Harvard-MIT Division of Health Sciences and Technology

HST.535: Principles and Practice of Tissue Engineering

Instructor: I. V. Yannas

Collagen-GAG scaffolds for organ regeneration processes

Prof. I. V. Yannas MIT

Reference: I.V.Yannas, *Tissue and Organ Regeneration in Adults*, Springer, 2001

Analogs of extracellular matrix

Figure by MIT OCW. After Ricci.

Question to answer: Why use collagen-GAG scaffolds to induce organ regeneration?

Study requirements for organ synthesis in vivo. Use chemical symbolism to simplify analysis.

Information stored in a chemical equation

Ammonia synthesis (F. Haber)

$$^{T, P}$$
 $3H_2 + N_2 \rightarrow 2NH_3$

reactor

reactants → products

NOTE: The stoichiometry (masses on both sides) of a chemical equation expresses conservation of mass (Lavoisier)

Problems and advantages of chemical symbolism

- No stoichiometric data currently available!
 How many cells? What is concentration of
 cytokine X? Ligand density? "Reaction
 diagrams", not chemical equations.
- Neither reactants nor products currently have standardized, time-invariant structure, as do chemical compounds.
- BUT gain rapid estimate of minimum requirements for synthesis of tissues and organs.
- Look for similarities between different organs (e.g., skin vs. nerves).

Transition to biology I. Reactants

- <u>Cells</u> migrate, proliferate, synthesize matrices and cytokines, degrade matrices, etc.
- Cytokines and growth factors are soluble molecules that diffuse. They serve as "language" between cells.
- Matrices are insoluble macromolecular networks and do not diffuse. They control cell behavior (phenotype) via integrinligand binding. Usually porous ("scaffolds").

Transition to biology II. Reactors

- In vitro reactors are dishes or flasks for cell culture.
- In vivo reactors are anatomical sites of organ loss in the living organism.
- Experimental in vivo reactors are generated by surgical excision (scalpel, laser, etc.).
- When organ synthesis takes place in vivo at the correct anatomical site of living organism it is referred to as "induced regeneration".

Skin: In vitro or in vivo synthesis?

IRREDUCIBLE PROCESSES FOR SYNTHESIS OF SKIN AND PERIPHERAL NERVES (A) In Vitro Synthesis Remodeled & Regenerated Culture Host Cells Soluble Tissue bi-layer & Insoluble Regulators Remodeled & Regenerated Host Cells (B) In Vivo Synthesis Scaffold

Figure by MIT OCW.

Nerves: In vitro or in vivo?

Figure by MIT OCW.

Standardized reactors

Figures by MIT OCW.

Transition to biology. III. Products

- Organs are made up of tissues.
- Products of the synthesis can be tissues or organs.
- Almost all organs are essentially made up of three types of tissues: epithelial, basement membrane and stroma (connective tissue).

Members of the tissue triad

EPITHELIA
 100% cells. No matrix. No blood vessels.

BASEMENT MEMBRANE
 No cells. 100% matrix. No blood vessels.

STROMA (CONNECTIVE TISSUE)
 Cells. Matrix. Blood vessels.

The tissue triad in skin and nerves

The central question in organ synthesis

Which tissues in the triad do <u>not</u> regenerate spontaneously?

- When excised from an organ, the <u>epithelia</u> are regenerated spontaneously.
 Examples: the epidermis in skin, the myelin sheath in nerves.
- Likewise, the <u>basement membrane</u> regenerates spontaneously on the stroma.
- However, the <u>stroma</u> does not regenerate spontaneously. Examples: dermis in skin, endoneurium in nerves.

SKIN: The epidermis regenerates spontaneously

Epidermis lost. Dermis intact.

Spontaneous regeneration

Figure by MIT OCW.

SKIN: Scar formation. The dermis does not regenerate.

Epidermis <u>and dermis</u> both lost to severe injury

Closure by contraction and scar formation

NERVE: The injured myelin sheath regenerates spontaneously

Figure by MIT OCW.

Neuroma (scar) formation. The endoneurium (stroma) does not regenerate.

Figure by MIT OCW.

Intact nerve fiber

Photo removed for copyright reasons. See Figure 2.5 in Yannas, I. V. *Tissue and Organ Regeneration in Adults*. New York: Springer, 2001. ISBN: 0387952144.

Spontaneously healed nerve fiber (scar)

The central question is...

- Epithelia and basement membrane (BM) are synthesized from remaining epithelial cells.
- The <u>stroma</u> is not synthesized from remaining stromal cells. Instead these cells induce closure of the injury by contraction and synthesis of scar.
- Therefore, the central question in organ synthesis is how to synthesize the stroma.
- Once the stroma has been induced to synthesize, epithelial cells can spontaneously synthesize both epithelia and BM over it ("sequential" synthesis).

Which reactants are <u>required</u> to be supplied by the investigator to synthesize an organ?

Use empirical trans-organ rules to find requirements for addition of cells, scaffolds and growth factors

Required vs. redundant reactants

- Investigators typically supply (add) reactants based on favored hypotheses. Often, reactants supplied are not required to synthesize tissue or organ.
- In vitro all reactants, including culture medium, are supplied by investigator.
- In vivo the reactor spontaneously supplies exudate that contains certain reactants (endogenous reactants). The investigator supplies other reactants (exogenous).
- What are the minimal reactants that suffice to synthesize a tissue or organ? These are the "required" reactants.

Finally answer question: Why use collagen-GAG scaffolds to induce organ regeneration?

Based on data from synthesis of skin and peripheral nerves:

- Synthesis of <u>epithelia</u> can be accomplished in vitro (does not require in vivo environment). It simply requires supply of epithelial cells and culture medium. Scaffold not required.
- Synthesis of <u>stroma</u> has only been accomplished in vivo. It requires supply <u>only</u> of an appropriate scaffold. Addition of stromal cells (e.g., fibroblasts) or growth factors (e.g., TGF-β, PDGF) is not required.
- An appropriate scaffold is required for <u>organ</u> synthesis. Epithelial cells speed up synthesis. Stromal cells (e.g., fibroblasts) or growth factors need not be added.

Various synthetic routes

Route 1: Sequential synthesis

Stroma synthesized first using appropriate matrix (regeneration template). Epithelia and basement membrane both synthesized spontaneously later in contact with the new stroma by endogenous epithelial cells.

Route 2: Simultaneous synthesis

All three tissues can be simultaneously synthesized using template seeded with epithelial cells.

Route 3: Modular organ synthesis? Synthesize each tissue in separate reactor, then combine.

Synthesis of active ECM analogs:

--- lonic complexation of collagen/GAG.

--- Formation of pore structure.

--- Crosslinking.

Figure by MIT OCW.

Which collagen-GAG scaffolds are biologically active as regeneration templates?

Critical Structural Feature	Role in regeneration
A. SKIN	
Chem. Composition >2% GAG	Ligand identity
Deleted collagen quaternary structure	Downregulation of contractile cells
Pore diameter 20—120 μm	Ligand density
Degradation half-life 10-15 d	Duration of ligands
B. NERVE	
Chem. Composition	[not studied]
Deleted collagen quaternary structure	[not studied]
Pore diameter ~ 5 μm	Ligand density
Degradation half-life ~ 1-10 wk	Duration of ligands

Mechanism of regenerative activity of collagen-GAG scaffolds

- 1. Certain ECM analogs are biologically active scaffolds (regeneration templates) that induce regeneration of tissues and organs: skin, peripheral nerve and the conjunctiva (eye) in humans and experimental animals.
- 2. Regeneration templates lose their activity if the following structural features fall outside a narrow range: chemical composition, collagen quaternary structure, pore diameter, degradation rate.
- 3. The data suggest that templates induce regeneration in a defect by blocking selectively the contraction process that leads to closure of the defect in adults.
- 4. Templates block contraction by two basic mechanisms. First, by downregulating differentiation of fibroblasts to myofibroblasts. Second, by binding most of the contractile cells in the defect over a period corresponding to the duration of contraction in that defect. Binding requires the presence of appropriate ligands (chem. composition) at a minimal density (pore diameter) over a critical duration (degradation rate).

Summary

- 1. Of three types of tissue in an organ only stroma fails to regenerate spontaneously and needs to be induced to synthesize. Epithelia and basement membrane regenerate spontaneously.
- 2. There are three classes of "reactants", i.e., cells, scaffolds and growth factors. Of these only an appropriate scaffold must be added to synthesize the stroma.
- 3. The appropriate scaffold (regeneration template) is synthesized to have the composition of an analog of the extracellular matrix, pore size within a critically defined range and degradation rate that matches the rate of tissue synthesis at the organ site.