EEG Signal Classification Using Machine Learning

By: Muneezé Malik

Instructor: Dr. Adnan Amin

Course: Machine Learning Lab

Date: April 22, 2025

Introduction to EEG

- EEG stands for Electroencephalography
- A non-invasive technique to record brain activity
- Measures electrical signals using electrodes placed on the scalp

EEG Signals:

- Represent voltage fluctuations from neuron activity
- High temporal resolution used in neuroscience, sleep studies, BCI, and more

Project Overview

What Are We Trying to Do?

- We aim to classify EEG signals into different mental states (eye states)
- Use machine learning models to recognize patterns in EEG waveforms

Approach:

- 1. Preprocess raw EEG data from .edf format
- 2. Visualize and understand data distribution
- 3. Train ML models with and without feature engineering
- 4. Apply SMOTE to handle class imbalance
- 5. Compare model performance using F1-score

Why It Matters

Solution Importance of EEG Classification:

- Helps in diagnosing neurological conditions
- Enables development of brain-computer interfaces (BCI)
- Enhances real-time cognitive state detection

ML + EEG:

- Manual EEG analysis is complex and time-consuming
- Machine Learning helps automate and improve accuracy

Introduction

Objective:

- Classify EEG signals using machine learning
- Evaluate models with and without:
 - Feature Engineering
 - Data Balancing (SMOTE)

6 Goal:

- Achieve the highest possible F1-scores using preprocessing techniques

Dataset Description

EEG Dataset (Mendeley Data)

- 6 folders containing .edf EEG recordings

- Eye state classification (4 classes)

Name:

- x_train: (5499, 19, 500)

- 19 channels, 500-time samples per signal

Data Preprocessing

Preprocessing Steps:

- Converted .edf to .npy using MNE-Python
- Flattened EEG signals for raw modelling
- Extracted statistical features (mean, std, max, min)

Libraries Used:

- MNE, NumPy, Scikit-learn, SMOTE

Visualization

Class Imbalance Observed:

- Class 3 had very few samples

EEG Signal Plot:

- Time-series plots for 3 sample channels
- Visual verification of signal patterns
- Used Countplot & Line Plot

Machine Learning Models

Models Used:

- 1. Logistic Regression
- 2. Random Forest
- 3. Support Vector Machine

Evaluation Metric:

- Weighted F1-Score
- Confusion Matrix

Results - Raw Data

(9500 features)

F1 Scores:

- Logistic Regression: 0.4541

- Random Forest: 0.8732

- SVM: 0.6815

↑ Class 3 was not recognized well by any model

Feature Engineering & SMOTE

Feature Engineering:

- Mean, Std, Max, Min → 76 features

P Data Balancing:

- SMOTE is used to oversample minority classes

Result: Balanced class distribution

Results – After Feature Engineering

F1 Scores (Balanced Data):

- Logistic Regression: 0.8904
- Random Forest: 0.9375
- SVM: 0.8961

Ø Observation:

- Accuracy improved significantly
- Best performance by Random Forest

Final Comparison Table

Y Best Model: Random Forest (F1 = 0.9375)

Model	Raw F1 Score	Balanced F1 Score
Logistic Regression	0.4541	0.8904
Random Forest	0.8732	0.9375
SVM	0.6815	0.8961