Projet 7_Prédiction de revenus

Parcours <u>Data Analyst</u> Xuefei ZHANG_03/2022

Sommaire

- M1_Description de données
- M2_Analyse descriptive
- M3_Génération des données
- M4_ANOVA, Multiple linear regression

M1_Description de données

- Récupération des jeux de données appropriés
- Nettoyage de jeux de données
- Traitement de jeux de données (filtrage, jointure)
- Réponses aux questions

M1 - jeu de données1: transformation

728,89795

916,66235

1010,916

1086,9078

7297

7297

7297

7297

```
In [2]: data = pd.read csv("data-projet7.csv")
        print(data.info())
        data.head()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 11599 entries, 0 to 11598
        Data columns (total 6 columns):
        # Column
                       Non-Null Count Dtype
                     11599 non-null object
          country
           year survey 11599 non-null int64
                     11599 non-null int64
          quantile
        3 nb quantiles 11599 non-null int64
                      11599 non-null object
        4 income
                                                Type: object
        5 gdpppp
                     11399 non-nul object
        dtypes: int64(3), object(3)
        memory usage: 543.8+ KB
        None
Out[2]:
           country year_survey quantile nb_quantiles
                                                       income gdpppp
```

1

2

3

4

ALB

ALB

ALB

ALB

2008

2008

2008

2008

#	Column	Non-Null Count Dtype				
0	country	11499 non-null object				
1	year_surv					
2	quantile	11499 non-null int64				
3	3 nb quantiles 11499 non-null int64					
4	income	11499 non-null float64	Type: fleet			
5	gdpppp	11299 non-null float64	Type: float			
			· ·			

	country	year_survey	quantile	nb_quantiles	income	gdpppp
11598	COD	2008	100	100	2243.1226	303.19305
11595	COD	2008	97	100	911.7834	303.19305
11594	COD	2008	96	100	810.6233	303.19305
11593	COD	2008	95	100	743.3720	303.19305

M1 - jeu de données1: imputation de données manquantes

XKX, PSE ont leur 0 nombre de valeur pour colonne **gdpppp**, soit **200 valeurs nul**l dans gdpppp

lack200.	groupby('cour	ntry').mea	n('income')		
	year_survey	quantile	nb_quantiles	income	gdpppp
country					
PSE	2009.0	50.5	100.0	1114.098514	NaN
хкх	2008.0	50.5	100.0	2176.269035	NaN

imputation de data gdpppp

```
# PSE 2009 GDPPPP = 5250
data.loc[(data['country']=='PSE'), 'gdpppp']=5250
```

LTU41 = data.loc[(data['quantile'].isin([40,42]))&(data['country']=='LTU')
LTU41

	country	year_survey	quantile	nb_quantiles	income	gdpppp
6239	LTU	2008	40	100	4868.4507	17571.0
6240	LTU	2008	42	100	4895.8306	17571.0

un pays a seulement 99 individus

40	116	116	116	116	114	
41	115	115	115	115	113)
42	116	116	116	116	114	

M1 - jeu de données1: correction de data aberrant

il existe un individu aberrant sur gdpppp

	year_survey	quantile	nb_quantiles	income	gdpppp
count	11600.000000	11600.000000	11600.0	11600.000000	1.160000e+04
mean	2007.982759	50.500000	100.0	6069.121925	4.944408e+04
std	0.909593	28.867314	0.0	9413.786596	3.966304e+05
min	2004.000000	1.000000	100.0	16.719418	3.031931e+02
25%	2008.000000	25.750000	100.0	900.768507	2.577500e+03
50% 75% max	2008.000000	50.500000	100.0	2403.492950	7.532500e+03
	2008.000000	75.250000	100.0	7515.313700	1.819625e+04
	2011.000000	100.000000	100.0	176928.550000	4.300332e+06

rectification de data gdpppp pour pays FJI

data.loc[(data['country']=='FJI'),'gdpppp']= 4300 data.describe()

	year_survey	quantile	nb_quantiles	income	gdpppp
count	11600.000000	11600.000000	11600.0	11600.000000	11600.000000
mean	2007.982759	50.500000	100.0	6069.121925	12409.323437
std	0.909593	28.867314	0.0	9413.786596	13108.901817
min	2004.000000	1.000000	100.0	16.719418	303.193050
25%	2008.000000	25.750000	100.0	900.768507	2577.500000
50%	2008.000000	50.500000	100.0	2403.492950	7488.500000
75%	2008.000000	75.250000	100.0	7515.313700	17679.250000
max	2011.000000	100.000000	100.0	176928.550000	73127.000000

M1 - rendu du jeu de données1

```
countries = data.groupby(by=
'country').mean('income').sort_values('income')
```

```
116 non-null
                            object
   country
   year_survey 116 non-null
                              float64
              116 non-null
   quantile
                            foat64
   nb quantiles 116 non-null
                              float64
   income
               116 non-null
                            float64
               116 non-null /float64
   gdpppp
dtypes: float64(5), object(1)
memory usage: 5.6+ KB
None
```

	country	year_survey	quantile	nb_quantiles	income	gdpppp
0	COD	2008.0	50.5	100.0	276.016044	303.193050
1	MDG	2010.0	50.5	100.0	345.237074	950.000000
2	CIV	2008.0	50.5	100.0	399.835204	1526.000000

M1 - nettoyage et traitement du jeu de données2

2008

7.571753e+08

6.984000e+03

108401 1.084010e+05

M1 - rendu du jeu de données 2

	Country Code	2008
2	AFG	27722281
5	ALB	2947314
8	DZA	34730604
11	ASM	57490
14	AND	83860

M1 - jointure de 2 dataframes

CIV 399.835204 1526.00000

```
dfmerged = pd.merge(countries[['country', 'income', 'gdpppp']], pop[['Country Code', '2008']],
           left_on='country', right_on = 'Country Code')
dfmerged.drop('Country Code', axis=1)
dfmerged.dropna(how= 'all', axis=1)
print(dfmerged.info())
dfmerged.head()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 115 entries, 0 to 114
Data columns (total 5 columns):
               Non-Null Count Dtype
# Column
   country
              115 non-null object
              115 non-null float64
   income
2 gdpppp
             115 non-null float64
3 Country Code 115 non-null object
4 2008
              115 non-null int64
dtypes: float64(2), int64(1), object(2)
memory usage: 5.4+ KB
None
   country
               income
                          gdpppp Country Code
                                                    2008
      COD 276.016044
                        303.19305
                                           COD 60411195
      MDG 345.237074
                        950.00000
                                                19996476
```

CIV 19605568

- Les années des données utilisées sont: 2004, 2006, 2007, 2008, 2009, 2010, 2011
- Le nombre de pays couverts par cette banque: 116
- La population totale des pays où habitent les clients actuels est: 6180824944
- Ces pays clientèles occupent % de la population mondiale de l'année 2008: 91.79 %
- De quel type de quantiles s'agit-il? centile
- Échantillonner une population en utilisant des quantiles est-il une bonne méthode ? Pourquoi ?

oui et non. ça dépend du nombre de quantiles et l'approche employée pour le clivage, autrement dit on découpe la population en combien de morceaux et comment on définit les méthodes ou criteria de la découpe. Litérallement dit, le plus le nombre de quantiles pour une population, le plus on est précis et les échantillons sont représentatifs.

M2_Analyse descriptive

- Montrez la diversité des pays en termes de distribution de revenus à l'aide d'un graphique.
- Représentez la courbe de Lorenz de chacun des pays choisis.
- Pour chacun de ces pays choisis, représentez l'évolution de l'indice de Gini au fil des ans.
- Classez ces pays clientèle par indice de Gini de l'année 2008.

M2_diversité en revenu

Revenu moyen:

Il existe de grands écarts entre les pays de revenu bas et de revenu élevé.

GDP-PPP:

Par rapport au revenu moyen, il n'existe pas autant d'écart entre les pays de gdpppp bas et de gdpppp élevé.

M2_diversité en revenu_10 pays

En comparant graphique 1 & 2, on constate que pour ces 10 pays, la différence entre les logarithmes de revenu moyen est plus claire et <u>facile à mesurer</u>.

Car logarithme transforme les valeurs exponentielle en additionnelle.

GDP-PPP n'accroît pas d'une même manière que le revenu moyen, mais plutôt proche d'additionnelle.

Autrement dit malgré la différence exponentielle entre les revenus moyens, les GDP-PPP des pays ne se différencient pas à la même échelle.

M2_distribution de revenu quantile par quantile_10 pays

EST, FIN:

il n'y a pas grand écart parmi les classes de revenu

DOM, IRN, SLV:

grand écart parmi les classes de revenu => polarisation entre les plus riches et les plus pauvres

income in 100 quantiles

M2_Courbes de Lorenz_10 pays

DOM, IRN, SLV:

ont indices de Gini élévé => inégalité remarquable sur les revenus

FIN, EST:

Ont leur indices Gini les plus bas => sociétés relativement égalitaires

M2_Evolution des indices de Gini_1970-2020

- Eswatini: Gini a diminué fortement en 1990-2000 et atteint son niveau bas en 2010
- El Salvador: Gini connait une décroissance depuis 2000 (50%) vers 40% en 2020
- Dominica: Gini connait une forte décroissance depuis 2005 (52%) vers 42% en 2020
- Canada: Gini reste stable autour de 35%
- Finland: stable autour de 30%

M2_indice Gini en 2008

les indices Gini des pays clients se répartissent majoritairement entre **30% et 40%**, avec médiane **36.7%**.

Où se trouve la France?

Gini France = 33.66%

- entre 1er et 2ème quantile des indices Gini pour ces pays clients
- plus petit que la moyenne (37.98%)

=> La France a sa distribution de richesse relativement égalitaire

M3_Génération des données d'individus via fonctions

Maintenant qu'on a à disposition pour chaque pays, data sur le revenu et l'indice de Gini (2 variables explicatives), donc il nous manque la classe de revenu des parents (3ème variable explicative).

Enjeu de cette mission :

À travers les fonctions, sortir la **distribution de probabilité** de chaque **classe revenu des parents** correspondante basé sur chaque **classe de revenu des enfants** et **coefficient d'élasticité** (pj)

M3_tests

forte mobilité intergénérationnelle

Coeff d'élasticité =0.1: faible corrélation entre revenus enfant & revenus parents.

Le status-quo des revenus parentaux a **très peu d'influence** sur les revenus de leur enfant,s.

faible mobilité intergénérationnelle

Coeff d'élasticité =0.9: Forte corrélation entre revenus enfant & revenus parents.

Le status-quo des revenus parentaux **a de grands poids** sur les revenus de leur enfant,s.

M3_test_Matrice de distribution conditionnelle des probabilités

ici l'échantillon est divisée en 10 classes de revenu, donc on a **10*10** estimations de ces probabilités conditionnelles, pour chaque pays

M3_constitution de dataframe_les 3 dataframes

```
#Q8: dataframe dataWID
dataWID = pd.read csv('data cleaned WID.csv')
dataWID= dataWID.drop(columns=['Unnamed: 0'])
dataWID.describe()
print(dataWID.info())
dataWID.head()
# data cleaned WID is the cleaned dataframe 'world income distribution.csv' for
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11499 entries, 0 to 11498
Data columns (total 6 columns):
               Non-Null Count Dtype
# Column
              11499 non-null object
   country
   vear survey 11499 non-null int64
            11499 non-null int64
3 nb quantiles 11499 non-null int64
   income
               11499 non-null float64
               11299 non-null float64
   adappp
dtypes: float64(2), int64(3), object(1)
memory usage: 539.1+ KB
None
    country year survey quantile nb quantiles
                                               income
                                                         gdpppp
                                             2243.1226
      COD
                  2008
                            100
                                                       303.19305
      COD
                  2008
                             97
                                              911.7834
                                                       303.19305
                                         100
```

810.6233

743.3720

684.7071

100

100

303.19305

303,19305

303.19305

COD

COD

COD

2008

2008

2008

```
# Q8_dataframe Coeff_coeffcient d'électricité
coeff= pd.read_csv('coeff_pj.csv')
Coeff= coeff.drop(columns=['Unnamed: 0','year'])
print(Coeff.info())
Coeff
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 75 entries, 0 to 74
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- 0 wbcode 75 non-null object
1 IGEincome 75 non-null float64
dtypes: float64(1), object(1)
memory usage: 1.3+ KB
None

	wbcode	IGEincome
0	ALB	0.815874
1	AUS	0.275000
2	AUT	0.245267
3	BEL	0.183176
4	BEN	0.855116

# Q8 datat	rame ginidata
	d.read csv('ginidata.csv', index col=None
	ta.describe())
ginidata m	ean=ginidata[['c3','gini']].groupby('c3').mea
ginidata m	ean.head()

	id	year	gini		
count	20592.00	00000 205	92.00000	0 20592.00000)(
mean	10630.9	88782 20	01.31954	2 37.281548	
std	6145.293	483 14.	517767	9.416913	
min	1.0000	00 1867.0	000000	12.100000	
25%	5293.75	0000 199	95.000000	30.300000	
50%	10639.50	00000 20	05.000000	35.570000	
75%	15971.25	50000 20	12.000000	43.462500	
max	21253.00	00000 202	20.000000	78.600000	

	сЗ	gini
0	AFG	31.000000
1	AGO	47.095000
2	ALB	31.408889
3	AND	27.097500
4	ARE	35.405000

M3_constitution de dataframe & cloner 500 fois

Cloner tous les individus par 500 fois:

Co500 = pd.concat([Co]*500, ignore_index=True)

Co500=Co500.rename({'quantile': 'quantile_child'}, axis=1)

gini	IGEincome	country	quantile_child	nb_quantiles	income	gdpppp
31.408889	0.815874	ALB	1	100	728.89795	7297.0
31.408889	0.815874	ALB	1	100	728.89795	7297.0
31.408889	0.815874	ALB	1	100	728.89795	7297.0

Maintenant qu'on a 500 individus pour chaque quantile_child de chaque pays, donc on a **100*500 = 50000** individus pour chaque pays

M3_calculus de probabilité de distribution_exemple Albania

```
ALB = Co500[Co500['country']=='ALB']
print(ALB.info())
ALB.head()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 50000 entries, 2273 to 3145921
Data columns (total 7 columns):
# Column
                Non-Null Count Dtype
  gini
             50000 non-null float64
   IGEincome
                 50000 non-null float64
  country
               50000 non-null object
  quantile child 50000 non-null int64
4 nb quantiles 50000 non-null int64
5 income
                50000 non-nul float64
  gdpppp
                50000 non-nul float64
dtypes: float64(4), int64(2), object(1)
memory usage: 3.1+ MB
None
```

100	gini	IGEincome	country	quantile_child	nb_quantiles	income	gdpppp
2273	31.408889	0.815874	ALB	1	100	728.89795	7297.0
8573	31.408889	0.815874	ALB	1	100	728.89795	7297.0
14873	31.408889	0.815874	ALB	1	100	728.89795	7297.0

Vu le volume énorme de jeu de données Co500, afin de faciliter la vitesse de calcul, on prend ALB pour exemple illustratif

M3_illustration de probabilité de distribution_exemple Albania

Albania connaît une **faible** mobilité intergénérationnelle en terme de revenu.

M4_ANOVA, Multiple Linear Regression

- One-way ANOVA
- Multiple-linear regression (MLR):
 - 2 variables explicatives
 - □ 2 variables explicatives en logarithme
 - □ 3 variables explicatives
 - □ 3 variables explicatives en logarithme

Terminologie

- 1. ANOVA: Analysis of variance
- 2. One-way ANOVA: ANOVA à un facteur
- . Multiple-linear regression: Régression linéaire avec de multiples variables explicatives

M4_One-way ANOVA

anova_Q1 = smf.ols('income~country', data=Q1_ANOVA).fit()
anova_Q1.summary()

why income~country? income is the dependent variable Y, country is the X

Q1_ANOVA=Co500.groupby(['country','quantile	_child']).mean().reset_index()
Q1_ANOVA.head()	

	country	quantile_child	gini	IGEincome	nb_quantiles	income	gdpppp
0	ALB	1	31.408889	0.815875	100.0	728.89795	7297.0
1	ALB	2	31.408889	0.815875	100.0	916.66235	7297.0
2	ALB	3	31.408889	0.815875	100.0	1010.91600	7297.0
3	ALB	4	31.408889	0.815875	100.0	1086.90780	7297.0
4	ALB	5	31.408889	0.815875	100.0	1132.69970	7297.0

OLS negression nes	uits					
Dep. Variable:	incom	ie 💮	R-squ	ıared:	0.456)
Model:	OL	S A	dj. R-squ	ıared:	0.451	
Method:	Least Square	s	F-sta	tistic:	84.42)
Date:	Fri, 25 Feb 202	2 Pro	b (F-stat	tistic):	0.00	
Time:	13:25:2	6 L	og-Likeli	hood:	-65714.	
No. Observations:	630	0		AIC:	1.316e+05	
Df Residuals:	623	7		BIC:	1.320e+05	
Df Model:	6	2				
Covariance Type:	nonrobus	st				
	coef s	td err	t	P> t	[0.025	0.975]
Intercept		4.141	3.634	0.000	1379.229	4610.431
intercept	2994.0299 02	7.171	0.004	0.000	1013.223	4010.401

OLS Regression Results

Step2: R-squared

R-squared = 0.45

=> la variance expliquée par ce modèle (variable explicative: country) est 45%

Step1: test de validité d'hypothèse

H0: le pays (country) n'a pas d'impact sur les revenus (income).

F-statistic est petite et **la Prob(F-statistic)** est 0.00, inférieure à 0.5%. => Rejet de l'hypothèse H0 à niveau de test 0.5%, ctd.le pays a de l'impact sur les revenus.

M4_MLR_traitement de dataframe

Income_normal: revenu quantile par quantile

Income_mean:
revenu de tous les quantiles de chaque pays

	gini	IGEincome	country	quantile_child	nb_quantiles	income_normal	gdpppp	log_gdpppp	proba_quantile_parent	income_mean
0 3	31.408889	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902
1 :	31.408889	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902
2 :	31.408889	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902
3 3	31.408889	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902
4 3	31.408889	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902

Créer les colonnes de revenu en logarithme

Linear_reg_log=Linear_reg.copy()
Linear_reg_log['log_income']=np.log(Linear_reg_log['income_normal'])
Linear_reg_log['log_income_mean']=np.log(Linear_reg_log['income_mean'])
Linear_reg_log.head()

ini	IGEincome	country	quantile_child	nb_quantiles	income_normal	gdpppp	log_gdpppp	proba_quantile_parent	income_mean	log_income	log_income_mean
89	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902	6.591534	8.004643
89	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902	6.591534	8.004643
89	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902	6.591534	8.004643
89	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902	6.591534	8.004643
89	0.815874	ALB	1	100	728.89795	7297.0	8.895219	1	2994.829902	6.591534	8.004643

M4_vérification de conditions de validité pour régression linéaire

- il n'existe pas de grande **colinéarité** parmi les variables explicatives
- normalité des résidus
- homosétasticité des résidus: ctd. les résidus ont la même variance quel que soit le groupe (pays) considéré, ou quelle que soit la valeur de la variable explicative considérée

M4_vérification de colinéarité

forte colinéarité entre gdpppp et gini, gdpppp et income, ainsi on enlève gdpppp

il n'y a pas de grande colinéarité entre les variables explicatives qu'on va utiliser dans les modèles, soit: gini, income_mean, log_income_mean, proba_quantile_parent

M4_MLR_2 variables

reg_multi = smf.ols('income_normal~income_mean+gini', data=Linear_reg).fit()

Variables explicatives:

- Income_mean
- gini

Le modèle arrive à expliquer 45.6% de variance sur income_normal

- P-value income_mean = 0 : **rejet** de H0, income_mean joue un impact sur income_normal (revenu quantile par quantile)
- P-value gini = 1 : **Non-rejet** de H0, Gini n'a pas d'impact sur income_normal

M4_2 variables_normalité et homosétasticité des résidus

Grande superposition de **bleue** avec ligne rouge => condition normalité est valide.

```
name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']

test = sms.het_breuschpagan(reg_multi.resid, reg_multi.model.exog)
|
lzip(name, test)

[('Lagrange multiplier statistic', 81352.84092300001),
    ('p-value', 0.0),
    ('f-value', 41754.75243071066),
    ('f p-value', 0.0)]
```

H0: homoscétasticité pour les résidus

P-value = 0.0, <0.5%, rejet de H0 au niveau de test 0.5%, présence de l'hétérosétasticité pour les résidus de ce modèle reg_multi

analyse1=sm.stats.anova_lm(reg_multi, typ=1)							
	df	sum_sq	mean_sq	F	PR(>F)		
income_mean	1.0	1.777465e+14	1.777465e+14	2.643394e+06	0.0		
gini	1.0	5.456975e-13	5.456975e-13	8.115455e-21	1.0		
Residual	3149997.0	2.118114e+14	6.724177e+07	NaN	NaN		

Décomposition

- la variance expliquée par le **revenu moyen** est environ **45.6**%
- quasi zéro par indice de Gini
- par les autres facteurs non-incluses dans ce modèle est 54.4%

M4_2 variables_en log

reg_multi = smf.ols('income_normal~log_income_mean+gini', data=Linear reg_log).fit()

Variables explicatives:

- log_income_mean
- gini

Le modèle arrive à expliquer 75.4% de variance sur income_normal

- P-value log_income_mean = 0 : **rejet** de H0, log_income_mean arrive à expliquer partiellement income_normal (revenu quantile par quantile)
- P-value gini = 0 : **rejet** de H0, Gini a l'impact sur income_normal

M4_2 variables log_normalité et homosétasticité des résidus

Grande superposition de **bleue** avec ligne rouge => condition normalité est valide.

```
name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
test = sms.het_breuschpagan(reg_multi_2.resid, reg_multi_2.model.exog)
lzip(name, test)
```

[('Lagrange multiplier statistic', 145979.22385892624), ('p-value', 0.0), ('f-value', 76536.44090448711), ('f p-value', 0.0)]

P-value = 0.0, <0.5%, rejet de H0 au niveau de test 0.5%, il existe de l'hétérosétasticité pour les résidus de ce modèle reg_multi_2

	df	sum_sq	mean_sq	F	PR(>F)
log_income_mean	1.0	4.907014e+06	4.907014e+06	9.561381e+06	0.0
gini	1.0	5.485212e+04	5.485212e+04	1.068801e+05	0.0
Residual	3149997.0	1.616616e+06	5.132119e-01	NaN	NaN

Décomposition

- la variance expliquée par le revenu moyen en log est environ 74.6%;
- 0.8 % par indice de Gini;
- par les autres facteurs non-incluses dans ce modèle est 24.6%

M4_MLR_3 variables

reg_multi_3 =
smf.ols('income_normal~income_mean+gini+proba_quantile_
parent', data=Linear_reg).fit()

Omnibus:	3536698.366	Durbin-Watson:	0.003
Prob(Omnibus):	0.000	Jarque-Bera (JB):	539955478.631
Skew:	5.667	Prob(JB):	0.00
Kurtosis:	66.131	Cond. No.	7.03e+04

Variables explicatives:

- Income mean
- Gini
- proba_quantile_parent

Le modèle arrive à expliquer 48.4% de variance sur income_normal

- P-value income_mean = 0 : **rejet** de H0, income_mean joue un impact sur income_normal (revenu quantile par quantile)
- P-value gini = 1 : **Non-rejet** de H0, Gini n'a pas d'impact sur income_normal
- P-value proba_quantile_parent = 0: rejet de H0, proba_quantile_parent joue un impact sur income_normal (revenu quantile par quantile)

M4_3 variables_normalité et homosétasticité des résidus

Grande superposition de **bleue** avec ligne rouge => condition normalité est valide.

```
name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
test = sms.het_breuschpagan(reg_multi_3.resid, reg_multi_3.model.exog)
lzip(name, test)
```

[('Lagrange multiplier statistic', 90355.6983633005), ('p-value', 0.0), ('f-value', 31007.971337207444), ('f p-value', 0.0)]

P-value = 0.0, <0.5%, rejet de H0 au niveau de test 0.5%, donc présence de l'hétérosétasticité pour les résidus de ce modèle reg_multi_3

Décomposition

La variance expliquée par la classe de revenu des parents est de : 2.8 % La variance expliquée par le revenu moyen du pays est de : 45.6 % La variance expliquée par Gini du pays est presque 0. La variance expliquée par les autres facteurs est de : 51.6 %

M4_MLR_3 variables_log

reg_multi_3_log =
smf.ols('log_income~log_income_mean+gini+proba_quantile_
parent', data=Linear_reg_log).fit()

Dep. Variable: log_income R-squared: 0.798 OLS 0.798 Model: Adj. R-squared: Method: Least Squares F-statistic: 4.137e+06 Date: Thu. 24 Feb 2022 Prob (F-statistic): 0.00 17:42:38 Log-Likelihood: -3.1136e+06 Time: No. Observations: 3150000 AIC: 6.227e+06 6.227e+06 **Df Residuals:** 3149996 BIC: Df Model: 3 Covariance Type: nonrobust std err [0.025 0.975] coef Intercept 0.1519 0.004 36.396 0.000 0.144

0.160 0.9707 0.000 2861.985 0.000 0.970 0.971 log income mean -360.217 0.000 -0.0180 4.98e-05 -0.018 -0.018 proba quantile parent 0.0104 1.27e-05 821.104 0.000 0.010 0.010

Cond No

701

 Omnibus:
 347577.502
 Durbin-Watson:
 0.006

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 2087415.863

 Skew:
 -0.362
 Prob(JB):
 0.00

Kurtonia.

variable dépendante:

log income

variables explicatives:

- log_income_mean
- Gini
- proba_quantile_parent

Le modèle arrive à expliquer 79.8% de variance

- P-value log_income_mean = 0 : **rejet** de H0, income_mean joue un impact sur income_normal (revenu quantile par quantile)
- P-value gini = 0 : rejet de H0, Gini a l'impact sur income normal
- P-value proba_quantile_parent = 0: **rejet** de H0, proba_quantile_parent joue un impact sur income_normal (revenu quantile par quantile)

M4_3 variables log_normalité et homosétasticité des résidus


```
name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
test = sms.het_breuschpagan(reg_multi_3_log.resid, reg_multi_3_log.model.exog)
lzip(name, test)

[('Lagrange multiplier statistic', 101338.99782132792),
('p-value', 0.0),
('f-value', 34902.474403579006),
('f p-value', 0.0)]
```

P-value = 0.0, <0.5%, rejet de H0 au niveau de test 0.5%, présence de l'hétérosétasticité pour les résidus de ce modèle reg_multi_3

Décomposition

La variance expliquée par la classe de revenu des parents est de : 4.35 % La variance expliquée par le revenu moyen en log est de : 74.59 % La variance expliquée par lindice Gini est de : 0.83 % La variance expliquée par les autres facteurs est de : 20.23 %

M4_MLR_3 variables_log + fit(cov_type='HC3')

4.733e+06

reg_multi_3_log =
smf.ols('log_income~log_income_mean+gini+proba_quantile_
parent', data=Linear_reg_log).fit(cov_type='HC3')

Dep. Variable: log_income R-squared: 0.798

Model: OLS Adj. R-squared: 0.798

F-statistic:

Log-Likelihood: -3.1124e+06

0.006

0.00

2099750.184

Date: Wed, 16 Mar 2022 Prob (F-statistic): 0.00

No. Observations: 3150000 AIC: 6.225e+06

11:05:30

Least Squares

Df Residuals: 3149996 **BIC:** 6.225e+06

Df Model: 3

Covariance Type: HC3

Omnibus: 348378.084

-0.363

Prob(Omnibus):

Skew:

Method:

Time:

variable dépendante:

log_income

Variables explicatives:

- log income mean
- Gini
- proba_quantile_parent

Le modèle arrive à expliquer 79.8% de variance

std err [0.025 0.975] coef 0.1511 0.005 31.607 0.000 0.142 Intercept 0.160 0.9707 log income mean 0.000 2777.395 0.000 0.970 0.971 -0.0180 6.52e-05 -275.243 0.000 -0.018 -0.018 proba_quantile_parent 0.0104 1.36e-05 767.066 0.000 0.010 0.010

Durbin-Watson:

Jarque-Bera (JB):

Prob(JB):

- P-value log_income_mean = 0 : **rejet** de H0, income_mean joue un impact sur income_normal (revenu quantile par quantile)
- P-value gini = 0 : **rejet** de H0, Gini a l'impact sur income_normal
- P-value proba_quantile_parent = 0: rejet de H0, proba_quantile_parent joue un impact sur income_normal (revenu quantile par quantile)

M4_Conclusion

En comparant ces modèles ci-dessus, on conclut que:

Quand on transforme les variables en logarithme, on a un modèle **plus performant** qui arrive à expliquer plus de variance de notre variable dépendante.

Quand on ajoute la 3ème variable (le nombre de variables explicatives augmente), le % de variance expliquée par le nouveau modèle augmente.

=> le modèle avec 3 variables et en log explique mieux la variable dépendante.

méthode fit(cov_type='HC3') n'a pas servi grand-chose pour diminuer l'effet de l'hétéroscétasticité dans le cadre de régression pour tous ces pays clients.

M4_exemple ALB

```
reg_ALB =
smf.ols('log_income~log_income_mean+gini+proba_quantile_
parent', data=ALB_reg).fit(cov_type='HC3')
```

Dep. Variable:	log_income	R-squared:	0.370
Model:	OLS	Adj. R-squared:	0.370
Method:	Least Squares	F-statistic:	1.151e+15
Date:	Mon, 14 Mar 2022	Prob (F-statistic):	0.00
Time:	12:41:18	Log-Likelihood:	-27059.
No. Observations:	50000	AIC:	5.412e+04
Df Residuals:	49997	BIC:	5.415e+04
Df Model:	2		
Covariance Type:	НС3		

Skew:

Kurtosis:

0.479

4.062

Le modèle arrive à expliquer 37 % de variance sur income_normal d'ALB

Covariance Type:		HC3					
		coef	std err	z	P> z	[0.025	0.975]
Intercep	ot 3.	291e+08	9.703	3.39e+07	0.000	3.29e+08	3.29e+08
log_income_mea	n 5.	637e+09	166.163	3.39e+07	0.000	5.64e+09	5.64e+09
gi	ni -1.	447e+09	42.656	-3.39e+07	0.000	-1.45e+09	-1.45e+09
proba_quantile_parer	nt	0.0110	2e-12	5.53e+09	0.000	0.011	0.011
Omnibus: 277	8.436	Durbi	n-Watson:	0.014			
Prob(Omnibus):	0.000	Jarque-	Bera (JB):	4262.285			

Prob(JB):

Cond. No. 7.86e+19

0.00

M4_ALB_normalité et homosétasticité des résidus

test = sms.het_breuschpagan(reg_ALB.resid, reg_ALB.model.exog) lzip(name, test)

[('Lagrange multiplier statistic', 649.0151053177129), ('p-value', 2.38174700496322e-140), ('f-value', 328.7554269668309), ('f p-value', 1.4256401060724296e-142)]

Lagrange multiplier statistic est petit et sa P-value = 2.38 > 5%

=> non-rejet de H0 au niveau de test 5%, il existe de l'homosétasticité pour les résidus de ce modèle reg_ALB

Décomposition

La variance expliquée par la classe de revenu des parents est de : 37% La variance expliquée par le revenu moyen en log est de : 0.01% La variance expliquée par lindice Gini est de : 0.01 %

La variance expliquée par les autres facteurs est de : 62.9 %

Q & A

Merci

P7_prédiction de revenus

Data Analyst_Xuefei ZHANG

12 mars 2022