الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

دورة: 2021

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على (04) صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

إن مفهومي القوة والحركة يحظيان باهتمام خاص في علم الميكانيك، بالخصوص في الحياة اليومية مثل جر، دفع ورمي الأجسام، ...

يهدف هذا التمرين إلى تحديد شدة قوة الجر \overline{F} التي تطبقها التلميذة لجر محفظتها على مسار مستقيم أفقى أثناء ذهابها إلى المدرسة.

الشكل التخطيطي الوصفي لجر المحفظة (S)على مستوى أفقى:

خرجت التلميذة "منى" من المنزل للذهاب إلى المدرسة وعند اقترابها منها، لاحظت أن الحارس يستعد لغلق باب الدخول فأسرعت الخطى عند لحظة نعتبرها مبدأ لقياس الأزمنة t=0 لتلتحق بالمدرسة قبل غلق الباب وهي تجر محفظتها المزودة بعجلات صغيرة على مسار مستقيم أفقي مطبقة عليها قوة ثابتة \overline{f} يصنع حاملها زاوية $\alpha=60$ مع المستوي الأفقي (الشكل 1).

تخضع المحفظة أثناء حركتها لقوة احتكاك $ilde{f}$ ثابتة ومعاكسة لشعاع السرعة شدتها 100. نهمل تأثير الهواء.

m = 3kg كتلة المحفظة: 4

◄ تطور سرعة مركز عطالة المحفظة على المسار المستقيم الأفقي بدلالة الزمن (الشكل2).

1. باستغلال المنحنى البياني (الشكل2):

1.1. حدِّد طبيعة حركة مركز عطالة المحفظة (S) واحسب تسارعه.

2.1. احسب المسافة المقطوعة بين اللحظة t=0 ولحظة غلق باب المدرسة عند وصول التلميذة t=50

2. ذكِّر بنص القانون الثاني لنيوتن.

3. أعد رسم الشكل 1 ومثِّل عليه القوى الخارجية المطبقة على المحفظة (S) خلال حركتها.

- (S): (S) القانون الثانى لنيوتن على المحفظة (S):
- 1.4. بيّن أن المعادلة التفاضلية لحركة مركز عطالة المحفظة (S) تعطى بالعبارة الموالية:

$$\frac{d^2x}{dt^2} = \frac{F \cdot \cos(\alpha) - f}{m}$$

- \overrightarrow{F} المطبقة على المحفظة (S).
- 5. إذا أرادت التلميذة قطع المسافة السابقة بسرعة ثابتة، فما هي شدة القوة \overline{f} الواجب تطبيقها على المحفظة (S) في هذه الحالة؟ استنتج أقل قيمة للسرعة التي ينبغي أن تتحرك بها للوصول إلى باب المدرسة قبل غلقه.

الصورة: نيزك هوبا https://ar.m.wikipedia.org

التمرين الثاني: (07 نقاط)

نيزك هوبا، أكبر قطعة حديدية طبيعية على سطح الأرض.

- موقع الاكتشاف: ناميبيا
- تاريخ الاكتشاف: 1920
- $t_{1/} = 2,62 \times 10^6 \ ans : 60$ زمن نصف عمر الحديد
- عمر النيزك هوبا عند تاريخ الاكتشاف: حوالي ans×104

الهدف: توظيف المخطط (N,Z) والتأريخ بالاعتماد على قانون التناقص الإشعاعي.

 (α) الفازوية غير المستقرة إلى أنوية مستقرة وفق آلية التفكك الإشعاعي، يرافق ذلك انبعاث إشعاعات ألفا (γ) وغاما (β).

ثُنمذج سلسلة التفككات المتتالية لنواة الراديوم $^{226}_{88}Ra$ من عائلتها المشعة كما يلى:

$$^{226}_{88}Ra \xrightarrow{\cdots} ^{\cdots} ^{\cdots}_{86}Rn \xrightarrow{\alpha} ^{218}Po \xrightarrow{\cdots} ^{\cdots}_{82}Pb \xrightarrow{\cdots} ^{\cdots}_{83}Bi \xrightarrow{\cdots} ^{214}Po$$

- 1.1. أعط تعريف العائلة المشعة.
- 2.1. أكمل الفراغات في سلسلة تفككات نواة الراديوم 226.
 - (N,Z) باستغلال الشكل (N,Z) المستخرج من المخطط (N,Z)
 - 1.2. اكتب معادلة التفكك الأول لنواة البولونيوم 214.
 - 2.2. بين طبيعة النشاط الإشعاعي للنواة البنت الناتجة عن هذا التفكك.
 - 3.2. استخرج من الشكل3 النواة البنت المستقرة من العائلة المشعة للراديوم 226 مع كتابة سلسلة التفككات الحادثة.
- مبدأ التأريخ بالنشاط الإشعاعي هو عملية لتحديد عمر الصخور، الحفربات، النيازك، ...
- 1.3. اذكر قانون التناقص الإشعاعي لعدد الأنوية غير المتفككة N(t)لعينة تحتوي في البداية N(t) نواة مشعة.

- λ أعط تعريف $t_{1/2}$ زمن نصف العمر لعينة مشعة ثمّ أثبت أنَّ العلاقة النظرية لزمن نصف العمر بدلالة $t_{1/2} = \frac{ln2}{\lambda}$: ثابت النشاط الإشعاعي هي: $t_{1/2} = \frac{ln2}{\lambda}$
- 3.3. تأكد من عمر النيزك هوبا سنة اكتشافه علما أنَّ النسبة بين عدد أنوية الحديد 60المتبقية سنة اكتشافه في $\frac{N\binom{60}{26}Fe}{N_0\binom{60}{26}Fe} = 0,9789$ العينة وعدد أنويته الابتدائية هي: 0,9789 = 0,9789

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

يستعمل حمض اللاكتيك $(C_3H_6O_3)$ كمادة مضافة في الصناعات الغذائية وفي الصيدلة ضد بعض أمراض الجلد كما يستعمل في التخلص من الترسبات التي تتشكل خلال الاستعمال المتكرر للأواني مثل آلة تحضير القهوة وهو قابل للتفكك ولا يهاجم الأجزاء المعدنية للآلة ... الحليب الطازج قليل الحموضة، يصبح غير صالح للاستهلاك كلما كانت حمضيته كبيرة.

تسمح المراقبة المستمرة لدرجة حموضة الحليب بالتاكد من جودته اي من صلاحية تناوله.

يهدف هذا التمرين إلى دراسة المدة الزمنية اللازمة للتخلص من الترسبات ومراقبة جودة الحليب.

معطيات:

- $M(CaCO_3) = 100 \ g \cdot mol^{-1}$ الكتلة المولية الجزيئية لكربونات الكالسيوم:
 - A^- نرمز لحمض اللاكتيك بـ AH ولأساسه المرافق ب
 - $M(C_3H_6O_3) = 90 g \cdot mol^{-1}$: الكتلة المولية الجزيئية لحمض اللاكتيك

أ- دراسة المدة الزمنية اللازمة للتخلص من الترسبات

يتفاعل حمض اللاكتيك مع كربونات الكالسيوم $(CaCO_3(s))$ وفق تفاعل تام ينمذج بالمعادلة التالية:

$$CaCO_3(s) + 2AH(aq) = Ca^{2+}(aq) + 2A^{-}(aq) + H_2O(\ell) + CO_2(g)$$

ندخل كتلة m من $CaCO_3(s)$ في بالون يحتوي على محلول AH حجمه AH في بالون يحتوي على بالون يحتوي على محلول $V=10\,m$ حجمه $V=10\,m$ خدرجة حرارة ثابتة $V=10\,m$ في بالون يحتوي على محلول $V=10\,m$ خدرجة حرارة ثابتة $V=10\,m$ في بالون يحتوي على محلول $V=10\,m$ خدرجة حرارة ثابتة $V=10\,m$ في بالون يحتوي على محلول $V=10\,m$ في بالون يحتوي بالون بالون يحتوي بالون ب

- 1. سمحت المتابعة الزمنية للتفاعل بالحصول على البيان الممثل لتطور تقدم التفاعل x بدلالة الزمن t (الشكل4).
 - 1.1. هل التفاعل الحادث سريع أم بطيء؟ علّل.
- 2.1. أنشئ جدولا لتقدم التفاعل واستنتج المتفاعل المُحِد.
- 3.1. احسب قيمة m كتلة كربونات الكالسيوم المستعملة.
 - 2. حدِّد لحظة توقف التفاعل.
 - 3. كيف تتأكد ماكروسكوبيا (عيانيا) من توقف التفاعل؟

- 4. السرعة الحجمية للتفاعل:
- $t_1 = 200 \ s$ واللحظة $t_1 = 0$ والمحظة في اللحظة أعط عبارة السرعة المحمية للتفاعل ثمَّ احسب قيمتها في اللحظة
 - 2.4. كيف تتطور هذه السرعة بمرور الزمن؟ فسِّر مجهريا هذا التطور.
- 5. عند استغلال هذا التفاعل لتنظيف آلة تحضير القهوة من ترسبات كربونات الكالسيوم، وجدنا في دليل استعمال حمض اللاكتيك العبارة التالية: " من أجل نتائج أفضل استعمل المحلول دون تخفيفه" علّل.

ب-مراقبة جودة الحليب

لأجل مراقبة جودة الحليب، نعاير حجما $V_a = 25mL$ من حليب مخفف بواسطة محلول هيدروكسيد الصوديوم تركيزه المولي . $c_b = 5 \times 10^{-2} \ mol \cdot L^{-1}$

- 1. اكتب معادلة تفاعل المعايرة، باعتبار حمض اللاكتيك هو الحمض الوحيد الموجود بالحليب المعاير.
- 2. احسب التركيز المولي c_a لحمض اللاكتيك علما أنَّ حجم محلول هيدروكسيد الصوديوم المضاف عند التكافؤ . $V_{bE}=12.5\,mL$
- 3. في الصناعات الغذائية، يُعبّر عن حمضية الحليب بدرجة "دورنيك" Dornic(°D) حيث 0.1g من حمض اللاكتيك لكل 1L من حليب. لكي يكون الحليب صالحا للاستهلاك يجب أن لا تتجاوز حمضيته 1L هل يمكن اعتبار الحليب المدروس صالحا للاستهلاك?

الموضوع الثاني

يحتوي الموضوع الثاني على (04) صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

لأجل تحديد مميزات بعض العناصر الكهربائية، نحقق التركيب التجرببي المبيّن في الشكل 1 المؤلف من:

$$R_{2}=52\Omega$$
 و $R_{1}=10^{4}\,\Omega$ ناقلان أوميان مقاومتيهما $R_{1}=10^{4}\,\Omega$

- مكثفة غير مشحونة سعتها C ؛
- وشيعة ذاتيتها L ومقاومتها r
 - بادلة *K*

1. في اللحظة q(t) بدلالة الزمن فنتحصل على البادلة في الوضع q(t) ونتابع تطور شحنة المكثفة q(t) بدلالة الزمن فنتحصل على البيان الممثل بالشكل2.

- 1.1. ماهي الظاهرة الكهربائية التي تحدث للمكثفة؟
- 2. حد المعادلة التفاضلية التي تحققها شحنة المكثفة q(t) و واكتبها على الشكل: $A\frac{dq(t)}{dt} + q(t) = B$

حیث A و B ثابتین یُطلب تحدید عبارتیهما.

- $^{\circ}B$ و $^{\circ}A$ ما هو المدلول الفيزيائي لكل من $^{\circ}A$
- E استنتج قيمة كل من سعة المكثفة C و القوة المحركة للمولد C .4.1
- 2. نضع الآن البادلة في الوضع (2) في لحظة نعتبر ها مبدأ للأزمنة، وباستعمال راسم اهتزاز ذو ذاكرة تحصّلنا على المنحنى البياني الممثل لتطور شدة التيار المار في الدارة i = f(t) المبيّن في الشكلE.
 - 1.2. أعد رسم الدارة (الشكل1) موضّحا عليها كيفية ربط راسم الاهتزاز للحصول على منحنى الشكل 3.
 - 2.2. جِد المعادلة التفاضلية لتطور شدة التيار i(t) المار في الدارة.

 $i(t) = a(1 - e^{-t/\tau})$: حل المعادلة التفاضلية السابقة هو .3.2

حیث a و τ ثابتین یُطلب تعیّین عبارتیهما.

- au و au من au و au عدّد بیانیا قیمه کل من au
- r استنتج قيمة كل من ذاتية الوشيعة L ومقاومتها r

التمرين الثاني: (07 نقاط)

هوت بارد4 قمر اصطناعي (S) للاتصالات جيومستقر، يدور حول مركز الأرض في مدار دائري نصف قطره r. أُرسل هذا القمر سنة 1998 بواسطة صاروخ أريان IV. حركته تُدرس بالنسبة للمرجع الأرضي المركزي (الجيومركزي) الذي يُعتبر غاليليا.

معطيات:

- $g_0 = 9.8 \, m. \, s^{-2}$ قيمة حقل الجاذبية على سطح الأرض: $q_0 = 9.8 \, m. \, s^{-2}$
 - $R_T = 6.38 \times 10^3 \, km$ نصف قطر الأرض:
- المسار الدائري للقمر الاصطناعي (S) حول الأرض (T): \vec{u} هو شعاع الوحدة الموجه من (T) نحو (S) (الشكل4).

- 1. حدّد شروط استقرار قمر اصطناعي يدور حول مركز الأرض.
- 2. أعد على ورقة إجابتك الرسم التخطيطي (الشكل4) الممثل للمسار الدائري، مثِّل عليه القوة $\overline{F_{T/s}}$ المطبقة من طرف m الأرض على القمر الاصطناعي ثمَّ اكتب عبارتها الشعاعية بدلالة كتلة الأرض على القمر الاصطناعي ثمَّ اكتب عبارتها الشعاعية \overline{u} .
 - 3. بتطبيق القانون الثاني لنيوتن، اكتب عبارة شعاع تسارع مركز عطالة القمر الاصطناعي (S) ثمَّ بيّن أنَّ حركته دائرية منتظمة في المرجع الأرضى المركزي.
 - 4. مثّل على الشكل 4 شعاعي السرعة \vec{v} والتسارع \vec{v} المركز عطالة القمر الاصطناعي 4.
 - $v^2 = \frac{g_0 R_T^2}{r}$ علما أنَّ قوة الجذب على سطح الأرض هي: $F_0 = mg_0$ ثمَّ استنتج أنَّ: $GM_T = g_0 R_T^2$.5

- . (S) حيث T دور القمر الاصطناعي (S). اذكر نص القانون الثالث لكبلر ثمَّ تأكد من أنَّ: $\frac{T^2}{g_0 R_T^2} = \frac{4\pi^2}{g_0 R_T^2}$.
 - 7. احسب قيمة r نصف قطر مدار القمر الاصطناعي (S) ثمَّ استنتج ارتفاعه h عن سطح الأرض.

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

حمض البنزويك (C_6H_5 - COOH) جسم صلب أبيض اللون معروف بخصائصه المبيدة للفطريات والمضادة للبكتيريا، لذا يستعمل كمادة حافظة في بعض المواد الغذائية وخاصة المشروبات.

يهدف هذا التمرين إلى تحديد النسبة المئوية الكتلية لحمض البنزويك النقي الموجود في بلوراته.

معطيات:

- $M(C_6H_5-CO_2H)=122g\cdot mol^{-1}$ الكتلة المولية الجزيئية لحمض البنزويك: \checkmark
- $K_a = 6.31 \times 10^{-5} : C_6 H_5 COOH(aq) / C_6 H_5 COO^{-}(aq)$ ثابت حموضة الثنائية A

 $m_0=244mg$ من بلورات حمض البنزويك (C_0H_5 - COOH(aq) من بلورات حمض البنزويك في حجم pH=2,95 من الماء المقطر . قمنا بقياس pH المحلول (S_0) فوجدناه $V_0=100mL$ في حجم

- 1. اقترح بروتوكولا تجريبيا (المواد والزجاجيات، خطوات العمل، الاحتياطات الأمنية) لتحضير المحلول (S_0) .
 - 2. اكتب المعادلة المُنمذجة للتحول الكيميائي الحادث بين حمض البنزويك والماء.
 - $\cdot C_6 H_5 COOH(aq) / C_6 H_5 COO^{-}(aq)$ الثنائية pK_a الثنائية .3
 - .4 حدّد النوع الغالب للثنائية (S_0) مع التعليل. C_6H_5 COOH(aq) مع التعليل.
- 5. لمعرفة قيمة mكتلة الحمض النقي الموجود في البلورات المذابة سابقا، قمنا بمعايرة pH مترية لحجم $V_A = 10mL$ (Na $^+$ (aq) من المحلول (S_0) بواسطة محلول مائي لهيدروكسيد الصوديوم ($V_A = 10mL$) تركيزه المولي $V_A = 10mL$ المولي $C_B = 10^{-2} \, mol \cdot L^{-1}$ المولي المثل في الشكل 5.
 - (S_0) ما المقصود من معايرة المحلول (S_0) ?
 - 2.5. ارسم بشكل تخطيطي التركيب التجريبي لعملية المعايرة مع تسمية الأدوات والمحاليل.
 - 3.5. اكتب معادلة تفاعل المعايرة.

- . $(S_{\scriptscriptstyle 0})$ التركيز المولي للمحلول المحضر التركيز .4.5
- V_0 الذي حجمه V_0 الذي حجمه البنزويك النّقي الموجود في المحلول V_0 الذي حجمه V_0 الذي حجمه V_0
- 6.5. حدّد النسبة المئوية الكتلية p لحمض البنزويك النّقي الموجود في البلورات المذابة سابقا.

العلامة		/ t = \$
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التّمرين الأول: (06 نقاط) 1.
	0,5	1.1. طبيعة الحركة: الحركة مستقيمة متسارعة (متغيرة) بانتظام.
1.5	$0,25\times2$	$a_G = rac{\Delta v}{\Delta t} = 0.05 m \cdot s^{-2}$: تسارع الحركة
	$0,25\times2$	$d=rac{\left(B+b ight)}{2}h=87,5m$: المسافة المقطوعة:
0.5	0,5	2. نص القانون الثاني لنيوتن: في مرجع غاليلي يكون المجموع الشعاعي للقوى الخارجية
0.5	0,3	المطبقة على جملة يساوي في كل لحظة جداء كتلتها في شعاع تسارع مركز عطالتّها.
0.75	0,75	\vec{R} \vec{F} \vec{K} \vec{F} \vec{K} \vec{F} \vec{K} \vec{F} \vec{K}
		4. 1.4. المعادلة التّفاضلية: المحفظة.
	0,25	المرجع: سطحي أرضي نعتبره غاليليا.
	0,25	$\sum \overrightarrow{F}_{ext} = m \cdot \overrightarrow{a}_{_G}$:تطبیق القانون الثاني لنیوتن
	0,25	$\sum \vec{F}_{ext} = \vec{P} + \vec{R} + \vec{F} + \vec{f} = m \cdot \vec{a}_G$
1.75	0,25	$F \cdot \cos \alpha - f = m \cdot \frac{d^2 x}{dt^2}$ بالإسقاط على المحور $(\overrightarrow{x'x})$ وأخذ القيم الجبرية نجد:
	0,25	$\frac{d^2x}{dt^2} = \frac{F\cos\alpha - f}{m}$ ومنه:
		\overrightarrow{F} : شدة القوة \overline{F}
	0,25	$F \cdot \cos \alpha - f = m \cdot a \rightarrow F = \frac{ma + f}{\cos \alpha}$
	0,25	F = 20.3N

العلامة		/ * #\$**
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	عساب شدة القوة \overrightarrow{F} في حالة حركة مستقيمة منتظمة: $a=0$
	0,25	$F\cos\alpha - f = 0 \rightarrow F = \frac{f}{\cos\alpha}$
	0,25	$F = 20 \mathrm{N}$
1.5	0,25	حساب أقل سرعة: $d = vt \rightarrow v = \frac{d}{t}$
	0,25	$t \le 50 s \to v \ge \frac{d}{50}$
	0,25	$v \ge \frac{87.5}{50} \rightarrow v \ge 1.75 m \cdot s^{-1}$
		التمرين الثاني:(07 نقاط)
	0,5	1. تعريف العائلة المشعة: هي مجموعة الأنوية المشعة الناتجة عن التّفككات المتتالية بدء
2.75		من النواة الأم المشعة الى غاية النواة البنت المستقرة.
	9×0,25	: $^{226}_{88}$ Ra نواة التَّفكات لنواة $^{226}_{88}$ Ra سلسلة التَّفكات لنواة $^{226}_{88}$ Ra $\xrightarrow{\alpha}$ $^{222}_{86}$ Rn $\xrightarrow{\alpha}$ $^{218}_{84}$ Po $\xrightarrow{\alpha}$ $^{214}_{84}$ Pb $\xrightarrow{\beta^{-}}$ $^{214}_{83}$ Bi $\xrightarrow{\beta^{-}}$ $^{214}_{84}$ Po
	0,5	2. $^{214}_{84}\text{Po} ightarrow ^{210}_{82}\text{Pb} + ^{4}_{2}\text{He}$ يعادلة التّفكك الأول لنواة البولونيوم 214:
2	0,25	عن هذا التّقكك: eta^- 12.2. طبيعة النشاط الإشعاعي للنواة البنت الناتجة عن هذا التّقكك: eta^-
	0,25	النواة البنت المستقرة من العائلة المشعة للراديوم 226 هي $^{206}_{82}$ Pb
	$4\times0,25$	${}^{214}_{84}\text{Po} \xrightarrow{\alpha} {}^{210}_{82}\text{Pb} \xrightarrow{\beta^{-}} {}^{210}_{83}\text{Bi} \xrightarrow{\beta^{-}} {}^{210}_{84}\text{Po} \xrightarrow{\alpha} {}^{206}_{82}\text{Pb}$
	0,25	$N(t)\!=\!N_0\!\cdot\!e^{-\lambda t}$: قانون التّناقص الإشعاعي: $N(t)\!=\!N_0\cdot\!e^{-\lambda t}$
		2.3. تعريف زمن نصف العمر: المدة الزمنية اللازمة لتقكك نصف عدد الأنوية الابتدائية.
2.25	0,25	(المدة الزمنية اللازمة لتناقص النشاط الاشعاعي الى النصف)
		$N(t) = N_0 \cdot e^{-\lambda t}$ العلاقة: من
	0,25	$N\left(t_{\frac{1}{2}}\right) = N_0 \cdot e^{-\lambda t_{\frac{1}{2}}} = \frac{N_0}{2} \; ; \; -\lambda t_{\frac{1}{2}} = -\ln 2 \; ; \; t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$
	0,25	(12)
	0,25	

العلامة		/ 1 m E p	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)	
	4×0,25	: عمر النيزك هوبا: من قانون النّناقص الإشعاعي نجد: $t = \frac{t_{1/2}}{\ln 2} \cdot ln \frac{N_0 \binom{60}{26} \text{Fe}}{N \binom{60}{26} \text{Fe}}$ $t = \frac{2,62 \times 10^6}{\ln 2} \cdot ln \frac{1}{0.9789} \approx 8 \times 10^4 ans$	
		التّمرين التّجريبي: (07 نقاط)	
		أ-دراسة المدة الزمنية اللازمة للتخلص من التّرسبات.	
	$2 \times 0,25$	1. 1.1. التّفاعل بطيء (استغرق عدة دقائق)	
		2.1. جدول التقدم	
2.75	$3 \times 0,25$ $3 \times 0,25$ $0,25$ $2 \times 0,25$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.25	0,25	(323 $s \le t \le 337s$ لقيمة $330s$ (تقبل القيمة $330s \le t \le 337s$	
0.25	0,25	3. عند توقف انطلاق الفقاعات الغازية.	
1.25	0,25 2×0,25	$v_{vol}=rac{1}{V}rac{dx}{dt}$: عبارة السرعة الحجمية للتفاعل $v_{vol}=rac{1}{V}rac{dx}{dt}$: عبارة السرعة الحجمية للتفاعل $v_1pprox 0.15 imes 10^{-3}\ mol\cdot L^{-1}\cdot s^{-1}$ ، $v_0pprox 3 imes 10^{-3}\ mol imes L^{-1}\cdot s^{-1}$	
	0,25 0,25	2.4. لدينا $v_1 < v_0$ إذن السرعة تتناقص بمرور الزمن. بمرور الزمن تتناقص عدد التّصادمات الفعالة.	

العلامة		/ t = \$1\ 7 1 N/1 1 1 -
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
0.5	0,5	5. مدة التّنظيف أقل (التّركيز عامل حركي).
0.5	0,5	ب –مراقبة جودة الحليب: ${\rm HA}(aq) + {\rm HO}^-({\rm aq}) = {\rm A}^-(aq) + {\rm H}_2{\rm O}(l)$. معادلة تفاعل المعايرة: ${\rm 1}$
0.5	2×0,25	: c_a عبارة c_a عبارة ، $c_aV_a=c_bV_{bE}$ من علاقة التّكافؤ: $c_a=\frac{c_bV_{bE}}{V_a}=\frac{5\times10^{-2}\times12,5}{25}=2,5\times10^{-2}mol\times L^{-1}$
1	4×0,25	$m=c_aVM=2,25$ ومنه الحليب صالح للاستهلاك? $m=c_aVM=2,25$ المن الحليب: $D=\frac{2,25}{0,1}=22,5^{\circ}D$ ومنه الحليب غير صالح للاستهلاك لان $D>18^{\circ}D:$

العلامة		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (06 نقاط)
	0,25	1. 1.1. الظاهرة الكهربائية: شحن مكثفة.
		2.1. المعادلة التّفاضلية التّي تحققها الشحنة:
		$u_{_{C}}(t)+u_{_{R_{_{i}}}}(t)=E$: من قانون جمع التّوترات
	0,25	$rac{q(t)}{C} + R_1 rac{dq(t)}{dt} = E$: ومنه $rac{q(t)}{C} + R_1 i(t) = E$: ومنه
	2×0,25	$Arac{dq(t)}{dt}+q(t)=B$ و هي من الشكل: $R_{1}Crac{dq(t)}{dt}+q(t)=CE$ و $A=CE$ و $A=R_{1}C$
3	0,25	عبد المدلول الفيزيائي للثابتين A و B :
	0,25	ا ثابت الزمن : $A=R_{\scriptscriptstyle \rm I}C= au$
		الشحنة الأعظمية للمكثفة. $B=CE=Q_{max}$
		E قيمة كل من C و $ au$: $ au=0.5s$ بيانيا: $ au=0.5s$
	0,25 $2 \times 0,25$	$C = \frac{\tau}{R} = 5.0 \times 10^{-5} \mathrm{F} = 50 \mu \mathrm{F}$: ومنه
	2 × 0, 23	$\mathbf{n}_{\mathbf{l}}$
	0,25	$Q = 1.5 \times 4 \times 10^{-4} C = 6.0 \times 10^{-4} C$
	$2\times0,25$	$E = \frac{Q}{C} = \frac{6,0 \times 10^{-4}}{5,0 \times 10^{-5}} \Rightarrow E = 12V$
		E K
		+ • •
	0,25	
3		(L,r) R_2 Y
		2.2. المعادلة التّفاضلية لتطور شدة التّيار:
	0,25	$u_{b}(t) + u_{R_{2}}(t) = E$
	0,25	$L\frac{di}{dt} + ri + R_2 i = E$
	0,23	$\frac{di(t)}{dt} + (\frac{r + R_2}{L})i(t) = \frac{E}{L}$

العلامة		/ 15ti - 1 ti) I i bti -11-
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		au عبارة كل من a و a
		$\dfrac{di(t)}{dt}=\dfrac{a}{\tau}.e^{\dfrac{-t}{\tau}}$ ومنه: $i(t)=a-ae^{\dfrac{-t}{\tau}}$
	0.05	cii t
	0,25	$a(\frac{1}{\tau} - \frac{R_2 + r}{L})e^{-\frac{t}{\tau}} + \frac{R_2 + r}{L}a = \frac{E}{L}$: اذن
	0,25	$ au=rac{L}{R_{_2}+r}$: و منه
	0,25	$a = \frac{E}{R_2 + r}$
	0,25	تحدید a و $ au$ بیانیا:
	0,25	$a = I_{\text{max}} = 200 \text{mA} = 0.2 \text{A}$ $\tau = 10 \text{ms}$
	3,28	t=10ms استنتاج قیمتی کل من L و r
		$I = \frac{E}{R_2 + r}$
	0,25	-
		$r = \frac{E}{I} - R_2$
	0,25	$r = 8\Omega$
	0,25	$L = \tau (R_2 + r)$
	0,25	L = 0.6 H
		التّمرين الثاني: (07 نقاط)
		1. شروط الاستقرار:
0.75	$3 \times 0,25$	 يدور في نفس جهة دوران الأرض
		 يدور في مستوى خط الاستواء
		T=24h دوره يساوي دور الأرض $T=24h$
	0,25	تمثیل القوة $\overline{F_{T/S}}$: تمثیل القوة عند داخلی القواد تمثیل القواد
0.55	0,23	$F_{T/S}$
0.75		$F_{T/S}$ عبارة $F_{T/S}$
	0,5	$\overrightarrow{F_{T/S}} = -G\frac{M_T m}{r^2} \overrightarrow{u}$

العلامة		/ ****ti ~ * * *ti\ ** 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
1.5	$4 \times 0,25$ $2 \times 0,25$: عبارة شعاع التّسارع: $\Sigma \overrightarrow{F}_{ext} = m\overrightarrow{a} \rightarrow \overrightarrow{F}_{T/S} = m\overrightarrow{a}$ $-G\frac{M_T m}{r^2} \overrightarrow{u} = m\overrightarrow{a} \rightarrow \overrightarrow{a} = -G\frac{M_T}{r^2} \overrightarrow{u}$
	27.0,20	و \vec{a} موجه نحو مركو الأرض فالحركة دائرية منتظمة. $\ \vec{a}\ = c''$
0.5	2×0,25	ر تمثیل شعاعي السرعة والتّسارع: $F_{T/S}$ a a b a a b a a b a b a a b a a b a a b a
	3×0,25	$F_0 = mg_0 = G \frac{M_T m}{R_T^2} \rightarrow g_0 = G \frac{M_T}{R_T^2}$ $GM_T = g_0 R_T^2$
1.5		الاستنتاج:
	3×0,25	$a = \frac{v^2}{r} = G \frac{M_T}{r^2}$ $v^2 = G \frac{M_T}{r} = \frac{g_0 R_T^2}{r}$
	0,25	6. نص القانون الثالث لكبلر: مربع الدور يتناسب طردا مع مكعب البعد.
1	3×0,25	: التّأكد: $T = \frac{2\pi r}{v} \to T^2 = \frac{4\pi^2 r^2}{v^2} = \frac{4\pi^2 r^2}{\frac{g_0 R_T^2}{r}}$ $T^2 = \frac{4\pi^2 r^3}{g_0 R_T^2} \to \frac{T^2}{r^3} = \frac{4\pi^2}{g_0 R_T^2}$
1	2×0,25	r عساب قيمة r $r=\sqrt[3]{rac{T^2g_0R_T^2}{4\pi^2}}=42266km$
	2×0,25	4π الارتفاع: $h = r - R_{\scriptscriptstyle T} = 35886 km$

العلامة		/ **\ 1 \ \
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)
		التّمرين التّجريبي :(07 نقاط)
		1. البروتوكول التّجريبي اللازم لتحضير المحلول $(S_{\scriptscriptstyle 0})$:
		الاحتياطات الأمنية:
	0,25	- لبس القفازات، وضع النظارات ، (يكفي ذكر وسيلتين للاحتياط)
		الزجاجيات:
	0,25	- حوجلة عيارية 100mL، زجاج الساعة، قمع زجاجي.
		المواد والأدوات:
1.25	0,25	- بلورات حمض البنزويك، الماء المقطر، ميزان إلكتروني، ملعقة.
		خطوات العمل:
		بواسطة ميزان إلكتروني نقوم بوزن الكتلة m_0 من بلورات حمض البنزويك $-$
	0,5	- نضع الكتلة في حوجلة عيّارية سعتها 100mL تحتوي على كمية قليلة من الماء المقطر
		- نسد الحوجلة ثم نقوم برجّها من أجل الحصول على محلول متجانس
		- نكمل الحجم بالماء المقطر حتى خط العيار.
0.5	0.5	2. معادلة التّفاعل الحادث بين حمض البنزويك والماء:
0.5	0,5	$C_6H_5 - COOH(aq) + H_2O(l) = C_6H_5 - COO^{-}(aq) + H_3O^{+}(aq)$
	0,25	: $\mathrm{C_6H_5}$ - $\mathrm{COOH}(aq)/\mathrm{C_6H_5}$ - $\mathrm{COO^-}(aq)$ الثنائية pK_a حساب قيمة م
0.5	0,25	$pK_a = -LogK_a = -Log(6,31 \times 10^{-5})$, $pK_a = 4,2$
	0,25	: النوع الغالب للثنائية $\operatorname{C}_6 \operatorname{H}_5$ - $\operatorname{COOH}(aq) / \operatorname{C}_6 \operatorname{H}_5$ - $\operatorname{COO}^-(aq)$ هو
0.5	0,25	$pK_a > pH$ کُنّ C_6H_5 - COOH(aq)
		.5
	0,25	1.5. المقصود من المعايرة: تحديد التركيز المولي المجهول لمحلول.
		2.5. المخطط التّجريبي للمعايرة:
4.25		pH .1 - متر ومسباره
		2. محلول حمض البنزويك
	$5 \times 0,25$	3. مخلاط مغناطیسی
		4. سحاحة مدرجة
		5. محلول هيدروكسيد الصوديوم
		·

العلامة		/ *1 ² *t(a * * *1\
مجموعة	عناصر الإجابة (الموضوع الثاني)	عاصر الإجابة (الموضوع الثاني)
		3.5. معادلة تفاعل المعايرة:
	0,5	$C_6H_5 - COOH(aq) + OH^-(aq) = C_6H_5 - COO^-(aq) + H_2O(l)$
		$:(S_{\scriptscriptstyle 0})$ التّركيز المولي للمحلول المحضر المحضر المحضر التركيز المولي المحلول المحضر المحضر المحضر المحضر
	0,25	$V_{_{BE}}=18mL$:من المنحنى البياني
		$c_{\scriptscriptstyle A} = \frac{c_{\scriptscriptstyle B} V_{\scriptscriptstyle BE}}{V_{\scriptscriptstyle A}}$
	0,25	$c_{A} = \frac{10^{-2} \times 18 \times 10^{-3}}{10 \times 10^{-3}}$
	0,25	$c_{A} = 1.8 \times 10^{-2} mol \cdot L^{-1}$
		V_0 الذي حجمه M كتلة حمض البنزويك النقي الموجود في المحلول S_0) الذي حجمه S_0 :
	0,5	$m = c_{\scriptscriptstyle A} V_{\scriptscriptstyle 0} M$
	,	$m = 1,8 \times 10^{-2} \times 100 \times 10^{-3} \times 122$
	0,25	m = 219,6mg
		6.5. النسبة المئوية p لحمض البنزويك النقّي الموجود في البلورات المذابة:
	0,5	$p = \frac{m}{m_0} \times 100$
	0,25	$p = \frac{219,6}{244} \times 100$
		p = 90%