Machine-Level Programming IV: Data

15-213/18-213/15-513: Introduction to Computer Systems 8th Lecture, February 12, 2019

Instructors:

Seth C. Goldstein, Brandon Lucia, Franz Franchetti, and Brian Railing

Today

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access
- Alignment
- **■** Floating Point

Array Allocation

Basic Principle

```
T \mathbf{A}[L];
```

- Array of data type T and length L
- Contiguously allocated region of L * sizeof (T) bytes in memory

Array Access

■ Basic Principle

```
T \mathbf{A}[L];
```

- Array of data type T and length L
- Identifier A can be used as a pointer to array element 0: Type T*

■ Reference Type Value

```
val[4]
val
val+1
&val[2]
val[5]
* (val+1)
val + i
```

Array Access

■ Basic Principle

```
T \mathbf{A}[L];
```

- Array of data type T and length L
- Identifier **A** can be used as a pointer to array element 0: Type *T**

Reference	Type	Value	
val[4]	int	3	
val	int *	x	
val+1	int *	x + 4	
&val[2]	int *	x + 8	
val [5]	int	??	
*(val+1)	int	5 //wal[1	.]
val + <i>i</i>	int *	x + 4 * i //&val[i]

Array Example

```
#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };
```


- Declaration "zip_dig cmu" equivalent to "int cmu[5]"
- Example arrays were allocated in successive 20 byte blocks
 - Not guaranteed to happen in general

Array Accessing Example


```
int get_digit
  (zip_dig z, int digit)
{
  return z[digit];
}
```

x86-64

```
# %rdi = z
# %rsi = digit
movl (%rdi, %rsi, 4), %eax # z[digit]
```

- Register %rdi contains starting address of array
- Register %rsi contains array index
- Desired digit at %rdi + 4*%rsi
- Use memory reference (%rdi,%rsi,4)

Array Loop Example

```
void zincr(zip_dig z) {
   size_t i;
   for (i = 0; i < ZLEN; i++)
      z[i]++;
}</pre>
```

Decl	A	1 , A	2	*A	A2	
	Comp	Bad	Size	Comp	Bad	Size
int A1[3]						
int *A2						

Comp: Compiles (Y/N)

Bad: Possible bad pointer reference (Y/N)

■ Size: Value returned by sizeof

Decl	A1 , A2			*2	1 , *	A2
	Comp	Bad	Size	Comp	Bad	Size
int A1[3]	Y	N	12	Y	N	4
int *A2	Y	N	8	Y	Y	4

- Comp: Compiles (Y/N)
- Bad: Possible bad pointer reference (Y/N)
- Size: Value returned by sizeof

Decl		An	An		*An			**An		
	Cmp	Bad	Size	Cmp	Bad	Size	Cmp	Bad	Size	
int A1[3]										
int *A2[3]										
int (*A3)[3]										

Allocated pointer	
Unallocated pointer	
Allocated int	
Unallocated int	

Decl		An			*An			**An	
	Cmp	Bad	Size	Cmp	Bad	Size	Cmp	Bad	Size
int A1[3]									
int *A2[3]									
int (*A3)[3]									

Decl	An			*An			**An		
	Cmp	Bad	Size	Cmp	Bad	Size	Cmp	Bad	Size
int A1[3]	Y	N	12	Y	N	4	N	_	_
int *A2[3]	Y	N	24	Y	N	8	Y	Y	4
int (*A3)[3]	Y	N	8	Y	Y	12	Y	Y	4

Multidimensional (Nested) Arrays

Declaration

 $T \mathbf{A}[R][C];$

- 2D array of data type T
- R rows, C columns

Array Size

R * C * sizeof (T) bytes

Arrangement

Row-Major Ordering

int A[R][C];

Nested Array Example

```
#define PCOUNT 4
 typedef int zip dig[5];
 zip dig pgh[PCOUNT] =
   {{1, 5, 2, 0, 6},
    {1, 5, 2, 1, 3},
    {1, 5, 2, 1, 7},
    {1, 5, 2, 2, 1 }};
zip dig
                               3
                                 1 5 2 1
                                           7 1 5 2
             5
                      1
                           2
                 0 6
pgh[4];
         76
                    96
                                116
                                           136
                                                       156
```

- "zip_dig pgh[4]"equivalent to "int pgh[4][5]"
 - Variable pgh: array of 4 elements, allocated contiguously
 - Each element is an array of 5 int's, allocated contiguously
- "Row-Major" ordering of all elements in memory

Nested Array Row Access

Row Vectors

- **A**[i] is array of *C* elements of type *T*
- Starting address A + i * (C * sizeof(T))

Nested Array Row Access Code

```
# %rdi = index
leaq (%rdi,%rdi,4),%rax # 5 * index
leaq pgh(,%rax,4),%rax # pgh + (20 * index)
```

Row Vector

- pgh[index] is array of 5 int's
- Starting address pgh+20*index

Machine Code

- Computes and returns address
- Compute as pgh + 4*(index+4*index)

Nested Array Element Access

Array Elements

- A[i][j] is element of type T, which requires K bytes
- Address A + i * (C * K) + j * K= A + (i * C + j) * K

int A[R][C];

Nested Array Element Access Code

```
1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

pgh

pgh[1][1]

int get_pgh_digit(int index, int dig)
{
    return pgh[index][dig];
}
```

```
leaq (%rdi,%rdi,4), %rax  # 5*index
addl %rax, %rsi  # 5*index+dig
movl pgh(,%rsi,4), %eax  # M[pgh + 4*(5*index+dig)]
```

Array Elements

- pgh[index][dig] is int
- Address: pgh + 20*index + 4*dig
 = pgh + 4*(5*index + dig)

Multi-Level Array Example

```
zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };
```

```
#define UCOUNT 3
int *univ[UCOUNT] = {mit, cmu, ucb};
```

- Variable univ denotes array of 3 elements
- Each element is a pointer
 - 8 bytes
- Each pointer points to array of int's

Element Access in Multi-Level Array

```
int get_univ_digit
  (size_t index, size_t digit)
{
  return univ[index][digit];
}
```



```
salq $2, %rsi  # 4*digit
addq univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
movl (%rsi), %eax  # return *p
ret
```

Computation

- Element access Mem [Mem [univ+8*index]+4*digit]
- Must do two memory reads
 - First get pointer to row array
 - Then access element within array

Array Element Accesses

Nested array

```
int get_pgh_digit
  (size_t index, size_t digit)
{
  return pgh[index][digit];
}
```

Multi-level array

```
int get_univ_digit
  (size_t index, size_t digit)
{
  return univ[index][digit];
}
```


Accesses looks similar in C, but address computations very different:

Mem[pgh+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

N X N Matrix Code

- Fixed dimensions
 - Know value of N at compile time
- Variable dimensions, explicit indexing
 - Traditional way to implement dynamic arrays
- Variable dimensions, implicit indexing
 - Now supported by gcc

16 X 16 Matrix Access

Array Elements

```
int A[16][16];
Address A + i * (C * K) + j * K

C = 16, K = 4

/* Get element A[i][j] */
int fix_ele(fix_matrix A, size_t i, size_t j) {
   return A[i][j];
}
```

```
# A in %rdi, i in %rsi, j in %rdx
salq $6, %rsi # 64*i
addq %rsi, %rdi # A + 64*i
movl (%rdi,%rdx,4), %eax # M[A + 64*i + 4*j]
ret
```

n X n Matrix Access

Array Elements

```
size_t n;
int A[n][n];
Address A + i * (C * K) + j * K
C = n, K = 4
```

Must perform integer multiplication

```
/* Get element A[i][j] */
int var_ele(size_t n, int A[n][n], size_t i, size_t j)
{
  return A[i][j];
}
```

```
# n in %rdi, A in %rsi, i in %rdx, j in %rcx
imulq %rdx, %rdi  # n*i
leaq (%rsi, %rdi, 4), %rax # A + 4*n*i
movl (%rax, %rcx, 4), %eax # A + 4*n*i + 4*j
ret
```

Example: Array Access

```
#include <stdio.h>
#define ZLEN 5
#define PCOUNT 4
typedef int zip dig[ZLEN];
int main(int argc, char** argv) {
zip dig pgh[PCOUNT] =
    {{1, 5, 2, 0, 6},
    {1, 5, 2, 1, 3},
    {1, 5, 2, 1, 7},
    {1, 5, 2, 2, 1 }};
    int *linear zip = (int *) pgh;
    int *zip2 = (int *) pqh[2];
    int result =
       pgh[0][0] +
       linear zip[7] +
        *(linear zip + 8) +
        zip2[1];
    printf("result: %d\n", result);
    return 0;
```

Example: Array Access

```
#include <stdio.h>
#define ZLEN 5
#define PCOUNT 4
typedef int zip dig[ZLEN];
int main(int argc, char** argv) {
zip dig pgh[PCOUNT] =
    {{1, 5, 2, 0, 6},
    {1, 5, 2, 1, 3},
    {1, 5, 2, 1, 7},
    {1, 5, 2, 2, 1 }};
    int *linear zip = (int *) pgh;
    int *zip2 = (int *) pqh[2];
    int result =
       pgh[0][0] +
       linear zip[7] +
        *(linear zip + 8) +
        zip2[1];
    printf("result: %d\n", result);
    return 0;
```

```
linux> ./array
result: 9
```

Example: Array Access

```
#include <stdio.h>
#define ZLEN 5
#define PCOUNT 4
typedef int zip dig[ZLEN];
int main(int argc, char** argv) {
zip dig pgh[PCOUNT] =
    \{\{1, 5, 2, 0, 6\},
    \{1, 5, 2, 1, 3\},\
    {1, 5, 2, 1, 7},
    {1, 5, 2, 2, 1 }};
    int *linear zip = (int *) pgh;
    int *zip2 = (int *) pgh[2];
    int result =
        pgh[0][0] +
        linear zip[7] +
        *(linear zip + 8) +
        zip2[1];
    printf("result: %d\n", result);
    return 0;
```

```
linux> ./array
result: 9
```

Decl	A <i>n</i>			*A <i>n</i>			**An		
	Cmp	Bad	Size	Cmp	Bad	Size	Cmp	Bad	Size
int A1[3][5]									
int *A2[3][5]									
int (*A3)[3][5]									
int *(A4[3][5])									
int (*A5[3])[5]									

- Cmp: Compiles (Y/N)
- Bad: Possible bad pointer reference (Y/N)
- Size: Value returned by sizeof

Decl	***An					
	Cmp Bad Siz					
int A1[3][5]						
int *A2[3][5]						
int (*A3)[3][5]						
int *(A4[3][5])						
int (*A5[3])[5]						

Decl	A <i>n</i>			*An			**An		
	Cmp	Bad	Size	Cmp	Bad	Size	Cmp	Bad	Size
int A1[3][5]	Y	N	60	Y	N	20	Y	N	4
int *A2[3][5]	Y	N	120	Y	N	40	Y	N	8
int (*A3)[3][5]	Y	N	8	Y	Y	60	Y	Y	20
int *(A4[3][5])	Y	N	120	Y	N	40	Y	N	8
int (*A5[3])[5]	Y	N	24	Y	N	8	Y	Y	20

- Cmp: Compiles (Y/N)
- Bad: Possible bad pointer reference (Y/N)
- Size: Value returned by sizeof

Decl	***An				
	Cmp	Bad	Size		
int A1[3][5]	N	-	_		
int *A2[3][5]	Y	Y	4		
int (*A3)[3][5]	Y	Y	4		
int *(A4[3][5])	Y	Y	4		
int (*A5[3])[5]	Y	Y	4		

Today

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access
- Alignment
- **■** Floating Point

Structure Representation

```
struct rec {
   int a[4];
   size_t i;
   struct rec *next;
};
```


- Structure represented as block of memory
 - Big enough to hold all of the fields
- Fields ordered according to declaration
 - Even if another ordering could yield a more compact representation
- Compiler determines overall size + positions of fields
 - Machine-level program has no understanding of the structures in the source code

Generating Pointer to Structure Member

```
struct rec {
   int a[4];
   size_t i;
   struct rec *next;
};
```

```
r r+4*idx
a i next
0 16 24 32
```

Generating Pointer to Array Element

- Offset of each structure member determined at compile time
- Compute as r + 4*idx

```
int *get_ap
  (struct rec *r, size_t idx)
{
  return &r->a[idx];
}
```

```
# r in %rdi, idx in %rsi
leaq (%rdi,%rsi,4), %rax
ret
```

Following Linked List

C Code

```
void set_val
  (struct rec *r, int val)
{
  while (r) {
    int i = r->i;
    r->a[i] = val;
    r = r->next;
  }
}
```


Structures & Alignment

Unaligned Data


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

Structures & Alignment

Unaligned Data


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

Aligned Data

- Primitive data type requires K bytes
- Address must be multiple of *K*

Alignment Principles

Aligned Data

- Primitive data type requires K bytes
- Address must be multiple of K
- Required on some machines; advised on x86-64

Motivation for Aligning Data

- Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)
 - Inefficient to load or store datum that spans cache lines (64 bytes).
 Intel states should avoid crossing 16 byte boundaries.

[Cache lines will be discussed in Lecture 11.]

Virtual memory trickier when datum spans 2 pages (4 KB pages)
 [Virtual memory pages will be discussed in Lecture 17.]

Compiler

Inserts gaps in structure to ensure correct alignment of fields

Specific Cases of Alignment (x86-64)

- 1 byte: char, ...
 - no restrictions on address
- 2 bytes: short, ...
 - lowest 1 bit of address must be 02
- 4 bytes: int, float, ...
 - lowest 2 bits of address must be 002
- 8 bytes: double, long, char *, ...
 - lowest 3 bits of address must be 0002

Satisfying Alignment with Structures

Within structure:

Must satisfy each element's alignment requirement

Overall structure placement

- Each structure has alignment requirement K
 - **K** = Largest alignment of any element
- Initial address & structure length must be multiples of K

Example:

K = 8, due to double element

```
c 3 bytes i[0] i[1] 4 bytes v

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8

Internal padding
```

```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

Meeting Overall Alignment Requirement

- For largest alignment requirement K
- Overall structure must be multiple of K

```
struct S2 {
  double v;
  int i[2];
  char c;
} *p;
```

External padding

Arrays of Structures

- Overall structure length multiple of K
- Satisfy alignment requirement for every element

```
struct S2 {
  double v;
  int i[2];
  char c;
} a[10];
```


Accessing Array Elements

- Compute array offset 12*idx
 - sizeof (S3), including alignment spacers
- Element j is at offset 8 within structure
- Assembler gives offset a+8
 - Resolved during linking


```
short get_j(int idx)
{
   return a[idx].j;
}
```

```
# %rdi = idx
leaq (%rdi,%rdi,2),%rax # 3*idx
movzwl a+8(,%rax,4),%eax
```

Saving Space

Put large data types first

```
struct S4 {
   char c;
   int i;
   char d;
} *p;
struct S5 {
   int i;
   char c;
   char d;
} *p;

c 3 bytes

i d 3 bytes
```

Effect (largest alignment requirement K=4)

Today

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access
- Alignment

Floating Point

Background

History

- x87 FP
 - Legacy, very ugly
- SSE FP
 - Supported by Shark machines
 - Special case use of vector instructions
- AVX FP
 - Newest version
 - Similar to SSE (but registers are 32 bytes instead of 16)
 - Documented in book

Programming with SSE3

XMM Registers

- 16 total, each 16 bytes
- 16 single-byte integers

Scalar & SIMD Operations

FP Basics

- Arguments passed in %xmm0, %xmm1, ...
- Result returned in %xmm0
- All XMM registers caller-saved

```
double dadd(double x, double y)
float fadd(float x, float y)
    return x + y;
```

```
return x + y;
```

```
# x in %xmm0, y in %xmm1
addss
        %xmm1, %xmm0
ret
```

```
# x in %xmm0, y in %xmm1
         %xmm1, %xmm0
addsd
ret
```

FP Memory Referencing

- Integer (and pointer) arguments passed in regular registers
- FP values passed in XMM registers
- Different mov instructions to move between XMM registers, and between memory and XMM registers

```
double dincr(double *p, double v)
{
    double x = *p;
    *p = x + v;
    return x;
}
```

```
# p in %rdi, v in %xmm0
movapd %xmm0, %xmm1  # Copy v
movsd (%rdi), %xmm0  # x = *p
addsd %xmm0, %xmm1  # t = x + v
movsd %xmm1, (%rdi) # *p = t
ret
```

Other Aspects of FP Code

- Lots of instructions
 - Different operations, different formats, ...
- Floating-point comparisons
 - Instructions ucomiss and ucomisd
 - Set condition codes CF, ZF, and PF

LESS_THAN: ZF,PF,CF←001

EQUAL: ZF,PF,CF←100

UNORDERED: ZF,PF,CF←111

GREATER THAN: ZF,PF,CF←000

Using constant values

Parity Flag

- Set XMM0 register to 0 with instruction xorpd %xmm0, %xmm0
- Others loaded from memory

Summary

Arrays

- Elements packed into contiguous region of memory
- Use index arithmetic to locate individual elements

Structures

- Elements packed into single region of memory
- Access using offsets determined by compiler
- Possible require internal and external padding to ensure alignment

Combinations

Can nest structure and array code arbitrarily

Floating Point

Data held and operated on in XMM registers