<u>Trabajo Práctico Nº 4:</u> Modelos para Variables Categóricas Ordenadas.

Ejercicio 1: Predicción de Calificaciones de Clientes.

Considerar el ejercicio del Problem Set anterior con el mismo título que éste. Repetir el análisis utilizando un modelo ordenado.

(a) Abrir y describir la base.

Variable	Obs	Mean	Std. dev.	Min	Max
nps marital_st~e	42,019	8.369975	2.263878	1	10
gender_code edad branch_desc	42,020	52.16497	12.56996	19	101
segmento	0				
operaciones	42,020	1.728439	1.476585	1	31
mes nps anterior	42 , 020 0	6.736292	3.241668	1	12
hora	42,020	11.7812	1.743031	7	18
dia dia	42 , 020 0	14.91792	8.634796	1	31
espera cliente	42,020 42,020	10.89938 21372.36	10.70589 12335.51	0 1	60 42760

(b) Generar una variable que clasifique a los clientes en función de si son promotores, detractores o neutrales.

clasificaci			
on	Freq.	Percent	Cum.
Detractor Neutral Promotor	6,265 9,579 26,175	14.91 22.80 62.29	14.91 37.71 100.00
Total	+ 42,019	100.00	

(c) Analizar cómo cambia la variable de espera en función de la clasificación de los clientes.

(d) Tomar una muestra del 10% de los datos. Estimar un logit multinomial ordenado para predecir cómo cambian las clasificaciones en función de la espera, condicionando en explicativas que se considere relevantes.

Logit multinomial ordenado (betas):

Ordered logisti	J				Number of obs LR chi2(7) Prob > chi2 Pseudo R2	= 4,202 = 394.03 = 0.0000 = 0.0511
clasificacion	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_Igender_co_2	0667762 .0163998 .7313334 .2147268 478007 3697909 0359647	.0687925 .0026606 .8363563 .1144579 .1271562 .1299945 .0030773	-0.97 6.16 0.87 1.88 -3.76 -2.84 -11.69	0.332 0.000 0.382 0.061 0.000 0.004	201607 .0111852 9078948 0096065 7272286 6245754 041996	.0680546 .0216144 2.370562 .4390601 2287855 1150063 0299333
/cut1 /cut2	-1.429497 1286401	.178061 .1758049			-1.77849 4732113	-1.080504 .2159311

Logit multinomial ordenado (odds ratios):

Ordered logisti	J				Number of obs LR chi2(7) Prob > chi2 Pseudo R2	= 4,202 = 394.03 = 0.0000 = 0.0511
clasificacion	Odds ratio	Std. err.	Z	P> z	[95% conf.	interval]
_Igender_co_2 edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 _espera	1.016535 2.077849 1.239523 .6200178	.0643488 .0027045 1.737822 .1418732 .0788391 .0898104 .0029686	-0.97 6.16 0.87 1.88 -3.76 -2.84 -11.69	0.332 0.000 0.382 0.061 0.000 0.004 0.000	.8174161 1.011248 .4033725 .9904395 .4832464 .5354887 .9588736	1.070424 1.02185 10.7034 1.551249 .7954992 .8913605 .9705103
/cut1 /cut2	-1.429497 1286401	.178061 .1758049			-1.77849 4732113	-1.080504 .2159311

Note: Estimates are transformed only in the first equation to odds ratios.

(e) Calcular los efectos marginales.

Efectos marginales en Logit multinomial ordenado (clasificación 1):

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
_Igend~2*	.0079445 0019683 0671776 0261068 .063994 .0486811 .0043164	.00812 .00032 .05629 .0141 .01889 .01869	0.98 -6.13 -1.19 -1.85 3.39 2.60 11.41	0.328 0.000 0.233 0.064 0.001 0.009 0.000	007962 002597 177512 053748 .02698 .012049	.023851 001339 .043157 .001534 .101008 .085313	.682532 51.9412 .001666 .580438 .179914 .149929 11.1349

^(*) $\mathrm{d}y/\mathrm{d}x$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial ordenado (clasificación 2):

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
_Igend~2*	.0076247 0018677 0833501 0242958 .0511031 .0401242 .0040958	.00788 .00031 .08871 .01287 .01252 .01326 .00038	0.97 -6.00 -0.94 -1.89 4.08 3.03 10.66	0.333 0.000 0.347 0.059 0.000 0.002	007815 002478 25722 049518 .026558 .014131 .003342	.023064 001258 .09052 .000926 .075648 .066118	.682532 51.9412 .001666 .580438 .179914 .149929 11.1349

^(*) $\mathrm{d}y/\mathrm{d}x$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial ordenado (clasificación 3):

variable	dy/dx	Std. err.		P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	0155692 .003836 .1505277 .0504026 1150971 0888053 0084122	.01599 .00062 .14494 .02693 .0312 .03183	-0.97 6.17 1.04 1.87 -3.69 -2.79 -11.67	0.330 0.000 0.299 0.061 0.000 0.005 0.000	151197	.005054	.682532 51.9412 .001666 .580438 .179914 .149929 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(f) Repetir el análisis con un Probit multinomial ordenado y comparar.

Probit multinomial ordenado:

Ordered probit Log likelihood	J		Number of obs LR chi2(7) Prob > chi2 Pseudo R2	= 4,202 = 450.86 = 0.0000 = 0.0585		
clasificacion	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
Igender_co_2	.3043314	.040891 .0015378 .5146773 .0664574 .0740819 .0764502 .0018409	0.19 5.75 0.59 1.70 -4.95 -5.14 -11.02	0.846 0.000 0.554 0.088 0.000 0.000	0722067 .0058348 7044176 0169602 5119099 5427255 0238977	.0880831 .0118628 1.31308 .2435479 2215144 2430463 0166814
/cut1 /cut2	9159207 1473535	.1025571			-1.116929 3467842	7149126 .0520771

<u>Efectos marginales en Progit multinomial ordenado (clasificación 1):</u>

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	001742 0019388 055947 0250324 .0905003 .099153 .0044455	.00899 .00034 .07726 .01481 .02035 .02183	-0.19 -5.73 -0.72 -1.69 4.45 4.54 10.79	0.846 0.000 0.469 0.091 0.000 0.000	019358 002602 207383 054056 .050614 .05637 .003638	.015873 001276 .095489 .003991 .130386 .141936	.680866 52.1171 .001428 .567111 .186578 .147787 11.1349

^(*) $\mbox{dy/dx}$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial ordenado (clasificación 2):

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	Х
Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	0012622 0014084 0520378 0179079 .0518055 .053895 .0032294	.00649 .00025 .09116 .01044 .0091 .00872	-0.19 -5.61 -0.57 -1.71 5.69 6.18 10.13	0.846 0.000 0.568 0.086 0.000 0.000	013992 001901 230701 038376 .033965 .036803 .002605	.011467 000916 .126626 .00256 .069646 .070987	.680866 52.1171 .001428 .567111 .186578 .147787 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial ordenado (clasificación 3):

Marginal effects after oprobit y = Pr(clasificacion==3) (predict, pr outcome(3)) = .6278671

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2*	.0030042 .0033472 .1079848 .0429403 1423059 1530479 007675	.01548 .00058 .16839 .02522 .02913 .03018 .0007	0.19 5.75 0.64 1.70 -4.88 -5.07	0.846 0.000 0.521 0.089 0.000 0.000	212194	.033349 .004487 .43803 .092373 085205 093902 006308	.680866 52.1171 .001428 .567111 .186578 .147787

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(g) Realizar un test de la significatividad de las variables.

Stata.

Ejercicio 2: Modelo Secuencial.

(a) Considerar la base de datos "nlsw88.dta". En la misma, hay datos de un grupo de mujeres de entre 30 y 40 años para estudiar los patrones de la fuerza laboral. Estimar un logit secuencial con la decisión de educación utilizando el comando seqlogit y mostrar que se pueden obtener los mismos resultados estimando varios modelos logit por separado.

Logit secuencial:

Log likelihood	d = -2882.1386				Number of ob LR chi2(9) Prob > chi2	= 108.50
educ_cat	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_2_3_4v1 race	+ 					
Black Other	9151569 4910998	.1282466 .5511525	-7.14 -0.89	0.000 0.373	-1.166516 -1.571339	6637983 .5891394
south South _cons	 4175069 2.250353	.1259601	-3.31 23.61	0.001	6643841 2.063574	
_3_4v2	+ 					
race Black Other	 173837 1.745005	.1131414	-1.54 2.80	0.124	3955902 .5217389	.0479161 2.968271
south South _cons	 1495226 .1079773	.0968386	-1.54 1.75	0.123 0.080	3393228 0130691	.0402777
_4v3	+ 					
race Black Other	 3065161 3798123	.1648533	-1.86 -0.80	0.063 0.421	6296227 -1.305514	.0165905
south South _cons	.4052292 .0396236	.138966 .0855118	2.92	0.004	.1328609 1279765	.6775975 .2072237

Logit (High School):

Logistic regre	Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 78.50 = 0.0000					
hs	Coefficient	Std. err.		P> z	[95% conf.	interval]	
race Black Other	9151569				-1.166516 -1.571339		
south South _cons	4175069	.1259601			6643841 2.063574		
Logit (Junior College):							
Logistic regression Log likelihood = -1314.2871							
					Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 18.95 = 0.0003	
Log likelihood	d = -1314.2871		z	P> z	LR chi2(3) Prob > chi2	= 18.95 = 0.0003 = 0.0072	
Log likelihood	d = -1314.2871 Coefficient +	Std. err. 	-1.54	0.124	LR chi2(3) Prob > chi2 Pseudo R2 [95% conf. 3955902	= 18.95 = 0.0003 = 0.0072 interval] 	
Log likelihood sc race Black	d = -1314.2871 Coefficient 173837 1.745005	Std. err1131414 .6241267	-1.54 2.80	0.124 0.005	LR chi2(3) Prob > chi2 Pseudo R2 [95% conf. 3955902	= 18.95 = 0.0003 = 0.0072 interval] .0479161 2.968271	

Logistic regression Log likelihood = -663.06592				Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 11.05	
c		Std. err.			[95% conf.	interval]
race Black Other	3065161 3798123	.1648533	-1.86 -0.80	0.063 0.421	6296227 -1.305514	.0165905
south South _cons	.4052292 .0396236	.138966 .0855118	2.92	0.004	.1328609 1279765	.6775974 .2072236

(b) Considerar la base de datos "gss.dta". La misma posee datos de la encuesta GSS (General Social Survey). Esta encuesta realiza investigaciones científicas básicas sobre la estructura y el desarrollo de la sociedad estadounidense con un programa de recopilación de datos diseñado tanto para monitorear el cambio social dentro de Estados Unidos como para comparar a Estados Unidos con otras naciones. Iniciado en 1972, el

GSS contiene un núcleo estándar de preguntas demográficas, de comportamiento y de actitud, además de temas de especial interés. Muchas de las preguntas centrales se han mantenido sin cambios desde 1972 para facilitar los estudios de tendencias temporales, así como la replicación de hallazgos anteriores. En este ejercicio, se utilizan datos de educación similares a los del inciso anterior. Estimar un logit secuencial, interpretar los resultados y mostrar el efecto de la educación del padre en las decisiones de educación en cada transición.

Logit secuencial:

Number of obs = 9,842 LR chi2(18) = 2461.15 Log likelihood = -9530.0004 Prob > chi2 = 0.0000

degree	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
1 2 3v0	 					
south	7967635	.0736484	-10.82	0.000	9411116	6524153
coh	.7483053	.3414704	2.19	0.028	.0790356	1.417575
c.coh#c.coh	0482221	.0400122	-1.21	0.228	1266445	.0302003
paeduc	.1124402	.0778119	1.45	0.148	0400684	.2649488
c.paeduc#c.coh	.0469452	.0369009	1.27	0.203	0253792	.1192696
c.paeduc#c.coh#c.coh	0050879	.0041484	-1.23	0.220	0132187	.0030428
_cons	-1.782385	.6862366	-2.60	0.009	-3.127385	4373864
2 3v1	 					
south	.0469273	.0521384	0.90	0.368	055262	.1491166
coh	.3228634	.4189998	0.77	0.441	498361	1.144088
c.coh#c.coh	0371565	.0445171	-0.83	0.404	1244084	.0500954
paeduc	.1222627	.0808644	1.51	0.131	0362286	.280754
c.paeduc#c.coh	.0188174	.0344105	0.55	0.584	0486259	.0862607
c.paeduc#c.coh#c.coh	000731	.0035726	-0.20	0.838	0077331	.0062712
_cons	-3.497795	.956858	-3.66	0.000	-5.373202	-1.622388
3v2	 					
south	.0710731	.0976914	0.73	0.467	1203984	.2625446
coh	.9594559	.8457289	1.13	0.257	6981422	2.617054
c.coh#c.coh	1700969	.0872356	-1.95	0.051	3410755	.0008818
paeduc	.3357249	.1775429	1.89	0.059	0122528	.6837027
c.paeduc#c.coh	1217749	.0719208	-1.69	0.090	262737	.0191873
c.paeduc#c.coh#c.coh	.0155494	.0071984	2.16	0.031	.0014408	.0296579
_cons	6964155	2.011413	-0.35	0.729	-4.638713	3.245882