BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

20th May 2021

Introduction

- ullet $K_{S,L}KK$ double tag yields for $\delta_D^{K\pi}$ measurement
- Procedure:
 - Select $K_{S,L}KK$ events tagged with $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$ (and $Ke\nu$)
 - 2 Use $K\pi$ tag to find double tag yield Y_i
 - 3 Use the other tags to find K_i
 - Fit for $r_D^{K\pi} \cos(\delta_D^{K\pi})$ and $r_D^{K\pi} \sin(\delta_D^{K\pi})$

Selection

- I've mostly followed the selection from K_SKK
- ΔE cuts taken from $K_S K K$ MEMO, except for $K \pi \pi \pi$
- Question: Is K_S veto/flight significance cut needed for $K\pi\pi\pi$?

Binning scheme

- Generated events outside phase space?
- Reconstructed events outside phase space, should I ignore?

Bin migration

• Bin migration for K_SKK vs $K\pi$:

Generated/Reconstructed	1	2	-1	-2
1	5233	194	69	0
2	298	4087	0	0
-1	68	0	4998	215
-2	0	0	217	2782

• Question: Do I need any $m_{\rm BC}$ requirements when constructing this matrix?

Sideband background subtraction method

$$B = \frac{a_S}{a_D} Y_D + \sum_{i=A,B,C} \frac{a_S}{a_i} \left(Y_i - \frac{a_i}{a_D} Y_D \right)$$

Question: How do I calculate errors (low number statistics)?

$K\pi$ double tag yield results

- Bin efficiency:
 - Count number of generated events in each bin
 - ② Count number of truth matched events in each bin after full selection (including sideband subtraction)

1	2	-1	-2
89	72	94	69
88.4	71.4	94.0	69.0
89.0	70.1	95.2	67.0
9.3%	7.8%	9.7%	7.3%
0.255	0.240	0.261	0.245
	88.4 89.0 9.3%	88.4 71.4 89.0 70.1 9.3% 7.8%	88.4 71.4 94.0 89.0 70.1 95.2 9.3% 7.8% 9.7%

• Question: Do I use \sqrt{N} for signal MC yield errors?

$K\pi\pi^0$ and $K\pi\pi\pi$ double tag yield results

Bin	1	2	-1	-2
Bin migration corrected $(K\pi\pi^0)$	154.6	96.4	201.7	131.7
Bin efficiency $(K\pi\pi^0)$	3.8%	2.9%	3.7%	3.0%
Bin migration corrected $(K\pi\pi\pi)$	120.6	64.0	139.0	86.1
Bin efficiency $(K\pi\pi\pi)$	7.2%	5.8%	7.2%	5.6%
Final double tag yield (K_i)	0.277	0.161	0.343	0.219

Next steps

- Tuple for K_SKK vs $Ke\nu$ ready, combine with $K\pi\pi^0$ and $K\pi\pi\pi$
- Study peaking backgrounds in inclusive MC
- Repeat with K_LKK