学 タ 程 z え タ 《物理化学》(下) 单元测试卷(二)

独立子系统的统计热力学

— ,	选择题(每小题1分,共30分)
1.	液态理想混合物属于。
	A: 独立的离域子系统; B: 离域的相倚子系统; C: 独立的定域子系统
2.	晶体中的原子、分子或离子属于。
	A: 独立的离域子系统; B: 离域的相倚子系统; C: 定域子系统
3.	以下属于独立的离域子系统是。
	A: 绝对零度的晶体; B: 理想液体混合物; C: 理想气体的混合物
4.	平动能的最低能级等于。
	A: $\varepsilon_{t} = \frac{3h^{2}}{mV^{2/3}}$; B: 0; C: $\varepsilon_{t} = \frac{3h^{2}}{8mV^{2/3}}$
5.	一平动子处于能量 $\varepsilon_{t}=rac{7h^{2}}{4mV^{2/3}}$ 的能级上,则该能级的简并度 $g_{t,i}=$ 。
	A: 6; B: 5; C: 4
6.	NO 分子在转动的第一激发态上的简并度与其基态的简并度之比=。
	A: 1; B: 2; C: 3
7.	CO 分子在振动的第 k 能级比 k -1 能级的能量高。
	A: $0.2hv$; B: $0.5hv$; C: hv
8.	在不同能级中,与系统体积有关的是。
	A: 振动能级; B: 转动能级; C: 平动能级
9.	在不同能级中,能级间隔相等的是。
	A: 振动能级; B: 转动能级; C: 平动能级
10.	对于常温下的氮气,以下说法正确的是。
	A: 振动能级间隔最大; B: 转动能级间隔最大; C: 平动能级间隔最大
11.	在相同体积下,子的质量越大,平动能级间隔。
	A: 不变; B: 越大; C: 越小
12.	体积越大,平动能级间隔。
	A: 不变; B: 越大; C: 越小
13.	子的转动惯量越大,转动能级间隔。
	A: 不变; B: 越大; C: 越小
14.	振动频率越大,振动能级间隔。
	A: 不变; B: 越大; C: 越小
15.	有七个独立的可区别的粒子,分布在简并度为 1、3 和 2 的 ε_0 , ε_1 , ε_2 三个能级中,数目分
	别为3个、3个和1个子,问这一分布拥有多少微观状态等于。

16.	在含大量粒子的系统中, $\omega_{ m max}/\Omega$ 的值很小, $\ln \omega_{ m max}/\ln \Omega$ 的值接近。
	A: 0; B: 1; C: 2
17.	在一般温度下,分布在任一振动激发态的粒子数 N_{v} 与分布在振动基态的粒子数 N_{0} 的比
	值 Nv/ N _{0。}
	A: 小于1; B: 等于1; C: 大于1
18.	在一般温度下,分布在任一振动激发态的粒子数 N_{ν} 与其相邻振动能级分布的粒子数 $N_{\nu-1}$
	的比值 <i>Nv/</i> N _{v-1} 。
	A: 小于1; B: 等于1; C: 大于1
19.	对于双原子分子的转动、在一般温度下,随着转动能级 J 的增加,分布在 J 能级上的粒
	子数 <i>N_J。</i>
	A: 只能减小, B: 只能增加, C: 有可能先增加后减小而出现极值
20.	由 N 个粒子组成的热力学体系,其粒子的两个能级为 $\varepsilon_1=0, \varepsilon_2=\varepsilon$,相应的简并度为 g_1 和 g_2 ,
	该粒子的配分函数 $q=$ 。
	A: $g_1 + g_2 \exp(-\varepsilon/kT)$; B: $g_1 + g_2 \exp(\varepsilon/kT)$; C: $g_1g_2 \exp(-\varepsilon/kT)$
21.	对于 N_2 ,当 $T \rightarrow \infty$ 时, $J=1$ 和 $J=0$ 能级上粒子数之比 $N_1/N_0=$ 。
	A: 2; B: 3; C: 4
22.	已知基态能级是非简并的,已知 $400K$ 时,双原子分子 AB 的 $q_0 = 1.02$,则分布在基态能
	级上的粒子数 N_0 与总分子数 N 的比值。
	A: 0.98; B: 1; C: 1.02
23.	以下结论正确的是。
	$\left(\partial q_{\rm t}\right)_{\rm d,0} = \left(\partial q_{\rm r}\right)_{\rm d,0} = \left(\partial q_{\rm v}\right)_{\rm d,0}$
	A: $\left(\frac{\partial q_{t}}{\partial V}\right)_{T} \neq 0$; B: $\left(\frac{\partial q_{r}}{\partial V}\right)_{T} \neq 0$; C: $\left(\frac{\partial q_{v}}{\partial V}\right)_{T} \neq 0$
24.	在相同温度和体积下,与 N_2 气体平动配分函数近似相等的气体是。
	A: CO; B: H_2 ; C: NO
25.	A 与 B 分子的分子量之比 $M_{ m A}/M_{ m B}$ =4,在相同温度和体积下,二者的平动配分函数之比
	$q_{\mathrm{tA}}/q_{\mathrm{tB}}=$ \circ
26	A: 4; B: 8; C: 12
<i>2</i> 0.	在 298.15K 和 101.325kPa 时,摩尔平动熵最大的气体是。 A: H ₂ ; B: CH ₄ ; C: CO ₂
	已知 N_2 和 CO 分子的转动温度 Θ 分别为 2.89K 和 2.78K。在相同温度下, N_2 和 CO 分子
	的转动配分函数的比值 q_{r,N_2} / $q_{r,co}$ =。
	A: 0.381; B: 0.481; C: 0.581
28.	在 298.15K 和 101.325kPa 时,与 N ₂ 摩尔平动熵近似相等的气体是。
29.	高域子系统的微观状态总数 $\Omega = e^L$,则系统的熵 S 等于。
29.	A: CO; B: CH ₄ ; C: CO ₂ 离域子系统的微观状态总数 $\Omega = e^L$,则系统的熵 S 等于。

A: 0.5R; B: R; C: 1.5R

A: 大于: B: 等于: C: 小于

二、(每小题 5 分, 共 10 分)

- 1. 设有一极大数目三维自由平动子组成的粒子系统,其体积 V、粒子质量 m 与温度的关系为 $h^2/(8mV^{2/3}) = 0.100 kT$,试计算处在能级 $14h^2/(8mV^{2/3})$ 与 $3h^2/(8mV^{2/3})$ 上的粒子数之比。
- 2. 分子 X 的两个能级是 ε_1 = 6.1×10⁻²¹ J, ε_2 = 8.4×10⁻²¹ J,相应的简并度是 g_1 = 3, g_2 = 5。分别计算当温度为 300 K 和 3000K 时,由分子 X 组成的独立子系统中,两个能级上分配的粒子数之比。

三、(此题总分10分)

已知 H_2 分子的摩尔质量 $M=2.0g \cdot mol^{-1}$,转动温度 $\Theta_r=85.4K$,振动温度 $\Theta_v=6100K$ 。在温度 298.15K 时,试计算:

- 1. 运动在 1 m^3 立方体盒子里的 1 H_2 分子平动配分函数;
- 2. H₂分子转动配分函数;
- 3. H_2 分子振动配分函数 q_{0y} ;
- 4. 处于第一振动激发态与振动基态的粒子数之比。

四、(此题总分10分)

已知某分子的振动能级间隔 $\Delta \varepsilon_{v} = 5.942 \times 10^{-20} J$ 。试计算:

- 1. 298K 时,某一能级与其相邻较低能级上的分子数之比。
- 2. 若振动能级间隔为 $\Delta \varepsilon_{v} = 0.43 \times 10^{-20} J$,温度仍为 298K,请做与(1)同样的计算。
- 3. 由计算结果得出什么结论?

五、(此题总分10分)

独立的离域子系统的熵与配分函数的关系为 $S = Nk \ln(q/N) + U/T + Nk$, 证明:

 $A = -NkT \ln(q/N) - Nk$, $G = -NkT \ln(q/N) - NkT + NkT (\partial \ln q/\partial \ln V)_{T.N}$

六、(此题总分10分)

已知独立的离域子系统的熵与配分函数的关系 $S = Nk \ln(q/N) + NkT (\partial \ln q/\partial T)_{v,N} + Nk$ 。

- 1. 证明单原子分子理想气体熵的计算式为: $S = \frac{5}{2}Nk + Nk \ln \left[(2\pi mkT)^{3/2}Vh^{-3}N^{-1} \right]$.
- 2. 计算 Ar 在正常沸点下的摩尔熵,已知 Ar 的正常沸点为 87.3K,摩尔质量为 39.95 $g \cdot mol^{-1}$ 。

七、(此题总分10分)

对 N 个粒子的定域子系统,已知 $\ln \Omega = N \ln q + U/kT$,请证明:

 $H=NkT[(\partial \ln q/\partial \ln T)_V+(\partial \ln q/\partial \ln V)_T];\ U=NkT^2(\partial \ln q/\partial T)_V;\ G=-NkT[\ln q-(\partial \ln q/\partial \ln V)_T]$ 八、(此题总分 10 分)

对 1 mol 单原子分子理想气体,试用统计力学方法证明:在恒压条件下温度由 T_1 变化到 T_2 时的熵变是恒容条件下温度由 T_1 变化到 T_2 时熵变的 5/3 倍。