TD2 - SIGNAUX & SYSTÈMES

Autocorrélation - Intercorrélation

Travail à rendre

Soient x[n] et y[n] deux signaux discrets, déterministes, réels et à énergie finie.

- 1) Rappelez les définitions des fonctions d'autocorrélation et d'intercorrélation notées R_{xx} , R_{xy} et R_{yx} . Rappelez les propriétés de symétrie, de parité et de valeur en 0.
- 2) Soit $y[n] = x[n-n_0]$, calculez R_{xy} , R_{yx} , R_{yy} .

Soient x(t) et y(t)] deux signaux continus, déterministes, réels et à énergie finie.

- 3) Rappelez les définitions des fonctions d'autocorrélation et d'intercorrélation notées R_{xx} , R_{xy} et R_{yx} .
- 4) Pour le temps continu et le temps discret, rappelez la relation entre la convolution et la corrélation.

Le CDMA (Code Division Multiple Access) est à la base de l'UMTS (Universal Mobile Telecommunications System) c'est-àdire la technologie utilisée pour la téléphonie mobile de troisième génération (3G).

Cette technologie consiste à utiliser des codes orthogonaux pour envoyer des messages simultanément vers plusieurs utilisateurs. Chaque utilisateur $User_i$ est associé à un code orthogonal $x_i[n]$ pour $i \in [1,3]$.

1. Les codes de Walsh-Hadamard sont une famille de codes utilisés pour transmettre les informations en downlink, c'està-dire de la station de base émettrice Node B vers les utilisateurs de portables *User*;

Montrez que les 3 codes $x_1[n]$, $x_2[n]$, $x_3[n]$ issus de cette famille et représentés dans la figure suivante sont des codes orthogonaux entre eux.

2. Pour chacun des codes, calculez et représentez le signal $R_{x_i x_i}[k]$ pour $i \in [1,3]$.

Un message binaire de 8 bits $[b_0...b_i...b_7]_{i\in[0;7]}$ suite de 0 et de 1 est transmis à l'aide du code $x_1[n]$ par la station de base à l'utilisateur User1.

Le message codé $msg_encoded_x_1$ est une séquence discrète obtenue en multipliant chaque bit b_i , $i \in [0;7]$ avec le code $x_1[n]$ décalé de i.N échantillons, avec N le nombre d'échantillons non nuls de $x_1[n]$.

$$msg_encoded_x_1 = \sum_{i=0}^{7} b_i x_1 [n-iN]$$
 eq.1

Représentez msg_encoded _x₁ obtenu avec le message binaire [1 0 1 1 0 0 1 0]

- 3. On suppose que le récepteur a reçu $msg_encoded_x_1$. Effectuez l'intercorrélation de $msg_encoded_x_1$ avec $x_1[n]$. Que remarquez-vous ? Comment peut-on retrouver le message binaire qui a été transmis ?
- 4. Rajoutez une plage de 0 de longueur quelconque en début de *msg_encoded_x*₁, on prend par exemple les valeurs [0 0 0 0 0 0]. Recalculez l'intercorrélation. Quelle information supplémentaire apporte cette opération? Une séquence quelconque de 0 et 1 telle que [1 0 0 1 1 0] changerait-elle le résultat?

Remarque: quelle contrainte faut-il vérifier entre l'émetteur et le récepteur pour que tout se passe bien ?

- 5. Calculez l'intercorrélation de $msg_encoded_x_1$ avec $x_2[n]$. Est-ce que l'utilisateur User2 peut récupérer l'information transmise à User1? Pourquoi?
- 6. La figure suivante présente l'intercorrélation d'un message transmis par la station de base par les codes des utilisateurs *User*1 et *User*2.

Déterminez à quel utilisateur le message est destiné.

Décodez le message binaire qui a été transmis en faisant apparaître sur le graphique les échantillons et les instants qui vous permettent de réaliser ce décodage.

7. La station de base transmet simultanément des messages binaires à 3 utilisateurs à l'aide du message transmis cidessous. Retrouvez à l'aide des figures b), c) et d) le message binaire spécifiquement adressé à chacun des utilisateurs.

Pour aller plus loin...

8. On appelle filtre adapté d'un signal x[n] de longueur L+1, un système dont la réponse impulsionnelle est égale à h[n]=x[L-n].

Montrez que la convolution de x[n] avec h[n] est égal à Rxx [n-L].

Déterminez la réponse impulsionnelle du filtre adapté à x₁[n].

Calculez la convolution de $x_1[n \text{ et } h_1[n] \text{ et vérifiez que le résultat est semblable à } Rx_1x_1[n-L]$.

(Vérifiez ce résultat après le TD 6 convolution).