Week 5

Neural Network: Back propagation

Neural Network (classification L= total no. of layers in network 1=10. of units (not counting bias unit) it layer l Binary classification Multi-class classification (K classes) y=0 or 1 1 asput unit K output units ha(x) & IRK SK = 1 output layer (og (ho (x⁽ⁱ⁾))_K + (1-y_K⁽ⁱ⁾) log (1-(ho(x⁽ⁱ⁾)_K)) · In the regularization part, after the square brackets, we must account for multiple theta matries. The number of columns in current theta matrix is equal to the number of modes in our current layer (including the bias unit). The number of rows in our current theta matrix is equal to the number of nodes in the next layer (excluding the bias unit) As before with logistic regression, we square every term.

the double sum simply adds up the logistic regression costs calculated for each cell in the output layer.

the triple sum commit.

· the triple sum simply adds up the squares of all the individuals. Os in the entire

· the i in the triple sum alsos not refer to training examplei.

```
Gradient Computation
   Dij ElR
                                   Given one training example (X,y):
 J(0)
                               Forward propagation:
                                Z^{(i)} = \Theta^{(a)} \alpha^{(a)}
                               \alpha^{(2)} = g(z^{(2)}) \; (add \; a_0^{(2)})
                              \Omega^{(3)} = g(Z^{(3)}) \left( add \alpha_0^{(3)} \right)
                             Z^{(4)} = \Theta^{(3)} \alpha^{(3)}
                               Q^4 = h_{\theta}(x) = g(z^{\alpha r})
Backpropagation algorithm
   Intuition: Si = "error" of node; in layer l.
For each adopt unit (layer L=4)

S_j^{(4)} = g_j^{(4)} - y_j
    S^{(3)} = (\theta^{(3)})^T S^{(4)} * g(z^{(3)})
   S^{(2)} = (\theta^{(2)})^{\mathsf{T}} S^{(3)} * 9^{(2)} (2^{(2)})
  \frac{\partial}{\partial \theta_{ij}}, J(\theta) = a_{ji}^{(l)} \mathbf{s}_{i}^{(l+1)}
```

Backpropagation algorithm. Training set & (x(0), y(0)), ..., (x(m), y(m)) } Set Dif =0 (for all l, v,j) (used to compute Journal) Fort-1 to m (xt, yt) Perform forward propagation to compute a (li) for l=2,3,-, L Using you, compute S(L) = a(L) - yet Compute $S^{(l-1)}$, $S^{(l)}$ (sing $S^{(l)} = (CO)^{l} T S^{(l+1)}$) ** $A^{(l)} = A^{(l)} = A^{(l)} + A^{(l)} = A^{(l)} + A^{(l+1)} = A^{(l)} = A^{(l)} + A^{(l+1)} = A^{(l)} = A^{(l)} + A^{(l+1)} = A^{(l)} = A^{(l+1)} = A^{(l+1)}$ $D_{ij}^{(e)} := \frac{1}{m} \left(\Delta_{ij}^{(e)} + \lambda \theta_{ij}^{(e)} \right) \hat{f}_{ij} \neq 0$ $\mathcal{D}_{ij}^{(\ell)} := \frac{1}{m} \Delta_{ij}^{(\ell)}$

$$\frac{\partial J(\omega)}{\partial \theta^{(L)}} = \frac{\partial J(\omega)}{\partial a^{(L)}} \frac{\partial a(L)}{\partial a^{(L)}} \frac{\partial$$

Unrolling	
Parameters: Learning Algorithm	
Home Initial parameters 0",0",0"	
Unroll to get initial meia 10 pass	
Institute (W) (net traction, Intilal most	
C. 150 T Sun amplient Vec = cost anction (Therevec	e)
From thetalec, get 0 (1), 0 (2), 0 (3) From thetalec, get 0 (1), 0 (2), 0 (3)	(2) = (3) . AT(A)
From thetalec, get 0", 0", 0 Use forward prop/back prop to compute D (2), D (2) 5(2) 0(3) 1- not amoliently	, D'and Sell
unroll D(1), D(2), D(3) to get gradient Vec.	
Gradient checking:	
Numerical estimation of growhents $\frac{d}{d\theta} J(\theta) R^{\frac{1}{2}}$	2E
\mathcal{A}	
	matrices,
$\frac{\partial}{\partial t} = 1 = 0$	1,48, 5,000 - 100, 500 On
701 (- 1 - 1)	
theta Plus = theta; theta Plus (i) = theta Plus (i) + EPSILON;	(suggest $\varepsilon = 10^4$)
theta Minns = theta;	
U (M= (2) - Thota Minus (i) - EPSLON;	
grad Approx (i) = (I(thetaPlus)- I(theta Minus))	
2 * EPSILON;	
Enol;	
Check that grad Approx a DVee	
Color of the state	
From backprop	

Implementation Note:

— Implement backprop to compute Duc (unvolled D, D, D, D)

— Implement numerical gradient cheek to compute grad Approx. - Make sure they give similar values

- Turn off gradient checking, Using back prop code for learning - Le sure to disable your growdient checking coole before training you classifier, If you run numerical growdent computation on every freration of gradient elevent (or in the inner loop of costandian), you coole will be very slow. For gradient descent and advanced aptimization method, need mitial value for Initrat value of E Opt Theta = fininunc (@ cost Function, initial Theta, aptions) Consider gradient desent

Set initial Theta = zeros (1,1)? if $\theta_{ij}^{(1)} = 0$ for all i.j. l.

zero patient $\frac{\partial}{\partial \theta_{ij}} \int_{0}^{(1)} \int_{0}^{(1)} d\theta_{ij} = 0$ for all i.j. l. $\frac{\partial}{\partial \theta_{ij}} \int_{0}^{(1)} \int_{0}^{(1)} d\theta_{ij} = 0$ Her each update, parameters corresponding to inputs going into each of two hidden units are identical.

Random Initialization: Symmetry breaking Initialize each Diff to a random value in EE, ET (i.e. - E = Diff < E)

Zg.

Thotal = rand(10, 11) * (E* /N/T_EPSILON) - INTE-EPSILON Theta2 = rand (1.11) * (2* INIT_EPSILON) - INIT_EPSILON Training a neural network Pick a network archètecture (connectivity podem between neurons) 1 h hho 3 5 4 3 5 5 4 3 2224 No. of input units: Dimension of features $x^{(i)}$ No. of hidden units perlayer No. Output units. Number of classes Reasonable defaul: I hidden layer, or if > 1 hidden layer, have same no. of hidden units in every layer (usually the more the botter) Steps to train a neural network 1. Randomly Initialize weights 2. Implement forward propagation to get he(x (1)) for any x (c) 3. Implement code to compute cost function Ico) 4. Implement backgrop to compute partial derivatives Jog Tro) The forward propagation and backpropagation using example $(x^{(i)}, y^{(i)})$ (Get activation $a^{(i)}$ and delta term $S^{(i)}$ for l = 2, -1) 5. Use gradient checking to compare John Joo computed using backpropartion Us. Using numerical estimate of gradient of Jets Then disable gradient checking coole.

b. use gradient decent or advanced optimization method with backpropagation to try to minimize J10) as a function of parameters &