Matriz games (Two player zero sum games)

A special class with certain nice properties of the stability and security notions

 $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, with $N = \{1, 2\}$, $u_1 + u_2 \equiv 0$

Example: Penalty shoot out game

An arbitrary game

	• 0				
		1 [C	R	
•	7	3,-3	-5,5	-2,2	
	M	, -	4,-4	۱,-۱	
•	B	6,-6	-3,3	-5,5	

	9		R
S		ا را-	1,-1
	R	۱,-۱	-1,1

Possible to represent The game with one matrix U, considering The utilities of only player 1

Player 2's utilities are negative of the matrix

Player 2's max min strategies are The ninmax of this matrix (security criterion)

				U	
	U		R	Max min	
	L	-1	1	-1	
	R	l	-1	-1	
W	n max	1			

	u		C	R	maxmin
-	T	3	-5	-2	-5
	М	1	4		1
	В	6	-3	-5	-5
immax		6	4	1	

What are the PSNES of these games?

Saddle point: The value is maximum for player 1, minimum for layer 2.

Rephrase: what are the saddle point of the two games?

Theorem: In a matrix game with utility matrix \mathcal{U} , (s_1^*, s_2^*) is a saddle point if and only if it is a PSNE.

Proof: (1,1,52) is a saddle point (

 $\mathcal{U}\left(\boldsymbol{S}_{1}^{*},\boldsymbol{S}_{2}^{*}\right) \right\rangle_{\mathcal{U}\left(\boldsymbol{S}_{1}^{*},\boldsymbol{S}_{2}^{*}\right)}, \forall \boldsymbol{S}_{1} \in \boldsymbol{S}_{1}^{*}, \text{ and } \mathcal{U}\left(\boldsymbol{S}_{1}^{*},\boldsymbol{S}_{2}^{*}\right) \leqslant \mathcal{U}\left(\boldsymbol{S}_{1}^{*},\boldsymbol{S}_{2}\right)$ $\forall \boldsymbol{S}_{2} \in \boldsymbol{S}_{2}$

I How are they related?

it is a PSNE, Since U₁ = U , U₂= -U .

Consider the maxim and minmax values

 $\underline{v} = \max_{A_1 \in S_1} \min_{A_2 \in S_2} u(s_1, s_2)$

 $\overline{U} = \min_{\Delta_2 \in S_2} \max_{\Delta_1 \in S_1} U(\Delta_1, \Delta_2)$

Lemma: For matrix games $\overline{v} > \underline{v}$.

Proof: $U(\Lambda_1, \Lambda_2) > \min_{\substack{t_2 \in S_2}} U(\Lambda_1, t_2)$

 $\max_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, s_2) > \max_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) > \max_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) > \max_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2 \in S_2}} \mathcal{U}(t_1, t_2) = \prod_{\substack{t_1 \in S_1 \\ t_2$