Задача А. Разрез

Имя входного файла: cut.in
Имя выходного файла: cut.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан неориентированный граф. Найдите минимальный разрез между вершинами 1 и п.

Формат входных данных

На первой строке входного файла содержится n ($1 \le n \le 100$) — число вершин в графе и m ($0 \le m \le 400$) — количество ребер. На следующих m строках входного файла содержится описание ребер. Ребро описывается номерами вершин, которые оно соединяет, и его пропускной способностью (положительное целое число, не превосходящее $10\,000\,000$), при этом никакие две вершины не соединяются более чем одним ребром.

Формат выходных данных

На первой строке выходного файла должны содержаться количество ребер в минимальном разрезе и их суммарная пропускная способность. На следующей строке выведите возрастающую последовательность номеров ребер (ребра нумеруются в том порядке, в каком они были заданы во входном файле).

Пример

cut.in	cut.out
3 3	2 8
1 2 3	1 2
1 3 5	
3 2 7	

Замечание

В общем случае для времени работы алгоритма Форда—Фалкерсона нет оценки лучше, чем размер максимального потока на число рёбер. Однако в конкретных задачах он часто оказывается заметно быстрее. Но толкать 10^7 раз строго по одной единичке потока не стоит в любом случае.

Задача В. Просто поток

Имя входного файла: flow.in
Имя выходного файла: flow.out
Ограничение по времени: 5 секунд
Ограничение по памяти: 64 мегабайта

Дана система из узлов и труб, по которым может течь вода. Для каждой трубы известна наибольшая скорость, с которой вода может протекать через нее. Известно, что вода течет по трубам таким образом, что за единицу времени в каждый узел (за исключением двух — источника и стока) втекает ровно столько воды, сколько из него вытекает.

Ваша задача — найти наибольшее количество воды, которое за единицу времени может протекать между источником и стоком, а также скорость течения воды по каждой из труб.

Трубы являются двусторонними, то есть вода в них может течь в любом направлении. Между любой парой узлов может быть более одной трубы.

Формат входных данных

В первой строке записано натуральное число N — количество узлов в системе ($2 \le N \le 100$). Известно, что источник имеет номер 1, а сток номер N. Во второй строке записано натуральное M ($1 \le M \le 5000$) — количество труб в системе. Далее в M строках идет описание труб. Каждая труба задается тройкой целых чисел A_i , B_i , C_i , где A_i , B_i — номера узлов, которые соединяет данная труба ($A_i \ne B_i$), а C_i ($0 \le C_i \le 10^4$) — наибольшая допустимая скорость течения воды через данную трубу.

Формат выходных данных

В первой строке выведите наибольшее количество воды, которое протекает между источником и стоком за единицу времени. Далее выведите M строк, в каждой из которых выведите скорость течения воды по соответствующей трубе. Если направление не совпадает с порядком узлов, заданным во входных данных, то выводите скорость со знаком минус. Числа выводите с точностью 10^{-3} .

Пример

flow.in	flow.out
2	4.0000000
2	1.0000000
1 2 1	-3.0000000
2 1 3	

Задача С. Улиточки

Имя входного файла: snails.in
Имя выходного файла: snails.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Две улиточки Маша и Петя сейчас находятся в на лужайке с абрикосами и хотят добраться до своего домика. Лужайки пронумерованы числами от 1 до n и соединены дорожками (может быть несколько дорожек соединяющих две лужайки, могут быть дорожки, соединяющие лужайку с собой же). В виду соображений гигиены, если по дорожке проползла улиточка, то вторая по той же дорожке уже ползти не может. Помогите Пете и Маше добраться до домика.

Формат входных данных

В первой строке файла записаны четыре целых числа -n, m, a и h (количество лужаек, количество дорог, номер лужайки с абрикосами и номер домика).

В следующих m строках записаны пары чисел. Пара чисел (x,y) означает, что есть дорожка с лужайки x до лужайки y (из-за особенностей улиток и местности дорожки односторонние).

Ограничения: $2 \le n \le 10^5, 0 \le m \le 10^5, s \ne t$.

Формат выходных данных

Если существует решение, то выведите YES и на двух отдельных строчках сначала путь для Машеньки (т.к. дам нужно пропускать вперед), затем путь для Пети. Если решения не существует, выведите NO. Если решений несколько, выведите любое.

Пример

snails.in	snails.out
3 3 1 3	YES
1 2	1 3
1 3	1 2 3
2 3	

Задача D. Ориентируй меня полностью!

Имя входного файла: orient.in
Имя выходного файла: orient.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Вам дан неориентированный граф без петель и кратных рёбер. Ваша задача—ориентировать граф таким образом, чтобы максимальная исходящая степень была бы минимально возможной.

Формат входных данных

В первой строке заданы числа n и m — количество вершин и рёбер в графе ($1 \le n \le 25\,000$; $0 \le m \le 25\,000$). В следующих m строках даны пары чисел от 1 до n — рёбра графа.

Формат выходных данных

Выведите минимально возможную максимальную степень. Далее выведите m целых чисел от 0 до 1. Если i-е ребро было задано парой чисел a, b, то ноль означает, что оно после ориентации ведёт из a в b, а единица — что из b в a.

Примеры

orient.in	orient.out
4 4	1
1 2	0 1 1 0
1 3	
4 2	
4 3	
5 5	1
1 2	0 0 0 1 1
2 3	
3 1	
1 4	
1 5	