\equiv

"ļРФО ļРФ%Р į МО ήФ ́НР ! Р% БыЖЖ

f ΫήΟ υΡφί ΧΦΥ %ΦΥφί 1 ή Ϋτ Φή ΜΟ ήΦΥή Ρ%Ε υΡΦΙ ΙΡΙΙ

ITAI 2373 - Module 07

By the end of this module, you will be able to:

- Distinguish between sentiment and emotion analysis
- Implement lexicon-based and machine learning approaches
- Apply sentiment analysis to both text and speech
- Evaluate bias and fairness in emotion detection systems

‡ήį %ыЖ! ſ ļ Рį %

Sentiment vs Emotion - Understanding the Difference

Lexicon-Based Approaches - Dictionary Detectives

Machine Learning Methods - Pattern Recognition

Speech Emotion Analysis - Beyond Words

Bias and Ethics - Responsible Detection

Lab Preview

\equiv

f Ϋή O "ФЪĨ ФЪ Ў, Фή MO ή Фὴ P

Module 6 gave us:

- Who did what to whom (relationships)
- Sentence structure understanding

Module 7 adds:

YHow people feel about what they're saying

YEmotional targets and holders

The Science of Digital Emotions

Sentiment Analysis = Determining attitudes and opinions in text

Core question: sthis positive, negative, or neutral?

- Real-world examples:
 - Product reviews: "This phone is amazing!"
 - Social media: "Worst customer service ever"
 - News comments: "Great policy decision"

" Ι ΡΦΟ Ι ΡΦΦΗΜΟ ή Φή Ρ

Understanding the Difference

Sentiment Analysis:

- Polarity: Positive, Negative, Neutral
- Attitude toward something
- "ike this movie" → Positive

Emotion Analysis:

- Specific emotions: Joy, Anger, Fear, Surprise
- Psychological states
- "

 m thrilled about this movie" → Joy

Why Emotion Detection Matters

Business Applications:

- Ÿ Customer service: Detect frustrated customers
- Ÿ Marketing: Understand emotional responses to ads
- Ÿ Product development: Gentify pain points

Social Applications:

- Mental health: Monitor emotional well-being
- Education: Adapt to student emotional states
- Social media: Detect cyberbullying or harassment

‡Ŵ, ΕΫ́ΦηΡΥσωΕļΦριπ lawni

Lexicon-Based Approaches

- Core concept: Use pre-built dictionaries of emotional words
- How it works:
 - Each word has an emotional score
 - Combine scores to get overall sentiment
 - Fast, interpretable, no training required
- Popular tools: VADER, TextBlob, SentiWordNet

Ł! EM.. Ŷ!ĨФŊР

Social Media Sentiment Detective

• Example Analysis:

- "I LOVE this phone!!!" → Very Positive (0.8)
- "This phone is okay" \rightarrow Slightly Positive (0.2)
- "I hate this phone" → Negative (-0.6)
- "This phone sucks!!!" → Very Negative (-0.8)

• VADER handles:

- Capitalization intensity
- Punctuation emphasis

ł Ŵ, P E Ϋ Φὴ P % Ы E ļ Ф, Ĩ Φὴ J Жg ļ Ф > ή P ŷ Ь Җ į

Lexicon Limitations

- Challenge 1: Context matters
 - "This movie is not bad" → Negative words, positive meaning
- Challenge 2: Sarcasm and irony
 - "Great, another meeting" → Positive words, negative feeling
- Challenge 3: Domain-specific language
 - "This stock is volatile" → Neutral in finance, negative elsewhere

Machine Learning Approaches

Pattern Recognition for Emotions

Core concept: Learn emotional patterns from labeled data

Advantages:

- Handles context and complexity
- Adapts to specific domains
- Can learn sarcasm and irony patterns

Common algorithms: Naive Bayes, SVM, Logistic Regression

$= b\dot{\mathbf{H}}\dot{\mathbf{H}}\dot{\mathbf{H}}\dot{\mathbf{H}}\dot{\mathbf{H}}\ddot{\mathbf{H}\ddot{\mathbf{H}\ddot{\mathbf{H}}\ddot{\mathbf{H}$

From Data to Decisions

- Step 1: Collect labeled training data
- Step 2: Preprocess and extract features
- Step 3: Train classification modeorm1
- Step 4: Evaluate and tune perfance

Feature types:

- Bag-of-words and TF-ФF
- N-grams and word sequences
- POS tags and syntactic features

Evaluation Metrics

Measuring Emotional itelligence

Standard metrics:

- Accuracy: Overall correctness
- Precision: How many predicted positives are actually positive?
- Recall: How many actual positives did we find?
- F1-Score: Balanced precision and recall
- Confusion Matrix: Shows detailed error patterns

"Ӈ҉ Ӏ҇ѶӍѺήФ҈҅Р! Р%ҍ҈Ѭ҈Ж

Beyond Words to Voice

Audio adds new dimensions:

- Tone of voice: Happy vs sad speaking patterns
- Speaking rate: Fast (excited) vs slow (sad/tired)
- Pitch variation: Monotone vs expressive
- Volume changes: Loud (angry) vs quiet (sad)

Challenge: Combining text and audio features

Prosodic Features

The Music of Emotion

- Key acoustic features:
 - Fundamental frequency (F0): Pitch patterns
 - Energy/intensity: Volume and emphasis
 - Duration: Timing and rhythm
 - Spectral features: Voice quality

Extraction tools: Librosa, Praat, OpenSM4E

ñ ΒΕΦΌ ή į %ΕΜΟ ήΦήΡ Ε ļ Φ Ĩ ΦήΡ

Combining Text and Speech

- Fusion strate gies:
 - Early fusion: Combine features before classification
 - Late fusion: Combine predictions after classification
 - Hybrid fusion: Multiple combination points
- Benefits:
 - More robust emotion detection
 - Handles conflicting signals (sarcasm)
 - Better real-world performance

Bias and Fairness

Responsible Emotion Detection

- Common biases:
 - Cultural bias: Different emotional expression norms
 - Gender bias: Stereotypes about emotional expression
 - Age bias: Generational differences in communication
 - Language bias: Non-native speaker patterns
- Mitigation strategies:
 - Diverse training data
 - Bias testing and measurement
 - Fairness-aware algorithms

..ļ%Ēł ή Уф. ! ННЕЙ %ФАР РЖ

Customer Service:

- Automatic escalation for frustrated customers
- Sentiment-aware response generation
- Quality monitoring and training

Healthcare:

Ÿ Mental health monitoring and early intervention

Ÿ Patient satisfaction analysis

Ÿ Therapy session analysis

Education:

- Adaptive learning based on student emotions
- Engagement monitoring in online classes
- Bullying detection in school communications

ЖЧфФф qr å yo ym phy phy x

- When Emotion Detection Struggles
- Technical challenges:
 - Context dependency and ambiguity
 - Sarcasm and irony detection
 - Cross-cultural emotional expression
 - Real-time processing requirements
- Ethical challenges:
 - Privacy and consent
 - Potential for manipulation
 - Bias and discrimination
 - Emotional surveillance concerns

Lab Preview

- Building Your Emotion Detective System
- You'll build:
 - Text sentiment analyzer using VADER and TextBlob
 - Machine learning classifier with scikit-learn
 - Speech emotion detector using audio features
 - Multimodal system combining text and speech
- Real data: Customer reviews, social media posts, audio recordings

âļы‡%å 1 %ж %ыЖ

Your Emotional Intelligence Toolkit

Lexicon-based methods are fast and interpretable

Machine learning approaches handle complexity better

Speech analysis adds crucial emotional dimensions

Multimodal fusion provides the best performance

Bias and fairness require constant attention

• Module 8: Text Classification & Named Entity Recognition

- How today's skills connect:
 - Sentiment analysis is a type of text classification
 - Emotion targets are named entities
 - Classification techniques apply broadly

• You're building a complete NLP toolkit!