Guillaume T. 04-2024

Gestion de la mémoire

ARO 1 - Introduction

Résumé du document

Comprendre la gestion de la mémoire dans le cours d'ARO vous permettera de pouvoir calculer facilement des tailles de mémoire ainsi que des adresses mémoires.

Table des matières

. Taille mémoire	2
1.1. Exemple	2
1.2. Taille mot mémoire	2
1.3. Gestion des adresses	
1.4. Calculer les adresses	
1.4.1. Calculer adresse de fin	
1.4.2. Calculer adresse de début	
1.4.3. Calculer la taille	

Guillaume T. 04-2024

1. Taille mémoire

- Une adresse est stockée dans un mot de la mémoire d'un ordinateur.
- Le nombre de bits d'un mot limite donc la taille maximale de la mémoire d'un ordinateur.

1.1. Exemple

• Si un ordinateur utilise des mots de 32 bits, la taille maximale de sa mémoire est de 4 gigabytes car,

$$2^{32} = 2^2 * 2^{30} = 4$$
GB

NB: comme nous le verrons plus tard, 2^{30} fait passer notre valeur en GB directement puis $2^2=4$ ce qui explique le $4\mathrm{GB}$.

1.2. Taille mot mémoire

La taille d'un mot mémoire est forcément un multiple de 8. C'est pourquoi nous pouvons appliquer le tableau suivant :

Nom	Symbole	Puissances binaires et valeurs en décimal	Nombre	Неха	Ordre de grandeur SI décimal	
unité	o/B	2 ⁰ = 1	un(e)	1	10 ⁰ = 1	
kilo	ko/Ko kB/KB	2 ¹⁰ = 1 024	mille	400	10 ³ = 1 000	
méga	Mo/MB	2 ²⁰ = 1 048 576	million	100000	10 ⁶ = 1 000 000	
giga	Go/GB	2 ³⁰ = 1 073 741 824	milliard	4000000	10 ⁹ = 1 000 000 000	
téra	То/ТВ	2 ⁴⁰ = 1 099 511 627 776	billion	10000000000	10 ¹² = 1 000 000 000 000	
péta	Po/PB	2 ⁵⁰ = 1 125 899 906 842 624	billiard	40000000000	10 ¹⁵ = 1 000 000 000 000 000	
exa	Eo/EB	2 ⁶⁰ = 1 152 921 504 606 846 976	trillion	1000000000000000	10 ¹⁸ = 1 000 000 000 000 000 000	

1.3. Gestion des adresses

En fonction de la taille de la mémoire nous aurons une taille d'adresses variables, le tableau suivant représente les possibilités :

Adressage	Puiss. binaire et décimal	Неха	byte	bit
8 bits	2 ⁸ = 256	100	256 B	2 Kb
16 bits	2 ¹⁶ = 65 536	10000	64 KB	512 Kb
32 bits	2 ³² = 4 294 967 296	10000000	4 GB	32 Gb
64 bits	2 ⁶⁴ = 18 446 744 073 709 551 616	10000000000000000	16 EB	128 Eb

Guillaume T. 04-2024

1.4. Calculer les adresses

1.4.1. Calculer adresse de fin

$${\rm Adr.Fin} = {\rm Adr.Deb} + {\rm Taille} - 1$$

1.4.2. Calculer adresse de début

$${\rm Adr.Deb} = {\rm Adr.Fin-Taille} + 1$$

1.4.3. Calculer la taille

$$\begin{aligned} \text{Taille} &= \text{Adr.Fin} - \text{Adr.Deb} + 1 \\ &\text{Taille} &= 1 \ll \log_2(2^n) \end{aligned}$$

n= le nombre de bits alloué à la zone mémoire Exemple : $2{\rm KB}=2^{10}*2^1=2^{11}$ donc n=11