BTP PHASE-I PRESENTATION RELIABILITY DIMENSION IN REVIEW PLATFORM YELP

Submitted By:

Akash Mahalik (150123004)

Tarun Genwa (150123043)

<u>Under the guidance of:</u>

Dr. Ayon Ganguly

What Is Reliability Analysis of Big Data Systems?

Reliability is the degree to which an assessment tool produces stable and consistent results.

Choosing Yelp as the Big Data Source

- Yelp is crowd sourced review platform listing hundreds of thousands of local and chain businesses.
- The motivation for choosing Yelp dataset as our big data source was due to the effect that it carries on mass opinion and hence comes out to be a role player in business growth.
- The availability of massive datasets open sourced by Yelp itself for running various dataset challenges.

- User Credibility
- Topic Modelling of Review Text
- Geospatial Analysis

Creating a Credibility Score of a User

- Credibility score of a user will help in deciding how relevant a user's review is.
- It would help in taking decisions while filtering fake and biased reviews.
- It also helps in understanding the eliteness levels of different users.

Approach to Credibility ??

- Credibility score is defined by various features in user dataset.
- The dataset already labels a user as elite or not.
- We can leverage machine learning techniques to assign feature importance and decide eliteness of a user.

```
"user_id" : "lzlZwIpuSWXEnNS91wxjHw",
"name" : "Susan",
"review_count" : "1",
"yelping_since": "2015-09-28",
"friends" : "None",
"useful" : "0",
"funny" : "0",
"cool" : "0",
"fans" : "0",
"elite" : "None"
"average_stars" : "2"
"compliment_hot" : "0",
"compliment_more" : "0",
"compliment_profile" : "0",
"compliment_cute" : "0",
"compliment_list" : "0",
"compliment_note" : "0",
"compliment_plain" : "0",
"compliment_cool" : "0",
"compliment_funny" : "0",
"compliment_writer" : "0",
"compliment_photos" : "0"
```

Random Forest Classifier

- Random Forest Classifier is basically an ensemble machine learning which combines weaker predictive models into stronger one by constructing a multitude of decision trees and generalising the model.
- We use Random Forest to obtain importance of the different features in the user dataset and thus calculate the eliteness score.

Calculating Eliteness Score

 Given a user it's eliteness score will be dot product of corresponding feature value with its importance.

Features	Values
$compliment_writer$	0.242482
$review_count$	0.195236
$compliment_cool$	0.186909
fans	0.184319
compliment_funny	0.071866
compliment_hot	0.049423
$compliment_note$	0.037891
cool	0.019294
no_friends	0.004900

Features	Values
average_stars	0.004348
$compliment_photos$	0.001833
$compliment_plain$	0.000947
$compliment_cute$	0.000281
funny	0.000159
$compliment_list$	0.000057
useful	0.000049
$compliment_profile$	0.000005

Reliability of Feature Importance

 The random forest model we trained has an accuracy of 98.21% and thus can be seen from the ROC curve.

RESULTS

- Only 4.62% of the total users have been labelled "elite" in the dataset.
- It can be clearly seen from the spike in non-Elite score distribution that majority of the users have low score.

