Random Variables (rv)

Discrete Random Variables [Ross S4.2]

Definition 9.1: A random variable that can take at most a countable number of possible outcomes is called a discrete random variable.

Definition 9.2: For a discrete random variable X, we define its **Probability** Mass Function (PMF) $p_X(a)$ by $p_X(a) = P[X=a].$

Let
$$\mathcal{X} = \{x_1, x_2, ...\}$$
 be the possible outcomes that X takes.

Then $p_X(x) \ge 0$ for $x \in \mathcal{X}$

 $p_X(x) = 0 \qquad \quad \text{for all other } x$ and, since X must take one of its possible values:

 $\sum_{x \in \mathcal{X}} p_X(x) = 1$

Example 9.1: Say the PMF of the random variable
$$X$$
 is

 $p_X(k) = C \frac{\lambda^k}{k!}, \quad \text{for } k = 0, 1, 2, \dots$

a) Find
$$C$$
 in terms of λ

b) Find P[X = 0]

and $\lambda > 0$ is given.

- c) Find P[X > 1]. Solution:

 $F_X(x)$ is called the **Cumulative Distribution Function** (CDF) of X.

Say $\mathcal{X} \subset \mathbb{R}$. Instead of specifying $p_X(x)$ for every $x \in \mathcal{X}$, we can specify:

 $F_X(x) = P[X \le x] \qquad x \in \mathbb{R}$

Example 9.2: Let
$$X$$
 be such that
$$p_X(1) = \frac{1}{4} \qquad p_X(2) = \frac{1}{2} \qquad p_X(3) = \frac{1}{8} \qquad p_X(4) = \frac{1}{8}$$

instead.

Solution:

Plot the CDF $F_X(x)$.

=1/2

= 2/3

Example 9.3: Say $p_X(0) = 1/2$, $p_X(1) = 1/2$.

 $E[X] = 0 \times 1/2 + 1 \times 1/2$

Example 9.4: Say $p_X(0) = 1/3$, $p_X(1) = 2/3$.

 $E[X] = 0 \times 1/3 + 1 \times 2/3$

X assumes that outcome.

Then

that

random variable.

What is E[X]?

Expected (Mean) Value [Ross S4.3]

Definition 9.3: The **expected** (or **mean**) value of a random variable X is

 $E[X] = \sum_{x \in \mathcal{X}} x p_X(x)$

This is an "average" where each outcome is weighted by the probability that

Example 9.5: Let $A \subset S$ be an event. Let the random variable I be such

 $= 0 \times P[A^c] + 1 \times P[A]$

Example 9.6: 120 students are driven in 3 buses with 36, 40 and 44 students

(9.1)

 $I = \begin{cases} 1 & A \text{ occurs} \\ 0 & A \text{ does not occur.} \end{cases}$ Then $E[I] = 0 \times P[I=0] + 1 \times P[I=1]$

=P[A] I is called an **indicator for event** A. We often write I_A or 1_A for this kind of

each. One of the 120 students is chosen randomly.

Solution:

Let X = # students on bus of randomly chosen student.