Exhibit 22

JEDEC STANDARD

DDR5 SDRAM

JESD79-5

JULY 2020

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

2.4 DDR5 SDRAM X4/8 Ballout using MO-210

Table 1 provides the ballout for DDR5 SDRAM X4/8 using MO-210.

Table 1 — DDR5 SDRAM X4/8 Ballout Using MO-210

		1	2		3	4	5	6	7	8	9		
Α		LBDQ	VSS		VPP				ZQ	VSS	LBDQS	1 [Α
В		VDD	VDDO		DQ2				DQ3	VDDQ	VDD		В
С		VSS	DQ0)	DQS_t				DM_n, TDQS_t	DQ1	VSS		С
D		VDDQ	VSS		DQS_c				TDQS_c	VSS	VDDQ		D
E		VDD	DQ4		DQ6				DQ7	DQ5	VDD		Е
F		VSS	VDD0	2	VSS				VSS	VDDQ	VSS		F
G	C	A_ODT	MIR		VDD				CK_t	VDDQ	TEN		G
Н	Α	LERT_n	VSS		CS_n				CK_c	VSS	VDD		Н
J		VDDQ	CA4		CA0				CA1	CA5	VDDQ		J
K	K VDD CA6 CA2 CA3 CA7 VDD					K							
L	L VDDQ VSS CA8 CA9 VSS VDDQ I						L						
М		CAI	CA10)	CA12				CA13	CA11	RESET_n		M
N		VDD	VSS		VDD				VPP	VSS	VDD		N
	NOTE 1 DQ4-DQ7 are higher order DQ pins and are not connected for the x4 configuration. NOTE 2 TDQS_t is not valid for the x4 configuration												

NOTE 3 TDQS_c is not available for the x4 configuration

NOTE 4 DM_n not valid for the x4 configuration

Figure 1 provides the DDR5 Ball Assignments for the x4/8 component.

MO-210-AL (x4/x8)		MO-210-AN (x4/x8) with support balls
1 2 3 4 5 6 7 8 9 AOOO+++OOO BOOO+++OOO COOO+++OOO DOOO+++OOO FOOO+++OOO GOOO+++OOO HOOO+++OOO LOOO+++OOO MOOO+++OOO NOOO+++OOO		1 2 3 4 5 6 7 8 9 1011 A 0000+++0000 B +000+++000+ C +000+++000+ E +000+++000+ F +000+++000+ G +000+++000+ H +000+++000+ L +000+++000+ N 0000+++000+ N 0000+++0000+
	O Populated ball	

NOTE 1 Additional columns and rows of inactive balls in MO-210 Terminal Pattern TBD(x4/x8) with support balls are for mechanical support only, and should not be tied to either electrically high or low.

Figure 1 — DDR5 Ball Assignments for the x4/8 component

NOTE 2 Some of the additional support balls can be selectively populated under the supplier's discretion. Refer to supplier's datasheet.

JEDEC Standard No. 79-5 Page 5

2.6 Pinout Description

Table 3 provides the pinout descriptions.

Table 3 — **Pinout Description**

Symbol	Туре	Function
CK_t, CK_c	Input	Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
CS_n	Input	Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. CS_n is also used to enter and exit the parts from power down modes.
DM_n, DMU_n, DML_n	Input	Input Data Mask: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of DQS. For x8 device, the function of DM_n is enabled by MR5:OP[5]=1. DM is not supported for x4 device.
CA [13:0]	Input	Command/Address Inputs: CA signals provide the command and address inputs according to the Command Truth Table. Note: Since some commands are multi-cycle, the pins may not be interchanged between devices on the same bus.
RESET_n	Input	Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of V _{DDQ} ,
DQ	Input / Output	Data Input/Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst.
DQS_t, DQS_c, DQSU_t, DQSU_c, DQSL_t, DQSL_c	Input / Output	Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and writes. DDR5 SDRAM supports differential data strobe only and does not support single-ended.
TDQS_t, TDQS_c	Output	Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via MR5:OP[4]=1, the DRAM shall enable the same termination resistance function on TDQS_t/TDQS_c that is applied to DQS_t/DQS_c. When disabled via MR5:OP[4]=0, DM_n/TDQS_t shall provide the data mask function depending on MR5:OP[5]; TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via MR5:OP[4]=0.
ALERT_n	Input/Output	Alert: If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. During Connectivity Test mode, this pin works as input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded to V _{DDQ} on board.
TEN	Input	Connectivity Test Mode Enable: Required on x4, x8 & x16 devices. HIGH in this pin shall enable Connectivity Test Mode operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80% and 20% of V _{DDQ} . Using this signal or not is dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to VSS.
MIR	Input	Mirror: Used to inform SDRAM device that it is being configured for Mirrored mode vs. Standard mode. With the MIR pin connected to VDDQ, the SDRAM internally swaps even numbered CA with the next higher odd number CA. Normally the MIR pin must be tied to VSSQ if no CA mirror is required. Mirror pair examples: CA2 with CA3 (not CA1) CA4 with CA5 (not CA3). Note that the CA[13] function is only relevant for certain densities (including stacking) of DRAM component. In the case that CA[13] is not used, its ball location, considering whether MIR is used or not, should be connected to VDDQ
CAI	Input	Command & Address Inversion: With the CAI pin connected to VDDQ, DRAM internally inverts the logic level present on all the CA signals. Normally the CAI pin must be connected to VSSQ if no CA inversion is required.
CA_ODT	Input	ODT for Command and Address. Apply Group A settings if the pin is connected to VSS and apply Group B settings if the pin is connected to V _{DDQ} .
LBDQ	Output	Loopback Data Output: The output of this device on the Loopback Output Select defined in MR53:OP[4:0]. When Loopback is enabled, it is in driver mode using the default RON described in the Loopback Function section. When Loopback is disabled, the pin is either terminated or HiZ based on MR36:OP[2:0].

JEDEC Standard No. 79-5 Page 6

Table 3 — Pinout Description (Cont'd)

Symbol Type		Function		
LBDQS Output		Loopback Data Strobe: This is a single ended strobe with the Rising edge-aligned with Loopback data edge, falling edge aligned with data center. When Loopback is enabled, it is in driver mode using the default RON described in the Loopback Function section. When Loopback is disabled, the pin is either terminated or HiZ based on MR36:OP[2:0].		
RFU Input/Output		Reserved for future use		
NC		No Connect: No internal electrical connection is present.		
VDDQ Supply		DQ Power Supply: 1.1 V		
VSSQ Supply		DQ Ground		
VDD Supply		Power Supply: 1.1 V		
VSS Supply		Ground		
VPP Supply		DRAM Activating Power Supply: 1.8V		
ZQ Supply		Reference Pin for ZQ calibration		

2.7 DDR5 SDRAM Addressing

Tables 4-8 provide the addressing for 8, 16, 24, 32, and 65 Gb.

Table 4 — 8 Gb Addressing Table

	Configuration	2 Gb x4	1 Gb x8	512 Mb x16
	BG Address	BG0~BG2	BG0~BG2	BG0~BG1
Bank Address	Bank Address in a BG	BA0	BA0	BA0
	# BG / # Banks per BG / # Banks	8 / 2 / 16	8/2/16	4/2/8
	Row Address		R0~R15	R0~R15
Column Address		C0~C10	C0~C9	C0~C9
	Page size	1KB	1KB	2KB
Chip	Chip IDs / Maximum Stack Height C		CID0~3 / 16H	CID0~3 / 16H

Table 5 — 16 Gb Addressing Table

	Configuration	4 Gb x4	2 Gb x8	1 Gb x16
	BG Address	BG0~BG2	BG0~BG2	BG0~BG1
Bank Address	Bank Address in a BG	BA0~BA1	BA0~BA1	BA0~BA1
	# BG / # Banks per BG / # Banks	8 / 4 / 32	8 / 4 / 32	4 / 4 / 16
Row Address		R0~R15	R0~R15	R0~R15
	Column Address	C0~C10	C0~C9	C0~C9
	Page size	1KB	1KB	2KB
Chip	Chip IDs / Maximum Stack Height CID0~3 / 16H		CID0~3 / 16H	CID0~3 / 16H

Table 6 — 24 Gb Addressing Table

	Configuration	6 Gb x4	3 Gb x8	1.5 Gb x16	
	BG Address	BG0~BG2	BG0~BG2	BG0~BG1	
Bank Address	Bank Address in a BG	BA0~BA1	BA0~BA1	BA0~BA1	
	# BG / # Banks per BG / # Banks	8 / 4 / 32	8 / 4 / 32	4 / 4 / 16	
Row Address		R0~R16	R0~ R16	R0~R16	
	Column Address	C0~C10	C0~C9	C0~C9	
	Page size	1KB	1KB	2KB	
Chip	IDs / Maximum Stack Height	CID0~3 / 16H	CID0~3 / 16H	CID0~3 / 16H	
NOTE Row address R[16:15] of 00b, 01b, and 10b are valid. Row address R[16:15] of 11b is invalid.					