Домашнее задание № 1

Выпуклый анализ и оптимизация

Школа анализа данных

1. Выпуклые множества

- 1. (1 pts) Покажите что множество $\mathcal{C} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b}^\top \mathbf{x} + c \leq 0\}$ выпукло, если $\mathbf{A} \succ 0$.
- 2. (1 pts) Опишите в максимально простом виде, что представляет из себя коническая оболочка множества $\{\mathbf{X}\mathbf{X}^{\top} \mid \mathbf{X} \in \mathbb{R}^{n \times k}, \ rank(\mathbf{X}) = k\}.$

Коническая оболочка множества \mathcal{X} — это множество $\{\sum_{i=1}^m \alpha_i \mathbf{x}_i \mid \alpha_i \geq 0, \ \mathbf{x}_i \in \mathcal{X}\}.$

- 3. (2 pts) Опишите в максимально простой форме множества P(C), где P это перспекетивное отображение, а множества C:
 - (a) гиперплоскость $C = \{(\mathbf{x}, t) \mid \mathbf{a}^{\top}\mathbf{x} + ct = \gamma\}$, **a** и c не равны нулю одновременно
 - (b) полупространство $C = \{(\mathbf{x},t) \mid \mathbf{a}^{\top}\mathbf{x} + ct \leq \gamma\}, \mathbf{a}$ и c не равны нулю одновременно.
- 4. (1 pts) Докажите, что множество $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \leq (\mathbf{c}^\top \mathbf{x})^2, \ \mathbf{c}^\top \mathbf{x} > 0\}$, где $\mathbf{A} \succ 0$, выпукло.

2. Двойственные конусы

1. (1.5 pts) Покажите, что экспоненциальный конус \mathcal{K} является выпуклым конусом, найдите его замыкание и двойственный к нему конус

$$\mathcal{K} = \{(x, y, z) \in \mathbb{R}^3 \mid y > 0, \ ye^{x/y} \le z\}.$$

- 2. (1 pts) Покажите, что множество $\{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} = \mathbf{X}^{\top}, \ \mathbf{y}^{\top} \mathbf{X} \mathbf{y} \geq 0, \forall \mathbf{y} \geq 0\}$ является выпуклым замкнутым конусом и найдите его двойственный. Этот конус называется конусом ко-положительных матриц.
- 3. (0.5 pts) Покажите, что множество $\{\mathbf{x} \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}$ выпуклый замкнутый конус и найдите его двойственный.

3. Выпуклые функции

- 1. (6 pts) Проверьте выпуклость/вогнутость следующих функций
 - (a) (1 pts) $f(\mathbf{x}) = \prod_{i=1}^{n} (1 e^{-x_i})^{\lambda_i}$, $\text{dom} f = \{\mathbf{x} \in \mathbb{R}_{++}^n \mid \sum_{i=1}^{n} \lambda_i e^{-x_i} \leq 1\}$ if $\lambda_i > 0, i = 1, \dots, n$.
 - (b) (0.5 pts) $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2 + \lambda \|\mathbf{x}\|_{\infty}, \ \lambda > 0$
 - (c) (1 pts) $g(x) = \frac{1}{x} \int_0^x f(t) dt$, где $f: \mathbb{R} \to \mathbb{R}$ выпуклая, дифференцируемая функция и x>0
 - (d) (0.5 pts) $f(\mathbf{X}) = \sum_{i=1}^k \lambda_i(\mathbf{X})$, где $\mathbf{X} \in \mathbf{S}^n$ и $\lambda_1(\mathbf{X}) \geq \ldots \geq \lambda_n(\mathbf{X})$ собственные значения матрицы \mathbf{X}
 - (e) $(1 \text{ pts}) f(\mathbf{X}) = (\det(\mathbf{X}))^{1/n}, \mathbf{X} \in \mathbf{S}_{++}^n$
 - (f) (1 pts) $f(\mathbf{X}) = \text{trace}(\mathbf{X}^{-1}), \mathbf{X} \in \mathbf{S}_{++}^n$
 - (g) (1 pts) $f(\mathbf{x}, t) = -\log(t^2 \mathbf{x}^{\top} \mathbf{x}), \, \text{dom}(f) = \{(\mathbf{x}, t) \in \mathbb{R}^n \times \mathbb{R}_+ \mid ||\mathbf{x}||_2 < t\}$
- 2. (1 pts) Пусть задан ориентированный взвешенный граф G = (V, E). Проверьте на выпуклость/вогнутость функцию $p_{ij}(\mathbf{c})$ кратчайшего расстояния между некоторой парой вершин (i, j), зависящую от вектора весов \mathbf{c} рёбер графа.
- 3. (1 pts) Покажите, что следующая функция выпуклая и убывает для любого конечного k на области определения, где каждый знаменатель положителен:

$$f(\mathbf{x}) = \frac{1}{x_1 - \frac{1}{x_2 - \frac{1}{x_3 - \dots}}},$$

где $\mathbf{x} \in \mathbb{R}^k$.

4. (1 pts) Покажите выпуклость функции

$$h(\mathbf{x}) = \frac{f^2(\mathbf{x})}{g(\mathbf{x})},$$

где f выпуклая и неотрицательная, а g вогнутая и положительная.