

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Revisión de la clase pasada

- Vimos qué es "variabilidad" y su diferencia con "incerteza".
- Aprendimos cómo podemos hacer gestión de la variabilidad en algunos procesos, traduciendo eso en gestión de capacidad.
- Recordamos cómo las herramientas de modelos estocásticos nos permiten modelar este tipo de problemas.

Analicemos la Variabilidad

- Proceso:
 - En los tiempos.
 - En el flujo.
- Efecto de las tasas y las características de la aleatoriedad.
- ¿Como medimos la variabilidad? Varianza
- Coeficiente de variabilidad (c): Si T es una variable aleatoria, E(T) = t, $Var(T) = \sigma^2$

$$c_T = \frac{\sigma}{t} = \frac{\sqrt{\text{Var}(T)}}{E(T)}$$

Variabilidad

• Definición:

"Cualquier cosa que cause a un sistema alejarse de un comportamiento regular y predecible"

- Causas de Variabilidad:
 - Falla de máquinas
 - Puesta en marcha (setups)
 - Falta de materiales
 - Pérdida de velocidad
 - Reproceso
 - Indisponibilidad
 - Diferencia de capacidades

- ✓ Movimiento de material
- ✓ Fluctuaciones de demanda
- ✓ Cambio de ordenes
- √ Variedad de productos

Entender la Variabilidad

- Entender la variabilidad es *crítico* para un manejo efectivo y eficiente de las operaciones.
- Elaborar dos premisas básicas:
- 1. Ser capaz de medir consistente y apropiadamente la variabilidad
- 2. Desarrollar la causa-efecto de la variabilidad en los sistemas productivos

Sistema Simple: Cola M/M/1

- λ : Tasa llegada de "clientes". (1/ λ : tiempo medio)
- μ: Tasa de atención del servidor. (1/μ: tiempo medio)
- Llegada y servicios son Poisson. Distribución exponencial.
- Sea:

$$\rho = \frac{\lambda}{\mu}$$

Podemos obtener:

$$L = \frac{\rho}{1 - \rho}, \quad W = \frac{1}{\mu(1 - \rho)}$$

• Medidos en la espera:

$$L_q = \frac{\rho^2}{1 - \rho}, \ W_q = \frac{\rho}{\mu(1 - \rho)}$$

;Funciona?

- Consideremos un proceso con llegado exponencial, con un cliente que llega cada 3 minutos.
- Si el tiempo de proceso es en promedio 2 minutos por unidad (exponencial)
- ¿Cuáles son las características de la cola?

$$\lambda = \frac{1}{3} \qquad \mu = \frac{1}{2} \qquad \rho = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3} = 0.666$$

$$L = \frac{\rho}{1 - \rho} = 2 \qquad W = \frac{1}{\mu(1 - \rho)} = 6$$

$$L_{\chi} = \frac{\rho^{2}}{1 - \rho} = \frac{4}{3} \qquad W_{\chi} = \frac{\rho}{\mu(1 - \rho)} = 4$$
• Podemos validar esto vía simulación.

Ejemplo disponible en Canvas

Wolfram Demonstrations Project

demonstrations.wolfram.com »

Simulating the M/M/1 Queue

Sistema Simple: Cola M/M/1

- λ : Tasa llegada de "clientes". (1/ λ : tiempo medio)
- μ: Tasa de atención del servidor. (1/μ: tiempo medio)
- Llegada y servicios son Poisson. Distribución exponencial.
- Sea:

$$\rho = \frac{\lambda}{\mu}$$

Podemos obtener:

$$L = \frac{\rho}{1 - \rho}, \quad W = \frac{1}{(\mu)(1 - \rho)}$$

• Medidos en la espera:

$$L_q = \frac{\rho^2}{1 - \rho}, \quad W_q = \frac{\rho}{\mu (1 - \rho)}$$

¿y esto para qué?

• Podemos armar un modelo para tomar decisiones de tamaño en nuestra organización

Mim

$$\mu$$
 \mathcal{L}

Calención + Wa Cespera

6.a.

 $P = \frac{\lambda}{\mu}$

Wa = $\frac{\lambda}{\mu}$
 $1 - p$

Little

• Relación entre L y W.

$$L = \lambda \times W$$
 hence d ad

- Formula de Little (J.D. Little, MIT 1961).
- Interesante: Es valida en cualquier proceso de llegada y servicio y cualquier disciplina en la cola.
- Requisito: sistema este en "estado estacionario".

Extrapolaciones de Little

 Trabajo en Proceso (WIP), Throughput (TH) y Tiempo de Ciclo (Espera+Trabajo):

$$WIP = TH \times TC$$

- Ej: TH: 0.4 unid/h TC: 2 Hrs. 0.4*2=0.8 Trabajos en cola.
- Como reducimos el tiempo de ciclo?

$$TC = \frac{WIP}{TH}$$

¿Para qué la variabilidad?

				SIX SIGMA		
Cantidad 🕠			J			
Procesos			±3σ	. ±4σ	±5σ	<u>±</u> 6σ
1		1	93,32%	99,379%	99,9767%	99,9996%
	\wedge	7	61,63%	95,7332%	99,84%	100,00%
		10	50,09%	93,9607%	99,77%	100,00%
		20	25,09%	88,2861%	99,54%	99,99%
		40	6,29%	77,9444%	99,07%	99,98%
		80	0,40%	60,7533%	98,15%	99,97%
		100	0,10%	53,6367%	97,70%	99,96%
		150	0,00%	39,2820%	96,36%	99,94%
		200	0,00%	28,7690%	% 5,45%	99,92%
	Z	300	0,00%	15,4307%	93,25%	99,88%
		400	0,00%	8,2765%	91,10%	99,84%
	⋖	500	0,00%	4,4393%	89,00%	99,80%
		600	0,00%	2,381,1%	86,95%	99,76%
	ш	700	0,00%	1,2/71%	84,95%	99,72%
		800	0,00%	0,6850%	82,99%	99,68%
		1000	0,00%	0,1971%	79,21%	99,60%
		1200	0,00%	0,0567%	75,61%	99,52%
		3000	0,00%	9,0000%	49,70%	98,81%
		17000	0,00%	0,0000%	1,90%	93,43%
		38000	0,00%	0,0000%	0,01%	(85,90%)
			P		P(m) -	1-0.
,		•	214		W (10 to 10) -	· / (
			→ / → -	→ <u> </u>	TT P(m falk);	1-P4 = (1-10) = R(single to
					i=1	f°

Variabilidad en los tiempos de proceso

• Caracterizamos:

- Tiempo medio de proceso efectivo, t_e
- Desviación standard del proceso efectivo, σ_e
- Coeficiente de variación. $c_e = \frac{\sigma_e}{t_e}$

Variabilidad debido a Fallas

• Notación:

- t_0 = tiempo base de proceso
- $\sigma_0 =$ desv. estándar de tiempo base de proceso
- c_0 = coeficiente variabilidad del tiempo base de proceso
- $r_0 = \frac{1}{t_0} =$ capacidad base del proceso
- m_f = tiempo medio entre fallas (MTBF)
- m_r = tiempo medio de reparación (MRT)
- c_r = coeficiente variabilidad del tiempo medio de reparación

Variabilidad debido a Fallas

• Disponibilidad:
$$A = \frac{m_f}{m_f + m_r} \rightarrow h_{empo} \text{ botal}$$

• Tasa y tiempo de proceso efectivo

$$r_e = Ar_0$$

$$t_e = {}^{t_0}/_A$$

Ejemplo variabilidad por fallas

• 2 maquinas:

- M1: $t_0 = 15$ min. $\sigma_0 = 3,35$ min. M2: $t_0 = 15$ min. $\sigma_0 = 3,35$ min. $c_0 = 0.223$
- M1: Tiempo medio entre falla: $m_f = 744$ min. Tiempo medio de reparación: $m_r = 248 \text{ min.}$
- M2: Tiempo entre falla promedio: $m_f = 114$ min. Tiempo medio de reparación: $m_r = 38 \text{ min.}$
- Reparación es variable con un $c_r = 1.0$ para ambas máquinas.
- ¿Qué maquina prefiero?

Ejemplo variabilidad por fallas

• Disponibilidad de cada máquina:

• M1:
$$A = \frac{m_f}{m_c + m_r} = \frac{744}{744 + 248} = 0.75$$
 ; $t_e = \frac{t_o}{A} = \frac{15}{0.75} = 20 \text{ min}$

• M2:
$$A = \frac{m_e}{m_r + m_r} = \frac{114}{114 + 38} = 0.75$$
; $t_e = \frac{t_0}{A} = \frac{15}{0.75} = 20$ min

- Disponibilidad igual para ambas máquinas
- Necesito medir el coeficiente de variabilidad efectivo:

$$c_e^2 = c_0^2 + factor por CA$$

$$c_e^2 = c_0^2 + (1 + c_r^2)A(1 - A) \frac{m_r}{t_0}$$

Ejemplo variabilidad por fallas

• Disponibilidad de cada máquina:

• M1:
$$c_e^2 = 0.223^2 + (1+1^2) \cdot 0.75 \cdot (1-0.75) \cdot \frac{248}{15} = 6.25$$

- Alta variabilidad
- M2: $c_e^2 = 0.223^2 + (1+1^2) \cdot 0.75 \cdot (1-0.75) \cdot \frac{38}{15} = 1$
 - Moderada variabilidad

• Conclusiones:

- Fallas aumentan media, varianza y CV del tiempo efectivo de proceso.
- Para una disponibilidad constante, paradas largas e infrecuentes aumentan más c_e^2 que paradas cortas y frecuentes.

