	10	E SPERY	× .
1	1/2		133
		S.	順
	1	g A	
1	V	A.	//
	6.4	76	2

UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE CIENCIAS

The second second second second	- B -
CALIFICAC	
CALIFICAC	IUN

CALIFICACION				
Preg N°	Puntos			
1	A			
2				
3	-			
4	5			
5				
6				

curso Cálculo integral con curso	CM - 132
COD. CURSO	

PRACTICA Calificada Nº2 SECCIÓN

APELLIDOS Y NOMBRES (Alumno)

CODIGO

FIRMA

Lima, de Septiembre del 2017

NOTA

Nombre del Profesor

Firma del Profesor

Total

1. Sea f una función acotada definida por:

$$f(x) = \begin{cases} \chi + 2 & \chi \in [-1,1] \\ \sqrt{1 - (\chi - 1)^2} & \chi \in [1,2[\\ \chi^2 - 1 & \chi \in [2,3[\\ 7 & \chi = 3 \end{cases} & \chi \in [2,3[\\ 1 - 1 & 0 \\ 1 & 1 \end{bmatrix}$$

 $y = \{-1, 0, 0, 5, 1, 1, 5, 2, 3\}$ una partición del intervalo [-1,3]. Definimos:

_	_	2 /3	2
i	Xi-s	Xi	DXK
1	-1	0	1
2	0	0,5	0,5
3	0,5	1	0,5
4	1	1,5	0,5
5	1,5	2	0,5

 $m_i:=\inf\{f(x):x_i \leqslant x_i \leqslant x_i\}$ $M_i:=\sup\{f(x):x_i \leqslant x_i\} \forall i=1,...,n.$

En nuestro caso, para la partición escogida n=6.

a) $m_1 = \inf \{f(x): -1 \le x \le 0\} = \inf \{x+2: -1 \le x \le 0\} = \inf [1,2] = 1$.

 $M_2 = \inf \{ f(x) : 0 \le x \le 0, 5 \} = \inf \{ x + 2 : 0 \le x \le 0, 5 \} = \inf \{ 2, 2, 5 \} = 1$. $M_3 = \inf \{ f(x) : 0, 5 \le x \le 1 \} = \inf \{ x + 2 : 0, 5 \le x \le 1 \} = \inf \{ 2, 2, 5 \} = 2$ M3 = inf | f(x): 0,5 < x < 1 | = inf | x + 2: 0,5 < x < 1 | = inf [2,5,3]

m4=inf | f(x): 15x < 1,5 = inf | \(\sqrt{1-(x-1)^2}; \sqrt{15x < 1,5} = inf [\frac{1}{3}, \sqrt{1} = \(\frac{1}{3} \)

M5 = inf | f(x): 1,5 \(\cdot \cdot 2) = inf | \sqrt{3-(x-1)^2}: 1,5 \(\cdot \cdot 2) = inf [0, \sqrt{3}] = 0. M6 = inf | f(x): 2 { x { 3}} = inf | x-1: 2 { x { 3 v 7: x = 3} = inf [3,8] = 3.

b) M1 = Sup {f(x): -1 \(\times 0 \) = Sup {\(\times 1 - 1 \(\times 0 \) = Sup [\(1,2 \)] = 2. M2 = SUP & f(x): 0 \(x \le 0,5 \) = SUP \(\text{x+2:0} \le x \le 0,5 \] = SUP [2;2,5] = 2,5. M3 = Sup { f(x): 0,5 & x & 1] = Sup { x+2:0,5 < x < 1} = Sup [2,5;3]=3. $M_4 = Sup \ f(x): 1 \le x \le 1,5] = Sup \left\{ \sqrt{1-(x-1)^2} : 1 \le x \le 1,5] = Sup \left[\frac{\sqrt{3}}{2},1 \right] = 1.$ $M_5 = SUP \left\{ f(x): 1.5 \le x \le 2 \right\} = SUP \left\{ \sqrt{1 - (x-1)^2}: 1.5 \le x \le 2 \right\} = SUP [0, \frac{1}{2}] = \frac{1}{2}$ M6 = SUP { f(x): 2 < x < 3 } = SUP | X=1: 2 < x < 3 \ 7: x = 3 | = SUP [3,8] = 8. *La integral definida Sf podemos aproximarlo como 1 [U(f, P)+L(f, P)]. Se define la suma superior e inferior respectivamente: $U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i$ $L(f, p) = \sum_{i=1}^{n} m_i \Delta x_i$ οθ U(f, P) = M1 ΔX4 + M2 ΔX2 + M3 ΔX3+ M4 ΔX4 + M5 ΔX5+ M6 ΔX6 $=2.1+2.5.0.5+3.0.5+1.0.5+\frac{13}{2}.0.5+8.1$ = 13,68. X 14,75 οο L(I,P) = M3 DX3 + M2 DX2 + M3 DX3 + M4 DX4 + M5 DX5 + M6 DX6 $= 1.1 + 2.0,5 + 2.5.0,5 + \sqrt{3}.0,5 + 0.0,5 + 3.1$ $= 6.68 \times \sqrt{0.93}$ Luego, la integral definida Sf es aproximadamente igual a 1 [13,68+6,68] La cota de error de la integral definida SF es 1 [U(f,P)-L(f,P)], Respuesta: $\int_{-1}^{3} f \approx 10,18$. Cota de error: 3,5.

$$\begin{array}{c} \circ \circ A_{3} = \mathcal{R}(f_{3}, P_{3}) = Lim \sum_{N \to \infty}^{n} f_{3}(x_{n}^{*}) \Delta x_{n} = Lim \sum_{N \to \infty}^{n} (-3x_{n}^{*} + 7) \frac{1}{n} , \text{ dende } x_{n} = 1 + \frac{1}{n} \\ A_{1} = Lim \sum_{N \to \infty}^{n} (-3 - \frac{3}{n} + 7) \frac{1}{n} = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \sum_{k=1}^{n} (4 - \frac{3}{n} + 7) = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \sum_{k=1}^{n} 1 - 3 \sum_{k=1}^{n} x_{k} \right] \\ A_{1} = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot n - \frac{3}{n} \sum_{k=1}^{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N \to \infty}^{n} \frac{1}{n} \left[4 \cdot \frac{3}{n} x_{k} \right] = Lim \sum_{N$$

b) Area =
$$A_1 + A_2 + A_3 = \frac{1}{2} (4+1) \cdot 1 + \frac{11(1)^2}{2} + (2(1) + (1)(1))$$

= 7,07 u_1^2

2. Sea $f(x) = \int_{0}^{x^{2}-1} (4+5en(\pi\sqrt{t+1})dt) dt$, x>0. De la regla de la Cadena Hallemos f'(x). $f'(x) = 4 + Sen(11 + \sqrt{x^2 - 1 + 1})$ = 4+ Sen (TT |XI). 2xq = 4 + Sen(TTX).2x