

- 1 -

19. Japanese Patent Office

12. Publication of an unexamined patent application (A)
11. Publication number of the unexamined patent application:
10-117787

43. Date of publication: May 12, 1998
51. Int. Cl.⁶: C12N 15/09, A61K 38/46, 38/48, C07K 14/745,
C12N 5/10, C12N 9/64
//A61K 38/43, (C12N 9/64, C12R 1:91)

Classification symbols: ZNA, ACA

FI Classification: C12N 15/00, C07K 14/745, C12N 9/64,
A61K 37/54, 37/553, C12N 5/00, A61K 37/465

Application for examination: filed

Number of inventions: 1 (total 47 pages)

21. Application number: 9-247281
62. Divisional application data:
Divisional application from patent application No. 6-276832
22. Date of application: 16. 04. 1986
31. Priority number: 724311
32. Priority date: 17. 04. 1985
33. Priority state: U.S.
31. Priority number: 810002
32. Priority date: 16. 12. 1985
33. Priority state: U.S.

71. Applicant: 594185754
ZymoGenetics, Inc., 2121 North 35th Street, Seattle,
Washington 98103, U.S.A.
72. Inventor: Frederick S. Hagen, 3835 44th N.E., Seattle,
Washington 98105, U.S.A.
72. Inventor: Mark J. Murray, 2211 11th Avenue East, Seattle,
Washington 98102, U.S.A.
72. Inventor: Sharon J. Busby, 4109 Meridian N., Seattle,
Washington 98103, U.S.A.
72. Inventor: Kathleen L. Berkner, 3032 22nd Avenue W., Seattle,
Washington 98199, U.S.A.
72. Inventor: Margaret Y. Insley, 16860 N.E. 150th Street,
Woodinville, Washington 98072, U.S.A.
72. Inventor: Richard G. Woodbury, 15464 10th Avenue, N.E.,

Seattle, Washington 98155, U.S.A.

72. Inventor: Charles L. Gray, 8014 41st Avenue, N.E., Seattle,
Washington 98115, U.S.A.

74. Representative: Patent attorney Aoyama (and 2 others)

54. Title of the invention:

Method of producing protein having factor VII activity

57. Abstract:

Problem: Novel method of producing protein having factor VIIa activity.

Solution: Method characterized in that mammalian cells are cultured into which DNA coding for protein having factor VIIa activity after activation has been inserted, and protein is obtained from this culture fluid and activated.

PATENT CLAIMS:

1. A method of producing protein having biological activity for blood coagulation mediated by factor VIIa comprising growing in an appropriate culture medium mammalian host cells containing a DNA construct containing a nucleotide sequence coding for a protein having the same or essentially the same biological activity for blood coagulation as factor VIIa having the following amino acid sequence:

[see extra sheet]

isolating the protein product encoded by said DNA construct and produced by said mammalian host cells, and activating said protein product and generating protein which has the same or substantially the same biological activity for blood coagulation as factor VIIa.

2. A method according to claim 1, including amplification of said DNA construct by cotransfection of said host cells with a gene coding for dihydrofolate reductase, wherein said appropriate medium contains methotrexate.

3. A method according to claim 1, wherein said protein product is activated by reacting it with a proteolytic enzyme selected from the group consisting of factor XIIa, factor IXa, kallikrein, factor Xa, and thrombin.

1	5	10	15											
Glu	Cys	Lys	Glu	Glu	Gln	Cys	Ser	Phe	Glu	Glu	Ala	Arg	Glu	Ile
20	25	30												
Phe	Lys	Asp	Ala	Glu	Arg	Thr	Lys	Leu	Phe	Trp	Ile	Ser	Tyr	Ser
35	40	45												
Asp	Gly	Asp	Gln	Cys	Ala	Ser	Ser	Pro	Cys	Gln	Asn	Gly	Gly	Ser
50	55	60												
Cys	Lys	Asp	Gln	Leu	Gin	Ser	Tyr	Ile	Cys	Phe	Cys	Leu	Pro	Ala
65	70	75												
Phe	Glu	Gly	Arg	Asn	Cys	Glu	Thr	His	Lys	Asp	Asp	Gln	Leu	Ile
80	85	90												
Cys	Val	Asn	Glu	Asn	Gly	Gly	Cys	Glu	Gln	Tyr	Cys	Ser	Asp	His
95	100	105												
Thr	Gly	Thr	Lys	Arg	Ser	Cys	Arg	Cys	His	Glu	Gly	Tyr	Ser	Leu
110	115	120												
Leu	Ala	Asp	Gly	Val	Ser	Cys	Thr	Pro	Thr	Val	Glu	Tyr	Pro	Cys
125	130	135												
Gly	Lys	Ile	Pro	Ile	Leu	Glu	Lys	Arg	Asn	Ala	Ser	Lys	Pro	Gln
140	145	150												
Gly	Arg	Ile	Val	Gly	Gly	Lys	Val	Cys	Pro	Lys	Gly	Glu	Cys	Pro
155	160	165												
Trp	Gln	Val	Leu	Leu	Leu	Val	Asn	Gly	Ala	Gln	Leu	Cys	Gly	Gly
170	175	180												
Thr	Leu	Ile	Asn	Thr	Ile	Trp	Val	Val	Ser	Ala	Ala	His	Cys	Phe
185	190	195												
Asp	Lys	Ile	Lys	Asn	Trp	Arg	Asn	Leu	Ile	Ala	Val	Leu	Gly	Glu
200	205	210												
His	Asp	Leu	Ser	Glu	His	Asp	Gly	Asp	Glu	Gln	Ser	Arg	Arg	Val
215	220	225												
Ala	Gln	Val	Ile	Ile	Pro	Ser	Thr	Tyr	Val	Pro	Gly	Thr	Thr	Asn
230	235	240												
His	Asp	Ile	Ala	Leu	Leu	Arg	Leu	His	Gln	Pro	Val	Val	Leu	Thr
245	250	255												
Asp	His	Val	Val	Pro	Leu	Cys	Leu	Pro	Glu	Arg	Thr	Phe	Ser	Glu
260	265	270												
Arg	Thr	Leu	Ala	Phe	Val	Arg	Phe	Ser	Leu	Val	Ser	Gly	Trp	Gly
275	280	285												
Gln	Leu	Leu	Asp	Arg	Gly	Ala	Thr	Ala	Leu	Glu	Leu	Met	Val	Leu
290	295	300												
Asn	Val	Pro	Arg	Leu	Met	Thr	Gln	Asp	Cys	Leu	Gln	Gln	Ser	Arg
305	310	315												
Lys	Val	Gly	Asp	Ser	Pro	Asn	Ile	Thr	Glu	Tyr	Met	Phe	Cys	Ala
320	325	330												
Gly	Tyr	Ser	Asp	Gly	Ser	Lys	Asp	Ser	Cys	Lys	Gly	Asp	Ser	Gly
335	340	345												
Gly	Pro	His	Ala	Thr	His	Tyr	Arg	Gly	Thr	Trp	Tyr	Leu	Thr	Gly
350	355	360												
Ile	Val	Ser	Trp	Gly	Gln	Gly	Cys	Ala	Thr	Val	Gly	His	Phe	Gly
365	370	375												
Val	Tyr	Thr	Arg	Val	Ser	Gln	Tyr	Ile	Glu	Trp	Leu	Gln	Lys	Leu
380	385	390												
Met	Arg	Ser	Glu	Pro	Arg	Pro	Gly	Val	Leu	Leu	Arg	Ala	Pro	Phe
395	400	405												

Pro

Figure 5 illustrates the Factor VII cDNA sequence of λ VII 2463.
Figure 6 illustrates the Factor VII cDNA sequence of λ VII 2463.
Figure 7 illustrates the Factor VII cDNA sequence of λ VII 2463.