

Conditional Prompt Learning for Anomaly Detection in Medical Image Slices

Dohoon Kim¹ and Jae Sung Lee²

Department of Data Science, Hanyang University, Seoul, Korea¹ Department of Nuclear Medicine, Seoul National University, Seoul, Korea²

Introduction

♦ Robust Algorithm applicable to diverse domains

- Diverse MRI sequences (T1, T2, T1CE, FLAIR)
- Diverse Modalities (X-ray, OCT...)

Giving Condition to Prompt for Adaptation

 Existing works (AnomalyCLIP, AdaCLIP, MediCLIP) use CoOp method solely, limiting model's adaptability

◆ A Prompting module to guide CLIP:

- CLIP prompt gUidance for mEdical image
- Guiding CLIP patch embedding to understand medical anomalies in diverse slices

Methods

©: Cosine Similarity P: Prompt Embedding ℓ : Logits

◆ Image Adaptor

- Input: CLS token from final layer of the image encoder
- Output: Prompt bias conditioned on input image

Prompt Design

Learnable prompt is composed as below;

- $P_{\text{dependent}} \in \mathbb{R}^{B \times N \times d}$
 - π' is added to incorporate the information of the image.
- $P_{\text{independent}} \in \mathbb{R}^{B \times N \times d}$
- $P_{\text{class}} \in \mathbb{R}^{B \times 2 \times d}$
- Finally, the prompt fed into CLIP is as follows.

•
$$P = \text{concat}(P_{\text{class}}, P_{\text{independent}}, P_{\text{dependent}})$$

- In this work, we used ViT-L/14, and N=32
- $v \in \mathbb{R}^{B \times (16 \times 16 + 1) \times d}$ is obtained from last layer

Reweighting & Upscaling

• This makes patches into 224x224 anomaly maps.

Algorithm 1 Anomaly Map Computation **Require:** Image Feature I, Prompt Feature PInitialize M as an empty list for l=1 to L do Extract patch features F_l from I[l]Compute anomaly score for patch: $M_l = \cos(F_l, P_A) - \cos(F_l, P_N)$ end for Compute weighted anomaly scores: $w = \operatorname{softmax} \left(\frac{1}{HW} \sum_{l} M_{l} \right)$ Compute final anomaly map: $M_{final} = \sum w_l M_l$ Upscale M_{final} to size (224, 224) and normalize Return M_{final}

Results

- **♦** Experiment on diverse views and sequences
 - Train on T1w MRI with axial Slices
 - Test on the others

(Pixel-AUROC, %)

MRI Sequences	Viewpoint		
	Axial	Sagittal	Coronal
T1	93.19	87.43	87.16
T1CE	85.97	83.52	84.74
T2	90.26	85.92	87.42
FLAIR	88.43	84.78	85.20

♦ In-Domain (T1w MRI, axial slice)

♦ Domain Shift (T2w MRI, sagittal slice)

- **♦** Experiment on diverse organs and modalities
 - Zero-Shot Transfer
 - Chest X-ray, Retina OCT

	Image-AUROC	Pixel-AUROC
Chest	55.47	N/A
Retina	55.83	53.15

◆ Actually NOT a successful performance. Rather, FAILED. Still Notable, since better than random prediction

Discussion

- ◆ Map generation algorithm might not be optimal
 - Unstable due to non-parametric method, Interpolation
- **♦** Diverse class or domain during training can improve
 - Unstable due to non-parametric method, Interpolation
 - Fine tuning or using auxiliary data might be solution

Conclusion

- **♦** Without fine-tuning CLIP itself, prompt learning can guide CLIP to understand medical anomalies
- **♦** Without additional decoder, patch embeddings can represent the anomalous location at large