Feladat

Valósítsa meg az egész számokat tartalmazó zsák típust! Ábrázolja a zsák elemeit (az előfordulás számukkal együtt) egy sorozatbanImplementálja a szokásos műveleteket (elem betevése, kivétele, üres-e a halmaz, egy elem hányszor van a zsákban), valamint két zsák különbségét (a közös elemek csak akkor maradnak meg, ha a kisebbítendő zsákban az előfordulási számuk nagyobb, mint a kivonandó zsákban, és ekkor az új előfordulási számuk a különbség lesz), továbbá egy zsák kiírását, és végül a másoló konstruktort és az értékadás operátort!

Zsák típus

A feladat lényege egy felhasználói típusnak a zsák típusnak a megvalósítása.

Típusérték-halmaz

Olyan számokat (ebben az esetben egész számokat: \mathbb{Z}) tartalmazó n-es (n \in N) multihalmazokkal akarunk dolgozni. Multihalmaz olyan halmaz, melyben egy elem többször is előfordulhat. Az elemek sorrendje nem számít.

Típus-műveletek

1. Elem betétele

A zsákba e elemből m darab betétele (e $\in \mathbb{Z}$, m $\in \mathbb{N}^+$).

2. Elem kivétele

A zsákban lévő e elemből m darab kivétele. (e $\in \mathbb{Z}$, m $\in \mathbb{N}^+$).

Megjegyzés: Ha e elem nem eleme a zsáknak, vagy e elemből m-nél kevesebb elem van a zsákban, hibás.

3. Üres-e a halmaz

Adott zsákról megállapítás, hogy van-e eleme vagy nincs.

4. Elem előfordulása egy zsákban

Egy adott e elemről megadja, hogy hányszor szerepel a zsákban.

Megjegyzés: Ha nem nem eleme a zsáknak, az előfordulási száma nulla.

5. Két zsák különbsége

Két zsák különbsége c := a - b. A nem közös elemekből a kisebbítendő (a) összes eleme megmarad, a közös elemek csak akkor maradnak meg, ha a kisebbítendőben (a) többször fordulnak elő, ekkor a két zsákban való előfordulásuk különbsége lesz az eredményben való mennyiségük.

Reprezentáció

A zsákot két dinamikusan lefoglalt egydimenziós tömbbel, és a különböző elemek mennyiségével (menny) reprezentáljuk. Az egyik tömb ekkor a zsákban lévő elemek rendezve, ismétlődés nélkül (elemek), a másik tömb pedig az adott indexű elem mennyiségének a száma (eloford).

Implementáció

1. Elem betétele

Az elemek és eloford tömbbel és menny számmal ábrázolt zs zsákba való e elem m-szer való betétele az alábbi programmal implementálható, feltéve, hogy e $\in \mathbb{Z}$ és $m \in \mathbb{N}^+$:

2. Elem kivétele

Az elemek és eloford tömbbel és menny számmal ábrázolt zs zsákból az e elemből m darab kivétele az alábbi programmal implementálható, feltéve, hogy $e \in z$ s és $m \in \mathbb{N}^+$, továbbá e elem legfeljebb m-szer fordul elő zs-ben:

3. Üres-e a halmaz

Az elemek és eloford tömbbel és menny számmal ábrázolt zs zsákról a következő programmal implementálható, hogy / logikai érték, amely akkor igaz, ha zs üres zsák.:

$$I = menny == 0$$

4. Elem előfordulása egy zsákban

Az elemek és eloford tömbbel és menny számmal ábrázolt zs zsákban adott e elem előfordulásának száma a zsákban a következő programmal implementálható, ahol e elem *m*-szer fordul elő zs zsákban.

5. Két zsák különbsége

Az elemek1 és eloford1 tömbbel és menny1 számmal ábrázolt zs1 zsák, és az elemek2 és eloford2 tömbbel és menny2 számmal ábrázolt zs2 zsák különbsége (zs3 := zs1 - zs2) az alábbi programmal reprezentálható, ahol zs3 a két zsák különbsége, amely elemek3 és eloford3 dinamikus tömbökkel, illetve menny3 számmal ábrázolható:

Osztály

A zsákok típusát egy osztály segítségével valósítjuk. Egyes műveleteknél maj dellenőrizni kell, hogy a mátrix üres-e (elem kivétele).

A függvények az adott típus-műveletek megvalósítására szolgálnak.

UresZsak hibaüzenetet akkor kapunk, ha üres zsákból szeretnénk elemet kivenni, *HibasMeret*-et akkor, ha nem megfelelő darabszámú elemet szeretnénk a zsákba rakni vagy kivenni (pl: negatív darabot vagy többet, mint ahány benne van). *HibasElem* hibaüzenetet kapunk, ha a Kivesz műveletnél nincs olyan elem a zsákban, mint ami ki szeretnénk venni, *SikertelenLefoglalas* pedig a zsák konstruktor sikertelen lefutása esetén adódik.

Tesztelési terv

Megvalósított műveletek tesztelése (fekete doboz tesztelés)

- 1) Konstruktorok
 - a) Zsák létrehozása, ürességének vizsgálata
 - b) Másoló konstruktor kipróbálása
- i) A zs2 zsák létrehozása zs1 mintájára, majd zs2 megváltoztatásaés a két zsák tartalmának összehasonlítása
- 2) Berakás művelet
 - a) Negatív mennyiségű elem berakása
 - b) Nulla darabszámú elem berakása
 - c) Elem berakásának helyessége
 - d) Elem mennyiségének berakásának helyessége
 - e) Berakáskor rendezés helyessége
- 3) Kivétel
 - a) Üres zsákból elem kivétele
 - b) Elem kivételének helyessége
 - c) Nem létező elem kivétele
 - d) Túl nagy mennyiségű elem kivétele
- 4) Üres-e
- 5) Elem előfordulása
 - a) Létező elem előfordulása
 - b) Nem létező elem előfordulása
- 6) Két zsák különbsége (zs3 := zs1 zs2)
 - a) zs1 > zs2 vizsgálat (eredmény nem üres zsák)
 - b) zs1 < zs2 vizsgálata (eredmény üres zsák)
- 7) Értékadás operátor
- a) A zs2 = zs1 értékadás végrehajtása a zs1 és zs2 zsákokra, majd a két zsák tartalmának összehasonlítása, majd a zs1 zsák megváltoztatása és a két zsák tartalmának összehasonlítása.
- b) A zs3 = zs2 = zs1 értékadás végrehajtása a zs1, zs2, zs3 zsákokra, majd a két mártix tartalmának összehasonlítása, majd az egyik zsák megváltoztatása és a mátrixok tartalmának összehasonlítása.
 - c) A zs = zs értékadás végrehajtása a zs zsákra, majd ennek vizsgálata.

Tesztesetek kód alapján (fehér doboz tesztelés)

1. Hibaüzenetek generálása és elkapása