

АЛГОРИТМЫ И СТРУКТУРЫ ДАННЫХ

(сентябрь-декабрь, модули 1 и 2)

ВВЕДЕНИЕ

Paмон Антонио Родригес Залепинос <u>arodriges@hse.ru</u>

Родригес Залепинос Рамон Антонио

Доцент: Факультет компьютерных наук / Департамент программной инженерии

Начал работать в НИУ ВШЭ в 2015 году. Научно-педагогический стаж: 10 лет.

☆ Домашняя страница

Преподавание

Публикации и исследования Проекты Группа Гео

В новостях

Рамон Антонио

S914 arodriges@hse.ru

Предварительно договаривайтесь о встрече

Курс состоит из двух частей

	Модули 1–2
Лекции	Р.А. Родригес Залепинос
Семинары	Н.А. Терлыч А.Д. Рахмановский А.М. Бузулуков
	Структуры данных

Оценивание

HW – средняя оценка за домашние работы
 CW 20%
 EX – оценка за экзамен
 IT – инициативная тема

Веса заданий

• домашние задания имеют одинаковый вес (каждое оценивается 0..10)

Округление оценок

• по стандартным правилам, в пользу студента: 5.5 -> 6

Автомат

• можно получить, если **округл[(HW + CW)/80 * 10; 0] >= 8**

Бонус

Причины:

Решение руководства департамента

Это сложно, но

- возможно
- интересно
- полезно

C#

C++

Востребованность С++

Источники информации ≈ литература

- Лекции
- Семинары
- Книги
- Статьи
- Конференции
- •

Литература

C++, структуры данных, современные CPU

- Б. Страуструп: Язык программирования С++ (стандарт С++11). Краткий курс
- Кормен, Лейзерсон, Ривест: Алгоритмы. Построение и анализ
- Ахо, Ульман, Хопкрофт: Структуры данных и алгоритмы
- Роберт Седжвик: Алгоритмы на С++
- Tolga Soyata, GPU Parallel Program Development Using CUDA
- □ Печатные экз.: в НИУ ВШЭ есть хорошая библиотека
- Электронные поисковые системы

21-22 сентября 2020 г.

Два исключительно наполненных суперкомпьютерными событиями дня: научные секции, выставка, семинары, мастер-классы и многое другое.

О конгрессе

О конференции »

Важные даты

Программа »

Участникам

Авторам »

Регистрация

<u>Главная</u> » Участие в конференции

Участие в конференции

Время и место проведения конференции

Конференция "Суперкомпьютерные дни в России" пройдет 21-22 сентября 2020 г. в онлайн-формате.

Участие в конференции

Для участия в конференции необходимо <u>зарегистрироваться и оплатить оргвзнос</u>. Стоимость участия в конференции - 150 р.

PCK 🔆

Спонсоры

Платиновые

РФФИ

РОССИЙСКИЙ

ФУНДАМЕНТАЛЬНЫХ

ИССЛЕДОВАНИЙ

http://russianscdays.org/attending

Докладчикам

Доклады на конференцию представляются в виде устного выступления или стендового доклада (плаката/постера). Материалы на конференцию принимаются в одном из трех видов: полная статья, короткая статья, аннотация постера. Все поступающие материалы проходят экспертный отбор программным комитетом. Все материалы, одобренные программным комитетом, будут опубликованы в сборнике трудов конференции.

Участникам выставки

На выставке представляются новейшие российские и зарубежные программные и аппаратные решения и технологии для высокопроизводительных вычислений.

Организаторам и участникам семинаров

В рамках конференции проходит множество семинаров и мастер-классов. Приглашаем посетить их, а также организовать свое мероприятие на конференции!

Enterprise

Золотые

Об Академии Программа ▼ Участие Организаторы Архив Вход

МРI и OpenMP NVIDIA Python для НРС Квантовая информатика <u>Реализация DL на НРС</u>

Главная » Программа

Реализация глубоких нейросетей на высокопроизводительных кластерах

Руководители научной школы:

Буряк Дмитрий Юрьевич, к.ф.-м.н., старший инженер-исследователь, Московская исследовательская лаборатория LG Electronics

Аннотация:

В рамках научной школы будут рассмотрены базовые элементы теории глубоких нейронных сетей, практические приемы их построения и обучения, вопросы параллельной реализации нейросетевых алгоритмов. Слушатели научной школы получат возможность практической работы с нейросетевыми фреймворками TensorFlow и другими нейросетевыми пакетами, реализованными в рамках платформы PowerAl на высокопроизводительном кластере Polus, построенном на базе процессоров Power8 с графическими ускорителями P100.

Главная » Программа

Применение платформы Python для высокопроизводительных вычислений

Руководители научной школы:

Русол Андрей Владимирович, к.т.н., с.н.с. ГЕОХИ РАН

Высокопроизводительные вычисления на кластерах с использованием графических ускорителей NVIDIA

Руководители научной школы:

Афанасьев Илья, НИВЦ МГУ им. М.В.Ломоносова **Жуков Константин Андреевич**, к.ф.м.н., факультет ВМК МГУ им. М.В.Ломоносова МСА: обучение бесплатное, прием заявок до 12.09.2020

https://academy.hpc-russia.ru/

VLDB: впервые онлайн и бесплатное участие

Значимость VLDB, примеры:

• Новая гибридная СУБД HadoopDB

 Abouzeid, A. et al., HadoopDB: An architectural hybrid of mapreduce and DBMS technologies for analytical workloads, 2009

• Новая колоночная СУБД C-Store

 Stonebraker, M., et al., C-Store: A column-oriented DBMS, 2005

• Коммерциализация в HP Vertica (E-Bay, кластер из 100 узлов, 7.5PB, 2007 г.)

Dremel, Hive, H-Store, ...

Значимость SIGMOD, примеры:

- Предложены В-деревья
 - Rudolf Bayer, Edward M. McCreight, Organization and maintenance of large ordered indices
- Предложены R-деревья
 - Guttman, A., R-trees: A dynamic index structure for spatial searching
- Предложена технология RAID
 - Patterson, D.A., Gibson, G., Katz, R.H., A case for Redundant Arrays of Inexpensive Disks (RAID)
- Новая растровая СУБД SciDB
 - Rogers, J., et al. Overview of SciDB: Large scale array storage, processing and analysis

- SIGMOD одна из самых значимых в мире конференций по
- Управлению Данными
- Базам Данных

Рамон Антонио – о себе

VLDB 2018

Единственный устный доклад на VLDB от РФ за последние 10 лет (2018–2009) и первый от НИУ ВШЭ

SIGMOD 2019

Седьмая статья на SIGMOD от РФ за все годы SIGMOD (1975–2019, 45 лет) и первая от НИУ ВШЭ

VLDB 2020

Вторая по счету статья на VLDB от Российской Федерации за последние 10 лет (2010–2020) и вторая от НИУ ВШЭ

VLDB & SIGMOD – самые значимые в мире конференции по

- Базам данных
- Большим данным
- Распределенным системам
- Управлению данными

Структура модуля 1

	Nº	Дата	Тема лекции	Nº	Домашние задания
1	1	08 сен	Введение	A1	Установить Visual Studio с поддержкой С# и С++ на все рабочие машины (стационарные, переносные, т.п.). Найти книги по структурам данных. Посетить конференции.
No.	2	15 сен	Асимптотика	A2	Тестовая задача (С#): знакомство с процессом
	3	22 сен	Базовые СД	1 a	Задание 1а на С#
Модуль	4	29 сен	Базовые СД 2	1 b	Задание 1b на C++, перевод 1a на C++
Σ	5	06 окт	Bitmaps	2 a	Задание 2а на С#
	6	13 окт	Хэш таблицы	2b	Задание 2b на C++, перевод 2a на C++

КОНТРОЛЬНАЯ РАБОТА (последняя неделя модуля № 1, **на семинаре**): темы модуля 1; форма проведения зависит от карантинных мер Возможна замена на КДЗ либо онлайн формат

Итого 4+2 домашних заданий в модуле 1 На каждое Д3 — 1 неделя

Возможны модификации, т.к. осталось всего 14 вторников

Требования, предъявляемые к студентам на лекции

Если я хочу посетить лекцию

• Пожалуйста, посещайте лекции по расписанию, со своим потоком

Если я опоздал(а)

 Пожалуйста, стараясь не привлекать к себе внимание, присоединитесь к Zoom

Если я нахожусь на лекции

• Слушайте внимательно!

Идентификация

Используйте свое имя, фамилию и группу: ИМЯ ФАМИЛИЯ ГРУППА

напр.: Иван Иванов БПИ193

Санкции

При неверной идентификации либо нарушении порядка — перевод в зал ожидания

Если я хочу задать вопрос/высказаться во время лекции

• Пожалуйста, поднимите руку и дождитесь момента, когда Вам дадут слово; не выкрикивайте

Сайт курса

http://edu.gis.land/ds2020

неотъемлемая часть ПУД для 1-2 модулей

Типы и структуры данных

- **тип данных** переменной обозначает множество значений, которые может принимать эта переменная
- абстрактный тип данных (АТД) это математическая модель плюс различные операторы, определенные в рамках этой модели
- для представления АТД используются структуры данных, которые представляют собой набор переменных, возможно, различных типов данных, объединенных определенным образом

Notes

- АТД не имеют асимптотической сложности выполнения операций (операторов)
- АТД не зависят от языков программирования
- Структуры данных = реализация АТД, необязательно на конкретном языке (разная реализация – разная сложность выполнения операций)

Алгоритм

Алгоритм (algorithm) — это формально описанная вычислительная процедура, получающая **исходные данные** (input), называемые также входом алгоритма или его аргументом, и выдающая **результат** вычислений на выход (output).

Мы вспомнили алгоритмы сейчас, а не во 2ой части курса, т.к. операторы в структурах данных **реализуют алгоритмы**, разная реализация имеет разную асимптотическую **сложность**.

Вход и выход: лирическое отступление (курсовые работы)

Алгоритмы строятся для решения тех или иных вычислительных задач (computational problems).

Традиционный вопрос

Какое «железо» (требование к аппаратуре) и какой язык выбрать для реализации системы?

Цель – высокая производительность

http://sortbenchmark.org/ - benchmark для сортировок

Пример: задача сортировки

Вход: Последовательность n чисел $(a_1, a_2, ..., a_n)$.

Выход: Перестановка $\langle a'_1, a'_2, ..., a'_n \rangle$ исходной последовательности,

для которой $a'_{1} \le a'_{2} \le \cdots \le a'_{n}$.

Алгоритм считают **правильным** (correct), если на любом допустимом (для данной задачи) входе он заканчивает работу и выдает результат, удовлетворяющий требованиям задачи. В этом случае говорят, что алгоритм **решает** (solves) данную вычислительную задачу.

https://www.top500.org/lists/top500

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,072	415,530.0	513,854.7	28,335
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482

Summit's Home: The U.S. Department of Energy's Oak Ridge National Laboratory

System Overview

System Performance

- Peak performance of 200 petaflops for modeling & simulation
- Peak of 3.3 ExaOps for data analytics and artificial intelligence

Each node has

- 2 IBM POWER9 processors
- 6 NVIDIA Tesla V100 GPUs
- · 608 GB of fast memory
- 1.6 TB of NVMe memory

The system includes

- 4608 nodes
- Dual-rail Mellanox EDR InfiniBand network
- 250 PB IBM Spectrum Scale file system transferring data at 2.5 TB/s

- Пусть сортировка вставками написана экономно, на низкоуровневом языке и требует $2n^2$ операций
- Пусть сортировка слиянием написана неэкономно и на ??? и поэтому требует $50n\ log\ n$ операций
- Сортируем 1 терабайт (около 274,877,906,944 4-байтовых чисел)

- Пусть сортировка вставками написана экономно, на низкоуровневом языке и требует $2n^2$ операций
- Пусть сортировка слиянием написана неэкономно и на ??? и поэтому требует $50n\ log\ n$ операций
- Сортируем 1 терабайт (около 274,877,906,944 4-байтовых чисел)

Для суперкомпьютера

$$\frac{2 \times (274,877,906,944^2) = 151,115,727,451,828,646,838,272}{200PFlops = 200 \times 10^{15}}$$

≈ 755,578.64 секунды ≈ **9** дней

- Пусть сортировка вставками написана экономно, на низкоуровневом языке и требует $2n^2$ операций
- Пусть сортировка слиянием написана неэкономно и на ??? и поэтому требует $50n\ log\ n$ операций
- Сортируем 1 терабайт (около 274,877,906,944 4-байтовых чисел)

Для суперкомпьютера

$$\frac{2 \times (274,877,906,944^2) = 151,115,727,451,828,646,838,272}{200PFlops = 200 \times 10^{15}}$$

≈ 755,578.64 секунды ≈ <mark>9 дней</mark>

 $log_2(274877906944) = 38$ $2^{38} = 274877906944$

Для домашнего компьютера

$$\frac{50 \times (274,877,906,944 \times 38) = 522,268,023,193,600}{3GHz = 3 \times 10^9}$$

- Пусть сортировка вставками написана экономно, на низкоуровневом языке и требует $2n^2$ операций
- Пусть сортировка слиянием написана неэкономно и на ??? и поэтому требует $50n\ log\ n$ операций
- Сортируем 1 терабайт (около 274,877,906,944 4-байтовых чисел)

Для суперкомпьютера

$$\frac{2 \times (274,877,906,944^2) = 151,115,727,451,828,646,838,272}{200PFlops = 200 \times 10^{15}}$$

≈ 755,578.64 секунды ≈ <mark>9 дней</mark>

 $log_2(274877906944) = 38$ $2^{38} = 274877906944$

Для домашнего компьютера

$$\frac{50 \times (274,877,906,944 \times 38) = 522,268,023,193,600}{3GHz = 3 \times 10^9}$$

 $\approx 174,089.34$ секунды ≈ 48 часов

Одни из самых быстрых систем в своих областях

distributed general-purpose cluster-computing framework

high-performance protocol servers & clients

https://kafka.apache.org/

https://spark.apache.org/

https://netty.io/

Двоичное дерево поиска

- Дерево состоит из узлов и ребер
- Корень дерева один из узлов
- Ребра соединяют родителя и потомков
- У родителя может быть не более двух потомков
- В каждом узле находится ключ (напр., число)
- Ключ левого потомка < ключа родителя
- Ключ правого потомка > ключа родителя

Корень дерева


```
ITERATIVE-TREE-SEARCH(x, k)

1 while x \neq \text{NIL} and k \neq x.key

2 if k < x.key

3 x = x.left

4 else x = x.right

5 return x
```

Подробнее о двоичном дереве поиска мы узнаем чуть позже

Указатели

- указатель номер ячейки памяти, обычное число
- байт минимальная адресуемая единица оперативной памяти
- 32 и 64 бит указатели самые распространенные на сегодня, 2^{32} и 2^{64} номеров

```
struct node
{
  int data;
  struct node *left;
  struct node *right;
};
```


0	4	8	12	16	20	24	28	32	36
36	40	44	48	52	56	60	64	68	72
76	80	84	88	92	96	100	104	108	112
116	120	124	128	132	136	140	144	148	116
152	156	160	164	168	172	176	180	184	152
188	192	196	200	204	208	212	216	220	188
224	228	232	236	240	244	248	252	256	224
260	264	268	272	276	280	284	288	292	260

		15	5)	
	6	7	17)	20
2	4	(13)		

			20				2	
	15							
					18			
		6						
4								
								7
			17					
3						13		

Указатели

- указатель номер ячейки памяти, обычное число
- байт минимальная адресуемая единица оперативной памяти
- 32 и 64 бит указатели самые распространенные на сегодня, 2^{32} и 2^{64} номеров

```
struct node
{
  int data; = 15
  struct node *left; = 124
  struct node *right; = 100
};

struct node *right; = 100

  3aмечание:
  B реальности номера
  yказателей < const
  3aрезервированы
};</pre>
```


каждая	ячей	ка – 4	Байта	RAM	

0	4	8	12	16	20	24	28	32	36
36	40	44	48	52	56	60	64	68	72
76	80	84	88	92	96	100	104	108	112
116	120	124	128	132	136	140	144	148	116
152	156	160	164	168	172	176	180	184	152
188	192	196	200	204	208	212	216	220	188
224	228	232	236	240	244	248	252	256	224
260	264	268	272	276	280	284	288	292	260

			20				2	
	15	124	100					
					18			
		6						
4								
								7
			17					
3						13		

Указатели

big-endian (BE): the most significant byte is at the smallest memory address

											51
0	0	0	15	0	0	0	124	0	0	0	100

каждая ячейка – 4 байта RAM

0	4	8	12	16	20	24	28	32	36
36	40	44	48	52	56	60	64	68	72
76	80	84	88	92	96	100	104	108	112
116	120	124	128	132	136	140	144	148	116
152	156	160	164	168	172	176	180	184	152
188	192	196	200	204	208	212	216	220	188
224	228	232	236	240	244	248	252	256	224
260	264	268	272	276	280	284	288	292	260

			20				2	
	15	124	100					
					18			
		6						
4								
								7
			17					
3						13		

Array — массив длины n


```
for(int i = 0; i < n; i++) {
    if (Array[i] == n - 1) return i;
}
return -1;</pre>
```

сложность алгоритма? O(n)

x — двоичное дерево из n ключей высоты $\log n$

сложность алгоритма?

 $O(\log n)$

```
ITERATIVE-TREE-SEARCH(x, k)

1 while x \neq \text{NIL} and k \neq x.key

2 if k < x.key

3 x = x.left

4 else x = x.right

5 return x
```

Array — массив длины n


```
for(int i = 0; i < n; i++) {
    if (Array[i] == n - 1) return i;
}
return -1;</pre>
```

Система

Процессор:

Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz 2.50 GHz

$$n = 10$$

Количество попыток поиска: 1000 Массив справился за 833 нс Дерево справилось за 3045 нс

x — двоичное дерево из n ключей: 0, 1, 2, 3, ...


```
ITERATIVE-TREE-SEARCH(x, k)

1 while x \neq \text{NIL} and k \neq x.key

2 if k < x.key

3 x = x.left

4 else x = x.right

5 return x
```

Array — массив длины n


```
for(int i = 0; i < n; i++) {
    if (Array[i] == n-1) return i;
}
return -1;</pre>
```

x — двоичное дерево из n ключей высоты $\log n$

```
ITERATIVE-TREE-SEARCH(x, k)

1 while x \neq \text{NIL} and k \neq x.key

2 if k < x.key

3 x = x.left

4 else x = x.right

5 return x
```


RAM

3	7	6	18	15	4	2
20	13	17				

			20				2	
	15							
					18			
		6						
4								
								7
			17					
3						13		

Facilities of the second secon	Процессор Intel Core 19-10900К ОЕМ [LGA 1200, 10 x 3700 МГц, L2 - 2.5 МБ, L3 - 20 МБ, 2xDDR4-2933 МГц, Intel UHD Graphics 630, TDP 95 Вт] Код товара: 1645612	50 299 ₽
CORFIG	Процессор Intel Core i9-10900K BOX [LGA 1200, 10 x 3700 МГц, L2 - 2.5 МБ, L3 - 20 МБ, 2xDDR4-2933 МГц, Intel UHD Graphics 630, TDP 125 Вт] Код товара: 1689781	51 499 ₽
CÖRE 19	Процессор Intel Core i9-10900K BOX [LGA 1200, 10 x 3700 МГц, L2 - 2.5 МБ, L3 - 20 МБ, 2xDDR4-2933 МГц, Intel UHD Graphics 630, TDP 125 Вт] Код товара: 1645625	51 499 ₽
	Процессор Intel Core i9-10900X OEM [LGA 2066, 10 x 3700 МГц, L2 - 10 МБ, L3 - 19.25 МБ, 4xDDR4-2933 МГц, TDP 165 Вт] Код товара: 1605267	52 199 ₽
	Процессор Intel Core i9-10900X BOX [LGA 2066, 10 x 3700 МГц, L2 - 10 МБ, L3 - 19.25 МБ, 4xDDR4-2933 МГц, TDP 165 Вт] Код товара: 1605260	52 999 ₽
Section 1	Процессор Intel Core i9-10920X OEM [LGA 2066, 12 x 3500 МГц, L2 - 12 Мб, L3 - 19.25 МБ, 4xDDR4-2933 МГц, TDP 165 Вт] Код товара: 1605274	58 999 ₽

Процессор Intel Core i9-10920X BOX [LGA 2066, 12 x 3500 МГц, L2 - 12 Мб, L3 - 19.25 МБ, 4xDDR4-2933 МГц, TDP 165 Вт]

Процессор Intel Core i9-10940X ОЕМ

4xDDR4-2933 МГц, TDP 165 Вт]

[LGA 2066, 14 x 3300 МГц, L2 - 14 МБ, L3 - 19.25 МБ,

Код товара: 1605271

Код товара: 1605279

59 999 P

66 999 ₽

Процессор Intel Core i9-10940X BOX [LGA 2066, 14 x 3300 МГц, L2 - 14 МБ, L3 - 19.25 МБ, 4xDDR4-2933 МГц, TDP 165 Вт] Код товара: 1605276

87 999 ₽

67 999 ₽

Процессор Intel Core i9-10980XE ОЕМ [LGA 2066, 18 x 3000 МГц, L2 - 18 МБ, L3 - 24.75 Мб, 4xDDR4-2933 МГц, TDP 165 Вт] Код товара: 1605284

88 999 ₽

Процессор Intel Core i9-10980XE BOX [LGA 2066, 18 x 3000 МГц, L2 - 18 МБ, L3 - 24.75 Мб, 4xDDR4-2933 МГц, TDP 165 Вт] Код товара: 1605281

https://www.dns-shop.ru/

Время доступа к данным

```
Core i7 Xeon 5500 Series Data Source Latency (approximate)
                                                                    [Pg. 22]
local L1 CACHE hit,
                                             ~4 cycles ( 2.1 - 1.2 ns )
local L2 CACHE hit,
                                             ~10 cycles ( 5.3 - 3.0 ns )
local L3 CACHE hit, line unshared ~40 cycles ( 21.4 - 12.0 ns )
local L3 CACHE hit, shared line in another core ~65 cycles ( 34.8 - 19.5 ns )
local L3 CACHE hit, modified in another core ~75 cycles ( 40.2 - 22.5 ns )
remote L3 CACHE (Ref: Fig.1 [Pg. 5]) ~100-300 cycles ( 160.7 - 30.0 ns )
local DRAM
                                                         ~60 ns
remote DRAM
                                                        ~100 ns
```

В чем причина? или Скорость роста функций

$$f(n) = O(g(n))$$

$$\exists c, n_0 > 0:$$

$$0 \le f(n) \le c \times g(n)$$

для $\forall n \geq n_0$

т.е. при достаточно большом n

f(n) и g(n) асимптотически положительны

Array — массив длины n


```
for(int i = 0; i < n; i++) {
    if (Array[i] == n - 1) return i;
}
return -1;</pre>
```

Система

Процессор:

Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz 2.50 GHz

```
n = 100
```

Количество попыток поиска: 1000 Массив справился за 4793 нс Дерево справилось за 1917 нс

x – двоичное дерево из *n* ключей:0, 1, 2, 3, ...


```
ITERATIVE-TREE-SEARCH(x, k)

1 while x \neq \text{NIL} and k \neq x.key

2 if k < x.key

3 x = x.left

4 else x = x.right

5 return x
```


Благодарю за внимание!

Paмон Антонио Родригес Залепинос <u>arodriges@hse.ru</u>