

Forecast emerging artists success on Last.fm service: a data-driven study

Relatrici:

Prof.essa Anna Monreale Ph.D. Laura Pollacci Candidata:

Alexandra Lavinia Bradan

8 maggio 2020

Contenuto

1

Introduzione

Obiettivo della tesi Rete sociale Last.fm

2

Modello diffusivo e modello predittivo

Direct mining distribution model Threshold predictive model

3

Conclusioni

Comparazione tra i due modelli Osservazioni finali

Obiettivo Social network Leaders Action log modello diffusivo modello predittivo Social network Hit-Savvies Action log

artisti utenti azioni timespan granularità 22 001 193 409 11 620 917 2 anni* 1 settimana

lost.fm

Notazione

 $\mathbf{G} = (V, E) \text{ grafo}$

V = insieme degli utenti/adottatori

 $\mathbf{E} = \{(u, v) \mid u, v \in V \land u \text{ è follower di } v\}$

 $\boldsymbol{\Psi}$ = insieme degli oggetti/artisti adottati

A = insieme delle azioni (granularità settimanale)

S = insieme delle settimane

$$\mathbf{t_{i(v,\psi)}} = \min_{i=1,\ldots,n} \text{t.c. } v \in V, \ \psi \in \mathcal{\Psi}, \ i \in S \ \land \ \exists \ \mathsf{a_{v,\psi}} \in \mathsf{A}$$

$$\omega(v, \Psi) = \{ \psi \mid \psi \in \Psi, v \in V \land \exists a_{v, \psi} \in A \}$$

$$\theta(\psi, V) = \{ v \mid v \in V, \psi \in \mathcal{V} \land \exists a_{v, \psi} \in A \}$$

Modello diffusivo

```
leaders = []
diffusion trees = {}
\forall \ \psi \in \Psi:
    G'\psi = \text{new DiGraph()}
    retrieve \psi's G\psi = (V\psi, E\psi) s.t. V\psi \subseteq V, E\psi \subseteq E
    for u, v in E\psi:
         if t v\psi \ll t u\psi and t u\psi - t v\psi \ll \delta:
              G'\psi.add_edge(v, u, weigth=t_v\psi)
    remove isolated nodes from G'\psi
    retrieve each connected component DAG from G'\psi
    for DAG in G'\psi:
         v = list(topological_sort(DAG))[0]
         leaders.append(v),
         diffusion\_trees[v] = {"item": \psi}
         diffusion trees[v]["diffusion tree"] = min spanning arborescence(DAG))
 return leaders, diffusion_trees
```


Modello predittivo: ranking del successo

Definizione 1

Artisti con più ascoltatori tra i miei seed users

Definizione 2

Artisti con più ascolti tra i miei seed users

Definizione 3

Artisti con più azioni tra i miei seed users

Definizione 4

Artisti con più ascoltatori tra gli utenti di Last.fm

Definizione 5

Artisti con più ascolti tra gli utenti di Last.fm

Definizione 6

Artisti più ricercati su Google

Definizione 7

Artisti con maggior numero di nuovi ascoltatori crescente nel tempo.

Adoption Trend: dato un oggetto ψ , il suo adoption trend $T(\psi)$ è definito come:

$$T(\psi) = \{\tau(\mathsf{t_1}), \dots, \tau(\mathsf{t_n})\} \text{ dove } \tau(\mathsf{t_i}) = |\{\mathsf{v} \mid \mathsf{v} \in \mathsf{V}, \psi \in \omega(\mathsf{v}, \varPsi) \land \mathsf{t_{i}}_{(\mathsf{v}, \psi)} = \mathsf{t_i}\}| / |\theta(\psi, \mathsf{V})| \forall \mathsf{i} = \mathsf{1}, \dots, \mathsf{n}$$

$$\mathbf{H} = \{ \psi | \ \psi \in \Psi \land \ \psi \in \ \mathsf{Hit} \}$$

$$\mathbf{F} = \{ \psi | \ \psi \in \Psi \land \psi \in \mathsf{Flop} \}$$

Modello predittivo: indicatori

HF-propensity: dato $v \in V$, $h = |\omega(v, \Psi')|$ con $\Psi' \subseteq H$, $k = |\omega(v, \Psi'')|$ con $\Psi'' \subseteq H \setminus \Psi'$ (late Hits), $f = |\omega(v, \Psi''')|$ con $\Psi''' \subseteq F$, la sua HF-propensity è definita come:

$$HF(v) = h - k - f/h + k + f$$

 $HF(v) \in [-1, 1]$

Hit-Savvies = $\{ \lor \mid \lor \in \lor \land \mathsf{HF}(\lor) > 0 \}$

Flop-adopters = $\{ \lor \mid \lor \in \lor \land HF(\lor) < 0 \}$

Weighted Multi-Set Coverage (WMSC)

 $\mathbf{X} = \operatorname{sorted}(\operatorname{Hit-Savvies*})$ *Flop-adopters $\mathbf{Y} = \bigcup_{i=1,\dots,|X|} \omega(x_i, H^{**})$ **F $\mathbf{E} = \{(x, y) \mid x \in X, y \in Y\}$

 $\mathbf{BG} = (X, Y, E)$ grafo bipartito

 $\min X_1, \dots, X_{|X|} \qquad \sum X_i$

subject to

$$\forall$$
 i, j: $x_i = e_{i,i}$

$$\forall j: \sum e_{i,j} \ge y_j \beta$$

$$\sum y_i \ge \alpha |Y|$$

where x_i , y_i , $e_{i,j} \in \{0, 1\}$, $\alpha, \beta \in (0, 1]$

Hitters = $X' \subseteq \text{sorted}(\text{Hit-Savvies})$ **Floppers** = $X' \subseteq \text{sorted}(\text{Flop-adopters})$

 $\pi(\Psi) = |\theta(\Psi, \text{ Hitters})| \text{ con } \Psi \in \mathsf{H}$ $\sigma(\Psi) = |\theta(\Psi, \text{ Floppers})| \text{ con } \Psi \in \mathsf{F}$

Modello predittivo con WMSC

 Ψ_{x} = nuovo artista

 $\theta(\psi_*$, V) = adottatori di Ψ_* in un range limitato di tempo dalla sua prima comparsa

Hits-classifier H_D: ritorna una classe positiva (Hit) sse $\pi(\psi_*) > m$, con $\pi(\psi_*)$ calcolato su $\theta(\psi_*) < m$ Hitters).

Flops-classifier F_D: ritorna una classe positiva (Flop) sse $\sigma(\psi_*) > n$, con $\sigma(\psi_*)$ calcolato su $\theta(\psi_*) > n$, volume representations of the representation of the repre

Hits&Flops meta-classifier: dati H_{D} and F_{D} , il rule based meta-classifier è così definito:

- 1. se $H_{_{D}}(\psi_*) \to Hit$ e $F_{_{D}}(\psi_*) \to Hit$, \varPsi_* è un futuro Hit;
- 2. se $H_{_{D}}(\psi_*) \rightarrow \text{Flop e } F_{_{D}}(\psi_*) \rightarrow \text{Flop, } \Psi_* \text{ è un futuro Flop;}$
- 3. se $H_{_{D}}(\psi_*) \rightarrow Hit \ e \ F_{_{D}}(\psi_*) \rightarrow Flop$:
 - (a) se $(\Pi(\psi_*) M) > (\sigma(\psi_*) N) \rightarrow \Psi_*$ è un futuro Hit;
 - (b) se $(\pi(\psi_*) \pi) = (\sigma(\psi_*) \pi)$ le adozioni osservate non sono sufficiente per fare una previsione;
 - (c) altrimenti, Ψ_* è un futuro Flop;
- 4. altrimenti, le adozioni osservate non sono sufficiente per fare una previsione.

lost.fm

Comparazione Hit-Savvies & Leaders

	Hit-Savvies (% over adopters)	leader Hit-Savvies (% over Hit-Savvies)	influenced Hit-Savvies (by leader Hit-Savvies)	neutral Hit-Savvies (% over Hit-Savvies)
Def1	2238 (1.21%)	489 (21%)	413 (183)	1436 (61,42%)
Def2	2307 (1.19%)	495 (21%)	421 (180)	1391 (60,29%)
Def3	2346 (1.21%)	493 (21%)	413 (183)	1437 (61,35%)
Def4	1864 (1.0%)	298 (16%)	249 (88)	1317 (70,65%)
Def5	1605 (0.96%)	328 (17%)	253 (93)	1352 (84, 24%)
Def6	1072 (0.55%)	98 (8%)	75 (15)	905 (84,42%)
Def7	822 (0.42%)	86 (10%)	65 (12)	671 (81,63%)

Conclusioni

- è difficile quantificare il successo definito tramite adoption trend;
- la purità dei Flop-adopters sensibilizza la predizione;
- è problematico identificare Hit-Savvies affidabili, che mantengano tale propensione nel tempo;
- la maggior parte degli Hit-Savvies non gode di potere d'influenza;
- l'influenza dei leaders, nella quasi totalità dei casi, deriva da relazioni di mutua amicizia;
- le relazioni di following/follower sono caratterizzate da un' assortatività topologica, nei gusti musicali, nel quantitativo e nei pattern di ascolto.

Grazie per l'attenzione!

