Tight Bounds for Adversarially Robust Streams and Sliding Windows via Difference Estimators

David P. Woodruff Samson Zhou

Carnegie Mellon University

Model #1: Streaming Model

- Arrow Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

Heavy-Hitters

 \clubsuit Given a set S of m elements from [n], let f_i be the frequency of element i. (How often it appears)

$$112121123 \rightarrow [5, 3, 1, 0] := f$$

Heavy-Hitters

- \clubsuit Given a set S of m elements from [n], let f_i be the frequency of element i. (How often it appears)
- \clubsuit Let L_2 be the norm of the frequency vector:

$$L_2 = \sqrt{f_1^2 + f_2^2 + \dots + f_n^2}$$

- \clubsuit Goal: Given a set S of m elements from [n] and a threshold ϵ , output the elements i such that $f_i > \epsilon L_2$...and no elements j such that $f_j < \frac{\epsilon}{16} L_2$
- Motivation: DDoS prevention, iceberg queries

Frequency Moments

- \clubsuit Given a set S of m elements from [n], let f_i be the frequency of element i. (How often it appears)
- \clubsuit Let F_p be the frequency moment of the vector:

$$F_p = f_1^p + f_2^p + \dots + f_n^p$$

- **�** Goal: Given a set S of m elements from [n] and an accuracy parameter ϵ , output a $(1 + \epsilon)$ -approximation to F_p
- Motivation: Entropy estimation, linear regression

Distinct Elements

- \clubsuit Given a set S of m elements from [n], let f_i be the frequency of element i. (How often it appears)
- \clubsuit Let F_0 be the frequency moment of the vector:

$$F_0 = |\{i : f_i \neq 0\}|$$

- ❖ Goal: Given a set S of m elements from [n] and an accuracy parameter ϵ , output a $(1 + \epsilon)$ -approximation to F_0
- Motivation: Traffic monitoring

$(1 + \epsilon)$ -Approximation Streaming Algorithms

- Space $O\left(\frac{1}{\epsilon^2} + \log n\right)$ algorithm for F_0 [KaneNelsonWoodruff10], [Blasiok20]
- Space $O\left(\frac{1}{\epsilon^2}\log n\right)$ algorithm for F_p with $p \in (0,2]$ [BlasiokDingNelson17]
- ❖ Space $O\left(\frac{1}{\epsilon^2}n^{1-2/p}\log^2 n\right)$ algorithm for F_p with p>2 [Ganguly11, GangulyWoodruff18]
- \Leftrightarrow Space $O\left(\frac{1}{\epsilon^2}\log n\right)$ algorithm for L_2 -heavy hitters [BravermanChestnutlvkinNelsonWangWoodruff17]

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

1

- ❖ Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

10

- ❖ Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

1010

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

- ❖ Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S
- Adversarially Robust: "Future queries may depend on previous queries"
- Motivation: Database queries, adversarial ML

$(1 + \epsilon)$ -Robust Algorithms [Ben-EliezerJayaramWoodruffYogev20]

- \Leftrightarrow Space $\tilde{O}\left(\frac{1}{\epsilon^3}\log n\right)$ algorithm for F_0
- \Leftrightarrow Space $\tilde{O}\left(\frac{1}{\epsilon^3}\log n\right)$ algorithm for F_p with $p\in(0,2]$
- \Leftrightarrow Space $\tilde{O}\left(\frac{1}{\epsilon^3}n^{1-2/p}\right)$ algorithm for F_p with p>2
- riangle Space $\tilde{O}\left(\frac{1}{\epsilon^3}\log n\right)$ algorithm for L_2 -heavy hitters

"A general framework that loses* nothing in n and only $\frac{1}{\epsilon}$ "

"What's an epsilon between friends?

- Arr Statista: $\sim 300B$ e-mails sent per day
- Unsigned integer range: $n = 2^{32} \sim 4B$
- \Leftrightarrow Since $\frac{1}{\epsilon} > \log n$, we should care about $\frac{1}{\epsilon}$ factors!

$(1 + \epsilon)$ -Robust Algorithms [HassidimKaplanMansourMatiasStemmer20]

- \Leftrightarrow Space $\tilde{O}\left(\frac{1}{\epsilon^{2.5}}\log^4 n\right)$ algorithm for F_0
- \clubsuit Space $\tilde{O}\left(\frac{1}{\epsilon^{2.5}}\log^4 n\right)$ algorithm for F_p with $p \in (0,2]$
- riangle Space $\tilde{O}\left(\frac{1}{\epsilon^{2.5}}n^{1-2/p}\right)$ algorithm for F_p with p>2
- riangle Space $\tilde{O}\left(\frac{1}{\epsilon^{2.5}}\log^4 n\right)$ algorithm for L_2 -heavy hitters

" $\frac{1}{\epsilon}$ losses are not necessary"

Our Results: $(1 + \epsilon)$ -Robust Algorithms

- riangle Space $\tilde{O}\left(\frac{1}{\epsilon^2}\log n\right)$ algorithm for F_0
- Space $\tilde{O}\left(\frac{1}{\epsilon^2}\log n\right)$ algorithm for F_p with $p \in (0,2]$
- riangle Space $\tilde{O}\left(\frac{1}{\epsilon^2}n^{1-2/p}\right)$ algorithm for F_p with integer p>2
- riangle Space $\tilde{O}\left(\frac{1}{\epsilon^2}\log n\right)$ algorithm for L_2 -heavy hitters

"No losses* are necessary!"

Summary: $(1 + \epsilon)$ -Robust Algorithms

Problem	[BJWY20] Space	[HKM ⁺ 20] Space	Our Result
Distinct Elements	$ ilde{\mathcal{O}}\left(rac{\log n}{arepsilon^3} ight)$	$\tilde{\mathcal{O}}\left(\frac{\log^4 n}{\varepsilon^{2.5}}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log n}{\varepsilon^2}\right)$
F_p Estimation, $p \in (0, 2]$	$ ilde{\mathcal{O}}\left(rac{\log n}{arepsilon^3} ight)$	$\tilde{\mathcal{O}}\left(\frac{\log^4 n}{\varepsilon^{2.5}}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log n}{\varepsilon^2}\right)$
Shannon Entropy	$ ilde{\mathcal{O}}\left(rac{\log^6 n}{arepsilon^5} ight)$	$\tilde{\mathcal{O}}\left(\frac{\log^4 n}{arepsilon^{3.5}}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log^3 n}{\varepsilon^2}\right)$
L_2 -Heavy Hitters	$ ilde{\mathcal{O}}\left(rac{\log n}{arepsilon^3} ight)$	$\tilde{\mathcal{O}}\left(\frac{\log^4 n}{\varepsilon^{2.5}}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log n}{arepsilon^2}\right)$
F_p Estimation, integer $p > 2$	$\tilde{\mathcal{O}}\left(\frac{n^{1-2/p}}{\varepsilon^3}\right)$	$\tilde{\mathcal{O}}\left(\frac{n^{1-2/p}}{\varepsilon^{2.5}}\right)$	$ ilde{\mathcal{O}}\left(rac{n^{1-2/p}}{arepsilon^2} ight)$
F_p Estimation, $p \in (0, 2]$, flip number λ	$\tilde{\mathcal{O}}\left(\frac{\lambda \log^2 n}{\varepsilon^2}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log^3 n\sqrt{\lambda \log n}}{\varepsilon^2}\right)$	$\tilde{\mathcal{O}}\left(\frac{\lambda \log^2 n}{\varepsilon}\right)$

- Arr Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S
- ❖ Sliding Window: "Only the *m* most recent updates form the underlying data set *S*"

- Arr Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S
- ❖ Sliding Window: "Only the *m* most recent updates form the underlying data set *S*"

- Arrow Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S
- ❖ Sliding Window: "Only the *m* most recent updates form the underlying data set *S*"

- Arrow Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S
- ❖ Sliding Window: "Only the *m* most recent updates form the underlying data set *S*"
 - * Emphasizes recent interactions, appropriate for time sensitive settings

$(1+\epsilon)$ -Approximation Sliding Window Algorithms

- Space $\tilde{O}\left(\frac{1}{\epsilon^2}\log n\right)$ algorithm for F_0 [BravermanGrigorescuLangWoodruffZhou18]
- Space $\tilde{O}\left(\frac{1}{\epsilon^2}\log^3 n\right)$ algorithm for L_2 -heavy hitters [BravermanGrigorescuLangWoodruffZhou18]

$(1+\epsilon)$ -Approximation Sliding Window Algorithms

- Space $O\left(\frac{1}{\epsilon^3}\log^3 n\right)$ algorithm for F_p with $p \in (0,1)$ [BravermanOstrovsky07]
- Space $O\left(\frac{1}{\epsilon^{2+p}}\log^3 n\right)$ algorithm for F_p with $p \in (1,2]$ [BravermanOstrovsky07]
- Space $\tilde{O}\left(\frac{1}{\epsilon^{2+p}}n^{1-2/p}\right)$ algorithm for F_p with p>2 [BravermanOstrovsky07]
- "A general framework that loses* nothing in n and only $\frac{1}{\epsilon}$ "

Our Results: $(1 + \epsilon)$ -Approximation Sliding Window Algorithms

riangle Space $\tilde{O}\left(\frac{1}{\epsilon^2}\log^3 n\right)$ algorithm for F_p with $p \in (0,2]$

Problem	[BO07] Space	Our Result
L_p Estimation, $p \in (0,1)$	$\tilde{\mathcal{O}}\left(\frac{\log^3 n}{\varepsilon^3}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log^3 n}{\varepsilon^2}\right)$
L_p Estimation, $p \in (1, 2]$	$\tilde{\mathcal{O}}\left(\frac{\log^3 n}{\varepsilon^{2+p}}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log^3 n}{\varepsilon^2}\right)$
L_p Estimation, integer $p > 2$	$\tilde{\mathcal{O}}\left(rac{n^{1-2/p}}{arepsilon^{2+p}} ight)$	$\tilde{\mathcal{O}}\left(rac{n^{1-2/p}}{arepsilon^2} ight)$
Entropy Estimation	$\tilde{\mathcal{O}}\left(\frac{\log^5 n}{\varepsilon^4}\right)$	$\tilde{\mathcal{O}}\left(\frac{\log^5 n}{\varepsilon^2}\right)$

"
$$\frac{1}{\epsilon}$$
 losses are not necessary"

Format

- ❖ Part 1: Background
- Part 2: Frameworks
- **❖** Part 3: Difference Estimators

Questions?

AMS F_2 Algorithm

- \Leftrightarrow Let $s \in \{-1, +1\}^n$ be a sign vector of length n
- \Leftrightarrow Let $Z = \langle s, f \rangle = s_1 f_1 + \dots + s_n f_n$ and consider Z^2

$$E[Z^{2}] = \sum_{i,j} E[s_{i}s_{j}f_{i}f_{j}] = f_{1}^{2} + \dots + f_{n}^{2}$$

$$Var[Z^{2}] \leq \sum_{i,j} E[s_{i}s_{j}s_{k}s_{l}f_{i}f_{j}f_{k}f_{l}] \leq 2F_{2}^{2}$$

❖ Take the mean of $O\left(\frac{1}{\epsilon^2}\right)$ inner products for $(1 + \epsilon)$ -approximation [AlonMatiasSzegedy99]

"Attack" on AMS

- \Leftrightarrow Can learn whether $s_i = s_j$ from $\langle s, e_i + e_j \rangle$
- \clubsuit Let $f_i = 1$ if $s_i = s_1$ and $f_i = -1$ if $s_i \neq s_1$
- $\Leftrightarrow Z = \langle s, f \rangle = s_1 f_1 + \dots + s_n f_n = m$ and $Z^2 = m^2$ deterministically
- What happened? Randomness of algorithm not independent of input

Reconstruction Attack on Linear Sketches

- \diamondsuit Linear sketches are "not robust" to adversarial attacks, must use $\Omega(n)$ space [HardtWoodruff13]
- \clubsuit Approximately learn sketch matrix U, query something in the kernel of U
- \diamondsuit Iterative process, start with V_1, \dots, V_r
- \diamond Correlation finding: Find vectors weakly correlated with U orthogonal to V_{i-1}
- \diamond Boosting: Use these vectors to find strongly correlated vector v
- $ightharpoonup \operatorname{Progress:} \operatorname{Set} V_i = \operatorname{span}(V_{i-1}, v)$

Insertion-Only Streams

- **Key:** Deletions are needed to perform this attack
- Similar lower bounds for the sliding window model [DatarGionisIndykMotwani02]
- ❖ Assume insertion-only updates
- How do the previous results work?

Sliding Window Algorithms

- Suppose we are trying to approximate some given function
 - 1. Suppose we have a streaming algorithm for this function
 - 2. Suppose this function is "smooth": If f(B) is a "good" approximation to f(A), then $f(B \cup C)$ will always be a "good" approximation to $f(A \cup C)$.

Smooth histogram framework [BravermanOstrovsky07] gives a sliding window algorithm for this function

- Suppose we are trying to approximate some given function
- Smooth histogram framework [BO07] gives a sliding window algorithm for this function
- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Example: Number of ones in sliding window (2-approximation)
- Number of ones in sliding window is at least 4 and at most 7
- 4 is a good approximation

- Suppose we are trying to approximate some given function
 - 1. Suppose we have a streaming algorithm for this function
 - 2. Suppose this function is monotonic and the stream is insertion-only
- Sketch switching framework [Ben-EliezerJayaramWoodruffYogev20] gives a robust for this function
- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Start many instances of the streaming algorithm at the beginning
- Use an instance of the algorithm but "freeze" the output
- \clubsuit Each time the next instance has value $(1 + O(\epsilon))$ more than the "frozen" output, use the next instance and "freeze" its output

- Example: Number of ones in the stream (2-approximation)
- Number of ones stream is at least4 and at most 8
- 4 is a good approximation

Summary

- **\$** Sketch switching for robust algorithms uses $\frac{1}{\epsilon^2}$ space each time F_p increases by $(1 + \epsilon)$ and function increases $\frac{1}{\epsilon}$ times
- ❖ Smooth histogram for sliding window algorithms uses $\frac{1}{\epsilon^2}$ space each time F_p increases by $(1 + \epsilon)$ and function increases $\frac{1}{\epsilon}$ times for $p \in (0,1)$
- ❖ Smooth histogram for sliding window algorithms uses $\frac{1}{\epsilon^2}$ space each time F_p increases by $(1 + \epsilon^p)$ and function increases $\frac{1}{\epsilon^p}$ times for $p \in (1,2)$

Intuition

- \clubsuit Do we really need to pay $\frac{1}{\epsilon^2}$ space each time F_p increases by $(1 + \epsilon)$?
- riangle Only need constant factor approximation to $\epsilon F_p(u)$
- Only need constant factor approximation to $F_p(u+v)-F_p(u)$

- \Leftrightarrow Suppose we want $F_p(u+v)$
- $F_p(u+v) = (F_p(u+v) F_p(u)) + F_p(u)$

 \clubsuit Suppose we want $F_p(u+v)$ and $v=v_1+v_2+\cdots+v_b$

- \clubsuit Suppose we want $F_p(u+v)$ and $v=v_1+v_2+\cdots+v_b$
- $F_p(u+v) = (F_p(u+v) F_p(u)) + F_p(u)$

- \clubsuit Suppose we want $F_p(u+v)$ and $v=v_1+v_2+\cdots+v_b$
- $F_p(u+v) = (F_p(u+v) F_p(u)) + F_p(u)$
- $F_p(u+v) = (F_p(u+v_1+\cdots+v_b)-F_p(u+v_1+\cdots+v_{b-1})) + (F_p(u+v_1+\cdots+v_{b-1})-F_p(u+v_1+\cdots+v_{b-2})) + \cdots + (F_p(u+v_1)-F_p(u)) + F_p(u)$

Granularity Change

Set each difference to be exponentially decreasing

$$F_p(u+v) = (F_p(u+v_1+\cdots+v_b) - F_p(u+v_1+\cdots+v_{b-1})) + (F_p(u+v_1+\cdots+v_{b-1}) - F_p(u+v_1+\cdots+v_{b-2})) + \cdots + (F_p(u+v_1) - F_p(u)) + F_p(u)$$

$$F_p(u + v_1 + \dots + v_b) - F_p(u + v_1 + \dots + v_{b-1}) = \frac{1}{2^b} F_p(u)$$

Granularity Change

Granularity Change

Set each difference to be exponentially decreasing

$$F_p(u+v) = (F_p(u+v_1+\cdots+v_b) - F_p(u+v_1+\cdots+v_{b-1})) + (F_p(u+v_1+\cdots+v_{b-1}) - F_p(u+v_1+\cdots+v_{b-2})) + \cdots + (F_p(u+v_1) - F_p(u)) + F_p(u)$$

- \clubsuit Just need $2^b\epsilon$ -approximation to $F_p(u+v_1+\cdots+v_b)-F_p(u+v_1+\cdots+v_{b-1})$
- \clubsuit Hope is to use space $\frac{1}{2^{2b}\epsilon^2}$

Framework

- Algorithms simultaneously running for each granularity
- \clubsuit Want space $\frac{1}{2^{2b}\epsilon^2}$ for granularity $\frac{1}{2^b}F_p(u)$
- Need 2^b instances for granularity $\frac{1}{2^b}F_p(u)$

Format

- ❖ Part 1: Background
- Part 2: Framework
- **❖** Part 3: Difference Estimators

Questions?

Difference Estimator

❖ If $F_p(u+v) - F_p(u) = 2^b \epsilon F_p(u)$, does there exist algorithm that approximates the difference with space $\frac{1}{2^{2b}\epsilon^2}$?

Definition: $F_p(u+v) - F_p(u) = \gamma F_p(u)$, output an estimate to the difference with additive approximation $\epsilon F_p(u)$

Difference Estimator

- ❖ Definition: $F_p(u + v) F_p(u) = \gamma F_p(u)$, output an estimate to the difference with additive approximation $\epsilon F_p(u)$
- ❖ *F* is generally non-linear
- ***** Ex: $F_p(u + v) = \frac{1}{\epsilon^4}$, $F_p(u + v) F_p(u) = 1$
- $(1+\epsilon)$ approximations to $F_p(u+v)$ and $F_p(u)$ give multiplicative approximation to the difference but use space $\frac{1}{\epsilon^2}$
- \Leftrightarrow Constant factor approximations to $F_p(u+v)$ and $F_p(u)$ do not give additive approximation $\epsilon F_p(u)$ to the difference

Our Results: Difference Estimators

- \Leftrightarrow Space $\tilde{O}\left(\frac{\gamma}{\epsilon^2}\log n\right)$ algorithm for F_0
- \Leftrightarrow Space $\tilde{O}\left(\frac{\gamma^{2/p}}{\epsilon^2}\log n\right)$ algorithm for F_p with $p\in(0,2]$
- riangle Space $\tilde{O}\left(\frac{\gamma}{\epsilon^2}n^{1-2/p}\right)$ algorithm for F_p with integer p>2

F_2 Difference Estimator

- ❖ Definition: $F_2(u + v) F_2(u) = \gamma F_2(u)$, output an estimate to the difference with additive approximation $\epsilon F_2(u)$
- $F_2(u+v) F_2(u) = \langle u+v, u+v \rangle \langle u, u \rangle = 2\langle u, v \rangle + \langle v, v \rangle^2$
- \clubsuit Inner product property: $(1+\epsilon)$ -approximations to $\|u\|_2$ and $\|v\|_2$ gives an $\epsilon \|u\|_2 \|v\|_2$ additive approximation to $\langle u,v\rangle$
- \clubsuit Just need $\frac{\epsilon}{\sqrt{\gamma}}$ multiplicative approximation: $\tilde{O}\left(\frac{\gamma}{\epsilon^2}\log n\right)$ space!

F_2 Difference Estimator

- \clubsuit Difference estimator: Maintain $\left(1+\frac{\epsilon}{\sqrt{\gamma}}\right)$ -approximations to $F_2(u+v)$ and $F_2(u)$ using AMS sketch
- ❖ For $F_2(u+v) F_2(u) = \gamma F_2(u)$, difference of the outputs is an additive approximation $\epsilon F_2(u)$ to $F_2(u+v) F_2(u)$

- \clubsuit F_p difference estimator: Use p-stable random variables for $p \leq 2$?
- How to use approach of [BlasiokDingNelson17]?
- $\langle Z_p, f \rangle$ where Z_p has entries drawn from p-stable distribution

- $\Leftrightarrow Z = median\langle Z_p, f \rangle$
- \clubsuit How to analyze median of each estimate of $F_p(u+v)-F_p(u)$?
- Use Li's geometric mean algorithm [Li08]
- \clubsuit Take the geometric mean of 3 inner products $\langle Z_p, f \rangle$
- * Take the average of $O\left(\frac{1}{\epsilon^2}\right)$ geometric means

Difference estimator: Maintain $\left(1 + \frac{\epsilon}{\gamma^{1/p}}\right)$ -approximations to $F_p(u+v)$ and $F_p(u)$ using Li's geometric mean estimator

 \Leftrightarrow Each summand has $\langle p_1, v \rangle^{p/3}$ term, which has much smaller variance

- \clubsuit F_p difference estimator: Generalization of inner products for p > 2?
- Variance can be much larger!
- Use heavy-hitter algorithm to explicitly track "heavy" elements
- Arr Use L_2 sampling algorithm with $n^{1-2/p}$ buckets to sample "light" elements

- \clubsuit Use known structural results from chaining to remove $\log n$ factor in difference estimator
- Avoids typical Chernoff + union bound argument by considering the expected supremum of a process, "strong tracking"

- \diamondsuit Use suffix argument to remove $\log n$ factor in framework
- Adaptation to sliding window model

Robust vs. Sliding Window

Diff. est., Diff. est., acc. 4ε acc. 16ε

New Framework for Streaming Algorithms Granularity Sketch Change Stitching Difference **Estimators**

WALDO 2021: Save the Date!

- Workshop on Algorithms for Large Data Online
- Streaming, sketching, linear algebra, property testing, learning
- ❖ Virtual format, August 23-25

Future Directions

- Other applications of difference estimators?
- Tighter bounds for difference estimators
- \clubsuit Difference estimators for general p > 2?
- Other adversarially robust algorithms?

