Package 'countts'

November 29, 2023

Version 0.1.0

Description A specialized tool is designed for assessing contextual bandit algorithms, particularly those aimed at handling overdispersed and zero-inflated count data. It offers a simulated testing environment that includes various models like Poisson, Overdispersed Poisson, Zero-inflated Poisson, and Zero-inflated Overdispersed Poisson. The package is capable of executing five specific algorithms: Linear Thompson sampling with log transformation on the outcome, Thompson sampling Poisson, Thompson sampling Negative Binomial, Thompson sampling Zero-inflated Poisson, and Thompson sampling Zero-inflated Negative Binomial. Additionally, it can generate regret plots to evaluate the performance of contextual bandit algorithms. This package is based on the algorithms by Liu et al. (2023) <arXiv:2311.14359>.

R topics documented:

Date/Publication 2023-11-29 14:00:10 UTC

apply_laplacePoisson	2
apply_linearTS	2
apply_normalNB	3
apply ZINB	3

2 apply_linearTS

	apply_ZIP	 	 	 	4
	output_summary	 	 	 	5
	update_algorithm	 	 	 	6
Index					7

apply_laplacePoisson

Apply the algorithms to make decisions for Thompson sampling Poisson (TS-Poisson) algorithms

Description

Apply the algorithms to make decisions for Thompson sampling Poisson (TS-Poisson) algorithms

Usage

```
apply_laplacePoisson(context, beta_laplacePoisson)
```

Arguments

```
context context at the current decision time
beta_laplacePoisson
the randomly sampled Bayesian estimate
```

Value

Intervention option

Examples

```
apply_laplacePoisson(matrix(1:10, nrow = 2),matrix(11:20, nrow = 5))
```

apply_linearTS

Apply the algorithms to make decisions for Linear Thompson sampling (TS) algorithms

Description

Apply the algorithms to make decisions for Linear Thompson sampling (TS) algorithms

Usage

```
apply_linearTS(context, beta_linearTS)
```

Arguments

context context at the current decision time
beta_linearTS the randomly sampled Bayesian estimate

apply_normalNB 3

Value

Intervention option

Examples

```
apply_linearTS(matrix(1:10, nrow = 2),matrix(11:20, nrow = 5))
```

apply_normalNB

Apply the algorithms to make decisions for Thompson sampling Negative Binomial (TS-NB) algorithms

Description

Apply the algorithms to make decisions for Thompson sampling Negative Binomial (TS-NB) algorithms

Usage

```
apply_normalNB(context, beta_normalNB)
```

Arguments

context context at the current decision time
beta_normalNB the randomly sampled Bayesian estimate

Value

Intervention option

Examples

```
apply_normalNB(matrix(1:10, nrow = 2),matrix(11:20, nrow = 5))
```

apply_ZINB

Apply the algorithms to make decisions for Thompson sampling Zero-inflated Negative Binomial (TS-ZINB) algorithm

Description

Apply the algorithms to make decisions for Thompson sampling Zero-inflated Negative Binomial (TS-ZINB) algorithm

Usage

```
apply_ZINB(context, beta_ZINB, gamma_ZINB)
```

4 apply_ZIP

Arguments

context at the current decision time

beta_ZINB the randomly sampled Bayesian estimate for the Poisson component gamma_ZINB the randomly sampled Bayesian estimate for the zero component

Value

Intervention option

Examples

```
apply_ZINB(matrix(1:10, nrow = 2), matrix(11:20, nrow = 5), matrix(21:30, nrow = 5))
```

apply_ZIP	Apply the algorithms to make decisions for Thompson sampling Zero-
	inflated Poisson (TS-ZIP) algorithm

Description

Apply the algorithms to make decisions for Thompson sampling Zero-inflated Poisson (TS-ZIP) algorithm

Usage

```
apply_ZIP(context, beta_ZIP, gamma_ZIP)
```

Arguments

context at the current decision time

beta_ZIP the randomly sampled Bayesian estimate for the Poisson component gamma_ZIP the randomly sampled Bayesian estimate for the zero component

Value

Intervention option

Examples

```
apply_ZIP(matrix(1:10, nrow = 2), matrix(11:20, nrow = 5), matrix(21:30, nrow = 5))
```

output_summary 5

output_summary	Summarize the simulation results and generate the regret plot	

Description

Summarize the simulation results and generate the regret plot

Usage

```
output_summary(
    S = 30,
    num_cov = 4,
    T.init = 20,
    T0 = 1000,
    alpha = 1,
    gam = 25,
    K = 20,
    dist_env = c("Negative Binomial", "Poisson", "Linear TS", "ZIP", "ZINB"),
    show_figure = TRUE
)
```

Arguments

S	number of replicates of the experiment (greater than 1). Default is 30.
num_cov	dimension for beta and gamma; we assume that they have the same dimensions for now. Default is 4.
T.init	length of the initial exploration stage. Default is 20.
Т0	number of decision times. Default is 1000.
alpha	tuning parameter that controls the exploration-exploitation tradeoff. Default is 1.
gam	over dispersion level of the environment model; this is only useful when the environment model is negative binomial or zero-inflated negative binomial. Default is 25.
K	number of actions/intervention options. Default is 20.
dist_env	tuning parameter that controls which environment model to use, with the options "Negative Binomial", "Poisson", "Linear TS", "ZIP", "ZINB"
show_figure	A logical flag specifying that the regret plot of the model should be returned if true (default), otherwise, false.

Value

The summary of the simulation results with cumulative regret, regret, and parameters is generated along with the optional output of the regret plot (show_figure = TRUE).

6 update_algorithm

References

• Liu, X., Deliu, N., Chakraborty, T., Bell, L., & Chakraborty, B. (2023). Thompson sampling for zero-inflated count outcomes with an application to the Drink Less mobile health study. arXiv preprint arXiv:2311.14359. https://arxiv.org/abs/2311.14359

Examples

```
output_summary(S = 2, num_cov = 2, T.init = 3, T0 = 5, dist_env = "Negative Binomial")
```

update_algorithm

Updating parameters in algorithm

Description

Updating parameters in algorithm

Usage

```
update_algorithm(
  dist = c("Negative Binomial", "Poisson", "Linear TS", "ZIP", "ZINB"),
  Y_dist = 2,
  X_dist = 3,
  alpha_dist = 4,
  Bt = NULL,
  bt = NULL
)
```

Arguments

dist	tuning parameter that controls which algorithm should be updated, with the options "Negative Binomial", "Poisson", "Linear TS", "ZIP", "ZINB"
Y_dist	History of the observed stochastic outcome at the current decision time
X_dist	History of the observed context at the current decision time
alpha_dist	tuning parameter that controls the exploration-exploitation tradeoff. Default is 1.
Bt	Outer product of contexts, only for dist = "Linear TS", default is NULL
bt	Sum of contexts weighted by the outcome, only for dist = "Linear TS", default is NULL.

Value

The updated parameter estimates.

Examples

```
update_algorithm(dist = "Negative Binomial")
```

Index

```
apply_laplacePoisson, 2
apply_linearTS, 2
apply_normalNB, 3
apply_ZINB, 3
apply_ZIP, 4
output_summary, 5
update_algorithm, 6
```