Monte Carlo Methods

SIMON JACKMAN

Stanford University http://jackman.stanford.edu/BASS

February 3, 2012

1/1

- Example: compute $E(\theta)$, $\theta \in \Theta \subseteq \mathbb{R}$.
- Analytically: $E(\theta) = \int_{\Theta} \theta p(\theta) d\theta$.

- Example: compute $E(\theta)$, $\theta \in \Theta \subseteq \mathbb{R}$.
- Analytically: $E(\theta) = \int_{\Theta} \theta p(\theta) d\theta$. This math might be "too hard".

anything we want to know about a random variable θ can be learned by sampling many times from $p(\theta)$, the density of θ .

- Example: compute $E(\theta)$, $\theta \in \Theta \subseteq \mathbb{R}$.
- Analytically: $E(\theta) = \int_{\Theta} \theta p(\theta) d\theta$. This math might be "too hard".
- Monte Carlo estimate:
 - sample θ from $p(\theta)$; call these $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(T)}$; T large.
 - compute the following *Monte Carlo estimate* of $E(\theta)$:

$$\widehat{E(\theta)_T} = \sum_{t=1}^T \theta^{(t)} / T$$

2/1

anything we want to know about a random variable θ can be learned by sampling many times from $p(\theta)$, the density of θ .

- Example: compute $E(\theta)$, $\theta \in \Theta \subseteq \mathbb{R}$.
- Analytically: $E(\theta) = \int_{\Theta} \theta p(\theta) d\theta$. This math might be "too hard".
- Monte Carlo estimate:
 - sample θ from $p(\theta)$; call these $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(T)}$; T large.
 - compute the following *Monte Carlo estimate* of $E(\theta)$:

$$\widehat{E(\theta)_T} = \sum_{t=1}^T \theta^{(t)} / T$$

• accuracy of estimate $\widehat{E(\theta)}_T$ improves as $T \to \infty$.

- Example: compute $E(\theta)$, $\theta \in \Theta \subseteq \mathbb{R}$.
- Analytically: $E(\theta) = \int_{\Theta} \theta p(\theta) d\theta$. This math might be "too hard".
- Monte Carlo estimate:
 - sample θ from $p(\theta)$; call these $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(T)}$; T large.
 - compute the following *Monte Carlo estimate* of $E(\theta)$:

$$\widehat{E(\theta)_T} = \sum_{t=1}^T \theta^{(t)} / T$$

- accuracy of estimate $\widehat{E(heta)}_T$ improves as $T o \infty$.
- all this generalizes to (a) vectors $\mathbf{\theta} = (\theta_1, \dots, \theta_D)'$; (b) estimates of functionals of $\mathbf{\theta}$, $h(\mathbf{\theta})$.

Brief history of Monte Carlo methods

- Buffon's needle, estimating π ; see simple in my pscl package for R
- Lord Kelvin
- Enrico Fermi
- Metropolis and Ulam; Manhattan Project, Los Alamos

Brief history of Monte Carlo methods

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

Number 247

SEPTEMBER 1949

Volume 44

THE MONTE CARLO METHOD

NICHOLAS METROPOLIS AND S. ULAM

Los Alamos Laboratory

We shall present here the motivation and a general description of a method dealing with a class of problems in mathematical physics. The method is, essentially, a statistical approach to the study of differential equations, or more generally, of integro-differential equations that occur in various branches of the natural sciences.

Simulation Consistency

Theorem (Simulation Consistency, Independent Draws, Part 1)

Suppose $\{\mathbf{\theta}^{(t)}\}$ is a sequence of independent draws from the density $f(\mathbf{\theta})$, with $\mathbf{\theta} \in \mathbb{R}^k$ and $h : \mathbb{R}^k \to \mathbb{R}$. Then

$$\bar{h}^{(T)} = T^{-1} \sum_{t=1}^{T} h(\mathbf{\Theta}^{(t)}) \stackrel{a.s.}{\rightarrow} E[h(\mathbf{\Theta})]$$

Proof.

The claim is a restatement of the strong law of large numbers (e.g., Proposition B.10; BASS).

5/1

Simulation Consistency

Theorem (Simulation Consistency, Independent Draws, Part 2)

Further, suppose that for $p \in (0, 1)$, there is a unique q_p such that $Pr[h(\mathbf{\theta}) \leq q_p] \geq p$ and $Pr[h(\mathbf{\theta}) \geq q_p] \geq 1$ - p are both true. Consider $q_p^{(T)} \in \mathbb{R}$ such that

$$T^{-1}\sum_{t=1}^{T}\mathcal{I}(-\infty < h(\mathbf{\theta}^{(t)}) < q_p^{(T)}) \geq p$$

where $p \in (0, 1)$ and $\mathcal{I}(\cdot)$ is a binary indicator function, equal to 1 if its argument is true, and zero otherwise. Then $q_p^{(T)} \stackrel{a.s.}{\to} q_p$.

Proof.

Geweke (2005, Theorem 4.1.1); Rao (1973, 423); van der Vaart (1998, 305).

Learning about a uniform random variable

- Suppose $\theta \sim \text{Unif}(0, 1)$
- But we have forgotten that $E(\theta) = .5$, $sd(\theta) = \sqrt{1/12}$, $Pr(\theta \le q) = q$, $q \in (0, 1)$ etc.
- Monte Carlo methods? Use rnorm in R.
- the average of the sampled values, $\bar{\theta}^{(T)} = T^{-1} \sum_{t=1}^{T} \theta_t$, will be very close to $E(\theta) = .5$. Importantly, $\bar{\theta}^{(T)}$ gets arbitrarily close to .5 as $T \to \infty$.
- 2 likewise, the standard deviation of the sampled values

$$\mathsf{sd}(heta)^{(T)} = \left[(T - 1)^{-1} \sum_{t=1}^T (heta_t - ar{ heta}^{(T)})^2 \right]^{1/2}$$

will get arbitrarily close to $\sqrt{1/12}$ as $T \to \infty$.

1 the p-th quantile of the sampled values, $q_p^{(T)}$, $p \in (0, 1)$; $q_p^{(T)} \stackrel{a.s.}{\to} p$.

Learning about a uniform random variable (Figure 3.1)

Monte carlo integration/marginalization (method of composition)

- $oldsymbol{ heta}=(heta_1, heta_2)$, with $heta_j\in heta_j\subseteq\mathbb{R}, j=1,2$.
- Posterior density: $p(\theta|y)$.
- But interest centers on the marginal posterior density of θ_1 ,

$$p(\theta_1|\mathbf{y}) = \int_{\Theta_2} p(\theta_1, \theta_2|\mathbf{y}) d\theta_2 = \int_{\Theta_2} p(\theta_1|\theta_2, \mathbf{y}) p(\theta_2|\mathbf{y}) d\theta_2.$$

Method of composition:

- 1: **for** t = 1 to T **do**
 - 2: sample $\theta_2^{(t)}$ from $p(\theta_2|\mathbf{y})$
 - 3: sample $heta_1^{(t)}$ from $p(heta_1| heta_2^{(t)}, \mathbf{y})$.
 - 4: end for
- $\theta_1^{(t)} \sim p(\theta_1|\mathbf{y})$, as desired.

Method of Composition to sample from a t density

$$p(\boldsymbol{\beta}|\mathbf{y},\mathbf{X}) = \int_0^{\infty} p(\boldsymbol{\beta}|\sigma^2,\mathbf{y},\mathbf{X}) p(\sigma^2|\mathbf{y},\mathbf{X}) d\sigma^2$$

$$p(\sigma^2|\mathbf{y},\mathbf{X}) \equiv \text{inverse-Gamma}(v/2,vs^2/2)$$

$$p(\boldsymbol{\beta}|\sigma^2,\mathbf{y},\mathbf{X}) \equiv N(\mathbf{b},\sigma^2\mathbf{B})$$

```
1: for t=1 to T do
2: sample \sigma^{2(t)} from p(\sigma^2) \equiv \text{inverse-Gamma}(v/2, vs^2/2)
3: sample \boldsymbol{\beta}^{(t)} from p(\boldsymbol{\beta}|\sigma^{2(t)}) \equiv N(\boldsymbol{b}, \sigma^{2(t)}\boldsymbol{B})
4: end for
i.e., \boldsymbol{\beta}^{(t)} \sim p(\boldsymbol{\beta}|\mathbf{v}, \mathbf{X}) \equiv \text{student} - t.
```

Monte carlo inference, functions of parameters

• 2-by-2 table:

x_i			
Уi	0	1	
0	$n_0 - r_0$	n ₁ - r ₁	
1	r_0	r_1	
	n_0	n_1	n

- Two success probabilities: $0 \le \theta_0$, $\theta_1 \le 1$; $\Pr(y_i = 1 | x_i = j) = \theta_j$, $j \in \{0, 1\}$.
- MLEs: $\hat{\theta}_j = r_j/n_j$, $j \in \{0, 1\}$.
- Bayesian analysis: independent, conjugate Beta priors over each θ_j , $\theta_j \sim \text{Beta}(\alpha_j, \beta_j)$. posterior densities are independent Beta densities $\theta_j | r_j, n_j \sim \text{Beta}(\alpha_j + r_j, \beta_j + n_j r_j)$.

Inference for Difference of Two Binomial Proportions

- $q = \theta_1$ θ_0 ; difference of two binomial proportions
- $p(\theta_i|r_i,n_i) \equiv \text{Beta.}$
- But what is $p(q|r_0, r_1, n_0, n_1)$?
- Until recently (Pham-Gia and Turkkan 1993), the density of the difference of two Betas was unknown (unavailable in closed form)
- Characterize this density by Monte Carlo methods.

Algorithm:

- **1** sample $\theta_0^{(t)}$ from Beta $(\alpha_0 + r_0, \beta_0 + n_0 r_0)$
- 2 sample $\theta_1^{(t)}$ from Beta $(\alpha_1 + r_1, \beta_1 + n_1 r_1)$
- $oldsymbol{0}$ compute $q^{(t)}= heta_1^{(t)}$ $heta_0^{(t)}$

Repeat many times, t = 1, ..., T; sampled $q^{(t)}$ are a sample from the posterior density of q; summarize numerically, make histogram, etc.

Sekhon (2005); Geddes (1990); Skocpol (1979):

	Revolution	No Revolution
Defeated & Invaded/Lost Territory	1	7
Not Defeated within 20 years	2	74

- Each observation spans 20 years for each Latin American country
- The sole observation in the top left of the cross-tabulation is Bolivia: it suffered a military defeat in 1935, and a social revolution in 1952.
- The two observations in the lower left of the table are Mexico (revolution in 1910) and Nicaragua (revolution in 1979).
- The MLEs are $\hat{\theta}_0 = 2/(2+74) = .026$ and $\hat{\theta}_1 = 1/(7+1) = .125$, suggesting that revolutions are much more likely conditional on military defeat than conditional on not having experienced a military defeat.
- Uniform priors $\theta_j \sim \text{Beta}(1, 1), j = 0, 1$; posterior densities $\theta_0 | r_0, n_0 \sim \text{Beta}(3, 75)$ and $\theta_1 | r_1, n_1 \sim \text{Beta}(2, 8)$.

We seek the posterior density of $q = \theta_1 - \theta_0$; we use Monte Carlo methods:

- 1: **for** t = 1 to T **do**
- 2: sample $\theta_1^{(t)}$ from $p(\theta_1|\mathbf{y}) \equiv \text{Beta}(2,8)$
- 3: sample $\theta_0^{(t)}$ from $p(\theta_0|\mathbf{y}) \equiv \text{Beta}(3,75)$
- 4: $q^{(t)} \leftarrow \theta_1^{(t)} \theta_0^{(t)}$
- 5: end for

R code is trivial:

```
nsims <- 1e6
theta1 <- rbeta(nsims,2,8)
theta0 <- rbeta(nsims,3,75)
q <- theta1 - theta0
summary(q)
mean(q>0)
```

In JAGS

```
model{
         ## model for the data
         for(i in 1:2){
            r[i] ~ dbin(theta[i],n[i])
         }
         ## priors
         for(i in 1:2){
            theta[i] ~ dbeta(1,1)
         ## quantity of interest
         q <- theta[2] - theta[1]
```

Sampling algorithms

Suppose $\theta \sim p$? How to sample from p?

- inverse-CDF method
- importance sampling
- rejection sampling
- slice sampler

Inverse-CDF method

- $m{\Theta} \sim m{p}, m{\theta} \in m{\Theta} \subseteq \mathbb{R}$.
- $F(q) = \Pr(\theta \le q) = \int_{-\infty}^{q} p(\theta) d\theta$; n.b., $F: \Theta \mapsto (0, 1)$.
- Suppose F^{-1} exists, is computable; $F^{-1}:(0,1)\mapsto\Theta$
- Inverse-CDF algorithm:
 - 1: **for** t = 1 to T **do**
 - 2: sample $p^{(t)} \sim \text{Unif}(0, 1)$
 - 3: $\theta^{(t)} \leftarrow F^{-1}(p^{(t)})$
 - 4: end for
- Reasonably rare that an inverse-CDF exists. E.g., not available in closed form for the normal, but good approximations exist; e.g., Wichura (1988), used in the pnorm function in R).

Importance Sampling

- we can evaluate the target density at any given point in its support; i.e., we can compute $p(\theta) \forall \theta \in \Theta$.
- no algorithm for direct sampling from $p(\theta)$.
- we *can* sample from a density $s(\theta)$, where $s(\theta)$ has the property that $p(\theta) > 0 \Rightarrow s(\theta) > 0$, $\forall \theta \in \Theta$.
- Exploit the following identity: consider some $h(\theta)$, then

$$E[h(\theta)] = \int_{\Theta} h(\theta)p(\theta)d\theta = \int_{\Theta} h(\theta)p(\theta)/s(\theta)s(\theta)d\theta.$$

- Importance sampling algorithm:
 - 1: **for** t = 1 to T **do**
 - 2: sample $\theta^{(t)} \sim s(\theta)$.
 - 3: $\mathbf{w}^{(t)} \leftarrow p(\theta^{(t)})/s(\theta^{(t)})$
 - 4: end for
 - 5: $\bar{h}^{(T)} \leftarrow T^{-1} \sum_{t=1}^{T} h(\theta^{(t)}) w^{(t)}$

Accept-Reject Sampling (von Neumann 1951)

- $\theta \sim p(\theta)$, but can't sample from this density
- can sample from a *majorizing function* $g(\theta)$, that is, where $g(\theta) > p(\theta), \forall \theta$.
- can trivially find a majorizing function by rescaling a *proposal* density: $g(\theta) = cm(\theta)$:

```
1: for t = 1 to T do
    sample z \sim m(\theta)
 2:
 3: sample u \sim \text{Unif}(0, 1)
 4: r \leftarrow p(z)/cm(z)
 5: if u < r then
           \theta^{(t)} \leftarrow z \{\text{``accept''}\}\
 6:
        else
 7:
           go to 2 {"reject"}
 8:
        end if
 9:
10: end for
```

Accept-Reject Sampling

- The target density p need only be known up to a factor of proportionality. All that matters is that we can sample from a function that majorizes the target density, and we can control that through the scaling constant, c.
- Useful in Bayesian analysis, where it is often the case that posterior densities are only known up to an (unknown) proportionality constant.
- An accept-reject algorithm produces potentially many draws that are rejected, and hence the algorithm can be computationally inefficient.
- More efficient if the majorizing function g closely approximates the target density, p; e.g., $r=p/g\approx 1$.

Adaptive Rejection Sampling

- hard to find a good proposal density
- but if target density $p(\theta)$ is log-concave and continuously differentiable, then use adaptive rejection sampling
- build a proposal density as a set of piecewise exponential densities bracketing the target density
- A density $p(\mathbf{\theta})$, $\mathbf{\theta} \in \mathbb{R}^k$, is log-concave if the determinant of

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 \log p}{\partial \theta_1 \partial \theta_1} & \frac{\partial^2 \log p}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 \log p}{\partial \theta_1 \partial \theta_k} \\ \frac{\partial^2 \log p}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 \log p}{\partial \theta_2 \partial \theta_2} & \cdots & \frac{\partial^2 \log p}{\partial \theta_2 \partial \theta_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \log p}{\partial \theta_k \partial \theta_1} & \frac{\partial^2 \log p}{\partial \theta_k \partial \theta_2} & \cdots & \frac{\partial^2 \log p}{\partial \theta_k \partial \theta_k} \end{pmatrix}$$

is non-positive.

Adaptive Rejection Sampling

24 / 1

Adaptive Rejection Sampling

- algorithm is adaptive: successfully sampled points are added to the set of evaluation points.
- initialization/adaptation phase consists of getting a good set of evaluation points
- ARS was a critical step in developing a general purpose computer program for simulation-based Bayesian statistical analysis; e.g., Gilks and Wild (1992).
- Extension to non-log-concave densities (e.g., Gilks, Best and Tan 1995)

Slice Sampling §5.2.7

- $\theta \sim p(\theta), \theta \in \Theta \subseteq \mathbb{R}$, restricting ourselves to the one-dimensional case for the time being.
- This is equivalent to sampling the pair (θ, U) uniformly from the set $\mathcal{J} = \{(\theta, u) : 0 < u < p(\theta)\}.$
- i.e., let $\widetilde{\Theta} = \Theta \times [0, m]$, where $p(\theta) \leq m \, \forall \, \theta \in \Theta$.
- Now pick a random point $(\theta^*, U^*) \in \widetilde{\Theta}$.
- if If $0 < U^* < p(\theta^*)$, then accept the draw.
- sampling over the u dimension is equivalent to marginalizing u out of $f(\theta, u)$, i.e.,

$$p(\theta) = \int_0^{p(\theta)} f(u) du = \int_0^{p(\theta)} du, \ 0 < u < p(\theta),$$

since f(u) here is a constant.

Slice Sampling §5.2.7

- sequentially sample from $g(U|\theta)$ and $g(\theta|U)$
- Given $(\theta^{(t-1)}, U^{(t-1)})$:
 - 1: sample $U^{(t)} \sim \mathsf{Unif}(0, p(\theta^{(t-1)}))$
 - 2: sample $\theta^{(t)} \sim \mathsf{Unif}(\mathcal{A}^{(t)})$ where $\mathcal{A}^{(t)} = \{\theta : p(\theta) \geq U^{(t)}\}$.
- special case of the Gibbs sampler

Slice sampling from a Beta density, Example 5.12

$$p(\theta) \equiv \text{Beta}(2,5), \theta \in \Theta \equiv [0,1]$$

Lag

References

- Geddes, Barbara. 1990. "How the Cases You Choose Affect the Answers You Get: Selection Bias in Comparative Politics." *Political Analysis* 2:131--150.
- Geweke, John. 2005. Contemporary Bayesian Econometrics and Statistics. Hoboken, New Jersey: Wiley.
- Gilks, W. R., N. G. Best and K.K.C. Tan. 1995. "Adaptive rejection Metropolis sampling withing Gibbs sampling." *Applied Statistics* 44:455--472.
- Gilks, W. R. and P. Wild. 1992. "Adaptive rejection sampling for Gibbs sampling." *Applied Statistics* 41:337--348.
- Pham-Gia, Thu and Noyan Turkkan. 1993. "Bayesian analysis of the difference of two proportions." Communications in Statistics --- Theory and Methods 22:1755--1771.
- Rao, C. Radhakrishna. 1973. *Linear Statistical Inference and Its Applications*. Second ed. New York: Wiley.
- Sekhon, Jasjeet S. 2005. "Making Inference from 2 × 2 Tables: The Inadequacy of the Fisher Exact Test for Observational Data and a Bayesian Alternative." Typescript. Survey Research Center, University of California, Berkeley.
- Skocpol, Theda. 1979. States and Social Revolutions: A Comparative Analysis of France, Russia, and China. Cambridge: Cambridge University Press.
- van der Vaart, A. W. 1998. Asymptotic Statistics. Cambridge, United Kingdom: Cambridge University Press.
- von Neumann, J. 1951. "Various techniques used in connection with random digits." *National Bureau of Standards Applied Mathematics Series* 12:36--38.
- Wichura, Michael J. 1988. "Algorithm AS 241: The Percentage Points of the Normal Distribution."

 Applied Statistics 37:477--484. http://links.jstor.org/sici?sici=0035-9254