Listing of Claims

1. (Previously Presented) A print medium comprising:

an ink-receiving layer and an absorptive, coated paperbase selected from the group consisting of coated, calendered paper; coated, uncalendered paper and cast coated paper; the ink-receiving layer being present on the coated paperbase from about 3 grams per square meter to about 7 grams per square meter and the ink-receiving layer comprising at least one hydrophilic or water-soluble polymer which is present in the ink-receiving layer from about 60% to about 90% based on the total weight of the ink-receiving layer and a cross-linking agent, and the coated paperbase having a Sheffield smoothness less than approximately 20 and a Sheffield porosity greater than zero and less than approximately 10, said cross-linking agent is present from approximately 0.1% to approximately 5% based on the weight of the hydrophilic or water-soluble polymer and is selected from the group consisting of a boric acid or salts thereof, an epoxy based agent, an aldehyde based agent, a blocked aldehyde agent, an active halogen based agent, an active vinyl based compound, an aluminum alum; an isocyanate compound, and a derivative thereof.

- 2. (Previously Presented) The print medium of claim 1, wherein the inkreceiving layer is present from approximately 4 grams per square meter to approximately 6 grams per square meter.
- 3. (Previously Presented) The print medium of claim 1, wherein the ink-receiving layer comprises at least one water-soluble polymer, a cross linking agent, a mordant, inorganic particles, and at least one surfactant.
- 4. (Original) The print medium of claim 3, wherein the at least one water-soluble polymer comprises at least one polyvinyl alcohol; the cross-linking agent comprises boric acid; the mordant comprises at least one of diallyldimethyl-ammonium chloride, a cationic latex, or aluminum triformate; and the inorganic particles comprise cationic, superfine colloidal silica.

5. (Canceled)

- 6. (Previously Presented) The print medium of claim 3, wherein the at least one surfactant comprises at least one nonionic, organosilicone surfactant.
- 7. (Previously Presented) The print medium of claim 3, wherein the at least one surfactant is at least one polysiloxane-polyethylene oxide compound or at least one polysiloxane-polyethylene oxide-polypropylene oxide compound.

8. (Canceled)

9. (Withdrawn) A method of forming a print medium having improved image quality and permanence, comprising:

providing a coated paperbase selected from the group consisting of coated, calendered paper; coated, uncalendered paper and cast coated paper; and

applying an ink-receiving layer to the coated paperbase at less than approximately 10 grams per square meter, the coated paperbase having a Sheffield smoothness less than approximately 20 and a Sheffield porosity less than approximately 10.

10. (Canceled)

- 11. (Withdrawn) The method of claim 9, wherein applying an ink-receiving layer to the coated paperbase at less than approximately 10 grams per square meter comprises applying the ink-receiving layer from approximately 3 grams per square meter to approximately 7 grams per square meter.
- 12. (Withdrawn) The method of claim 9, wherein applying an ink-receiving layer to the coated paperbase at less than approximately 10 grams per square meter comprises applying a coating composition comprising at least one water-soluble polymer, a cross-linking agent, a mordant, inorganic particles, and at least one surfactant.

- 13. (Withdrawn) The method of claim 12, wherein applying an ink-receiving layer to the coated paperbase at less than approximately 10 grams per square meter comprises applying a coating composition comprising at least one polyvinyl alcohol; boric acid; at least one of diallyldimethylammonium chloride, a cationic latex, or aluminum triformate; cationic, superfine colloidal silica; and at least one polysiloxane-polyethylene oxide compound.
- 14. (Withdrawn) The method of claim 12, wherein applying an ink-receiving layer to the coated paperbase at less than approximately 10 grams per square meter comprises applying the ink-receiving layer from approximately 4 grams per square meter to approximately 6 grams per square meter.
- 15. (Withdrawn) The method of claim 9, wherein applying an ink-receiving layer to the coated paperbase at less than approximately 10 grams per square meter comprises coating the ink-receiving layer on the coated paperbase at less than approximately 10 grams per square meter.
- 16. (Withdrawn) A method of printing an image having improved image quality and permanence, comprising:

providing a print medium comprising a coated paperbase selected from the group consisting of coated, calendered paper; coated, uncalendered paper and cast coated paper; and an ink-receiving layer present on the coated paperbase at less than approximately 10 grams per square meter, the coated paperbase having a Sheffield smoothness less than approximately 20 and a Sheffield porosity less than approximately 10; and

printing the image on the print medium.

17. (Canceled)

- 18. (Withdrawn) The method of claim 16, wherein providing a print medium comprising a coated paperbase and an ink-receiving layer present on the coated paperbase at less than approximately 10 grams per square meter comprises providing the ink-receiving layer on the coated paperbase from approximately 3 grams per square meter to approximately 7 grams per square meter.
- 19. (Withdrawn) The method of claim 16, wherein providing a print medium comprising a coated paperbase and an ink-receiving layer present on the coated paperbase at less than approximately 10 grams per square meter comprises providing the ink-receiving layer comprising at least one water-soluble polymer, a cross-linking agent, a mordant, inorganic particles, and at least one surfactant.
- 20. (Withdrawn) The method of claim 16, wherein providing a print medium comprising a coated paperbase and an ink-receiving layer present on the coated paperbase at less than approximately 10 grams per square meter comprises providing the ink-receiving layer comprising at least one polyvinyl alcohol; boric acid; at least one of diallyldimethylammonium chloride, a cationic latex, or aluminum triformate; cationic, superfine colloidal silica; and at least one polysiloxane-polyethylene oxide compound.