Infinitesimal Calculus 3

Lecture 11, Wednsday November 23, 2022 Ari Feiglin

11.1 Funky Functions

Proposition 11.1.1:

If $f: X \longrightarrow Y$ is continuous and $E \subseteq X$ is compact, f(E) is also compact.

Proof:

Suppose $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$ is an open cover of f(E), that is:

$$f(E) \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda} \implies E \subseteq \bigcup_{\lambda \in \Lambda} f^{-1}(\mathcal{O}_{\lambda})$$

Since f is continuous, $f^{-1}(\mathcal{O}_{\lambda})$ is open so $\{f^{-1}(\mathcal{O}_{\lambda})\}_{\lambda \in \Lambda}$ is an open cover of E, which is compact so there is an open subcover of E, let it be $\{f^{-1}(\mathcal{O}_k)\}_{k=1}^n$, so:

$$E \subseteq \bigcup_{k=1}^{n} f^{-1}(\mathcal{O}_k) \implies f(E) \subseteq \bigcup_{k=1}^{n} \mathcal{O}_k$$

And so $\{\mathcal{O}_k\}_{k=1}^n$ is an open subcovering of f(E), and therefore f(E) is compact.

Proposition 11.1.2:

If $E \subseteq X$ is compact and $f: E \longrightarrow Y$ is continuous, f takes a minimum and maximum in E.

Proof:

Since f(E) itself is compact, it is bounded. And so there exists $s = \sup f(E)$, which means that there exists $x_n \in E$ such that $f(x_n) \longrightarrow s$. And since E is compact there exists a subsequence x_{n_k} which converges to some value $x \in E$, and so $f(x_{n_k}) \longrightarrow s$, but at the same time since f is continuous so $f(x_{n_k}) \longrightarrow f(x)$, and so f(x) = s. So f takes a maximum in E. A similar proof can be used to show it takes a minimum.

Example:

The continuous preimage of a compact set is not necessarily compact. Take for example $f: \mathbb{R} \longrightarrow \mathbb{R}$ where f(x) = c. Then even though $\{c\}$ is compact, $f^{-1}(\{c\}) = \mathbb{R}$ is not compact.

Proposition 11.1.3:

If $E \subseteq X$ is compact and $f: E \longrightarrow Y$ is continuous and injective, then $f^{-1}: f(E) \longrightarrow E$ is continuous.

Proof:

Let $g = f^{-1}$ on f(E). We will show that for every $K \subseteq E$ closed, $g^{-1}(K)$ is also closed. Since E is compact and K is closed in E, K is compact in X. And $g^{-1} = f$, so $g^{-1}(K) = f(K)$ which is compact since f is continuous, and so it is closed. So the preimage under g of any closed set is also closed, therefore g is continuous.

Definition 11.1.4:

A mapping f between two metric spaces X and Y is uniformly continuous if for every $\varepsilon > 0$ there is a $\delta > 0$ such that for every $x, y \in X$ if $\rho(x, y) < \delta$ then $\sigma(f(x), f(y)) < \varepsilon$.

Theorem 11.1.5:

If $E \subseteq X$ is compact and $f : E \longrightarrow X$ is continuous, then it is uniformly continuous.

Proof:

Let $\varepsilon > 0$ then for every $x \in E$ let $\delta_x > 0$ satisfy continuity for ε , that is $f(B_{\delta_x}(x)) \subseteq B_{\varepsilon}(f(x))$. And so:

$$E \subseteq \bigcup_{x \in E} B_{\frac{1}{2}\delta_x}(x)$$

This is an open cover so there is an open subcover $\left\{B_{\frac{1}{2}\delta_k}(x_k)\right\}_{k=1}^n$. We can take $\delta=\frac{1}{2}\min_{1\leq k\leq n}\delta_k>0$. Let $y,z\in E$ such that $\rho(x,y)<\delta$, then there exists some x_1 and x_2 in the open subcover such that $y\in B_1(x_1)$ and $z\in B_2(x_2)$ so

$$\rho(z, x_1) \le \rho(z, y) + \rho(y, x_1) < \frac{\delta_1}{2} + \delta \le \delta_1$$

So $z \in B_1(x_1)$ and therefore $\sigma(f(z), f(x_1)) < \varepsilon$ and so $\sigma(f(y), f(z)) < 2\varepsilon$. And so f is uniformly continuous.

Proposition 11.1.6:

Suppose $f: X \longrightarrow Y$ is continuous and $E \subseteq X$ is connected, then f(E) is connected in Y.

Proof:

Suppose $f(E) \subseteq \mathcal{O}_1 \cup \mathcal{O}_2$, so $E \subseteq f^{-1}(\mathcal{O}_1) \cup f^{-1}(\mathcal{O}_2)$, which are open since f is continuous. Since E is connected, $E \subseteq f^{-1}(\mathcal{O}_1)$ or $f^{-1}(\mathcal{O}_2)$ and therefore $f(E) \subseteq \mathcal{O}_1$ or \mathcal{O}_2 . So f(E) is connected as required.

Note that if E is connected in \mathbb{R} and $a < b \in E$ than $(a,b) \subseteq E$. Suppose $c \in (a,b) \setminus E$ then $E \subseteq \mathbb{R}_{< c} \cup \mathbb{R}_{> c}$ which are both open and have non-empty intersections with E (namely a and b), in contradiction to E's connectedness. This helps prove our next corollary.

Corollary 11.1.7:

Suppose X is a metric space and $f: X \longrightarrow \mathbb{R}$ is continuous. Suppose $E \subseteq X$ is connected, then if $a, b \in X$ for f(a) < f(b) then for every f(a) < y < f(b), there is an $x \in E$ such that f(x) = y.

Proof:

Since f is continuous and E is connected, f(E) is connected in \mathbb{R} . Since it contains f(a) and f(b), it must contain everything between them (since it is a connected set in \mathbb{R}), ie $(f(a), f(b)) \subseteq f(E)$, as required.

Thus concludes the topological portion of our course.

11.2 Partial Derivatives

Definition 11.2.1:

If f is a real valued function defined at (x_0, y_0) then the partial derivative of f relative to x is defined as:

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

And the partial derivative relative to y is:

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

Other notations include:

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x(x_0, y_0) = \partial_x f(x_0, y_0)$$

Lemma 11.2.2:

If we define $g(x) = f(x, y_0)$ then $\partial_x f(x_0, y_0) = g'(x_0)$.

This lemma is trivial, but helps us understand how to compute partial derivatives. We simply keep the other variable constant and differentiate.

Proof:

The proof is trivial:

$$g'(x_0) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = \partial_x f(x_0, y_0)$$

Example:

$$f(x,y) = \sin\left(x^2y + y^3\right)$$

We will compute $\partial_x f(1,2)$:

$$\partial_x f(1,2) = \left(\sin\left(2x^2 + 8\right)\right)'(1) = \left(4x \cdot \cos\left(2x^2 + 8\right)\right)(1) = 4\cos(10)$$