GAUSSIAN PROCESSES WITH APPLICATIONS

MATTIAS VILLANI

DEPARTMENT OF STATISTICS STOCKHOLM UNIVERSITY

AND

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE LINKÖPING UNIVERSITY

OVERVIEW

■ Introduction to Gaussian process regression

■ Gaussian process all the things - some applications

■ No time for **Bayesian optimization**:(

COOL IN MACHINE LEARNING NOW, BUT ... STATISTICIANS WERE ROCKIN' IT ALREADY IN THE 70'S

Biometrika (1975), **62**, 1, p. 79 With 5 text-figures Printed in Great Britain 79

A Bayesian approach to model inadequacy for polynomial regression

By B. J. N. BLIGHT

Department of Statistics, Birkbeck College, London

AND L. OTT

Department of Statistics, University of Florida, Gainesville

COOL IN MACHINE LEARNING NOW, BUT ... STATISTICIANS WERE ROCKIN' IT ALREADY IN THE 70'S

J. R. Statist. Soc. B (1978), 40, No. 1, pp. 1-42

Curve Fitting and Optimal Design for Prediction

By A. O'HAGAN

University of Warwick

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION on Wednesday, October 12th, 1977, Professor J. F. C. KINGMAN in the Chair]

STIMMARY

A Bayesian approach to density estimation

THORBURN DANIEL

Biometrika, Volume 73, Issue 1, 1 April 1986, Pages 65–75, https://doiorg.e.bibl.liu.se/10.1093/biomet/73.1.65

Published: 01 April 1986 Article history ▼

NONLINEAR REGRESSION

■ Linear regression

$$y = f(\mathbf{x}) + \epsilon$$
$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \beta$$

and $\epsilon \sim N(0, \sigma_n^2)$ and iid over observations.

■ Polynomial regression: $\phi(\mathbf{x}) = (1, x, x^2, x^3, ..., x^k)$:

$$f(\mathbf{x}) = \phi(\mathbf{x})^{\mathsf{T}} \beta \cdot$$

- More generally: splines with basis functions.
- \blacksquare Polynomial and spline models are linear in β . Least squares!

BAYESIAN LINEAR REGRESSION

■ Model: Linear regression for all *n* observations

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times p_{p\times 1}} + \varepsilon_{n\times 1}$$

Prior

$$\beta \sim N\left(0, \Sigma_{p}\right)$$

- Common choice (Ridge regression): $\Sigma_p = \lambda^{-1} \mathbf{I}$.
- Posterior

$$\begin{split} \boldsymbol{\beta}|\mathbf{X},&\mathbf{y} \sim N\left(\bar{\boldsymbol{\beta}},\mathbf{A}^{-1}\right)\\ &\mathbf{A} = \sigma_n^{-2}\mathbf{X}^T\mathbf{X} + \boldsymbol{\Sigma}_p^{-1}\\ &\bar{\boldsymbol{\beta}} = \sigma_n^{-2}\left(\sigma_n^{-2}\mathbf{X}^T\mathbf{X} + \boldsymbol{\Sigma}_p^{-1}\right)^{-1}\mathbf{X}^T\mathbf{y} \end{split}$$

■ Posterior precision = Data Precision + Prior Precision.

A PRIOR ON eta IS REALLY A PRIOR OVER FUNCTIONS

NON-PARAMETRIC REGRESSION

- Non-parametric regression: avoid a parametric form for $f(\cdot)$.
- Treat $f(\mathbf{x})$ as an unknown parameter for every \mathbf{x} .

- A new parameter for every **x**, you must be joking?
- Instead of restricting to linear, impose **smoothness**.

Two views on GPs

- **■** Weight space view
- Restrict attention to a grid of x-values: $x_1, ..., x_k$.
- Put a joint prior on the **vector of** *k* **function values**

$$f(x_1), ..., f(x_k)$$

- **Function space view**
- Treat *f* as an unknown function.
- Put a prior over a set of functions.

GAUSSIAN PROCESS AND ITS KERNEL

■ A GP implies:

$$\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_k) \end{pmatrix} \sim N(\mathbf{m}, \mathbf{K})$$

■ But how do we specify the $k \times k$ covariance matrix **K**?

$$Cov\left(f(x_p),f(x_q)\right)$$

Squared exponential covariance function

$$Cov (f(x_p), f(x_q)) = k(x_p, x_q) = \sigma_f^2 \exp \left(-\frac{1}{2} \left(\frac{x_p - x_q}{\ell}\right)^2\right)$$

- Nearby x's have highly correlated function ordinates f(x).
- We can compute $Cov(f(x_p), f(x_q))$ for any x_p and x_q .

GAUSSIAN PROCESSES

Definition

A **Gaussian process** (**GP**) is a collection of random variables, any finite number of which have a multivariate Gaussian distribution.

- A GP is a **probability distribution over functions**.
- A GP is specified by a **mean** and a **covariance function**

$$m(x)=\mathrm{E}\left[f(x)\right]$$

$$k(x,x') = E\left[(f(x) - m(x)) \left(f(x') - m(x') \right) \right]$$

for any two inputs x and x'.

■ A Gaussian process is denoted by

$$f(x) \sim GP(m(x), k(x, x'))$$

■ $f(x) \sim GP$ encodes **prior beliefs** about the unknown $f(\cdot)$.

GAUSSIAN PROCESSES

- Let r = ||x x'||.
- Squared exponential (SE) kernel ($\ell > 0$, $\sigma_f > 0$)

$$K_{SE}(r) = \sigma_f^2 \exp\left(-rac{r^2}{2\ell^2}
ight)$$

■ Matérn kernel ($\ell > 0$, $\sigma_f > 0$, $\nu > 0$)

$$K_{Matern}(r) = \sigma_f^2 rac{2^{1-
u}}{\Gamma(
u)} \left(rac{\sqrt{2
u}r}{\ell}
ight)^
u K_
u \left(rac{\sqrt{2
u}r}{\ell}
ight)$$

- **Simulate draw** from $f(x) \sim GP(m(x), k(x, x'))$ by:
 - form a grid $\mathbf{x}_* = (x_1, ..., x_n)$
 - simulate function values from multivariate normal:

$$f(\mathbf{x}_*) \sim N(m(\mathbf{x}_*), K(\mathbf{x}_*, \mathbf{x}_*))$$

SIMULATING A GP

THE LENGTH SCALE & DETERMINES THE SMOOTHNESS

The scale factor σ_f determines the variance

The mean can be sin(3x). Or whatever.

SEQUENTIAL SIMULATION OF GPS

■ The joint way: Choose a grid $x_1, ..., x_k$. Simulate the k-vector

$$\begin{pmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_k) \end{pmatrix} \sim N(\mathbf{m}, \mathbf{K})$$

More intuition from the conditional decomposition

$$p(f(x_1), f(x_2),, f(x_k)) = p(f(x_1)) p(f(x_2)|f(x_1)) \cdots \times p(f(x_k)|f(x_1), ..., f(x_{k-1}))$$

Simulating from $p\left(f(x_{\scriptscriptstyle 1}) ight)$

8 | 3

Simulating from $p\left(f(x_2)|f(x_1)\right)$

Simulating from $p\left(f(x_3)|f(x_1),f(x_2)\right)$

Simulating from $p\left(f(x_4)|f(x_1),f(x_2),f(x_3)\right)$

THE POSTERIOR FOR A GAUSSIAN PROCESS REGRESSION

Model

$$y_i = f(x_i) + \varepsilon_i, \quad \varepsilon \stackrel{iid}{\sim} N(0, \sigma_n^2)$$

■ Prior

$$f(x) \sim GP(o, k(x, x'))$$

- **Observed**: $\mathbf{x} = (x_1, ..., x_n)^T$ and $\mathbf{y} = (y_1, ..., y_n)^T$.
- **Goal**: posterior of $f(\cdot)$ over a grid of x-values: $\mathbf{f}_* = \mathbf{f}(\mathbf{x}_*)$.
- Posterior

$$\mathbf{f}_{*}|\mathbf{x},\mathbf{y},\mathbf{x}_{*} \sim N\left(\mathbf{\bar{f}}_{*},\cos(\mathbf{f}_{*})\right)$$

$$\mathbf{\bar{f}}_{*} = K(\mathbf{x}_{*},\mathbf{x})\left[K(\mathbf{x},\mathbf{x}) + \sigma_{n}^{2}I\right]^{-1}\mathbf{y}$$

$$\cos(\mathbf{f}_{*}) = K(\mathbf{x}_{*},\mathbf{x}_{*}) - K(\mathbf{x}_{*},\mathbf{x})\left[K(\mathbf{x},\mathbf{x}) + \sigma_{n}^{2}I\right]^{-1}K(\mathbf{x},\mathbf{x}_{*})$$

SCETCH FOR PROOF OF POSTERIOR

- Idea: obtain joint $p(\mathbf{y}, \mathbf{f}_*)$ and then $p(\mathbf{f}_*|\mathbf{y})$ by conditioning.
- **■** Model

$$y_i = f(x_i) + \varepsilon_i, \quad \varepsilon \stackrel{iid}{\sim} N(0, \sigma_n^2)$$

■ Prior

$$f(x) \sim GP(o, k(x, x'))$$

■ Joint distribution of $(\mathbf{y}, \mathbf{f}_*)$

$$\left(\begin{array}{c} \mathbf{y} \\ \mathbf{f}_* \end{array} \right) \sim \mathrm{N} \left[\left(\begin{array}{c} \mathbf{0} \\ \mathbf{o} \end{array} \right), \left(\begin{array}{cc} \mathit{K}(\mathbf{x},\mathbf{x}) + \sigma_n^2 \mathit{I} & \mathit{K}(\mathbf{x},\mathbf{x}_*) \\ \mathit{K}(\mathbf{x}_*,\mathbf{x}) & \mathit{K}(\mathbf{x}_*,\mathbf{x}_*) \end{array} \right) \right]$$

■ Result: conditional distributions from multivariate normal are normal.

23 | 3

EXAMPLE - CANADIAN WAGES

Posterior of f - ℓ = 0.2, 0.5, 1, 2

INFERENCE FOR THE HYPERPARAMETERS

■ Kernel depends on **hyperparameters** θ . Example SE kernel $[\theta = (\sigma_f, \ell)^T]$

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2} \frac{\|\mathbf{x} - \mathbf{x}'\|^2}{\ell^2}\right)$$

The Example 2 Common: maximize the **marginal likelihood** wrt θ :

$$p(\mathbf{y}|\mathbf{X},\theta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{f},\theta)p(\mathbf{f}|\mathbf{X},\theta)d\mathbf{f}$$

 $\mathbf{f} = f(\mathbf{X})$ is a vector of function values in the training data.

■ For Gaussian process regression:

$$\log p(\mathbf{y}|\mathbf{X},\theta) = -\frac{1}{2}\mathbf{y}^{T} \left(K + \sigma_{n}^{2}I\right)^{-1}\mathbf{y} - \frac{1}{2}\log\left|K + \sigma_{n}^{2}I\right| - \frac{n}{2}\log(2\pi)$$

■ Proper Bayesian inference for hyperparameters

$$p(\theta|\mathbf{y},\mathbf{X}) \propto p(\mathbf{y}|\mathbf{X},\theta)p(\theta).$$

CLASSIFICATION - FIRM BANKRUPTCY

- **Binary** or multi-class **response**. Aim: $Pr(y_i = 1 | \mathbf{x}_i)$.
- **■** Logistic regression

$$\Pr(y_i = 1 | \mathbf{x}_i) = \lambda(\mathbf{x}_i^T \beta), \text{ where } \lambda(z) = \frac{1}{1 + \exp(-z)}.$$

- $\lambda(z)$ 'squashes' the linear prediction $\mathbf{x}^T \beta \in \mathbb{R}$ into [0,1].
- **Linear decision boundaries** because of linear predictor $\mathbf{x}^T \beta$.
- **GP classification:** replace $\mathbf{x}^T \beta$ by $f(\mathbf{x})$ where

$$f \sim GP(0, k(\mathbf{x}, \mathbf{x}'))$$

and squash f through logistic function

$$\Pr(y = 1 | \mathbf{x}) = \lambda(f(\mathbf{x}))$$

Nonparametric flexible decision boundaries.

CLASSIFICATION - FIRM BANKRUPTCY

GP CLASSIFICATION ON SIMULATED DATA

URBAN TRAFFIC PREDICTION

- Aim: Real-time prediction of road travel times.
- Data: noisy GPS from a large number of taxis. SL bus data.
- **Model**: Structured Multivariate Gaussian Process:
 - GPs over time for each street section. Periodic kernels.
 - Hierarchical factor-like model. Traffic on main roads feed the small roads.
 - Spatial, topological, dependence between street sections.

AIRLINE NETWORK PREDICTIONS

- Aim: Predict the evolution of airline networks over time.
- Data: Quarterly world-wide networks for all airlines.
- Model: Dynamic multi-layered networks driven by GPs.

AIRLINE NETWORK PREDICTIONS

Bernoulli model with bilinear latent Gaussian processes:

$$\begin{split} Y_{uv}^{(k)}(t) | \pi_{uv}^{(k)}(t) &\sim \mathrm{Bern}\left[\pi_{uv}^{(k)}(t)\right] \\ \mathrm{Logit}\left[\pi_{uv}^{(k)}(t)\right] &= \mu(t) + \sum_{r=1}^{R} \bar{x}_{ur}(t) \bar{x}_{vr}(t) + \sum_{h=1}^{H} x_{uh}^{(k)}(t) x_{vh}^{(k)}(t), \end{split}$$

where

- Global GP across actors and layers: $\mu(t)$
- Actor-specific GPs, but common across layers: $\bar{x}_{ur}(t)$.
- Actor-specific and layer-specific GPs: $x_{uh}^{(k)}(t)$.
- Scalability.

Thanks!