Multiple Linear Regression

Interactions & Transformations

Prof. Maria Tackett

02.17.20

Click for PDF of slides

Announcements

- Team Feedback #1 due Wed, Feb 19 at 11:59p
 - Check for email from Teammates
 - Please provide honest and constructive feedback. This team feedback will be graded for completion.
- HW 03 due Mon, Feb 24 at 11:59p

Today's Agenda

- Interactions
- Log Transformations

Interactions

Interaction Terms

- Case: Relationship of the predictor variable with the response depends on the value of another predictor variable
 - This is an interaction effect
- Create a new interaction variable that is one predictor variable times the other in the interaction
- Good Practice: When including an interaction term, also include the associated <u>main effects</u> (each predictor variable on its own) even if their coefficients are not statistically significant

Checking for interactions in the EDA

The data

Predictors

- verified_income: Whether borrower's income source and amount have been verified (Not Verified, Source Verified, Verified)
- debt_to_income: Debt-to-income ratio, i.e. the percentage of a borrower's total debt divided by their total income
- bankruptcy: Indicator of whether borrower has had a bankruptcy in the past (0: No, 1: Yes)
- **term**: Length of the loan in months
- credit_util: What fraction of total credit a borrower is utilizing,
 i.e. total credit utilizied divided by total credit limit

Response

interest_rate: Interest rate for the loan

Add interaction term

term	estimate	std.error	statistic	p.value
(Intercept)	11.298	0.074	151.764	0.000
verified_incomeSource Verified	1.094	0.100	10.940	0.000
verified_incomeVerified	2.704	0.119	22.730	0.000
debt_inc_cent	0.032	0.005	6.527	0.000
bankruptcy1	0.525	0.133	3.954	0.000
term_cent	0.154	0.004	38.764	0.000
credit_util_cent	4.841	0.163	29.689	0.000
verified_incomeSource Verified:debt_inc_cent	-0.009	0.007	-1.243	0.214
verified_incomeVerified:debt_inc_cent	-0.019	0.007	-2.699	0.007

Understanding interactions

- **Different intercept**: verified_incomeVerified = 2.704
- **Different slope** verified_incomeVerified:debt_inc_cent = -0.019

Log Transformations

Respiratory Rate vs. Age

- A high respiratory rate can potentially indicate a respiratory infection in children. In order to determine what indicates a "high" rate, we first want to understand the relationship between a child's age and their respiratory rate.
- The data contain the respiratory rate for 618 children ages 15 days to 3 years.
- Variables:

■ Age: age in months

Rate: respiratory rate (breaths per minute)

Rate vs. Age

```
respiratory <- ex0824
ggplot(data=respiratory, aes(x=Age, y=Rate)) +
  geom_point() +
  labs("Respiratory Rate vs. Age")</pre>
```


Rate vs. Age

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	47.052	0.504	93.317	0	46.062	48.042
Age	-0.696	0.029	-23.684	0	-0.753	-0.638

Log transformations

Need to transform *y*

- Typically, a "fan-shaped" residual plot indicates the need for a transformation of the response variable y
 - log(y): Easiest to interpret
- When building a model:
 - Choose a transformation and build the model on the transformed data
 - Reassess the residual plots
 - If the residuals plots did not sufficiently improve, try a new transformation!

Log transformation on *y*

- Use when the residual plot shows "fan-shaped" pattern
- If we apply a log transformation to the response variable, we want to estimate the parameters for the model...

$$\log(y) = \beta_0 + \beta_1 x$$

• We want to interpret the model in terms of y not log(y), so we write all interpretations in terms of

$$y = \exp{\{\beta_0 + \beta_1 x\}} = \exp{\{\beta_0\}} \exp{\{\beta_1 x\}}$$

Mean and logs

Suppose we have a set of values

```
x <- c(3, 5, 6, 8, 10, 14, 19)
```

Let's find the mean of the logged values of x, i.e. log(x)

```
log_x <- log(x)
mean(log_x)</pre>
```

```
## [1] 2.066476
```

Let's find mean of x and then log the mean value, i.e. $\log(\bar{x})$

```
xbar <- mean(x)
log(xbar)</pre>
```


[1] 2.228477

Median and logs

```
x <- c(3, 5, 6, 8, 10, 14, 19)
```

Let's find the median of the logged values of x, i.e. Median(log(x))

```
log_x <- log(x)
median(log_x)</pre>
```

```
## [1] 2.079442
```

Let's find median of x and then log the mean value, i.e. log(Median(x))

```
median_x <- median(x)
log(median_x)</pre>
```

```
## [1] 2.079442
```


Mean, Median, and log

```
x \leftarrow c(3, 5, 6, 8, 10, 14, 19)
                            \log(x) \neq \log(\bar{x})
mean(log_x) == log(xbar)
## [1] FALSE
                  Median(log(x)) = log(Median(x))
median(log_x) == log(median_x)
## [1] TRUE
```


Mean and median of log(y)

- Recall that $y = \beta_0 + \beta_1 x_i$ is the **mean** value of y at the given value x_i . This doesn't hold when we log-transform y
- The mean of the logged values is **not** equal to the log of the mean value. Therefore at a given value of *x*

$$\exp\{Mean(\log(y))\} \neq Mean(y)$$

$$\Rightarrow \exp{\{\beta_0 + \beta_1 x\}} \neq \text{Mean}(y)$$

Mean and median of log(y)

■ However, the median of the logged values **is** equal to the log of the median value. Therefore,

$$\exp{\text{Median}(\log(y))} = \text{Median}(y)$$

■ If the distribution of log(y) is symmetric about the regression line, for a given value x_i ,

$$Median(log(y)) = Mean(log(y))$$

Interpretation with log-transformed y

• Given the previous facts, if $log(y) = \beta_0 + \beta_1 x$, then

$$Median(y) = \exp{\{\beta_0\}} \exp{\{\beta_1 x\}}$$

- Intercept: When x = 0, the median of y is expected to be $\exp\{\beta_0\}$
- Slope: For every one unit increase in x, the median of y is expected to multiply by a factor of $\exp\{\beta_1\}$

log(Rate) vs. Age

respiratory <- respiratory %>% mutate(log_rate = log(Rate))

log(Rate) vs. Age

log_model <- lm(log_rate ~ Age, data = respiratory)</pre>

log(Rate) vs. Age

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	3.845	0.013	304.500	0	3.82	3.870
Age	-0.019	0.001	-25.839	0	-0.02	-0.018

■ Go to http://bit.ly/sta210-sp20-logy and interpret the model.

04:00

Confidence interval for β_j

■ The confidence interval for the coefficient of x describing its relationship with log(y) is

$$\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)$$

■ The confidence interval for the coefficient of x describing its relationship with y is

$$\exp\left\{\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)\right\}$$

Coefficient of Age

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	3.845	0.013	304.500	0	3.82	3.870
Age	-0.019	0.001	-25.839	0	-0.02	-0.018

Interpret the 95% confidence interval for the coefficient of Age in terms of *rate*.

Log Transformation on *x*

lacktriangle Try a transformation on X if the scatterplot shows some curvature but the variance is constant for all values of X

Model with Transformation on x

$$y = \beta_0 + \beta_1 \log(x)$$

- Intercept: When $\log(x) = 0$, (x = 1), y is expected to be β_0 (i.e. the mean of y is β_0)
- Slope: When x is multiplied by a factor of \mathbb{C} , y is expected to change by $\beta_1 \log(\mathbb{C})$ units, i.e. the mean of y changes by $\beta_1 \log(\mathbb{C})$
 - *Example*: when x is multiplied by a factor of 2, y is expected to change by $\beta_1 \log(2)$ units

Rate vs. log(Age)

Rate vs. Age

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	50.135	0.632	79.330	0	48.893	51.376
log_age	-5.982	0.263	-22.781	0	-6.498	-5.467

Go to http://bit.ly/sta210-sp20-logx and interpret the model.

04:00

See <u>Log Transformations in Linear Regression</u> for more details about interpreting regression models with log-transformed variables.

