

BUSINESS PROCESS MANAGEMENT

MODEL QUERY I: COMPUTATIONAL TREE LOGIC (CTL)

AGENDA

- Why Model Query?
- Model Checking with Temporal Logic
- Computational Tree Logic (CTL)
- Application of CTL

(PROCESS) MODELS IN THE BPM LIFECYCLE

 Analyze process models to find weaknesses and improvement potential (inefficiencies, law violations, etc.)

THE NEED FOR AUTOMATIC MODEL QUERY

100 models

2200 models

EXEMPLARY PATTERNS FOR MODEL QUERY

CONFLICT DETECTION

EXEMPLARY PATTERNS FOR MODEL QUERY

WEAKNESS DETECTION

EXEMPLARY PATTERNS FOR MODEL QUERY

COMPLIANCE CHECKING

AGENDA

- Why Model Query?
- Model Checking with Temporal Logic
- Computational Tree Logic (CTL)
- Application of CTL

MODEL CHECKING

• Given a (process) model M and a formula φ , model checking is the problem of verifying whether or not φ is true in M (written M $|= \varphi$)

TRANSITION SYSTEMS

- A transition system represents a system (e.g., a process model) by means of states and transitions between states
- Transition system: M=(S,R_t,L)
- Set of states S
- Binary relation R_t⊆S×S
- Labelling function L: S→2^{AP}
- **AP** is a set of atomic propositions (see above).
- The relation R_t is serial, i.e., for every state $s \in S$, there exists a state s' such that sR_ts'

TRANSITION SYSTEMS

EXAMPLE

$$\blacksquare M = (S, R_t, L)$$

- $-S={s_0,s_1,s_2}$
- $R_t = \{(s_0, s_1), (s_0, s_2), (s_1, s_0), (s_1, s_2), (s_2, s_2)\},$
- $L(s_0)=\{p,q\}, L(s_1)=\{q,r\}, L(s_2)=\{r\}$

MODEL CHECKING

• Given a (process) model M and a formula φ , model checking is the problem of verifying whether or not φ is true in M (written M $|= \varphi$)

TEMPORAL LOGIC

 Many model checking approaches are based mainly on temporal logic

- Various kinds of temporal logic:
 - Linear Temporal Logic (LTL),
 - Computational Tree Logic (CTL)
 - CTL*, ...

Here: CTL

AGENDA

- Why Model Query?
- Model Checking with Temporal Logic
- Computational Tree Logic (CTL)
- Application of CTL

CTL SYNTAX

- Set of atomic propositions $P=\{p_1, p_2, \ldots\}$
- Atomic propositions stand for atomic facts which may hold in a model, e.g.
 - "check invoice"
 - "grant credit"
 - "employee"

CTL Syntax:

 $φ ::= p_i | ¬φ | φΛφ | φ∨φ | φ→φ | AXφ | EXφ | AFφ | EFφ | AGφ | EGφ | A[φUφ] | E[φUφ]$

- Unary Operators
 - A: for All paths
 - E: there Exists a path
 - X: neXt state
 - F: in a Future state
 - G: Globally in the future
- Binary Operator
 - U: Until
- Example
 - AG(p→(EFq)): "It is globally the case that, if p is true, then there exists a path such that at some point in the future q is true"

- Let $M=(S,R_t,L)$ be a transition system.
- Let φ be a CTL formula and $s \in S$
- M, s $| = \varphi$ is defined inductively on the structure of φ :

• M,
$$s_1 \mid = AG\phi$$
 iff

for all paths
$$(s_1, s_2, s_3, s_4, ...)$$
 such that $s_i R_t s_{i+1}$ and for all i, it is the case that M, $s_i \mid = \varphi$

• M,
$$s_1 = EG\phi$$
 iff

there is a path
$$(s_1, s_2, s_3, s_4, ...)$$

such that $s_i R_t s_{i+1}$ and for all i it is the case that M, $s_i \mid = \varphi$

• M,
$$s_1 \mid = AF\phi$$
 iff

for all paths
$$(s_1, s_2, s_3, s_4, ...)$$
 such that $s_i R_t s_{i+1}$, there is a state s_i such that M , $s_i \mid = \varphi$

• M,
$$s_1 \mid = EF\phi$$
 iff

there is a path
$$(s_1, s_2, s_3, s_4, ...)$$

such that $s_i R_t s_{i+1}$, and there is a state s_i
such that M, $s_i \mid = \varphi$

• M, $s_1 = A[\phi U\psi]$ iff

for all paths $(s_1, s_2, s_3, s_4, ...)$ such that $s_i R_t s_{i+1}$ and there is a state s_j such that M, $s_j \mid = \psi$ and M, $s_i \mid = \phi$ for all i < j.

■ M, $s_1 = E[\phi U\psi]$ iff

there exists a path $(s_1, s_2, s_3, s_4, ...)$ such that $s_i R_t s_{i+1}$ and there is a state s_j such that M, $s_j \mid = \psi$ and M, $s_i \mid = \phi$ for all i < j.

• We write M $|= \varphi$ if a formula is true in all states of a model.

EXAMPLES

■ M,
$$s_0 | = EX(\neg p)$$

• M,
$$s_0 = EX(r)$$

• M,
$$s_1 | = AG(q \vee r)$$

• M,
$$s_2 | = A[rUq]$$

• M,
$$s_0 \mid = A[pUq]$$

• M,
$$s_1 = E[qUEG(r)]$$

• M,
$$s_0 \mid = \neg AG(q) \leftarrow \text{globally } q$$

• M,
$$s_1 \mid = EF(AG(q))$$

This is true, because it is not the case, that on all paths there is globally q (cf. $s_0 \rightarrow s_2$)

AGENDA

- Why Model Query?
- Model Checking with Temporal Logic
- Computational Tree Logic (CTL)
- Application of CTL for BPM

CONCEPTUAL PROCESS MODELS AND CTL

- How can we use CTL to analyze (process) models?
- Step 1: transform a model into a transition system
 - activities → states
 - labels → atomic propositions
 - annotated objects → atomic propositions
- Step 2: create CTL formulas representing, e.g., compliance rules or weakness patterns
- Step 3: check the transition system with a CTL model checker

COMPLIANCE EXAMPLE

- L(s0)={start}
- L(s1)={n_check_a pplication, o_clerk}
- L(s2)={n_send_ou t_legal_documen ts}
- L(s3)={n_reject_ application}
- L(s4)={n_grant_c redit, o_boss}
- L(s5)={end}

COMPLIANCE EXAMPLE

• Rule 1: Legal Documents have to be sent to the customer, before a credit can be granted

- M, s₀ |= A[(¬n_grant_credit)Un_send_out_legal_documents]
- Rule 2: Credits can only be granted by the boss
- M, $s_0 \mid = \neg EF(n_grant_credit \land \neg o_boss)$

CAUTION!

- L(s1)={start}
- L(s2)={Check_invoice _against_order}
- L(s3)={Check_invoice _sum}
- L(s4)={Check_invoice _sum}
- L(s5)={Check_invoice _against_order}
- L(s6)={Pay_invoice}
- L(s7)={Reject _invoice}
- L(s8)={end}

KEY LEARNINGS

- BPMN models can be transformed into a transition system
 (M)
- (Legal) regulations can be transformed into formulas
- For compliance checking, queries are ALWAYS formulated starting in s₀

BUSINESS PROCESS MANAGEMENT

MODEL QUERY 1: COMPUTATIONAL TREE LOGIC (CTL)

INSTITUTE FOR IS RESEARCH

www.uni-koblenz.de