P(izraz | gramatika)

Urh Primožič Mentor: Ljupčo Todorovski Somentor: Matej Petković

Fakulteta za matematiko in fiziko

22. 11. 2021

Gramatika

Definicija

G = (N, T, R, S) je kontekstno neodvisna gramatika, kjer

- ► N, T končni, disjunktni množici simbolov
- $ightharpoonup S \in N$ začetni simbol
- $ightharpoonup R\subset N imes (N\cup T)^*$ množica prepisovalnih pravil

Za
$$(A, X_1 \cdots X_n) \in R$$
 pišemo $A \to X_1 \cdots X_n$

Množica besed

Definicija

Gramatika G generira besedo $w \in T^*$, če jo lahko dobimo iz S z zaporedno uporabo **končnega** števila prepisovalnih pravil iz R. L(G) je množica besed, ki jih generira G.

Primer

$$N = \{S, M\}, T = \{x, +\}$$

$$S \to S + M \mid M$$

 $M \to Mx \mid x$

Verjetnostne gramatike

Definicija

 $Ver jet nostna\ gramatika\ G\ je\ gramatika\ skupaj\ s\ preslikavo$

$$P \colon R \to [0,1]$$

če velja

$$\sum_{(A \to \alpha) \in R} P(A \to \alpha) = 1$$

za vsak $A \in N$.

Definicija

Naj bo τ izpeljevalno drevo. Definiramo

$$P(\tau) = \prod_{(A \to \alpha) \in R} P(A \to \alpha)^{f(A \to \alpha)},$$

kjer je $f(A \to \alpha)$ število pojavitev $A \to \alpha \ v \ \tau$.

Definicija

Naj bo τ izpeljevalno drevo. Definiramo

$$P(\tau) = \prod_{(A \to \alpha) \in R} P(A \to \alpha)^{f(A \to \alpha)},$$

kjer je $f(A \to \alpha)$ *število pojavitev* $A \to \alpha v \tau$.

Definicija

Naj bo $w \in L(G)$:

$$P(w) = \sum_{\tau \text{ generira } w} P(\tau).$$

Primer od prej

$$N = \{S, M\}, T = \{c, x, +\}$$

$$S \rightarrow S + cM \mid c$$

$$M \rightarrow Mx \mid x$$

- ▶ *G* gramatika, ki generira smiselne izraze
- $T = \{c, x_1, \dots, x_n, +, -, *, /\}$
- ▶ **F** domena za konstante
- $ightharpoonup D = (D_1, \dots, D_n)$ domena za (x_1, \dots, x_n)

- ightharpoonup G gramatika, ki generira smiselne izraze
- $T = \{c, x_1, \dots, x_n, +, -, *, /\}$
- ▶ **F** domena za konstante
- $ightharpoonup D = (D_1, \ldots, D_n)$ domena za (x_1, \ldots, x_n)

Definicija

Naj bo $w = w_0 \mathbf{c} w_1 \cdots \mathbf{c} w_m \in L(G) \implies w_0 \mathbf{c_0} w_1 \cdots \mathbf{c_m} w_m$. Definiramo

$$\Phi(w) = \{ \varphi_{c_1,\dots,c_m}(w) \colon D \to \mathbb{F} \mid c_i \in \mathbb{F} \land \varphi_{c_1,\dots,c_m}(w) \text{ je definirana} \}.$$
$$\varphi_{c_1,\dots,c_m}(w)(y_1,\dots,y_n) = w_0 c_0 w_1 \cdots c_m w_m \mid_{x_i = y_i}$$

- ▶ *G* gramatika, ki generira smiselne izraze
- $T = \{c, x_1, \dots, x_n, +, -, *, /\}$
- ▶ **F** domena za konstante
- $ightharpoonup D = (D_1, \ldots, D_n)$ domena za (x_1, \ldots, x_n)

Definicija

Naj bo $w = w_0 \mathbf{c} w_1 \cdots \mathbf{c} w_m \in L(G) \implies w_0 \mathbf{c_0} w_1 \cdots \mathbf{c_m} w_m$. Definiramo

$$\Phi(w) = \{ \varphi_{c_1,\dots,c_m}(w) \colon D \to \mathbb{F} \mid c_i \in \mathbb{F} \land \varphi_{c_1,\dots,c_m}(w) \text{ je definirana} \}.$$

$$\varphi_{c_1,\dots,c_m}(w)(y_1,\dots,y_n) = w_0c_0w_1\cdots c_mw_m\mid_{x_i=y_i}$$

$$Za\ u,v\in L(G)$$

$$w \sim v \Leftrightarrow \Phi(w) = \Phi(v).$$

- ▶ *G* gramatika, ki generira smiselne izraze
- $T = \{c, x_1, \dots, x_n, +, -, *, /\}$
- F domena za konstante
- $ightharpoonup D = (D_1, \ldots, D_n)$ domena za (x_1, \ldots, x_n)

Definicija

Naj bo $w = w_0 \mathbf{c} w_1 \cdots \mathbf{c} w_m \in L(G) \implies w_0 \mathbf{c_0} w_1 \cdots \mathbf{c_m} w_m$. Definiramo

$$\Phi(w) = \{\varphi_{c_1,\dots,c_m}(w) \colon D \to \mathbb{F} \mid c_i \in \mathbb{F} \land \varphi_{c_1,\dots,c_m}(w) \text{ je definirana} \}.$$

$$\varphi_{c_1,\ldots,c_m}(w)(y_1,\ldots,y_n)=w_0c_0w_1\cdots c_mw_m\mid_{x_i=y_i}$$

 $Za\ u,v\in L(G)$

$$w \sim v \Leftrightarrow \Phi(w) = \Phi(v).$$

Definicija

Množica izrazov $I(G) = L(G)/_{\sim}$ je množica ekvivalenčnih razredov za \sim .

Definicija

 $Za[w] \in I(G)$ definiram

$$P([w]) = \sum_{v \in [w]} P(v)$$

Cilj

Algoritem za izračun verjetnosti za neko družino gramatik.