

Clustering

Workshop on RNA-Seq Nima Rafati NBIS, SciLifeLab

Clustering

- What is clustering?
 - Clustering is an approach to classify/group data points.
- Why do we use clustering?
 - For exploring the data
 - o To discover patterns in our data set
 - Identify outliers

Clustering Methods

- Centroid-based
- Density-based
- Distribution-based
- Hierarchical-based

Steps:

In short all clustering approach follows these steps:

- Calculate distance between data points
- Group | cluster the data based on similarities

Distance can be measured in:

- In multidimensional space (raw data)
- In reduced space (i.e. top PCs)

Euclidean distance

• Euclidean distance is a straight line between two points

$$c^2 = a^2 + b^2$$

Manhattan distance

• Manhattan distance

$$a + b$$

Inverted pairwise correlations

• Inverted pairwise correlations

$$dist = -(cor - 1)/2$$

Mahalanobis Distance

• Despite of previous approach which was based on distance between data points, this method measures the distance between a data point and a distribution.

Centroid-based: K-means clustering

- One of the most commonly used clustering methods
- In this method the distance between data points and centroids is calculated
- Each data point is assigned to a cluster based on Euclidean distance from centroid.
- Dependent on number of K (clusters) new centroids are created

Centroid-based: K-means clustering

- One of the most commonly used clustering methods
- In this method the distance between data points and centroids is calculated
- Each data point is assigned to a cluster based on Euclidean distance from centroid.
- Dependent on number of K (clusters) new centroids are created

What is optimal K?

- The user needs to define the number of clusters:
 - Elbow method.
 - Gap statistics.
 - o Average Silhouette method

Density-based clustering: DBSCAN

• This method identifies regions within your data distribution that exhibits high density of data points.

Distribution-based clustering: Guassian Mixture Model (GMM)

- It involves modeling the data points with probability distribution.
- In this method prior knowledge on distribution of your data is required. If you do not know the distribution of your data try another approach.
- You need to specify number of clusters.

Hierarchical-based clustering

- This approach creates a tree of clusters.
- Well suited for hierarchical data (e.g. taxonomies).
- Final output is a dendrogram representing the order decisions at each merge/division of clusters.
- Two approaches:
 - Agglomerative (Bottom-up): All data points are treated as clusters and then joins similar ones.
 - Divisive (Top-down): All data points are in one large clusters and recursively splits the most heterogeneous clusters.
- Number of clusters are decided after generating the tree.

Hierarchical-based clustering

• Agglomerative clustering

dist(data) hclust (*, "complete")

Hierarchical-based clustering

• Divisive clustering

data diana (*, "NA")

Linkage methods.

To combine clusters, it's essential to establish their positions relative to one another. The technique used to determine these positions is known as **Linkage**.

Summary

- For bulk RNASeq you can perform clustering on raw, Z-Score scaled data or on top PC coordinates.
- For the sample large size (>10,000) you can perform clustering on PC. For instance in scRNASeq data.
- You always need to tune some parameters.
- K-means performs poorly on unbalanced data.
- In hierarchical clustering, some distance metrics need to be used with a certain linkage method.
- Checking clustering Robustness (a.k.a Ensemble perturbations):
 - Most clustering techniques will cluster random noise.
 - One way of testing this is by clustering on parts of the data (clustering bootstrapping)
 - Read more in Ronan et al (2016) Science Signaling.

Thank you. Questions?

