Morphofunctional changes at the active zone during synaptic vesicle exocytosis

This manuscript (permalink) was automatically generated from aseedb/synaptic tomo ms@118ab23 on July 21, 2021.

Authors

• Julika Radecke*

© 0000-0002-5815-5537

Institute of Anatomy, University of Bern, Bern, Switzerland; Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark; Diamond Light Source Ltd, Didcot, Oxfordshire, United Kingdom · Funded by Grant XXXXXXXX

Raphaela Seeger^{*}

ⓑ XXXX-XXXX-XXXX · **♀** elatella

Institute of Anatomy, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern

Ulrike Laugks

© 0000-0003-4175-4354

Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany

Kenneth N. Goldie

(D) 0000-0002-7405-0049

Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland

Henning Stahlberg

D 0000-0002-1185-4592 · **C** sthennin

Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland; EPFL; UNIL

Vladan Lučić

D 0000-0003-3698-7436 · **Q** vladanl

Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany

Jakob B. Sørensen[™]

© 0000-0001-5465-3769

Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark

• Benoît Zuber[≌]

(D 0000-0001-7725-5579 ⋅ **(7** aseedb

Institute of Anatomy, University of Bern, Bern, Switzerland · Funded by Swiss National Science Foundation (Grant# xxxx)

✓ Address correspondence to <u>benoit.zuber@ana.unibe.ch</u> and <u>jakobbs@sund.ku.dk</u>. ::: {#equal_contribution} * These authors contributed equally.

Abstract

The fusion of synaptic vesicles (SVs) with the plasma membrane (PM) proceeds through intermediate steps that remain poorly resolved. Additionally, the effect of persistent high or low exocytosis activity on intermediate steps remains unknown. Through time-resolved cryo-electron tomography, we ordered events into a sequence. Following stimulation, additional SVs are rapidly primed by forming tethers with the PM. Simultaneously, fusion initiation occurs by membrane curvature ('buckling') of the SV and PM. It is followed by the formation of a fusion pore, and the collapse of SV membrane. At this time, membrane-proximal, but not membrane-distal, vesicles lose their interconnections, allowing them to move towards the PM. A SNARE mutation that arrests spontaneous release caused vesicles to reside further from the membrane while forming more tethers, whereas a mutation stimulating spontaneous fusion caused a complete loss of membrane-proximal triple-tethered SVs, and a loss of intervesicle connectors. Overall, tether formation and connector dissolution is triggered by stimulation and adjusted to the spontaneous fusion rate. These moprhological observations likely correspond to the transition of SVs from one functional pool to another.

- Need to reformulate the part about 4E mutant (p value is not sufficient)
- For 4K mutant: check if the loss of tethered SVs restricted to those with more than only one, or to those with more than two tethers?
- Possibly mention here introduce the formation of distal connectors by stimulation

Introduction

In the central nervous system, neurons communicate through the release of neurotransmitters at synapses. This process relies on synaptic vesicle (SV) exocytosis, i.e. the fusion of SVs with the plasma membrane (PM). This in turn is eminently important for normal brain function such as movement coordination or memory formation. SV exocytosis involves a sequence of steps [1,2]. The vesicle is first docked to the active zone (AZ) PM. Subsequently the exocytosis machinery goes through a maturation process, termed priming, after which the SV is ready to fuse. These SVs form the readily releasable pool (RRP) of SVs. Finally, a calcium influx triggers fusion of the SV with the PM. Docked SVs are defined as the SVs in very close proximity or direct contact with the PM as observed by electron microscopy (EM), whereas priming refers to SV ability to undergo exocytosis immediately upon stimulation. Whether every docked SV is also primed has been debated [1,3]. A recent high-pressure freezing/freeze-substitution EM study of genetically modified synapses has indicated that vesicles that are in direct contact with the PM, i.e. docked, are primed and belong to the RRP and that this situation occurs downstream of vesicle tethering [4]. From a molecular perspective, priming involves several proteins, including the SNARE complex (SNAP-25, syntaxin-1, and synaptobrevin-2), Munc13, Munc18, synaptotagmin-1, and complexin [2,5]. All three SNAREs form a highly stable tight four-helix bundle, known as trans-SNARE complex. The surfaces of the SV and the PM, respectively, are negatively charged and therefore tend to repulse each other. The formation of the trans-SNARE complex conteracts this repulsion and brings the SV and the PM in high proximity [6]. Evidence has suggested that the SNARE complex is only partially zipped in primed SVs [7]. Furthermore, various studies have suggested that the formation of at least three SNARE complexes provides the necessary energy for a SV to become fusion-competent [8,9,10]. Yet in the absence of cytoplasmic Ca²⁺, minimal spontaneous exocytosis takes place. When the presynaptic terminal gets depolarized by an action potential, Ca²⁺ flows in the cytoplasm and binds to synaptotagmin-1, which is localized at the SV surface. Upon Ca²⁺ binding, synaptotagmin-1 was proposed to insert between the head groups of the PM anionic phospholipids and trigger membrane curvature and destabilization, leading first to hemifusion and subsequently to fusion[11]. Interestingly, the trans-SNARE bundle surface is negatively charged, which contributes to the electrostatic barrier that minimizes spontaneous fusion and allows synaptotagmin-1 to act as an electrostatic switch that triggers exocytosis [12]. Making the

bundle more negative by site-directed mutagenesis reduces the rate of spontaneous and evoked exocytosis whereas making it more positive enhances the rate of spontaneous exocytosis and depletes the RRP.

Cryo-electron tomography (cryo-ET), which preserves samples to atomic resolution, revealed that under resting conditions, no SV is in direct contact with the PM and the majority of AZ-proximal SVs are connected to the PM by a variable number of short tethers [13,14]. The observed gap between the SV and the PM is consistent with the model of an electrostatic barrier formed by the negative charges of the SV, the PM, and the trans-SNARE bundle [12]. In synaptosomes treated with hypertonic sucrose solution, which depletes the RRP, the majority of tethered vesicles had 1 or 2 tethers [13,15,16]. This observation suggested that the RRP consists of SV that are linked to the PM by 3 or more tethers. The RRP, as identified by morphological criteria, only represents a minority of AZ-proximal vesicles. This is in agreement with previous reports. In one of them the term pre-primed pool was used for the few vesicles (~1 vesicle at hippocampal synapses) that are rapidly released and another publication showed that the immediately releasable pool is made up of only 10-20% of the vesicles located on the AZ (equal to ~1 vesicle on hippocampal synapses) [17,18]. The ensemble of proximal vesicles that are not in the RRP have been termed non-RRP and presumably belong to the recycling pool that releases more slowly [13,19]. Farther away from the AZ, partially intermixed with the recycling pool, is the reserve pool containing vesicles that only release upon high frequency stimulation. Vesicles in the reserve pool are tightly clustered and well inter-connected by structures that were termed connectors [13,19]. It should be noted that the molecular nature of connectors is not known and is possibly heterogenous. Synapsin has been proposed as a molecular constituent but since the deletion of all forms of synapsin does not lead to the complete absence of connectors, it is clear that not all connectors contain synapsin [20,21]. The second row of SVs near the active zone, immediately after the proximal vesicles, is called the intermediate region. Resting state intermediate SVs are less densely packed and also less connected than proximal SVs [14]. This suggests that, after exocytosis of RRP SVs, intermediate SVs could be rapidly recruited in the RRP by diffusion [22]. Synaptic activity enhances the mobility of a fraction of SVs, whereas it induces synapsin dissociation from SVs in a synapsin phosphorylation-dependent manner [23,24]. The same mobility enhancement can be achieved through inhibition of synapsin dephosphorylation, which leads to synapsin dissociation from SVs, or by knocking out all three synapsin forms [25,26,27]. Interestingly, ribbon synapses do not express synapsin and show higher SV mobility than conventional synapses [28]. It is therefore conceivable that inter-SV connectors restrain SV diffusion and that synaptic activity influences the level of inter-SV connectivity and thereby their mobility.

To investigate this hypothesis and to better understand the impact of depolarization and synaptic activity on SV tethering, we designed two sets of cyro-ET experiments. On the one hand, we compared the morphology of wild-type rat synaptosome in resting state and a few milliseconds after depolarization. On the other hand, we imaged autapses in mice neuronal culture expressing either wild-type SNAP-25, a more positively charged SNAP-25 mutant, or a more negatively charged mutant of SNAP-25. The more positive SNAP-25 mutant, which is consitutively active and whose RRP is permantly depleted showed no triple-tethered SV, which confirmed the morphological definition of the RRP. Our experiments revealed that immediately after depolarization additional SVs are recruited to the RRP. Shortly after exocytosis the level of inter-SV connectivity was decreased among SVs situated in a 25 to 75-nm distance range from the AZ PM. Altogether, our results indicate that connectors regulate SV mobility and their recruitment at the AZ PM. Say something about the size of the RRP

Do we want to talk about kiss-and-run? I have the feeling that we better not to keep the message nice and clear

References

1. Vesicle Docking in Regulated Exocytosis

Matthijs Verhage, Jakob B Sørensen

Traffic (2008-09) https://doi.org/bjtx2n

DOI: <u>10.1111/j.1600-0854.2008.00759.x</u> · PMID: <u>18445120</u>

2. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle

Thomas C Südhof

Neuron (2013-10) https://doi.org/f5gng4

DOI: <u>10.1016/j.neuron.2013.10.022</u> · PMID: <u>24183019</u> · PMCID: <u>PMC3866025</u>

3. The readily releasable pool of synaptic vesicles

Pascal S Kaeser, Wade G Regehr

Current Opinion in Neurobiology (2017-04) https://doi.org/gbkfsd

DOI: 10.1016/j.conb.2016.12.012 · PMID: 28103533 · PMCID: PMC5447466

4. The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones

Cordelia Imig, Sang-Won Min, Stefanie Krinner, Marife Arancillo, Christian Rosenmund, Thomas C Südhof, JeongSeop Rhee, Nils Brose, Benjamin H Cooper

Neuron (2014-10) https://doi.org/gcvj2v

DOI: 10.1016/j.neuron.2014.10.009 · PMID: 25374362

5. The Synaptic Vesicle Release Machinery

Josep Rizo, Junjie Xu

Annual Review of Biophysics (2015-06-22) https://doi.org/ginb9q

DOI: <u>10.1146/annurev-biophys-060414-034057</u> · PMID: <u>26098518</u>

6. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution

RBryan Sutton, Dirk Fasshauer, Reinhard Jahn, Axel T Brunger

Nature (1998-09) https://doi.org/cwkm8k

DOI: 10.1038/26412 · PMID: 9759724

7. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles

Jakob B Sørensen, Katrin Wiederhold, Emil M Müller, Ira Milosevic, Gábor Nagy, Bert L de Groot, Helmut Grubmüller, Dirk Fasshauer

The EMBO Journal (2006-02-23) https://doi.org/dhpwm3

DOI: 10.1038/sj.emboj.7601003 · PMID: 16498411 · PMCID: PMC1409717

8. Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion

Marta K Domanska, Volker Kiessling, Alexander Stein, Dirk Fasshauer, Lukas K Tamm *Journal of Biological Chemistry* (2009-11) https://doi.org/chdxqp

DOI: 10.1074/jbc.m109.047381 · PMID: 19759010 · PMCID: PMC2797286

9. Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes

R Mohrmann, H de Wit, M Verhage, E Neher, JB Sorensen

Science (2010-09-16) https://doi.org/c7q87p

DOI: 10.1126/science.1193134 · PMID: 20847232

10. SNARE Proteins: One to Fuse and Three to Keep the Nascent Fusion Pore Open

L Shi, Q-T Shen, A Kiel, J Wang, H-W Wang, TJ Melia, JE Rothman, F Pincet

Science (2012-03-15) https://doi.org/gk8gpf

DOI: 10.1126/science.1214984 · PMID: 22422984 · PMCID: PMC3736847

11. Membrane Curvature in Synaptic Vesicle Fusion and Beyond

Harvey T McMahon, Michael M Kozlov, Sascha Martens

Cell (2010-03) https://doi.org/d3gmvv

DOI: 10.1016/j.cell.2010.02.017 · PMID: 20211126

12. An Electrostatic Energy Barrier for SNARE-Dependent Spontaneous and Evoked Synaptic Transmission

Marvin Ruiter, Anna Kádková, Andrea Scheutzow, Jörg Malsam, Thomas H Söllner, Jakob B Sørensen

Cell Reports (2019-02) https://doi.org/gfv5gd

DOI: <u>10.1016/j.celrep.2019.01.103</u> · PMID: <u>30811985</u>

13. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography

Rubén Fernández-Busnadiego, Benoît Zuber, Ulrike Elisabeth Maurer, Marek Cyrklaff, Wolfgang Baumeister, Vladan Lučić

Journal of Cell Biology (2010-01-11) https://doi.org/b9c26b

DOI: <u>10.1083/jcb.200908082</u> · PMID: <u>20065095</u> · PMCID: <u>PMC2812849</u>

14. Molecular architecture of the presynaptic terminal

Benoît Zuber, Vladan Lučić

Current Opinion in Structural Biology (2019-02) https://doi.org/gk8gpd

DOI: 10.1016/j.sbi.2019.01.008 · PMID: 30925443

15. Definition of the readily releasable pool of vesicles at hippocampal synapses.

C Rosenmund, CF Stevens

Neuron (1996-06) https://www.ncbi.nlm.nih.gov/pubmed/8663996

DOI: <u>10.1016/s0896-6273(00)80146-4</u> · PMID: <u>8663996</u>

16. Properties of Synaptic Vesicle Pools in Mature Central Nerve Terminals

Anthony C Ashton, Yuri A Ushkaryov

Journal of Biological Chemistry (2005-11) https://doi.org/cb5883

DOI: 10.1074/jbc.m504137200 · PMID: 16148008

17. Vesicle release probability and pre-primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus

Eric Hanse, Bengt Gustafsson

The Journal of Physiology (2001-03) https://doi.org/fq7th3

DOI: 10.1111/j.1469-7793.2001.0481i.x · PMID: 11230520 · PMCID: PMC2278469

18. Reluctant Vesicles Contribute to the Total Readily Releasable Pool in Glutamatergic Hippocampal Neurons

KL Moulder

Journal of Neuroscience (2005-04-13) https://doi.org/dwqpxj

DOI: 10.1523/jneurosci.5231-04.2005 · PMID: 15829636 · PMCID: PMC6724923

19. Synaptic vesicle pools: an update

Denker

Frontiers in Synaptic Neuroscience (2010) https://doi.org/d74dd7

DOI: 10.3389/fnsyn.2010.00135 · PMID: 21423521 · PMCID: PMC3059705

20. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1.

N Hirokawa, K Sobue, K Kanda, A Harada, H Yorifuji

Journal of Cell Biology (1989-01-01) https://doi.org/ddbqhb

DOI: <u>10.1083/jcb.108.1.111</u> · PMID: <u>2536030</u> · PMCID: <u>PMC2115350</u>

21. Three-Dimensional Architecture of Presynaptic Terminal Cytomatrix

L Siksou, P Rostaing, J-P Lechaire, T Boudier, T Ohtsuka, A Fejtova, H-T Kao, P Greengard, ED Gundelfinger, A Triller, S Marty

Journal of Neuroscience (2007-06-27) https://doi.org/bjw3mv

DOI: <u>10.1523/jneurosci.1773-07.2007</u> · PMID: <u>17596435</u> · PMCID: <u>PMC6672225</u>

22. Physical determinants of vesicle mobility and supply at a central synapse

Jason Seth Rothman, Laszlo Kocsis, Etienne Herzog, Zoltan Nusser, Robin Angus Silver *eLife* (2016-08-19) https://doi.org/f9rmkt

DOI: 10.7554/elife.15133 · PMID: 27542193 · PMCID: PMC5025287

23. Activity-Dependence of Synaptic Vesicle Dynamics

Luca A Forte, Michael W Gramlich, Vitaly A Klyachko

The Journal of Neuroscience (2017-11-01) https://doi.org/gch7j3

DOI: 10.1523/jneurosci.0383-17.2017 · PMID: 28954868 · PMCID: PMC5666583

24. Synapsin dispersion and reclustering during synaptic activity

Ping Chi, Paul Greengard, Timothy A Ryan

Nature Neuroscience (2001-10-29) https://doi.org/cpdwc7

DOI: 10.1038/nn756 · PMID: 11685225

25. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins.

F Benfenati, M Bähler, R Jahn, P Greengard

Journal of Cell Biology (1989-05-01) https://doi.org/d65t4v

DOI: <u>10.1083/jcb.108.5.1863</u> · PMID: <u>2497106</u> · PMCID: <u>PMC2115532</u>

26. Visualization of Synaptic Vesicle Movement in Intact Synaptic Boutons Using Fluorescence Fluctuation Spectroscopy

Randolf Jordan, Edward A Lemke, Jurgen Klingauf

Biophysical Journal (2005-09) https://doi.org/cdpkkv

DOI: 10.1529/biophysj.105.061663 · PMID: 15980175 · PMCID: PMC1366711

27. Synapsin Selectively Controls the Mobility of Resting Pool Vesicles at Hippocampal Terminals

A Orenbuch, L Shalev, V Marra, I Sinai, Y Lavy, J Kahn, JJ Burden, K Staras, D Gitler

Journal of Neuroscience (2012-03-21) https://doi.org/f3wq83

DOI: 10.1523/jneurosci.5058-11.2012 · PMID: 22442064 · PMCID: PMC3492757

28. High Mobility of Vesicles Supports Continuous Exocytosis at a Ribbon Synapse

Matthew Holt, Anne Cooke, Andreas Neef, Leon Lagnado

Current Biology (2004-02) https://doi.org/b9g9h2

DOI: <u>10.1016/j.cub.2003.12.053</u> · PMID: <u>14761649</u>