Trabajo Práctico Nro.3 Diseño de etapa amplificadora diferencial

14 de mayo de 2024

Prácticos

 Para el circuito de la Fig. 1 diseñar la polarización y el par diferencial de acuerdo a las especificaciones:

Figura 1: Par Diferencial con carga resistiva

- $L_1 = L_2 = 0.15 \mu m$
- $I_{SS} = I_{Ref} = 100 \mu A$
- $V_{CM_{IN}} = V_{CM_{OUT}} = 1.2V$
- $L_0 = 0.75 \mu m$
- $V_{DD} = 1.8V$
- $\frac{gm}{I_D} \geqslant 10$
- $f_{in} = 50MHz$

Obtener:

- \blacksquare $R_{D1.2}$
- $W_{1,2}$
- $g_{m1,2}$
- \bullet $A_{V_{DC}}$
- $lacksquare V_{ppDiffOut,Max}$
- Responda:
 - Qué cambios propone para duplicar la ganancia $A_{V_{DC}}$ previamente obtenida, manteniendo la especificación de $V_{CM_{IN}} = V_{CM_{OUT}} = 1,2V$.

 Justificar analíticamente la estimación de la nueva ganancia y simular los nuevos parámetros para demostrar que se cumple el incremento de ganancia esperado.

NOTA: Se recomienda usar simulaciones op para lograr la polarización y transient para determinar la ganancia de tensión (V_{out}/V_{in}) . También es posible usar simulaciones AC para observar la respuesta en frecuencia y determinar la ganancia de tensión.

2. Para el circuito de la Fig.2 diseñar la polarización y el par diferencial de acuerdo a las especificaciones en corner TT, luego evalúe en SS y FF (ver debajo tabla de variaciones PVT).

Figura 2: Par diferencial con carga diodo

- $L_0 = 0.75 \mu m$
- $L_{1,2} = 0.15 \mu m$
- $L_{3,4,5,6} = 0.75 \mu m$
- $V_{CM-IN/OUT} = 1.2V$
- $V_{DD} = 1.8V$

Obtener:

- $W_{1,2}$
- $W_{3,4,5,6}$
- \bullet $A_{V_{DC}}$
- $lacksquare V_{ppDiffOut,Max}$
- Responda:
 - ¿Qué ventajas presenta un circuito respecto al otro? Elabore una lista y explique cada una de ellas.

NOTA: Iniciar el diseño desde el diodo de polarización y generar las relaciones de aspecto necesarias para obtener las corrientes especificadas.

Tabla de variaciones PVT:

Proceso	V_{DD} [V]	V_{CM} [V]	I_{REF} [uA]	Temperatura [°C]
TT	1.8	1.2	50	65
FF	1.98	1.32	55	0
SS	1.62	1.08	45	125