4-14.

分配算法	请求	空闲区链表
首次适应	12K	10K, <mark>28K</mark> , 20K, 18K, 7K, 9K, 12K, 15K
	10K	28K, 20K, 18K, 7K, 9K, 12K, 15K
	9K	19K, 20K, 18K, 7K, 9K, 12K, 15K
最佳适应	12K	10K, 40K, 20K, 18K, 7K, 9K, 15K
	10K	40K, 20K, 18K, 7K, 9K, 15K
	9K	40K, 20K, 18K, 7K, 15K
最坏适应	12K	10K, 28K, 20K, 18K, 7K, 9K, 12K, 15K
	10K	10K, 18K, 20K, 18K, 7K, 9K, 12K, 15K
	9K	10K, 18K, 11K, 18K, 7K, 9K, 12K, 15K

4-15. (1) 2*4096+20=8212

(2) 1*4096+1004=5100

(3) 6*4096+108=24684

(4) 页号越界

4-16.

算法	页访问序列													
	0	1	7	2	3	2	7	1	0	3	2	5	1	7
FIFO	0	0	0	0	3	3	3	3	3	3	3	3	3	7
		1	1	1	1	1	1	1	0	0	0	0	0	0
			7	7	7	7	7	7	7	7	7	5	5	5
				2	2	2	2	2	2	2	2	2	1	1
	缺页:9次													
LRU	0	0	0	0	3	3	3	3	0	0	0	0	1	1
		1	1	1	1	1	1	1	1	1	1	5	5	5
			7	7	7	7	7	7	7	7	2	2	2	2
				2	2	2	2	2	2	3	3	3	3	7
	缺页: 11 次													
ОРТ	0	0	0	0	3	3	3	3	3	3	3	3	3	3
		1	1	1	1	1	1	1	1	1	1	1	1	1
			7	7	7	7	7	7	0	0	0	0	0	7
				2	2	2	2	2	2	2	2	5	5	5
	缺页:8次													

4-17. (1) 219+430=649

(2) 2300+10=2310

(3) 段内越界

(4) 1326+400=1726

(5) 段内越界

4-18.

- (1) 物理页框为 4096B, 65536B 的存储空间可划分为 16 个物理页框,该主存空间不适合此进程。
- (2) 物理页框为 512B, 65536B 的存储空间可划分为 128 个物理页框, 在仅考虑该进程所需占用存储空间的情况下, 该主存空间可以满足此进程的请求。

4-19.9位表示页号,10位表示页内地址。

4-20.

- (1)程序A缺页50次,程序B缺页100*50=5000次。
- (2)程序A缺页100次,程序B缺页100*100=10000次。
- 4-21. 根据题目所述含义,在快表与页表并行访问时,需考虑:
 - (1) 页面不失效,即页面在内存中,此种情况又可细分如下:
 - a) 快表命中,直接形成物理地址;
 - b) 快表未命中,需访问页表,此时需区分:
- (2)页面失效,此时需先访问快表和页表,才能发现页面失效,产生缺页中断,进行缺页处理时需在内外存之间传送页面,并更新页表和快表,更新页表为一次内存写操作,更新快表较快,可与更新页表同时完成;
 - (3) 地址变换完成后,访问物理内存。
- 基于上述分析,内存有效存取时间为:
 - (1-0.1)*[0.75*1+(1-0.75)*8]+0.1*(8+5000+8)+8=512.075
- 4-23. 一个进程理论上可具有 2^{64} B 的逻辑地址空间,一个物理块可存放 $8192/4=2^{11}$ 个 页表项,因此若要求页表信息存放在一个物理块中,应采用 5 级页表(7+11+11+11+11+13)。