1.假设栈的容量为 3,入栈的序列为 1,2,3,4,5,则出栈的序列可能为 () . A. 3, 2,1,5,4 B. 1,5,4,3,2 C. 5,4,3,2,1 D. 4, 3, 2, 1, 5
2.当字符序列 t3_作为栈的输入时,则输出长度为 3 且可用作 C 语言标识符的序列有()个。 A. 4 B. 5 C. 3 D. 6
3.在下列遍历算法中,在遍历序列中叶结点之间的次序可能与其他算法不同的算法是() A. 先序遍历算法 B. 中序遍历算法 C.后序遍历算法 D.层次遍历算法
4. 有关二叉树下列说法正确的是(). A.二叉树的度为 2 B. 一棵二叉树的度可以小于 2 C.二叉树中至少有一个结点的度为 2 D. 二叉树就是度为 2 的有序树
5. 利用逐点插入建立序列(50,72,43,85,75,20,35,45,65,30)对应的二叉排序树后,查找元素 30 要进行的元素间的比较次数是(). A. 4 B. 5 C.6 D. 7
6.一棵二叉树的前序遍历序列为 1234567,它的中序遍历序列可能是()。 A. 3124567 B. 1234567 C. 4135627 D. 2153647
7.无向图 G 有 23 条边,度为 4 的顶点有 5 个,度为 3 的顶点有 4 个,其余都是度为 2 的顶点,则图 G 最多有() 个顶点。
A.11 B. 12 C. 15 D. 16
8.假设有 n 个顶点 e 条边的有向图用邻接表表示,则删除与某个顶点 v 相关的所有边的时间复杂度为() A. $O(n)$ B. $O(e)$ C. $O(n+e)$ D. $O(ne)$
9.折半查找有序表 (2, 10, 25, 35, 40, 65, 70, 75, 81, 82, 88, 100),若查找元素 75,需依次与表中元素 () 进行比较 8. A. 65, 82, 75 B. 70, 82, 75 C. 65, 81, 75 D. 65, 81, 70, 75
10. 含有 20 个结点的平衡二叉树的最大深度为 () 。
A. 4 B. 5 C. 6 D. 7

11.一个有 n 个顶点和 n 条边的无向图一定是()。

A. 连通的

- B. 不连通的
- C. 无环的
- D. 有环的

12.已知有向图 G=(V,A),其中 $V=\{a,b,c,d,e\}$, $A=\{\langle a,b\rangle,\langle a,c\rangle,\langle d,e\rangle,\langle b,e\rangle,\langle c,e\rangle\}$,对该图进行拓扑排序,下面序列中不是拓扑排序的是()。

A. a, d, c, b, e

B. d, a, b, c, e

C. a, b, d, c, e

D. a, b, c, d, e

13. 散列表的地址范围为 $0\sim17$,散列函数为 $H(k)=k \mod 17$.采用线性探测法处理冲突,将关键字序列 26,25,72,38,8,18,59 依次存储到散列表中。元素 59 存放在散列表中的地址是().

A. 8

B. 9

C.10

D. 11

14.对关键字序列 {23,17,72,60,25,8,68,71,52}进行堆排序,输出两个最小关键字后的剩余堆是()。

A. {23, 72, 60, 25, 68, 71, 52}

B. {23, 25, 52, 60, 71, 72, 68}

C. {71, 25, 23, 52, 60, 72, 68}

D. {23, 25, 68, 52, 60, 72, 71}

1.图所示是一带权有向图的邻接表。其中出边表中的每个结点均含有三个段,依次为边的另一个顶点在顶点表中的序号、边上的权值和指向下一个边结点的指针。试求

- (1) 该带权有向图的图形。
- (2) 以顶点 V1 为起点的广度优先搜索的顶点序列及对应的生成树。
- (3) 以顶点 V1 为起点的深度优先搜索生成树。
- (4) 由顶点 V1 到顶点 V3 的最短路径。
- (5) 若将该图视为无向图,用 Prim 算法给出图 G 的一棵最小生成树的生成过程。
- 2. (共8分).一个算法的时间复杂度有如下的递推公式,那么该算法的时间复杂度使用渐进符号0可以表示为?请写出推导过程。

$$\begin{cases} T(1) = 1 \\ T(n) = 2T(n/2) + n \end{cases}$$

- 3. (共 10 分) [a, b, c, d, e, f] 6 个字母在句子中出现的频率分别为 [19, 30, 7, 23, 15, 3], 请画出以最短编码为目的构造的 huffman 编码树。并说明每个字母的编码长度。
- 4. (共 12 分) 关键字[7, 23, 15, 11, 12, 34, 45, 37]按照顺序逐一插入一棵空的 AVL 树。
 - (1) 请画出插入关键字11以及插入全部关键字以后的AVL 树结构。(8分)
 - (2) 完全插入以后,请计算等概率时,查找成功的平均查找长度(4分)

三、綜合题(本题共 30 分)

(14分)已知由 n(n≥2)个正整数构成的集合 S,将其划分为两个不相交的子集 S₁和 S₂,元素个数分别是 n₁,n₂,S₁和 S₂的元素之和分别为 SUM₁和 SUM₂。

设计一个尽可能高效的划分算法,满足 $|n_1-n_2|$ 最小, $|SUM_1-SUM_2|$ 最大。要求:

- 1) 给出算法的基本设计思想。(5分)
- 2) 根据设计思想采用 C 或者 C++实现, 关键之处给出注释。(5分)
- 3) 说明设计算法的时间复杂度和辅助空间复杂度(4分)