Graphes: modélisation et parcours

OPTION INFORMATIQUE - TP nº 3.3 - Olivier Reynet

À la fin de ce chapitre, je sais :

- modéliser un graphe par liste d'adjacence
- modéliser un graphe par matrice d'adjacence
- passer d'une modélisation à une autre
- parcourir un graphe en largeur et en profondeur
- implémenter l'algorithme de Dijkstra

A Modélisation d'un graphe

Dans ce qui suit on peut considérer le graphe :

```
let g = [| [1;2]; [0;3;4]; [0;5;6]; [1]; [1]; [2]; [2] |];;
```

- A1. Sous quelle forme le graphe g est-il donné?
- A2. Dessiner le graphe g. Comment peut-on qualifier ce graphe?
- A3. On dispose d'un graphe sous la forme d'une liste d'adjacence. Écrire une fonction list_to_matrix qui transforme cette représentation en une matrice d'adjacence.
- A4. On dispose d'un graphe sous la forme d'une matrice d'adjacence. Écrire une fonction matrix_to_list qui transforme cette représentation en une liste d'adjacence.
- A5. On dispose d'un graphe orienté sous la forme d'une liste d'adjacence. Écrire une fonction desoriented_list qui transforme ce graphe en un graphe non orienté.
- A6. On dispose d'un graphe orienté sous la forme d'une matrice d'adjacence. Écrire une fonction desoriented_matrix qui transforme ce graphe en un graphe non orienté.

B Parcourir un graphe

Le parcours d'un graphe est une opération fondamentale et utilisée par de nombreux algorithmes, notamment Dijkstra et A*. On peut facilement mémoriser les différentes stratégies en observant les types d'ensemble qui sont utilisés pour stocker les sommets à parcourir au cours de l'algorithme :

- 1. Le parcours en **largeur** passe par tous les voisins d'un sommet avant de parcourir les descendants de ces voisins. Les sommets passent dans une **file** de type First In First Out.
- 2. Le parcours en **profondeur** passe par tous les descendants d'un voisin d'un sommet avant de parcourir tous les autres voisins de ce sommet. Les sommets passent dans une **pile** de type Last In First Out.

OPTION INFORMATIQUE

TP nº 3.3

3. L'algorithme de **Dijkstra** passe par le voisin le plus proche d'un sommet avant de parcourir les autres voisins de ce sommet. C'est un parcours en largeur qui utilise une **file de priorités**: lorsqu'on insère un nouvel élément dans cette file, celui-ci est placé d'après son niveau de priorité, le plus prioritaire en premier. Dans notre cas, la priorité est la distance. La plus petite distance en tête donc.

Dans cette section, on suppose qu'on manipule un graphe sous la forme d'une liste d'adjacence.

B1. Écrire une fonction récursive de signature bfs : int list array -> int -> int list qui parcours en largeur un graphe et qui renvoie la liste des sommets parcourus. On pourra s'inspirer du code suivant :

Tester l'algorithme sur le graphe suivant :

```
let g = [| [1;2] ; [0;3;4] ; [0;5;6] ; [1] ; [1] ; [2] ; [2] |] ;;
```

B2. Écrire une fonction récursive de signature dfs : int list array -> int -> int list qui parcours en profondeur un graphe et qui renvoie la liste des sommets parcourus.

C Plus courts chemins: algorithme de Dijkstra

Algorithme 1 Algorithme de Dijkstra, plus courts chemins à partir d'un sommet donné

```
1: Fonction DIJKSTRA(G = (V, E, w), a)
                                                                          \triangleright Trouver les plus courts chemins à partir de a \in V
         \Delta \leftarrow a
                                                        \triangleright \Delta est l'ensemble des sommets dont on connaît la distance à a
2:
                                                                \triangleright \Pi[s] est le parent de s dans le plus court chemin de a à s
3:
         \Pi \leftarrow \emptyset
4:
         d \leftarrow \emptyset
                                                                                        ▶ l'ensemble des distances au sommet a
5:
         \forall s \in V, d[s] \leftarrow w(a, s)
                                                                            \triangleright w(a, s) = +\infty si s n'est pas voisin de a, 0 si s = a
         tant que \bar{\Delta} n'est pas vide répéter
                                                                             \triangleright \bar{\Delta}: sommets dont la distance n'est pas connue
6:
              Choisir u dans \bar{\Delta} tel que d[u] = \min(d[v], v \in \bar{\Delta})
7:
                                                                                 \triangleright On prend la plus courte distance à a dans \bar{\Delta}
              \Delta = \Delta \cup \{u\}
8:
9:
              pour x \in \bar{\Delta} répéter
                                                                \triangleright Ou bien x \in \mathcal{N}_G(u) \cap \bar{\Delta}, pour tous les voisins de u dans \bar{\Delta}
                  si d[x] > d[u] + w(u, x) alors
10:
                       d[x] \leftarrow d[u] + w(u, x)
                                                                                          ▶ Mises à jour des distances des voisins
11:
                                                                                > Pour garder la tracer du chemin le plus court
12:
                       \Pi[x] \leftarrow u
          renvoyer d, \Pi
13:
```

- C1. Démontrer la terminaison de l'algorithme de Dijkstra.
- C2. Démontrer la correction de l'algorithme de Dijkstra.
- C3. Quelle est la complexité de l'algorithme de Dikjstra?

C4. Exécuter à la main l'algorithme de Dijsktra sur le graphe orienté suivant en complétant à la fois le tableau des distances et le tableau des parents qui permet de reconstruire le chemin a posteriori. Le tableau parent à la case i contient le sommet précédent sur le chemin.

```
let g = [| [(1,7);(2,1)] ; [(3,4); (5,1)] ; [(1,5);(4,2);(5,7)] ; [] ; [(1,2)
    ;(3,5)] ; [(4,3)] |] ;;
```

C5. Compléter le code de la fonction récursive de signature dijkstra : (int * int)list array -> int array * int array qui renvoie les plus courtes distnaces à partir d'un sommet d'un graphe ainsi que les directions à prendre. La fonction insert_neighbours renvoie la file de sommets à explorer dans l'ordre d'exploration, la plus petite distance en premier. On pourra utiliser le tri par insertion d'une file pour en faire une file de priorités. La fonction update_distances_and_parents met à jour les tableaux de résultats : les distances au sommet de départ et le parent de chaque sommet (pour savoir quel chemin prendre).

```
let dijkstra g =
  let n = Array.length g in
  let distances = Array.make n max_int and
     visited = Array.make n false and
      parents = Array.make n max_int
  in distances.(0) <- 0; parents.(0) <- 0</pre>
  in let rec insert_neighbours sorted neighbours =
  in let update_distances_and_parents v =
  in let rec explore pq =
   match pq with
      | [] -> distances, parents
      | (v,dv)::t when visited.(v) -> explore t
      | (v,dv)::t -> visited.(v) <- true;
                      update_distances_and_parents v;
                      explore (insert_neighbours t g.(v));
  in explore [(0,0)];; (*you could choose another one !*)
```

C6. Exécuter l'algorithme de Dijkstra sur le graphe suivant :

```
let g = [| [(1,7);(2,1)];
[(0,7);(2,5);(3,4);(4,2);(5,1)];
[(0,1);(1,5);(4,2);(5,7)];
[(1,4);(4,5)];
[(1,2);(2,2);(3,5);(5,3)];
[(1,2);(2,7);(4,3)] |];;
```

Les résultats sont-ils cohérents?

C7. Est-ce qu'utiliser un tas binaire pour implémenter la file de priorités permettrait d'améliorer la complexité de l'algorithme?