Más información disponible en www.DeepL.com/pro.

Informática visual

Objetos gráficos y su programación

Universidad de Darmstadt

Prof. Dr. Elke
Hergenröther Björn
Frömmer
Prof. Dr. Benjamin Meyer

CAPÍTULO 5

Transformaciones

Fundamentos matemáticos: Transformaciones

Puntos:

- Los puntos (o vértices) del plano se definen por sus coordenadas x e y.
 set.
 - En el espacio tridimensional correspondiente a sus coordenadas x, y y z
- Escribimos los puntos como vectores columna:

$$ph = \begin{bmatrix} ? \\ y \end{bmatrix} \quad \text{resp} \quad ph = \begin{bmatrix} ? \\ y \\ ? \end{bmatrix}$$

Disposición de los objetos en la sala

Modelización del objeto en el sistema de coordenadas local

(sistema de coordenadas de modelización o sistema de coordenadas del

5 _T transformaciones	sformación del	
r	objeto en el	
· 	sistema de	
n	coordenadas	
••	mundial	

Disposición de los objetos en la sala II

Transformaciones afines

- Las transformaciones utilizadas aquí
 - Traducción
 - Rotación (Rotation)
 - Escala (redimensionamiento)
- ... también se llaman transformaciones afines

Affin:

- Lo que es paralelo sigue siendo paralelo
- La relación entre longitud, área y volumen permanece constante.

Ejemplo de traducción

- Recordatorio: ¡sólo se desplazan los puntos angulares de la geometría!

$$\overrightarrow{p'}$$
 $th + ph$

• Ejemplo para la esquina superior derecha en las coordenadas (0,3, 0,1, 0)^t:

*р*ң :

Elemento neutro de la traducción

$$th + ph = \begin{bmatrix} 0.5\\0.7\\0 \end{bmatrix} + \begin{bmatrix} 0.3\\0.1\\0 \end{bmatrix} = \begin{bmatrix} 0.8\\0.8\\0 \end{bmatrix} = \overrightarrow{p'}$$

Ejemplo de escalado

• Se aplica para cada punto ph a una escala para mover h a lo largo de la X-, h a lo largo de la Y- y h sz a

del eje Z:
$$p = s * p$$
 , $p = s * p$ y $p = s * p$?

 Estas ecuaciones pueden calcularse mediante un Resumir la multiplicación de matrices

Ejemplo de escalado 12

• Ejemplo para las coordenadas (0,3, 0,1, 0)^t:

$$sh * ph = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ py \\ 2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.3 \\ 0.1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.3 \\ 0.2 \\ 0 \end{bmatrix} = \bar{p}$$

elemento neutro de la balanza

Ejemplo de escalado III

Y Escala por 2 alrededor del eje Y

• De nuevo para la esquina superior derecha, ahora en (0.6, 0.4, 0)^t

$$sh * ph = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.6 \\ 0.4 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix} = \overrightarrow{p}'$$

- Observación: El objeto no sólo se desplaza en la dirección Y.
 escala, sino que también cambia la posición
 → ¡la distancia al punto cero también se escala!
- Por lo tanto: el escalado sólo es válido en relación con el

¡Invariante de punto cero!

Ejemplo de escalado III

Ejemplo de escalado III

¿Qué aspecto tiene la geometría después de escalarla con estos factores?

$$x = 3$$
, $y = 0.3$ y $z = 1$

Ejemplo de escalado III

¿Qué aspecto tiene la geometría después de escalarla con estos factores?

$$x = 3$$
, $y = 1$ y $z = 1$

Ejemplo de rotación

- La rotación también puede formularse como una multiplicación matricial de los puntos de esquina individuales
- Protación alrededor del eje Z por el ángulo α:

$$rh * ph = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ -\cos(\alpha) & 0 \\ -\cos(\alpha) & 0 \end{bmatrix} = \overrightarrow{p'}$$

- Ejemplo para las coordenadas (0,3, 0,1, 0)^t y 90°:

$$rh * ph = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.3 \\ 0.1 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.1 \\ 0.3 \\ 0 \end{bmatrix}$$

Derivación de la matriz de rotación (en 2D)

No se rota el objeto, sino el sistema de coordenadas:

Al rotar con el ángulo α , los vectores unitarios del sistema de coordenadas cartesianas $_{ex}$ y $_{ey}$ se mapean en los vectores base de e'_x y e'_v del sistema de coordenadas afín:

$$e = T * e$$

$$\begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & 2 \cdot 2 \cdot \\ \sin(\alpha) & 2 \cdot 2 \cdot \\ \end{pmatrix} * \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Derivación de la matriz de rotación (en 2D)

No se rota el objeto, sino el sistema de coordenadas:

Al rotar con el ángulo α , los vectores unitarios del sistema de coordenadas cartesianas $_{ex}$ y $_{ey}$ se mapean en los vectores base de e'_x y e'_y del sistema de coordenadas afín:

$$e = T * e$$

$$\begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} * \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Ejemplo en

¿Qué transformación se busca?

Sin etiquetar los puntos de esquina, ¡hay varias soluciones! ¿Cuál?

Ejemplo en

Transformaciones complejas

• ¿Qué transformaciones son necesarias para girar el rectángulo dado?

3. transformación a la posición original

- 2. rotación alrededor del eje Z
- Transformación en el origen
- → □□□ orden en que se aplican las transformaciones es importante!

Resumen hasta aquí...

- La rotación y el escalado son siempre relativos al origen.
- Rotar/Escalar con Punto de Referencia es un algoritmo de tres pasos:
 - Desplazamiento del punto de referencia al origen
 - Aplicar transformación
 - Mover el punto de referencia a la posición original
- Encadenamiento de transformaciones necesario......
- pero aplicar una transformación tras otra a cada vértice lleva largo y da lugar a errores de redondeo
- Mejor concepto: Resumir las transformaciones y centrarse en el original
 Aplicar puntos de esquina → matriz de transformación acumulada.

Secuencia de transformaciones

```
Matrix4f m = new Matrix4f();
m.translate(2, 0, 0);
m.rotate(30, 0, 0, 1);
```

```
Matrix4f m = new Matrix4f();
m.rotate(30, 0, 0, 1);
m.translate(2, 0, 0);
```


"La geometría retrocede por el programa y recoge las transformaciones".

Secuencia de transformaciones 26

Ejemplo: Girar un cuadrado 60°.

Las transformaciones se dan en orden inverso:

```
Orden en que, el
se aplican
transformaciones al
cuadrado:

Matrix4f m = nueva Matrix4f(); // crear nueva Mattix

m.translate(0.5, 0.7, 0.); // Transformación posterior

m.rotate(60., 0., 0., 1.); // Rotación

m.translate(-0.5, -0.7, 0.); // Al origen
```


Secuencia de transformaciones 27

Secuencia de transformaciones 28

¿Por qué se dan las transformaciones en orden inverso?

- Las multiplicaciones de matrices no son conmutativas (es decir, no están en su secuencia intercambiables)
- Ejemplo: a) <u>no</u> da el mismo resultado que b)

a)
$$\begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2$$

b)
$$\begin{bmatrix} 5 \end{bmatrix} \Box 1 00 \Box 1 0 0 2 \begin{bmatrix} 1 \end{bmatrix}$$
 $\begin{bmatrix} 0 \\ -3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 00 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 1 & 0 \end{bmatrix}$
 $\begin{bmatrix} 3 & 1 & 0 & 8 & 99 \end{bmatrix} \begin{bmatrix} 1 & 0 & 8 & 99 \end{bmatrix} \begin{bmatrix} 1 & 0 & 8 & 99 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$

J

Secuencia de transformaciones 29

¿Por qué se dan las transformaciones en orden inverso?

Secuencia de transformaciones 30

¿Por qué se dan las transformaciones en orden inverso?

- Las multiplicaciones de matrices no son conmutativas (es decir, no están en su secuencia intercambiables)
- Cálculos equivalentes de P':

$$P' = M_2 \cdot (M_1 \cdot P' = (M_2 \cdot M_1) \cdot P'$$
 $\Leftrightarrow P' = (M_2 \cdot M_1) \cdot P'$
 $\Leftrightarrow P' = (M_2 \cdot M_1) \cdot P'$

Enfoque intuitivo cuando transformado "a mano":
P se multiplica primero por M₁ y luego el vector resultante se multiplica por

Procedimiento de OpenGL: Crear una matriz acumulada ($_{M2}$ se multiplica por $_{M1}$).

Secuencia de transformaciones 31

¿Por qué se dan las transformaciones en orden inverso?

Secuencia de transformaciones V

Ejemplo: Girar un cuadrado 60°.

Las transformaciones se dan en orden inverso:

Orden en que, el se multiplican en la matriz M acumulada:

```
M=M<sub>T2</sub> * M<sub>R</sub> *
M<sub>T1</sub>
```

```
Matrix4f m = nueva Matrix4f(); // crear nueva Mattix
m.translate( 0.5, 0.7, 0.); // Retransformación
m.rotate( 60., 0., 0., 1.); // Rotación
m.translate( -0.5, -0.7, 0.); // En el origen
```


Coordenadas

Problema:

Traslación = suma de vectores Escala y rotación = Multiplicación de matrices

Dado que tiene sentido "calcular" las distintas transformaciones entre sí en una matriz acumulada y luego aplicarla a todos los vértices (véase OpenGL), debe haber una forma de vincular la parte aditiva (traslación) y la parte multiplicativa (rotación, escalado) entre sí.

Coordenadas

Problema:

- La rotación y el escalado pueden expresarse mediante la multiplicación de matrices
- Para crear la matriz acumulada necesitamos una Representación de la traslación (es decir, una suma de vectores)
- Así es como tendría que ser una matriz de este tipo, para que se aplique lo siguiente:

$$\begin{pmatrix} p'_x \\ p'_y \\ p'_z \end{pmatrix} = \begin{pmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \end{pmatrix}$$

- Desgraciadamente, tal matriz 3x3 no existe.
- Solución: Coordenadas homogéneas

Coordenadas homogéneas II

Truco matemático: ¡añadir una 4ª coordenada!

$$\mathbb{R}^3 \ni \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \in \mathbb{P}^3 ,$$

Homogeneización (vuelta al espacio euclidiano)

$$\begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix} = \begin{pmatrix} X/W \\ Y/W \\ Z/W \end{pmatrix} , \forall W \neq 0$$

Dividir por la 4^a coordenada

Coordenadas homogéneas en

• Los vectores $\overrightarrow{x'}$, $\overrightarrow{y'}$ y th se convierten en una matriz T (matriz de transformación) resumidos.

$$\begin{bmatrix}
p'_{1} \\
p'_{2}
\end{bmatrix} = \begin{bmatrix}
x_{1} \\
x_{1}
\end{bmatrix} & y_{1}
\end{bmatrix} & y_{2}
\end{bmatrix} & y_{1}
\end{bmatrix} & y_{2}
\end{bmatrix} & y_{3}
\end{bmatrix} & y_{4}
\end{bmatrix} & y_{5}
\end{bmatrix} & y_{5}$$

Coordenadas homogéneas

Coordenadas homogéneas en

Coordenadas homogéneas en

• Los vectores $\overrightarrow{x'}$, $\overrightarrow{y'}$ y th se convierten en una matriz T (matriz de transformación) resumidos.

5. transformacion es enadas homogéneas

te aditiva

Coordenadas homogéneas en

Resumen de todas las transformaciones (en 4D)

Rotación:

Escala:

$$?(??,??) = \begin{pmatrix} 1 & 0 & 0 & \\ 0 & 1 & 0 & \\ 0 & 0 & 1 & \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Implementación del gráfico de escena

 ¿En qué orden deben considerarse las transformaciones del grafo de la escena?

- Los objetos hijos heredan las transformaciones de sus padres
 - → ¡□□ gráfico de la escena se desplaza de abajo a arriba!

Transformaciones aplicadas:

Gráfico de escenas -

Tarea: Sistema solar en miniatura

- El Sol gira alrededor de su eje Y.
- Al girar, se infla y se vuelve a colapsar.
- La Tierra gira a cierta distancia con la misma velocidad angular (es decir, barrida ángulo por unidad de tiempo es igual) alrededor del eje Y del sol.
- Además, la Tierra gira alrededor de su propio eje Y.
- La Tierra y el Sol son angulares ;-)

Gráfico de escenas -

- El sol y la tierra giran a la misma velocidad angular alrededor del eje Y del sol
- Pero sólo el sol bombea y se derrumba

Gráfico de escenas -

La Tierra gira además alrededor de su propio eje Y

Gráfico de escenas -

Gráfico de escenas - ejemplo de

Pseudocódigo:

```
Matrix4f T1 =
                  Matrix4f();
                                          // Crear nueva matriz T1
   nuevo
    T1.rotate( alpha, 0.0, 1.0, 0.0);
                                          // Rotación con ángulo alfa alrededor del vector
                                              (0,1,0)^{t}
   Matrix4f T2 = Matrix4f();
                                          // Crear nueva matriz T2
   nuevo
                                          // escala uniforme por el factor s
   T2.scale(s, s, s);
   Matrix4f T3 = nueva Matrix4f(); // Crear nueva matriz T3
                         Rotación alrededor del eje Y del sol
lógico
       orden
                                     Traducción
                    T2
         Escala
                            T3
                                     Rotación
         (bombas)
                                     alrededor del eje
                                     Y de la Tierra
              Sol
```

Gráfico de escenas - ejemplo de

Matriz acumulada para.

la tierra:
$$_{ME} = T1* T3;$$

el sol:
$$MS = T1* T2;$$