Partial Differential Equations Qualifying Examination September 14, 1987

Do any 7 problems.

- 1. (a) What does it mean to say that a problem in partial differential equations is well-posed?
 - (b) Given a region Ω in \mathbb{R}^n and a second order linear PDE defined in Ω , what does it mean to say the PDE is elliptic in Ω ?
 - (c) Consider the Cauchy problem

$$u_t = \Delta u,$$
 $x \in \mathbb{R}^n,$ $t > 0$
 $u(0,x) = f(x),$ $x \in \mathbb{R}^n.$

State the Maximum Principle for the solution of this problem (be sure to state clearly all relevant hypotheses).

2. Let $\mathcal{D} = \{u | u \in C^2(\overline{\Omega}), u(x) = f(x) \text{ for } x \in \partial \Omega\}$ where Ω is a bounded domain in \mathbb{R}^n with smooth boundary. For $u \in \mathcal{D}$ let

$$J(u) = \int_{\Omega} |\nabla u|^2 dx.$$

Suppose that $u \in \mathcal{D}$ satisfies the Dirichlet problem

$$\Delta u = 0$$
 in Ω
 $u(x) = f(x)$ on $\partial \Omega$.

Prove that u minimizes J.

3. (a) Consider the initial value problem

$$u_t + uu_x = 0 -\infty < x < \infty, t > 0$$

$$u(x,0) = f(x), -\infty < x < \infty.$$

Assume f is C^1 . Show that unless f is nondecreasing on $(-\infty, \infty)$ there cannot be a C^1 function u(x,t), $-\infty < x < \infty$, $t \ge 0$ which is a solution of the IVP everywhere in $-\infty < x < \infty$, $t \ge 0$.

(b) Show that the IVP

$$u_t + uu_x = 0$$
 $-\infty < x < \infty$, $t > 0$
 $u(x,0) = 2x + 1$ $-\infty < x < \infty$

has a smooth solution by finding an explicit formula for the solution.

4. Consider the quasilinear system

$$\begin{aligned} u_t + uu_x + \frac{c^2}{\rho} &= 0\\ \rho_t + u\rho_x + \rho u_x &= 0 \end{aligned}$$

where u and ρ are unknown functions of x and t and c is a known function of ρ .

- (a) Show that this is a hyperbolic system provided we assume $c(\rho) > 0$.
- (b) Find the differential equations of the characteristic curves for this system.
- 5. Let Ω be the first quadrant in R^2 . Define f(x,y) for $(x,y)\in\partial\Omega$ by:

$$f(0,y) = \begin{cases} 1 & 0 \le y < 1 \\ 0 & 1 \le y \end{cases}$$

$$f(x,0) = \begin{cases} 1 & 0 \le x < 1 \\ 0 & 1 \le x \end{cases}$$

Use complex variable methods to solve the Dirichlet problem on Ω with boundary data f.

- 6. Explain what is meant by "Huygens' Principle". For which dimensions does this principle hold?
- 7. Suppose the initial temperature in a spherical body of radius a > 0 is constant at U_0 . For t > 0 the boundary is kept at temperature 0. Assume heat conduction is governed by

$$u_t = \Delta u$$

where u is the temperature function. Derive a series representation for the solution of this problem.

- 8. (a) State the mean value property of harmonic functions in \mathbb{R}^n .
 - (b) Using the result in (a), state and prove the Maximum Principle for harmonic functions on a bounded domain in \mathbb{R}^n .

- (c) Use the Maximum Principle to show that the solution of the Dirichlet problem on a bounded domain Ω in \mathbb{R}^n is unique (if it exists).
- (d) Prove that the solution of the Dirichlet problem on a bounded domain Ω in \mathbb{R}^n depends continuously on the boundary condition. Include a careful statement of what this means.
- 9. (a) Derive the Green function for Dirichlet's problem for the Laplace equation on the upper half-plane in \mathbb{R}^2 .
 - (b) Use (a) to derive the formula

$$u(x,y) = \frac{x}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(x-\xi)^2 + y^2} d\xi$$

for the solution of the Dirichlet problem

$$\nabla^2 u = 0 \quad -\infty < x < \infty, \quad 0 < y < \infty$$
$$u(x, 0) = f(x),$$

where f is continuous on $-\infty < x < \infty$.

10. Prove uniqueness of solutions for the problem

$$u_{tt} = a^2 \Delta u + f(t, x)$$
 for $x \in \Omega$, $t > 0$
 $u(0, x) = \phi(x)$, $u_t(0, x) = \psi(x)$ for $x \in \Omega$
 $\tau \frac{\partial u}{\partial n} + \sigma u = 0$ on $\partial \Omega$,

where Ω is a region with smooth boundary in \mathbb{R}^n , ϕ and ψ are \mathbb{C}^1 on Ω , and σ and τ are positive constants. (Hint: Use the energy integral

$$E(t) = \int_{\Omega} (\tau u_t^2 + \tau a^2 |\nabla u|^2) dx + \int_{\partial \Omega} a^2 \sigma^2 u^2 ds.)$$

11. Use Fourier transforms to solve the Cauchy problem for the 1-dimensional heat equation with source term f(x,t),

$$u_t = u_{xx} + f(x, t)$$
$$u(x, 0) = \phi(x).$$