Tom Stewart | Curriculum Vitae

I'm originally from Australia but I've been living in Tokyo for the last four years after being awarded a MEXT Scholarship to study my Masters at the University of Tsukuba. My background is in Mechatronic Engineering and I'm particularly interested in robotics and programming. I worked on a flying car straight after finishing my undergraduate and I studied the brain as part of my Master's degree. The combination of those two experiences led me to become fascinated with the way that the brain solves motion control problems. I believe that by drawing on concepts from brain science and by extension bio-inspired learning algorithms (particularly reinforcement learning), robots can self-learn complex motion tasks that currently can only be performed by humans.

tldr; Mechatronic Engineer with a strong programming background, interested in applying reinforcement learning to robotics

Technical Background in a Nutshell

O Robotics:

- 3 years experience developing practical robotic systems including a flying car and an autonomous drone system.
- Experience with robot middleware frameworks including ROS and Player/Stage.
- Familiar with programming for embedded systems (mainly Cortex-M and AVR architectures), FreeRTOS and low level peripheral interface over CAN, I2C, UART etc.
- Comfortable with implementing and tuning feedback control algorithms including PID and state space controllers.

• Programming:

- Very comfortable with C++ including most of the C++11 standard
- Proficient in Python including the common modules for data processing and visualisation (NumPy, Tensorflow, Matplotlib)
- Familiar with the implementation, memory and time complexities of common data structures and algorithms (linked lists, search trees, hash maps, quicksort etc)
- Miscellaneous experience with Matlab, C#, Java, Objective-C and Visual Basic

Machine Learning:

- Implemented a Deep Q-Network and Deep Deterministic Policy Gradients to solve classic control problems from the OpenAI gym.
- Implemented a Self Organising Map to cluster photographs into a collage based on average colour
- Knowledgeable about neuroscience through participation in the RIKEN Brain Science Training Program as well as a considerable amount of spare time spent Exploring the Brain.

Education

University of Tsukuba

Masters of Engineering (Intelligence and Interaction Technologies)

2014–2017
Perth, Australia

Curtin University

Bachelor of Engineering (Mechatronic Engineering) with First Class Honours

2006-2011

Ibaraki, Japan

Career History

Rapyuta Robotics

Tokyo, Japan *March 2017–Present*

Mechatronic Engineer & Team Lead, Embedded Software Systems Team

Rapyuta Robotics is a Tokyo-based start up aimed at developing a cloud computing platform for controlling and automating robots. I lead a team of six engineers developing a model application of the cloud platform; a drone system capable of autonomously flying predefined missions, reporting sensor data to the cloud and precisely landing on a docking station for recharging.

- Coordinated the development and release of new features including automated drone assembly diagnostics and enhancements to auto-landing.
- Identified and troubleshot bugs across the entire spectrum of the drone system; from high level orchestration logic written in Python to smart battery firmware written in C.
- Re-architected the data pipeline between the drone and its ground station to incorporate a radio module which tripled the drone's communication range.
- Wrote Python and C++ ROS nodes to interface with sensors and actuators in the drone's docking station

RIKEN Brain Science Institute

Saitama, Japan

Research Associate, Laboratory for Advanced Signal Processing

January 2016-February 2017

The Advanced Brain Signal Processing Laboratory developed and applied machine learning techniques to analyse brain activity data collected using EEG (brainwaves), fMRI and microscopy.

- Applied Non-negative Matrix Factorisation to extract neurons and their firing behaviour from videos taken of the brains of mice with Alzheimer's disease.
- Extracted features from EEG data using Common Spatial Patterns and used Linear Discriminant Analysis to label them as indicative of a different states of sensory attention.

Quisitive Pty Ltd Perth, Australia

Mechatronic Engineer, Flight Control Team

January 2012-February 2014

Quisitive developed flight control software for the Hoverpod; a single-seated flying vehicle designed to vertical takeoff and and maneuver at an altitude of 5 metres. As one half of the flight control team, I wrote control algorithms to stabilise the craft during flight.

- Designed an optimal state space controller with state estimation to control the craft's attitude during flight
- Implemented and tuned PID control loops for yaw and rotor speed control
- Wrote baremetal C++ on an LPC1769 cortex-m3 microcontroller to interface the flight computer with the craft's sensors and actuators.

Open Source Contributions

- o Arduino: Contributed the following libraries which are available through the library manager
 - StateSpaceControl: an implementation of a multi-input, multi-output state space feedback controller with state estimation, reference tracking and integral control
 - BasicLinearAlgebra: a template library for representing matrices and performing simple linear algebra.
 - Geometry: a set of classes to represent and manipulate 3D rotation matrices and coordinate transformations to simplify algorithms involving inertial sensors and robot arms.
 - Callback: an implementation of the Signals and Slots pattern to allow multiple delegates to subscribe to a single callback function.
- **OpenViBE:** Contributed a driver plugin called gtec-bcilab which adds Linux support for the g.USBAmp, a common research grade EEG amplifier.

Publications

o Stewart, T, Rutkowski T. M. (2016) Motor Priming as a Brain Computer Interface. The 23rd International Conference on Neural Information Processing (ICONIP)

Languages

English: : Native Japanese: JLPT N3