Exponentielle de matrices

Ce problème, qui fait suite au problème sur les séries entières de matrices, est l'occasion de revoir quelques points de cours :

- polynôme d'interpolation de Lagrange;
- matrices nilpotentes, valeurs propres, rayon spectral, normes matricielles, diagonalisation, trigonalisation, décomposition de Dunford-Schwarz, réduction de Jordan.

- I - L'exponentielle matricielle. Propriétés

On suppose connues les principales propriétés de l'exponentielle complexe.

La série entière $\sum \frac{z^k}{k!}$ ayant un rayon de convergence infini, on peut définir la fonction exponentielle sur $\mathcal{M}_n(\mathbb{C})$ par :

$$\forall A \in \mathcal{M}_n(\mathbb{C}), \ \exp(A) = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$$

la série étant normalement convergente.

Cette application exp est continue sur $\mathcal{M}_n(\mathbb{C})$ et exp (A) est polynomiale en A.

On notera aussi e^A pour $\exp(A)$.

On remarque que pour $A \in \mathcal{M}_n(\mathbb{R})$, on a $e^A \in \mathcal{M}_n(\mathbb{R})$.

1. Soit $D \in \mathcal{M}_n(\mathbb{C})$ diagonalisable et μ_1, \dots, μ_p ses valeurs propres deux à deux distinctes. Montrer que :

$$e^{D} = \sum_{k=1}^{p} e^{\mu_k} \prod_{\substack{j=1\\j \neq k}}^{p} \frac{1}{\mu_k - \mu_j} (D - \mu_j I_n)$$

2. Soient a, b dans \mathbb{C} avec $a \neq 0$, $n \geq 3$ et $A(a, b) = ((a_{ij}))_{1 \leq i, j \leq n} \in \mathcal{M}_n(\mathbb{C})$ définie par :

$$\forall i \in \{1, 2, \dots, n\}, \begin{cases} a_{ii} = b, \\ a_{ij} = a \text{ si } j \in \{1, 2, \dots, n\} - \{i\}. \end{cases}$$

- (a) Calculer $\Delta(a, b) = \det(A(a, b))$.
- (b) Calculer le polynôme caractéristique et les valeurs propres avec leur multiplicité de $A\left(a,b\right)$.
- (c) Calculer le polynôme minimal de $A\left(a,b\right)$.
- (d) Justifier le fait que A(a,b) est diagonalisable et en déduire $e^{A(a,b)}$.
- (e) Calculer directement $e^{A(a,b)}$.
- 3. Soient θ un réel non nul et $A_{\theta} = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R})$.
 - (a) Calculer $e^{A_{\theta}}$ de plusieurs manières.
 - (b) En écrivant que $A_{\theta} = B_{\theta} + C_{\theta}$, avec $B_{\theta} = \begin{pmatrix} 0 & 0 \\ \theta & 0 \end{pmatrix}$ et $C_{\theta} = \begin{pmatrix} 0 & -\theta \\ 0 & 0 \end{pmatrix}$, vérifier que $e^{A+B} \neq e^A e^B$ en général.
- 4. Plus généralement, pour $B \in \mathcal{M}_n(\mathbb{C})$, on $\text{note} A = \begin{pmatrix} 0 & -B \\ B & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$. Calculer e^A .
- 5. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on $\det\left(e^A\right) = e^{\operatorname{Tr}(A)}$ et e^A est inversible. L'exponentielle matricielle est donc une application continue de $\mathcal{M}_n(\mathbb{C})$ dans le groupe multiplicatif $GL_n(\mathbb{C})$.

1

- 6. L'application exp est-elle surjective de $\mathcal{M}_n(\mathbb{R})$ dans $GL_n(\mathbb{R})$?
- 7. Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, l'inverse de e^A est e^{-A} .
- 8. Montrer que si $A \in \mathcal{M}_n(\mathbb{C})$ est anti-hermitienne, alors e^A est unitaire.
- 9. Soient $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\lim_{t \to +\infty} e^{tA} = 0$ si, et seulement si, toutes les valeurs propres de A sont de partie réelle strictement négative.
- 10. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, les solutions du système différentiel Y' = AY, où $Y \in \mathcal{C}^1(\mathbb{R}, \mathbb{C}^n)$, sont les fonction $Y : t \mapsto e^{tA}Y_0$, où $Y_0 \in \mathbb{C}^n$.
- 11. Soient A, B dans $\mathcal{M}_n(\mathbb{C})$. Montrer que les matrices A et B commutent si, et seulement si, $e^{t(A+B)} = e^{tA}e^{tB}$ pour tout réel t.
- 12. Soit $A: t \mapsto A(t)$ une fonction de classe C^1 de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$. L'égalité $\left(e^{A(t)}\right)' = A'(t)e^{A(t)}$ est-elle toujours vérifiée?

13.

- (a) Soit A, B dans $\mathcal{M}_n(\mathbb{R})$ diagonalisables. Montrer que si $e^A = e^B$, alors A = B.
- (b) Soit A dans $\mathcal{M}_n(\mathbb{R})$ diagonalisable. Montrer que A est diagonale si, et seulement si, e^A est diagonale.

14.

(a) Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a :

$$e^A = \lim_{k \to +\infty} \left(I_n + \frac{1}{k} A \right)^k$$

(b) Montrer que si $(A_k)_{k\in\mathbb{N}}$ est une suite de matrices qui converge vers $A\in\mathcal{M}_n(\mathbb{C})$, on a alors :

$$\lim_{k \to +\infty} \left(e^{A_k} - \left(I_n + \frac{1}{k} A_k \right)^k \right) = 0 \text{ et } \lim_{k \to +\infty} \left(I_n + \frac{1}{k} A_k \right)^k = e^A$$

- (c) En utilisant ce qui précède, montrer que si A et B commutent dans $\mathcal{M}_n(\mathbb{C})$, on a alors $e^{A+B} = e^A e^B$.
- 15. Soient $A \in \mathcal{M}_n(\mathbb{C})$ et A = D + V sa décomposition de Dunford-Schwarz avec D diagonalisable et V nilpotente d'indice $r \geq 1$.
 - (a) Montrer que:

$$e^{A} = e^{D}e^{V} = e^{D}\sum_{k=0}^{r-1} \frac{1}{k!}V^{k}$$

(b) Montrer que la décomposition de Dunford-Schwarz de e^A est donnée par :

$$e^A = e^D + e^D \left(e^V - I_n \right),$$

avec e^D diagonalisable et e^D ($e^V - I_n$) nilpotente.

16. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est diagonalisable si, et seulement si, e^A l'est.

- II - Surjectivité et injectivité de l'exponentielle matricielle

On note $\mathcal{N}_n(\mathbb{C})$ le sous-ensemble de $\mathcal{M}_n(\mathbb{C})$ formé des matrices nilpotentes et $\mathcal{L}_n(\mathbb{C})$ le sousensemble de $\mathcal{M}_n(\mathbb{K})$ formé des matrices unipotentes (i. e. l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{C})$ telles que $A - I_n$ soit nilpotente).

La série entière $\sum \frac{(-1)^{k-1}}{k} z^k$ a un rayon de convergence égal à 1 et pour z réel dans]-1,1[, on sait que sa somme est $\ln(1+z)$. On note donc naturellement pour z complexe :

$$\ln(1+z) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} z^k \ (|z| < 1)$$

et on peut définir la fonction $A \mapsto \ln (I_n + A)$ sur l'ouvert :

$$\mathcal{D}_{1} = \{ A \in \mathcal{M}_{n} \left(\mathbb{C} \right) \mid \rho \left(A \right) < 1 \}$$

par:

$$\ln(I_n + A) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} A^k.$$

On sait alors que $\ln(I_n + A)$ est un polynôme en A (dont les coefficients dépendent de A). En particulier on a $\ln(I_n) = 0$ et pour toute matrice A nilpotente A d'indice $r \ge 2$, on a :

$$\ln\left(I_n + A\right) = \sum_{k=1}^{r-1} \frac{\left(-1\right)^{k-1}}{k} A^k.$$

- 1. Montrer que l'application $\exp: z \mapsto e^z$ réalise un morphisme de groupes surjectif de $(\mathbb{C}, +)$ sur (\mathbb{C}^*, \cdot) de noyau $\ker(\exp) = 2i\pi\mathbb{Z}$.
- 2. Montrer que la matrice $B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ ne peut s'écrire $B = e^A$ avec $A \in \mathcal{M}_n(\mathbb{R})$.
- 3. Déterminer toutes les solutions dans $\mathcal{M}_n(\mathbb{C})$ de l'équation $e^A = I_n$.
- 4. Montrer que:

$$\forall A \in \mathcal{D}_1, \ e^{\ln(I_n + A)} = I_n + A$$

5. En utilisant la question précédente, montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a :

$$e^{A} = \lim_{k \to +\infty} \left(I_n + \frac{1}{k} A \right)^k$$

6. Montrer que pour toute matrice $A \in \mathcal{N}_n(\mathbb{C})$ on a $e^A \in \mathcal{L}_n(\mathbb{C})$ et :

$$\forall t \in \mathbb{R}, \ln\left(e^{tA}\right) = tA.$$

- 7. Montrer que l'exponentielle matricielle réalise une bijection de $\mathcal{N}_n(\mathbb{C})$ sur $\mathcal{L}_n(\mathbb{C})$ d'inverse le logarithme matriciel.
- 8. Montrer que pour tout nombre complexe λ non nul et pour toute matrice $A \in \mathcal{N}_n(\mathbb{C})$ il existe une matrice $X \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$e^X = \lambda I_n + A.$$

9. Soit $A \in GL_n(\mathbb{C})$ une matrice diagonalisable. Montrer qu'il existe un polynôme $R \in \mathbb{C}_{n-1}[X]$ tel que R(A) soit diagonalisable et $e^{R(A)} = A$.

- 10. Montrer que, pour toute matrice $A \in GL_n(\mathbb{C})$, il existe un polynôme $R \in \mathbb{C}[X]$ tel que $e^{R(A)} = A$ (l'exponentielle matricielle réalise une surjection de $\mathcal{M}_n(\mathbb{C})$ sur $GL_n(\mathbb{C})$).
- 11. Prouver la surjectivité de l'exponentielle matricielle de $\mathcal{M}_n(\mathbb{C})$ sur $GL_n(\mathbb{C})$ en utilisant le théorème de réduction de Jordan et la question $\mathbf{V.8}$.
- 12. En utilisant la surjectivité de l'exponentielle matricielle de $\mathcal{M}_n(\mathbb{C})$ sur $GL_n(\mathbb{C})$, montrer que $GL_n(\mathbb{C})$ est connexe par arcs.
- 13. Soit p un entier naturel non nul. Montrer que pour toute matrice $A \in GL_n(\mathbb{C})$ il existe une matrice $X \in GL_n(\mathbb{C})$ polynomiale en A telle que $X^p = A$ (on dit que X est une racine p-ème de A).
- 14. Pour $A \in \mathcal{M}_n(\mathbb{C})$ non inversible avec $n \geq 2$ et $p \geq 2$, peut-on toujours trouver une matrice $X \in \mathcal{M}_n(\mathbb{C})$ telle que $X^p = A$?
- 15. Montrer que:

$$\exp\left(\mathcal{M}_{n}\left(\mathbb{R}\right)\right) = \left\{B^{2} \mid B \in GL_{n}\left(\mathbb{R}\right)\right\}$$