- * Encoding: UTF-8.
- * Load the data.

GET FILE = 'self_esteem_gpa.sav.

>Error # 61 in column 12. Text: self_esteem_gpa.sav >The filename is not valid.

>Execution of this command stops.

* Descriptive statistics.

DESCRIPTIVES VARIABLES = Self_Esteem GPA

/STATISTICS = MEAN STDDEV MIN MAX.

Descriptives

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Self_Esteem	3	25.00	34.00	29.0000	4.58258
GPA	4	12.00	30.00	19.0000	7.74597
Valid N (listwise)	3				

 $\mbox{\scriptsize *}$ Pearson correlation between Self-Esteem and GPA.

CORRELATIONS

/VARIABLES = Self_Esteem GPA
/PRINT = TWOTAIL NOSIG
/MISSING = PAIRWISE.

Correlations

Correlations

		Self_Esteem	GPA
Self_Esteem	Pearson Correlation	1	.929
	Sig. (2-tailed)		.242
	N	3	3
GPA	Pearson Correlation	.929	1
	Sig. (2-tailed)	.242	
	N	3	4

 $\mbox{*}$ Simple linear regression (predicting GPA from Self-Esteem). REGRESSION

/DEPENDENT GPA

/METHOD = ENTER Self_Esteem

Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Self_Esteem ^b		Enter

- a. Dependent Variable: GPA
- b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.929 ^a	.862	.724	1.60357

a. Predictors: (Constant), Self_Esteem

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16.095	1	16.095	6.259	.242 ^b
	Residual	2.571	1	2.571		
	Total	18.667	2			

- a. Dependent Variable: GPA
- b. Predictors: (Constant), Self_Esteem

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-2.619	7.235		362	.779
	Self_Esteem	.619	.247	.929	2.502	.242

a. Dependent Variable: GPA

```
* Chart Builder.
GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES-Self_Esteem GPA MISSING-LISTWISE
REPORTMISSING*NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: Self_Esteem=col(source(s), name("Self_Esteem"))
  DATA: GPA=col(source(s), name("GPA"))
  GUIDE: axis(dim(1), label("Self_Esteem"))
  GUIDE: axis(dim(2), label("GPA"))
 GUIDE: text.title(label("Simple Scatter with Fit Line of GPA by Self_Esteem"
))
  ELEMENT: point(position(Self_Esteem*GPA))
END GPL.
```

GGraph

