CS 226: Course Project

Ankit Kumar Misra	Devansh Jain	Harshit Varma	Richeek Das
190050020	190100044	190100055	190260036

May 30, 2021

Contents

Data Paths	1
State Transition Diagram	8
Circuit Diagram	9
State Machine Viewer	10

Data Paths

Si

Si

PC -> MEM_A MEM_out -> IR

Control pins:

Register IR write MUX 2 select 01

S0

S0

IR(11-9) -> RF_A1 RF_D1 -> T1 IR(8-6) -> RF_A2 RF_D2 -> T2 O(16 bits) -> T3

Control pins:

Register T1 write Register T2 write Register T3 write MUX 6 select 0 MUX 7 select 01 MUX 8 select 01

S1A

S1A

T1 -> ALU_a T2 -> ALU_b ALU_b -> T3 ALU_carry -> C (flag) ALU_zero -> Z (flag)

Control pins:

Register T3 write MUX 8 select 10 MUX 9 select 10

MUX 10 select 10

if (op_code is "0000") then alu_control is 0, carry write, zero write else alu_control is 1, zero write

S1B

S1B

IR(5-3) -> RF_A3 T3 -> RF_D3

Control pins:

Register RF write MUX 4 select 10 MUX 5 select 11

S2A

S2A

T1 -> ALU_a
SEIR(5-0) -> ALU_b
ALU_c -> T3
ALU_carry -> C (flag)
ALU_zero -> Z (flag)

Control pins:

Register T3 write MUX 6 select 10 MUX 9 select 01 MUX 10 select 10 carry write, zero write

S2B

S2B

T3 -> RF_D3 IR(8-6) -> RF_A3

Control pins:

Register RF write MUX 4 select 10 MUX 5 select 11

S3

S3

O(6 bits) -> RF_D3(15-9) IR(8-0) -> RF_D3 IR(11-9) -> RF_A3

Control pins:

Register RF write MUX 4 select 00 MUX 5 select 01

S4

S4

T2 -> ALU_a SEIR(5-0) -> ALU_b ALU_c -> T2

Control pins:

Register T2 write MUX 7 select 10 MUX 9 select 01 MUX 10 select 11

S5A

S5A

T2 -> MEM_A MEM_out -> T3 Z = (T3 == 0)

Control pins:

Register T3 write

MUX 2 select 00 MUX 8 select 00 MUX 11 select 1 zero write

S5B

S5B

IR(11-9) -> RF_A3 T3 -> RF_D3

Control pins:

Register RF write MUX 4 select 00 MUX 5 select 11

S6

S6

T2 -> MEM_A T1 -> MEM_in

Control pins:

Register MEM write MUX 2 select 00

S7A

S7A

T1 -> ALU_a +1 -> ALU_b ALU_c -> MEM_A MEM_out -> T2

Control pins:

Register T1 write Register T2 write MUX 2 select 11 MUX 6 select 1 MUX 7 select 11 MUX 9 select 11 MUX 10 select 01

S7B

S7B

T3 -> ALU_a +1 -> ALU_b ALU_c -> T3 T3(2-0) -> RF_A3 T2 -> RF_D3

Control pins:

Register RF write Register T3 write MUX 4 select 11 MUX 5 select 10 MUX 8 select 10 MUX 9 select 11 MUX 10 select 00

S8A

S8A

T3 -> ALU_a +1 -> ALU_b ALU_c -> T3 T3(2-0) -> RF_A1 RF_D1 -> T2

Control pins:

Register T2 write Register T3 write MUX 3 select 1 MUX 7 select 00 MUX 8 select 10 MUX 9 select 11 MUX 10 select 00

S8B

S8B

T1 -> ALU_a +1 -> ALU_b ALU_c -> T1 T1 -> MEM_A MEM_out -> T2

Control pins:

Register MEM write Register T1 write MUX 2 select 11 MUX 6 select 1 MUX 9 select 11 MUX 10 select 10 MUX 12 select 1

S9

59

PC -> ALU_A SEIR(8-0) -> ALU_B ALU_C -> PC

Control pins:

Register PC write MUX 1 select 0 MUX 9 select 01 MUX 10 select 01

S10

S10

IR(11-9) -> RF_A3 PC -> RF_D3 IR(8-6) -> RF_A2 RF_D2 -> T2

Control pins:

Register RF write Register T2 write MUX 4 select 00 MUX 5 select 00 MUX 7 select 01

S11

S11

PC -> ALU_A SEIR(8-0) -> ALU_B ALU_C -> PC

Control pins:

Register PC write MUX 1 select 0 MUX 9 select 00 MUX 10 select 01

S12

S12

T2 -> PC

Control pins:

Register PC write MUX 1 select 1

 $\mathbf{S}\mathbf{f}$

Sf

PC -> ALU_a +1 -> ALU_b ALU_c -> PC

Control pins:

Register PC write MUX 1 select 0 MUX 9 select 11 MUX 10 select 01

State Transition Diagram

Circuit Diagram

State Machine Viewer

