Lecture 5: Function Approximation and Deep Reinforcement Learning

Hado van Hasselt

UCL, 2018

Recap

- ▶ Reinforcement learning is the science of learning to make decisions
- ► Agents can learn a policy, value function and/or a model
- ► The general problem involves taking into account time and consequences
- ▶ Decisions affect the reward, the agent state, and environment state

Function approximation and deep reinforcement learning

- ► The policy, value function and model are all functions
- ▶ We want to learn (one of) these from experience
- ▶ If there are too many states, we need to approximate
- ▶ In general, this is called RL with function approximation
- ▶ When using deep neural nets, this is often called deep reinforcement learning
- ▶ The term is fairly new the combination is decades old

Function approximation and deep reinforcement learning

This lecture

► We consider learning value functions

Next lecture

► Learn explicit policies

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

- ► Backgammon: 10²⁰ states
- ► Go: 10¹⁷⁰ states
- ► Helicopter: continuous state space
- Robots: informal state space (physical universe)

How can we scale up our methods for prediction and control?

Value Function Approximation

- So far we mostly considered lookup tables
 - Every state s has an entry v(s)
 - ▶ Or every state-action pair s, a has an entry q(s, a)
- ▶ Problem with large MDPs:
 - ► There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
 - Individual states are often not fully observable

Value Function Approximation

- Solution for large MDPs:
 - Estimate value function with function approximation

$$egin{align} v_{ heta}(s) &pprox v_{\pi}(s) & ext{(or } v_*(s)) \ q_{ heta}(s,a) &pprox q_{\pi}(s,a) & ext{(or } q_*(s,a)) \ \end{pmatrix}$$

- Generalise from seen states to unseen states
- \triangleright Update parameter θ using MC or TD learning
- ▶ If the environment state is not fully observable:
 - Use the agent state
 - Consider learning a state update function $S_{t+1} = u(S_t, O_{t+1})$ Henceforth, S_t denotes the agent state

Which Function Approximator?

There are many function approximators, e.g.

- Artificial neural network
- Decision tree
- Nearest neighbour
- ► Fourier / wavelet bases
- Coarse coding

In principle, any function approximator can be used, but RL has specific properties:

- ▶ Experience is not i.i.d. successive time-steps are correlated
- Agent's policy affects the data it receives
- ▶ Value functions $v_{\pi}(s)$ can be non-stationary
- Feedback is delayed, not instantaneous

Doorstrapping in TD

because we update

the func. we want to

learn

Classes of Function Approximation

- ► Tabular: a table with an entry for each MDP state
- State aggregation: Partition environment states
- ► Linear function approximation: fixed features (or fixed kernel)
- ▶ Differentiable (nonlinear) function approximation: neural nets

What should you choose? Depends on your goals.

- ► Top: good theory but weak performance
- •
- Bottom: excellent performance but weak theory
- ▶ (Deep) neural nets often perform best (although not always)

Gradient Descent

- Let $J(\theta)$ be a differentiable function of parameter vector θ
- ▶ Define the gradient of $J(\theta)$ to be

$$abla_{ heta} J(heta) = egin{pmatrix} rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_n} \end{pmatrix}$$

- ▶ Goal: To find a (local) minimum of $J(\theta)$
- ▶ Method: move θ in the direction of negative gradient

$$\Delta\theta = -\frac{1}{2}\alpha\nabla_{\theta}J(\theta)$$

where α is a step-size parameter

Approximate Values By Stochastic Gradient Descent

▶ Goal: find θ that minimise the difference between $v_{\theta}(s)$ and $v_{\pi}(s)$

$$J(heta) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - v_{\theta}(S))^2 \right]$$
 we don't have access to this

Note: The expectation if over the state distribution — e.g., induced by the policy

► Gradient descent:

$$\Delta\theta = -\frac{1}{2}\alpha\nabla_{\theta}J(\theta) = \alpha\mathbb{E}_{\pi}\left[\left(v_{\pi}(S) - v_{\theta}(S)\right)\nabla_{\theta}v_{\theta}(S)\right]$$

Stochastic gradient descent:

$$\Delta\theta_t = \alpha(v_{\pi}(S_t) - v_{\theta}(S_t))\nabla_{\theta}v_{\theta}(S_t)$$

Feature Vectors

Represent state by a feature vector

$$\phi(s) = egin{pmatrix} \phi_1(s) \ dots \ \phi_n(s) \end{pmatrix}$$

- lacktriangledown $\phi: \mathcal{S} \to \mathbb{R}^n$ is a fixed mapping from state (e.g., observation) to features
- ▶ Short-hand: $\phi_t = \phi(S_t)$
- ► For example:
 - Distance of robot from landmarks
 - ► Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

Approximate value function by a linear combination of features

$$v_{ heta}(s) = heta^ op \phi(s) = \sum_{i=1}^n \phi_i(s) heta_i$$

 \blacktriangleright Objective function ('loss') is quadratic in θ

$$J(heta) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - heta^{ op} \phi(S))^2
ight]$$

- ► Stochastic gradient descent converges on global optimum
- Update rule is simple

$$\nabla_{\theta} v_{\theta}(S_t) = \phi(S_t) = \phi_t \implies \Delta \theta = \alpha (v_{\pi}(S_t) - v_{\theta}(S_t)) \phi_t$$

 $\mathsf{Update} = \mathsf{step}\text{-}\mathsf{size} \times \mathsf{prediction} \ \mathsf{error} \times \mathsf{feature} \ \mathsf{vector}$

Table Lookup Features

- Table lookup can be implemented as a special case of linear value function approximation
- ▶ Let the *n* states be given by $S = \{s^{(1)}, \dots, s^{(n)}\}.$
- Using table lookup features

$$\phi^{table}(s) = egin{pmatrix} \mathbf{1}(s=s^{(1)}) \ dots \ \mathbf{1}(s=s^{(n)}) \end{pmatrix}$$

 \triangleright Parameter vector θ gives value of each individual state

$$V(s) = egin{pmatrix} \mathbf{1}(s = s^{(1)}) \ dots \ \mathbf{1}(s = s^{(n)}) \end{pmatrix} \cdot egin{pmatrix} heta_1 \ dots \ heta_n \end{pmatrix}$$

Example: Coarse Coding

- ▶ Coarse coding provides large feature vector $\phi(s)$
- lacktriangle Parameter vector heta gives a value to each feature

Generalization in Coarse Coding

- Note that we will aggregate multiple states
- ► This means the resulting features are non-Markovian
- ▶ This is the common case when using function approximation
- ► Consider whether good solutions exist for given feature + function approximation

Incremental Prediction Algorithms

- ▶ The true value function $v_{\pi}(s)$ is typically not available
- ▶ In practice, we substitute a target for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta\theta_t = \alpha(G_t - v_\theta(s))\nabla_\theta v_\theta(s)$$

▶ For TD, the target is the TD target $R_{t+1} + \gamma v_{\theta}(S_{t+1})$

$$\Delta\theta_t = \alpha(R_{t+1} + \gamma v_{\theta}(S_{t+1}) - v_{\theta}(S_t))\nabla_{\theta}v_{\theta}(S_t)$$

Monte-Carlo with Value Function Approximation

- ▶ The return G_t is an unbiased, noisy sample of $v_{\pi}(s)$
- ► Can therefore apply supervised learning to (online) "training data":

$$\{(S_0, G_0), \ldots, (S_t, G_t)\}$$

► For example, using linear Monte-Carlo policy evaluation

$$\Delta\theta_t = \alpha(G_t - v_\theta(S_t))\nabla_\theta v_\theta(S_t)$$
$$= \alpha(G_t - v_\theta(S_t))\phi_t$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation
- ► For linear functions, it finds the global optimum

TD Learning with Value Function Approximation

- ▶ The TD-target $R_{t+1} + \gamma v_{\theta}(S_{t+1})$ is a biased sample of true value $v_{\pi}(S_t)$
- ► Can still apply supervised learning to "training data":

$$\{(S_0, R_1 + \gamma v_{\theta}(S_1)), \dots (S_t, R_{t+1} + \gamma v_{\theta}(S_{t+1}))\}$$

For example, using linear TD

$$\Delta \theta_t = \alpha \underbrace{\left(R_{t+1} + \gamma v_{\theta}(S_{t+1}) - v_{\theta}(S_t)\right)}_{= \delta_t, \text{ 'TD error'}} \nabla_{\theta} v_{\theta}(S_t)$$

$$= \alpha \delta_t \phi_t$$

Convergence of MC

▶ With linear functions, MC converges to

$$\min_{\alpha} \mathbb{E}\left[(G_t - v_{\theta}(S_t))^2 \right] = \mathbb{E}\left[\phi_t \phi_t^{\top} \right]^{-1} \mathbb{E}\left[v_{\pi}(S_t) \phi_t \right]$$

► Proof:

$$\begin{split} \nabla_{\theta} \mathbb{E} \left[(G_t - v_{\theta}(S_t))^2 \right] &= \mathbb{E} \left[(G_t - v_{\theta}(S_t)) \phi_t \right] = 0 \\ &\mathbb{E} \left[(G_t - \phi_t^\top \theta) \phi_t \right] = 0 \\ &\mathbb{E} \left[G_t \phi_t - \phi_t \phi_t^\top \theta \right] = 0 \\ &\mathbb{E} \left[\phi_t \phi_t^\top \right] \theta = \mathbb{E} \left[G_t \phi_t \right] \\ &\theta = \mathbb{E} \left[\phi_t \phi_t^\top \right]^{-1} \mathbb{E} \left[v_{\pi}(S_t) \phi_t \right] \end{split}$$

Convergence of TD

▶ With linear functions, TD converges to

$$\min_{\theta} \mathbb{E}\left[\left(R_{t+1} + \gamma v_{\theta}(S_{t+1}) - v_{\theta}(S_{t})\right)^{2}\right] = \mathbb{E}\left[\phi_{t}(\phi_{t} - \gamma \phi_{t+1})^{\top}\right]^{-1} \mathbb{E}\left[R_{t+1}\phi_{t}\right]$$

(in continuing problems with fixed γ)

- This is a different solution from MC
- ► Typically, the asymptotic MC solution is preferred
- ▶ But TD methods may converge faster, and may still be better

Residual Bellman updates

TD:
$$\Delta \theta_t = \alpha \delta \nabla_{\theta} v_{\theta}(S_t)$$
 where $\delta_t = R_{t+1} + \gamma v_{\theta}(S_{t+1}) - v_{\theta}(S_t)$

- ▶ This update ignores dependence of $v_{\theta}(S_{t+1})$ on θ
- ► Alternative: Bellman residual gradient update

loss:
$$\mathbb{E}\left[\delta_t^2\right]$$
 update: $\Delta heta_t = \alpha \delta_t
abla_{ heta}(v_{ heta}(S_t) - \gamma v_{ heta}(S_{t+1}))$

- ► This tends to work worse in practice
- So, in, e.g., Tensorflow, we use: $[R_{t+1} + \gamma v_{\theta}(S_{t+1})] v_{\theta}(S_t)$ to do TD where $[\cdot]$ treats the argument as constant, as in tf.stop_gradient(.)

Control with Value Function Approximation

Policy evaluation Approximate policy evaluation, $q_{\theta} \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Action-Value Function Approximation

► Approximate the action-value function

$$q_{ heta}(s,a)pprox q_{\pi}(s,a)$$

► For instance, with linear function approximation

$$q_{ heta}(s, a) = \phi(s, a)^ op heta = \sum_{i=1}^n \phi_j(s, a) heta_j$$

Stochastic gradient descent update

$$\Delta \theta = lpha(q_{\pi}(s, a) - q_{\theta}(s, a)) \nabla_{\theta} q_{\theta}(s, a) = lpha(q_{\pi}(s, a) - q_{\theta}(s, a)) \phi(s, a)$$

Linear Sarsa with Coarse Coding in Mountain Car

Linear Sarsa with Radial Basis Functions in Mountain Car

Convergence Questions

- ▶ When do incremental prediction algorithms converge?
 - When using bootstrapping (i.e. TD)?
 - ▶ When using (e.g., linear) value function approximation?
 - When using off-policy learning?
- ▶ Ideally, we would like algorithms that converge in all cases

Baird's Counterexample

Parameter Divergence in Baird's Counterexample

Convergence of Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	TD	✓	✓	×
Off-Policy	MC	✓	✓	√
	TD	✓	×	×

Convergence of Control Algorithms

- ► Tabular control learning algorithms (e.g., Q-learning) can be extended to FA (e.g., Deep Q Network DQN)
- ► The theory of control with function approximation is not fully developed
- ► Tracking is often preferred to convergence (I.e., continually adapting the policy instead of converging to a fixed policy)

Batch Reinforcement Learning

- Gradient descent is simple and appealing
- ▶ But it is not sample efficient
- ▶ Batch methods seek to find the best fitting value function for a given a set of past experience ("training data")

Least Squares Prediction

- ▶ Given value function approximation $v_{\theta}(s) \approx v_{\pi}(s)$
- ▶ And experience \mathcal{D} consisting of $\langle state, estimated \ value \rangle$ pairs

$$\mathcal{D} = \{\langle S_1, \hat{v}_1^{\pi} \rangle, \langle S_2, \hat{v}_2^{\pi} \rangle, ..., \langle S_T, \hat{v}_T^{\pi} \rangle\}$$

- ► E.g., $\hat{V}_1^{\pi} = R_{t+1} + \gamma v_{\theta}(S_{t+1})$
- ▶ Which parameters θ give the best fitting value function $v_{\theta}(s)$?

Stochastic Gradient Descent with Experience Replay

Given experience consisting of *(state, value)* pairs

Dataset
$$\mathcal{D} = \{\langle S_1, \hat{v}_1^\pi \rangle, \langle S_2, \hat{v}_2^\pi \rangle, ..., \langle S_T, \hat{v}_T^\pi \rangle \}$$

1. Sample state, value from experience

Repeat:

$$\langle s, \hat{v}^\pi
angle \sim \mathcal{D}$$

2. Apply stochastic gradient descent update

$$\Delta\theta = \alpha(\hat{\mathbf{v}}^{\pi} - \mathbf{v}_{\theta}(\mathbf{s}))\nabla_{\theta}\mathbf{v}_{\theta}(\mathbf{s})$$

Converges to least squares solution

$$heta^{\pi} = \operatorname*{argmin}_{ heta} \ \mathsf{LS}(heta) = \operatorname*{argmin}_{ heta} \ \mathbb{E}_{\mathcal{D}} \left[(\hat{v}_i^{\pi} - v_{ heta}(S_i))^2
ight]$$

Linear Least Squares Prediction

- ► Experience replay finds least squares solution
- But it may take many iterations
- ▶ Using linear value function approximation $v_{\theta}(s) = \phi(s)^{\top}\theta$ we can solve the least squares solution directly

Linear Least Squares Prediction (2)

 \blacktriangleright At minimum of LS(θ), the expected update must be zero

$$\mathbb{E}_{\mathcal{D}} \left[\Delta \theta \right] = 0$$

$$\alpha \sum_{t=1}^{T} \phi_t (\hat{v}_t^{\pi} - \phi_t^{\top} \theta) = 0$$

$$\sum_{t=1}^{T} \phi_t \hat{v}_t^{\pi} = \sum_{t=1}^{T} \phi_t \phi_t^{\top} \theta$$

$$\theta_t = \left(\sum_{t=1}^{T} \phi_t \phi_t^{\top} \right)^{-1} \sum_{t=1}^{T} \phi_t \hat{v}_t^{\pi}$$

- ▶ For N features, direct solution time is $O(N^3)$
- ▶ Incremental solution time is $O(N^2)$ using Shermann-Morrison

Linear Least Squares Prediction Algorithms

- We do not know true values v_{π} (have estimates \hat{v}_{t})
- In practice, our "training data" must use noisy or biased samples of v_{π}

LSMC Least Squares Monte-Carlo uses return

$$v_{\pi} \approx G_t$$

LSTD Least Squares Temporal-Difference uses TD target

$$v_{\pi} \approx R_{t+1} + \gamma v_{\theta}(S_{t+1})$$

▶ In each case we can solve directly for the fixed point

Convergence of Linear Least Squares Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	LSMC	✓	✓	_
	TD	✓	✓	×
	LSTD	✓	✓	-
Off-Policy	MC	✓	✓	√
	LSMC	✓	✓	-
	TD	✓	X	×
	LSTD	✓	✓	_

Deep reinforcement learning

- ▶ Many ideas immediately transfer when using deep neural networks:
 - ► TD and MC
 - Double learning (e.g., double Q-learning)
 - Experience replay
- ► Some ideas do not easily transfer

 MCTS? Too which agreen (isotion?

Least squares TD/MC

Example: neural Q-learning

- Online neural Q-learning may include:
 - $ightharpoonup A network q_{\theta}: O_t \implies (q[1], \ldots, q[m]) \ (m actions)$
 - An ϵ -greedy exploration policy: $q_t \implies \pi_t \implies A_t$
 - \blacktriangleright A Q-learning loss function on θ

$$I(heta) = rac{1}{2} \left(R_{t+1} + \gamma \left[\left[\max_{a} q_{ heta}(S_{t+1}, a)
ight] - q_{ heta}(S_{t}, A_{t})
ight)^{2}$$

where $\llbracket \cdot
rbracket$ denotes stopping the gradient, so that the semi-gradient is

$$abla_{ heta}I(heta) = \left(R_{t+1} + \gamma \max_{ extit{a}} \, q_{ heta}(S_{t+1}, extit{a}) - q_{ heta}(S_{t}, A_{t})
ight)
abla_{ heta}q_{ heta}(S_{t}, A_{t})$$

An optimizer to minimize the loss (e.g., SGD, RMSProp, Adam)

Example: TF pseudo-code for Q-learning

```
# Compute Q values Q(S t, .)
q = q net(obs)
# Get action A t
action = epsilon greedy(g)
# Compute Q(S t, A t)
ga = g[action]
# Step in environment
reward, discount, next obs = env.step(action)
# Get max of values at next state
max g next = tf.reduce max(g net(next obs))
# Compute TD-error, do not to propagate into next state value
delta = reward + discount * tf.stop gradient(max g next) - ga
# Define loss
g loss = tf.square(delta)/2
```

Example: DQN - Two additional components

- ▶ DQN (Mnih et al. 2013, 2015) includes:
 - ▶ A network q_θ : $O_t \mapsto (q[1], \dots, q[m])$ (*m* actions)
 - An ϵ -greedy exploration policy: $a_t \mapsto \pi_t \implies A_t$
 - A replay buffer to store and sample past transitions
 - Target network parameters θ^-
 - \triangleright A Q-learning loss function on θ (uses replay and target network)

$$I(heta) = rac{1}{2} \left(R_{i+1} + \gamma \llbracket \max_{ extit{a}} \, q_{ heta^-}(S_{i+1}, extit{a})
rbracket - q_{ heta}(S_i, A_i)
ight)^2$$

- An optimizer to minimize the loss (e.g., SGD, RMSprop, or Adam)

 Update $\theta_t^- \leftarrow \theta_t$ occasionally

 (e.g., every 10000 steps on all other steps $\theta_t^- = \theta_{t-1}^-$)
- Replay and target networks make RL look more like supervised learning
- It is unclear whether they are vital, but they helped for DQN from "DI-aware RI"
- "DL-aware RL"

Multi-step updates

- ▶ When we bootstrap, updates use old estimates
- Information can propagate back quite slowly
- ▶ In MC information propagates faster, but the updates are noisier
- ► We can go in between TD and MC

n-Step Prediction

▶ Let TD target look *n* steps into the future

n-Step Return

▶ Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$\begin{array}{ll}
n = 1 & (TD) & G_t^{(1)} = R_{t+1} + \gamma v(S_{t+1}) \\
n = 2 & G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 v(S_{t+2}) \\
\vdots & \vdots \\
n = \infty & (MC) & G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T
\end{array}$$

Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v(S_{t+n})$$

n-step temporal-difference learning

$$v(S_t) \leftarrow v(S_t) + \alpha \left(G_t^{(n)} - v(S_t) \right)$$

Multi-step Return

Large Random Walk Example

(but with 19 states, rather than 5)

Benefits of multi-step returns

- Multi-step returns have benefits from both TD and MC
- ▶ Typically, intermediate values of *n* are good
- ▶ When going off-policy, can be combined with importance sampling corrections

Deep reinforcement learning research

- ▶ Deep RL is a rich and fertile research area
- Many improvements have been proposed, performance keeps improving
- Still many open questions, e.g.,
 - How best to construct agent state (including memory)?
 - ► How best to construct losses?
 - ▶ How best to improve data efficiency?
 - Can we understand learning dynamics better?
 - ► Can we learn and use models?
 - **.** . . .

