Confidence Intervals

For $\alpha \in (0, 1)$, $100(1 - \alpha)\%$ CI:

- **1.** For a population mean, μ ,
- large sample (n > 30) or normal underlying population and σ known,

$$\mu \in \left(\overline{x} - \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}}, \ \overline{x} - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right) = \left(\overline{x} - \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}}, \ \overline{x} + \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}}\right),$$

where the quantiles refer to the N(0,1) distribution;

- large sample (n > 30) or normal underlying population

$$\mu \in \left(\overline{x} - \frac{s}{\sqrt{n}} t_{1-\frac{\alpha}{2}}, \ \overline{x} - \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}\right) = \left(\overline{x} - \frac{s}{\sqrt{n}} t_{1-\frac{\alpha}{2}}, \ \overline{x} + \frac{s}{\sqrt{n}} t_{1-\frac{\alpha}{2}}\right),$$

where the quantiles refer to the T(n-1) distribution.

2. For a population variance, σ^2 , for a normal underlying population,

$$\sigma^2 \in \left(\frac{(n-1) s^2}{\chi_{1-\frac{\alpha}{2}}^2}, \frac{(n-1) s^2}{\chi_{\frac{\alpha}{2}}^2}\right),$$

where the quantiles refer to the $\chi^2(n-1)$ distribution.

3. For the difference of two population means, $\mu_1 - \mu_2$, for large samples $(n_1 + n_2 > 40)$ or normal underlying populations and independent samples,

 $-\sigma_1, \sigma_2$ known,

$$\mu_1 - \mu_2 \in \left(\overline{x}_1 - \overline{x}_2 - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \ \overline{x}_1 - \overline{x}_2 + z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right),$$

where the quantiles refer to the N(0,1) distribution;

 $-\sigma_1=\sigma_2$, unknown,

$$\mu_1 - \mu_2 \in \left(\overline{x}_1 - \overline{x}_2 - t_{1 - \frac{\alpha}{2}} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \ \overline{x}_1 - \overline{x}_2 + t_{1 - \frac{\alpha}{2}} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right),$$

where the quantiles refer to the $T(n_1+n_2-2)$ distribution and $s_p^2=\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}$; $-\sigma_1\neq\sigma_2$, unknown,

$$\mu_1 - \mu_2 \in \left(\overline{x}_1 - \overline{x}_2 - t_{1 - \frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \ \overline{x}_1 - \overline{x}_2 + t_{1 - \frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right),$$

where the quantiles refer to the T(n) distribution, with

$$\frac{1}{n} = \frac{c^2}{n_1 - 1} + \frac{(1 - c)^2}{n_2 - 1} \quad \text{and} \quad c = \frac{\frac{s_1^2}{n_1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

4. For the ratio of two population variances, $\frac{\sigma_1^2}{\sigma_2^2}$, for normal underlying populations and independent samples,

$$\frac{\sigma_1^2}{\sigma_2^2} \in \left(\frac{1}{f_{1-\frac{\alpha}{2}}} \cdot \frac{s_1^2}{s_2^2}, \frac{1}{f_{\frac{\alpha}{2}}} \cdot \frac{s_1^2}{s_2^2}\right),$$

where the quantiles refer to the $F(n_1 - 1, n_2 - 1)$ distribution.