Lista de exercícios

Fábio Braga, João Lucas Lima, Luca Argolo, Thiago Vieira

October 22, 2021

Questão 1.

- R1. Como Ø é subconjunto de qualquer outro conjunto, Ø $\subseteq Mod(\varphi) \forall \varphi \in Fm$. Isso mostra que qualquer φ pode ser derivado de um conjunto vazio.
- R2. $\Delta \subseteq \Delta'$ significa que Δ' possui todas as fórmulas de Δ . Logo, quaisquer valorações que satisfazem Δ' satisfazem também Δ . Então $Mod(\Delta) \subseteq Mod(\Delta')$.
- R3. Como não existem valorações que satisfaçam φ e $\neg \varphi$ ao mesmo tempo, isso é: $Mod(\Delta) \subseteq Mod(\{\varphi\})$ e $Mod(\Delta) \subseteq Mod(\{\neg\varphi\})$. Logo $Mod(\Delta) = \emptyset$. Então podemos derivar qualquer ψ , como na regra 1.
- R4. Como não existem valorações que satisfaçam φ e $\neg \varphi$ ao mesmo tempo, se $Mod(\Delta \cup \{\varphi\}) \subseteq Mod(\{\psi\})$ e $Mod(\Delta \cup \{\neg\varphi\}) \subseteq Mod(\{\psi\})$, significa que as valorações que satisfazem ψ estão em Δ , não em $\{\varphi\}$ ou $\{\neg\varphi\}$
- R5. Temos duas premissas: $\Delta \vdash \varphi$, e $\Delta \cup \{\varphi\}$. Supomos que estão corretas. Então $Mod(\Delta) \subseteq Mod(\{\varphi\})$ e $Mod(\Delta \cup \{\varphi\}) \subseteq Mod(\{\psi\})$. Como toda valoração v que satisfaz Δ também satisfaz φ , o conjunto $Mod(\Delta)$ é um subconjunto de $Mod(\Delta \cup \{\varphi\})$, isto é, $Mod(\Delta) \subseteq Mod(\Delta \cup \{\varphi\})$. Como $Mod(\Delta \cup \{\varphi\}) \subseteq Mod(\{\psi\})$, logo $Mod(\Delta) \subseteq Mod(\{\psi\})$. Isto é $\Delta \vdash \psi$, provando a corretude.
- R6. Temos uma única premissa $\Delta \cup \{\varphi\} \vdash \psi$. Assumindo a corretude dela, chegamos a conclusão de que $Mod(\Delta \cup \{\varphi\}) \subseteq Mod(\{\psi\})$. Como toda valoração que satisfaz $Mod(\{\psi\})$ também satisfaz $Mod(\{\varphi \to \psi\})$, podemos dizer que $Mod(\{\psi\}) \subseteq Mod(\{\varphi \to \psi\})$. Também podemos afirmar que $Mod(\Delta) \subseteq Mod(\{\psi\})$, já que $\psi \in \Delta$ (ψ é premissa de Δ). Portanto, podemos derivar que $Mod(\Delta) \subseteq Mod(\{\varphi \to \psi\})$.

Questão 2.

- 1. $\{\varphi, \neg \neg \varphi\} \vdash \neg \neg \varphi \text{ Por R1}$
- 2. $\{\varphi, \neg \varphi\} \vdash \neg \varphi \text{ Por R1}$
- 3. $\{\varphi, \neg \varphi\} \vdash \varphi$ Por R1.
- 4. $\{\varphi, \neg \varphi\} \vdash \neg \neg \varphi$ Por R3 em 2 e 3
- 5. $\{\varphi\} \vdash \neg \neg \varphi$ Por R4 em 1 e 3.

Questão 3.

```
1. \{\psi, \psi \to \varphi\} \vdash \psi Por R1
```

2.
$$\{\psi, \psi \to \varphi\} \vdash \psi \to \varphi$$
 Por R1

3.
$$\{\psi, \psi \to \varphi\} \vdash \varphi$$
 Por R5 em 1 e 2.

4.
$$\{\psi\} \vdash (\psi \rightarrow \varphi) \rightarrow \varphi$$
 Por R6 em 3.

5.
$$\{\varphi, \psi\} \vdash (\psi \rightarrow \varphi) \rightarrow \varphi$$
 Por R2 em 4.

6.
$$\{\varphi\} \vdash \psi \to (\psi \to \varphi) \to \varphi$$
 Por R6 em 5.

7.
$$\{\varphi\} \vdash \psi \rightarrow \varphi$$
 Por transitividade

8.
$$\emptyset \vdash \varphi \rightarrow \psi \rightarrow \varphi$$
 Por R6 em 7.

Questão 4. A estratégia para provar a completude do cálculo de hilbert é dada por uma prova por contraposição.

Assumimos um conjunto de fórmulas Φ e uma fórmula φ . Queremos mostrar que $\Phi \Vdash \varphi \Rightarrow \Phi \vdash_H \varphi$, onde Φ é um conjunto de premissas e φ uma conclusão. Supomos que $\Phi \nvdash_H \varphi$. Então, $\Phi \cup \{\neg \varphi\}$ vale.

Se $\Phi \cup \{\neg \varphi\}$, então $\Phi \cup \{\neg \varphi\}$ possui um modelo v. Portanto, existe uma valoração $v \in 2^V$ tal que v satisfaça Φ e não satisfaça φ .

Nesse caso, $v \models \Phi \in v \nvDash \varphi \Rightarrow \Phi \nvDash \varphi$.

Por meio da indução é possível reduzir a prova da completude do cálculo de S à prova da completude do cálculo de hilbert.

Seja Φ um conjunto de fórmulas e φ uma fórmula. Assumimos como base indutiva $\varphi \in \Phi$ ou φ seja um axioma.

Pela aplicação de (R1), para $\varphi \in \Phi$, temos $\Phi \vdash_S \varphi$.

Por definição, todos os axiomas do cálculo de Hilbert são deriváveis em S. Portanto, para todo conjunto de fórmulas $\Phi \cup \{\phi\}$, vale a afirmação $\Phi \vdash_H \varphi \Rightarrow \Phi \vdash_S \varphi$.

Questão 5. Seja $\varphi = (p \lor q) \land \neg q \land (\neg p \lor r) \land (\neg p \lor \neg r)$, podemos determinar se φ é ou não satisfatível por derivação da cláusula vazia a partir de φ . Logo:

 $C_1 = \{p, q\}$, cláusula de φ

 $C_2 = \{\neg p, \neg r\}$, cláusula de φ

 $C_3 = \{q, \neg r\}$, resolvente de C_1 e C_2

 $C_4 = \{ \neg q \}$, cláusula de φ

 $C_5 = \{ \neg r \}$, resolvente de C_3 e C_4

 $C_6 = \{\neg p, r\}$, cláusula de φ

 $C_7 = \{ \neg p \}$, resolvente de C_5 e C_6

 $C_8 = \{q\}$, resolvente de C_1 e C_7

 $C_9 = \square$, resolvente de C_4 e C_8

Como o resultado foi uma cláusula vazia, comprovamos que φ não é satisfatível.

Seja $\psi = (\neg p \vee \neg q) \wedge (p \vee \neg q) \wedge (\neg p \vee q)$, temos que o conjunto de cláusulas de $\psi = \{\{\neg p, \neg q\}, \{p, \neg q\}, \{\neg p, q\}\}\}$. Logo:

 $Res_0(\psi) = \psi$

$$Res_1(\psi) = \psi \cup \{\{\neg q\}, \{\neg p\}, \{p, \neg p\}, \{q, \neg q\}\}\$$

 $Res_2(\psi) = Res_1(\psi)$

Comprovamos que ψ é satisfatível.

Questão 6. Seja $\varphi = (\neg q \land \neg r \land s) \lor (\neg q \land \neg s) \lor (r \land s) \lor q$, podemos determinar se φ é uma tautologia, se e somente se, $\neg \varphi$ for insatisfatível.

$$\neg \varphi = (q \lor r \lor \neg s) \land (q \lor s) \land (\neg r \lor \neg s) \land \neg q$$

Podemos determinar se $\neg \varphi$ é ou não satisfatível por derivação da cláusula vazia a partir de $\neg \varphi$. Logo:

 $C_1 = \{q, r, \neg s\}$, cláusula de φ

 $C_2 = \{q, s\}$, cláusula de φ

 $C_3 = \{q, r\}$, resolvente de C_1 e C_2

 $C_4 = \{ \neg r, \neg s \}$, cláusula de φ

 $C_5 = \{ \neg q \}$, cláusula de φ

 $C_6 = \{r\}$, resolvente de C_3 e C_5

 $C_7 = \{r, \neg s\}$, resolvente de C_1 e C_5

 $C_8 = \{s\}$, resolvente de C_7 e C_4

 $C_9 = \{ \neg r \}$, resolvente de C_7 e C_8

 $C_{10} = \square$, resolvente de C_6 e C_9

Como o resultado foi uma cláusula vazia, comprovamos que $\neg \varphi$ não é satisfatível, logo φ é tautologia.