7. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 27)

- 1) Man bestimme die Polynomfunktion 3. Grades $f: \mathbb{R} \to \mathbb{R}$ mit f(-1) = -2, f'(-1) = 0, f''(-1) = 1 und $f^{(3)}(-1) = -5$.
- 2) Man bestimme die folgenden Ableitungen höherer Ordnung:

a)
$$(e^{5x})^{(n)}$$
, $n \in \mathbb{N}$, b) $(x^2 \sin 2x)^{(100)}$, c) $((x^3 + 2x - 1)e^{2x})^{(n)}$, $n \in \mathbb{N}$.

- 3) Es sei $f\colon \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = e^{2x} \sin x.$ Man bestimme:
 - a) das Taylorpolynom $T_2(x,0)$,
 - b) das Restglied $R_2(x,0)$, für $x \in \mathbb{R} \setminus \{0\}$, nach der Taylorschen Formel.

(A 28)

Es sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = \cos x$.

- a) Man bestimme $f^{(n)}$, für $n \in \mathbb{N}$.
- b) Man gebe das n-te Taylorpolynom $T_n(x,0)$, für $n \in \mathbb{N}$, an.
- c) Man gebe das Restglied $R_n(x,0)$, für $x \in \mathbb{R}$ und $n \in \mathbb{N}$, nach der Taylorschen Formel an.
- d) Man zeige, dass f eine Taylorentwicklung an der Stelle $x_0 = 0$ hat und bestimme diese.

(A 29)

Es sei $f: [0,1] \to \mathbb{R}$ definiert durch $f(x) = \ln(1+x)$.

- a) Man bestimme $f^{(n)}$, für $n \in \mathbb{N}$.
- b) Man gebe das n-te Taylorpolynom $T_n(x,0)$, für $n\in\mathbb{N}$, an.
- c) Man gebe das Restglied $R_n(x,0)$, für $x \in [0,1]$ und $n \in \mathbb{N}$, nach der Taylorschen Formel an.
- d) Man zeige, dass f eine Taylorentwicklung (auf [0,1]) an der Stelle $x_0 = 0$ hat und bestimme diese.
- e) Das bei d) erhaltene Ergebnis verwendend, bestimme man die Summe der alternierenden harmonischen Reihe $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

(A 30) (Ableitungen höherer Ordnung)

a) Man zeige, dass die folgenden Gleichheiten für alle $n \in \mathbb{N}$ und alle $x \in \mathbb{R}$ gelten

$$\sin^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right), \quad \cos^{(n)}(x) = \cos\left(x + n\frac{\pi}{2}\right).$$

b) Man bestimme $(e^x \sin x)^{(n)}$ und $(e^{-2x} \cos x)^{(n)}$, für $n \in \mathbb{N}$.

(A 31) (Die Regel von L'Hospital)

Seien α , $\beta > 0$. Man bestimme die folgenden Grenzwerte:

$$\text{a)} \lim_{x \to \infty} \frac{e^{\alpha x}}{x}, \quad \text{b)} \lim_{x \to \infty} \frac{e^{\alpha x}}{x^{\beta}}, \quad \text{c)} \lim_{x \to \infty} \frac{\ln x}{x^{\alpha}}, \quad \text{d)} \lim_{x \to \infty} \frac{(\ln x)^{\beta}}{x^{\alpha}}, \quad \text{e)} \lim_{\substack{x \to 0 \\ x > 0}} x^{\alpha} \ln x, \quad \text{f)} \lim_{\substack{x \to 0 \\ x > 0}} x^{x}.$$