

A Report On The Calculation Of The Optimised Structure And Excited States Of Naphthalene At The MP2/cc-pVDZ Level

osl - 07th June 2022

Abstract

The calculation of optimised structure and excited states for the system 'Naphthalene' is presented, accompanied by automated analysis and image generation provided by the Silico software package. The calculations were performed using the Turbomole software package(s) at the MP2/cc-pVDZ level of theory. The total self-consistent field (SCF) energy of the system was found to be -10432.31 eV after 7 steps. The total Møller-Plesset (MP) energy of the system was found to be -10467.16 eV after 14 steps. The highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) were calculated to be -7.78 and 2.37 eV respectively, corresponding to a HOMO-LUMO band gap of 10.15 eV. The permanent dipole moment (PDM) was calculated to be 0.00 D. In total, 4 excited states were calculated with singlet and triplet multiplicity. The most intense absorption peak was calculated to be at 246 nm. The lowest energy singlet and triplet excited states (S₁ and T₁) were calculated to be 4.37 and 3.27 eV (284 and 379 nm) respectively, corresponding to a singlet/triplet splitting energy (ΔE_{ST}) of 1.10 eV.

Table 1: Summary of overall calculation metadata. [a]: The date and time at which the calculation was completed. [b]: Total combined duration in real-time (wall-time) for all components of the calculation. [c]: Temperature used for thermochemistry analysis. [b]: Pressure used for thermochemistry analysis.

Calculation no.	Date ^[a]	Duration ^[b]	Success (Converged)	Computational package	Level of theory	Calculations	Wavefunction	Multiplicity	T ^[c] / K	P ^[d] / atm
Combined	07/06/2022 18:50:12	13 m, 5 s	True (True)	Turbomole (7.5.0)	MP2/cc- pVDZ	Optimisation, Excited States	restricted	1 (singlet)	N/A	N/A
1	07/06/2022 18:31:50	4 m, 57 s	True (True)	Turbomole (7.5.0)	MP2/cc- pVDZ	Optimisation	restricted	1 (singlet)	N/A	N/A
2	07/06/2022 18:40:35	4 m, 2 s	True (N/A)	Turbomole (7.5.0)	MP2/cc- pVDZ	Excited States	restricted	1 (singlet)	N/A	N/A
3	07/06/2022 18:50:12	4 m, 5 s	True (N/A)	Turbomole (7.5.0)	MP2/cc- pVDZ	Excited States	restricted	1 (singlet)	N/A	N/A

Summary Of Results

Scf Energy

Table 2:	Summary of SCF	energy properties.
----------	----------------	--------------------

No. of steps

 $\begin{array}{ll} \textbf{Final energy} & -10432.3114 \text{ eV} \\ \\ \textbf{Final energy} & -1,006,565 \text{ kJ} \cdot \text{mol}^{-1} \\ \end{array}$

Mp Energy

Table 3: Summary of MP energy properties.

No. of steps

Final energy -10467.1582 eVFinal energy $-1,009,927 \text{ kJ} \cdot \text{mol}^{-1}$

Geometry

Table 4: Summary of geometry properties.

Formula	$C_{10}H_{8}$
Molar mass	128.1705 g·mol⁻¹
Alignment method	Minimal
X extension	6.80 Å
Y extension	5.02 Å
Z extension	0.00 Å
Linearity ratio	0.26
Planarity ratio	1.00

Molecular Orbitals

Table 5: Summary of HOMO & LUMO properties.

 EHOMO,LUMO
 10.15 eV

 EHOMO
 -7.78 eV

 ELUMO
 2.37 eV

Permanent Dipole Moment

Table 6: Summary of the permanent dipole moment properties.

Total < 0.01 DX axis angle $90.00 ^{\circ}$ XY plane angle $84.81 ^{\circ}$

Excited States

Table 7: Summary of the calculated excited states. E_x : The energy of excited state x. λ_x : The wavelength of a photon of equivalent energy to excited state x. f_x : The oscillator strength of the excited state transition x. ΔE_{xy} : The difference in energy between the lowest excited states of multiplicity x and y.

No. calculated singlets 2

 $\mathbf{E_{S_1}}$ 4.37 eV

 $\lambda_{\mathbf{S_1}}$ (colour, CIE) 284 nm (Ultraviolet \blacksquare , (0.00,

0.00))

f_{S₁} < 0.01

No. calculated triplets 2

Silico 1.0.0-pre.30 Page 1 of 8

E _{T1}	3.27 eV
λ _{T1} (colour, CIE)	379 nm (Ultraviolet , (0.17, 0.00))
$\mathbf{f}_{\mathbf{T_1}}$	0.00
ΔE_{ST}	1.10 eV
Simulated Absorption Peaks	246 nm

Methodology

Metadata

This report was generated from the combined results of three individual calculations. The individual metadatas for each separate calculation are presented in the following sections, and the overall calculation was performed using the **Turbomole** (7.5.0) program, the **HF and MP2** methods and the **cc-pVDZ** basis set. It was completed on the **07**th **June 2022** after a total duration of **13 m, 5 s** and **finished successfully**. The base multiplicity of the system under study was **1 (singlet)**. Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals. The full calculation metadata is tabulated in table 1.

The calculation of the optimised structure was performed using the **Turbomole (7.5.0)** program, the **HF and MP2** methods and the **cc-pVDZ** basis set. It was completed on the 07^{th} **June 2022** after a total duration of 4 m, 57 s and **finished successfully**. The base multiplicity of the system under study was 1 (singlet). Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals.

The calculation of the excited states was performed using the **Turbomole (7.5.0)** program, the **HF and MP2** methods and the **cc-pVDZ** basis set. It was completed on the 07^{th} June 2022 after a total duration of 4 m, 2 s and finished successfully. The base multiplicity of the system under study was 1 (singlet). Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals.

The calculation of the excited states was performed using the **Turbomole (7.5.0)** program, the **HF and MP2** methods and the **cc-pVDZ** basis set. It was completed on the 07^{th} June 2022 after a total duration of 4 m, 5 s and finished successfully. The base multiplicity of the system under study was 1 (singlet). Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals.

Analysis

The report presented here was generated using the Silico software package. This toolset relies upon a number of thirdparty applications and libraries which should be cited appropriately in derivative works. In particular, the calculation results described within were parsed by the cclib library.1 Scientific constants which were used, among other things, for the interconversion of scientific units were provided by SciPy.² Commission internationale de l'éclairage (CIE) coordinates, along with visual representations of the equivalent colour, were calculated using the Colour Science library.³ Three-dimensional plots of atom positions and calculated densities, including molecular orbitals, were rendered using Visual Molecular Dynamics $(VMD)^4$ and the Tachyon ray-tracer. ⁵ Finally, twodimensional graphs were plotted using the MatPlotlib library,6 while this report itself was prepared using the Mako template $library^7$ and the Weasyprint $library^8$, the latter of which was responsible for generation of the PDF file.

Discussion

Total SCF Energy

The total energy of the system was calculated at the **self-consistent field (SCF)** level, corresponding to the energy calculated by the Hartree-Fock (HF) method, over a total of seven steps, the results of which are displayed in figure 1. The energy calculated by the final step was -10432.31 eV, corresponding to -1,006,565 KJmol⁻¹. A plot of the total SCF electron density is shown in figure 2.

Figure 1: Graph of calculated energies at the self-consistent field (SCF) level

Figure 2: Plot of the total SCF electron density, plotted with an isovalue of 0.0004. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Total MP Energy

The total energy of the system was calculated at the **Møller-Plesset (MP)** level over a total of 14 steps, the results of which are displayed in figure 3. The energy calculated by the final step was -10467.16 eV, corresponding to -1,009,927 KJmol⁻¹.

Silico 1.0.0-pre.30 Page 2 of 8

 $\textbf{\textit{Figure 3:} Graph of calculated energies at the \textit{M\"{o}ller-Plesset (MP) level.}}$

Geometry

The **empirical formula** of the studied system was $C_{10}H_8$, corresponding to a **molecular mass** of $128.17~{\rm gmol^{-1}}$. The molecular geometry was aligned to the cartesian (X, Y and Z) axes by the **Minimal (MIN)** method. Using this method, the **extent of the molecular system** in the X, Y and Z axes ($L_{\rm X}$, $L_{\rm Y}$ and $L_{\rm Z}$, corresponding to the molecular width, length and height respectively) was determined to be 6.80, 5.02 and 0.00 Å respectively. These extensions give rise to a **molecular linearity ratio** (1-($L_{\rm Y}/L_{\rm X}$)) and **planarity ratio** (1-($L_{\rm X}/L_{\rm Y}$)) of 0.26 and 1.00 respectively.

Permanent Dipole Moment

The calculated **permanent dipole moment** was < 0.01 D, with a vector (x,y,z) of 0.00, 0.00, 0.00 D. The angle between the dipole moment vector and the x-axis was 90.00 °, while the angle between the dipole moment and the xy-plane was 84.81 °. A plot of the permanent dipole moment is shown in figure 4.

Figure 4: The permanent dipole moment (red arrow) plotted against the aligned molecular geometry with a scale of 1 $\text{\AA} = 1.0 \text{ D. A}$: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Molecular Orbitals

In total, 180 doubly occupied molecular orbitals were calculated, divided into 34 occupied orbitals and 146 unoccupied (or virtual)

orbitals. The calculated energies of the **HOMO and LUMO** were -7.78 and 2.37 eV respectively, corresponding to a **HOMO-LUMO band gap** of 10.15 eV (figure 10). Plots of the orbital density for the HOMO-1, HOMO, LUMO and LUMO+1 are shown in figures 5-7 and 9 respectively, while the orbital overlap between the HOMO and LUMO is shown in figure 8.

Figure 10: Graph of the calculated molecular orbital energies in close proximity to the HOMO-LUMO gap. Solid lines: occupied orbitals, dashed lines: virtual orbitals.

Figure 5: Orbital density plots of the HOMO-1, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Silico 1.0.0-pre.30 Page 3 of 8

Figure 6: Orbital density plots of the HOMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 7: Orbital density plots of the LUMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 8: Orbital density plots of the HOMO (blue) and LUMO (red), plotted simultaneously with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 9: Orbital density plots of the LUMO+1, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Excited States

In total, the energies of four electronic excited states were calculated (figure 11), consisting of two states with a multiplicity of singlet and two of multiplicity triplet. The energy of the lowest singlet excited state (S_1) was 4.37 eV, corresponding to absorption by a photon with a wavelength of 284 nm, an ultraviolet 'color' \blacksquare and CIE coordinates of (0.00, 0.00), while the energy of the $\mathbf{T_1}$ was 3.27 eV (379 nm, ultraviolet \blacksquare , CIE: (0.17, 0.00)). The difference in energy between the S_1 and T_1 excited states (ΔE_{ST}) was therefore 1.10 eV. A complete table of the calculated excited state properties is available in table 8. In addition, an electronic transition spectrum was simulated using a gaussian function with full-width at half maximum (FWHM) of 0.40 eV, from which the one most intense peak was found at 246 nm. The full simulated absorption spectrum is shown in figure 12. Finally, the difference in density between each excited state and the ground was calculated and is shown in figures 13-16.

Silico 1.0.0-pre.30 Page 4 of 8

Figure 11: Graph of the calculated excited states. f: oscillator strength of the relevant ground to excited state transition.

Figure 12: Graph of the simulated absorption spectrum. Excited states are shown as vertical black lines, while peaks simulated with a gaussian function with FWHM: 0.40 eV are shown as a blue line. Peaks can be found at: 246 nm.

Figure 13: Difference density plot of the hole (blue) & electron (red) of the T_1 state, plotted with isovalue: 0.001. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 14: Difference density plot of the hole (blue) & electron (red) of the T_2 state, plotted with isovalue: 0.001. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Silico 1.0.0-pre.30 Page 5 of 8

Figure 15: Difference density plot of the hole (blue) & electron (red) of the S_1 state, plotted with isovalue: 0.001. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 16: Difference density plot of the hole (blue) & electron (red) of the S_2 state, plotted with isovalue: 0.001. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Silico 1.0.0-pre.30 Page 6 of 8

LUMO+14

A

49

Tables Of	Results			48	LUMO+13	A	10.6261
				47	LUMO+12	A	10.4351
Atom Coore	dinates			46	LUMO+11	A	7.9455
Table 9: Coordi	nates of the atoms of	the system under stu	dy, as alianed to the	45	LUMO+10	A	7.4055
	y the Minimal method		,g	44	LUMO+9	A	7.3699
Element	X Coord /Å	Y Coord /Å	Z Coord /Å	43	LUMO+8	A	6.8297
С	-1.2509141	-1.4118092	-0.0000069	42	LUMO+7	A	6.4869
С	-2.4487537	-0.7132682	0.0000087	41	LUMO+6	Α	6.3480
С	-2.4487547	0.7132694	0.0000104	40	LUMO+5	Α	5.4144
C	-1.2509134	1.4118084	-0.0000068	39	LUMO+4	Α	5.4053
С	-0.0000000	0.7179339	-0.0000210	38	LUMO+3	A	4.9896
С	-0.0000000	-0.7179354	-0.0000202	37	LUMO+2	Α	4.7431
С	1.2509141	-1.4118092	-0.0000071	36	LUMO+1	Α	3.2023
С	1.2509134	1.4118084	-0.0000084	35	LUMO	A	2.3705
С	2.4487547	0.7132694	0.0000099	34	номо	A	-7.7835
С	2.4487537	-0.7132682	0.0000093	33	HOMO-1	A	-8.6036
Н	-1.2480933	-2.5080746	-0.0000131	32	HOMO-2	A	-10.3698
Н	-3.4000079	-1.2561870	0.0000192	31	HOMO-3	A	-12.0540
Н	-3.4000083	1.2561881	0.0000264	30	HOMO-4	A	-12.9253
Н	-1.2480915	2.5080739	-0.0000147	29	HOMO-5	A	-13.1917
Н	1.2480933	-2.5080746	-0.0000148	28	HOMO-6	A	-14.1706
Н	1.2480915	2.5080739	-0.0000190	27	HOMO-7	A	-14.3301
Н	3.4000083	1.2561881	0.0000266	26	HOMO-8	A	-15.2492
Н	3.4000079	-1.2561870	0.0000218	25	НОМО-9	A	-15.7421
				24	HOMO-10	A	-15.7464
Molecular	Orbitals			23	HOMO-11	A	-16.4964
- 2000 Marie Crarento				22	HOMO-12	A	-16.8786
Table 10: Energies of the calculated molecular orbitals.					НОМО-13	A	-18.2419
Level	Label	Symmetry	Energy /eV	20	HOMO-14	Α	-18.8267
50	LUMO+15	A	11.9600	19	НОМО-15	Α	-19.1551

11.7352

Silico 1.0.0-pre.30 Page 7 of 8

Excited States

Table 8: Energies and other properties of the calculated excited states.

Number	Symbol	Symmetry	Energy /eV	Wavelength /nm	Colour (CIE x,y)	Oscillator Strength	Transitions (Probability)
1	Т ₁	Triplet-A	3.2689	379.29	Ultraviolet (0.17, 0.00)	0.0000	HOMO → LUMO (0.85) HOMO-2 → LUMO+2 (0.06) HOMO-1 → LUMO+1 (0.05)
2	Т2	Triplet-A	4.2983	288.45	Ultraviolet (0.00, 0.00)	0.0000	HOMO-1 → LUMO (0.49) HOMO → LUMO+1 (0.46) HOMO-3 → LUMO+2 (0.02)
3	s_1	Singlet-A	4.3707	283.67	Ultraviolet (0.00, 0.00)	0.0002	HOMO-1 → LUMO (0.49) HOMO → LUMO+1 (0.48)
4	s_2	Singlet-A	5.0100	247.47	Ultraviolet (0.00, 0.00)	0.0880	HOMO → LUMO (0.90) HOMO-1 → LUMO+1 (0.08)

References

- N. M. O'boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry, 2008, 29, 839--845
- 2. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, Nature Methods, 2020, 17, 261--272
- 3. T. Mansencal, M. Mauderer, M. Parsons, N. Shaw, K. Wheatley, S. Cooper, J. D. Vandenberg, L. Canavan, K. Crowson, O. Lev, K. Leinweber, S. Sharma, T. J. Sobotka, D. Moritz, M. Pppp, C. Rane, P. Eswaramoorthy, J. Mertic, B. Pearlstine, M. Leonhardt, O. Niemitalo, M. Szymanski and M. Schambach, Colour 0.3.15, Zenodo, 2020
- W. Humphrey, A. Dalke and K. Schulten, Journal of Molecular Graphics, 1996, 14, 33-38
- J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90--95
- 7. M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- 8. K. Community, https://weasyprint.org, (accessed May 2020)

Silico 1.0.0-pre.30 Page 8 of 8