Mathematik II Integralrechnung für Funktionen einer Variable Sf(x)dx = F(b)-F(a) = Flache unter der Fonktion y=f(x) stehs in [a,b] > integrierbar · linearitat: walker Miller $\int_{a}^{b} \left(c_{\Lambda} f_{\Lambda}(x) + c_{2} f_{2}(x)\right) dx = c_{\Lambda} \int_{a}^{b} f_{\Lambda}(x) dx + c_{2} \int_{a}^{b} f_{2}(x) dx$ $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \quad \text{bei acceb}$ $\Rightarrow \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$ $\Rightarrow \int_{-\infty}^{\infty} f(x) dx = 0$ Unbestimmtes Integral $I(x) = \int_{0}^{x} f(t) dt$ Stammfork tion 22 y=fW) F'(x) = F(x) $\Rightarrow F_1(x) = F_2(x) + C$ (additive Konstante) $\Rightarrow \int f(x) dx = F(x) + c$

First grations reinfertelige EGAL*

V= Sd St (xy)dxdy = St St (xy)dy dx

Integrand in Produktform

F(x,y)=F,(x).Fz(y)

V= St St,(x) Fz(y) dxdy = Stz(y) (St,(x)dx) dy =

d fz(y)dy. St,(x)dx = F,(x)|b. Fz(y)|d.

Vektorrechnung

(x)

V= (1/4)
(Vn)

*Skalarmultipli Kahon:
$$\lambda \vec{v} = (\lambda v_n)$$

*Skalarmultipli Kahon: $\lambda \vec{v} = (\lambda v_n)$

*Addition: $\vec{v} + \vec{v} = (v_n + v_n)$

*Subtraktion analog (Vn+Un)

*Linear Kombination: $\vec{u} = \lambda_n \vec{v}_n + v_n + v_n \vec{v}_n$

*Skalarprodukt: $\vec{v} \cdot \vec{v} = (v_n + v_n)$

*Orthogonalitat: $\vec{v} \cdot \vec{v} = 0$

*Senk reconst.

*Linear Abhängg Keit: Falls such einer der Vektor en $\vec{v}_n \cdot \vec{v}_n \vec{v}_n$

als Linearkombination der Restlichen darstellen lässt.

Matrixreohnung
mxn Matnx: Amxn = (ais)
m Zeilen (rows), n Spatten (colomns)
(a ₁ , a ₁₂ ,, a _{in}) i=1,,m Zeilenvelkton
$\begin{pmatrix} \alpha_1 \dot{s} \\ \alpha_2 \dot{s} \end{pmatrix}$ $\dot{S} = 1,,n$ Spattervektor
 transponierte Motinx: An xm, vertauschen von Zeilen und Spal Skalar Multiplikation: A Amxn, A multipliziert sedes Element Addition: Amxn + Bmxn, Addition sedes Elements Subtraktion analog Multiplikation: Amxn • Bnxp, Spatten A = Zeilen B
resultient in C_{mxp} : $c_{ij} = a_{in}b_{nj} + a_{i2}b_{2j} + + a_{in}b_{nj}$ $\Rightarrow Matrix multiplikation ist night Kommutativ $ $A.B \neq B.A$
· lineare Zoordnung: VER - J= A.V e Rm Amon mit Vektor non - never Vektor mon
• Einheitsmatrix: neutrales Element der Matrix Multiplikation A. In = A = In. A In Matrix mit lauter 1 auf der Diagonalen
$ \begin{array}{c} $
$\Rightarrow \lambda T_n \text{ skeckt einen Matrix om Faktor } \lambda$ $A \cdot 2 T_n = 2 A - 2 T_n \cdot A$

Determinante
Mn, quadratische Matrizen, nxn Matrizen
det (A) ordnet seder Mn Matrix das in Oimensionale Volumen des Augespannten Gebildes 20.
det(A2)= an a22-a22
dot(A3)= an a22 a33 + a22 a34 + a23 a24 a32 -a23 a22 a34 - a22 a32 - a22 a23
bei n>2, Zeilen- oder Spattenentwicklung ⇒ Minorante, A ∈ Mn, ⇒ mit den meisten Willen
· det (A·B)= det(A)·det(B) · det (AT)= det(A)
• Falls eine Zeile (oder Spalte) nor Wollen hat, det (A)=0 • Falls zwei Zeilen (oder Spalten) identisch sind, det (A)=0
falls allgemeiner die Zeilen (oder Spalten) linear abhängig
sind, det(A)=0 >det(A)=0 impliziert also lineare Abhangigkert! • falls ein Vielfaches einer Zeile (oder Spalte) zu einer andere
Zeile (oder Spatte) addiert wird, verändert sich det (A) nicht
· das Vertauschen zweier Zeilen (oder Spalten) andert das Vorzei · bei Multiplikation einer Zeile (oder Spalte) mit), multipliziert
sich det(A) ebenfalls mit \
⇒ det (A) mit A Dreiecksmatrix (lauter Nullen unter der Dag ist gleich dem Produkt der Diagonal-Elementen

Inverse

X Inverse 20 A, wenn: $A \cdot X = I_n = X \cdot A$

X geschrieben als Am

 $det(A^nA) = det(A^n) det(A) = det(I_n) = 1$

 $\Rightarrow det(A^{-1}) = \underline{1}$ det(A)

also moss det(A) to sein, damit A invertienbar

 $A_2^{-1} = \frac{1}{\det(A_2)} \begin{pmatrix} a_{12} - a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$

bon n≥3, Gauss-Algorithus

Rechemegehn

 $(A^{\mathsf{T}})^{\mathsf{T}} = A$ $(A \cdot B)^{\mathsf{T}} = B^{\mathsf{T}} \cdot A^{\mathsf{T}}$

 $(A^{-1})^{-1} = A$ $(AB)^{-1} = B^{-1}A^{-1}$

 $(A^{-1})^{\mathsf{T}} = (A^{\mathsf{T}})^{-1}$

Definitionen

·symmetrisch, falls A=A

· schiefsymmetrischy falls AT = - A

· orthogonal, falls A = A (und invertierbar)

Lineare Gleichungssysteme
Existenz and Eindertigkeitskriterien
lineakes Gleichungssystem (LGS), m Gleichungen, n Un bekannter
⇒ Mathixtonn: A = b A: mxn-Koofizienten Matrix
A, B mossen bekannt sein B. Techte Seite, Vektor
Existenz einer Lösung
· en homogenes LGS A=3 hat immer
mindestens die triviale Losong X=0, also immer losbar
ein inhomogenes LGS AZ=5 mit 576, besitzt nur eine Losung, wenn 5 sich als Linear Kombination der Spalten Vektoren von A darstellen lasst
⇒ bound Spalten A mossen linear abhangig sein
>rang (Alb) = rang (A) Existerakniterium
Eindeutigkeit einer Läsung
Wenn die n Spaltenvektoren von A linear unabhängig sind, gibt es nor <u>eine</u> Losung:
⇒ rang (Alb)=rang (A)=n EindeutigkeitsKriterium
bei r <n, es="" freie="" gbt="" n-r="" unbekannte<br="">(n-it dimensionaler Lösungsraum)</n,>

