SELECTED -2 PRESENTATION

ALI EHAB ALI YOUSEF NEHAD AHMED ALI NOURELDEIN NEHAL ASHRAF ELSAYED ELSAYD MOHAMED ASHRAF ABDELAZIZ IBRAHIM MOHAMED HASSAN ALI AMEN HENDY **OMAR ABDEL NASSER TAWFIK ADAM HESHAM MAHMOUD IBRAHIM NOURHAN MOUHAMED RADWAN**

201900916

ARCHITECTURE USED IN THE PAPER

TABLE 2. Specification of CNN configuration.

Input: 500000*3072		
Hiden1 Layer	conv	Size 5*5; quantity: 64; method: same
	ReLU	Max(0,x)
	Max Pooling	Size: 3*3; stride:2
	Batch Norm	alpha=0.001 / 9.0, beta=0.75
Hiden2 Layer	conv	Size: 5*5; quantity: 64; method: same
	ReLU	Max(0,x)
	Max Pooling	Size: 3*3, stride:2
	Batch Norm	alpha=0.001 / 9.0, beta=0.75
Hiden3 Layer	Full connect	Weight size: [1228, 384]
	ReLU	Max(0,x)
	Dropout	Probability of activation: 0.5
Hiden4 Layer	Full connect	Size of weight: [384, 192]
Output Layer	Softmax	Size of weight: [192, 10]

TABLE 3. Configuration of adaboost.

Input	Use the feature extraction data of the convolution network: [50000,192]
Softmax1	Size of weight: [192, 10]
Softmax2	Size of weight: [192, 10]
Softmax3	Size of weight: [192, 10]
Softmax4	Size of weight: [192, 10]
Softmax5	Size of weight: [192, 10]
Softmax6	Size of weight: [192, 10]
Softmax7	Size of weight: [192, 10]
Output	Results of weight voting of
	the categories

DATASET DETAILS

Rock-Paper-Scissors

https://drive.google.com/drive/folders/1ERpc8o3Z1o8srtvMkmrQKGf-5 1ZdiJH?usp=sharing

Total number of samples: 2892 sample.

the dimension of images: (227, 227, 1).

number of classes: (3).

their labels:

1-paper

2-scissors

3-rock

CIFAR-10

https://www.cs.toronto.edu/~kriz/cifar.html

Total number of samples: 60000 sample.

the dimension of images: (32, 32, 3).

number of classes: (10).

their labels:

(1-airplane, 2-automobile ,3-bird, 4-cat ,5-deer ,6-dog, 7-frog ,8-horse, 9-ship, 10-truck)

IMPLEMENTATION DETAILS

CIFAR-10

Training (83.3%=50000 image), validation (16.67%=10000) and testing (16.67%=10000).

Rock-Paper-Scissors

Training (87.13%=2520 image), validation (0) and testing (12.86%=372).

ROCK-PAPER-SCISSORS MODEL

```
model = models.Sequential()
model.add(Input(shape=(227, 227, 1)))
model.add(Conv2D(filters=64, kernel_size=(3,3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool size=(3,3)))
model.add(Conv2D(filters=64, kernel_size=(3,3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(3,3)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(3, activation = "softmax"))
```

CIFAR-10 MODEL

```
model = Sequential()
# Convolutional Layer
model.add(Conv2D(filters=32, kernel size=(3, 3), input shape=(32, 32, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(filters=32, kernel_size=(3, 3), input_shape=(32, 32, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
# Pooling layer
model.add(MaxPool2D(pool size=(2, 2)))
# Dropout layers
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel size=(3, 3), input shape=(32, 32, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(filters=64, kernel size=(3, 3), input shape=(32, 32, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=128, kernel_size=(3, 3), input_shape=(32, 32, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(filters=128, kernel size=(3, 3), input shape=(32, 32, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
# model.add(Dropout(0.2))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(10, activation='softmax'))
```

RESULTS AND VISUALIZATION

CIFAR-10 RESULT

ROCK-PAPER-SCISSORS MODEL RESULT


```
# Train
loss, acc = model.evaluate(x_train, y_train)
print('Train')
print(f'loss : {loss}')
print(f'acc : {acc*100}')
Train
loss: 2.922998589838244e-07
acc : 100.0
# Test
loss, acc = model.evaluate(xtest, np_utils.to_categorical(ytest))
print('Test')
print(f'loss : {loss}')
print(f'acc : {acc*100}')
Test
loss: 0.04873378947377205
acc: 99.53917264938354
```

#plot the accuracy history_df = pd.DataFrame(history.history) plt.plot(history_df['accuracy'], label='accuracy') plt.legend();


```
#plot the loss
history_df = pd.DataFrame(history.history)
plt.plot(history_df['loss'], label='loss')
plt.legend()
<matplotlib.legend.Legend at 0x7f955f7595d0>
12
                                           - loss
10
 8
 6
 4
 2
                   10
                           15
                                   20
                                          25
     0
                                                  30
```