2020年考研数学三

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

解: 利用拉格朗日中值定理得

$$\lim_{x \to a} \frac{\sin f(x) - \sin a}{x - a} = \lim_{x \to a} \cos \xi \frac{f(x) - f(a)}{x - a} = b \cos a.$$

2. 函数
$$f(x) = \frac{e^{\frac{1}{x-1}} \ln|1+x|}{(e^x-1)(x-2)}$$
 的第二类间断点的个数为
A. 1 B. 2 C. 3 D. 4

- **解:** 显然, 所有的间断点为 x = -1, 0, 1, 2, 其中 x = -1, 1, 2 都是无穷间断点, 而 x = 0 则是可去间断点, 选 C.
- 3. 设奇函数 f(x) 在 $(-\infty, +\infty)$ 上有连续导数,则
 A. $\int_0^x [\cos f(t) + f'(t)] dt$ 是奇函数
 B. $\int_0^x [\cos f(t) + f'(t)] dt$ 是偶函数
 C. $\int_0^x [\cos f'(t) + f(t)] dt$ 是奇函数
 D. $\int_0^x [\cos f'(t) + f(t)] dt$ 是偶函数
- **解:** 易知 $\cos f(x)$ 与 f'(x) 都是偶函数, 所以 $\cos f(x) + f'(x)$ 是偶函数, 那么 $\int_0^x [\cos f(t) + f'(t)] dt$ 是奇函数, 选 A.
- 4. 已知幂级数 $\sum_{n=1}^{\infty} na_n(x-2)^n$ 的收敛区间为 (-2,6),则 $\sum_{n=1}^{\infty} a_n(x+1)^{2n}$ 的收敛区间为 () A. (-2,6) B. (-3,1) C. (-5,3) D. (-17,15) 解: 由题意知幂级数 $\sum_{n=1}^{\infty} na_nx^{n-1}$ 的收敛半径为 4, 那么它逐项积分以后的幂级数 $\sum_{n=1}^{\infty} a_nx^n$
- 解: 由题意知幂级数 $\sum_{n=1}^{\infty} na_n x^{n-1}$ 的收敛半径为 4, 那么它逐项积分以后的幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径仍为 4. 那么幂级数 $\sum_{n=1}^{\infty} a_n (x+1)^{2n}$ 的收敛区间满足 $(x+1)^2 < 4 \Rightarrow -3 < x < 1$, 选 B.
- 5. 设四阶矩阵 $A = (a_{ij})$ 不可逆, a_{12} 的代数余子式 $A_{12} \neq 0$, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为矩阵 A 的列向量组, A^* 为 A 的伴随矩阵, 则 $A^*x = 0$ 的通解为

$$A. x = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3$$

$$B. x = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_4$$

C.
$$x = k_1 \alpha_1 + k_2 \alpha_3 + k_3 \alpha_4$$

$$D. x = k_1 \alpha_2 + k_2 \alpha_3 + k_3 \alpha_4$$

- igoplus 解: 因为 A 不可逆, 所以 $A^*A = |A|E = 0$, 因此 A 的列向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 都是 $A^*x = 0$ **0** 的解, 且 $r(A^*) \le 1$. 而 $A_{12} \ne 0$ 说明 $A^* \ne O$. 且 A 中对应的三列 $\alpha_1, \alpha_3, \alpha_4$ 是线性无关 的, 即 $\alpha_1, \alpha_3, \alpha_4$ 是 $A^*x = 0$ 的基础解系, 因此正确答案选 C.
- 6. 设 A 为三阶矩阵, α_1, α_2 为 A 的属于特征值 1 的线性无关的特征向量, α_3 为 A 的 属于特征值 -1 的特征向量, 则满足 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 的可逆矩阵 P 可为

A.
$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2, -\boldsymbol{\alpha}_3)$$

B.
$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2, -\boldsymbol{\alpha}_3)$$

C.
$$(\alpha_1 + \alpha_3, -\alpha_3, \alpha_2)$$

D.
$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, -\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2)$$

解:同一个特征值对应的特征向量的线性组合仍然是这个特征值对应的特征向量,于是

$$A(\alpha_1 + \alpha_2, -\alpha_3, \alpha_2) = (\alpha_1 + \alpha_2, \alpha_3, \alpha_2) = (\alpha_1 + \alpha_2, -\alpha_3, \alpha_2) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

因此正确答案选 D.

7. 设 A, B, C 为三个随机事件, 且

解: 首先所求的概率为 $P(A\bar{B}\bar{C}) + P(\bar{A}B\bar{C}) + P(\bar{A}\bar{B}C)$, 其中

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) - P(ABC) = \frac{7}{12},$$

$$P(A\overline{B}\overline{C}) = P(\overline{B}\overline{C}) - P(\overline{A}\overline{B}\overline{C}) = P(\overline{B} \cup C) - P(\overline{A} \cup B \cup C)$$

$$= 1 - P(B \cup C) - [1 - P(A \cup B \cup C)] = P(A \cup B \cup C) - P(B \cup C)$$

$$= \frac{7}{12} - P(B) - P(C) + P(BC) = \frac{1}{6},$$

$$P(\overline{A}B\overline{C}) = \frac{7}{12} - P(A) - P(C) + P(AC) = \frac{1}{6},$$

$$P(\overline{A}BC) = \frac{7}{12} - P(A) - P(B) + P(AB) = \frac{1}{12},$$

因此 A, B, C 中恰有一个事件发生的概率为 $\frac{1}{6} + \frac{1}{6} + \frac{1}{12} = \frac{5}{12}$, 选 D.

8. 设二维随机变量 (X,Y) 服从 $N\left(0,0;1,4;-\frac{1}{2}\right)$, 则下列服从标准正态分布且与 X独立的是 A. $\frac{\sqrt{5}}{5}(X+Y)$ B. $\frac{\sqrt{5}}{5}(X-Y)$ C. $\frac{\sqrt{3}}{3}(X+Y)$ D. $\frac{\sqrt{3}}{3}(X-Y)$

A.
$$\frac{\sqrt{5}}{5}(X+Y)$$
 B. $\frac{1}{5}$

B.
$$\frac{\sqrt{5}}{5}(X-Y)$$

C.
$$\frac{\sqrt{3}}{3}(X+Y)$$

$$D. \frac{\sqrt{3}}{3}(X - Y)$$

解: 首先有 (X, Y) 服从二维正态部分, $X \sim N(0, 1), Y \sim N(0, 4)$. 而

$$(X, X + Y) = (X, Y) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \neq 0,$$

所以 (X, X + Y) 也服从二维正态分布. 且 $E(X + Y) = 0, D(X + Y) = DX + DY + 2\rho_{XY}\sqrt{DX}\sqrt{DY} = 3$, 所以 $X + Y \sim N(0,3)$, 于是 $\frac{\sqrt{3}}{3}(X + Y) \sim N(0,1)$. 又

$$Cov(X, X + Y) = Cov(X, X) + Cov(X, Y) = DX + \rho_{XY} \sqrt{DX} \sqrt{DY} = 0,$$

因此 X 与 $\frac{\sqrt{3}}{3}(X+Y)$ 独立, 选 C. 而 $Cov(X,X-Y)\neq 0$, 所以 X,X-Y 不独立.

- 二、填空题, 9~14题, 每题 4分, 共24分.
- 9. 设 $z = \arctan[xy + \sin(x + y)]$, 则 $dz|_{(0,\pi)} =$ ______.
- 解: 直接计算得

$$\frac{\partial z}{\partial x} = \frac{y + \cos(x + y)}{1 + [xy + \sin(x + y)]^2}, \quad \frac{\partial z}{\partial y} = \frac{x + \cos(x + y)}{1 + [xy + \sin(x + y)]^2},$$

于是
$$\frac{\partial z}{\partial x}\Big|_{(0,\pi)} = \pi - 1$$
, $\frac{\partial z}{\partial x}\Big|_{(0,\pi)} = -1$, 因此 $\mathrm{d}z\Big|_{(0,\pi)} = (\pi - 1)\,\mathrm{d}x - \mathrm{d}y$.

- 10.曲线 $x + y + e^{2xy} = 0$ 点 (0, -1) 处的切线方程为_____.
- **解:** 原方程两边对 x 求导得 $1 + y' + e^{2xy}(2y + 2xy') = 0$, 代入 x = 0, y = -1 得 y' = 1, 所以曲线在 (0,-1) 处的切线方程为 y = x 1.
- 11.设产量为 Q,单价为 P,厂商成本函数为 C(Q) = 100 + 13 Q,需求函数为 $Q(P) = \frac{800}{P+3} 2$,则厂商取得最大利润时的产量为_____.
- **解:** 由 $Q = \frac{800}{P+3} 2$ 可知 $P = \frac{800}{Q+2} 3$, 则利润函数为

$$L(Q) = \left(\frac{800}{Q+2} - 3\right)Q - (100 + 13Q).$$

令
$$\frac{\mathrm{d}L(Q)}{\mathrm{d}Q} = \frac{1600}{(Q+2)^2} - 16 = 0 \Rightarrow Q = 8$$
, 且 $\frac{\mathrm{d}^2L(Q)}{\mathrm{d}Q^2} = -\frac{3200}{(Q+2)^3} < 0$, 因此 $Q = 8$ 时, 取得最大利润.

- 12.设平面区域 $D = \left\{ (x, y) \middle| \frac{x}{2} \le y \le \frac{1}{1 + x^2}, 0 \le x \le 1 \right\}$, 则 D 绕 y 轴旋转所成旋转体的体积为______.

13.行列式
$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}.$$

解: 利用行列式的行列变换得

$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 0 & 0 & a & a \end{vmatrix} = \begin{vmatrix} 0 & a & -1 + a^2 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 0 & 0 & a & a \end{vmatrix}$$
$$= - \begin{vmatrix} a & -1 + a^2 & 1 \\ a & 1 & -1 \\ 0 & a & a \end{vmatrix} = - \begin{vmatrix} a & a^2 - 2 & 1 \\ a & 2 & -1 \\ 0 & 0 & a \end{vmatrix} = a^4 - 4a^2.$$

14.随机变量 X 的分布律为 $P(X = k) = \frac{1}{2^k}, k = 1, 2, \dots, Y$ 为 X 被 3 除的余数,则 $EY = \underline{\hspace{1cm}}$.

解: 由题意知 Y 的取值为 0, 1, 2, 且

$$P(Y = 0) = \sum_{n=1}^{\infty} P(X = 3n) = \sum_{n=1}^{\infty} \frac{1}{8^n} = \frac{1}{7},$$

$$P(Y = 1) = \sum_{n=0}^{\infty} P(X = 3n + 1) = \sum_{n=1}^{\infty} \frac{1}{2} \frac{1}{8^n} = \frac{4}{7},$$

$$P(Y = 2) = \sum_{n=0}^{\infty} P(X = 3n + 2) = \sum_{n=1}^{\infty} \frac{1}{4} \frac{1}{8^n} = \frac{2}{7}.$$

所以
$$EY = 0 \times \frac{1}{7} + 1 \times \frac{4}{7} + 2 \times \frac{2}{7} = \frac{8}{7}$$
.

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

设 a,b 为常数, 且当 $n \to \infty$ 时, $\left(1 + \frac{1}{n}\right)^n - e$ 与 $\frac{b}{n^a}$ 为等价无穷小, 求 a,b 的值.

解:直接利用等价无穷小得

$$\left(1 + \frac{1}{n}\right)^n - e = e^{n\ln\left(1 + \frac{1}{n}\right)} - e = e\left(e^{n\ln\left(1 + \frac{1}{n}\right) - 1} - 1\right)$$

$$\sim e\left[n\ln\left(1 + \frac{1}{n}\right) - 1\right] = e\left[n\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - 1\right]$$

$$= -\frac{e}{2n} + o\left(\frac{1}{n}\right) \sim -\frac{e}{2n}.$$

因此 $a=1, b=-\frac{\mathrm{e}}{2}$.

16.(本题满分 10 分)

求函数 $f(x, y) = x^3 + 8y^3 - xy$ 的极值.

解: 由
$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2 - y = 0\\ \frac{\partial f}{\partial y} = 24y^2 - x = 0 \end{cases}$$
 得 $(x, y) = (0, 0)$ 或 $\left(\frac{1}{6}, \frac{1}{12}\right)$. 进一步有

$$A = \frac{\partial^2 f}{\partial x^2} = 6x, B = \frac{\partial^2 f}{\partial x \partial y} = -1, \frac{\partial^2 f}{\partial y^2} = 48y.$$

于是当 (x,y)=(0,0) 时, A=0,B=-1,C=0, 那么 $AC-B^2=-1<0$, 所以 (0,0) 不是极值点; 当 $(x,y)=\left(\frac{1}{6},\frac{1}{12}\right)$ 时, A=1,B=-1,C=4, 则 $AC-B^2=3>0$ 且 A>0, 所以 $\left(\frac{1}{6},\frac{1}{12}\right)$ 为极小值点, 且极小值 $f\left(\frac{1}{6},\frac{1}{12}\right)=-\frac{1}{216}$.

17.(本题满分 10 分)

设函数 y = f(x) 满足 y'' + 2y' + 5y = 0, 且 f(0) = 1, f'(0) = -1.

(1) 求 f(x);

(2)
$$\mbox{if } a_n = \int_{n\pi}^{+\infty} f(x) \, \mathrm{d}x, \, \mbox{if } \sum_{n=1}^{\infty} a_n.$$

- **解:** (1) 微分方程 y'' + 2y' + 5y = 0 的特征方程为 $\lambda^2 + 2\lambda + 5 = 0$, 特征根为 $\lambda_{1,2} = -1 \pm 2i$, 通解为 $y = e(C_1 \cos 2x + C_2 \sin 2x)$, 代入 f(0) = 0, f'(0) = -1 得 $C_1 = 1$, $C_2 = 0$, 因此 $f(x) = e^{-x} \cos 2x$.
 - (2) 直接计算得

$$a_n = \int_{n\pi}^{+\infty} f(x) \, \mathrm{d}x = \frac{1}{5} \left(-e^{-x} \cos 2x + 2e^{-x} \sin 2x \right) \Big|_{n\pi}^{+\infty} = \frac{1}{5} e^{-n\pi}.$$

$$\text{MUD} \sum_{n=1}^{\infty} a_n = \frac{1}{n} \sum_{n=1}^{\infty} e^{-n\pi} = \frac{1}{5(e^{\pi} - 1)}.$$

18.(本题满分 10 分)

设区域 $D = \left\{ (x, y) \middle| x^2 + y^2 \leqslant 1, y \geqslant 0 \right\}$, 连续函数 f(x, y) 满足

$$f(x,y) = y\sqrt{1-x^2} + x \iint_{\mathcal{D}} f(x,y) \, \mathrm{d}x \, \mathrm{d}y,$$

计算
$$\iint_{\mathbf{R}} x f(x, y) dx dy$$
.

解: 令 $\iint_D f(x,y) dx dy = A$, 则 $f(x,y) = y\sqrt{1-x^2} + Ax$, 两边在区域 D 上积分可得

$$A = \iint\limits_D f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \iint\limits_D y \sqrt{1 - x^2} \, \mathrm{d}x \, \mathrm{d}y + \iint\limits_D Ax \, \mathrm{d}x \, \mathrm{d}y$$

$$= 2 \iint_{D_1} y \sqrt{1 - x^2} \, dx \, dy = 2 \int_0^1 \sqrt{1 - x^2} \, dx \int_0^{\sqrt{1 - x^2}} y \, dy$$
$$= \int_0^1 (1 - x^2)^{\frac{3}{2}} \, dx = \int_0^{\frac{\pi}{2}} \cos^4 t \, dt = \frac{3\pi}{16}.$$

其中 D_1 为 D 在第一象限的部分. 于是 $f(x,y) = y\sqrt{1-x^2} + \frac{3\pi}{16}x$, 所以

$$\iint_{D} x f(x, y) \, dx \, dy = \iint_{D} x \left(y \sqrt{1 - x^{2}} + \frac{3\pi}{16} x \right) \, dx \, dy$$

$$= \frac{3\pi}{16} \iint_{D} x^{2} \, dx \, dy = \frac{3\pi}{16} \int_{0}^{\pi} d\theta \int_{0}^{1} r^{3} \cos^{2}\theta \, dr$$

$$= \frac{3\pi^{2}}{128}.$$

19.(本题满分 10 分)

设函数 f(x) 在区间 [0,2] 上具有连续导数, f(0) = f(2) = 0, $M = \max_{x \in [0,2]} |f(x)|$, 证明:

- (1) 存在 $\xi \in (0,2)$, 使得 $|f'(\xi)| \ge M$;
- (2) 若对任意 $x \in (0,2), |f'(x)| \leq M, 则 M = 0.$
- **证明:** (1) 设 $M = \max_{x \in [0,2]} |f(x)| = |f(x_0)|$, 由拉格朗日中值定理知存在 $\xi_1 \in (0,x_0), \xi_2 \in (x_0,2)$, 使得

$$|f'(\xi_1)| = \left| \frac{f(x_0) - f(0)}{x - x_0} \right| = \frac{M}{x_0}, |f'(\xi_2)| = \left| \frac{f(2) - f(x_0)}{2 - x_0} \right| = \frac{M}{2 - x_0}.$$

注意到

$$|f'(\xi_1)| + |f'(\xi_2)| = \frac{M}{x_0} + \frac{M}{2 - x_0} \geqslant \frac{2M}{\sqrt{x_0(2 - x_0)}} \geqslant M,$$

那么取 $|f'(\xi)| = \max\{|f'(\xi_1)|, |f'(\xi_2)|\}$ 时, 必有 $|f'(\xi)| \ge M$.

(2) 由条件有 $|f'(\xi_1)| = \frac{M}{x_0} \le M$, 因此 $x_0 \ge 1$; $|f'(\xi_2)| = \frac{M}{2-x_0} \le M$, 因此 $x_0 \le 1$. 于是只能 $x_0 = 1$, 即 |f(1)| = M.

$$M = |f(1) - f(0)| = \left| \int_0^1 f'(x) \, \mathrm{d}x \right| \le \int_0^1 |f'(x)| \, \mathrm{d}x \le \int_0^1 M \, \mathrm{d}x = M,$$

等号成立当且切仅当 $|f'(x)| \equiv M, x \in [0,1]$. 而 f(x) 在 x = 1 处取得极值, 由费马定理可知 f'(1) = 0, 因此 M = 0.

20.(本题满分 11 分)

设二次型
$$f(x_1, x_2) = x_1^2 - 4x_1x_2 + 4x_2^2$$
 经过正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{Q} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$, 其中 $a \ge b$.

- (1) 求 a,b 的值;
- (2) 求正交矩阵 Q.
- 解: (1) 记 $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} a & 2 \\ 2 & b \end{pmatrix}$, 则 $\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q} = \mathbf{B}$, \mathbf{Q} 为正交矩阵. 因为 \mathbf{A} , \mathbf{B} 相似, 所以 $\begin{cases} \operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{B}) \\ |\mathbf{A}| = |\mathbf{B}| \end{cases} \Rightarrow \begin{cases} 1 + 4 = a + b \\ 1 \times 4 = ab \end{cases}$, $a \geqslant b \Rightarrow a = 4, b = 1$.

(2) 易知 A, B 的特征值均为 $\lambda_1 = 0$, $\lambda_2 = 5$. 当 $\lambda_1 = 0$ 时, 方程组 (0E - A)x = 0 的基础解系为 $\alpha_1 = (2, 1)^T$, 方程组 (0E - B)x = 0 的基础解系为 $\beta_1 = (1, -2)^T$; 当 $\lambda_2 = 5$ 时, 方程组 (5E - A)x = 0 的基础解系为 $\alpha_2 = (1, -2)^T$, 方程组 (5E - B)x = 0 的基础解系为 $\beta_2 = (2, 1)^T$. 令 $\beta_2 = (2, 1)^T$.

$$P_1^{-1}AP_1 = P_2^{-1}BP_2 = \begin{pmatrix} 0 \\ 5 \end{pmatrix}.$$

所以 $B = P_2 P_1^{-1} A P_1 P_2^{-1} = (P_1 P_2^{-1})^{-1} A P_1 P_2^{-1}$, 且

$$P_1 P_2^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -3 & 4 \end{pmatrix}$$

是正交矩阵, 因此 $Q = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -3 & 4 \end{pmatrix}$.

21.(本题满分 11 分)

设 A 为二阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量, 且不是 A 的特征向量.

- (1) 证明: P 是可逆矩阵;
- (2) 若 $A^2\alpha + A\alpha 6\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵.
- **解:** (1) 由题意 α 是非零向量, $A\alpha \neq k\alpha$, 所以 $A\alpha, \alpha$ 线性无关, 即 $P = (A\alpha, \alpha)$ 为可逆矩阵.

$$(2) AP = A(\alpha, A\alpha) = (A\alpha, A^{2}\alpha) = (A\alpha, 6\alpha - A\alpha) = (\alpha, A\alpha) \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix} = P \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix},$$

所以 $P^{-1}AP = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$, 即 $A = B = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$ 相似. 不难知 B 有两个不同的特征值 $\lambda_1 = 2, \lambda_2 = -3$, 因此 A 的特征值也是 2, -3, 所以 A 可以相似对角化.

22.(本题满分 11 分)

设二维随机变量 (X,Y) 在区域 $D = \{(x,y): 0 < y < \sqrt{1-x^2}\}$ 上服从均匀分布,且

$$Z_1 = \begin{cases} 1, & X - Y > 0 \\ 0, & X - Y \leqslant 0 \end{cases}, \quad Z_2 = \begin{cases} 1, & X + Y > 0 \\ 0, & X + Y \leqslant 0 \end{cases}.$$

- (1) 求二维随机变量 (Z_1, Z_2) 的概率分布;
- (2) 求 Z_1, Z_2 的相关系数.

解: (1) 如图, 不难得知

第 22 题图

$$P(Z_1 = 0, Z_2 = 0) = P(X - Y \le 0, X + Y \le 0) = P(Y \ge X, Y \le -X) = \frac{1}{4},$$

$$P(Z_1 = 0, Z_2 = 1) = P(X - Y \le 0, X + Y > 0) = P(Y \ge X, Y > -X) = \frac{1}{2},$$

$$P(Z_1 = 1, Z_2 = 0) = P(X - Y > 0, X + Y \le 0) = P(Y < X, Y \le -X) = 0,$$

$$P(Z_1 = 1, Z_2 = 1) = P(X - Y > 0, X + Y > 0) = P(Y < X, Y > -X) = \frac{1}{4}.$$

因此 (Z_1, Z_2) 的联合分布为

Z_1 Z_2	0	1	
0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$
1	0	$\frac{1}{4}$	$\frac{1}{4}$
	$\frac{1}{4}$	$\frac{3}{4}$	

(2) 由 (Z_1, Z_2) 的联合分布律可得边缘分布律为

$$Z_1 \sim \begin{pmatrix} 0 & 1 \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}, \quad Z_2 \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}.$$

于是 $E(Z_1) = \frac{1}{4}$, $E(Z_2) = \frac{3}{4}$, $D(Z_1) = D(Z_2) = \frac{3}{16}$, $E(Z_1Z_2) = \frac{1}{4}$, 因此 Z_1 , Z_2 的相关系数为 $\rho_{Z_1,Z_2} = \frac{\text{Cov}(Z_1,Z_2)}{\sqrt{D(Z_1)}\sqrt{D(Z_2)}} = \frac{E(Z_1Z_2) - E(Z_1)E(Z_2)}{\frac{3}{16}} = \frac{1}{3}.$

23.(本题满分 11 分)

设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t > 0\\ 0, & \text{ 其他.} \end{cases}$$

其中 θ , m 为参数且大于零.

- (1) 求概率 P(T > t) 与 P(T > s + t | T > s), 其中 s > 0, t > 0;
- (2) 任取 n 个这种元件做寿命试验, 测得他们的寿命分别为 t_1, t_2, \dots, t_n , 若 m 已知, 求 θ 的最大似然估计值 $\hat{\theta}$.
- **解:** (1) 当 s > 0, t > 0 时

$$P(T > t) = 1 - F(t) = e^{-\left(\frac{t}{\theta}\right)^m},$$

$$P(T > s + t|T > s) = \frac{P(T > s + t, T > s)}{P(T > s)}$$

$$= \frac{P(T > s + t)}{P(T > s)} = \frac{e^{-\left(\frac{s+t}{\theta}\right)^m}}{e^{-\left(\frac{s}{\theta}\right)^m}} = e^{-\frac{(s+t)^m - s^m}{\theta^m}}.$$

(2) 总体 T 的概率密度为 $f(t) = \begin{cases} e^{-\left(\frac{t}{\theta}\right)^m} \frac{mt^{m-1}}{\theta^m}, & t > 0 \\ 0, & \text{其他} \end{cases}$

$$L(\theta) = \prod_{i=1}^{n} f(t_i) = \begin{cases} e^{-\frac{1}{\theta^m} \sum_{i=1}^{n} t^m m^n (t_1 t_2 \cdots t_n)^{m-1} \theta^{-nm}, & t_1, t_2, \cdots, t_n > 0 \\ 0, & \text{ #$dt} \end{cases}.$$

 $\stackrel{\text{def}}{=} t_1, t_2, \cdots, t_n > 0$ 时, $\ln L(\theta) = -\frac{1}{\theta^m} \sum_{i=1}^n t^m + n \ln m + (m-1) \ln(t_1 t_2 \cdots t_n) - n m \ln \theta$, 令

$$\frac{\mathrm{d}\ln(\theta)}{\mathrm{d}\theta} = \frac{m}{\theta^{m+1}} \sum_{i=1}^{n} t_i^m - \frac{nm}{\theta} = 0 \Rightarrow \theta = \left(\frac{1}{n} \sum_{i=1}^{n} t_i^m\right)^{\frac{1}{m}},$$

即 θ 的最大似然估计值为 $\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} t_i^m\right)^{\frac{1}{m}}$.

