# Statistik

Språkligt och historiskt betyder statistik ungefär "sifferkunskap om staten"

En Statistisk undersökning består av fyra delar:

- Planering (kap 15)
- Datainsamling
- Bearbetning
  - Beskrivande statistik (kap 10)
  - Statistisk analys (kap 11-14)
- Presentation

Statistiska undersökningar förekommer inom nästan alla vetenskaper. Tex naturvetenskap, teknik och samhällsvetenskap.

Det finns tre sorters lögner: lögn, förbannad lögn och statistik

# Fyra syften med statistik

### Deskriptiv

informera, kartlägga

### Hypotesprövande

Verifiera eller f\u00f6rkasta ett antagande (hypotes)

### Utredande

kausala samband, orsakssammanhang

### Prognosticerande

– vad händer i framtiden?, vad händer om vi gör så här?

"alltför många försöker spå om framtiden, utan att ens kunna historien"

### Några vanliga begrepp

- Element (individ) de som information söks om
  - Mängden av dessa element kallas ofta population.
  - Populationen kan vara ändlig eller oändlig.
- Total undersökning hela populationen studeras
- Stickprovsundersökning del av populationen studeras
- Stickprov en del av populationen
- Validitet m\u00e4ter vi det vi avser att m\u00e4ta?
- Reliabilitet är de mätningar vi gör tillförlitliga?
- Kategori variabel, (Kvalitativ, icke-numerisk variabel) färg, ogift, god mat, attityd, servicegrad, kundnöjdhet (kan ges siffervärden)
- Kvantitativ variabel (numerisk)
  - Kontinuerlig alla (oändligt antal) värden inom ett intervall
  - Diskret vissa (ändligt antal) värden inom ett intervall

# Något om mätskalor



# Ett exempel på stickprovsundersökning

(icke-experimentell undersökning)

En firma tillverkar mätapparatur till vilken det behövs elektroniska kretskort. Det blir dyrt om man får in för många defekta kretskort i produktionen varför underleverantören lovar högst 0,5% defekta kretskort.

Kretskorten ligger i förpackningar med 10 000 i varje. Man undersöker 200 på måfå utvalda kort ur varje förpackning. I en sändning på 80 förpackningar fick man följande resultat.

(Detta är ett exempel på diskret variation)

## Ett exempel på stickprovsundersökning

(icke-experimentell undersökning)

Antal defekta kretskort bland 200 utvalda i 80 förpackningar.

### Grunddata

```
1 2 1 0 3 3 4 2 4 7 4 1 1 0 0 1 1 0 0 4
1 2 2 2 2 2 2 5 2 2 3 5 1 2 2 4 0 1 4 1
5 1 3 3 1 1 3 2 1 4 2 1 3 2 1 1 4 3 1 3
5 2 2 4 1 3 3 0 0 1 2 4 3 2 0 3 1 1 1 1
```

Vad kan man säga om *p*, andel defekta kretskort i sändningen? Frågan kan preciseras på 3 olika sätt:

- Punktskattningsproblem hur skattar man p?
- Intervallskattningsproblem hur anger man ett intervall som med given säkerhet innehåller p?
- Hypotesprövningsproblem hur prövar man hypoteser rörande p?

#### Frekvenstabell för antalet defekta kretskort

| Antalet defekta | Frekvens | Rel.frekvens | Kum.frekvens |
|-----------------|----------|--------------|--------------|
| 0               | 9        | 11.25        | 11.25        |
| 1               | 24       | 30.00        | 41.25        |
| 2               | 19       | 23.75        | 65.00        |
| 3               | 13       | 16.25        | 81.25        |
| 4               | 10       | 12.50        | 93.75        |
| 5               | 4        | 5.000        | 98.75        |
| 6               | 0        | 0            | 98.75        |
| 7               | 1        | 1.250        | 100.0        |





### Trappstegskurva för antalet defekta kretskort Kumulativ relativ frekvens



Trappstegskurva för antalet defekta kretskort Kumulativ relativ frekvens



**Totalt valdes** 

200\*80 = 16000 kretskort ut för undersökning. Stickprovstorlek är på 16000, n = 16000.

Stickprovet valdes ut bland totalt 80\*10000 = 800000 kort.

Populationsstorleken är på 800000, N = 800000

Felkvoten i stickprovet var 168/16000 = 0.0105

dvs dubbelt så stor än den utlovade.

Vad kan man säga om felkvoten i sändningen?

Hur säkra uttalanden kan man göra om felkvoten?

I Grängesberg gjordes ett fullskaleförsök för att bl.a. studera hur lång tid det tar att fylla en 2 m³ vagn med malm. Tiden noterades från det att lastmaskinen började köra in i bergshögen tills att lastaren kopplade loss vagnen.

Följande resultat erhölls.

(Detta är ett exempel på kontinuerlig variation)

Tidsåtgång vid lastning i sek.

#### Grunddata

85,80,85,77,101,109,111,109,148,183,153,78,84,80,94,104,96,100 117,112,103,122,155,153,128,172,69,84,99,110,112,181,176,79,94 111,111,118,133,140,80,84,100,101,122,129,73,75,111,96,126,147 90,103,100,96,116,128,86,80,97,118,124,150,96,105,83,99,140,79 78,87,107,134,140,79,87,104,153,134,82,91,104,128,76,108,141 134,117,110,149,119,121,116,114,130,90,97,127,113,96,106,107, 108,128,110,109,85,95,116,118,110,91,126,97,121,107,104,129, 106,112,91,119,118,105

Vad kan man säga om  $\mu$ , den genomsnittliga tidsåtgången för att lasta en vagn? Frågan kan preciseras på 3 olika sätt:

- Punktskattningsproblem hur skattar man  $\mu$ ?
- Intervallskattningsproblem hur anger man ett intervall som med given säkerhet innehåller  $\mu$ ?
- Hypotesprövningsproblem hur prövar man hypoteser rörande  $\mu$ ?

## Ett exempel på stickprovsundersökning

### (experimentell undersökning)

Frekvenstabell för tidsåtgång vid lastning, Klassindelat material

| Tidsåtgång | Frekvens | Rel.frekvens (%) | Kum.frekvens (%) |
|------------|----------|------------------|------------------|
| <76        | 3        | 2.4              | 1.6              |
| 76-85      | 19       | 15.2             | 17.6             |
| 86-95      | 11       | 8.8              | 26.4             |
| 96-105     | 23       | 18.4             | 44.8             |
| 106-115    | 23       | 18.4             | 63.2             |
| 116-125    | 16       | 12.8             | 76.0             |
| 126-135    | 14       | 11.2             | 87.2             |
| 136-145    | 4        | 3.2              | 90.4             |
| 146-155    | 8        | 6.4              | 96.8             |
| 156-165    | 0        | 0                | 96.8             |
| 166-175    | 1        | 0.8              | 97.6             |
| >175       | 3        | 2.4              | 100              |



Tidsåtgång (%)



Tidsåtgång (%)



### Boxplot tidsåtgång vid lastning



- 1) Vad är den genomsnittliga tidsåtgången? Medelvärdet i stickprovet är  $\overline{x} = 110.2 \ s$ .
- 2) Hur mycket varierar det? Standardavvikelsen i stickprovet är  $s=23.7 \, s$ .
- 3) Hur stor andel av lastningen av vagnarna överstiger 2 min? Andelen som överstiger 2 min är 28%.

Hur säkra är dessa uttalanden?

# Kvalitativa data - exempel

| Val- Gi     |     | fta     |     | Ej gifta |     |         |     |         |      |        |
|-------------|-----|---------|-----|----------|-----|---------|-----|---------|------|--------|
| d :ltagande | 1   | Män     | K   | vinnor   | 1   | Män     | K   | vinnor  | Sar  | ntliga |
| E j röstat  | 25  | (3,0)   | 29  | (4,0)    | 41  | (10,9)  | 44  | (13,1)  | 139  | (6,1)  |
| h ir röstat | 806 | (97,0)  | 690 | (96,0)   | 335 | (89,1)  | 293 | (86,9)  | 2124 | (93,9  |
| Summa       | 831 | (100,0) | 719 | (100,0)  | 375 | (100,0) | 337 | (100,0) | 2263 | (100,0 |



Motställda staplar: Spädbarnsdödlighet bland flickor 1941-70.



Uppdelade staplar: Hushåll efter storlek. Procent



Familj, barn Alderdom, invaliditet

Utgiftsändamål

Sjukdom

**Grupperade staplar: S**ocialutgifter 1968–72. Miljarder kr. Matematisk Statistik MA4025

# Kvalitativa data - exempel

#### Betyg ordinarie tentamen 1998-2001

|       |       |           |         |               | Cumulative |
|-------|-------|-----------|---------|---------------|------------|
|       |       | Frequency | Percent | Valid Percent | Percent    |
| Valid | U     | 63        | 22.4    | 22.4          | 22.4       |
|       | 3     | 101       | 35.9    | 35.9          | 58.4       |
|       | 4     | 82        | 29.2    | 29.2          | 87.5       |
|       | 5     | 35        | 12.5    | 12.5          | 100.0      |
|       | Total | 281       | 100.0   | 100.0         |            |

#### Betyg ordinarie tentamen 1998-2001



Betyg ordinarie tentamen

## Beskrivande statistik

### Numerisk beskrivning av ett kvantitativt material

- Lägesmått
  - Medelvärde, x
  - Median (andra kvartil), md, (Q<sub>2</sub>)
  - Typvärde, T

- Spridningsmått
  - » Standardavvikelse, s (varians,  $V = s^2$ )
  - » Kvartilavstånd, Q (= Q<sub>3</sub>-Q<sub>1</sub>)
  - » Variationsvidd (-bredd), R
- Beroende mått (Korrelation)
  - » Kovarians, c<sub>xy</sub>
  - » Korrelationskoefficient, r

# Lägesmått

✓ Medelvärde: 
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

"Summan av alla värden delat med antalet värden"

✓ Median: 
$$m = Q_2$$

En *storleksordnad* datamängd kan delas in i 4 kvartiler,  $Q_i$  25% av materialet är  $\leq Q_1$ , 50% är  $\leq Q_2$  och 75% är  $\leq Q_3$  eller 25% är  $\geq Q_3$ 

✓ <u>Typvärde</u>, *T*Det värde som förekommer flest gånger.

# Spridningsmått

✓ Standardavvikelse: 
$$s = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

"Genomsnittliga kvadratiska skillnaden mot medelvärdet"

Varians: 
$$V = s^2$$

- ✓ Kvartilavstånd:  $m=Q_3-Q_1$  50% av materialet ligger mellan  $Q_1$ och  $Q_3$
- ✓ Variationsbred: R = Max Min

## Beroendemått

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Kallas kovariansen mellan x och y.

$$r = \frac{c_{xy}}{s_{x}s_{y}}$$

 $s_x$ ,  $s_y$  är standardavvikelser för x resp. y Kallas korrelationskoefficienten för x och y.

# Huvudproblem inom statistikteorin

| Verklighet                     | Modell             |
|--------------------------------|--------------------|
| 1. Formulera praktiskt problem |                    |
|                                | 2. Gör slumpmodell |
| 3. Insamla data                |                    |
|                                | 4. Gör statistisk  |
|                                | analys             |
| 5. Drag praktiska slutsatser   |                    |

Vi kommer att syssla mest med teorin kring punkt 2, 4 och 5 (Projektuppgiften täcker alla 5 stegen)

# Punktskattning

Ett *slumpmässigt stickprov*  $x_1$ ,  $x_2$ ,....  $x_n$  från någon fördelning F utgörs av observationer av oberoende stokastiska variabler  $X_1$ ,  $X_2$ ,....  $X_n$  var och en med fördelningen F. Ett utfall  $x_1$ , ...,  $x_n$  av stokastiska variabler  $X_1$ , ...,  $X_n$  kallas för ett observerat stickprov av storleken n

Fördelningen F beror av en (eller flera) okänd parameter  $\theta$  som vi är intresserade av att få information om. Parametern kan ta värden i ett parameterrum  $\Omega_{\theta}$  .

Ex. 
$$\Omega_{\theta} = (-\infty < \theta < \infty)$$
 eller  $\Omega_{\theta} = (0 < \theta < 1)$ 

**Definition** 

### Punktskattningar - även dessa beror av slumpen

Vi är intresserade av att skatta den okända parametern baserat på våra mätdata,  $x_1, x_2, .... x_n$  med någon lämplig funktion.

### **Definition**

En punktskattning  $\theta_{obs}^* = \theta(x_1, x_2, ..., x_n)$  (tal) av en okänd parameter  $\theta$  är en funktion av stickprovet,  $x_1, x_2, ..., x_n$ . Detta stickprov ska se som utfall av stokastiska variabler,  $X_1, X_2, ..., X_n$ , med fördelningar som alla beror på  $\theta$ . Punktskattning  $\theta_{obs}^*$  är ett utfall av stickprovsvariabeln  $\theta^* = \theta(X_1, X_2, ..., X_n)$ , (stokastisk variabel)

## Önskvärda egenskaper på en punktskattning

### **En punktskattning** $\theta^*$ sägs vara:

- *Väntevärdesriktig*, om skattningens,  $\theta^*$ , väntevärde är lika med  $\theta$ , dvs  $\mathbf{E}[\theta^*] = \theta$  (i genomsnitt hamnar man "rätt")
- *Konsistent,* om för varje fixt  $\theta \in W_Q$  och för givet  $\varepsilon > 0$  gäller att  $P(\mid \theta_n^* \theta \mid < \varepsilon) \rightarrow 1$ , stickprovsstorleken  $n \rightarrow \infty$  (Stora talens lag)
- **Effektiv,** om  $\theta_1^*$  och  $\theta_2^*$  är två väntevärdesriktiga skattningar av  $\theta$ . Om  $V[\theta_1^*] < V[\theta_2^*]$  sägs  $\theta_1^*$  vara en effektivare, sannolikt bättre, skattning av  $\theta$  än  $\theta_2^*$ .
- Ha ett litet eller inget systematiskt fel, bias,  $\mathbf{E}[\theta_2^*] \theta \approx \mathbf{0}$ . Om  $\theta^*$  är VVR är  $\mathbf{E}[\theta^*] \theta = \mathbf{0}$

## Maximum-Likelihood-metoden

### **Definition**

Låt  $x_1, x_2, ..., x_n$  vara ett stickprov.

Funktionen

$$L(\theta) = \begin{cases} P(X_1 = x_1, X_2 = x_2, ..., X_n x_n; \theta) \text{ (diskreta variabler)} \\ f_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n; \theta) \text{ (kontinuerliga variabler)} \end{cases}$$

kallas *likelihood* – *funktionen* eller L – *funktionen* Det värde  $\theta_{obs}^*$ , för vilket  $L(\theta)$  antar sitt största värde inom  $\Omega_{\Theta}$ , kallas ML – *skattningen* av  $\theta$ .

## Minsta-kvadrat-metoden

### **Definition**

Låt  $x_1$ ,  $x_2$ , ...,  $x_n$  vara ett stickprov på  $X_1$ ,  $X_2$ , ...,  $X_n$  vars väntevärde är kända men beror av en okänd parameter  $\theta$ ,  $E(X_i) = \mu_i(\theta)$ .

Det värde  $\theta_{obs}^*$ , för vilket funktionen

$$Q(\theta) = \sum_{i=1}^{n} (x_i - \mu_i(\theta))^2$$

antar sitt minsta värde kallas MK-skattningen av θ.

# Allmänna väntevärdesriktiga punktskattningar

- Låt  $X_1, X_2, ..., X_n$ , där  $X_i$  är oberoende och likafördelade stokastiska variabler.
- Låt x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> vara ett stickprov på X
- "Bästa" sättet att skatta ett okänt väntevärde,  $\mu$ , är

$$\mu^* = \overline{X}$$
 och  $\mu^*_{obs} = \overline{x}$  eftersom denna är VVR och konsistent.

"Bästa" sättet att skatta en okänd varians,  $\sigma^2$ , är

$$(\sigma^2)^* = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \operatorname{och} (\sigma^2)^*_{obs} = S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

Eftersom denna är VVR.