WILLMORE SURFACES AND ELASTIC CURVES

from \mathbb{L}^3 to 3-dimensional Generalized Robertson-Walker spacetimes and static spacetimes

Magdalena Caballero

This talk is based on

M. Barros, $_$ and M. Ortega, *Rotational Surfaces in* \mathbb{L}^3 *and Solutions of the Nonlinear Sigma Model.* Communications in Mathematical Physics (to appear).

_, Willmore surfaces in Generalized Robertson-Walker spacetimes and static spacetimes. (In progress)

INTRODUCTION

WILLMORE SURFACES

The Willmore functional

$$\mathfrak{W}(\phi) = \int_{\mathcal{S}} (\mathcal{H}_{\phi}^2 + \bar{R}_{\phi}) dA_{\phi} + \int_{\phi(\partial \mathcal{S})} k^{\phi} ds,$$

 $\phi: S \to \bar{M} \longrightarrow \text{non-degenerate immersion of a surface in a Lorentzian 3-manifold } (\bar{M}, \bar{g})$

 H_{ϕ} — mean curvature of ϕ

 \bar{R}_{ϕ} sectional curvature of $\phi(S)$ in \bar{M}

 k^{ϕ} geodesic curvature of $\phi(\partial S)$ in $\phi(S)$

 $\mathfrak W$ is invariant under conformal changes of the metric of $\bar M$.

its critical points are called willinore surfaces

WILLMORE SURFACES

The Willmore functional

$$\mathfrak{W}(\phi) = \int_{\mathcal{S}} (H_{\phi}^2 + \bar{R}_{\phi}) dA_{\phi} + \int_{\phi(\partial S)} k^{\phi} ds,$$

 $\phi: S \to \bar{M} \longrightarrow \text{non-degenerate immersion of a surface in a Lorentzian 3-manifold }(\bar{M}, \bar{g})$

 H_{ϕ} — mean curvature of ϕ

 \bar{R}_{ϕ} — sectional curvature of $\phi(S)$ in \bar{M}

 k^{ϕ} geodesic curvature of $\phi(\partial S)$ in $\phi(S)$

 $\mathfrak W$ is invariant under conformal changes of the metric of $\bar M$.

Its critical points are called Willmore surfaces

ELASTIC CURVES

Elastic energy:

$$\mathfrak{E}^{\lambda}(\alpha) = \int_{\alpha} (k^2 + \lambda) \qquad \lambda \geq 0$$

 (\bar{M}, \bar{g}) — Riemmanian or Lorentzian surface

 $\alpha: I \to \overline{M} \longrightarrow \text{non-degenerate immersed curve with curvature } k$

Its critical points are called elastic curves.

 $\lambda = 0 \longrightarrow \text{free elastic curves}$

ELASTIC CURVES

Elastic energy:

$$\mathfrak{E}^{\lambda}(\alpha) = \int_{\alpha} (k^2 + \lambda) \qquad \lambda \geq 0$$

 (\bar{M}, \bar{g}) — Riemmanian or Lorentzian surface

 $\alpha: I \to \overline{M} \longrightarrow \text{non-degenerate immersed curve with curvature } k$

Its critical points are called elastic curves.

 $\lambda = 0 \longrightarrow$ free elastic curves

LINK

Willmore surfaces	generated by	Elastic curves	
of revolution in \mathbb{L}^3 with spacelike axis		anti de Sitter plane (free)	Barros,_ and Ortega
of revolution in \mathbb{L}^3 with null axis		anti de Sitter plane (free)	Barros,_ and Ortega
$\mathbb{S}^1 \times \gamma$ in the warped product $(\mathbb{S}^1 \times M, \varepsilon dt^2 + f^2g)$		γ in (\emph{M},\emph{g})	Barros

IN ALL THE PREVIOUS RESULTS

Given:

- $(\bar{M}, \bar{g}) \longrightarrow \text{Lorentzian 3-manifold}$
- $G \longrightarrow 1$ -parameter subgroup of isometries

They assure:

 ${\it G}$ -invariant Willmore surfaces in $({ar M},{ar g})$ are generated by

elastic curves in certain surface (either Riemannian or Lorentzian)

NATURAL QUESTION

What must (\bar{M}, \bar{g}) and G satisfy to obtain the previous thesis?

IN ALL THE PREVIOUS RESULTS

Given:

- $(\bar{M}, \bar{g}) \longrightarrow \text{Lorentzian 3-manifold}$
- $G \longrightarrow 1$ -parameter subgroup of isometries

They assure:

G-invariant Willmore surfaces in (\bar{M}, \bar{g}) are generated by

elastic curves in certain surface (either Riemannian or Lorentzian)

NATURAL QUESTION

What must (\bar{M}, \bar{g}) and G satisfy to obtain the previous thesis?

TECHNIQUE

In examples 1 and 3

G is COMPACT

The compactness is the key point in the proof of both results.

IDEA

Extend the technique used to prove 2 to get results for

G-invariant Willmore surfaces in Lorentzian 3-manifolds,

G being a non necessarily compact 1-parameter subgroup of isometries

TECHNIQUE

In examples 1 and 3

G is COMPACT

The compactness is the key point in the proof of both results.

IDEA

Extend the technique used to prove 2 to get results for

G-invariant Willmore surfaces in Lorentzian 3-manifolds,

G being a non necessarily compact 1-parameter subgroup of isometries

ROTATIONAL WILLMORE SURFACES WITH NULL AXIS IN \mathbb{L}^3

1^{st} variation of $\mathfrak W$

IN A LORENTZIAN 3-MANIFOLD

THEOREM

BARROS, __ AND ORTEGA

 $\phi: \mathcal{S} \to \bar{M}$ is a Willmore surface if and only if

$$\int_{\mathcal{S}} \bar{g}(\mathfrak{R}(\mathbb{H}_{\phi}) + \varepsilon N_{\phi}(\bar{R}^{\mathbf{V}})N_{\phi}, \mathbf{V}^{\perp}) dA = 0,$$

for any variational field V compatible with the boundary conditions.

1^{st} variation of $\mathfrak W$

IN A LORENTZIAN 3-MANIFOLD

THEOREM

BARROS, __ AND ORTEGA

 $\phi: \mathcal{S} \to \bar{M}$ is a Willmore surface if and only if

$$\int_{\mathcal{S}} \bar{g}(\mathfrak{R}(\mathbb{H}_{\phi}) + \varepsilon N_{\phi}(\bar{R}^{\mathbf{V}}) N_{\phi}, \mathbf{V}^{\perp}) dA = 0,$$

for any variational field **V** compatible with the boundary conditions.

 $\mathbb{H}_{\phi} \longrightarrow$ mean curvature vector field

$$\mathfrak{R} = \varepsilon(\triangle + \tilde{A}) + (\operatorname{Ric}(N_{\phi}, N_{\phi}) - 2(H_{\phi}^2 + \bar{R}_{\phi})) \mathbf{I}$$

is a kind of Schrödinger operator, being

△ → Laplacian respect to the normal connection

 $\tilde{A} \longrightarrow \text{Simons' operator}$

Ric → Ricci curvature

1^{st} variation of $\mathfrak W$

IN A LORENTZIAN 3-MANIFOLD

THEOREM BARROS, _ AND ORTEGA

 $\phi: \mathcal{S} \to \bar{M}$ is a Willmore surface if and only if

$$\int_{\mathcal{S}} \bar{g}(\mathfrak{R}(\mathbb{H}_{\phi}) + \varepsilon N_{\phi}(\bar{P}^{\mathbf{V}})N_{\phi}, \mathbf{V}^{\perp}) dA = 0,$$

for any variational field V compatible with the boundary conditions.

 $\varepsilon \longrightarrow \text{signature of } \phi$

 $N_{\phi} \longrightarrow$ Gauss map along ϕ

 $\overline{R}^{V}(m, v) \rightarrow$ sectional curvature of the level surface v, at the point m

ROTATIONAL WILLMORE SURFACES IN \mathbb{L}^3 WITH NULL AXIS

Let $\phi: S \longrightarrow \mathbb{L}^3$ be a rotational surface with null axis.

 $\phi(\mathcal{S})$ is contained in a semi-space of \mathbb{L}^3 conformal to

$$\mathcal{P} \times AdS_2$$
,

the product of an anti de Sitter plane and a spacelike parabola.

 $\phi(S)$ is conformal to

$$\mathcal{P} \times \gamma$$
,

where γ is a non-degenerate curve in AdS₂.

When
$$\bar{\textit{M}} = \mathcal{P} \times \text{AdS}_2$$
 and $\textit{S} = \mathcal{P} \times \gamma$,

$$N_{\phi}(\mathsf{R}^{\mathsf{V}})=0,$$

so $\mathcal{P} \times \gamma$ is Willmore if and only if

$$\int_{\gamma imes\mathcal{P}}ar{g}(\mathfrak{R}(\mathbb{H}_\phi),\mathbf{V}^\perp)d\mathsf{A}=0,$$

if and only if

$$\Re(\mathbb{H}_{\phi})=0$$

if and only if

When
$$\overline{M} = \mathcal{P} \times AdS_2$$
 and $S = \mathcal{P} \times \gamma$,

$$N_{\phi}(\mathsf{R}^{\mathbf{V}})=0$$
,

so $\mathcal{P} \times \gamma$ is Willmore if and only if

$$\int_{\gamma imes\mathcal{P}}ar{g}(\mathfrak{R}(\mathbb{H}_\phi),\mathbf{V}^\perp)d extit{A}=0,$$

if and only if

$$\Re(\mathbb{H}_{\phi})=0$$

if and only if

When $\overline{M} = \mathcal{P} \times AdS_2$ and $S = \mathcal{P} \times \gamma$,

$$N_{\phi}(\mathsf{R}^{\mathbf{V}})=0$$
,

so $\mathcal{P} \times \gamma$ is Willmore if and only if

$$\int_{\gamma imes\mathcal{P}}ar{g}(\mathfrak{R}(\mathbb{H}_\phi),\mathbf{V}^\perp)d extit{A}=0,$$

if and only if

$$\mathfrak{R}(\mathbb{H}_{\phi})=0$$

if and only if

When $\overline{M} = \mathcal{P} \times AdS_2$ and $S = \mathcal{P} \times \gamma$,

$$N_{\phi}(\mathsf{R}^{\mathbf{V}})=0,$$

so $\mathcal{P} \times \gamma$ is Willmore if and only if

$$\int_{\gamma imes\mathcal{P}}ar{g}(\mathfrak{R}(\mathbb{H}_\phi),\mathbf{V}^\perp)d extit{A}=0,$$

if and only if

$$\mathfrak{R}(\mathbb{H}_{\phi})=0$$

if and only if

$$(M^1, ds^2)$$
 \longrightarrow 1-dimensional Riemannian manifold (M, g) \longrightarrow Riemannian or Lorentzian surface

$$(ar{M},ar{g})=(M^1 imes M,\,ar{arepsilon}\, ext{ds}^2+g), \qquad \quad ar{arepsilon}=\left\{egin{array}{ccc} -1 & ext{if} & g & ext{Riemannian} \ 1 & ext{if} & g & ext{Lorentzian} \end{array}
ight.$$

$$S = M^1 \times \gamma$$
,

 γ non-degenerate curve in M

Is $M^1 \times \gamma$ Willmore?

$$N_{\phi}(\mathsf{R}^{\mathsf{V}})=0,$$

$$(M^1, ds^2) \longrightarrow$$
 1-dimensional Riemannian manifold $(M, g) \longrightarrow$ Riemannian or Lorentzian surface

$$(ar{M},ar{g})=(M^1 imes M,\,ar{arepsilon}\,ds^2+g), \qquad \quad ar{arepsilon}=\left\{egin{array}{ll} -1 & ext{if} & g & ext{Riemannian} \ 1 & ext{if} & g & ext{Lorentzian} \end{array}
ight.$$

$$S = M^1 \times \gamma$$
,

 γ non-degenerate curve in M

Is $M^1 \times \gamma$ Willmore?

$$N_{\phi}(\mathsf{R}^{\mathsf{V}})=0,$$

$$(M^1, ds^2)$$
 \longrightarrow 1-dimensional Riemannian manifold (M, g) \longrightarrow Riemannian or Lorentzian surface

$$(ar{\emph{M}},ar{\emph{g}})=(\emph{M}^1 imes\emph{M},\,ar{\emph{arepsilon}}\,\emph{ds}^2+\emph{g}), \qquad \ \ ar{\emph{arepsilon}}=\left\{egin{array}{ll} -1 & ext{if} & \emph{g} & ext{Riemannian} \ 1 & ext{if} & \emph{g} & ext{Lorentzian} \end{array}
ight.$$

$$S = M^1 \times \gamma$$
,

 γ non-degenerate curve in M

Is $M^1 \times \gamma$ Willmore?

$$N_{\phi}(ar{R}^{\mathbf{V}})=0,$$

so $M^1 \times \gamma$ is Willmore if and only if

$$\int_{M^1 imes\gamma}ar{g}(\mathfrak{R}(\mathbb{H}_\phi),\mathbf{V}^\perp)d\mathcal{A}=0,$$

if and only if

$$\mathfrak{R}(\mathbb{H}_{\phi})=0$$

if and only if

 γ is a free elastic curve in (M, g)

THEOREM

$$M^1 \times \gamma$$
 is a Willmore surface in $(M^1 \times M, \bar{\varepsilon} ds^2 + g)$

 γ is a free elastic curve in (M, g)

so $M^1 \times \gamma$ is Willmore if and only if

$$\int_{M^1 imes\gamma}ar{g}(\mathfrak{R}(\mathbb{H}_\phi),\mathbf{V}^\perp)d\mathcal{A}=0,$$

if and only if

$$\mathfrak{R}(\mathbb{H}_{\phi})=0$$

if and only if

 γ is a free elastic curve in (M, g)

THEOREM

$$\mathit{M}^1 imes \gamma$$
 is a Willmore surface in $(\mathit{M}^1 imes \mathit{M}, \ \bar{\varepsilon} \ \mathit{ds}^2 + \mathit{g}$

 γ is a free elastic curve in (M, g)

so $M^1 \times \gamma$ is Willmore if and only if

$$\int_{ extit{M}^1 imes \gamma} ar{g}(\mathfrak{R}(\mathbb{H}_\phi), \mathbf{V}^\perp) d extit{A} = 0,$$

if and only if

$$\mathfrak{R}(\mathbb{H}_\phi)=\mathsf{0}$$

if and only if

 γ is a free elastic curve in (M, g)

THEOREM

$$\textit{M}^{1} \times \gamma$$
 is a Willmore surface in $(\textit{M}^{1} \times \textit{M}, \bar{\varepsilon} \, \textit{ds}^{2} + \textit{g})$

 γ is a free elastic curve in (M, g)

IN A 3-DIM WARPED PRODUCT

Consider the warped product spacetimes

$$M^1 \times_f M = (M^1 \times M, \bar{\varepsilon} ds^2 + f^2 g)$$
 and $M \times_h M^1 = (M^1 \times M, \bar{\varepsilon} h^2 ds^2 + g),$
where $f : M^1 \longrightarrow \mathbb{R}^+$ and $h : M \longrightarrow \mathbb{R}^+$ are smooth

Since ${\mathfrak W}$ is invariant under conformal changes of the metric

COROLLARY

$$M^1 \times \gamma$$
 is Willmore in $M^1 \times_f M$

$$\updownarrow$$
 γ is free elastic in (M, g)

$$M^1 \times \gamma$$
 is Willmore in $M \times_h M^1$

$$\uparrow \qquad \qquad \qquad \gamma$$
 is free elastic in $(M, \frac{1}{h^2}g)$

IN A 3-DIM WARPED PRODUCT

Consider the warped product spacetimes

$$M^1 \times_f M = (M^1 \times M, \bar{\varepsilon} ds^2 + f^2 g)$$
 and $M \times_h M^1 = (M^1 \times M, \bar{\varepsilon} h^2 ds^2 + g),$

where $f: M^1 \longrightarrow \mathbb{R}^+$ and $h: M \longrightarrow \mathbb{R}^+$ are smooth

Since ${\mathfrak W}$ is invariant under conformal changes of the metric

IN GENERALIZED ROBERTSON-WALKER AND STANDARD STATIC SPACETIMES

When M^1 is an interval and (M, g) is Riemannian

COROLLARY

 $I \times \gamma$ is Willmore in the Generalized Robertson-Walker spacetime $I \times_f M$

1

 γ is a free elastic curve in (M, g)

COROLLARY

 $I \times \gamma$ is Willmore in the standard static spacetime $M \times_h I$

1

 γ is a free elastic curve in $(M, \frac{1}{h^2}g)$

WILLMORE SURFACES IN LORENTZIAN 3-MANIFOLDS

INVARIANT UNDER A 1-PARAMETER SUBGROUP OF ISOMETRIES

STATIC AND STANDARD STATIC VECTOR FIELDS

Let (\bar{M}, \bar{g}) be a Lorentzian 3-manifold.

A timelike Killing vector field ξ in (\bar{M}, \bar{g}) is called

- static: if it is irrotational
- · standard static: if there exists an isometry

$$\chi: (\bar{M}, \bar{g}) \longrightarrow (\mathbb{R} \times M, -f^2 dt^2 + g),$$

where $d\chi(\xi) = \partial_t$, $\xi(f \circ \chi) = 0$ and (M, g) is a Riemannian surface.

Given $G \longrightarrow 1$ -parameter subgroup of isometries with timelike Killing vector field ξ

COROLLARY

If ξ is standard static,

G-invariant Willmore surfaces in (\bar{M}, \bar{g}) are generated by

elastic curves in
$$(M, \frac{-1}{\bar{g}(\xi, \xi)}\bar{g})$$

 \emph{M} being any maximal integral surface of the orthogonal distribution of ξ

Applying

LEMMA M.SÁNCHEZ

Let ξ be a static vector field in (\bar{M}, \bar{g}) and let (\tilde{M}, \tilde{g}) , $\Pi : \tilde{M} \to \bar{M}$, $\tilde{g} = \Pi^* \bar{g}$, its universal Lorentzian covering. If ξ is complete, then (\tilde{M}, \tilde{g}) is standard static.

We get

THEOREM

If ξ is static.

G-invariant Willmore surfaces are generated by elastic curves in $(M, \frac{-1}{g(\xi, \xi)}g)$

M being any maximal integral surface of the orthogonal distribution of a

Applying

LEMMA M SÁNCHEZ

Let ξ be a static vector field in (\bar{M}, \bar{g}) and let (\tilde{M}, \tilde{g}) , $\Pi : \tilde{M} \to \bar{M}$, $\tilde{g} = \Pi^* \bar{g}$, its universal Lorentzian covering. If ξ is complete, then (\tilde{M}, \tilde{g}) is standard static.

We get

THEOREM

If ξ is static,

G-invariant Willmore surfaces are generated by elastic curves in $(M, \frac{-1}{g(\xi, \xi)}g)$

M being any maximal integral surface of the orthogonal distribution of ξ

With similar techniques, the following result is obtained

Given $G \longrightarrow 1$ -parameter subgroup of isometries with spacelike Killing vector field ξ .

THEOREM

If ξ has no zero and it is irrotational, then

G-invariant Willmore surfaces are generated by elastic curves in $(M, \frac{1}{g(\xi, \xi)}g)$

 \emph{M} being any maximal integral surface of the orthogonal distribution of ξ

THE END