Regular Expression

Course Name: Compiler Design

Course Code: CSE331

Level:3, Term:3

Department of Computer Science and Engineering

Daffodil International University

Regular Expression

A Regular expression (sometimes called a rational expression) is a sequence of characters that define a search pattern, mainly for use in pattern matching with strings, or string matching, i.e. "find and replace"-like operations.

Regular expression is a notation for defining the set of tokens that normally occur in programming languages.

How are patterns specified?

- Define following operators over sets of strings:
 - 1. Union: L U U
 - $S = L \cup U = \{s \mid (s \in L) \lor (s \in U)\}$
 - 2. Concatenation: LU or L.U
 - $S = L \cdot U = \{ s \mid (s \in L) \land (t \in U) \}$
 - 3. Kleene closure: L*, set of all strings of letters, including ∈,
 - S = L* denotes "zero or more concatenations of" L
 - 4. Positive closure: L+.
 - S = L+ denotes "one or more concatenation of" L

OPERATION :	DEFINITION AND NOTATION
$Union ext{ of } L ext{ and } M$	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$
$Concatenation ext{ of } L ext{ and } M$	$LM = \{ st \mid s \text{ is in } L \text{ and } t \text{ is in } M \}$
$Kleene\ closure\ of\ L$	$L^* = \cup_{i=0}^{\infty} L^i$
Positive closure of L	$L^+ = \cup_{i=1}^{\infty} L^i$

Operations of Language

- Letters or alphabets and digits are the most important elements of language.
- Let L be the set of alphabets {A, B,...Z, a, b,....z} and D be the set of digits {0, 1,,9}
- L could be in form of upper case and lower case.
- Examples:
 - >L U D is the set of letters and digits.
 - >LD is the set of strings consisting of a letter followed by a digit.
- LLLL = L^4 is the set of all four-letter strings.

Operations of Language

- L* is the set of all strings of letters, including ε, the empty string
- L(L U D) * is the set of all strings of letters and digits beginning with a letter.
- D* is the set of all strings of one or more digits.

Examples

- Let L = {a, b}
- Some regular expressions:
- a | b
 - ➤ Denotes the set of {a, b} having a or b.
- (a|b)(a|b)
 - > Denotes {aa, ab, ba, bb}, the set of all strings of a's and b's of length two.
- a*
 - \triangleright Denotes the set of all strings of zero or more a's , i. e., $\{\varepsilon$, a, aa, aaa, $\}$

Examples

- (a|b) * or (a*|b*)*
- Denotes the set of all strings containing zero or more instances of an a or b, that is, the set of all strings of a's and b's.
- a | a*b
- Denotes the set containing the string a and all strings consisting of zero or more a's followed by a b

Language to Regular Expressions

Examples:

- "Set of all strings having at least one ab"
- (ab)+
- "Set of all strings having even number of aa"
- (aa)*
- "Set of all strings having odd number of bb"
- b(bb)*
- "Set of all strings having even number of aa and even number of bb"
- (aa)* (bb)*

Language to Regular Expressions

- "Set of all strings having zero or more instances of a or b starting with aa"
 - (aa)(a | b)*
- "Set of all strings having zero or more instances of a or b ending with bb"
 - (a | b)* (bb)
- "Set of all strings having zero or more instances of a or b starting with aa and ending with bb"
 - (aa) (a | b)* (bb)

THANK YOU