

Indian Institute of Information Technology Una An institute of National Importance under MoE.

Saloh, Una (HP)-177209.

AY 2022-23
School of Electronics
Curriculum: IHTUGECE22
Cycle Test - II
July 17, 2023

Demog	B.Tech
Degree	ECE
Branch	II
Semester	MAC221/ Mathematics-II
Subject code/name	60 minutes
Time	20
Maximum Marks	20

Answer all the questions.

Questions	Marks
[Q.]	1
No Ya State the convolution theorem of the Laplace transform. 1(b) Construct the Laplace transform of the solution of the following boundary	2
value problem:	
$y'' + y = \int_0^t \sin \tau \ y(t - \tau) d\tau \text{ with } y(0) = 1, y'(0) = 0.$	
1(c) Compute the inverse Laplace transform of the function given below:	2
$H(s) = \log\left(\frac{s+6}{s+5}\right).$	
Quality Demonstra Identity	1
2(a) State the Parseval's Identity. 2(b) Find the Fourier series of the function given below:	2
$f(x) = \begin{cases} -\pi, & -\pi < x < 0, \\ x, & 0 < x < \pi \end{cases}.$,
2(c) Using the Fourier series obtained in Q.No. 2(b) deduce that:	2
$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$	
(Give reasoning for the answer.)	

Consider the function $f(x) = \frac{\pi^2}{12} - \frac{x^2}{4}$ in the interval $[-\pi, \pi]$. Is $f(x)$ an function?	1
Consider the function? Yen function? Find the Fourier series for the function $f(x)$ stated in Q.No. 3(a). Find the Fourier series for $f(x) = \sin x$ in the interval $(0, \pi)$. Find the half range cosine series for $f(x) = \sin x$ in the function $f(x)$.	2
Yen function: 3(b) Find the Fourier series for the function $f(x)$ stated in Q.No. 3(a). Find the Fourier series for $f(x) = \sin x$ in the interval $(0, \pi)$. Find the half range cosine series for the derivative of the function $f(x)$.	2
Find the half range cosine series form for the derivative of the function $f(x)$.	. 1
Find the Fourier scale series for $f(x) = \sin x$ in the interval $(0, \pi)$. Find the half range cosine series for $f(x) = \sin x$ in the interval $(0, \pi)$. Find the half range cosine series for $f(x) = \sin x$ in the interval $(0, \pi)$. Define the Fourier cosine transform for the derivative of the function $f(x)$. Find the Fourier transform of the function given below: $ x = x = x \le a$	2
$\begin{cases} a - x , & x \le a \end{cases}$	
$f(x) = \begin{cases} a - x , & x \le a \\ 0, & x > a. \end{cases}$	
	1 2
4(c) Using the Fourier transform obtained in Q.No. 4(b) deduce the	ar.
4(c) Using the Fourier trans-	
$\int_{0}^{\infty} \sin^{2} x dx = \frac{\pi}{2}.$	
4(c) Using the Fourier $\frac{1}{\sqrt{1-x^2}} = \frac{1}{\sqrt{1-x^2}} $	

A All the best

100:200 inclusive the Write a program (+ 1/3 + 1/4 +)

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE Saloh, Una (HP) – 177 209

Website: www.iiitu.ac.in

AY 2022-23 SCHOOL OF ELECTRONICS CURRICULUM: HITUGECE22 Cycle Test – H

Cycle Test – I 17, July '23

		ECE
Degree	B. Tech. Branch	LOD
Semester	Second	
Subject Code & Name	CYC222: Engineering Chemistry	Maximum: 20 Marks
	Answer All Questions	Maximum. 20 mass
Time: 60 Minutes		Marks

Time. o.		Marks
Sl. No.	Questions What are the functions of fillers and plasticizers in the plastic industry? Briefly What are the functions of plastics in engineering and industry.	(1)
la		(2)
16	A carbon sample of 2.65 g in the form of graph and calorimeter = 2300 for its calorific value in the bomb calorimeter. The following data were obtained:	8080
	for its calorific value in the bolino care and calorificated by weight of water taken = 500g , water equivalent of bomb and calorification weight of water taken = 500g , water equivalent of bomb and calorification water taken = 500g , water equivalent of bomb and calorification with the same of the calorification in the same and the	3450
	value of the coar in early. So cal/g). $C = 66.2\%$, $C = 6.1\%$,	(2)
1.c	580 cal/g). A coal sample was found to contain: $C = 66.2\%$, $H = 4.2\%$, $O = 6.1\%$, $O $	
2.2	How to analytically determine the masses accombustion of a fuel sample?	(2)
	Explain the role of bottom-up and top-down approach	n (2)
	electric oven at 103-110 and constant weight of 0.243 g.	ie
-	was then ignited at 700-750 °C to a constant percentage of moisture and ash in the given coal sample. Define octane number and cetane number? What are the structural features of the promote its high value?	
8.30	Define octane number and cetane number: What hydrocarbons that promote its high value?	

		1.70
3,12	Calculate the gross and net calorific value (Kcal/Kg) of the bitumen fuel having the following composition: $C = 85\%$, $H = 5\%$, $S = 2\%$, $N = 4\%$, $Si = 1\%$, ash = 3% , and latent heat of steam = 587 cal/g.	(2)
3,0	In a Bomb calorimeter, 0.25 g of peat sample was taken for the determination of the calorific value. The residue formed in the calorimeter was extracted with acid. The acidic extract was treated with BaCl ₂ solution and the precipitate of barium sulphate was obtained. The precipitate was filtered, dried and weighed. The weight of the precipitate was 0.10 mg. Calculate the percentage of Sulphur in the	(2)
44	Illustrate the differences between single walled and multi walled carbon nanotubes.	(1)
€ 4.b	The percentage analysis by volume of producer gas is: $H_2 = 19.4$, $CO = 20.5$, $N_2 = 50.1$ CH ₄ = 4.2 and $CO_2 = 6.0$ Calculate percentage of dry product obtained, if 30% excess air is supplied for complete combustion.	(2)
4.c	Describe, with a diagram, the process of injection moulding. How does it differ from extrusion moulding?	(2)

Good Luck

roblem given in the Q.16. of C program with an exk two P

fferen

ispla terit

3 fr

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE Saloh, Una (HP) - 177 209

Website: www.iiitu.ac.in

AY 2022-23

School of Computing

CURRICULUM: IIITUGECE22

Cycle Test - II 18, July'23

(09:00 AM - 10:00 AM)

	(09:00 AM -	- 10.00 / 11.2)		10 80 Sec.	- XV
Degree	B. Tech.	Branch	ECE		
Semester	II		·in C		44
Subject Code & Name	CSC 204: Basics		T	Maximum: 20	Marks
Time: 60 Minutes	Answer All	Questions			

	arks
Sl. Question	1)
i. int const a; ii. const int *a; iii int * const a;	(2)
write a C program to copy one array to another using pointers. Fill the question mark to get "10" as an output. #include <stdio.h> int main() { int i = 10,*ptr; ptr= &i void *vptr; vptr = &ptr printf("\nValue of iptr = %d ", ?); return 0;</stdio.h>	(1)
What is the difference between arrays and pointers? Is the memory access in pointer faster than the array? Explain the answer.	(2)
Write a C program to find the maximum element of an array.	(2)
Write a C program to find the maximum even. Can the array be accessed using a pointer in C language?	(1)
Write a function to reverse the elements of an array using recursion.	(2)
What is function? Explain different classification of user defined functions based on parameter passing and return type with examples.	(2)

	4.0	Does C language support object-oriented approach?	TI TO
	4.5	Explain different categories of pre-processor directives used in C.	(2)
Appropriate to	4.0	Describe any four string manipulation library functions with syntax.	(2)

rite a program in C to dispis 1/3 + 1/4 + 1/5 ... 1/n rite a short note of ii iii

(p)

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA IHPI

An Institute of National Importance under Moti-Saloh, Una (HP) – 177 209

Website: www.iiitu.ac.in

AY 2022-23

School of Basic Sciences CURRICULUM: HITUGECE22

> Cycle Test - II 18, Jul. 23

Degree	B. Tech.	Branch	ECE		
Semester	II	II			
Subject Code & Name	BIC203: Intro	BIC203: Introduction to Biotechnology			
Time: 60 Minutes	Answe	r All Questions	Maximum: 20 Marks		

Marks Question SI. No. (1)How much energy can be produced from a lactic acid fermentation? 1.a Calculate the Isoelectric point (pI) of an amino acid namely histidine if the values of pK1, pK2 (2)and pKR are 1.82, 6.00, and 9.17 respectively. What information can be deducted from the calgulated pl value of histidine? Calculate the specific activity, fold purification, and yield% of the following protein purification (2)process: Yield Fold Enzyme Activity Specific Total Protein Purification % activity (units) Purification (mg) Step 175000 5000 A 125000 1000 В Which chromatography technique can be used to separate out the specific hydrophobic amino acid, phenylalanine, from the mixture of three polar (hydrophilic) amino acids namely serine, 2.a

threonine, cysteine?

Determine the pattern of amino acid residues after the treatments of chymotrypsin and cyanogen (2) bromide to the purified protein sequence as follows: Ala-Gly-Val-Ala-Try-Pro-Gly-Lys-Phe-Val-Met-Val-Arg-Val-Phe-Met-Ala-Gly-Lys-Phe-Gly-Tyt-Ser-Thr-Ala

Demonstrate the working of protoplast fusion technique with an example of a commercial (2)2.c product.

3/a. Calculate the number of peptide bonds present in a tissue plasminogen activator protein that is (1) composed of 527 amino acids.

Construct a flow chart elucidating the steps in identification of 16S ribosomal RNA of a newly (2)discovered microorganism.

Page 1 of 2

(1)

Briefly explain the working mechanism of bioluminescent marine bacteria. How is it being exploited in other biotechnological applications?

Draw the separation pattern of three different protein molecules of sizes 7 kDa, 15 kDa, and 30 kDa in the size exclusion chromatography.

Ib Illustrate the production and separation process of insulin protein at the industry setting.

Demonstrate the working principle of four types of vaccines production with suitable examples. (2)

****GOOD LUCK****

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE Saloh, Una (HP) - 177 209

Website: www.iiitu.ac.in

AY 2022-23

School of Electronics

CURRICULUM: HITUECE22

Cycle Test - II 19, July'23

Degree	B. Tech.	Branch	ECE	
Semester	II	***************************************		
Subject Code & Name	ECC205: Sig	ECC205: Signals and Systems		
Time: 60 Minutes	Answer	All Questions	Maximum: 20 Marks	

SI.	Question	Marks			
No.		(1)			
1.a	The Fourier Series expansion of a real periodic signal with fundamental frequency	(1)			
/	f_0 is given by:				
	$x(t) = \sum_{n=0}^{\infty} c_n e^{j2\pi n f_0 t}$	and the second s			
	If the value of $c_5 = 8 + j7$, then find the value of c_{-5} .	(2)			
1.b	Find the value of exponential Fourier Series Coefficient for the signal $x(t)$	(2)			
•	shown in Fig. 1.				
	$\uparrow x(t)$				
	T T				
	$-\frac{T}{2}$				
	T T T T T T T T T T				
	T $-\frac{7}{2}$ $-A$ $\frac{1}{4}$				
	Fig. 1: Signal for Problem 1.b				
1.c/	A periodic signal $x(t)$ of period T_0 is given by:	(2)			
	$\frac{1}{(1, t < T_1)}$				
	$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t < \frac{T_0}{2} \end{cases}$				
	Calculate the DC component of $x(t)$.				
2.a/	Let $x(t)$ be the input to a Linear time-invariant system. The required output is	(1)			
/	4x(t-2). Find the value of transfer function.				
2.b	Find the Fourier Transform for a signal $g(t) = e^{-10 t } \sin 100t$.	(2)			
2.c	Derive the formula for power spectral density with proper example.	(2)			
		187			

	1	The Fourier Transform of $f(t)$ is $F(\omega)$. Find the inverse Fourier transform of $F(8\omega + 3)$.	(1)	
	15	Discuss the properties of cross-correlation for power signals mathematically with their significance.	(2)	
	3.0	Verify the Parseval's theorem for $x(t) = 2 rect (t/4)$.	(2)	1
4	4.0	Let $x(t) = \cos(10\pi t) + \cos(30\pi t)$ be sampled at 20Hz and reconstructed using an ideal low-pass filter with cut-off frequency 20Hz. Find the value of frequencies present in the reconstructed signal.	(1)	
1		Find the Nyquist rate for the continuous-time signal given below: $x(t) = \frac{\sin(4 \times 10^3 \pi t)}{\pi t}$	(2)	
13	S.	State and prove the sampling theorem in time and Frequency domain.	(2)	. 1.