WASTEWATER TREATMENT PLANT IMPROVEMENT PROJECT

For the City of "H" Wastewater Treatment Plant CE 485 Design Project

USC Design Team

Marco Kleimans

Jacob Totaro

Serena Zhu

TABLE OF CONTENTS

MEMORANDUM	3
PROCESS FLOW DIAGRAM	6
DESIGN CRITERIA	7
DESIGN CALCULATIONS	8
CALCULATIONS FOR OXYGEN DEMAND AND AIR FLOW RATE	12
PIPE SIZING	13
GENERAL SITE LAYOUT	14
MASS BALANCE	16
HYDRAULIC GRADE-LINE	19
APPENDIX: DESIGN PROJECT ASSIGNMENT	30

MEMORANDUM

INTRODUCTION

The City of "H" (City) owns and operates the "H" (city) Wastewater Treatment Plant (Plant), a secondary treatment facility. The City provides wastewater treatment to "H" city and some surrounding communities. The City is permitted to discharge treated wastewater to the the Pear Drain, a tributary of the Alamo River, which drains into the Salton Sea, and is subject to the requirements set forth by the California Regional Water Quality Control Board (RWQCB), Colorado River Basin Region and National Pollutant Discharge Elimination System (NPDES) Permit. The City has commissioned the USC Design Team to provide preliminary design services for improvements to the existing wastewater treatment facility, and the city will construct the necessary plant upgrades and improvements.

This Project Memorandum (PM) will provide an overview of the existing HWTP and the new project goals, as well as describe how the USC Design Team addressed the items for plant improvements project, how the proposed treatment meets the regulatory requirements, and how the generated sludge is processed and handled.

EXISTING WASTEWATER SYSTEM

The existing City of "H" (City) Wastewater Treatment Plant (Plant) is a secondary treatment facility having an average flow capacity of 0.85 million gallons/day (mgd) and consists of a headworks bar screen, three circular primary clarifiers (one 28 foot diameter and two 18 foot diameter units), a trickling filter (80 foot diameter with 7 feet of rock media), three secondary clarifiers (one 38 foot diameter and two 18 foot diameter units), three continuous backwash upflow (DynaSand) filters, a UV disinfection module bank, effluent flow metering, an aerobic digester, and three sludge drying beds. Leachate from the sludge drying beds is returned to the plant headworks for treatment. Sludge is dried and stored on-site prior to final disposal at a landfill. The plant also receives septage at the headworks, as the city allows recreational vehicles to dump wastewater into the city collection system at designated stations.

Figure 1 presents the existing Plant facilities and yard piping and the existing plant design data is summarized in Table 1.

PROJECT OVERVIEW

To meet the fast increase in wastewater flow, the City will have to expand the plant treatment capacity from an average of 0.85 to 1.8 mgd, with a new peak hourly flow estimated at 3.6 mgd. Under the proposed NPDES permit requirements for a number of priority pollutants and ammonia, the expanded and upgraded plant must also be able to meet the new effluent ammonia concentration limits (monthly average of 1.9 mg/L and maximum daily of 3.6 mg/L).

Because the Plant has experienced effluent quality problems, including toxicity violations during the winter months when the temperature drops, which also coincides with the arrival of seasonal residents, the existing plant facilities will be assessed, and recommendations will be made to improve the Plant performance with respect to secondary effluent quality and treatment efficiency. USC Design Team will also consider the cost-effective incorporation of the existing facilities, to the extent possible, into the final upgraded plant.

ADDRESSING THE PLANT IMPROVEMENTS

• Headworks: The existing headworks will be demolished and new headworks will be constructed to meet the new desired treatment capacity. The headworks will be a new concrete structure

- consisting of a 25,000-gallon capacity septage holding tank with a septage pump, a Parshall flume flow meter, and a screening removal and disposal system that will replace the existing non-operating bar screens.
- Vortex Grit Removal: Two vortex grit removal tanks, two grit pumps and a grit washer/classifier will be provided to remove grit from the increased wastewater flow.
- Primary Clarifiers: The existing three (3) primary clarifiers cannot handle the anticipated average flow of 1.8 mgd and peak hourly flow of 3.6 mgd, and therefore will be demolished so that two (2) new rectangular primary clarifiers, 60ft long by 15ft wide, assuming side water depth (SWD) of 15ft, and a Flow Distribution Box (DB1) will be provided.
- MLE Process and Secondary Clarifiers: The existing trickling filter secondary treatment has a limited capacity to remove ammonia, probably because the organic overloading of the trickling filter at low temperatures, so they will be demolished and a modified ludzack-ettinger (MLE) activated sludge process will be designed to meet the ammonia effluent limit specified in the proposed NPDES permit. The Flow Distribution Box for Aeration Tanks (DB2) is followed by MLE Aeration Units, consisting of a pre-anoxic zone and aerobic zone, then a Flow Distribution Box for Secondary Clarifiers (DB3). A Return Activated Sludge/Waste Activated Sludge (RAS/WAS) Pump Station will be provided to remove or recycle sludge from the Secondary clarifiers.
- Secondary Clarifiers: The existing three small-diameter secondary clarifiers have a number of problems and deficiencies. Under the anticipated flow increase, flow distribution among these three clarifiers is almost impossible and the RAS/WAS pumping systems must be replaced. The existing three secondary clarifiers will be abandoned and two larger circular secondary clarifiers of diameter 45ft (typically 30-100ft) will be constructed.
- Secondary Effluent Pump Station: To meet increased flow demands, the two existing constant speed pumps will be replaced with four new pumping units driven through a variable frequency drive to convey the flow to the filters.
- Effluent Polishing Filters: Three more continuous backwash upflow (DynaSand) filters identical to the existing will be added to provide the filtering rates of 2.7 and 5.3 gpm/sf at average and peak flows, respectively, to meet new flow capacity.
- UV Disinfection: The existing Trojan UV3000 plus ultraviolet disinfection system with 36 UV bulbs is to remain in service. To meet anticipated flow increase, a new Trojan UV3000 plus system with an additional 36 UV bulbs will be placed upstream of the existing UV system in series. With a new UV system added, the total UV system capacity will be 3.2 mgd based on 60% UV transmittance. If the UV transmittance increases to 65%, the UV system can handle a peak design flow of 3.6 mgd.
- Sludge Treatment Facilities: Sludge treatment and handling facilities consisting of WAS thickening, anaerobic digestion, and mechanical dewatering will be provided. Mechanically dewatered sludge will be solar dried and stored on the existing sludge drying beds prior to final disposal at a landfill.

ADDRESSING THE REGULATORY REQUIREMENTS

- Under the NPDES Permit and Final Effluent Limitations, the effluent parameters of BOD (5-day @ 20°C), TSS, and Ammonia, Total (as N) will remain under their respective limits due to the implementation of the new MLE process and secondary clarifiers. Ammonia removal will increase in the MLE activated sludge process to meet the NPDES standards.
- The Escherichia coli (E. Coli) parameter will be achieved by the addition of 36 new disinfecting UV lamps (in series with the existing 36 lamps) for a total of 72 UV lamps in the disinfection process.
- Total Chlorine Residual of the effluent will be eliminated due to the use of UV disinfection rather than chlorine disinfection.

SLUDGE PROCESSING AND HANDLING

Sludge treatment and handling facilities consist of a RAS/WAS pump station, following the secondary clarifiers. The WAS from the pump station is thickened and becomes TWAS, which is blended with sludge from the primary clarifiers in a blending tank and then enters the anaerobic digestion tank(s). After digestion, the digested sludge (DS) undergoes mechanical dewatering by belt press. The dewatered sludge will be solar dried and stored on the existing sludge drying beds prior to final disposal at a landfill. The RAS from RAS/WAS pump station is returned to the DB2 where it will be recycled to the activated sludge process. The thickener overflow from gravity belt thickener (GBT), supernatant from digestion, and centrate from belt press will all be pumped to the DB1 and recycled back to the primary clarifiers.

PROCESS FLOW DIAGRAM

DESIGN CRITERIA

Table 1. New Wastewater Plant Design Criteria

Facility	Value	Remarks
Wastewater Flow		
Plant Flow, Average, mgd	1.8	New design flows
Plant Flow, Peak Day, mgd	3.6	New design flows
Primary Clarifiers		
Number, each	2	
Diameter, feet	35	
MLE Process		
Aerobic Zone		
Width of each tank, feet	30	2 tanks side by side
Aeration Tank Volume, cf	102266	Approx. 0.765 Mgal
Length of each tank, feet	90	
Anoxic Zone		
L x W x SWD, feet	45 x 30 x 20	
Secondary Clarifiers		
Number, each	2	
Diameter, feet	45	
Effluent Filter Feed Pump Station		
Number, each	4	2 existing are replaced with 4 new
Dyna-sand Filtration		
Number, each	6	3 existing, 3 new
Diameter, feet	10	78.5 sf/filter
Loading, 6 filters in Service, gpm/sf	2.7	At 1.8 mgd
Loading, 5 filters in Service, gpm/sf	3.24	At 1.8 mgd
UV Disinfection		
Number of UV banks, each	4	2 existing, 2 new
Number of Modules/bank, each	3	6 bulbs/module and 250 watts/bulb
Number of bulbs, total	72	Doubled existing
UV Transmission, %	65	At wavelength 254 nm
Miscellaneous		
Effluent Flow Meter, each	1	6 inch magnetic
Sludge Drying Beds (existing), each	3	Each 70 ft x 36 ft
Aerobic Digester Volume, cf	22,670	Approx. 150,000 gallon working volume

DESIGN CALCULATIONS

Primary Clarifier (2)

• Shape: Circular

• Average flow, mgd = 1.8

• Peak flow, mgd = 3.6

• SWD = 12 feet

• Overflow rate, avg, gal/ft²-d = 1000

• Overflow rate, peak, gal/ft²-d = 2500

Calculations

Area

- $Avg flow: A = \rightarrow use this value$

- Peak flow: A =

For 2 clarifiers:

For circular clarifier:

 $900 \, sf =$

Volume of each clarifier = **=86355 gallons**

HRT:

- Avgflow =

- Peak flow =

MLE Process/Aeration Tank Volume

• SRT = 10 days

• SWD = 20 feet

• Width = 30 feet

• MLSS = 3,500 mg/L

Table 2. Kinetic Coefficients

Y	0.45
b	0.12 d-1
fd	0.15
Yn	0.15
bn	0.17 d-1

Wastewater table

Calculate nbVSS

$$bCOD = 1.6(195) = 312 \text{ mg/L}$$

 $nbsCODe = sCOD - 1.6sBOD = 192 - 1.6*113 = 11 \text{ mg/L}$
 $nbpCOD = COD-bCOD-nbsCODe = 443 - 312 - 11 = 110 \text{ mg/L}$

 $VSS_{COD} =$

nbVSS =

Calculate $P_{x,VSS}$

$$P_{x,VSS} =$$

=

$$= 958 + 172 + 23 + 646 = 1,804$$
 lb VSS/d

Checking NOX assumption

$$NOX = TKN-Ne-0.12P_{x,bio}/Q = 43-0.4-0.12*(1134+204+24)/(1.8*8.34) = 33.4 \text{ mg/L} \sim 34 \text{ mg/L} \text{ ok}$$

Calculate P_{x,TSS}

$$P_{x,TSS} =$$

$$= 1127 + 202 + 33 + 646 + 225 = 2233$$
 lb TSS/d

Calculate Q for WAS

$$P_{x,TSS} = Q_w X_r$$

Calculate Volume

Aeration tank volume =

Secondary Clarifiers (2)

- Shape: Circular
- Flow_{peak} = 3.6 mgd
- Flow_{average} = 1.8 mgd
- SWD = 15 ft
- $SOR = 600 \text{ gal/ft}^2\text{-d}$
- MLSS = 3500 mg/L
- $X_R = 7000 \text{ mg/L}$

Calculations

```
Diameter (clarifier) = 45 ft<sup>2</sup>

Total Area = 3181 ft<sup>2</sup>

SOR/SLR Check

SOR (2 clarifiers, peak flow) =

SOR (2 clarifiers, avg flow) =

R =

SLR (2 clarifiers, peak flow) =
```

Dyna-sand Filters

SLR (2 clarifiers, avg flow) =

Average Loading, all filters in service

Average Loading, one filter out of service

Peak Loading, all filters in service

Peak Loading, one filter out of service

UV Disinfection

CALCULATIONS FOR OXYGEN DEMAND AND AIR FLOW RATE

Aeration tank volume (ft³) =

Oxygen Requirement (O₂/d)

```
\begin{split} R_o &= Q(S-S_o) - 1.42 P_{x,Bio} + 4.57 Q(NO_x) \\ R_o &= (1.8 \text{ mgd}) * (312 \text{ mg/L} - 0) * 8.34 - 1.42 * [(958 + 172) \text{ lb/d}] + 4.57 * (1.8 \text{ mgd}) * (34 \text{ mg/L}) * 8.34 \\ R_o &= \textbf{5,412 lb O}_2/\textbf{d} = \textbf{226 lb O}_2/\textbf{h} \;\; (=OTR_f) \end{split}
```

Air flowrate (cfm)

Assuming:

- SOTR = $2.5 * OTR_f$
- Air density at $20^{\circ}\text{C} = 0.0745 \text{ lb/ft}^3$
- Oxygen transfer efficiency (SOTE) = 38%

$$SOTR = 2.5 * OTR_f = 2.5 * 226 lb O_2/h = 565 lb/h$$

Air flowrate =

Air flowrate = $86,098 \text{ ft}^3/\text{h} = 1,435 \text{ ft}^3/\text{min}$

PIPE SIZING

Table 3. Pipe Sizing

Average PE, SE	1.8	mgd					
Peak PE, Se	3.6	mgd					
Peak RAS	3.6	mgd					
Peak ML	7.2	mgd					
WAS	0.03825	mgd					
Pipe	Peak Q (mgd)	split	Q each (mgd)	Q each (cfs)	Diameter (inch)	Area (sf)	Velocity (ft/s)
Wastewater	3.6	1	3.6	5.571	18	1.7671	3.15
PI or PE	3.6	2	1.8	2.7855	12	0.7854	3.55
ML	7.2	2	3.6	5.571	14	1.0690	5.21
IR	10.8	2	5.4	8.3565	18	1.7671	4.73
SE 1	3.6	2	1.8	2.7855	12	0.7854	3.55
SE 2	3.6	1	3.6	5.571	16	1.3963	3.99
RAS	3.6	1	3.6	5.571	16	1.3963	3.99
WAS	0.03825	1	0.03825	0.059191875	2.5	0.0341	1.74
Secondary sludge	3.6	3	1.2	1.857	10	0.5454	3.40

GENERAL SITE LAYOUT

See next page.

MASS BALANCE

Primary Influent and Primary Effluent

PΙ

BOD =
$$(300 \text{ mg/L}) * (1.8 \text{ mgd}) * 8.34 = 4,504 \text{ lb/d}$$

TSS = $(276 \text{ mg/L}) * (1.8 \text{ mgd}) * 8.34 = 4,143 \text{ lb/d}$

PE

BOD =
$$(195 \text{ mg/L}) * (1.8 \text{ mgd}) * 8.34 = 2,927 \text{ lb/d}$$

TSS = $(110 \text{ mg/L}) * (1.8 \text{ mgd}) * 8.34 = 1,651 \text{ lb/d}$

Primary Sludge

PS

$$\begin{split} &BOD = 4,504 \text{ lb/d} - 2,927 \text{ lb/d} = \textbf{1,577 lb/d} \\ &TSS = 4,143 \text{ lb/d} - 1,651 \text{ lb/d} = \textbf{2,492 lb/d} \\ &Q_{rs} = (2,492 \text{ lb/d}) \, / \, (30,00 \text{ mg/L} * 8.34) = \textbf{0.00996 mgd} = \textbf{9,960 gpd} \\ &BOD = (1,577 \text{ lb/d}) \, / \, (0.00996 \text{ mgd} * 8.34) = \textbf{18,985 mg/L} \end{split}$$

WAS, RAS, Mixed Liquor, and Secondary Effluent

WAS

VSS =
$$(7,000 \text{ mg/L}) * (1,804 \text{ lb/d}) / (2,233 \text{ lb/d}) = 5,655 \text{ mg/L}$$

 $Q_{ws} = (2,233 \text{ lb/d}) / (7,000 \text{ lb/d} * 8.34) = 0.0382 \text{ mgd} = 38249 \text{ gpd}$

RAS

R = 1 (See Secondary Clarifier Calculation)
TSS =
$$(7,000 \text{ mg/L}) * (1.8 \text{ mgd}) * 8.34 = 105,084 \text{ lb/d}$$

VSS = $(5,655 \text{ mg/L}) * (1.8 \text{ mgd}) * 8.34 = 84,893 \text{ lb/d}$
Q = Q = 1.8 mgd
VSS = 5,655 mg/L

ML

$$Q_{ML} = Q_{PR} + Q_{L} = 1.8 \text{ mgd} + 1.8 \text{ mgd} = 3.6 \text{ mgd} = 3,600,000 \text{ gpd}$$

TSS = $(3,500 \text{ mg/L}) * (3.6 \text{ mgd}) * 8.34 = 105,084 \text{ lb/d}$

Secondary Effluent

$$Q_{\text{\tiny SE}} = Q_{\text{\tiny ML}}$$
 - $Q_{\text{\tiny C}}$ - $Q_{\text{\tiny WAS}} = 3,600,000 \text{ gpd}$ - $1,800,000 \text{ gpd}$ - $38249 \text{ gpd} = 1,761,751 \text{ gpd}$ TSS = (10 mg/L) * (1.761751 mgd) * $8.34 = 147 \text{ lb/d}$

TWAS

TWAS

```
TSS = (0.96) * (2,233 \text{ lb/d}) = 2,144 \text{ lb/d}
Q_{\tiny{TWAS}} = (2,144 \text{ lb/d}) / (50,000 \text{ mg/L} * 8.34) = 0.00514 \text{ mgd} = 5,141 \text{ gpd}
VSS = (50,000 \text{ mg/L}) * (1,804 \text{ lb/d} / 2,233 \text{ lb/d}) = 40,349 \text{ mg/L}
```

```
VSS = (1,804 \text{ lb/d}) * (0.96) = 1,732 \text{ lb/d}
```

Blended Sludge

BS (PS + TWAS)

 $\begin{array}{l} Q_{\mbox{\tiny ASS}} = Q_{\mbox{\tiny FS}} + Q_{\mbox{\tiny TWAS}} = 9,960 \ \mbox{gpd} + 5,141 \ \mbox{gpd} = \textbf{15,101} \ \mbox{gpd} \\ TSS = 2,144 \ \mbox{lb/d} + 2,492 \ \mbox{lb/d} = \textbf{4,636} \ \mbox{lb/d} \\ TSS = (4,636 \ \mbox{lb/d}) \ / \ (0.015101 \ \mbox{mgd} * 8.34) = \textbf{36,810} \ \mbox{mg/L} \\ VSS = 0.75 * (2,492 \ \mbox{lb/d}) + 1,732 \ \mbox{lb/d} = \textbf{3,601} \ \mbox{lb/d} \\ VSS = (3,601 \ \mbox{lb/d}) \ / \ (0.015101 \ \mbox{mgd} * 8.34) = \textbf{28,592} \ \mbox{mg/L} \\ \end{array}$

Digested Sludge

<u>DS</u>

 $\begin{array}{l} Q_{\mbox{\tiny ISS}} = Q_{\mbox{\tiny ISS}} = 15,\!101 \ \mbox{gpd} \\ VSS = (0.45) * (3,\!601 \ \mbox{lb/d}) = 1,\!620 \ \mbox{lb/d} \\ VSS = (1,\!620 \ \mbox{lb/d}) \, / \, (0.015101 \ \mbox{mgd} * 8.34) = 12,\!867 \ \mbox{mg/L} \\ TSS = 4,\!636 \ \mbox{lb/d} - (3,\!601 \ \mbox{lb/d} - 1,\!620 \ \mbox{lb/d}) = 2,\!655 \ \mbox{lb/d} \\ TSS = (2,\!655 \ \mbox{lb/d}) \, / \, (0.015101 \ \mbox{mgd} * 8.34) = 21,\!081 \ \mbox{mg/L} \end{array}$

Mechanically Dewatered Sludge and Filtrate

MDS

TSS = (0.95) * (2,655 lb/d) = 2,522 lb/d $Q_{MDS} = (2,522 \text{ lb/d}) / (240,000 \text{ mg/L} * 8.34) = 0.0012599 \text{ mgd} = 1,260 \text{ gpd}$

Filtrate

 $Q_r = Q_{os} - Q_{mos} = 15,101 \text{ gpd} - 1,260 \text{ gpd} = 13,841 \text{ gpd}$ TSS = 2,655 lb/d - 2,522 = 133 lb/d TSS = (133 lb/d) / (0.013841 mgd * 8.34) = 1,152 mg/L BOD = (300 mg/L) * (0.013841 mgd) * 8.34 = 35 lb/d

Thickener Overflow

TO

 $Q_{\text{\tiny TOS}} = Q_{\text{\tiny WAS}}$ - $Q_{\text{\tiny TWAS}} = 38,249 \text{ gpd}$ - 5,141 gpd = 33,108 gpd TSS = 2,233 lb/d - 2,144 lb/d = 89 lb/d TSS = (89 lb/d) / (0.033108 mgd * 8.34) = 322 mg/L BOD = (300 mg/L) * (0.033108 mgd) * 8.34 = 83 lb/d

1st Iteration without considering sidestream under Monthly Peak Loading Conditions Primary Effluent Influent w/o considering sidestream Mixed Liquor Secondary Effluent Q = 3,600,000 Q = Q = 3,600,000 gdp 7,200,000 gdp Q = 3,561,751 gdp BOD = BOD (5) = BOD = BOD = 300 m g / L195 mg/L mg/L mg/LTSS = TSS = TSS = 276 mg/L 110 mg/L $3,500^{1}$ mg/L 10^{2} mg/L TSS = BOD (5) = lb/d BOD = lb/d BOD = lb/d BOD = lb/d 8,287 3,303 lb/d 297 TSS = lb/d TSS = lb/d TSS = 210,168 TSS = lb/d Secondary Primary Aeration Tank Clarifier Clarifier Thickener Overflow 3,600,000 gdp Primary Sludge Q = 33,108 gdp WAS gdp VSS = 5,655 mg/L Q = 19,920 BOD (5) = 300⁵ gdp mg/L Q= 38,249 7000¹ mg/L BOD = 18,973 TSS = mg/L TSS = 322 mg/LVSS = 5,655 mg/L TSS = 30,000³ mg/LVSS = lb/d 169,786 mg/L BOD (5) = lb/d TSS = $7,000^{1}$ 210,168 lb/d lb/d TSS = BOD = 3,152 TSS = 89 lb/d lb/d 1,804 4,984 TSS = lb/d 2,233 TSS = lb/d VSS = 75% of TSS GBT Filtrate TWAS Q = 23,106 gdp Solid Capture Q = 5,141 gdp BOD (5) = 300⁵ mg/LTSS = VSS = 40,349 1,069 mg/L mg/L mg/L TSS = 50,000³ BOD (5) = lb/d Blending Tank 206 VSS = 1,732 lb/d TSS = lb/d Blended Sludge (PS + TWAS) 2,144 TSS = lb/d Q = 25,061 gdp 26,171 mg/L TSS = 34,104 mg/L VSS = lb/d 5,470 TSS = 7,128 lb/d Anaerobic Belt Press 55% Digestor 95% Solids removal of VSS Capture Digsted Sludge Q = 25,061 VSS = 11,779 mg/L· Values calculated from R = 1. See Secondary Clarifier calculation. Mechanically Dewatered Sludge Typical Secondary Effluent TSS value. 19,712 TSS = 3,914 lb/d TSS = mg/L Typical values shown in Table 13-8. Sludge Drying Bed Q = 1,955 VSS = 2,462 lb/d gpd Typical solid concentration from belt press o dewatered sludge cake. 4,120 TSS = 24^{4} % lb/d Typical values shown in table 14-21.

HYDRAULIC GRADE-LINE

			Hydra	ulic Profi	le Calcula	ation S	Sheet	
			v	Vastewater	Treatment	Plant		
						Peak RS	Flow, mgd =	1.8
						Peak RS	Flow, cfs =	
						RAS	Flow, mgd =	1.8
						RAS	Flow, cfs =	2.79
LOCATION/COMPO	NENTS			HL	HGL	h _v	EGL	REMARKS OR REV.
High WS EL of SE I				THE	908.14	ΠV	908.14	REWEIGES OF REV.
nigii ws el di se i	SE PS TOC =	915.00		MANA MANAMANANANANANANANANANANANANANANAN	908.14	***************	900.14	
	Freeboard =	6.86	ft					
Compute for WS EL			•					
Pipe from SC to SE	PS							
A. 16" HDPE (High	Density Polyet	hylene, AV	VWA C906)					
, ,	Split Factor =	1						
Flow	Q=	1,250	gpm					
	D=		inch					
Velocity	v =	1.99						
Velocity head	$v^2/2g=$	0.062						
Pipe Length	L=	90						Hazen-Williams Eq.
C value	C =	120						Friction Headloss
Friction Headloss:	h _f =	0.10						
Minor headlosses:	11	0.10	10					0.002083 $L \frac{100}{C} \frac{^{1.85}}{D^{4.8655}} = \frac{Q^{1.85}}{D^{4.8655}}$
willor licaulosses.		k	No.					$0.002083 L \overline{C} \qquad \overline{D^{4.8655}} =$
	Exit of pipe =	1.00						Minor Headloss
En	trance of pipe =	0.50	_					WITHOUT TICALITIOSS
	90 elbow =	0.19						h_{m} $k \frac{v^{2}}{2g}$
P	Butterfly valve =	0.30						2g
	Sum =	1.19						
Minor headlosses:	h _m =	0.07						
Total headlosses:	h _T =	0.17		0.17				
B. 12" HDPE (AWV		0.17	It	0.17				
B. 12 HDFE (AW)	Split Factor =	2						
Elass			gpm					
Flow Diameter	O= D=		inch					
Velocity	v =	1.77						
	$v^{2}/2g=$							
Velocity head		0.049 110						
Pipe Length C value	L= C=	120						
		0.14						
Friction Headloss: Minor headlosses:	h_f =	0.14	It					
iviinor neadiosses:		k	No.					
	Exit of pipe =	1.00						
En	trance of pipe =	0.50						
1511	90 elbow =	0.30						
16"	'-12" Reducer =	0.19						
10	Sum =	0.99						
Minor headlosses:	h _m =	0.05						
Total headlosses:	h _T =	0.18		0.18				
WS EL Downstream				0.10	908.50		908.50	
	Veir EL at SC =				700.50		700.30	
Compute for WS EL		- 						
90-deg V-notch Wei								pg. 30, Isco Open
Clarifier diameter	=	60	ft					FG. 50, 1000 Open
Weir diameter	=	56	ft					
Weir Nos.	=	352						6" interval v-notch weirs
$Q = 2.5H^{2.5}$								pg. 30, Isco Open

Sn	lit Factor =	2						Channel Flow
-	Clarifier =	1.3925						Measurement Handbook
	per Weir =	0.004						3rd Ed.
	n weir. H =	0.08		0.08				
WS EL at SC	. , , , , , , ,		- LV	0.00	909.07	90	9.07	
Secondary Clarit	fier TOC =	911.57						
	reeboard =	2.50						
Compute for WS EL Do	wnstream of	DB3 Wei	r					
Pipe from SC to DB3								
<i>16" HDPE (AWWAC900</i>	6)							
	lit Factor =	2						
ML (Q+RAS) Flo	w per SC =	1,250						
	D =	16	inch					
Velocity	v =	1.99	ft/s					
Velocity head	$v^{2}/2g=$	0.062						
Pipe Length	L=	80	ft					
C value	C =	120						
Friction Headloss:	h _f =	0.09						
Minor headlosses:								
		k	No.					
Ex	it of pipe =	1.00	1					
	ce of pipe =	0.50	1					
	90 elbow =	0.19	3					
Buttre	efly valve =	0.30	1					
	Sum=	2.37						
Minor headlosses:	h _m =	0.15						
Total headlosses:	h _T =	0.2345		0.23				
WS EL Downstream of l	DB3 Weir				909.31	90	9.31	
Weir E	L at DB3 =	909.81						
Compute for WS EL Up	stream of DI	B3 Weir						
ML ((Q+RAS) =	5.57	cfs					pg. 34, Isco Open
Rectuangular weir w/o ei	nd contractio	ons						Channel Flow
$Q = 3.330LH^{1.5}$								Measurement Handbook
	of weir, L=	5	ft					
-	n weir, H=	0.48	ft	0.48				
WS EL Upstream of DB	3 Weir				910.29	91	0.29	
D	B3 TOC =	912.79						
	reeboard =	2.50						
Compute for WS EL dov		Aeration	Tank Weir					
Pipe from DB3 to Aerati								
16" HDPE (AWWAC900								
	lit Factor =	2						
(Q+RAS) per Aera		1,250						
	D=		inch					
Velocity	v =	1.99						
Velocity head	$v^2/2g=$	0.062	ft					
Pipe Length	L=	210	ft					
C value	C =	120						
Friction Headloss:	h _f =	0.23						
				1	1	ı		1

	D : 0 :	k						
_	Exit of pipe =	1.00						
ŀ	Entrance of pipe =	0.50						
	90 elbow =	0.19						
	Buttrefly valve =	0.30						
	Sum=	2.37						
Minor headlosses:	h _m =	0.15						
Total headlosses:	h _T =	0.38		0.38				
WS EL Downstrea					910.67	910	.67	
	t Aeration Tank =			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Compute for WS I		• •)				
	$ML(Q+Q_r) =$	5.57	cfs					pg. 34, Isco Open
Rectuangular weir	w/o end contraction	ons						Channel Flow
$Q = 3.330LH^{1.5}$								Measurement Handbook
	ength of weir, L=	30	ft					
F	Head on weir, H =	0.15	ft	0.15				
WS EL at Aeratio	n Tank (Upstrean	of Aerat	on Tank We	ir)	918.63	918	3.63	
Headloss through	Aeration Tanks =	0.30	ft	0.3000				Assumed
WS EL at Anoxic					918.93	918	.93	
Aerat	ion Tank TOC =	921.43						
	Freeboard =	2.50						
Compute for WS I		f DB2 We	ir					
Pipe from Aeratio								
16" HDPE (AWW.								
	Split Factor =	2						
$ML(Q+Q_r)$ pe	r Aeration Tank =	1,250						
	D=		inch					
Velocity	v =	1.99	ft/s					
Velocity head	$v^2/2g=$	0.062	ft					
Pipe Length	L=	70	ft					
C value	C =	120						
Friction Headloss:	h _f =	0.08						
Minor headlosses:								
		k	No.					
	Exit of pipe =	1.00	1					
I	Entrance of pipe =	0.50	1					
	90 elbow =	0.19	2					
	butterfly valve =	0.30						
	Sum=	2.18						
Minor headlosses:	h _m =	0.13						
Total headlosses:	h _T =	0.21		0.21				
WS EL Downstream of DB2 Weir				919.14	919	.14		
	Weir EL at DB2 =	919.64						
Compute for WS I	EL Upstream of D	B2 Weir						
	$ML(Q + Q_r) =$	5.57	cfs					pg. 34, Isco Open
Rectuangular weir		ons						Channel Flow
$Q = 3.330LH^{1.5}$								Measurement Handbook
	ength of weir, L=	5	ft					
								·

п	ead on weir, H=	0.48	ft	0.48			
WS EL Upstream of		0.70	II	0.48	920.12	920.12	
WS EL Opstream (DB2 TOC =	922.62			720.12	720,12	
	Freeboard =	2.50	ft				
Compute for WS F	·						
Compute for WS EL Downstream of PC V-Notch Weir Pipe from DB2 to Primary Clarifier							
12" HDPE (AWWA							
Split Factor =		2					
	Q per PC =		gpm				
	D=		inch				
Velocity	v =	1.77					
Velocity head	$v^{2}/2g=$	0.049					
Pipe Length	L=	90					
C value	C =	120					
Friction Headloss:	h₁=	0.11					
Minor headlosses:	11[0.11					
ivinioi neadiosses.		k	No.				
	Exit of pipe =	1.00	1				
F	ntrance of pipe =	0.50	1				
	90 elbow =	0.30	2				
	butterfly valve =	0.30	1				
	Sum =	2.18					
Minor headlosses:	h _m =	0.11					
Total headlosses:	h _T =	0.22		0.22			
WS EL Downstrea			otah Wain	0.22	920.34	920.34	
	Weir EL at PC = 1		otth wen		720.54	720.34	
Compute for WS E			/-Notch Weir)				
90-deg V-notch We		im or re-v	-ivotch vven j				pg. 30, Isco Open
PC diameter	=	50	ft				pg. 50, iseo Open
Weir diameter	=	46	ft				
Weir Nos.	=	289					6" interval v-notch weirs
1100.		20,					o maeryary moterrityems
$Q = 2.5H^{2.5}$							pg. 30, Isco Open
Q = 2.311	Split Factor =	2					Channel Flow
Flo	w per Clarifier =	1.3925	efe				Measurement Handbook
	Flow per Weir =	0.005					3rd Ed.
	ead on weir, H =	0.003		0.08			Sid Ed.
WS EL at PC		0.00		3.00	920.92	920,92	
	Clarifier TOC =	923.42				22022	
,	Freeboard =	2.50	ft				
Compute for WS E							
Pipe from PC to DB1							
12" HDPE (AWWAC906)							
	Split Factor =	2					
(Q)+RAS) per PC =	625	gpm				
	D=		inch				
Velocity	v =	1.77					
Velocity head	$v^{2}/2g=$	0.049					
Pipe Length	L=	60					
	C=	120					

Friction Headloss:	h _f =	0.07					
Minor headlosses:							
		k	No.				
	Exit of pipe =	1.00	1				
E	Entrance of pipe =	0.50	1				
	90 elbow =	0.19	2				
	butterfly valve =	0.30	1				
	Sum=	2.18					
Minor headlosses:	h _m =	0.11					
Total headlosses:	h _T =	0.18		0.18			
WS EL Downstrea	m of DB1 Weir				921.10	921.10	
Ţ	Veir EL at DB1 =	921.60					
Compute for WS E	L Upstream of DI	31 Weir					
	Q =	2.79	efs				pg. 34, Isco Open
Rectuangular weir	w/o end contractio	ns					Channel Flow
$Q = 3.330LH^{1.5}$							Measurement Handbook
Length of weir, L = 3 ft							
Head on weir, $H = 0.43$ ft							
WS EL Upstream of DB1 Weir					922.03	922.03	
DB1 TOC = 924.53							
	Freeboard =	2.50	ì				

			Hydra	ulic Profi	le Calcula	ation S	heet	
			·	Vastewater '				
			· · · · · ·	vastewater	3.6			
							Flow, cfs = Flow, mgd =	
					5.5			
LOCATION/COMPO	ONENTS			HL	HGL	h _v	EGL	REMARKS OR REV.
High WS EL of SE			!		908.14	·	908.14	
Ingii WS EE OF SE	SE PS TOC =	915.00			700.11		700.11	
	Freeboard =	6.86	ft					
Compute for WS El	L Downstream o	f SC V-No	tch Weir					
Pipe from SC to SE								
A. 16" HDPE (Hig	h Density Polyet	hylene, AV	VWA C906)					
	Split Factor =	1						
Flow	Q=	2,500						
	D=		inch					
Velocity	v =	3.99						
Velocity head	$v^2/2g=$							
Pipe Length	L=	90						Hazen-Williams Eq.
C value	C =	120						Friction Headloss
Friction Headloss:	h _f =	0.36	ft					100 1.85 01.85
Minor headlosses:								$0.002083 L \frac{100}{C} \frac{^{1.85}}{D^{4.8655}} = \frac{Q^{1.85}}{D^{4.8655}}$
		k						
	Exit of pipe =	1.00						Minor Headloss
Eı	ntrance of pipe =	0.50						h_{m} $k\frac{v^{2}}{2g}$
,	90 elbow =	0.19						h_{m} $k\frac{v}{2g}$
J	Butterfly valve =	0.30						
)	Sum =	1.19						
Minor headlosses:	h _m =	0.29						
Total headlosses:	$h_T=$	0.65	ft	0.65				
B. 12" HDPE (AW								
	Split Factor =	2						
Flow	O=	1,250						
Diameter	D=		inch					
Velocity	v =	3.54						
Velocity head	$v^2/2g=$							
Pipe Length	L=	110						
C value	C =	120						
Friction Headloss:	h _f =	0.49	Ιΰ					
Minor headlosses:		1	NT.					
	Exit of pipe =	1.00						
Fı	ntrance of pipe =	0.50						
	90 elbow =	0.30						
16	"-12" Reducer =	0.19						
	Sum =	0.99						
Minor headlosses:	h _m =	0.19						
Total headlosses:	h _T =	0.69		0.69				
WS EL Downstrear				0.09	909.48		909.48	
	Weir EL at SC =							
Compute for WS El								
90-deg V-notch Wei								pg. 30, Isco Open
Clarifier diameter	=	60	ft					
Weir diameter	=	56	ft					
Weir Nos.	=	352						6" interval v-notch weirs
$Q = 2.5H^{2.5}$								pg. 30, Isco Open

Spli	t Factor =	2					Channel Flow
Flow per C		2.7850	cfs				Measurement Handbook
-	er Weir =	0.008					3rd Ed.
-	weir. H =	0.10		0.10			
WS EL at SC	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.10	910.08	910.08	
Secondary Clarifie	er TOC =	912.58					
	eeboard =	2.50					
Compute for WS EL Dow	nstre am of	DB3 Wei	r				
Pipe from SC to DB3							
16" HDPE (AWWAC906)							
	t Factor =	2					
ML (Q+RAS) Flow	per SC =	2,500					
	D =	16	inch				
Velocity	v =	3.99	ft/s				
Velocity head	$v^2/2g=$	0.247					
Pipe Length	L=	80	ft				
C value	C =	120					
Friction Headloss:	h _f =	0.32					
Minor headlosses:							
		k	No.				
Exit	of pipe =	1.00	1				
	of pipe =	0.50	1				
90	0 elbow =	0.19	3				
Buttrefl	ly valve =	0.30	1				
	Sum=	2.37					
Minor headlosses:	h _m =	0.58					
Total headlosses:	h _T =	0.9033		0.90			
WS EL Downstream of Di					910.98	910.98	
	at DB3 =	911.48					
Compute for WS EL Upst	ream of DI	B3 Weir					
ML (C)+RAS) =	11.14	cfs				pg. 34, Isco Open
Rectuangular weir w/o end	l contractio	ons					Channel Flow
$Q = 3.330LH^{1.5}$							Measurement Handbook
	weir, L=	5	ft				
-	weir, H=	0.76		0.76			
WS EL Upstream of DB3	Weir				912.25	912.25	
DB	3 TOC =	914.75					
Fre	eeboard =	2.50	ft				
Compute for WS EL down		Aeration	Tank Weir				
Pipe from DB3 to Aeratio							
16" HDPE (AWWAC906)							
	t Factor =	2					
(Q+RAS) per Aeration		2,500					
	D=		inch				
Velocity	v =	3.99	ft/s				
Velocity head	$v^{2}/2g=$	0.247	ft				
Pipe Length	L=	210	ft				
C value	C =	120					
Friction Headloss:	h _f =	0.84					
Minor headlosses:							

		k	No.				
	Exit of pipe =	1.00	1				
Fn	trance of pipe =	0.50	1				
	90 elbow =	0.30	3				
F	Buttrefly valve =	0.30	1				
	Sum =	2.37	1				
Minor headlosses:	h _m =	0.58					
Total headlosses:	h _T =	1.42		1.42			
WS EL Downstream				1,12	913.67	913.6	7
	Aeration Tank =				21000	71010	
Compute for WS EI			eam of Weir)				
_	$ML(Q+Q_r) =$	11.14					pg. 34, Isco Open
Rectuangular weir w							Channel Flow
$Q = 3.330LH^{1.5}$							Measurement Handbook
	gth of weir, L=	30	ft				Weasti ement Handbook
	ad on weir, H =	0.23		0.23			
WS EL at Aeration				0.23	918.71	918.7	
,	postotti	,	1, (1)		, , , , , ,	723.7	
Headloss through A	eration Tanks =	0.30	ft	0.3000			Assumed
WS EL at Anoxic Zo	one				919.01	919.0	
Aeratio	n Tank TOC =	921.51					
	Freeboard =	2.50	ft				
Compute for WS EI	Downstream o	f DB2 Wei	r				
Pipe from Aeration	Tank to DB2						
16" HDPE (AWWA	C906)						
	Split Factor =	2					
$ML(Q+Q_r)$ per A	Aeration Tank =	2,500	gpm				
	D=	16	inch				
Velocity	v =	3.99	ft/s				
Velocity head	$v^{2}/2g=$	0.247	ft				
Pipe Length	L=	70	ft				
C value	C =	120					
Friction Headloss:	h₁≔	0.28					
Minor headlosses:							
		k	No.				
	Exit of pipe =	1.00	1				
En	trance of pipe =	0.50	1				
	90 elbow =	0.19	2				
ŀ	outterfly valve =	0.30	1				
	Sum=	2.18					
Minor headlosses:	h _m =	0.54					
Total headlosses:	$h_T =$	0.82		0.82			
WS EL Downstrean					919.83	919.83	3
	eir EL at DB2 =	920.33					
Compute for WS EI	-						
	$ML(Q+Q_r) =$	11.14	cfs				pg. 34, Isco Open
Rectuangular weir w	o end contracti	ons					Channel Flow
$Q = 3.330LH^{1.5}$							Measurement Handbook
	gth of weir, L=	5	ft				

T-	lead on weir, H =	0.76	ft	0.76			
WS EL Upstream		0.70	It	0.70	921.09	921.09	
We have a postroum	DB2 TOC =	923.59			22103	>=1,0>	
	Freeboard =	2.50	ft				
Compute for WS I							
Pipe from DB2 to	Primary Clarifier						
12" HDPE (AWW.							
	Split Factor =	2					
	Q per PC =	1,250	gpm				
	D=	12	inch				
Velocity	v =	3.54	ft/s				
Velocity head	$v^{2}/2g=$	0.195	ft				
Pipe Length	L=	90					
C value	C =	120					
Friction Headloss:	h _f =	0.40					
Minor headlosses:							
		k	No.				
	Exit of pipe =	1.00	1				
I	Entrance of pipe =	0.50	1				
	90 elbow =	0.19	2				
	butterfly valve =	0.30	1				
	Sum=	2.18					
Minor headlosses:	h _m =	0.43					
Total headlosses:	h _T =	0.83		0.83			
WS EL Downstrea	m of Primary Cla	rifier V-N	otch Weir		921.92	921.92	
	Weir EL at PC =						
Compute for WS I	EL at PC (Upstrea	am of PC V	-Notch Weir)				
90-deg V-notch W	eir						pg. 30, Isco Open
PC diameter	=	50	ft				
Weir diameter	=	46	ft				
Weir Nos.	=	289					6" interval v-notch weirs
$Q = 2.5H^{2.5}$							pg. 30, Isco Open
	Split Factor =	2					Channel Flow
Flo	ow per Clarifier =	2.7850	cfs				Measurement Handbook
	Flow per Weir =	0.010	cfs				3rd Ed.
	Head on weir, H =	0.11	ft	0.11			
WS EL at PC					922.53	922.53	
Primary	Clarifier TOC =	925.03					
	Freeboard =	2.50			 		
Compute for WS EL Downstream of DB1 Weir							
Pipe from PC to DB1							
12" HDPE (AWWAC906)							
Split Factor =		1 250					
(()+RAS) per PC =	1,250					
\$7.1	D=		inch		+ +		
Velocity	v =	3.54					
Velocity head	v ² /2g=	0.195					
Pipe Length	L=	60					
C value	C=	120		L		L	

Friction Headloss:	h _f =	0.27					
Minor headlosses:							
		k	No.				
	Exit of pipe =	1.00	1				
E	entrance of pipe =	0.50	1				
	90 elbow =	0.19	2				
	butterfly valve =	0.30	1				
	Sum=	2.18					
Minor headlosses:	h _m =	0.43					
Total headlosses:	h _T =	0.69		0.69			
WS EL Downstrea	WS EL Downstream of DB1 Weir					923.22	
Ţ	Weir EL at DB1 =	923.72					
Compute for WS E	L Upstream of DI	31 Weir					
	Q =	5.57	efs				pg. 34, Isco Open
Rectuangular weir	w/o end contractio	ns					Channel Flow
$Q = 3.330LH^{1.5}$							Measurement Handbook
L							
F	0.68						
WS EL Upstream of DB1 Weir					924.40	924.40	
DB1 TOC = 926.90							
	Freeboard =	2.50	ft				

APPENDIX: DESIGN PROJECT ASSIGNMENT