Evaluation of Orbiter Performance and Nose Heating at Mach 3.8

By: Nicholas Zhu

February 26, 2020

1 Introduction

1.1 3-D orbiter shape

Figure 1: 3-D orbiter

1.2 Data from Published Texts

Figure 2: Experimental models and predictions of C_L & C_D for M = 3.8

The equations used to plot the data in figure 2 were from [2].

Table 1: Freestream conditions and expected stagnation conditions at wing/nose LE

Mach number	3.8
Post-normal shock mach number	0.4407
Absolute pressure p	1090.16 Pa
Temperature T	227.13 K
Density ρ	$0.0167 \; \mathrm{kg \cdot m^{-3}}$
p_2/p_1 at M=3.8	16.68
T_2/T_1 at M=3.8	3.743
Isentropic p_o/p at M=0.44	1.142
Isentropic T_o/T at M=0.44	1.035
Stagnation pressure	$20765.98 \text{ Pa } (p \cdot p_2/p_1 \cdot p_o/p)$
Stagnation temperature	883.303 K $(T \cdot T_2/T_1 \cdot T_o/T)$

 p, T, ρ : at 100,000 ft from 1976 Digital Dutch Standard Atmospheric Calculator (URL: https://www.digitaldutch.com/atmoscalc/)

Isentropic relations and pressure/temp discontinuity across shock: From appendix A of Modern Compressible Flow by J.D. Anderson [1].

2 Methodology

2.1 Shots of the Orbiter grid

Figure 3: Entire grid of the orbiter

Figure 4: Surface grid of the orbiter

Figure 5: Nose of the orbiter

Figure 6: Midspan of the wing of the orbiter

2.2 Fluent setup

Table 2: General grid information

Cell count	1,375,480 Cells			
Min/max included angles	max: 179.844 deg min: 0.06222 deg			
Normal-to-wall spacing	$\Delta \mathbf{s} = 0.001 \text{ m}$			
Boundary conditions				
Boundary conditions	Inlet/hemispherical shell: pressure far-field			
	Outlet/back of hemispherical shell: pressure outlet			
	Orbiter surface (including backside): wall			
	Plane of Symmetry: symmetry			
Reference values	Area : $257.47 \text{ [m}^2\text{]}$			
	Density : $1.672e-02 \text{ [kg} \cdot \text{m}^{-3}\text{]}$			
	Enthalpy: 8.907e+05 [J· kg ⁻³]			
	Length: 38.424 [m]			
	Gauage pressure: 0 [Pa]			
	Temperature: 227.13 [K]			
	Velocity: 1147.86 [m· s ⁻¹]			
	Viscosity : $1.789e-05 [kg \cdot m^{-1}s^{-1}]$			
	Ratio of specific heat: 1.4			
Submodels	Density: ideal-gas			
	Specific heat: piece-wise polynomial			
	Thermal conductivity: kinetic-theory			
	Viscosity: sutherland			
Numerical Scheme	Implicit AUSM			
Spatial Discretization	Gradient: least-squares cell based			
	Flow: first order upwind			

3 Results

3.1 Proof of convergence history

Pleas see Appendix

3.2 Table of final lift and drag coefficients and related forces

Case $[^{\circ}]$	C_L [-]	C_D [-]	Lift [N]	Drag [N]
10	0.143	0.075	405,550	212,700
20	0.341	0.174	967,090	493,470
30	0.545	0.371	1,545,600	1,052,200

3.3 Plot of lift and drag and L/D vs. AOA with peak L/D identified

Figure 7: Comparison of the C_L and C_D results from the experimental model and the CFD cases ran

Figure 8: Comparison of the lift-to-drag ratios from the experimental model and the CFD cases ran

3.4 Pressure and temperature contours with streamlines

3.4.1 AoA = 10°

(a) Pressure contour at the symmetry plane of the orbiter at 10 degs AoA

(b) Pressure contour at the midspan of the wing of the orbiter at 10 degs ${\rm AoA}$

(a) Temperature contour at the symmetry plane of the orbiter at 10 degs $\rm AoA$

(b) Temperature contour at the midspan of the wing of the orbiter at 10 degs ${\rm AoA}$

3.4.2 AoA = 20°

(b) Pressure contour at the midspan of the wing of the orbiter at 20 degs ${\rm AoA}$

(a) Temperature contour at the symmetry plane of the orbiter at 20 degs $\rm AoA$

(b) Temperature contour at the midspan of the wing of the orbiter at 20 degs ${\rm AoA}$

$3.4.3 \text{ AoA} = 30^{\circ}$

(b) Pressure contour at the midspan of the wing of the orbiter at 30 degs ${\rm AoA}$

(a) Temperature contour at the symmetry plane of the orbiter at 30 degs ${\rm AoA}$

(b) Temperature contour at the midspan of the wing of the orbiter at 30 degs ${\rm AoA}$

3.5 Results of grid adaptation

3.5.1 Side by side of contour plots

(a) Pressure contour at the symmetry plane of the orbiter at 20 degs AoA

(b) Pressure contour at the symmetry plane of the orbiter at 20 degs AoA using adapted grid $\,$

(a) Temperature contour at the symmetry plane of the orbiter at 20 degs ${\rm AoA}$

(b) Temperature contour at the midspan of the wing of the orbiter at 20 degs AoA using adapted grid

(a) Pressure contour at the midspan of the wing of the orbiter at 20 degs ${\rm AoA}$

(b) Pressure contour at the midspan of the wing of the orbiter at 20 degs AoA using adapted grid

(a) Temperature contour at the midspan of the wing of the orbiter at 20 degs ${\rm AoA}$

(b) Temperature contour at the midspan of the wing of the orbiter at 20 degs AoA using adapted grid

3.5.2 Side by side of mesh

(a) Grid at the symmetry plane of the orbiter at 20 degs AoA

(b) Adapted grid at the symmetry plane of the orbiter at 20 degs AoA

(a) Grid at the midspan of the wing of the orbiter at 20 degs AoA $\,$

(b) Adapted grid at the midspan of the wing of the orbiter at 20 degs AoA $\,$

3.5.3 Table of force coefficients

$\mathbf{Case} \ [^{\circ}]$	C_L [-]	C_D [-]
20	0.341	0.174
Adapted 20	0.342	0.173

3.5.4 Fluent settings used to adapt grid

I forgot to keep track of what my exact settings were. However, I went back and recreated the settings based on what I remember. Admittedly, the 50% increase in number of cells was much larger than 10% expected. Nevertheless, even with this large increase, the differences are subtle. The most distinct difference in the mesh around the fuselage is on the "belly" of the Orbiter, while increased mesh density can be somewhat observed at the nose and turning corners of the Orbiter. The wing saw an denser mesh all around. The coefficients of lift and drag were not significantly altered. The settings of the gradient adaptations were approximately as follows,

• Options: Refine

• Method: Gradient

• Normalization: standard

• Gradients of: Pressure, static pressure

• Refine Threshold: 200

Max: 11,190Min: 2.588e-05

Figure 21: Grid adaptation settings

The results of the adaptation are summarized in the screenshot below,

>> 4 Stored Partitions:

Cell count	533069	575426	2203608
Mean cell count deviation	-3.2%	4.5%	
Partition boundary cell count	5258	10268	32967
Partition boundary cell count ratio	0.9%	1.9%	1.5%
Face count	1406814	1443780	5688939
Mean face count deviation	-1.4%	1.2%	
Partition boundary face count	6621	12897	20465
Partition boundary face count ratio	0.5%	0.9%	0.4%
Cell weights	3e+06	4e+06	le+07
Mean cell wei <mark>g</mark> ht deviation	-20.7%	7.3%	
Partition neighbor count	2		
Partition Method	Metis		
Stored Partition Count	4		
e.			
Smoothing partition boundaries			

Dump usage: 2203608 cells, 5688939 faces, 1355967 nodes

```
Grid size ( original / adapted / change)
cells ( 1375480 / 2203608 / 828128)
faces ( 3375228 / 5688939 / 2313711)
nodes ( 701471 / 1355967 / 654496)
```

Figure 22: Grid adaptation summary

Appendix

Figure 23: Convergence history for $AoA = 10^{\circ}$

Figure 24: Convergence history for $AoA = 20^{\circ}$

Figure 25: Convergence history for AoA = 30°

Figure 26: Convergence history with adaption for AoA = 20° ; red dashed-line indicates where iterations for the refined mesh began.

References

[1] John D. Anderson. Modern Compressible Flow with Historical Perspective. McGraw Hill Education, 2003.

[2]	Rui Dilão and João Fonseca. of Civil Engineers, 1(29), 1 2	Dynamic guidance of 016.	of gliders in planetary	atmospheres.	American Society