Lecture 2 notes

Introduction 1

We prove some assertions made in lecture 2 that were left as exercises.

2 Trace properties

Definition. The trace of a square matrix A is defined as

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$
 (1)

Theorem. Let f(A) = tr(AB), where A and B are square matrices. Then

$$\nabla_A f(A) = B^T. \tag{2}$$

Proof. We have

$$\nabla_A f(A) = \nabla_A \operatorname{tr}(AB) \tag{3}$$

$$= \nabla_A \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ji} \tag{4}$$

$$\begin{aligned}
& = \begin{bmatrix} \frac{\partial}{\partial a_{11}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} & \cdots & \frac{\partial}{\partial a_{1n}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} \\
& \vdots & \ddots & \vdots \\
\frac{\partial}{\partial a_{n1}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} & \cdots & \frac{\partial}{\partial a_{nn}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} \end{bmatrix} \\
& = \begin{bmatrix} \frac{\partial}{\partial a_{11}} a_{11} b_{11} + \cdots + \frac{\partial}{\partial a_{11}} a_{n1} b_{1n} & \cdots & \frac{\partial}{\partial a_{1n}} a_{11} b_{11} + \cdots + \frac{\partial}{\partial a_{1n}} a_{n1} b_{1n} \\
& \vdots & \ddots & \vdots \\
\frac{\partial}{\partial a_{n1}} a_{11} b_{11} + \cdots + \frac{\partial}{\partial a_{n1}} a_{n1} b_{1n} & \cdots & \frac{\partial}{\partial a_{nn}} a_{11} b_{11} + \cdots + \frac{\partial}{\partial a_{nn}} a_{n1} b_{1n} \end{bmatrix}
\end{aligned} (5)$$

$$=\begin{bmatrix} \frac{\partial}{\partial a_{11}} a_{11} b_{11} + \dots + \frac{\partial}{\partial a_{11}} a_{n1} b_{1n} & \dots & \frac{\partial}{\partial a_{1n}} a_{11} b_{11} + \dots + \frac{\partial}{\partial a_{1n}} a_{n1} b_{1n} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial a_{n1}} a_{11} b_{11} + \dots + \frac{\partial}{\partial a_{n1}} a_{n1} b_{1n} & \dots & \frac{\partial}{\partial a_{nn}} a_{11} b_{11} + \dots + \frac{\partial}{\partial a_{nn}} a_{n1} b_{1n} \end{bmatrix}$$
(6)

$$= \begin{bmatrix} b_{11} & \cdots & b_{n1} \\ \vdots & \ddots & \vdots \\ b_{1n} & \cdots & b_{nn} \end{bmatrix}$$

$$(7)$$

$$=B^{T}.$$

Remark. Writing out proofs in this manner can become tedious. As a shorthand, we could have considered the matrix $\nabla_A f(A)$ at an individual element, say a_{mn} , and observe that $\nabla_A f(A)_{mn} = \frac{\partial}{\partial a_{mn}} f(A) = \frac{\partial}{\partial a_{mn}} \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ji} = b_{nm}$ and conclude that $\nabla_A f(A) = B^T$. This style of argumentation shall be used going forward. **Theorem.** Let A and B be square matrices. Then

$$tr(AB) = tr(BA). (9)$$

Proof. We have

$$tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji}$$
(10)

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ji}a_{ij}$$
(11)

$$= \operatorname{tr}(BA). \tag{12}$$

All we had to do was swap the order of summation on line 11, which is valid because the order of summation for finite sums does not matter. \Box

Theorem. Let A, B and C be square matrices. Then

$$tr(ABC) = tr(BCA) = tr(CAB). (13)$$

Proof. We have

$$tr(ABC) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{ij} b_{jk} c_{ki}$$
(14)

$$=\sum_{j=1}^{n}\sum_{k=1}^{n}\sum_{i=1}^{n}b_{jk}c_{ki}a_{ij}$$
(15)

$$= \operatorname{tr}(BCA) \tag{16}$$

and a similar argument shows that tr(CAB) = tr(BCA).

Theorem. Let A and C be square matrices. Then

$$\nabla_A \operatorname{tr}(AA^T C) = CA + C^T A. \tag{17}$$

Proof. Consider the space of $n \times n$ matrices and endow it with the inner product $\langle A, B \rangle = \operatorname{tr}(AB^T)$. This is indeed an inner product because, first and foremost it is symmetric:

$$\langle A, B \rangle = \operatorname{tr}(AB^T) \tag{18}$$

$$= \operatorname{tr}(BA^T) \tag{19}$$

$$= \langle B, A \rangle \tag{20}$$

It is also linear in the first argument:

$$\langle \lambda A + \mu B, C \rangle = \operatorname{tr}((\lambda A + \mu B)C^T)$$
 (21)

$$= \lambda \operatorname{tr}(AC^T) + \mu \operatorname{tr}(BC^T) \tag{22}$$

$$= \lambda \langle A, C \rangle + \mu \langle B, C \rangle \tag{23}$$

Furthermore, it is positive definite:

$$\langle A, A \rangle = \operatorname{tr}(AA^T) \tag{24}$$

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}a_{ij} \tag{25}$$

$$\geq 0 \tag{26}$$

For equality to be achieved on line 26, we must have $a_{ij} = 0$ for all i and j, which is when A is the zero matrix. This completes the proof that $\langle A, B \rangle$ is an inner product on the space of $n \times n$ matrices.

Let $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be defined by $f(A) = AA^T$ and $g: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be defined by $g(A) = A^T$. Then $\nabla_A \operatorname{tr}(AA^TC) = \nabla_A \operatorname{tr}(CAA^T)$ by invariance of trace under cyclic permutations as previously established, and using the new notation $\nabla_A \operatorname{tr}(CAA^T) = \nabla_A \langle f(A), g(A) \rangle$.

The reason why we are talking about inner products is because the result being asked to be shown holds true in a more general setting. In particular, if f and g are two linear maps from a vector space V to itself, and $\langle \cdot, \cdot \rangle$ is an inner product on V, then $\nabla_v \langle f(v), g(v) \rangle = \langle \nabla_v f(v), g(v) \rangle + \langle f(v), \nabla_v g(v) \rangle$.