

آزمایشگاه سختافزار

پروپوزال پروژه دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف نیم سال اول ۲۰-۲۰

استاد:

جناب آقای دکتر اجلالی دستیار آموزشی: جناب آقای دکتر فصحتی

> موضوع پروژه: **دید در شب اتومبیل**

> > شماره گروه: ٦ اعضای گروه: علیرضا شاطری رضا امینی

فهرست مطالب

٢		مقدمه	1
	کلی پروژه	روش انجام ب ۱.۲ طرح ۲.۲ ماژول ۲.۲.۲ ۲.۲۲ سایر ۲	۲
	اوير	رست تص	فه
e e		Y-015 \ 8232 \ Y \ Q135 \ Y	
۲ ۱	۔اول ، ویژگیهای اصلی محصول ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،		فه

۱ مقدمه

هدف این پروژه ساخت سیستمیست که با استفاده از تعدادی سنسور و چراغ، سعی دارد به کمک رانندگان اتومبیل بیاید. این سیستم به کمک یک ماژول دوربین تشخیص حرارت و با کمک روشهای پردازش تصویر می تواند وجود یک موجود زنده یا عابر پیاده را زودتر از راننده در شب متوجه شود و به راننده هشدار دهد. همچنین چراغهای اتومبیل را به گونهای تنظیم می کند تا به سمت آن موجود زنده نور را هدایت کند.

توضيحات	ویژگی	ردیف
از طریق یک دوربین حرارتی، بدن موجود زنده را که دمایش با محیط اطراف متفاوت است تشخیص میدهد.	تشخیص موجود زنده	١
پس از شناسایی موجود زنده باید او را از موجود زنده با خبر کند. این کار میتواند از طریق روشن کردن یک چراغ خطر و یا یک صدای اخطار باشد.	هشدار به راننده	۲
چراغهای اتومبیل باید به سمت موجود زنده هدایت شود تا راننده نیز موجود زنده را ببیند.	هدایت نور اتومبیل به سمت موجود زنده	٣
باید بتوان تاریخچهی شناسایی موجودات زنده را ذخیره کرد و در صورت نیاز به کاربر نشون داد.	ذخيره تاريخچه	*

جدول ۱: جدول ویژگیهای اصلی محصول

۲ روش انجام پروژه

۱.۲ طرح کلی پروژه

در این پروژه از برد رزپری پای ۳ استفاده خواهد شد. چراغها و سنسورهای محیطی به این برد متصل می شوند و از طریق رزبری اطلاعات آن ها پردازش و نتیجه توسط رزپری روی چراغهای LED نمایش داده می شود.

کد بخش نرم افزاری را با زبان Python و کتابخانههای مربوط به همین زبان پیادهسازی میکنیم. چراغهای LED نیز به برد وصل میشوند. همچنین از ماژول دوربین حرارتی آرایهای AMG883 IR زمان الله عصویربرداری حرارتی و پردازش دمایی محیط اطراف استفاده خواهیم کرد. همچنین زمان دقیق اخطارها را درون فایلی در رزپری قرار میدهیم و در زمان نیاز میتوان رزپری را به مانیتور متصل کرده و فایل را به نمایش در آورد.

۲.۲ ماژولها

۱.۲.۲ دوربین حرارتی

یک آرایه سنسور مادون قرمز کم هزینه است که توسط پاناسونیک توسعه یافته است. برای استفاده با میکروکنترلرها در یک ماژول با شیفترهای سطح و تنظیم کننده ولتاژ یکپارچه شده است که برق و داده $\mathbf T$ تا $\mathbf \Delta$ ولت را می دهد.

این سنسور تُنها ۲۴ پیکسل (۸×۸) دارد که خیلی زیاد نیست اما برای آزمایش کافی و کار با آن ساده است، همچنین قیمت مناسبی نیز دارد.

ماژول را میتوان به راحتی به برد متصل کرد و دادههای دمایی تصویر را دریافت و پردازش نمود.

شكل ۱: KY-015

۲.۲.۲ رزپری ۳

شكل ۲: AD8232

Cortex-A53 (ARMv8) و نوع پردازنده این محصول Broadcom BCM2837B0 و نوع پردازنده این محصول 4 گیگابایت است و فاقد حافظه ذخیره سازی داخلی میباشد. آداپتور مناسب این محصول 6 ولت و 6 آمپر میباشد. چون این برد حافظه داخلی ندارد، نیاز است تا یک حافظه خارجی مانند فلش به آن متصل نمود و دادههایی که نیاز به ثبت دائمی دارند را در آن ذخیره کرد.

۳.۲.۲ دوربین دید در شب (جایگزین دوربین حرارتی)

شکل ۳: MQ135

دوربین دید در شب Raspberry Pi ما مستقیماً به کانکتور CSI Raspberry Pi متصل می شود (برای استفاده با Zero Pi به آداپتور نیاز دارد) و دارای دو نورافکن LED مادون قرمز با شدت بالا برای ضبط در شب است! LED های IR مستقیماً از پورت CSI تغذیه می شوند و می توانند یک منطقه را تا فاصله Λ متری روشن کنند! در آزمایش، بهترین تصاویر در فاصله Υ تا Δ متری ثبت شد. این دوربین همچنین دارای لنز با فاصله کانونی Λ .۳ میلی متری قابل تنظیم و زاویه دید Λ .۷۷ درجه است.

این دوربین دید در شب Raspberry Pi از همان OV5647 به عنوان دوربین استاندارد Raspberry Pi این دوربین دید در شب Pi استفاده می کند و بنابراین می تواند تصویری با وضوح ۵ مگاپیکسل شفاف یا فیلمبرداری HD با سرعت ۳۰ فریم بر ثانیه ارائه دهد!

۳.۲ سایر موارد

در زیر جدول هزینههای تخمینی پروژه آورده شده است.

فی (هزارتومان)	قطعه	ردیف
3100	رزپری پای	١
1100	دوربین حرارتی	٢
100	USB	٣
50	LED Board	۴
4350	مجموع	

جدول ۲: برآورد هزینهها طراحی اول

فی (هزارتومان)	قطعه	رديف
3100	رزپری پای	١
4000	دوربین دید در شب	٢
100	USB	٣
50	LED Board	۴
7250	مجموع	

جدول ۳: برآورد هزینهها طراحی دوم