1) Neural Network

General:

- structure determines function, parallel distributed, generalization
- for each node(=neuron) j at iteration k: Input signals (from prev layer) $y_i, i \in [n]$

 \downarrow

Linear weighted sum $v_j(k) = \sum_{i=0}^n w_{ji}(k) y_i(k) = ec{w} \cdot ec{x}$

Function (output) signal $y_j(k) = \Phi_j(v_j(k))$

- bias is just set as $w_0(k)$ with constant "input" $y_0:=1$
- activation function Φ : differentiable, monotone-increasing, bounded (and continuous), e.g.:
 - \circ hardlim/threshold/heaviside: $v \geq 0$
 - \circ sigmoid: logistic $(1+e^{-av})^{-1}\in(0;1)$, signum, $anh\in(-1;1)$
- layers: input > hidden(s) > output
- T 3.1 Universal Approximation Theory: any continuous function can be approximated with DNN

Training:

- Backpropagation:
 - \circ **given**: training set $\ell = \{x(k), d(k)\}_{k=1}^K$, lpha, network with reasonble random configs
 - o find: optimal weights to mimic training set
 - \circ error signal $e_j(k) = d_j(k) y_j(k)$
 - \circ error energy $E_j(k)=rac{1}{2}e_j^2(k)$ whole network $E(k)=\sum_j E_j(k)$ avg risk: $ar{E}(k)=rac{1}{K}\sum_{k=1}^K E(k)$
 - 1. for each weight from i to j (and next layer l) in each layer backwards:

$$\delta_j(k) = -rac{\partial E(k)}{\partial v_j(k)} = egin{cases} e_j(k) & \cdot & \Phi_j'(v_j(k)) & ext{if j output layer} \ \sum_l w_{lj}(k)\delta_l(k) & \cdot & \Phi_j'(v_j(k)) & ext{if j hidden layer} \ \Delta w_{ii}(k) = lpha \delta_j(k) y_i(k) \end{cases}$$

2. repeat step 1 until $\bar{E}(k)$ below specified threshold

· with momentum:

 combines the advantages of low and high learning rate: stablizes the trajectory in the weight space and speeds up the learning speed towards steady directions:

$$\Delta w_{ji}(k) = \beta \Delta w_{ji}(k-1) + \alpha \delta_j(k) y_i(k)$$

- Batch learning (offline): all K samples is 1 epoch, update weights once per epoch
- Online learning: update weights for each sample datapoint (stochastic)
- Cross-Validation:
 - training set (90%):
 - estimation subset (90%) for actual training
 - validation subset (10%) for picking best model (tune hyperparameters)
 - o test set (10%) for evaluating the final model

Binary Classifier (Rosenblatt's Perceptron):

- single-layer (0 hidden layers) with only 1 binary output node
- $\Phi(v) = hardlim(v)$ (1 if v>0, otherwise 0)
- can only classify linearly separable patterns (i.e. there exists a hyperplane that seperates the classes)
- · Perceptron Training Algorithm:
 - **given**: training set $D=\{(\vec{x}(k),d(k))|k\in[s]\}$ (with k-th sample input $\vec{x}(k)$, desired output d(k) and $x_0(k)=1$ for bias) and learning rate $0<\alpha\leq 1$
 - **find**: weights $\vec{w}(k)$ (with bias $w_0(k)$) at time k that best mimic training set
 - **intuition**: \vec{w} is perpendicular to the boundary, so if output for k is wrong, nudge \vec{w} towards \aleph_1 and away from \aleph_0 by adding or subtracting x(k):
 - 1. randomize initial weight $\vec{w}(0)$
 - 2. for $k \in [1;s]$:

$$egin{aligned} y(k) &:= \Phi(ec{w}(t) \cdot ec{x}(k)) \ w_i(k+1) &:= w_i(k) + lpha(d_i(k) - y_i(k)) x_i(k) \end{aligned}$$

 this converges always (weights won't change) if training set is linearly separable (T2.1 Perceptron Convergence Theorem)!

Radial-Basis Function Networks

- Radial-basis function: real-valued function only dependent on the distance from origin c: $\Phi(\vec{x},c) = \varphi(\|x-c\|)$ where $\|\vec{x}\|_2 := \sqrt{\sum_i x_i^2}$
 - ∘ i.e.:

Multiquadrics $\Phi(x)=\sqrt{x^2+c^2}$ Inverse multiquadrics $\Phi(x)=\sqrt{x^2+c^2}^{-1}$

Guassian functions $\Phi(x) = exp(-rac{x^2}{2\sigma^2}), \sigma > 0$

- essentially calculates $F(x) = \sum_{i=1}^K w_i \Phi(\|x-x^i\|)$ that universally and locally (as opposed to globally) approximate continuous function $f: \mathbb{R}^n \to \mathbb{R}$ given K data points (\vec{x}^i, d_i) on f
- single *hidden* layer with n inputs and 1 output neuron, S many neurons in the hidden layer where $S \leq K$ number of clusters with the centroids on the clusters becoming the interpolation points \vec{x}^i
- · hidden layer usually non-linear activation function, output layer identity function or linear
- step 1: k-means clustering algorithm to determine S step 2: backpropagation to train weights like normal
- **k-means clustering:** (1) choose random S centers $\vec{c}_j(0)$, (2) pick random sample \vec{x} , (3) the closest centroid $j(\vec{x})$ is moved towards it: $\vec{c}_j(k+1) += \alpha_c(\vec{x}(k)-\vec{c}_j(k))$, (4) repeat from step (2) until centers don't move much
- standard width of gaussian RBFs: $\sigma=rac{d_{max}}{\sqrt{2S}}$ where d_{max} max distance between any two clusters

Recurrent Neural Networks:

- dynamic neural network by giving it short/long-term memory through feedback
- local feedback: single neuron inside the network global feedback: multiple hidden layers or whole network
- the internal state y_t is put back into the network as input in the next timestep, thus output $h_t = f(y_{t-1}, x_t)$

- Lyapunov stability: equilibrium state \bar{x} is (uniformly) stable, if $\forall \varepsilon > 0: \exists \delta > 0: (\|x(0) \bar{x}\| < \delta \implies \forall t > 0: \|x(t) \bar{x}\| < \varepsilon)$, i.e. for any bound ε , there is the region of attraction δ , within which any initial state will stay bounded by ε forever
- asymptotic stability: if both stable and convergent (x(t) o ar x as $t o \infty)$ within the ROA δ
- if a **Lyapunov function** $V(x): \mathbb{R}^n \to \mathbb{R}$ is *positive-definite* in a small neighbourhood of \bar{x} , and $\frac{\partial V(x)}{\partial t}$ is *negative semidefinite* in that region, then \bar{x} is stable (even asymptotically stable if derivative is *negative definite*)
- **positive-definite**: has continuous partial derivatives of each state variable and $V(\bar{x})=0$ and V(x)>0 if $x\neq \bar{x}$ (semi-: \geq , negative-: <)
- Hopfield Network: $\vec{x}(k+1) = \Phi(W\vec{x}(k) + \vec{b})$, usually $\Phi = satlins$ linear capped in [-1;1], converges always!

2) Fuzzy Logic

Fuzzy Sets and Membership Functions:

- given universe set X, its subset can be defined by its **characteristic function** $A:X \to \{0,1\}$ which, given $x \in X$ returns whether its in A or not
- fuzzy set has characteristic function A:X o [0,1], returns the degree of membership (= membership function)
- fuzzy set A is *normal* if $sup_{x\in X}A(x)=1$, otherwise *subnormal*
- · standard operators:
 - $\circ A^{c}(x) = 1 A(x)$, does *not* satisfy Law of Contardiction/Excluded Middle
 - $(A \cup B)(x) = max\{A(x), B(x)\} = A(x) \vee B(x)$, commutative, distributive
 - $\circ \ (A\cap B)(x) = min\{A(x),B(x)\} = A(x) \wedge B(x)$
- alt def (Yager's connectives) with $w \in (0, \infty)$:
 - $A^{c}(x) = (1 A(x)^{w})^{1/w}$
 - $(A \cup_w B)(x) = min\{1, (A(x)^w + B(x)^w)^{1/w}\}$
 - $\circ (A \cap_w B)(x) = 1 min\{1, ((1 A(x))^w + (1 B(x))^w)^{1/w}\}$
- lpha-cut: fuzzy set to crisp set ${}^lpha A=\{x|A(x)\geq lpha\}$ or ${}^{lpha+}A=\{x|A(x)>lpha\}$
- decomposition: define ${}_{\alpha}A(x)=\alpha\cdot{}^{\alpha}A(x)$ which creates a horizontal & vertical slice at α , then $A=\bigcup_{\alpha\in[0,1]}{}_{\alpha}A=sup_{\alpha}\{{}_{\alpha}A(x)\}$

Fuzzy Relations and Propositions:

- a (crisp) relation R:X o Y can be defined by its characteristic function $R:X imes Y o \{0,1\}$, so a fuzzy relation is R:X imes Y o [0,1]
- **proposition**: given linguistic variables U,V (nouns e.g. AGE), values (=fuzzy set) A,B (adj. e.g. Young), and optionally hedges H (adv. e.g. very, not): "U is H A"
- conjunction (with U_i ling. var. over domains X_i): $A_1 \times A_2(x_1,x_2) = A_1(x_1) \wedge A_2(x_2)$ (matrix representation possible)
- condition proposition/implication: "IF U is A, then V is B" Lukasiewicz(Zadeh): $R_Z(x,y) = min(1,1-A(x)+B(y))$ Correlation min: $R_{cm}(x,y) = min(A(x),B(y))$ Correlation product: $R_{cp}(x,y) = A(x)*B(y)$

- matrix representation: express A and B as row vectors over their domains, then $R = A^T \cdot B$ with operator being R(x,y)
- Inference: modus ponens: $(P\Rightarrow Q)\land P=Q$, modus tollens: $(P\Rightarrow Q)=(\neg Q\Rightarrow \neg P)$
 - o single inference:

given: Rule "IF U is A, THEN V is B" and Fact "U is A^\prime ":

conclusion: $B'(y) = A'(x) \circ R(x,y) = \sup_{x \in X} \min\{A'(x), R(x,y)\}$ (matr. mul. with row vector and matrix, $(*) := \min$ and $(+) := \max$)

n antecedents and k rules:

given: Rules $R_i(x_1,...,x_n,y)$ and Fact " U_1 is A'_1 and ... and U_n is A'_n " k conclusions: $B'_i(y) = A'_{i1} \times ... \times A'_{in}(x_1,...,x_n) \circ R_i(x_1,...,x_n,y)$ aggregated conclusion: $B'(y) = \sum_i B'_i(y)$ or $max_i\{B'_i(y)\}$

• Defuzzification: centroid $\bar{y} = (\sum_y y \cdot B'(y))/(\sum_y B'(y))$

T-S Fuzzy Model:

- universal approximators that model a nonlinear plant o TSFM o local-linear fuzzy rules o defuzzify and control plant
- Continuous FS: "IF $z_1(t)$ is M_{i1} and ... and $z_p(t)$ is M_{ip} , THEN $\dot{x}(t)=A_ix(t)+B_iu(t),y(t)=C_ix(t)$ " (for DFS: $\dot{x}(t)\to x(t+1)$)
- disc. lin. system x(t+1)=Ax(t) is locally stable if $\forall \lambda \in eig(A): |\lambda| < 1$ within unit circle
- ullet cont. lin. system $\dot{x}(t)=Ax(t)$ is locally stable if $orall \lambda \in eig(A):Re(\lambda)<0$
- (eigenvalues: solve $det(A \lambda I) = (a \lambda)(d \lambda) bc = 0$)
- DFS: globally asymp. stable if a common positive definite matrix P exists such that $A_i^T P A_i P < 0, i=1,2,...,r$

Evolutionary Algorithms:

- iterative search prodecure that generates a population of candidate solutions (rather than 1 point like gradient), select best solutions and generates new random solutions based off of them
- · selection:
 - $\circ \ (\mu + \lambda)$: μ parents create λ offspring and best μ from $\mu + \lambda$ become next parents
 - $\circ \ (\mu,\lambda)$: best μ from only λ become next parents
 - o proportional/roulette: probability of getting picked is their relative fitness
 - tournament: select q random, pick best, repeat until full
- · variation:
 - mutation: binary/gaussian mutation
 - \circ 1-point crossover: two parents $x,y\in\mathbb{R}^n$ at point p produce two new offsprings $x'=(x_1,x_2,...,x_{p-1},y_p,...,y_n)$ $y'=(y_1,y_2,...,y_{p-1},x_p,...,x_n)$
 - o n-point crossover: at each crossover point swap the rest
 - PMX: pick mappings $x_i \leftrightarrow y_i$ for $i \in \{\text{random indices}\}$, swap values according to mappings, rest stays same
 - o blending: average each components