

Entwicklung des Avionik-Thermal-Managements einer Experimentalrakete

cand. aer. Viktor Hoffmann

September 2025

Institut für Thermodynamik der Luft- und Raumfahrt der Universität Stuttgart

Direktor: Professor Dr.-Ing. B. Weigand

Universität Stuttgart

INSTITUT FÜR THERMODYNAMIK DER LUFT- UND RAUMFAHRT

Direktor: Professor Dr.-Ing. B. Weigand

Pfaffenwaldring 31, 70569 Stuttgart, Germany · http://www.itlr.uni-stuttgart.de

Bachelorarbeit

für Herrn cand, aer, Viktor Hoffmann

Entwicklung des Avionik-Thermal-Managements einer Experimentalrakete

Motivation und Zielsetzung:

Im Rahmen des Projekts BLAST der studentischen Arbeitsgruppe HyEnD e.V. wird für die neu entwickelte und leistungsstarke Avionik ein Thermal-Management-Konzept notwendig, das die Hardware während der gesamten Flugdauer auf einer sicheren Betriebstemperatur hält. Darunter fallen kritische Systeme wie die Flugcomputer, Telemetrie und Stromversorgung, deren Ausfall durch Überhitzung eine erfolgreiche Bergung verhindern kann, sowie sekundäre Komponenten wie Kameras. Bei der Entwicklung soll insbesondere auf Leichtbau und Ausfallsicherheit geachtet werden.

Zunächst sollen die Randbedingungen der Mission und die Anforderungen an das Thermal-Management mithilfe angemessener Annahmen festgestellt werden. Basierend darauf wird, durch eine Literaturrecherche zu bestehenden Methoden in der Luft- und Raumfahrtindustrie, eine Auswahl getroffen, die sowohl Leichtbau als auch Ausfallsicherheit maximiert. Für die ausgewählten Methoden soll anschließend eine Vorauslegung gemacht und durch Simulationen verifiziert werden.

Arbeitsschritte:

- Einarbeitung in die Thematik
- Festlegung der Randbedingungen und Anforderungen
- Literaturrecherche zu vorhandenen Thermal-Management-Methoden
- Auswahl, Konzeption und Vorauslegung geeigneter Methoden
- Simulation und Auswertung der gewählten Methoden zum Vergleich mit der Vorauslegung

Ort und Dauer der Arbeit:

Die Bachelorarbeit soll am ITLR sowie bei HyEndD durchgeführt und innerhalb eines Zeitraums von 4 Monaten abgeschlossen werden.

Betreuer:

Dr.-Ing. Christian Waidmann, ITLR

Ausgabe: 01.05.2025

Abgabe: 01.09.2025

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig mit Unterstützung des Betreuers / der Betreuer angefertigt und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Die Arbeit oder wesentliche Bestandteile davon sind weder an dieser noch an einer anderen Bildungseinrichtung bereits zur Erlangung eines Abschlusses eingereicht

worden.

Ich erkläre weiterhin, bei der Erstellung der Arbeit die einschlägigen Bestimmungen zum Urheberschutz fremder Beiträge entsprechend den Regeln guter wissenschaftlicher Praxis eingehalten zu haben. Soweit meine Arbeit fremde Beiträge (z.B. Bilder, Zeichnungen, Textpassagen etc.) enthält, habe ich diese Beiträge als solche gekennzeichnet (Zitat, Quellenangabe) und eventuell erforderlich gewordene Zustimmungen der Urheber zur Nutzung dieser Beiträge in meiner Arbeit eingeholt. Mir ist bekannt, dass ich im Falle einer schuldhaften Verletzung dieser Pflichten die daraus entstehenden Konsequenzen zu tragen habe.

litter Huffman

Ort, Datum, Unterschrift

Kurzzusammenfassung

Für das Projekt Biliquid launch and Space Technology (BLAST) der Hochschulgruppe Hybrid Engine Development (HyEnD) wird eine neue, kompakte und hochleistungsfähige Avionik entwickelt, die unter extremen Flugbedingungen arbeitet. Die in dieser Arbeit entwickelte Kühlung muss leicht, zuverlässig, wiederverwendbar und für eine maximale Gehäusetemperatur von $T_{\rm C} \leq 89,15\,^{\circ}{\rm C}$ während der gesamte Flugdauer ausgelegt sein. Basierend auf den Anforderungen und Flugbedingungen wurden drei Konzepte untersucht: reiner Radiator, reines Phase Change Material (PCM) und eine hybride Radiator-PCM-Lösung. Die Vorauslegung ergab, dass ein Radiator wegen Aerodynamischer Aufheizung ungeeignet ist. Die hybride Lösung ist möglich, jedoch durch geometrische Verluste und hohe Luftwärmeströme der Vorauslegung nach mit 4,256 kg schwerer als ein einfaches PCM mit 0,347 kg. Simulationen der Außenströmung und des PCM bestätigten trotz angenommener Vereinfachungen die Vorauslegungsergebnisse mit einer Masse des hybriden Radiator-PCM von 1,654 kg.

Abstract

For the BLAST project of the HyEnD university group, a new, compact, and high-performance avionics system is being developed to operate under demanding flight conditions. The cooling system developed in this work must be lightweight, reliable, reusable, and designed for a maximum case temperature of $T_{\rm C} \leq 89,15\,^{\circ}{\rm C}$ for the entire flightduration. Based on the requirements and flightconditions, three concepts were investigated: pure radiator, pure PCM, and a hybrid radiator-PCM solution. Preliminary design showed that a radiator is unsuitable due to aerodynamic heating. The hybrid solution is feasible but, according to the preliminary design, heavier at 4,256 kg due to geometric losses and high convective heat flux than a simple PCM at 0,347 kg. Simulations of the external flow and the PCM confirmed the preliminary design results despite assumed simplifications with a mass of the hybrid radiator PCM of 1,654 kg.

Inhaltsverzeichnis

K	urzzı	usammenfassung	1
A	bbild	lungsverzeichnis	\mathbf{V}
Ta	abell	enverzeichnis	VII
Sy	mbo	olverzeichnis	VIII
1	Ein	führung	1
	1.1	Darstellung des Problems	. 1
	1.2	Zielsetzung der Arbeit	. 2
	1.3	Lösungsweg	. 2
2	Gru	ındlagen	3
	2.1	Sensible Wärme	. 3
	2.2	Latente Wärme	. 3
	2.3	Wärmeübertragung	. 4
		2.3.1 Wärmestrahlung	. 4
		2.3.2 Wärmeleitung	. 5
		2.3.3 Konvektion	. 5
	2.4	Simulation	. 7
3	Vor	rauslegung	10
	3.1	Anforderungen	. 10
	3.2	Thermale Schnittstelle	. 11
		3.2.1 Heatpipes	. 13
		3.2.2 Wärmeleitbänder	. 14
		3.2.3 Gesamte Schnittstelle	. 16
	3.3	PCM	. 16
	3.4	Radiator	. 18
	3.5	PCM-Radiator-Hybrid	. 19
4	Sim	nulation	25
	1 1	DCM	0.5

	4.2 Aerodynamische Aufheizung	31
5	Discussion and conclusions	38
	5.1 Discussion about including pictures	38
6	Zusammenfassung und Ausblick	39
$\mathbf{A}_{\mathbf{j}}$	ppendix	42

Abbildungsverzeichnis

3.1	Flugdaten der Trajektoriensimulation	12
3.2	Wärmerohr Aufbau und Funktionsweise	13
3.3	Kommerziell erhältliche Wärmeleitbänder aus Pyrolithic Graphite	
	Sheet (PGS) (links), Kupfer und Aluminium [4]	15
3.4	Reduced Order Model (ROM) der Thermalen Schnittstelle aus Heat-	
	pipe und Wärmeleitbändern. Hier sind nur 2 von 4 Wärmeleitbändern	
	dargestellt	17
3.5	PCM Wärmestrom ohne aerodynamische Aufheizung	21
3.6	PCM Wärmestrom bei aerodynamischer Aufheizung	21
3.7	Kontourlänge vom Staupunkt der Rakete bis zum Mittelpunkt des	
	Radiators	22
3.8	Ablauf der Dimensionierung in der Vorauslegungs-Software	23
3.9	Reynolds- und Prandtlzahl während kritischer Phase im Flug	23
3.10	PCM Wärmeströme während dem Flug	24
4.1	PCM Struktur und vereinfachtes Mesh	26
4.2	Effektive spezifische Wärmekapazität von n-Eicosan	27
4.3	Sensible spezifische Wärmekapazität von n-Eicosan	27
4.4	Approximiertes Beschleunigungsprofil	28
4.5	Flüssigkeitsanteil Konturen. Die Legende bezieht sich auf 4.5d $$	29
4.6	Konturen der statischen Temperatur. Die Legende bezieht sich auf $4.6\mathrm{d}$	29
4.7	Geschwindigkeitsvektoren der Konvektionswirbel einer, durch Nachbe-	
	arbeitung, vervollständigten Zelle bei 900 s. Darstellung der weiteren	
	Zeitschritte ist in 6.5 zu finden.	30
4.8	Darstellung der Außensströmungssimulation mit Meshstruktur in grau,	
	velocity inlet in blau, pressure outlet in rot, Symmetrien in gelb und	
	Partitionen der parallelisierung in lila	33
4.9	Schichtaufdickungen des Mesh an der Rakete	33
4.10	Spezifischer Wärmestrom an der Außenhaut bei maximalem dynami-	
	schen Druck, sowie 10 s davor, danach und 20 s danach	34
4.11	y+ Wert an der Außenhaut bei Maximaler dynamischer Druck (max Q),	
	sowie 10 s davor, danach und 20 s danach	35

4.12	PCM Wärmestrom während Flug mit Simulationsergebnissen und Fit	
	Kurve	36
4.13	max Q Konturen der Luft	37
6.1	Radiator Leistung nach Fläche und Temperatur	42
6.2	PCM Auslegung	43
6.3	Statische Temperaturkontur der Luft	49
6.4	Machzahlkontur der Luft	50
6.5	Konturen der statischen Temperatur. Die Legende bezieht sich auf 6.5d	51

Tabellenverzeichnis

3.1	Leistung der Avionik	11
3.2	Ampelbewertung von Materialien für Wärmeleitbänder	15
3.3	Ampelbewertung für Alkane als PCM [13]	18
3.4	AZ-93 Spezifikationen [1]	19
4.1	Stoffdaten für n-Eicosan	26
4.2	Flugzustände der vier Simulationen zur aerodynamischen Aufheizung.	31

Symbolverzeichnis

Lateinische Symbole

T	K	Temperatur
c	$\rm Jkg^{-1}K^{-1}$	Spezifische Wärmekapazität
h	$\rm Jkg^{-1}$	Spezifische Schmelzenthalpie
Q	J	Wärme
\dot{Q}	W	Wärmestrom
\dot{q}	$ m Wm^{-2}$	Wärmestromdichte
m	kg	Masse
A	m^2	Fläche
S	${ m N}{ m m}^{-3}$	Quellterm
R	$ m KW^{-1}$	Wärmeleitwiederstand

Griechische Symbole

ρ	${\rm kgm^{-3}}$	Dichte
λ	${ m W}{ m m}^{-1}{ m K}^{-1}$	Wärmeleitfähigkeit
γ	K^{-1}	Flüssigkeitsanteil
β		Wärmeausdehnungskoeffizient
ε		Emissionsgrad
α		Absorptionsgrad
∇		Nablaoperator

Indizes

solidus	Solidus Punkt des Phasenwechsels
liquidus	Liquidus Punkt des Phasenwechsels
solid	Feststoff Eigenschaften
liquid	Flüssigstoff Eigenschaften
fus	Schmelz Phasenwechsel

Verzeichnisse & Nomenklatur

safety	Mit Sicherheitsfaktor 1.5
senke	Wärmesenke
total	Totalgröße
ges	Gesamt
p	Konstanter Druck
J	Sperrschicht
C	Gehäuse
f	Freistrom
W	Wand
t	Spektral integriert
S	Solar
X	Lokale Größe
r	Recovery Größe
a	adiabat

Konstanten

σ	$5,67 \cdot 10^{-8} \mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$	Stefan-Boltzmann-Konstante
κ	1,40	Isentropenexponent der Luft
η_0	$18,27 \cdot 10^{-6} \mathrm{Pa} \mathrm{s}$	Sutherlands-Formel Referenzviskosität
T_0	$291{,}15\mathrm{K}$	Sutherlands-Formel Referenztemperatur
C	$120\mathrm{K}$	Sutherland Konstante

Abkürzungen

PCM Phase Change Material

PCB Printed Circuit Board

BLAST Biliquid launch and Space Technology

FCC Flight Control Computer

HyEnD Hybrid Engine Development

CFD Computational Fluid Dynamics

CHT Conjugate Heat Transfer

PGS Pyrolithic Graphite Sheet

max Q Maximaler dynamischer Druck

GSE Ground Support Equipment

PCDU Power Control and Delivery Unit

ATM Avionik-Thermal-Management

ROM Reduced Order Model

UDF User Defined Function

CAD Computer Assisted Design

1 Einführung

Die Avionik ist ein Grundstein jeder erfolgreichen Experimentalrakete. Ob es hierbei um Telekommunikation, Datenerfassung oder auch aktive Steuerung und Regelung von Instrumenten und dem Fahrzeug während des Flugs geht, kompakte Hochleistungsmikroelektronik ist immer gefragt und muss oft redundant ausgeführt sein. Diese Elektronik, die zudem noch extremen Bedingungen ausgesetzt wird, kommt jedoch mit einer substanziellen Wärmeleistung und Wärmestromdichte die, bei mangelhafter Rücksicht zu reduzierter Lebensdauer der Avionik führt, oder sogar die Mission frühzeitig scheitern lässt.

Diese Arbeit befasst sich mit der lösung des dargestellten problems für das Projekt BLAST der studentischen Hochschulgruppe HyEnD wo eine neue Avionik entwickelt wird und ein Avionik-Thermal-Management (ATM) benötigt wird.

1.1 Darstellung des Problems

Das Thermal-Problem einer Experimentalrakete beginnt bereits lange vor dem eigentlichen Start. Oft muss nach integration und Befestigung der Rakete auf der Startvorrichtung und Verbindung mit dem Ground Support Equipment (GSE) noch einige Stunden auf das Startfenster gewartet werden. Während dieser Zeit steht die Rakete der Umwelt ausgesetzt in der Sonne und kann, je nach Bedingungen unzulässige Temperaturen für Elektronik erreichen. Da in dieser Phase eine Verbindung mit dem GSE besteht kann Masse durch externe Kühlung währenddessen eingespart werden, weshalb in dieser Arbeit nur für die darauf folgende Flugphase das ATM entwickelt werden soll. Da BLAST für ein Apogäum über der Kármán-Linie (100 km) entwickelt wird, sind während dem Flug extreme Umweltbedingungen durch Aerodynamische Aufheizung, mikrogravitation und annäherndes Vakuum zu erwarten, die ein komplexes ATM fordern.

In der Vergangenheit wurde bei HyEnD oft die Avionik ohne Redundanz oder

Einführung 1.3 Lösungsweg

zusammen mit fertig gekaufter Avionik, für missionskritische Aufgaben wie den Fallschirm-Auswurf, ausgeführt. Beim Projekt BLAST soll das vermieden werden, indem der selbst entwickelte Flight Control Computer (FCC) in Dual Duplex Redundanz ausgelegt wird. Dementsprechend gibt es vier Computer die die selben Programme ausführen und den vierfachen Stromverbrauch gegenüber einfach ausgeführter Avionik haben. Hinzu kommen weitere Kameras, Funkplatinen, Verstärker, Sensorplatinen etc. die jedoch keine redundante Ausführung haben.

1.2 Zielsetzung der Arbeit

Da es sich beim ATM um ein unterstützendes Subsystem handelt, soll besonders hohe Zuverlässigkeit gewehrleistet werden, da trotz der Redundanz des FCC ein Ausfall der Kühlung zum Ausfall durch Überhitzung führen kann.

Des weiteren ist Wiederverwendbarkeit, Kosten minimieren und besonders komplexe Integrations- und Vorbereitungsvorgänge vermeiden eine Priorität.

Als letzte Anforderung, nach einer Auswahl basierend auf den ersten beiden, soll wegen des begrenzten Massenbudgets der Avionik besonders auf Leichtbau geachtet werden und die Masse des ATM soweit wie möglich minimiert werden.

1.3 Lösungsweg

Um ein geeignetes ATM zu entwickeln wird zunächst eine Auswahl an etablierten Lösungen aus der Luft- und Raumfahrtindustrie getroffen, die die gestellten Anforderungen erfüllen können.

Diese werden in der Vorauslegung mithilfe eines ROM in Python ausgewertet, um eine erste Abschätzung der Leistungsfähigkeit zu erhalten.

Anschließend wird die Vorauslegung, soweit mit vorhandenen Rechenressourcen möglich, durch Conjugate Heat Transfer (CHT)-Simulationen mit Domänenreduktion verifiziert und vergleichbar gemacht.

2 Grundlagen

In diesem Kapitel werden die Thermodynamischen, Chemischen und Numerischen Grundlagen die in dieser Arbeit angewandt wurden aufgelistet und erläutert.

2.1 Sensible Wärme

Unter sensibler Wärme versteht man die Eigenschaft von Masse durch eine Temperaturänderung Wärmeenergie zu absorbieren oder abzugeben. Dieses Phänomen kann durch die Änderung der kinetischen Energie von den molekularen Teilchen im System erklärt werden. Durch das Einführen von Wärmeenergie in ein System steigt die kinetische Energie der Teilchen:

$$c = \frac{\Delta Q}{m \cdot \Delta T} \tag{2.1}$$

c beschreibt die spezifische Wärmekapazität, welche entweder bei konstantem Druck oder konstantem Volumen angegeben ist, Q ist die Wärmeenergie, m die Masse und T die Temperatur

Da Elektronik eine gewisse Eigenmasse hat und meist Teil einer größeren Baugruppe ist, gibt es durch die sensible Wärme eine Dämpfung zu Temperaturänderungen, welche jedoch zeitlich von der Wärmeleitfähigkeit der Materialien abhängt.

2.2 Latente Wärme

Im Gegenteil zur sensiblen Wärme ist latente Wärme, auch Umwandlungsenthalpie genannt, die Eigenschaft von Masse bei einem Phasenwechsel Wärmeenergie zu absorbieren oder abzugeben, ohne dass sich dabei die Temperatur ändert. Das ist durch die Erhöhung der potentiellen Energie der Teilchen, statt der kinetischen wie bei der sensiblen Wärme, zu verstehen. Effektiv erhöht sich die potentielle Energie durch

Änderung der Bindungszustände. Die Stoffkonstante der Umwandlungsenthalpie ist die spezifische Umwandlungsenthalpie h:

$$h = \frac{\Delta Q}{m} \tag{2.2}$$

Zu beachten ist, dass die Konvention der Schreibweise für die massenspezifische Fest-Flüssig Umwandlungsenthalpie spezifische Schmelzenthalpie ist, aber für die massenspezifische Flüssig-Gas Umwandlungsenthalpie nur Verdampfungsenthalpie ist.

Die latente Wärme ist für die meisten Materialien im Fest-Flüssig Übergang um mindestens den Faktor 10 größer als die sensible Wärme bei einem Grad Temperaturerhöhung. Genauso ist die Verdampfungsenthalpie vom Flüssig-Gas Übergang meist um etwa den Faktor 10 größer als die spezifische Schmelzenthalpie [2].

2.3 Wärmeübertragung

Um Wärme innerhalb von einem System günstig zu verteilen, oder die Energie aus dem System zu entfernen, gibt es drei Mechanismen.

2.3.1 Wärmestrahlung

Bei der Wärmestrahlung geben Teilchen beim aufnehmen oder abgeben kinetischer Energie eine Gewisse Menge an Energie in Form von Elektromagnetischer Strahlung ab. Da die Strahlungsleistung von der vierten Potenz der Temperatur abhängt, ist dieser Modus erst bei sehr hohen Temperaturen dimensionierend, kann jedoch im Vakuum dominant sein:

$$\dot{Q} = \sigma \varepsilon A T^4 \tag{2.3}$$

 \dot{Q} ist der Wärmestrom, σ die Stefan-Boltzmann-Konstante, ε der Emissionsgrad, welcher von der Wellenlänge abhängt, A die Fläche und T die Temperatur des Radiators.

2.3.2 Wärmeleitung

Bei der Wärmeleitung wird Wärme
energie in einem Körper durch diffusion der kinetischen Energie der Teil
chen verteilt. Die Wärmestromdichte \dot{q} in einem Temperaturg
radienten wird durch das Fourier-Gesetz beschrieben:

$$\vec{\dot{q}} = -\lambda \nabla T \tag{2.4}$$

Hier ist λ die Wärmeleitfähigkeit des Materials. Für eine eindimensionale Wand ergibt sich die Gleichung mit der Querschnittfläche A und der Dicke Δx zu:

$$\dot{Q} = \lambda A \frac{\Delta T}{\Delta x} \tag{2.5}$$

Der Wärmeleitwiederstand R für einen Körper lässt sich durch die Temperaturdifferenz pro Watt definieren:

$$R = \frac{\Delta T}{\dot{Q}} \tag{2.6}$$

2.3.3 Konvektion

Bei der Konvektion wird Wärmeenergie durch Massenaustausch transportiert. Bei der erzwungenen Konvektion bekommt das Fluid durch äußere Kräfte eine relative Geschwindigkeit, die zum Massenaustausch führt. Andererseits resultiert bei der natürlichen Konvektion nur die eigene inhomogene Temperaturverteilung, durch beispielsweise eine anliegende heiße Wand, zu einem Temperaturanstieg und infolge dessen zu einem Dichteanstieg, der in einem Beschleunigungsfeld zu Auftriebskräften und automatischer Bewegung des Fluids führt. Für den Wärmeübergang zwischen Fluid und Festkörper ergibt sich:

$$\dot{Q} = \alpha A \Delta T \tag{2.7}$$

Hier ist α der Wärmeübergangskoeffizient. Für den spezifischen Wärmestrom zwischen Fluid und Wand folgt daraus:

$$\dot{q} = \alpha \left(T_{\infty} - T_{\rm w} \right) \tag{2.8}$$

Der Wärmeübergangskoeffizient α kann aus der Nußelt-Beziehung für Längsangeströmte ebene Platte genommen. Diese lautet für laminare Grenzschichten im Gültigkeitsbereich Re < Re $_k$ (Re $_k \approx 5 \cdot 10^5$) und $0, 6 \le Pr \le 2000$:

$$Nu_x = \frac{\alpha_x x}{\lambda} = 0.332 \text{ Pr}^{\frac{1}{3}} \text{ Re}_x^{\frac{1}{2}}$$
 (2.9)

für turbulente Grenzschichten mit Gültigkeitsbereich: $5\cdot 10^5 \le \text{Re}_L \le 10^7$ und $0,6 \le \text{Pr} \le 2000$ lautet die Gleichung:

$$Nu_x = \frac{\alpha_x x}{\lambda} = 0.0296 \text{ Re}_x^{0.8} \text{ Pr}^{\frac{1}{3}}$$
 (2.10)

Für die Reynolds-Zahl und Prandtl-Zahl werden die folgenden zwei Gleichungen verwendet:

$$Re_x = \frac{U\rho x}{\eta}$$
 (2.11) $Pr = \frac{c_p \eta}{\lambda}$

Die Dynamische Viskosität η wird mittels der Sutherlands-Formel berechnet, wobei η_0 , C und T_0 Konstanten für Luft sind:

$$\eta = \eta_0 \frac{T_0 + C}{T_\infty + C} \left(\frac{T_\infty}{T_0}\right)^{\frac{3}{2}} \tag{2.13}$$

Eine Strömung ist im Überschallbereich, wenn ihre Machzahl größer als 1 ist:

$$Ma = \frac{U}{a} \tag{2.14}$$

Wobei U die Strömungsgeschwindigkeit und a die lokale Schallgeschwindigkeit ist. Im Überschallbereich treten verschiedene Effekte durch die Kompressibilität der Strömung auf, wie etwa durch Stoßwellen mit sprunghaftem Anstieg von Temperatur und Druck, oder Expansionsfächern mit sprunghaftem Abfall dieser Größen. Auch die adiabate Kompression resultiert in Temperaturerhöhungen. Die in einer Grenzschicht erreichte Temperatur durch Reibung ist immer kleiner als die Totaltemperatur $T_{\infty} < T_{\rm total}$, da die kinetische Energie nur teilweise in innere Energie umgewandelt wird und somit mit dem Recovery-Faktor r skaliert ist:

$$T_r = T_\infty \left(1 + r \frac{\kappa - 1}{2} \text{Ma}^2 \right) \tag{2.15}$$

Grundlagen 2.4 Simulation

Der Recovery-Faktor kann mittels der folgenden Gleichung berechnet werden:

$$r = \frac{2}{(\kappa - 1) \operatorname{Ma}_{\infty}^{2}} \left(\frac{T_{\operatorname{aw}}}{T_{\infty}} - 1 \right) \approx \begin{cases} \sqrt[3]{\operatorname{Pr}} & \text{für turbulente Grenzschicht} \\ \sqrt{\operatorname{Pr}} & \text{für laminare Grenzschicht} \end{cases}$$
(2.16)

In einer kompressiblen Strömung bei Ma > 0.3 wird somit T_{∞} aus 2.8 zu $T_{\rm r}$:

$$\dot{q} = \alpha \left(T_r - T_w \right) \tag{2.17}$$

2.4 Simulation

Aerodynamische Aufheizung

Die numerische Strömungssimulation (Computational Fluid Dynamics (CFD)) ist ein Verfahren zur Berechnung von Strömungs- und Wärmeübergangsprozessen mithilfe numerischer Methoden. CFD erlaubt die Untersuchung komplexer Geometrien und Betriebsbedingungen, die experimentell nur schwer oder gar nicht möglich sind. Ziel ist es, die Navier-Stokes-Gleichungen in differentieller Form auf einer diskreten Gitterstruktur zu lösen. Diese Erhaltungsgleichungen sind die Massenerhaltung:

$$\frac{\partial \rho}{\partial t} + \nabla \left(\rho \vec{u} \right) = 0 \tag{2.18}$$

Impulserhaltung:

$$\frac{\partial \left(\rho \vec{u}\right)}{\partial t} + \nabla \left(\rho \vec{u} \vec{u}\right) = -\nabla p + \nabla \tau + \rho \vec{g} \tag{2.19}$$

und Energieerhaltung:

$$\frac{\partial (\rho \vec{u})}{\partial t} + \nabla [(\rho E + p) \vec{u}] = \nabla (k \nabla T) + \Phi$$
 (2.20)

Hier sind ρ die Dichte, \vec{u} der Geschwindigkeitsvektor, p der statische Druck, τ der Spannungstensor, \vec{g} die Gravitationsbeschleunigung, E die spezifische Gesamtenergie, T die Temperatur, k die Wärmeleitfähigkeit und Φ der viskose Dissipationsterm.

Grundlagen 2.4 Simulation

Eine wichtige Metrik bei der Behandlung von Grenzschichten in viskosen Fluiden ist der Dimensionslose Wandabstand:

$$y^{+} = \frac{\rho u_{\tau} y}{\eta} \tag{2.21}$$

Dieser wird mittels des Abstandes y der ersten Zelle die an der Wand anliegt, der Schubspannung an der Wand τ_w und der daraus resultierenden Schubspannungsgeschwindigkeit u_{τ} berechnet:

$$\tau_w = \eta \left. \frac{\partial u}{\partial y} \right|_{y=0} = \frac{1}{2} \rho U_\infty^2 C_f \qquad (2.22) \qquad \qquad u_\tau = \sqrt{\frac{\tau_w}{\rho}}$$

Hierbei ist η die dynamische Viskosität, $\frac{\partial u}{\partial y}\Big|_{y=0}$ der Geschwindigkeitsgradient senkrecht zur Wand und C_f der Reibungsbeiwert. Für C_f gibt es folgende empirische Näherungen [6]:

$$C_f \approx \frac{0.664}{\sqrt{Re_x}}$$
 bei $Re \le 5 \cdot 10^5$ (2.24) $C_f \approx \frac{0.0592}{Re_x^{1/5}}$ bei $Re > 5 \cdot 10^5$ (2.25)

Für Wärmeübertragungsprobleme an Wänden muss man die Zellhöhe so wählen, dass man im Bereich $y^+ \leq 1$ bleibt.

PCM

Um Temperatur- und Phasenabhängige Eigenschaften für die CHT-Simulation von PCM darzustellen, sowie Zeitabhängige Auftriebsterme, kommen weitere Modelle dazu, die in ANSYS Fluent nicht implementiert sind. Dafür wird eine in C programmierte User Defined Function (UDF) verwendet, die in Fluent direkt importiert und kompiliert werden kann. Die Boussinesq-Approximation modelliert den Auftrieb infolge von geringen Dichteänderungen. Für den Auftrieb in dem Impulsterm ergibt sich somit [5]:

$$S = -\rho_0 g_{\text{eff}}(t) \beta (T - T_0)$$
(2.26)

Hierbei ist S der Quellterm, β der Wärmeausdehnungskoeffizient, $g_{\text{eff}}(t)$ die effektive, Zeitabhängige Beschleunigung, T_0 und ρ_0 die Referenz-Temperatur und Dichte. Diese Approximation kann den Rechenaufwand erheblich verringern und ist für folgende Bedingungen gültig:

Grundlagen 2.4 Simulation

$$\frac{\Delta T}{T_0} \ll 1 \qquad (2.27) \qquad \text{Ma} \ll 1 \qquad (2.28)$$

ANSYS Fluent verwendet zur Modellierung des Schmelzbereiches ein internes Enthalpy-Porosity-Modell, welches das PCM als poröses Material mit diskreter Festund Flüssigphase ansieht. Hierfür ist die Dichte ρ notwendig und kann in Abhängigkeit des Flüssigkeitsanteils γ berechnet werden. Zwischen der Dichte der Flüssig- und Feststoffphase wird linear interpoliert [5]:

$$\rho(\gamma) = (1 - \gamma) \rho_{\text{solid}} + \gamma \rho_{\text{liquid}} \qquad \gamma \in [0, 1]$$
(2.29)

Die spezifische Wärmekapazität ergibt sich im Schmelzbereich durch eine Dichtegewichtete Mischung [5]:

$$c_{p}(T) = \begin{cases} c_{p,\text{solid}}, & T < T_{\text{solid}}, \\ \frac{(1 - \gamma) \rho_{\text{solid}} c_{p,\text{solid}} + \gamma \rho_{\text{liquid}} c_{p,\text{liquid}}}{(1 - \gamma) \rho_{\text{solid}} + \gamma \rho_{\text{liquid}}}, & T_{\text{solid}} \leq T \leq T_{\text{liquid}}, \\ c_{p,\text{liquid}}, & T > T_{\text{liquid}}. \end{cases}$$
(2.30)

Die Wärmeleitfähigkeit λ im Schmelzbereich hingegen lässt sich direkt berechnen [5]:

$$\lambda(\gamma) = (1 - \gamma) \lambda_{\text{solid}} + \gamma \lambda_{\text{liquid}}$$
 (2.31)

Die Dynamische Viskosität η wird hier, anders als für Luft in der Vorauslegung 2.13, mittels eines empirischen Polynomfit [5] abhängig von der Temperatur berechnet:

$$\eta(T) = (9 \times 10^{-4} \, T^2 - 0.6529 \, T + 119.94) \times 10^{-3} \tag{2.32}$$

In der verwendeten Software ANSYS Fluent werden diese Gleichungen über die Finite-Volumen-Methode gelöst. Dabei werden die Erhaltungsgleichungen über diskrete Kontrollvolumina integriert, wodurch für jede Zelle ein algebraisches Gleichungssystem entsteht. Dieses wird iterativ gelöst, bis vorgegebene Konvergenzkriterien erfüllt sind.

3 Vorauslegung

Die Flugdaten kommen aus einer Trajektoriensimulation aus dem Simulationsprogramm OpenRocket, welche vom Triebwerk-Subsystem durchgeführt wurde. Diese Flugdaten (3.1) bilden eine Maximalabschätzung der Aerodynamischen Aufheizung und Flugdauer durch maximale Schubkraft und Dauer mit 8kN für 43s, die von BLAST erreicht werden können.

3.1 Anforderungen

Da die Kühlung zeitgleich zu der Avionik entwickelt wurde, musste auf eine genaue Analyse aller Komponenten der Avionik verzichtet werden. Stattdessen wurde anhand des bereits festgelegten Microcontrollers STM32H743ZGT6, der auf den redundanten Flugcomputern verwendet wird, die Auslegung durchgeführt. Aus dem Datenblatt des Microcontrollers folg eine maximale Sperrschichttemperatur von $T_{\rm J}=125\,^{\circ}{\rm C}$ [3] und ein Sperrschicht-Gehäuse Wärmeleitwiederstand von $\Theta_{\rm JC}=23,9\,^{\circ}{\rm C}\,{\rm W}^{-1}$ [3]. Mit einem konservativen Sicherheitsfaktor von 1.5, um bisher unbekannte Bauteile zu berücksichtigen, folgt daraus $\Theta_{\rm JC,safety}=35,85\,^{\circ}{\rm C}\,{\rm W}^{-1}$ und eine maximale Gehäusetemperatur von $T_{\rm C}=89,15\,^{\circ}{\rm C}$. Im Kontext der Elektronik ist mit Gehäuse immer die Oberseite der elektronischen Komponente gemeint. Die Kühlung soll außerdem eine hohe Zuverlässigkeit haben, welche durch Verwendung von ausschließlich passiven Bauteilen gewehrleistet wird. Dadurch kann aufwendiges und teures testen und verifizieren von aktiven Bauteilen mit mechanischer oder elektrischer Funktion vermieden werden und es besteht bei nicht nominalen Flügen eine geringere Ausfallwahrscheinlichkeit durch die inherent größeren Toleranzen passiver Bauteile.

Dem Energieerhaltungssatz nach haben der FCC, die Kameras und weitere Elektronik die keine Leistung abgibt, gegenüber etwa der Power Control and Delivery Unit (PCDU) und Funkplatine welche Leistung in Form von Strom und elektromagnetischer Strahlung abgeben, einen Wirkungsgrad von 0 %, da Logikoperationen physikalisch gesehen keine Arbeit sind. Resultierend wird der komplette Stromverbrauch in Wärme umgewandelt.

Komponente Spannung & Strom Wirkungsgrad Wärmestrom $\approx 0\%$ STM32H743ZGT6 $V_{\rm DD} = 3.3 \, \rm V$, $1,769\,\mathrm{W}$ $I_{\rm DD} = 536 \,\mathrm{mA} \,[3]$ $Q_{\rm ges}$ $7,075\,\mathrm{W}$ RunCam Split 4 V2 $\approx 0\%$ $V_{\rm DD} = 5 \, \mathrm{V},$ $2,25 \, W$ $I_{\rm DD} = 450 \,\mathrm{mA} \,\,[15]$ $Q_{\rm ges}$ $9\,\mathrm{W}$ Thebe-II $V_{\rm DD} = 3.6 \, \rm V$ $\approx 30\% [19]$ $1.3 \, W$ $I_{\rm DD} = 500 \,\mathrm{mA} \, [19]$ **PCDU** $\approx 30\%$ $9,3 \, W$ $40\,\mathrm{W}$ $Q_{\rm ges, safety}$

Tabelle 3.1: Leistung der Avionik

Die Leistung der Avionik in 3.1 ergibt sich durch den Maximalverbrauch der FCC mikrocontroller (STM32H743ZGT6) bei maximaler clock rate (400 MHz) und vollständig aktiver Peripherie, der Kameras und einer Abschätzung der restlichen Komponenten ohne Quellenangabe. Der aus 3.1 resultierende gesamten Wärmestrom der Avionik mit 40 W ist mit einem gewöhnlichen Laptop vergleichbar.

3.2 Thermale Schnittstelle

Um mit der Abwärme der Avionik umgehen zu können, muss sie effektiv gesammelt und abtransportiert werden. Oft werden in der Luft- und Raumfahrtindustrie Kühlkreisläufe mit einem Arbeitsfluid verwendet. Diese benötigen jedoch meist bewegliche Bauteile wie Pumpen, welche die Ausfallwahrscheinlichkeit erhöhen. Alternativ gibt es auch Möglichkeiten durch erzwungene Konvektion ein Arbeitsfluid anzutreiben oder Materialien mit hoher Wärmeleitfähigkeit zu verwenden. Beide Methoden bieten in Kombination eine günstige Integrierbarkeit und geringen Wärmeleitwiederstand, ohne Bewegliche Teile zu verwenden.

Das Thermale Interface wird auf Systemebene analysiert, da eine Entwicklung auf Printed Circuit Board (PCB) Ebene wie bereits erläutert nicht möglich ist, ohne vollständig entwickelte Elektronik.

Abbildung 3.1: Flugdaten der Trajektoriensimulation

Abbildung 3.2: Wärmerohr Aufbau und Funktionsweise

3.2.1 Heatpipes

Heatpipes (Wärmerohre) sind eine Möglichkeit durch erzwungene Konvektion Wärme zu transportieren. Reguläre Heatpipes sind vollständig geschlossene Rohre mit einer Flüssigkeit im inneren und einer Kapillarstruktur an der Innenwand, so dass ein freier Kanal in der Mitte bleibt. Bei der Wärmequelle verdampft die Flüssigkeit aus der Kapillarstruktur und bei der Wärmesenke kondensiert es wieder, wodurch der resultierende Massenstrom einen Kreislauf bildet. Besonders effektiv sind Heatpipes durch die Nutzung der Verdampfungsenthalpie beim Flüssig-Gas Übergang an der Wärmequelle, wodurch sehr hohe Wärmestromdichten erreicht werden können. Eine Schematische Darstellung eines Wärmerohrs kann in 3.2 gesehen werden.

Eine Weiterentwicklung davon sind Loop Heatpipes die, wie der Namen bereits impliziert einen Kreislauf bilden, indem es eine separate Flüssig- und Dampfleitung gibt, welche jeweils am Verdampfer bzw. Kondensator miteinander verbunden ist. Besonders von Vorteil sind Loop Heatpipes, wenn größere Distanzen überbrückt werden müssen, oder eine relativ zuverlässige Funktion unabhängig von Orientierung und Gravitation gebraucht wird. Aufgrund der erhöhten Komplexität von Loop Heatpipes, der Möglichkeit die Orientierung frei zu bestimmen, den relativ geringen Distanzen innerhalb der Avionik-sektion und dem Mangel an Kommerziell erhältlichen Loop Heatpipes wird eine reguläre Heatpipe gewählt.

Ein wichtiger Aspekt von Heatpipes ist, dass der Wärmeleitwiederstand durch Biegungen und Anbindung von mehreren Quellen um bis zu 100 % steigen kann [11]. Des weiteren hängt besonders bei regulären Heatpipes der Wärmeleitwiederstand von der effektiven Beschleunigung ab, da die höhere Dichte der Flüssigphase eine beschleunigende Wirkung auf die Konvektion hat, wenn die Wärmequelle unten orientiert ist. Sollte die Heatpipe jedoch "überkopf " arbeiten, sodass die Wärmequelle oben orientiert ist, muss die Konvektion gegen die Beschleunigung arbeiten und

verliert Leistung bzw. hat einen erhöhten Wärmeleitwiederstand.

Ausgewählt wurde die QG-SHP-D5-400MN Heatpipe von Quick-Ohm Küpper & Co. GmbH aus Kupfer mit Mesh-Gewebe als Kapillarstruktur von 400 mm Länge und 5 mm Durchmesser. Diese Heatpipe kann eine Leistung von 40 W übertragen.

Weiterhin wird die Heatpipe als ROM mit einem einfachen Widerstand ersetzt, der dem Wärmeleitwiederstand von $R_{\text{Heatpipe}} = 0.3 \, \text{K W}^{-1}$ der Heatpipe aus dem Datenblatt [14] entspricht. Dadurch wird eine sehr komplexe Modellierung abhängig von Temperaturen, Biegungen, Ausrichtung, Beschleunigung und Anzahl an Wärmequellen sowie deren Leistung und Positionen vermieden.

3.2.2 Wärmeleitbänder

Um die PCB mit dem Wärmerohr zu verbinden werden Wärmeleitbänder aus verschiedenen Materialien analysiert. Wärmeleitbänder sind flexible Verbindungsteile mit hoher Wärmeleitfähigkeit die Wärmebrücken zwischen mehreren Bauteilen gewährleisten. PGS ist gegenüber herkömmlichen Materialien besonders interessant durch die extrem hohe Wärmeleitfähigkeit innerhalb der Ebene, da diese der Ebene von der Molekülstruktur des Graphit entspricht. Außerdem ist es ein relativ flexibles Material, bei einer üblichen Dicke von $\approx 10\,\mu\text{m}$ bis $100\,\mu\text{m}$. Ein Nachteil von PGS ist die im Kontrast zur Ebene sehr niedrige Wärmeleitfähigkeit durch die Ebene, infolge von wenigen molekularen Brücken zwischen den Gitterstrukturen. Dementsprechend wird PGS und andere Arten von Graphit Folien hauptsächlich zur Wärmeverteilung auf der Oberfläche von Bauteilen verwendet um Wärmestromdichten zu verringern und homogenere Temperaturverteilungen zu erreichen.

Das effektive erhöhen des Querschnitts von PGS durch Schichtung mehrerer Folien aufeinander ermöglicht es jedoch die hohe Wärmeleitfähigkeit in der Ebene auch zum thermischen koppeln mehrerer Bauteile zu verwenden. Diese Anwendung hat besonders in der Raumfahrt durch ermöglichte Masseneinsparungen Halt gefunden. Eine Kommerzielle Reihe an solchen Wärmeleitbändern aus gängigen Materialien sieht man in 3.3. Der Tabelle 3.2 nach ist PGS das beste Kompromiss für die geforderten Eigenschaften. Um jedoch zu vermeiden, dass bei starken Vibrationen aufgrund der Flexibilität des PGS Kontakt mit der Elektronik und mögliche Kurzschlüsse entstehen, muss das Wärmeleitband mit einer elektrisch isolierenden Ummantlung versehen werden.

Aufgrund der höchsten Wärmeleitfähigkeit in der Ebene vom PGS HGS-012 der Firma HPMS Graphite [9] wurde dieses ausgewählte. Um ein verwendbares Wärmeleitband zu konstruieren, soll dieses aus 32 Schichten bestehen, 4 cm breit und 10 cm

Abbildung 3.3: Kommerziell erhältliche Wärmeleitbänder aus PGS (links), Kupfer und Aluminium [4]

Tabelle 3.2: Ampelbewertung von Materialien für Wärmeleitbänder.

Eigenschaft	Kupfer[18]	Aluminium[18]	PGS (Graphit)[9]
Wärmeleit- fähigkeit in Ebene	$397,48\mathrm{Wm^{-1}K^{-1}}$	$225,94\mathrm{Wm^{-1}K^{-1}}$	$\begin{array}{c} 1050\mathrm{Wm^{-1}K^{-1}} \\ \mathrm{bis} \\ 1800\mathrm{Wm^{-1}K^{-1}} \end{array}$
Wärmeleit- fähigkeit durch Ebene	$397,48\mathrm{Wm^{-1}K^{-1}}$	$225,94\mathrm{Wm^{-1}K^{-1}}$	$10 \mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1}$ bis $26 \mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1}$
Dichte	$8940 \mathrm{kg} \mathrm{m}^{-3}$	$2698 \mathrm{kg} \mathrm{m}^{-3}$	$1500 \mathrm{kg} \mathrm{m}^{-3}$ bis $2100 \mathrm{kg} \mathrm{m}^{-3}$
Elektrische Isolation	Schlecht	Schlecht	Schlecht

Vorauslegung 3.3 PCM

lang sein, wodurch es ermöglicht werden soll, dass die Heatpipe keine Biegungen hat. Die Anbindungen bzw. Endstücke der Wärmeleitbänder, sowie Kontaktwiederstände durch Klebstoffe oder ähnliche Verbindungsmethoden werden ignoriert. Der Wärmeleitwiederstand ergibt sich durch einsetzen von Gleichung 2.5 in 2.6:

$$R_{\text{Wärmeleitband}} = \frac{\Delta x}{\lambda A}$$

Mit $\Delta x = 10 \, \text{cm}$, $\lambda = 1800 \, \text{W m}^{-1} \, \text{K}$ und $A = 32 \cdot 0.012 \, \text{mm} \cdot 4 \, \text{cm} = 15.36 \, \text{mm}^2$ ergibt sich $R_{\text{W\"{a}rmeleitband}} = 3.617 \, \text{K W}^{-1}$

3.2.3 Gesamte Schnittstelle

Mittels einer Kombination von PGS und Heatpipe kann eine leicht integrierbare Wärmebrücke gebildet werden, die den Wärmeleitwiederstand minimiert. Eine Schematische Darstellung der Thermalen Schnittstelle ist in 3.4 zu sehen.

Wenn angenommen wird, dass die Avionik aus vier separaten PCB mit einer Gesamtleistung von $40\,\mathrm{W}$ (3.1) besteht, müssen pro Wärmeleitband $10\,\mathrm{W}$ übertragen werden. Dabei entsteht nach Gleichung 2.6 eine Temperaturerhöhung über das Wärmeleitband von $10\,\mathrm{W} \cdot 3,617\,\mathrm{W}\,\mathrm{K}^{-1} = \Delta T_{\mathrm{Wärmeleitband}} = 36,17\,\mathrm{K}$. Die Heatpipe überträgt den vollständigen Wärmestrom und hat eine Temperaturerhöhung von $40\,\mathrm{W} \cdot 0,3\,\mathrm{W}\,\mathrm{K}^{-1} = \Delta T_{\mathrm{Heatpipe}} = 12\,\mathrm{K}$.

Von der Quelle bis zur Senke ergibt sich also ein Temperaturgradient von $\Delta T_{\text{Heatpipe}} + \Delta T_{\text{Wärmeleitband}} = \Delta T_{\text{ges}} = 48,17 \,\text{K}$. Eine Schematische Darstellung der Schnittstelle sieht man in 3.4. Für die Nötige Temperatur an der Senke erhält man $T_{\text{Senke}} = T_C - \Delta T_{\text{ges}} = 314,13 \,\text{K}$.

3.3 PCM

Nutzung eines PCM mit Fest-Flüssig Übergang ist eine weit verbreitete Lösung in der Luft- und Raumfahrtindustrie um für begrenzte Zeiträume Elektronik in einem akzeptablen Temperaturbereich zu halten. Auch wenn PCM Lösungen generell eine hohe Masse haben, wird das oft aufgrund der ansonsten idealen Eigenschaften inkauf genommen: Durch die hohe spezifische Schmelzenthalpie, kann rein passiv eine große Wärmemenge, bei einem isothermen Prozess, absorbiert werden. Aufgrund dessen kann ein von der Umwelt isoliertes ATM entwickelt werden, das nicht mit stark schwankenden Zuständen der Sonneneinstrahlung und Lufttemperatur zurecht

Vorauslegung 3.3 PCM

Abbildung 3.4: ROM der Thermalen Schnittstelle aus Heatpipe und Wärmeleitbändern. Hier sind nur 2 von 4 Wärmeleitbändern dargestellt.

kommen muss. Auch wenn ein PCM mit Flüssig-Gas Übergang meist eine etwa 10-fach höhere Verdampfungsenthalpie hat, wird diese Art generell nicht verwendet, da der Dichteunterschied zwischen Flüssig- und Gasphase zu extremen Drücken führen würden, falls Wiederverwendbarkeit verlangt wird und somit ein Druckkörper nötig ist. Alternativ kann die Gasphase auch aus dem Fahrzeug abgelassen werden in einem Prozess der Vapour Venting genannt wird. Hierbei geht jedoch die Wiederverwendbarkeit verloren, da vor jedem Start die Flüssigphase neu getankt werden muss. Weiter kann das Vapour Venting trotz der geringen Massenströme zu Momenten führen, die das Fahrzeug destabilisieren; besonders im Überschallbereich können unintuitive Kräfte durch Interaktionen mit dem Überschallstrom entstehen [8], die aufwendige CFD-Simulationen oder Tests benötigen. Dementsprechend wird nur ein Fest-Flüssig PCM analysiert.

Für die Auswahl eines geeigneten PCM sind spezifische Schmelzenthalpie und Schmelztemperatur entscheidend. Die Wärmeleitfähigkeit ist zwar auch sehr relevant, ist jedoch für alle Materialien zu schlecht und muss durch Lamellen oder ähnliche Wärmetauschende Strukturen verbessert werden, wobei dabei PCM Masse mit Strukturmasse ersetzt wird und somit die Wärmekapazität sinkt. Das Volumen der Wärmeleitenden Struktur welches PCM ersetzt wird Void Fraction genannt, da es gewissermaßen

Vorauslegung 3.4 Radiator

Tabelle 3.3: Ampelbewertung für Alkane als PCM [13].

Eigenschaft	n-Hexadecan	n-Octadecan	n-Eicosan
Schmelzpunkt	291 K	301 K	310 K
Schmelzenthalpie	$230400\mathrm{Jkg^{-1}}$	$239300\mathrm{Jkg^{-1}}$	$240999\mathrm{Jkg^{-1}}$

eine Leerstelle im PCM bildet, die wie gesagt keine latente Wärmeaufnahme hat. Hier wird ein Void Fraction von F=0.1 gewählt. Eine Optimierung der Lamellenstruktur kann bei gleich bleibender Masse in einer erhöhten Wärmeleitfähigkeit resultieren, was jedoch in dieser Arbeit nicht durchgeführt wird. Abbildung 4.1a zeigt ein Drahtmodell der Struktur.

Die Auswahltabelle 3.3 zeigt die drei gängigsten Organischen Alkane, welche als PCM verwendet werden im Vergleich. Demnach hat n-Eicosan die besten Eigenschaften, mit insbesondere einem perfekten Schmelzpunkt kurz unter den 314,13 K der Senke, wie in 3.2 berechnet. Um die Masse und Dimension des PCM zu berechnen wurde das in 3.1 dargestellte Python-Programm verwendet. Das PCM wird dort als isobar und isotherm angenommen und hat eine unendliche Wärmeleitfähigkeit. Des weiteren befindet es sich in einer Aluminium-Box mit 1 mm Wanddicke und einem der Void Fraction entsprechenden internen Aluminium Volumenanteil von F=0.1. Die Dimensionen der Breite und Tiefe der Box wurden gleich gesetzt; die Höhe der Box bildet die zweite Variable. Kapazitäts- und Massenkonturen abhängig von Seitenlänge und Höhe können in 3.10 gesehen werden.

Bei einer Flugdauer von 1200 s und einem Wärmestrom von 40 W ergibt sich eine nötige latente Wärmekapazität von 48 000 J, eine Seitenlänge der Aluminium-Box von 6,749 cm und eine Gesamtmasse von 346,610 g. Da ein Würfel von allen Quadern das größte Volumen-Oberflächenverhältnis hat, sind alle Kanten gleich lang.

3.4 Radiator

Bei Radiatoren ist ein hoher Emissions- und niedriger Absorptionsgrad nach Gleichung 2.3 dimensionierend, da die Temperatur den Anforderungen nach limitiert ist und die Fläche minimiert werden muss, weil diese proportional zu eingehenden Wärmeströmen aus der Umgebung ist, wie etwa die Sonneneinstrahlung oder die Luft, welche auch möglichst gering gehalten werden sollen.

Als Beschichtung wurde AZ-93 der Firma AZ Technology LLC. [1] ausgewählt. Dabei handelt es sich um eine in der Raumfahrt weit verbreitete inorganische Farbe mit günstigen Eigenschaften, welche Tabelle 3.4 entnommen werden können. Abbildung

```
# aluminium density [kg*m^-3]
  rho_alu = 2700
                       # pcm density [kg*m^-3]
  rho_pcm = 788
           = 240998.9 \# pcm latent heat [J*kg^-1]
  F
           = 0.1
                         void fraction
4
           = 0.001
                       # wall thickness [m]
5
6
  def total_mass(L, H): # pcm mass including case and fins
       return (rho_alu * (L**2 * H - (L - 2*t)**2 * (H - 2*t))
               + (F * rho_alu + (1 - F) * rho_pcm) * (L - 2*t)
9
                  **2 * (H - 2*t))
10
  def total_heat(L, H): # pcm latent heat capacity
11
^{12}
                = (1 - F) * rho_pcm * (L - 2*t)**2 * (H - 2*t)
       pcm_heat
13
          * h
       return pcm_heat
14
```

Listing 3.1: Berechnung der Masse und Latenten Wärmekapazität des PCM in der pcm.py

Tabelle 3.4: AZ-93 Spezifikationen [1]			
$arepsilon_{ ext{t}}$	0.91 ± 0.02		
$\alpha_{ m s}$	0.15 ± 0.02		
Temperaturbereich	-180°C bis 1400°C		

6.1 ist eine Visualisierung der Gleichung 2.3 und zeigt Leistungskonturen eines Radiators mit den Eigenschaften aus Tabelle 3.4 je nach Fläche und Temperatur.

Für eine rein radiative Kühlung der Avionik ergibt sich für 40 W der Avionik und einen spezifischen Wärmestrom der Sonne (Solarer Wärmestrom) von 1 kW m⁻² bei einem 50 % Dutycycle, durch die Rotation der Rakete bzw. der Schattierung des halben Radiators durch die Rakete selbst auf der Sonnenabgewandten Seite, den Eigenschaften aus 3.4 und einer Temperatur von $T_{\rm senke} = 314,13$ K nach eine Fläche von 996,163 cm². Die Radiatorleistung ergibt sich demnach zu $\dot{Q}_{\rm Radiator} = 47,471$ W. In 3.2 und 6.1 ist der Programmcode der zur Berechnung verwendet wurde zu sehen.

3.5 PCM-Radiator-Hybrid

Eine Hybridlösung wird auch in Erwägung gezogen, um die Masse durch Nutzung eines Radiators zu minimieren, wobei wegen aerodynamischer Aufheizung für kurze Zeit ein PCM gebraucht werden könnte. Für die Vorauslegung wird die Außenkontur der Rakete von Spitze bis Avionik-Sektion, mit Hilfe der Nußelt-Beziehungen, als

Listing 3.2: Setup Werte aus der setup.json

```
# . . . #
1
    avionics_power = data["avionics_power"]
2
    e = data["emittance"]
3
    a = data["absorptance"]
4
    solar_flux = data["solar_flux"]
5
    target_temperature = data["target_temperature"]
6
7
    def radiator_area(avionics_power, target_temperature, e, a,
        solar_flux): # radiator area
      return (avionics_power / (e * Stefan_Boltzmann *
9
         target_temperature**4 - 0.5 * solar_flux * a))
```

Listing 3.3: Berechnung der Radiatorfläche in der radiator.py

Längsangeströmte ebene Platte angesehen, wie in Abbildung 3.7 dargestellt ist. Um zu wissen, ob hier die Beziehung für laminare oder turbulente Grenzschichten angewandt werden soll, müssen zunächst die Gültigkeitsbereiche der Reynolds- und Prandtlzahl (2.12, 2.11) überprüft werden. Mittels der Nußelt-Beziehung wird der Wärmeübergangskoeffizient α bestimmt und dann in Gleichung 2.17 eingesetzt, um auf den spezifischen Wärmestrom zu schließen.

Die Außenstruktur der Rakete besteht aus dem zylindrischen Hüllensegment und einem von-Kármán-Nasenprofil das eine Spezialform der Haack Serie ist [16]. Die analytische Beschreibung lautet:

$$x(t) = \frac{R}{\sqrt{\pi}} \cdot \sqrt{\cos^{-1}\left(1 - \frac{2t}{L}\right) - \frac{1}{2} \cdot \sin\left(2 \cdot \cos^{-1}\left(1 - \frac{2t}{L}\right)\right)} \quad \text{für } t \in [0, L]$$

Hierbei ist x(t) der Radiusverlauf des rotationssymmetrischen Nasenprofils entlang der Längskoordinate t, beginnend an der Spitze (t=0) bis zur Basis (t=L). Die Gesamtlänge der Nase ist $L=1250\,\mathrm{mm}$. Der maximale Radius an der Basis beträgt $R=125\,\mathrm{mm}$, und entspricht dem Gesamtdurchmesser der Rakete von $D=250\,\mathrm{mm}$.

Abbildung 3.5: PCM Wärmestrom ohne aerodynamische Aufheizung

Abbildung 3.6: PCM Wärmestrom bei aerodynamischer Aufheizung

Die Funktion der Nase wurde mithilfe von einem Computer Assisted Design (CAD) Programm skizziert und die Konturlänge zu 1,01 m vermessen. Wenn der Radiator über den vollständigen Umfang der Rakete bei einem Durchmesser von $D=250\,\mathrm{mm}$ modelliert wird, ist der Radiator eine 12,684 cm lange Sektion. Daraus folgt eine Konturlänge von 1,074 m bis zum Mittelpunkt des Radiators, an der Stelle alle lokalen Größen berechnet wurden.

In Abbildung 3.5 sieht man eine Schematische Darstellung der Konstruktion und speziell die Wärmeströme für den Fall, dass das System am Solidus-Punkt im Gleichgewicht steht. Hingegen kann man in Abbildung 3.6 den Zustand sehen, in dem der Umweltwärmestrom durch aerodynamische Aufheizung gestiegen ist und somit das PCM anfängt zu schmelzen. Wegen des PCM und der Annahme, dass alle Wärmeleitkoeffizienten unendliche groß sind, wird das System als isotherm modelliert und die Avionik-Sektion als adiabat.

Die Software zur Berechnung aller Bilanzgleichungen für Dimensionen und Massen besteht aus einer Reihe an Python Programmen und Datenstrukturen. Das Programm main.py ist das Hauptprogramm das alle Unterprogramme in der richtigen Reihenfolge aufruft. Zuerst die radiator.py zur Berechnung der Radiator Dimension mithilfe der Randbedingungen aus der setup.json. Danach wird die hybrid.py aufgerufen um die Aerodynamischen Wärmeströme mittels der Nußelt-Beziehung zu bestimmen. Die Ergebnisse werden anschließend in die pcm.py geladen, um abhängig von der Radiatorfläche und den Wärmeströmen die Kapazität und Masse des PCM zu

Abbildung 3.7: Kontourlänge vom Staupunkt der Rakete bis zum Mittelpunkt des Radiators

bestimmen. In Abbildung 3.8 sieht man schematisch wie die Dimensionierung in der Software abläuft.

Wie in Abbildung 3.9 dargestellt, liegt die Prandtl-Zahl im Gültigkeitsbereich sowohl für die turbulente als auch für die laminare Grenzschicht. Die Reynolds-Zahl überschreitet jedoch zeitweise mit Werten bis zu $2,4 \cdot 10^7$ die Gültigkeitsbereiche. Aufgrund fehlender alternativer analytischer Methoden wurde dennoch die Nußelt-Beziehung 2.10 für turbulente Grenzschichten angewendet.

Das Ergebnis der Berechnung ist in Abbildung 3.10 zu sehen, mit der Radiatorleistung $\dot{Q}_{\rm Radiator} = 47,471 \, {\rm W}$ aus 3.4 und dem Wärmestrom aus der Umwelt $\dot{Q}_{\rm Umwelt}$, der aus Sonneneinstrahlung wie in 3.4 modelliert und der aerodynamischen Aufheizung besteht. Der Wärmestrom $\dot{Q}_{\rm Rein}$ ist die Summe aus Avionik Wärmestrom $\dot{Q}_{\rm Avionik}$ und dem Umwelt Wärmestrom $\dot{Q}_{\rm Umwelt}$.

Erkennbar ist, dass mit bis zu 20 kW ein extrem hoher Wärmestrom durch die aerodynamisch Aufheizung entsteht. Auch wenn dieser nur etwa 100 s andauert, ist er ausreichend um die notwendige Masse des PCM (inklusive der Aluminium Struktur) auf 4,256 kg zu erhöhen. Abgesehen von der höheren notwendigen Kapazität von 626 817,571 J führen auch zusätzlich geometrische Verluste zu der erhöhten Masse, da das Aspektverhältnis aufgrund der Einschränkung durch die Radiatorfläche weit von der idealen Würfelform entfernt ist.

Abbildung 3.8: Ablauf der Dimensionierung in der Vorauslegungs-Software

Abbildung 3.9: Reynolds- und Prandtlzahl während kritischer Phase im Flug

Abbildung 3.10: PCM Wärmeströme während dem Flug

4 Simulation

Um die Ergebnisse der Vorauslegung zu verifizieren wurde mithilfe ANSYS Fluent sowohl das Verhalten des PCM, als auch die aerodynamische Aufheizung simuliert.

4.1 PCM

Für die Simulation des PCM wurde die in 4.1a dargestellte Struktur stark vereinfacht, um trotz mangelnder Rechenressourcen gelöst werden zu können. Zuerst wurde das PCM in der Symmetrieebene zu einem zweidimensionalen Problem vereinfacht. Im nächsten Schritt wurde nur die mittlere Zelle aus der Ebene unter der Annahme, dass das System symmetrisch ist ausgewählt. Im letzten Schritt wurde die Zelle nochmal aufgrund von Symmetrie gespalten.

Anschließend wurde in ANSYS Mechanical das Mesh vollständig aus Tetraeder-Elementen erzeugt, wobei die Zellgröße so gewählt wurde, dass die Aluminium-Wände 1-2 Zellen Tiefe haben. In dem Mesh 4.1b ist das PCM in schwarz und das Aluminium in rot dargestellt. Jeweils an der linken und rechten Kante, wurde aufgrund der anliegenden Zelle bzw. Spiegelung der Zelle eine Symmetrie Randbedingung gewählt. Die untere Kante wurde als Wärmequelle angelegt und die obere Kante als adiabate Wand.

Die Wärmequelle ergibt sich aus der Seitenfläche der PCM Struktur, bestimmt in 3.3, und dem Avionik Wärmestrom zu $\frac{40\,\mathrm{W}}{(6,749\,\mathrm{cm})^2} = 8782\,\mathrm{W}\,\mathrm{m}^{-2}$. Da ANSYS Fluent bei zweidimensionalen Simulationen eine Referenztiefe von 1 m verwendet, konnte der spezifische Wärmestrom der Quelle direkt verwendet werden.

Die Thermodynamischen Eigenschaften von n-Eicosan sind aufgeführt in Tabelle 4.1. Das temperaturabhängige Verhalten der spezifischen Wärmekapazität kann den Graphen 4.2 und 4.3 entnommen werden.

Abbildung 4.1: PCM Struktur und vereinfachtes Mesh

Tabelle 4.1: Stoffdaten für n-Eicosan

Solidus Temperatur	$T_{ m solidus}$	309 K [13]					
Liquidus Temperatur	$T_{ m liquidus}$	311 K [<mark>13</mark>]					
Spezifische Wärmekapazität bei konstantem Druck der Flüssigphase	$c_{p, m liquid}$	$2350,05\mathrm{Jkg^{-1}K^{-1}}$ [13]					
Spezifische Wärmekapazität bei konstantem Druck der							
Feststoffphase	$c_{p,\mathrm{solid}}$	$2132,4 \mathrm{Jkg^{-1}K^{-1}}$ [13]					
Dichte der Flüssigphase	$ ho_{ m solid}$	$910 \mathrm{kg} \mathrm{m}^{-3} \left[\frac{12}{2} \right]$					
Dichte der Feststoffphase	$ ho_{ m liquid}$	$769 \mathrm{kg} \mathrm{m}^{-3} [12]$					
Wärmeleitfähigkeit der Flüssigphase	$\lambda_{ m liquid}$	$0.1505\mathrm{Wm^{-1}K^{-1}}$ [7]					
Wärmeleitfähigkeit der Feststoffphase	$\lambda_{ m solid}$	$0,4248\mathrm{Wm^{-1}K^{-1}}$ [17]					
Wärmeausdehnungskoeffizient	β	$0,0009\mathrm{K}^{-1}$ [7]					
Spezifische Schmelzenthalpie	$h_{ m fus}$	$240998,86\mathrm{Jkg^{-1}}$ [13]					

Abbildung 4.2: Effektive spezifische Wärmekapazität von n-Eicosan

Abbildung 4.3: Sensible spezifische Wärmekapazität von n-Eicosan

Abbildung 4.4: Approximiertes Beschleunigungsprofil

Die Simulation wurde mit dem Pressure-Based Solver [5] als transiente Simulation über 120000 Zeitschritte mit einer Zeitschrittgröße von 0,01 s durchgeführt um die vollständige Flugdauer mit 1200 s zu simulieren. Des weiteren wurde das Energiemodell eingeschaltet [5], das Viskositätsmodell als Laminar angenommen [5] und das Phasenwechselmodell aktiviert [5]. Neben den bereits erläuterten PCM Eigenschaften wurde für das Aluminium eine Dichte von $\rho = 2719\,\mathrm{kg}\,\mathrm{m}^{-3}$, eine spezifische Wärmekapazität von $c_p = 871\,\mathrm{J}\,\mathrm{kg}^{-1}\,\mathrm{K}$ und eine Wärmeleitfähigkeit von $\lambda = 202,4\,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}$ eingestellt.

Abbildung 4.4 zeigt das Beschleunigungsprofil, welches in der Simulation verwendet wurde. Zu beachten ist, dass Beschleunigungsspitzen durch den Fallschirm, wie sie in 3.1a gesehen werden können, ignoriert werden, da diese durch mangelhafte Genauigkeit der Fallschirm Modellierung resultieren.

Da die ANSYS Fluent Transient Table Funktion (Native Funktion für transiente Randbedingungen mit Profilen) keine transiente Gravitation unterstützt, wurde diese und die globale Beschleunigung deaktiviert. Stattdessen wurde die Beschleunigung über den Quellterm der Boussinesq-Approximation in der UDF implementiert. Die Funktion ist in 4.1 zu sehen.

Als Scheme wurde SIMPLE verwendet [5], für die Gradienten Least Squares Cell

Abbildung 4.5: Flüssigkeitsanteil Konturen. Die Legende bezieht sich auf $4.5\mathrm{d}$

Abbildung 4.6: Konturen der statischen Temperatur. Die Legende bezieht sich auf 4.6d

Based [5], für Druck Second Order [5] und für Impuls und Energie Second Order Upwind [5]. Die Unterrelaxationsfaktoren wurden durch experimentelle Ermittlung anhand der Residuen zu 0,3 für Druck, 1 für Dichte und Körperkräfte, 0,5 für Impuls und 0,9 für sowohl Flüssigkeitsanteil als auch Energie gewählt.

In Abbildung 4.6 und 4.5 kann man jeweils die Lösung des Flüssigkeitsanteils und der statischen Temperatur zu mehreren Zeitschritten sehen. Man kann dort deutlich erkennen, wie das PCM von der Wärmequelle aus schmilzt. Besonders an der Aluminiumlamelle bildet sich eine beschleunigte Konvektion die jedoch nach unten fließt und durch das aufsteigende PCM in der Mitte der Zelle angetrieben wird. Im Vektorfeld 4.7 kann man den dadurch entstandenen Wirbel sehen.

Besonders interessant ist, dass wie in 4.6 zu erkennen ist, die Temperatur an der Quelle auf bis zu 336 K steigt. Demnach würde mittels der Thermalen Schnittstelle aus 3.2 die Gehäusetemperatur der Avionik-Bauteile mit $T_C = 384,17$ K über die zulässige Temperatur steigen.

```
//Y-momentum source
  DEFINE_SOURCE(Boussinesq_momentum_source, cell, thread, dS, eqn)
2
3
            double Temp, source, acc;
4
            Temp=C_T(cell,thread);
5
6
            double t = CURRENT_TIME;
8
            if (t < 20)
9
                     acc = 34.81;
10
            else if (t < 50)
                     acc = 109.81;
12
            else if (t < 150)
13
                     acc = 19.62;
14
            else
15
                     acc = 9.81;
16
^{17}
            source=-Rol_pcm*acc*TEC*(Temp-Tr); //negative for -Y
18
                down
            dS[eqn] = -Rol_pcm * acc * TEC;
                                                                   //
19
               negative for -Y down
20
            return source;
  }
21
```

Listing 4.1: Boussinesq-Approximation des Auftriebs im PCM in der UDF eicosane.c

Abbildung 4.7: Geschwindigkeitsvektoren der Konvektionswirbel einer, durch Nachbearbeitung, vervollständigten Zelle bei $900\,\mathrm{s}$. Darstellung der weiteren Zeitschritte ist in $6.5\,\mathrm{zu}$ finden.

4.2 Aerodynamische Aufheizung

Die Simulation der aerodynamischen Aufheizung wurde als stationäre Simulation mit dem Density-Based solver durchgeführt. Als Viskositätsmodell wurde SST k- ω [10] gewählt und das Energiemodell aktiviert. Die Luft wurde als Ideales Gas mit einer spezifischen Wärmekapazität von 1006,43 J kg⁻¹ K, einer Wärmeleitfähigkeit von 0,0242 W m⁻¹ K, einer dynamischen Viskosität von 1,7894 · 10⁻⁵ kg m⁻¹ s und einer molekularen Masse von 28,966 kg kmol⁻¹ modelliert.

Die Umströmungssimulationen der Rakete wurden an max Q orientiert, dem Zeitpunkt des maximalen dynamische Drucks auf der Rakete. Den Verlauf des dynamischen Drucks, kann man Abbildung 3.1f entnehmen. Dieser Punkt wird als Richtwert für die aerodynamische Aufheizung angenommen, da er unabhängig von der Vorauslegung ist und somit Ungenauigkeiten dort getroffener Annahmen vermieden werden.

Um ein Profil der aerodynamischen Aufheizung bilden zu können wurde jeweils eine Simulation bei max Q, max Q-10 s, max Q+10 s und max Q+20 s durchgeführt. Die den Punkten entsprechenden Flugzustände können Tabelle 4.2 entnommen werden.

Tabelle 4.2: Flugzustände der vier Simulationen zur aerodynamischen Aufheizung.

Zustand	t [s]	h [m]	U [m/s]	T [°C]	p [hPa]	$\rho [\mathrm{kg/m^3}]$
max Q -10 s	18,691	4274,387	461,355	-12,784	594,935	0,796
$\max Q$	28,691	10244,138	750,704	-51,587	254,783	0,401
$\max Q + 10 s$	38,691	19758,652	1189,968	-56,500	56,930	0,092
$\max Q +20 s$	48,700	32439,616	1393,377	-43,269	8,136	0,012

Bei dieser Simulation wurde aufgrund der Rotationssymmetrie der Rakete im relevanten Bereich oberhalb der Finnen eine zweidimensionale Simulation der halben Rakete durchgeführt. Das Mesh der Domäne wurde in ANSYS Mechanical vollständig aus Tetraeder-Elementen erstellt und ist samt Randbedingungen und Partitionen der Parallelisierung in Abbildung 4.8 dargestellt, wo die blauen Pfeile auf der linken Seite der velocity inlet, die roten Pfeile auf der rechten Seite der pressure outlet und die gelben Ränder der Domäne vor der Rakete und an der oberen Kante der Domäne Symmetrie Randbedingungen sind. Die Nase selbst wurde adiabat modelliert und das Hüllensegment als isotherm aufgrund des PCM mit $T_w = 310 \,\mathrm{K}$ (Schmelzpunkt des n-Eicosan), wobei Temperaturgradienten durch die Wand ignoriert werden.

Um die Anforderung der Gleichung 2.21 mit $y^+ \le 1$ zu erfüllen, wurden Inflationsschichten an der Wand eingefügt, die in Abbildung 4.9 zu sehen sind. Zur Berechnung

der Höhe der ersten Zellschicht wurde der Flugzustand bei \max Q verwendet. Zuerst muss Gleichung 2.13 verwendet werden um die dynamische Viskosität zu berechnen:

$$\eta_{\rm maxQ} = 18,27 \cdot 10^{-6} \, {\rm Pa\,s} \frac{291,15 \, {\rm K} + 120 \, {\rm K}}{221,563 \, {\rm K} + 120 \, {\rm K}} \left(\frac{221,563 \, {\rm K}}{291,15 \, {\rm K}} \right)^{\frac{3}{2}} \approx 1,45 \cdot 10^{-5} \, {\rm Pa\,s}$$

Damit wird als nächstes die lokale Reynolds-Zahl in der Mitte des Radiators berechnet. Die Konturlänge bis zu dem Mittelpunkt des Radiators beträgt wie in 3.5 1,074 m:

$$Re_{\text{maxQ}} = \frac{750,704 \,\text{m s}^{-1} \,0,401 \,\text{kg m}^{-3} \,1,074 \,\text{m}}{1.45 \cdot 10^{-5} \,\text{Pa s}} \approx 2,220 \cdot 10^{7}$$

Da die Reynolds-Zahl sich im turbulenten Bereich befindet wird Gleichung 2.25 für den Reibungsbeiwert verwendet:

$$C_f = \frac{0.0592}{(2,22 \cdot 10^7_x)^{1/5}} \approx 2,009 \cdot 10^{-3}$$

Mit Gleichung 2.22 eingesetzt in Gleichung 2.23 ergibt sich für die Schubspannungsgeschwindigkeit:

$$u_{\tau} = \sqrt{\frac{(750,704 \,\mathrm{m \, s^{-1}})^2 \, 2,009 \cdot 10^{-3}}{2}} \approx 23,793 \,\mathrm{m \, s^{-1}}$$

Zuletzt lässt sich dann mithilfe Gleichung 2.21 die Höhe der ersten Zelle y_1 berechnen indem $y^+ = 1$ gesetzt wird:

$$y_1 = \frac{y^+ \, 1,45 \cdot 10^{-5} \, \text{Pa s}}{0,401 \, \text{kg m}^{-3} \, 23,793 \, \text{m s}^{-1}} \approx 1,52 \cdot 10^{-6} \, \text{m}$$

In Abbildung 4.10 kann man den spezifischen Wärmestrom am Hüllensegment der Rakete sehen Die Positionsachse entspricht bei 1 m dem Übergang von der Nase zum Hüllensegment. Weiterhin ist zu beachten, dass der spezifische Wärmestrom negativ ist, wenn Wärme aus dem Fluid in die Wand übergeht. Dementsprechend kann man deutlich erkennen, dass mit der weiteren Entwicklung der Grenzschicht der spezifische Wärmestrom sinkt.

Die Aussagekraft der spezifischen Wärmeströme über die Wand lässt sich anhand der Abbildung 4.11 bestätigen, da die Werte von y^+ für alle vier Simulationen innerhalb

Abbildung 4.8: Darstellung der Außensströmungssimulation mit Meshstruktur in grau, velocity inlet in blau, pressure outlet in rot, Symmetrien in gelb und Partitionen der parallelisierung in lila

Abbildung 4.9: Schichtaufdickungen des Mesh an der Rakete

Abbildung 4.10: Spezifischer Wärmestrom an der Außenhaut bei maximalem dynamischen Druck, sowie $10\,\mathrm{s}$ davor, danach und $20\,\mathrm{s}$ danach

Abbildung 4.11: y+ Wert an der Außenhaut bei \max Q, sowie 10 s davor, danach und 20 s danach

der Bedingungen $y^+ \leq 1$ liegen.

Einen Vergleich der Simulationsergebnisse mit der Vorauslegung ist in Abbildung 4.12 zu sehen, wo die Abbildung 3.10 mit den Simulationsergebnissen überlagert wurde. Die Wärmeströme in der Mitte des Radiators sind als rote Punkte dargestellt und wurden mittels einer Gauss Funktion und dem numpy package aus dem Python library automatisch fitted:

$$f(x) = a \cdot \exp\left(-\frac{(x-b)^2}{2c^2}\right) + d$$

Ermittelte Parameter:

$$a = 12454028, 32$$
 $b = 32, 87$ $c = 550, 50$ $d = -12446646, 16$

Die Temperatur- und Machkontur der Luft kann man in Abbildung 4.13 sehen, wo der Stoß an der Nasenspitze deutlich zu erkennen ist. Konturen der weiteren Simulationen sind den Abbildungen 6.3 und 6.4 zu entnehmen.

Abbildung 4.12: PCM Wärmestrom während Flug mit Simulationsergebnissen und Fit Kurve

Abbildung 4.13: \max Q Konturen der Luft

5 Discussion and conclusions

random zeug

Vor der Implementierung des PCM in Hardware, sollten die Eigenschaften des vorhandenen n-Eicosan nochmal analysiert und die Ergebnisse überprüft werden.

Wenn man bessere Finnen konstruiert braucht man feineres mesh um gradienten in den wänden zu sehen

Die Vorauslegungwurde mit folgenden Werten durchgeführt:

- Isotherm auf: $38\,^{\circ}\mathrm{C}$
- Avionik Abwärme: 40 W
- 1 m Kontourlänge
- Radiator Emissionsgrad: 0,91 (AZ-93)
- Radiator Absorptionsgrad: 0,15 (AZ-93)
- Icosane PCM
- Trajektoriensimulation
- $1\,\mathrm{kW\,m^{-2}}$ mit 50% dutycycle durch Rotation der Rakete

Zu beachten ist, dass die Radiatorleistung konstant bleibt, da das System als isotherm mit einer infinitesimalen Temperaturerhöhung über den Schmelzpunkt hinweg angenommen wird.

Als nächstes sieht man die Flugdaten

5.1 Discussion about including pictures

6 Zusammenfassung und Ausblick

Beispielliteraturverweise:

- 1. Fachzeitschrift
- 2. Internetquelle
- 3. Buch
- 4. Vorlesungsskript

Anmerkung: Es gibt verschiedene Referenzierungsstile

- Es muss bei der Strukturentwicklung stark auf das Wärmerohr geachtet werden, dass möglichst wenig Biegungen vorhanden sind und Die Wärmequellen möglichst nah beieinander sind.

Literaturverzeichnis

- [1] Az technology llc. VII, 18, 19
- [2] Enthalpy of fusion and enthalpy of vaporization. https://chem.libretexts.org/Bookshelves/General_Chemistry/ChemPRIME_(Moore_et_al.)/10% 3A_Solids_Liquids_and_Solutions/10.10%3A_Enthalpy_of_Fusion_and_Enthalpy_of_Vaporization. 4
- [3] Stm32h743zgt6-datasheet. 10, 11
- [4] Thermal space and thermal straps. V, 15
- [5] AKAM CAE. Phase change material simulation in ansys fluent (tutorial), 2023. Online tutorial. 8, 9, 28, 29
- [6] John D. Anderson. Fundamentals of Aerodynamics. McGraw-Hill Education, New York, NY, 6th edition, 2017. 8
- [7] M. Benbrika, M. Teggar, M. Benbelhout, and K. A. R. Ismai. Numerical study of n-eicosane melting inside a horizontal cylinder for different loading rates. *International Journal of Heat and Technology*, 38, 2020. 26
- [8] Karen A. Deere, S. Paul Pao, and Khaled S. Abdol-Hamid. Computational analysis of ares i roll control system jet interaction effects on rolling moment. In *Proceedings of the 48th AIAA Aerospace Sciences Meeting*, Orlando, FL, January 2011. American Institute of Aeronautics and Astronautics. AIAA Paper 2011-0172. 17
- [9] HPMS Graphite. Pyrolytic graphite sheet (pgs) thermally conductive graphite sheets. https://hpmsgraphite.com/pyrolyticgraphitesheet. In-plane thermal conductivity up to 1800 W m⁻¹ K⁻¹, density 1.5–2.1 g/cm³ depending on thickness (12 μm bis 100 μm). 14, 15
- [10] Hugh Irving. An external CFD study of the HyEnD N2ORTH rocket. Master's thesis, University College Dublin, School of Mechanical & Materials Engineering, Dublin, Ireland, April 2021. Master's thesis. 31

- [11] Joseph P. Mooney, Vanessa Egana, Ruairi Quinlan, and Jeff Punch. Effect of multiple heat sources and bend angle on the performance of sintered wicked heat pipes. In 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2020. IEEE. 13
- [12] V. M. Nazarychev, M. V. Subbotin, A. A. Ermakov, D. A. Khrustalev, A. N. Frolov, S. G. Ovchinnikov, A. V. Knyazev, A. V. Churakov, and A. V. Novikov. Cooling-rate computer simulations for the description of crystallization of organic phase-change materials. *International Journal of Molecular Sciences*, 23, 2022.
- [13] U.S. Secretary of Commerce. Nist chemistry webbook, 2025. VII, 18, 26
- [14] Quick-Ohm Küpper & Co. GmbH. Mesh heatpipe $5\times400\,\mathrm{mm}$ (qg-shp-d5-400mn), 2025. Heatpipe product page. 14
- [15] RunCam Technology Co., Ltd. Runcam split 4 v2 user manual, 2020. Product manual (PDF). 11
- [16] William E. Jr. Stoney. Transonic drag measurements of eight body-nose shapes. Technical Report NACA RM L53K17, National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory, Langley Field, Va., February 1954. Declassified October 14, 1957. 20
- [17] P. C. Stryker and E. M. Sparrow. Application of a spherical thermal conductivity cell to solid n-eicosane paraffin. *International Journal of Heat and Mass Transfer*, 99, 1990. 26
- [18] Thermtest Inc. Materials thermal properties database. https://thermtest.com/thermal-resources/materials-database, 2025. Includes thermal conductivity and density data for copper and aluminium. 15
- [19] Würth Elektronik eiSos GmbH & Co. KG. User manual: Thebe-ii (order code 2609031181000), version 1.14, 2024. Radio module 868 MHz, up to +27 dBm TX power. 11

Appendix

Appendix A: Vorauslegung

Abbildung 6.1: Radiator Leistung nach Fläche und Temperatur

Abbildung 6.2: PCM Auslegung

```
# === flight data ===
1
      time = raw['time'] # [s]
2
       velocity = raw['velocity'] # [m/s]
      air_temperature = raw['air_temperature'] + 273.15
4
       acceleration = raw['acceleration']
5
       air_pressure = raw['air_pressure'] * 100 # [Pa]
6
7
       # === constants ===
      eta_0 = 18.27e-6
                        # [Pa*s]
9
      T_0 = 291.15
                         # [K]
10
      C = 120
                         # [K]
11
      kappa = 1.4
                         # heat capacity ration for air
12
      R = 287
                         # [J/(kg*K)]
13
                         # [J/(kg*K)]
       c_p = 1005
14
                         \# [m] radiator centerpoint (0.06 m from
      x = 1.07
15
          hull top)
      T_w = 273.15 + target_temperature # [K] PCM melting point
16
17
       # === functions ===
18
       def T_m(T1, T2): return (T1 + T2) / 2
19
                                              # average
          temperature
       def eta(T): return eta_0 * ((T_0 + C) / (T + C)) * (T /
20
          T_0) ** (3/2)
                          # dynamic viscosity with surherlands
         formula
       def lam(T): return 2.64638e-3 + 7.326e-5 * T - 1.746e-8 *
21
                         # thermal conductivity with polynomial
         fit.
       def rho(p, T): return p / (R * T)
22
                                                  # air density
       def Pr(T): return (c_p * eta(T)) / lam(T)
23
                                          # prandtl number
      def Ma(V, T): return V / np.sqrt(kappa * R * T)
                                   # mach number
       def Re(V, p, T, x): return V * rho(p, T) * x / eta(T)
25
                             # reynolds number
       def r(T): return Pr(T) ** (1/3)
26
                                                    # recovery
          factor
       def T_r(V, T): return T * (1 + r(T) * (kappa + 1) / 2 *
27
         Ma(V, T))
                          # recovery temperature
       def qdot_air(p, T, V, x, T_w):
28
```

```
# nusselt
         relation for wall heatflux
           Re_x = Re(V, p, T, x)
29
           Pr_x = Pr(T)
30
           Nu_x = 0.0296 * Re_x ** 0.8 * Pr_x ** (1/3) # turbulent
31
           alpha = Nu_x * lam(T) / x
           return alpha * (T_r(V, T) - T_w)
33
       def pdyn(V, T, p): return 0.5 * rho(p, T) * V**2
34
                                  # dynamic pressure
35
       # === heatflux calculation ===
36
       Qdot_env = np.array([
37
           qdot_air(p, T_m(T_w, T), V, x, T_w)
38
           for p, T, V in zip(air_pressure, air_temperature,
39
              velocity)
      ]) * hybrid_radiator_area + (solar_flux/2 * a *
40
         hybrid_radiator_area) # add solar flux
41
      Qdot_in = Qdot_env + avionics_power # [W]
42
43
      # === fluid dynamics plot ===
44
      Re_plot = np.array([Re(V, p, T, x) for V, p, T in zip(
45
         velocity, air_pressure, air_temperature)])
      Pr_plot = np.array([Pr(T) for T in air_temperature])
46
      pdyn_plot = np.array([pdyn(V, T, p) for V, p, T in zip(
47
         velocity, air_pressure, air_temperature)])
```

Listing 6.1: Funktionen in der hybrid.py

```
//Modified UDF of the original source: https://akamcae.
          com/tutorials/phase-change-material-simulation-in-
          ansys-fluent/
       #include "udf.h"
2
       #include "mem.h"
3
       //n-eicosane constant properties in solid phase
5
       #define Ros_pcm 910.0
6
       #define Cps_pcm 2132.4
       #define Ks_pcm 0.4248
8
       //n-eicosane constant properties in fluid phase
10
       #define Rol_pcm 769.0
11
       #define Cpl_pcm 2350.05
12
       #define Kl_pcm 0.1505
13
14
       //thermal expansion coefficient
15
       #define TEC 0.0009
16
17
       //solidus and liquidus temperatures of n-eicosane
18
       #define Ts 309.0
19
       #define Tl 311.0
21
       //reference temperature for Boussinesq's approximation
22
       #define Tr 310.0
                                      //Fluent Tref must be equal
          to Tr
24
       //density of PCM
25
       DEFINE_PROPERTY(Ro_var_PCM, cell, thread)
26
27
           double Gama, Ro_pcm;
28
           #if !RP_HOST
29
                Gama=C_LIQF(cell,thread);
                Ro_pcm = (1 - Gama) * Ros_pcm + Gama * Rol_pcm;
31
           #endif
32
           return Ro_pcm;
       }
34
35
       DEFINE_SPECIFIC_HEAT(Cp_var_PCM,T,Tref,h,yi)
36
37
           double Gama, Cp_pcm;
           #if !RP_HOST
39
```

```
if (T<Ts) { Cp_pcm=Cps_pcm; } else if (T>=Ts&&T<=</pre>
40
                    T1)
                 {
41
                     Gama = (T-Ts)/(Tl-Ts);
42
                     Cp_pcm = ((1-Gama) * Ros_pcm * Cps_pcm + Gama * Rol_pcm
43
                         *Cpl_pcm)/((1-Gama)*Ros_pcm+Gama*Rol_pcm);
                 }
44
                 else
45
                 {
46
                     Cp_pcm=Cpl_pcm;
47
                 }
48
                 *h=Cp_pcm*(T-Tref);
49
            #endif
50
            return Cp_pcm;
51
       }
52
53
       //thermal conductivity of n-eicosane
       DEFINE_PROPERTY(K_var_PCM, cell, thread)
55
       {
56
            double Gama, K_pcm;
57
            #if !RP_HOST
58
                 Gama=C_LIQF(cell,thread);
59
                 K_pcm = (1 - Gama) * Ks_pcm + Gama * Kl_pcm;
60
            #endif
61
            return K_pcm;
62
       }
63
64
       //dynamic viscosity of PCM with fit
       DEFINE_PROPERTY(Mu_var_PCM, cell, thread)
66
       {
67
            double Temp, Mu_pcm;
            #if !RP_HOST
69
                 Temp=C_T(cell,thread);
                 Mu_pcm = (9*pow(10., -4)*pow(Temp, 2) - 0.6529*Temp
71
                    +119.94)*pow(10.,-3);
            #endif
72
            return Mu_pcm;
73
       }
74
75
       DEFINE_SOURCE (Boussinesq_momentum_source, cell, thread, dS,
76
           eqn)
       {
77
            double Temp, source, acc;
78
```

```
Temp=C_T(cell,thread);
79
80
            double t = CURRENT_TIME;
81
82
            if (t < 20)
83
                acc = 34.81;
            else if (t < 50)
85
                acc = 109.81;
86
            else if (t < 150)
87
                acc = 19.62;
88
            else
89
                acc = 9.81;
90
91
            source=-Rol_pcm*acc*TEC*(Temp-Tr); //negative for -Y
92
               down
            dS[eqn]=-Rol_pcm*acc*TEC; //negative for -Y down
93
            return source;
94
       }
95
```

Listing 6.2: Vollständige PCM UDF eicosane.c

Appendix B: Simulation

Abbildung 6.3: Statische Temperaturkontur der Luft

Abbildung 6.4: Machzahlkontur der Luft

Abbildung 6.5: Konturen der statischen Temperatur. Die Legende bezieht sich auf $6.5\mathrm{d}$