Datenstrukturen und effiziente Algorithmen Blatt 4

Markus Vieth, David Klopp, Christian Stricker $16.\ {\rm November}\ 2015$

Nr.1

Nr.3

a)

x	Ergebnisse:
0	18
1	15
2	14
3	13
4	14
5	15
6	16
7	17
8	18
9	19
10	20
11	21
12	22
13	23

Für $x=x_2=3$, also dem Median der Menge $\{x_1,x_2,x_3\}$, wird die Summe minimal.

4

b)

 $\sum_{i=1}^n |x_i-x|$ wird minimal für $x=x_{k+1},$ d.h x := Median $\{x_1,...,x_n\}$

Bew:

Sei die Menge aller x_i sortiert. Teile die Summe in zwei gleich große Teilsummen, wobei Summe 1 kleiner als x_{k+1} und Summe 2 größer als x_{k+1} ist:

$$\sum_{i=1}^{2k+1} |x_i - x|$$

$$= \sum_{i=1}^k |x_i - x| + \sum_{i=k+2}^{2k+1} |x_i - x| + |x_{k+1} - x|$$

$$= kx - \sum_{i=1}^k x_i - kx + \sum_{i=k+2}^{2k+1} x_i + |x_{k+1} - x|$$

$$= \sum_{i=k+2}^{2k+1} x_i - \sum_{i=1}^k x_i + |x_{k+1} - x|$$

Für $x = x_{k+1}$:

$$= \sum_{i=k+2}^{2k+1} x_i - \sum_{i=1}^k x_i$$

 $\underline{\operatorname{F\"{u}r}}\ x \neq x_{k+1}:$

 $\overline{\text{Der Term }|x_{k+1}-x|}$ wird immer >0 und somit größer als der Fall $x=x_k,$ d.h $\sum_{i=1}^n |x_i-x|$ ist genau dann minimal, wenn $x = x_{k+1}$ ist.

c)

 $\sum_{i=1}^n (x_i-x)^2$ wird minimal für $x=x_{k+1},$ d.h x := Median $\{x_1,...,x_n\}$

Bew:

$$f(x) = \sum_{i=1}^{n} (x_i - x)^2$$
$$f'(x) = -\sum_{i=1}^{n} 2(x_i - x)$$
$$f''(x) = \sum_{i=1}^{n} 2$$

$$\underline{f'(x) = 0:}$$

$$-\sum_{i=1}^{n} 2(x_i - x) = 0$$

$$\Leftrightarrow -2nx + \sum_{i=1}^{n} 2x_i = 0$$

$$\Leftrightarrow 2\sum_{i=1}^{n} x_i = 2nx$$

$$\Leftrightarrow \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = x$$

xist offensichtlich der Median. Daf''(x)immer größer als Null ist, handelt es sich bei $x=x_{k+1}$ um ein Minimum. q.e.d