Adopted Levels, Gammas

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017	

 $Q(\beta^-)=-17810 \text{ SY}; S(n)=16993.8 7; S(p)=4547.27 22; Q(\alpha)=-6105.12 21 2017Wa10$ $\Delta(Q(\beta^-))=200 \text{ (syst,} 2017Wa10).$

 $S(2n)=31750 \ 40$, $S(2p)=6404.90 \ 20$, $Q(\varepsilon p)=1600.19 \ 28 \ (2017Wa10)$.

First identification of ³⁸Ca nuclide was by 1966Ha32 via ⁴⁰Ca(p,t) according to 2011Am01 compilation of isotope discovery. Additional information 1.

Mass measurement: 2011Er02, 2008Ge08, 2007Ge07, 2007Ri08, 2006Bo11.

³⁸Ca Levels

Cross Reference (XREF) Flags

A 39 Ti ε p decay (28.5 ms) E 36 Ar(3 He,n γ)
B 39 Sc p decay:? F 40 Ca(p,t)
C 24 Mg(16 O,2n γ) G Coulomb excitation

 36 Ar(3 He,n)

Isospin T=1 (triplet) states

38 Ar	³⁸ Ca		$\Delta E(1)$	38 K		$\Delta E(2)$
$0,0^{+}$	0,0+		130,0	0^{+} T=1		
2167,2+	2213,2 ⁺	+46	2401,2	2 ⁺ T=1	+104,+58	
3377,0 ⁺	3084,0 ⁺	-293				
$3810,3^{-}$	3704,3	-106				
3937,2 ⁺	3684,2+	-253				
$\Delta E(1)=E(^3)$	⁸ Ca) -E(³⁸ A1	:)				
$\Delta E(2) = E(3)$	8 K)-E(38 Ar)	-130,	E(²	³⁸ K)-E(³⁸	³ Ca)-130	

Comments $\%\varepsilon + \%\beta^{+} = 100$ $T_{1/2}$: weighted average of 443.63 ms 35 (2015Bl02), 443.77 ms 36 (2011Pa38), 443.8 ms 19 (2010Bl09), 430 ms 12 (1980Wi13), 450 ms 70 (1972Zi02), 439 ms 12 (1969Ga27), and 470 ms 20 (1968Ka15). Other: 660 ms 50 (1957C123), based on the observation of a 3.5 MeV γ which could not be confirmed in the studies afterwards. 2213.2 10 2+ 0.56 ps +16-10 A CDEFG B(E2)1=0.0096 21 XREF: D(2224). J^{π} : L(p,t)=2 from 0⁺; Coulomb excitation from 0⁺. $T_{1/2}$: from B(E2) \uparrow . Other: 68 fs +30-28 from DSAM in (3 He,n γ). B(E2)↑ from 1999Co23 in Coulomb excitation. 3083.7 12 19 ps +10-7 J^{π} : L(p,t)=0 from 0^+ . DEF 3683.9 5 2+ 29 fs +15-9 dEfG B(E2)↑=0.0122 30 J^{π} : L(p,t)=2; L(3 He,n)=2 or 2+3 for a doublet; Coulomb excitation from 0^{+} . $T_{1/2}$: from B(E2) \uparrow and adopted γ -ray branching ratios. Other: <5.5 fs from DSAM in (3 He,n γ). B(E2)↑ from 1999Co23 in Coulomb excitation. 3703.5 10 (3^{-}) 0.16 ps +7-6dEf J^{π} : systematics of even-even nuclides; $L(^{3}He,n)=2+3$ for a doublet composed of 3684 and 3703 levels. L(p,t) also shows some evidence of presence of L=3 component. 4193.5 15 (5⁻) EF E(level): other: 4191 5 from (p,t). J^{π} : L(p,t)=(5) from 0⁺.

Adopted Levels, Gammas (continued)

³⁸Ca Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
4383.9 11	2+	24 fs + 12 - 8	dEF	E(level): other: 4385 4 from (p,t).
				J^{π} : L(p,t)=2 from 0 ⁺ ; L(³ He,n)=2+5 for a doublet.
4412 30	(5^{-})		d	J^{π} : L(3 He,n)=2+5 for a doublet.
4748 5	0^{+}		D F	E(level): other: 4751 5 from (³ He,n).
				J^{π} : L(³ He,n)=0 from 0 ⁺ . L(p,t)=(3) is inconsistent. There may be a doublet near
				this energy, but due to tentative nature of L(p,t), the evidence for two levels is
				not sufficient.
4860 <i>40</i>	(3^{-})		D	E(level): from (³ He,n).
				J^{π} : L(³ He,n)=3,(2+4). This group may be a doublet in (³ He,n); L=(2+4) may
				correspond to 4899, 2 ⁺ level from (p,t).
4902 <i>4</i>	2+		F	J^{π} : L(p,t)=2 from 0 ⁺ .
5164 7	2+		D F	XREF: D(5140).
				E(level): other: 5140 60 from (³ He,n).
5066.4	2+		_	J^{π} : L(³ He,n)=2 from 0 ⁺ .
5266 <i>4</i>	2+		F	J^{π} : L(p,t)=2 from 0 ⁺ .
5430 <i>6</i> 5601 <i>7</i>	3-		F	VDEE, D(5540)
3001 /	3		D F	XREF: D(5560).
				E(level): other: 5560 60 from (3 He,n).
5704 <i>5</i>			T.	J^{π} : L(³ He,n)=3 from 0 ⁺ .
5816 <i>7</i>	(4^{+})		F D F	XREF: D(5790).
3610 /	(4)		DΓ	E(level): other: 5790 40 from (³ He,n).
				J^{π} : L(3 He,n)=(4) from 0 ⁺ .
6136 <i>6</i>			F	J . L(116,11)=(4) HOIII 0 .
6277 3	0^{+}		F	J^{π} : L(p,t)=0 from 0 ⁺ .
6485 6	Ü		F	V + 2(p,v) = 110111 = 1
6601 <i>3</i>			F	
6704 <i>3</i>			F	
6770 <i>13</i>			D F	E(level): other: 6760 50 from (³ He,n).
6801 <i>12</i>			F	
6950 <i>5</i>			F	
7041 8			F	VIDEO (1700)
7176 <i>4</i>			d F	XREF: d(7200).
7208 15			d F	XREF: d(7200).
7480 9			D F	E(level): other: $7470 50$ from (3 He,n).
7801 <i>3</i> 8026 <i>5</i>			F F	
8189 <i>6</i>			F	
8322 5			F	
8507 <i>9</i>			F	
8587 <i>3</i>			F	
8672 <i>6</i>			F	
8717 8			F	
8924 9			F	
8994 9			F	
9073 9			F	
9157 8 9230 9			F F	
9230 9 9296 8			F	
9735 8			F	
9809 6			F	
10104 9			F	
10410 9			F	
10557 8			F	
10946 11			F	
11089 <i>11</i>			F	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

³⁸Ca Levels (continued)

E(level)[†] XREF 11189 *13* F 11861 *11* F

[†] From a least-squares fit to γ -ray energies for levels connected with γ transitions and from (p,t) for the rest, unless otherwise noted

† From DSAM in (3 He,n γ), unless otherwise noted.

γ (³⁸Ca)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f J	\mathbf{J}_f^{π}	Comments
2213.2	2+	2213.13	100	0 0)+	B(E2)(W.u.)=2.5 6 E_{γ} : other: 2212.5 14 from ³⁹ Ti ε p decay, 2206 10 from Coulomb excitation.
3083.7	0_{+}	870.5 5	100	2213.2 2	+	B(E2)(W.u.)=8 +3-5
3683.9	2+	1471 [‡]	19 <i>14</i>	2213.2 2	2+	E_{γ} : other: 1448 25 from Coulomb excitation. I_{γ} : from Coulomb excitation.
		3683.7 5	100 14	0 0)+	$ \stackrel{\circ}{B}(E2)(W.u.)=3.2 \ 12 $ $ \stackrel{\circ}{E_{\gamma}}: \text{ other: } 3685 \ 21 \text{ from Coulomb excitation.} $ $ \stackrel{\circ}{I_{\gamma}}: \text{ from Coulomb excitation.} $
3703.5 4193.5	(3 ⁻) (5 ⁻)	1490.22 <i>11</i> 490	100	2213.2 2° 3703.5 (3°		B(E1)(W.u.)=0.0011 +7-3
4383.9	2+	2170.6 <i>4</i>	100	2213.2 2	+	

 $^{^{\}dagger}$ From (3 He,n γ), unless otherwise noted.

[‡] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

