Design and Implementation of a Strong Representation System for Network Policies

Fangping Lan, Sanchari Biswas, Bin Gui, Jie Wu and Anduo Wang
Temple University

Motivation

- Managing networking policies remains hard:
 - One has to fully understand the policy
 - Understanding SDN is difficult for someone not involved in the coding process

Motivation

- Managing networking policies remains hard:
 - One has to fully understand the policy
 - Understanding SDN is difficult for someone not involved in the coding process
- Managing relational database is easier:
 - Self-explaining and has a common understanding
 - Little expertise required for non-programmers

Motivation

- Managing networking policies remains hard:
 - One has to fully understand the policy
 - Understanding SDN is difficult for someone not involved in the coding process
- Managing relational database is easier:
 - Self-explaining and has a common understanding
 - Little expertise required for non-programmers

Can we provide a network policy management experience comparable to that on a database?

Two prefixes 1.2.3.4 and 5.6.7.8 over two alternative paths [ABC] and [ADC]

Two prefixes 1.2.3.4 and 5.6.7.8 over two alternative paths [ABC] and [ADC]

The destination of the path

Two prefixes 1.2.3.4 and 5.6.7.8 over two alternative paths [ABC] and [ADC]

P_R	dest	path	condition
	1.2.3.4	Х	x=[ABC]\vx=[ADC] y=[ABC]\vy=[ADC]
	5.6.7.8	У	y=[ABC]vy=[ADC]

The path to its destination

Two prefixes 1.2.3.4 and 5.6.7.8 over two alternative paths [ABC] and [ADC]

P_R	dest	path	condition
	1.2.3.4	X	x=[ABC]vx=[ADC] y=[ABC]vy=[ADC]
	5.6.7.8	У	y=[ABC]vy=[ADC]

The constraints over variables

Two prefixes 1.2.3.4 and 5.6.7.8 over two alternative paths [ABC] and [ADC]

	P_R	dest		path		cond	lition	
,		1.2.3.	4	X	X=	[ABC]	/x=[A[C]
		5.6.7.	8	У	y=	[ABC]	y=[A[OC]
		I		dest		path	_	
				1.2.3.4	4	[ABC]		
				1.2.3.4	4	[ADC]		
Repre	sent		,	5.6.7.8	3	[ABC]		
				5.6.7.8	3	[ADC]		

Two prefixes 1.2.3.4 and 5.6.7.8 over two alternative paths [ABC] and [ADC]

P_R	dest	path	condition
	1.2.3.4	X	$x=[ABC] \lor x=[ADC]$
	5.6.7.8	У	y=[ABC]\vy=[ADC]

Conditional Table

Traffic balance policy

Balance traffic to 1.2.3.4 and 5.6.7.8

P_3		path		
	1.2.3.4 5.6.7.8 1.2.3.4 5.6.7.8	[ABC]	u	u = 1
	5.6.7.8	[ABC]	u	u ≠ 1
	1.2.3.4	[ADC]	V	v = 1
	5.6.7.8	[ADC]	V	v ≠ 1

Traffic balance policy

Balance traffic to 1.2.3.4 and 5.6.7.8

P_3	dest	path	flag	
	1.2.3.4	[ABC]	u	u = 1
	5.6.7.8	[ABC]	u	u ≠ 1
	1.2.3.4	[ADC]	V	v = 1
	5.6.7.8	[ADC]	V	v ≠ 1

Traffic balance policy

Balance traffic to 1.2.3.4 and 5.6.7.8

P_3	dest	path	flag	
	1.2.3.4	[ABC]	u	u = 1
	1.2.3.4 5.6.7.8	[ABC]	u	u ≠ 1
	1.2.3.4	[ADC]	V	v = 1
	5.6.7.8	[ADC]	V	V ≠ 1

Cannot assign path [ABC] to 1.2.3.4 and 5.6.7.8 simultaneously.

Traffic balance policy

 P_3

Balance traffic to 1.2.3.4 and 5.6.7.8

dest path flag

1.2.3.4 [ABC] u u = 15.6.7.8 [ABC] $u u \neq 1$ 1.2.3.4 [ADC] v v = 15.6.7.8 [ADC] $v \neq 1$

Cannot assign path [ABC] to 1.2.3.4 and 5.6.7.8 simultaneously.

Cannot assign path [ADC] to 1.2.3.4 and 5.6.7.8 simultaneously.

Static route and filter policy

P_1	dest	path	
	1.2.3.4	Χ	x=[ABC]
	у	Z	y≠1.2.3.5

Static route and filter policy

Assign a static route [ABC] to destination 1.2.3.4

$$\begin{array}{c|ccccc} P_1 & dest & path \\ \hline & 1.2.3.4 & x & x=[ABC] \\ & y & z & y \neq 1.2.3.5 \end{array}$$

Static route and filter policy

Assign a static route [ABC] to destination 1.2.3.4

Do not allow traffic to destination 1.2.3.5

Manipulating Network Policies

- Manipulate relational database table:
 - relational algebra: selection, projection, union, join, ...
 - implement SQL query on regular table

Manipulating Network Policies

- Manipulate relational database table:
 - relational algebra: selection, projection, union, join, ...
 - implement SQL query on regular table
- Our contribution:

Manipulating network policies by simply implementing SQL query on conditional table

- Static route and filter policy
- Traffic balance policy

P_1	dest	path		P_3		path		
	1.2.3.4	X	L d		1.2.3.4 5.6.7.8 1.2.3.4 5.6.7.8	[ABC]	u	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2.3.4		5.6.7.8	[ABC]	u	u ≠ 1
					1.2.3.4	[ADC]	V	v = 1
					5.6.7.8	[ADC]	V	v ≠ 1

- Static route and filter policy
- Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	u	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2	.3.4		5.6.7.8	[ABC]	u	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]		v = 1
satis	sfies \overline{P}_1 and	d P_3 sin	multaneously?	o ₁ join	P_3	5.6.7.8	[ADC]	V	v ≠ 1

- Static route and filter policy
 Traffic balance policy

P_1	dest	path		P	3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2.	3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]	V	V = 1
satis	sfies \overline{P}_1 and	dP_3 \sin	multaneously?	$_1$ join P_3		5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	X	u	$x=[ABC] \land u=1$
	У	Z	u	y=5.6.7.8∧z=[ABC]∧u≠1
	у	Z	V	$y=5.6.7.8 \land z=[ADC] \land v \neq 1$

- Static route and filter policy
 Traffic balance policy

P_1	dest	path		P	3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2.	3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]	V	V = 1
satisfies P_1 and P_3 simultaneously? P_1 join P_2						5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4			$x=[ABC] \land u=1$
	У	Z	U	$y=5.6.7.8 \land z=[ABC] \land u \neq 1$
	у	Z	V	$y=5.6.7.8 \land z=[ADC] \land v \neq 1$
		I	dest	path
Valid forwarding			1.2.3.4	4 [ABC]
state			5.6.7.8	B [ADC] ₇

- Static route and filter policy
 Traffic balance policy

P_1	dest	path		P_3		dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	u	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2.3.4	1		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]	V	v = 1
satisfies P_1 and P_3 simultaneously? P_1 join P_3						5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	X	u	$x=[ABC] \land u=1$
	•			y=5.6.7.8∧z=[ABC]∧u≠1
	У	Z	V	$y=5.6.7.8 \land z=[ADC] \land v \neq 1$
		I	dest	t path_
Vali	Valid forwarding			.8 [ABC]
	state			7

 The conventional conditional table is still restricted for the rich semantics of network policies

Using user-defined functions and aggregates

 The conventional conditional table is still restricted for the rich semantics of network policies

Using user-defined functions and aggregates

$$P_2$$
 dest path s(path) x y z $I(y) \le z$

 The conventional conditional table is still restricted for the rich semantics of network policies

Using user-defined functions and aggregates

$$P_2$$
 dest path s(path) x y z x $y \neq z$

Function s: return the lowest hop counts among all alternative paths

 The conventional conditional table is still restricted for the rich semantics of network policies

Using user-defined functions and aggregates

$$P_2$$
 dest path s(path) x y z $I(y) \le z$

Function s: return the lowest hop counts among all alternative paths

Function I: return hops of the path

Support Network Addressing

- Network addressing is a basic but critical feature to network area
- Allow sets in conditional table
 - i.e. accommodate variables and conditions

Support Network Addressing

- Network addressing is a basic but critical feature to network area
- Allow sets in conditional table
 - i.e. accommodate variables and conditions
- Two methods:
 - Naive support for sets
 - Leverage SMT(Satisfiability Modulo Theories) solver for sets

Application in inter-domain routing

- We show the possibility of coordinating knowledge-driven policies from a single central point
- What about in realistic network scenarios like inter-domain routing?

We show an application - **Policy Exchange**

A Brief Picture of BGP

A Brief Picture of BGP

A Brief Picture of BGP

Why policy exchange?

 BGP favors autonomy; Policies are made based on local preferences

Why policy exchange?

 BGP favors autonomy; Policies are made based on local preferences

X: requires routes no more than 3 hops to 1.2.3.4

 BGP favors autonomy; Policies are made based on local preferences

 It may cause unwanted interaction between policies

5.6.7.8 E B

 P_{X}

A: balances traffic for its neighbors C and D

X: requires routes no more than 3 hops to 1.2.3.4

Require a

proper decision

5.6.7.8

1.2.3.4

 BGP favors autonomy; Policies are made based on local preferences

 It may cause unwanted interaction between policies

Approach: policy exchange

A: balances traffic for its neighbors C and D

X: requires routes no more than 3 hops to 1.2.3.4

5.6.7.8

1.2.3.4

A: balances traffic for its neighbors C and D

D	P_A	dest	nh	flag	
		1.2.3.4 1.2.3.4 5.6.7.8 5.6.7.8	С	u	u = 1
		1.2.3.4	D	V	v = 1
(B)		5.6.7.8	C	u	u ≠ 1
		5.6.7.8	D	V	v ≠ 1

A: balances traffic for its neighbors C and D

Merging D	P_A	dest	nh	flag	
		1.2.3.4 1.2.3.4	C	u	u = 1
5.6.7.8		1.2.3.4	D	V	v = 1
(E)		5.6.7.8	C	u	u ≠ 1
1.2.3.4		5.6.7.8	D	V	v ≠ 1

 P_{A}

 We currently use in-memory implementation, in terms of Python lists

 We currently use in-memory implementation, in terms of Python lists

- Applications:
 - Policy Exchange
 - BGP simulation

We currently use in-memory implementation, in terms of Python lists

- Applications:
 - Policy Exchange
 - BGP simulation

Mimicking the behavior of the BGP speaker as it receives announcement from their neighbors

We currently use in-memory implementation, in terms of Python lists

- Applications:
 - Policy Exchange
 - BGP simulation

Benchmark

 Using MRT format RouteView BGP data - RIBs and UPDATEs from <u>route-view2.oregon-ix.net</u> to generate synthetic policies and realistic topologies

Performance - Relational Operators

 $\bowtie: P_1 \bowtie P_3$

 P_1 : static-route & filter policy

 P_3 : traffic balance policy

Performance - Relational Operators

 $\bowtie: P_1 \bowtie P_3$

 P_1 : static-route & filter policy

 P_3 : traffic balance policy

Performance - Relational Operators

 $\bowtie: P_1 \bowtie P_3$

 P_1 : static-route & filter policy

 P_3 : traffic balance policy

Performance - Scalability

- SMT(Z3) takes 96% of the running time
- Our implementation can handle 10,000 policies in ≤ 70 minutes

Performance - Scalability

- SMT(Z3) takes 96% of the running time
- Our implementation can handle 10,000 policies in ≤ 70 minutes

Performance - More Policy Examples

 P_1 : static route policy

 P_3 : traffic balance policy

 P_4 : filter policy

All: total time

SMT: reasoning time

Processing time breakdown of poss(s, p)

Primitive that validates a relational policy (p) on a given network state (s)

Performance - More Policy Examples

 P_1 : static route policy

 P_3 : traffic balance policy

 P_4 : filter policy

All: total time

SMT: reasoning time

- Primitive that validates a relational policy (p) on a given network state (s)
- Running time: P3 < P1 < P4

Performance - More Policy Examples

 P_1 : static route policy

 P_3 : traffic balance policy

 P_4 : filter policy

All: total time

SMT: reasoning time

- Primitive that validates a relational policy (p) on a given network state (s)
- Running time: P3 < P1 < P4

SMT dominates the source of delay

Related Work

- Inter-domain Routing Protocols and Architectures
 - D-BGP and Trotsky: partial deployments of protocols, requires their co-existence on the global internet

Related Work

- Inter-domain Routing Protocols and Architectures
 - D-BGP and Trotsky: partial deployments of protocols, requires their co-existence on the global internet
- Declarative Networking:
 - We share database usage in networking
 - We introduce and implement a novel use of conditional tables

Thank you

http://ravel-net.org/

Support full set of relational operators

Union: ∪

Selection: σ

Difference: -

Projection: π

Rename: ρ

Support full set of relational operators

Union: U e.g. Assign a new path [AEC] to 1.2.3.4

Selection: σ

Difference: -

Projection: π

Rename: ρ

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Z	y≠1.2.3.5∧y≠1	1.2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]	V	v = 1
satis	sfies $\stackrel{\circ}{P}_1$ an	d P_3 si	multaneously?	P_1 join	P_3	5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	Χ	u	x=[ABC] ∧ u=1
	1.2.3.4	Χ	V	$x=[ABC] \land x=[ADC] \land v=1$
	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ABC] \land u = 1$
	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ABC] \land u \neq 1$
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ADC] \land v = 1$
	у	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ADC] \land v \neq 1$

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3		dest	path	flag	
	1.2.3.4	X	x=[ABC]				1.2.3.4	[ABC]	U	u = 1
	У	Z	y≠1.2.3.5∧y≠1	.2.3.4	_		5.6.7.8	[ABC]	U	u ≠ 1
Can we generate a new policy that							1.2.3.4	[ADC]	V	v = 1
satisfies P_1 and P_3 simultaneously?							5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
Γ	1.2.3.4	Х	u	x=[ABC] ∧ u=1
L	1.2.3.4	Χ	V	$x=[ABC] \land x=[ADC] \land v=1$
	У	Z	u	y≠1.2.3.5∧y≠1.2.3.4∧y=1.2.3.4∧z=[ABC]∧u=1
	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ABC] \land u \neq 1$
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ADC] \land v = 1$
	у	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ADC] \land v \neq 1$

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	У	Z	y≠1.2.3.5∧y≠1	.2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a r	new policy that			1.2.3.4	[ADC]	V	v = 1
			multaneously?	P_1 join	P_3	5.6.7.8	[ADC]	V	v ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	X	u	x=[ABC] ∧ u=1
	1.2.3.4	Χ	V	$x=[ABC] \land x=[ADC] \land v=1$
Γ	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ABC] \land u = 1$
	у	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ABC] \land u \neq 1$
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ADC] \land v = 1$
L	у	Z	V	y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[ADC]∧v≠1

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2	2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]	V	V = 1
satis	sfies \overline{P}_1 and	dP_3 \sin	multaneously?	P_1 join I	3	5.6.7.8	[ADC]	V	V ≠ 1

	_			Contradictory
$P_1 \bowtie P_3$	dest	path	flag	*
	1.2.3.4	X	u	x=[ABC] ∧ u=1
	1.2.3.4	X	V	$x=[ABC] \land x=[ADC] \land v=1$
	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y \neq 1.2.3.4 \land z = [ABC] \land u = 1$
	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ABC] \land u \neq 1$
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ADC] \land v = 1$
	у	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ADC] \land v \neq 1$

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2	2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]	V	V = 1
satis	sfies \overline{P}_1 and	dP_3 \sin	multaneously?	P_1 join I	3	5.6.7.8	[ADC]	V	V ≠ 1

				Contradictory
$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	X	u	$x=[ABC] \land u=1$
	1.2.3.4	×		$X=[ABC] \land x=[ADC] \land v=1$
	У	Z	u	y≠1.2.3.5∧y≠1.2.3.4∧y≠1.2.3.4∧z=[ABC]∧u=1
	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ABC] \land u \neq 1$
	У	Z	── ∀	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ADC] \land v = 1$
	у	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ADC] \land v \neq 1$

- Static route and filter policy
 Traffic balance policy

P_1	dest	path		P_{i}	3	dest	path	flag	
	1.2.3.4	X	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2.3	.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	ate a n	ew policy that			1.2.3.4	[ADC]	V	v = 1
satis	sfies \overline{P}_1 and	d P_3 si	multaneously? P_1	oin P_3		5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	X	u	x=[ABC] ∧ u=1
				$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ABC] \land u \neq 1$
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ADC] \land v \neq 1$

- Static route and filter policy
 Traffic balance policy

P_1	dest	path		P_3	dest	path	flag	
	1.2.3.4	X	x=[ABC]		1.2.3.4	[ABC]	u	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2.3		5.6.7.8			
Can	we gener	ate a n	ew policy that		1.2.3.4	[ADC]	V	v = 1
satisfies P_1 and P_3 simultaneously? P_1 join P_2					5.6.7.8	[ADC]	V	$V \neq 1$

	_				Redur	ndancy
$P_1 \bowtie P_3$	dest	path	flag		1	
	1.2.3.4	X	u	x=[ABC] ∧ u=1		
	У	Z	u	y≠1.2.3.5∧y≠1.2.3.	4∧y=5 .	6.7.8∧z=[ABC]∧u≠1
	У	Z	V	y≠1.2.3.5∧y≠1.2.3.	4∧y=5.	6.7.8∧z=[ADC]∧v≠1