

Predicting Covid-19 pandemic behaviour to prevent deaths increase

Prezentatori: Dodon Ion

Verebceanu Mirela

Speianu Dana

Tîmbur Ştefan

Grupa: IS-211M

Coordonator: Beşliu Corina

Agenda

- Problem & Proposed solution
- Objectives
- Dataset description
- Data cleaning/processing
- Multiple Linear Regression
- Random Forest
- Auto ARIMA
- VARMAX
- Conclusions

Problem

The increasing number of deaths caused by Covid - 19

Proposed solution

Prevent the number of deaths in the future by forecasting the pandemic behaviour

Objectives

- Find and train a model with the best accuracy for a better forecasting.
- Warn people about the need to follow the rules against the pandemic according to the forecasting results.
- Cooperation with the authorities to adjust the stringency according to the forecasting results.
- Decreasing the number of deaths caused by pandemic.

Data description

65 variables x 127 817 rows

- Total_cases, new_cases, new_cases_smoothed, total_cases_per_million, new cases per million, new cases smoothed per million
- Total_deaths, new_deaths, new_deaths_smoothed, total_deaths_per_million, new deaths per million, new deaths smoothed per million
- Excess_mortality, excess_mortality_cumulative, excess mortality cumulative absolute, excess mortality cumulative per million
- Icu_patients, icu_patients_per_million, hosp_patients, hosp_patients_per_million, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions, weekly hosp admissions per million
- Stringency_index
- Reproduction rate
- Total_tests, new_tests, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed, new_tests_smoothed_per_thousand, positive_rate, tests_per_case, tests_units
- Total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, new_vaccinations, new_vaccinations_smoothed, total_vaccinations_per_hundred, people_vaccinated_per_hundred, total_boosters_per_hundred, new_vaccinations_smoothed_per_million, new_people_vaccinated_smoothed, new_people_vaccinated_smoothed_per_hundred
- Iso_code, continent, location, date, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index

Data cleaning/processing

Observations

- To many variables and most of them have the same information
- 2. Missing data for: icu_patients
- Microcontries have no significant information for the model because the number of population is too small
- 4. There are negative values
- 5. There are NaN values
- There are anomalies (values that increase/decrease in an unexpected manner)
- There are countries that have no data for some variables

Actions

- 1. Chose only the most relevant variables
- 2. Left only Europe and United States (they have the most complete data)
- Removed countries with populations < 500000, from Europe
- 4. Replaced negative values with prev. Non negative value
- 5. Replaced NaN values with mean of prev non missing and next non missing
- 6. Replaced anomalies with mean values from a the window where the anomalies is met
- 7. Removed countries that have no data for some variables

Removed Micro Countries

Total 11 microcountries

[Andorra, Faeroe Islands, Gibraltar, Guernsey, Iceland, Isle of Man, Jersey, Liechtenstein, Monaco, San Marino, Vatican]

Remaining countries after cleaning

['Austria', 'Belgium', 'Bulgaria', 'Cyprus', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Ireland', 'Italy', 'Luxembourg', 'Malta', 'Netherlands', 'Portugal', 'Romania', 'Serbia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom', 'United States']

Unprocessed dataset (icu_patients)

Processed dataset (icu_patients)

Unprocessed dataset (positive_rate)

Processed dataset (positive_rate)

Unprocessed dataset (people_vaccinated)

Processed dataset (people_vaccinated)

Multiple Linear Regression

Used variables:

Predicted variable:

new_deaths

Predictors variables:

- new_cases
- positive_rate
- people_vaccinated
- stringency_index
- human_development_index

R2 Score = 0.88

Conclusion:

The accuracy score is greater than 0.8 it means we can use this model. But also should check overfitting.

Predicted	Actual
12.967689	8.0
15.796188	3.0
8.216114	7.0
11.512998	10.0
13.306686	5.0
126.638190	152.0
1271.701479	1403.0
1637.418089	1539.0
1621.128363	2492.0
2020.481984	1776.0

Random Forest Regression

Used variables:

- Population
- New cases
- lcu_patients
- People_vaccinated
- Stringency_index
- Positive rate
- Human_development_index
- Diabetes_prevalence
- + 6 lags of new_deaths

Accuracy: 91.08%

Actual	Predicted
3	4
3	3
7	4
5	4
3	4
8	4
8	6

Augmented Dickey-Fuller test (ex: France)

new cases

ADF Statistic: -4.744447 p-value: 0.000069

new_deaths

ADF Statistic: -3.063384 p-value: 0.029384

Icu patients

ADF Statistic: -7.595366 p-value: 0.000000

people vaccinated

ADF Statistic: -4.520706 p-value: 0.000180

new_vaccinations

ADF Statistic: -7.620452

p-value: 0.000000

Auto ARIMA

```
"Austria":{
   "new cases":{
    "p":3,
    "q":0
   "new_deaths":{
    "p":3,
    "q":0
   "icu patients":{
    "p":1,
    "q":0
   "new tests":{
    "p":3,
    "q":0
   "positive_rate":{
    "p":0,
    "q":0
   "people vaccinated":{
    "p":2,
    "q":0
  "new_vaccinations":{
    "p":3,
    "q":0
   "total boosters":{
    "p":2,
    "q":0
   "stringency index":{
    "p":2,
    "q":0
```

```
"Belgium":{
   "new cases":{
    "p":2,
    "q":0
   "new deaths":{
    "p":3,
    "q":0
   "icu_patients":{
    "p":1,
    "q":0
   "new tests":{
    "p":3,
    "q":0
   "positive_rate":{
    "p":0,
    "q":0
   "people vaccinated":{
    "p":1,
    "q":0
   "new_vaccinations":{
    "p":3,
    "q":0
  "total_boosters":{
    "p":0,
    "q":0
   "stringency index":{
    "p":1,
    "q":0
```

```
"United States":{
  "new cases":{
   "p":3,
   "q":0
  "new deaths":{
   "p":0,
   "q":0
  "icu_patients":{
   "p":3,
   "q":0
  "new_tests":{
   "p":3,
    "q":0
  "positive rate":{
   "p":1,
   "q":0
  "people_vaccinated":{
   "p":3,
   "q":0
  "new vaccinations":{
   "p":3,
    "q":0
  "total_boosters":{
   "p":0,
   "q":0
  "stringency_index":{
   "p":2,
   "q":0
```


Forecasted

VARMAX

```
mod = sm.tsa.VARMAX(
          np.asarray(varmax train dataset[endogeneous variables]),
          np.asarray(varmax train dataset[exogeneous variables]
  ), order=(1, 0))
                                                                                         Real
                                                                                   New cases, new deaths, positive rate
                                                                                                                 New cases, new deaths, positive rate
exogeneous variables = [
                             endogeneous variables = [
  'population',
                                'new cases',
                                                                                 [-0.46419841 -0.8206747 -0.11778304]
                                                                                                                [0.55200313 0.21145555 0.06910153]
                                                                                 [0.54222414 0.22742225 0.0692272]
  'population density',
                                'new deaths',
                                                                                 [-1.42084716 -1.66887848 -0.11778304]
                                                                                                                [0.55274807 0.13892331 0.0666618 ]
  'diabetes prevalence',
                                'positive rate'
                                                                                 [ 0.69095626 1.16538023 -0.11778304]
                                                                                                                [0.53853355 0.14110688 0.06648889]
                                                                                 [ 2.43891026  2.56450023 -0.11778304]
                                                                                                                [0.53574616 0.14206916 0.06657076]
  'human development index', ]
  'new tests',
  'stringency index',
  'icu patients',
  'cardiovasc death rate',
  'people vaccinated',
                                                                                         Root mean square error: 0.6750305025536002
  'new vaccinations',
                                                                                         R2 = 0.975630916147559
  'total boosters'
```


Challenges & Conclusions

- The more complete the dataset is, the easiest it is to work on it.
- When there are many variables it is more difficult to choose which are the best and we should work with just a few of them.
- Sometimes it is better to make a VAR model for each entity from the dataset, than to make a VARMAX that would work for all entities.

