Московский Физико-Технический Институт

Факультет Биологической и Медицинской Физики

Адсорбционная газовая хроматография

Выполнили: Яновская Дарья (6112)

Михайлова Анна (6112)

Колосов Семен (6112)

1 Цели работы

- Получить хроматограммы смеси растворов этанола и изопропанола при различных значениях температуры колонки и расхода газа-носителя.
- Измерить теплоты адсорбции этанола, изопропанола и воды.
- Изучить влияние параметров разделения на разрешающую способность хроматографического метода анализа.
- Проверить уравнения Ван-Деемтера.

2 Теоретическая часть

Хроматография — динамический сорбционный метод разделения смесей веществ, основанный на многократном перераспределении вещества между двумя фазами. **Подвижной фазой** называют поток жидкости или газа, перемещающий компоненты разделяемой смеси вдоль неподвижной фазы.

Неподвижная фаза – твёрдый сорбент или несмешивающаяся с подвижной фазой жидкость, на которой осуществляется сорбционное удерживание компонентов смеси. Разделение смеси происходит из-за того, что скорости движения различных компонентов вдоль колонки неодинаковы из-за различного времени пребывания в связанном с НФ состоянии.

Время пребывания в связанном состоянии, в свою очередь, зависит от энергии связи молекул с поверхностью (теплоты адсорбции).

2.1 Изотерма сорбции

Одной из важнейших характеристик газово-адсорбционной хроматографии является изотерма сорбции — уравнение, связывающее поверхностную концентрацию адсорбированных молекул n_s с их объемной концентрацией n в подвижной фазе. Используя предположение о равновесном распределении анализируемых молекул между $\Pi\Phi$ и $H\Phi$ в любой момент времени,т е равенство скоростей адсобрции и десорбции, получим выражение для изотермы сорбции: $W_a = W_d$.

Предположим, что каждая молекула, столкнувшись с поверхностью, прилипает к ней (вероятность «отскока» равна нулю):

$$W_a = k_a n = \frac{n v_T}{4} \tag{1}$$

где k_a – константа скорости адсорбции, v_T – средняя тепловая скорость молекул. Процесс десорбции можно рассматривать как мономолекулярную реакцию разрыва химической связи, энергия которой равна теплоте адсорбции Q. Согласно уравнению Аррениуса:

$$W_d = k_d n_s = k_0 exp(\frac{-Q}{kT}) n_s \tag{2}$$

$$\frac{n_s}{n} = \frac{k_a}{k_d} = \frac{v_T}{4} \cdot \tau_0 exp(\frac{-Q}{kT}) \tag{3}$$

где k_d – константа скорости десорбции, $k_0 = 10^{13} \ 1/c$, k – постоянная Больцмана, T – температура, $\tau_0 = \frac{1}{k_0}$ – характерное время колебания адсорбированной молекулы Отсюда следует, что поверхностная концентрация адсорбированных молекул прямо пропорциональна их концентрации в газовой фазе (изотерма Генри):

$$n_s = \chi n \tag{4}$$

 χ - константа Генри (см). В этой модели поверхностная концентрация адсорбированных молекул может возрастать неограниченно при увеличении давления (концентрации n) над поверхностью. В действительности, любая поверхность обладает конечной адсорбционной емкостью, определяемой количеством центров сорбции на поверхности.

В модели Ленгмюра предполагается, что молекулы могут адсорбироваться только на свободных центрах, а десорбция происходит с занятых мест связывания. Вводится понятие степени заполнения поверхности θ как отношения заполненных мест связывания n_s к полному числу центров адсорбции n_{lim} : $\theta = \frac{n_s}{n_{lim}}$.

Изотерма сорбции Ленгмюра получается из условия равенства скоростей сорбции и десорбции, которое достигается при равновесии:

$$\frac{dn_s}{dt} = k_a n(1 - \theta) - k_d n_{lim} \theta = 0, \tag{5}$$

таким образом, получаем:

$$\theta = \frac{k_a n}{k_a n + k_d n_{lim}} = \frac{1}{1 + \frac{B}{n}},\tag{6}$$

где $B = \frac{k_d}{k_a} n_{lim} = const.$ Получаем, что изотерма адсобрции ассимптотически стремится к некому n_{lim} с ростом п. Представим изотермы сорбции графически.

Рисунок 1: Изотермы сорбции: 1) Генри, 2) Ленгмюра, 3) полислойной адсорбции.

Притяжение нейтральных молекул друг к другу обусловлено силами Ван-дер-Ваальса, между полярными молекулами имеется диполь-дипольное взаимодействие, ион-дипольное взаимодействие имеет место между полярнай молекулой и нескомпенсированным зарядом поверхности, полярная молекула может поляризовать нейтральную молекулу и взаимодействовать с наведенным диполем.

Наиболее прочная связь образуется в том случае, когда перераспределение электронов между поверхностными и адсорбируемыми атомами приводит к образованию химической связи. Это явление называется хемосорбцией, величина Q при хемосорбции имеет порядок величины 100 кДж/моль. Связывание с поверхностью, при котором энергия адсорбции не превышает нескольких десятков кДж/моль, принято относить к физической адсорбции. Теплота адсорбции определяет время пребывания адсорбированной молекулы в связанном состоянии на поверхности и играет ключевую роль в процессе хроматографического разделения.

2.2 Время удерживания и высота эквивалентной теоретической тарелки ВЭТТ

Обозначим длину колонки за L, а радиус – за ρ . Время пребывания молекулы в колонке (время удержания) t_1 складывается из времени движения в элюенте t_0 и времени пребывания в адсорбенте t_s : $t_1 = t_0 + t_s$. Введём коэффициент $\mu = t_s/t_0$, таким образом, $t_1 = t_0(1 + \mu)$. Количество молекул в подвижной фазе составляет $M = 2\pi \rho L n_s$, в неподвижной – $G = \pi \rho^2 L n$. Вспоминаем, что $W_a = W_d$ и получаем:

$$\frac{G}{t_0} = \frac{M}{t_s} = \frac{M}{t_1 - t_0},\tag{7}$$

выражаем отсюда t_1 :

$$t_1 = t_0(1 + \frac{M}{G}) = t_0(1 + \frac{2n_s}{\rho n}). \tag{8}$$

Заметим, что $\chi=\frac{2\mu}{\rho}$. Таким образом, из времени удержания легко выражается теплота адсорбции. Эффективное разделение веществ происходит при достаточно сильной адсорбции, т.е. при $\mu\gg 1$. Поэтому, $t_1\sim \mu t_0\sim \chi$. Обозначим скорость элюента за ν_0 , тогда $t_0=\frac{L}{\nu_0}$.

Высота эквивалентная теоретической тарелки (ВЭТТ) равна длине участка колонки, на котором успевает установиться сорбционное равновесие. Предполагается, что время установления равновесия τ определяется временем диффузии молекул из объема к поверхности, $\tau \sim \frac{\rho^2}{D}$, где D – коэффициент диффузии в элюенте. ВЭТТ определятеся как $H = \nu_0 \tau$, а количество тарелок в колонке $r = \frac{L}{H} \approx \frac{LD}{\nu_0 \rho^2}$.

Рисунок 2: Иллюстрация понятия ВЭТТ.

2.3 Формирование хроматографического пика

Процесс формирования хроматографического пика удобно рассматривать, разбив длину колонки L на отрезки длины H и предполагая, что напуск газа-носителя происходит порциями, заполняющими отрезки колонки длиной H. Введем вероятность р нахождения молекулы в элюенте, тогда $p=\frac{t_0}{t_1}=\frac{t_0}{t_0+t_s}=\frac{1}{1+\mu}$. Тогда вероятность нахождения молекулы на сорбенте равна $(1-p)=\frac{\mu}{1+\mu}$. Ввод каждой новой порции переводит все молекулы подвижной фазы на тарелку вперёд. Многократный напуск газа-носителя для сорбируемых молекул можно рассматривать как серию бинарных испытаний, таким образом вероятность нахождения молекулы в элюенте описывается биномиальным распределением. Биномиальное распределение позволяет рассчитать вероятность Pn(r) того, что в серии из п испытаний «желаемое» событие произойдет r раз, если вероятность его в единичном испытании равна р.

$$P_n(r) = C_n^r p^n (1 - p)^{n-r}, C_n^r = \frac{n!}{r!(n-r)!}.$$
(9)

Молекула регистрируется детектором после прохождения ею г тарелок. Для типичных условий хроматографирования характерны следующие соотношения: $p \ll 1$ (т.е. $\mu \gg 1$) и $n \gg r \gg 1$. Дискретное биномиальное распределение переходит в непрерывное расприделение Гаусса при $n \to \infty$ и $p = {\rm const.}$ В этих условиях распределение принимает вид:

$$P_n(r) = \frac{1}{\sqrt{2\pi r}} exp \left[-\frac{(pn-r)^2}{2r} \right]. \tag{10}$$

Функция (10) имеет колоколообразный вид с максимумом при $n_{max}=\frac{r}{p}$. В качестве ширины пика Δn берут расстояние между точками, в которых значение функции уменьшается в \sqrt{e} раз: $\Delta n=\frac{2\sqrt{r}}{p}$. В реальном эксперименте мы измеряем время удержания, поэтому необходимо сделать замену координаты $n\to t$. Легко понять, что $t=n\cdot\frac{t_0}{r}$. Тогда и $t_{max}=\frac{r}{p}\cdot\frac{t_0}{r}=t_0(1+\mu)=t_1$. Соответственно, ширина пика $\Delta t=\frac{t_0}{r}\cdot\frac{2\sqrt{r}}{p}=\frac{2}{\sqrt{r}}\cdot t_1$. Таким образом, с увеличением числа тарелок пик сужается. Условие, при выполнении которого два близких хроматографических пика окажутся разрешенными:

$$\frac{\mu_1 - \mu_2}{\mu_1 + \mu_2} \ge \frac{1}{\sqrt{r}} \tag{11}$$

Коэффициент μ непосредственно связан с константой Генри, которая зависит от теплоты адсорбции Q молекулы на данной поверхности. По сути, формула определяет минимальное различие в величинах Q, которое может быть зарегистрировано хроматографическим методом при заданном числе тарелок r.

Разрешающая способность:

$$R = \frac{t}{\Delta t} = \frac{\sqrt{r}}{2} \tag{12}$$

2.4 Продольная диффузия и ширина пика

Сужению пика способствует увеличение числа тарелок, но в то же время неограниченному сужению хроматографичекого пика препятствует процесс диффузии вещества в направлении вдоль колонки (т.н. **продольная диффузия**). Формирование пика приводит к неоднородному распределению концентрации молекул, что служит

движущей силой продольной диффузии, результатом которой является диффузионное уширение пика.

Оценим ширину хроматографического пика Δt_{dif} , определяемую продольной диффузией.

Если в начальный момент времени концентрация вещества в точке x = 0 составляла C_0 , то в момент времени t распределение концентрации C(x) будет иметь гауссову форму (решая дифференциальное уравнение):

$$C(x,t) = C_0 exp \left[-\frac{x^2}{4D^*t} \right], \tag{13}$$

где D^* – эффективный коэффициент диффузии. Принимая за D_s коэффициент диффузии в сорбенте, учитывая, что $Ds \ll D, \mu \gg 1$, получаем:

$$D^* = pD + (1-p)D_s \approx pD = \frac{D}{1+\mu} \approx \frac{D}{\mu}$$
. Тогда ширина пика

 $\Delta x_{dif} = 2\sqrt{2D^*t_1} = 2\sqrt{\frac{2D}{\mu} \cdot t_0 \mu} = 2\sqrt{2Dt_0}$, в свою очередь $\Delta t_{dif} = \frac{\Delta x_{dif}}{\nu_1} = \frac{2\mu}{\nu_0}\sqrt{2Dt_0}$, где $\nu_1 = \frac{\nu_0}{1+\mu}$ - скорость распостранения пика. В реальном эксперименте вклад в ширину пика вносят и адсорбционное и диффузионное уширение. Разрешающая способность тогда:

$$R = \frac{t_{max}}{\Delta t + \Delta t_{dif}}. (14)$$

Таким образом,

$$\frac{1}{R} = \frac{\frac{2}{\sqrt{r}}t_1 + \frac{2\mu}{\nu_0}\sqrt{2Dt_0}}{t_1} = 2\left(\frac{1}{\sqrt{r}} + \sqrt{\frac{2D}{L\nu_0}}\right) = \frac{2}{\sqrt{L}} \cdot \left(\sqrt{\frac{\nu_0\rho^2}{D}} + \sqrt{\frac{2D}{\nu_0}}\right). \tag{15}$$

Так как $H \sim \frac{1}{r}, aR^2 \sim r$, то $H \sim \frac{1}{R^2}$. Отсюда получаем **уравнение Ван-Деемтера**:

$$H \sim \left(\sqrt{\frac{\nu_0 \rho^2}{LD}} + \sqrt{\frac{2D}{L\nu_0}}\right)^2 = A\nu_0 + \frac{B}{\nu_0} + C$$
 (16)

Уравнение Ван-Деемтера отражает немонотонный характер зависимости ВЭТТ от скорости потока газа-носителя. Наличие минимума функции $H(v_0)$ означает, что существует оптимальная скорость v_0 , при которой в данной хроматографической колонке достигается наибольшая разрешающая способность.

Рисунок 3: Зависимость ВЭТТ от скорости потока газа носителя.

3 Методика

3.1 Устройство хроматографа

Колонка непрерывно продувается потоком газа-носителя. Гелий из баллона через редуктор поступает в блок подготовки газов (БПГ). Назначение БПГ – поддерживать стабильный заданный объемный расход газаносителя, который измеряется в мл/мин. Цифровой индикатор БПГ позволяет контролировать соответствие заданного и текущего значения расхода. Погрешность регулируемого БПГ расхода не превышает 1 мл/мин. Непостоянство скорости газаносителя приводит к погрешностям в определении времен удерживания и ширины пиков. Ввод анализируемой пробы в поток газа-носителя производится с помощью дозирующего устройства (схема дозирующего устройства показана на рисунке 5). Важнейшее требование к дозирующему устройству – постоянство объема водимой пробы.

Рисунок 4: Блок-схема хроматографа: 1) баллон с газом-носителем, 2) редуктор, 3) блок подготовки газов (БПГ), 4) кран-дозатор, 5) испаритель, 6) колонка в термостате, 7) детектор, 8) управляющий компьютер, 9) блок питания детектора (БПД), 10) система парофазного ввода пробы (шприц, сосуд с парами).

Рисунок 5: Схема поворотного крана-дозатора с дозирующим объемом в виде трубки, установленной на вращающейся втулке.

Рисунок 6: Пневмоэлектрическая схема ДТП.

Перед попаданием в колонку проба проходит через испаритель. Назначение

испарителя – перевод в парообразную форму жидких образцов. Во избежание конденсации вещества в испарителе его температуру поддерживают обычно на 30-50 K выше, чем температуру колонки.

Для регистрации анализируемых молекул в потоке газа-носителя на выходе из колонки используется детектор по теплопроводности. Принцип действия ДТП основан на сравнении теплопроводностей чистого газа-носителя и анализируемого вещества.

4 Экспериментальная часть

4.1 Определение теплоты адсорбции

Чтобы определить какие пики соответствуют каким веществам, сначала снимаем хроматограмму пробы воздуха при температуре 180^{0} C и расходе газа-носителя 30 мл/мин. Итого для смеси двух спиртов получаем 4 пика(см рис.7): первый - воздух, второй - вода, третий - этанол, четвертый - изопропанол.

Рисунок 7: Хроматограмма смеси спиртов.

Были получены хроматограммы смеси этанола и изопропанола при температурах в диапазоне $180-230^{0}$ С с шагом в 10^{0} С при постоянном расходе газа-носителя 30 мл/мин. Исходя из формул $\frac{n_{s}}{n}=\frac{v_{T}}{4}\cdot\tau_{0}\cdot e^{\frac{Q}{kT}}$ и $t_{1}=t_{0}(1+\frac{2n_{s}}{\rho n})$ имеем

$$ln(\frac{t_1 - t_0}{t_0} \frac{1}{\sqrt{T}}) = ln(\frac{1}{2\rho k_0} \sqrt{\frac{3R}{\mu}}) + \frac{Q}{kT}$$
(17)

Учитывая это, можно найти теплоту адсорбции Q по наклону наилучших прямых для графиков зависимости $ln(\frac{t_1-t_0}{t_0}\frac{1}{\sqrt{T}})$ от $\frac{1}{T}$.

T, ℃	v, мл/мин	t1 max, c	t2 max, c	t3 max, c	t4 max, c	δt 1, c	δt 2, c	δt 3, c	δt 4, c
180	7	56	227	437	636	8	26	41	28
180	12	39	153	293	376	4	20	26	22
180	20	27	105	181	292	3	11	16	24
180	30	19	77	149	217	2	7	13	20
180	40	10	58	118	175	2	7	12	20
180	50	13	54	106	154	1	6	11	15
180	60	6	47	93	136	1	5	9	14
190	30	18	67	121	171	2	8	13	20
200	30	18	58	100	136	2	6	9	12
210	30	18	53	84	111	2	7	7	10
220	30	17	48	72	93	2	6	7	9
230	30	18	54	69	80	2	6	6	9
180	30	19	77	149	217	2	7	13	20

Рисунок 8: Таблица пиков хроматограмм при постоянном значении расхода газаносителя и разных значениях температуры.

Рисунок 9: Таблица пиков хроматограмм при постоянном значении расхода газаносителя и разных значениях температуры.

Рассчитаем теплоты адсорбции по формуле:

$$O = tan\alpha k N_A = tan\alpha R \tag{18}$$

 $Q_{H_2O}{=}(2.832\pm0.002)$ кДж/моль

 $Q_{Et}{=}(4.693\pm0.05)$ кДж/моль

 $Q_{iPr} = (5.573 \pm 0.2)$ кДж/моль

Величины ошибок рассчитаны только с учетом отклонений зависимости от линейной. Ширина пиков и другие источники ошибок не учитываются.

4.2 Уравнение Ван-Деемтера

Были получены хроматограммы ы при температуре 180° C при различном расходе газа-носителя: 7, 12, 20, 30, 40, 50, 60 мл/мин (см рис.8).

Пользуясь определениями $R=\frac{t_max}{\delta t}$ и $H=\frac{L}{r}$, а также формулой $R=\frac{\sqrt{r}}{2}$ найдем разрешающую способность колонки по всем веществам при различных скоростях расхода.

v, мл/мин	R(H2O, CO2)	R (EtOH)	R(iPrOH)
7	8.731	10.659	22.714
12	7.650	11.269	17.091
20	9.545	11.313	12.167
30	11.000	11.462	10.850
40	8.286	9.833	8.750
50	9.000	9.636	10.267
60	9.400	10.333	9.714

Рисунок 10: Разрешающая способность колонки для всех веществ при различных расходах.

v, мл/мин	r	Н (см)
7	304.905	0.328
12	234.090	0.427
20	364.463	0.274
30	484.000	0.207
40	274.612	0.364
50	324.000	0.309
60	353.440	0.283

Рисунок 11: ВЭТТ и количество тарелок при разных значениях расхода газа-носителя.

Найдем для каждого значения величины расхода количество тарело и ВЭТТ, используя наименьшее значение разрешающей способности. Построим график зависимости тарелок от расхода, и по нему определим оптимальную величину расхода газа (см рис.12). Уравнение Ван-Деемтера качественно подтвердилось. Из графика видна оптимальный расход газа-носителя, который составляет 30 мл/мин. Отклонения при большем расходе связаны с дрейфом и неточным определением ширины пика

5 Обсуждение

Из данных первой серии экспериментов найдены теплоты адсорбции для воды, этанола и изопропанола - $Q_{H_2O}=(2.832\pm0.002)$ кДж/моль, $Q_{Et}=(4.693\pm0.05)$ кДж/моль, $Q_{iPr}=(5.573\pm0.2)$ кДж/моль. Полученные значения соответствуют энергиям физической адсорбции, что соответствует действительности - из структур порапака и веществ в эксперименте видно, что химической связи при сорбции образовываться не должно. Зависимости

ВЭТТ от расхода газа-носителя имеет четкий минимум - $v_{opt}=30$ мл/мин.

Рисунок 12: Зависимость ВЭТТ от расхода газа.

По формам хроматографических пиков видно, что изотермы адсорбции воды, изопропанола и этанола должны быть немного выпуклыми вверх, причем должны мало отличаться от прямых - предположение о применимости модели Генри оказалось верно.

6 Вывод

Полученные хроматограммы показывают, что используемая в расчетах теория применима в условиях эксперимента. Качественно выполняется закон Ван-Деемтера - зависимость ВЭТТ от расхода носителя имеет четкий минимум. Из зависимости положений пиков хроматограмм были вычислены теплоты адсорбции воды, этанола и изопропанола, соответствующие энергиям физической сорбции.

7 Список литературы

1. Адсорбционная газовая хроматография, описание лабораторной работы, $\Phi {\rm EM}\Phi$ 2009