

STUDENTID NO									

MULTIMEDIA UNIVERSITY FINAL EXAMINATION

TRIMESTER 2, 2015/2016

PMT0201 - MATHEMATICS II

(All sections / Groups)

8 March 2016 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of FOUR pages with **FIVE** questions.
- 2. Attempt **ALL** Five questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Show proper steps and write all your answers in the answer booklet provided.

Question 1 (10 Marks)

- a) i) Show that $P\left(\frac{-6}{7}, \frac{\sqrt{13}}{7}\right)$ is on the unit circle.
 - ii) If P is the corresponding terminal point of t, find $\sin t$, $\cos t$ and $\cot t$. [3 marks]
- b) Suppose $\sin t = -\frac{2}{5}$ and the terminal point of t is in the Quadrant III
 - i) Write tan t in terms of sin t.
 - ii) Then find the exact value of tan t. [3 marks]
- c) Given that $f(x) = 2 + 2\sin\left(\frac{x}{2} + \frac{\pi}{8}\right)$.
 - i) Determine the amplitude, period, phase shift and vertical shift of f.
 - ii) Sketch one complete period of $g(x) = 2\sin\left(\frac{x}{2}\right)$.
 - iii) On the same axes, sketch one complete period of the function *f*. Indicate clearly the *x* and y intercepts of the graph. [4 marks]

Question 2 (10 Marks)

a) Find the exact value of

$$\cos\left(\sin^{-1}\left(-\frac{5}{8}\right)\right).$$
 [2 marks]

- b) A triangle ABC has b = 32, c = 40 and $\angle A = 39.5^{\circ}$.
 - i) Sketch and solve the triangle.
 - ii) Find the area of the triangle *ABC*. [4 marks]
- Show that $(\cot x \csc x)(\cos x + 1) = -\sin x$. [2 marks]
- d) Solve $\sqrt{2}\cos\left(x+\frac{\pi}{5}\right) = -1$. [2 marks]

Continued...

PCY 2/4

Question 3 (10 Marks)

- a) Suppose $z = 1 i\sqrt{3}$.
 - i) Find the polar forms of z.
 - ii) Use De Moivre's Theorem to find z^5 . Leave the answer in the standard form a + bi where $a, b \in \Re$. [3 marks]
- b) Compute the limits. Show at least one intermediate step.

i)
$$\lim_{x \to 2} \left[2x + \cos\left(\frac{x\pi}{2}\right) - 2 \right]$$

ii)
$$\lim_{x \to -1} \frac{4x^2 - 4}{x^2 - 2x - 3}$$

iii)
$$\lim_{x \to \infty} \frac{-3x^2 + x}{2x^2 + 5x - 1}$$
 [4 marks]

c) Suppose

$$f(x) = \begin{cases} 3x - 9, & \text{if } x \le 4\\ \sqrt{2x + 1}, & \text{if } x > 4 \end{cases}$$

Determine whether f is continuous at 4. Show proper steps. [3 marks]

Question 4 (10 Marks)

a) By using the formal definition of derivative, find f'(2) if

$$f(x) = 4x^2 + 1$$
. [2 marks]

b) Find the derivatives of

$$p(x) = \frac{x-3}{\sqrt{3x+5}},$$

ii)
$$q(x) = \cos(2x \ln x - 3)$$
. [5 marks]

c) Find the absolute maximum and minimum values of the function

$$f(x) = x^3 - 3x + 4$$
, $0 \le x \le 3$. [3 marks]

Continued...

PCY 3/4

PMT0201 MATHEMATICS II 8 MARCH 2016

Question 5 (10 Marks)

a) Compute the integral

$$\int_{1}^{3} \frac{3x^2 + 4}{\sqrt{x^3 + 4x}} dx.$$
 [3 marks]

b) Use integration by parts to find $\int x \cos(3x) dx$. [3 marks]

- c) Given the parabolas $y = x^2$ and $y = 4x x^2$.
 - i) On the same axes sketch the graphs and find the points of intersection between the graphs.
 - ii) Find the area of region enclosed by the two parabolas. [4 marks]

End of Page

PCY 4/4