Lösung zur Aufgabe der Woche zur Analysis in einer Variable für das Lehramt für den 28.4. 2020

1. Stetigkeit Zeigen Sie mit einem direkten ϵ - δ -Beweis, dass die Abbildung

$$x \mapsto \frac{1}{x^2 + 1}$$

stetig auf \mathbb{R} ist.

Lösung: Unsere Aufgabe ist es die Stetigkeit der Funktion f mit dem Funktionsterm $f(x) := \frac{1}{x^2+1}$ auf ganz \mathbb{R} zu zeigen. Seien also $x_0 \in \mathbb{R}$ und $\epsilon > 0$ beliebig, aber fix gewählt. Wir suchen eine Zahl $\delta > 0$, sodass für alle $x \in \mathbb{R}$ mit $|x - x_0| < \delta$ folgendes gilt: $|f(x) - f(x_0)| < \epsilon$. Zunächst schauen wir uns folgendes an:

$$|f(x) - f(x_0)| = \left| \frac{1}{x^2 + 1} - \frac{1}{x_0^2 + 1} \right| = \left| \frac{x_0^2 + 1 - (x^2 + 1)}{(x^2 + 1)(x_0^2 + 1)} \right| = \dots$$

Wir möchten diesen Ausdruck so umformen und nach oben abschätzen, sodass er unabhängig von x ist. Hier dürfen wir unsere gängingen Mittel und auch die Vorraussetzung für $\epsilon-\delta$ Stetigkeit, nämlich $|x-x_0|<\delta$ verwenden. Wir schätzen weiter ab:

$$\dots = \left| \frac{x_0^2 - x^2}{(x^2 + 1)(x_0^2 + 1)} \right| \le \left| \frac{x_0^2 - x^2}{x_0^2 + 1} \right| = \frac{|x_0 - x| \cdot |x_0 + x|}{x_0^2 + 1} \le \frac{|x - x_0| \cdot (|x_0| + |x|)}{x_0^2 + 1} < \delta \cdot \frac{|x_0| + |x|}{x_0^2 + 1} = \dots$$

Wir möchten jetzt |x| nach oben abschätzen. Wir wissen, dass $|x-x_0|<\delta$ und können durch die umgekehrte Dreiecksungleichung eine Abschätzung für |x| erhalten.

$$||x| - |x_0|| \le |x - x_0| < \delta$$

$$\Rightarrow -\delta \le |x| - |x_0| \le \delta$$

$$\Rightarrow |x| \le \delta + |x_0|$$

Damit können wir nun unsere Abschätzung weiterführen:

$$\dots \le \delta \cdot \frac{|x_0| + \delta + |x_0|}{x_0^2 + 1} = \frac{\delta^2 + 2\delta|x_0|}{x_0^2 + 1}$$

Nun müssen wir unser δ geschickt wählen. Zunächst wählen wir unser $\delta \leq 1$. Wenn wir das machen, dann gilt $\delta^2 \leq \delta$, womit wir folgende Abschätzung erhalten:

$$\dots \le \frac{\delta + 2\delta |x_0|}{x_0^2 + 1} = \delta \cdot \frac{1 + 2|x_0|}{x_0^2 + 1}$$

Wir wollen, dass $|f(x) - f(x_0)| < \epsilon$ ist. Somit muss die vorherige Abschätzung auch kleiner als ϵ sein.

$$\delta \cdot \frac{1+2|x_0|}{x_0^2+1} < \epsilon$$

Jetzt können wir sehen welche Bedingung δ erfüllen muss:

$$\delta \le \frac{\epsilon}{\frac{1+2|x_0|}{x_0^2+1}}$$

Somit wählen wir das

$$\delta := \min \left\{ 1, \frac{\epsilon}{\frac{1+2|x_0|}{x_0^2+1}} \right\}$$

2. Man kann Grenzwerte von Funktionen (analog zur Stetigkeit von Funktionen) auch über ein ε - δ -Kriterium charakterisieren: Für eine Funktion $f: \mathbb{R} \to \mathbb{R}$ und $a \in \mathbb{R}$ gilt $\lim_{x \to a} f(x) = b$ genau dann, falls

$$\forall \epsilon > 0 \ \exists \delta > 0 : \ |x - a| < \delta \Rightarrow |f(x) - b| < \epsilon.$$

Nun wollen wir mit diesem Kriterium die Aussage

$$\lim_{x \to 3} 2x = 6$$

übungshalber mit dem $\epsilon\delta$ -Kriterium beweisen.

Welches Argument ist dafür geeignet?

- (a) Zu gegebenem δ können wir $\epsilon = \delta/2$ wählen.
- (b) Zu gegebenem δ können wir $\epsilon = 2\delta$ wählen.
- (c) Zu gegebenem ϵ können wir $\delta := \epsilon/2$ wählen.
- (d) Zu gegebenem ϵ können wir $\delta := 2\epsilon$ wählen.

Lösung: Beim $\epsilon - \delta$ -Kriterium suchen wir zu einen gegebenen ϵ ein δ . Somit stimmen (a) und (b) nicht. Ob (d) stimmt können wir mit einer Rechnung überprüfen.

$$|x-3| < \delta \Rightarrow |2x-6| < \epsilon$$

Wählen wir zum Beispiel $\epsilon=1$ und x=2 ist zwar $|x-3|<\delta$, jedoch gilt $|2x-6|<\epsilon$ nicht.

(c) ist die richtige Antwort. Weil dann folgende Implikation erfüllt ist:

$$|x-3| < \delta = \epsilon/2 \Rightarrow |2x-6| < \epsilon$$

- 3. Es sei f eine Funktion $\mathbb{R} \to \mathbb{R}$ mit f(1) = 1. Aus welcher Aussage kann man schließen, dass f eine Nullstelle haben muss?
 - (a) f ist stetig und f(10) = -1.
 - (b) f ist streng monoton fallend und f(10) = -1.
 - (c) Aus jeder von beiden.
 - (d) Aus keiner von beiden.

Lösung: Zu (b): Die Funktion die wir gegeben haben könnte zunächst linear fallen (z.B. $f(x) = 1 - \frac{1}{18}(x-1)$ für x < 10), dann eine Sprungstelle haben und danach weiter fallen (z.B. f(x) = 9 - x für $x \ge 10$). Diese Funktion ist dann monoton fallend hat aber keine Nullstelle.

Zu (a): Dass f eine Nullstelle haben muss, folgt aus dem Zwischenwertsatz. Da die Funktion auf dem Intervall [1;10] stetig ist, nimmt sie jeden Wert zwischen f(1) und f(10) an. Also jeden Wert zwischen 1 und -1 an, insbesondere den Wert 0. Somit ist (a) die richtige Lösung.