Two's Complement: 4 Bit Example

Two's Complement = B-complement with base 2

leftmost Bit (= most significant bit, MSB)

 $0 \longrightarrow positive number$

 $1 \rightarrow$ negative number

BUT: This is not a sign-bit in the sense of sign/value-notation!

How to Obtain the Two's Complement

- positive integers: conversion decimal ←→ dual as discussed before
 - but with a fixed number of bits, i.e., leading zeros

4 Bit example

+5 =

0101

- negative integers conversion decimal → dual
 - 1. convert the corresponding positive decimal to dual with fixed width
 - 2. apply a NOT-operation, i.e., invert all bits
 - 3. add one
- negative integers conversion dual → decimal
 - 1. apply a NOT-operation, i.e., invert all bits
 - 2. add one
 - 3. convert to decimal and add a minus-sign

$$0101 = +5$$

$$\rightarrow$$
 1011 = -5

Ones' Complement: 4 Bit Example

Ones' complement = (B-1)-complement with base 2

symmetric – modular arithmetic mod $2^N - 1$, but we have a positive as well as a negative zero!

leftmost Bit (= most significant bit, MSB)

 $0 \rightarrow positive number$

 $1 \rightarrow$ negative number

BUT: This is not a sign-bit in the sense of sign/value-notation!

How to Obtain the Ones' Complement

- - but with a fixed number of bits, i.e., leading zeros

4 Bit example

- negative integers conversion decimal → dual
 - 1. convert the corresponding positive decimal to dual with fixed width
 - 2. apply a NOT-operation, i.e., invert all bits

+5 = 0101 1010 = -5

- negative integers conversion dual → decimal
 - 1. apply a NOT-operation, i.e., invert all bits
 - 2. convert to decimal and add a minus-sign

$$0101 = +5$$

$$\rightarrow$$
 1010 = -5

Seems much simpler than Two's complement? Well, there's a catch...

Binary IEEE Floating-point Format

- standard IEEE 754-2019
- C/C++ and Java data types use 4 bytes for float and 8 bytes for double
- the standard also defined types for half (16 Bit) and quadruple (128 Bit) precision

Fano Algorithm – Summary

- 1. Arrange symbols c to be encoded and the associated probabilities of occurrence p(c) in a table, sorted by descending probability values.
- 2. Enter the subtotals of the probabilities (starting with the smallest one) in a third column.
- 3. Subdivide table into two parts, as close as possible to half of the respective interval.
- 4. Assign a 0 for all symbols above the division, and a 1 for all symbols below (or vice versa); this will form the code words from left to right.
- 5. Continue this procedure recursively for all partitions.
- 6. End when division is no longer possible.

Arithmetic Coding – Encoding Example

Compression of the message ESSEN

<u>C</u>	S	U	L	_
	-	1.0	0.0	Initialization
Ε	1.0	0.4	0.0	
S	0.4	0.32	0.16	
S	0.16	0.288	0.224	
Е	0.064	0.2496	0.224	
N	0.0256	0.2496	0.24448	

Symbol c	Probability p_i	Interval $[l(c), u(c)[$
Е	² / ₅	[0.0, 0.4[
S	$^{2}/_{5}$	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

$$s := U - L$$

$$U := L + s \cdot u(c)$$

$$L := L + s \cdot l(c)$$

• The result is x = 0.24704

$$x := \frac{L + U}{2}$$

Arithmetic Coding – Decoding Example

We can gradually recover the original message from the encoded floating-point number x = 0.24704)

$\underline{\mathcal{X}}$	c (output)	<i>u(c)</i>	l(c)	S	
0.24704	E	0.4	0.0	0.4	
0.6176	S	0.8	0.4	0.4	
0.544	S	0.8	0.4	0.4	
0.36	Е	0.4	0.0	0.4	

0.9

Symbol c	Probability p_i	Interval $[l(c), u(c)[$
E	² / ₅	[0.0, 0.4[
S	² / ₅	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

Output the symbol *c* that corresponds to the interval where *x* is located

$$s = u(c) - l(c)$$
$$x := \frac{x - l(c)}{s}$$

0.2

0.8

1.0

Run-length Encoding – Simple Example

Run-length encoding of a binary image

0000000	0000
0000000	0000
00011000	001110100011
00111100	001011000010
01111110	000111100001
11111111	1000
0000000	0000
0000000	0000

- Transfer pairs of numbers (data value, run-length)
 - Run-lengths: 001=1 010=2 011=3 100=4 101=5 110=6 111=7 000=8
- Compression from 64 to 56 bits is achieved

LZW Algorithm – Encoding Example

Encoding of the string ABABCBABAB

Symbol c	Prefix P	Output
	-	
А	Α	
В	В	0
А	Α	1
В	AB	
С	С	3
В	В	2
А	BA	
В	В	4
А	ВА	
В	BAB	
		7

Code table

Code
0
1
2
3
4
5
6
7

Read next input character c from the input string If Pc is already in the code table:

Set P := Pc

Else:

Insert Pc in the code table Output the code for P

Set P := c

Output the code for the last prefix P

 \rightarrow encoded string: 0,1,3,2,4,7

LZW Algorithm – Decoding Example

Decoding of 0,1,3,2,4,7

Code c	k	Prefix P	Output
		-	
0	Α	Α	А
1	В	В	В
3	Α	AB	AB
2	C	С	С
4	В	ВА	ВА
7	В	BAB	BAB

Code table

Prefix	Code
Α	0
В	1
С	2
AB	3
ВА	4
ABC	5
СВ	6
BAB	7

Read next input code word c If c is already in the code table:

Output the string corresponding to \boldsymbol{c}

Set k := first character of this string

Insert Pk in the code table, is it is not yet in there

Set P := string corresponding to code c

Else (special case):

Set k :=first character of P

Output Pk

Insert Pk in the code table

 $\mathsf{Set}\,P := Pk$

→ decoded message: ABABCBABAB

m-out-of-n (m-oo-n) Codes

• (Nonlinear) block codes with a word length of n

Each code word contains exactly

- m Ones and
- n m **Zeros**
- Special case: 1-out-of-n code: "one-hot" coding
- The code contains exactly $\binom{n}{m}$ code words

Examples:

<u>Digit</u>	2-00-5 code	1-00-10 code
0	00011	000000001
1	00101	000000010
2	00110	000000100
3	01001	000001000
4	01010	0000010000
5	01100	0000100000
6	10001	0001000000
7	10010	001000000
8	10100	0100000000
9	11000	1000000000

2-D Parity Check – Summary

- 2-D Parity Check is
 - 1-error-correcting (Correction of single errors and detection of double errors) OR
 - 3-error-detecting (Detection of single, double, and triple errors).
- Disadvantage: We must wait for whole blocks to be transferred before correction
- The concept can be generalized to more dimensions straightforwardly
 - the Hamming distance of a d-dimensional parity check is d+1
 - therefore, a maximum of d/2 erroneous bits can be corrected

Checksums in General

Check the (decimal) sequence $z_n \dots z_i \dots z_0$ (including check digits) using weights g_i

$$\sum_{i=0}^{n} g_i z_i \mod m = 0$$

- Detection of single incorrect digits is guaranteed if all weights g_i and m are relatively prime (teilerfremd): $gcd(g_i, m) = 1$
- Detection of the transposition (*Vertauschung*) of two digits z_i and z_k is guaranteed, if $g_i g_k$ and m are relatively prime.
- \rightarrow using prime numbers for m makes sense

CRC – Detectable Errors

- received polynomial S'(x) = S(x) + F(x)
 - F(x) is a polynomial that represents the erroneous bits
 - $F(x) = 0 \rightarrow \text{no errors}$
- all errors can be detected where F(x) is not a multiple of C(x)
 - \rightarrow Requirements for generators C(x)
- Which errors can be detected?
 - all single-bit errors, if x^k and the constant term 1 exist
 - all double errors, if C(x) has at least three terms, and the size of the data is smaller than the cycle length of C(x)
 - all r-bit errors for odd r, if C(x) has an even number of terms; especially if it contains the factor (x + 1)
 - all burst errors of length smaller k, if C(x) contains the constant term
 - most burst errors of length ≥ k

RS – Encoding

- Evaluate P(x) at the n positions $u_0, u_1, ..., u_{n-1}$
 - best to use Horner's method or discrete Fourier-Transform (DFT) as Fast Fourier-Transform (FFT)
- Code word $c = (P(u_0), P(u_1), ..., P(u_{n-1}))$

Example: RS(q, m, n) with q = 5, m = 3, n = 5

- Encode message a = (1, 2, 3) \longrightarrow polynomial: $P(x) = 1 + 2x + 3x^2$
- Evaluate P(x) at n = 5 positions
 - more are not possible anyway, since the field \mathbb{F}_5 has only 5 elements

$$P(0) = 1 + 0 + 0$$
 = 1 (mod 5)
 $P(1) = 1 + 2 + 3 = 6$ = 1 (mod 5)
 $P(2) = 1 + 4 + 12 = 17$ = 2 (mod 5)
 $P(3) = 1 + 6 + 27 = 34$ = 4 (mod 5)
 $P(4) = 1 + 8 + 48 = 47$ = 2 (mod 5)

• Code word c = (1, 1, 2, 4, 2)

- RS(q, m, n) with q = 5, m = 3, n = 5 as before
- P(x) was evaluated at the positions $u_i = 0, 1, 2, 3, 4$
- Sent code word was c = (1, 1, 2, 4, 2)
 - the last two values were erased \rightarrow received: $(1, 1, 2, \varepsilon, \varepsilon)$
- Determine polynomials $g_i(x)$:

$$g_0(x) = (x-1)(x-2) = x^2 - 3x + 2 = x^2 + 2x + 2$$

 $g_1(x) = x(x-2) = x^2 - 2x = x^2 + 3x$
 $g_2(x) = x(x-1) = x^2 - x = x^2 + 4x$

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

mod 5!

Evaluate the $g_i(u_i)$ at $u_i = 0, 1, 2$

$$g_0(x) = x^2 + 2x + 2$$

 $g_0(0) = 2$

$$g_1(x) = x^2 + 3x$$

 $g_1(1) = 1 + 3 = 4$

$$g_2(x) = x^2 + 4x$$

 $g_2(2) = 4 + 8 = 12 = 2$

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

- Determinate multiplicative inverses $g_i^{-1}(u_i)$
 - they always exist because we have a field
 - use, e.g., extended Euclidean algorithm

$$g_0(0) = 2 \longrightarrow g_0^{-1}(0) = 3$$
 (Test: $2 \cdot 3 = 6 = 1$)
 $g_1(1) = 4 \longrightarrow g_1^{-1}(1) = 4$ (Test: $4 \cdot 4 = 16 = 1$)
 $g_2(2) = 2 \longrightarrow g_2^{-1}(2) = 3$ (Test: $2 \cdot 3 = 6 = 1$)

• Product $P(u_i)g_i^{-1}(u_i)$

$$P(0)g_0^{-1}(0) = 1 \cdot 3 = 3$$

 $P(1)g_1^{-1}(1) = 1 \cdot 4 = 4$
 $P(2)g_2^{-1}(2) = 2 \cdot 3 = 6 = 1 \pmod{5}$

 $(1,1,2,\varepsilon,\varepsilon)$

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

Plug-in everything:

$$P(x) = \sum_{i=0}^{2} \frac{P(u_i)}{g_i(u_i)} g_i(x) = 3g_0(x) + 4g_1(x) + 1g_2(x)$$

$$= 3(x^2 + 2x + 2) + 4(x^2 + 3x) + (x^2 + 4x)$$

$$= 8x^2 + 22x + 6$$

$$= 3x^2 + 2x + 1$$

$$= 1 + 2x + 3x^2$$

 \rightarrow original message was (1, 2, 3)

Euclidean Algorithm for Greatest Common Divisor

- gcd(a, b) = gcd(b, a mod b)
 - for a >= b
 - Stop if b = 0
 - then a is the gcd

• Examples:

```
    gcd(26, 13) = gcd(13, 0) → gcd = 13
    gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = gcd(1, 0) → gcd = 1
```

Review: Symmetric Encryption

- Properties
 - If you can encrypt, you can also decrypt
 - Each pair of communication partners must exchange a separate common secret key
- Assessment
 - Exchange of secret key
 - Secure channel required
 - Often, however, the channel is not secure (e.g., messenger or radio connection)
 - Key management
 - Large number of keys required
 - Problem
 - What to do if sender and recipient have not met before?
 - What if a message is to be sent to several recipients at the same time?
 - Authenticity is not guaranteed (both, sender and recipient use the same key)
- Solution: Asymmetric crypto-systems

Diffie-Hellman Key Exchange

Choose two public numbers

- a prime number p
- and an integer $g \in \{2, 3, ..., p-2\}$
- 1. Alice randomly chooses an integer $x_A \in \{2, 3, ..., p-2\}$

$$y_A = g^{x_A} \mod p$$

 x_A remains secret, y_A will be sent to Bob

2. Bob randomly chooses an integer $x_B \in \{2, 3, ..., p-2\}$ x_B remains secret, y_B will be sent to Alice

$$y_B = g^{x_B} \mod p$$

3. Alice calculates

$$k_{AB} = y_B^{x_A} \bmod p = (g^{x_B} \bmod p)^{x_A} \bmod p = g^{x_B x_A} \bmod p$$

4. Bob calculates

$$k_{AB} = y_A^{x_B} \bmod p = (g^{x_A} \bmod p)^{x_B} \bmod p = g^{x_A x_B} \bmod p$$

The key used to exchange messages is k_{AB} (or will be derived therefrom)

Diffie-Hellman – Security

g should be a primitive root modulo p (primitive Wurzel)

• it must have order (*Ordnung*) p-1:

$$g^{p-1} = 1 \mod p$$
 and $g^a \neq 1 \mod p$ for all a

- i.e., g is a generator (Generator, erzeugendes Element)
 - repeated multiplication generates all elements of the field (Körper) except zero
- the total number of such elements is $\phi(p-1)$
- g is a primitive root if and only if $g^{\frac{p-1}{r}} \neq 1 \bmod p$ for each prime factor r of p-1

RSA – Key Generation

- 1. Choose two large prime numbers p and q
- 2. Determine RSA modulus
 - n should have at least 600 (decimal) digit/2048 bits
- 3. Calculate Euler's function of *n*:
- 4. Choose an encryption exponent c with
 - $1 < c < \phi(n)$
 - c has no common divisor with Euler's function:
- 5. Calculate decryption exponent d as modular inverse of c wrt $\phi(n)$:
 - e.g., using the extended Euclidean algorithm

(c, n) form the public key, d is the private key

$$n = pq$$

$$\phi(n) = (p-1)(q-1)$$

$$\gcd(c,\phi(n))=1$$

 $cd \mod \phi(n) = 1$

RSA – Encryption & Decryption Example

Encryption of the text CLEO

• Determine numerical representation: 3, 12, 5, 15

• Encrypt using public key c = 3, n = 55

- C: $y_1 = 3^3 \mod 55 = 27$
- L: $y_2 = 12^3 \mod 55 = 1728 \mod 55 = 23$
- E: $y_3 = 5^3 \mod 55 = 125 \mod 55 = 15$
- O: $y_4 = 15^3 \mod 55 = 3375 \mod 55 = 20$

• Send 27, 23, 15, 20

Decryption of 27, 23, 15, 20 using the receiver's private key d=27

$$x_1 = 27^{27} \mod 55 = 3$$
 $\longrightarrow \mathbb{C}$
 $x_2 = 23^{27} \mod 55 = 12$ $\longrightarrow \mathbb{L}$
 $x_3 = 15^{27} \mod 55 = 5$ $\longrightarrow \mathbb{E}$
 $x_4 = 20^{27} \mod 55 = 15$ $\longrightarrow \mathbb{O}$

Elliptic Curve – Definition

Elliptic curve ≠ ellipse!

Elliptic curve: All points (x, y) that satisfy the following equation: with a, b, x, y elements of an arbitrary field (with at least 4 elements) and

$$y^2 = x^3 + ax + b$$
$$4a^3 + 27b^2 \neq 0$$

Examples (Plots over the field of real numbers):

$$y^2 = x^3 - 2x$$

Cryptography: use finite field \mathbb{F}_q with $q = p^i$ elements, p prime, $i \in \{1, 2, 3, ...\}$ $(i = 1 \rightarrow calculations modulo p)$

ECC – How to Perform Calculations?

- Instead of "normal" numbers: use points P=(x,y) with $x,y\in\mathbb{F}_q$, that satisfy the equation (we'll use q=pprime)
- Define a commutative group (algebraically closed, associative, neutral element, inverse)
- Operation "+": $P_3 = P_1 + P_2 = (x_1, y_1) + (x_2, y_2)$ (the "+" symbol is arbitrary!), with $x_3 = s^2 - x_1 - x_2 \mod p$ $y_3 = s(x_1 - x_3) - y_1 \mod p$

$$y^2 = x^3 + ax + b$$

and
$$s = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} \\ \frac{3x_1^2 + a}{2y_1} \end{cases}$$

$$\operatorname{mod} p$$

$$P_1 \neq P_2$$
, $x_1 \neq x_2$ (point addition

mod
$$p$$
 if $P_1 \neq P_2, x_1 \neq x_2$ (point addition) mod p if $P_1 = P_2, y_1 \neq 0$ (point doubling)

- **neutral element** σ with $P + \sigma = \sigma + P = P$ (an infinitely distant point in the direction of the y-axis)
- Inverse to P = (x, y) is -P = (x, -y)

ECC – Which Points are on the Curve?

- In \mathbb{F}_p (p prime): calculations mod p!
- Insert all possible x values in $y^2 = x^3 + ax + b$
- Equation is satisfied exactly for the quadratic residues (quadratische Reste) R_p
 - these are numbers $c = x^3 + ax + b$ for which $c^{\frac{p-1}{2}} \mod p = 1$ holds
 - in addition, for c = 0 the point (x, 0) is on the curve
- For all elements of R_p : Calculate the square root (mod p!)
- Calculation of the root is easy if $4 \mid (p+1)$
 - For $y^2 \mod p = c$ the solutions are:

$$y_1 = c^{\frac{p+1}{4}}$$
 and $y_2 = p - y_1$

- In other cases: probabilistic algorithm, see [Wätjen 2008, Algorithmus 9.1]
- Estimate of number of elements N of the curve: $p+1-2\sqrt{p} \le N \le p+1+2\sqrt{p}$ i.e., a curve consists of approx. p elements

ECC-Diffie-Hellman (ECDH)

Choose (public)

- a prime number p
- an elliptic curve E: $y^2 = x^3 + ax + b$ with N elements
- an element $g = (x_g, y_g) \in E$ (to be secure, it must be a primitive (= generating) element)
- Alice randomly chooses a number $x_A \in \{2, 3, ..., N-1\}$, adds $g x_A$ times:

$$y_A = g + g + \dots + g = x_A g$$

- x_A remains secret, y_A will be sent to Bob
- Bob randomly chooses a number $x_B \in \{2, 3, ..., N-1\}$, adds $g(x_B)$ times: 2.

$$y_B = g + g + \dots + g = x_B g$$

- x_B remains secret, y_B will be sent to Alice
- Alice calculates 3.
- Bob calculates 4.

$$k_{AB} = x_A y_B = x_A x_B g$$

$$k_{AB} = x_B y_A = x_B x_A g$$

Since calculations are performed in a commutative group, the result is identical.

The key used to exchange messages is k_{AB} (or rather derived therefrom, e.g., from the x-value using a hash function)

ECC-Diffie-Hellman (ECDH) — Example

$$p = 11, y^2 = x^3 + 3x + 9, g = (0, 8)$$

1. Alice randomly chooses a number $x_A \in \{2, 3, ..., 10\} \rightarrow 3$

$$y_A = 3 \cdot (0,8) = (0,8) + (0,8) + (0,8) = (3,10) + (0,8) = (6,10)$$

3 remains secret, (6, 10) will be sent to Bob

2. Bob randomly chooses a number $x_B \in \{2, 3, ..., 10\} \rightarrow 2$

$$y_B = 2 \cdot (0,8) = (0,8) + (0,8) = (3,10)$$

2 remains secret, (3, 10) will be sent to Alice

3. Alice calculates

$$k_{AB} = 3 \cdot (3, 10) = (2, 10)$$

4. Bob calculates

$$k_{AB} = 2 \cdot (6, 10) = (2, 10)$$

The key used to exchange messages is derived from (2, 10), e.g., from the x-value using a hash function

ECDH – Primitive Elements

- ECDH works as presented for any public element g
- To be secure, g must be a primitive element (generator)
 - i.e., g added to itself gets zero only after all group elements have been created
 - This is the same as the primitive root criterion for standard DH
 - except that there we use multiplication and a finite field created modulo a prime (neutral element = 1), group order (= #elements, here of the multiplicative group) is p-1
 - here we use point addition on the curve (neutral element = σ), group order is #points on curve + 1
- For group order N and a point g on the curve
 - determine all prime factors r of N
 - if $\frac{N}{r}g$ (= g added to itself $\frac{N}{r}$ times) is not zero (σ) for all factors r, g is primitive
 - note: $Ng = \sigma$ is always true
- In the previous example, the group contains N=11 elements
 - therefore, all elements $\neq \sigma$ are primitive
 - sequence for (0, 8): (0, 8), (3, 10), (6, 10), (10, 7), (2, 1), (2, 10), (10, 4), (6, 1), (3, 1), (0, 3), σ
- It is not so easy in practice to find good curves
 - some may not have any generating elements at all

Adjacency Matrix – Directed Graphs

- Powers A^r of the adjacency matrix A give us information about existence and number of walks in directed graphs
- Number of different walks of length r from x_i to x_j = element a_{ij} of matrix A^r
- Graph with n vertices is acyclic (azyklisch), if there exists an r with $1 \le r < n$ such that: $A^r \ne 0$, but $A^s = 0 \ \forall \ s > r$

This is said to be a Directed Acyclic Graph (DAG)

Path Matrix

• The path matrix (Wegematrix) W indicates whether a path from x_i to x_j exists:

$$w_{ij} = \begin{cases} 1, & \text{if there exists a path from } x_i \text{ to } x_j \\ 0 & \text{otherwise} \end{cases}$$

• W can be obtained by adding up all relevant powers of the adjacency matrix $A + A^2 + A^3 + ... + A^n$

and replacing all non-zero elements by 1