

$$\frac{204}{8^3} = .3984375$$

$$n \text{ subintervals} \qquad \text{every subinterval}$$

$$\frac{1}{n} \cdot \left(\frac{1}{n}\right)^2 + \frac{1}{n} \cdot \left(\frac{2}{n}\right)^2 + \frac{1}{n} \cdot \left(\frac{3}{n}\right)^2 + \dots + \frac{n^2}{n^2}$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \frac{3}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \dots + \frac{n^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \dots + \frac{n^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2} + \dots + \frac{n^2}{n^2} + \dots + \frac{n^2}{n^2} + \dots + \frac{n^2}{n^2}\right)$$

$$\frac{1}{n} \cdot \left(\frac{1}{n^2}$$

or
$$\sum_{i=1}^{n} f(x_i) \Delta x \leftarrow estimate - ...$$

Pro 306

 $\Delta x = \frac{b-ca}{n}$

Exact

Integral

Area = $\int_{1}^{9} 3 dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$

$$\int_{1}^{1} \int_{1}^{1} \int_{1}^{1} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) dx$$

$$\int_{1}^{1} \int_{1}^{1} \int_{1}^{1} dx = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{1}^{1} dx$$

Pg 315 If $m \leq f(x) \leq M$ on [a,b], then $m(b-a) \leq (f(x)) dx \leq M(b-a)$ or If $f(x) \ge 0$ on [a, b], then $\int_{a}^{b} f(x) dx \ge 0$. $f(x) \ge g(x)$ on [a,b], then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$ Pg 318 #55 (x^2-4x+4) dx = 0? $\int_{0.47}^{2} \int_{0.47}^{2} \int_{$ $(x-2)(x-2) \ge 0$? $(x-2)^2 \ge 0$ is true. #62 $\int_{0}^{2} (x^{3} - 3x + 3) dx$ Max/min on [0,2]? $f(x) = 3x^2 - 3 = 0$ £(1) = | ← min x = +1 f(2) = 5 ← max