GEMM3: Constant-workspace high-performance multiplication of three matrices for matrix chaining

Krzysztof A. Drewniak

The University of Texas at Austin

April 13, 2018

Matrix chaining problem

- ▶ Problem: compute $A_1A_2\cdots A_n$ efficiently, A_i matrices
- ▶ Where do the parentheses go?
- ▶ $O(n \log n)$ algorithm, also $O(n^3)$ with dynamic programming
- ▶ Fewer flops \rightarrow more performance?

Generalized matrix chaining

- ▶ In reality transposes, inverses, properties
- ► Ex:

```
Ensemble Kalman filter X_i^b S_i(Y_i^b)^T R_i^{-1}
Tridiagonalization \tau_u \tau_v v v^T A u u^T
Two-sided triangular solve L^{-1}AL^{-H} (L lower triangular)
```

- ► Performance with BLAS/LAPACK must be expert
- Less performance with Matlab, numpy, etc. (left-to-right)
- ightharpoonup Linnea: expression ightarrow BLAS calls automagically

GEMM3 — Why bother?

- Examples again:
 - $X_i^b S_i (Y_i^b)^T R_i^{-1}$ $\tau_{ii} \tau_{v} v v^T A u u^T$

 - $ightharpoonup L^{-1}A(L^{-1})^H$ (L lower triangular)
- All multiply three matrices as a subproblem
- ▶ (Notation: G += DEF and GEMM3)

GEMM3 — Why a new algorithm?

- ► Current approach: parentheses, multiply twice, store temporary *T*
- T often eats memory
- Writing/reading T can hit your performance
- We can do better!
- ▶ Use how GEMM works to nest computations
- \triangleright O(1) extra memory, maybe more performance

Section 2

High-Performance GEMM

Drewniak (UT Austin) GEMM3 6 / 27

Memory hierarchy

GEMM: The kernels

GEMM: The algorithm

Data reuse

- Every loop reads something repeatedly
- ▶ Relevant things: packed blocks making them takes time
- Packed block reuse problems:
 - ▶ m small low time between remakes of \widetilde{B}
 - ▶ *n* small same for *A*
 - ▶ k tiny microkernel doesn't do much, small caches

Key concept of the algorithm

- ▶ We want G += DEF, (dimensions: m, k, l, n in order)
- ► EF first needed in packing step
- Compute a block then
- ► Have GEMM algorithm, but

Deriving GEMM3: Partitionings

G += D(EF) with BLIS, (EF) virtual.

- 1. Partition n dimension by n_C Limits rows of (EF), F, G
- 2. Partition k dimension by k_C Limits columns of D, (EF); rows of E
- ▶ Block of *EF* is $k_C \times n_C$.
- Now needed for EF

Deriving GEMM3: Inner algorithm

- ▶ Problem size: $k_C \times I \cdot I \times n_C$.
- ▶ Panel-matrix has good performance with BLIS
- ▶ $k_C \times n_C$ output
- Only point to compute in constant memory
- ► GEMM algorithm needs tweaks

Deriving GEMM3: The tricky bits

Problem	Solution
Redundant loop over $n (n \le n_C)$	Remove it
Packing output wastes space/time	Tweak microkernel params
\widetilde{F} fights \widetilde{EF} in $L3$	Halve n_C
Low \widetilde{F} reuse	Low impact in practice
$m_R \nmid k_C$, leaving fringe	Shrink <i>k_C</i> slightly

Table: Tweaks needed to make GEMM fusion work

The algorithm

$$G += (DE)F$$

- Putting parentheses there sometimes better
- Deriving directly doesn't work bad shape
- ▶ However, $G += (DE)F \Leftrightarrow G^T += F^T(E^TD^T)$

Section 4

Experiments and Results

Implementation details

- Multilevel Optimization of Matrix Multiply Sandbox (MOMMS)
- Extended to support three matrices
- ► Implement both GEMM3 and BLIS algorithm
- ▶ BLIS algorithm port performs like BLIS
- Experiments on Haswell machine from UT lab

$\operatorname{GEMM3}$	BLIS algorithm
72	72
252	256
256	
2040	4080
	72 252 256

Table: Constants for Haswell CPUs

Experiments

- 1. G += D(EF), square matrices
 - Inputs column-major, outputs row-major for fairness
- 2. $G^T += F^T(E^TD^T)$, square matrices
 - ► After transpose, all row major
- 3. G += D(EF), rectangles (one dimension small)

Workspace usage, square matrices

G += D(EF), square matrices

G += D(EF), square matrices

G += (DE)F, square matrices

G += (DE)F, square matrices

G += D(EF), rectangular matrices

Acknowledgments

- Prof. Robert van de Geijn, for advising and providing the inspiration for this work
- Dr. Tyler Smith, for writing MOMMS and helping with algorithm design
- ▶ Prof. Tze Meng Low, for performance and paper-writing advice
- ▶ NSF grant **TODO NNNNNNN** for funding

Questions?

Picking constants: m_R , n_R

- Determine microkernel
- Based on microarchitecture register width, FMA properties
- We're reusing BLIS's work
- \triangleright Can swap m_R and n_R

Picking constants: k_C

L1

Placing memory in cache: [tag][set #][offset in line]

Maximizing k_C improves performance

$$C_{B} = \left\lceil \frac{n_{R}k_{C}S_{elem}}{N_{L1}C_{L1}} \right\rceil$$
$$= \left\lceil \frac{n_{R}}{m_{R}}C_{A} \right\rceil$$
$$C_{A} \le \left\lceil \frac{W_{L1} - 1}{1 + \frac{n_{R}}{m_{R}}} \right\rceil$$

Picking constants: m_C and n_C

- ▶ For m_C : reserve ways for B and C
- ► Then take all you can
- \triangleright n_C , leave out what architecture requires, then divide
- ▶ L3 is very big, tuning is much less needed