Genomic Computing Evaluation

Assignment 1: The Genome Browser

Fabrizio Frasca

April 6, 2017

1 UCSC Genome Browser

(a)

Go to the genomic region chr6:45,296,054-45,518,819 of the Human assembly GRCh37/h19.

Which genes do you see in this region? On which strand are they?

This region of human DNA contains part of the **SUPT3H** gene and part of the **RUNX2** gene. The former is present in 4 variants and the latter is present in 3 variants in the UCSC database.

SUPT3H is on **reverse strand** (arrows pointing towards left), whereas the RUNX2 is on the **forward strand** (arrows pointing towards right).

(b)

Enable GC Percent [dense] from Mapping and Sequencing tracks and CpG Islands [show] from Regulation tracks. Now zoom into the region chr6:45,330,000-45,400,000.

Does the GC composition reach a peak in correspondence of some important regulatory element?

Yes, it does. In particular, as shown by figure 1, two significant peaks are observed: one corresponds to the promotorial region of the SUPT3H gene and the other one corresponds to the promotorial region of one of the variants of RUNX2 gene. This region is also in correspondence of a particular RUNX2 exon, for other gene variants. This can possibly be an enhancer region.

Figure 1: Peaks for the GC signal

In which region do you notice the most regulatory activity? Does it involve a CpG island? (If yes, report Coordinates, Chromosome band, Genomic size of the first (along the genome) of them)

The regions interested by regulatory activities the most are the ones detected above: **chr6:45,343,511-45,348,384** ca. for the promotorial region of SUPT3H and **chr6:45,387,920-45,392,851** ca., corresponding to the promoter of one of the variants for the RUNX2 gene and to a specific exon of the other variants.

Figure 2: Regions involved in regulatory activities

These regions are promisingly characterized by regulatory activities because of the conjugate presence of CpG islands, strong evidence of H3K27 acetylation and the binding of several transcription factors, as shown by the relative tracks in figure 1.

The first CpG island encountered by proceeding in the direction of the forward strand is the one corresponding to the promotorial region of the SUPT3H region. In particular, it has:

coordinates: chr6:45345186-45346261

chromosome band: 6p21.1 genomic size: 1076

Figure 3: The first CpG island, along with other 'regulatory tracks' in the same region

2 BLAT

Consider the following FASTA file:

> read1

 $\label{eq:contact} \textbf{ACCACATATTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACAGTGCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGAAGAGCTA$

> read2

ACCACATATTTTGCAAATTTTGCATGCTGATACTTCTCAACCAGAAGAAAGGGCCTTCACAGT GTCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAAC TTGTTGAAGAGCTA

> read3

 $\label{eq:condition} \textbf{ACCACATATTTTGCAAATGTTGCATGCTGATACTCAACCAGAAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGAAGAGCTA$

> read4

> read5

ACCACATATTTTGCAAATTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACAGTG TCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACT TGTTGAAGAGCTA

> read6

ATGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAA CATAACAGATGGGCTGGAAGTAAGGAAACATGTAATGATAGGCGGACTCCCAGCACAGAAAA AAGGTAGATCTGAA

Use BLAT to map these sequences onto Human assembly GRCh37/h19.

Does each read map in a single region?

No, it does not. For instance, read 1 maps on chr17:41256928-41258550 and chr4:146760838-146760862 regions at the same time, see figure 2.

ACTIONS	QUERY	SCORE	START	END	QSIZE	IDENTITY	CHRO	STR	AND START	END	SPAN
rowser details	read1	123	17	140	140	100.0%	17		41256928	41258550	1623
prowser details	read1	23	69	93	140	96.0%	4	-	146760838	146760862	25
prowser details	read2	121	17	140	140	99.2%	17	-	41256928	41258550	1623
orowser details	read2	23	69	93	140	96.0%	4	-	146760838	146760862	25
prowser details	read3	119	17	140	140	98.4%	17	-	41256928	41258550	1623
prowser details	read3	23	69	93	140	96.0%	4	-	146760838	146760862	25
orowser details	read4	117	17	139	139	98.4%	17	-	41256928	41258550	1623
prowser details	read4	23	69	93	139	96.0%	4	-	146760838	146760862	25
prowser details	read4	20	88	107	139	100.0%	15	-	24147035	24147054	20
prowser details	read5	121	18	139	139	100.0%	17	-	41256928	41258548	1621
prowser details	read5	23	68	92	139	96.0%	4	-	146760838	146760862	25
prowser details	read5	22	11	32	139	100.0%	10	-	59281569	59281590	22
prowser details	read6	140	1	140	140	100.0%	17	-	41246520	41246659	140
prowser details	read6	23	117	140	140	100.0%	2	-	137692717	137692746	30
prowser details	read6	22	10	34	140	96.0%	7	+	48229461	48229486	26
prowser details	read6	20	20	39	140	100.0%	X	+	69943326	69943345	20

Figure 4: Results for the alignment from BLAT

On the base of the alignment score and sequence identity, which genome region do the reads belong?

It is fairly evident that all the alignments with high score map to the same genome region and they are characterized by very high identity as well. The region is **chr17:41256928-41258550** for all the reads 1-5 and **chr17:41246520-41246659** for read 6, which is definitely similar. Other alignments have pretty good identity, but they must be discarded since their score is poor.

Which gene this reads come from?

By clicking on the "browser" link for one of the mapping with highest score, we can realize the interested gene is **BRCA1**.