Welcome (i)

Agenda: Bit manipulation

Binary Number System

Conversion

Properties

Operators.

Binary rep. of -ve numbers.

Decimal Number System

60,1,2,3,4,5,6,7,8,93 box 10

342 -> 300 + 40 + 2

9 3×10 + 4×10 + 2×10

Binary Number System

20, 13 base 2

110) 1×2 + 1×2 + 0×2 = 4+2+0=6

1101 -> 1*2 + 1*2 + 0*2 + 1 *2

→ 8 + 4 + 0 + 1

Binary to Decimal.

eg:

eg:

eg:

$$(20211)_2 \Rightarrow \text{invalid binary},$$

Decimal to Binary

2	20	0
り	0	0
2	L)	1
\mathcal{V}	γ	0
Z	7	1
	0	

2	45	2
2	2	0
2	11	1
2	5	1
2	N	0
2	1	1
	D	

101101

Addition

Binany

$$0 + 0 \Rightarrow 0$$
 $0 + 1 \Rightarrow 1$
 $1 + 0 \Rightarrow 1$
 $1 + 1 \Rightarrow 10$

Bitwise Operators.

$$5 26$$
 101
 110
AND 100 $\Rightarrow 4$

20 ^ 45
0 1 0 1 0 0
1 0 1 1 0 1
1 1 1 0 0 1
$$\Rightarrow$$
 57

$$2$$
) $A & A \Rightarrow A$

$$6) \quad A^A = C$$

Binary Rep. of Negatine Numbers. Two's complement method. 1) bonvert absolute value to binary. 3) Invent all the bits 3) Add +1 to me no obtained in step 2. -5 7 6 5 4 3210 1) 0 0 0 0 0 0 1 2) 1 1 1 1 0 1 0 3) 1 1 1 1 0 1 1 msB -> must significant Bit

32st bit -ve number L> 0 tre number. 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

Parge

8 bits
$$\Rightarrow$$
 -128 \Rightarrow 127 \Rightarrow -2^{N-1} \Rightarrow 2^{N-1} \Rightarrow 2^N