. Calcolare l'inversa della matrice
$$A = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 0 & -2 \\ 2 & -1 & 0 \end{pmatrix} \;.$$

2.
$$Sia$$
 $\langle \cdot, \cdot \rangle$ il prodotto scalare definito su $M_2(\mathbb{R})$ da
$$\langle A, B \rangle = \operatorname{trace}(AB^t) \; .$$

Calcolare l'angolo tra
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

3. Calcolare $A^{50}v$ dove

$$A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \qquad v = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

 Sia A una matrice 3 per 3, e (A|b) una matrice aumentata 3 per 4 ottenuta unendo una colorna ad A. Se

$$\dim \ker(A) = \dim \ker(A|b) = 1$$

allora la soluzione dell'equazione Ax = b è: vuota, un punto, una linea, un piano, \mathbb{R}^3 oppure la informazioni fornite non sono sufficienti per rispondere alla domanda.