Code	RIDGE_LASSO_REGRESSION.PY
Author	Nathaniel Heatwole, PhD (<u>heatwolen@gmail.com</u>) (<u>GitHub</u>) (<u>LinkedIn</u>)
Summary	Uses ridge, lasso, and elastic net regression to predict body mass index (BMI) ¹ using weight, height, and age. ² Selects hyperparameters using built-in cross-validation.
Methods/ process	 Ridge / lasso / elastic net regression: Extends concepts of linear regression to the case where there are significant correlations among the predictor variables (multicollinearity). Avoids tendency of simple linear regression to overfit when multicollinearity exists, improving predictions for out-of-sample test cases. Adds an additional term (penalty) to the typical least-squares regression:
Training data	BMI data – empirical health-related data for 741 persons (from Kaggle).
Output	Plot - Training data scatter matrix (univariate distributions, 2D relationships) Summary - Training data stats - Regression coefficients - Regression summary
Result	All regressions are highly accurate (adj. $R^2 = 0.97$). The coefficients signs for weight and height are as expected (i.e., BMI increasing in weight and decreasing in height). However, the hyperparameters for lasso and elastic net are minimal ($\alpha = 0.01$).

¹ BMI is a height-normalized measure of weight. It is defined as: weight / height^2.

² These predictors are expected to be correlated, and so ridge/lasso regression is appropriate.

³ For example: R^2, adjusted R^2, AIC, BIC, log-likelihood, MSE.