Neural Network ReportAlphabet Soup Charity

Purpose

The nonprofit foundation Alphabet Soup has long been dedicated to empowering organizations that align with its mission by providing them with the necessary funding to achieve their goals. However, selecting the most promising applicants for funding is a complex task, given the vast number of organizations that seek support. To enhance the effectiveness of this process, Alphabet Soup seeks to implement a predictive tool that can identify the applicants with the highest likelihood of success in their ventures.

This analysis aims to leverage machine learning, specifically a neural network model, to develop a binary classifier that can predict the success of an applicant if funded by Alphabet Soup. Using a comprehensive dataset of over 34,000 previously funded organizations, which includes various features such as application type, affiliation, classification, use case, and funding amount requested, this model will enable Alphabet Soup to make data-driven decisions, ultimately improving the allocation of resources and maximizing the impact of its funding initiatives.

By accurately identifying successful applicants, Alphabet Soup can optimize its funding strategy, ensuring that the foundation's resources are utilized in the most effective and impactful manner.

Results

Data Preprocessing

- What variable(s) are the target(s) for your model?
 - Target Variable: The target variable identified is IS_SUCCESSFUL, which
 measures whether the funding provided was used effectively.
- What variable(s) are the features for your model?
 - Feature Variables: The features used to predict IS_SUCCESSFUL include:
 - APPLICATION_TYPE Alphabet Soup application type
 - AFFILIATION Affiliated sector of industry
 - CLASSIFICATION Government organization classification
 - USE_CASE Use case for funding
 - ORGANIZATION Organization type
 - STATUS Active status
 - INCOME_AMT Income classification
 - SPECIAL_CONSIDERATIONS Special considerations for application
 - ASK_AMT Funding amount requested
- What variable(s) should be removed from the input data because they are neither targets nor features?

 Removed Variables: EIN and NAME were excluded from the dataset as they are identifiers and do not contribute to the model's prediction capabilities.

Compiling, Training, and Evaluating the Model

How many neurons, layers, and activation functions did you select for your neural network model, and why?

Five different neural network models were tested, each with varying structures and optimizations:

1.	Description	Initial analysis after modifying Application and Classification features to collapse tail-end into "Other"		
	Features	Columns= 'APPLICATION_TYPE', 'AFFILIATION', 'CLASSIFICATION', 'USE_CASE', 'ORGANIZATION', 'INCOME_AMT', 'SPECIAL_CONSIDERATIONS'		
	Details	 # of Layers: Three 1st layer: Activation = relu, 6 neurons 2nd layer: Activation = sigmoid, 4 neurons Output layer: Activation = sigmoid, 1 neuron Optimizer: adam Epoch: 100 		
	Parameters	Model: "sequential" Layer (type) dense (Dense)	Output Shape (None, 6)	Param # 264
		dense_1 (Dense) dense_2 (Dense)	(None, 4) (None, 1)	5
		Total params: 297 (1.16 KB) Trainable params: 297 (1.16 KB) Non-trainable params: 0 (0.00 B)		
	Results:	Loss: 0.5520821213722229 Accuracy: 0.7332944869995	117	

2.	Description	Optimization Attempt #1: Same as above with
----	-------------	---

	hyperparameter tuning		
Features	Columns= 'APPLICATION_TYPE', 'AFFILIATION', 'CLASSIFICATION', 'ORGANIZATION', 'INCOME_AMT', 'SPECIAL_CONSIDERATIONS', 'USE_CASE'		
Details	 # of Layers: Six 1st layer: Activation = relu, 100 neurons 2nd layer: Activation = sigmoid, 75 neurons 3rd layer: Activation = sigmoid, 50 neurons 4th layer: Activation = sigmoid, 25 neurons 5th layer: Activation = sigmoid, 10 neurons Output layer: Activation = sigmoid, 1 neuron Optimizer: adam Epoch: 20 		
Parameters Model: "sequential"			
Parameters	Model: "sequential"		
Parameters	Model: "sequential" Layer (type)	Output Shape	Param #
Parameters		Output Shape (None, 100)	Param #
Parameters	Layer (type)		
Parameters	Layer (type) dense (Dense)	(None, 100)	4,400
Parameters	Layer (type) dense (Dense) dense_1 (Dense)	(None, 100) (None, 75)	4,400 7,575
Parameters	Layer (type) dense (Dense) dense_1 (Dense) dense_2 (Dense)	(None, 100) (None, 75) (None, 50)	4,400 7,575 3,800
Parameters	Layer (type) dense (Dense) dense_1 (Dense) dense_2 (Dense) dense_3 (Dense)	(None, 100) (None, 75) (None, 50) (None, 25)	4,400 7,575 3,800 1,275
Parameters	Layer (type) dense (Dense) dense_1 (Dense) dense_2 (Dense) dense_3 (Dense) dense_4 (Dense)	(None, 100) (None, 75) (None, 50) (None, 25) (None, 10)	4,400 7,575 3,800 1,275 260

3. Description **Optimization Attempt #2:** Searched for ASK_AMT outliers using a box plot, however no outlier was identified. Nevertheless, I identified a wide range of values. As a result, used logarithmic transformation to create bins for ASK_AMT

	Log_ASK_AMT_Binned_Clean \$3K - \$20K		
Featu	'USE_CASE', 'ORGAN	TION_TYPE', 'AFFILIATION', 'CI NZATION', 'STATUS', 'INCOME 'ATIONS', 'IS_SUCCESSFUL', 'A	_AMT',
Detail	 1st layer: Act 2nd layer: Act 3rd layer: Act 4th layer: Act 5th layer: Act 	tivation = relu, 100 neurons tivation = sigmoid, 75 neuron tivation = sigmoid, 50 neuron tivation = sigmoid, 25 neuron tivation = sigmoid, 10 neuron tivation = sigmoid, 1 neur	s s s
Darar	neters Model: "sequential_1"		
i ai ai	Layer (type)	Output Shape	Param #
	dense_6 (Dense)	(None, 100)	5,400
	dense_7 (Dense)	(None, 75)	7,575
	dense_8 (Dense)	(None, 50)	3,800
	dense_9 (Dense)	(None, 25)	1,275
	dense_10 (Dense)	(None, 10)	260
	dense_11 (Dense)	(None, 1)	11
	Total params: 18,321 (71.5 Trainable params: 18,321 (Non-trainable params: 0 (0	(71.57 KB)	
Resul	ts: Loss: 0.5574935674 Accuracy: 0.7223323		

4. Description **Optimization Attempt #3:** Ran a KerasClassifier and identified the weakest and strongest features, and removed the weakest

		features (Use_Case, ASK_AMT_BIN) Weakest feature: INCOME_AMT_0 with importance -0.0006647230320700026 Weakest feature: INCOME_AMT_25000-99999 with importance -0.0006064139941691193 Weakest feature: ASK_AMT_BIN_\$3K - \$20K with importance -0.00045481049562685617 Weakest feature: ORGANIZATION_Co-operative with importance -0.00025655976676385305 Weakest feature: INCOME_AMT_5M-10M with importance -0.000158034985422965 Weakest feature: ASK_AMT_BIN_\$1.5B+ with importance -0.0001282798833819432 Weakest feature: USE_CASE_Heathcare with importance -3.3306690738754695e-17 Weakest feature: USE_CASE_Other with importance 0.0		
Fe		Columns= 'APPLICATION_TYPE', 'AFFILIATION', 'CLASSIFICATION', 'ORGANIZATION', 'STATUS','SPECIAL_CONSIDERATIONS'		
D	etails	 # of Layers: Six 1st layer: Activation = relu, 100 neurons 2nd layer: Activation = sigmoid, 75 neurons 3rd layer: Activation = sigmoid, 50 neurons 4th layer: Activation = sigmoid, 25 neurons 5th layer: Activation = sigmoid, 10 neurons Output layer: Activation = sigmoid, 1 neuron Optimizer: adam Epoch: 20 		
Pa	arameters	Model: "sequential_2"		
		Layer (type)	Output Shape	Param #
		dense_12 (Dense)	(None, 100)	3,000
		dense_13 (Dense)	(None, 75)	7,575
		dense_14 (Dense) dense_15 (Dense)	(None, 50)	1,275
		dense_16 (Dense)	(None, 10)	260
	dense_1b (Dense) (None, 10) dense_17 (Dense) (None, 1)		11	
		Total params: 15,921 (62.19 KB) Trainable params: 15,921 (62.19 KB) Non-trainable params: 0 (0.00 B)	l	
R	0000	Loss: 0.5609097480773926 Accuracy: 0.72629737854003	91	

5. Description

Optimization Attempt #4: Ran neural network auto-optimizer which tries different combinations of Activation ('relu', 'tanh', 'sigmoid'), Layers, Neurons, and Optimizers ('adam', 'rmsprop', 'sgd'). Moved forward with the best of 60 tests.

Features		Columns= 'APPLICATION_TYPE', 'AFFILIATION', 'CLASSIFICATION', 'ORGANIZATION', 'STATUS','SPECIAL_CONSIDERATIONS'		
Details	 # of Layers: Six 1st layer: Activation = sigmoid, 7 neurons 2nd layer: Activation = sigmoid, 3 neurons 3rd layer: Activation = sigmoid, 9 neurons 4th layer: Activation = sigmoid, 9 neurons 5th layer: Activation = sigmoid, 3 neurons 6th layer: Activation = sigmoid, 7 neurons 7th layer: Activation = sigmoid, 7 neurons Output layer: Activation = sigmoid, 1 neuron Optimizer: adam Epoch: 20 			
Parameters	Parameters Model: "sequential_2"			
	Layer (type)	Output Shape	Param #	
	dense_12 (Dense)	(None, 100)	3,000	
	dense_13 (Dense)	(None, 75)	7,575	
	1 11 (0)			
	dense_14 (Dense)	(None, 50)	3,800	
	dense_14 (Dense) dense_15 (Dense)	(None, 50) (None, 25)	3,800 1,275	
	dense_15 (Dense) dense_16 (Dense) dense_17 (Dense)	(None, 25) (None, 10) (None, 1)	1,275	
	dense_15 (Dense) dense_16 (Dense)	(None, 25) (None, 10) (None, 1)) 9 KB)	1,275	

Were you able to achieve the target model performance?

The objective was to achieve a predictive accuracy of 75% or higher. While none of the models reached this threshold, the initial baseline model (Model 1) provided the best performance. This model's simpler structure and granular inputs may have contributed to its slightly superior results.

Model	Accuracy	Loss
#1 - Initial Baseline	0.73329	0.55208

#2 - Hyperparameter Tuning	0.73306	0.55071
#3 - Logarithmic Transformation Binning (ASK_AMT)	0.72233	0.55749
#4 - KerasClassifier (Weakness & Strength)	0.72629	0.56090
#5 - Auto Optimizer	0.72209	0.55861

What steps did you take in your attempts to increase model performance?

Several strategies were employed to enhance model performance:

- **Hyperparameter Tuning:** Adjusting the number of layers and neurons (Exhibit 1).
- **Logarithmic Transformation:** Binning ASK_AMT to reduce the complexity of unique values (Exhibit 2).
- **Feature Reduction:** Removing weak features identified through a KerasClassifier analysis (Exhibit 3).
- **Auto-Optimization:** Implementing an automated search for the best combination of activation functions, layers, neurons, and optimizers (Exhibit 4).

Despite these efforts, the initial baseline model remained the most effective, suggesting that further refinement is needed. One potential avenue for improvement could be the strategic removal of low-performing features after the one-hot encoding (dummies) stage.

Exhibit 1

Exhibit 2

Logarithmic Transformation of ASK_AMT

```
Log_ASK_AMT_Binned_Clean
$3K - $20K
                  26814
$20K - $90K
                   2711
$90K - $370K
                   2208
$370K - $1.4M
                   1310
$1.4M - $5.5M
                    737
$5.5M - $24M
$24M - $90M
                    143
$90M - $490M
                     56
$490M - $1.5B
                     33
$1.5B+
Name: count, dtype: int64
```

Exhibit 3

Weakest Features (20)

Weakest feature: INCOME_AMT_0 with importance -0.0006647230320700026
Weakest feature: INCOME_AMT_20000-99999 with importance -0.0006064139941691193
Weakest feature: ASK_AMT_BIN_S3K - \$20K with importance -0.00045481049562685617
Weakest feature: NCOME_AMT_S0000-99999 with importance -0.0002559597667638530!
Weakest feature: INCOME_AMT_SM-10M with importance -0.0001516394985422965
Weakest feature: ASK_AMT_BIN_\$1.58+ with importance -0.000151639895422965
Weakest feature: ASK_AMT_BIN_\$1.58+ with importance -0.3306690738754695e-17
Weakest feature: USE_CASE_Deathcare with importance -0.3306690738754695e-17
Weakest feature: USE_CASE_Other with importance -0.0
Weakest feature: STATUS_0 with importance -1.1661807580176654e-05
Weakest feature: STATUS_1 with importance 1.1661807580176654e-05
Weakest feature: AFFILIATION_Other with importance 2.332361560353307e-05
Weakest feature: SPECIAL_CONSIDERATIONS_V with importance 5.839903790084996e-05
Weakest feature: SPECIAL_CONSIDERATIONS_V with importance 0.00012827988338180769
Weakest feature: SPECIAL_CONSIDERATIONS_N with importance 0.000128279883381892097
Weakest feature: SPECIAL_CONSIDERATIONS_N with importance 0.0001282798833818073
Weakest feature: AFFILIATION_Mational with importance 0.000128273833818073
Weakest feature: AFFILIATION_Otherional with importance 0.000128273833818075
Weakest feature: AFFILIATION_Negional with importance 0.000128273833818075
Weakest feature: AFK_AMT_BIN_S24M - \$90M with importance 0.000128273833818075 Weakest feature: ORGANIZATION_Corporation with importance 0.00030320699708451525 Weakest feature: ASK_AMT_BIN_\$1.4M - \$5.5M with importance 0.00038483965014575184

Strongest Features (20)

Strongest feature: AFFILIATION_CompanySponsored with importance 0.05385422740524776 Strongest feature: AFFILIATION_Londependent with importance 0.051720116618075754 Strongest feature: APPLICATION_TYPE_T4 with importance 0.021807580174927076 Strongest feature: APPLICATION_TYPE_T10 with importance 0.021807580174927076 Strongest feature: APPLICATION_TYPE_T10 with importance 0.00897915316204081563 Strongest feature: CLASSIFICATION_Other with importance 0.008979591836734625 Strongest feature: APPLICATION_TYPE_T5 with importance 0.00898036373469382 Strongest feature: APPLICATION_TYPE_T6 with importance 0.00759183673469382 Strongest feature: ORGANIZATION_ASsociation with importance 0.004641293012069928 Strongest feature: CROMIZATION_Trust with importance 0.00464139416909564 Strongest feature: CLASSIFICATION_C3000 with importance 0.0036038381924197825 Strongest feature: CLASSIFICATION_C2000 with importance 0.0036084946847239362 Strongest feature: LASSIFICATION_C2000 with importance 0.003608496846472231 Strongest feature: INCOME_AMT_10M-50M with importance 0.0030808746355655088 Strongest feature: APPLICATION_TYPE_T19 with importance 0.00259532427405247237 Strongest feature: INCOME_AMT_10M-50M with importance 0.00259515451895930393606403 Strongest feature: LASSIFICATION_C1200 with importance 0.0025953290359004003 Strongest feature: INCOME_AMT_10M-50M with importance 0.0029154518950436636 Strongest feature: LASSIFICATION_C1200 with importance 0.0020063809037900403 Strongest feature: ASK_AMT_BIN_\$20K - \$90K with importance 0.0018075801749270592 Strongest feature: APPLICATION_TYPE_T7 with importance 0.001261536151603498481 Strongest feature: USE_CASE_CommunityServ with importance 0.0011061807580174322 Strongest feature: ASK_AMT_BIN_\$5.5M - \$24M with importance 0.0010379008746355112

Exhibit 4

Best hyperparameters based on Auto-Optimizer

```
{'activation': 'sigmoid',
 'first_units': 7,
 'num_layers': 4,
 'units_0': 3,
 'units_1': 9,
 'units_2': 3,
 'units_3': 7,
 'units 4': 5,
 'units_5': 1,
 'add_dropout_0': 0,
 'dropout_0': 0.30000000000000004,
 'optimizer': 'adam',
 'add dropout 1': 1,
 'dropout 1': 0.1,
 'add_dropout_2': 0,
 'dropout_2': 0.0,
 'add_dropout_3': 1,
 'dropout_3': 0.0,
 'add_dropout_4': 0,
 'dropout_4': 0.30000000000000004,
 'add_dropout_5': 0,
 'dropout_5': 0.0,
 'tuner/epochs': 20,
 'tuner/initial_epoch': 7,
 'tuner/bracket': 1,
 'tuner/round': 1,
 'tuner/trial_id': '0015'}
```

Summary

In this project, five neural network models were constructed and evaluated. The initial baseline model emerged as the most effective predictor of success among the tested models. The results indicate that the model's simplicity and granular inputs played a key role in its performance. Future work could explore additional feature engineering techniques or alternative machine learning models to achieve the desired accuracy. Additionally, careful consideration should be given to the removal of low-impact features to further enhance model performance.