

Verfasser:

D. Gachet / HTA-FR - Telekommunikation

HTA-FR - Kurs Telekommunikation

Embedded systems 1 und 2

Digitale Verarbeitung von Zahlen

Klasse T-2 // 2018-2019

Positive und negative ganze Zahlen

- Darstellung und Codierung
- Umwandlung zwischen verschiedenen Basen
- Zahlenkreis
- Additionen, Subtraktionen und Vergleiche

▶ Reelle Zahlen

- Darstellung und Codierungen
- □ Genauigkeit
- Standard Zahlen

Darstellung der positiven ganzen Zahlen

- ▶ Die positiven ganzen Zahlen N werden auch Kardinalzahlen genannt (cardinal numbers), logische Zahlen oder Zahlen ohne Vorzeichen (unsigned number)
- ▶ Sie lassen sich in einer gegebenen Basis *b* durch eine Folge von Ziffern *a_i* eingeschlossen zwischen 0 und *b*-1 darstellen, mit:

$$N = \sum_{i=0}^{n-1} a_i \cdot b^i \qquad \Rightarrow 0 \le a_i \le b-1$$

▶ Durch Konvention wird die Zahl *N* dargestellt durch:

$$N = a_{n-1}a_{n-2}...a_1a_0$$
 $\rightarrow 0 \le N \le b^n-1$

wobei

 a_0 die niederwertige Ziffer,

 a_{n-1} die höherwertige Ziffer,

n die Anzahl Ziffern (*Digits*) darstellen

(LSD: Least Significant Digit)

(MSD: Most Significant Digit)

Codierung der positiven ganzen Zahlen

Dezimale Codierung

$$N = \sum_{i=0}^{n-1} a_i \cdot 10^i$$

$$\rightarrow 0 \le a_i \le 9$$

das bedeutet für den Wert 1'386:

$$1'386_{10} = 1*10^3 + 3*10^2 + 8*10^1 + 6*10^0$$

▶ Binäre Codierung

$$N = \sum_{i=0}^{n-1} a_i \cdot 2^i$$

$$\rightarrow 0 \le a_i \le 1$$

das bedeutet für den Wert 1'386:

$$1'386_{10} = 101'0110'1010_2 = 1*2^{10} + 0*2^9 + 1*2^8 + 0x2^7 + 1*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0$$

Oktale Codierung

$$N = \sum_{i=0}^{n-1} a_i \cdot 8^i$$

$$\rightarrow 0 \le a_i \le 7$$

das bedeutet für den Wert 1'386:

$$1'386_{10} = 2'552_8 = 2*8^3 + 5*8^2 + 5*8^1 + 2*8^0$$

Codierung der positiven ganzen Zahlen (II)

Hexadezimale Codierung

$$N = \sum_{i=0}^{n-1} a_i \cdot 16^i \qquad \Rightarrow 0 \le a_i \le 15$$

das bedeutet für den Wert 1'386:

$$1'386_{10} = 56A_{16} = 5x16^2 + 6x16^1 + 10x16^0$$

Beziehung zwischen den Basen 10, 16, 8 und 2

dezimal	hexadezimal	oktal	binär
0	0	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011
4	4	4	0100
5	5	5	0101
6	6	6	0110
7	7	7	0111
8	8	10	1000
9	9	11	1001
10	Α	12	1010
11	В	13	1011
12	С	14	1100
13	D	15	1101
14	E	16	1110
15	F	17	1111

Umrechnungen Basis b \rightarrow dezimal \rightarrow Basis b

▶ Umrechnung Basis b → dezimal

$$N = N_b = a_{n-1} * b^{n-1} + a_{n-2} * b^{n-2} + \dots + a_1 * b^1 + a_0 * b^0 = N_{10}$$

z. B.
$$N = 652_8 = 6*8^2 + 5*8^1 + 2*8^0 = 426_{10}$$

▶ Umrechnung dezimal → Basis b

Die Umrechnung einer Dezimalzahl *N* in die entsprechende Zahl mit der Basis *b* kann durch eine Reihe von Divisionen vorgenommen werden.

z. B. Umrechnung der Dezimalzahl 426 in eine Oktalzahl

$$N = 426_{10} = 426 : 8 = 53 + Rest 2$$

$$53: 8 = 6 + Rest 5$$
 $N = 652_8$

$$6: 8 = 0 + Rest 6$$

Umrechnung hexadezimal – binär \rightarrow hexadezimal

▶ Umrechnung hexadezimal → binär

= 1000101011001001₂

▶ Umrechnung binär → hexadezimal

$$N = 10001011001001_2 = \underbrace{1000}_{8} \quad \underbrace{1010}_{A} \quad \underbrace{1100}_{C} \quad \underbrace{1001}_{9} \quad bin\ddot{a}r$$

► Eine begrenzte Anzahl Bit für die binäre Darstellung eines Wertes (zum Beispiel 8 Bit) wird ihren Darstellungsbereich begrenzen.

Mit 8 Bit kann ein Wert zwischen 0 und 255 dargestellt werden \rightarrow [0 .. 2ⁿ-1] oder binär 00000000 und 11111111

▶ Darstellung der Werte eines 4-Bit-Registers (n=4) in einem Kreis

Achtung: Aus Gründen der Einfachheit sind die Beispiele in 8-Bit-Worten realisiert, der ARM9 ist aber eine 32-Bit-Maschine und kann diese Tests nur mit 32 Bit durchführen.

Binäre Addition der Zahlen ohne Vorzeichen

ldr ldr adds

Kapazitätsproblem

Achtung: Aus Gründen der Einfachheit sind die Beispiele in 8-Bit-Worten realisiert, der ARM9 ist aber eine 32-Bit-Maschine und kann diese Tests nur mit 32 Bit durchführen.

Binäre Subtraktion der Zahlen ohne Vorzeichen

ldr r0, =54 ldr r1, =45 subs r2, r0, r1

da das Carry bei einer Subtraktionsoperation mit Zahlen ohne Vorzeichen invertiert wird

Kapazitätsproblem

da das Carry bei einer Subtraktionsoperation mit Zahlen ohne Vorzeichen invertiert wird

Subtraktion mit 1er-Komplement

- ▶ Die Addition zweier positiver Zahlen bietet überhaupt kein Problem und lässt sich ganz einfach durchführen, daher die Idee, die Subtraktion zweier Zahlen mit einem Addierer durchzuführen (V = A B).
- ▶ Die Methode benutzt einen Versatz R, damit R B positiv wird.

$$V = A - B = A + (R - B) - R = A + \overline{B} - R$$

Für eine Binärzahl mit n Bit wählt man:

$$R = 2^n - 1 = \sum_{i=0}^{n-1} 2^i$$

▶ Das Komplement *B* einer Zahl *B* ist definiert durch:

$$\overline{B} = R - B$$
 $\rightarrow B = 01010110$ $\rightarrow \overline{B} = 10101001$ \rightarrow Bitinversion

Die Subtraktion zweier Zahlen wird zurückgeführt auf:

$$V = A + \overline{B} - R = A + \overline{B} - (2^n - 1) = A + \overline{B} + 1 - 2^n$$

 $V = A + \overline{B} + 1$

Subtraktion mit 2er-Komplement

▶ Die Methode mit dem 2er-Komplement stützt sich auf das gleiche Prinzip wie beim 1er-Komplement, aber über einen Versatz *R* gleich:

$$R = 2^n = 1 + \sum_{i=0}^{n-1} 2^i$$

▶ Das 2er-Komplement B einer Zahl B ist definiert durch:

$$\stackrel{\bullet}{B} = R - B = \stackrel{\frown}{B} + 1$$
 $\Rightarrow B = 01010110$ $\Rightarrow \stackrel{\bullet}{B} = 10101010$ \Rightarrow Inversion der Bit + 1

▶ Die Subtraktion zweier Zahlen wird zurückgeführt auf:

$$V = A + B - R = A + B - 2^{n}$$

$$V = A + B$$

Subtraktion im 2er-Komplement von zwei Zahlen ohne Vorzeichen

Achtung: Aus Gründen der Einfachheit sind die Beispiele in 8-Bit-Worten realisiert, der ARM9 ist aber eine 32-Bit-Maschine und kann diese Tests nur mit 32 Bit durchführen.

ldr r0, =54 ldr r1, =45 subs r2, r0, r1

Kapazitätsproblem

Vergleich von vorzeichenlosen Zahlen

LO: (Lower)

LS: (Lower or same)

EQ: (Equal)

NE: (Not equal)

HS: (Higher or same)

HI: (Higher)

C == 0

C == 0 || Z == 1

Z == 1

Z -- 1

Z == 0

C == 1

C == 1 && Z == 0

A < B (strikt kleiner)

 $A \le B$ (kleiner oder gleich

A = B (gleich)

 $A \neq B$ (ungleich)

 $A \ge B$ (grösser oder gleich)

A > B (strikt grösser)

Darstellung der negativen ganzen Zahlen

- ▶ Die ganzen Zahlen N, die sowohl positiv als auch negativ sein können, werden auch arithmetische Zahlen oder Zahlen mit Vorzeichen (signed numbers) genannt
- ▶ Für Zahlen mit Vorzeichen existieren verschiedene Darstellungsarten
 - Darstellung mit zusätzlicher Binärziffer (Vorzeichen)
 - Darstellung mit Versatz
 - Darstellung mit 1er-Komplement
 - □ Darstellung mit 2er-Komplement

Darstellung mit zusätzlicher Binärziffer / Versatz

Darstellung mit zusätzlicher Binärziffer (Vorzeichen)

 Natürliche Darstellung der negativen Zahlen, die daraus besteht, dem Wert ein Vorzeichenbit voranzustellen, z. B. 0 für eine positive und 1 für eine negative Zahl

z. B.
$$V = +125_{10} = 011111101_2$$

 $V = -125_{10} = 111111101_2$

□ Ein Format mit n Bit lässt sich wie folgt darstellen

$$-(2^{n-1}-1) \le N \le 2^{n-1}-1$$
 mit zwei Darstellungen von Null: +0 und -0

Darstellung mit Versatz

□ Eine positive oder negative Zahl *N* wird als Zahl *V* wie folgt dargestellt:

$$V = N + R$$

□ *R* ist ein positiver Versatz, der so gewählt wird, dass *V* immer positiv wird und die Bereiche der positiven und der negative Zahlen ungefähr gleich sind:

$$R = 2^{n-1} - 1$$
 oder $R = 2^{n-1}$

 Die Notation mit Versatz wird für die Exponenten der Gleitkommazahlen verwendet

Die 1er- und 2er-Komplemente

Das 1er-Komplement

Binäre Codierung	Wert
00000000	(+)0
0000001	1
0000010	2
01111101	125
01111110	126
01111111	127
10000000	-127
1000001	-126
10000010	-125
11111101	-2
11111110	-1
11111111	(-0)

Das 2er-Komplement

Binäre Codierung	Wert
00000000	(+)0
0000001	1
0000010	2
•••	
01111101	125
01111110	126
0111111	127
1000000	-128
1000001	-127
10000010	-126
•••	
11111101	-3
11111110	-2
11111111	-1

Negative Flag (N) und die negativen Werte

- ▶ 8-Bit-Register (-128 bis 127) \rightarrow [-2ⁿ⁻¹ .. 2ⁿ⁻¹-1]
- ▶ Das Flag N (Negative) ist die Kopie des h\u00f6herwertigen Bit (bit7 von 8 Bit). Es wird f\u00fcr Werte von -2ⁿ⁻¹ bis -1 (-128 bis -1) auf 1 gesetzt (set)

Zum Beispiel: -74:

1dr r0, =-74 cmp r0, #0

10110110

Flag N = 1

Flag oVerflow (V) und die Addition

- ▶ Flag V (oVerflow) erlaubt die Erkennung einer Inkohärenz des Vorzeichens im Ergebnis.
- ▶ Dieses Flag wird bei der Verarbeitung von Werten mit Vorzeichen verwendet.

ldr	r0,	=54	
ldr	r1,	=10	
adds	r2,	rO,	r1

V=1 → inkohärentes Ergebnis

Ergebnis

Flag oVerflow (V) und die Subtraktion

- Subtraktion eines positiven Wertes von einem negativen Wert
 - → das Ergebnis müssste immer negativ sein

```
-64: 11000000
+ (-100): 10011100
------
92: 01011100
```

V=1 → inkohärentes Ergebnis

Flag oVerflow (V) und die Spezialfälle

- ▶ In den nachstehenden Fällen wird das Flag V immer zurückgesetzt (clear):
 - Addition eines positiven und eines negativen Wertes

Subtraktion zweier positiver Werte

- ▶ Es gibt einen oVerflow, wenn:
 - Die Summe der beiden positiven Zahlen negativ ist
 - Die Summe der beiden negativen Zahlen positiv ist
 - Die Subtraktion einer positiven Zahl von einer negativen Zahl ein positives Ergebnis ergibt
 - Die Subtraktion einer negativen Zahl von einer positiven Zahl ein negatives Ergebnis ergibt

Vollständiges Beispiel

Achtung: Aus Gründen der Einfachheit sind die Beispiele in 8-Bit-Worten realisiert, der ARM9 ist aber eine 32-Bit-Maschine und kann diese Tests nur mit 32 Bit durchführen.

```
ldr r0, =224 ou -32
ldr r1, =213 ou -43
adds r2, r0, r1
```

```
224: 11100000
213: 11010101
------
(1)0110101 -> 181 oder -75
C=1; N=1; V=0; Z=0
```


Vergleich von Zahlen mit Vorzeichen

LT: (Lower than) V ⊕ N == 1

LE:

(Lower or equal) $V \oplus N == 1 \parallel Z == 1$

EQ:

(Equal)

Z == 1

NE:

(Not equal)

Z == 0

GE:

(Greater or equal) $V \oplus N == 0$

GT:

(Greater than)

 $V \oplus N == 0 \&\& Z == 0$

A < B (strikt kleiner)

 $A \le B$ (kleiner oder gleich)

A = B (gleich)

A ≠ B (ungleich)

 $A \ge B$ (grösser oder gleich)

A > B (strikt grösser)

Darstellung der reellen Zahlen

▶ Die reellen Zahlen N können mit einer Basis b durch eine unendliche Folge von Ziffern a_i eingeschlossen zwischen 0 und b-1 dargestellt werden, mit:

$$N = \sum_{i = -\infty}^{n-1} a_i \cdot b^i$$

• einem ganzen Teil N_e und einem gebrochenen Teil N_f , definiert durch:

$$N_e = \sum_{i=0}^{n-1} a_i \cdot b^i \qquad N_f = \sum_{i=-\infty}^{-1} a_i \cdot b^i$$

- ▶ Auf die gleiche Weise wie die ganzen Zahlen werden auch die reellen Zahlen durch eine Folge von von links nach rechts nach absteigender Wertigkeit angeordneten Ziffern und einem Komma dargestellt, das den ganzen Teil vom gebrochenen Teil trennt.
- ▶ In der Informatik können zwei verschiedene Darstellungen herangezogen werden.
 - Festkommadarstellung
 - Gleitkommadarstellung

Festkommadarstellung

In der Festkommadarstellung (*fixed point*) werden die Zahlen als Worte mit einer festen Anzahl Ziffern für den ganzen Teil und den gebrochenen Teil verarbeitet.

▶ Übung:

Binärdarstellung des Wertes 456.3467

Darstellung der Gleitkommazahlen

▶ Die reellen Gleitkommazahlen N (floating point) werden in der folgenden Form dargestellt:

$$N = (-1)^S * 2^{E-\text{Versatz}} * 1, T$$

- □ S: Vorzeichen des Wertes $(0 \rightarrow "+" \text{ und } 1 \rightarrow "-")$
- E: Exponent → Wert + Versatz (hängt von der Grösse des reellen Wertes ab)
- ☐ T: Mantisse → 1, Bruchteil

▶ Beispiel:

$$N = 45.625 \rightarrow + 101101,101 * 2^0 \rightarrow 1,0110 1101 * 2^5$$

- □ 32-Bit-Codierung mit einem Versatz von 127 (8 Bit)
 - > S = 0
 - E = 5 + 127 = 132 = 0x84
 - T = 01101101

 - → 0x4236'8000

Darstellung der Gleitkommazahlen (II)

z. B. w=8 \rightarrow Versatz = 127

7. B. w=8 \rightarrow 0 < E < 255

z. B. w=8 \rightarrow E = 255

Einige wichtige Hinweise zur Darstellung der reellen Gleitkommazahlen

Normierte Zahlen:

Bereich des Exponenten:
$$0 < E < 2^{w}-1$$

▶ NAN (Not a Number):

□ Exponent:
$$2^{w}-1$$
 z. B. $w=8 \rightarrow E=255$

Genauigkeit der reellen Zahlen

▶ Bei der Darstellung der reellen Zahlen entsteht ein Genauigkeitsproblem, denn es ist nicht möglich, den gebrochenen Teil mit einer unendlich langen Ziffernfolge darzustellen. Diese ist daher auf *u* Ziffern begrenzt.

$$N_f \to \widetilde{N}_f = \sum_{i=-u}^{-1} a_i \cdot b^i$$

- ▶ Dieses Abschneiden erzeugt einen Fehler kleiner b^{-u}
- In der Praxis wird das Abschneiden durch Runden ersetzt und die Bruchzahl gewählt, die durch Auf- oder Abrunden am nächsten bei N_f liegt. Dies ergibt einen Rundungsfehler, der zwischen $+(b^{-u})/2$ und $-(b^{-u})/2$ liegt

Standard Gleitkommazahlen nach IEEE 754

Format mit einfacher Genauigkeit mit 32 Bit (float)

Einfacher Genauigkeit mit 32 Bit

- 1 Vorzeichenbit
- 8 Bit für den Exponenten
- 23 Bit für die Mantisse

Format mit doppelter Genauigkeit mit 64 Bit (double)

Doppelte Genauigkeit mit 64 Bit

- 1 Vorzeichenbit
- 11 Bit für den Exponenten
- 52 Bit für die Mantisse

Standard Gleitkommazahlen nach IEEE 754 (II)

Format mit vierfacher Genauigkeit mit 128 Bit (long double)

Vierfache Genauigkeit mit 128 Bit

- 1 Vorzeichenbit
- 15 Bit für den Exponenten
 - 1 Bit für den ganzen Teil
- 111 Bit für die Mantisse