Process Mining: Data Science in Action

Four Quality Criteria for Process Discovery

prof.dr.ir. Wil van der Aalst www.processmining.org

Where innovation starts

Overview

Is the process model a correct reflection of the real process?

Naïve approach based on classification

- True Positives (TP): traces possible in model and also possible in real process.
- True Negatives (TN): traces not possible in model and also not possible in real process.
- False Positives (FP): traces possible in model but not possible in real process.
- False Negatives (FN): traces not possible model but possible in real process.

Visualization of True/False Positives/Negatives

Metrics

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

Problem

Typically the event log only shows fraction of possible traces

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

$$replay _ fitness = \frac{IP'}{TP' + FN'}$$

Challenges

No negative examples (cannot see what cannot happen) Log contains only a fraction of possible traces Almost vs poorly TP' fitting traces **FP** event log FΝ Murphy's law for process mining In case of loops often infinitely (anything is possible, many possible traces so probabilities matter)

Example log

	#	trace
	455	acdeh
	191	abdeg
	177	adceh
St	144	abdeh

©Wil van der Aalst & TU/e (us

Model that seems to be OK ...

47 acdefdbeh 38 adbeg 33 acdefbdeh 14 acdefbdeg 11 acdefdbeg 9 adcefcdeh 8 adcefdbeh 5 adcefbdeg 3 acdefbdefdbeg 2 adcefdbeg 2 adcefbdefbdea 1 adcefdbefbdeh 1 adbefbdefdbeg

56 adbeh

fitness (observed behavior fits)

simplicity ("Occam's razor")

precision (avoiding underfitting) generalization (avoiding overfitting)

#

trace

391

1 adcefdbefcdefdbeg

Non-fitting model

trace 455 acdeh abdeg adcefdbefcdefdbeg

1391

38 adbeg 33 acdefbdeh 14 acdefbdeg 11 acdefdbeg 9 adcefcdeh 8 adcefdbeh 5 adcefbdeg 3 acdefbdefdbeg 2 adcefdbeg 2 adcefbdefbdea 1 adcefdbefbdeh 1 adbefbdefdbeg 1 adcefdbefcdefdbeg 391

56 adbeh

47 acdefdbeh

generalization (avoiding overfitting)

Underfitting model

trace 455 acdeh 191 abdeq 177 adceh 144 abdeh

111 acdeg 82 adceg

56 adbeh 47 acdefdbeh

38 adbeg 33 acdefbdeh

14 acdefbdeg 11 acdefdbeg

9 adcefcdeh

8 adcefdbeh

5 adcefbdeg

3 acdefbdefdbeg

2 adcefdbeg

2 adcefbdefbdea

1 adcefdbefbdeh

1 adbefbdefdbeg

1 adcefdbefcdefdbeg

fitness (observed behavior fits) simplicity ("Occam's razor")

precision (avoiding underfitting) generalization (avoiding overfitting)

391

Overfitting model

47 acdefdbeh 38 adbeg 33 acdefbdeh 14 acdefbdeg 11 acdefdbeg 9 adcefcdeh 8 adcefdbeh 5 adcefbdeg 3 acdefbdefdbeg 2 adcefdbeg 2 adcefbdefbdea 1 adcefdbefbdeh 1 adbefbdefdbeg generalization 1 adcefdbefcdefdbeg (avoiding overfitting) 391

trace

455 acdeh

191 abdeq 177 adceh 144 abdeh

111 acdeg

82 adceg

56 adbeh

fitness (observed behavior fits) simplicity ("Occam's razor")

precision (avoiding underfitting)

Fitness: good or bad?

Fitness: bad!

both traces do not fit ...

Precision: good or bad?

Precision: good!

not underfitting...

Precision: good or bad?

Precision: bad!

underfitting (allows for highly unlikely behavior) ...

Generalization: good or bad?

Generalization: bad!

risk of overfitting on 5 example traces ...

Generalization: good or bad?

Generalization: good!

not overfitting...

Simplicity: good or bad?

 $\langle a,c \rangle^{16}$ $\langle a,b,c \rangle^8$ $\langle a,b,b,c \rangle^4$ $\langle a,b,b,b,c \rangle^2$ $\langle a,b,b,b,b,c \rangle^1$

Simplicity: bad!

too complex/specific...

Simplicity: good or bad?

$\langle a,c \rangle^{16}$ $\langle a,b,c \rangle^8$ $\langle a,b,b,c \rangle^4$ $\langle a,b,b,b,c \rangle^2$ $\langle a,b,b,b,b,c \rangle^1$

Simplicity: good!

Part I: Preliminaries Part III: Beyond Process Discovery Chapter 2 Chapter 3 Chapter 7 Chapter 8 Chapter 1 Chapter 9 Process Modeling and Data Mining Introduction Conformance Mining Additional **Operational Support** Analysis Checking Perspectives Part II: From Event Logs to Process Models Part IV: Putting s Mining to Work Chapter 5 Chapter 10 Chapter 4 Chapter 6 Chapter 11 Chapter 12 Process Discovery: An Getting the Data Advanced Process **Tool Support** Analyzing "Lasagna Analyzing "Spaghetti Introduction Discovery Techniques Processes" Processes" Part V: Reflection Chapter 14 Chapter 13 Cartography and **Epilogue** Navigation Wil M. P. van der Aalst Process Mining

2 Springer