

FIG. 7. The setup of the adapted system with L-1 spins in a chain with an additional externally coupled metronome spin attached to the center. (a) A schematic visualization of the adapted geometry. The lifetimes of the boundary-site z-magnetization autocorrelators Z_L are shown in the next two panels for different initial states. (b) The autocorrelator of the polarized initial state. The blue and orange lines show the results for the case without metronome spin and with a metronome spin in the chain, respectively, for reference. Both configurations with a metronome display similar lifetime enhancements of the autocorrelator. (c) The autocorrelator averaged over 500 random initial bit-string states. The adapted system shows a much earlier decay of the autocorrelators compared to the configuration with the metronome spin in the chain and retains only a remnant of the original magnetization for the duration of the metronome lifetime. On the second axis in (b) and (c) (in purple font) the magnetization autocorrelator Z_m of the metronome spin itself in the adapted setup is displayed.

the previous predictions. In the fully polarized case, we see analogous results, whereas for random bit-string states, the averaged autocorrelator of the edge spin (green curve) decreases rapidly to an intermediate plateau before vanishing completely. The timescale of the larger first decay is comparable to the lifetime of the nonstabilized chain ($t/T \approx 10^3$), and the second late-time decay coincides with the dephasing of the metronome spin. The initial decay stems from the multitude of different couplings between domain-wall sectors and the small remaining autocorrelations are protected by the spin-flip parity that is broken on timescales $\ll \epsilon'$ where the metronome is still fully polarized.

IV. CONCLUSION

In this work, we have shown that near-resonant driving of a single spin can significantly increase the lifetime of longrange order in periodically driven systems. In particular, the stabilization is not based on disorder-induced MBL; instead, we have identified two distinct mechanisms that lead to longlived bulk and edge spins, respectively. For polarized states, an argument concerning the breaking of spin-flip symmetry was found to explain the increased bulk magnetization lifetimes. Subsequent studies revealed a lifetime enhancement of stable oscillations on the boundary spins in arbitrary bit-string initial states. We argued that the reason for the slowed edge-mode decay is that the metronome spin leads to a suppression of resonant higher-order processes. Finally, we discussed another setup with external stabilization to the chain and thus no edge-mode enhancement to clearly highlight the two different mechanisms identified before.

Thus, our work introduces novel stabilization mechanisms suitable for ordered and, in particular, finite-size systems. The bulk-stabilization argument relies on the effective symmetry breaking introduced through one metronome spin, which is not affected by the length of the chain. Similarly, the energy offset of flipping edge spins compared to the bulk is linked to open boundary conditions, leading to enhancement of stable oscillation even for short chains. Therefore, both processes enable arbitrarily long-lived oscillations without taking the thermodynamic limit.

We point out that the stabilization mechanism of the model is not based on the Hamiltonian being integrable. The core concept is linked to the underlying approximate conservation of the domain-wall number and the spin-flip symmetry, the latter of which is broken by the metronome in the bulk of the chain. We expect to find similar results in other spin systems as long as these conditions are met. To corroborate this statement, we have studied the same model as in Eq. (1), but added next-nearest-neighbor interactions, $\sim J_{i,i+2} s_z^i s_z^{i+2}$, which break the integrability of the Hamiltonian (cf. Appendix C). As expected, we find that decreasing ϵ for one of the spins yields lifetime enhancements analogous to the regular TFIM model, which encourages further study of applications in other models.

One potential future extension of this work is the study of two- and three-dimensional setups. The existence of MBL and thus disorder-stabilized DTC in these systems has been the subject of ongoing debate in recent years, which makes the study of alternative stabilization mechanisms an interesting direction. Moreover, the search for analogous stabilization mechanisms in other paradigmatic spin models, such as the