LINGUISTIC ANALYSIS OF RESEARCH PUBLICATIONS ABSTRACTS

A PREPRINT

Aman Kumar

Department of Mathematics IISER Bhopal amank17@iiserb.ac.in

Prithvi Poddar

Department of Electrical Engg and Computer Science IISER Bhopal prithvid17@iiserb.ac.in

December 6, 2020

GitLab code1

ABSTRACT

Keywords Linguistic · POS · Ambiguity · Multilabel Text Classification · NLTK

1 Introduction

In this project, we propose to conduct a linguistic analysis on the abstracts of research publications from the following six disciplinary (or class)

- 1. Computer Science
- 2. Physics
- 3. Mathematics
- 4. Statistics
- 5. Quantitative Biology
- 6. Quantitative Finance

The aim of this study will be to identify the linguistic features and patterns that will be the best choice as parameters, for classifying the publications, into the classes as mentioned above. After having completed the analysis, if time permits, we can test our study by running a classifying on the parameters of our finding and use our collected data about these parameters, to examine how well our classifying performs in classifying unseen publications.

2 Approach

In this section we will build corpus of each class and vocabulary of each discipline.

2.1 Corpus Building

We will use the dataset provided here: Janatahack-Independence Day 2020 ML Hackathon to create corpus of each class. This dataset consists of a list of 20972 research publication titles and their abstracts, along with a tag of which class they belong to. So from this dataset we segregate corpus for each class [title + abstract] in a csv file. Python code for doing this in segregate.py

Ihttps://gitlab.com/prithvi-poddar/linguistics_final_project

2.2 Vocabulary

From the above created corpus we extracted the vocabulary for each class [title + abstract] and stored into data folder in csv format. Python code for doing this in *getvocabdata.py*

2.3 Type Token Ratio

The Type-Token Ratio (TTR), a measure of lexical diversity, which is the ratio obtained by dividing the types (the total number of different words) occurring in a text or utterance by its tokens (the total number of words). A high TTR indicates a high degree of lexical variation while a low TTR indicates the opposite.

we have calculated TTR ratio for each class [title + abstract] and stored into data folder in csv format. Python code for doing this in *getvocabdata.py*

Table 1: Type Token Ratio.

Computer Science	Physics	Mathematics	Statistics	Quantitative Biology	Quantitative Finance
Title, Abstract	Title, Abstract	Title, Abstract	Title, Abstract	Title, Abstract	Title, Abstract
6.389 , 39.339	5.411, 30.350	5.967, 29.887	6.066 , 34.905	2.239, 9.872	2.038 , 6.958

Remark The closer the TTR is to 1 the more lexical variety there is.

- Quantitative Biology and Quantitative Finance has more lexical variety both in title + abstract.
- Computer Science, Physics, mathematics, statistics have relatively less lexical variety both in title + abstract.
- Differences in these two lexical variety act as important parameter for classification.

3 POS tagging

POS Tagging simply means labeling words with their appropriate Part-Of-Speech. POS tagging is a supervised learning solution that uses features like the previous word, next word, is first letter capitalized etc. NLTK has a function to get pos tags and it works after tokenization process.

Method we use in tagging our corpus

- · Universal tagger
- Stanford tagger

Figure 1: POS appendix

- ADJ: adjective
- ADP: adposition
- ADV: adverb
- AUX: auxiliary
- **CCONJ**: coordinating conjunction
- DET: determiner
- <u>INTJ</u>: interjection
- NOUN: noun
- NUM: numeral
- PART: particle
- PRON: pronoun
- PROPN: proper noun
- PUNCT: punctuation
- <u>sconj</u>: subordinating conjunction
- SYM: symbol
- <u>VERB</u>: verb
- x: other

we have calculated POS tag sequence for each Corpus (class) and stored into data folder in csv format. Python code for doing this in *pos tagging.py*

we have implemented universal taggers for each Corpus (class) and stored into data folder in csv format. Python code for doing this in *universal tagging.py*

we have analyse Ngram POS tag sequence for each Corpus (class) and stored into data folder in csv format. Python code for doing this in *ngram analysis.py*

3.1 N-gram tag sequence

Stochastic POS tagger: If a word is tagged with a specific tag in training sentence, analyzing the highest frequency or probability, that word will be given a special tag. This is also called an n-gram approach referring to the fact that the word is decided based on the probability with n previous tags.

we have calculated Ngram POS tag sequence for each Corpus (class) and stored into data folder in csv format. Python code for doing this in *tagsequences.py*

Figure 2: bi-gram POS taging

Comp	omputer Science Physics Mathematics Statistics		Statistics Quan		Quantita	Quantitative Biology		tive Finance			
bigram	count	bigram	count	bigram	count	bigram	count	bigram	count	bigram	count
('UN', 'UU')	0.050211124	('עני', 'עני')	0.053612223	('IN', 'DT')	0.048912547	('עני', 'ונני')	0.052726496	('UN', 'UN')	0.053862206	('ועח', 'נני')	0.053239437
('NN', 'IN'	0.044105069	('IN', 'DT')	0.051187894	('UN', 'UN')	0.045663147	('NN', 'IN')	0.044325039	('NN', 'IN')	0.047413793	('NN', 'IN')	0.051498079
('DT', 'NN	0.043867129	('NN', 'IN')	0.047440071	('NN', 'IN')	0.044136743	('DT', 'NN')	0.04219144	('IN', 'DT')	0.041897578	('DT', 'NN'	0.05021767
('IN', 'DT')	0.041420849	('DT', 'NN'	0.041185089	('DT', 'NN'	0.041192874	('IN', 'DT')	0.042150032	('DT', 'NN'	0.040084496	('IN', 'DT')	0.048143406
('LL', 'TD')	0.032573983	('LL', 'TD')	0.038183624	('LL', 'TD')	0.037006846	('ננ', 'דם')	0.034252009	('נני', 'NNS'	0.034508415	('LL', 'TD')	0.037490397
('NN', 'NN	0.030409373	('NN', 'NN	0.029792881	'נוני), 'NNS'	0.02392535	('NN', 'NN')	0.02964047	('LL', 'TD')	0.032857827	('NN', 'NN'	0.034110115
('נני', 'NNS	0.027174675	'נוני), 'NNS'	0.027091562	('NNS', 'IN	0.0229186	('LL'), 'NNS')	0.029013902	('IN', 'JJ')	0.027213328	(נני') 'נוני', 'NNS'	0.025761844
('NNS', 'IN	0.021977937	('NNS', 'IN	0.023200346	('NN', 'NN	0.02103783	('ננ','או')	0.023130703	('NN', 'NN	0.026913998	('NNS', 'IN	0.024046095
('IN', 'JJ')	0.021882761	('LL', 'NI')	0.022663288	('LL', 'NI')	0.019808191	('NNS', 'IN')	0.022520481	('NNS', 'IN	0.025271962	('LL', 'NI')	0.021485275
('NN', '.')	0.016891166	('NN', '.')	0.015583571	('NN', '.')	0.013673775	('NN', 'NNS')	0.016880281	('IN', 'NN')	0.018772236	('NN', 'NN	0.019539052

Remark: IN, DT is most common bi gram pos tag in mathematics, where as JJ, NN is most common bi gram pos tag in others.

hence, act as important parameter for classification.

Figure 3: Tri-gram POS taging

Computer Science		Physics	Mathematics		Statistics	Quantitative Biology			Quantitative Finance		
trigram	count	trigram	count	trigram	count	trigram	count	trigram	count	trigram	count
('DT', 'LL', 'NN')	0.022293061	('DT', 'JJ', 'NN')	0.025048451	('DT', 'UL', 'NN')	0.023289273	('DT', 'LL', 'NN')	0.023135087	('DT', 'UL', 'NN')	0.022364381	('DT', 'LL', 'NN')	0.025890548
('IN', 'DT', 'NN')	0.01936897	('IN', 'DT', 'NN')	0.02050528	('IN', 'DT', 'NN')	0.020454341	('IN', 'DT', 'NN')	0.019055309	('IN', 'DT', 'NN')	0.019080281	('IN', 'DT', 'NN')	0.02294553
('DT', 'NN', 'IN')	0.016076393	('NN', 'IN', 'DT')	0.020016317	('NN', 'IN', 'DT')	0.018246749	('DT', 'NN', 'IN')	0.015803691	('DT', 'NN', 'IN')	0.017275736	('NN', 'IN', 'DT')	0.020333427
('NN', 'IN', 'DT')	0.014674475	('IN', 'DT', 'NI')	0.018538739	('IN', 'DT', 'UI')	0.017492938	('NN', 'IN', 'DT')	0.015295898	('NN', 'IN', 'DT')	0.01553961	('DT', 'NN', 'IN')	0.019309073
('IN', 'DT', 'JI')	0.013129794	('DT', 'NN', 'IN')	0.016250677	('DT', 'NN', 'IN')	0.017025875	('IN', 'DT', 'JI')	0.014017699	('NN', 'IN')	0.014906737	('IN', 'DT', 'UI')	0.015877487
('NN', 'IN')	0.01291822	('NN', 'IN')	0.014985073	('NI', 'NN', 'LL')	0.013775219	('NN', 'IN')	0.013849887	('IN', 'DT', 'IN')	0.014222549	('וננ'), 'NN', 'וננ')	0.015416528
('NN', 'NN')	0.00969381	('עני', 'אא', 'נני')	0.009749872	('NI', 'NNS', 'IN')	0.008836626	('אמ', 'ונג')	0.010125346	('ננ', 'או', 'אא')	0.011195019	('עני', 'אא', 'עני')	0.010883761
('ננ', 'ווו', 'NN')	0.009013429	('NN', 'IN', 'JJ')	0.009378474	('NNS', 'IN', 'DT')	0.008636277	('ענ', 'או', 'אא')	0.009233985	('NI', 'LL', 'NNS')	0.01087003	('DT', 'NN', 'NN')	0.00957771
('IN', 'LL', 'NNS')	0.00829768	('II', 'NNS', 'IN')	0.008932261	('UN', 'IN', 'JJ')	0.008141666	('IN', 'JJ', 'NNS')	0.00869786	('IN', 'NNS', 'IN')	0.010151633	('UN', 'IN', 'JJ')	0.009167968
('IN', 'NNS', 'IN')	0.007954917	('NNS', 'IN', 'DT')	0.008931371	('IN', 'LL', 'NNS')	0.007427925	('III', 'NNS', 'IN')	0.008437425	('NN', 'LL', 'NN')	0.00951876	('NNS', 'IN', 'DT')	0.008937489

Remark: DT, JJ, NN is most common Tri gram pos tag in all classes, also IN, DT, NN is second most common Tri gram pos tag in all classes.

hence, can't act as important parameter for classification.

Figure 4: Quad-gram POS taging

Comp	uter Science	Physics		Mathematics		Statistics		Quantitative Biolog	SY .	Quantitative Finar	ice
4gram	count	4gram	count	4gram	count	4gram	count	4gram	count	4gram	count
('IN', 'DT', 'LL', 'NN')	0.008851379	('IN', 'DT', 'LL', 'NN')	0.012062883	('IN', 'DT', 'LL', 'NN')	0.010838873	('NN', 'ננ', 'TD', 'עו')	0.009333156	('IN', 'DT', 'LL', 'NN')	0.009937909	('IN', 'DT', 'LL', 'NN')	0.010832821
('DT', 'ונג', 'NN', 'וN')	0.007789007	('DT', 'UL', 'NN', 'IN')	0.008918019	('DT', 'JJ', 'NN', 'IN')	0.008944324	('DT', 'UL', 'NN', 'IN')	0.008200973	('DT', 'LL', 'NN', 'IN')	0.008740571	('DT', 'UL', 'NN', 'IN')	0.009808441
('NN', 'IN', 'DT', 'NN'	0.006694482	('NN', 'IN', 'DT', 'NN	0.008071907	('IN', 'DT', 'NN', 'IN')	0.007226333	('NN', 'IN', 'DT', 'NN')	0.006744063	('NN', 'IN', 'DT', 'NN')	0.007030087	('NN', 'IN', 'DT', 'NN')	0.009706003
('IN', 'DT', 'NN', 'IN')	0.005752367	('NN', 'IN', 'DT', 'JI')	0.007261421	('NN', 'IN', 'DT', 'NN')	0.007200037	('IN', 'DT', 'NN', 'IN')	0.005895198	('IN', 'DT', 'NN', 'IN')	0.006876144	('IN', 'DT', 'NN', 'IN')	0.007196271
('DT', 'NN', 'IN', 'DT')	0.004976167	('IN', 'DT', 'NN', 'IN'	0.006893585	('UN', 'IN', 'DT', 'UN')	0.006843166	('UN', 'IN', 'DT', 'UI')	0.005153123	('UN', 'IN', 'DT', 'UN')	0.005379471	('DT', 'NN', 'IN', 'DT')	0.007017005
('UN', 'IN', 'DT', 'UN')	0.004677777	('נני', 'NN', 'IN', 'DT')	0.006445591	('DT', 'NN', 'IN', 'DT')	0.006424937	('DT', 'NN', 'IN', 'DT')	0.005003836	('DT', 'NN', 'IN', 'DT')	0.005208422	('UN', 'IN', 'DT', 'UI')	0.006786519
('DT', 'JL', 'NN', 'NN')	0.004588389	('DT', 'NN', 'IN', 'DT	0.006407293	('Ul', 'NN', 'IN', 'DT')	0.005986674	('IU', 'NN', 'IN', 'DT')	0.004858908	('נונ'), 'NN', 'IN', 'DT')	0.004729487	('Ul', 'NN', 'IN', 'DT')	0.006197501
('Ul', 'NN', 'IN', 'DT')	0.004287427	('DT', 'LL', 'NN', 'NN'	0.005118531	('DT', 'JJ', 'NN', 'NN')	0.004006977	('DT', 'Ul', 'NN', 'NN')	0.004749939	('NN', 'IN', 'LL', 'NNS')	0.004575544	('DT', 'UL', 'NN', 'NN')	0.005890186
('IN', 'DT', 'NN', 'NN')	0.003506082	('IN', 'DT', 'NN', 'NN	0.004657178	('DT', 'NN', 'IN', 'JI')	0.003389652	('NN', 'IN', 'JJ', 'NNS')	0.003518594	('DT', 'NN', 'IN', ')	0.004404495	('IN', 'DT', 'NN', 'NN')	0.005045073
('NN', 'II', 'JI', 'NNS')	0.003448848	('ננ', 'NN', 'NN', 'ND')	0.003569701	('NN', 'ננ', 'ננ', 'NN')	0.003344574	('IN', 'DT', 'NN', 'NN')	0.003495711	('NN', 'ננ', 'או', 'NN')	0.004096608	('NN', 'ננ', 'NI', 'NN')	0.003969473

Remark: IN, DT, JJ, NN is most common Quad gram pos tag in all classes, also DT, JJ, NN, IN is second most common Quad gram pos tag in all classes.

hence, can't act as important parameter for classification.

3.2 Linguistic Features and Feature Selection

POS tag important ratio calculation , to check for feature for classification

Figure 5: POS tag Title Physics **Computer Science** Mathematics Quantitative Biology Quantitative Finance Statistics POS COUNT POS COUNT POS COUNT POS COUNT POS COUNT COUNT VERB 4196 ADP 10008 ADJ 7728 NOUN 28318. 230 NOUN 1394 6863 DET ADJ 4229 NOUN 27060 ADP 6535 ADJ 883 ADJ 251 NOUN 48081 NOUN 34824 CONJ 1819 CONJ 1184 NOUN 3355 ADV 13 10877 CONJ 8301 PRT 475 NUM ADP 2020 ADP 19 111 CONJ 2119 ADJ 9604 DET 3394 VERB 2548 PRT 81 DET 171 802 NUM 2861 ADJ 420 ADP 333 PRT 992 . 4971 VERB DET 3605 . 4504 VERB 1756 DET 1959 DET 341 CONJ 87 3093 PRON 185 NUM 474 . 1675 ADP 912 VERB 117

NUM 339 VERB 2732 PRT 581 PRON 116 CONJ 189 PRON PRON 192 PRT 34 582 ADV 389 ADV 249 ADV 38 PRT ADV 388 ADV 398 PRON 141 NUM 122 X 7 NUM 5 28 X 29 X 31 X 12 PRON 16 X 2

Figure 6: POS tag Title graph

POS Title

Remark

- Noun is most common pos tag.
- So, we can use top 1000 noun as a word vector and use them as a important parameter for classification.
- physics and mathematics has more cardinal tag than others.
- biology have much more number of pronouns tag than others.
- biology have much more number of particles tag than others.
- biology have much less number of verbs tag than others.

Figure 7: POS tag Abstract

Computer Science		Physics		Mati	Mathematics		Statistics		Quantitative Biology		Quantitative Finance	
POS	COUNT	POS	COUNT	POS	COUNT	POS	COUNT	POS	COUNT	POS	COUNT	
ADJ	180830	PRON	23406	PRON	20375	ADJ	112779	NOUN	34256	ADP	4733	
NOUN	456594	VERB	133195	VERB	88118		101295	VERB	15654	DET	4560	
ADP	177478	DET	122916	CONJ	17583	NOUN	265 968	ADP	14264	NOUN	11804	
ADV	51622	ADV	33523	DET	86586	ADP	104925	ADJ	14924		3795	
VERB	213031	ADJ	138327	NOUN	219221	NUM	7957	PRT	2582	PRON	1100	
	175045	NOUN	329950	ADP	91096	VERB	125262	CONJ	3320	ADV	1220	
DET	164597	NUM	20033	ADJ	95160	PRT	21031		12149	VERB	5068	
PRT	36143		135218		132709	DET	96949	ADV	4105	ADJ	4381	
NUM	15129	ADP	134798	ADV	22057	CONJ	24288	DET	11745	CONJ	1138	
CONJ	42833	PRT	21470	PRT	13175	ADV	32254	PRON	2723	PRT	908	
PRON	40455	CONJ	29181	NUM	10955	PRON	24339	X	63	NUM	334	
X	1258	X	769	X	1575	X	652	NUM	1144	X	10	

Figure 8: POS tag Abstract graph

3.3 POS analysis

3.3.1 POS Ratios Analysis

Remark

• Adjective by Pronoun ratio

physics has highest Adjective by Pronoun ratio, where as finance has least.

· Adjective by Verb ratio

physics and maths has highest Adjective by Verb ratio, rest all are approximately same.

• Adverbs to Adjective ratios

statistics has highest Adverbs to Adjective ratios ,physics and maths has least Adverbs to Adjective ratios.

• Adverbs to Nouns ratios

statistics has highest Adverbs to Nouns ratios.

• Adverbs to Nouns ratios

biology and statistics has highest Adverbs to Nouns ratios.

• verbs to Pronouns ratios

biology has highest verbs to Pronouns ratios, where as maths and finance has least.

· Cardinals to Nouns ratios

mathematics has very very high Cardinals to Nouns ratios where as finance is very very low Cardinals to Nouns ratios.

• Nouns to Pronouns ratios

physics has highest Nouns to Pronouns ratios.

• Verbs to Pronouns ratios

biology and physics has high Verbs to Pronouns ratios where as mathematics and finance has low Verbs to Pronouns ratios.

3.4 Lexical Ambiguity

Detecting ambiguity using pos confusion matrix.

Confusion matrix: In the following section, we looked at the abstracts of all the papers and used NLTK on it to get the pos tags for the same. These pos tags become our test tags. Then we ran the pos tagger for each word individually and that becomes our true tags. Using this data, we then generated the confusion matrices that you can see below.

we have calculated pos confusion matrix for each Corpus (class) and stored into data folder in png format. Python code for doing this in *confusion matrix.py*

4 Conclusion:

Туре	Features
Low-level ratio	Type token ratio
High-level ratio	Adjective by Pronoun ratio
	Adjective by Verb ratio
	Adverbs to Adjective ratios
	Adverbs to Nouns ratios
	Adverbs to Nouns ratios
	verbs to Pronouns ratios
	Cardinals to Nouns ratios
	Nouns to Pronouns ratios
	Verbs to Pronouns ratios

Table 2: Derived linguistic features

In this project, our main goal was to identify linguistic features that can be used to classify research papers, into their corresponding categories. Our major focus has been on the sequencing and analysis of POS tags. From the data that we got above, it is safe to say that pos tags might not be a good method to try to extract information that might help us in multiclass classification. Although, it can be useful to perform some binary classifications like Maths vs. non-maths and so on. Nevertheless, it was a great experience for us to work on this project and we would like to thank Dr. Rajakrishnan and Siddharth sir for guiding us through the project.

5 Future work

- Implementation to actual multi class classification using important parameters we got in this whole analysis.
- Study psycholinguistic behaviour of why some specific POS is high in occurrence in a specific class.
- Study psycholinguistic behaviour of why some specific POS ratio is high in a specific class.
- Finding specific word from confusion matrix which lead lexical ambiguity.

References

[1] "Qureshi, Mohammed Rameez and Ranjan, Sidharth and Rajkumar, Rajakrishnan and Shah, Kushal" A Simple Approach to Classify Fictional and Non-Fictional Genres In *Association for Computational Linguistics*, pages "81–89". aclweb, 2019.