

DEMEC
DEPARTAMENTO DE ENGENHARIA MECÂNICA

ANÁLISE MATEMÁTICA

Problemas Propostos para as Aulas Práticas 2018/2019

Mestrado Integrado em Engenharia Informática e Computação

Docentes: Alexandre Afonso Carolina Furtado Mariana Seabra Sónia Pinto

1. DIFERENCIAÇÃO EM R

	A. Regras de Derivação	3
	B. Derivação da função inversa	6
	C. Gráficos de funções	7
	D.Derivada da função composta (regra da cadeia):	
	Exercícios de aplicação	8
	E. Outros exercícios de aplicações de derivadas	9
	F. Noção de Diferencial – Aproximação Linear	10
	G. Teorema de Cauchy e Regra de L'Hôpital	10
2.	INTEGRAL DEFINIDO	11
3.	CÁLCULO DE ÁREAS USANDO INTEGRAIS	12
4.	PRIMITIVAÇÃO POR SUBSTITUIÇÃO	13
5.	PRIMITIVAÇÃO POR SUBSTITUIÇÃO TRIGONOMÉTRICA	14
6.	PRIMITIVAÇÃO POR PARTES	14
7.	PRIMITIVAÇÃO POR DECOMPOSIÇÃO EM FRAÇÕES SIMPLES	15
8.	CÁLCULO DE VOLUMES USANDO INTEGRAIS	16
9.	DEFINIÇÃO DE FUNÇÕES E CÁLCULO DE ÁREAS USANDO	
	COORDENADAS POLARES	17
10.	EQUAÇÕES DIFERENCIAIS	18
11.	TRANSFORMADAS DE LAPLACE	20
12.	POLINÓMIO DE TAYLOR COM RESTO DE LAGRANGE	2 3
13.	SÉRIES NUMÉRICAS	2 3
14.	SÉRIES DE FOURIER	25

AMAT - Exercícios

1. DIFERENCIAÇÃO EM R

A. Regras de Derivação

Calcular a derivada de f(x) considerando que x toma unicamente os valores para os quais a fórmula que define f(x) tem significado:

1.

$$f(x) = \sqrt[5]{\frac{1}{x}} + \sqrt[3]{3x^7}$$
 Solução: $f'(x) = -\frac{1}{5x} \sqrt[5]{x} + \frac{7x}{3} \sqrt[3]{3x}$

2.

$$f(x) = \frac{5\pi}{x^2 + x + 3}$$

3.

$$f(x) = \frac{x^5}{x^2 + 1} + \sqrt{x}$$
 Solução: $f'(x) = \frac{3x^6 + 5x^4}{(x^2 + 1)^2} + \frac{1}{2\sqrt{x}}$

4.

$$f(x) = x^{3/2} + \frac{5}{2}x^2$$

5.

$$f(x) = x^2 e^{-x}$$
 Solução: $f'(x) = e^{-x} (2x - x^2)$

6.

$$f(x) = \frac{e^x - x - 1}{x^2}$$

7.

$$f(x) = \exp\left(x^2 + \frac{1}{x} + 3\right)$$
 Solução: $f'(x) = e^{x^2 + \frac{1}{x} + 3} \left(2x - \frac{1}{x^2}\right)$

8.

$$f(x) = 3x \ln(x)$$

9.

$$f(x) = \frac{\ln(x)}{2x}$$

$$f(x) = 3 \ln(3x^2 + 1)$$
 Solução: $f'(x) = 3 \ln(3x^2 + 1) + \frac{18x^2}{3x^2 + 1}$

11.
$$f(x) = \frac{1}{1 + \ln(x)} x^{3/2}$$

12.

$$f(x) = \ln(\ln(x+1))$$
 Solução: $f'(x) = \frac{1}{(x+1)\ln(x+1)}$

13.

$$f(x) = \ln\left(\frac{x+1}{x+2}\right)$$
 Solução: $f'(x) = \frac{1}{(x+1)} - \frac{1}{(x+2)}$

14.

$$f(x) = e^{\frac{1}{x}} \ln(x)$$

15.

$$f(x) = \frac{\ln(x^2 + 1)}{\ln(x^4 + x + 1)}$$
 Solução:
$$f'(x) = \frac{\frac{2x}{x^2 + 1} \ln(x^4 + x + 1) - \frac{4x^3 + 1}{x^4 + x + 1} \ln(x^2 + 1)}{\left[\ln(x^4 + x + 1)\right]^2}$$

16.

$$f(x) = \frac{e^x \log(x+1)}{x^2}$$

17.

$$f(x) = \frac{\log(x)}{2^x}$$

18.

$$f(x) = x^e + e^x + 5^{x-1}$$

19.
$$f(x) = 5\cos\left(\frac{1}{x}\right)$$
 Solução: $f'(x) = \frac{5}{x^2} sen\left(\frac{1}{x}\right)$

$$20. \qquad f(x) = x^4 \cos(x)$$

Solução:
$$f'(x) = 4x^3 \cos(x) - x^4 \sin(x)$$

21.

$$f(x) = x \operatorname{sen}(\frac{\pi}{2}x) \operatorname{sen}(x^{-1})$$

22.

$$f(x) = sen(xe^x)$$
 Solução: $f'(x) = e^x(x+1) cos(e^x)$

$$f(x) = tg(x^2 + 1)$$

$$f(x) = \ln(x) tg(x^2)$$
 Solução: $f(x) = \frac{1}{x} tg(x^2) + 2x \ln x \sec^2(x^2)$

$$f(x) = \sec(x) + \log(x)$$
 Solução: $f'(x) = \sec(x)tg(x) + \frac{1}{x}$

$$f(x) = \sec(x) + \csc(x)$$

$$f(x) = x^2 t g(x^3)$$

$$f(x) = \log(\cos(x)) + tg(\log(x))$$

$$f(x) = sen^2(x+1) + tg(x^3)$$

30.

$$f(x) = \cos(\sqrt{x}) + sen^2(x)$$
 Solução: $f'(x) = -\frac{1}{2\sqrt{x}}sen(\sqrt{x}) + 2sen(x)\cos(x)$

31.

$$f(x) = 2tg(e^x) - 5\sec(x) + \frac{\pi}{2}$$

32.

$$f(x) = \frac{tg(x) + sen(x^2 + 1)}{\cos^2(x)}$$

33.

$$f(x) = (\operatorname{sen} x)^{\operatorname{tg} x}$$
 Solução: $f'(x) = (\operatorname{sen}(x))^{\operatorname{tg}(x)} (\operatorname{sec}^2(x) \ln(\operatorname{sen}(x)) + 1)$

34.

$$f(x) = e^{\operatorname{tg}(x) \ln(\operatorname{sen}(x))}$$

$$f(x) = (\ln(x))^{1/x}$$
 Solução: $f'(x) = [\ln(x)]^{\frac{1}{x}} \left[-\frac{\ln(\ln(x))}{x^2} + \frac{1}{x^2 \ln(x)} \right]$

36.

$$f(x) = \left(\sec(x) + 3\right)^{\ln(x)}$$

Solução:
$$f'(x) = \left(\sec(x) + 3\right)^{\ln(x)} \left[\frac{\ln(\sec(x) + 3)}{x} + \frac{\ln(x)\sec(x)tg\left(x\right)}{\sec(x) + 3} \right]$$

B. Derivação da função inversa

Seja y = f(x). Usando o conceito de derivada da inversa de uma função calcule $f'(x) = \frac{dy}{dx}$ 37.

$$f(x) = arcsen\left(\frac{1}{1+x^2}\right)$$
 Solução: $f'(x) = \frac{-2}{\left(1+x^2\right)\sqrt{\left(2+x^2\right)}}$

38.

$$f(x) = \frac{arctg(x)}{x^2}$$

39.

$$f(x) = x^7 \left(\frac{\pi}{2} - arctg(x) \right)$$

40.

$$f(x) = \frac{\arctan\left(\frac{1}{x}\right) - \left(\frac{1}{x}\right)}{\cos\left(\frac{1}{x}\right) - 1}$$

41.

$$f(x) = \log \left(arctg \left(\frac{x}{x+1} \right) \right)$$

42.

$$f(x) = arc \sec(\ln x)$$

$$f(x) = \arccos(x^2) + sen(sen(x)))$$
Solução: $f'(x) = \frac{-2}{x\sqrt{x^4 - 1}} + \cos(sen(senx)) \cos(senx) \cos x$

44.
$$f(x) = \left(\arctan\left(\pi\sqrt{x}\right)\right)^3$$

C. Gráficos de funções

Traçar o gráfico de cada uma das seguintes funções:

1.

$$f(x) = 3\sec(x)$$

2.

$$f(x) = \cos(x^2)$$

3.

$$f(x) = arctg(x) + \frac{\pi}{2}$$

4.

$$f(x) = \frac{x^2 + x + 1}{x - 1}$$

5.

$$f(x) = \csc(x)$$

$$f(x) = \cot g(x)$$

D. Derivada da função composta (regra da cadeia): exercícios de aplicação

- **a)** O volume de um cubo cresce à razão de 300 cm ³/min no instante em que a aresta é 20 cm. Qual a razão de variação da aresta nesse instante? (Solução: 0.25cm/min)
- **b)** Um pequeno balão esférico está a ser cheio de gás à razão de 1m 3 /s. No instante inicial (t = 0 s) considere o balão vazio (V = 0 m 3). Qual a razão de crescimento do diâmetro, 2 s depois da operação começar. (Solução: $\frac{2}{\sqrt[3]{12^2}}$ m/s). Qual a

velocidade de crescimento da área superficial do balão? (Solução: $4\sqrt[3]{\frac{\pi}{12}}$ m²/s)

- **c)** Verte-se água num tanque cónico invertido (vértice para baixo) à razão de 2cm ³/s. Qual a razão de variação do nível de água quando ela atinge metade do cone?
- **d)** No topo de um poste com 20 m de altura está instalado um foco de luz. Uma bola é largada de 20 m de altura a uma distância de 15 m do poste. Calcular a velocidade de deslocamento da sombra da bola no solo quando decorreu 0,5 s após a largada. (Obs.: considerar que a queda da bola se faz de acordo com a seguinte lei de espaços: $s = 0.5 g t^2$).
- **e)** Uma escada de 5 m de altura está apoiada numa parede vertical. Se a base da escada é arrastada horizontalmente da parede a 5m/s, a que velocidade desliza a parte superior da escada ao longo da parede quando a base se encontra a 3 m desta? (Solução: 3.75m/s)
- **f)** Um menino soltando um papagaio liberta a corda a 0.2 m/s quando o papagaio se move horizontalmente a uma altura de 10 m. Supondo a corda tensa determine a velocidade do papagaio quando a corda está com 12.5 m. (Solução: 1/3 m/s)
- **g)** Enche-se um recipiente de água, à razão de 100 cm³/s. O recipiente tem 3 m de comprimento e a secção perpendicular a esta dimensão é trapezoidal, de altura 50cm, de base inferior 25 cm e base superior 1 m. A que velocidade sobe o nível da água quando a profundidade da água é de 25 cm. (Solução: 5.33×10 ⁻³ cm/s)

h) Se y é uma função de u e u função de x e se existe d^2y/dx^2 , então prove

que:
$$\frac{d^2y}{dx^2} = \frac{dy}{du} \frac{d^2u}{dx^2} + \left(\frac{du}{dx}\right)^2 \frac{d^2y}{du^2}$$

i) Se y é uma função diferenciável de u, u uma função diferenciável de v e v uma função diferenciável de x, então prove que:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dv} \frac{dv}{dx}$$

j) Seja
$$f(x) = \frac{1}{1+1/x}$$
 se $x \ne 0$, e seja $g(x) = \frac{1}{1+1/f(x)}$. Calcular $f'(x)$ e $g'(x)$.

E. Outros exercícios de aplicações de derivadas

- **a)** Em que pontos o gráfico de $f(x) = \frac{x^2}{x^2 + 1}$ tem reta tangente horizontal?
- **b)** Ao vender *x* unidades de um produto obtém-se um lucro dado por

$$P(x) = 50\sqrt{x} - 0.5x - 500$$
, para $0 \le x \le 8000$

Qual a taxa de variação de P relativamente a x, quando x = 900 ou x = 1600?

- **c)** Determinar as equações das duas rectas que são tangentes simultaneamente aos gráficos das funções $y = x^2$ e $y = -x^2 + 6x 5$. Faça um esboço destes gráficos.
- **d)** Achar a equação da recta tangente ao gráfico de $y = \frac{1}{\sqrt{x}}$ e que é paralela à reta x + 2y 6 = 0.
- **e)** Determinar as equações das rectas tangentes ao gráfico de $y = 4x x^2$ e que passam pelo ponto (2,5).
- **f)** Analisar se existe algum valor de x em $[0, 2 \pi]$ tal que a taxa de variação de y = secx e de y = cosec x são iguais.
- **g)** Verifique que a função $y = \frac{1}{1 + x + \ln x}$ satisfaz a equação $x y' = y (y \ln x 1)$.
- **h)** Determinar o ângulo entre as curvas $y = x^2$ e $y = x^3$ em cada ponto de intersecção.

F. NOÇÃO DE DIFERENCIAL - APROXIMAÇÃO LINEAR

- 1.1 Determine um valor aproximado da variação do volume de uma esfera de raio r = 15 cm, quando este aumenta 2 mm.
- 1.2 Calcule os diferenciais de:

a)
$$y = x \log x - x$$

b)
$$r = \cot \theta + \csc \theta$$

1.3 Deduza a expressão aproximada

$$\sqrt{x + \Delta x} \approx \sqrt{x} + \frac{\Delta x}{2\sqrt{x}}$$

1.4 Usando diferenciais, calcular valores aproximados das seguintes expressões

a)
$$cos(11\pi/36)$$

b)
$$\sqrt{16.5}$$

- 1.5 A medição do diâmetro de uma esfera registou o valor de 75 cm. Todavia, a técnica utilizada pode ter introduzido um erro de ± 2.5 mm. Se se calcula o volume da esfera utilizando o diâmetro de 75 cm estimar o erro relativo máximo possível no volume calculado.
- 1.6 O lado de um cubo mede 25 cm sendo esta medida afectada a um erro de $\pm x$ cm. Qual é o maior valor admissível se x, que assegura uma percentagem máxima possível de erro no volume do cubo, de $\pm 4\%$.

G. TEOREMA DE CAUCHY E REGRA DE L'HÔPITAL

Calcule os seguintes limites usando a regra de L'Hôpital

a)
$$\lim_{x \to -\infty} \frac{x^2}{e^{-x}}$$

$$\mathbf{b)} \lim_{x \to +\infty} e^{-x} \sqrt{x}$$

a)
$$\lim_{x \to -\infty} \frac{x^2}{e^{-x}}$$
 b) $\lim_{x \to +\infty} e^{-x} \sqrt{x}$ c) $\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x$

$$\mathbf{d)} \lim_{x \to 0^+} (sen x)^x$$

d)
$$\lim_{x \to 0^+} (sen x)^x$$
 e) $\lim_{x \to 0^+} \frac{e^x - (1+x)}{x^3}$ **f)** $\lim_{x \to 1} \frac{ln x}{x^2 - 1}$

f)
$$\lim_{x \to 1} \frac{\ln x}{x^2 - 1}$$

$$g) \lim_{x \to 0} \frac{sen 2x}{sen 3x}$$

h)
$$\lim_{x \to 0^+} (e^x + x)^{1/x}$$

2. INTEGRAL DEFINIDO

 Utilizando os integrais já conhecidos e as propriedades do integral definido, calcule:

a)
$$\int_{1}^{2} (5x^4 - 1) dx$$

b)
$$\int_{0}^{2} (5x^3 - 3x + 6) dx$$

c)
$$\int_{-1}^{0} (x+1)^2 dx$$

d)
$$\int_{-1}^{4} (1-t)(t-2) dt$$

e)
$$\int_0^3 (2x-5)^5 dx$$

f)
$$\int_{-2}^{3} |x^2 - 1| dx$$

g)
$$\int_{-1}^{3} |x(1-x)| dx$$

h)
$$\int_{2}^{5} \frac{1}{\sqrt{x}} dx$$

i)
$$\int_{4}^{1} \sqrt[5]{5x} \ dx$$

j)
$$\int_{1}^{8} 4 \sqrt[3]{x-1} dx$$

$$\mathbf{k}) \int_{1}^{4} \frac{t-3}{\sqrt{t}} \ dt$$

1)
$$\int_{1}^{3} \left(x^2 + \frac{1}{x^2} \right) dx$$

2. Calcule os seguintes integrais:

a)
$$\int_0^2 f(x) dx$$
 sendo $f(x) = \begin{cases} x^2, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$

3. CÁLCULO DE ÁREAS USANDO INTEGRAIS

Calcule a área da região S entre os gráficos de f e g sobre [a,b],

sendo
$$f(x) = |x+1| + |x+2|$$
 $g(x) = x^2 + 3x$
 $a = -3$ e $b = 0$

2. Calcule as áreas das regiões limitadas por:

a)
$$f(x) = x^2$$
 e $g(x) = -x^2$ e as rectas $x = -1$ e $x = 1$

b)
$$f(x) = x^2$$
 e $g(x) = 1 - x^2$

c)
$$f(x) = \sqrt{x}$$
, $y = x e x = 2$

d)
$$f(x)=|x-1|$$
, $g(x)=x^2-2x$, $x=0$ e $x=2$

e)
$$f(x)=|x|+|x-1|$$
, $g(x)=0$, $x=-1$ e $x=2$

f)
$$f(x) = |x|$$
, $g(x) = 1 - x^2$

g)
$$f(x) = 4-x^2$$
, $g(x) = 8-2x^2$, $x=-2$ e $x=2$

4. PRIMITIVAÇÃO POR SUBSTITUIÇÃO

 Calcule as seguintes primitivas usando o seu conhecimento de derivadas e o método de substituição

a)
$$\int \sqrt{x+1} \ dx$$

b)
$$\int \frac{1}{4+x^2} dx$$

c)
$$\int \frac{e^x}{\sqrt[3]{1+2e^x}} dx$$

d)
$$\int \frac{x^2 + 5x + 6}{x^2 + 4} dx$$
 e) $\int a^x dx$, a > 0

$$e) \int a^x dx , a > 0$$

$$f) \int \frac{1}{\sqrt{2-x^2}} \, dx$$

g)
$$\int 2^{3x} dx$$

h)
$$\int x \sec^2(x^2) dx$$

i)
$$\int \frac{\log x}{x} dx$$

$$\mathbf{j}) \int \cot g \, x \, dx$$

j)
$$\int \cot g x \, dx$$
 k) $\int \frac{4}{(1+2x)^3} \, dx$

1)
$$\int \cos x \, \sin^2 x \, dx$$

$$\mathbf{m}) \int \frac{2a}{(a-x)^2} \, dx$$

m)
$$\int \frac{2a}{(a-x)^2} dx$$
 n) $\int \frac{x e^{x^2-1}}{e^{x^2-1}-1} dx$

o)
$$\int \frac{1}{a^2 - x^2} dx$$

$$\mathbf{p}) \int x^2 \cos x^3 \ dx$$

p)
$$\int x^2 \cos x^3 dx$$
 q) $\int \frac{x^3}{x^4 + a^4} dx$

r)
$$\int sec 2x \ tg 2x \ dx$$

s)
$$\int \frac{x}{a+bx} dx$$

t)
$$\int \cosh x \ dx$$

$$\mathbf{u}) \int \frac{x^2 + 1}{x - 1} \, dx$$

v)
$$\int \cos x \ \sin x \ e^{\cos^2 x} \ dx$$
 x) $\int \frac{x}{(x+1)^2} \ dx$

$$\mathbf{x}) \int \frac{x}{(x+1)^2} \, dx$$

5. PRIMITIVAÇÃO POR SUBSTITUIÇÃO TRIGONOMÉTRICA

a)
$$\int \frac{\sqrt{x^2-4}}{x} dx$$

b)
$$\int \sqrt{x(6-x)} \ dx$$

c)
$$\int \frac{x^3}{\sqrt{2-x^2}} \, dx$$

$$d) \int \frac{\sqrt{x^2 - 9}}{x^2} \, dx$$

e)
$$\int \frac{1}{x^3 \sqrt{x^2 - 9}} \ dx$$

$$f) \int \frac{1-x}{x\sqrt{1-x^2}} \ dx$$

g)
$$\int \frac{1}{(4+x^2)^{3/2}} dx$$

h)
$$\int x \sqrt{3 + 4x - 4x^2} \ dx$$

6. PRIMITIVAÇÃO POR PARTES

a)
$$\int x \cos x \, dx$$

b)
$$\int x^2 \sin x \, dx$$

c)
$$\int sen^2 x dx$$

d)
$$\int \cos^5 x \, dx$$

e)
$$\int \cos^4 x \, dx$$

f)
$$\int e^x \cos x \, dx$$

g)
$$\int x^2 e^x dx$$

$$\mathbf{h)} \int log \, (1+x^2) \, dx$$

i)
$$\int x \log^2 x \, dx$$

$$\mathbf{j}) \int x^2 \log(1+x) \ dx$$

k)
$$\int arcsen \frac{x}{\sqrt{2}} dx$$

1)
$$\int x \ arctg \ x \ dx$$

$$\mathbf{m}) \int \frac{x \ arctg \ x}{\sqrt{1+x^2}} \ dx$$

$$\mathbf{n}) \int \frac{x^3}{\sqrt{1+x^2}} \ dx$$

$$0) \int \frac{x^2}{\sqrt{1-x^2}} \ dx$$

$$\mathbf{p}) \int sen^2 x \cos^2 x \ dx$$

q)
$$\int x \sec^2 x \ dx$$

r)
$$\int sec^3x \, dx$$

7. PRIMITIVAÇÃO POR DECOMPOSIÇÃO EM FRAÇÕES SIMPLES

a)
$$\int \frac{x+1}{x^3 + x^2 - 6x} dx$$

b)
$$\int \frac{x^4 - x^3 - 3x^2 - 2x + 2}{(x^3 + x^2 - 2)x} dx$$

c)
$$\int \frac{x^4 - x^3 - x - 1}{x^3 - x^2} dx$$

d)
$$\int \frac{x^3 + 2}{x^3 - 1} dx$$

e)
$$\int \frac{2x^2+3}{(x^2+1)^2} dx$$

f)
$$\int \frac{x^2 + x + 2}{(x^2 + 2x + 3)^2} dx$$

g)
$$\int \frac{x^3 - 1}{x^2 (x - 2)^3} dx$$

$$h) \int \frac{x^2}{x^4 - 1} \ dx$$

8. CÁLCULO DE VOLUMES USANDO INTEGRAIS

- Em cada alínea esboce a região R delimitada pelos gráficos das equações dadas e determine o volume do sólido gerado pela rotação de R em torno do eixo indicado.
 - a) $y = \frac{1}{x}$, x = 1, x = 3, y = 0; em torno do eixo dos xx.
 - **b)** $y-x^2-1=0$, y-x-3=0 ; em torno do eixo dos xx.
 - c) x + y = 1, x = 0, y = 0; em torno da recta y = 1.
 - **d)** $y^2 = x$, 2y = x; em torno do eixo dos yy.
 - e) $v = 3^x$, $v = 1 x^2$, x = 1; em torno da recta x = 2.
- 2. Determine o volume do sólido gerado pela revolução da região limitada pelos gráficos de $y = x^2$ e y = 4 em torno de:
 - **a)** y = 0 **b)** y = 4 **c)** y = 5 **d)** x = 2 **e)** x = 3

9. DEFINIÇÃO DE FUNÇÕES E CÁLCULO DE ÁREAS USANDO COORDENADAS POLARES

Determinar a equação polar das curvas de equações cartesianas,

a)
$$x^2 + y^2 - x = (x^2 + y^2)^{1/2}$$

b)
$$9x^2 + 4y^2 = 36$$

c)
$$(x-1)^2 + y^2 = 1$$

d)
$$(x^2 + y^2)^2 = |x^2 - y^2|$$

2. Desenhe o gráfico de f em coordenadas polares e calcule a área do conjunto radial de f no intervalo indicado:

a)
$$f(\theta) = \theta$$

$$0 \le \theta \le 2\pi$$

a) $f(\theta) = \theta$, $0 \le \theta \le 2\pi$ (espiral de Arquimedes)

b)
$$f(\theta) = 2 \cos \theta$$
 , $-\pi/2 \le \theta \le \pi/2$ (circunferência tangente a *Oy*)

c)
$$f(\theta) = 2 |\cos \theta|$$

$$0 \le \theta \le 2\pi$$

c) $f(\theta)=2|\cos\theta|$, $0 \le \theta \le 2\pi$ (duas circunferências tangentes a Oy)

d)
$$f(\theta) = sen 2\theta$$
 , $0 \le \theta \le \pi/2$ (pétala de rosa)

$$0 \le \theta \le \pi/2$$

e)
$$f(\theta) = |sen 2\theta|$$
, $0 \le \theta \le 2\pi$ (rosa de 4 folhas)

$$0 \le \theta \le 2\pi$$

f)
$$f(\theta) = 4sen\theta$$

$$0 \le \theta \le \pi$$

f) $f(\theta) = 4 \operatorname{sen} \theta$, $0 \le \theta \le \pi$ (circunferência tangente a Ox)

g)
$$f(\theta) = 4 |sen \theta|$$

$$0 \le \theta \le 2\pi$$

g) $f(\theta)=4 |sen \theta|$, $0 \le \theta \le 2\pi$ (duas circunferências tangentes a Ox)

h)
$$f(\theta) = |\cos \theta|^{1/2}$$
 , $0 \le \theta \le 2\pi$ (oito achatado)

$$0 \le \theta \le 2\pi$$

i)
$$f(\theta) = |\cos 2\theta|^{1/2}$$
, $0 \le \theta \le 2\pi$ (trevo de 4 folhas)

$$0 \le \theta \le 2\pi$$

j)
$$f(\theta) = 1 + \cos \theta$$
 , $0 \le \theta \le 2\pi$ (cardioide)

$$0 \le \theta \le 2\pi$$

k)
$$f(\theta) = 2 + \cos \theta$$
 , $0 \le \theta \le 2\pi$ (caracol)

$$0 \le \theta \le 2\pi$$

10. EQUAÇÕES DIFERENCIAIS

1. Calcule a solução geral das seguintes equações diferenciais:

a)
$$(x^2 - x) \cdot \frac{dy}{dx} = y^2 + y$$

b)
$$y' - 2cosxsenx. y = e^{-sen^2x}$$

c)
$$y' = \sqrt{\frac{1-y^2}{1-x^2}}$$

d)
$$\sec^2 x \, tgy. \, dx + \sec^2 y \, tgx. \, dy = 0$$

e)
$$y' + 3y = e^{-3x}x^{-2}$$

- 2. Dada a equação diferencial $y' = \frac{2}{x}y 1$
 - a) Calcule a solução geral
 - b) Calcule a solução particular considerando y(1) = 3
- 3. Calcule a solução geral das seguintes equações diferenciais:

a)
$$(ax^2 + b)^{1/2}y' - xy^3 = 0$$
 para $a, b \in R$

b)
$$y' + \frac{2y}{x} = \frac{y^3}{x^3}$$

c)
$$xy' + x^2 - y = 0$$

d)
$$3y' + y = (1 - 2x)y^4$$

e)
$$xy' = y(lny - lnx + 1)$$

$$f) \qquad \frac{1}{y}dx - \frac{x}{y^2}dy = 0$$

g)
$$(x + y)dx + (x + 2y)dy = 0$$

4. Calcule a solução particular das seguintes equações diferenciais:

a)
$$\frac{dy}{dx} = \frac{2x-y}{x-2y}$$
, $y(1) = 3$

b)
$$y' + 3x^2y = e^{-x^3+x}$$
, $y(0) = 2$

c)
$$(x^2 - 9)y' + xy = 0, y(5) = y_0$$

- 5. Mostre que $y_1(x) = x^2$ e $y_1(x) = x^5$ são soluções da equação $x^2y'' - 6xy' + 10y = 0$
- Escolha a equação diferencial linear de 2ª ordem que tem como soluções particulares:
 - $y_1 = e^x$; $y_2 = e^{-x}$ a)
 - b) $y_1 = e^{2x}$; $y_2 = xe^{2x}$
 - c) $y_1 = e^{-x/2} cosx$; $y_1 = e^{-x/2} senx$
- 7. Resolva as seguintes equações diferenciais:
 - a) v'' 4v = 0
 - b) v'' + 2v' + v = 0
 - c) y'' 5y' + 6y = 0
 - d) v'' + 4v' + 13v = 0
 - e) $v'' 6v' + 9v = e^{3x} \ln x$
 - f) y'' + 9y = sec3x

Soluções:

1) a)
$$\frac{xy}{(x-1)(y+1)} = k$$
 1) b) $y = \frac{ex+C}{e^{\cos^2 x}}$ 1) c) arsen $y = \arcsin x + C$

1) d)
$$tg x$$
. $tg y = K$

1) e)
$$y = e^{-3x} (C - \frac{1}{x})$$

2) a)
$$y = x + Cx^2$$

2) a)
$$y = x + Cx^2$$
 2) b) $y = x + 2x^2$

3) a)
$$-\frac{1}{2v^2} = \frac{1}{a}\sqrt{ax^2 + b} + C$$
 3) b) $y^{-2} = \frac{1}{3v^2} + Cx^4$ 3) c) $y = -x^2 + Cx^4$

3) b)
$$y^{-2} = \frac{1}{3x^2} + Cx^4$$

3) d)
$$y^{-3} = Ce^x - 2x - 1$$
 3) e) $y = xe^{-Cx}$ 3) f) $\frac{x}{y} = C$

3) g)
$$\frac{x^2}{2}$$
 + xy +y² = C

4) a)
$$x^2 - xy + y^2 = 7$$
 4) b) $y = e^{x-x^3} + e^{-x^3}$ 4) c) $y = \frac{4y_0}{\sqrt{x^2-9}}$

6) a)
$$y'' - y = 0$$
 6) b) $y'' - 4y' + 4y = 0$ 6) c) $y'' + y' + \frac{5}{4}y = 0$

7) a)
$$y = C_1 e^{2x} + C_2 e^{-2x}$$
 7) b) $y = C_1 e^{-x} + C_2 x e^{-x}$ 7) c) $y = C_1 e^{2x} + C_2 e^{3x}$

7) d)
$$y = C_1 e^{-2x} \cos 3x + C_2 e^{-2x} \sin 3x$$
 7) e) $y = C_1 e^{3x} + C_2 x e^{3x} - \frac{3}{4} x^2 e^{3x} + \frac{x^2}{2} \ln x e^{3x}$

7) f)
$$y = C_1 \cos 3x + C_2 \sin 3x + \frac{1}{9} \cos 3x \ln |\cos 3x| + \frac{1}{3} x \sin 3x$$

11. TRANSFORMADAS DE LAPLACE

 Determine as transformadas de Laplace das funções definidas pelas seguintes expressões analíticas:

(a)
$$f(t) = e^{3t} \cos 2t;$$

R:
$$F(s) = \frac{s-3}{(s-3)^2+4}$$

(b)
$$f(t) = \cos^2 at$$
;

R:
$$F(s) = \frac{1}{2s} + \frac{s}{2(s^2 + 4a^2)}$$

(c)
$$f(t) = \sin 5t \cos 2t$$
;

R:
$$F(s) = \frac{1}{2} \left(\frac{7}{s^2 + 49} + \frac{3}{s^2 + 9} \right)$$

(d)
$$f(t) = t^2 \sin t$$
;

R:
$$F(s) = \frac{6s^2 - 2}{(s^2 + 1)^3}$$

(e)
$$f(t) = t^3 e^{-t}$$
.

R:
$$F(s) = \frac{6}{(s+1)^4}$$

(f)
$$f(t) = te^{at}\cos(bt)$$
, $a, b \in \mathbb{R}$

R:
$$F(s) = \frac{(s-a)^2 - b^2}{\left[(s-a)^2 + b^2\right]^2}$$

- (g) Considere a função $f(t) = t[1 u(t 4)] + (t 6)^2[u(t 4) u(t 6)]$, definida para valores positivos de t, onde u(t) representa a função degrau unitário Faça um esboço da função e Calcule a sua transformada de Laplace
 - 2. Calcule

(a)
$$\mathcal{L}^{-1}\{(s-2)^{-2}\};$$

R:
$$te^{2t}$$

(b)
$$\mathcal{L}^{-1}\left\{\frac{7}{(s-1)^3} + \frac{1}{(s+1)^2 - 4}\right\};$$

R:
$$\frac{7}{2}t^2e^t + \frac{1}{2}e^{-t}\sinh(2t)$$

(c)
$$\mathcal{L}^{-1}\left\{\frac{s}{(s+1)^2(s^2+1)}\right\}$$
;

R:
$$-\frac{1}{2}e^{-t}t + \frac{1}{2}\sin t$$

(d)
$$\mathcal{L}^{-1} \left\{ \frac{e^{-\pi s}}{s^2 + 16} \right\}$$
;

R:
$$\begin{cases} 0 & , \ t < \pi \\ \frac{1}{4}\sin(4t) & , \ t \ge \pi \end{cases}$$

(e)
$$\mathcal{L}^{-1} \left\{ \frac{1}{(s^2+1)^2} \right\}$$

R:
$$\frac{1}{2}\sin t - \frac{1}{2}t\cos t$$

 Use o operador Transformada de Laplace para determinar as soluções das seguintes equações diferenciais que verifiquem as condições iniciais dadas.

(a)
$$y'' + 4y' + 4y = e^{-x}$$
,
$$\begin{cases} y(0) &= 0 \\ y'(0) &= 1 \end{cases}, x \ge 0;$$
R: $y = e^{-x} - e^{-2x}$

(b)
$$y'' + 4y' + 3y = 0$$
,
$$\begin{cases} y(0) = 0 \\ y'(0) = 1 \end{cases}, t \ge 0;$$
R: $y = \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t}$

(c)
$$y'' + 6y - 7 = 0$$
,
$$\begin{cases} y(0) = 1 \\ y'(0) = 0 \end{cases}, t \ge 0;$$

R: $y = \frac{7}{6} - \frac{1}{6} \cos \left(\sqrt{6}t\right)$

(d)
$$y'' - y' - 2y = x$$
,
$$\begin{cases} y(0) &= 0 \\ y'(0) &= 0 \end{cases}, x \ge 0;$$

$$R: y = \frac{1}{4} - \frac{1}{2}x - \frac{1}{3}e^{-x} + \frac{1}{12}e^{2x}$$

(e)
$$y'' - 2y' + 5y = 0$$
,
$$\begin{cases} y(0) &= 0 \\ y'(0) &= 1 \end{cases}, t \ge 0;$$

R:
$$y = \frac{1}{2}e^t \sin(2t)$$

(f)
$$y'' - 9y' = 5e^{-2t}$$
,
$$\begin{cases} y(0) &= 1 \\ y'(0) &= 2 \end{cases}, t \ge 0;$$

R:
$$y = \frac{1}{2} + \frac{3}{11}e^{9t} + \frac{5}{22}e^{-2t}$$

Tabela de Transformadas de Laplace

	f(t)	$\mathcal{L}\left\{f\right\}$	Domínio
1	1	$\frac{1}{s}$	s > 0
2	t	$\frac{1}{s^2}$	s > 0
3	t^2	$\frac{2}{s^3}$	s > 0
4	$t^n, n \in \mathbf{N}_0$	$\frac{n!}{s^{n+1}}$	s > 0
5	$e^{at}f(t)$	F(s-a)	$s > \gamma + a$
6	e^{at}	$\frac{1}{s-a}$	s > a
7	$\cos(wt)$	$\frac{s}{s^2 + w^2}$	s > 0
8	$\sin{(wt)}$	$\frac{w}{s^2 + w^2}$	s > 0
9	$\cosh\left(at\right)$	$\frac{s}{s^2 - a^2}$	s > a
10	$\sinh{(at)}$	$\frac{a}{s^2 - a^2}$	s > a
11	$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$	s > a
12	$e^{at}\cos(wt)$	$\frac{s-a}{(s-a)^2 + w^2}$	s > a
13	$e^{at}\sin(wt)$	$\frac{w}{(s-a)^2 + w^2}$	0 > 0

$$\mathcal{L}[t^nf(t)]=(-1)^n[F(s)]^{(n)}$$

$$\mathcal{L}[f'(t)] = s\mathcal{L}[f(t)] - f(0) \qquad \qquad \mathcal{L}[f''(t)] = s^2\mathcal{L}[f(t)] - sf(0) - f'(0)$$

12. POLINÓMIO DE TAYLOR COM RESTO DE LAGRANGE

 Obtenha os polinómios de Taylor das seguintes funções no ponto dado e com o grau indicado:

a)
$$f(x) = e^x$$
, ponto $x_0 = 0$, grau n

b)
$$f(x) = \cos x$$
, ponto $x_0 = 0$, grau $2n$

c)
$$f(x) = sen x$$
, ponto $x_o = \pi/2$, grau $2n$

d)
$$f(x) = log x$$
, ponto $x_o = 2$, grau n

e)
$$f(x) = 1/x$$
, ponto $x_0 = 2$, grau n

f)
$$f(x) = \frac{1}{\sqrt[3]{x}}$$
, ponto $x_o = 1$, grau n

 Escreva a fórmula de Taylor com resto de Lagrange correspondente a cada uma das alíneas do exercício 1.

13. SÉRIES NUMÉRICAS

Prove que as seguintes séries são convergentes e têm a soma indicada

a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}$$

b)
$$\sum_{n=1}^{\infty} \frac{2}{3^{n-1}} = 3$$

c)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \frac{3}{4}$$

d)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n} = \frac{3}{2}$$

e)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}} = 1$$

f)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = 1$$

2. Calcule a soma, se existir, das séries:

a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right)$$

b)
$$\sum_{n=1}^{5} \frac{1}{n} + \sum_{n=6}^{\infty} \frac{1}{n(n+1)}$$

c)
$$\sum_{n=1}^{\infty} \log \frac{n+1}{n}$$

3. Classifique as séries:

a)
$$1 + \sum_{n=2}^{\infty} \frac{1}{2n(n-1)}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{e}}$$

e)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} - \frac{4}{n} \right)$$

b)
$$\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$$

d)
$$\sum_{n=1}^{\infty} n \operatorname{sen} \frac{1}{n}$$

f)
$$\sum_{n=1}^{\infty} \left(\frac{1}{8^n} - \frac{1}{n(n+1)} \right)$$

4. Estude a convergência das séries:

a)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{5^n (n+1)}$$

c)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

e)
$$\sum_{n=1}^{\infty} \frac{n!}{2^{2n}}$$

$$\mathbf{g}) \sum_{n=1}^{\infty} \left(\frac{1}{n} - e^{-n^2} \right)$$

i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\log(e^n + e^{-n})}$$

k)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n^2 + 1}$$

m)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n^2+n^3}$$

b)
$$\sum_{n=1}^{\infty} \frac{n!}{e^n}$$

d)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

f)
$$\sum_{n=1}^{\infty} \frac{3^n + n^2 + 2n}{3^{n+1} n(n+2)}$$

h)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

$$\mathbf{j)} \sum_{n=1}^{\infty} \frac{(-1)^{n(n-1)/2}}{2^n}$$

$$1) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}}$$

n)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2n+100}{3n+1} \right)^n$$

14. SÉRIES DE FOURIER

Considere a função de período 2π:

$$f(x) = \begin{cases} 1 & \text{se } -\pi < x < 0 \\ 0 & \text{se } 0 < x < \pi \end{cases}$$

- (a) Esboçe o gráfico da função para $-2\pi < x < 2\pi$
- (b) Calcule os coeficientes da série de Fourier de f(x): a₀, a_n e b_n
- (c) Escreva a forma geral da série de Fourier de f(x)
- (d) Escreva os primeiros 5 termos da série de Fourier de f(x)
- Considere a função de período 2π:

$$f(x) = \begin{cases} 0 & \text{se } -\pi < x < 0 \\ x & \text{se } 0 < x < \pi \end{cases}$$

- (a) Esboçe o gráfico da função para $-3\pi < x < 3\pi$
- (b) Calcule os coeficientes da série de Fourier de f(x): a₀, a_n e b_n
- (c) Escreva a forma geral da série de Fourier de f(x)
- (d) Escreva os primeiros 5 termos da série de Fourier de f(x)
- Considere a função de período 2π:

$$f(x) = x/2$$
 $0 < x < 2\pi$

- (a) Esboçe o gráfico da função para $0 < x < 4\pi$
- (b) Calcule os coeficientes da série de Fourier de f(x): a₀, a_n e b_n
- (c) Escreva a forma geral da série de Fourier de f(x)
- (d) Escreva os primeiros 5 termos da série de Fourier de f(x)

Soluções

1)
$$a_0=1$$
 $a_n=0$ $b_n=0$ para n par, $b_n=\frac{-2}{n\pi}$ para n impar

2)
$$a_0=\pi/2 \quad a_n=0$$
 para n par
, $a_n=\frac{-2}{n^2\pi}$ para n ímpar $\quad b_n=-\frac{(-1)^n}{n}$

3)
$$a_0=\pi$$
 $a_n=0$ $b_n=\frac{-1}{n}$