1) Bayes Algoritması

HAVA	ISI	NEM	RÜZGAR	OYUN
Güneşli	Sıcak	Yüksek	Kuvvetli	Hayır
Güneşli	Sıcak	Yüksek	Hafif	Evet
Bulutlu	llık	Yüksek	Kuvvetli	Hayır
Yağmurlu	llik	Normal	Kuvvetli	Hayır
Yağmurlu	Soğuk	Normal	Hafif	Evet
Yağmurlu	Soğuk	Normal	Kuvvetli	Hayır

Yukarıda verilen veri setini dikkate alarak P(RÜZGARhafif\HAVAyağmurlu) olasılık değerini hesaplayınız.

a. 0.33

b. 0.25

c. 0.66

d. 0.75

e. 0.50

 $P(A \setminus B) = P(A \cap B)/P(B) = (1/6) / (2/6) = 0.5$

2) Karışıklık Matrisi

a: TP (True Pozitif) c: FP (False Pozitif)

b: FN (False Negatif) d: TN (True Negatif)

a: TP (True Pozitif)

c: FP (False Pozitif)

b: FN (Falso Negatif)

d: TN (True Negatif)

Yukarıda verilen karışıklık matrisine göre sınıflandırıcının negatif sınıfını tahmin başarımı aşağıdakilerden hangisidir?

a. a/(a+b)

b. d/(b+d)

c. (c+b)/(a+b+c+d)

d. a/(a+c)

e. d/(d+c)

Specificity = TN / (TN+FP) = TN / (TN + FN) = d / (b + d)

3) Manhattan Uzaklığı

x1 =[3 7 1 4 5 2] verisi ile x2=[2 6 11 4 8 1] verisi arasındaki Manhattan uzaklığını hesaplayınız.

$$d(i,j) = \sum_{k=1}^{p} (|x_{ik} - x_{jk}|)$$
 i, j=1, 2...n; k=1, 2...p
$$d(i,j) = [|2-3| + |6-7| + |11-1| + |4-4| + |8-5| + |1-2|] = 16$$

4) Apriori(Birliktelik Kuralı)

Soru) A-->B Birliktelik Kuralı için, aşağıdakilerden hangisi, diğerlerine göre A ile B arasındaki ilişkinin en güçlü olduğu lift değeridir?

a. -3.33

b. 2.5

c. 0.33

d. 0

e. 0.87

"Lift Değeri" yani "İlginçlik/Farklılık Değeri" eksi olamaz. Sayı ne kadar büyükse ilişki okadar güçlüdür.

Cevap: 2.5

5) Gini Algoritması

HAVA	ISI	NEM	RÜZGAR	OYUN
Güneşli	Sıcak	Yüksek	Kuvvetli	Hayır
Güneşli	Sıcak	Yüksek	Hafif	Evet
Bulutlu	llık	Yüksek	Kuvvetli	Hayır
Yağmurlu	llık	Normal	Kuvvetli	Hayır
Yağmurlu	Soğuk	Normal	Hafif	Evet
Yağmurlu	Soğuk	Normal	Kuvvetli	Hayır

Yukarıda görülen veri seti üzerinde **Gini algoritması** kullanılarak karar ağacı oluşturulmak istenmektedir. "**Güneşli,Bulutlu <-->Yağmurlu**" aday bölünmesine ait **Gini değeri** aşağıdakilerden hangisidir.

a. 0.50

b. 0.48

c. 0.44

d. 0.56

e. 0.37

	НА	VA
Oyun	Güneşli, Bulutlu	Yağmurlu
EVET	1	1
HAYIR	2	2

$$Gini_{sol} = 1 - [(1/3)^2 + (2/3)^2] = 0.444$$
, $Gini_{sag} = 1 - [(1/3)^2 + (2/3)^2] = 0.444$

Gini =
$$[3*(0.444) + 3*(0.444)] / 6 = 0.44$$

6) Twoing Algoritması

HAVA	ISI	NEM	RÜZGAR	OYUN
Güneşli	Sıcak	Yüksek	Kuvvetli	Hayır
Güneşli	Sıcak	Yüksek	Hafif	Evet
Bulutlu	llık	Yüksek	Kuvvetli	Hayır
Yağmurlu	llık	Normal	Kuvvetli	Hayır
Yağmurlu	Soğuk	Normal	Hafif	Evet
Yağmurlu	Soğuk	Normal	Kuvvetli	Hayır

Yukarıda görülen veri seti üzerinde **Twoing algoritmas**ı kullanılarak **ISI niteliğini tahmin** edecek bir karar ağacı oluşturulmak istenmektedir. **ISI niteliğinin tahmin** edilebilmesi için **1. iterasyonda** kaç farklı aday **bölünme elde** edilmektedir.

Isı niteliğinin 3 farklı dalı var. Sıcak, Ilık ve Soğuk. Cevap : 3

7) Hiyerarşik Olmayan Kümeleme(K-Ortalamalar)

		а	b	С	d	е	f	g	h	i	j
ſ	x1	3	4	3	-2	-5	-7	8	13	11	9
ſ	x2	5	8	-6	4	5	1	2	7	-4	2

Yukarıdaki tabloda 10 adet veriye ait x1 ve x2 değerleri verilmektedir. Bu veriler, **k-ortalamalar** kümeleme algoritması ile **5 kümeye ayrılmak** istenmektedir. Başlangıç kümeleri, **c1={a,b]**, **c2={c,d}**, **c3={e,f}**, **c4={g,h} ve c5={i,j}** olarak belirlenmiştir. Algoritmanın **birinci tekrarı** (iteraston) sonunda **b** verisinin yeni kümesi aşağıdakilerden hangisi olur?

- a. c3
- b. c5
- c. c2
- d. c1
- e. c4

• Merkezi Ortalamalar Hesaplanır her bir küme için;

$$M_1 = [3.5,6.5], M_2 = [0.5,-1], M_3 = [-6,3], M_4 = [10.5,4.5], M_5 = [10,-1]$$

• b verisine göre uzaklıklar hesaplanır;

$$d(M_1, b) = [(3.5 - 4)^2 + (6.5 - 8)^2]^{1/2} = 1.58$$

$$d(M_2, b) = [(0.5 - 4)^2 + (-1 - 8)^2]^{1/2} = 9.65$$

$$d(M_3, b) = [(-6 - 4)^2 + (3 - 8)^2]^{1/2} = 11.18$$

$$d(M_4, b) = [(10.5 - 4)^2 + (4.5 - 8)^2]^{1/2} = 7.38$$

$$d(M_5, b) = [(10 - 4)^2 + (-1 - 8)^2]^{1/2} = 10.81$$

• En küçük uzaklık b verisinin ait olduğu kümedir. Cevap C1

8) Apriori(Birliktelik Kuralı)

İşlemler	Satın Alınan Ürün Listesi
T1	I1, I2, I5
T2	I2, I4
Т3	I2, I3, I5
T4	I1, I2, I4
T5	I1, I3
T6	I2, I3
T7	I1, I3
T8	I1, I2, I3, I5

Yukarıda verilen verilere göre |1,|2->|3 birliktelik kuralına ait Lift değeri aşağıdakilerden hangisidir?

a. 2

b. 1,06

c. 1,77

d. 1,23

e. 0,53

Lift Değeri = Destek(I1veI2, I3) / (Destek (I1veI2) * Destek (I3))

Lift Değeri = (1/8) / ((3/8) * (5/8)) = 0.53

9) Twoing Algoritması

Başvuru	EGİTİM	YAS	CINSIYET	KABUL
1	ORTA	YAŞLI	ERKEK	EVET
2	İLK	GENÇ	ERKEK	HAYIR
3	YÜKSEK	ORTA	KADIN	HAYIR
4	ORTA	ORTA	ERKEK	EVET
5	İLK	ORTA	ERKEK	EVET
6	YÜKSEK	YAŞLI	KADIN	EVET
7	İLK	GENÇ	KADIN	HAYIR

Şekilde verilen veri seti için **Twoing algoritması** ile karar ağacı bulunmak isteniyor. "**Orta,Yüksek<--> İlk**" aday bölünmesinin **P(Evet|tsol)** değeri aşağıdakilerden hangisidir?

a. 0,33

b. 0,25

c. 0,60

d. 0,50

e. 0,75

Tsol dediği için sadece Orta, Yüksek değerlere bakıyoruz. Sonucun Evet olduğu durumu istediği için formülümüz;

 $P(Evet|tsol) = P(Orta,Yüksek \cap Evet) / P(Orta,Yüksek) = 3 / 4 = 0.75$

10) ID3 Algoritması

HAVA	ISI	NEM	RÜZGAR	OYUN
Güneşli	Sıcak	Yüksek	Kuvvetli	Hayır
Güneşli	Sıcak	Yüksek	Hafif	Evet
Bulutlu	llık	Yüksek	Kuvvetli	Hayır
Yağmurlu	llik	Normal	Kuvvetli	Hayır
Yağmurlu	Soğuk	Normal	Hafif	Evet
Yağmurlu	Soğuk	Normal	Kuvvetli	Hayır
Bulutlu	Soğuk	Normal	Kuvvetli	Hayır

Yukarıda verilen veri setine, **ID3** algoritması uygulanarak **OYUN** sınıfını tahmin eden bir karar ağacı oluşturulmak istenmektedir. **NEM niteliğine ait Kazanç** değeri aşağıdakilerden hangisidir?

a. 0,811

b. 0.857

c. 0,811

d. 0,006

e. 0.0018

Sırayla Gidersek;

- Oyun Entropisi -> $H(Oyun) = -((2/7)*log_2(2/7) + (5/7)*log_2(5/7)) = 0.863$
- Nem_{Yüksek} Entropisi -> H(Nem_{Yüksek}) = -($(1/3)*log_2(1/3) + (2/3)*log_2(2/3)$) =0.918
- Nem_{Normal} Entropisi -> H(Nem_{Normal}) = -($(1/4)*log_2(1/4) + (3/4)*log_2(3/4)$) =0.811
- Nem | Oyun Entropisi -> H(Nem, Oyun) = (3/7)*(0.918) + (4/7)*(0.811) = 0.857
- Kazanç(Nem,Oyun) ->H(Oyun) H(Nem,Oyun) = 0.863 0.857 = 0.006

11) Apriori(Birliktelik Kuralı)

İşlemler	Satın Alınan Ürün Listesi
T1	I1, I2, I5
T2	I2, I4
Т3	I2, I3, I5
T4	I1, I2, I4
T5	I1, I3
Т6	I2, I3
T7	I1, I3
Т8	I1, I2, I3, I5

Yukarıda verilen tabloda, 8 müşterinin satın aldığı 5 farklı ürün listelenmektedir. Bu veri setine MinSup=0,4 değeri için Apriori algoritması uygulandığında, 2 elemanlı aday nesne kümesinin (C2) eleman sayısı kaç olur?

a. 6

b. 3

c. 5

d. 2

e. 4

C1= $\{(11:4/8), (12:6/8), (13:5/8), (14:2/8), (15:3/8)\}$ // not: 3/8 ve aşağısı MinSup Değerinin altında kalıyor.

 $L1 = \{I1, I2, I3\} // Not: L1 kümesine göre C2 kümesi oluşturulur$

 $C2 = \{(11, 12), (11, 13), (12, 13)\}$

C2 eleman sayısı 3

12) K-NN Algoritması

ID	X1	X2	Х3	Sınıf
1	3	7	6	С
2	2	2	2	В
3	5	6	7	С
4	3	5	8	С
5	1	9	2	D
6	4	3	2	Α
7	5	2	6	В
8	6	1	8	E

X={-12, 14, 41} değerlerine sahip bir veri K-En Yakın Komşu (KNN) algoritması ile sınıflandırıldığında k=8 değeri için X verisinin sınıfı aşağıdakilerden hangisi olur.

a. B

b. E

c. A

d. D

e. C

Normalde k=8 olmasaydı bütün değerlerin hesaplanması gerekirdi. Fakat tabloda 8 tane kayıt var ve k=8 olduğu için en çok tekrar eden Sınıf bizim cevabımız oluyor. Cevap C Sınıfı

13) Gini Algoritması

Soru) Bir veri setine **GINI** algoritması uygulanarak karar ağacı oluşturulmak istenmektedir. **Gini(j)** aday bölünmesinin **Gini(sol) değeri 0.56** ve **Gini(sağ) değeri 0.64** olarak elde edilmiştir. Buna göre **Gini(j)** değeri aşağıdakilerden hangisi olabilir?

a. 0,48

b. 0,66

c. 0,56

d. 0,71

e. 0,61

Gini = (1*(0.56) + 1*(0.64)) / 2 = 0.6, ince hesaplamalara gerek yok 0.61 cevap

14) Apriori

Soru) Aşağıdakilerden hangisi, Birliktelik Kuralında A-->B kuralının güven değeri olabilir

a. 1,53

b. 0,127

c. -0,556

d. 2,55

e. -0,71

Güven ve Destek Değerleri 0 ile 1 arasındadır.

15) Apriori

İşlemler	Satın Alınan
	Ürün Listesi
T1	I1, I2, I5
T2	I2, I4
T3	I2, I3, I5
T4	I1, I2, I4
T5	I1, I3
T6	I2, I3
T7	I1, I3
T8	I1, I2, I3, I5

Yukarıda verilen verilere göre |1->|2,|3 birliktelik kuralına ait güven değeri aşağıdakilerden hangisidir?

a. 0,5

b. 0,2

c. 0,33

d. 0,66

Solda I1 olduğuna göre I1 in adetini paydaya yazıyoruz.

Güven =
$$P(I1, I2, I3) / P(I1) = (1/5) = 0.2$$

16) Apriori

İşlemler	Satın Alınan Ürün Listesi
T1	I1, I2, I5
T2	I2, I4
Т3	I2, I3, I5
T4	I1, I2, I4
T5	I1, I3
T6	I2, I3
T7	I1, I3
Т8	I1, I2, I3, I5

Yukanda verilen tabloda, 8 müşterinin satın aldığı 5 farklı ürün listelenmektedir. Bu veri setine MinSup=0,2 değeri için Apriori algoritması uygulandığında, 3 elemanlı yoğun nesne kümesinin (L3) eleman sayısı kaç olur? (Quiz-3 8. Soru ile benzer)

 $C1 = \{(I1:5/8), (I2:6/8), (I3:5/8), (I4:2/8), (I5:3/8)\} \ // \ not: 1/8 \ ve \ aşağısı \ MinSup \ Değerinin altında kalıyor. \\ L1 = \{I1, I2, I3, I4, I5\} \ // \ Not: L1 \ kümesine göre \ C2 \ kümesi \ oluşturulur$

 $C2 = \{(11, 12): 3/8, (11, 13): 3/8, (11, 14): 1/8, (11, 5): 2/8, (12, 13): 3/8, (12, 14): 2/8, (12, 15): 3/8, (12, 14): 2/8, (13, 14): 2/8, (14, 15): 3/8, (14, 15): 3/8, (15, 15): 3/8,$

(13, 14):0/8, (13, 15):2/8, (14, 15):0/8} // not: 1/8 ve aşağısı MinSup Değerinin altında kalıyor.

 $L2 = \{(I1, I2), (I1, I3), (I1, I5), (I2, I3), (I2, I4), (I2, I5), (I3, I5)\}$

 $C3 = \{(I1, I2, I5) : 2/8, (I2, I3, I5) : 2/8, (I1, I2, I4) : 1/8, (I1, I2, I3) : 1/8, (I1, I3, I5) : 1/8\}$

 $L3 = \{(11, 12, 15), (12, 13, 15)\}$

Cevap 2 eleman

Satın Alınan Ürün Listesi		
I1, I2, I5		
12, 14, 15		
I2, I3,		
I1, I2, I4		
I1, I3, I4		
I2, I3		
I1, I3, I5		
I1, I2, I3, I5		

Yukarıdaki tabloda, 8 müşteri ve satın aldıkları ürünler görülmektedir. Bu verilere göre aşağıda istenen kurallara ait değerleri bulunuz. (Not: Bulduğunuz Vim sonuçları ondalıklı sayı olarak virgül ile yuvarlama yapmadan giriniz ve virgülden sonra sadece 2 basamak kullanınız. Örnek: 3,00)

Destek (|4-->|1) ------Güven (|4-->|1) -----Lift (|4-->|1) -----

Yukarıdaki tabloda, **8 müşter**i ve satın aldıkları ürünler görülmektedir. Bu verilere göre aşağıda istenen kurallara ait değerleri bulunuz. (**Not**: Bulduğunuz **Vim sonuçları ondalıklı** sayı olarak virgül ile yuvarlama yapmadan giriniz ve virgülden sonra **sadece 2 basamak** kullanınız. **Örnek: 3,00**)

Destek (|2-->|3) ------Güven (|2-->|3) -----Lift (|2-->|3) -----

Destek(|4->|1) = 2/8 = 0.25Güven(|4->|1) = 2/3 = 0.66Lift(|4->|1) = (2/8) / ((5/8)*(3/8)) = 1.06

Destek(12 - > 13) = 3/8 = 0,37 Güven(12 - > 13) = 3/6 = 0,50 Lift(12 - > 13) = (3/8) / ((6/8)*(5/8)) = 0.80

18) Hiyerarşik Olmayan Kümeleme(K-Ortalamalar)

	а	b	С	d	е	f	g	h	i	j
x1	3	4	3	-2	-5	-7	8	13	11	9
х2	5	8	-6	4	5	1	2	7	-4	2

Yukarıdaki tabloda 10 adet veriye ait x1 ve x2 değerleri verilmektedir. Bu veriler, k-ortalamalar kümeleme algoritması ile 5 kümeye ayrılmak istenmektedir. Başlangıç kümeleri, c1={a,b], c2= {c,d}, c3={e,f}, c4={g,h} ve c5={i,j} olarak belirlenmiştir. Algoritmanın birinci tekrarı (iteraston) sonunda h verisinin yeni kümesi aşağıdakilerden hangisi olur?

d. c1

e. c4

a. c3 b. c5 c. c2

Merkezi Ortalamalar Hesaplanır her bir küme için;

 M_1 = [3.5, 6.5], M_2 = [0.5, -1], M_3 = [-6, 3], M_4 = [10.5, 4.5], M_5 = [10, -1]

h verisine göre uzaklıklar hesaplanır;

$$\begin{split} &d(M_1,\,h)=[\;(3.5\cdot13)^2+(6.5\cdot7)^2\,]^{1/2}=9,51\\ &d(M_2,\,h)=[\;(0.5\cdot13)^2+(-1\cdot7)^2\,]^{1/2}=14,84\\ &d(M_3,\,h)=[\;(-6\cdot13)^2+(3\cdot7)^2\,]^{1/2}=19,41\\ &d(M_4,\,h)=[\;(10.5\cdot13)^2+(4.5\cdot7)^2\,]^{1/2}=3,53\\ &d(M_5,\,h)=[\;(10\cdot13)^2+(-1\cdot7)^2\,]^{1/2}=8,54 \end{split}$$

• En küçük uzaklık h verisinin ait olduğu kümedir. Cevap C4

19) Bayes Algoritması

HAVA	ISI	NEM	RÜZGAR	OYUN
Güneşli	Sıcak	Yüksek	Kuvvetli	Hayır
Güneşli	Sıcak	Yüksek	Kuvvetli	Evet
Bulutlu	llık	Yüksek	Hafif	Hayır
Yağmurlu	llık	Normal	Kuvvetli	Hayır
Yağmurlu	Soğuk	Normal	Hafif	Evet
Yağmurlu	Soğuk	Normal	Kuvvetli	Hayır
Bulutlu	Soğuk	Normal	Hafif	Hayır
Güneşli	Soğuk	Yüksek	Kuvvetli	Evet
Bulutlu	llık	Normal	Kuvvetli	Hayır

Yukarıda verilen veri seti kullanılarak, HAVA=Güneşli, ISI=Soğuk, NEM=Yüksek, RÜZGAR=Hafif verisine ait OYUN sınıfı, Bayes sınıflandırıcı ile tahmin edilmek istenmektedir. Ci=EVET sınıfı için P(X|Ci)P(Ci) olasılığını hesaplayınız. (Not: Bulduğunuz sonucu ondalıklı sayı olarak virgül ile yuvarlama yapmadan giriniz ve virgülden sonra sadece 2 basamak kullanınız. Örnek: 3,00)

Yanrt:
Yukarıda verilen veri seti kullanılarak, HAVA=Bulutlu, ISI=Soğuk, NEM=Yüksek, RÜZGAR=Kuvvetli verisine ait OYUN sınıfı, Bayes sınıflandıncı ile tahmin edilmek istenmektedir. Ci=HAYIR sınıfı için P(X Ci)P(Ci) olasılığını hesaplayınız. (Not: Bulduğunuz sonucu ondalıklı sayı olarak virgül ile yuvarlama yapmadan giriniz ve virgülden sonra sadece 2 basamak kullanınız. Örnek: 3,00)
Yanıt:
Yukarıda verilen veri seti kullanılarak, HAVA=Bulutlu, ISI=Ilık, NEM=Normal, RÜZGAR=Kuvvetli verisine ait OYUN sınıfı, Bayes sınıflandırıcı ile tahmin edilmek istenmektedir. Ci= HAYIR sınıfı için P(X Ci)P(Ci) olasılığını hesaplayınız. (Not: Bulduğunuz sonucu ondalıklı sayı olarak virgül ile yuvarlama yapmadan giriniz ve virgülden sonra sadece 2 basamak kullanınız. Örnek: 3,00)
Yanıt:
Yukarıda verilen veri seti kullanılarak, HAVA=Yağmurlu, ISI=Sıcak, NEM=Yüksek, RÜZGAR=Kuvvetli verisine ait OYUN sınıfı, Bayes sınıflandıncı ile tahmin edilmek istenmektedir. CI=EVET sınıfı için P(X CI)P(CI) olasılığını hesaplayınız. (Not: Bulduğunuz sonucu ondalıklı sayı olarak virgül ile yuvarlama yapmadan giriniz ve virgülden sonra sadece 2 basamak kullanınız. Örnek: 3,00)
Vanit:

• 1. Yanıt:

Güneşli=2/3, Soğuk= 2/4, Yüksek= 2/4, Hafif=1/3 => $P(c_j) = (2/3)*(2/4)*(2/4)*(1/3)= 0.05$ $P(Oyun_{Evet}) = 3/9 => P(X|C_j)*P(c_j) = (3/9)*(0.05) = 0.01$

• 2.Yanıt:

Bulutlu=3/3, Soğuk=2/4, Yüksek=2/4, Kuvvetli=4/6 => $P(c_j) = (3/3)*(2/4)*(2/4)*(4/6)=0.16$ $P(Oyun_{Havir}) = 6/9 => P(X|C_i)*P(c_i) = (6/9)*(0.16) = 0.11$

• 3.Yanıt:

Bulutlu=3/3, Ilik=3/3, Normal=4/5, Kuvvetli=4/6 => $P(c_j) = (3/3)*(3/3)*(4/5)*(4/6)=8/15$ $P(Oyun_{Hayır}) = 6/9 => P(X|C_j)*P(c_j) = (6/9)*(8/15) = 0.35$

• 4.Yanıt:

Yağmurlu=1/3, Sıcak= 1/2, Yüksek= 2/4, Kuvvetli=2/6 => $P(c_j) = (1/3)*(1/2)*(2/4)*(2/6)= 1/36$ $P(Oyun_{Evet}) = 3/9 => P(X|C_j)*P(c_j) = (3/9)*(1/36) = 0.09$

20) KNN Algoritması

ID	X1	X2	Х3	Sınıf
1	3	7	6	С
2	2	2	2	В
3	5	6	7	С
4	3	5	8	С
5	1	9	2	D
6	4	3	2	Α
7	5	2	6	В
8	6	1	8	E

X={5, 5, 5} değerlerine sahip bir veri K-En Yakın Komşu (KNN) algoritması ile sınıflandırıldığında k=3 değeri için X verisinin sınıfı aşağıdakilerden hangisi olur.

a. B

b. E

c. A

D

X verisinin her bir noktaya uzaklığı hesaplanır(Öklit) ve k=3 olduğu için en küçük 3 noktaya göre Sınıf seçilir.

$$\begin{split} &d_1(1,x) = [(3\text{ -}5)^2 + (7\text{ -}5)^2 + (6\text{ -}5)^2]^{1/2} = 3.00\text{ // Sinifi C} \\ &d_2(2,x) = [(2\text{ -}5)^2 + (2\text{ -}5)^2 + (2\text{ -}5)^2]^{1/2} = 5.19 \\ &d_3(3,x) = [(5\text{ -}5)^2 + (6\text{ -}5)^2 + (7\text{ -}5)^2]^{1/2} = 2.23\text{ // Sinifi C} \\ &d_4(4,x) = [(3\text{ -}5)^2 + (5\text{ -}5)^2 + (8\text{ -}5)^2]^{1/2} = 3.60 \\ &d_5(5,x) = [(1\text{ -}5)^2 + (9\text{ -}5)^2 + (2\text{ -}5)^2]^{1/2} = 6.40 \\ &d_6(6,x) = [(4\text{ -}5)^2 + (3\text{ -}5)^2 + (2\text{ -}5)^2]^{1/2} = 3.74 \\ &d_7(7,x) = [(5\text{ -}5)^2 + (2\text{ -}5)^2 + (6\text{ -}5)^2]^{1/2} = 3.16\text{ // Sinifi B} \\ &d_8(8,x) = [(6\text{ -}5)^2 + (1\text{ -}5)^2 + (8\text{ -}5)^2]^{1/2} = 5.09 \end{split}$$

En Çok C sınıfından Veri olduğuna göre; Cevap C

21) Entropi

) Risk={kötü,kötü,kötü,iyi,iyi,iyi} veri grubunun H(T) Entropi değerini hesaplayınız.

 $H(T) = 1 - ((3/6)\log_2(3/6) + (3/6)\log_2(3/6)) = 2$