Data Preparation and Analysis (CSP571)

Assignment-3

1. Recitation Exercises

Chapter-6

1. (a) Which of the three models with k predictors has the smallest training RSS?

The best subnet selection approach will have the smallest training RSS because it considers all the possible models. Other models mentioned use a greedy approach.

(b) Which of the three models with k predictors has the smallest test RSS?

We cannot determine if any of the three models have the small test RSS. The best subnet model may have low-training RSS since it considers all models. But this may overfit the model resulting in low test RSS.

(c) True or False

- (i)True
- (ii)True
- (iii)False= sometimes it can be true but not always
- (iv)False= sometimes it can be true but not always
- (v)False= Best subnet selection may drop previously chosen predictors when a new one is added since it considers all possible subnets.

2. (a) The lasso, relative to least squares, is:

Option (iii) is correct. When it performs feature selection Lasso generates a sparse model that is less flexible.

(b) Repeat (a) for ridge regression relative to least squares.

Option(iii) is correct. When ridge performs shrinkage, it shrinks predictors that don't have a strong relationship with the target variable hence they are less flexible. It reduces the variance at the cost of an increase in bias.

(c) Repeat (a) for non-linear methods relative to least squares.

Option(ii) is correct. The non-linear model follows the observation more tightly than least squares hence, it's more flexible. It also reduces the bias at the cost of an increase in variance.

3. (a) As we increase s from 0, the training RSS will:

Option(iv) is correct. As we increase s, the model becomes more and more flexible as the restriction on β is reducing; hence, coefficients increase from 0 to their least square estimate values.

(b) Repeat (a) for test RSS

Option(ii) is correct. As the model is becoming more and more flexible the test RSS will reduce first and then start increasing when overfitting will start.

(c) Repeat (a) for variance.

Option(iii) is correct. Variance increases with the increase in model flexibility.

(d) Repeat (a) for (squared) bias.

Option(iv) is correct. Bias decreases with the increase in flexibility.

(e) Repeat (a) for the irreducible error.

Option (v) is correct. The irreducible error model does not depend on the value of s.

4. (a) As we increase λ from 0, the training RSS will:

Option(iii) is correct. As we increase λ , the model becomes less and less flexible because the restriction on β is increasing and hence coefficients value comes closer to 0.

(b) Repeat (a) for test RSS.

Option (ii) is correct. As the model becomes less flexible the test RSS will reduce first and then increase when overfitting starts.

(c) Repeat (a) for variance

Option(iv) is correct. Variance decreases with the decrease in model flexibility.

(d) Repeat (a) for (squared) bias.

Option(iii) is correct. Bias increases with a decrease in model flexibility.

(e) Repeat (a) for the irreducible error.

Option(v) is correct. The irreducible error model does not depend on $\boldsymbol{\lambda}.$

5. (a) Write out the ridge regression optimization problem in this setting.

(hapter-6) Recitation Excursion 5 a) $N=2$ $p=2$ $\chi_{11}=\chi_{12}$ $\chi_{11}=\chi_{12}=0$ $\chi_{11}+\chi_{21}=0$ $\chi_{11}+\chi_{21}+\chi_{21}=0$ $\chi_{11}+\chi_{2$			
Recitation Excursion $ \begin{array}{lll} $			
Recitation Excursion $ \begin{array}{lll} $			
Recitation Excursion $ \begin{array}{lll} $			
Recitation Excursion $ \begin{array}{lll} $		Chapter-6	
50) $N=2$ $p=3$ $x_{11}=x_{12}$ $y_{1}+y_{2}=0$ $x_{12}+y_{22}=0$ $x_{11}+x_{21}=0$ $p_{0}=0$ Ridge Regulation $N=2$ $p=3$ $p_{0}=0$ a) $min\left[\left(y_{1}-\hat{\beta}_{1} x_{11}-\hat{\beta}_{2}x_{12}\right)^{2}+\left(y_{2}-\hat{\beta}_{1}x_{21}-\hat{\beta}_{2} x_{22}\right)^{2}+\left(\hat{\beta}_{1}^{2}+\hat{\beta}_{2}^{2} x_{12} x_{12}-\hat{\beta}_{2} x_{22}\right)^{2}+\left(\hat{\beta}_{1}^{2}+\hat{\beta}_{2}^{2} x_{12} x_{12}-\hat{\beta}_{2} x_{12}-\hat{\beta}_{2} x_{12}-\hat{\beta}_{2} x_{12} x_{12}-\hat{\beta}_{2} x_{12}-$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		keutation Excuses	
$y_{12} + y_{22} = 0$ $x_{11} + x_{21} = 0$ $\beta_0 = 0$ $Ridge Regulosion$ $m = 2$ $\beta_0 = 0$ $n = 0$ $min \left[\left(y_1 - \beta_1 \times 111 - \beta_2 \times 12 \right)^2 + \left(y_2 - \beta_1 \times 211 - \beta_2 \times 22 \right) \right]^2$ $+ \left(\left(\beta_1^2 + \beta_2^2 \right) $ $\left(y_1^2 + \beta_1^2 \times 111 + \beta_2^2 \times 112 - 2\beta_2 \times 112y_1 - 2\beta_1 \times 11y_1 + 2\beta_1 \beta_2 \times 111x_1 \right)$ $\left(y_1^2 + \beta_1^2 \times 111 + \beta_2^2 \times 112 - 2\beta_2 \times 112y_1 - 2\beta_1 \times 11y_1 + 2\beta_1 \beta_2 \times 111x_1 \right)$ $\left(y_1^2 + \beta_1^2 \times 111 + \beta_2^2 \times 112 - 2\beta_2 \times 112y_1 - 2\beta_1 \times 11y_1 + 2\beta_1 \beta_2 \times 11x_1 \right)$ $\left(y_1^2 + \beta_1^2 \times 111 + \beta_2^2 \times 112 - 2\beta_2 \times 112y_1 - 2\beta_1 \times 11y_1 + 2\beta_1 \beta_2 \times 11x_1 \right)$	5 a)		
$\begin{array}{c} y_1 + y_2 = 0 \\ \chi_{12} + g_{22} = 0 \\ \chi_{11} + \chi_{21} = 0 \\ \beta_0 = 0 \end{array}$ $\begin{array}{c} Ridge Regulasion \\ m = 2 \\ \beta_0 = 0 \\ \end{array}$ $\begin{array}{c} \rho = 2 \\ \beta_0 = 0 \\ \end{array}$ $\begin{array}{c} + \left(\beta_1^2 + \hat{\beta}_2^2\right) \\ \end{array}$ $\begin{array}{c} \left(\beta_1^2 + \beta_2^2\right) \\ \end{array}$ $\begin{array}{c} \left(\beta_1^2 + \beta_1^2\right) \\ \end{array}$ $\begin{array}{c} \left(\beta_1^2 + \beta_1^2\right) \\ \end{array}$ $\begin{array}{c} \left(\beta_1^2 + \beta_2^2\right) \\ \end{array}$ $\begin{array}{c} \left(\beta_1^2 + \beta_1^2\right) \\ \end{array}$ $\begin{array}{c} \left(\beta_1^2 + \beta_2^2\right) \\ \end{array}$ $\begin{array}{c} \left(\beta_1^2 + \beta_1^2\right) \\ \end{array}$		P= 2	
$\begin{cases} $			
$\begin{cases} $		X12 + 122 = 0	
Ridge Regulation $ \begin{array}{lll} $		$\lambda_{11} + \chi_{21} = 0$ $\beta_{0} = 0$	
(b) From a $(y_1^2 + \beta_1^2 \times 112 - \beta_2^2 \times 12y_1 - \beta_1^2 \times 11y_1 + \beta_1^2 \times 11x_2 - \beta_2^2 \times 12y_1 - \beta_1^2 \times 11x_1 + \beta_1^2 \times 11x_2 - \beta_1^2 \times 11$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		lidge legals von	
(b) from a $(y_1^2 + \beta_1^2 \chi_{11} + \beta_2^2 \chi_{12} - 2\beta_2 \chi_{12} y_1 - 2\beta_1 \chi_{11} y_1 + 2\beta_1 \beta_2 \chi_{11} \chi_1 + \beta_2 \chi_2^2 - 2\beta_2 \chi_2 y_2 + 2\beta_1 \beta_2 \chi_2 \chi_2 - 2\beta_1 \chi_2 y_1 + 2\beta_1 \beta_2 \chi_2 \chi_2 + 2\beta_1 \chi_2 y_1 + 2\beta_1 \chi_2 \chi_2 x_1 + 2\beta_1 \chi_2 x_1 + $		M=2	-
(b) from a $(y_1^2 + \beta_1^2 + y_1 + \beta_2^2 + y_1 - 2\beta_2 + y_1 - 2\beta_1 + y_1 + 2\beta_1 \beta_2 + y_1 + 2\beta_1 \beta_2 + y_2 + y_2$		β= 0	
(b) from a $(y_1^2 + \beta_1^2 + y_1 + \beta_2^2 + y_1 - 2\beta_2 + y_1 - 2\beta_1 + y_1 + 2\beta_1 \beta_2 + y_1 + 2\beta_1 \beta_2 + y_2 + y_2$	a) .	min [/ y, - \begin{aligned} \	
(b) from a $(y_1^2 + \beta_1^2 + y_1 + \beta_2^2 + y_1 - 2\beta_2 + y_1 - 2\beta_1 + y_1 + 2\beta_1 \beta_2 + y_1 + 2\beta_1 \beta_2 + y_2 + y_2$		(122, 122)	
(y2 + 1 1 x21 + 1 2 x22 - 2 1 2 x22 y2 + 2 1 1 1 2 x21 x22 - 2 1 1 x2 y1)		+ 1 (P1 + P2)	
(y2 + 1 1 x21 + 1 2 x22 - 2 1 2 x22 y2 + 2 1 1 1 2 x21 x22 - 2 1 1 x2 y1)			
(y2 + 1 1 x21 + 1 2 x22 - 2 1 2 x22 y2 + 2 1 1 1 2 x21 x22 - 2 1 1 x2 y1)	b) /	12 + 6 2 211 + 6 2 212 - 2 6 2 212 11 - 2 6 1 X 11 11 + 2 8 6 2 21 2	. 1
	-		
		1 2 + B ² 22 + B ² 22 2 B ² 22 22 1 + 2 B ² B ² 22 22 22	
	Tick	2 81 x241)	-
7 (11 + 12)	0		
		7 (11 +12)	die

taking the partial derivature to BI & setting enp to O let x11 = x12 = X1 and x22 = x22 = x2 (BI X12 - XI YI + B2 X22) + (BIX12 - X2 Y2 + B2 X22)+ BI (x12+x22) + B2(x12+x22)+TBI= x141+x242 Adding 2B1 x1x2 and 2B2 x1x2 on both lides. B. (x1+x2)2 +B2(x1+x2)2+ TB1 =x141+x242+ 2812112 +2 B2 21 x2 Given XI+X2=0 181 = x141 + x242 + 281x1x2 + 282x1x2 - 1 Taking partial derivature to \$2 we get 1B2 = x1y1 +x2y2 +dB1 x1x2 +dB2x1x2-6 From (1) 2(2) we get B1 = B2

2. Recitation Exercises

Chapter-7

2.(a) Suppose that a curve 'g is computed to smoothly fit a set of n points using the following formula.

(a)
$$\lambda = \infty$$
, m = 0.

In this case, $g^{\hat{}}$ is 0 because due to the large smoothing parameter $g^{\hat{}}$ 0 (x) \rightarrow 0

(b)
$$\lambda = \infty$$
, m = 1.

In this case, $g^{\hat{}}$ is c because due to the large smoothing parameter $g^{1}(x) \rightarrow 0$

(c)
$$\lambda = \infty$$
, m = 2.

In this case, g[^] is cx + d because due to the large smoothing parameter g[^]2 (x) \rightarrow 0

(d)
$$\lambda = \infty$$
, m = 3.

In this case, g[^] is cx[^]2 + dx + e because due to the large smoothing parameter g[^]3 (x) \rightarrow 0

(e) $\lambda = 0$, m = 3

In this case, the smoothing will have no effect as $\lambda = 0$ and g^{*} will interpolate the data set.

3.
$$x = -2:2$$

$$y = 1 + x + -2 * (x-1)^2 * I(x>1)$$

plot(x, y)

>
$$x = -2:2$$

> $y = 1 + x + -2 * (x-1)^2 * I(x-1)$
> plot(x, y)
> |


```
y = c(1 + 0 + 0, #x = -2)
   1 + 0 + 0, \# x = -1
   1 + 1 + 0, \# x = 0
   1 + (1-0) + 0, #x = 1
   1 + (1-1) + 0, #x = 2
   1 + (0-0) + 0, # x = 3
   1 + (0) + 1, #x = 4
   1 + 0 + 1, # x = 5
   1 + 0 + 0 # x = 6
plot(x,y)
 > x = -2:6
 > y = c(1 + 0 + 0, # x = -2)
             1 + 0 + 0, \# x = -1
            1 + 1 + 0, \# x = 0
            1 + (1-0) + 0, # x = 1

1 + (1-1) + 0, # x = 2
            1 + (0-0) + 0, # x = 3
            1 + (0) + 1, # x = 4
            1 + 0 + 1, # x = 5
1 + 0 + 0 # x = 6
+ 1 +
+ )
> plot(x,y)
```

4. x = -2:6

5. (a) As $\lambda \rightarrow \infty$, will ^g1 or ^g2 have the smaller training RSS?

'g2 will have smaller training RSS as it will be a higher-order polynomial due to the order of penalty term.

- (b) As $\lambda \rightarrow \infty$, will $^{\circ}g1$ or $^{\circ}g2$ have the smaller test RSS?
- ^g1 will have a smaller test RSS value.
- (c) For $\lambda = 0$, will g1 or g2 have the smaller training and test RSS?

Here $\lambda = 0$ and we have g1 = g2 so they will have equal training and test RSS.

2. Practicum Problems

Problem#1

library(caret)

library(ggplot2)

data("mtcars")

colnames(mtcars)

```
> library(caret)
> library(ggplot2)
> data("mtcars")
> colnames(mtcars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"
> |
```

#80-20 training- testing split

SampleDataIndex = createDataPartition(y = mtcars\$mpg, p = 0.8, list = FALSE)

TrainingDataMcars = mtcars[SampleDataIndex,]

TestingDtataMcars = mtcars[-SampleDataIndex,]

```
> #80-20 training- testing split
> SampleDataIndex = createDataPartition(y = mtcars$mpg, p = 0.8, list = FALSE)
> TrainingDataMcars = mtcars[SampleDataIndex,]
> TestingDtataMcars = mtcars[-SampleDataIndex,]
> |
```

#fitting a linear model

```
LinearModelMcars1 = lm(mpg~., data = TrainingDataMcars)
```

```
summary(LinearModelMcars1)
```

```
> LinearModelMcars1 = lm(mpg~., data = TrainingDataMcars)
> summary(LinearModelMcars1)
call:
lm(formula = mpg ~ ., data = TrainingDataMcars)
Residuals:
             1Q Median
                             3Q
    Min
                                     Max
-2.6339 -1.6263 -0.1275 0.7253 4.6465
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
            5.21282
                       20.13320
                                 0.259
                                          0.7988
                        1.09241 0.527
cy1
             0.57539
                                          0.6052
                                         0.5616
disp
             0.01073
                        0.01813 0.592
                        0.02365 -1.417
1.85994 0.812
            -0.03350
                                          0.1746
hp
drat
             1.51005
                                           0.4281
                        1.93958 -1.942
            -3.76657
                                          0.0689 .
Wt
qsec
            1.10211
                        0.75907 1.452
                                          0.1647
            -0.87715
                        2.17482 -0.403
2.11809 1.462
                                          0.6917
VS
                                         0.1619
am
             3.09750
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 2.622 on 17 degrees of freedom

Multiple R-squared: 0.88, Adjusted R-squared: 0.8094

F-statistic: 12.47 on 10 and 17 DF, p-value: 5.649e-06
```

#coefficients values

LinearModelMcars1\$coefficients

```
> #coefficients values

> LinearModelMcars1$coefficients

(Intercept) cyl disp hp drat wt qsec vs am gear

5.21282197 0.57539004 0.01073177 -0.03349912 1.51005122 -3.76656990 1.10210634 -0.87714708 3.09749975 0.01575818

carb

-0.01052182

> |
```

library(glmnet)

```
> library(glmnet)
 >
package 'RcppEigen' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        C:\Users\aasth\AppData\Local\Temp\RtmpOyylWN\downloaded_packages
[3/3] Installing glmnet...
Installing package into 'C:/Users/aasth/AppData/Local/R/win-library/4.2'
(as 'lib'
         is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/glmnet_4.1-4.zip'
Content type 'application/zip' length 2557243 bytes (2.4 MB)
                   downloaded 2.4 MB
package 'glmnet' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        C:\Users\aasth\AppData\Local\Temp\RtmpOyylWN\downloaded_packages
✓ Package 'glmnet' successfully installed.
```

```
#vector of 100 values
LambdaVector = 10^seq(5, -5, by = -.1)
> #vector of 100 values
> Lambdavector = 10^seq(5, -5, by = -.1)
#Extracting data for minimum value of lambda
y = TrainingDataMcars$mpg
x = model.matrix(mpg~., data = TrainingDataMcars)
> y = TrainingDataMcars$mpg
> x = model.matrix(mpg~., data = TrainingDataMcars)
#Use cross-validation (via cv.glmnet) to determine the minimum value for λ - what do you obtain?
LambdaVectorCV = cv.glmnet(x, y, lambda = LambdaVector, alpha = 0)
OptimalLambda = LambdaVectorCV$lambda.min
c(OptimalLambda)
 > LambdaVectorCV = cv.glmnet(x, y, lambda = LambdaVector, alpha = 0)
 Warning message:
 Option grouped=FALSE enforced in cv.qlmnet, since < 3 observations per fold
 > OptimalLambda = LambdavectorCV$lambda.min
 > c(OptimalLambda)
 [1] 2.511886
Answer- Minimum value of lambda is 2.51186
#Fitting the ridge regression
FitModel = glmnet(x, y, lambda = OptimalLambda, alpha = 0)
#Plot training MSE as a function of \lambda (you may also use log \lambda).
plot(LambdaVectorCV)
  > #Fitting the ridge regression
 > FitModel = glmnet(x, y, lambda = OptimalLambda, alpha = 0)
  > #Plot training MSE as a function of \lambda (you may also use log \lambda).
 > plot(LambdaVectorCV)
```


0

 $Log(\lambda)$

#What is out-of-sample test set performance (using predict), and how do the coefficients differ versus the regular linear model?

5

10

```
coef(FitModel)
```

-10

```
> coef(FitModel)
12 x 1 sparse Matrix of class "dgCMatrix"
                       s0
(Intercept) 20.448198506
(Intercept)
cy1
             -0.287288332
disp
             -0.005342594
hp
             -0.013196073
drat
             1.256065512
             -1.256736164
             0.220717061
qsec
             0.305492479
٧S
             1.685777455
am
             0.245686328
gear
carb
             -0.544637581
```

-5

#Out of Sample test set performance for regular Linear model

LinearModelMcarsPredict = predict(LinearModelMcars1, newdata = TestingDtataMcars, type = "response")

LinearModelMcars1Actual = TestingDtataMcars[, "mpg"]

MeanValueRegModel = mean((LinearModelMcars1Actual - LinearModelMcarsPredict)^2)

c(MeanValueRegModel)

Answer- Out of sample training MSE for Linear Model is 12.65157

Has ridge regression performed shrinkage, variable selection, or both?

#Out of sample test set performance for regression Model

```
RegModel = model.matrix(mpg~., data = TestingDtataMcars)
RegModelPredict = predict(FitModel, s = OptimalLambda, newx = RegModel)
RegModelActual = TestingDtataMcars[, "mpg"]
RegModelMean = mean((RegModelActual - RegModelPredict)^2)
print(RegModelMean)
> RegModel = model.matrix(mpg~., data = TestingDtataMcars)
> RegModelPredict = predict(FitModel, s = OptimalLambda, newx = RegModel)
> RegModelActual = TestingDtataMcars[, "mpg"]
> RegModelMean = mean((RegModelActual - RegModelPredict)^2)
> print(RegModelMean)
[1] 7.165049
Answer- Out of sample training MSE for Linear Model is 12.65157 and the out-of-sample Training MSE after ridge
regression is 7.165049. So, it can be clearly seen that ridge regression has performed shrinkage.
Problem#2
library(ggplot2)
library(caret)
data("swiss")
colnames(swiss)
> library(ggplot2)
> library(caret)
> data("swiss")
  colnames(swiss)
                     "Agriculture"
                                       "Examination"
                                                                          "Catholic"
                                                                                           "Infant.Mortality"
 [1] "Fertility"
                                                        "Education"
#80-20 training-testing split
SampleSwissIndex = createDataPartition(y = swiss\$Fertility, p = 0.8, list = FALSE)
TrainingDataSwiss = swiss[SampleSwissIndex,]
TestingDataSwiss = swiss[-SampleSwissIndex,]
```

```
> #80-20 training-testing split
> SampleSwissIndex = createDataPartition(y = swiss$Fertility, p = 0.8, list = FALSE)
> TrainingDataSwiss = swiss[SampleSwissIndex,]
> TestingDataSwiss = swiss[-SampleSwissIndex,]
> |
```

#fitting a linear model

 $\label{linearModelSwiss1} LinearModelSwiss1 = Im(Fertility^{\sim}.,\,data = TrainingDataSwiss)$

summary(LinearModelSwiss1)

```
> LinearModelSwiss1 = lm(Fertility~., data = TrainingDataSwiss)
> summary(LinearModelSwiss1)
call:
lm(formula = Fertility ~ ., data = TrainingDataSwiss)
Residuals:
            1Q Median 3Q
    Min
                                   Max
-12.9988 -4.3723 0.2933 3.1141 13.9618
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
              62.04634 10.81152 5.739 2.08e-06 ***
(Intercept)
Agriculture
               -0.10866 0.07534 -1.442 0.158643
Examination
               -0.18441 0.25427
                                 -0.725 0.473397
              -0.75650 0.17782 -4.254 0.000163 ***
Education
               Catholic
Infant.Mortality 1.03405 0.36984 2.796 0.008562 **
                         U.U34/3 3.284 U.UU2424 ^^
cathoric
                U.11414
Infant.Mortality 1.03405 0.36984 2.796 0.008562 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.675 on 33 degrees of freedom
Multiple R-squared: 0.7477, Adjusted R-squared: 0.7095
F-statistic: 19.56 on 5 and 33 DF, p-value: 5.072e-09
```

#coefficient values

#What are the associated coefficient values for relevant features?

LinearModelSwiss1\$coefficients

```
> LinearModelSwiss1$coefficients

(Intercept) Agriculture Examination Education Catholic Infant.Mortality

62.0463423 -0.1086631 -0.1844132 -0.7564982 0.1141418 1.0340487

> |
```

library(glmnet)

#vector of 100 values

LambdaVectorSwiss = $10^seq(5, -5, by = -.1)$

#Extracting x and y values from training data

```
y = TrainingDataSwiss$Fertility
```

x = model.matrix(Fertility~., data = TrainingDataSwiss)

```
> #vector of 100 values
> LambdaVectorSwiss = 10^seq(5, -5, by = -.1)
> #Extracting x and y values from training data
> y = TrainingDataSwiss$Fertility
> x = model.matrix(Fertility~., data = TrainingDataSwiss)
> |
```

#Use cross-validation (via cv.glmnet) to determine the minimum value for λ - what do you obtain?

LambdaVectorSwissCV = cv.glmnet(x, y, lambda = LambdaVectorSwiss, alpha = 1)

OptimalLambdaSwiss = LambdaVectorSwissCV\$lambda.min

c(OptimalLambdaSwiss)

```
> LambdaVectorSwissCV = cv.glmnet(x, y, lambda = LambdaVectorSwiss, alpha = 1)
> OptimalLambdaSwiss = LambdaVectorSwissCV$lambda.min
> c(OptimalLambdaSwiss)
[1] 0.6309573
> |
```

Answer- Minimum value of lambda is 0.6309573

#fitting lasso regression

FitModelSwiss = glmnet(x, y, lambda = OptimalLambdaSwiss, alpha = 1)

#Plot training MSE as a function of λ (you may also use log λ).

plot(LambdaVectorSwissCV)

```
> #fitting lasso regression 
> FitModelSwiss = glmnet(x, y, lambda = OptimalLambdaSwiss, alpha = 1) 
> #Plot training MSE as a function of \lambda (you may also use log \lambda). 
> plot(LambdaVectorSwissCV) 
> |
```


#What is out-of-sample test set performance (using predict), and how do the coefficients differ versus the regular linear model?

coef(FitModelSwiss)

#Out of Sample test set performance for regular Linear model

LinearModelSwissPredict = predict(LinearModelSwiss1, newdata = TestingDataSwiss, type = "response")

LinearModelSwissActual = TestingDataSwiss[, "Fertility"]

LinearModelSwissMean = mean((LinearModelSwissActual - LinearModelSwissPredict)^2)

print(LinearModelSwissMean)

```
> LinearModelSwissPredict = predict(LinearModelSwiss1, newdata = TestingDataSwiss, type = "response")
> LinearModelSwissActual = TestingDataSwiss[, "Fertility"]
> LinearModelSwissMean = mean((LinearModelSwissActual - LinearModelSwissPredict)^2)
> print(LinearModelSwissMean)
[1] 89.6039
> |
```

Out of sample training MSE for regular Linear Model = 89.6039

#Has lasso regression performed shrinkage, variable selection, or both?

#Out of sample test set performance for lasso regression model

LassoRegModel = model.matrix(Fertility~., data = TestingDataSwiss)

LassoRegModelPredict = predict(FitModelSwiss, s = OptimalLambdaSwiss, newx = LassoRegModel)

LassoRegModelActual = TestingDataSwiss[, "Fertility"]

LassoRegModelMean = mean((LassoRegModelActual - LassoRegModelPredict)^2)

print(LassoRegModelMean)

```
> LassoRegModel = model.matrix(Fertility~., data = TestingDataSwiss)
> LassoRegModelPredict = predict(FitModelSwiss, s = OptimalLambdaSwiss, newx = LassoRegModel)
> LassoRegModelActual = TestingDataSwiss[, "Fertility"]
> LassoRegModelMean = mean((LassoRegModelActual - LassoRegModelPredict)^2)
> print(LassoRegModelMean)
[1] 114.9967
> |
```

Answer- After performing Lasso regression the out-of-sample MSE has raised from 89.6039 to 114.9967. Lasso regression usually performs variable selection but, in this case, it performs shrinkage as the coefficients have shrunk to some extent.

Problem#3

library(readxl)

library(magrittr)

ConcreteData1 = read_excel("C:\\Users\\aasth\\Downloads\\Concrete_Data.xls")

summary(ConcreteData1)

```
> library(readxl)
 > library(magrittr)
 > ConcreteData1 = read_excel("C:\\Users\\aasth\\Downloads\\Concrete_Data.xls")
 > summary(ConcreteData1)
  Cement (component 1)(kg in a m^3 mixture) Blast Furnace Slag (component 2)(kg in a m^3 mixture)
                                                 Min. : 0.0
1st Qu.: 0.0
          :102.0
  1st Qu.:192.4
  Median :272.9
                                                 Median: 22.0
  Mean
          :281.2
                                                 Mean
                                                  3rd Qu.:142.9
  3rd Qu.:350.0
          :540.0
                                                         :359.4
  Max.
                                                 мах.
  Fly Ash (component 3)(kg in a m^3 mixture) Water (component 4)(kg in a m^3 mixture)
                                                  Min.
                                                          :121.8
  Min.
             0.00
  1st Qu.: 0.00
                                                   1st Qu.:164.9
  Median: 0.00
                                                   Median :185.0
         : 54.19
                                                  Mean
                                                          :181.6
  Mean
  3rd Qu.:118.27
                                                   3rd Qu.:192.0
  Max.
          :200.10
                                                  Max.
                                                          :247.0
  Superplasticizer (component 5)(kg in a m/3 mixture) Coarse Aggregate (component 6)(kg in a m/3 mixture)
         :540.0
                                                    :359.4
  Max.
                                             Max.
  Fly Ash (component 3)(kg in a m^3 mixture) Water
                                                    (component 4)(kg in a m^3 mixture)
  Min.
                                              Min.
  1st Qu.: 0.00
                                              1st Qu.:164.9
  Median: 0.00
                                              Median :185.0
                                                    :181.6
  Mean
                                              Mean
  3rd Qu.:118.27
                                              3rd Qu.:192.0
  Max.
         :200.10
                                              Max.
                                                     :247.0
  Superplasticizer (component 5)(kg in a m^3 mixture) Coarse Aggregate (component 6)(kg in a m^3 mixture)
                                                       Min.
  1st Qu.: 0.000
                                                       1st Qu.: 932.0
  Median : 6.350
                                                       Median : 968.0
  Mean
         : 6.203
                                                       Mean
                                                       3rd Qu.:1029.4
  3rd Qu.:10.160
         :32.200
                                                       мах.
                                                              :1145.0
  Fine Aggregate (component 7)(kg in a m^3 mixture)
                                                       Age (day)
                                                                      Concrete compressive strength(MPa, megapascals)
                                                     Min.
                                                     Min. : 1.00
1st Qu.: 7.00
                                                                      Min.
  Min.
         :594.0
                                                                             : 2.332
  1st Qu.:731.0
                                                                      1st Qu.:23.707
  Median :779.5
                                                     Median : 28.00
                                                                      Median :34.443
  Mean
         :773.6
                                                     Mean : 45.66
                                                                      Mean :35.818
  3rd Qu.:824.0
                                                     3rd Qu.: 56.00
                                                                      3rd Qu.:46.136
                                                           :365.00
                                                                      мах.
colnames(ConcreteData1)
                                                      ra.
                                                             . . . . . . . . .
                                                                      ra.
                                                                              .04. 355
   colnames(ConcreteData1)
1] "Cement (component 1)(kg in a m^3 mixture)"
                                                               "Blast Furnace Slag (component 2)(kg in a m^3 mixture)"
 [3] "Fly Ash (component 3)(kg in a m^3 mixture)"
[5] "Superplasticizer (component 5)(kg in a m^3 mixture)"
[7] "Fine Aggregate (component 7)(kg in a m^3 mixture)"
                                                               "Water (component 4)(kg in a m^3 mixture)
                                                              "Coarse Aggregate (component 6)(kg in a m^3 mixture)"
                                                               "Age (day)
  [9] "Concrete compressive strength(MPa, megapascals)"
library(mgcv)
library(stringr)
names(ConcreteData1)[1] = "cement"
                                            #c1
names(ConcreteData1)[2] = "slag"
                                         #c2
names(ConcreteData1)[3] = "ash"
                                          #c3
names(ConcreteData1)[4] = "water"
                                           #c4
names(ConcreteData1)[5] = "superplasticizer" #c5
names(ConcreteData1)[6] = "coarse"
names(ConcreteData1)[7] = "fine"
names(ConcreteData1)[8] = "age"
names(ConcreteData1)[9] = "ccs"
names(ConcreteData1)
```

```
> library(mgcv)
       concrete compressive strengthora, megapascais,
 > library(stringr)
 > names(ConcreteData1)[1] = "cement"
                                                 #61
> names(ConcreteData1)[2] = "slag"
> names(ConcreteData1)[3] = "ash"
                                                 #02
                                                 #03
> names(ConcreteData1)[4] = "water" #c4
> names(ConcreteData1)[5] = "superplasticizer" #c5
> names(ConcreteData1)[6] = "coarse"
> names(ConcreteData1)[7] = "fine"
                                                 #c6
 > names(ConcreteData1)[8] = "age"
> names(ConcreteData1)[9] = "ccs"
   names(ConcreteData1)
                            "slag"
 [1] "cement" [7] "fine"
                                                  "ash"
                                                                         "water"
                                                                                               "superplasticizer" "coarse"
                            "age
#creating a generalized addictive model as linear model for C1-C6
LinearModelAddict = gam(ccs ~ cement + slag + ash + water + superplasticizer + coarse, data = ConcreteData1)
summary(LinearModelAddict)
> #creating a generalized addictive model as linear model for C1-C6
> LinearModelAddict = gam(ccs ~ cement + slag + ash + water + superplasticizer + coarse, data = ConcreteDatal )
> summary(LinearModelAddict)
Family: gaussian
```

```
Link function: identity
Formula:
ccs \sim cement + slag + ash + water + superplasticizer + coarse
Parametric coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                  5.326997 10.510518
(Intercept)
cement
                 0.108256
                            0.005214
slag
                 0.079357
                            0.006193 12.814
                                              < 2e-16 ***
                                             2.4e-09 ***
ash
                 0.055928
                           0.009287
                                       6.022
                            0.027796 -3.737 0.000197 ***
water
                -0.103871
superplasticizer 0.356016
                           0.110251
                                      3.229 0.001281 **
                 0.008027 0.006272 1.280 0.200940
coarse
```

```
coarse 0.008027 0.006272 1.280 0.200940

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

R-sq.(adj) = 0.445 Deviance explained = 44.9%

GCV = 155.83 Scale est. = 154.77 n = 1030
```

Answer- The value of R2 here is 0.445

#creating generalized addictive model as linear model for all values

LinearModelAddict1 <- gam(ccs ~ cement + slag + ash + water + superplasticizer + coarse + fine +

age, data = ConcreteData1)

summary(LinearModelAddict1)

```
Parametric coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                  -23.163756 26.588421 -0.871 0.383851 0.119785 0.008489 14.110 < 2e-16 *** 0.103847 0.010136 10.245 < 2e-16 ***
  (Intercept)
  cement
  slag
                                            6.988 5.03e-12 ***
                     0.087943
                               0.012585
  ash
                    water
                                           3.110 0.001921 **
  superplasticizer 0.290687
                                0.093460
                     0.018030
                               0.009394 1.919 0.055227 .
  coarse
                     fine
  age
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 R-sq.(adj) = 0.612
                        Deviance explained = 61.5%
 GCV = 109.11 Scale est. = 108.16
                                       n = 1030
Answer- In this the R2 value for linear model is 0.612 respectively.
#creating a generalized addictive model as non linear for C1-C6
NonLinearModelAddict = gam(ccs ~ s(cement)+ s(slag)+ s(water)+ s(ash)+
s(superplasticizer)+ s(coarse), data = ConcreteData1)
summary(NonLinearModelAddict)
GCV = 109.11 Scale est. = 108.16
                                 n = 1030
> NonLinearModelAddict = gam(ccs ~ s(cement)+ s(slag)+ s(water)+ s(ash)+
+ s(superplasticizer)+ s(coarse), data = ConcreteData1)
> summary(NonLinearModelAddict)
Family: gaussian
Link function: identity
Formula:
ccs ~ s(cement) + s(slag) + s(water) + s(ash) + s(superplasticizer) +
    s(coarse)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
                               100.4 <2e-16 ***
(Intercept) 35.8178
                       0.3566
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Approximate significance of smooth terms:
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.8178
                        0.3566 100.4 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                      edf Ref.df
                                     F p-value
s(cement)
                    4.464
                          5.513 69.530 < 2e-16 ***
s(slag)
                   2.088 2.578 48.091 < 2e-16 ***
                   8.567 8.936 13.504 < 2e-16 ***
s(water)
                    5.332 6.404 1.784 0.101
7.133 8.143 5.498 1.22e-06 ***
s(ash)
s(superplasticizer) 7.133
                   1.000 1.000 0.018
s(coarse)
                                          0.892
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.531 Deviance explained = 54.4%
GCV = 134.84 Scale est. = 130.96
>
```

Answer- R2 value for non-linear model is 0.531

#Creating a generalised addictive model as non-linear for all values

```
NonLinearModelAddict2 <- gam(ccs ~ s(cement) + s(slag) + s(ash) + s(water) + s(superplasticizer) +
s(coarse) + s(fine) + s(age), data = ConcreteData1)
summary(NonLinearModelAddict2)
> #Creating a generalised addictive model as non- linear for all values
 > NonLinearModelAddict2 <- gam(ccs ~ s(cement) + s(slag) + s(ash) + s(water) + s(superplasticizer) +
 + s(coarse) + s(fine) + s(age), data = ConcreteData1)
 > summary(NonLinearModelAddict2)
 Family: gaussian
 Link function: identity
 Formula:
 ccs ~ s(cement) + s(slag) + s(ash) + s(water) + s(superplasticizer) +
     s(coarse) + s(fine) + s(age)
 Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                               213.9 <2e-16 ***
 (Intercept) 35.8178
                        0.1675
              Estimate Std. Error t value Pr(>|t|)
                                              <2e-16 ***
 (Intercept) 35.8178
                            0.1675
                                       213.9
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Approximate significance of smooth terms:
                          edf Ref.df
                                            F
                                                p-value
 s(cement)
                        8.223
                               8.830 48.690 < 2e-16 ***
                                      25.041
 s(slag)
                        8.114
                              8.757
                                               < 2e-16 ***
 s(ash)
                        8.256
                               8.817
                                        9.354
                                               < 2e-16 ***
                               8.973 26.116 < 2e-16 ***
 s(water)
                        8.742
 s(superplasticizer) 8.039
                               8.743 10.845
                                                < 2e-16 ***
 s(coarse)
                       7.904
                               8.673
                                        3.403 0.000593 ***
                                      18.435
                                               < 2e-16 ***
 s(fine)
                       8.618
                              8.951
 s(age)
                       8.559 8.900 365.119 < 2e-16 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 R-sq.(adj) = 0.896
                        Deviance explained = 90.3%
 GCV = 30.914 Scale est. = 28.89
                                         n = 1030
Answer- In this R2 is 0.896 respectively.
# Visualize the regression using the visreg package, showing the fit as a function of each predictor with confidence
intervals
library(visreg)
```

visreg(NonLinearModelAddict)

visreg(NonLinearModelAddict2)

```
> library(visreg)
> visreg(NonLinearModelAddict)
Hit <Return> to see next plot:
>
```


visreg(NonLinearModelAddict2)

```
> visreg(NonLinearModelAddict2)
Hit <Return> to see next plot:
Yet Company to see next plot:
Hit <Return> to see next plot:
Hit <Return> to see next plot:
```


Submitted By: -Aastha Dhir

CWID-A20468022

adhir2@hawk.iit.edu