Chapitre 16 - Analyse asymptotique

1 Comparaison des suites

1.1 Relations de comparaison

Uniquement pour les suites réelles : on se place dans $\mathbb{R}^{\mathbb{N}}$.

Définition 1.1. Soit (v_n) une suite de réels non nuls à partir d'un certain rang N_0 et (u_n) une suite de réels. On dit que :

- (u_n) est dominée par (v_n) si à partir du rang $N_0\left(\frac{u_n}{v_n}\right)$ est bornée. On note alors $u_n = O(v_n)$.
- (u_n) est négligeable devant (v_n) si $\left(\frac{u_n}{v_n}\right)$ tend vers 0. On note alors $u_n = o(v_n)$.
- (u_n) est équivalente à (v_n) si $\left(\frac{u_n}{v_n}\right)$ tend vers 1. On note alors $u_n \underset{+\infty}{\sim} v_n$.

Théorème 1.1. Soit (v_n) une suite de réels non nuls à partir d'un certain rang N_0 et (u_n) une suite de réels.

 (u_n) est négligeable devant (v_n) si et seulement si il existe une suite (ε_n) qui tend vers 0 telle que $u_n = v_n \cdot \varepsilon_n$.

1.2 Propriétés des relations de comparaison

Proposition 1.2. Soit $(u_n), (v_n), (w_n)$ des suites réelles.

$$Si \ u_n \underset{+\infty}{\sim} v_n \ alors \ v_n \underset{+\infty}{\sim} u_n.$$

$$Si\ u_n \underset{+\infty}{\sim} v_n\ et\ v_n \underset{+\infty}{\sim} w_n\ alors\ u_n \underset{+\infty}{\sim} w_n.$$

$$Si\ u_n\ et\ v_n\ ne\ s'annulent\ pas,\ alors\ u_n\underset{+\infty}{\sim}v_n\Longleftrightarrow u_n-v_n=o(v_n).$$

Si
$$u_n \sim v_n$$
 alors $u_n = O(v_n)$ et $v_n = O(u_n)$.

1.3 Suites de référence

Proposition 1.3. Pour tous $\alpha > 0, \beta > 0, \gamma > 0$, on α $\ln^{\beta}(n) \underset{+\infty}{=} o(n^{\alpha})$ et $n^{\alpha} \underset{+\infty}{=} o(e^{\gamma n})$ et pour q > 1, on α $n^{\alpha} = o(q^{n})$.

1.4 Opérations sur les équivalents

Proposition 1.4. Soit $(u_n), (v_n), (w_n), (x_n)$ des suites réelles.

$$Si\ u_n \underset{+\infty}{\sim} v_n\ et\ w_n \underset{+\infty}{\sim} x_n\ alors\ u_n w_n \underset{+\infty}{\sim} v_n x_n.$$

$$Si \ u_n \underset{+\infty}{\sim} v_n \ et \ w_n \underset{+\infty}{\sim} x_n \ et \ si \ w_n \ et \ x_n \ ne \ s'annulent \ pas \ alors \ \dfrac{u_n}{w_n} \underset{+\infty}{\sim} \dfrac{v_n}{x_n}.$$

$$Si\ u_n \underset{+\infty}{\sim} v_n\ et\ si\ p\ est\ un\ entier\ p \in \mathbb{N}\ alors\ u_n^p \underset{+\infty}{\sim} v_n^p.$$

1.5 Relations de comparaison et limites

Théorème 1.5. Soit (u_n) et (v_n) deux suites réelles telles que $u_n \underset{+\infty}{\sim} v_n$.

Alors, pour tout $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$, on $a \quad u_n \xrightarrow[+\infty]{} \ell \iff v_n \xrightarrow[+\infty]{} \ell$

En particulier, (u_n) est convergente si et seulement si (v_n) est convergente.

Proposition 1.6. Soit (u_n) et (v_n) deux suites réelles.

- $Si \ u_n = o(v_n) \ et \ (v_n) \ converge, \ alors \ (u_n) \ converge \ vers \ 0.$
- $Si \ u_n = o(v_n) \ et \ (u_n) \ diverge \ vers +\infty, \ alors \ (v_n) \ diverge.$
- $Si \ u_n \sim v_n$, alors à partir d'un certain rang, u_n et v_n sont de même signe.

2 Relations de comparaison appliquées aux fonctions

Soit I un intervalle de \mathbb{R} et $a \in \mathbb{R} \cup \{-\infty, +\infty\}$ élément ou extrémité de I.

2.1 Fonction dominée par une autre

Définition 2.1. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f est dominée par g au voisinage de a si la fonction $\frac{f}{g}$ est bornée au voisinage de a. On note f = O(g)

2.2 Fonction négligeable devant une autre

Définition 2.2. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f est négligeable devant g au voisinage de a si la fonction $\frac{f}{g}$ tend vers 0 en a.

On note f = o(g) ou bien $f(x) = g(x) \cdot \varepsilon(x)$ avec $\lim_{x \to a} \varepsilon(x) = 0$

2.3 Fonctions équivalentes

Définition 2.3. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f et g sont équivalentes au voisinage de a si la fonction $\frac{f}{g}$ tend vers 1 en a. On note $f \sim g$

Proposition 2.1. Soit f une fonction dérivable en $a \in \mathbb{R}$.

$$Si\ f'(a) \neq 0$$
, alors $f(x) - f(a) \underset{a}{\sim} f'(a)(x - a)$.

Proposition 2.2. Soit f et g définies sur I, ne s'annulant pas sur $I \setminus \{a\}$. On a:

$$f \underset{a}{\sim} g \iff f - g \underset{a}{=} o(g).$$

2.4 Opérations sur les équivalents

Proposition 2.3. Si $f, g, h, f_1, g_1, f_2, g_2$ sont des fonctions définies au voisinage de a, on a:

- $f \sim g \Longrightarrow g \sim f$ $f \sim g \text{ et } g \sim h \Longrightarrow f \sim h$ $f_1 \sim g_1 \text{ et } f_2 \sim g_2 \Longrightarrow f_1 f_2 \sim g_1 g_2$
- $f_1 \underset{a}{\sim} g_1 \ et \ f_2 \underset{a}{\sim} g_2 \Longrightarrow \frac{f_1}{f_2} \underset{a}{\sim} \frac{g_1}{g_2}$

2.5 Utilisation des équivalents

Proposition 2.4. Étant donnés deux fonctions f et g équivalentes en $a: f \sim g$.

Si g a une limite finie ou infinie en a alors f aussi et $\lim_{a} f = \lim_{a} g$.

Proposition 2.5. Étant donnés deux fonctions f et g définies sur I et équivalentes en a : $f \underset{a}{\sim} g$.

 $Si\ g\ est\ positive\ sur\ I\ alors\ f\ est\ positive\ au\ voisinage\ de\ a.$

Si g ne s'annule pas sur I, alors f ne s'annule pas au voisinage de a.

Si g ne s'annule pas sur $I \setminus \{a\}$, alors la restriction de f à $I \setminus \{a\}$ ne s'annule pas au voisinage de a.

3 Développements limités

3.1 Définition

Définition 3.1. On dit qu'une fonction f de I dans \mathbb{R} ou \mathbb{C} admet un développement limité d'ordre $n \in \mathbb{N}$ au voisinage de $a \in \mathbb{R}$ élément ou extrémité de I si il existe un polynôme P de degré inférieur ou égal à n tel que $f(a+h) = P(h) + o(h^n)$ au voisinage de 0 (pour h).

C'est à dire $f(a+h) = a_0 + a_1h + a_2h^2 + \dots + a_{n-1}h^{n-1} + a_nh^n + o(h^n)$

ou $f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_{n-1}(x - a)^{n-1} + a_n(x - a)^n + o((x - a)^n)$ On le note $DL_n(a)$ de f.

Exemple $g(n) = 1 + x^2 + x^3 \sin(x)$. on a $x^3 \sin(n) = x \sin(n) = 0$ donc $x^3 \sin(n) = o(n^2)$ alors on a $g(n) = 1 + (x-0)^2 + o((x-0)^2)$ $g(n) = 1 + n^2 + o(n^2) DL_2(0) : a l'adre l' en 0 de g$ autre étature $g(n) = 1 + n^2 + \infty^2 E_2(n) \text{ avec} E_1(n) \xrightarrow{n \to 0} 0$ on a également g(n) = 1 + (x2 + n2 En(n)) = 1 + o(n) car x2 + n2 En(n) = o(2e) g(n) = 1 + o(n) est un DL à l'ordre 1 deg Aute idie sin(n) = sin(o) + sin/(o). (n-o) + o(n-o) car him est dé rivable en 0 (c'est un DLs) Soch sim(n) = x + o(n) et $g(n) = 1 + x^2 + x^3(x + o(n))$ \overline{v} vient $g(n) = 1 + x^2 + x^4 + x^3 o(n)$ Alors | g(n) = 1 + n2 + n4 + o(x4) on a D24 en o deg

```
g(n)=1+n²+n³sin(n) au voisinage de 1
             On jose 12-1+h 2-1 => h-0 h=x-1
          Cequé donne g(x) = 1 + (1 + 2h + h^2) + (1 + 3h + 3h^2 + h^3) sim(1+h)
g(h) = g(1+h) = g(
mile On white sin(1+h) = sin(1)cos(h) + cos(s) sin(h)
                             Din (h) ~ h <> sin (h) = h + o(h) goution constante = 1
            Cos(h) ~ 1 = Ces(h)= 1 + o(1) (1) = qui tend vers 0

Onturnine le calad sin(1+h)= sin(x) + o(1) + cos(x) (h + o(h))
            g(1+h)- 2 + sin(1) + (2+3)m(1) + ca(1) h
               on ollient sin (1+h) = sin(s) (1+o(s)) + cos(s) (he o(a))
                                                                                         = Din(s) + sin(s) o(1) + o(1)
                                                                                                            Cte 1 Cte -> 0 -> 0
                                                       sim (1+6) = sim (1) + 0(1)
              alus
                        g(1+h)= 2+2h+h2 + (1+3h+3h2+h3)(sin(1)+o(1))
                                                     = 2 + sin(1) + (2 + 3sin(1)) h + o(1)
                                                                                     + h2 + 3h.o(1) + (3h2+h3) (min(1)+o(11)
                  on a (2 + 3 mm (1) /h = 0 danc (2 + 3 mm (1)) h = 0(1)
                            h2 + 3ho(1) + (3lo2+ h3) (mm(1)+ o(1)) ->0
                       g(1+h)= 2+ sim(1) + o(s)
                         g(n) = 2 + sin(s) + o(1) DL à Cadre O en 1 deq
```

Exemple fondamental

 $u \longmapsto \frac{1}{1-u} \ admet \ des \ développements \ limités$ à l'ordre n, pour tout entier n, au voisinage de 0 :

$$\frac{1}{1-u} = 1 + u + u^{2} + \dots + u^{n} + o(u^{n})$$

on pose uz - 200 dans 1 = 1+11+12+ ... + u^n + o(u^n) on a $u^m = -xe^{2n}$ alors $o(u^m) = o(xe^m) = o(4e \cdot xe^n)$ Anctau'(n) = $1 - xe^2 + x^4 - xe^5 + \cdots + (-1)^m x^2m + o(x^2n)$ Par integration, our emarquant que Anchan (ol = o mo Anchan(n) = $0 + x - x^3 + x^5 - x^7 + 4(-1)^m x^2n + o(x^2n+1)$ Exercice Calculu m DL 2 (0) de g(n)= 1 + sim(n) 6ma sin(n) = 3c + o(x) vani mais insufficient: DL_1 $= 2c + o \cdot x^2 - x^3 + o(x^3)$ van maistrop DL_3 $sin(n) = n + o(x^2)$ est le $DL_2(o)$ de nin(n)on somme $q(n) = 1 + 2x + x^2 + o(x^2)$

3.3 Unicité du développement limité

Proposition 3.2. Si f est une fonction admettant deux développements limités à l'ordre n au voisinage de $a \in \mathbb{R}$, alors ces développements sont égaux.

$$Si f(x) = \sum_{a=0}^{n} a_{k}(x-a)^{k} + o((x-a)^{n}) et f(x) = \sum_{a=0}^{n} b_{k}(x-a)^{k} + o((x-a)^{n}), alors \forall k \in [[0,n]], alors \forall$$

On appelera <u>le polynôme</u> $P(x) = \sum_{k=0}^{n} a_k (x-a)^k$ <u>la partie régulière</u> du DL de f à l'ordre n en a.

Corollaire 3.3. Si f admet un développement limité à l'ordre n en a, alors pour tout entier $p \le n$, f admet un développement limité à l'ordre p obtenu en tronquant le développement d'ordre n.

Corollaire 3.4. Soit f admettant un développement limité en 0 de partie régulière P. Si f est paire, alors P est pair. Si f est impaire, alors P est impair.

Autre méthode: fai la famille de Taylor Young fort e³ en a=4 alas $\int (x) = \int (4) + \int (4) (n-4) + \int (4) (n-4)^2 + \int (3)(4) (n-4)^3 + O((n-4)^3)$ on calcule les dénivées $\int (n) = 1$ $\int (n) = 1$

3.4 Forme normalisée d'un développement limité

Définition 3.2. Soit f une application admettant un développement limité l'ordre n+p au voisinage de a. On appelle forme normalisée du développement limité de f, l'écriture :

$$f(a+h) = h^p (a_0 + a_1 h + \dots + a_n h^n + o(h^n))$$
 où $a_0 \neq 0$.

Proposition 3.5. Si f a un développement limité normalisé $f(a+h) = h^p (a_0 + a_1h + \cdots + a_nh^n + o(a_0 + a_1h) + o(a_0$

3.5 Translation d'un développement limité

Proposition 3.6. Si f est une fonction vérifiant f(a+h) = g(h) pour tout h dans l'intervalle I contenant 0, et si g admet un développement limité à l'ordre n en $0: g(x) = P(x) + o(x^n)$. Alors f admet un développement limité à l'ordre n en $a: f(x) = P(x-a) + o((x-a)^n)$.

3.6 Développement limité au voisinage de l'infini

Définition 3.3. Soit f une fonction définie sur un intervalle I.

Si la fonction g définie par $g(u) = f\left(\frac{1}{u}\right)$ admet un développement limité en 0 à l'ordre n sur l'intervalle $J_+ = \left\{\frac{1}{x} \middle| x \in I \cap \mathbb{R}_+^*\right\}$ (respectivement sur $J_- = \left\{\frac{1}{x} \middle| x \in I \cap \mathbb{R}_-^*\right\}$), alors on dit que f admet un développement limité à l'ordre n au voisinage de $+\infty$ (respectivement $-\infty$).

Si
$$g(u) = P(u) + o(u^n)$$
, alors $f(x) = P(\frac{1}{x}) + o(\frac{1}{x^n})$.

4 Formule de Taylor-Young

4.1 Intégration terme à terme d'un DL

Théorème 4.1. Soit I un intervalle contenant a et $f: I \longrightarrow \mathbb{R}$, une fonction continue possédant un développement limité à l'ordre n en a qui est :

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o(x-a)^n.$$

Alors toute primitive F de f sur I possède un développement limité à l'ordre n+1 en a qui est :

$$F(x) = F(a) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x-a)^{k+1} + o((x-a)^{n+1}).$$

4.2 Formule de Taylor-Young

Théorème 4.2. Soit f une fonction de classe C^n d'un intervalle I de \mathbb{R} dans \mathbb{K} avec $n \in \mathbb{N}$. f possède en tout point a de I un développement limité d'ordre n donné par :

$$f(x) = \sum_{a}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + o((x - a)^{n}) \qquad ou$$

$$f(a + h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^{2} + \dots + \frac{f^{(n)}(a)}{n!}h^{n} + o(h^{n}).$$

5 Opérations sur les développement limités

5.1 Somme et produit

Proposition 5.1. Soit f et g deux fonctions réelles admettant en a des développements limités à l'ordre n:

$$f(x) = P(x-a) + o(x-a)^n$$
 et $g(x) = Q(x-a) + o(x-a)^n$

où Pet Q sont des pllynômes réels de degré au plus égal à n.

Alors les fonctions f + g et fg admettent des développements limités d'ordre n qui sont :

$$(f+g)(x) = P(x-a) + Q(x-a) + o((x-a)^n).$$
$$(fg)(x) = R(x-a) + o((x-a)^n)$$

où R est le polynôme obtenu tronquant le produit PQ au degré n.

5.2 Dérivation d'un développement limité

Proposition 5.2. Soit f une fonction de classe C^1 sur un intervalle I contenant a, admettant un développement limité d'ordre n au voisinage de a:

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o(x-a)^n.$$

Si f' admet un développement limité d'ordre n-1 en a, alors ce développement s'obtient en dérivant celui de f:

$$f'(x) = \sum_{k=1}^{n} ka_k (x-a)^{k-1} + o(x-a)^{n-1}.$$

5.3 Développement limité d'une fonction composée

Proposition 5.3. soit f une fonction définie sur I admettant un $Dl_n(a)$ en $a \in I$, telle que $f(I) \subset J$, avec $f(x) = P(x-a) + o(x-a)^n$.

Soit g une fonction définie sur J admettant un DL_n en b = f(a) avec $g(u) = Q(u-b) + o(u-b)^n$.

Alors $g \circ f$ possède un développement limité à l'ordre n en a obtenu en tronquant à l'ordre n le polynôme composé Q(P(X)):

$$g \circ f(x) = \text{reste de la division de } Q(P(x-a)) \text{ par } (x-a)^{n+1} + o((x-a)^n).$$

5.4 Développement limité d'un quotient

Proposition 5.4. Si u est une fonction telle que $\lim_a u = 0$ et si u a un développement limité à l'ordre n en a, alors la fonction $x \longmapsto \frac{1}{1 - u(x)}$ admet un $DL_n(a)$.

 $Si\ u(x) = P(x-a) + o(x-a)^n, \ alors\ \frac{1}{1-u(x)} = 1 + P(x-a) + P^2(x-a) + P^3(x-a) + \cdots + P^n(x-a) + o(x-a)^n: le\ développement\ limité\ s'obtient\ en\ tronquant\ à\ l'ordre\ n\ le\ polynôme\ 1 + P(X) + P^2(X) + \cdots + P^n(X).$

6 Formulaire

$$\frac{1}{1-x} = 1+x+x^2+\cdots+x^n+\circ(x^n)$$

$$(1+x)^a = 1+\frac{a}{1!}x+\frac{a(a-1)}{2!}x^2+\cdots+\frac{a(a-1)(a-2)\dots(a-n+1)}{n!}x^n+\circ(x^n)$$

$$\ln(1+x) = x-\frac{1}{2}x^2+\frac{1}{3}x^3+\cdots+(-1)^{n-1}\frac{1}{n}x^n+\circ(x^n)$$

$$\arctan x = x-\frac{1}{3}x^3+\frac{1}{5}x^5+\cdots+(-1)^p\frac{1}{2p+1}x^{2p+1}+\circ(x^{2p+1})$$

$$e^x = 1+\frac{1}{1!}x+\frac{1}{2!}x^2+\cdots+\frac{1}{n!}x^n+\circ(x^n)$$

$$\cosh x = 1+\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots+\frac{1}{(2p)!}x^{2p}+\circ(x^{2p})$$

$$\sinh x = x+\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+(-1)^p\frac{1}{(2p+1)!}x^{2p+1}+\circ(x^{2p+1})$$

$$\cos x = 1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots+(-1)^p\frac{1}{(2p+1)!}x^{2p+1}+\circ(x^{2p+1})$$

$$\sin x = x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+(-1)^p\frac{1}{(2p+1)!}x^{2p+1}+\circ(x^{2p+1})$$

$$\tan x = x+\frac{1}{3}x^3+\frac{1}{5!}x^5+\cdots+(-1)^p\frac{1}{(2p+1)!}x^{2p+1}+\circ(x^{2p+1})$$

$$\tan x = x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+\circ(x^8)$$

7 Applications

7.1 Étude de limites

Proposition 7.1. Si une fonction f a un développement limité de la forme $f(x) = a_0 + o(1)$ au voisinage de $a \in \overline{\mathbb{R}}$, alors f a une limite en a qui vaut a_0 .

7.2 Prolongement par continuité

Proposition 7.2. *Soit I un intervalle de* \mathbb{R} .

Si une fonction f définie sur $I \setminus \{a\}$, a un développement limité de la forme $f(x) = a_0 + o(1)$ au voisinage de $a \in \mathbb{R}$, alors f est prolongeable par continuité en a en posant $f(a) = a_0$.

7.3 Dérivabilité d'un prolongement par continuité

Proposition 7.3. Soit I un intervalle de \mathbb{R} et $a \in I$.

Si une fonction f définie sur $I \setminus \{a\}$, a un développement limité de la forme $f(x) = a_0 + a_1(x-a) + o(x-a)$, alors f est prolongeable par continuité en a en posant $\tilde{f}(a) = a_0$ et le prolongement \tilde{f} est dérivable en a avec $\tilde{f}'(a) = a_1$.

7.4 Position relative de la courbe et de la tangente

Proposition 7.4. Soit I un intervalle de \mathbb{R} et $a \in I$.

Si une fonction f définie sur I a un développement limité de la forme $f(x) = a_0 + a_1(x-a) + a_p(x-a)^p + o((x-a)^p)$ avec $p \ge 2$ et $a_p \ne 0$, alors la droite $y = a_0 + a_1(x-a)$ est tangente à la courbe représentative de f en a.

De plus, la position de la courbe par rapport à la tangente au voisinage du point a est donnée par le signe de $a_p(x-a)^p$: au-dessus si $a_p(x-a)^p \ge 0$.

7.5 Étude d'un extremum

Proposition 7.5. Soit I un intervalle de \mathbb{R} et $a \in I$.

Si une fonction f définie sur I a un développement limité de la forme $f(x) = a_0 + a_2(x-a)^2 + o((x-a)^2)$ avec $a_2 \neq 0$, alors la fonction f a un extremum local en a: maximum local si $a_2 < 0$ et minimum local si $a_2 > 0$.

7.6 Asymptotes

Proposition 7.6. Soit f une fonction définie au voisinage $de + \infty$ ($ou - \infty$).

Si il existe un réel
$$k$$
 tel que $f(x) - kx = a_0 + a_p + o\left(\frac{1}{x^p}\right)$ avec $a_p \neq 0$,

alors la droite $y = kx + a_0$ est asymptote à la courbe représentative de la fonction f en $+\infty$ ($ou -\infty$). De plus, la position de la courbe par rapport à l'asymptote est donnée par le signe de $\frac{a_p}{x^p}$ au voisinage de $+\infty$ ($ou -\infty$).

