STAT 3100 Lecture Note

Week Three (Sep 20 & 22, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/25 03:29:55

Bivariate normal (BVN) distribution (con'd)

Marginals of BVN

- Suppose X_1 and X_2 are jointly normally distributed. Then, X_1 and X_2 are independent $\Leftrightarrow \text{cov}(X_1, X_2) = 0$.
- If $[X_1, X_2]$ is of BVN, then the marginal distributions of X_1 and X_2 are both normal. The inverse proposition does NOT hold.
 - Cautionary example: Let Y = XZ, where $X \sim \mathcal{N}(0,1)$; Z is independent of X with $\Pr(Z = 1) = \Pr(Z = -1) = .5$. X and Y both turn out to be of standard normal, but they are not jointly normal. (Why?)

```
if (!("plot3D" %in% rownames(installed.packages())))
  install.packages("plot3D")
set.seed(1)
xsize = 1e4L
X = rnorm(xsize)
Z = rbinom(n = xsize, 1, .5)
Y = (2 * Z - 1) * X
# 3d histogram of (X, Y)
plot3D::hist3D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
# plot the support of joint pdf of (X, Y)
plot3D::image2D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
```

Normal sampling theory (CB Sec. 5.3)

Stochastic representations for χ^2 -, t-, and F-r.v. (HMC Chp. 3)

- $\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$ if iid $X_1, \dots, X_n \sim \mathcal{N}(0, 1)$;
- $X/\sqrt{Y/n} \sim t(n)$ if $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(n)$ are independent;
- $(X/m)/(Y/n) \sim F(m,n)$ if $X \sim \chi^2(m)$ and $Y \sim \chi^2(n)$ are independent.

Important identities for iid normal samples

Let $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, $\bar{X} = n^{-1} \sum_{i=1}^n X_i$, and sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X})^2$

- $n^{1/2}(\bar{X} \mu)/\sigma \sim \mathcal{N}(0, 1)$
- $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$
- \bar{X} and S^2 are independent of each other
- $n^{1/2}(\bar{X}-\mu)/S \sim t(n-1)$

Taylor series (optional, CB Def 5.5.20 & Thm 5.5.21)

Taylor series about $x_0 \in \mathbb{R}$ for univariate functions

• Suppose f has derivative of order n+1 within an open interval of x_0 , say $(x_0 - \varepsilon, x_0 + \varepsilon)$ with $\varepsilon > 0$. Then, for $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$,

$$f(x) \approx \sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k = f(x_0) + \sum_{k=1}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k,$$

where $f^{(n)}(x_0) = \frac{d^n}{dx^n} f(x)|_{x=x_0}$.

• Called the Maclaurin series if $x_0 = 0$

Taylor series about $x_0 \in \mathbb{R}^p$ for multivariate functions

Under regularity conditions,

$$f(oldsymbol{x}) pprox f(oldsymbol{x}_0) + (oldsymbol{x} - oldsymbol{x}_0)^ op
abla f(oldsymbol{x}_0) + rac{1}{2} (oldsymbol{x} - oldsymbol{x}_0)^ op \mathbf{H}(oldsymbol{x}_0)(oldsymbol{x} - oldsymbol{x}_0),$$

where the gradient $\nabla f(\boldsymbol{x}_0) = [\frac{\partial}{\partial x_1} f(\boldsymbol{x}_0), \cdots, \frac{\partial}{\partial x_p} f(\boldsymbol{x}_0)]^{\top}$ and the Hessian $\mathbf{H}(\boldsymbol{x}_0) = [\frac{\partial^2}{\partial x_i \partial x_j} f(\boldsymbol{x}_0)]_{p \times p}$.

Application (optional)

- Approximate unknown or complex f with a polynomial

 - Asymptotic theory for maximum likelihood estimators
- Moment generating function (mgf): $M_X(t) = \mathbb{E}\{\exp(tX)\} = \sum_{n=0}^{\infty} t^n \mathbb{E}(X^n)/n!$ Maclaurin series of $\exp(tX)$: $\exp(tX) = \sum_{n=0}^{\infty} (tX)^n/n! \Rightarrow \mathbb{E}(X^n) = (\partial^n/\partial t^n) M_X(t) \mid_{t=0}$

Generating functions

Moment generating function (mgf, CB Sec. 2.3)

- Univariate r.v. X
 - mgf $M_X(t) = \mathbb{E}\{\exp(tX)\}\$ if $\mathbb{E}\{\exp(tX)\} < \infty$ for t in a neighborhood of 0; otherwise we say that the mgf does not exist or is undefined

 - * Continuous X: $M_X(t) = \int_{-\infty}^{\infty} \exp(tx) f_X(x) dx$ * Discrete X: $M_X(t) = \sum_{\{x: x \in \text{supp}(X)\}} \exp(tx) p_X(x)$
 - $M_{aX+b}(t) = \exp(bt)M_X(at)$
- X_1, \ldots, X_p are independent $\Rightarrow M_{\mathbf{X}}(t) = \prod_{i=1}^p M_{X_i}(t_i)$
- Application
 - Computing moments

 - * nth raw moment $\mu'_n = EX^n = \sum_{k=0}^n \binom{n}{k} \mu_k (\mu'_1)^{n-k}$ * (optional) nth central moment $\mu_n = E(X EX)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \mu'_k (\mu'_1)^{n-k}$

- Proving laws of large numbers and central limit theorems
 - * A distribution is uniquely determined by its mgf if the mgf is well-defined

Example Lec6.1

- Find the mgfs of following distributions.
 - $-\mathcal{N}(\mu,\sigma^2).$
 - $\stackrel{\circ}{\mathrm{MVN}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$
 - Cauchy distribution: $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}.$

Characteristic function (optional)

- For univariate X: $\phi_X(t) = \operatorname{E} \exp(itX)$ for all $t \in \mathbb{R}$
- For Multivariate $\mathbf{X} = [X_1, \dots, X_p]^\top : \phi_{\mathbf{X}}(t) = \mathbb{E}\{\exp(it^\top \mathbf{X})\}$ for all $t \in \mathbb{R}^p$
- $\phi_{\mathbf{X}}(t) = \phi_{\mathbf{Y}}(t)$ for all $t \in \mathbb{R}^p \Leftrightarrow \mathbf{X} \stackrel{d}{=} \mathbf{Y}$

Example Lec6.2

- Find the characteristic functions of following distributions.
 - $-\mathcal{N}(\mu,\sigma^2).$
 - $\text{ MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$
 - Cauchy distribution: $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}.$