Named Entity Recognition (NER): A Deep Learning Approach for NER Tagging

Submitted By: Abhishek

Behera

Contents

- Introduction
- Data set Overview
- Methodology
- Model Architecture
- Training and Evaluation
- Model Performance
- Confusion Matrix Analysis
- Future Improvements
- Conclusion

Introduction

- Named Entity Recognition (NER) identifies entities such as names, locations, and organizations in text.
- The goal is to classify words in sentences into predefined categories.
- This presentation discusses dataset, methodology, model, evaluation, and conclusions.

Dataset Overview

- Dataset: ner_dataset.csv
- •Contains:
 - Sentence Number (#)
 - •Word
 - •Part of Speech (POS) *Ignored for this case*
 - Named Entity Recognition (NER) Tag
- •IOB2 Tagging Scheme:
 - •B (Beginning of entity)
 - •I (Inside entity)
 - •O (Outside entity)

Methodology

- 1. Data Preprocessing & EDA
 - 1. Filling missing sentence numbers.
 - 2. Data visualization
 - 3. Mapping words to indices.
 - 4. Padding sequences for uniform input size.
- 2. Model Development
 - 1. Baseline model and improvements.
- 3. Training & Evaluation
 - 1. Data split: 70% Train, 10% Validation, 20% Test

Model Architecture

- Sequential Model with LSTM layers:
 - Embedding Layer: Converts words into dense vectors.
 - **Bidirectional LSTM**: Captures long-range dependencies.
 - TimeDistributed Dense Layer: Predicts NER tags.
- Activation function: Softmax for multiclass classification.
- Optimizer: Adam
- Loss Function: Categorical Crossentropy

```
# Define LSTM model
model = Sequential([
    Embedding(input_dim=n_words + 1, output_dim=50, input_length=max_len),
    Bidirectional(LSTM(units=100, return_sequences=True, recurrent_dropout=0.1)),
    TimeDistributed(Dense(n_tags, activation="softmax"))
])
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
model.summary()
```

Model: "sequential 1"

Layer (type)	Output Shape	Param #				
embedding_1 (Embedding)	(None, 104, 50)	1758950				
<pre>bidirectional_1 (Bidirecti onal)</pre>	(None, 104, 200)	120800				
<pre>time_distributed_1 (TimeDi stributed)</pre>	(None, 104, 17)	3417				

Total params: 1883167 (7.18 MB)
Trainable params: 1883167 (7.18 MB)
Non-trainable params: 0 (0.00 Byte)

Training and Evaluation

• Training:

Epochs: 10

Batch Size: 32

 Loss: Categorical Crossentropy

```
# Train model
history = model.fit(
x train, np.array(y train),
validation data=(x val, np.array(y val)),
batch size=32,
epochs=10,
verbose=1
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
1050/1050 [==========] - 231s 220ms/step - loss: 0.0067 - accuracy: 0.9978 - val loss: 0.0306 - val accuracy: 0.9925
Epoch 10/10
```

Evaluation Metrics:

- Accuracy
- Precision, Recall, F1-Score

```
# Classification report
print(classification_report(y_true_flat, y_pred_flat))
```

	precision	recall	f1-score	support
B-art	0.37	0.19	0.25	86
B-eve	0.37	0.28	0.32	60
B-geo	0.87	0.85	0.86	7664
B-gpe	0.94	0.94	0.94	3175
B-nat	0.55	0.34	0.42	50
B-org	0.73	0.70	0.71	3913
B-per	0.83	0.78	0.81	3389
B-tim	0.91	0.86	0.88	4049
I-art	0.18	0.05	0.08	58
I-eve	0.29	0.19	0.23	53
I-geo	0.80	0.75	0.77	1450
I-gpe	1.00	1.00	1.00	788672
I-nat	0.33	0.08	0.13	12
I-org	0.80	0.72	0.76	3315
I-per	0.85	0.85	0.85	3445
I-tim	0.79	0.70	0.74	1300
0	0.99	0.99	0.99	176877
accuracy			0.99	997568
macro avg	0.68	0.60	0.63	997568
weighted avg	0.99	0.99	0.99	997568

```
# Evaluate model
eval_results = model.evaluate(x_test, np.array(y_test))
print(f"Test Loss: {eval_results[0]}, Test Accuracy: {eval_results[1]}")
```

Test Loss: 0.03228366747498512, Test Accuracy: 0.9925057888031006

Model Performance

- Accuracy: Test accuracy is 99.2%.
- Loss: Decreased over training epochs.
- Classification Report:
 - Precision, Recall, and F1score for each tag.
 - Higher performance on common entities.

Confusion Matrix Analysis

- Displays misclassifications.
- Identifies frequent errors.
- Insights for further improvement:
 - Handling rare entities.
 - Expanding dataset.

```
# Confusion matrix

cm = confusion_matrix(y_true_flat, y_pred_flat, labels=tags)

plt.figure(figsize=(12, 18))

sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=tags, yticklabels=tags)

plt.xlabel("Predicted")

plt.ylabel("True")

plt.title("Confusion Matrix for NER Model")

plt.show()
```

						Co	nfusi	on Ma	trix f	or NE	R Mo	del							
gpe	/8865	0	0	0	0	0	0	4	0	1	0	0	0	0	0	9	3		
B-org	. 0	2736	9	12	0	3	8	49	447	38	0	116	431	1	0	6	57		- 700000
B-tim	0	20	3480	0	0	82	3	0	401	4	1	1	52	0	0	0	5		700000
B-art 6	0	16	1	16	0	1	0	5	32	1	0	2	8	0	0	1	3		
Fart	. 0	2	0	0	3	1	1	0	18	3	0	2	1	0	0	7	20		- 600000
Ę.	. 0	3	106	0	0	913	1	1	239	3	3	1	25	0	0	1	4		
	0	10	6	2	0	2	17	4	10	0	2	1	3	1	0	0	2		- 500000
B-gpe B-eve	- 3	29	0	0	0	0	0	2974	27	2	0	7	129	0	0	2	2		
9 o -	. 0	246	178	4	1	128	7	29	17572	2 84	8	110	116	8	2	30	204		- 400000
-ber	0	28	0	1	3	3	0	1	204	2913	0	145	11	0	0	25	111		
- eve	. 0	4	1	0	1	2	6	0	14	0	10	0	0	0	0	0	15		- 300000
B-per 1	. 0	137	2	2	0	3	0	7	304	152	0	2654	85	2	0	6	35		
B-geo B	. 0	418	38	4	0	10	2	63	405	32	0	89	6517	2	0	53	31		- 200000
B-nat B-	. 0	3	1	0	0	0	0	0	24	0	1	2	1	17	0	1	0		200000
Fnat B	. 0	0	0	0	0	2	0	0	9	0	0	0	0	0	1	0	0		
Fgeo Fr	. 3	9	3	1	1	5	0	8	90	58	2	6	80	0	0	1083	101		- 100000
Forg Fg	. 1	100	1	1	8	3	1	11	445	141	8	46	40	0	0	128	2381		
ĭ								B-gpe				B-per			l-nat				- 0

Future Improvements

- Hyperparameter tuning.
- Pre-trained embeddings (e.g., Word2Vec, GloVe, BERT).
- Implementing CRF (Conditional Random Fields) on top of LSTM.
- Expanding the dataset for more diverse training.
- Deploying model using API for real-time predictions.

Conclusion

- Successfully trained an LSTM-based NER model.
- Achieved high accuracy and reasonable performance on test data.
- Identified areas for improvement in handling rare entities.
- Future scope includes integration with advanced NLP models and deployment strategies.

Thanks