Cálculo de Programas

2.° ano das Licenciaturas em Engenharia Informática e Ciências da Computação UNIVERSIDADE DO MINHO

2011/12 - Ficha nr.º 10

1. Recorde o diagrama genérico de um catamorfismo de gene g sobre o tipo T e a sua propriedade universal:

Nesta disciplina vimos vários exemplos de T, por exemplo os números naturais \mathbb{N}_0 , listas [A] e dois tipos de árvores binárias,

data LTree
$$a = \text{Leaf } a \mid \text{Fork (LTree } a, \text{LTree } a)$$

e

$$\mathbf{data} \; \mathsf{BTree} \; a = \mathsf{Empty} \; | \; \mathsf{Node} \; (a, (\mathsf{BTree} \; a, \mathsf{BTree} \; a))$$

A estes tipos podemos acrescentar outros como, por exemplo, o das listas não vazias

data NEList
$$a = Sing \ a \mid Add \ (a, NEList \ a)$$

e o das chamadas "rose trees":

$$\mathbf{data} \ \mathsf{Rose} \ a = \mathsf{Rose} \ a \ [\mathsf{Rose} \ a]$$

Preencha o quadro seguinte, em que a coluna da esquerda identifica funções sobre o tipo da coluna T, funções essas que conhece ou cujo significado facilmente identifica:

$\underline{}$	g	FX	Ff	$\mid T \mid$	in	B
length		$1 + A \times X$		[A]	[nil, cons]	\mathbb{N}_0
length			$id + id \times f$	NEList A		\mathbb{N}_0
\overline{count}					[Leaf , Fork]	N
listify	$[singl, \widehat{(++)}]$			LTree A		[A]
reverse					[nil, cons]	
sum		$1 + A \times X^2$				
sum					[Sing , Add]	
mirror	$\mathbf{in} \cdot (id + swap)$				[Leaf , Fork]	
mirror					[Empty , Node]	
filter p			$id + id \times f$	[A]		[A]
gmax	[id, max]	$A + A \times X$				A
gmax	[id, max]				[Leaf , Fork]	A

2. Defina como um catamorfismo a função seguinte, extraída do Prelude do Haskell,

$$\begin{array}{l} \mathsf{concat} :: [[\,a\,]] \to [\,a\,] \\ \mathsf{concat} = foldr \,(\#) \,[\,] \end{array}$$

e mostre que a propriedade

$$length \cdot concat = sum \cdot map \ length \tag{1}$$

se verifica, recorrendo às leis de fusão- e absorção-cata

$$f \cdot (|h|) = (|k|) \iff f \cdot h = k \cdot (\mathsf{F} f)$$
 (2)

$$(|h|) \cdot \mathsf{T} f = (|h \cdot \mathsf{B} (f, id)|) \tag{3}$$

em que, para listas, se tem B $(f,g)=id+f\times g$, F f= B (id,f) e T f= map f.

3. A função correspondente a concat para árvores é

join :: LTree (LTree
$$a$$
) \rightarrow LTree a join = $([id, Fork])$

que junta uma árvore de árvores de tipo LTree numa só árvore. Conjecture a propriedade (1) para join e demonstre-a.

4. No quadro que se segue mostra-se a classificação de algumas funções conhecidas de acordo com o respectivo F:

Т	FX	Serialização	Ordenação	Inversão	Factorial	Quadrado	Outros
\mathbb{N}_0	1+X						(a*), ('div'b)
Listas	$1 + A \times X$		iSort	invl	fac	sq	look
BTree	$1 + A \times X^2$	in/pré/pós	qSort				hanoi, traces
LTree	$A + X^2$	tips	mSort	invLTree	dfac	dsq	fib

Identifique a linha e coluna onde deve, do quadro acima, colocar o hilomorfismo de *bubble sorting*, identificando para ele os genes *divide* e *conquer*:

$$\begin{array}{l} bSort :: \mathsf{Ord} \ a \Rightarrow [\,a\,] \rightarrow [\,a\,] \\ bSort \ [\,] = [\,] \\ bSort \ l = \mathbf{let} \ (x,m) = \mathsf{bubble} \ l \\ \qquad \qquad \mathbf{in} \quad x : bSort \ m \\ \mathsf{bubble} :: \mathsf{Ord} \ a \Rightarrow [\,a\,] \rightarrow (a,[\,a\,]) \\ \mathsf{bubble} \ [x\,] \qquad = (x,[\,]) \\ \mathsf{bubble} \ (x : l) = \mathbf{let} \ (y,m) = \mathsf{bubble} \ l \\ \qquad \qquad \qquad \mathbf{in} \quad \mathbf{if} \ x < y \ \mathbf{then} \ (x,y : m) \ \mathbf{else} \ (y,x : m) \end{array}$$

5. A função que calcula a média dos elementos que se guardam numa árvore de tipo LTree pode escrever-se sob a forma

$$avg \ t = \frac{\mathsf{sum} \ t}{count \ t}$$

em que sum e *count* são catamorfismos já identificdos. Essa função, que necessita de duas visitas à árvore t para fazer esse cálculo, pode ser convertida numa que só faz uma tal visita,

avg
$$t = s / c$$
 where $(s, c) = (|g|) t$

recorrendo à lei de banana-split. Calcule o gene g e converta (g) para Haskell com variáveis.