Calcolatori Elettronici (12AGA) – esame del 6.2.2014

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 20 minuti.

1	0			
1	Quanti multiplexer da 2 a 1 sono necessari per costruire			
	un multiplexer da 8 a 1?			
2	Quanti byte compongono la Interrupt Vector Table in un			
	sistema x86?			
3	Dove è memorizzato lo stack utilizzato da molti processori?	Nella memoria cache	Α	
	•	Nella memoria principale	В	
		In un'apposita struttura interna al processore	С	
		Nella memoria secondaria	D	
4	Che cosa differenzia le architetture che adottano l'I/O	La presenza di istruzioni apposite per le operazioni di I/O	A	
	mapped I/O (anche noto come <i>isolated I/O</i>) da quelle che	La presenza di porte attraverso le quali la CPU può comunicare	В	
	adottano il <i>memory mapped I/O</i> ?	con le periferiche	ь	
		Un minore spazio di indirizzamento per la memoria	C	
		La necessità di gestire le operazioni di I/O tramite interrupt	D	
5	Si consideri una memoria RAM: che cosa si intende per	Il tempo minimo che deve intercorrere tra gli istanti in cui	Α	
	tempo di accesso?	iniziano due successive operazioni di accesso alla memoria		
		Il tempo massimo tra l'istante in cui inizia un'operazione di	В	
		accesso alla memoria e il tempo in cui la memoria esegue		
		l'operazione richiesta		
		Il tempo massimo che deve intercorrere tra due successive	C	
		operazioni di rinfresco		
		La durata minima del periodo di clock	D	
6	Che cos'è un processore superscalare?	Un processore realizzato con tecnologie diverse	Α	
		Un dispositivo che integra una CPU, alcune memorie, alcune	В	
		interfacce di periferiche e alcuni blocchi di logica, sulla base		
		delle esigenze di una specifica applicazione		
		Un dispositivo che integra più CPU, le quali operano	C	
		indipendentemente su più dati		
		Un processore in grado di completare più di un'istruzione per	D	
		ogni colpo di clock		
7	Si consideri una cache set-associative a 4 canali composta			
	da 128 insiemi; ogni linea corrisponde a 32 byte. Qual'è			
	la dimensione in byte della cache, senza considerare la			
	parte dei tag?			
8	Si consideri un vettore di word VETT che contiene i	Il codice non è corretto e l'assemblatore segnala errore	Α	
	valori 0, 1, 2, 3, 4, 5. Quale valore si trova in AX dopo	Il codice non è corretto e il processore non completa	R	
	l'esecuzione delle seguenti due istruzioni?	l'esecuzione	ъ	
	MOV SI, 0	2	С	
	MOV AX, VETT[SI+4]		C	
		4	D	
9	Si scriva un frammento di codice che moltiplica il			
	contenuto dei registri CL e DL (assumendo che			
	corrispondano a numeri senza segno) e mette il risultato			
	in BX.			

Risposte corrette

1	2	3	4	5	6	7	8	9
7	1024	В	A	В	D	16K	С	

Domanda 9

Esempio di soluzione

MOV AL, CL MUL DL MOV BX, AX

	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.
10	Si progetti la versione ottimizzata di un circuito combinatorio avente 4 ingressi e 1 uscita; quest'ultima vale 1 se la quaterna di bit applicata agli ingressi presenta almeno una coppia di 0 adiacenti, 0 altrimenti.
11	Si disegni l'architettura di un'unità di controllo microprogrammata, descrivendone brevemente il funzionamento.

12	Si illustri il ruolo dei bit di parità quale meccanismo di protezione delle memorie da possibili errori, dettagliando quali errori è
	possibile rilevare e/o correggere con tale meccanismo.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.
13	Si descriva brevemente il funzionamento del meccanismo di arbitraggio distribuito.

Nome, cognome, matricola

Esercizio di programmazione

sino a 12 punti – è possibile consultare qualunque materiale cartaceo - tempo: 60 minuti

Un processore 8086 è utilizzato per leggere il valore della temperatura ambientale da un sensore connesso alla porta A dell'interfaccia parallela programmabile 8255, da supporre programmata in modo 0 in input. Il sensore aggiorna continuamente il valore della temperatura attuale come numero su 8 bit in complemento a 2.

Per limitare l'effetto di eventuali errori di misura o di lettura, il processore esegue una procedura **leggi_t** che legge *N* valori dal sensore, scarta il massimo e il minimo letti, e fornisce il valore medio delle letture rimanenti.

Si scriva tale procedura in linguaggio Assembly 8086. La procedura

- riceve come parametro (utilizzando lo stack) il valore di N (su 8 bit)
- restituisce il risultato su 8 bit (sempre mediante lo stack), evitando errori di overflow per N<200
- non deve utilizzare vettori o variabili d'appoggio.

La periferica 8255 è accessibile all'indirizzo 080h.

Di seguito un esempio di programma chiamante:

[...]

```
MOV AL, 5
PUSH AX
PUSH AX
; spazio per valore di ritorno
CALL leggi_t
POP AX
ADD SP,2
; ripristino del valore di SP
```

[...]