

科学研究工作开展方式

---面向初入此道的研究生们

张林

- ■总体原则
- ■具体举措

■总体原则

■具体举措

向前辈请教

当不知如何下手时,向优秀的前辈学习和请教会有意想不到的收获

- 1. 张天骏 (ACM MM 2021, TOMM2027)
- 2. 邵玄 (ACM MM 2020, TCSVT2022)
- 3. 朱安琪 (ACM TOMM 2021)
- 4. 赵世雨 (TIP 2020, TIP 2021)
- 5. 黄君豪 (TIP 2018)
- 6. 张荔郡 (ACM MM 2019)
- 7. 刘潇 (ACM MM 2019)
- 8. 李力达 (PR 2017, T-MM 2016)

共性特点

- ✓ 积极主动工作,而不是被动接受指令
- ✓ 勤于思考,善于挖掘和分析问题本质
- ✓ 敢于面对失败,善于总结经验和教训
- ✓ 勤于实践探索,而不总是在看别人论文
- ✓ 做事不嫌麻烦,有良好的持续性的耐力
- ✓ 良好的与人沟通协作的能力

请调整心态,科研是一件令人开心的事情◎

科研工作是一件令人开心的事情,是充满乐趣的,不能把这项工作当成负担!! 如果你不认为如此,请调整你的心理和心态,直到你发自内心地认同这一点☺

- 推导出了一个数学公式
- 给别人讲明白了一项内容
- 搞清楚了一个问题
- 找到了一个bug
- 改进了一个算法的性能
- 完成了一个很酷炫的系统
- 研究成果被接收和认可
- ••••

是不是很开心?

科研工作的底线: 自己要觉得所从事的工作有价值, 过的开心!

要全身心地投入时间和精力

少一些让你分心的杂事,心无旁骛,至少保证90%的时间和精力要投入在这上面

以我自己为例:

读博士、讲师、副教授期间,每天8:30~22:30在岗,平均每周6天,寒暑假不休

10000小时定律

一万小时定律是作家格拉德威尔在《异类》一书中指出的定律。"人们眼中的天才之所以卓越非凡,并非天资超人一等,而是付出了持续不断的努力。1万小时的锤炼是任何人从平凡变成世界级大师的必要条件。"他将此称为"一万小时定律"

不能嫌麻烦

口 科研工作的开展不可避免地要有一些现实的"麻烦事儿"需要处理

- ✓ 设备或者传感器选型与调试,定制设计的加工
- ✓ 数据的采集与标注
- ✓ 做对照实验时,要复现别人的工作

手机掌纹数据,200个人,左右手,2部手机,采集2批次

12000+泊车位图像,覆盖多种路面材质、天气条件、光照条件、车位类型

去雾性能度量数据集,1200+图像对 ,像素级别标注

不能嫌麻烦

口 科研工作的开展不可避免地要有一些现实的"麻烦事儿"需要处理

- ✓ 设备或者传感器选型与调试,定制设计的加工
- ✓ 数据的采集与标注
- ✓ 做对照实验时,要复现别人的工作

看看前辈们忙碌的身影

"麻烦事儿"是常态化工作,深吸一口气,逐一击破之!

厚积薄发,正确认识自己研究所处阶段

- 口 研究成果 (论文) 的产出不是与时间成线性关系的
- 口 工欲善其事,必先利其器
 - ✓ 全面掌握与你这个研究方向相关的数学工具、理论工具、编程工具
- □ 2年甚至3年没有任何产出是正常的,但这绝不意味着你毫无进展
 - ✓ 深刻理解了研究问题
 - ✓ 掌握该领域别人做到什么程度了
 - ✓ 复现主流方案
 - ✓ 从不断失败的尝试中汲取经验教训
 - ✓ 从论文不断被reject的消息中磨练意志和心性

要做到对你这个研究领域没有人比你更懂它!

厚积薄发,总有一天,你将一飞冲天,鲤鱼跃龙门!

周期性地做Literature Survey

ロ 文献阅读是你的daily life

- ✓ 挖掘研究方向
- ✓ 了解相关领域研究动态
- ✓ potential solution的来源
- ✓ 这个领域的论文长成什么模样

口 文献调研方式

✓ 纵向: 跟踪某些固定期刊或会议, IJCV, TPAMI, TRO, CVPR, ICCV

✓ 横向:不定期看看你所关注的大牛学者们最近在干些什么

作为一名学者,需要定期literature survey,不然会感觉心虚发毛!

别对导师抱有太大期待⊗

- □ 很不幸,对于研究过程中非常具体的问题,导师几乎无法帮你⊗
- □ 那导师是干啥用的?
 - ✓ 导师有价值的东西在于他的经验,导师的具体知识结构没什么用,too old了
 - ✓ 导师帮你:找个座位、提供经济支撑、规划好周期、评估某个工作适合什么级别的会议期刊、告诉你论文要写成什么样子才像是个论文、教你写response letter、揣摩审稿人心里状态、指出你的缺点(各方面的)、程序员鼓励师(督促你,给你打气加油!)

网友回答:

简单说,搞定研究生以学生身份搞不定的学术圈问题

- 申请经费
- 搞定杂志编辑
- 搞定审稿人/评审
- 搞定科研合作
- 提供推荐信帮忙搞定面试评审专家

要培养洞察力,不要人云亦云

- 口 不要落入窠臼,要培养怀疑精神和批判精神
- □ 多动手实践,挖掘出现有工作中的本质问题和死穴,这样才能激发出创新点和 灵感

许多初入此道的学生经常会说: 老师,你给我布置的这个研究方向已经有很多其他人在做了,好像很难挖掘出新意和创新点了.....

你并没有对此领域进行了全面深入调研与文献梳理! 你并没有对此领域的主流方案进行过实践或者复现! 你并没有对此领域的关键问题进行过深入思考!

能否假想一下,我让你去做人脸识别方向?你会如何做?

可多尝试领域交叉思路

- 口 领域交叉是一个值得尝试的思路
- 口 可以尝试把新的数学模型、物理模型、生理模型引入到你的方案中

尝试"造新问题"

□ 挖掘你领域中的新问题(或设定新的细分工作场景)比做方法增量式改进更容易出成果,有时要学会"给研究问题加上定语"或"造新问题"

✓ DeepPS (TIP 2018) 、Ground-Camera model (ACM MM 2019)、VISSLAM (ACM MM 2020)、BeDDE (TIP 2020) 、ROECS (ACM MM 2021) 这些论文解决的都是我们根据实际应用场景"造出来的问题"

必须深入一线,多实践,对你这个领域非常熟稔,才能"造出新问题"

创新点与贡献点

- 口 一篇优秀的论文当然要有创新点或者贡献点
- 口 但创新过程是循序渐进的,不可能一下子就有一个很大的breakthrough的创新点

创新点从哪里来?

类别	描述	举例
新问题	随着新系统、新技术的诞生,必然会不断 产生新的应用场景、新的约束条件、新的 需求,这必然会催生新的技术问题	网络会议条件下,人脸图像质量的自动化客观评价(ICONIP 18)
		面向移动应用支付环境的非接触式掌纹识别 (ICME 2019)
		环视相机系统的在线动态补偿 (ACM MM 19, ACM MM 21)
		去雾霾算法性能的客观化度量 (TIP 20)
		泊车位图像数据集的虚拟仿真与真实性增强 (ICME 20)
		融合环视语义信息的紧耦合SLAM (ACM MM 20)
新方法	问题是标准化的老问题,我们可以提出新的解决方案,在某些方面能够比之前的方 法做的更好	基于DCNN的泊车位识别 (TIP 18)
		基于稀疏表示分类框架与块特征的三维掌纹分类(TPAMI 15)
		面向图像去雾霾问题的若监督学习框架 (TIP 21)
		基于自然场景统计模型的NR-IQA方法 (TIP 15)

创新点与贡献点

类别	描述	举例
新系统	有潜在应用价值的新型系统,系统的整体 以及关键组成部分(算法模块)具有创新 性	三维环视相机系统 (ACM TOMM 21)
		非接触式掌纹掌纹识别系统 (PR 17)
		指关节纹识别系统 (PR 10)
新数据	采集并发布具有某些特殊属性或特性的数据集,供学术界公开使用	环视泊车位图像数据集 (TIP 18)
		来自真实世界的用于度量去雾霾算法性能的数据集 (TIP 20)
		高质量非接触式掌纹图像数据集 (PR 17)
		大规模多手机多采集段掌纹图像数据集 (ICME 19)
		面向图像曝光程度自动化度量的图像数据集 (ICME 18)

同一篇论文中的创新点 (贡献点) 可以属于不同类型

- ■总体原则
- ■具体举措

科研工作开展导图

科研工作开展导图

关于文献查找

- \Box 先只需找到这个领域最经典、流传最广泛的几篇代表性论文即可,构成集合C
- □ 利用Google Scholar,找到哪些论文引用了C里面的论文,这样便建立起来了这个领域的索引森林,即可窥知该领域当前研究全貌

关于文献查找

- □ 先只需找到这个领域最经典、流传最广泛的几篇代表性论文即可,构成集合*C*
- □ 利用Google Scholar,找到哪些论文引用了*C*里面的论文,这样便建立起来了这个领域的索引森林,即可窥知该领域当前研究全貌
- 口 文献浩如烟海,只需关注发表在顶刊、顶会上的文献即可,其他基本都是垃圾
 - ✓ 与我们相关的顶刊: IJCV, IEEE T-PAMI, IEEE T-IP, IEEE T-RO, Nature及其相关子刊
 - ✓ 与我们相关的顶会: CVPR, ICCV, NIPS, ECCV, ACM MM, ICRA
 - ✓ 国内团队的工作大部分还属于跟风式研究,创造力一般较弱,所以我个人当前还是倾向于看第一单位是国外名校的文献

科研工作开展导图

系统性基础理论与技术学习

- 口 创新工作不是空中楼阁,任何一个研究方向都有其相关基础理论与技术
- 口 基础理论与技术的学习必须是系统性的,不能是跳跃式的
- □ 当选定基础理论与技术书籍后,要耐心花时间啃完,磨刀不误砍柴功!
- 复变函数、积分变换、点集拓朴学、微分几何、现代泛函分析、变分法等都是我在博士期间自学的

三本宝典,至少要把第一本弄透,再开始做其他事情,否则做也是没章法的瞎做!

科研工作开展导图

实验设置与方案评测方法

- 口 研究生工作与本科生大作业相比有一些不同之处
 - ✓ 本科生完成的系统往往是只完成了功能,是不可度量的,也不会进行对照实验分析。
 - ✓ 研究生工作任务最终要落实到"创新性",这必须是可度量的、可对照的
- 必须要及时明确你这个任务最终的定量实验应该如何做?性能评测方案如何设计?数据集是什么?性能评价指标是什么?
- 一般应在做具体算法之前,要先把性能评测平台搭建好(数据集、性能评价指标计算方法)
 - ✓ 有利于及时评测文献中已有方案的性能
 - ✓ 有利于及时验证你的一些改进想法的可行性(看看想法是否有效,干万不要在单个样本上观察,一定要在制定好的验证集合上进行)
 - ✓ 写论文时候必然要描述评测平台和对照实验结果

对于一个问题,在解决它之前,先要做好评测方案,想清楚如何验证你将来的方法是 否解决了这个问题

科研工作开展导图

SOTA论文复现

- ロ 对于我们选定的SOTA方法
 - ✓ 如果作者提供了代码,你必须要知道它的全部,要做到理解每一行代码
 - ✓ 如果作者没有提供代码,要努力尝试做到精确复现
- □ 根据我的统计,对于某个具体子问题,你需要复现或逐行调试5个SOTA方法,你就比较深入的了解这个问题了,并且一定会有自己的新的想法了
- ロ 要始终带着怀疑与审视的目光
 - ✓ 是否是最合理的方式?
 - ✓ 某些假设是否具有普适性?
 - ✓ 是否是真正匹配你要解决的问题(假设条件、使用场景、约束条件、硬件条件、计算条件等)?

可以站在巨人的肩膀上,但别躺在他的肩膀上!

2021/6 **23** 星辛

星期三 辛丑年五月十四

没有哪个讲话、哪个演讲能够帮助我们更进一步。接下来,我们要做的只有一件事:行动,从日常生活的点滴做起。

维克多·E.弗兰克尔

Thanks!