31-band EQ values for selected FR targets and over-ear headphones v5

UD model / dD \	20	25	21 5	40	50	62	90												-ear ne	•			3.15K	ΛK	5K	6.3K	QΚ	10K	12.5K	16K	20K
HP model / dB→	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400	500	630	800	1K	1.25K	1.6K 2	2K	2.5K	3.15K	4K	5K	6.3K	8K	10K	12.5K	10K	20K
Room gains: Bruel & Kjaer OptHF RG	2.5	2.7	2.9	3	3	3	3	2.9	2.8	2.7	2.5	2.2	2	1.8	1.6	1.5	1.1	0.9	0.6	0.3	0	-0.3	-0.5	-1.1	-1.2	-1.6	-2	-2.2	-2.6	-3.1	-3.6
1dB/oct room gain	5	4.7			3.8	3.5	3.2	2.8	2.6	2.1		1.5	1.1		0.5		-0.8			-1.2					-2.7		-3.4	-3.8	-4.2	-4.7	-5
0.9dB/oct room gain	4.5	4.3		3.6	3.3	3	2.7	2.5	2.2	1.7		1.3	1.1	0.7			-0.3			-1.3					-2.8		-3.3	-3.7	-4	-4.3	-4.5
oole realistic room gn	4.5	4.3		0.0	0.0	2	1.8	1.7		1.7			n 7			0.2					-1.6		-0.8				-3.3	-3. <i>1</i>	-2.4	-3.6	-4.5 -5
-	U	0	0	U	U		1.0	1.7	1.3	1.3	1.1	ı	0.7	0.5	0.3	0.2	0.1	-0.2	-0.3	-0.0	-0.6	-0.7	-0.6	-0.0	-0.9	- 1	-1.3	-1.7	-2.4	-3.0	-5
Eardrum meas.:	0		0				0		0	0.5	0.0		1.0	4 -		0	0.5	4		0	44	45.5	455	10	10.5	10	0.5	7		0	0.0
Diffuse field (H&M)	0	0		0	0	0	0	0	0	0.5	0.8	1	1.2		2	3	3.5	4	5	8		15.5	15.5		10.5	10	9.5	/	4	0	-3.6
Diffuse field (B&K)	0	0.3		0.2	0.3	0.2	0.5	0.3	0.2	0.3		0.4	1	1.3		2.5	4	5	4.7	5.7	10	15	17.3			10.7	2.3	4.2	9.2	0	-4.5
Inknown recent DF Or	0	0	0	0	0	0	0	0	0	0		0.4	0.8		2.2	2.9	3.6	4.1	5.4	8		14.9	15	13.5			9.2	7.4	6	5.8	5.9
larman linear speaker	-0.3	-0.7	-0.5	-0.3	-0.5	-0.3	-0.7	-0.3	-0.3	0.2	0	0.3	0.8	1.2	1.8	2.3	3.1	3.6	4.7	6.9	9.5	13.7	14.6	13	11.2	9.9	7.3	4.6	0	-4.7	-2.7
F ear resonance at 45°	0	0.1	0.2	0.2	0.3	0.3	0.7	8.0	1	1.4	1.7	2.2	2.9	3.7	4.9	5.8	6.3	6.2	6.7	9.5	15	20.5	19.4	18	17.4	13.5	12.3	3	9	0	-4.5
lead gain at 45°	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.7	1.3	2	2.8	3.4	3.9	4.2	4.5	4.7	4.9	5.1	5.3	5.5	5.6	5.7	5.9	6	6
orso+neck gain at 45°	0	0	0	0	0	0	0.4	0.7	1.2	1.3	1.7	2.1	2.4	2.7	2.8	2.7	1.6	0	-1.4	-1.4	0	0	0	0	0	0	0	0	0	0	0
Concha gain at 45°	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.7	2	3.7	6.7	9.4	8.5	1.7	-7.2	-5.2	3.2	9
inna flange gain at 45°	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.2	0.4	0.5	0.6	0.5	0.7	1.2	1.8	2.8	3.1	1.2	0.8	0.9	0.6	3.8	2.3	2.3
ar canal+drum at 45°	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0.3	0.6	1.3	2.1	3.3	5.3	8.4	11.2	8	3	1.2	-1.1	0	5	7.5	4	0
lead+torso at 45°	0	0	0	0	0	0	0.4	0.7	1.2	1.3	1.7	2.1	2.5	3.4	4.1	4.7	4.4	3.4	2.5	2.8	4.5	4.7	4.9	5.1	5.3	5.5	5.6	5.7	5.9	6	6
otal ear gain at 45°	0	0	0	0	0	0	0	0	0	0	0	0	0	0.3	0.5	1	1.8	2.7	3.8	6.1	10.3	15	14.5	12.8	11.8	8.2	2.6	-1.6	6.1	9.5	11.3
otal resonance at 45°	0	0	0	0	0	0	0.4	0.7	1.2	1.3	1.7	2.1	2.5	3.7	4.6	5.7	6.2	6.1	6.3	8.9	14.8	19.7	19.4	17.9	17.1	13.7	8.2	4.1	12	15.5	17.3
R target curves:						-	24.1							211					0		-				- •				· <u>-</u>	2.0	
in. speaker+BK (OHN)	-0.4	-n e	-n o	0.1	_0 1	N 1	-U ₃	0	_O 1	Πa	-0.1	_n 1	0.0	Ω 4	ΛÞ	1 0	16	10	97	4.6	60	10 8	11.5	9.3	7 /	5.7	2.7	-0.2	_E O	-10.4	-8.9
in. speaker+1dB/oct	2.9	2.2	2.2		1.5	1.4	0.7	0.7		0.5	0.1	0	0.1	0.2	0.5	0.7	0.5	1.3	2.6			10.2	10.7	8.8	6.7	5.1	2.1	-1	-6	-11.2	
in. speaker+0.9dB/oct	2.7	2.1	2	1.8	1.3	1.2	0.5	0.7	0.4	0.4		0.1	0.3	0.4	0.6	0.8		1.4	2.2			10.4	11.1	9	6.9	5.4	2.5	-0.6	-5.5		
larman 2018 Or	5.6	6.1	6	5.8	5.4	4.8	4.1	3.2	2	0.9		0.1	0.6	1	1.3			2.1	2.8		7.4	9.7		10.5	8.6	6.9	4.6	1.5	-3.1	-6.2	-15
larman 18 bass-1	4.8	5		4.8	4.5	4	3.3	2.4	1.4	0.5		0.1	0.6	1				2.1	2.8		7.4	9.7		10.5	8.6	6.9	4.6	1.5	-3.1	-6.2	-15
arman 18 bass-2	3.8	4	4	3.75		3	2.4	1.7		0.35		0.1	0.6	1	1.3				2.8		7.4	9.7		10.5	8.6	6.9	4.6	1.5	-3.1	-6.2	-15
arman 18 bass-3	2.9	3	3	2.8	2.5	2.1	1.7	1.2	0.65	0.3	0.1	0.1	0.6	1	1.3	1.7	1.9	2.1	2.8	4.7	7.4	9.7	10.7		8.6	6.9	4.6	1.5	-3.1	-6.2	-15
arman 18 bass-4	1.9	2	2	1.9	1.75	1.5	1.25	0.85	0.5	0.2	0.1	0.1	0.6	1	1.3	1.7	1.9	2.1	2.8	4.7	7.4	9.7	10.7	10.5	8.6	6.9	4.6	1.5	-3.1	-6.2	-15
arman 18 bass-5	0.95	1	1	0.95	0.85	0.7	0.55	0.35	0.2	0.15	0.1	0.1	0.6	1	1.3	1.7	1.9	2.1	2.8	4.7	7.4	9.7	10.7	10.5	8.6	6.9	4.6	1.5	-3.1	-6.2	-15
arman 18 bass-6	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0.6	1	1.3	1.7	1.9	2.1	2.8	4.7	7.4	9.7	10.7	10.5	8.6	6.9	4.6	1.5	-3.1	-6.2	-15
arman 18 linear bass	0.2	0.5	0.5	0.3	0	-0.3	-0.1	0.2	0.2	0.2	0.1	0.2	0.8	1.2	1.7	2	2.2	2.3	3.2	5.2	7.7	10	10.9	10.6	8.9	7.2	4.8	1.6	-3	-7	-22
arman 2013	4	3.8	3.9	4	3.7	3.6	2.6	2.2	1.2	0.6	0	0	0.7	1.1	1.3	1.4	2.1	2.6	3.3	5.2	7.6	11.3	12.2	10.2	8	6.4	3.6	0.6	-4.3	-8.8	-25
tymotic target Cr	0	0	0	0	0	0	0	0	0	0	0.2	0.3	0.5	0.9	1.1	1.8	2.6	3.4	4	6.3	9.2	12.8	12.3	9.4	7.9	4.7	3.8	1.3	-1.2	-3.2	-5.7
ptimum HiFi Or	-0.1	-0.1	0.3	0.2	0	-0.2	-0.1	0	0.1	0.1	-0.2	-0.2	0.2	0.5	0.8	1	1.5	1.6	2.4	4.2	6.8	9	9.9	9.4	7.5	5.5	3	-0.3	-3.5	-7.2	-10.5
rinacle IEF target	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	1.5	3.7	3.2	5.5	7.7	8.8	8.5	6.6	5	5.3	-0.4	-4.9	-8.3	-18.4
vg of 50 N+H18 hdphs	-3.1	-2	-1.2	-0.5	-0.1	0.1	0.4	0.5	0.3	-0.3	-1	-1.4	-1.7	-1.8	-1.6	-1.2	-0.6	0.1	0.7		3.8	6.5	7.5	6	5.1	3.6	2.3	-4.3	-3.9	-6.9	-11.7
vg of 26 Har18 hdphs	-0.5	0.5				1.8	2.2	2.2	1.9		-0.4						-0.4		0.8		4.8	7.1	7.5	5.9	5.7	3.8	3.1	-3.2	-3		
vg of 24 neutral hdphs	-5.5	-4.1	-3.1		-1.8		-1		-0.7		-1.1							0.1	0.7		3.4	6.3	7.7	6.3	5	4.2	2.2	-4.9	-4.4	-7.5	
eadphones:	0.0	7.1	0.1	2.0	1.0	1.7	'	0.7	0.7		1.1	1.7	1.0	1.0	1.0	1.0	0.0	0.1	0.7	1.5	0.4	0.0	7.7	0.0	<u> </u>	7.2	۷.۲	7.0	7.7	7.5	10.0
abyss Diana Phi Cr	4.0	4.0	4.0	4.0	0.7	2.0	4	4 1	4.0	4.0	4 1	1	2.7	1 1	0.7	2	1 1	0	1 5	0.6	2.0	F 7	2.5	0.1	0.0	0.7	0.0	6.5	6.6	0.2	F 0
_	-4.9	-4.3			-3.7				-4.2					-4.1			-1.4	0	-1.5		3.9	5.7	3.5	2.1	0.9	-0.7		-6.5	-6.6	-9.3	-5.8
KG K361 Or	1.6	2.2			1.8	-0.3	-0.4	0			-1.9					-2.1		0	1.8		5.4	6.1		-0.4	0.2		-1.1	-3.7	-7.4		-13.8
KG K371 Or	5.7	5.9			3.2	0.9	1	0.9			-0.8							0	0.7		4.2	7.3	7.3	2	4.2	4.3	3	-3.3	-6.2		
KG K553 Or	7.8	7	5.4	4.3	4.8	4	5.1	6.4	5	3.2	2.5	2.4	1.9	8.0	-0.1	-0.8	-0.6	0	2.1	4.2	4.9	8.8	8.4	3.9	5.8	3.7	2.7	-1.5	-1.8	-7.9	-14.6
KG K601 Or	-9	-7.5	-6	-5	-5	-5	-2.5	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	2	6	10	13.5	11.5	10.5	5	6	7	-9	-7	-3	-10
KG K612 Or	-5.8	-4.8	-3.6	-2.8	-2.8	-3.2	-2	-1.3	-1	-0.9	-0.8	-0.8	-1	-0.9	-1.1	-1.3	-0.7	0	0.7	5.1	8.7	11.2	10.7	8.4	5.1	7.4	5.2	-5.5	-1.5	-6.8	-13
KG K701 Rt	-6	-4	-4	-3	-2.5	-2	-2	-1.5	-1	-1	-1	-1	-1	-1	-1	-2	-1.5	0	1.5	4	9	13	11.5	7.5	6.5	9.5	10	-1	1	-10	-7
KG K712 Or	1	2	2.8	3.4	3.9	4.2	4.3	4.3	3.9	3.9	4.4	4.6	4.6	4.5	4.1	3.1	1.8	0	-2.1	2.1	7.3	8.2	6.6	9.1	10.3	8.7	6.8	-5.2	1.8	-3.4	-11.1
KG Q701 Rt	-5	-4	-3	-2	-1.5	-1	-1	-0.5	0	0	0	0	0	0	-0.5	-1	-0.5	0	1	4	9	12	9.5	7	6.5	10	9	-3	3	-11	-7
udeze LCD-1 Or	-5.1	-4.8	-4.4	-4.2	-4	-2.8	-2.1	-2.3	-2.3	-2.3	-2.1	-1.9	-1.6	-1.2	-1	-1.2	-1.2	0	-0.9	-2.1	-0.8	4.9	8.5	5.7	0.7	-3.9	-1.5	-5.4	-6.8	-2.5	-10.6
udeze LCD-2 Class Rt	-5	-4.8	-3.8	-2.9	-2.8	-2.9	-3	-3	-2.9	-2.8	-2.8	-2.7	-2.4	-2.2	-2.5	-0.8	1.2	0	0.8	0.2	2.2	4.5	1.7	-5	-2.2	1.5	0.1	-13	-4.4	-7.9	-10.1
udeze LCD-2 Or	-3.3	-2.8	-1.8	-1.8	-2.1	-1.9	-1.8	-1.7	-1.7	-1.7	-1.6	-1.7	-2.1	-1.8	-1	-0.4	0	0	-0.3	1.5	1.5	2.6	4	-0.6	-1.8	2.8	-1.8	-2.2	-4.9	-11.1	-5.1
udeze LCD-X IF	-4.7	-4.3	-2.6	-1.3	-1.2	-1.2	-1.3	-1.2	-1.1	-0.9	-0.8	-0.7	-0.6	-0.6	-0.3	-0.1	0.2	0	0.3	1.7	3.9	5.5	5.9	5.3	2.5	1.1	-5.1	-0.5	-1.4	-2.6	-0.7
udeze LCD-X Cr2	-5.2	-4.6	-4.3	-3.7	-3.3	-2.6	-2.5	-2.5	-2.4	-2.2	-2	-1.6	-1.2	-1.3	-0.8	0.7	0.6	0	-2.6	-3.2	-2	-1.7	-3.4	-4.3	2.7	1.2	-3.4	-10.3	-3.5	-4.4	-6.8
ud LCD-XC Or	-3.3	-2.3	-1.5	-1	-0.9	-0.5	0	0.2	0	-0.3	-0.7					-2.4		0	2		5.5	5.9	5.2	0.1			1.8		1.2	1.3	-4.5
ud Mobius def Or	0.9	2.3				4	3.2				1.2							0	0.9		4.5	7.2	9.5	4.2	3.4	-7.3	4.4	-0.7	-0.8	-1.3	-5.1
udio-T M40x Rt	-0.3	1.2			4.3	4.2	3.2	3.7			1.1							0	2.2		5.3	7.2	8.3	6.1	3.4	0.9	7.7	4.6	-1.1	1.3	-9.1
udio-T M40x Or	-14.2										2.7			-0.5		0		0	2		5.6	8.3	9.6	9.6	7		8.5	0.8	-2.5	-3.7	-8.2
ud-T M50x Or	0.2	0.8									0.9					-		0	1.5			11.3	12.2		7.8	5.7	8.3	-1.3	4.2	3.1	-6.8
					_																										
udio-T M50x Cr	3.8	5.1	5.4		5.7		3.3	2.1	2.5		-0.7						0.8	0	0		6.6	10.5	9.8	7.8	3.1	3.8	3.6	-0.5	-3.2	-1.2	
udio-T M50x Cr2	1	1.7					2.3				0.9							0	0.3	1.4	4	6.3	7.4	7.5	5.1	3.5	1.3		-2.9	-8.8	-7.9
udio-T MSR7b Cr2	-1.5	1	2.2			3.7					-1.1							0	0.7		5.4	6.9	4.7	6.2	6.4	4.8	2.5	-1.3	-5.2		-10.3
udio-T M70x Cr2	-0.6	0.8				-1.9	1.2							0.1				0	1.5		7.6	9.4		10.7	10	7.5	6	1.3	-0.5		
udio-T R70x Cr2	-7.5	-3.9	-2.2	-1	0	0.6	8.0	0.8	0.7	0.5	0.2	-0.1	-0.4	-0.6	-0.7	-0.7	-0.6	0	0.5	2.8	4	7.1	7.4	6.8	1.6	4.1	-0.5	-10	-6	-10.7	-20.7
ud-T ADX5000 Cr	-6.3	-3.7	-2.3	-1.1	-0.4	0.5	1.2	1.4	1.3	0.9	0.3	-0.6	-1.5	-3	-2.7	-2.1	-1.5	0	1.5	1.7	1.2	3.6	6.5	9.8	3.4	6.3	4.8	-3.1	3.4	-8.2	-5.5
udioQ Nighthawk IF	8.4	8.3	8.2	8	7.8	7.4	7.4	8.4	8.1	7.9	8.3	8.1	7.6	6.6	5.7	3.4	1.8	0	1.6	5.2	5.8	5.6	8.4	5	2.1	3.9	4.6	5	-1.9	-6	-0.6
udioQ Nighthawk Or	7.3	7.4	7.5	7.6	7.1	7.3	7.9	9.1	9.5	9.3	8.8	8.2	7.6	7	6.3	5.4	4	1.8	1	4.5	6.1	5.9	6.7	7	11.2	6.6	4.2	1.6	-1.3	-3.9	-1.5
urora Borealis Re	-7.4	-6.7	-5	-3.5	-2.7	-2.4	-2.3	-2.5	-3	-3.7	-3.2	-3.9	-4.1	-4	-3.4	-2.7	-1.4	0	0.3	0	0.9	3	3.3	3.6	3.3	8.0	-2.7	-13.7	-12.7	-11	-14.7
urora Borealis Or	-9	-7	-5	-3.7	-2.9	-2.2	-2.1	-2.6	-3.2	-3.8	-3.5	-4	-4.1	-4	-3.6	-2.9	-1.5	0	0.1	0	1	2	3.5	3.6	3	0	-2	-13	-13	-11	-14
eats Solo HD IF	8.4	8				0.5	9	_			1.9	1				-2.2		0	0.3		0.2	1.5	5.1	4.8				-8.5			-19.5
eats Solo IID II	10	10				9.5	9	9		8	7	5	2	1		-0.5		0	2	4.5	7	10	14	9	7	6	7	2	-3	-8	-13
											-3 4	-3 E	-3 E	-0 0 I							3 5				ν Δ		7 5				
eats Solo Pro	5.8	5.3			5						-3.4							0	0.7		3.5	6.9	10.8			_	7.5				
ey DT 770/80 Or	-9.2	-7.3	-5.9	-5.1	-5.3	-5.3	-7	4.8	7.3	4.6	3.2	2.2	1.4	8.0	0.2	-0.2	-0.2	0	1.5	3.7	7.3	8.3	6	2.3	2.5	4	5.9	-2.3	1.7	-9.9	-20.6

pey DT 770/250 Or	5.8				7.2	7	6.2					-6.4				-2.3			0	-0.8	1.2	3.9	6.6		6.1	6.1	9.2	5	-0.9	4.3		-10.8
pey DT 880/250 IF	-5.3	-4.1	-2	2.6	-2	-1.2	-0.5	-0.7	0.3	0.4	0.6	8.0	8.0	0.6	0.4	0.5	0	0.2	0	0	1.1	3.2	5.6	9.6	6.8	2.8	4.7	4.1	3.9	-4.8	-13.8	-3.4
pey DT 880/250 Pro Or	-5.8	-5.1	-4	.5	-3.8	-3.4	-3.2	-3.5	-2.5	-2	-1.7	-1.5	-1.4	-1.3	-1.2	-1.5	-0.9	-0.9	0	0.3	2.2	5.3	8.5	10.1	9.3	7.1	10.5	3.5	-7.1	-2.5	-6.5	-9
pey DT 990/250 Or	-2.8	-1.4	+	0	1.3	2.3	2.9	3.1	2.5	2.6	2	1.3	0.2	-0.9	-1.9	-1.7	-2.1	-1.9	0	1.6	2.8	5.2	8.8	10.7 1	10.5	10.1	10.8	11.5	4.2	7.1	2.4	-3.1
pey DT 1770 L pads Rt	5.7	6.1	5	5.8	5.1	4.2	5.3	7.1	7.6	7.8	6	1.3	-2.7	-1.4	-0.4	-0.1	-0.4	-0.3	0	0.2	-0.1	-0.1	2.1	2.7	0.5	1.1	5.9	5.6	0.1	-4.5	-18.6	-26.4
pey DT 1990 A pads Or	-2.7	-1.9) -1	.3	-0.7	-0.2	0.1	0.4	0.4	0.7	1.1	1.2	1.2	1.1	0.8	0.5	0.1	-0.1	0	1.2	3.1	4.9	8.5	7.7	3.8	7	6.4	12.7	1.2	1.9	2.2	-12
pey DT 1990 B pads Cr2	1.2	1.8	3 2	2.3	2.6	2.8	2.8	2.5	2.9	2.9	2.9	2.6	2.3	1.7	0.9	0	-0.1	-0.1	0	0.6	2.7	5.3	7.6	8.7	8.4	6.4	7.4	9.4	0.2	0.4	-7.4	-4.2
pey TYGR 300 R Cr2	-0.8	0.8	3 1	1.8	2.7	3.2	3.3	2.7					1.8	0.8	0	-0.7	-1.4	-1	0	1.5	2.8	4.3	6.1	7.4	8.4	8.4	6.2	6.8	0.8	-1	-2.3	-5.7
BLON B20 Cr2	-1.1	-0.8					-0.2				-0.2					-0.8		-0.6	0	0.8	1.3	1.7	6.2		7.9	2	-4	0.8	-4.3		-16.8	
Bose QC25 Or	-1.6	1.1			3.7	3.3						-0.1							0	2.9	3.7	64	8.5		0.1	3.6	8.5	-4	-5.2		-11.8	
																		-0.3														
Bose QC35 II active Cr2	5.7	5.6			6.6	6.5						3.3			1.6			1	0	0.3	3.1		10.2	11.4 1			12	5.1	-4		-16.4	
Bose QC35 II passive Cr2	-3.8	-2.1	1 	.8	-0.6	-2.2	-1.6	1.7	4.1	5.9	3.7	-0.3	-3.6	-5.9	-6.1	-4.9	-2.8	-0.4	0	-1.7	-4.6	-3.1	1.7		6.3	4.5	4.4	-7.7	-9.1	-5.7	-19.3	-13.7
Creative Aur Live 2 IF	4.7	5.4	. 5	5.8	6	6	5.7	4.8	4.9	4.4	3.8	3.6	2.9	1.7	-0.7	-0.3	0.2	0.8	0	-1.2	-2.8	-2.4	0.3	1.9	2.7	-1.4	-3	-2.3	2.1	-12.1	-8.5	-9.2
OCA Aeon 1 Closed Or	0.9	1	1	1.2	1.3	1.3	0.3	0.6	0	-1.3	-2.8	-1.5	-1	-0.7	-0.7	0.4	0.9	1.2	0	1.4	2.3	2.4	4.3	6.7	6.3	1.7	2.3	3.7	-2.5	-2.8	-14	-9
OCA Aeon 2 Closed Or	5.1	5.4	. 5	5.6	5.4	5.2	4.6	4.4	5.4	4.7	1.9	0	1.2	1.9	2.2	1.5	0.8	0.6	0	1.4	0.7	1.7	3.3	4.2	3.1	5.6	7.1	4.4	-8.6	-0.4	-0.1	-2.9
OCA Aeon 2 Open Cr2	4.9	5.2	: 5	5.2	5.1	4.9	4.7	5.6	6.1	6.1	5.5	4.7	3.9	3.2	2.3	2.6	1.1	0.7	0	-0.4	1.6	4.6	7.4	6	2.5	7.2	7.7	4.6	-8.5	-1.2	1.5	-2.7
OCA Aeon 2 Noire Or	3	3.2	<u> </u>	3.4	4.4	4.3	4.3	5.4	6	4.5	0.8	-0.9	0.3	0.7	1	0.8	0.3	0.1	0	1.8	4.1	6.2	7.6	10.3	9	9.6	9.2	8.5	1.9	1.7	6.3	-2.3
Prop-THX Panda Cr2	1	1.2	<u> </u>	1.3	1	1.4	1.4	2.2	3.7	3.9	3.4	2.4	1.4	0.6	0	1	1.7	1.3	0	0.3	-0.8	-0.8	2.2	5.1	5.2	3	6.4	1.4	-11.1	-4.7	-16.5	-16
Foc Celestee Or	2.7	3			0.8		-0.1				-2.6				-3 4	-3 4			0	0.7		4.2	6.5		-0.1			-0.7			-10.6	-17 2
Focal Celestee Re																																
	3.7	3.7	-		0.7	0.7					-1.1								0	0.6	2.3	4.7	5.6		1.1	1.7		-0.1			-19.3	
focal Clear Or	-4.3										-2.3			-3					0	0.8	2.7	3.1	5.2		2.9	1	-0.3	-4.2	-9.5	-5.1		-11.6
focal Clear Re	-5.1																	0.6					1.7						-1.4			
ocal Clear Mg Re (est)	-5.5						-1.1	-0.9	-1		-1.4					-2.5			0	2.3	1.9	1.8	4		2.1	0.5	1.5	-12.2		-6.9	-1.2	-16.9
ocal Elear IF	-3	-2	-1	1.5	-1	-0.5	0	0	0	0	-0.5	-1	-1.2	-1.5	-2	-1.5	-1.2	-0.5	0	1	3	5	6	8	2	-2	-4	-7	-2	-6	-9	-7
ocal Elear Or	-3.2	-2.3	· -1	8	-1.3	-0.9	-0.7	-0.4	-0.4	-0.5	-0.7	-0.9	-1.1	-1.3	-1.4	-1.3	-1	-0.6	0	1.2	2.6	2	4.4	5.7 -	0.1	0	1.4	-6.9	-9.8	-8.9	-8.9	-11.1
Focal Elear Rt	-7.5	-6.2	· -4	.8	-3.3	-2.2	-1.2	-0.6	-0.5	-0.4	-0.6	-1.1	-1.6	-1.8	-2	-1.8	-1.5	-0.8	0	1.3	3.1	4.8	7.2	7.9 -	2.4	-4	0.2	2.7	-6.4	-4.2	-6.9	-3
Focal Elegia Or	-0.1	0) -C).1	-0.7	-0.8	-0.9	1.2	1.5	-2.8	-3.6	-3.3	-2.1	-1.2	-1.1	-0.8	-0.9	-0.5	0	0.5	3.1	2.7	5.5	4 -	6.8	-3.1	0.1	0.1	-8.9	-2.9	-10.6	-8.5
Focal Radiance Re	1.3	0.7	, 1	1.3	0.2	-2	-2.1	0.1	1.5	2.6	1.2	-1.8	-3.3	-3.5	-3	-2.7	-1.6	-0.6	0	0.2	2.5	3.3	2.8	1.1	2.4	1.6	-7.5	-9	-11.9	-5.4	4.5	-13.5
Focal Utopia Or	-6.4	-5.3		1.8							-2.6								0	1.6	1.2	1	6.4	6.5	5	1.5		-1.7		-9.9	-5.5	-9.8
ocal Utopia Re	-3.4										-0.7						-1.9		0	1.6	0.4	0.8	4.8		-			-2.1		-8.7	-6.2	-14
ocal+Drop Elex Or	J.4 1																						7.U									
<u>-</u>	-4 -	-2.9					-1.2				-1.5								0	1.5	2.4	2.4	4		3.8	2.1		-1.9	-8.8	-7.1	-9.4	-9.6
ocal+Drop Elex Re	-5										-1.6							-1.3	0	1.3	2.5	3.2	4.6			-0.1	0.1		-12.2	-6.6		-14.4
ostex X00 Ebony Or	-4.2		-1	.3	-1.5	-1.7					-3.4								0	0	1.8	4.3	7		1.2	4.1	6.3	3.3	-6.2		-11.2	
os+Drop Purpleheart Or	-4.2	-1.1	C	0.3	0.9	0.8	0.4	0	-0.4	-0.7	-1.1	-1.5	-1.6	-1.9	-2.4	-3.1	-2.8	-1.7	0	0.6	2.6	4.4	6.3	1.3	2.2	6.9	0.9	-2.2	-0.3	2.5	-7.6	-13.3
Grado SR60e Or	-12	-9.7	•	-7	-4.2	-2.2	-0.6	0.1	0	-0.6	-1.2	-1.6	-2.1	-2.6	-1.1	-1.4	-1.2	-0.6	0	0.9	5.1	15.4	12.8	10.2 1	8.01	8.9	6.5	5.5	-2	-4.8	-2	-14.9
Grado SR225e Rt	-9.7	-7.7	-5	5.3	-3.2	-1.6	-0.5	-0.2	-0.3	-0.6	-1.2	-1.7	-2	-1.7	-1.8	-1.5	-1.1	-0.6	0	1.1	3.9	12	13.7	11.4	6.3	7.4	5.8	9	10.5	3.8	-11	-22.9
Ifm HE400i 2020 Or	-5.6	-4.4	E- 4	3.6	-2.6	-1.9	-0.7	-0.4	-0.5	-0.5	-0.6	-0.6	-0.4	-0.1	-0.1	-1.5	-0.3	0.1	0	-0.6	0.2	-0.2	4.9	7.8	6.7	2.6	5.1	5	-5.2	-2	-10.9	-8.9
lifiman Ananda Or	-2.1	-1.5	<u> </u>	-1	-0.8	-1.1	0.1	-0.2	-0.4	-0.4	-0.4	-0.4	-0.6	-0.6	0	0.2	0	-0.1	0	-1.7	-1.8	0.9	6	10.4	9.3	5.9	6.9	4.7	-2.6	-0.4	-10.4	-7.2
lifiman Ananda Rt	-3.5						-0.6					-1.1							0			1.9	8		6.2	3.3	3.8	6.4	-7.9	-1.2	-4.4	-2.1
lifiman Arya Or	-1.1	-1									-0.4								0		-1.4	1.3	6.9		8.3	9.1	6.9	5.8	6.9			-10.4
-																																-
lifiman Sundara IF	-3.3				-2						-1.9								0	-0.7		0.3	4.8		8.9	7.1	-0.2	0.1	-6.3		-10.7	
lifiman Sundara Or	-3.3	-2.3	, -1 —	.9	-1.6	-1.6	-1.4	-1.4	-1.4		-1.8								0	-0.9		-0.3	5.6		0.2	8.1	0.8	2.5	-5	0.3		
Ifm Sundara 2020 Or	-5	-3.3	-1	1.8	-0.5	0.1	0.8	0.8	0.5	0.3	0.1	0.1	0.1	0.3	0.6	0.1	0.7	1.9	2.2	2.6	3.1	4.5	6.3	6.7	8.4	5.8	7.9	2.3	-9.1	-0.3	-13.5	-14.5
lifiman Sundara Rt	-4.4	-3.1	-1	.8	-1.1	-0.6	-0.3	-0.4	-0.5	-0.6	-0.8	-0.8	-0.7	-0.5	-0.2	-0.9	0.3	1.1	0	0.5	1.1	2.2	6.1	10.1	8.5	8.4	3.9	6.7	-1.8	0	-4.7	-9.8
lifiman Sundara 2020 Re	-5.1	-4.1	-3	.3	-2.3	-1.8	-1.4	-1.7	-1.9	-2.1	-2.1	-1.9	-1.8	-1.8	-1.4	-2.4	-1.1	-0.3	0	0.9	0.6	3.6	4.5	6	6.3	5.4	2.3	-0.1	-2.1	-3.6	-6.6	-12.1
liFiman+Drop HE4XX IF	-2.4	-1.3	, -C	1.4	-0.2	-0.1	0.6	0.5	0.3	0.1	-0.1	0.1	-0.2	0.1	0.3	-0.1	0.4	-0.1	0	-0.5	-0.4	0.9	6.4	11.4	7.9	5.1	5.6	4.2	2.8	-2.7	-10.7	-5
lifiman+Drop HE4XX Or	-11.4	-8.7	' - 6	5.6	-4.2	-2.6	-1.4	-0.8	-1	-1.5	-1.6	-1.9	-2	-2.2	-1.9	-2.5	-2.6	-1.3	0	0.3	-1.4	-0.5	7.6	10.8	7.3	1.9	6.1	7.1	-4.2	-10.1	1.8	-11.1
Koss Porta Pro Or	-8.3	-5.6	; -2	2.9	-0.3	1.5	3	3.5	3.7	3.6	3	2	2.4	0.5	0	-0.5	-0.6	-0.4	0	0.8	3.3	6.2	6.1	5	4	7.6	-0.6	-1.4	-6.5	-9.8	-10.8	-21.8
Coss Porta Pro Rt	-6.9	-4.7	, -2	2.2	0.1	2	3.4	4.3	4.6	4.5	3.8	2.9	1.8	1.2	0.4	-0.1	-0.2	-0.3	0	1.4	4.2	7.2	9.3	8.7 -	0.7	5.3	-1.5	0.6	0	-8.9	-15.3	-23.8
						_													0	0.4	3.5		10.6		9.6	9.7	6.3	7	1	-0.7	-7.7	-5.8
																												-	•			
	-21.3						-4.9					-0.1							0	1.2	4.2		12.2	11.9	10	9.7	9.9	8.5	0.1	-0.7		-12.8
		-12.9		9.9			-1.8					0.5			-0.7				0	1.1	3.9		12.1			11.1	1.8	5.7	1.5	-3.8	-7.1	-9.5
Coss ESP950 Or	-6.2		-5	.6	-5.7	-5.7	-5.8	-3.2	-3.8	-4.3	-4.3	-4.4							0	1.5	1	-3	1.7			-0.4	8.0	-2.3	-15.4		-15.3	
Meze 99 Classics Or	9.7	10.4	10).9	11.2	11.3	11.2	10.5	9.3	9.4	9.6	9.3	7.5	2.6	-0.2	1.7	2.8	2.1	0	2	5.7	8	8.3	7.3	2.7	13.9	11	8.2	-6	6.8	-4.3	-14.1
Meze Empyrean Or	2.8	2.8	,	3	3.1	3	3	3.1	3.2	3.2	3.3	3	2.4	2	2.1	1	1.2	1.4	0	-0.8	-1.3	-0.1	3.8	7.1	8.4	6.2	3.4	0.5	-5.7	-4.7	1.1	-10.5
Monoprice M1060 Or	-1.8	-1.7	· -1	1.2	-0.9	-0.4	0	-0.1	-0.1	-0.1	0	0.1	-0.1	-1.4	-1.8	-0.7	0.7	1.1	0	1.8	4.1	7.3	9.2	10.2	8.1	4.3	2	-5.7	-1.4	-4.9	-1.5	-1.5
IAD Viso HP50 Or	4.2	4.4	. 4	1.4	4.2	3.7	2.7	1.8	4.5	3.8	3.3	2.9	2.5	1.5	1.1	0.7	0.4	0	0	1.3	2.9	4.8	6.6	8	7.9	9.4	7.5	7.7	-5.5	-5.7	-16.1	-13.6
leumann NDH 20 Or	8.4	8.9) 6	9.3	9.2	8.8	7.8	5.9	4.6	4.7	4.1	3.1	2.4	1.6	1.1	1.3	1.4	1	0	-1.4	-1.5	0	3.1	8.2 1	1.1	8.2	5	7.5	-3.9	-6.2	-8.4	-7.4
Ollo S4R	3				0.3	3.3									-7.2			-0.7	0	1.1	3.9	7.9	9.5	5.5 1		5.7	2	-1.4	-2.7		-13.3	-17.6
Oppo PM-3 Rt	3				1.2						2.3				-1.5			1.1	0	2.7	4.9		11.5		7.3	4.2		11.4	4.5		-12.5	
Oppo PM-3 Or	2.1	1.6			0.7	-1									-3.6				0	1.3	3.3	5.9	9		7.8	4.9	6.9		-12.9	-2.4		-17.6
																							-									
chilips SHP9500 Or	-10										-0.6								0	0.8	1.5	2.2	4.7				12.4	-0.9	-0.2	1.6		
Philips Fid. X2HR Or	-5	-3.1			0.9	2.3					-0.5								0	-1		2.5	5.4		0.1		5.8	-0.3	-3.5		-11.7	
AAL SR1a Or	-9.9	-8.4	7	7.1	-5.9	-4.5	-3.7	-2.9	-2.4	-2.4	-2.8	-1.8	-2.2	-1.7	-1.9	-1.6	-1.2	-0.9	0	1.9	5.7	9	8.4	7.4	4.3	5.5	4.7	3.8	-3.4	-11.9	-17.7	-14.6
AAL SR1a Re	-10	-9	-6	6.5	-5	-4	-3	-2.4	-1.4	-1.4	-1.6	-0.7	-1	-0.5	-0.8	-0.7	-0.5	-0.3	0	3	7	10	9	8.5	5.2	9	7	1	-7	-7	-6	-22
Sendy Aiva Cr	-6.7	-6	; -5	.2	-4.2	-3.5	-3	-3.2	-3.3	-3.3	-3.4	-3.3	-3.1	-2.7	-2	-2	-1.7	0	0	-0.5	-6.3	-2.5	3.5	5.5 -	0.3	-2.5	-1.2	-6.1	-3.8	-4.5	-5.5	-12
Senn HD 560S Cr2	-4	-1.8	; -C).9	-0.1	0.2	-0.4	-1.1	-0.7	-1	-1.5	-2	-2.2	-2.4	-2.1	-1.8	-1.7	-0.8	0	0.9	1	1.9	5.1	7.7	5.7	6.4	0.4	0.4	-12.5	-13.8	-6.4	-9.5
Senn HD 560S Or	-4.5	-3.1																	0		1.4								-10.7	-9.4	-6.3	-7.8
Senn HD 560S Re		-1.8																	0	1.5	2	3.2		8.1				0.2		-5.4		-8.4
Senn HD 580 IF	-8.6										-0.5								0	1.5				11.2				-3.8		-9.9	-11	
Senn HD 579 Cr2	-5.9	-4.2	-2	.5	-1.1	-0.1	0.3	0.6	1.8	2.1	2.1	1.8	1.4	1	0.5	0.1	-0.1	-0.1	0	8.0	2.7	5.4	7.6	11.1				2.5	-0.6	-5.1		-10.6
Come UD 500 Or	-7.5	-5.7	-3	.9	-2.3	-1.4	-0.4	0.5	1.5	1.9	2	1.8	1.2	0.9	0.6	0.2	-0.2	-0.2	0	0.4	1.2	4.6	8.3	10.8	8.2	4.7	2.2	2.9	0	-7.7	-14.5	-9.6
benn nd 599 Of			:		-0.1	0.8	1.7	2.2	2.7	3	2.8	2.3	1.7	1.2	0.5	0.2	0	-0.2	0	0	-0.7	2.9	6.7	10.4	7.7	5.4	2.9	2.3	-3.4	-5.1	-11.6	-7.7
	-3.7	-2.5	<u>'</u>				+				_														-							
Senn HD 599 Or Senn HD 599 Rt Senn HD 600 Cr2						-4.6	-3.5	-2.1	-1.4	-1.1	-1.5	-1.2	-1.3	-1.5	-1.5	-1.4	-1.1	-0.7	0	1.4	2.9	4.3	7.2	9	7.4	5	-2.4	3.3	-7	-6.2	-9.7	-9.7

Senn HD 600 Or	-7.4	-5.9	-4.3	-3.1	-2.2	-2	-1	-0.4	-0.3	-0.5	-0.8	-1.1	-1.4	-1.5	-1.5	-1.2	-1	0	1.3	2.7	4.5	7.1	9.6	6.2	4.9	2.5	6.2	-4.9	-4.3	-6.8	-10.5
Senn HD 650 Cr2	-10	-8.3	-6.4	-5	-3.9	-3.7	-2.7	-1.7	-1.4	-1.4	-1.6	-1.7	-1.8	-1.7	-1.8	-1.4	-1	0	1.3	2.7	4.3	7.1	9.3	6.9	5.1	0.8	-0.5	-6.3	-9.5	-11	-12.2
Senn HD 650 Or	-7.9	-6.1	-4.5	-3.2	-2.5	-1.9	-1.3	-0.4	-0.3	-0.3	-0.6	-0.9	-1.1	-1.3	-1.3	-1	-0.8	0	1.2	2.2	3.8	6.9	9	5.8	4.6	1.7	-0.6	-6	-8	-6.1	-12.3
Senn HD 800 Or	-3.6	-2.6	-1.8	-1.2	-1	-1.5	-0.4	0.2	0.3	0.5	0.5	0.4	0.4	0.3	0.2	0.2	0.3	0	-0.4	-0.3	1.8	4.9	6.9	8.5	10.2	10.2	5.8	-1.5	-0.2	-7.2	-9.1
Senn HD 800S Or	-4.1	-3.3	-2.6	-2	-1.8	-2	-1.1	-0.5	-0.3	-0.1	-0.1	-0.1	-0.2	-0.2	-0.2	-0.1	0	0	-0.5	0.1	2.9	6.1	6.7	7.8	8	8	4.2	-3	1.4	-3	-11.6
Senn HE1 Orph 1 Or	2.8	3.2	2.8	3.6	4.2	3.3	2.8	2.1	1.4	0.9	0.6	0.5	0.8	0.9	0.9	1.5	1.7	2.6	2	1.4	2.6	8	9.9	8.5	7.5	7.2	3.5	-4.4	-0.1	-4	-5.5
Senn HE1 Orph 2 Or	0.2	0.7	0.2	1	1.6	0.7	0.2	-0.5	-1.2	-1.7	-2	-2	-1.8	-1.7	-1.7	-1	-0.9	0	-0.6	-1.2	1	5.5	7.3	5.8	4.9	4.6	0.9	-7	-2.6	-8.7	-7.8
Senn+Drop HD 58X Or	-5.7	-4.2	-2.9	-1.7	-0.9	-0.4	-1.2	0.3	0.4	0.2	0	-0.3	-0.4	-0.7	-0.7	-0.7	-0.6	0	1.1	1.5	1.9	3.3	6.3	6.1	7.5	0.8	-1.6	-7.3	-5.5	-11.9	-10.2
Senn+Drop HD 6XX IF	-9.3	-7.5	-6	-4.4	-3	-2.4	-1.3	0.2	0.6	0.9	0.9	0.5	0.2	-0.1	0.3	-0.2	0	0	1.7	2.7	3.7	6.3	10.1	7.5	2.7	-2.6	-5	-3.2	-4.8	-10.9	-8
Senn+Drop PC38X HdFi	-5	-3.5	-2.5	-1.5	-0.7	-0.1	-0.6	-0.6	-0.7	-2	-2.2	-2.5	-2.5	-2.7	-2.5	-2	-1.3	0	1.3	2.5	3.1	5.5	7.4	7	7.3	1.6	-0.7	-3	-3	-7.5	-10
SenN+Drop PC38X Or	-6.2	-4.7	-3.3	-2	-1.3	-0.9	-1.5	-1.5	-1.5	-2.2	-2.4	-2.7	-2.8	-2.8	-2.6	-1.9	-1.4	0	1.4	2.5	4	6.1	7.5	6	5.9	0.3	-3.7	-6.9	-12.7	-10.3	-12.8
Shure SRH 840 Or	-1.9	-0.6	0.1	0.7	-0.1	0.7	3.6	5.4	4.6	2.2	-0.3	-1.7	-1.2	-1.4	-1.5	-1.2	-0.4	0	1.2	3.7	6.9	8.7	9.4	8.8	9	7.7	6.1	-4.5	2	-6.9	-12
Sony MDR-7506 Or	-0.2	1.4	3.4	4.8	5.5	5.2	3.8	3.4	3.8	2.6	-0.1	0	1.3	1.1	0.8	0.6	0	0	0.7	3.2	6.5	11.1	12.6	10.8	13.2	12.8	5.7	2.4	-7.2	-13.3	-19.3
Sony MDR-Z1R Or	4.8	5.1	5.3	5.4	5	4.4	4.7	5.2	4.6	3.4	1.7	0.5	-0.1	-0.2	-0.4	-0.4	0	0	-0.4	1.2	5	7.1	10.1	0.7	1.3	0.8	1.2	3.5	-2.3	-7.7	-16.1
Sony WH-1000XM3 Or	9.9	10.1	10.1	9.8	9.3	9	9.1	9	8.5	6.7	4.4	2.6	1.7	1.9	2.9	2.7	2.4	0	-2	0.4	3.2	6.3	7.5	6.1	4.7	4.2	5.4	0.1	-4.1	-11.7	-18.3
Sony WH-1000XM4 Cr2	8.6	9.1	9.1	8.7	8.4	7.7	7.5	8	7.7	5.8	4.1	2.4	0.9	-0.8	0.7	2	0.8	0	1.1	2.7	1.4	5.2	7.4	9	9.8	3.7	6.9	-2.1	0.7	-11.5	-10.8
Stax SR-009	-9.2	-8.4	-8.1	-7	-4.6	-4.9	-4.8	-4.9	-4.9	-4.8	-4.7	-4.6	-4.5	-3.9	-3.4	-2.7	-1.9	0	1.8	2.6	1.3	3.3	5.6	5.4	5.2	-4.8	-4	-2.2	-0.4	-5.7	-14.3
Superlux HD 668B Or	-17.8	-14.5	-10.9	-7.1	-3.7	-2.2	0.2	0.3	-0.7	-1.7	-2.6	-3.1	-3.3	-3.5	-3.5	-3	-1.2	0	0.3	2.2	6.2	8.7	8.9	7	4.4	7.5	4.7	-3.5	-5.7	-6.7	-15.2
Superlux HD 681 Or	-13.5	-10.5	-7.5	-5.1	-3.6	-3.6	-3.8	-4.2	-4.5	-4.8	-5.1	-4.8	-4.5	-4.3	-3.8	-3	-1.2	0	0.6	1.5	5.3	8.2	7.7	2.6	10.4	4.4	5.6	-1.9	-4.1	-8.4	-14.8
Superlux HD 681B Or	-2.7	-0.5	1.7	3.9	5.7	6.6	6.3	4.9	3.4	2.3	0.6	-0.5	0	0	0	-0.2	0.1	0	0.1	1.6	6.1	9.5	9.7	7.7	7.5	9.5	4.6	-3.6	3.8	-0.7	-9.9
Verum One Or	-4.4	-4.2	-3.7	-3.9	-3.6	-3.4	-3.3	-3.3	-3.3	-3.2	-3	-3.1	-3.2	-3.2	-2.3	-0.8	-1.4	0	-1.3	-0.8	0.5	4.5	6.9	3.4	4.4	0.1	-1.7	-7.2	-4.2	-11.3	-21
Warwick Sonoma 1 Or	-2.5	-2.4	-2.4	-2.7	-3	-0.9	-0.9	-2.4	-3.3	-3.8	-4	-4.1	-3.9	-3.5	-2.9	-1.1	-0.2	0	0.2	-0.1	2	5.7	5.9	5.1	3.3	-2.4	0.9	-0.4	-8.6	-9.2	-12.7
ZMF Aeolus Cr	-3.3	-2.5	-2	-0.6	-1.7	-0.7	-0.7	-0.8	-0.8	-0.9	-0.8	-0.6	-0.3	-0.2	-0.5	-0.8	-0.1	0	-2	-1.8	1.4	4.6	3.5	-8	-3	-3	-1.9	-2	-9	-16.7	-21
ZMF Aeolus p-suede Cr2	-8.1	-7.2	-6.5	-5.9	-5.7	-5.8	-5.4	-5.1	-4.9	-5.1	-5.1	-5	-5.2	-4.9	-4.3	-3.8	-1.4	0	-1.2	-4.5	-2.4	2.2	2.7	-1	3.1	-0.8	-2.8	-7.3	-7.7	-15.1	-22.6
ZMF Atticus Eikn-sue Cr	-1.7	-1.1	-0.6	-0.3	-0.5	0.9	2	3	3.5	3.4	2.5	1.2	-0.3	-1	-0.5	0.1	0.9	0	-1.2	-1.1	1.1	3.6	3.6	1.2	5.5	1.6	-0.3	-5.5	-3.6	-14.3	-16
ZMF Auteur Teak Cr	-5.2	-3.9	-2.8	-2	-1.6	-1.8	-2	-2.7	-2.6	-3.2	-2.9	-3.4	-3.3	-3.1	-2.8	-2.7	-1.5	0	-0.2	-0.9	1.6	7.1	7.8	1.9	3.3	-3.2	2.7	1.8	-5.3	-1.2	-5.2
ZMF Auteur p-lamb Cr2	-3.9	-2.9	-1.9	-1.2	-1	-0.8	-0.9	-0.9	-1	-1.3	-2	-1.6	-1.6	-1.5	-1	-0.6	-0.2	0	0.9	2.2	3.2	6.6	7.8	6.1	8.6	1.1	3.6	-4.3	-11.5	-6.1	-13.6
ZMF Eikon lambskin Cr2	0.3	0.6	0.1	0.7	-0.9	1.3	2.3	2.8	2.1	1.1	0.4	0	-0.2	-0.2	-0.9	-0.1	0.4	0	-0.4	-4.6	-3	2.7	2.4	6.8	7.8	-1.3	-4.6	-2.6	-8.1	-8.6	-14.1
ZMF Vérité p-lamb Cr2	-5.8	-4.5	-3.6	-2.9	-2.5	-2.2	-1.5	-1.4	-1.4	-1.5	-1.4	-1.2	-0.9	-0.4	-0.3	-0.8	0	0	-0.9	1.1	3.8	6	-3	2.5	6.9	4.9	-7.1	-3.3	-6.5	-15	-5.4
ZMF Vérité Cl a-lamb Cr2	-0.9	0	0.5	0.9	0.4	1.1	2.2	2.9	2.5	0.5	-1	-0.9	-0.4	-0.1	-0.2	-0.6	0	0	-0.9	-0.9	1.2	5.3	-2.6	4	7.2	2.2	-1.2	-8.2	-10.4	-11.8	-13
Source abbreviations:																															