Completeness is not a topological property

in complete complete $\left\{\frac{1}{2n}\right\} \longleftrightarrow \left\{\frac{1}{2n}\right\}$

. Homeomorphic spaces could have different completeness (R.de) \iff ((0.1), de)

. One topological space that have different metrics inducing its topology is complete under one metric is not complete under the other one.

en spare (in | n E M) = X with de is not complete fn 0 \$ X but induce discrete topology (enery set is open)

da(x,y)=1 if x+y is complete induce the same discrete typology Every Caushy sequence will examinately be constant.

eg (-1,1) di=lox/
with dixiy)=1x-y1 is not complete

 $d(x,y) = \int_{-\infty}^{\infty} |dx|$

(-1,1) with hyperbolic metric $ds := \frac{|dx|}{1-x^2}$

> d(x,y)>0 d(x,y)=0 计 x=y

(K,Olb

1 de -1 c s c 1.

metric is open in term of the other one) but complete.

because (-1, 1) behavior like (-lo,+bo)

A metrizable topological space is called complete-metrizable $if \ \ \, \text{there is at least one complete metric inducing its topology}. \\ (X,T) \longleftrightarrow (Y,T') \ \, \text{homeomorphic}$

- · X is not complete-metrizable => Y is not complete-metrizable.

 Q is not complete-metrizable
- · X is complete under some metric but not the other \Rightarrow Y is complete metrizable but not complete under some metric.

. X is complete haden every metwo. So is Y. discrete typilyy on a finite set

Recall it f is hardowly continuous, (an) is cause, {f(an)} is causely uniformly continuous homeomorphism presents completeness

Generalization

- 1. two topological vector space V and Wf. $V \rightarrow W$ is uniformly continuous if for any neighborhood B of zero in W, there exists a neighborhood A of zero in V such that $V_1 V_2 \in A \implies f(V_1) f(V_2) \in B$.
- 2. generalize to "uniform space"