Comprehensive Compendium: Geometry,
Pre-Algebra, Pre-Calculus, Trigonometry,
Calculus 1, Intro Statistics, and Discrete
Structures

Nathan Warner
April 26, 2023

Contents

1	Geom	netry	8
	1.1	Line	8
	1.2	Square	8
	1.3	Rectangle	8
	1.4	Triangle	8
	1.5	Circle	9
	1.6	Trapezoid	10
	1.7	Parallelogram	10
	1.8	Cube	10
	1.9	Square Prism	10
	1.10	Rectangular Prism	10
	1.11	Sphere	11
	1.12	Cylinder	11
	1.13	Cone	11
	1.14	Square Pyramid	11
	1.15	Rectangular Pyramid	11
2	Pre-	-Algebra	12
	2.1	Types of numbers	12
	2.2	Slope	12
	2.3	Solving Inequalites	13
	2.4	Solving absolute value equations	13
	2.5	Solving Systems of Equations	15
3	Alge	${ m ebra}$	17
	3.1	Theorems of algebra	
	3.2	Difference Quotient	
	3.3	Distance Formula	
	3.4	Average Rate of Change	
	3.5	Midpoint	
	3.6	Quadratic Formula	
	3.7	Sum / Difference of squares	
	3.8	Sum / Differnce of Cubes:	
	3.9	Types of Functions	
	3.10	Intercepts	
	3.11	-	19
	3.12	Parallel or Perpendicular	20
	3.13	Lines (Slope and Equation)	20
	3.14		20
	3.15		21
	3.16	•	21

Warner 2 MATHEMATICS

3.17	Domain and Range of Functions			
3.18	Finding slope of secant line	 	 	 22
3.19	Piecewise Defined Functions	 	 	 22
3.20	Transformations	 	 	 22
3.21	Common Functions	 	 	 23
3.22	Linear Functions	 	 	 25
3.23	Quadratic Functions and their zeros	 	 	 25
3.24	Finding the zeros of a quadratic function with u Substitution	 	 	 26
3.25	Finding Where Two Functions Intersect			
3.26	Quadratic Functions and their properties			
3.27	Solving Quadratic Inequalites			
3.28	Polynomial Functions and Their Models			
3.29	Power Functions			
3.30	Properties of Rational Functions			
3.31	Sketching the graph of a rational function			
3.32	Polynomial and Rational Inequalties			
3.33	Synthetic Division			
3.34	The real zeros of a polynomial function			
3.35	Complex Zeros and the Fundamental theorem of algebra			
3.36	Composite Functions			
3.37	One-to-One Functions			
3.38	Inverse Functions			
3.39	Exponential Functions			
3.40	Natural Exponential Function			
3.41	Logarithmic Function			
3.42	Conic Sections/The Parabola			
3.43	Ellipses			
3.44	Hyperbola			
3.45	Sequences			
3.46 3.47	Sequences with summation notation			
-				
3.48	Properties of Summations			
3.49	Finding sum of sequence using calculator			
3.50	Arithmetic Sequences.			
3.51	Find a Formula For an Arithmetic Sequence.			69 7 0
3.52	Finding The Sum of n Terms in an Arithmetic Sequence			70
3.53	Geometric Sequences.			71
3.54	Find a Formula For a Geometric Sequence.			72
3.55	Sum of n Terms of a Geometric Sequence			72
3.56	Determine Whether a Geometric Series Converges or Diverges			73
Trig	gonometry	 	 	 75
4.1	Unit Circle Diagram			75
4.2	Standard Position / Central Angle			76
4.3	Linear / Angular Speed			76
4.4	Decimal to Degrees / Degrees to Decimal			76
4.5	Degrees to Radians / Radians to Degrees	 	 	 76
4.6	Arc Length of a Circle	 	 	 77
4.7	Trig Functions	 	 	 77

Warner 3 MATHEMATICS

	4.8	Periodicity	7
	4.9	Even/Odd	7
	4.10	Finding Values With Calculator	7
	4.11	Domain and Range of Trig Functions	8
	4.12	Graphing	8
	4.13	Asymptotes of Trig Functions	9
	4.14	Inverse Trig Functions	9
	4.15	How to Find r	9
	4.16	Find Inverse of Trig Functions	0
	4.17	Pythagorean Identites	
	4.18	Sum and Difference	
	4.19	Double Angle/Half Angle Formulas	
	4.20	Product to Sum	
	4.21	Sum to Product	
	4.22	Right Triangles	
	4.23	Law of Sin / Cos	
	4.24	Area	
	4.25	Hyerbolic Trig	
	4.26	Graphs of Hyperbolic Trig Functions	
	4.27	The Triangle	
5	Cal	pprox 1	8
	5.1	Secant Lines	8
	5.2	Tangent Lines	8
	5.3	The Velocity Problem	8
	5.4	The Limit of a Function	9
	5.5	One Sided Limits	9
	5.6	Infinite Limits	9
	5.7	Limit Laws	0
	5.8	Direct Substitution Property	0
	5.9	Continuity	1
	5.10	One-Sided Continuity	1
	5.11	Discontinuitys	
	5.12	Finding where a function is Discontinuous without the graph of f	
	5.13	Intermediate Value Theorem	
	5.14	Evaluating limits at infinity (horizontal asymptotes)	
	5.15	Derivatives and rates of change (Definitions)	
	5.16	Differential Rule	
	5.17	Derivatives of common functions	
	5.18	Normal Line	
	5.19	Find equation of tangent and normal line	
	5.20	Product and Quotient Rule	
	5.21	Chain Rule	
	5.21	Implicit Differentation	
	5.22 5.23	Logarithmic Differentation	
	5.24		
	5.25	Exponential Growth and Decay	
	5.26	Newton's Law of Cooling	
	5.27	Related Rates	1

Warner 4 MATHEMATICS

5.28	Linear Approximation			
5.29	Differentials			
5.30	Maximum and Minimum Values	103		
5.31	Extreme Value Theorem	103		
5.32	Fermat's Theorem	103		
5.33	Critical Number	103		
5.34	How to find the absolute maximum and minimum values of a continuous function f on a			
	closed interval [a,b]	104		
5.35	The Mean Value Theorem	104		
5.36	First Derivative Test	105		
5.37	Second Derivative Test	105		
5.38	Domain	105		
5.39	Intercepts	105		
5.40	Asymptotes	105		
5.41	Symmetric			
5.42	Increasing/Decreasing (Numberline with Domain (not as critical values but still test))			
5.43	Abs Max and Min			
5.44	Concave Up/Down and inflection points			
5.45	L'Hospital's Rule			
5.46	Curve Sketching			
5.47	Optimization Problems			
5.48	Newton's Method			
5.49	Antiderivitates			
5.50	derivative of hyperbolic trig fuctions			
5.50	Sigma notation			
5.51	Area and Distance Problem			
5.52	Definite Integrals			
5.54	The Fundemental theorem of calculus			
	Indefinite Integrals			
5.55				
5.56	Velocity Functions with integrals			
5.57	The Substitution Rule (u-sub)			
5.58	Integrals of Symmetric functions:			
	Statistics			
Chapt	ers 1-4	120		
5-8 Su	absection Titles	135		
5-8 Vo	ocab	136		
5-8 Fo	ormulas	139		
5-8 Cc	oncepts:	142		
Rules	of Probability	142		
Unusu	al Event	142		
The th	hree methods for determining the probability of an event:	142		
Rule fo	or claiming Independence:	143		
Compute "at-least" Probabilities:				
Poll In	Poll Indicates Different from our assumptions			
Rules for a Discrete Probability Distribution:				
	Discrete Probability Distributions			
_	ng Mean of a Discrete Random Variable In Statcrunch:			
	o Interpret the Mean of a Discrete Random Variable			
	-			

Warner 5 MATHEMATICS

Life insurance policy example (expected value)	. 145
Standard Deviation of a Random Discrete Variable In Statrunch	. 146
Criteria for a Binomial Probability Experiment	. 146
Notation used in the binomial probability distribution:	. 146
three methods for obtaining binomial probabilities:	. 146
Using the Binomial Probability Distribution Function in Staterunch	. 147
Shape of Binomial Probability Distribution for Various Values of p $\dots \dots \dots \dots \dots$. 147
Shape of the Graph of a Binomial Probability Distribution for Various Values of n $\dots \dots$. 147
Probability Density Function (pdf) Rules:	. 148
Area as a Probability:	. 149
Effects of mean and standard deviation on normal curve $\ldots \ldots \ldots \ldots \ldots \ldots$. 149
Properties of the Normal Curve	. 149
The Role of Area in the Normal Density Function:	. 150
Find and Interpret the Area under a Normal Curve	. 150
Standardizing a Normal Random Variable:	. 151
Finding an interpreting Area under a Normal Curve With Statcrunch:	. 152
Find the Value of a Normal Random Variable:	. 152
Important Notation for the Future	. 153
Drawing a Normal Probability Plot Using Statcrunch (Also shows correlation)	. 153
A Rule of Thumb for Invoking the Central Limit Theorem:	. 154
cutting the standard error of the mean in half	. 154
(a) Suppose a simple random sample of size n is obtained from a population whose distribution is skewed right. As the sample size n increases, what happens to the shape of the distribution	1
of the sample mean?	
9-12 Subsection Titles	
9-12 Vocab	
9-12 Vocab	
Confidence interval	
Caution	
Common Critical Values	
Interpret A Confidence Interval	
The Effect of Level of Confidence on the Margin of Error	
The Effect of Sample Size on the Margin of Error	
What If We Do Not Satisfy the Normality Condition?	
Determine the Sample Size Necessary for Estimating a Population Proportion within a Specified	
Margin of Error (In staterunch)	. 167
Properties of the t-distribution	
Put the following in order for the most area in the tails of the distribution	
A robust procedure	
Ex: Constructing a confidence interval about a population mean	
Critical values for t-distribution vs critical values for z-distribution	
Effects on margin of error	
When Model Requirements Fail	
Steps in hypothesis testing	
three ways to set up the null and alternative hypotheses	
FOUR OUTCOMES FROM HYPOTHESIS TESTING	
Do we accept the null hypothesis	
hypothesis testing using the P-value approach	. 172

Warner 6 MATHEMATICS

	Testin	g Hypotheses Regarding a Population Proportion Using Simulation	172
	Two-T	'ailed bounds	173
	Testin	g Hypotheses Regarding a Population Proportion Using the Normal Model	173
	Findin	ng p-value with normal distribution for different tailed tests	174
	Two-T	Cailed Hypothesis Testing Using Confidence Intervals	174
	Testin	g Hypotheses Regarding a Mean	174
	Explai	in the Difference between Statistical Significance and Practical Significance	175
	Puttin	ng it all together: Which one do I use?	175
	Testin	g Hypotheses Regarding Two Proportions Using Random Assignment	175
	Test E	Iypotheses Regarding Two Population Proportions from Independent Samples	176
	Test E	Iypotheses for a Population Mean from Matched-Pairs Data (Dependent sampling)	176
	The N	formality Requirement (Population mean matched-pairs)	177
	Reject	or accept with confidence interval	177
	Testin	g Hypotheses Regarding Two Independent Means Using Random Assignment	177
	Testin	g Hypotheses Regarding the Difference between Two Population Means: Independent Samples	177
		cteristics of the Chi-Square Distribution	
	What	If the Degrees of Freedom I Need Is Not In the Table?	178
	The G	doodness-of-Fit Test	179
	A Wor	rd about Conclusions of Hypothesis Tests	179
		Thi-Square Test for Independence	
		dure for a test of Homogeneity	
		lel requirements fail for homogeneity test fail	
	Explai	in why chi-square goodness-of-fit tests are always right tailed	180
7	Discr	ete Structures	181
	7.1	Set Vocabulary:	181
	7.2	Set Notation / Formulas	182
	7.3	Number Sets	184
	7.4	Set Equality	184
	7.5	Set-Builder	184
	7.6	Logic Vocabulary	185
	7.7	Logic Notation/Formulas	186
	7.8	Truth Tables	189
	7.9	Number Theory Vocabulary	190
	7.10	Number Theory Notation/Formulas	191
	7.11	Proof Vocabulary	192
	7.12	Proof Notation	193
	7.13	Functions Vocabulary	195
	7.14	Function Notation	
	7.15	Relations Vocabulary	
	7.16	Relations Notation / Formulas	196

Warner 7 MATHEMATICS

1 Geometry

1.1 Line

• Equation

y = mx + b.

1.2 Square

• Perimeter

4s.

• Area

 s^2 .

1.3 Rectangle

• Perimeter

2w + 2l.

• Area

 $l \cdot w$.

1.4 Triangle

Types:

- Right (one angles measures 90°)
- acute (no angles measure more than $90^\circ)$
- obtuse (one of the angles measures more than 90°)
- isosceles (Two sides have the same length)
- equilateral (all 3 sides have the same length)
- $\bullet\,$ scalene (no sides are the same length)
- Perimeter

a+b+c.

• Area

 $\frac{1}{2}bh$

Warner 8 MATHEMATICS

1.5 Circle

• Diameter

2r.

• Circumference

 $2\pi r$ or πd .

• Area

 πr^2 .

• Area of a sector

$$\frac{1}{2}\pi r\theta$$
.

• Equation of a circle whos center is not the origin (0,0)

 $(x-h)^2 + (y-k)^2 = r^2$, Where (h,k) is the center of the circle and r is the radius.

• equation of a circle whos center is at the origin (0,0)

$$x^2 + y^2 = r^2.$$

- equation of a semicirle whos center is not at the origin
 - say we have

We can see we have a radius of 2, and a center at (4,0), our equation for the full circle would be:

$$(x-4)^2 + (y-0)^2 = 2^2.$$

Solving for y we get:

$$(y-0)^2 = 4 - (x-4)^2$$
$$y = \pm \sqrt{4 - (x-4)^2}.$$

And since we only have the bottom portion of this circle we only use the negative sign of the \pm

1.6 Trapezoid

• Perimeter

$$a+b+c+d$$
.

• Area

$$\frac{a+b}{2}h.$$

1.7 Parallelogram

• Perimeter

$$2l + 2w$$
.

• Area

1.8 Cube

• Volume

 s^3 .

• Surface Area

$$6s^2$$
.

1.9 Square Prism

• Volume

$$a^2h$$
.

• Surface Area

$$2a^2 + 4ah.$$

1.10 Rectangular Prism

• Volume

lwh.

• Surface Area

$$2lh + 2wh + 2wl.$$

1.11 Sphere

• Volume

$$\frac{4}{3}\pi r^3.$$

• Surface Area

$$4\pi r^2$$
.

1.12 Cylinder

• Volume

$$\pi r^2 h$$
.

• Surface Area

$$2\pi rh + 2\pi r^2.$$

1.13 Cone

• Volume

$$\frac{1}{3}\pi r^2 h.$$

• Surface Area

$$\pi r(r + \sqrt{h^2 + r^2}).$$

1.14 Square Pyramid

• Volume

$$a^2 \frac{h}{3}$$
.

• Surface Area

$$a^2 + 2a\sqrt{\frac{a^2}{4} + h^2}.$$

1.15 Rectangular Pyramid

• Volume

$$\frac{1}{3}lwh.$$

• Surface Area

$$lw + l\sqrt{\left(\frac{w}{2}\right)^2 + h^2} + w\sqrt{\left(\frac{l}{2}\right)^2 + h^2}.$$

2 Pre-Algebra

2.1 Types of numbers

• Integer

2.

• Rational

 $\frac{1}{2}$.

• Irrational

 $\sqrt{2}$

• Prime Number

7.

• Complex

3 + 2i.

2.2 Slope

We can calculate slope with:

$$\frac{y_2-y_1}{x_2-x_1}.$$

And we can write the equation of the line with point-slope form:

$$y - y_1 = m(x - x_1)$$
, Where m denotes slope.

Additionally, if we know the y-intercept b, we can write the equation with slope intercept form:

$$y = mx + b$$
.

Warner 12 MATHEMATICS

2.3 Solving Inequalites

- If you divide by a negative, flip the inequality
- Quadratic Inequalites

$$x^{2} + 2x - 8 \geqslant 0$$
$$(x - 2)(x + 4) \ge 0$$
$$x = 2 \quad x = -4.$$

$$-5: (-)(-) \to + \ge 0$$

$$-3: (-)(+) \to + \le 0$$

$$-5: (+)(+) \to + \ge 0$$

Therefore:

$$(-\infty, -4) \cup (2, \infty)$$
.

2.4 Solving absolute value equations

Definition 1. An absolute value equation is an equation that involves the absolute value of a variable. The absolute value of a number is its distance from zero on a number line, and it is always non-negative (or zero itself). The absolute value of a real number x is denoted as |x|.

Consider the equation

$$|3x + 4| = 9.$$

- Solve for x with positive 9
- Solve for x with negative 9

So:

$$3x + 4 = 9$$
$$x = \frac{5}{3}$$

Warner 13 MATHEMATICS

And:

$$3x + 4 = -9$$
$$x = -\frac{13}{3}.$$

Consider the equation.

$$4|2x+3| - 8 = 36.$$

- Get the absolute value alone
- solve for positive right side
- $\bullet\;$ solve for negative right side

So:

$$|2x+3| = 11$$

$$2x+3 = 11$$

$$x = 4$$

$$And: 2x+3 = -11$$

$$x = -7$$

Warner 14 MATHEMATICS

2.5 Solving Systems of Equations.

Definition 2. Systems of equations refer to a set of two or more equations that are considered together as a unit. These equations involve multiple variables and are interconnected, meaning the solution to the system must satisfy all the equations simultaneously. The variables in the system are typically related to each other in some way.

The two methods we will look at for solving these systems are:

- Elimination (Additon)
- Substitution

Consider the system:

$$2x + 3y = 8$$
$$5x - 3y = -1.$$

To solve this system using **Elimination**, we will add the two equations together, so:

$$7x = 7$$
$$x = 1.$$

Now that we have the value of x, we can pick one of the equations to plug it into to solve for y.

$$2(1) + 3y = 8$$
$$2 + 3y = 8$$
$$3y = 6$$
$$y = 2.$$

Consider the system:

$$2x + 5y = 19$$
$$x - 2y = -4.$$

We can see that if we use the **elimination** method, none of our variable terms will cancel. In order to make it so our x's will cancel with each other, we must multiply the equation by -2.

$$-2x + 4y = 8.$$

From here we can then use the elimination method.

Warner 15 MATHEMATICS

Now we will look at using the **Substitution method**, say we have the system:

$$y = 5 - 2x$$
$$4x + 3y = 13.$$

Using the Substitution method, we can plug our first equation into the y term in our second equation.

$$4x + 3(5 - 2x) = 13$$

$$4x + 15 - 6x = 13$$

$$-2x + 15 = 13$$

$$-2x = -2$$

$$x = 1.$$

Then we can plug x into our first equation.

$$y = 5 - 2(1)$$
$$y = 3.$$

Consider:

$$y = 3x + 2$$
$$y = 7x - 6.$$

With this system, we can replace the y in our second equation, with the first equation. So:

$$3x + 2 = 7x - 6$$
$$4x = 8$$
$$x = 2.$$

Then we can plug x into any of our equations to get y

$$y = 3(2) + 2$$
$$y = 8.$$

Warner 16 MATHEMATICS

3 Algebra

3.1 Theorems of algebra

3.2 Difference Quotient

Theorem 3.1

$$\frac{f(x+h) - f(x)}{h}, \ h \neq 0.$$

The difference quotient is a mathematical concept used to calculate the average rate of change of a function over a given interval. Specifically, it is defined as the change in the function's output value divided by the change in the function's input value over the interval.

3.3 Distance Formula

Theorem 3.2 Distance Formula

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

The distance formula is a mathematical formula used to calculate the distance between two points in a coordinate plane.

The distance formula can be used to calculate the distance between any two points in a two-dimensional coordinate plane, regardless of whether the points are on a straight line or a curved line. For example, if you have two points on a circle, you can use the distance formula to calculate the length of the arc between the two points. Similarly, if you have two points on a parabola, you can use the distance formula to calculate the distance between them.

3.4 Average Rate of Change

Theorem 3.3 Average Rate of Change

$$m = \frac{f(b) - f(a)}{b - a}.$$

The average rate of change is a mathematical concept used to measure the average rate at which a quantity changes over a given time interval. In calculus, the average rate of change is typically used to describe the average slope of a curve over a specific interval.

Warner 17 MATHEMATICS

3.5 Midpoint

Theorem 3.4 Midpoint

$$(x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).$$

The midpoint formula can be used to find the coordinates of the center point of a line segment, which is the point that divides the line segment into two equal parts. This formula can be used in a variety of situations, such as when determining the center of a geometric shape, finding the average of two values, or calculating the half-way point between two locations.

The midpoint formula is also a useful tool in geometry for finding the center of a circle or the midpoint of an arc. By using the midpoint formula to calculate the center point of a circle or arc, it is possible to find its radius and diameter, as well as its position relative to other objects in the coordinate plane.

3.6 Quadratic Formula

Theorem 3.5 Quadratic Formula

$$\frac{-b \pm \sqrt{(b)^2 - 4(a)(c)}}{2(a)}.$$

3.7 Sum / Difference of squares

Theorem 3.6 Difference of Squares

Differnce of Squares:

$$(a^2 - b^2) = (a - b)(a + b).$$

Also:

$$(a^2 + b^2) = (a^2 + 2ab + b^2).$$

3.8 Sum / Differnce of Cubes:

Theorem 3.7 Sum / Difference of Cubes:

Difference of Cubes:

$$(a^3 - b^3) = (a - b)(a^2 + ab + b^2).$$

Sum of Cubes:

$$(a^3 + b^3) = (a+b)(a^2 - ab + b^2).$$

Warner 18 MATHEMATICS

3.9 Types of Functions

• Linear (Graph is straight line) (Standard form, Point slope form, slope intercept form)

Standard Form:

Ax + By = C Where A and B are integers.

• Quadratic

$$f(x) = x^2.$$

• Cubic

$$f(x) = x^3.$$

- Polynomial (More than 2 terms)
- Monomial (One term)
- Binomial (2 Terms)
- Trinomial (3 Terms)
- Logarithmic

$$\log_a x = y \longrightarrow a^y = x$$
 Where $a > 0, \ a \neq 1, \ y \neq 0.$

$$\ln x = y \longrightarrow x = e^y$$
.

- Rational
- Radical

3.10 Intercepts

- X-Int (Set function equal to zero and solve for x)
- Y-Int (plug zero in for x and solve)

3.11 Symmetry

• Even (Symmetric with respect to y axis)

$$f(-x) = f(x).$$

• Odd (Symmetric with respect to origin)

$$f(-x) = -f(x).$$

Warner 19 MATHEMATICS

Consider the function:

$$f(x) = x^3 - 8x.$$

If we compute f(-x), we get:

$$f(-x) = -x^3 + 8x.$$

And we can show that this is the same as -f(x):

$$-f(x) = -(x^3 - 8x) - x^3 + 8x.$$

Therefore the function $f(x) = x^3 - 8x$

Note:-

If a function has a constant term, the function cannot be odd.

• Symmetric with respect to x-axis

$$f(x,y) = f(x,-y).$$

3.12 Parallel or Perpendicular

- Parallel \rightarrow Two lines are parallel if their slopes are the same
- Perpendicular → Two lines are Perpendicular if the product of their slopes is -1 which means the slope of one line is the negative reciprocal of the slope of the other line.

3.13 Lines (Slope and Equation)

Given a line, we can find slope by:

$$\frac{\Delta y \to Rise}{\Delta x \to Run}.$$

And we can find the equation of the line with point slope form:

$$y - y_1 = x(x - x_1).$$

A line has a standard form of

Ax + By = C, Where A, B and C are all integers.

3.14 Circles

- Radius r
- Center (h,k)
- Equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$
.

Warner 20 MATHEMATICS

3.15 Determine if an equation is a function of x

- each input has precisely one output
- Vertical Line test
- \pm disqualifes (will not pass the vertical line test)

3.16 Function Notation

- 1. (f+g)(x) = f(x) + g(x)
- 2. (f-g)(x) = f(x) g(x)
- 3. $(f \cdot g)(x) = f(x) \cdot g(x)$
- 4. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, assuming $g(x) \neq 0$

3.17 Domain and Range of Functions

Domain:

• Polynomial

 $D:\mathbb{R}.$

- Rational (Set denominator = 0 and solve)
- Radical (Set whats inside the radical ≥ 0) (If you need to factor first and get multiple x values, make number line and test points with the factored function, domain is where it is positive)
- Logarithmic (Set inside logarithm > 0.) (base domain is $(0, \infty)$)

Note:-

If the radical is in the denominator of a radical function, set what inside radical > 0

Range:

- Look for transformations
- For a rational function, we can find the range of f(x) by finding the domain of $f^{-1}(x)$.

Warner 21 MATHEMATICS

3.18 Finding slope of secant line

We can find the slope of the secant line by utilizing the difference quotient

3.19 Piecewise Defined Functions

A function is called a Piecewise Defined Function if it defined by two or more functions on its domain

Ex:

$$f(x) = \begin{cases} -3x & \text{if } x < -1\\ 0 & \text{if } x = -1\\ 2x^2 + 1 & \text{if } x > -1 \end{cases}$$
 (1)

3.20 Transformations

- -f(x) (reflected over x-axis)
- f(-x) (reflected over y axis)
- -f(-x) (reflected over origin)
- 2f(x) (vert stretch)
- $\frac{1}{2}f(x)$ (vert shrink)
- f(2x) (Horizontal shrink)
- $f(\frac{1}{2})x$ (Hor stretch)
- f(x-h) (Horizontal shift)
- f(x) + k (Vertical shift)

Transformations of a quadratic function

$$y = a(x - h) + k.$$

a is vertical stretch, h is horizontal shift, k is vertical shift

Warner 22 MATHEMATICS

3.21 Common Functions

Warner 23 MATHEMATICS

Warner 24 MATHEMATICS

3.22 Linear Functions

A linear function is in the form:

$$f(x) = mx + b.$$

The graph of a linear function is a line with slope m and a y-intercept b. Its domain is the set of all real numbers.

A linear function is increasing if its slope is positive, and decreasing if its slope is negative

Note:-

We can tell if a function is linear if Δx and Δy is a constant value throughout all input / outputs

3.23 Quadratic Functions and their zeros

A zero of a function f(x) is a number r, such that f(r) = 0

- Basic factoring, simply set the function equal to 0 and solve.
- Box method (when a > 1 and not common factors)

If:

$$5x^2 - 18x + 9$$
.

Left as an exercise to the reader.

• Factor by grouping (4 terms)

If:

$$5v^3 - 2v^2 + 25v - 10.$$

Then:

$$v^{2}(5v-2) + 5(5v-2)$$

= $(5v-2)(v^{2}+5)$.

- Completing the square
 - Say we have the equation:

$$2x^2 + 7x - 4 = 0.$$

- a.) Isolate variables
- b.) Get a's coefficient 1
- c.) $\left(\frac{b}{2}\right)^{\frac{1}{2}}$
- d.) Add answer from c to both sides
- e.) If you factored out a constant, you also need to multiply the right side by that constant

$$2\left(x^{2} + \frac{7}{2}\right) = 4$$
$$\left(\frac{\frac{7}{2}}{2}\right)^{2} = \frac{49}{16}.$$

Warner 25 MATHEMATICS

So:

$$2\left(x^2 + \frac{7}{2} + \frac{49}{16}\right) = 4 + \frac{49}{16}(2)$$
$$2\left(x + \frac{7}{4}\right)^2 = \frac{81}{8}$$
$$\left(x + \frac{7}{4}\right)^2 = \frac{81}{16}$$
$$x + \frac{7}{4} = \pm\sqrt{\frac{81}{16}}$$
$$x + \frac{7}{4} = \pm\frac{9}{4}$$
$$x = -4, \frac{1}{2}.$$

3.24 Finding the zeros of a quadratic function with u Substitution

Say we have the equation:

$$(x-3)^2 + 5(x-3) - 6 = 0.$$

If we let u = x - 3, then we have:

$$u^{2} + 5u - 6 = 0$$
$$(u+6)(u-1) = 0$$
$$So \ u = -6, 1.$$

Now we substitute back in for u:

$$x-3 = -6$$
 and $x-3 = 1$
 $x = -3, 4$.

3.25 Finding Where Two Functions Intersect

If given f(x) and g(x), What we do is set the functions equal to each other, and then solve such that the equation is in standard form.

With this new equation, if we solve for the zeros, these are the x values in which the two functions intersect. Then we plug this zero into g(x) to get the corresponding y value.

Example 3.1

Consider:

$$f(x) = x + 6$$
 $g(x) = -x$.

Warner 26 MATHEMATICS

So:

$$x + 6 = -x$$
$$2x + 6 = 0$$
$$x = -3.$$

Then we plug -3 into g(x) to get the y value.

$$g(-3) = 3.$$

Therefore our point of intersection is at (-3,3)

For systems of equations, what we do is solve the system with the elimination method to get x and y.

Example 3.2

Consider:

$$x - 4y = -8$$
$$2x + 3y = -5.$$

So:

$$-2(x - 4y) = -2(8)$$
$$-2x + 8y = 16.$$

Subtracting this equation from 2x + 3y = -5 we get:

$$y = 1$$
.

Now if we plug y = 1 to one of our original equations we get that:

$$x = -4$$
.

Therefore our point of intersection is at (-4,1)

3.26 Quadratic Functions and their properties

A quadratic function is a function of the form $f(x) = ax^2 + bx + c$ where a, b, and c are real numbers and $a \neq 0$. The domain of a quadratic function consists of all real numbers.

A quadratic equation is an equation of the form $ax^2 + bx + c$ where a, b, and c are real numbers and $a \neq 0$

The graph of the quadratic function is called the **parabola**. More on the parabola later.

The quadratic function can be written in the form $f(x) = a(x-h)^2 + k$ (standard form) either by completing the square or by using the formulas:

$$h = -\frac{b}{2a}$$
 and $k = f(h)$.

Warner 27 MATHEMATICS

The axis of symmetry of the parabola is x = h. This is the line that if we fold the parabola, it will be symmetric The vertex of the parabola is located at the point (h, k). It represents the highest point (called the maximum point) of a parabola if the parabola opens down (recall: a < 0). It represents the lowest point (called the minimum point) of a parabola if the parabola opens up (recall: a > 0).

Example 3.3

$$f(x) = 3x^2 + 6.$$

If:

- Vertex = (h, k)
- $h = \frac{-b}{2a}$
- A.O.S: x = h

Then:

$$h = \frac{0}{2(6)} = 0$$
$$k = f(0) = 6.$$

Therefore:

$$AOS: x = 0$$

Vertex: (0,6) Shifted up 6 units from (0,0).

3.27 Solving Quadratic Inequalites

Say we have the equation:

$$x^{2} - x < 12$$
$$x^{2} - x - 12 < 0$$
$$(x - 4)(x + 3) < 0.$$

So we have x-ints at (4,0) and (-3,0), from this we can deduce that our porabola is below the x-axis from (-3,4)

3.28 Polynomial Functions and Their Models

A polynomial function is a function in the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Where a_n, a_{n-1}, a_1, a_0 are real numbers and n is a nonnegative integer.

Warner 28 MATHEMATICS

Note:-

The degree of a polynomial is the highest degree of its terms

Recall: the domain of a polynomial is \mathbb{R}

If a function has a negative exponent then it is **not** a polynomial.

If the degree of a function is not an integer, than it is **not** a polynomial

If the multiplicity of the zero is even, the graph **touches** the x-axis at that x-intercept, if the multiplicity of the zero is odd, the graph **crosses** the x-axis at that x-intercept

Find the max number of turning points by computing: Degree - 1

Example 3.4

Label the terms of the polynomial function

$$f(x) = 2x^{5} - x^{4} + 3x^{2} - 7$$

$$a_{5} = 2$$

$$a_{4} = -1$$

$$a_{3} = 0$$

$$a_{2} = 3$$

$$a_{1} = 0$$

$$a_{0} = -7$$

Example 3.5

For the polynomial function:

- Find the degree of the polynomial
- List the real zeros and its multiplicity
- Find the x and y intercepts
- Determine whether the graph crosses or touches the x-axis at each x-intercept
- Determine the maximum number of turning points on the graph
- Determine the end behavior of the function
- Sketch a graph of the polynomial

$$f(x) = \left(x - \frac{1}{3}\right)^2 \left(x - 1\right)^3.$$

- Degree: 5 (Add the exponents)
- Zeros: $x = \frac{1}{3}, 1$
- multiplicity: 2 and 3 (Look at exponents)
- x-intercepts: $\left(\frac{1}{3},0\right)$ and (1,0)

Warner 29 MATHEMATICS

- y-intercepts: $f(0) = -\frac{1}{9}$, so $(0, -\frac{1}{9})$
- Touches: $(\frac{1}{3}, 0)$. Crosses: (1,0)
- Max turning points: 5-1=4
- End behavior:
 - Since the power function is of an odd degree, the graph will resemble that of x^3 , so we can determine

$$\lim_{x \to \infty} f(x) = \infty$$
$$\lim_{x \to -\infty} f(x) = -\infty.$$

3.29 Power Functions

A power function of degree n, is a monomial of the form $f(x) = ax^n$, where a is a real number, $a \neq 0$ and n is a positive integer

If n is **even**, then the following are true.

- The graph of the function is symmetric over the y-axis (The function is even)
- Domain: \mathbb{R} , range: $[0, \infty]$, if a is positive and $\mathbb{R} = [-\infty, 0]$, if a is negative
- The graph resembles the graph of x^2

If n is **odd**, then the following are true

- The graph of the function is symmetric over the origin
- Domain: \mathbb{R} , Range: \mathbb{R}
- The graph resembles the graph of x^3

3.30 Properties of Rational Functions

A Rational Function is a function of the form $\frac{g(x)}{h(x)}$, where g(x) and h(x) are polynomials and $h(x) \neq 0$

The domain of a rational function is \mathbb{R} , except those that make the denominator equal 0

Asymptotes:

- Vertical Asymptotes can be found by setting the denominator equal to zero and solving for x.
- Horizontal Asymptotes: If we let the highest degree of the numerator equal n, and the highest degree of the denominator equal k, then:
 - 1. If n < k, then the equation of the horizontal asymptote is y = 0
 - 2. If n = k, then we take the ratio of the leading coefficients
 - 3. If n > k, then the graph has no horizontal asymptote, instead the:

$$\lim_{x \to \infty} \inf_{or -\infty} f(x) = \infty \text{ or } -\infty.$$

• Oblique (Slant) Asymptotes will occur if the degree of the numerator is precisely one higher than the degree of the denominator, to find the oblique asymptote, we must do long division

Warner 30 MATHEMATICS

3.31 Sketching the graph of a rational function

To sketch the graph of a rational function, we must do the following:

- Factor the rational function and find the domain.
- Find the intercepts
- Find the asymptotes
- If there is a horizontal or oblique asymptote, determine if it intesects the graph. To do this, set unfactored function equal to the value of the asymptote

3.32 Polynomial and Rational Inequalties

Note: ab < 0 is not equivalent to a < 0 or b < 0

Procedure:

- 1. Get 0 on one side of the inequality and factor
- 2. Make a number line with the intervals from step 1 and test points between these intervals
 - If the test points lead to a true statement, that that interval is part of the solution
 - If the test points lead to a false statement, that that interval is not part of the solution
- 3. The solution to the inequality is the union of all the true intervals

For rational inequalities, the numbers which make the expression undefined are not part of the solution.

3.33 Synthetic Division

Consider the polynomial:

$$f(x) = \frac{3x^4 - 2x^2 + 5x^2 + 8}{x - 2}.$$

To preform **synthetic division**, we need to write out the coefficients like so. Note: because we dont have a $a_n x$ term, we will add a zero in its place. Also, our divisor is 2 because our factor we are dividing by is x-2

From here, we want to drop down that first number, 3. Then what we do is multiply our divisor by that 3. Then take what you get from multipling and add to the term to the right of 3. Repaet these steps.

So

Which means our new polynomial is:

$$f(x) = 3x^3 + 4x^2 + 13x + 26 + \frac{60}{x - 2}.$$

Note that the last term is the **remainder** over the **divisor**

Warner 31 MATHEMATICS

3.34 The real zeros of a polynomial function

If f(x) and p(x) are polynomials and if $p(x) \neq 0$, then there exist unique polynomials q(x) and r(x) such that $f(x) = p(x) \cdot q(x) + r(x)$ where either r(x) = 0 or the degree of r(x) is less than the degree of p(x). The polynomial q(x) is the quotient, and r(x) is the remainder in the division of f(x) by p(x).

Remainder Theorem.

If a polynomial f(x) is divided by x - c, then the remainder is f(c).

Factor Theorem.

A polynomial f(x) has a factor x-c if and only if f(c)=0 (i.e. remainder = 0). That is:

- If f(c) = 0, then x c is a factor of f(x).
- If x c is a factor of f(x), then f(c) = 0.

Example 3.6 (Use the remainder theorem to find the remainder when f(x) is divided by x - c. Then use the factor theorem to determine whether x - c is a factor of f(x))

$$f(x) = x^4 + 3x^2 - 12, \quad x + 2 \ (divisor).$$

So instead of long dividing with x + 2, the remainder theorem states that our remainder will be f(c), therefore:

Remainder =
$$f(-2) = (-2)^4 + (-2)^3 - 12$$

= 16.

Since this number is not zero, 16 is not a factor (by the factor theorem)

Theorem.

The maximum number of zeros for a polynomial equation is less than or equal to the degree of the polynomial.

Definition.

- The Constant Term is the term that does not contain x
- A Variation in sign in f(x) is when two consecutive coefficients have opposite signs.

Warner 32 MATHEMATICS

Descarte's rule of signs.

Let f(x) be a polynomial with real coefficients and a nonzero constant term.

- 1. The number of positive real zeros of f(x) either is equal to the number of variations in sign of f(x) or is less than that number by an even integer.
- 2. The number of negative real zeros of f(x) either is equal to the number of variations in sign of f(-x) or is less than that number by an even integer.

Example 3.7 (Descarte's Rule of signs)

$$f(x) = 3x^3 - 4x^2 + 3x + 7$$
$$f(-x) = -3x^3 - 4x^2 - 3x + 7.$$

• Degree: 3

• Positive Solutions: 2 or 0

• Negative Solutions: 1

Rational Zeros Theorem.

If the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ has integer coefficients and if p/q is a rational zero of f(x) such that p and q have no common prime factor, then

- 1. the numerator p of the zero is a factor of the constant term a_0
- 2. the denominator q of the zero is a factor of the leading coefficient a_n .

Warner 33 MATHEMATICS

Steps for finding the real zeros of a polynomial function

- 1. Use the degree of the polynomial to determine the maximum number of real zeros. For example, a polynomial of degree n can have at most n real zeros.
- 2. Use Descarte's Rule of Signs to determine the possible number of positive and negative zeros. Count the number of sign changes in the coefficients of f(x) and f(-x). The number of positive real zeros is either equal to this number or less than it by an even integer. The number of negative real zeros is either equal to this number or less than it by an even integer.
- 3. Use the Rational Zero Theorem to identify rational numbers that potentially could be zeros. The possible rational zeros are of the form $\pm \frac{p}{q}$, where p is a factor of the constant term and q is a factor of the leading coefficient.
- 4. Use Factor Theorem, synthetic division, or long division to test each potential rational zero. If a potential zero is indeed a zero, it means that the polynomial can be factored by (x potential zero).
- 5. Each time that a zero is found, repeat step 4 on the depressed equation. The "depressed equation" is the polynomial after dividing by a factor of (x-found zero). This reduces the degree of the polynomial and simplifies the search for additional zeros.
- 6. Factor the polynomial if possible. Once all real zeros have been found, you can use the factorization to sketch the graph of the polynomial.

Example 3.8

Use the rational zeros theorem to find all real zeros of the polynomial. Use the zeros to factor f over the real numbers

$$f(x) = 3x^3 + 6x^2 - 15x - 30$$
$$f(x) = 3(x^3 + 2x^2 - 5x - 10)$$
$$f(-x) = -3x^3 + 6x + 15x - 30.$$

So:

• Degree: 3

• Max real zeros: 3

• By Decarte's rule of signs:

- Positive real zeros: at least 1

- Negative real zeros: either 2 or 0

• By the rational zeros theorem:

$$\pm \Big\{1, 2, 5, 10\Big\}.$$

Using synthetic division (with factored f(x)), we can find that

So we see that our remainder is 0, which means -2 is found to be a real zero. And we have a new polynomial that has been depressed (degree lowered by 1). So we can use the depressed polynomial to find the remaining zeros.

Warner 34 MATHEMATICS

So our depressed polynomial is:

$$x^2 - 5$$
.

And we can set this equal to zero to find the remaining zeros.

$$x^2 - 5 = 0$$

$$x^{2} = 5$$

$$x = \pm \sqrt{5}$$
.

Therefore our 3 zeros are.

$$\boxed{\sqrt{5}, -\sqrt{5}, -2}.$$

Warner 35 MATHEMATICS

3.35 Complex Zeros and the Fundamental theorem of algebra

Fundamental Theorem of Algebra.

If a polynomial f(x) has positive degrees and complex coefficients, then f(x) has at least one complex zero.

Complete Factorization Theorem for Polynomials

If f(x) is a polynomial of degree n > 0, then there exist n complex numbers c_1, c_2, \ldots, c_n such that $f(x) = a(x - c_1)(x - c_2) \ldots (x - c_n)$ where a is the leading coefficient of f(x). Each number c_k is a zero of f(x).

Conjugate Pairs Theorem

Let f(x) be a polynomial whose coefficients are real numbers. If r = a + bi is a zero of f, then the conjugate r = a - bi is also a zero of f.

Note:-

 $i = \sqrt{-1} \text{ and } i^2 = -1$

Example 3.9 (Find f(x) given the zeros)

$$-3$$
, $1-7i$ degree 3.

By the conjugate pairs theorem, we know that 1 + 7i is also a zero.

Now:

$$(x+3)(x-(1-7i))(x-(1+7i))$$
$$(x+3)(x-1+7i)(x-1-7i).$$

And by difference of squares, which states:

$$(a+b)(a-b)$$
$$= (a^2 - b^2).$$

We have:

$$(x+3)((x-1)^2 - 49i^2)$$

$$= (x+3)(x^2 - 2x + 1 + 49)$$

$$= (x+3)(x^2 - 2x + 50)$$

$$= x^3 + x^2 + 44x + 150.$$

Warner 36 MATHEMATICS

Example 3.10

Use the given zero to find the remaining zeros of the function

$$f(x) = x^3 + 3x^2 + 25x + 75$$
, zero: $-5i$.

So by the conjugate pairs theorem, we know that 5i is a also a zero. Furthermore, because this is a degree 3 polynomial, we know we are only missing **one** zero.

Note:-

We can use synthetic division to divide our polynomial by the know zeros, but long division will be easier.

We will write our polynomial as:

$$f(x) = (x - 5i)(x + 5i)(x - c)$$
$$f(x) = (x^2 - 25i^2)(x - c).$$

Where (x-c) is the zero we are trying to find. To solve (x-c), we can divide our function f(x) by the two known factors.

So if we compute

$$x^{2} + 0x + 25\overline{\smash)x^{3} + 3x^{2} + 25x + 75}.$$

We get (x+3), with no remainder.

Now we will set the factor (x + 3) = 0 and solve for the missing zero

$$x + 3 = 0$$
$$x = -3.$$

So our solution set is:

$$s = \left\{ -3, \pm 5i \right\}$$
$$f(x) = (x - 3)(x + 5i)(x - 5i).$$

Warner 37 MATHEMATICS

3.36 Composite Functions

Definition 3. Given two functions f and g, the composite function, denoted by $f \circ g$ (read as "f composed with g"), is defined by $f \circ g = f(g(x))$.

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f.

Finding domain of composite function.

Say we have the functions:

$$f(x) = \frac{4}{x+2}, \quad g(x) = \frac{1}{x}.$$

We first have to find $(f \circ g)(x)$, and then we can determine the domain.

So:

$$(f \circ g)(x) = \frac{4}{\frac{1}{x} + 2}$$
$$= \frac{4x}{1 + 2x}.$$

Now we can set the denominator equal to zero and solve.

$$1 + 2x = 0$$
$$2x = -1$$
$$x = -\frac{1}{2}.$$

So for our composite function:

$$x \neq 0, \quad x \neq -\frac{1}{2}.$$

Note:-

Note that the domain restrictions for g(x) transfer over to the composite function, this is **not** true for f(x)

So in interval notation we have:

$$\bigg(-\infty,-\frac{1}{2}\bigg)\cup\bigg(-\frac{1}{2},0\bigg)\cup\bigg(0,\infty\bigg).$$

Warner 38 MATHEMATICS

3.37 One-to-One Functions

Definition 4. A function f with domain \mathcal{D} and range \mathcal{R} is a one-to-one function if either of the following equivalent conditions is satisfied:

- 1. Whenever $a \neq b$ in \mathcal{D} , then $f(a) \neq f(b)$ in \mathcal{R} .
- 2. Whenever f(a) = f(b) in \mathcal{R} , then a = b in \mathcal{D} .

Example 3.11 (Determine whether the function is one-to-one)

$$f(x) = 2x^3 - 4.$$

So:

$$f(a) = f(b)$$

$$2a^3 - 4 = 2b^3 - 4$$

$$2a^3 = 2b^3$$

$$a^3 = b^3$$

$$\sqrt[3]{a^3} = \sqrt[3]{b^3}$$

$$a = b$$

Thus, a = b so the function is **one-to-one**

Example 3.12 (Show that the function is one-to-one)

$$f(x) = \frac{4x}{x - 2}.$$

So:

$$f(a) = f(b)$$

$$\frac{4a}{a-2} = \frac{4b}{b-2}$$

$$4b(a-2) = 4a(b-2)$$

$$4ab - 8b = 4ab - 8a$$

$$-8b = -8a$$

$$b = a$$

Thus, this function is one-to-one

Horizontal Line Test.

A function f is one-to-one if and only if every horizontal line intersects the graph of f in at most one point.

Warner 39 MATHEMATICS

3.38 Inverse Functions

Steps for finding inverse functions

- 1. Verify that f(x) is one-to-one on its domain
- 2. let y = f(x)
- 3. swap x and y
- 4. solve for y
- 5. write as f^{-1}

Theorem.

Let f be a one-to-one function with domain \mathcal{D} and range \mathcal{R} . If g is a function with domain \mathcal{R} and range \mathcal{D} , then g is the inverse function of f if and only if both of the following conditions are true:

- 1. g(f(x)) = x for every x in \mathcal{D} .
- 2. f(g(y)) = y for every y in \mathcal{R} .

Domain of f^{-1} = Range of fRange of f^{-1} = Domain of f

The graph of a function f and the graph of its inverse f^{-1} are symmetric with respect to the line y=x

Example 3.13 (Find the inverse function)

$$f(x) = \frac{4x}{x - 2}.$$

Let's first verify that this function is one-to-one

So:

$$f(a) = f(b)$$

$$\frac{4a}{a-2} = \frac{4b}{b-2}$$

$$4b(a-2) = 4a(b-2)$$

$$4ab - 8b = 4ab - 8a$$

$$-8b = -8a$$

$$b = a$$

Thus, this function is one-to-one

Warner 40 MATHEMATICS

Now let's let y = f(x), interchange x and y and then solve for y.

$$x = \frac{4y}{y-2}$$

$$x(y-2) = 4y$$

$$xy - 2x = 4y$$

$$xy - 4y = 2x$$

$$y(x-4) = 2x$$

$$y = \frac{2x}{x-4}$$

$$f^{-1} = \frac{2x}{x-4}$$

Warner 41 MATHEMATICS

3.39 Exponential Functions

Definition 5. Exponential function f with base a is written as a^x

• $\mathcal{D}: \mathbb{R}$

• $\mathcal{R}:(0,\infty)$

Figures for exponential functions.

 a^x key points

$$(0,1)$$

$$(1,a)$$

$$\left(-1,\frac{1}{a}\right).$$

And a horizontal asymptote at y = 0

Theorem.

The exponential function f given by $f(x) = a^x$ for 0 < a < 1 or a > 1 is one-to-one. Thus, the following conditions are satisfied for real numbers x_1 and x_2 .

1. If $x_1 \neq x_2$, then $a^{x_1} \neq a^{x_2}$.

2. If $a^{x_1} = a^{x_2}$, then $x_1 = x_2$.

Warner 42 MATHEMATICS

Laws of exponents

• Product of Powers

$$x^n \cdot x^m = x^{n+m}.$$

• Quotient of Powers

$$\frac{x^n}{x^m} = x^{n-m}.$$

• Power of a Power

$$(a^n)^m = a^{n \cdot m}.$$

• Product of a Power

$$(x \cdot y)^n = x^n \cdot y^n.$$

• Product of a Quotient

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}.$$

• Negative powers

$$x^{-n} = \frac{1}{x^n}.$$

• Power of 0

$$a^0 = 1.$$

• Power to a fraction Property

$$a^{\frac{m}{n}} = (\sqrt[n]{a})^m.$$

Example 3.14

$$9^{2x} \cdot 27^{x^2} = 3^{-1}$$
$$(3^2)^{2x} \cdot (3^3)^{x^2} = 3^{-1}$$
$$3^{4x} \cdot 3^{3x^2} = 3^{-1}$$
$$3^{4x+3x^2} = 3^{-1}$$
$$4x + 3x^2 = -1$$
$$3x^2 + 4x + 1 = 0$$
$$(x+1)(x+3) = 0$$
$$x = -3, -1.$$

Warner 43 MATHEMATICS

3.40 Natural Exponential Function

Definition 6. If n is a positive integer, then:

$$\left(1+\frac{1}{n}\right)^n\to e\approx 2.71828\ as\ n\to\infty.$$

Thus:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^2 = e.$$

The natural exponential function f is defined by

 $f(x) = e^x$ for every real number x..

Graph of e^x :

 e^x key points

$$(0,1)$$

$$(1,e)$$

$$\left(-1,\frac{1}{e}\right).$$

Horizontal Asymptote at y=0

Warner 44 MATHEMATICS

3.41 Logarithmic Function

Recall:

1. Exponential functions are one-to-one with a horizontal asymptote at y=0.

2. One-to-one functions have inverse functions.

The inverse of an exponential function is the logarithmic function.

Definition 7. Let a be a positive real number different from 1. The logarithm of x with base a is defined by $\log_a x = y$ if and only if $x = a^y$ for every x > 0 and every real number y.

Domain of logarithm: $(0, \infty)$ Range of logarithm: $(-\infty, \infty)$

Common Logarithm: (Logarithm with base 10) $\log x = \log_{10} x$ for every x > 0

Natural Logarithm: (Logarithm base e) $\ln x = \log_e x$ for every x > 0

Graphs of logarithmic functions:

Key Points for $\log_a x$:

$$(1,0)$$
 $(a,1)$

$$\left(\frac{1}{a}, -1\right)$$

V.A at x = 0

Warner 45 MATHEMATICS

Key Points for $\ln x$:

$$(1,0)$$

$$(e,1)$$

$$\left(\frac{1}{e},-1\right).$$

V.A at x = 0

Equivalent forms

$$\log_b y = x \equiv b^x = y.$$

Example 3.15 (Changing to logarithmic form)

$$3^{-4} = \frac{1}{81}$$
$$= \log_3 \frac{1}{81} = -4.$$

Example 3.16 (Changing to exponential form)

$$\log_a \frac{1}{256} = -4$$
$$a^{-4} = \frac{1}{256}.$$

Example 3.17 (Finding the exact value)

$$\log_5 \sqrt[3]{25}$$
.

- 1. Change to exponential form
- 2. Solve for x

$$5^{x} = 25^{\frac{1}{3}}$$

$$5^{x} = (5^{2})^{\frac{1}{3}}$$

$$5^{x} = 5^{\frac{2}{3}}$$

$$x = \frac{2}{3}$$

Warner 46 MATHEMATICS

Finding Domain of Logarithmic Function.

- 1. Set inside of logarithm strictly greater than zero.
- 2. Solve the inequality.
- 3. If you have more than one x, construct a number and test points, only positive outputs are included in the solution. Much like a radical function

Theorem.

The logarithmic function f given by $f(x) = \log_a x$ for $a \neq 1$ and a > 0, x > 0 is one-to-one.

Thus, the following conditions are satisfied for real numbers x_1 and x_2 .

- 1. If $x_1 \neq x_2$, then $\log_a x_1 \neq \log_a x_2$.
- 2. If $\log_a x_1 = \log_a x_2$, then $x_1 = x_2$.

Example 3.18

$$\log_6 36 = 5x + 3$$
$$2 = 5x^3$$
$$x = -\frac{1}{5}.$$

Example 3.19

$$4e^{x+2} = 5$$

$$e^{x+2} = \frac{5}{4}$$

$$\log_e \frac{5}{4} = x + 2$$

$$\ln \frac{5}{4} = x + 2$$

$$x = \ln \frac{5}{4} - 2.$$

Warner 47 MATHEMATICS

Properties of Logarithms.

- 1. $\log_a 1 = 0$
- $2. \log_a a = 1$
- 3. $\log_a(ax) = x$
- $4. \ a^{\log_a x} = x$
- 5. $\log_a(u \cdot w) = \log_a u + \log_a w$
- 6. $\log_a\left(\frac{u}{w}\right) = \log_a u \log_a w$
- 7. $\log_a(u^c) = c \cdot \log_a u$

Change of Base Formula.

If u > 0 and if a and b are positive real numbers different from 1, then $\log_b u = \frac{\log_a u}{\log_a b}$.

Notes

- $\log_a(u+w) \neq \log_a u + \log_a w$
- $\log_a(u-w) \neq \log_a u \log_a w$

Example 3.20

$$2^{\log_2 x}$$

=x.

Example 3.21

 $\log_3 9 \cdot \log_8 9.$

We can use the change of base formula to rewrite this as:

$$\left(\frac{\log_8}{\log_3}\right) \left(\frac{\log_9}{\log_8}\right) = \frac{\log_9}{\log}$$

 $= \log_3 9 \to \text{Reverse}$ change of base formula

=2

Warner 48 MATHEMATICS

Example 3.22

$$e^{\log_{e^2} 9}$$
.

Using change of base formula.

$$e^{\frac{\log_{e} 9}{\log_{e} e^{2}}}$$

$$= e^{\frac{\log_{e} 9}{2}}$$

$$= e^{\frac{1}{2}\log_{e} 9}$$

$$= e^{\log_{e} 9^{\frac{1}{2}}}$$

$$= \sqrt{9}$$

$$= 3$$

Shortcut.

Say we have:

$$\log \frac{ab}{xyz}.$$

To expand this:

$$\log a + \log b - (\log x + \log y + \log z)$$
$$\log a + \log b - \log x - \log y - \log z$$

Example 3.23 (Expand)

$$\begin{split} \log \frac{\sqrt{x}}{y^4 \sqrt[3]{z}} \\ &= \log x^{\frac{1}{2}} - \log y^4 - \log z^{\frac{1}{3}} \\ &= \frac{1}{2} \log x - 4 \log y - \frac{1}{3} \log z. \end{split}$$

Example 3.24 (Write the expressions as a single logarithm)

$$\begin{split} 5\log_a x - \frac{1}{2}\log_a \left(3x - 4\right) - 3\log_a \left(5x + 1\right) \\ &= \log_a x^5 - \log_a \sqrt{3x - 4} - \log_a \left(5x + 1\right)^3 \\ &= \log_a \left(\frac{x^5}{\sqrt{3x - 4}(5x + 1)^3}\right). \end{split}$$

Warner 49 MATHEMATICS

Tip.

$$\log \frac{1}{x}$$
$$= -\log x.$$

Example 3.25 (Solve the equation)

$$3 \log_2 x = 2 \log_2 3$$

= $\log_2 x^3 = \log_2 3^2$.

Since both the logarithms have the same base, we can set $x^3 = 3^2$

$$x^3 = 9$$
$$x = \sqrt[3]{9}.$$

Example 3.26 (Solve the equation)

$$\begin{split} \log_6{(x+5)} + \log_6{x} &= 2 \\ &= \log_6{(x(x+5))} = 2 \\ \log_6{(x^2+5x)} &= 2 \\ 6^2 &= x^2 + 5x \\ 36 &= x^2 + 5x \\ x^2 + 5x - 36 &= 0 \\ (x-9)(x+4) \\ x &= -4, 9. \end{split}$$

Since logarithms can't be negative numbers, only 9 is a solution.

Warner 50 MATHEMATICS

Example 3.27 (Solve the equation)

$$\log (57x) = 2 + \log (x - 2)$$

$$\log (57x) - \log (x - 2) = 2$$

$$\log \left(\frac{57x}{x - 2}\right) = 2$$

$$10^2 = \frac{57x}{x - 2}$$

$$100 = \frac{57x}{x - 2}$$

$$100(x - 2) = 57x$$

$$100x - 200 = 57x$$

$$43x = 200$$

$$x = \frac{200}{43}$$

If we plug $\frac{200}{43}$ into the logs in our original equation, nothing comes out negative therefore this is a **valid** solution

Note:-

After solving logarithmic equations, make sure you plug solutions into original equations logarithms to make sure they are valid solutions, If you get a negative output, it is not a valid solution.

Example 3.28 (Find the exact solution, using common logarithms, and four decimal place solution, when appropriate)

$$e^{x+3} = \pi^x.$$

Since we can't get a common base on both sides, we can take the common log, or natural log of both sides.

$$\ln e^{x+3} = \ln \pi^x$$

$$x+3 = x \cdot \ln \pi$$

$$3 = x \ln \pi - x$$

$$3 = x(\ln \pi - 1)$$

$$x = \frac{3}{\ln \pi - 1}$$

$$\approx 20.7283.$$

Warner 51 MATHEMATICS

Example 3.29

$$4^{2x+3} = 5^{x-2}.$$

Again, take the log of both sides.

$$\log (4^{2x+3}) = \log (5^{x-2})$$
$$(2x+3)\log 4 = (x-2)\log 5$$
$$2x\log 4 + 3\log 4 = x\log 5 - 2\log 5.$$

From here we want to get all x's on the same side.

$$3 \log 4 + 2 \log 5 = 2x \log 4 - x \log 5$$
$$3 \log 4 + 2 \log 5 = x(2 \log 4 - \log 5)$$
$$x = \frac{3 \log 4 + 2 \log 5}{2 \log 4 - \log 5}.$$

Warner 52 MATHEMATICS

$3.42\quad {\bf Conic\ Sections/The\ Parabola}$

Warner 53 MATHEMATICS

The Parabola.

A parabola is the set of all points in a plane equidistant from a fixed point F (the focus) and a fixed line ℓ (the directrix) that lie in the plane.

The axis of the parabola is the line through F that is perpendicular to the directrix.

The vertex of the parabola is the point V on the axis halfway from F to $\ell.$

A Parabola with vertex V(h,k) that opens up or down will have the standard form:

 $(x-h)^2 = 4p(y-k)$

Focus: F(h, k+p)

Directrix: y = k - p

Length of latus rectum (focal width): 4p.

A Parabola with vertex V(h,k) that left or right will have the standard form:

 $(y-k)^2 = 4p(x-h)$

Focus: F(h+p,k)

Directrix: x = h - p

Length of latus rectum (focal width): 4p.

Example 3.30

Sketch the graph and find the focus, vertex and directrix

$$x^2 = -3y.$$

Warner 54 MATHEMATICS

So we know it is opening down, and:

$$4p = -3$$

$$p = -\frac{3}{4}$$

$$Vertex: (0,0)$$

$$Focus: (0, -\frac{3}{4})$$

To get the other two points, since we know that the focal width is 3, we can split that inhalf to get $\frac{3}{2}$, so our graph would look like:

Warner 55 MATHEMATICS

Example 3.31

$$(y+1)^2 = -12(x+2).$$

Since y is the quadratic term, we know that it is either going to open left or right.

$$Vertex: (-2, -1)$$

$$4p = -12$$

$$p = -3.$$

Since p < 0, we know that it is going to open left.

If:

$$F(h+4,k)$$
 Then: $F(-5,-1)$.

If:

$$Directrix: \ x = h - p$$

$$Then: \ directrix \ is \ x = -2 + 3$$

$$x = 1.$$

To find points since 4p = -12 and p = -3, we know our focal width is 12, and that split in half is 6, so:

$$p_1 = (-5, -1 + 6) = (-5, 5)$$

 $p_2 = (-5, -1 - 6) = (-5, -7).$

Warner 56 MATHEMATICS

Example 3.32

$$x = 2y^2 - 6y + 7$$
.

For this equation, to get in standard form $(y-h)^2 = 4p(x-k)$, we must **complete the square.**

$$x - 7 = 2y^{2} - 6y$$

$$x - 7 = 2(y^{2} - 3y)$$

$$x - 7 + \left(2\left(\frac{3}{2}\right)^{2}\right) = 2\left(y^{2} - 3y + \left(\frac{3}{2}\right)^{2}\right)$$

$$x - 7 + \frac{9}{2} = 2\left(y^{2} - 3y + \frac{9}{4}\right)$$

$$x - \frac{5}{2} = 2\left(y - \frac{3}{2}\right)^{2}$$

$$\left(y - \frac{3}{2}\right)^{2} = \frac{1}{2}\left(x - \frac{5}{2}\right).$$

From here we can procede normally.

Example 3.33 (Find the equation of the parabola that satisfies the given conditions)

$$F(-3,-2)$$
, $Directrix: y=1$.

Since the directrix is a value of y, we know that this parabola is either going to open up or down. And from the fact that the directrix is **above** the focus, we can deduce that this parabola will open **Down**.

Since the Vertex is always halfway between the directrix and the focus, we can add the directrix value, 1, to the |y| value of the focus to get the total distance between the two points. Then, we can divide this number in half to get the distance between the two points. Therefore:

$$V\left(-3, -2 + \frac{3}{2}\right)$$
$$= \left(-3, -\frac{1}{2}\right).$$

Next, since the distance between the vertex and the focus is $-\frac{3}{2}$ (negative because it is opening down). We know that $p=-\frac{3}{2}$

So with all of this information, our equation would be:

$$(x+3)^2 = 4p\left(-\frac{3}{2}\right)(y+\frac{1}{2})$$
$$(x+3)^2 = -6\left(x+\frac{1}{2}\right).$$

Warner 57 MATHEMATICS

Example 3.34

V(3,-2), axis of symmetry parallel to the x-axis, and the y-intercept is 1.

So since the A.O.S is a value of x, we know that this parabola will open left or right.

So our equation would be:

$$(y+2)^2 = 4p(x-3).$$

Now we can plug the y-intercept (0,1) into this equation to solve for p:

$$(1+2)^2 = 4p(0-3)$$
$$9 = 4p(-3)$$
$$-3 = 4p.$$

Therefore:

$$(y+2)^2 = -3(x-3).$$

3.43 Ellipses

Definition 8. An ellipse is the set of all points in a plane, the sum of whose distances from two fixed points (the foci) in the plane is a positive constant. The foci are a distance c from the center, where $c^2 = a^2 - b^2$. The major axis of the ellipse is the longest line segment passing through the center and foci. The end points of the major axis are called the vertices of the ellipse. Vertices are a distance of a from the center. The minor axis of the ellipse is the shortest line segment passing through the center. The length of the major axis is 2a, and the length of the minor axis is 2b.

Standard Equation of an ellipse with major axis parallel to the x-axis and with center (h, k) and $c^2 = a^2 - b^2$

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1, \text{ Where } a > b > 0$$

$$Foci: F(h \pm c, k)$$

$$Vertices: (h \pm a, k).$$

Standard Equation of an ellipse with major axis parallel to the y-axis and with center (h, k) and $c^2 = a^2 - b^2$

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1, \text{ Where } a > b > 0$$

$$Foci: F(h, k \pm c)$$

$$Vertices: (h, k \pm a).$$

Warner 58 MATHEMATICS

Figure: Ellipse

Consider each set of colored line segments connecting the two foci of the ellipse. If we take the sum of the line segments within a particular set, such as the green ones, we will find that their total length is equal to the combined length of all other possible line segments that can be drawn on the ellipse.

Note:-

The distance between the foci and the center is $c,\,c^2=a^2-b^2$

The endpoints of the major axis are called the Vertices, there are only 2 vertices on an ellipse

The distance between a vertice and the center is a, total length of the major axis is 2a

The distance between the center and the end of the minor axis is b, total length is 2b

Example 3.35

$$y^{2} + 9x^{2} = 9$$

$$\frac{x^{2}}{1} + \frac{y^{2}}{9} = 1$$

$$\frac{x^{2}}{1^{2}} + \frac{y^{2}}{3^{2}} = 1$$

$$x^{2} + \left(\frac{y}{3}\right)^{2} = 1.$$

Which means we have:

Center:
$$(0,0)$$

 $a=3$
 $b=1$
 $c^2=9-1$
 $c=\sqrt{8}=2\sqrt{2}$.

Warner 59 MATHEMATICS

Since the value under y is greater than the value under x, we know that this ellipse will have a major axis parallel to the x-axis (tall)

Vertices: $(0, \pm 3)$ Foci: $(0, \pm 2\sqrt{2})$.

Example 3.36

$$9x^2 + 4y^2 - 18x + 16y - 11 = 0.$$

So:

$$9x^{2} - 18x + 4y^{2} + 16y = 11$$

$$9(x^{2} - 2x) + 4(y^{2} + 4y) = 11$$

$$9\left(x^{2} - 2x + \left(-\frac{2}{2}\right)^{2}\right) + 4\left(y^{2} + 4y + \left(\frac{4}{2}\right)^{2}\right) = 11 + 9(1) + 4(4)$$

$$9(x^{2} - 2x + 1) + 4(y^{2} + 4y + 4) = 36$$

$$9(x - 1)^{2} + 4(y + 2)^{2} = 36$$

$$= \frac{(x - 1)^{2}}{4} + \frac{(y + 2)^{2}}{9} = 1$$

$$= \frac{(x - 1)^{2}}{2^{2}} + \frac{(y + 2)^{2}}{3^{2}} = 1$$

From here we can procede as normal.

Warner 60 MATHEMATICS

Example 3.37 (find the equation of the ellipse that has its center at the origin and satsifies the given conditions)

 $F(\pm 3,0)$, Minor axis length of 2.

So since the foci lies across the x-axis, we know that this ellipse will have a major axis parallel to the x-axis.

So we would have:

$$Center: (0,0)$$
$$\frac{(x-0)^2}{a^2} + \frac{(y-0)^2}{b^2} = 1.$$

If:

$$F(h \pm c, k)$$
$$Then: c = 3.$$

And since:

$$\begin{aligned} Minor\ Axis := 2 \\ 2b = 2 \\ b = 1. \end{aligned}$$

Then:

$$3^2 = a^2 - 1^2$$
$$9 = a^2 - 1$$
$$a^2 = 10$$

Therefore our equation is:

$$\frac{x^2}{10} + \frac{y^2}{1} = 1$$

Warner 61 MATHEMATICS

3.44 Hyperbola

Definition 9. A hyperbola is the set of all points in a plane, the difference of whose distances from two fixed points (the foci) in the plane is a positive constant. The foci are a distance c from the center, where $c^2 = a^2 + b^2$. The vertices of the hyperbola are the points obtained at the intersection of the graph and the x-axis or y-axis. Vertices are a distance a from the center. The transverse axis of the hyperbola is the line segment passing through the center and the vertices. The length of the transverse axis is 2a. The conjugate axis of the hyperbola is the line segment passing through the center and the points that are not on the hyperbola intersecting the other axis. The length of the conjugate axis is 2b.

Standard Equations of a hyperbola with transversal axis parallel to the x-axis, center (h, k) and $c^2 = a^2 + b^2$.

$$\begin{split} \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} &= 1, \\ Foci: \ F(h \pm c, k) \\ Vertices: \ (h \pm a, k) \\ Asymptotes: \ y - k &= \pm \frac{b}{a}(x-h). \end{split}$$

Standard Equation of a hyperbola with transversal axis parallel to the y-axis and with center (h, k) and $c^2 = a^2 - b^2$

$$\begin{split} \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} &= 1, \\ Foci: \ F(h,k\pm c) \\ Vertices: \ (h,k\pm a) \\ Asymptotes: \ y-k &= \pm \frac{a}{b}(x-h). \end{split}$$

Figure: Hyperbola

Note:-

Whichever constant is under the positive variable is a

Warner 62 MATHEMATICS

Example 3.38 (Consider the equation)

$$y^2 - \frac{x^2}{15} = 1.$$

Since the constant under the positive variable y^2 , is 1, we know a=1 and $b=\sqrt{15}$

$$a = 1$$

$$b = \sqrt{15}$$

$$c^{2} = 1 + 15$$

$$c = 4$$

If:

$$F(h, k \pm c)$$
$$F(0, \pm 4).$$

If:

$$V(h, k \pm a)$$
$$V(0, \pm 1).$$

If:

$$Asymptote: \ y-k=\pm\frac{a}{b}(x-h)$$

$$y=\pm\frac{1}{\sqrt{15}}x.$$

Example 3.39 (Find the equation of the hyperbola that has a center at the origin and satisfies the given conditions.)

Vertices: $V(\pm 4,0)$, passing through (8,2).

Since the vertices x value has the \pm , we know that this hyperbola is going to be opening left and right, and it has a=4

So we have:

$$\frac{x^2}{4^2} - \frac{y^2}{b^2} = 1.$$

Warner 63 MATHEMATICS

And we can plug in our given point to solve for b.

$$\frac{(8)^2}{4^2} - \frac{(2)^2}{b^2} = 1$$

$$4 - \frac{4}{b^2} = 1$$

$$-\frac{4}{b^2} = -3$$

$$\frac{4}{b^2} = 3$$

$$3b^2 = 4$$

$$b^2 = \frac{4}{3}.$$

Therefore:

$$\frac{x^2}{16} - \frac{y^2}{\frac{4}{3}} = 1$$

3.45 Sequences

Definition 10. A sequence is a function whos domain is the set of positive integers A sequence uses curly braces and has subscript notation with the form a_n

Note:-

The left graph is that of a function

The right graph is that of a **sequence**, notice it does not have a smooth curve. It only contains a series of points

Writing the first several terms of a sequence.

If:

$$\{a_n\} = \left\{\frac{n^2}{2n+1}\right\}.$$

Then:

$$a_1 = \frac{1^2}{2(1)+1} = \frac{1}{3}$$

$$a_2 = \frac{2^2}{2(2)+1} = \frac{4}{5}$$

$$a_3 = \frac{3^2}{2(3)+1} = \frac{9}{7}$$

$$a_4 = \frac{4^2}{2(4)+1} = \frac{16}{9}$$

Using Calculator (Texas-Instrument Graphing) to get the terms of a sequence.

1. 2nd \rightarrow stat

2. ops \rightarrow seq

3. Syntax: seq(function, variable, start, stop, step)

• Ex: $seq((x^2)/(2x+1), x, 1, 6, 1)$

4. Optionaly: math \rightarrow frac

To get table:

1. mode \rightarrow [func, par, pol, seq]

2. nMin: start value

3. u(n): function

4. u(nMin): value at a_1

Finding function by looking at terms in a sequence.

Consider:

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

We can deduce that the function would be:

$$\{a_n\} = \left\{\frac{1}{2^n}\right\}.$$

Warner 65 MATHEMATICS

The Factorial Symbol.

If $n \geq 0$, is an integer, the factorial symbol n! is defined as follows

$$n! = n(n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1, \quad \text{if } n \ge 2$$

 $Or: n! = n(n-1)!.$

3.46 Write The Terms of a Sequence Defined By Recursive Formula.

Definition 11. A second way of defining a sequence is to assign a value to the first (or the first few) term(s) and specify the nth term by a formula that involves one or more of the terms preceding it.

Example 3.40 (Consider)

$$s_1 = 5, \quad s_n = 2 \cdot s_{n-1}.$$

So:

$$s_2 = 2 \cdot 5 = 10$$

$$s_3 = 2 \cdot 10 = 20$$

$$s_4 = 2 \cdot 20 = 40$$

3.47 Sequences with summation notation

Using summation notation is a short hand way of representing a sum of a sequence of terms.

For example.

$$a_1 + a_2 + a_3 + \dots + a_n = \sum_{n=1}^{k=1} a_k$$
.

Example 3.41 (Write out each sum)

$$\sum_{n=1}^{k=1} \frac{k}{k+1} .$$

So:

$$\frac{1}{1+1} + \frac{2}{2+1} + \frac{3}{3+1} + \ldots + \frac{n}{n+1}$$

Warner 66 MATHEMATICS

Example 3.42 (Writing a sum in summation notation)

$$\left(\frac{1}{1}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{5}\right)^2.$$

So:

$$\sum_{5}^{k=1} \left(\frac{1}{k}\right)^2$$

3.48 Properties of Summations

If $\{a_n\}$ and $\{b_n\}$ are two sequences and c is a real number, then

$$\sum_{k=1}^{n} c = ca_1 + ca_2 + \dots + ca_n = c(a_1 + a_2 + \dots + a_n) = c \sum_{k=1}^{n} a_k$$

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

$$\sum_{k=j+1}^{n} a_k = \sum_{k=1}^{n} a_k - \sum_{k=1}^{j} a_k \quad \text{where } 0 < j < n$$

Formulas for Sums of Sequences:

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{1}{2} + \frac{2^2}{2} + \frac{3^2}{2} + \dots + \frac{n^2}{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{1}{3} + \frac{2^3}{3} + \frac{3^3}{3} + \dots + \frac{n^3}{3} = \left(\frac{n(n+1)}{2}\right)^2$$

3.49 Finding sum of sequence using calculator

- 1. 2nd \rightarrow stat \rightarrow math \rightarrow sum
- 2. 2nd \rightarrow stat \rightarrow ops \rightarrow seq
- 3. Syntax: sum(seq(function, variable, start, end, step))

Warner 67 MATHEMATICS

3.50 Arithmetic Sequences.

Definition 12.

An arithmetic sequence is a sequence that is defined recursive as follows:

$$a_1 = 1$$
, $a_n = a_{n-1} + d$.

where d is $a_n - a_{n-1}$. In other words, d is the **common difference.**

Example 3.43 (Show that the sequence is arithmetic.)

a.)

 $4, 2, 0, -2, \dots$

So:

$$d = 2 - 4 = 0 - 2 = -2 - 0 = -2$$

b.)

$${s_n} = {4n - 1}.$$

So we must find the first term:

$$s_1 = 4 \cdot 1 - 1 = 3.$$

Now we want to show that two consecutive terms in the sequence is a constant. We must show this algebrically.

Since we know that:

$$d = s_n - s_{n-1}.$$

Then:

$$d = 4n - 1 - (4(n-1) - 1)$$

$$4n - 1 - (4n - 5)$$

$$4n - 1 - 4n + 5$$

$$d = 4.$$

Note:-

Since these functions are in the form mx+b, we can safely say that m will be the common difference.

Warner 68 MATHEMATICS

3.51 Find a Formula For an Arithmetic Sequence.

nth Term of an Arithetic sequence.

For an arithmetic sequence $\{a_n\}$ whose first term is a and whose common difference is d, the nth term is determined by the formula:

$$a_n = a + (n-1)d.$$

$\textbf{Example 3.44} \ (\textbf{Find the twenty fourth term of the arithmetic sequence})$

$$-3,0,3,6, \dots$$

Using the formula $a_n = a + (n-1)d$:

$$If: a = -3, n = 24, d = 3$$

 $Then: a_{24} = -3 + (24 - 1)3$
 $= 66.$

Example 3.45

The sixth term of an arithmetic sequence is 26, and the nineteenth term is 78. Find the first term and the common difference. Give a recursive formula for the sequence. What is the nth term of the sequence?

So we have:

$$26 = a + (6 - 1)d$$

$$78 = a + (19 - 1)d.$$

$$= \begin{cases} 26 = a + 5d \\ 78 = a + 18d \end{cases}$$
(2)

So we can see that we have a **system of equations**, with two unknows. Thus we can solve this system with **elimination**.

So Subtracting our two equations:

$$78 = a + 18d$$
$$26 = a + 5d$$

We get:

$$52 = 13d$$
$$d = 4.$$

Now that we have found d, we can plug d into one of our equations to solve for a:

$$26 = a + 5(4)$$
$$a = 6.$$

Warner 69 MATHEMATICS

Now that we have both a and d, we can find the general formula by pluggion a and d into the general formula $a_n = a + (n-1)d$

$$a_n = 6 + (n-1)4$$

 $a_n = 6 + 4n - 4$
 $a_n = 4n + 2$.

3.52 Finding The Sum of n Terms in an Arithmetic Sequence.

Definition 13. Let $\{a_n\}$ be an arithmetic sequence with first term a and common difference d. The sum S_n of the first n terms of $\{a_n\}$ is

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

 $Or: \frac{n}{2}(a+a_n).$

Example 3.46 (Find the sum of the first n terms of the sequence)

$$a_n = \{4n + 2\}.$$

If:

$$s_n = \frac{n}{2}(a + a_n).$$

Then:

$$s_n = \frac{n}{2}(6 + 4n + 2)$$

$$= \frac{n}{2}(4n + 8)$$

$$= \frac{n(4n + 8)}{2}$$

$$= \frac{4n(n + 2)}{2}$$

$$= 2n(n + 2).$$

Suppose n = 100, then:

$$2(100)(100 + 2) = 20,400.$$

Warner 70 MATHEMATICS

3.53 Geometric Sequences.

Definition 14. A geometric sequence is a sequence of numbers in which each term after the first is found by multiplying the preceding term by a constant factor called the common ratio, denoted by r.

$$a_n = a, \quad a_n = ra_{n-1}.$$

We can find the common ration r with:

$$r = \frac{a_n}{a_{n-1}}.$$

Example 3.47 (Show that the sequence is geometric)

a.)

2, 8, 32, 128, ...

So:

$$r = \frac{8}{2} = \frac{32}{8} = \frac{128}{32} = 4$$

b.)

$$\{s_n\} = \{3^{n+1}\}.$$

Using the formula for r:

$$r = \frac{3^{n+1}}{3^{(n-1)+1}}$$

$$= \frac{3^{n+1}}{3^n}$$

$$= 3^{n+1-n}$$

$$= 3^1$$

$$r = 3.$$

And:

$$a_1 = 3^2$$
$$= 9.$$

c.)

$$\{t_n\} = \{3(2)^n\}.$$

Using the formula for r:

$$r = \frac{3(2^n)}{3(2^{n-1})}$$

$$= \frac{2^n}{2^{n-1}}$$

$$= 2^{n-(n-1)}$$

$$= 2^{n-n+1}$$

$$= 2^1$$

$$= 2.$$

Warner 71 MATHEMATICS

3.54 Find a Formula For a Geometric Sequence.

Definition 15. For a geometric sequence $\{a_n\}$ whose first term is a and whose common ratio is r, the nth term is determined by the formula

$$a_n = a \cdot r^{n-1}, \quad r \neq 0$$

Example 3.48 (Find the ninth term of the geometric sequence)

$$3, 2, \frac{4}{3}, \frac{8}{9}, \dots$$

So:

$$a = 3, \quad r = \frac{2}{3}$$

Therefore:

$$a_n = 3\left(\frac{2}{3}\right)^{n-1}$$
$$a_9 = 3\left(\frac{2}{3}\right)^8$$

.

To find a recursive formula for this sequence, we will use the recursive formula $a_n = ra_{n-1}$

$$a_n = \left(\frac{2}{3}\right) \cdot a_{n-1}.$$

3.55 Sum of n Terms of a Geometric Sequence

Definition 16. Let $\{a_n\}$ be a geometric sequence with first term a and common ratio r, where $r \neq 0, r \neq 1$. The sum S_n of the first terms of $\{a_n\}$ is

$$S_n = \frac{a \cdot (1 - r^n)}{1 - r}, \quad r \neq 0, 1$$

Example 3.49 (Find the sum of the first n terms of the sequence)

 3^n .

Warner 72 MATHEMATICS

So:

$$a_1 = 3^1 = 3$$

 $r = \frac{3^n}{3^{n-1}}$
 $= 3^{n(n-1)}$
 $= 3^1$
 $= 3$

Now using the formula $S_n = \frac{a(1-r^n)}{1-r}$:

$$S_n = \frac{3(1-3^n)}{1-3}$$

$$S_n = -\frac{3}{2}(1-3^n).$$

Now say we want the sum of the first 8 terms:

$$S_8 = -\frac{3}{2}(1 - 3^8)$$
$$= 9840.$$

3.56 Determine Whether a Geometric Series Converges or Diverges.

Warner 73 MATHEMATICS

Definition 17. An infinite sum of the form

$$a + ar + ar^2 + \dots + ar^{n-1}$$

with the first term a and a common ratio r, is called an infinite geometric series and is denoted by

$$\sum_{k=1}^{\infty} ar^{k-1}$$

Sum of an Infinite Geometric Series If |r| < 1, the sum of the infinite geometric series $\sum_{k=1}^{\infty} ar^{k-1}$ is

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$$

In the context of infinite geometric sequences, convergence and divergence refer to the behavior of the sum of the terms in the sequence as more terms are added.

If an infinite geometric sequence converges, it means that the sum of its terms approaches a finite value as more terms are added. In other words, there is a well-defined sum for the infinite series. The sum of a convergent infinite geometric series can be calculated using the formula above: $\frac{a}{1-r}$

On the other hand, if an infinite geometric sequence diverges, it means that the sum of its terms does not approach a finite value as more terms are added. In this case, the sum of the infinite series is said to be infinite or undefined. The divergence can occur if the absolute value of the common ratio is greater than or equal to 1 (|r| >= 1).

Determining whether an infinite geometric sequence converges or diverges depends on the value of the common ratio 'r'. If |r| is less than 1, the sequence converges, and if |r| is greater than or equal to 1, the sequence diverges.

Example 3.50 (Find the sum of the infinite geometric sequence.)

$$1 + \frac{1}{3} + \frac{1}{9}.$$

So:

$$a = 1$$
$$r = \frac{1}{3}.$$

And if:

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$$

Then:

$$\frac{1}{1 - \frac{1}{3}}$$

$$= \frac{2}{3}.$$

Warner 74 MATHEMATICS

4 Trigonometry

4.1 Unit Circle Diagram

4.2 Standard Position / Central Angle

- Standard Position (Vertex at origin and initial side coincides with positive x-axis)
- Central Angle (Positive angle whose center is at the origin)

4.3 Linear / Angular Speed

• Linear Speed

$$v = \frac{s}{t}$$

and v = rw.

• Angular Speed

$$w = \frac{\theta}{t}.$$

4.4 Decimal to Degrees / Degrees to Decimal

• Convert Decimal to Degrees

$$deg + \frac{min}{60} + \frac{sec}{3600}.$$

• Convert Degrees to Decimal

If:

669.

Then:

$$29 \cdot 60 = 17$$

$$0 \cdot 60 = 24.$$

So:

 $66^{\circ}17'24''$.

4.5 Degrees to Radians / Radians to Degrees

• Degrees to Radians

$$30^{\circ} \cdot \frac{\pi}{180} = \frac{\pi}{6}.$$

• Radians to Degrees

$$\frac{\pi}{6} \cdot \frac{180}{\pi}$$
$$= 30^{\circ}.$$

Warner 76 MATHEMATICS

4.6 Arc Length of a Circle

Arc length is computed with:

 $s = r \cdot \theta$.

4.7 Trig Functions

On Unit Circle

- $\sin \theta = y$
- $\cos \theta = x$
- $\tan \theta = \frac{\sin \theta}{\cos \theta}$
- $\csc \theta = \frac{1}{\sin \theta}$
- $\sec \theta = \frac{1}{\cos \theta}$
- $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Not on Unit Circle

- $\sin \theta = \frac{y}{r}$
- $\cos \theta = \frac{x}{r}$
- $\tan \theta = \frac{y}{x}$
- $\csc \theta = \frac{r}{u}$
- $\sec \theta = \frac{r}{r}$
- $\cot \theta = \frac{x}{y}$

4.8 Periodicity

- \sin , \cos , \csc , $\sec = 2\pi$
- $\tan, \cot = \pi$

4.9 Even/Odd

- The cosine and Secant functions are even
- The sine, tangent, cosecant and cotangent functions are odd

4.10 Finding Values With Calculator

- $csc = \frac{1}{\sin \theta}$
- $sec = \frac{1}{\cos \theta}$
- $\cot = \frac{1}{\tan \theta}$

Warner 77 MATHEMATICS

4.11 Domain and Range of Trig Functions

• sin

 $Domain: (-\infty, \infty)$ Range: [-1, 1]

• cos

Domain: $(-\infty, \infty)$ Range: [-1, 1].

• tan

Domain: \mathbb{R} except odd integer multiples of $\frac{\pi}{2}$ Range: $(-\infty, \infty)$.

• csc

 $Domain: \ \ \mathbb{R} \text{ except odd integer multiples of } \pi$

 $Range:\ (-\infty,-1]\cup [1,\infty].$

• sec

 $Domain: \mathbb{R}$ except odd integer multiples of $\frac{\pi}{2}$

Range: $(-\infty, -1] \cup [1, \infty]$.

• cot

Domain: \mathbb{R} except odd integer multiples of π Range: $(-\infty, \infty)$.

4.12 Graphing

• Amplitude, Period

-|A| = Amplitude

-T = Period

 $T = \frac{2\pi}{w}.$

If:

 $y = -4\cos 3x.$

Then:

 $T = \frac{2\pi}{3}$

A=4.

• Basic Transformations

 $y = A\sin(wx - c) + d.$

-A = Amplitude

- w = period

-c = phase shift (Horizontal Shift)

- d = vertical shift

Warner 78 MATHEMATICS

4.13 Asymptotes of Trig Functions

Only Tan, Secant, cosecant and cotangent have Asymptotes, and they occur at:

- Tan: When $\cos \theta = 0$ at $\frac{\pi}{2} + \pi n$
- Cosecant: When $\sin \theta = 0$ at πn , where n is an integer
- Secant: When $\cos \theta = 0$ at $\frac{\pi}{2} + \pi n$, where n is an integer
- Cotangent When $\sin \theta = 0$ at πn , where n is an integer

4.14 Inverse Trig Functions

- Domain/Range (with inverse trig functions, domain and range flip, on graph, x and y flip)
- Restrictions (to make one to one)

$$-\sin^{-1}$$

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right].$$

$$-\cos^{-1}$$

$$[0,\pi].$$

$$-\tan^{-1}$$

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
.

$$- \csc^{-1}$$

$$[-\frac{\pi}{2},\frac{\pi}{2}].$$

$$- \, \mathrm{sec^{-1}}$$

$$[0,\pi].$$

$$-\cot^{-1}$$

$$[0,\pi].$$

4.15 How to Find r

$$r^2 = x^2 + y^2$$
$$r = \sqrt{x^2 + y^2}.$$

4.16 Find Inverse of Trig Functions

- 1. replace f(x) with y
- 2. swap x and y
- 3. isolate siny
- 4. solve for y

4.17 Pythagorean Identites

- $\sin^2 \theta + \cos^2 \theta = 1$
- $\sin \theta = 1 \cos \theta$
- $\sin^2 \theta = 1 \cos^2 \theta$
- $\tan^2 \theta + 1 = \sec^2 \theta$
- $\cot^2 \theta + 1 = \csc^2 \theta$

4.18 Sum and Difference

- $\cos(a+b) = \cos a \cos b \sin a \sin b$
- $\cos(a-b) = \cos a \cos b + \sin a \sin b$
- $\sin(a+b) = \sin a \cos b \cos a \sin b$
- $\sin(a-b) = \sin a \cos b + \cos a \sin b$

4.19 Double Angle/Half Angle Formulas

- $\sin(2\theta) = 2\sin\theta\cos\theta$
- $\cos 2\theta = 1 2\sin^2 \theta$
- $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$
- $\sin \frac{\theta}{2}$

$$\pm\sqrt{\frac{1-\cos\theta}{2}}.$$

• $\cos \frac{\theta}{2}$

$$\pm\sqrt{\frac{1+\cos\theta}{2}}$$

• $\tan \frac{\theta}{2}$

$$\pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

4.20 Product to Sum

• $\sin a \sin b$

$$\frac{1}{2}[\cos(a-b) - \cos(a+b)].$$

• $\cos a \cos b$

$$\frac{1}{2}[\cos{(a-b)} + \cos{(a+b)}].$$

• $\sin a \cos b$

$$\frac{1}{2}[\sin\left(a+b\right)+\sin\left(a-b\right)].$$

4.21 Sum to Product

• $\sin a + \sin b$

$$2\sin\frac{a+b}{2}\cos\frac{a-b}{2}.$$

• $\sin a - \sin b$

$$2\sin\frac{a-b}{2}\cos\frac{a+b}{2}.$$

• $\cos a + \cos b$

$$2\cos\frac{a+b}{2}\cos\frac{a-b}{2}.$$

• $\cos a - \cos b$

$$-2\sin\frac{a+b}{2}\sin\frac{a-b}{2}.$$

4.22 Right Triangles

• Pythagorean Theoroem

$$a^2 + b^2 = c^2.$$

• sohcahtoa

$$sin = \frac{opp}{hyp}$$

$$cos = \frac{adj}{hyp}$$

$$tan = \frac{opp}{adj}.$$

• Complementary Angles

$$\sin B = \frac{b}{c} = \cos A \qquad \csc B = \frac{c}{b} = \sec A$$

$$\cos B = \frac{a}{c} = \sin A \qquad \sec B = \frac{c}{a} = \csc A$$

$$\tan B = \frac{b}{a} = \cot A \qquad \cot B = \frac{a}{b} = \tan A$$

4.23 Law of Sin / Cos

- cases
 - Law of sines

 $SAA \\ SAA \\ SSA \\ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$

- Law of Cosines

SAS SSS $c^2 = a^2 + b^2 - 2ab\cos c.$

4.24 Area

• S

 $s = \frac{1}{2}(a+b+c).$

• A

$$A = \sqrt{s(s-a)(s-b)(s-c)}.$$

4.25 Hyerbolic Trig

• $\sinh x$

 $\frac{e^x - e^{-x}}{2}.$

• $\cosh x$

 $\frac{e^x + e^{-x}}{2}.$

• $\tanh x$

 $\frac{\sinh x}{\cosh x}.$

• $\operatorname{csch} x$

 $\frac{1}{\sinh x}.$

• $\operatorname{sech} x$

 $\frac{1}{\cosh x}$.

• $\coth x$

 $\frac{\cosh x}{\sinh x}$

Warner 82 MATHEMATICS

4.26 Graphs of Hyperbolic Trig Functions

Warner 83 MATHEMATICS

4.27 The Triangle

Right Triangles

- the sum of the 2 acute angles A and B must equal 90°
- SOHCAHTOA
- complementary angles theorem

Complementary Angles:

$$\sin B = \frac{b}{c} = \cos A \qquad \csc B = \frac{c}{b} = \sec A$$

$$\cos B = \frac{a}{c} = \sin A \qquad \sec B = \frac{c}{a} = \csc A$$

$$\tan B = \frac{b}{a} = \cot A \qquad \cot B = \frac{a}{b} = \tan A$$

Say we have the triangle:

Find B:

$$90 - 35 = 55^{\circ}$$
.

To find a, if we choose to use the measure of A, then the function that links opposite and adjancent is the tan function, so:

$$\tan 35 = \frac{a}{8}$$
$$= 5.6.$$

To find c,

$$\sin 55 = \frac{8}{c}$$

$$c = \frac{8}{\sin 55}$$

$$= 9.77.$$

$$83$$

Warner 84 MATHEMATICS

Non Right Triangles

- Cases:
 - ASA
 - SAA
 - SSA

Will use the law of sines, which states:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

Say we have the triangle

$$A = 20^{\circ}, \ b = 80^{\circ}, \ a = 4.$$

Use the fact that all three angles must measure to 180° to find C

$$C = 80^{\circ}$$
.

To find b using the law of sines:

$$\frac{\sin 20}{4} = \frac{\sin 80}{b}$$

$$b = \frac{4\sin 80}{\sin 20}$$

$$b = 11.52.$$

Now find c:

$$\frac{\sin 20}{4} = \frac{\sin 80}{c}$$

$$c = \frac{4\sin 80}{\sin 20}$$
= 11.52.

Warner 85 MATHEMATICS

Figure out if you have more than one triangle (SSA)

Say we have:

$$c = 15^{\circ}, c = 6, a = 10.$$

- Find the angle of the side you are given.
- compute $(180 A_1) + 15$
- if this equates to less than 180 degrees, you have 2 triangles.
- find A_2 by computing $(180 A_1)$

Law of cosines

The law of cosines states:

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
$$b^2 = a^2 + c^2 - 2ac \cdot \cos B$$
$$c^2 = a^2 + b^2 - 2ab \cdot \cos C.$$

And we can rewrite to find missing angles:

$$B = \cos^{-1} \frac{b^2 - a^2 - c^2}{-2ac}.$$

Using law of cosines to solve SSS triangles

Say we have the triangle:

$$a = 6, b = 8, c = 5.$$

We can solve this triangle by using the law of cosines

Warner 86 MATHEMATICS

To find C:

$$5^{2} = 6^{2} + 8^{2} - 2(6)(8) \cos C$$
$$25 = 36 + 64 - 96 \cos C$$
$$-75 = -96 \cos C$$
$$\cos C = \frac{75}{96}$$
$$C = \cos^{-1} \frac{75}{96}$$
$$C = 38.6.$$

And we can do the same to find B

Area of triangles

If we are given a triangle with 2 sides and a angle measurement, we can find area using the fact that:

$$A = \frac{1}{2} side \cdot side \cdot \sin{(angle)}.$$

If we are given a triangle with 3 sides known, we can find area using:

$$s = \frac{1}{2}(a+b+c)$$

$$A = \sqrt{s(s-a)(s-b)(s-c)}.$$

Warner 87 MATHEMATICS

5 Calc 1

5.1 Secant Lines

- Secent lines on a graph is a line through the curve that touces at 2 places.
- To find the slope of the secent line:

$$m_{pq} = \frac{y_2 - y_1}{x_2 - x_1} \ rather, \ \frac{P_y - Q_y}{P_x - Q_x}.$$

Secant line:

5.2 Tangent Lines

- Tangent lines on a graph is a line that touches the curve exactly one time.
- Achieve an aproximation of the slope of the tangent line by moving Q closer to the tangent line and finding the slope of the secent line, we write

$$\lim_{Q \to P} m_{PQ} = m.$$

• To write the equation of the tangent line, use point slope form:

$$y - y_1 = x(x - x_1).$$

5.3 The Velocity Problem

- Average velocity is denoted by the slope of the secant line
- Instantaneous velocity is denoted by the slope of the tangent line

Warner 88 MATHEMATICS

5.4 The Limit of a Function

• Consider the function:

$$f(x) = x^2 + 2.$$

- If we want to investigate x=2, we can draw a table and examine what does the value of f(x) approach as x approaches 2
- So we say:

$$\lim_{x \to a} f(x) = L.$$

5.5 One Sided Limits

• Approaching from the left (left hand limit):

$$\lim_{x \to a-} f(x).$$

- Plug in a and evaluate
- Approaching from the right (right hand limit):

$$\lim_{x \to a+} f(x).$$

- Plug in a and evaluate
- Know that:

$$\lim_{x \to a} f(x) = l \ \Leftrightarrow \lim_{x \to a-} f(x) = l \ \land \lim_{x \to a+} f(x) = l.$$

5.6 Infinite Limits

Consider:

We can see that:

$$\lim_{x \to 0+} f(x) = \infty.$$

Warner 89 MATHEMATICS

And:

$$\lim_{x \to 0-} f(x) = -\infty.$$

Therefore we have determined that x=0 is a vertical asymptote, in general, we can safely say that f(x) has a vertical asymptote at a if any of the limits as $x \to a = \infty$ or $-\infty$

What if we have a $\frac{Nonzero\ Constant}{Approaching\ Zero}$?

• say we have the equation:

$$\lim_{x \to 5-} \frac{x+1}{x-5}.$$

We can see that if we plug in 5, we get $\frac{6}{0}$, so since we have a $\frac{Nonzero\ Constant}{Approaching\ Zero}$, we know that our limit is either going to be $\infty\ or\ -\infty$, the way we determite the sign of infinity is as follows:

1. Plug in a number close to a in whatever direction your limit is, the sign of the output will be the sign of infinity.

Note:-

If the limit does not specify a side, test with number close to a in both directions, if the sign is not the same, the limit is DNE

5.7 Limit Laws

•
$$\lim_{x \to a} f(x) + g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} cf(x) = c \cdot \lim_{x \to a} f(x)$$

•
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
, if $g(x) \neq 0$

•
$$\lim_{x \to a} c = c$$

•
$$\lim_{n \to \infty} x^n = a^n$$
, where n is a positive integer

•
$$\lim_{x\to a} x^n = a^n$$
, where n is a positive integer

•
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$$
, where n is a positive integer

•
$$\lim_{x \to a} f(x) - g(x) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
, if $g(x) \neq 0$ • $\lim_{x \to a} \left(f(x) \right)^n = \left[\lim_{x \to a} f(x) \right]^n$, where n is a positive integer

$$\bullet \lim_{x \to a} x = a$$

•
$$\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$$
, where n is a positive integer

Direct Substitution Property 5.8

• You can plug in a and evaluate, if a is not in the domain of f(x), you can try factoring

Warner 90 MATHEMATICS

5.9 Continuity

For a function to have continuity ata, 3 things must be true:

- 1. f(x) is defined at a
- 2. $\lim_{x \to a} f(x)$ exists
- 3. $\lim_{x \to a} f(x) = f(a)$

If no. 3 is true, the function is automatically continous at a

5.10 One-Sided Continuity

• Continuity from the right:

$$\lim_{x \to a+} f(x) = f(a).$$

• Continuity from the left:

$$\lim_{x \to a-} f(x) = f(a).$$

If f and g are continuous at a, then:

- *f* + *g*
- f − g
- fg
- <u>f</u>
- cf

Are all continuous at a

Also:

- Any polynomial is continous on its domain (\mathbb{R})
- Any rational function is continous on its domain

Note:-

If $\lim_{x\to a} f(x)$ exists, Then you don't need to worry about which side the continuity is coming from

Warner 91 MATHEMATICS

5.11 Discontinuitys

5.12 Finding where a function is Discontinuous without the graph of f

- Zeros of a rational function
- if $\lim_{x \to a} f(x) \neq f(a)$
- Piecewise functions, examine values of x where the domain flips to see if the limit is DNE

5.13 Intermediate Value Theorem

Suppose f is continuous on [a,b], Let N be any number between f(a) and f(b), where $f(a) \neq f(b)$, then:

$$\exists \ c \in (a,b) \mid f(c) = N.$$

Warner 92 MATHEMATICS

5.14 Evaluating limits at infinity (horizontal asymptotes)

We have a horizontal Asymptote if:

$$\lim_{x \to \infty} f(x) = L$$
$$Or: \lim_{x \to -\infty} f(x) = L.$$

- Recall: If the degree of the numerator is higher than the degree of the denominator, the H.A is automatically y = 0
- For rational Functions: divide every term in the numerator and denominator by the highest degree in the denominator, then take the limit of each new term.
- Radical types like:

$$\lim_{x \to \infty} \sqrt{x^2 + 4x} - x.$$

- 1. Conjugate (Multiply both numerator and denominator)
- 2. pull out the 4
- 3. divide numerate by x
- 4. divide insider radical by x^2 and +x by x
- 5. evaluate
- Example:

$$\lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}.$$

Since $\sqrt{x^6} = x^3$, we need to put absolute value bars and write as piecewise:

$$|x^3| = \begin{cases} x^3 & \text{if } x \geqslant 0\\ -(x^3) & \text{if } x < 0 \end{cases}$$
 (3)

And since our limit is going to negative infinity, we use $-x^3$

$$\lim_{x \to -\infty} \frac{-\sqrt{\frac{9x^6 - x}{x^6}}}{\frac{x^3 + 1}{x^3}}$$

$$= \frac{-\sqrt{9 - \frac{1}{x^5}}}{1 + \frac{1}{x^3}}$$

$$= \frac{-\sqrt{9 - 0}}{1 + 0}$$

$$= -3.$$

- Limits at infinty of Polynomials
 - Say we have:

$$\lim_{x \to -\infty} 5 + 2x - x^3.$$

- In this case, we can forget about the insignificant terms and only focus on $-x^3$, which means.

$$\lim_{x \to -\infty} -x^3 = -(-\infty)^3$$

$$= \infty$$

- Find equation of horizontal Asymptote by looking at limit at infinity
 - If the limit as x approaches infinity is a constant, then the equation of the H.A is y = L, where L is the constant
 - if the limit as x approaches infinity of a rational function is bottom heavy then the equation of the H.A is y = 0

Warner 93 MATHEMATICS

5.15 Derivatives and rates of change (Definitions)

• Slope of Secant Line:

$$m_{PQ} = \frac{f(x) - f(a)}{x - a}$$
$$or: \frac{f(a+h) - f(a)}{h}.$$

• Slope of Tangent Line:

$$m_{tan} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$or: \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• Average Velocity:

$$v_{ave} = \frac{f(x) - f(x)}{x - a}.$$

• Instantaneous Velocity:

$$v_{inst} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$or : \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• Speed:

$$Speed = |Velocity|.$$

• Derivatives Definition:

$$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$Or: f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

• Know that:

$$s(t) = position function$$

 $v(t) = s'(t) = velocity function$
 $a(t) = v'(t) = acceleration function.$

Note:-

If f(x) is differentiable at a, then it is continous at a, the converse is not true

5.16 Differential Rule

Properties of Derivatives:

- $\frac{d}{dx}c = 0$
- $\frac{d}{dx}x = 1$
- $\frac{d}{dx}(x^n) = n \cdot x^{n-1} \rightarrow \textbf{Power Rule}$
- $\frac{d}{dx}[c \cdot f(x)] = c \cdot \frac{d}{dx}[f(x)]$
- $\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$

5.17 Derivatives of common functions

Exponential Functions:

- $\frac{d}{dx}e^x = e^x \cdot \frac{d}{dx}x$
- $\frac{d}{dx}a^x = a^x \cdot \ln a \cdot \frac{d}{dx}x$
- $\frac{d}{dx} \ln x = \frac{1}{x} \cdot \frac{d}{dx} x$
- $\frac{d}{dx}\log_a x = \frac{1}{x \cdot \ln a} \cdot \frac{d}{dx}x$

Trig Functions:

- $\frac{d}{dx}\sin x = \cos x$
- $\frac{d}{dx}\cos x = -\sin x$
- $\frac{d}{dx} \tan x = \sec^2 x$
- $\frac{d}{dx}\csc x = -\csc x \cot x$
- $\frac{d}{dx} \sec x = \sec x \tan x$
- $\frac{d}{dx}\cot x = -\csc^2 x$

Inverse Trig:

- $\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$
- $\frac{d}{dx}\arccos(\mathbf{x}) = -\frac{1}{\sqrt{1-x^2}}$
- $\frac{d}{dx}\arctan(x) = \frac{1}{x^2+1}$
- $\frac{d}{dx}\operatorname{arccsc}(\mathbf{x}) = -\frac{1}{x\sqrt{x^2-1}}$
- $\frac{d}{dx}\operatorname{arcsec}(\mathbf{x}) = -\frac{1}{x\sqrt{x^2-1}}$
- $\frac{d}{dx}\operatorname{arccot}(\mathbf{x}) = -\frac{1}{x^2+1}$

Warner 95 MATHEMATICS

Hyperbolic Trig

- $\frac{d}{dx}\sinh x = \cosh x$
- $\frac{d}{dx}\cosh x = \sinh x$
- $\frac{d}{dx} \tan x = \operatorname{sech}^2 x$
- $\frac{d}{dx}cschx = -cschxcothx$
- $\frac{d}{dx}sechx = -sechxtanhx$
- $\frac{d}{dx}cothx = -csc^2x$

5.18 Normal Line

• The normal line is Perpendicular to the tangent line at the point of tangency, which means:

$$m_{tan} \cdot m_{normal} = -1.$$

- In other words, they are opposite reciprocals so flip and change sign

5.19 Find equation of tangent and normal line

Say we have the equation and point:

$$y = x^4 + 8e^x$$
 at the point (0,8)..

- 1. Find derivative
- 2. Plug in x into derivative function
- 3. Flip m_{tan} and change the sign to find m_{normal}
- 4. Use point slope form to find equations

5.20 Product and Quotient Rule

• Product rule:

$$\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)].$$

• Quotient Rule:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$

5.21 Chain Rule

• Know the chain rule:

- If:

$$F(x) = f(g(x)).$$

- Then:

$$F'(x) = f'(g(x)) \cdot g'(x).$$

Warner 96 MATHEMATICS

5.22 Implicit Differentation

Procedure:

- 1. Differentiate
- 2. Leave $\frac{dy}{dx}$ next to terms of y that you differentiate
- 3. solve for $\frac{dy}{dx}$

Example:

$$2x^{3} + x^{2}y - xy^{3} = 2$$

$$= 6x^{2} + (x^{2} \cdot 1 \cdot \frac{dy}{dx} + 2x \cdot y) - (x \cdot 3y^{2} \cdot \frac{dy}{dx} + y^{3} \cdot 1) = 0$$

$$= 6x^{2} + x^{2} \frac{dy}{dx} + 2xy - 3xy^{2} \frac{dy}{dx} - y^{3} = 0$$

$$= x^{2} \frac{dy}{dx} - 3xy^{2} \frac{dy}{dx} = y^{3} - 6x^{2} - 2xy$$

$$= \frac{dy}{dx}(x^{2} - 3xy^{2}) = y^{3} - 6x^{2} - 2xy$$

$$= \frac{dy}{dx} = \frac{y^{3} - 6x^{2} - 2xy}{x^{2} - 3xy^{2}}.$$

5.23 Logarithmic Differentation

If you have a problem that uses chain rule, product rule, quotient rule, all together. It's best to use this Logarithmic definition

Or if you have an equation with a variable in the base, and as the exponent, like:

$$y = (\cos 5x)^x.$$

Procedure:

- 1. Take ln of both sides
- 2. Differentiate implicitly with respect to x
- 3. solve for y'

Warner 97 MATHEMATICS

Example:

$$y = \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}$$

$$\ln y = \ln\left(\frac{x^2 + 1}{x^2 - 1}\right)^{\frac{1}{4}}$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{4}\ln\left(\frac{x^2 + 1}{x^2 - 1}\right)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{4}\ln\left(x^2 + 1\right) - \frac{1}{4}\ln\left(x^2 - 1\right)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{4}\left(\frac{1}{x^2 + 1} \cdot 2x\right) - \frac{1}{4}\left(\frac{1}{x^2 - 1} \cdot 2x\right)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{x}{2(x^2 + 1)} - \frac{x}{2(x^2 - 1)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{x}{2(x^2 + 1)} \cdot \frac{x^2 - 1}{x^2 - 1} - \frac{x}{2(x^2 - 1)} \cdot \frac{x^2 + 1}{x^2 + 1}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{x(x^2 - 1)}{2(x^2 + 1)(x^2 - 1)} - \frac{x(x^2 + 1)}{2(x^2 - 1)(x^2 + 1)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{x^3 - x}{2(x^2 + 1)(x^2 - 1)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{x^3 - x - (x^3 + x)}{2(x^2 + 1)(x^2 - 1)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{x^3 - x - x^3 - x}{2(x^4 - 1)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{-2x}{2(x^4 - 1)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{-2x}{x^4 - 1}$$

Solve for $\frac{dy}{dx}$ and plug in original equation for y:

$$\frac{dy}{dx} = \frac{-x}{x^4 - 1} \cdot y$$

$$\frac{dy}{dx} = \frac{-x}{x^4 - 1} \cdot \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}.$$

Warner 98 MATHEMATICS

5.24 Rates of Change in the natural and social sciences

Velocity:

- Velocity is derivative of position function
- A particle is at rest when v(t) = 0
- a particle reaches its maximum height when v(t) = 0
- A particle is moving in the positive direction when v(t) > 0
- A particle is moving in the negative direction when v(t) < 0

Acceleration:

- A particle is speeding up when v(t) and a(t) have the same signs
- A particle is slowing down when v(t) and a(t) have opposite signs

5.25 Exponential Growth and Decay

Formula:

$$y = Ce^{kt}$$
 $y = Population$
 $C = intitial Population$
 $k = \frac{Growth \ Rate}{Population}$
 $t = time.$

For example, if a bacterial culture starts with 4000 bacteria and triples every half hour.:

So:

$$y = 4000e^{kt}, \quad (\frac{1}{2}, 12000).$$

Then we can solve for k:

$$12000 = 4000e^{k(\frac{1}{2})}$$
$$3 = e^{\frac{k}{2}}$$
$$\ln 3 = \frac{k}{2}$$
$$k = 2\ln 3.$$

So we have:

$$y = 4000e^{2\ln 3(t)}.$$

Warner 99 MATHEMATICS

5.26 Newton's Law of Cooling

Newton's Law of cooling states:

$$T(t)=t_s+Ce^{kt}$$

$$T(t)=\mbox{ Temperature at time }t$$

$$t_s=\mbox{ Temperature of surrounding area}$$

$$C=t_0-t_s.$$

Say we have a freshly brewed cup of coffee has a temperature of $95^{\circ}C$ in a $20^{\circ}C$ room, five minutes later, its temerature is $88^{\circ}C$

Then

$$T(t) = 88$$

 $t_s = 20$
 $C = t_0 - t_s = 95 - 20 = 75$
 $t = 5$

So our equation would be.

$$88 = 20 + 75e^{k(5)}$$

$$68 = 75e^{5k}$$

$$\frac{68}{75} = e^{5k}$$

$$\ln \frac{68}{75} = 5k$$

$$k = \frac{\ln \frac{68}{75}}{5}$$

$$\approx -0.0196.$$

Warner 100 MATHEMATICS

5.27 Related Rates

Many things change with item. Our goal is to find the rate at which some quantity is changing by relating it to other quantities whose rates of change are given or more easily measured

Strategy

- 1. Read the problem carefully
- 2. Draw a diagram whenever possible
- 3. Introduce notation
- 4. Express rates in terms of derivatives
- 5. Write an equation
- 6. Differentiate both sides with repect to t using Implicit Differentiation/Chain Rule
- 7. Solve for the unknown rate

Say the length of a rectangle is increasing at a rate of 8 cm/s and it's width is increasing at a rate of 3 cm/s. When the length is 20cm and the width is 10cm, how fast is the area increasing?

So our givens:

$$\frac{dl}{dt} = 8$$

$$\frac{dw}{dt} = 3$$

$$l = 20$$

$$w = 10.$$

We want:

$$\frac{dA}{dt}$$
.

And we know that:

$$A = l \cdot w$$
.

So if we derive the area formula with Implicit differentation, and using the product rule, we get:

$$\frac{dA}{dt} = l \cdot \frac{dw}{dt} + w \cdot \frac{dl}{dt}.$$

From here we can plug in our givens:

$$\frac{dA}{dt} = 20(3) + 10(8)$$
$$= 60 + 80$$
$$= 140cm^{2}/s.$$

Warner 101 MATHEMATICS

5.28 Linear Approximation

Formula:

$$f(x) \approx L(x) = f(a) + f'(a)(x - a).$$

Note:-

Finding the linearization of a function is the same thing as "find the equation of the tangent line to the curve"

Procedure,

- 1. find derivative of function
- 2. plug in a to get m_{tan}
- 3. Get point by plugging in a to f(x)
- 4. plug everything into formula L(x) = f(a) f'(a)(x a)

If asked to use linear aproximation formula to approximate values, then:

- 1. set original function equal to value
- 2. solve for x
- 3. plug in for x in linear approximation formula

5.29 Differentials

Formula:

$$dy = f'(x)dx$$
$$\Delta x = dx$$
$$\Delta y = (f(x + \Delta x) - f(x)).$$

Note:-

 Δy , can sometimes be difficult to find so we can use $dy \approx \Delta y$

Warner 102 MATHEMATICS

5.30 Maximum and Minimum Values

- A function f has an absolute maximum at c if $f(c) \ge f(x)$ for all $x \in Domain$ of f
- A function f has an absolute minimum at k if $f(c) \leq f(x)$ for all $x \in Domain$ of f
- A function f has a local maximum at b if $f(b) \ge f(x)$ when x is near b
- A function f has a local minimum at m if $f(m) \leq f(x)$ when x is near m
- $\bullet\,$ endpoints are not considered local min max

Cosider This Graph

Note that the textbook denotes f(1) = 3 as a local minimum.

5.31 Extreme Value Theorem

• If f is continuous on a closed interval [a,b], then f attains an obsulute maximum value f(c) and an absolute minimum value f(d) where $c,d \in [a,b]$

5.32 Fermat's Theorem

• If f has a local minimum or maximum at c, and if f'(c) exists, then f'(c) = 0

5.33 Critical Number

- c in the domain of f(x) is a critical number if f'(c) = 0 or if f'(c) does not exist. Note: If f has a local max or min at c, then c is a critical number of f
- Critical number has to obey restriction

Warner 103 MATHEMATICS

5.34 How to find the absolute maximum and minimum values of a continuous function f on a closed interval [a,b]

- 1. Find critical values of f in (a,b)
- 2. Find f(a) and f(b)
- 3. Absolute Max: largest from 1.) and 2.)
- 4. Absolute Min: smallest from 1.) and 2.)

Rolle's Theorem:

If f(x) satisfies the following:

- 1. continuous on [a,b]
- 2. differentiable on (a,b)
- 3. f(a) = f(b)

Then:

$$\{\exists \ c \in (a,b) \mid f'(c) = 0\}.$$

Notes:

• If rolle's theorem can be applied, just set f'(x) = 0 to find c, remember you are finding all c in the **open interval**, so if c does not obey this interval, it is not a solution

5.35 The Mean Value Theorem

if f(x) satisfies the following:

- 1. continuous on [a,b]
- 2. differentiable on (a,b)

Then:

$$\left\{\exists \ c \in (a,b) \mid f'(c) = \frac{f(b) - f(a)}{b - a}\right\}.$$

In other words,

$$m_{tan} = m_{sec}$$
.

Then after you solve for f'(c), set f'(x) equal to this value. This is how you compute c.

Notes:

- If rational function, find where function is undefined, if that number is not an element of the interval, then it is continuous on the closed interval
- If f'(x) is defined on the open interval, then it is differentiable on the open interval
- use the theorem, then set f'(c) = c

What if you just have a graph?

- 1. Draw a secant line through a and b
- 2. Draw a tangent line such that the slopes are the same (they are parallel)

Warner 104 MATHEMATICS

5.36 First Derivative Test

- If f'(x) changes from + to at c, then f(x) has a local maximum at c.
- If f'(x) changes from to + at c, then f(x) has a local minimum.

5.37 Second Derivative Test

- f(x) has a local minimum at c if f'(c) = 0 and f''(c) > 0
- f(x) has a local maximum at c if f'(c) = 0 and f''(c) < 0

5.38 Domain

- Polynomial: \mathbb{R}
- rational: Where denominator = 0
- Radical: Set denominator ≥ 0, if needed, make a number line and test points to see where its positive.

5.39 Intercepts

- x-ints: set function equal to zero and solve, if the function is rational, only set the numerator equal to zero
- y-ints: plug in zero for x and solve

5.40 Asymptotes

- Horizontal Asymptote, find the limit of the function as x approaches infinity and -infinty, see limits at infinity for more info on rational functions
- vertical Asymptoteo, only for rational functions, it is the zeros of the function
- Slant (oblique), if numerater degree is one higher than denominator, use long division to find equation of slant Asymptote

$$\frac{-8x^4 + 8x^3 + 4}{2x^3 - x}.$$

$$2x^3 + 0x^2 - x\overline{) - 8x^4 + 8x^3 + 4}.$$

And:

$$\frac{x^2+4}{x+4}.$$

$$x+4\overline{)x^2+0x+4}.$$

Warner 105 MATHEMATICS

5.41 Symmetric

• Even if (symmetric with respect to y axis)

$$- f(-x) = f(x)$$

- Odd if (symmetric with respect to origin)
 - f(-x) = -f(x)

5.42 Increasing/Decreasing (Numberline with Domain (not as critical values but still test))

- Find derivative
- set numerator equal to 0 to find critical values (make sure they are in the domain.)
- Make number line and test with f'(x), ontop of the critical values, use the values are found in domain
 - ex.

$$(-\infty, -4] \cup [0, \infty].$$

- use -4 and 0 on number line

Note: no brackets on intervals of increase/decrease

Local Min/Max

- First derivative test:
 - If f'(x) switches from positive to negative, you have a local max at f(c)
 - If f'(x) switches from negative to positive, you have a local min at f(c)
- Second Derivative test:
 - If f''(c) < 0, you have a local max at f(c)
 - If f''(c) > 0, you have a local min at f(c)

5.43 Abs Max and Min

- 1. find f'(x)
- 2. find critical values, plug into f(x)
- 3. find f(a) and f(b) from (a,b)
- 4. Abs max: largest form top steps
- 5. Abs min: smallest form top steps

Warner 106 MATHEMATICS

5.44 Concave Up/Down and inflection points

- 1. Find f''(x)
- 2. Find inflection points (Critical Values)
- 3. Test inflection points on a number line
- 4. If concavity changes at critical value, then plug in critical value to f(x) to find inflection points

Note: If no $c \in D$, but domain is say $(-\infty, 15]$, use 15 on number line, but 15 cannot be an inflection point or numbers after used to test concavity

Find inflection points of f(x), f'(x), and f''(x), given the graph of f(x)

- f(x): find inflection points by locating where on the graph does it switch concavity. (x values)
- f'(x): find inflection points by locating local min/maxs. (x values)
- f''(x): Find inflection points by locating where it switches from positive to negative

Consider the graph of f(x):

CU: (0,2) $CD: (2,4) \cup (4,6)$ IP: (2,3).

Note:-

Write inflection points as an ordered pair

Warner 107 MATHEMATICS

5.45 L'Hospital's Rule

Main Concept:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

- Important concepts
 - Review limits at infinity
 - Any number other than zero or 1 to the power of negative infinity is 0
 - Any number other than zero or 1 to the power of infinity is infinity
 - The natural log of a negative number is undefined, therefore the limit as x approaches negative infinity of $\ln x$ is hence undefined
 - Same with log
 - Any contant over infinity approaches 0
- Types of indeterminate forms we do want
 - $-\frac{6}{6}$
 - $-\frac{\infty}{\infty}$
- Types of indeterminate forms we don't want:
 - $-0\cdot\infty$
 - $-\infty-\infty$
 - -0^{0}
 - $-\infty^0$
 - -1^{∞}
- type $\infty \infty$
 - Change to the type we want by:
 - $1. \ \, {\rm Common \ Denominators}$
 - 2. rationalizing
 - 3. factoring
- Types 0^0 , ∞^0 , 1^∞
 - Change to the type we want by:
 - 1. taking natural log of function or writing as exponential

Note:-

If you use natural log method, you must write final answer as $e^{\lim_{x\to\infty}\ln y}$

Warner 108 MATHEMATICS

5.46 Curve Sketching

- Find A-G and sketch graph
 - A: Domain
 - B: Intercepts
 - C: Asymptotes
 - D: Symmetry
 - E: Local min/max
 - F: Increasing / decreasing
 - G: Concavity / Inflection Points

5.47 Optimization Problems

Strategy:

- 1. Read the problem carefully
- 2. Draw a diagram whenever possible
- 3. Introducte notation
- 4. Expess the quantity to be optimized in terms of other variables.
- 5. Reduce the number of variables from Step 4 to only 1 (write a function of 1 variable)
- 6. find the absolute minimum/maximum

Procedure:

- 1. Find formula
- 2. Get to one variable
- 3. Find derivative
- 4. Find critical values
- 5. Use second derivative test to test if min / max

5.48 Newton's Method

Concept:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

What if you have a problem like:

$$\sqrt[4]{75}$$
.

Rewrite as:

$$x^4 = 75$$

$$f(x) = x^4 - 75.$$
108

Warner 109 MATHEMATICS

How do you get x_1 ?

$$x_1 = 3.$$

This is because we took $\sqrt[4]{81} = 3$, 81 is close to 75 so we will use that as our starting point, remember this is just an approximation.

What if it is a porabola, (ie more than one root), say we have the graph:

Then we will use 2 different x_1 , at -3 and 3

5.49 Antiderivitates

- Know what it means to be an Antiderivitate and how to find them
- know the most common Antiderivitates
- understand +C
- know why

$$x^{\frac{1}{3}} = \frac{3}{4}x^{\frac{4}{3}}.$$

• and

$$2y^2$$

$$= \frac{2}{3}y^3.$$

• Know that

$$x^{-1} = \ln|x|.$$

Common Antiderivitates:

Warner 110 MATHEMATICS

• Exponential

$$-x^{n} = \frac{x^{n+1}}{n+1} + C$$

$$-\frac{1}{x} = \ln|x| + C$$

$$-a^{x} = \frac{a^{x}}{\ln a} + C$$

$$-\ln x = x \ln x - x + C$$

$$-e^{x} = e^{x} + C$$

• Trig:

$$-\sin x = -\cos x + C$$

$$-\cos x = \sin x + C$$

$$-\tan x = \ln|\sec x| + C$$

$$-\csc x = \ln|\csc x - \cot x| + C$$

$$-\sec x = \ln|\sec x + \tan x| + C$$

$$-\cot x = \ln|\sin x| + C$$

$$-\sin^2 x = \frac{1}{2}x - \frac{1}{4}\sin 2x + C$$

$$-\cos^2 x = \frac{1}{2}x + \frac{1}{4}\sin 2x + C$$

$$-\tan^2 x = -x + \tan x + C$$

$$-\csc^2 x = -\cot x + C$$

$$-\sec^2 x = \tan x + C$$

$$-\cot^2 x = -x - \cot x + C$$

$$-\cot^2 x = -x - \cot x + C$$

• Hyperbolic Trig

$$\begin{aligned} &-\sinh x = \cosh x + C \\ &-\cosh x = \sinh x + C \\ &-\tanh x = \ln|\cos x| + C \\ &-\cosh x = \ln|\tan h(\frac{1}{2}x)| + C \\ &-\operatorname{csch} x = \tan^{-1}\left(\sinh\left(x\right)\right) + C \\ &-\operatorname{coth} x = \ln|\sinh x| + C \\ &-\operatorname{csch}^2 x = -\coth x + C \\ &-\operatorname{sech}^2 x = \tanh x + C \end{aligned}$$

5.50 derivative of hyperbolic trig fuctions

- $\sinh x = \cosh x$
- $\cosh x = \sinh x$
- $\tanh x = \operatorname{sech}^2 x$
- $\operatorname{sech} x = -\operatorname{sech} x \tanh x$
- $\operatorname{csch} x = -\operatorname{csch} x \operatorname{coth} x$
- $\coth x = -\operatorname{csch}^2 x$

Warner 111 MATHEMATICS

lnx

• when you have f(x) like:

$$f(x) = 3x^{-2} - 7x^{-1} + 6.$$

you can see if we tried to find F(x), by adding 1 to -1, we would get:

$$\frac{-7^0}{0}$$
.

Which is a problem, so instead, the Antiderivitive would be $-7 \ln |x|$, this is because

$$\frac{d}{dx} - 7\ln x$$
$$= -\frac{7}{x}.$$

And don't forget the absolute value bars

5.51 Sigma notation

• Know properties of summation:

$$-\sum_{i=m}^{n} c \cdot a_{i} = c \sum_{i=m}^{n} a_{i}, \text{ where c is a constant}$$

$$-\sum_{i=m}^{n} (a_{i} + b_{i}) = \sum_{i=m}^{n} a_{i} + \sum_{i=m}^{n} b_{i}$$

$$-\sum_{i=m}^{n} (a_{i} - b_{i}) = \sum_{i=m}^{n} a_{i} - \sum_{i=m}^{n} b_{i}$$

$$-\sum_{i=1}^{n} 1 = n$$

$$-\sum_{i=1}^{n} c = c \cdot n, \text{ where c is a constant}$$

$$-\sum_{i=1}^{n} c = \frac{n(n+1)}{2}$$

$$-\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$-\sum_{i=1}^{n} i^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

- Know what is means to be a telescoping sum and how to evaluate it.
- Know how to eval limits of summation, recall that if you have the limit as n -> infinty, of a rational function whos degress are equal, evaluate the limit by taking the ration of the leading coefficients.

Warner 112 MATHEMATICS

5.52 Area and Distance Problem

• Know the definition for the area under the curve.

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[\Delta x f(x_1) + \Delta x f(x_2) + \dots + \Delta x f(x_n) \right].$$
 or
$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \left[\Delta x f(x_0) + \Delta x f(x_1) + \dots + \Delta x f(x_{n-1}) \right].$$
 or
$$A = \lim_{n \to \infty} \left[\Delta x f(x_1^*) + \dots + \Delta x f(x_n^*) \right].$$

Where x_i^* is any number in the *i*th interval.

Note:-

 $\Delta x = \text{Base of each rectangle}$

Find Δx with $\frac{b-a}{n}$, on [a,b]

• And the sigma versions:

• $A = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x f(x_i)$ (Right endpoints)

• $A = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x f(x_{i-1})$ (Left endpoints)

• $A = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x f(x_i^*)$ (Arbitrary partiton)

Note:- 🛉

The one with the star denotes not using left or right endpoints

• Know how to find Δx

$$\Delta x = \frac{b-a}{n}.$$

• Know how to find x_i (right endpoints)

$$x_i = a + i\Delta x.$$

• Know how to find area with a fixed number of rectangles.

- Find Δx
- multiply Δx by the sum of all the heights of the rectangles.

Notes for riemann sum:

• Say we are using right endpoints with n=4, imagine we had the number line:

- Since we are using right endpoints with n=4, we only use $\frac{5}{4}$ onward

- If we were using left endpoints, we would use 1 to $\frac{7}{2}$

Warner 113 MATHEMATICS

5.53 Definite Integrals

• Know:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x f(x_{i}^{*}).$$

• Know riemann sum:

$$\sum_{i=1}^{n} \Delta x f(x_i).$$

• Know the properties of integrals:

$$-\int_a^b cdx = c(b-a)$$

$$-\int_a^b cf(x)dx = c \cdot \int_a^b f(x)dx$$

$$-\int_a^b [f(x) + g(x)]dx = \int_a^b f(x)dx + \int_a^b g(x)dx$$

$$-\int_a^b [f(x) - g(x)]dx = \int_a^b f(x)dx - \int_a^b g(x)dx$$

$$-\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$$

$$-\inf f(x) \geqslant 0 \text{ for all } a \leqslant x \leqslant b \text{, then } \int_a^b f(x)dx \geqslant 0$$

$$-\inf f(x) \geqslant g(x) \text{ for all } a \leqslant x \leqslant b \text{, then } \int_a^b f(x)dx \geqslant \int_a^b g(x)dx$$

$$-\inf f(x) \leqslant M \text{ for } a \leqslant x \leqslant b \text{, then } m(b-a) \leqslant \int_a^b f(x)dx \leqslant M(b-a)$$

- Know how to find midpoints
 - Make number line with right endpoints, then find the middle value of each interval
 - If given an interval say, [1,3], and your asked to find midpoints, first plot number line with right endpoints. Then divide Δx by 2 and add this number to each left point. Note that Δx will remain the same when you find the riemann sum.
- Know when you have equations for geometric shapes (circle, half cirle, line)
- integral with the same bounds is zero
- Know how to split up integrals like

$$\int_{-1}^{2} (x - 8|x|) \ dx.$$

- Set up piecewise

Warner 114 MATHEMATICS

x = 0 *Set whats inside abs = 0 to see where sign flips.

$$= \begin{cases} x & \text{if } x \geqslant 0 \\ -x & \text{if } x < 0 \end{cases} \tag{4}$$

• split integral

$$\int_{-1}^{0} x - 8(-x) \ dx + \int_{0}^{2} x - 8x \ dx.$$

• Then evaluate

5.54 The Fundemental theorem of calculus

• Know

$$Part \ 1: \ \frac{d}{dx} \int_a^x \ f(t) \ dt = f(x), a \leqslant x \leqslant b$$

$$Part \ 2: \ \int_a^b \ f(x) \ dx = F(b) - F(a) \ where \ F' = f.$$

$$and$$

$$\int_a^b \ f(x) \ dx = -\int_b^a \ f(x) \ dx.$$

- Know that you have to multiply by the derivative of the upper limit when you substitute for part 1
- Know how to split up integrals asked to find the derivative and if given something like:

$$F(x) = \int_{x}^{x^2} e^{t^7} dx.$$

- so this would end up

$$F'(x) = \frac{d}{dx} \int_{x}^{0} e^{t^{7}} dt + \frac{d}{dx} \int_{0}^{x^{2}} e^{t^{7}} dt.$$

- and we would have to flip our limits of integration such that our upper limit is a function of x

$$F'(x) = \frac{d}{dx} - \int_0^x e^{t^7} dt + \frac{d}{dx} \int_0^{x^2} e^{t^7} dt$$
$$F'(x) = e^{x^7} + e^{14} \cdot 2x$$
$$= e^{x^7} + 2xe^{14}$$

- Know the notation
 - If given:

$$g(x) = \int_0^x \sqrt{t^3 + t^5} \ dt.$$

– Notation for g' (using part 1) would be:

$$g'(x) = \frac{d}{dx} \int_0^x \sqrt{t^3 + t^5} dt$$

= $\sqrt{x^3 + x^5}$.

- definite integrals do not get +C

Warner 115 MATHEMATICS

5.55 Indefinite Integrals

- Indefinite Integrals are essentially just asking for the Antiderivitate, do not forget +C
- review common Antiderivitates
- know how to indeterminate antiderivative for inverse trig
- Know this antiderivative:

$$F(x) = 5^{x}$$
$$f(x) = \frac{5^{x}}{\ln 5}.$$

Because:

$$\frac{d}{dx} \frac{5^x}{\ln 5}$$

$$= \frac{1}{\ln 5} \left[5^x \right]$$

$$= \frac{1}{\ln 5} \left[5^x \cdot \ln 5 \right]$$

$$= \frac{5^x \cdot \ln 5}{\ln 5}$$

$$= 5^x.$$

5.56 Velocity Functions with integrals

If given:

$$v(t) = 3t - 8, \ 0 \le t \le 3.$$

• Know that to find displacement:

$$\int_0^3 3t - 8 dt.$$

• To find distance traveled:

$$\int_0^3 |3t - 8| \ dx.$$

- So you must write as piecewise and split up the integral (add them)

Warner 116 MATHEMATICS

5.57 The Substitution Rule (u-sub)

If u = g(x) is differentiable and its range $\in I$ and f is continuous on I, then

$$\int f(g(x))g'(x) \ dx = \int f(u) \ du.$$

Process:

- 1. Make a decent choice of what to let u equal
- 2. Change our integral from being in terms of x, to in terms of u
- 3. Integrate $\int f(u) du$
- 4. Change back to x

Note:-

Also include the constant in your u sub, if it is attached to the function you let u equal, Also note for rational trig functions, you can move trig functions from upstairs or downstairs based on their reciprical function, for example, a $\cos^2 x$ in the denominator can be moved upstairs as $\sec^2 x$

Notes:

- Our goal with u-sub is to let u equal some function in our composition of functions, such that if we derive that function, we get back something that is also in our integrand
- Say we have something like:

$$\int \sec^2 \theta \ d\theta$$

$$Let \ u = 8\theta$$

$$du = 8d\theta$$

$$\frac{1}{8}du = d\theta.$$

• Know that you can rewrite equations like:

$$\int \frac{(\ln x)^{36}}{x} dx$$

$$as: \int \frac{1}{x} (\ln x)^{36} dx.$$

• Say we have:

$$-\frac{1}{2}\int_{0}^{-1}e^{u}\ du.$$

- We can flip the limits of integration to remove the negative sign. So we will have:

$$\frac{1}{2} \int_{-1}^{0} e^{u} du.$$

• Look out for being able to turn antiderivative into inverse trig functions.

Warner 117

- Say we have:

$$\int \frac{x^7}{1+x^{16}} \ dx.$$

– Don't let $u = 1 + x^8$, we could do this by turning x^{16} into $(x^8)^2$, but instead, just let $u = x^8$. We do this because it ends up like:

$$\frac{1}{8}du = x^7 dx.$$

- So when we sub we get that nice arctan antiderivative, just something to look out for.

$$\frac{1}{8} \int \frac{1}{1+u^2} \ du.$$

• Note that we can write:

 e^{2x} .

- as

 $(e^x)^2$.

Definite Integrals with u-sub

- 1. Find what u is going to equal
- 2. Find u(a) and u(b)
- 3. make u-sub and use $\mathbf{u}(\mathbf{a})$ and $\mathbf{u}(\mathbf{b})$ as limits of integration
- 4. find antiderivative and evaluate at new limits

Note:-

For definite integrals, don't sub back in for u, just evalute integral with u still subbed

Warner 118 MATHEMATICS

5.58 Integrals of Symmetric functions:

Sometimes you will run into integrals that are either impossible, or too difficult with u Substitution. For these cases we will look at Integrals of Symmetric Functions

Even:

$$f(-x) = f(x) \text{ then } \int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$$

Odd:

$$f(-x) = -f(x) \text{ then } \int_{-a}^{a} f(x) dx = 0.$$

Notes:

- If a function is even, you can replace your lower limit with zero and multiply the integral by 2
- if a function is odd, then the integral equals zero.

Figures:

Warner 119 MATHEMATICS

6 Intro Statistics

Chapters 1-4

Titles

Chapter 1:

- 1.1: Introduction to the Practice of Statistics
- 1.2: Observational Studies versus Designed Experiments
- 1.3: Simple Random Sampling
- 1.4: Other Effective Sampling Methods
- 1.5: Bias in Sampling
- 1.6: The Design of Experiments

Chapter 2:

- 2.1: Organizing Qualitative Data
- 2.2: Organizing Quantitative Data: The Popular Displays
- 2.4: Graphical Misrepresentations of Data

Chapter 3:

- 3.1: Measures of Central Tendency
- 3.2: Measures of Dispersion
- 3.3: Measures of Central Tendency and Dispersion from Grouped Data
- 3.4: Measures of Position
- 3.5: The Five-Number Summary and Boxplots

Chapter 4:

- 4.1: Scatter Diagrams and Correlation
- 4.2: Least-Squares Regression
- 4.3: Diagnostics on the Least-Squares Regression Line
- 4.4: Contingency Tables and Association

Warner 120 MATHEMATICS

Learning Objectives

- Obtain a simple random sample
- Explain the Sources of Bias in Sampling
- Describe the Characteristics of an Experiment (vocab)
- Explain the Steps in Designing an Experiment
- Explain the Completely Randomized Design
- Explain the Matched-Pairs Design
- Organize Qualitative Data in Tables
- Construct Bar Graphs
- Construct Pie Charts
- Organize Discrete Data in Tables
- Construct Histograms of Discrete Data
- Organize Continuous Data in Tables
- Construct Histograms of Continuous Data
- Draw Dot Plots
- Identify the Shape of a Distribution
- Describe What Can Make a Graph Misleading or Deceptive
- Determine the Arithmetic Mean of a Variable from Raw Data
- Determine the Median of a Variable from Raw Data
- Explain What It Means for a Statistic to be Resistant
- Determine the Mode of a Variable from Raw Data
- Determine the Range of a Variable from Raw Data
- Determine the Standard Deviation of a Variable from Raw Data
- Determine the Variance of a Variable from Raw Data
- Use the Empirical Rule to Describe Data That Are Bell-Shaped
- Approximate the Mean of a Variable from Grouped Data
- Compute the Weighted Mean
- Approximate the Standard Deviation from a Frequency Distribution
- Determine and Interpret z-Scores
- Interpret Percentiles
- Determine and Interpret Quartiles
- Determine and Interpret the Interquartile Range
- Check a Set of Data for Outliers
- Determine the Five-Number Summary

Warner 121 MATHEMATICS

- Draw and Interpret Boxplots
- Draw and Interpret Scatter Diagrams
- Describe the Properties of the Linear Correlation Coefficient
- Compute and Interpret the Linear Correlation Coefficient
- 4Determine Whether a Linear Relation Exists between Two Variables
- Explain the Difference between Correlation and Causation
- Find the Least-Squares Regression Line and Use the Line to Make Predictions
- Interpret the Slope and the y-Intercept of the Least-Squares Regression Line
- Compute the Sum of Squared Residuals
- Compute and Interpret the Coefficient of Determination
- Perform Residual Analysis on a Regression Model
- Identify Influential Observations
- Compute the Marginal Distribution of a Variable
- Use the Conditional Distribution to Identify Association Among Categorical Data
- Explain Simpson's Paradox

Warner 122 MATHEMATICS

Vocab

- **Population:** The entire group to be studied is called the population.
- Sample: In statistics, it is often impractical or impossible to get access to the entire **population**, which is why we only look at a **sample**. A sample is a **subset** of the population being studied.
- Individual: An individual is a person or object that is a member of the population being studied.
- Statistic: A statistic is a numerical summary of a sample.
- Descriptive Statistics: Descriptive statistics consist of organizing and summarizing data. Descriptive statistics describe data through numerical summaries, tables, and graphs.
- Inferential Statistics: inferential Statistics uses methods that take a result from a sample, extend it to the population, and measure the reliability of the result.
- Parameter: A parameter is a numerical summary of a population.
- Variables: The characteristics of the individuals in a study. Variables vary, which means they can take on different values.
- Constants: Variables that do not vary. Inferential statistics is not necessary with constants.
- Qualitative, or categorical variables allow for the classification of individuals base on some attribute or characteristic.
- Quantitative variables provide numerical measures of individuals. The values of a quantitative variable can be added or subtracted and provide meaningful results.
- A discrete variable is a quantitative variable that has either a finite number of possible values or a countable number of possible values. A discrete variable cannot take on every possible value between any two possible values.
- A continuous variable is a quantitative variable that has an infinite number of possible values that are not countable. A continuous variable may take on every possible value between any two values. Continuous variables typically result from measurement. Continuous variables are often rounded. If a certain make of car gets 24 miles per gallon (mpg) of gasoline, its miles per gallon must be greater than or equal to 23.5 and less than 24.5, or $23.5 \le mpg \le 24.5$
- The list of observed values for a variable is data.
- Qualitative data are observations corresponding to a qualitative variable.
- Quantitative data are observations corresponding to a quantitative variable.
- Discrete data are observations corresponding to a discrete variable.
- Continuous data are observations corresponding to a continuous variable.
- Explanatory Variable: An explanatory variable, also known as an independent variable or predictor variable, is a variable that is manipulated or controlled by researchers in an experiment or study. It is the variable that is hypothesized to have an impact on the outcome or dependent variable.
- Lurking variable: An explanatory variable that was not considered in a study, but that affects the value of the response variable.
- Response Variable: The response variable, also known as the dependent variable or outcome variable, is the variable that is measured or observed to determine the effect or response of the explanatory variable(s). It is the variable that researchers are interested in studying or predicting.
- Confounding: Occurs when the effects of two or more explanatory variables are not separated. Therefore, any relation that may exist between an explanatory variable and the response variable may be due to some other variables or variables not accounted for in the study.

Warner 123 MATHEMATICS

- Census: List of individuals in a population along with certain characteristics of each individual.
- Random Sampling: The process of using chance to select individuals from a population to be included in the sample.
- Simple Random Sampling: A sample of size n from a population of size N is obtained through simple random sampling if every possible sample of size n has an equal chance of occurring. The sample is then called a simple random sample.
 - -n < N
- frame: a list of all the individuals within the population.
- Sample Without Replacement: Once an individual is selected, the individual cannot be selected again.
- Stratified sample: is obtained by dividing the population into nonoverlapping groups called strata and then obtaining a simple random sample from each stratum. The individuals within each stratum should be homogenous (similar) in some way.
 - Within Stratified samples, the number of individuals sampled from each stratum should be proportional
 to the size of the strata in the population.
- Systematic sample is obtained by selecting every kth individual from the population. The first individual selected corresponds to a number between 1 and k
- Cluster sample is obtained by selecting all individuals within a randomly selected collection or group of individuals.
- Convenience sample: the individuals are easily obtained and not based on randomness.
- Bias: If the results of the sample are not representative of the population. Sampling bias means that the technique used to obtain the sample's individuals tends to favor one part of the population over another. Any convenience sample has sampling bias because the individuals are not chosen through a random sample.
- **Undercoverage:** Occurs when the proportion of one segment of the population is lower in a sample than it is in the population. This can result if the frame used to obtain the sample is incomplete or not representative of the population.
- Sampling bias: sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others. It results in a biased sample of a population in which all individuals, or instances, were not equally likely to have been selected
- Nonresponse bias: exists when individuals selected to be in the sample who do not respond to the survey have different opinions from those who do
 - This can be controlled with **callbacks**.
 - This can also be controlled with **rewards or incentives**
- Response bias: Exists when the answers on a survey do not reflect the true feelings of the respondent.
- Open Question: Allows the respondent to choose his or her response
- Closed Question: requires the respondent to choose from a list of predetermined responses
- Nonsampling errors: result from undercoverage, nonresponse bias, response bias, or data-entry error. Such errors could also be present in a census.
- Sampling error: results from using a sample to estimate information about a population. This type of error occurs because a sample gives incomplete information about a population.
- **Experiment:** is a controlled study conducted to determine the effect of varying one or more explanatory variables or **factors** has on a response variable.
- Factor: A variable whose effect on the response variable is to be assessed by the experimenter

Warner 124 MATHEMATICS

- Treatment: Any combination of the values of the factors is called a treatment
- Experimental Unit (or subject) is a person, object or some other well-defined item upon which a treatment is applied
- Control Group: Serves as a baseline treatment that can be used to compare to other treatments.
- Placebo: is an innocuous medication, such as a sugar tablet, that looks, tastes, and smells like the experimental medication.
- Blinding: refers to nondisclosure of the treatment an experimental unit is receiving.
- Single-blind experiment is one in which the experimental unit (or subject) does not know which treatment he or she is receiving.
- **Double-blind** experiment is one in which neither the experimental unit nor the researcher in contact with the experimental unit knows which treatment the experimental unit is receiving.
- **Design:** To design an experiment means to describe the overall plan in conducting the experiment. Conducting an experiment requires a series of steps.
- **Blocking:** Grouping together similar experimental units and then randomly assigning the experimental units within each group to a treatment is called
- completely randomized design: is one in which each experimental unit is randomly assigned to a treatment.
- matched-pairs design: is an experimental design in which the experimental units are paired up. The pairs are selected so that they are related in some way (that is, the same person before and after a treatment, twins, husband and wife, same geographical location, and so on). There are only two levels of treatment in a matched-pairs design.
- The relative frequency is the proportion (or percent) of observations within a category and is found using the formula
- Classes: The Categories in which data is grouped
- lower class limit: the smallest value within the class
- upper class limit: the largest value within the class
- Class Width: is the difference between consecutive lower class limits.
- A table is open ended if the first class has no lower class limit or the last class has no upper class limit
- uniform distribution: frequency of each value of the variable is evenly spread across the values of the variable
- bell-shaped distribution: highest frequency occurs in the middle and frequencies tail off to the left and right of the middle.
- skewed right: the tail to the right of the peak is longer than the tail to the left of the peak
- skewed left: tail to the left of the peak is longer than the tail to the right of the peak.
- The arithmetic mean of a variable is computed by adding all the values of the variable in the data set and dividing by the number of observations.
- The population arithmetic mean, μ , (pronounced "mew"), is a parameter that is computed using data from all the individuals in a population.
- The sample arithmetic mean, \bar{x} (pronounced x-bar"), is a statistic that is computed using data from individuals in a sample.

Warner 125 MATHEMATICS

The median of a variable is the value that lies in the middle of the data when arranged in ascending order.
 We use M to represent the median.

- A numerical summary of data is said to be **resistant** if observations that are extreme (very large or small) relative to the data do not affect its value substantially.
 - So the median is resistant, but the mean is not resistant.
- The mode of a variable is the observation of the variable that occurs most frequently in the data set.
 - If no observation occurs more than once, we say that the data have **no mode**.
- Bimodal: If the data has two modes
- Multimodal: If the data has more than two modes
- Dispersion: Degree to which the data are spread out.
- Range: The range, r, of a variable is the difference between the largest and smallest data value. That is, Note: Range is not resistant
- Deviation about the mean: a deviation refers to the difference between an individual data point and a central value, such as the mean or median. It represents how much a particular data point varies or deviates from the average or typical value in a data set.

Note: The sum of the deviations about the mean always equals zero

- Standard Deviation: Measure of dispersion. It gives us a sense of how much the individual values deviate or differ from the average (mean) value. The standard deviation and the mean together can tell you where most of the values in your frequency distribution lie if they follow a normal distribution (Empirical Rule).
- we call n-1 the **degrees of freedom** because the first n-1 observations have freedom to be any value, but the n^{th} observation has no freedom. It must be whatever value forces the sum of the deviations about the mean to equal zero.
- The variance It assesses the average squared difference between data values and the mean. Find my squaring σ or s
 - **Note:** The units of measure in variance are squared values. So if the variable is measured in dollars, the variance is measured in dollars squared. This makes interpreting the variance difficult.
- Coefficient of Variation: The coefficient of variation, CV, is defined as the ratio of the standard deviation to the mean of a data set. The CV allows for a comparison in spread by describing the amount of spread per unit mean. Note: When converting units of measure, the coefficient of variation is unchanged.
- Class Midpoint: The class midpoint is the sum of consecutive lower class limits divided by 2
- Approximate Population Mean (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)
- Approximate Sample Mean (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)
- The weighted mean, \bar{x}_w , of a variable is found by multiplying each value of the variable by its corresponding weight, adding these products, and dividing this sum by the sum of the weights. It can be expressed using the formula
- Approximate Population Standard Deviation (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)
- Approximate Sample Standard Deviation (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)

Warner 126 MATHEMATICS

• The z-score represents the distance that a data value is from the mean in terms of the number of standard deviations. We find it by subtracting the mean from the data value and dividing this result by the standard deviation. Note: The Z-score is unitless. It has mean 0 and a standard deviation of 1 Round z-scores to the nearest hundredth

- The median is a special case of a general concept called the **percentile**.
- the k^{th} percentile, denoted P_k , of a set of data is a value such that k percent of the observations are less than or equal to the value.
- The most common percentiles are quartiles, which divide data sets into fourths, or four equal parts.
- The interquartile range, IQR, is the range of the middle 50% of the observations in a data set. That is, the IQR is the difference between the first and third quartiles and is found using this formula
- Outliers: When analyzing data, we must check for extreme observations, called outliers. Outliers can occur by chance, because of errors in the measurement of a variable, during data entry, or from errors in sampling.
- Fences serve as cutoff points for determining outliers.
- bivariate data: data in which two variables are measured on an individual. For example, we might want to know whether the amount of cola consumed per week is related to a person's bone density. The individuals would be the people in the study, and the two variables would be the amount of cola consumed weekly and bone density.
- Two variables that are linearly related are **positively associated** when above-average values of one variable are associated with above-average values of the other variable (or below-average values of one variable are associated with below-average values of the other variable). That is, two variables are positively associated if, whenever the value of one variable increases, the value of the other variable also increases.
- Two variables that are linearly related are **negatively associated** when above-average values of one variable are associated with below-average values of the other variable. That is, two variables are negatively associated if, whenever the value of one variable increases, the value of the other variable decreases.
- The linear correlation coefficient, or Pearson product moment correlation coefficient, is a measure of the strength and direction of the linear relation between two quantitative variables. The Greek letter ρ (rho) represents the population correlation coefficient, and r represents the sample correlation coefficient. We present only the formula for the sample correlation coefficient.
- The least-squares regression line minimizes the sum of the squared errors (or residuals). This line minimizes the sum of the squared vertical distance between the observed values of y and those predicted by the line, \hat{y} (read "y-hat"). We represent this as $\sum residuals^2$
- The observed distance for this club-head speed is 274 yards. The difference between the observed and predicted values of y is the error, or **residual**.

Residual = observed - predicted.

• The coefficient of determination, R^2 , measures the proportion of total variation in the response variable that is explained by the least-squares regression line.

$$R^2 = r^2$$
.

- An influential observation significantly affects the least-squares regression line's slope and/or y-intercept. (It also affects the value of the correlation coefficient.) Methods exist for determining whether a particular observation is influential; however, they are beyond the scope of this course. Nonetheless, we can still get a sense as to whether a particular observation is influential right now.
- the difference in our predicted value, and our actual value, is due to factors (variables) other than the club-head speed (wind speed and position of the ball on the club face, for example) and to random error. The differences just discussed are called **deviations**.

Warner 127 MATHEMATICS

• Total Deviation: The deviation between the observed value, y, and mean value, \overline{y} , of the response variable.

 $y - \overline{y}$

Or: Explained Deviation + Unexplained Deviation.

• Explained Deviation: The deviation between the predicted value, \hat{y} , and mean value, \overline{y} , of the response variable.

$$\hat{y} - \overline{y}$$
.

• Unexplained Deviation: The deviation between the observed value, y, and predicted value, \hat{y} , of the response variable

$$y - \hat{y}$$
.

- If a plot of the residuals against the explanatory variable shows the spread of the residuals increasing or decreasing as the explanatory variable increases, then a strict requirement of the linear model is violated. This requirement is called **constant error variance**. The statistical term for constant error variance is **homoscedasticity**
- Simpson's Paradox, which describes a situation in which an association between two variables inverts or goes away when a third variable is introduced to the analysis.

Warner 128 MATHEMATICS

Charts and Graphs:

 A frequency distribution lists each category of data and the number of occurrences for each category of data.

- A relative frequency distribution lists each category of data together with the relative frequency.
- A bar graph is constructed by labeling each category of data on either the horizontal or vertical axis and the frequency or relative frequency of the category on the other axis. Rectangles of equal width are drawn for each category. The height of each rectangle represents the category's frequency or relative frequency.
- A Pareto chart is a bar graph whose bars are drawn in decreasing order of frequency or relative frequency.
- A pie chart is a circle divided into sectors. Each sector represents a category of data. The area of each sector is proportional to the frequency of the category.
- A histogram is constructed by drawing rectangles for each class of data. The height of each rectangle is the frequency or relative frequency of the class. The width of each rectangle is the same, and the rectangles touch each other.
- We draw a dot plot by placing each observation horizontally in increasing order and placing a dot above
 the observation each time it is observed.
- The five-number summary of a set of data consists of the smallest data value, Q_1 the median, Q_3 and the largest data value. We use the five-number summary to learn information about the extremes of the data set. The summary is organized as follows:

Minimum $Q_1 M Q_3$ Maximum

- A scatter diagram is a graph that shows the relationship between two quantitative variables measured on
 the same individual. Each individual in the data set is represented by a point in the scatter diagram. The
 explanatory variable is plotted on the horizontal axis, and the response variable is plotted on the vertical
 axis.
 - A scatter plot is useful to determine if the presence of outliers causing an effect.
- A marginal distribution of a variable is a frequency or relative frequency distribution of either the row
 or column variable in the contingency table.
- A conditional distribution lists the relative frequency of each category of the response variable, given a specific value of the explanatory variable in the contingency table.

Warner 129 MATHEMATICS

Formulas

• The relative frequency is the proportion (or percent) of observations within a category.

$$Relative \ frequency = \frac{Frequency}{Sum \ of \ all \ frequency}.$$

• The population arithmetic mean, μ , (pronounced "mew"), is a parameter that is computed using data from all the individuals in a population.

$$\mu = \frac{x_1 + x_2 + x_N}{N} = \frac{\sum x_i}{N}.$$

• The sample arithmetic mean, \bar{x} (pronounced x-bar"), is a statistic that is computed using data from individuals in a sample.

$$\bar{x} = \frac{x_1 + x_2 + x_n}{n} = \frac{\sum x_i}{n}.$$

- The median of a variable is the value that lies in the middle of the data when arranged in ascending order. We use M to represent the median.
 - For odd n:

$$M = \frac{n+1}{2}.$$

– For even n:

$$M = Average \ of \ \frac{n}{2}, \frac{n}{2} + 1.$$

• Range: The range, r, of a variable is the difference between the largest and smallest data value. That is,

$$range = R = Largest \ data \ value - smallest \ data \ value.$$

• **Deviation:** a deviation refers to the difference between an individual data point and a central value, such as the mean or median. It represents how much a particular data point varies or deviates from the average or typical value in a data set. When can compute a deviation with:

$$Individual\ data\ point-mean.$$

• The population standard deviation of a variable is the square root of the sum of squared deviations about the population mean divided by the number of observations in the population, N. The population standard deviation is symbolically represented by σ (lowercase Greek sigma). The formula is given by:

$$\sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N}}$$
$$= \sqrt{\frac{\sum (x_i - \mu)^2}{N}}.$$

Note: Standard Deviation is not resistant

• The sample standard deviation, s, of a variable is the square root of the sum of squared deviations about the sample mean divided by n-1, where n is the sample size. The formula is given as

$$s = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n - 1}}$$
$$= \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}.$$

Note: Standard Deviation is not resistant

Warner 130 MATHEMATICS

- The population variance is σ^2
- The Sample Variance is s^2
- Approximate Population Mean (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)

$$\mu = \frac{\sum x_i f_i}{\sum f_i}$$

$$= \frac{x_1 f_1 + x_2 f_2 + \dots + x_n f_n}{f_1 + f_2 + \dots + f_n}.$$

where: x_i is the midpoint or value of the i th class f_i is the frequency of the i th class n is the number of classes

• Approximate Sample Mean (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)

$$\begin{split} \overline{x} &= \frac{\sum x_i f_i}{\sum f_i} \\ &= \frac{x_1 f_1 + x_2 f_2 + \ldots + x_n f_n}{f_1 + f_2 + \ldots + f_n}. \end{split}$$

where: x_i is the midpoint or value of the i th class f_i is the frequency of the i th class n is the number of classes

• The weighted mean, \bar{x}_w , of a variable is found by multiplying each value of the variable by its corresponding weight, adding these products, and dividing this sum by the sum of the weights. It can be expressed using the formula

$$\overline{x}_w = \frac{\sum w_i x_i}{w_i} = \frac{w_1 + x_1 + w_2 + x_2 + \dots + w_n + x_n}{w_1 + w_2 + \dots + w_n}.$$

Where: w_i is the weight of the i^{th} observation x_i is the value of the i^{th} observation.

• Approximate Population Standard Deviation (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2 f_i}{\sum f_i}}.$$

Where: x_i is the midpoint or value of the ith class f_i is the frequency of the i^{th} class

• Approximate Sample Standard Deviation (if we do not have access to the original data, ie data has been grouped (classed) and frequency chart has already been made)

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2 f_i}{\sum f_i - 1}}.$$

Where: x_i is the midpoint or value of the ith class f_i is the frequency of the i^{th} class

• The z-score represents the distance that a data value is from the mean in terms of the number of standard deviations. We find it by subtracting the mean from the data value and dividing this result by the standard deviation.

Warner 131 MATHEMATICS

- Population Z-score

$$z = \frac{x - \mu}{\sigma}$$
.

- Sample Z-score

$$z = \frac{x - \overline{x}}{s}.$$

Note: The Z-score is unitless. It has mean 0 and a standard deviation of 1 Round z-scores to the nearest hundredth

• The interquartile range, IQR, is the range of the middle 50% of the observations in a data set. That is, the IQR is the difference between the first and third quartiles and is found using this formula

$$IQR = Q_3 - Q_1$$
.

• Fences serve as cutoff points for determining outliers.

Lower Fence =
$$Q_1 - 1.5 \cdot IQR$$

Upper Fence = $Q_3 + 1.5 \cdot IQR$.

• The five-number summary of a set of data consists of the smallest data value, Q_1 the median, Q_3 and the largest data value. We use the five-number summary to learn information about the extremes of the data set. The summary is organized as follows:

Minimum
$$Q_1$$
 M Q_3 Maximum

The linear correlation coefficient, or Pearson product moment correlation coefficient, is a measure of
the strength and direction of the linear relation between two quantitative variables. The Greek letter ρ
(rho) represents the population correlation coefficient, and r represents the sample correlation coefficient.
 We present only the formula for the sample correlation coefficient.

$$r = \frac{\sum \left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)}{n - 1}.$$

Where:

 x_i is the i th observation of the explanatory variable \overline{x} is the sample mean of the explanatory variable s_x is the sample standard deviation of the explanatory variable y_i is the i th observation of the response variable \overline{y} is the sample mean of the response variable S_y is the sample standard deviation of the response variable n is the number of individuals in the sample

• The least-squares regression line minimizes the sum of the squared errors (or residuals). This line minimizes the sum of the squared vertical distance between the observed values of y and those predicted by the line, \hat{y} (read "y-hat"). We represent this as $\sum residuals^2$

$$\hat{y} = b_1 x + b_0.$$

Where:

 $b_1 = r \cdot \frac{s_y}{s_x}$ is the slope of the least-squares regression line.

And:

 $b_0 = \overline{y} - b_1 \overline{x}$ is the y-Intercept of the least-squares regression line.

Warner 132 MATHEMATICS

• The observed distance for this club-head speed is 274 yards. The difference between the observed and predicted values of y is the error, or **residual**.

Residual = observed - predicted.

• The coefficient of determination, R^2 , measures the proportion of total variation in the response variable that is explained by the least-squares regression line.

$$R^2 = r^2$$
.

• Total Deviation: The deviation between the observed value, y, and mean value, \overline{y} , of the response variable.

 $y - \overline{y}$

Or: Explained Deviation + Unexplained Deviation.

• Explained Deviation: The deviation between the predicted value, \hat{y} , and mean value, \overline{y} , of the response variable.

$$\hat{y} - \overline{y}$$
.

• Unexplained Deviation: The deviation between the observed value, y, and predicted value, \hat{y} , of the response variable

$$y - \hat{y}$$
.

- Empirical Rule
 - approximately 68% of the data within 1 standard deviation of the mean. That is, approximately 68% of the data will lie between $\mu 1\sigma$ and $\mu + 1\sigma$

$$\mu \pm 1 \cdot \sigma$$
.

– approximately 95% of the data within 2 standard deviation of the mean. That is, approximately 95% of the data will lie between $\mu-2\sigma$ and $\mu+2\sigma$

$$\mu \pm 2 \cdot \sigma$$
.

– approximately 99.7% of the data within 3 standard deviation of the mean. That is, approximately 99.7% of the data will lie between $\mu-3\sigma$ and $\mu+3\sigma$

$$\mu \pm 3 \cdot \sigma$$
.

• Coefficient of Variation:

 $\frac{Standard\ Deviation}{Mean}$

Warner 133 MATHEMATICS

Deciding Which Measure of Central Tendency and Dispersion to Report:

Shape of Distribution	Measure of Central Tendency	Measure of Dispersion
Symmetric	Mean	Standard Deviation
Skewed Left or Skewed Right	Median	Interquartile Range

Note:-

For the remainder of this course, the phrase "describe the distribution" will mean to describe its shape (skewed left, skewed right, or symmetric), its center (mean or median), and its spread (standard deviation or interquartile range).

Resistant Measures of Central Tendency:

• Median

Non-Resistant Measures of Central Tendency:

- Mean
- Mode

Resistant Measures of Dispersion:

• Quartiles

Non-Resistant Measures of Dispersion:

- · Range.
- Standard Deviation.
- Variance.

Warner 134 MATHEMATICS

5-8 Subsection Titles

Chapter 5:

- 5.1: Probability Rules
- 5.2: The Addition Rule and Complements
- $\bullet~$ 5.3: Independence and the Multiplication Rule

Chapter 6:

- 6.1 Discrete Random Variables
- 6.2 The Binomial Probability Distribution

Chapter 7:

- 7.1: Properties of the Normal Distribution
- 7.2: Applications of the Normal Distribution
- 7.3: Assessing Normality

Chapter 8:

- $\bullet~8.1$ Distribution of the Sample Mean
- 8.2 Distribution of the Sample Proportion

Warner 135 MATHEMATICS

5-8 Vocab

- Simulation: is a technique used to recreate a random event.
- Random Process: represents scenarios where the outcome of any particular trial of an experiment is unknown, but the proportion (or relative frequency) of a particular outcome is observed and approaches a specific value
- **Probability:** Is the measure of the likelihood of a random phenomenon or chance behavior occurring. It deals with experiments that yield random short-term results or outcomes yet reveal long-term predictability. The long-term proportion in which a certain outcome is observed is the probability of that outcome.
- Outcomes: Short term results
- The Law of Large Numbers: As the number of repetitions of a probability experiment increases, the proportion with which a certain outcome is observed gets closer to the probability of the outcome.
- an experiment is any process with uncertain results that can be repeated.
- The sample space, S, of a probability experiment is the collection of all possible outcomes for that experiment.
- An event is any collection of outcomes from a probability experiment. An event consists of one or more outcomes. We denote events with one outcome, sometimes called simple events, as e_i . In general, events are denoted using capital letters such as E.
- A probability model lists the possible outcomes of a probability experiment and each outcome's probability. A probability model must satisfy Rules 1 and 2 of the rules of probabilities.
- An unusual event is an event that has a low probability of occurring.
- An experiment has equally likely outcomes when each outcome has the same probability of occurring.
- A subjective probability is a probability that is determined based on personal judgment.
- **Disjoint:** Two events are disjoint if they have no outcomes in common.
- Mutually Exclusive: Another name for disjoint events.
- Complement of E: Let S denote the sample space of a probability experiment and let E denote an event. The complement of E, denoted E^C , is all outcomes in the sample space S that are not outcomes in the event E.
- Two events being Independent: Two events E and F are independent if the occurrence of event E in a probability experiment does not affect the probability of event F.
- Two events being Dependent: Two events are dependent if the occurrence of event E in a probability experiment affects the probability of event F.
- A random variable is a numerical measure of the outcome of a probability experiment; so its value is determined by chance.
 - Random variables are typically denoted using capital letters such as X
- A discrete random variable has either a finite or countable number of values. The values of a discrete random variable can be plotted on a number line with space between each point. See Figure 1(a).
- A continuous random variable has infinitely many values. The values of a continuous random variable can be plotted on a line in an uninterrupted fashion. See Figure 1(b).
- The **probability distribution** of a discrete random variable X provides the possible values of the random variable and their corresponding probabilities. A probability distribution can be in the form of a table, graph, or mathematical formula.

Warner 136 MATHEMATICS

• Because the mean of a random variable represents what we would expect to happen in the long run, it is also called the **expected value**, E(X). The interpretation of the expected value is the same as the interpretation of the mean of a discrete random variable.

- The **binomial probability distribution** is a discrete probability distribution that describes probabilities for experiments in which there are two mutually exclusive (disjoint) outcomes. These two outcomes are generally referred to as success (such as making a free throw) and failure (such as missing a free throw). Experiments in which only two outcomes are possible are referred to as binomial experiments, provided that certain criteria are met.
- A combination is a collection, without regard to order and without repetition, in which r objects are chosen from n distinct objects with $r \leq n$.
- Trial: Each repetition of the experiment.
- Probability Density Function (pdf): an equation used to compute probabilities of continuous random variables. It must satisfy the following two properties:
 - 1. The total area under the graph of the equation over all possible values of the random variable must equal 1
 - 2. The height of the graph of the equation must be greater than or equal to 0 for all possible values of the random variable. That is, the graph of the equation must lie on or above the horizontal axis for all possible values of the random variable.
- The area under the graph of the density function over an interval represents the probability of observing a value of the random variable in that interval.
- In mathematics, a model is an equation, a table, or a graph used to describe reality.
- The magenta curve in Figure 1 is a model called the **normal curve**, which is used to describe continuous random variables that are normally distributed.

Figure 1:

- A continuous random variable is **normally distributed**, or has a **normal probability distribution**, if its relative frequency histogram has the shape of a normal curve.
- Inflection Points: On a bell shaped curve (normal curve), the graph has two inflection points. At $\mu \pm \sigma$, these points are where the graph shifts from increasing at an increasing rate, to increasing at a decreasing rate
- If a normal random variable X has a mean different from 0 or a standard deviation different from 1, we can transform X into a **standard normal random variable Z** whose mean is 0 and standard deviation is 1.

Warner 137 MATHEMATICS

- A normal probability plot is a graph that plots observed data versus normal scores.
- A **normal score** is the expected z-score of the data value, assuming that the distribution of the random variable is normal. The expected z-score of an observed value depends on the number of observations in the data set.
- The sampling distribution of a statistic is a probability distribution for all possible values of the statistic computed from a sample of size n
- The sampling distribution of the sample mean \overline{x} is the probability distribution of all possible values of the random variable \overline{x} computed from a sample of size n from a population with mean μ and standard deviation σ .
- The standard deviation of the sampling distribution of \overline{x} , $\sigma_{\overline{x}}$, is called the **standard error** of the mean. **Note:** As the sample size n increases, the standard error of the mean **decreases**
- The Central Limit Theorem: Regardless of the shape of the underlying population, the sampling distribution of \overline{x} becomes approximately normal as the sample size, n, increases
- The sample proportion, \hat{p} , is a statistic that estimates the population proportion, p.

Warner 138 MATHEMATICS

5-8 Formulas

· Computing probability with the empirical method

$$P(E) = \text{Relative frequency of E} = \frac{Frequency\ of\ E}{number\ of\ trials\ of\ experiment}$$

- Computing Probability With The Classical Method
 - If an experiment has n equally likely outcomes and if the number of ways that an event E can occur is m, then the probability of E,P(E), is

$$P(E) = \frac{\text{number of ways that } E \text{ can occur}}{\text{number of possible outcomes}} = \frac{m}{n}.$$

- So, if S is the sample space of this experiment, then

$$P(E) = \frac{N(E)}{N(E)}.$$

where N(E) is the number of outcomes in E, and N(S) is the number of outcomes in the sample space.

- Addition Rule for Disjoint Events:
 - if E and F are disjoint (or mutually exclusive) events, then:

$$P(E \text{ or } F) = P(E) + P(F).$$

• Addition Rule for Non-Disjoint Events (General Addition Rule)

$$P(E \text{ or } F) = (P(E) + P(F)) - P(E \text{ and } F).$$

- Complement Rule:
 - If E represents any event and E^C represents the complement of E, then

$$P(E^C) = 1 - P(E).$$

- Multiplication Rule For Independent Events:
 - If $E_1, E_2, E_3, \ldots, E_n$ are independent events, then

$$P(E_1 \text{ and } E_2 \text{ and } E_3 \text{ and } \dots \text{ and } E_n) = P(E_1) \cdot P(E_2) \cdot \dots \cdot P(E_n).$$

· Notation for probability of discrete random variables

$$P(X)$$
.

- Read as:

"The probability that the random variable X equals x"

• Mean of a Discrete Random Variable

$$\mu_X = \sum_{i=1}^n x \cdot P(x).$$

Where x is the value of the random variable and P(x) is the probability of observing the value x.

Warner 139 MATHEMATICS

• Expected Value:

$$E(X) = \mu_X$$
.

• Standard Deviation of a Discrete Random Variable

$$\sigma_X = \sqrt{\sum [(x - \mu_X)^2 \cdot P(x)]}.$$

Where x is the value of the random variable, μ_X is the mean of the random variable, and P(x) is the probability of observing x.

• Variance of discrete random variable:

$$\sigma^2$$
.

- nCk (Combinations):
 - The n objects are distinct
 - Repetition of objects is not allowed, and
 - Order is not important

$$nCk = \frac{n!}{(k!(n-k)!)}.$$

• Binomial Probability Distribution Function

$$P(x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}, \quad x = 0, 1, 2, \dots, n.$$

where p is the probability of success.

- Mean (or Expected Value) and Standard Deviation of a Binomial Random Variable
 - A binomial experiment with n independent trials and probability of success p has mean, μ_X , and standard deviation, σ_X , given by the formulas

$$\mu_X = np$$
, and standard deviation, $\sigma_X = \sqrt{np(1-p)}$.

· Drawing normal probability plot by hand

$$f_i = \frac{i - 0.375}{n + 0.5}.$$

Then use table to find expected zscores

· Mean of sampling distribution

$$\mu_{\overline{x}} = \mu$$
.

• Standard Deviation of sampling distribution

$$\sigma_{\overline{x}} = \sqrt{\frac{N-n}{N-1}} \cdot \frac{\sigma}{\sqrt{n}}.$$

• finite population correction factor

$$\sqrt{\frac{N-n}{N-1}}.$$

Warner 140 MATHEMATICS

• Suppose that a random sample of size n is obtained from a population in which each individual either does or does not have a certain characteristic. The **sample proportion**, denoted \hat{p} (read "p-hat"), is given by:

$$\hat{p} = \frac{x}{n}.$$

where x is the number of individuals in the sample with the specified characteristic.

• Mean of sampling distribution

$$\mu_{\hat{p}} = p.$$

• Standard Deviation of the sampling distribution:

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}.$$

Warner 141 MATHEMATICS

5-8 Concepts:

Rules of Probability

Rules of Probability:

- 1. The probability of any event E, P(E), must be greater than or equal to 0 and less than or equal to 1. That is, $0 \le P(E) \le 1$.
- 2. The sum of the probabilities of all outcomes must equal 1. That is, if the sample space $S = \{e_1, e_2, \dots, e_n\}$, then

$$P(e_1) + P(e_2) + \dots + P(e_n) = 1..$$

Consider The Table:

Color	Probability
Brown	0.12
Yellow	0.15
Red	0.12
Blue	0.23
Orange	0.23
Green	0.15

Does this satisfy the rules?

Rule 1 is satisfied because all probabilities are between 0 and 1, inclusive.

Rule 2 is satisfied because $\sum P(E) = 1$

Unusual Event

Typically, an event with a probability less than 0.05 (or 5%) is considered unusual, but this cutoff point is not set in stone. The researcher and the context of the problem determine the probability that separates unusual events from not so unusual events.

The three methods for determining the probability of an event:

- the Empirical Method
- the Classical Method
- the Subjective Method

Warner 142 MATHEMATICS

Rule for claiming Independence:

When we take small samples from large finite populations, we make the assumption of independence even though the events are technically dependent.

As a general rule of thumb, if the sample size n is no more than 5% of the population N ($n \le 0.05N$), we assume independence.

Compute "at-least" Probabilities:

Usually, when computing probabilities involving the phrase at least, use the Complement Rule.

The phrase at least means "greater than or equal to." For example, a person must be at least 17 years old to see an R-rated movie. This means that the person's age must be greater than or equal to 17 to watch the movie.

Poll Indicates Different from our assumptions

Consider the following scenario:

According to a poll, about 17% of adults in a country bet on professional sports. Data indicates that 47.3% of the adult population in this country is male. Assuming that betting is independent of gender, compute the probability that an adult from this country selected at random is a male and bets on professional sports.

Solution:

$$P(Male \ or \ Bet \ on \ Sports) = .17 \cdot .473$$

= .0804.

Now Consider:

The poll data indicated that % of adults in this country are males and bet on professional sports.

Solution:

The assumption was incorrect and the events are **not independent**.

Rules for a Discrete Probability Distribution:

Let P(x) denote the probability that the random variable X equals x; then

- $\sum P(x) = 1$
- $0 \le P(x) \le 1$

Warner 143 MATHEMATICS

Graph Discrete Probability Distributions

In the graph of a discrete probability distribution, the horizontal axis is the value of the discrete random variable and the vertical axis is the corresponding probability of the discrete random variable. When graphing a discrete probability distribution, we want to emphasize that the data are discrete. Therefore, draw the graph of discrete probability distributions using vertical lines above each value of the random variable to a height that is the probability of the random variable.

Finding Mean of a Discrete Random Variable In Statcrunch:

- 1. Stat > Calculators > Custom
- 2. Select Values in:
- 3. Select Weights in (P(X)):
- 4. Compute

How to Interpret the Mean of a Discrete Random Variable

The mean of a discrete random variable can be thought of as the mean outcome of the probability experiment if we repeated the experiment many times.

As the number of repetitions of the experiment increases... The mean value of the n trials will approach μ_X (The difference between \overline{x} and μ_X gets closer to 0 as n increases)

Warner 144 MATHEMATICS

Life insurance policy example (expected value)

Example: A term life insurance policy will pay a beneficiary a certain sum of money upon the death of the policy holder. These policies have premiums that must be paid annually. Suppose a life insurance company sells a \$250,000 one-year term life insurance policy to a 49-year-old female for \$530. According to the National Vital Statistics Report, Vol. 47, No. 28, the probability that the female will survive the year is 0.99791. Compute the expected value of this policy to the insurance company.

Approach:

The experiment has two possible outcomes: survival or death. Let the random variable X represent the payout (money lost or gained), depending on survival or death of the insured. Assign probabilities to each payout and substitute these values into $\mu_X = \sum (x \cdot P(X))$

Step 1. Because P(survives) = 0.99791, P(dies) = 0.00209. If the client survives the year, the insurance company makes \$530, or x = +530. If the client dies during the year, the insurance company must pay \$250,000 to the client's beneficiary, but still keeps the \$530 premium; so x = \$530 - \$250,000 = -\$249,470. The value is negative because it is money paid by the insurance company. The probability distribution is listed in Table 3.

x	P(X)
\$530 (survives)	0.99791
-\$249,470 (dies)	0.00209

Step 2. The expected value (from the point of view of the insurance company) of the policy is

$$E(X) = \mu_X$$

$$= \sum (x \cdot P(X))$$

$$= (\$530 \cdot 0.99791) + (-\$249470 \cdot 0.00209)$$

$$= \$7.50.$$

Therefore:

The company expects to make \$7.50 for each 49-year-old female client it insures. The \$7.50 profit of the insurance company is a long-term result. It does not make \$7.50 on each 49-year-old female it insures; rather, the average profit per 49-year-old female insured is \$7.50. Because this is a long-term result, the insurance "idea" will not work with only a few insured.

Warner 145 MATHEMATICS

Standard Deviation of a Random Discrete Variable In Statrunch

Statcrunch Steps:

- 1. Stat > Calculators > Custom
- 2. Select Values in:
- 3. Select Weights in (P(X)):
- 4. Compute

Criteria for a Binomial Probability Experiment

An experiment is said to be a **binomial experiment** if:

- 1. The experiment is preformed a fixed number of times. Each repetition of the experiment is called a trial
- 2. The trials are independent. This means that the outcome of one trial will not affect the outcome of the other trials.
- 3. for each trial, there are two mutually exclusive outcomes, success or failure.
- 4. The probability of success is fixed for each trial of the experiment.

Notation used in the binomial probability distribution:

- There are n independent trials of the experiment.
- let p denote the probability of success so that 1-p is the probability of failure
- Let X be a binomial random variable that denotes the number of successes in n independent trials of the experiment. So $0 \le X \le n$

three methods for obtaining binomial probabilities:

- 1. The binomial probability distribution formula
- 2. A table of binomial probabilities
- 3. Technology

Warner 146 MATHEMATICS

Using the Binomial Probability Distribution Function in Statcrunch

Steps:

- 1. Stat > Calculators > Binomial
- 2. Enter n
- 3. Enter p
- 4. Enter info for P(X)
- 5. Compute

Shape of Binomial Probability Distribution for Various Values of p

The binomial probability distribution is

- skewed right if p < 0.5
- symmetric and approximately bell-shaped if p = 0.5
- skewed left of p > 0.5

Shape of the Graph of a Binomial Probability Distribution for Various Values of n

- For a fixed p, as the number of trials n in a binomial experiment increases, the probability distribution of the random variable X becomes bell-shaped.
- As a rule of thumb, if $np(1-p) \ge 10$, the probability distribution will be approximately bell-shaped.

Note:-

This result allows us to use the Empirical Rule to identify unusual observations in a binomial experiment. Recall that the Empirical Rule states that in a bell-shaped distribution, about 95% of all observations lie within 2 standard deviations of the mean. That is, about 95% of the observations lie between -2 and +2. Any observation that lies outside this interval may be considered unusual because the observation occurs less than 5% of the time.

Warner 147 MATHEMATICS

Example: According to CTIA, 55% of all U.S. households are wireless-only. In a simple random sample of 500 households, 301 were wireless-only. Is this result unusual?

Approach:

Because $np(1-p) = 500(0.55)(1-0.55) = 123.75 \ge 10$, the binomial probability distribution is approximately bell-shaped. Therefore, we can use the Empirical Rule: If the observation is less than $\mu - 2\sigma$ or greater than $\mu + 2\sigma$, it is unusual.

Solution: We have
$$\mu_X=500(0.55)=275$$
 and $\sigma_X=\sqrt{np(1-p)}=\sqrt{500(0.55)(1-0.55)}=11.1.$ Now,
$$\mu_X-2\sigma_X=275-2(11.1)=275-22.2=252.8$$
 and
$$\mu_X+2\sigma_X=275+2(11.1)=275+22.2=297.2..$$

Any value less than 252.8 or greater than 297.2 is unusual; therefore, 301 is an unusual result. We should try to identify the reason for its value. Perhaps the percentage of households that are wireless-only has increased.

Probability Density Function (pdf) Rules:

- 1. The total area under the graph of the equation over all possible values of the random variable must equal 1
- 2. The height of the graph of the equation must be greater than or equal to 0 for all possible values of the random variable. That is, the graph of the equation must lie on or above the horizontal axis for all possible values of the random variable.

Warner 148 MATHEMATICS

Area as a Probability:

The probability of choosing a time that is between 15 and 30 seconds after the minute is the area under the uniform density function.

Effects of mean and standard deviation on normal curve

- as the mean increases, the graph slides to the right
- as the mean decreases, the graph slides to the left
- as the standard deviation increases, the graph flattens out and becomes wider
- as the standard deviation decreases, the graph compresses out and becomes steeper

Properties of the Normal Curve

The normal probability density function satisfies all the requirements of probability distributions. Now we list the properties of the normal density curve. The video explains the properties.

- 1. Because mean = median = mode, the normal curve has a single peak and the highest point occurs at $x = \mu$.
- 2. The normal curve has inflection points at $\mu \sigma$ and $\mu + \sigma$.
- 3. The area under the normal curve is 1.
- 4. The area under the normal curve to the right of μ equals the area under the normal curve to the left of μ , which equals 0.5.
- 5. As x increases without bound (gets larger and larger), the graph approaches, but never reaches, the horizontal axis. As x decreases without bound (gets more and more negative), the graph approaches, but never reaches, the horizontal axis.
- 6. The Empirical Rule:
 - Approximately 68% of the area under the normal curve is between $x = \mu \sigma$ and $x = \mu + \sigma$.
 - Approximately 95% of the area is between $x = \mu 2\sigma$ and $x = \mu + 2\sigma$.
 - Approximately 99.7% of the area is between $x = \mu 3\sigma$ and $x = \mu + 3\sigma$.

Warner 149 MATHEMATICS

The Role of Area in the Normal Density Function:

Suppose that a random variable X is normally distributed with mean μ and standard deviation σ . The area under the normal curve for any interval of values of the random variable X represents either

- The proportion of the population with the characteristic described by the interval of values, or
- The probability that a randomly selected individual from the population will have the characteristic described by the interval of values.

Find and Interpret the Area under a Normal Curve

We use z-scores to find the area under a normal curve by hand. Recall that the z-score allows us to transform a random variable X with mean μ and standard deviation σ into a random variable Z with mean 0 and standard deviation 1.

Warner 150 MATHEMATICS

Standardizing a Normal Random Variable:

Suppose that the random variable X is normally distributed with mean μ and standard deviation σ .

Then the random variable

$$Z = \frac{X - \mu}{\sigma}.$$

is normally distributed with mean $\mu = 0$ and standard deviation $\sigma = 1$.

The random variable Z is said to have the **standard normal distribution**.

Consider an example:

IQ scores can be modeled by a normal distribution with $\mu = 100$ and $\sigma = 15$ Suppose a person has an IQ of 120

Figure:

Now we can transform this into a standard normal (Z distribution)

$$Z = \frac{120 - 100}{15}$$
$$= 1.33.$$

Figure:

Then by looking at the Table, we can determine the area in the red shaded region. Which is .9082. From this we can also determine that the area in the red region of our original distribution is also .9082

Warner 151 MATHEMATICS

If we wanted to find the area of the unshaded region, we can use the complement rule

1 - .9082= .0918.

Percentiles:

Because the area under the normal curve represents a proportion, we can also use the area to find percentile ranks of scores.

So we can say that 90.82% have an IQ ≤ 120

Finding an interpreting Area under a Normal Curve With Statcrunch:

- 1. Stat > Calculators > Normal
- 2. Input Mean
- 3. Input Standard Deviation
- 4. Input X
- 5. Compute

Find the Value of a Normal Random Variable:

Often, we do not want to find the proportion, probability, or percentile given a value of a normal random variable. Rather, we want to find the value of a normal random variable that corresponds to a certain proportion, probability, or percentile. For example, we might want to know the height of a 3-year-old girl who is at the 20th percentile. Or we might want to know the scores on a standardized exam that separate the middle 90% of scores from the bottom and top 5%.

Example: The heights of a pediatrician's 3-year-old females are approximately normally distributed, with mean 38.72 inches and standard deviation 3.17 inches. Find the height of a 3-year-old female at the 20^{th} percentile.

Approach:

Use .2 in Staterunch steps mentioned previously as what P(X) is equal to.

Example: The mean incubation time of fertilized eggs is days. Suppose the incubation times are approximately normally distributed with a standard deviation of day. Determine the incubation times that make up the middle 97%

Solution:

So in statcrunch, we will use values 0.05, and 0.97

Warner 152 MATHEMATICS

Important Notation for the Future

The notation z_{α} (pronounced "z sub alpha") is the z-score such that the area under the standard normal curve to the right of z_{α} is α .

Example: Find the value of $Z_{0.21}$

Solution: So we want to find the area to the right of 0.21, in staterunch:

- 1. Stat > Calculator > Normal
- 2. Mean: 0
- 3. Std. Dev: 1
- 4. $P(x \ge 0) = 0.21$
- 5. Compute!

Drawing a Normal Probability Plot Using Staterunch

- 1. Graph > QQ plot
- 2. Select Column
- 3. Select Correlation Statistic
- 4. Compute

Note:-

Normal probability plot is observed values as x and expected z-scores as y

Warner 153 MATHEMATICS

A Rule of Thumb for Invoking the Central Limit Theorem:

1. The shape of the distribution of the population from which the sample is drawn dictates the size of the sample required for the distribution of the sample mean to be normal.

- 2. The more skewed the distribution of the population is, the larger the sample size needed to invoke the Central Limit Theorem.
- 3. If the distribution of the population is unknown or not normal, then the distribution of the sample mean is approximately normal provided that the sample size is greater than or equal to 30.

cutting the standard error of the mean in half

The sample size must be increased by a factor of four to cut the standard error in half.

Suppose a simple random sample of size n is obtained from a population whose distribution is skewed right. As the sample size n increases, what happens to the shape of the distribution of the sample mean?

Answer: The distribution becomes approximately normal.

(b) For the three probability distributions shown, rank each distribution from lowest to highest in terms of the sample size required for the distribution of the sample mean to be approximately normally distributed.

1. **Uniform**: Lowest

2. Normal: Medium

3. Skewed: Highest

Sampling Distribution of phat

For a simple random sample of size n with a population proportion p,

- The shape of the sampling distribution of \hat{p} is approximately normal provided $np(1-p) \ge 10$.
- The mean of the sampling distribution of \hat{p} is:

$$\mu_{\hat{p}} = p..$$

• The standard deviation of the sampling distribution of \hat{p} is:

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}.$$

Note:-

The sample size, n, can be no more than 5% of the population size, N. That is, $n \leq 0.05N$.

Warner 154 MATHEMATICS

9-12 Subsection Titles

Chapter 9:

- 9.1: Estimating a Population Proportion
- 9.2: Estimating a Population Mean
- 9.3: Putting It Together: Which Procedure Do I Use?

Chapter 10:

- 10.1: The Language of Hypothesis Testing
- 10.2A: Hypothesis Tests on a Population Proportion with Simulation
- 10.2B: Hypothesis Tests on a Population Proportion Using the Normal Model
- 10.3: Hypothesis Tests for a Population Mean
- 10.4: Putting It Together: Which Procedure Do I Use?

Chapter 11:

- 11.1A: Using Randomization Techniques to Compare Two Proportions
- 11.1: Inference about Two Population Proportions: Independent Samples
- 11.2: Inference about Two Population Means: Dependent Samples
- 11.3A Using Randomization Techniques to Compare Two Independent Means
- 11.3 Inference about Two Population Means: Independent Samples
- 11.4: Putting It Together: Which Procedure Do I Use?

Chapter 12:

- 12.1 Goodness-of-Fit Test
- $\bullet~$ 12.2 Tests for Independence and the Homogeneity of Proportions

Warner 155 MATHEMATICS

9-12 Vocab

- A **point estimate** is the value of a statistic that estimates the value of a parameter.
- A Confidence Interval for an unknown parameter consists of an interval of numbers based on a point estimate.
- The level of confidence represents the expected proportion of intervals that will contain the parameter if a large number of different samples is obtained.
- Critical Value represents the number of standard deviations the sample statistic can be from the parameter and still result in an interval that includes the parameter.
- The point estimate of the population mean, μ , is the sample mean, \overline{x} .
- T-Interval: confidence interval that uses the t-distribution
- A Hypothesis is a statement regarding a characteristic of one or more populations
- **Hypothesis Testing** is used to test statements regarding a characteristic of one or more populations **Note:** The "heart" of hypothesis testing is making an assumption about reality, and collecting sample evidence to determine whether it contradicts the assumption.
- Null Hypothesis is a statement to be tested. The null hypothesis is a statement of no change, no effect or no difference and is assumed true until evidence indicates otherwise
- alternative Hypothesis is a statement that we are trying to find evidence to support
- Left- and right-tailed tests are referred to as **one-tailed tests**.
- Reject the null hypothesis when the null hypothesis is true. This decision would be incorrect. This type of error is called a **Type I error**.
- Do not reject the null hypothesis when the alternative hypothesis is true. This decision would be incorrect. This type of error is called a **Type II error**.
- level of significance. is the probability of making a type-1 error
- When observed results are unlikely under the assumption that the null hypothesis is true, the result is statistically significant and we reject the statement in the null hypothesis.
- A model that generates data randomly under the assumption the statement in the null hypothesis is true. Call this model the **null model**.
- A **P-value** is the probability of observing a sample statistic as extreme or more extreme than the one observed under the assumption that the statement in the null hypothesis is true. Put another way, the P-value is the likelihood or probability that a sample statistic will result in a statistic such as the one obtained if the statement in the null hypothesis is true.
- Practical significance refers to the idea that although small differences between the statistic and parameter stated in the null hypothesis are statistically significant, the difference may not be large enough to cause concern or be considered important.
- A sampling method is **independent** when an individual selected for one sample does not dictate which individual is to be in the second sample.
- A sampling method is **dependent** when the individuals selected to be in one sample are used to determine the individuals in the second sample. (matched pairs samples)
- A **goodness-of-fit** test is an inferential procedure used to determine whether a frequency distribution follows a specific distribution.
- The **chi-square test for independence** is used to determine whether there is an association between a row variable and a column variable in a contingency table constructed from sample data.

Warner 156 MATHEMATICS

- The null hypothesis is that the variables are not associated, or independent.
- The alternative hypothesis is that the variables are associated, or dependent.

• In a **chi-square test for homogeneity of proportions**, we test whether different populations have the same proportion of individuals with some characteristic.

Warner 157 MATHEMATICS

9-12 Notation/Formulas

• Point Estimate for a Sample Proportion

$$\hat{p} = \frac{x}{n}.$$

• The Margin of Error is denoted:

E.

• Confidence Intervals for a Proportion are of the form:

point estimate \pm margin of error

That is:

$$\hat{p} \pm E$$
.

We have 95% confidence that the sampling proportion will lie between:

$$\hat{p} \pm 1.96\sigma_{\hat{p}}$$
.

• The level of confidence is denoted:

$$(1-\alpha)\cdot 100\%$$
.

• Standard Error:

$$\sigma_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

• Constructing any $(1-\alpha)\cdot 100\%$ Confidence Interval

$$\hat{p} - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

• Critical Value

$$z_{\frac{\alpha}{2}}$$

• Constructing a $(1-\alpha)$ · 100% Confidence Interval for a Population Proportion: Suppose that a simple random sample of size n is taken from a population or the data are the result of a randomized experiment. A $(1-\alpha)$ ·100% confidence interval for p is given by the following quantities:

Lower bound:
$$\hat{p} - z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Upper bound: $\hat{p} + z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.

Note: It must be the case that $n\hat{p}(1-\hat{p}) \ge 10$ and $n \le 0.05N$ to construct this interval. Use \hat{p} in place of p in the standard deviation. This is because p is unknown, and \hat{p} is the best point estimate of p.

• The margin of error, E, in a $(1-\alpha)\cdot 100\%$ confidence interval for a population proportion is given by

$$E = Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$or: \ \frac{Upper\ Limit\ - Lower\ Limit}{2}.$$

• Sample Size Needed for Estimating the Population Proportion

$$n = \hat{p} \cdot (1 - \hat{p}) \cdot \left(\frac{z_{\alpha/2}}{E}\right)^2.$$

(rounded up to the next integer) where \hat{p} is a prior estimate of p.

Warner 158 MATHEMATICS

If a prior estimate of p is unavailable, the sample size required is

$$n = 0.25 \cdot \left(\frac{z_{\alpha/2}}{E}\right)^2.$$

rounded up to the next integer. The margin of error should always be expressed as a decimal when using these formulas.

• Width

2(E).

• Student's t-distribution

$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}.$$

• Point estimate for a population mean

 \overline{x} .

- Constructing a $(1-\alpha)$ ·100% Confidence Interval for μ Provided:
 - sample data come from a simple random sample or randomized experiment
 - sample size is small relative to the population size (n ≤ 0.05 N)
 - the data come from a population that is normally distributed with no outliers, or the sample size is large

A $(1-\alpha)\cdot 100\%$ confidence interval for μ is given by

$$LB := \overline{x} - t_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$$

$$UB := \overline{x} + t_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$$

where $t_{\frac{\alpha}{2}}$ is the critical value with n-1 degrees of freedom.

• Margin of Error:

$$E = t_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}.$$

• Determine the Sample Size Necessary for Estimating a Population Mean within a Given Margin of Error

$$n = \left(\frac{\frac{z_{\alpha}}{2} \cdot s}{E}\right)^{2}.$$

• Null Hypothesis

 H_0 .

• Alternative hypothesis

 H_1 .

• Level of Significance (Probability of making a type-1 error)

$$\alpha = P(\text{Type I error}) = P(\text{rejecting } H_0 \text{ when } H_0 \text{ is true})$$

Warner 159 MATHEMATICS

• Probability of making a type-2 error

 $\beta = P(\text{Type II error}) = P(\text{not rejecting } H_0 \text{ when } H_1 \text{ is true}).$

• Assumed value of the population proportion

 p_0 .

• Assumed mean of the population proportion

 $\mu_{\hat{p}} = p_0.$

• Assumed Standard Error

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}.$$

• Conditions

Sample is simple random $\,$

$$np_0(1-p_0)\geqslant 10$$

and: $n \leq 0.05N$.

• Computation of test statistic

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}.$$

• Assumed value of population mean

 μ_0 .

- Conditions
 - Sample is simple random
 - $-n \geqslant 30$
 - $-n \leqslant 0.05N$
 - If n > 30, we must verify that the sample comes form a normally distributed population, to do this verify with the normal probability plot (qq plot), and make a boxplot to check for outliers. If there are outliers in the data, we must not proceed.
- Test statistic for hypothesis test about the mean

$$t_0 = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}.$$

Warner 160 MATHEMATICS

• The sampling distribution of $\hat{p}_1 - \hat{p}_2$:

$$\hat{p}_1 = \frac{x_1}{n_1}$$

$$\hat{p}_2 = \frac{x_2}{n_2}$$

Is approximately normal

- Conditions
 - Samples are obtained independently
 - $-n_1\hat{p}_1(1-\hat{p}_1) \geqslant 10$
 - $-n_2\hat{p}_2(1-\hat{p}_2) \geqslant 10$
 - Each sample is no more than 5% of the population
- Mean of difference between two population proportions

$$\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2$$

$$Or: 0.$$

• Pooled Estimate of p

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}.$$

• Standard Deviation of difference between two population proportions

$$\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$
$$Or: \sqrt{\hat{p}(1 - \hat{p})} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}.$$

• The standardized version of $\hat{p}_1 - \hat{p}_2$ is then written as:

$$Z_0 = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$$

$$Or: Z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

Which has an approximate standard normal distribution.

• Constructing a $(1 - \alpha) \cdot 100\%$ Confidence Interval for the Difference between Two Population Proportions (Independent Samples)

Lowerbound:
$$\hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Upperbound: $\hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$.

Notice that we do not pool the sample proportions. This is because we are not making any assumptions regarding their equality, as we did in hypothesis testing.

• Population Mean Difference

$$\mu_d = \mu_1 - \mu_2$$
 $Or: 0.$
160

Warner 161 MATHEMATICS

• Sample Mean Difference for two dependent samples

 \bar{d} this is the mean of the differenced data.

• Sample Standard Deviation Difference for two dependent samples

 s_d this is the standard deviation of the differenced data.

• Test Statistic for difference between two dependent samples:

$$t_0 = \frac{\bar{d} - \mu_d}{\frac{s_d}{\sqrt{n}}}.$$

• Confidence Interval for two dependent samples

$$\begin{split} Lowerbound : \bar{d} - t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}} \\ Upperbound : \bar{d} + t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}}. \end{split}$$

The critical value $t_{\alpha/2}$ is determined using n-1 degrees of freedom. The values of \bar{d} and s_d are the mean and standard deviation of the differenced data.

Note:-

The interval is exact when the population is normally distributed and approximately correct for nonnormal populations, provided that n is large.

• Welch's approximate t (Sampling Distribution of the Difference of Two Means: Independent Samples with Population Standard Deviations Unknown Suppose that a simple random sample of size n_1 is taken from a population with unknown mean μ_1 and unknown standard deviation σ_1 . In addition, a simple random sample of size n_2 is taken from a second population with unknown mean μ_2 and unknown standard deviation σ_2 . If the two populations are normally distributed or the sample sizes are sufficiently large $(n_1 \ge 30 \text{ and } n_2 \ge 30)$, then

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}.$$

approximately follows Student's t-distribution with the smaller of $n_1 - 1$ or $n_2 - 1$ degrees of freedom, where \overline{x}_1 is the sample mean and s_1 is the sample standard deviation from population 1, and \overline{x}_2 is the sample mean and s_2 is the sample standard deviation from population 2.

• degrees of freedom: The degrees of freedom used to determine the P-value presented in the by-hand solution of Example 1 are conservative (this means we would require more evidence against the statement in the null hypothesis than if we use the formula for degrees freedom given below).

Results that are more accurate can be obtained using the following formula for degrees of freedom:

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}.$$

Warner 162 MATHEMATICS

When using this formula to compute degrees of freedom, round down to the nearest integer to use Table VII. For hand inference, it is recommended that you use the smaller of n1-1 or n2-1 as the degrees of freedom to ease computation. However, for increased precision in determining the P-value, computer software will use the formula above when computing the degrees of freedom.

• Constructing a $(1-\alpha)\cdot 100\%$ Confidence Interval for the Difference of Two Means

Lower Bound:
$$(\overline{x}_1 - \overline{x}_2) - t_{\frac{\alpha}{2}} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$Upper Bound: (\overline{x}_1 + \overline{x}_2) - t_{\frac{\alpha}{2}} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

where $t_{\frac{\alpha}{2}}$ is computed using the smaller of n_1-1 or n_2-1 degrees of freedom or using the degrees of freedom formula.

• Compute p-values

$$\begin{split} Left-tailed\ Test:\ p-value &= P(Z < Z_0)\\ Right-tailed\ Test:\ p-value &= P(Z > Z_0)\\ Two-tailed\ Test:\ p-value &= P(Z > |Z_0|)\\ Or: \\ Left-tailed\ Test:\ p-value &= P(t < t_0)\\ Right-tailed\ Test:\ p-value &= P(t > t_0)\\ Two-tailed\ Test:\ p-value &= P(t > |t_0|) \end{split}$$

• Critical Value of Chi-Square distribution

$$\chi^2_{\alpha}$$
.

• Expected Counts Suppose there are n independent trials of an experiment with $k \ge 3$ mutually exclusive possible outcomes. Let p_1 represent the probability of observing the first outcome and E_1 represent the expected count of the first outcome; p_2 represent the probability of observing the second outcome and E_2 represent the expected count of the second outcome; and so on.

The expected counts for each possible outcome are given by:

$$E_i = \mu_i = np_i$$
 for $i = 1, 2, \dots, k$.

• Test Statistic for Goodness-of-Fit Tests Let O_i represent the observed counts of category i, E_i represent the expected counts of category i, k represent the number of categories, and n represent the number of independent trials of an experiment. Then the formula

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
 for $i = 1, 2, \dots, k$.

- Conditions for test-statistic, the test-statistic approximately follows the chi-square distribution with k-1 degrees of freedom, provided that:
 - all expected frequencies are greater than or equal to 1 (all $E_{i\geqslant 1}$) and
 - no more than 20% of the expected frequencies are less than 5.

Warner 163 MATHEMATICS

• Expected Frequencies in a Chi-Square Test for Independence

$$Expected\ Frequency = \frac{(Row\ Total)(Column\ Total)}{TableTotal}.$$

• Test Statistic for the Chi-Square Test of Independence Let O_i represent the observed number of counts in the i^{th} cell and E_i represent the expected number of counts in the ith cell. Then

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}.$$

• Chi-Square test for independence degrees of freedom

$$(r-1)(c-1)$$
.

Where r is the number of rows and c is the number of columns in the contingency table, provided that

- All expected frequencies are greater than or equal to 1 and
- No more than 20% of the expected frequencies are less than 5.

Warner 164 MATHEMATICS

Confidence interval

• for a 95% confidence interval, any sample proportion that lies withing 1.96 standard errors of the population proportion will result in a confidence interval that includes p. This will happen in 95% of all possible samples.

- Any sample proportion that is more than 1.96 standard errors from the population proportion will result in a confidence interval that does not contain p. This will happen in 5% of all possible samples (those sample proportions in the tails of the distribution).
- A confidence interval for an unknown parameter consists of an interval of numbers based on a point estimate.
- The level of confidence represents the expected proportion of intervals that will contain the parameter if a large number of different samples is obtained. The level of confidence is denoted $(1-\alpha) \cdot 100\%$.
- Whether a confidence interval contains the population parameter depends solely on the value of the sample statistic. Any sample statistic that is in the tails of the sampling distribution will result in a confidence interval that does not include the population parameter. See Figure 1. Notice that \hat{p}_1 results in a confidence interval that includes the population proportion, p. However, \hat{p}_2 results in a confidence interval that does not include the population proportion, p, because \hat{p}_2 is in the tails of the distribution.

Caution

So, a 95% confidence interval does not mean that there is a 95% probability that the interval contains the parameter (such as p or μ). The 95% in a 95% confidence interval represents the proportion of all samples that will result in intervals that include the population proportion.

In practice, we construct only one confidence interval based on one sample. We do not know whether the sample results in a confidence interval that includes the parameter, but we do know that if we construct a 95% confidence interval, it will include the unknown parameter 95% of the time.

Common Critical Values

Level of confidence $(1 - \alpha) \cdot 100\%$	Area in each tail $\frac{\alpha}{2}$	Critical Value $z_{\frac{\alpha}{2}}$
90%	0.05	1.645
95%	0.025	1.96
99%	0.005	2.575

Interpret A Confidence Interval

A $(1-\alpha)\cdot 100\%$ confidence interval indicates that $(1-\alpha)\cdot 100\%$ of all simple random samples of size n from the population whose parameter is unknown will result in an interval that contains the parameter.

For example, a 90% confidence interval for a parameter suggests that 90% of all possible samples will result in an interval that includes the unknown parameter and 10% of the samples will result in an interval that does not capture the parameter.

Warner 165 MATHEMATICS

The Effect of Level of Confidence on the Margin of Error

increasing the level of confidence increases the margin of error, resulting in a wider confidence interval.

The Effect of Sample Size on the Margin of Error

Increasing the sample size n decreases the standard error, so the margin of error decreases. Therefore, larger sample sizes will result in narrower confidence intervals.

The general relationship between the sample size and the margin of error is as follows:

Increasing the sample size by a factor M results in the margin of error decreasing by a factor of $\frac{1}{\sqrt{m}}$

Warner 166 MATHEMATICS

What If We Do Not Satisfy the Normality Condition?

When the normality condition is not satisfied, the proportion of intervals that capture the parameter is below the level of confidence.

Determine the Sample Size Necessary for Estimating a Population Proportion within a Specified Margin of Error (In statcrunch)

- 1. Find Margin of Error (E)
- 2. Find Width (W)
- 3. Find Confidence Level
- 4. Find target proportion
- 5. Stats > Proportion Stats > One Sample > Width/Sample Size
- 6. Input confidence level
- 7. Input Target Proportion
- 8. Compute

Properties of the t-distribution

- 1. The t-distribution is different for different degrees of freedom
- 2. the t-distribution is centered at 0 and is symmetric about 0 $\,$
- 3. The area under the curve is 1. The eare uned rteh curve to the right of 0 equals the area under the curve to the left of 0, which equals 1/2
- 4. As t increases or decreases without bound, the graph approaches, but never equals, zero.

$$\lim_{t \to -\infty} f(x) = 0$$

$$\lim_{t \to \infty} f(x) = 0.$$

- 5. The area in the tails of the t-distribution is a little greater than the area in the tails of the standard normal distribution, because we are using s as an estimate of σ , thereby introducing further variability into the t-statistic
- 6. As the sample size n increases, the density curve of t get closer to the standard normal density curve. This result occurs because, as the sample size increases, the values of s get closer to the value of σ , by the Law of Large Numbers.

Warner 167 MATHEMATICS

Put the following in order for the most area in the tails of the distribution.

- a.) Standard Normal Distribution
- b.) Student's t-Distribution with 30 degrees of freedom.
- c.) Student's t-Distribution with 50 degrees of freedom.

A robust procedure

A confidence interval about μ can be computed for non-normal populations even though Student's t-distribution requires a normal population. This is because the procedure for constructing the confidence interval is robust—it is accurate despite minor departures from normality.

If a data set has outliers, the confidence interval is not accurate because neither the sample mean nor the sample standard deviation is resistant to outliers. Sample data should always be inspected for serious departures from normality and for outliers. This is easily done with normal probability plots and boxplots.

Example: Constructing a confidence interval about a population mean

Example: Constructing a confidence interval about a population mean (Using Statcrunch)

First, verify that the population is normally distributed by looking at the probability plot, and also that there are no outliers by looking at the boxplot

Statrunch Steps

- 1. Stat > T Stats > One Sample > with data
- 2. Select column containig data
- 3. Input confidence level
- 4. Compute

Critical values for t-distribution vs critical values for z-distribution

In the above example (by hand), we found the critical value to be $t_{0.025} = 2.131$ for 15 degrees of freedom, whereas $z_{0.025} = 1.96$. The t-distribution gives a larger critical value, so the width of the interval is wider. This larger critical value using Student's t-distribution is necessary to account for the increased variability due to using s as an estimate of σ .

Remember, 95% confidence refers to our confidence in the method. If we obtained 100 samples of size n=16 from the population of 2011 Ford Focuses, we would expect about 95 of the samples to result in confidence intervals that include μ . We do not know whether the interval in Example 3 includes μ or does not include μ .

Warner 168 MATHEMATICS

Effects on margin of error

- As the sample size increases, the margin of error decreases.
- As the level of confidence increases, the size of the interval increases.
- Additional note: the population shape needs to be normally distributed to computer the confidence interval

Warner 169 MATHEMATICS

When Model Requirements Fail

• When constructing 95% confidence intervals for the mean when the parent population is right skewed and the sample size is small, the proportion of intervals that include the population mean is below 0.95.

• When constructing 95% confidence intervals for the mean when the parent population is right skewed and the sample size is small, the proportion of intervals that include the population mean approaches. 95 as the sample size, n, increases.

What should we do if the requirements to compute a t-interval are not met?

We could increase the sample size beyond 30 observations, or we could try to use nonparametric procedures. Nonparametric procedures typically do not require normality, and the methods are resistant to outliers. A third option is to use resampling methods, such as bootstrapping. Bootstrapping is presented later in this chapter.

Warner 170 MATHEMATICS

Steps in hypothesis testing

- 1. Make a statement regarding the nature of the population
- 2. Collect evidence (sample data) to test the statement
- 3. Analyze the data to assess the plausibility of the statement

three ways to set up the null and alternative hypotheses

1. Equal versus not equal hypothesis (two-tailed test)

 H_0 : parameter = some value H_1 : parameter \neq some value.

2. Equal versus less than (left-tailed test)

 H_0 : parameter = some value H_1 : parameter < some value.

3. Equal versus greater than (right-tailed test)

 H_0 : parameter = some value H_1 : parameter > some value.

FOUR OUTCOMES FROM HYPOTHESIS TESTING

- 1. Reject the null hypothesis when the alternative hypothesis is true. This decision would be correct.
- 2. Do not reject the null hypothesis when the null hypothesis is true. This decision would be correct.
- 3. Reject the null hypothesis when the null hypothesis is true. This decision would be incorrect. This type of error is called a **Type I error**.
- 4. Do not reject the null hypothesis when the alternative hypothesis is true. This decision would be incorrect. This type of error is called a **Type II error**.

Note:-

The null hypothesis is never declared "true", either reject the null hypothesis if there is strong sample evidence against the statement in the null hypothesis, or do not reject the null hypothesis if there is not strong sample evidence against the statement in the null hypothesis

Warner 171 MATHEMATICS

Do we ever "accept" the null hypothesis?

No, Once the decision is made whether to reject the null hypothesis, the researcher must state his or her conclusion. It is important to recognize that we never accept the null hypothesis.

Sample evidence can never prove the null hypothesis to be true. By not rejecting the null hypothesis, we are saying that the evidence indicates that the null hypothesis could be true or that the sample evidence is consistent with the statement in the null hypothesis.

hypothesis testing using the P-value approach.

• If the probability of getting a sample statistic as extreme or more extreme than the one obtained is small under the assumption the statement in the null hypothesis is true, reject the null hypothesis.

Of course, this leads to the question, "How low does the P-value need to be in order to reject the statement in the null hypothesis?" The answer is that it depends. The researcher must decide what represents statistically significant evidence against the statement in the null hypothesis. That said, typically we use the following rule.

A Rule Of Thumb

• If the P-value < 0.05 (the level of significance), we reject the statement in the null hypothesis.

The bottom line, however, is this. The smaller the P-value, the stronger the evidence against the statement in the null hypothesis. So, if P-value < 0.01, we say "strong evidence against the statement in the null hypothesis." If 0.01 < P-value < 0.05, we say "evidence against the statement in the null hypothesis." For 0.05 < P-value < 0.1, some may say "moderate evidence against the statement in the null hypothesis."

Testing Hypotheses Regarding a Population Proportion Using Simulation

- 1. Verify that the variable of interest in the study is qualitative with two possible outcomes.
- 2. Determine the null and alternative hypotheses.
- 3. Build a null model that generates data randomly under the assumption the statement in the null hypothesis is true.
- 4. Estimate the P-value from the model in Step 3.
- 5. State the conclusion.

Warner 172 MATHEMATICS

Two-Tailed bounds

In 2000, 60% of females aged 15 or older lived alone, according to a government statistics agency. A sociologist tests whether this percentage is different today by conducting a random sample of 600 females aged 15 or older and finds that 357 are living alone. Is there sufficient evidence to conclude that the proportion has changed since 2000?

The variable of interest is whether or not a female in this country aged 15 or older lives alone. Therefore, it is qualitative with two possible outcomes.

The goal of the research is to determine whether the proportion of females in this country aged 15 or older who live alone is different from 0.6

$$H_0: p = .6$$

 $H_1: p \neq .6$.

For the left tail:

$$p \leqslant 357$$
.

For the right tail, we want to find the number of observations that are at least as extreme as 375, so:

$$600 \cdot .6 = 360$$

 $360 - 357 = 3$
 $360 + 3 = 363$.

Then find both p values with simulations and sum both p values, if the p value is less than the given value of α , reject the null hypothesis

 $p \ge 363$.

Testing Hypotheses Regarding a Population Proportion Using the Normal Model

We now formalize the procedure for testing hypotheses regarding a population proportion using the normal model.

Use steps 1-5 shown below provided that:

- The sample is a simple random sample, or the result of a randomized experiment.
- $np(1-p) \ge 10$
- The sample values are independent of each other $(n \leq 0.05N)$.
- 1. Determine the null and alternative hypotheses. The hypotheses can be structured in one of three ways:
- 2. Select a level of significance, α , depending on the seriousness of making a Type I error.
- 3. Compute the **test statistic**

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}.$$

Notice in the computation of the test statistic that we are using p_0 (the proportion stated in the null hypothesis) in computing the standard error rather than \hat{p} , as we did in constructing confidence intervals about p. This is because H_0 is assumed to be true when we are performing a hypothesis test. So the assumed mean of the distribution of \hat{p} is $\mu_{\hat{p}} = p_0$, and the assumed standard error is $\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$.

Warner 173 MATHEMATICS

- 4. If P-value $< \alpha$, reject the null hypothesis.
- 5. State the conclusion

Finding p-value with normal distribution for different tailed tests

• Two-Tailed Test

$$p$$
-value = $2P(z > |z_0|)$.

• Left-Tailed Test

$$p$$
-value = $P(z < z_0)$.

• Right-Tailed Test

$$p$$
-value = $P(z < z_0)$.

Two-Tailed Hypothesis Testing Using Confidence Intervals

• When testing $H_0: p = p_0$ versus $H_1: p \neq p_0$, if a $(1 - \alpha) \cdot 100\%$ confidence interval contains p_0 , we do not reject the null hypothesis. However, if the confidence interval does not contain p_0 , we conclude that $p \neq p_0$ at the level of significance, α .

Testing Hypotheses Regarding a Mean

Use Steps 1–5 shown below provided that

- The sample is obtained by simple random sampling or the data results from a randomized experiment;
- the sample comes from a population that is normally distributed with no outliers, or the sample size, n, is large $(n \ge 30)$; and
- the sampled values are independent of each other. This means that the sample size is no more than 5% of the population size $(n \le 0.05N)$.

Steps:

- 1. Determine the null and alternative hypotheses. The hypotheses can be structured in one of three ways:
- 2. Select a level of significance, α , depending on the seriousness of making a Type I error.
- 3. Compute test-statistic

$$t_0 = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}.$$

• Two-Tailed:

$$p-value = 2P(t > |t_0|).$$

Left-Tailed

$$p - value = P(t < t_0).$$

• Right-Tailed

$$p-value = P(t > t_0).$$

- 4. If P-value $< \alpha$, reject the null hypothesis.
- 5. State the conclusion.

Warner 174 MATHEMATICS

Note:-

Notice that the procedure just presented requires that the population from which the sample was drawn be normal or that the sample size be large ($n \ge 30$). The procedure is robust, so minor departures from normality will not adversely affect the results of the test. However, if the data include outliers, the procedure should not be used.

Explain the Difference between Statistical Significance and Practical Significance

When a large sample size is used in a hypothesis test, the results may be statistically significant even though the difference between the sample statistic and mean stated in the null hypothesis may have no practical significance.

Putting it all together: Which one do I use?

Questions to ask yourself:

- 1. What is the variable of interest?
- 2. Is the purpose of the study to estimate the value of a parameter or to test a statement regarding a parameter?
 - Estimate: Confidence Interval
 - Test a statment: Hypothesis Test
- 3. Are the conditions for performing the inference satisfied?

Testing Hypotheses Regarding Two Proportions Using Random Assignment

- 1. Verify that the explanatory variable (or treatment) has two levels and the response variable in the study is qualitative with two possible outcomes.
- 2. Determine the null and alternative hypotheses.
- 3. Build a null model that randomly assigns the individuals in the study under the assumption the statement in the null hypothesis is true.
- 4. Estimate the P-value from the model in Step 3.
- 5. State the conclusion.

Warner 175 MATHEMATICS

Test Hypotheses Regarding Two Population Proportions from Independent Samples

To test hypotheses regarding two population proportions, p_1 and p_2 , we can use the steps that follow, provided that:

- The samples are independently obtained using simple random sampling or the data result from a completely randomized experiment with two levels of treatment.
- $n_1\hat{p}_1(1-\hat{p}_1) \ge 10$ and $n_2\hat{p}_2(1-\hat{p}_2) \ge 10$.
- The sampled values are independent of each other. This means that each sample size is no more than 5% of the population size $(n_1 \le 0.05N_1 \text{ and } n_2 \le 0.05N_2)$. This ensures the independence necessary for a binomial experiment.
- 1. Determine the null and alternative hypotheses. The hypotheses can be structured in one of three ways: Note: p_1 is the population proportion for population 1, and p_2 is the population proportion for population 2.
- 2. Select a level of significance, α , depending on the seriousness of making a Type I error.
- 3. Compute the test statistic.

$$z_o = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}}, \ where \ \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}, \ \text{the pooled statistic of p...}$$

Use table V to find the P-value

- 4. If P-value $< \alpha$, reject the null hypothesis.
- 5. State the conclusion.

Test Hypotheses for a Population Mean from Matched-Pairs Data

To test hypotheses regarding the mean difference of data obtained from a dependent sample (matched-pairs data), use the following steps, provided that

- The sample is obtained by simple random sampling or the data result from a matched-pairs design experiment.
- The sample data are matched-pairs (dependent).
- The differences are normally distributed with no outliers or the sample size, n, is large $(n \ge 30)$.
- The sampled values are independent of each other [that is, the sample size is no more than 5% of the population size $(n \le 0.05N)$].
- 1. Determine the null and alternative hypotheses. The hypotheses can be structured in one of three ways:
- 2. Select a level of significance, α , depending on the seriousness of making a Type I error.
- 3. Compute the test statistic

$$t_0 = \frac{\bar{d}}{\frac{\underline{s_d}}{\sqrt{n}}}.$$

- 4. If P-value $< \alpha$, reject the null hypothesis.
- 5. State the conclusion.

Warner 176 MATHEMATICS

The Normality Requirement (Population mean matched-pairs)

The procedures just presented are robust, which means that minor departures from normality will not adversely affect the results of the test. If the data have outliers, however, the procedure should not be used.

Verify the assumption that the differenced data come from a population that is normally distributed by constructing a normal probability plot. Use a boxplot to determine whether there are outliers. If the normal probability plot indicates that the differenced data are not normally distributed or the boxplot reveals outliers, then either bootstrapping or nonparametric tests should be performed. Nonparametric tests are not covered in this course.

Reject or accept with confidence interval

If the confidence interval does not include zero, reject.

Testing Hypotheses Regarding Two Independent Means Using Random Assignment

- 1. Verify that the explanatory variable (or treatment) has two levels and the response variable in the study is quantitative.
- 2. Determine the null and alternative hypotheses. The hypotheses can be structured in one of three ways.
- 3. Build a null model that randomly assigns the individuals in the study to the value of the response variable under the assumption the statement in the null hypothesis is true.
- 4. Estimate the P-value from the model in Step 3.
- 5. State the conclusion

Testing Hypotheses Regarding the Difference between Two Population Means: Independent Samples

To test hypotheses regarding two population means, μ_1 and μ_2 , obtained from independent samples, use the following steps, provided that

- The two independent samples are obtained by simple random sampling or the data result from a completely randomized experiment with two treatments.
- The sample data come from a population that is normally distributed with no outliers or the sample sizes are large $(n_1 \ge 30 \text{ and } n_2 \ge 30)$.
- For each sample, the sample size is no more than 5% of the population size $(n \le 0.05N)$.

Warner 177 MATHEMATICS

- 1. Determine the null and alternative hypotheses. The hypotheses are structured in one of three ways:
- 2. Select a level of significance, α , depending on the seriousness of making a Type I error.
- 3. Compute the test statistic.

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}.$$

which approximately follows Student's t-distribution. Use Table VII to approximate the P-value using the smaller of $n_1 - 1$ or $n_2 - 1$ degrees of freedom

- 4. If P-value $< \alpha$, reject the null hypothesis.
- 5. State the conclusion.

Characteristics of the Chi-Square Distribution

- It is not symmetric.
- The shape of the chi-square distribution depends on the degrees of freedom, just like Student's t-distribution.
- As the number of degrees of freedom increases, the chi-square distribution becomes more symmetric. See Figure 1.
- The values of χ^2 are nonnegative (greater than or equal to 0).

What If the Degrees of Freedom I Need Is Not In the Table?

In studying Table VIII, notice that the degrees of freedom are numbered 1 to 30, inclusive, then 40,50,60,...,100. If the number of degrees of freedom is not in the table, choose the degrees of freedom closest to that desired. If the degrees of freedom are exactly between two values, find the mean of the values.

For example, to find the critical value corresponding to 75 degrees of freedom, compute the mean of the critical values corresponding to 70 and 80 degrees of freedom.

Warner 178 MATHEMATICS

The Goodness-of-Fit Test

1. Determine the null and alternative hypotheses:

 H_0 : The random variable follows a certain distribution.

 H_1 : The random variable does not follow the distribution in the null hypothesis...

2. Decide on a level of significance, α , depending on the seriousness of making a Type I error.

- 3. a.) Calculate the expected counts, E_i , for each of the k categories: $E_i = n \cdot p_i$ for i = 1, 2, ..., k, where n is the number of trials and p_i is the probability of the ith category, assuming that the null hypothesis is true.
 - b.) Verify that the requirements for the goodness-of-fit test are satisfied.
 - All expected counts are greater than or equal to 1 (all $E_i \ge 1$).
 - No more than 20% of the expected counts are less than 5.
 - c.) Compute the test statistic

$$\chi_0^2 = \sum \frac{(O_i - E_i)^2}{E_i}.$$

Note: O_i is the observed count for the i^{th} category.

- d.) Use Table VIII to approximate the P-value by determining the area under the chi-square distribution with k-1 degrees of freedom to the right of the test statistic.
- 4. If P-value $< \alpha$, reject the null hypothesis.
- 5. State the conclusion.

A Word about Conclusions of Hypothesis Tests

Whenever we are testing a hypothesis, the evidence can never prove the statement in the null hypothesis to be true. For example, in performing the goodness-of-fit test from this section, we tested

 H_0 the distribution of household income is the same today as in 2000.

Suppose we failed to reject the null hypothesis. We would not be able to say the distribution today is the same as it was in 2000. Instead, we say that we do not have enough evidence to suggest the distribution has changed significantly.

Unfortunately, goodness-of-fit tests cannot be used to test whether sample data follow a specific distribution. We can only say the data is consistent with a distribution stated in the null hypothesis.

Warner 179 MATHEMATICS

The Chi-Square Test for Independence

To test hypotheses regarding the association between (or independence of) two variables in a contingency table, use the following steps.

1. Determine the null and alternative hypotheses:

 H_0 : The row variable and column variable are independent.

 H_1 : The row variable and column variable are dependent..

- 2. Decide on a level of significance, depending on the seriousness of making a Type I error.
- 3. (a) Calculate the expected frequencies (counts) for each cell in the contingency table.
 - (b) Verify that the requirements for the test for independence are satisfied.
 - i. All expected frequencies are greater than or equal to 1 (all $E_1 \ge 1$).
 - ii. No more than 20% of the expected frequencies are less than 5.
 - (c) Compute the test statistic
 - (d) Use Table VIII to approximate the P-value by determining the area under the chi-square distribution with degrees of freedom to the right of the test statistic, where is the number of rows and is the number of columns. See Figure 5.
- 4. If P-value $< \alpha$, then reject the null hypothesis.
- 5. State the conclusion.

Procedure for a test of Homogeneity

The procedures for performing a test of homogeneity are identical to those for a test of independence.

If model requirements fail for homogeneity test fail

The requirements for performing a chi-square test are that all expected frequencies are greater than or equal to 1 and that at most 20% of the expected frequencies can be less than 5.

If these requirements are not satisfied, the researcher has one of two options:

- 1. combine two or more columns (or rows) to increase the expected frequencies or
- 2. increase the sample size.

Explain why chi-square goodness-of-fit tests are always right tailed.

The chi-square goodness-of-fit tests are always right tailed because the numerator in the test statistic is squared, making every test statistic, other than a perfect fit, positive.

Warner 180 MATHEMATICS

7 Discrete Structures

7.1 Set Vocabulary:

- A set is a collection of elements
- Element Is a member of a set
- An **axiom** Is a rule or statement that is generally accepted to be true without proof.
- An **Axiom of Extension** Is a set determined by what its elements are not the order in which they might be listed or the fact that some elements might be listed more than once.
- Set-Builder Is a convention we can use when dealing with sets to imply the elements of a set without listing all of its values.
- Universal Set: Represents the collection of all possible elements or objects that are under consideration for a particular context or problem.
- Empty Set (Null set): Represents a set that contains no elements
- Singleton Set: Represents a set that only has one element
- Finite Set: Represents a set that has a countable number of elements
- Infinite Set: Represents a set that has an infinite amount of elements
- Subset: A is called a subset of B if, and only if, every element of A is also an element of B
- Cardinal Number of a Set: is the number of elements in a set
- Equivalent Sets: When two sets have the same cardinality
- If **A** is a **subset** of **B**, and **B** has at least one additional element that is not in **A**, then **A**a is called a **proper subset** of **B**
- The Power set of A is the set of all subsets of A
- An Ordered Pair is a collection of two elements where the order matters
- An n tuple is a collection of n elements, in which the order matters
- Given sets **A** and **B**, the **Cartesian product** of **A** and **B** is the set of all ordered pairs (a, b), where a is in **A**, and b is in **B**.
- $\bullet~$ We use $\mathbf{Venn}~\mathbf{Diagram}$ to show relationships between sets
- To find the union of two sets, we combine the elements of both sets into a new set
- to find the intersection of two sets, we find the elements that are common in both sets.
- **Difference**, A difference B is all elements in A that are not in B
- Complement, the complement of A is all elements that are not in A
- Two sets are called **Disjoint** if and only if they have no elements in common
- Mutually Exclusive also means disjoint
- A finite or infinite collection of non empty sets $\{A_1, A_2, A_3, ..., \}$ is a **Partition of a set** A, if and only if
 - 1. A is the union of all of the sets
 - 2. The sets are mutually disjoint

Warner 181 MATHEMATICS

7.2 Set Notation / Formulas

- Set: $A = \{A_1, A_2, A_3, ..., A_n\}$
- Declare element or non element: \in , \notin
- \mathbb{N} : Denotes the set of all **Natural Numbers**
- \mathbb{Q} : Denotes the set of all **Rational Numbers**
- $\overline{\mathbb{Q}}$: Denotes the set of all **Irrational Numbers**
- \mathbb{R} : Denotes the set of all real numbers
- I: Denotes the set of all Imaginary Numbers
- \mathbb{C} : Denotes the set of all **Complex Numbers**
- **Set-Builder**: {Expression | Condition}
- \mathbb{U} : Universal Set:
- Ø: Empty Set (Null set)
- n(A): Cardinal number of a set
- $A \sim B$: Denotes Equivalent Sets
- $A \subseteq B$: Denotes subset
- $A \subset B$: Denotes proper subset
- P(A): denotes Power set
- To calculate how many subsets are possible within a set, we can compute:
 - 2^n Where n is the number of elements in the set.
- · ordered pair

(a,b).

• n-tuple

$$(a_1, a_2, ..., a_n).$$

• Cartesian product:

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

• Denote all ordered pairs on a Cartesian plane

 $\mathbb{R} \times \mathbb{R}$.

In other words,

$$\{(a,b)|a \in \mathbb{R}, b \in \mathbb{R}\}\$$

 $Or: \{(a,b) \mid (a,b) \in \mathbb{R}^2\}.$

• ∪: Denotes Union

$$A \cup B = \{x \mid x \in A, \text{ or } x \in B\}.$$

Warner 182 MATHEMATICS

• ∩: Denotes Intersection

$$A \cap B = \{x \mid x \in A, \ and \ x \in B\}.$$

- Properties of Union and Intersection
 - $-A \cup B = B \cup A$, $A \cap B = B \cap A$ (Commutative Law)
 - $-(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$ (Associative Law)
 - $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive Law)
 - $-A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$ (Identity Law for Union), (Identity Law for Intersection)
 - $-A \cup U = U$ (Identity Law for Union with Universal Set)
 - $-A \cup A = A$, $A \cap A = A$ (Idempotent Law)
- A-B: Denotes difference of sets
- A^c , or, A': Denotes Complement
- Properties of difference and complement
 - $-A \cup A^c = U$ (Complement Law)
 - $-(A^c)^c = A$ (Double Complement Law)
 - $-U^c=\emptyset,\,\emptyset^c=U$ (Complement Laws for Universal Set and Empty Set)
 - $-A B = A \cap B^c$ (Set Difference Law)
- De Morgan's Laws
 - $-(A \cup B)^c = A^c \cap B^c$
 - $(A \cap B)^c = A^c \cup B^c$
- $A \cap B = \emptyset$ Denotes Disjoint (Mutually Exclusive) sets

Warner 183 MATHEMATICS

7.3 Number Sets

- \mathbb{N} : Denotes the set of all **Natural Numbers**
- \mathbb{Z} : Denotes the set of all **Integers**
- \mathbb{Q} : Denotes the set of all **Rational Numbers**
- \mathbb{Q} : Denotes the set of all **Irrational Numbers**
- I: Denotes the set of all Imaginary Numbers
- \mathbb{C} : Denotes the set of all **Complex Numbers**

Figure:

7.4 Set Equality

Consider the sets:

$$A = \{1, 3, 5, 1, 5, 5, 3\}$$
$$B = \{1, 3, 5\}.$$

Because of the **Axiom of Extension**, which states that a set is not determined by the order or possible repetitions, we can conclude that A = B.

Furthermore, we can conclude that we only have 3 elements amongst set A, although it may seem like we have 7.

7.5 Set-Builder

Since the definition and syntax is already covered above, here is an example:

 $\{x|x<0\}$ Reads: "The set of all x's such that (pipe) x is less than zero" $=\{-10,-5\}$.

Warner 184 MATHEMATICS

7.6 Logic Vocabulary

- A statement (or proposition) is a sentence that is either true or false (but not both)
- Statements p and q are said to be **logically equivalent** if they have the same truth value in every model.
- Tautology: Statement that is always true, a assertion that is true in every possible interpretation

Τ.

• A Contradiction is a statement that is always false.

⊥.

- A Conditional statement is a statement that can be written in the form "If P then Q," where P and Q are sentences.
- The **Negation of conditional statement** is logically equivalent to a conjunction of the antecedent and the negation of the consequent.
- The Contrapositive of a conditional statement is a combination of the converse and the inverse
- The **Converse** of a conditional statement is created when the hypothesis and conclusion are reversed. A conditional statement and its converse are **not** logically equivalent
- The **Inverse** of a conditional statement is when both the hypothesis and conclusion are negated. A conditional statement and its inverse are **not** logically equivalent
- A **Biconditional Statement** is a true statement that combines a hypothesis and conclusion with the words 'if and only if' instead of the words 'if' and 'then'
- A Circuit is a complete circular path that electricity flows through
- A Black Box is a circuit that is observed in terms of its input, output or transfer characteristics without any knowledge of its internal workings.
- A Gate is circuit with one or more inputs and exactly one output
- Types of gates:
 - Not (negation): One input and one output, negates the input
 - And: Two inputs and one output, requires both inputs to be true
 - Or: Two inputs and one output, requires only one input to be true
- A Boolean Variable is a variable with only two possible values, True, or False.
- A Boolean expression is an expression that is composed of Boolean variables, connected with logical connectives
- Two circuits are **equivalent** if they have they same input/output table
- A NAND Gate is a logic gate which produces an output which is false only if all its inputs are true
- A NOR Gate a digital logic gate that gives an output of 0 when any of its inputs are 1, otherwise 1
- A universal statement is a statement that uses the universal quantifier \forall
- A existential statement is a statement that uses the existential quantifier \exists
- The statement used to show that a universal statement is not true is called a **counter example**
- We can **negate an universal statement** using an existential statement
- We can **negate an existential statement** using an universal statement

Warner 185 MATHEMATICS

7.7 Logic Notation/Formulas

- p and q are Propositional Variables
- \bullet p: Represents predicate
- q: Represents conclusion
- A: Represents logical inclusive and
- \lor : Represents logical inclusive or
- \oplus : Represents **logical exclusive or Note:** Only true if signs are opposite, so unlike inclusive or, true true will output false
- \neg or \sim : Represents negation
- 2^n : Find number of rows in truth table
- Order of operations for logical statements
 - 1. Parenthesis
 - 2. Negation
 - 3. And
 - 4. Xor
 - 5. Or
- \equiv : Denotes Logical Equivalence
- De Morgan's Laws

$$- \neg (p \land q) = \neg p \lor \neg q$$
$$- \neg (p \lor q) = \neg p \land \neg q$$

- Logical equivalence laws
 - Commutative laws:

$$p \wedge q \equiv q \wedge p$$
$$p \vee q \equiv q \vee p$$

- Associative laws:

$$(p \land q) \land r \equiv p \land (q \land r)$$
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

- Distributive laws:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

- Identity laws:

$$p \wedge \mathbf{t} \equiv p$$
$$p \vee \mathbf{c} \equiv p$$

- Negation laws:

$$p \lor \sim p \equiv \mathbf{t}$$

 $p \land \sim p \equiv \mathbf{c}$
185

Warner 186 MATHEMATICS

- Double negative law:

$$\sim (\sim p) \equiv p$$

- Idempotent laws:

$$p \land p \equiv p$$
$$p \lor p \equiv p$$

- Universal bound laws:

$$p \lor \mathbf{t} \equiv \mathbf{t}$$
$$p \land \mathbf{c} \equiv \mathbf{c}$$

- DeMorgan's laws:

$$\sim (p \land q) \equiv \sim p \lor \sim q$$
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

- Absorption laws:

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

- Negation of t and c:

$$\neg \mathbf{t} = \mathbf{c} \quad \neg \mathbf{c} = \mathbf{t}$$

Note:-

t, and c denote tautology and contradiction

• Condition Statement: if statement (hypothesis) then statement (conclusion)

Note:-

To get a truth value of "true" in $p \to q$, either p and q both need to be true, or both need to be false, or q needs to be true

• Conditional converted

$$p \to q \equiv \neg p \lor q.$$

• Negation of $p \rightarrow q$

$$p \wedge \neg q$$
.

• Contrapositive of a condition statement

$$p \to q \equiv \neg q \to \neg p.$$

• Converse of a conditional statement

$$q\to p.$$

• Inverse of a conditional statement

$$\neg p \rightarrow \neg q$$
.

• Biconditional Statements (if and only if (iff))

$$p\iff q.$$

Warner 187 MATHEMATICS

Note:-

Similar to conditional statements, in the truth table, $p \iff q$ is true if both p and q have the same value. So false false will be true

• biconditional translated to conditonal

$$\begin{aligned} p &\iff q \equiv (p \to q) \land (q \to p) \\ Or: \ p &\iff q \equiv (\neg p \lor q) \land (\neg q \lor p). \end{aligned}$$

• NAND Gate is denoted by

$$p \wedge q \equiv \neg (p \wedge q).$$

• NOR Gate is denoted by

$$p \vee q \equiv \neg (p \vee q).$$

- Quantifiers:
 - \forall (for all) (universal)
 - \exists (There Exists) (existential)
 - ∃! (There Exists Only One) (existential)

Warner 188 MATHEMATICS

7.8 Truth Tables

Here is a simple example of a truth table for logical and:

P	Q	$P \wedge Q$
Т	Т	Т
Т	F	\mathbf{F}
F	Τ	F
F	F	\mathbf{F}

Here is a simple example of a truth table for logical or (inclusive):

P	Q	$P \lor Q$
Т	Т	Т
Т	F	${ m T}$
F	Τ	${ m T}$
F	F	\mathbf{F}

Here is a simple example of a truth table for logical or (exclusive):

P	Q	$P \oplus Q$
Т	Т	F
T	F	Т
F	Τ	Т
F	F	F

Here is a simple example of a truth table for logical not (negation):

P	$\neg P$		
Т	F		
F	Τ		

Here is an example for $(p \wedge q) \vee \neg r$

p	q	r	$(p \wedge q)$	$\neg r$	$(p \land q) \lor \neg r$
Т	Т	Т	Т	F	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
Т	F	F	F	Т	Т
F	Т	Т	F	F	F
F	Т	F	F	Т	Т
F	F	Т	F	Т	F
F	F	F	F	F	Т

Warner 189 MATHEMATICS

7.9 Number Theory Vocabulary

- The Parity of an integer is its attribute of being even or odd
- Divisible by 1: All integers are divisible by 1
- Divisible by 2: If the last digit of the integer is even.
- Divisible by 3: If the sum of the digit's numbers are divisible by 3.
- Divisible by 4: If the last 2 digits are divisible by 4
- Divisible by 5: If the last digit is either 0 or 5.
- Divisible by 6: If it is divisible by both 2 and 3. (For divisibility by 2 and 3, check rule 2 and 3)
- Divisible by 7: If you double the last digit and subtract it from the rest of the number and the answer is either:
 - -0
 - divisible by 7
- Divisible by 8: If the last three digits are divisible by 8.
- Divisible by 9: If the sum of the digits are divisible by 9
- Divisible by 10: If the number ends in 0.
- Divisible by 11: Add and subtract digits in an alternating pattern (subtract first, add second, subtract third, etc). Then the answer must be either:
 - -0
 - Divisible by 11

$$616 \\ 6 - 1 + 6 = 11$$
 \mathbb{Z} .

- Divisible by 12: If the number is both divisible by 3 and 4. (check divisibility rules for 3 and 4)
- Prime Numbers are integers greater than 1 whose only factors are 1 and the number itself
- Composite Numbers are integers numbers greater than 1 and not prime
- Fundamental theorem of arithmetic states that Any integer greater than 1 is either a prime number, or can be written as a unique product of prime numbers (ignoring the order).
- Prime factorization theorem: Fundamental theorem of arithmetic
- The **Prime factorization** of a composite number are all the prime numbers which multiply to the composite number
- Unique factorization theorem: States that there's only one set of possible prime factors that can create a composite number
- The greatest common divisor (GCD) of two nonzero integers a and b is the greatest positive integer d such that d is a divisor of both a and b
- A Multiple of a number is a number that is the product of a given number and some other natural number
- The Least Common Multiple (LCM) is the smallest multiple that two or more numbers have in common

Warner 190 MATHEMATICS

7.10 Number Theory Notation/Formulas

• Even integer

2k, where k is an integer.

• Odd integer

2k+1, where k is an integer.

- · Combinations of even and odd
 - even \pm even = even
 - even \pm odd = odd
 - odd \pm odd = even
 - $\text{ odd} \cdot \text{ odd} = \text{ odd}$
 - even \cdot even = even
 - even \cdot odd = even
- Divisibility Notation

a|d, "a divides d"

Where a is the dividend and d is the divisor.

• Divisibility

Suppose we have two integers $n, d \in \mathbb{Z}$, where $d \neq 0$ Then: $n|d \iff \exists k \in \mathbb{Z} | n = dk$.

• transitive property of divisibility. Suppose we have three integers

 $a, b, c \in \mathbb{Z}$ And $if: a|b \wedge b|c, then a|c.$

• GCD Notation:

GCD(a,b).

• LCM Notation:

LCM(a,b).

• LCM Formula

 $LCM(a,b) = \frac{|a \cdot b|}{GCD(a,b)}$

Warner 191 MATHEMATICS

7.11 Proof Vocabulary

• Conjecture: A mathematical statement that has not yet been rigorously proved but is being proposed as being true.

- Theorem: Is a statement that can be shown to be true, or has been shown to be true.
- Axioms (or Postulates): Is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments.
- Lemma: Is a less important theorem that is helpful in the proof of theorems.
- Corollary: Is a theorem that can be established directly from a theorem that has been proven.
- A **proof** is a series of statements, each of which follows logically from what has gone before. It starts with things we are assuming to be true. It ends with the thing we are trying to prove.
- Beginning of a proof: things we are assuming to be true, including the definitions of the things we're talking about
- Middle of a proof: statements, each following logically from the stuff before it
- End of a proof: the thing we're trying to prove
- A direct proof is a way of showing the truth or falsehood of a given statement by a straightforward combination of established facts, usually axioms, existing lemmas and theorems, without making any further assumptions.
- In mathematics, **proof by contrapositive**, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. In other words, the conclusion "if A, then B" is inferred by constructing a proof of the claim "if not B, then not A" instead. More often than not, this approach is preferred if the contrapositive is easier to prove than the original conditional statement itself.
- Handwaiving in a proof is when you arrive at a statement by some not-very-mathematical means
- Properties for Algebraic Proof (Definitions)
 - The **reflexive property of equality** says any number or value is equal to itself. This is useful when checking answers by substituting the solution into the given problem. Example: a = a
 - The addition property of equality
 - The **subtraction property of equality** states any number or term can be subtracted from both sides of an equation to keep the equation true.
 - The **multiplicative property of equality** states any number or term can be multiplied to both sides of an equation to keep the equation true.
 - The **division property of equality** states any number or term can be divided from both sides of an equation to keep the equation true.
 - The commutative property of addition states that numbers or terms in an expression can be moved around and still be equal to the same value as long as all the terms or numbers are being added together.
 - The **commutative property of multiplication** is similar to its addition counterpart stating that when all the numbers or terms are multiplied together, the numbers or terms can be moved around in an expression.
 - The **associative property of addition** says that if three numbers are added together, two of the numbers can be grouped together and have the same value as if the other two numbers were grouped together.
 - The associative property of multiplication says that if three numbers are multiplied together, two of the numbers can be grouped together and have the same value as if the other two numbers were grouped together.

Warner 192 MATHEMATICS

The distributive property is when two numbers are added together inside a pair of parentheses, the number or term multiplied to that parentheses is the same value as the number or term being multiplied to both numbers inside the parentheses.

- The additive inverse is when you change the sign of the number and adding it to the original number to get an answer equal to 0
- Multiplicative Inverse Property if we multiply a number with its reciprocal, the product is always equal to 1
- Proof by Contradiction is a form of proof that establishes the truth or the validity of a proposition,
 by showing that assuming the proposition to be false leads to a contradiction
- Coprime, When two numbers have no common factors other than 1
- **Proof by Exhaustion (Proof by cases)** The proof that something is true by showing that it is true for each and every case that could possibly be considered.
- A proof by existence is to prove that some element carries some desired property.
- A Constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object
- A Non-constructive proof establishes the truth of a statement without providing an explicit example
 or method that satisfies the given conditions. Instead, it often relies on indirect reasoning or proof by
 contradiction.
- To Prove by Uniqueness is to show that some element has some desired property, and there is only
 one instance.
 - 1. Show that there exists an x with some desired property
 - 2. Show that $y \neq x$, then y does not have a desired property
- To Prove by Induction is to prove that for every n, if the statement holds for n, then it holds for n
 + 1
 - 1. Basis Step: Show that P(a) is true
 - 2. Inductive Step: Show that for all integers $k \ge a$, if P(k) is true then P(k+1) is true

7.12 Proof Notation

- .: Denotes "therefore" in a proof
- \implies Denotes "implies" in a proof.
- © Symbol at end of proof: Denotes ending of a proof (can be any symbol, sometimes you see "QED" or a square)
- Properties for Algebraic Proof (Examples)
 - The reflexive property of equality

a = a.

- The addition property of equality

$$a = b \Rightarrow a + c = b + c$$
.

- The subtraction property of equality

$$a = b \Rightarrow a - c = b - c$$
.

- The multiplicative property of equality

$$a=b\Rightarrow a\cdot c=b\cdot c.$$

Warner 193 MATHEMATICS

- The division property of equality

$$a = b \Rightarrow \frac{a}{c} = \frac{b}{c}.$$

- The commutative property of addition

$$a+b=b+a$$
.

- The commutative property of multiplication

$$a \cdot b = b \cdot a$$
.

- The associative property of addition

$$(a+b) + c = a + (b+c).$$

- The associative property of multiplication

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

- The distributive property

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$

- The additive inverse

$$a + (-a) = 0.$$

- Multiplicative Inverse Property

$$a \cdot \frac{1}{a} = 1.$$

- Transitive property of equality

$$a = b$$
, and $b = c \rightarrow a = c$.

Warner 194 MATHEMATICS

7.13 Functions Vocabulary

• A function $f: A \to B$ is **One-to-One** (injective) is injective if every element of A has a unique image in B

- A function $f: A \to B$ is **Onto** (surjective) is surjective if every element of B is the image of at least one element of A.
- A function $f: A \to B$ is **Bijective** if it is both injective and surjective.
- The **Inverse** of a function reverses the direction of the original function. A function $f:A\to B$ has an inverse $f^{-1}:B\to A$ iff
 - -f is bijective (both injective and surjective).
 - $\forall a \in A, b \in B, f(a) = b \iff f^{-1}(b) = a$

Note:-

 \mathcal{D} and \mathcal{R} flip for the inverse function

7.14 Function Notation

- Domain of a function: Denoted \mathcal{D} or $\mathcal{D}(f)$
- Range of a function: Denoted \mathcal{R} or $\mathcal{R}(f)$ Consider we have some function with $\mathcal{D}(f) = \mathbb{R}$ and $\mathcal{R}(f) = (2, \infty)$, then we can say

$$f: \mathbb{R} \to (2, \infty): x \mapsto f(x)$$

 $Or: f(x) \in (2, \infty), \forall x \in \mathbb{R}.$

• Functional Notation (Set-Builder)

$$f: A \to B: x \mapsto f(x)$$

Where $A \to B$ is used to indicate the domain and codomain of the function, and $x \mapsto f(x)$ is used to indicate how individual elements are mapped under the function.

$$Ex: f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 - 6.$$

• Exclude elements in functional notation

$$f: \mathbb{R} \setminus \{2\} \mapsto \mathbb{R}: x \mapsto \frac{x+3}{x-2}.$$

• Injective (one-to-one):

$$\forall x_1, x_2 \in A, (f(x_1) = f(x_2) \implies x_1 = x_2).$$

• Subjective

$$f: X \to Y \ onto \iff \forall y \in Y, \ \exists \ x \in X \mid f(x) = y.$$

Warner 195 MATHEMATICS

7.15 Relations Vocabulary

- A Relation is the relationship between two or more set of values
- Inverse Relation flip ordered pairs in relation
- A binary relation R on a set A is said to be **reflexive** if every element is related to itself. Formally, a relation R is reflexive if for every $a \in A$, the pair (a, a) is in R.
- A binary relation R on a set A is said to be **symmetric** if the relation holds in both directions between any two elements that are related. Formally, R is symmetric if for every $(a, b) \in R$, (b, a) is also in R.
- A binary relation R on a set A is said to be **transitive** if the existence of a relation from one element to a second, and from the second element to a third, implies the existence of a relation from the first element to the third. Formally, R is transitive if for every $(a,b) \in R$ and $(b,c) \in R$, (a,c) is also in R.
- Irreflexive: For all a, it is not the case that a < a.
- Asymmetric: If a < b, then it is not the case that b < a.
- Transitive for less than: If a < b and b < c, then a < c.
- R is an equivalence relation iff R is:
 - 1. Reflexive
 - 2. Symmetric
 - 3. Transitive
- Let A be a set and R be an equivalence relation on A. For each element in A, the **equivalence class** of a, denoted [a] and called the **class of a** for short, is the set of all elements x in A such that x is related to a by R

7.16 Relations Notation / Formulas

- x R y: Denotes Relation
- x R y: Denotes **not** a **Relation**
- Let R be a relation from A to B. Define the inverse relation R^{-1} from B to A as follows:

$$R^{-1} = \{ (y, x) \in B \times A \mid (x, y) \in R \}.$$

· Relation reflexivity

$$\forall a \in A, (a, a) \in R$$
.

• Relation Symmetry

$$\forall (a,b) \in R, (b,a) \in R.$$

• Relation Transitivity

$$\forall (a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R.$$

- $x \sim y$: Denotes **Equivalence relation**
- Equivalence class

$$[a] = \{ x \in A \mid x R a \}.$$