LISTA DE EJERCICIOS BÁSICOS DE LA SEMANA 1

Cap.1. Sec.1.1. Números complejos (ver)

EJEMPLO 1.

Si $z_1 = 2 + 4j$, $z_2 = -3 + 8j$, determinar y graficar:

a)
$$z_1 + z_2 = ?$$

a)
$$z_1 + z_2 = ??$$
 b) $z_1 - z_2 = ??$

c)
$$z_1 z_2 = ??$$

c)
$$z_1 z_2 = ??$$
 d) $\overline{z_1} = ??$

$$e) \, \overline{z_2} = ??$$

e)
$$\overline{z_2} = ??$$
 f) $\frac{z_1}{z_2} = ??$

EJEMPLO 2.

Si $z_1 = 2 - 3j$, $z_2 = 4 + 6j$, determinar y graficar:

a)
$$z_1 + z_2 = ?$$

a)
$$z_1 + z_2 = ??$$
 b) $z_1 - z_2 = ??$

c)
$$z_1 z_2 = ??$$
 d) $\overline{z_1} = ??$

d)
$$\frac{1}{z_1} = ??$$

$$e) \, \overline{z_2} = ??$$

e)
$$\overline{z_2} = ??$$
 f) $\frac{z_1}{z_2} = ??$

EJEMPLO 3.

Si
$$z = 2 - 3j$$
, determinar y graficar el recíproco $z^{-1} = \frac{1}{z} = ??$

EJERCICIOS 1.1

1. Evaluar las siguientes potencias de *j*:

$$j^8 = ?? ; j^{105} = ??$$

2. Escribir los siguientes números en su forma binomial

$$a) 2j^3 - 3j^2 + 5j = ??$$

a)
$$2j^3 - 3j^2 + 5j = ??$$
 b) $2j^6 + \left(\frac{2}{-j}\right)^3 + 5j^{-5} - 12j = ??$

$$c)\left(\frac{1}{2} - \frac{1}{4}j\right)\left(\frac{2}{3} + \frac{5}{3}j\right) = ??$$

$$c)\left(\frac{1}{2} - \frac{1}{4}j\right)\left(\frac{2}{3} + \frac{5}{3}j\right) = ?? d) \frac{(5-4j) - (3+7j)}{(4+2j) + (2-3j)} = ??$$

$$e)\left(\frac{j}{3-j}\right)\left(\frac{1}{2+3j}\right) = ??$$

$$e)\left(\frac{j}{3-j}\right)\left(\frac{1}{2+3j}\right) = ?? f)\frac{1}{(1+j)(1-2j)(1+3j)} = ??$$

3. Resolver las siguientes ecuaciones:

$$a) \ 2z = j(2+9j)$$

a)
$$2z = j(2+9j)$$
 b) $z - 2\overline{z} + 7 - 6j = 0$ c) $z^2 = j$

$$c) z^2 = j$$

$$d) \ \overline{z}^2 = 4z$$

d)
$$\overline{z}^2 = 4z$$
 e) $z + 2\overline{z} = \frac{2-j}{1+3j}$ f) $\frac{z}{1+\overline{z}} = 3+4j$

$$f) \frac{z}{1+\overline{z}} = 3+4j$$

4. Resolver los siguientes sistemas de ecuaciones:

a)
$$\begin{cases} jz_1 - jz_2 & = 2 + 10j \\ -z_1 + (1 - j)z_2 & = 3 - 5j \end{cases}$$
; b)
$$\begin{cases} jz_1 + (1 + j)z_2 & = 1 + 2j \\ (2 - j)z_1 + 2z_2 & = 4j \end{cases}$$

$$; b) \begin{cases} jz_1 + (1+j)z_2 &= 1+2\\ (2-j)z_1 + 2z_2 &= 4j \end{cases}$$

Cap.1. Sec.1.2. Plano complejo (ver)

EIEMPLO 1.

Si $z_1 = 2 - 3j$. $z_2 = -9j$, determinar:

$$a) |z_1| = ??$$

a)
$$|z_1| = ??$$
 b) $|z_2| = ??$

$$c) Arg(z_1) = ??$$

c)
$$Arg(z_1) = ??$$
 d) $Arg(z_2) = ??$

EJEMPLO 2.

Determinar el conjunto solución de la ecuación

$$|z| = |z - j|$$

EIEMPLO 3.

Determinar dos cotas superiores para

$$\left| \frac{-1}{z^4 + 3z + 2} \right|, \text{ siempre que } |z| = 2$$

EJERCICIOS 1.2

1. Interpretar z_1, z_2 como vectores en el plano, determinar y graficar $z_1 + z_2, z_1 - z_2$

a)
$$si z_1 = 4 + 2j$$
, $z_2 = -2 + 5j$; b) $si z_1 = 4 - 3j$, $z_2 = -2 + 3j$

- 2. Dado que $z_1=5-2j$ y $z_2=-1-j$, determinar un vector z_3 que tiene la misma dirección que $z_1 + z_2$, pero cuatro veces más largo.
- 3. Los tres puntos $z_1 = 1 + 5j$, $z_2 = -4 j$, $z_3 = 3 + j$, son los vértices de un triángulo.
 - Determinar la longitud de cada lado del triangulo.
 - Determinar la longitud de la mediana, determinada por el vértice z_1 y lado $z_3 z_2$.
- 4. Describir el conjunto de puntos z en el plano complejo que satisfagan la ecuación dada:

a)
$$Re(z + jz - 1) = 0$$
 b) $|z - j| = |z - 1|$

b)
$$|z - j| = |z - 1|$$

$$(c)\ \overline{z}) = \frac{1}{z}$$

$$c) \ \overline{z}) = \frac{1}{z} \qquad \qquad d) \ |z - 2| = Re(z)$$

$$|z| - z = 2 + z$$

e)
$$|z| - z = 2 + j$$
 f) $|z|^2 + 1 + 12j = 6z$