Mathematics Department Mathematics Department Perth Modern Perth Modern

Working out space

Independent Public School Exceptional schooling. Exceptional students. *IEBLH WODERN SCHOOL*

Specialist Test 1 Year 12 Course

	noitegit	Kesponse/Inves	Task type:
:əme	Teacher n		Student name:

Reading time for this test: 5 mins

Working time allowed for this task: 40 mins

Number of questions:

No cals allowed!! Materials required:

Pens (blue/black preferred), pencils (including coloured), sharpener, Standard items:

correction fluid/tape, eraser, ruler, highlighters

Drawing instruments, templates, NO notes allowed! Special items:

41 marks Marks available:

33% Task weighting:

1 Page

Formula sheet provided: no, but formulae stated on page 2

Note: All part questions worth more than 2 marks require working to obtain full marks.

8 P a g e

Mathematics Department

Useful formulae

Perth Modern

Complex numbers

Cartesian form			
z = a + bi	$\bar{z} = a - bi$		
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$		
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \left \frac{z_1}{z_2}\right $		
$\arg (z_1 z_2) = \arg (z_1) + \arg (z_2)$	$\arg\left(\frac{z_1}{\overline{z_2}}\right) = \arg(z_1) - \arg(z_2)$		
$zar{z}= z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$		
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$		
Polar form			
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis} (-\theta)$		
$z_1 z_2 = r_1 r_2 cis(\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$		
$cis(\theta_1 + \theta_2) = cis \theta_1 cis \theta_2$	$cis(-\theta) = \frac{1}{cis\theta}$		
De Moivre's theorem			
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$		
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$			

$$(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

2 | P a g e

Mathematics Department Perth Modern

Q7 (4 marks)

7 | Page

Consider the roots of the equation $z^n = a$ with z being a complex variable with a as a complex constant and a being an integer a > 3. A root is defined to be in the first quadrant if the Argument lies

$$0 < Arg(z) < \frac{\pi}{2}.$$

Determine **all** the allowable values of n such that there will be **exactly** 3 roots in the first quadrant and

$$\frac{\pi}{}$$

the smallest argument of these 3 roots will be $\overline{10}$.

(Note: answers without working will receive zero marks)

No cals allowed!!

Q1 (2, 2, 2 & 2 = 8 marks)

If z=5-4i and w=2+3i determine the following: (a)

_____(C

 $\frac{M}{Z}$

 $\underline{M}_z Z$ (p

Q2 (2 & 3 = 5 marks)

a) Determine the complex roots of $3z^2+z+2=0$.

 b) Use the quadratic equation to prove that if a quadratic equation with real coefficients has any non-real roots then it must have two complex roots and they must be conjugates of each other.

Mathematics Department Perth Modern

Q6 (2, 1, 2 & 2 = 7 marks)

Consider the locus of complex numbers X that satisfy $\left|_{X}-\sqrt{3}+i\right|=2$ a) Sketch the locus on the axes below.

 $\left\vert x\right\vert$ for the maximum value of $\left\vert x\right\vert$

c) State the minimum value of $\operatorname{Arg}(z)$ such that $\operatorname{Arg}(z) > \operatorname{Minimum}$.

d) State the maximum value of $^{Arg(z)}$ such that $^{Arg(z)} < Maximum$.

e| b 2 g 6

Mathematics Department

Q3 (4 marks)

Determine all possible real number pairs
$$a \& b$$
 such that $\frac{37 + 9i}{5 + ai} = b - i$.

Perth Modern

Q4 (2, 2, 2 & 2 = 8 marks)

Consider the complex number $z = \sqrt{3} + i$.

Plot the following on the axes above.

- a) Z
- b) *iz*

c)
$$(1+i)_Z$$

4 | P a g e

Mathematics Department Perth Modern

$$\frac{Z}{(1+i)}$$

Q5 (5 marks)

5 | P a g e

Consider the polynomial $f(z) = az^4 + bz^3 + cz^2 + dz + e$ where a,b,c,d & e are real numbers. Given that f(z+i) = 0 = f(5-2i)

and
$$f(0) = -290$$

Determine the values of a,b,c,d & e. (Note: answers without working will receive zero marks)