# Package 'TDbook'

October 12, 2022

| October 12, 2022                                                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <b>Title</b> Companion Package for the Book ``Data Integration, Manipulation and Visualization of Phylogenetic Trees" by Guangchuang Yu (2022, ISBN:9781032233574)                                              |  |  |  |  |
| Version 0.0.6                                                                                                                                                                                                   |  |  |  |  |
| <b>Description</b> The companion package that provides all the datasets used in the book "Data Integration, Manipulation and Visualization of Phylogenetic Trees" by Guangchuang Yu (2022, ISBN:9781032233574). |  |  |  |  |
| <b>Depends</b> R (>= $3.5$ )                                                                                                                                                                                    |  |  |  |  |
| License Artistic-2.0                                                                                                                                                                                            |  |  |  |  |
| Encoding UTF-8                                                                                                                                                                                                  |  |  |  |  |
| <pre>URL https://www.amazon.com/     Integration-Manipulation-Visualization-Phylogenetic-Computational-ebook/dp/     B0B5NLZR1Z/</pre>                                                                          |  |  |  |  |
| BugReports https://github.com/YuLab-SMU/TDbook/issues                                                                                                                                                           |  |  |  |  |
| LazyData true                                                                                                                                                                                                   |  |  |  |  |
| RoxygenNote 7.2.1                                                                                                                                                                                               |  |  |  |  |
| NeedsCompilation no                                                                                                                                                                                             |  |  |  |  |
| Author Guangchuang Yu [aut, cre, cph]                                                                                                                                                                           |  |  |  |  |
| Maintainer Guangchuang Yu <guangchuangyu@gmail.com></guangchuangyu@gmail.com>                                                                                                                                   |  |  |  |  |
| Repository CRAN                                                                                                                                                                                                 |  |  |  |  |
| <b>Date/Publication</b> 2022-08-13 11:20:02 UTC                                                                                                                                                                 |  |  |  |  |
| R topics documented:                                                                                                                                                                                            |  |  |  |  |
| data-AA_sequence                                                                                                                                                                                                |  |  |  |  |

2 data-AA\_sequence

|       | data-df_barplot_attr                                                         | 4  |  |  |  |
|-------|------------------------------------------------------------------------------|----|--|--|--|
|       | data-df_bar_data                                                             | 4  |  |  |  |
|       | data-df_Candidaauris_data                                                    | 5  |  |  |  |
|       | data-df_difftax                                                              | 5  |  |  |  |
|       | data-df_info                                                                 | 6  |  |  |  |
|       | data-df_inode_data                                                           | 6  |  |  |  |
|       | data-df_NJIDqgsS                                                             | 7  |  |  |  |
|       | data-df_ring_heatmap                                                         | 7  |  |  |  |
|       | data-df_svl                                                                  | 8  |  |  |  |
|       | data-df_tippoint                                                             | 8  |  |  |  |
|       | data-df_tip_data                                                             | 9  |  |  |  |
|       | data-dna_HPV58_aln                                                           | 9  |  |  |  |
|       | data-text_RMI_tree                                                           | 10 |  |  |  |
|       | data-tree_anole                                                              | 10 |  |  |  |
|       | data-tree_boots                                                              | 11 |  |  |  |
|       | data-tree_Candidaauris                                                       | 11 |  |  |  |
|       | data-tree_hmptree                                                            | 12 |  |  |  |
|       | data-tree_HPV58                                                              | 12 |  |  |  |
|       | data-tree_long_branch_example                                                | 13 |  |  |  |
|       | data-tree_nex                                                                | 13 |  |  |  |
|       | data-tree_NJIDqgsS                                                           | 14 |  |  |  |
|       | data-tree_nwk                                                                | 14 |  |  |  |
|       | data-tree_seq_nwk                                                            | 15 |  |  |  |
|       | data-tree_treenwk_30.4.19                                                    | 15 |  |  |  |
|       |                                                                              |    |  |  |  |
| Index |                                                                              | 16 |  |  |  |
|       |                                                                              |    |  |  |  |
|       |                                                                              |    |  |  |  |
| data- | data-AA_sequence Data set containing multiple sequence alignment information |    |  |  |  |
|       |                                                                              |    |  |  |  |

# Description

This data set contains multiple sequence alignment information to be attached to the tree. Chap.7.4

# **Format**

AAbin

# **Examples**

data(AA\_sequence)

data-df\_alleles.csv 3

data-df\_alleles.csv Allele table

## **Description**

The allele table with original data to be processed to SNP data. Then attached to the tree after visualizing.

Chap.7.2

#### **Format**

A data frame contains 386 rows and 385 variables, with first row of tips labels.

#### Source

https://raw.githubusercontent.com/katholt/plotTree/master/tree\_example\_april2015/
alleles.csv

## **Examples**

data(df\_alleles)

data-df\_alltax\_info

Data frame containing hierarchical relationship

# Description

This Data frame contains hierarchical relationship to be visualized with another data frame that contains taxa and factor information and pvalue, using ggdiffcalde() of The MicrobiotaProcess package.

It's the analysis result of diff\_analysis() using public datasets (Kostic et al. 2012) with The MicrobiotaProcess package.

These data frame are used to demonstrates how to visualize the differential taxonomy tree with The MicrobiotaProcess package.

Chap.11.1

# **Format**

A data frame to store taxonomy information, contains 1351 rows and 7 variables (classification levels).

#### References

Kostic, Aleksandar D, Dirk Gevers, Chandra Sekhar Pedamallu, Monia Michaud, Fujiko Duke, Ashlee M Earl, Akinyemi I Ojesina, et al. Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma." Genome Research, Volume 22, Issue 2, 2012, Pages 292–98. doi:10.1101/gr.126573.111

data-df\_bar\_data

## **Examples**

```
data(df_alltax_info)
```

data-df\_barplot\_attr

Data set of the abundance of microbes at the body sites of greatest prevalence

# Description

The data set of abundance of microbes at the body sites of greatest prevalence to be visualized using barplot and attached to the tree.

Chap.10.3

#### **Format**

A data frame contains 332 rows and 3 variables, with a column of "node" or first column of taxa labels.

#### References

Asnicar, Francesco, George Weingart, Timothy L Tickle, Curtis Huttenhower, and Nicola Segata. Compact Graphical Representation of Phylogenetic Data and Metadata with GraPhlAn. PeerJ, 3: e1029, June 2015. doi:10.7717/peerj.1029

# Examples

```
data(df_barplot_attr)
```

data-df\_bar\_data

Trait data

# Description

The trait data to be visualized with bar plot and attached to the tree. Chap.7.2

## **Format**

A data frame contains 386 rows and 2 variables, with a column of "node" or first column of taxa labels.

#### Source

https://raw.githubusercontent.com/katholt/plotTree/master/tree\_example\_april2015/bar.csv

## **Examples**

```
data(df_bar_data)
```

data-df\_Candidaauris\_data

Population genetics data No.1

#### **Description**

Population genetics data to be visualized using multiple graphs and attached to tree No.1 with geo\_fruit() of ggtreeExtra.

Chap.10.4

#### **Format**

A data frame contains 305 rows and 20 variables, with a column of "node" or first column of taxa labels.

## References

Chow, Nancy A., José F. Muñoz, Lalitha Gade, Elizabeth L. Berkow, Xiao Li, Rory M. Welsh, Kaitlin Forsberg, et al. Tracing the Evolutionary History and Global Expansion of Candida Auris Using Population Genomic Analyses. Edited by Geraldine Butler and Kirsten Nielsen. mBio, Volume 11, Issue 2, April 2020. doi:10.1128/mBio.0336419

## **Examples**

data(df\_Candidaauris\_data)

data-df\_difftax

Data frame containing taxa and factor information and pvalue

#### **Description**

This Data frame contains taxa and factor information and pvalue to be visualized with another data frame that contains hierarchical relationship, using ggdiffcalde() of The MicrobiotaProcess package.

These data frame are used to demonstrates how to visualize the differential taxonomy tree with The MicrobiotaProcess package.

Chap.11.1

#### Format

A data frame contains 36 rows and 3 variables.

6 data-df\_inode\_data

## References

Kostic, Aleksandar D, Dirk Gevers, Chandra Sekhar Pedamallu, Monia Michaud, Fujiko Duke, Ashlee M Earl, Akinyemi I Ojesina, et al. Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma." Genome Research, Volume 22, Issue 2, 2012, Pages 292–98. doi:10.1101/gr.126573.111

## **Examples**

```
data(df_difftax)
```

data-df\_info

Sampling information data set

## **Description**

The sampling information data set be attached to the tree tip. Chap.7.2

## **Format**

A data frame contains 386 rows and 6 variables, with a column of "node" or first column of taxa labels.

# Source

https://raw.githubusercontent.com/katholt/plotTree/master/tree\_example\_april2015/info.csv

# **Examples**

```
data(df_info)
```

data-df\_inode\_data

Nodedata to be mapped to tree

# **Description**

This data contains annotation information about nodes of "tree\_boots.nwk", that is to be mapped to the tree using the %<+% operator.

Chap.7.1

#### Format

A data frame with 6 rows and 6 variables with a column of node or first column of taxa labels.

data-df\_NJIDqgsS 7

## Source

https://raw.githubusercontent.com/TreeViz/metastyle/master/design/viz\_targets\_exercise/ inode\_data.csv

## **Examples**

```
data(df_inode_data)
```

data-df\_NJIDqgsS

Population genetics data No.2

## **Description**

Population genetics data to be visualized using multiple graphs and attached to tree No.2 with geo\_fruit() of ggtreeExtra. Chap.10.4

#### **Format**

A data frame contains 1351 rows and 7 variables, with a column of "node" or first column of taxa labels.

#### References

Wong, Vanessa K., Stephen Baker, Derek J. Pickard, Julian Parkhill, Andrew J. Page, Nicholas A. Feasey, Robert A. Kingsley, et al. Phylogeographical Analysis of the Dominant Multidrug-Resistant H58 Clade of Salmonella Typhi Identifies Inter- and Intracontinental Transmission Events. Nature Genetics, Volume 47, Issue 6, May 2015, Pages 632-39. doi:10.1038/ng.3281

# **Examples**

```
data(df_NJIDqgsS)
```

# **Description**

The data set of abundance of microbes at different body sites to be visualized using heatmap and attached to the tree.

Chap.10.3

### **Format**

A data frame contains 2324 rows and 3 variables, with a column of "node" or first column of taxa labels.

8 data-df\_tippoint

## References

Asnicar, Francesco, George Weingart, Timothy L Tickle, Curtis Huttenhower, and Nicola Segata. Compact Graphical Representation of Phylogenetic Data and Metadata with GraPhlAn. PeerJ, 3: e1029, June 2015. doi:10.7717/peerj.1029

## **Examples**

```
data(df_ring_heatmap)
```

data-df\_svl

Data frame containing slv information

# **Description**

Data frame containing slv information to scale the color of the tree using the continuous parameter of ggtree to plot continuous state transition in edges.

Chap.4.3.5. This file is provided in http://www.phytools.org/eqg2015/asr.html.

## **Format**

A data frame contains 100 rows and 1 variables.

## **Source**

```
http://www.phytools.org/eqg2015/data/svl.csv
```

## **Examples**

```
data(df_svl)
```

data-df\_tippoint

Data set of the abundance and types of microbes

# **Description**

The data set of abundance and types of microbes to be attached to the tree tips, provided by GraPhlAn (Asnicar et al. 2015). Chap.10.3

# Format

A data frame contains 332 rows and 4 variables, with a column of "node" or first column of taxa labels.

data-df\_tip\_data 9

## References

Asnicar, Francesco, George Weingart, Timothy L Tickle, Curtis Huttenhower, and Nicola Segata. Compact Graphical Representation of Phylogenetic Data and Metadata with GraPhlAn. PeerJ, 3: e1029, June 2015. doi:10.7717/peerj.1029

## **Examples**

```
data(df_tippoint)
```

data-df\_tip\_data

Tipdata to be mapped to tree

# **Description**

This data contains annotation information about tips of tree\_boots, that is to be mapped to the tree using the %<+% operator.

Chap.7.1

## **Format**

A data frame contains 7 rows and 9 variables, with a column of "node" or first column of taxa labels.

# Source

https://raw.githubusercontent.com/TreeViz/metastyle/master/design/viz\_targets\_exercise/tip\_data.csv

# **Examples**

```
data(df_tip_data)
```

data-dna\_HPV58\_aln

A DNAbin class to store the aligned sequnces of species of HPV58.tree

# Description

A DNAbin class to store the aligned sequnces of species of HPV58.tree

#### **Format**

S3 class:DNAbin

10 data-tree\_anole

## References

Chen, Zigui, Wendy C. S. Ho, Siaw Shi Boon, Priscilla T. Y. Law, Martin C. W. Chan, Rob DeSalle, Robert D. Burk, and Paul K. S. Chan. Ancient Evolution and Dispersion of Human Papillomavirus 58 Variants. Journal of Virology, Volume 91, Issue 21, November 2017, e01285–17. doi:10.1128/JVI.0128517

# **Examples**

data(dna\_HPV58\_aln)

data-text\_RMI\_tree

Tree to display with symbolic points indicating partitioned bootstrap values

## **Description**

This tree is to display with symbolic points with different color or shape indicating the bootstrap values belong to which category.

Catagories are defined by cutting the bootstrap values into several interval to indicate whether the clade is high, moderate or low support.

Chap.13.2

#### **Format**

character

# **Examples**

data(text\_RMI\_tree)

data-tree\_anole

Tree to color with continuous state transition in edges

# **Description**

This tree is used to demonstrate the functionality of plotting continuous state transition in edges using the continuous parameter of ggtree.

Chap.4.3.5. This file is provided in http://www.phytools.org/eqg2015/asr.html.

#### **Format**

S3 class:phylo

## Source

http://www.phytools.org/eqg2015/data/anole.tre

data-tree\_boots 11

## **Examples**

data(tree\_anole)

data-tree\_boots

Tree to be mapped to data

# **Description**

This tree is used to demonstrate the functionality of the %<+% operator to attach annotation data to a ggtree graphic object.

Chap.7.1

#### **Format**

S3 class:phylo

#### Source

https://raw.githubusercontent.com/TreeViz/metastyle/master/design/viz\_targets\_exercise/tree\_boots.nwk

# **Examples**

data(tree\_boots)

data-tree\_Candidaauris

Tree No.1 to display with visualized population genetics data

# Description

Tree No.1 to display with visualized population genetics data for demonstrating the utility of ggtreeExtra.

Reproduction of Fig.4 of (Chow et al. 2020).

Chap.10.4

# Format

S3 class:phylo

## References

Chow, Nancy A., José F. Muñoz, Lalitha Gade, Elizabeth L. Berkow, Xiao Li, Rory M. Welsh, Kaitlin Forsberg, et al. Tracing the Evolutionary History and Global Expansion of Candida Auris Using Population Genomic Analyses. Edited by Geraldine Butler and Kirsten Nielsen. mBio, Volume 11, Issue 2, April 2020. doi:10.1128/mBio.0336419

12 data-tree\_HPV58

## **Examples**

data(tree\_Candidaauris)

data-tree\_hmptree

Tree to display with multiple graphs for multi-dimensional data

# **Description**

This tree is to display with multiple graphs, and by reproducing Fig.2 of (Morgan, Segata, and Huttenhower 2013), demonstrates the feature of adding multiple layers to present different types of data by ggtreeExtra.

Chap.10.3

#### **Format**

S3 class:phylo

## References

Morgan, Xochitl C., Nicola Segata, and Curtis Huttenhower. Biodiversity and Functional Genomics in the Human Microbiome. Trends in Genetics Volume 29, Issue 1, 2013 January, Pages 51–58. doi:10.1016/J.TIG.2012.09.005

## **Examples**

data(tree\_hmptree)

data-tree\_HPV58

Tree to display with dot and line plots of pairwise nucleotide sequence distances

# Description

This tree is to provide accession numbers from its tip labels, which are used to calculates pairwise nucleotide sequence distances. The distance matrix then is visualized as dot and line plots and attached to the tree, demonstrating the abilities of facet\_plot() of ggtree that can add multiple layers to a specific panel.

Reproduction fo Fig. 1 of (Chen et al. 2017). Chap.13.1

# Format

S3 class:phylo

## References

Chen, Zigui, Wendy C. S. Ho, Siaw Shi Boon, Priscilla T. Y. Law, Martin C. W. Chan, Rob DeSalle, Robert D. Burk, and Paul K. S. Chan. Ancient Evolution and Dispersion of Human Papillomavirus 58 Variants. Journal of Virology, Volume 91, Issue 21, November 2017, e01285–17. doi:10.1128/JVI.0128517

# **Examples**

data(tree\_HPV58)

data-tree\_long\_branch\_example

Tree to display with shrunk outlier long branch

# **Description**

This tree is to display with display with shrunk outlier long branch to demonstrate how to shrink outlier long branch with ggtree by modifying coordination of the out groups, or with the ggbreak package.

Appendix.A.5.3

## **Format**

S3 class:Phylo

## **Examples**

data(tree\_long\_branch\_example)

data-tree\_nex

Tree to display with silhouettes from Phylopic

# Description

This tree is to display with display with silhouettes from Phylopic, demonstrating the feature of ggtree that will automatically download phylopic figures by querying provided UID. Chap.8.2

# Format

S3 class:Phylo

# **Examples**

data(tree\_nex)

14 data-tree\_nwk

data-tree\_NJIDqgsS

Tree No.2 to display with visualized population genetics data

# **Description**

Tree No.2 to display with visualized population genetics data for demonstrating the utility of ggtreeExtra.

Reproduction of Fig 1 of (Wong et al. 2015).

Chap.10.4

#### **Format**

S3 class:phylo

#### References

Wong, Vanessa K., Stephen Baker, Derek J. Pickard, Julian Parkhill, Andrew J. Page, Nicholas A. Feasey, Robert A. Kingsley, et al. Phylogeographical Analysis of the Dominant Multidrug-Resistant H58 Clade of Salmonella Typhi Identifies Inter- and Intracontinental Transmission Events. Nature Genetics, Volume 47, Issue 6, May 2015, Pages 632–39. doi:10.1038/ng.3281

## **Examples**

data(tree\_NJIDqgsS)

data-tree\_nwk

Tree to display with sampling information, SNP and Trait data

# Description

The tree to display with sampling information, attached with dot chart of SNP and bar chart of Trait data.

Chap.7.2

# Format

S3 class:phylo

#### Source

https://raw.githubusercontent.com/katholt/plotTree/master/tree\_example\_april2015/
tree.nwk

# **Examples**

data(tree\_nwk)

data-tree\_seq\_nwk

data-tree\_seq\_nwk

Tree to display with multiple sequence alignment

# **Description**

This tree is used to display with multiple sequence alignment. Chap.7.4

#### **Format**

S3 class:phylo

# **Examples**

```
data(tree_seq_nwk)
```

data-tree\_treenwk\_30.4.19

Tree to group and highlight

## **Description**

This tree is used to reproduce Figure 1 of (Larsen et al. 2019) with grouping, highlighting and labelling.

Chap.13.3

## **Format**

S3 class:Phylo

## References

Larsen, Frederik T., Bertrand Bed'Hom, Bernt Guldbrandtsen, and Tina S. Dalgaard. Identification and Tissue-Expression Profiling of Novel Chicken c-Type Lectin-Like Domain Containing Proteins as Potential Targets for Carbohydrate-Based Vaccine Strategies. Molecular Immunology, Volume 114, Issue October, October 2019, pages 216–25. doi:10.1016/j.molimm.2019.07.022

# **Examples**

```
data(tree_treenwk_30.4.19)
```

# **Index**

| * data                            | data-df_NJIDqgsS,7                            |  |  |
|-----------------------------------|-----------------------------------------------|--|--|
| data-AA_sequence, 2               | data-df_ring_heatmap, 7                       |  |  |
| data-df_alleles.csv, 3            | data-df_svl, 8                                |  |  |
| data-df_alltax_info,3             | data-df_tip_data, 9                           |  |  |
| data-df_bar_data, 4               | data-df_tippoint, 8                           |  |  |
| data-df_barplot_attr,4            | data-dna_HPV58_aln, 9                         |  |  |
| data-df_Candidaauris_data,5       | data-text_RMI_tree, 10                        |  |  |
| data-df_difftax, 5                | data-tree_anole, 10                           |  |  |
| data-df_info, 6                   | data-tree_boots, 11                           |  |  |
| data-df_inode_data, 6             | data-tree_Candidaauris, 11                    |  |  |
| data-df_NJIDqgsS,7                | data-tree_hmptree, 12                         |  |  |
| data-df_ring_heatmap, 7           | data-tree_HPV58, 12                           |  |  |
| data-df_svl, 8                    | data-tree_long_branch_example, 13             |  |  |
| data-df_tip_data, 9               | data-tree_nex, 13                             |  |  |
| data-df_tippoint, 8               | data-tree_NJIDqgsS, 14                        |  |  |
| data-dna_HPV58_aln,9              | data-tree_nwk, 14                             |  |  |
| data-text_RMI_tree, 10            | data-tree_seq_nwk, 15                         |  |  |
| data-tree_anole, 10               | data-tree_treenwk_30.4.19, 15                 |  |  |
| data-tree_boots, 11               | df_alleles (data-df_alleles.csv), 3           |  |  |
| data-tree_Candidaauris, 11        | df_alltax_info (data-df_alltax_info), 3       |  |  |
| data-tree_hmptree, 12             | df_bar_data (data-df_bar_data), 4             |  |  |
| data-tree_HPV58, 12               | df_barplot_attr (data-df_barplot_attr),       |  |  |
| data-tree_long_branch_example, 13 | 4                                             |  |  |
| data-tree_nex, 13                 | df_Candidaauris_data                          |  |  |
| data-tree_NJIDqgsS, 14            | (data-df_Candidaauris_data), 5                |  |  |
| data-tree_nwk, 14                 | df_difftax (data-df_difftax), 5               |  |  |
| data-tree_seq_nwk, 15             | df_info (data-df_info), 6                     |  |  |
| data-tree_treenwk_30.4.19, 15     | df_inode_data (data-df_inode_data), 6         |  |  |
|                                   | df_NJIDqgsS (data-df_NJIDqgsS), 7             |  |  |
| AA_sequence (data-AA_sequence), 2 | df_ring_heatmap (data-df_ring_heatmap),       |  |  |
|                                   | 7                                             |  |  |
| data-AA_sequence, 2               | df_svl (data-df_svl), 8                       |  |  |
| data-df_alleles.csv, 3            | df_tip_data (data-df_tip_data), 9             |  |  |
| data-df_alltax_info, 3            | df_tippoint (data-df_tippoint), 8             |  |  |
| data-df_bar_data, 4               | dna_HPV58_aln (data-dna_HPV58_aln), 9         |  |  |
| data-df_barplot_attr, 4           | ulia_ili v30_aili (uata ulia_ili v30_aili), 9 |  |  |
| data-df_Candidaauris_data,5       |                                               |  |  |
| data-df_difftax, 5                | text_RMI_tree (data-text_RMI_tree), 10        |  |  |
| data-df_info, 6                   | tree_anole (data-tree_anole), 10              |  |  |
| data-df_inode_data, 6             | tree_boots (data-tree_boots), 11              |  |  |

INDEX 17