Projectes 2018-2019

Servei LDAP	2
LDAP GSSAPI	3
Gandhi Reload	4
Pacemaker	5
Grafana	6
Utilitats de seguretat	7
Selinuxt	8
Kubernetes	9

Servei LDAP

Tecnologies: LDAP, Docker, TLS

Implementar un servei LDAP usant containers Docker i crear models de tot tipus de funcionalitats: producer, consumer, subarbres, etc. Usar una base de dades àmplia i integrar-hi contingut binari amb imatges, documents i certificats digitals.

Docker:

- Implementar per separat en un container de Docker cada un dels components: servidor, backup, subarbre, clients, etc.
- Generar els dockerfiles pertinets amb contingut i documentació propia.
- Generació automàtica de les imatges a través de GitHub + DockerHub.

Servidor LDAP:

- Crear una base de dades LDAP amb usuaris, grups, màquines (i fins i tot algun altre concepte com aules o material).
- Implementar un script de càrrega automatitzada d'usuaris partint de /etc/passwd i /etc/group (en python).
- Implementar un servidor LDAP i diversos servidors de rèplica (més d'un).
- Implementar subarbres (delegació de zona) usant almenys dos subarbres.
- Implementar formats de dades no textuals: fotos dels usuaris i documents PDF amb expedients o altres formats binaris.
- Implementar Overlays.
- Tràfic segure amb TLS/SSL i STARTTLS (Entitat CA propia).

Clients LDAP:

- Implementació d'autenticació d'usuari amb LDAP: login / PAM.
- Autenticació d'usuaris en un servidor Web.

Altres tasques:

- Exportar les bases de dades a altres formats com per exemple text pla, sql i sobretot: json.
- Tuning de la BD en calent.
- Explotació de les dades de monitor.

LDAP GSSAPI

Tecnologies: LDAP, Kerberos, TLS, Docker, GIT

Aquest projecte tracta del servei LDAP i com establir que els clients que l'utilitzen s'autentiquin apropiadament. També d'establir que les comunicacions client/servidor siguin segures. Caldrà implementar els diferents tipus d'autenticació que permet LDAP: SIMPLE, MD5/CRAM, EXTERNAL i GSSAPI, en especial aquest últim. La comunicació segura es proporcionarà via TLS i STARTTLS:

1. Implementar un servidor LDAP amb containers Docker que funcioni detach. Ha de

	disposar d'una extensa base de dades d'usuris, grups i màquines entre altres dades.
2.	Autenticació LDAP. Implementar exemples de funcionament amb containers Docker d'autenticació: Simple MD5/CRAM External GSSAPI
3.	Crear clients de prova per verificar els diferents tipus d'autenticació.
4.	Tràfic LDAP segur. Implementar exemples amb containers Docker de tràfic LDAP segur amb:
	Tràfic TLS amb certificat de servidor generat per una entitat CA propia.Tràfic TLS amb certificat de client i de servidor.

- 5. Crear una entitat de certificació propia que generi els certificats necessaris.
- 6. SSF Security Strength Factors

☐ Tràfic amb STARTTLS.

Gandhi Reload

Tecnologies: Kerberos, LDAP, NFS, PAM, Docker, GIT

L'objectiu d'aquest projecte és generar un model similar a gandhi de l'escola però amb cada un dels components separats en containers Docker. És de especial importància Kerberos, LDAP i NFS. Un un segon grau els serveis DNS i DHCP. Un tercer nivell de serveis serien serveis generals tipus SSH, HTTP, TFTP, FTP, etc. I finalment estudiar l'automatització d'instal·lacions amb PXE

1. Implementar serveis bàsics d'autenticació d'usuari unix que proporciona gandhi.

	Implementar-los en containers individuals. Els serveis són: ☐ Kerberos ☐ LDAP ☐ NFS ☐ Un volum de dades extern per als homes dels usuaris
2.	Implementar en un container Docker un host unix que permet l'autenticació d'usuari tenint les dades del compte d'usuari al servidor LDAP, el passwd al servidor Kerberos, i el home en un repositori centralitzat via NFS.
3.	Desenvolupar scripts d'automatització de tasquet d'administració del sistema. La càrrega inicial inclou la càrrega de dades LDAP, la creació dels principals de Kerberos i la creació dels homes dels usuaris. Implementar mecanismes automatitzats d'alta i baixa d'usuaris.
4.	Serveis essencials del sistema: ampliar el ventall de containers docker creant els servidors de: DNS DHCP
5.	Implementar serveis kerberitzats com per exemple els següents: □ SSH □ HTTP □ FTP □ TFTP

Pacemaker

Implementar un cluster d'alta disponibilitat amb Pacemaker. Implementar almenys les següents característiques:

- Adreça IP flotant.
- DRDB / GFS2
- Active/Active
- Fences / stonith
- Servidor httpd
- Servidor NFS
- Servidor Samba

Pacemaker 2.0

Clusters from Scratch (en-US) [epub] [pdf] [html] [html-single]
Pacemaker Administration (en-US) [epub] [pdf] [html] [html-single]
Pacemaker Development (en-US) [epub] [pdf] [html] [html-single]
Pacemaker Explained (en-US) [epub] [pdf] [html] [html-single]
Pacemaker Remote (en-US) [epub] [pdf] [html] [html-single]
https://clusterlabs.org/pacemaker/doc/

RedHAt Enterprise Linux 7 Clustering

Deployment and administration of clusters

- High Availability Add-On Overview
 Overview of the High Availability Add-On for Red Hat Enterprise Linux 7
- High Availability Add-On Administration
 Configuring and Managing the High Availability Add-On
- Load Balancer Administration
 Load Balancer for Red Hat Enterprise Linux
- <u>High Availability Add-On Reference</u>
 Reference Document for the High Availability Add-On for Red Hat Enterprise Linux 7
- Global File System 2

Product Documentation RH7

Grafana

Estudiar el funcionament de grafana i presentar-ne exemples d'utilització. Integració amb Docker. Monitoritzar serveis com per exemple:

- Idap
- kerberos
- samba

https://grafana.com/

Utilitats de seguretat

Estudiar utilitats de seguretat i mostrar-ne la utilització. Investigar en els temes següents:

- Kalilinux.
- VPNs que hi ha al mercat.
- Proxys per emmascarar comunicacions.
- Thor.
- snort
- tripwire

Selinuxt

Explicació amb exemples pràctics del funcionament del selinux. Els exemples han d'incloure clarament el tractament dels homes dels usuaris i de serveis com httpd, ldap, kerberos, etc.

Kubernetes

Investigar i exposar el funcionament de Kubernetes. Implementar una estructura de host, server Idap, kerberos i nfs on els usuaris es validin contra els servidors.