Nhat Pham

Education

University of Washington, Data Science and Statistics, 2018 - 2019.

Relevant Courses:

- Computer Science: CSE 143 Computer Programming II, INFO 201 Technical Foundation, CSE 154: Web Programming, CSE 416 Introduction to Machine Learning, CSE 414 Introduction to Database Systems
- Mathematics: MATH 126 Calculus and Analytics Geometry III, MATH 324 Advanced Calculus, MATH 307 Introduction to Differential Equations, MATH 308 Matrix Algebra and Applications, MATH 309 Linear Analysis, MATH 394 Probability I

Average GPA: 3.97 (Cumulative)

University of Maryland, Computer Science, 2020-2022.

Relevant Courses: CMSC 132 Object Oriented II, CMSC 250 Discrete Structures (exempted), CMSC 216 Intro to Computer Systems (In Progress), CMSC 351 Algorithms (In Progress)

Awards and Competitions

AIVIVN Sentiment Analysis Competition

Spring 2019

- Design a text classification system for positive v.s negative product reviews (in Vietnamese)
- Models: word2vec + weighted average of (hierarchical) self-attention neural network, residual network.
- Final Result: 1st Place in Public Leaderboard (F1: 0.90087) and Private Leaderboard (F1: 0.90012)
- GitHub Repository: https://github.com/petrpan26/Aivivn_1

Emotion Recognition Competition 2019

Fall 2019

- Design a system to classify the emotion of the speaker from raw audio data
- Models: MFCC for preprocessing, convolutional neural network. Developed using the neural network toolbox (see below)
- Result: 8th place in the first round, invited to present in the second round.
- GitHub Repository: https://github.com/nhatsmrt/erc; Contest Website: https://erc2019.com/

Main Projects

Neural Network Toolbox

Summer 2019

- Implement common deep learning procedures and papers using PyTorch for quick prototyping and model developing.
- GitHub Repository: https://github.com/nhatsmrt/nn-toolbox
- Documentation: https://nhatsmrt.github.io/nn-toolbox/

Arbitrary Style Transfer

Summer 2019

- Given an arbitrary content photo and a piece of artwork, transfer the style of the artwork to the photo.
- Based on Huang and Belongie's paper "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization"
- Implemented using PyTorch and my toolbox (see above).
- GitHub Repository: https://github.com/nhatsmrt/torch-styletransfer

Experience

Project in Mathematics and Application, Mentor

2017 - 2019

• Develop the curriculum, lecture on optimization techniques for neural networks, and supervise neural network projects for a selected group of 20-30 talented high school students from all over Vietnam.

Skills

Proficient With

- 1. Java (3 years): Object Oriented Programming, Design Patterns
- 2. Python(3 years):

- Data Science, Machine Learning, Deep Learning: numpy, pandas, matplotlib, scikit-learn, pytorch, keras
- 3. Relational DMBS and SQL
- 4. Data Structures and Algorithms

Familiar With

- 1. Full Stack Web Development: Server-side with Django; Client-side with HTML, CSS, JavaScript, ReactJS
- $2. \ \, \textit{Database Technologies} : \ \, \mathsf{MapReduce \ paradigm, \ Spark, \ AsteriskDB \ and \ SQL++}$
- 3. Others: R (dplyr, tidyr, ggplot2, shiny), git, C, Unix, emacs