Searchable Encryption

Leyla TEKİN

Izmir Institute of Technology

24.12.2019

Outline

- Introduction
- Base Schemes
- Proposed Approaches
 - Extended Schemes
- Experimental Results
- Conclusion

Problem

- Storing sensitive data on untrusted servers
- Encryption reduces security and privacy risks
- But, it removes search capabilities

> Solution: Emergence of Searchable encryption(SE) schemes

Components of SSE Schemes

• Setup, Search, Update*

Related Areas

Motivation

- The static SSE schemes (Cash et al. (2014))
- The dynamic SSE schemes (Kamara and Moataz (2017))

Contribution:

- Different approaches for secure single- and multi-keyword ranked searches
- Extend the base schemes
- Modify the structures

Base Schemes

• Response-revealing (RR) or Response-hiding (RH)

- The base schemes:
 - RR2Lev
 - RH2Lev
 - DynRR
 - DynRH

Label	Value
w_1	D_2, D_{10}
w_2	D_4, D_5, D_{10}
w_5	$D_1, D_3, D_5, D_6, D_{10}$
w_7	$D_1, D_2, D_3, D_5, D_6, D_9, D_{10}$

Towards RR2Lev – Basic Scheme

- A key *K* is chosen.
- For each keyword:
 - Two keys K_1 and K_2
 - K_1 for PRF and K_2 for encryption
 - A label is associated by applying the PRF and the key K_1 to a **keyword-specific counter**
 - The identifier is encrypted with the key K_2
 - The label/encrypted identifier pair is added to the dictionary.

Label	Value	
$F(K_1^1,0)$	$E(K_2^1, D_2)$	
$F(K_1^1, 1)$	$E(K_2^1, D_{10})$	
$F(K_1^2,0)$	$E(K_2^2, D_4)$	
$F(K_1^2, 1)$	$E(K_2^2, D_5)$	
$F(K_1^2, 2)$	$E(K_2^2, D_{10})$	
$F(K_1^5,0)$	$E(K_2^5, D_1)$	
$F(K_1^5, 1)$	$E(K_2^5, D_3)$	
$F(K_1^5, 2)$	$E(K_2^5, D_5)$	
$F(K_1^5, 3)$	$E(K_2^5, D_6)$	
$F(K_1^5,4)$	$E(K_2^5, D_{10})$	
	$F(K_1^1, 0)$ $F(K_1^1, 1)$ $F(K_1^2, 0)$ $F(K_1^2, 1)$ $F(K_1^2, 2)$ $F(K_1^5, 0)$ $F(K_1^5, 1)$ $F(K_1^5, 2)$ $F(K_1^5, 3)$	$F(K_1^1,0) \qquad E(K_2^1,D_2)$ $F(K_1^1,1) \qquad E(K_2^1,D_{10})$ $F(K_1^2,0) \qquad E(K_2^2,D_4)$ $F(K_1^2,1) \qquad E(K_2^2,D_5)$ $F(K_1^2,2) \qquad E(K_2^2,D_{10})$ $F(K_1^5,0) \qquad E(K_2^5,D_1)$ $F(K_1^5,1) \qquad E(K_2^5,D_3)$ $F(K_1^5,2) \qquad E(K_2^5,D_5)$ $F(K_1^5,3) \qquad E(K_2^5,D_6)$

RR2Lev

- The result sets of keywords as small, medium and large.
- If small $(|DB(w)| \le b)$:
 - a block of b identifiers in the dictionary
- If **medium** $(b < |DB(w)| \le Bb)$:
 - blocks of *B* identifiers in the array
 - a block of b pointers in the dictionary.
- If large $(Bb < |DB(w)| \le B^2b)$:
 - a block of b pointers in the dictionary
 - blocks of *B* pointers in the array
 - blocks of *B* identifiers in the array

RH2Lev

- Response hiding scheme
- Encrypted identifiers in the index \rightarrow \mathbf{K}_3

Label	Value
$F(K_1, 0)$	$E(K_2, E(K_3, D_2) \parallel E(K_3, D_{10}))$
$F(K_1,0)$	$E(K_2, 17 \parallel X)$
$F(K_1,0)$	$E(K_2, 67 \parallel 20)$
$F(K_1,0)$	$E(K_2, 6 \parallel X)$

• An additional algorithm : resolve

DynRR

- Allocates two dictionaries D and D_{count} and a list P.
 - $\mathbf{D_{count}}$ at the user *as state*
 - **D** and **P** at the server

Label	Value
Label	Value
$F(K_1, 0)$	$E(K_2, D_2)$
$F(K_1, 1)$	$E(K_2, D_{10})$
$F(K_1, 0)$	$E(K_2, D_4)$
$F(K_1, 1)$	$E(K_2, D_5)$
$F(K_1, 2)$	$E(K_2, D_{10})$
$F(K_1, 0)$	$E(K_2, D_1)$
$F(K_1, 2)$	$E(K_2, D_5)$
$F(K_1, 4)$	$E(K_2, D_{10})$
• • • • • • • • • • • • • • • • • • • •	• • •

$$P = [0, 1, 2, 3, 4]$$

 $L = [D_1, D_3, D_5, D_6, D_{10}]$

DynRH

- Encrypted identifiers in the index
- **Resolve** algorithm

Label	Value
$F(K_1,0)$	$E(K_2, E(K_3, D_2))$
$F(K_1, 1)$	$E(K_2, E(K_3, D_{10}))$
$F(K_1,0)$	$E(K_2, E(K_3, D_4))$
$F(K_1, 1)$	$E(K_2, E(K_3, D_5))$
$F(K_1,2)$	$E(K_2, E(K_3, D_{10}))$
•••	•••

Proposed Approaches for Ranked SE Schemes

Scheme	Sorted	OPE	Paillier
SR-RR2Lev	✓	✓	✓
SR-RH2Lev	✓	✓	✓
SR-DynRR		✓	✓
SR-DynRH		√	✓
MR-RR2Lev			✓
MR-RH2Lev			
MR-DynRR			✓
MR-DynRH			

• **static** & single-keyword:

score
$$(w, F_{id}) = \frac{1}{|F_{id}|} (1 + \ln(f_{id}, w)).$$

• static & multi-keyword:

score
$$(w, F_{id}) = \frac{1}{|F_{id}|} (1 + \ln(f_{id}, w)) (1 + \frac{N}{f_w}).$$

• **dynamic** & single-keyword:

$$score(w, F_{id}) = f_{id,w}$$
.

• multi-keyword:

$$score(Q, F_{id}) = \sum_{w \in Q} score(w, Fid).$$

Sorted Ranked SE Schemes

- Only single keyword searches
- The identifiers in descending order of relevance scores
- Static

OPE-Based Ranked SE Schemes

 A relevance score for each keyword-document pair

Label	Value
$F(K_1, 0)$	$E(K_2, \langle D_2, E(K_{ope}, 130) \rangle \parallel \langle D_{10}, E(K_{ope}, 42) \rangle)$
$F(K_1,0)$	$E(K_2, \langle 17, \underline{R} \rangle \parallel \langle X, \underline{R} \rangle)$
$F(K_1,0)$	$E(K_2, \langle 67, \underline{R} \rangle \parallel \langle 20, \underline{R} \rangle)$
$F(K_1,0)$	$E(K_2, \langle 6, \underline{R} \rangle \parallel \langle X, \underline{R} \rangle)$

- $x < y \rightarrow \operatorname{Enc}(x) < \operatorname{Enc}(y)$
- Single keyword searches

```
E(K_2, \langle 90, \underline{R} \rangle \parallel \langle 14, \underline{R} \rangle \parallel \langle 85, \underline{R} \rangle)
          E(K_2, \langle D_5, E(K_{ope}, 79) \rangle \parallel \langle D_6, E(K_{ope}, 174) \rangle \parallel \langle D_9, E(K_{ope}, 279) \rangle
          E(K_2, \langle D_4, E(K_{ope}, 209) \rangle \parallel \langle D_5, E(K_{ope}, 79) \rangle \parallel \langle D_{10}, E(K_{ope}, 76) \rangle)
          E(K_2, \langle D_6, E(K_{ope}, 147) \rangle \parallel \langle D_{10}, E(K_{ope}, 87) \rangle \parallel \langle X, \underline{R} \rangle)
          E(K_2, \langle D_1, E(K_{ope}, 130) \rangle \parallel \langle D_3, E(K_{ope}, 199) \rangle \parallel \langle D_5, E(K_{ope}, 69) \rangle
          E(K_2, \langle D_{10}, E(K_{ope}, 52) \rangle \parallel \langle X, R \rangle \parallel \langle X, \underline{R} \rangle)
90 | E(K_2, \langle D_1, E(K_{ope}, 84) \rangle \parallel \langle D_2, E(K_{ope}, 139) \rangle \parallel \langle D_3, E(K_{ope}, 119) \rangle)
```

OPE-Based SR-DynRR: A dynamic example

- **No** *multi-keyword* scheme
 - > 3 + 15 < 19
 - \triangleright Enc(3) + Enc(15) \nleq Enc(19)

$$L = [D_3, D_6, D_1, D_{10}, D_5]$$

$$I = [D_3, D_6]$$

$$L = [D_3, D_6, D_1, D_{10}, D_5]$$

Paillier-Based Ranked SE Schemes

Resolve

Label	Value
$F(K_1, 0)$	$E(K_2, \langle D_2, E(K_{pai1}, 130) \rangle \parallel \langle D_{10}, E(K_{pai1}, 42) \rangle)$
$F(K_1, 0)$	$E(K_2, \langle 17, \underline{R} \rangle \parallel \langle X, \underline{R} \rangle)$
$F(K_1, 0)$	$E(K_2, \langle 67, \underline{R} \rangle \parallel \langle 20, \underline{R} \rangle)$
$F(K_1, 0)$	$E(K_2, \langle 6, \underline{R} \rangle \parallel \langle X, \underline{R} \rangle)$

- Single keyword searches
- Multi-keyword searches (only response-revealing)

```
E(K_2, \langle 90, R \rangle \parallel \langle 14, \underline{R} \rangle \parallel \langle 85, \underline{R} \rangle)
E(K_2, \langle D_5, E(K_{pai1}, 79) \rangle \parallel \langle D_6, E(K_{pai1}, 174) \rangle \parallel \langle D_9, E(K_{pai1}, 279) \rangle)
E(K_2, \langle D_4, E(K_{pai1}, 209) \rangle \parallel \langle D_5, E(K_{pai1}, 79) \rangle \parallel \langle D_{10}, E(K_{pai1}, 76) \rangle)
E(K_2, \langle D_6, E(K_{pai1}, 147) \rangle \parallel \langle D_{10}, E(K_{pai1}, 87) \rangle \parallel \langle X, R \rangle)
E(K_2, \langle D_1, E(K_{pai1}, 130) \rangle \parallel \langle D_3, E(K_{pai1}, 199) \rangle \parallel \langle D_5, E(K_{pai1}, 69) \rangle)
E(K_2, \langle D_{10}, E(K_{pai1}, 52) \rangle \parallel \langle X, \underline{R} \rangle \parallel \langle X, \underline{R} \rangle)
E(K_2, \langle D_1, E(K_{pai1}, 84) \rangle \parallel \langle D_2, E(K_{pai1}, 139) \rangle \parallel \langle D_3, E(K_{pai1}, 119) \rangle)
```

Paillier-Based Ranked SE Schemes: A multi-keyword example

	Label	Value
l	$F(K_1, 0)$	$E(K_2, \langle D_2, E(K_{pai1}, 130) \rangle \parallel \langle D_{10}, E(K_{pai1}, 42) \rangle)$
	$F(K_1, 0)$	$E(K_2, \langle 17, \underline{R} \rangle \parallel \langle X, \underline{R} \rangle)$
	$F(K_1, 0)$	$E(K_2, \langle 67, \underline{R} \rangle \parallel \langle 20, \underline{R} \rangle)$
	$F(K_1,0)$	$E(K_2, \langle 6, \underline{R} \rangle \parallel \langle X, \underline{R} \rangle)$

$$K^{1}_{l}, K^{1}_{2}, K^{2}_{l}, K^{2}_{2}$$

D_2	$E(K_{pai1}, 130)$
D_4	$E(K_{pai1}, 209)$
D_5	$E(K_{pai1}, 79)$
D_{10}	$E(K_{pai1}, 118)$
<u></u>	

❖ No response-hiding schemes for multi-keyword searches

D_2	$E(K_{pai1}, 130)$	E(42) * E(76) = E(42 + 76)
D_4	$E(K_{pai1}, 209)$	
D_5	$E(K_{pai1}, 79)$	
D_{10}	$E(K_{pai1}, 118)$	
D_{10}	$E(K_{pai1}, 76)$	

Experimental Results

- Intel Core i7 8750 2.2GHz CPU with 16GB RAM running Windows 10
- RFC dataset (text files)
- AES in CTR mode with 256-bit key
- HMAC-SHA512 for key-based hash function

- Ciphertexts:
 - OPE → 64-bit
 - Paillier \rightarrow 1024-bit*

^{*} NIST recommendation, https://www.keylength.com/en/4/

Benchmark results of schemes based on RR2Lev for a single keyword query

Benchmark results of schemes based on RH2Lev for a single keyword query

Benchmark results of scheme based on DynRR for a multi-keyword query

Conclusion

- Approaches for single- and multi-keyword ranked searches
- The extended schemes \rightarrow the properties also differ.
- Advantages and disadvantages of each scheme

Thanks for your attention! Any questions?