Gradient One

Crewed EVA-Accessible Boom Testbed

A human-rated artificial gravity pathfinder for orbital habitation

Executive Summary

Gradient One is a full-scale artificial gravity demonstrator designed to validate human tolerance to rotational gravity and vertical gravity gradients in orbit. The mission features **three crewed**, **pressurized habitat pods** mounted at specific radii along a **350-meter rigid boom**, each simulating a different gravity level: **Earth, Mars, and Moon**.

The structure rotates at ~1.6 RPM to generate 1g at the outermost pod. A counterweight system on the opposite end balances the rotation. Astronauts access each pod via EVA along the truss, entering through individual airlocks.

Gradient One directly supports the development of **Aegis Station** by addressing critical unknowns in rotating environments.

Mission Rationale

Despite decades of spaceflight, no humans have lived in partial gravity or experienced continuous rotational gravity in orbit. All long-term habitation to date has occurred in microgravity, with known physiological degradation.

Only live human subjects can evaluate:

- Coriolis effects
- Gravity gradient perception
- Motion adaptation under spin

Gradient One provides the validation platform needed to bridge this gap for future orbital habitats.

Technical Architecture

Component	Description
-----------	-------------

Boom Length	350 meters (rigid truss)
Pods	Three pressurized crew-rated modules, 10 m tall \times ~2.5 m diameter
Counterweigh t	Inert or mirrored dummy pods to balance rotational mass

Artificial Gravity Configuration (at 1.6 RPM)

- All three pods are fixed to the **same side** of the boom
- Each pod simulates a different **gravity level** based on radial distance:
 - Earth (1g) near boom tip
 - Mars (~0.38g) at intermediate radius
 - Moon (~0.17g) further inward
- Each pod is **matched** by a counterweight on the opposite side to preserve system balance

Mission Operations

Deployment

- Launch to 500–600 km circular orbit
- Deploy boom, pods, and counterweights
- Spin-up to ~1.6 RPM

Crew Access

- Dock at non-rotating central node
- EVA along boom to reach each pod
- Pressurized entry via pod-specific airlocks

Spin Phase

- Maintain ~1.6 RPM
- 14–30 day nominal habitation cycles

Continuous monitoring of adaptation and performance

Recovery

- Controlled spin-down
- EVA return to hub
- Crew recovery via reentry capsule

Instrumentation and Research Goals

Focus Area	Implementation
Motion & Balance	Head/eye tracking, Coriolis response, gait analysis
Vestibular	EEG, nausea tracking, spatial orientation tasks
Physiology	ECG, muscle/bone load, fluid shifts
Environment	Airflow, water behavior, particle settling
Performance	Dexterity tests, cognitive latency, coordination tasks
Video Capture	EVA and pod interior video monitoring

Safety and Redundancy

- Emergency spin-down capability
- Redundant power, comms, and ECLSS
- EVA tether systems with guide rails
- Visual boom markers and handholds
- Abort protocols and emergency O₂ in each pod

Upgrade and Reuse Potential

- Expand to 90–180 day missions
- Add internal mobility/ergonomic systems

- Integrate with full-scale rotating platforms
- Adapt truss for additional modules or science payloads
- Enable robotic or drone-assisted boom traversal

Strategic Relevance

Gradient One enables:

- Empirical validation of artificial gravity for human habitation
- Confirmation of Aegis Station design assumptions
- Data for Artemis successors and Mars preparation
- A shift in human spaceflight from microgravity to stable orbital life

Gradient One transforms rotational gravity from theory into tested, human-rated infrastructure.

Gradient One pod boom