My Basic Algebra Notebook

zhangxm2312@gmail.com

2020年3月3日

目录

1	Line	Linear Equations and Polynomial						
	1.1	The Root of Linear Equations	5					
	1.2	Unary Polynomial Ring(一元多项式环)	5					
		1.2.1 多项式的基本概念	5					
		1.2.2 Ring	5					
2	Line	ear Space and Linear Map	7					
3	Det	Determinant						
	3.1	Laplace 展开定理	9					
	3.2	Cramer 法则	10					
4	Mat	trix	11					
	4.1	Matrix Operation and Special Matrix	11					
		4.1.1 矩阵运算	11					
		4.1.2 部分特殊矩阵的定义	11					
		4.1.3 区组设计的关联矩阵	12					
	4.2	Partitioned Matrix(分块矩阵) and Rank	12					
		4.2.1 Partitioned Matrix(分块矩阵)	12					
		4.2.2 Equivalence	13					
		4.2.3 Cauchy-Binet 定理	13					
		4.2.4 满秩分解	15					
		4.2.5 LU-分解	15					
		4.2.6 关于秩和分块矩阵的结论	15					
	4.3	Orthogonal Matrix(正交矩阵)	17					
		4.3.1 定义和基本性质	17					
		4.3.2 基本定理和应用	17					
	4.4	Generalized Inverse Matrix(广义逆)	18					
		4.4.1 普通的广义逆	18					
		4.4.2 Moore-Penrose 逆	19					
		4.4.3 广义逆在解方程中的应用	19					
	4.5	Character Value and Character Vector	19					
		4.5.1 定义与基本性质	19					
		4.5.2 基本定理和结论	20					
	4.6	Similar Matrix and Trace	21					
	4.7	Diagonalize(对角化)	22					
		4.7.1 可对角化矩阵	22					
		4.7.2 实对称矩阵、正交相似和可对角化	23					

			目录
4.8	Quadi	ratic Form(二次型) and Congruence(合同)	23
	4.8.1	Congruence	23
	4.8.2	Sylvester's Law of Inertia(惯性定理)	25
	4.8.3	Positive Definite(正定)	25

Chapter 1

Linear Equations and Polynomial

- 1.1 The Root of Linear Equations
- 1.2 Unary Polynomial Ring(一元多项式环)
- 1.2.1 多项式的基本概念

定义 1. 一元多项式指的是具有如下形式的表达式:

$$\sum_{i=0,\cdots,n} a_i x^i$$

其中 x 是一个符号, 被称为**不定元** (indeterminate), $a_i \in K$ 被称为**系数** (coefficient), $a_i x^i$ 被称为 i 次项, 其中 a_0 被称为常数项. $a_i = 0$ 的多项式被称为零多项式, 记为 0.

一元多项式 f(x) 中系数非 0 的最高项 $a_n x^n$ 被称为首项, 其次数记作 $\deg f(x)$ 且规定 $\deg 0 := -\infty$. 数域 K 上一元多项式的全集记作 K[x], 并可在其中自然地定义加法和乘法.

需要注意的是, 一元多项式具有以下两个性质:

性质 1.1.

- 1. $\forall K \ni f(x), g(x) \neq 0 \Rightarrow f(x)g(x) \neq 0$
- 2. $\forall f(x), g(x), h(x) \in K, h(x) \neq 0 : f(x)h(x) = g(x)h(x) \Rightarrow f(x) = g(x)$

定理 1.2 (一元多项式的次数公式). $\forall f, g \in K[x]$:

$$\deg(f \pm g) \le \max \{\deg f, \deg g\}$$
$$\deg(fg) = \deg f + \deg g$$

我们不加证明的给出这个重要但显然的结论.

1.2.2 Ring

集合 S 上的一个代数运算指的是 $S \times S = S^2 \to S$ 的映射.

定义 2 (环的基本概念). 若非空集合 S 内定义了两个代数运算: 加法 (+) 和乘法 (\cdot) , 且存在加法的逆元和单位元 0, 并成立两个运算的结合律和加法交换律, 乘法 (对加法的) 分配律, 那么称此集合为一个**环**.

环 S 内对加法与乘法也成为一个环的非空子集 R 被称为是 S 的**子环**, 其对加法与乘法运算封闭.

 $\exists a \exists b \neq 0 : ab = 0/ba = 0$, 则称 a 为一个左/右零因子, 可简称为零因子.0 是平凡的零因子, 其他的均被称为非平凡的. 若环中无非平凡零因子, 称其为无零因子环.

满足乘法交换律的环被称为**交换环**; 存在乘法单位元 1 的环被称为**有单位元的环**; 有单位元的无零因子环被称为**整环**.

容易验证: \mathbb{Z} , K[x], $M_n[K]$ 都是环, 且任意一个域也是环.

Chapter 2

Linear Space and Linear Map

Chapter 3

Determinant

3.1 Laplace 展开定理

考虑在数域 \mathbb{F} 上的 n 阶行列式 A, 取其中 k 行 k 列, 分别记其为 i_1, i_2, \cdots, i_k 和 j_1, j_2, \cdots, j_k , 且其指标数单调增长.

在 A 中, 取其中被选中的行列交叉处的 k^2 个元素, 按其原来顺序组成 k 阶行列式, 称之为 A 的一个 k 阶子式. 而剩余的 (n-k) 行和列组成的行列式为其 (n-k) 阶余子式. 分别记为:

$$A\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}, M_A\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$$

定义其代数余子式:

$$A^{c} \begin{pmatrix} i_{1} & i_{2} & \cdots & i_{k} \\ j_{1} & j_{2} & \cdots & j_{k} \end{pmatrix} := (-1)^{\sum_{a \in \{1,2,\cdot,k\}} (i_{a} + j_{a})} \cdot M_{A} \begin{pmatrix} i_{1} & i_{2} & \cdots & i_{k} \\ j_{1} & j_{2} & \cdots & j_{k} \end{pmatrix}$$

引理 3.1.

$$A\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \cdot A^c \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$$

中的每一项都是 A 展开式中的一项

证明. 先取子式在 A 左上角的时候, 即 $i_l = j_l = l(l \in \{1, 2, \dots, k\})$ 时. 此时,

$$A^{c} \begin{pmatrix} 1 & 2 & \cdots & k \\ 1 & 2 & \cdots & k \end{pmatrix} = (-1)^{2 \sum_{l=1,\dots,k} l} M_{A} \begin{pmatrix} 1 & 2 & \cdots & k \\ 1 & 2 & \cdots & k \end{pmatrix} = A \begin{pmatrix} k+1 & k+2 & \cdots & n \\ k+1 & k+2 & \cdots & n \end{pmatrix}$$

任意子式中和代数余子式中的项形如:

$$(-1)^{\tau(s_1s_2\cdots s_k)} \prod_{i=1,\cdots,k} a_{i,s_i} \qquad (-1)^{\tau(t_{k+1}t_{k+2}\cdots t_n)} \prod_{j=k+1,\cdots,n} a_{j,t_j}$$

故两者积中任一项形如:

$$(-1)^{\tau(s_1s_2\cdots s_kt_{k+1}t_{k+2}\cdots t_n)}\prod_{i=1,\cdots,n}a_{i,j_i}$$

其必为 A 中一项. 而将选取的行进行对换, 使得第 l 行对换至第 i_l 行, 相应的, 第 l 列至第 j_l 列, 故新行列式

$$D = (-1)^{\sum_{l=1,\dots,k} (i_l-l) + \sum_{l=1,\dots,k} (j_l-l)} A = (-1)^{\sum_{l=1,\dots,k} (i_l+j_l)} A$$

而子式在 D 的左上角, $A^c = (-1)^{\sum_{l=1,\dots,k}(i_l+j_l)}M_D = (-1)^{\sum_{l=1,\dots,k}(i_l+j_l)}M_A$, 对应项一致, 得证.

所以可得:

定理 3.2 (Laplace 展开定理). 在 n 阶行列式 A 中任取 k 行, 记其为 $i_1, i_2, \cdots, i_k (1 \le i_1 < i_2 < \cdots < i_k \le n)$, 则:

$$A = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} A^c \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix}$$

证明. 由上引理, 且易知: $j_1 j_2 \cdots j_k \neq j_1' j_2' \cdots j_k'$ 时, A^c 不相等.

而 A 展开式有 n! 项, 右式中每一式展开有 k!(n-k)! 项, 共有 C^k_n 式求和, 故右式也有 n! 项, 得证. 其本质还是矩阵的子式和代数余子式的乘积, 是按行/列 (一阶张量) 展开的推广, 也就是按低阶张量展开.

3.2 Cramer 法则

Cramer 法则是为了解决 n 阶线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 而建立的: 当 $|A| \neq 0$ 时,可知 \mathbf{x} 只有一组解,记之为 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$.

定理 3.3 (Cramer 法则). n 阶线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解的第 i 个坐标为:

$$x_i = \frac{|D_i|}{|A|}(i = 1, \cdots, n)$$

. 其中:

$$D_{i} = \begin{pmatrix} a_{11} & \cdots & a_{1,i-1} & b_{1} & a_{1,i+1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,i-1} & b_{n} & a_{n,i+1} & \cdots & a_{nn} \end{pmatrix} = \sum_{k=1,\dots,n} b_{k} A_{ki}$$

证明. 由 $\sum_j a_{ij} x_j = b_i$ 和 $|A| = \sum_k a_{kj} A_{kj}$ 可即得.

另外也可有 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \frac{\mathbf{A}^*\mathbf{b}}{|\mathbf{A}|}$, 在第 i 行上有 $\mathbf{A}_i^*\mathbf{b} = D_i$, 得证.

Chapter 4

Matrix

4.1 Matrix Operation and Special Matrix

4.1.1 矩阵运算

我们定义: 在数域 K 上的 $m \times n$ 阶矩阵的全体集合为 $M_{m \times n}(K)$. 若 m = n, 则记为 $M_n(K)$.

4.1.2 部分特殊矩阵的定义

定义 3 (换位元素). $\forall A, B \in M_n(K), [A, B] := AB - BA$

性质 4.1 (换位元素的性质).

- 1. $[k_1A + k_2B, C] = k_1[A, C] + k_2[B, C]$
- 2. [A, B] + [B, A] = 0
- 3. $\sum_{cyc}[A,[B,C]] = [A,[B,C]] + [B,[C,A]] + [C,[A,B]] = 0$

定义 4 (Kronecker 积).

定义 5 ((Skew-)Symmetric Matrix). $\forall A \in M_n(A^T = A)$, 称 A 为对称矩阵 (Symmetric Matrix); $\forall A \in M_n(A^T = -A)$, 称 A 为反/斜 (对) 称矩阵 (Skew – Symmetric Matrix).

性质 4.2 (对称和反称矩阵的性质).

1.
$$A^{T} = A, B^{T} = B : ((AB)^{T} = AB) \Leftrightarrow (AB = BA)$$

 $A^{T} = -A, B^{T} = -B : ((AB)^{T} = \pm AB) \Leftrightarrow (AB = \pm BA)$

- 2. *n* is odd, $A^{T} = -A : \det A = 0$
- 3. $\forall A \in M_n \exists ! (M \text{ is sym and } M' \text{ is skew} \text{sym}) : (A = M + M'), 2M = A + A^T, 2M' = A A^T$
- 4. $\forall A \in M_{s \times n} : (AA^H = 0) \Rightarrow (A = 0)$ $\Rightarrow (\forall A \in M_n : (AA^T = 0) \Rightarrow (A = 0))$
- 5. A, B are (skew-)sym $\Rightarrow A + B, kA$ are (skew-)sym, [A, B] is skew sym
- 6. $A^T = -A \Rightarrow \text{rank } A \text{ is even}$
- $7. \sum_{j} a_{ij} = \sum_{j} a_{ji}$

证明.

定义 6 (Nilpotent Matrix). $\forall A \in M_n \exists k \in \mathbb{N} (A^k = O)$, 称 A 为幂零矩阵, k 为幂零指数.

性质 4.3 (幂零矩阵的性质).

- 1. 三角矩阵为 $\Leftrightarrow a_{ii} = 0 (i = 1, \dots, n) \Rightarrow k \leq n$.
- 2. 实对称的幂零矩阵为零矩阵.

定义 7 (幂等矩阵).

定义 8 (对合矩阵).

称
$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}$$
 为 n 阶循环矩阵.

性质 4.4.

1.

$$\sum_{i=1,\cdots,n} C^{i-1} = J$$

2.

$$A = \sum_{i=1,\dots,n} a_i C^{i-1}$$

定义 10 (随机矩阵).

定义 11 (整数矩阵).

定义 12 (邻接矩阵).

定义 13 (周期矩阵).

定义 14 (Hadamard 矩阵).

定义 15 (Frobenius 矩阵).

区组设计的关联矩阵 4.1.3

Partitioned Matrix(分块矩阵) and Rank

分块矩阵和矩阵的秩都是在简单的矩阵论中处理矩阵的重要工具,且一般结合使用,因此将其放在一起.

Partitioned Matrix(分块矩阵)

分块矩阵的加法、数乘和乘法和一般的矩阵的类似. 其定义暂缺, 在这里我们不再叙述简单的运算规则, 我们只阐 述部分性质和结论.

推论 4.5.

1.

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix}$$

2.

$$\begin{vmatrix} A & B \\ O & C \end{vmatrix} = \begin{vmatrix} A & O \\ B & C \end{vmatrix} = |A||C|$$

3.

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{cases} |A||D - CA^{-1}B| & (A可逆) \\ |D||A - BD^{-1}C| & (D可逆) \end{cases}$$

若 A, D 均可逆, 可得矩阵的降幂公式:

$$\frac{|A|}{|D|} = \frac{|A - BD^{-1}C|}{|D - CA^{-1}B|}$$

4.

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{cases} |AD - CB| & (AC = CA) \\ |DA - CB| & (AB = BA) \end{cases}$$

5. 准对角矩阵

$$\begin{vmatrix} A_1 & & & & \\ & A_2 & & & \\ & & \ddots & & \\ & & & A_m \end{vmatrix} = \prod |A_i|$$

6.

$$\begin{vmatrix} A & B \\ B & A \end{vmatrix} = |A + B||A - B|$$

7. AB = BA 时,

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} = |A^2 + B^2|$$

8.

$$\begin{vmatrix} I & A \\ B & I \end{vmatrix} = |I - AB| = |I - BA|$$

4.2.2 Equivalence

定义 16 (矩阵的等价). 下列描述等价:

- 1. $A \simeq B$, 即 A 和 B 等价.
- 2. $\exists P_{s \times s}, Q_{m \times m}(B = PAQ)$
- 3. A 经过有限次初等变换能得到 B.
- 4. 两矩阵的行、列、秩均相等.

$$\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

被成为其等价标准形.

 $M_{s\times n}$ 上有 $1+\min\{s,n\}$ 个等价类.

4.2.3 Cauchy-Binet 定理

这个定理是 Laplace 定理在矩阵乘法上的推广, 在流形上有更深的推广和意义. 将两矩阵乘积的 det 与两者分别的子式的积联系起来, 使其在有向体积上存在一定联系.

首先, 我们曾比较显然地得到结论: 对于两个方阵 A 和 B,

$$|A||B| = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = \begin{vmatrix} O & AB \\ -I & * \end{vmatrix} = |AB|$$

因此我们可以考察: 对于 $m \times n$ 阶矩阵 A 和 $n \times m$ 阶矩阵 B, 其乘积 m 阶矩阵 AB 的行列式 |AB|.

定理 4.6 (Cauchy-Binet 定理). 对于任意矩阵 $A_{m\times n}$ 和 $B_{n\times m}$, 有:

$$|AB| = \begin{cases} 0 & m > n \\ \sum_{1 \le j_1 < j_2 < \dots < j_m \le n} A \begin{pmatrix} 1 & 2 & \dots & m \\ j_1 & j_2 & \dots & j_m \end{pmatrix} B \begin{pmatrix} j_1 & j_2 & \dots & j_m \\ 1 & 2 & \dots & m \end{pmatrix} & m \le n \end{cases}$$

取定 $\mathbb{N} \ni r \leq m, 有:$

$$AB\begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ j_1 & j_2 & \cdots & j_r \end{pmatrix} = \begin{cases} 0 & r > n \\ \sum_{1 \le k_1 < k_2 < \cdots < k_r \le n} A\begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ k_1 & k_2 & \cdots & k_r \end{pmatrix} B\begin{pmatrix} k_1 & k_2 & \cdots & k_r \\ j_1 & j_2 & \cdots & j_r \end{pmatrix} & r \le n \end{cases}$$

证明. m > n 时,由 rank $AB \le \text{rank } A \le n < m$ 可得 |AB| = 0 m = n 时,即上述结论:|AB| = |A||B|.

m < n 时, 我们通过两种方法计算 n + m 阶矩阵 $C = \begin{pmatrix} A & O \\ -I_n & B \end{pmatrix}$ 的行列式 |C|.

通过分块矩阵的初等变换, 我们可以得到:

$$M = \begin{pmatrix} O & AB \\ -I_n & B \end{pmatrix} = \begin{pmatrix} I_m & A \\ O & I_n \end{pmatrix} C$$

故有 |M| = |C|. 再用 Laplace 定理计算, 有:

$$|M| = (-1)^{nm} |-I_n||AB| = (-1)^{n(m+1)}|AB|$$

而

$$|C| = \sum_{1 \le j_1 < j_2 < \dots < j_m \le n} A \begin{pmatrix} 1 & 2 & \dots & m \\ j_1 & j_2 & \dots & j_m \end{pmatrix} C^c \begin{pmatrix} 1 & 2 & \dots & m \\ j_1 & j_2 & \dots & j_m \end{pmatrix}$$

注意: 这里选取子式是在前 m 行 n 列中选取. 前 m 行是由题设固定, 也是矩阵 A 的范围里. 前 n 列是因为, 若所选取的一列在其他 m 列中, 那么子式为 0. 故其余子式必定有一部分落在矩阵 B 的范围内. 后者有:

$$C^{c}\begin{pmatrix} 1 & 2 & \cdots & m \\ j_{1} & j_{2} & \cdots & j_{m} \end{pmatrix} = (-1)^{\sum\limits_{k=1,\cdots,m} (k+j_{k})} |N|$$

其中 n 阶矩阵 $N=(-\epsilon_{i_1},\cdots,-\epsilon_{i_{n-m}},B),\epsilon_i$ 表示第 i 个标准 n 维列向量,这些列向量相当于从前 n 列中除去子式中 j_1,j_2,\cdots,j_m 列所剩余的 n-m 列.

再用 Laplace 定理展开 |N| 的前 n-m 列,得到的 n-m 阶子式中只有一个 (即 $|-I_{n-m}|$) 非零,其余子式即为

$$B\begin{pmatrix} j_1 & j_2 & \cdots & j_m \\ 1 & 2 & \cdots & m \end{pmatrix}$$

注意到 $\sum_{k=1,\dots,n-m} i_k + \sum_{k=1,\dots,m} j_k = \sum_{k=1,\dots,n} k$, 有:

$$C^{c}\begin{pmatrix} 1 & 2 & \cdots & m \\ j_{1} & j_{2} & \cdots & j_{m} \end{pmatrix} = (-1)^{\sum_{k=1,\dots,m} (k+j_{k}) + \sum_{k=1,\dots,n-m} (k+i_{k}) + (n-m)} B\begin{pmatrix} j_{1} & j_{2} & \cdots & j_{m} \\ 1 & 2 & \cdots & m \end{pmatrix}$$

代入上式, 定理得证.

而对于 AB 的第 i, j 元 $c_{ij} = \sum_{k=1,\dots,n} a_{ik} b_{kj}$,

$$AB\begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ j_1 & j_2 & \cdots & j_r \end{pmatrix} = \begin{pmatrix} a_{i_11} & a_{i_12} & \cdots & a_{i_1n} \\ a_{i_21} & a_{i_22} & \cdot & a_{i_2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_r1} & a_{i_r2} & \cdots & a_{i_rn} \end{pmatrix} \begin{pmatrix} b_{1j_1} & b_{1j_2} & \cdots & b_{1j_r} \\ b_{2j_1} & b_{2j_2} & \cdots & b_{2j_r} \\ \vdots & \vdots & \ddots & \vdots \\ b_{nj_1} & b_{nj_2} & \cdots & b_{nj_r} \end{pmatrix}$$

后者即两余子式相乘, 故定理推广得证.

最后, 补充定理的一个应用:

定理 4.7 (Cauchy 恒等式). 对于四个 n 个数的数组 (也可视为 n 维列向量) a_i, b_i, c_i, d_i :

$$(\sum_{1 \le i \le n} a_i c_i)(\sum_{1 \le i \le n} b_i d_i) - (\sum_{1 \le i \le n} a_i d_i)(\sum_{1 \le i \le n} b_i c_i) = \sum_{1 \le j < k \le n} (a_j b_k - a_k b_j)(c_j d_k - c_k d_j)$$

证明.

$$LHS = \begin{vmatrix} \sum_{1 \le i \le n} a_i c_i & \sum_{1 \le i \le n} b_i d_i \\ \sum_{1 \le i \le n} a_i d_i & \sum_{1 \le i \le n} b_i c_i \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{vmatrix} \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \\ \vdots & \vdots \\ c_n & d_n \end{pmatrix} \begin{vmatrix} c_1 & c_k \\ d_j & d_k \end{vmatrix} = RHS$$

当 $a_i = c_i, b_i = d_i$ 时, 得到 Lagrange 恒等式, 由此可显然得到 n 维的 Cauchy-Schwarz 不等式.

4.2.4 满秩分解

对于任意矩阵 $A_{m\times n}(\text{rank }A=r\leq \min\{m,n\})$, 始终存在矩阵 $B_{m\times r},C_{r\times n}(A=BC,\text{rank }B=\text{rank }C=r)$. 证明.

1. 取 A 的等价标准型的分解:

$$PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} \Rightarrow A = P^{-1} \begin{pmatrix} I_r \\ O \end{pmatrix} \begin{pmatrix} I_r & O \end{pmatrix} Q^{-1} = BC$$

2. 取 A 行向量组的一组极大线性无关组 $\alpha_1, \alpha_2, \cdots, \alpha_r$, 故:

$$A = \begin{pmatrix} k_{11}\alpha_1 + k_{12}\alpha_2 + \dots + k_{1r}\alpha_r \\ k_{21}\alpha_1 + k_{22}\alpha_2 + \dots + k_{2r}\alpha_r \\ \vdots \\ k_{m1}\alpha_1 + k_{m2}\alpha_2 + \dots + k_{mr}\alpha_r \end{pmatrix} = \begin{pmatrix} k_{11} & k_{12} & \dots & k_{1r} \\ k_{21} & k_{22} & \dots & k_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ k_{m1} & k_{m2} & \dots & k_{mr} \end{pmatrix} \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_r \end{pmatrix} = BC$$

4.2.5 LU-分解

4.2.6 关于秩和分块矩阵的结论

推论 4.8.

- 1. rank $(A+B) \leq \operatorname{rank} A + \operatorname{rank} B$
- 2. rank $AB \leq \min\{\text{rank } A, \text{rank } B\}$
- 3. $(A_{m \times s} B_{s \times n} = 0) \Rightarrow (\text{rank } A + \text{rank } B \leq n)$
- 4. rank $AA^T = \text{rank } A^T A = \text{rank } A$
- 5. dim $W_A + \text{rank } A = n$
- 6. $A_{m \times s} B_{s \times n} = 0 \Rightarrow \text{rank } A + \text{rank } B \leq s$
- 7. (幂等矩阵)($A^2 = A$) \Leftrightarrow (rank $A + \operatorname{rank}(I A) = n$)
- 8. (对合矩阵) $(A^2 = I) \Leftrightarrow (\operatorname{rank} (I + A) + \operatorname{rank} (I A) = n)$
- 9. (Sylvester 公式) rank $A + \text{rank } B \text{rank } AB \leq n$
- 10. (Frobenius 公式) $\operatorname{rank} AB + \operatorname{rank} BC \leq \operatorname{rank} B + \operatorname{rank} ABC$

11. $A \in M_n$:

$$\operatorname{rank} A^* = \begin{cases} n & \operatorname{rank} A = n \\ 1 & \operatorname{rank} A = n - 1 \\ 0 & \operatorname{rank} A < n - 1 \end{cases}$$

12.
$$A \in M_n (n \ge 2), (A^*)^* = \begin{cases} |A|^{n-2}A & n \ge 3\\ A & n = 2 \end{cases}$$

13. $\forall A \in M_n \forall k \in \mathbb{N}(\text{rank } A^n = \text{rank } A^{n+k})$

14. rank
$$A = 1 \Rightarrow A^2 = kA(A \in \mathbb{F})$$

证明.

1. 实际上由于矩阵 A 和 B 的列向量组 $\{\alpha_1, \dots, \alpha_n\}, \{\beta_1, \dots, \beta_n\}$ 都作为基, 必能线性表出 $\{\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n\},$ 后者即 A + B. 也即, 在基相加之后使得其中一部分基不再线性无关, 秩减小了, 因此有

$$\operatorname{rank}\left(A+B\right)=\operatorname{rank}\left\{\alpha_{1}+\beta_{1},\cdots,\alpha_{n}+\beta_{n}\right\}\leq\operatorname{rank}\left\{\alpha_{1},\cdots,\alpha_{n},\beta_{1},\cdots,\beta_{n}\right\}=\operatorname{rank}\left\{A+\operatorname{rank}\left(B\right)\right\}$$

,得证.

- 6. 将其看作方程组 AX=0, 其中 X 即 B 的所有列向量, 故由上一个性质, rank $B\leq \dim\ W=n-{\rm rank}\ A$, 得证.
- 7. $A^2 = A \Leftrightarrow A(I A) = 0$, 视其为线性方程组的解, 立得.

也可由

$$\begin{pmatrix} A & O \\ O & I - A \end{pmatrix} \simeq \begin{pmatrix} A - A^2 & O \\ O & I \end{pmatrix}$$

得到.

9. 即证:

$$n + \operatorname{rank} AB \ge \operatorname{rank} A + \operatorname{rank} B$$

我们已经有显然的一个结论:

$$\operatorname{rank} \begin{pmatrix} A & B \\ O & C \end{pmatrix} \ge \operatorname{rank} \begin{pmatrix} A & O \\ O & C \end{pmatrix} = \operatorname{rank} A + \operatorname{rank} C$$

所以即证

$$\begin{pmatrix} I_n & O \\ O & AB \end{pmatrix} \simeq \begin{pmatrix} A & * \\ O & B \end{pmatrix}$$

此式在分块矩阵的初等变换下是易证的.

11. A^* 是由 A 的代数余子式 (n-1) 阶子式 的一个排列定义的,所以我们应该将 rank A = n-1 时特别看待. 在其他两种情况下,这是显然的──── $|A| \neq 0 \Leftrightarrow |A^*| \neq 0$.

而在 rank A = n - 1 时存在一个 n - 1 阶子式不为 0, 故 $A^* \neq 0$. 但 $AA^* = |A|I = 0$, 由性质 5.6,rank $A^* \leq n - \text{rank } A = 1$, 得证.

4.3 Orthogonal Matrix(正交矩阵)

4.3.1 定义和基本性质

定义 17. 若 $A \in M_n(\mathbb{R})(AA^T = A^TA = I)$, 称 A 为正交矩阵.

推论 4.9 (正交矩阵的基本性质). 1. $A^{-1} = A^{T}$

- 2. $AA^T = BB^T = I \Rightarrow (AB)(AB)^T = I$
- 3. $A^{i}(A^{j})^{T} = A_{i}^{T}A_{i} = \delta_{ii}$ (这里的上下标是行列向量的指标, 右端为 Kronecker 符号)
- 4. A 的行/列向量组是 \mathbb{R}^n 上的一个标准正交基 (由第三条易证)
- 5. 若 A 是上三角矩阵, 则 A 为对角矩阵, 且 $A_{ij} = \pm \delta_{ij}$
- 6. 若 A 实对称,T 正交,则 $T^{-1}AT$ 实对称

4.3.2 基本定理和应用

定理 4.10 (Gram-Schmidt Orthogonalization). 对于线性空间 V 中的任意一个基 $(\alpha_1, \dots, \alpha_n)$, 总存在一个等价的正交基 $(\beta_1, \dots, \beta_n)$ 及其标准化的正交基 $(\epsilon_1, \dots, \epsilon_n)$, 且 $\mathrm{span}(\alpha_1, \dots, \alpha_j) = \mathrm{span}(\beta_1, \dots, \beta_j) = \mathrm{span}(\epsilon_1, \dots, \epsilon_j)$. 令 $\epsilon_j = \frac{\beta_j}{||\beta_i||}$, 有:

$$\beta_j = \alpha_j - \sum_{i=1,\dots,j-1} \frac{\langle \alpha_j, \beta_i \rangle}{\langle \beta_i, \beta_i \rangle} \beta_i = \alpha_j - \sum_{i=1,\dots,j-1} \langle \alpha_j, \epsilon_i \rangle \epsilon_i$$

当 j=1 时 $\beta_1=\alpha_1$. 容易验证, $\langle \beta_i,\beta_j \rangle=0$.

其标准正交基,有:

$$\epsilon_{j} = \frac{\beta_{j}}{||\beta_{j}||} = \frac{\alpha_{j} - \sum_{i=1,\dots,j-1} \langle \alpha_{j}, \epsilon_{i} \rangle \epsilon_{i}}{||\alpha_{j} - \sum_{i=1,\dots,j-1} \langle \alpha_{j}, \epsilon_{i} \rangle \epsilon_{i}||}$$

定理 4.11 (QR-分解). $A \in M_{m \times n}(m > n)$ 中的列向量组 $(\alpha_1, \dots, \alpha_n)$ 线性无关,则其可被唯一分解为

$$A_{m \times n} = Q_{m \times n} R_{n \times n}$$

其中 Q 是列向量组为正交单位向量组的矩阵,R 为主对角元为整数的上三角矩阵. $A \in M_n$ 可逆时,Q 即为单位正交矩阵.

证明.

$$A = (\alpha_{1}, \dots, \alpha_{n})$$

$$= (\beta_{1}, \dots, \beta_{n}) \begin{pmatrix} 1 & b_{12} & \dots & b_{1n} \\ 0 & 1 & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$= (\epsilon_{1}, \dots, \epsilon_{n}) \begin{pmatrix} ||\beta_{1}|| & 0 & \dots & 0 \\ 0 & ||\beta_{2}|| & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & ||\beta_{n}|| \end{pmatrix} \begin{pmatrix} 1 & b_{12} & \dots & b_{1n} \\ 0 & 1 & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & ||\beta_{n}|| \end{pmatrix}$$

$$= (\epsilon_{1}, \dots, \epsilon_{n}) \begin{pmatrix} ||\beta_{1}|| & b_{12}||\beta_{1}|| & \dots & b_{1n}||\beta_{1}|| \\ 0 & ||\beta_{2}|| & \dots & b_{2n}||\beta_{2}|| \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & ||\beta_{n}|| \end{pmatrix}$$

$$= QR$$

其中

$$b_{ij} = \frac{\langle \alpha_j, \beta_i \rangle}{\langle \beta_i, \beta_i \rangle} (i = 1, \dots, j - 1; j = 1, \dots, n), \epsilon_j = \frac{\beta_j}{||\beta_j||}$$

唯一性易证, 略去.

П

这个定理实际上说明了, 在对任意一个矩阵的列向量组做正交化过程中, 相当于使其右乘一个上三角矩阵.

推论 4.12 (正交矩阵的部分性质).

- 1. 考虑上述的 QR-分解, 线性方程组 $A^TAX = A^T\beta(\beta \in \mathbb{R}^m)$ 的唯一解为 $X = R^{-1}Q^T\beta$
- 2. 所有二阶正交矩阵的形式为:

$$\det A = \pm 1 \Leftrightarrow \begin{pmatrix} \cos \theta & \mp \sin \theta \\ \sin \theta & \pm \cos \theta \end{pmatrix}, \theta \in \mathbb{R}$$

- 3. $A \in M_n(\mathbb{R}), (|A| = \pm 1 \lor (n \ge 3, A \ne 0)), (a_{ij} = A_{ij}) \Leftrightarrow (AA^T = I)$
- 4. $\forall \alpha \in \mathbb{R}^n \forall A \in M_n(AA^T = I \Rightarrow ||A\alpha|| = ||\alpha||)$
- 5. 对 $R \perp n$ 阶矩阵, 正交矩阵、对称矩阵和对合矩阵中任意两个条件可推出第三个.
- 6. 对于任意 n 阶正交矩阵 A, 取定任意两行/列, 其上的所有二阶子式的平方和为 1.
- 证明. 1. 由 Q 是正交矩阵, 即 $Q^TQ = I$, 故 $A^TA(R^{-1}Q^T\beta) = (QR)^T(QR)(R^{-1}Q^T\beta) = A^T\beta$, 而 rank $A^TA = \text{rank } A = n$, 故其只有唯一解, 得证.
 - $3. |A| = \pm 1$ 时,

$$A^{T} = A^{-1} = \frac{A^{*}}{|A|} \Leftrightarrow a_{ij} = \frac{A_{ji}^{*}}{|A|} = \frac{A_{ij}}{|A|}$$

 $(n \ge 3, A \ne 0$ 时,

6.

$$\sum_{1 \leq j_1 \leq j_2 \leq n} \left[A \begin{pmatrix} i_1 & i_2 \\ j_1 & j_2 \end{pmatrix} \right]^2 = \sum_{1 \leq j_1 < j_2 \leq n} \left[A \begin{pmatrix} i_1 & i_2 \\ j_1 & j_2 \end{pmatrix} A^T \begin{pmatrix} j_1 & j_2 \\ i_1 & i_2 \end{pmatrix} \right] = AA^T \begin{pmatrix} i_1 & i_2 \\ i_1 & i_2 \end{pmatrix} = 1$$

4.4 Generalized Inverse Matrix(广义逆)

4.4.1 普通的广义逆

广义逆一些具有逆矩阵部分性质的矩阵, 在计算应用有作用.

定义 18 (普通的广义逆). 对于数域 \mathbb{F} 上的 $m \times n$ 阶矩阵 A, 称任意符合条件

$$AXA = A$$

的 $n \times m$ 阶矩阵 X 为 A 的广义逆, 并记为 A^- .

不难看出,广义逆一般不唯一.

证明. 若 $\operatorname{rank}(A) = r \leq \min\{m,n\}$,则通过初等变换有 $PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$.

取 $X = Q \begin{pmatrix} I_r & B \\ C & D \end{pmatrix} P = A^-$, 则可满足定义式, 其中 B, C, D 均为适当大小矩阵.

 $rank(A^{-}) = k$ 时, 可知 rank(D) = k - r, 故:

$$\operatorname{rank}(A) \le \operatorname{rank}(A^-) \le \min\{m, n\}$$

. 而 A 可逆时, 可知 P = Q = I, 故广义逆唯一且 $A^- = A^{-1}$. 且有如下性质:

推论 4.13 (广义逆的性质).

1.
$$(A^T)^- = (A^-)^T$$

2.
$$(\lambda A)^- = \lambda^{-1} A^- (\lambda \neq 0)$$

- 3. P,Q 满秩时, $(PAQ)^- = Q^{-1}A^-P^{-1}$
- 4. $\operatorname{rank}(A) = \operatorname{rank}(AA^{-}) = \operatorname{rank}(A^{-}A)$
- 5. $\operatorname{rank}(A) \leq \operatorname{rank}(A^{-}) \leq \min\{m, n\}$

4.4.2 Moore-Penrose 逆

定义 19 (Moore-Penrose 逆). 对于复数域 \mathbb{C} 上的 $m \times n$ 阶矩阵 A, 称任意符合条件

$$AXA = A;$$
 $XAX = X;$ $(AX)^H = AX;$ $(XA)^H = XA$

的 $n \times m$ 阶矩阵 X 为 A 的 **Moore-Penrose 逆**, 并记为 A^+ .

任意矩阵均有唯一的 Moore-Penrose 逆:

定理 4.14. 对任意复矩阵 A 的满秩分解 A = BC (即 B 和 C 的 rank), 有:

$$A^{+} = C^{T}(CC^{H})^{-1}(B^{H}B)^{-1}B^{H}$$

当 A 可逆时, $A^+ = A^{-1}$

故不加证明的给出下列性质:

推论 4.15 (Moore-Penrose 逆的性质).

- 1. $(A^+)^+ = A$
- 2. $A^+ = A^H (AA^H)^+ = (A^H A)^+ A^H$
- 3. $(AA^H)^+ = (A^H)^+A^+ = (A^+)^HA^+$
- 4. $(A^H A)^+ = A^+ (A^H)^+ = A^+ (A^+)^H$

4.4.3 广义逆在解方程中的应用

对于任意有解/相容的 (consistent) 矩阵方程 $\mathbf{AX} = \mathbf{B}$, 有:

$$\mathbf{X} = A^{-}B + (I - A^{-}A)W$$

其中 W 为任意 $n \times m$ 阶矩阵. $B \neq O$ 时, $\mathbf{X} = A^{-}B$.

由于 $\{A^+\} \in \{A^-\}$, 其对 A^+ 同样有效. 而对任意 (甚至无解的) 线性方程组, 若

$$\exists \mathbf{x_0} \forall \mathbf{x}(||\mathbf{A}\mathbf{x_0} - \mathbf{B}|| \le ||\mathbf{A}\mathbf{x} - \mathbf{B}||)$$

则称 $\mathbf{x_0}$ 为方程的一个**最小二乘解**, 其在有解方程组中即为解.

而最小二乘解一般不唯一, 我们不加证明的给出结论:

$$\min_{x \in x_0} ||x|| = ||A^+B||$$

故 A^+B 被称为最佳最小二乘解.

4.5 Character Value and Character Vector

4.5.1 定义与基本性质

定义 20 (特征值和特征向量). $A \in M_n(K), \exists \alpha \in K^n$:

$$A\alpha = \lambda_0 \alpha, \ \lambda_0 \in K$$

,则称 λ_0 是 A 的一个特征值, α 是 A 的属于 λ_0 的特征向量.

下列描述是等价的, 都是刻画特征值和特征向量的手段:

- 1. λ_0 是 A 的一个特征值, α 是 A 的属于 λ_0 的特征向量
- 2. $A\alpha = \lambda_0 \alpha, \lambda_0 \in K$
- 3. λ_0 是 $|\lambda_0 I A| = 0$ 在 K 中的一个根, α 是齐次线性方程组 $(\lambda_0 I A)\mathbf{X} = 0$ 的一个解将上式变形,可得到:

$$\lambda I - A = \begin{pmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{pmatrix}$$

其为 A 的特征矩阵, $\det(\lambda I - A)$ 为其特征多项式,其所有根即为 A 的所有特征值.显然,每个特征值所对应的特征向量的集合 (或是线性空间) 都是有限个一维不变子空间的直和,我们称其为 A 属于 λ_i 的特征子空间.

定义 21 (重数). 对存在特征值的矩阵 A 中某特征值 λ_i , 称

其几何重数为其特征子空间的维数 $\dim V_{\lambda_i}$,

其代数重数为其特征多项式的根中 λ_i 的重根数, 即其特征多项式中 $(\lambda - \lambda_i)$ 的次数

4.5.2 基本定理和结论

接下来叙述一些比较重要的结论:

定理 4.16. 特征值不同的非零特征向量之间线性无关.

由此, 矩阵 A 的特征值数量不超过 rank A 个.

定理 4.17. 特征值的几何重数不超过其代数重数.

定理 4.18. $A \in M_n(K)$ 的特征多项式 $|\lambda I - A|$ 是一个 n 次多项式, 且

$$f(\lambda) = \sum_{k=0,\dots,n} (-1)^k c_k \lambda^{n-k}$$

$$c_0 = 1$$

$$c_k = \sum_{1 \le i_1 < \dots < i_k \le n} \det \left[A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ i_1 & i_2 & \dots & i_k \end{pmatrix} \right]$$

 c_k 即矩阵中所有 k 阶主子式的和.

特别的, λ^0 和 λ^n 的系数分别为 $(-1)^k |A|$ 和 1.

证明. 将行列式中的每一行分解为:

$$(-a_{i1}, \cdots, -a_{i,i+1}, \lambda - a_{ii}, -a_{i,i+1}, \cdots, -a_{in}) = (0, \cdots, \lambda, \cdots, 0) + (-a_{i1}, \cdots, -a_{in})$$

则可得到 2^n 个分解式, 其中行列式最高项为 k 的式有 C_n^k 个, 其第 i_1, \dots, i_k 列为 $(\lambda \epsilon_{i_1}, \dots, \lambda \epsilon_{i_k})$, 其他的第 i'_1, \dots, i'_{n-k} 列为 $(-\alpha_1, \dots, -\alpha_{n-k})$. 其中 $1 \leq i_1 < \dots < i_k \leq n, \ 1 \leq i'_1 < \dots < i'_{n-k} \leq n, \ \{i_1, \dots, i_k\} \cup \{i'_1, \dots, i'_{n-k}\} = 1, \dots, n$ 利用 Laplace 定理, 我们对第 i_1, \dots, i_k 列展开, 得:

$$(-1)^{(i_1,\dots,i_k)+(i_1,\dots,i_k)}(-A)\begin{pmatrix} i'_1 & i'_2 & \dots & i'_{n-k} \\ i'_1 & i'_2 & \dots & i'_{n-k} \end{pmatrix} \lambda^k = (-1)^k A \begin{pmatrix} i_1 & i_2 & \dots & i_{n-k} \\ i_1 & i_2 & \dots & i_{n-k} \end{pmatrix} \lambda^k$$

得证.

推论 4.19 (特征值的结论).

1. 幂零矩阵的特征值有且仅有 0

2. 幂等矩阵的特征值有:

$$\lambda(A) = \begin{cases} 0 & \text{rank } A = 0 \\ 1, 0 & 0 < \text{rank } A < n \\ 1 & \text{rank } A = n \end{cases}$$

- 3. 可逆矩阵的特征值不为 0; $|A| = 0 \Leftrightarrow A$ 有特征值为 0
- 4. 若 λ 为 A 的一个 l 重特征值, 那么 λ^{-1} 是 A^{-1} 的 l 重特征值, $k\lambda$ 是 kA 的 l 重特征值, λ^m 是 A^m 的至少 l 重特征值.
- 5. 对合矩阵和有特征值的正交矩阵的特征值为-1 或 1. 且对 n 阶正交矩阵 A 有:

$$\begin{cases} |A| = -1 & \Rightarrow -1 \text{ 为其一个特征值} \\ |A| = 1 \land n \text{ is odd} & \Rightarrow 1 \text{ 为其一个特征值} \\ |A| = 1 \land n \text{ is even} & \Rightarrow \text{ 若存在特征值, 则 1 为其中一个} \end{cases}$$

- 6. 两矩阵的左右乘(若均存在)的特征多项式相同,非零特征值(及其重数)相等. 若 α 是 AB 中属于 λ_0 的特征向量,则 $B\alpha$ 是 BA 中属于 λ_0 的特征向量.
- 7. 元素全为 1 的方阵的特征值为 n 和 0, 重数分别为 1 和 n-1
- 8. 对于有限阶多项式 $f(x) \in \mathbf{P}(K)$: 若矩阵 A 存在其特征值 λ_0 , 及其上的特征向量 α , 则在矩阵 f(A) 上有特征值 $f(\lambda_0), \alpha$ 为其上的特征向量.
- 9. \mathbb{C} 上周期为 n 的周期矩阵和 n 阶循环移位矩阵 C 的全部特征值为全部 n 次单位根 $1, \xi^1, \cdots, \xi^{n-1}$ 循环矩阵 $A = a_1 I + a_2 C + \cdots + a_n C^{n-1} = f(C)$ 在复数域上的特征值为 $f(1), f(\xi^1), \cdots, f(\xi^{n-1})$,且

$$|A| = \prod_{i=1,\cdots,n} f(\xi^i)$$

10. Frobenius 矩阵的特征多项式为

$$|\lambda I - A| = \sum_{i=0,\dots,n} a_i \lambda^i \ (a_n = 1)$$

, 其属于特征值 λ_i 的特征向量为 $(\lambda_i^0, \lambda_i^1, \cdots, \lambda_i^{n-1})^T$

证明.

- 2. 若幂等矩阵 A 有特征值 λ , 则由 $A\alpha = \lambda \alpha$, $A^2\alpha = A\lambda\alpha = \lambda^2\alpha$, 故 $\lambda \lambda^2 = 0 \Rightarrow \lambda = 0$ or 1. 下证存在性: 零秩和满秩 (即 A = I) 时易证, 而 0 < rank A < n 时由结论 rank (I A) + rank A = n 可知 |I A| = |A| = 0, 对应项一致, 得证.
- 4. 暂缺
- 5. 暂缺
- 9. 暂缺
- 10. 暂缺

4.6 Similar Matrix and Trace

定义 22 (相似矩阵和可对角化). 对 K 上的 n 阶矩阵 A 和 B, 若存在一 n 阶可逆矩阵 P 使得

$$P^{-1}AP = B$$

成立,则称 A 和 B 相似,记为 $A \sim B$.

当 P 为正交矩阵时, 关系被称为正交相似.

相似关系是 $M_n(K)$ 上的一个等价关系, 其等价类被成为相似类.

若某矩阵相似于一对角矩阵,则称之可对角化

定义 23 (迹). $A \in M_n$, tr $A := \sum a_{ii}$

性质 4.20 (相似矩阵和迹的基本性质).

- 1. $A \sim B \Rightarrow kA \sim kB, A^T \sim B^T$
- 2. $A_1 \sim B_1, \ A_2 \sim B_2 \Rightarrow$

$$(A_1 + A_2) \sim (B_1 + B_2), (A_1 A_2) \sim (B_1 B_2), A_1^m \sim B_1^m, \begin{pmatrix} A_1 & O \\ O & A_2 \end{pmatrix} \sim \begin{pmatrix} B_1 & O \\ O & B_2 \end{pmatrix}$$

- 3. A 可逆, 则 $AB \sim BA$
- 4. $A \sim B \Rightarrow \det A = \det B$, rank $A = \operatorname{rank} B$, tr $A = \operatorname{tr} B$
- 5. $\operatorname{tr}(A+B) = \operatorname{tr}A + \operatorname{tr}B$, $\operatorname{tr}(kA) = k$ $\operatorname{tr}A$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

推论 4.21.

- 1. 对称矩阵只和对称矩阵相似
- 2. 幂等矩阵只和幂等矩阵相似
- 3. 对合矩阵只和对合矩阵相似
- 4. 幂零矩阵只和幂零矩阵相似, 且幂零指数相同.
- 5. 可对角矩阵相似于其转置.
- 6. 若 A 不相似于其他矩阵,则其为数量矩阵.
- 7. 幂等矩阵的秩和迹相等.
- 8. 实对称矩阵间的相似和正交相似等价.
- 9. 相似矩阵的特征多项式和特征值(及其重数)相等
- 10. $[A,B]=A\Rightarrow A$ 不可逆, 且 $\operatorname{tr}\ A^k=0, k\in\mathbb{N}$ n=2 时, $A^2=0$.
- 11. 若 $A \sim B$, 取定某一使 $P_0B = AP_0$ 成立的 P_0 ,

$$\{P|PB = AP\} = \{SP_0|SA = AS\}$$

证明.

4.7 Diagonalize(对角化)

4.7.1 可对角化矩阵

定理 4.22 (可对角化的充要条件). 矩阵 A 可对角

- $:= A \sim \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$
- \Leftrightarrow 存在 K^n 的一个基 (α_i) 和 K 上 n 个数 (λ_i) , 恒成立

$$A\alpha_i = \lambda_i \alpha_i \ (i = 1, \cdot, n)$$

- \Leftrightarrow A 有 n 个线性无关的特征向量 $(\alpha_1, \dots, \alpha_n)$
- $\Leftrightarrow A$ 所有特征值在 K 中, 且其两重数相等

此时向量组的矩阵 $P = (\alpha_1, \dots, \alpha_n)$ 有:

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$$

后者被称为 A 的相似标准形.

证明. $A \sim B = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \Leftrightarrow AP = PB$, 即 $(A\alpha_1, \dots, A\alpha_n) = (\lambda_1\alpha_1, \dots, \lambda_n\alpha_n)$, 而 P 可逆, 故其列向量组线性无关. 故得证.

推论 4.23 (矩阵的可对角性).

1. 任意复矩阵均可对角化

4.7.2 实对称矩阵、正交相似和可对角化

实对称矩阵在可对角化矩阵中有特殊地位,而且在这个过程中,正交相似关系有着独特作用,下面我们来阐述.

定理 4.24. 实矩阵 A 对称 \Leftrightarrow A 正交相似于对角矩阵 \Leftrightarrow A 可对角化

这个定理实际上也说明了, 实对称矩阵中的正交相似和相似关系是等价的.

证明. 由正交矩阵的基本性质 6 可知, 实对称矩阵与且只与实对称矩阵正交相似, 即: 正交相似在实对称矩阵中划分了等价类. 而对角矩阵是实对称矩阵的子集, 且不同的对角矩阵必不相似 (证明略), 故可认为对角矩阵为正交相似关系的商空间中的代表元. 而正交相似是相似的充分条件, 所以顺推得证. 而由相似矩阵的推论可知, 两相似矩阵的特征值相同, 设其为 $\lambda_1, \dots, \lambda_m$, 故两者均正交相似于 diag($\lambda_1, \dots, \lambda_m$), 即其相似标准形, 定理得证.

在上述证明过程中, 所有实对称矩阵由(正交)相似关系所划分的等价类中相似标准形和特征值(及其重数)相同,故可以认为, 这两者都是实对称矩阵的相似关系中的完全不变量.

推论 4.25 (可对角化实矩阵).

- 1. 实对称矩阵可对角化/实对称矩阵有 n 个特征值, 且都是实数
- 2. 实对称矩阵中属于不同特征值的特征向量正交
- 3. 任意实矩阵和其转置的积 AA^{T} 的特征值均为非负实数
- 4. 可对角化实矩阵必正交相似于三角矩阵
- 5. 对可对角化实矩阵 A 若成立 $AA^{T} = A^{T}A$, 则其对称
- 6. 实斜称矩阵的复特征值的实部均为 0
- 7. 主对角元为 1 的实矩阵的复特征值为非负实数,则 det $A \leq 1$
- 8. 对于实斜称矩阵 A, 成立

$$\begin{vmatrix} 2I_n & A \\ A & 2I_n \end{vmatrix} \ge 2^{2n}$$

等号成立时当且仅当 A=0

证明.

实对称矩阵的对角化 实对称矩阵的相似标准形只需求得其所有特征值即可得到. 令每个特征值 λ_j 对应的特征向量,即

 $|\lambda_i I - A| = 0$ 的根为 $\alpha_{i1}, \dots, \alpha_{ir_i}$, 其 Schmidt 正交化得到 $\eta_{i1}, \dots, \eta_{ir_i}$, 则:

4.8 Quadratic Form(二次型) and Congruence(合同)

4.8.1 Congruence

定义 24 (二次型). 数域 K 上的 n 元二次型是指系数在 K 中的 n 个变量二次齐次多项式, 其可被写为:

$$f(x_1, \dots, x_n) = \sum_{i,j=1,\dots,n} a_{ij} x_i x_j$$

$$= a_{11} x_1^2 + 2a_{12} x_1 x_2 + \dots + 2a_{1n} x_1 x_n$$

$$+ a_{22} x_2^2 + 2a_{23} x_2 x_3 + \dots + 2a_{2n} x_2 x_n$$

$$+ \dots + a_{nn} x_n^2$$

其中 $a_{ij} = a_{ji}$, 即矩阵对称.

定义 25 (二次型矩阵).

$$f(x_{1}, \dots, x_{n}) = X^{T}AX$$

$$X = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}, A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

其中后者被称为二次型 $f(x_1,\cdots,x_n)$ 的矩阵, 其主对角元分别为 x_1^2,x_2^2,\cdots,x_n^2 的系数. 若对 n 阶可逆方阵 C 和

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, 存在$$

$$X - CY$$

,则称 $(x_1, \dots, x_n) \to (y_1, \dots, y_n)$ 的一个**非退化线性替换**. 若 C 为正交矩阵,则称此为**正交替换**.

考虑存在这样的非退化线性替换 X = CY 使得

$$X^T A X = (CY)^T A C T = Y^T (C^T A C) Y$$

令 $B = C^T A C$, 则 B 也为变量 y_1, \dots, y_n 的一个二次型, 故也有:

定义 26 (Congruence(合同)). 数域 K 上的 n 元二次型 X^TAX, Y^TBY , 若存在一个非退化线性替换 X = CY 使得

$$X^T A X = Y^T B Y$$

则称两二次型等价, 记为 $X^TAX \cong Y^TBY$.

与之等价的: 若存在一个可逆方阵使得

$$C^T A C = B$$

则称两矩阵合同, 记为 $A \simeq B$.

若二次型等价于某只含平方项的二次型

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

,则称之为前者的标准形.

相应的, 若某方阵合同于某一对角矩阵, 则称之为前者的合同标准形.

很显然, 合同和等价 (二次型的) 关系和相似关系一样, 都是等价关系, 接下来我们揭示他们之间的关系.

定理 4.26. 合同标准形的主对角元为方阵的所有特征值.

1. 证明. 由定理4.24易证之: 二次型的矩阵必然对称, 而对称矩阵均可对角化, 且正交相似于其相似标准形. 而正交矩阵的 逆和转置相同, 故正交相似的相似标准形必为合同标准形, 得证: 所有对称矩阵必然相似且合同于其相似标准形, 且在这种情况下的线性替换必然是正交替换. 作为推论, 每个二次型都可以等价于一标准形.

需要注意的是, 某实对称矩阵的相似标准形只有一个, 且为合同标准形的真子集.

最后, 我们来定义二次型的秩:

定义 27 (二次型的秩). 二次型 X^TAX 的秩即等于其矩阵 A 的秩, 也可以视为其标准形非 0 系数的个数.

推论 4.27.

1.

4.8.2 Sylvester's Law of Inertia(惯性定理)

对于实对称矩阵 A 必存在一个合同标准形

$$D = C^T A C = \operatorname{diag}(d_1, \cdots, d_n)$$

使得 $d_i = 0 \lor \pm 1$, 其被称为 A 的**合同规范形**, 其对应的二次型 $d_1x_1^2 + d_2x_2^2 + \cdots + d_nx_n^2$ 被称为规范形. 其中 0,1,-1 的个数分别记为 n_0, n_+, n_- , 被称为矩阵的零度 $\dim(\ker A)$, 正惯性指数和负惯性指数. 显然成立

$$n_0 + n_+ + n_- = n = n_0 + \text{rank } A$$

而矩阵的符号差定义为 $sgn(A) := n_+ - n_-$.

至于这种合同标准形的存在性是很显然的: 取其相似标准形, 令 $|\lambda_i|^2 x_i^2 = y_i^2$, 得到这样的非奇异线性替换, 即可得.

定理 4.28 (惯性定理). 下列叙述等价:

- 1. 实二次型的规范形唯一
- 2. 实对称矩阵的每个合同类的合同规范性唯一
- 3. 实对称矩阵的合同类中惯性指数不变

证明. 这是不太难证明的: 若存在两个不同的规范形

$$X^{T}AT = d_{1}y_{1}^{2} + \dots + d_{p}y_{p}^{2} - d_{p+1}y_{p+1}^{2} - \dots - d_{r}y_{r}^{2}$$
$$= d_{1}z_{1}^{2} + \dots + d_{q}z_{q}^{2} - d_{q+1}z_{q+1}^{2} - \dots - d_{r}z_{r}^{2}$$

我们取前 $p
ho y_i$ 分别为给定不全为零实数 k_i . 其他均为 0, 此时二次型显然为正, 我们只需证明存在一个非奇异线性替换使得右端为非正. 取最简单的情况: 即前 $q
ho z_i$ 为 0, 即使得:

$$g_{ij}y_i = z_j = 0 \ (i = 1, \dots, p; j = 1, \dots, q)$$

其中两下标 i,j 均为自由指标. 这样的齐次线性方程组在 p < q 时存在非零解, 使得那样的线性替换存在, 这时右端非正, 矛盾, 因此 $p \ge q$. 同理, $p \le q$. 因此两者相等, 即惯性指数相等.

因此,在合同类内惯性指数是不变量,更完全决定了合同类的等价关系,类似于相似关系中的特征值.基于此,我们也可推论出:

推论 4.29. 二次型间等价/实对称矩阵间合同 ⇔ 两者惯性指数相等 ⇔ 两者秩和正惯性指数均相等

对于复矩阵, 显然其规范形中 $d_i = 0 \lor 1$, 故其正惯性系数即其秩, 因此我们知道, 两复对称矩阵合同等价于两者秩相等.

4.8.3 Positive Definite(正定)

定义 28 ((Semi-)Positive Definite and (Semi-)Negative Definite). 对于二次型 X^TAX 或矩阵 A, 对 \mathbb{R}^n 中任意列向量 α 均成立

$$\alpha^T A \alpha \left\{ \begin{array}{l} > \\ \geq \\ \leq \\ < \end{array} \right\} 0$$

则称其为正定/半正定/半负定/负定的.

这里符号的选取所得到的是对实对称矩阵的分类: 我们只需要研究正定矩阵的性质, 就能类似且显然的得到剩下的部分.

性质 4.30 (正定矩阵的性质). n 阶实对称矩阵 A 为正定矩阵:

- 1. ⇔ 二次型 X^TAX 正定
- 2. ⇔ A 的正惯性指数为其阶数
- 3. ⇔ A 合同于对角矩阵
- 4. ⇔ A 特征值均正
- 5. ⇔ A 满秩/非奇异
- 6. ⇔ A 的合同类均为正定矩阵 (也即同阶正定矩阵是一个合同类)
- 7. ⇔ A 所有顺序主子式为正

需要注意的是, 对于负定矩阵, 最后一个性质有所不同:

性质 4.31. 实对称矩阵负定 ⇔ 矩阵的奇数阶顺序主子式小于 0, 偶数阶顺序主子式大于 0.

此性质由矩阵 -A 的正定性易证.