Applying Optimal Transport to recommendation

Théophane Vallaeys Lucas Marandat Guillaume Kunsch (Group MatrixT)

Optimal Transport (OT): a simple approach

Knowing the cost matrix: (cost of moving from μ_i to ν_j)

From OT to Inverse OT

Settings of OT don't match what we have in practice: **C is unknown**

Completing $\hat{\pi}$:

Learning Cost Function for Optimal Transport, Ma et al., 2021

 $\min_{\alpha,\beta,C} E(\alpha,\beta,C)$

Algorithm: repeat until convergence

$$\alpha \leftarrow \min_{\alpha' \in \mathbb{R}^n} E(\alpha', \beta, C)$$
$$\beta \leftarrow \min_{\beta' \in \mathbb{R}^m} E(\alpha, \beta', C)$$
$$C \leftarrow \min_{C' \in \mathbb{R}^{n \times m}} E(\alpha, \beta, C')$$

Cost parametrization:

$$C_A = U^{\mathsf{T}} A V$$
$$A \in \mathbb{R}^{k \times k}, k < n, m$$

 $U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}$ users/movies features

Predict: for user *i* and movie *j*

Preliminaries results:

