

RTL8711AM

SINGLE-CHIP 802.11b/g/n 1T1R WLAN SoC

DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 0.1 8 January 2015 Track ID: JATR

 ${\bf Realtek\, Semiconductor\, Corp.}$

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

©2014 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary	
0.0	2014/09/30	Preliminary release.	
R1V7	2015/09/25	1. correct feature list	
		2. modify block diagram	
		3. correct programming space, IO space and extension memory space	
		4. correct pin function group table	
		5. correct memory system	
		6. modify electrical characteristics	
R1V8	2015/11/10	1. modify ADC	
R1V9	2015/12/10	1. add operating temperature for industrial standards	
R1v10	2016/1/7	1. correct source clock of timer	

Table of Contents

1	l. G	ENERAL DESCRIPTION	1
2	. FE	EATURES	2
3	B. BI	LOCK DIAGRAM	4
	3.1.	FUNCTIONAL BLOCK DIAGRAM	Δ
	3.2.	WIFI AND NFC APPLICATION DIAGRAM	5
	3.3.	Power Supply Application Diagram	
4	I. M	IEMORY MAPPING	7
	4.1.	PROGRAMMING SPACE	7
	4.2.	IO Space	8
	4.3.	Extension Memory Space	12
5	i. Pl	N ASSIGNMENTS	13
	5.1.	Package Identification.	13
6	5. PI	N DESCRIPTIONS	14
	6.1.	Power On Trap Pin	14
	6.2.	ANALOG TO DC CONVERTER	15
	6.3.	RF AND NFC	
	6.4.	Power Pins	
	6.5.	CLOCK PINS	
	6.6.	NOR Flash Interface	
	6.7.	DIGITAL IO PINS	17
7	7. P	IN FUNCTION TABLE	20
	7.1.	PIN CONFIGURABLE FUNCTION GROUP SUMMARY TABLE	20
8	3. FL	JNCTIONAL DESCRIPTION	21
	8.1.		
8.1.1.		atures	
8.1.2.		wer Mode Description	
8.2.1.	8.2.	MEMORY SYSTEMemory Architecture	
8.2.2.		ernal ROM	
8.2.3.		ernal SRAM	
8.2.4.		tended SDR DRAM	
8.2.5.		'I NOR Flash	
	8.3.	GENERAL PURPOSE DMA CONTROLLER	29
8.3.1.	Fe	atures of GDMA	29
	8.4.	GENERAL PURPOSE TIMER (GTIMER)	
8.4.1.	Fe	atures of GTIMER	
	8.5.	GPIO FUNCTIONS.	
8.5.1.		atures of GPIO	-
	86	LIART Interface Characteristics	30

Datasheet

	s of UART	
8.6.2. High Sp	peed UART Specification	30
8.6.3. UART I	Interface Signal Levels	31
	PLINTERFACE	
_	s of SPI	
	C INTERFACE	
8.8.1. Features	s of I ² C	32
	NM Interface	
	s of PWM	
	EXTERNAL TRIGGER EVENT INTERFACE	
	s of External Trigger Event	
	I2S Interface Characteristics	
	s of I2S	
	PCM Interface Characteristics	
	s of PCM	
	AD CONVERTER	
	S	
	SECURITY ENGINE	
8.14.1. Features	S	35
9. ELECTR	RICAL CHARACTERISTICS	36
	MPERATURE LIMIT RATINGS	
	MPERATURE CHARACTERISTICS	
	OWER SUPPLY DC CHARACTERISTICS	
	GITAL IO PIN DC CHARACTERISTICS	
9.4.1. Electrica	al Specifications	37
10. MEC	HANICAL DIMENSIONS	38
10.1.	PACKAGE SPECIFICATION	38
10.2.	MECHANICAL DIMENSIONS NOTES	39
11. ORD	ERING INFORMATION	40

List of Tables

TABLE 1.	Power On Trap Pins	14
TABLE 2.	ADC PINS	
TABLE 3.	RF AND NFC PINS	15
TABLE 4.	Power Pins	16
TABLE 5.	CLOCK AND OTHER PINS	
TABLE 6.	NOR FLASH PINS	17
TABLE 7.	GPIO Pins	17
TABLE 8.	PIN FUNCTION GROUP TABLE	20
TABLE 9.	SDR DRAM INPUT TIMING	24
TABLE 10.	SDR DRAM OUTPUT TIMING	25
TABLE 11.	SDR DRAM Access Control Timing	26
TABLE 12.	Flash Bus DC Parameters	27
TABLE 13.	FLASH BUS DC PARAMETERS	28
TABLE 14.	UART BAUD RATE SPECIFICATIONS	30
TABLE 15.	TEMPERATURE LIMIT RATINGS	
TABLE 16.	THERMAL PROPERTIES	36
TABLE 17.	POWER SUPPLY DC CHARACTERISTICS	36
TABLE 18.	TYPICAL DIGITAL IO DC PARAMETERS (3.3V CASE)	37
TABLE 19.	TYPICAL DIGITAL IO DC PARAMETERS (1.8V CASE)	37
TABLE 20.	Ordering Information	40

List of Figures

FIGURE 1.	BLOCK DIAGRAM	4
FIGURE 2.	SINGLE-BAND 11n (1x1) AND NFC TAG SOLUTION	5
FIGURE 3.	POWER SUPPLY ARCHITECTURE	6
FIGURE 4.	PIN ASSIGNMENTS	13
FIGURE 5.	SDR DRAM INPUT TIMING	25
FIGURE 6.	SDR DRAM OUTPUT TIMING	25
FIGURE 7.	SDR DRAM Access Control Timing	27
FIGURE 8.	UART INTERFACE WAVEFORM	31

1. General Description

Realtek RTL8711AM is a highly integrated single-chip low power 802.11n Wireless LAN (WLAN) network controller. It combines an ARM-Cortex M3 MCU, WLAN MAC, a 1T1R capable WLAN baseband, and RF in a single chip. It also provides a bunch of configurable GPIOs which are configured as digital peripherals for different applications and control usage.

RTL8711AM integrates internal memories for complete WIFI protocol functions. The embedded memory configuration also provides simple application developments.

2. Features

General

- Package QFN56
- CMOS MAC, Baseband PHY, and RF in a single chip for 802.11b/g/n compatible WLAN
- Complete 802.11n solution for 2.4GHz band
- 72.2Mbps receive PHY rate and 72.2Mbps transmit PHY rate using 20MHz bandwidth
- 150Mbps receive PHY rate and 150Mbps transmit PHY rate using 40MHz bandwidth
- Compatible with 802.11n specification
- Backward compatible with 802.11b/g devices while operating in 802.11n mode

Standards Supported

- 802.11b/g/n compatible WLAN
- 802.11e QoS Enhancement (WMM)
- 802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services
- WIFI WPS support
- WIFI Direct support
- Light Weight TCP/IP protocol
- WLAN MAC Features

- Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)
- Low latency immediate High-Throughput Block Acknowledgement (HT-BA)
- Long NAV for media reservation with CF-End for NAV release
- PHY-level spoofing to enhance legacy compatibility
- Power saving mechanism

WLAN PHY Features

- 802.11n OFDM
- One Transmit and one Receive path (1T1R)
- 20MHz and 40MHz bandwidth transmission
- Short Guard Interval (400ns)
- DSSS with DBPSK and DQPSK, CCK modulation with long and short preamble
- OFDM with BPSK, QPSK, 16QAM, and 640QAM modulation. Convolutional Coding Rate: 1/2, 2/3, 3/4, and 5/6
- Maximum data rate 54Mbps in 802.11g and 150Mbps in 802.11n
- Fast receiver Automatic Gain Control (AGC)
- On-chip ADC and DAC

Peripheral Interfaces

- 1 high speed UART interface with baud rate up to 4MHz
- 1 log UART with standard baud rate support
- Maximum 3 I2C interface
- I2S with 8/16/24/32/48/96/44.1/88.2 KHz sampling rate
- Maximum 2 PCM with 8/16KHz sample rate

- 1 SPI supported. One supports baud rate up to 20.8 MHz
- Support 4 PWM with configurable duration and duty cycle from 0 ~ 100%
- Support 4 External Timer Trigger Event (ETE function) with configurable period in low power mode
- Support ADC with 1 channel
- Maximum 19 GPIO pins

Data Sheet

3. Block Diagram

3.1. Functional Block Diagram

Figure 1. Block Diagram

3.2. WIFI and NFC Application Diagram

Figure 2. Single-Band 11n (1x1) and NFC Tag Solution

3.3. Power Supply Application Diagram

Figure 3. Power Supply Architecture

The integrated Power Management Unit (PMU) provides the following features:

- 1.2V power bulk or LDO selectable.
- 1.8~2.7V LDO
- 3.3V power source integrated power cut controlled by FW.

4. Memory Mapping

4.1. Programming Space

Name	Mode	Physical	Size	IP Function
Code		0x0000_0000	1MB	Instruction Memory (ROM)
		0x000F_FFFF		
		0x1000_0000	448KB	Inter SRAM: BD SRAM and Buffer
		0x1006_FFFF		SRAMsharetotal 448KB physical
		0. 1555	CHED	sram
		0x1FFF_0000	64KB	TCM (Tightly-Coupled Memory)
		0x1FFF_FFFF		SRAM
SRAM		0x3000_0000	2MB	SDR SDRAM memory
		0x301F_FFFF		

4.2. IO Space

Name	Mode	Physical	Size	IP Function
		Address		
Peripheral		0x4000_0000	4KB	SYS Control (SYSON)
		0x4000_0FFF		
		0x4000_1000	2KB	GPIO Control
		0x4000_17FF		
		0x4000_1800		RSVD
		0x4000_1FFF		
		0x4000_2000	4KB	Timer Control
		0x4000_2FFF		
		0x4000_3000	1KB	UART for Log
		0x4000_33FF		
	0x4000_3400 1KB	1KB	I2C_2 Control	
		0x4000_37FF		
		0x4000_3800	1KB	I2C_3 Control
		0x4000_3BFF		
		0x4000_3C00		RSVD
		0x4000_4FFF	1	
		0x4000_5000	4KB	SDR SDRAM controller
		0x4000_5FFF	1	
		0x4000_6000	4KB	SPI flash controller
		0x4000_6FFF		
		0x4000_7000		RSVD
		0x4000_FFFF		
		0x4001_0000	4KB	ADC
		0x4001_0FFF		
		0x4001_1000	4KB	DAC
		0x4001_1FFF		
i l				

8

Name	Mode	Physical	Size	IP Function
Peripheral		0x4004_0000	1KB	UART_0 Control
		0x4004_03FF		
		0x4004_0400	1KB	RSVD
		0x4004_07FF		
		0x4004_0800	1KB	RSVD
		0x4004_0BFF		
		0x4004_0C00		RSVD
		0x4004_1FFF		
		0x4004_2000	1KB	SPI_0 Control
		0x4004_23FF		
		0x4004_2400	1KB	RSVD
		0x4004_27FF		
		0x4004_2800	1KB	RSVD
		0x4004_2BFF		
		0x4004_2C00		RSVD
		0x4004_3FFF		
		0x4004_4000	1KB	RSVD
		0x4004_43FF		
		0x4004_4400	1KB	I2C_1 Control
		0x4004_47FF		
		0x4004_4800		RSVD
		0x4004_FFFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4005_0000	16KB	RSVD
		0x4005_3FFF		
		0x4005_4000		RSVD
		0x4005_7FFF		
		0x4005_8000	16KB	RSVD
		0x4005_BFFF		
		0x4005_C000		RSVD
		0x4005_FFFF		
		0x4006_0000	2KB	GDMA0
		0x4006_07FF	ZKD	ODWAU
		0x4006_0800	2KB	RSVD for other DMA
		0x4006_0FFF		
		0x4006_1000	2KB	GDMA1
		0x4006_17FF	ZND	GDMAI
		0x4006_1800		RSVD for other DMA
		0x4006_1FFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4006_2000	1KB	RSVD
		0x4006_23FF		
		0x4006_2400	3KB	RSVD
		0x4006_2FFF		
		0x4006_3000	1KB	I2S_1 Control
		0x4006_33FF		
		0x4006_3400	3KB	RSVD
		0x4006_3FFF		
		0x4006_4000	1KB	PCM_0 Control
		0x4006_43FF		
		0x4006_4400		RSVD
		0x4006_4FFF		
		0x4006_5000	1KB	PCM_1 Control
		0x4006_53FF		
		0x4007_0000	16KB	Security Engine
		0x4007_3FFF		
		0x4007_4000	48KB	RSVD
		0x4007_FFFF		
		0x4008_0000	256KB	WIFI REG & TX/RX FIFO direct map
		0x400B_FFFF		•
		0x400C_0000	256KB	RSVD
		0x400F_FFFF		
		0x403F_FFFF	1MB	RSVD

4.3. Extension Memory Space

Name	Mode	Physical	Size	IP Function
Flash	0x9800_0000 0x9BFF_FFFF	0x9800_0000	64MB	External flash memory
1 10311		.04IVID	External Hash memory	

5. Pin Assignments

Figure 4. Pin Assignments

5.1. Package Identification

"Green" package is indicated by a 'G' in the location marked "T" in Figure 2. The version is shown in the location marked 'VV', e.g., A0=Version A0

6. Pin Descriptions

The following signal type codes are used in the tables:

l:	Input	O:	Output
T/S:	Tri-State bi-directional input/output pin	S/T/S:	Sustained Tri-State
O/D:	Open Drain	P:	Power pin

6.1. Power On Trap Pin

Table 1. Power On Trap Pins

Symbol	Туре	Pin No	Description				
NORMAL_MODE_SEL	ı	3	Shared with GPIOB_2				
			1: Normal operation mode				
			0: Enter into test/debug mode				
BOOT SCENARIO	I	1	Shared with GPIOB_0				
_			0: booting from flash				
			1: booting from internal memory				
EEPROM SEL	ı	33	Shared with GPIOF_5				
_			0: Internal NV memory select				
			1: reserved for internal testing use				
SD DEV SEL I 38			Shared with GPIOA_7				
			1: SDMMC Host mode				
			0: SDIO device mode (8711AM not support)				
ICFG0	I 53 Shared with GPIOC_0						
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT0.				

Symbol	Туре	Pin No	Description
ICFG1	ı	52	Shared with GPIOC_1
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT1.
ICFG2	ı	51	Shared with GPIOC_2
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT2.
ICFG3	ı	50	Shared with GPIOC_3
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT3.

6.2. Analog to DC Converter

Table 2. ADC Pins

Symbol	Туре	Pin No	Description
ADC_CH2	I	27	AD converter input
CAP_ADC	Р	26	Capacitor for AD converter power.

6.3. RF and NFC

Table 3. RF and NFC Pins

Symbol	Туре	Pin No	Description				
NFC_IP	I	7	NFC input differential signal				
NFC_IN	I	8	NFC input differential signal				
RF_IO	10	15	WL RF signal				

6.4. Power Pins

Table 4. Power Pins

Symbol	Туре	Pin No	Description
SW_LX	Р	43	Switching Regulator Output
SW_HV3	Р	42	Switching Regulator Input
			Or Linear Regulator input from 3.3V to 1.5V
VA33	Р	6, 12, 14, 16, 28,	3.3V for Analog Circuit
VD33IO	Р	5, 35	VDD3.3V for Digital IO
VDD_IO	Р	18, 54	GPIOE and GPIOC group IO power
VDD_IO_M	Р	41, 48	Embedded SDR DRAM power
VD12D	Р	24, 40, 47, 49	VDD 1.2V Digital Circuit
VA12	Р	9, 13, 17, 25	1.2V for analog blocks
SW_GND	Р	44	Switching Regulator Ground

6.5. Clock Pins

Table 5. Clock and Other Pins

Symbol	Туре	Pin No	Description
XI	I	11	40MHz OSC Input
			Input of 40MHz Crystal Clock Reference
хо	0	10	Output of 40MHz Crystal Clock Reference

6.6. NOR Flash Interface

Table 6. NOR Flash Pins

Symbol	Туре	Pin No	Description				
SPI_M_CLK	Ю	30	NOR Flash CLK signal. Multiplexed with GPIOF_1.				
SPI_M_DATA0	Ю	31	NOR Flash CLK signal. Multiplexed with GPIOF_2.				
SPI_M_CS	Ю	32	NOR Flash CLK signal. Multiplexed with GPIOF_0.				
SPI_M_DATA1	Ю	34	NOR Flash CLK signal. Multiplexed with GPIOF_3.				

6.7. Digital IO Pins

Please refer to section 6 Pin Function Table for more detailed information.

Table 7. GPIO Pins

Symbol	Туре	Pin No	Description
CHIP_EN	I	29	Whole chip enable control. When asserted, chip function is enabled; when de-asserted, whole chip is shutdown.
GPIOB_0	Ю	1	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_1	Ю	2	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_2	Ю	3	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_3	Ю	4	GPIO pin. The MUX function can be referred to Pin Function Table.

Symbol	Туре	Pin No	Description
GPIOE_0	Ю	23	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_1	Ю	22	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_2	Ю	21	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_3	Ю	20	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_4	Ю	19	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_3	Ю	36	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_5	Ю	37	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_7	Ю	38	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_6	Ю	39	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_0	Ю	53	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_1	Ю	52	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_2	Ю	51	GPIO pin. The MUX function can be referred to Pin Function Table.

Symbol	Туре	Pin No	Description
GPIOC_3	10	50	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_4	Ю	55	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_5	Ю	56	GPIO pin. The MUX function can be referred to Pin Function Table.

Track ID: Rev. 0.7

7. Pin Function Table

7.1. Pin Configurable Function Group Summary Table

Table 8. Pin Function Group Table

PIN name JTAG	UART Group	12C Group	SPI Group	12S Group	PCM Group	WL_LED	PWM	ETE	WKDT	GPIO INT	Default State	SCHMT
GPIOA_3	UARTO_RTS										PH	0
GPIOA_5	UARTO_CTS								D_STBY0		PH	
GPIOA_6	UARTO_IN										PH	
GPIOA_7	UARTO_OUT										HI	
GPIOB_0	UART_LOG_OUT	Ī						ETE0			HI	
GPIOB_1	UART_LOG_IN					WL_LED0		ETE1	D_SLP0		PH	
GPIOB_2		I2C3_SCL						ETE2			HI	0
GPIOB_3		I2C3_SDA						ETE3		GPIO_INT	PH	
GPIOC_0	UARTO_IN		SPIO_CSO	12S1_WS	PCM1_SYNC		PWM0	ETE0			HI	
GPIOC_1	UARTO_CTS				PCM1_CLK		PWM1	ETE1		GPIO_INT	HI	0
GPIOC_2	UARTO_RTS				PCM1_OUT		PWM2	ETE2			HI	
GPIOC_3	UARTO_OUT		SPI0_MISO	I2S1_MCK	PCM1_IN		PWM3	ETE3		GPIO_INT	HI	0
GPIOC_4		I2C1_SDA	SPIO_CS1	I2S1_SD_RX						GPIO_INT	HI	
GPIOC_5		I2C1_SCL	SPIO_CS2							GPIO_INT	HI	0
GPIOE_0 JTAG_TR	ST UARTO_OUT	I2C2_SCL	SPIO_CSO		PCM0_SYNC		PWM0				PH	0
GPIOE_1 JTAG_TD	I UARTO_RTS	I2C2_SDA	SPIO_CLK		PCM0_CLK		PWM1			GPIO_INT	PH	0
GPIOE_2 JTAG_TD	O UARTO_CTS	I2C3_SCL	SPI0_MOSI		PCM0_OUT		PWM2			GPIO_INT	PH	0
GPIOE_3 JTAG_TN	IS UARTO_IN	I2C3_SDA	SPI0_MISO		PCM0_IN		PWM3		D_STBY3	GPIO_INT	PH	0
GPIOE_4 JTAG_CL	K	I2C3_SCL	SPIO_CS1			·					PH	0

NOTE1: PH = Pull-High, HI = High-impedance

8. Functional Description

8.1. Power Management Control Unit

8.1.1. Features

The PMU provides the following functions:

Bulk/LDO to output 1.2V

LDO to output 1.8V ~ 2.5V power source

Integrated power cut to output Vref (input from VD33 IN) with SW controllable

2 very Low power clock source with less accuracy: 1K and 500K

1 low power 32.768KHz clock source with moderate accuracy

Wakeup system detector to resume from low power state

8.1.2. Power Mode Description

8.1.2.1 Shutdown Mode

CHIP EN de-asserts to shutdown whole chip without external power cut components required.

8.1.2.2 Deep Sleep Mode

CHIP_EN keeps high. Enter into Deep Sleep mode by API. The trigger timer period can be configured or GPIOB_0 can be used as external trigger event. The DLSP trigger timer can be configured with the range $1 \sim 3600$ sec.

8.1.2.3 Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep mode by API. The trigger timer period can be configured or all GPIO group can be used as external trigger event.

8.2. Memory System

8.2.1. Memory Architecture

RTL8711AM integrates ROM, internal SRAM, extended SDR DRAM, extended NOR flash to provide applications with a variety of memory requirements.

8.2.2. Internal ROM

RTL8711AM integrates a 1MB high access-speed and low leakage internal ROM. The internal ROM memory is clocked at a speed up to 166MHz. The ROM lib provides the following functions:

- Boot Code and MCU initialization
- Default UART driver
- Non-flash booting functions and drivers

- Peripheral libraries
- Security function libraries

8.2.3. Internal SRAM

448KB SRAM is integrated to provide for instruction, data, and buffer usage. The maximum clock speed is up to 166MHz.

An additional 64KB fast access data memory (TCM) is provided for FW data section. The range is $0x1FFF-0000 \sim 0x1FFF-FFFF$.

8.2.4. Extended SDR DRAM

8.2.4.1 Features

- Interface (Bus Width): 16-bit
- Targeted SDR Frequency: Up to 83MHz
- Supports one Chip Select (MCSO#) and 1 Band select (BAO)

8.2.4.2 SDR DRAM Input Timing

Table 9. SDR DRAM Input Timing

Symbol	Parameter	Min.	Тур.	Max.	Units
TSETUP	Input Setup Prior to Rising Edge of Clock	_	1.13	_	ns
.02.0.	Inputs included in this timing are MD[15:0] (during a read		1.13		
	operation)				
THOLD	Input Hold Time after the Rising Edge of Clock	_	0	_	ns
111020	Inputs included in this timing are MD[15:0] (during a read				
1	operation)				

Note: The RTL8196EU integrates some timing controls on the interface. Here the timing parameters listed in the table are extracted in the default situation (without specific controls).

Figure 5. SDR DRAM Input Timing

8.2.4.3 SDR DRAM Output Timing

Table 10. SDR DRAM Output Timing

Symbol	Parameter	Min.	Тур.	Max.	Units
TCLK2O	Rising Edge of Clock-to-Signal Output	-	-	2.3	ns
UT	Outputs include this timing are MD[15:0], MCS0#, MCS1#, RAS#, CAS#, LDQM, UDQM, WE# (during a write operation)				
THOLDO UT	Outputs included in this timing are MD[15:0] (during a write	0.8	-	-	ns
	operation)				

Note: Timing was tested with 75-pF capacitor to ground.

Figure 6. SDR DRAM Output Timing

Track ID: Rev. 0.7

8.2.4.4 SDR DRAM Access Control Timing

Table 11. SDR DRAM Access Control Timing

Symbol	Parameter	Units	Notes
TREFRESH	Auto-Refresh Timing	μs	-
	Controlled by Reg. 0xB8001008 (DTR)		
TRCD	The Time Interval between RAS# Active and CAS# Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
TRP	The Time Interval between Pre-Charge and the Next Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
TRAS	The Time Interval between Active and Pre-Charge	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
TRC	The Time Interval between Active and the Next Active	ns	1
	Controlled by Reg. 0xB8001008 (DTR)		
TRFC	The Time Interval between Auto-Refresh and Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
TCAS_LATE	The Data Output Delay after CAS# Active	ns	-
NCY	Controlled by Reg. 0xB8001004 (DCR)		

Note 1: TRC=TRAS+TRP.

Figure 7. SDR DRAM Access Control Timing

8.2.5. SPI NOR Flash

8.2.5.1 Features

- Targeted SPI flash frequency: Up to 83.3MHz (when CPU clock is 166MHz)
- In addition to a programmed I/O interface, also supports a memory-mapped I/O interface for read operation
- Supports Read and Fast Read in memory-mapped I/O mode

8.2.5.2 Supported NOR Flash List

Table 12. Flash Bus DC Parameters

Vendor	Part Number	Density	Voltage	Ю
MXIC	MXIC_MX25L4006E	4M Bits	3.3V	11/20
MXIC	MXIC_MX25L8073E	8M Bits	3.3V	11/20

Vendor	Part Number	Density	Voltage	10
MXIC	MXIC_MX25L8006E	8M Bits	3.3V	11/20

8.2.5.3 Electrical Specifications

Table 13. Flash Bus DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
VIH	Input-High Voltage	LVTTL	2.0	-	-	V	1
VIL	Input-Low Voltage	LVTTL	-	-	0.8	V	2
VOH	Output-High Voltage	-	2.4	-	-	V	3
VOL	Output-Low Voltage	-	_	-	0.4	V	3
IIL	Input-Leakage Current	VIN=3.3V or 0	-10	±1	10	μΑ	-
IOZ	Tri-State Output-Leakage Current	-	-10	±1	10	μΑ	-
RPU	Input Pull-Up Resistance	-	-	75	-	ΚΩ	4
RPD	Input Pull-Down Resistance	-	-	75	_	ΚΩ	4

Note 1: V_{IH} overshoot: VIH (MAX)=VDDH + 2V for a pulse width \leq 3ns.

Note 2: V_{IL} undershoot: V_{IL} (MIN)=-2V for a pulse width \leq 3ns.

Note 3: The output current buffer is 8mA for the flash address and data bus; and is 8mA for Flash control signals.

Note 4: These values are typical values checked in the manufacturing process and are not tested.

Data Sheet

8.3. General Purpose DMA Controller

8.3.1. Features of GDMA

- Dual port DMA with totally 12 channels
- Configurable endian
- Support memory-memory, memory-peripheral, peripheral-memory, and peripheral-peripheral DMA transfer
- Support block level flow control
- Support address auto-reload, link-listed mode
- Support scatter-gather mode

8.4. General Purpose Timer (GTimer)

8.4.1. Features of GTIMER

- 8 Gtimer supported
- Source clock is 32.768KHz
- Support Counter mode and timer mode

8.5. GPIO Functions

8.5.1. Features of GPIO

- GPO and GPI function
- Support interrupt detection with configurable polarity per GPIO
- Internal weak pull up and pull low per GPIO
- Multiplexed with other specific digital functions

8.6. UART Interface Characteristics

8.6.1. Features of UART

- Support 1 HS-UARTs (max baud rate 4MHz and DMA mode) or 1 low speed UARTs (IO mode)
- UART (RS232 Standard) Serial Data Format
- Transmit and Receive Data FIFO
- Programmable Asynchronous Clock Support
- Auto Flow Control
- Programmable Receive Data FIFO Trigger Level
- DMA data moving support to save CPU loading

8.6.2. High Speed UART Specification

The RTL8711AM UART interface is a standard 4-wire interface with RX, TX, CTS, and RTS. The default baud rate is 115.2k baud. In order to support high and low speed baud rate, the RTL8711AM provides multiple UART clocks.

Table 14. UART Baud Rate Specifications

Desired Baud	Actual Baud	Error (%)
Rate	Rate	
300	300	0.00%
600	600	0.00%
900	900	0.00%
1200	1200	0.00%
1800	1800	0.00%
2400	2400	0.00%
3600	3601	0.03%
4800	4798	-0.04%
7200	7198	-0.03%
9600	9603	0.03%

Desired Baud	Actual Baud	Error (%)
Rate	Rate	
14400	14395	-0.03%
19200	19182	-0.09%
28800	28846	0.16%
38400	38462	0.16%
56000	55970	-0.05%
57600	57692	0.16%
76800	76531	-0.35%
115200	115385	0.16%
128000	127119	-0.69%
153600	153061	-0.35%

Track ID: Rev. 0.7

Desired Baud	Actual Baud	Error (%)
Rate	Rate	
230400	229167	-0.54%
460800	458333	-0.54%
500000	500000	0.00%
921600	916667	-0.54%
1000000	1000000	0.00%
1382400	1375000	-0.54%
1444444	1437500	-0.48%
1500000	1500000	0.00%
1843200	1833333	-0.54%

Desired Baud		
Rate	Rate	
2000000	2000000	0.00%
2100000	2083333	-0.79%
2764800	2777778	0.47%
3000000	3000000	0.00%
3250000	3250000	0.00%
3692300	3703704	0.31%
3750000	3750000	0.00%
4000000	4000000	0.00%

Figure 8. UART Interface Waveform

8.6.3. UART Interface Signal Levels

The UART signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the RTL8711AM UART interface via the IO power.

8.7. SPI Interface

8.7.1. Features of SPI

- Support 1 SPI port
- Support Master/Slave mode
- Support DMA to offload CPU bandwidth
- 1 high speed SPI
 - Support up to 3 CS (multi-slave mode up to 3 slave)
 - Support baud rate up to 20MHz (Master mode)
 - Support baud rate up to 5MHz (Slave mode Rx only)
 - Support baud rate up to 4MHz (Slave mode TRx)
- Programmable clock bit-rate
- Programmable clock polarity and phase
- Multiple Serial Interface Operations support
 - Motorola SPI
 - Texas Instruments SSI
 - National Semiconductor Microwire

8.8. I²C Interface

8.8.1. Features of I²C

- Support maximum 3 I2C port
- Three speeds:
 - Standard mode (0 to 100 Kb/s)
 - Fast mode (<400 Kb/s)
 - High-speed mode (<3.4 Mb/s) (with appropriate bus loading)

- Master or Slave I2C operation
- 7- or 10-bit addressing
- Transmit and receive buffers
- TX and RX DMA support (I2C-1 only)

8.9. PWM Interface

8.9.1. Features of PWM

- Support maximum 4 PWM functions
- 0~100% duty can be configurable
- Minimum resolution is 64us
- The period can be configured up to 8 seconds

8.10. External Trigger Event Interface

8.10.1. Features of External Trigger Event

- Support maximum 4 External Trigger Event functions without CPU active
- Triggered by GTIMER

8.11. I2S Interface Characteristics

8.11.1. Features of I2S

- Support 8/16/24/32/48/96KHz, 44.1/88.2KHz
- Support 16 or 24 bits format
- Integrated DMA engine to minimize SW efforts
- Support TX and RX direction
- Master or Slave mode support

8.12. PCM Interface Characteristics

8.12.1. Features of PCM

- The RTL8711AM supports a PCM digital audio interface that is used for transmitting digital audio/voice data to/from the Audio Codec. Features are supported as below:
- Supports Master and Slave mode
- Programmable long/short Frame Sync
- Supports 8-bit A-law/μ-law, and 13/16-bit linear PCM formats
- Supports sign-extension and zero-padding for 8-bit and 13-bit samples
- Supports padding of Audio Gain to 13-bit samples
- PCM Master Clock Output: 64, 128, 256, or 512kHz
- Supports SCO/ESCO link

8.13. AD Converter

8.13.1. Features

- 1 16-bit high resolution A/D converter (ADC CH2 only)
 - Bandwidth 48KHz
 - Input signal range: 0.01V ~ VREF 0.2V
- Support DMA mode
- Support One-Shot sampling mode without CPU active to save power
 - Pre-configured period to auto-sampling
 - Support two wakeup method: buffer threshold interrupt and event trigger

8.14. Security Engine

8.14.1. Features

- Provide low SW computing and high performance encryption
- Supported authentication algorithms:
 - MD5
 - SHA-1
 - SHA-2 (SHA-224 / SHA-256)
 - HMAC-MD5
 - HMAC-SHA1
 - HMAC-SHA2
- Supported Encryption / Decryption mechanisms:
 - DES (CBC / ECB)
 - 3DES (CBC / ECB)
 - AES-128 (CBC / ECB / CTR)
 - AES-192 (CBC / ECB / CTR)
 - AES-256 (CBC / ECB / CTR)

9. Electrical Characteristics

9.1. Temperature Limit Ratings

Table 15. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature(CS)	-20	+85	°C
Ambient Operating Temperature(IS) ¹	-40	+105	°C
Junction Temperature	0	+125	°C

NOTE1: ONLY RTL8711AM-VT1-CG satisfies the industrial standards (IS).

9.2. Temperature Characteristics

Table 16. Thermal Properties

Power (w)	PCB (layer)	CB (layer) Theat ja (C/W) Theta jc (C/W)		Psi jt (C/W)
1	2	31	10.1	0.27
1	4	24.5	9.4	0.21

9.3. Power Supply DC Characteristics

Table 17. Power Supply DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
VA33, VD33IO, SW_HV3	3.3V Supply Voltage	3.0	3.3	3.6	V
VDD_IO	Digital IO Supply Voltage	1.62	1.8~3.3	3.6	V
VA12_AFE, VA12_SYN, VA12_RF	1.2V Core Supply Voltage	1.08	1.2	1.32	V
IDD33	3.3V Rating Current (with internal regulator and integrated CMOS PA)	-	-	450	mA

Symbol	Parameter	Minimum	Typical	Maximum	Units
IDD_IO	IO Rating Current (including VDD_IO)			200	mA
IDD_IO_33	3.3V IO Rating Current			50	mA

9.4. Digital IO Pin DC Characteristics

9.4.1. Electrical Specifications

Table 18. Typical Digital IO DC Parameters (3.3V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	LVTTL	2.0	-	-	V
V_{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V
V _{OH}	Output-High Voltage	LVTTL	2.4	-	-	V
V _{OL}	Output-Low Voltage	LVTTL	-	-	0.4	V
V_{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V
V _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	V
I _{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ

Table 19. Typical Digital IO DC Parameters (1.8V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{IH}	Input-High Voltage	CMOS	$0.65xV_{CC}$	-	-	V
V _{IL}	Input-Low Voltage	CMOS	-	-	0.35x V _{cc}	V
V _{OH}	Output-High Voltage	CMOS	V _{CC} -0.45	-	-	V
V _{OL}	Output-Low Voltage	CMOS	ı	-	0.45	V
V_{T+}	Schmitt-trigger High Level		1.02	1.09	1.14	V
V_{T-}	Schmitt-trigger Low Level		0.67	0.73	0.8	V
I _{IL}	Input-Leakage Current	V _{IN} =1.8V or 0	-10	±1	10	μΑ

10. Mechanical Dimensions

10.1. Package Specification

10.2. Mechanical Dimensions Notes

Symbol		Dimension in mm	า	С	Dimension in inc	h		
Symbol	Min	Nom	Max	Min	Nom	Max		
Α	0.80	0.85	0.90	0.031	0.033	0.035		
A ₁	0.00	0.02	0.05	0.000	0.001	0.002		
A ₂		0.65	0.70		0.026	0.028		
A ₃	0.2 REF			0.008 REF				
b	0.15	0.20	0.25	0.006	0.008	0.010		
D/E	7.00 BSC				0.276 BSC			
D ₂ /E ₂	4.35	4.60	4.85	0.171	0.181	0.191		
е	0.40 BSC				0.016 BSC	0.010		
L	0.30	0.40	0.50	0.012	0.016	0.020		

Notes:

1. CONTROLLING DIMENSION: MILLIMETER(mm).

2. REFERENCE DOCUMENTL: JEDEC MO-220.

11. Ordering Information

Table 20. Ordering Information

Part Number	Package	Status
RTL8711AM-VA0-CG	QFN-56, 'Green' Package	Mass Production
RTL8711AM-VB1-CG	QFN-56, 'Green' Package	Mass Production
RTL8711AM-VT1-CG	QFN-56, 'Green' Package	Mass Production

Note: See page 13 for package identification.

Realtek Semiconductor Corp.

Headquarters

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C.

Tel: 886-3-5780211 Fax: 886-3-5776047

www.realtek.com

