		doc_1		doc_2	decision	id
cases	authors	Lu, Y.Wang, L.Xu, W.	authors	Yulong Lu Li Wang Wuzhe Xu		
	title	Solving multiscale steady radiative transfer equation using neural networks with uniform stability	publication_date	Solving multiscale steady radiative transfer equation using neural networks with uniform stability 2021-10-13 21:15:36+00:00 SupportedSources.ARXIV		
	source journal	te 2022-07-15 00:00:00	journal volume doi	None		DUPLICATES 159
	volume	10.1007/s40687-022-00345-z • https://link.springer.com/content/pdf/10.1007/s40687- 022-00345-z.pdf	urls	 http://arxiv.org/pdf/2110.07037v3 http://arxiv.org/abs/2110.07037v3 http://arxiv.org/pdf/2110.07037v3 	DUPLICATES	
		https://link.springer.com/article/10.1007/s40687-022-	id	id8686995161101202188		
	urls	00345-z/fulltext.html • https://link.springer.com/content/pdf/10.1007/s40687-022-00345-z.pdf • http://dx.doi.org/10.1007/s40687-022-00345-z		This paper concerns solving the steady radiative transfer equation with diffusive scaling, using the physics informed neural networks (PINNs). The idea of PINNs is to minimize a least-square loss function, that consists of the residual from the governing equation, the mismatch from the boundary conditions, and other physical constraints such as conservation. It is advantageous of being flexible and easy to execute, and brings the potential for high dimensional problems. Nevertheless, due the presence of small scales, the vanilla PINNs can be extremely unstable for solving multiscale steady transfer equations. In this paper, we propose a new formulation of the loss based on the macro-micro decomposition. We prove that, the new loss		
	id	id-6199737339953576797		nction is uniformly stable with respect to the small Knudsen number in the sense that the \$L^2\$-error of the neural network solution is uniformly introlled by the loss. When the boundary condition is an-isotropic, a boundary layer emerges in the diffusion limit and therefore brings an additional		
	abstract versions			difficulty in training the neural network. To resolve this issue, we include a boundary layer corrector that carries over the sharp transition part of the solution and leaves the rest easy to be approximated. The effectiveness of the new methodology is demonstrated in extensive numerical examples.		
			versions			