Lecture 3

Topics covered in this lecture session

- 1. Trigonometric functions.
- 2. More about Trigonometric functions.
- Solving Trigonometric equations.

CELEN036 :: Lecture Slides - P.Gajjar

Foundation Algebra for Physical Sciences & Engineering

Trigonometric identities

The basic trigonometric identities are:

$$\cos^2 \theta + \sin^2 \theta = 1 \tag{1}$$

$$1 + \tan^2 \theta = \sec^2 \theta$$
 ; $\cos \theta \neq 0$ obtained by dividing (1) by $\cos^2 \theta$

$$1 + \cot^2 \theta = \csc^2 \theta$$
 ; $\sin \theta \neq 0$ obtained by dividing (1) by $\sin^2 \theta$

Trigonometric functions

$$\cos\theta = \frac{\text{Adjacent Side}}{\text{Hypotenuse}} = \frac{x}{r} = \frac{x}{1} = x$$

$$\sin\theta = \frac{\text{Opposite Side}}{\text{Hypotenuse}} = \frac{y}{r} = \frac{y}{1} = y$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 ; $\cos \theta \neq 0$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
 ; $\sin \theta \neq 0$

$$\sec \theta = \frac{1}{\cos \theta}$$
 ; $\cos \theta \neq 0$ $\csc \theta = \frac{1}{\sin \theta}$; $\sin \theta \neq 0$

$$\csc \theta = \frac{1}{\sin \theta} \quad ; \quad \sin \theta \neq 0$$

CELEN036 :: Lecture Slides - P.Gajjai

Foundation Algebra for Physical Sciences & Engineering

Conversion (degree ↔ radians)

By definition, the length of the enclosed arc (s) is equal to the radius (r) multiplied by the magnitude of the angle (θ) in radians.

$$s = r \theta \quad \Rightarrow \quad \theta = \frac{s}{r}$$

 \therefore For one complete revolution (360°), the magnitude in radians is

$$360^{\circ} = \frac{s}{r} = \frac{2\pi r}{r} = 2\pi$$

CELEN036 :: Lecture Slides - P.Gaijar

4

CELEN036 :: Lecture Slides - P.Gaijan

Conversion (degree ↔ radians)

angle in radians = angle in degrees $\times \left(\frac{\pi}{180^{\circ}}\right)$

angle in degrees = angle in radians \times

$$45^{\circ} = 45^{\circ} \times \left(\frac{\pi}{180^{\circ}}\right) = \frac{\pi}{4} \text{ radians}$$

$$270^{\circ} = 270^{\circ} \times \left(\frac{\pi}{1000}\right) = \frac{3\pi}{1000}$$
 radians

$$45^{\circ} = 45^{\circ} \times \left(\frac{\pi}{180^{\circ}}\right) = \frac{\pi}{4} \text{ radians}$$
 $\frac{\pi}{6} \text{ radians} = \left(\frac{180^{\circ}}{\pi}\right) \times \frac{\pi}{6} = 30^{\circ}$

$$270^{\circ} = 270^{\circ} \times \left(\frac{\pi}{180^{\circ}}\right) = \frac{3\pi}{2} \text{ radians}$$
 $\frac{5\pi}{12} \text{ radians} = \left(\frac{180^{\circ}}{\pi}\right) \times \frac{5\pi}{12} = 75^{\circ}$

CELEN036 :: Lecture Slides - P.Gajjar

Foundation Algebra for Physical Sciences & Engineering

Increasing and Decreasing functions

If $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$,

then the function f is said to be an increasing (1) function.

If $x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$,

then the function f is said to be a decreasing (1) function.

CELEN036 :: Lecture Slides - P.Gaijan

University of **Nottingham**

CELEN036 Foundation Algebra for Physical Sciences & Engineering

Periodic functions

If f(x + p) = f(x), the function f is called periodic and p is defined as its period. The smallest positive value of p is called the Principal period of f.

,
Principal Period
2π
271
π
/1

CELEN036 :: Lecture Slides - P.Gajja

Foundation Algebra for Physical Sciences & Engineering

Increasing and Decreasing functions

Quadrant	1	2	3	4
cos	+	+	↑	↑
\sin	1	+	+	↑
tan	1	1	↑	

Quadrant	1	2	3	4
sec	†	↑	+	+
cosec	+	↑	↑	→
cot	+	+	+	+

CELEN036 :: Lecture Slides - P.Gaijai

Signs of Trigonometric functions in the quadrants

$$\cos \theta = \frac{x}{r} = x$$

$$\sin \theta = \frac{y}{r} = y$$

Example

If $\tan \theta = \frac{-3}{4}$; $\frac{3\pi}{2} \le \theta \le 2\pi$, find $\cos \theta$ and $\sin \theta$.

CELEN036 :: Lecture Slides - P.Gajja

<u>Notting</u>ham

11

Foundation Algebra for Physical Sciences & Engineering

Range of Trigonometric functions

From the graph of cosine function, it is clear that

$$-1 < \cos \theta < 1$$

 \therefore Range of cos function is [-1,1]

Similarly,

$$-1 \le \sin \theta \le 1$$

 \therefore Range of sin function is [-1,1]

University of Nottingham

CELEN036 Foundation Algebra for Physical Sciences & Engineering

Even and Odd Trigonometric functions

The function f is said to be an even function if f(-x) = f(x)

 $\cos(-\theta) = \cos\theta$

cos is an even function.

The function f is said to be an odd function if f(-x) = -f(x)

Odd function

 $\sin(-\theta) = -\sin\theta$

 \sin is an odd function.

CELEN036 :: Lecture Slides - P.Gajjai

12

Foundation Algebra for Physical Sciences & Engineering

Range of Trigonometric functions

Also, $\tan \theta \in \mathbb{R}$ $\cot \theta \in \mathbb{R}$

 \therefore Range of tan function is \mathbb{R} . Range of cot function is \mathbb{R} .

And, $\sec \theta < -1$ or $\sec \theta > 1$ $\csc \theta < -1$ or $\csc \theta > 1$

 \therefore Range of sec function is $\mathbb{R} - (-1, 1)$. Range of cosec function is $\mathbb{R} - (-1, 1)$.

CELEN036 :: Lecture Slides - P.Gajjar

CFLFN036 :: Lecture Slides - P.Gaijan

Sets of Zeros of Trigonometric functions

University of Nottingham

CELEN036 :: Lecture Slides - P.Gajjar

CELEN036

13

15

Foundation Algebra for Physical Sciences & Engineering

Note...

CELEN036 :: Lecture Slides - P.Gaijan

Function	Domain	Range	Set of zeros	Period
cos	R	[-1, 1]	$\left\{ (2k+1)\frac{\pi}{2} / k \in \mathbb{Z} \right\}$	2π
sin	\mathbb{R}	[-1, 1]	$\{k\pi/k\in\mathbb{Z}\}$	2π
tan	$\mathbb{R}-\left\{ \left(2k+1 ight)rac{\pi}{2}/k\in\mathbb{Z} ight\}$	\mathbb{R}	$\{k\pi/k\in\mathbb{Z}\}$	π
sec	$\mathbb{R}-\left\{ \left(2k+1 ight)rac{\pi}{2}/k\in\mathbb{Z} ight\}$	$\mathbb{R}-(-1,1)$	φ	2π
cosec	$\mathbb{R}-\{k\pi/k\in\mathbb{Z}\}$	$\mathbb{R}-(-1,1)$	φ	2π
cot	$\mathbb{R}-\{k\pi/k\in\mathbb{Z}\}$	\mathbb{R}	$\left\{ (2k+1)\frac{\pi}{2} / k \in \mathbb{Z} \right\}$	π

University of Nottingham

Foundation Algebra for Physical Sciences & Engineering

Sets of Zeros of Trigonometric functions

University of Nottingham

UK CHINA | MALAYSIA

CELEN036

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Solving Trigonometric equations

A trigonometric equation is an equation containing one or more trigonometric functions of the variable, say θ .

Solving for θ means finding the values of θ (in given interval) which makes the trigonometric equation true.

e.g. The solution of
$$\cos\theta = \frac{1}{2}$$
 in $\left(0, \frac{\pi}{2}\right)$ is $\frac{\pi}{3}$ radial whereas its solution in $\left(0, 2\pi\right)$ is

$$\frac{\pi}{3}$$
 or $\left(2\pi - \frac{\pi}{3}\right) = \frac{5\pi}{3}$ radians.

CELEN036 :: Lecture Slides - P.Gajjar

16