St. JOSEPH'S INSTITUTE OF TECHNOLOGY, CHENNAI-119 DEPARTMENT OF MATHEMATICS

SUB NAME&CODE: MA6351 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS ASSIGNMENT – I UNIT II – FOURIER SERIES

SEMESTER : III (COMMON TO ALL BRANCHES) YEAR: II
PART - A

1.	Write the sufficient conditions for a function $f(x)$ to be expanded as a Fourier series in given interval.
2.	Find the Fourier constant b_n for $x \sin x$ in $-\pi < x < \pi$, when expressed as a Fourier series.
3.	Find the value of the Fourier series for $f(x) = \begin{cases} x & 0 \le x < 1 \\ 2 & 1 < x < 2 \end{cases}$ at $x=1$.
4.	If $f(x) = e^x$ in $-\pi < x < \pi$, find a_n .
5.	If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx$, deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$ in $[-\pi, \pi]$
6.	Find the constant term of the Fourier series for the function $f(x) = x^2$, $-\pi < x < \pi$
7.	If $f(x) = x^2 + x$ is expressed as a Fourier series in the interval (-2,2) to which value this series
	converges at $x = 2$?
8.	Find the root mean square value of the function $f(x) = x$ in (θ, l)

PART – B

		TIME D
1.	a)	Find the Fourier series $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in $0 < x < 2\pi$. Hence show that
		(i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$. (ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$. Find the complex form of the Fourier series of $f(x) = \cos ax$ in $(-\pi, \pi)$, where a is
	b)	Find the complex form of the Fourier series of $f(x) = \cos ax$ in $(-\pi, \pi)$, where a is
		not an integer.
2.	a)	Obtain the Fourier series for $f(x)$ of period $2l$ and defined as follows
		$f(x) = \begin{cases} l - x & , & 0 < x \le l \\ 0 & , & l \le x < 2l \end{cases}$ Hence deduce that (i) $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$
		(ii) $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$
	b)	Find the half range Fourier sine series for $f(x) = x(\pi - x)$ in the interval $(0, \pi)$ and
		deduce that $\frac{1}{1^3} + \frac{1}{3^3} + \frac{1}{5^3} + \frac{1}{7^3} + \dots \infty$
3.	a)	Find the Fourier series for $f(x) = x $ in $-\pi < x < \pi$ and deduce that
		$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$ Find the first three harmonic of the Fourier series of f (x) given by
	b)	Find the first three harmonic of the Fourier series of f (x) given by
		x 0 1 2 3 4 5
		f(x) 9 18 24 28 26 20
4.	a)	Find the Fourier series expansion of $f(x) = \begin{cases} x, & 0 \le x \le 3 \\ 6 - x, & 3 \le x \le 6 \end{cases}$ and hence deduce that
		$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
	b)	The following table gives the variations of a periodic function over a period T
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		f(x) 1.98 1.3 1.05 1.3 -0.88 -0.25 1.98
		find $f(x)$ upto first harmonic.