#### **TEL 519E – Image Processing**

Fall 2010

İlker Bayram

#### What is an Image?

An image is a two-dimensional function, f(x,y).



#### What is an Image?

An image is a two-dimensional function, f(x,y).



Intensity of the image f, at a particular location  $(x_0, y_0)$  is  $f(x_0, y_0)$ .

#### Representing Images





#### Spatial Resolution

We will take an image as essentially a two-dimensional array  $f(n_1, n_2)$ ,  $n_1, n_2 = 1, 2, \dots, N$ .

**Spatial Resolution**: Number of pixels per unit area.



#### Intensity Resolution

**Intensity Resolution**: Number of bits used to represent the intensity value at a pixel.

 $\implies$  Number of bits used to represent an image is at worst  $b \times N_1 \times N_2$ .



Let  $T(\cdot)$  be a 1D mapping.



We take a point operation on f(x,y) as the application of some  $T(\cdot)$ .

$$g(x,y) = T(f(x,y))$$















$$g(x,y) = T(f(x,y))?$$











Gamma Correction :  $T(z) = c\,z^\gamma$ 





Which  $\gamma$  values should be chosen?  $\gamma > 1? \ \gamma < 1?$ 

Gamma Correction :  $T(z) = c \, z^{\gamma}$ 

Original





$$\gamma = 0.45$$

 $\gamma = 0.6$ 





 $\gamma = 0.3$ 

Gamma Correction :  $T(z) = c \, z^{\gamma}$ 





Which  $\gamma$  values should be chosen?  $\gamma > 1? \ \gamma < 1?$ 



$$\gamma = 4.5$$





 $\gamma = 6$ 

# Contrast Stretching



#### Contrast Stretching





How should we choose  $x_1$ ,  $y_1$ ,  $x_2$ ,  $y_2$ ?







## Histogram



## Histogram Equalization









# Histogram Equalization



# Histogram Modification

