UFR Maths Info 2019-2020

EXAMEN

Élément de Calculs Scientifiques

L3 SI

Durée: 02 H 00

EXERCICE 1 :

Soit la différence centrée : $f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$.

- 1. Obtenir l'ordre de cette approximation en utilisant les développements de Taylor appropriés (conserver les termes jusqu'au degré 7 dans les développements de Taylor de façon à en déduire les 2 premiers termes de l'erreur).
- 2. Utiliser cette formule de différence pour obtenir une approximation de f''(2,0) pour la fonction tabulée suivante, en prenant d'abord h = 0, 2 et ensuite h = 0, 1.
 - x f(x)
 - 1,8 1,5877867
 - 1,9 1,6418539
 - 2,0 1,6931472
 - 2,1 1,7419373
 - 2,2 1,78884574
- 3. À partir des 2 approximations obtenues dans la deuxième question, obtenir une nouvelle approximation de f''(2,0) qui soit plus précise. Préciser l'ordre de cette nouvelle approximation.
- 4. Évaluer $\int_{2,2}^{1,8} f(x)dx$ par la méthode des trapèzes et préciser l'ordre de chaque approximation obtenue.

EXERCICE 2 :

Donner l'ordre des formule suivantes :

1.
$$f^{(4)}(x) = \frac{f(x+2h) - 4f(x+h) + 6f(x) - 4f(x-h) + f(x-2h)}{h^4}.$$

2.
$$f'(x) = \frac{3f(x) - 4f(x-h) + f(x-2h)}{2h}$$
.

EXERCICE 3:

Comparer les résultats par les méthodes de Simpson 1/3 et de rectangle de l'intégrale numérique de la fonction $f(x) = e^{-2x^2}$ sur l'intervalle [0; 1]. On prendra 3 intervalles cela veut dire qu'il faut 4 points de collocation.