AP

Def

- 1. Discrete time Markov chain
- 2. Continuous time random process
- 3. Jump time J_n
- 4. Jump chain Y
- 5. CTMC
- 6. Transition probability, time-homogeneous
- 7. P(t + s) = P(t)P(s)
- 8. Holding time S_x : Memoryless property
- 1. Poisson Process $[S_i \sim exp(\lambda)]$
- (Xs+t-Xs)+>,0. 2. Markov property for Poisson process / strong markov
- 3. Three equivalent def: Holding time, infinitesimal, X_t
- 4. Superposition (Def 3)
- 5. Thinning (Def 2)
- 6. Conditional on the event $(X_t = n)$, we have $f(t_1,\ldots,t-n)=\frac{n!}{t^n}1(0\leq t_1\leq\ldots\leq t_n\leq t)$
- 1. Birth Process, [$S_i \sim exp(q_i)$], simple birth process
- 2. $T=inf_kT_k$, $T\sim Exp(\sum_kqk)$; The infimum is attained at a point T_K almost surely, and $P(K=n)=q_n/\sum_k qk$; T and K are independent
- 3. $\zeta := \sum_n S_n < \infty$ explosion
- 4. Explosiveness equivalence in $\sum \frac{1}{g_i}$
- 5. Equivalent three defs
- 1. Q-matrix
- 2. def of minimal CTMC with Q-matrix and initial distribution
- 3. Three constructions
- 4. Non-explosive if three conditions

(a) Yisa
(b) Condition on Your Yn,
SI.... Shall are indep in Exp(Qyi.)

- 1. Kolmogorov's forward & backward equations
- 2. Finite set $P(t) = e^{tQ}$
- 3. Let I be a finite state space and Q be a matrix. Then it is a Q-matrix iff $P(t) = ^tQ$ is a stochastic matrix for all t.
- 4. Let X be a right-continuous process with values in a finite set I, and let Q be a Q-matrix on
- I. Then the following are equivalent
 - 1. Class structure
 - 2. Recurrent and transient

3. x is recurrent for X if and only if $\int_0^\infty p_{xx}(t)dt=\infty$, and x is transient for X if and only if $\int_0^\infty p_{xx}(t)dt < \infty$

- 4. If |I| is finite, then $\lambda Q=0$ if and only if $\lambda P(s)=\lambda$ for all $s\geq 0$
- 5. Positive recurrent equivalent to non-explosive + invariant distribution

inv ton Y

N = 9TL 1

not necessary
distribution,
i ust necessary

Queue

- 1. $M/M/1: q(i,i+1)=\lambda, q(i,i-1)=\mu; M/M/\infty: q(i,i+1)=\lambda, q(i,i-1)=i\mu$
- 2. Let $\rho = \lambda/\mu$. Then the queue length X (for a M/M/1 process) is transient if and only if ho>1, recurrent if and only if $ho\leq 1$ and positive recurrent if and only if ho<1. X is nonexplosive. In the positive recurrent case, the invariant distribution is $\pi(n) = (1ho)
 ho^n, n=0,1,\ldots$ And if ho < 1, and $X_0 \sim \pi$, then the wait time (including service time) for a customer that arrives at time t is $Exp(\mu-\lambda)$.
- 3. $M/M/\infty$, The queue length X_t is positive recurrent for all $\mu > 0, \lambda > 0$ with invariant distribution Poi(a) where $a = \lambda/\mu$ distribution $Poi(\rho)$ where $\rho = \lambda/\mu$
- 4. (Burke's Theorem). Consider an M/M/1 queue with $\mu>\lambda>0$ or an $M/M/\infty$ queue with $\mu,\lambda>0$. At equilibrium $(i.\,eX_0\sim\pi)$, D is a Poisson process of rate λ and X_t is independent of $(D_s: s \leq t)$.
- 5. (X,Y) is positive recurrent if and only if $\lambda<\mu_1$ and $\lambda<\mu_2$. In this case, the invariant distribution is given by $\pi(m,n)=(1ho_1)
 ho_1^m(1ho_2)
 ho_2^n$ where $ho_1=\lambda/\mu_1,
 ho_2=\lambda/\mu_2$
- 6. traffic equation: $ar{\lambda}_i = ar{\lambda}_i + \sum_{j=1, j
 eq i}^N \lambda_j p_{ji}$
- 7. Jackson network positive recurrent
- 8. M/G/1 queue: transition matrix, recurrent

Renewal

- 1. Definition $\ \xi$ (holding time) $\ T_n$ (jump time), N_t : renewal process
- 2. If $E\xi=1/\lambda<\infty$ then as $t o\infty,N_t/t o\lambda$ almost surely
- 3. Size-biased picking: S_i , $Y_i = S_i/S_n U$, $\hat{Y_i}$
- $P(\hat{Y} \in dy) = nyP(Y_1 \in dy)$ 4. $f_{\hat{\mathbf{v}}}(y) \propto y f_{Y1}(y)$,
- 5. Let X be a non-negative random variable with distribution μ and $EX=m<\infty$, Then the size-biased distribution of μ is $\hat{\mu}(dy)=y\mu(dy)/m$. We write \hat{X} for a random variable with distribution $\hat{\mu}$
- 6. $A(t) = t T_{N_t}, E(t) = T_{N_{t+1}} t, L(t) = T_{N_{t+1}} T_{N_t} = A(t) + E(t)$
- 7. r.v. is arithmetic $ifP(\xi \in kZ) = 1$ for some $k > 1, k \in Z$
- 8. $(L(t), E(t)) \rightarrow (\hat{\xi}, U\hat{\xi})$, $P(U\hat{\xi} \leq y) = \lambda \int_0^y P(\xi > z) dz$
- 9. Renewal Reward
- 10. (ξ_i, R_i) ; $R(t) = \sum_{i=1}^{N_t} R_i$
- 11. $R(t)/t o E[R]/E[\xi]$
- 12. $\gamma(t) o \lambda E(R\xi)$; $\gamma(t) = E[R_{N_{t+1}}]$
- 13. regenerative
- 14. Little's formula: $(au_n), N$: arrival process, W_i : waiting time(including service); long-run queue $L=\int_0^t X_s ds/t$, waiting time $W=(W_1+\ldots+W_n)/n$, arrival rate $\lambda=N_t/t$. Then $L = W\lambda$