Presentation EE1390

Sumanth, Sravan

February 14, 2019

Question

Verify if the circles $C_1: x^2+y^2=1$ and $C_2: (x+7)^2+(y-1)^2=49$ are orthogonal.

Sumanth, Sravan

Solution

$$C_1: x^2 + y^2 = 1$$
 $C_2: (x+7)^2 + (y-1)^2 = 49$

General form of a circle = $x^T V x + 2u^T x + F = 0$

For circle
$$C_1:V_1=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
 $u_1=\begin{bmatrix}0\\0\end{bmatrix}$ $F_1=-1$

For circle
$$C_2:V_2=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
 $u_2=\begin{bmatrix}1\\-1\end{bmatrix}$ $F_2=1$

3 / 1

Sumanth, Sravan Presentation EE1390 February 14, 2019

Matrix transformation of the question

Verify if the circles
$$C_1$$
: $x^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x + 2 \begin{bmatrix} 0 & 0 \end{bmatrix} x - 1 = 0$ and C_2 : $x^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x + 2 \begin{bmatrix} 1 & -1 \end{bmatrix} x + 1 = 0$ are orthogonal.

Tangent to any circle at Point P is $(P^TV + u^T)x + P^Tu + F = 0$

Let P be the point of intersection of C_1 and C_2

Tangent to
$$C_1$$
 at P is $(P^TV_1 + u_1^T)x + P^Tu + F_1 = 0$

$$T1: (P^T + u_1^T)x + P^Tu_1 - 1 = 0$$

Tangent to
$$C_2$$
 at P is $(P^T V_2 + u_2^T)x + P^T u_2 + F_2 = 0$

$$T2: (P^T + u_2^T)x + P^Tu_2 + 1 = 0$$

5 / 1

Sumanth, Sravan Presentation EE1390 February 14, 2019

For orthogonality these tangents have to be perpendicular.

Direction vector T_1 is $D_1 : P^T + u_1^T$

Direction vector T_2 is D_2 : $P^T + u_2^T$

Orthogonality condition : $D_1D_2^T=0$

$$(P^T + u_1^T)(P + u_2) = 0$$

$$P^T P + P^T u_2 + u_1^T P + u_1^T u_2 = 0$$

Result

One point of intersection of C_1 and C_2 is $P = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

On substituting in previous equation we get

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0$$

As we proved for one point of intersection the the tangents will also be perpendicular at the other point of intersection.

Therefore the circles are orthogonal.

7 / 1

Sumanth, Sravan Presentation EE1390 February 14, 2019

Tangents

T1:
$$(P^T + u_1^T)x + P^Tu_1 - 1 = 0$$

 $(\begin{bmatrix} 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix})x + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} - 1 = 0$
 $= \begin{bmatrix} 0 & 1 \end{bmatrix}x = 1$

Which implies T_1 : Line y=1

$$T2: (P^{T} + u_{2}^{T})x + P^{T}u_{2} + 1 = 0$$

$$(\begin{bmatrix} 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \end{bmatrix})x + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 1 = 0$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix}x = 0$$

Which implies T_2 : y-axis

Sumanth, Sravan

Figure

