Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(integer, integer), având modelul de flux (i, o):

f(100, 0):-!.

f(I,Y):-J is I+1, f(J,V), V>2, !, K is I-2, Y is K+V-1.

f(I,Y):-J is I+1, f(J,V), Y is V+1.

Rescrieți această definiție pentru a evita apelul recursiv **f(J,V)** în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

C. Să se scrie un program PROLOG care generează lista aranjamentelor de **k** elemente dintr-o listă de numere întregi, având o sumă **S** dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista [6, 5, 3, 4], $k=2 \text{ şi } S=9 \Rightarrow [[6,3],[3,6],[5,4],[4,5]]$ (nu neapărat în această ordine)

D. Se dă o listă neliniară şi se cere înlocuirea valorilor numerice care sunt mai mari decât o valoare k dată şi sunt situate pe un nivel impar, cu numărul natural predecesor. Nivelul superficial se consideră 1. Se va folosi o funcție MAP.

 <u>Exemplu</u> pentru lista (1 s 4 (3 f (7))) și
 a) k=0 va rezulta (0 s 3 (3 f (6)))
 b) k=8 va rezulta (1 s 4 (3 f (7)))