

Working Instruction

CTS-SEQUENCE HLA-DQB1

For high-resolution typing of HLA-DQB1

Product No. 338

Lot No. SDQB04-0

For research use only

University Clinic Heidelberg Department of Transplantation Immunology Im Neuenheimer Feld 305 69120 Heidelberg Germany

Phone: +49-6221-564013 Fax: +49-6221-564200 www.ctstransplant.org

Content

1	Int	roduction	3
2	Ma	iterials and Equipment	
_	2.1	Materials included in the CTS-SEQUENCE HLA-DQB1Kit	
	2.2	Storage and expiration	
	2.3	Materials and equipment not included	
3	Pre	eparation of buffers and agarose gel	7
4	Iso	lation and concentration measurement of DNA	
5	Tes	st procedure	7
_	5.1	Amplification	
	5.2	Gel control	
	5.3	Purification of the amplification products	
	5.4	Sequencing reaction	
	5.5	Purification of the sequencing products	
	5.6	Sample preparation for sequencing runs	
6	Sta	rt of a sequencing run on the sequencer	11
	6.1	Instrument protocol for ABI Prism 3100 Genetic Analyzer	
	6.2	Run Sequencing	
7	Res	sult evaluation	12
8	Tro	oubleshooting	13
	8.1	Amplification	13
	8.2	Sequencing	
W		ix neet Amplification Protocol neet Pipetting Scheme	15 16

The CTS-SEQUENCE HLA-DQB1 Kit is delivered at room temperature. Immediately upon receipt, store PCR Buffer & sequencing primers at -20°C and PCR minitrays at 4°C.

1 Introduction

This working instruction describes the procedure for high-resolution genotyping of the human leukocyte antigens HLA-DQB1 with the CTS-SEQUENCE HLA-DQB1 Kit. PCR-sequencing based typing (PCR-SBT) is an accurate and reliable method, allowing high resolution of HLA alleles at least 4-digit level.

The strategy is based on two consecutive steps: first, group- and locus-specific amplification of exon 2 of HLA-DQB1 and additionally locus-specific amplification of exon 3; second, the amplification products are sequenced in forward and reverse direction. Matching for exon 2 (antigen-recognition site) at allele-level is considered relevant in hematopoietic stem cell transplantation. Sequencing of exon 3 helps to reduce ambiguities.

The SEQUENCE HLA-DQB1 Kit is validated and optimized with following reagents, instruments, softwares and methods:

- GeneAmp® PCR System 2700 Thermocycler (Applied Biosystems, Darmstadt, Germany).
- Amplification with the MBI Taq polymerase (Fermentas, St. Leon-Rot, Germany).
- Purification of amplification products with EXO-SAP-IT (USB, Staufen, Germany).
- Sequencing reaction with BigDye terminator v1.1 Kits (Applied Biosystems, Darmstadt, Germany).
- Purification of the sequencing products using ethanol precipitation.
- Resuspension of sequencing products with HiDi formamide (Applied Biosystems, Darmstadt, Germany).
- Separation of sequencing products with the ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Darmstadt, Germany).
- Sequence analysis and HLA allele assignment with Sequence PilotTM-HLA SBT (JSI Medical Systems, Kippenheim, Germany).

Other reagents, instruments etc. may be used, but should be validated by the user. The CTS-SEQUENCE kits have been validated to be performed with the GeneAmp\$ PCR System 2700 thermocycler. If other cyclers are used, the ramp rate has to be set at 1°C/sec.

According to EFI standards for histocompatibility testing (Version 5.6.1; L3.2520) PCR-SBT typing of HLA-class II bases on amplification and sequencing primers which are located outside of exon 2. For many HLA-class II variants only the sequence of the antigen recognition site (exon 2) are reported. Even though the PCR-SBT HLA-SEQUENCING Kits have been extensively tested and validated, an allelic drop out of a rare or new allele due to mutations in the priming sites cannot be categorically ruled out.

2 Materials and Equipment

2.1 Materials included in the CTS-SEQUENCE HLA-DQB1Kit

The SEQUENCE HLA-DQB1 Kit provides reagents sufficient for twenty four HLA-DQB1 high resolution typings and contains:

- Twenty-four 8-well PCR stripes with prepipetted and dried primer mixes, each stripe for one HLA-DQB1 typing. Store at 4°C in pre-PCR area.
- 2) 2 tubes of CTS-SEQUENCE PCR Buffer (1400 μl). Store at -20°C in pre-PCR area.
- 3) Sequencing primers (500 μl each): DQB-E2F, DQB-E2R, DQB-E3F, DQB-E3R Store at -20°C in post-PCR area.

a) PCR stripes and amplification mixes:

The amplification primers are prepipetted and dried in colorless PCR stripes composed of 8 cavities. For quality reasons, we recommend to use only the caps included in the package.

Figure 1 shows the positions of the PCR mixes on the stripe and the allele group(s) and the exons amplified by these mixes.

Mix DQB01 to DQB06 are for group-specific amplification of exon 2, mix DQB07 is for locus-specific amplification of exon 2 and mix DQB08 is for locus-specific amplification of exon 3.

Mix	Amplified Allels	Amplified Exon
DQB	All HLA-DQB1 Alleles	Exon 3
DQB	All HLA-DQB1 Alleles	Exon 2
DQB	DQB1*06:01	Exon 2
DQB	DQB1*06 (*06:01 not amplified)	Exon 2
DQB	DQB1*05	Exon 2
DQB	DQB1*03, 04 (*03:01:01G, 03:04 not amplified)	Exon 2
DQB	, , ,	Exon 2
DQB	DQB1B*02	Exon 2

Figure 1: Mix position on CTS-SEQUENCE HLA-DQB1stripe

Black marker line

b) <u>Sequencing primers:</u>

The tubes containing the sequencing primers (500 μ l) have colorless caps. Sequencing of exon 3 is only possible with the locus-specific mix DQB08.

Table 1: Labeling of the sequencing primers

HLA-Locus Tube label		Sequenced Exon	Applicable for Mix	Direction of sequencing
	DQB-E2F	2	DQB01-DQB07	forward
HLA-DQB1	DQB-E2R	2	DQB01-DQB07	reverse
пьа-руы	DQB-E3F	3	DQB08	forward
	DQB-E3R	3	DQB08	reverse

2.2 Storage and expiration

All kit components are labeled with storage condition and date of expiration.

Frequent thawing and freezing can reduce the quality of the reagents and should be avoided. It is recommended to make aliquots of appropriate volumes and store them as indicated.

2.3 <u>Materials and equipment not included</u>

Table 2: Pre-PCR area

Reagents/materials/softwares	Company/Catalogue number
Taq DNA Polymerase (5 U/μl)	Fermentas, St. Leon-Rot, Germany
	Cat.No EP0401/ EP0402
Ultra Pure Agarose	Inno-Train, Kronberg/Taunus, Germany
	Cat. No. GX04090
Ethidium bromide (10 mg/ml)	Sigma-Aldrich GmbH, Steinheim, Germany
Cave: potentially carcinogenic!	Cat.No. E1510-10ML
Magnetic stirring hotplate or a microwave oven for	
gel preperation	
Pipettes and filter tips for 0.5-10 μl, 10- 200 μl and 200-1000 μl	Eppendorf, Wessing-Berzdorf, Germany
volumes	
Sequence Pilot TM -HLA SBT	JSI Medical Systems GmbH, Kippenheim,
	Germany
Photometer for spectral measurement of DNA concentration	
50x TAE buffer	Inno-Train, Kronberg/Taunus, Germany
	Cat.No. GX12765
Analytical balance	

Table 3: Post-PCR area

Reagents/materials/softwares	Company/Catalogue number
ExoSAP-IT TM	USB, Staufen, Germany
	Cat.No. 78202
BigDye TM Terminator Cycle Sequencing Kit v1.1 (Sequencing	Applied Biosystems, Darmstadt, Germany
buffer (5x) included)	Cat.No.4336791
1x TAE electrophoresis buffer	See section 3 below for instruction
HiDi Formamide	Applied Biosystems, Darmstadt, Germany
	Cat.No. 4311320
Loading buffer (bromophenol blue)	Fermentas, St. Leon-Rot, Germany
Sodium-Acetat 3M pH 5.2 for precipitation	Sigma Aldrich, Germany
	Cat.No. S7899
Ethanol absolute GR for analysis	Merck, Darmstadt, Germany
	Cat.No. 1.00983.1000
Ethanol 70%	See section 3 below for instruction
10x EDTA running buffer for the sequencer	Applied Biosystems, Darmstadt, Germany
	Cat.No. 402824
1x EDTA running buffer for the sequencer	
Centrifuge for PCR plates	
GeneAmp® PCR System 2700 thermocycler	Applied Biosystems, Darmstadt, Germany
Power supplier for electrophoresis	
Gel Documentation System	
Gel elektophoresis chamber	
Capillary sequencer: ABI PRISM 3100 Genetic Analyzer	Applied Biosystems, Darmstadt, Germany
8-channel pipette and filter tips 0.5-10 μl	Eppendorf, Wessing-Berzdorf, Germany
	Cat.No. 0030.077.040
Pipettes and filter tips for 0.5-10 µl volume	Eppendorf, Wessing-Berzdorf, Germany
	Cat.No. 0030.077.040
Multipette and combitips (0.1, 0.2, 0.5, 1.0, 2.5ml) Not	Eppendorf, Wessing-Berzdorf, Germany
mandatory	
Adhesive aluminium foils for 96-well PCR plate	Kisker, Steinfurt, Germany
	Cat.No. GO71
Optical 96-well reaction plate and optical caps	Applied Biosystems, Darmstadt, Germany
	Cat.No. N801-0560, N801-0535

Table 4: Pre-PCR and post-PCR area (two sets are needed!)

Reagents/materials/softwares	Company/Catalogue number
HPLC water (LiChrosolv® water)	Merck, Darmstadt, Germany Cat.No. 1.15333.1000
Vortexer	Cat.ino. 1.13333.1000
Reaction tubes 1.5 ml	Eppendorf, Wessing-Berzdorf, Germany Cat.No. 0030 120.086
Examination gloves	
Nitril gloves	

3 Preparation of buffers and agarose gel

1x TAE electrophoresis buffer:

49 volume parts of deionised water + 1 volume part of 50x TAE electrophoresis buffer

Ethanol 70%:

7 volume parts of absolute ethanol + 3 volume parts of HPLC water

2% agarose gel:

If you use CTS electrophoresis chamber and CTS combs (see www.ctstransplant.org for order information) proceed as follows:

- Add 7 g of agarose and 7 ml of 50x TAE buffer to 350 ml of ddH₂0.
- Boil to dissolve the agarose, using a magnetic stirring hot plate or a microwave oven.
- Cool down to 60°C, add 17 μl of ethidium bromide (10 mg/ml), mix and pour the gel. Allow the gel to set for 1 hour at room temperature. Cave: Ethidium bromide is potentially carcinogenic! Wear appropriate protection, e.g. nitril gloves.
- On a 20x25 cm gel, you can place up to six CTS combs. These combs have a tooth distance corresponding to that of the channels of a standard 8-channel pipette. This allows the use of such a pipette for rapid loading of the samples onto the gel.

4 Isolation and concentration measurement of DNA

Genomic DNA can be isolated from all nucleated cells. Starting material can be EDTA or citrate blood, buffy coats, cell suspensions etc. Heparinized blood should <u>not</u> be used. DNA can be isolated by the salting out method (Miller SA et al., Nucleic Acid Research 1999) or magnetic particle technology (e.g. GenoM-6/Qiagen EZ1 robot, Qiagen, Vienna, Austria). Magnetic beads should be separated from the DNA (e.g. by centrifugation). It is likely that other commercial kits or automats for DNA isolation will also work, but they should be validated by the users.

For optimal reaction, adjust the DNA concentration to approximately 25 ng/µl with HPLC water.

Cave: Human material should always considered to be potentially infectious and be handled with care. See your own standard laboratory safety guidelines.

5 Test procedure

High resolution HLA-typing with the CTS-SEQUENCE HLA-DQB1 Kit is performed in 7 steps:

- Amplification of the HLA locus by PCR (setup in pre-PCR area; thermal cycling in post-PCR area)
- Electrophoresis to check for positive amplifications ("gel control") (post-PCR area)
- Purification of the (positive) amplification products for sequencing (post-PCR area)

- Sequencing reaction (post-PCR area)
- Purification of the sequencing products (post-PCR area)
- Separation of the sequencing products in the capillary sequencer (post-PCR area)
- Sequence analysis and allele assignment with the Sequence Pilot TM-HLA SBT software

5.1 **Amplification**

Prepare PCR on ice.

- Fill in your PCR protocol.
- Label your PCR-minitray.
- > Thaw PCR Buffer.
- Pre-mix 10.85 μl of PCR Buffer with 4 μl of 25 ng/μl genomic DNA and 0.15 μl of Taq polymerase for each mix (each PCR). An excess volume to compensate loss during pipetting is recommended. For example, if you want to perform one CTS-SEQUENCE HLA-DQB1 test (one stripe, 8 mixes), prepare a pre-mix for 10 mixes (108.5 μl of PCR Buffer + 40 μl of 25 ng/μl DNA + 1.5 μl of Taq).
- ➤ Vortex the pre-mix.
- Pipette 15 μl of the pre-mix into each well of the minitray.
- > Close the tubes and spin them down.
- ➤ Put the stripe into the thermocycler and start the amplification program CTS-AMP (see below).

Cave: DNA resolved in buffers should always be diluted at least 1:1 with HPLC water prior to use in the amplification (buffers often contain PCR inhibitors e.g. EDTA).

Cave: Do not use hot start polymerase (e.g. AmpliTaq Gold, Applied Biosystems) or a proofreading polymerase!

Thermocycler program for amplification (CTS-AMP):

Step	Temperature	Time	Numbers of cycles
1	95 °C	2 min	1
2	95 °C	15 s	10
2	65 °C	2 min	10
	95 °C	15 s	
3	61 °C	50 s	22
	72 °C	1 min 30 s	
4	4 °C	∞	

Cave: Do not forget to enter the reaction volume of 15 µl!

5.2 Gel control

The amplification products are separated on a 2% agarose gel by electrophoresis. This step is to check for success of the amplification step and to identify the amplification mix(es) which will be subjected to sequencing.

A) Electrophoresis

- > Pre-pipette 5 ul of loading buffer for each amplification product into a PCR plate.
- Add 5 µl of your amplification product. Use filter tips to avoid contamination.
- \triangleright Load the gel with 10 μ l of the amplification/loading buffer mixture.
- ➤ If you use CTS electrophoresis chamber, run the electrophoresis for 20 min at 170 Volts (approx. 0.4 V/cm²).

Cave: Ethidium bromide is potentially carcinogenic! Wear appropriate protection, e.g. nitril gloves!

B) Documentation and interpretation

Place the gel on a UV light transilluminator (312 nm) and take a polaroid picture for interpretation and documentation. Wear UV-protection goggles!

You can proceed with an amplification product if a band representing the specific amplicon is visible in the gel picture. The length of the specific amplification products range from 340 to 660 bp.

Cave: Do not mistake primer dimers or primer clouds for specific amplification products! Primer dimers are very small (15-50 bp). Use a size marker if you are not confident.

5.3 Purification of the amplification products

Before an amplification product is subjected to sequencing, it has to be purified e. g. with ExoSAP-ITTM (USB, Staufen, Germany). ExoSAP-ITTM contains an exonuclease digesting single-stranded DNA (e.g. primers) and a phosphatase inactivating the nucleotides. This enzymatic purification method is simple and appropriate to perform large-scale testing. A further advantage compared with other methods is that the enzymatic digest is performed in the same tube that will subsequently be used for the amplification step. This avoids contaminations and a mix-up of samples.

- > Add 4 μl of ExoSAP-ITTM (2μl ExoSAP-ITTM per 5μl PCR products) to each well with a positive PCR reaction (based on the gel control). For large-scale performances, a Multipette can be used.
- Close the reaction tubes (avoid contaminations!).
- Spin down the ExoSAP-ITTM in the reaction tubes.
- > Put the PCR reaction wells into the thermocycler and start the purification program CTS-PUR (see below).

Cave: ExoSAP-ITTM is a viscous fluid, vortex well before use and get rid of excessive enzyme hanging at the tip of your pipette.

Thermocycler program for purification with ExoSAP-ITTM (**CTS-PUR**):

Step	Temperature	Time	Numbers of cycles
1	37 °C	15 min	1
2	80 °C	15 min	1
3	4 °C	∞	

Cave: Do not forget to enter the reaction volume of 14 ul.

5.4 Sequencing reaction

General strategy

- For high resolution typing of HLA class II, exon 2 must be completely sequenced.
- If an allele is not separated by amplification (e. i. if only <u>one</u> of the group-specific mixes (DQB01 to DQB06 + the locus-specific mixes (DQB07 and DQB08) are positive), we recommend to sequence the group-specific mix in both directions (forward and reverse) to optimize base-calling.
- In case of homozygouse results (single allele) mix DQB07 should be sequenced in both directions (DQB-E2F and DQB-E2R) to reduce the risk of allelic drop out.
- If the alleles are separated by amplification (e. i. if <u>two</u> group-specific mixes are positive), it is sufficient to sequence the positive amplicons in only one direction (we recommend to use the reverse primers).
- Sequencing of exon 3 (Mix DQB08) should be performed in forward and reverse direction.

Setting-up a sequencing reaction

> Create a pipetting scheme determining which amplicon(s) and which sequencing primer(s) are pipetted into which position(s) of the optical 96-well reaction plate. An example of a pipetting scheme can be seen in the appendix.

Manual No. 38 Page 9 of 16 CTS-SEQUENCE HLA-DQB1 Revision: March 8, 2012 Lot No. SDQB04-0

- > Place an optical 96-well reaction plate on ice.
- Mix one volume of BigDye terminators (BDT) with one volume of 5x BigDye sequencing buffer (always prepare freshly). Keep an excess volume to compensate loss during pipetting. Pipette 2 μl of the mixture into the optical 96-well reaction plate.
 - Alternatively, pipette 1 μ l of BigDye terminators + 1 μ l of 5x BigDye sequencing buffer directly into the optical 96-well reaction plate.
 - Close the wells with caps and spin down.
- Add 6 μl of sequencing primer.
- Add 2 μl of purified amplification product (DNA template).
- Spin down, close the plate with caps and place it into the thermocycler.
- > Start the thermocycler program CTS-SEQ.

Cave: Keep the BigDye terminators cool and minimize their exposure to light.

1 μl BDT + 1 μl 5x buffer + 6 μl Primer + 2 μl Template 10 μl

Thermocycler program for sequencing reaction (CTS-SEQ):

Step	Temperature	Time	Numbers of cycles
1	96 °C	1 min	1
2	96 °C	10 s	35
2	60 °C	2 min	23
3	4 °C	∞	

Cave: Do not forget to enter the reaction volume of 10 µl. Proceed with the purification of the sequencing products immediately when the sequencing reaction has finished.

5.5 **Purification of the sequencing products**

Residual ddNTPs must be removed to avoid sequencing artifacts (e.g. dye blobs). This can be done e. g. by ethanol precipitation which is a cheap method and can be used for high-throughput.

- Pre-mix 1 μl of 3 M Sodium-Acetate (pH 5.2) with 25 μl of absolute ethanol for each sequencing reaction to be purified. An excess volume to compensate loss during pipetting is recommended.
- Add 25 μl of the pre-mix to each sequencing reaction.
- Close the optical 96-well reaction plate with an adhesive aluminium foil and vortex well (30 sec). Vortexing is crucial for a good precipitation!
- Incubate the optical 96-well reaction plate at room temperature in a dark place for 15 min (keep light exposure of ddNPTs low).
- Centrifuge the optical 96-well reaction plate for 30 min at 2000 x g. Proceed immediately with the next step. If you can not proceed immediately, centrifuge again for 3min at 2000 x g before the next step.
- Remove the adhesive aluminium foil, flip the optical 96-well reaction plate and remove the supernatant.
- Place the optical 96-well reaction plate upside down on paper towel into the centrifuge. Spin the plate for a few seconds at 180 x g to dry.
- Add 75 μl of 70% ethanol to the precipitated sequencing products and vortex briefly.
- Centrifuge the optical 96-well reaction plate for 10 min at 2000 x g. Proceed immediately with the next step. If you can not proceed immediately, centrifuge again for 3min at 2000 x g before the next step.
- Remove the adhesive aluminium foil, flip the optical 96-well reaction plate and remove the supernatant.
- Place the optical 96-well reaction plate upside down on paper towel into the centrifuge. Spin the plate for a few seconds at 180 x g to dry.
- Keep the plate in a dark place until all ethanol has evaporated (~ 20 min).

In dried form, the sequencing products are quite stable when kept in the dark.

5.6 Sample preparation for sequencing runs

- Add 15μl of HiDi Formamide onto the dried sequencing products, close the wells with caps and spin down.
- Put the plate into a thermocycler and denature for 2 min at 95 °C. IMPORTANT: Vapours at high temperatures. Cool down the HiDi Formamide at 4 °C before opening the caps.

6 Start of a sequencing run on the sequencer

6.1 <u>Instrument protocol for ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Darmstadt, Germany)</u>

POP medium	3100 POP-6				
Capillary	36 cm array	36 cm array			
Electrophoreses buffer	1x buffer with EDTA				
Instrument Protocol	Type		Regular		
	Run Module		CTS2600		
	Dye Set		E-Big-DyeV1		
Sequence File Format	True Profile				
Ending Base	At PCR Stop				
	Do not assign N's to Ba	asecall	S		
Mixed Base	Use Mixed Base Identi				
			s 25% of the highest peak		
Clear Range Method			ases from ends until viewer		
	then 10 bases out of 20	have (QVs less then 15		
Mobility file	3100_POP6_BDTv1				
Sequencing Analysis Software	Vers. 5.1.1				
Run Module	Run Temperature		5°C		
(CTS2600)	Leak Threshold	25	steps		
	Current tolerance	10	0 uAmps		
	Run current	Run current 100 uAmps			
	Voltage tolerance	Voltage tolerance 0.6 kVolts			
	Pre Run Voltage	15	KVolts		
	Pre Run Time	Γime 180 sec			
	Injection Voltage	1,2	2 kVolts		
	Injection Time	10	sec		
	Run Voltage	Run Voltage 15 kVolts			
	Number of Steps	10 steps			
	Voltage Step Interval	Voltage Step Interval 60 sec			
	Data delay Time	24	·0 sec		
	Run Time	Run Time 2600 sec			
Basecaller	KB.bcp	KB.bcp			
Settings Sample Manager	Basecaller:KB.bcp	Basecaller:KB.bcp			
		Dye set/primer file: KB_3100_POP6_BDTv1.mob			
Settings Plate Record	Dye Set: E				
	Mobility File: 3100_PC	Mobility File: 3100_POP6_BDTv1.mob			
	Run Module: CTS2600	Run Module: CTS2600			

6.2 Run Sequencing

1) Transfer your sequencing pipetting scheme into the "Plate Record" of the ABI PRISM 3100 Genetic Analyzer.

GmbH, Kippenheim, Germany) (see section 7), the sample naming conventions are: (Sample name Amplification mix Sequencing primer)

Example: (Sample_DQB01_DQB-E2F) if amplification mix DQB01 was used in the sequencing reaction with the DQB-E2F sequencing primer.

2) Place samples into the ABI PRISM 3100 Genetic Analyzer and run the instrument.

For details, refer to the User Guides of ABI PRISM 3100 Genetic Analyzer and its softwares.

7 Result evaluation

For allele assignment, the sequences are loaded into the Sequence PilotTM-HLA SBT Allele Identification Software (JSI Medical Systems GmbH, Kippenheim, Germany). This software shows the electropherograms and aligns them with HLA alleles as listed in the IMGT/HLA Sequence Database (http://www.ebi.ac.uk/imgt/hla/). Mismatches to the proposed HLA alleles, if shown, can be edited. The sequencing results can be printed and archived. For details, see User Manual of the Sequence Pilot TM-HLA SBT Allele Identification Software.

Add the sequencing primers with following names and parameters in the "Seq. Primer master file":

HLA-DQB1

Name	DQB-E2F	DQB-E2R	DQB-E3F	DQB-E3R
Gene	DQB1	DQB1	DQB1	DQB1
Direction	fwd.	rev.	fwd.	rev.
SeqPrimer gene parts	E2	E2	E3	E3
RFName	DQB-E2F	DQB-E2R	DQB-E3F	DQB-E3R
Sorting	0	0	0	0

Adding the sequencing primer to the "Seq. Primer master file" is not mandatory. However, by doing so, one can avoid a situation in which a forward sequence of exon 3 is shown, which has been sequenced by the forward sequencing primer of exon 2; such a sequence will have bad quality and can be omitted.

8 Troubleshooting

8.1 **Amplification**

Observation	Possible Cause(s)	Solution
	Degraded DNA	New extraction of DNA
No, weak or non-specific	DNA concentration to low	New extraction of DNA
PCR-product(s).	DNA contains PCR inhibitors	Heparinized blood?
		New extraction of DNA
	Thermocycler is defect.	Check cycler
		(e.g. with the CTS Cycler Control
		Kit)
	Incorrect thermocycler program	Correct programm and repeat PCR
	Thermocycler program needs to be	Our method was optimized for the
→ Some primary checks:	adapted.	GeneAmp® PCR System 2700
Did you follow the		Thermocycler. For other
amplification protocol?		thermocyclers, the cycling program
Did you vortex the solution		may have to be adjusted and
well?		validated.
Was the correct cycler	Taq Polymerase needs to be adapted.	Our method was optimized for the
program used?		Taq DNA Polymerase purchased
Was ethidium bromide		from Fermentas, St. Leon-Rot,
included in the gel?		Germany, Cat.No EP0401/ EP0402.
		Repeat PCR with this polymerase.

8.2 <u>Sequencing</u>

Observation	Possible Cause(s)	Solution
No signal	No sample was in sequencing reaction.	Repeat sequencing reaction.
	Not enough formamide or air bubble at the bottom of the well.	Pipette enough formamide and spin down well.
Weak signals	Wrong "injection time" or "injection voltage".	Differences between capillary sequencer can occur. Adapt "injection time" or "injection voltage" to get fluorescent intensities between 400 and 9000 in raw data.
	Not enough sequencing products after purification.	Cleaning-up by ethanol precipitation requires very precise ethanol concentrations. Ethanol concentration can vary when tubes are frequently opened. Aliquot ethanol solutions for single use.
	Not enough sequencing products were loaded.	Increase "injection time" or "injection voltage". Salt can reduce the amount of loaded sequencing products. Reduce salt contamination during ethanol precipitation.
Signals are too strong	Wrong "injection time" or "injection voltage".	Differences between capillary sequencer can occur. Adapt "injection time" or "injection voltage" to reach fluorescent intensities between 400 to 9000 in raw data.
	High concentration of sequencing products.	Reduce the amount of PCR product used in the sequencing reaction. The
Manual No. 20	Page 12 of 16	CTS SEQUENCE III A DOD1

Manual No. 38 Revision: March 8, 2012 Page 13 of 16

CTS-SEQUENCE HLA-DQB1 Lot No. SDQB04-0

		reduced amount should be substituted with HPLC water (e.g. dilute amplicon with HPLC water)
Electropherogram has high background.	Purification of PCR amplification products did not work well (primer contamination).	Repeat PCR and purification of amplification products.
	Contamination with a second sequencing primer.	Avoid contamination during pipetting sequencing primers.
	Double sequence which starts in the forward and reverse sequencing reaction at the same base (in different directions).	Double sequence due to inserts or deletions within an HLA-Bllele.
DyeBlobs	Purification of sequencing products did not work well (leftover of dye).	Ethanol concentration during precipitation to high.
Very high, randomly occurring peaks (spikes)	Air bubbles or polymer crystals in capillaries.	Refill capillaries with new polymer.
Two different peaks run at nearly the same position in the electropherogram	Secondary structures of sequencing products (gel compression)	This phenomenon is sequence-dependent and occurs only in one sequencing direction of a limited region. Analyze this region with the sequencing primer for the other direction. The sequences obtained with the forward primers tend to show gel compressions more often than reverse primers.

CTS-SEQUENCE HLA-DQB1 Amplification Protocol

For Lot SDQB04-0

DNA-No.:					D	ate:	
Thermocycle	er:						
					_		
					Lot	Volume	
		PCR Bu	ffer			10,85 μl	
		TAC	2			0,15 μΙ*	
		DNA (251	ıg/μl)			4 μl	
*The exact amovalidation.	ount of Taq-Pol	lymerase needed	may vary	dependir	ng on brand and lo	t; it should therefore be establish	ed through your own
Photo	Mix	Positive/		th of		amplified Allels	Amplified
Filoto		purified	Ampl			Milpililed Alleis	Exon
	DQB01		510		*02		2
	DQB02		500	•	*03:01:01G		2
	DQB03		480	•	, ,	01:01G, 03:04 not amplified)	2
	DQB04		440) bp	*05		2
	DQB05		480) bp	*06 (*06:01 n	ot amplified)	2
	DQB06		530) bp	*06:01		2
	DQB07		660) bp	All HLA-DQ	B1 Alleles	2
	DQB08		340) bp	All HLA-DQ	B1 Alleles	3
	ng of Mix D		2R for s	equenci	ing of Mix DQ	B01-07 and DQB-E3F and	1 DQB-E3R for
zomment.							
Date, Signat	ure Operato	r:	-				
Date Signat	ure Reviewe	er.					

Pipetting scheme (Example)

Optical 96-well reaction plate

	1	2	3	4	5	6	7	8	9	10	11	12
A	(Stan_DQB01 _DQB-E2R)											
В	(Stan_DQB02 _DQB-E2R)											
C	(Stan_DQB07 _DQB-E2F)											
D	(Stan_DQB08 _DQB-E3F)											
E	(Stan_DQB08 _DQB-E3R)											
F												
G												
Н												

DNA sample ID: Name (e.g. Stan)

was sequenced with the DQB-E3F sequencing primer was sequenced with the DQB-E3R sequencing primer