

Universidad del Istmo

Campus Tehuantepec

Materia: Redes de Computadoras II

Docente: Ing. Carlos Mijangos Jiménez

Alumna: Valery Rodríguez Trejo

Carrera: Ingeniería en Computación

Semestre: Séptimo semestre

Tarea 2

Índice

1	Capa de	transporte
	1.1 Proto	ocolos de la capa de transporte
	1.1.1	DCCP (Datagram Congestion Control Protocol)
	1.1.2	FCP (Fibre Channel Protocol)
	1.1.3	IL Protocol
	1.1.4	NPTCP (Non-Persistent TCP)
		NORM (NACK-Oriented Reliable Multicast)
	1.1.6	RDP (Reliable Data Protocol)
		RUDP (Reliable User Datagram Protocol)
		SCTP (Stream Control Transmission Protocol)

1 Capa de transporte

1.1 Protocolos de la capa de transporte

1.1.1 DCCP (Datagram Congestion Control Protocol)

El **DCCP** es un protocolo **no orientado a conexión** diseñado para aplicaciones que requieren baja latencia, como transmisión de audio, video o juegos en línea. Combina la rapidez de UDP con mecanismos de **control de congestión** similares a los de TCP. Ayuda a la capa de transporte al ofrecer un equilibrio entre rendimiento y estabilidad de red, evitando la saturación del ancho de banda sin necesidad de retransmitir paquetes perdidos, lo que mejora la fluidez en aplicaciones en tiempo real.

1.1.2 FCP (Fibre Channel Protocol)

El FCP es un protocolo **orientado a conexión** que transporta comandos SCSI sobre redes de Canal de Fibra. Se utiliza principalmente en redes de almacenamiento (SAN) para conectar servidores y dispositivos de almacenamiento con altas velocidades y baja latencia. Apoya a la capa de transporte al garantizar transmisiones seguras, confiables y de gran capacidad, permitiendo la transferencia de grandes volúmenes de datos en entornos empresariales o de centros de datos.

1.1.3 IL Protocol

El **IL** es un protocolo **orientado a conexión** desarrollado para el sistema operativo *Plan 9* de Bell Labs. Ofrece transmisión confiable con control de flujo, verificación de errores y numeración de secuencias. Contribuye a la capa de transporte al proporcionar una comunicación eficiente y ligera, simplificando la gestión de errores y evitando la complejidad de TCP en sistemas distribuidos o experimentales.

1.1.4 NPTCP (Non-Persistent TCP)

El **NPTCP** es una versión de TCP **orientada a conexión**, diseñada para conexiones cortas o transacciones que no requieren una sesión prolongada. Cierra la conexión automáticamente una vez enviada la información. Su contribución a la capa de transporte es reducir la sobrecarga en conexiones efímeras, optimizando la eficiencia del intercambio de datos cuando se necesita confiabilidad sin mantener sesiones activas.

1.1.5 NORM (NACK-Oriented Reliable Multicast)

El NORM es un protocolo no orientado a conexión que permite transmisión confiable en grupos multicast. Usa confirmaciones negativas (NACK) para solicitar la retransmisión de paquetes perdidos sin congestionar la red. Ayuda a la capa de transporte al permitir la entrega eficiente y controlada de información a múltiples receptores, siendo ideal para distribución de archivos, actualizaciones o videoconferencias en grupo.

1.1.6 RDP (Reliable Data Protocol)

El **RDP** es un protocolo **orientado a conexión** definido en el *RFC 908*, que proporciona **entrega confiable y control de flujo** sobre IP. Utiliza números de secuencia y confirmaciones, asegurando el orden de los datos. Contribuye a la capa de transporte al ofrecer una alternativa más simple que TCP, útil para aplicaciones que requieren fiabilidad sin la complejidad completa de dicho protocolo.

1.1.7 RUDP (Reliable User Datagram Protocol)

El **RUDP** es un protocolo **orientado a conexión** que extiende UDP agregando mecanismos de **confirmación**, **retransmisión y control de tiempo**. Mantiene la rapidez del envío de datagramas, pero añade fiabilidad básica. Ayuda a la capa de transporte al ofrecer un punto medio entre TCP y UDP, ideal para aplicaciones interactivas que necesitan baja latencia y cierto grado de seguridad en la entrega de datos.

1.1.8 SCTP (Stream Control Transmission Protocol)

El **SCTP** es un protocolo **orientado a conexión** que combina características de TCP y UDP. Permite múltiples flujos (*streams*) dentro de una sola conexión y garantiza la entrega ordenada y confiable. Contribuye a la capa de transporte al mejorar la tolerancia a fallos y la gestión de múltiples canales simultáneos, siendo muy usado en señalización telefónica, sistemas de voz sobre IP y comunicaciones críticas.