Experimento 04: Transistores de unión bipolar

Andrés Arturo Rojas-Barboza, Estudiante, ITCR y Fabián Mauricio Villegas-Bonilla, Estudiante, ITCR,

Resumen—El informe presenta el desarollo y resultado del experimento 4 de transistores en union bipolar, donde se formaron varios circuitos con transistores bjt en su configuración npn para medir su curva caracteristicas y el resultado de sus señales de salida con diferentes corrientes en su terminal "b"para su polarización y voltajes en su terminal ç".

Index Terms—Diodo, tensión, corriente, junta, ruptura.

I. INTRODUCCIÓN

OS transistores de union bipolar bjt son semiconducores de tres capas que pueden ser con materiales de tipo npn o pnp esto determinara la dirección de su corriente, para este experimento se usara solo el 2N3904 (npn). Los transistores bjt tienen tres terminales llamados colector(C), emisor (E) y base (B), donde la base sirve como un switch de polarización para permitir que la corriente en la terminal del colector. [132] Que tienen la caracteristica de aumentar la corriente o el voltaje de una salida de tensión. Los transis

II. ECUACIONES

Para realizar la mediciones de voltaje en los circuitos se uso la ley de Ohm. La ecuación de la ley de Ohm es

$$V = I \cdot R \tag{II.1}$$

De modo que al realizar el despeje de la corriente de como resultado la ecuación

$$I = \frac{V}{R} \tag{II.2}$$

II-A. Circuitos de Medición

El circuito de la Fig. II.1 sirve como referencia para obtener las curva caracteristcas por medio de diferenctes mediciones con corriente de base y voltaje de colector-emisor variables y la Fig.II.2 se utiliza para obtener una curva característica de los transitores en un osciloscopio.

Fig II.1: Circuito de emisor común para medir curvas caracteríscticas del BJT

Fig II.2: Circuito para observar curvas características del BJT con el osciloscopio

II-B. Resultados Simulados

II-C. Resultados Experimentales

La ?? muestra los valores de la resistencia reales utilizados para hacer las mediciones de la

II-D. Análisis de Resultados

La tensión de ruptura del diodo se puede aproximar en $0.7\,\mathrm{V}$ [Malik1996, Boylestad, Horowitz1989, Gray1995]. Por otro lado, la tensión de ruptura se puede considerar de $-40\,\mathrm{V}$ [Floyd2008, Behzad2013, Schilling1994]. Un diodo puede considerarse como una junta de dos materiales, uno con un dopado de portadores mayoritarios mayor al otro material de la junta [Pierret1994].

III. GRAFICANDO LA CURVA CARACTERÍSTICA DEL TRANSISTOR

IV. CONCLUSIONES

Por medio de la información de la fig se muestra que si se cumple la teoría donde el diodo tiene su punto de trabajo alrededor de los 0.6V a los 0.8V siendo los 0.7V el punto donde se encuentra el mayor crecimiento de corriente.

V. REFERENCIAS

R. L. BOYLESTAD, y L. NASHELSKY, *Electrónica: Teoría de Circuitos y Dispositivos Electrónicos.* PEARSON EDUCACIÓN, México, 2009

APÉNDICE A
DEMOSTRACIÓN DE LA LEY DE OHM
El texto relacionado al apéndice va aquí.

Apéndice B Cálculos de polarización CD

El texto relacionado al apéndice va aquí.