Geodesics on the Necker Cube Surface Pat Hooper and Pavel Javornik

The Necker Cube Surface

The *Necker cube surface* is obtained by the edge to edge pairing of infinitely many unit cubes:

Geodesics

A geodesic is uniquely determined by an initial point and direction:

Periodic Geodesics

A geodesic is *periodic* if it returns to the initial point traveling the same direction after some finite time.

Geodesics

A *geodesic* is a locally, distance-minimizing curve or local "straight line path":

What is a direction?

Since the face of each cube is flat, we consider a direction as a vector pair $\mathbf{v} = (p,q)$ as it is projected onto the plane:

Drift-periodic Geodesics

A geodesic is *drift-periodic* if it is preserved by a non-trivial translation of the surface.

The Periodicity Theorem

A geodesic is called *singular* if it hits a vertex of a square.

Theorem. A geodesic is periodic or driftperiodic if and only if it travels in an integral direction v=(p,q) with p and q having no common factor. Moreover:

- If p and q are both odd, then the geodesic is periodic.
- If one is odd and the other is even, then the geodesic is drift-periodic.

Irrational directions

The direction of a vector $\mathbf{v} = (x, y)$ is *rational* if it is parallel to a non-zero integer vector (p,q), and is *irrational* otherwise.

An irrational direction can be approximated by integer vectors.

Example: The Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

Vectors made from adjacent terms approach the golden mean direction, $(1, \frac{1+\sqrt{5}}{2})$,

 $(1,1), (3,5), (13,21), (55,89), \dots$

The Golden Mean Snowflake

