ORIE 4580/5580: Simulation Modeling and Analysis ORIE 5581: Monte Carlo Simulation

unit 4: generating random numbers

Sid Banerjee School of ORIE, Cornell University

generating uniformly distributed random variables

random number: a sample from U[0,1]

the 'fundamental theorem' of simulation

can 'transform' a stream of U[0,1] to any other random variable

- arbitrary probability distribution
- arbitrary correlations
- complex processes

where can we find random numbers?

physical Methods

```
manual methods: coin toss, dice throw, drawing from an urn objects that "appear" random: computer clock physical devices: circuit noise, gamma-ray detectors
```

advantage

"true" random numbers (critical for cryptographic applications)

• for example, check out Radiolab podcast on launching a cryptocurrency

drawbacks

- slow (if generated as needed)
 expensive (if precomputed and stored in memory)
- bias may exist in the device for example, see Persi Diaconis on coin-tossing
- hard to replicate the random input sequence

'pseudo-random' generators

• mid-square method (von Neumann, 1949)

$$8234 \times 8234 = 67(7987)56$$

 $7987 \times 7987 = 63(7921)69$
 $7921 \times 7921 = 62(7422)41$
 $7422 \times 7422 = 55(0860)84 \dots$

- **objection**: random numbers are not random at all!
 - this criticism applies to all pseudo-random number generators
 - need tests to determine if algorithm produces "valid" outputs

linear congruential generators

$$X_{n+1} = (aX_n + c) \bmod m,$$

- (fixed) parameters: modulus m, multiplier a, increment c
- \bullet seed: X_0 (the first input) is typically supplied by the user
- each X_n is an integer in the set $\{0, 1, \dots, m-1\}$.
- to get pseudorandom number $U_n \in (0,1)$, set:

LCG: example

$$m = 32$$
, $a = 11$, $c = 0$, different seeds.

n	X_n	X_n	X_n
0	1	2	4
1	11	22	12
2	25	18	4
3	19	6	12
4	17	2	4
5	27	22	12
6	9	18	4
7	3	6	12
8	1	2	4
9	11	22	12
:	:	:	:

LCG: properties

- an LCG produces periodic output. period $\leq m$
 - 1. if period = m with a seed X_0 , then period = m for any seed
 - 2. if period < m, then it may depend on the seed
- full period is desirable:
 - 1. one should never use the whole period of a LCG, otherwise dependencies between the random numbers will occur.
 - 2. not have full period \implies gaps in the output sequence.
- full period \implies granularity = 1/m. not a problem when m is large.

LCG: theory

the period of LCGs is well understood (the following results are for demonstration; you do not need to know them)

Theorem: LCGs with full period

an LCG(m, a, c) has full period if all of the following are true

- 1. m and c are relatively prime.
- 2. if q is a prime number that divides m, then q divides a-1.
- 3. if 4 divides m, then 4 divides a 1.

Corollary:

an LCG with $m = 2^b$ has full period if c is odd and 4 divides a - 1.

example –
$$m = 8$$
, $a = 5$, $c = 3$

multiplicative generators

$$X_{n+1} = (aX_n) \mod m$$

- $X_n = 0 \implies X_n = X_{n+1} = X_{n+2} = \ldots = 0$
- for an MG, full period $\implies \{1, \dots, m-1\}$.

Theorem: MGs with full period

an MG has full period if all of the following are true

- 1. m is prime 2. $a^{m-1} 1$ is divisible by m.
- 3. there is no j < m-1 such that a^j-1 is divisible by m.

Theorem: Sufficient conditions for good MGs

the largest possible period for a MG with $m = 2^b$ is m/4

this is achieved when X_0 is odd and a is of the form:

$$a = 3 + 8k$$
 or $a = 5 + 8k$,

for some positive integer k.

- LCG's possess theoretical deficiencies
 (any deterministic generator must have deficiencies.)
- if U_0, U_1, \ldots are iid U[0, 1], then the points

$$(U_0, U_1), (U_2, U_3), (U_4, U_5), \dots$$

should lie uniformly over the square $[0,1] \times [0,1]$.

• suppose U_0, U_1, \ldots be generated by a LCG: how do the points $(U_0, U_1), (U_2, U_3), (U_4, U_5), \ldots$ behave?

the points

$$(U_0, U_1), (U_2, U_3), (U_4, U_5), \dots$$

lie on a relatively small number of parallel lines!

in general, the points

$$(U_0, U_1, U_2, \dots, U_{d-1}), (U_d, U_{d+1}, U_{d+2}, \dots, U_{2d-1}), \dots$$

lie on parallel (d-1)-dimensional hyperplanes!

problematic in simulations of geometric phenomena.
 OK for discrete-event simulations.

deficiencies of LCGs for generating other rvs

let N_0,N_1,N_2,\ldots be samples from $\mathcal{N}(0,1)$ generated using the Box-Muller method using U_0,U_1,U_2,\ldots from an LCG

– then the pairs (N_0, N_1) , (N_2, N_3) , (N_4, N_5) ,... lie on a spiral in two-dimensional space. E.g., $a=9, m=2^{21}, c=1$

combining generators

- $m = 2^{31} 1$ is popular, but period is only about 2 billion.
- not sufficient! e.g. traffic simulators need lots of random numbers. (10s of 000s of vehicles, 1000s of random disturbances, lots of replications).
- ullet shouldn't use anywhere near the full period maybe $\leq 1\%$
- to generate longer period, take two MG's

$$X_{n+1}=(a_1X_n) \mod m_1$$
 , $Y_{n+1}=(a_2Y_n) \mod m_2$

and set

$$Z_n = (X_n + Y_n) \mod m_3.$$

- period can be on the order of m_1m_2 ; e.g., set $a_1=40014,\ a_2=40692,\ m_1=2147483563,\ m_2=2147483399$ and $m_3=m_1$.
- can combine more than two.

streams and substreams

- useful to divide PRNG output into streams and substreams
- stream = simulation replication
 substream = source of randomness
- useful for debugging and for variance-reduction techniques

tl;dr

- hyperplane/spiral problems are well understood (and avoided)
- current generators have been carefully tested, pass lots of statistical tests (but must fail at least one test...)

the last word

modern PRNGs are

- random enough for your sim answer to be correct
- deterministic enough (by setting seed) for your sim to be repeatable