

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

August 23, 2023

Grading

4380 Section (Undergrads)		
Homework (35%)		
Test 1 (10%)		
Test 2 (10%)		
Final Exam (20%)		
Term Project (25%)		

6380 Section (Grads)		
Homework (30%)		
Test 1 (10%)		
Test 2 (10%)		
Presentation (10%)		
Final Exam (20%)		
Term Project (20%)		

4380 Section (Undergrads)
Homework (35%)
Test 1 (10%)
Test 2 (10%)
Test 3 (10%) (tentative)
Term Project (35%) (or 45%)

6380 Section (Grads)		
Homework (30%)		
Test 1 (10%)		
Test 2 (10%)		
Test 3 (10%) (tentative)		
Presentation (10%)		
Term Project (30%) (or 40%)		

Term Project Description

- Each team has $2 \sim 3$ students. (or 1 if send email to me and explain)
- Consists of a presentation, a final report, and the executable source codes.
 - Presentations are scheduled before the last week, reports and codes are due at the end of the last week (Midnight Dec. 10);
- Any topics related to the course. Topic selection suggestions:
 - Standard tasks: https://www.kaggle.com/. (don't directly use the code or solution from Kaggle)
 - Real-world applications: Problems or applications that you are interested in.
 - Top conferences: KDD, NeurIPS, ICML, ICLR, AAAI, IJCAI, CVPR, ICCV, ECCV
- Detailed requirements to be introduced later.

Final Presentation

- November 26 28.
- All team members should present their slides.
- Each presentation is a talk (20 minutes) + QA (5 minutes) = 25 minutes.
- Slides should be emailed to the instructor before presentation.
- Content to be covered:
 - Background.
 - The formal problem definition.
 - The details of your solution.
 - Experimental results on the datasets, compared with baseline methods (at least three), under the evaluation metrics.
 - Conclusion.

Final Report

- Latex template: To be provided later
- Length: ≥ 6 pages + unlimited references Format:
 - Introduction
 - Literature Review (short)
 - Problem Definition
 - The Proposed Method
 - Experiments and Analysis
 - Conclusion
 - References
- Failing to following the template \rightarrow 20% penalty.

Data Understanding

Data Quality

Poor data quality negatively affects many data processing efforts

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
 - Some credit-worthy candidates are denied loans
 - More loans are given to individuals that default

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - Wrong data
 - Fake data
 - Missing values
 - Duplicate data

Noise

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
 - The figures below show two sine waves of the same magnitude and different frequencies, the waves combined, and the two sine waves with random noise
 - The magnitude and shape of the original signal is distorted

Outliers

- *Outliers* are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Case 1: Outliers are noise that interferes with data analysis
 - Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection
- Causes?

Missing Values

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
 - Transmission error/preprocessing

	Α	В	С
1	Original Data set		
2	Name	Age	Gender
3	Robin	28	Male
4	Heather	29	Female
5	Jamie	22	
6	Carl	32	Male
7		35	Male
8	Sarah	26	Female

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates
 of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues
- When should duplicate data not be removed?

Basic Statistical Description

- Motivation. To better understand the data: central tendency, variation, and spread
- **Data dispersion characteristics**: median, max, min, quantiles, outliers, variances, etc.
- Numerical dimensions correspond to sorted intervals.
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

• Mean: sample vs. population

$$ar{x} = rac{1}{n} \sum_{i=1}^{n} x_i \text{ vs. } \mu = rac{\sum x}{N}$$

• **Median:** Middle value if odd number of values, or average of the middle two values otherwise

•	Mode: Value that occurs most frequently in the
	data

- Unimodal, bimodal, trimodal
- Empirical formula: mean-mode=3×(mean-median)

age	frequency
1-5	200
6 - 15	450
16-20	300
21 - 50	1500
51 - 80	700
81 - 110	44

Example

• Median, mean and mode of symmetric data

Example

Median, mean and mode of positively skewed data

Example

Median, mean and mode of negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers, and boxplots
 - **Quartiles**: *Q*1 (25th percentile), *Q*3 (75th percentile)
 - Inter-quartile range: IQR = Q3 Q1
 - **Five number summary**: min, *Q*1, median, *Q*3, max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - **Outlier**: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation
 - Variance:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2, \, \sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$$

- **Standard deviation**: s (or σ) square root of variance s2 or ($\sigma2$)

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum
- Boxplot

Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value *xi* is paired with fi indicating that approximately 100 *fi* % of data are *i*
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- **Scatter plot**: each pair of values is a pair of coordinates and plotted as points in the plane

Boxplot

```
import matplotlib.pyplot as plt
import numpy as np
# Generate exam scores for two classes
np.random.seed(42)
class_A_scores = np.random.randint(50, 100, 50) # Generate 50 scores between 50 and 100
class_B_scores = np.random.randint(60, 90, 50) # Generate 50 scores between 60 and 90
# Create a box plot
plt.figure(figsize=(8, 6))
plt.boxplot([class_A_scores, class_B_scores], labels=['Class A', 'Class B'])
plt.title('Box Plot of Exam Scores by Class')
plt.xlabel('Class')
plt.ylabel('Exam Scores')
plt.grid(True)
plt.show()
```


Histogram Analysis-Example 1

```
import matplotlib.pyplot as plt
import numpy as np
# Generate a dataset of exam scores
np.random.seed(42)
exam_scores = np.random.randint(0, 101, 100) # Generate 100 scores between 0 and 100
# Create a histogram plot
plt.figure(figsize=(8, 6))
plt.hist(exam_scores, bins=10, edgecolor='black') # Divide scores into 10 bins
plt.title('Histogram of Exam Scores')
plt.xlabel('Score Ranges')
plt.ylabel('Frequency')
plt.xticks(range(0, 101, 10)) # Set x-axis tick labels
plt.grid(True)
plt.show()
```


Quantile Plot

```
import matplotlib.pyplot as plt
import numpy as np
# Exam scores dataset
scores = [65, 72, 75, 78, 82, 85, 88, 90, 92, 95,
          98, 100, 105, 110, 112, 115, 118, 120, 125, 130]
# Sorting the data
sorted_scores = sorted(scores)
# Dividing into quantiles
quantiles = np.percentile(sorted_scores, [0, 25, 50, 75, 100])
# Plotting the quantile plot
plt.figure(figsize=(8, 4))
plt.plot(quantiles, [0, 1, 2, 3, 4], marker='o', linestyle='-', color='blue')
plt.title('Quantile Plot of Exam Scores')
plt.xlabel('Quantiles')
plt.ylabel('Quantile Values')
plt.xticks(quantiles, ['Min', 'Q1', 'Median', 'Q3', 'Max'])
plt.yticks([0, 1, 2, 3, 4], ['0%', '25%', '50%', '75%', '100%'])
plt.grid(True)
plt.show()
```


Quantile-Quantile Plot

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
# Generate a dataset of observed exam scores
np.random.seed(42)
observed_scores = np.random.normal(75, 10, 100) # Mean = 75, Standard Deviation = 10
# Create a Q-Q plot
plt.figure(figsize=(6, 6))
stats.probplot(observed_scores, dist='norm', plot=plt)
plt.title('Quantile-Quantile Plot')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Observed Quantiles')
plt.grid(True)
plt.show()
```


Scatter Plot

Positively and Negatively Correlated Data

Uncorrelated Data

