

AUTOML: VISÃO GERAL

Aprendizagem de Máquina Automatizado

Automated Machine Learning: State-of-The-Art and Open Challenges

Radwa Elshawi University of Tartu, Estonia radwa.elshawi@ut.ee Mohamed Maher University of Tartu, Estonia mohamed.abdelrahman @ut.ee Sherif Sakr University of Tartu, Estonia sherif.sakr@ut.ee

			A section by C. H. Blancon and S. Santanian St.	
			THE RESIDENCE OF THE PROPERTY	
		A STATE OF THE PARTY OF THE PAR	AutoML Frameworks	4

Table 1: Summary of the Main Features of Centralized AutoML Frameworks									
	Release	Core	Training	Opt imization	ML	Meta	User	Automatic	Open
	Date	Language	Framework	Technique	Task	Learning	Interface	Feat ure	Source
								Extraction	
AutoWeka	2013	Jara	Weka	Bayesian optimization	Single-label classification regression	×	- 1	•	1
AutoSklearn	2015	Python	scikit-leam ,	Bayesian optimization	Single-label classification regression	*	×	*	1
TPOT	2016	Python	scikit-learn	Genetic Algorithm	Single-label classification regression	×	×	1	1
SmartML	2019	R	mlr, RWeka & other R packages	Bayesian optimization	Single-label classification	✓	· /	×	✓
Auto-MEK A _{GGP}	2018	Jara	Meka	Grammer-based genetic algorithm	Multi-label classification	✓	×	×	1
Recipe	2017	Python	scikit-loarn	Grammar-based genetic algorithm	Single-label classification	· ·	×	*	1
MLPlan	2018	Jarra.	Weka and scikit-learn	Hierachical Task Planning	Single-label classification	×	×		- 1
Hyperopt-sklearn	2014	Python	scikit-learn	Bayesian Optimization & Random Search	Single-label classification regression	×	×	•	1
Autostacker	2018			Genetic Algorithm	Single-label classification	×	×	· ·	×
VDS	2019	-		cost-based Multi- Armed Bandits and Bayesian Optimization	Single-label classification regression image classification audio classification graph matching	- /	- /	-	×
AlphaD3M	2018			Reinforcement learning	Single-label classification regression	1	×	1	×
овое	2019	Python	scikit-learn	collaborative filtering	Single-label classification	✓	×	×	1
PMF	2018	Python	scikit-learn	collaborative filtering & Bayesian optimization	Single-label classification	· ·	×	< <	¥

AutoML in The Wild: Obstacles, Workarounds, and Expectations

Yuan Sun yws5055@psu.edu Pennsylvania State University University Park, USA Qiurong Song qzs5098@psu.edu Pennsylvania State University University Park, USA

Xininig Gui xinninggui@psu.edu Pennsylvania State University University Park, USA

Fenglong Ma fenglong@psu.edu Pennsylvania State University University Park, USA Ting Wang
inbox.ting@gmail.com
Pennsylvania State University
University Park, USA

The autoML Jungle—An Overview

Yusuf Kirikkayis ⊠

Ulm University, 89081 Ulm, Germany

Tool\ Framework	$egin{array}{c} \mathbf{Model} \\ \mathbf{Selection} \end{array}$	ML Task	User Interface	Binding	Open Source
scikit-learn	Grid- & Random Search	Supervised- and Unsupervised learning	X	Python	✓
automl	Random search	Supervised learning	X Python		✓
TPOT	Genetic algorithm	Supervised- and Unsupervised learning	X Python, R		✓
auto-sklearn	Random search	Supervised learning	X	Python	✓
Hyperopt-Sklearn	Random search	Supervised learning	X	Python	✓
H2O	Ensemble Selection	Supervised learning	✓	Python, JavaScript R and Tableau	✓
AlphaD3M	Monte Carlo Tree Search	Supervised learning	×	Python	×
Google Cloud AutoML Tables	Ensemble & Random Search	Supervised- and Unsupervised learning	✓	Python, R and Node.js	×
Amazon SageMaker Autopilot	Random & Bayesian Search	Supervised- and Unsupervised learning	✓	Python, R and Node.js	×
Azure ML Studio	Ensemble & Random Search	Supervised learning	✓	Python, R and Node.js	×

Benchmark and Survey of Automated Machine Learning Frameworks

Marc-André Zöller

MARC.ZOELLER@USU.COM

USU Software AG Rüppurrer Str. 1, Karlsruhe, Germany

Marco F. Huber

MARCO.HUBER@IEEE.ORG

Institute of Industrial Manufacturing and Management IFF,
University of Stuttgart, Allmandring 25, Stuttgart, Germany &
Fraunhofer Institute for Manufacturing Engineering and Automation IPA
Nobelstr. 12, Stuttgart, Germany

Framework	CASH Solver	Structure	Ensem.	Cat.	Parallel	Time
DUMMY	_	Fixed	no	no	no	no
Random Forest	_	Fixed	no	no	no	no
TPOT	Genetic Prog.	Variable	no	no	Local	yes
HPSKLEARN	HYPEROPT	Fixed	no	yes	no	yes
AUTO-SKLEARN	SMAC	Fixed	yes	Enc.	Cluster	yes
Random Search	Random Search	Fixed	no	Enc.	Cluster	yes
ATM	BTB	Fixed	no	yes	Cluster	no
H2O AutoML	Grid Search	Fixed	yes	yes	Cluster	yes

AutoML: A survey of the state-of-the-art

Xin He, Kaiyong Zhao, Xiaowen Chu*

Department of Computer Science, Hong Kong Baptist University, Hong Kong

AUTOML: FRAMEWORKS

Aprendizagem de Máquina Automatizado

Auto-Sklearn

- Linguagem de código: Python
- Plataforma: Linux, macOS, Windows
- Bibliotecas principais: scikit-learn
- Descrição: O Auto-Sklearn é uma biblioteca de AutoML baseada em scikit-learn. Ele realiza busca automática de hiperparâmetros e seleção de modelos para encontrar a melhor combinação para um determinado conjunto de dados.

TPOT

- Linguagem de código: Python
- Plataforma: Linux, macOS, Windows
- Bibliotecas principais: scikit-learn
- Descrição: O TPOT (Tree-based Pipeline Optimization Tool) é uma biblioteca de AutoML que utiliza algoritmos genéticos para otimizar pipelines de aprendizado de máquina. Ele automatiza a seleção de modelos, pré-processamento de dados, seleção de recursos e ajuste de hiperparâmetros.

Dummy

- Linguagem de código: Python
- Plataforma: Linux, macOS, Windows
- Bibliotecas principais: scikit-learn
- Descrição: O Dummy é uma ferramenta simples de AutoML baseada na biblioteca scikit-learn. Ele fornece uma solução básica para problemas de classificação e regressão, gerando modelos "dummy" que podem ser usados como referência para avaliar o desempenho de outros modelos mais sofisticados.

- Linguagem de código: Python
- Plataforma: Linux, macOS, Windows
- Bibliotecas principais: D3M
- Descrição: O AlphaD3M é um framework de AutoML desenvolvido pela DARPA (Agência de Projetos de Pesquisa Avançada de Defesa). Ele visa automatizar o processo de desenvolvimento de pipelines de ciência de dados, incluindo etapas como pré-processamento de dados, seleção de algoritmos e ajuste de hiperparâmetros. O AlphaD3M é construído em cima do D3M, um ecossistema de software para aprendizado de máquina automatizado.

H20

- Linguagem de código: Python, R, Java, Scala
- Plataforma: Linux, macOS, Windows
- Bibliotecas principais: H2O
- Descrição: O H2O é uma plataforma de AutoML de código aberto que oferece uma ampla gama de algoritmos de aprendizado de máquina. Ele possui uma interface intuitiva para treinar modelos e realizar tarefas como classificação e regressão. Além disso, o H2O permite o uso de GPUs para acelerar o processo de treinamento.

- Linguagem de código: Python
- Plataforma: Linux, macOS, Windows
- Bibliotecas principais: scikit-learn, Optunity
- Descrição: O OBOE (Optimized Black-Box Experimenter) é um framework de AutoML que enfoca a otimização de hiperparâmetros. Ele usa técnicas de otimização para encontrar os melhores valores de hiperparâmetros para um modelo de aprendizado de máquina, tornando mais eficiente a busca por combinações ideais de parâmetros. O OBOE é construído sobre a biblioteca scikit-learn e usa o Optunity para a otimização.

- Linguagem de código: Java
- Plataforma: Linux, macOS, Windows
- Bibliotecas principais: Weka
- Descrição: O AutoWeka é um framework de AutoML baseado no Weka, uma biblioteca popular de aprendizado de máquina em Java. Ele automatiza a seleção de algoritmos, ajuste de hiperparâmetros e avaliação de desempenho. O AutoWeka usa técnicas de busca em espaço de hiperparâmetros para encontrar a melhor configuração de modelo para um conjunto de dados.

FIM!