Lossless compression and cumulative log loss

Yoav Freund

January 15, 2018

Outline Lossless data compression

Outline Lossless data compression The guessing game

Outline Lossless data compression The guessing game Arithmetic coding

Outline Lossless data compression The guessing game Arithmetic coding The performance of arithmetic coding

Lossless data compression
The guessing game
Arithmetic coding
The performance of arithmetic coding
Source entropy

Time
Lossless data compression
The guessing game
Arithmetic coding
The performance of arithmetic coding
Source entropy
Other properties of log loss
Unbiased prediction
Other examples for using log loss

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

The online Bayes Algorithm

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

The online Bayes Algorithm

The performance bound

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

The online Bayes Algorithm

The performance bound

Comparison with Bayesian Statistics

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

The online Bayes Algorithm

The performance bound

Comparison with Bayesian Statistics

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

The online Bayes Algorithm

The performance bound

Comparison with Bayesian Statistics

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

The online Bayes Algorithm

The performance bound

Comparison with Bayesian Statistics

Lossless data compression

The guessing game

Arithmetic coding

The performance of arithmetic coding

Source entropy

Other properties of log loss

Unbiased prediction

Other examples for using log loss

universal coding

Two part codes

Combining expert advice for cumulative log loss

Combining experts in the log loss framework

The online Bayes Algorithm

The performance bound

Comparison with Bayesian Statistics

Example: "There are no people like show people"

Example: "There are no people like show people"

Example: "There are no people like show people"

```
\stackrel{\text{encode}}{\rightarrow} x \in \{0,1\}^n
```

- ► **Example:** "There are no people like show people" $\xrightarrow{\text{encode}} x \in \{0, 1\}^n$ $\xrightarrow{\text{decode}}$ "there are no people like show people"
- Lossless: Message reconstructed perfectly.

Example: "There are no people like show people" $\overset{\text{encode}}{\rightarrow} x \in \{0,1\}^n$

- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.

► **Example:** "There are no people like show people" $\xrightarrow{\text{encode}} x \in \{0, 1\}^n$

- decode "there are no people like show people"
- ► Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?

- ► **Example:** "There are no people like show people" $\xrightarrow{\text{encode}} x \in \{0, 1\}^n$ $\xrightarrow{\text{decode}}$ "there are no people like show people"
- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?
- ▶ Basic idea: Use short codes for common messages.

- ► **Example:** "There are no people like show people" $\xrightarrow{\text{encode}} x \in \{0, 1\}^n$ $\xrightarrow{\text{decode}}$ "there are no people like show people"
- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?
- Basic idea: Use short codes for common messages.
- Stream compression:

- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?
- Basic idea: Use short codes for common messages.
- Stream compression:
 - Message revealed one character at a time.

► **Example:** "There are no people like show people" $\xrightarrow{\text{encode}} x \in \{0, 1\}^n$

- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?
- ▶ Basic idea: Use short codes for common messages.
- Stream compression:
 - Message revealed one character at a time.
 - Code generated as message is revealed.

► **Example:** "There are no people like show people" $\xrightarrow{\text{encode}} x \in \{0, 1\}^n$

- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?
- Basic idea: Use short codes for common messages.
- Stream compression:
 - Message revealed one character at a time.
 - Code generated as message is revealed.
 - Decoded message is constructed gradually.

► **Example:** "There are no people like show people" $\stackrel{\text{encode}}{\rightarrow} x \in \{0, 1\}^n$

- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?
- Basic idea: Use short codes for common messages.
- Stream compression:
 - Message revealed one character at a time.
 - Code generated as message is revealed.
 - Decoded message is constructed gradually.
- Easier than block codes when processing long messages.

► **Example:** "There are no people like show people" $\stackrel{\text{encode}}{\rightarrow} x \in \{0, 1\}^n$

- Lossless: Message reconstructed perfectly.
- ▶ **Goal:** minimize expected length E(n) of coded message.
- ► Can we do better than $\lceil \log_2(26) \rceil = 5$ bits per character?
- ▶ Basic idea: Use short codes for common messages.
- Stream compression:
 - Message revealed one character at a time.
 - Code generated as message is revealed.
 - Decoded message is constructed gradually.
- Easier than block codes when processing long messages.
- A natural way for describing a distribution.

Message reveraled one character at a time

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

t

6

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example
- t h
- .
- 6 2

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example
- t h e
- 6 2 1

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example
- t h e r 6 2 1 2

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

```
t h e r e
6 2 1 2 1
```

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

```
t h e r e
6 2 1 2 1 1
```

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

```
there a
6212115
```

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example
- t h e r e a r e n o p e 6 2 1 2 1 1 5 2 1 1 4 1 1 5 3
 - Code = sequence of number of mistakes.

- Message reveraled one character at a time
- An algorithm predicts the next character from the revealed part of the message.
- If algorithm wrong ask for next guess.
- Example
- t h e r e a r e n o p e 6 2 1 2 1 1 5 2 1 1 4 1 1 5 3
 - Code = sequence of number of mistakes.
 - To decode use the same prediction algorithm

Refines the guessing game:

- Refines the guessing game:
 - In guessing game the predictor chooses order over alphabet.

- Refines the guessing game:
 - In guessing game the predictor chooses order over alphabet.
 - In arithmetic coding the predictor chooses a Distribution over alphabet.

- Refines the guessing game:
 - In guessing game the predictor chooses order over alphabet.
 - In arithmetic coding the predictor chooses a Distribution over alphabet.
- First discovered by Elias (MIT).

- Refines the guessing game:
 - In guessing game the predictor chooses order over alphabet.
 - In arithmetic coding the predictor chooses a Distribution over alphabet.
- First discovered by Elias (MIT).
- Invented independently by Rissanen and Pasco in 1976.

- Refines the guessing game:
 - In guessing game the predictor chooses order over alphabet.
 - In arithmetic coding the predictor chooses a Distribution over alphabet.
- First discovered by Elias (MIT).
- Invented independently by Rissanen and Pasco in 1976.
- Widely used in practice.

Easier notation: represent characters by numbers

```
1 \le c_t \le |\Sigma|. (English: N \doteq |\Sigma| = 26)
```

- ► Easier notation: represent characters by numbers $1 \le c_t \le |\Sigma|$. (English: $N = |\Sigma| = 26$)
- ► message-prefix c_1, c_2, \dots, c_{t-1} represented by line segment $[l_{t-1}, u_{t-1})$

- ► Easier notation: represent characters by numbers $1 \le c_t \le |\Sigma|$. (English: $N = |\Sigma| = 26$)
- ▶ message-prefix $c_1, c_2, ..., c_{t-1}$ represented by line segment $[l_{t-1}, u_{t-1})$
- ▶ Initial segment $[l_0, u_0) = [0, 1)$

- ► Easier notation: represent characters by numbers $1 \le c_t \le |\Sigma|$. (English: $N = |\Sigma| = 26$)
- ▶ message-prefix $c_1, c_2, ..., c_{t-1}$ represented by line segment $[l_{t-1}, u_{t-1})$
- ▶ Initial segment $[l_0, u_0) = [0, 1)$
- ▶ After observing $c_1, c_2, ..., c_{t-1}$, predictor outputs $p(c_t = 1 | c_1, c_2, ..., c_{t-1}), ..., p(c_t = |\Sigma| | c_1, c_2, ..., c_{t-1})$,

- ► Easier notation: represent characters by numbers $1 \le c_t \le |\Sigma|$. (English: $N = |\Sigma| = 26$)
- ▶ message-prefix $c_1, c_2, ..., c_{t-1}$ represented by line segment $[l_{t-1}, u_{t-1})$
- Initial segment $[l_0, u_0) = [0, 1)$
- After observing $c_1, c_2, \ldots, c_{t-1}$, predictor outputs $p(c_t = 1 | c_1, c_2, \ldots, c_{t-1}), \ldots, p(c_t = |\Sigma| | c_1, c_2, \ldots, c_{t-1})$,
- Distribution is used to partition [I_{t-1}, u_{t-1}) into |Σ| sub-segments.

- ► Easier notation: represent characters by numbers $1 \le c_t \le |\Sigma|$. (English: $N = |\Sigma| = 26$)
- ▶ message-prefix $c_1, c_2, ..., c_{t-1}$ represented by line segment $[l_{t-1}, u_{t-1})$
- Initial segment $[l_0, u_0) = [0, 1)$
- After observing $c_1, c_2, \ldots, c_{t-1}$, predictor outputs $p(c_t = 1 | c_1, c_2, \ldots, c_{t-1}), \ldots, p(c_t = |\Sigma| | c_1, c_2, \ldots, c_{t-1})$,
- ▶ Distribution is used to partition $[l_{t-1}, u_{t-1})$ into $|\Sigma|$ sub-segments.
- next character c_t determines $[l_t, u_t)$

- ► Easier notation: represent characters by numbers $1 \le c_t \le |\Sigma|$. (English: $N = |\Sigma| = 26$)
- message-prefix c₁, c₂,..., c_{t-1} represented by line segment [I_{t-1}, u_{t-1})
- Initial segment $[l_0, u_0) = [0, 1)$
- After observing $c_1, c_2, \ldots, c_{t-1}$, predictor outputs $p(c_t = 1 | c_1, c_2, \ldots, c_{t-1}), \ldots, p(c_t = |\Sigma| | c_1, c_2, \ldots, c_{t-1})$,
- Distribution is used to partition [I_{t-1}, u_{t-1}) into |Σ| sub-segments.
- next character c_t determines $[l_t, u_t)$
- ► Code = discriminating binary expansion of a point in $[l_t, u_t)$.

Simplest case.

- Simplest case.
- $\Sigma = \{0, 1\}$

- Simplest case.
- $\Sigma = \{0, 1\}$
- $ightharpoonup \forall t,$

$$p(c_t=0)=1/3$$

$$p_t(c_t=1)=2/3$$

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ► Message = 1111

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ► Message = 1111
- ► Code = 111

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ▶ Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ▶ Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ▶ Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ► Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ► Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ► Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ► Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

- Simplest case.
- $\Sigma = \{0, 1\}$
- $\forall t,$ $p(c_t = 0) = 1/3$ $p_t(c_t = 1) = 2/3$
- ► Message = 1111
- ► Code = 111
- Technical: Assume decoder knows that length of message is 4.

► Given *m* bits of binary expansion we assume the rest are all zero.

- ► Given *m* bits of binary expansion we assume the rest are all zero.
- Distance between two m bit expansions is 2^{-m}

- Given m bits of binary expansion we assume the rest are all zero.
- Distance between two m bit expansions is 2^{-m}
- ▶ If $I_T u_T \ge 2^{-m}$ then there must be a point x described by m expansion bits such that $I_T \le x < u_T$

- Given m bits of binary expansion we assume the rest are all zero.
- Distance between two m bit expansions is 2^{-m}
- ▶ If $I_T u_T \ge 2^{-m}$ then there must be a point x described by m expansion bits such that $I_T \le x < u_T$
- ▶ Required number of bits is $[-\log_2(u_T I_T)]$.

- Given m bits of binary expansion we assume the rest are all zero.
- Distance between two m bit expansions is 2^{-m}
- ▶ If $I_T u_T \ge 2^{-m}$ then there must be a point x described by m expansion bits such that $I_T \le x < u_T$
- ▶ Required number of bits is $[-\log_2(u_T I_T)]$.
- ▶ $u_T I_T = \prod_{t=1}^T p(c_t | c_1, c_2, ..., c_{t-1}) \doteq p(c_1, ..., c_T)$

- Given m bits of binary expansion we assume the rest are all zero.
- Distance between two m bit expansions is 2^{-m}
- ▶ If $I_T u_T \ge 2^{-m}$ then there must be a point x described by m expansion bits such that $I_T \le x < u_T$
- ▶ Required number of bits is $[-\log_2(u_T I_T)]$.
- ▶ $u_T I_T = \prod_{t=1}^T p(c_t | c_1, c_2, ..., c_{t-1}) \doteq p(c_1, ..., c_T)$
- Number of bits required to code $c_1, c_2, ..., c_T$ is $[-\sum_{t=1}^{T} \log_2 p_t(c_t)].$

- Given m bits of binary expansion we assume the rest are all zero.
- Distance between two m bit expansions is 2^{-m}
- ▶ If $I_T u_T \ge 2^{-m}$ then there must be a point x described by m expansion bits such that $I_T \le x < u_T$
- ▶ Required number of bits is $[-\log_2(u_T I_T)]$.
- ▶ $u_T I_T = \prod_{t=1}^T p(c_t | c_1, c_2, ..., c_{t-1}) \doteq p(c_1, ..., c_T)$
- Number of bits required to code $c_1, c_2, ..., c_T$ is $\left[-\sum_{t=1}^{T} \log_2 p_t(c_t)\right]$.
- ▶ We call $-\sum_{t=1}^{T} \log_2 p_t(c_t) = -\log_2 p(c_1, \dots c_T)$ the Cumulative log loss

- Given m bits of binary expansion we assume the rest are all zero.
- Distance between two m bit expansions is 2^{-m}
- ▶ If $I_T u_T \ge 2^{-m}$ then there must be a point x described by m expansion bits such that $I_T \le x < u_T$
- ▶ Required number of bits is $[-\log_2(u_T I_T)]$.
- ▶ $u_T I_T = \prod_{t=1}^T p(c_t | c_1, c_2, ..., c_{t-1}) \doteq p(c_1, ..., c_T)$
- Number of bits required to code $c_1, c_2, ..., c_T$ is $\left[-\sum_{t=1}^{T} \log_2 p_t(c_t)\right]$.
- ▶ We call $-\sum_{t=1}^{T} \log_2 p_t(c_t) = -\log_2 p(c_1, \dots c_T)$ the Cumulative log loss
- ► Holds for all sequences.

► Fix the messsage length *T*

- Fix the messsage length T
- Suppose the message is generated at random according to the distribution p(c₁,...c_T)

- Fix the messsage length T
- Suppose the message is generated at random according to the distribution p(c₁,...c_T)
- ▶ Then the expected code length is

$$\sum_{c_1,\dots c_T} p(c_1,\dots c_T) \lceil -\log_2 p(c_1,\dots,c_T) \rceil$$

- Fix the messsage length T
- Suppose the message is generated at random according to the distribution p(c₁,...c_T)
- ▶ Then the expected code length is

$$\sum_{c_1,\dots c_T} p(c_1,\dots c_T) \lceil -\log_2 p(c_1,\dots,c_T) \rceil$$

- Fix the messsage length T
- Suppose the message is generated at random according to the distribution p(c₁,...c_T)
- Then the expected code length is

$$\sum_{c_1,\ldots c_T} p(c_1,\ldots c_T) \lceil -\log_2 p(c_1,\ldots,c_T) \rceil$$

$$\leq 1 - \sum_{c_1,\ldots c_T} p(c_1,\ldots c_T) \log_2 p(c_1,\ldots,c_T)$$

- Fix the messsage length T
- Suppose the message is generated at random according to the distribution p(c₁,...c_T)
- Then the expected code length is

$$\sum_{c_1,\ldots c_T} p(c_1,\ldots c_T) \lceil -\log_2 p(c_1,\ldots,c_T) \rceil$$

$$\leq 1 - \sum_{c_1,\ldots c_T} p(c_1,\ldots c_T) \log_2 p(c_1,\ldots,c_T) \doteq 1 + H(p_T)$$

► $H(p_T)$ is the **entropy** of the distribution over sequences of length T:

$$H(p_T) \doteq \sum_{(c_1,\ldots,c_T)} p(c_1,\ldots,c_T) \log \frac{1}{p(c_1,dots,c_T)}$$

- ► Fix the messsage length T
- ► Suppose the message is generated at random according to the distribution $p(c_1, ... c_T)$
- ▶ Then the expected code length is

$$\sum_{c_1,\ldots c_T} p(c_1,\ldots c_T) \lceil -\log_2 p(c_1,\ldots,c_T) \rceil$$

$$\leq 1 - \sum_{c_1,\ldots c_T} p(c_1,\ldots c_T) \log_2 p(c_1,\ldots,c_T) \doteq 1 + H(p_T)$$

► $H(p_T)$ is the **entropy** of the distribution over sequences of length T:

$$H(p_T) \doteq \sum_{(c_1,\ldots,c_T)} p(c_1,\ldots,c_T) \log \frac{1}{p(c_1,dots,c_T)}$$

Entropy is the expected value of the cumulative log logs

▶ Assume p_T is "well behaved". For example, IID.

- ► Assume p_T is "well behaved". For example, IID.
- ▶ Let $T \to \infty$

- ▶ Assume p_T is "well behaved". For example, IID.
- ▶ Let $T \to \infty$
- ► $H(p) \doteq \lim_{T \to \infty} \frac{H(p_T)}{T}$ exists and is called the per character entropy of the source p

- ▶ Assume p_T is "well behaved". For example, IID.
- ▶ Let $T \to \infty$
- ► $H(p) \doteq \lim_{T \to \infty} \frac{H(p_T)}{T}$ exists and is called the per character entropy of the source p
- The expected code length for any coding scheme is at least

$$(1 - o(1))H(p_T) = (1 - o(1)) T H(p)$$

- ▶ Assume p_T is "well behaved". For example, IID.
- ▶ Let $T \to \infty$
- ► $H(p) \doteq \lim_{T \to \infty} \frac{H(p_T)}{T}$ exists and is called the per character entropy of the source p
- The expected code length for any coding scheme is at least

$$(1 - o(1))H(p_T) = (1 - o(1)) T H(p)$$

The proof of Shannon's lower bound is not trivial (Can be a student lecture).

▶ Suppose the source is random and the probability of the next outcome is $p(c_t | c_1, c_2, ..., c_{t-1})$

- ▶ Suppose the source is random and the probability of the next outcome is $p(c_t | c_1, c_2, ..., c_{t-1})$
- ► Then the prediction that minimizes the log loss is $p(c_t | c_1, c_2, ..., c_{t-1})$.

- ▶ Suppose the source is random and the probability of the next outcome is $p(c_t | c_1, c_2, ..., c_{t-1})$
- ► Then the prediction that minimizes the log loss is $p(c_t | c_1, c_2, ..., c_{t-1})$.
- Note that when minimizing expected number of mistakes, the best prediction in this situation is to put all of the probability on the most likely outcome.

- ▶ Suppose the source is random and the probability of the next outcome is $p(c_t | c_1, c_2, ..., c_{t-1})$
- ► Then the prediction that minimizes the log loss is $p(c_t | c_1, c_2, ..., c_{t-1})$.
- Note that when minimizing expected number of mistakes, the best prediction in this situation is to put all of the probability on the most likely outcome.
- There are other losses with this property, for example, square loss.

Other examples for using log loss

Monthly bonuses for a weather forecaster

▶ Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$

Other examples for using log loss

- ▶ Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$
- Forecaster assigns probability p_t to rain on day t.

- ▶ Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$
- Forecaster assigns probability pt to rain on day t.
- ▶ If it rains on day t then $b_t = 2b_{t-1}p_t$

- ▶ Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$
- Forecaster assigns probability p_t to rain on day t.
- ▶ If it rains on day t then $b_t = 2b_{t-1}p_t$
- ▶ If it does not rain on day t then $b_t = 2b_{t-1}(1 p_t)$

- ▶ Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$
- Forecaster assigns probability p_t to rain on day t.
- ▶ If it rains on day t then $b_t = 2b_{t-1}p_t$
- If it does not rain on day t then $b_t = 2b_{t-1}(1 p_t)$
- At the end of the month, give forecaster b_T

Monthly bonuses for a weather forecaster

- ▶ Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$
- Forecaster assigns probability pt to rain on day t.
- ▶ If it rains on day t then $b_t = 2b_{t-1}p_t$
- ▶ If it does not rain on day t then $b_t = 2b_{t-1}(1 p_t)$
- At the end of the month, give forecaster b_T
- ► Risk averse strategy: Setting $p_t = 1/2$ for all days, guarantees $b_T = 1$

Monthly bonuses for a weather forecaster

- ▶ Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$
- Forecaster assigns probability p_t to rain on day t.
- ▶ If it rains on day t then $b_t = 2b_{t-1}p_t$
- ▶ If it does not rain on day t then $b_t = 2b_{t-1}(1 p_t)$
- At the end of the month, give forecaster b_T
- ► Risk averse strategy: Setting $p_t = 1/2$ for all days, guarantees $b_T = 1$
- ► High risk prediction: Setting $p_t \in \{0, 1\}$ results in Bonus $b_T = 2^T$ if always correct, zero otherwise.

Monthly bonuses for a weather forecaster

- Before the first of the month assign one dollar to the forecaster's bonus. $b_0 = 1$
- Forecaster assigns probability p_t to rain on day t.
- If it rains on day t then $b_t = 2b_{t-1}p_t$
- If it does not rain on day t then $b_t = 2b_{t-1}(1-p_t)$
- At the end of the month, give forecaster b_T
- ▶ Risk averse strategy: Setting $p_t = 1/2$ for all days, quarantees $b_T = 1$
- ▶ High risk prediction: Setting $p_t \in \{0, 1\}$ results in Bonus $b_T = 2^T$ if always correct, zero otherwise.
- If forecaster predicts with the true probabilities then

$$E(\log b_T) = T - H(p_T)$$

and that is the maximal expected value for $E(\log b_T)$

▶ You go to the horse races with one dollar $b_0 = 1$

Other examples for using log loss

- ▶ You go to the horse races with one dollar $b_0 = 1$
- ▶ *m* horses compete in each race.

Other examples for using log loss

- ▶ You go to the horse races with one dollar $b_0 = 1$
- m horses compete in each race.
- ▶ Before each race, the odds for each horse are announced: $o_t(1), \dots o_t(m)$ (arbitrary positive numbers)

- ▶ You go to the horse races with one dollar $b_0 = 1$
- m horses compete in each race.
- ▶ Before each race, the odds for each horse are announced: $o_t(1), \dots o_t(m)$ (arbitrary positive numbers)
- You have to divide *all* your money among the different horses. $\sum_{i=1}^{t} \hat{p}_t(j) = 1$

- ▶ You go to the horse races with one dollar $b_0 = 1$
- m horses compete in each race.
- ▶ Before each race, the odds for each horse are announced: $o_t(1), \dots o_t(m)$ (arbitrary positive numbers)
- You have to divide *all* your money among the different horses. $\sum_{i=1}^{t} \hat{p}_t(j) = 1$
- ▶ The horse $1 < y_t < m$ is winner of the tth race.

- ▶ You go to the horse races with one dollar $b_0 = 1$
- m horses compete in each race.
- ▶ Before each race, the odds for each horse are announced: $o_t(1), \dots o_t(m)$ (arbitrary positive numbers)
- You have to divide *all* your money among the different horses. $\sum_{i=1}^{t} \hat{p}_t(j) = 1$
- ▶ The horse $1 < y_t < m$ is winner of the tth race.
- ► After iteration t, you have $b_t = b_{t-1}\hat{p}_t(y_t)o_t(y_t)$ dollars

- ▶ You go to the horse races with one dollar $b_0 = 1$
- m horses compete in each race.
- ▶ Before each race, the odds for each horse are announced: $o_t(1), \dots o_t(m)$ (arbitrary positive numbers)
- You have to divide *all* your money among the different horses. $\sum_{i=1}^{t} \hat{p}_t(j) = 1$
- ▶ The horse $1 < y_t < m$ is winner of the tth race.
- ▶ After iteration t, you have $b_t = b_{t-1}\hat{p}_t(y_t)o_t(y_t)$ dollars
- ▶ After *n* races, you have $b_n = \prod_{t=1}^n \hat{p}_t(y_t)o_t(y_t)$ dollars.

- ▶ You go to the horse races with one dollar $b_0 = 1$
- m horses compete in each race.
- Before each race, the odds for each horse are announced: o_t(1),...o_t(m) (arbitrary positive numbers)
- You have to divide *all* your money among the different horses. $\sum_{j=1}^{t} \hat{p}_{t}(j) = 1$
- ▶ The horse $1 < y_t < m$ is winner of the tth race.
- ▶ After iteration t, you have $b_t = b_{t-1}\hat{p}_t(y_t)o_t(y_t)$ dollars
- ▶ After *n* races, you have $b_n = \prod_{t=1}^n \hat{p}_t(y_t)o_t(y_t)$ dollars.
- Taking logs, we get cumulative log loss.

"Universal" coding

► Suppose there are N alternative predictors / experts.

"Universal" coding

- Suppose there are N alternative predictors / experts.
- We would like to code almost as well as the best predictor.

"Universal" coding

- Suppose there are N alternative predictors / experts.
- We would like to code almost as well as the best predictor.
- We would like to make almost as much money as the best expert in hind-site.

Send the index of the coding algorithm before the message.

- Send the index of the coding algorithm before the message.
- Requires log₂ N additional bits.

- Send the index of the coding algorithm before the message.
- Requires log₂ N additional bits.
- Requires the encoder to make two passes over the data.

- Send the index of the coding algorithm before the message.
- Requires log₂ N additional bits.
- Requires the encoder to make two passes over the data.
- Is the key idea of MDL (Minimal Description Length) modeling.

- Send the index of the coding algorithm before the message.
- Requires log₂ N additional bits.
- Requires the encoder to make two passes over the data.
- Is the key idea of MDL (Minimal Description Length) modeling.
 - Good prediction model = model that minimizes the total code length

- Send the index of the coding algorithm before the message.
- Requires log₂ N additional bits.
- Requires the encoder to make two passes over the data.
- Is the key idea of MDL (Minimal Description Length) modeling.
 - Good prediction model = model that minimizes the total code length
- Often inappropriate because based on lossless coding. Lossy coding often more appropriate.

Treat each of the predictors as an "expert".

- Treat each of the predictors as an "expert".
- Assign a weight to each expert and reduce it if expert performs poorly.

- Treat each of the predictors as an "expert".
- Assign a weight to each expert and reduce it if expert performs poorly.
- Combine expert predictions according to their weights.

Combining expert advice for cumulative log loss

- Treat each of the predictors as an "expert".
- Assign a weight to each expert and reduce it if expert performs poorly.
- Combine expert predictions according to their weights.
- Would require only a single pass. Truly online.

- Treat each of the predictors as an "expert".
- Assign a weight to each expert and reduce it if expert performs poorly.
- Combine expert predictions according to their weights.
- Would require only a single pass. Truly online.
- Goal: Total loss of algorithm minus loss of best predictor should be at most log₂ N

Combining expert advice for cumulative log loss

Algorithm *A* predicts a sequence $c^1, c^2, ..., c^T$ over alphabet $\Sigma = \{1, 2, ..., k\}$

- Algorithm *A* predicts a sequence c^1, c^2, \dots, c^T over alphabet $\Sigma = \{1, 2, \dots, k\}$
- ► The prediction for the c^t th is a distribution over Σ: $\mathbf{p}_A^t = \langle \mathbf{p}_A^t(1), \mathbf{p}_A^t(2), \dots, \mathbf{p}_A^t(k) \rangle$

- Algorithm A predicts a sequence $c^1, c^2, ..., c^T$ over alphabet $\Sigma = \{1, 2, ..., k\}$
- ► The prediction for the c^t th is a distribution over Σ: $\mathbf{p}_A^t = \langle \mathbf{p}_A^t(1), \mathbf{p}_A^t(2), \dots, \mathbf{p}_A^t(k) \rangle$
- ▶ When c^t is revealed, the loss we suffer is $-\log p_{\Delta}^t(c^t)$

- Algorithm A predicts a sequence $c^1, c^2, ..., c^T$ over alphabet $\Sigma = \{1, 2, ..., k\}$
- ► The prediction for the c^t th is a distribution over Σ: $\mathbf{p}_A^t = \langle \mathbf{p}_A^t(1), \mathbf{p}_A^t(2), \dots, \mathbf{p}_A^t(k) \rangle$
- ▶ When c^t is revealed, the loss we suffer is $-\log p_{\Delta}^t(c^t)$
- ► The cumulative log loss, which we wish to minimize, is $L_A^T = -\sum_{t=1}^T \log p_A^t(c^t)$

- Algorithm A predicts a sequence $c^1, c^2, ..., c^T$ over alphabet $\Sigma = \{1, 2, ..., k\}$
- ► The prediction for the c^t th is a distribution over Σ: $\mathbf{p}_A^t = \langle p_A^t(1), p_A^t(2), \dots, p_A^t(k) \rangle$
- ▶ When c^t is revealed, the loss we suffer is $-\log p_A^t(c^t)$
- ► The cumulative log loss, which we wish to minimize, is $L_A^T = -\sum_{t=1}^T \log p_A^t(c^t)$
- ► \[\[\bigcup_A^T \] is the code length if \(\bigcup_A \) is combined with arithmetic coding.

► Prediction algorithm *A* has access to *N* experts.

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - **Experts generate predictive distributions:** $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - \triangleright Experts generate predictive distributions: $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
 - Algorithm generates its own prediction $\mathbf{p}_{\mathcal{A}}^t$

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - \triangleright Experts generate predictive distributions: $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
 - Algorithm generates its own prediction \mathbf{p}_{A}^{t}
 - c^t is revealed.

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - **Experts generate predictive distributions:** $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
 - Algorithm generates its own prediction p^t_A
 - c^t is revealed.
- ► Goal: minimize regret:

$$-\sum_{t=1}^{T} \log p_{\mathcal{A}}^{t}(c^{t}) + \min_{i=1,\dots,N} \left(-\sum_{t=1}^{T} \log p_{i}^{t}(c^{t}) \right)$$

Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s)$$

Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s)$$

Freedom to choose initial weights.

$$w_t^1 \ge 0, \sum_{i=1}^n w_i^1 = 1$$

Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{c=1}^{t-1} p_i^s(c^s)$$

Freedom to choose initial weights.

$$w_t^1 \ge 0, \sum_{i=1}^n w_i^1 = 1$$

Prediction of algorithm A

$$\mathbf{p}_{A}^{t} = \frac{\sum_{i=1}^{N} w_{i}^{t} \mathbf{p}_{i}^{t}}{\sum_{i=1}^{N} w_{i}^{t}}$$

Total weight: $W^t \doteq \sum_{i=1}^N w_i^t$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t}$$

Total weight:
$$\mathbf{W}^t \doteq \sum_{i=1}^N \mathbf{w}_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t}$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^{N} w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

$$-\log\frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^{N} w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^{N} w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

EQUALITY not bound!

► Use uniform initial weights $w_i^1 = 1/N$

- ► Use uniform initial weights $w_i^1 = 1/N$
- ► Total Weight is at least the weight of the best expert.

$$L_A^T = -\log W^{T+1}$$

- ► Use uniform initial weights $w_i^1 = 1/N$
- ► Total Weight is at least the weight of the best expert.

$$L_A^T = -\log W^{T+1}$$

- ▶ Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

$$L_A^T = -\log W^{T+1} = -\log \sum_{i=1}^N w_i^{T+1}$$

- ▶ Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

$$L_{A}^{T} = -\log W^{T+1} = -\log \sum_{i=1}^{N} w_{i}^{T+1}$$
$$= -\log \sum_{i=1}^{N} \frac{1}{N} e^{-L_{i}^{T}}$$

- ► Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

$$L_A^T = -\log W^{T+1} = -\log \sum_{i=1}^N w_i^{T+1}$$
$$= -\log \sum_{i=1}^N \frac{1}{N} e^{-L_i^T} = \log N - \log \sum_{i=1}^N e^{-L_i^T}$$

- ► Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

$$L_{A}^{T} = -\log W^{T+1} = -\log \sum_{i=1}^{N} w_{i}^{T+1}$$

$$= -\log \sum_{i=1}^{N} \frac{1}{N} e^{-L_{i}^{T}} = \log N - \log \sum_{i=1}^{N} e^{-L_{i}^{T}}$$

$$\leq \log N - \log \max_{i} e^{-L_{i}^{T}}$$

- ► Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

$$L_{A}^{T} = -\log W^{T+1} = -\log \sum_{i=1}^{N} w_{i}^{T+1}$$

$$= -\log \sum_{i=1}^{N} \frac{1}{N} e^{-L_{i}^{T}} = \log N - \log \sum_{i=1}^{N} e^{-L_{i}^{T}}$$

$$\leq \log N - \log \max_{i} e^{-L_{i}^{T}} = \log N + \min_{i} L_{i}^{T}$$

▶ Dividing by T we get $\frac{L_{T}^{T}}{T} = \min_{i} \frac{L_{T}^{T}}{T} + \frac{\log N}{T}$

 Simple bound as good as bound for two part codes (MDL) but enables online compression

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$
- ▶ If we use Bayes predictor + arithmetic coding we get:

$$L_A = -\log W^{T+1} \le \log K \max_i \frac{1}{NK} e^{-L_i^T} = \log N + \min_i L_i^T$$

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$
- ▶ If we use Bayes predictor + arithmetic coding we get:

$$L_A = -\log W^{T+1} \le \log K \max_i \frac{1}{NK} e^{-L_i^T} = \log N + \min_i L_i^T$$

We don't pay a penalty for copies.

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$
- If we use Bayes predictor + arithmetic coding we get:

$$L_{A} = -\log W^{T+1} \leq \log K \max_{i} \frac{1}{NK} e^{-L_{i}^{T}} = \log N + \min_{i} L_{i}^{T}$$

- We don't pay a penalty for copies.
- More generally, the regret is smaller if many of the experts perform well.

When experts are similar - you want to assign each of them less weight.

- When experts are similar you want to assign each of them less weight.
- The min-max prior.

- When experts are similar you want to assign each of them less weight.
- The min-max prior.
- Priors that allow efficient computation.

- When experts are similar you want to assign each of them less weight.
- The min-max prior.
- Priors that allow efficient computation.
- Conjugate priors.

The weight update rule is the same.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.
- Goal of Bayesian is to estimate true distribution, goal of online learning is to minimize regret.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.
- Goal of Bayesian is to estimate true distribution, goal of online learning is to minimize regret.
- Optimality of algorithm is axiom of Bayesian statistics.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.
- Goal of Bayesian is to estimate true distribution, goal of online learning is to minimize regret.
- Optimality of algorithm is axiom of Bayesian statistics.
- Bayesian methods perform poorly when the loss is not log loss and the data not generated by a distribution in the support.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.
- Goal of Bayesian is to estimate true distribution, goal of online learning is to minimize regret.
- Optimality of algorithm is axiom of Bayesian statistics.
- Bayesian methods perform poorly when the loss is not log loss and the data not generated by a distribution in the support.
 - Loss can sometimes be defined through the noise distribution: square loss is equivalent to assuming guassian noise.

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.
- Goal of Bayesian is to estimate true distribution, goal of online learning is to minimize regret.
- Optimality of algorithm is axiom of Bayesian statistics.
- Bayesian methods perform poorly when the loss is not log loss and the data not generated by a distribution in the support.
 - Loss can sometimes be defined through the noise distribution: square loss is equivalent to assuming guassian noise.
 - For number of mistakes Bayesian method cannot be "fixed". Requires variable learning rate_Regret bounds are

Naive implementation: calculate the prediction of each of the N experts.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated.
 Number of parameters defining posterior is constant.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated.
 Number of parameters defining posterior is constant.
 Update rule translates into update of parameters.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated. Number of parameters defining posterior is constant. Update rule translates into update of parameters. parameters correspond to "sufficient statistics".

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated. Number of parameters defining posterior is constant. Update rule translates into update of parameters. parameters correspond to "sufficient statistics". exists for the familty of exponential distributions.
 - Markov Chain Monte Carlo Sample the posterior.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated. Number of parameters defining posterior is constant. Update rule translates into update of parameters. parameters correspond to "sufficient statistics". exists for the familty of exponential distributions.
 - Markov Chain Monte Carlo Sample the posterior.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated. Number of parameters defining posterior is constant. Update rule translates into update of parameters. parameters correspond to "sufficient statistics". exists for the familty of exponential distributions.
 - Markov Chain Monte Carlo Sample the posterior. Can sometimes be done efficiently.

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - Conjugate priors: A prior over a continuous domain whose functional form does not change with when updated. Number of parameters defining posterior is constant. Update rule translates into update of parameters. parameters correspond to "sufficient statistics". exists for the familty of exponential distributions.
 - Markov Chain Monte Carlo Sample the posterior. Can sometimes be done efficiently. Efficient sampling relates to mixing rate of markov chain whose limit dist is the posterior dist.

► Fix a universal Turing machine *U*.

- Fix a universal Turing machine U.
- ► An online prediction algorithm *E* is a program that

- ► Fix a universal Turing machine U.
- ► An online prediction algorithm *E* is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$

- Fix a universal Turing machine U.
- ► An online prediction algorithm *E* is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs

- Fix a universal Turing machine U.
- ► An online prediction algorithm *E* is a program that
 - ▶ given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs
 - ▶ A prediction for the next bit $p(\vec{X}) \in [0, 1]$.

- Fix a universal Turing machine U.
- ▶ An online prediction algorithm *E* is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs
 - ▶ A prediction for the next bit $p(X) \in [0, 1]$.
 - ► To ensure *p* has a finite description. Restrict to rational numbers *n*/*m*

- Fix a universal Turing machine U.
- ► An online prediction algorithm *E* is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs
 - ▶ A prediction for the next bit $p(\vec{X}) \in [0, 1]$.
 - ► To ensure *p* has a finite description. Restrict to rational numbers *n*/*m*
- Any online prediction algorithm can be represented as code $\vec{b}(E)$ for U. The code length is $|\vec{b}(E)|$.

- Fix a universal Turing machine U.
- ► An online prediction algorithm *E* is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs
 - ▶ A prediction for the next bit $p(\vec{X}) \in [0, 1]$.
 - To ensure p has a finite description. Restrict to rational numbers n/m
- Any online prediction algorithm can be represented as code $\vec{b}(E)$ for U. The code length is $|\vec{b}(E)|$.
- Most sequences do not correspond to valid prediction algorithms.

- Fix a universal Turing machine U.
- ► An online prediction algorithm *E* is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs
 - ▶ A prediction for the next bit $p(\vec{X}) \in [0, 1]$.
 - ► To ensure *p* has a finite description. Restrict to rational numbers *n*/*m*
- Any online prediction algorithm can be represented as code $\vec{b}(E)$ for U. The code length is $|\vec{b}(E)|$.
- Most sequences do not correspond to valid prediction algorithms.
- ▶ $V(\vec{b}, \vec{X}, t) = 1$ if the program \vec{b} , given \vec{X} as input, halts within t steps and outputs a well-formed prediction. Otherwise $V(\vec{b}, \vec{X}, t) = 0$

- Fix a universal Turing machine U.
- ▶ An online prediction algorithm *E* is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs
 - ▶ A prediction for the next bit $p(\vec{X}) \in [0, 1]$.
 - To ensure p has a finite description. Restrict to rational numbers n/m
- Any online prediction algorithm can be represented as code $\vec{b}(E)$ for U. The code length is $|\vec{b}(E)|$.
- Most sequences do not correspond to valid prediction algorithms.
- $V(\vec{b}, \vec{X}, t) = 1$ if the program \vec{b} , given \vec{X} as input, halts within *t* steps and outputs a well-formed prediction. Otherwise $V(\vec{b}, \vec{X}, t) = 0$
- ▶ $V(\vec{b}, \vec{X}, t)$ is computable (recursively enumerable).

Assign to the code \vec{b} the initial weight $w_{\vec{b}}^1 = 2^{-|\vec{b}| - \log_2 |\vec{b}|}$.

- Assign to the code \vec{b} the initial weight $w_{\vec{b}}^1 = 2^{-|\vec{b}| \log_2 |\vec{b}|}$.
- ► The total initial weight over all finite binary sequences is one.

- Assign to the code \vec{b} the initial weight $w_{\vec{b}}^1 = 2^{-|\vec{b}| \log_2 |\vec{b}|}$.
- The total initial weight over all finite binary sequences is one.
- ► Run the Bayes algorithm over "all" prediction algorithms.

- Assign to the code \vec{b} the initial weight $w_{\vec{b}}^1 = 2^{-|\vec{b}| \log_2 |\vec{b}|}$.
- The total initial weight over all finite binary sequences is one.
- ► Run the Bayes algorithm over "all" prediction algorithms.
- ▶ technical details: On iteration t, $|\vec{X}| = t$. Use the predictions of programs \vec{b} such that $|\vec{b}| \le t$ and for which $V(\vec{b}, \vec{X}, 2^t) = 1$. Assing the remaining mass the prediction 1/2 (insuring a loss of 1)

▶ Using $L_A \leq \min_i (L_i - \log w_i^1)$

- ▶ Using $L_A \leq \min_i (L_i \log w_i^1)$
- Assume E is a prediction algorithm which generates the tth prediction in time smaller than 2^t

- ▶ Using $L_A \leq \min_i (L_i \log w_i^1)$
- Assume E is a prediction algorithm which generates the tth prediction in time smaller than 2^t
- ▶ When $t \le |\vec{b}(E)|$ the algorithm is not used and thus it's loss is 1

- ▶ Using $L_A \leq \min_i (L_i \log w_i^1)$
- Assume E is a prediction algorithm which generates the tth prediction in time smaller than 2^t
- ▶ When $t \le |\vec{b}(E)|$ the algorithm is not used and thus it's loss is 1
- ▶ We get that the loss of the Universal algorithm is at most $2|\vec{b}(E)| + \log_2 |\vec{b}(E)| + L_E$

- ▶ Using $L_A \leq \min_i (L_i \log w_i^1)$
- Assume E is a prediction algorithm which generates the tth prediction in time smaller than 2^t
- ▶ When $t \le |\vec{b}(E)|$ the algorithm is not used and thus it's loss is 1
- ▶ We get that the loss of the Universal algorithm is at most $2|\vec{b}(E)| + \log_2 |\vec{b}(E)| + L_E$
- More careful analysis can reduce $2|\vec{b}(E)| + \log_2 |\vec{b}(E)|$ to $|\vec{b}(E)|$

Performance of the universal prediction algorithm

- ▶ Using $L_A \leq \min_i (L_i \log w_i^1)$
- Assume E is a prediction algorithm which generates the tth prediction in time smaller than 2^t
- ▶ When $t \le |\vec{b}(E)|$ the algorithm is not used and thus it's loss is 1
- ▶ We get that the loss of the Universal algorithm is at most $2|\vec{b}(E)| + \log_2 |\vec{b}(E)| + L_E$
- More careful analysis can reduce $2|\vec{b}(E)| + \log_2 |\vec{b}(E)|$ to $|\vec{b}(E)|$
- Code length is arbitrarily close to the Kolmogorov Complexity of the sequence.

Performance of the universal prediction algorithm

- ▶ Using $L_A \leq \min_i (L_i \log w_i^1)$
- Assume E is a prediction algorithm which generates the tth prediction in time smaller than 2^t
- ▶ When $t \le |\vec{b}(E)|$ the algorithm is not used and thus it's loss is 1
- ▶ We get that the loss of the Universal algorithm is at most $2|\vec{b}(E)| + \log_2 |\vec{b}(E)| + L_E$
- More careful analysis can reduce $2|\vec{b}(E)| + \log_2 |\vec{b}(E)|$ to $|\vec{b}(E)|$
- Code length is arbitrarily close to the Kolmogorov Complexity of the sequence.
- Ridiculously bad running time.

 Simple bound as good as bound for two part codes (MDL) but enables online compression

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$
- ▶ If we use Bayes predictor + arithmetic coding we get:

$$L_A = -\log W^{T+1} \le \log K \max_i \frac{1}{NK} e^{-L_i^T} = \log N + \min_i L_i^T$$

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$
- ▶ If we use Bayes predictor + arithmetic coding we get:

$$L_A = -\log W^{T+1} \le \log K \max_i \frac{1}{NK} e^{-L_i^T} = \log N + \min_i L_i^T$$

We don't pay a penalty for copies.

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- ► Two part code has to point to one of the KN experts $L_A \le \log NK + \min_i L_i^T = \log NK + \min_i L_i^T$
- If we use Bayes predictor + arithmetic coding we get:

$$L_{A} = -\log W^{T+1} \leq \log K \max_{i} \frac{1}{NK} e^{-L_{i}^{T}} = \log N + \min_{i} L_{i}^{T}$$

- We don't pay a penalty for copies.
- More generally, the regret is smaller if many of the experts perform well.

► Each expert corresponds to a biased coin, predicts with a fixed $\theta \in [0, 1]$.

- ► Each expert corresponds to a biased coin, predicts with a fixed $\theta \in [0, 1]$.
- Set of experts is uncountably infinite.

- ► Each expert corresponds to a biased coin, predicts with a fixed $\theta \in [0, 1]$.
- Set of experts is uncountably infinite.
- Only countably many experts can be assigned non-zero weight.

- ► Each expert corresponds to a biased coin, predicts with a fixed $\theta \in [0, 1]$.
- Set of experts is uncountably infinite.
- Only countably many experts can be assigned non-zero weight.
- Instead, we assign the experts a Density Measure.

- ► Each expert corresponds to a biased coin, predicts with a fixed $\theta \in [0, 1]$.
- Set of experts is uncountably infinite.
- Only countably many experts can be assigned non-zero weight.
- Instead, we assign the experts a Density Measure.
- ▶ $L_A \le \min_i (L_i \log w_i^1)$ is meaningless.

- ► Each expert corresponds to a biased coin, predicts with a fixed $\theta \in [0, 1]$.
- Set of experts is uncountably infinite.
- Only countably many experts can be assigned non-zero weight.
- Instead, we assign the experts a Density Measure.
- ► $L_A \le \min_i (L_i \log w_i^1)$ is meaningless.
- Can we still get a meaningful bound?

Bayes Algorithm for biased coins

Replace the initial weight by a density measure

$$w(\theta) = w^{1}(\theta), \int_{0}^{1} w(\theta) d\theta = 1$$

Bayes Algorithm for biased coins

- ► Replace the initial weight by a density measure $w(\theta) = w^{1}(\theta), \int_{0}^{1} w(\theta) d\theta = 1$
- Relationship between final total weight and total log loss remains unchanged:

$$L_{A} = \ln \int_{0}^{1} w(\theta) e^{-L_{\theta}^{T+1}} d\theta$$

Bayes Algorithm for biased coins

- ► Replace the initial weight by a density measure $w(\theta) = w^{1}(\theta), \int_{0}^{1} w(\theta) d\theta = 1$
- Relationship between final total weight and total log loss remains unchanged:

$$L_A = \ln \int_0^1 w(\theta) e^{-L_{\theta}^{T+1}} d\theta$$

We need a new lower bound on the final total weight

Bayes using Jeffrey's prior

Main Idea

If $\mathbf{w}^t(\theta)$ is large then $\mathbf{w}^t(\theta + \epsilon)$ is also large.

Bayes using Jeffrey's prior

Main Idea

If $\mathbf{w}^t(\theta)$ is large then $\mathbf{w}^t(\theta + \epsilon)$ is also large.

▶ For log loss the best θ is empirical distribution of the seq.

$$\hat{\theta} = \frac{\#\{x^t = 1; \ 1 \le t \le T\}}{T}$$

▶ For log loss the best θ is empirical distribution of the seq.

$$\hat{\theta} = \frac{\#\{x^t = 1; \ 1 \le t \le T\}}{T}$$

$$L_{\theta} = T \cdot (\hat{\theta}\ell(\theta, 1) + (1 - \hat{\theta})\ell(\theta, 0)) \doteq T \cdot g(\hat{\theta}, \theta)$$

▶ For log loss the best θ is empirical distribution of the seq.

$$\hat{\theta} = \frac{\#\{x^t = 1; \ 1 \le t \le T\}}{T}$$

$$L_{\theta} = T \cdot (\hat{\theta}\ell(\theta, 1) + (1 - \hat{\theta})\ell(\theta, 0)) \doteq T \cdot g(\hat{\theta}, \theta)$$

▶ For log loss the best θ is empirical distribution of the seq.

$$\hat{\theta} = \frac{\#\{x^t = 1; \ 1 \le t \le T\}}{T}$$

$$L_{\theta} = T \cdot (\hat{\theta}\ell(\theta, 1) + (1 - \hat{\theta})\ell(\theta, 0)) \doteq T \cdot g(\hat{\theta}, \theta)$$

$$L_A - L_{\min} \le \ln \int_0^1 w(\theta) e^{-L_{\theta}} d\theta - \ln e^{L_{\min}}$$

▶ For log loss the best θ is empirical distribution of the seq.

$$\hat{\theta} = \frac{\#\{x^t = 1; \ 1 \le t \le T\}}{T}$$

$$L_{\theta} = T \cdot (\hat{\theta}\ell(\theta, 1) + (1 - \hat{\theta})\ell(\theta, 0)) \doteq T \cdot g(\hat{\theta}, \theta)$$

$$L_{A} - L_{\min} \leq \ln \int_{0}^{1} w(\theta) e^{-L_{\theta}} d\theta - \ln e^{L_{\min}}$$
$$= \ln \int_{0}^{1} w(\theta) e^{-(L_{\theta} - L_{\min})} d\theta$$

 \triangleright For log loss the best θ is empirical distribution of the seq.

$$\hat{\theta} = \frac{\#\{x^t = 1; \ 1 \le t \le T\}}{T}$$

$$L_{\theta} = T \cdot (\hat{\theta}\ell(\theta, 1) + (1 - \hat{\theta})\ell(\theta, 0)) \doteq T \cdot g(\hat{\theta}, \theta)$$

$$\begin{array}{ll} L_A - L_{\min} & \leq & \ln \int_0^1 w(\theta) e^{-L_{\theta}} d\theta - \ln e^{L_{\min}} \\ \\ & = & \ln \int_0^1 w(\theta) e^{-(L_{\theta} - L_{\min})} d\theta \\ \\ & = & \ln \int_0^1 w(\theta) e^{T(g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))} d\theta \end{array}$$

Bayes using Jeffrey's prior

Laplace approximation (idea)

► Taylor expansion of $g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta})$ around $\theta = \hat{\theta}$.

- ► Taylor expansion of $g(\hat{\theta}, \theta) g(\hat{\theta}, \hat{\theta})$ around $\theta = \hat{\theta}$.
- First and second terms in the expansion are zero.

- ► Taylor expansion of $g(\hat{\theta}, \theta) g(\hat{\theta}, \hat{\theta})$ around $\theta = \hat{\theta}$.
- First and second terms in the expansion are zero.
- Third term gives a quadratic expression in the exponent

- ► Taylor expansion of $g(\hat{\theta}, \theta) g(\hat{\theta}, \hat{\theta})$ around $\theta = \hat{\theta}$.
- First and second terms in the expansion are zero.
- Third term gives a quadratic expression in the exponent
- ightharpoonup \Rightarrow a gaussian approximation of the posterior.

- ► Taylor expansion of $g(\hat{\theta}, \theta) g(\hat{\theta}, \hat{\theta})$ around $\theta = \hat{\theta}$.
- First and second terms in the expansion are zero.
- Third term gives a quadratic expression in the exponent
- ightharpoonup \Rightarrow a gaussian approximation of the posterior.

- ► Taylor expansion of $g(\hat{\theta}, \theta) g(\hat{\theta}, \hat{\theta})$ around $\theta = \hat{\theta}$.
- First and second terms in the expansion are zero.
- Third term gives a quadratic expression in the exponent
- → a gaussian approximation of the posterior.

Laplace Approximation (details)

$$\int_0^1 w(\theta) e^{T(g(\hat{\theta},\theta)-g(\hat{\theta},\hat{\theta}))} d\theta$$

Laplace Approximation (details)

$$\int_{0}^{1} w(\theta) e^{T(g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))} d\theta$$

$$= w(\hat{\theta}) \sqrt{\frac{-2\pi}{T \frac{d^{2}}{d\theta^{2}} \Big|_{\theta = \hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))}} + O(T^{-3/2})$$

Choosing the optimal prior

▶ Choose $w(\theta)$ to maximize the worst-case final total weight

$$\min_{\hat{\theta}} w(\hat{\theta}) \sqrt{\frac{-2\pi}{T \frac{d^2}{d\theta^2} \Big|_{\theta = \hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))}}$$

Choosing the optimal prior

▶ Choose $w(\theta)$ to maximize the worst-case final total weight

$$\min_{\hat{\theta}} w(\hat{\theta}) \sqrt{\frac{-2\pi}{T \frac{d^2}{d\theta^2} \Big|_{\theta = \hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))}}$$

▶ Make bound equal for all $\hat{\theta} \in [0, 1]$ by choosing

$$w^*(\hat{\theta}) = \frac{1}{Z} \sqrt{\frac{\left. \frac{g^2}{d\theta^2} \right|_{\theta = \hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))}{-2\pi}},$$

where **Z** is the normalization factor:

$$Z = \sqrt{rac{1}{2\pi}} \int_0^1 \left. \sqrt{rac{d^2}{d heta^2}}
ight|_{ heta = \hat{ heta}} (g(\hat{ heta},\hat{ heta}) - g(\hat{ heta}, heta))
ight. d\hat{ heta}$$

The bound for the optimal prior

Plugging in we get

$$L_{A} - L_{\min} \leq \ln \int_{0}^{1} w^{*}(\theta) e^{T(g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))} d\theta$$

$$= \ln \left(\sqrt{\frac{2\pi Z}{T}} + O(T^{-3/2}) \right)$$

$$= \frac{1}{2} \ln \frac{T}{2\pi} - \frac{1}{2} \ln Z + O(1/T) .$$

Solving for log-loss

The exponent in the integral is

$$g(\hat{ heta}, heta) - g(\hat{ heta}, \hat{ heta}) = \hat{ heta} \ln \frac{\hat{ heta}}{ heta} + (1 - \hat{ heta}) \ln \frac{1 - \hat{ heta}}{1 - heta} = D_{KL}(\hat{ heta}|| heta)$$

Solving for log-loss

The exponent in the integral is

$$g(\hat{ heta}, heta) - g(\hat{ heta}, \hat{ heta}) = \hat{ heta} \ln \frac{\hat{ heta}}{ heta} + (1 - \hat{ heta}) \ln \frac{1 - \hat{ heta}}{1 - heta} = D_{KL}(\hat{ heta}|| heta)$$

The second derivative

$$\left. \frac{d^2}{d\theta^2} \right|_{\theta = \hat{\theta}} D_{KL}(\hat{\theta}||\theta) = \hat{\theta}(1 - \hat{\theta})$$

Is called the empirical Fisher information

Bayes using Jeffrey's prior

Solving for log-loss

The exponent in the integral is

$$g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}) = \hat{\theta} \ln \frac{\hat{\theta}}{\theta} + (1 - \hat{\theta}) \ln \frac{1 - \hat{\theta}}{1 - \theta} = D_{KL}(\hat{\theta}||\theta)$$

The second derivative

$$\left. \frac{d^2}{d\theta^2} \right|_{\theta = \hat{\theta}} D_{KL}(\hat{\theta}||\theta) = \hat{\theta}(1 - \hat{\theta})$$

Is called the empirical Fisher information

The optimal prior:

$$w^*(\hat{\theta}) = \frac{1}{\pi \sqrt{\hat{\theta}(1-\hat{\theta})}}$$

Known in general as Jeffrey's prior. And, in this case, the Dirichlet-(1/2, 1/2) prior.

The cumulative log loss of Bayes using Jeffrey's prior

$$L_A - L_{\min} \le \frac{1}{2} \ln(T+1) + \frac{1}{2} \ln \frac{\pi}{2} + O(1/T)$$

As luck would have it the Dirichlet prior is the conjugate prior for the Binomial distribution.

- As luck would have it the Dirichlet prior is the conjugate prior for the Binomial distribution.
- Observed t bits, n of which were 1. The posterior is:

$$\frac{1}{Z\sqrt{\theta(1-\theta)}}\theta^{n}(1-\theta)^{t-n} = \frac{1}{Z}\theta^{n-1/2}(1-\theta)^{t-n-1/2}$$

- As luck would have it the Dirichlet prior is the conjugate prior for the Binomial distribution.
- Observed t bits, n of which were 1. The posterior is:

$$\frac{1}{Z\sqrt{\theta(1-\theta)}}\theta^{n}(1-\theta)^{t-n} = \frac{1}{Z}\theta^{n-1/2}(1-\theta)^{t-n-1/2}$$

The posterior average is:

$$\frac{\int_0^1 \theta^{n+1/2} (1-\theta)^{t-n-1/2} d\theta}{\int_0^1 \theta^{n-1/2} (1-\theta)^{t-n-1/2} d\theta} = \frac{n+1/2}{t+1}$$

- As luck would have it the Dirichlet prior is the conjugate prior for the Binomial distribution.
- Observed t bits, n of which were 1. The posterior is:

$$\frac{1}{Z\sqrt{\theta(1-\theta)}}\theta^{n}(1-\theta)^{t-n} = \frac{1}{Z}\theta^{n-1/2}(1-\theta)^{t-n-1/2}$$

The posterior average is:

$$\frac{\int_0^1 \theta^{n+1/2} (1-\theta)^{t-n-1/2} d\theta}{\int_0^1 \theta^{n-1/2} (1-\theta)^{t-n-1/2} d\theta} = \frac{n+1/2}{t+1}$$

► This is called the Trichevsky Trofimov prediction rule.

Bayes using Jeffrey's prior

Laplace Rule of Succession

Laplace suggested using the uniform prior, which is also a conjugate prior.

Laplace Rule of Succession

- Laplace suggested using the uniform prior, which is also a conjugate prior.
- In this case the posterior average is:

$$\frac{\int_{0}^{1} \theta^{n+1} (1-\theta)^{t-n} d\theta}{\int_{0}^{1} \theta^{n} (1-\theta)^{t-n} d\theta} = \frac{n+1}{t+2}$$

Laplace Rule of Succession

- Laplace suggested using the uniform prior, which is also a conjugate prior.
- In this case the posterior average is:

$$\frac{\int_{0}^{1} \theta^{n+1} (1-\theta)^{t-n} d\theta}{\int_{0}^{1} \theta^{n} (1-\theta)^{t-n} d\theta} = \frac{n+1}{t+2}$$

▶ The bound on the cumulative log loss is worse:

$$L_A - L_{\min} = \ln T + O(1)$$

Laplace Rule of Succession

- Laplace suggested using the uniform prior, which is also a conjugate prior.
- In this case the posterior average is:

$$\frac{\int_{0}^{1} \theta^{n+1} (1-\theta)^{t-n} d\theta}{\int_{0}^{1} \theta^{n} (1-\theta)^{t-n} d\theta} = \frac{n+1}{t+2}$$

▶ The bound on the cumulative log loss is worse:

$$L_A - L_{\min} = \ln T + O(1)$$

Suffers larger regret when $\hat{\theta}$ is far from 1/2

Shtarkov Lower bound

▶ What is the optimal prediction when T is know in advance?

☐ Bayes using Jeffrey's prior

Shtarkov Lower bound

What is the optimal prediction when T is know in advance?

$$L_*^T - \min_{\theta} L_{\theta}^T \geq \frac{1}{2} \ln(T+1) + \frac{1}{2} \ln \frac{\pi}{2} - O(\frac{1}{\sqrt{T}})$$

► For a distribution over *k* elements (Multinomial) [Xie and Barron]

- ► For a distribution over *k* elements (Multinomial) [Xie and Barron]
- ▶ Use the add 1/2 rule (KT).

$$p(i) = \frac{n_i + 1/2}{t + k/2}$$

- ► For a distribution over k elements (Multinomial) [Xie and Barron]
- ▶ Use the add 1/2 rule (KT).

$$p(i) = \frac{n_i + 1/2}{t + k/2}$$

Bound is

$$L_A - L_{\min} \leq \frac{k-1}{2} \ln T + C + o(1)$$

- ► For a distribution over k elements (Multinomial) [Xie and Barron]
- ▶ Use the add 1/2 rule (KT).

$$p(i) = \frac{n_i + 1/2}{t + k/2}$$

Bound is

$$L_A - L_{\min} \leq \frac{k-1}{2} \ln T + C + o(1)$$

The constant C is optimal.

Exponential Distributions

 For any set of distributions from the exponential family defined by k parameters (constituting an open set) [Rissanen96]

Exponential Distributions

- For any set of distributions from the exponential family defined by k parameters (constituting an open set) [Rissanen96]
- Use Bayes Algorithm with Jeffrey's prior:

$$w^*(\hat{\theta}) = \frac{1}{Z} \frac{1}{\sqrt{\left| \mathbf{H} \left(D_{KL}(\hat{\theta}||\theta) \right) \Big|_{\theta = \hat{\theta}} \right|}}$$

H denotes the Hessian.

Exponential Distributions

- For any set of distributions from the exponential family defined by k parameters (constituting an open set) [Rissanen96]
- Use Bayes Algorithm with Jeffrey's prior:

$$w^*(\hat{\theta}) = \frac{1}{Z} \frac{1}{\sqrt{\left|\mathbf{H}\left(D_{KL}(\hat{\theta}||\theta)\right)\right|_{\theta=\hat{\theta}}}}$$

H denotes the Hessian.

$$L_A - L_{\min} \leq \frac{k-1}{2} \ln T - \ln Z + o(1)$$