Topic 7.1: Recursion

Learning Goals (Week 8):

Create and implement recursive solutions to simple problems such as simple mathematical calculations and list traversals.

Write a recursive solution to a problem with and without a helper function.

Identify and explain the base case and recursive step components of a recursive algorithm.

Iterative vs Recursive

- All the previous examples are ones we could have solved with a loop pretty easily
 - this means, at this point, we haven't seen a reason to solve a problem recursively instead of doing it iteratively
- When a solution to a problem would require **multiple recursive calls**, the iterative solution is CONSIDERABLY less elegant than a recursive one
 - often referred to as a naturally recursive problem

Binary Search

- Remember our friend binary search? It's actually naturally recursive!
- Base Case(s):

```
    hi < lo: we didn't it</li>
    if (hi < lo) { return -1 }</li>
    array[mid] == target: we found it, return the index we found it at else if(array[mid] == target) { return mid; }
```

- Recursive Case(s):
 - o array[mid] > target: recursive call with mid to hi end points

```
if (array[mid] > target) { return binaryRec(lo, mid, target, arr); }
output array[mid] < target: recursive call with lo to mid end points
else if(array[mid] < target) { return binaryRec(mid+1, hi, target, arr); }</pre>
```

Another: Towers of Hanoi

- Objective:
 - Move the disks to the right (or center) peg
- Rules:
 - Only one can be moved at a time
 - Only the top one from one peg can be moved
 - No disk can ever be placed on a smaller one

Image: woodenpuzzle.com

Recursive Solution

- Surprisingly easy
- To move disks **1 to n**: from peg A to peg B (using peg C):
- Base Case
 - If n=1: just move disk 1
- Recursive Case
 - Move disks 1 to (n-1) from A to C (using B temporarily)
 - Move disk n from A to B
 - Move disks 1 to (n-1) from C to B (using A temporarily)

Image: woodenpuzzle.com

Recursive Solution

means move n discs from A to B using C

```
public static void solveHanoi(int n, String A, String B, String C)
{
    if(n==1) System.out.println("move 1 from "+A+" to "+B);
    else {
        solveHanoi(n-1,A,C,B);
        System.out.println("move "+n+" from "+A+" to "+B);
        solveHanoi(n-1,C,B,A);
```

Reminder

- Every instance of the method must be independent
- With its own complete set of variables (received as parameters)
 - you need to receive parameters:
 - that's how you can send information to each recursive call!
- Let's look at the power of recursion in an example
- and then an example downfall

Subsets

- Choosing all possible subsets of k things chosen from n things?
- Example: choose 3 things from 5 things
- Recursion:
 - Choose k-1 things from n-1 things
 - Tack on the first thing to all of these
 - Choose k things from n-1 things

1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

Subsets

- Base Case?
 - Can be tricky:
 - In the top recursion (option 1), we'd go from:
 - 3 of $5 \Rightarrow 2$ of $4 \Rightarrow 1$ of $3 \Rightarrow 0$ of 2.
 - Stop there! There's one solution to take 0 of anything.
 - But in the bottom recursion (option 2), we'd go from:
 - 3 of $5 \Rightarrow 3$ of $4 \Rightarrow 3$ of $3 \Rightarrow 3$ of 2.
 - Stop! 3 of 2 is clearly impossible. No solutions! Quit!
- This time, we'll simply print the results as we get them
- Programming it can be a bit tricky for two reasons:
- The main problem is not directly recursive any more. We have to pass the things we've already chosen as an extra parameter

Subsets

- Final Note on the trickery of this problem:
 - When we shrink the list, we have to make sure that the original list is NOT affected!
 - DON'T DESTROY YOUR PARAMETERS!
- Objects can easily be changed! (Integer and String are OK, because immutable)
 Let's look at the code in Subset.java

Tricky: Permutations

Great for permutations, subsets, game strategies, mazes, space filling, fractals, etc. etc.

- Example: Generate all possible permutations of an ArrayList
 - o producing a list of ArrayLists -
 - stored as an ArrayList
 - That's a 2D ArrayList!

1	2	3	4
1	2	4	3
1	3	2	4
1	3	4	2
1	4	3	2
1	4	2	3
2	1	3	4
2	1	4	3
2	1	3	4
3			
4	***	***	

Tricky: Permutations

Great for permutations, subsets, game strategies, mazes, space filling, fractals, etc. etc.

- Example: Generate all possible permutations of an ArrayList
 - producing a list of ArrayLists -
 - stored as an ArrayList
 - That's a 2D ArrayList!

				_
1	2	3	4	
1	2	4	3	
1	3	2	4	23
1	3	4	2	<
1	4	3	2	
1	4	2	3	
2	1	3	4	13
2	1	4	3	Δ,
2	1	3	4	
3				12
4				12

234 Permutations

134 Permutations

124 Permutations

123 Permutations

Tricky: Permutations

It may seem daunting but:

Recursive Case:

- for each element in the list
 - choose that element to be first
 - find all the sub-permutations of the rest
 - add that first element to all the sub-permutations
 - add them all to the list of solutions

Base Case:

- The size of the list to permute through is smaller each time so eventually it must be:
 - ONE!
 - That's trivial and requires no recursion (there's only 1 permutation of size 1)
 - You have to generate a list of 1 solution, and that 1 solution is a list of the 1 element.
 - It still must be a "2D ArrayList"

When this can go wrong:

Fibonacci numbers are usually defined recursively:

fib(0) = fib(1) = 1
fib(n) = fib(n-2)+fib(n-1) [for
$$n \ge 2$$
]

When this can go wrong:

Fibonacci numbers are usually defined recursively:

```
fib(0) = fib(1) = 1
fib(n) = fib(n-2)+fib(n-1) [for n \ge 2]
CRAZY EASY TO DO RECURSIVELY
public static long fibR(int n) {
   if(n<=1)
     return 1;
    else
     return fibR(n-2)+fibR(n-1);
Let's see the timing on this...(checkout Fib.java)
```

© Lauren Himbeault 2024

When this can go wrong:

• For fib(91)=7540113804746346429 fib(5) = 8 • A loop will find it in 0 sec • Recursion will take 762,142 years (roughly) fib(4) fib(3) fib (1) fib(3) fib(2) fib(2) fib(1) fib (0) fib(1) fib(0) fib(1) fib(2) fib(0) fib(1)

Algorithmic Complexity Takeaways:

- The simplicity or complexity of the code is not an indication of the speed of the algorithm!
- You have to understand and analyze the number of actions/steps/operations that an algorithm will do
- This can require significant amounts of mathematical analysis at times
- We'll do a little bit in the next part of COMP 1020
 - For the real story, take COMP 2080

Recursion Solving Takeaways:

- Building a recursive method involves answering two questions:
 - How can I solve a big problem by solving smaller instances of the same problem?
 - How can I stop the recursion with a simple/easy/base case, for which I know the answer?