SCC121 Fundamentals of Computer Science

Prof Corina Sas

School of Computing and Communications

Overview

- Functions
 - Definitions
 - Types
 - Operations

Objectives

- Understanding the basic ideas about different types of functions
- Ability to work with different types of functions

Function types

- Inverse
- Bijective
- Surjective
- Injective

Function types

- Inverse
- Bijective
- Surjective
- Injective

- Each UK citizen has a unique National Insurance number, i.e., QQ123456C
 - Mary Smith has the NI number: QQ123456C
- Each student at Lancaster University has an eight digit student ID
 - John Brown has the student ID: 12345678
- Reversing the function:
 - identifying a UK citizen based on a NI number
 - identifying a Lancaster University student based on a student ID

$$f = \{ , , \}$$

 $f^{-1} = \{ <3, a>, <1, b>, <2, c> \}$

Finding the inverse function by reversing the operations

- f(x) = x + 4
- $f^{-1}(x) = x 4$
- g(x) = 4x
- $g^{-1}(x) = x / 4$

Finding the inverse function algebraically

- If f(x) = x + 4; let's name f(x) = y. Then: y = x + 4. Now let's express x as a function of y: x = y 4. Now let's call x = g(y). Then g(y) = y 4.
- Now let's swap the letter y for x: or g(x) = x 4.
- g(x) is our inverse function which can also be written as $f^{-1}(x)$. So $f^{-1}(x) = x 4$.
- If f(x) = 4x; y = 4x, or x = y / 4.
- g(y) = y / 4, or g(x) = x / 4, or $f^{-1}(x) = x / 4$.

Process:

- Let y = f(x) and solve for x, getting x = g(y).
- Then we use the convention of swapping the letters x and y, so that x represents the input, and y represents the output of the inverse function: $g(x) = f^{-1}(x)$

Function types: inverse function definition

• Let f be a function, $f: A \rightarrow B$

g: B → A is called the inverse function of f,
 if for every element y of B, g(y) = x, whenever
 f(x) = y.

 The function g(x) is the inverse function of f(x) and is denoted by f⁻¹(x)

 Note that such an x has to be is unique for each y, because the inverse is also a function

Function types: inverse function definition

• Let f be a function, $f: A \rightarrow B$.

• $f^{-1}(x): B \to A$ is called the inverse function of f, if for every element y of B, $f^{-1}(y) = x$, whenever f(x) = y.

Function types: inverse function examples

Let
$$f: R \rightarrow R$$
, $f(x) = 2x + 5$

$$f(x) = 2x + 5$$

 $y = 2x + 5$
 $y - 5 = 2x$
 $x = (y - 5) / 2$

$$f^{-1}(y) = (y - 5) / 2$$
, or $f^{-1}(x) = (x - 5) / 2$

Function types: inverse function examples

Let $f: N \to E$, f(x) = 2x.

N = set of natural numbers, E = set of even natural numbers

$$f(x) = 2x$$
, $f(x) = y$, $2x = y$, $x = y / 2$. So $f^{-1}(y) = y / 2$

The inverse function: $f^{-1}: E \rightarrow N$, $f^{-1}(x) = x/2$

Function types: inverse function example

Not every function has an inverse function.

Example: $f : R \rightarrow R$, $f(x) = x^2$

For a particular value f(x) = 4, can we reverse the function and find a **unique x**? No, as both x = 2, and x = -2 are mapped to f(x) = 4; f(-2) = f(2) = 4Thus, $f: R \to R$, $f(x) = x^2$ does not have an inverse.

Function types

- Inverse
- Bijective
- Surjective
- Injective

Function types: bijective function

- When does a function f have an inverse?
 - The function needs to be:
 - injective, or "one-to-one", and
 - surjective, or "onto"
- When a function is both injective and surjective, it is called bijective

Function types: bijective function

- Every bijective function has an inverse function
- f : A \rightarrow B the initial function
- $f^{-1}: B \rightarrow A$ the inverse function
- f associates each element of set A with a unique element set B.
- f⁻¹ associates **each** element of set B with a **unique** element set A
 - Surjectivity of f function ensures the each condition of f⁻¹
 - Injectivity of f function ensures the unique condition of f⁻¹

Function types

- Inverse
- Bijective
- Surjective
- Injective

Function types: surjective function

• Is this a function?

Function types: surjective function

Is this a function?

It is a function but not a surjective one!

Function types: surjective function definition

A function *f* is said to be **surjective or onto**

- if for every element y of Y, there is at least one element x in X such that f(x) = y.
- the range of **f** equals the codomain of **f**.

Example:

- f(1) = a
- f(2) = b
- f(3) = c
- f(4) = c

Function types: surjective function example

Let's show that the function $f(x) : R \rightarrow R$, f(x) = 3x + 5 is surjective.

- If f is surjective, then for every real number y, there is a real number x so that f(x) = y.
- Let's check if that is the case
 - y = f(x) means: y = 3x + 5, and if we subtract 5: y 5 = 3x. If we divide by 3: (y 5) / 3 = x
 - Now that we found x, we need to check if x is a real number;
 - We know that y is a real number, then (y 5) is also a real number, which means that x = (y 5) / 3 is also a real number
 - We showed that for any real number y, there is a real number x = (y 5) / 3 so that f(x) = y
 - Thus f(x) is surjective

Function types: surjective function example

- Determine if the function f: $Z \rightarrow Z$, f(x) = x + 1 is surjective
- If f is surjective, then for every integer y, there is an integer x so that f(x) = y.
- Let's check if that is the case
 - y = f(x) means: y = x + 1, and if we subtract 1: y 1 = x.
 - Now that we found x, we need to check if x is an integer:
 - We know that y is an integer, then y 1 is also an integer, which means that x = y 1 is an integer
 - We showed that for any integer y, there is an integer x = y 1 so that f(x) = y
 - Thus f(x) is surjective

Function types: surjective function exercise

Is the following function surjective?

g:
$$R \rightarrow R$$
, $g(x) = x^2$.

Let's check.

y = g(x) means: $y = x^2$. This means that $x = \pm \sqrt{y}$

Now let's check if x is a real number for any y real number.

This is not the case, for negative y.

For instance, there is no real number x such that $x^2 = -1$.

We can redefine the domain as R+, so that that function is surjective.

Function types

- Inverse
- Bijective
- Surjective
- Injective

Function types: injective function

• Is this a function?

Function types: injective function

Is this a function?

• It is a function but not an injective one!

Function types: injective function definition

A function $f: X \rightarrow Y$ is said to be **injective** or **one-to-one**

- if no member of Y is the image under *f* of two distinct elements of X.
- In other words: if whenever f(x) = f(y), then x = y.

Example:

- f(1) = a
- f(2) = b
- f(3) = c

Function types: injective function example

Let's show that the function $f(x) : R \rightarrow R$, f(x) = 3x + 5 is injective.

- 1. Suppose that f(a) = f(b), and we will show that a = b.
- 2. If f(a) = f(b), then 3a + 5 = 3b + 5
- 3. Subtract 5 from both sides to get: 3a = 3b
- 4. Divide both sides by 3 to get: a = b

We shown that f(a) = f(b) implies a = b, Thus the function f(x) is injective

Function types: injective function example

Determine if the function f: $Z \rightarrow Z$, f(x) = x + 1 is injective

- If f is injective, from f(x) = f(y), we should have x = y
- Let's check if that is the case
 - f(x) = f(y) means: x + 1 = y + 1, and if we subtract 1, then x = y.
- So f(x) = f(y) leads to x = y, which is what is required for f(x) to be injective
 - So f(x) is injective

Function types: injective function exercise

Is the following function injective?

$$g: R \rightarrow R, g(x) = x^2$$
.

Function types: injective function exercise

Is the following function injective?

$$g: R \rightarrow R, g(x) = x^2$$
.

Let's check – assume g(x) = g(y). This means that $x^2 = y^2$. for any real number x.

- If we take the square roots we get two values for x:
- x = y or x = -y
- Hence, we found that for g(x) = g(y), x = -y which is $x \neq y$
- In other words $g(x) = x^2$, and $g(-x) = (-x)^2 = (-1)^2 * x^2 = x^2$ hence g is not injective.

 We can redefine the domain as R_+ so that that function is injective

We can redefine the domain as R+, so that that function is injective.

We also know that on R+ this function is surjective, so is bijective and its inverse is $f^{-1}(x) = \sqrt{x}$

Let's playxercise!

https://kahoot.it/

Summary: Function types

- Inverse function of function f, $f:A \to B$ is the function $f^1:B \to A$ that reverses f, so that for every element g of g, $f^1(g) = g$, whenever g(g) = g.
- Bijective function is a function which is both injective and surjective.
- Injective function (or one-to-one) is a function $f: A \to B$ for which; for every element y in the codomain B there is at most one element x in the domain A, or if f(x) = f(y), then x = y.
- Surjective function (or onto) is a function $f:A\to B$ for which, for every element \mathbf{y} in the codomain B, there is at least one element \mathbf{x} in domain A such that $f(\mathbf{x}) = \mathbf{y}$.

Overview

- Functions
 - Definitions
 - Types
 - Operations

Operations on functions

- Sum, difference
- Product, quotient
- Composition

Operations on functions

- Sum, difference
- Product, quotient
- Composition

Operations on functions

- Sum, difference
- Product, quotient
- Composition

Operations on functions: sum

- Sum of **f** and **g**:
 - (f + g)(x) = f(x) + g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - (f + g)(x) = ?

Operations on functions: sum

- Sum of **f** and **g**:
 - (f + g)(x) = f(x) + g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - $(f + g)(x) = f(x) + g(x) = 3x + 1 + x^2 = x^2 + 3x + 1$

Operations on functions: sum

- Let $f = \{<-3, 2>, <-2, 4>, <-1, 6>, <0, 8>\}$, and
- $g = \{<-2, 5>, <0, 7>, <2, 9>\}$ and $h = \{<-3, 0>, <-2, 1>\}$.
- Find the following function and state its domain: f + g

- Intersection of f and g domains = {-2, 0}
- (f + g) (-2) = f (-2) + g (-2) = 4 + 5 = 9
- (f + g)(0) = f(0) + g(0) = 8 + 7 = 15
- $f + g = \{<-2, 9>, <0,15>\}$

Operations on functions: difference

- Difference of **f** and **g**:
 - (f g)(x) = f(x) g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - (f g)(x) = ?

Operations on functions: difference

- Difference of **f** and **g**:
 - (f g)(x) = f(x) g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - $(f g)(x) = f(x) g(x) = 3x + 1 x^2 = -x^2 + 3x + 1$

Operations on functions: difference

- Let $f = \{<-3, 2>, <-2, 4>, <-1, 6>, <0, 8>\}$, and
- $g = \{<-2, 5>, <0, 7>, <2, 9>\}$ and $h = \{<-3, 0>, <-2, 1>\}$.
- Find the following function and state its domain: f g

- Intersection of f and g domains = {-2, 0}
- (f g)(-2) = f(-2) g(-2) = 4 5 = -1
- (f g)(0) = f(0) g(0) = 8 7 = 1
- f $g = \{<-2, -1>, <0, 1>\}$

Operations on functions

- Sum, difference
- Product, quotient
- Composition

Operations on functions: product

- Product of f and g:
 - (f * g)(x) = f(x) * g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - (f * g)(x) = ?

Operations on functions: product

- Product of f and g:
 - (f * g)(x) = f(x) * g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - $(f * g)(x) = f(x) * g(x) = (3x + 1) * x^2 = 3x^3 + x^2$

Operations on functions: product

- Let $f = \{<-3, 2>, <-2, 4>, <-1, 6>, <0, 8>\}$, and
- $g = \{<-2, 5>, <0, 7>, <2, 9>\}$ and $h = \{<-3, 0>, <-2, 1>\}$.
- Find the following function and state its domain: f * g

- Intersection of f and g domains = {-2, 0}
- (f * g) (-2) = f (-2) * g (-2) = 4 * 5 = 20
- (f * g) (0) = f(0) * g(0) = 8 * 7 = 56
- f * $g = \{<-2, 20>, <0, 56>\}$

Operations on functions: quotient

- Quotient of f and g:
 - (f/g)(x) = f(x)/g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - (f / g)(x) = ?

Operations on functions: quotient

- Quotient of f and g:
 - (f / g)(x) = f(x) / g(x), for all x in A
- Example:
 - f(x) = 3x + 1 and $g(x) = x^2$
 - $(f /g)(x) = f(x) /g(x) = (3x + 1) / x^2$, with $x^2 \neq 0$

Operations on functions: quotient

- Let $f = \{<-3, 2>, <-2, 4>, <-1, 6>, <0, 8>\}$, and
- $g = \{<-2, 5>, <0, 7>, <2, 9>\}$ and $h = \{<-3, 0>, <-2, 1>\}$.
- Find the following function and state its domain: f / h

- Intersection of f and h domains = $\{-3, -2\}$ for which $h(x) \neq 0$
- x = -3 implies h(-3) = 0 which cannot be denominator of the quotient function.
- x = -2 implies $h(-2) = 1 \neq 0$. Hence the domain of the quotient = $\{-2\}$
- (f/h)(-2) = f(-2)/h(-2) = 4/1 = 4
- f / h = $\{<-2, 4>\}$

Operations on functions

- Sum, difference
- Product, quotient
- Composition

Composite function

Let $g: A \to B$, and $f: B \to C$.

The composition of functions f and g

- written as $f \circ g : A \rightarrow C$
- is $(f \circ g)(x) = f(g(x))$ for all x in A

Note: the function *g* is applied first and then *f*.

A composite function is a function within a function

- Let $g: A \rightarrow B$, and $f: B \rightarrow C$
- $f \circ g : A \to C$ is $(f \circ g)(x) = f(g(x))$ for x in A
- In terms of "function machines", the composition f $\,^\circ$ g is the function which feeds an input to g and feeds the output of g to f

The domain of $f \circ g$ is the set of all elements x such that x is in the domain of the function g and g(x) is in the domain of the function f.

Example:

```
Let g: A \to B with g(x) = x + 1
and f: B \to C with f(x) = 2x
```

```
Then (f \circ g)(x) : A \to C

(f \circ g)(x) = ?

(f \circ g)(x) = f(g(x)) = 2 g(x) = 2 (x + 1) = 2x + 2
```

- Let $f = \{<-3, 2>, <-2, 4>, <-1, 6>, <0, 8>\}$, and
- $g = \{<-2, 5>, <0, 7>, <2, 9>\}$ and $h = \{<-3, 0>, <-2, 1>\}$.
- Find the following function and state its domain: g ° h

- The domain of g ° h is a subset of the domain of the inside function h: {-3, -2}.
- We also need to check that these elements, when plugged into the outside function produce valid ordered pairs, i.e. h(-3) and h(-2) are in the domain of g.
- for x = -3, g(h(-3)) = g(0) = 7 is defined; for x = -2, g(h(-2)) = g(1), which is undefined.
- Hence the domain of $g \circ h = \{-3\}$
- g(h(-3)) = g(0) = 7
- $g \circ h = \{<-3, 7>\}$

Let's playxercise!

https://kahoot.it/

Summary: operations on functions

- $\bullet (f + g)(x) = f(x) + g(x)$
- $\bullet (f g)(x) = f(x) g(x)$
- (f * g)(x) = f(x) * g(x)
- $(f / g)(x) = f(x) / g(x), g(x) \neq 0$
- $(f \circ g)(x) = f(g(x))$