CUDIOUS

Anatomy of an EV charging system

WRITTEN IN RUST

What is an EV charging system?

- An Electric Vehicle charger (EVSE)
 - What the car plugs into
 - o firmware/software monitors temperatures, current flow, voltage, meters energy
- A mains board monitoring device
 - Lives in the switchboard
- An internet gateway
 - Lives in the switchboard
 - Manages WiFi/Ethernet/RS485
 - Secure
- An RS485 network that connects all of the above
 - o 1km range, economic in cost, reliable
- A cloud service for managing/observing the system
 - Bridges a proxy with a VPN

What's in an EVSE?

- Firmware
 - Rust embedded
 - o 100% async
 - 15 tasks
 - Sampling analog 10kHz
 - o 140 KiB size
 - Encrypted RS485 and USB-serial
 - ed25519 verified firmware updates
- Software
 - o no_std
 - DSPs, state machines, things we wanted to unit test/exercise
- We also did the hardware design
 - Firmware and hardware very tightly integrated

Major firmware/software dependencies

- Various Rust Crypto
- edfsm event driven finite state machines
 - We open sourced this: https://crates.io/crates/edfsm
 - o Provides a DSL for describing states, commands, events and transitions
- Embassy async embedded executor and HALs
 - Contributed channels, saadc, firmware update verification, some UART, some USB, some PWM
- Flip-flop-protocol half duplex protocol for commands and events
 - We open sourced this: https://github.com/titanclass/flip-flop-protocol
 - o Discovery, encryption, broadcast, firmware update
- Serde/Postcard serialisation

What's in a monitor board?

- Very similar to the EVSE
- Its function is to measure:
 - three phase current
 - three phase voltage
 - PV current
- Broadcasts this information which is consumed by the gateway controller

What's in an internet gateway?

- Hardware and software
- We built the hardware
 - o Omega2S+, 500mHz, 128MiB, 32MB
 - Runs OpenWRT Linux
 - Customised
- Our software:
 - Configurator
 - Backend
 - Frontend
- Our client's software:
 - Controller
 - Backend
 - Frontend

Major std software dependencies - back

- Various Rust Crypto
- Chrono
- Clap
- Flip-flop-protocol
- immutable-chunkmap **
- Ciborium **, postcard, serde, serde-with
 - o CBOR a binary JSON
- Streambed-rs event driven microservices
 - We open-sourced this: https://github.com/streambed/streambed-rs
 - Kafka-like commit log (32 KiB), secret store (45 KiB) opt level z
 - Long history evolved from our beginnings with Cisco
- Tokio
- Warp

Major std software dependencies - front

- Chrono
- Gloo
- immutable-chunkmap
- serde/json
- Yew
- Yew-chart SVG charting primitives
 - We open-sourced this: https://crates.io/crates/yew-chart

Takeaways

- We contribute about 30% of our time to open-source
- Our entire stack is Rust
- Rust is more than ready for prime-time
- Rust is empowering
 - This has been my first firmware targeted at production

