Organometallic compounds

- Compounds that contain metal-carbon bonds, R-M: R= alkyl, aryl gr; M= Mg, Li, Na, Cu, Zn etc.
- Provide nucleophilic carbon atom, utilize for new C-C bond formation
- Can be treated as R-M = R⁻M⁺
- reagent can be formulated as RMgX or R2Mg.
- Grignard

Laboratory preparation of Grignard reagent

Br + Mg
$$\xrightarrow{\text{ether}}$$
 MgBr
Br + Mg $\xrightarrow{\text{ether}}$ MgBr
 $R-X$ + Mg $\xrightarrow{\text{ether}}$ R-MgX $\xrightarrow{\text{O}_2 \& H_2O}$ free condition cat. I_2 and 1,2-dibromoethane $R=1^0, 2^0, 3^0, \text{ aryl}$

Structu

re

Mechanis

m:

$$R-X + Mg \longrightarrow R-X^{-} + Mg^{+}$$

$$R-X^{-} \longrightarrow R^{+} + \chi^{-}$$

$$R^{+} + Mg^{+} \longrightarrow RMg^{+}$$

$$RMg^{+} + \chi^{-} \longrightarrow RMgX$$

Reactivi ty

Reactivity

l>Br>Cl>>F Low bond energy toward iodide

Alkyl halide>Vinyl or aryl halides

Reactive Groups

Reactive functional group: aldehyde, ketone, ester, amides, halides, nitrile

Acidic

hydrogen>>aldehyde>keto>ester>nitrile>a mide

Temperature dependent Grignard preparation

Basicity vs Nucleophilicity

Basicity vs Nucleophilicity of organometalic reagent

Common Reactions

Usefull reagents

triethyl orthoformate/ triethoxymethane: protected ethylformate

$$N$$
 + N MgCl N Keto

Secondary amine preparation

Abnormal behaviour/side reaction

Q. Between i and ii which one favor? explain.

Intramolecular reaction

SN2-type reaction

1,2-vs1,4-addition

Hindered group at 2-position allow to addition at 4-position

Temperature control reaction

Sensitive Grignard reagent preparation

Halogen-Magnesium exchange reaction

$$R = CN, NO_2, CO_2Et$$

$$X = Br, I$$

$$R = CN, NO_2, CO_2Et$$

$$X = Br, I$$

$$R = CN, NO_2, CO_2Et$$

$$R = CN, NO_2, CO_2Et$$

Magnesium enolate formation

O OMgBr

$$X = Br/VCI$$

CI + (CH₃)₂CHMgBr

-30°C

CI

MgBr

Compedition between aryl iodide and benzyl chloride if use Mg metal

Proble

m

? PhCHO (2 eq) PhMgBr PhCHO (1 eq) ?

PhOHO CO₂Et PhMgBr ?

PhMgBr ?

PhMgBr ?

PhMgBr ?

$$CH_3CH=CHCOR + CH_3MgBr \rightarrow ? [R = Et, i-Pr, t-Bu]$$

?

$$C_2H_2$$
?

 C_2H_2
?

 C_2H_2
?

 C_3H_2
PhCH₂CN
?

 C_3H_2
?

 C_3H_2
PhCH₂CN
?

Organolithium compounds

Laboratory preparation of Li reagent

$$RX + 2Li \xrightarrow{0^{0}C} R-Li + LiX$$

$$RI>RBr>RCI$$

$$MeI + 2Li \xrightarrow{0^{0}C} Me-Li + LiX$$

$$RI>RBr>RCI$$

$$Me-Li + LiX$$

$$RI>RBr>RCI$$

$$R-Li + LiX$$

hydrocarbon solvent: hexamers

in ether : tetramers

chelating solvent: monomer

TMEDA, HMPA

Halogen-Metal exchange or metallation or Lithiation

1,2-addition vs 1,4-addition

Highly reactive RLi usually react 1,2-addition but addition of HMPA favor 1,4-addition

Snthesis of ketone from carboxylic acid

RLi
$$CO2$$
 $R o O-Li$ RLi H_3O+ $R o O$

$$CH_3CO_2H o CH_3 o C$$

Amide to nitrile

Copper reagent

Use of organocopper reagents offers a very efficient method for coupling of two different carbon moieties. Since copper is less electropositive than lithium and magnesium, the C-Cu bond is less polarized than the C-Li and C-Mg bonds.

Organocopper complexes (RCu)

Lower-order cuprates (R, CuLi, also known as Gilmanreagents

Lower-order cyanocuprates (RCu(CN)Li)

Higher-order cyanocuprates (R₂Cu(CN)Li₂)

The organocopper reagents are more selective and can be acylated with acid chlorides without concomitant attack on ketones, alkyl halides, and esters Relative reactivity: RCOCl > RCHO > tosylates, iodides > epoxides > bromides >> ketones > esters > nitriles

Preparation

Step 1: formation of organolithium

Step 2: formation of organocuprate (Gilman reagent)

An alternative way of writing the same thing...

SN2 & SN2' type reaction

Same side attack of Nu to LG

$$\begin{array}{c} H \\ C = C \\ CH_3 \end{array} + \underbrace{(CH_3CH_2)_2CuLi} \quad \xrightarrow{\text{ether}} \quad \begin{array}{c} H \\ H_3C \end{array} C = C \\ CH_3 \\ + CH_3Cu \\ + CH$$

- When a Gilman reagent reacts with an alkyl halide (except F⁻) one of the alkyl groups replaces the halide
- Alkyl groups can substitute halogens attached to alkene or aromatic C with Gilman reagent; impossible with S_N1 or S_N2 reaction
- Mechanism unknown, probably radical

Only 1,4-addition

Summary: Gilman reagents (organocuprates) contrast with Grignard (and organolithium reagents) in two important ways:

1) Gilman reagents perform "conjugate addition" to α , β unsaturated ketones

2) Gilman reagents are effective nucleophiles for S_N2 reactions

1,4-di keto synthesis

Organo zinc reagent

Preparation

Reaction

Reformatsky reaction

Blaise reaction

$$R_1-CN \xrightarrow{ \begin{array}{c} Zn \ (1.5 \ equiv) \\ BrCH_2CO_2Et \\ \hline (1.5 \ equiv) \\ \hline THF, \ reflux, \ 1 \ h \\ >98\% \ conv. \end{array}} \begin{array}{c} Br \\ Zn \\ HN & O \\ \hline R_1 & OEt \\ \end{array} \begin{array}{c} NH_2 \ O \\ \hline R_1 & OEt \\ \end{array}$$

4-amino unsaturated ester

LDA preparation & use

Selective mono-lithiation at low temperature in presence of heavy atom

Regioselectivity: Coordination effect of CO2⁻ group less stable anion, more reactive attack fast

CO₂H

Alkynyl lithium reagents undergo exo-cyclisation to cycloalkylidine isomer

Br
$$(CH_2)_3CH_3$$
 $(CH_2)_3CH_3$ Exo-product SP^2 vs SP^3 anion stability

Solvent dependent lithiation at different temperature

At low T, for simple hydrocarbon halide with no functional gr, highly insoluble in THF but in benzene it is soluble at rt or higher T

Coordinating solvent like THF required low T BUT non coordinating solvent benzene, can be done in high T

26

$$\begin{array}{c} & & & \\$$

L = Large gr or coordinating gr

Prepare using suitable Grignard reagent.

Prepare from iodobenzene

CI
$$\frac{\text{a. } \text{Et}_2\text{CuLi}}{\text{Et}_2\text{O}, -78 \, ^{\circ}\text{C}}$$

$$\text{b. } \text{NH}_4\text{CI, H}_2\text{O}$$

$$\frac{\text{1. BuLi, ether, } -90 \, ^{\circ}\text{C}}{\text{2. MnI}_2, -50 \, ^{\circ}\text{C}}$$

$$\frac{\text{CI}}{\text{2. mod } -20 \, ^{\circ}\text{C to r.t.}}$$

CI

70%

OOO Mg, THF
DIBAH (1 mol%)
EtBr (5 mol%)

$$<20$$
 °C, high yields

MgBr

(1)

MgBr

(2)

(3)