

LECTURE 7: Multiagent Decision Making (I)

Introduction to Multi-Agent Systems (MESIIA, MIA)
URV

What are Multi-Agent Systems?

- A multiagent system contains a number of agents that:
 - interact through communication;
 - are able to act in an environment;
 - have different "spheres of influence" (which may coincide); and
 - will be linked by other (organisational) relationships.

Types of Agreement

- Multiagent encounters (game-like character)
- Voting.
- Coalition forming.
- Allocating resources (Auctions)

Utilities and Preferences

- Our Assumptions:
 - Assume we have just two agents:
 - Agents are assumed to be self-interested i.e. they have preferences over how the environment is.
 - Assume $\Omega = \{\omega 1, \omega 2, \ldots\}$ is the set of "outcomes" that agents have preferences over.
- We capture preferences by utility functions, represented as real numbers (\mathbb{R}):
- Utility functions lead to preference orderings over outcomes, e.g.:

Utility is not money. Just a way to encode preferences.

Multiagent Encounters

- We need a model of the environment in which these agents will act...
 - agents simultaneously choose an action to perform, and as a result of the actions they select, an outcome in Ω will result
 - the actual outcome depends on the combination of actions
 - assume each agent has just two possible actions that it can perform:
 - *i.e.* Ac = {C,D}, where
 - C ("cooperate") and
 - D ("defect")
- Environment behaviour given by state transformer function τ

$$\tau: \underbrace{Ac} \times \underbrace{Ac} \longrightarrow \Omega$$
 agent i's action agent j's action

Multiagent Encounters

- Here is a state transformer function
 - This environment is sensitive to actions of both
 - agents.

 With this state transformer, neither agent has any influence in this environment.

$$\tau(D,D) = \omega_1 \quad \tau(D,C) = \omega_2$$
 $\tau(C,D) = \omega_3 \quad \tau(C,C) = \omega_4$

$$\tau(D,D) = \omega_1 \quad \tau(D,C) = \omega_1$$

$$\tau(C,D) = \omega_1 \quad \tau(C,C) = \omega_1$$

$$\tau(D,D) = \omega_1 \quad \tau(D,C) = \omega_2
\tau(C,C) = \omega_2$$

Rational Action

 Suppose we have the case where both agents can influence the outcome, and they have the following utility functions:

$$u_i(\omega_1)=1$$
 $u_i(\omega_2)=1$ $u_i(\omega_3)=4$ $u_i(\omega_4)=4$ $u_i(\omega_1)=1$ $u_i(\omega_2)=4$ $u_i(\omega_3)=1$ $u_i(\omega_4)=4$

With a bit of abuse of notation:

$$u_i(D,D) = 1$$
 $u_i(D,C) = 1$ $u_i(C,D) = 4$ $u_i(C,C) = 4$ $u_i(D,D) = 1$ $u_i(D,C) = 4$ $u_i(C,D) = 1$ $u_i(C,C) = 4$

- Then agent *i*'s preferences are $(C, C) \ge i(C, D) \ge i(D, C) \ge i(D, D)$
- In this case, what should i do?
- i prefers all outcomes that arise through C over all outcomes that arise through D.
 - Thus, C is the rational choice for i.

Payoff Matrices

- We can characterise the previous scenario in a payoff matrix shown opposite
 - Agent i is the column player and gets the upper reward in a cell.
 - Agent j is the row player and gets the lower reward in a cell.
- Actually there are two matrices here, one (call it A) that specifies the payoff to i and another B that specifies the payoff to j.
- Sometimes we'll write the game as (A, B) in recognition of this.

In this case, *i* cooperates and gains a utility of 4; whereas *j* defects and gains a utility of only 1.

$$(C, C) \geqslant_i (C, D) \geqslant_i (D, C) \geqslant_i (D, D)$$

Solution Concepts

How will a rational agent will behave in any given scenario?

- *Play.* . .
 - Dominant strategy;
 - Nash equilibrium strategy;
 - Pareto optimal strategies;
 - Strategies that maximise social welfare.

Dominant Strategies

- Given any particular strategy s (either C or D) that agent i can play, there will be a number of possible outcomes.
 - We say s1 dominates s2 if every outcome possible by i playing s1 is preferred over every outcome possible by i playing s2.
- Thus in the game opposite, C dominates D for both players.

		i		
	de	fect	co	op
defect		1		4
	1		1	
coop		1		4
	4		4	

Dominant Strategies

- A rational agent will never play a dominated strategy.
 - i.e, a strategy that is dominated (and thus inferior) by another.
- So in deciding what to do, we can delete dominated strategies.
 - *Unfortunately*, there isn't always a unique undominated strategy.

		\imath		
	de	fect	co	op
defect		1		4
	1		1	
coop		1		4
	4		4	

Nash Equilibrium

- In general, we will say that two strategies s1 and s2 are in Nash equilibrium (NE) if:
 - under the assumption that agent i plays s1, agent j can do no better than play s2;
 - I.e. if *I* drive on the right side of the road, *you* can do no better than also driving on the right!
 - under the assumption that agent j plays
 s2, agent I can do no better than play s1.
 - I.e. if **you** drive on the right side of the road, **I** can do no better than also driving on the right!
- Neither agent has any incentive to deviate from a Nash Equilibrium (NE).

Nash Equilibrium

- Consider the payoff matrix opposite:
 - Here the Nash equilibrium (NE) is (D, D).
 - In a game like this you can find the NE by cycling through the outcomes, asking if either agent can improve its payoff by switching its strategy.

• Thus, for example, (C, D) is not a NE because i can switch its payoff from 1 to 5 by switching from C to D.

		\imath	
		defect	coop
	defect	5	(1)
i		3	2
	coop	0	0
		2	1

Nash Equilibrium

- Not every interaction scenario has a pure strategy Nash Equilibrium (NE).
 - The game opposite (upper) has two pure strategy NEs, (C, C) and (D, D)

- The game opposite has no pure strategy NE
- For every outcome, one of the agents will improve its utility by switching its strategy.

		\imath	
		defect	coop
	defect	2	1
i		1	2
	coop	0	1
		2	1

Mixed Strategy Nash equilibrium

- Matching Pennies
 - Players i and j simultaneously choose the face of a coin, either "heads" or "tails".
 - If they show the same face, then i wins, while if they show different faces, then j wins.
- NO pair of strategies forms a pure strategy NE:
 - whatever pair of strategies is chosen, somebody will wish they had done something else
- The solution is to allow mixed strategies:
 - play "heads" with probability 0.5
 - play "tails" with probability 0.5.
- This is a Mixed Nash Equilibrium strategy.

		ι		
	he	ads	ta	ils
heads		1		-1
	-1		1	
tails		-1		1
	1		-1	

Mixed Strategy Nash equilibrium

- Consider the Game Rock/Paper/Scissors
 - Paper covers rock
 - Scissors cut paper
 - Rock blunts scissors
- This has the following payoff matrix

	i						
		ro	ck	pa	per	sci	ssors
	rock		0		1		0
		0		0		1	
j	paper		0		0		1
		1		0		0	
	scissors		1		0		0
		0		1		0	

- What should you do?
 - Choose a strategy at random!

Mixed Strategies

- A mixed strategy has the form
 - play α1 with probability p1
 - play α2 with probability p2
 - ...
 - play αk with probability pk.
 - such that p1+p2+... +pk =1.

Nash's Theorem

Nash proved that every finite game has a Nash equilibrium in mixed strategies. (Unlike the case for pure strategies.)

So this result overcomes the lack of solutions; but there still may be more than one Nash equilibrium. . .

Pareto Optimality

- An outcome is said to be Pareto optimal (or Pareto efficient) if:
 - there is no other outcome that makes one agent better off without making another agent worse off.
 - If an outcome is Pareto optimal, then at least one agent will be reluctant to move away from it (because this agent will be worse off).
- "Reasonable" agents would agree to move to ω ' in this case.
 - Even if I don't directly benefit from ω' , you can benefit without me suffering.

This game has one Pareto efficient outcome: (D, D)

There is no solution in which either agent does better

Social Welfare

• The social welfare of an outcome ω is the sum of the utilities that each agent gets from ω :

$$\sum_{i \in Ag} u_i(\omega)$$

- Think of it as the "total amount of money in the system".
- As a solution concept:
 - may be appropriate when the whole system (all agents)
 has a single owner (then overall benefit of the system is
 important, not individuals)
 - It doesn't consider the benefits to individuals.
 - A very skewed outcome can maximise social welfare.

In both these games, (C, C) maximises social welfare

	\imath			
	def	ect	coc	op
defect		2		1
	2		1	
coop		3		4
	3	1	4	
			Section 2 in section 2	and the second

	ι	,		
	def	fect	co	op
defect		2		1
	2		1	
coop		3 /		7
	3	•	0	

The Prisoner's Dilemma

• Payoff matrix for prisoner's dilemma:

		i			
		def	ect	co	op
	defect		2		1
j		2		4	
	coop		4		3
		1		3	

- Top left: If both defect, then both get punishment for mutual defection.
- Top right: If i cooperates and j defects, i gets sucker's payoff of 1, while j gets 4.
- Bottom left: If j cooperates and i defects, j gets sucker's payoff of 1, while i gets 4.
- Bottom right: Reward for mutual cooperation (i.e. neither confess)

The Prisoner's Dilemma
Two men are collectively charged with
a crime and held in separate cells,
with

no way of meeting or communicating. They are told that:

- if one confesses and the other does not (C,D) or (D,C), the confessor will be freed, and the other will be jailed for three years;
- if both confess (D,D), then each will be jailed for two years.

Both prisoners know that if neither confesses (C,C), then they will each be jailed for one year.

What should you do?

- The individual rational action is defect.
 - This guarantees a payoff of no worse than 2, whereas cooperating guarantees a payoff of at most 1.
 - So defection is the best response to all possible strategies: both agents defect, and get payoff = 2.
- But intuition says this is not the best outcome:
 - Surely they should both cooperate and each get payoff of 3!
- This is why the Prisoners Dilemma game is Interesting
 - The analysis seems to give us a *contradictory* answer.

Solution Concepts

- The dominant strategy here is to defect.
- (D, D) is the only Nash equilibrium.
- All outcomes **except** (D, D) are Pareto optimal.
- (C, C) maximises social welfare.

		i	
		defect	coop
	defect	2	1
j		2	4
	coop	4	3
		1	3

The Prisoner's Dilemma

- This apparent contradiction is the fundamental problem of multi-agent interactions.
 - It appears to imply that cooperation will not occur in societies of self-interested agents.

- The prisoner's dilemma is ubiquitous.
 - Can we recover cooperation?

Solution Concepts

- The dominant strategy here is to defect.
- (D, D) is the only Nash equilibrium.
- All outcomes **except** (D, D) are Pareto optimal.
- (C, C) maximises social welfare.

		i	
		defect	coop
	defect	2	1
j		2	4
	coop	4	3
		1	3

Arguments for Recovering Cooperation

- Conclusions that some have drawn from this analysis:
 - the game theory notion of rational action is wrong!
 - somehow the dilemma is being formulated wrongly

- Arguments to recover cooperation:
 - We are not all machiavelli!
 - The other prisoner is my twin!
 - Program equilibria and mediators
 - The shadow of the future. . .

Program Equilibria

- The strategy you really want to play in the prisoner's dilemma is: *I'll cooperate if he will*
 - Program equilibria provide one way of enabling this.
- Each agent submits a *program strategy* to a *mediator* which *jointly executes* the strategies.
 - Crucially, strategies can be conditioned on the strategies of the others.
- The best response to this program:
 - submit the same program, giving an outcome of (C, C)!

```
Player 1 (P1)

If (P1 == P2) {
    do(C)
} else {
    do(D)
}

stop

Player 2 (P2)

If (P1 == P2) {
    do(C)
} else {
    do(D)
}

stop
```

Mediator

P1:C P2:C

```
Player 1 (P1)
If (P1 == P2) {
    do(C)
} else {
    do(D)
}
stop
```

Mediator

P1:D P2:D

Social Choice

- Social choice theory is concerned with group decision making.
 - Agents make decisions based on their preferences, but they are aware of other agents' preferences as well.
- Classic example of social choice theory: voting
 - Formally, the issue is combining preferences to derive a social outcome.

Components of a Social Choice Model

- Assume a set Ag = {1,...,n} of *voters*.
 - These are entities who express preferences.
 - Voters make group decisions with respect to a set $\Omega = \{\omega 1, \omega 2, ...\}$ of *outcomes*.
 - Think of these as the candidates.
 - If $|\Omega| = 2$, we have a pairwise election.
- Each voter has preferences over Ω
 - An ordering over the set of possible outcomes Ω .
 - Sometimes we will want to pick one, most preferred candidate.
 - More generally, we may want to rank, or order these candidates.

Preference Order Example

Suppose

 $\Omega = \{pear, plum, banana, orange\}$ then we might have agent *i* with preference order:

(banana, plum, pear, orange)
meaning

 $banana >_i plum >_i pear >_i orange$

Preference Aggregation

- The fundamental problem of social choice theory is that...
 - ...different voters typically have different preference orders!

"... given a collection of preference orders, one for each voter, how do we combine these to derive a group decision, that reflects as *closely as possible* the preferences of voters? ..."

- We need a way to combine these opinions into on overall decision.
 - What social choice theory is about is finding a way to do this.
 - Two variants of preference aggregation:
 - social welfare functions
 - social choice functions

Social Welfare Function

- Let $\Pi(\Omega)$ be a set of preference orderings over Ω
 - A social welfare function takes voter preferences and produces a social preference order.
 - That is, it merges voter opinions and comes up with an order over the candidates.
- We let >* denote to the outcome of a social welfare function: $\omega >* \omega'$
 - which indicates that ω is ranked above ω' in the social ordering
 - Example: combining search engine results, collaborative filtering, collaborative planning, etc.

$$f: \underline{\Pi(\Omega) \times \cdots \times \Pi(\Omega)} \mapsto \Pi(\Omega)$$

Social Choice Function

- Sometimes, we just one to select one of the possible candidates, rather than a social order.
 - This gives a social choice function (see opposite)
- In other words, we don't get an ordering out of a social choice function but, as its name suggests, we get a *single choice*.
 - Of course, if we have a social welfare function, we also have a social choice function.
- For the rest of this lecture...
 - ...we'll refer to both social choice and social welfare functions as *voting procedures*.

Desirable Properties of the Social Choice Function

Calculability

 A social preference ordering <* should exist for all possible inputs.

Completeness

• <* should be defined for every pair of alternatives (ω , ω ') $\in \Omega$

Linearity

• <* should be antisymmetric and transitive over Ω

Anonimity / No dictatorship

• The outcome of the social choice rule depends on the set of opinions, but not on which agents have these opinions.

$$f: \underbrace{\Pi(\Omega) \times \cdots \times \Pi(\Omega)}_{n \text{ times}} \mapsto \Omega$$

Desirable Properties of the Social Choice Function

- Unanimity / Pareto efficiency
 - Do not misorder the options if all agents agree.
 - If everybody thinks that A is better than B, A should be preferred to B in the aggregated order.
- Neutrality
 - The outcome of the social choice function should not depend on how alternatives are named or ordered.
- Independence of irrelevant alternatives
 - Removing / Adding an irrelevant alternative should not affect the winner of the vote

Simple Voting Procedures

- Some basic voting mechanisms
 - Plurality / Anti-plurality / Best-Worst / Approval
- Protocols based on total orders
 - Binary protocol (series of votes of 2 options each)
 - Borda protocol (sum of all the preferences of the agents)
 - Condorcet protocol (pairwise comparison of options, given full preference ordering of each agent)

• All the procedures are problematic in one sense or another.

Plurality Voting Procedure

- Social choice function: selects a single outcome.
 - Each agent (i.e., voter) can give 1 vote to 1 of the alternatives
 - The alternative with the highest number of votes wins
- If we have only two candidates, then plurality is a *simple majority election*

Anomalies with Plurality

- Suppose:
 - |Ag| = 100 and $\Omega = {\omega 1, \omega 2, \omega 3}$
- with:
 - 40% voters voting for ω1
 - 30% of voters voting for ω2
 - 30% of voters voting for ω 3
- With plurality, $\omega 1$ gets elected even though a clear majority (60%) prefer another candidate

Advantages of plurality voting

- Most simple voting mechanism
- Very efficient from the computational point of view
- Equality principle, as it preserves the idea of 1 agent = 1 vote

Another version: anti-plurality

- Each voter gives a negative vote to the alternative they consider the worst
- The option with less votes wins
- Example:
 - 30% CBDA
 - 30% CADB
 - 20% ABDC
 - 20% BADC
 - C gets 40% negative votes but also first option for 60%
 - A and B get 30% negative votes
 - D is the winner with 0 negative votes but it was not the first or second option for anyone

Best-worst voting systems

- Each agent gives a positive vote to his best alternative and a negative vote to his worst alternative
- Each alternative receives $\alpha>0$ points for each positive vote and $-\delta<0$ points for each negative vote
- The option with more points wins

Approval voting

- Each voter selects a *subset* of the candidates
- The candidate with most votes wins
- k-approval voting
 - Each voter selects a subset of k candidates
 - k=1: plurality
 - k= n-1: anti-plurality

Voting Procedures based on Linear Orders

 Each voter gives a full list of the options, ordered according to his preferences (from best to worst)

 A voter prefers option i to option j if option i apears before option j in his list

Binary Procedure

• All the options are ordered and then evaluated in pairs (options 1 and 2, the winner with option 3, the winner with option 4, etc.)

 Simple majority: option A is better than option B if and only if the number of voters that prefer A to B is greater than the number of voters that prefer B to A

- The option that wins the last evaluation is the overall winner
 - win(a5, win (a4, win (a23, win(a2, a1))))

The Ordering Problem

- Example:
 - x > z > y (35%)
 - y > x > z (33%)
 - z > y > x (32%)
- Note that y is preferred to x (65-35), x is preferred to z (68-32), and z is preferred to y (67-33)
 - win(x, win(y,z))=x
 - win(y,win(x,z))=y
 - win(z, win(x,y))=z
- The order of the pairings affects the outcome!
 - The voter organiser may influence the result
 - The last options have more chances of winning
 - No Neutrality

Another problematic example

- 35% of agents have preferences c > d > b > a
- 33% of agents have preferences a > c > d > b
- 32% of agents have preferences b > a > c > d
- Evaluation in the order abcd:
 - Win(a,c)=a Win(a,b)=b Win(b,d)=d => d Wins
 - d was the worst alternative for 32%
 - d was not the best alternative for anyone
 - Everybody prefers c to d (!) No Unanimity

Summary of problems of binary voting

Decisive role of the ordering of the alternatives

- An alternative x may win even if there is another alternative x' which is preferred to x by all agents
 - Alternatives may be misordered
- Temporal cost of the voting process
 - sequence of pairwise eliminative votes

Borda Procedure

- One reason plurality has so many anomalies is that it ignores most of a voter's preference orders: it only looks at the top ranked candidate.
 - The Borda count takes whole preference order into account.
- Suppose we have k candidates i.e. $k = |\Omega|$
 - For each candidate, we have a variable, counting the strength of opinion in favour of this candidate.
 - If ωi appears first in a preference order, then we increment the count for ωi by k 1;
 - we then increment the count for the next outcome in the preference order by k - 2,
 - ..., until the final candidate in the preference order has its total incremented by 0.
- After we have done this for all voters, then the totals give the ranking.

Example of Borda Count

Assume we have three voters with preferences:

$$\omega_2$$
 > $1 \omega_1$ > $1 \omega_3$
 ω_3 > $2(\omega_2)$ > $2 \omega_1$
 ω_1 > $3(\omega_2)$ > $3 \omega_3$

The Borda count of ω_2 is 4:

2 from the first place vote of voter 1.

1 each from the second place votes of voters 2 and 3.

What are the Borda counts of the other candidates?

Borda Inconsistency

•
$$b > c > d > a$$

•
$$c > d > a > b$$

•
$$a > b > c > d$$

•
$$b > c > d > a$$

•
$$c > d > a > b$$

•
$$a > b > c > d$$

 If the worst alternative –d- is removed

•
$$a = 8$$
, $b = 7$, $c = 6$

Even if we keep the relative preferences between a, b and c, the final result changes completely

Problems of the Borda Procedure

Most computationally expensive

- Eliminating (or adding) one irrelevant alternative may totally change the outcome of the voting
 - Winner => Last
 - Second worst => Winner

Total order changes if options are removed one by one

Borda Procedure with Weak Orders

- The Borda protocol has been extended to manage weak orders in different ways
- A simple one: an option o receives from a voter v as many points as the number of options that are considered worst than o by v.

Condorcet Procedure

- Each voter ranks the candidates in order of preference
- Each candidate is compared to each other
- If a candidate wins all the comparisons, it is the winner of the election
- In the event of a tie, use another resolution method (e.g. Borda count)

Condorcet Procedure

- Example: Voting on the location of Tennessee's capital
 - Election of the capital city of Tennessee
 - Everybody prefers to have the capital as close as possible
 - The candidates for the capital are:
 - Memphis, the state's largest city, with 42% of the voters, but located far from the other cities
 - Nashville, with 26% of the voters, near the center of the state
 - Knoxville, with 17% of the voters
 - Chattanooga, with 15% of the voters

42% of voters (close to Memphis)	26% of voters (close to Nashville)	15% of voters (close to Chattanooga)	17% of voters (close to Knoxville)
1. Memphis	1. Nashville	1. Chattanooga	1. Knoxville
2. Nashville	2. Chattanooga	2. Knoxville	2. Chattanooga
3. Chattanooga	3. Knoxville	3. Nashville	3. Nashville
4. Knoxville	4. Memphis	4. Memphis	4. Memphis

The preferences of the voters

Condorcet Procedure

- Example: Voting on the location of Tennessee's capital
 - Election of the capital city of Tennessee
 - Everybody prefers to have the capital as close as possible
 - The candidates for the capital are:
 - Memphis, the state's largest city, with 42% of the voters, but located far from the other cities
 - Nashville, with 26% of the voters, near the center of the state
 - Knoxville, with 17% of the voters
 - Chattanooga, with 15% of the voters

Pair	Winner	
Memphis (42%) vs. Nashville (58%)	Nashville	
Memphis (42%) vs. Chattanooga (58%)	Chattanooga	
Memphis (42%) vs. Knoxville (58%)	Knoxville	
Nashville (68%) vs. Chattanooga (32%)	Nashville	
Nashville (68%) vs. Knoxville (32%)	Nashville	
Chattanooga (83%) vs. Knoxville (17%)	Chattanooga	

1st		3 Wins ↓			
2nd	Chattanooga [C]			1 Loss → ↓ 2 Wins	[N] 68% [C] 32%
3rd	Knoxville [K]		2 Losses → ↓ 1 Win	[C] 83% [K] 17%	[N] 68% [K] 32%
4th	Memphis [M]	3 Losses →	[K] 58% [M] 42%	[C] 58% [M] 42%	[N] 58% [M] 42%

Nashville wins

Problem of Condorcet method

- Possibility of circular ambiguities
 - No alternative wins to all the other alternatives
 - There are many ways to resolve them
 - Keep the candidate that wins more matches (Copeland)
 - Take into account the relative strengths of defeats (Minimax, Ranked Pairs, Schulze, ...)
 - You can look at the winning votes or at the winning margin

Use in practical exercise

- The collector agents could vote the order in which to pick up the discovered treasures.
- The vote of each collector could depend on its current position, the position of the treasures, its current state (idle, already moving towards a treasure, with a list of assigned treasures pending to be collected, etc.).
- The collector assigned to a treasure could then be somehow chosen between its voters.

Readings for this week

• Chapters 11, 12 of the book by M.Wooldridge "An introduction to Multi-Agent Systems" (2nd edition).