Math 69: Logic Winter '23

Homework assigned January 27, 2023

Prof. Marcia Groszek

Student: Amittai Siavava

Problem 8.

Assume that Σ is a set of sentences such that for any sentence τ , either $\Sigma \vDash \tau$ or $\Sigma \vDash \neg \tau$. Assume that $\mathfrak A$ is a model of Σ .

Show that for any sentence τ , we have $\models_{\mathfrak{A}} \tau \text{ iff } \Sigma \models \tau$.

Since $\mathfrak A$ is a model for Σ , $\mathfrak A$ must agree wth Σ on all sentences in Σ .

- (\Rightarrow) For any sentence τ , suppose $\vDash_{\mathfrak{A}} \tau$. Since \mathfrak{A} is a model for Σ , there must be a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vdash \tau$. This implies that $\Sigma_0 \vDash \tau$, so $\Sigma \vDash \tau$.
- (\Leftarrow) Now suppose $\not\models_{\mathfrak{A}} \tau$. Since \mathfrak{A} is a model for Σ , this implies that no finite subset $\Sigma_0 \subseteq \Sigma$ can deduce τ , so $\Sigma_0 \not\models \tau$ implying $\Sigma_0 \not\models \tau$ for all $\Sigma_0 \in \mathcal{P}(\Sigma)$. However, if no finite subset of Σ can deduce τ , then Σ cannot deduce τ . Therefore, $\Sigma \not\models \tau$.

Problem 11.

For each of the following relations, give a formula which defines it in $(\mathbb{N}, +)$.

The language is assumed to have equality and the parameters \forall , +, \cdot .

(a) $\{0\}$.

$$f_1(x) = \forall y(x+y=y)$$

(b) {1}.

$$f_2(x) = \forall y(x \cdot y = y)$$

(c) $\{\langle m, n \rangle : n \text{ is the successor of } m \text{ in } \mathbb{N} \}.$

$$f_3(m,n) = \exists x (\forall y (x \cdot y = y) \land (m + x = n))$$

(d) $\{\langle m, n \rangle : m < n \text{ in } \mathbb{N} \}.$

$$f_4(m,n) = \exists x (\neg \forall y (x+y=y) \land (m+x=n))$$