

Scaling HPC with Andes Technology: Optimizing Performance at Every Level

Jason Lin

Senior Technical Manager

Andes Technology

International workshop on RISC-V for HPC at HPC Asia 2025, Feb. 19th 2025

Andes Technology Corporation

Who We Are

Pure-play CPU IP Vendor

19-year-old Public Company

Active Open-Source Contributor/Maintainer

Active Roles in RISC-V Community

- Director of the Board
- Technical Steering Committee
- Chair/Co-Chair of Task Groups

Founding and Premier Member

- Governing Board
- **Technical Steering Committee**

Quick Facts

gen architecture

AndeStar™ V5, RISC-V adopted

350+

Worldwide Licensees

AndeSight IDE installations

500+

Employees, 80% R&D

~100K ~16Bn+

Total shipment of Andes-Embedded™ SoC

Andes and AI, HPC

- **Driving High Performance Computing with Scalability and Customization**
 - Scalable & Optimized Architectures
 - Customizable for HPC Applications
 - Comprehensive Ecosystem Support
 - Proven in Complex Applications

■ Some of Our Customers

AndesCore[™] **RISC-V Families & Roadmap**

Perf. General Purpose 32b / 64b

32b MCU

6x Series High-Performance OoO, 13-stage, 4-issue

4x Series Mainstream 8-stage, dual-issue

2x Series Perf. MCU/MPU 5-stage

Compact Series Small MCU 2, 3-stage

Next-Gen OoO HPC

AX66

- RVA23 Profile
- CHI for Muli-cluster w. Cache Coherence

M.

AX46MPV

- 16-core cluster
- 2048b vector
- Matrix Extension
- Boosted Mem Perf

Functional Safety Family **ASIL-D D25-SE**

D45-SE

ASIL-D

Auto

Maximizing Scalar Performance with AX60-Series

AX66 VPU: • 1 or 2 pipes, share • execute 2 ALU/loa		AX66* Advanced 10 specint2k6/GHz	AX67* Performant 11 specint2k6/GHz RVA23+	Cuzco* Scalable 15~20 specint2k6/GHz RVA23+
		RVA23	further perf boost	Private L1/L2, Shared L3
	AX65 Balanced	V/VK (VLEN=128)	V/VK (VLEN to 512)	Vector/Vector Crypto
AX63 <u>customer-driven</u> Power-optimized	8.78 specint2k6/G	Hypervisor + AIA +	Hypervisor + AIA + (IOMMU + IOPMP)	
>7.0 specint2k6/GHz	RVA22+	Private L1/L2, CHI Mu	Private L1/L2, CHI Multi-Cluster Coherency	
13-Stage, 4-way OOO, Linux-Capable, Multicore Coherency, Up to 8 Cores/Cluster				patented Time-Based Scheduling
The AX60 Series				Cuzco Series
* Future maduate quitiest to about				

^{*} Future products subject to change

Vector Processors and the New AX46MPV

- Built on the success of AX45MPV
 - 8-core cluster with 1024 VLEN/DLEN
 - Dual issue for vector and scalar
- Doubled cores and VLEN¹
- Enhanced ACE for scalar and RVV
- Andes Matrix Extension
- Boosted memory performance:
 - Dual loads, or one load/one store
 - Private L2\$ (64KB~512KB, 8-way) for flat memory programming
 - HVM (High-speed Vector Memory) interface:
 multiple outstanding requests with OOO return
 HVM controller: 16 cores + DMA, 64 banks
- Other variants: AX46MP, A46MP(V)

Note 1: VLEN/DLEN from 128/128 to 2048/1024

The Andes Custom Extension[™] (ACE)

- Andes Tool for Custom Instructions COPILOT, Enables:
 - ACE: Create new instructions to speed up computations and controls
 - ACE-RVV: support RVV-style instructions

AndesAIRE™ AI Software Stack

Platform Level Security with IOPMP

- **■** Complete Protection on the Cybersecurity Vulnerabilities
 - RISC-V PMP/ePMP covers CPU transactions, by
 - CPU privilege modes, memory regions, and operations
 - ●IOPMP mitigates threat from the other I/O agents
 - Andes chairs the IOPMP Task Group, and Vice-chair TEE TG in RISC-V International
 - Trusted Execution Environment
 - Checker with a set of ordered entries
 - Check transaction by
 - Address/Length
 - Operation (R/W/X)
 - Initiator (RRID)
 - Mechanisms in respond to violations

Meta Training and Inference Accelerator (MTIA)

■ Enabling Advanced AI & ML Solutions

- Sea of PEs (Processing Elements)
 - Core of the computations the PEs
 - Mesh-connected (like Meta MTIA) and multi-clustered
- Three tiers of accelerations in PE's
 - Matrix Multiplications:
 - Hardwired solutions
 - Matrix instructions: RISC-V IME and AME extensions
 - Non-linear OP's: softmax, sigmoid, GeLu/SiLu/SwiGlu
 - Andes Automated Custom Extensions (ACE)
 - General compute: Catch all and future-proof
 - RISC-V Vector Extension (RVV)
- "MTIA: First Generation Silicon Targeting Meta's Recommendation Systems"
 - ISCA 2023 paper
 - Andes AX25-V100: an early version of the widely adopted NX27V for proc-A/B
 - Andes Custom Extension[™]: new interfaces, instructions and registers

Figure 3: High-level architecture of the accelerator

Takeaways

- RISC-V is Taking its Place in the Future of HPC
- Andes is Contributing to HPC with RISC-V Innovations
- Many Fields Yet to be Explored to Unleash its Full Potential

