Dentro de um recipiente, com 10 dm^3 de volume, encontram-se 14 g de azoto ($M_0(N_2) = 28 \text{ g/mol}$). Cada molécula tem translação e tem rotação com momento de inércia I. A função de partição de cada molécula, é:

$$Z = \frac{V(2\pi m k_B T)^{3/2}}{h^3} \frac{8\pi^2 I k_B T}{h^3}$$

Se o gás se encontrar a 300 K, determine:

- a) Energia interna do gás
- b) A pressão do gás.

Um detetor de radiação é colocado a 2 m de uma bola metálica de 50 cm de raio, que se encontra aquecida à temperatura de 600°C. A que temperatura se irá encontrar o detetor quando se encontrar no equilíbrio, se nada mais existir além da bola aquecida ?

Considere um metal bidimensional com a forma de uma "caixa" quadrada de lado L = 1cm e com N electrões, em que a densidade de estados nestas condições é dada por $g(\varepsilon) = \frac{m_e L^2}{2\pi\hbar^2}$. Determine a energia de Fermi deste sistema (em eV), à temperatura de T=0K, se o metal for de cobre. (Nota: $\sigma_{\text{Cu}} = 9 \times 10^{-7} \text{ kg/m}^2$; M(Cu) = 63.6 g/mol, nº de eletrões de valência do átomo de Cu = 2)

O isótopo ¹⁴N tem um spin nuclear (momento angular intrínseco/ \hbar) igual a 1 enquanto que o núcleo tem a forma de uma esfera oblata que dá origem a um momento quadripolar. Considere uma matriz sólida de ¹⁴N sujeito a um campo externo. Os núcleos terão uma posição fixa, mas o spin poderá assumir várias orientações relativamente a direcção do campo. Neste caso as energias que correspondem às várias orientações do spin possíveis são: $\varepsilon = 10^{-4}$ eV no caso de o spin ser paralelo ou anti-paralelo ao campo (spin = +1 \hbar ou -1 \hbar) e zero se o spin é perpendicular ao campo (spin = 0 \hbar). Os spins dos diferentes núcleos são independentes, a temperatura é T = 300 K (partículas distinguíveis a esta temperatura) e o número de moles é 0.5.

- a) Mostre que para cada 14 N a função de partição é $Z=1+2e^{-\beta\epsilon}$. No equilíbrio termodinâmico a uma temperatura T=300 K, qual é o valor médio da energia por spin?
 - b) Qual a razão entre o número de spins com energia E e o número com energia 0.
 - c) Qual a entropia e a energia livre de Helmoltz do sistema de spins?
 - d) Identificar se são bosões ou fermiões e achar a energia interna do sistema a T = 0 K.