

ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА ЭНЕРГОСИСТЕМ

Издание 1 • 2009

СОДЕРЖАНИЕ

ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА ЭНЕРГОСИСТЕМ

•	Общая информация	2
•	Перечень функций ПА	3
•	Основные технические характеристики	4
•	Таблица сравнительных характеристик для выбора шкафов	5
•	Примеры применения линейки шкафов ПА	6
•	Конструктивное выполнение	12
•	Общий вид терминала	13
•	Общие виды шкафов	14
•	Схемы интеграции в АСУ ТП	18
•	Средства организации автоматизированного рабочего места	20

НАЗНАЧЕНИЕ:

Серия микропроцессорных шкафов противоаварийной автоматики типа ШЭЭ22Х предназначена для применения в качестве локальной и общестанционной противоаварийной автоматики подстанций, гидростанций (ГЭС, ГАЭС), тепловых станций (ТЭЦ, ГРЭС, АЭС), а также для реализации устройств управления аварийными режимами энергоузлов.

ПРИМЕНЕНИЕ:

Комплексы противоаварийной автоматики на базе шкафов серии ШЭЭ22X выполняют функции устройств локальной противоаварийной автоматики, сочетающей в себе функции АПНУ (автоматика предотвращения нарушения устойчивости), АЛАР (автоматика ликвидации асинхронного режима), АОСЧ (автоматика ограничения снижения частоты), АОПЧ (автоматика ограничения напряжения), АОСН (автоматика ограничения напряжения), АОПН (автоматика ограничения повышения напряжения) и АОПО (автоматика ограничения повышения напряжения).

COCTAB:

Комплекс противоаварийной автоматики выполняется в виде одного либо двух взаиморезервируемых автономных систем, для которых предусмотрены индивидуальные измерительные трансформаторы, раздельные цепи по постоянному оперативному току и раздельные цепи воздействия во внешние схемы.

ОСОБЕННОСТИ:

Шкафы ПА выполняются по индивидуальному проекту на основе требований Заказчика, ПУЭ, заводов-изготовителей основного оборудования и с учетом привязки к конкретному объекту. В шкафах предусмотрены следующие возможности:

- построение локальной и общестанционной противоаварийной автоматики;
- решение вопросов противоаварийного управления;
- возможность изменения и дополнения алгоритмов в процессе эксплуатации при согласовании сторон.

Перечень функций противоаварийной автоматики

Состав функций комплекса противоаварийной автоматики определяется Заказчиком в соответствии с требованиями действующих нормативных документов и заводов-изготовителей основного оборудования. Логика функционирования определяется требованиями Заказчика и конфигурируется специальной программой.

- АОСН автоматика ограничения снижения напряжения
- АОПН автоматика ограничения повышения напряжения
- АОСЧ автоматика ограничения снижения частоты
- АОПЧ автоматика ограничения повышения частоты
- АРОЛ (Т) автоматика разгрузки при отключении линии (трансформатора)
- АРОДЛ (Т) автоматика разгрузки при отключении двух линий (двух трансформаторов)
- АРПМ автоматика разгрузки при перегрузке по мощности
- АРПТ автоматика разгрузки при перегрузке по току
- АЛАР автоматика ликвидации асинхронного режима
- АРОГ автоматика разгрузки при отключении генератора (генераторного блока)
- АРОШ автоматика разгрузки при отключении («гашении») шин
- АВСН ТЭС (ТЭЦ) автоматика выделения тепловых электростанций на сбалансированный энергорайон или собственные нужды. Подразделяется на: АВСН-Э – электротехническая часть АВСН-Т – теплотехническая часть
- САОН- специальная автоматика отключения нагрузки
- АФТКЗ автоматика фиксации тяжести коротких замыканий
- АЧР автоматическая частотная разгрузка

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ:

- АУР автоматика управления шинным и линейным реакторами
- ФОЛ фиксация отключения линии
- ФОТ фиксация отключения трансформатора
- ФОБ фиксация отключения блока
- УРОВ устройство резервирования при отказе выключателя
- КПР контроль предшествующего режима

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• номинальное напряжение оперативного постоянного тока,	B 220; 110
• номинальное напряжение переменного тока, В	100
• номинальный переменный ток, А	1; 2; 5; 10
• номинальная частота, Гц	50
• мощность, потребляемая каждым комплектом по цепям	
питания постоянного тока, не более, Вт	60 (100 – в режиме срабатывания)
• мощность, потребляемая каждым комплектом по цепям	
переменного тока, не более:	
– в цепях тока, на фазу	0.5 ВА при Іном = 5 А
– в цепях напряжения, на фазу	0.1 ВА при Uном = 100 В
• встроенный аварийный осциллограф	
– количество осциллограмм	регулируется
– время записи, с	90 с (для 55 аналоговых и 128 дискретных)
• количество записей регистратора событий	7500
• количество задержек (\Delta t), шт., не более	

ОСНОВНЫЕ И ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ

- программируемый состав функций ПА
- программируемая «матрица» управляющих воздействий
- исключение несанкционированного доступа посредством системы паролей
- местная сигнализация с запоминанием при пропадании питания
- встроенный аварийный осциллограф
- регистратор событий
- система самодиагностики
- сигнализация о неисправностях
- мониторинг текущих значений токов, напряжений, мощностей и частоты
- три независимых интерфейса линии связи
- организация локальной сети и интеграция в АСУ ТП
- передача осциллограмм и событий с меткой времени по цифровым часам

УСЛОВИЯ ЭКСПЛУАТАЦИИ

• температура окружающего воздуха, °С	. от -5 до +40
• относительная влажность воздуха при 20 °C, %	. до 80 (без конденсации влаги)
• атмосферное давление, кПа (мм.рт.ст.)	. 70 – 106,7 (525-800)
• внешнее магнитное поле, А/м, не более	. 400
• высота над уровнем моря, м, не более	. 2000
• степень загрязнения	. 1 (загрязнение отсутствует или имеется только сухое,
	непроводящее загрязнение)
• группа условий эксплуатации в части воздействия	
механических факторов внешней среды	. M39+ДT7,8
• окружающая среда	. невзрывоопасная, не содержащая
	токопроводящей пыли, агрессивных газов и
	паров в концентрациях, разрушающих изоляцию и металл
• место установки шкафа	. должно быть защищено от попадания брызг
	воды, масел, эмульсий, а также от прямого
	воздействия солнечной радиации
• рабочее положение шкафа в пространстве	. вертикальное, с отклонением от рабочего
	положения до 5° в любую сторону

Таблица сравнительных характеристик для выбора шкафов

Тип шкафа	ШЭЭ221	ШЭЭ222	ШЭЭ223	ШЭЭ224
Характеристики (на комплект)				
Количество комплектов в шкафу	1	2	1	2
Количество входных цепей тока и напряжения	33	18	50 (70)	25
Количество блоков испытательных (БИ 6)	12	6	16 (22)	8
Количество выходных реле, шт. (без учета спец. реле)	46 (62*)	14 (30*)	62 (78*)	30 (46*)
Количество выходных контактов, шт.	95	31	96	46
Светодиодная сигнализация, шт.	128	96	192	128
Приемные цепи, шт.	32 (48)	16 (32)	48 (64)	32
Количество переключателей, шт.	12	4	18	12
Количество клемм, шт.: • слева (входные цепи) • справа (выходные цепи)	200 200	100 100	200 200	100 100
Габаритные размеры (длина, глубина), мм	607x660	607x660	807x660.	807×660
Высота шкафа, мм	2100 (2200 – по зака	2100 зу) (2200 – по зака	2100 зу) (2200 – по зака:	2100 ву) (2200 – по заказу)
Масса шкафа, кг (не более)	180	200	250	250

 $^{^{*}\,}$ – по специальному заказу.

Возможно увеличение числа входных/выходных цепей по требованию Заказчика за счет общего варьирования числа цепей.

- :: Шкафы противоаварийной
- 🚼 автоматики с функцией ФОЛ

Пример применения шкафов ШЭЭ221

СИСТЕМА А:

Фиксация отключения линии (ФОЛ) ВЛ-1 500 кВ с функцией контроля перетока мощности (контроля предшествующего режима – КПР).

СИСТЕМА В:

Фиксация отключения линии (ФОЛ) ВЛ-2 500 кВ с функцией контроля перетока мощности (контроля предшествующего режима – КПР).

Вариант применения шкафа ФОЛ с функцией КПР с перекрестным резервированием.

Дублированные шкафы ПА на две ВЛ-500 кВ

Пример применения шкафов ШЭЭ223 на ПС 500 кВ

Шкафы противоаварийной автоматики для ВЛ-1 500 кВ с функциями ФОЛ, АОПН, АЛАР, АРПМ, АУР. СИСТЕМА А И СИСТЕМА В

Шкафы противоаварийной автоматики для ВЛ-2 500 кВ с функциями ФОЛ, АОПН, АЛАР, АРПМ, АУР. СИСТЕМА А И СИСТЕМА В

Вариант применения шкафа с реализацией в двух взаиморезервирующих комплексах.

Каждый из шкафов ШЭЭ223 включает в себя один комплект.

- : Двухкомплектный шкаф ПА с функциями
- 🚼 основного и резервного АЛАР

Пример применения шкафов ШЭЭ224 на ПС 500 кВ

ЕДИНАЯ СИСТЕМА С ДВУМЯ ИДЕНТИЧНЫМИ КОМПЛЕКТАМИ: Шкаф противоаварийной автоматики с функциями основного и резервного АЛАР, работающими на разных принципах.

Вариант применения шкафа с разными алгоритмами функционирования АЛАР для повышения надежности.

Шкаф ШЭЭ224 содержит два дублирующих комплекта.

Шкаф ПА с функцией фиксации отключения блока и КПР

Пример применения шкафов ШЭЭ223

ЕДИНАЯ СИСТЕМА С ОДНИМ КОМПЛЕКТОМ:

Шкаф противоаварийной автоматики с функцией фиксации отключения блока (ФОБ) и контролем предшествующего режима (КПР).

Функция предназначена для фиксации отключения блока с передачей режимных данных на автоматику разгрузки при отключении мощных генераторных блоков (мощных генераторов).

Шкаф ШЭЭ223 включает в себя один комплект.

- : Шкафы автоматики выделения тепловых станций
- :: на сбалансированный энергорайон АВСН

Пример применения шкафов ШЭЭ223

КОМПЛЕКС ABCH СОСТОИТ ИЗ ДВУХ СИСТЕМ – ЭЛЕКТРОТЕХНИЧЕСКОЙ И ТЕПЛОТЕХНИЧЕСКОЙ: Шкаф автоматики выделения тепловых станций на сбалансированный энергорайон или собственные нужды.

Электротехническая часть АВСН-Э предназначена для сохранения парка генерирующих мощностей при глубоких снижениях частоты.

АВСН-Э отделяет станцию со своим энергорайоном от системы и в выделенном энергоузле производит балансировку по мощности.

Теплотехническая часть ABCH-T предназначена для установления баланса по вырабатываемой и потребляемой паровой мощности. Автоматика работает с регуляторами котлов, POV, БРОУ, а также ведет постоянный контроль за давлением в паропроводе.

Применение системы АВСН-Т возможно при выделении станции с поперечными связями по пару.

Каждый из шкафов ШЭЭ223 включает в себя один комплект.

В данном примере выполнена автоматика в виде шкафов АВСН-Э, взаиморезервирующих друг друга.

Противоаварийное управление энергоузла

Пример построения единой системы ПА в пределах одного энергоузла

Шкафы противоаварийной автоматики для ВЛ-1 500 кВ с функциями ФОЛ, АРПТ, АОПН, АУР. ДУБЛИРОВАНИЕ СИСТЕМОЙ А И СИСТЕМОЙ В.

Шкафы противоаварийной автоматики для ВЛ-2 500 кВ с функциями ФОЛ, АРПТ, АОПН, АУР. ДУБЛИРОВАНИЕ СИСТЕМОЙ А И СИСТЕМОЙ В.

КОМПЛЕКС УПРАВЛЕНИЯ ЭНЕРГОУЗЛОМ С ФУНКЦИЯМИ АРОЛ-АРОДЛ

Пример построения комплекса шкафов локальной противоаварийной автоматики на ПС 500 кВ.

Каждый из шкафов ШЭЭ223 включает в себя один комплект. Функция автоматики разгрузки при отключении линии (или двух линий) может выполняться в одиночном или дублированном исполнении.

Дублирование функций обеспечивается применением двух идентичных шкафов.

Шкафы представляют собой металлоконструкцию с размещенными на ней аппаратами. Для осуществления двухстороннего обслуживания шкафы имеют переднюю и заднюю двери. На передней двери шкафов расположены аппараты оперативного управления и сигнальные элементы. Терминалы расположены на плите за передней дверью. Для контроля состояния сигнальных элементов терминалов на передней двери шкафов предусмотрено окно. С задней стороны шкафов расположены ряды зажимов, доступ к которым возможен при открытой задней двери. Габаритные и установочные размеры приведены на рисунке.

Металлоконструкция шкафов должна быть надежно заземлена. Внутри шкафов предусмотрена заземляющая пластина, к которой крепится шлейф

заземления длиной 250-300 мм. Свободный конец шлейфа должен быть присоединен к контуру заземления объекта с помощью винта M6.

Подвод кабелей предусмотрен снизу через отверстия в днище шкафов. Присоединение шкафов к внешним цепям осуществляется на рядах зажимов, которые устанавливаются вертикально и расположены с задней стороны шкафов на левой и правой боковинах и предназначены для присоединения одного или двух медных проводников с суммарным сечением до 6 мм² включительно. Контактные соединения шкафов соответствуют 2 классу по ГОСТ 10434. Ряды зажимов шкафов выполнены с учетом требований «Правил устройства электроустановок», раздел III-4-15.

ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ ШКАФОВ

По заказу высота цоколя может быть увеличена до 200 мм. В скобках указаны размеры при использовании металлоконструкции фирмы Rittal.

Общий вид терминала

Модульная конструкция цифрового терминала, встраиваемого в шкаф, позволяет адаптировать комплекс к главной электрической схеме станции (подстанции) в зависимости от управляемого объекта энергосистемы.

ОБЩИЙ ВИД ТЕРМИНАЛА, ВСТРАИВАЕМОГО В ШКАФ

ВАРИАНТ 1

ВАРИАНТ 2

Установленные шкафы локальной ПА объединены в информационную сеть с использованием последовательного интерфейса RS485 или Ethernet. Возможность синхронизации времени по протоколу NTP.

Сеть шкафов локальной ПА связана с локальной компьютерной сетью энергообъекта. При использовании каналов связи возможен удаленный доступ (из местной или центральной службы) к сети шкафов.

- : Средства организации
- 🚼 автоматизированного рабочего места

000 НПП «ЭКРА» 428003, РФ, г. Чебоксары, пр. И. Яковлева, 3 тел. / факс: (8352) 22 01 10 (многоканальный) 22 01 30 (автосекретарь) 39 99 29, 55 03 68 57 00 35, 57 00 76

e-mail: ekra@ekra.ru http://www.ekra.ru