Régime sinusoïdal

Exercice 1. (expression d'une tension sinusoïdale)

Soit une tension sinusoïdale u(t) représentée sur le chronogramme ci-dessous.

- 1) Calculer la pulsation, l'amplitude et la phase à l'origine de cette tension.
- 2) Donner l'expression de cette tension.

Exercice 2. (notation complexe)

La valeur instantanée v(t) d'une tension sinusoïdale s'exprime par la relation suivante :

$$v(t) = 15\sqrt{2}\sin(400\pi t + \frac{3\pi}{4})$$

- 1) Donner le nombre complexe associé à cette tension dans sa forme géométrique puis dans sa forme algébrique.
- 2) Représenter ce nombre complexe dans le plan complexe. Y mettre en évidence sa valeur efficace et sa phase à l'origine.

Exercice 3. (tension et courant complexes)

On considère les grandeurs complexes associées à la tension u(t) et au courant i(t).

$$\underline{U} = [8; \frac{\pi}{3}]$$
 et $\underline{I} = [12 \cdot 10^{-3}; \frac{\pi}{4}]$

- 1) Déterminer les expressions mathématiques des valeurs instantanées u(t) et i(t).
- 2) Quel est le déphasage de la tension u(t) par rapport au courant i(t)?
- 3) Placer cette tension et ce courant dans le plan complexe. Y mettre en évidence le déphasage précédent.

Exercice 4. (identification de dipôles linéaires)

La figure ci-dessous donne les chronogrammes de la tension et de l'intensité du courant de 4 dipôles passifs linéaires différents : une résistance parfaite, une bobine parfaite, un condensateur parfait et un dipôle quelconque. Ces chronogrammes ne sont pas donnés dans l'ordre.

- 1) Quelle est la fréquence de ces signaux?
- 2) Pour chacun des dipôles :
 - Identifier son chronogramme.
 - Déterminer son impédance et son déphasage de tension par rapport au courant.
 - En déduire son impédance complexe.
- 3) En déduire les valeurs de la résistance R, l'inductance L et de la capacité C.

Exercice 5. (impédance d'un dipôle quelconque)

La figure ci-dessous représente un dipôle linéaire.

Données:
$$u(t) = 12\sqrt{2}\sin(\omega t + 1.05)$$
 $i(t) = 45 \cdot 10^{-3}\sqrt{2}\sin(\omega t + 0.38)$

- 1) Calculer l'impédance Z et le déphasage φ de ce dipôle.
- 2) En déduire l'impédance complexe Z dans sa forme géométrique et sa forme algébrique.

Exercice 6. (impédances complexes de dipôles élémentaires)

Trois dipôles linéaire d'impédance respective \underline{Z}_1 , \underline{Z}_2 et \underline{Z}_3 sont associées en série.

$$\underline{\underline{Z}_1}$$
 $\underline{\underline{Z}_2}$ $\underline{\underline{Z}_3}$

Données :
$$f=100~{\rm Hz}$$
 $\underline{Z}_1=2000{\rm j}$ $\underline{Z}_2=1000$ $\underline{Z}_3=-500{\rm j}$

- 1) Quelle est la nature de chacun de ces dipôles?
- 2) Determiner la valeur de la résistance, de l'inductance ou de la capacité de chaque dipôle.

Exercice 7. (modèle d'une bobine réelle)

Une bobine réelle est modélisée par l'association série d'une inductance parfaite L et d'une résistance r comme le montre la figure suivante :

Données:
$$f = 200 \text{ Hz}$$
 $L = 0, 1 \text{ H}$ $r = 32 \Omega$

- 1) Que représente la résistance r?
- 2) Montrer que l'impédance complexe de cette bobine réelle s'écrite :

$$Z = r + jL\omega$$

- 3) En déduire les expression de son impédance Z et de son déphasage φ . Faire les applications numériques.
- 4) Calculer le facteur de qualité de cette bobine défini par la relation :

$$Q = \frac{L\omega}{r}$$

Que représente cette grandeur? Comment évolue-t-elle lorsque la fréquence augmente?

Exercice 8. (résonance d'un dipôles *RLC* série)

On considère l'association série d'une résistance, d'une bobine et d'une condensateur. Ces trois élément sont considérés comme parfaits. L'ensemble est équivalent à un impédance complexe <u>Z</u>.

Données: $R = 2.2 \text{ k}\Omega$ L = 0.15 H C = 22 nF

- 1) Quelle est l'expression de l'impédance complexe <u>Z</u>?
- 2) Montrer alors que l'impédance Z et la phase φ s'écrivent :

$$Z = \sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}$$
 et $\varphi = \arctan(\frac{L\omega - \frac{1}{C\omega}}{R})$

Faire les application numérique pour f = 1 kHz puis pour f = 5 kHz.

Quelle est la nature du dipôle RLC série pour ces deux fréquences?

3) La fréquence de résonance de ce dipôle est définie par la relation suivante :

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Calculer la valeur de cette fréquence.

- 4) En déduire l'expression de la pulsation de résonance ω_0 ?
- 5) Déterminer alors l'expression de l'impédance Z et celle du déphasage φ à la résonance. Quelle est la nature du dipôle RLC série dans ce cas particulier?
- 6) Que dire de la valeur efficace de l'intensité du courant à la résonance du circuit?

Exercice 9. (résonance électrique)

La figure ci-dessous donne une représentation graphique de l'impédance Z et du déphasage φ d'un dipôle RLC série en fonction la fréquence f.

Données : $C = 1 \,\mu\text{F}$

- 1) Donner le schéma électrique de ce dipôle.
- 2) Quelle est la fréquence de résonance f_0 de cette association série?
- 3) Déterminer les valeurs de la résistance R et de l'inductance L.