CS5489 - Machine Learning

Lecture 8b - Neural Networks

Prof. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- History
- Perceptron
- Multi-class logistic regression
- Multi-layer perceptron (MLP)

Extracting features

- The multi-class logistic regression model assumes the inputs are feature vectors.
 - $\mathbf{g} = \mathbf{W}^T \mathbf{x}$
 - $\mathbf{f} = \mathbf{s}(\mathbf{g})$

- What if we also want to learn the feature vectors?
 - Replace **x** with a feature extractor.
 - For simplicity, we can reuse the same "unit" as the classifier to compute the "features".
- Replace ${f x}$ with feature extractor ${f z}=\sigma({f A}^T{f x})$
 - **z** is the extracted feature vector (also called *hidden* nodes)

$$\circ \ z_i = \sigma(\mathbf{a}_i^T\mathbf{x})$$
 is a hidden node.

- $\sigma()$ is the sigmoid function (also called *activation* function.)
- A are the parameters of the feature extractor.
- New model

$$\mathbf{z} = \sigma(\mathbf{A}^T \mathbf{x})$$

$$\mathbf{g} = \mathbf{W}^T \mathbf{z}$$

$$\quad \bullet \ \mathbf{f} = \mathbf{s}(\mathbf{g})$$

- Interpretation
 - Each hidden node z_i is a "classifier" looking for pattern based on \mathbf{a}_i .

- The output is looking for patterns in the vector **x**
- the effect is a non-linear classifier in the input space of x.

- we can apply this requireivaly to create features of features

Multi-layer Perceptron

- Add hidden layers between the inputs and outputs
 - each hidden node is a Perceptron (with its own set of weights)
 - o its inputs are the outputs from previous layer
 - extracts a feature pattern from the previous layer
 - can model more complex functions

- Formally, for one layer:
 - $\bullet \mathbf{h} = f(\mathbf{W}^T \mathbf{x})$
 - \circ Weight matrix \mathbf{W} one column for each node
 - \circ Input \mathbf{x} from previous layer
 - \circ Output ${f h}$ to next layer
 - $\circ \ f(a)$ is the activation function applied to each dimension to get output
- Also called fully-connected layers or dense layers

Activation functions

- There are different types of activation functions:
 - Sigmoid output [0,1]
 - *Tanh* output [-1,1]
 - Rectifier Linear Unit (ReLU) output $[0,\infty]$

Out[3]:

- · Activation functions specifically for output nodes:
 - Linear output for regression
 - Softmax output for classification (same as multi-class logistic regression)
- Each layer can use a different activation function.

Which activation function is best?

- In the early days, only the Sigmoid and Tanh activation functions were used.
 - these were notoriously hard to train with.
 - o gradient decays to zero on both ends
- · Recently, ReLU has become very popular.
 - easier to train with gradient is either 0 or 1.
 - faster don't need to calculate exponential
 - sparse representation most nodes will output zero.

Training an MLP

- Assume a general case:
 - linear transform: $\mathbf{g}_1 = \mathbf{A}^T \mathbf{x}$
 - lacksquare activation: $\mathbf{z} = h_1(\mathbf{g}_1)$
 - lacksquare linear transform: $\mathbf{g}_2 = \mathbf{W}^T \mathbf{z}$
 - lacksquare activation: $\mathbf{f} = h_2(\mathbf{g}_2)$
 - loss function: $L(\mathbf{y}, \mathbf{f})$

- In our example, h_1 is a sigmoid, h_2 is a softmax.
- · Similar to multi-class logistic regression
 - minimize the loss

$$\circ \ (\mathbf{A}^*, \mathbf{W}^*) = \operatorname{argmin}_{\mathbf{A}, \mathbf{W}} L(\mathbf{y}, \mathbf{f}(\mathbf{x}))$$

- use gradient descent as before
 - \circ need to compute $\frac{dL}{d\mathbf{A}}$ and $\frac{dL}{d\mathbf{W}}$
 - we have done most of the work already...

· Computation graph

- · Chain rule:

 - 1. $\frac{d\mathbf{f}}{d\mathbf{g}_{2}} = \frac{d\mathbf{f}^{T}}{d\mathbf{g}_{2}} \frac{dL}{d\mathbf{f}} \Rightarrow 3) \frac{dL}{d\mathbf{w}_{j}} = \frac{d\mathbf{g}_{2}^{T}}{d\mathbf{w}_{j}} \frac{dL}{d\mathbf{g}_{2}}$ 4. $\frac{dL}{d\mathbf{z}} = \frac{d\mathbf{g}_{2}^{T}}{d\mathbf{z}} \frac{dL}{d\mathbf{g}_{2}}$ 5. $\frac{dL}{d\mathbf{g}_{1}} = \frac{d\mathbf{z}^{T}}{d\mathbf{g}_{1}} \frac{dL}{d\mathbf{z}} \Rightarrow 6) \frac{dL}{d\mathbf{a}_{j}} = \frac{d\mathbf{g}_{1}^{T}}{d\mathbf{a}_{j}} \frac{dL}{d\mathbf{g}_{1}}$
- · Recursively use the gradient of descendant layers
 - propagate gradient backwards
 - backwards propagation
 - back propagation
 - backpropagation
 - backprop
 - BP

Backpropagation (backward propagation)

- · Defines a set of recursive relationships
 - 1. calculate the output of each node from first to last layer
 - 2. calculate the gradient of each node from last to first layer

Training

- NOTE: the gradients multiply in each layer!
 - if two gradients are small (<1), their product will be even smaller. This is the "vanishing gradient" problem.

Backpropagation (general form)

- · Given a computation graph
 - 1. apply input \mathbf{x} and forward propagate to compute all the nodes' values and the loss.
 - 2. Go backwards from end, at node h:
 - lacktriangledown compute gradients from child nodes: $rac{dL}{d\mathbf{h}} = \sum_{g \in \mathrm{child}(\mathbf{h})} rac{d\mathbf{g}^T}{d\mathbf{h}} rac{dL}{d\mathbf{g}}$
 - compute gradient of parameters \mathbf{w}_h of h: $\frac{dL}{d\mathbf{w}_h} = \frac{d\mathbf{h}^T}{d\mathbf{w}_h} \frac{dL}{d\mathbf{h}}$
- This is the "symbol-to-number" differentiation (e.g., Caffe, Torch).

- We can also make the backprop operations as part of the computation graph.
 - called "symbol-to-symbol" differentiation (e.g., Tensorflow, Theano)

Stochastic Gradient Descent (SGD)

- The datasets needed to train NN are typically very large
- Use SGD so that only a small portion of the dataset is needed at a time
 - Each small portion is called a *mini-batch*
 - Use a momentum term, which averages the current gradient with those from previous mini-batches.
 - One complete pass through the data is called an *epoch*.

Monitoring training with SGD

- Separate the training set into training and validation
 - use the training set to run backpropagation
 - test the NN on the validation set for diagnostics
 - o check for convergence adjust learning rate if necessary
 - o check for diverging loss adjust learning rate
 - stopping criteria stop when no change in the validation error.
 - o decay learning rate after each epoch.

Load NN software

- · We will use keras
 - compatible with scikit-learn
 - keras is an easy-to-use front-end for Tensorflow
 - (slides are using Python 3.8 and Tensorflow 2.8)

```
In [4]: import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Activation
    from tensorflow.keras import backend as K
    import struct

In [6]: import sys
    print("Python:", sys.version, "Keras:", keras.__version__, "TF:", tf.__version__)
```

- train 1 NN with just one output layer
 - this is the same as logistic regression

Metal device set to: Apple M1 Max

2023-01-22 12:00:07.497101: I tensorflow/core/common_runtime/pluggable_device/plug gable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, de faulting to 0. Your kernel may not have been built with NUMA support.
2023-01-22 12:00:07.497245: I tensorflow/core/common_runtime/pluggable_device/plug gable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/t ask:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)

```
In [11]: # compile the network
         nn.compile(loss=keras.losses.categorical_crossentropy,
                                                                   # classification loss
              optimizer=keras.optimizers.SGD( # use SGD for optimization
                        learning rate=0.01,
                                                 # learning rate
                        momentum=0.9, # momentum for averaging over batches
nesterov=True # use Nestorov momentum
                      ))
         # fit the network
         history = nn.fit(X, Yb,
                                                 # the input/output data
                           epochs=100,
                                                 # number of iterations
                          batch_size=32, # batch size
                          validation_split=0.1, # ratio of data for validation
                                                # set to True to see each iteration
                           verbose=False
```

2023-01-22 12:00:07.555231: W tensorflow/core/platform/profile_utils/cpu_utils.cc: 128] Failed to get CPU frequency: 0 Hz 2023-01-22 12:00:07.630512: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2023-01-22 12:00:07.734573: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.

training and validation loss have converged

```
In [13]: nnfig
```


• Add one 1 hidden layer with 2 ReLU nodes

```
In [14]: K.clear session()
         random.seed(5489); tf.random.set seed(4471) # initialize random seed
         # build the network
         nn = Sequential()
         nn.add(Dense(units=2,
                                            # 2 nodes in the hidden layer
                      input dim=2,
                      activation='relu'))
         nn.add(Dense(units=2,
                                            # 2 output nodes (one for each class)
                      activation='softmax'))
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical crossentropy,
                    optimizer=keras.optimizers.SGD(lr=0.3, momentum=0.9, nesterov=True))
         history = nn.fit(X, Yb, epochs=100, batch size=32, validation split=0.1, verbose=False)
          /Users/abc/miniforge3/envs/py38tfm28/lib/python3.8/site-packages/keras/optimizer_v
          2/gradient descent.py:102: UserWarning: The `lr` argument is deprecated, use `lear
          ning rate instead.
            super(SGD, self).__init__(name, **kwargs)
          2023-01-22 12:00:12.120748: I tensorflow/core/grappler/optimizers/custom graph opt
          imizer registry.cc:113] Plugin optimizer for device type GPU is enabled.
          2023-01-22 12:00:12.203370: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```

- Add one 1 hidden layer with 2 ReLU nodes
 - can carve out part of the red class.

- Let's try more nodes
 - 1 hidden layer with 20 hidden nodes

- · Let's try more nodes
 - 1 hidden layer with 20 hidden nodes
 - with enough nodes, we can get a perfect classifier.

Overfitting

- · Continuous training will sometimes lead to overfitting
 - the training loss decreases, but the validation loss increases

Early stopping

- Training can be stopped when the validation loss is stable for a number of iterations
 - stable means change below a threshold
 - this is to prevent overfitting the training data.
 - we can limit the number of iterations.
- We are using the loss/accuracy on the (held-out) validation data to estimate the generalization performance of the network

```
In [23]: K.clear_session()
         random.seed(248); tf.random.set seed(3240) # initialize random seed
         # build the network
         nn = Sequential()
         nn.add(Dense(units=2, input dim=2, activation='relu'))
         nn.add(Dense(units=2, activation='softmax'))
         # setup early stopping callback function
         earlystop = keras.callbacks.EarlyStopping(
             monitor='val_loss',
                                   # look at the validation loss
             min delta=0.0001,
                                    # threshold to consider as no change
                                     # stop if 5 epochs with no change
             patience=5,
             verbose=1, mode='auto'
         callbacks list = [earlystop]
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical_crossentropy,
                    optimizer=keras.optimizers.SGD(lr=0.3, momentum=0.9, nesterov=True))
         history = nn.fit(X, Yb, epochs=100, batch size=32, validation split=0.1,
                          verbose=False.
                          callbacks=callbacks list) # setup the callback list
          2023-01-22 12:00:26.094325: I tensorflow/core/grappler/optimizers/custom graph opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          2023-01-22 12:00:26.175654: I tensorflow/core/grappler/optimizers/custom graph opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```

Epoch 9: early stopping

• training is stopped before overfitting begins.

Universal Approximation Theorem

- Cybenko (1989), Hornik (1991)
 - A multi-layer perceptron with a single hidden layer and a finite number of nodes can approximate any continuous function up to a desired error.
 - The number of nodes needed might be very large.
 - Doesn't say anything about how difficult it is to train it.

- How many hidden nodes are needed?
 - In the worst case, consider binary functions mapping $\{0,1\}^n \to \{0,1\}$
 - \circ there are 2^n possible inputs.
 - \circ there are 2^{2^n} possible functions (each input has 2 possible outputs)
 - \circ thus, we need 2^n bits in the hidden layer to select one of these functions.
 - need $O(2^n)$ nodes in the hidden layer, exponential in the size of the input!
- How to train this model?
 - According to the "no free lunch theorem", there is no universally best learning algorithm!
- · Deep learning corollary
 - The number of functions representable by a deep network requires an exponential number of nodes for a shallow network with 1 hidden-layer.
 - A deep network can learn the same function using less nodes.
 - Given the same number of nodes, a deep network can learn more complex functions.
- Doesn't say anything about how difficult it is to train it.

Example

- Network with 1 hidden layer
 - input (2D) -> 40 hidden nodes -> output (2D)

In [29]: nn.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #	
dense (Dense)	(None, 40)	120	
dense_1 (Dense)	(None, 2)	82	

Total params: 202
Trainable params: 202
Non-trainable params: 0

In [30]: nnfig

- 3 hidden layers:
 - input (2D) -> 8 nodes -> 5 nodes -> 3 nodes -> output (2D)

In [33]: nn.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #	
dense (Dense)	(None, 8)	24	
dense_1 (Dense)	(None, 8)	72	
dense_2 (Dense)	(None, 3)	27	
dense_3 (Dense)	(None, 2)	8	

Total params: 131
Trainable params: 131
Non-trainable params: 0

In [34]:

nnfig

We should use deeper networks...

- Less parameters than a 1 hidden-layer NN
 - but the number of parameters is still large
- Dataset is still too small.
- · Vanishing Gradient problem
 - backprop recursively multiplies gradients
 - o numerical values get smaller.
 - $\circ\,$ gradient signal is "washed" out the further back it travels.
- We'll see how to address these problems later.

Example on MNIST Dataset

- Images are 28x28, digits 0-9
 - 6,000 for training
 - 10,000 for testing

```
In [37]:
    n_train, nrow, ncol, trainimg = read_img('data/train-images.idx3-ubyte')
    _, trainY = read_label('data/train-labels.idx1-ubyte')
    n_test, _, _, testimg = read_img('data/t10k-images.idx3-ubyte')
    _, testY = read_label('data/t10k-labels.idx1-ubyte')

# for demonstration we only use 10% of the training data
sample_index = range(0, trainimg.shape[0], 10)
trainimg = trainimg[sample_index]
trainY = trainY[sample_index]
print(trainimg.shape)
print(trainiy.shape)
```

```
print(testimg.shape)
print(testY.shape)

(6000, 28, 28)
(6000,)
(10000, 28, 28)
(10000,)

In [38]: # Example images
plt.figure(figsize=(8,4))
show_imgs(trainimg[0:50])
```


Pre-processing

- · Reshape images into vectors
- map to [0,1], then subtract the mean

```
In [39]: # Reshape the images to a vector
# and map the data to [0,1]
trainXraw = trainimg.reshape((len(trainimg), -1), order='C') / 255.0
testXraw = testimg.reshape((len(testimg), -1), order='C') / 255.0

# center the image data (but don't change variance)
scaler = preprocessing.StandardScaler(with_std=False)
trainX = scaler.fit_transform(trainXraw)
testX = scaler.transform(testXraw)

# convert class labels to binary indicators
trainYb = keras.utils.to_categorical(trainY)
print(trainX.shape)
print(trainYb.shape)

(6000, 784)
```

• Generate a fixed validation set

(6000, 10)

use vtrainX for training and validX for validation

```
In [40]: # generate a fixed validation set using 10% of the training set
    vtrainX, validX, vtrainYb, validYb = \
        model_selection.train_test_split(trainX, trainYb,
        train_size=0.9, test_size=0.1, random_state=4487)

# validation data
validset = (validX, validYb)
```

MNIST - Logistic Regression (0-hidden layers)

· Training procedure

- We specify the validation set so that it will be fixed when we change the random_state to randomly initialize the weights.
- Train on the non-validation training data

```
In [42]: K.clear session() # cleanup
         random.seed(4487); tf.random.set_seed(4487) # initialize seed
         # build the network
         nn = Sequential()
         nn.add(Dense(units=10, input dim=784, activation='softmax'))
         # early stopping criteria
         earlystop = keras.callbacks.EarlyStopping(
                        monitor='val_accuracy',
                                                   # use validation accuracy for stopping
                                                   # (use 'val acc' for tf1)
                        min delta=0.0001, patience=5,
                        verbose=1, mode='auto')
         callbacks_list = [earlystop]
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical crossentropy,
                    optimizer=keras.optimizers.SGD(learning rate=0.05, momentum=0.9, nesterov=True),
                    metrics=['accuracy'] # also calculate accuracy during training
         history = nn.fit(vtrainX, vtrainYb, epochs=100, batch size=50,
                          callbacks=callbacks list,
                          validation data=validset, # specify the validation set
                          verbose=False)
          2023-01-22 12:00:41.827037: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          2023-01-22 12:00:42.355215: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```

Epoch 13: early stopping

```
In [43]: plot_history(history)
    predY = argmax(nn.predict(testX, verbose=False), axis=-1)
    acc = metrics.accuracy_score(testY, predY)
    print("test accuracy:", acc)

2023-01-22 12:00:48.813260: I tensorflow/core/grappler/optimizers/custom_graph_opt
    imizer registry.cc:113] Plugin optimizer for device type GPU is enabled.
```


- · Examine the weights of the network
 - use get_layer to access indexed layer in the network
 - o layer 0 is the input layer.
 - use get weights to get the weights/biases for a layer.

In [44]: nn.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 10)	7850
Total params: 7,850 Trainable params: 7,850 Non-trainable params: 0		

```
In [45]: params = nn.get_layer(index=0).get_weights()
         print(params)
         [array([[-0.07668316, 0.0506426, 0.02011225, ..., -0.06035375,
                 -0.02619639, -0.04660042],
                [0.02124737, -0.03975144, -0.0652017, ..., 0.02619619,
                  0.00104643, 0.07461943],
                [-0.00434513, -0.05478361, 0.08619549, ..., -0.02323265,
                  0.01046359, 0.02967306],
                [ 0.00080693, -0.07145306, 0.08062453, ..., 0.01938874, ]
                 -0.06666604, -0.06500553],
                [ 0.01731288, 0.00918476, 0.0270523 , ..., -0.02666005,
                  0.04110996, 0.02432326],
                [-0.08605715, 0.06289775, 0.0517082, ..., 0.06466276,
                 -0.08470873, 0.041274 ]], dtype=float32), array([-1.1132437, -1.4380776
          , 0.5278839 , 0.53613126, -0.73726153,
                 0.9060908 , -0.6181745 , -0.5193604 , 1.6782092 , 0.7777992 ],
```

· Reshape the weights into an image

dtype=float32)]

• input images that match the weights will have high response for that class.

MNIST - 1-hidden layer

- Add 1 hidden layer with 50 ReLu nodes
 - each node is extracting a feature from the input image

```
In [47]: K.clear_session() # cleanup
  random.seed(4487); tf.random.set_seed(4487) # initialize seed

# build the network
  nn = Sequential()
  nn.add(Dense(units=50, input_dim=784, activation='relu')) # hidden layer
  nn.add(Dense(units=10, activation='softmax')) # output layer
```

Epoch 10: early stopping

In [48]: nn.summary()

Model: "sequential"

Layer (type)	Output S	Shape	Param #
=======================================			
dense (Dense)	(None, 5	50)	39250
dense_1 (Dense)	(None, 1	10)	510
	=======		========
Total params: 39,760			
Trainable params: 39,760			
Non-trainable params: 0			

```
In [49]: plot_history(history)

predY = argmax(nn.predict(testX, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

2023-01-22 12:00:55.495294: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.

- Examine the weights of the hidden layer
 - $h_i = \sigma(\mathbf{w}_i^T \mathbf{x})$
 - each weight vector is a "pattern prototype" that the node will match
- The hidden nodes look for local structures:
 - oriented edges, curves, other local structures

```
In [50]: W = nn.get_layer(index=0).get_weights()[0]
filter_list = [W[:,i].reshape((28,28)) for i in range(W.shape[1])]
```


- Examine the weights of the 2nd layer (output)
 - $y_j = \sigma(\mathbf{w}_i^T \mathbf{h})$
 - ullet recall the hidden-layer outputs h are always non-negative.
 - $\circ~$ positive value in $\mathbf{w}_{j}
 ightarrow ext{class } j$ should have j-th pattern
 - \circ negative value in $\mathbf{w}_{i}
 ightarrow ext{class } j$ shouldn't have j-th pattern

```
In [51]: W = nn.get_layer(index=1).get_weights()[0]
d = 5
plt.bar(arange(0,W.shape[0]),W[:,d]); plt.grid(True);
plt.xlabel('weight index'); plt.ylabel('value')
plt.title('output weights for {}'.format(d));
```


- For "5", finds local image parts that correspond to 5
 - should have (green boxes):
 - o horizontal line at top; semicircle on the bottom
 - shouldn't have (red boxes):
 - vertical line in top-right; verticle line in the middle

1 Hidden layer with more nodes

· hidden layer with 200 nodes

```
In [53]: K.clear_session() # cleanup
         random.seed(4487); tf.random.set seed(4487) # initialize seed
         # build the network
         nn = Sequential()
         nn.add(Dense(units=200, input dim=784, activation='relu'))
         nn.add(Dense(units=10, activation='softmax'))
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical crossentropy,
                    optimizer=keras.optimizers.SGD(learning rate=0.1, momentum=0.9, nesterov=True),
                    metrics=['accuracy'])
         history = nn.fit(vtrainX, vtrainYb, epochs=100, batch size=50,
                          callbacks=callbacks_list,
                          validation data=validset, verbose=False)
          2023-01-22 12:00:57.214617: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          2023-01-22 12:00:57.812820: I tensorflow/core/grappler/optimizers/custom graph opt
          imizer registry.cc:113] Plugin optimizer for device type GPU is enabled.
          Epoch 8: early stopping
In [54]: nn.summary()
```

Model: "sequential"

```
Layer (type) Output Shape Param #

dense (Dense) (None, 200) 157000

dense_1 (Dense) (None, 10) 2010

Total params: 159,010
Trainable params: 159,010
Non-trainable params: 0
```

```
In [55]: plot_history(history)
    predY = argmax(nn.predict(testX, verbose=False), axis=-1)
    acc = metrics.accuracy_score(testY, predY)
    print("test accuracy: ", acc)

2023-01-22 12:01:01.966204: I tensorflow/core/grappler/optimizers/custom_graph_opt
    imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```


• hidden layer with 1000 nodes

```
In [56]: K.clear session() # cleanup
         random.seed(4487); tf.random.set_seed(4487) # initialize seed
         # build the network
         nn = Sequential()
         nn.add(Dense(units=1000, input dim=784, activation='relu'))
         nn.add(Dense(units=10, activation='softmax'))
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical crossentropy,
                    optimizer=keras.optimizers.SGD(learning_rate=0.1, momentum=0.9, nesterov=True),
                   metrics=['accuracy'])
         history = nn.fit(vtrainX, vtrainYb, epochs=100, batch_size=50,
                          callbacks=callbacks_list,
                          validation_data=validset, verbose=False)
          2023-01-22 12:01:02.697350: I tensorflow/core/grappler/optimizers/custom graph opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          2023-01-22 12:01:03.305985: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```

Epoch 8: early stopping

In [57]: nn.summary()

Model: "sequential"

```
In [58]: plot_history(history)
  predY = argmax(nn.predict(testX, verbose=False), axis=-1)
  acc = metrics.accuracy_score(testY, predY)
  print("test accuracy:", acc)

2023-01-22 12:01:07.619910: I tensorflow/core/grappler/optimizers/custom_graph_opt
  imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```


- · 2 hidden layers
 - input (28x28) -> 500 nodes -> 500 nodes -> output
 - Slightly better

```
In [59]: K.clear session() # cleanup
         random.seed(4487); tf.random.set seed(4487) # initialize seed
         # build the network
         nn = Sequential()
         nn.add(Dense(units=500, input_dim=784, activation='relu'))
         nn.add(Dense(units=500, activation='relu'))
         nn.add(Dense(units=10, activation='softmax'))
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical crossentropy,
                    optimizer=keras.optimizers.SGD(learning rate=0.1, momentum=0.9, nesterov=True),
                   metrics=['accuracy'])
         history = nn.fit(vtrainX, vtrainYb, epochs=100, batch size=50,
                          callbacks=callbacks_list,
                          validation data=validset, verbose=False)
          2023-01-22 12:01:08.297196: I tensorflow/core/grappler/optimizers/custom graph opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          2023-01-22 12:01:08.939766: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```

Epoch 12: early stopping

In [60]: nn.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	500)	392500
dense_1 (Dense)	(None,	500)	250500
dense_2 (Dense)	(None,	10)	5010
Total params: 648,010 Trainable params: 648,010 Non-trainable params: 0			=======

```
In [61]: plot_history(history)
  predY = argmax(nn.predict(testX, verbose=False), axis=-1)
  acc = metrics.accuracy_score(testY, predY)
  print("test accuracy:", acc)
```

2023-01-22 12:01:16.538321: I tensorflow/core/grappler/optimizers/custom_graph_optimizer registry.cc:113] Plugin optimizer for device type GPU is enabled.

test accuracy: 0.9529

Comparison on MNIST

· Performance is saturated.

Туре	No.Layers	Architecture	No.Parameters	Test Accuracy
LR	1	output(10)	7,850	0.8911
MLP	2	ReLu(50), output(10)	39,760	0.9380
MLP	2	Relu(200), output(10)	159,010	0.9437
MLP	2	Relu(1000), output(10)	795,010	0.9462
MLP	3	ReLu(500), Relu(500), output(10)	648,010	0.9529

Summary

- · Different types of neural networks
 - Perceptron single node (similar to logistic regression)
 - Multi-layer perceptron (MLP) collection of perceptrons in layers
 - o also called *fully-connected layers* or *dense layers*
- Training
 - optimize loss function using stochastic gradient descent
- Advantages
 - lots of parameters large capacity to learn from large amounts of data
- Disadvantages
 - lots of parameters easy to overfit data
 - need to monitor the training process
 - sensitive to initialization, learning rate, training algorithm.

Other things

- · Numerical stability
 - normalize the inputs to [-1,1] or [0,1]
- · Improving speed
 - parallelize computations using GPU (Nvidia+CUDA)
- Initialization
 - the resulting network is still sensitive to initialization.

- Solution: train several networks and combine them as an ensemble.
- · Training problems
 - For very deep networks, the "vanishing gradient" problem can hinder convergence
 - lack of data
 - We will see how to address these problems later.

References

- Software
 - Tensorflow (Google) https://www.tensorflow.org
 - Keras https://keras.io
 - Easy-to-use front-end for deep learning
 - o Included with tensorflow
 - API Documentation: https://keras.io/layers/core/
 - see Canvas site for installation tips.
- History:
 - http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
- · Keras tutorials:
 - https://elitedatascience.com/keras-tutorial-deep-learning-in-python
 - https://blog.keras.io
- Online courses::
 - http://cs231n.github.io/neural-networks-1/
 - http://cs231n.github.io/convolutional-networks/