More Randomization:

Load Balancing and Fingerprinting

Load Balancing

Imagine Google assigning search queries to servers

Goal:

- No server gets too many clients
- Each client is assigned to a server without knowledge of the allocation of other clients to servers

Strategy: Assign each client to a server uniformly at random!

Let's see how well this does...

This is often formulated as:

"Balls and Bins"

n balls (clients)

k bins (servers)

Each ball goes into a random bin.

Question: How many balls in the fullest bin?

For simplicity, we will analyze the case where n=k.

We will prove: With prob ≥ 1-1/n, fullest bin has O(log n) balls.

This is often formulated as:

"Balls and Bins"

n balls (clients)

First, let's calculate the expected number of balls per bin:

Let Xj be the number of balls in bin j.

Let Xij be an indicator r.v. for whether ball i is in bin j.

Observation:
$$X_j = \sum_{i=1}^n X_{ij}$$

So, $E[X_j] = E[\sum_{i=1}^n X_{ij}] = \sum_{i=1}^n E[X_{ij}] = \underbrace{\hat{\Sigma}}_{i=1}^n \hat{\Sigma}_{i} = \underbrace{\hat{\Sigma$

This is often formulated as:

"Balls and Bins"

n balls (clients)

Our goal is to bound the probability that the fullest bin has "many" balls Last lecture, to bound probabilities we used *Markov's inequality*. **It turns out that won't suffice here!**

We need a stronger bound, that will use the fact that **Xj** is a sum of independent r.v.'s.

Sum of Independent r.v.'s is predictable

Flip a coin n times. What fraction of flips are heads?

(Number of head flips is a sum of <u>independent</u> indicator r.v.'s for whether the ith flip is heads)

Chernoff Bounds

How do these compare to Markov?

(we won't prove)

Let Y1.....Yk be independent r.v.'s taking values in the range [0,1].

Let
$$Y = \sum_{i=1}^{K} Y_i$$
. Let $\mu = E[Y]$.

woohoo! I'm in the bounds

"Large Deviation" bound:

For any $\lambda \geq 1$:

$$Pr[Y - \mu \ge \lambda \mu] \le e^{-\lambda \mu/3}$$

"Small Deviation" bounds:

For any $\lambda \in [0,1]$:

$$Pr[Y - \mu \ge \lambda \mu] \le e^{-\lambda^2 \mu/3}$$

$$Pr[Y - \mu \le -\lambda \mu] \le e^{-\lambda^2 \mu/3}$$

this one we won't use in class, but you may use it on the HW

Another useful tool:

Union Bound

• for arbitrary events A, B $Pr[A \cup B] \leq Pr[A] + Pr[B]$

• More generally, for arbitrary events $E_1, ..., E_n$ $\Pr[\cup_i E_i] \leq \Sigma_i \Pr[E_i]$

Now back to Balls and Bins

Let's apply the new tools in our pocket (Chernoff and union bounds)

n balls (clients)

Recall X_j is the number of balls in bin j. Earlier we showed: $E[X_j] = 1$

Recall Xii is an indicator r.v. for whether ball i is in bin j.

Observation: $X_j = \sum_{i=1}^{n} X_{ij}$.

 \Rightarrow **Xj** is the sum of <u>independent</u> r.v.'s with values in [0,1] so we can apply Chernoff.

Now back to Balls and Bins

Markov instead of Chernoff gives prob 1/log n, which becomes n/log n after union bound. Not useful!

n balls (clients)

⇒ Original goal: with prob ≥ 1-1/n, fullest bin has O(log n) balls.

Fingerprinting

The scenario:

- You download a large file from a untrusted remote server
- The original file is from your friend
- You want to check that the version you downloaded hasn't be tampered with.
- The file is large so your friend can't send the whole thing to you directly, but they can send you a small "fingerprint" to help verify the authenticity

λ-Productions is proud to present a visiting cast of characters...

Beforehand, Alice and Bob agree on a **protocol** for how Alice will choose **M**, given **x**.

Message M (the "fingerprint")

Alice has x (original file)

Bob has y, M

Goal: We want message M as short as possible, while still ensuring that no matter how the adversary changes the file, Bob can check if x = y, given M.

heh heh I will pick y so that
x (mod 10) ≡ y (mod 10)
but y ≠ x and Bob will never
know I changed the file

I will interpret the entire file x as a number, and send
M = x (mod 10)

malicious adversary who knows protocol

I will say "x = y" iff > (mod 10) ≡ y (mod 10)

Message M (the "fingerprint")

y (downloaded file)

Alice has **x** (original file)

Bob has y, M

Goal: We want message M as short as possible, while still ensuring that no matter how the adversary changes the file, Bob can check if x = y, given M.

Deterministic Protocols Don't Work

If |M| < |x|, then by the pigeonhole principle, there are two files x1, x2 that deterministically cause Alice to send the same message M_{bad} .

If Bob receives the message M_{bad} and downloads the file y = x1, Bob doesn't know if the original file was x1 or x2! He deterministically says either "x = y" (wrong if x=x2), or " $x \neq y$ " (wrong if x=x1).

Therefore, all deterministic protocols require $|\mathbf{M}| = |\mathbf{x}|$ in the worst case.

This is useless because the file is too large to send!

But there is a good randomized protocol!

We will show:

There is a randomized protocol such that for every x, y:

- $|\mathbf{M}| = O(\log \mathbf{n}) \leftarrow n \text{ is } \#b \text{ its of } x$
- If x = y, then Bob always says "x = y"
- If x ≠ y, then Bob detects that "x ≠ y" with prob ≥90%

1st attempt

```
heh heh I will pick y so that

× (mod p) = y (mod p) for all pinch.10].

1x-yl is a multiple of every

number in [1...10]
```

I will pick a random number p in [1..10] and send M = (p, x (mod p))

malicious adversary who knows protocol

I will say " $\mathbf{x} = \mathbf{y}$ " iff $\mathbf{x} \pmod{p} \equiv \mathbf{y} \pmod{p}$

Message M (the "fingerprint")

Alice has **x** (original file)

Bob has y, M

(downloaded

file)

Goal: We want message M as short as possible, while still ensuring that no matter how the adversary changes the file, Bob can check if x = y, given M.

2nd attempt

I want to pick y so that |x-y| has as many factors in [1..n] as possible.

malicious adversary

I will pick a random number p in [1..n] and send $M = (p, x \pmod{p})$

who knows protocol

I will say "x = y" iff \mathbf{x} (mod p) $\equiv \mathbf{y}$ (mod p)

(downloaded file)

Message M (the "fingerprint")

Alice has **x** (original file)

Bob has y, M

Goal: We want message **M** as short as possible, while still ensuring that no matter how the adversary changes the file, Bob can check if x = y, given M.

Adversary wants |x-y| to have many factors, we want few factors.

How many factors does a number have? $N = (3.7^2.(3).(7)^3)$

Exponential in the number of prime factors.

That seems like a lot...

Insight: Alice picks only from the set of prime numbers!

Let's see why this works...

The actual protocol

I want to pick y so that |x-y|has as many **prime** factors as possible.

But no matter what y I pick I can't seem to fool Bob...

I will pick p randomly from the first 10n prime numbers and send $M = (p, x \pmod{p})$

Alice has **x** (original file)

malicious adversary who knows protocol

I will say "
$$\mathbf{x} = \mathbf{y}$$
" iff \mathbf{x} (mod p) $\equiv \mathbf{y}$ (mod p)

(downloaded file)

Message M (the "fingerprint")

$$P=2,5,$$

P=2,5,11 *≠* = *≠*

Bob has y, M

Goal: We want message M as short as possible, while still ensuring that no matter how the adversary changes the file, Bob can check if x = y, given M.

Our goal is to show:

For all x, y the protocol it such that:

- $|\mathbf{M}| = O(\log \mathbf{n})$ \leftarrow n is #bits of x
- If x = y, then Bob always says "x = y"
- If x ≠ y, then Bob detects that "x ≠ y" with prob ≥90%

 $M = (p, x \pmod{p})$ where p is among the first 10n primes.

Question: How big is the kth prime number?

Answer: O(k log k) (complicated proof from number theory)

So,
$$p = O(n \log n)$$
.

$$\Rightarrow |\mathbf{M}| = O(\#bits \text{ in } p) = O(\log (n \log n)) = O(\log n).$$

$$\log (a \cdot b) = \log a + \log b$$

$$\log n + \log n$$

Our goal is to show:

For all x, y the protocol it such that:

- $|\mathbf{M}| = O(\log \mathbf{n})$ \leftarrow n is #bits of x
- If x = y, then Bob always says "x = y"
- If x ≠ y, then Bob detects that "x ≠ y" with prob ≥90%

If $x \neq y$, then Bob wrongly answers "x = y" if $x \pmod{p} \equiv y \pmod{p}$, i.e. if p divides |x-y|.

Question: How many primes divide |x-y|?

Answer:
$$\leq n$$
. Why? $x \leq 2^n$ $|x-y| \leq 2^n$ every prime ≥ 2 .

Alice chooses from 10n primes, and \leq n of them cause Bob to wrongly answer "x = y". Thus, Bob is right with prob \geq 90%.

What if we wanted Bob to succeed 99% of the time instead of 90%?

Repeat the protocol

Pr [fail 4 trial] < 0.1

Pr [fail 2 trial] < 0.01

Pr (succeed] > 0.99

Generally: c trials: Pr [succeed] > 1- 10c

Some takeaways from today

- Union & Chernoff bounds: used frequently in probabilistic analysis
 - Chernoff: "sum of independent r.v.'s is predictable"
 - Union: for calculating the prob that no "bad" event happens

- Randomization is necessary for frequently arising situations:
 - Load Balancing: allocating clients to servers
 - Fingerprinting: verifying authenticity of file from remote server