姓名:	
学号:	
ツケワウ ブロ ケーノ コ	

上海科技大学

学院和年级:

2022-2023 学年第一学期本科生期末考试卷

开课单位:

授课教师: 陈浩, 李铮, 赵俐俐, 朱佐农

考试科目:《高等数学 I》

课程代码:

考生须知:

1. 请严格遵守考场纪律,禁止任何形式的作弊行为。

- 2. 参加闭卷考试的考生,除携带必要考试用具外,书籍、笔记、掌上电脑和其他电子设备等物品一律按要求放在指定位置。
- 3. 参加开卷考试的考生,可以携带教师指定的材料独立完成考试,但不准相互讨论,不准交换材料。

考试成绩录入表:

题目	 <u> </u>	111	四	五	六	七	总分
计分							
复核							

评卷人签名: 复核人签名:

日期: 日期:

一、 选择题(每小题 3 分,共 15 分)	
1. 设函数 $f(x)$ 是 $\sin x$ 的一个原函数,则 $f(x)$ 的一个原函数是	<u>!</u> ()
(A) $-\cos x + 1$; (B) $\cos x + 1$; (C) $\sin x + x$; (D). $-\sin x + x$	1x + x
2. 函数 $f(x) = (x^2 - 3) \cdot e^{-x}$ 的单调增加区间为	()
(A) $(-\sqrt{3}, \sqrt{3})$; (B) $(-\infty, -1)$; (C) $(-1,3)$. (D) $(3, +\infty)$.	
3. 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 有几条渐近线? (A) 3; (B) 2; (C) 1; (D) 4.)
4.下列反常积分中收敛的是 ()
(A) $\int_{1}^{+\infty} \frac{1}{\sqrt{x^2 + x}} dx$; (B) $\int_{0}^{1} \frac{1}{\sqrt{x^2 + x}} dx$; (C) $\int_{-\infty}^{+\infty} \frac{x}{x^2 + 1} dx$;	$(D) \int_{-1}^{1} \frac{1}{x} \mathrm{d}x$
5. 设函数 $f(x)$ 为连续函数,对于两个命题:	
(I) 若 $F(x) = \int_0^x (\int_0^u [f(t) - f(-t)] dt) du$,则 $F(x)$ 为奇函数	女,
(II) 若 $f(x)$ 为奇函数,则 $G(x) = \int_0^x [\int_x^y f(t^3) dt] dy$ 为奇	函数,
下列选项正确的是	
(A)(I)、(II)均正确; (B)(I)、(II)均错误; (C)仅(I)正确; (D)仅(II)正确。	
二、 填空题(每小题 3 分, 共 15 分)	
6. 曲线 $y = (x-5) \cdot \sqrt[3]{x^2}$ 的下凸区间为:	
7. 设函数 $f(x) = (1+x)\arctan x$,则 $f(x)$ 带皮亚诺余项的三阶	麦克劳林
展开式为:	<u></u> .
$8. \int_0^{2\pi} \sin^3 x \cdot e^{\cos x} dx = \underline{\hspace{1cm}}$	·
9.设 $f(x)$ 连续且满足 $f(x) = \int_0^{2x} f(\frac{t}{2}) dt + 3e^x$, 则 $f(x) = $	

10. 极限
$$\lim_{n\to\infty} \left(\frac{\sqrt{1+\frac{1}{n}}}{n+\frac{1}{n}} + \frac{\sqrt{1+\frac{2}{n}}}{n+\frac{2}{n}} + \dots + \frac{\sqrt{1+\frac{n}{n}}}{n+\frac{n}{n}} \right) = \underline{\hspace{1cm}}$$

三、计算题(每小题 6 分, 共 18 分)

11. 求极限
$$\lim_{x\to 0} \frac{\int_0^x [t-\ln(1+t)] dt}{(1+e^{-x})(x-\arctan x)}$$

12. 计算不定积分
$$\int \frac{\sqrt{4-x^2}}{x} dx$$

四、 计算题 (每小题 8 分, 共 24 分)

15. 计算反常积分
$$\int_1^{+\infty} \frac{1}{x^3} \arcsin \frac{1}{x} dx$$
.

16. 求微分方程
$$y' = \frac{y}{x^2 \ln y + x}$$
 的通解。

五、计算题(每小题10分,20分)

17. 全面讨论曲线 $y = (x+2) \cdot e^{\frac{1}{x}}$ 的性态,并描绘曲线的图形。

$$(y' = \frac{(x+1)(x-2)}{x^2} e^{\frac{1}{x}}, y'' = \frac{5x+2}{x^4} e^{\frac{1}{x}})$$

18. 设抛物线 $y = ax^2 + bx$ 在 $0 \le x \le 1$ 时, $y \ge 0$,且该抛物线与 x 轴及直线 x = 1 所为图形的面积为 $\frac{1}{3}$,试确定 a,b ,使此图形绕 x 轴旋转一周而成的旋转体的体积 V 最小。

七、证明题(本题8分)

19. 设函数 f(x) 在[0,1]上连续,且1<f(x)<2,

证明:
$$1 \le \int_0^1 f(x) dx \int_0^1 \frac{1}{f(x)} dx < \frac{9}{8}$$
.