

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Homework 10: this Friday @ 11:59 pm
 - Lab 8: Tuesday 3/28 @ 11:59 pm
 - Assignment 3: Friday 3/31 @ 11:59 pm
 - Support video and slides on Canvas

Previous lecture

ADT Graph

- traversals
 - BFS
 - shortest paths based on number of edges
 - connected components
 - DFS
 - finding articulation points of a graph

This Lecture

- ADT Graph
 - DFS
 - finding articulation points of a graph
- Repetitive Minimum Problem

low(v)

- How do we find low(v)?
- low(v) = Min of:
 - num(v)
 - num(w) for all back edges (v, w)
 - low(w) of all children of v

low(v)

- low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
 - O Min of:
 - num(v) (the vertex is reachable from itself)
 - Lowest num(w) of all back edges (v, w)
 - Lowest low(w) of all children of v (the lowest-numbered vertex reachable through a child)

Why are we computing low(v)?

- What does it mean if a vertex has a child such that
 - low(child) >= num(parent)?
- e.g., 4 and 7
- child has no other way except through parent to reach vertices with lower num values than parent
- e.g., 7 cannot reach 0, 1, and 3
 except through 4
- So, the parent is an articulation point!
 - e.g., if 4 is removed, the graph becomes disconnected

Why are we computing low(v)?

- if 4 is removed, the graph becomes disconnected
- Each non-root vertex v that
 has a child w such that
 low(w) >= num(v) is an
 articulation point

What about the root vertex?

- The root has the smallest num value
 - root's children can't go"further" than root
- Possible that low(child) == num(root) but root is not an articulation point
- need a different condition for root

What about the root of the spanning tree?

- What if we start DFS at an articulation point?
 - The starting vertex becomes the root of the spanning tree
 - O If the root of the spanning tree has more than one child, the root is

Finding articulation points of a graph: The Algorithm

- As DFS visits each vertex v
 - O Label v with with the two numbers:
 - num(v)
 - low(v): initial value is num(v)
 - O For each neighbor w
 - \blacksquare if already seen \rightarrow we have a back edge
 - update low(v) to num(w) if num(w) is less
 - if not seen → we have a child
 - call DFS on the child
 - after the call returns,
 - O update low(v) to low(w) if low(w) is less

when to compute num(v) and low(v)

- num(v) is computed as we move down the tree
 - O pre-order DFS
- low(v) is updated as we move down and up the tree
- Recursive DFS is convenient to compute both
 - O why?

Using DFS to find the articulation points of a connected undirected graph

```
int num = 0
DFS(vertex v) {
    num[v] = num++
    low[v] = num[v] //initially
    seen[v] = true //mark v as seen
    for each neighbor w
       if(w unseen){
          parent[w] = v
          DFS(w) //after the call returns low[w] is computed, why?
          low[v] = min(low[v], low[w])
          if(low[w] >= num[v]) v is an articulation point
       } else { //seen neighbor
         if(w!= parent[v]) //and not the parent, so back edge
           low[v] = min(low[v], num[w])
```

Finding articulation points example

Repetitive Minimum Problem

- Input:
 - a (large) dynamic set of data items
- Output:
 - repeatedly find a minimum item
- You are implementing an algorithm that repetitively solve this problem
 - examples of such an algorithm?
 - Selection sort and Huffman tree construction
- What we cover today applies to the repetitive maximum problem as well

Let's create an ADT!

The Priority Queue ADT

- Let's generalize min and max to highest priority
- Primary operations of the PQ:
 - Insert
 - Find item with highest priority
 - e.g., findMin() or findMax()
 - Remove an item with highest priority
 - e.g., removeMin() or removeMax()
- We mentioned priority queues in building Huffman tries
 - How do we implement these operations?
 - Simplest approach: arrays

Unsorted array PQ

- Insert:
 - Add new item to the end of the array
 - \circ $\Theta(1)$
- Find:
 - Search for the highest priority item (e.g., min or max)
 - \circ $\Theta(n)$
- Remove:
 - Search for the highest priority item and delete
 - \circ $\Theta(n)$

Sorted array PQ

- Insert:
 - Add new item in appropriate sorted order
 - \circ $\Theta(n)$
- Find:
 - Return the item at the end of the array
 - \circ $\Theta(1)$
- Remove:
 - Return and delete the item at the end of the array
 - Θ(1)

So what other options do we have?

- What about a balanced binary search tree?
 - Insert
 - Θ(lg n)
 - Find
 - **■** Θ(lg n)
 - Remove
 - Θ(lg n)
- OK, all operations are Θ(lg n)
 - No constant time operations

Which implementation should we choose?

- Depends on the application
- We can compare the *amortized runtime* of each implementation
- Given a set of operations performed by the application:

Amostized = Total runtime of asymme of operations runtime

operations