Multiple Correspondence Analysis (MCA)

Hervé Abdi

In a nutshell:

■ MCA is Principal Component Analysis for qualitative data

16/10/18

- □ PCA analyzes rectangular *quantitative* data tables
- Rows are observations described by the columns (variables)
- □ PCA creates new best variables called *components* or *factor scores*
- ☐ A component is a mixture of the original variables
- ☐ The amount in the mixture of a variable is called its *loading* for a component
- PCA makes two maps
- One map for the observations: Components give the coordinates
- One map for the variables: Loadings give the coordinates
- ☐ In PCA These maps have different scales (but you can cheat...)

- MCA analyzes rectangular *qualitative* data tables (0/1)
- Rows are observations described by the columns (variables)
- MCA creates new best variables called components or factor scores
- A component is a mixture of the original variables (only the 1's count)
- ☐ The amount in the mixture of a variable is called its *loading/score*
- MCA makes two maps
- One map for the observations: Scores give the coordinates
- One map for the variables: Scores give the coordinates
- In MCA These maps have the same scale (but you can cheat ...)

Example of qualitative variables

- ☐ Gender: M vs F.
- ☐ Type of tasting: Blind vs Vision
- ☐ Type of Fermentation for Beer: Low vs High
- ☐ Color of a Wine: Red, White, or Rosé
- Occupation: Primary, Secondary, or Ternary
- ☐ Olive oils, Place of production: Italy, Spain, France, Greece, USA

16/10/18

Disjunctive coding: Code the levels as 0/1 vector

- ☐ Gender: M vs F. $2\{0/1\}$ Columns. M = [1 0], F = [0 1]
- Occupation: Primary, Secondary, Ternary. 3 {0/1} Columns.

16/10/18

-

Disjunctive coding: A story of two tables

16/10/18

-

Column code for qualitative variables

- ☐ Gender: M vs F. 2 columns: {M F}
- ☐ Type of tasting: Blind vs Vision. 2 Columns: {Blind | Vision}
- ☐ Type of Fermentation for Beers: Low vs High. 2 Columns: {Low | High}
- ☐ Color of a Wine: Red, White, or Rosé. 3 Columns {Red|Rosé|White}
- □ Occupation: Primary, Secondary, or Ternary. 3 Colums: {P|S|T}
- Olive oils, Place of production: Italy, Spain, France, Greece, USA5 Columns: {Italy|Spain|France | Greece | USA}

What MCA does with qualitative variables: 0/1

Participant	Gender	Occupation
1	М	Primary
2	М	Secondary
3	F	Primary
4	F	Ternary
5	М	Ternary
•••		
N		

16/10/18

Example of quantitative variables

- ☐ Participants: Age. From 20 to 70.
- **☐** Wines: Alcohol degree. From 11 to 16 degree.
- ☐ Participants: weight. From 30k to 120 k.
- □ Soda drinks: amount of sugar per liter. From 0 g to 200g.

- Transform them into qualitative variables
- How: Bin them. For example. Age: {Young | Middle-Age | Mature}
- ☐ How to cut. Try to get balanced levels (same number of observations per bin)
- Look at the distribution of the variable (histogram) to cut

Quantitative: Bin Them. Example Age

20-30	Young
31-50	Middle
51-100	Mature

Participant	Age	Age factor	Young	Middle	Mature
1	21	Υ	1	0	0
2	2 40		0	1	0
3	31	Mi	0	1	0
4	100	Ma	0	0	1
5	53	Ma	0	0	1
N					

1/

A Likert scale: A question on wine

Rosé wine should be cheap:

- ☐ Totally agree
- ☐ Agree
- **□** Disagree
- ☐ Totally disagree

16/10/18

Likert Scale

Rosé wine should be cheap:

- ☐ Totally agree
- **☑** Agree
- **□** Disagree
- ☐ Totally disagree

16/10/18

Likert Scale

Rosé wine should be cheap:

- 1 ☐ Totally agree
- 3 Disagree
- **4** □ Totally disagree

We need to recode from the distribution

1	1
2&3	2
4	3

Participant	Original	Recoded	Rosé-1	Rosé-2	Rosé-3
1	4	3	0	0	1
2	1	1	1	0	0
3	3	2	0	1	0
4	2	2	0	1	0
5	1	1	1	0	0
N					

So the whole data table as a factor is

Participant	Gender	Occupation	Age	Rosé
1	M	Primary	Υ	3
2	M	Secondary	Mi	1
3	F	Primary	Mi	2
4	F	Ternary	Ma	2
5	M	Ternary	Ma	1
N				

The factor table is recoded as a 0/1 table

Participant	Gender	Occupation	Age	Rosé
1	M	Primary	Υ	3
2	M	Secondary	1	
3	F	Primary	Mi	2
4	F	Ternary	Ma	2
5	M	Ternary	Ma	1
N				

Participant	Gender-M	Gender-F	Осс-Р	Occ-S	Осс-Т	Age-Y	Age-Mi	Age-Ma	Rosé -1	Rosé -2	Rosé -3
1	1	0	1	0	0	1	0	0	1	0	0
2	1	0	0	1	0	0	1	0	0	1	0
3	0	1	1	0	0	0	1	0	0	1	0
4	0	1	0	0	1	0	0	1	0	0	1
5	1	0	0	0	1	0	0	1	0	0	1
N											

16/10/18

Vocabulary

- ☐ Original data table
- ☐ Recoded data table: The factor data table
- ☐ The 0/1 data table: Often called the complete disjunctive 0/1 table

MCA is simply the CA of 0/1 table

Participant	Gender-M	Gender-F	Осс-Р	Occ-S	Осс-Т	Age-Y	Age-Mi	Age-Ma	Rosé -1	Rosé -2	Rosé -3
1	1	0	1	0	0	1	0	0	1	0	0
2	1	0	0	1	0	0	1	0	0	1	0
3	0	1	1	0	0	0	1	0	0	1	0
4	0	1	0	0	1	0	0	1	0	0	1
5	1	0	0	0	1	0	0	1	0	0	1
N											

How to interpret an MCA (variables)

- ☐ One variable: as many points as levels (compare with PCA).
- ☐ Levels of variables close to each other are chosen together.
- **□** Variance of the levels of a variable = importance of the variable.

16/10/18

Now give the factor table to R: R transforms it to the 0/1 table

16/10/18

Now give the factor table to R: R transforms it to the 0/1 table

Now the fairy gives the 0/1 to the CA function

Participant	Gender-M	Gender-F	Осс-Р	Occ-S	Occ-T	Age-Y	Age-Mi	Age-Ma	Rosé -1	Rosé -2	Rosé -3
1	1	0	1	0	0	1	0	0	1	0	0
2	1	0	0	1	0	0	1	0	0	1	0
3	0	1	1	0	0	0	1	0	0	1	0
4	0	1	0	0	1	0	0	1	0	0	1
5	1	0	0	0	1	0	0	1	0	0	1
N											

16/10/18

3

The CA function computes the CA and gives the results to the R fairy

And R gives you back the results

The R fairy calls these steps: the MCA function for the factor.table

- ☐ In R:
- ☐ resMCA <- ExPosition::epMCA(datafac)

16/10/18

4

A (way too) small example: 3 Experts, 6 wines

			Expert 1			Expe	Expert 3				
wines	Oak-type	fruity	woody	coffee	red fruit	roasted	vanillin	woody	fruity	butter	woody
wine ₁	1	1	6	7	2	5	7	6	3	6	7
wine ₂	2	5	3	2	4	4	4	2	4	4	3
wine ₃	2	6	1	1	5	2	1	1	7	1	1
wine ₄	2	7	1	2	7	2	1	2	2	2	2
wine ₅	1	2	5	4	3	5	6	5	2	6	6
wine ₆	1	3	4	4	3	5	4	5	1	7	5

Data see: Abdi & Valentin (2007): http://www.utdallas.edu/~herve/Abdi-MFA2007-pretty.pdf

Recode (bin + 0/1) as:

		Expert 1								Expert 2										Expert 3				
	Oak								r	ed														
Wine	Type	fruity		w	woody		coffee		fruit		roa	roasted		vanillin		woody		fruity		butter		woody		
W1	1	1	0	0	0	1	0	1	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1	
W2	2	0	1	0	1	0	1	0	0	1	1	0	0	1	0	1	0	0	1	1	0	1	0	
W3	2	0	1	1	0	0	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	1	0	
W4	2	0	1	1	0	0	1	0	0	1	1	0	1	0	0	1	0	1	0	1	0	1	0	
W5	1	1	0	0	0	1	0	1	1	0	0	1	0	0	1	0	1	1	0	0	1	0	1	
W6	1	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0	1	1	0	0	1	0	1	
W?	?	0	1	0	1	0	.5	.5	1	0	1	0	0	1	0	.5	.5	1	0	.5	.5	0	1	

Data see: Abdi & Valentin (2007): http://www.utdallas.edu/~herve/Abdi-MCA2007-pretty.pdf

Plug the 0/1 matrix into a (plain) CA program

Table 3: Factor scores, squared cosines, and contributions for the observations (*I*-set). The eigenvalues and proportions of explained inertia are corrected using Benzécri/Greenacre formula. Contributions corresponding to negative scores are in italic. The mystery wine (Wine ?) is a supplementary observation. Only the first two factors are reported.

	Wine 1	Wine 2	Wine 3	Wine 4	Wine 5	Wine 6	Wine?								
F _c λ % _c				Factor Sco	res										
1 .7004 95	0.86	-0.71	-0.92	-0.86	0.92	0.71	0.03								
2 .0123 2	0.08	-0.16	80.0	80.0	80.0	-0.16	-0.16								
\boldsymbol{F}	Squared Cosines														
1	.62	.42	.71	.62	.71	.42	.04								
2	.01	.02	.01	.01	.01	.02	.96								
\boldsymbol{F}			Con	tributions	×1000										
1	177	121	202	177	202	121	_								
2	83	333	83	83	83	333	-								

MCA for wines: The variables (whatever they are)

Table 4: Factor scores, squared cosines, and contributions for the for the variables (*J*-set). The eigenvalues and percentages of inertia have been corrected using Benzécri/Greenacre formula. Contributions corresponding to negative scores are in italic. Oak 1 and 2 are supplementary variables.

				Expe	ert 1				Expert 2								Expert 3							
	fruity			woody		coffee		red fruit		roasted		vanillin			woody		fruity		butter		woody		α	ak
	у	n	1	2	3	у	n	у	n	у	n	1	2	3	у	n	у	n	у	n	у	n	1	2
cλ %c										Fa	ctor	Scores												
1 .7004 95		90	97	.00	.97	90	.90		90		.90	97	.00	.97	90	.90		28	90	.90	90	.90	.90	-
2 .0103 2	.00	.00	.18	35	.18	.00	.00	.00	.00		.00		35	.18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
F .										Squ	area	Cosine	8											
1	.81	.81	.47	.00	.47	.81	.81	.81	.81	.81	.81	.47	.00	A7	.81	.81	.08	.08	.81	.81	.81	.81	1.00	1.00
2	.00	.00	.02	.06	.02	.00	.00	.00	.00	.00	.00	.02	.06	.02	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
F										Contri	buti	ions × 1	0000											
1	58	58	44	0	44	58	58	58	58	58	58	44	0	44	58	58	6	6	58	58	58	58	_	-
2	0	0	83	333	83	0	0	0	0	0	0	83	333	83	0	0	0	0	0	0	0	0	-	_
16/1	10/18																						45	

Wines and their variables

Figure 1: Multiple Correspondence Analysis. Projections on the first 2 dimensions. The eigenvalues (λ) and proportion of explained inertia (τ) have been corrected with Benzécri/Greenacre formula. (a) The I set: rows (i.e., wines), wine? is a supplementary element. (b) The J set: columns (i.e., adjectives). Oak 1 and Oak 2 are supplementary elements. (the projection points have been slightly moved to increase readability). (Projections from Tables 3 and 4).

