Лабораторная работа № 9 по курсу дискретного анализа: Графы

Выполнил студент группы 08-307 МАИ Путилин Дмитрий.

Условие

Задан взвешенный ориентированный граф, состоящий из n вершин и m ребер. Вершины пронумерованы целыми числами от 1 до n. Необходимо найти длины кратчайших путей между всеми парами вершин при помощи алгоритма Джонсона. Длина пути равна сумме весов ребер на этом пути. Обратите внимание, что в данном варианте веса ребер могут быть отрицательными, поскольку алгоритм умеет с ними работать. Граф не содержит петель и кратных ребер.

Метод решения

Рассмотрение происходит с проверки графа на наличие в нем отрицательных циклов. Для этого воспользуем алгоритмом Форда-Беллмана. На выход мы получаем есть ли цикл или нет. Если есть, то выводим фразу "Negative cycle". Иначе продолжаем алгоритм. Для этого нам понадобиться добавить новую вершину и соединить ее со всеми вершинами ребрами, веса которых равны 0. После этого необходимо запустить от этой вершины алгоритм Форда-Беллмана. После получили расстояние от этой вершины до остальных. Данный массив называется потенциальной функцией. Теперь необходимо пройтись по всем ребрам и изменить их вес с помощью формулы:

$$w_{\varphi}(u,v) = w(u,v) + \varphi(u) - \varphi(v)$$

После проведения данной операции необходимо запустить от каждой вершины алгоритм Дейкстры. На выход получаем кратчайшие расстояния от выбранной u до остальных. Теперь нам надо получить расстояние первоначального графа. Для этого необходимо воспользоваться формулой:

$$d(u,v) = d_{\varphi}(u,v) - \varphi(u) + \varphi(v)$$

Алгоритмическая сложность $O(V^2 log(V) + VE)$

Описание программы

 $ford_belman$ - алгортм Форда-Беллмана для нахождения циклов и нахождения кратчайшего расстояния от заданной вершины до остальных в графе, содержащем отрицательные веса.

dijkstra - алгоритм Дейкстры для нахождения кратчайшего расстояния от заданной вершины до остальных в графе, не содержащего отрицательные веса.

Структура $wedeg_t$ - содержит 3 числа: $u,\,v$ - номер начала и конца ребра и w - вес ребра.

Дневник отладки

- 1. Первая посылка Вторая попытка WA, была ошибка в переполнении переменных, проблема была решена заменой int на long long.
- 2. Третья посылка ОК

Тест производительности

n/m	100	2100	4100	6100
100	26.304 ms	180.682 ms	271.856 ms	381.492 ms
200	26.656 ms	241.564 ms	628.513 ms	1235.41 ms
300	26.175 ms	303.103 ms	717.383 ms	1396.9 ms

Заметим, что на при количестве ребер в 100 для разного количества вершин, алгоритм выполняет работу одинаково, а при увеличении ребер, разница между работами увеличивается.

Выводы

Для решении задачи был написан алгоритм Джонсона, для его выполнения написаны алгортмы Форд-Беллман и Дейкстра.