Национальный исследовательский ядерный университет «МИФИ» (Московский Инженерно-Физический Институт) Кафедра №42 «Криптология и кибербезопасность»

ОТЧЁТ

Лабораторная работа №7: «Совместное применение OpenMP и MPI»

Группа Студент Преподаватель Б21-525 Р.Т. Мясников М.А. Куприяшин

Оглавление

1.	Описание рабочей среды	3
2.	Анализ приведенного алгоритма	4
3.	Анализ временных характеристик последовательного алгоритма	6
4.	Анализ временных характеристик параллельного алгоритма	7
5.	Заключение	8
6.	Приложение	8

1. Описание рабочей среды

- Модель процессора: Intel Core i3-10110U CPU @ 2.10GHz

- Число ядер: 2- Число потоков: 4

- Архитектура: x86-64

- OC: Linux, дистрибутив Ubuntu v20.04

- RAM объем: 2x8192 MB

- RAM тип: DDR4

- Среда разработки: Visual Studio Code

- Компилятор: gcc v9.4.0 - Версия OpenMP: 201511

2. Анализ приведенного алгоритма

В задании лабораторной работы приведена программа, осуществляющая нахождение всех простых чисел в данном диапозоне используя OpenMP и MPI.

Блоксхема алгоритма

Описание работы алгоритма

В данной работе представлена реализация поиска простых чисел в заданном диапозоне используя OpenMP и MPI. Сначала массив разбивается на равные подмассивы, каждый из которых отправляется другим потокам MPI. Внутри каждый поток проходит по своему подмассиву в поиске простых чисел, распределяя нагрузку с помощью OpenMP.

3. Анализ временных характеристик последовательного алгоритма

Описание эксперимента

• Измеряется время работы алгоритма в диапозоне от 0 до $50\,000\,000$.

Экспериментальные показатели

• Среднее время работы алгоритма: 38.608760 [с];

4. Анализ временных характеристик параллельного алгоритма

Описание эксперимента

- Измеряется время работы алгоритма в диапозоне от 0 до 50 000 000 для 2 потоков MPI и 2 потоков OpenMP (2 x 2).
- Измеряется время работы алгоритма в диапозоне от 0 до 50 000 000 для 4 потоков MPI мРІ.

Результаты измерений

Следующая таблица содержит полученные в результате эксперимента данные: среднее время работы для различного числа потоков.

Эксперимент	Скорость	Ускорение	Эффективность
Линейный	38.608760	-	-
2 x 2	27.462341	1.405880	0.351470
MPI	27.415832	1.408265	0.352066

Распределение вычислительной нагрузки

Ниже представлена диаграмма времени выполнения потоков.

5. Заключение

В ходе работы была разработана программа, которая сочетает OpenMPI и MPI, для выполнения алгоритма поиска простых чисел в определённом диапазоне. Программа распределяет нагрузку: 2 процесса MPI и 2 потока OpenMP. Было замерено время выполнения всех потоков по отдельности в варианте с 4 процессами MPI и построена диаграмма. Анализируя диаграмму видно, что время выполнения каждого процесса линейно увеличивалось с увеличением его номера. Это подтверждается уменьшением числа найденных простых чисел с ростом номера процесса, так как в более высоких интервалах простых чисел меньше.

6. Приложение

Код программы расположен на github