

GPU Simulation of Rigid Fibers

ERIC WOLTER

Master's Thesis at School of Engineering Sciences
Supervisor: Katarina Gustavsson
Examiner: Michael Hanke

TRITA xxx yyyy-nn

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Mauris purus. Fusce tempor. Nulla facilisi. Sed at turpis. Phasellus eu ipsum. Nam porttitor laoreet nulla. Phasellus massa massa, auctor rutrum, vehicula ut, porttitor a, massa. Pellentesque fringilla. Duis nibh risus, venenatis ac, tempor sed, vestibulum at, tellus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.

Referat

GPU simulering av stela fibrer

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Mauris purus. Fusce tempor. Nulla facilisi. Sed at turpis. Phasellus eu ipsum. Nam porttitor laoreet nulla. Phasellus massa massa, auctor rutrum, vehicula ut, porttitor a, massa. Pellentesque fringilla. Duis nibh risus, venenatis ac, tempor sed, vestibulum at, tellus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.

Contents

1	Intro	ductio	n					1
2	The	oretical	Foundation					11
3	CPU	Implen	nentation					13
	3.1	Discret	tization			 	 	13
	3.2	Timest	cepping			 	 	13
4	GPU	Implen	nentation					15
	4.1	CUDA				 	 	15
	4.2	Kernel	s			 	 	15
	4.3	Optimi	izations			 	 	15
		4.3.1	Numerically vs. A	Analytical	ly	 	 	15
		4.3.2	Grid Dimension			 	 	15
		4.3.3	Shared Memory			 	 	15
5	Resu	ılts						17
	5.1	Fair co	mparison			 	 	17
	5.2	Fortra	n vs. CUDA			 	 	17
	5.3	Grid Di	imension			 	 	17
	5.4	Scaling	5			 	 	17
6	Cond	clusion						19
Ар	pend	ices						19

Introduction

Figure 1.1: Total time per timestep using the average over 10 timesteps. First timestep is excluded as warmup. Assuming linear scaling for Fortran.

Figure 1.2: Total time per timestep using the average over 10 timesteps. First timestep is excluded as warmup. Assuming linear scaling for Fortran.

Figure 1.3: Average time for each simulation step over 10 timesteps. First timestep is excluded as warmup.

Figure 1.4: Average time for each simulation step over 10 timesteps. First timestep is excluded as warmup. Assuming linear scaling for Fortran.

Figure 1.5: Average time for each simulation step over 10 timesteps. First timestep is excluded as warmup. Assuming linear scaling for Fortran.

Figure 1.6: Average time for solve system step. Averaged over 10 timesteps (1st excluded). Assuming linear scaling for Fortran.

Assemble System (Fortran Analytical) Assemble System (CUDA Numerical) Assemble System (OpenMP Numerical) Assemble System (OpenMP Analytical) Assemble System (OpenMP Analytical) assemble System (OpenMP Analytical)

Figure 1.7: Average time for assemble system step. Fortran and CUDA are averaged over 10 timesteps (1st excluded). Fortran New is only 1st timestep. Assuming linear scaling for Fortran.

Figure 1.8: Total time per timestep using the average over 10 timesteps. First timestep is excluded as warmup.

Theoretical Foundation

CPU Implementation

- 3.1 Discretization
- 3.2 Timestepping

GPU Implementation

- 4.1 CUDA
- 4.2 Kernels
- 4.3 Optimizations
- 4.3.1 Numerically vs. Analytically
- 4.3.2 Grid Dimension
- 4.3.3 Shared Memory

Results

- 5.1 Fair comparison
- 5.2 Fortran vs. CUDA
- 5.3 Grid Dimension
- 5.4 Scaling

Conclusion