CSE 3421 Introduction to Computer Architecture Final Review

Xiaodong Zhang

The Final Exam will be at 8:00 am, December 10, Friday

The exam is closed book and closed notes for 1 hour and 45 minutes

A calculator is needed

Location: This Classroom

The format of the exam is in the same style of the homework and midterm. There will be 6 questions.

Scope of the Exam

 If you understand the lectures, discussions in the class, homework problems, and midterm exam, you should do very well in the final exam.

- All the topics in the class will be in the scope the exam
 - 1. Computing performance
 - 2. Instruction set architecture
 - 3. CPU design (control, pipeline, branch prediction)
 - 4. Number representations in computers (arithmetic)
 - 5. Memory hierarchy, registers, cache, DRAM
 - 6. Storage (hard disks and SSD)
 - 7. Plus all the additional notes in concepts
- Pay attention to Pipeline and Arithmetic
 - We did not cover them in the midterm exam

Anatomy of the Architecture is Essential

- Question Examples in Concept definition.
 - For a given status, such as writing and saving a text file, compiling a program, debugging a program, running a program and others, what space or spaces are get involved in, what are related architecture operations?
 - addressing relationships among mem/storage devices: registers, L1-L3 caches, TLB, DRAM, row buffer, tracks and sectors in hard disks, blocks in SSD, et, al.
 - Unique characteristics (merits and limits) of critical devices, e.g., cache, DRAM, SSD, GPU, and others.

We learn principles, laying the foundation for innovative technologies

Where is CSE 3421 in Computing Ecosystem?

- We cover three spaces:
 - Virtual space: app programs and tools (e.g., compiler), executable code
 - Physical memory space: CPU, pipeline, cache, buffer cache, memory system
 - Storage space: virtual memory, page table, file systems, hard disks and SSD

The Entire Hardware-Software Stack (where is your expertise?)

Qualification for a Good Programmer

"What makes a programmer a good one, is mostly the ability to shift levels of abstraction, from low level to high level, to see something in the small and to see something in the large."

A quote from Donald Knuth, Dr. Dobb's Journal, 1996

CSE3421 emphasizes on related principles

Moore's Law well Supports Abstractions

- Abstractions are designed for isolations
 - Application level: machine independent programs
 - Compiler helps machine dependent optimizations
 - ISA hides hardware complexity
 - OS allocates space and time resources for computing tasks in an underlined machine by different policies
 - Cache block allocation is predefined and automatic in hardware
- Following the principle of Adam Smith:
 - Economic growth is rooted in the increasing of division of labors, ...
- Abstractions only work well under Moore's Law
 - Continued performance improvement at the circuit level
 - all levels of abstraction get benefits

A deep hierarchy from users to the circuit

- Each virtual machine layer is an abstraction of the level below it.
- The machines at each level execute their own particular instructions, calling upon machines at lower levels to perform tasks as required.
- Computer circuits ultimately carry out the work.
- This class covers levels 1,2, and 3, plus some 4.

Interactions among abstractions are most critical Today

- In Post-Moore's Law Era, performance improvement by
 - Collaborative optimizations from multiple levels
 - Hardware accelerations, such as GPU
 - Exploiting locality at different levels of memory hierarchy
- Application programming must understand underlying architecture and system software
 - Key-Value store causes a lot of random memory accesses
 - Replacement algorithms only exploit temporal locality
 - ...
- OS must adaptively consider both architecture and applications
 - OS controlled cache partitioning in multicore LLC
 - Understand application patterns for best resource allocation
 -
- Application- and systems-aware hardware design
 - Hybrid CPU/GPU design
 - Hybrid SSD/HDD design (Hystor) ...

Basic Performance Metric and Calculation

 The questions will be at the level of homework and midterm.

- Make sure you understand them thoroughly.
 - Do calculation carefully

Understanding basic MIPS instructions and Program Flow

- No assembly programming requirement
- Understanding the basic concepts and being able to trace simple programs

Computer Arithmetic

 Understanding the basic concepts and being able to manipulate different number representations

Make sure you understand the lecture and the homework

Pipelined Execution

- Understanding the basic concepts: from single cycle to multistage pipelined design
 - How is the stage length of a pipelined machine determined?
 - What are the differences between non-pipelined and pipelined?

Be able to identify hazards and give solutions.

Make sure you understand the lectures and homework

Cache design and Memory Systems

 Be able to map the memory addresses for direct, set-associative, multicolumn, and fully associative caches.

Cache capacity calculation

Relationships between cache and DRAM memory

Make sure you understand lectures, midterm and homework

Hard Disk Drive (HDD) and Solid-State Drive (SSD)

 Basic concept of data access time in HDD: sequential and random accesses and others

• SSD internals: page write, block erase, write amplifications, garbage collections, ...

Basic Principle of Computing System Advancement: High Throughput and Low Latency

Three Major Areas in our Fields

Infrastructure

Hardware/networking/ system management

Algorithms

Tasks in any area for computer to execute

Data

Input for computing and its management

Best value comes from the best fit among the three

Final Words

 Write your constructive comments for this class, which will help me to finalize the book

 I hope you have had productive learning experiences in the class. I enjoy many group and individual discussions with you

Best wishes to you who are graduating!

Good Luck to the exam!