LINEARNE TRANSFORMACIJE

Neka su $V_1 = (V_1, +, \cdot, F)$ i $V_2 = (V_2, +, \cdot, F)$ vektorski prostori nad istim poljem $F = (F, +, \cdot)$. Tada se funkcija $f: V_1 \longrightarrow V_2$ naziva **linearna transformacija** ili **homomorfizam** vektorskog prostora V_1 u vektorski prostor V_2 ako za svako $x, y \in V_1$ i $\alpha \in F$ važi

$$f(x+y) = f(x) + f(y)$$
 i $f(\alpha x) = \alpha f(x)$.

Napomena: Ova dva uslova mogu i da se spoje u jedan koji bi onda glasio: za svako $x, y \in V_1$ i $\alpha, \beta \in F$ važi

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

Svaka linearna transformacija $f: V_1 \longrightarrow V_2$ preslikava nula vektor prostora V_1 u nula vektor prostora V_2 . Neka je $f: V_1 \longrightarrow V_2$ linearna transformacija vektorskog prostora V_1 u vektorski prostor V_2 . Tada je:

ullet jezgro linearne transformacije f: skup svih vektora iz V_1 koji se preslikaju u nula vektor vektorskog prostora V_2 , tj.

$$ker(f) = \{x \in V_1 \mid f(x) = 0\}.$$

Osobine:

- nula vektor $0 \in V_1$ pripada skupu ker(f);
- skup ker(f) čini potprostor prostora V_1 ;
- slika linearne transformacije f: skup svih vektora iz V_2 koji se dobijaju preslikavanjem vektora vektorskog prostora V_1 , tj.

$$Img(f) = \{ y \in V_2 \mid \exists x \in V_1, f(x) = y \}.$$

Osobine:

- nula vektor $0 \in V_2$ pripada skupu Img(f);
- skup Img(f) čini potprostor ptostora V_2 .
- rang linearne transformacije f: dimenzija potprostora slika, tj.

$$rang(f) = dim(Img(f)).$$

Ako je $V = (V, +, \cdot, F)$ vektorski prostor nad poljem F dimenzije $n \in \mathbb{N}$, tada je on izomorfan sa vektorskim prostorom $F^n = (F^n, +, \cdot, F)$ uređenih n-torki elemenata polja F sa standardno definisanim sabiranjem po komponentama i množenjem skalarom po komponentama.

Na osnovu ove osobine može se zaključiti da je dovoljno proučavati samo vektorski prostor uređenih n-torki i samo linearne transformacije oblika $f: F^n \longrightarrow F^m$, jer su na taj na čin proučeni svi vektorski prostori i sve linearne transformacije.

Zbog toga je svaki n-dimenzionalni vektorski prostor nad $\mathbb R$ izomorfan sa vektorskim prostorom $\mathbb R^n=(\mathbb R^n,+,\cdot,\mathbb R)$ i uobičajeno je da se posmatraju linearne transformacije oblika $f:\mathbb R^n\longrightarrow\mathbb R^m$.

Neka je F proizvoljno polje. Preslikavanje $f: F^n \longrightarrow F^m$ je linearna transformacija akko je f oblika

$$f(x_1, x_2, \dots, x_n) = (\alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{1n}x_n, \alpha_{21}x_1 + \alpha_{22}x_2 + \dots + \alpha_{2n}x_n, \dots, \alpha_{m1}x_1 + \alpha_{m2}x_2 + \dots + \alpha_{mn}x_n)$$

$$= \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \dots & \alpha_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_m \end{bmatrix}$$

gde su $\alpha_{ij} \in F$ neki elementi polja \mathbf{F} i tada je $M_f = [\alpha_{ij}]_{m \times n}$ matrica linearne transformacije f (u standardnoj bazi ako drugačije nije naglašeno).

Dakle,

• svaka od m komponenti slike linearne transformacije $f: F^n \longrightarrow F^m$ mora biti oblika $t_1x_1 + t_2x_2 + \ldots + t_nx_n$, $t_1, t_2, \ldots, t_n \in F$.

ullet svaka linearna transformacija $f:F^n\longrightarrow F^m$ može se poistovetiti sa njoj odgovarajućom matricom $M_f=\left[lpha_{ij}
ight]_{m imes n}$ nad poljem \boldsymbol{F} takvom da je

$$f(x) = y \iff M_f \cdot [x] = [y]$$

gde su $[x] = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ i $[y] = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ matrice kolone koje odgovaraju vektorima x i y. Linearna transformacija je **regularna** akko je bijektivna, tj. akko je njoj odgovarajuća matrica kvadratna i regularna (tada je f izomorfizam).

Rang linearne transformacije $f: F^n \longrightarrow F^m$ jednak je rangu njene matrice M_f , odnosno

$$dim\left(Img\left(f\right)\right) = rang\left(M_f\right).$$

Ako su $f: F^n \longrightarrow F^k$ i $g: F^k \longrightarrow F^m$ linearne transformacije, i ako su M_f i M_g njima odgovarajuće matrice, tada je $h = g \circ f: F^n \longrightarrow F^m$ takođe linearna transformacija i njena matrica se može dobiti kao $M_h = M_g \cdot M_f$.