yen:) $\vec{X} \in \mathbb{R}^{n}$, whopum $W \subseteq \mathbb{R}^{n}$: and $\vec{X} \in W$ go outstoppens the $W \subseteq \mathbb{R}^{n}$ $\vec{X} \in W =$ outstoppens the $W = \mathcal{O}_{o}$ $\vec{X} \in W =$ outstoppens the $W = \mathcal{O}_{o}$ $\vec{X} \in W =$ openium the $W : \mathcal{O}_{o} = \mathcal{O}_{o}$ of $\vec{X} \in W =$ openium the $W : \mathcal{O}_{o} = \mathcal{O}_{o}$ of $\vec{X} \in W =$ openium out $\vec{X} = \mathcal{O}_{o} = \mathcal{O}_{o}$ of $\vec{X} = \mathcal{O}_{o} = \mathcal{O}_{o} = \mathcal{O}_{o}$ of $\vec{X} = \mathcal{O}_{o} = \mathcal{O}_{o$

Depuluyer that funcupation spension of T^{by} pag α , $\omega^* \subseteq \mathbb{R}^{y}$ be nagated on which we have (0.4.0), and: $f(X \notin \omega^*/H_1) = \min_{w \in \mathbb{R}^{y}} |f(X^* \notin \omega/H_1)|$ $\alpha = |f(X \in \omega/H_0)|$

X; $f_{X}(X, \mathcal{D})$; X, we go use where $f_{X}(X, \mathcal{D})$ e unexamined we X. $f_{X}(X, \mathcal{D}) = L(X, \mathcal{D}) = \int_{j=1}^{n} f_{X}(X_{j}, \mathcal{D})$ upabornopodue

Nema (Neuman - Phroposen) Henry X ygobrenboposba egunve yenobus a reorbane $f_{0}: \mathcal{D} = \mathcal{D}_{0}$ Ans $L_{0}(X_{j}) = L(X_{j}, \mathcal{D}_{0}) + L_{1}(X_{j}) = L(X_{j}, \mathcal{D}_{0}) + L_{2}(X_{j}) = L_{1}(X_{j}) = L_{2}(X_{j}) = L_{3}(X_{j}) = L_{3}(X_$