Marcus Exercises

Tommy He

Chapter 2

- 8 (a) By the definition of disc, it is the square of an element in $\mathbb{Q}[\omega]$, and so we have $(\pm p)^{\frac{p-2}{2}} \in \mathbb{Q}[\omega]$ with + when $p \equiv 1 \pmod{4}$ and when $p \equiv -1 \pmod{4}$. Since p is odd, we also know $p^{\frac{p-3}{2}} \in \mathbb{Q}[\omega]$. Dividing the two expressions gives $(-p)^{\frac{1}{2}} \in \mathbb{Q}[\omega]$ as desired. By Theorem 8, we have $\mathrm{disc}(\omega_3) = (\omega \omega^2)^2$ and so its square root divided by 3^0 or $\omega \omega^2$ is $\sqrt{-3}$. Similarly, we can find $\mathrm{disc}(\omega_5) = \frac{\prod_{1 \leq r < s \leq n} (\omega_5^r \omega_5^s)}{5}$.
 - (b) Let $z = e^{\frac{2\pi i}{8}}$. Then, $z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $z^3 = \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i \in \mathbb{Q}[z]$. Adding gives $\sqrt{2} \in \mathbb{Q}[z]$.

(c)

19 Let $f(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_1x + b_0$. By subtracting the last column by b_i times the *i*th column for i = 0 to i = n - 1, as an elementary matrix operation which keeps the determinant invariant, we find

$$\begin{vmatrix} 1 & a_1 & \cdots & a_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^n \\ 1 & a_{n+1} & \cdots & a_{n+1}^n \end{vmatrix} = \begin{vmatrix} 1 & a_1 & \cdots & f(a_1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & f(a_n) \\ 1 & a_{n+1} & \cdots & f(a_{n+1}) \end{vmatrix}$$

Now let f(x) be the monic polynomial of degree n defined by $f(x) = \prod_{i \in [n]} (x - a_i)$. Plugging and using the recursive definition of the determinant via cofactors gives

$$\begin{vmatrix} 1 & a_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & 0 \\ 1 & a_{n+1} & \cdots & \prod_{i \in [n]} (a_{n+1} - a_i) \end{vmatrix} = \prod_{1 \le r < s \le n+1} (a_s - a_r)$$

20 Let $f(x) = (x - \alpha)g(x)$. Then,

$$f'(x) = (x - \alpha)g'(x) + g(x)$$

$$\implies f'(\alpha) = 0 + g(\alpha) = \prod_{\text{roots } \beta \neq \alpha} (\alpha - \beta)$$

by irreducibility.

23 (a) Theorem 6'.

$$\operatorname{disc}_{K}^{L}(\alpha_{1},\cdots,\alpha_{n})=\left|\mathsf{T}_{K}^{L}(\alpha_{i}\alpha_{j})\right|$$

Corollary'.

stuff

Theorem 7'.

 $\operatorname{disc}_K^L(\alpha_1, \dots, \alpha_n) = 0$ iff $\alpha_1, \dots, \alpha_n$ are linearly independent over \mathbb{Q} .

Theorem 8'.

Suppose $J = K[\alpha]$, and let $\alpha_1, \dots, \alpha_n$ be the conjugates of α over K. Then,

$$\operatorname{disc}_K^L(\alpha_1,\cdots,\alpha_n) = \prod_{1 \le r < s \le n} (\alpha_r - \alpha_s)^2 = \pm \operatorname{N}_K^L(f'(\alpha))$$

- 24 First, we prove that any subgroup H of \mathbb{Z} must be $n\mathbb{Z} \cong \mathbb{Z}$ or $\{0\}$. Let $n = \min\{|h|\} \in H$. If n = 0, then $H = \{0\}$. If $n \neq 0$, then suppose for contradiction that $H \neq n\mathbb{Z}$. That would imply $\exists m \in H$ such that m = nq + r for some $0 < r \neq 0 < n$ by Euclidean division. This would imply $m nq = r \in H$, which is a value in H with absolute value less that n, contradicting our defintion of n. Therefore, we must have $H = n\mathbb{Z}$ in this case.
 - (a) We have $K = \ker \pi = \mathbb{Z}^{n-1} \le G$, and so $H \cap K \le K$, which is a free abelian group of rank n-1. By the inductive hypothesis, we find the $H \cap K$ is a free abelian group of rank $\le n-1$.
 - (b) We have $\pi(H) \leq \mathbb{Z}$, and so it is either $h\mathbb{Z}$ or $\{0\}$. If it is $\{0\}$, then $H = H \cap K$ by the definition of the kernel, which means we are done with (a). In the other case, we have $\pi(H) = h\mathbb{Z}$ for some $h \in H$ such that $\pi(h)$ generates $\pi(H)$. First, we prove $h\mathbb{Z}$ and $H \cap K$ trivially intersect. Take $hk \in h\mathbb{Z} \cap (H \cap K)$ for some $k \in \mathbb{Z}$. We know $\pi(hk) = 0 \Rightarrow k\pi(h) = 0$ since $hk \in K$. This gives k = 0 or $\pi(h) = 0$; however, $\phi(h) \neq 0$ since or else it would generated $\{0\}$ instead of $h\mathbb{Z}$, and so $k = 0 \Rightarrow hk = 0$.

Next, we show $H = h\mathbb{Z} + H \cap K$. Take anhy $h' \in H$. Then, $\pi(h') \in \pi(H)$, so let $\pi(h') = k'\pi(h) = \pi(k'h)$. Subtracting gives $\pi(h' - k'h) = 0$, and so $h' - k'h \in H \cap K$, which means h' = k'h + a for some $a \in H \cap K$. Therefore, $H = h\mathbb{Z} \oplus K$.

- 25 Let α be the root of $\frac{a_n}{b_n}x^n + \frac{a_{n-1}}{b_{n-1}}x^{n-1} + \cdots + \frac{a_0}{b_0}$ for $a_i, b_i \in \mathbb{Z} \forall i$. Multiplying the polynomial by $b_n \cdots b_0$ gives a polynomial $a'_n x^n + a'_{n-1} x^{n-1} + \cdots + a'_0$ with root α for $a'_i \in \mathbb{Z} \forall i$. Now, note $a'_n \alpha$ is the root of $\frac{1}{(a'_n)^{n-1}}x^n + \frac{a'_{n-1}}{(a'_n)^{n-1}}x^{n-1} + \cdots + \frac{a'_1}{a'_n}x + a'_0$ or $x^n + a'_{n-1}x^{n-1} + \cdots + a'_1a'_n^{m-2}x + a'_0a'_n^{m-1}$, which makes $a'_n \alpha$ an algebraic integer. For a finite set of algerbaic numbers α_i , let m_i be s set of integers such that $m_i \alpha_i$ is an algebraic integer $\forall i$. Then, we find $(\prod m_i)\alpha_i$ is an algerbaic integer since every integer m_i is an algebraic integer, and the algebraic integers are closed under multiplication.
- 26 As in the proof of Theorem 11, we can produce the same equation

$$\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_2 \end{pmatrix} = M \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_2 \end{pmatrix}$$

as $\{\beta_i \forall i\}$, $\{\gamma_i \forall i\}$ generate the same subgroup for an $n \times n$ matrix M over \mathbb{Z} . With this, we can finish the proof exactly the same as in the one of Theorem 11.

28 (a) We find

$$f'(x) = 3x^{2} + a$$

$$\implies f'(\alpha) = 3\alpha^{2} + a = -\frac{2a\alpha + 3b}{\alpha}$$

since

$$\alpha^3 + a\alpha + b = 0 \implies 3\alpha^2 + a = -\frac{2a\alpha + 3b}{\alpha}$$

- (b) Plugging in gives $\frac{(2a\alpha+3b)-3b}{2a} = \alpha$, and so we find that $2a\alpha+3b$ is a root with $f(\alpha) = 0$. The embeddings of $\mathbb{Q}[\alpha] \hookrightarrow \mathbb{C}$ must send a root to a root, and so $\mathbb{N}^{\mathbb{Q}[\alpha]}_{\mathbb{Q}}$ can be calculated via Vieta's from the minimal polynomial of $2a\alpha+3b$ to give $-27b^3-4a^3b$.
- (c) By Theorem 8, we find $\operatorname{disc}(\alpha) = -\operatorname{N}_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(-\frac{2a\alpha+3b}{\alpha}) = -\operatorname{N}(2a\alpha+3b)\operatorname{N}(\frac{1}{\alpha})\operatorname{N}(-1)$ with the multiplicativity of N. We find $(\frac{1}{x})^3 + \frac{a}{x} + b$ or $1 + ax^2 + bx^3$ to be a minimal polynomial for $\frac{1}{\alpha}$, and so $\operatorname{N}(\frac{1}{\alpha}) = \frac{1}{b}$. We also have $\operatorname{N}(-1) = (-1)^3 = -1$ since $-1 \in \mathbb{Q}$. We finally get

$$\operatorname{disc}(\alpha) = -\left((-27b^3 - 4a^3b)\left(\frac{1}{b}\right)(-1)\right) = -(4a^3 + 27b^2)$$

(d) In the first case, α satisfies $\alpha^3 - \alpha - 1 = 0$, and so $\operatorname{disc}(\alpha) = -(-4 + 27) = -23$, which is indeed squarefree. In the second case, α satisfies $\alpha^3 + \alpha - 1 = 0$, and so $\operatorname{disc}(\alpha) = -(4 + 27) = -1$, which is squarefree again.

Lang Algebra V

2

Chapter 3

(1) \Rightarrow (1') Take any increasing sequence of ideals $I_1, \subseteq I_2 \subseteq \cdots$, and let $I = (I_1, I_2, \cdots)$ be the ideal generated by them all.