S Exerciţii rezolvate

* Resulta ca lun 2° = (2*)2 - Conditia de consistenta este:

- Condition de connecteur este: [94] [74] = ryto] rytz] *

Exerciții rezolvate

C)
$$\mathcal{M}_{\Lambda}$$
: $\nabla^{2}_{N}(\Omega) = \chi^{2} \left[\chi_{N}^{N-1}(\Omega) \left(M-1 \right) \right]^{-1} = \frac{\chi^{2}}{(N-1)^{2} \chi_{N}^{N-1}(\Omega)}$

$$\mathcal{M}_{Z}: E \left[\chi_{N}^{N}(\Omega) \left(\hat{\theta}_{N} - \theta^{*} \right) \left(\hat{\theta}_{N} - \theta^{*} \right) \right]^{2} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega) \left(M-1 \right) \left(\chi_{N}^{N}(\Omega) \right) \right]^{-1} = \chi^{2} \left[\chi_{N}^{N}(\Omega$$

$$\nabla_{N}^{z}[z] = \frac{\chi^{z}}{N} \frac{g_{yy}^{N}[0]}{(g_{yy}^{N}[0])^{2} - (g_{yy}^{N}[0])^{2}}$$

$$O((ryto])^{2}(ryto]^{2}(=)$$

 $(ryto]^{2}(ryto]^{2}(=)$
 $(ryto]^{2}(ryto]^{2}(-ryto]^{2}(=)$
 $(ryto]^{2}(-ryto]^{2}(-ryto]^{2}$

S Exerciţii rezolvate

Exercițiul 4.3

Deduceți expresiile estimațiilor oferite de MVI pentru un model ARX[1,1] și un vector al instrumentelor de tip nefiltrat.

Studiați consistența lor și precizați un set de condiții suficiente pentru verificarea acestei proprietăți.

Determinați condițiile generale de consistență în cazul în care nici intrarea nici zgomotul nu sunt neapărat albe.

Soluție

· Mvi:
$$\hat{\theta} = \begin{bmatrix} 1 & N \\ N & N \end{bmatrix}^{-1} \begin{bmatrix} 1 & N \\ N & N \end{bmatrix}$$
 much:

$$\widehat{\Theta} = \begin{bmatrix} \widehat{\alpha} \\ \widehat{\beta} \end{bmatrix} = \begin{bmatrix} -\frac{1}{N} \sum_{n=1}^{N} u \cdot cn - 1 \end{bmatrix} \underbrace{1 \sum_{n=1}^{N} u^{2} \cdot cn - 1}_{N=1}$$

$$\widehat{\Theta} = \begin{bmatrix} \widehat{\alpha} \\ \widehat{\beta} \end{bmatrix} = \begin{bmatrix} -\frac{1}{N} \sum_{n=1}^{N} u \cdot cn - 1 \end{bmatrix} \underbrace{1 \sum_{n=1}^{N} u^{2} \cdot cn - 1}_{N=1}$$

$$\underbrace{-\frac{1}{N} \sum_{n=1}^{N} u \cdot cn - 2 \end{bmatrix} \underbrace{1 \sum_{n=1}^{N} u \cdot cn - 1}_{N=1} \underbrace{$$

5 <u>Exerciții rezolvate</u>

· Cu notatule unoscute, resultà:

$$\hat{\theta} = \begin{bmatrix} \hat{\alpha} \\ \hat{b} \end{bmatrix} \cong \begin{bmatrix} -Ruy [0] & Ru [0] \end{bmatrix}^{-1} \begin{bmatrix} Ruy [0] \\ -Ruy [0] \end{bmatrix} = \begin{bmatrix} Ruy [0] & Ruy [0] \\ -Ruy [0] & Ruy [0] \end{bmatrix}$$

u DN = mito] ryuto] - mito] ryuto] + 0 (daca se

$$\hat{a} = \frac{r_{11}^{11} (1) r_{11}^{11} (1) - r_{11}^{11} (0) r_{11}^{11} (1)}{r_{11}^{11} (0)} - r_{11}^{11} (1) r_{11}^{11} (1)} - r_{11}^{11} (1) r_{11}^{11} (1)}$$

$$\hat{b} = \frac{(r_{11}^{11} (1))^{2} - r_{11}^{11} (0) r_{11}^{11} (1)}{r_{11}^{11} (0)} - r_{11}^{11} (1) r_{11}^{11} (1)} - r_{11}^{11} (1) r_{11}^{11} (1)}{r_{11}^{11} (1)}$$

