Résumé

La mitose est une étape clé du cycle cellulaire, très préservée chez toutes les cellules eucaryotes, durant laquelle le matériel génétique de la cellule (les chromosomes) réparti de manière égale dans les deux cellules filles. Cette équipartition du matériel génétique est cruciale pour le maintien de la stabilité génétique. Durant ce processus, les chromosomes, composés des chromatides sœurs, établissent une plaque métaphasique au centre du fuseau mitotique. Chaque chromatide est attachée à un pôle du fuseau mitotique respectif (on parle d'attachement bipolaire) vers lequel elle se dirigera durant l'anaphase.

Les chromatides sont l'unité indivisible du matériel génétique durant la mitose, à l'image des atomes dans une molécule. Initialement, une fois la chromatine condensée en chromosomes, chacun de ces « objets » est détaché et réparti suivant une position précise appellée territoires chromosomiques. Toute la complexité de la mitose est de capturer chacune des chromatides et de les positionner sur la plaque métaphasique avant leur séparation et migration vers leur pôle respectif durant l'anaphase.

Cette étape de la division cellulaire requiert donc non seulement un réseau complexe d'interaction et de signalisation biochimique comme dans beaucoup d'autres processus biologiques mais aussi un fin contrôle spatio-temporel du mouvement et du positionnement de ces objets de grande taille à l'échelle de la cellule.

Il semblerait que l'origine du mouvement des chromosomes provienne pour une grande part de la dynamique des microtubules. Ce qui est moins certain est la part relative accordée aux différents processus régulant cette dynamique; que ce soit la dynamique intrinsèque (appelée instabilité dynamique des microtubules) ou l'effet de différentes protéines sur les microtubules comme les MAPs (Microtubule Associated Proteins) et les kinésines (protéines motrices). On notera par ailleurs que le mécanisme de transfert d'énergie entre la dynamique des microtubules et le mouvement des chromosomes est encore très largement hypothétique.

La dynamique des chromosomes durant la mitose est aussi largement contrôlée par un grand nombre d'acteurs autres que les microtubules. Certains d'entre eux étant responsables de l'attachement MTs-kinétochore comme les complexes NDC80 et DAM1, tandis que d'autres sont impliqués dans la régulation de la dynamique des microtubules comme la kinésine-8 et la kinésine-13.

Durant mon travail de thèse, j'ai étudié la dynamique des chromosomes en mitose chez

la levure à fission, modèle celulaire dont les mécanismes primordiaux qui contrôlent la mitose sont conservés avec les eucaryotes supérieurs. En effet, j'ai caractérisé deux de ces mécanismes conservés au cours de l'évolution: l'alignement des chromosomes durant la métaphase ainsi qu'un mouvement de va et vient plus ou moins régulier le long du fuseau aussi appelé oscillation des chromosomes. J'ai montré, en analysant les trajectoires des chromosomes que ces deux processus sont pour une large part indépendants (Mary et al., 2015). De plus, le processus d'alignement des chromosomes, encore mal compris, est en partie contrôlé par la kinésine-8 via une activité dépendante de la longueur des microtubules. Il semblerait donc que cette kinésine soit capable de fournir une information spatiale le long du fuseau mitotique afin de positionner correctement les chromosomes. Enfin, j'ai utilisé un modèle mathématique de la ségrégation des chromosomes précédemment développé dans l'équipe afin de tester de manière quantitative les hypothèses de mécanisme du centrage des chromosomes par la kinésine-8.

L'ensemble de mon travail porte donc sur le contrôle du mouvement, de l'attachement et du positionnement des chromosomes durant la mitose afin de mieux comprendre les processus biophysiques associés à la mitose.

Summary

Mitosis is a highly preserved process in all eukaryotic cells during which the genetic material (chromosomes) is divided in two parts which spread in both daughter cells. This equipartition is crucial for maintaining genetic stability. During this process, chromosomes form a metaphasic plate at the center of the mitotic spindle. Each chromatid is attached to its respective spindle pole (called bipolar attachment) toward which it will move during anaphase.

Chromatids are the indivisible units of genetic material during mitosis just like atoms in a molecule. Originally each of these « objects » are detached and organized in chromosomes territories. All the complexity of mitosis resides in the capture of each chromatid by the spindle pole to exert forces to position them on the metaphase plate before their separation and migration towards their respective poles in anaphase.

This step of cell division not only requires complex interaction networks and metabolic signaling pathways just like many other biological processes but also a fine spatio-temporal control of movement and positioning of these big objects relative to cell size.

It is usually accepted that the origin of chromosome movement arises from microtubule dynamics. However, what is less clear is the relative importance of each of these processes regulating chromosome movement: the intrinsic dynamic instability of microtubules or the effect of their associated proteins such as MAPs and kinesins. It is also important to note that the mechanism controlling the transfer of energy between microtubule dynamics and chromosome movement is still largely hypothetical.

Moreover, chromosome dynamics during mitosis is regulated by a large number of actors apart from microtubules. Some of them being responsible for MT-kinetochore attachment such as NDC80 and DAM1 complex. While others are involved in the regulation of MT dynamics such as Kinesin-8 and Kinesin-13.

During my PhD, I studied fission yest chromosome dynamic during mitosis. This cellular model has the advantage of sharing many fundamental mechanisms of symmetrically dividing higher eukaryotic cells. I characterized two of these conserved mechanisms: chromosome alignment during metaphase and back and forth movement along the spindle, called chromosome oscillation. By analyzing chromosome trajectories, I showed that both processes are performed through independent mechanisms (Mary et al., 2015). Moreover,

chromosome alignment process, which is still poorly understood, is regulated by Kinesin-8 via a length dependent activity on microtubules. This suggests that Kinesin-8 is able to provide spatial information along the mitotic spindle to properly position chromosomes. Finally, I used a mathematical model of chromosome segregation in order to test quantitatively different hypotheses of chromosome centering process.

This work is thus deciphering the control of movement, attachment and positioning of chromosomes during mitosis and seeks to better understand the biophysical processes controlling mitosis.

Mary, H., Fouchard, J., Gay, G., Reyes, C., Gauthier, T., Gruget, C., Pecreaux, J., Tournier, S., and Gachet, Y. (2015). Fission yeast kinesin-8 controls chromosome congression independently of oscillations. Journal of Cell Science 128, 3720–3730.