Medical Image Analysis

Week 1: Assignment Key & Solution

Answer Key:

Q No	Ans
1	a
2	d
3	а
4	d
5	-
6	С
7	b
8	С
9	С
10	b

Q No	Ans
11	а
12	b
13	а
14	b
15	а
16	d
17	b
18	С
19	С
20	b

Solutions:

Q1. Refer Lec. 1.1 Slide no. 3

Q2. Refer Lec. 1.1 Slide no. 13

Q3. Refer Lec. 1.1 Slide no. 14

Q4. Refer Lec. 1.1 Slide no. 15

$$\textbf{Q5}. \quad E_{kin} = 0.5 m_e v^2$$

$$M_e = 9.31 \times 10^{-31} \text{Kg, v} = 3 \times 10^8 \frac{\text{m}}{\text{s}}$$

$$\therefore E_{kin} = 41.89fJ$$

Q6.
$$E_{kin}=\frac{hc}{\lambda}$$
, $h=6.6\times10^{-34}$ Js, $c=3\times10^8\frac{m}{s}$, $\lambda=2pm$

$$\therefore E_{kin} = 99fJ$$

Q7. Refer Lec. 1.2 Slide no. 6

Q8. HU(x,y) =
$$1000 \frac{\mu(x,y) - \mu_{water}}{\mu_{water}}$$
, $\mu(x,y) = 0.237$, $\mu_{water} = 0.214$

$$\therefore HU(x, y) = 107.48$$

Q10.
$$\omega_o = \gamma B$$
 , $\frac{\gamma}{2\pi} = 42.58 \ \text{MHz}$, $B = 1.5 T$

$$\div~\omega_o = 401.1 MHz$$

Q.11 Refer Lec. 1.3 Slide no. 6

Q.12 Refer Lec. 1.3 Slide no. 11

Q13.
$$t_j = \frac{\sqrt{(R_{fp}^2 + x_j^2 - 2R_{fp}x_j\sin(\theta))}}{v}$$
, $R_{fp} = 10$ cm, $\theta = 15^\circ$, $x_j = 3 \times 1$ mm, $v = 1540$ m/s

∴
$$t_j = t_3 = 64.46 \mu s$$

Q14. Refer Lec. 1.4 Slide no. 11

Q15. Refer Lec. 1.4 Slide no. 10

Q16. Refer Lec. 1.4 Slide no. 9

Q17. N. A =
$$n \sin(\theta)$$
, N. A = 0.5 n = 1

$$\therefore \theta = 30^{\circ}$$

Q18. Refer Lec. 1.5 Slide no. 7

Q19. Refer Lec. 1.5 Slide no. 8

Q20. Refer Lec. 1.5 Slide no. 10