CHEMISTRY Chapter 14

2nd

SECONDARY

Tabla periódica II: clasificación por propiedades y bloques

MOTIVATING STRATEGY

USOS Y APLICACIONES DE LAS TIERRAS RARAS

Cerámicas

La, Ce, Pr, Nd, Y, Eu, Gd, Lu, Dy

Condensadores, Sensores, Colorantes, Centelleadores, Refractarios

Catalizadores

La, Ce, (Pr, Nd)

Refino de petroleo, Convertidores catalíticos, Aditivos del diesel, Procesos químicos, depuradores

Vidrio/óptica

Ce, La, Pr, Nd, Gd, Er, Ho

pulidores, Cristales con protección UV, Imágenes de rayos X

Otros

Nuclear: (Eu, Gd, Ce, Y, Sm, Er)

Defensa: (Nd, Pr, Dy, Tb, Eu,Y, La, Lu, Sc, Sm)

Tratamiento de aguas

pigmentos Ce, Y

Imanes

Nd, Pr, (Tb, Dy)

Motores hibridos, Discos duros, MRI, Turbinas eólicas, Micrófonos altavoces, Refrigeración magnética

Fósforos

TIERRAS

RARAS

Eu, Y, Tb, Nd, Er, Gd, (Ce, Pr)

Pantallas CRT, LPD, LCD; Lámparas fluorescentes; Lásers, Fibra óptica

Aleaciones

(La, Ce, Pr, Nd, Y)

Baterias NiMH, Pilas de combustible, Piedras para encendedor, Super aleaciones, Aluminio/magnesio

ORDENAMIENTO DE LOS ELEMENTOS

PERIODOS

ORDEN HORIZONTAL

IGUAL NÚMERO DE NIVELES O CAPAS

PROPIEDADES
FÍSICAS Y
QUÍMICAS
DIFERENTES

GRUPOS

ORDEN EN COLUMNAS

IGUAL NÚMERO DE ELECTRONES DE VALENCIA

PROPIEDADES
FÍSICAS DIFERENTES
PERO PROPIEDADES
QUÍMICAS
SIMILARES

BLOQUES

ELEMENTO REPRESENTATIVO:s, p

ELEMENTO TRANSICIÓN: d

ELEMENTO TRANSICIÓN INTERNA: f **NATURALEZA**

METALES

NO METALES

METALOIDES

POR BLOQUES

Los elementos cuya configuración electrónica termina en "S" o "P" son denominados "Representativos" y son representados por la letra "A"

Los elementos que tienen una configuración que termina en "d" son denominados de "Transición externa" y sus columnas se le asignan la letra "B"

Los elementos cuya configuración terminan en "f" se denominan de "Transición interna". Existen solo dos periodos denominados Lantanidos y Actínidos.

BLOQUES DE LA T.P.A.

POR LA NATURALEZA DEL ELEMENTO

METALES

SON SÓLIDOS EN CONDICIONES AMBIENTAL ES, EXCEPTO EL MERCURIO, QUE ES LÍQUIDO.

PRESENTAN BRILLO METÁLICO (COLOR PLATEADO), EXCEPTO EL COBRE QUE ES ROJIZO Y EL ORO QUE ES AMARILLO DORADO.

SON BUENOS CONDUCTORES DEL CALOR Y DE LA CORRIENTE ELÉCTRICA (LA AGES EL MEJOR CONDUCTOR).

SON DÚCTILES Y MALEABLES, SIENDO EL ORO EL METAL MAS DÚCTIL Y MALEABLE. SUS TEMPERATURAS DE FUSIÓN SON VARIABLES; POR EJEMPLO, LA TEMPERATURA DE FUSIÓN DEL MERCURIO ES -38 C (MÍN.) Y DEL WOLFRAMIO, 3410 C. (MAX.)

SUS TEMPERATURAS DE FUSIÓN SON VARIABLES; POR EJEMPLO, LA TEMPERATURA DE FUSIÓN DEL MERCURIO ES -38 C (MÍN.) Y DEL WOLFRAMIO, 3410 C. (MAX.)

ALGUNOS SON BLANDOS (COMO EL LITIO, SODIO, ETC) Y OTROS DE ALTA DUREZA (COMO EL HIERRO, TITANIO)

AL COMBINARSE CON LOS ÁTOMOS DE OTROS ELEMENTOS, TIENDEN A CEDER SUS ELECTRONES (SE OXIDAN) A DIFERENCIA DE LOS NO METALES QUE TIENEN TENDENCIA A GANAR ELECTRONES (SE REDUCEN).

NO

EN CONDICIONES AMBIENTALES ALGUNOS SON SÓLIDOS, SOLO HAY UN LÍQUIDO (EL BROMO), Y LOS RESTANTES SON GASEOSOS.

SU COLORACIÓN ES VARIADA; ASÍ TENEMOS AL AZUFRE DE COLOR AMARILLO VERDOSO, EL OXÍGENO INCOLORO, EL BROMO ROJIZO, ETC.

SON MALOS CONDUCTORES DEL CALOR Y DE LA CORRIENTE ELÉCTRICA. UN CASO EXCEPCIONAL ES EL CARBONO, QUE BAJO LA FORMA DE GRAFITO, RESULTA MUY BUEN CONDUCTOR ELÉCTRICO.

EN SU MAYORÍA SON BLANDOS, EXCEPTO EL CARBONO EN SU FORMA DE DIAMANTE QUE ES EL MATERIAL DE MAYOR DUREZA.

METALOIDES (SEMIMETALES)

SON 8 ELEMENTOS (B, Si, Ge, As, Sb, Te, Po, At).

LLAMADOS TAMBIÉN METALOIDES, SON MUY ÚTILES PARA LA FABRICACIÓN DE DISPOSITIVOS ELECTRÓNICOS COMO CHIPS Y TRANSISTORES (COMPONENTES DE RADIO, TV, COMPUTADORAS, ETC.).

Uso del silicio en transistores

EL METALOIDE MAS USADO PARA ESTE FIN ES EL SILICIO, QUE SE ENCUENTRA EN EL CUARZO O SÍLICE (SIO2). ESTE COMPONENTE ES MUY ABÚNDATE EN LA NATURALEZA PORQUE FORMA PARTE DE LA MAYORÍA DE LAS ROCAS Y ARENA.

A TEMPERATURAS ALTAS SON BUENOS CONDUCTORES DEL CALOR Y LA ELECTRICIDAD.

GASES

NODI EC

Son 6 gases monoatómicos (He, Ne, Ar, Kr, Xe, Rn).

GASES ESTABLES POR POSEER 8 ELECTRONES EN SU CAPA DE VALENCIA A EXCEPCIÓN DEL HELIO.

EN CONDICIONES NORMALES DE TEMPERATURA NO REACCIONAN

A ALTAS TEMPERATURAS REACCIONAN CON EL OXÍGENO Y EL FLÚOR.

Los elementos del bloque _____ son llamados

elementos ______.

- A) s de transición
- B) p de transición
- C) d representativos
- D) f representativos
- E) f de transición interna

RESOLUCIÓN

SI LA CONFIGURACIÓN ELECTRÓNICA TERMINA EN 1 SON LLAMADOS ELEMENTOS DE TRANSICIÓN INTERNA

Rpta: E

Complete el texto.

El periodo 1 es el más corto con _____ elementos.

- A) 1
- B) 3
- **C)** 5
- D) 4
- E) 2

Periodo	Cantidad de Elementos	Elementos				
1	2	H, He				
2	8	Li, Be, Ne				
3	8	Na , Mg , Ar				
4	18	K, Ca, Kr				
5	18	Rb , Sr , Xe				
6	32	Cs , Ba, Rn				
7	32	Fr, Ra, Og				

Relacione correctamente.

- I. Representan el 80% de los elementos.
- II. Representan el 20% de los elementos.
- III. A temperaturas altas son buenos conductores de la electricidad.
- a. Semimetales
- b. Metales
- c. No metales
- A) Ib, IIa, IIIc B) Ib, IIc, IIIa C) Ia, IIc, IIIb D) Ic, IIb, IIIa E) Ia, IIb,

- Marque la alternativa correcta.
- A) El periodo 4 tiene 32 elementos.
- B) Los no metales son buenos conductores de la electricidad.
- C) Los bloques s y p pertenecen al grupo A.
- D) El grupo VIA se llama nitrogenoide.
- E) El cobre es un metal puente.

RESOLUCIÓN

Los elementos cuya configuración electrónica termina en "S" o "p" son denominados "Representativos" y son representativos y son representados por la letra "A"

De los siguientes, ¿cuáles son propiedades de los metales?

- I. Se oxidan.
- II. Ganan electrones.
- III. Representan la mayoría de los elementos.
- IV. Todos son sólidos a temperatura ambiente.
- A) I y II B) Solo IV C) I y III D) Solo II E) II y III

RESOLUCIÓN

TIENDEN A CEDER SUS ELECTRONES (SE OXIDAN)
REPRESENTAN EL 80% DE LOS ELEMENTOS.

EL MERCURIO, QUE ES LÍQUIDO.

Relacione correctamente.

- I.Grupo VIIA
- II. Buenos conductores
- III. Metal líquido

- a. Mercurio
- b. Halógeno
- c. Metal

RESOLUCIÓN

Mercurio

IA	Metales Alcalinos
IIA	Alcalinos Térreos
IIIA	Térreos o Boroides
IVA	Carbonoides
VA	Nitrogenoides
VIA	Anfígenos o Calcógenos
VIIA	Halógenos
VIIIA	Gases Nobles, Raros o Inertes

Indique la(s) proposición(es) correcta(s).

- I. El hidrógeno, nitrógeno, oxígeno y flúor son gases diatómicos.
- II. El grafito no conduce la corriente eléctrica.

Rpta: I

Marque la alternativa que contenga un metal, un no metal y

un metaloide.

- A) B, S, Si
- B) Zn, Br, Ge
- C) Ar, F, Si
- D) Mn, S, Be
- E) Al, Cr, Xe

1	1 H Hidrógeno 1.008	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 2 He Helio 4,0026
2	3 Li Litio 6,94	4 Be Berilio 9,0121 12											5 B Boro 10,81 13	6 C Carbono 12,011	N Nitrógeno	8 O 0xígeno 15,999 16	9 F Flúor 18,998	10 Ne Neón 20,1797
3	Na Sodio 22,989	Mg Magnesio 24,305											Aluminio 26,981	Si Silicio 28,085	P Fósforo 30,973	S Azufre 32,08	CI Cloro 35,45	Ar Argón 39,948
•	19 K Potasio 39,0983	Ca Calcio	Sc Escandio 44.955	7i Titanio 47,867	23 V Vanadio 50.9415	24 Cr Cromo 51,9961	Mn Manganesc 54,938	26 Fe Hierro 55.845	27 Co Cobalto 58.933	28 Ni Níquel 58.6934	29 Cu Cobre 63,546	30 Zn Cinc 65,38	31 Ga Galio 69.723	32 Ge Germanio 72,63	33 As Arsénico 74,921	34 Se Selenio 78.971	35 Br Bromo 79,904	36 Kr Kriptón 83.798
_	37 Rb Rubidio 85,4678	38 Sr Estroncio	39 Y Itrio	40 Zr Circonio 91,224	41 Nb Niobio 92,906	Mo Molibdeno 95,95	Tc Tecnecio (98)	44 Ru Rutenio 101,07	45 Rh Rodio 102,90	46 Pd	47 Ag Plata 107,86	48 Cd Cadmio 112,414	49 In Indio 114,818	50 Sn Estaño 118,710	51 Sb		53 Yodo 126,90	54 Xe Xenón 131,293
6	55 Cs Cesio 132.90	56 Ba Bario 137,327	57–71	72 Hf Hafnio 178,49	73 Ta Tantalio 180.94	74 W Wolframio 183.84	75 Re Renio 186,207	76 Os Osmio 190,23	77 r ridio 192,217	78 Pt Platino 195.084	79 Au Oro 196.96	Hg Mercurio 200.59	81 TI Talio 204.38	82 Pb Plomo 207.2	Bi	Po Polonio (209)	85 At Astato (210)	86 Rn Radón (222)
	87 Fr Francio (223)	88 Ra Radio (226)	89–103	104 Rf Rutherfordio (287)	105 Db	106 Sg Seaborgio (271)	107 Bh Bohrio (272)	108 Hs Hassio (270)	109 Mt Meitnerio (276)	110 Ds Damstadio (281)	111 Rg Roentgenio (280)	112 Cn	113 Nh	114 FI Flerovio (289)	115 Mc	116 Lv Livermorio (293)	117 Ts Tennessine (294)	118 Og
	(220)	(220)		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				La Lantano 138,90 89	Ce Cerio 140,116	Praseodimic 140,90	Nd Neodimio 144,242 92	Pm Prometio (145) 93	Sm Samario 150,36	Europio 151,964	Gd Gadolinio 157,25 96	Tb Terbio 158,92 97	Dy Disprosio 162,500	Holmio 164,93	Erbio 167,259	Tm Tulio 168,93 101	Yb Iterbio 173,054 102	Lu Lutecio 174,96 103
				Ac Actinio (227)	Th Torio 232,03	Pa	U	Np Neptunio (237)	Pu	Am	Cm Curio (247)	Bk Berkelio (247)	Cf	Es Einstenio (252)	Fm	Md Mendelevio (258)	No	Lr Lawrencio (262)

1 Los elementos del bloque _ elementos _____ ___ son llamados

- A) s de transición
- B) p de transición
- C) d representativos
- D) f representativos
- E) f de transición interna

RESOLUCIÓN

SI LA CONFIGURACIÓN ELECTRÓNICA TERMINA EN F SON LLAMADOS ELEMENTOS DE TRANSICIÓN INTERNA

Rpta: E

HELICO | PRACTICE

Relacione correctamente.

- I. Representan el 80% de los elementos.
- II. Representan el 20% de los elementos.
- III. A temperaturas altas son buenos conductores de la electricidad.
- a. Semimetales
- b. Metales
- c. No metales

A) Ib, IIa, IIIc B) Ib, IIc, IIIa C) Ia, IIc, IIIb D) Ic, IIb, IIIa E) Ia, IIb, IIIc

RESOLUCIÓN

I (b)

Rpta: B

HELICO | THEORY

2

Complete el texto.

El periodo 1 es el más corto con _____ elementos.

- A) 1
- B) 3
- C) 5
- D) 4
- E) 2

D	ES	0		11	CI	ń	N
r	EO	U	L	U	u	U	IV

Periodo	Cantidad de Elementos	Elementos				
1	2	H, He				
2	8	Li , Be , Ne				
3	8	Na , Mg , Ar				
4	18	K, Ca, Kr				
5	18	Rb , Sr , Xe				
6	32	Cs , Ba, Rn				
7	32	Fr, Ra, Og				

Rpta: E

HELICO | PRACTICE

Marque la alternativa correcta.

- A) El periodo 4 tiene 32 elementos.
- B) Los no metales son buenos conductores de la electricidad.
- C) Los bloques s y p pertenecen al grupo A.
- D) El grupo VIA se llama nitrogenoide.
- E) El cobre es un metal puente.

RESOLUCIÓN

Los elementos cuya configuración electrónica termina en "S" o "p" son denominados "Representativos" y son representativos y son representados por la letra "A"

Rpta : C

