

Mobile Robots Kinematics and models

Ole Ravn
Automation and Control
DTU Elektro

DTU Electrical EngineeringDepartment of Electrical Engineering

Outline

- Kinematics
- Odometry model
- Motor model
- Line sensor model
- UMBmark
- Todays and tomorrows exercise

Kinematics

- Kinematics is the study of motion without regard to the forces which cause it
- Where are we and where are we going
- Within kinematics one studies the position, velocity and acceleration etc.

Encoders

- Encoders are used to measure the rotation of the wheels
- Using two channels enables detection of direction and four times as many pulses can be used.

Odometry model

From encoder signals to determine where we are.

The incremental displacement of each wheel:

$$\Delta U_{L/R}(i) = c_m N_{L/R}(i)$$

where

$$c_m = \pi D/nC$$

$$D=6.5 cm, n=1, C=2000$$

The displacement of the robot centre point $\Delta U(i) = (\Delta U_R + \Delta U_L)/2$

Incremental change in orientation $\Delta\theta(i) = (\Delta U_R - \Delta U_L)/b$

b is the wheel distance

New pose of the robot is

$$x(i) = x(i-1) + \Delta U(i) \cos(\theta(i))$$

$$y(i) = y(i-1) + \Delta U(i) \sin(\theta(i))$$

$$\theta(i) = \theta(i-1) + \Delta\theta(i)$$

UMBmark

Where am I: p. 14, pp. 19-20, and pp.130-142

Odometry errors

Systematic errors

- Unequal wheel diameters
- Average of actual wheel diameters differ from nominal wheel diameter
- Actual wheelbase differs from nominal
- Misalignment of wheels
- Finite encoder resolution
- Finite encoder sampling rate

Odometry errors

Non-systematic

- Uneven floors
- Unexpected object on the floor
- Wheel slippage
- slippery floors
- overacceleration
- skidding
- interaction with external bodies
- castor wheels
- non-point wheel contact with floor

UMBMark

Errors

- Wheel base
- Wheel diameter

$$E_b = \frac{b_{actual}}{b_{nomi}}$$

$$E_d = \frac{D_R}{D_L}$$

UMBMark

Calculating the Corrections

$$\alpha = \frac{x_{c,g,cw} + x_{c,g,ccw}}{-4L} \frac{180^{\circ}}{\pi}$$

$$\beta = \frac{x_{c,g,cw} - x_{c,g,ccw}}{-4L} \frac{180^{\circ}}{\pi}$$

$$R = \frac{L/2}{\sin(\beta/2)}$$

$$E_d = \frac{R + b/2}{R - b/2}$$

$$E_b = \frac{90^\circ - \alpha}{90^\circ}$$

Todays exercise

- 1. Make a Matlab script for the UMBmark
- 2. Test the script
- 3. Use the uncalibrated simulator rhdconfig.odo.xml
- 4. Do UMBMark
- 5. Work out calibration constants using (Excel or) Matlab
- 6. Check when we put in the calibration constants in the simulator

Documentation

- MATLAB figures on the web
- If you use jpg make sure that the 'quality' is 100 % or you get bad plots.
- Generally png (or gif) works well.

```
print -rxxx -dpng <name>
```

Use the following commands the produce a (better) jpg file:

```
print -rxxx -djpg100 <name>
```

• For best results the size of the plot should be adjusted using the -rxxx (72) option to print, NOT later in the html code.