For each solid, arc length, or surface area that follows **set up** the corresponding integral but **do not solve**.

1. Each integral represents the volume of a solid. Describe the solid.

(a)
$$\int_0^{\frac{\pi}{2}} \pi \cos^2 x dx$$

(b)
$$\int_0^{\frac{\pi}{2}} 2\pi x \cos x dx$$

(c)
$$\int_0^{\frac{\pi}{2}} \pi (2 - \sin x)^2 dx$$

(d)
$$\int_0^{\frac{\pi}{2}} 4\pi - \pi \sin^2 x dx$$

2. Find the volume of the solid that is obtained by revolving the region about the x-axis.

3. Find the volume of the solid generated by revolved the region bounded by the graphs of the equations about the indicated line. Sketch the region and a representative rectangle. $y = 25 - x^2$ and y = 0 about the line x = -5.

4. Set up the integral that will determine the length of the curve $y = \ln(1 - x^2)$ on $0 \le x \le \frac{1}{2}$.

5. A steady wind blows a kite due west. The kite's height above ground from horizontal position x=0 to x=80 is given by $y=150-\frac{1}{40}(x-50)^2$. Find the distance traveled by the kite.

6. Set up the integral that will give the area of the surface obtained by rotating the curve $y = \tan x$ about the x-axis on the interval $0 \le x \le \frac{\pi}{3}$.

7. Set up the integral that will give the area of the surface obtained by rotating the curve $x = y + y^3$ about the x-axis on $0 \le y \le 1$.

8. Set up the integral that will give the area of the surface obtained by rotating the curve $x = y + y^3$ about the y-axis on $0 \le y \le 1$.

9. Set up the integral that will give the area of the surface obtained by rotating the curve $x = y + y^3$ about the x-axis on $0 \le x \le 1$.

10. Set up the integral that will give the area of the surface obtained by rotating the curve $x = y + y^3$ about the x-axis on $0 \le y \le 1$.

11. Set up the integral that will give the area of the surface obtained by rotating the curve $x = y + y^3$ about the y-axis on $0 \le x \le 1$.

12. Set up the integral that will give the area of the surface obtained by rotating the curve $x = y + y^3$ about the y-axis on $0 \le y \le 1$.