

Basic single-gene inheritance

Meiosis + fertilization needed for Mendelian inheritance

Gregor Mendel Austrian monk 1822-1884

Identified simple rules of inheritance

Masking of yellow color by green color copy (Y) is called "dominance" of Y.

Green (Y) is dominant, yellow (y) is recessive.

What happens when breed F₁s?

- Yy are called heterozygous" since have both alleles.
- Can use "Punnett square" to follow inheritance.

Mendel got 428 green and 152 yellow peas from this cross.

Mendel's First Law: Three Postulates

- Unit factor in pairs (diploid)
 - Get one "allele" from mom, one "allele" from dad
- Dominance/ recessivity
 - Don't always see this- sometimes F₁ is intermediate.
- Equal segregation in gametes
 - Paired factors separate, and equally likely to transmit either one to offspring

Try this...

- You are a farmer working on corn.
- You have pure-breeding **TALL** and **short** strains of corn, and you've heard the difference is caused by a single gene.
- You cross the **TALL** and **short** strains together, and you get strains that are **Intermediate** in height.
- You cross these Intermediate height corns together. What will you see?

Try this 2...

- You are a farmer working on corn.
- You have pure-breeding TALL and short strains of corn, and you've heard the difference is caused by a single gene.
- You cross the **TALL** and **short** strains together, and you get strains that are **Intermediate** in height.
- You cross the Intermediate height corn to TALL corn. What will you see?

Important insight

Dominance matters in how the offspring will **LOOK**.

Dominance does NOT matter in how the gametes will pair.

 You can always use a Punnett square for single-gene transmission genetics.

Medical example

- 1/8 (~12%) of women get breast cancer
- Known mutations in *FGFR2* gene associated with increased risk of breast cancer
 - Let's call "nonmutant" form FF: ~12% risk
 - Heterozygote Ff: ~20% higher, so ~15% risk
 - Homozygote ff: ~60% higher, so ~19% risk

You meet someone who you discover has an *FGFR2* mutation ℓ

- Let's assume you're FF
- Your potential hubby is Ff
- What is the probability that your daughters could get breast cancer? $|^{\circ}$

get breast cancer?		¥		
FF:	12 %			
Ff:	15 %			
ff:	19%			

Can do the same type of cross with unknowns and infer the parents

- Albinism is inherited as recessive in humans
- What if a non-albino mom and albino dad have 8 kids, of which 4 are albino
- Genotypes of parents?

Image Credits, Unit 3-2

- Tall and short corn, (c) 2008 Fracture, CC by-NA-SA 2.0, <u>www.flickr.com</u>
- Breast cancer ribbon, (c) 2007 MesserWoland, CC by-SA 3.0, en.wikipedia.org.
- Albino boy, (c) 2006 Motophan, CC by-SA 3.0, en.wikipedia.org.