# **Graphs (Part 3)**

Graph traversals, the shortest path problem, and the minimum spanning tree problem

**Connor Baker** 

## **Graphs (Part 3)**

#### **Positive Weighted Shortest Path**

- · Weighted graph
  - A path with fewer edges may not have a lower cost, since each edge carries its own weight
  - We must calculate and compare the total weight
- Example:



Figure 1: Example 1

- What's the shortest path from 0 to 6?
  - \* Shortest in terms of edges:
    - The path  $\{0, 1, 6\}$  with weight 8
  - \* Shortest in terms of weight:
    - The path  $\{0, 1, 4, 5, 6\}$  with weight 5
- As a general solution, we can use Dijkstra's Algorithm
  - We don't allow negative edges
  - Each node remembers the current shortest path (the previous path and the distance)
    - $\star\;$  All nodes start at  $\infty$ , except for the starting node S
  - Repeat the following until all nodes have been marked:
    - \* Take the node m which has the minimum distance among all nodes that have not been marked and mark it
    - $\star~$  Update the unmarked nodes connected to node m if the path via m is shorter

### **Example of Dijkstra's Algorithm**

Suppose we want to find the shortest path given the following graph, and starting at vertex  $\boldsymbol{0}$ .

Connor Baker 1 of 6



Figure 2: Example 2

| Node        | 0 | 1        | 2        | 3        | 4        | 5        | 6        |
|-------------|---|----------|----------|----------|----------|----------|----------|
| Path Length | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| Prev        | 0 | -        | -        | -        | -        | -        | -        |

- Starting vertex  $\boldsymbol{0}$ 
  - Updating for vertices  $1,\,2,$  and 3
- Paths: {}

| Node        | 0 | 1 | 2 | 3 | 4        | 5        | 6        |
|-------------|---|---|---|---|----------|----------|----------|
| Path Length | 0 | 1 | 1 | 3 | $\infty$ | $\infty$ | $\infty$ |
| Prev        | 0 | 0 | 0 | 0 | -        | -        | -        |

- Next vertex 1
  - Updating for vertices  $4\ \mathrm{and}\ 6$
- Paths:  $\{0,1\}$

| Node        | 0 | 1 | 2 | 3 | 4 | 5        | 6 |
|-------------|---|---|---|---|---|----------|---|
| Path Length | 0 | 1 | 1 | 3 | 3 | $\infty$ | 8 |
| Prev        | 0 | 0 | 0 | 0 | 1 | -        | 1 |

- Next vertex 2
  - Updating for vertex  $\boldsymbol{3}$

Connor Baker 2 of 6

• Paths:  $\{0,1\},\{0,2\}$ 

| Node        | 0 | 1 | 2 | 3              | 4 | 5        | 6 |
|-------------|---|---|---|----------------|---|----------|---|
| Path Length | 0 | 1 | 1 | <del>3</del> 2 | 3 | $\infty$ | 8 |
| Prev        | 0 | 0 | 0 | <del>0</del> 2 | 1 | -        | 1 |

- Next vertex 3
  - Updating for vertex  $\boldsymbol{3}$ 
    - \* Reached every node, update nothing
- Paths:  $\{0,1\},\{0,2\},\{0,2,3\}$

| Node        | 0 | 1 | 2 | 3              | 4 | 5 | 6              |
|-------------|---|---|---|----------------|---|---|----------------|
| Path Length | 0 | 1 | 1 | <del>3</del> 2 | 3 | 4 | <del>8</del> 5 |
| Prev        | 0 | 0 | 0 | <del>0</del> 2 | 1 | 4 | 15             |

- Next vertex 4
  - Updating for vertex 5
- Paths:  $\{0,1\}, \{0,2\}, \{0,2,3\}, \{0,1,4\}, \{0,1,4,5\}, \{0,1,4,5,6\}$

Our final record is then

| Node        | 0 | 1 | 2 | 3              | 4 | 5 | 6  |
|-------------|---|---|---|----------------|---|---|----|
| Path Length | 0 | 1 | 1 | <del>3</del> 2 | 3 | 4 | 85 |
| Prev        | 0 | 0 | 0 | <del>0</del> 2 | 1 | 4 | 15 |

- Prev: the previous node in the shortest path starting from  $\boldsymbol{0}$
- Path length: length of the corresponding shortest path
- What data structure would we use for implementing something like this?
  - Perhaps a priority queue?

## Dijkstra's SP Algorithm

Assume that you're given a weighted, directed graph with a source vertex  ${\sf s.}$ 

Connor Baker 3 of 6

- 1. Make sure all the edges of the graph are non-negative
- 2. Set distTo[V] = Double.MAX\_VALUE, distTo[s] = 0.0, and prev[V] = null
- 3. Initialize a minimum priority queue minPQ with all the nodes
- 4. While minPQ is not empty:

```
Remove next vertex v from minPQ with the lowest distTo
for each neighbor u of v:
    alt = distTo[v] + weight(u,v)
    if alt < distTo[u]:
        distTo[u] = alt
        prev[u] = v
Add v to SP</pre>
```

Note: Other algorithms like Bellman-Ford work even when negative weights are included.

#### A Few Well-Known Graph Problems

- · Cycle detection
- · Connected components
- · Spanning trees
- · Topological sorting
- · Maximum flow
- · Graph coloring
- Traveling Salesman Problem

#### **Spanning Trees**

- · A spanning tree of a graph is a subgraph that contains all the vertices of the graph and is a tree
  - All the nodes are connected
  - All of the edges are from the graph (no new edges), and there are no cycles

#### **Spanning Tree Example**

Given the graph

Connor Baker 4 of 6



Figure 3: Example 2

we can make several different spanning trees (two are below).



Figure 4: Example 3

In general, one might ask how many different spanning trees exist for any graph. The answer would be to use the *Tutte Polynomial* (more on that here http://mathworld.wolfram.com/TuttePolynomial.html).

For more on spanning trees, see https://www.cs.cmu.edu/~fp/courses/15122-f10/lectures/24-spanning.pdf.

## **Minimum Spanning Trees (MST)**

• Minimum Spanning Tree (MST): a spanning tree with the minimum possible total edge weight



Figure 5: Example 4

Connor Baker 5 of 6

#### **MST Algorithms**

- · Idea: identify which edges should be included such that
  - All nodes are connected
  - No cycle is formed
  - Total weight is minimized
- Kruskal's Algorithm (use a priority queue and or heap)
  - Sort edges based on their weights in ascending order
  - For each step, pick the lowest weighted one to add to the tree T unless it would create a cycle
- Prim's Algorithm (use a disjoint set)
  - Start with any vertex S and greedily grow a tree T from S
  - For each step, pick the minimum edges that connects the current T and (G-T)
    - \* Don't confuse this algorithm with Dijkstra's!
- Both Kruskal's and Prim's algorithms are greedy
  - That means that they make locally optimal choices at each stage, with the intent of finding a global optimum (note: not *the* global optimum, *a* global optimum\*)
  - In many problems, a greedy strategy does not produce an optimal solution
- There are lots of other MST algorithms
  - https://en.wikipedia.org/wiki/Minimum\_spanning\_tree

#### **Summary**

- Graphs
  - Basic definitions and terms
- · Graph representation
  - Adjacency matrix and adjacency list
- · Graph algorithms
  - Graph traversals
  - Shortest path problem
  - MST problem

#### **Next Lecture**

- Priority queues
  - Reading: Chapter 6.9, Chapter 21

Connor Baker 6 of 6