



### **Constraint Satisfaction Problems**



- Search algorithms so far:
  - state is a "black box"
  - domain specific heuristics
  - states are accessible by problem specific routines
- CSP:
  - stuctured and simple representation
  - general purpose algorithms



Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sariel

### **Constraint Satisfaction Problem**



- Defined by
  - n variables  $X_i$  which define a state
    - Each variable has a domain  $D_i$  of possible values
  - m constraints  $C_i$ 
    - Each constraint involves some subset of variables
    - Specifies the allowable combinations of values
- A state of the problem: assignment of values to some or all of  $X_i$  s

NIP.

Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sariel

# **Constraint Satisfaction Problem**



- Consistent or legal assignment does not violate constraints
- Complete assignment that satisfies all constraints is a solution
- A complementary objective function may be defined

OF

Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sariel







### Standard search formulation



- States are defined by the values assigned so far
  - Initial state: the empty assignment, {}
  - Successor function: assign a value to an unassigned variable that does not conflict with the current assignment
    - fail if no legal assignments (not fixable!)
  - Goal test: the current assignment is complete
  - Path cost: a constant cost for every step



Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sarie

### Standard search formulation



- The search formulation is the same for all CSPs!
- What is the depth of solution?
  - Which type of search?
- Path is irrelevant, so can also use complete-state formulation
- The number of leaves! vs possible assignments
  - Commutativity
  - Consider only a single variable at each node

ZÝ?

Artificial Intelligence (BLG435E) @ ITU:: Computer Engineering Department, Dr. Sanem Sarıel

### Varieties of CSPs



- Discrete variables
  - finite domains; size  $d \rightarrow O(d^n)$  complete assignments
    - e.g., Boolean CSPs including Boolean satisfiability (NP-complete)
  - infinite domains (integers, strings, etc.)
    - e.g., job scheduling, variables are start/end days for each job
    - need a constraint language, e.g.,  $StartJob1 + 5 \le StartJob3$
    - linear constraints solvable, nonlinear undecidable



Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sariel

11

### Varieties of CSPs



- Continuous variables
  - e.g., start/end times for Hubble Telescope observations
  - linear constraints solvable in polynomial time by LP methods

QU!

Artificial Intelligence (BLG435E) @ ITU:: Computer Engineering Department, Dr. Sanem Sariel

### Varieties of constraints



- Unary constraints involve a single variable
  - SA ≠ green
- Binary constraints involve pairs of variables
  - $-SA \neq WA$
- A binary CSP has only binary constraints, constraint graphs

OUR

Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sarie

### Varieties of constraints



- Global constraints involve an arbitrary number of variables: cryptarithmetic column constraints
  - constraint hypergraph
  - can be reduced to binary constraints
- Preferences (soft constraints)
  - red is better than green
  - often encoded using costs againts the overall objective function
  - constrained optimization problems

OU!

Artificial Intelligence (BLG435E) @ ITU:: Computer Engineering Department, Dr. Sanem Sariel

. .





# Benefits of modeling as a CSP



- · Representation of states conforms to a standard pattern
- The successor function and goal test can be written in a generic way
- Devising generic heuristics
- The structure of the constraint graph can be used to simplify the solution process

OUR

Artificial Intelligence (BLG435E) @ ITU:: Computer Engineering Department, Dr. Sanem Sarie

17

# Backtracking search



- Variable assignments are commutative
  - [WA=red then NT =green] same as [NT =green then WA=red]
- Only need to consider assignments to a single variable at each node
  - b=d and there are d<sup>n</sup> leaves

TIP

Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sariel

## Backtracking search



- Depth-first search with single-variable assignments
- The basic uninformed algorithm for CSPs
- Can solve n-queens for n  $\approx$  25

O'

Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sariel

Backtracking search



```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
  return Backtrack(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  {\bf if}\ assignment\ {\bf is\ complete\ then\ return}\ assignment
  var \leftarrow \text{Select-Unassigned-Variable}(csp)
  for each value in Order-Domain-Values(var, assignment, csp) do
      if value is consistent with assignment then
          add \{var = value\} to assignment
          inferences \leftarrow \texttt{Inference}(csp, var, value)
          if inferences \neq failure then
            add inferences to assignment
            result \leftarrow BACKTRACK(assignment, csp)
            if result \neq failure then
               return result
      remove \{var = value\} and inferences from assignment
  {\bf return}\;failure
                Artificial Intelligence (BLG435E) @ ITU:: Computer Engineering Department, Dr. Sanem Sariel
```









# Improving backtracking efficiency



- General-purpose methods can give huge gains in speed:
  - Which variable should be assigned next?
  - In what order should its values be tried?
  - Can we detect inevitable failure early?
  - Can we take advantage of problem structure?

QU!

Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sariel

Minimum remaining values (MRV):

- choose the variable with the fewest legal values

- Most constrained variable, fail-first heuristic

Artificial Intelligence (BLG435E) @ ITU :: Computer Engineering Department, Dr. Sanem Sarrel

























# k-consistency Arc-consistency does not reveal every possible inconsistency k-consistency: for any k-1 variables and for any consistent assignment A consistent value can be assigned to any k<sup>th</sup> variable 1-consistency: node consistency 2-consistency: arc consistency 3-consistency: path consistency A graph is strongly k-consistent if it is k-consistent and also (k-1) —consistent, ... 1-consistent









