		1		impie ghi	
		1.000	10.000	100.000 1.000.000	
	N	1 μs	10 μs	100 μs 1 ms	10 ms
	20N	20 μs	200 μs	2 ms 20 ms	200 ms
	N Log N		<u> </u>	1.66 ms 19.9 ms	232 ms
	20N Log N N ²			33 ms 398 ms	4.6 sec
	$\frac{N^2}{20N^2}$	1 ms 20 ms	100 ms 2 sec	10 sec 17 min 3.3 min 5.6 ore	1.2 giorni
	$\frac{20N^2}{N^3}$	1 sec		12 gior. 32 anni	23 giorni 32 millenni
IHITE SUP	eriore a	ASINT	OTICO		
g(m) e li	mite rep	lriarl	osinto	tico per fin) je:
9					
f(n) = O(s)	(n) (=)	> dc>	o In	>0 $\forall m > m$	k(m) ≤ C \ (m)
)	1			
	11	Wa c	Ke a	en Tull: i	
					cemente di ficn)
la hunzione			_ infi	inito pin vela	
			_ infi	into pin velo	
la hunzione Es.	gen) to		_ infi	c.g.(m)	cemente di ficm
la hunzione Es.	gen) to		_ infi	c.g.(m)	cemente di ficm
for functions $f(m) = \frac{4}{2}m^2 + \frac{1}{2}$	3 m,1		_ infi	into pin velo	cemente di ficm
for functions $f(m) = \frac{4}{2}m^2 + \frac{1}{2}$	3 m,1		_ infi	c.g.(m)	cemente di ficm
la hunzione Es.	3 m,1		_ infi	c.g.(m)	cemente di ficm
from $M = M m^2 + M = M + M = M = M = M = M = M = M = M$	3 m,1		inh	c.g.m.	cemente di ficm
for functions $f(m) = \frac{4}{2}m^2 + \frac{1}{2}$	3 m,1		inh	c.g.(m)	cemente di ficm
from $M = M m^2 + 2$	3 m,1		inh	c.g.m.	cemente di ficm
from $M = M m^2 + M = M + M = M = M = M = M = M = M = M$	3 m,1		inh	c.g.m.	cemente di ficm

LIKITE INFERIORE ASINTOTICO 2000 è limite inferiore osintotico per hin, se: fin = 1 (gin) => 1c>0 1 m>0 Vm>mo cogins fin OSS Un olganitus con tempo di execuzione fico, e MIGLIORE di uno g cm) se h (m) NON e limite SUP. asintotico di g cm) Un olganitus con tempo di esecuzione fico, e MIGLIORE di uno gen) se hom e' limite INF. osintotico di gem EQUIVALENZA ASINTOTICA f(m) = O(g(m)) (=>]c,>0]c,>0 Vm>mo |c,g(m) = fcm < c,g(m) OSS f(m) = 0 (gcm) => gcm) = 1 (fcm) DIHOSTRAZIONE Per ipoteri de > 0 d mo > 0 V mo mo france com

Al	lon	c . o	E	c'>	0	3	Mg	> 6	1	Vм	3 N	١٥	c'	ha	n)	g cm)	->(9				
Es.		k																Θ	(g.co	ı.)			
7	ime	ostń omo	m	0	che	K	(r)	z (•						
P	in	es tu	(on	0	che	ł	Car) = <u>(</u>	20			< <u>1</u>	2	·									
Vm	121	Come	<u>3</u>	y 2.	\$ <u>11</u>	<u>'</u>	<u>{</u>		<i>\</i>														
АЫ	bion	Q	Veni	ifric	ato	d	e		Kca	1) =	©	(20	(2013)										

	2	2			
(m)= 6m	J (m) = 3	M			
• h (n)= O(g(n))					
c=1 f					
mo=4 Va	1 > 4	$6 \text{ m} > \frac{3}{2} \text{ m}$	12		
• fcm) = 1 (gcm)					
la definitione	Jc>0	7 0< m E	$m_{\geqslant m_o}$	$\frac{3}{2}$ m ≤ 6 m.	> C·m \leq 12
Abbismo bisoguo	di ce	12 AS	ssurdo! pe	$n \rightarrow \infty$ c ob	ev'essue minore
di O, contro l	'ipoter	<i>9</i> m			
	1				

