

CLAIMS:

Sub-D'> 1. A semiconductor processor comprising:
3 a process chamber configured to receive a semiconductor
4 workpiece for processing;
5 a supply connection in fluid communication with the process
6 chamber and configured to supply slurry to the process chamber; and
7 a sensor configured to monitor the turbidity of the slurry.

8

9 2. The semiconductor processor according to claim 1 wherein
10 the supply connection is arranged in a substantially horizontal
11 orientation.

12

13 3. The semiconductor processor according to claim 1 wherein
14 the supply connection is arranged in a substantially vertical orientation.

15

16 4. The semiconductor processor according to claim 1 wherein
17 the sensor is configured to attach to the supply connection and detach
18 from the supply connection without disruption of the supply of slurry
19 within the supply connection.

20

21 5. The semiconductor processor according to claim 1 wherein
22 the sensor is configured to emit electromagnetic energy towards the
23 supply connection and to receive at least some of the electromagnetic
24 energy from the supply connection.

1 6. The semiconductor processor according to claim 5 wherein
2 the sensor is configured to receive reflected electromagnetic energy from
3 the supply connection.

4

5 7. The semiconductor processor according to claim 1 wherein
6 the sensor is configured to generate a signal indicative of the turbidity
7 of the slurry responsive to the received electromagnetic energy.

8

9 8. The semiconductor processor according to claim 1 wherein
10 the sensor is substantially insulated from the slurry.

11

12 9. The semiconductor processor according to claim 1 wherein
13 the process chamber comprises a chemical-mechanical polishing chamber.

14

15 10. A sensor comprising:
16 a source configured to emit electromagnetic energy towards a
17 subject material;
18 an initial receiver configured to receive at least some of the
19 electromagnetic energy, the initial receiver being configured to generate
20 a signal indicative of the turbidity of the subject material and responsive
21 to the received electromagnetic energy; and
22 a housing configured to align the source and initial receiver with
23 respect to the subject material.

1 11. The sensor according to claim 10 wherein the source
2 comprises a light emitting diode.

3
4 12. The sensor according to claim 11 wherein the light emitting
5 diode is configured to emit infrared electromagnetic energy.

6
7 13. The sensor according to claim 10 further comprising:
8 another receiver configured to receive at least some of the
9 electromagnetic energy passing through the subject material and to
10 generate a signal indicative of the received electromagnetic energy; and
11 a driver configured to control the amount of emitted
12 electromagnetic energy from the source to provide a substantially
13 constant amount of received electromagnetic energy at the another
14 receiver.

15
16 14. The sensor according to claim 10 wherein the initial receiver
17 is configured to receive emitted electromagnetic energy emitted without
18 passage of the electromagnetic energy through the subject material.

19
20 15. The sensor according to claim 14 further comprising a beam
21 splitter configured to direct electromagnetic energy from the source to
22 the subject material and to the initial receiver.

1 16. The sensor according to claim 10 wherein the initial receiver
2 is configured to receive emitted electromagnetic energy passed through
3 the subject material.

4

5 17. The sensor according to claim 10 wherein the sensor is
6 configured to receive reflected electromagnetic energy from the subject
7 material.

8

9 18. The sensor according to claim 10 wherein the housing is
10 configured to attach to a supply connection containing the subject
11 material and detach from the supply connection without disruption of
12 the flow of subject material within the supply connection.

13

14 19. An apparatus comprising:
15 a container configured to provide a subject material in a
16 substantially static state; and
17 at least one sensor provided at a predefined position relative to
18 the container to monitor the turbidity of the subject material at a
19 desired vertical position of the container.

1 20. The apparatus according to claim 19 wherein the at least
2 one sensor comprises a plurality of sensors provided at different
3 predefined positions relative to the container to monitor the turbidity
4 of the subject material at a plurality of desired vertical positions of the
5 container.

6
7 21. The apparatus according to claim 19 wherein the at least
8 one sensor comprises:

9 a source configured to emit electromagnetic energy towards the
10 container; and

11 a receiver configured to receive at least some of the
12 electromagnetic energy.

13
14 22. A semiconductor processor comprising:

15 a process chamber configured to receive and process a
16 semiconductor workpiece;

17 a connection provided in fluid communication with the process
18 chamber and configured to supply slurry to the process chamber; and

19 a sensor configured to monitor the turbidity of the slurry and
20 including:

21 a source configured to emit electromagnetic energy towards
22 the connection; and

23 a receiver configured to receive at least some of the
24 electromagnetic energy.

1 23. The semiconductor processor according to claim 22 wherein
2 the connection is arranged in a substantially horizontal orientation.

3
4 24. The semiconductor processor according to claim 22 wherein
5 the connection is arranged in a substantially vertical orientation.

6
7 25. The semiconductor processor according to claim 22 wherein
8 the sensor is configured to generate a signal indicative of the turbidity
9 responsive to the received electromagnetic energy.

10
11 26. The semiconductor processor according to claim 22 wherein
12 the sensor is substantially insulated from the slurry.

13
14 27. The semiconductor processor according to claim 22 further
15 comprising a housing coupled with the connection and configured to
16 align the source and the receiver with respect to the connection.

17
18 28. The semiconductor processor according to claim 22 wherein
19 the process chamber comprises a chemical-mechanical polishing chamber.

20
21 29. The semiconductor processor according to claim 22 wherein
22 the connection is transparent.

1 30. The semiconductor processor according to claim 22 wherein
2 the connection is translucent.

3
4 31. A semiconductor processor system comprising:
5 a distributor configured to supply a slurry;
6 a process chamber configured to receive and process a
7 semiconductor workpiece;

8 a connection configured to supply slurry from the distributor to
9 the process chamber; and

10 a sensor configured to monitor the turbidity of the slurry and
11 including:

12 a source configured to emit electromagnetic energy towards
13 the connection; and

14 a receiver configured to receive at least some of the
15 electromagnetic energy.

16
17 32. The semiconductor processor system according to claim 31
18 wherein the sensor is substantially insulated from the slurry.

19
20 33. The semiconductor processor system according to claim 31
21 wherein the process chamber comprises a chemical-mechanical polishing
22 chamber.

1 34. The semiconductor processor system according to claim 31
2 wherein the connection is transparent.

3 4 35. The semiconductor processor system according to claim 31
4 5 wherein the connection is translucent.

6

7 - 36. A semiconductor workpiece processing method comprising:
8 providing a semiconductor process chamber;
9 supplying slurry to the semiconductor process chamber; and
10 monitoring the turbidity of the slurry using a sensor.

11

12 37. The method according to claim 36 wherein the supplying
13 comprises using a supply connection and the monitoring comprises
14 monitoring slurry within the supply connection.

15

16 38. The method according to claim 37 further comprising
17 coupling the sensor with the supply connection.

18

19 39. The method according to claim 36 wherein the monitoring
20 comprises:

21 emitting electromagnetic energy towards the slurry; and
22 receiving at least some of the electromagnetic energy.

1 40. The method according to claim 36 further comprising
2 generating a signal indicative of the turbidity after the monitoring.

3
4 41. The method according to claim 36 further comprising
5 insulating the slurry from the sensor.

6
7 42. The method according to claim 36 wherein the providing
8 comprises providing a chemical-mechanical polishing process chamber.

9
10 43. A turbidity monitoring method comprising:
11 providing a source;
12 emitting electromagnetic energy towards subject material using the
13 source;
14 aligning an initial receiver relative to the subject material;
15 receiving at least some of the electromagnetic energy after the
16 emitting using the initial receiver; and
17 generating a signal indicative of the turbidity after the receiving.

18
19 44. The method according to claim 43 wherein the emitting
20 comprises emitting infrared electromagnetic energy.

1 45. The method according to claim 43 further comprising:
2 second receiving at least some of the electromagnetic energy
3 passing through the subject material using another receiver; and
4 controlling the emitting responsive the second receiving to provide
5 a substantially constant amount of received electromagnetic energy at the
6 another receiver.

7

8 46. The method according to claim 45 further comprising
9 directing the emitted electromagnetic energy to the initial receiver and
10 the another receiver.

11

12 47. The method according to claim 43 wherein the receiving
13 comprises receiving electromagnetic energy not passing through the
14 subject material.

15

16 48. The method according to claim 43 wherein the receiving
17 comprises receiving electromagnetic energy passing through the subject
18 material.

1 49. A turbidity monitoring method comprising:
2 providing a container;
3 providing subject material in a substantially static condition within
4 the container;
5 monitoring the turbidity of the subject material at a predefined
6 vertical position within the container; and
7 generating a signal indicative of the turbidity of the subject
8 material after the monitoring.

9
10 50. The method according to claim 49 further comprising
11 monitoring the turbidity of the subject material at another predefined
12 vertical position within the container.

13
14 51. The method according to claim 49 wherein the monitoring
15 comprises:

16 emitting electromagnetic energy towards the subject material; and
17 receiving at least some of the electromagnetic energy.

18
19 52. The method according to claim 49 further comprising
20 rotating the subject material during the monitoring.

1 53. A semiconductor workpiece processing method comprising:
2 providing a semiconductor processor having a process chamber
3 configured to receive a semiconductor workpiece;
4 supplying slurry to the process chamber using a connection;
5 emitting electromagnetic energy towards the connection using a
6 sensor;
7 receiving at least some of the electromagnetic energy using the
8 sensor; and
9 generating a signal indicative of turbidity of the slurry responsive
10 to the receiving.

11
12 54. The method according to claim 53 wherein the emitting
13 comprises emitting infrared electromagnetic energy.

14
15 55. The method according to claim 53 further comprising
16 substantially insulating the slurry from the sensor.

17
18 56. The method according to claim 53 wherein the providing
19 comprises providing chemical-mechanical polishing semiconductor
20 processor.

21
22 57. The method according to claim 53 further comprising
23 attaching the sensor to the connection and detaching the sensor from
24 the connection while maintaining the supplying.

- 1 58. A semiconductor workpiece processing method comprising:
2 providing a semiconductor processor having a process chamber
3 configured to receive a semiconductor workpiece;
4 supplying slurry to the process chamber using a connection;
5 emitting infrared electromagnetic energy using a source;
6 splitting the infrared electromagnetic energy to direct some of the
7 infrared electromagnetic energy towards the connection;
8 first receiving at least some of the infrared electromagnetic energy
9 passing through the connection using a first receiver;
10 generating a feedback signal using the first receiver responsive to
11 the first receiving;
12 adjusting the emitting via the source responsive to the feedback
13 signal to provide a substantially constant amount of electromagnetic
14 energy to the first receiver;
15 second receiving at least some of the infrared electromagnetic
16 energy not passing through the connection using a second receiver; and
17 generating a signal indicative of turbidity of the slurry using the
18 second receiver responsive to the second receiving.

19 Older

20
21
22
23
24