O desenvolvimento da questão é o mais importante. Defina as variáveis aleatórias e suas distribuições e diga que teorema ou propriedade você utilizou.

Resolva 4 questões (à sua escolha). Cada questão vale 2,5 pontos.

- 1. Sejam as hipóteses $H_0: \theta=1/2$ e $H_1: \theta=2/3$ sendo θ a probabilidade de sucesso em um experimento de Bernoulli. O experimento é repetido 2 vezes e aceita-se H_0 se forem obtidos 2 sucessos. Calcule as probabilidades de erro tipo I e II.
- 2. Uma v.a. X é tal que $f(x|\theta) = (1-\theta)\theta^{x-1}$, para $x \in \{1,2,\ldots\}$ e $\theta \in (0,1)$. Encontre uma região crítica para testar $H_0: \theta = 3/4$ contra $H_1: \theta = 2/3$ com base em um único valor de X e que satisfaça $\alpha \leq 0,5$.
- 3. Dispõe-se de uma amostra aleatória de tamanho 50 da v.a. $X \sim N(\mu, 25)$. Sabendo que a média amostral foi $\bar{x} = 28$ teste $H_0: \mu = 30$ contra $H_1: \mu = 29$ com $\alpha = 0, 05$.
- 4. A proporção X de itens defeituosos em um lote tem função de densidade $p(x|\theta) = \theta x^{\theta-1}$, para $\theta > 0$ desconhecido. Para uma amostra aleatória de 10 lotes, construa um teste UMP para as hipóteses $H_0: \theta \leq 1 \times H_1: \theta > 1$ com nível de significância $\alpha = 0,05$.
- 5. Os tempos de falha de um tipo de componente eletrônico seguem uma distribuição $\operatorname{Gama}(\theta,1)$ com θ desconhecido. Foi obtida uma amostra de 10 tempos de falha e queremos testar $H_0:\theta\geq 1 \times H_0:\theta<1$ ao nível de significância 0,05. Obtenha o teste UMP.
- 6. Assinale verdadeiro ou falso (neste caso justifique). Cada item vale 0,5.
 - (a) Se a distribuição dos dados for discreta não é possível construir um teste UMP para o parâmetro desconhecido.
 - (b) Para as hipóteses gerais $H_0: \theta \in \Theta_0 \times H_1: \theta \in \Theta_1$, a probabilidade de H_0 ser verdadeira é igual ao p-valor.
 - (c) A função poder é a probabilidade de H_0 ser falsa.
 - (d) A razão de máxima verossimilhança só pode ser obtida se os dados tem distribuição normal.
 - (e) A função poder de um teste é sempre estritamente crescente ou decrescente.