1. (worth 9 points) Let function f be defined by the polynomial below:

$$f(x) = 7x^4 + 8x^3 - 5x^2 - 6x - 2$$

Draw lines that match each function reflection with its polynomial:

2. (worth 20 points) In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	8	5	9
2	4	1	5
3	9	9	6
4	1	6	8
5	6	4	7
6	7	2	4
7	3	8	1
8	5	3	2
9	2	7	3

3. (worth 3 points) Evaluate h(1).

$$h(1) = 9$$

4. (worth 3 points) Evaluate $f^{-1}(5)$.

$$f^{-1}(5) = 8$$

5. (worth 3 points) Assuming g is an **odd** function, evaluate g(-3).

If function g is odd, then

$$g(-3) = -9$$

6. (worth 3 points) Assuming h is an **even** function, evaluate h(-7).

If function h is even, then

$$h(-7) = 1$$

7. (worth 15 points) A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain. Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} + 1$$
$$p(-x) = -x^{2} + 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 + 1)$$

 $-p(-x) = x^2 - 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. (worth 10 points) I have drawn half of a function. Draw the other half to make it even or odd.

9. (worth 10 points) Let function f be defined with the equation below.

$$f(x) = \frac{x-3}{7}$$

a. Evaluate f(17).

step 1: subtract 3 step 2: divide by 7

$$f(17) = \frac{(17) - 3}{7}$$
$$f(17) = 2$$

b. Evaluate $f^{-1}(13)$.

step 1: multiply by 7 step 2: add 3

$$f^{-1}(x) = 7x + 3$$

$$f^{-1}(13) = 7(13) + 3$$

$$f^{-1}(13) = 94$$

10. (worth 6 points) The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(6).

$$b(6) = 4$$

b. Evaluate $b^{-1}(7)$.

$$b^{-1}(7) = 5$$

- 11. (worth 18 points) Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-6	6	-6	6
-1	-3	3	3	-3
0	0	0	0	0
1	3	-3	-3	3
2	-6	6	-6	6

b. Is function f even, odd, or neither?

neither

c. How do you know the answer to part b?

Function f is neither because neither column -f(-x) nor column f(-x) matches column f(x) exactly.