OSI Model

- 1. P= Physical- data cables, cat 6
- 2. D= Data- Switching, Mac Addresss
- 3. N= Network- IP addresses, routing
- 4. T= Transport- TCP/UDP
- 5. S= Session- Session management
- 6. P= Presentation- WMV, JPEG, MOV
- 7. A= Application- HTTP, SMTP

Please Do Not Throw Sausage Pizza Away

Subnetting

Allows number of hosts for a network by locking in the static and dynamic bits

```
wlan0: flags=4163<UP,BROADCAST_RUNNING_MULTICAST> mtu 1500
inet 192.168.232.121 netmask 255.255.255.0 broadcast 192.168.232.255
inet6 fe80::2598:38a3:b85c:a1d8 prefixlen 64 scopeid 0×20link>
inet6 2402:3a80:4398:a43:259b:48c5:202d:3a32 prefixlen 64 scopeid 0×0<global>
ether 58:6c:25:f8:6e:2a txqueuelen 1000 (Ethernet)
RX packets 1222786 bytes 1510168152 (1.4 GiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 220171 bytes 57192755 (54.5 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Structure of netmask:

4	Α	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0	PQ	R	S	Т	U	٧	W	X	YZ	AA	AB	Α	CAI	D	AE A	AFA	(Al	AI	AJ	AK	AL
1	128	64	32	16	8 6	4	2	1		128	64	32	16	8	4	2 1		128	64	32	16	8	4	2 1		128	6	4 3	2 :	16	8 4	2	1			
2	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1 1		1	1	1	1	1	1	1 1		0		0	0	0	0 0	0	0		/24	
3									255	5							255								255									0		
4																																				
5																																				
6																																		Hosts	2^8	
7																																		Hosts	256	
8																																			¢	

same structure as ip address (octals), but the bits can only be turned on in order.

The turned on bits are fixed and cannot be changed by any nic or networking device, ex: wifi devices cannot be assigned to these addresses/ any protocol cannot modify these values.

for ex: a wifi base address with 192.168.232.0 and netmask 255.255.255.0 signifies the first 24 bits are turned on (all 255) hence when assigning ip address, these cannot be changed. i.e 192.168.232 are fixed values and cannot be changed by router or anything.

hence the effective address that can be allocated to devices on the network are 192.168.232.0-255 i.e 256 hosts (2^8 as the last 8 bits are left unset and these places can be used) hence 254 devices can be connected to this network (first and last address are reserved for network id and broadcast)

since the first 24 bits are set, the address and the subnet can be represented as: 192.168.232.0/24 where the /24 signifies the number of set bits.

ex: 192.168.0.0/23 signifies only 23 bits are set, i.e: 111111111111111111110.00000000=255.255.254.0

therefore (2^9) 512 hosts can be accomodated out of which the last decimal can range from 0-255 $(2^8$ unset bits) and the 2nd last can range 0-1 $(2^1$ unset bits)

hence possible ip ranges are 192.168.0.0-255, 192.168.1.0-255

	1	2	3	4	5	6	7	8 255.	0.0.0	1
	9	10	11	12	13	14	15	16 255.	255.0.0	
	17	18	19	20	21	22	23	24 255.	255.255.0 o	Structure of
	25	26	27	28	29	30	31	32		subnet masi
Hosts	128	64	32	16	8	4	2	1	No. of	unset bits
Subnet	128	192	224	240	248	252	254	255	Corn	esponding subnet
									mas	cvalue

		The Cyb	er Mentor's	Subnetting	Sheet									
				Subnet x	.0.0.0									
CIDR	/1	/2	/3	/4	/5	/6	/7	/8						
Hosts	2,147,483,648	1,073,741,824	536,870,912	268,435,456	134,217,728	67,108,864	33,554,432	16,777,216						
Class A	Subnet 255.x.0.0													
CIDR	/9	/10	/11	/12	/13	/14	/15	/16	l					
Hosts	8,388,608	4,194,304	2,097,152	1,048,576	524,288	262,144	131,072	65,536	l					
Class B		Subnet 255.255.x.0												
CIDR	/17	/18	/19	/20	/21	/22	/23	/24	l					
Hosts	32,768	16,384	8,192	4,096	2,048	1,024	512	256	I					
Class C		Subnet 255.255.x												
CIDR	/25	/26	/27	/28	/29	/30	/31	/32	l					
Hosts	128	64	32	16	8	4	2	1	l					
Subnet Mask (Replace x)	128	192	224	240	248	252	254	255						
iotes:		ach increment o												
		t 2 from host tot	al:											
	Network ID - Fi													
	Broadcast - Las	t Address				Subnet	Hosts	Network						
					192.168.1.0/24	255.255.255.0	254	192,468.1.0	1/2					

Addresses

IP Address

ifconfig

```
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 :: 1 prefixlen 128 scopeid 0×10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 67453 bytes 5515653 (5.2 MiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 67453 bytes 5515653 (5.2 MiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlan0: {lags=4163<UP.BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.232.121 netmask 255.255.255.0 broadcast 192.168.232.255
       inet6 fe80::2598:38a3:b85c:a1d8 prefixlen 64 scopeid 0×20<link>
       ether 58:6c:25:f8:6e:2a txqueuelen 1000 (Ethernet)
       RX packets 1222786 bytes 1510168152 (1.4 GiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 220171 bytes 57192755 (54.5 MiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

layer3 of osi model (router)

public and private ip addresses exist, translation is done by NAT

ipv4

Decimal notation

1 and 0 put together for human readable format

approx 4 billion addresses (2^32), almost all are used up, hence we use NAT

ipv6

hexadecimal notation (128 bits, possible combinations, 2^128)

Network Address translation

PRIVATE IP ADDRESS (are not used anywhere on public internet, reserved for private LANs)												
Network Class	Network Numbers	Network Mask	No. of Networks	No. of Hosts per Network								
CLASS A	10.0.0.0	255.0.0.0	126	16,646,144								
CLASS B	172.16.0.0 to 172.31.0.0	255.255.0.0	16,383	65,024								
CLASS C	192.168.0.0 to 192.168.255.255	255.255.255.0	2,097,151	254								
LOOPBACK (localhost)	127.0.0.0 to 127.0.0.7	255.255.255.0										
960 x 726												

Translates private address to public address since limited number of ipv4 address available various private address are interfaced to single public address using nat public addresses are brought by various organisation such as isp

MAC Address

Media access control

physical address: comes with network interface cards(nic) and allows for physical switches to read and transport messages

Layer 2 (switching)

MAc Adddress: first three pairs are identifiers, i.e: 58:6c:25

Intel Corporate

Protocols

Layer 4 of the OSI model (transport layer)

utilizes ports for communication (65k+ ports)

TCP

 $Transmission\,control\,protocol$

connection oriented . ex: http, https, ftp, ssh

Works on <u>3 way handshake</u>

UDP

User datagram protocol

Connection less, ex: voip, dns

3 way handshake

SYN > SYN ACK > ACK

SYN: Synchronize (initiate connection)

ACK: Acknowledge

Common Ports and Protocols

- TCP
 - FTP (21)
 - SSH (22)
 - Telnet (23)
 - SMTP (25)
 - DNS (53)
 - HTTP (80) / HTTPS (443)
 - POP3 (110)
 - SMB (139 + 445)
 - IMAP (143)

- UDP
 - DNS (53)
 - DHCP (67, 68)
 - TFTP (69)
 - SNMP (161)

ARP

Address resolution protocol