Low-resource Learning on Graphs

Yuan FANG

School of Computing and Information Systems
Singapore Management University

RecSys'23 International Workshop on Deep Learning Practice for High-Dimensional Sparse Data

Sept. 18, 2023, Singapore

Outline

- □ Introduction: Data, problems and methods
- Structure-scarce learning on graphs
- Label-scarce learning on graphs
- Future directions and conclusion

Complex big data as graphs

Social networks Biology E-commerce Knowledge graph Concept Co

Data

Graphs/Networks

Heterogeneous graphs

User interaction graphs

Knowledge graph

Problems

Low-resource graph representation learning

Structure scarcity

Label scarcity

Methods

Meta-learning

Pre-training

Augmenting with external knowledge

Staff/student co-authors

Zemin Liu

Chenghao Liu

Zhihao Wen

Trung-Kien Nguyen

Yuanfu Lu

Wentao Zhang

Xingtong Yu

Main collaborators

Prof. Steven Hoi Prof. Chuan Shi

Prof. Xinming Zhang

.

Low-resource problems on graphs

Label scarcity

Novel classes emerge frequently with very few labelled data.

Structure scarcity

Graphs are characterized by structural information. Nodes with less structural contexts yield poor performance.

[Image from CIKM21]

Low-resource method: Meta-learning

6

Supervised learning

Learn a classifier

$$f_{\theta}(\mathbf{V}) \to \mathrm{dog}$$

Need many, many labelled data! Hard to deal with novel classes.

How humans learn?

One example of toy whale

Even toddlers can learn novel classes very quickly with one/few examples...by generalizing from prior knowledge.

7

Query Support Training Dog Cat tasks Dog Query Support Meta**learning** Apple Banana Apple Banana (MAML [FAL17]) Query Testing **Support** tasks Ship

Learn a classifier

$$f_{\theta}(\mathbf{V}) \to \mathrm{dog}$$

Need many, many labelled data! Hard to deal with novel classes.

[FAL17] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C. Finn et al. ICML 2017.

8

Still require many labels on these base classes to form training tasks

"Free" supervision, no annotation cost!

Low-resource method: Pre-training

Low-resource method: External knowledge

Object detection

(a) Office scene: FRCNN (left) fails to detect keyboard, but KG-CNet (right) does due to the presence of laptop.

External knowledge

Laptop, keyboard,
] and mouse often
appear together.

(b) Outdoor scene: FRCNN (left) fails to detect surfboard, but KG-CNet (right) does due to the presence of person.

A person

"standing" on a

sea is usually on a

surfboard

Recommendation

[Image from IJCAI17]

[Image from KDD20]

Outline

- Introduction: Data, problems and methods
- □ Structure-scarce learning on graphs
- Label-scarce learning on graphs
- Future directions and conclusion

meta-tail2vec: Meta-Learning of Tail Node Embeddings

- Tail nodes with very few links are ubiquitous
 - Newcomers
 - Existing less "active" nodes
- Tail nodes are not sufficiently modeled
 - Limited structural information
 - Existing methods regard all nodes uniformly using the same model
- Problem: Given the embedding vectors of nodes learned from a base embedding model, can we refine/improve the embeddings of the tail nodes?

meta-tail2vec: Meta-Learning of Tail Node Embeddings

- Assumption: Head nodes have high-quality embeddings.
- Insights: Predict high-quality embeddings based on head nodes
 - Using a head node to simulate a mini-regression task
 - Perform link dropouts on head nodes to simulate tail nodes
 - Locality-aware tasks: support set sampled from neighboring nodes

Meta-learning

- Each task has a unique local context
- Learn a prior from head node tasks
- Adapt the prior to the tail node tasks

Mini-regression task on a head node

meta-tail2vec: Meta-Learning of Tail Node Embeddings

Visualization of base embeddings by SDNE, and their respective refinement by meta-tail2vec on the Email dataset.

Solid points - tail nodes Hollow points - head nodes

Each color represents one class.

(a) Base embeddings

(b) meta-tail2vec

Tail-GNN: End-to-end tail representation learning

- meta-tail2vec: Two-stage approach
 - Stage 1: Use any base model to generate node embeddings
 - Stage 2: Refine the tail node embeddings by meta-learning
- □ Tail-GNN: end-to-end approach [KDD21a]
 - Inspired by meta-tail2vec
 - Transfer knowledge from head to tail nodes
 - Perform link dropout on head nodes to simulate tail nodes
 - Adapt a global prior to individual nodes (but use a different meta-learning mechanism based on FiLM [PSV18])

Collaborative filtering

CUSTOMERS WHO BOUGHT THIS ITEM: ALSO BOUGHT: Piccolo

[Image from the Web]

User-item graph

New user

Problem: Cold-start recommendation

How about new users or items?

An instance of structure-scarce learning on the user-item interaction graph.

Improvement of MetaHIN over SOTA in four code-start or non-cold-start scenarios

UIC > UC ~ IC > Non-cold-start

Impact of size of support set on MetaHIN and SOTA

Larger support, better performance; MetaHIN is robust: On small support sets, its performance is the least impacted.

(a) Improvement in different scenarios

(b) Impact of size of support set

Outline

- Introduction: Data, problems and methods
- Structure-scarce learning on graphs
- Label-scarce learning on graphs
- Future directions and conclusion

MI-GNN: Meta-inductive, cross-graph GNNs

22

- Semi-supervised learning
 - A classic paradigm for learning with insufficient labelled data
 - Exploits the intrinsic structures between labelled and unlabelled data

(a) Transductive approach (e.g. label propagation [ZGL03])

Only able to utilize unlabelled nodes in a single graph.

(b) Conventional inductive approach (e.g. most modern GNNs)

One-model-fits-all; ignores graph/task differences.

MI-GNN: Meta-inductive, cross-graph GNNs

Using meta-learning to dynamically adapt the inductive model to take care of both graph-level and task-level differences

MI-GNN: Meta-inductive, cross-graph GNNs

Performance w.r.t. similarity to training graphs

<u>Transductive</u>: Minimal change in performance as no training graphs needed.

<u>Inductive</u>: Significant drop in performance when the testing graphs have low similarity.

<u>Meta-Inductive</u>: Robust, with only small decrease in performance when the testing graphs have low similarity.

(b) Micro-F1

RALE: Few-shot learning on graphs

Problem: Few-shot node classification

Base classes (sufficient labels)

SVM Neural networks

Novel classes (a few labels/class)

Explainable Al Fair ML

Support/query are randomly distributed in traditional meta-learning. How to capture their structural dependencies on a graph?

RALE: Few-shot learning on graphs

- Two challenges... How to
 - Capture long-ranged dependencies between nodes in a task?
 - Align dependencies across tasks to converge on a common prior?
- Insights: Use hub nodes
 - Within task: Define relative locations between support and query nodes
 - Globally: Define absolute locations of tasks on a graph

Pre-training

- Limitation of meta-learning
 - Need enough base class labels to construct the meta-training tasks.
 - What if we don't have sufficient labels for meta-training?

Pre-training

Pre-training on graphs

- Key: Design self-supervised pre-training tasks on graphs
- Major strategies: Generative and contrastive

Generative

(d) Generate attributes and masked edges for node 4

(e) Generate attributes and masked edges for node 5

[Image from HDW20]

Contrastive

[Image from QCD20]

Pre-training on heterogeneous graphs

Pre-training tasks to capture relation- and subgraph-level semantics

Pre-training on heterogeneous graphs

Pre-training tasks to capture schema-level semantics

Schema

Paper Venue Author Field publish/published contain/contained write/written cite/cited

Schema-level task

Problem with pre-training approaches

The gap between pre-training and downstream objectives

- And the fine-tuning step...
 - Can be expensive for large pre-trained models
 - may overfit if there are very few labels from downstream tasks

Bridging the gap: Learning to pre-train

- Pre-training is not aware of the fine-tuning step
- Learning to pre-train
 - Simulate the fine-tuning step within pre-training
 - Use meta-learning to adapt to the simulated task

Pre-training data

$$\mathcal{D}^{pre} = \{\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_N\}$$
 Pre-train θ

Meta-task

Construct a meta-task for a graph $\mathcal{T}_{\mathcal{G}} = (\mathcal{S}_{\mathcal{G}}, \mathcal{Q}_{\mathcal{G}})$ Fine-tune w.r.t. the loss on $\mathcal{S}_{\mathcal{G}} \to \theta'$ Simulate the fine-tuning step on a downstream task during pre-training

□ But not a fundamental solution... Simulated task ≠ actual task

Bridging the gap: Pre-train, prompt

- Problem: Gap between pre-training and downstream tasks
- Prompt [LYF23]: an alternative to "pre-train, fine-tune"
 - Originated in NLP, an instruction to reformulate the original task to unify with pre-trained model (e.g., masked language modeling)

Few-shot: Learnable word vectors (prompt tuning)

[LYF23] Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. P. Liu, et al. ACM Computing Surveys: 55(9), 2023.

Two challenges

- How to unify various pre-training and downstream tasks on graph?
- How to design prompts on graph?

Insights

- A unified task template based on subgraph similarity computation
- Use a learnable prompt to guide graph readout for different tasks

Unified task template

Link prediction

Triplet (v, a, b), s.t. v is linked to a, but not b: $sim(\mathbf{s}_v, \mathbf{s}_a) > sim(\mathbf{s}_v, \mathbf{s}_b)$

Node classification

$$\ell_j = \arg\max_{c \in C} \operatorname{sim}(\mathbf{s}_{v_j}, \tilde{\mathbf{s}}_c)$$

Graph classification

$$L_j = \arg\max_{c \in C} \operatorname{sim}(\mathbf{s}_{G_j}, \tilde{\mathbf{s}}_c)$$

All tasks converted to subgraph similarity computation!

 \mathbf{s}_x : (sub)graph embedding of x (x is a node or graph)

 $\tilde{\mathbf{s}}_c$: class c's prototype (a virtual subgraph, by aggregates all subgraph embeddings in the class)

Prompt design

Different downstream tasks require different subgraph readout → Use task-specific learnable prompts

Prompt vector

$$\mathbf{s}_{t,x} = \text{ReadOut}(\{\mathbf{p}_t \odot \mathbf{h}_v : v \in V(S_x)\})$$

Prompt matrix

$$\mathbf{s}_{t,x} = \text{ReadOut}(\{\mathbf{P}_t \mathbf{h}_v : v \in V(S_x)\})$$

 $\mathbf{s}_{t,x}$: (sub)graph embedding of x for a task t \mathbf{h}_{v} : node v's embedding vector

 \mathbf{p}_t or \mathbf{P}_t : learnable prompt vector or matrix for task t

Impact of shots on few-shot node classification.

Impact of shots on few-shot graph classification.

Few-shot: Significantly better

Few-shot: Significantly better

<u>10-shot:</u> Still competitive (as graphs are small – 10 shots are a lot) <u>On ENZYMES:</u> worse performance on ≥20 shots (only 600 graphs – 20 shots/class ~ 20% labels)

Comparison of parameter efficiency

Significantly fewer parameters/FLOPs than:

- Supervised model (GIN [XHL19]),
- "Pretrain, fine-tune" model (GraphPrompt-ft),
- Existing prompt model (GPPT [SZH22])

Methods	Flickr		
	Params	FLOPs	
GIN	22,183	240,100	
GPPT	4,096	4,582	
GraphPrompt	96	96	
GraphPrompt-ft	21,600	235,200	

Methods	PROTEINS		ENZYMES	
	Params	FLOPs	Params	FLOPs
GIN	5,730	12,380	6,280	11,030
GPPT	1,536	1,659	1,536	1,659
GRAPHPROMPT GRAPHPROMPT-ft	96	96	96	96
	6,176	13,440	6,176	10,944

Outline

- Introduction: Data, problems and methods
- Structure-scarce learning on graphs
- Label-scarce learning on graphs
- Future directions and conclusion

Future directions

- Prompt on complex graphs
 - Heterogeneous graphs?
 - Dynamic graphs?
- Multi-modal graph learning?
 - Text on graphs? [SIGIR23]
 - Image on graphs?
 - Leveraging big models in other forms of data

Temporal Heterogeneous Interaction Graph

Take-home messages

- Low-resource learning on graphs: structure, label
- Learning and transferring/using prior is the key
- Prompt is a promising paradigm

References of our work

42

- [IJCAI17] Y. Fang, K. Kuan, J. Lin, C. Tan and V. Chandrasekhar. Object Detection Meets Knowledge Graphs.
- [CIKM20] Z. Liu^, W. Zhang^, Y. Fang, X. Zhang and S. C. H. Hoi. Towards Locality-Aware Meta-Learning of Tail Node
 Embeddings on Networks.
- [KDD20] Y. Lu, Y. Fang and C. Shi. Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation.
- [KDD21a] Z. Liu, K. Nguyen and Y. Fang. Tail-GNN: Tail-Node Graph Neural Networks.
- [KDD21b] X. Jiang, T. Jia, C. Shi, Y. Fang, Z. Lin and H. Wang. Pre-training on Large-Scale Heterogeneous Graph.
- [AAAI21a] Z. Liu, Y. Fang, C. Liu and S. C. H. Hoi. Relative and Absolute Location Embedding for Few-Shot Node
 Classification on Graph.
- [AAAI21b] Y. Lu, X. Jiang, Y. Fang and C. Shi. Learning to Pre-train Graph Neural Networks.
- [SIGIR21] Z. Wen, Y. Fang and Z. Liu. Meta-Inductive Node Classification across Graphs.
- □ [CIKM21] X. Jiang, Y. Lu, Y. Fang and C. Shi. Contrastive Pre-training of GNNs on Heterogeneous Graphs.
- [WWW23] Z. Liu^, X. Yu^, Y. Fang and X. Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks. (Accepted)
- [SIGIR23] Z. Wen and Y. Fang. Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting. (Accepted)

[^] Co-first authors with equal contribution.

Acknowledgement of funding sources

- One-shot learning: A crucial learning paradigm towards human-like learning.
 National Research Foundation, Singapore under its AI Singapore
 Programme (AISG Award No: AISG-RP-2018-001).
- Learning with less data. Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funds (Grant No. A20H6b0151).
- Universal pre-training of graph neural networks. Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (Proposal ID: T2EP20122-0041).

Hiring PhD Students

https://www.yfang.site/hiring

Why Join Us?

- We offer full scholarships to PhD students covering tuition fees and monthly stipends, with additional conference travel support.
- Through the research journey with the team, you will have a great opportunity for self-development and generating high-quality publications at top-tier conferences and journals. Our team has published extensively and consistently in top venues such as KDD, SIGIR, AAAI, TKDE and more.
- Overall, SMU is ranked <u>No. 40 globally (No. 16 in Asia)</u> in the broad AI category and No. 84 globally (No. 15 in Asia) in the overall CS discipline according to CSRankings; <u>No. 104 globally in QS 2022 Subject Ranking</u> (Computer Science and Information Systems).

Requirements for PhD Student

- Obtained/expected to obtain Bachelor or master's degree in Computer Science or related fields at a reputable university
- Excellent academic performance with strong foundation in computing and other STEM subjects
- Prior research experience or publications in data mining and machine learning a strong plus
- Strong programming/implementation skills required; working knowledge of deep learning stack a plus
- Intellectual curiosity to explore the unknown
- Good communication and teamwork skills

Thank you

Questions?

Email: yfang@smu.edu.sg

Full publications, codes and data are available at http://www.yfang.site/