

CBSE Worksheet-1 CLASS –VII Mathematics (Practical Geometry)

- 1. Construct an isosceles triangle PQR where the non-equal side PQ = 4.2 cm and base angles are 30° each.
- 2. If \triangle ABC exactly coincides with \triangle PQR then the triangles are_____.
- 3. In \triangle ABC, BC = CA. Which of its two angles are equal?
- 4. If AB = QP, AC = QR, BC = PR, then \triangle ABC \cong \triangle QPR, state the congruence criterion involved here.
- 5. State true or false: The total measure of all the three angles of a triangle is 360°.
- 6. If we have PQ = 5 cm, \angle PQR= 115° and \angle QRP = 30°, can we construct a \triangle PQR with these measurements?
- 7. Construct a \triangle LMN, in which MN = 6cm, ML= 4.5 cm and \angle M = 30°.
- 8. Construct a right triangle PQR in which $\angle Q = 90^{\circ}$, PR = 6 cm and QR = 4 cm.

CBSE Worksheet-1 CLASS –VII Mathematics (Practical Geometry) Answer key

2. congruent.

Explanation:

If three sides and three angles of one triangle are equal to three sides and three angles of second triangle then the two triangles are said to be congruent.

3.
$$\angle A = \angle B$$
.

Explanation:

In an isosceles triangle, the angles opposite to equal sides are equal.

In \triangle ABC, the angle opposite to side BC is \angle A and the angle opposite to side CA is \angle B. Hence, if BC = CA, then \angle A = \angle B.

4. SSS.

Explanation:

If three sides of a triangle are equal to three corresponding sides of another triangle, then the two triangles are said to be congruent according to SSS congruency criterion.

Given, in \triangle ABC and \triangle QPR,

$$AB = QP$$
, $AC = QR$, $BC = PR$

Therefore, \triangle ABC \cong \triangle QPR , by SSS congruency criterion.

5. False.

Explanation:

According to angle sum property of a triangle, sum of 3 angles of a triangle should be 180°.

6. Yes.

Explanation:

Given, in
$$\triangle$$
 PQR, PQ = 5 cm, \angle PQR= 115° and \angle QRP = 30°

We can locate point R, by constructing the third \angle QPR = 35° [180°- (115° + 30°)] from the point P, which meets \angle PQR at R