General overview

- 1. Description of program
 - a. Disk based approach
 - i. Made use of the DSK algorithm
 - ii. Dispatch to disk done by splitting kmers into multiple lists (folders). Further splitting done for each list into multiple sublists (txt files) where a set of kmers is stored in each sublist
 - iii. Carry out kmer counting for each sublist using a memory-based approach
 - b. Memory-based approach
 - i. Made use of the counting bloom filter algorithm to carry out kmer counting
 - c. Output
 - i. Folder containing list and sublists used
 - ii. Output txt file containing the kmers that occur at least q times and its respective count
 - d. Memory used
 - i. Uses more than 1M byte memory
 - ii. Uses about $x * 10^8$ byte memory

Methods implemented

- 1. CountingBloomFilter class
 - a. Variables initialised
 - i. int m: the number of kmers in the file to be counted
 - ii. int k: the number of hash functions needed
 - iii. int[] CountBF: the hash table (in the form of an integer array)
 - iv. int n: size of the hash table, CountBF
 - b. Methods
 - i. emptyBF(int m)
 - 1. Purpose: To create an empty counting bloom filter
 - 2. Algorithm
 - emptyBF() takes in 1 parameter m, which represents the number of kmers in the file
 - Initialise a false positive rate (ϵ)
 - Using the false positive rate and m, calculate

$$n = -\frac{mln\epsilon}{(ln2)^2}$$

• Using n and m, calculate

$$k = \frac{n}{m} \ln 2$$

- Initialise the hash table using *n*
- 3. Complexity of algorithm
 - a. Time complexity: O(1)
 - i. Constant time to calculate the variables, no matter the input m
 - b. Space complexity: $O\left(-\frac{mln\epsilon}{(ln2)^2}\right) = O(n)$
 - i. Since the variables *n*, *k* are evaluated once, the space required is constant
 - ii. However, the size of CountBF depends on input m. As m increases, the size of CountBF increases, depending on the value of n calculated

- ii. insert(int w, int[] CountBF)
 - 1. Purpose: insert an element (in the form of an integer) into the counting bloom filter

2. Algorithm

- insert() takes in 2 parameters, an integer w representing the element to be inserted and an integer array CountBF representing the hash table
- To hash the element into the hash table, k hash functions are required
 - o 1st hash function (hf0): w%n
 - o 2^{nd} hash function (hf1): $w^2\%n$
 - Remaining (k-2) hash functions will take the form (hf0 + ihf1)%n, from i=1 to i=k-2 [1]
- Let *v* be the hash value obtained from each hash function
 - \circ Increment the count at the v^{th} position of CountBF
 - i.e. CountBF[v] += 1
- 3. Complexity of algorithm
 - a. Time complexity: $O\left(\frac{n}{m}\ln 2\right) = O(k)$
 - i. For any element being inserted into the counting bloom filter, the time taken depends on the number of hash functions needed. Since k changes depending on the input m, the time required to insert an element increases as m increases.
 - b. Space complexity: O(n)
 - i. Similar to that of emptyBF()

- iii. Query(int w, int[] CountBF)
 - 1. Purpose: query the count of the element in the counting bloom filter
 - 2. Algorithm
 - Query() takes in 2 parameters, an integer w representing the element to be inserted and an integer array CountBF representing the hash table
 - To find the positions in the hash table where the element would be hashed, use the same hash functions as in insert()
 - Initialise an integer variable, min_count to be the value of the 1st hash function (hf0) in CountBF
 - o i.e. min_count = CountBF[hf0]
 - **if** 0 < CountBF[hf1] <=min_count
 - o min_count = CountBF[hf1]

end if

- Since we have checked the value for the 1st and 2nd hash functions, initialise a counter to represent the number of hash functions that we have yet to check through (i.e. the remaining k-2 hash functions)
- **While** (min_count>0 and counter<k-2)
 - o for the remaining (k-2) hash functions, newHF
 - **if** (0<CountBF[newHF]<=min_count)
 - min_count = CountBF[newHF]
 - counter += 1
 - else if (CountBF[newHF] > 0 and CountBF[newHF]>min count)
 - min_count remains the same
 - counter +=1
 - else
 - Element not present, min_count = 0
 - while loop breaks

end if else

end while

- return min_count
- 3. Complexity of algorithm
 - a. Time complexity: O(k)
 - i. Similar to that of insert()
 - b. Space complexity: O(n)
 - i. Similar to that of emptyBF()

- 2. convertRead(String kmer)
 - a. Purpose: convert a kmer into a unique value to be hashed into the counting bloom filter
 - b. Algorithm
 - i. Initialisation
 - 1. length as the length of the kmer
 - 2. Scores for each nucleotide base
 - a. e.g. $score_a = 0$
 - 3. int_value_kmer = 0 as the unique value of the kmer
 - ii. **for** i in range(0, length)
 - 1. Calculate the score of a nucleotide based on its score and its position in the kmer
 - 2. Add the score into int_value_kmer

end for

- iii. return int_value_kmer
- c. Complexity of algorithm
 - i. Let k be the length of the kmer
 - ii. Time complexity: O(k)
 - 1. The time required to compute the unique value of a kmer will depend on the length of the kmer (based on the for loop). Hence, as *k* increases, the time required increases.
 - iii. Space complexity: O(1)
 - 1. int_value_kmer takes constant space

- 3. canonicalForm(String str)
 - a. Purpose: convert a kmer into its canonical form
 - b. Algorithm
 - i. Initialisation
 - 1. Length as the length of the kmer
 - 2. canonical_form as the canonical form of the input kmer
 - ii. if str contains "n" or "N"
 - 1. Ignore kmer
 - iii. else
 - 1. **for** loop to convert kmer into lowercase letters
 - a. Store positive strand as the variable "kmer"

end for

- 2. **for** loop to get the reverse complement of kmer
 - a. Store reverse complement as the variable "reverse" end for
- 3. Find the canonical form
 - a. Initialisation
 - i. score_kmer as the score of the positive strand kmer
 - ii. score_reverse as the score of the reverse complement
 - b. if the kmer and reverse are the same
 - i. canonical form = kmer
 - c. else
 - i. **for** i in range (0, length)
 - 1. Get the ACSII score of the character at position i for kmer and reverse
 - 2. Add the respective ACSII score to score_kmer and score_reverse
 - 3. **if** (score_kmer<score_reverse)
 - a. kmer has a smaller value and is the canonical form
 - b. canonical_form = kmer
 - c. break for loop
 - 4. **else if** (score_kmer>score_reverse)
 - a. reverse complement has a smaller value and is the canonical form
 - b. canonical_form = reverse
 - c. break for loop
 - 5. else
 - a. Scores are the same (meaning that the nucleotide bases are the same so far)
 - b. continue

end if else

end for

end if else

end if else

iv. return canonical_form

- c. Complexity of algorithm
 - i. Let *k* be the length of the kmer
 - ii. Time complexity: O(k)
 - 1. for loop converting kmer into lower case take O(k) time
 - 2. for loop to get the reverse complement takes O(k) time
 - 3. for loop to calculate the kmer and reverse complement score takes O(k) time
 - 4. total time = O(k) + O(k) + O(k) = O(3k) = O(k)
 - iii. Space complexity: O(k)
 - 1. the string "kmer", "reverse" and "canonical form" depend on the length of the kmer. As k increases, the space required for each variable increases

References

1. Kirsch, A. and M. Mitzenmacher, *Less hashing, same performance: Building a better Bloom filter.* Random Structures & Algorithms, 2008. **33**(2): p. 187-218.