Contenidos

• Números Reales.

1. Indique si las siguientes afirmaciones son verdaderas o falsas.

(a)
$$\underline{\hspace{1cm}} 5.41 \in \mathbb{Z}$$

(b) $\underline{\hspace{1cm}} 3.14 \notin \mathbb{Q}$

(d)
$$\underline{\hspace{1cm}} 1000 \notin \mathbb{Q}^c$$

(e) $\underline{\hspace{1cm}} \sqrt{25} \in \mathbb{N}$

(g)
$$\frac{5}{3} \notin \mathbb{Z}$$

(c)
$$\pi \in \mathbb{R}$$

(f)
$$\sqrt{2} \in \mathbb{Q}$$

(h) _____
$$2.\overline{14} \in \mathbb{Q}$$

2. Utilizando la simbologia matemática: \subset (contenido) , $\not\subset$ (no contenido), complete en el espacio en blanco de manera que se obtenga una proposición verdadera.

(d)
$$\mathbb{R}$$
 _____ \mathbb{Z}

(g)
$$\mathbb{R} \cap \mathbb{Z} \longrightarrow \mathbb{O}$$

(b)
$$\mathbb{N} \longrightarrow \mathbb{Q}^c$$

(h)
$$\mathbb{Q} \cup \mathbb{Z} \longrightarrow \mathbb{Z}$$

(i)
$$\mathbb{R}^+ \cap \mathbb{N} \longrightarrow \mathbb{Z}$$

3. Indique si las siguientes afirmaciones son verdaderas o falsas. En cualquier caso justifique adecuadamente.

- (a) $3.99999... = 3.\overline{9}$ es un número irracional.
- (b) El resultado de sumar un número racional y un número irracional es un número racional.
- (c) El resultado de sumar dos números irracionales es un número irracional.
- (d) Existen $a \neq 0$ y $b \neq 0$ tal que $a \cdot b = 0$
- (e) Si $a \in \mathbb{R}$, entonces $-a^2 = -a \cdot -a = a \cdot a = a^2$ Sean $a, b, c \in \mathbb{R}$ con $a \neq 0$ y $c \neq 0$, entonces $a \cdot \frac{b}{c} = \frac{ab}{ac}$.

4. Las propiedades que definen al conjunto de los números reales $\mathbb R$ como un cuerpo son las siguientes:

- $(\mathbb{R}, +)$: conmutatividad, asociatividad, elemento neutro e inverso.
- $\bullet \ (\mathbb{R},\cdot)$: conmutatividad, asociatividad, elemento neutro y, excepto el cero, elemento inverso.
- $x \cdot (y+z) = x \cdot y + x \cdot z$ (distributividad)

(a) Compruebe que el conjunto de los racionales (\mathbb{Q}) con las operaciones usuales

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \qquad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

satisface las mismas propiedades de cuerpo.

(b) ¿Qué propiedades de cuerpo no se cumplen en los números enteros (\mathbb{Z}) ?

(c) ¿Qué propiedades de cuerpo no se cumplen en los irracionales enteros ($\mathbb{I})$?

Guía 1

IC/RS Cálculo 1

5. Reflexione sobre el siguiente razonamiento, si es cierto argumente su respuesta, en caso de ser falso, dé un ejemplo de donde falla.

Sean
$$p,q,m$$
 y $n \in \mathbb{Z}$ con q y $n \neq 0$. Si $\frac{p}{q} = \frac{m}{n}$, entonces $p = m$ y $q = n$.

6. Reflexione sobre el siguiente argumento: "Sea a>0 un número real. Sabemos que 0=a-a si dividimos esta expresión a ambos lados por a-a obtenemos

$$0 = \frac{0}{a-a} = \frac{a-a}{a-a} = 1$$

de donde podemos concluir que 0=1. ¿Qué está mal en este razonamiento?. Justifique.

- 7. Sean $a \neq 0$ y $b \neq 0$, números reales que $(a+b) \neq 0$.
 - (a) Indique que propiedad justifica que $(a+b) \cdot (a+b)^{-1} = 1$
 - (b) Proporcione tres ejemplos que cumpla con $(a+b)^{-1} \neq a^{-1} + b^{-1}$
 - (c) Proporcione tres ejemplos que cumpla con $(a+b)^2 \neq a^2 + b^2$
 - (d) Proporcione tres ejemplos que cumpla con $\sqrt{(a+b)} \neq \sqrt{a} + \sqrt{b}$