Uczenie ze wzmocnieniem

Piotr Duch

pduch@iis.p.lodz.pl Instytut Informatyki Stosowanej Politechnika Łódzka

Zima 2022

Plan wykładu

- 1 Wprowadzenie
- 2 Algorytmy w systemach wieloagentowych
- 3 Podstawowe pojęcia
- 4 Uczenie pasywne
- 5 Uczenie aktywne
- 6 Aproksymacja funkcji wartości stanu

Informacje ogólne:

- Materiały wykładowe oraz laboratoryjne dostępne są na stronie (pduch.iis.p.lodz.pl).
- Literatura podstawowa:
 - Richard S. Sutton, and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
 - Morales, Miguel. *Grokking deep reinforcement learning*. Simon and Schuster, 2020.
- Wykłady uzupełniające:
 - RL Course by David Silver https://www.youtube.com
 - CS 188: Artificial Intelligence by Pieter Abbeel (wykład 10 i 11)https://www.youtube.com/watch?v=IXuHxkpO5E8
- Materiały dodatkowe:
 - Practical RL Course by Yandex School of Data Analysis https://github.com/yandexdataschool/Practical_RL
 - CS 188: Introduction to Artificial Intelligence by Berkeley University of California https://inst.eecs.berkeley.edu/cs188/fa19/project3/

Informacje ogólne - zaliczenie:

- Projekt:
 - Zadania do wykonania w Pythonie (3 notebooki pythonowe, jeden projekt),
 - Projekt własnej gry w Pythonie wraz z implementacja wybranych algorytmów.
 - Rozbudowa projektu Pacman (implementacja algorytmu aproksymacji funkcji wartości stanu),
 - Ocena końcowa:
 - Część I 66% 73% ocena 3, 73% 80% ocena 3.5, 80% 87% ocena 4, 87% 94% ocena 4.5, 94% i wyżej 5.
 - Część II ocena projektu.
 - Część III ocena na podstawie turnieju botów.
 - Ocena końcowa jest oceną ważoną z każdej części (30%, 40%, 40%).
 Konieczne jest uzyskanie pozytywnej oceny z każdej części.
- Wykład ??.
- Kontakt:
 - poprzez platformę MS Teams na chacie indywidualnym,
 - mailowo: pduch@iis.p.lodz.pl.

Informacje szczegółowe - plan działania:

- Minimax, Alpha-Beta, Expectimax *Project 2: Multi-Agent Search, Berkeley*.
- MCTS *Monte Carlo Tree Search* implementacja we własnym projekcie.
- Uczenie pasywne (Policy Evaluation, Policy Improvement, Policy Iteration, Value Iteration) Notebook Pythonowy 1 + implementacja wybranego algorytmu we wsłasnym projekcie (Pliki dodatkowe do notebooków).
- Uczenie aktywne (*Q-Learning*, *Sarsa*, *Expected Sarsa*, *Sarsa* (λ), *Double Q-Learning*) Notebook Pythonowy 2 i Notebook Pythonowy 3 + implementacja wybranego algorytmu we wsłasnym projekcie.
- Aproksymacja funkcji wartości implementacja we własnym projekcie
 + implementacja w pacmanie (link zostanie dodany później).

5/156

Informacje szczegółowe - terminy:

- Minimax, Alpha-Beta, Expectimax 3.11.2022.
- MCTS *Monte Carlo Tree Search* implementacja we własnym projekcie 22.12.2022.
- Uczenie pasywne (*Policy Evaluation*, *Policy Improvement*, *Policy Iteration*, *Value Iteration*) 10.11.2022 + implementacja wybranego algorytmu we wsłasnym projekcie 8.12.2022.
- Uczenie aktywne (Q-Learning, Sarsa, Expected Sarsa, Sarsa (λ),
 Double Q-Learning) 24.11.2022 i implementacja wybranego
 algorytmu we wsłasnym projekcie 15.12.2022.
- Aproksymacja funkcji wartości implementacja we własnym projekcie
 12.01.2023 + implementacja w pacmanie (link zostanie dodany później) 26.01.2023.

Wprowadzenie

Wprowadzenie

Wprowadzenie

- Uczenie z nadzorem:
 - Klasyfikacja.
 - Regresja (predykcja).

Wprowadzenie

- Uczenie z nadzorem:
 - Klasyfikacja.
 - Regresja (predykcja).
- Uczenie bez nadzoru:
 - Grupowanie (m.in. klasteryzacja, analiza skupień).
 - Redukcja wymiarów.
 - Uzupełnianie wartości.

Wprowadzenie

- Uczenie z nadzorem:
 - Klasyfikacja.
 - Regresja (predykcja).
- Uczenie bez nadzoru:
 - Grupowanie (m.in. klasteryzacja, analiza skupień).
 - Redukcja wymiarów.
 - Uzupełnianie wartości.
- Uczenie ze wzmocnieniem.

Wprowadzenie

Wprowadzenie

Co odróżnia uczenie ze wzmocnieniem od innych działów uczenia maszynowego:

■ Nie potrzebna jest baza danych - agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.

Wprowadzenie

- Nie potrzebna jest baza danych agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.
- Nagroda może być odłożona w czasie.

Wprowadzenie

- Nie potrzebna jest baza danych agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.
- Nagroda może być odłożona w czasie.
- Czas ma znaczenie.

Wprowadzenie

- Nie potrzebna jest baza danych agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.
- Nagroda może być odłożona w czasie.
- Czas ma znaczenie.
- Działanie agenta ma wpływ na dane, jakie otrzymuje ze środowiska.

Wprowadzenie

Co to jest:

- **Agent** wchodzi w interakcję ze **środowiskiem**, w którym chce osiągnąć określony **cel**.
- Akcje podjęte przez agenta są oceniane przez środowisko.
- W wyniku wykonania wybranej akcji, agent otrzymuje **nagrodę** (może być pozytywna lub negatywna).

(Reinforcement Learning)

- Uczenie pasywne:
 - Ocena strategii (ang. Policy Evaluation)
 - Polepszanie strategii (ang. *Policy Improvement*)
 - Iteracyjne doskonalenie strategii (ang. *Policy Iteration*)
 - Iteracyjne obliczanie funkcji wartości (ang. Value Iteration)

(Reinforcement Learning)

Uczenie ze wzmocnieniem - wprowadzenie Metody cd.

- Uczenie aktywne:
 - Metody różnic czasowych (ang. Temporal Difference Learning)
 - Monte Carlo
 - Q-Learning
 - SARSA
 - Metody aproksymacyjne
 - Aproksymacja funkcji wartości (ang. Approximate Q-Learning)
 - Metody wykorzystujące głebokie sieci neuronowe
 - Deep Q-Learning
 - Double Q-Learning
 - Actor-Critic
 - REINFORCE
 - Policy Gradient

Przykłady

Rysunek 1: Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." (2013).

Przykłady cd.

Pan, Xinlei, et al. "Virtual to real reinforcement learning for autonomous driving." arXiv preprint arXiv:1704.03952 (2017).

Przykłady cd.

A: Where are you going? (1)

B: I'm going to the police station. (2)

A: I'll come with you. (3)

B: No, no, no, no, you're not going anywhere. (4)

A: Why? (5)

B: I need you to stay here. (6)

A: I don't know what you are talking about. (7)

A: How old are you? (1)

B: I'm 16. Why are you asking? (2)

A I thought you were 12. (3)

B: What made you think so? (4)

A: I don't know what you are talking about. (5)

B: You don't know what you are saying. (6)

Li, Jiwei, et al. "Deep reinforcement learning for dialogue generation." (2016).

Przykłady cd.

Obrót akcjami:

- Dempster, Michael AH, and Vasco Leemans. "An automated FX trading system using adaptive reinforcement learning." Expert Systems with Applications 30.3 (2006): 543-552.
- Xiong, Zhuoran, et al. "Practical deep reinforcement learning approach for stock trading." arXiv preprint arXiv:1811.07522 (2018).
- Carapuço, João, Rui Neves, and Nuno Horta. "Reinforcement learning applied to Forex trading." Applied Soft Computing 73 (2018): 783-794.

17 / 156

Przykłady cd.

Rysunek 3: Od AlphaGo do MuZero

Przykłady cd.

Algorytmy w systemach wieloagentowych (ang. *Multi-agent search algorithms*)

Algorytmy

- Minimax
- Alpha-Beta
- Monte Carlo Tree Search (MCTS)

Algorytmy

Minimax

Rysunek 5: Minimax

Algorytmy

Alpha-Beta

Rysunek 6: Alpha-Beta - Wikipedia

(Reinforcement Learning)

Algorytmy MCTS

Rysunek 7: Monte-Carlo Tree Search in Board Games

(Reinforcement Learning)

Algorytmy MCTS

 Selekcja - wybieramy ścieżkę od początkowego węzła do najbardziej obiecującego liści.

Algorytmy MCTS

 Selekcja - wybieramy ścieżkę od początkowego węzła do najbardziej obiecujacego liści.

$$UCB(node_i) = \frac{w_i}{n_i} + c\sqrt{\frac{logN}{n_i}}$$
 (1)

- Ekspansja rozwinięcie, wybieramy losowy węzeł z ostatniego liścia.
- Symulacja (Roll-out) rozgrywamy wiele gier losowo zapamiętując wyniki.
- Propagacja wsteczna aktualizujemy wartości wcześniejszych węzłów.

(Reinforcement Learning)

Algorytmy Projekt

- Minimax, Alpha-Beta, Expectimax *Project 2: Multi-Agent Search, Berkeley*.
- MCTS implementacja we własnym projekcie.

Uczenie ze wzmocnieniem Podstawowe pojęcia

(Reinforcement Learning)

Podstawowe pojęcia

Interakcja agent - środowisko

(Reinforcement Learning)

Środowisko (ang. Environment, np. plansza do gry Pacman):

- Opisuje świat, z którym agent wchodzi w interakcję
- Wejście:
 - Akcja
- Wyjście:
 - Stan
 - Nagroda

Agent (ang. Agent):

- Poprzez interakcję ze środowiskiem uczy się, jak osiągnąć założony cel
- Wejście:
 - Stan
 - Nagroda
- Wyjście:
 - Akcja

Nagroda (ang. Reward):

- Wartość zwracana przez środowisko w momencie wykonania akcji wybranej przez agenta.
- Reprezentuje cel, lub cele, jakie agent ma osiągnąć.
- Oznaczenie: r_t nagroda otrzymana w chwili czasu t.

Oczekiwana nagroda (ang. Return):

- Oczekiwana nagroda po zakończeniu bieżącego epizodu.
- Celem uczenia za wzmocnieniem jest maksymalizacja nagrody oczekiwanej.
- lacktriangle Oznaczenie: G_t oczekiwana nagroda w chwili czasu t.

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$
 (2)

Akcja (ang. Action):

- Dyskretna (1 z N dostępnych w danym środowisku).
- Ciągła (wartość lub wektor wartości).

Strategia (ang. Policy):

- Zasady, według których wybierana jest akcja w danym stanie.
- Może być deterministyczna lub stochastyczna.
- \blacksquare Oznaczenie: π .

Funkcja wartości (oceny, ang. Value function):

- Określa, jak dobrze być w danym stanie.
- Oczekiwana suma nagród, jaką możemy otrzymać, rozpoczynając w stanie s i działając zgodnie ze strategią π .
- Rodzaje:
 - Funkcja wartości stanu $V^{\pi}(s)$ jak dobrze być w stanie s, działając zgodnie ze strategią π .
 - Funkcja wartości stanu-akcji $Q^{\pi}(s, a)$ jak dobrze będąc w stanie s jest wykonać akcję a, działając zgodnie ze strategią π .

Stan (ang. State):

- Zbiór wartości opisujących aktualną sytuację.
- Jest podstawą wyboru akcji przez agenta zgodnie z jego strategią.

Proces decyzyjny Markowa

Własność Markowa

Własność procesów stochastycznych polegająca na tym, że warunkowe rozkłady prawdopodobieństwa przyszłych stanów procesu są zdeterminowane wyłącznie przez jego bieżący stan, bez względu na przeszłość.

Wikipedia

Proces decyzyjny Markowa

Proces decyzyjny Markowa (ang. Markov Decision Process (MDP))

Ciąg zdarzeń, w którym prawdopodobieństwo każdego zdarzenia zależy jedynie od wyniku poprzedniego. W ujęciu matematycznym, procesy Markowa to takie procesy stochastyczne, które spełniają własność Markowa.

Wikipedia

Proces decyzyjny Markowa

Elementy MDP:

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).
- Akcje:
 - A zbiór wszystkich możliwych akcji.
 - *a* pojedyncza akcja.
 - \blacksquare A(s) zbiór akcji możliwych do wykonania w stanie s.

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).
- Akcje:
 - A zbiór wszystkich możliwych akcji.
 - *a* pojedyncza akcja.
 - A(s) zbiór akcji możliwych do wykonania w stanie s.
- Model środowiska:
 - P(s'|s,a) prawdopodobieństwo przejścia ze stanu s do stanu s', wykonując akcję a.
 - P(s', r|s, a) prawdopodobieństwo przejścia ze stanu s do stanu s' otrzymania nagrody r, wykonując akcję a.

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).
- Akcje:
 - A zbiór wszystkich możliwych akcji.
 - *a* pojedyncza akcja.
 - \blacksquare A(s) zbiór akcji możliwych do wykonania w stanie s.
- Model środowiska:
 - P(s'|s,a) prawdopodobieństwo przejścia ze stanu s do stanu s', wykonując akcję a.
 - P(s', r|s, a) prawdopodobieństwo przejścia ze stanu s do stanu s' otrzymania nagrody r, wykonując akcję a.
- Funkcja nagrody R(s).

Proces decyzyjny Markowa

Funkcje wartości

■ Funkcja wartości stanu dla strategii π .

$$v_{\pi}(s) \doteq \mathbb{E}[G_t|S_t = s] \tag{3}$$

Funkcje wartości

■ Funkcja wartości stanu dla strategii π .

$$\nu_{\pi}(s) \doteq \mathbb{E}[G_t | S_t = s] \tag{3}$$

■ Funkcja wartości stanu-akcji dla strategii π .

$$q_{\pi}(s,a) \doteq \mathbb{E}[G_t|S_t=s,A_t=a] \tag{4}$$

Funkcje wartości

■ Funkcja wartości stanu dla strategii π .

$$v_{\pi}(s) \doteq \mathbb{E}[G_t|S_t = s] \tag{3}$$

■ Funkcja wartości stanu-akcji dla strategii π .

$$q_{\pi}(s,a) \doteq \mathbb{E}[G_t|S_t=s,A_t=a] \tag{4}$$

■ Fukcje wartości mogą być obliczane na podstawie doświadczenią.

Równanie Bellmana

$$\begin{split} v_{\pi}(s) &\doteq \mathbb{E}[G_t|S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_t = s] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)[r + \gamma \mathbb{E}[G_{t+1}|S_{t+1} = s]] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)[r + \gamma v_{\pi}(s')], \text{dla wszystkich } s \in S. \end{split}$$

Równanie Bellmana

$$v_{\pi}(s) \doteq \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Równanie Bellmana

Prawdopodobieństwo wyboru

Równanie Bellmana

Prawdopodobieństwo wyboru

wybierając akcję a zgodnie z założona stategia π

Równanie Bellmana

Równanie Bellmana

z założona stategia π

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdział 1 Introduction.
 - Rozdział 3 Finite Markov Decision Processes.
- Książka Grokking Deep Reinforcement Learning, Miguel Morales, 2020.
 - Rozdział 2 Mathematical foundations of reinforcement learning.
- Video RL Course by David Silver Lecture 1: Introduction to Reinforcement Learning.

Uczenie pasywne (ang. *model based learning*)

Algorytmy:

- Ocena strategii (ang. Policy Evaluation).
- Polepszanie strategii (ang. Policy Improvement).
- Iteracyjne doskonalenie strategii (ang. Policy Iteration).
- Iteracyjne obliczanie funkcji wartości (ang. Value Iteration).

Uczenie pasywne Ocena strategii

Ocena strategii (ang. Policy Evaluation)

Cele:

- Oszacowanie wartości dla każdego stanu, dla założonej strategii.
- Wyznaczenie $v_{\pi}(s)$ dla każdego $s \in S$, dla założonej strategii π .

Ocena strategii (ang. Policy Evaluation)

Cele:

- Oszacowanie wartości dla każdego stanu, dla założonej strategii.
- Wyznaczenie $v_{\pi}(s)$ dla każdego $s \in S$, dla założonej strategii π .

Rozwiązanie:

■ Metoda iteracyjna:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Ocena strategii (ang. Policy Evaluation)

Cele:

- Oszacowanie wartości dla każdego stanu, dla założonej strategii.
- Wyznaczenie $v_{\pi}(s)$ dla każdego $s \in S$, dla założonej strategii π .

Rozwiązanie:

■ Metoda iteracyjna:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Warianty:

- Dwie macierze.
- Obliczenia w miejscu.

Ocena strategii (ang. Policy Evaluation)

Ocena strategii

Wejście:

- \blacksquare π strategia, która ma zostać oszacowana.
- \blacksquare θ dokładność szacowania strategii.

Wyjście:

lacktriangle V(s) - funkcja wartości stanów wyznaczona dla strategii π .

Inicjalizacja tablicy wartości stanów V(s) losowymi wartościami, za wyjątkiem stanu końcowego, któremu przypisana jest wartość 0.

Licz:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \mathsf{Dla} \ \mathsf{ka\dot{z}dego} \ s \in \mathcal{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')] \\ \Delta \leftarrow \max\left(\Delta, |v - V(s)|\right) \end{array}$$

Dopóki $\Delta > \theta$

 $\Lambda \leftarrow 0$

Ocena strategii (ang. Policy Evaluation)

Iterative Policy Evaluation

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta \neq 0$ determining accuracy of estimation initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

Loop for each
$$s \in S$$
:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$
 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta > \theta$

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy

Model środowiska:

Strategia:

W każdym stanie prawdopodobieństwo wyboru każdej z możliwych akcji jest takie samo.

(Reinforcement Learning) Zima 2022 51 / 156

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wejście:

- Stany:
 - $S = \{s_0, s_1, s_2\}.$
- Akcje:
 - $A_{s_0} = \{a_0, a_1\}.$
 - $A_{s_1} = \{a_0, a_1\}.$
 - $A_{s_2} = \{a_0, a_1\}.$
- Funkcja wartości:
 - $V(s_0) = 0, V(s_1) = 0, V(s_2) = 0.$
- $= (30) = 0, \ (31) = 0,$
- Strategia:
 - $\pi(a_0|s_0) = \pi(a_1|s_0) = 0.5.$
 - $\pi(a_0|s_1) = \pi(a_1|s_1) = 0.5.$
 - $\pi(a_0|s_2) = \pi(a_1|s_2) = 0.5.$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wejście:

- Prawdopodobieństwo przejścia:
 - $p(s_2|s_0, a_0) = 0.5$, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.
 - $p(s_0|s_1, a_0) = 0.7, \ p(s_1|s_1, a_0) = 0.1, \ p(s_2|s_1, a_0) = 0.2, \\ p(s_1|s_1, a_1) = 0.95, \ p(s_2|s_1, a_1) = 0.05.$
 - $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- Nagroda:
 - $r(s_1, a_0, s_0) = 5.$
 - $r(s_2, a_1, s_0) = -1.$
 - W pozostałych przypadkach: r = 0.
- Discount factor:
 - $\gamma = 0.9$.

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Dla każdego $s \in S$:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Krok 1 (dla stanu s_0):

Potrzebne dane:

- $\pi(a_0|s_0) = \pi(a_1|s_0) = 0.5.$
- $p(s_2|s_0, a_0) = 0.5$, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.
- r = 0.
- $V_0(s_0) = V_0(s_1) = V_0(s_2) = 0$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Krok 1 (dla stanu s_0):

$$V_{1}(s_{0}) = \pi(a_{0}|s_{0}) * [p(s_{2}|s_{0}, a_{0}) * (r + \gamma * V_{0}(s_{2})) + p(s_{0}|s_{0}, a_{0}) * (r + \gamma * V_{0}(s_{0}))] + \pi(a_{1}|s_{0}) * [p(s_{2}|s_{0}, a_{1}) * (r + \gamma * V_{0}(s_{2}))]$$

Po podstawieniu wartości otrzymujemy:

$$V_1(s_0) = 0.5 * [0.5*(0+0.9*0)+ 0.5*(0+0.9*0)]+ 0.5 * [1*(0+0.9*0)]$$

Ostatecznie otrzymujemy:

$$V_1(s_0)=0$$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Dla każdego $s \in S$:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Krok 1 (dla stanu s_1):

Potrzebne dane:

- $\pi(a_0|s_1) = \pi(a_1|s_1) = 0.5.$
- $p(s_0|s_1, a_0) = 0.7$, $p(s_1|s_1, a_0) = 0.1$, $p(s_2|s_1, a_0) = 0.2$, $p(s_1|s_1, a_1) = 0.95$, $p(s_2|s_1, a_1) = 0.05$.
- $r(s_1, a_0, s_0) = 5, r = 0.$
- $V_0(s_0) = V_0(s_1) = V_0(s_2) = 0$

Ocena strategii (ang. *Policy Evaluation*) - przykład liczbowy cd. Krok 1 (dla stanu s_1):

$$V_{1}(s_{1}) = \pi(a_{0}|s_{1}) * [p(s_{0}|s_{1}, a_{0}) * (r(s_{1}, a_{0}, s_{0}) + \gamma * V_{0}(s_{0})) + p(s_{1}|s_{1}, a_{0}) * (r + \gamma * V_{0}(s_{1})) + p(s_{2}|s_{1}, a_{0}) * (r + \gamma * V_{0}(s_{2}))] + \pi(a_{1}|s_{1}) * [p(s_{1}|s_{1}, a_{1}) * (r + \gamma * V_{0}(s_{1})) + p(s_{2}|s_{1}, a_{1}) * (r + \gamma * V_{0}(s_{2}))]$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} V_1(s_1) &= 0.5 \quad * \quad [0.7*(5+0.9*0) + \\ &\quad 0.1*(0+0.9*0) + \\ &\quad 0.2*(0+0.9*0)] + \\ 0.5 \quad * \quad [0.95*(0+0.9*0) + \\ &\quad 0.05*(0+0.9*0)] \end{split}$$

Ostatecznie otrzymujemy:

$$V_1(s_1) = 1.75$$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Dla każdego $s \in S$:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Krok 1 (dla stanu s_2):

Potrzebne dane:

$$\pi(a_0|s_2) = \pi(a_1|s_2) = 0.5.$$

■
$$p(s_0|s_2, a_0) = 0.4$$
, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.

$$r(s_2, a_1, s_0) = -1, r = 0.$$

$$V_0(s_0) = V_0(s_1) = V_0(s_2) = 0$$

Ocena strategii (ang. *Policy Evaluation*) - przykład liczbowy cd. Krok 1 (dla stanu s_2):

$$V_{1}(s_{2}) = \pi(a_{0}|s_{2}) * [p(s_{0}|s_{2}, a_{0}) * (r + \gamma * V_{0}(s_{0})) + p(s_{2}|s_{2}, a_{0}) * (r + \gamma * V_{0}(s_{2}))] +$$

$$\pi(a_{1}|s_{2}) * [p(s_{0}|s_{2}, a_{1}) * (r(s_{2}, a_{1}, s_{0}) + \gamma * V_{0}(s_{0})) + p(s_{1}|s_{2}, a_{1}) * (r + \gamma * V_{0}(s_{1})) +$$

$$p(s_{2}|s_{2}, a_{1}) * (r + \gamma * V_{0}(s_{2}))]$$

Po podstawieniu wartości otrzymujemy:

$$V_1(s_2) = 0.5 * [0.4 * (0 + 0.9 * 0) + 0.6 * (0 + 0.9 * 0)] + 0.5 * [0.3 * (-1 + 0.9 * 0) + 0.4 * (0 + 0.9 * 0) + 0.3 * (0 + 0.9 * 0)]$$

Ostatecznie otrzymujemy:

$$V_1(s_2) = -0.15$$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wartości funkcji dla poszczególnych stanów wyznaczone po $\it n$ krokach algorytmu szacowania strategii.

Stan	Start	Krok 1	Krok 5	Krok 25	Krok 73
$V(s_0)$	0	0	0.24	1.32	1.47
$V(s_1)$	0	1.75	3.31	4.40	4.55
$V(s_2)$	0	-0.15	0.46	1.54	1.69

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wartości funkcji dla poszczególnych stanów wyznaczone po n krokach algorytmu szacowania strategii - implementacja in-place.

Stan	Start	Krok 1	Krok 5	Krok 25	Krok 53
$V(s_0)$	0	0	0.49	1.42	1.47
$V(s_1)$	0	1.75	3.56	4.51	4.55
$V(s_2)$	0	0.09	0.76	1.64	1.69

Ocena strategii (ang. Policy Evaluation) - ćwiczenie

Implementacja algorytmu oceny strategii w pliku PolicyEvaluation.py:

- implemtentacja algorytmu z wykorzystaniem dwóch osobnych macierzy do obliczeń (funkcja policy_eval_two_arrays),
- implemtentacja algorytmu z wykorzystaniem obliczeń w miejscu (funkcja *policy_eval_in_place*).

(Reinforcement Learning)

Uczenie pasywne Poprawa strategii

Poprawa strategii (ang. Policy Improvement)

Problem:

■ Jak można poprawić aktualną strategię?.

Twierdzenie o poprawie strategii (ang. Policy Improvement Theorem)

$$q_{\pi}(s,a) \doteq \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$
 (6)

$$\forall s \in S, q_{\pi}(s, \pi'(s)) \geqslant \nu_{\pi}(s) \rightarrow \nu'_{\pi}(s) \geqslant \nu_{\pi}(s)$$
 (7)

Poprawa strategii (ang. Policy Improvement)

Zgodnie z twierdzeniem o poprawie strategii, zastosowanie zachłannej strategii zawsze będzie lepsze, bądź równe obecnej strategii:

$$\pi'(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$
 (8)

Uczenie pasywne Iteracyjne doskonalenie strategii

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Cel:

■ Określenie optymalnej strategii.

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Cel:

■ Określenie optymalnej strategii.

Rozwiązanie:

- Oszacowanie aktualnej strategii (algorytm *Policy Evaluation*).
- Poprawienie aktualnej strategii (algorytm Policy Improvement).

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Cel:

■ Określenie optymalnej strategii.

Rozwiązanie:

- Oszacowanie aktualnej strategii (algorytm Policy Evaluation).
- Poprawienie aktualnej strategii (algorytm Policy Improvement).

Optymalna strategia:

Jeżeli zastosowanie algorytmu Policy Improvement na aktualnej strategii jej nie zmieni, to oznacza, że aktualna strategia jest optymalna.

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Wyjście:

- $V \approx v_*$ optymalna funkcja wartości stanów.
- $\pi \approx \pi_*$ optymalna strategia.

Inicjalizacja tablicy strategii losowymi akcjami $\pi(s) \in A(s)$ dla $s \in S$.

Licz:

```
strategia\_stabilna \leftarrow true
V \leftarrow ocena\_strategii(\pi)
Dla każdego s \in S:
poprzednia\_akcja \leftarrow \pi(s)
\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s'} \sum_r p(s', r|s, a)[r + \gamma V(s')]
Jeżeli poprzednia\_akcja \neq \pi(s) ustaw strategia\_stabilna \leftarrow false
Dopóki strategia\_stabilna == false
```

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Policy Iteration

- 1. Initialization
 - $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathbf{A}(s)$ arbitrarily for all $s \in S$.
- 2. Policy Evaluation
- 3. Policy Improvement

Loop:

```
\begin{aligned} \textit{policy\_stable} &\leftarrow \textit{true} \\ \textit{For each } s \in \textit{S}: \\ &\textit{old\_action} \leftarrow \pi(s) \\ &\pi(s) \leftarrow \text{argmax}_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma V(s')] \\ &\textit{If old\_action} \neq \pi(s), \textit{ then policy\_stable} \leftarrow \textit{false} \end{aligned}
```

If policy_stable == false, then stop and return $V \approx \nu_*$ and $\pi \approx \pi_*$; else go to 2

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

(Reinforcement Learning)

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy

Model środowiska:

Strategia:

W każdym stanie wybieramy akcję a_0 .

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wejście:

■ Stany:

$$S = \{s_0, s_1, s_2\}.$$

- Akcje:
 - $A_{s_0} = \{a_0, a_1\}.$
 - $A_{s_1} = \{a_0, a_1\}.$
 - $A_{s_2} = \{a_0, a_1\}.$
- Strategia:
 - $\pi(s_0) = a_0.$
 - $\pi(s_1)=a_0.$
 - $\pi(s_2) = a_0.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wejście:

- Prawdopodobieństwo przejścia:
 - $p(s_2|s_0, a_0) = 0.5$, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.
 - $p(s_0|s_1, a_0) = 0.7, \ p(s_1|s_1, a_0) = 0.1, \ p(s_2|s_1, a_0) = 0.2, \\ p(s_1|s_1, a_1) = 0.95, \ p(s_2|s_1, a_1) = 0.05.$
 - $p(s_0|s_2, a_0) = 0.4, \ p(s_2|s_2, a_0) = 0.6, \ p(s_0|s_2, a_1) = 0.3, \ p(s_1|s_2, a_1) = 0.3, \ p(s_2|s_2, a_1) = 0.4.$
- Nagroda:
 - $r(s_1, a_0, s_0) = 5.$
 - $r(s_2, a_1, s_0) = -1.$
 - W pozostałych przypadkach: r = 0.
- Discount factor:
 - $\gamma = 0.9$.

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Funkcja wartości obliczona dla strategii π_0 (za pomocą algorytmu *Policy Evaluation*):

- $v_{\pi_0}(s_0) = 0.$
- $v_{\pi_0}(s_1) = 3.87.$
- $v_{\pi_0}(s_2) = 0.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie s_0 :

$$\pi_1(s_0) = \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi_0}(s')]$$

Potrzebne dane:

- $\pi(s_0) = a_0.$
- $p(s_2|s_0, a_0) = 0.5$, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.
- r = 0.
- $\mathbf{v}_{\pi_0}(s_0) = 0.0, \ v_{\pi_0}(s_1) = 3.87, \ v_{\pi_0}(s_2) = 0.0.$
- $\gamma = 0.9.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie s_0 :

$$\pi_1(s_0) = \operatorname{argmax}_a(p(s_2|s_0, a_0)[r + \gamma v_{\pi_0}(s_2)] + p(s_0|s_0, a_0)[r + \gamma v_{\pi_0}(s_0)],$$

$$p(s_2|s_0, a_1)[r + \gamma v_{\pi_0}(s_2)])$$

Po podstawieniu wartości otrzymujemy:

$$\pi_1(s_0) = \operatorname{argmax}_a(0.5[0 + 0.9 * 0] + 0.5[0 + 0.9 * 0], \ 1[0 + 0.9 * 0])$$

$$= \operatorname{argmax}_a(0,0)$$

Ostatecznie nową akcją wybraną dla stanu s_0 jest akcja a_0 , czyli:

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie s_1 :

$$\pi_1(s_1) = \operatorname{argmax}_{s} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi_0}(s')]$$

Potrzebne dane:

- $\pi(s_1) = a_0.$
- $p(s_0|s_1, a_0) = 0.7$, $p(s_1|s_1, a_0) = 0.1$, $p(s_2|s_1, a_0) = 0.2$, $p(s_1|s_1, a_1) = 0.95$, $p(s_2|s_1, a_1) = 0.05$.
- $r(s_1, a_0, s_0) = 5, r = 0.$
- $\mathbf{v}_{\pi_0}(s_0) = 0.0, \ v_{\pi_0}(s_1) = 3.87, \ v_{\pi_0}(s_2) = 0.0.$
- $\gamma = 0.9.$

lteracyjne doskonalenie strategii (ang. *Policy Iteration*) - przykład liczbowy cd. Poprawa strategii w stanie s_1 :

$$\begin{split} \pi_1(s_1) &= \mathsf{argmax}_a(\rho(s_0|s_1,a_0)[r + \gamma v_{\pi_0}(s_0)] + \\ & \quad \quad \rho(s_1|s_1,a_0)[r + \gamma v_{\pi_0}(s_1)] + \\ & \quad \quad \rho(s_2|s_1,a_0)[r + \gamma v_{\pi_0}(s_2)], \\ & \quad \quad \rho(s_1|s_1,a_1)[r + \gamma v_{\pi_0}(s_1)] + \\ & \quad \quad \rho(s_2|s_1,a_1)[r + \gamma v_{\pi_0}(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} \pi_1(\mathbf{s}_1) = & & \operatorname{argmax}_{\mathbf{a}}(0.7[5+0.9*0] + \\ & & & 0.1[0+0.9*3.87] + \\ & & & 0.2[0+0.9*0], \\ & & & 0.95[0+0.9*3.87] + \\ & & & 0.05[0+0.9*0]) \\ = & & & \operatorname{argmax}_{\mathbf{a}}(3.85,3.31) \end{split}$$

Ostatecznie nową akcją wybraną dla stanu s_1 jest akcja a_0 , czyli:

$$\pi_1(s_1)=a_0$$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie s2:

$$\pi_1(s_2) = \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi_0}(s')]$$

Potrzebne dane:

- $\pi(s_2) = a_0.$
- $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- $r(s_2, a_1, s_0) = -1, r = 0.$
- $\mathbf{v}_{\pi_0}(s_0) = 0.0, \ v_{\pi_0}(s_1) = 3.87, \ v_{\pi_0}(s_2) = 0.0.$
- $\gamma = 0.9.$

Iteracyjne doskonalenie strategii (ang. *Policy Iteration*) - przykład liczbowy cd. Poprawa strategii w stanie s_2 :

$$\begin{split} \pi_1(s_2) &= \mathsf{argmax}_a(\rho(s_0|s_2,a_0)[r + \gamma v_{\pi_0}(s_0)] + \\ & \rho(s_2|s_2,a_0)[r + \gamma v_{\pi_0}(s_2)], \\ & \rho(s_0|s_2,a_1)[r + \gamma v_{\pi_0}(s_0)] + \\ & \rho(s_1|s_2,a_1)[r + \gamma v_{\pi_0}(s_1)] + \\ & \rho(s_2|s_2,a_1)[r + \gamma v_{\pi_0}(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} \pi_1(s_2) = & \quad \mathsf{argmax}_a(0.4[0+0.9*0] + \\ & \quad 0.6[0+0.9*0], \\ & \quad 0.3[-1+0.9*0] + \\ & \quad 0.3[0+0.9*3.87] + \\ & \quad 0.4[0+0.9*0]) \\ = & \quad \mathsf{argmax}_a(0,0.741) \end{split}$$

Ostatecznie nową akcją wybraną dla stanu s_2 jest akcja a_1 , czyli:

$$\pi_1(s_2)=a_1$$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wyniki działania algorytmu iteracji strategii po 1 kroku:

- Strategia:
 - $\pi_1(s_0) = a_0.$
 - $\pi_1(s_1) = a_0.$
 - $\pi_1(s_2) = a_1.$
- Wartość funkcji:
 - $\mathbf{v}_{\pi_1}(s_0) = 2.83.$
 - $v_{\pi_1}(s_1) = 6.49.$
 - $v_{\pi_1}(s_2) = 3.47.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wyniki działania algorytmu iteracji strategii po 3 kroku:

- Optymalna strategia:
 - $\pi_3(s_0) = a_1.$
 - $\pi_3(s_1) = a_0.$
 - $\pi_3(s_2) = a_1.$
- Wartość funkcji:
 - $v_{\pi_3}(s_0) = 3.79.$
 - $\mathbf{v}_{\pi_3}(s_1) = 7.3.$
 - $v_{\pi_3}(s_2) = 4.21.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - ćwiczenie

Implementacja algorytmu iteracyjnego doskonalenia strategii w pliku *Policylteration.py*:

- implemtentacja algorytmu oceny strategii z wyokrzystaniem obliczeń w miejscu (funkcja policy_eval_in_place),
- implemtentacja algorytmu poprawy strategii (funkcja policy_improvement),
- implemtentacja algorytmu iteracyjnego doskonalenia strategii (funkcja policy_iteration).

(Reinforcement Learning)

Uczenie pasywne Iteracja funkcji wartości

Iteracja funkcji wartości (ang. Value Iteration)

Cel:

■ Optymalizacja wyznaczania najlepszej strategii.

Iteracja funkcji wartości (ang. Value Iteration)

Cel:

Optymalizacja wyznaczania najlepszej strategii.

Rozwiązanie:

■ Połączenie algorytmów oceny strategii i poprawy strategii w pojedynczej aktualizacji funkcji wartości stanu.

Iteracja funkcji wartości (ang. Value Iteration)

Cel:

Optymalizacja wyznaczania najlepszej strategii.

Rozwiązanie:

 Połączenie algorytmów oceny strategii i poprawy strategii w pojedynczej aktualizacji funkcji wartości stanu.

Optymalna strategia:

■ Strategia określana jest tylko jeden raz, na końcu działania algorytmu, na podstawie otrzymanej funkcji wartości.

Iteracja funkcji wartości (ang. Value Iteration)

Iteracja wartości (ang. Value Iteration)

Wejście:

 \blacksquare θ - dokładność obliczania funkcji wartości.

Wyjście:

 \blacksquare $\pi(\mathbf{s})$ - optymalna strategia π .

Inicjalizacja tablicy wartości stanów V(s) losowymi wartościami, za wyjątkiem stanu końcowego, któremu przypisana jest wartość 0.

Licz:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Dla każdego } s \in \mathcal{S} \text{:} \\ v \leftarrow V(s) \\ V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma V(s')] \\ \Delta \leftarrow \max\left(\Delta, |v - V(s)\right) \end{array}$$

Dopóki $\Delta > \theta$

Iteracja funkcji wartości (ang. Value Iteration)

Iteracja wartości (ang. Value Iteration)

Wyznaczenie optymalnej strategii, $\pi \approx \pi_*$, na podstawie obliczonej funkcji wartości, z wykorzystaniem algorytmu zachłannego:

$$\pi(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$
 (9)

(Reinforcement Learning)

Iteracja funkcji wartości (ang. Value Iteration)

Value Iteration

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0 Loop:

$$\Delta \leftarrow 0$$
 Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s))$$

Until $\Delta > \theta$

Output a deterministic policy, $\pi \approx \pi_*$, such that

$$\pi(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$
 (10)

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy

Model środowiska:

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Wejście:

■ Stany:

$$S = \{s_0, s_1, s_2\}.$$

- Akcje:
 - $A_{s_0} = \{a_0, a_1\}.$
 - $A_{s_1} = \{a_0, a_1\}.$
 - $A_{s_2} = \{a_0, a_1\}.$
- Funkcja wartości:
 - $V(s_0) = 0.$
 - $V(s_1) = 0.$
 - $V(s_2) = 0.$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Wejście:

- Prawdopodobieństwo przejścia:
 - $p(s_2|s_0, a_0) = 0.5, p(s_0|s_0, a_0) = 0.5, p(s_2|s_0, a_1) = 1.$
 - $p(s_0|s_1, a_0) = 0.7, \ p(s_1|s_1, a_0) = 0.1, \ p(s_2|s_1, a_0) = 0.2, \\ p(s_1|s_1, a_1) = 0.95, \ p(s_2|s_1, a_1) = 0.05.$
 - $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- Nagroda:
 - $r(s_1, a_0, s_0) = 5.$
 - $r(s_2, a_1, s_0) = -1.$
 - W pozostałych przypadkach: r = 0.
- Discount factor:
 - $\gamma = 0.9$.

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie so:

$$V(s_0) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Potrzebne dane:

$$p(s_2|s_0, a_0) = 0.5, p(s_0|s_0, a_0) = 0.5, p(s_2|s_0, a_1) = 1.$$

$$r=0.$$

$$V(s_0) = 0.0, V(s_1) = 0.0, V(s_2) = 0.0.$$

$$\gamma = 0.9.$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie so:

$$V(s_0) = \max_a (p(s_2|s_0, a_0)[r + \gamma V(s_2)] + \\ p(s_0|s_0, a_0)[r + \gamma V(s_0)], \\ p(s_2|s_0, a_1)[r + \gamma V(s_2)])$$

Po podstawieniu wartości otrzymujemy:

$$V(s_0) = \max_{a}(0.5[0 + 0.9 * 0] + 0.5[0 + 0.9 * 0],$$

$$1[0 + 0.9 * 0])$$

$$= \max_{a}(0,0)$$

Ostatecznie:

$$V(s_0) = 0$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie s₁:

$$V(s_1) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Potrzebne dane:

- $p(s_0|s_1, a_0) = 0.7$, $p(s_1|s_1, a_0) = 0.1$, $p(s_2|s_1, a_0) = 0.2$, $p(s_1|s_1, a_1) = 0.95$, $p(s_2|s_1, a_1) = 0.05$.
- $r(s_1, a_0, s_0) = 5, r = 0.$
- $V(s_0) = 0.0, V(s_1) = 0.0, V(s_2) = 0.0.$
- $\gamma = 0.9.$

Iteracja funkcji wartości (ang. $Value\ Iteration$) - przykład liczbowy cd. Poprawa strategii w stanie s_1 :

$$\begin{split} V(s_1) &= \mathsf{max}_a(p(s_0|s_1,a_0)[r+\gamma \, V(s_0)] + \\ & \quad p(s_1|s_1,a_0)[r+\gamma \, V(s_1)] + \\ & \quad p(s_2|s_1,a_0)[r+\gamma \, V(s_2)], \\ & \quad p(s_1|s_1,a_1)[r+\gamma \, V(s_1)] + \\ & \quad p(s_2|s_1,a_1)[r+\gamma \, V(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} V(s_1) = & \quad \mathsf{max_a}(0.7[5+0.9*0] + \\ & \quad 0.1[0+0.9*0] + \\ & \quad 0.2[0+0.9*0], \\ & \quad 0.95[0+0.9*0] + \\ & \quad 0.05[0+0.9*0]) \\ = & \quad \mathsf{max_a}(3.5,0) \end{split}$$

Ostatecznie:

$$V(s_1)=3.5$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie s2:

$$V(s_2) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Potrzebne dane:

- $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- $r(s_2, a_1, s_0) = -1, r = 0.$
- $V(s_0) = 0.0, V(s_1) = 3.5, V(s_2) = 0.0.$
- $\gamma = 0.9.$

Iteracja wartości - przykład liczbowy cd.

Poprawa strategii w stanie s2:

$$\begin{split} V(s_2) &= \mathsf{max}_a(p(s_0|s_2,a_0)[r+\gamma V(s_0)] + \\ & p(s_2|s_2,a_0)[r+\gamma V(s_2)], \\ & p(s_0|s_2,a_1)[r+\gamma V(s_0)] + \\ & p(s_1|s_2,a_1)[r+\gamma V(s_1)] + \\ & p(s_2|s_2,a_1)[r+\gamma V(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} V(s_2) = & \quad \mathsf{max_a}(0.4[0+0.9*0] + \\ & \quad 0.6[0+0.9*0], \\ & \quad 0.3[-1+0.9*0] + \\ & \quad 0.3[0+0.9*3.5] + \\ & \quad 0.4[0+0.9*0]) \\ = & \quad \mathsf{max_a}(0,0.645) \end{split}$$

Ostatecznie:

$$V(s_2) = 0.645$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Wartości funkcji dla poszczególnych stanów wyznaczone po n krokach algorytmu iteracji wartości.

Stan	Start	Krok 1	Krok 5	Krok 25	Krok 37
$V(s_0)$	0	0	1.96	3.75	3.79
$V(s_1)$	0	3.5	5.6	7.26	7.3
$V(s_2)$	0	0.65	2.52	4.17	4.21

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Po zakończeniu obliczania funkcji wartości, następnym krokiem jest wyznaczenie optymalnej strategii dla każdego ze stanów za pomocą wzoru:

$$\pi(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Wyznaczona optymalna strategia wygląda następująco:

- $\pi(s_0) = a_1.$
- $\pi(s_1) = a_0.$
- $\pi(s_2) = a_1.$

Iteracja funkcji wartości (ang. Value Iteration) - ćwiczenie

Implementacja algorytmu iteracyjnego obliczania funkcji wartości Valuelteration.py:

■ implementacja algorytmu iteracyjnego obliczania funkcji wartości (funkcja *value_iteration*).

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdział 4 Dynamic Programming.
- Książka Grokking Deep Reinforcement Learning, Miguel Morales, 2020.
 - Rozdział 3 Balancing immediate and long-term goals.
- Video RL Course by David Silver Lecture 3: Planning by Dynamic Programming.
- Video Artificial Intelligence Course by Pieter Abbeel Lecture 8: Markov Decision Processes (MDPs).

Uczenie aktywne (ang. *model free learning*)

Co zrobić, jeżeli nie dysponujemy modelem środowiska?

Sekwencja:

- \blacksquare stany (s),
- akcje (a),
- \blacksquare nagrody (r).

Algorytmy:

- Monte Carlo.
- Metody różnic tymczasowych (ang. *Temporal Difference learning*):
 - Q-learning,
 - Sarsa.

Monte Carlo

Cechy algorytmu:

- Algorytm przeznaczony do zadań epizodycznych.
- Nie wymaga modelu środowiska.
- Uczy się na podstawie doświadczenie (ang. *experience*) sekwencji stan, akcja, nagroda.

Monte Carlo

Cechy algorytmu:

- Algorytm przeznaczony do zadań epizodycznych.
- Nie wymaga modelu środowiska.
- Uczy się na podstawie doświadczenie (ang. *experience*) sekwencji stan, akcja, nagroda.

Wersje algorytmu:

- Pierwsza wizyta (ang. First-visit Monte Carlo).
- Każda wizyta (ang. Every-visit Monte Carlo).

Monte Carlo

First-visit Monte Carlo method - oszacowanie $V pprox u_\pi$

Wejście: strategia π , która ma być oszacowana. Inicjalizacja:

- $V(s) \in \mathbb{R}$ losowe wartości, dla każdego $s \in S$,
- Returns(s) puste listy, dla każdego $s \in S$.

Nisekończona pętla (dla każdego epizodu):

Wygeneruj sekwencję przejść dla epizodu zgodnie ze strategią π :

$$s_0$$
, a_0 , r_1 , s_1 , a_1 , r_2 , ..., s_{T-1} , a_{T-1} , r_T

$$G \leftarrow 0$$
:

Dla każdego kroku w epizodzie, t = T - 1, T - 2, ..., 0:

$$G \leftarrow \gamma G + r_{t+1}$$

Jeżeli stan s_t nie pojawił się wcześniej:

Dodaj G do listy $Returns(s_t)$

$$V(s_t) \leftarrow \text{average}(Returns(s_t))$$

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Monte Carlo

First-visit Monte Carlo prediciton - for estimating $V pprox u_\pi$

Input: a policy π to be evaluated Initialize:

- $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in S$,
- $Returns(s) \leftarrow \text{an empty list, for all } s \in S.$

Loop forever (for each episode):

```
Generate an episode following \pi: s_0, a_0, r_1, s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T G \leftarrow 0:
```

Loop for each step of episode, t = T - 1, T - 2, ..., 0:

$$G \leftarrow \gamma G + r_{t+1}$$

Unless s_t appears in s_0 , s_1 , ..., s_{t+1} :

Append G to Returns (s_t)

 $V(s_t) \leftarrow average(Returns(s_t))$

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Monte Carlo

Co się bardziej przyda:

- V(s),
- Q(s, a).

Monte Carlo

Metoda Monte Carlo, zmodyfikowana tak, aby wyznaczała $q_{\pi}(s, a)$ zamiast v(s) będzie wyglądała analogicznie do tej, przedstawionej wcześniej.

Odwiedzony stan będzie określany za pomocą pary stan (s) - akcja wybrana w dany stanie (a).

Metoda *every-visit Monte Carlo* oszacuje wartość w danym stanie jako średnią oczekiwanych nagród ze wszystkich wizyt w danym stanie.

Metoda *first-visit Monte Carlo* oszacuje wartość w danym stanie jako nagrodę otrzymaną przy okazji pierwszej wizyty w danym stanie.

Monte Carlo

Jak rozwiązać problem nieodwiedzanych stanów:

- eksploracja stanów początkowych (ang. exploring starts):
 - wybieramy losowy stan i akcję, dla których rozpoczynamy epizod,
 - nierealistyczne w rzeczywistym świecie, za wyjątkiem symulacji,
- algorytm ϵ -zachłanny (ang. ϵ -greedy):
 - lacksquare wybieramy najlepszą akcję z prawdopodobieństwem $1-\epsilon+rac{\epsilon}{|{\cal A}({f s})|}$,
 - lacktriangle wybieramy losową akcję z prawdopodobieństwem $rac{\epsilon}{|A(s)|}$.

Monte Carlo

First-visit Monte Carlo method (for ϵ -soft policies) - oszacowanie

$\pi \approx \pi_*$

Parametry algorytmu: mała wartość $\epsilon>0$ Inicjalizacja:

- π losowa ε-miękka strategia,
- $Q(s, a) \in \mathbb{R}$ (losowe), dla każdej pary $s \in S$, $a \in A(s)$,
- $Returns(s, a) \leftarrow pusta lista, dla każdej pary <math>s \in S$, $a \in A(s)$.

Petla nieskończona (dla każdego epizodu):

Wygeneruj sekwencję przejść dla epizodu zgodnie ze strategia π :

$$s_0$$
, a_0 , r_1 , s_1 , a_1 , r_2 , ..., s_{T-1} , a_{T-1} , r_T

$$G \leftarrow 0$$
:

Dla każdego kroku w epizodzie,
$$t = T - 1, T - 2, ..., 0$$
:

Dia kazdego kroku w epizodzie,
$$t = T - 1, T - 2, ..., 0$$

$$G \leftarrow \gamma G + r_{t+1}$$

Jeżeli para
$$s_t$$
, a_t niepojawiła się wcześniej w sekwencji s_0 , a_0 , s_1 , a_1 , ..., s_{t+1} , a_{t+1} :

$$Q(S_t, A_t) \leftarrow average(Returns(s_t, a_t))$$

$$a^* \leftarrow \operatorname{argmax}_a Q(s_t, a)$$

Dla każdej akcji
$$a \in A(s_t)$$
:

$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A(s)|} & \text{if } a = a^* \\ \frac{\epsilon}{|A(s)|} & \text{if } a \neq a^* \end{cases}$$
(11)

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Monte Carlo

First-visit Monte Carlo method (for ϵ -soft policies) - estimates $\pi pprox \pi_*$

```
Algorithm parameter: small \epsilon > 0
Initialize:
```

- \blacksquare π an arbitrary ϵ -soft policy,
- $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in A(s)$,
- $Returns(s, a) \leftarrow \text{an empty list, for all } s \in S, a \in A(s).$

Loop forever (for each episode):

```
Generate an episode following \pi: s_0, a_0, r_1, s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T G \leftarrow 0:
Loop for each step of episode, t = T-1, T-2, ..., 0:
G \leftarrow \gamma G + r_{t+1}
Unless the pair s_t, a_t appears in s_0, a_0, s_1, a_1, ..., s_{t+1}, a_{t+1}:
Append G \text{ to } Returns(s_t, a_t)
Q(s_t, a_t) \leftarrow \text{average}(Returns(s_t, a_t))
a^* \leftarrow \text{argmax}_3 Q(s_t, a)
For all a \in A(s_t):
```

$$\pi(a|S_t) \leftarrow \begin{cases} \frac{1-\epsilon+\frac{\epsilon}{|A(s)|}}{\epsilon} & \text{if} \quad a=a^* \\ \frac{\epsilon}{|A(s)|} & \text{if} \quad a\neq a^* \end{cases}$$
 (12)

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Metody różnic tymczasowych:

- Kombinacja metody Monte Carlo i Programowania Dynamicznego.
- Nie wymagają znajomości modelu środowiska.
- Uaktualnianie przewidywanych wartości następuje natychmiastowo nie ma koniczeności oczekiwania na zakończenie epizodu.

(Reinforcement Learning)

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Szacowanie funkcji wartości za pomocą metod Monte Carlo:

$$V(s_t) \leftarrow V(s_t) + \alpha[G_t - V(s_t)]$$
 (13)

Szacowanie funkcji wartości za pomocą metod różnic tymczasowych:

$$V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$
 (14)

(Reinforcement Learning)

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Tabelaryczny algorytm różnic tymczasowych z krokiem 1 do oszacowania v_{π}

Wejście: strategia do oszacowania π

Parametr algorytmu: krok uczenia $\alpha \in (0,1]$

Inicjalizacja tablicy wartości stanów V(s) losowymi wartościami, za wyjątkiem stanu końcowego, któremu przypisana jest wartość 0.

Pętla dla każdego epizodu:

Inicjalizacja s

Dla każdego kroku w epizodzie:

Wybierz ackję a zgodnie ze strategią π dla stanu s

Wykonaj akcję a i zaobserwuj r oraz s'

$$V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

$$s \leftarrow s'$$

Dopóki s nie jest stanem końcowym

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
```

Algorithm parameter: step size $\alpha \in (0,1]$

Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop for each episode:

Initialize s

Loop for each step of episode:

 $a \leftarrow$ action given by π for s

Take action a, observe r, s'

$$V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

$$s \leftarrow s'$$

Until s is not terminal

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction MIT press, 2018.

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Błąd:

$$\delta_t \doteq r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \tag{15}$$

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Metody różnic tymczasowych nie wymagają znajomości modelu środowiska.

Obliczenia wykonywane są online - brak konieczności oczekiwania na koniec epizodu.

Dla dowolnej stałej strategii π , udowodnione zostało, że metody TD(0) są zbieżne do v_{π} , w przypadku kiedy wartość parametru uczącego (α) jest stała i dostatecznie mała lub gdy wartość tego parametru zmniejsza się.

117 / 156

Q-Learning

Cechy algorytmu Q-Learning:

- uczy się nie tylko na podstawie swojego doświadczenia, ale także innych ludzi / agentów,
- korzysta z optymalnej strategii nawet w trakcie eksploracji,
- korzysta z wielu strategii podążając tylko jedną.

Q-Learning

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Q-Learning

Wartość dla strategii
$$\pi^*$$
 - optymalnej strategii
$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_{\textbf{a}} Q(s_{t+1}, \textbf{a})] - Q(s_t, a_t)]$$

Q-Learning

Q-Learning

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

$$Q(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a)]$$

Q-Learning

Algorytm Q-Learning do wyznaczenia strategii $\pi pprox \pi_*$

Parametry algorytmu: krok uczenia $\alpha \in (0,1]$, $\epsilon > 0$ o małej wartości Inicjalizacja tablicy Q(s,a), dla każdego stanu $s \in S$ i akcji w tym stanie $a \in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.) = 0 Pętla po wszystkich epizodach:

Inicjalizacja s

Dla każdego kroku w epizodzie:

Wybierz akcję a w stanie s wykorzystując strategię opartą o tablicę

Q (np., ϵ -zachłanną)

Wykonaj akcję a i zaobserwuj r oraz s' $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_a Q(s', a) - Q(s, a)]$ $s \leftarrow s'$

Dopóki s nie jest stanem końcowym

Q-Learning

Q-Learning for estimating $\pi \approx \pi_*$

Algorithm parameter: step size $\alpha \in (0,1]$, small $\epsilon > 0$ Initialize Q(s,a), for all $s \in S$, $a \in A(s)$, arbitrarily except that Q(terminal,.) = 0Loop for each episode:

Initialize s

Loop for each step of episode:

Choose a from s using policy derived from Q (e.g., ϵ -greedy)

Take action a, observe r, s'

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_a Q(s', a) - Q(s, a)]$$

 $s \leftarrow s'$

Until s is not terminal

Q-Learning

Algorytm ϵ -zachłanny:

$$a = \begin{cases} \operatorname{argmax}_{a} Q(s,.) & \text{z prawdopodobieństwem} \quad 1 - \epsilon * \\ \operatorname{losowa akcja} & \text{z prawdopodobieństwem} \quad \epsilon \end{cases}$$
 (16)

* w przypadku kilku akcji z taką samą wartością należy wybierać losową

Q-Learning - przykład liczbowy

Nowe środowisko:

Aktualizowanie funkcji wartości dla pary stan-akcja (s_t, a_t) :

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Parametry algorytmu:

- $\alpha = 0.1$
- $\gamma = 0.9$
- $ightharpoonup r_G = 1$, w pozostałych przypadkach r = 0.

Q-Learning - przykład liczbowy cd.

Epizod 1:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 1:

Akcja

$$Q(5, P) = Q(5, P) + \alpha[r + \gamma \max_{a} Q(6, a) - Q(5, P)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 1:

Akcja

$$Q(5, P) = 0 + 0.1[1 + 0.9 * 0 - 0] = 0.1$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 1:

Akcja

$$Q(5, P) = 0 + 0.1[1 + 0.9 * 0 - 0] = 0.1$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	P
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

$$Q(4, P) = Q(4, P) + \alpha[r + \gamma \max_{a} Q(5, a) - Q(4, P)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

$$Q(4, P) = 0 + 0.1[0 + 0.9 * 0.1 - 0] = 0.009$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

$$Q(4, P) = 0 + 0.1[0 + 0.9 * 0.1 - 0] = 0.009$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

 ${\sf Nagroda}$

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

$$Q(5, P) = Q(5, P) + \alpha[r + \gamma \max_{a} Q(6, a) - Q(5, P)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

$$Q(5, P) = 0.1 + 0.1[1 + 0.9 * 0 - 0.1] = 0.19$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

$$Q(5, P) = 0.1 + 0.1[1 + 0.9 * 0 - 0.1] = 0.19$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.19
6	0	0

Q-Learning - przykład liczbowy cd.

 ${\sf Nagroda}$

Epizod 3

Stan	L	Р
1	0	0
2	0	0
3	0	0.00081
4	0	0.02520
5	0	0.27100
6	0	0

Epizod 4

Stan	L	Р
1	0	0
2	0	0.00007
3	0	0.00300
4	0	0.04707
5	0	0.34390
6	0	0

Przykład algorytmu On-Policy.

Do aktualizacji wartości funkcji w stanie (s_t, a_t) używana jest wartość z następnego stanu dla akcji, która później rzeczywiście będzie wykonana (s_{t+1}, a_{t+1}) .

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

(Reinforcement Learning)

Algorytm SARSA do wyznaczenia strategii $\pi \approx \pi_*$

Parametry algorytmu: krok uczenia $lpha \in (0,1], \ \epsilon > 0$ o małej wartości

Inicjalizacja tablicy Q(s,a), dla każdego stanu $s \in S$ i akcji w tym stanie $a \in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.) = 0

Pętla po wszystkich epizodach:

Inicjalizacja s

Wybierz akcję a w stanie s wykorzystując strategię opartą o tablicę Q (np., ϵ -zachłanną) Dla każdego kroku w epizodzie:

Wykonaj akcję a i zaobserwuj r oraz s'

Wybierz akcję a' w stanie s' wykorzystując strategię opartą o tablicę Q (np.,

 ϵ -zachłanną)

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$$

 $s \leftarrow s', a \leftarrow a'$

Dopóki s nie jest stanem końcowym

SARSA

SARSA for estimating $\pi \approx \pi_*$

Algorithm parameter: step size $\alpha \in (0,1]$, small $\epsilon > 0$ Initialize Q(s,a), for all $s \in S$, $a \in A(s)$, arbitrarily except that Q(terminal,.) = 0Loop for each episode:

Initialize s

Choose a from s using policy derived from Q (e.g., ϵ -greedy)

Loop for each step of episode:

Take action a, observe r, s'

Choose a' from s' using policy derived from Q (e.g., ϵ -greedy)

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$$

 $s \leftarrow s', a \leftarrow a'$

Until s is not terminal

Expected SARSA

Przykład algorytmu On-Policy.

Do aktualizacji wartości funkcji w stanie (s_t, a_t) używana jest oczekiwana wartość z następnego stanu obliczona zgodnie z założoną strategią.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \sum_{a} \pi(a|s_{t+1})Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Uczenie aktywne SARSA(λ)

Połączenie algorytmu Monte Carlo oraz SARSA.

"Śledzenie" odwiedzonych stanów oraz aktualizacja wartości wszystkich odwiedzonych stanów w każdym kroku.

 $E_t(s,a)$ - ślad w dla pary stan - akcja w chwili czasowej t.

$$Q_{t+1}(s, a) = Q_t(s, a) + \alpha \delta_t E_t(s, a).$$

$$\delta_t = r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t).$$

 $SARSA(\lambda)$

Algorytm $\mathsf{SARSA}(\lambda)$ do wyznaczenia strategii $\pi pprox \pi_*$

Parametry algorytmu: krok uczenia $\alpha \in (0,1]$, $\epsilon > 0$ o małej wartości, $\lambda \in [0,1]$ Inicjalizacja tablicy Q(s,a), dla każdego stanu $s \in S$ i akcji w tym stanie $a \in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.) = 0 Petla po wszystkich epizodach:

Inicjalizacja s oraz E(s,a)=0, dla każdego stanu $s\in S$ i akcji w tym stanie $a\in A(s)$ Wybierz akcję a w stanie s wykorzystując strategię opartą o tablicę Q (np., ϵ -zachłanną) Dla każdego kroku w epizodzie:

Wykonaj akcję a i zaobserwuj r oraz s'

Wybierz akcję a' w stanie s' wykorzystując strategię opartą o tablicę Q (np.,

 ϵ -zachłanną)

$$\begin{split} \delta &\leftarrow r + \gamma \, Q(s',a') - Q(s,a) \\ E(s,a) &= E(s,a) + 1 \\ \text{Dla każdeg } s \in S, \ a \in A(s): \\ Q(s,a) &\leftarrow Q(s,a) + \alpha \delta E(s,a) \\ E(s,a) &\leftarrow \gamma \lambda E(s,a) \\ s \leftarrow s', \ a \leftarrow a' \end{split}$$

Dopóki s nie jest stanem końcowym

 $SARSA(\lambda)$

$\mathsf{SARSA}(\lambda)$ for estimating $\pi \approx \pi_*$

Algorithm parameter: step size $\alpha \in (0,1]$, small $\epsilon > 0$, $\lambda \in [0,1]$

```
Initialize Q(s,a), for all s \in S, a \in A(s), arbitrarily except that Q(terminal,.) = 0 Loop for each episode: E(s,a) = 0, \text{ for all } s \in S, \ a \in A(s) Initialize s Choose a from s using policy derived from Q (e.g., \epsilon-greedy) Loop for each step of episode: Take action a, observe r, s' Choose a' from s' using policy derived from Q (e.g., \epsilon-greedy) \delta \leftarrow r + \gamma Q(s',a') - Q(s,a) E(s,a) = E(s,a) + 1
```

 $Q(s, a) \leftarrow Q(s, a) + \alpha \delta E(s, a)$

 $E(s,a) \leftarrow \gamma \lambda E(s,a)$ $s \leftarrow s', a \leftarrow a'$

For all $s \in S$, $a \in A(s)$:

Until s is not terminal

Model środowiska

Rysunek 8: Windy Gridworld

Uczenie aktywne SARSA(λ)

Rysunek 9: Porównanie działania algorytmów SARSA i SARSA (λ)

 $SARSA(\lambda)$

Strategie aktualizacji śladu:

- $E_t(s,a) = \gamma \lambda E_{t-1}(s,a) + 1$ ang. accumulating traces,
- $E_t(s, a) = 1$ ang. replacing traces,
- $E_t(s, a) = (1 \alpha)\gamma\lambda E_{t-1}(s, a) + 1$ ang. dutch traces.

Uczenie aktywne SARSA(λ)

Rysunek 10: Porównanie strategii aktualizacji śladu

Uczenie aktywne SARSA(λ)

Rysunek 11: Porównanie strategii aktualizacji śladu

Maximization Bias

Aktualizowanie funkcji wartości dla pary stan-akcja (s_t, a_t) :

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

- Użycie maksimum dla kolejnego stanu do aktualizacji wartości funkcji może prowadzić do nadmiernie optymistycznego przeszacowania wartości.
- $\blacksquare \mathbb{E}_{s'}(max_{a'}(Q(s_{t+1}, a'))) \geqslant max_{a'}(\mathbb{E}_{s'}(Q(s_{t+1}, a')))$
- Problem ten jest nazywany *Maximization Bias*.

(Reinforcement Learning)

Double Q-Learning

Rozwiązanie problemu:

Uczenie oddzielnie dwóch funkcji Q - Q_1 i Q_2 .

Aktualizacja wartości funkcji Q_1 na podstawie wartości funkcji Q_2 :

$$Q_1(s_t, a_t) = Q_1(s_t, a_t) + \alpha[r_{t+1} + \gamma Q_2(s_{t+1}, argmax_a(Q_1(s_{t+1}, a))) - Q_1(s_t, a_t)]$$

Aktualizacja wartości funkcji Q_2 na podstawie wartości funkcji Q_1 :

$$Q_2(s_t, a_t) = Q_2(s_t, a_t) + \alpha[r_{t+1} + \gamma Q_1(s_{t+1}, argmax_a(Q_2(s_{t+1}, a))) - Q_2(s_t, a_t)]$$

Double Q-Learning

Algorytm Double Q-Learning do szacowania $Q_1 pprox Q_2 pprox q_*$

Parametry algorytmu: krok uczenia $\alpha \in (0,1]$, $\epsilon>0$ o małej wartości Inicjalizacja tablic $Q_1(s,a)$ i $Q_2(s,a)$, dla każdego stanu $s\in S$ i akcji w tym stanie $a\in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.)=0 Pętla po wszystkich epizodach:

Inicjalizacja s

Dla każdego kroku w epizodzie:

Wybierz akcję a w stanie s wykorzystując strategię ϵ -zachłanną dla Q_1+Q_2

Wykonaj akcję a i zaobserwuj r oraz s'

Z prawdopodobieństwem 0.5 aktualizuj:

$$Q_1(s,a) = Q_1(s,a) + \alpha[r + \gamma Q_2(s', argmax_a(Q_1(s',a))) - Q_1(s,a)]$$

lub.

$$Q_2(s, a) = Q_2(s, a) + \alpha[r + \gamma Q_1(s', argmax_a(Q_2(s', a))) - Q_2(s, a)]$$

 $s \leftarrow s'$

Dopóki s nie jest stanem końcowym

Double Q-Learning

Double Q-Learning, for estimating $Q_1 pprox Q_2 pprox q_*$

Algorithm parameter: step size $\alpha \in (0,1]$, small $\epsilon > 0$ Initialize $Q_1(s,a)$ and $Q_2(s,a)$, for all $s \in S$, $a \in A(s)$, arbitrarily except that Q(terminal,.) = 0Loop for each episode:

Initialize s

Loop for each step of episode:

Choose a from s using the policy ϵ -greedy in $Q_1 + Q_2$

Take action a, observe r, s'

With 0.5 probability:

$$Q_1(s, a) = Q_1(s, a) + \alpha[r + \gamma Q_2(s', argmax_a(Q_1(s', a))) - Q_1(s, a)]$$

else:

$$Q_2(s, a) = Q_2(s, a) + \alpha[r + \gamma Q_1(s', argmax_a(Q_2(s', a))) - Q_2(s, a)]$$

$$s \leftarrow s'$$

Until s is not terminal

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Model środowiska

Frozen Lake:

Oznaczenia:

- \blacksquare S stan początkowy,
- F zamrożone pole,
- H dziura (stan końcowy),
- *G* cel (stan końcowy).

Nagrody:

- 1 po dotarciu do pola G,
- 0 w pozostałych przypadkach.

Akcje:

- lewo,
- prawo,
- góra,
- dół.

Model środowiska

Cliff World:

Akcje:

- lewo,
- prawo,
- góra,
- dół.

Oznaczenia:

- S stan początkowy,
- F wolne pole,
- H dziura (stan końcowy),
- \blacksquare G cel (stan końcowy).

Nagrody:

- 1 po dotarciu do pola G,
- -100 po dotarciu do pola H,
- -1 w pozostałych przypadkach.

Model środowiska

Double Q-Learning:

Oznaczenia:

■ S - stan początkowy,

3 - Stall początkowy,

 \blacksquare G - cel (stan końcowy).

Akcje:

■ lewo,

prawo.

Materialy uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdziały 5.1, 5.2, 5.3 i 5.4 Monte Carlo Methods.
 - Rozdziały 6.1, 6.2, 6.3 i 6.5 TD Learning and Q-Learning.
 - Rozdziały 6.4 i 6.6 SARSA i Expected SARSA.
 - Rozdziały 6.7 Double Q-Learning.
- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto. 2015.
 - Rozdziały 7.1 7.5 Eligibility traces i SARSA(λ).
- Video Artificial Intelligence Course by Pieter Abbeel Lecture 10: Reinforcement Learning - od 0:38:00.
- Video RL Course by David Silver Lecture 5: Model Free Control od 1:00:00.

Podsumowanie dotychczasowo zdobytej wiedzy:

środowiska (uczenie pasywne),

opracowanie idealnej strategii na podstawie znajomości modelu

- opracowanie strategii na podstawie doświadczenia (uczenie aktywne),
- do tej pory wartości opisujące stan lub parę stan-akcja przechowywane były w tablicy, co może okazać się problematyczne:
 - w przypadku próby rozwiązania rzeczywistych problemów liczba stanów lub akcji może być zbyt duża, do przechowywania ich wartości w tablicy,
 - Backgammon 10²⁰ stanów,
 - Szachy 10⁴⁰ stanów,
 - Go 10⁷⁰ stanów.

Podsumowanie dotychczasowo zdobytej wiedzy:

środowiska (uczenie pasywne),

opracowanie idealnej strategii na podstawie znajomości modelu

- opracowanie strategii na podstawie doświadczenia (uczenie aktywne),
- do tej pory wartości opisujące stan lub parę stan-akcja przechowywane były w tablicy, co może okazać się problematyczne:
 - w przypadku próby rozwiązania rzeczywistych problemów liczba stanów lub akcji może być zbyt duża, do przechowywania ich wartości w tablicy,
 - Backgammon 10²⁰ stanów,
 - Szachy 10⁴⁰ stanów,
 - Go 10⁷⁰ stanów.

Reprezentacja tabelaryczna jest niewystarczająca!

Reprezentacja stanu (stanu-akcji) za pomocą sparametryzowanej funkcji:

Wiele możliwości aproksymacji funkcji wartości stanu:

- Liniowa kombinacja cech.
- Sieci neuronowe.
- Drzewa decyzyjne.

Funkcja powinna być różniczkowalna.

Dwie najpopularniejsze klasy różniczkowalnych funkcji aproksymacyjnych:

- Liniowa kombinacja cech.
- Sieci neuronowe.

Liniowa kombinacja cech

- Określenie optymalnej strategii poprzez wyznaczenie wartości funkcji
 V(s) lub Q(s, a).
- Przechowywanie wartości funkcji w tablicy.
- Aktualizacja po każdym epizodzie (metody Monte Carlo) lub po każdym kroku (metody różnic tymczasowych).

152 / 156

Liniowa kombinacja cech

- Określenie optymalnej strategii poprzez wyznaczenie wartości funkcji
 V(s) lub Q(s, a).
- Przechowywanie wartości funkcji w tablicy.
- Aktualizacja po każdym epizodzie (metody Monte Carlo) lub po każdym kroku (metody różnic tymczasowych).

W przypadku funkcji aproksymujących po każdym kroku następuje zmiana parametrów tych funkcji (dopasowanie).

(Reinforcement Learning) Zima 2022 152 / 156

Liniowa kombinacja cech

Funkcja f(s, a) zwraca wektor cech dla stanu s i akcji a. Wartość dla pary stan-akcja będzie obliczana zgodnie ze wzorem:

$$Q(s,a) = \sum_{i=1}^{n} f_i(s,a) w_i$$
 (17)

Błąd tymczasowy:

$$\delta = (r + \gamma \max_{a'} Q(s', a')) - Q(s, a)$$
(18)

Liniowa kombinacja cech

Aktualizacja wartości wag:

$$w_i = w_i + \alpha \delta f_i(s, a) \tag{19}$$

Minimalizacja błędu:

$$J(w) = ||(r + \gamma \max_{a'} Q(s', a')) - Q(s, a)||^2$$
 (20)

Pacman

Cechami są funkcje przekształcające stan na liczbę rzeczywistą (najczęściej z zakresu <0,1>) w taki sposób, żeby uchwycić najważniejsze właściwości stanu.

Przykładowe cechy w grze Pacman:

- odległość od najbliższego duszka,
- odległość od najbliższego jedzenia ...

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdziały 9.4 *Linear Methods*.
- Video Artificial Intelligence Course by Pieter Abbeel Lecture 11: Reinforcement Learning II od 0:31:00.
- Video RL Course by David Silver Lecture 6: Value Function Approximation.

156 / 156