Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 03.10.2014

LÖSUNG

Aufgabe 1: Lösungen zu Aufgabe 1

- a) i Die Ruhelagen lauten (-1,1) und (1,1).
 - ii Die linearisierten Systeme sind durch

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x}, \qquad \Delta \mathbf{x}(t) = \mathbf{x}(t) - \mathbf{x}_R, \qquad \Delta \mathbf{x}_0(t_0) = \mathbf{x}_0 - \mathbf{x}_R,$$

mit

$$\mathbf{A}_1 = \begin{bmatrix} 0 & -1 \\ -2 & -2 \end{bmatrix}, \qquad \mathbf{A}_2 = \begin{bmatrix} 0 & -1 \\ 2 & -2 \end{bmatrix}$$

gegeben.

- iii Die Eigenwerte von \mathbf{A}_1 lauten $-1 \pm \sqrt{3}$ und daher ist die Ruhelage $\mathbf{x}_R = \mathbf{0}$ des ersten linearisierten Systems nicht global asymptotisch stabil. Die Eigenwerte von \mathbf{A}_2 lauten $-1 \pm i$. Daher ist die Ruhelage $\mathbf{x}_R = \mathbf{0}$ des zweiten linearisierten Systems global asymptotisch stabil.
- b) i Die Übertragungsfunktion errechnet sich zu

$$G(s) = \mathbf{c}^{\top} (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b} + d = \frac{3s^2 + 7s + 18}{s^2 + 2s + 5}.$$

ii Es gilt

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s \hat{y}(s) = \lim_{s \to 0} s G(s) \hat{u}(s) = \lim_{s \to 0} s G(s) \frac{1}{s} = \lim_{s \to 0} G(s) = \frac{18}{5}.$$

c) Die Impulsantwort lautet

$$g(t) = 2\delta(t) + 2e^{-3t} - 5e^{-2t}, \quad t \ge 0.$$

Aufgabe 2: Lösungen zu Aufgabe 2

a) Die Übertragungsfunktion lautet

$$G(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}G_3(s) = \frac{\alpha}{(s^2 - 1)(s + 4)}.$$

b) Die Probemstellung führt auf die Hurwitztabelle

s^3	1	-1
s^2	4	$-4+K_p$
s^1	$-\frac{K_p}{4}$	0
s^0	$-4+K_p$	0

Aus der Pivotspalte ergeben sich die Forderungen $K_p > 4$ und $K_p < 0$, die nicht gleichzeitig erfüllt werden können.

c) Die Probemstellung führt auf die Hurwitztabelle

s^3	1	K_pT_v-1
s^2	4	$-4+K_p$
s^1	$K_pT_v - \frac{K_p}{4}$	0
s^0	$-4+K_p$	0

Aus der Pivotspalte ergeben sich die Forderungen $K_p > 4$ und $K_p(T_v - \frac{1}{4}) > 0$, d.h. $K_p > 4$ und $T_v > \frac{1}{4}$.

d) Die Übertragungsfunktion des offenen Kreises L(s) = R(s)G(s) lautet

$$\frac{K_p T_n s + K_p + K_p T_v T_n s^2}{T_n s (s^2 - 1)(s + 4)} = \frac{z_L(s)}{n_L(s)}.$$

Aus der Skizze folgt

$$\Delta \arg(1 + L(I\omega)) = 3\pi$$
.

Außerdem gilt

$$[\max(\operatorname{grad}(z_L), \operatorname{grad}(n_L)) - N_{-}(n_L) + N_{+}(n_L)] \pi = [\max(4, 2) - 2 + 1] \pi = 3\pi.$$

Daher ist der geschlossene Regelkreis stabil.

Aufgabe 3: Lösungen zu Aufgabe 3

a) Φ_3 ist korrekt. Dies kann z.B. mittels $\frac{d}{dt}\Phi_3\big|_{t=0}=\mathbf{A}$ verifiziert werden.

b)

$$\Gamma = \int_{0}^{T_{a}} \mathbf{\Phi}_{3}(\tau) \mathbf{b} d\tau = \begin{bmatrix} -\frac{1}{4}e^{-2T_{a}} + e^{-T_{a}} - \frac{3}{4} + \frac{1}{2}T_{a} \\ -e^{-T_{a}} + \frac{1}{2} + \frac{1}{2}e^{-2T_{a}} \\ -e^{-2T_{a}} + e^{-T_{a}} \end{bmatrix}$$

c)

$$\mathbf{x}_0 = \begin{bmatrix} e^{3T_a} \\ -e^{3T_a} \\ e^{3T_a} \end{bmatrix}$$

d) Ja, Begründung siehe Skriptum.

e)

$$y_k = \mathbf{c}^{\mathrm{T}} \mathbf{x}_k + du_k \text{ mit } d \neq 0$$

Aufgabe 4: Lösungen zu Aufgabe 4

- a) i $T_a \neq -1$ (irrelevant) und $T_a \neq \frac{2}{9}$. ii $T_a \neq -\frac{1}{3}$ (irrelevant) und $T_a \neq \frac{1}{2}$.
- b) Siehe Skriptum Definition 7.2.

c) •

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x}_k$$

 $\mathbf{x}_{k+1} = \begin{bmatrix} kx_{1,k}^2 + x_{2,k} \\ x_{2,k} \end{bmatrix}$

$$\mathbf{x}_{k+1} = \begin{bmatrix} 10 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{x}_k$$

d) i. Das charakteristische Polynom des geschlossenen Kreises folgt zu

$$\det \left(\mathbf{\Phi} + \mathbf{\Gamma} \mathbf{k}^{\mathrm{T}} - \lambda \mathbf{E}\right) = \left(-\frac{1}{2} - \lambda\right) \left[(1 + k_1 - \lambda) \left(1 - k_2 - \lambda\right) + (1 + k_1) \left(1 + k_2\right) \right]$$

woraus man unmittelbar erkennt, dass der Eigenwert bei $-\frac{1}{2}$ durch keinen der drei Koeffizienten k_i beeinflusst werden kann.

- ii. Aus i. folgt, dass k_3 beliebig ist. Durch Koeffizientenvergleich folgen die anderen beiden Koeffizienten zu $k_1=-\frac{7}{8}$ und $k_2=\frac{17}{8}$.
- e) Die Bedingung für die Ruhelage lautet $\mathbf{0} = (\mathbf{\Phi} \mathbf{E}) \mathbf{x}_{k,R}$. Da det $(\mathbf{\Phi} \mathbf{E}) = 0$ besitzt das Gleichungssystem $\mathbf{0} = (\mathbf{\Phi} \mathbf{E}) \mathbf{x}_{k,R}$ unendlich viele Lösungen $\mathbf{x}_{k,R}$ womit die Behauptung gezeigt ist.