$\mathsf{Module}\ \mathsf{D}$

- Section D.1
- Section D.1
 Section D.2
- Section D.3
- Section D.4
- Section D.
- Section D 6

Module D: Discontinuous functions in ODEs

Module D

Section D.1

Section D.1 Section D.2

Section D.3

Section D.4

Section D.

How can we solve and apply ODEs involving functions that are not continuous?

Module D

Section D.3 Section D.3 Section D.4

Section |

At the end of this module, students will be able to...

- D1. Laplace Transform. ...compute the Laplace transform of a function
- **D2. Discontinuous ODEs.** ...solve initial value problems for ODEs with discontinuous coefficients
- D3. Modeling non-smooth motion. ...model the motion of an object undergoing discontinuous acceleration
- **D4. Modeling non-smooth oscillators.** ...model mechanical oscillators undergoing discontinuous acceleration

M. J. L. D

Module D

- Section D
- Section D.
- Section I Section I

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- State the definition of a spanning set, and determine if a set of Euclidean vectors spans \mathbb{R}^n **V4**.
- State the definition of linear independence, and determine if a set of Euclidean vectors is linearly dependent or independent **S1**.
- State the definition of a basis, and determine if a set of Euclidean vectors is a basis S2,S3.
- Find a basis of the solution space to a homogeneous system of linear equations
 \$6.

Module D

Section D.1 Section D.2

Section D.3 Section D.4

Section D. Section D.

The following resources will help you prepare for this module.

• TODO

Module F

Section D.1

Section D.1

Section D.

Section D.4

Section D.6

Module D Section 1

. . . .

viouule D

Section D.1 Section D.2

Section D.3

Section D.4

Section D.5

Section

Activity D.1.1 (\sim 10 min)

A 1 kg mass is hung from a spring with spring constant $k=1\ N/m$. The mass is at rest, when it is hit with a hammer imparting 3J of energy.

Module

Section D.1

Section D.1 Section D.2

Section D.3

C--ti-- D.F

Section I

Activity D.1.1 (\sim 10 min)

A 1 kg mass is hung from a spring with spring constant $k=1~\mathrm{N/m}$. The mass is at rest, when it is hit with a hammer imparting 3J of energy.

Part 1: Draw a graph of the kinetic energy in the system with respect to time.

Section D.

Section D.4

Section I

Activity D.1.1 (\sim 10 min)

A 1 kg mass is hung from a spring with spring constant $k=1\ N/m$. The mass is at rest, when it is hit with a hammer imparting 3J of energy.

Part 1: Draw a graph of the kinetic energy in the system with respect to time.

Part 2: Write an initial value problem modelling this system.

Definition D.1.2

The **Dirac delta distribution** $\delta(t)$ models the application of instantaneous force. **It is not a function**, but makes sense in definite integrals:

If a, b is any open interval containing 0, then

$$\int_a^b f(t)\delta(t)dt = f(0)$$

for any function f(t) that is continuous around 0.

Vlodule

Section D.1 Section D.2

Section D.3

Section D.4

Section D.

Section

Definition D.1.3

The **unit impulse function** u(t) is given by

$$u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0. \end{cases}$$

Note that $u(s) = \int_{-\infty}^{s} \delta(t) dt$; in this fuzzy sense, δ is the derivative of u(t) (which is not differentiable everywhere!)

Section D.1 Section D.2

Section D.3

Section D.4

Section D

Section

Activity D.1.4 (\sim 10 min)

Try to solve the IVP

$$y'' + y = \delta(t)$$

Where does our existing technique break down?

Observation D.1.5

To get around this difficulty, we will apply an **integral transform** called the **Laplace Transform** to our ODE.

- We want to use a definite integral to handle things like δ , which we can only understand via a definite integral.
- Since we are focused on IVPs, we can integrate starting at 0, but need to go to ∞
- But now we need to worry about convergence—thus we will multiply by a suitable function that decays fast enough to make most functions converge.

Section D.1

Section D.2 Section D.3

Activity D.1.6 (\sim 5 min)

Arrange the following functions in order of how fast they decay to zero in the limit at infinity:

- (A) x^{-n} for a positive integer n
- (B) e^{-ax} for a positive integer a
- (C) $\frac{1}{\ln(ax)}$ for a positive integer a
- (D) $\frac{1}{\ln(x^n)}$ for a positive integer n

Definition D.1.7

The **Laplace Transform** of a function f(t) is the function

$$F(s) = \int_0^\infty e^{-st} f(t) dt.$$

We will also use the notation $\mathcal{L}(f) = F$.

Note that the Laplace transform turns a function of t into a function of s.

Moreover, \mathcal{L} is linear: $\mathcal{L}(f+g)=\mathcal{L}(f)+\mathcal{L}(g)$, and $\mathcal{L}(cf)=c\mathcal{L}(f)$ for constants c.

Madula D

Module D Section D.1

Section D.2 Section D.3

Section D.

Section D.4

Section D

Activity D.

Recall that

Activity D.1.8 (
$$\sim$$
5 min)

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Section D.1

Section D.2 Section D.3

Section D.4

Activity D.1.8 (\sim 5 min) Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(\delta(t))$

4. J.J. D

Module D Section D.1

Section D.2

Activity D.1.8 (\sim 5 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(\delta(t))$

Part 2: If a>0, compute $\mathcal{L}(\delta(t-a))$

Module [

Section D.1

Section D.2 Section D.3

Section D.3 Section D.4

Section D.

Section

Activity D.1.9 (\sim 5 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Module E

Section D.1 Section D.2

Section D.3

Section D.4

Section D.

Section

Activity D.1.9 (\sim 5 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(e^t)$

Module D

Module D Section D.1

Section D.2 Section D.3

Section D.3 Section D.4

Section D.

Section I

Activity D.1.9 (\sim 5 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(e^t)$

Part 2: If a > 0, compute $\mathcal{L}(e^{at})$

Section D.1 Section D.2

Section D.3

Section D.4

Activity D.1.10 (\sim 15 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Section D.3 Section D.4

Activity D.1.10 (\sim 15 min) Section D.1 Section D.2

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(1)$

Section D.1 Section D.2

Section D.3

Section D.4

Activity D.1.10 (\sim 15 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(1)$

Part 2: Compute $\mathcal{L}(t)$

Module D

Section D.3 Section D.4

Section D.1 Activity D.1.10 (\sim 15 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(1)$

Part 2: Compute $\mathcal{L}(t)$

Part 3: Compute $\mathcal{L}(t^2)$

Section D.4

Section D.1

Activity D.1.10 (
$$\sim$$
15 min)

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

- Part 1: Compute $\mathcal{L}(1)$
- Part 2: Compute $\mathcal{L}(t)$
- Part 3: Compute $\mathcal{L}(t^2)$
- Part 4: Compute $\mathcal{L}(t^3)$

Section D.1

Section D.2 Section D.3

Section D.4

Activity D.1.10 (\sim 15 min)

Recall that

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(1)$

Part 2: Compute $\mathcal{L}(t)$

Part 3: Compute $\mathcal{L}(t^2)$

Part 4: Compute $\mathcal{L}(t^3)$

Part 5: Compute $\mathcal{L}(t^4)$

M			

Section D 1

Section D.2

Section D.

Section D.

Section D.6

Module D Section 2

Observation D.2.1

Last week, we encountered the **Laplace Transform** of a function f(t):

$$F(s) = \int_0^\infty e^{-st} f(t) dt.$$

We also use the notation $\mathcal{L}(f) = F$.

Recall that the Laplace transform turns a function of t into a function of s.

Moreover, \mathcal{L} is linear: $\mathcal{L}(f+g)=\mathcal{L}(f)+\mathcal{L}(g)$, and $\mathcal{L}(cf)=c\mathcal{L}(f)$ for constants c.

Observation D.2.2

We computed a few Laplace Transforms:

•
$$\mathcal{L}(\delta(t-a)) = e^{-as}$$
 for any $a > 0$.

•
$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$

•
$$\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$$
 for any positive integer n .

•
$$\mathcal{L}(1) = \frac{1}{s}$$

Module D

Section D.1

Section D.2 Section D.3

Section D.3 Section D.4

Section D.

Section

Activity D.2.3 (\sim 10 min)

Recall

$$\mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt.$$

Section D.1

Section D.2 Section D.3

Section D.4

Activity D.2.3 (\sim 10 min)

Recall

$$\mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(\sin(t))$.

Activity D.2.3 (\sim 10 min)

Recall

$$\mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Compute $\mathcal{L}(\sin(t))$.

Part 2: Compute $\mathcal{L}(\cos(t))$.

So now our list of Laplace transforms is:

- $\mathcal{L}(\delta(t-a)) = e^{-as}$ for any a > 0.
- $\mathcal{L}(e^{at}) = \frac{1}{\epsilon a}$
- $\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$ for any positive integer n.
- $\mathcal{L}(1) = \frac{1}{6}$
- $\mathcal{L}(\sin(t)) = \frac{1}{s^2+1}$
- $\mathcal{L}(\cos(t)) = \frac{s}{s^2+1}$

Activity D.2.5 (\sim 10 min)

Suppose we want to apply the Laplace transform to an IVP: we will need to know how $\mathcal{L}(y')$ is related to $\mathcal{L}(y)$. Recall

$$\mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt.$$

Module D
Section D.1
Section D.2
Section D.3
Section D.4

Activity D.2.5 (\sim 10 min)

Suppose we want to apply the Laplace transform to an IVP: we will need to know how $\mathcal{L}(y')$ is related to $\mathcal{L}(y)$. Recall

$$\mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Use integration by parts to relate $\mathcal{L}(y')$ to $\mathcal{L}(y)$.

Suppose we want to apply the Laplace transform to an IVP: we will need to know how $\mathcal{L}(y')$ is related to $\mathcal{L}(y)$. Recall

$$\mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt.$$

Part 1: Use integration by parts to relate $\mathcal{L}(y')$ to $\mathcal{L}(y)$.

Part 2: Use integration by parts (and the fact that $\mathcal{L}(y') = s\mathcal{L}(y) - y(0)$) to relate $\mathcal{L}(v'')$ to $\mathcal{L}(v)$.

Observation D.2.6

We have

$$\mathcal{L}(y') = sL(y) - y(0)$$

 $\mathcal{L}(y'') = s^2L(y) - sy(0) - y'(0)$

This allows us to easily rewrite expressions like ay'' + by' + cy in terms of $\mathcal{L}(y)$.

Section D.2 Section D.3

Section D.4

Activity D.2.7 (\sim 10 min)

Consider the simple IVP

$$y'' + y = \delta(t),$$
 $y(0) = 0, y'(0) = 0.$

Activity D.2.7 (\sim 10 min)

Consider the simple IVP

$$y'' + y = \delta(t),$$
 $y(0) = 0, y'(0) = 0.$

Part 1: Apply the Laplace transform to this IVP, and simplify. Solve for $\mathcal{L}(y)$.

Activity D.2.7 (\sim 10 min)

Consider the simple IVP

$$y'' + y = \delta(t),$$
 $y(0) = 0, y'(0) = 0.$

Part 1: Apply the Laplace transform to this IVP, and simplify. Solve for $\mathcal{L}(y)$.

Part 2: Find a function y satisfying
$$\mathcal{L}(y) = \frac{1}{s^2+1}$$
. We write $y = \mathcal{L}^{-1}\left(\frac{1}{s^2+1}\right)$.

Section D.4

Activity D.2.8 (\sim 15 min) Solve the IVP

$$y'' + y = \delta(t),$$
 $y(0) = 1, y'(0) = 2.$

Module F

C. ... D.1

Section D.1 Section D.2

Section D.3

Section D.4

Section D.5

Section D.6

Section D.1 Section D.2 Section D.3 Section D.4 Section D.5

Observation D.3.1

To solve an IVP using Laplace transforms:

- 1) Apply \mathcal{L} to the ODE. Use the initial condition(s) in computing $\mathcal{L}(y')$, $\mathcal{L}(y'')$, etc.
- 2) Solve for $\mathcal{L}(y)$.
- 3) Take the inverse transform (using a table) to find the solution y.

Section D.1

Section D.2 Section D.3

Section D.4

Activity D.3.2 (\sim 5 min)

Compute
$$\mathcal{L}^{-1}\left(rac{e^{-10s}}{s}
ight)$$

- (a) u(t-10)
- (b) $\delta(t-10)$
- (c) $u(t-10)e^{-t}$
- (d) $\delta(t-10)e^{-t}$

Section D.1 Section D.2

Section D.3

Section D.4

Activity D.3.3 (\sim 5 min)

Compute $\mathcal{L}^{-1}\left(\frac{1}{s+5}\right)$

- (a) u(t-5)
- (b) $\delta(t-5)$

Section D.1

Section D.2 Section D.3

Section D.4

Activity D.3.4 (\sim 5 min)

Compute
$$\mathcal{L}^{-1}\left(rac{e^{-10s}}{s+5}
ight)$$

- (a) u(t-10)
- (b) $\delta(t-10)$
- (c) $u(t-10)e^{-5(t-10)}$
- (d) $\delta(t-10)e^{-5t(t-10)}$

Section D.1 Section D.2

Section D.3

Section D.4

Activity D.3.5 (\sim 30 min)

A tiny water droplet in a cloud with a mass of 4×10^{-12} kg and a terminal velocity of 27 $\rm cm/s$ is at rest. It is blown upward by an updraft applying a constant force of 10 N for 10 s.

Module D
Section D.1
Section D.2
Section D.3
Section D.4

Activity D.3.5 (\sim 30 min)

A tiny water droplet in a cloud with a mass of $4\times10^{-12}~\mathrm{kg}$ and a terminal velocity of $27~\mathrm{cm/s}$ is at rest. It is blown upward by an updraft applying a constant force of $10~\mathrm{N}$ for $10~\mathrm{s}$.

Part 1: Write down an IVP modelling the velocity of the water droplet scenario.

Section D.1 Section D.2 Section D.3 Section D.4 Section D.5

Activity D.3.5 (\sim 30 min)

A tiny water droplet in a cloud with a mass of $4\times10^{-12}~\mathrm{kg}$ and a terminal velocity of $27~\mathrm{cm/s}$ is at rest. It is blown upward by an updraft applying a constant force of $10~\mathrm{N}$ for $10~\mathrm{s}$.

Part 1: Write down an IVP modelling the velocity of the water droplet scenario.

Part 2: How fast (and in what direction) will the water droplet be travelling after 10.75 s?

Module

Section D.1

Section D.2

Section [

Section D.4

Section D.6

Module D

Section D 1

Section D.2

Section D.3

Section D.

Section D.6

Module D

Section D.1

Section D.1

Section D.

Section D.

ection D.

Section D.6