

Kruskal's Algorithm for MST

An edge-based greedy algorithm Builds MST by greedily adding edges

- 1. Initialize with
 - empty MST
 - · all vertices marked unconnected
 - all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the lowest cost edge (u,v) and mark it
 - If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Doesn't it sound familiar?

Kruskal Pseudo Code void Graph::kruskal(){ int edgesAccepted = 0; DisjSet s(NUM_VERTICES); Complexity? while (edgesAccepted < NUM_VERTICES / 1){ e = smallest weight edge not deleted yet; // edge e = (u, v) uset = s.find(u); vset = s.find(v); - Complexity? if (uset != vset){ edgesAccepted++; s.unionSets(uset, vset); } Complexity?

Find MST using Kruskal's

- Now find the MST using Prim's method.
- Under what conditions will these methods give the same result?

Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T_K.

Suppose T_{K} is *not* minimum:

Pick another spanning tree T_{min} with lower cost than T_{K}

Pick the smallest edge e_1 =(u,v) in T_K that is \underline{not} in T_{min}

 T_{min} already has a path p in T_{min} from u to v

 \Rightarrow Adding e_1 to T_{\min} will create a cycle in T_{\min}

Pick an edge e_2 in p that Kruskal's algorithm considered afteradding e_1 (must exist: u and v unconnected when e_1 considered)

 $\Rightarrow \cos t(e_2) \ge \cos t(e_1)$

 \Rightarrow can replace e_2 with e_1 in T_{\min} without increasing cost!

Keep doing this until T_{min} is identical to T_{K}

⇒ T_K must also be minimal – contradiction!

Return to Dynamic Programming

- Recall that dynamic programming is a technique that reuses computed values of intermediate computations:
- Fib(n) = Fib(n-1) + Fib(n-2)
- A classic description of a computation that is suitable for dynamic programming is the form f(i, k) = min_i (f(i, j) + f(j, k))

7

Context Free Grammar

- A grammar G=(T, N, S, P) where
 - T is a set of terminals, e.g. $T=\{a, b, n, s\}$
 - N is a set of non-terminals, e.g. N={S, A, B}
 - S is the start symbol
 - P is a set of productions of the form $N \rightarrow string$

 $\{ S \rightarrow baA$ $A \rightarrow naA$ $A \rightarrow B$ $B \rightarrow s$

 $B \to \varepsilon$ }

A Generation

S => baA => banaA => bananaA => bananaB => bananas

• Parse Tree

 $\begin{cases} S \rightarrow baA \\ A \rightarrow naA \\ A \rightarrow B \\ B \rightarrow s \\ B \rightarrow \epsilon \end{cases}$

 $\{ S \rightarrow SA \}$

 $S \rightarrow b$

 $B \rightarrow a$

 $C \to n$

 $A \rightarrow a$

 $C \rightarrow s$

 $A \rightarrow BC$

Alternative Grammar

• There are many ways to express strings by cfgs

 $\begin{cases} S \rightarrow SA \\ S \rightarrow b \\ A \rightarrow BC \\ B \rightarrow a \\ C \rightarrow n \\ A \rightarrow a \\ C \rightarrow s \end{cases}$

Parse by Reversing Arrows

bananas =>

- \Rightarrow Sananas using $S \rightarrow b$
- => SBnanas using B \rightarrow a
- \Rightarrow SBCanas using $C \rightarrow n$
- $=> SAanas \ using \ A \to BC$
- \Rightarrow Sanas using $S \rightarrow SA$
- \Rightarrow SAnas using $A \rightarrow a$
- => Snas $using S \rightarrow SA$

=>?

Parse By Dynamic Programming

1

