# Local Polynomial Regression used to estimate partial derivatives for later use in Spline Interpolation

Albrecht Gebhardt

Roger Bivand

University Klagenfurt

Norwegian School of Economics

#### Abstract

This vignette presents the R package **interp** and focuses on local polynomial regression for estimating partial derivatives.

This is the first of planned three vignettes for this package (not yet finished).

Keywords: local polynomial regression, partial derivatives, R software.

## 1. Note

Notice: This is a preliminary and not yet complete version of this vignette. Finally three vignettes will be available for this package:

- 1. this one related to partial derivatives estimation,
- 2. a next one describing interpolation related stuff
- 3. and a third one dealing with triangulations and Voronoi mosaics.

#### 2. Introduction

Altough the main intention of this R package is interpolation, it also contains routines for local polynomial regression. The reason is that the spline interpolation implemented by interp::interp(..., method="akima") needs estimates of the partial derivatives of the interpolated function up to degree 2.

One approach to get such estimates is to perform a local polynomial regression (see e.g. Fan and Gijbels 1996, p. 19) and get the partial derivatives as a side effect, as explained later. This is also applied in Akima's original code in a special hardcoded way (using a fixed local bandwidth and a uniform kernel). Once this routines had been implemented and used internally in the interp::interp(...,method="akima") it was an obvious decision to make these routines also available to end users of package "interp".

## 3. Kernel Functions

In the next section we will use the notion of kernel functions, so let us start with this definition.

#### **Definition 3.1.** A one-dimensional kernel function K(x) is

1. a density function, hence

- (a)  $K(x) \geq 0$
- (b)  $\int_{\mathbb{R}} K(x)dx = 1$

Let us denote the associated stochastic variable with  $X_K$  for easier notation, it otherwise carries no meaning.

- 2. K has the property  $\int_{\mathbb{R}} x \cdot K(x) = 0$  (i.e.  $\mathbb{E}X_K = 0$ , kernel function is centered at zero) and
- 3. K is assumed to be symmetric K(-x) = K(x) and
- 4.  $0 < \int_{\mathbb{R}} x^2 \cdot K(x) dx = \sigma_K^2 < \infty$ , i.e.  $VarX_K$  exists.

The kernel functions currently implemented in this library are listed in table 1.

| name         | function                                  | support of $K$ (outside: $K(x) = 0$ )              |
|--------------|-------------------------------------------|----------------------------------------------------|
| gaussian     | $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ | $x \in \mathbb{R}$                                 |
| cosine       | $\frac{1}{2}\cos(x)$                      | $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$ |
| epanechnikov | $\frac{3}{4}(1-x^2)$                      | $x \in (-\overline{1}, \overline{1}]$              |
| biweight     | $\frac{15}{16}(1-x^2)^2$                  | $x \in (-1,1]$                                     |
| tricube      | $\frac{70}{81}(1- x ^3)^3$                | $x \in (-1,1]$                                     |
| triweight    | $\frac{35}{32}(1-x^2)^3$                  | $x \in (-1,1]$                                     |
| uniform      | $\frac{1}{2}$                             | $x \in (-1,1]$                                     |
| triangular   | 1 -  x                                    | $x \in (-1,1]$                                     |

Table 1: kernels

A common approach to create two-dimensional kernel functions is to derive them from onedimensional kernels as bivariate densities with independent components:

$$K_{X,Y}(x,y) = K_X(x)K_Y(y)$$

Both  $K_X$  and  $K_Y$  are chosen from the same kernel function type.

## 4. Bivariate Local Polynomial Regression

Let us start with a data set  $\{(\underline{x}_i, z_i) | i = 1, \dots, n\}$  with vectors  $\underline{x}_i = (x_i, y_i)^{\top} \in \mathbb{R}^2$  and real numbers  $z_i \in \mathbb{R}$ . Assume a trend model

$$z = m(x) + \varepsilon$$

with independent random errors  $\varepsilon$  and a bivariate polynomial of degree r as setup for m:

$$m(\underline{x}) = m(x, y) = \sum_{i=0}^{r} \sum_{j=0}^{r-i} \beta_{ij} x^{i} y^{j}.$$

Note that the sum of exponents i and j in each term of the sum is bounded above by r.

Local regression aims to minimize a weighted sum of squares where the weights are determined by a bivariate kernel function centered at the actual location for prediction  $\underline{x}$  which decreases with increasing distance from this centering point:

$$\sum_{k=1}^{n} K_X \left( \frac{x - x_k}{h_x} \right) K_Y \left( \frac{y - y_k}{h_y} \right) \left[ z_k - \sum_{i=0}^{r} \sum_{j=0}^{r-i} \beta_{ij} x_k^i y_k^j \right]^2 \to Min$$

A Taylor expansion of m(x, y) in a location  $\underline{x}_0 = (x_0, y_0)$  can be used as a starting point to interpret the estimated parameters:

$$m(x,y) = \sum_{i=0}^{r-1} \sum_{j=0}^{r-1-i} \frac{\frac{\partial^{i+j}m}{\partial x^{i}\partial y^{j}}(x_{0})}{i! \, j!} (x - x_{0})^{i} (y - y_{0})^{j}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r-i} \underbrace{\frac{\partial^{i+j}m}{\partial x^{i-1}\partial y^{j-1}}(x_{0})}_{=\beta_{ij}} (x - x_{0})^{i-1} (y - y_{0})^{j-1}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r-i} \beta_{ij} (x - x_{0})^{i-1} (y - y_{0})^{j-1}$$

With the estimates  $\hat{\beta}_{ij}$ ,  $i=1,\ldots,r,j=1,\ldots,r-i$  for a given location  $\underline{x}$ , we evaluate this Taylor expansion at  $\underline{x}=\underline{x}_0$ , which means that all terms  $(x-x_0)^i(y-y_0)^j$  with i>0 or j>0 vanish. Only the estimated function and its derivatives at location  $\underline{x}=\underline{x}_0$  remain:

$$\widehat{m}(x,y) = \sum_{i=1}^{r} \sum_{j=1}^{r-i} \widehat{\beta}_{ij} (x - x_0)^{i-1} (y - y_0)^{j-1}$$

$$= \widehat{\beta}_{1,1} y$$
(2)

The remaining components of  $\widehat{\beta}$  can now be used to estimate the values of the derivatives of m in

$$\frac{\partial^{i+j} \widehat{m}}{\partial x^i \partial u^j}(x_0) = (i-1)! (j-1)! \widehat{\beta}_{ij}, \quad i = 1, \dots, r, j = 1, \dots, r-i$$
(3)

## 5. Implementation details

A call to function interp::locpoly() can be made with the following arguments:

```
locpoly(x, y, z, xo = seq(min(x), max(x), length = nx), yo = seq(min(y),
max(y), length = ny), nx = 40, ny = 40, input = "points", output = "grid",
h = 0, kernel = "uniform", solver = "QR", degree = 3, pd = "")
```

The first three arguments are vectors containing the data set. A future version may implement a similar scheme as used in interp::interp() where it is possible to use also a matrix of a rectangular data grid. Currently only the option input="grid" is implemented. In contrast the return value via output="grid" is by default a matrix of values according to a grid generated by xo and yo or automatically with dimension nx time ny. But also point wise output can be returned via output="points", in this case xo and yo have to be of same length.

The kernel parameter takes the values "uniform", "triangle", "epanechnikov", "biweight  $\hookrightarrow$  ", "tricube", "triweight", "cosine" and "gaussian" (default), see table 1. The bandwidth parameter h is interpreted as a local nearest neighbour bandwidth iff given as a scalar. I then is a proportion between 0 and 1 of the data set to be put into a local search neighbourhood. If it is specified as a vector with two elements, they are interpreted as proportions of the data range in x and y direction and are taken as a pair of fixed global two dimensional bandwiths, compare the examples below.

The argument solver (default is "QR", but also "LLT", "SVD", "Eigen" and "CPivQR" are available) chooses the numerical method to be used in the local regression step for solving the normal equations generated by the weighted least squares problem, compare fastLm() in (Bates and Eddelbuettel 2013).

Function interp::locpoly() returns estimated values of the regression function as well as estimated partial derivatives up to order 3 (Akima splines only need derivatives up to order 2). If the input parameter pd is empty ("") only the local regression is returned. If it is set to ("all") all derivatives up to order three (or less if degree is less then 3) including the regression result itself is returned. Otherwise using the encodings "x", "y", "xx", ..., "xyy" and "yyy" a single partial derivative can be selected.

This access to the partial derivatives was the main intent for writing this code as there are already many other local polynomial regression implementations in R. Beside the univariate local estimators stats::ksmooth(), locpol::locPolSmootherC() and KernSmooth::  $\rightarrow$  locpoly() (the last two also return univariate derivatives) the packages locfit and sm provide amongst other things bivariate local regression methods. But to our knowledge currently (winter 2023), no bivariate local regression estimators for partial derivatives exist. Package NNS also provides numerical differentiation but it uses finite difference methods. The original code from Akima also uses a partial derivatives estimator which is equivalent to a local regression with uniform kernels. Anyhow, to be used from within the C++ implementation of interp::interp() we had to implement this estimator directly also in C++ in package interp and could not rely on any external package.

This is a short overview (to be extended in a later version of this document) of the steps that had to be implemented:

- Formulate the normal equations for the above weighted least squares problem.
- Use package RcppEigen to perform the numeric solution.
- Package RcppEigen provides a sample implementaion fastLm to solve ordinary (unweighted) least squares problems. We just used this and extended it for the weighted case.

• fastLm has the option to use different solvers provided in RcppEigen. Our implementation inherits these options.

## 6. Application To A Regular Grid

We will test locpoly() now with a bicubic polynomial on the unit square on an ng by ng grid. Later tests using Franke functions (Franke 1982) will follow.

Set the x - y size of a square data grid to

```
> ng <- 11
```

resulting in 121 grid points.

First let us choose a kernel

```
> knl <- "gaussian"
```

Other Options would have been "uniform", "cosine", "biweight", "triweight", "tricube" and "epanechikov", compare section 8.

Next both a fixed global and a varying local bandwidth is needed:

```
> bwg <- 0.33
> bwl <- 0.11
```

The global bandwidth (=0.33) is interpreted as the ratio of the x and y range respective. So in this example the "moving window" of the kernel function covers a rectangular data region of  $1/3 \times 1/3 = 1/9$  of the bounding box of the data set.

The local bandwidth indicates the proportion of the data set choosen as local search neighbourhood. Its value 0.11 has been choosen to match the coverage of the global bandwidth above.

Now set the degree of the local polynomial model (maximum supported value is 3)

```
> dg=3
```

and define a bicubic polynomial:

```
> f <- function(x,y) (x-0.5)*(x-0.2)*(y-0.6)*y*(x-1)
```

Now we prepare symbolic derivatives of f both for calculating exact values (via package Periv) and for pretty printing (using package Periv). The helper functions used for these preparation steps are shown in appendix 9:

```
> df <- derivs(f,dg)
```

Now build and fill the grid with the theoretical values:

```
> xg <- seq(0,1,length=ng)
> yg <- seq(0,1,length=ng)
> xyg <- expand.grid(xg,yg)
```

and prepare a finer grid for detailed plotting at a larger resolution by increasing the grid density by factor 4 in both axes:

```
> af <- 4
> xfg <- seq(0,1,length=af*ng)
> yfg <- seq(0,1,length=af*ng)
> xyfg <- expand.grid(xfg,yfg)</pre>
```

Create coordinate matrices xx and yy as matching the grid matrix fg

```
> nx <- length(xg)
> ny <- length(yg)
> xx <- t(matrix(rep(xg,ny),nx,ny))
> yy <- matrix(rep(yg,nx),ny,nx)</pre>
```

Now fill all exact results derived from symbolic computation into the grid matrices, again one of the helper functions from appendix 9 is used:

```
> ## data for local regression
> fg <- outer(xg,yg,f)
> ## data for exact plots on fine grid
> ffg <- fgrid(f,xfg,yfg,dg)</pre>
```

Now perform the local regression estimation, get both global and local bandwidth results:

Now finally generate the plots. Again a collection of helper function is used here to fit all 10 plots and descriptions in a single plot. For interested users they are shown in the appendix.

```
> pf <- gg1image2contours(xfg,yfg,ffg$f,pdg$z,pdl$z,xyg,"f")
> pfx <- gg1image2contours(xfg,yfg,ffg$fx,pdg$zx,pdl$zx,xyg,"f_x")
> pfy <- gg1image2contours(xfg,yfg,ffg$fy,pdg$zy,pdl$zy,xyg,"f_x")
> pfxx <- gg1image2contours(xfg,yfg,ffg$fxx,pdg$zxx,pdl$zxx,xyg,"f_xx")
> pfxy <- gg1image2contours(xfg,yfg,ffg$fxy,pdg$zxy,pdl$zxy,xyg,"f_xy")
> pfyy <- gg1image2contours(xfg,yfg,ffg$fyy,pdg$zyy,pdl$zyy,xyg,"f_yy")
> pfxxx <- gg1image2contours(xfg,yfg,ffg$fxxx,pdg$zxxx,pdl$zxxx,xyg,"f_xxx")
> pfxxy <- gg1image2contours(xfg,yfg,ffg$fxxy,pdg$zxxy,pdl$zxxy,xyg,"f_xxy")
> pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxxy,xyg,"f_xyy")
> pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxyy,xyg,"f_xyy")
> pfyyy <- gg1image2contours(xfg,yfg,ffg$fyyy,pdg$zyyy,pdl$zyyy,xyg,"f_yyy")
> ## t1 and t3 contain pure texts generated hidden in this Sweave file.
> ## t2 contains aas much of the symbolic computation output as possible:
> t2 <- print_f(f,df,3)</pre>
```

Now we use features of the gridExtra package to arrange all texts and plots:

For the resulting plot see figure 1. They show a colored background image with two (a dashed green and a dotted blue) overlay of isolines. The colored background represents the exact function resp. its exact derivatives. Dashed green isolines are global bandwidth estimators, dotted blue isolines are local nearest neighbour estimates. All three overlays (colors and isolines) share the same step sizes for binning the colors and isoline levels.

Due to the nature of the different used functions only a varying part of the symbolic derivatives can be shown as text in the picture.

Now the same steps are repeated for Franke function 1:



Figure 1: A bicubic polynomial and its derivatives, exact and estimated values, regular grid

Again estimate with global and local bandwidth

and repeat the plot. Technical details are now hidden and only the plot is shown as the commands above are more or less repeated. Results are shown in figure 2. The same interpretation for colors and isolines as in the first plot is applied.



Figure 2: Franke function 1 and its derivatives, exact and estimated values, regular grid

# 7. Application To An Irregular Grid

Next we repeat the estmations with an irregular gridded data set using the same number of  $11 \times 11 = 121$  points:

```
> n <- ng*ng
```

Start with the same polynomial as in the last section:

```
> f <- function(x,y) (x-0.5)*(x-0.2)*(y-0.6)*y*(x-1)
```

The kernel settings stay the same (kernel="gaussian", global/local bandwidth 0.33/0.11).

```
> ## random irregular data
> x<-runif(n)
> y<-runif(n)
> xy<-data.frame(Var1=x,Var2=y)
> z <- f(x,y)</pre>
```

Again fill the grids for plotting the exact values

```
> ffg <- fgrid(f,xfg,yfg,dg)
> df <- derivs(f,dg)</pre>
```

and perform the estmation steps:

The remaining steps to generate the plots are again similar to the first plot and therefore hidden. The output for the bicubic polynomial is shown in figure 3, results for Franke function 1 in figure 4. The results for Franke function 1 are shown in figure 4.



Figure 3: A bicubic polynomial and its derivatives, exact and estimated, irregular data set



Figure 4: Franke function 1 and its derivatives, exact and estimated, irregular data set

## 8. Different Kernels

Now we try different kernels. We just continue with Franke function 1 and the irregular gridded data from last section. We show the results of kernel="uniform" and kernel=" → epanechnikov" in figures 5 and 6.



Figure 5: Franke function 1 and its derivatives, uniform kernel



Figure 6: Franke function 1 and its derivatives, epanechnikov kernel

Especially the performance of the uniform kernel with its discontinuous behavior at the borders of its support drops visibly. Considered globally, the local bandwidth estimators capture more details, across all kernels. But combined with a kernel with bounded support (uniform or epanechnikov in the test) they show problems at the border of the region. So the default setting of a gaussian kernel is well founded.

# 9. Appendix

These helper functions are needed to convert between R and Yacas:

```
> # helper functions for translation between R and Yacas
> fn_y <- function(f){
    b <- toString(as.expression(body(f)))
    b <- stringr::str_replace_all(b,"cos","Cos")
    b <- stringr::str_replace_all(b,"sin","Sin")
    b <- stringr::str_replace_all(b,"exp","Exp")
    b <- stringr::str_replace_all(b,"log","Log")
    b <- stringr::str_replace_all(b,"sqrt","Sqrt")
    b
}

yys_fn <- function(f){
    f <- stringr::str_replace_all(f,"Cos","cos")
    f <- stringr::str_replace_all(f,"Sin","sin")
    f <- stringr::str_replace_all(f,"Exp","exp")
    f <- stringr::str_replace_all(f,"Log","log")
    f <- stringr::str_replace_all(f,"Sqrt","sqrt")
    f
}</pre>
```

This function applies symbolic derivatives to a R function, both for later use as R function (via **Deriv**) and for printing (via **Ryacas**).

```
> derivs <- function(f,dg){
     ret<-list(f=f,
                f_str=ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),""),")"))))
     if(dg>0){
         ret$fx <- function(x,y){</pre>
              myfx <- Deriv(f,"x");</pre>
              tmp <- myfx(x,y);</pre>
              if(length(tmp)==1)
                  return(rep(tmp,length(x)))
              else
                  return(tmp)
         ret$fx_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)"),")")))</pre>
         ret$fy <- function(x,y){</pre>
              myfy <- Deriv(f, "y");</pre>
              tmp <- myfy(x,y);</pre>
              if(length(tmp)==1)
                  return(rep(tmp,length(x)))
                  return(tmp)
         ret$fy_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(y)"),")")))</pre>
         if(dg>1){
              ret$fxy <- function(x,y){</pre>
                  myfxy <- Deriv(Deriv(f,"y"),"x");</pre>
                   tmp <- myfxy(x,y);</pre>
                  if(length(tmp)==1)
                       return(rep(tmp,length(x)))
                  else
              ret$fxy_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(y)"),")")))</pre>
```

```
ret$fxx <- function(x,y){</pre>
         myfxx <- Deriv(Deriv(f, "x"), "x");</pre>
         tmp <- myfxx(x,y);</pre>
         if(length(tmp)==1)
             return(rep(tmp,length(x)))
             return(tmp)
    ret$fxx_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(x)"),")")))</pre>
    ret$fyy <- function(x,y){</pre>
         myfyy <- Deriv(Deriv(f,"y"),"y");
tmp <- myfyy(x,y);</pre>
         if(length(tmp)==1)
             return(rep(tmp,length(x)))
         else
              return(tmp)
    ret$fyy_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(y)D(y)"),")")))</pre>
    if(dg>2){
         ret$fxxy <- function(x,y){</pre>
             myfxxy <- Deriv(Deriv(Deriv(f, "y"), "x"), "x");</pre>
              tmp <- myfxxy(x,y);</pre>
              if(length(tmp)==1)
                  return(rep(tmp,length(x)))
                  return(tmp)
         ret$fxxy_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(x)D(y)")</pre>
               → ,")")))
         ret$fxyy <- function(x,y){</pre>
             myfxyy <- Deriv(Deriv(Deriv(f,"y"),"y"),"x");</pre>
              tmp <- myfxyy(x,y);</pre>
              if(length(tmp)==1)
                  return(rep(tmp,length(x)))
              else
                  return(tmp)
         ret$fxyy_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(y)D(y)")</pre>
              → ,")")))
         ret$fxxx <- function(x,y){</pre>
             myfxxx <- Deriv(Deriv(Deriv(f, "x"), "x");</pre>
              tmp <- myfxxx(x,y);</pre>
              if(length(tmp)==1)
                  return(rep(tmp,length(x)))
              else
                  return(tmp)
         ret$fxxx_str <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(x)D(x)")</pre>
               → ,")")))
         ret$fyyy <- function(x,y){</pre>
             myfyyy <- Deriv(Deriv(Deriv(f,"y"),"y"),"y");</pre>
              tmp <- myfyyy(x,y);</pre>
              if(length(tmp)==1)
                  return(rep(tmp,length(x)))
              else
                  return(tmp)
         \label{eq:continuous_str} \texttt{ret\$fyyy\_str} \quad \texttt{<- ys\_fn(yac(paste("Simplify(",y\_fn(fn\_y(f),"D(y)D(y)D(y)"))))} \\
              → ,")")))
    }
}
```

```
}
ret
}
```

The next function calculates exact values of the given function on a grid and fills it with partial derivatives up to degree dg.

```
> # for plots of exact values
> fgrid <- function(f,xg,yg,dg){</pre>
   ret <- list(f=outer(xg,yg,f))</pre>
   df <- derivs(f,dg)</pre>
   if(dg>0){
     ret$fx <- outer(xg,yg,df$fx)
     ret$fy <- outer(xg,yg,df$fy)
     if(dg>1){
       ret$fxy <- outer(xg,yg,df$fxy)</pre>
       ret$fxx <- outer(xg,yg,df$fxx)
       ret$fyy <- outer(xg,yg,df$fyy)
       if(dg>2){
          ret$fxxy <- outer(xg,yg,df$fxxy)</pre>
          ret$fxyy <- outer(xg,yg,df$fxyy)</pre>
          ret$fxxx <- outer(xg,yg,df$fxxx)</pre>
          ret$fyyy <- outer(xg,yg,df$fyyy)</pre>
     }
   }
   ret
```

Another helper function for formatting function expressions in the plots:

```
> split_str <- function(txt,1){
    start <- seq(1, nchar(txt), 1)
    stop <- seq(1, nchar(txt)+1, 1)[1:length(start)]
    substring(txt, start, stop)
}</pre>
```

The combination of image and contour plots are generated by these functions:

The expressions for the functions and their derivatives are printed via:

```
> print_deriv <- function(txt,1,at=42){</pre>
      ret<-
      for(t in txt){
           if(stringi::stri_length(t) < at)</pre>
                btxt <- t
           else
                btxt <- split_str(t,at)</pre>
           ftxt <- rep(paste(rep(" ",stringi::stri_length(1)),sep="",collapse=""),length(btxt)</pre>
           ftxt[1] <- 1
           ret <- paste(ret,paste(ftxt,btxt,sep="",collapse = "\n"),sep="",collapse = "\n")</pre>
      }
      ret
> print_f <- function(f,df,dg,offset=0.8){</pre>
   lns <- c(print_deriv(df$f_str,"f(x,y) ="))</pre>
   if(dg>=1)
      lns <- c(lns,
      print_deriv(df$fx_str,"f_x(x,y) ="),
      print_deriv(df$fy_str,"f_y(x,y) ="))
   if(dg>=2)
      lns <- c(lns,
      print_deriv(df$fxx_str,"f_xx(x,y) ="),
print_deriv(df$fyy_str,"f_yy(x,y) ="),
      print_deriv(df$fxy_str,"f_xy(x,y) ="))
   if(dg>=3)
      lns \leftarrow c(lns,
      print_deriv(df$fxxx_str,"f_xxx(x,y) ="),
print_deriv(df$fyyy_str,"f_yyy(x,y) ="),
      print_deriv(df$fxxy_str,"f_xxy(x,y) ="),
print_deriv(df$fxyy_str,"f_xyy(x,y) ="))
   txt <- grid.text(paste(lns,
   collapse="\n"),gp=gpar(fontsize=8),</pre>
      x=0,y=offset,draw=FALSE,
      just = c("left","top"))
   txt
 }
```

## References

Bates D, Eddelbuettel D (2013). "Fast and Elegant Numerical Linear Algebra Using the

| RcppEigen  | Package." | Journal | of | Statistical | Software, | 52(5), | 1-24. | URL | http:/ | '/www. |
|------------|-----------|---------|----|-------------|-----------|--------|-------|-----|--------|--------|
| jstatsoft. | org/v52/i | 05/.    |    |             |           |        |       |     |        |        |

Fan J, Gijbels I (1996). Local polynomial modelling and its applications. Chapman & Hall/CRC, Boca Raton, Fla. ISBN 0412983214 9780412983214. URL http://www.worldcat.org/search?qt=worldcat\_org\_all&q=0412983214.

Franke R (1982). "Scattered Data Interpolation: Tests of Some Methods." *MATHEMATICS OF COMPUTATION*, **38**, 181–200.

## List of Tables

| 1 | kernels                                                                            | 2  |
|---|------------------------------------------------------------------------------------|----|
|   | List of Figures                                                                    |    |
| 1 | A bicubic polynomial and its derivatives, exact and estimated values, regular grid | 8  |
| 2 | Franke function 1 and its derivatives, exact and estimated values, regular grid    | 9  |
| 3 | A bicubic polynomial and its derivatives, exact and estimated, irregular data set  | 11 |
| 4 | Franke function 1 and its derivatives, exact and estimated, irregular data set     | 12 |
| 5 | Franke function 1 and its derivatives, uniform kernel                              | 13 |
| 6 | Franke function 1 and its derivatives, epanechnikov kernel                         | 14 |

## Affiliation:

Albrecht Gebhardt Institut für Statistik Universität Klagenfurt 9020 Klagenfurt, Austria

E-mail: albrecht.gebhardt@aau.at