Hackers Mathematical Machine Learning Seminar

Finley Yu, Laura Lecinena Pastor

21.11.2023

Background

Research questions

In this paper, authors proposed shallow nets could achieve similar accuracies as deep networks on speech and object recognition.

The tricks of model compression are as follows:

- 1. Train the model directly on the **logit** values before 'softmax' rather than the probabilities to acquire higher accuracy
- 2. Introduce a linear layer to speed up the training
- 3. Mimic loss function: L2 loss function should be preferred to KL divergence

We conducted some experiments to examine the performance of the mimic student model and the validity of these tricks.

Fashion MNIST dataset

We chose the Fashion MNIST over CIFAR-10 to examine the paper's results.

Aspect	Fashion MNIST	CIFAR-10
Source	Online fashion retailer	Canadian Institute for Advanced Research
Size	70,000 images	60,000 images
Resolution	28 by 28 pixels	32 by 32 pixels
Color	Grayscale	RGB
Classes	10	10
Class names	Fashion products	Animals, Transports
Class distribution	Balanced	Balanced

Tabelle: Fashion MNIST and CIFAR-10

As shown in the Table 1, the Fashion MNIST has a larger size and lower input dimension, which means more data to train and less computational cost.

21.11.2023

Abbildung: Preview of the Fashion MNIST dataset

Models

Models

- CNN (Teacher model):
 - ▶ 1 convolutional layer (3*3, 16 channels)
 - ▶ 1 max pooling layer
 - 3 hidden layers containing 64 ReLU units
 - Cross Entropy loss
- DNN:
 - ▶ 3 fully connected feedforward hidden layers consisting of 2000 ReLU units
 - Cross Entropy loss
- SNN:
 - ▶ 1 hidden layer consisting of 8000 ReLU units (dropout = 0.5)
 - Cross Entropy loss
 - trained on original data

SNN Mimic model

We tried different numbers of ReLU units and Loss functions to examine the proposed tricks in the SNN mimic model:

- bottleneck layer consisting of 20 linear units (« input dimension 784 and output dimension 8,000)
- 1 hidden layer consisting of 8,000 (400, 20,000) ReLU units
- Loss function: L2 loss (KL divergence)
- CNN as teacher model

Training details

• stochastic gradient descent with momentum (0.9)

• batch size: 128 images

• training epochs: 30

• learning rate: 0.01

The code is available in our Github repo: https://github.com/Finley-Maple/Seminar-MML-SNN.git

Results

Models training process

Abbildung: Models training process: CNN, DNN, SNN

Shallow nets results

Abbildung: Accuracy of Shallow nets vs. training epoch

Different number of hidden units in student model

Abbildung: Accuracy of student models continue to improve as accuracy of teacher models improve

model	#parameters	accuracy	training cost
CNN	\sim 210k	90.24%	16m30s
DNN	$\sim 10 M$	89.48%	42m33s
SNN	\sim 6M	88.87%	20m7s
SNN-mimic-8k	~ 250 k	82.62%	11m29s
SNN-mimic-KL-8k	\sim 250k	87.09%	12m10s

Tabelle: Performance of the models

model	#parameters	accuracy	training cost
CNN	\sim 210k	90.24%	16m30s
DNN	$\sim 10 M$	89.48%	42m33s
SNN	\sim 6M	88.87%	20m7s
SNN-mimic-8k	~ 250 k	82.62%	11m29s
SNN-mimic-KL-8k	\sim 250k	87.09%	12m10s

Tabelle: Performance of the models

 \rightarrow CNN better than DNN (as in paper)

model	#parameters	accuracy	training cost
CNN	\sim 210k	90.24%	16m30s
DNN	$\sim 10 M$	89.48%	42m33s
SNN	\sim 6M	88.87%	20m7s
SNN-mimic-8k	~ 250 k	82.62%	11m29s
SNN-mimic-KL-8k	\sim 250k	87.09%	12m10s

Tabelle: Performance of the models

- → CNN better than DNN (as in paper)
- ightarrow For the mimic model, KL loss is better

model	#parameters	accuracy	training cost
CNN	\sim 210k	90.24%	16m30s
DNN	$\sim 10 M$	89.48%	42m33s
SNN	\sim 6M	88.87%	20m7s
SNN-mimic-8k	~ 250 k	82.62%	11m29s
SNN-mimic-KL-8k	\sim 250k	87.09%	12m10s

Tabelle: Performance of the models

Hackers

- \rightarrow CNN better than DNN (as in paper)
- ightarrow For the mimic model, KL loss is better
- → Bottleneck layer makes training much faster

model	#parameters	accuracy	training cost
CNN	\sim 210k	90.24%	16m30s
DNN	$\sim 10 M$	89.48%	42m33s
SNN	\sim 6M	88.87%	20m7s
SNN-mimic-8k	~ 250 k	82.62%	11m29s
SNN-mimic-KL-8k	\sim 250k	87.09%	12m10s

Tabelle: Performance of the models

- \rightarrow CNN better than DNN (as in paper)
- ightarrow For the mimic model, KL loss is better
- ightarrow Bottleneck layer makes training much faster
- ightarrow SNN has much more parameters than the mimic model in the paper, it is the same

Discussion

21.11.2023

• Why is the SNN better than the mimic model?

- Why is the SNN better than the mimic model?
 - data set

- Why is the SNN better than the mimic model?
 - ▶ data set
 - ► amount of parameters

- Why is the SNN better than the mimic model?
 - ▶ data set
 - amount of parameters
 - ▶ bottleneck layer

- Why is the SNN better than the mimic model?
 - ▶ data set
 - amount of parameters
 - ▶ bottleneck layer
 - loss function

- Why is the SNN better than the mimic model?
 - data set
 - amount of parameters
 - ▶ bottleneck layer
 - loss function

• How do the SNN and SNN mimic have the same amount of parameters in the paper?