Елементи на Делоне: Лема 4

Нека $r=\sqrt{x_1^2+x_2^2+x_3^2}$ е разстоянието до планетата, а $r_{\min}=a(1-e)$ и $r_{\max}=a(1+e)$ са минималното и максималното разстояние до нея. Да въведем ъгъл u чрез формулата $r=a(1-e\cos u)$. Тъй като $-1\leq \cos u\leq 1$, то $r_{\min}\leq r\leq r_{\max}$ и ъгъл u съвпада с въведената по-рано в задачата на Кеплер ексцентрична аномалия.

Лема 4. Ако $r = a \cdot (1 - e \cdot \cos u)$, то:

1. В сила е уравнението на Кеплер

$$l = u - e \cdot \sin u$$
,

където $l:=\frac{\partial S}{\partial L}$ е спрегнатата на L променлива.

2. В сила е уравнението

$$l = n \cdot (t - t_0)$$

където $n=\sqrt{\frac{\gamma}{a^3}}$, и следователно l съвпада с по-рано въведената в задачата на Кеплер средна аномалия, а n със средното движение.

Доказателство. 1. По дефиниция на пораждаща функция, $l:=\frac{\partial S}{\partial L}$. Използваме и разлагането от Лема 2:

$$\begin{split} l &:= \frac{\partial S}{\partial L} \\ &= \frac{\partial}{\partial L} \left[\int_{r_{\min}}^{r} \sqrt{\frac{2m^2 \gamma}{r} - \frac{G^2}{r^2} - \frac{m^4 \gamma^2}{L^2}} dr + G \cdot \psi \right] \\ &= \int_{r_{\min}}^{r} \frac{m^4 \gamma^2}{L^3} \cdot \frac{dr}{\sqrt{\frac{2m^2 \gamma}{r} - \frac{G^2}{r^2} - \frac{m^4 \gamma^2}{L^2}}} \\ &= \frac{m^4 \gamma^2}{L^3} \cdot \int_{r_{\min}}^{r} \frac{dr}{G \sqrt{\left(\frac{1}{r_{\min}} - \frac{1}{r}\right) \left(\frac{1}{r} - \frac{1}{r_{\max}}\right)}} \end{split}$$

Сменяме границите на интегриране: когато u=0, то $r=a(1-e)=r_{\min};$ при u=u, имаме r=r:

$$l = \frac{m^4 \gamma^2}{L^2 G} \cdot \int_0^u \frac{da(1 - e \cos u)}{\sqrt{\left(\frac{1}{a(1 - e)} - \frac{1}{a(1 - e \cos u)}\right) \cdot \left(\frac{1}{a(1 - e \cos u)} - \frac{1}{a(1 + e)}\right)}}$$

$$= \int_0^u \frac{e \cdot \sin u}{\sqrt{e \cdot (1 - \cos u)}} \cdot \frac{(1 - e \cdot \cos u)du}{\sqrt{e \cdot (1 + \cos u)}}$$

$$= \int_0^u (1 - e \cdot \cos u)du$$

$$= u - e \cdot \sin u$$

Изведохме уравнението на Кеплер $l=u-e\sin u$, като l е елементът на Делоне́.

2. По построение, елементите на Делоне́ $(L, G, \Theta, l, g, \theta)$ са канонични и следователно средната аномалия l удовлетворява диференциалното уравнение:

$$\dot{l}=rac{\partial H}{\partial L}=rac{\partial}{\partial L}\cdot\left(rac{-m^3\gamma^2}{2L^2}
ight)=rac{m^3\gamma^2}{L^3}$$
 $=rac{m^3\gamma^2}{m^3\gamma^{rac{3}{2}}a^{rac{3}{2}}}=\sqrt{rac{\gamma}{a^3}}:=n=$ средно движение .

От това уравнение следва, че $l=n(t-t_0)$, където t_0 е моментът на преминаване през перихелията, т.е. $l(t_0)=0$. Наистина, ако l=0, то в уравнението на Кеплер следва, че u=0 и значи $r=a(1-e\cos 0)=r_{\min}$. Доказахме че l съвпада със средната аномалия. \square

Антоанета Драганова, antoaneta_d2001@yahoo.com Цветомира Димитрова, cucihi@mail.bg