Scilab Textbook Companion for Engineering Basics by T. Thyagarajan¹

Created by
Qureshi Mehtab Alam Niyaz Ahmed
B.E (EXTC)
Electronics Engineering
Mumbai University
College Teacher
S. Chaya Ravindra
Cross-Checked by
Banda Nawaz

May 31, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Basics

Author: T. Thyagarajan

Publisher: New Age International , New Delhi

Edition: 3

Year: 2000

ISBN: 81-224-1274-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	concept of electric current and laws	5
2	Magnetic Current	11
3	Electromagnetism	18
4	Ac circuit	23
5	Electrical Machine	40

List of Scilab Codes

Exa 1.1	specific resistance
Exa 1.2	resistance
Exa 1.3	resistance and current
Exa 1.4	resistance
Exa 1.5	resistance
Exa 1.6	resistance
Exa 1.7	current
Exa 1.9	current
Exa 1.10	resistance of coil
Exa 1.11	power
Exa 1.12	Bill amount
Exa 1.18	resistance
Exa 1.19	resistance
Exa 2.1	flux density
Exa 2.2	Magnetic field strength
Exa 2.3	reluctance current and
Exa 2.4	relative permeability
Exa 2.5	mmf
Exa 2.6	magnetising force relative permeability magnetic flux
	density
Exa 2.7	Magnetising Current
Exa 2.8	number of amperes turns
Exa 2.9	ampere turns
Exa 2.10	exciting current
Exa 2.11	hysteris loop
Exa 3.1	emf induced
Exa 3.2	emf induced
Exa 3.3	inductance of the coil

Exa 3.4	self inductance	9
Exa 3.5	inductance and emf induced	9
Exa 3.6	inductance and emf induced	20
Exa 3.7		21
Exa 3.8	mutual inductance and emf induced	21
Exa 3.9	energy stored	22
Exa 3.10		22
Exa 4.1	voltage and current factors	23
Exa 4.2		23
Exa 4.3		24
Exa 4.12		24
Exa 4.13		25
Exa 4.15	current	25
Exa 4.16	inductance and current	26
Exa 4.17	voltage and current	26
Exa 4.18		26
Exa 4.19	capacitance current	27
Exa 4.20	frequency	27
Exa 4.21	phase angle	28
Exa 4.22	voltage and current	28
Exa 4.23		29
Exa 4.24		29
Exa 4.25	inductance	30
Exa 4.27	voltage across choking coil	30
Exa 4.28	time equation for v and i	31
Exa 4.29		31
Exa 4.30	voltage across R and C	32
Exa 4.31		32
Exa 4.32	capacitance	3
Exa 4.33	voltage across RLC	3
Exa 4.34	current and voltage	34
Exa 4.35	maximum current	35
Exa 4.36	frequency response	35
Exa 4.37	current voltage and power	35
Exa 4.38		36
Exa 4.40		37
Exa 4.41		88
Exa. 4.42		88

Exa 4.43	power factor
Exa 5.1	determine the emf induced in the coil
Exa 5.2	emf induced in coil
Exa 5.3	speed
Exa 5.4	induced emf
Exa 5.5	emf induced
Exa 5.6	emf induced
Exa 5.7	back emf
Exa 5.8	power
Exa 5.9	speed
Exa 5.10	speed of rotor
Exa 5.11	torque
Exa 5.12	number of turns and current
Exa 5.13	flux density
Exa 5.14	current
Exa 5.15	efficiency
Exa 5.16	speed and emf \dots
Exa 5.17	speed
Exa 5.18	poles speed frequency
Exa. 5.19	induced emf

Chapter 1

concept of electric current and laws

Scilab code Exa 1.1 specific resistance

```
//find the specific resistance of the material
L = 12 //meter
A = 0.01*10^-4 //m^2
R = 0.2 //ohm
p = R*A/L //specific resistance
disp('value of specific resistance='+string(p)+'
ohm -meter')
```

Scilab code Exa 1.2 resistance

```
1
2 //resistance at 40 degree
3 a0=0.0043
4 t1=27
5 t2=40
6 R1=1.5
```

```
7 R2=R1*(1+a0*t2)/(1+a0*t1)
8 disp('value of resistance='+string(R2)+ ' ohm')
```

Scilab code Exa 1.3 resistance and current

```
1
2 //find the total R.I.V
3 R1=5
4 R2=10
5 R3=15
6 V=120
7 R=R1+R2+R3
8 I=V/R
9 V1=I*R1
10 V2=I*R2
11 V3=I*R3
12 disp('Voltage V3='+string(V3)+'volts', 'Voltage V2='+string(V2)+'volt', 'Voltage V1='+string(V1) +'volts')
```

Scilab code Exa 1.4 resistance

```
1
2 //find the eqvivalent rasistance of series parallel
        combination
3 Rab=(2*4)/(2+4)
4 Rbc=(6*8)/(6+8)
5 Rac=Rab+Rbc
6 disp('rasistance across AC='+string(Rac)+'ohms')
```

Scilab code Exa 1.5 resistance

```
//find the eqvivalent resistance of series parallel
    combination
Rab=4
Rbc=(12*8)/(12+8)
Rcd=(3*6)/(3+6)
Rad=Rab+Rbc+Rcd
disp('resistance across AC='+string(Rad)+' ohms'
)
```

Scilab code Exa 1.6 resistance

```
1
2 //what resistance must be connected in parallel
3 R1=8
4 R2=48/2//R1*R2/R1+R2
5 disp('R2='+string(R2)+'ohms')
```

Scilab code Exa 1.7 current

```
1
2 //calculate the current I1.I2
3 I=12
4 R1=6
5 R2=8
6 I1=I*R2/(R1+R2)
7 I2=I*R1/(R1+R2)
8 disp('I1='+string(I1)+'amps', 'I2 ='+string(I2)+'amps')
```

Scilab code Exa 1.9 current

```
1
2  //find how current divide in circuit
3  R1=0.02
4  R2=0.03
5  I1=(10*R2)/(R1+R2)
6  I2=(10*R1)/(R1+R2)
7  disp('I2='+string(I2)+ 'amps' , 'I1= '+string(I1) + 'amps')
```

Scilab code Exa 1.10 resistance of coil

Scilab code Exa 1.11 power

```
^{1} ^{2} //what is the resistance of each coil ^{3} V=100 ^{4} P=1500
```

```
5 R=(V^2/P)/2
6 Ra=R
7 Rb=R
8 Rc=R
9 R1=((Ra*Rc)/(Ra+Rc))+Rb
10 I=V/R1
11 I1=(I*Ra)/(Ra+Rc)
12 I2=(I*Ra)/(Ra+Rc)
13 Pa=I*I*Ra
14 Pb=I1*I1*Rb
15 Pc=I2*I2*Rc
16 disp( 'Pc='+string(Pc)+' watts', 'Pb='+string(Pb)+' watts', 'Pa='+string(Pa)+' watts')
```

Scilab code Exa 1.12 Bill amount

Scilab code Exa 1.18 resistance

```
2 //convert the delta circuit
```

```
3  Rry=4
4  Ryb=1
5  Rbr=5
6  Rr=(Rbr*Rry)/(Rry+Rbr+Ryb)
7  Ry=(Rry*Ryb)/(Rry+Rbr+Ryb)
8  Rb=(Rbr*Ryb)/(Rry+Rbr+Ryb)
9  disp('Rb='+string(Rb)+ 'ohms' , 'Ry='+string(Ry)+ 'ohms' , 'Rr='+string(Rr)+' ohms')
```

Scilab code Exa 1.19 resistance

```
1
2  //convert star circuit
3  Rr=2
4  Ry=0.67
5  Rb=1
6  Rry=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Rb
7  Ryb=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Rr
8  Rbr=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Ry
9  disp('Rbr='+string(Rbr)+'ohms' , 'Ryb='+string(Ryb')+'ohms' , 'Rry='+string(Rry)+ 'ohms')
```

Chapter 2

Magnetic Current

Scilab code Exa 2.1 flux density

```
1
2 //determine the fukux density
3 F=0.5e-3;//webers
4 A=4*10^-4;//meter^2
5 B=F/A;
6 disp('flux density is = '+string(B)+' Wb/m^2');
```

Scilab code Exa 2.2 Magnetic field strength

```
1
2 //determine the magnetic field strenght at the
      centre of solinoid
3 I=2; //amp
4 L=50e-2; //meter
5 N=100; //turns
6 H=(N*I)/L;
7 disp('magnetic field strenght='+string(H)+'AT/m');
```

Scilab code Exa 2.3 reluctance current and

```
1
2 //calculate the reluctance and current
3 A=5e-4
4 N=250
5 l=50e-2
6 F=700e-6
7 u=380
8 S=1/(4*%pi*10^-7*A*u)
9 I=F*S/N
10 disp('current='+string(I)+'amps' , 'reluctance ='+string(S)+'AT/Wb')
```

Scilab code Exa 2.4 relative permeability

```
//determine the value of relative permeability of
    iron

D=15e-2

1=%pi*15e-2

N=450

I=2

B=1.2

u=B/(4*%pi*10^-7*N*I*1)

disp('value of relative permeability='+string(u)+'
')
```

Scilab code Exa 2.5 mmf

```
1
2 //calculate the mmf
3 l=1.5
4 u=1600
5 B=1.2
6 H1=B*1/(4*%pi*10^-7*u)
7 la=1e-3
8 ua=1
9 H2=B*la/(4*%pi*10^-7*ua)
10 H=H1+H2
11 disp('total amprs turns ='+string(H)+' AT', 'amprs turns='+string(H2)+' AT', 'amprs turns='+string(H1)+' AT')
```

Scilab code Exa 2.6 magnetising force relative permeability magnetic flux density

```
2 //calculate the magnetising force relative
      permeability
3 A = 5e - 4
4 1 = 25e - 2
5 N = 100
6 I=2
7 F = 0.3e - 3
8 H = (N * I) / 1
9 u=(F*1)/(N*I*A*4*3.14*10^-7)
10 B=(u*H*4*3.14*10^-7)
11 I1=5
12 \quad F1 = 0.58e - 3
13 H1 = (N * I1) / 1
14 u1=(F1*1)/(N*I*A*4*3.14*10^-7)
15 B1=(u1*H*4*3.14*10^-7)
16 disp('flux density B1=' +string(B1)+ 'Wb/m<sup>2</sup>', ,'
      flux density B = ' + string(B) + 'Wb/m^2')
```

Scilab code Exa 2.7 Magnetising Current

```
1
2 //calculate the magnitising current
3 A = 0.01
4 1 = 2e - 3
5 u = 1
6 F = 800 e - 6
7 B=F/A//flux
8 \text{ H=B/(4*3.14*10^-7*u)}
9 N = (H * 1)
10 L = 150 e - 2
11 v = 600
12 f = 9.6e - 4
13 N1 = (f*L)/(v*A*4*\%pi*10^-7)
14 N2 = N1 + N
15 n = 200
16 \text{ M=N2/n}
17 disp('Magnetising current = '+string(M)+' A', '
      Total amps turns = '+string(N2) + 'AT', 'amps
      turn iron =  '+string(N1)+' AT', 'amps turn for
      air= '+string(N)+' AT')
```

Scilab code Exa 2.8 number of amperes turns

```
1
2  //find the number of amprs turns required
3  A=25e-4
4  F=1.2e-3
5  u=1  // air path
6  1=0.25e-2
```

Scilab code Exa 2.9 ampere turns

```
1
2 //calculate the circuit current
3 u=1/for air gap
4 F=1.5e-3//flux
5 A = 9e - 4 / area
6 B=F/A
7 H=B/(4*3.14*10^-7*u)
8 l=4e-3//air gap
9 S=H*1//amps turns in air gap
10 l=4e-3//air gap
11 u1=800// for iron gap
12 \quad A1 = 750 e - 6
13 B1=F/A1
14 H1=B1/(4*3.14*10^-7*u1)
15 \quad 11 = 270 e - 3
16 S1=H1*11
17 u2=1000 // for P, Q, R
18 H2=B/(4*3.14*10^-7*u2)
19 Ip=135e-3
20 \text{ Iq} = 270 \text{ e} - 3
21 Ir=135e-3
22 S2=H2*(Ip+Iq+Ir)//amps turns
23 \text{ TNn} = S + S1 + S2
24 \text{ TN} = 4000
```

```
25 EI=TNn/TN
26 disp('exciting current= '+string(EI)+' amps')
```

Scilab code Exa 2.10 exciting current

```
1
2 //calculate the total amprers turns
3 u=1//for air gap
4 F=1.2e-3//flux
5 A = 10e - 4 / area
6 B=F/A
7 H=B/(4*3.14*10^-7*u)
8 1=0.2e-3//air gap
9 S=H*1//amps turns in air gap
10 11=15e-2//air gap
11 A1=8e-4
12 H1=450
13 S1=H1*11
14 \quad F1 = 0.6e - 3
15 B1=F1/A1
16 H2=140
17 \quad S2 = H2 * 30 e - 2
18 \text{ TN} = 500
19 TAN=S+S1+S2
20 \quad EI = TAN/TN
21 disp('exciting current =' +string(EI)+'amps')
```

Scilab code Exa 2.11 hysteris loop

```
1
2 //calculate the hysteris loss
3 A=50//area of hysterisis
4 H=200
```

```
5 B=0.2
6 f=50
7 D=10// density
8 M=1000// mass
9 V=M/D// velocity is mass /density
10 HL=A*H*B//....j/m^2/cycle
11 HL1=A*H*B*10^-4//....j/cycle
12 HL2=A*H*B*50*1e-4//....j/s
13
14 disp('Hysteresis loop = '+string(HL2)+' j/s')
```

Chapter 3

Electromagnetism

Scilab code Exa 3.1 emf induced

```
1
2 //calculate the emf induced in the coil
3 N=200
4 F1=1e-3
5 F2=3e-3
6 F3=F2-F1
7 t=0.1
8 e=N*F3/t //neglecting negative sign
9 disp('induced emf= '+string(e)+' volts')
```

Scilab code Exa 3.2 emf induced

```
1
2 //calculate the emf inducedin a long wire
3 B=1.2; //weber/meter^2...flux density
4 V=4; //meter/second..velocity of conductor
5 l=2; //meter...lenght of
6 e=(B*V*l*1)//sin90=1
```

```
7 disp('emf induced in the conductor='+string(e)+'volt
');
```

Scilab code Exa 3.3 inductance of the coil

```
1
2 //find the inductance of the coil
3 N=1500; // number of turns
4 I=10; //amp...current in coil
5 F=.5*10^-3; //weber...flux
6 L=N*F/I;
7 disp('inductance of coil='+string(L)+'henry');
```

Scilab code Exa 3.4 self inductance

```
1
2 //P3.4 calculate its self induction
3
4 Ur=1;
5 N=400;
6 l=30e-2;
7 A=5e-4;
8 U0=4e-7*%pi;
9 S=1/(U0*Ur*A);
10 L=N^2/S;
11 disp('Self inductance is = '+string(L)+' henry', 'S = '+string(S));
```

Scilab code Exa 3.5 inductance and emf induced

```
2 //calculat the inductance and emf induced in the
3 u=1 //air core torroidal ring
4 D = 25e - 2
5 1=3.14*D
6 N = 500
7 d=4e-2 //cross sectional diameter
8 A=(3.14*d*d)/4 //cross sectional area
9 s=1/(4*3.14*10^-7*u*A)
10 L=N^2/s // self inductance
11 dI=10
12 dt = 50e - 3
13 e=(L*dI)/dt
14 disp('Induced emf=' +string(e)+'
                                      volts','
     Inductance = '+string(L)+'
                                     henry')
```

Scilab code Exa 3.6 inductance and emf induced

```
1
2 //calculate the induced emf in the coil
3 A=4e-4 //cross sectional is a squar side
4 u=1 //air core torroidal ring
5 D=25e-2
6 l=3.14*D
7 N=500
8 d=4e-2 //cross sectional diameter
9 s=1/(4*3.14*10^-7*u*A)
10 L=N^2/s // self inductance
11 dI=10
12 dt=50e-3
13 e=(L*dI)/dt
14 disp('Induced emf=' +string(e)+' volts', 'Inductance = '+string(L)+' henry')
```

Scilab code Exa 3.7 inductance and emf induced

```
1
2 //calculate the induced emf in coil
3 di=5
4 dt=0.05
5 L=5.029e-4
6 di1=400
7 dt1=1
8 e=L*di/dt
9 e1=L*di1/dt1
10 disp('Induced emf= ' +string(e1)+' volts', ' Induced emf= ' +string(e)+' volts')
```

Scilab code Exa 3.8 mutual inductance and emf induced

Scilab code Exa 3.9 energy stored

```
1
2 //find the energy stored in it
3 L=0.5
4 I=2
5 E=0.5*L*I*I
6 disp('Energy stored= '+string(E)+' joule')
```

Scilab code Exa 3.10 force

```
1
2 //determine the pull between poles and keeper
3 A=15e-4
4 B=1.2
5 U=1
6 F=2*B*B*A/(2*4*3.14*10^-7)
7 disp('Total force='+string(F)+' N')
```

Chapter 4

Ac circuit

Scilab code Exa 4.1 voltage and current factors

```
1
2  //
3  //i=40sin 314t
4  //i=Imsin wt
5  Im=40
6  w=314
7  Iav=Im/1.414
8  Irms=Im*2/3.14
9  f=w/(2*3.14)
10  Ff=Irms/Iav
11  Pf=Im/Irms
12  disp('peak factor='+string(Pf)+ ' ' ', 'form factor='+string(Ff)+ ' ', 'frequency ='+string(f)+ ' ')
```

Scilab code Exa 4.2 voltage equation

1

```
2 //determine the voltage sin wave
3 f=50
4 V=50
5 Vm=V*1.414
6 w=2*3.14*f
7 t=(0:0.1:5*%pi)';
8 plot2d1('onn',t,[5*sin(t)])
9 disp('voltage equation v=70.7sin(314)t')
```

Scilab code Exa 4.3 volatage and time

Scilab code Exa 4.12 power dissipated

```
7  Im=50
8  o=314
9  R=Vm/Im
10  I=Im/1.414
11  P=(I*I*R)
12  disp( 'power dissipiated in resistance='+string(P)+' watts')
```

Scilab code Exa 4.13 inductive reactance

```
1
2 //determine the inductive reactance of the coil
3 L=0.25; //henry....inductance
4 f=50; //hertz...frequency
5 X=2*3.14*f*L
6 disp('value of inductive reactance='+string(X)+'ohms');
```

Scilab code Exa 4.15 current

```
1
2 // calculate the current flowing through the coil
3 L=0.05
4 V=230
5 f=60
6 X=(2*%pi*f*L)
7 I=V/X
8 disp(' the current flowing through the coil='+string (I)+'amps')
```

Scilab code Exa 4.16 inductance and current

```
1
2 //detrmine the value of inductance
3 I=5;//amp
4 V=200;//volt
5 f=50;//hertz
6 X=V/I;
7 L=40/(2*%pi*50);
8 disp('the value of inductive.reactance='+string (X)+'ohms', 'value of inductors='+string(L)+' henry');
```

Scilab code Exa 4.17 voltage and current

```
1
2  // write the time equation for voltage and current
3  Vrms=150
4  Vm=2*1.414*Vrms
5  f=50
6  L=0.2
7  X=2*3.14*f*L
8  Im=Vm/X
9  disp('current equation i=212.132sin(314)t', 'voltage equation v=3.376sin(314t-90)', 'Im='+string(Im)+'')
```

Scilab code Exa 4.18 current

```
1
2  // calculate the current
3  C=25e-6;
4  V=200
```

```
5 f=60  //frequency half
6 f2=120  //frequency doubled
7 Xc=1/(2*%pi*f*C)
8 Xc=1/(2*%pi*f2*C)
9 I=V/Xc
10 disp('frequency half='+string(f)+'hz', 'frequency douled='+string(f2)+'hz')
```

Scilab code Exa 4.19 capacitance current

Scilab code Exa 4.20 frequency

```
// find the frquency
Vrms=110
c=15e-6
I=0.518
Xc=Vrms/I
f=1/(2*%pi*Xc*c)
disp('value of frequency='+string(f)+'hz')
```

Scilab code Exa 4.21 phase angle

```
1
2 //calculate the value of current
3 R=10;//ohms
4 L=0.02;//henry
5 V=250;//volt
6 f=50;//hertz
7 X=(2*%pi*f*L)
8 Z=sqrt(R^2+X^2)
9 I=V/Z
10 coso=R/Z
10 o=acosd(coso)
12 disp('phase angle='+string(o)+'degree', 'current flowing through coil='+string(I)+'amp')
```

Scilab code Exa 4.22 voltage and current

```
2 //find the inductance impd, curent, power factr,
      voltage.power
3 R=50; //ohms
4 L=0.5; //henry
5 V = 200; // volt
6 f=50; // hertz
7 X=(2*%pi*f*L)
8 \quad Z=sqrt(R^2+X^2)
9 I=V/Z
10 \cos = R/Z
11 \sin = R/Z
12 o=acosd(coso)
13 o1=asind(sino)
14 \text{ Vr=I*R}
15 V1 = I * X
16 \text{ AP=V*I*coso}
```

Scilab code Exa 4.23 voltage

```
1
2 //determine the supply voltage
3 R=15; //ohms
4 L=0.15; //henry
5 I=20; //ampss
6 f=50; //hertz
7 X=2*%pi*50*0.15
8 Z=sqrt(R^2+X^2)
9 V=I*Z
10 disp('supply voltage = '+string(V)+'volts');
```

Scilab code Exa 4.24 resistance

```
1
2 //determine the supply voltage
3 V=200; //ohms
4 L=0.4; //henry
5 I=0.5; //ampss
6 f=50; //hertz
7 Z=V/I
8 X=2*%pi*f*L
9 R=sqrt(Z^2+X^2)
10 disp('Resistance = '+string(R)+'ohms')
```

Scilab code Exa 4.25 inductance

```
1
2 //determine the inductance of the coil
3 R=6
4 V=250; // volts
5 I=1.5; //amps
6 Z=V/I; //impedance
7 f=60; //hetrz
8 X=sqrt(Z^2-R^2)
9 L=X/(2*%pi*f)
10 disp('inductance of coil='+string(L)+ 'henry')
```

Scilab code Exa 4.27 voltage across choking coil

```
2 //determine the inductance of the coil and voltage
      across each element
3 I = 7
4 V = 200
5 f = 50
6 R = 10
7 r=1.5
          //rasistance choke coil
8 V1 = I * R
9 V3 = I * r
10 V2 = sqrt(V^2 - (V1 + V3)^2)
11 X=V2/I //inductive reactance
12 L=X/(2*\%pi*f)
13 V4=sqrt(V2^2+V3^2) //voltage across choking coil
14 disp('voltage across choking coil='+string(V4)+'
      volts ' , 'inductor='+string(L)+'henry')
```

Scilab code Exa 4.28 time equation for v and i

```
2 4.28//voltage across R$C
3 C=15e-6; //farad...
4 R=100; //ohms
5 V=100; //volts
6 f=50; //hertz
7 Xc=1/(2*\%pi*f*C);
8 Z=sqrt(R^2+(Xc^2));
9 I=V/Z;
10 coso=R/Z;
11 \sin = R/Z
12 o=acosd(coso);
13 o=asind(sino)
14 Vr=I*R;
15 Vc=I*Xc;
16 \quad AP = V * I * coso
17 RP=V*I*sino
18 APP=V*I;
19 disp('The time equation of current i = (0.426)1.414
      \sin(314t-64.34)', 'Apparent power = '+string(APP
      ) + 'vars ', 'ACTIVE POWER = '+string(AP) + '
      watts'
              )
```

Scilab code Exa 4.29 current and voltage

```
1
2 //determine the frequency
3 R=30;//ohms
4 L=0.5;//henry
5 f=50;//hertz
```

```
6 X=(2*%pi*f*L)
7 Z=R+%i*X
8 V=86.6+%i*50
9 I=V/Z
10 disp('current = '+string(I)+ 'A')
```

Scilab code Exa 4.30 voltage across R and C

```
1
2 //find the equation of voltage and current
3 C=10e-6; //farad...
4 R=300; //ohms
5 //i = 2 \sin 314t
6 V=100; //volts
7 f=50; // hertz
8 Xc=1/(2*\%pi*f*C);
9 Z = sqrt(R^2 + (Xc^2));
10 \text{ Im} = 2
11 \quad Vm = 2 \times Z
12 coso=R/Z;
13 o=acosd(coso);
14 disp('The time equation of voltage Vr = 600 \sin (314 t)
      )', 'The time equation of voltage Vc = 636 \sin(
      wt - 90),
```

Scilab code Exa 4.31 resistance and capacitance

```
1
2 //calculate the value of RESISTANCE AND CAPACITANCE
3 I=2.5;//amps
4 V=150;//volts
5 f=50;//hetz
6 Z=V/I;
```

```
7 P=100; //watt..power
8 R=P/(I*I)
9 Xc=sqrt(Z^2-R^2)
10 C=1/(2*3.14*f*Xc); // capacitance
11 disp('find tha value of capacitance='+string(C)+' farad');
```

Scilab code Exa 4.32 capacitance

```
1
2  //determine the value of capacitance
3  V1=100; // volts
4  V=250; // volts
5  f=50; // hertz
6  P=500; // watt
7  I=P/V;
8  V2=sqrt(V^2-V1^2); // volts
9  Xc=V2/I;
10  C=1/(2*%pi*f*Xc);
11  disp('determine the value of capacitance='+string(C) + 'farad');
```

Scilab code Exa 4.33 voltage across RLC

Scilab code Exa 4.34 current and voltage

```
2 //determine the current also V1 nd V2
3 V = 250
4 f=50
5 R1=10
6 L1=0.15
7 C1 = 10e - 6
8 X1 = 2 * \%pi * f * L1
9 \text{ Xc1=1/(2*\%pi*f*C1)}
10 R2=8
11 L2=0.25
12 X2 = 2 * \%pi * f * L2
13 Z = sqrt((R1+R2)^2+[(X1+X2)-Xc1]^2)
14 I = V/Z
15 Z1 = sqrt(R1^2 + (X1 - Xc1)^2)
16 V1 = I * Z1
17 Z2 = sqrt(R2^2 + X2^2)
18 \ V2 = I * Z2
```

```
19 disp('value of current='+string(I)+'amps', 'v1='+string(V1)+'volts', 'V2='+string(V2)+'volts')
```

Scilab code Exa 4.35 maximum current

```
1
2  // determine the value of max. current
3  C=30e-6; // farad
4  R=12; // ohms
5  L=0.2; // henry
6  V=200; // volt
7  I=V/R
8  f=1/(2*%pi*sqrt (L*C))
9  disp('frequency='+string(f)+'hertz', 'maximum crnt='+string(I)+'amp')
```

Scilab code Exa 4.36 frequency response

```
1
2 //calculate freq at resonance
3 C=30*10^-6
4 L=0.2
5 R=12
6 F= sqrt(1/(L*C)-R^2/(L*L))
7 f=1/(2*3.14)*F
8 disp(('freq at resonance='+string(f)+'hz'))
```

Scilab code Exa 4.37 current voltage and power

1

```
2 //determine the current also power nd power factor
3 V = 200 + \%i * 0
4 f=50
5 R1=30
6 L1 = 0.2
7 C1 = 10e - 6
8 X1 = 2 * \%pi * f * L1
9 Z1 = R1 + \%i * X1
10 R2 = 40
11 L2=0.12
12 X2 = 2 * \%pi * f * L2
13 \quad Z2 = R2 + \%i * X2
14 Z = (Z1 * Z2) / (Z1 + Z2)
15 I = V/Z
16 R=18.858//calculating Z and I we get R and Z, I
17 Z=31.06
18 \cos = R/Z
19 I=6.44
20 P = I^2 * R
21 \quad I1 = (I * Z1) / (Z1 + Z2)
22 I2 = (I*Z1)/(Z1+Z2)
23 \cos 1 = R1/Z1
24 P1=I1^2*R1
25 \cos 2 = R2/Z2
26 P2 = (I2)^2 * R2
27 disp('P2 = '+string(P2) + 'watt', 'P1 = '+string(P1) +
        'watt', 'Total power factr='+string(coso)+''
         , 'Total power='+string(P)+'watt', 'total
      current = '+string(I) + 'amps' , 'total impedance
      = '+string(Z) + 'ohms')
```

Scilab code Exa 4.38 current and power

```
2 //determine the current also power nd power factor
```

```
3 V = 200 + \%i * 0
4 f=50
5 R1=10
6 X1=12
7 Z1 = R1 + \%i * X1
8 R2 = 15
9 \text{ Xc} 2 = 20
10 \quad Z2 = R2 - \%i * Xc2
11 Z = (Z1 * Z2) / (Z1 + Z2)
12 I=V/Z//calculating Z and I we get R and Z, I
13 R = 14.36
14 I=13.46
15 \text{ coso=R/Z}
16 P = I * I * R
17 I1 = (I * Z2) / (Z1 + Z2)
18 I2=(I*Z1)/(Z1+Z2)
19 \quad coso1=R1/Z1
20 P1=I1*I1*R1
21 \cos 2 = R2/Z2
22 P2=I2*I2*R2
23 disp('P2 = '+string(P2)+ 'watt', 'P1 = '+string(P1)+
        'watt', 'Total power factr='+string(coso)+''
         , 'Total power='+string(P)+'watt', 'total
      current = '+string(I) + 'amps' , 'total impedance
          Z = '+string(Z) + 'ohms')
```

Scilab code Exa 4.40 voltage and current

```
1
2 //calculate the line currnt nd voltage
3 R=200
4 V1=440
5 f=50
6 V=V1/1.732//star connection
7 I=V/R
```

Scilab code Exa 4.41 power absorbed

```
1
2  //calculate total power absrbed
3  R=15
4  L=0.25
5  f=50
6  X=2*%pi*f*L
7  Z=sqrt(R^2+X^2)
8  V1=400
9  V=V1/1.732  //in star connection
10  I=V/Z
11  I1=I
12  coso=R/Z
13  P=3*V*I1*coso
14  disp('total power absorbed='+string(P)+'watt')
```

Scilab code Exa 4.42 power absorbed

```
1
2 //calculate resistance nd reactance of circuit
3 P=15000; //power
4 V1=400; //line voltage
```

```
5 V=V1/1.732
6 I=35; // line current equal to phase current
7 Z=V/I
8 coso=15e3/(1.732*400*35)
9 R=Z*coso
10 X=sqrt(Z^2-R^2)
11 disp('reactance='+string(X)+'ohms', 'resistance='+string(R)+'ohms')
```

Scilab code Exa 4.43 power factor

```
1
2 //calculate power factor
3 W1=5000//W1=V*L*cos(30+o)
4 W2=3000//W2=V*L*cos(30-o)
5 o=atand (1.732*(W1-W2)/(W1+W2))
6 disp('power factor='+string(o)+' ')
```

Chapter 5

Electrical Machine

Scilab code Exa 5.1 determine the emf induced in the coil

```
1
2 //P5.1 determine the induced emf in the armature
3 P=4; // poles
4 A=2; // wave wound
5 N=50; // number of slots
6 SperCondctr=24; // slots/conductor
7 Z=SperCondctr*N; // total conductor
8 N=600; // rpm... speed of armature
9 F=10e-3; // webers... flux/poles
10 E=F*Z*N*P/(60*A); // emf induced
11 disp('e.m.f induced is = '+string(E)+' volts');
```

Scilab code Exa 5.2 emf induced in coil

```
5 N=50; //number of slots
6 SperCondctr=24; //slots/conductor
7 Z=SperCondctr*N; //total conductor
8 N=600; //rpm....speed of armature
9 F=10e-3; //webers....flux/poles
10 E=F*Z*N*P/(60*A); //emf induced
11 disp('e.m.f induced is = '+string(E)+' volts');
```

Scilab code Exa 5.3 speed

```
1
2 //determine the speed
3 P=6;//poles
4 A=2;//wave wound
5 Z=780;//armature conductors
6 F=12*10^-3;//webers..flux/poles
7 E=400;//volt
8 N=(E*60*2)/(F*Z*P);
9 N2=(E*60*6)/(F*Z*P);
10 disp('determine the speed='+string(N)+'rpm', 'determine the speed (A=P=6)='+string(N2)+'rpm');
```

Scilab code Exa 5.4 induced emf

```
1
2 //determine the emf induced
3 R=0.05;
4 Rs=100;
5 V=250;
6 P=10000;
7 I=P/V;
8 Is=V/Rs;
9 Ia=I+Is;
```

```
10 Eg=V+(R*Ia);
11 disp('emf induced='+string(Eg)+'volts');
```

Scilab code Exa 5.5 emf induced

```
1
2 //calculate the emf induced in the armature
3 I1=200
4 V1=500
5 Ra=0.03
6 Rs=0.015
7 R=150
8 BCD=2 //one volt per brush
9 I=V1/R
10 Ia=I1+I
11 Eg=V1+(Ia*Ra)+(Ia*Rs)+BCD
12 disp('emf induced= '+string(Eg)+' volts');
```

Scilab code Exa 5.6 emf induced

```
1
2 //calculate the emf induced in the armature
3 Il=200
4 Vl=500
5 Ra=0.03
6 Rs=0.015
7 Is=200 //for a short shunt generator Il=Ise
8 R=150
9 BCD=2 //one volt per brush
10 I=(Vl+(Is*Rs))/R
11 Ia=Il+I
12 Eg=Vl+(Ia*Ra)+(Ia*Rs)+BCD
13 disp('emf induced= '+string(Eg)+' volts');
```

Scilab code Exa 5.7 back emf

```
1
2 //calculate the back emf induced on full load
3 Ra=0.5 //armature resistance
4 Rs=250 //shunt resistance
5 Vl=250 //line volt
6 Il=40
7 Is=Vl/Rs
8 Ia=Il-Is
9 Eb=Vl-(Ia*Ra)
10 disp('emf induced= '+string(Eb)+' volts');
```

Scilab code Exa 5.8 power

```
1
2  // find the power developed in circiut
3  Pl=20e3
4  Vl=200
5  Ra=0.05
6  R=150
7  I=V1/R
8  Il=P1/V1
9  Ia=Il+I
10  Eg=Vl+(Ia*Ra)
11  P=Eg*Ia
12  disp('power developed='+string(P)+'watt')
```

Scilab code Exa 5.9 speed

```
1
2 // calculate the speed of the machine when running
3 N1=1000 // speed of generator
4 E1=205.06 // emf generator
5 E2=195.06 // emf of motor
6 N2=(E2*N1)/E1 // speed of generator
7 disp('speed of motor='+string(N2)+'rpm')
```

Scilab code Exa 5.10 speed of rotor

```
1
2 //dtermine its speed when its take crnt 25 amps
3 V1=250
4 Ra=0.05
5 R=0.02
6 Ia=30
7 I1=30 //Il=Ia
8 N1=400
9 E1=V1-(Ia*Ra)-(Ia*R)
10 //E1=E2
11 I2=25
12 N2=(N1*E1*I1)/(E1*I2)
13 disp('speed of motor='+string(N2)+'rpm')
```

Scilab code Exa 5.11 torque

```
1
2  // find the torque whn its take scurnt 60 amprs
3  V1=200
4  I1=60  // amprs
5  R=50
6  I=V1/R  // amprs
7  Ia=I1-I  // amprs
```

```
8 f=0.03 // flux
9 Z=700
10 P=4
11 A=2
12 T=(0.159*f*Z*Ia*P)/A
13 disp('Torque='+string(T)+'N-m')
```

Scilab code Exa 5.12 number of turns and current

Scilab code Exa 5.13 flux density

```
1
2 //determine the emf induced in the secondry max
     value of flux density
3 f=50
4 N1=350
5 N2=800
6 E1=400
```

```
7 E2=(N2*E1)/N1

8 A=75e-4

9 Bm=E1/(4.44*f*A*N1)

10 disp('flux density='+string(Bm)+'wb/m^2')
```

Scilab code Exa 5.14 current

Scilab code Exa 5.15 efficiency

```
1
2 //calculate teh efficiency at loads
3 KVA=20
4 I1=350
5 C1=400
6 x=1
7 pf=0.8//at full load
8 pf1=0.4 //at half load
9 x1=0.5
10 op=KVA*1000*x
11 op1=KVA*1000*x1*pf1
```

Scilab code Exa 5.16 speed and emf

```
1
2  // calculate the synchronous speed , slip , frequncy
    induced emf
3  f = 50
4  p = 4
5  Ns = 120*f/p
6  N = 1460
7  s = (Ns - N) / Ns
8  f1 = (s*f)
9  disp( 'f1 = '+ string(f1) + 'hz' , 's = '+ string(s) + '''
    , 'Ns = '+ string(Ns) + 'rpm' )
```

Scilab code Exa 5.17 speed

```
1
2 //determine the value of slip nd speed of motor
3 P=6
4 f=50
5 Ns=120*f/P
6 f1=1.5
7 s=f1/f
```

```
8 N=Ns*(1-s)
9 disp('speed of motor='+string(N)+'RPM')
```

Scilab code Exa 5.18 poles speed frequency

Scilab code Exa 5.19 induced emf

```
1
2 //calculate the induced emf per phase
3 f=50
4 P=16
5 N=160
6 S=6
7 n=N*S
8 Z=n/3
9 F=0.025
10 e=2.22*F*f*Z
11 disp('e='+string(e)+'volts')
```