We take the diffusion coefficient to be constant and take it and any constant multiples of other defining terms to be 1.

```
los_{n} = D[u[x, t], \{x, 2\}];
(* Defines the diffusion eqn
(for constant diffusion constant the diffusion eqn is just the heat eqn)*)
```

Below we consider various cases of distributions.

The 2D plots are the solutions at various time steps. The plots are labelled according to their time steps.

Gaussian Initial Distribution

$$\label{eq:local_$$

Uniform Initial Distribution

```
In[*]:= distr = u[x, 0] == 1;
      (* Sets initial distribution to Gaussian distribution *)
      solution = DSolveValue[{DiffusionHeatEqn, distr}, u[x, t], {x, t}]
      Plot[Evaluate[Table[solution, \{t, 0, 5\}]], \{x, -5, 5\}, PlotRange \rightarrow All,
       Filling \rightarrow Axis, PlotLabels \rightarrow {"t=0", "t=1", "t=2", "t=3", "t=4", "t=5"}]
      Plot3D[solution, \{x, -5, 5\}, \{t, 0, 5\}, PlotRange \rightarrow All, PlotPoints \rightarrow 250, Mesh \rightarrow 10]
Out[ • ]= 1
```


Piecewise Box Initial Distribution (u[x,0] = 1 for $|x| \le 1/2$, 0 outside the box)

 $solution = DSolveValue[\{DiffusionHeatEqn, distr\}, u[x, t], \{x, t\}] \\ Plot[Evaluate[Table[solution, \{t, 0, 5\}]], \{x, -3, 3\}, PlotRange \rightarrow All, \\ Filling \rightarrow Axis, PlotLabels \rightarrow \{"t=0", "t=1", "t=2", "t=3", "t=4", "t=5"\}] \\ Plot3D[solution, \{x, -2, 2\}, \{t, 0, 5\}, PlotRange \rightarrow All, PlotPoints \rightarrow 250, Mesh \rightarrow 10] \\ \\$

$$\textit{Out[s]} = \frac{1}{2} \left(\mathsf{Erf} \left[\frac{1 - 2x}{4\sqrt{t}} \right] + \mathsf{Erf} \left[\frac{1 + 2x}{4\sqrt{t}} \right] \right)$$

- Power: Infinite expression $\frac{1}{\sqrt{0}}$ encountered.
- Power: Infinite expression $\frac{1}{\sqrt{0}}$ encountered.

Piecewise Box Initial Distribution (u[x,0] = 1 for $|x| \ge 1/2$, 0 inside the box)

ln[a]:= distr = u[x, 0] == 1 - UnitBox[x];

solution = DSolveValue[{DiffusionHeatEqn, distr}, u[x, t], {x, t}] Plot[Evaluate[Table[solution, $\{t, 0, 5\}$]], $\{x, -3, 3\}$, PlotRange \rightarrow All, Filling \rightarrow Axis, PlotLabels \rightarrow {"t=0", "t=1", "t=2", "t=3", "t=4", "t=5"}] Plot3D[solution, $\{x, -2, 2\}$, $\{t, 0, 5\}$, PlotRange \rightarrow All, PlotPoints \rightarrow 250, Mesh \rightarrow 10]

$$Out[s] = \frac{1}{2} \left(\text{Erfc} \left[\frac{1-2x}{4\sqrt{t}} \right] + \text{Erfc} \left[\frac{1+2x}{4\sqrt{t}} \right] \right)$$

- Power: Infinite expression $\frac{1}{\sqrt{0}}$ encountered.
- Power: Infinite expression $\frac{1}{-}$ encountered.

Dirac Delta Initial Distribution

 $solution = DSolveValue[\{DiffusionHeatEqn, distr\}, u[x, t], \{x, t\}] \\ Plot[Evaluate[Table[solution, \{t, 0, 5\}]], \{x, -5, 5\}, PlotRange \rightarrow All, \\ Filling \rightarrow Axis, PlotLabels \rightarrow \{"t=0", "t=1", "t=2", "t=3", "t=4", "t=5"\}] \\ Plot3D[solution, \{x, -1, 1\}, \{t, 0, 5\}, PlotRange \rightarrow All, PlotPoints \rightarrow 250, Mesh \rightarrow 10] \\ \\$

Out[*]=
$$\frac{e^{-\frac{x^2}{4t}}}{2\sqrt{\pi}\sqrt{t}}$$

- Power: Infinite expression $\frac{1}{0}$ encountered.
- Infinity: Indeterminate expression $e^{\text{ComplexInfinity}}$ encountered.
- Power: Infinite expression $\frac{1}{\sqrt{0}}$ encountered.

General: Exp[-12437.4] is too small to represent as a normalized machine number; precision may be lost.

