1	Substitut 1	Substitut 1	Substitut 1	Substitut 1	Substitut 1	Substitut 1 Nterm	Substitut	Substitut. 1 Nterm	Substitut
Accession # M1	1	Normal	0330 Normal	0377 Normal	0396 Normal	0378 MAIS	CAIS	0422 CAIS	PAIS	0424 PAIS	0425 MAIS	0379 MAIS	0380 Normal
Access	0328	0329	0330	0377	0396	0378	0421	0422	0423	0424	042	0375	038

		neg Hiort et al; Hum Mol Genet	3: 1163-1166 1994 Taplin et al; 37th meeting ASCO 20	Giwercman et al. Clin Endocrinol 54: 877.834	Tanaka et al; Gynocol Endocrinol 12: 75-82,	1998 Tilley et al; Clinical Cancer Res. 2: 277-	285, 1996 Tilley et al; Clinical Cancer Res. 2: 277.	285, 1996 Bruggenwirth et al; J Steroid Biochem Mol	Biol 58: 569-575,1996 Yu et al; Sheng Wu Hua Xue 32: 459-462, 2000	Taplin et al; 37th	Abstr, 1738 2001 Castagnaro et al; Verh. Disch, Ges Parh 77.	neg Gottlieb et al; Hum Mutat. 14: 527-539	pos Davies et al; Clinical Endocrinoloey 43:	Hor et al; J Clin Endocrinol & Metab 85:	2810-2815, 2000
		Normal	Normal	Normal	Normal	Normal	Normal	Female Normal	Normal	Normal	Normal	Normal	Normal	Normal	
	Sex of	Female 1	Male	Male	Female	Male	Male		Male	Male	Male	Female	Female	Male	
	Thermolabile Comments	1 nt insertion causing frameshift &	Stop in Codon 232 Treated with flutamide Male also Thr877Ala -			Also Leu574Pro (CTG to CCC) mut. Somatic mutation	Somatic mutation	I nt deletion causing frameshift & stop in	Poor differentiation of Male CaP. Germline	mutation ? Treated with flutamide Male somatic mutation	Somatic mutation Stage 3 tumor	cific binding B only-mRNA	Somatic instability of Fernale Normal polyglycine tract	Oligospermia	
Androgen Binding) *	4		ma!	*			- 1, <u>ii - 1, 1</u>							_
				normal			•	zero		·		low		· · · · · · · · · · · · · · · · · · ·	
ä	Gin# G			·		<u> </u>				-					-
	Amuno acid 1 Base Gl	Ala ⇒ Gly GCT ⇒ GGCT	Asn ⇒ Asp AAT ⇒ GAT	Asn⇒ Lys AA <u>C</u> ⇒	Leu⇒ Pro CŢG ⇒ CCG	Met ⇒ Thr A <u>T</u> G ⇒ A <u>C</u> G	Pro⇒ Ser CCA⇒ TCA	Gly ⇒ Gly GGAA ⇒ GGG	Ser⇒ Arg AGC⇒ AGA	Ser ⇒ Pro TCC ⇒ CCC	Pro⇒Leu C <u>C</u> G ⇒ C <u>T</u> G	Glu⇒Stop 21 GAG⇒ <u>T</u> AG	Gly \Rightarrow Stop $GGA \Rightarrow \overline{1}GA$	Pro ⇒ Ser CCG ⇒ ICG	-
CpG Position	spot Base	215	222	233	255 1126 (266	269	272 1178 G	296 1250 A	334 1359 <u>1</u>	340 1381 C	353 1419 G	371 1474 G	390 0821	
proven Fron	Domain	1 Nterm	1 Nterm	1 Nterm	Nterm *	1 Nterm	1 Nterm	1 Nterm	1 Nterm	1 Nterm) Nterm	1 Nterm	Nterm	1 Nterm	
Mutation		Insertion	Substitut, 1	Substitut, 1 ** Nterm	Substitut 1	Substitut, 1 Nterm	Substitut 1 Nterm	Deletion 1 Nterm	Substitut, 1 Nterm	Substitut 1	Substitut. 1	Substitut 1	Substitut, 1 Nterm	Substitut, 1	
Accession#	- ă.i	0016 CAIS	0548 Prostate cancer	0531 MAIS			0018 Prostate cancer	0019 CAIS	0556 Prostate cancer	0550 Prostate cancer	0398 Prostate cancer			MAIS	
Acce	<u>=</u>	0016	0548	0531	0350	0017	0018	0019	0556	0550	0398	0020 CAIS	0021 CAIS	0338 MAIS	

Pathogenicity

Romile	history Reference	Hiort et al; J Clin Endocrinol & Metab 85: 2810-2815, 2000	Taplin et al; 37th meeting ASCO 20: Abstr, 1738 2001	pos Gottlieb et al; Hum Mutat. 14: 527-539, 1999	Gottlieb et al; Hum Mutat. 14: 527-539, 1999	Ahmed et al, J Clin Endocrinol & Metab 85: 658-665, 2000	Thiele et al; J Clin Endocrinol & Metab 84: 1751-1753, 1999	Gottlieb et al, Hum Mutat. 14: 527-539, 1999	Gottlieb et al; Hum Mutat. 14: 527-539, 1999	Boehmer et al, J Clin Endocrinol & Metab 86: 4151-4160, 2001	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al.; J Clin Endocrinol & Metab 85: 658-665, 2000	pos Bruggenwirth et al; J Steroid Biochem Mol Biol 58: 569-575, 1996	Hiort et al; 80th US Endo Soc Meeting, Abstr P2-38, 1998
Total		Normal	Normal	Normal	Female Normal	Female Normal	Female Normal	Normal	Normal .	Female Normal	Normal	e Normal	Female Normal	Normal
5	rearing	Male	Male	Female	Female			Female	Female	Female	Female	Female	Femal	Male
	Thermolabile Comments	Oligospermia	Treated with flutamide Male also Asn756Asp - somatic mutation	+ substs. Glu211Glu Female Normal GAGtoGAA&Gln443 Arg(CAGtoCGG)	mRNA < 20%	1 nt. deletion causing frameshift	2nt. del causing frameshift & stop in cod 499- mRNA 50%	2nt, del causing frameshift & stop in cod 499 -mRNA 50%	Normal 110KD AR produced at 25% of normal level		5 nt. deletion causing frameshift			Oligospermia caused Male by silent mutation
Androgen Binding	Thermolabil											low		
	-			zero	zero	zero	<u>-</u>	zero	zero		low	low		
5	rosy Gly#			2	3		77	79	15					 .
Xon 1	Sa #			8			42	9	15	a, (7)		<u>.</u> ပွ	<u>a</u> 0	<
Change	Amino acid Base	Pro⇒Ser CCG⇒∏CG	Pro⇒Leu C <u>C</u> G⇒C <u>T</u> G	$Pro \Rightarrow Arg$ $C\underline{CG} \Rightarrow C\underline{GG}$	Gln⇒Stop <u>C</u> AG⇒ <u>T</u> AG	$Gly \Rightarrow Gly$	$Glu \Rightarrow Gly$ $G\Delta AG \Rightarrow GGC$	Glu ⇒ Gly G∆ <u>AG</u> ⇒ GGC	Tyr⇒ Stop TA <u>C</u> ⇒TA <u>A</u>	Gln ⇒ Stop <u>C</u> AG ⇒ <u>T</u> AG	Gly ⊕ 0	GGC ⇒ AGC	Trp⇒Stop TGG⇒TAG	$Val \Rightarrow Val$ $GT\underline{G} \Rightarrow GT\underline{A}$
oc Positio	hot Amino acid spot Base	390 1530	390 1531	390 1531	403 1569	461	473	473	1802	487	488	491	502 1867	511
. <u>5</u>		*	1 Nterm	erm	1 Nterm	Nterm	1 Nterm	1 Nterm	term	n 1 Nterm	1 Nterm	1 Nterm	1 Nterm	Nterm *
Pathos pro	Mutation Exon type Domain	isi	Substitut 1 Nte	Substitut 1 Nterm	Substitut 1	Deletion 1	Deletion 1	Deletion 1	Substitut. 1 Nterm	Deletion 1	Deletion 1	Substitut 1	Substitut 1	Substitut 1
:	a)				CAIS	CAIS	CAIS	CAIS	CAIS	CAIS	CAIS	CAIS	CAIS	0339 MAIS
•	Accession #	0504 MAIS	0547 Prostate	0022 CAIS	0426 CAIS	0438 CAIS	0410 CAIS	0427 CAIS	0024 CAIS	0546 CAIS	0439 CAIS	0440	0025	0339

Family Reference	IPEL	neg McPhaul et al; FASEB J 5:2910-15, 1991	neg Trifiro et al; Mol Cell Endocrinol 75:37-47,	pos Quigley et al; J Clin Endocrinol Metab	74:927, 1992 pos Hiort et al; Am J Med Genet. 63: 218-22, 1996	Ahmed et al; J Clin Endocrinol & Metab 85:	Quigley et al; J Cell Biochem Suppl 16C;	Ahmed et al. J Clin Endocrinol & Metab 85:	pos Karl et al; 76th US Endo Soc Meeting, Abete 7725, 1004	Takahashi et al; Cancer Research 55:	J L.	Lumbroso et al; 10th Int Cong of Endocrinol, Abstr P1-182 1995	Takahashi et al; Cancer Research 55: 1621-1624, 1995
External Genitalia	Vormal	Normal	Female Normal	Normal	Female Normal	Normal	Normal	Normal	Ambiguous	Normal	Near-normal pos male	Normal	Normal
Sex of rearing	Male	Female	Female	Female	Female	Female	Female	Female	Male	Male	Male	Female	Male
n Binding Thermolabile Comments	Somatic mutation		Termini not yet defined			•		Duplication of exon 2 Female Normal	Also has Trp741Cys (TGG to TGT)	ift - somatic	Distal hypospadia, variable penetrance in family members	Duplication of 8n. # 2011-2018 frameshift & stop in Codon 563	Frameshift - somatic mutation
oge:	İ	zero	zero	zero	zero	zero			low high				
		32	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 						
in Change Exon I tracts id Anino acid Poly Poly Base Gln# Gly#	$Asp \Rightarrow Gly \\ G\underline{A}T \Rightarrow G\underline{G}T$	Tyr⇒ Stop TAC ⇒ TAG	î î	îî	î î	11 11	îî	î	Leu⇒Phe TTC⇒TT <u>T</u>	Leu⇒Leu TTA <u>G</u> ⇒TTC	Pro⇒ Ser <u>C</u> CC⇒ <u>T</u> CC	î î	Pro⇒Pro CC∆∆⇒ CCC
ty CpG Position hot Amino acid spot Base	528 1945	534							547 2003	547 2003	548 2004	2011	554 2023
nogenicity proven Cp(kon hot													
ath D	Substitut, 1 Nterm	Substitut, 1 Nterm	Deletion 1-8	Deletion 1-8	Deletion 1-8	Deletion 1-8	Deletion 2	Duplicat, 2	Substitut 2	Deletion 2	Substitut. 2	Duplicat 2	Deletion 2
×	0026 Prostate cancer	CAIS	CAIS and Deletion mental retardation	CAIS	CAIS	CAIS	CAIS	0441 CAIS	PAIS	0357 Prostate	0033 MAIS	CAIS	0358 Prostate cancer
Acces	0026	0027 CAIS	0028	0029	0030 CAIS	0435	0031	0441	0032 PAIS	0357	0033	0023 CAIS	0358

Ramily	history Reference	Takahashi et al; Cancer Research 55: 1621-1624, 1995	neg Zoppi et al; Mol Endocrinol 6:409, 1992	Lobaccaro et al, Clin Endocrinol, 40:297, 1994	Allera et al. J Clin Endocrinol & Metab 80: 2697-2699, 1995	Chang et al; 73rd US Endo Soc Meeting, Abstr 28, 1991	Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001	Foresta et al, Am J Med Genet 107: 259-260, 2002	Komori et al; Arch Gynecol & Obstetrics 261: 95-100, 1998	neg Bruggenwirth et al; J Steroid Biochem Mol Biol 58: 569-575, 1996	Marcelli et al; Cancer Research 60: 944-949, 2000	pos Zoppi et al; Mol Endocrinol 6:409, 1992	Chang et al; 73rd US Endo Soc Meeting, Abstr 28, 1991	Hooper et al; 81st US Endo Soc Meeting, Abstr P2-145, 1999
Sex of Bxternal	rearing Genitalia	Normal	Normal	Female Normal	Ambiguous		Ambiguous	Ambiguous	Normal	Female Normal	Normal	Normal	Female Normal	e Normal
Sex of	rearing	Male	Female	Female	Male		Male	Male	Female	Female	Male	Female	Femal	ig Femal ne
	Thermolabile Comments	Frameshift - somatic Inutation			Severe hypospadia			DHT therapy effective Male		Defective DNA binding & transactivation	Somatic Mutation) 1 1		Lack of DNA binding Female Normal - 17 members of same family
Androge	Bnax Ka		normal normal	normal normal	normal	normal normal				normal		normal normal	normal normal	
7	roty Gly#											<u>.</u>	<u> </u>	
	Amino acid Poly Base Gln#	Pro ⇒ Pro CC A Å ⇒ CCC	Cys ⇒ Tyr T <u>G</u> C ⇒ T <u>A</u> C	Gly ⇒ Trp GGG ⇒ <u>I</u> GG	Gly ⇒ Val GGG ⇒ GTG	Gly ⇒ Val GGG ⇒ GTT	Tyr⇒His 21 TAT⇒CAT	Tyr⇒ His <u>T</u> AT⇒ CAT	$Tyr \Rightarrow Cys$ $T\underline{A}T \Rightarrow T\underline{G}T$	$Ala \Rightarrow Asp$ $G\underline{C}T \Rightarrow G\underline{A}T$	Thr⇒ Ala <u>A</u> CA ⇒ <u>G</u> CA	Cys ⇒ Arg <u>T</u> GT ⇒ <u>C</u> GT	Cys ⇒ Phe TGT ⇒ T <u>T</u> T	Cys ⇒ Phe TGT ⇒ T <u>T</u> T
ty CoG Position	hot Amino acid spot Base	 	559 2038 T	568 2064	568 2065 C	568	57.1 2073	571 2073	571	573 2080	575 2085	576 2088	576 2089	576 2089
Pathogenicity proven C	Exon Domain	2	Substitut 2 *	Substitut 2 DBD	Substitut 2 DBD	Substitut 2 DBD	Substitut, 2 DBD	Substitut 2 DBD	Substitut 2 ** DBD	Substitut 2 DBD	Substitut 2 DBD	Substitut 2 * DBD	Substitut 2 DBD	Substitut 2 DBD
	cession# Mutation					_			CAIS	CAIS	0489 Prostate Sul Cancer	CAIS	0040 CAIS Su	0407 CAIS Su
	Accession #	0359 Prostate	0034 CAIS	0035 PAIS	0036 PAIS	0037 PAIS	0545 PAIS	0558 PAIS	0332	0038	0489	0039	0040	0407

Family	history Reference Nguyen et al; Mol Endocrinol		83-88, 2000 Sultan et al, J Steroid Biochem & Mol Biol 46	pos Imasaki et al; Mol & Cell Endocrinol 120	I5-24, 1996 Imai et al, Annals of Clin Biochem, 32:	482-486, 1995 Marcelli et al, Cancer Research 60: 944-949	2000 Lumbroso et al; Fertil Steril, 60:814, 1993	neg Beitel et al; Hum Mol Genet, 3:21, 1994	Ahmed et al; J Clin Endocrinol & Metab 85:	658-665, 2000 Hiort et al; Hum Mol Genet	sod		Jakubiczka et al: Human	Mutation 9: 57-61, 1997
	Genitalia	Ambiguous	Normal	Normal	Normal	Normal	Normal	Normal	Female Normal	Ambiguous	Ambiguous	Normal	Normal	
Sex of	caring	Male	Female	Female	Female	Male .	Female	Female	Female	Female	Female	Female	Female Normal	
n Binding Thermolabile Comments	Alters affinity & selectivity of AR-ARE	interactions partial tranactivation in Male COS cells		Reduced transcription Female & DNA binding	Single nt. deletion causing frameshift &	Somatic mutation		3 nt. del - Phe 582 del Female 2nt. from 581,1nt.	3 nt. del - of Phe		Reduced transcription Female Ambiguous & DNA binding			in 2 different families
Androge	I nor	normal	<u> </u>	normal normal	zero		normal normal	low normal	normal normal	zero	normal normal		zero	
Exon 1 tracts Poly Poly Gln# Glv#						<u> </u>		23						
	20 4	, Ü.	O	. O	,, «		()						·	
Change Amino acid Base	$Gly \Rightarrow Arg$ $GGA \Rightarrow \underline{A}GA$	Ser⇒Thr A <u>G</u> C⇒A <u>C</u> C	Cys ⇒ Tyr T <u>C</u> C ⇒ T <u>A</u> C	Cys ⇒ Phe T <u>G</u> C ⇒ T <u>T</u> C	Cys ⇒ Cys TG∆C ⇒ TGA	Lys⇒Arg A <u>A</u> G⇒A <u>G</u> G	Val⇒Phe GTC⇒ TTC	$Phe \Rightarrow 0$ $QA_{\underline{\mathbf{ICTT}}} \Rightarrow GTC$	Phe ⇒ 0 TTC ⇒	Phe⇒Ser T <u>T</u> C⇒T <u>C</u> C	Phe⇒ Tyr T <u>T</u> C⇒ T <u>A</u> C	Arg⇒ Lys A <u>G</u> A ⇒ A <u>A</u> A	î	11
lty CpG Position hot Amino acid spot Base	577 2091	578 2095	579 2098	579 2098	2099	580	581 2103	582 2104-6 @	582 2106-8	582 2107	582 2107	585 2116 /		
٠	* - Q	*	- A	* 	- Ω	Ω	* Q	*			*			
Pathogeni provei n Exon Domain	tut 2 DB	tut 2 DB	Substitut 2 DBD	tut 2 DB	on 2 DB	tut 2 DB	tut 2 DB	on 2 DBD	on 2 DBD	ut 2 DBJ	ut 2 DBI	ut 2 DBI	ո 2-8	
futatior type	Substitut, 2 DBD	Substitut 2 DBD	Substi	Substitut 2 ** DBD	Deletion 2 DBD	Substitut 2 DBD	Substitut 2 DBD	Deletion	Deletion	Substitut 2 DBD	Substitut 2 DBD	Substitut 2 DBD	Deletion 2-8	
, e	0554 PAIS	0509 PAIS	0041 CAIS	0042 CAIS	0043 CAIS	0487 Prostate Cancer	0044 CAIS	CAIS	0442 CAIS	0047 PAIS	0046 PAIS	0048 CAIS		
Acce	0554	020	0041	0042	0043	0487	0044	0045	0442	0047	0046	0048	0049 CAIS	

Family bistories	5 F	pos Quigley et al; Mol Endocrinol 6:1103, 1992	pos Hiort et al, Am J Med Genet. 63: 218-22, 1996	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Marcelli et al; Cancer Research 60: 944-949, 2000	Marcelli et al; Cancer Research 60: 944-949, 2000	Marcelli et al: Mol Endocrinol 4: 1105, 1990	pos Gast et al; Mol & Cell Endocrinol 111: 93-98, 1995	Holterhus et al; Pediatric Res 46: 684-690, 1999	Giwercman et al; Hormone Research 53: 83-88, 2000	Zoppi et al; Mol Endocrinol 6:409, 1992	Nordenskjold et al Urological Res. 27: 49-55, 1999	pos Baldazzi et al; Hum Mol Genet 3:1169-70 1994
External Fa	•		Normal	Normal	Normal	Normal	Normal	Normal	Ambiguous	Ambiguous	Ambiguous	Female Ambiguous	Ambiguous	Female Normal
Sex of	Smile	Remale Normal	Female 1	Female	Female	Male	Male	Female	Male	Male	Male	Female	Male	Female
n Binding Thermolabile Comments		Produces internally F deleted protein				Somatic mutation	Somatic mutation		Found in 2 unrelated fam. Abolishes dimerization	Somatic mosaicism	partial transactivation in COS cells	High dissoc. rate. Also has Arg617Pro (CGG toCCG) mut.	Servere hypospadia and cryptorchidism	
Androgen Binding Thermolabile	Bmax Kd k	high normal		zero				zero	normal normal	normal normal	normal	normal normal		
	£;;#	<u> </u>												
<i>≅.'a</i> ⊞	Base Gin#	î î	î î	1 1	îÎ	Ala ⇒ Val G <u>C</u> C ⇒ G <u>T</u> C	Ala⇒ Ser GCT⇒ <u>T</u> CT	Lys ⇒ Stop <u>A</u> AA ⇒ <u>T</u> AA	Ala⇒ Thr GCC ⇒ ACC	Ala⇒Thr GCC⇒ACC	Ala⇒ Thr GCC ⇒ ACC	Ser ⇒ Gly <u>A</u> GC ⇒ <u>G</u> GC	Ser⇒Thr <u>A</u> GC⇒ A <u>C</u> C	Cys ⇒ Phe TGC ⇒ TIC
hogenicity proyen CpG Position Exon hot Amino acid	spot Base					586	587	* 590 2130	* * 596 2148	* 596 2148	* • 596 2148	* 597 2151	597 2152	601
athogenici proyen Exon	_	Deletion 3 *	Deletion 3 DBD	Deletion 3 DBD	Deletion 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut. 3 DBD	Substitut, 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut 3 DBD
P Accession # Mutation	Phenotype t	-	0051 CAIS 1	0443 CAIS	0444 CAIS	0488 Prostate Cancer	0490 Prostate Cancer	0052 CAIS	0053 PAIS	0434 PAIS	0510 PAIS	0054 PAIS	0390 PAIS	0055 CAIS

Family	history Reference Hiort et al: Hum Mol	3: 1163-1166 1994 Brown et al; Eur J Pediatr (Supol 2)	152; S62, 1993 Giwercman et al; Hormone Research 53:	sod	sod	-739, 1996 Hiort et al, Am J Med Genet. 63; 218-222,	Weidemann et al; J Clin Endocrinol & Metab	83: 1173-1176, 1998 Chen et al; Human Reproduction 14:	664-670, 1999 Chen et al. Fertility & Sterility 72: 170-173,	Saunders et al; Clin Endocrinol 37:214,	Lobaccaro et al; Hum Mol Genet, 2:1799,	Tincello et al; Clinical Endocrinology 46:	497-506, 1997 pos Hiort et al; J Pediatrics 132: 939- 943, 1998
	Ambiguous	Normal	Normal	Ambiguous	Ambiguous	Female Ambiguous	Ambiguous	Normal	Normal	Ambiguous	Ambiguous	Ambiguous	Ambiguous
Sex of	Male /	Female	Female	Male	Male	Female	Male	Female	Female	Male	Male	Male	Male
i Binding Thermolabile Comments							Patient successfully treated with	vestosteruone enantnare Germ cell tumour - in Fernale Normal undescended testis	Mullerian ducts pres. Female Normal 5nt. del frameshift & stop in codon 619			Defective nuclear localization	
Androgen	Duay Va	zero	zero		normal normal					normal normal	normal normal	normal normal	
Change Exon 1 Amino acid Poly Base Gin#	Asp⇒Tyr GAT⇒TAT	Arg⇒ Stop CGA⇒ <u>T</u> GA	Arg⇒Stop CGA⇒TGA	$Arg \Rightarrow Gln$ $CGA \Rightarrow CAA$	Arg⇒Gln C <u>G</u> A⇒C <u>A</u> A	Arg⇒ Gin C <u>G</u> A⇒C <u>A</u> A	$Arg \Rightarrow Gln$ $C\underline{G}A \Rightarrow C\underline{A}A$	$Arg \Rightarrow Gln$ $CGA \Rightarrow C\underline{A}A$	ÎΠ	Arg⇒ Lys A <u>G</u> G ⇒ A <u>A</u> G	Arg⇒ Lys AGG ⇒ A <u>A</u> G	Arg⇒Lys A <u>G</u> G⇒A <u>A</u> G	Arg⇒Lys A <u>G</u> G⇒A <u>A</u> G
	604	* 607 2181	* 607 2181	* 607 2182	607	* 607 2182	* 607 2182	* 607 2182	608	608	508 2185	608	608
Pathogenicity proven C Mutation Exon ho the type Domain sp	Substitut 3 DBD	Substitut, 3 DBD	Substitut, 3 DBD	0058 PAIS and Substitut 3 breast DBD	Substitut 3 *	Substitut 3 DBD	Substitut 3 DBD	Substitut, 3 DBD	Deletion 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut 3 DBD
	0056 PAIS	0057 CAIS	0511 CAIS	0058 PAIS and breast cancer	0059 PAIS	0060 PAIS	0347 PAIS	0393 PAIS		0061 PAIS	0062 PAIS and Substitut 3 breast Cancer	0322 PAIS	0352 PAIS

Family history Reference	Ahmed et al.; J Clin Endocrinol & Metab 85: 658-665, 2000	Weidemann et al; Clin Endocrinology 45: 733 - 739, 1996	Mockel et al; Geburtshi. und Frauen. 60: 232-234, 2000	pos Beitel et al; Hum Mol Genet, 3:21, 1994	Giwercman et al; Hormone Research 53: 83-88, 2000	pos Beitel et al: Hum Mol Genet, 3:21, 1994	pos Mowszowicz et al; Mol Endocrinol 7:861-869, 1993	Brown et al; Eur J Pediar 152 (Suppl 2): S62, 1993	Ris-Stalpers et al; Pediatr Res 36: 227, 1994	Cabral et al; Brazilian J Mol & Biol Res. 31: 775-778, 1998	Hiort et al.: J Pediatrics 132: 939- 943, 1998	Hiort et al; J Pediatrics 132: 939- 943, 1998	Hiort et al, Am J Med Genet. 63: 218-222, 1996
External Genitalia	·	Ambiguous	Normal	Normal	Female Normal	Female Normal	Female Normal	Normal	Normal	Normal	Normal	Normal	Ambiguous
Sex of rearing		Male	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Male
n Binding Thermolabile Comments 1				3 nt. del -Arg615 del, 1nt. from 614, 2nt. 615. 614 still Cys	no transactivation in COS cells					· .	·		
ago.	normal high	* wormal low		normal normal		low high	normal normal						
tracts Andr Poly Gly# Bmax	<u></u>			23		23						 	
Exon 1 tracts Poly Poly Gln# Gly#				27		. 52				. F-4	<u> </u>	- H	
Change Amino acid Base	Arg⇒ Lys A <u>G</u> G⇒ A <u>A</u> G	Asn⇒ Thr A <u>A</u> T⇒ A <u>C</u> T	$Cys \Rightarrow Tyr$ $T\underline{G}T \Rightarrow T\underline{A}T$	Arg⇒0 ca <u>rc</u> g⇒TGT	Arg⇒Gly <u>C</u> GT⇒ <u>G</u> GT	Arg⇒His C <u>G</u> T⇒C <u>A</u> T	Arg⇒ His CGT⇒ CAT	Arg⇒ His CGT⇒CAT	Arg⇒His CGT⇒CAT	Arg⇒ His C <u>G</u> T⇒ C <u>A</u> T	$Arg \Rightarrow His$ $CGT \Rightarrow CAT$	Arg⇒ His CGT⇒CAT	$\begin{vmatrix} Arg \Rightarrow His \\ CGT \Rightarrow CAT \end{vmatrix}$
CpG Position hot Amino acid spot Base	608 2185	610 2190	611	615 2204-6 r	615	• 615 2206	• 615 2206	• 615 2206	• 615 2206	* 615 2206	* 615 2206	• 615 2206	* 615 2206
Pathogenicity proven C Exon h Domain si	3 рвр	BD *	BD	3 *	* 080	* ABD	* OBC	BD *	3 *	3 DBD	3 DBD	3 DBD	3 DBD
Patho paccession # Mutation Ex	Substitut 3 DI	Substitut 3 DBD	Substitut 3 DBD	Deletion 3	Substitut 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut, 3 DBD	Substitut 3 DBD	Substitut, 3 DBD	Substitut 3 DBD	Substitut 3 DBD
.cession# M Phenotype		•	;AIS	CAIS	CAIS	CAIS	CAIS	CAIS	CAIS	CAIS	0353 CAIS	0354 CAIS	0069 PAIS
Accessi Phen	0481 PAIS	0063 PAIS	0496 CAIS	0064 CAIS	0512 CAIS	0065 CAIS	0066 CAIS	0067 CAIS	8900	0348 CAIS	0353	0354	6900

	mstory Reference	Hiort et al, Am J Med Genet. 63: 218-222, 1996	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	pos De Bellis et al; J Clin Endocrinol Metab, 78:513, 1994	Mebarki et al; 75th US Endo Soc Meeting, Abstr 602, 1993	Lobaccaro et al; Mol Cell Endorinol, 5: 137-147, 1996	pos Marcelli et al; J Clin Invest: 87: 1123, 1991	Zoppi et al; Mol Endocrinol 6:409, 1992	Nazereth et al; Mol Endocrinol 13: 2065-2075, 1999	Marcelli et al; Cancer Research 60: 944-949, 2000	Brown et al, Eur J Pediatr (Suppl 2) 152: S62, 1993	neg Aiken et al; Am J Obs & Gyn. 165:1891-1894, 1991	pos Lobaccaro et al; Mol & Cellular Endocrinology 111: 21-8,1995	Wang et al; Japanese J of Urology 88: 550-556 1997
External		Ambiguous	Normal	Ambiguous	Normal	Female Normal	Ambiguous	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Sex of	rearing	Male	Female Normal	Female	Female	Female	Female	Female	Male	Male	Female	Male	Female	Male
n Binding Thermolabile Comments								Mutation also at 597	Inactive transcription Does not bind DNA somatic mutation	Somatic mutation		Azoospermia	13 nt deletion causing Female frameshift and stop at codon 783	1 of 6 of hormone- independent D2 patients- somatic mut
Androge	Bruca K		normal high	normal normal		погтаl погта!	normal normal	normal normal high	low high					
Exon 1 tracts Poly Poly	L				- 	·		,						
Change Anino acid		Arg⇒Pro CGT⇒CCT	$Arg \Rightarrow Pro$ $CGT \Rightarrow CCT$	Leu ⇒ Arg C <u>T</u> T ⇒ C <u>G</u> T	Leu⇒Pro CIT ⇒ C <u>C</u> T	Leu⇒Pro C <u>I</u> T⇒C <u>C</u> T	$Arg \Rightarrow Pro$ $C\underline{G}G \Rightarrow C\underline{C}G$	$Arg \Rightarrow Pro$ $C\underline{G}G \Rightarrow C\underline{C}G$	$Cys \Rightarrow Tyr$ $T\underline{G}T \Rightarrow T\underline{A}T$	$Cys \Rightarrow Tyr$ $T\underline{G}T \Rightarrow T\underline{A}T$	11 11	î î	n n	Arg⇒Gln C <u>G</u> G⇒C <u>A</u> G
hogenicity proven CpG Position Exon hot Amino acid	spot Base	615	615 2206	616	616 2209	2209	617	61 <i>7</i> 2212	619 2218	619 2218				629 2248
Ti	_4	Ω		* - A	Ω	*	*	* Q	* Q	<u> </u>		Q	* Q	
at L	type Domain	Substitut 3 DBD	Substitut. 3 DBD	Substitut, 3 DBD	Substitut 3 DBD	Substitut 3 DBD	Substitut, 3 DBD	Substitut 3 DBD	Substitut, 3 DBD	Substitut 3 DBD	Deletion 3-8	Deletion 4 LBD	Deletion 4 LBD	Substitut. 4
	ᆲ								0431 Prostate	0491 Prostate cancer	0076 CAIS	0077 MAIS	0078 CAIS	0306 Prostate cancer
Access	2	0070 PAIS	0445 CAIS	0071 PAIS	0072 CAIS	0073 CAIS	0074 PAIS	0075 PAIS	0431	0491	9200	0077	0078	0306

Family bistory Reference	Tilley et al; Clinical Cancer Res. 2:277-285, 1996	Yaegashi et al; Tohoku J of Exp Med 187: 263-272, 1999	Uchara et al; Am J Med Genet. 86: 107-111, 1999	Hiort et al; Am J Med Genet. 63: 218-222, 1996	Nordenskjold et al; Human Mutation. 11: 339, 1998	Taplin et al; New England J Med 332:1393-1398, 1995	Lundberg et al; J Clin Endocrinol & Metab 87: 2023-2028, 2002	Chavez et al; Clin Genet 59:: 185-188, 2001	Pinsky et al; Clin Inv Med 15: 456, 1992	Tilley et al; Clinical Cancer Res. 2: 277- 285, 1996	Hiort et al, Am J Med Genet. 63: 218-222, 1996	Tilley et al; Clinical Cancer Res. 2: 277- 285, 1996	pos Belsham et al; Human Mutation 5: 28-33, 1995
External Genitalia	Normal	Normal	Normal	Ambiguous	Normal	Normal	Ambiguous	Normal		Normal	Ambiguous	Normal	Female Normal
Sex of rearing	Male	Female	Female Normal	Male	Male	Male	Male	Female		Male	Male	Male	Female
n Binding Thermolabile Comments	Also Lys717Glu mut, l (AAGtoGAG)+silent mut in 701. Som mut		also Trp751Stop mut, (TGGtoTGA) 47XXY. Muts on both X's			+ Gly724Asp,Leu880 Male Gln & Ala896Thr.mut Somatic mutations	Also in family with CAH with no androgen insensitivity			Also Ser791Pro (TCT to CCT) mut. Somatic mutation		Somatic mutation	•
rogei			0	•					w norm				zero
	··	zero	zero			<u> </u>			2 low			1.	
Exon 1 tracts Poly Poly Gin# Gly#					<u> </u>		20		22 22				
Change Exo Amino acid P Base Gi	Lys \Rightarrow Thr AAG \Rightarrow ACG	Gln ⇒ Stop CAG ⇒ <u>T</u> AG	Gln ⇒ Stop CAG ⇒ <u>T</u> AG	Ala⇒ Asp GCT⇒ G <u>A</u> T	Ala ⇒ Asp GCT ⇒ G <u>A</u> T	Ser⇒ Asn AGC⇒ AAC	Glu⇒Lys GAG⇒AAG	Gln ⇒ Stop CAG ⇒ TAG	$Ile \Rightarrow Asn$ $A\underline{T}T \Rightarrow A\underline{A}T$	$Gln \Rightarrow Arg$ $C\underline{A}G \Rightarrow C\underline{G}G$	Pro ⇒ His CCC ⇒ CAC	Ile \Rightarrow Thr A $\underline{\Gamma}$ C \Rightarrow A \underline{C} C	Leu⇒Pro CŢG ⇒ C <u>C</u> G
hogenicity proven CpG Position Exon hot Amino acid	630 2251 A	2280	2280	645 2296	645 2296	647 2302	653 2319	657	2353	670 2371	671 2374	672	2392
athogenici proven Exon Domain	Substitut 4	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut, 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD
Accession # Mutation		0400 CAIS Sut	0429 CAIS Sul	0080 PAIS Su	0334 Normal Su	0081 Prostate Su	0555 PAIS Su	0517 CAIS St	0082 PAIS Sı	0083 Prostate St	0084 PAIS S	0085 Prostate S	0086 CAIS S

Patternia Patt	Family bitter	Hiort et al; J Clin Endocrinol Metab 77:	262-266, 1993 Chen et al; Human Reproduction 14:	Chavez et al; J Hum Genet. 46: 560-565,	Koivisto et al; Cancer Research 57: 314-319,	Mebarki et al; 75th US Endo Soc Meeting,	Abstr 602, 1993 Hiort et al; Am J Med Genet. 63: 218-222,	Hiort et al; Am J Med Genet. 63: 218-222,	neg Hiort et al; J Pediatrics 132: 939- 943, 1998	Ahmed et al; J Clin Endocrinol & Metab 85:	Schwartz et al; Horm Res 41:117 Abstr 244,	Batch et al; Hum Mol Genet 1:497, 1992	neg Ris-Stalpers et al; Mol Endocrinol 5:1562,	pos Ris-Stalpers et al; Moi Endocrinol 5:1562, 1991
Mutation Paritogenicity Paritogenicity Paritogenicity Mutation Paritogenicity Paritogenicity Mutation Paritogenicity Pari		Normal	Normal	Ambiguous	Normal	Normal	Ambiguous	Ambiguous	Normal	Normai		Normal	Normal	Normal
Mutation Paritogenicity Paritogen	Sex of	Female	Female	Female	Male	Female	Male	Male	Female	Female		Female	Female	Female
Substitut 4 C82 Position Change Exon I tracts Androge by Proven CpC Position Change Exon I tracts Androge Substitut 4 C81 Glu = Lys C82 CA = AAC C93 CA = AAC C94 C94 C94 C94 C94 C94 C94 C94 C94 C9	"le Comments		Germ cell tumour in undescended testis		=				de novo mutation			Three nucleotide deletion		mutation found in two unrelated families
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Androge	4		low		zero				zero			low	normal normal high
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m 1 trac ody Po in# Gi								·		· · · · · · · · · · · · · · · · · · ·			·
Substitut 4	Change Anino acid Base	$Glu \Rightarrow Lys$ $GAG \Rightarrow \underline{A}AG$	$Glu \Rightarrow Lys$ $\underline{G}AG \Rightarrow \underline{A}AG$	Pro⇒Thr <u>C</u> CA⇒ <u>A</u> CA	$Gly \Rightarrow Ala$ $GGT \Rightarrow GCT$	Val⇒Ile <u>G</u> TA⇒ <u>A</u> TA	Cys ⇒ Arg <u>T</u> GT ⇒ <u>C</u> GT	Ala⇒Val G <u>C</u> T⇒ G <u>T</u> T	Gly⇒Glu GGA⇒	Gly ⇒ Stop GGA ⇒ TGA	Asp⇒0 ACG⇒0	Asn⇒0 AAC⇒0	Asp⇒ His GAC⇒ CAC	Asp ⇒ Asn GAC⇒ <u>A</u> AC
Substitut 4	y CpG Positic hot <i>Amino ac</i> spot <i>Base</i>	681 2403	681 2403	682 2406	683 2410	684 2412	2418	687 2422	889	688	690 2428-30	692 2436-8	695 2445	695
Substitut 2 Substitut 4		4	Ð	<u>8</u>	<u></u>	Õ	<u></u>	Ð	Q	9	9	9	* 	*
्र ad अ	Patho pr utation Exi type Dom	Substitut 4 LE	Substitut. 4 LE	Substitut 4	Substitut 4	Substitut 4	Substitut, 4 LE	Substitut 4 LE	Substitut 4 LE	Substitut 4	Deletion 4 LB	Deletion 4 LB	Substitut 4	Substitut 4 LB
	8.						PAIS							

Family history Defendance	Trion in the district	132: 939- 943, 1998	pos Dork et al; Human Mutation 11: 337-339, 1998	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Chavez et al; Clin Genet 59:: 185-188, 2001	Suzuki et al; J Steroid Biochem Molec Biol 46:759, 1993	Watanabe et al, Jpn J Clin Oncol 27: 389-393, 1997	Zao et al; J of Urology 162: 2192-2199, 1999	Pinsky et al; Clin Inv Med 15:456, 1992	Radnayr et al; J of Urology 158: 1553-1556, 1997	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Sills et al; Int J Mol Med 9: 45-48, 2002	Pinsky et al; Clin Inv Med 15:456, 1992
Sex of External F	·	remare Amorganes		Normal	Normal		Normal	Normal	Normal	Female Normal	Ambiguous	Female Normal	Normal	Female Normal
Sex of	9,11,11	r cinaic	Remale	Female Normal	Female		Male	Male	Male	Female	Male	Female	Female	Female
l Binding Thermolabile Comments		de novo muaucon	mtuation found in two Female Normal siblings				Somatic mutation	Somatic mutation	Som. mut. Prostate cancer cell line. Also has Thr877Ala				Sister a carrier	
Androger	Bmax Ka								normal low	zero	low high			zero
Exon 1 tracts Poly Poly	- 1-						 		· · · · ·			<u> </u>		 -
96 P		Asp ⇒ Asn GAC⇒ <u>A</u> AC	$Asp \Rightarrow Val 21$ $G\underline{A}C \Rightarrow G\underline{T}C$	Leu⇒ Met <u>T</u> TG ⇒ <u>A</u> TG	Leu⇒Phe CTC⇒TTC	Leu⇒lle CTC⇒ATC	Leu⇒ His C <u>T</u> C ⇒ C <u>A</u> C	Leu⇒ His C <u>T</u> C ⇒ C <u>A</u> C	Leu⇒ His C <u>T</u> C⇒ C <u>A</u> C	Ser⇒Ala <u>T</u> CT⇒ <u>G</u> CT	Ser⇒Gly <u>A</u> GC⇒ <u>G</u> GC	Ser ⇒ Gly <u>A</u> GC ⇒ <u>G</u> GC	Asn⇒Tyr <u>A</u> AT⇒ <u>T</u> AT	Asn⇒ Ser A <u>A</u> T⇒ A <u>G</u> T
hogenicity proven CpG Position Exon hot Amino acid	spot Base	* 695 2445	695 2446	700	701 2463	701	701	701 2464	701	702 2466	* 703 2469	* 703 2469	705 2475	705
Pathogenici proven n Exon			Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut. 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD
Accession # Mu	a	0098 PAIS	0335 CAIS	0447 CAIS	0448 CAIS	0518 PAIS	0099 Prostate	0326 Prostate cancer	0408 MDA. PCa-Za	0100 CAIS	0101 PAIS	0449 CAIS	0559 CAIS	0102 CAIS

BNSDOCID: <WO_____03040366A2_I_>

Family bictory	DeBellis et al; Mol Endocrinol 6:1909-20,	Quigley et al; Endocrine Reviews 16: 271, 1995	Ahmed et al; J Clin Endocrinol & Metab 85:	Lumbroso et al; J Clin Endo & Metab 81:			pos Auchus et al: 77th US Endo Soc Meeting,	Abstr P1-508 1995 Ahmed et al; J Clin Endocrinol & Metab 85;	bos	sod	sod	sod	sod
External Genitalia	12	Normal		Female Normal	Ambiguous	Ambiguous	Ambiguous	Female Normal	Female Ambiguous	Female Ambiguous	Ambiguous	Ambiguous	Ambiguous
Sex of	Female	Female		Female	Male	Male	Male	Female	Female	Female	Male	Male	Male
n Binding Thermolabile Comments		Mutation found in two Female unrelated families				Servere hypospadias			altered AR specificity 2x increased affinity for F2		Phenotypic diversity brother of 505& 506 Testost-induced norm		Phenotypic diversity brother of 505& 108 Testost-induced norm.
Androge:			normal high				Zero	Zero	v low	normal	normal high	normal high	normal high
on Change Exon 1 tracts reid Amino acid Poly Poly Baxe Gln# Gly#	Asn⇒Ser A <u>A</u> T⇒A <u>G</u> T	$Asn \Rightarrow Ser$ $A\underline{A}T \Rightarrow A\underline{G}T$	$Asn \Rightarrow Ser$ $A\underline{\Delta}T \Rightarrow A\underline{G}T$	Leu⇒ Arg C <u>T</u> G ⇒ C <u>Q</u> G	$Gly \Rightarrow Ala$ $G\underline{G}A \Rightarrow G\underline{C}A$	$Gly \Rightarrow Ala$ $G\underline{G}A \Rightarrow G\underline{C}A$	$Gly \Rightarrow Val$ $G\underline{G}A \Rightarrow G\underline{T}A$	$Arg \Rightarrow Thr$ $A\underline{G}A \Rightarrow A\underline{C}A$	Gln ⇒ Glu <u>C</u> AG ⇒ <u>G</u> AG	Gln ⇒ Glu <u>C</u> AG ⇒ <u>G</u> AG	Leu⇒Phe CTT⇒GTT	Leu⇒Phe CTT⇒GTT	Leu⇒Phe CTT⇒GTT
	705 2476	705 2476	705 2476	707	708 2485	2485	708	710	711 2493	711	712 2496	712 2496	2496
:	D	Ω	Ω	* - A	Ω	Q	Ω	Ω	* Q	* A	# Q	* 	*
ath.	Substitut. 4 LBD	Substitut 4 LBD	Substitut, 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut, 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut, 4 LBD	Substitut 4 LBD
Accession # Mutation Phenotype type	0103 CAIS	0104 CAIS	0482 PAIS	0105 CAIS	0106 PAIS	0314 PAIS	0107 CAIS	0450 CAIS	0525 PAIS	0535 PAIS	0108 PAIS		0506 PAIS

<u>></u>	history Reference	Hiort et al; J Clin Endocrinol & Metab 85: 3245-3250, 2000	Culig et al; Mol Endocrinol 7:1541-1550 1993	Bubley et al 87th Am Assoc Cancer Res Meet Abstr. 1680, 1996	Sai et al; Am J Hum Genet 46:1095, 1990	Kleinerman et al; J of Urology 155: 624A, 1996	Taplin et al; New England J Med 332: 1393-1398, 1995	Hiort et al: Am J Med Genet. 63: 218-222, 1996	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Brown et al; Proc Natl Acad Sci 85:8151, 1988	Maclean et al; J Clin Invest, 91:1123, 1993	Marcelli et al; 74th US Endo Soc Meetings: Abstr. 224, 1992
Family	histor	sod			sod							·	sod	
External	Genitalia	Ambiguous	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Female Normal	Normal	Normal	Normal	Female Normal
Sex of	rearing	Male	Male	Male	Female	Male	Male	Female	Female	Female	Female	Female	Female	Female
n Binding Thermolabile	Comments	Phenotypic diversity Inches of 108,505,506 Testost-induced norm	Somatic mutation. Receptor showed a gain in function	Somatic mutation. Receptor showed a gain in function		Somatic mutation- Bone metasteses of Prostate cancer	Somatic mutation in 20% of isolates in initial cloning					:	Affected aunt deleted for exons 6 and 7 only.	
Androge	Gly# Bnax Kd k	normal high	normal	normal	zero				normal high	zero	zero	zero	zero	2610
_												. 4	· · · · · · · · · · · · · · · · · · ·	
Change Annino acid	1	Leu⇒Phe CTT⇒©TT	$Val \Rightarrow Met$ $\overline{G}TG \Rightarrow \underline{A}TG$	Val ⇒ Met GTG ⇒ ATG	Trp⇒Stop TGG⇒TGA	Lys ⇒ Glu <u>A</u> AG ⇒ <u>G</u> AG	Ala⇒ Thr GCC ⇒ <u>A</u> CC	Leu⇒Phe TTG⇒	Pro⇒ Ser CCT⇒ TCT	Gly ⇒ Ser GGC ⇒ <u>A</u> GC	Gly ⇒ Asp GGC ⇒ GAC	î î	î	Tyr⇒ Arg ⇒
CpG Position hot Amino acid	spot Base	712 2496	• 715 2507	* 715 2507	718 2516	720	721	722 2526	723 2529	724	724			
proven Exon	Jomain	Substitut 4 *	*	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut, 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut 4 LBD	Substitut, 4 LBD	Deletion 4-8 LBD	Deletion 5 LBD	Substitut, 5 LBD
Accession # Mutation	a	0507 PAIS 5	0109 Prostate sancer	0110 Prostate	0111 CAIS	0112 Prostate	0113 Prostate cancer	0114 CAIS	. 0451 CAIS	0452 CAIS	0453 CAIS	0115 CAIS	0116 CAIS	0117 CAIS

		nistory Reference	Quigley et al; Endocrin Reviews 16: 271, 1995	pos	49-55, 1999 pos Elo et al ; J Clin Endorinol Metab, 80;	3494-3500, 1995 pos Mononen et al; Cancer Res 60: 6479-6481,	2000 Yong et al: Lancet, 344: 826-827, 1994	McPhaul et al; J Clin Inv, 90:2097, 1992	Newmark et al; Proc Natl AcadSci 89:6319.	1992 Petersiel et al; Int J Cancer 63: 544-550,	Ko et al; J Reprod. Med 42: 424-427, 1997	Brown et al; 74th US Endo Soc Meeting.	Abstr 1506, 1992 Pinsky et al; Clin Inv Med 15:456, 1992	Ghirri and Brown; Pediatr Res 33:	Abstr 95, 1993 Brown et al; 74th US Endo Soc Meeting, Abstr 1506, 1992
	External			Ambiguous	Normal	Normal	Normal		Normal	Normal	Female Normal	Female Normal	Female Normal	Normal	Normal
	Sex of	l car in		Male	Male	Male	Male		Male	Male	Female	Female	Female	Female	Female Normal
	ile Comments			Hypospadia and cryptorchidism	Germ line mutation present in offspring	Estimated that 2% of Finnish CAP patients	Oligospermia	;	Somatic mutation	Somatic mutation					
	y Androgen Dinging Thermolabile Comments	normal normal			normal normal			low *				high	zero		high
=	Poly Poly Gln# Gly#	\vdash		·				-					· .	·	
Change	Amino acid Base	Phe ⇒ Leu	TTC⇒⊆TC	Phe⇒Leu TTC⇒CTC	Arg⇒ Leu CGC⇒ CTC	Arg⇒ Leu C <u>G</u> C⇒ CTC	Asn⇒ Lys AAC ⇒ AAG	Leu⇒ Ser T <u>T</u> A⇒ T <u>C</u> A	Val⇒ Met <u>G</u> TG ⇒ <u>A</u> TG	Val⇒ Met <u>G</u> TG ⇒ <u>A</u> TG	Asp⇒ Asn 19 GAC⇒ <u>A</u> AC	Asp⇒ Tyr GAC⇒ <u>T</u> AC	Asp⇒ Tyr <u>G</u> AC⇒ <u>T</u> AC	Asp⇒ Tyr GAC⇒ <u>T</u> AC	Asp⇒ Asn GAC⇒ <u>A</u> AC
ity CpG Position	hot Amino acid spot Base	725	2535	725	726	726 2539	727	728	* 730 2550	* 730 2550	732	* 732 2556	732 2556	732 2556	732
a	type Domain	Substitut, 5	LBD	Substitut, 5 LBD	Substitut, 5	Substitut 5	Substitut 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut, 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut, 5 LBD	Substitut 5 LBD
Accession # N.	اءِ ځ	0118 PAIS		0391 PAIS	0119 Prostate cancer	0508 Prostate cancer	0120 MAIS	0121 PAIS	0122 Prostate Cancer	0123 Prostate Cancer	0310 CAIS	0125 CAIS	0126 CAIS	0127 CAIS	0124 CAIS

Family	history Reference	neg Hiort et al; J Pediatrics 132: 939-943, 1998	Quigley et al; Endocrin Reviews 16: 271, 1995	Suzuki et al. Int. J Andrology 24: 183-188, 2001	neg Marcelli et al; J Clin Invest 94: 1642-1650, 1994	Takahashi et al; Cancer Research 55: 1621-1624, 1995	Taplin et al; 37th meeting ASCO 20: Abstr. 1738	Ris-Stalpers et al; Pediatric Res. 36: 227 -234,1994	pos Melo et al; 80th US Endo Soc Meeting Abstr P2-44, 1998	Batch et al; Hum Mol Genet 1:497, 1992	Chavez et al; Clin Genet 59:: 185-188, 2001	Georget et al; J Clin Endocrinol & Metab 83: 3597-3603, 1998	Nakao et al; J Clin Endocrinol Metab 77:103-107, 1993	Lobaccaro et al. J Steroid Biochem & Mol Biol. 44: 211-216, 1993
External	Genitalia	Female Ambiguous n		Female Normal	Normal	Normal	Normal			Female Ambiguous	Female Normal	Ambiguous		Female Normal
Sex of	rearing	emale		Female	Female	Male	Male		·	Female	Female	Female	<u> </u>	Female
	Thermolabile Comments	This patient was a mosaic for wt. & mut. alleles- de novo mut.		no transactivation in COS-1 cells		Somatic mutation	Treated with bicalutamide - somatic mutation			*		Transcription only at high conc of androgen	*	de novo mutation
Androgen Binding	×		-	2				high		normal bigh		low high	normal normal	zero
	Gly# Bmax		low	zero	low	<u>:</u>	·	<u>.,</u>		ă	·	_ <u>×</u>		
Exon 1 tracts														
Change	Amino dela Base	$Gln \Rightarrow His$ $CA\underline{G} \Rightarrow CA\underline{I}$	lle⇒Thr A <u>T</u> T⇒A <u>C</u> T	Tyr⇒ Asp TAC⇒ GAC	$\text{Trp} \Rightarrow \text{Arg}$ $\overline{\text{TGG}} \Rightarrow \underline{\text{CGG}}$	$Trp \Rightarrow Stop$ $TGG \Rightarrow T\underline{A}G$	Trp⇒Cys TG <u>G</u> ⇒TG <u>G</u>	Met⇒Val <u>A</u> TG⇒ <u>G</u> TG	Met⇒ Val <u>A</u> TG⇒ <u>G</u> TG	Met⇒ Ile ATG ⇒ ATA	Gly ⇒ Arg GGG ⇒ <u>C</u> GG	$Gly \Rightarrow Val$ $G\underline{G}G \Rightarrow G\underline{T}G$	Gly⇒ Val G <u>G</u> G ⇒ G <u>T</u> G	Gly⇒Val GGG⇒GTG
proven Coc Position	hot Amilio acia spot Base	733 2561	737	739 2577	741 2583	741	741	742	742	742	743	743	743	2590
, , ,	Domain s	Ωg	BD	* Q8	*	BD	BD	BD .	BD	* CBD *	S LBD	S .	S LBD	S LBD
•		Substitut 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut. 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBI	Substitut 5 LBD	Substitut, 5 LBD
I Hadisənəy	Phenotype				SAIS	0360 Prostate	0552 Prostate cancer	PAIS	PAIS	PAIS	CAIS	PAIS	PAIS	0414 CAIS
	Phen	0128 PAIS	0129 PAIS	0530 CAIS	0130 CAIS	0360 F	0552	0131 PAIS	0341 PAIS	0132 PAIS	0519 CAIS	0133 PAIS	0134 PAIS	0414

	Chavez et al; J Hum Genet 46, 560-56, 2001	Takahashi et al; Cancer	1621-1624, 1995 Brinkmann et al; J	Biol 53: 443, 1995 Takahashi et al; Cancer Recearch 65:	1621-1624, 1995 Ris-Stalpers et al;	227-234, 1994 Brown et al; 74th US	Abstr 1506, 1992 Hiort et al; Am J Med	1996 Marcelli et al; Cancer Research 60: 044 040	2000 Marcelli et al; J Clin Touget 04, 1673, 475	1994 Takahashi et al; Cancer	1621-1624, 1995 Pos DeBellis et al; Mol Fredordinol 6, 1000, 20	1992 1992 1985 Jakubiczka et al; Hum Gener 90: 311.2 1902	Ahmed et al; J Clin Endocrinol & Metab 85;	658-665, 2000
External	Female Normal	Normal		Normal			Ambiguous	Normal		Normal	Vormal	Yormal		
Sex of	Female	Male	·	Male	L		Male	Male		Male 1	Female Normal	Female Normal		
l Binding Thermolabile Comments		Frameshift-somatic mut separate tumor	in same indv. as 0362	Somatic mutation - separate tumor in	same indv. as 0361				Giny19Arg;Som mut Abnormal dissociation	Somatic mutation				
Androgen					zero				low high				normal high	_
Exon 1 tracts Poly Poly Gln# Gly#		<u></u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				 					-
Change E. Amino acid Base	$Gly \Rightarrow Glu$ $C\underline{G}G \Rightarrow G\underline{A}G$	Gly ⇒ Gly GGAG ⇒ GGC	Leu⇒Phe CTC⇒ <u>T</u> TC	Leu⇒Phe CTC⇒ <u>T</u> TC	Met⇒ Thr A <u>T</u> G ⇒ A <u>C</u> G	Val⇒ Met GTG ⇒ ATG	Val⇒ Met <u>G</u> TG ⇒ <u>A</u> TG	Ala⇒ Thr GCC⇒ ACC	Ala ⇒ Asp GCC ⇒ GAC	Ala ⇒ Val GCC ⇒ GTC	Met⇒ Val ATG ⇒ GTG	Met⇒ Val ATG ⇒ GTG	Met⇒ Val ATG⇒ GTG	-
ogenicity Proven C _{pG} Position ××on hot Amino acid omain spot Base		743 2591 G	744	744 2592	745 2597	746 2598 G	746 2598 <u>G</u>	748 2604 G	748 2605 G	748 2605 G	749 N 2607 A	749 N 2607 A	749 N 2607 A	
ogenici roven kon main		S	S LBD	S LBD	CBD	CBD	BD	BD	* ABD *	BD	BD	BD	BD	
Pat Autation type L	Substitut, 5	Deletion 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut, 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut, 5 LBD	
Accession # Mutation Phenotype type	U330 CAIS	0361 Prostate cancer	0135 CAIS	0362 Prostate cancer		0137 PAIS		0492 Prostate cancer		0363 Prostate cancer				
Accel	05.00	0361	0135	0362	0136	0137	0138 PAIS	0492	0139 PAIS	0363	0140 CAIS	0141 CAIS	0483 PAIS	

Family history Reference	Takahashi et al; Cancer Research 55: 1621-1624, 1995	Takahashi et al; Cancer Research 55: 1621-1624, 1995	Bevan et al; J Steroid Biochem Molec. Biol 61: 19-26, 1997	Brown et al: 74th US Endo Soc Meeting Abstr 1506, 1992	Brinkmann et al; J Steroid Biochem Mol Biol 53: 443, 1995	Takahashi et al; Cancer Research 55: 1621-1624, 1995	Takahashi et al; Cancer Research 55: 1621-1624, 1995	Takahashi et al; Cancer Research 55: 1621-1624, 1995	Yaegashi et al; Tohoku J of Exp Med 187: 263-272, 1999	Pinsky et al; Clin Inv Med 15:456, 1992	Brinkmann et al; J Steroid Biochem Mol Biol 53: 443, 1995	Melo et al; 80th US Endo Soc Meeting Abstr P2 44, 1998	Yaegashi et al; Tohoku J of Exp Med 187; 263-272, 1999
External Genitalia	Normal	Normal	Normal	Normal	Female Normal	Normal	Normal	Normal	Normal	Female Normal	Normal	Female Normal	Female Normal
Sex of rearing	Male	Male	Female	Female	Female	Male	Male	Male	Female	Female	Female	Female	Female
n Binding Thermolabile Comments	Somatic mutation	Somatic mutation	Mutation found in two Female Normal unrelated patients	· .		Somatic mutation	Somatic mutation	Somatic mutation				In two different families	
Androgen Binding Thermolabil Bmax Kd k													
			v low						zero	zero			zero
Exon 1 tracts Poly Poly Gln# Gly#		- 	<u></u>						i -		· · · · · · · · · · · · · · · · · · ·		
Change Amino acid Base	Met⇒ Ile AT <u>G</u> ⇒ AT <u>A</u>	$Gly \Rightarrow Ser$ $\overline{G}GC \Rightarrow \overline{A}GC$	Gly \Rightarrow Asp GGC \Rightarrow GAC	$Gly \Rightarrow Asp$ $G\underline{G}C \Rightarrow G\underline{A}C$	$\text{Trp} \Rightarrow \text{Arg}$ $\text{TGG} \Rightarrow \underline{\text{AGG}}$	$\text{Trp} \Rightarrow \text{Stop}$ $\text{TGG} \Rightarrow \text{T\underline{A}G}$	Trp⇒Stop TGG⇒TAG	Trp⇒Stop TGG⇒TGA	$Trp \Rightarrow Stop$ $TGG \Rightarrow TGA$	$Arg \Rightarrow Stop$ $CGA \Rightarrow \overline{\Gamma}GA$	Arg⇒Stop <u>C</u> GA⇒ <u>T</u> GA	Arg⇒ Stop CGA⇒ TGA	Arg⇒ Stop CGA⇒ TGA
proven CpG Position Sxon hot Amino acid omain spot Base	749 2609	750 2610	750	750 2611	751 2613	751 2614	751 2614	751	751	* 752 2616	* 752 2616	• 752 2616	1 752 2616
<u>ت</u>	5 LBD	S. LBD	S *	5 LBD	LBD	.5 LBD	LBD	.5 LBD	LBD	.5 LBD	LBD	LSD LBD	LS LBD
Pat Mutation] type L	Substitut, 5 LBD	Substitut 5. LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut. 5 LBD	Substitut, 5 LBD
<i>></i> .		0365 Prostate				0366 Prostate cancer	0367 Prostate cancer	0368 Prostate cancer		0145 CAIS	CAIS	*.	0402 CAIS
Accession #	0364 Prostate cancer	0365 F	0142 CAIS	0143 CAIS	0144 CAIS	0366	0367	0368	0401 CAIS	0145	0146 CAIS	0342 CAIS	0402

	history Reference Brown et al; 74th US Endo Soc Meeting.	Abstr 1506, 1992 Evans; J Endocrinol 135 Suppl, Abstr P26, 1992	pos Komon et al; Arch Gynecol & Obstetrics	261: 95-100, 1998 Cabral et al, Brazilian J Med & Biol Res. 31:	775-758, 1998 Sakai et al; International J of Urology 7:	390-392, 2000 Lobaccaro et al; Hum Mol Genet	2:1041-1043, 1993 Hiort et al; Am J Med Genet. 63: 218-222,	1996 Takahashi et al; Cancer Research 55:	1621-1624, 1995 Hiort et al: Hum Mol Genet	3: 1163-1166 1994 Weidemann et al; Clin Endocrinology 45: 733	-739, 1996 Takahashi et al; Cancer Research 55:	Hort et al; Am J Med Genet, 63: 218-222,	1996 Giwercman et al. Clin Endocrinol 54: 827-834, 2001
External	Normal	Normal	Normal	Female Normal	Normal	Female Normal.	Normal	Normal	Ambiguous	Ambiguous	Normal	Ambiguous	Normal
Sex of	Female N	Female	Female	Female	Female	Female	Female	Male	Male	Male	Male	Male	Male
n Binding Thermolabile Comments	Mutation found in two Female unrel. families.	Equivalent to tfm rat			Bilateral testicular tumors			Somatic mutation			Somatic mutation		Servere oligospermia- Male transactivation 38% of wt.
Androge	ĕ	zero				zero				normal high *			high
Change Exon 1 Amino acid Poly Base Gln#	all A <u>A</u>	$Arg \Rightarrow Gln$ $C\underline{G}A \Rightarrow C\underline{A}A$	Arg⇒Gln C <u>G</u> A⇔C <u>A</u> A	$Arg \Rightarrow Gln$ $C\underline{G}A \Rightarrow C\underline{A}A$	$Arg \Rightarrow Gln$ $C\underline{G}A \Rightarrow C\underline{A}A$	Phe⇒ Val TTC⇒ GTC	Phe ⇒ Val <u>T</u> TC ⇒ <u>G</u> TC	Phe⇒ Leu <u>T</u> TC⇒ <u>C</u> TC	Phe⇒Leu TTC⇒TTA	Phe⇒Leu TTC ⇒ TTA	Thr⇒Ala Acc⇒ <u>G</u> cc	Asn⇒ Ser A <u>A</u> T⇒ A <u>G</u> T	Asn⇒ Ser AAT⇒ AGT
ty CpG Position hot Amino acid spot. Base	* 752 2617	* 752 2617	* 752 2617	752	* 752 2617	754	754 2622	754	754 2624	754 2624	755 2625	756 2629	756 2629
athogenici proven Exon	-1	Substitut 5		Substitut, 5		Substitut 5 LBD	Substitut, 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 *	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 *
a		0148 CAIS	0333 CAIS	0349 CAIS	0497 CAIS	0149 CAIS	0150 CAIS	0369 Prostate cancer	0151 PAIS	0152 PAIS	0370 Prostate cancer	0153 PAIS	0532 MAIS

Family history Reference	James et al; 79th US Endo Soc Meeting, Abstr P2-484, 1997	Marcelli et al; Cancer Research 60: 944-949, 2000	Yong et al; Mol & Cell Endocrinol, 137: 41-50, 1998	Takahashi et al; Cancer Research 55: 1621-1624, 1995	DeBellis et al; Mol Endocrinol, 6:1909-20, 1992	Brown et al; 74th US Endo Soc Meeting, Abstr 1506, 1992	Bevan et al; J Steroid Biochem Molec, Biol 61: 19-26, 1997	Quigley et al; Endocrin. Reviews, 16:271, 1995	pos McPhaul et al;J Clin Inv 87:1413,1991:Batch&al Arc Dis Ch 68:453	Morono et al; Human Mutation 6: 152-162, 1995	Batch et al; Arch Disease Child 68: 453, 1993	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
Sex of External rearing Genitalia	Normal	Normal		Normal	Female Normal	Normal	Normal	Female Normal	Ambiguous	Ambiguous	Ambiguous		·
Sex of rearing	Male	Male		Male	Female	Female	Female	Female	Male	Male	Male		·
n Binding Thermolabile Comments	Binds R1881 norm transcriptionally inactive- Som mut	Somatic mutation	50% reduction in transactivation in COS-7	Somatic mutation					* PolyGln tract short (only 12 repeats)		:		:
Androge:			normal high *		żero	zero	zero		normal high	low		normal high	normal high
1 tracts y Poly # Gly#													
Change Anitro acid Base	Val⇒ Ala G <u>T</u> C ⇒ G <u>C</u> C	$Val \Rightarrow Ala$ $G\underline{T}C \Rightarrow G\underline{C}C$	Asn⇒Thr A <u>A</u> C ⇒ A <u>C</u> C	Ser⇒Pro TCC ⇒ CCC	Ser ⇒ Phe TCC ⇒ TTC	Leu⇒Phe CTC⇒ITC	Leu ⇒ Phe <u>C</u> TC ⇒ <u>I</u> TC	Tyr⇒ His <u>T</u> AC⇒ <u>C</u> AC	$Tyr \Rightarrow Cys \qquad 12$ $T\underline{A}C \Rightarrow T\underline{G}C$	$Tyr \Rightarrow Cys$ $T\underline{A}C \Rightarrow T\underline{G}C$	Tyr⇒Cys T <u>A</u> C⇒T <u>G</u> C	Tyr⇒Cys T <u>A</u> C⇒T <u>G</u> C	Tyr⇒Cys T <u>A</u> C⇒T <u>G</u> C
hogenicity proven CpG Position Exon hot Anino acid domain spot Buse	757 2632	757	758	759 2637	759 2638	762 2646	762	763	* 763 2650	763	763	763	763
	Substitut 5 *	Substitut 5 LBD	Substitut 5 *	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 *	Substitut 5 LBD	Substitut, 5	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD
7	1	0493 Prostate S	0346 PAIS	0371 Prostate	0154 CAIS	0155 CAIS	0156 CAIS	0157 CAIS	0158 PAIS	0159 PAIS	0405 PAIS	0484 PAIS	0485 PAIS

	Takahashi et al; Cancer Research 55:	1621-1624, 1995 neg Marcelli et al; J clin Invest 94: 1642-1650.	1994 Ris-Stalpers et al: Pediatric Res,36;	227-234, 1994 Pinsky et al; Clin Inv Med, 15:456, 1992	Bevan et al; J Steroid Biochem Molec. Biol	61: 19-26, 1997 Merkabi et al;75th US Endo Soc Meeting	Abstr 602, 1993 Sweet et al; Fertil Sterilty, 58: 703, 1992	Hiort et al; Am J Med Genet. 63: 218-222	1996 Ko et al; J Reprod. Med 42: 424, 427, 1997	Giwercman et al; Human Genetics 103:	Ahmed et al; J Clin Endocrinol & Metab 85.	Ahmed et al; J Clin Endocrinol & Metab 85:	658-665, 2000 Ahmed et al.; J Clin Endocrinol & Metab 85. 658-665, 2000
External	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Sex of	Male	Female	Female	Female	Female	Female Normal	Female	Female Normal	Female Normal	Female Normal	Female	Female Normal	Female Normal
n Binding Thermolabile Comments	Somatic mutation												
Androgen Binding Thermolabi	*	high		normal									
		low	zero	low	zero	zero							
Exon 1 tracts Poly Poly Gln# Gly#		<u>:</u>				, - , - , 			27				
Change Amino acid Base	Tyr⇒ Cys T <u>A</u> C⇒ T <u>G</u> C	Phe⇒ Leu <u>T</u> TC⇒	Phe⇒ Leu TTC⇒ CTC	Phe⇒Leu TTC⇒TTG	Ala⇒ Thr GCC⇒ <u>A</u> CC	Ala⇒Thr GCC⇒ <u>A</u> CC	Ala⇒Thr GCC⇒ <u>A</u> CC	Ala⇒ Thr GCC⇒ ACC	Ala⇒Thr 2 GCC⇒ACC	Ala⇒ Thr GCC ⇒ ACC	Ala⇒ Thr GCC ⇒ ACC	Ala ⇒ Thr GCC ⇒ ACC	Ala ⇒ Thr GCC ⇒ ACC
tty CpG Position hot Amino acid spot Base	763 2650	764 2652	764	764 2654	* 765 2655	* 765 2655	* 765 2655 <u>c</u>	* 765 2655 <u>c</u>	* 765 2655 <u>0</u>	* 765 2655 <u>C</u>	* 765 2655 <u>C</u>	• 765 2655 <u>C</u>	* 765 2655 G
Pathogenicity proven C Exon ho Domain sp	5 LBD	S *	5 LBD	S LBD	5 *	S LBD	S LBD	S LBD	CBD	CBD	CBD	BD	BD
Pa: Autation type 1	Substitut 5 LBD	Substitut, 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut, 5 LBD	Substitut, 5 LBD	Substitut, 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD
	0372 Prostate Cancer	0160 CAIS	0161 CAIS	0162 CAIS	CAIS	0164 CAIS	0165 CAIS	0166 CAIS	0311 CAIS	0382 CAIS	0454 CAIS	0455 CAIS	0456 CAIS
Acce	0372	0100	0161	0162	0163	2010	0165	9910	0311	0382	0454	0455	0456

Family history Reference	Chavez et al; Clin Genet. 59:: 185-188, 2001	Pinsky et al, Clin Inv Med, 15:456, 1992	pos Marcelli et al; J Clin Invest 94: 1642-1650. 1994	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001	pos Baldazzi et al; Hum Mol Genet 3:1169-1170, 1994	Chung et al; Molecules & Cells 8: 741-745, 1998	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Guillen et al; An Esp Pediatr 56: 341-352, 2002	Lobaccaro et al, Pediatr Res, 33.Abstr 115, 1993	Melo et al; 80th US Endo Soc Meeting Abstr P2-44, 1998	Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001
External B		Normal	Normal	Normal	Female Normal	Female Normal	Female Normal	Normal	Normal	Normal	Normal	Normal	Female Ambiguous
Sex of rearing		Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female
a Binding Thermolabile Comments						Single nt. deletion causing frameshift & stop in Codon 807	Single nt. deletion causing frameshift & stop in Codon 807	Single nt. deletion causing frameshift & stop in Codon 807	Single nt. deletion causing frameshift & stop in Codon 807	Single nt. del framhift Female & stop in Codon 807 in 2 unrelated individs			
rogei Ka			high high	•	normal high						M(normal high
_		zero	low		nou				 		v low		<u> </u>
Exon 1 tracts Poly Poly Gln# Gly#			· · · · ·		<u></u>								
Change Exo Amino acid P Base Gl	Ala⇒ Ser GCC⇒ <u>T</u> CC	Ala⇒ Val 20 GCC ⇒ GIC	Pro⇒Ser CCT⇒ICT	Pro⇒Ser CCT⇒TCT	Pro ⇒ Ala CCT ⇒ <u>A</u> TG	Pro ⇒ Pro CC	Pro ⇒ Pro CC∆T ⇒ CCG	Pro ⇒ Pro CCAT ⇒ CCG	Pro ⇒ Pro CCAT ⇒ CCG	Pro ⇒ Pro CCAT ⇒ CCG	$Asp \Rightarrow Glu$ $GA\underline{T} \Rightarrow GA\underline{G}$	$Asp \Rightarrow Glu$ $GA\underline{T} \Rightarrow GA\underline{G}$	Leu ⇒ Met CTG ⇒ <u>A</u> TG
ty CpG Position hot Amino acid spot Base	765 2655 <u>9</u>	765 2656	766	766 2658	766	766	766	766	766	766	767 2663	767 2663	768
Pathogenicity proven C Accession.# Mutation Exon h	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 *	Substitut 5 LBD	Substitut 5 LBD	Deletion 5 LBD	Deletion 5 LBD	Deletion 5 LBD	Deletion 5 LBD	Deletion 5 LBD	Substitut. 5 LBD	Substitut 5 LBD	Substitut 5 LBD
Accession.# N	0520 PAIS	0167 CAIS	0168 CAIS	0457 CAIS	0543 CAIS	0169 CAIS	0388 CAIS	0458 CAIS	0459 CAIS	0561 CAIS	0170 CAIS	0343 CAIS	0544 PAIS

	Family	history Reference	Ahmed et al; J Clin Endocrinol & Metab 85:	Hiort et al; Hum Mol Genet	3: 1163-1166 1994 Zhu et al, 83rd US Endo Soc Meeting, Abstr	P2-34, 2001 Imasaki et al; Endocrine Journal 42: 643-648	Tincello et al; Clinical Endocrinology 46:	Shkolny et al; J Clin Endocrinol & Metab 84;	803-810, 1999 Prior et al; Am J Hum Genet, 51:143, 1992	pos Prior et al; Am J Hum Genet, 51:143, 1992	Mebarki et al; 72nd US Endo Soc Meeting,	Abstr 791, 1990 Hiort et al; J Pediatrics 132: 939-943, 1998	neg Marcelli et al; J Clin Endocrinol & Metab 73:	318, 1991 Jakubiczka et al; Human Mutation 9: 57-61, 1997	Komori et al; Arch Gynecol & Obstetrics 261: 95-100, 1998
	External	rearing Genitalia	Female Normal	Ambiguous	Ambiguous	Normal		Ambiguous	Normal	Female Normal	Normal	Normal	Normal	Normal	Normal
	Sex of	rearing	Female	Female	Female	Female		Male	Female	Female	Female 1	Female Normal	Female	Female	Female Normal
	ale O	Comments			Size & level of expression of AR										
;	Androgen Binding Thermolabile	Bnax Kd k			high	zero	low high	normal normal high	normal normal	zero	zero		v low high		
tracts	Poly.	* 5				<u>. N</u>	_=		23 n	19 <mark>z</mark>			<u> > </u>		
Exon 1 tracts	Poly	# 55						25	26	27					
Change		Base	c <u>T</u> G ⇒ C <u>C</u> G	Asn⇒ His <u>A</u> AT⇒ <u>C</u> AT	Asn⇒His <u>A</u> AT⇒ <u>C</u> AT	$Glu \Rightarrow Stop$ $\underline{G}AG \Rightarrow \underline{I}AG$	Glu ⇒ Gly G <u>A</u> G ⇒ G <u>G</u> G	$Glu \Rightarrow Ala$ $G\underline{A}G \Rightarrow G\underline{C}G$	Arg⇒ Cys CGC⇒ <u>T</u> GC	Arg⇒ Cys <u>C</u> GC⇒ <u>T</u> GC	Arg⇒Cys <u>C</u> GC⇒ <u>T</u> GC	Arg⇒Cys <u>C</u> GC⇒ <u>T</u> GC	Arg⇒ Cys CGC⇒ <u>T</u> GC	Arg⇒Cys <u>C</u> GC⇒ <u>T</u> GC	Arg⇒Cys <u>C</u> GC ⇒ <u>T</u> GC
ty Cre Position	hot Amino acid	spot base	2665	771	771 2673	2676	772	772	* * 774	* 774 2682	* 774 2682	* 774 2682	* 774 2682 G	• 774 2682 <u>Q</u>	* 774 2682 <u>9</u>
Pathogenicity nroven C	. —	Domain	LBD	BD	* GB	CE	ВЪ	* G8	* BD *	*		90	30		
Path	Mutation E	Į.		Substitut, 5 LBD	Substitut 5	Substitut 5 LBD	Substitut 5 LBD	Substitut 5 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut. 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6
	Accession # N	0460 CAIS		0171 PAIS	0526 PAIS	0172 CAIS	0173 PAIS	0174 PAIS	0336 CAIS	0176 CAIS	0177 CAIS	0178 CAIS	0179 CAIS	0180 CAIS	0331 CAIS
	- ₹	Ις	•	0	0	0	0	0	0	0	0	0	0	0	ŏ

Family history Reference	Brown et al; Mol Endocrinol, 4:1759-72, 1990	neg Hiort et al; J Pediatrics 132: 939-943, 1998	pos Prior et al; Am J Hum Genet, 51:143, 1992	Batch et al: Hum Mol Genet, 1:497, 1992	DeBellis et al; Mol Endocrinol, 6:1909-20, 1992	Hiort et al; Am J Med Genet. 63; 218-222, 1996	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Quicley et al; Endocrin Reviews 16: 271, 1995	Hiort et al; Hum Mol Genet 3: 1163-1166 1994	Morono et al; Human Mutation 6: 152-162,	Sinnecker et al; Eur J. Pediatr. 156: 7-14, 1997	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
Sex of External rearing Genitalia	Female Normal	Female Normal	Female Normal	Female Normal	Female Normal	Female Normal	Female Normal	Female Normal		Female Normal	Female Normal	Female Normal	Female Normal
n Binding Thermolabile Comments		mosaic-de novo mutation	* mutation found in two Fernale unrelated families	*							:		
Androge Bmax K	v low		normal high high	low normal	v low high		zero						
Change Exon 1 tracts Amino acid Poly Poly Base Gin# Gly#	Arg⇒ Cys CGC ⇒ <u>T</u> GC	Arg⇒Cys <u>C</u> GC⇒ <u>T</u> GC	Arg⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg⇒ His CGC ⇒ CAC	Arg ⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg ⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg ⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg ⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg⇒Trp CGG⇒∑GG	Arg⇒Trp CGG⇒ <u>T</u> GG	Arg⇒Trp CGG⇒ <u>T</u> GG	Arg⇒ Trp CGG ⇒ <u>T</u> GG
og Position st Amino acid 1	774 Arg= 2682 <u>C</u> GC=	2682 <u>C</u> GC=	* 774 Arg= 2683 CGC=	* 774 Arg= 2683 CGC=	* 774 Arg : 2683 CGC	* 774 Arg 2683 CGC	* 774 Arg. 2683 CGC	* 774 Arg 2683 C <u>G</u> C	* 774 Arg 2683 CGC	• 779 Arg 2697 <u>C</u> GG	* 779 Arg 2697 <u>C</u> GG	• 779 Arg 2697 <u>C</u> GG	* 779 Arg
athogenic proven Exon Domain	Substitut 6 EBD	Substitut 6 LBD	Substitut 6 *		Substitut 6 *		Substitut. 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 *	Substitut 6 LBD	Substitut 6 LBD
Accession # Mutation	0175 CAIS	0355 CAIS	0181 CAIS	0182 CAIS	0183 CAIS	01.84 CAIS	0461 CAIS	0462 CAIS	0185 PAIS	0186 CAIS	0187 CAIS	01.88 CAIS	0463 CAIS

	Bevan et al: Hum Mol Genet, 5: 265-273, 1996	sod	Brinkmann et al; J Steroid Biochem & Mot		2904-2908, 1996 Pos Rodien et al; J Clin Endo & Metah 81	Jakubiczka et al; Human Mutation 9: 57 51 1002	Ahmed et al; J Clin Endocrinol & Metab 85.	658-665, 2000 Tilley et al; 2: Clinical	285, 1996 Giwercman et al; Human Genetics 103-	Finsky et al. Clin Inv Med. 15:456, 1992	Ignaccack et al; J Appl Genet 43: 109-114	2002 Pos Nakao et al; J Clin Endocrinol Metah	Pos Lumroso et al 81st. US endo Soc Meetings Abstr. P3-288, 1999
External		Ambiguous		Ambiguous pos	Normal	Female Normal	Normal	Normal	Normal	Normal	Normal	Normal	Ambiguous
Sex of	Female 1	Female / Male		Male	Female	Female	Female	Male	Female Normal	Female	Female	Female	Male
n Binding Thermolabile Comments		1 family member - Female male, Rest of family - / Male	remales	A brother to mutation Male 0305	2 sisters to mutation 0192			Somatic mutation	No transactivation capacity				* Gynocomastic and infertility
Binding hermolab		high											
Androge:	high	normal high					low high		zero	zero		zero	normal normal high
_		23								Z			23
Exon 1 Poly Gln#		8											54
on Change id Amino acid Base	$Met \Rightarrow Ile$ $AT\underline{G} \Rightarrow \underline{A}TA$	Met⇒ lle AT <u>G</u> ⇒ AT <u>A</u>	Met⇒ Ile AT <u>G</u> ⇒ AT <u>A</u>	Met⇒ Ile AT <u>G</u> ⇒ AT <u>A</u>	Met⇒ Ile AT <u>G</u> ⇒ AT <u>A</u>	Met⇒ lle AT <u>G</u> ⇒ AT <u>A</u>	Met⇒ Ile AT <u>G</u> ⇒AT <u>A</u>	Ser⇒ Asn A <u>G</u> C⇒ A <u>A</u> C	$Cys \Rightarrow Tyr$ $T\underline{C}T \Rightarrow T\underline{A}T$	Arg⇒Stop <u>C</u> GA⇒ <u>T</u> GA	Arg⇒ Stop CGA⇒ <u>T</u> GA	$Met \Rightarrow Val$ $\underline{A}TG \Rightarrow \underline{G}TG$	Arg⇒ Ser AG <u>G</u> ⇒ <u>AG</u> T
proven CpG Position xxon hot Amino acid omain spot Base	780	780	780	780	780	780	780 2702	782 2707	784 2713	* 786 2718	786 2718	787 2721	788 2726
· 5 _ ——	*	Ð	Ð	Q	Ą	. <u>Q</u>	Ω	Ω	*			*	
	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD
Accession # Mutation Phenotype type		0190 PAIS	0191 PAIS	0192 PAIS	0305 CAIS	0193 CAIS	0464 CAIS	0194 Prostate cancer	0383 CAIS				
Acce	6010	0100	0191	0192	0305	0193	0464	0194	0383	0195 CAIS	0557 CAIS	0196 CAIS	0406 MAIS

Ramilv	history Reference	Tsukada et al. J Clin Endorinol Metab, 79.1202, 1994	Pinsky et al; Clin Inv Med, 15:456, 1992	Macke et al; Am J Human Genetics 53: 844-852, 1993	Hiort et al; Am J Med Genet. 63: 218-222, 1996	Jakubiczka et al Human Mutation 9: 57-61, 1997	Marcelli at al; J Clin Invest 85: 1522, 1990	Bevan et al; Hum Mol Genet, 5: 265-273, 1996	Quigley et al; Endocrine Reviews 16: 271, 1995	Hiort et al; Am J Med Genet. 63: 218-222, 1996	Evans et al; Prostate 28: 162-171, 1996	Castagnaro et al; Verh. Dtsch. Ges. Path. 77; 119-123, 1993	Hiort et al; J Clin Endocrinol & Metab 85: 2810-2815, 2000	Wang et al; J Clin Endocrinol & Metab 83: 4303-4309, 1998
External		Near-normal male	Normal	Normal	Female Normal	Normal	Female Normal	Female Ambiguous		Female Ambiguous	Normal	Normal	Normal	Normal
Sox of	rearing	Male		Male	Female	Female	Female	Female		Female	Male	Male	Male	Male
	Thermolabile Comments		Inconsistent increases Male in k	Homsosexual individual						.	Also present in genomic DNA	Somatic mutation Stage 4 tumor	Azospermia	Azoospermia - defective transactivation
Androge	Bniax Ke	normal low *	normal normal				v low	normal normal *	normal normal				normal	normal
tracts Polv	Gly#	-										 		
Change E		Leu⇒Phe <u>C</u> TC⇒ <u>T</u> TC	$Glu \Rightarrow Asp$ $GA\underline{G} \Rightarrow GA\underline{C}$	$Glu \Rightarrow Asp$ $GA\underline{G} \Rightarrow GA\underline{C}$	Phe ⇒ Ser T <u>T</u> T ⇒ T <u>C</u> T	Phe ⇒ Ser T <u>T</u> T ⇒ T <u>C</u> T	Trp⇒ Stop TGG⇒TGA	$Gln \Rightarrow Glu$ $CAA \Rightarrow GAA$	GAA⇒ GAA	Gln ⇒ Glu <u>C</u> AA ⇒ <u>G</u> AA	Gln ⇒ Glu CAA ⇒ GAA	GaA ⇒ GaA	Gln⇒Glu <u>C</u> AA⇒ <u>G</u> AA	Gln ⇒ Glu CAA ⇒ GAA
cpG Position	spot Base	790 2730	793 2741	793	794 2743	794 2743	796	798	798	798	798	798	798	798
<u> </u>		*	Q	Ą	Ð	Ð	* E	* Q	Õ	Ω	Ð.		. €	* Qg
Pathogen prove	type Domain	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD
Accession # Mutation	ě	0197 MAIS	0198 MAIS	Normal	0199 CAIS	0200 CAIS	0201 CAIS	0202 PAIS	0203 PAIS	0204 PAIS	0205 Prostate	0399 Prostate cancer	0340 MAIS	0381 MAIS
Acce		0197	0198	0397	010	020	020	020	020	020	020	039	034	038

BNSDOCID: <WO____03040366A2_I_

	`! !! !!	history Reference	Boehmer et al; J Clin Endocrinol & Metab &	4151-4160, 2001	Chavez et al; Clin Genet 59:: 185-188, 2001	pos Sawai et al. J Hum Gener 45: 242 245	2000 Brown et al; Bur J Pediar 157: (Sural 2)	S62, 1993 Morono et al; Human Mutation 6: 152 162	1995 Adeyemo et al; Hum		Yaegashi et al; Tohoku J	263-272, 1999 Pinsky et al. Clin Inv Med. 15:456, 1902	pos Pinsky et al; Clin Inv Med 15.456, 1902	Choi et al; Arch Gynecol Obster 263		12: 75-82, 1998 Pinsky et al; Clin Inv Med, 15:456, 1992
	f External	rearing Genitalia	Normal			Normal		Female Normal	Normal	Ambiguous	Female Normal	Female Ambiguous	Normal	Female Normal	Female Ambiguous neg	
	Sex of	rearin	Female			Female		Female	Female	Female	Female	Female	Male	Female	Female	
	n Binding Thermolabile	Comments	Single nt. deletion causing frameshift &	stop in codon 807						Treatment with topical Female DHT restored male	genital development	Hormone binding specificity alterted.	Hormone binding specificity altered		Also Leu 257 Pro, enhances	шетполаршу
	Androge	Bmax K				Zero zero		low	Zero	low		normal	поттпа1		normal high *	normal normal
Exon 1 tracts	dy Poly				-							 -				23
Change	Amino acid	Thr. Thr.	AC∆C ⇒ ACC	Gln⇒Arg	550 ←550	Glu⇒Lys GAA⇒ <u>A</u> AA	Cys ⇒ Tyr TGC ⇒ TAC	Met ⇒ Val ATG ⇒ GTG	Met ⇒ Arg A <u>T</u> G ⇒ A <u>G</u> G	Met ⇒ Thr A <u>T</u> G ⇒ A <u>C</u> G	Leu⇒Phe CTC⇒ TTC	$\begin{array}{ccc} \operatorname{Ser} \Rightarrow \operatorname{Asn} & 20 \\ \operatorname{A}\overline{\operatorname{G}}\operatorname{C} \Rightarrow \operatorname{A}\overline{\operatorname{A}}\operatorname{C} & & & & \end{array}$	Ser ⇒ Asn 20 AGC ⇒ AAC	$Asp \Rightarrow Gln$ $G\underline{A}T \Rightarrow G\underline{G}T$	Gly ⇒ Ala G <u>G</u> G ⇒ G <u>C</u> G	Leu⇒Val 24 CTG⇒GTG
ity Occ. Position		sput page	2762	802	2767	803	806	807	807 2782	807 2782	812 2796	814 2803	814	819	820	821 2823
rathogenicity Oroven Cr	Exon		BD	<u> </u>		BD	BD	* (BD	BD	* C8	ВО	BD	BD	3D	* Qg	<u> </u>
2 8 -	- C	Deletion	LBD	Substitut 6	<u></u>	Substitut, 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut 6 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7
	Accession # Mutation Phenotype type	0542 CAIS	· <u>- i-</u>	0521 PAIS	 .	0498 CAIS	0206 PAIS	0207 CAIS	0208 CAIS	0428 PAIS	0403 PAIS	0209 PAIS	0210 MAIS			0212 PAIS

	Family history Reference	pos Giwercman et al; J Clin Endocrinol & Metab 85: 2253-2259, 2000	pos Giwercman et al; J Clin Endocrinol & Metab 85: 2253-2259, 2000	Chavez et al; J Hum Genet. 46: 560-565, 2001	Chavez et al; Clin Genet 59:: 185-188, 2001	pos DeBellis et al; Mol Endocrinol, 6:1909-20, 1992	Tincello et al; J Endocrinol, 132 Suppl, Abstr 87, 1992	Ris-Stalpers et al; 74th Endo Soc Meeting, 1992	Giwercman et al; Human Genetics 103: 529-531, 1998	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Choi et al; Arch Gynecol Obstet 263: 201-205, 2000.	Chen et al; Fertilty & Sterility 74: 182-183,	Ahmed et al; J Clin Endocrinol & Metab 85:	Choi et al; Arch Gynecol Obstet 263: 201-205, 2000
	External Genitalia	Normal	Normal	Normal	Female Normal	Female Normal	Normal	Female Normal	Normal	Normal	Female Normal	Normal	Normal	Female Normal
	Sex of rearing	Male	Male	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female
٠.	Thermolabile Comments	Gynocomastia-normal fertility -related to 514 abnormal Bmax DHT	Gynocomastia-normal Male fertility -related to 513 abnormal Bmax DHT									Harmatoma found in pubertal patient		• • · · · · · · · · · · · · · · · · · ·
Androgen Binding	K K				<u> </u>					. 		· · · · ·	-	
				<u> </u>		zero	zero	zero			· ·	· · · · · · · · · · · · · · · · · · ·		•
_	Poly Poly Gln# Gly#	<u> </u>		· · · · · · · · · · · · · · · · · · ·							 			
Change	Anuno acid Base	Gln⇒ Lys <u>C</u> AA⇒ <u>A</u> AA	Gln⇒Lys CAA⇒ <u>A</u> AA	Phe⇒ Val <u>T</u> TT⇒ <u>G</u> TT	Leu⇒ Val CIT⇒ GIT	Arg⇒ Stop CGA⇒ <u>T</u> GA	Arg⇒ Stop CGA⇒ TGA	Arg⇒ Stop CGA⇒ <u>T</u> GA	Arg⇒ Stop CGA⇒ IGA	Arg ⇒ Stop CGA ⇒ TGA	Arg⇒ Stop CGA⇒ TGA	Arg⇒ Stop CGA⇒ TGA	Arg ⇒ Gln CGA ⇒ CAA	Arg⇒Gln C <u>G</u> A⇒C <u>A</u> A
tnogenicity proven CpG Position	hot Amino acid spot Base	824 2832	2832	2841	830	* 831 2853	* 831 2853	* 831 2853	* 831 2853	• 831 2853	* 831 2853	* 831 2853	* 831 2854	* 831 2854
tnogen: provei	Exon Domain	Substitut, 7 LBD	Substitut 7 *	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7 LBD
# 1	ີ ຍ		MAIS		0522 CAIS	0213 CAIS	0214 CAIS	0215 CAIS	0384 CAIS	0465 CAIS	0500 CAIS	0515 CAIS	0466 CAIS	0499 CAIS

BNSDOCID: <WO_____03040366A2_I_>

	Family	history Reference	pos Brown et al; Mol Endocrinol, 4:1759-72,	McPhaul et al; J Clin Inv, 90: 2097, 1992	Yaegashi et al; Tohoku J of Exp Med 187:	263-272, 1999 Ko et al. Int. J. Gynocol. Pathol. 20:	Shkolny et al; Human Mol Genetics 4:	Shkolny et al; Human Mol Genetics 4:	Wilson et al, J Clin Endocrinol Metab,	Nordenskjold et al Urological Res, 27:	Pos	sod	McPhaul et al; J Clin Inv, 90: 2097, 1992	pos Bevan et al; Hum Mol Genet, 5: 265-273, 1996	pos Bevan et al; Hum Mol Genet, 5: 265-273, 1996
	Fxternal		Normal	Normal	Female Normal	Normal	Female Normal	Female Normal	Normal	Ambiguous	Ambiguous	Ambiguous		Female Ambiguous pos	Ambiguous
	Sex of	rearin	Female	Female	Female	Female	Female	Female	Female	Male	Male	Male	Female	Female	Male
	· ·	Comments		Found in two unrelated families		Sertoli cell carcinoma Female Normal		~~~		Hypospadia and cryptorchidism -			Found in two unrelated individuals.	Sibling of 0308	Sibling of 0222
Exon I tracts	Androgen Binding Thermolah	3max Kd k	v low	zero	zero	zero	zero	zero	zero			normal high norm	low high	normal high	normal high
tracts	Poly	Gly# Bmax	>	Ž	ž	Ž.	19	16 2				16 no	_ 으	<u>ដ</u>	<u> </u>
Exon 1.	Poly.	# 55					21	26				20			
Change	Amino acid		Arg⇒Gin C <u>G</u> A⇒C <u>A</u> A	Arg⇒Gln C <u>G</u> A⇒C <u>A</u> A	Arg⇒Gln C <u>G</u> A⇒C <u>A</u> A	Arg⇒ Gln C <u>G</u> A⇒ C <u>A</u> A	Arg⇒Leu CGA⇒CTA	Arg⇒ Leu C <u>G</u> A⇒ C <u>T</u> A	Tyr⇒ Cys T <u>A</u> C⇒ T <u>G</u> C	Leu⇒ Leu CTC ⇒ CTT	Arg⇒ Ser <u>C</u> GT⇒ <u>A</u> GT	Arg⇒Cys <u>C</u> GT⇒ <u>T</u> GT	$Arg \Rightarrow Cys$ $CGT \Rightarrow \overline{1}GT$	Arg⇒Cys <u>C</u> GT⇒ <u>T</u> GT	Arg⇒Cys <u>C</u> GT⇒ <u>T</u> GT
ity CnG Position	hot Amino acid	spot Base	2854	* 831 2854	831	831	831	831	834	838	2880	* 840	* 840 2880	* 840 2880	
Pathogenicity proven Cr		Domain	LBD T	, BD	BD	BD	,BD *	* RD *	BD	BD	BD	BD *	* O8(*	* BD
Patl	= 0	Cuberitud 7	I	Substitut 7 LBD	Substitut. 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 * * 840 LBD 2880
•	Accession# N	0216 CAIS		0217 CAIS	0404 CAIS	0524 CAIS	0218 CAIS	0307 CAIS	0219 CAIS	0392 PAIS	0415 PAIS	0220 PAIS	0221 PAIS	0222 PAIS	0308 PAIS

			-											
	Family bistory Reference	Georget et al; J Clin Endocrinol & Metab 83: 3597-3603, 1998	Giwercman et al; Human Genetics 103: 529-531, 1998		S Beitel et al; J Clin Inv, 94: 546-554 1994	s Hiort et al; J Clin 1 Endocrinol Metab, m 77:262-266, 1993	McPhaul et al; J Clin Inv, 90:2097, 1992	Imasaki et al; Eur J Endorinol, 130: 569:574, 1994	Lumbroso et al; Eur J Endorinol 130: 327, 1994	Imai et al; Annals of Clinical Biochem, 32: 482-486, 1995	Ghirri & Brown; Pediatr Res 33: Abstr.95, 1993	Marcelli et al; J Clin Invest 94: 1642-1650, 1994		De Bellis et al, J Clin Endrernol Metab, 78:513, 1994
÷.	Far bis			s pos	s pos	s pos in 1 fam		sod s					sod	
	External Genitalia			Female Ambiguous	Ambiguous	Female Ambiguous		Female Ambiguous				÷	Ambiguous	Female Ambiguous
	Sex of rearing			Female	Female	Female		Female				. :	Female	Female
	Thermolabile Comments	Transcriptional activity only at high conc of androgen	Reduced transactivation			Found in two unrelated families		* In same fam. persons raised as males with ambiguous genitalia					· · · · · · · · · · · · · · · · · · ·	
ding	nolabii			high *	high *			_ *	:`			high	*	
Androgen Binding	Thern Bmax Kd		low	normal high hi	normal high h	high	zero	normal normal	low	low		low high h	normal high	low high
racts	Poly Gly#				22							· · · · · · · · · · · · · · · · · · ·		
Exon 1. tracts	Poly Gln#			19	81					•				
Change	Annino acid Base	Arg⇒Cys CGT⇒ <u>T</u> GT	Arg⇒Gly CGT⇒GGT	Arg⇒ His CGT ⇒ CAT	Arg⇒ His CGT ⇒ CAT	Arg⇒ His CGT ⇒ CAT	Arg⇒ His C <u>G</u> T⇒ C <u>A</u> T	Arg⇒His C <u>G</u> T⇒C <u>A</u> T	$Arg \Rightarrow His$ $CGT \Rightarrow CAT$	$Arg \Rightarrow His$ $CGT \Rightarrow CAT$	Arg⇒ His CGT⇒ CAT	$Arg \Rightarrow His$ $CGT \Rightarrow CAT$	$Arg \Rightarrow His$ $C\underline{G}T \Rightarrow C\underline{A}T$	$Arg \Rightarrow His$ $C\underline{G}T \Rightarrow C\underline{A}T$
ty CpG Position	hot Amino acid	840 2880	840 2880	840 2881	840 2881	840 2881	840 2881	840 2881	840 2881	840 2881	* 840 2881	840 2881	840 2881	840 2881
ِ درج ک	spot	288(*	*	*		*	*	*	*	*	•	*
Pathogenicity proven Co	Exon Domain	7 LBD	BD	- OR	BD	BD	BD.	BD	7 LBD	BD	7 UBD	LBD	7 LBD	BD
. Pathe	Mutation Ex	Substitut 7	Substitut 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut. 7 LBD	Substitut. 7 LBD	Substitut 7 LBI	Substitut, 7 LBD	Substitut 7	Substitut 7 LBI	Substitut, 7	Substitut 7 LBD
	_ ă					PAIS	PAIS	PAIS	PAIS	PAIS	PAIS	PAIS	PAIS	PAIS
	Accession #	0387 PAIS	0385 PAIS	0337 PAIS	0224 PAIS	0225 PAIS	0226 PAIS	0227 PAIS	0228 PAIS	0229 PAIS	0230 PAIS	0231	0232	0223 PAIS

BNSDOCID: <WO____03040366A2_I_>

Family history Reference	High	pos Hiort et al. J Clin	sod	Marcelli et al; Cancer Research 60: 944-940	2000 Brinkmann et al; J Steroid Biochem Mol	Biol 53: 443, 1995 Ahmed et al; J Clin Endocrinol & Merch 85.	Wilson et al; J Clin Endocrinol Merah	75:1474-8, 1992 Jakubiczka et al; Human Mutation 9: 57-61, 1997	McPhaul et al; J Clin Inv. 90:2097, 1992	DeBellis et al; Mol Endocrinol 6:1909-20	Tincello et al; J Endocrinol 132 Sunnl	Abstr 87, 1992 McPhaul et al; J Clin Inv, 90:2097, 1992	Loboccaro et al; Pediat Res 33: Abstr 115, 1993
f External g Genitalia	Female Ambiguous	Female Normal	Ambiguous	Normal	Normal	Normal	Normal	Normal		Normal	Normal	Normal	Normal
Sex of rearing	Female	Female	Male	Male	Female	Female	Female	Female		Female	Female Normal	Female	Female Normal
n Binding Thermolabile Comments				Somatic mutation	nt insert causes frame-Female shift, stop in Codon	8/9& loss of 44 AA's nt insert causes frame-Female shift.							
inding rmolabil			*						*				
roge			high										
	·		low		zero	zero	zero	zero	low	zero		zero	
Exon 1 tracts Poly Poly Gln# Gly#								,					
Change Amino acid Base	A <u>T</u> C ⇒ A <u>G</u> C	lle ⇒ Thr A <u>T</u> T ⇒ A <u>C</u> T	lle ⇒ Thr A <u>T</u> T ⇒ A <u>C</u> T	Arg⇒ Gly <u>A</u> GA⇒ <u>G</u> GA	Asn⇒Lys AAT⇒ AAAT	Asn⇒Lys AAT⇒ AAAT	Ser⇒ Stop T <u>C</u> A⇒ T <u>G</u> A	Ser⇒Stop T <u>C</u> A⇒T <u>G</u> A	Arg⇒Lys A <u>G</u> A⇒A <u>A</u> A	Arg ⇒ Cys CGC ⇒ IGC	Arg ⇒ Cys 2GC ⇒ IGC	Arg⇒Cys ⊊GC⇒TGC	Arg ⇒ Cys CGC ⇒ TGC
tty CpG Position hot Amino acid spot Base	2884	842	842 2887	846 2898	848 2906	848 2906	853 2920	853 2920	854 2923	* 855 2925 <u>C</u>	* 855 2925 <u>C</u>	* 855 2925 <u>C</u>	* 855 2925 C
Pathogenicity proven G Exon he Domain sp	LBD	7 LBD	7 **	7 LBD	7 LBD	7 LBD	LBD	7 LBD	LBD	ZBD	LBD	BD .	,BD
Path Autation E. type Do		Substitut 7 LBD	Substitut 7	Substitut, 7 LBD	Insertion 7 LBD	Insertion 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut 7 LBD
Accession # Mutation Phenotype type O233 PAIS Substit		0234 CAIS	0235 PAIS	0494 Prostate cancer	0236 CAIS	0467 CAIS							
Acce. 0233		0234	0235	0494	0236	0467	0237 CAIS	0238 CAIS	0239 PAIS	0240 CAIS	0241 CAIS	0242 CAIS	0243 CAIS

Family	history Reference	pos Morono et al; Human Mutation 6: 152-162. 1995.	Sultan et al; J Steroid Biochem & Mol Biol:40 519, 1993	Brinkmann et al; J Steroid Biochem & Mol Biol 53: 443, 1995	Hiort et al; Am J Med Genet. 63: 218-222, 1996	pos Malmgren et al;Clin Genet. 50:202-205, 1996	Komori et al: J Obstetrics & Gynocol. Res. 23: 277-81, 1997	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Elhaji et al. 83rd US Endo Soc Meeting, Abstr P2-37, 2001	, <u>.</u>	Chang et al; 73rd Endo Soc Meeting, Abstr 28, 1991	pos Batch et al; Hum Mol Genet, 1:497, 1992	Hiort et al; Am J Med Genet. 63: 218-222. 1996
* External	Genitalia	Normal	Normal	Female Normal	Female Normal	Normal	Female Normal	Normal	Normal	Normal	Ambiguous		Ambiguous pos	Ambiguous
Sex of	rearing	Female	Female	Female	Female	Female	Female	Female	Female	Female	Male		Male	Male
	comments												* Servere hypospadia	·
Androgen Binding	Briax Kd k	w	zero			v Iow high		zero	normal high	v low high	normal high	normal high	normal high	
	Gly# B	low	ze		·	>		Ä .	<u>. =</u>	<u> </u>		_ =	<u> </u>	
Exon 1 tracts Poly Poly	Glu#													
Change Amino acid	Base	Arg ⇒ Cys CGC ⇒ IGC	Arg⇒Cys <u>C</u> GC⇒ <u>T</u> GC	Arg ⇒ Cys CGC ⇒ IGC	Arg \Rightarrow Cys $\underline{C}GC \Rightarrow \underline{T}GC$	Arg ⇒ Cys <u>C</u> GC ⇒ <u>T</u> GC	Arg ⇒ Cys <u>C</u> GC ⇒ <u>T</u> GC	Arg ⇒ Cys <u>C</u> GC ⇒ <u>T</u> GC	Arg ⇒ Cys <u>C</u> GC ⇒ <u>T</u> GC	Arg ⇒ Cys <u>C</u> GC ⇒ <u>T</u> GC	Arg ⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg⇒His CGC⇒CAC	Arg⇒ His CGC⇒ CAC	Arg⇒His C <u>G</u> C⇒ C <u>A</u> C
nogenieity proven CpG Position Change 3xon I hot Amino acid Amino acid	spot Base	* 855 2925	* 855 2925	* 855	• 855 2925	* 855 2925	* 855 2925	* 855 2925	* 855 2925	2925	* * 855	* 855 2926	* * 855 2926	* 855 2926
proyen Exon	Domain	25	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 *	Substitut 7 **	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD
ra Accession # Mutation	Phenotype	0244 CAIS	0245 CAIS	0246 CAIS	0247 CAIS	0248 CAIS	0320 CAIS	0468 CAIS	0469 CAIS	0527 CAIS	0528. PAIS	0251 PAIS	0252 PAIS	0253 PAIS

Family history Reference	pos Weidemann et al; Clin Endocrinology 45: 733 - 739, 1996	Marcelli et al; J Clin Invest, 94:1642-1650, 1994	pos Boehmer et al; Am J Hum Genetics 60: 1003-6, 1997	Weidemann et al; Clin Endorinology 45: 733-739, 1996	pos Boehmer et al; Am J Hum Genetics 60:	McPhaul et al; J Clin Invest. 90: 2097, 1992	Melo et al; 80th US Endo Soc Meetings Aber P2 44, 1008	Ahmed et al; J Clin Endocrinol & Metab 85:	neg Hiort et al. J Pediatrics 132: 939-943, 1998	Brown et al; Eur J Pediatr 152: (Suppl 2) \$62, 1993	Bevan et al; J Steroid Biochem Molec. Biol 61: 19-26, 1997	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	DeBellis et al: Mol Endocrinol, 6:1909-20, 1992
External Genitalia	Female Ambiguous	Female Ambiguous	Ambiguous	Female Ambiguous	Female Ambiguous	Normal	·	Normal	Normal	Female Normal	Normal	Female Normal	Female Normal
Sex of rearing	Female	Female	Male	Female	Female	Female		Female	Female	Female	Female	Female	Female
n Binding Thermolabile Comments			Brother of 0302 somatic & germ-line muts. in mother		Sister of 0301. somatic & germ-line muts, in mother				de novo mutation		Transactivation activity increases with horm. concentration		
Androgen Binding Thermolabii $B_{max} K_d k$		high norm							······································				
	zero	low		zero		low					low	······································	zero
Exon 1 tracts Poly Poly Gln# Gly#			<u> </u>										
	S C	AC.	is 14	IS AC	is 14	is AC	is <u>A</u> C	_{සු} වු	đo	8 D	AC SI	AC AC	 CO Eò e≤
	Arg⇒ His CGC⇒ CAC	Arg⇒His C <u>G</u> C⇒C <u>A</u> C	Arg⇒ His C <u>G</u> C⇒ C <u>A</u> C	Arg ⇒ His CGC ⇒ CAC	$Arg \Rightarrow His$ $C\underline{G}C \Rightarrow C\underline{A}C$	Arg ⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Arg⇒ His C <u>G</u> C ⇒ C <u>A</u> C	Phe⇒Leu TTC⇒TTG	Tyr⇒ Stop TAC⇒	Leu⇒Arg C <u>T</u> G⇒C <u>G</u> G	Asp⇒ Asn <u>G</u> AC⇒ <u>A</u> AC	Asp⇒ Asn <u>G</u> AC⇒ <u>A</u> AC	Asp ⇒ Gly G <u>A</u> C⇒ G <u>G</u> C
hogenicity proven CpG Position 3xon hot Amino acid omain spot Base	* 855	* 855 2926	* 855	* 855 2926	2926	* 855	* 855 2926	856 2930	857	863 2950	* 864 2952	2952	2953
Pathogenicity proven C Exon he Domain sp	rap -	LBD *	LBD	7 LBD	LBD	7 LBD	rbd L	7 LBD	7 LBD	7 LBD	ZBD T	LBD	LBD +
- n o	Substitut.	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 LBD
Accession # Mutation	PAIS	PAIS	PAIS	0250 PAIS	0302 PAIS	0249 CAIS	0344 PAIS	0470 CAIS	0356 CAIS	0256 CAIS	02 <i>57</i> CAIS	0471 CAIS	0258 CAIS
Acces	0254 PAIS	0255 PAIS	0301 PAIS	0250	0302	0249	0344	0470	0356	0256	0257	0471	0258

						٠		_						
	Family history Reference	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	pos Mongan et al; J Clin endocrinol Metab 87: 1057-1061, 2002	pos Saunders et al; Clin Endocrinol 37: 214, 1992	Saunders et al; Clin Endocrinol, 37:214, 1992	pos Kazemi-Esfarjani et al; Mol Endocrinol, 7:37-46, 1993	pos Hiort et al; J Clin Endocrinol Metab, 77:262-266, 1993	Merkabi et al; 75th US Endo Soc Meeting Abstr 602; 1993	Kazemi-Esfarjani et al; Mol Endocrinol, 7:37-46, 1993	Weidemann et al; Clin Endocrinology 45: 733 739, 1996	Lubahn et al; Proc Natl Acad Sci. 86: 9534, 1989	McPhaul et al; J Clin Inv, 90:2097, 1992	neg Hiort et al, J Pediatrics 132: 939- 943, 1998
	External Genitalia	Normal	Normal	Normal	Ambiguous	Ambiguous	Ambiguous	Ambiguous		Female Normal	Female Normal	Female Normal		Female Ambiguous
,	Sex of rearing	Female Norma	Female	Female	Male	Male	Male	Male		Female	Female	Female		
	^e Comments			de novo mut. also Phe868Leu mut -no effect horm binding								*		de novo mutation - mosaic 2 functionally diff AR's
Androgen Binding		zero			normal high	normal high	normal high	high	zero	normal high	normal high	normal high		high
=					<u> </u>					16	_ 	- ,		
Change	Amino acid Poly Base Gln#	$Asp \Rightarrow Gly$ $G\underline{A}C \Rightarrow G\underline{G}C$	Ser ⇒ Pro TCC ⇒ CCC	Ser ⇒ Pro TCC ⇒ CCC	Val⇒Leu 21 GTG⇒ITG	Val⇒Leu 25 GTG⇒ITG	Val ⇒ Leu <u>G</u> TG ⇒ <u>T</u> TC	Val⇒ Leu GTG ⇒ <u>T</u> TG	Val⇒ Leu GTG⇒	Val⇒Met 20 GTG⇒ATG	Val⇒Met GTG⇒ <u>A</u> TG	Val ⇒ Met GTG ⇒ <u>A</u> TG	Val⇒ Met GTG ⇒ ATG	Val⇒ Met GTG ⇒ ATG
hogenicity proven CoC Position	hot Amino acid	864 2953	865	865	866	866	* 866	866	* 866 2958	* * 866	* * 866	* 866	* 866 2958	* 866 2958
athogenic proven	Mutation Exon	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD	Substitut 7 LBD
	Accession # N	0472 CAIS	0486 CAIS	0560 CAIS	0259 PAIS	0345 PAIS	0260 PAIS	0261 PAIS	0262 PAIS	0263 CAIS	0264 CAIS	0265 CAIS	0266 PAIS	0267 PAIS

BNSDOCID: <WO____03040366A2_1_>

Family bistory Dec	Takahashi et al; Cancer Research 55:	Ahmed et al; J Clin Endocrinol & Metab 85:	Ahmed et al; J Clin Endocrinol & Metab 85:	Ahmed et al. J Clin Endocrinol & Metab 85:	McPhaul et al; J Clin Inv, 90:2097, 1992	pos Bevan et al; Hum Mol Genet,5: 265-273, 1996	Hiort et al; Eur J Pediatr, 153:317, 1994	Albers et al; J of Pediatrics 131: 388-392,	neg Hiort et al; J Pediatrics 132: 939- 943, 1998	Zenteno et al; Horm Res 57: 90-93, 2002	Shkolny et al; J Clin Endocrinol & Metab 84:	Taplin et al; New England J Med 332:	L353-1396, 1993 Tan et al: J of Urology 155: 340A, 1996
External Genitalia	Vormal	Female Normal	Normal	Normal	Normal	Ambiguous	Ambiguous	Ambiguous	Ambiguous	Normal	Normal	Normal	Normal
Sex of rearing	Male	Female	Female	Female	Female	Male	Male	Male	Female	Male	Male	Male	Male
n Binding Thermolabile Comments	rion					* Hypospadia	Found in two unrelated families	Servere hypospadias	de novo mutation	bilateral gynecomastia Male		Som mut- stimulated by progesterone & Destropen	Somatic mutation
Androge			zero	zero		normal high					normal normal norm		
-											24		
Change Amino acid Base	Val⇒Met <u>G</u> TG → <u>A</u> TG	Val ⇒ Met <u>G</u> TG ⇒ <u>A</u> TG	Val⇒Met <u>G</u> TG ⇒ <u>A</u> TG	Val⇒Met <u>G</u> TG ⇒ <u>A</u> TG	Val⇒Glu G <u>T</u> G ⇒ G <u>A</u> G	Ile⇒Met AT <u>T</u> ⇒AT <u>G</u>	Ala⇒ Val G <u>C</u> G ⇒ G <u>T</u> G	$Ala \Rightarrow Gly$ $G\underline{C}G \Rightarrow G\underline{G}G$	Ala⇒Gly G <u>C</u> G ⇒ G <u>G</u> G	Ala ⇒ Gly G <u>C</u> G ⇒ G <u>G</u> G	Arg⇒Gly 26 AGA⇒GGA	His⇒Tyr <u>C</u> AT⇒ <u>T</u> AT	His ⇒ Tyr CAT ⇒ ŢAT
ty CpG Position hot Amino acid spot Base	* 866 2958	866 2958	866	866 2958	866	869	870	870 2971	870	870 2971	871 2973	874 2982	2982
nicity en C		*	*	*		*	•			. .	*	·	
Pathogenicity proven C utation Exon ho	Substitut 7 LBD	Substitut, 7 LBD	Substitut, 7 LBD	Substitut 7 LBD	Substitut. 7 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD
7	0373 Prostate cancer	0473 CAIS	0474 CAIS	0475 CAIS	0268 CAIS	0269 PAIS	0270 PAIS	0315 PAIS	0271 PAIS	0562 MAIS	0272 MAIS	0273 Prostate cancer	0274 Prostate cancer
Acces	0373	0473	0474	0475	0268	0269	0270	0315	0271	0562	0272	0273	0274

	Family history Reference	Chavez et al; J Hum Genet. 46: 560-565, 2001	Veldscholte et al; Biochem Biophys Res Comm, 172:534, 1990	Suzuki et al; J Steroid Biochem Molec Biol 46:759, 1993	Gaddipati et al; Cancer Res, 54: 2861-2864, 1994	Suzuki et al; Prostate 29: 153-158, 1996	Kleinerman et al; J of Urology 155: 624A, 1996	Taplin et al; Cancer Research 59: 2511-2515 1999	Taplin et al: New England J Med 332; 1393-1398, 1995	Chavez et al, J Hum Genet. 46: 560-565, 2001	Taplin et al; 37th meeing ASCO 20: Abstr 1738, 2001	pos Davies et al; Clinical Endocrinology 43: 69-77, 1995	pos Trifiro et al; Am J Med Genet, 40:493, 1991	Yong et al; 46th Am Soc Hum Genetics meetings Abstr 217, A43, 1996
	External Genitalia	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Ambiguous	Normal	Female Normal	Normal	Normal
· .	Sex of rearing	Female	Male	Male	Male	Male	Male	Male	Male	Male	Male	Female	Female	Male
	e Comments		Altered binding specificity - somatic mutation	Somatic mutation 1/8 endocrine resistant therapy cases	6 out of 24 patients screened - somatic mutation	3 out of 22 cases in metastatic tissue -somatic mutation	Somatic mutation in bone metasteses of Prostate cancer	Som mut found in 5 of 16 patients treated with flutamide	Som mut. in 86% of isolates .Stimulated by estrogen & progest		Treated with bicalumatide - somatic mutatation	Somatic instabilty in polyglutamine tract		Oligospermia-50% red. in transactivation
		zero								normal			zero	normal normal norm
느	y roty # Gly#			. :				 				·		
Change	Amino acid Poly Base Gin#	His \Rightarrow Arg $C\underline{A}T \Rightarrow C\underline{Q}T$	Thr ⇒ Ala <u>A</u> CT ⇒ GCT	Thr ⇒ Ala <u>A</u> CT ⇒ <u>G</u> CT	Thr⇒ Ala <u>A</u> CT⇒GCT	Thr ⇒ Ala <u>A</u> CT ⇒ <u>G</u> CT	Thr \Rightarrow Ala $\underline{A}CT \Rightarrow \underline{G}CT$	Thr ⇒ Ala <u>A</u> CT ⇒ <u>G</u> CT	Thr⇒ Ser A <u>C</u> T⇒ A <u>G</u> T	Asp⇒Tyr GAC⇒ <u>T</u> AC	$Asp \Rightarrow Gly$ $G\underline{A}C \Rightarrow G\underline{C}C$	Leu⇒ Val CTA⇒ GTA	Lys \Rightarrow Stop $\underline{A}AG \Rightarrow \underline{L}AG$	$Met \Rightarrow Val 23$ $\underline{ATG} \Rightarrow \underline{GTG}$
ty CpG Position	hot Amino acid spot Base	2983	2991	2991	2991	2991	877 2991	877 2991	2992	879 2997	879 2998	3003	3009	* 886 3018
athogenic proven	Mutation Exon e type Domain	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD
*	cession # M Phenotype	CAIS		0276 Prostate	Prostate cancer	0278 Prostate cancer	0279 Prostate cancer	0432 Prostate cancer	0280 Prostate cancer	PAIS	0553 Prostate cancer	CAIS	CAIS	0283 MAIS
	Accession #	0538 C	0275 LNCaP mutation	0276	0277	0278 []	0279	0432	0280	0539 PAIS	0553	0281 CAIS	0282	0283

Family Reference		Hellwinkel et al. J Clin Endocrinol & Metab 86:	Chavez et al. J Hum Genet. 46: 560-565,	Ahmed et al; J Clin Endocrinol & Metab 85:	Pinsky et al; Clin Inv Med, 15:456, 1992	De Bellis et al; J Clin Endocrinol Metab,	Essawi et al; Disease Markers 13: 99-105,	Taplin et al; Cancer Research 59:2511-2515,	neg Peters et al; Mol & Cellular Endocrinol.	pos Knoke et al; Human Mutation 12: 220, 1998	Kanayama et al; Int J Urology 6: 327-330,	Giwercman et al; Human Genetics 103;	neg Hiort et al; J Pediatrics 132: 939- 943, 1998
External Genitalia	Normal	Ambiguous	Ambiguous	Normal	Normal	Normal	Female Normal	Normal	Female Normal	Normal	Female Normal	Female Normal	Female Normal
Sex of rearing	Male	Male	Male	Female	Female	Female	Female	Male	Female	Female	Female	Female	Female
n Binding Thermolabile Comments	Oligospermia-50% red. in transactivation	silent mutpart exon Male 8 + part of 3' untrans! also small amt. wt AR						Mutation also found in peripheral blood	Reduced transactivation	Mutation found in two Female Normal siblings		Reduced transactivation	de novo mutation
Androge Bnax K	<u> = </u>	v low normal	normal	low normal	zero	low normal			low high			low	
۳	24	24											
	27	T 21	<u></u>	Ü	± 5	ט ב	U		7 5 G			. O	. D
Change Anino acid	$Met \Rightarrow Val$ $\underline{A}TG \Rightarrow \underline{G}TG$	Ser⇒Ser AG <u>C</u> ⇒AG <u>T</u>	Ser⇒Ser AG <u>C</u> ⇒AG <u>T</u>	Val⇒ Met GTG ⇒ <u>A</u> TG	.Val⇒ Met <u>G</u> TG ⇒ <u>A</u> TG	Val⇒Met GTG⇒ATG	Val⇒Met GTG⇒ATG	Asp⇒ Asn GAC⇒ <u>A</u> AC	Pro⇒Leu <u>C</u> CG⇒ <u>T</u> CG	Pro⇒Leu C <u>C</u> G⇔C <u>T</u> G	Pro⇒Leu C <u>C</u> G⇒C <u>T</u> G	Met⇒ Thr A <u>T</u> G ⇒ A <u>C</u> G	Ile⇒ Thr A <u>T</u> C⇒ A <u>C</u> C
F = 5	886 3018	* 888 3026	* 888	* 889 3027	* 889	* 889 3027	* 889	\$ 890	892 3036	892 3037	892 3037	3046	3055
Pathogenicity proven C Exon ho Domain sp	8 LBD		3D	BD	ВЪ	* GB	BD		* Q8	80		* Qg	
Patho pi Mutation Ex type Don	Substitut 8 LE	Substitut 8 / Splice LBD	Substitut 8 / Splice LBD	Substitut 8 LBD	Substitut, 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut, 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut, 8 LBD	Substitut 8 LBD	Substitut 8 LBD
81	0309 MAIS	0533 PAIS	0540 PAIS	0476 CAIS	0284 CAIS	5 PAIS	0321. PAIS	0433 Prostate cancer	0389 CAIS	CAIS	3 CAIS	0386 CAIS	0286 CAIS
Acc	030	053.	054	047	028	0285	032	043	038	0375	0413	038	028

	Family history Reference	Taplin et al; New England J Med 332: 1393-1398, 1995	McPhaul et al; J Clin Inv, 90:2097, 1992	Pinsky et al; Clin Inv Med, 15:456, 1992	McPhaul et al; J Clin Inv, 90:2097, 1992	Bevan et al; J Steroid Biochem Molec. Biol 61: 19-26, 1997	pos Choong et al; J Clin Endocrinol Metab, 81: 236-243, 1996	Takahashi et al; Cancer Research 55: 1621-1624, 1995	Watanabe et al; Jpn J Clin Oncol 27: 389-393, 1997	Knoke et al, Andrologia 31: 199-201, 1999	Ghirn and Brown; Paed Res, 33(5) Suppl; Abstr 95, 1993	Radnayr et al; J of Urology 158: 1553-1556, 1997	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665; 2000	Nazereth et al; 79th US Endo Soc Meetings Abstr. P2-489, 1997
-	External Genitalia	Normal		Female Normal	Female Normal	e Normal	Ambiguous	Normal	Normal	Ambiguous		e Normal	e Normal	Normal
	Sex of rearing	Male	·	Female	Female	Female	Female	Male	Male	Male		Female	Female	Male
	Thermolabile Comments	Somatic mutation in 37% of isolates in initial cloning	Qualitative binding abnormality			Decreased transactivation activity compared to normal	Also silent G to A mutation in codon 211	Somatic mutation	Somatic mutation	Servere oligozoospermia				Somatic mutation
Androsen Binding	Thermolabi		wol	normal high	zero	low normal	low low					low high		
	Poly Giv#		요 .	23 DC	<u> </u>	_≌	_ <u>=</u>	· · · · · · · · · · · · · · · · · · ·				_=		
Exon 1 tracts	Poly Gln#			27 2						19				
Change	Amino acid Base	$Gln \Rightarrow Arg$ $C\underline{A}A \Rightarrow C\underline{G}A$	Val⇒ Met GTG ⇒ <u>A</u> TG	Pro⇒Ser CCC⇒ICC	Pro⇒His C <u>C</u> C ⇒ C <u>A</u> C	Leu⇒Phe CTT⇒ITT	Gly⇒Arg GGG⇒ <u>A</u> GG	$Gly \Rightarrow Glu$ $GGG \Rightarrow GAG$	Lys \Rightarrow Arg $A\underline{A}A \Rightarrow A\underline{G}A$	Val⇒Leu GTC⇒ <u>C</u> TC	Pro⇒Ser CCC⇒TCC	Phe ⇒ Leu TTC ⇒ TTG	His \Rightarrow Arg $C\underline{A}C \Rightarrow C\underline{G}C$	Gln⇒ Arg C <u>A</u> G ⇒ C <u>G</u> G
ty CoG Position	hot Amino acid spot Base	902 3066	903	3072	3073	3081	3087	3088	910 3091	911 3093	913	916 3110	917 3112	919 3118
hogenicit proven		Д	Ð	<u>6</u>	Q,	* CBD	* Q	8 LBD	8		8 LBD	8 LBD	LBD	*
at T	Mutation Exon	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LBD	Substitut 8 LB	Substitut 8 LBD	Substitut 8	Substitut 8 LBD	Substitut 8 LBD	Substitut 8	Substitut 8 LB	Substitut 8 LJ	Substitut 8 LBD
	∑ I	0287 Prostate cancer	PAIS	CAIS	0290 CAIS	0291 CAIS	0292 PAIS	0374 Prostate cancer	0327 Prostate	0430 PAIS	0293 PAIS	03.18 CAIS	CAIS	0303 Prostate cancer
	Acce	0287	0288	0289	0200	0291	0292	0374	0327	0430	0293	03.18	0477	0303

	history Reference	Trifiro et al; Eur J Hum Genetics 5: 50-58, 1997	neo Hallwinkal et al. I		Ahmed et al. I Clin	Endocrinol & Metab 85: 658-665, 2000	Ahmed et al; J Clin	Endocrinol & Metab 85: 658-665, 2000	Evans et al; J Endocrinol	129 Suppl, Abstr 65, 1991	Ahmed et al; J Clin	Endocrinol & Metab 85: 658-665, 2000	Ris-Stalpers et al; Proc	Natl AcadSci 87:7866-70, 1990	pos Pinsky et al; Eur J Hum		Sammarco et al; J Clin	Endocrinol & Metab 85: 3256-3261, 2000	Chavez et al; J Hum	Genet 46: 560-565, 2001	pos Lim et al; Mol & Cell	Endocrinology 205-210, 1997	Choi et al: Arch	Gynecol Obstet 263: 201-205, 200	Bruggenwirth et al:	Am J Hum Genet 61: 1067-1077, 1997	
	Genitalia	Normal	[Normal		Normal		Female Normal		Normal	:	Normal		Female Normal		Normal		Female Ambiguous		Normal		Female Normal		Normal		Normal		
Sex of	rearing	Female	Female		Female		Female		Female		Female		Female		Female	Female		Female		Female		Female		Female		Male	
n Binding Thermolabile Comments		Insertion at +3 position of donor splice site	Substitution at +1	pos of donor splice site - lacks exon 2					Substitution at+1	position of donor splice site	Substitution at +1	position of donor splice site	+1 pos of donor site.	del of aa's 683-723	Substitution at +3	position of donor splice site	Subst. at +5 position	of donor splice site, stop at + 79 bases	Sust. at +6 position	or donor spince site.	Subst. at +1 pos of	donor splice, - exon7, stop + 10 aa exon 8	Sustitution at + 1	position of donor splice site	Subst. at -11 pos of	acceptor site. 2 transc; 1, -exon3, 1, +69 nt.	
Androge	Bmax K				zero				<u> </u>		normal normal		zero		zero		low normal		zero		zero		-				
tracts Poly	. [57																						•			
Exon 1 Poly Glu#	1	47		·			-								21												
Change Amino acid	base	⇒ gta⇒gtta	11	ctg ⇒ cta	ſì	î	11 -	î	1	$ggt \Rightarrow gat$	1	ggt ⇒ gat	î	$ggt \Rightarrow g\underline{t}t$	11	$gt\underline{a} \Longrightarrow t\underline{t}a$	î	ta <u>a</u> ⇒ ta <u>t</u>	aag ⇒ aac	ſÌ	11	tgt ⇒ t <u>a</u> t	11	tgt ⇒ tạt	î	git ⇒ gat	
ty CoG Position hot Amino acid	spot oas																										
Pathogenicity proven Cl Exon hc	Domain Original	intron 1	exon2	intron 2	exon2	intron 2	exon2	2	exon3	3	exon3	3	exon4	4	exon6	9	exone	9	exone	9	exon7	7	exon7	7	intron	3 6 70	
Pa Mutation tyne	Ι,	aniide	Splice		Splice		Splice		Splice		Splice		Splice		Splice		Splice		Splice		Splice		Splice		Splice		
Accession # M	CA IC	3	CAIS		CAIS		CAIS		CAIS		CAIS		CAIS		0297 CAIS		PAIS		0541 CAIS		CAIS		0502 CAIS		0299 PAIS		
Acce	7000	£ 670	0304		0419		0480		0295		0478	•	0536		0297		0503		0.541		0298		0502	,	0299		

Family history Reference	Zhu et al; Intl J of Cancer 72: 574-580,	Hiort et al; J Pediatrics 132: 939- 943, 1998	Ambiguous pos Ris-Stalpers et al; Am J Hum Genet 54:609,	Crociotto et al; J of Urology 158:	pos Crociotto et al; J of Urology 158: 1599-1601 1997	Paz et al; European Urology 31: 209-215, 1997
Sex of External rearing Genitalia		Normal	Ambiguous	Normal	Normal	Normal
Sex of rearing	Female Normal	Female Normal		Male	Male	Male
n Binding Thermolabile Comments	- exon 3: higher express. of mut. var in 7/31 breast cancer		6 kb del at -18 pos of Male acceptor site 2 transcr.		itiation	Som mut. polymorph Male seq 2820-36 dwnstrm to transl. init. site
Androge:			normal normal			. ·
tracts Poly Gly#						
Exon 1 t Poly Gln #		 		····		
Change Exon 1 tracts Amino acid Poly Base Gin# Gly#	î î	gt = 1	1 11	agc ⇒ a <u>f</u> c	oeg ⇔oog ←	î î
Accession # Mutation Exon hot Amino acid Amino acid Phenotype type Domain spot Base Base						
Pathogenicity proven G Exon ho Domain sp		intron 2	intron 2	.5' UTR	.5' UTR	3. UTR
Pa Mutation type	Splice	Substitut intron	Deletion intron	0312 Prostate Substitut, 5' Cancer U	Substitut 5' UT	
ccession# Mutatio	0317 Breast Cancer	0351 CAIS	0088 PAIS	Prostate Cancer	0313 Prostate Cancer	0323 Prostate Cancer
Acces Ph	0317	0351	8800	0312	0313	0323

10

15

20

25

30

35

REVENDICATIONS

1) Un oligonucléotide double brin caractérisé en ce qu'il est constitué de deux séquences oligonucléotidiques complémentaires formant un hybride comprenant chacune à l'une de leurs extrémités 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride, l'une desdites séquences oligonucléotidiques étant substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN à réprimer spécifiquement.

- 2) Un oligonucléotide selon la revendication 1, caractérisé en ce que ladite molécule d'ADN ou d'ARN à réprimer spécifiquement est choisie dans le groupe comprenant des ARN messagers ou ribosomiques et des gènes.
- 3) Un oligonucléotide selon l'une des revendications 1 ou 2, caractérisé en ce que chacune des deux séquences oligonucléotidiques complémentaires comprend à la même extrémité 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride.
- 4) Un oligonucléotide selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les deux séquences oligonucléotidiques complémentaires comprenant à l'une de leurs extrémités 3' ou 5' un à cinq nucléotides non appariés ont la même taille.
 - 5) Un oligonucléotide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les deux séquences oligonucléotidiques complémentaires ont la même taille en l'absence d'un à cinq nucléotides non appariés à l'une de leurs extrémités 3' ou 5'.

10

15

20

25

30

- 6) Un oligonucléotide selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la séquence oligonucléotidique complémentaire de la séquence cible a de préférence une taille comprise entre 15 et 25 nucléotides et tout préférentiellement de 20 à 23 nucléotides.
- 7) Un oligonucléotide selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il est de nature ribonucléotidique, désoxyribonucléotidique ou mixte.
- 8) Un oligonucléotide selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la séquence oligonucléotidique complémentaire de la séquence cible, désigné brin antisens, est majoritairement de nature ribonucléotidique et en ce que l'autre séquence oligonucléotidique, désigné brin sens, est de nature ribonucléotidique désoxyribonucléotidique ou mixte.
- 9) Un oligonucléotide selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend, de préférence à l'extrémité 3' de chaque séquence oligonucléotidique, de 1 à 5 nucléotides de préférence de 2 à 3 et tout préférentiellement 2 nucléotides débordant de l'hybride.
- 10) Un oligonucléotide selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les nucléotides débordant de l'hybride sont complémentaires de la séquence cible.
- 11) Un oligonucléotide selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les nucléotides débordant de l'hybride ne sont pas complémentaires de la séquence cible.

WO 03/040366 103 PCT/FR02/03843

12) Un oligonucléotide selon l'une quelconque des revendications 1 à 11, caractérisé en ce que les nucléotides débordant de l'hybride sont des Thymines.

5

13) Un oligonucléotide selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il est couplé à des substances favorisant ou permettant leur pénétration, ciblage ou adressage dans les cellules.

10

14) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gêne dont la répression induit l'apoptose, ou la sénescence, ou la nécrose, ou la différenciation des cellules tumorales ou empêche leur division ou plusieurs de ces phénomènes.

20

25

15

15) Un oligonucléotide selon la revendication 14, caractérisé en ce que ledit gène est choisi dans le groupe comprenant les gènes cellulaires de la famille BCL2, BCL XL, les gènes codant des protéines des familles des métallo protéases matricielles (MMP), des métallo protéases matricielles membranaires, de leurs inhibiteurs (TIMPs), ainsi que celle des activateurs, des inhibiteurs des protéases comme par exemple PAI-1 et des protéases elles-mêmes comme par exemple l'urokinase, le gène codant la télomérase, les gènes codant les récepteurs des facteurs de croissance mutés ou non, les gènes codant les formes mutées des récepteurs nucléaires d'hormones, les gènes codant des protéines nécessaires au déroulement du cycle cellulaire.

35

30

16) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une

desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager du gène codant le facteur de transcription Hifla.

5

17) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager du gène codant l'une ou plusieurs des isoformes du VEGF A ou d'un membre de la famille de ce facteur de croissance.

15

10

18) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène viral.

20

19) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène codant une protéine mutée.

30

25

20) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène responsable de l'inactivation de la p53.

- 21) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager choisi parmi les gènes codant la p53 mutée ou la protéine E6 d'un HPV.
- 22) Un oligonucléotide selon la revendication
 21, caractérisé en ce que l'une desdites séquences
 oligonucléotidiques est substantiellement complémentaire
 d'une séquence cible appartenant à une molécule d'ADN ou
 d'ARN messager du gène de la p53 muté portant l'une au
 moins des mutations données dans le tableau 3 et tout
 particulièrement l'une au moins des mutations du tableau 4.
 - des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à la partie d'un gène résultant d'une translocation chromosomique codant pour la jonction d'une protéine de fusion de façon à inhiber les effets de ladite protéine de fusion exprimée par ce gène.
 - 24) Un oligonucléotide selon la revendication 23, caractérisé en ce que la protéine de fusion est choisie dans le groupe donné dans le tableau 2.
- 25) Un oligonucléotide selon la revendication 23, caractérisé en ce que la protéine de fusion est la protéine PML-RARα.
- 26) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une

20

25

desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager du gène codant le récepteur aux androgènes muté ou non muté.

5

27) Un oligonucléotide selon la revendication 26, caractérisé en ce que l'une desdites séquences oligonucléotidiques est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager du gène codant le récepteur aux androgènes muté, portant par exemple l'une au moins des mutations du tableau 5 de l'annexe C.

15

10

28) Composition notamment pharmaceutique pour être utilisée dans la recherche de la fonction de gène ou à des fins thérapeutiques ou diagnostiques, caractérisée en ce qu'elle comprend à titre d'agent actif au moins un oligonucléotide selon l'une quelconque des revendications 1 à 27.

20

29) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 1 à 27 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie résultant de l'expression d'un gène nocif.

25

30) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 23 ou 24 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie résultant de l'expression d'une protéine de fusion.

30

35

31) Utilisation selon l'une quelconque des revendications 29 ou 30, caractérisée en en ce que ladite maladie est un cancer.

- 32) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 20 à 22 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'un cancer résultant de l'expression d'un gène codant pour une protéine p53 mutée.
- 33) Utilisation d'un oligonucléotide selon la revendication 21 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'un cancer résultant de l'expression d'un gène codant pour la protéine E6 de HPV.
- 1'une quelconque des revendications 1 à 13 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie infectieuse ou virale, en particulier le SIDA, les maladies infectieuses non conventionnelles, en particulier ESB et Kreutzfeld Jacob.
 - 35) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 1 à 13 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie virale à l'origine de cancers.
- 36) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 1 à 13, 16 ou 17 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie d'une maladie liée à une hypervascularisation comme la dégénérescence maculaire liée à l'age, l'angiogénèse tumorale, les rétinopathies diabétiques, le psoriasis, l'arthrite rhumatoïde.

10

25

Fig. 1 A

Fig. 1 B

SIRNA C PR

PML-RARα -

RARα ...

Fig. 2 A

Fig. 2 B

Fig. 2 C

Fig. 2 D

Fig. 2 E

Fig. 3

WO 03/040366 PCT/FR02/03843

Fig.4 A

Fig. 4 C

Fig. 4 D

Fig. 4 E

Fig. 4 F

Fig. 5 A

l atggaggage egeagteaga teetagegte gageeeete tgagteagga aacattttea 61 gacctatgga aactacttcc tgaaaacaac gttctgtccc ccttgccgtc ccaagcaatg 121 gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga cccaggtcca 181 gatgaagete ccagaatgee agaggetget cccccgtgg cccctgcace agcagetect 241 acaccagegg cocctgcace ageococtec tagecoctgt catettetgt coctteccag 301 aaaacctacc agggcagcta cggtttccgt ctgggcttct tgcattctgg gacagccaag 361 totgtgactt gcacgtactc cootgeecte aacaagatgt titgccaact ggccaagace 421 tgccctgtgc agctgtgggt tgattccaca cccccgcccg gcacccgcgt ccgcgccatg 481 gccatctaca agcagtcaca gcacatgacg gaggttgtga ggcgctgccc ccaccatgag 541 cgctgctcag atagcgatgg tctggcccct cctcagcatc ttatccgagt ggaaggaaat 601 ttgcgtgtgg agtatttgga tgacagaaac acttttcgac atagtgtggt ggtgccctat 661 gageegeetg aggttggete tgactgtace accatecact acaactacat gtgtaacagt 721 tectgeatgg geggeatgaa eeggaggeee atecteacea teateacact ggaagactee 781 agtggtaatc tactgggacg gaacagettt gaggtgegtg tttgtgeetg teetgggaga 841 gaceggegea cagaggaaga gaateteege aagaaagggg ageeteacea egagetgeee 901 ccaggagca ctaagcgagc actgcccaac aacaccagct cctctcccca gccaaagaag 961 aaaccactgg atggagaata tttcaccctt cagatccgtg ggcgtgagcg cttcgagatg 1021 ttccgagage tgaatgagge cttggaacte aaggatgeec aggetgggaa ggagecaggg 1081 gggagcaggg ctcactccag ccacctgaag tccaaaaagg gtcagtctac ctcccgccat 1141 aaaaaactca tgttcaagac agaagggcct gactcagact ga

Fig.5 C

Fig. 5 E

Fig. 6 A

1 actacaataa ttcatgtata aaactaaggg cgtaaccgaa atcggttgaa ccgaaaccgg ttagtataaa agcagacatt ttatgcacca aaagagaact gcaatgtttc aggacccaca 61 ttagtataaa agcagacatt ttatgcacca aaagagaact gcaatgtttc aggacccaca
121 ggagcgaccc agaaagttac cacagttatg cacagagctg caaacaacta tacatgatat
181 aatattagaa tgtgtgtact gcaagcaaca gttactgcga cgtgaggtat atgactttgc
241 tttegggat ttatgcatag tatatagaga tgggaatcca tatgctgtat gtgataaatg
301 tttaaagttt tattctaaaa ttagtgagta tagacattat tgttataggt tgtatggaac
361 aacattagaa cagcaataca acaaaccgtt gtgtgatttg ttaattaggt gtattaactg
421 tcaaaagcca ctgtgtcctg aagaaaagca aagacatctg gacaaaaagc aaagattcca
481 taatataagg ggtcggtgga ccggtcgatg tatgtcttgt tgcagatcat caagaacacg
541 tagagaaacc cagctgtaat catgcatgga gatacaccta cattgcatga atatatgta tagagaaacc cagetgtaat catgcatga gatacaccta cattgcatga atatatgtta coll gatttgcaac cagagacaac tgatctctac tgttatgagc aattaaatga cagctcagag cag gagagagat aaatagatgg tccagctgga caagcagaac cggacagagc ccattacaat 721 attgtaacct tttgttgcaa gtgtgactct acgcttcggt tgtgcgtaca aagcacacc 781 gtagacattc gtactttgga agacctgtta atgggcacac taggaattgt gtgccccatc 841 tgttctcaga aaccataatc taccatggct gatcctgcag gtaccaatgg ggaagagggt 901 acgggatgta atggatggt ttagtagag gctgtagtgg aaaaaaaac aggggatgtt 961 acacagatg acgaacaga aaatgacagt gatacaggtg aagaatttggt agattttata acgacaggca gaaacagga cagcacatgc gttgtttact gtaaatgat atgattattt aacacaggca gaaacagga cagcacatgc gttgtttact 1081 gcacaggaag caaaacaaca tagagatgca gtacaggtt taaaacgaa gtatttggta ggatgtgtag gaacatgaat tagacctaga ttaaaagcta ctgaaacac atgtagtcag tatagtggtg gtggaagtgg gggagagggt gttagtgaaa atattttaaa tgtactaaaa actagtaatg agttatacgg ggtgagtttt tcagaattag caaaggcagc aatgttagca aaatttaaag agttatacgg ggtgagttt tcagaattag taagaccatt taaaagtaat aaatcaacgt gttgcgattg gtgtattgct gcatttggac ttacaccag tatagctgac agtataaaaa cactattaca acaatattgt ttatatttac acattcaaag tttagcatgt tcatggggaa tggttgtgtt actattagta agatataaat gtggaaaaaa tagaagaaca attgaaaaaa tggttgtgtt actattagta agatataaat gtggaaaaaa tagaagaaca attgaaaaaa tggttgtgtgt tgctgtctaa actattagta agatataaat gtggaaaaa tagagadaca attgaadaat tgctgtctaa actattatgt gtgtctccaa tgtgtatga gatagagcct ccaaaattgc gtagtacagc agcagcatta tattggtata aaacaggtat atcaaatat agtgaagtgt atggagacac gccagaatgg atacaaaagac aaacagtatt acaacatagt tttaatgatt gtacatttga attatcacag atggtacaat gggcctacga taatgacata gtagacgata gtgaaattgc atataaatat gcacaattgg cagacactaa tagtaatgca agtgccttc taaaaagtaa ttcacaggca aaaattgtaa aggattgtgc aacaatgtgt agacattata atggagacac gccagaatgg atacaaagac gtacatttga attatcacag atggtacaat gtgaaattgc atataaatat gcacaattgg taaaaagtaa ttcacaggca aaaattgtaa atteragging generative catalangur ingright incatificat aatgagtite cattiganga aaanggaaat coagtgiatig agettaatga taagaactgg aaateetitt teteaaggae giggteeaga taagtitige angaganga giggteeaga taagtitige angaganga ganaaatan taanaata taagaata tagagataata tagagaata tagagatata tagaganaata tagagatata tagaganaata ta tattacaagg ccagagaaat gggatttaaa catattaacc accaagtggt gccaacactg gctgtatcaa agaataaagc attacaagca attgaactgc aactaacgtt agaaacaata tataactcac aatatagtaa tgaaaagtgg acattacaag acgttagcct tgaagtgtat 3001 tataactede datatagtata tydaaagty acattataag tagtetaget tydagtytat 3061 taactgcae caacaggatg tataaaaaaa catggatata cagtggaagt gcagtttgat 3121 ggagacatat gcaatacaat gcattataca cactggacac atatatata ttgtgaagaa 3181 gcatcagtaa ctgtggtaga gggtcaagtt gactattatg gtttatatta tgttcatgaa 3241 ggaatacgaa catattttgt gcagtttaaa gatgatgcag aaaaatatag taaaaataaa 3301 gtatgggaag ttcatgcggg tggtcaggta atattatgtc ctacatctgt gtttagcagc 3361 aacgaagtat ceteteetga aattattaga aagaactaga ceaacca egegggace 3421 cataccaaag cegtegeett ggecacega agaacaaga egactateca gegaceaaga 3481 teagageeag acaceggaaa ceeetgeeac accactaagt tgttgeacag agaceteagtg 3541 gacagtgete caatecteae tgcatttaac ageteetaaat agtacacta cacccatagt acatttaaaa ggtgatgcta atactttaaa atgtttaaga tatagattta aaaagcattg tacattgtat actgcagtgt cgtctacatg gcattggaca acatttaaaa ggtgatgcta atactttaaa atgtttaaga ggacataatg taaaacataa aagtgcaatt gttacactta catatgatag tgaatggcaa cgtgaccaat ttttgtctca agttaaaata ccaaaaacta ttacagtgtc tactggatt atgictatat gacaaatett gatactgcat ccacaacatt actggcgtgc tttttgcttt gctttgtgtg cttttgtgtg tctgcctatt aatacgtccg ctgcttttgt ctgtgtctac atacacatca ttaataatat tggtattact attgtggata acagcagcct ctgcgtttag

Fig. 6 A (suite)

```
4021 gtgttttatt gtatatatta tatttgttta tataccatta tttttaatac atacacatgc 4081 acgctttta attacataat gtatatgtac ataatgtaat tgttacatat aattgttgta 4141 taccataact tactatttt tctttttat tttcatatat aatttttt tttgttgt
     5581 tectagetat tacategetae gaaaacgacg taaacgetta ceatatette tetteagget gecateget gecateget actteetee tetteagget taategetee gecateget actteetee tetteaggetee taatetee gaaatacget taatetee tetteaggatee taatetee tetteaggatee taatetee tetteaggatee taatetee tetteaggatee taatetee tetteaggatee taatetee taatetee tetteaggatee taatetee 
   7081 taggaaaacg aaaagctaca cccaccacct catctacctc tacaaactgct aaacgcaaaa tgttqtqt gtatgtgtt gtatgtgtt gtatgtgtt gtatatgtgt ```



Fig. 6 C



Fig. 6 D



12/14











Fig. 8



### LISTAGE DE SEQUENCES

```
CENTRE NATIONAL DE LA RECERCHE SCIENTIFIQUE
<110>
 oligonucleotides inhibiteurs et leur utilisation pour reprimer
specifiquement un gene
 24240PCT Nov 2002
<140> pct/fr02/xxxxx
 2002-11-08
<141>
 FR01/14549
<150>
<151>
 2001-11-09
 FR02/04474
<150>
 2002-04-10
<151>
<160>
 .77
<170>
 PatentIn version 3.1
<210>
<211>
 1182
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc feature
<222>
 (1)..(1182)
<223>
 Séquence du gène p53
<400> 1
atggaggage egeagteaga teetagegte gageeceete tgagteagga aacattttea
 60
gacctatgga aactacttcc tgaaaacaac gttctgtccc ccttgccgtc ccaagcaatg
 120
gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga cccaggtcca
 180
gatgaagete ccagaatgee agaggetget ecceegtgg eccetgeace ageageteet
 240
acaccggcgg cccctgcacc agecccctcc tggcccctgt catcttctgt cccttcccag
 300
aaaacctacc agggcagcta cggtttccgt ctgggcttct tgcattctgg gacagccaag
 360
tctgtgactt gcacgtactc ccctgccctc aacaagatgt tttgccaact ggccaagacc
 420
tgccctgtgc agctgtgggt tgattccaca ccccgcccg gcacccgcgt ccgcgccatg
 480
gccatctaca agcagtcaca gcacatgacg gaggttgtga ggcgctgccc ccaccatgag
 540
cgctgctcag atagcgatgg tctggccct cctcagcatc ttatccgagt ggaaggaaat
 600
ttgcgtgtgg agtatttgga tgacagaaac acttttcgac atagtgtggt ggtgccctat
 660
gagccgcctg aggttggctc tgactgtacc accatccact acaactacat gtgtaacagt
 720
 780
tectgeatgg geggeatgaa eeggaggeee atecteacea teateacaet ggaagaetee
 840
agtggtaatc tactgggacg gaacagcttt gaggtgcgtg tttgtgcctg tcctgggaga
 900
gaccggcgca cagaggaaga gaatctccgc aagaaagggg agcctcacca cgagctgccc
 960
ccaqqqaqca ctaagcgagc actgcccaac aacaccagct cctctcccca gccaaagaag
aaaccactgg atggagaata tttcaccctt cagatccgtg ggcgtgagcg cttcgagatg
 1020
ttccgagagc tgaatgaggc cttggaactc aaggatgccc aggctgggaa ggagccaggg
 1080 -
gggagcaggg ctcactccag ccacctgaag tccaaaaagg gtcagtctac ctcccgccat
 1140
aaaaaactca tgttcaagac agaagggcct gactcagact ga
 1182
<210>
 2
<211>
 7904
<212> DNA
```

```
<213> Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(7904)
<223> Variant HPV16
<400> 2
actacaataa ttcatgtata aaactaaggg cgtaaccgaa atcggttgaa ccgaaaccgg
 60
ttagtataaa agcagacatt ttatgcacca aaagagaact gcaatgtttc aggacccaca
 120
ggagcgaccc agaaagttac cacagttatg cacagagctg caaacaacta tacatgatat
 180
aatattagaa tgtgtgtact gcaagcaaca gttactgcga cgtgaggtat atgactttgc
 240
ttttcgggat ttatgcatag tatatagaga tgggaatcca tatgctgtat gtgataaatg
 300
tttaaagttt tattctaaaa ttagtgagta tagacattat tgttatagtt tgtatggaac
 360
aacattagaa cagcaataca acaaaccgtt gtgtgatttg ttaattaggt gtattaactg
 420
tcaaaagcca ctgtgtcctg aagaaaagca aagacatctg gacaaaaagc aaagattcca
 480
 540
taatataagg ggtcggtgga ccggtcgatg tatgtcttgt tgcagatcat caagaacacg
 600
tagagaaacc cagctgtaat catgcatgga gatacaccta cattgcatga atatatgtta
 660
gatttgcaac cagagacaac tgatctctac tgttatgagc aattaaatga cagctcagag
 720
gaggaggatg aaatagatgg tccagctgga caagcagaac cggacagagc ccattacaat
 780
attgtaacct tttgttgcaa gtgtgactct acgcttcggt tgtgcgtaca aagcacacac
 840
gtagacattc gtactttgga agacctgtta atgggcacac taggaattgt gtgccccatc
 900
tgttctcaga aaccataatc taccatggct gatcctgcag gtaccaatgg ggaagagggt
 960
acgggatgta atggatggtt ttatgtagag gctgtagtgg aaaaaaaaac aggggatgct
 1020
atatcagatg acgagaacga aaatgacagt gatacaggtg aagatttggt agattttata
 1080
gtaaatgata atgattattt aacacaggca gaaacagaga cagcacatgc gttgtttact
gcacaggaag caaaacaaca tagagatgca gtacaggttc taaaacgaaa gtatttggta
 1140
 1200
gtccacttag tgatattagt ggatgtgtag acaataatat tagtcctaga ttaaaagcta
tatgtataga aaaacaaagt agagctgcaa aaaggagatt atttgaaagc gaagacagcg
 1260
ggtatggcaa tactgaagtg gaaactcagc agatgttaca ggtagaaggg cgccatgaga
 1320
 1380
gtggaagtgg gggagagggt gttagtgaaa gacacactat atgccaaaca ccacttacaa
 1440
 1500
atattttaaa tgtactaaaa actagtaatg caaaggcagc aatgttagca aaatttaaag
 1560
agttatacgg ggtgagtttt tcagaattag taagaccatt taadagtaat aaatcaacgt
 1620
gttgcgattg gtgtattgct gcatttggac ttacacccag tatagctgac agtataaaaa
cactattaca acaatattgt ttatatttac acattcaaag tttagcatgt tcatggggaa
 1680
tggttgtgtt actattagta agatataaat gtggaaaaaa tagagaaaca attgaaaaat
 1740
tgctgtctaa actattatgt gtgtctccaa tgtgtatgat gatagagcct ccaaaattgc
 1800
gtagtacage agcageatta tattggtata aaacaggtat atcaaatatt agtgaagtgt
 1860
atggagacac gccagaatgg atacaaagac aaacagtatt acaacatagt tttaatgatt
 1920
gtacatttga attatcacag atggtacaat gggcctacga taatgacata gtagacgata
 1980
gtgaaattgc atataaatat gcacaattgg cagacactaa tagtaatgca agtgcctttc
 2040
taaaaagtaa ttcacaggca aaaattgtaa aggattgtgc aacaatgtgt agacattata
 2100
aacgagcaga aaaaaaacaa atgagtatga gtcaatggat aaaatataga tgtgataggg
 2160
tagatgatgg aggtgattgg aagcaaattg ttatgttttt aaggtatcaa ggtgtagagt
 2220
 2280
ttatqtcatt tttaactgca ttaaaaagat ttttgcaagg catacctaaa aaaaattgca
tattactata tggtgcagct aacacaggta aatcattatt tggtatgagt ttaatgaaat
 2340
ttctgcaagg gtctgtaata tgttttgtaa attctaaaag ccatttttgg ttacaaccat
 2400
tagcagatgc caaaataggt atgttagatg atgctacagt gccctgttgg aactacatag
 2460
atgacaattt aagaaatgca ttggatggaa atttagtttc tatggatgta aagcatagac
 2520
cattggtaca actaaaatgc cctccattat taattacatc taacattaat gctggtacag
 2580
attctaggtg gccttattta cataatagat tggtggtgtt tacatttcct aatgagtttc
 2640
catttgacga aaacggaaat ccagtgtatg agcttaatga taagaactgg aaatcctttt
 2700
totcaaggac gtggtccaga ttaagtttgc acgaggacga ggacaaggaa aacgatggag
 2760
actctttgcc aacgtttaaa tgtgtgtcag gacaaaatac taacacatta tgaaaatgat
 2820
agtacagace taegtgacea tatagaetat tggaaacaea tgegeetaga atgtgetatt
 2880
tattacaagg ccagagaaat gggatttaaa catattaacc accaagtggt gccaacactg
 2940
gctgtatcaa agaataaagc attacaagca attgaactgc aactaacgtt agaaacaata
 3000
tataactcac aatatagtaa tgaaaagtgg acattacaag acgttagcct tgaagtgtat
 3060
ttaactgcac caacaggatg tataaaaaaa catggatata cagtggaagt gcagtttgat
 3120
ggagacatat gcaatacaat gcattataca aactggacac atatatatat ttgtgaagaa
 3180
gcatcagtaa ctgtggtaga gggtcaagtt gactattatg gtttatatta tgttcatgaa
 3240
```

3300 ggaatacgaa catattttgt gcagtttaaa gatgatgcag aaaaatatag taaaaataaa gtatgggaag ttcatgcggg tggtcaggta atattatgtc ctacatctgt gtttagcagc 3360 aacgaagtat ceteteetga aattattagg cagcacttgg ccaaccacce egeegegaee 3420 cataccaaag ccgtcgcctt gggcaccgaa gaaacacaga cgactatcca gcgaccaaga 3480 tcagagccag acaccggaaa cccctgccac accactaagt tgttgcacag agactcagtg 3540 gacagtgctc caatcctcac tgcatttaac agctcacaca aaggacggat taactgtaat 3600 agtaacacta cacccatagt acatttaaaa ggtgatgcta atactttaaa atgtttaaga 3660 tatagattta aaaagcattg tacattgtat actgcagtgt cgtctacatg gcattggaca 3720 ggacataatg taaaacataa aagtgcaatt gttacactta catatgatag tgaatggcaa 3780 cgtgaccaat ttttgtctca agttaaaata ccaaaaacta ttacagtgtc tactggattt 3840 atgtctatat gacaaatctt gatactgcat ccacaacatt actggcgtgc tttttgcttt 390Ò gctttgtgtg cttttgtgtg tctgcctatt aatacgtccg ctgcttttgt ctgtgtctac 3960 4020 atacacatca ttaataatat tggtattact attgtggata acagcagcct ctgcgtttag gtgttttatt gtatatatta tatttgttta tataccatta tttttaatac atacacatgc 4080 acgcttttta attacataat gtatatgtac ataatgtaat tgttacatat aattgttgta 4140 taccataact tactatttt tctttttat tttcatatat aattttttt tttgtttgtt 4200 tgtttgtttt ttaataaact gttattactt aacaatgcga cacaaacgtt ctgcaaaacg 4260 cacaaacgt gcateggcta cccaacttta taaaacatgc aaacaggcag gtacatgtcc 4320 acctgacatt atacctaagg ttgaaggcaa aactattgct gaacaaatat tacaatatgg 4380 aagtatgggt gtattttttg gtgggttagg aattggaaca gggtcgggta caggcggacg 4440 cactgggtat attocattgg gaacaaggcc teccacaget acagatacae ttgeteetgt 4500 aagaccccct ttaacagtag atcctgtggg cccttctgat ccttctatag tttctttagt 4560 ggaagaaact agttttattg atgctggtgc accaacatct gtaccttcca ttcccccaga 4620 tgtatcagga tttagtatta ctacttcaac tgataccaca cctgctatat tagatattaa 4680 taatactgtt actactgtta ctacacataa taatcccact ttcactgacc catctgtatt 4740 gcagcctcca acacctgcag aaactggagg gcattttaca ctttcatcat ccactattag 4800 tacacataat tatgaagaaa ttcctatgga tacatttatt gttagcacaa accctaacac 4860 agtaactagt agcacaccca taccagggtc tcgcccagtg gcacgcctag gattatatag 4920 tcgcacaaca caacaggtta aagttgtaga ccctgctttt gtaaccactc ccactaaact 4980 tattacatat gataatcctg catatgaagg tatagatgtg gataatacat tatatttttc 5040 tagtaatgat aatagtatta atatagetee agateetgae tttttggata tagttgettt 5100 acataggcca gcattaacct ctaggcgtac tggcattagg tacagtagaa ttggtaataa 5160 acaaacacta cgtactcgta gtggaaaatc tataggtgct aaggtacatt attattatga 5220 tttaagtact attgatcctg cagaagaaat agaattacaa actataacac cttctacata 5280 tactaccact tcacatgcag cctcacctac ttctattaat aatggattat atgatattta 5340 tgcagatgac tttattacag atacttctac aaccccggta ccatctgtac cctctacatc 5400 tttatcaggt tatattcctg caaatacaac aattcctttt ggtggtgcat acaatattcc 5460 tttagtatca ggtcctgata tacccattaa tataactgac caagctcctt cattaattcc 5520 tatagttcca gggtctccac aatatacaat tattgctgat gcaggtgact tttatttaca 5580 tcctagttat tacatgttac gaaaacgacg taaacgttta ccatattttt tttcagatgt 5640 ctctttggct gcctagtgag gccactgtct acttgcctcc tgtcccagta tctaaggttg 5700 5760 taagcacgga tgaatatgtt gcacgcacaa acatatatta tcatgcagga acatccagac tacttgcagt tggacatccc tattttccta ttaaaaaacc taacaataac aaaatattag 5820 ttcctaaagt atcaggatta caatacaggg tatttagaat acatttacct gaccccaata 5880 5940 agtttggttt tcctgacacc tcattttata atccagatac acagcggctg gtttgggcct gtgtaggtgt tgaggtaggt cgtggtcagc cattaggtgt gggcattagt ggccatcctt 6000 tattaaataa attggatgac acagaaaatg ctagtgctta tgcagcaaat gcaggtgtgg 6060 ataatagaga atgtatatct atggattaca aacaaacaca attgtgttta attggttgca 6120 6180 aaccacctat aggggaacac tggggcaaag gatccccatg taccaatgtt gcagtaaatc caggigattg tocaccatta gagitaataa acacagitat toaggatggi gatatggito 6240 atactggctt tggtgctatg gactttacta cattacaggc taacaaagt gaagttccac 6300 tggatatttg tacatctatt tgcaaatatc cagattatat taaaatggtg tcagaaccat 6360 atggcgacag cttattttt tatttacgaa gggaacaaat gtttgttaga catttattta 6420 atagggctgg tactgttggt gaaaatgtac cagacgattt atacattaaa ggctctgggt 6480 6540 ctactgcaaa tttagccagt tcaaattatt ttcctacacc tagtggttct atggttacct ctgatgccca aatattcaat aaaccttatt ggttacaacg agcacagggc cacaataatg 6600 gcatttgttg gggtaaccaa ctatttgtta ctgttgttga tactacacgc agtacaaata 6660 tgtcattatg tgctgccata tctacttcag aaactacata taaaaatact aactttaagg 6720 agtacctacg acatggggag gaatatgatt tacagtttat ttttcaactg tgcaaaataa 6780 cettaactge agacgttatg acatacatae attetatgaa ttecactatt ttggaggaet 6840 ggaattttgg tctacaacct cccccaggag gcacactaga agatacttat aggtttgtaa 6900

```
cccaggcaat tgcttgtcaa aaacatacac ctccagcacc taaagaagat gatcccctta
 6960
aaaaatacac tttttgggaa gtaaatttaa aggaaaagtt ttctgcagac ctagatcagt
 7020
 7080
 ttcctttagg acgcaaattt ttactacaag caggattgaa ggccaaacca aaatttacat
taggaaaacg aaaagctaca cccaccacct catctacctc tacaactgct aaacgcaaaa
 7140
 7200
gtatgtgctt gtatgtgctt gtaaatatta agttgtatgt gtgtttgtat gtatggtata
 7260
 7320
ataaacacgt gtgtatgtgt ttttaaatgc ttgtgtaact attgtgtcat gcaacataaa
taaacttatt gtttcaacac ctactaattg tgttgtggtt attcattgta tataaactat
 7380
atttgctaca tcctgttttt gttttatata tactatattt tgtagcgcca ggcccatttt
 7440
gtagcttcaa ccgaattcgg ttgcatgctt tttggcacaa aatgtgtttt tttaaatagt
 7500
totatgtcag caactatggt ttaaacttgt acgtttcctg cttgccatge gtgccaaatc
 7560
7620
tgcaactact gaatcactat gtacattgtg tcatataaaa taaatcacta tgcgccaacg
 7680
ccttacatac cgctgttagg cacatatttt tggcttgttt taactaacct aattgcatat
 7740
ttggcataag gtttaaactt ctaaggccaa ctaaatgtca ccctagttca tacatgaact
 7800
gtgtaaaggt tagtcataca ttgttcattt gtaaaactgc acatgggtgt gtgcaaaccg
 7860
 7904
attttgggtt acacatttac aagcaactta tataataata ctaa
<210>
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(20)
<223> brin sens de PML-rare
<220>
<221> misc feature
<222> (21)..(22)
<223> residus thymine ajoutés
<400> 3
 22
caugucaugu gucacaucuc tt
<210> 4
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> brin anti-sens de PML-rare
<220>
<221> misc_feature
<222>
 (21)..(22)
<223> residus thimine ajoutés
<400>
gagaugugac acaugacaug tt
 22
<210>
 -5
 22
<211>
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(20)
```

<223> brin sens PLM-rare

| <220>  |                               |     |   | ٠.  |    |     |
|--------|-------------------------------|-----|---|-----|----|-----|
| <221>  | misc_feature                  |     |   |     | *  |     |
| <222>  | (21)(22)                      |     |   |     |    |     |
| <223>  |                               |     |   |     | ,  |     |
|        |                               |     |   |     | •  |     |
| <400>  | 5                             | •   |   |     |    |     |
|        | gcag ccauugagac tt            |     |   | •   | •  | 22  |
| ggggag | geag ceaudyayac et            | •   |   | •   |    |     |
| 4010N  | 6                             |     |   |     | i. |     |
| <210>  |                               |     |   | •   | •  |     |
| <211>  |                               |     | • |     |    |     |
| <212>  |                               |     |   |     |    | •   |
| <213>  | Homo sapiens                  |     |   |     |    |     |
| <220>  |                               |     |   |     |    |     |
| <221>  | misc_feature                  |     |   |     |    |     |
| <222>  | (1)(20)                       |     |   |     |    |     |
| <223>  | brin anti-sens PML-rare       |     |   |     |    |     |
|        |                               |     |   |     |    |     |
| <220>  |                               | •   |   |     |    |     |
| <221>  | misc_feature                  |     |   |     |    |     |
|        | (21)(22)                      |     |   | 7 - |    |     |
|        |                               |     |   |     |    |     |
| <223>  | Résidus thimine ajoutés       | •   |   | •   |    |     |
| 1.11   | _                             |     |   |     |    |     |
| <400>  | 6                             |     |   |     |    | 2.2 |
| gucuca | augg cugccucccc tt            |     |   |     |    | 22  |
|        |                               |     |   | •   |    |     |
| <210>  | 7                             |     |   |     |    |     |
| <211>  | 23                            | • , |   |     |    |     |
| <212>  | DNA                           |     |   |     |    |     |
| <213>  | Homo sapiens                  |     |   |     |    |     |
| <220>  | •                             |     |   | ;   |    |     |
| <221>  | misc_feature                  |     |   |     |    |     |
|        | (1)(21)                       |     |   | -   |    |     |
|        | séquence issue du VGEF humain |     |   | • • |    |     |
| <223>  | sequence issue du voir numain | •   |   |     |    |     |
| 40.00V |                               |     |   |     |    |     |
| <220>  | •                             |     |   |     |    |     |
| <221>  | misc_feature                  |     |   |     |    |     |
|        | (22)(23)                      |     |   |     |    |     |
| <223>  | résidus thimine ajoutés       |     |   |     | :  |     |
|        |                               | •   |   |     |    |     |
| <400>  | 7                             | *   |   |     | •  |     |
| auguga | augc agaccaaaga att           | •   | • |     | ,  | 23  |
|        |                               |     |   |     |    |     |
| <210>  | 8                             |     |   | ,   |    |     |
| <211>  | 23                            |     |   |     |    |     |
| <212>  | DNA                           |     |   | ÷   |    |     |
| <213>  | Homo sapiens                  | •   |   |     |    |     |
| <220>  | nomo oaprono                  |     |   | -   |    |     |
|        | mine feature                  |     |   |     |    |     |
| <221>  | misc_feature                  | •   |   |     | •  |     |
| <222>  | (1)(21)                       |     |   |     |    |     |
| <223>  | séquence issue du VGEF humain |     |   |     |    |     |
|        |                               |     |   |     |    |     |
| <220>  |                               |     |   |     | -  |     |
| <221>  | misc_feature                  |     |   |     |    |     |
| <222>  | (22)(23)                      |     |   |     |    |     |
| <223>  | residus thimine ajoutés       |     | : |     |    |     |
|        |                               |     |   |     |    |     |
| <400>  | 8                             |     |   |     |    |     |
|        | gguc ugcauucaca utt           |     |   |     |    | 23  |
| ~ucuuq | ggae ageaaacaca acc           |     |   |     |    |     |
| Z2105  | 0                             |     |   |     |    |     |
| <210>  | 9                             |     |   |     | =  |     |
|        |                               |     |   |     |    |     |

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)..(20)
 <223> séquence issue du VEGF humain
 <220>
 <221> misc_feature
 <222> (21)..(22)
<223> résidus thimine ajoutés
<400> 9
 22
caugucaugu gucacaucuc tt
<210> 10
<211>
 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du VEGF humain
<220>
<221> misc_feature
<222>
 (21)..(22)
<223> résidus thimine ajoutés
<400> 10
 22
gagaugugac acaugacaug tt
<210>
 11
<211>
 23
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
 (1)..(21)
<222>
<223> séquence issue du HIF 1 alpha humain
<220>
<221> misc_feature
<222>
 (22)..(23)
<223> résidus thimine ajoutés
<400> 11
caugugacca ugaggaaaug att
 23
<210> 12
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF 1 alpha humain
<220>
<221> misc_feature
<222> (22)..(23)
```

```
<223> résidus Thimine ajoutés
<400> 12
 23
ucauuuccuc auggucacau gtt
<210> 13
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF l alpha humain
<220>
<221> misc feature
<222> (22) .. (23)
<223> résidus thimine ajoutés
<400> 13
 23
gauagcaaug acgaaugcgu att
<210> 14
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> Séquence issue du HIF 1 alpha humain
<220>
<221> misc feature
<222>
 (22)..(23)
<223> Séquence issue du HIF 1 alpha humain
<400> 14
 23
uacgcauucg ucauugcuau ctt
<210> 15
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(21)
<223> séquence issue du récepteur aux androgènes humain
<220>
<221> misc_feature
<222> (22)..(23)
<223> residus thimine ajoutés
<400> 15
 23
gacucagoug coccaucoac gtt
<210>
 16
<211>
 23
<212> DNA
<213> Homo sapiens
<220>
```

```
<221>
 misc_feature
 <222>
 (1)..(21)
 <223>
 séquence issue du HIF 1 alpha humain
 <220>
 <221>
 misc_feature
 <222>
 (22)..(23)
 <223>
 résidus thimine ajoutés
<400> 16
cguggauggg gcagcugagu ctt
 23
<210>
 17
 23
<211>
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF 1 alpha humain
<220>
<221> misc_feature
<222>
 (22)..(23)
<223> résidus thimine ajoutés
<400>
 17
gauagcaaug acgaaugcgu att
 23
 18
<210>
<211>
 23
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(21)
<223> séquence issue du HIF lalpha humain
<220>
<221> misc_feature
<222>
 (22)..(23)
<223> residus thimine ajoutés
<400> 18
uacgcauucg ucauugcuau ctt
 23
<210>
 19
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
<223> Séquence issue du récepteur aux androgènes portant la mutation T8
<220>
<221>
 misc feature
<222>
 (20)..(21)
<223> residus thimine ajoutés
```

```
<400> 19
 21
gcaucaguuc gcuuuugact t
<210> 20
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
 (1), (19)
<222>
<223> séquence issue du récepteur aux androgènes portant la mutation T8
 77A
<220>
<221>
 misc_feature
<222>
 (20)..(21)
<223> résidus thimine ajoutés
<400> 20
 21
gucaaaagcg aacugaugct t
<210> 21
<211> 21
 DNA
<212>
 Homo sapiens
<213>
<220>
<221> misc_feature
 (1)..(19)
<222>
<223> séquence issue du p53 humain sauvage (sens)
<220>
<221> misc_feature
 (20)..(21)
<222>
<223> residus thimine ajoutés
<400> 21
gcaugaaccg gaggcccaut t
<210>
 22
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage (antisens)
<220>
<221> misc_feature
 (20)..(21)
<222>
<223> résidus thimine ajoutés
<400> 22
 21
augggccucc gguucaugct t
<210> 23
<211>
 21
 DNA
<212>
 Homo sapiens
<213>
<220>
<221> misc_feature
```

```
<222>
 (1)..(19)
 <223>
 séquence issue du p53 humain muté portant la mutation MT1 (r248w)
 (sens)
 <220>
 <221> misc_feature
 <222>
 (20)..(21)
 <223> residus thimine ajoutés
 <400> 23
 gcaugaacug gaggcccaut t
 21
 <210> 24
 <211>
 21
 <212>
 DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222>
 (1)..(19)
 <223> séquence issue du p53 humain muté portant la mutation MT1 (r248w)
 (antisens)
 <220>
 <221> misc_feature
 <222>
 (20)..(21)
 <223> résidus thimine ajoutés
 <400> 24
augggccucc aguucaugct t
 21
 <210> 25
 <211>
 21
 <212>
 DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)..(19)
 <223> séquence issue du p53 humain muté portant la mutation MT2 (r248w)
 (sens)
 <220>
 <221> misc_feature
 <222>
 (20)..(21)
 <223> résidus thimine ajoutés
 <400> 25
ucaugaacug gaggcccaut t
 21
<210>
 26
<211>
 21
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du p53 humain muté portant la mutation MT2 (r248w)
 (antisens)
<220>
<221> misc_feature
<222> (20)..(21)
```

```
résidus thimine ajoutés
<223>
<400> 26
 21.
augggccucc aguucaugat t
<210> 27
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du E6 de HPV (sens)
<220>
<221> misc_feature
<222>
 (20)...(21)
<223> réidus thimine ajoutés
<400> 27
 21
ccacaguuau gcacagagct t
<210> 28
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(18)
<223> séquence issue du E6 de HPV (antisens)
<220>
<221> misc feature
<222> (19)..(20)
<223> résidus thimine ajoutés
<400> 28
 20
gcucugugca uaacuuggtt
<210> 29
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(22)
<223> séquence issue du gène codant la GFP (brin sens)
<400> 29
 22
gcaagctgac cctgaagttc at
 30
<210>
 22
<211>
 DNA
<212>
<213>
 Homo sapiens
<220>
 misc_feature
<221>
<222>
 (1)..(22)
 séquence issue du gène codant la GFP (brin anti-sens)
<223>
<400>
 30
```

```
22
gaacuucagg gucagcuugc cg
 31
<210>
<211>
 22
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du gène codant la GFP (brin sens)
<220>
<221> misc_feature
<222>
 (21)..(22)
<223> résidus thimine ajoutés
<400> 31
 22
caugucaugu gucacaucuc tt
<210> 32
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du gène codant la GFP (brin antisens)
<220>
<221> misc feature
<222> (21)..(22)
<223> résidus thimine ajoutés
<400> 32
 22
gagaugugac acaugacaug tt
<210>
 33
<211>
 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(21)
<223> séquence issue du récepteur aux androgènes humain muté (brin sen
 s)
<400>
 33
 21
gcatcagttc gcttttgact t
<210> 34
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(19)
<223> séquence issue du récepteur aux androgènes humain muté (brin sen
 s)
<220>
<221> misc feature
```

```
<222>
 (20)..(21)
 résidus thimine ajoutés
<223>
<400>
 21
gcaucaguuc gcuuuugact t
<210>
 35
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
 séquence issue du récepteur aux androgènes humain muté (brin sen
<400> 35
 21
gtcaaaagcg aactgatgct t
<210>
 36
<211> 21
<212>
 DNA
<213>
 Homo sapiens
<220>
 misc_feature
<221>
<222>
 (1)..(19)
 séquence issue du récepteur aux androgènes humain muté (brin sen
<223>
<220>
<221>
 misc_feature
 (20)..(21)
<222>
 residus thimine ajoutés
<223>
<400> 36
 21
gucaaaagcg aacugaugct t
<210>
 37
<211>
 21
<212>
 DNA
 Homo sapiens
<213>
<220>
 misc_feature
<221>
<222>
 (1)...(19)
 séquence issue du récepteur aux androgènes humain muté (brin sen
<223>
 s)
<220>
 misc_feature
<221>
<222>
 (20)..(21)
 résidus thimine ajoutés
<223>
<400> 37
 21
guucggucug cuuacacuat t
<210>
 38
<211>
 21
<212>
 DNA
 Homo sapiens
<213>
<220>
<221> misc_feature
```

WO 03/040366 PCT/FR02/03843

```
<222>
 (1)..(19)
 <223>
 séquence issue du récepteur aux androgènes humain muté (brin ant
 isens)
<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés
<400> 38
 21
uaguguaagc agaccgaact t
<210> 39
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage (brin sens)
<220>
<221> misc feature
<222>
 (20)..(21)
<223> residus thimine ajoutés
<400> 39
gcaugaaccg gaggcccaut t
 21
<210> 40
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage (brin antisens)
<220>
<221> misc feature
<222> (20)..(21)
<223> résidus thimine ajoutés
<400>
 40
 21
augggccucc gguucaugct t
<210>
 41
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)
<220>
<221> misc feature
<222>
 (20)..(21)
<223> résidus thimine ajoutés
<400> 41
```

```
21
gcaugaaccg gaggcccaut t
 42
<210>
 21
<211>
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc_feature
<222>
 (1)..(19)
 séquence issue du gène p53 humain sauvage (brin antisens).
<223>
<220>
<221>
 misc_feature
 (20)..(21)
<222>
 résidus thimine ajoutés
<223>
<400> 42
 21
augggccucc gguucaugct t
<210>
 43
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc feature
<222>
 (1)...(19)
 séquence issue du gène p53 muté (brin sens)
<223>
<220>
<221>
 misc_feature
<222>
 (20)..(21)
 résidus thimine ajoutés
<223>
<400> 43
 21
gcaugaaccg gaggcccaut t
<210>
 44
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc feature
<222>
 (1)..(19)
 séquence issu du gène p53 humain muté (brin antisens)
<223>
<220>
<221>
 misc feature
<222>
 (20)..(21)
<223>
 résidus thimine ajoutés
<400> 44
 21
augggccucc gguucaugct t
<210>
 45
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc_feature
<222>
 (1)...(19)
<223> séquence issue du gène p53 muté (brin sens)
```

```
<220>
 <221> misc_feature
 <222>
 (20)..(21)
 <223> résidus thimine ajoutés
<400> 45
 21
gcatgaaccg gaggcccatt t
<210> 46
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)
<220>
<221> misc feature
<222> (20)..(21)
<223> résidus thimine ajoutés
<400>
 46
 21
augggccucc gguucaugct t
<210>
 47
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)
<220>
<221> misc_feature
<222>
 (20)..(21)
<223> résidus thimine ajoutés
<400>
 47
 21
gcaugaaccg gaggcccaut t
<210> 48
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du gène p53 humain muté (brin antisens)
<220>
<221> misc feature
<222>
 (21)..(22)
<223> résidus thimine ajoutés
<400> 48
 22
atgggccutc cggttcatgc tt
<210> 49
```

```
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc_feature
<222>
 (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)
<220>
<221>
 misc_feature
<222>
 (20)..(21)
 résidus thimine ajoutés
<223>
<400> 49
gcaugaacug gaggcccaut t
<210>
 50
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc_feature
<222>
 (1)..(19)
 séquence issue du gène p53 humain muté (brin antisens).
<223>
<220>
<221> misc_feature
<222>
 (20)..(21)
 résidus thimine ajoutés
<223>
<400> 50
 21
augggccucc aguucaugct t
<210>
 51
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
 séquence issue du gène p53 humain muté (brin sens)
<223>
<220>
<221> misc_feature
<222>
 (20)..(21)
 résidus thimine ajoutés
<223>
<400> 51
 . 21
gcaugaacug gaggcccaut t
<210> 52
<211> 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc feature
<222>
 séquence issue du gène p53 humain muté (brin antisens)
<223>
<220>
<221> misc_feature
```

```
<222>
 (20)..(21)
 <223>
 résidus thimine ajoutés
 <400> 52
 augggccucc aguucaugct t
 21
 53
 <210>
 <211>
 21
 <212>
 DNA
 <213>
 Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
<223> séquence issue du gène p53 humain muté (brin isens)
<220>
<221> misc_feature
<222>
 (20)..(21)
<223>
 résidus thimine ajoutés
<400> 53
gcaugaacug gaggcccaut t
 21
<210> 54
<211> 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)
<220>
<221> misc_feature
 (20)..(21)
<222>
<223> résidus thimine ajoutés
<400> 54
augggccucc aguucaugct t
 21
<210> 55
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)
<220>
<221>
 misc feature
<222>
 (20)..(21)
<223> résidus thimine ajoutés
<400> 55
gcatgaactg gaggcccatt t
 21
<210>
 56
<211>
 21
<212>
 DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)
<220>
<221> misc feature
 (20)...(21)
<222>
<223> résidus thimine ajoutés
<400> 56
 21.
augggccucc aguucaugct t
 57
<210>
<211>
 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
 séquence issue du gène p53 humain muté (brin sens)
<223>
<220>
<221> misc feature
<222>
 (20)..(21)
<223> résidus thimine ajoutés
<400> 57
 21
gcatgaactg gaggcccatt t
<210> 58
<211> 21
<212>
 DNA
<213>
 Homo sapiens
<220>
<221> misc feature
<222>
 (1)..(19)
 séquence issue du gène p53 humain muté (brin antisens)
<220>
 misc_feature
<221>
<222>
 (20)..(21)
 résidus thimine ajoutés
<223>
<400> 58
 21
augggccucc aguucaugct t
<210> 59
<211>
 3933
<212>
 DNA
<213> Homo sapiens
<220>
 misc feature
<221>
<222>
 (1)..(3933)
 Homo sapiens hypoxia-inducible factor 1 sous-unité alpha. (HIF-1
<223>
 alpha)
<400> 59
cacgaggeag cactetette gtegettegg ceagtgtgte gggetgggee etgaeaagee...
 . 60
acctgaggag aggeteggág eegggeeegg acceeggega ttgeegeeeg etteteteta 120
gtctcacgag gggtttcccg cctcgcaccc ccacctctgg acttgccttt ccttctctc
```

|            |            |            |             | ,          | at an       | 240         |
|------------|------------|------------|-------------|------------|-------------|-------------|
| tccgcgtgtg | gagggagcca | gcgcttaggc | cggagcgagc  | ctgggggccg | cccgccgcga  |             |
| agacatcgcg | gggaccgatt | caccatggag | ggcgccggcg  | gcgcgaacga | caagaaaaag  | 300         |
| ataagttctg | aacgtcgaaa | agaaaagtct | cgagatgcag  | ccagatctcg | gcgaagtaaa  | 360         |
| gaatctgaag | ttttttatga | gcttgctcat | cagttgccac  | ttccacataa | tgtgagttcg  | 420         |
| catcttgata | aggcctctgt | gatgaggctt | accatcagct  | atttgcgtgt | gaggaaactt  | 480         |
| ctggatgctg | gtgatttgga | tattgaagat | gacatgaaag  | cacagatgaa | ttgcttttat  | 540         |
| ttgaaagcct | tggatggttt | tattatagtt | ctcacagatg  | atggtgacat | gatttacatt  | 600         |
| totgataatg | tgaacaaata | catgggatta | actcagtttg  | aactaactgg | acacagtgtg  | 660         |
| tttgatttta | ctcatccatg | tgaccatgag | gaaatgagag  | aaatgcttac | acacagaaat  | 720         |
| gaccttataa | aaaagggtaa | agaacaaaac | acacagogaa  | acttitttct | cagaatgaag  | 78 <b>0</b> |
| totaccetaa | ctagccgagg | aagaactatg | aacataaagt  | ctgcaacatg | gaaggtattg  | 840         |
| cactacacaa | gccacattca | cotatatoat | accaacagta  | accaacctca | gtgtgggtat  | 900         |
| 220232003  | ctatgacctg | cttaatacta | atttgtgaac  | ccatteetea | cccatcaaat  | 960         |
| adyadaccac | ctttagatag | caagagtttc | ctcagtgaac  | acadectoda | tatgaaattt  | 1020        |
|            | atgaaagaat |            |             |            |             | 1080        |
| ccccaccycy | atgaatatta | tactgaattg | acguatate   | atctagaaga | actcatcat   | 1140        |
|            |            |            |             |            |             | 1200        |
| gatatgttta | ctaaaggaca | agccaccaca | ggacagtaca  | ggatgettge | ttatanaga   | 1260        |
| ggatatgtct | gggttgaaac | tcaagcaact | gicalalala  | ttaccaagaa | ctctcaacca  | 1320        |
| cagtgcattg | tatgtgtgaa | ttacgttgtg | agraggiacia | attanantat | gazzatgazet | 1320        |
| tcccttcaac | aaacagaatg | tgtccttaaa | ccggttgaat  | tatta      | gadaatgatt  | 1440        |
|            | ccaaagttga |            |             |            |             |             |
|            | ctttaacttt |            |             |            |             | 1500        |
|            | acgacacaga |            |             |            |             | 1560        |
|            | tcccctcacc |            |             |            |             | 1620        |
|            | ctgaaacgcc |            |             |            |             | 1680        |
|            | taaaattaga |            |             |            |             | 1740        |
|            | atcagacacc |            |             |            |             | 1800        |
| _          | ccagtgaata |            |             |            |             | 1860        |
|            | tagaaaaact |            |             |            |             | 1920        |
|            | atttagactt |            |             |            |             | 1980        |
|            | ccttcgatca |            |             |            |             | 2040        |
|            | aaagcacagt |            |             |            |             | 2100        |
|            | ctaccactgc |            |             |            |             | 2160        |
|            | aaatattgat |            |             |            |             | 2220        |
|            | catcaccata |            |             |            |             | 2280        |
|            | tcatagaaca |            |             |            |             | 2340        |
|            | gtcaaagaac |            |             |            |             | 2400        |
|            | ctcagagaaa |            |             |            |             | 2460        |
|            | cattattaca |            |             |            |             | 2520        |
|            | aaggatgcaa |            |             |            |             | 2580        |
|            | ctgatttagc |            |             |            |             | 2640        |
|            | ccagttatga |            |             |            |             | 2700        |
|            | aagaattact |            |             |            |             | 2760        |
|            | tttggacact |            |             |            |             | 2820        |
|            | agaagcctgg |            |             |            |             | 2880        |
|            | ttaatttaca |            |             |            |             | 2940        |
|            | ttttctcagt |            |             |            |             | 3000        |
| taaaaaatgc | acctttttat | ttatttattt | ttggctaggg  | agtttatccc | tttttcgaat  | 3060        |
|            | aagatgccaa |            |             |            |             | 3120        |
| ataggcagtt | gaaaaatttt | tacacctttt | ttttcacatt  | ttacataaat | aataatgctt  | 3180        |
| tgccagcagt | acgtggtagc | cacaattgca | caatatattt  | tcttaaaaaa | taccagcagt  | 3240        |
|            | atatattctg |            |             |            |             | 3300        |
| ctatgaaatt | gttaaacctg | gaacatgaca | ttgttaatca  | tataataatg | attcttaaat  | 3360        |
| gctgtatggt | ttattattta | aatgggtaaa | gccatttaca  | taatatagaa | agatatgcat  | 3420        |
| atatctagaa | ggtatgtggc | atttatttgg | ataaaattct  | caattcagag | aaatcatctg  | 3480        |
|            | agtcactttg |            |             |            |             | 3540        |
|            | tattgtgtaa |            |             |            |             | 3600        |
|            | tgagcagact |            |             |            |             | 3660        |
|            | ttaatttgct |            |             |            |             | 3720        |
|            | tttcatgtag |            |             |            |             | 3780        |
|            | gtcacagtaa |            |             |            |             | 3840        |
|            | ~          | -          | -           | -          |             |             |

```
tecttttget etttgtggtt ggatetaaca etaaetgtat tgttttgtta eateaaataa
 3900
 3933
acatcttctg tggaaaaaaa aaaaaaaaaa aaa
<210>
 60
 3166
<211>
<212>
 DNA
<213>
 Homo sapiens
<220>
 misc_feature.
<221>
 (1)..(3166)
<222>
 VEGF A humain
<223>
 60
<400>
aagagctcca gagagaagtc gaggaagaga gagacggggt cagagagagc gcgcgggcgt
 60
gcgagcagcg aaagcgacag gggcaaagtg agtgacctgc ttttgggggt gaccgccgga
 120
gegeggegtg agecetecee ettgggatee egcagetgae cagtegeget gaeggacaga
 180
cagacagaca ccgccccag ccccagttac cacctcctcc ccggccggcg gcggacagtg
 240
gacgeggegg egageegegg geaggggeeg gageegeee eeggaggegg ggtggagggg
 300
gtcggagctc gcggcgtcgc actgaaactt ttcgtccaac ttctgggctg ttctcgcttc
 36Ô
ggaggagccg tggtccgcgc gggggaagcc gagccgagcg gagccgcgag aagtgctagc
 420
480
agggggccgc agtggcgact cggcgctcgg aagccgggct catggacggg tgaggcggcg
 540
gtgtgcgcag acagtgctcc agcgcgcgcg ctccccagcc ctggcccggc ctcgggccgg
 600
gaggaagagt agetegeega ggegeegagg agagegggee geeecacage eegageegga
 660
gagggacgcg agccgcgcgc cccggtcggg cctccgaaac catgaacttt ctgctgtctt
 720
gggtgcattg gagcettgcc ttgctgctct acctccacca tgccaagtgg tcccaggetg
 780
cacccatggc agaaggagga gggcagaatc atcacgaagt ggtgaagttc atggatgtct
 840
atcagegeag ctactgecat ccaategaga cectggtgga catettecag gagtaceetg
 900
 960
ccaatgacga gggcctggag tgtgtgccca ctgaggagtc caacatcacc atgcagatta
 1020
tgcggatcaa acctcaccaa ggccagcaca taggagagat gagcttccta cagcacaaca
 1080
1140
cagagoggag aaagcatttg tttgtacaag atccgcagac gtgtaaatgt tcctgcaaaa
 1200
acacacactc gcgttgcaag gcgaggcagc ttgagttaaa cgaacgtact tgcagatgtg
 1260
acaagccgag gcggtgagcc gggcaggagg aaggagcctc cctcagggtt tcgggaacca
 1320
gatetetete caggaaagae tgatacagaa cgategatae agaaaccaeg etgeegeeac
 1380
cacaccatca ccatcgacag aacagtcctt aatccagaaa cctgaaatga aggaagagga
 1440
gactotgogo agagoacttt gggtooggag ggogagacto cggoggaago attocogggo
 1500
gggtgaccca gcacggtccc tcttggaatt ggattcgcca ttttatttt cttgctgcta
 1560
aatcaccgag cccggaagat tagagagttt tatttctggg attcctgtag acacacccac
 1620
1680
ttatatatat aaaatatata tattottttt ttaaattaac agtgotaatg ttattggtgt
 1740
cttcactgga tgtatttgac tgctgtggac ttgagttggg aggggaatgt tcccactcag
 1800
atcctgacag ggaagaggag gagatgagag actctggcat gatcttttt ttgtcccact
 1860
tggtggggcc agggtcctct cccctgccca agaatgtgca aggccagggc atgggggcaa
 1920
atatgaccca gttttgggaa caccgacaaa cccagccctg gcgctgagcc tetctacccc
 1980
aggtcagacg gacagaaaga caaatcacag gttccgggat gaggacaccg gctctgacca
 2040
ggagtttggg gagettcagg acattgctgt getttgggga ttccctccac atgetgcacg
 2100
cgcatctcgc ccccaggggc actgcctgga agattcagga gcctgggcgg ccttcgctta
 2160
2220
gacacattgt tggaagaagc agcccatgac agcgcccctt cctgggactc gccctcatcc
 2280
tettectget eccetteetg gggtgeagee taaaaggace tatgteetea caccattgaa
 2340
 accactagtt ctgtccccc aggaaacctg gttgtgtgtg tgtgagtggt tgaccttcct
 2400
 ccatcccctg gtccttccct tcccttcccg aggcacagag agacagggca ggatccacgt
 2460
 gcccattgtg gaggcagaga aaagagaaag tgttttatat acggtactta tttaatatcc
 2520
 ctttttaatt agaaattaga acagttaatt taattaaaga gtagggtttt ttttcagtat
 2580
 tettggttaa tatttaattt caactattta tgagatgtat ettttgetet etettgetet
 2640
 cttatttgta ccggtttttg tatataaaat tcatgtttcc aatctctctc tccctgatcg
 2700
 gtgacagtca ctagcttatc ttgaacagat atttaatttt gctaacactc agctctgccc
 2760
 teccegatee eetggeteee cageacacat teetttgaaa gagggtttea atatacatet
 2820
 acatactata tatatatgg gcaacttgta tttgtgtgta tatatatata tatatgttta
 2880
```

```
2940
 tgtatatatg tgatcctgaa aaaataaaca tcgctattct gttttttata tgttcaaacc
 aaacaagaaa aaatagagaa ttctacatac taaatctctc tcctttttta attttaatat
 3000
 ttgttatcat ttatttattg gtgctactgt ttatccgtaa taattgtggg gaaaagatat
 3060
 taacatcacg tettigtete tagtgeagtt tittegagata ticegtagta catattiatt
 3120
tttaaacaac gacaaagaaa tacagatata tcttaaaaaa aaaaaa
 3166
<210> 61
<211> 17
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(17)
<223> séquence issue du gène p53 humain sauvage
<400> 61
gaggtgcgtg tttgtgc
 17
<210> 62
<211>
 19
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
<223> séquence issue du gène p53 humain sauvage
<400> 62
gcatgaaccg gaggcccat
 19
<210> 63
<211>
 19
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
 (1)..(19)
<222>
<223> séquence issue du gène p53 humain sauvage
<400> 63
gcatgaaccg gaggcccat
 19
<210>
 64
<211>
 19
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(19)
<223>
 séquence issue du gène p53 humain sauvage
<400>
 64
gcatgaaccg gaggcccat
 19
<210> 65
<211>
 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
```

```
séquence issue du gène p53 humain sauvage
<223>
<400>
 19
ctgcatgggc ggcatgaac
<210>
 66
 19
<211>
 DNA
<212>
<213>
 Homo sapiens
<220>
<221>
 misc_feature
<222>
 (1)..(19)
 séquence issue du gène p53 humain sauvage
<223>
<400>
 19
tgggagagac cggcgcaca
<210>
 67
 19
<211>
 DNA
<212>
 Homo sapiens
<213>
<220>
<221>
 misc_feature
 (1)..(19)
<222>
 séquence issue du gène p53 humain sauvage
<223>
<400> 67
 19
tgtgaggcac tgccccac
<210>
 68
<211>
 20
 DNA
<212>
<213>
 Homo sapiens
<220>
<221> misc feature
 (1)..(20)
<222>
 séquence issue du gène p53 humain sauvage
<223>
<400>
 68
 20
taacagttcc tgcatgggcg
 69
<210>
<211>
 17
 DNA
<212>
 Homo sapiens
<213>
<220>
 misc feature
<221>
 (1)..(17)
<222>
 séquence issue du gène p53 humain muté, portant la mutation r273h
<223>
<400>
 69
 17
gaggtgcatg tttgtgc
 70
<210>
<211>
 19
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc_feature
 (1)..(19)
<222>
```

```
séquence issue du gène p53 humain muté, portant la mutation r248q
 <400>
 70
 19
 gcatgaacca gaggcccat
 <210> 71
<211> 18
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
 (1)..(18)
<223> séquence issue du gène p53 humain muté, portant la mutation r248w
<400> 71
 18
gcatgaactg gaggccat
<210>
 72
<211>
 19
<212>
 DNA
<213>
 Homo sapiens
<220>
 misc_feature
<221>
<222>
 (1)..(19)
<223>
 séquence issue du gène p53 humain muté, portant la mutation r249s
<400> 72
 19
gcatgaaccg gagtcccat
<210>
 73
<211>
 19
<212>
 DNA
<213> Homo sapiens
<220>
<221> misc feature
<222>
 (1)..(19)
 séquence issue du gène p53 humain muté, portant la mutation q245s
<223>
<400> 73
ctgcatgggc agcatgaac
 19
<210>
 74
<211>
 19
<212>
 DNA
<213>
 Homo sapiens
<220>
 misc feature
<221>
<222>
 (1)..(19)
 séquence issue du gène p53 humain muté, portant la mutation r282w
<223>
<400> 74
tgggagagac tggcgcaca
 19
<210>
 75
<211>
 19
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc_feature
<222>
 (1)..(19)
<223> séquence issue du gène p53 humain muté, portant la mutation r175h
```

```
<400> 75
 19
tgtgaggcgc tgccccac
<210>
 76
<211>
 20
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc_feature
 (1)..(20)
<222>
 séquence issue du gène p53 humain muté, portant la mutation c242s
<223>
<400>
 76
 .. 20
taacagttcc tccatgggcg
<210>
 77
<211>
 3231
<212>
 DNA
<213>
 Homo sapiens
<220>
<221>
 misc feature
<222>
 (1)..(3231)
 séquence codant pour le récepteur aux androgènes humain.
<400> 77
agctagctgc agcgactacc gcatcatcac agcctgttga actcttctga gcaagagaag
 60
qqqaqqcqqq qtaaqqqaaq taqqtqqaaq attcaqccaa gctcaaqqat qqaaqtqcaq
 120
 180
ttagggctgg gaagggtcta ccctcggccg ccgtccaaga cctaccgagg agctttccag
aatctgttcc agagcgtccg cgaagtgatc cagaacccgg gccccaggca cccagaggcc
 240
gcgagcgcag cacctcccgg cgccagtttg ctgctgctgc agcagcagca gcagcagcag
 300
cagcagcagc agcagcagca gcagcaagag actagcccca ggcagcagca gcagcagcag
 360
ggtgaggatg gttctcccca agcccatcgt agaggcccca caggctacct ggtcctggat
 420
gaggaacagc aaccttcaca gccgcagtcg gccctggagt gccaccccga gagaggttgc
 480
gtcccagage ctggageege cgtggeegee ageaagggge tgeegeagea getgeeagea
 540
cctccggacg aggatgactc agctgcccca tccacgttgt ccctgctggc ccccactttc
 600
cccggcttaa gcagctgctc cgctgacctt aaagacatcc tgagcgaggc cagcaccatg
 660
caactccttc agcaacagca gcaggaagca gtatccgaag gcagcagcag cgggagagcg
 720
agggaggeet egggggetee caetteetee aaggacaatt aettaggggg caettegaee
 780
atttctgaca acgccaagga gttgtgtaag gcagtgtcgg tgtccatggg cctgggtgtg
 840
gaggcgttgg agcatctgag tccaggggaa cagcttcggg gggattgcat gtacgccca
 900
cttttgggag ttccacccgc tgtgcgtccc actccttgtg ccccattggc cgaatgcaaa
 960
ggttctctgc tagacgacag cgcaggcaag agcactgaag atactgctga gtattcccct
 1020
ttcaagggag gttacaccaa agggctagaa ggcgagagcc taggctgctc tggcagcgct
 1080
gcagcaggga gctccgggac acttgaactg ccgtctaccc tgtctctcta caagtccgga
 1140
gcactggacg aggcagctgc gtaccagagt cgcgactact acaactttcc actggctctg
 1200
 1260
geoggacego egeocetec geogeoteco catececaco etegoateaa getggagaac
ccgctggact acggcagcgc ctgggcggct gcggcggcgc agtgccgcta tggggacctg
 1320
gcgagcctgc atggcgcggg tgcagcggga cccggttctg ggtcaccctc agccgccgct
 1380
tcctcatcct ggcacactct cttcacagcc gaagaaggcc agttgtatgg accgtgtggt
 1440
ggtggtgggg gtggtggcgg cggcggcggc ggcggcggcg gcggcgaggc gggagctgta
 1500
gccccctacg gctacactcg gccccctcag gggctggcgg gccaggaaag cgacttcacc
 1560
 1620
gcacctgatg tgtggtaccc tggcggcatg gtgagcagag tgccctatcc cagtcccact
tgtgtcaaaa gcgaaatggg cccctggatg gatagctact ccggacctta cggggacatg
 1680
cgtttggaga ctgccaggga ccatgttttg cccattgact attactttcc accccagaag
 1740
acctgcctga tctgtggaga tgaagcttct gggtgtcact atggagctct cacatgtgga
 1800
agctgcaagg tcttcttcaa aagagccgct gaagggaaac agaagtacct gtgcgccagc
 1860
agaaatgatt gcactattga taaattccga aggaaaaatt gtccatcttg tcgtcttcgg
 1920
aaatgttatg aagcagggat gactctggga gcccggaagc tgaagaaact tggtaatctq
 1980
aaactacagg aggaaggaga ggcttccagc accaccagcc ccactgagga gacaacccag
 2040
aagctgacag tgtcacacat tgaaggctat gaatgtcagc ccatctttct gaatgtcctg
 2100
```

26/26

|            |            | agtgtgtgct |            |            |            | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| gcagccttgc | tctctagcct | caatgaactg | ggagagagac | agcttgtaca | cgtggtcaag | 2220 |
| tgggccaagg | ccttgcctgg | cctccgcaac | ttacacgtgg | acgaccagat | ggctgtcatt | 2280 |
| cagtactcct | ggatggggct | catggtgttt | gccatgggct | ggcgatcctt | caccaatgtc | 2340 |
| aactccagga | tgctctactt | cgcccctgat | ctggttttca | atgagtaccg | catgcacaag | 2400 |
| tcccggatgt | acagccagtg | tgtccgaatg | aggcacctct | ctcaagagtt | tggatggctc | 2460 |
|            |            | cctgtgcatg |            |            |            | 2520 |
|            |            | aaaattcttt |            |            |            | 2580 |
|            |            | caaaagaaaa |            |            |            | 2640 |
| cagctcacca | agctcctgga | ctccgtgcag | cctattgcga | gagagctgca | tcagttcact | 2700 |
|            |            | acacatggtg |            |            |            | 2760 |
|            |            | caagatcctt |            |            |            | 2820 |
|            |            | ccctatttcc |            |            |            | 2880 |
|            |            | gcactactcc |            |            |            | 2940 |
|            |            | catgttcctg |            |            |            | 3000 |
|            |            | cttccctccc |            |            |            | 3060 |
|            |            | tatctgtgtt |            |            |            | 3120 |
|            |            | tgtcaagttg |            |            |            | 3180 |
| acacaaaccg | tttacttact | taccgcaagg | gaacttagag | agctagaatt | С          | 3231 |

### (12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international



# 

(43) Date de la publication internationale 15 mai 2003 (15.05.2003)

PCT

(10) Numéro de publication internationale WO 2003/040366 A3

(51) Classification internationale des brevets7: C12N 15/11, A61K 31/713, C12O 1/68, A61P 35/00, 31/00

(21) Numéro de la demande internationale :

PCT/FR2002/003843

(22) Date de dépôt international:

8 novembre 2002 (08.11.2002)

(25) Langue de dépôt :

français

(26) Langue de publication:

français

(30) Données relatives à la priorité:

01/14549

9 novembre 2001 (09.11.2001) FR

02/04474

10 avril 2002 (10.04.2002) FR (71) Déposant (pour tous les États désignés sauf US) : CENTRE NATIONAL DE LA RECHERCHE SCI-ENTIFIQUE -CNRS- [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cedex 16 (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants US seulement) (pour HAREL-BELLAN, Annick [FR/FR]; 50, boulevard Saint-Germain, F-75005 Paris (FR). AIT-SI-ALI, Slimane [FR/FR]; 36, rue de la Chapelle, F-94800 Villejuif (FR). CABON-GEORGET, Florence [FR/FR]; 85bis, rue Louise Aglaé Cretté, F-94400 Vitry sur Seine (FR). CHAUCHEREAU, Anne [FR/FR]; 40, rue de Bellevue, F-92260 Fontenay-aux-Roses (FR). DAUTRY, François [FR/FR]; 47 ter, rue Hippolyte Maindron, F-75014 Paris (FR).

[Suite sur la page suivante]

(54) Title: INHIBITOR OLIGONUCLEOTIDES AND THEIR USE FOR SPECIFIC REPRESSION OF A GENE

(54) Titre: OLIGONUCLEOTIDES INHIBITEURS ET LEUR UTILISATION POUR REPRIMER SPECIFIQUEMENT UN



siRNA C

PML-RARa

RARa

(57) Abstract: The invention concerns a double-stranded oligonucleotide characterized in that it consists of two complementary oligonucleotide sequences forming a hybrid comprising each at one of their 3' or 5' ends one to five non-matched nucleotides forming single-stranded ends overlapping from the hybrid, one of said oligonucleotide sequences being substantially complementary of a target sequence belonging to a DNA or RNA molecule to be specifically repressed. The invention also concerns the use of said oligonucleotides in pharmaceutical compositions for treating cancers.

(57) Abrégé: L'invention a pour objet un oligonucléotide double brin caractérisé en ce qu'il est constitué de deux séquences oligonucléotidiques complémentaires formant un hybride comprenant chacune à l'une de leurs extrémités 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride, l'une desdites séquences oligonucléotidiques

[Suite sur la page suivante]



#### 

- (74) Mandataire: BREESE, Pierre; Breesé-Majerowicz, 3, avenue de l'Opéra, F-75001 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), brevet

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont recues
- (88) Date de publication du rapport de recherche internationale: 1 juillet 2004

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

étant substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN à réprimer spécifiquement. L'invention se rapporte aussi à l'utilisation desdits oligonucléotides dans des compositions pharmaceutiques notamment pour le traitement des cancers.

BNSDOCID: <WO\_\_\_\_03040366A3\_I\_>

Interna II Application No

A CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/11 A61 A61P31/00 A61P35/00 C1201/68 A61K31/713 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N A61K C12Q IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-15,28, WO 00/66724 A (UNIV ZUERICH; ZANGEMEISTER WITTKE UWE (DE); LUEDKE GERD (DE); Υ 29,31 HUESKEN) 9 November 2000 (2000-11-09) the whole document WO 01/75164 A (MAX PLANCK GESELLSCHAFT; 1-12,28,Х 29,31 TUSCHL THOMAS (DE); MASSACHUSETTS INST TECHN) 11 October 2001 (2001-10-11) page 14, line 3 - last line page 18, line 13 - line 27 page 45, line 16 - page 48 1-15,28,claims Υ 29,31 Patent family members are listed in annex. Further documents are listed in the continuation of box C. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 10. 05. 2004 9 December 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Andres, S

Form PCT/ISA/210 (second sheet) (January 2004)

03040366A3 | >

Fax: (+31-70) 340-3016

Internal Application No
PCT/FR 02/03843

| <u> </u>   | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                     |                                         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                             | Relevant to claim No.                   |
| X          | WO 01/36646 A (EVANS MARTIN JOHN; WIANNY FLORENCE (GB); CANCER RES CAMPAIGN TECHNOLO) 25 May 2001 (2001-05-25) page 11, line 26 - page 12, line 13 claims                                                                                                                                                                      | 1,2,14,<br>15,28,<br>29,31              |
| Х          | ELBASHIR SAYDA M ET AL: "RNA interference is mediated by 21- and 22-nucleotide RNAs." GENES & DEVELOPMENT, vol. 15, no. 2, 15 January 2001 (2001-01-15), pages 188-200, XP002206453 ISSN: 0890-9369 the whole document                                                                                                         | 1-10                                    |
| X          | ELBASHIR SAYDA M ET AL: "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells." NATURE (LONDON), vol. 411, no. 6836, 24 May 2001 (2001-05-24), pages 494-498, XP002206451 ISSN: 0028-0836 the whole document                                                                                    | 1-7,9,<br>11,12,28                      |
| X          | ELBASHIR SAYDA M ET AL: "Knockdown of mammalian gene expression using small interfering RNAs." BIOLOGY OF THE CELL (PARIS), vol. 93, no. 3-4, October 2001 (2001-10), page 259, XP002206454 ISSN: 0248-4900 the whole document & First Joint French-German Congress on Cell Biology; Strasbourg, France; November 07-09, 2001. | 1-7,9,28                                |
| A          | WO 00/20432 A (NICKOLOFF BRIAN J ; MONIA<br>BRETT P (US); BENNETT C FRANK (US); DEAN<br>NIC) 13 April 2000 (2000-04-13)                                                                                                                                                                                                        |                                         |
| P,X        | WO 02/055692 A (VORNLOCHER HANS-PETER;<br>LIMMER STEFAN (DE); RIBOPHARMA AG (DE);<br>GEICK) 18 July 2002 (2002-07-18)                                                                                                                                                                                                          | 1-3,5-7,<br>9,11,14,<br>15,28,<br>29,31 |
|            | the whole document                                                                                                                                                                                                                                                                                                             | C2 2 2 T                                |
|            | -/                                                                                                                                                                                                                                                                                                                             |                                         |

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

| Category* Citation of document, with indication, where appropriate, of the relevant passages  P,X  ELBASHIR, S. ET AL.: "Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate."  EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 20, no. 23, 3 December 2001 (2001-12-03), pages 6877-6888, XP0002225998 ISSN: 0261-4189 the whole document  E WO 03/070969 A (MCSWIGGEN JAMES; BEIGELMAN LEONID (US); SIRNA THERAPEUTICS INC (US)) 28 August 2003 (2003-08-28) the whole document  T DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 2002, FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." XP002264267 Database accession no. NLM12903200 abstract & FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." NUCLEIC ACIDS RESEARCH. SUPPLEMENT (2001) 2002, no. 2, 2002, pages 251-252, |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 20, no. 23, 3 December 2001 (2001-12-03), pages 6877-6888, XP0002225998 ISSN: 0261-4189 the whole document  E WO 03/070969 A (MCSWIGGEN JAMES; BEIGELMAN LEONID (US); SIRNA THERAPEUTICS INC (US)) 28 August 2003 (2003-08-28) the whole document  T DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 2002, FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." XP002264267 Database accession no. NLM12903200 abstract & FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." NICLETIC ACIDS RESEARCH. SUPPLEMENT (2001)                                                                                                                                                                               |    |
| 3 December 2001 (2001-12-03), pages 6877-6888, XP0002225998 ISSN: 0261-4189 the whole document  E W0 03/070969 A (MCSWIGGEN JAMES; BEIGELMAN LEONID (US); SIRNA THERAPEUTICS INC (US)) 28 August 2003 (2003-08-28) the whole document  T DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 2002, FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." XP002264267 Database accession no. NLM12903200 abstract & FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." NUCLEIC ACIDS RESEARCH. SUPPLEMENT (2001)                                                                                                                                                                                                                                                                                                                                           |    |
| BEIGELMAN LEONID (US); SIRNA THERAPEUTICS INC (US)) 28 August 2003 (2003-08-28) the whole document  DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 2002, FUTAMI TAKASHI ET AL: "Induction of apoptosis in Hela cells with siRNA expression vector targeted against bcl-2." XP002264267 Database accession no. NLM12903200 abstract & FUTAMI TAKASHI ET AL: "Induction of apoptosis in Hela cells with siRNA expression vector targeted against bcl-2." NHICLEIC ACIDS RESEARCH. SUPPLEMENT (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 2002, FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." XP002264267 Database accession no. NLM12903200 abstract & FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." NUCLEIC ACIDS RESEARCH. SUPPLEMENT (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 |
| expression vector targeted against DCI-2." NUCLEIC ACIDS RESEARCH. SUPPLEMENT (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ٠. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

International application No.

PCT/FR 02/03843

| Box I     | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                                  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This inte | ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                                   |
| 1.        | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                          |
| 2.        | Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:                         |
| 3.        | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                               |
| Вох П     | Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                                           |
| This Inte | emational Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                             |
|           | see supplementary sheet                                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                    |
| 1.        | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                                           |
| 2.        | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                               |
| 3.        | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                                               |
|           |                                                                                                                                                                                                                                                    |
| 4. X      | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:  1-15, 28, 29, 31 (all partially) |
| Remark    | on Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                 |

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-15, 28, 29, 31 (all partially)

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid from the BCL2 or BCL-XL family; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

2. claims: 1-15, 28, 29, 31 (all partially)

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid from the family of matrix metalloproteases or modulators thereof; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

3. claims: 1-15, 28, 29, 31 (all partially)

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of a protease (with the exception of the MMPs of point 2 above) or an inhibitor thereof; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

4. claims: 1-15, 28, 29, 31 (all partially)

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of telomerase; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

5. claims: 1-15, 28, 29, 31 (all partially)

Form PCT/ISA/210

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of a growth factor receptor; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

6. claims: 1-15, 19, 28, 29, 31 (all partially) and 26, 27

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of a hormone nuclear receptor; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

7. claims: 1-15, 28, 29, 31 (all partially)

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of a protein required for the cell cycle; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

8. claims: 1-13, 28, 29, 31, 36 (all partially) and 16

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of Hiflalpha; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

9. claims: 1-13, 28, 29, 31, 36 (all partially) and 17

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of VEGF A or a member of the family thereof; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

10. claims: 1-13, 18, 28, 29, 31, 35 (all partially) and 34

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of a viral gene, with the exception of HPV E6, or an agent associated with non-conventional infectious diseases; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

11. claims: 1-13, 19, 28, 29, 31, 35 (all partially) and 20-22, 32, 33

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid of p53 or HPV E6, or a nucleic acid that causes p53 inactivation; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

12. claims: 1-13, 28, 29, 31 (all partially) and 23-25, 30

Double-stranded oligonucleotide including one to five unpaired nucleotides at each of one of the 5' and 3' ends thereof, and complementary to a nucleic acid resulting from chromosomal translocation; composition containing same; and uses thereof in therapy, diagnostics or gene function research.

Form PCT/ISA/210

Internation No
PCT/FR 02/03843

|                                  |       |                     |                                                          | 10.7                                                                                                                                                                                                                              | 1 1 02/03043                                                                                                                                                                                                                 |
|----------------------------------|-------|---------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Patent docume cited in search re |       | Publication<br>date |                                                          | Patent family<br>member(s)                                                                                                                                                                                                        | Publication<br>date                                                                                                                                                                                                          |
| WO 0066724                       | Α     | 09-11-2000          | AU<br>WO<br>EP                                           | 4402500 A<br>0066724 A2<br>1181361 A2                                                                                                                                                                                             | 17-11-2000<br>09-11-2000<br>27-02-2002                                                                                                                                                                                       |
| WO 0175164                       | . А   | 11-10-2001          | AU AU BR BR CA CZ WO EP HU JP NO WS US                   | 3574402 A<br>4962201 A<br>0107536 A<br>0115814 A<br>2404890 A1<br>2429814 A1<br>20031839 A3<br>0244321 A2<br>1309726 A2<br>1407044 A2<br>0302557 A2<br>2003529374 T<br>20032464 A<br>0175164 A2<br>2003108923 A1<br>2002086356 A1 | 11-06-2002<br>15-10-2001<br>02-03-2004<br>23-03-2004<br>11-10-2001<br>06-06-2002<br>15-10-2003<br>06-06-2002<br>14-05-2003<br>14-04-2004<br>28-10-2003<br>07-10-2003<br>21-07-2003<br>11-10-2001<br>12-06-2003<br>04-07-2002 |
| WO 013664                        | 6 A   | 25-05-2001          | AU<br>CA<br>DE<br>EP<br>WO<br>JP<br>NO<br>US             | 1406501 A<br>2391622 A1<br>1230375 T1<br>1230375 A1<br>0136646 A1<br>2003514533 T<br>20022359 A<br>2003027783 A1<br>200203816 A                                                                                                   | 30-05-2001<br>25-05-2001<br>09-01-2003<br>14-08-2002<br>25-05-2001<br>22-04-2003<br>18-07-2002<br>06-02-2003<br>02-01-2003                                                                                                   |
| WO 002043                        | 2 A   | 13-04-2000          | US<br>US<br>AU<br>AU<br>CA<br>EP<br>JP<br>WO<br>US<br>US | 6172216 B1<br>6210892 B1<br>6214986 B1<br>755515 B2<br>6271099 A<br>2345354 A1<br>1119579 A1<br>2002526093 T<br>0020432 A1<br>2003191300 A1<br>2001007025 A1<br>2002049173 A1                                                     | 03-04-2001<br>10-04-2001<br>12-12-2002<br>26-04-2000<br>13-04-2000<br>01-08-2001<br>20-08-2002<br>13-04-2000<br>09-10-2003<br>05-07-2001                                                                                     |
| WO 020556                        | 92 A  | 18-07-2002          | DE<br>CA<br>CA<br>WO<br>WO<br>EP<br>EP<br>US             | 10100586 C1<br>2432341 A1<br>2432350 A1<br>02055692 A2<br>02055693 A2<br>1349927 A2<br>1352061 A2<br>2004001811 A1                                                                                                                | 18-07-2002<br>18-07-2002<br>18-07-2002<br>18-07-2002<br>2 08-10-2003<br>15-10-2003                                                                                                                                           |
| WO 030709                        | 969 A | 28-08-2003          | CA<br>CA<br>WO<br>WO<br>WO                               | 2455447 A.<br>2455506 A.<br>03072590 A.<br>03072704 A.<br>03072705 A.                                                                                                                                                             | 1     28-08-2003       1     04-09-2003       2     04-09-2003                                                                                                                                                               |

Form PCT/ISA/210 (patent family annex) (January 2004)



| Patent document<br>cited in search report | Publication<br>date | ,    | Patent family<br>member(s) | Publication date    |
|-------------------------------------------|---------------------|------|----------------------------|---------------------|
| WO 03070969 A                             |                     | WO   | 03070983 A1                | 28-08-2003          |
| ,                                         |                     | WO   | 03070742 A1                | 28-08-2003          |
|                                           |                     | WO   | 03070881 A2                | 28-08-2003          |
| ,                                         |                     | WO   | 03070884 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070885 A2                | 28-08-2003          |
| ·                                         |                     | WO   | 03070886 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070743 A1                | 28-08-2003          |
| ·                                         |                     | WO   | 03070887 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070888 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070966 A2                | 28-08 <b>-</b> 2003 |
|                                           |                     | WO   | 03070744 A1                | 28-08-2003          |
|                                           |                     | WO   | 03070895 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070896 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070897 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070968 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070969 A2                | 28-08-2003          |
| •                                         |                     | WO   | 03070903 A2                | 28-08-2003          |
| •                                         |                     | WO   | 03070970 A2                | 28-08-2003          |
|                                           |                     | . WO | 03070910 A2                | 28-08-2003          |
|                                           | •                   | WO   | 03074654 A2                | 12-09-2003          |
|                                           | •                   | WO   | 03070750 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070911 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070912 A2                | 28-08-2003          |
|                                           |                     | WO   | 03070914 A2                | 28-08-2003          |
|                                           | •                   | WO   | 03070193 A2                | 28-08-2003          |
| •                                         |                     | WO   | 03070972 A2                | 28-08-2003          |
|                                           |                     | WO   |                            | 28-08-2003          |
| •                                         | •                   | MO   | 03070918 A2                | 28-08-2003          |
|                                           | •                   | MO   | 03070197 A2                | 28-08-2003          |
|                                           |                     | WO   | 03106476 A1                | 24-12-2003          |
|                                           |                     | US   | 2003190635 A1              | 09-10-2003          |
|                                           | •                   | US   | 2003206887 A1              | 06-11-2003          |
|                                           |                     | US   | 2003170891 A1              | 11-09-2003          |
|                                           |                     | US   | 2004006035 A1              | 08-01-2004          |
|                                           |                     | MO   | 03102131 A2                | 11-12-2003          |

Form PCT/ISA/210 (patent family annex) (January 2004)

### RAPPORT DE RECHERCHE INTERNATIONALE |

Demanue Internationale No

PCT/FR 02/03843

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C12N15/11 A61K31/713

C12Q1/68

A61P35/00

A61P31/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

### B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) C1B 7 C12N A61K C120

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE

| 0. 2000     | NTS CONSIDERES COMME PERTINENTS                                                                                                                                                               |                               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Catégorie ° | Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents                                                                                                | no. des revendications visées |
| Υ           | WO 00/66724 A (UNIV ZUERICH ; ZANGEMEISTER WITTKE UWE (DE); LUEDKE GERD (DE); HUESKEN) 9 novembre 2000 (2000-11-09) le document en entier                                                     | 1-15,28,<br>29,31             |
| X           | WO 01/75164 A (MAX PLANCK GESELLSCHAFT;<br>TUSCHL THOMAS (DE); MASSACHUSETTS INST<br>TECHN) 11 octobre 2001 (2001-10-11)<br>page 14, ligne 3 - dernière ligne<br>page 18, ligne 13 - ligne 27 | 1-12,28,<br>29,31             |
| Y           | page 45, ligne 16 - page 48 revendications                                                                                                                                                    | 1-15,28,<br>29,31             |
|             |                                                                                                                                                                                               |                               |

| X Voir la suite du cadre C pour la fin de la liste des documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X Les documents de familles de brevets sont indiqués en annexe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent  "E" document antérieur, mais publié à la date de dépôt international ou après cette date  "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)  "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens  "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée | "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention  "X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément  "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier  "&" document qui fait partie de la même famille de brevets |  |
| Date à laquelle la recherche internationale a été effectivement achevée                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date d'expédition du présent rapport de recherche internationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 9 décembre 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0. 05. 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Nom et adresse postale de l'administration chargée de la recherche internationale<br>Office Européen des Brevets, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                            | Fonctionnaire autorisé  Andres, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

Formulaire PCT/ISA/210 (deuxlème feuille) (Janvier 2004)

# RAPPORT DE RECHERCHE INTERNATIONALE

Demaries Internationale No PCT/FR 02/03843

| C.(suite) D | OCUMENTS CONSIDERES COMME PERTINENTS                                                                                                                                                                                                                                                                                              |                                         |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Catégorie ° | Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents                                                                                                                                                                                                                                    | no. des revendications visées           |
| Х           | WO 01/36646 A (EVANS MARTIN JOHN; WIANNY FLORENCE (GB); CANCER RES CAMPAIGN TECHNOLO) 25 mai 2001 (2001-05-25) page 11, ligne 26 - page 12, ligne 13 revendications                                                                                                                                                               | 1,2,14,<br>15,28,<br>29,31              |
| X           | ELBASHIR SAYDA M ET AL: "RNA interference is mediated by 21- and 22-nucleotide RNAs."  GENES & DEVELOPMENT, vol. 15, no. 2, 15 janvier 2001 (2001-01-15), pages 188-200, XP002206453 ISSN: 0890-9369 le document en entier                                                                                                        | 1-10                                    |
| X           | ELBASHIR SAYDA M ET AL: "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells." NATURE (LONDON), vol. 411, no. 6836, 24 mai 2001 (2001-05-24), pages 494-498, XP002206451 ISSN: 0028-0836 le document en entier                                                                                    | 1-7,9,<br>11,12,28                      |
| X           | ELBASHIR SAYDA M ET AL: "Knockdown of mammalian gene expression using small interfering RNAs." BIOLOGY OF THE CELL (PARIS), vol. 93, no. 3-4, octobre 2001 (2001-10), page 259, XP002206454 ISSN: 0248-4900 le document en entier & First Joint French-German Congress on Cell Biology; Strasbourg, France; November 07-09, 2001. | 1-7,9,28                                |
| Α .         | WO 00/20432 A (NICKOLOFF BRIAN J ; MONIA<br>BRETT P (US); BENNETT C FRANK (US); DEAN<br>NIC) 13 avril 2000 (2000-04-13)                                                                                                                                                                                                           |                                         |
| Р,Х         | WO 02/055692 A (VORNLOCHER HANS-PETER;<br>LIMMER STEFAN (DE); RIBOPHARMA AG (DE);<br>GEICK) 18 juillet 2002 (2002-07-18)<br>le document en entier                                                                                                                                                                                 | 1-3,5-7,<br>9,11,14,<br>15,28,<br>29,31 |
|             | -/                                                                                                                                                                                                                                                                                                                                |                                         |
|             |                                                                                                                                                                                                                                                                                                                                   |                                         |

# RAPPORT DE RECHERCHE INTERNATIONALE Demande Internationale No

Demande Internationale No
PCT/FR 02/03843

| C.(suite)   | OCUMENTS CONSIDERES COMME PERTINENTS                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Catégorie ° | Identification des documents cités, avec, le cas échéant, l'indication des passages pertin                                                                                                                                                                                                                                                                                                                                                                       | no. des revendications visées |
| P,X         | ELBASHIR, S. ET AL.: "Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 20, no. 23, 3 décembre 2001 (2001-12-03), pages 6877-6888, XP0002225998 ISSN: 0261-4189 le document en entier                                                                                                                                                            | 1-12                          |
| E           | WO 03/070969 A (MCSWIGGEN JAMES;<br>BEIGELMAN LEONID (US); SIRNA THERAPEUTICS<br>INC (US)) 28 août 2003 (2003-08-28)<br>le document en entier                                                                                                                                                                                                                                                                                                                    | 1-9,<br>11-15,<br>28,29,31    |
| T           | DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 2002, FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." XP002264267 Database accession no. NLM12903200 abrégé & FUTAMI TAKASHI ET AL: "Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2." NUCLEIC ACIDS RESEARCH. SUPPLEMENT (2001) 2002, no. 2, 2002, pages 251-252, |                               |

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (Janvier 2004)

# RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n° PCT/FR 02/03843

| Cadre I Observations - lorsqu'il a été estimé que certaines revendication (suite du point 1 de la première feuille)                                                                              | ons ne pouvaient pas faire l'objet d'une recherche                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une re                                                                                                       | echerche pour les motifs suivants:                                                                             |
| Les revendications nos se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de p                                                                                           | orocéder à la recherche, à savoir:                                                                             |
|                                                                                                                                                                                                  |                                                                                                                |
| 2. Les revendications nos                                                                                                                                                                        |                                                                                                                |
| se rapportent à des parties de la demande internationale qui ne remplissent p<br>qu'une recherche significative puisse être effectuée, en particulier:                                           | oas suffisamment les conditions prescrites pour                                                                |
|                                                                                                                                                                                                  |                                                                                                                |
| Les revendications nos     sont des revendications dépendantes et ne sont pas rédigées conformément                                                                                              | aux dispositions de la deuxième et de la                                                                       |
| troisième phrases de la règle 6.4.a).                                                                                                                                                            |                                                                                                                |
| Cadre II Observations - lorsqu'il y a absence d'unité de l'invention (suit                                                                                                                       | le du point 2 de la première leulile)                                                                          |
| L'administration chargée de la recherche internationale a trouvé plusieurs inventions d                                                                                                          | lans la demande internationale, à savoir:                                                                      |
| voir feuille supplémentaire                                                                                                                                                                      |                                                                                                                |
|                                                                                                                                                                                                  |                                                                                                                |
| Comme toutes les taxes additionnelles ont été payées dans les délais par le internationale porte sur toutes les revendications pouvant faire l'objet d'une re                                    | déposant, le présent rapport de recherche<br>echerche.                                                         |
| 2. Comme toutes les recherches portant sur les revendications qui s'y prêtaient justifiant une taxe additionnelle, l'administration n'a sollicité le palement d'auc                              | ont pu être effectuées sans effort particulier<br>cune taxe de cette nature.                                   |
|                                                                                                                                                                                                  |                                                                                                                |
| 3. Comme une partie seulement des taxes additionnelles demandées a été pay rapport de recherche Internationale ne porte que sur les revendications pour les revendications n os                  | rée dans les délais par le déposant, le présent<br>lesquelles les taxes ont été payées, à savoir               |
| (es revenuivations ii                                                                                                                                                                            |                                                                                                                |
|                                                                                                                                                                                                  |                                                                                                                |
| 4. X Aucune taxe additionnelle demandée n'a été payée dans les délais par le dé de recherche internationale ne porte que sur l'invention mentionnée en prem couverte par les revendications n os | posant. En conséquence, le présent rapport<br>ier lieu dans les revendications; elle est                       |
| 1-15, 28, 29, 31 (toutes partiellement)                                                                                                                                                          |                                                                                                                |
| ·<br>                                                                                                                                                                                            |                                                                                                                |
|                                                                                                                                                                                                  | sétaient accompagnées d'une réserve de la part du déposant<br>additionnelles n'était assorti d'aucune réserve. |
| Le paiement des taxes à                                                                                                                                                                          | idditionnelles metalt assorti o aucune reserve.                                                                |

page 1 de 4

### SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: 1-15,28,29,31 (toutes partiellement)

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique de la famille BCL2 ou BCL-XL. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gênes.

2. revendications: 1-15,28,29,31 (toutes partiellement)

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique de la famille des métalloprotéases matricielles ou de leurs modulateurs. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

revendications: 1-15,28,29,31 (toutes partiellement)

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique de protéase (les MMPs du sujet 2 étant exclues) ou de leurs inhibiteurs. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

4. revendications: 1-15,28,29,31 (toutes partiellement)

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique de la télomérase. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

5. revendications: 1-15,28,29,31 (toutes partiellement)

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique d'un récepteur de facteur de croissance. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

### SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

6. revendications: 1-15,19,28,29,31 (toutes partiellement) et 26,27

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique d'un récepteur nucléaire d'hormone. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

7. revendications: 1-15,28,29,31 (toutes partiellement)

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique d'une protéine nécessaire au déroulement du cycle cellulaire. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

8. revendications: 1-13,28,29,31,36 (toutes partiellement) et 16

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique de Hiflalpha. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

9. revendications: 1-13,28,29,31,36 (toutes partiellement) et 17

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique de VEGF A ou d'un membre de sa famille. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

10. revendications: 1-13,18,28,29,31,35 (toutes partiellement) et 34

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique d'un gène viral, à l'exception de HPV E6, ou d'un agent associé aux maladies infectieuses non-conventionelles. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

11. revendications: 1-13,19,28,29,31,35 (toutes partiellement) et 20-22,32,33

### SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique de p53, d'HPV E6 ou responsable de l'inactivation de p53. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gènes.

12. revendications: 1-13,28,29,31 (toutes partiellement) et 23-25,30

Oligonucléotide double-brin comprenant un à cinq nucléotides non-appariés à chacune de l'une ou l'autre de ses extrémités 5' ou 3' et complémentaire à un acide nucléique résultant d'une translocation chromosomique. Composition le contenant et ses utilisations en thérapie, diagnostique ou dans la recherche de la fonction de gênes.

# RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande internationale No PCT/FR 02/03843

|                                                 |                     |                                                                | PCI/FR                                                                                                                                                                        | <del>,</del>                                                                                                                                                         |
|-------------------------------------------------|---------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document brevet cité<br>au rapport de recherche | Date de publication |                                                                | Membre(s) de la<br>famille de brevet(s)                                                                                                                                       | Date de<br>publication                                                                                                                                               |
| WO 0066724 A                                    | 09-11-2000          | AU<br>WO<br>EP                                                 | 4402500 A<br>0066724 A2<br>1181361 A2                                                                                                                                         | 17-11-2000<br>09-11-2000<br>27-02-2002                                                                                                                               |
| WO 0175164 <i>F</i>                             | A 11-10-2001        | AU<br>AU<br>BR<br>BR                                           | 3574402 A<br>4962201 A<br>0107536 A<br>0115814 A                                                                                                                              | 11-06-2002<br>15-10-2001<br>02-03-2004<br>23-03-2004                                                                                                                 |
|                                                 |                     | CA<br>CZ<br>WO<br>EP<br>EP<br>HU                               | 2404890 A1<br>2429814 A1<br>20031839 A3<br>0244321 A2<br>1309726 A2<br>1407044 A2<br>0302557 A2                                                                               | 11-10-2001<br>06-06-2002<br>15-10-2003<br>06-06-2002<br>14-05-2003<br>14-04-2004<br>28-10-2003                                                                       |
|                                                 |                     | JP<br>NO<br>WO<br>US<br>US                                     | 2003529374 T<br>20032464 A<br>0175164 A2<br>2003108923 A1<br>2002086356 A1                                                                                                    | 07-10-2003<br>21-07-2003<br>11-10-2001<br>12-06-2003<br>04-07-2002                                                                                                   |
| WO 0136646 A                                    | 25-05-2001          | AU<br>CA<br>DE<br>EP<br>WO<br>JP<br>NO<br>US<br>ZA             | 1406501 A<br>2391622 A1<br>1230375 T1<br>1230375 A1<br>0136646 A1<br>2003514533 T<br>20022359 A<br>2003027783 A1<br>200203816 A                                               | 30-05-2001<br>25-05-2001<br>09-01-2003<br>14-08-2002<br>25-05-2001<br>22-04-2003<br>18-07-2002<br>06-02-2003<br>02-01-2003                                           |
| WO 0020432 A                                    | 13-04-2000          | US<br>US<br>US<br>AU<br>AU<br>CA<br>EP<br>JP<br>WO<br>US<br>US | 6172216 B1<br>6210892 B1<br>6214986 B1<br>755515 B2<br>6271099 A<br>2345354 A1<br>1119579 A1<br>2002526093 T<br>0020432 A1<br>2003191300 A1<br>2001007025 A1<br>2002049173 A1 | 09-01-2001<br>03-04-2001<br>10-04-2001<br>12-12-2002<br>26-04-2000<br>13-04-2000<br>01-08-2001<br>20-08-2002<br>13-04-2000<br>09-10-2003<br>05-07-2001<br>25-04-2002 |
| WO 02055692 A                                   | 18-07-2002          | DE<br>CA<br>CA<br>WO<br>WO<br>EP<br>EP<br>US                   | 10100586 C1<br>2432341 A1<br>2432350 A1<br>02055692 A2<br>02055693 A2<br>1349927 A2<br>1352061 A2<br>2004001811 A1                                                            | 11-04-2002<br>18-07-2002<br>18-07-2002<br>18-07-2002<br>18-07-2002<br>08-10-2003<br>15-10-2003<br>01-01-2004                                                         |
| WO 03070969 A                                   | 28-08-2003          | CA<br>CA<br>WO<br>WO                                           | 2455447 A1<br>2455506 A1<br>03072590 A1<br>03072704 A2<br>03072705 A2                                                                                                         | 12-09-2003<br>28-08-2003<br>04-09-2003<br>04-09-2003<br>04-09-2003                                                                                                   |

# RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No PCT/FR 02/03843

| Document brevet cité<br>au rapport de recherche             | Date de publication |                                          | Membre(s) de la<br>famille de brevet(s)                                                                                                                                                                                                                                                                                             | Date de publication                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|---------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document brevet cité au rapport de recherche  WO 03070969 A |                     | MO M | 03070983 A1 03070742 A1 03070881 A2 03070884 A2 03070885 A2 03070886 A2 03070743 A1 03070887 A2 03070966 A2 03070944 A1 03070895 A2 03070989 A2 03070968 A2 03070969 A2 03070969 A2 03070910 A2 03070910 A2 03070911 A2 03070912 A2 03070912 A2 03070914 A2 03070913 A2 03070914 A2 03070917 A2 03070917 A2 03070917 A2 03070918 A2 | publication  28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 28-08-2003 |
|                                                             |                     | WO<br>WO<br>US<br>US<br>US<br>US<br>WO   | 03070918 A2<br>03070197 A2<br>03106476 A1<br>2003190635 A1<br>2003206887 A1<br>2003170891 A1<br>2004006035 A1<br>03102131 A2                                                                                                                                                                                                        | 28-08-2003<br>28-08-2003<br>24-12-2003<br>09-10-2003<br>06-11-2003<br>11-09-2003<br>08-01-2004<br>11-12-2003                                                                                                                                                                                                                                                                                                  |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES'

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

# IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

