Constrained Optimization II

Using material from Stephen Boyd

Last time...

We saw how to use local methods to solve unconstrained optimization problems

- What do we do if there are constraints on x?
- Example: certain control inputs are not possible for a robot

Outline

- Defining convex optimization problems
- Linear programming
- Quadratic programming

Defining Convex Optimization Problems with Constraints

Convex Optimization

"With only a bit of exaggeration, we can say that, if you formulate a practical problem as a convex optimization problem, then you have solved the original problem."

- Stephen Boyd

Definition of a general optimization problem

The "standard form"

```
minimize f_0(x)
subject to f_i(x) \leq 0, \quad i = 1, \dots, m
h_i(x) = 0, \quad i = 1, \dots, p
```

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

"inf" is a generalization of "min"

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if problem is unbounded below

What if we just want something feasible?

If any solution will do:

```
minimize 0 subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Definition of a convex optimization problem

General Optimization Problem

minimize $f_0(x)$ subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

Convex Optimization Problem

```
minimize f_0(x)

subject to f_i(x) \leq 0, \quad i = 1, \dots, m

\rightarrow Ax = b
```

• f_0 , f_1 , . . . , f_m are convex

- The feasible set of solutions in a convex optimization problem must be convex
- Any locally-optimal point is globally-optimal!

Optimality for differentiable objective functions in convex optimization

x is optimal if and only if it is feasible and

$$abla f_0(x)^T(y-x) \geq 0 \quad \text{for all feasible } y$$

• If non-zero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x (all of X is below the hyperplane)

Local methods yield global optimum

 If X is convex and we follow the gradient, we are guaranteed to reach the global optimum

Useful Definitions

- Generalized Inequality <u>≤</u> A generalization of ≤
 - Note that generalized inequalities do not necessarily give a linear ordering on elements
- Infimum (inf) A generalization of minimum: The greatest lower bound
 - For our purposes, think of this as "min"
- Supremum (sup) A generalization of maximum: The smallest upper bound
 - For our purposes, think of this as "max"

- Most common form of Convex optimization is linear programming
- A "technology" rather than a research field

More restricted constraints/objective functions

Standard form Linear Program (LP)

LP is always convex

• The feasible set is a polyhedron

 $\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & Gx \preceq h\\ & Ax=b \end{array}$

Example: Grasping

Can use linear programming to check if a grasp immobilizes an object

LP Example Problem

- You want to rent a team of robots to do a certain set of tasks. There are n types of robots and you need to choose how much time to rent each robot $x_1, ..., x_n$ while making sure the team can do all the required tasks $t_1, ..., t_m$.
 - A type of robot j
 - costs c_i to rent for 1 hour
 - has a_{ii} amount of capability to do t_i in 1 hour
 - The team has to have at least b_i total capability to do t_i
 - Assume every robot can work on all tasks simultaneously
- Problem: Find the least-cost rental times for each robot while ensuring that all the tasks can be completed

Where a_{ij} are the elements of the A matrix

- Common form of Convex optimization used in control and robotics
- Many solvers available

More restricted constraints/objective functions

Standard form Quadratic Program (QP)

General Optimization Problem

Convex Optimization Problem

QP

```
minimize f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

• f_0 , f_1 , . . . , f_m are convex

minimize > $(1/2)x^TPx + q^Tx + r$ subject to> $Gx \leq h$ Ax = b

LP

 $\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & Gx \preceq h\\ & Ax=b \end{array}$

- P must be a symmetric positive semi-definite matrix
 - $z^T P z \ge 0$ for any z
- Constraints are same as LP
- Objective function is quadratic

- The feasible set is a polyhedron (same as LP)
- Objective function is more expressive than LP

LP QP

Example: Optimal Control with a QP

Assume we have a robot with linear dynamics:

$$x_{t+1} = Ax_t + Bu_t$$

where x is the state and u is the control input

ullet We also have some constraints on each dimension of u

$$u_{i,min} \le u_i \le u_{i,max}$$

- We start at state x_0 and want to reach a goal x_{goal}
- Problem: Find a control input u^* that gets the robot as close to the goal as possible.

Example: Optimal Control with a QP

Let's write this as a QP:

Summary

- Saw how to define convex optimization problems <u>with</u> <u>constraints</u>
- Linear programming is a popular and powerful convex optimization problem class

Quadratic programming can be used for many control problems in robotics

Homework

Homework 5