

KIẾN TRÚC MÁY TÍNH Khoa Khoa Học và Kỹ Thuật Máy Tính Đại học Bách Khoa – Tp.HCM

08-2022

Bài tập/Thực hành 6

CHƯƠNG 4 KIẾN TRÚC MIPS: SINGLE CLOCK CYCLE

Mục tiêu

- Hiểu chức năng của các khối phần cứng.
- Hiểu nghiên lý hoạt động (lấy lệnh, giải mã, thực thi, lưu trữ) của máy tính single clock cycle.
- Tính toán thời gian chạy của từng lệnh trong máy tính single clock cycle.
- Tính toán được tần số (chu kỳ) của hệ thống.

Yêu cầu

- Xem slide về single clock cycle.
- Xem trước plug-in (Tool/MIPS X-Ray) trong MARS để có thể tham khảo về MIPS single clock cycle.
- Nộp các file code hợp ngữ đặt tên theo format «lab6.[txt,pdf] » (ví dụ lab6_1.[txt,pdf], lab6_2.[txt,pdf]) và chứa trong folder lab6_MSSV.

Kiểu lệnh

R-type						
Op_6	Rs_5	Rt_5	Rd_5	$Shamt_5$	$Function_6$	
I-type		·	·			
Op_6	Rs_5	Rt_5		$Immediate_{16}$		
J-type	•					
Op_6		$Immediate_{26}$				

- Op (opcode) Mã lệnh, dùng để xác định lệnh thực thi (đối với kiểu R, Op = 0).
- Rs, Rt, Rd (register): Trường xác định thanh ghi (5-bit). vd: Rs = 4 có nghĩa là Rs đang dùng thanh ghi a0 hay thanh ghi 4.
- Shamt (shift amount): Xác định số bits dịch trong các lệnh dịch bit.
- Function: Xác định toán tử (operator hay còn gọi là lệnh) trong kiểu lệnh R.
- Immediate: Đai diện cho con số trực tiếp, địa chỉ, offset.

Bài tập và Thực hành

Bài 1: Trả lời ngắn gọn các câu hỏi trong hình 1:

- Thanh ghi PC dùng để làm gì.
- Instruction memory chứa gì? input, output là gì?
- Registers là tập hợp bao nhiều thanh ghi, input, output là gì?
- Input và output của ALU là gì?
- Bộ Control nhận input là trường nào? output dùng để làm gì?

Hình. 1: Kiến trúc máy tính single clock cycle

- Data memory chứa gì? input, output là gì?
- Bộ chọn (MUX) có chức năng gì? ví dụ.
- Sign-extend dùng để làm gì? ví dụ.

Bài 2: Các tín hiệu điều khiển sau dùng để làm gì:

- RegDst.
- RegWrite.
- MemRead.
- MemWrite.
- MemtoReg.
- Branch.
- \bullet jump
- ALUSrc.

Bài 3: Xác định giá trị của các tín hiệu điều khiển.

```
lw $s0, 8($a0) # load $s0 from memory at address $t2 + 8

sw $s0, 8($a0) # store $s0 to memory at address $a0 + 8

add $s0, $s1, $s2 # add s0 = s1 + s2

beq $t2, $t1, label # branch on equal, if $t2 == $t1 branch to label

j label # jump to label
```

Bài 4: Xác định critical path, thời gian chu kỳ của hệ thống. Cho thời gian delay của các khối như bảng bên dưới:

- (a) Xác định critical path (longest-latency Đường đi có độ trễ lâu nhất) và thời gian hoàn thành của các kiểu lênh sau:
 - Load
 - Store
 - ALU

Bảng. 1: Delay các khối phần cứng

Resources	Delay	
Mux	10ns	
Add	10ns	
Shift left	10ns	
Instruction memory	200ns	
Registers	150ns	
Sign extend	10ns	
ALU	100ns	
Data memory	200ns	

- Branch
- Jump
- (b) Xác định thời gian cycle của hệ thống trên.

Gợi ý: máy tính single clock cycle thực thi 1 lệnh bất kỳ trong một chu kỳ đơn. Xác định thời gian chu kỳ sao cho trong 1 chu kỳ thì đảm bảo lệnh bất kỳ sẽ thực thi xong.

Bài tập làm thêm [TextBook Morgan Kaufmann Computer Organization And Design 5th Edition]

Lệnh jal, j
r có thực thi đối với kiến trúc trong hình 1 được không? Nếu được chỉ rõ da
tapath và các tín hiệu điều khiển kèm theo. Nếu không thì cần thêm những phần tử gì?
Bài tập 4.1, 4.2, 4.6, 4.7, 4.8