

Транзакции. Триггеры.

Автор курса

Станислав Зуйко

MC ID: 12974808

После урока обязательно

Повторите этот урок в видео формате на ITVDN.com

Доступ можно получить через руководство вашего учебного центра

Проверьте как Вы усвоили данный материал на <u>TestProvider.com</u>

Тема

Транзакции. Триггеры.

Транзакции. Триггеры.

План

- 1. Транзакции
 - понятие транзакции
 - побочные эффекты параллелизма
 - уровни изолированности
- 2. Триггеры

Транзакции

Определение

Транзакция — группа последовательных операций с базой данных, которая представляет собой логическую единицу работы с данными. Если транзакция выполнена успешно, все модификации данных, сделанные в течение транзакции, принимаются и становятся постоянной частью базы данных. Если в результате выполнения транзакции происходят ошибки и должна быть произведена отмена или выполнен откат, все модификации данных будут отменены.

Существует два типа транзакций:

- 1. Неявные каждый оператор, такой как INSERT, UPDATE или DELETE выполняется в транзакции.
- 2. Явные группа инструкций языка Transact-SQL, начало и конец которой обозначаются такими инструкциями, как BEGIN TRANSACTION, COMMIT и ROLLBACK.

Определение

Свойства транзакций (ACID)

- 1. <u>Атомарность</u> (atomicity). Гарантирует, что никакая транзакция не будет зафиксирована в системе частично. Будут либо выполнены все её подоперации, либо не выполнено ни одной. Поскольку на практике невозможно одновременно и атомарно выполнить всю последовательность операций внутри транзакции, вводится понятие «отката» (rollback): если транзакцию не удаётся полностью завершить, результаты всех её до сих пор произведённых действий будут отменены и система вернётся исходное состояние.
- 2. <u>Согласованность</u> (consistency). Обеспечивает, что в результате выполнения транзакции база данных не будет содержать несогласованных данных. Иными словами, выполняемые транзакцией трансформации данных переводят базу данных из одного согласованного состояния в другое.
- 3. <u>Изолированность</u> (isolation). Во время выполнения транзакции параллельные транзакции не должны оказывать влияние на её результат. Изолированность требование дорогое, поэтому в реальных БД существуют режимы, не полностью изолирующие транзакцию (уровни изолированности Repeatable Read и ниже).
- 4. <u>Устойчивость</u> (durability). В случае системной ошибки (обесточивание системы или сбои в оборудовании) изменения, сделанные успешно завершённой транзакцией, должны остаться сохранёнными после возвращения системы в работу.

Транзакции

Побочные эффекты параллелизма

- <u>Потерянное обновление</u> (lost update) при одновременном изменении одного блока данных разными транзакциями одно из изменений теряется;
- <u>«Грязное» чтение</u> (dirty reads) чтение данных одной, добавленных или изменённых другой транзакцией, которая впоследствии не подтвердится (откатится);
- <u>Неповторяющееся чтение</u> (non-repeatable reads) при повторном чтении в рамках одной транзакции ранее прочитанные данные оказываются изменёнными;
- Фантомное чтение (phantom reads) одна транзакция в ходе своего выполнения несколько раз выбирает множество строк по одним и тем же критериям. Другая транзакция в интервалах между этими выборками добавляет или удаляет строки или изменяет столбцы некоторых строк, используемых в критериях выборки первой транзакции, и успешно заканчивается. В результате получится, что одни и те же выборки в первой транзакции дают разные множества строк.

Транзакции

Уровни изолированности

Проблема Уровень изолированности	Lost update (потерянное обновление)	Dirty reads («грязное» чтение)	Non-repeatable reads (неповторяемое чтение)	Phantom reads (чтение фантомов)
READ UNCOMMITTED	Предотвращает	Не предотвращает	Не предотвращает	Не предотвращает
READ COMMITTED	Предотвращает	Предотвращает	Не предотвращает	Не предотвращает
REPEATABLE READ	Предотвращает	Предотвращает	Предотвращает	Не предотвращает
SERIALIZABLE	Предотвращает	Предотвращает	Предотвращает	Предотвращает

Triggers

Триггеры

Триггер — это особая разновидность хранимой процедуры, выполняемая автоматически при возникновении события на сервере базы данных.

Существуют триггеры на события DDL и DML. Триггеры DML часто используются для применения бизнесправил и обеспечения целостности данных. События триггера DML: INSERT, UPDATE, DELETE.

Типы триггеров:

- <u>FOR или AFTER</u> триггер DML срабатывает только после успешного выполнения всех операций в инструкции SQL, запускаемой триггером.
- <u>INSTEAD OF</u> триггер DML срабатывает вместо инструкции SQL, используемой триггером, переопределяя таким образом действия выполняемой инструкции триггера.

Внутри триггера существует две служебные таблицы:

- inserted для события INSERT содержит строки, которые вставляются в целевую таблицу, для UPDATE строки с новыми данными, для DELETE – пустая;
- <u>deleted</u> для INSERT пустая, для UPDATE строки со старыми данными, для DELETE удаляемые строки.

Смотрите наши уроки в видео формате

ITVDN.com

Посмотрите этот урок в видео формате на образовательном портале <u>ITVDN.com</u> для закрепления пройденного материала.

Все курсы записаны сертифицированными тренерами, которые работают в учебном центре CyberBionic Systematics

Проверка знаний

TestProvider.com

TestProvider — это online сервис проверки знаний по информационным технологиям. С его помощью Вы можете оценить Ваш уровень и выявить слабые места. Он будет полезен как в процессе изучения технологии, так и общей оценки знаний IT специалиста.

После каждого урока проходите тестирование для проверки знаний на <u>TestProvider.com</u>

Успешное прохождение финального тестирования позволит Вам получить соответствующий Сертификат.

Q&A

Информационный видеосервис для разработчиков программного обеспечения

