CLAIMS

What may be claimed is:

1. A cryptographic method, including:

receiving at a first entity a second public key M_{a} ; generating at least one of a first session key K_{B} and a first secret S_{a} based on the second public key M_{a} ;

generating a first random nonce N_B;

encrypting the first random nonce $N_{_{\! B}}$ with at least one of the first session key $K_{_{\! B}}$ and the first secret $S_{_{\! B}}$ to obtain an encrypted random nonce;

transmitting the encrypted random nonce from the first entity;

in response to transmitting the encrypted random nonce, receiving at the first entity a data signal containing a modification of the first random nonce $N_{\scriptscriptstyle R}+1$; and

if the received modification of the first random nonce $\ensuremath{N_{\text{B}}}\text{+}1$ was correctly performed then performing at least one of

- (i) opening a communication link at the first computer, and
 - (ii) generating a first initialization vector I,
- 2. The method of claim 1 which includes determining whether the received modification was correctly performed.
- 3. The method of claim 2 wherein determining whether the received modification was correctly performed includes checking whether the received modification of the first random Application 58 Attny Docket 04860P2441

nonce $N_{\mbox{\tiny B}}+1$ equals a modification of the first random nonce $N_{\mbox{\tiny B}}+1$ as applied to the first random nonce $N_{\mbox{\tiny B}}+1$ by the first entity.

- 4. The method of claim 2 wherein determining whether the received modification was correctly performed includes checking whether the received modification of the first random nonce N_B+1 less a modification thereof as applied thereto by the first entity equals the first random nonce N_B+1 .
- 5. The method of claim 1 wherein generating the first session key $K_{\mbox{\tiny B}}$ includes

presenting a numeric parameter $\mathfrak{K}_{_{\! B}}$, generating a first random number $R_{_{\! B}}$, and setting the first session key $K_{_{\! B}}$ equal to the second public key $M_{_{\! A}}$ raised to the exponential power of the first random number $R_{_{\! B}}$, modulo parameter $\mathfrak{S}_{_{\! B}}$.

- 6. The method of claim 1 wherein generating the first secret $S_{\rm B}$ includes employing a combining function, $f_{\rm B}$.
- 7. The method of claim 6 wherein employing the combining function, $f_{\rm B}$, includes

first generating a first public key $M_{_{\rm B}}$, the combining function, $f_{_{\rm B}}$, then being employed on a first password $P_{_{\rm B}}$ and on at least one of the second public key $M_{_{\rm A}}$ and the first public key $M_{_{\rm B}}$.

8. The method of claim 7 wherein employing the combining function, $f_{\rm B}$, on a first password $P_{\rm B}$ and on at least one of the second public key $M_{\rm A}$ and the first public key $M_{\rm B}$ includes

combining the second public key $M_{_{\! B}}$ and the first public key $M_{_{\! B}}$ with the first password $P_{_{\! B}}$ to produce a first result, and

hashing the first result with a secure hash.

- 9. The method of claim 8 wherein the secure hash is a one-way hash function.
- 10. The method of claim 9 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvennyl Standard.
- 11. The method of claim 6 wherein employing the combining function, $f_{\rm B}$, includes employing a plurality of combining functions to produce the first secret $S_{\rm B}$, wherein each of the plurality of combining function produces a prior result, wherein employing a first combining function includes

generating a first public key M_{B} , and

employing the first combining function on a first password $P_{_B}$ and on at least one of the second public key $M_{_A}$ and the first public key $M_{_B}$, and

employing each subsequent combining functions includes

employing a combining function on a prior result and on at least one of the second public key $M_{\scriptscriptstyle A}$, the first password $P_{\scriptscriptstyle B}$, and the first public key $M_{\scriptscriptstyle B}$, wherein the prior result produced by the last combining function is the first secret $S_{\scriptscriptstyle B}$.

- 12. The method of claim 6 wherein encrypting the first random nonce $N_{\scriptscriptstyle B}$ includes employing a symmetrical encryption algorithm.
- 13. The method of claim 12, wherein the symmetrical encryption algorithm is one of the Data Encryption Standard and the block cipher CAST.
- 14. The method of claim 6 wherein encrypting the first random nonce $N_{\mbox{\tiny B}}$ includes superencrypting the first random nonce $N_{\mbox{\tiny B}}.$
- 15. The method of claim 14, wherein superencrypting the first random nonce $N_{\scriptscriptstyle B}$ includes superencrypting the first random nonce $N_{\scriptscriptstyle B}$ with the first session key $K_{\scriptscriptstyle B}$ and at least one of the second public key $M_{\scriptscriptstyle A}$, a parameter $\alpha_{\scriptscriptstyle B}$, a parameter $\beta_{\scriptscriptstyle B}$, a first public key $M_{\scriptscriptstyle B}$, the first session key $M_{\scriptscriptstyle B}$, a first password $P_{\scriptscriptstyle B}$, and the first secret $S_{\scriptscriptstyle B}$.
 - 16. The method of claim 1 wherein

transmitting the encrypted random nonce from the first entity includes transmitting a first public key ${\tt M}_{\!{\tiny B}}$ and wherein

the received signal is encrypted based on at least one of a second session key $K_{\scriptscriptstyle B}$ and a second secret $S_{\scriptscriptstyle B}$, and wherein the Application 61 Attny Docket 04860P2441

second session key $K_{_{\! B}}$ and the second secret $S_{_{\! B}}$ are based on the first public key $M_{_{\! B}}.$

17. The method of claim 1, wherein the signal further includes a second random nonce $N_{\scriptscriptstyle A}$ and wherein, subsequent to generating the first initialization vector $I_{\scriptscriptstyle B}$, the method further including:

modifying the second random nonce $N_{_{\!A}}$ to obtain a modified second random nonce $N_{_{\!A_{\!B}}}\!\!+\!1;$

encrypting the modified second random nonce $N_{\scriptscriptstyle A_B}\!+\!1$ with at least one of the first session key $K_{\scriptscriptstyle B}$ and the first secret $S_{\scriptscriptstyle B}$ to obtain an encrypted package;

transmitting the encrypted package from the first computer;

in response to transmitting the encrypted random nonce, receiving at the first computer a request to open a communication channel; and

opening the communication channel.

- 18. The method of claim 17 wherein encrypting the modified second random nonce $N_{_{A_{B}}}\!+\!1$ includes encrypting it with the first initialization vector $I_{_{B}}$.
- 19. The method of claim 17 wherein the communication channel is a two-way communication channel.
- 20. A computer readable storage medium containing executable computer program instructions which, when executed,

 Application 62 Attny Docket 04860P2441

cause a first computer system to perform a cryptographic method including:

receiving at the first computer system a second public key M_{a} ;

generating at least one of a first session key $K_{_{\! B}}$ and a first secret $S_{_{\! B}}$ based on the second public key $M_{_{\! A}}$;

generating a first random nonce N_B ;

encrypting the first random nonce $N_{_{\! B}}$ with at least one of the first session key $K_{_{\! B}}$ and the first secret $S_{_{\! B}}$ to obtain an encrypted random nonce;

transmitting the encrypted random nonce from the first computer system;

in response to transmitting the encrypted random nonce, receiving at the first computer system a data signal containing a modification of the first random nonce $N_{\scriptscriptstyle B}\!+\!1$; and

if the received modification of the first random nonce $\rm N_{\rm s}{+}1$ was correctly performed than performing at least one of

- (i) opening a communication link at the first computer system and
 - (ii) generating a first initialization vector $\mathbf{I}_{\scriptscriptstyle{\mathrm{B}}}.$
- 21. A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a computer cryptographic method through a network, the method comprising:

receiving at a first computer system a second public key $\mathbf{M}_{\!\scriptscriptstyle{A}};$

generating at least one of a first session key $K_{_{\! B}}$ and a first secret $S_{_{\! B}}$ based on the second public key $M_{_{\! A}}$;

generating a first random nonce N_B;

encrypting the first random nonce $N_{_{\! B}}$ with at least one of the first session key $K_{_{\! B}}$ and the first secret $S_{_{\! B}}$ to obtain an encrypted random nonce;

transmitting the encrypted random nonce from the first computer system to the second computer system;

in response to transmitting the encrypted random nonce, receiving at the first computer system a data signal containing a modification of the first random nonce $N_{\scriptscriptstyle B}\!+\!1$; and

if the received modification of the first random nonce $\ensuremath{N_{\scriptscriptstyle R}}\xspace+1$ was correctly performed then performing at least one of

- (i) opening a communication link between the first computer system and the second computer system, and
 - (ii) generating a first initialization vector I,
- 22. A computer system for performing a cryptographic through a network, the computer system comprising:
 - a processor;

a network interface coupled to the network and coupled to the processor, the network interface receiving a page request including information on at least one of a user identification and a user password; and a file storage device coupled to the processor, the file storage device storing copies of at least one of a user identification and a user password under control of a file management system, and wherein the processor performs a method, including

receiving at the processor a second public key $M_{\mathtt{A}}$; generating at least one of a first session key $K_{\mathtt{B}}$ and a first secret $S_{\mathtt{B}}$ based on the second public key $M_{\mathtt{A}}$;

generating a first random nonce $N_{\scriptscriptstyle B}$;

encrypting the first random nonce $N_{_{\! B}}$ with at least one of the first session key $K_{_{\! B}}$ and the first secret $S_{_{\! B}}$ to obtain an encrypted random nonce;

transmitting the encrypted random nonce from the processor;

in response to transmitting the encrypted random nonce, receiving at the processor a data signal containing a modification of the first random nonce $N_{\scriptscriptstyle B}\!+\!1;$ and

if the received modification of the first random nonce $N_{\rm s}+1$ was correctly performed then performing at least one of

- (i) opening a communication link at the processor and
- (ii) generating a first initialization vector I_B.
- 23. The computer system of claim 22 wherein the network may be a network operating according to a hypertext transfer protocol.
 - 24. A cryptographic method, comprising:

receiving at a first entity a second public key $M_{_{\!A}}$ and a second random number $N_{_{\!A}}$ encrypted with a second password $P_{_{\!A}}$;

generating at least one of a first session key $K_{_{\! B}}$ and a first secret $S_{_{\! B}}$ based on the second public key $M_{_{\! A}};$

employing a first password $P_{\scriptscriptstyle B}$ to retrieve the second random number $N_{\scriptscriptstyle A}$ from the second random number $N_{\scriptscriptstyle A}$ encrypted with the second password $P_{\scriptscriptstyle A}$;

modifying the second random number $N_{_{\!A}}$ to obtain a modified second random number $N_{_{\!A}}\!+\!1$;

encrypting the modified second random number $N_{\scriptscriptstyle A_B}\!+\!1$ with at least one of the first session key $K_{\scriptscriptstyle B}$ and the first secret $S_{\scriptscriptstyle B}$ to obtain an encrypted random package;

transmitting the encrypted random package from the first entity; and

in response to transmitting the encrypted random package, at least one of

- (i) receiving at the first entity a request to open a communication link, and
- (ii) receiving at the first entity an encrypted data package.
- 25. The method of claim 24, wherein receiving the second random number $N_{\scriptscriptstyle A}$ encrypted with the second password $P_{\scriptscriptstyle A}$ includes receiving the second random number $N_{\scriptscriptstyle A}$ superencrypted with the second password $P_{\scriptscriptstyle A}$ and at least one of the second password $P_{\scriptscriptstyle A}$, the second public key $M_{\scriptscriptstyle A}$, a parameter $\alpha_{\scriptscriptstyle A}$, and a parameter $\beta_{\scriptscriptstyle B}$.

26. The method of claim 24 wherein generating the first session key $K_{\mbox{\tiny B}}$ includes

presenting a numeric parameter $\textbf{K}_{_{\!B}},$ generating a first random number $\textbf{R}_{_{\!B}},$ and

setting the first session key $K_{_{\! B}}$ equal to the first public key $M_{_{\! A}}$ raised to the exponential power of the first random number $R_{_{\! B}}$, modulo parameter $\mathfrak{S}_{_{\! B}}$.

- 27. The method of claim 24 wherein generating the first secret $S_{\scriptscriptstyle B}$ includes employing a combining function, $f_{\scriptscriptstyle B}$.
- 28. The method of claim 27 wherein employing the combining function, $f_{\rm B}$, includes

generating a first public key $M_{_{\! B}}$, and

employing the combining function, $f_{\rm B}$, on a first password $P_{\rm B}$ and on at least one of the second public key $M_{\rm A}$ and the first public key $M_{\rm B}$.

29. The method of claim 28 wherein employing the combining function, $f_{\rm B}$, on a first password $P_{\rm B}$ and on at least one of the second public key $M_{\rm A}$ and the first public key $M_{\rm B}$ includes

combining the second public key $M_{_{\! R}}$ and the first public key $M_{_{\! R}}$ with the first password $P_{_{\! R}}$ to produce a first result, and

hashing the first result with a secure hash.

- 30. The method of claim 29 wherein the secure hash is a one-way hash function.
- 31. The method of claim 30 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvennyl Standard.
- 32. The method of claim 27 wherein employing the combining function, $f_{\rm B}$, includes employing a plurality of combining functions to produce the first secret $S_{\rm B}$, wherein each of the plurality of combining function produces a prior result, wherein employing a first combining function includes generating a first public key $M_{\rm B}$, and

employing the first combining function on a first password $P_{_{\!B}}$ and on at least one of the second public key $M_{_{\!A}}$ and the first public key $M_{_{\!B}},$ and

employing each subsequent combining functions includes employing a combining function on a prior result and on at least one of the second public key $M_{_{\! B}}$, the first password $P_{_{\! B}}$, and the first public key $M_{_{\! B}}$, wherein the prior result produced by the last combining function is the first secret $S_{_{\! B}}$.

33. The method of claim 24, wherein encrypting the modified second random number $N_{_{A_{\mathrm{B}}}}\!+\!1$ includes superencrypting the modified second random number $N_{_{A_{\mathrm{R}}}}\!+\!1$.

34. The method of claim 24, further including: generating a first random number $N_{\scriptscriptstyle B}$ wherein encrypting the modified second random number $N_{\scriptscriptstyle A_{\scriptscriptstyle B}}+1$ includes encrypting as a first data signal the first random number $N_{\scriptscriptstyle A_{\scriptscriptstyle B}}$ and the modified second random number $N_{\scriptscriptstyle A_{\scriptscriptstyle B}}+1$, and wherein

receiving at the first computer an encrypted data package includes receiving a second data signal encrypted to at least one of a second session key $K_{_{\!A}}$ and a second secret $S_{_{\!A}}$, the second data signal including a second initialization vector $I_{_{\!A}}$ and a modified first random nonce $N_{_{\!B}}\!+\!1$;

retrieving the modified first random nonce $N_{\scriptscriptstyle B}\!+\!1$ from the encrypted data package; and

if the retrieved modification of the first random nonce $\ensuremath{\text{N}_{\text{s}}}\xspace+1$ less was correctly performed then

sending from the first entity a request to open a two way communication channel.

- 35. The method of claim 34 which includes determining whether the retrieved modification was correctly performed.
- 36. The method of claim 35 wherein determining whether the retrieved modification was correctly performed includes checking whether the retrieved modification of the first random nonce $N_{\text{B}}+1$ as applied to the first random nonce $N_{\text{B}}+1$ by the first entity.

- 37. The method of claim 35 wherein determining whether the received modification was correctly performed includes checking whether the received modification of the first random nonce N_s+1 less a modification thereof as applied thereto by the first entity equals the first random nonce N_s+1 .
- 38. A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system to perform a cryptographic method including:

receiving at the first computer system a second public key $M_{_{\!A}}$ and a second random number $N_{_{\!A}}$ encrypted with a second password $P_{_{\!A}}$;

generating at least one of a first session key $K_{_{\! B}}$ and a first secret $S_{_{\! R}}$ based on the second public key $M_{_{\! A}}$;

employing a first password $P_{_B}$ to retrieve the second random number $N_{_A}$ from the second random number $N_{_A}$ encrypted with the second password $P_{_A};$

modifying the second random number $N_{\tt a}$ to obtain a modified second random number $N_{\tt a}{+}1;$

encrypting the modified second random number $N_{_{\rm A}}\!+\!1$ with at least one of the first session key $K_{_{\rm B}}$ and the first secret $S_{_{\rm B}}$ to obtain an encrypted random package;

transmitting the encrypted random package from the first computer system; and

in response to transmitting the encrypted random package, at least one of

- (i) receiving at the first computer system a request to open a communication link, and
- (ii) receiving at the first computer system an encrypted data package.
- 39. A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a cryptographic method through a network, the method including:

receiving at the first computer system a second public key $M_{_{\!A}}$ and a second random number $N_{_{\!A}}$ encrypted with a second password $P_{_{\!A}}$;

generating at least one of a first session key K_B and a first secret S_B based on the second public key M_A ;

employing a first password $P_{\scriptscriptstyle B}$ to retrieve the second random number $N_{\scriptscriptstyle A}$ from the second random number $N_{\scriptscriptstyle A}$ encrypted with the second password $P_{\scriptscriptstyle A}$;

modifying the second random number $N_{_{\!A}}$ to obtain a modified second random number $N_{_{\!A}}\!+\!1;$

encrypting the modified second random number $N_{\mathtt{A}}+1$ with at least one of the first session key $K_{\mathtt{B}}$ and the first secret $S_{\mathtt{B}}$ to obtain an encrypted random package;

transmitting the encrypted random package from the first computer system; and

in response to transmitting the encrypted random package, at least one of

- (i) receiving at the first computer system a request to open a communication link, and
- (ii) receiving at the first computer system an encrypted data package.
- 40. A computer system for performing a cryptographic method through a network, the computer system comprising:
 - a processor;
- a network interface coupled to the network and coupled to the processor, the network interface receiving a page request including information on at least one of a user identification and a user password; and
- a file storage device coupled to the processor, the file storage device storing copies of at least one of a user identification and a user password under control of a file management system, and wherein the processor performs a method, including

receiving at the processor a second public key M_{A} and a second random number N_{A} encrypted with a second password P_{A} ;

generating at least one of a first session key $K_{_{\! B}}$ and a first secret $S_{_{\! B}}$ based on the second public key $M_{_{\! B}}$;

employing a first password $P_{\scriptscriptstyle B}$ to retrieve the second random number $N_{\scriptscriptstyle A}$ from the second random number $N_{\scriptscriptstyle A}$ encrypted with the second password $P_{\scriptscriptstyle A}$;

modifying the second random number $N_{_{\!A}}$ to obtain a modified second random number $N_{_{\!A}}\!+\!1$;

encrypting the modified second random number $N_{_{\! A}}\!+\!1$ with at least one of the first session key $K_{_{\! B}}$ and the first secret $S_{_{\! B}}$ to obtain an encrypted random package;

transmitting the encrypted random package from the processor; and

in response to transmitting the encrypted random package, at least one of

- (i) receiving at the processor a request to open a communication link, and
- (ii) receiving at the processor an encrypted data package.
- 41. The computer system of claim 40 wherein the network may be a network operating according to a hypertext transfer protocol.