ANTIBODY FOR ACTIVATING ERYTHROPOIETIN RECEPTOR

Also published as: Publication number: JP2000095800 (A) Publication date: 2000-04-04 🔀 WO9603438 (A1) ELLIOTT STEVEN G Inventor(s): ZA9506215 (A) Applicant(s): **AMGEN** US5885574 (A) Classification: US6319499 (B1) C12N15/02; A61K39/395; A61P7/06; C07K14/71; C07K16/28; C12N5/00; C12N5/10; C12N5/20; C12P21/08; G01N33/53; - international: PT773962 (E) G01N33/566; G01N33/577; A61K38/00; C12R1/91, more >>

G01N33/53; A61K39/395; A61P7/00; C07K14/435; C07K16/18; C12N5/00; C12N5/10; C12N5/20; C12N15/02; C12P21/08; G01N33/566; G01N33/577; A61K38/00; (IPC1-7): C07K16/28; A61K39/395; A61P7/06; C12N5/10; C12N15/02; C12P21/08; G01N33/53; G01N33/566; G01N33/577;

C12P21/08; G01N33/53; G01N33/566; G01N33/577 C12P21/08; C12R1/91

- European: C07K14/71; C07K16/28G Application number: JP19990273329 19990927 Priority number(s): US19940280864 19940726

Abstract of JP 2000095800 (A)

PROBLEM TO BE SOLVED: To obtain the subject new antibody comprising an antibody (or its fragment) activating erythropoietin receptor, capable of activating erythropoietin receptor and stimulating erythrocyte formation, and useful as a therapeutic agent for anaemia, or the like. SOLUTION: This new antibody is an antibody (or its fragment) activating erythropoietin receptor (referred to as EPOR), capable of activating erythropoietin receptor and stimulating erythrocyte formation, and useful as therapy for anaemia, diagnosis of diseases due to dysfunctional EPOR, or the like.; The new antibody is obtained as an antibody for stimulating the propagation of erythropoietin-dependent cells by testing an anti-EPOR monoclonal antibody prepared through immunization of soluble human EPOR against a mouse with respect to EPOR bonds according to realtime biospecific interaction analysis (BIAcore analysis) and by screening the bonds of EPOR to the surface of transfected CHO cells according to fluorescence activated cell sorter(FACS) analysis.

Data supplied from the *esp@cenet* database — Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-95800 (P2000-95800A)

(43)公開日 平成12年4月4日(2000.4.4)

(51) Int.Cl. ⁷	護別記号	FΙ	テーマコート ゙ (参考)
C 0 7 K 16/28	ZNA	C 0 7 K 16/28	ZNA
A 6 1 K 39/395		A 6 1 K 39/395	N
			D
A 6 1 P 7/06		A61P 7/06	
C 1 2 N 5/10		C 1 2 P 21/08	
	審査請求	未請求 請求項の数26	OL (全 23 頁) 最終頁に続く
(21)出顧番号	特願平11-273329	(71)出願人 390038	611
(62)分割の表示	特願平8-505965の分割	アムジ	エン・インコーポレーテツド
(22)出顧日	平成7年7月26日(1995.7.26)	アメリ	カ合衆国、カリフオルニア・91320
		-1789	、サウザンド・オークス、デハビル
(31)優先権主張番号	280864	ランド	・ドライブ・1840
(32)優先日	平成6年7月26日(1994.7.26)	(72)発明者 ステイ	ープン・ジー・エリオツト
(33)優先権主張国	米国 (US)	アメリ	カ合衆国、カリフオルニア・92649、
		ニコー	ベリー・パーク、ゴールデン・クレ
		スト・	アベニユー・1040
		(74)代理人 100062	2007
		弁理士	川! 義雄 (外1名)

(54) 【発明の名称】 エリトロポエチン受容体を活性化する抗体

(57)【要約】

【課題】 エリトロポエチン受容体を活性化し且つ赤血 球形成を刺激する抗体とそのフラグメントを提供する。 更に、この抗体を産生するハイブリドーマ細胞系と、貧血の治療のための方法と組成物を提供する。

【解決手段】 ヒトエリテトロポエチン受容体を認識する抗体のスクリーニングによって、エリトロポエチン依存性細胞の増殖を刺激する抗体を得た。

【特許請求の範囲】

【請求項1】 エリトロポエチン受容体を活性化する抗体又はそのフラグメント。

【請求項2】 前記エリトロポエチン受容体が哺乳動物 エリトロポエチン受容体である請求項1に記載の抗体。

【請求項3】 前記エリトロポエチン受容体がヒトエリトロポエチン受容体である請求項1に記載の抗体。

【請求項4】 モノクローナル抗体である請求項1に記載の抗体。

【請求項5】 ヒト化抗体である請求項1に記載の抗体。

【請求項6】 ヒト抗体である請求項1に記載の抗体。

【請求項7】 検出可能な標識を有する請求項1に記載の抗体。

【請求項8】 請求項4に記載の前記モノクローナル抗体を産生することが可能なハイブリドーマ細胞系。

【請求項9】 ハイブリドーマ細胞系ATCC No. HB11689又はATCC No. HB11690によって産生されるモノクローナル抗体によって認識される、エリトロポエチン受容体上のエピトープを認識する抗体又はそのフラグメント。

【請求項10】 エリトロポエチン受容体を活性化する 請求項9に記載の抗体。

【請求項11】 前記エリトロポエチン受容体がヒトエリトロポエチン受容体である請求項9に記載の抗体。

【請求項12】 モノクローナル抗体である請求項9に 記載の抗体。

【請求項13】 ヒト化抗体である請求項9に記載の抗 体。

【請求項14】 検出可能な標識を有する請求項9に記載の抗体。

【請求項15】 請求項12に記載の前記モノクローナル抗体を産生することが可能なハイブリドーマ細胞系。

【請求項16】 ハイブリドーマ細胞系ATCC NO. HB11689又はATCC No. HB1169Oによって産生される抗体。

【請求項17】 ハイブリドーマ細胞系ATCC N ○. HB11689又はATCC No. HB1169 0。

【請求項18】 活性化されることが可能なエリトロポエチン受容体を生物試料中に検出する方法であって、

(a)請求項1又は9に記載の抗体に前記試料を接触させる段階、及び、

(b) 前記抗体による前記受容体の活性化を検出する段階を含み、それによって活性化可能なエリトロポエチン受容体の存在を決定すること、を含む前記方法。

【請求項19】 請求項1又は9に記載の抗体を含む、 活性化可能なエリトロポエチン受容体を生物試料中に検 出するためのキット。

【請求項20】 エリトロポエチン受容体の活性を調節

するために有効な請求項1又は9に記載の抗体を有効量 投与することを含む、哺乳動物におけるエリトロポエチン受容体の内因性活性を調節する方法。

【請求項21】 エリトロポエチン受容体活性の調節が、赤血球前駆細胞の増殖又は分化を制御する請求項20に記載の方法。

【請求項22】 請求項1又は9に記載の抗体を治療有 効量投与することを含む、患者の貧血を治療するための 方法。

【請求項23】 医薬上許容可能なアジュバント中に治療有効量の請求項1又は9に記載の抗体を含む医薬組成物。

【請求項24】 前記抗体がモノクローナル抗体である 請求項23に記載の組成物。

【請求項25】 前記抗体がヒト化抗体である請求項2 4に記載の組成物。

【請求項26】 前記抗体がヒト抗体である請求項24 に記載の組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、エリトロポエチン 受容体を認識する抗体に係わる。具体的には、本発明 は、エリトロポエチン受容体を活性化し赤血球形成を促 進する抗体に係わる。

[0002]

【従来の技術】エリトロポエチン(EPO)は、赤血球前駆細胞の増殖と、赤血球への赤血球前駆細胞の成熟とに関与する糖タンパク質ホルモンである。EPOは、胎児生活中は肝臓で産生され、成人では腎臓によって産生され、赤血球前駆体からの赤血球細胞の産生を促進する。成人において腎不全の結果として一般的に生じるEPOの産生減少は、貧血の原因となる。EPOは、エリトロポエチンをコードする遺伝子でトランスフェクトした宿主細胞からのこのタンパク質の発現と分泌を含む遺伝子工学技術によって生産されている。組換えEPOの投与は貧血の治療に有効である。例えば、Eschbachら(N.Eng1 J Med 316,73(1987))は、慢性腎不全による貧血を治療するためにEPOを使用することを記載している。

【0003】ヒト尿EPOの精製は、Miyakeら(J. Biol. Chem. 252, 5558(1977))によって記載されている。エリトロポエチンをコードする遺伝子の同定とクローニングと発現は、米国特許第4,703,008号(Lin)に開示されている。細胞培地からの組換えEPOの精製のための方法の説明は、米国特許第4,667,016号(Laiら)に含まれている。

【0004】EPOが赤血球形成を促進するメカニズム については、僅かな知識しか得られていない。EPOが 特異的な細胞表面受容体に結合することによって、細胞

を活性化し、その細胞の増殖及び/又は分化を促進する ことは明らかであるが、この活性化の固有のメカニズム と、上記受容体及びその個々の関連タンパク質の構造 は、完全には理解されていない。エリトロポエチン受容 体(EPO-R)は、多量体複合体として存在すると考 えられている。沈降による研究は、その分子量が330 ±48kDaであることを示唆した(Mayeuxら, Eur. J. Biochem. 194, 271 (199 0))。架橋による研究から、上記受容体複合体が、少 なくとも2つの別々のポリペプチド、即ち、66-72 kDa種と85、100kDa種とから成ることが明ら かになった (Mayeuxら, J. Biol. Che m. 266, 23380 (1991); McCaffe rys, J. Biol. Chem. 264, 10507 (1990))。EPO受容体の免疫沈降によって別の 95kDaタンパク質も検出された(Miura及びI hle, Blood 81, 1739 (199 3))。別の架橋による研究によって、110kDa、 130kDa及び145kDaの複合体を含む3つのE POが明らかになった。110kDaと145kDaの 複合体は、EPO受容体に対する抗体で免疫沈降させる ことが可能だったので、EPO受容体を含んでいた(M iura及びIhle,上記)。カルボキシ末端切断E PO受容体の発現により、145kDa複合体ではな く、110kDa複合体が検出された。このことは、分 子量145kDaの複合体が、110kDa複合体と追 加分の35kDaタンパク質とに存在するポリペプチド を含むことを示唆している。

【OOO5】EPO受容体複合体の構造と機能とに関す る更に別の洞察が、マウスEPO受容体とヒトEPO受 容体のクローニングと発現とによって得られた(D'A ndreas, Cell 57, 277 (1989); Joness, Blood76, 31 (1990); W inkelmans, Blood 76, 24 (199 0);PCT出願第WO90/08822号;D'An dreaらの米国特許第5,278,065号)。全長 ヒトEPO受容体は、約224アミノ酸の細胞外ドメイ ンと25アミノ酸のシグナルペプチドとを有する483 アミノ酸膜貫通タンパク質である。ヒトEPO受容体 は、マウス受容体と約82%のアミノ酸配列相同性を示 す。哺乳動物細胞中で発現させたクローン化全長EPO 受容体(66-72kDa)が、赤血球前駆細胞上の天 然型受容体に対するアフィニティーと同様のアフィニテ ィー(100-300nM)でEPOに結合することが 明らかになっている。従って、この形態は、主要なEP 〇結合決定基を含むと考えられ、EPO受容体と呼ばれ る。架橋複合体の一部と考えられる85kDa及び10 OkDaタンパク質は、EPO受容体とは異なっている が、EPOをこれらのタンパク質に架橋することが可能 なので、EPOに極めて近いものであるはずである。8

5kDa及び100kDaタンパク質は互いに関連しており、<math>85kDaタンパク質は、100kDa種のタンパク質分解切断生成物である可能性がある(<math>Sawyer, J. Biol. Chem. 264, 13343(1989))。

【0006】細胞外ドメインだけを含むEPO受容体の 可溶性(切断)形態を作製し、この形態の受容体が、約 1 n Mのアフィニティーで、即ち、全長受容体の約1/ 3から約1/10の低さのアフィニティーで、EPOに 結合することが判明している(Harrisら、J.B iol. Chem. 267, 15205 (1992); Yang及びJones, Blood 82, 1713 (1993))。全長タンパク質よりもアフィニティー が低いことの原因は分かっていない。他のタンパク質種 がEPOR複合体の一部分であって、EPO結合に寄与 し、それによってアフィニティーを増大させている可能 性もある。この可能性は、低アフィニティーEPO受容 体を有する細胞系と、EPOに結合しないCHO細胞と の融合の結果として、EPOに対する上記受容体の高い EPO結合アフィニティーを示すハイブリッド細胞系が 得られたというDong及びGoldwasser(E xp. Hematol. 21, 483 (1993)) の 観察によって支持されている。これに加えて、全長EP ORをCHO細胞中にトランスフェクションした結果と して、Scatchard分析によって定量した場合に 高アフィニティー受容体と低アフィニティー受容体の両 方を有する細胞系が得られた。EPORコピー数の増幅 は低アフィニティー結合を増大させたが、高アフィニテ ィー結合を増大させなかった。これらの結果は、低アフ ィニティーEPORを高アフィニティーに変換するCH ○細胞中に存在するタンパク質の量が限られていること に一致している。

【0007】EPO受容体の活性化は幾つかの生物学的 作用を生じさせる。この活性のうちの3つは、増殖の促 進と、分化の促進と、アポプトシスの阻害である(Li bois, Proc. Natl. Acad. Sci. U SA 90, 11351 (1993); Koury, S cience 248,378(1990))。増殖の 促進と分化の促進を起こすシグナル導入経路は互いに別 々のものであると考えられる(Noguchiら, Mo 1. Cell. Biol. 8, 2604 (1988); Pate15, J. Biol. Chem. 267, 21 300 (1992); Liboiら, 同書)。 幾つかの 結果は、分化シグナルを仲介するために補助タンパク質 が必要である可能性を示唆している(Chibas, N ature 362, 646 (1993); Chiba 6, Proc. Natl. Acad. Sci. USA 90,11593(1993))。しかし、上記受容 体の構成的活性化形態が増殖と分化の両方を促進するこ とが可能であるので、分化における補助タンパク質の役

割に関しては論争がある(Pharrら, Proc. Natl. Acad. Sci. USA 90, 938(1993))。

【0008】EPO受容体の活性化は、その二量化に起 因する可能性がある。即ち、EPOは2つのEPO受容 体分子の間のクロスリンカーとして働く可能性がある。 この提案を支持する証拠がある。マウスEPO受容体の 129位におけるアルギニンからシステインへの突然変 異の結果として、おそらくは2つの受容体サブユニット の間に形成されるジスルフィド結合のために、受容体の 構成的活性化が得られる (Yosimuraら, Nat ure 348,647(1990))。これに加え て、細胞内の多量体複合体中にEPORが発見されてい る (Miura及びIhle, Arch. Bioche m. Biophys. 306, 200(1993)). U かし、精製EPO可溶性受容体の安定した多量体形態の 単離は現在まで報告されていない。これに加えて、EP ORの二量化が必要とされるが、この二量化だけでは細 胞の完全な活性化には不十分である可能性がある。例え ば、二量化は増殖シグナルを生じさせるが、分化シグナ ルは生じさせない。即ち、分化シグナルを送るために は、補助タンパク質が必要である可能性がある。

【0009】EP〇受容体の二量化と活性化との間の関 係を、EPOとは異なっているがEPO受容体を活性化 する化合物を同定するために、利用することが可能であ る。例えば、抗体は、抗原に対する2つの同じ結合部位 を有する。抗EPOR抗体は2つの EPOR分子を結 合させることが可能であり、これらの分子を互いに非常 に接近させ、二量化を生じさせる。インビボで機能する ためには、これらの抗体は細胞表面上のEPORを認識 し、シグナル導入経路の活性化を可能にするように結合 しなければならない。これに加えて、赤血球前駆細胞の 増殖と分化の両方が活性化の結果として生じることが望 ましい。ヒト成長ホ ルモン受容体(Fuhら, Sc ience 256, 1677 (1992)) と上皮成 長因子受容体 (Schreiberら, Proc. Na tl. Acad. Sci. USA78, 7535 (19 81))の活性化を理解するための同様のアプローチが 報告されている。

【0010】EPO受容体を活性化し且つ赤血球形成を刺激する特性を有する分子を同定することが望ましいだろう。この同定を行うためには、EPO受容体活性化とシグナル導入とのメカニズムを理解することが重要である。このメカニズムを解明するためのアプローチの1つは、EPO受容体を活性化し且つ赤血球形成を刺激するように、EPO受容体を認識する抗体を同定することであると考えられる。こうした抗体は、治療用途と診断用途とに有効だろうし、EPO受容体の機能を調べるためにも有効だろう。

【0011】次に示す幾つかの引例は、マウス又はヒト

EPO受容体に結合する抗体を説明している。

【0012】D'Andreas(The Biology of Hemtaopoiesis,Wiley Liss,Inc.(1990)pp. 153-159)は、マウスEPO受容体のアミノ末端とカルボキシ末端ペプチドに対するポリクローナル抗ペプチド抗体を作製した。この抗体がマウスEPO受容体と反応することがウエスタンブロットによって実証された。

【0013】Baileyら(Exp. Hemato 1.21, 1535-1543(1993))は、マウスEPO受容体の細胞外ドメインと細胞質ドメインに対して相同性を有する合成ペプチドに対するポリクローナル抗ペプチド抗体を作製した。これらの抗体による受容体活性化は、フェニルヒドラジン処置マウスからの脾臓細胞の中への 3Hチミジンの取り込みによって測定した場合には、検出されなかった。

【0014】Baynesら(Blood 82,2088-2095(1993))は、ヒトEPO受容体中のアミノ末端ペプチドに対するポリクローナル抗体を作製した。この抗体は、ヒト血清中に存在する可溶形態のEPO受容体と反応することが明らかにされた。 D'Andreaら(Blood 82,46-52(1993))は、ヒトEPO受容体に対するモノクローナル抗体を作製した。これらの抗体は、ヒトEPO cDN AクローンでトランスフェクトしたBa/F3細胞に結合し、その抗体の幾つかはEPO結合を阻害してEPO依存性増殖を中和した。

【0015】Fisherら(Blood 82,197A(1993))は、EPO非依存性の増殖及び成熟を行う赤血球前駆細胞から、EPO依存性の増殖及び成熟を行う赤血球前駆細胞を区別するために、D'Andreaの上記引例で示されたモノクローナル抗体と同じモノクローナル抗体を使用した。

[0016]

【発明が解決しようとする課題】上記引例で説明されている抗体のいずれにおいても、EPO受容体を活性化すること、又は、赤血球前駆細胞の増殖及び/もしくは成熟を刺激することは、報告されていない。

【0017】従って、本発明の目的は、EPO受容体が活性化されるようにEPO受容体を認識し且つEPO受容体に結合する、抗体を作製することである。本発明の更に別の目的は、EPO受容体に結合し、且つ、赤血球前駆細胞の増殖及び/又は赤血球への分化を刺激することによって赤血球形成を促進する抗体を作製することである。この抗体は、貧血の治療、又は、機能不全EPO受容体を特徴とする疾病の診断に有効である。更に、この抗体は、貧血の治療のための治療薬剤の同定を可能にするだろう。

[0018]

【課題を解決するための手段】本発明は、エリトロポエ

チン受容体を活性化する抗体又はそのフラグメントに係わる。ヒトEPO受容体を認識する抗体のスクリーニングによって、「Mab71」と「Mab73」と名付けた2つの抗体がUT7-EPO細胞(添加EPOが存在しない場合には増殖しないEPO依存性細胞系)の増殖を刺激したことが判明した。更に、Mab71は、ヒト血液中の赤血球前駆細胞からの赤血球コロニー形成を刺激した。本発明の範囲内に含まれる抗体は、Mab71又はMab73によって認識されるEPO受容体の上のエピトープを認識しうる。本発明の抗体がモノクローナル抗体であることが好ましく、ヒト化抗体又はヒト抗体であることが可能である。更に、本発明の範囲内には、本発明の抗体を産生するハイブリドーマ細胞系も含まれる。

【0019】更に、本発明は、生物試料中のEPO受容体を検出するための、本発明のEPO受容体抗体を含む方法とキットとを提供する。本発明のEPO受容体抗体と医薬上許容可能なアジュバントとを含む医薬組成物も、本発明の範囲内に含まれる。こうした組成物を、低赤血球レベルを特徴とする疾患を有する患者を治療するために使用することが可能である。

[0020]

【発明の実施の形態】エリトロポエチン受容体を認識す るモノクローナル抗体(Mab)を、精製した可溶性と トEPO受容体でマウスを免疫することによって産生し た。実施例1と実施例2とで説明する通りに可溶性ヒト EPO受容体を発現させ精製した。酵素抗体法(ELI SA)において可溶性ヒトEPO受容体と反応したMa bの中から、更にスクリーニングするために96個のM abを選択した。これらのMabを、BIAcore分 析によってEPO受容体結合に関して試験し(実施例4 A)、且つ、トランスフェクトしたCHO細胞の表面上 のEPO受容体に対する結合をFACSによって試験し た(実施例4C)。このスクリーニングの結果を表1に 示す。EPO受容体に結合した抗体の幾つかをBIAc ore分析によって調べたところ、試験した96個のう ちで5個の抗体だけが、FACS走査法で測定した時 に、トランスフェクトしたCHO細胞の表面上に現れる EPO受容体に結合したにすぎなかった。ELISAア ッセイで陽性だった24個の抗体(FACS走査法で陽 性だった5つの抗体を含む)を、UT7-EPO細胞増 殖の刺激に関して試験した。驚くべきことに、「Mab 71」と「Mab 73」と名付けた2つの抗体が、 EPOが存在しない状態でUT7-EPO細胞系(Ko matsub, Blood 82, 456 (199 3))中への3 Hチミジンの取り込みを刺激した(実施 例8A)。このUT7-EPO細胞系の増殖のために は、培地中にEPOが存在することが必要である。従っ て、UT7-EPO細胞増殖の刺激は、Mab 71と Mab 73によるEPO受容体の活性化に起因する可

能性が高い。図2に示すように、UT7-EPO細胞の 応答は、Mab71が存在する場合の方が、Mab 73が存在する場合よりも大きかった。更に、Mab 71が、ヒト赤血球前駆体からの赤血球コロニー形成を促進したことが判明した(実施例9を参照されたい)。これは、ヒト赤血球前駆体からの赤血球コロニー形成を刺激する抗体の最初の事例である。

【0021】本発明は、エリトロポエチン受容体を活性 化する抗体又はそのフラグメントを提供する。本明細書 で使用する場合の用語「EPO受容体の活性化」は、受 容体をもつ細胞の内部にシグナルを導入させる、EPO 受容体が行う1つ以上の分子プロセスを意味し、このプ ロセスではシグナルが最終的に1つ以上の細胞生理学的 変化を生じさせる。EPO受容体活性化に対する細胞応 答は、典型的には、受容体をもつ細胞の増殖又は分化の 変化である。受容体をもつ細胞は一般には赤血球前駆細 胞(erythroid progenitor ce 11s)である。現時点では、EPO受容体によるシグ ナル導入を生じさせる分子上の事象は、僅かしか解明さ れていない。しかし、発明の背景に示したようにのEP ○受容体の二量化が、活性化に必要とされる可能性があ る少なくとも1つの事象であることを、幾つかの証拠が 示している。本発明の開示内容も、この考えに対する支 持を与える。図5に示すように、Fab 71と呼ばれ る対応するFabフラグメントでMab 71を置き換 えた時には、Mab 71によるUT7-EPO細胞中 への3 Hーチミジンの取り込みの刺激が無効化される。 従って、対応する一価フラグメントを有する完全な二価 抗体が、増殖応答を排除する。これに加えて、Mab 71は、高濃度においてEPO受容体の活性化を阻害す る。これらの観察は両方とも、EPO受容体の活性化の 二量化モデルを支持する.Mab 71がヒトEPO-Rの残基49-78の合成ペプチドと相互作用すること が明らかにされた(実施例6参照)。従って、このEP O-R領域は、Mab 71のようなクロスリンカーに よって結合させられる場合に、EPO-Rの活性化を生 じさせることが可能である。残基49-78に結合する ことによって2つのEPO-R分子を架橋する分子も、 本発明の範囲内に含まれるということを理解されたい。 こうした分子は、残基49と残基78との間の領域内に 含まれる残基に結合することによって2つのEPO受容 体を架橋し、それによってEPO受容体の二量化と活性 化を生じさせるという特性を有する、抗体又は他の二価 の分子(molecular entities)であ ることが可能である。

【0022】本発明のEPO受容体は哺乳動物EPO受容体であることが好ましく、特に好ましい実施様態では、ヒトEPO受容体である。ヒトEPO受容体の類似体(analogs)も本発明の範囲内に含まれることを理解されたい。こうした類似体は、ヒトEPO受容体

配列中におけるアミノ酸の挿入、欠失、伸長(exte nsion)、又は、置換によって構築される。EPO -R類似体の例は、米国特許第5,292,654号 (Yoshimuraら)に開示されており、この文献 では、EPO-Rアミノ酸配列の129位におけるシス テイン残基の置換が、構成的に活性化されたEPO-R をもたらす。一般的に、活性化に必要な抗体結合ドメイ ン以外の領域内にアミノ酸の変化を有し且つヒトEPO 受容体の二次構造と三次構造を保持するEPO-R類似 体を、本発明の抗体によって認識することが可能であ る。Mab 71がヒトEPO-Rの残基49-78の 合成ペプチドと相互作用することが明らかにされた(実 施例6参照)。従って、49位から78位のアミノ酸残 基以外のアミノ酸残基の変化を有し且つEPO受容体の 二次構造と三次構造を保持するEPO-R類似体は、M ab 71によって認識されうる。本明細書で使用する 場合の、ヒトEPO-Rポリペプチドにおけるアミノ酸 残基の番号付けは、25アミノ酸シグナルペプチドの切 断後のアミノ末端残基である1位のプロリンから開始す る。

【0023】本発明の抗体は、受容体活性化に関与する EPO受容体のエピトープに結合する。実施様態の1つでは、抗体が、Mab 71によって認識されるEPO 受容体上のエピトープ、又は、Mab 73によって認識されるエピトープを認識する。Mab 71は、ヒト EPO-R中のアミノ酸残基49からアミノ酸残基78に及ぶ合成ペプチドを認識する。従って、Mab 71が、この配列によって全体的に又は部分的に定義される EPO-R上のエピトープを認識しうる。本明細書で使用する場合の用語「エピトープ」は、抗体がこの領域に結合し且つこの結合がEPO-Rに対する第2抗体の結合を妨げる、EPO-Rの領域を表す。

【0024】本発明は、ポリクローナル抗体、モノクロ ーナル抗体、及び、これらのフラグメントも提供する。 抗体フラグメントは、EPO受容体を活性化する抗体フ ラグメントを含む。典型的には組換え法によって生産さ れるヒト化抗体も含み、ヒト化抗体では、ヒト配列が、 EPO受容体を活性化する抗体の一部分又は全体を含 む。ヒト化抗体の例は、キメラ抗体又はCDRグラフト 化抗体を含む(米国特許第4,816,567号、及 び、同第5,225,539号)。遺伝子操作したマウ スにおいて生産されるEPO受容体に対する完全ヒト抗 体も、本発明の抗体に含まれる(PCT出願第93/1 2227号)。本発明の抗体は、その抗体に結合させた 検出可能標識を有することも可能である。こうした標識 は、例えば蛍光標識(例えば、フルオレセインイソチオ シアネート、FITC)、酵素標識(例えば、西洋ワサ ビペルオキシダーゼ)、アフィニティー標識(例えば、 ビオチン)、又は、同位体標識(例えば、125 I)で ある。

【0025】EPO受容体を活性化するモノクローナル 抗体を産生するハイブリドーマ細胞系も、本発明に含まれる。1つの実施様態では、ハイブリドーマ細胞系が、Mab 71又はMab 73によって認識されるEP O受容体上のエピトープを認識するモノクローナル抗体を産生する。ヒトEPO-Rに対するモノクローナル抗体を産生するハイブリドーマ細胞系の作製は、実施例3で説明する。Mab71を産生するハイブリドーマ細胞系は、1994年7月26日付けで、American

Type Culture Collection, Rockville, MDに受託番号HB11689として寄託されている。Mab 73を産生するハイブリドーマ細胞系は、1994年7月26日付けで、American Type Culture Collection, Rockville, MDに受託番号HB11690として寄託されている。

【0026】本発明の抗体は、機能不全EPO-Rによって特徴付けられる貧血及び他の疾病を診断する上で有用である。実施様態の1つでは、活性化されることが可能なEPO受容体を生物試料の中で検出する方法が、

(a) EPO受容体を活性化する抗体に試料を接触させる段階と、(b)上記抗体によるEPO受容体の活性化を検出する段階とを含む。生物試料は、組織標本、完全細胞、又は、その抽出物を含む。本発明の抗体を、生物試料中のEPO受容体の存在を検出するための診断キットの一部として使用することも可能である。このキットは、検出を可能にする標識を結合した抗体を使用する。本発明の抗体は、正常な又は異常な受容体を識別するために有用である。生物試料中の異常受容体の存在は、EPO受容体の機能不全であると考えられているダイアモンドーブラックファン貧血のような疾病の指標であってもよい。

【0027】本発明の抗体は、低赤血球レベルを特徴とする疾病の治療に有用である。哺乳動物におけるEPO受容体の内因性活性を調節する方法、好ましくはEPO受容体の活性を増大させる方法が、本発明に含まれる。一般的に、エリトロポエチンによって治療可能な症状(例えば、貧血)はいずれも、本発明の抗体によって治療可能である。治療用抗体は、治療対象の疾病の種類と重症度とに適合した用量と経路によって投与され、こうした用量と経路は当業者が適宜決定することが可能である。皮下注射、筋肉内注射、又は、静脈注射による投与が好ましい。

【0028】本発明は、EPO-Rを活性化する治療有効量の抗体を、医薬上許容可能なアジュバントと共に含む医薬組成物を提供し、上記アジュバントを1つ以上の希釈剤、担体、保存料、乳化剤、酸化防止剤、及び/又は、安定剤から選択することが可能である。本明細書で使用する場合の術語「治療有効量」は、所与の疾病及び投与養生法に関して治療効果をもたらす抗体の量を表

す。本発明では、治療効果は、治療対象の患者における ヘマトクリットの増大によって実証されるような赤血球 産生の刺激である。好ましい実施様態では、本発明の抗 体は、当業者に公知の方法を使用して調製することが可 能なヒト化抗体又はヒト抗体である。医薬上許容可能な アジュバントは当業者に公知であり、Remingto n's Pharmaceutical Science s, 18版, A. R. Gennaro編, Mack, E aston, PA(1990)に詳細に示されている。 【0029】本発明を更に詳細に説明するために下記の 実施例を示すが、これらの実施例によって本発明の範囲 を限定することは意図していない。

[0030]

【実施例】実施例1

可溶性ヒトエリトロポエチン受容体の作製

A. 可溶性ヒトエリトロポエチン受容体の発現のための クローンの単離

Jonesら(上記)によって記載されている通りにヒトエリトロポエチン受容体を含むクローンを使用し、PCR法によって、可溶性ヒトエリトロポエチン受容体(sHuEPOR)の発現のためのクローンを得た。ヒトエリトロポエチン受容体のPCR増幅のためのプライマーは、

5'プライマー: CTC CAA GCT TGC CGT CAC CAT GGA CC A CCT CGG GGC GTC CCT (配列番号: 1)、及び、3'プライマー: CAG GTC TAG ATT ACT AGG GAT CCA GG T CGC TAG GC (配列番号: 2)

である。

【0031】ヒトEPO-Rを含むプラスミド 2.5 ng、上記の各オリゴヌクレオチドプライマー 5pm ○1、トリス塩酸(pH8.3) 10mM、KC1 50mM、MgCl₂ 1.5mM、各dNTP 20 ΟμΜ、及び、Τα qポリメラーゼ 1単位を使用し て、PCR反応を生じさせた。5サイクルの「94℃で 30秒間、50℃で1分間、72℃で1分間」と、その 後での、20サイクルの「94℃で30秒間、55℃で 1分間、72℃で1分間」とによって、増幅を行った。 DNAをG-50サイズ排除カラム(Boehring er Mannheim Corp.)を通過させて精 製した後で、Hind IIIとXbaIとで消化し、 Hind IIIとXbaIとで同様に消化しておいた 発現ベクターpDSRα2(DeClerckら, J. Biol. Chem. 266, 3893 (1991)) に連結させた。所期の挿入体片を含むクローンをDNA 配列分析によって確認した。d40EPORクローン を、全長ヒトEPORクローンからPCRによって作製 した(上記参照)。d40EPORのカルボキシ末端 は、上記プライマー内の停止コドンの付加の結果である tyr467である。PCR増幅のためのプライマー は、

5' プライマー:5'-CTC CAA GCT TGC CGT CAC CAT GGA CCA CCT CGG GGC GTC CCT-3'(配列番号:1)、及び、

3' プライマー:5'-AGG TCG ACT ACT AGT AGT CAG TTG AGA-3'(配列番号:3) であった。

【0032】PCR増幅は、pfu緩衝液2(Stra tagene, La Jolla,CA)中のpfu ポリメラーゼを使用した。反応条件は、1サイクルの 「96℃で30秒間、45℃で1分間、72℃で1分 間」と、その後での、25サイクルの「96℃で1分 間、55℃で1分間、72℃で2分間」であった。その 後で、最終の72℃インキュベーションを5分間行っ た。反応生成物をアガロースゲル電気泳動で分離し、約 1.3Kbのバンドをgene clean キット (BIO 101, Vista, CA)を使用して単離 した。精製フラグメントをPCR II(TA clo ning kit, Invitrogen, SanDi ego, CA) 中に結合させた。組換え体を制限分析で 同定し、配列決定し、所期の挿入体が存在することを確 認した。Hind III-SalIフラグメントを上 記のように単離し、Hind IIIとSalIとで予 め切断した単離pDSRα2ベクターの中に連結した。 その結果得たベクターpDSRαEPORd40をCH 〇細胞中での発現のために使用した。

【0033】B. CHO細胞中での可溶性ヒトEPO R及びd40 EPORの発現

発現プラスミドρDSRα2-EPOR-Xは、Jon esら(上記)に示されているようにヒトEPORアミ ノ酸Met1-Pro249をコードする配列を含む。 プラスミドpDSRαEPORd40は、Met1-T yr467をコードする配列を含む。各プラスミド 1 0マイクログラムを、リン酸カルシウム仲介トランスフ ェクションによってСH〇細胞中に別々に導入した(W iglerb, Cell 11, 233 (197 7))。個々のコロニーを、上記ベクターからのジヒド 口葉酸レダクターゼ遺伝子の発現に基づいて選択した。 ヒトEPORの発現を、RNAハイブリダイゼーション (Hunts, Exp. Hematol, 19:779 (1991))と、アフィニティー精製抗体を使用した ウエスタンイムノブロッティングとによって検出した。 これらのアッセイで陽性だった細胞系を、更に増殖させ るために選択した。EPO-R発現の増幅を促進するた めに、細胞系を30nMメトトレキセート(Mtx)に 適応させた。

【0034】可溶性ヒトEPORを含む順化培地の調製を、ローラーボトル(rollerbottle)と中空ファイバーバイオリアクター(bioreactor)の両方で行った。ローラーボトルに、増殖培地(DMEM:非必須アミノ酸(NEAA)と30nM Mt

xと5%牛胎仔血清 (FBS) とを添加したHamのF 12(1:1) 培地 (GIBCO, Grand Is1 and, NY製の試薬)) 200mL中の 2×10^7 個の細胞を接種した。3-4日間で集密状態になった時に、DMEM (HamのF12培地、NEAA、30n M Mtx、無血清) 200mLで置き換えた。 $6\sim7$ 日後に順化培地を採集して、新鮮な無血清培地で置換した。2回目と3回目の採集物を集めた。

【0035】 $Cell Pharm バイオリアクターカートリッジに、<math>5\mu g/mL$ ゲンタマイシンを添加した増殖培地(上記の通り)中の 5×10^2 個の細胞を接種した。pHを7.3に維持した。無血清順化培地を調製するために、接種12日後から開始して、細胞から血清を取り除いた。順化培地の採集を17日目に開始した

【0036】実施例2

可溶性ヒトエリトロポエチン受容体の精製

可溶性組換えヒトEPORの4つの異なった調製物を作 製した。第1の調製では、エポキシ活性化Sephar ose 6B (Pharmacia, Piscataw ay, NJ)を、製造者の指示に概ね従って組換えヒト エリトロポエチン (rHuEPO)と結合させる。32 mM ZnCl₂ 4.5mL中のrHuEPO 21 8mgを、予め水和し且つH2Oで洗浄したエポキシ活 性化Sepharose 6B 7.2gに加える。こ のスラリーをpH 10.8に滴定し、その後で室温で 一晩混合する。その後で、1 Mの最終濃度にエタノール アミンを加えることによって、残った反応性基を全てブ ロックし、室温で4時間混合する。後続の段階を8℃± 2℃で行った。結合した樹脂(エポキシーEPO)をカ ラム内に充填し、O.5M NaC1/O.1M HO Ac (pH 4)及び0.5M NaCl/0.1M ホウ酸塩(pH 8)の代替サイクルで洗浄する。カラ ムを140mM NaCl/10mM トリス pH 7.6 (TBS) で平衡化する。このカラムに、可溶性 EPO-R(sHuEPO-R)を発現させるCHO細 胞からのローラーボトルで調製した順化培地1560m Lをロードする。ロード完了後に、カラムを、300m M NaCl/10mM トリスpH7.6 (TBS) で洗浄し、その後で、結合sHuEPORを1M Na C1/3M 尿素/10mM トリス pH7.6で溶 出する。2つの UV_{280} 吸収ピークが、この緩衝液に よって溶出する。sHuEPORを含む、溶出する第2 のピークをプールし、H₂Oで2O倍に希釈する。希釈 したプールを、Mono Q (Pharmacia)の 1mL予充填カラムにロードし、10mMトリス pH 7.6中のNaC1勾配で溶出させる。単一ピークの溶 出液をプールし、小分けし、-80℃で凍結保存した。 【0037】第2の調製では、より大きなエポキシ-E POカラムを作製する。エポキシ活性化Sepharo

se 6B 20.4gを水和し、H₂Oで洗浄し、そ の後でアセトンで洗浄し、最後にH2O中の50%ホル ムアミド (pH 10.6) で洗浄する。H2O 15 mL中のrHuEPO 729mgをpH 10.6に 滴定し、上記樹脂に加え、室温で一晩混合する。その後 で、1 Mの最終濃度にエタノールアミンを加えることに よって、残った反応性基を全てブロックし、室温で14 O分間混合する。後続の段階を8℃±2℃で行う。エポ キシーEPOをカラム内に充填し、3M 尿素/750 mM NaCl/10mM TrispH 7.6で洗 浄し、その後でカラムをTBSで平衡化する。sHuE PORを発現させるCHO細胞からのバイオリアクター で調製した順化培地100mLを、Q Sepharo se Fast Flow(Pharmacia)2m Lと混合する。この混合物を、頻繁に混合しながら8℃ ±2℃で30分間インキュベートし、その後で0.45 ミクロン硝酸セルロースボトルトップフィルター(Co rning)を通して沪過する。炉液をエポキシーEP Oカラムにロードし、250mM NaC1/10mM トリス рН7.6で洗浄し、その後で、3M 尿素 /750mM NaCl/10mM トリス pH7. 6で溶出する。溶出ピークをプールし、H₂Oで20倍 に希釈する。希釈したプールを、QSepharose Fast Flowの15mLカラムに充填し、10 mMトリス pH7.6中のNaC1勾配で溶出させ る。溶出した単一ピークをプールし、小分けし、一80 ℃で凍結保存した。

【0038】第3の調製では、第2の調製で使用したのと同じエポキシーEPOカラムを使用する。sEPO-Rを発現させるCHO細胞からのローラーボトル作製順化培地850mLを、QSepharose Fast Flow 1.7 mLと混合する。この混合物を第2の調製の処理方法と同じ方法で処理する。

【0039】第4の調製では、 $sHuEPORを発現させるCHO細胞からのバイオリアクター作製順化培地7.25Lを、QSepharoseFastFlow110mLと混合する。この混合物を、頻繁に混合しながら8<math>C\pm2$ Cで1時間インキュベートし、その後で0.45ミクロン硝酸セルロースボトルトップフィルターを通して沪過する。

【0040】 \bar{p} 液を H_2 O 7.25 Lで希釈し、20 mM トリス pH7.6 で平衡化したQ Sepha rose Fast Flowの770 mLカラムにロードする。20 mMトリス pH7.6 中のNaC1勾配でカラムから溶出させる。SDS-PAGE分析に基づく多量のsHuEPORを含むフラクションをプールする。固体 $(NH_4)_2$ SO $_4$ をそのプールに加えて最終濃度1.2 Mにした後で、0.45 ミクロン硝酸セルロースボトルトップフィルターを通して沪過する。沪液をPhenyl Sepharose 6 (low s

ub, Pharmacia)の60mLカラムにロードし、20mMトリス pH7.6中の1.2M $\rightarrow 0$ M $(NH_4)_2$ SO $_4$ 減少勾配で溶出させる。主要溶出ピークをプールし、 $(NH_4)_2$ SO $_4$ 中2.4Mにし、sHuEPORtを沈殿させる。沈殿sHuEPORを遠心によって採集し、 H_2 Oで再懸濁させ、トリス塩酸でpH7.9に滴定する。その結果得た溶液を0.45ミクロン硝酸セルロースフィルターを通して沪過し、小分けし、-80Cで凍結保存した。

【0041】実施例3

ハイブリドーマ細胞系の調製とスクリーニング

A. 酵素抗体アッセイ(EIA)

最初に、個々の動物の血清抗体(Ab)の力価を定量 し、その後で、使用可能なハイブリドーマをスクリーニ ングするためにEIAを行った。平底、高結合、96穴 マイクロ滴定EIA/RIAプレート(Costar Corporation, Cambridge, MA) を、炭酸塩-炭酸水素塩緩衝液(pH9.2)(0.0 $15M \text{ Na}_2 \text{CO}_3$, $0.035M \text{ NaHCO}_3$) 1mL当たり5μgの精製sHuEPORでコーティン グした。上記Ab 50µLを各穴に加えた。その後で プレートをアセテートフィルム(ICN Biomed icals, Inc., Costa Mesa, CA) で覆い、ロッキング台(rocking platfo rm)上で、室温(RT)で2時間、又は、4℃で一 晩、インキュベートした。sHuEPORのロット#1 を第1と第2のブーストの後に使用し、ロット#2を第 3のブーストの後に使用した。s Hu E P O R のロット #3とロット#4をハイブリドーマのスクリーニングの ために使用した。BSA希釈/ブロッキング液濃厚液 (Kirkegaard and Perry Lab oratories, Inc.) 1部を脱イオン水(d H_2 O) 1部と混合することによって調製した5%BS A溶液を穴1個当たり250µL使用して、RTで30 分間ブロッキングした。ブロッキング液を除去したの ち、血清2倍希釈液(1:400から1:5120 0)、又は、ハイブリドーマ組織培養上清液を、各々の 穴に加えた。血清希釈液は1% BSA(Dulbec coのリン酸緩衝塩水(D-PBS) (Gibco B RL, Grand Island, NY)中に1:10 に希釈した10% BSA希釈/ブロッキング濃厚液) であり、一方、ハイブリドーマ上清液を未希釈のまま試 験した。ハイブリドーマ試験の場合には、1つの穴を結 合体(conjugate)対照とし、別の穴を陽性A b対照とした。再びプレートをッキングさせながらRT で1時間インキュベートし、その後で、dH2O中の洗 浄液20x濃厚液(Kirkegaardand Pe rry Laboratories, Inc.) Ø1x 調製物を使用して4回洗浄した。その後で、1%BSA で1:1000に希釈したヤギ抗マウスIgG H鎖及

びし鎖特異性西洋ワサビペルオキシダーゼ結合第二Ab (Boehringer Mannheim Bioc hemicals, Indianapolis, IN) を、各穴内で30分間インキュベートした。上記のよう にプレートを洗浄し、ブロッティングによって乾燥さ せ、ABTSペルオキシダーゼ単一成分基質(Kirk egaard and Perry Laborato ries, Inc.)を加えた。Microplate EL310読み取り装置(Bio-tek Inst ruments, Inc.)を使用して各々の穴毎に4 05 nmで吸光度を読み取った。「血清希釈度」対「4 05nmでの光学密度」の1og₁₀をプロットし、そ の血清によって得られる最大光学密度の50%ポイント で外挿することによって、血清抗体の半最大力価を計算 した。光学密度がバックグラウンドの5倍よりも大きい 場合にハイブリドーマを陽性として選択した。

【0042】B. 免疫化

4. 5週齢のBalb/cマウス (Charles R ivers Laboratories, Wilmin gton, MA) 10匹に対し、Freund完全アジ ュバント(CFA;50%v/v;Difco Lab oratories, Detroit, MI)中に乳 濁させたsHuEPOR (ロット#1) (抗原) 50µ gを皮下注射(SQI)した。4週間後に、Freun d不完全アジュバント(ICFA:Difco Lab oratories, Detroit, MI)を使用 して上記と同様に調製した抗原(Ag;ロット#1)2 5μ gでこれらの動物をブーストした(SQI)。9日 後にマウスの血液を尾から採取し、血清抗体(Ab)力 価を酵素抗体アッセイ(EIA)によって定量した。各 々のマウスの半最大力価は約5000に増大し、個々の 動物をハイブリドーマ調製のために選択した。目的のハ イブリッド(#71A及び73A)を作製するために使 用した3匹の動物(#7、#8、#9)に対して、1 2. 5μ g σ Ag $(\Box y + 1)$ $\geq 25\mu$ g σ Ag $(\Box y$ ト2)とを別々に使用して5週目と29週目とに追加の ブーストを行うことが必要だった。これらのブースト を、最初のブーストと同様に、即ち、50%v/v I CFA中の乳濁液を使用して行った。血清Ab力価を、 各ブーストの9日後に、モニターし続けた。これらのマ ウスの融合前の最終力価は、動物#7では5026、動 物#8では6842、動物#9では12、945であっ た。

【0043】C. 細胞融合_

最終ブーストの8週間後に、sHuEPOR(ロット#3)25 μ gを動物#7、#8、#9に静脈内注射した。その4日後に、二酸化炭素でマウスを死亡させ、200U/mL ペニシリンGと200 μ g/mL 硫酸ストレプトマイシンと4mM グルタミンとを含むDu1beccoの改良Eagles培地(2x P/S/

G DMEM) 25mLの中に、無菌条件下で脾臓を取 った。その脾臓から余分の脂肪組織を取り除き、清浄な 「2x P/S/G DMEM」を入れた3つのディッ シュを通して洗浄した。その次に、「2x P/S/G DMEM」10mLを含む無菌ストマッカーバッグ (stomacher bag) (Tekmar, Ci ncinnati, OH) に脾臓を移し、Stomac her Lab Blender 80 (Seward LaboratoryUAC House, Lond on, England) によって破砕して単一細胞懸濁 液にした。細胞を脾臓包被から培地中に放出させた時に は、細胞を上記バッグから取り出し、70μmナイロン メッシュセルストレーナー(nylonmesh ce 11 strainer) (Becton Dicki nson and Company; Lincoln Park, NJ)を通過させた。上記バッグ中の培地を 新鮮な培地と入れ替え、脾臓の細胞内容物全てが放出さ れ終わるまで上記手順を続けた。これらの脾臓細胞を、 225xgで10分間遠心することによって3回洗浄し た。第1の融合では、動物#9からの脾臓細胞を使用し た。第2の融合では、動物#7と動物#8からの脾臓細 胞をプールした。

【0044】これと同時に、完全培地(DMEM、10 %牛胎仔血清、2 mM グルタミン、0.1 mM 非必 須アミノ酸、1mM ピルビン酸ナトリウム、10mM Hepes バッファ; Gibco Laborat ories, Inc., Grand Island, N Y)中で増殖させたSp2/0-Ag14マウス骨髄腫 細胞(American Type Culture Collection, Rockville, MDから 受託番号CRL 1581として入手可能)の対数増殖 期培養物を、上記と同様に洗浄した。この骨髄腫細胞集 団から、 4×10^7 個の細胞(融合1)又は 8×10^7 個の細胞(融合2)を採取し、脾臓細胞懸濁液と混合 し、再びペレット化した。この細胞ペレットから培地を 吸引し、「融合1」に関しては、37℃のポリエチレン グリコール (PEG 1500 MWt; Boehri nger Mannheim Biochemical s, Indianapolis, IN) 2mLを、「融 合2」に関しては、同PEG3.5mLを、1分間に亙 って上記培地中に穏やかに混合した。その後で、等容量 の「2x P/S/G DMEM」をゆっくりと加え た。細胞を37℃で2分間静置し、その後で追加の「2 x P/S/G DMEM」9mLを加えた。細胞を再 び4分間37℃に置いた。

【 0045】最後に、「2x P/S/G DMEM」 30mLを細胞懸濁液に加え、遠心分離によって細胞をペレット化した。ペレットから培地を吸引し、細胞を、 100U/mL ペニシリンGと100μg/mL 硫酸ストレプトマイシンとを含む完全培地約56mL(融

合1)又は約74mL(融合2)の中に穏やかに再懸濁 させた。5mLピペットからの一滴ずつの滴下によって 10枚の96穴平底組織培養プレート(Becton Dickinson Labware; Lincoln Park, NJ)上に分配した。プレートを、37 ℃、5%С〇。の条件下で、一晩に亙って加湿環境中で インキュベートした。その翌日に、等容量の選択培地を 各々の穴に加えた。その選択培地は、完全培地中0.1 リンと1.6×10-2 mM チミジンとから構成され ていた。融合プレートを7-10日間インキュベート し、このインキュベート期間中に培地を2回交換した。 HAT選択培地を各々の流体交換の後で使用した。ハイ ブリッドを収容した個々の穴から組織培養上清液を採取 し、sHu EPORに対する特異的抗体活性をEIA で検査した。EIAで陽性だった96穴に対して更にス クリーニングを行った。

【0046】D. ドットブロット

還元sHuEPOR (ロット#4)のドットブロット を、EIA陽性ハイブリドーマの二次スクリーニング方 法として使用した。Dot Blot SF Micr otitration Apparatus (Bio-Rad Laboratories, Inc., Ric hmond, CA) を、そのインストラクションマニュ アルに従って準備し、ニトロセルロース膜(9×12c m, Bio-Rad Laboratories, In c., Richmond, CA) を使用した。まず最初 に、トリス緩衝塩水液(TBS; 10mMトリス pH 7. 5、154mM NaCl、0. 01%w/vアジ 化ナトリウム)中の2-メルカプトエタノール(5%v ∕v、Bio-Rad Laboratories, I nc., Richmond, CA)と共に還元条件下で 5分間沸騰させることによって、抗原を調製した。sH uEPOR(ロット#4)25ngを各々の穴にロード し、結合のためにニトロセルロース膜を通して吸引し た。250µLのBlotto-Tween溶液(ブロ ック液;2%w/v脱脂粉乳、50mMトリス pH 7. 5, 25mM NaCl, 0.1mM EDTA, 0.09%v/v Tween 20,0.01%v/ v消泡剤A)を穴にロードし、RTで30分間インキュ ベートした。ブロック液を穴から吸引し、この手順を2 度繰り返して、ニトロセルロース膜上の非特異的部位を 完全にブロッキングした。その後で、0.1% v/vポ リオキシエチレンソルビタンモノラウレート (Twee n-20; Bio-Rad Laboratorie s, Inc., Richmond, CA)を含むD-P BSを使用して上記膜を通して3回洗浄した。その次 に、EIA陽性ハイブリドーマ順化培地95μ1を各々 の穴に加え、RTで45分間インキュベートした。TB S-Tween (20mMhyz pH7.5,50m

M NaCl. 0. 02%v/vTween 20) & 1回の洗浄当たり250µL使用して穴を3回洗浄し、 更に、TBS-Tween(20mMトリス pH7. 5, 0.5M NaCl, 0.09%v/v Twee n 20)を1回の洗浄当たり250μL使用して穴を 2回洗浄し、各々の添加を行った後に膜を通して吸引し た。ヤギ抗マウスIgG H鎖及びL鎖特異性HRP結 合第二抗体(TBS-Tween中に1:1000に希 釈;BoehringerMannheim Bioc hemicals, Indianapolis, IN) 100 μ L を、各々の穴の中でRTで45分間インキュ ベートした。膜を上記のように洗浄し、ブロット装置か ら取り除き、調製したEnhancedChemilu minescent Reagent (ECL試薬; A mersham Life Sciences, Cor poration, Arlington Height s, IL)の中に浸し、X-OMAT ARフィルム (Kodak Scientific Imagin g, Rochester, New York) に対し露 光した。15秒後にフィルムをフィルムカセットから取 り出し現像した。個々のハイブリドーマ上清液のドット の強度に基づいた各々の穴の評点は、3+から0だっ た。

【0047】実施例4_

EPORに結合する抗EPOR抗体

A. BIAcore分析によるEPORに結合する抗 体

表面プラスモン共鳴(SPR)(Fiagerstamら,J. Mol. Recognition 3,208(1990);Malmboryら,Scand. J. Immunol. 35,643(1992)))に基づく実時間生物特異性相互作用分析(real-time biospecific interaction analysis)(BIA,Pharmacia B

iosensor AB, Uppsala, Sweden)を、ELISA陽性モノクローナル抗体のスクリーニングのために使用した。

【0048】実施例1と実施例2で説明した通りに調製 した可溶性HuEPORを、第一アミン基を介してセン サーチップCM5に共有結合させた。HBS(10mM HEPES pH7. 4, 150mM NaCl, 3.4mM EDTA、0.05% BIAcore界 面活性剤P-20)中で5μL/分の流速で固定化を行 った。最初に、EDC(水中の400mM N-エチル -N-(ジメチルアミンープロピル)カルボジイミド、 Pharmacia Biosensor AB)とN HS(水中の100mM N-ヒドロキシスクシンイミ F, Pharmacia Biosensor AB) との1:1混合物を40µL注入することによって、セ ンサーチップのカルボキシル化マトリックスを活性化し た。可溶性EPOR(10mM酢酸ナトリウム pH 4. 0中の50µg/mL) 65µLを注入し、センサ ーチップ上に固定化した。センサーチップの余分の反応 性基をエタノールアミン (Pharmacia Bio sensor AB) 50 μLの注入によって不活性化 した。

【0049】各々の分析サイクルは、上記チップの再生のための、ハイブリドーマ上清液 20μ Lの注入と、その後の、10mM HCl 10μ Lの注入とを含んだ。SPR応答を共鳴単位(Resonance Unit)(RU)で測定する。殆どのタンパク質では、 $1000RUが、約1ng/mm^2$ の表面濃度に相当する。EIAで陽性だった96個の穴をスクリーニングした結果を表1に示す。これらの実験では、バックグラウンドは典型的には約20RUである。EPORへの結合は50RU以上で有意である。

[0050]

【表1】

表 1 EPO-Rモノクローナル抗体

抗体	BIACORE	BIACORE	FACS	EPO 活性の	UT7-RPO 細胞の
(1)	(2)	競合グループ(3)	平均蛍光 (4)	阻害 (5)	刺激 (6)
1	98	Α		-	
2	8	NT	-	NT	NT
3	7	NT		NT	NT
4	65	NT	- ·	NT	NT
5	13	NT	-	NT	NT
6	9	NT	_	-	
ŗ	89	С	-	NT	NT
8	46	NT		NT	NT
9	29	NT	_	NT	NT
10	69	NT		NT	NT
11	4	NT	_	NT	NT
12	153	С	_	NT	NT
13	1499	В	-	NT	NT
14	87	NT		NT	NT
15	29	NT	-	NT	NT
16	8	NT	ļ	NT	NT
17	7	NT	-	NT	NT
18	46	NT	-		
19	9	NT		NT	NT
20	7	NT	÷ =	NT	NT
21	49	NT	_	NT	NT
22	8	TM	_	NT	·NT
23	4	TM		===	
24	26	NT		NT	NT
25	8	NT		NT	ΝТ
26	84	NT	_	NT	NT
27	2	NT	ļ –	NT	NT
28	11	NΥ	-	NT	ТИ
29	L	NT	-	N'T	NT
30	270	A	-	-	-
31	16	NT	_	-	NT
32	18	NT		NT	NT

【0051】 【表2】

表 1 (統)

抗体	BLACORE	BIACORE	FACS	EPO 活性の	UT7-EPO 細胞の
(1)	(2)	競合グループ(3)	平均蛍光(4)	阻害 (5)	刺激 (6)
33	15	NT	-	NT	NT
34	25	NT	_	NΥ	NT
35	353	Α		NT	NT
36	4	NT	_	NT	NT
37	16	NΤ		· - -	_
38	13	NΤ		NT	NT
39	574	В	_	-	
40	15	ΝТ	! -	ИТ	l nT
41	22	NT		NT	NT
42	23	NT	_	NT	NT
43	6	NТ	_	NT	NT
44	13	NT	_	NT	NT
45	13	NT	_	NT	NT
46	7	NT	_	NТ	NT
47	10	NT		NT	NT
48	5	NT	_	NT	NT
49	69	NT	_	NT	NT
50	345	C	-	_	_
51	31	NT	ļ —	NT	NT
52	6	NΤ	_	NT	NT
53	130	Α		NT	NT
54	13	NT	_	ΝT	NT
55	34	NT		NT	·NT
56	11	NT	_	NT	NT
57	1.0	NT	_	NT	NT
58	15	NT	14. 99	+	?
59	10	NT		NT	NT
60	19	NT	_	NT	NT
61	4.8	NT	-	NT	NT
62	814	A	_	-	
63	1539	В	_	NT	NT
64	1222	С	_	NT	NT
65	-5	NT		+/-	?

【0052】 【表3】

表 1 (統)

抗体	BIACORE	BIACORE	FACS	EPO 活性の	UT7-EPO 細胞の	Į
(1)	(2)	競合グループ(3)	平均蛍光(4)	阻害 (5)	刺激 (6)	ı
66	975	С	_	NT	NT	ı
67	1000	·A	-		?	l
68	495	С	-	NT	NT	l
69	877	A	_		-	l
70	789	A	_		?	l
71	1584	c	23. 55	+ (7)	+++	ļ
72	1190	В	-	_	_	
73	354	c	13. 71		+	ŀ
74	408	A	18, 53			l
75	947	В	_	NT	NT	l
76	6	NT	_	NT	NT	ı
77	434	c			_	l
78	119	Α		NT	NT	l
79	8	NT		NT	NT	l
80	11	NT	-	NT	NT	١
81	-4	N.L	_	NT	NT	ı
82	4	NT	_	NT	NT	ł
82B	-13	NT	NT	NT	NT	l
83	1025	, c	_		-	l
84	5	NT	-	NT	NT	I
85	11	NT	_	NT	NT	ı
86	859	C		NT	NT	١
87	4	NT	12. B1			l
88	4	NT	-	+/		ŀ
89	-1	NT	_	+/-	***************************************	l
90	4	NT		NT	NT	١
91	0	NT	_	_		ı
92	-3	NT	_	NT	NT	ı
93	2	NT		NT	NT	I
94	5	NT	1 –	NT	NT	ı
95	417	A	_	NT	NT	ļ
96	1 7	NT	_	NT	NT	1

【0053】表に示した抗体を分泌するハイブリドーマで順化した組織培養培地を、表に示すアッセイで試験した。表に示す抗体全てを含む上清液が、ELISAアッセイで陽性シグナルを示した。+++、++、+は、陽性応答を示し、+++は最大の効果を示す応答を表す。一は対照培地の応答より小さいか又はそれに等しい応答を表す。NTは、試料を試験しなかったことを示す。?は、応答を示すことが不可能だった試料を示す。

【0054】(1)抗体1-61は、マウス#7と#8からの抗体である。抗体62-96はマウス#9からの抗体である。

【0055】(2)sHuEPORが付着したバイアコアチップ(biacore chip)を使用するMabによる応答単位。

【0056】(3) BIACORE上における競合は抗 sHuEPOR Mab 1G2に対するものだった。 センサーチップに結合させた sHuEPORを1G2と 共にインキュベートした後に、1G2と共に予めインキュベートすることがなかったEPORに対する結合に比較してMab結合に対する効果を定量した。結合が完全に(80-100%) ブロックされた抗体がAである。

結合が50-80%ブロックされた抗体がCである。結合が50%未満ブロックされた抗体がBである。

【0057】(4)対照(12、73)よりも高い平均 蛍光を細胞に与えた抗体の値を示す。「一」は、対照よ りも低いか又はそれに等しい平均蛍光を有する抗体を示 す。

【0058】(5) UT7-EPO細胞による³ H取り込みの阻害。30 munitsのEPOと様々な量の抗体をUT7-EPO細胞と共にインキュベートした。一晩インキュベートした後に、細胞を³ Hチミジンでパルス標識し、取り込まれたカウントの量を定量した。陽性応答を、「抗体量の増加につれて取り込みが漸進的に減少する応答」と定義した。

【0059】(6) UT7-EPO細胞による³ H取り込みの刺激。様々な量の抗体をUT7-EPO細胞と共にインキュベートした。一晩インキュベートした後に、細胞を³ Hチミジンでパルス標識し、取り込まれたカウントの量を定量した。陽性応答を、「抗体量の増加につれて取り込みが漸進的に増加する応答」と定義した。

【0060】(7)阻害は、活性化に必要な濃度よりも高い濃度で確認された。

【0061】B. エピトープ競合分析

sHuEPORで固定化したセンサーチップをハイブリ ドーマ上清液1G265μLの注入によって飽和させる ことが可能だった。1G2は、実施例3で説明した手順 を使用してSHuEPORに対して生じさせたモノクロ ーナル抗体である。各々の分析サイクルは、1G2 6 5μLの注入によるエピトープの飽和を伴う、又は、こ の飽和を伴わない、ハイブリドーマ上清液20µLの注 入を含んでいた。「1G2飽和後にハイブリドーマ上清 液20μLを注入した場合の結合シグナル(RU)」対 「ハイブリドーマ上清液20μLを注入しただけの場合 の結合シグナル(RU)」の比率を、1G2によるブロ ッキング%として定義する。ブロッキング80-100 %の抗体を「グループA」と表し、ブロッキング50% 以下の抗体を「グループB」と表し、ブロッキング50 -80%の抗体を「グループC」と表す。分析結果を表 1に示す。

【0062】C. 蛍光活性化細胞選別(FACS)分析による、トランスフェクトしたCHO細胞上のd40 EPORに結合する抗体

EPORに対して生じさせたハイブリドーマ上清液を、 FACS分析によって、pDSRαEPORd40でト ランスフェクトしたCHO細胞の表面上のEPO受容体 に対する結合に関して試験した。d40 EPO受容体 をコードするDNAでトランスフェクトしたCHO細胞 を、実施例1で説明した通りに構築した。CHO/EP OR細胞を組織培養ディッシュから擦り取り、PBS/ ○.5%BSAの溶液中に単一細胞として再懸濁させ、 その後で、細胞約3×105個/穴の割合で96穴丸底 プレートの中に分配した。このプレートを1000xg の遠心機の中に5分間置いた。遠心後にPBS/BSA 上清液を取り除き、ペレット化した細胞の各々を、対照 培地、又は、EPORハイブリドーマ上清液の1つの中 に再懸濁させた。細胞を4℃で1時間インキュベートし た。インキュベーション後に、細胞をPBS/BSAで 洗浄し、その後で、フルオレセインイソチオシアネート (FITC)標識ヤギ抗マウスモノクローナル抗体(S outhern Biotech, Birmingha m Ala.)中に再懸濁させた。細胞を再び4℃で1 時間インキュベートし、洗浄し、FACSで分析した。 試験した96種の上清液の中で、5つの上清液が対照培 地よりも大きい平均細胞蛍光を有した(表1を参照され たい)。Mab71は、最高レベルの蛍光を示し、その 次に、Mab 74、Mab 58、Mab 73、M ab 87が続いた。試験した他の上清液はいずれも、 対照培地の値を上回る蛍光を示さなかった。

【0063】実施例5

抗EPOR抗体とFabフラグメントの精製

A. 腹水の生産

5週齢以上のBalb/cマウス (Charles R

ivers Laboratories, Wilmin gton, MA)を、細胞系の注入を行う7から10日 前に、2,4,10,14-テトラメチルーペンタデカ ン(Pristane;Sigma, St. Loui s, MO)で初回感作した。各々のマウスに対してO. 5mLの腹腔内注入を1回行った。腹水がその細胞系各 々に関して調製されることになっている個々の細胞系 を、各細胞系毎に10匹から20匹の動物に注入した。 【0064】集密状態が得られるまで完全培地中で増殖 させたハイブリドーマ細胞系を、D-PBSで1回洗浄 した後に、Neubauer Hemacytomet erを使用してカウントした。各々のマウスに107個 の細胞を腹腔内注入し、その後で、腹水が発生するま で、Rodent Lab Chowと水を任意に摂取 させて生存させた。最大腹水形成に関してマウスを観察 し、CO2で死亡させ、腹水で満たされた腹腔内に挿入 した18G注射針を使用して穿刺し、腹水を収集した。 マイクロ遠心機 (Eppendorf) 内で225xg で15分間又は3分間遠心することによって清澄化し た。その後で、4mLアリコートを-20℃で貯蔵し、 その後、プロテインAカラムクロマトグラフィーで精製 した。

【0065】B. モノクローナル抗体のプロテインA 精製

腹水4mL又はハイブリドーマ順化培地10mLからの 免疫グロブリンを、プロテインAカラムクロマトグラフ ィーで精製した。Bio-Rad Monoclona 1 Antibody Purification S ystem II (MAPS II; Bio-Rad Laboratories, Richmond, CA) を使用した。簡潔に説明すると、Affi-ge1 P rotein-A懸濁液5mLを、1×10cm使い捨 てガラスカラムの中にロードした。プロテインAゲルを 約30mLのD-PBSでロードし、その後で、結合緩 衝液 (MAPS II Binding Buffe r;Bio-Rad)をカラムに通すことによって調製 した。その後で、結合緩衝液で1:1に希釈した腹水又 は順化培地を上記カラムの頂部に加え、カラム内を素通 りさせた。免疫グロブリンをプロテインAに結合させた 後に、非結合フラクションを取り除いた。その次に、カ ラムを結合緩衝液30mLで洗浄して非結合タンパク質 をカラムから取り除き、280nmで0.01未満の吸 光度を得た。その後で、免疫グロブリンを含むフラクシ ョンをBio-Rad Elution Buffer 約30mLで溶出させた。このフラクションを、D-P BS 4 L に対し透析することによって、4℃で一晩、 緩衝液交換を行った。その結果得たPBS平衡化免疫グ ロブリンを、Centricon Concentra tor Unit (Amicon Inc., Beve rly, MA) 中で1700xgで遠心することによっ

て濃縮した。

【0066】C. 抗体結合ドメインの分画 Pierce ImmunoPure Fab Pre paration Kit (Pierce Chemi cal Company, Rockford, IL)を 使用して、プロテインAで精製した免疫グロブリンを、 その2つの成分部分、即ち、結晶化可能フラクション (Fc)と抗体結合フラクション(Fab)とに更に分 画した。プロテインA精製免疫グロブリンを20mMリ ン酸/10mM EDTA緩衝液(pH7.0)の中に 透析し、その後で、約20mg/mLに濃縮した。10 mgの免疫グロブリンを分画した。固定化パパインゲル を、供給されたままのリン酸緩衝液12mL中にシステ イン42mgを含む消化緩衝液で2回洗浄した。その後 で、免疫グロブリン試料を上記ゲルに加え、回転振とう 装置上で37℃で一晩インキュベートした。プロテイン A精製によって、可溶化Fabを、Fcと未消化免疫グ ロブリンとから分離させた。非結合フラクションをこの 時点でFab試料として収集した。この非結合部分を4 ℃で一晩に亙ってD-PBS 4リットルで透析し、上 記のように濃縮した。

【0067】実施例6

EPOR上のMab 71 エピトープのマッピング ヒトEPO受容体の残基1~残基224(ここで、残基 1がプロリンであり残基224がアスパラギン酸であ る)において長さ17-30 アミノ酸の重複する合成ペプチドを作製した。10 個の異なるのペプチドは、両端 の6 個のアミノ酸が重複していた。これらのペプチドの 配列と、そのヒトEPO-Rアミノ酸配列中での各ペプチドの位置は、次の通りである。

【0068】SE-1 PPPNLPDPKFESKAALLAARGPEELCFTE (残基 1-30)

SE-2A LLCFTERLEDLVCFWEEA

(残基 25-42)

SE-2B CFWEEAASAGVGPGNYSF

(残基 37-54)

SE-3 PGNYSFSYQLEDEPWKLCRLHQAPTARGAV (残基 49-78)

SE-4 TARGAVRFWCSLPTADTSSFVPLELRVTAA (残基 73-102)

SE-5 LRVTAASGAPRYHRVIHINEVVLLDAPVGL (残基 97-126)

SE-6 DAPVGLVARLADESGHVVLRVLPPPETPMT (残基 121-150)

SE-7 PETPMTSHIRYEVDVSAGNGAGSVQRVEIL (残基 145-174)

SE-8 QRVEILEGRTECVLSNLRGRTRYTFAVRAR (残基 169-198)

SE-9 FAVRARMEAPSFGGFWSAWSEPVSLLTPSDLD (残基 193-224) ポリスチレン穴プレート (Costar, Cambri dge,MA)を、炭酸塩-炭酸水素塩緩衝液(0.0 15M Na₂CO₃, 0.035M NaHCO₃ pH9.2) 中に濃度100μg/mL、20μg/m L、及び、0.8µg/mLの上記EPO-Rペプチド でコートした。このプレートを室温(RT)で2時間イ ンキュベートし、その後で4℃で一晩インキュベートし た。可溶性HuEPORを、同一条件下で、濃度10μ g/mL、 2μ g/mL、 0.4μ g/mL、及び、 0.08μg/mLにおいて陽性対照としてコートし た。PBS中の5%BSAによってRTでプレートを3 O分間ブロッキングした後に、1%BSA中の5μg/ mLの濃度の、実施例5で説明した通りに精製したMa b 71と共に、RTで2時間、上記プレートをインキ ュベートした。洗浄緩衝液(Kirkegard an d Perry Labs, Inc.)で洗浄した後 に、そのプレートを、西洋ワサビペルオキシダーゼ(B oehringer Mannheim)を結合させた ヤギ抗マウスIgGの1:1000希釈液と共に、RT で1時間インキュベートした。プレートを洗浄し、AB TS基質溶液(Kirkegard and Perr y Labs, Inc.)で発色させた。405nmで 比色分析を行った。上記合成ペプチドに結合するMab の結果を図1に示し、この結果は、Mab 71が、試 験したその他のペプチドに対して結合する場合に比べ て、有意量のペプチドSE-3(ヒトEPO-Rのアミ ノ酸残基49-78)に結合することを示している。こ のことは、残基49-78を含む又は残基49-78を 重複して含むヒトEPO-Rの領域に対して、Mab 71が結合することを示している。

【0069】実施例7

細胞増殖アッセイにおける抗EPOR抗体の活性」 上記の通りに調製した順化培地中の抗体を、UT7-E PO細胞 (Komatsus, 上記) による³ Hーチミ ジンの取り込みを刺激する能力に関してアッセイした。 UT7-EPO細胞はEPOに応答し、その細胞表面上 でヒトEPO受容体を発現させる。UT7-EPO細胞 を、増殖培地(Lーグルタミン、25mM HEPES 緩衝液、及び、3024mg/L 炭素水素ナトリウム を含み、且つ、アルファーチオグリセロール又はベータ ーメルカプトエタノールを含まない、1x Iscov eの改良Dulbecco培地(GIBCO)/10% v/v牛胎仔血清/1%v/v Lーグルタミンーペニ シリンーストレプトマイシン溶液(Irvine Sc ientific)/1単位/mL rHuEPO)中 で、約3×105細胞/mLに増殖させた。細胞を遠心 (約500xg)によって収集し、リン酸緩衝塩水液で 2回洗浄し、アッセイ培地(Lーグルタミンなしの1x RPM I 培地 1640 (Gibco) / 1% L-グ ルタミン/4% 牛胎仔血清) 中に5×104 細胞/m

しに再懸濁させた。アッセイ培地で5倍以上に希釈した 試験試料又はEPO標準(rHuEPO)100μLを 96穴マイクロタイタープレートの穴に加えた。その後 で、細胞50μLを加え(5000細胞/穴)、プレー トを、加湿インキュベーター内で37℃で5%CO₂に おいてインキュベートした。72時間後に、アッセイ培 地中に1:100に希釈したメチルー3 Hーチミジン $(1mCi/mL; 20Ci/mmol) 50 \mu$ Lを加 えた。細胞を更に37℃で5%CO2において4時間イ ンキュベートした。標識した細胞を、PHD細胞ハーベ スター(Cambridge Technology Inc.)と脱イオン水(洗浄水として)を使用してガ ラス繊維フィルターマット上に収集した。フィルターを 2-プロパノールで最終的に洗浄し、その後で脱水し、 Beckman Model LS6000ICシンチ レーション計数器でカウントした。

【0070】抗EPOR Mabを含む組織培養プレートからの順化培地を、増殖刺激能力に関して上記の通りに試験した。試料を幾つかの濃度で試験した。陽性応答を、「チミジン取り込みをバックグラウンドレベルの2倍以上に刺激し、且つ、試料を希釈した時には刺激の減少も生じる」ものと定義した。表1に示すように、試験した24個の試料のうちの2個の試料は陽性応答を示した(Mab 71、Mab 73)。4個の試料は、弱い刺激活性を有するかもしれない(表1の「?」)。残りの試料は、バックグラウンドを上回る大きなチミジン取り込みの増加をもたらさなかった。モノクローナル抗体を作製するために使用したマウスからのポリクローナル血清も、チミジン取り込みを刺激した。このことは、この血清中のポリクローナル抗体もUT7-EPO細胞の増殖を刺激することが可能であったことを示唆している。

【0071】UT7-EPO細胞によるチミジン取り込みのEPO誘導刺激を阻害する能力に関して上清液も試験した。25munits/mLのrHuEPOと、順化培地を含む様々な量の抗体と共に、細胞をインキュベートした。チミジン取り込みを上記のように測定した。その結果を表1に示す。大半の抗体は、対照培地とそれほど大きくは相違しなかった。チミジン取り込みの阻害を示した抗体の中で、2つの試料(Mab 58、及び、Mab 73)は明確な阻害を示したが、一方、3つの試料(Mab 65、Mab 88、Mab 89)は可能な阻害を示した。Mab 73は最大用量において阻害を示したが、それよりも少ない用量では、対照値を上回るチミジン取り込みを刺激した。

【0072】実施例8

抗EPOR抗体とフラグメントとによるEPORの活性 化

A. UT7-EPO増殖アッセイ

Mab 71とMab 73とを実施例5で説明した通

りに精製した。増殖活性を、実施例7で説明したUT7-EPOチミジン取り込みアッセイで定量した。Mab 71とMab 73の両方が、rHuEPOの場合と同様に用量に依存した形で、UT7-EPOによるチミジン取り込みを刺激した(実施例2を参照されたい)。高用量のMab 71では活性が減少した。刺激活性のピークは、Mab 71の場合には $1-2\mu g/m$ Lの用量で、Mab 73の場合には $100\mu g/m$ Lより多い用量で観察それた。非中和対照抗体(抗EPO Mab F12)はチミジン取り込みを刺激しなかったが、このことは、チミジン取り込みの刺激がEPO受容体抗体に特異的であることを示している。

【0073】B. EPO低温置換アッセイ EPO受容体に対する抗体は、EPOが結合する領域と 同一の領域に結合しうる。この可能性を確かめるため に、OCIM1細胞を使用して低温置換アッセイを行っ た。OCIM1細胞はヒト起源の細胞であり、その細胞 表面上にEPO受容体を含むことが知られている(Br oudyb, Proc. Nat. Acad. Sci. U SA 85,6517(1988))。細胞を、OCI M1細胞培地(Iscoveの改良Dulbecco培 地(IMDM)/10% 牛胎仔血清/1% penstrep-fungisone)中で、約2-5×1 O5 細胞/m Lに増殖させた。細胞を遠心によって収集 し、結合緩衝液 (RPMI1640/1% BSA/2) 5mM HEPES pH7.3)中で2回洗浄し、そ の後で、0.1%アジドと 10μ g/mL サイトカリ シンBを含む結合緩衝液中に1-2×107細胞/mL に再懸濁させた。その後で、96穴組織培養プレート中 の細胞(100 μ L)を、試料10 μ Lと¹²⁵I-E PO(Amersham高比活性;3000Ci/mm ○1、2µCi/mL)と共に、加湿組織培養インキュ ベーター中で37℃でインキュベートした。3時間後 に、細胞をタイターチューブ中のフタレート油(60: 40(▽/ ▽) ジブチル/ジノニルフタレート) を通し て遠心した。細胞を収容したチューブをドライアイスー エタノール浴中で迅速に凍結させ、細胞ペレットを採取 した後で、LKB 1277 gammamaster 自動ガンマカウンターで計数した。

【 0074 】図3は、低温置換実験の結果を示す。非標識 rHuEPOの添加量の増大に応じて、EPO受容体から置換された 125I-EPOの量が増加した。同様に、実施例5で説明した通りに精製したMab 71が 125I-EPOを置換した量が、抗 体量の増加に応じて増加した。この場合には、同量の 125I-EPOを置換するのにrHuEPOの約4,000倍の量のMab 71が必要だった。これとは対照的に、Mab 73は、最大用量において置換の徴候を示したが、非中和抗rHuEPO Mab (F12)は有意の置換を示さなかった。こうした結果は、Mab F12が、

EPO受容体に対するEPOの結合を妨げないが、Mab 71及びMab 73はこの結合を妨げるということを示している。この結果は、更に、Mab 71がEPO受容体に結合し、EPO結合部位において又はその付近で結合することによって、EPO受容体を活性化することを示している。

【0075】C. Mab 71とFab 71の活性。 の比較

Mab 71のEPO受容体フラグメントを、実施例5 で説明した通りに調製した。図4に示すように、SDS ゲル電 気泳動 (Laemmmliら, Nature 227,680(1970))によって、試料を特性 化した。SDSを2%含む試料緩衝液中で0.7M 2 ーメルカプトエタノールと共に又はそれなしに試料を沸 騰させ、非還元 (無2-メルカプトエタノール) タンパ ク質と還元(2-メルカプトエタノール)タンパク質を 個々に調製し、12.5% アクリルアミドSDSゲル 上で泳動させた。そのゲルをクーマシーブルーで染色 し、タンパク質を可視化した。タンパク質標準の移動度 に対して当該タンパク質の移動度を比較することによっ て、タンパク質のサイズを推定した。Mab 71とM ab 73が、還元条件下で泳動させた時に、L鎖とH 鎖とに分離した。H鎖は約52kDAであった。Mab 73の場合のL鎖はMab 71 (28.5kD a)の場合よりも僅かに小さかった(28kDa)。F abフラグメントも2つの鎖を有していた。すなわち、 Fab 71の場合には、28.3kDaと27.3k Daであり、Fab 73の場合には、27.5kDa と26.5kDaだった。これらのFabフラグメント を非還元条件下で泳動させた時には、Fab 71のサ イズは約48kDaであり、Fab 73のサイズは約 47kDaだった。このことは、Fabフラグメントが 一価であり、その複合体がL鎖とH鎖を1つずつ有する ことを示している。これとは対照的に、非還元SDSゲ ル上でのMab 71とMab 73の移動度は、これ らのサイズが約200kDaであることを示した。この ことは、これらのMabが二価であり、H鎖とL鎖が2 つずつあることを示している。

【0076】一価のFab 71フラグメントがEPO 受容体を活性化するかどうかを調べるために、Mab 71とFab 71フラグメントをUT7-EPO細胞と共にインキュベートし、チミジン取り込みを実施例7で説明した通りに測定した。図5に示すように、rHu EPOとMab 71の両方がチミジン取り込みを刺激した。しかし、一価Fab 71フラグメントは、チミジン取り込みを刺激しなかった。無関係の受容体(Her2/neu)に対する対照モノクローナル抗体も、チミジン取り込みを刺激しなかった。このことは、受容体を活性化するためには上記抗体が2価でなければならないことを示している。

【0077】D. rHuEPOの存在下でのMab 71とFab 71によるチミジン取り込みの刺激 EPOがEPO受容体に結合することをMab 71が 阻害するという事実は、EPOの存在下ではMab 7 1がEPO受容体を活性化しない可能性があることを示 唆した。この可能性を確かめるために、30munit s/mLのrHuEPOと、様々な量の精製Mab 7 1、Fab 71、又は、Mab対照(Her2/ne uに対する抗体)と共に、UT7-EPO細胞をインキ ュベートした。チミジン取り込みを上記の通りに測定し た。図6に示すように、Mab71とFab 71の両 方が高用量でチミジン取り込みを阻害した。しかし、約 30 µ g/m L から約3000 µ g/m L の間の用量で は、Mab 71は、rHuEPOだけによって刺激さ れたチミジンの取り込みレベルを上回るレベルにチミジ ン取り込みを刺激した。Fab 71と対照抗体は、こ の作用を示さなかった。このことは、Mab 71とr HuEPOとがEPO受容体活性化において追加の効果 を有することを示している。

【0078】実施例9.

抗EPOR抗体による赤血球コロニー形成の刺激 末梢血液中の前駆体からの赤血球細胞の形成を精製Ma b 71が刺激するかどうかを調べるために、BFUe アッセイを行った。赤血球前駆細胞を精製するために、 正常なヒトドナーを標準的なプロトコルに従ってリンホ フェレーゼ (lymphopherese) した。リン ホフェレーゼした細胞(250mL)をHank's Balanced Salt Solution (HB SS) 250mLで洗浄した。細胞をHBSS中に再懸 濁させ、勾配 (Ficoll-paque)上で、50 Oxgで30分間、密度遠心分離によって分離した。低 密度細胞(LD)を勾配から収集し、HBSS 500 mLで洗浄し、0.5%ウシ血清アルブミンと5mM EDTAとを添加したPBS中に、5×108細胞/m Lの濃度に再懸濁させた。その後で、Miltenyi BiotechGmbHによって製造されたCD34 前駆細胞Cell IsolationKit(QBe nd/10)を使用して、LD細胞を精製した。短時間 の内に、細胞を抗CD34モノクローナル抗体で標識 し、その後で、プロトコルに従って、細胞を磁性微小球 に結合させた。その次に、予め充填したMiniMac s分離カラムの中を、標識した細胞を通過させ、カラム を洗浄し、CD34+細胞をカラムから溶出させた。こ の手順を再び繰り返し、より高純度のCD34+ 細胞を 得た。Iscoveら(J. Cell. Physiol 83,309(1974))の説明の通りに、次に述 べる変更を加えて、インビトロアッセイを行った。培養 培地をGibco BRL (ヒト骨髄幹細胞増殖キッ ト; Grand Island, NY) から得た。35× 100mm組織培養プレート上に二重に試料1mLをプ

レーティングするために、過剰の3mLを17×100 無菌ポリスチレンチューブ内で調製した。各々のチュー ブに、幹細胞増殖培地2.5mL、CD34+細胞(9 0,000細胞/mLに再懸濁)0.1mL、幹細胞因 子(20μg/mL) O. 015mL、及び、試料と幹 細胞希釈培地の組み合わせ0.385mL相当を入れ た。そのチューブを激しく撹拌し、沈静させ、発泡する ままにした。その後で、17×1-1/2注射針の付い た3mL注射器を使用して、内容物を小分けした。加湿 組織培養インキュベーター内でプレートを37℃で10 %CO2下でインキュベートした。赤血球コロニー(オ レンジ色から赤色)を21日後に評点した。EPO又は Mab 71が欠如したプレートには、赤血球コロニー は見られなかった。rHuEPO(30munits/ プレート)は、プレート1枚当たり400個のコロニー の過剰を生じさせた。Mab 71も赤血球コロニーを 生じさせた。ピーク活性は2-6μg/mLで認められ た。この結果は、Mab 71が赤血球コロニーの形成 を刺激することを示している。

【0079】精製Mab 71の活性を、メチルセルロ ース中の無血清増殖条件を使用して、赤血球コロニー形 成能力に関しても試験した。CD34+ 細胞を上記の通 りに単離し、本明細書に参考として組み入れる同時係属 中で且つ共通の所有者によって所有されている米国特許 出願第08/079,719号に説明されている無血清 増殖培地を使用して、下記の変更を加えて、インキュベ ートした。細胞外マトリックス分子、ヒドロコルチゾ ン、及び、増殖因子EGF、FGF、PDGFを使用せ ずに、アッセイチューブを準備した。上記のように、二 重の1 mL試料をプレート上にプレーティングするため に、試料3mLを調製した。100xストック溶液(2 ーメルカプトエタノール、ヌクレオシド、コレステロー ル、ピルビン酸ナトリウム、Huートランスフェリン、 脂質、Hu-インスリン)各0.030mL、脱イオン

> 配列番号:1 配列の長さ: 42 配列の型: 核酸 鎖の数: 一本鎖 トポロジー: 直鎖状 配列の種類: cDNA

配列

配列番号

CTCCAAGCTT GCCGTCACCA TGGACCACCT CGGGGCGTCC CT

42

配列の長さ: 35 配列の型: 核酸 鎖の数: 一本鎖 トポロジー: 直鎖状 配列の種類: cDNA 配列

化BSA (15%) 0.4mL、SCF (20μg/m L) O. O15mL、CD34+細胞(300,000 細胞/mしに再懸濁) 0.1 mし、メチルセルロース (2.3%) 1.080mL、及び、1.195mLに 相当する試料とIMDMの組み合わせ(試料は150μ しを越えない)を、上記チューブの各々に入れた。その 後で、プレートを上記に通りにインキュベートし、21 日後にコロニーを評点した。EPO又はMab 71の 存在下で増殖させた時に赤血球コロニーを認めたが、こ れら2つの因子が存在しなかった時には、赤血球コロニ ーが認められなかった。赤血球コロニータイプの一例を 図7に示す。25munitsのrHuEPOと共にイ ンキュベートしたコロニーは、2.1 μg/m Lの精製 Mab 71と共に増殖させたコロニーと類似した外観 を有した。rHuEPOの用量が多けば多いほど、コロ ニーが大きくなった。用量応答曲線を図8に示す。Ma b 71は、 $1\mu g/mL$ から $5\mu g/mL$ の範囲内の 用量で活性のピークを示した。これより少ない又は多い 用量の場合は、赤血球コロニーの数が減少した。Her 2/Neuに対する対照モノクローナル抗体は、この用 量範囲では全くコロニーを生じさせなかった。この結果 は、Mab 71が赤血球前駆体からの赤血球コロニー の形成を刺激するだろうということと、血清を追加する 必要がないということを示している。従って、Mab 71は、赤血球前駆体の赤血球細胞への分化を刺激する ことが可能である。

【0080】本発明を好ましい実施様態に関して説明し てきたが、こうした実施様態に対して当業者が変形と変 更とを行うことが可能であるということを理解された い。従って、添付の請求範囲は、請求する本発明の範囲 内に含まれる均等の変形例の全てを、その範囲内に含む ことが意図されている。

[0081] 【配列表】

35

配列番号

配列の特性

配列の長さ: 27 配列の型: 核酸 鎖の数: 一本鎖 トポロジー: 直鎖状 配列の種類: cDNA

配列

AGGTCGACTA CTAGTAGTCA GTTGAGA

【図面の簡単な説明】

【図1】図に示した濃度の合成ペプチドに対するMab 71の結合を測定したELISAアッセイの結果を示す。ペプチドは、図に示したヒトEPO受容体のアミノ酸残基に対応する。残基1は、リーダー配列の切断時に分泌されたEPOR中に見出されアミノ末端プロリンである。

【図2】UT7-EPO細胞の³ Hチミジン取り込みに 対する、様々な量のrHuEPOタンパク質と精製Ma b 71及び73の作用を示す。

【図3】OCIM1細胞の表面上のEPO受容体に対する¹²⁵I EPO結合の阻害に関する、様々な量のrHuEPOタンパク質、Mab 71、Mab 73、 又は、EPOに対する非中和対照Mab (Mab F12)の作用を示す。

【図4】モノクローナル抗体Mab 71及び73精製 試料と、これらの抗体に由来するモノクローナル抗体フラグメント(Fab)精製試料の、クーマシー染色SD Sゲルを示す。還元(2-メルカプトエタノールを加えた)条件、又は、非還元(2-メルカプトエタノールを

27

除いた)条件下で、試料を泳動させた。

【図5】UT7-EPO細胞の 3 Hチミジン取り込みに 対する、様々な量の精製 4 HuEPOタンパク質、Ma b 71又はFab 71の作用を示す。

【図6】組換えヒトEPO(rHuEPO)30munits/mlも加えたUT7-EPO細胞の³ Hチミジン取り込みに対する、様々な量の精製Mab 71又はFab 71の作用を示す。

【図7】無血清増殖条件下においてEPO又はMab71の存在下でメチルセルロース中で21日間増殖させた、末梢血液からの精製 $CD34^++$ 細胞の写真を示す。写真は、500 munits/m1 EPO (A)、25 munits/m1EPO (B)、又は、2.1 μg/m1 Mab 71 (C)でインキュベートした細胞である。

【図8】軟質寒天中において無血清増殖条件下で増殖させた場合の、赤血球前駆体からの赤血球コロニーの形成に対する、様々な量の精製rHuEPOタンパク質、Mab 71、及びHer2/neuに対する対照モノクローナル抗体の作用を示す。

【図4】

【図1】

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FΙ			(参考)
C 1 2 N	15/02		G01N	33/53	D	
C12P	21/08			33/566		
GO1N	33/53			33/577	В	
	33/566		C12N	5/00	В	
	33/577			15/00	С	
//(C12P	21/08					
C12R	1:91)					