Sumário

1.	INTRODUÇÃO E OBJETIVOS	2
2.	METODOLOGIA DE ANÁLISE	3
	2.1. Resumo Tabular	3
3.	ANÁLISE DESCRITIVA	4
	3.1. Bibliotecas utilizadas	4
	3.2. Carregamento dos dados	5
	3.3. Definindo as Variáveis Qualitativas	6
	3.4. Validação dos dados	7
	3.5. Avaliação dos dados	8
	Variáveis contínuas	8
	Variáveis discretas	33
	Variáveis nominais	38
4.	DISCUSSÃO E CONCLUSÕES	47
5.	REFERÊNCIAS	48

1. INTRODUÇÃO E OBJETIVOS

Análise exploratória de dados antigamente era chamada simplesmente de estatística descritiva. Essa abordagem consiste em apresentar dados de forma organizada para facilitar a interpretação e, por fim, retirar conclusões acerca deles. Os dados a serem analisados são coletados previamente a partir de uma população (indivíduos, objetos ou fenômenos, por exemplo, que possuem características em comum que podem ser observadas e categorizadas); gerando assim uma amostra (conjunto de dados coletados de uma parte da população). Finalmente, os dados são estruturados; expostos em forma de gráficos e tabelas; e analisados para que então conclusões possam ser feitas - ou não, nem sempre amostras são suficientemente completas - acerca da amostra.

O relatório apresenta informações retiradas de uma base de dados previamente coletada, bem como uma interpretação dela. Ela provém de uma grande empresa de seguros alemã, referente às reclamações dos segurados sobre sinistros associados à carteira de seguro automobilístico da empresa germânica. O conjunto de dados em estudo foi fornecido pelo Prof. Dr. Afrânio Vieira.

A análise desse acervo de dados foi feita utilizando a linguagem de programação R, cujo principal objetivo é, justamente, facilitar análises estatísticas, bem como a criação e manipulação de gráficos. Além disso, foi também utilizado o software Rstudio, que pode ser obtido em https://www.rstudio.com/. A linguagem R está disponível para download em https://www.r-project.org/.

Ao longo do relatório, três métodos de análise serão utilizados: resumo tabular, análise de dados a partir de tabelas; e resumo gráfico, a partir de gráficos.

Uma base de dados pode ser descrita por medidas de tendência central, como moda, média aritmética e mediana; medidas de dispersão, para identificar a variabilidade do conjunto de dados; e medidas de posição.

2. METODOLOGIA DE ANÁLISE

Nesta seção serão evidenciados e explicados brevemente os métodos de análise utilizados no relatório. Eles são: resumo tabular; resumo gráfico; e resumo numérico. Os métodos de análise

2.1. Resumo Tabular

Como o proprio nome diz

3. ANÁLISE DESCRITIVA

3.1. Bibliotecas utilizadas

```
library(tidyverse)
## -- Attaching packages ------ 1.3.1 --
## v ggplot2 3.3.3
                    v purrr
                               0.3.4
## v tibble 3.1.1 v dplyr 1.0.6
## v tidyr 1.1.3 v stringr 1.4.0
          1.4.0 v forcats 0.5.1
## v readr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
      src, summarize
##
## The following objects are masked from 'package:base':
##
##
      format.pval, units
library(psych)
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
##
##
      describe
## The following objects are masked from 'package:ggplot2':
##
##
      %+%, alpha
```

```
library(descriptr)
library(summarytools)
## Registered S3 method overwritten by 'pryr':
               from
##
    print.bytes Rcpp
## For best results, restart R session and update pander using devtools:: or remotes::install_github('r
##
## Attaching package: 'summarytools'
## The following objects are masked from 'package:Hmisc':
##
      label, label<-
##
## The following object is masked from 'package:tibble':
##
##
      view
3.2. Carregamento dos dados
path <- "./"
setwd(path)
Claim.Data <- read_csv2(file = "ClaimData.csv")</pre>
## i Using '\',\'' as decimal and '\'.\'' as grouping mark. Use 'read_delim()' for more control.
##
## cols(
    Client = col_double(),
##
    BLUEBOOK = col_double(),
    RETAINED = col_double(),
##
    NPOLICY = col_double(),
##
##
    CLM_AMT = col_double(),
    AGE = col_double(),
##
##
    YOJ = col_double(),
    GENDER = col_character(),
##
    MARRIED = col_character(),
##
##
    MAX_EDUC = col_character()
## )
glimpse(Claim.Data)
## Rows: 10,303
```

Columns: 10

3.3. Definindo as Variáveis Qualitativas

```
Claim.Data$GENDER <- factor(
   Claim.Data$GENDER,
   levels = c("M", "F"),
   labels = c("Male", "Female")
)
Claim.Data$MARRIED <- factor(Claim.Data$MARRIED)
Claim.Data$MAX_EDUC <- ordered(
   Claim.Data$MAX_EDUC,
   levels = c("<High School", "High School", "Bachelors", "Masters", "PhD")
)
glimpse(Claim.Data)</pre>
```

```
## Rows: 10.303
## Columns: 10
## $ Client
                                              <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~
## $ BLUEBOOK <dbl> 9860, 1500, 30460, 16580, 23030, 20730, 27420, 24360, 36460, ~
## $ RETAINED <dbl> 6, 4, 4, 4, 4, 9, 10, 6, 1, 4, 1, 17, 6, 1, 13, 4, 4, 13, 1, ~
## $ NPOLICY <dbl> 2, 2, 1, 2, 1, 1, 1, 3, 3, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1~
## $ CLM AMT
                                              <dbl> 3336.00, 5583.00, 39103.88, 0.00, 0.00, 0.00, 5342.00, 0.00, ~
## $ AGE
                                               <dbl> 42, 35, 58, 45, 49, 38, 60, 43, 43, 43, 42, 42, 58, 27, 38, 5~
## $ YOJ
                                               <dbl> 13, 12, 13, 14, 13, 10, 7, 11, 11, 11, 13, 13, NA, 11, 9, 12,~
## $ GENDER
                                               <fct> Male, Male, Male, Female, Female
## $ MARRIED <fct> Yes, No, No, Yes, Yes, Yes, No, No, No, No, Yes, Yes, Yes, No~
## $ MAX EDUC <ord> <High School, High School, Masters, High School, High School,~
```

3.4. Validação dos dados

10

197

... with 538 more rows

10020

17

```
anyNA(Claim.Data)
## [1] TRUE
Claim.Data %>% is.na() %>% sum()
## [1] 555
Claim.Data %>% is.na() %>% unique()
##
        Client BLUEBOOK RETAINED NPOLICY CLM_AMT
                                                       AGE
                                                             YOJ GENDER MARRIED
## [1,]
         FALSE
                   FALSE
                             FALSE
                                     FALSE
                                              FALSE FALSE FALSE
                                                                  FALSE
                                                                           FALSE
## [2,]
         FALSE
                   FALSE
                             FALSE
                                     FALSE
                                              FALSE FALSE
                                                                  FALSE
                                                                           FALSE
                                                           TRUE
## [3,]
         FALSE
                   FALSE
                             FALSE
                                     FALSE
                                              FALSE TRUE FALSE FALSE
                                                                           FALSE
##
        MAX_EDUC
## [1,]
           FALSE
## [2,]
           FALSE
## [3,]
           FALSE
Claim.Data[is.na(Claim.Data$AGE),]
## # A tibble: 7 x 10
     Client BLUEBOOK RETAINED NPOLICY CLM AMT
                                                          YOJ GENDER MARRIED MAX EDUC
##
                                                    AGE
##
      <dbl>
                <dbl>
                          <dbl>
                                  <dbl>
                                           <dbl> <dbl> <fct>
                                                                      <fct>
                                                                               <ord>
## 1
       1089
                14500
                              1
                                       2
                                            3444
                                                    NA
                                                            O Female No
                                                                               <High Sch~
## 2
       1694
                 3100
                              9
                                      4
                                            6142
                                                    NA
                                                            8 Female No
                                                                               <High Sch~
## 3
       2155
                 2950
                             10
                                       1
                                            4798
                                                     NA
                                                            9 Female No
                                                                               <High Sch~
## 4
       5206
                 1500
                                            3092
                                                                               Bachelors
                             10
                                      1
                                                     NA
                                                            0 Male
                                                                      No
## 5
       9449
                 3180
                             11
                                       2
                                            2541
                                                     NA
                                                            O Female No
                                                                               Bachelors
## 6
       9742
                 2600
                             10
                                       1
                                                            O Female Yes
                                                                               High Scho~
                                               0
                                                     NA
                                                           12 Male
## 7
       9980
                20770
                                       1
                                            5640
                                                     NA
                                                                      Yes
                                                                               High Scho~
Claim.Data[is.na(Claim.Data$YOJ),]
## # A tibble: 548 x 10
      Client BLUEBOOK RETAINED NPOLICY CLM_AMT
##
                                                     AGE
                                                           YOJ GENDER MARRIED MAX EDUC
##
       <dbl>
                 <dbl>
                           <dbl>
                                   <dbl>
                                            <dbl>
                                                  <dbl>
                                                         <dbl> <fct>
                                                                       <fct>
                                                                                <ord>
##
                 11050
                                        2
   1
          13
                               6
                                                0
                                                      58
                                                            NA Male
                                                                       Yes
                                                                                Masters
                  8760
                                        2
##
    2
          55
                                                0
                                                      47
                                                            NA Male
                                                                                High Sch~
                               1
                                                                       Yes
                                        2
                                                                                High Sch~
##
    3
          56
                  8760
                               6
                                                0
                                                      47
                                                            NA Male
                                                                       Yes
##
    4
          97
                 14510
                               1
                                        1
                                                0
                                                      45
                                                            NA Male
                                                                       No
                                                                                Bachelors
##
    5
         100
                 25660
                               4
                                        1
                                             4487
                                                      27
                                                            NA Male
                                                                       No
                                                                                Bachelors
                               7
                                             4995
##
    6
         134
                  4700
                                        1
                                                      32
                                                            NA Female No
                                                                                Bachelors
##
    7
         154
                 17190
                                                      33
                                                            NA Male
                               1
                                        1
                                                0
                                                                       Yes
                                                                                Bachelors
##
                                        3
    8
         161
                 11910
                               7
                                             7907
                                                      44
                                                            NA Female Yes
                                                                                <High Sc~
##
    9
         165
                 19780
                                        2
                                                0
                                                      46
                                                            NA Male
                                                                                <High Sc~
                               1
                                                                       No
                                        2
```

0

45

NA Female No

<High Sc~

3.5. Avaliação dos dados

Variáveis contínuas

BLUEBOOK - Valor do Veículo

• Estatísticas básicas do R

1500 9200 14400 20890 69740

```
mean(Claim.Data$BLUEBOOK)
                                # media
## [1] 15660.37
median(Claim.Data$BLUEBOOK)
                                # mediana
## [1] 14400
min(Claim.Data$BLUEBOOK)
                                # minimo
## [1] 1500
max(Claim.Data$BLUEBOOK)
                                # maximo
## [1] 69740
var(Claim.Data$BLUEBOOK)
                                # variancia
## [1] 71039286
sd(Claim.Data$BLUEBOOK)
                                # desvio padrao
## [1] 8428.481
IQR(Claim.Data$BLUEBOOK)
                                # distancia interquartilica
## [1] 11690
summary(Claim.Data$BLUEBOOK)
                                # Min, Q1, Q2, media, Q3, Max
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
      1500
##
              9200
                     14400
                             15660
                                     20890
                                             69740
quantile(Claim.Data$BLUEBOOK) # Min, Q1, Q2, Q3, Max
      0%
           25%
                50% 75% 100%
```

```
quantile(Claim.Data$BLUEBOOK, type = 7, probs = c(.01, .05, .10, .90, .95, .99)) # percentis
## 1% 5% 10% 90% 95% 99%
## 1500.0 4801.0 5990.0 27430.0 30948.0 38899.4
```

• Resumo da biblioteca Hmisc

```
## vars n mean sd median trimmed mad min max range skew
## X1 1 10303 15660.37 8428.48 14400 14993.41 8539.78 1500 69740 68240 0.77
## kurtosis se
## X1 0.65 83.04
```

• Histograma

Histograma: Preço Tabelado do Automovel

• Gráfico de densidade por Kernel

Densidade: Preço Tabelado do Automovel

• Boxplot

```
boxplot(
  Claim.Data$BLUEBOOK, horizontal = T,
  col = "lightblue", pch = 20,
  main = "Boxplot: Preço Tabelado do Automovel",
  xlab = "Preco (USD)"
)
```

Boxplot: Preço Tabelado do Automovel

• Resumo Tabular

ds_freq_table(Claim.Data, BLUEBOOK, bins = 20)

## ##	Variable: BLUEBOOK												
## ##	Bins	I	Frequency	Cum	Frequency	1	Percent	1	Cum Percent				
## ##	1500 - 4912	I	545	l	545	I	5.29	I	5.29				
## ## ##	4912 - 8324	I	1655	1	2200	1	16.06	1	21.35				
##	8324 - 11736	1	1648	I	3848	1	16	I	37.35				
##	11736 - 15148	ı	1666		5514		16.17	Ι	53.52				
##	15148 - 18560		1430		6944		13.88	1	67.4				
##	18560 - 21972	ı	1123		8067		10.9	l	78.3				
##	21972 - 25384	ı	838		8905		8.13	l	86.43				
##	25384 - 28796	1	609		9514		5.91	I	92.34				
##	28796 - 32208	ı	380		9894		3.69	l	96.03				
##	32208 - 35620	1	206		10100		2	I	98.03				
##	35620 - 39032	1	109		10209		1.06	Ι	99.09				
##	39032 - 42444	1	51		10260		0.5	Ι	99.58				
##	42444 - 45856		33		10293		0.32		99.9				
##	45856 - 49268		7		10300		0.07	l	99.97				
##	49268 - 52680	1	4		10304		0.04	Ι	100.01				
##	52680 - 56092		0		10304		0	l	100.01				
##	56092 - 59504		1		10305		0.01	I	100.02				
	59504 - 62916												
	62916 - 66328	I	1	1	10308	1	0.01	1					
##	66328 - 69740	I	1	I	10309	I	0.01	1	100.06				
##		I		I	-	1	100.00	1					
##													

RETAINED - Anos como cliente

• Estatísticas básicas do R

```
mean(Claim.Data$RETAINED)
                              # media
## [1] 5.329224
median(Claim.Data$RETAINED)
                              # mediana
## [1] 4
min(Claim.Data$RETAINED)
                              # minimo
## [1] 1
max(Claim.Data$RETAINED)
                              # maximo
## [1] 25
var(Claim.Data$RETAINED)
                              # variancia
## [1] 16.89704
sd(Claim.Data$RETAINED)
                              # desvio padrao
## [1] 4.110601
IQR(Claim.Data$RETAINED)
                              # distancia interquartilica
## [1] 6
summary(Claim.Data$RETAINED) # Min, Q1, Q2, media, Q3, Max
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                           Max.
    1.000 1.000 4.000 5.329 7.000 25.000
quantile(Claim.Data$RETAINED) # Min, Q1, Q2, Q3, Max
    0% 25% 50% 75% 100%
##
        1
              4
                  7
quantile(Claim.Data$RETAINED, type = 7, probs = c(.01, .05, .10, .90, .95, .99)) # percentis
  1% 5% 10% 90% 95% 99%
          1 11 13 17
       1
```

• Resumo da biblioteca Hmisc

```
describe(Claim.Data$RETAINED)
```

• Histograma

Histograma: Anos como cliente

• Grafico de densidade por Kernel

Densidade: Anos como cliente

• Boxplot

```
boxplot(
  Claim.Data$RETAINED, horizontal = T,
  col = "lightblue", pch = 20,
  main = "Boxplot: Anos como cliente",
  xlab = "Anos"
)
```

Boxplot: Anos como cliente

• Resumo Tabular

```
ds_freq_table(Claim.Data, RETAINED, bins = 12)
```

##	I							
##	9 - 11 		I	11198	l	15.04	I	108.69
##	11 - 13	710	•	11908	•	6.89	I	
##	 13 - 15	487	1	12395	1	4.73	I	120.3
##	 15 - 17 '	216	1	12611	1	2.1	1	122.4
##	 17 - 19	163	1	12774	1	1.58	1	123.98
##	 19 - 21	36	1	12810	1	0.35	1	124.33
##	 21 - 23			12826	1	0.16	1	124.49
##	 23 - 25	3	l	12829		0.03	 	
##	 Total	10303	 			100.00	 	-
##								

CLM_AMT - Valor de cobertura solicitado

• Estatisticas basicas do R

```
mean(Claim.Data$CLM_AMT)
                               # media
## [1] 1511.119
median(Claim.Data$CLM_AMT)
                               # mediana
## [1] 0
min(Claim.Data$CLM AMT)
                               # minimo
## [1] 0
max(Claim.Data$CLM_AMT)
                               # maximo
## [1] 123247.1
var(Claim.Data$CLM_AMT)
                               # variancia
## [1] 22326069
sd(Claim.Data$CLM_AMT)
                               # desvio padrao
## [1] 4725.047
IQR(Claim.Data$CLM_AMT)
                               # distancia interquartilica
## [1] 1144.427
summary(Claim.Data$CLM_AMT) # Min, Q1, Q2, media, Q3, Max
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
##
                              1511
                                      1144 123247
quantile(Claim.Data$CLM_AMT) # Min, Q1, Q2, Q3, Max
##
           0%
                     25%
                                50%
                                           75%
                                                     100%
##
        0.000
                   0.000
                              0.000
                                     1144.427 123247.121
quantile(Claim.Data$CLM_AMT, type = 7, probs = c(.01, .05, .10, .90, .95, .99)) # percentis
##
         1%
                  5%
                          10%
                                   90%
                                            95%
                0.00
       0.00
                         0.00 4891.60 6406.80 19968.13
##
```

• Resumo da biblioteca Hmisc

```
describe(Claim.Data$CLM_AMT)
```

```
## vars n mean sd median trimmed mad min max range skew
## X1 1 10303 1511.12 4725.05 0 607.79 0 0 123247.1 123247.1 9.29
## kurtosis se
## X1 136.39 46.55
```

• Histograma

Histograma: Valor de cobertura solicitado

• Grafico de densidade por kernel

Densidade: Valor de cobertura solicitado

• Boxplot

Boxplot: Valor de cobertura solicitado

• Resumo Tabular

ds_freq_table(Claim.Data, CLM_AMT, bins = 20)

## ##					Variable:	C	LM_AMT				
## ##		Bins		l	Frequency	1	Cum Frequency	ı	Percent	I	Cum Percent
##	0	_	6162.4	1	9745	I	9745	1	94.58	1	94.58
##	6162.4		12324.7	I	381	 I	10126		3.7		98.28
##	12324.7		18487.1	I	55	 I	10181	 	0.53	 	98.82
##	18487.1		24649.4	I	45	 I	10226		0.44		99.25
## ##	24649.4		30811.8	 	19	 I	10245		0.18		99.44
## ##	30811.8		36974.1	 	16	 	10261	 	0.16		99.59
## ##	36974.1		43136.5	 	14	 	10275	 	0.14		99.73
## ##	43136.5		49298.8	 	9	 	10284	 I	0.09		99.82
## ##	49298.8		55461.2	 	7	 I	10291	 I	0.07		 99.88
## ##	55461.2	 -	61623.6	 	4	 I	10295	 	0.04	 	99.92
## ##	61623.6		67785.9	 	2	 	 10297	 I	0.02		99.94
## ##	67785.9		73948.3	 	 1	 	 10298	 I	0.01		 99.95
## ##	73948.3	 -	80110.6	 	2	 	10300	 	0.02		 99.97
## ##	80110.6		86273	 	 1	 	10301	 I	0.01		 99.98
## ##	86273	 -	92435.3	 	0	 	10301	 I	0		 99.98
## ##	92435.3	 -	98597.7	 	0	 	10301	 I	0	 	 99.98
## ##	98597.7	 -	104760.1	 	0	 	10301	 I	0	 I	 99.98
## ##	104760.1	 -	110922.4	 	 1	 	10302	 I	0.01	 I	 99.99
## ##						 -	10302	 		 	·
## ##			123247.1				10303				100
## ##				 						 I	
##				•				•			'

AGE - Idade em anos

• Estatisticas basicas do R
 Adicionado parâmetro na.rm = TRUE para ignorar os valores não definidos.

```
mean(Claim.Data$AGE, na.rm=TRUE)
                                       # media
## [1] 44.83664
median(Claim.Data$AGE, na.rm=TRUE)
                                       # mediana
## [1] 45
min(Claim.Data$AGE, na.rm=TRUE)
                                        # minimo
## [1] 16
max(Claim.Data$AGE, na.rm=TRUE)
                                       # maximo
## [1] 81
var(Claim.Data$AGE, na.rm=TRUE)
                                        # variancia
## [1] 74.06967
sd(Claim.Data$AGE, na.rm=TRUE)
                                       # desvio padrao
## [1] 8.606374
IQR(Claim.Data$AGE, na.rm=TRUE)
                                       # distancia interquartilica
## [1] 12
summary(Claim.Data$AGE, na.rm=TRUE) # Min, Q1, Q2, media, Q3, Max
##
                              Mean 3rd Qu.
                                                      NA's
      Min. 1st Qu. Median
                                              Max.
##
     16.00
             39.00
                     45.00
                             44.84
                                     51.00
                                             81.00
quantile(Claim.Data$AGE, na.rm=TRUE) # Min, Q1, Q2, Q3, Max
##
                   75% 100%
     0%
         25%
              50%
          39
                    51
                         81
##
     16
               45
quantile(Claim.Data$AGE, na.rm=TRUE, type = 7, probs = c(.01, .05, .10, .90, .95, .99)) # percentis
    1% 5% 10% 90% 95% 99%
    25
       30 34 56 59 64
```

• Resumo da biblioteca Hmisc

describe(Claim.Data\$AGE)

```
## vars n mean sd median trimmed mad min max range skew kurtosis se ## X1 1 10296 44.84 8.61 45 44.88 8.9 16 81 65 -0.03 -0.08 0.08
```

• Histograma

Histograma: Idade em anos

• Grafico de densidade por kernel

Warning: Removed 7 rows containing non-finite values (stat_density).

Densidade: Idade em anos

• Boxplot

Boxplot: Idade em anos

• Resumo Tabular

ds_freq_table(Claim.Data, AGE, bins = 25)

## ##	l				Variable: AG				1
##			1 0	١	Cum Frequency	I	Percent	I	Cum Percent
##	16 - 18.6	I	10	١	10	I	0.1	١	0.1
##	18.6 - 21.2	١	24	1	34 	1	0.23	1	0.33
##	21.2 - 23.8	I	29	1	63 	1	0.28	1	0.61
##	23.8 - 26.4	١	103	1	166	1	1	-	1.61
	 26.4 - 29		231		 397		2.24		3.86

ا سب									
##	29 - 31.6		244		641		2.37		6.23
##	31.6 - 34.2	1	558		1199		5.42		11.65
## ##	34.2 - 36.8		547		1746		5.31	1	16.96
## ##	36.8 - 39.4		1052		2798		10.22	1	27.18
## ##	39.4 - 42	1	1239		4037		12.03	1	39.21
## ##	42 - 44.6	1	864		4901		8.39	1	47.6
## ##	44.6 - 47.2	1	1435		6336		13.94	1	61.54
## ##	47.2 - 49.8	1	856		7192		8.31	1	69.85
## ##	49.8 - 52.4	1	1132		8324		10.99	1	80.85
## ##	52.4 - 55	1	875		9199		8.5		89.35
## ##	55 - 57.6	1	422		9621		4.1		93.44
##	57.6 - 60.2	1	348		9969		3.38	1	96.82
##	60.2 - 62.8	1	139		10108		1.35	1	98.17
## ##	62.8 - 65.4	1	112		10220		1.09		99.26
## ##	65.4 - 68	1	53		10273		0.51		99.78
## ##	68 - 70.6	1	11		10284		0.11		99.88
## ##	70.6 - 73.2	1	9		10293		0.09		99.97
## ##	73.2 - 75.8	1	0		10293		0	I	99.97
## ##	75.8 - 78.4		1		10294		0.01		99.98
## ## ##	78.4 - 81	1	2		10296	 	0.02	I	100
## ## ##	Missing	1	7			 	0.06794138		_
## ## ##	Total						100.00	1	-
##									

YOJ - Anos de trabalho

• Estatisticas basicas do R
 Adicionado parâmetro na.rm = TRUE para ignorar os valores não definidos.

```
mean(Claim.Data$YOJ, na.rm=TRUE)
                                       # media
## [1] 10.47391
median(Claim.Data$YOJ, na.rm=TRUE)
                                       # mediana
## [1] 11
min(Claim.Data$YOJ, na.rm=TRUE)
                                        # minimo
## [1] 0
max(Claim.Data$YOJ, na.rm=TRUE)
                                       # maximo
## [1] 23
var(Claim.Data$YOJ, na.rm=TRUE)
                                        # variancia
## [1] 16.88191
sd(Claim.Data$YOJ, na.rm=TRUE)
                                       # desvio padrao
## [1] 4.10876
IQR(Claim.Data$YOJ, na.rm=TRUE)
                                       # distancia interquartilica
## [1] 4
summary(Claim.Data$YOJ, na.rm=TRUE)
                                       # Min, Q1, Q2, media, Q3, Max
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                      NA's
                                              Max.
##
      0.00
              9.00
                     11.00
                             10.47
                                     13.00
                                             23.00
                                                       548
quantile(Claim.Data$YOJ, na.rm=TRUE) # Min, Q1, Q2, Q3, Max
##
                   75% 100%
         25%
              50%
      0
           9
                         23
##
               11
                    13
quantile(Claim.Data$YOJ, na.rm=TRUE, type = 7, probs = c(.01, .05, .10, .90, .95, .99)) # percentis
    1% 5% 10% 90% 95% 99%
            5 15 15 17
```

• Resumo da biblioteca Hmisc

```
describe(Claim.Data$YOJ)
```

• Histograma

Histograma: Idade em anos

• Grafico de densidade por kernel

Warning: Removed 548 rows containing non-finite values (stat_density).

Densidade: Anos de trabalho

• Boxplot

Boxplot: Anos de trabalho

• Resumo Tabular

ds_freq_table(Claim.Data, YOJ, bins = 23)

## ##								Variable:	YOJ			
##	Ві	ins	3	I	Frequency	I	Cum	Frequency	I	Percent	I	Cum Percent
## ##		_			814			814	1	8.34	I	8.34
## ##		-			28			842		0.29	 	8.63
## ##		-		1	59	1		901	1	0.6	 I	9.24
## ##	3	-		1	87	1		988	1	0.89	 	10.13
##	4	-	5	1	173	1		1161	1	1.77	I	11.9
##	5		6	1	343	1		1504	1	3.52	 	15.42
## ##	6	_	7	I	603			2107		6.18	 	21.6
## ##	7	_	8	I	868			2975		8.9	 	30.5
## ##	8		9		1138			4113	1	11.67	 	42.16
## ##		-	10		1588			5701		16.28	 	58.44
## ##		-	11		2201			7902		22.56	 	81
## ##	11	-	12		2767			10669	1	28.36	 	109.37
## ## ##		-	13		2766			13435	I	28.35	 	137.72
## ## ##		-	14	1	2262	1		15697	I	23.19	I	160.91
## ## ##			15	I	1579	1		17276	1	16.19	I	177.1
## ## ##	15	_	16		826	1		18102	I	8.47		185.57
## ## ##	16	-	17		370	1		18472		3.79		189.36
## ## ##	17	-	18		160			18632	l	1.64	 	191
## ## ##	18	-	19		50	1		18682	I	0.51	 	191.51
##	19	-	20		17			18699	l	0.17	 	191.69
## ## ##	20	_	21		0			18699	l	0	 	191.69
## ## ##	21	-	22		0			18699	l	0	 	191.69
##	22	_	23		2	1	_ _	18701	 	0.02		191.71
##												

Variáveis discretas

NPOLICY - Número de apólices

• Estatisticas basicas do R

```
mean(Claim.Data$NPOLICY)
                             # media
## [1] 1.695429
median(Claim.Data$NPOLICY) # mediana
## [1] 1
min(Claim.Data$NPOLICY)
                             # minimo
## [1] 1
max(Claim.Data$NPOLICY)
                             # maximo
## [1] 9
var(Claim.Data$NPOLICY)
                             # variancia
## [1] 0.8746122
sd(Claim.Data$NPOLICY)
                             # desvio padrao
## [1] 0.935207
IQR(Claim.Data$NPOLICY)
                             # distancia interquartilica
## [1] 1
summary(Claim.Data$NPOLICY) # Min, Q1, Q2, media, Q3, Max
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                           Max.
    1.000 1.000 1.000 1.695 2.000 9.000
##
quantile(Claim.Data$NPOLICY) # Min, Q1, Q2, Q3, Max
    0% 25% 50% 75% 100%
##
        1
             1
                 2
```

```
quantile(Claim.Data$NPOLICY, type = 7, probs = c(.01, .05, .10, .90, .95, .99)) # percentis
   1% 5% 10% 90% 95% 99%
        1
            1
                3
                    3
```

• Resumo da biblioteca Hmisc

```
describe(Claim.Data$NPOLICY)
##
                        sd median trimmed mad min max range skew kurtosis
## X1
         1 10303 1.7 0.94
                                1
                                     1.53
                                            0
                                                1
                                                    9
                                                          8 1.75
```

• Histograma

```
hist(Claim.Data$NPOLICY, breaks = "scott",
     col = "lightgreen", border = "grey",
     main = "Histograma: Número de apólices",
     xlab = "Número", ylab = "Frequencia Absoluta",
)
```

Histograma: Número de apólices

• Grafico de densidade por kernel

Densidade: Número de apólices

• Boxplot

Boxplot: Número de apólices

• Resumo Tabular

ds_freq_table(Claim.Data, NPOLICY, bins = 8)

## ##	Variable: NPOLICY							
##	Bins					Percent		m Percent
##	1 - 2		1	8664	1	84.09	1	84.09
##	2 - 3	4290	1	12954	1	41.64	1	125.73
##	3 - 4	1495	1	14449	1	14.51	1	140.24
##	4 – 5	476	1	14925	1	4.62	1	144.86
##	5 - 6	122	1	15047	1	1.18	1	146.04
##	6 - 7	31	1	15078	1	0.3	1	146.35
##	7 - 8		1	15095	I	0.17	1	146.51
##	8 - 9					0.05		
##		10303	Ι	_	1	100.00	Ι	 -
##								

Variáveis nominais

MAX EDUC - Máximo nível educacional

• Estatisticas basicas do R Como esta variável é pelo menos ordinal, pode-se calcular as estatísticas de ordem e, portanto, calcular mediana, IQR e quantis.

```
median(as.numeric(Claim.Data$MAX_EDUC))
                                                    # Nível de educação Mediana
## [1] 3
quantile(as.numeric(Claim.Data$MAX_EDUC), type = 2) # Quartis
        25% 50% 75% 100%
##
          2
                    4
      1
               3
IQR(as.numeric(Claim.Data$MAX_EDUC), type = 2)  # Distancia interquartilica
## [1] 2
  • Resumo tabular
tabela <- freq(Claim.Data$MAX_EDUC, cum = TRUE, total = TRUE, valid = FALSE)
```

```
tabela
```

```
## Claim.Data$MAX_EDUC
## Type: Ordered Factor
##
                                  % Valid
                                             % Valid Cum.
##
                          Freq
                                                             % Total
                                                                        % Total Cum.
##
##
         <High School
                          1515
                                    14.70
                                                    14.70
                                                               14.70
                                                                               14.70
          High School
                          2952
                                    28.65
                                                    43.36
                                                               28.65
                                                                               43.36
##
##
            Bachelors
                          2824
                                    27.41
                                                    70.77
                                                               27.41
                                                                               70.77
##
              Masters
                          2078
                                    20.17
                                                    90.93
                                                               20.17
                                                                               90.93
##
                   PhD
                           934
                                     9.07
                                                   100.00
                                                                9.07
                                                                              100.00
##
                                                                              100.00
                  <NA>
                              0
                                                                0.00
##
                 Total
                         10303
                                   100.00
                                                   100.00
                                                              100.00
                                                                              100.00
```

Resumo gráfico

Frequencies

```
ggplot(Claim.Data,
       aes(x = MAX\_EDUC)) +
  geom_bar(color = "grey", fill = "lightgreen") +
  ggtitle("Nível de Escolaridade") +
  xlab("Nível de escolaridade") +
  ylab("Frequência Absoluta") +
  theme(legend.position="none",
        plot.title = element_text(hjust = 0.5, size = 15),
       axis.title = element_text(size = 12),
        axis.text = element_text(size = 10)
 )
```

Nível de Escolaridade

• Tabela de frequências

```
dados.freq <- data.frame(
   name = rownames(table(Claim.Data$MAX_EDUC)),
   value = as.vector(table(Claim.Data$MAX_EDUC))
)
dados.freq</pre>
```

```
## 1 <High School 1515
## 2 High School 2952
## 3 Bachelors 2824
## 4 Masters 2078
## 5 PhD 934
```

• Barplot

```
ggplot(dados.freq, aes(x=name, y=value)) +
  geom_bar(stat = "identity") +
  ggtitle("Nível de Escolaridade") +
  xlab("Nível de escolaridade") +
  ylab("Frequência Absoluta") +
  coord_flip() +
  theme(legend.position="none",
```

```
plot.title = element_text(hjust = 0.5, size = 15),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10)
)
```

Nível de Escolaridade

GENDER - Sexo

• Estatisticas basicas do R Como esta variável é pelo menos ordinal, pode-se calcular as estatísticas de ordem e, portanto, calcular mediana, IQR e quantis.

```
median(as.numeric(Claim.Data$GENDER))  # Nível de educação Mediana

## [1] 2

quantile(as.numeric(Claim.Data$GENDER), type = 2) # Quartis

## 0% 25% 50% 75% 100%

## 1 1 2 2 2 2

IQR(as.numeric(Claim.Data$GENDER), type = 2) # Distancia interquartilica

## [1] 1
```

• Resumo tabular

```
tabela <- freq(Claim.Data$GENDER, cum = TRUE, total = TRUE, valid = FALSE)</pre>
tabela
## Frequencies
## Claim.Data$GENDER
## Type: Factor
##
##
                           % Valid
                                     % Valid Cum.
                                                     % Total
                                                               % Total Cum.
                   Freq
##
##
           Male
                    4758
                             46.18
                                            46.18
                                                       46.18
                                                                       46.18
##
         Female
                   5545
                             53.82
                                           100.00
                                                       53.82
                                                                      100.00
```

0.00

100.00

100.00

100.00

• Resumo gráfico

<NA>

Total

0

100.00

10303

##

##

100.00

Gênero

• Tabela de frequências

```
dados.freq <- data.frame(
  name = rownames(table(Claim.Data$GENDER)),
  value = as.vector(table(Claim.Data$GENDER))
)
dados.freq</pre>
```

name value ## 1 Male 4758 ## 2 Female 5545

• Barplot

MARRIED - Casado

• Estatisticas basicas do R Como esta variável é pelo menos ordinal, pode-se calcular as estatísticas de ordem e, portanto, calcular mediana, IQR e quantis.

```
median(as.numeric(Claim.Data$MARRIED))  # Nivel de educação Mediana

## [1] 2

quantile(as.numeric(Claim.Data$MARRIED), type = 2) # Quartis

## 0% 25% 50% 75% 100%

## 1 1 2 2 2

IQR(as.numeric(Claim.Data$MARRIED), type = 2) # Distancia interquartilica

## [1] 1
```

• Resumo tabular

```
tabela <- freq(Claim.Data$MARRIED, cum = TRUE, total = TRUE, valid = FALSE)
tabela

## Frequencies
## Claim.Data$MARRIED</pre>
```

```
## Type: Factor
##
##
                          % Valid
                                    % Valid Cum.
                                                     % Total
                                                               % Total Cum.
                  Freq
##
##
            No
                   4114
                            39.93
                                            39.93
                                                       39.93
                                                                       39.93
##
                   6189
                            60.07
                                           100.00
                                                       60.07
                                                                      100.00
           Yes
                                                                      100.00
##
          <NA>
                                                        0.00
##
         Total
                  10303
                           100.00
                                           100.00
                                                     100.00
                                                                      100.00
```

• Resumo gráfico

• Tabela de frequências

```
dados.freq <- data.frame(
   name = rownames(table(Claim.Data$MARRIED)),
   value = as.vector(table(Claim.Data$MARRIED))
)
dados.freq

## name value
## 1 No 4114</pre>
```

• Barplot

2 Yes 6189

4. DISCUSSÃO E CONCLUSÕES

5. REFERÊNCIAS

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

JJ Allaire and Yihui Xie and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang and Richard Iannone (2021). rmarkdown: Dynamic Documents for R. R package version 2.8. URL https://rmarkdown.rstudio.com.

Yihui Xie and J.J. Allaire and Garrett Grolemund (2018). R Markdown: The Definitive Guide. Chapman and Hall/CRC. ISBN 9781138359338. URL https://bookdown.org/yihui/rmarkdown.

Yihui Xie and Christophe Dervieux and Emily Riederer (2020). R Markdown Cookbook. Chapman and Hall/CRC. ISBN 9780367563837. URL https://bookdown.org/yihui/rmarkdown-cookbook.