PopBin: Popcount Binarization for Lightweight Binary Neural Networks

Hyungdong Park, Inguk Yeo Department of Computer Engineering

Contents

- 1. Baseline Model
 - ReActNet-18
- 2. Implementing binarized counting in hardware architectures
 - Architectures and Benefits of popcount binarization
- 3. Popcount binarization techniques
 - PTQ-popcount binarization
 - Simple QAT-popcount binarization
 - QAT-popcount binarization

- ReActNet-18 with CIFAR-10 using xnor & popcount

Num of channels	64	64	128	256	512	
Num of layers	1	4	4	4	4	Pooling & FC
Image size	64 × 32 × 32	64 × 32 × 32	128 × 16 × 16	256 × 8 × 8	512 × 4 × 4	Pooling & PC
Operations	*	XNOR & Pop-Count & Multiplication & Batch Norm				
Activations and weights	\mathbb{R}	ℝ (After BN) & Binarized values (1 or -1)			\mathbb{R}	

units of Mul

 $c_0 \times h_0 \times w_0$

Progress Software Implementation of PopBin Network with CIFAR-10 Num of 64 128 256 512 64 channels Num of layers 4 4 Pooling & FC $128 \times 16 \times 16$ $256 \times 8 \times 8$ $512 \times 4 \times 4$ Image size $64 \times 32 \times 32$ $64 \times 32 \times 32$ Operations (*)XNOR & Pop-Count & Multiplication & Batch Norm Activations and \mathbb{R} \mathbb{R} (After BN) & Binarized values (1 or -1) weights

None

units of Mul

- Hardware operation process per a xnor & popcount for ReActNet-18 (our baseline)

- Hardware operation process per a xnor & popcount for our model

Benefits of popcount binarization

- Hardware computations per a layer

Models	Operations	# Operations per a layer
ReActNet-18	Integer Multiplication & Bit shift	$c_o \times w_o \times h_o$ Integer Multiplications & Bit shifts
QAT-popcount binarization ReActNet-18	None	None

- Hardware computations of model-wide perspective

Models	Operations	# Operations
ReActNet-18	Integer Multiplication & Bit shift	557,056 Integer Multiplications & Bit shifts
QAT-popcount binarization ReActNet-18	None	None

Popcount binarization techniques

- Structure for PTQ-popcount binarization

 $|\alpha| \le (channel_num \times kernel^2)$ $\beta = \pm 1$ $\gamma = \pm scaling \ factor$ $\delta = \pm (scaling \ factor \times channel_num \times kernel^2)$

- PTQ-popcount binarization's results with CIFAR-10

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
PTQ-popcount binarization ReActNet-18	10.000	52.040
Bi-RealNet-18	88.770	98.250
PTQ-popcount binarization Bi-RealNet-18	10.000	50.000

- Structure for Simple QAT-popcount binarization

- Simple QAT-popcount binarization's results with CIFAR-10

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
Simple QAT-popcount binarization ReActNet-18	84.930	99.250
Bi-RealNet-18	88.770	98.250
Simple QAT-popcount binarization Bi-RealNet-18	30.070	79.690

- Structure for QAT-popcount binarization

Forward in training

Backpropagation in training

```
|\alpha| \le (channel\_num \times kernel^2)

\beta = \pm 1

\gamma = \pm scaling\_factor

\delta = \pm (channel\_num \times kernel^2 \div division\_num)
```

- QAT-popcount binarizationReActNet-18's results with CIFAR-10 along with division num

Division num	Top-1 Accuracy (%)	Top-5 Accuracy (%)
channel num + α	92.150	99.640
$(channel\ num\ imes\ kernel^2) + \alpha$	89.580	99.460
channel num \times α	92.510	99.640
(channel num \times kernel ²) \times α	92.160	99.660
Min-Max Normalization $(channel\ num\ imes\ kernel^2)$	89.230	99.390

- QAT-popcount binarization's results with CIFAR-10

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
Simple QAT-popcount binarization ResNet-18	84.930	99.250
QAT-popcount binarization ReActNet-18 (PopBin)	92.510	99.640
Bi-RealNet-18	88.770	98.250
Simple QAT-popcount binarization Bi-RealNet-18	30.070	79.690
QAT-popcount binarization Bi-RealNet-18 (PopBin)	87.660	98.720

Thank you