MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

August 21, 2024

Lecture 8

Subsequences and Infinite series

Subsequences:

- Consider the sequences $\{1, 1/2, 1/3, \ldots\}$.
- $\{1,1/3,1/5,\ldots\}$; $\{1,1/2,1/4,\ldots\}$ or $\{1/3,1/6,1/9,\ldots\}$.
- Let $n_1 < n_2 < n_3 < \cdots$ be strictly increasing sequence of positive integers and $\{a_n\}$ be a sequence of real numbers then the sequence $\{a_{n_k}\}_{k=1}^{\infty} = \{a_{n_1}, a_{n_2}, a_{n_3}, \ldots\}$ is called a subsequence of $\{a_n\}$.
- Examples: $\{1,1,1,\ldots\}$ and $\{-1,-1,-1,\ldots\}$ are subsequences of $\{(-1)^n\}$.
- $\{1/2^{n^2}\}$ is a subsequence of $\{1/2^n\}$.

Properties of Subsequences

Theorem 0.1.

If the sequence $\{a_n\}$ converges to L then all the subsequences $\{a_{n_k}\}$ converges to L.

Corollary 0.2.

If one of the subsequences of $\{a_n\}$ diverges then the sequence $\{a_n\}$ also diverges.

Theorem 0.3.

If the subsequences $\{a_{2n}\}$ and $\{a_{2n+1}\}$ of $\{a_n\}$ converge to same limit L, then the sequence $\{a_n\}$ also converges to L.

Questions

- **1** Find the limit of the followings as $n \to \infty$.
 - $\sqrt{n+1} \sqrt{n}$
 - $\ln(\frac{n+2}{1+4n})$

 - $\frac{\sin n}{n}$ $\frac{\cos n^2}{n^2}$
- 2 Suppose a_n is sequence of real number converging to a. Show that the sequence $\left\{\frac{a_1+a_2+\cdots+a_n}{n}\right\}$ is also converging to the same limit a.
- **3** If x_n is a sequence of real numbers such that $\{x_{n+1} x_n\}$ convergens to some $x \in R$. Is the sequence x_n/n convergent? If so find the limit.
- **1** Let $x_1 = 1$ and $x_{n+1} = (\frac{n}{n+1})x_n^2$ for all n. Examine whether the sequence x_n is convergent. Also, find the limit if it is convergent.

Infinite Series:

• An infinite series is the sum of an infinite sequence $\{a_n\}$ of numbers:

$$a_1+a_2+a_3+\cdots$$

Infinite Series:

• An infinite series is the sum of an infinite sequence $\{a_n\}$ of numbers:

$$a_1+a_2+a_3+\cdots$$

 In this section we want to understand the meaning of such an infinite sum and to develop methods to calculate it.

Infinite Series:

• An infinite series is the sum of an infinite sequence $\{a_n\}$ of numbers:

$$a_1 + a_2 + a_3 + \cdots$$

- In this section we want to understand the meaning of such an infinite sum and to develop methods to calculate it.
- In order to give meaning for the infinite sum, we just consider the sum of the first n terms

$$s_n=a_1+a_2+\cdots+a_n=\sum^n a_k.$$

Infinite Series

We define the infinite sum by

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = \lim_{n \to \infty} s_n$$

whenever the later limit exists.

Infinite Series

We define the infinite sum by

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = \lim_{n \to \infty} s_n$$

whenever the later limit exists.

• For example consider the series $\sum_{k=1}^{\infty} 1/2^{k-1}$.

Infinite Series

We define the infinite sum by

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = \lim_{n \to \infty} s_n$$

whenever the later limit exists.

- For example consider the series $\sum_{k=1}^{\infty} 1/2^{k-1}$.
- $s_n = \sum_{k=1}^n 1/2^{k-1} = 2 \frac{1}{2^{n-1}}$, therefore we can say that

$$\sum_{k=1}^{\infty} 1/2^{k-1} = \lim_{n \to \infty} \left(2 - \frac{1}{2^{n-1}} \right) = 2$$

• Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$
.

is called an **infinite series**. The number a_n is called nth term of the series.

• Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$
.

is called an **infinite series**. The number a_n is called nth term of the series.

• The sequence $\{s_n\}$ defined by

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \cdots + a_n$$

is called the sequence of partial sums of the series and s_n is called nth partial sum.

Convergence and divergence of series:

Convergence and divergence of series:

• If the sequence $\{s_n\}$ of partial sums converges to a limit L, we say the series converges and its **sum** is L. In this case we also write

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = L = \lim_{n \to \infty} s_n.$$

Convergence and divergence of series:

• If the sequence $\{s_n\}$ of partial sums converges to a limit L, we say the series converges and its **sum** is L. In this case we also write

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = L = \lim_{n \to \infty} s_n.$$

• If the sequence $\{s_n\}$ of partial sums does not converge, we say the the series **diverges**.

Geometric Series: Geometric series are series of the form (for $a, r \in \mathbb{R}$)

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{n} ar^{n-1}$$

Geometric Series: Geometric series are series of the form (for $a, r \in \mathbb{R}$)

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$

Theorem 0.4.

If |r| < 1 then the above geometric series converges and

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$

if $|r| \geq 1$, the series diverges.

Thank you