۱ مدلسازی وظایف و سامانه

۱.۱ تولید گراف DAG

تابع generate_dag سه خانوادهٔ كلاسيك گراف را پوشش مىدهد. در اين بخش، هر مدل را بهتفصيل شرح مىدهيم.

Erdős–Rényi مدل ۱.۱.۱

- تعریف: در مدل $\operatorname{ER}(n,p)$ هر یک از $\binom{n}{2}$ جفت رأس با احتمال مستقل p به هم متصل می شوند.
- پارامترها: $\langle n,p \rangle$ ؛ در پیادهسازی حاضر، p بهصورت p بهصورت $\min\{0.5,\frac{3}{n}\}$ تنظیم میشود مگر آنکه کاربر مقدار دیگری بدهد.

• ويژگيها:

- توزیع درجه تقریباً دوجملهای (در حد بزرگنمونه، پواسن).
- فاقد ساختار خوشهای مشخص؛ قطر گراف حول $\log n$ است.
 - آستانه های فاز مشخص برای ظهور مولفهٔ غول آسا و همبندی.
- كاربردها: خط مبنا براى مقايسهٔ شبكههاى پيچيده؛ مناسب براى شبيهسازى «بىنظم كامل».
- مزایا/معایب: سادگی پارامتر و پیادهسازی؛ اما عدم انطباق با توزیع درجات ناهمسانِ شبکههای واقعی.

۱.۱.۱ مدل مقیاس آزاد Barabási–Albert

- تعریف: رشد تدریجی + ترجیح اتصال؛ در هر گام یک رأس تازه با m یال وارد می شود و با احتمالی متناسب با درجهٔ فعلی رؤوس موجود، به آنها متصل می گردد.
 - یارامترها: $\langle n, m \rangle$. مقدار m پیش فرض ۲ است.

• ويژگيها:

- -3 با نمای Power-law با نمای توزیع درجه از نوع
- وجود «ابرگره»هایی با درجهٔ بسیار بالا ⇒ آسیبپذیری نقطهای.
 - قطر کوچک $(\sim \log n)$ ولی وابسته به مراکز پردرجه.
- کاربردها: مدلسازی شبکههای وب، تعاملات اجتماعی و پروتئینی که در آن «برندگان بزرگتر میشوند».
- م**زایا/معایب:** بازتاب دقیق توزیع درجات ِ واقعیت؛ در عوض خوشهبندی پایین و فاکتور تجمعی کمتر از شبکههای دنیای واقعی.

۳.۱.۱ مدل دنیای کوچک Watts-Strogatz

- تعریف: آغاز از یک حلقهٔ مرتب kمنتظم، سپس بازسیمی (rewire) هر یال با احتمال p به یک رأس تصادفی.
 - پارامترها: (n,k,p). در کد حاضر k=4 و (n,k,p) پیشفرض هستند.

• ویژگیها:

- خوشهبندى بالا (شبيه شبكة منسجم محلى).
- طول مسير ميانگين كوتاه $(\sim \log n)$ بهواسطهٔ يالهاى دوربرد.

- توزيع درجهٔ نسبتاً باريك برخلاف مقياس آزاد.
- کاربردها: سیستمهای اجتماعی، نورونی و شبکههای لجستیکی که در آنها «آشنای مشترک» فراوان ولی «شش درجه جدایی» نیز برقرار است.
 - مزایا/معایب: تعادل خوشهبندی و قطر کوتاه؛ اما درجات ناهمسان واقعی را بازتولید نمیکند.

پس از تولیدِ هر گرافِ بدونجهت، یالها بر پایهٔ رتبهٔ تصادفی رأسها جهتدار میشوند تا یک DAG قطعی حاصل شود.

۲.۱ ساخت سامانه

```
def build_system(num_cores=4, heterogeneity=False, seed=None):
...
```

اگر heterogeneity=True باشد سرعت هر هسته بهطور تصادفی در بازهٔ ۵.۱-۵.۱ تنظیم می شود؛ در غیر این صورت، تمام هسته ها سرعت ۱ دارند.

هر گره به شیئی از نوع Task با فیلدهای «workload»، «deadline» و resources تبدیل می شود. مهلت با ضریب deadline_factor (پیش فرض ۳) ضرب در حجم کار و کمی نویز تصادفی محاسبه می شود.

٣.١ ساختار گراف وظایف

پس از تولید گراف بدونجهت با یکی از سه مدل بالا، فرآیند زیر برای ساخت گراف جهتدار انجام می شود:

- به هر رأس یک مقدار تصادفی نسبت داده شده و ترتیب آنها به عنوان رتبه در نظر گرفته می شود.
- به ازای هر یال (u,v)، اگر (u,v) اگر (u,v) به ازای هر یال جهت دار (u o v) علل جهت دار رسورت حذف می گردد.
 - در صورت نبود مسير ميانهمهٔ گرهها، تنها قوىترين مؤلفهٔ متصل نگه داشته مىشود.

۴.۱ مدل بار کاری و مهلتها

حجم کاری workload هر گره از توزیع نرمال مثبت یا توزیع یکنواخت Uniform(1, 10) استخراج می شود.

- $\epsilon \sim ext{Uniform}(-0.5, +0.5)$ که $deadline = 3 imes workload + \epsilon$ که deadline = 3 imes workload
 - این باعث می شود بیشتر وظایف قابل زمان بندی باشند اما برخی چالش برانگیز باقی بمانند.

۵.۱ پیادهسازی شیءگرا

هر گره با استفاده از کلاس Task مدلسازی می شود:

```
class Task:
    def __init__(self, id, workload, deadline, resources):
        ...
```

در صورتی که سیستم ناهمگن باشد، resources برای هر گره تصادفی تخصیص می یابد و محدودیت تخصیص روی هسته ها اعمال می شود.

۲ رابط خط فرمان (CLI)

نمونهٔ فراخواني:

يس از اجرا:

- فایلهای dag. json و schedule. json تولید می شوند.
- روی خروجی استاندارد، تعداد وظایف و طول زمانبندی کلی (Makespan) چاپ می شود.

۱.۲ خروجی زمانبندی

فایل schedule.json ساختاری مانند زیر دارد:

```
Ε
1
2
    {
3
       "task_id": 51,
       "core_id": 0,
4
       "start": 0.0,
5
6
       "finish": 13.16451396465417
7
    }
8
  ]
```

- start و end زمانهای شروع و پایان نسبی اجرای هر وظیفه هستند.
 - core شمارهٔ هستهٔ تخصیص یافته را نشان می دهد.
- اجرای وظایف در چارچوب DAG و بدون نقض تقدمها تضمین می شود.
 - finish زمان اتمام تسک

۲.۲ ذخیرهسازی DAG

فایل dag. json ساختار کلی زیر را دارد:

```
1
   {
2
3
          "id": 0,
          "workload": 50,
4
5
          "deadline": 140.283276704142,
6
          "resources": {
7
            "core": 1
8
9
       },
     "edges": [
10
11
12
          "source": 0,
13
          "target": 89
14
       },
15
   }
```