

Surface micromachining sacrificial etchant Structure Polysilicon Silicon dioxide HF SiNx **PSG** HF Silicon dioxide polysilicon XeF2 polysilicon XeF2 SiNx Aluminum photoresist oxygen plasma

Air Filters

- HEPA (High Efficiency Particulate Air) filters
- High efficiency, low ∆p, good loading characteristics
- Glass fibers in a paper like medium
- 97% retainment of incident particles of 0.3 μm or larger

2.008-spring-200

Class of clean rooms

Class	0.5 μ	Temp	RH	\$/ft ²
	particle	tolerance	tolerance	
10,000	10,000	+/- 3ºF	+/- 5%	\$250-300
1,000	1,000	+/- 2ºF	+/- 5%	\$350-400
100	100	+/- 1ºF	+/- 5%	\$1200
10	10	+/- 0.5°F	+/- 3%	\$3500
1	1	+/- 0.3°F	+/- 2%	\$10,000

2.008-spring-200

Particles

class	0.1μ	0.2μ	0.3μ	0.5μ	5.0 μ
1	35	7.5	3	1	N/A
10	350	75	30	10	N/A
100	N/A	750	300	100	N/A
1000	N/A	N/A	N/A	1000	7

Federal Standard 209; Number of particles per cubic foot

2.008-spring-2003

Toxicity

- TLV (Threshold Limit Value)
 - Upper limit material concentration that an average healthy person can be exposed without adverse effects, ppm or mg/m³
- Notorious Poisons
 - CO (100 ppm), CO₂ (5000 ppm), HCN (110 ppm), H₂S (10 ppm)
 - SO₂ (5 ppm), NH₃ (50 ppm)
 - Arsenic trioxide AS₂O₃ (0.1g fatal)
 - Hg (0.1 ppm via skin contact)
 - All material are toxic in sufficient quantity, 5g caffein is fatal.

2.008-spring-2003

MEMS Applications

2.008-spring-2003

Coupled Natures of Thin Film Processes

- Forward coupling
 - Step coverage, confromality
- Backward coupling
 - Temperature dependent microstructural degradation
 - Over/under etch, etch stop control
 - Side attack, Passivation breakage

2.008-spring-2003

Design of nanopipette (2): In-line array of nanopipettes Massive Parallel Nanopipette Array by Inplane Scanning Probe Systems Integration with Microfluidic channels Integration of nanopipettes in AFM in an 100 x 100 array

