WHAT IS A MATRIX?

Matrix is an array/arrangement of numbers

Order of a matrix = Number of Rows X Number of Columns

Row

-1 3 0

6 -3 -1

2 0 1

TYPE OF MATRICES

Row Matrix Matrix having

$$A_{2x1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

3 Square Matrix

only one row.

Matrix having same number of rows and columns.

$$A_{3\times3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 7 & 1 & 9 \end{bmatrix}$$

Matrix having all elements equal to zero.

$$A_{3\times3} = 0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Upper Triangular Matrix

All entries below the main diagonal are zero.

$$A_{3\times3} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 9 \end{bmatrix}$$

6 Lower Triangular Matrix

All entries above the main diagonal are zero.

$$A_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 5 & 0 \\ 7 & 8 & 9 \end{bmatrix}$$

Diagonal Matrix

All entries above and below the principal diagonal are zero.

$$A_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

Identity/Unit Matrix

Diagonal matrices in which all diagonal elements are unity/one.

$$A_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

OPERATIONS ON MATRICES

Addition Matrix

Matrices must have same order.

$$A+B = \begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 5 & -3 \end{bmatrix}$$

Subtraction Matrix

Matrices must have same order.

Equality Matrix

Matrices having same order with all the corresponding elements being equal.

$$A_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix}; B_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix}; A = B$$

Transpose of a Matrix

A matrix formed by turning all the rows into columns and vice-versa. Symbol $\Rightarrow A^{T}$.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}^{\bullet}$$

MATRIX MULTIPLICATION

Multiplication of Matrix with a Scalar

Each element of the Matrix is multiplied by the scalar

Multiplication of a Matrix with another Matrix
If a matrix A and another matrix B then A x B
Possible if

How to Multiply a Matrix by Another Matrix?

INVERSE OF A MATRIX

Reciprocal of a Matrix.

· For a matrix A inverse of this.

For a matrix A
 (matrix) × (Inverse of matrix) = I
 i.e. A × A⁻¹ = I or A⁻¹ × A = I
 But A × A⁻¹ ≠ A⁻¹ × A

How to find Inverse of a Matrix?

Step - I

Check whether Matrix A is singular or non-singular i.e.

$$|A| \neq 0 \Rightarrow$$
 Non-singular

Step - II

If Matrix A is Non-singular, then find the value of determinant and also find one adjoint matrix A.

Step - III

Follow the formula

$$A^{-1} = \frac{1}{|A|} \text{ adj } A.$$

•
$$(A^{-1})^{-1} = A$$
, if A is non-singular.

$$(A^{-1})^T = (A^T)^{-1}$$

• If A = diag (a₁₁, a₂₂,.....a_{nn}) Then, A⁻¹ = diag (
$$\frac{1}{a_{11}}$$
, $\frac{1}{a_{22}}$,....., $\frac{1}{a_{nn}}$)

TYPE OF SQUARE MATRICES

Nilpotent Matrix

If B^P = 0 where 'P' is the least +ve integer. Then, 'B' is a Nilpotent matrix.

$$B = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$

Idempotent Matrix

If B² = B. Then, 'B' is an Idempotent matrix.

$$B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Involutory Matrix

If B² = I. Then, 'B' is a Involutory matrix

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Symmetric Matrix

If $B^T = B$. Then, 'B' is a Symmetric matrix.

$$B = \begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{bmatrix}$$

Skew Symmetric Matrix

If B^T= – B and all Principal diagonal elements are zero. Then 'B' is a skew symmetric matrix.

$$B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$

Unitary Matrix

If B' (B')^T= I where B' is the complex conjugate of B. Then, B is a unitary matrix.

$$B = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Orthogonal Matrix

A square matrix 'B' if $B^TB = I = B B^T$ or $B^T = B^{-1}$. Then, 'B' is an Orthogonal matrix.

Points To Remember

- In a skew-symmetric matrix all the Principal diagonal elements are zero.
- For any square matrix A, A + A^T is symmetric & A A^T is skew-symmetric.
- Every square matrix can be uniquely expressed as a sum of two square matrices of which one is symmetric and the other is skew-symmetric
- A = B + C, where $B = \frac{1}{2} (A + A^{T}) & C = \frac{1}{2} (A A^{T})$
- For any matrix A (A) (A) = A
- Let 2 be a scalar & A be a matrix. Then (2/4) 1/4
- $(A_1 \pm A_2 \pm \pm A_n)^T = A_1^T \pm A_2^T \pm ... \pm A_n^T$ where A_1 are comparable.
- $(A_1, A_2, ..., A_n)^T = A_n^T, A_{n-1}^T, ..., A_2^T, A_1^T$ provided the product is defined.
- A+B = B+A
- (A+B)+C=A+(B+C)
- 0 = [0] mxn is the additive identity.
- ⇒ λ(A + B) = λA +λB