Introduction to Al

Kickstarting your data-driven and medical AI projects

November 28th, 2024

Sira Sriswasdi, PhD

- Research Affairs, Faculty of Medicine, Chulalongkorn University
- Computational Molecular Biology Group (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

About myself

Background in computational biology: mathematics, computer sciences, and molecular biology

Learned but never use ML/AI until 2017

Form Computational Molecular Biology and Al in Medicine Centers at Chula

Like to apply computational thinking to any problem

https://xkcd.com/1831/

Talk plan

- Day 1
 - Introduction to Al
 - Roles of medical practitioner in the AI era
 - Federated learning workshop
- Day 2
 - How to become an Al-ready hospital?
 - Practical experiences on AI-assisted CXR workflow

What is Al?

Natural vs artificial intelligence

- Al is the result of computer algorithms mimicking the natural learning process
- Measure of intelligence
 - Ability to generalize to unseen data
 - Ability to create things
 - Ability to reason with cause and effect

Single cortical neurons as deep artificial neural networks

Understanding Understanding

NATURAL AND ARTIFICIAL INTELLIGENCE

ROBERT K. LINDSAY

Mechanism of learning

	Human	Machine
Memorization	✓	√√√
Pattern recognition	\checkmark	✓
Trial and error	✓	✓
Generalization/Reasoning	√√√	×
Information compression	?	√ √ √

Memorization and information compression

https://www.youtube.com/watch?v=P18EdAKuC1U

Pattern recognition

Trial and error

Google DeepMind's AlphaGo computer beats top player Lee Sedol for third time to sweep competition

Machine learning (ML), the engine behind modern AI

Internet search: Al without ML

Supervised and unsupervised learning

Supervised Learning

Find decision functions with high accuracy

Unsupervised Learning

Find patterns and similarities among data

Reinforcement learning

Supervised learning with dynamic, on-the-fly data generation

Find action strategies with high rewards

environment

Supervised learning framework

1. Pick the right task

2. Prepare quality data

Some classical ML models

Linear: Score = (input₁ × w_1) + ... + (input_n × w_n)

Tree: Collection of decisions

prevent a heart attack.

Neighbor-based: Predict using similarity to past observations

Ensemble approaches

Boosting: Iterative improvement with additional models

Stacking: Combine multiple models with different capabilities

Limitation of classical ML

- Unable to fit complex relationships
- Unable to handle raw data like text of image

https://www.xkcd.com/2048/

Naïve representation is not useful

	1	2	3	4	5	6	7	8	9
man	1	0	0	0	0	0	0	0	0
woman	0	1	0	0	0	0	0	0	0
boy	0	0	1	0	0	0	0	0	0
girl	0	0	0	1	0	0	0	0	0
prince	0	0	0	0	1	0	0	0	0
princess	0	0	0	0	0	1	0	0	0
queen	0	0	0	0	0	0	1	0	0
king	0	0	0	0	0	0	0	1	0
monarch	0	0	0	0	0	0	0	0	1

Artificial neural network (ANN)

Inspired by biological neurons

Activation function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

- Simple, non-linear function
- Mimic the activation of a biological neuron
- Without non-linear activation function, ANN is just a linear regression

Universal approximation theorem (Cybenko 1989)

Universal Approximation Theorem: Fix a continuous function $\sigma:\mathbb{R}\to\mathbb{R}$ (activation function) and positive integers d,D. The function σ is not a polynomial if and only if, for every continuous function $f:\mathbb{R}^d\to\mathbb{R}^D$ (target function), every compact subset K of \mathbb{R}^d , and every $\epsilon>0$ there exists a continuous function $f_\epsilon:\mathbb{R}^d\to\mathbb{R}^D$ (the layer output) with representation

$$f_{\epsilon} = W_2 \circ \sigma \circ W_1$$
,

where W_2,W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

$$\sup_{x \in K} \|f(x) - f_{\epsilon}(x)\| < arepsilon$$

holds for any ϵ arbitrarily small (distance from f to f_{ϵ} can be infinitely small).

 ANN with just one layer of neurons and a non-polynomial activation function can capture any continuous mathematical relationship

The rise of ANN

- During 2010-2015, ANN suddenly improved from 28% error to superhuman performance. **Why?**

Data and computing resources

ImageNet

https://serverguy.com/cpu-vs-gpu-vs-tpu/

- Data: Internet and digital technology
- Compute: Faster, more optimized for ANN training (GPU and TPU)

Deep learning

Deep ANN is needed to process raw input data

- Millions to billions of parameters
- Deep learning = ML techniques for deep ANN

Extracting information from image (pixel data)

input image

Convolutional operation

- Scan through the image to identify local patterns

Convolutional neural network

- Stacking of convolutional operations
- Early layers generate narrow, primitive patterns
- Later layers aggregate signals into larger, more complex objects

What does a CNN see in an image?

Hinton G, Bengio, Y, and LeCun, Y. NIPS2015

Word embedding

Transformation of a word into a useful vector that captures its meaning and other characteristics. But how?

How to derive a good word embedding?

Example Sentence: The cat sat on the mat.

https://spotintelligence.com/2023/12/05/fasttext/

- Related words should have similar embeddings
- Embedding should enable prediction of related words, or the next words

Meanings captured by word embedding

https://swatimeena989.medium.com/training-word2vec-using-gensim-14433890e8e4

Encoder-Decoder perspective

- Encode raw data into embedding
- **Decode** embedding into human-understandable terms

ANN design based on embedding interpretation

Generative models

Why generative model?

Generative model captures more information than discriminative model

Why generative model?

Generative model is a proxy of real-world mechanisms

Knowledge from simulated data

Park, J. et al. PLoS Computational Biology 16:e1008099 (2020)

- Train a generative model with data from small-scale experiment
- Simulate time-course patient data
- Analyze simulated data to gain insights

Using synthetic data to train models

- Reduce data requirement for new hospital
- Resolve data privacy issue
 - Untraceable to the original patient
- Controlled data distribution
 - Specify disease and clinical characteristics when generated

Do AI really understand?

Maybe yes?

Maybe yes?

- The lungs are predominantly clear without any obvious consolidations, masses, or pneumothoraces.
- The cardiac silhouette appears within normal size limits.
- The bony thorax, including the ribs and clavicles, appears intact without any visible fractures.
- The diaphragm and costophrenic angles are well visualized and appear normal.
- There is no visible mediastinal widening or significant lymphadenopathy.

https://xrayinterpreter.com/resource/how-to-use-chatgpt-to-interpret-xrays

Al finds mathematical approximation

- Al are trained to optimize a narrow set of objects
- Al may or may not find a solution that matches true knowledge
- Cannot distinguish causation from correlation

So, should we use Al and what for?

Second opinions

- Boost confidence in decision made
- Suggest missed details
- Aid junior staff

Improve workflows

- User interaction and experience
- Automatic detection and QC
- Propose where to look
- Enable data-driven operation

Cautions when using Al

Al makes mistakes and biases SILENTLY

Some can be very difficult to tell

Alkaissi, H. et al. Cureus 15:e35179 (2023)

Late onset Pompe disease (LOPD) is a rare genetic disorder characterized by the deficiency of acid alpha-glucosidase (GAA), an enzyme responsible for the breakdown of glycogen in lysosomes. The accumulation of glycogen in various tissues leads to progressive muscle weakness, primarily affecting the skeletal and respiratory muscles. However, recent studies have also reported liver involvement in LOPD, which is thought to occur as a result of the accumulation of glycogen in liver cells.

- There was no prior publication about liver involvement with LOPD
- However, the authors of this paper have <u>an unpublished manuscript</u> showing a link between liver disease and LOPD
 - Did ChatGPT just synthesized new knowledge? Or simply hallucinated?

Huge gap between development and actual use

Healthcare, Law, Regulation, and Policy, Machine Learning

"Flying in the Dark": Hospital Al Tools Aren't Well Documented

MODEL REPORTING GUIDELINES	EPIC MODEL BRIEFS											
	Deter iorati on Index	Early Detec tion of Sepsi s	anne d Read	Risk of Patie nt No- Show	Pediatri c Risk of Hospital Admissi on or ED Visit	Hospit al Admiss ion or ED	Inpatie nt Risk of Falls	cted	ning Lengt	Admiss ion of Heart	Risk of Hospital Admissi on or ED Visit for Asthma	Risk of Hyper tensio n
TRIPOD	63%	63%	61%	48%	42%	61%	47%	36%	55%	48%	44%	51%
CONSORT-AI	63%	43%	63%	60%	33%	67%	53%	47%	47%	49%	42%	51%
SPIRIT-AI	61%	55%	54%	54%	38%	61%	44%	49%	51%	41%	39%	46%
Trust and Value	46%	33%	39%	50%	29%	42%	38%	46%	46%	25%	33%	46%
ML Test Score	27%	15%	33%	24%	9%	33%	15%	6%	18%	12%	9%	15%

Evaluation of sepsis diagnosis Al

Results We identified 27697 patients who had 38455 hospitalizations (21904 women [57%]; median age, 56 years [interquartile range, 35-69 years]) meeting inclusion criteria, of whom sepsis occurred in 2552 (7%). The ESM had a hospitalization-level area under the receiver operating characteristic curve of 0.63 (95% CI, 0.62-0.64). The ESM identified 183 of 2552 patients with sepsis (7%) who did not receive timely administration of antibiotics, highlighting the low sensitivity of the ESM in comparison with contemporary clinical practice. The ESM also did not identify 1709 patients with sepsis (67%) despite generating alerts for an ESM score of 6 or higher for 6971 of all 38455 hospitalized patients (18%), thus creating a large burden of alert fatigue.

- AUC of 0.63 in practice
- Missed 67% of sepsis

Fragility of AI

Explainability

Explainability

Does the predicted confidence match your expectation?

Correct prediction is not enough

- Two models with the same classification performance
- Both images were correctly classified
- But the **explanations** complete differ
- Which one will you trust?

Take-home messages

- There is no magic, only mathematics
 - Al approximates knowledge

- Explanation is key
 - Ensure that the approximation is a good one

 Use AI to assist, not to lead your decision

https://www.gutenberg.org/files/60271/60271-h/60271-h.htm

Thank you for your attention!