Übungsaufgaben

Mathematik für Informatik III

SERIE 2

Termin: 05.11./12.11.19

2.1 Man bestimme die Anzahl aller Paare (A, B) aus Teilmengen von $\{1, \dots, n\}$, für die zusätzlich gilt:

- (a) $A \subseteq B$;
- (b) $A \subset B$, (d.h. insbesondere auch $A \neq B$).

2.2 Eine Abschätzung a_n für die Komplexität des Algorithmus QUICKSORT zum Sortieren einer nelementigen Liste genügt der Rekursion

$$a_0 = 0,$$
 $na_n = (n+1)a_{n-1} + 2(n-1)$ für $n \ge 1$.

Man bestimme eine explizite Formel für a_n und beweise, dass $a_n \le 2(n+1)(1+\ln n)$, also $a_n = \mathbf{O}(n\log n)$ gilt.

(**Hinweis:** Die explizite Formel enthält eine Reihensumme, die man zwar nicht explizit ausrechnen, aber weiter abschätzen kann!)

2.3 Bestimmen Sie die exlizite Lösung der linearen Rekursionsgleichung

$$y_{n+2} = 8y_{n+1} - 16y_n + 27n \text{ für n } \ge 0$$

mit den Anfangsbedingungen

$$y_0 = 0, \ y_1 = 1.$$

2.4 Bestimmen Sie die allgemeine Lösung der Rekursion

$$y_{n+3} - 4y_{n+2} - 3y_{n+1} + 18y_n = 0$$
 für n ≥ 0 .

2.5 Man bestimme die Anzahl der Wörter der Länge $n \geq 3$, die aus den Buchstaben a, b, c, d, e gebildet werden können und wenigstens einmal a, wenigstens einmal b und wenigstens einmal c enthalten.