Figure 1

Figure 2

Figure 3

PNPO TOPNP + Bochin (
$$\bigcirc$$
) NH2

Bochin (\bigcirc) NH2

CI N (\bigcirc) NH3

CI N (\bigcirc) N

Figure 4

$$(TG)_{10} \cdot (CA)_{10} \cdot O - \overset{Q}{P} - O(CH_2)_6 S \overset{Q}{H} + O \overset{Q}{h} \overset{Q}{H} + O \overset{$$

Figure 5

Figure 6

D1-NH
$$=$$
 N $=$ N $=$ NH-D1 $=$ NH-D1 $=$ NH-D1 $=$ NH-D1 $=$ NH-D1 $=$ NH-D1 $=$ 204; average n = approximately 76 (PEG 3.3K)

200; average n = approximately 503 (PEG 20K)

201; average n = approximately 114 (PEG 5K)

205; average n = approximately 261 (PEG 12K)

301; average n = approximately 682 (PEG 30K)

202; average n = approximately 503 (PEG 20K)

$$\begin{array}{c} O = NO \\ O = N$$

203; average n = approximately 125 (PEG 5K) total PEG = 20K

Figure 7

$$H_2NO-G_2$$
 N
 R_C
 N
 G_2-ONH_2
 G_2-ONH_2
Formula 9

Formula 10

Formula 11

$$H_2NO-G_2$$
 O G_2-ONH_2 H_2NO-G_2 Formula 12

$$H_2NO-G_2$$
 O
 O
 O
 G_2-ONH_2
 H_2NO-G_2
 G_2-ONH_2
 G_2-ONH_2

Figure 8

Figure 9

(BTC)O
$$(-0)$$
 (-0)

Figure 11

PNPO TO OPNP + BocHN
$$\left(\bigcirc \right)_{n}NH_{2}$$
 + BocHN $\left(\bigcirc \right)_{n}NH_{2}$ + BocHN $\left(\bigcirc \right)$

136, n = approx. 112

Figure 12

Figure 13

Figure 14

Figure 15

300, n = approx. 503

Figure 16

Figure 17

Figure 18

gga Gly 1	cgg Arg	acc Thr	tgt Cys	ccc Pro 5	aag Lys	cca Pro	gat Asp	gat Asp	tta Leu 10	cca Pro	ttt Phe	tcc Ser	aca Thr	gtg Val 15	gtc Val	48	В
ccg Pro	tta Leu	aaa Lys	aca Thr 20	ttc Phe	tat Tyr	gag Glu	cca Pro	gga Gly 25	gaa Glu	gag Glu	att Ile	acg Thr	tat Tyr 30	tcc Ser	tgc Cys	9	6
aag Lys	ccg Pro	ggc Gly 35	tat Tyr	gtg Val	tcc Ser	cga Arg	gga Gly 40	Gly ggg	atg Met	aga Arg	aag Lys	ttt Phe 45	atc Ile	tgc Cys	cct Pro	14	4
ctc Leu	aca Thr 50	gga Gly	ctg Leu	tgg Trp	ccc Pro	atc Ile 55	aac Asn	act Thr	ctg Leu	aaa Lys	tgt Cys 60	aca Thr	ccc Pro	aga Arg	gta Val	19	2

Figure 19

Domain 1 of β_2 GPI (D₁, where bold letters stand for single letter amino acid code of terminal amino acids of Domain 1 of β_2 GPI)

Transaminated Domain 1 (**TA/D1**) Comprising a terminal glyoxyl group

Figure 20