Organic Chemistry Concepts LOKT.09.051

Polar π -bond reactivity

- C-C
- C = C
- $C \equiv C$
- C O
- $\mathbf{C} = \mathbf{O}$

- $\mathbf{C} \mathbf{N}$
- C = N
- $C \equiv N$

- 83 85 kcal/mol
- 146 151 kcal/mol
- 199 200 kcal/mol
 - 85-91 kcal/mol
 - 173 181
 - 69 75 kcal/mol
 - 143 kcal/mol
 - 204 kcal/mol

>C=O bond is polar

Carbon atom is electrophile

>C=O group is a base

>C=O group is conjugated with neighbour electron donating groups

Summary of >C=O group reactions

Reactions with nucleophiles

Reactions with acids

Stabilization of anions at a-carbon atom (CH acids

Reaction with nucleophiles

This intermediate is unstable

Addition to >C=O bond

Some nucleophiles

- H₂O, R OH
- NH₃, R NH₂ etc
- H2S, R SH
- Carbanions, C:
- Hydride anion H:

Hydratation

$$R$$
 $C=O + HOH \longrightarrow R - C - OH$
 R'

Hemiacetals and hemiketals

$$R$$
 OR \downarrow C=O + ROH \Longrightarrow R-C-OH \downarrow H OR \downarrow OR \downarrow C=O + ROH \Longrightarrow R-C-OH \downarrow R'

Cyclic hemiketal

6-member cycle is stable

5-member cycle is stable

>C=O reduction

- Reaction with hydride ion H:
- Addition of proton

Carbonyl \alpha-carbon reactions

Condensation reaction

>C=O group stabilization by conjugation

Inreasing CH₃C̈—CI reactivity CH₃Ü—OÜCH₃ CH₃C-SCH₂CH₃ CH₃CH₂CH₃ CH₃C-NH₂ Initial state stabilization

Ester alkaline hydrolysis

