Type Theory in Formal Semantics

Dilip Ninan | Tufts University | dilip.ninan@tufts.edu October 2022

1. Natural language syntax

Phrase Structure Rules

- (1) $S \rightarrow DP VP$
- (2) $S \to S \text{ CoordP}$
- (3) $CoordP \rightarrow Coord S$
- (4) $VP \rightarrow V (DP|AP|PP|NegP)$
- (5) $NegP \rightarrow Neg VP|AP$
- (6) $AP \rightarrow A (PP)$
- (7) $DP \rightarrow D (NP)$
- (8) $NP \rightarrow N (PP)$
- (9) $NP \rightarrow A NP$
- (10) $PP \rightarrow P DP$

Lexicon

Coord: and, or

Neg: thin, tall, happy

V: smiled, laughed, loves, hugged, is, did

A: Swedish, happy, kind, proud

N: singer, drummer, musician

D: the, a, every, some, no

D: Mary, John, Sue, everybody, somebody, nobody

P: of, with

2. The simply typed lambda calculus

2.1. Syntax

Definition 1. The set T of types is smallest set such that:

- (1) $e, t \in T$, and
- (2) if $\sigma, \tau \in T$, then $(\sigma, \tau) \in T$.

Definition 2. Any language \mathcal{L} of the typed lambda calculus consists of the following:

- (1) For each type σ , a countably infinite set VAR_{σ} of variables of type σ .
- (2) For each type σ , a set CON_{σ} of constants of type σ .
- (3) The lambda operator: λ .

- (4) The connectives: $\neg, \lor, \land, \rightarrow, \equiv$.
- (5) The quantifiers: \forall , \exists .
- (6) The identity symbol: =.
- (7) Left and right parentheses.

Definition 3. Let σ and τ be arbitrary types.

- (1) If $\alpha \in VAR_{\sigma}$, α is an expression of type σ .
- (2) If $\alpha \in CON_{\sigma}$, α is an expression of type σ .
- (3) If α is an expression of type σ , and β an expression of type (σ, τ) , then $(\beta(\alpha))$ is an expression of type τ .
- (4) If α is an expression of type τ and v a variable of type σ , then $(\lambda v.\alpha)$ is an expression of type (σ,τ) .
- (5) If ϕ and ψ are expressions of type t, then so are: $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, and $(\phi \equiv \psi)$.
- (6) If ϕ is an expression of type t, and v is a variable of type σ , $\forall v \phi$ and $\exists v \phi$ are expressions of type t.
- (7) If α and β are expressions of the same type σ , then $\alpha = \beta$ is an expression of type t.

Expressions of type t are formulas.

Rule for simplifying λ -expressions:

 β -reduction:

If v is a variable of type τ , α an expression of type τ , and β an expression of any type σ , then $(\lambda v.\beta)(\alpha)$ may be reduced to $\beta[\alpha/v]$, so long as α contains no free occurrences of a variable that is bound in β .

Here, $\beta[\alpha/v]$ is the result of replacing each free occurrence of v in β with α .

If v occurs in the scope of $\forall v, \exists v$ or λv in expression α , then that occurrence of v is bound in α ; otherwise, it is free.

2.2. Semantics

Definition 4. Given a set D, we define for each type ρ an associated domain D_{ρ} as follows:

- (1) $D_e = D$,
- (2) $D_t = \{0, 1\},\$
- (3) for any types σ, τ , $D_{(\sigma,\tau)} = D_{\tau}^{D^{\sigma}}$, i.e. the set of all functions from D_{σ} into D_{τ} .

Definition 5. A model for \mathcal{L} is a pair M = (D, I) consisting of a non-empty set D and an interpretation function I which, for each type σ , maps each expression $\alpha \in CON_{\sigma}$ to an element of D_{σ} .

Definition 6. A variable assignment g on a model (D, I) is a function which, for each type σ , maps each variable $v \in VAR_{\sigma}$ to an element of D_{σ} . If o is an element of D, g[o/v] is the variable assignment h such that h(v) = o and h(v') = g(v') for all variables other than v.

Definition 7. The interpretation of an expression α of type σ relative to a model M = (D, I) and a variable assignment g is denoted by $[\![\alpha]\!]^{M,g}$.

- (1) If α is a variable of type σ , $[\![\alpha]\!]^{M,g} = g(\alpha)$.
- (2) If α is a constant of type σ , $[\![\alpha]\!]^{M,g} = I(\alpha)$.
- (3) If α is an expression of type σ and β an expression of type (σ, τ) , $[\![\beta(\alpha)]\!]^{M,g} = [\![\beta]\!]^{M,g} ([\![\alpha)]\!]^{M,g}$.
- (4) If α is an expression of type τ and v a variable of type σ , then $[\![\lambda v.\alpha]\!]^{M,g}$ is the function $f \in D_{(\sigma,\tau)}$ such that for any $o \in D_{\sigma}$, $f(o) = [\![\alpha]\!]^{M,g[o/v]}$.
- (5) If ϕ and ψ are expressions of type t, then
 - (a) $[\![\phi \wedge \psi]\!]^{M,g} = 1$ iff $[\![\phi]\!]^{M,g} = [\![\psi]\!]^{M,g} = 1$
 - (b) $\llbracket \phi \lor \psi \rrbracket^{M,g} = 1$ iff $\llbracket \phi \rrbracket^{M,g} = 1$ or $\llbracket \psi \rrbracket^{M,g} = 1$
 - (c) $[\![\phi \to \psi]\!]^{M,g} = 1$ iff $[\![\phi]\!]^{M,g} = 0$ or $[\![\psi]\!]^{M,g} = 1$
 - (d) $\llbracket \phi \equiv \psi \rrbracket^{M,g} = 1$ iff $\llbracket \phi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}$
- (6) If ϕ is an expression of type t and v is a variable of any type σ , then:
 - (a) $\llbracket \forall v \phi \rrbracket^{M,g} = 1$ iff for all elements $o \in D_{\sigma}$, $\llbracket \phi \rrbracket^{M,g[o/v]} = 1$
 - (b) $[\exists v \phi]^{M,g} = 1$ iff for some element $o \in D_{\sigma}$, $[\![\phi]\!]^{M,g[o/v]} = 1$
- (7) If α and β are expressions of the same type σ , then $[\![\alpha = \beta]\!]^{M,g} = 1$ iff $[\![\alpha]\!]^{M,g} = [\![\alpha]\!]^{M,g}$.

Proposition 1. For any model M, variable assignment g, variable v and expression α of type τ , and expressions β an expression of type σ :

 $[(\lambda v.\beta)(\alpha)]^{M,g} = [\beta[\alpha/v]]^{M,g}$, so long as α contains no free occurrences of a variable that is bound in β .

Definition 8. If Σ is a set of formulas and ϕ a formula, $\Sigma \vDash \phi$ iff for all models M and variable assignments g, if every $\psi \in \Sigma$ is such that $\llbracket \psi \rrbracket^{M,g} = 1$, then $\llbracket \phi \rrbracket^{M,g} = 1$.

Translating trees:

- \leadsto : "is translated by"

 "John" $\leadsto j_e$. ("John" is translated by j_e)
- Two rules for translating nodes ("composition rules"):
 - (1) Non-branching Nodes (NN) Let α be a node whose only daughter is β . Then if $\beta \leadsto \beta'$, $\alpha \leadsto \beta'$.
 - (2) Function Application (FA) Let α be a node, the set of whose daughters is $\{\beta, \gamma\}$, where $\beta \neq \gamma$. Then if $\beta \leadsto \beta'_{(\sigma,\tau)}$ and $\gamma \leadsto \gamma'_{\sigma}$, then $\alpha \leadsto \beta'(\gamma')$.