

Ejemplo: Parametrizai $Z = x^2 + 2y^2 = f(x, y)$ superficie descrita r: 122 $(x,y) \longrightarrow (x,y, x^2 + ay^2)$

Ejemplo
$$z = 2 (x^2 + y^2)$$
 $r_2 : [0, 2\pi] \times [0, r_3] \times [0, r_4] \times [0, r_5] \times [0, r_5]$

Ejemplo
$$z = 2\sqrt{x^2 + y^2}$$
 $r_2 : [0, 2\pi] \times [0, + 62) \longrightarrow \mathbb{R}^3 \times [0, r_1 : \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \times [0, r_2 : [0, 2\pi] \times [0, r_3] \times [0, r_4 : \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \times [0, r_4 : \mathbb{R}^2 \longrightarrow [0, 2\pi] \times [0, r_4 : \mathbb{R}^3 \times [$

$$y - f(x)$$
, notaria en tomo a.x.

 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$
 $f(x) = \{x \in [0, x \in J] \longrightarrow \mathbb{R}^3\}$

$$2. \quad a)$$
 Encuentre el área encerrada por un arco de cicloide, parametrizado como

 $r(t) = (t - \sin(t), 1 - \cos(t))$ con $t \in [0, 2\pi]$ y la mitad inferior de la circunferencia de radio π y centrada en $(\pi, 0)$. b) Entregue un parametrización de la superficie que se genera al rotar un arco de cicloide $r(t)=(t-\sin(t),1-\cos(t),0)$ con $t\in[0,2\pi]$, en torno al eje x. $x(t) = t - \sin(t)$

$$y(t) = (1 - \cos(t))\cos\theta$$
$$z(t) = (1 - \cos(t))\sin\theta$$