מבני נתונים 234218 אביב תשע"ח

דף שער להגשה באיחור

311549455	ת.ז.	נדב אורזך	:1 מגיש
312168354	ת.ז.	_רוני אנגלנדר_	: 2 מגיש
		1 רטוב_	:תרגיל
23:59_ :	שעה	13.12.2108	:תאריך הגשה מפורסם
17:00_ :	שעה	16.12.2018_	:תאריך הגשה בפועל
ד לפי נהלי הקורס)	(*נמד	2	: מספר ימי איחור
		2	: מתוכם מוצדקים

שימו לב:

- 1) צרפו את האישורים המתאימים, ללא אישורים אלו, לא תאושר הדחייה ויורדו נקודות מציון התרגיל בהתאם.
- 2) הדחייה בתאריך ההגשה של תרגיל אחד לא משפיעה על תאריך ההגשה של התרגיל הבא. נהלו את זמנכם בהתאם.
- 3) במקרה של למעלה מ-5 ימי דחייה, יש ליצור קשר עם המתרגל האחראי על התרגיל.

	: לפני בונוס הדפסה	:ציון
	כולל בונוס הדפסה:	
55	: נא להחזיר לתא מסי	

RE: מבני נתונים - בקשת דחיה ברטוב 1 עקב בחני אמצע

<roi.bar-zur@cs.technion.ac.il> Roi Bar Zur

16:06 12/12/2018

Roni Englender :אל

רוני שלום, מגיעים לכם 3 ימי דחייה. בהגשה שלכם אנא צרפו את המייל הזה ואת האישורים ששלחתם.

רועי

From: roni.en@campus.technion.ac.il <roni.en@campus.technion.ac.il>

Sent: Wednesday, 12 December 2018 14:04

To: Roi Bar Zur <<u>roi.bar-zur@cs.technion.ac.il</u>>

Subject: מבני נתונים - בקשת דחיה ברטוב 1 עקב בחני אמצע

,היי רועי

לי ולשותף שלי היה השבוע במצטבר 3 בחני אמצע, ואנו מבקשים דחיה להגשה לפי הנהלים.

קורס 234129 מתק"א – בוחן ב9.12.18 , שנינו נבחנו קורס 104031 אינפי 1מ – בוחן ב11.12.18 אני נבחנתי

מצרפת את המייל שיבוץ לבחנים של שנינו, ודף שער של מתק"א (באינפי לא פורסם דף שער)

תודה מראש, רוני אנגלנדר תז 312168354 נדב אורזך תז 311549455

נשלח מהאפליקציה <mark>'דואר</mark>' עבור Windows 10

adlere@technion.ac.il

Nov 21

.

נדב אורזך - 311549455 להלן הבחנים לסמסטר 01:2018 מיום 25/11/2018 עד 23/12/2018:

מקצוע: 234129 - מב.לתורת הקבוצות ואוטומטים למדמ"ח

יום: א 09/12/2018 שעה: 18.30

בנין: דיוויס, חדר: 371

בהצלחה, עדנה אדלר מזכיר אקדמי, לימודי הסמכה

רוני אנגלנדר - 312168354 להלן הבחנים לסמסטר 01:2018 מיום 25/11/2018 עד 23/12/2018:

> מקצוע: 234129 - מב.לתורת הקבוצות ואוטומטים למדמ"ח יום: א 09/12/2018 שעה: 18.30 בנין: ה.אויר , חדר: 240

> > מקצוע: 104031 - חשבון אינפיניטסימלי 1מ' יום: ג 11/12/2018 שעה: 17.30 בנין: אולמן , חדר: 305

> > > בהצלחה, עדנה אדלר מזכיר אקדמי, לימודי הסמכה

מבני נתונים

234218

תרגיל רטוב 1

מגישים: רוני אנגלנדר - 312168354 נדב אורזך - 311549455

תאריך הגשה: 16.12.2018

<u>חלק ראשון – טבלאות וגרפים</u>

עץ חיפוש	רשימה	גודל
מאוזן	מקושרת	הקלט
102	9	50
85	8	150
85	7	250
90	7	350
111	8	450
111	11	550
108	8	650
98	8	750
115	7	850
160	17	950
125	7	1050
112	10	1150
110	8	1250
126	7	1350
112	8	1450
110	8	1550
109	8	1650
117	11	1750
157	8	1850
127	7	1950
114	11	2050
124	7	2150
120	7	2250
125	10	2350
121	7	2450
128	7	2550
117	7	2650
117	7	2750
133	9	2850
122	10	2950
122	8	3050
118	8	3150
117	8	3250
126	7	3350
121	10	3450
119	7	3550
118	7	3650
118	8	3750
126	8	3850
127	8	3950
136	10	4050
136	7	4150
128	8	4250
128	8	4350
128	7	4450
128	7	4550
132	9	4650
129	12	4750
0		

ADD FUNCTION

161	8	4850
133	7	4950
129	7	5050
129	7	5150
132	10	5250
130	7	5350
136	8	5450
129	8	5550
137	9	5650
130	7	5750
134	10	5850
132	7	5950
130	7	6050
133	7	6150
128	7	6250
136	9	6350
130	9	6450
154	7	6550
128	7	6650
137	8	6750
133	8	6850
132	10	6950
137	7	7050
146	7	7150
181		7250
129	7 7	7350
131	7	7450
150	9	7550
129	9	7650
147		7750
131	7 7 7 7	7850
128	7	7950
132	7	8050
138	9	8150
142	7	8250
139	7	8350
164	12	8450
139	8	8550
141	7	8650
161	9	8750
145	8	8850
139	7	8950
139	7	9050
14155	7	9150
142	7	9250
142	<u>.</u> 11	9350
139	7	9450
141	7	9550
139	7	9650
140	7	9750
157	10	9850
140	7	9950
	•	2200

DELETE FUNCTION

WIGHT WIL	201112	h-us
עץ חיפוש מאוזן	רשימה מקושרת	גודל הקלט
49	39	50
71	113	150
64	40	250
69	262	350
65	48	450
85	1436	550
58	45	650
92	530	750
67	39	850
84	1680	950
64	39	1050
81	1795	1150
81	39	1250
89	1927	1350
27099	46	1450
85	2066	1550
66	40	1650
87	2216	1750
82	47	1850
94	3379	1950
75	40	2050
89	2461	2150
83	39	2250
89	3628	2350
74	39	2450
87	3793	2550
89	40	2650
88	3912	2750
89	41	2850
94	4008	2950
73	40	3050
89	4203	3150
83	42	3250
91	5441	3350
72	49	3450
92	4456	3550
84	40	3650
126	5628	3750
73	53	3850
134	5734	3950
106	40	4050
90	6174	4150
96	45	4250
89	6163	4350
86	45	4450
85	7435	4550
102	40	4650
95	6271	4750

79	40	4850
104	6446	4950
104	48	5050
93	7860	5150
88	40	5250
90	8019	5350
86	40	5450
93	9186	5550
86	39	5650
102	8143	5750
89	48	5850
101	8315	5950
115	48	6050
102	9727	6150
95	41	6250
96	8444	6350
103	1051	6450
95	9052	6550
91	40	6650
102	11188	6750
96	40	6850
111	8733	6950
85	40	7050
95	9836	7150
110	40	7250
87	10952	7350
88	40	7450
95	10100	7550
91	40	7650
102	10237	7750
97	40	7850
111	10362	7950
86	39	8050
104	11555	8150
101	40	8250
97	11629	8350
100	40	8450
97	11844	8550
94	40	8650
102	12043	8750
92	40	8850
111	12228	8950
99	39	9050
13655	16308	9150
110	40	9250
97	20427	9350
98	40	9450
105	19103	9550
95	49	9650
105	20743	9750
96	40	9850
124	14874	9950

FIND FUNCTION

עץ חיפוש	רשימה	גודל
מאוזן	מקושרת	הקלט 100
12 11	38 39	100
		100
15	101	200
14	39	200
13	172	300
15	36	300
16	235	400
15	36	400
15	321	500
16	36	500
14	375	600
16	36	600
14	455	700
17	36	700
16	513	800
16	38	800
16	594	900
15	38	900
16	655	1000
16	36	1000
15	717	1100
16	36	1100
18	801	1200
22	36	1200
15	2856	1300
17	36	1300
16	2926	1400
17	38	1400
15	1991	1500
16	41	1500
17	2064	1600
17	37	1600
18	2114	1700
17	36	1700
16	3198	1800
16	36	1800
16	2249	1900
17	37	1900
17	2306	2000
18	36	2000
16	3428	2100
19	36	2100
16	2442	2200
17	36	2200
16	3522	2300
18	36	2300
17	3630	
17	3030	2400

18	36	2400
21	2649	2500
21	37	2500
21	4482	2600
22	37	2600
17	3787	2700
17	36	2700
16	3848	2800
18	36	2800
16	3918	2900
17	37	2900
22	3993	3000
24	36	3000
23	4050	3100
18	36	3100
18	4137	3200
25	37	3200
18	4188	3300
18	37	3300
7044	4254	3400
25	36	3400
19	5321	3500
19	36	3500
23	4387	3600
18	36	3600
23	5453	3700
18	36	3700
17	4539	3800
18	36	3800
22	5588	3900
		3900
21 17	40 5667	
		4000
18	37	4000
17	5733	4100
18	39	4100
17	4779	4200
19	36	4200
17	5855	4300
19	37	4300
18	5929	4400
18	36	4400
23	6001	4500
23	36	4500
30	7204	4600
19	38	4600
18	6126	4700
19	36	4700
18	6216	4800
18	42	4800
17	6260	4900
19	36	4900
17	7342	5000
34	37	5000

24	6394	5100
25	36	5100
18	7469	5200
19	36	5200
18	6536	5300
18	37	5300
18	7624	5400
24	37	5400
29	7856	5500
24	37	5500
19	7856	5600
19	37	5600
18	8087	5700
18	45	5700
18	8210	5800
19	37	5800
18	9319	5900
19	37	5900
18	8424	6000
30	38	6000
18	9573	6100
19	43	6100
19	8539	6200
19	37	6200
20	9738	6300
19	42	6300
24	8984	6400
	36	6400
23 20		
	9347	6500
19	37	6500
21	8298	6600
19	36	6600
20	9475	6700
19	36	6700
20	8532	6800
18	37	6800
19	9622	6900
18	37	6900
20	9672	7000
18	37	7000
23	8732	7100
26	36	7100
25	9817	7200
23	37	7200
20	9872	7300
18	37	7300
20	9937	7400
19	36	7400
20	12327	7500
19	37	7500
25	10269	7600
21	37	7600
20	9506	7700

23	36	7700
25	9768	7800
24	37	7800
19	13289	7900
19	36	7900
20	10349	8000
19	36	8000
21	11411	8100
19	36	8100
20	10474	8200
19	37	8200
19	11542	8300
21	36	8300
19	10605	8400
22	36	8400
25	11686	8500
27	36	8500
20	11849	8600
20	37	8600
24	11694	8700
21	36	8700
20	11928	8800
20	37	8800
26	11984	8900
23	37	8900
24	12010	9000
20	36	9000
19	12082	9100
20	36	9100
19	12149	9200
21	36	9200
20	12204	9300
20	36	9300
20	12842	9400
21	37	9400
19	13348	9500
20	36	9500
23	12410	9600
25	36	9600
20	13488	9700
24	36	9700
20	12538	9800
19	36	9800
20	13616	9900
20	38	9900
19	13581	10000
19	36	10000

חלק שני – תיאור מבני הנתונים

מימשנו מבנה נתונים בשם ImageTagger המכיל מאגר של תמונות מתויגות ותומך בכל הפעולות הנדרשות בתרגיל.

ImageTagger

מבנה נתונים ImageTagger מכיל בתוכו:

- max segments מספר מקסימלי של סגמנטים אפשריים לכל תמונה
- מילון הממומש ע"י עץ AVL (Map_Tree), אשר כל צומת בעץ מכילה מפתח שהוא Image (int), ומידע מסוג מצביע ל- Image מבנה נתונים שיורחב בהמשך.

Image

מבנה נתונים Image מכיל בתוכו:

- imagelD מזהה התמונה
- max_segments מספר מקסימלי של סגמנטים אפשריים לתמונה
- ה מערך של מספרים באורך max_segments, אשר במקום הו segments מערך של מספרים באורך מערך של מתויג, התא מציג את התיוג של האזור (segment) הו בתמונה. אם האזור לא מתויג, התא במערך מכיל את הערך EMPTY_SEG במערך מכיל את הערך
- unlabeled_segments רשימה מקושרת (Node_list) cunlabeled_segments המידע מכיל את הערך הלא מתויגים בתמונה. המפתח מכיל את הפתח מכיל את הEMPTY_SEG.

מימוש מבנה הנתונים:

יוצרת מבנה ImageTagger הפעולה יוצרת מבנה *void * Init(int segments):* הפעולה יוצרת מבנה max_segments לפי הערך שנשלח לפונקציה, ויוצר מילון מסוג עץ מאוזן ריק. יצירת עץ מאוזן ריק היא פעולה בסיבוכיות זמן של (1)O ומספר הפעולות קבוע ולכן:

סיבוכיות זמן: O(1)

(StatusType AddImage(void *DS, int imageID: הפעולה מוסיפה תמונה חדשה לעץ. כפי O(logk) שראינו בהרצאה הוספת צומת לעץ היא פעולה המתבצעת בסיבוכיות זמן של =k אובה העץ.

ביצירת התמונה יוצרים:

- 1. מערך חדש בגודל האזורים בתמונה (segments), ומאתחלים את כל הערכים בו להיות EMPTY SEG. משמע עוברים על מערך בגודל n.
- 2. רשימה מקושרת המכילה את כל האזורים שאינם מתויגים, ומכניסים בה את כל n האזורים (כי כולם אינם מתויגים בעת יצירת התמונה).

שתי פעולות אלה המתבצעות בסיבוכיות זמן של O(n) כל אחת כאשר

שאר הפעולות ביצירת תמונה הן בסיבוכיות זמן של O(1) – אתחול הערכים imageID וmax_segments. מכאן נקבל:

סיבוכיות זמן: O(logk +n)

(StatusType DeleteImage(void *DS, int imageID: הפעולה מסירה תמונה קיימת מהעץ.

נמצא את התמונה הרצויה בעץ, פעולה זאת מתבצעת בסיבוכיות זמן של (O(logk) (כפי שלמדנו בהרצאה), כאשר k=גובה העץ.

לאחר מכן נמחק את התמונה ונסיר אותה מהעץ. במחיקת התמונה נשחרר את המערך המציג את התיוגים של כל אזור, ואת הרשימה המקושרות המציגה את האזורים הלא מתוייגים. המערך בגודל n והרשימה במקס' בגודל n, כאשר n=segments. לכן מחיקת המערך והרשימה מתבצע בסיבוכיות זמן של (O(n). מכאן נקבל:

סיבוכיות זמן: O(logk +n)

(statusType AddLabel(void *DS, int imageID, int segmentID, int label: הפעולה segmentID לאזור label.

נמצא את התמונה הרצויה בעץ, פעולה זאת מתבצעת בסיבוכיות זמן של (C(logk) (כפי שלמדנו בהרצאה), כאשר k=גובה העץ.

נעדכן את המערך המציג תיוגים של כל אזור, כיוון שיש לנו את המיקום הנחוץ במערך (segmentID), הפעולה מתבצעת בסיבוכיות זמן של

אח"כ נסיר את האזור מהרשימה המציגה את האזורים הלא מתויגים. נמצא את האזור ברשימה, פעולה זו מתבצעת בסיבוכיות זמן של (O(n), ונסיר אותה מהרשימה (סיבוכיות זמן של (O(1)). מכאן נקבל:

סיבוכיות זמן: O(logk +n)

הפעולה *StatusType GetLabel(void *DS, int imageID, int segmentID, int *label):* הפעולה מחזירה את התיוג של האזור המבוקש בתמונה המבוקשת.

נמצא את התמונה הרצויה בעץ, פעולה זאת מתבצעת בסיבוכיות זמן של (C(logk) (כפי שלמדנו בהרצאה), כאשר k=גובה העץ.

נמצא את התיוג של האזור הרצוי ע"י גישה לתא הsegmentID במערך המציג את התיוגים של כל אזור, ונשים במצביע לlabel את הערך שמצאנו. הפעולות הנ"ל מתבצעות בסיבוכיות זמן (O(1). מכאן נקבל:

סיבוכיות זמן: O(logk)

הפעולה מוחקת את *StatusType DeleteLabel(void *DS, int imageID, int segmentID)*. הפעולה מוחקת את התיוג של האזור המבוקש בתמונה המבוקשת.

נמצא את התמונה הרצויה בעץ, פעולה זאת מתבצעת בסיבוכיות זמן של (O(logk) (כפי שלמדנו בהרצאה), כאשר k=גובה העץ.

נעדכן את התיוג של האזור להיות EMPTY_SEG במערך המציג את התיוגים של כל אזור. אנו יודעים לאיזה מקום במערך לגשת, ולכן פעולה זו מתבצעת בסיבוכיות זמן של (O(1).

נוסיף את האזור שזה עתה מחקנו לו את התיוג לרשימה המציגה את האזורים הלא מתויגים. הוספת איבר לרשימה מכניסה אותו להתחלה ולכן מתבצעת במספר סופי של פעולות, כלומר בסיבוכיות זמן של (O(1). מכאן נקבל:

סיבוכיות זמן: O(logk)

StatusType GetAllUnLabeledSegments(void *DS, int imageID, int **segments, int*
. הפעולה מחזירה מערך של כל האזורים הלא מתויגים בתמונה (numOfSegments:

נמצא את התמונה הרצויה בעץ, פעולה זאת מתבצעת בסיבוכיות זמן של (O(logk) (כפי שלמדנו בהרצאה), כאשר k=גובה העץ.

נעבור על כל הצמתים ברשימה המציגה את האזורים הלא מתויגים בתמונה, וכל צומת נכניס למערך הרצוי. פעולה זו מתבצעת בסיבוכיות זמן (O(s), כאשר s= מספר אזורים לא מתויגים (אורך הרשימה). מכאן נקבל:

סיבוכיות זמן: O(logk +s)

StatusType GetAllSegmentsByLabel(void *DS, int label, int **images, int equipments) פעולה זו מחזירה את כל האזורים בתמונות בעץ **segments, int *numOfSegments.

נעבור על כל הצמתים בעץ בשיטת inorder, מעבר זה מתבצע בסיבוכיות זמן של O(k), כאשר k גודל העץ (כמות התמונות). סריקה בשיטה זאת תיצור לנו את מערך התמונות ממוין כבר (לפי תכונות עץ בינארי ממוין) ולכן לא יהיה צורך במיון נוסף.

בכל צומת שנעבור, נסרוק את המערך המציג את האזורים המתויגים, ואם נמצא אזור עם התיוג המבוקש נכניס את התמונה למערך התמונות, ובאותו במקום במערך הסגמנטים נכניס את האזור שמצאנו. הסריקה של המערך מתבצעת בסיבוכיות זמן של (O(n), כאשר segments=n (גודל מערך האזורים). עדכון מערכי הsegments והבכמות פעולות סופית ולכן סיבוכיות של O(1).

לכל תמונה בעץ סורקים מערך בגודל n, ולכן נקבל:

סיבוכיות זמן: O(n*k)

.void Quit(void **DS) פעולה זו משחררת את המבנה.

ראשית אנו עוברים על כל הצמתים בעץ ומשחררים להם את המלומר משחררים את הmage). בשחרור הmage אנו מוחקים את המערך המציג את התיוגים של האזורים, ואת הרשימה של האזורים הלא מתוייגים. שניהם באורך n ולכן השחרור של שניהם מתבצע בסיבוכיות זמן של O(n) כאשר n=segments.

המעבר על כל צמתי העץ לוקח סיבוכיות זמן של (O(k) כאשר k מספר התמונות במערכת. לכן נקבל:

סיבוכיות זמן: O(n*k)