SPI(Serial Peripheral Interface)

2023. 2학기

Kookmin Univ. EMCO Lab.

- SPI란? => Zhi/ 艺化(处如的, Zhi/ 起》/7)

/: 모토롤라가 개발한 단순하고 신뢰성 높은 직렬 통신

: Clock을 사용하여 동기화된 통신을 하고 대역폭은 낮으나 신호 간섭이 적음

: Master-slave 모드로 동작

: Full-duplex* 통신 방식

: 데이터를 송수신하기 위한 독립된 회선 보유

- 통신 신호

- CS는 일반적으로 active low로 동작
- 소자가 데이터를 sampling하고 송수신하는 타이밍에 따라서 CPOL과 CPHA 값을 결정
- 🔑 CPOL : Clock Polarity, SCLK의 <u>극성을 선택</u>
- CPHA : Clock Phase, 데이<u>터를 sampling 하는 시점 선</u>택

• CPOL과 CPHA

- 특징

^: Full-duplex, 3-wire <u>동기 통신</u> : Master, Slave 모드 : 4~16bit로 통신 데이터 설정 가능 1개의 모듈당 8개의 eDMA INTC SPI DMA and interrupt control TX FIFO **RX FIFO** TX data CMD RX data 16 16 Shift register \rightarrow SOUT_x (x = 0:3) \otimes SIN x (x = 0.3) SPI baud rate. \rightarrow SCK x (x = 0:3) delay and transfer control \rightarrow $\overline{CS0}_x$ (x = 0:3) $DSPI_x (x = 0.3)$ $DSPI_x (x = 0.3)$ \rightarrow CS1:3 x (x = 0:3) ➤ CS4:7_0 DSPI 0

Figure 21-1. DSPI block diagram

- Daisy Chain
 - Slave 장치가 많아질수록 master에 요구되는 SPI CS 라인의 수가 많음
 - Daisy chain 기능이 지원되는 소자는 slave 끼리 연쇄적으로 데이터를 전달하도록 통신
 - グ번째 slave가 데이터를 받고 마지막 slave가 데이터를 master로 전달
 - 주로 master에서 slave로 단방향 통신을 할 때 사용하기 좋음
 - 회선 중간 부분에 이상이 생기면 여러 장치가 동작이 안 됨.

< SPI daisy-chain bus topology >


```
void init_DSPI_1(void)
#if SPImode
    DSPI_1.MCR.R = 0x80010001;  // Configure DSPI_0 as master
DSPI_1.CTAR[0].R = 0x7A0A7727;  // Configure CTAR0
                                                        : SCK inactive state LOW
                                               //
                                                          : LSB first
                                               //
                                                       : 16bit data frame
                                               // : Baud rate prescaler 5
                                              // : Baud Rate Scaler 128
// : Sclk Duty cycle 50/50
                                              // Fclk : 100kHz
// DSPI_1.RSER.B.RFDFRE = 1;
                                            // Recieve FIFO drain request enable
     DSPI_1.MCR.B.HALT = 0x0; // Exit HALT mode: go from STOPPED to RUNNING state
     SIU.PCR[5].R = 0x0604; // Config pad as DSPI_1 CS0 output SIU.PCR[6].R = 0x0604; // Config pad as DSPI_1 SCK output SIU.PCR[7].R = 0x0604; // Config pad as DSPI_1 SOUT output SIU.PCR[8].R = 0x0103; // Config pad as DSPI_1 SIN input
                                         // Config pad as DSPI_1 SOUT output
#else
     DSPI_1.MCR.R = 0x00010001; // Configure DSPI_0 as slave
     DSPI_1.CTAR[0].R = 0x7A000000; // Configure CTAR0
                                              // : SCK inactive state LOW
                                                         : MSB first
                                              //
                                          // Recieve FIFO drain request enable
     DSPI 1.RSER.B.RFDFRE = 1;
     DSPI 1.MCR.B.HALT = 0x0; // Exit HALT mode: go from STOPPED to RUNNING state
     SIU.PCR[5].R = 0 \times 0504; // Config pad as DSPI_1 CS0 input
    SIU.PCR[6].R = 0x0504; // Config pad as DSPI_1 SCK input SIU.PCR[7].R = 0x0604; // Config pad as DSPI_1 SOUT outposts SIU.PCR[8].R = 0x0103; // Config pad as DSPI_1 SIN input
                                        // Config pad as DSPI 1 SOUT output
     INTC_InstallINTCInterruptHandler(SlaveDSPI1, 98, 5);
#endif
```


• DSPI Module Configuration Registers(DSPIx_MCR)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R W	MSTR	MONT_ SCKE	DCON	IF[0:1]	FRZ	MTFE	PCSSE	ROOE	PCSIS7	PCSIS6	PCSIS5	PCSIS4	PCSIS3	PCSIS2	PCSIS1	PCSIS0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
R	0	MDIS	DIS_	DIS_	CLR_TXF	CLR_RXF	SMPL_	DT[0.1]	0	0	0	0	0	0	0	HALT
W		צוטואו	TXF	RXF	w1c	w1c	SIVIPL_	P1[0.1]								HALI
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Port GPIO Pad Data Output Register 0-3(GPDO0_3)

Field	Description							
MSTR	Master/slave mode select DSPI모듈을 master/slave 모드 선택	1 : Master 모드 0 : Slave 모드						
PCSISx	Peripheral chip select inactive state CS의 비활성화 상태 결정	1 : CS0_x가 high일 때 비활성화 0 : CS0_x가 low일 때 비활성화						
HALT	Halt DSPI의 전송을 start/stop (Register 설정 시 stop 후 설정)	1 : Stop 0 : Start						

• DSPI Clock and Transfer Attributes Registers(DSPIx_CTARn)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R W	DBR		FM	ISZ		CPOL	СРНА	LSBFE	PCS	SCK	PA	SC	PI	ОТ	PE	BR
Reset	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
R W		CSS	СК			A	sc			D	т			В	R	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Port GPIO Pad Data Output Register 0-3(GPDO0_3)

Field		Description
FMSZ	Frame Size 통신 data size 설정	데이터 크기 = FMSZ+1(FMSZ>3)

2. DSPI - 데이터 송신의 상태천이도

Figure 21-13. DSPI start and stop state diagram

Table 21-18. State transitions for start and stop of DSPI transfers

Transition #	nsition # Current State Next State		Description				
0	RESET	STOPPED	Generic power-on-reset transition				
1	STOPPED	RUNNING	The DSPI starts (transitions from STOPPED to RUNNING) when all of the following conditions are true: • EOQF bit is clear • Debug mode is upselected or the FRZ bit is clear • HALT bit is clear				
2	RUNNING	STOPPED	The DSPI stops (transitions from RUNNING to STOPPED) after the current frame for any one of the following conditions: • EOQF bit is set • Debug mode is selected and the FRZ bit is set • HALT bit is set				

2. DSPI - PAD,인터럽트 벡터 세팅

Serial Peripheral Interface

\vdash							-	-	-
A[5]	PCR[5]	ALT0	GPIO[5]	SIUL	I/O	Slow	Medium	8	14
		ALT1	CS0	DSPI_1	I/O				
		ALT2	ETC[5]	eTimer_1	I/O				
		ALT3	CS7	DSPI_0	O				
		_	EIRQ[5]	SIUL	ı				
A[6]	PCR[6]	ALT0	GPIO[6]	SIUL	I/O	Slow	Medium	2	2
		ALT1	SCK	DSPI_1	I/O				
		ALT2	_	_	_				
		ALT3	_	_	_				
		_	EIRQ[6]	SIUL	- 1				
A[7]	PCR[7]	ALT0	GPIO[7]	SIUL	I/O	Slow	Medium	4	10
` '		ALT1	SOUT	DSPI_1	0				
		ALT2	_		_				
		ALT3	_	_	_				
		_	EIRQ[7]	SIUL	1				
A[8]	PCR[8]	ALT0	GPIO[8]	SIUL	I/O	Slow	Medium	6	12
		ALT1	_	_	_				
		ALT2	_	_	_				
		ALT3	_	_	_				
		_	SIN	DSPI_1	I				
		_	EIRQ[8]	SIUL	I				

		DSPI1	
94	0x0978	DSPI_SR[TFUF] DSPI_SR[RFOF]	DSPI 1
95	0x097C	DSPI_SR[EOQF]	DSPI 1
96	0x0980	DSPI_SR[TFFF]	DSPI 1
97	0x0984	DSPI_SR[TCF]	DSPI 1
98	0x0988	DSPI_SR[RFDF]	DSPI 1

2. DSPI - 송수신함수

```
void MasterDSPI1(void)
     MasterCnt++;
     DSPI_1.PUSHR.R = (0x00010000|Send_Data)
     Read_Data = (uintIt_t)(DSFI_1.FOFK.K&UXTfff); /* Read data received by SPI */
     DSPI 1.SR.R = 0 \times 80020000;
                                              /* Clear TCF, RDRF flags by writing 1 to them */
void SlaveDSPI1(void)
     SlaveCnt++;
     DSPI 1.PUSHR.R = Send Data;
     Read Data = (uint16 t)(DSPI 1.PORR.R&Oxffff); /* Read data received by SPI */
                                               Y* Clear TCF, RDRF flags by writing 1 to them */
     DSPI 1.SR.R = 0 \times 80020000;
Address Base + 0x0034
                                         Access: User read/rite
                                                       Address: Base + 0x0038
                                                                                                Access: User read-only
                EOQ L
   WICONT
                                                                                 23 24
           18 19 20 21 22
                          23
                             24
                               25 26 27
                                                                                 RXDATA
                          TXDATA
                                                        Reset
                                                                  Figure 21-9. DSPI POP RX FIFO Register (DSPIx_POPR)
           Figure 21-8. DSPI PUSH TX FIFO Register (DSPIx_PUSHR)
```


3. HW연결

- SPI 설정의 SCLK 주파수는 19.53kHz
- SCLK 16 clock + CS ON/OFF delay time = 0.82ms + 0.1ms = 0.92ms
- 데이터 한 블록 당 약 1ms의 시간 소요
- 5 블록 이상의 데이터 전송 시, TX_FIFO가 비워질 때까지 대기 필요 → 수행 시간 증가

3. HW연결

• SPI Clock frequency를 1.042MHz로 선정, Clock 당 주기 1us

• t_{CSC} : 1.92us로 선정

• t_{ASC} : 1.92us로 선정

• t_{DT}: 20.48us로 선정

• 하나의 데이터 블록 당 $16 \; \mathrm{SCLK} + t_{CSC} + t_{ASC} + t_{DT} \;$ 시간을 소모하므로, 약 $40 \mathrm{us}$ 의 수행시간 소모

