TRIGONOMETRY

Chapter 02 Sesión II

SISTEMAS DE MEDICIÓN ANGULAR II

MOTIVATING STRATEGY

¿Sabías qué?

Se tienen tres sistemas de medición angular de manera convencional pero para usos militares se utiliza una unidad llamada MILÉSIMA (mil), esto debido a que permite un cálculo rápido y fácil de distancias grandes como son los disparos en la artillería, donde: 1 revolución = 6 400 mil.

En 1864 el ejército suizo empezó a utilizar la milésima, luego Francia en 1879 y en 1900 los Estados Unidos de Norteamérica. El uso militar de esta unidad es para dirigir el fuego de artillería, determinar el alcance y efectuar correcciones de tiro.

Relación Numérica Entre Sistemas

Es la relación que existe entre los números de grados sexagesimales (S), números de grados centesimales (C), y el número de radianes (R) que contiene un ángulo trigonométrico. En el gráfico tenemos:

 $\alpha = S^{\circ} = C^{g} = Rrad$

De la figura:

$$S^{\circ} = C^{\circ} = Rrad ...(*)$$

Además:

$$180^{\circ} = 2009 = \pi rad ... (**)$$

Dividiendo (*) y (**):

$$\frac{S}{180} = \frac{C}{200} = \frac{R}{\pi}$$

Donde:

S: número de grados sexagesimales de α

C: número de grados centesimales de α

R: número de radianes de α

Relación Numérica Entre Sistemas

Para fines prácticos:

$$\frac{S}{180} = \frac{C}{200} = \frac{R}{\pi} = k$$

$$C = 200K$$

$$R = \pi K$$

$$\frac{6}{9} = \frac{C}{10} = \frac{R}{\pi/20} = n$$

$$S = 9n$$

$$C = 10n$$

$$R = \frac{\pi n}{20}$$

PROBLEMA 1: Reduzca $E = \left(\frac{C+S}{C-S} + \sqrt{\frac{5S-2C}{C-S}} + 1\right)^{1/2}$, siendo **S y C lo**

convencional para un mismo ángulo.

RESOLUCIÓN:

$$E = \left(\frac{10n+9n}{10n-9n} + \sqrt{\frac{5(9n)-2(10n)}{10n-9n}} + 1\right)^{1/2}$$

$$E = \left(\frac{19n}{n} + \sqrt{\frac{25n}{n}} + 1\right)^{1/2}$$

$$E = \sqrt{19 + 5 + 1}$$

PROBLEMA 2: Reduzca

$$G = \frac{\frac{\pi C}{2} - 40R}{\frac{\pi S}{3}}$$

siendo S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN:

$$G = \frac{\frac{\pi(10n)}{2} - 40\left(\frac{\pi n}{20}\right)}{\frac{\pi(9n)}{3}}$$

$$G = \frac{5\pi n - 2\pi n}{3\pi n}$$

PROBLEMA 3: Determine la medida de un ángulo en el sistema radial si su número de grados centesimales excede a su medida en grados sexagesimales en 8.

RESOLUCIÓN:

C-S=8 Dato:

Entonces:10n-9n=8

Piden:
$$R = \frac{\pi(8)}{20} = \frac{2\pi}{5}$$

Por lo tanto la medida del ángulo en el sistema radial es:

PROBLEMA 4: Si un ángulo cumple con: $3^{3C-2S} = 81^6$, determine la medida en grados centesimales, siendo S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN:

Reemplazando:
$$3^{3(10n)-2(9n)} = (3^{4})^{6}$$

 $3^{12n} = 3^{24}$

$$n=2$$

Piden: C = 10(2) = 20

Por lo tanto la medida del ángulo en el sistema centesimal es: 20^g

PROBLEMA 5: La diferencia de la inversa de los números de un ángulo en grados sexagesimales y centesimales es igual al cociente entre su número de radianes y 2π . Determine la medida de dicho ángulo en el sistema sexagesimal.

RESOLUCIÓN:

Tenemos:
$$\frac{1}{S} - \frac{1}{C} = \frac{R}{2\pi}$$

Reemplazando:
$$\frac{1}{9n} = \frac{\frac{\pi n}{20}}{10n} = \frac{\pi n}{2\pi}$$

$$\frac{10n - 9n}{(9n)(10n)} = \frac{n}{(20)(2)}$$

$$\frac{\cancel{\nu}}{90n^2} = \frac{\cancel{\nu}}{40}$$

$$90n^2 = 40$$

$$n = \frac{2}{3}$$

Piden:
$$S = 9\left(\frac{2}{3}\right) = 6$$

Por lo tanto la medida del ángulo en el sistema sexagesimal es: 6°

PROBLEMA 6: Exprese en radianes si S, C y R representan lo convencional para un mismo ángulo.

$$\frac{\sqrt{\frac{SC}{10}}}{R} = \frac{R}{\pi}$$

RESOLUCIÓN:

Reemplazando:

$$\frac{\sqrt{\frac{(9n)(10n)}{10}}}{\frac{\cancel{\pi}n}{20}} = \frac{R}{\cancel{\pi}}$$

$$\frac{\sqrt{9n^2}}{\frac{n}{20}} = R$$

$$\frac{\frac{3p}{1}}{\frac{20}{20}} = R$$

$$R = 60$$

Por lo tanto la medida del ángulo en el sistema radial es: 60 rad

PROBLEMA 7: Determine la medida de un ángulo en el sistema radial que cumple: $S + C + 19R = 20 + \pi$ Siendo S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN:

Reemplazando:
$$9n + 10n + 19\left(\frac{\pi n}{20}\right) = 20 + \pi$$
 $n = \frac{20}{19}$

$$19n + 19\left(\frac{\pi n}{20}\right) = 20 + \pi$$

Factorizando:
$$19n\left(1+\frac{\pi}{20}\right)=20+\pi$$

$$19n\left(\frac{20+\pi}{20}\right) = 20+\pi$$

$$n = \frac{20}{19}$$

Por lo tanto la medida del ángulo en el sistema radial es: $\frac{\pi}{19}$ rad

$$\frac{\pi}{19}$$
 rad

PROBLEMA 8: Determine la medida de un ángulo en el sistema centesimal si cumple que:

$$\frac{\pi C + \pi S + 10R}{\pi C - \pi S - 10R} - \frac{C + S}{C - S} = \frac{80R}{\pi}$$

Siendo S, C y R lo convencional para un mismo ángulo.

$$\frac{10n\pi + 9n\pi + 10\frac{\pi n}{20}}{10n\pi - 9n\pi - 10\frac{\pi n}{20}} - \frac{10n + 9n}{10n - 9n} = \frac{80\frac{\pi n}{20}}{\pi} \qquad \frac{39\pi n}{\frac{2}{2}} - 19 = 4n$$

$$\frac{19n\pi + \frac{\pi n}{2}}{n\pi - \frac{\pi n}{2}} - 19 = 4n$$

$$\frac{\frac{39\pi n}{2}}{\frac{\pi n}{2}} - 19 = 4n$$

$$39 - 19 = 4n \qquad \qquad \qquad n = 5$$

Por lo tanto la medida del ángulo en el sistema centesimal es: $10(5)^g = 50^g$