Løsningsforslag – Cooper/McGillem kap. 1-1 til 1-6

Opg. 1-2.1

- a) TT, TH, HT, HH (lige sandsynlige).
- b) 0, 1, ..., 9 (lige sandsynlige).
- c) 0, 1, ..., 18 (ikke lige sandsynlige, da der kun er én måde at opnå sum = 0 = 0+0, men fx tre måder at opnå sum = 2 = 0+2, 2+0, 1+1).

Opg. 1-4.1

Udfaldsrum: $S = \{1,2,3,4,5,6\}$ og N = 6.

- a) Lad A = $\{5\}$, så $N_A=1$ og $Pr(A) = N_A / N = 1/6$.
- b) Lad A = $\{4,5,6\}$, så $N_A = 3$ og $Pr(A) = N_A / N = 3/6 = 1/2$.
- c) Lad A = $\{2,4,6\}$, så $N_A=3$ og $Pr(A) = N_A/N = 3/6 = 1/2$.

Opg. 1-4.2

Udfaldsrum: $S = \{(1,1),(1,2),...,(1,6),(2,1),...,(6,6)\}$ og N = 36.

- a) Lad A = $\{\text{sum}=11\} = \{(5,6),(6,5)\}$, så $N_A=2$ og $Pr(A) = N_A/N = 2/36 = 1/18$.
- b) Lad A = $\{\text{sum}<5\}$ = $\{\text{sum}=2 \text{ eller sum}=3 \text{ eller sum}=4\}$ = $\{(1,1), (1,2), (2,1), (1,3), (3,1), (2,2)\}$, så $N_A=6$ og $Pr(A) = N_A/N = 6/36 = 1/6$.
- c) Lad A = {sum er et lige tal} = {(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), ..., (6,6)}, så N_A =18 og $Pr(A) = N_A / N = 18/36 = 1/2$.

Opg. 1-4.3

Udfaldsrum: $S = \{200xHI, 100xAG, 50xFF, 25xDC, 25xSR\} \text{ og } N = 400.$

- a) Lad A = {FF}, så N_A =50 og $Pr(A) = N_A/N = 50/400 = 1/8$.
- b) Lad A = {HI}. Vi er interesserede i \bar{A} = {ikke HI}: Komplementreglen siger, at $Pr(\bar{A})$ = 1-Pr(A). Vi har, at N_A =200. Derfor bliver $Pr(A) = N_A / N = 200/400 = 1/2$. Således bliver $Pr(\bar{A})$ = 1-Pr(A) = 1-1/2 = 1/2.
- c) Ideen med denne opgave er at få jer til at tænke over begrebet "tilbagelægning". Her fjerner vi én SR fra kassen, og altså er der kun 25-1=24 SR tilbage (og N=400-1=399), når vi trækker anden gang. Der er med andre ord ingen tilbagelægning. Vores mængde S ændrer sig således til

 $S = \{ 200xHI, 100xAG, 50xFF, 25xDC, 24xSR \} \text{ og } N = 399.$

Lad nu A = {SR}, så N_A =24 og $Pr(A) = N_A/N = 24/399 = 0,062$.

Opg. 1-4.4

Lav en tabel!

	H	AG	FF	DC	SR	Total
Good	180	85	41	20	20	346
Bad	20	15	9	5	5	54
Total	200	100	50	25	25	400

- a) Lad A = {DC} og B = {Good}. Vi søger den simultane sandsynlighed, Pr(A,B). Denne fås ved tabelopslag, idet $N_{(A,B)} = 20$ og N = 400, og dermed $Pr(A,B) = N_{(A,B)}/N = 20/400 = 1/20$.
- b) Lad A = {Good} og B = {FF}. Vi søger den betingede sandsynlighed, Pr(A|B) = Pr(A,B)/Pr(B). Vi har $N_{(A,B)} = 41$ og $N_B = 50$, og dermed bliver $Pr(A,B) = N_{(A,B)}/N = 41/400$ og $Pr(B) = N_B/N = 50/400$. Vi får nu, at $Pr(A|B) = Pr(A,B)/Pr(B) = (N_{(A,B)}/N)/(N_B/N) = N_{(A,B)}/N_B = 41/50$. *Bemærk, at N'erne i tælleren og nævneren altid går ud med hinanden, så $Pr(A|B) = N_{(A,B)}/N_B$ og tilsvarende $Pr(B|A) = N_{(B,A)}/N_A$.
- c) Lad A = {Good} og B = {DC}. Vi søger den betingede sandsynlighed, Pr(B|A) = Pr(B,A)/Pr(A). Vi har $N_{(B,A)} = 20$ og $N_A = 346$, og dermed bliver $Pr(B|A) = N_{(B,A)}/N_A = 20/346$.

Opg. 1-4.7

Udfaldsrum: $S = \{ 4 \text{ dårlige transistorer} + 21 \text{ gode transistorer} \}, N = 25.$

- a) Lad A = {dårlig transistor}, så N_A =4 og $Pr(A) = N_A / N = 4/25$.
- b) Vi fjerner en dårlig transistor fra vores oprindelig mængde. Dermed får vi $S = \{ 3 \text{ dårlige transistorer} + 21 \text{ gode transistorer} \}, N = 25-1=24.$ Lad A = {dårlig transistor}, så N_A=3 og Pr(A) = N_A /N = 3/24.
- c) Vi fjerner en god transistor fra vores oprindelig mængde. Dermed får vi $S = \{ 4 \text{ dårlige transistorer} + 20 \text{ gode transistorer} \}, N = 25-1=24.$ Lad A = {dårlig transistor}, så N_A =4 og $Pr(A) = N_A / N = 4/24.$

Opg. 1-5.2

Udfaldsrum: $S = \{1,3,5,7,9,11\}.$

Hændelser: $A = \{1,3,5\}, B = \{7,9,11\}, C = \{1,3,9,11\}.$

$$A \cup B = \{1,3,5,7,9,11\} = S = (A - B) \cup B$$
 $\bar{A} = \{7,9,11\} = B = \bar{A} \cap B$
 $B \cup C = \{1,3,7,9,11\}$ $\bar{B} = \{1,3,5\} = A = A \cap \bar{B} = A - B$
 $A \cup C = \{1,3,5,9,11\} = (A - B) \cup C$ $\bar{C} = \{5,7\}$
 $A \cap B = \emptyset = A \cap B \cap C$ $(B \cap C) = \{1,3,5,7\}$
 $A \cap C = \{1,3\}$ $A - C = \{5\}$

Opg. 1-6.1

Udfaldsrum: $S = \{1,3,5,7,9,11\}$, hvor alle udfald er lige sandsynlige. Altså $P(\{1\}) = P(\{2\}) = ... = P(\{11\}) = 1/6$.

Hændelser: $A = \{1,3,5\}, B = \{7,9,11\}, C = \{1,3,9,11\}.$

Bemærk, at når jeg bruger aksiom 3, så skriver jeg lighedstegnet, =_{I.D.}, hvor I.D. står for *indbyrdes disjunkte*.

- a) $Pr(A) = Pr(\{1,3,5\}) =_{I.D.} Pr(\{1\}) + Pr(\{3\}) + Pr(\{5\}) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2.$
- b) $Pr(B) = Pr(\{7,9,11\}) = Pr(\{7\}) + Pr(\{9\}) + Pr(\{11\}) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2.$
- c) $Pr(C) = Pr(\{1,3,9,11\}) = Pr(\{1\}) + Pr(\{3\}) + Pr(\{1\}) = 1/6 + 1/6 + 1/6 + 1/6 = 4/6 = 2/3.$
- d) $Pr(A \cup B) = Pr(S) = 1$
- e) $Pr(A \cup C) = Pr(\{1,3,5,9,11\}) =_{I.D.} Pr(\{1\}) + Pr(\{3\}) + Pr(\{5\}) + Pr(\{9\}) + Pr(\{11\}) = 5/6.$
- f) $Pr((A C) \cup B) = Pr(\{5\} \cup \{7,9,11\}) = Pr(\{5,7,9,11\}) = Pr(\{5\}) + Pr(\{7\}) + Pr(\{9\}) + Pr(\{11\}) = 4/6 = 2/3.$