## Mecánica computacional - Trabajo Práctico 2

FILARDI, Esteban; VICTORIO, Franco

1) En los dos casos se usa:

$$\psi = x + 1$$

$$N_m(x) = \sin(m\pi x)$$

El error utilizado es:

$$error = \frac{||x_{aprox} - x_{exacta}||_2}{||x_{exacta}||_2}$$

evaluando en 1000 puntos equiespaciados en [0,1].

Colocación puntual: usando M puntos equiespaciados y en el interior del dominio (para M=2 los puntos  $\frac{1}{3}$  y  $\frac{2}{3}$ , por ejemplo), se obtienen los siguientes resultados:

| $\mathbf{M}$ | Error      | Proporción mejora |
|--------------|------------|-------------------|
| 1            | 5.1067e-01 |                   |
| 2            | 1.6125e-01 | 3.1670            |
| 4            | 4.1164e-02 | 3.9173            |
| 8            | 9.1047e-03 | 4.5212            |
| 16           | 1.8320e-03 | 4.9697            |
| 32           | 3.4760e-04 | 5.2706            |

Galerkin: con el método de Galerkin se obtienen los siguientes resultados:

| $\mathbf{M}$ | Error      | Proporción mejora |
|--------------|------------|-------------------|
| 1            | 9.4531e-03 |                   |
| 2            | 2.8715e-03 | 3.2921            |
| 4            | 6.8859e-04 | 4.1701            |
| 8            | 1.4254e-04 | 4.8309            |
| 16           | 2.7272e-05 | 5.2267            |
| 32           | 5.0146e-06 | 5.4384            |

A continuación se muestran las gráficas para ambos métodos en el caso  ${\cal M}=2$ :



