dop.5 Ряд Лорана. Классификация изолированных особых точек.

1 Ряд Лорана

Определение 1. *Рядом Лорана* называется функциональный ряд вида: $\sum_{n=-\infty}^{n=\infty} c_n(z-z_0)^n (1) = \sum_{n=0}^{n=\infty} c_n (z-z_0)^n + \sum_{n=-\infty}^{n=-1} c_n (z-z_0)^n = \sum_{n=0}^{n=\infty} c_n (z-z_0)^n (pяд.1) + \sum_{n=1}^{n=\infty} \frac{c_{-n}}{(z-z_0)^n} (pяд.2),$ где z переменная $\in \mathbb{C} \setminus \{z_0\}$, а c_n коэффициенты $\in \mathbb{C}$.

Говорят, что ряд (1) сходится в т. z, если в ней сходятся ряд.1 и ряд.2.

- Ряд.1 обычный степенной ряд. Если его радиус сходимости $R_1 = 0$, то он сходится лишь в т. z_0 , а ряд (1) не сходится нигде. Если $R_1 > 0$, то в круге $|z z_0| < R_1$ ряд.1 сходится абсолютно к некоторой функции $f_1(z)$.
- Ряд.2 не является степенным рядом, но приводится к нему заменой $\rho = \frac{1}{z-z_0}$. Если радиус сходимости ряда $\sum_{n=1}^{n=\infty} c_{-n} \rho^n(2)$ равен 0, то и ряд (1) и ряд.2 не сходятся. Если радиус сходимости (2) $R_2^{-1} > 0$, то ряд (2) сходится абсолютно в круге $|\rho| < R_2^{-1} \Rightarrow$ ряд.2 сходится абсолютно в области $|z-z_0| > R_2$ к некоторой функции $f_2(z)$. Если $R_1 < R_2$, то области сход. рядов не пересекаются и ряд Лорана не сходится нигде. Если $R_1 = R_2 = R$, то общие точки сходимости могут лежать лишь на $|z-z_0| = R$ и их наличие требует отдельного исследования. Если $R_1 > R_2$, то оба ряда абсолютно сходятся в кольце $D: R_2 < |z-z_0| < R_1$, ряд (1) абсолютно сходится там же к функции $f(z) = f_1(z) + f_2(z)$.

Определение 2. Ряд.1 называют правильной частью ряда Лорана.

Определение 3. Ряд. 2 называют главной частью ряда Лорана.

Замечание: Пусть ряд (1) абс.сход в кольце D к функции f(z). Покажем, что коэффициенты этого ряда однозначно определяются его суммой f(z). Рассмотрим ряд (1) в точках окружности $\phi:|z-z_0|=\rho$, где $R_2<\rho< R_1$. На этой окружности как на компакте, ряд сх-ся равномерно. Равномерная сходимость сохраняется при умножении каждого члена ряда на функцию ограниченную на ϕ . Фикс k и рассмотрим функцию $\frac{1}{2\pi i(z-z_0)^{k+1}}\Rightarrow \frac{f(z)}{2\pi i(z-z_0)^{k+1}}=\sum_{n=-\infty}^{n=\infty}\frac{1}{2\pi i}c_n(z-z_0)^{n-k-1}\Longleftrightarrow \frac{1}{2\pi i}\oint_{\phi}\frac{f(z)}{(z-z_0)^{k+1}}\,dz=\sum_{n=-\infty}^{n=\infty}\frac{1}{2\pi i}c_n\oint_{\phi}(z-z_0)^{n-k-1}\,dz$. Интеграл в правой части $\neq 0$ только при $n-k-1=-1\Longleftrightarrow n=k$ (в лекциях Домриной считался) при этом он равен $2\pi i\Rightarrow c_k=\frac{1}{2\pi i}\oint_{\phi}\frac{f(z)}{(z-z_0)^{k+1}}\,dz$ определены однозначно.

Теорема 1. Функция $f(z) \in A(D), D: R_2 < |z-z_0| < R_1$, может быть представлена рядом Лорана по степеням $(z-z_0)$ причем это представление единственно.

 \mathcal{A} оказательство. \Longrightarrow : доказано в замечании. \Longleftrightarrow : Фикс произвольную точку $z \in D$, построим вспомогательное кольцо D' с тем же центром в $z_0, D' \subset D$ и $z \subset int(D')$. Пусть $\Gamma_1': |\rho-z_0| = R_1'$ и $\Gamma_2' |\rho-z_0| = R_2'$ — внутрення и внешняя границы кольца D', тогда $f(z) = \frac{1}{2\pi i} \oint_{\Gamma_1'} \frac{f(\rho)}{\rho-z} d\rho - \frac{1}{2\pi i} \oint_{\Gamma_2'} \frac{f(\rho)}{\rho-z} d\rho^*$. Т.к $|\frac{z-z_0}{\rho-z_0}| < 1$ для \forall точек $\rho \in \Gamma_1'$, то подынтегральную дробь $\frac{1}{\rho-z}$ можно заменить ∞ геом.прогрессией $\frac{1}{\rho-z} = \frac{1}{\rho-z_0+z_0-z} = \frac{1}{\rho-z_0} \cdot \frac{1}{\rho-z_0} = \frac{1}{\rho-z_0} \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\rho-z_0)^n} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\rho-z_0)^{n+1}} \iff \frac{f(\rho)}{\rho-z_0} = \sum_{n=0}^{\infty} \frac{f(\rho)(z-z_0)^n}{(\rho-z_0)^{n+1}} (**)$ Ряд в правой части сходится равномерно на Γ_1' т.к мажорируется $\max_{\rho \in \Gamma_1'} |f(\rho)| \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\rho-z_0)^{n+1}} \implies$ можно почленно интегрировать (**) по окружности Γ_1' : $\oint_{\Gamma_1'} \frac{f(\rho)}{\rho-z_0} d\rho = \sum_{n=0}^{\infty} \oint_{\Gamma_1'} \frac{f(\rho)(z-z_0)^n}{(\rho-z_0)^{n+1}} d\rho \iff \frac{1}{2\pi i} \oint_{\Gamma_1'} \frac{f(\rho)}{\rho-z_0} d\rho = \sum_{n=0}^{\infty} f_{\Gamma_1} \frac{f(\rho)(z-z_0)^n}{(\rho-z_0)^{n+1}} d\rho \iff \frac{1}{2\pi i} \oint_{\Gamma_1'} \frac{f(\rho)}{\rho-z_0} d\rho = \sum_{n=0}^{\infty} c_n (z-z_0)^n (****)$

Рассмотрим второй интеграл в (*). Для \forall точки $\rho \in \Gamma_2'$ выполнено $\mu = \frac{|\rho-z_0|}{|z-z_0|} < 1 \Rightarrow -\frac{1}{\rho-z} = \frac{1}{z-z_0-(\rho-z_0)} = \frac{1}{1-\frac{\rho-z_0}{z-z_0}} = \sum_{n=0}^{\infty} \frac{(\rho-z_0)^n}{(z-z_0)^{n+1}} = \sum_{n=1}^{\infty} \frac{(\rho-z_0)^{n-1}}{(z-z_0)^n} = \sum_{n=1}^{\infty} \frac{(z-z_0)^{-n}}{(\rho-z_0)^{-n+1}} (+)$. Получается р-но.сх-ся ряд на Γ_2' т.к мажорируется числовой прогрессией со знаменателем μ . Равномерная сходимость (+) сохранится и после умножения каждого члена на ограниченную в Γ_2' ф-цию $\frac{f(\rho)}{2\pi i}$. Интегрируя почленно $-\frac{f(\rho)}{2\pi i(\rho-z)} = \sum_{n=1}^{\infty} \frac{f(\rho)(z-z_0)^{-n}}{(\rho-z_0)^{-n+1}}$ по окружности Γ_2' и полагая $c_{-n} = \frac{1}{2\pi i} \oint_{\Gamma_1'} \frac{f(\rho)}{(\rho-z_0)^{-n+1}} d\rho$, $n=1...\infty(++)$. Имеем $\frac{1}{2\pi i} \oint_{\Gamma_2'} \frac{f(\rho)}{\rho-z} d\rho = \sum_{n=1}^{\infty} c^{-n}(z-z_0)^{-n}(+++)$. Заменяя оба интеграла в (*) на их разложения (****) и (+++) приходим к ряду Лорана. \square

2 Классификация изолированных особых точек

Пусть $D:0<|z-z_0|< R$ -проколотая окрестность точки $z_0\neq\infty$ и $f(z)\in A(D)$. Точка z_0 для ф-ции f(z) является **изолированной особой точкой**. D можно рассматривать как кольцо с центром в т. z_0 и внутренним радиусом 0. По теореме Лорана f(z) может быть разложена в D в ряд Лорана по степеням $z-z_0:\sum_{n=-\infty}^{n=\infty}c_n(z-z_0)^n(1)=\sum_{n=0}^{n=\infty}c_n(z-z_0)^n+\sum_{n=1}^{n=\infty}c_{-n}(z-z_0)^{-n},$ $z\in D(1)$. Для этого ряда имеются 4 возможности:

- 1. Точка z_0 устранимая особая точка f(z), если главная часть ряда Лорана (1) равна нулю.
- 2. Точка z_0 **полюс** f(z), если главная часть ряда Лорана (1) содержит конечное число членов.
- 3. Точка z_0 полюс порядка $k(k \in N)$ функции f(z), если k максимальная по модулю степень у ненулевого члена главной части лорановского разложения в проколотой окрестности точки z_0 . А именно, ряд (1) имеет коэффициент $c_{-k} \neq 0$, в то время как $c_{-n} = 0 \ \forall n > k$.
- 4. Точка z_0 **существенно особая точка** f(z), если главная часть ряда (1) содержит бесконечное число членов.

Теорема 2. Следующие 3 утверждения эквивалентны: а) z_0 - устранимая особая точка β -ции f(z), б) \exists конечный $\lim_{z\to z_0} f(z)$, в) f(z) ограничена в некоторой окрестности точки z.

Доказательство. а) \to 6): По условию $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n, \ z \in D$. Сумма g(z) стоящего справа ряда непрерывна в т. z_0 и ее значение в этой точке равно свободному члену c_0 ряда, т.к вне z_0 функции f(z) и g(z) совпадают, то $\exists \lim_{z \to z_0} f(z) = c_0$.

б) \to в) Функция имеющая конечный lim в точке z_0 ограничена в некоторой окрестности этой точки.

в) \to а) По условию в некоторой окрестности U точки z_0 выполняется соотношение $|f(z)| \le M \forall z \in U$. Пусть $\gamma: |z-z_0| = \rho$ - окружность принадлежащая этой окрестности. Как \Rightarrow из доказательства т. Лорана коэффициенты ряда (1) представимы в виде: $c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz \Rightarrow |c_n| \le M \rho^{-1}$. Для отрицательных n правая часть этой оценки стремится к 0 при $\rho \to 0$. Таким образом в ряде (1) все коэффициенты c_n с отрицательными индексами $= 0 \Rightarrow z_0$ устранимая особая точка f(z).

Теорема 3. Изолир.особая точка z_0 ф-ции f(z) является ее полюсом $\iff \lim_{z \to z_0} f(z) = \infty.$

Доказательство. 1. Пусть z_0 – полюс f(z), тогда в некоторой проколотой окрестности К точки z0 имеется представление $f(z) = \frac{c_{-k}}{(z-z_0)^k} + ... + c_0 + c_1(z-z_0) + ...(3)$, где $c_{-k} \neq 0$. Равенство (3) можно переписать в виде: $f(z)(z-z_0)^k = c_{-k} + c_{-k+1}(z-z_0) + ... + c_0(z-z_0)^k + ...$, причем ряд, стоящий в правой части последнего равенства, сходится в некотором круге $K_r = \{z: |z-z_0| < r\}$. Если $\phi(z)$ сумма этого ряда, то $\phi(z) \in A(K_r)$, $\phi(z_0) = c_{-k} \neq 0$. Поэтому $f(z) = \frac{\phi(z)}{(z-z_0)^k}$ и очевидно $\lim_{z \to z_0} f(z) = \infty$.

2. Обратно, пусть $\lim_{z \to z_0} f(z) = \infty$. Тогда существует проколотая окрестность K точки z_0 , где $f(z) \neq 0$, поэтому в K определена аналитическая функция $g(z) = \frac{1}{f(z)}$, причём справедливо представление: $g(z) = a_k(z-z_0)^k + a_{k+1}(z-z_0)^{k+1} + \dots = (z-z_0)^k (a_k + a_{k+1}(z-z_0) + \dots)$, где $k \geq 1$, $a_k \neq 0$. Значит $g(z) = (z-z_0)^k \phi(z)$, где $\phi(z_0) \neq 0$. Тогда $f(z) = \frac{1}{g(z)} = \frac{1}{(z-z_0)^k} \frac{1}{\phi(z)} = \{\phi(z) \in A(K) \Rightarrow \frac{1}{\phi(z)} \in A(K) \text{ значит можно разложить в ряд Лорана}\} = \frac{1}{(z-z_0)^k} (b_0 + b_1(z-z_0) + \dots)$, где $b_0 = \frac{1}{\phi(z_0)} = \frac{1}{a_k} \neq 0$, т.е z_0 – полюс f(z).

Теорема 4. Точка z_0 – полюс порядка k функции f(z) тогда и только тогда, когда в K справедливо представление: $f(z) = \frac{\phi(z)}{(z-z_0)^k}$, где $\phi(z) \in A(z_0)$, $\phi(z_0) \neq 0$.

Доказательство. Утверждение следует из доказательства предыдущей теоремы

Следствие 1. Для того, чтобы в точке z0 был полюс порядка k функции f(z), необходимо u достаточно, чтобы функция $g(z) = \begin{cases} \frac{1}{f(z)} & \text{, где } z \neq z_0 \\ 0 & \text{, где } z = z_0 \end{cases}$ имела в точке z_0 нуль порядка k.

Доказательство. Точка z0 – нуль порядка k функции g(z) тогда и только тогда, когда $g(z) = (z-z_0)^k g_1(z)$, где $g_1(z) \in A(z_0)$, $g_1(z_0) \neq 0$. Далее по теореме.

Теорема 5. Изолированная особая точка z_0 функции f(z) является существенно особой тогда и только тогда, когда не существует $\lim_{z\to z_0} f(z)$.

Теорема 6 (Сохоцкого–Казорати–Вейерштрасса). Пусть z_0 – существенно особая точка функции f(z). Тогда для произвольного числа $A \in \mathbb{C}$ найдётся такая последовательность z_n , сходящаяся к z_0 , что $f(z_n) \to A$, $n \to \infty$.

Доказательностью. Для заданного числа A такую последовательность z_n , будем называть A-последовательностью Сохоцкого. В любой окрестности сущ.особой точки z_0 f(z) не может быть ограничена(иначе была бы устранимой по теореме 2) \Longrightarrow найдется последовательность точек $z_n': |z_n'-z_0| < \frac{1}{n}$ и $f(z_n') > n$. Эту послед можно принять за ∞ -последовательность Сохоцкого. \exists -ние A-последовательности Сохоцкого: докажем от противного: Пусть такой послед не \exists \Longrightarrow найдутся окрестности $U_\delta: 0 < |z_-z_0| < \delta$ и $\alpha > 0: |f(z)-A| > \alpha, \forall z \in U_\delta(1)$. Положим $\phi(z) = \frac{1}{f(z)-A}$. Функция $\phi(z)$ определена и $\phi(z) \in A(U_\delta)$. Из $(1) \Longrightarrow |\phi(z)| < \frac{1}{\alpha} \forall z \in U_\delta$. По теореме. 2 z_0 устранимая точка для $\phi(z) \Longrightarrow \exists \lim_{z \to z_0} \phi(z)$. Найдем его значения c_0 с помощью

 ∞ -последовательности Сохоцкого $z_n^{'}:c_0=\lim_{n\to\infty}\frac{1}{(f(z_n^{'})-A)}=0\Longrightarrow\lim_{z\to z_0}\frac{1}{(f(z)-A)}=0,$ что возможно лишь при $\lim_{z\to z_0}f(z)=\infty\Longrightarrow z_0$ – полюс f(z), противоречие.

Теорема 7 (Пикара). Пусть $a \in C$ – существенно особая точка для f(z). Тогда в любой проколотой окрестности точки a, f(z) принимает все комплексные значения, причём каждое бесконечное число раз (за исключением, быть может, одного A)