Photometric Classification with Thompson Sampling

Alasdair Tran u4921817

Supervisors: Cheng Soon Ong and Christian Wolf

13 Oct 2015

Sloan Digital Sky Survey

Photometric measurements of 800 million objects, out of which 3 million objects are spectroscopically labelled.

Sloan Digital Sky Survey

Photometric measurements of 800 million objects, out of which 3 million objects are spectroscopically labelled.

Photometry vs Spectroscopy

Figure: SDSS Filters and Vega Spectrum

Active Learning Motivation

- To construct the training set, one solution is to take a random sample objects for labelling.
- But labelling is expensive.
- Can we be smarter in choosing which objects for labelling?

Active Learning Algorithm

```
1: procedure ACTIVELEARNER(\mathcal{U}, \mathcal{L}, h, r, n, t)
              while |\mathcal{L}| < n do
 2:
                     E \leftarrow \text{random sample of size } t \text{ from } \mathcal{U}
 3:
                     \mathbf{x}_* \leftarrow \operatorname{argmax} r(\mathbf{x})
 4:
                                    x \in E
                    y_* \leftarrow ask the expert to label x_*
 5:
                    \mathcal{L} \leftarrow \mathcal{L} \cup (\mathbf{x}_*, \mathbf{y}_*)
 6:
                    \mathcal{U} \leftarrow \mathcal{U} \setminus \mathbf{x}_*
 7:
                     h_{\mathcal{C}}(\mathbf{x}) \leftarrow \text{retrain the classifier}
 8:
 9:
              end while
10: end procedure
```

Active Learning: Uncertainty Sampling Heuristics

■ Pick the example whose prediction vector *p* displays the greatest Shannon entropy (information content):

$$r_{S}(\mathbf{x}) = -\sum_{c \in \mathcal{V}} \mathbb{P}(y(\mathbf{x}) = c) \log \left[\mathbb{P}(y(\mathbf{x}) = c) \right]$$

■ Pick the example with the smallest margin (difference between the two largest values in the prediction vector p):

$$r_M(\mathbf{x}) = \left| \mathbb{P}(y(\mathbf{x}) = c^{(1)}) - \mathbb{P}(y(\mathbf{x}) = c^{(2)}) \right|$$

Active Learning: Query by Bagging Heuristics

- 1 Use bagging to train B classifiers $f_1, f_2, ..., f_B$.
- **2** Rank candidates by disagreement among f_i :
 - Margin-based disagreement: average the prediction of f_i and choose the example with the smallest margin.
 - Choose the example with the highest average Kullback-Leibler divergence from the average:

$$r_{QBB,KL}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} D_{KL}(P_b || Q)$$

Active Learning: Loss Function Heuristic

Expected squared loss can be decomposed into three terms:

$$\mathbb{E}[\mathsf{Squared\ Loss}] = \mathsf{Bias}^2 + \mathsf{Variance} + \mathsf{Noise}$$

Pick the example that will cause the greatest drop in variance of the unlabelled pool:

$$r_V(\mathbf{x}) = \sum_{i}^{k} \mathbb{P}(y(\mathbf{x}) = i) V_{\mathcal{L} \cup \mathbf{x}}$$

Active Learning: Classifier Certainty Heuristic

lacksquare The entropy of the classifier's predictions on ${\cal U}$ is

$$CC_{\mathcal{L}} = -\sum_{\boldsymbol{u} \in \mathcal{U}} \sum_{c \in \mathcal{Y}} \mathbb{P}(y(\boldsymbol{u}) = c) \log [\mathbb{P}(y(\boldsymbol{u}) = c)]$$

■ Pick the example that is expected to increase the classifier's prediction certainty by the the greatest amount:

$$r_{CC}(\mathbf{x}) = -\sum_{c \in \mathcal{V}} \mathbb{P}(y(\mathbf{x}) = c)CC_{\mathcal{L} \cup \mathbf{x}}$$

Multi-arm bandit Problem

- A gambler stands in front a slot machine with *n* levers.
- Each lever emits a reward of unknown distribution.
- Goal: maximise lifetime rewards

Thompson Sampling

Algorithm 1 Thompson sapmling

```
1: procedure ThompsonSampling(\mathcal{R}, \mu, \sigma, \tau)
          for each t \in \{1, 2, ..., n\} do
 2:
               for each r \in \mathcal{R} do
 3:
                     \nu_r' \leftarrow \text{draw a sample from } N(\mu_r, \sigma_r)
 4:
               end for
 5:
 6:
               r_* \leftarrow \operatorname{argmax} \nu_r'
                          r \in \mathbb{R}
                Observe reward w<sub>*</sub>
 7:
 8:
               Update \mu_*
               Update \sigma_*
 9.
          end for
10:
11: end procedure
```

Learning Curves with Random Sampling

Learning Curves with Acive Learning

Balanced Pool with Logistic Regresion

Learning Curves with Active Learning

Unbalanced Pool with Logistic Regresion

Heuristic Selection

VST ATLAS, Unbalanced, Logistic Regression.

Drifting Rewards

VST ATLAS, Unbalanced, Logistic Regression.

Concluding Remarks

- Dynamic Thompson Sampling approach to address the reward drifting problem
- Theoretical analysis of convergence.
- Batch active learning.