Computer Vision for HCI

Noise Removal

1

Noise in Images

- Images can be noisy
 - Image acquisition process not perfect
 - Different sensors can have different noise and distortion properties
- Filter image to
 - Enhance images
 - Reduce noise in image
 - Emphasize or suppress certain image details
- How?
 - Decisions typically made at a level of local pixel regions (neighborhoods)

Local Pixel Neighborhoods

- 4-connected pixel region
 - If pixel * connected to four immediate neighbors
 - Left, right, up, down

	0 . 1	. 1	•
•	8-connected	pixel	region

- If pixel * connected to all eight neighbors

-	1	-
1	*	1
-	1	ı

1	1	1
1	*	1
1	1	1

3

Simple Removal of Binary Image Noise

- "Salt-and-pepper" noise (binary)
 - Single dark pixels in bright regions
 - Single bright pixels in dark regions
 - Possibly from thresholding errors

Removal of value L isolated from neighborhood of X's

X	X	X		X	X	X
X	L	X		X	X	X
X	X	X		X	X	X
-						

8-connected removal of L

Result

4-connected removal of L

Result

Applying to Images

• For *each* <u>valid</u> pixel location, examine neighborhood and save result to <u>new</u> image

x x x 4-conn Region

Binary image

Result

5

Results

Original binary image

8-connected removal

4-connected removal

Matlab: see bwmorph(), using 'clean' and 'fill'

6

Median Filtering

- Assume each pixel in neighborhood will be either
 - Uncorrupted pixel value
 - Noise pixel value
- Also, uncorrupted pixel values should be nearly the same (small neighborhood)
- Furthermore, assume that there are more uncorrupted values than noise values
- Solution: replace a pixel value with the <u>median</u> value of the spatial neighborhood
 - Value in the middle of the sorted distribution of pixel values (half of values greater, half are smaller)
 - Requires sorting operation on pixel values
 - Noise should be at one or both ends of the sorted distribution
- Matlab: see medfilt2() or ordfilt2()

7

7

Median Filtering

5x5 neighborhood of gray values

10	12	9	8	4
12	11	10	10	6
14	12	5	11	11
15	14	12	Q	8
13	12	10	8	12

Median of sorted values

[4, 5, 6, 8, 8, 8, 9, 9, 10, 10, 10, 10,

11,

11, 11, 12, 12, 12, 12, 12, 12, 13, 14, 14, 15]

Replace value 5 with the median 11

8

Median Example #1

Checkerboard with noise

After median filtering

9

9

Median Example #2

Grayscale image with noise

After median filtering

Tends to <u>preserve edge detail</u>, rather than blurring/smearing boundary between regions

10

<u>Iterative</u> Sequential Median???

11

11

Applying Filter Masks to Images

- Convolution/Correlation in image processing
- Mask is a set of pixel positions and corresponding values (weights)
 - Generally odd-numbered rows or columns
- Each mask has an origin (home position)
 - Center (or top-left) mask position most common

1	1	1
1	1	1
	1	1

1	2	1
2	4	2
1	2	1

Applying Masks to Images

- For each <u>valid</u> pixel location x,y, place mask with origin lying on that pixel
- Image values under mask are multiplied with mask weights and then summed

1/9	1/9	1/9	1/9	1/9
1/9	1/9	1/9	1/9	1/9
1/9	1/9	1/9	1/9	1/9
1/9	1/9	1/9	1/9	1/9
1/9	1/9	1/9	1/9	1/9

Grayscale image

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Averaging Mask

-	-	-	-	-
-	53	67	80	1
-	53	67	80	ı
-	53	67	80	-
-	-	-	-	1

Result

13

13

Average (Mean) Filtering

- Sometimes called a "box filter"
- Average filter to smooth over local region

$$V = I(x-1, y-1)\mathbf{1/9} + I(x, y-1)\mathbf{1/9} + I(x+1, y-1)\mathbf{1/9}$$

$$+ I(x-1, y)\mathbf{1/9} + I(x, y)\mathbf{1/9} + I(x+1, y)\mathbf{1/9}$$

$$+ I(x-1, y+1)\mathbf{1/9} + I(x,y+1)\mathbf{1/9} + I(x+1,y+1)\mathbf{1/9}$$

1	1	1	
1	1	1	
1	1	1	,,
			/ :

Average Filtering

Grayscale image with noise

After average filtering

Matlab: See fspecial() with 'average', and imfilter()

15

15

Comparison (Zoomed)

After median filtering

After average filtering

16

General Properties of Smoothing Masks

- Values of mask are all positive and sum to one
 - So that output on constant regions are same as input
- Amount of smoothing is proportional to mask size
 - Bigger masks smooth more

17

17

Gaussian Smoothing

- Weight the influence of pixels by their distance to the center pixel
 - Weight decreases smoothly to 0 as move more distant from origin
- Symmetric in 2-D (x,y)
 - Isotropic function
- Consider Gaussian (Normal) distribution as weighting function

Gaussian Smoothing

$$g(x, y; \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-x_\circ)^2 + (y-y_\circ)^2}{2\sigma^2}} = ce^{-\frac{x^2 + y^2}{2\sigma^2}}$$

19

Gaussian Smoothing

- The standard deviation σ controls the spread of the function
 - There is 95% of total weight within 2σ
 - There is 99.7% of total weight within 3σ
- To determine a mask size for a particular spread
 - Set mask size = $ceil(2\sigma)*2+1$ (95% of weight)
 - Or set mask size = $ceil(3\sigma)*2+1$ (99.7% of weight)
- Fill mask values with $g(x,y; \sigma)$
 - x-range: $[-ceil(3\sigma) : ceil(3\sigma)]$ (could use 2σ)
 - y-range: $[-\text{ceil}(3\sigma) : \text{ceil}(3\sigma)]$
- Divide by sum of mask values so sums to 1

Matlab: can easily create with fspecial() using 'gaussian', and then filter with imfilter()

Gaussian Smoothing Masks

1	3	7	9	7	3	1
3	12	26	33	26	12	3
7	26	55	70	55	26	7
9	33	70	90	70	33	9
7	26	55	70	55	26	7
3	12	26	33	26	12	3
1	3	7	9	7	3	1

/ 1098 7x7

After Gaussian filtering

21

21

Gaussian Smoothing

Original image

 $\sigma = 3$

 $\sigma = 6$

22

Anisotropic Diffusion, Bilateral Edge-Preserving Filtering

- Methods to smooth an image, while preserving boundaries and structures of interest
- Basic idea is to adjust the smoothing level in a region based on the edge structure in the neighborhood
 - Homogenous regions are highly smoothed
 - Strong edge regions are barely smoothed (to preserve the structure)

23

23

Separability of Filters

- For $(N \times N)$ image and $(n \times n)$ mask, computational complexity is $O(N^2 \times n^2)$
 - For each pixel, we sum up a function of the n^2 values
- Can reduce complexity by using two 1-D filters
 - First, move along rows, put into temporary image
 - Second, move along columns of temporary image
 - Now require only 2n operations, instead of n^2
- Complexity is reduced to $O(N^2 \times n)$

25

Gaussian Separability

- Two-dimensional Gaussian can be separated into two 1-D Gaussians
 - One along x dimension, then along y dimension

27

Summary

- Noise removal for images
 - At local neighborhood
- Median filter
 - Good for "salt-and-pepper" noise
 - Preserves edges
 - Not separable
- Average filter
 - Smooth image
 - Separable filter
- Gaussian filter
 - Weight influence of pixels by their distance to the center pixel
 - Normal distribution
 - Spread parameter
 - Separable filter

28