Berechnen Sie für folgenden DFA $\mathcal{M}=(\{q_0,q_1,q_2,q_3,q_4,q_5\},\{a,b\},\delta,q_0,\{q_1,q_2,q_4\})$ mit δ :

die Äquivalenz
relation $\sim_{\mathcal{M}},$ und geben Sie den Quotientenautomaten
 $\mathcal{M}/_{\sim}$ an.

mi

Gegeben ist der DFA $\mathcal{M} = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_0\})$ mit δ :

Geben Sie einen regulären Ausdruck α an, der die von M akzeptierte Sprache repräsentiert, d. h. es gilt $L(\alpha) = L(M)$.

Lemma (Arden): Aus $\alpha \equiv \beta \alpha \mid \gamma \text{ mit } \epsilon \notin \mathbf{L}(\beta) \text{ folgt } \alpha \equiv \beta^* \gamma$.

miro

$$3 \sim_2 \approx a^*b \sim o \quad (Ardon)$$

$$3 \rightarrow 2 \sim_1 \approx (b a^*b | a) \sim_0 ; \quad (4)$$

$$4 \rightarrow 1 \sim_0 \approx a \sim_0 | b (b a^*b | a) \sim_0 | \varepsilon$$

$$= (a 1 b (b a^*b | a)) \sim_0 | \varepsilon$$

$$\sim_0 \sim_0 (a | b (b a^*b | a)) * (Arden)$$

Gegeben ist der ε -NFA $\mathcal{M}=(\{q_0,q_1,q_2,q_3,q_4\},\{a,b\},\Delta,\{q_0\},\{q_2\})$ mit Δ :

- a) Konstruieren Sie einen zu ${\mathcal M}$ äquivalenten DFA
 ${\mathcal M}'.$
- b) Geben Sie den zu \mathcal{M}' reduzierten DFA
 \mathcal{M}'_r an.

Gegeben ist der reguläre Ausdruck $\alpha = (bb)^*a$.

- a) Geben Sie für α die Nerode-Rechtskongruenz $\, \simeq_{L(\alpha)} \,$ an.
- b) Geben Sie einen minimalen DFA \mathcal{M} an mit $L(\mathcal{M}) = L(\alpha)$.

Nerode-Rechtskongruenz $\simeq_{\mathbf{L}} \subseteq \Sigma^* \times \Sigma^*$:

 $u \simeq_{\mathbf{L}} v$ genau dann, wenn für alle $w \in \Sigma^*$ gilt: $uw \in \mathbf{L}$ gdw. $vw \in \mathbf{L}$

Welche der folgenden Sprachen sind regulär? Begründen Sie Ihre Antwort.

- (a) $L_a = \{ww^R : w \in \{0, 1\}^*\}$
- (b) $L_b = \{a^n c^m b^n : n, m \ge 0\}$
- (c) $L_e = \{w \in \{0,1\}^* : |w|_0 \text{ ist gerade und } |w|_1 \text{ ist durch 3 teilbar}\}$
- (d) $L_d = \text{Menge aller } w \in \{0,1\}^*$, so daß auf jede Null eine Eins folgt.
- (e) $L_e = \{0^{n^2} : n \ge 0\}$
- (f) $L_f = \{0^m 1^n 0^{n+m} : n, m \ge 1\}$

Satz (Myhill & Nerode):

Eine Sprache L ist genau dann regulär, wenn ≃L endlich viele Äquivalenzklassen hat.

Jedes Wort wy hat mig lithe Suffix Wz wz wn W wz { 6,73

Dahar wenn wy + wz dana [wn] = Eq + [wz] = La

da wywy Elq aber wy wzkł La

Es gibt unudlet viele Worfer in (0,7)*

d(s. gist es unendlich viela Aquivalinthassen

mire

e) Le={02 ln203

Satz (Pumping-Lemma):

Für jede reguläre Sprache **L** gibt es eine Zahl $n \ge 0$, so dass gilt:

für jedes Wort $z \in \mathbf{L}$ mit $|z| \ge n$ gibt es eine Zerlegung z = uvw mit $|v| \ge 1$ und $|uv| \le n$, so dass: für jede Zahl $k \ge 0$ gilt: $uv^k w \in \mathbf{L}$.

Pumphy-Zahln

langibles what x=0" |x|=n2>4

Für jede Eerlegang X= U UW gllt / UV/ sn 1/21

Hd Es muss geben uvinsle

n2 = |x| = | uvw | < | uv2 w | = | uvw | + | v | s x2 + n < n2 + 2 n + 1 = (n+1)2

aber a surclove w/ < 6+11 also (UV2V) & heine Quadrattahe

und somet wielt in Le - Widersprach zum P. - Lemma