Manajemen Sains

Rudi susanto

Rudi Susanto

- Wonogiri, 14 Februari 1987
- S1 dan S2 Fisika di Universitas Sebelas Maret
- Rudist 87@yahoo.co.id
- 085647296211
- Rudist.wordpress.com

Manfaat Pembelajaran

Memahami metode kuantitatif dan hubungannya dengan teori pengambilan keputusan manajemen

Memahami dan mempu menyelesaikan studi kasus teknik Analisa keputusan

Tujuan Pembelajaran

Setelah mengikuti kuliah ini mahasiswa diharapkan dapat memakai Metode Sains untuk memecahkan masalah manajemen khususnya dalam hal penyajian data

Materi

- 1. Pendahuluan
- 2. Pengantar Program Linear: Formulasi Model dan Solusi Grafik
- 3. Program Linear : Solusi komputer dan Analisa Sensitivitas
- 4. Program Linear: Contoh-contoh Model
- 5. Program Integer
- 6. Masalah Transportasi, Pengapalan, dan Penugasan
- 7. Model Arus Jaringan
- 8. Manajemen Proyek
- 9. Pengambilan Keputusan dengan multiple kriteria
- 10. Program non linear
- 11. Analisa keputusan
- 12. Analisa Antrian
- 13. Manajemen Persediaan.
- 14. Simulasi

Penilaian

- UAS 40%
- UTS 30%
- TUGAS 20%
- KEHADIRAN 10%

Software pendukung

- Ms Office (excel + Project)
- POM for windows

Referensi

Taylor W. Bernard. 2004. Management Science Ninth Edition.

Prentice Hall: New Jersey

- Buku Manajemen Sains
- Buku Riset Operasi

Manajemen Sains

Pengertian

- Management → Perancis
 Kuno(ménegement) → Seni melaksanakan dan
 mengatur
- Sudah sejak ribuan tahun lalu
 - Ditandai piramida Mesir (dibangun 100.000 orang selama 20 tahun)
 - Venesia Italia sebagai pusat perekonomian (banyak organisasi dan perusahaan modern)

Era Manajemen Sains

- Ditandai dengan berkembangan perkembangan ilmu manajemen dari kalangan insinyur
- Manajemen ilmiah(scientific manajemen)
 dipopulerkan Frederick Winslow Taylor dalam
 bukunya yang "Principles of Scientific
 Management" pada tahun 1911.
 - MI: Penggunaan metode ilmiah untuk menentukan cara terbaik dalam menyelesaikan suatu pekerjaan

Pendekatan Manajemen Sains

1.Observasi

- Pelajari Masalah
 - Krisis
 - Situasi yang harus diantisipasi dan direncanakan
 - Dilakukan oleh manajer

Pakar Sains Manajemen: orang yang menguasai teknik sains manajemen dan terlatih untuk memecahkan masalah menggunakan teknik sains manajemen

<u>Pekerjaan kedepan</u>

Menejemen sains digunakan dalam menghasilkan dan melayani tipe-tipe pekerja:

- 1. Service Industry: Client Management, Commercial Banking and Real Estate, Financial Consulting, Health Systems, and Human Resource Consulting
- 2. Manufacturing Industry: Inventory Management, Logistics, Operation Management, Production Management, and Warehousing
- 3. Research and Development: Data Analysis, Environmental Protection and Preservation, and Human Factors Engineering
- 4. Business and Management: Business Strategy, Investment Banking,
 Management Analysis, Project Management, and Business Development
- 5. Information Technology: Computer Integration, Database Design, Telecommunication, and Web Development
- **6. Education**: Teaching and Research

2. Definisi Masalah

- Penjabaran masalah dengan singkat
 - Batasan-batasan masalah
 - Tingkatan masalah tersebut mempengaruhi unit lain
- Ada Masalah = Tujuan Perusahaan tidak tercapai
- Pentingnya TUJUAN

3. Perumusan Model

- Adalah penyajian ringkas situasi masalah yang ada.
 - Grafik
 - Diagram
 - Set hubungan sistematis (angka, dan simbol-simbol)
 Misal:

Pada suatu perusahaan, biaya produksi \$5 dengan harga jual \$20, maka model untuk menghitung laba total

$$Z = \$20x - 5x$$

x : jumlah unit yang diproduksi dan dijual

Z: total laba

3.Perumusan Model

- Simbol x dan Z adalah variable
 - Variable : Simbol untuk mewakili item yang dapat memiliki berbagai nilai.
- \$20 dan \$5 adalah paramater
 - Parameter: nilai-nilai konstan yang merupakan koefisien dari variable dependen [Z] (tergantung unit yang terjual) atau variable independen [x] (unit yang terjual)

3.Perumusan Model

 Diasumsikan suatu produk yang terbuat dari besi dan perusahaan mempunyai persediaan 4 pon besi tiap unit dari 100 pon yang tersedia. Maka model (fungsi tujuan):

- -Z = \$20x 5x > model diatas
- -4x = 100

4.Pemecahan Model

- Aljabar Sederhana
 - 4x = 100
 - x = 25 unit
 - Z = \$20x 5x
 - Z = 20(25) 5(25) = \$375 (Laba)
 - Nilai variable tidak menunjukkan keputusan aktual, tetapi hanya berupa informasi, anjuran, yang membantu manajer mambuat keputusan.

5.Implementasi

- Adalah pelaksanaan nyata dari model yang telah dikembangkan atau pemecahan dari masalah yang dihasilkan oleh model yang telah dikembangkan.
- Jika model sains manajemen dan solusinya tidak diimplementasi, maka semua usaha dan sumber daya yang digunakan dalam pengembangan model akan sia-sia.

Study kasus manajemen sains

Tujuan dan batasan

Tujuan : Memaksimalkan Z = \$20x -5x

• Batasan : 4x = 100

Maka keuntungan yang didapat

$$Z = $20x - 5x$$

= 20 (25) - 5 (25)
= 375

Analisis titik impas

- Komponen break even:
 - Volume
 - Biaya
 - Biaya tetap
 - Biaya variabel
 - Keuntungan

Formula

Total Biaya

$$TC = c_f + vc_v$$

Dimana

TC: Total Cost

 c_f : biaya tetap total

 vc_v : biaya variabel total

Formula

Pendapatan Total

νp

dimana v adalah volume dan p adalah harga jual per unit.

Keuntungan total = pendapatan total - biaya total

$$Z = vp - (c_f + vc_v)$$
$$= vp - c_f - vc_v$$

Contoh

 Perusahaan Western Clothing Co memproduksi celana jeans, dan mengeluarkan biaya sebagai berikut:

```
• Biaya tetap = C_f = $10.000
• Biaya variabel = C_v = $8 / unit jeans
```

• Jika diasumsikan volume pendapatan (V) adalah 400 unit celana, *maka total biaya* adalah :

$$TC = C_f + V.C_v$$

\$10.000 + 400.\$8 = \$13.200

- Dengan demikian jika perusahaan ingin memperoleh keuntungan maksimal, hanya merubah variabel cost perunitnya.
- Misalnya dijual perunit adalah \$23, maka pendapatan totalnya menjadi :

Kalau begitu berapa keuntungannya?

- Selanjutnya dapat dirumuskan, bahwa :
- Keuntungan total = pendapatan total biaya total

$$Z = V_p - (C_f + V.C_v)$$
$$Z = V_p - C_f - VC_v$$

Menghitung BEP

- Kita tentu tidak mau rugi, juga \$0 keuntungan, perlu ditentukan titik terrendah sebagai patokan.
- Pada contoh diatas diketahui, bahwa:
 - *Fixed cost = \$10.000*
 - Variabel cost unit = \$8
- Dengan menggunakan rumus $Z = V_p C_f VC_v$
- Dan nilai Z diasumsikan dengan 0, maka :

$$OZ = V_p - C_f - VC_v - O = V_p - C_f - VC_v$$

$$O0 = 23V - 10000 - 8V = -10.000 - 15V$$

- \bigcirc 10.000 = 15 V
- OJadi V = 666,7 unit celana (ini kalau laku semua dan ga untung)

Bagaimana memperoleh profit

Bisa dilakukan dengan:

- Menaikan volume produksi
 - Diproduksi sampai 800 unit, maka

$$Z = V_p - C_f - VC_v$$

 $Z = (800). \$(23) -10000 - (800).(8) = \2000

Meninggikan harga unit

$$Z = V_p - C_f - VC_v$$

 $Z = (400). \$(50) - 10000 - (400).(8) = 6800

Secara umum volume BEP

•
$$Z = V_p - C_f - VC_v$$

•
$$O = V_p - C_f - VC_v$$

•
$$O = V_p - VC_v - C_f$$

•
$$O = V(p-C_v) - C_f$$

•
$$Cf = V(p-C_v)$$

$$v = \frac{Cf}{p - Cv}$$

Dimana:

V = jumlah/ volume yang diproduksi Cf = fixed cost Cv = variabel cost P = harga jual perunit.

Solusi Komputer Excel

Parameter																
Biaya tetap	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000
Biaya variabel (Vf)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Harga jual (p)	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Volume (v)	100	200	300	400	500	600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600
Total Pendapatan (vp)	2.300	4.600	6.900	9.200	11.500	13.800	16.100	18.400	20.700	23.000	25.300	27.600	29.900	32.200	34.500	36.800
Total Biaya (TC)	10.800	11.600	12.400	13.200	14.000	14.800	15.600	16.400	17.200	18.000	18.800	19.600	20.400	21.200	22.000	22.800
Keuntungan	(8.500)	(7.000)	(5.500)	(4.000)	(2.500)	(1.000)	500	2.000	3.500	5.000	6.500	8.000	9.500	11.000	12.500	14.000

• Dan nilai Z diasumsikan dengan 0, maka:

$$Z = V_p - C_f - VC_v$$

 $0 = V_p - C_f - VC_v$
 $0 = 23V - 10000 - 8V$
 $0 = -10.000 - 15V$
 $10.000 = 15 V$
Jadi $V = 666,7$ unit celana

Solusi Grafik

• Dan nilai Z diasumsikan dengan 0, maka :

$$Z = V_p - C_f - VC_v$$

 $0 = V_p - C_f - VC_v$
 $0 = 23V - 10000 - 8V$
 $0 = -10.000 - 15V$
 $10.000 = 15 V$
 $Jadi V = 666,7 unit celana$

Solusi Komputer dengan POM for Windows

Grafik

Soal 1

- Willow Furniture Company memproduksi meja. Biaya tetap produksi per bulan adalah \$8.000 dan biaya variabel per meja adalah \$65. Harga satu meja adalah \$180.
 - Jika volume produksi per bulan mencapai 300 meja, tentukan biaya total.
 - Tentukan volume break even pada Willow Furniture Company
 - Gambarkan grafik volume break even

Soal 2

- Retread Tire Company adalah perusahan bergerak dalam perbaikan ban. Biaya tetap per tahun adalah \$60.000. Biaya variabel per ban adalah \$9. Perusahaan mengenakan biaya perbaikan ban sebesar \$25.
 - Untuk memperbaiki 12.000 ban per tahun, tentukan biaya total, pendapatan total, dan keuntungannya
 - Tentukan volume break even poin pada Retread Tire Company
 - Gambarkan grafik volume break even

Terma kasih