Feature Construction and Selection

CS4780/5780 – Introduction to Machine Learning

Thorsten Joachims Cornell University

Creating New Features

Input Features:

- Contain all information, but often not good for learning from directly.
- Example: GRE, GPA, Country → PhD Admit

Feature Construction:

- Create new features that make it easier to learn from.
- Example:
 - One-hot encoding of Country: "Germany" \rightarrow (0,0,1,0,...,0)
 - Percentile Features of GRE: GRE \rightarrow $(X_{GRE}^{10\%}, ..., X_{GRE}^{99\%})$
 - Percentile Features of GPA: GPA $\rightarrow (X_{GRE}^{10\%}, ..., X_{GRE}^{99\%})$
 - Pairwise features: Country x $(X_{GRE}^{10\%}, ..., X_{GRE}^{99\%})$

Feature Selection

- Idea: Prune away irrelevant features to avoid overfitting.
- Approaches
 - Regularization and Margins
 - L2-Norm $\|\vec{w}\|_2$: Good when many features are relevant
 - L1-Norm $\|\overrightarrow{w}\|_1$: Good when only small subset of features is relevant
 - Feature scoring
 - Forward/Backward Selection

Feature Scoring

- Idea: Find features that are informative itself.
- Procedure
 - Sort features $X_1 \dots X_N$ by
 - $InformationGain(X_j, Y)$
 - $\operatorname{Chi}^2(X_j, Y)$
 - ErrorReduction (X_i, Y)
 - Etc.
 - Pick top k feature and use those for learning
 - Determine best value of k via validation set / cross-validation.

Forward Selection

- Idea: Keep adding features that improve performance.
- Procedure
 - Avail = $\{X_1, ..., X_N\}$
 - Chosen = \emptyset
 - REPEAT
 - For $X_i \in Avail$
 - Train learner with features Chosen $\cup \{X_i\} \rightarrow h_i$
 - Find h_j with best validation set performance and add that X_j to Chosen. Remove that X_j from Avail.
 - UNTIL Avail = Ø
 - Pick h_j with best validation set performance overall.

Backward Selection

- Idea: Keep removing features that improve performance.
- Procedure
 - Chosen = $\{X_1, ..., X_N\}$
 - REPEAT
 - For $X_j \in Chosen$
 - Train learner with features Chosen $-\{X_i\} \rightarrow h_i$
 - Find h_i with best validation set performance and remove that X_i from Chosen.
 - UNTIL Chosen = Ø
 - Pick h_i with best validation set performance overall.

Summary

- Be creative in transforming and combining features → make learning easier for algorithm.
- Remove features that do not provide information to avoid overfitting.