Quiz 4 (11월 27일 수 7, 8 교시)

[2013년 2학기 수학 및 연습 2] (시간은 20분이고, 20점 만점입니다.)

- * 답안지에 학번과 이름을 쓰시오. 답안 작성시 풀이과정을 명시하시오.
- 1. (6점) 영역 $x^2 + y^2 \le 1$ 중에서 1사분면 부분을 S 라 할 때, S 의 중심의 좌표 $(\overline{x}, \overline{y})$ 를 구하시오.
- 2. 곡면 $S: x^2+y^2+z^2=z, \ \left(z\geq \frac{1}{2}\right)$ 에 대하여 다음 물음에 답하시오.
 - (a) (7점) 원점에 대한 곡면 S 의 입체각을 구하시오.
 - (b) (7점) 위치 벡터장 $\mathbf{F}(x,y,z)=(x,y,z)$ 가 이 곡면을 빠져 나가 는 양을 구하시오. (단, S 의 단위법벡터장 \mathbf{n} 은 $\mathbf{n}\cdot\mathbf{k}\geq 0$ 이도록 주어져 있다.)

Quiz 4 모범답안 및 채점기준 예시

1.
$$\iint_{S} x \, dS = \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r \cos \theta \, r \, dr d\theta = \frac{1}{3} \, \text{이고}, \tag{2점}$$

곡면의 넓이가
$$\frac{\pi}{4}$$
 이므로 $\overline{x} = \frac{4}{3\pi}$ 이다. (3점)

대칭성에 의해
$$\overline{y} = \overline{x} = \frac{4}{3\pi}$$
 이다. (3점)

* 대칭성을 이용하지 않고 직접 \overline{y} 를 계산한 경우, \overline{x} 와 동일한 기준으로 채점함.

- 2. (a) 원점에 대한 곡면 S 의 입체각
 - = [S] 의 상이 원점을 중심으로 하는 단위 구면에 맺힌 넓이] (2점)
 - = [아래 그림의 빨간 곡선을 z 축에 대해 회전시킨 곡면의 넓이]

$$= \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \sin \varphi \, d\varphi d\theta \tag{5A}$$

$$=2\pi \left(1 - \frac{1}{\sqrt{2}}\right) \tag{7}$$

(b)
$$X(\varphi, \theta) = \frac{1}{2} (\sin \varphi \cos \theta, \sin \varphi \sin \theta, 1 + \cos \varphi),$$

 $0 \le \varphi \le \frac{\pi}{2}, 0 \le \theta \le 2\pi : 곡면 S 의 매개화$
 $\Rightarrow dS = \frac{1}{4} \sin \varphi \, d\varphi d\theta$

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S} (x, y, z) \cdot 2 \left(x, y, z - \frac{1}{2} \right) \, dS$$

$$= 2 \iint_{S} \left(x^{2} + y^{2} + z^{2} - \frac{z}{2} \right) dS = \iint_{S} z \, dS$$

$$= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 + \cos \varphi) \frac{1}{4} \sin \varphi \, d\varphi d\theta \qquad (4점)$$

$$= \frac{3\pi}{8} \qquad (7점)$$