Théorie des langages rationnels : THLR CM 1

Uli Fahrenberg

EPITA Rennes

Septembre 2021

Ouverture culturelle C'est quoi ce cours?

- fondements algébriques de l'informatique
- fondements de la calculabilité
- ouverture scientifique
- la qualité fondamentale d'un chercheur :

Ouverture culturelle C'est quoi ce cours?

- fondements algébriques de l'informatique
- fondements de la calculabilité
- ouverture scientifique
- la qualité fondamentale d'un chercheur : la curiosité

Langages :

- de programmation
- naturelles
- en bio-informatique, etc.

Langages :

- de programmation
- naturelles
- en bio-informatique, etc.
- qu'est-ce que : syntaxe, sémantique

Langages :

Aperçu

0000000

- de programmation
- naturelles
- en bio-informatique, etc.
- qu'est-ce que : syntaxe, sémantique

Mots:

Langages:

Apercu

0000000

- de programmation
- naturelles
- en bio-informatique, etc.
- qu'est-ce que : syntaxe, sémantique

Mots:

- suite finie de symboles
- while, my_var_336, Schallplattenabspielgerät, **ACTAAGGT**

Expressions rationnelles:

• [a-zA-Z][a-zA-Z0-9]*

Un peu (!) de précision

Symbole:

- notion axiomatique (on s'en fout de ce que c'est)

Mot:

- suite finie de symboles
- a, abba, abracadabra, jenesaispasquoimaisilfautdubeurresurlepain
- finie, mais sans limite fixe de longueur
- "Ich bin ein Berliner", "for x in range(5)" ← pas souvent

Langage:

- ensemble de mots
- peut être fini (même vide!), mais normalement infini

.. et pourquoi rationnel?

complexité langages fini finger in the nose facile langages rationnels langages algébriques gérable langages contextuels langages récursifs machines de Turing langages récursivement énumerables toute autre chose

Une démonstration

Définition

Un langage L est récursivement énumerable s'il existe un algorithme qui énumère tout les mots de L.

```
Exemple: x = 2
    while true:
        if isprime(x): print(x)
        x += 1
```

Une démonstration

Définition

Un langage L est récursivement énumerable s'il existe un algorithme qui énumère tout les mots de L.

Théorème

Il existe un langage qui n'est pas récursivement énumerable.

Démonstration.

- L'ensemble de tous algorithmes est dénombrable. (Pourquoi ? Qu'est-ce que ?)
- Chaque algorithme n'énumère guère qu'un langage.
- ① L'ensemble de langages n'est pas dénombrable. (Pourquoi?)

et pourquoi?

Apercu

00000000

Des applications :

- le parsage
 - expressions rationnelles
 - grep 'a.*io.*e.*e' thlr1.txt
- la compilation
 - analyse lexicale
 - analyse syntaxique
- la bio-informatique
 - analyse de mutations
 - « Ève mitochondriale »
- la traduction automatique

Pour en finir (la première partie)

Définition

Un algorithme A décide un langage donné L si, pour chaque mot w en entrée, A répond « OUI » si $w \in L$ et « NON » si $w \notin L$.

Exercice (5 mn)

- Trouver un algorithme simple qui décide le langage de tous les mots qui commencent par ab :
 - $L = \{ab, aba, abb, abaa, abab, abba, \dots\}$
- Trouver un algorithme simple qui décide le langage de tous les mots qui se terminent par ab :

$$L = \{ab, aab, bab, aaab, abab, baab, \ldots\}$$

Infos pratiques

La semaine

Les notes

Seront notés :

- les 4 QCM
- un des 4 DM (choisi aléatoirement)
- l'examen final (encore un QCM)

L'équipe

Uli Fahrenberg CM, responsable

Maxime Bridoux TD, TP

Tom Bachard TP

Programme d'aujourd'hui

- Symboles, mots, langages
- L'algèbre de langages
- Opérations, relations et distances sur mots

Programme du cours

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation

Le poly

F. Yvon, A. Demaille, Théorie des langages rationnels

- cours ⊊ shuffle(chapitres 1-4)
- aujourd'hui : chapitre 2, moins 2.3.2, 2.3.5, 2.4.4
- https://www.lrde.epita.fr/~uli/thlr/
- (aussi pour les sujets TD, TP, DM et les planches)

Symboles, mots, langages

Symboles, mots, langages : de la précision

Soit Σ un ensemble fini.

- \bullet on appelle Σ un alphabet
- et les éléments $a, b, \ldots \in \Sigma$ des symboles

On dénote Σ^* l'ensemble de tous les suites finies d'éléments de Σ .

- $\bullet \ \mathsf{donc} \ \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{n \geq 0} \Sigma^n$
- on appelle les éléments $u, v, w, ... \in \Sigma^*$ des mots
- on écrit des mots aabab (par exemple) au lieu de (a, a, b, a, b)

Un langage est un sous-ensemble $L \subseteq \Sigma^*$.

L'algèbre de mots

Il y a une opération binaire sur Σ^{\ast} :

L'algèbre de mots

Il y a une opération binaire sur Σ^* :

Définition

La concaténation de deux mots $a_1 ldots a_n$ et $b_1 ldots b_m$ est le mot $a_1 ldots a_n b_1 ldots b_m$.

on utilise le symbole « . » si besoin; sinon, rien

Voici les propriétés de la concaténation :

L'algèbre de mots

Il y a une opération binaire sur Σ^* :

Définition

La concaténation de deux mots $a_1 ldots a_n$ et $b_1 ldots b_m$ est le mot $a_1 ldots a_n b_1 ldots b_m$.

• on utilise le symbole « . » si besoin; sinon, rien

Voici les propriétés de la concaténation :

Théorème

L'opération « . » est associative et a le mot vide comme élément neutre de deux côtés.

- on utilise ε pour le mot vide
- donc u(vw) = (uv)w, $u.\varepsilon = u$ et $\varepsilon.u = u$ pour tout $u, v, w \in \Sigma^*$
- pas commutative

L'algèbre de langages

Opérations ensemblistes

Opérations ensemblistes

$$L_1 \cup L_2 = \{ u \in \Sigma^* \mid u \in L_1 \text{ ou } u \in L_2 \}$$

$$L_1 \cap L_2 = \{ u \in \Sigma^* \mid u \in L_1 \text{ et } u \in L_2 \}$$

$$\overline{L} = \{ u \in \Sigma^* \mid u \not\in L \}$$

Opérations ensemblistes

$$L_1 \cup L_2 = \{ u \in \Sigma^* \mid u \in L_1 \text{ ou } u \in L_2 \}$$

 $L_1 \cap L_2 = \{ u \in \Sigma^* \mid u \in L_1 \text{ et } u \in L_2 \}$
 $\overline{L} = \{ u \in \Sigma^* \mid u \not\in L \}$

Concaténation

$$L_1.L_2 = \{u_1 \ u_2 \mid u_1 \in L_1, u_2 \in L_2\}$$

 $L^n = L \cdots L \quad (n \text{ copies de } L)$

Opérations ensemblistes

$$L_1 \cup L_2 = \{ u \in \Sigma^* \mid u \in L_1 \text{ ou } u \in L_2 \}$$

$$L_1 \cap L_2 = \{ u \in \Sigma^* \mid u \in L_1 \text{ et } u \in L_2 \}$$

$$\overline{L} = \{ u \in \Sigma^* \mid u \not\in L \}$$

Concaténation

$$L_1.L_2 = \{u_1 \ u_2 \ | \ u_1 \in L_1, u_2 \in L_2\}$$

 $L^n = L \cdots L \quad (n \text{ copies de } L)$

Étoile de Kleene

$$L^* = L^0 \cup L_1 \cup L^2 \cup \dots = \bigcup_{n > 0} L^n$$

L'algèbre de langages

Théorème

L'opération « . » sur langages est associative et a le langage $\{\varepsilon\}$ comme élément neutre de deux côtés.

- donc $L_1(L_2L_3) = (L_1L_2)L_3$, $L.\{\varepsilon\} = L$ et $\{\varepsilon\}.L = L$
- pas commutative
- aussi, $L.\emptyset = \emptyset$ et $\emptyset.L = \emptyset$

Théorème

$$\Sigma^* = \Sigma^*$$
.

- (ce n'est pas une tautologie)
- aussi, $\emptyset^* = \{\varepsilon\}$, en fait $\varepsilon \in L^*$ pour chaque L

5 minutes de réflexion

Vrai ou faux?

- ② $\{a\}^n = \{a^n\}$
- $\{a\}^* = \{a^n \mid n \ge 0\}$
- $\{a,b\}^n = \{a^n,b^n\}$
- $(L_1 \cup L_2)^2 = L_1^2 \cup L_1 L_2 \cup L_2 L_1 \cup L_2^2$
- $L_1.(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$

5 minutes de réflexion

Vrai ou faux?

$$\{a\}^n = \{a^n\}$$

$$\{a\}^* = \{a^n \mid n \ge 0\}$$

$$\{a,b\}^n = \{a^n,b^n\}$$

$$\{a,b\}^3 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$$

$$(L_1 \cup L_2)^2 = L_1^2 \cup L_1 L_2 \cup L_2 L_1 \cup L_2^2$$

$$L_1.(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$$

Opérations sur mots

Longueur d'un mot

Définition

La longueur |u| d'un mot $u \in \Sigma^*$ correspond au nombre de symboles de u.

- (pas « dans », mais « de » : |ababa| = 5)
- donc $|\varepsilon| = 0$ et |uv| = |u| + |v|
- aussi, |u| = 0 ssi $u = \varepsilon$
- et |u| = 1 ssi $u \in \Sigma$

Notation

On dénote u^n la concaténation de n copies de $u \in \Sigma^*$.

- donc $(abc)^3 = abcabcabc$
- définition récursive : $u^0 = \varepsilon$ et $u^{n+1} = u u^n$
- aussi, $|u^n| = n|u|$

Préfixe, suffixe, facteur

Définition

Soit $u, v \in \Sigma^*$, alors u est un préfixe de v ssi il existe $w \in \Sigma^*$ tel que uw = v.

• des préfixes de tomate :

{ t, to, tom, toma, tomat, tomate}

Préfixe, suffixe, facteur

Définition

Soit $u, v \in \Sigma^*$, alors u est un préfixe de v ssi il existe $w \in \Sigma^*$ tel que uw = v.

• des préfixes de tomate :

 $\{\varepsilon, t, to, tom, toma, tomat, tomate\}$

Préfixe, suffixe, facteur

Définition

Soit $u, v \in \Sigma^*$, alors u est un préfixe de v ssi il existe $w \in \Sigma^*$ tel que uw = v.

• des préfixes de tomate :

 $\{\varepsilon, t, to, tom, toma, tomat, tomate\}$

Définition

Soit $u, v \in \Sigma^*$, alors

- u est un suffixe de v ssi $\exists w \in \Sigma^* : wu = v$;
- u est un facteur de v ssi $\exists w_1, w_2 \in \Sigma^* : w_1 u w_2 = v$.

Préfixe, suffixe, facteur, 2.

Pour un langage $L\subseteq \Sigma^*$ on note le langage de préfixes de L par

$$Pref(L) = \{u \in \Sigma^* \mid \exists v \in L : u \text{ préfixe de } v\}$$

- donc $Pref(\{tomate\}) = \{\varepsilon, t, to, tom, toma, tomat, tomate\}$
- même chose pour Suff(L) et Fact(L)

Vrai ou faux? (5 mn)

- Fact(L) = Pref(L) \cup Suff(L)

- \bigcirc Pref(Fact(L)) = Fact(L)
- \bigcirc Pref(Suff(L)) = Suff(Pref(L)) = Fact(L)

Distances entre mots

Préfixe, suffixe, facteur, 2.

Pour un langage $L \subseteq \Sigma^*$ on note le langage de préfixes de L par

$$Pref(L) = \{ u \in \Sigma^* \mid \exists v \in L : u \text{ préfixe de } v \}$$

- donc $Pref(\{tomate\}) = \{\varepsilon, t, to, tom, toma, tomat, tomate\}$
- même chose pour Suff(L) et Fact(L)

Vrai ou faux? (5 mn)

$$\bigcirc$$
 Pref(Pref(L)) = Pref(L)

Pref(Fact(
$$L$$
)) = Pref(L)

$$\bigcirc$$
 Pref(Fact(L)) = Fact(L)

Relations d'ordre sur mots

L'ordre de préfixe

Écrivons $u \leq_p v$ si u est un préfixe de v

• donc
$$\operatorname{Pref}(L) = \{u \in \Sigma^* \mid \exists v \in L : u \leq_p v\}$$

La relation \leq_p sur mots est

$$u \leq_p u$$

$$u \leq_p v$$
 et $v \leq_p w \Rightarrow u \leq_p w$

$$u \leq_p v \text{ et } v \leq_p u \Rightarrow u = v$$

• $tom \leq_p tomate$, mais $tomate \not\leq_p patate$ et $patate \not\leq_p tomate$

L'ordre lexicographique

L'ordre lexicographique $\hat{=}$ l'ordre du dictionnaire :

- $tom \leq_l tomate \leq_l tupac \leq_l ukulele$
- un ordre totale

Définition

Soit \leq un ordre totale sur Σ et $u, v \in \Sigma^*$, alors on écrit $u \leq_l v$ si

- $u \leq_p v$ ou
- 0

L'ordre lexicographique

L'ordre lexicographique \(\hat{=}\) l'ordre du dictionnaire :

- $tom \leq_l tomate \leq_l tupac \leq_l ukulele$
- un ordre totale

Définition

Soit \leq un ordre totale sur Σ et $u, v \in \Sigma^*$, alors on écrit $u \leq_l v$ si

- $u \leq_p v$ ou
- $\bullet \exists a, b \in \Sigma, w, u', v' \in \Sigma^* \text{ t.g. } u = wau', v = wbv' \text{ et } a \leq b$

L'ordre lexicographique

L'ordre lexicographique $\hat{=}$ l'ordre du dictionnaire :

- $tom \leq_l tomate \leq_l tupac \leq_l ukulele$
- un ordre totale

Définition

Soit \leq un ordre totale sur Σ et $u, v \in \Sigma^*$, alors on écrit $u \leq_l v$ si

- $u \leq_p v$ ou
- $\exists a, b \in \Sigma, w, u', v' \in \Sigma^*$ t.q. u = wau', v = wbv' et $a \le b$

Problèmes théorique : l'ordre \leq_I

- n'est pas compatible avec la concaténation : $a \le_l ab$ mais $ab.c \le_l a.c$
- n'est pas nœthérien / pas bien fondé : il existe des suites infinies strictement décroissantes
 - par exemple, $b \ge_l ab \ge_l aab \ge_l aaab \ge_l \cdots$

L'ordre radiciel

L'ordre radiciel, ou militaire :

Définition

Soit \leq un ordre totale sur Σ et $u, v \in \Sigma^*$, alors on écrit $u \leq_r v$ si

- |u| < |v| ou
- |u| = |v| et $u \leq_l v$
- compatible avec la concaténation
- nœthérien
- mais pas compatible avec l'ordre lexicographique

L'ordre radiciel

L'ordre radiciel, ou militaire :

Définition

Soit \leq un ordre totale sur Σ et $u, v \in \Sigma^*$, alors on écrit $u \leq_r v$ si

- |u| < |v| ou
- |u| = |v| et $u \leq_I v$
- compatible avec la concaténation

$$u \leq_r v \Rightarrow uw \leq_r vw \text{ et } wu \leq_r wv$$

nœthérien

$$u_1 \ge_r u_2 \ge_r u_3 \ge_r \cdots \Rightarrow \exists m : \forall n \ge m : u_n = u_m$$

• mais pas compatible avec l'ordre lexicographique par exemple, $b \le_r ab$ mais $ab \le_l b$

Distances entre mots

Notons plpc(u, v) le plus long préfixe commun entre mots u et v

Notons plpc(u, v) le plus long préfixe commun entre mots u et v

$$\mathsf{plpc}(u, v) = \mathsf{max}_{\leq_p} \{ w \in \Sigma^* \mid w \leq_p u \text{ et } w \leq_p v \}$$
$$= \mathsf{max}_{\leq_p} \left(\mathsf{Pref}(\{u\}) \cap \mathsf{Pref}(\{v\}) \right)$$

Notons plpc(u, v) le plus long préfixe commun entre mots u et v

$$\mathsf{plpc}(u, v) = \mathsf{max}_{\leq_p} \{ w \in \Sigma^* \mid w \leq_p u \text{ et } w \leq_p v \}$$
$$= \mathsf{max}_{\leq_p} \left(\mathsf{Pref}(\{u\}) \cap \mathsf{Pref}(\{v\}) \right)$$

Définition

La distance préfixe entre mots $u, v \in \Sigma^*$ est

$$d_p(u,v) = |uv| - 2|\mathsf{plpc}(u,v)|.$$

Propriétés :

- positivité
- séparation
- symétrie
- inégalité triangulaire
- \Rightarrow d_p est, en fait, une distance

Notons plpc(u, v) le plus long préfixe commun entre mots u et v

$$\mathsf{plpc}(u, v) = \mathsf{max}_{\leq_p} \{ w \in \Sigma^* \mid w \leq_p u \text{ et } w \leq_p v \}$$
$$= \mathsf{max}_{\leq_p} \left(\mathsf{Pref}(\{u\}) \cap \mathsf{Pref}(\{v\}) \right)$$

Définition

La distance préfixe entre mots $u, v \in \Sigma^*$ est

$$d_p(u,v) = |uv| - 2|\mathsf{plpc}(u,v)|.$$

Propriétés :

- positivité
- séparation
- symétrie
- inégalité triangulaire
- \Rightarrow d_p est, en fait, une distance

$$d_p(u,v)\geq 0$$

$$d_p(u,v)=0 \iff u=v$$

$$d_p(u,v)=d_p(v,u)$$

$$d_p(u,w) \leq d_p(u,v) + d_p(v,w)$$

La distance d'édition

Des opérations élémentaires sur mots, pour $u,v\in\Sigma^*$ et $a\in\Sigma$:

- insertion : $uv \xrightarrow{+a} uav$
- suppression : $uav \xrightarrow{-a} uv$

Définition

La distance d'édition (ou de Levenshtein) entre $u, v \in \Sigma^*$ est la longueur minimale d'une séquence d'opérations élémentaires entre u et v.

Exemple :
$$tomate \xrightarrow{-e} tomat \xrightarrow{-o} tmat \xrightarrow{+u} tumat \xrightarrow{-m} tuat \xrightarrow{+p} tupat \xrightarrow{-t} tupa \xrightarrow{+c} tupac \Rightarrow distance \leq 7$$

Applications:

- GNU diff
- correcteurs orthographique
- reconnaissance de texte
- analyse de mutations (!)

