Лабораторная работа №1 (весна) – ступень 1

РЕШЕНИЕ ЗАДАЧИ ДИРИХЛЕ ДЛЯ УРАВНЕНИЯ ПУАССОНА (метод верхней релаксации, погрешность/точность заданы)

Цель работы: решение разностных схем итерационным методом, решение СЛАУ большой размерности. Разработка, отладка и применение программных средств. Проверка сходимости. Анализ структуры погрешности, оценка погрешности и ее компонент. Ускорение сходимости. Решение модельной задачи с заданной погрешностью/точностью.

І. Постановки задач

Основная задача (задача Дирихле для уравнения Пуассона) имеет вид

$$\Delta u(x, y) = -f(x, y)$$
 при $x \in (a, b), y \in (c, d);$
 $u(a, y) = \mu_1(y), \qquad u(b, y) = \mu_2(y), \qquad y \in [c, d];$
 $u(x, c) = \mu_3(x), \qquad u(x, d) = \mu_4(x), \qquad x \in [a, b].$
(1)

Значения a, b, c, d и функции f(x, y), $\mu_l(y)$, l=1,2, $\mu_l(x)$, l=3,4 показаны в Таблице 1 по вариантам заданий. Необходимо найти решение — функцию u(x,y), заданную на множестве $x \in [a, b]$, $y \in [c, d]$.

Для проверки программы и анализа всех компонент погрешности используется *тестовая задача*

$$\Delta u(x, y) = -f^*(x, y)$$
 при $x \in (a, b), y \in (c, d);$
 $u(a, y) = \mu_1^*(y), \qquad u(b, y) = \mu_2^*(y), \quad y \in [c, d];$
 $u(x, c) = \mu_3^*(x), \qquad u(x, d) = \mu_4^*(x), \quad x \in [a, b].$ (2)

Чтобы записать тестовую задачу, найдите в Таблице 1 функцию $u^*(x,y)$ для своего варианта, подберите самостоятельно такую $f^*(x,y)$ и такие $\mu_l^*(y)$, l=1,2, $\mu_l^*(x)$, l=3,4, чтобы $u^*(x,y)$ являлась решением задачи (2) при $x \in [a,b]$, $y \in [c,d]$. Значения a,b,c,d нужно взять такими, как в задаче (1).

Обозначим через u(x,y) решение задачи (1), через $u^*(x,y)$ – решение задачи (2). При выполнении лабораторной работы решение основной задачи (1) неизвестно, решение тестовой задачи (2) – известно.

За счет выбора размерности сетки (n, m), параметра метода $\omega \in (0, 2)$ и значений критериев остановки ε_{mem} и N_{max} тестовую задачу (2) нужно решить с заданной или минимально возможной погрешностью, основную задачу (1) — с заданной или максимально высокой точностью. СЛАУ нужно решить методом верхней релаксации (см. Таблицу 2).

Таблица 1 Задача Дирихле для уравнения Пуассона. Варианты заданий

No	a; b; c; d	$u^*(x,y)$	f(x,y)
1	0;1;0;1	$\exp(\sin^2 \pi xy)$	$\sin^2(\pi xy)$
2	-1;1; -1;1	$\exp(1-x^2-y^2)$	$ \sin^3(\pi xy) $
3	-1;1; -1;1	$\exp(1-x^2-y^2)$	$ x^2-y^2 $
4	1;2;2;3	$sin(\pi xy)$	$-\exp(-xy^2)$
5	0;2;0;1	$\exp(\sin^2 \pi xy)$	x - y
6	0;1;0;2	$\exp(\sin^2 \pi xy)$	x - y
7	0;2;0;1	$\exp(\sin^2 \pi xy)$	$ x^2-2y $
8	0;3;0;1	$\sin^2(xy^2)$	ch(x-y)
9	1;2;1;2	$\exp(x^2-y^2)$	arctg(x/y)
10	-1;0;0;1	exp(xy)	$ch(x^2y)$

Граничные условия для основной задачи

№	$\mu_1(y)$	$\mu_2(y)$	$\mu_3(x)$	$\mu_4(x)$
1	$sin(\pi y)$	$sin(\pi y)$	$x-x^2$	$x-x^2$
2	$-y^2+1$	$-y^2+1$	$ \sin(\pi x) $	$ \sin(\pi x) $
3	$-y^2+1$	$(1-y^2)\exp(y)$	$1-x^2$	$1-x^2$
4	(y-2)(y-3)	y(y-2)(y-3)	(x-1)(x-2)	x(x-1)(x-2)
5	-y(y-1)	y(1-y)	$ \sin(\pi x) $	$ \sin(\pi x) \exp(x)$
6	$\sin^2(\pi y)$	$\left \exp(\sin \pi y) - 1 \right $	x (1-x)	$x (1-x) \exp(x)$
7	$\sin^2(\pi y)$	$\sin^2(2\pi y)$	$\sin^2(\pi x)$	$\sin^2(2\pi x)$
8	$\sin^2(\pi y)$	0	$ch(x^2-3x)-1$	0
9	0	0	$\sin^2(\pi x)$	ch (x-1)(x-2)-1
10	$sin(\pi y)$	sin2πy	-x(x+1)	-x(x+1)

Таблица 2

Выбор параметра метода

№ вар-та	Итерационный метод	Выбор параметра
1-10	Метод верхней релаксации, $\omega \in (0, 2)$	1) Оптимальное для сетки и матрицы СЛАУ значение можно получить по формуле 2) Значение, близкое к оптимальному, можно получить в ходе экспериментов с программой-образцом, используя варианты заданий, в которых погрешность схемы отсутствует

II. Ход выполнения работы

Для дискретизации тестовой задачи (2) и основной задачи (1) используйте разностную схему второго порядка аппроксимации, заданную на прямоугольной сетке размерности (n, m).

По направлению x число разбиений равно n, число узлов n+1, шаг обозначен через h=(b-a)/n. По направлению y число разбиений равно m, число узлов m+1, шаг обозначен через k=(d-c)/m.

Чтобы решить схему (решить СЛАУ), используйте *метод верхней релаксации (МВР)*. В качестве начального приближения возьмите значения, полученные *линейной интерполяцией граничных условий* по направлению x или y. Для остановки метода нужно указать значения критериев выхода по точности $\varepsilon_{мет}$ и выхода по числу итераций N_{max} . Параметр метода — число $\omega \in (0, 2)$ — выбирайте близко к оптимальному значению.

Прежде чем писать программу, изучите структуру отчета (см. бланк) и проведите подготовительную работу:

- запишите схему как систему разностных уравнений на сетке произвольной размерности (n, m);
- запишите схему как СЛАУ на сетке «небольшой» размерности: нужно выписать все элементы матрицы, все элементы искомого вектора и все элементы правой части СЛАУ;
- проверьте, чтобы матрица СЛАУ была положительно определенной, если нужно, поменяйте знаки левой и правой части СЛАУ;
- для СЛАУ «небольшой» размерности запишите, как обновляются компоненты численного решения на очередной итерации;
- оптимизируйте формулы для расчета итерации и запишите их для сетки произвольной размерности, учитывая, что для хранения сеточной функции v(x, y) в программе используется массив размерности $(n+1)\cdot(m+1)$.

Формулы для расчета итерации должны быть таковы, чтобы матрицу СЛАУ не хранить; а также *не хранить одновременно* векторы текущего и следующего приближения к решению СЛАУ.

Чтобы оценить общую погрешность, с которой решена тестовая задача, и оценить погрешность, с которой решена СЛАУ основной задачи, запишите в отчете определения всех типов погрешностей, возникающих при численном решении задач (1), (2). Запишите в отчете утверждения, необходимые для оценки компонент общей погрешности.

Результаты расчетов тестовой и основной задач должны быть представлены в программе в справках, таблицах и на графиках (см. раздел V). Результаты расчетов тестовой и основной задач, соответствующие заданным требованиям к погрешности/точности, должны быть представлены в отчете. Чтобы показать в отчете таблицы и графики, используйте скриншоты интерфейса своей программы.

При отладке программы проведите вычислительный эксперимент и проверьте «порядок сходимости». Результаты проверки укажите в отчете (см. раздел VI).

Код итерационного метода и расчета невязки (нормы невязки), а также расчет параметра (если в программе вычисляется оптимальный параметр) должны быть распечатаны и включены в отчет.

III. Погрешность решения тестовой задачи

Пусть $v^{(N)}(x, y)$ — численное решение тестовой задачи, то есть решение схемы, полученное с помощью MBP на шаге N.

Максимум разности точного и численного решений в узлах сетки обозначим через ε_I :

$$\varepsilon_{I} = \max_{\substack{i=0,\dots n \\ j=0,\dots m}} |u^{*}(x_{i}y_{j}) - v^{(N)}(x_{i}y_{j})|.$$
(3)

Величину ε_1 называют *погрешностью* решения тестовой задачи.

За счет выбора сетки (n, m), параметра $\omega \in (0, 2)$ и значений критериев остановки (точность метода ε_{mem} и максимальное число итераций N_{max}) тестовую задачу нужно решить c погрешностью не более $\varepsilon = 0.5 \cdot 10^{-6}$, то есть обеспечить выполнение неравенства

$$\max_{\substack{i=0,\dots n\\ j=0,\dots m}} |u^*(x_i y_j) - v^{(N)}(x_i y_j)| \le \varepsilon$$
 (4)

Величину ε называют *заданной погрешностью* решения задачи.

Если не удается решить тестовую задачу с заданной погрешностью $\varepsilon = 0.5 \cdot 10^{-6}$, решите ее с *минимально возможной погрешностью*. В отчете объясните, что нужно сделать, чтобы выполнить требование (4).

Программа должна показывать точное решение задачи $u^*(x,y)$, численное решение $v^{(N)}(x,y)$ и значение погрешности ε_I .

IV. Точность решения основной задачи

Пусть $v^{(N)}(x,y)$ — численное решение основной задачи, то есть решение схемы основной задачи, полученное с помощью МВР на шаге N. Предположим, что для отыскания данного решения использована сетка (n,m), параметр ω и значения критериев остановки $\varepsilon_{\!\scriptscriptstyle Mem}$ и $N_{\!\scriptscriptstyle max}$.

Чтобы оценить точность, по каждому из направлений x, y нужно уменьшить шаг сетки в два раза и на дополнительной сетке (2n, 2m) найти численно решение $v2^{(N2)}(x, y)$. Предположим, что для этого используется параметр ω_2 и значения критериев $\varepsilon_{\text{меm-2}}$ и $N_{\text{max-2}}$. Число шагов, затраченное на поиск данного решения, обозначено через N2.

Максимум разности численных решений в общих узлах двух сеток (n, m) и (2n, 2m) обозначим через ε_2 :

$$\varepsilon_2 = \max_{\substack{i=0,\dots n\\j=0,\dots m}} |v^{(N)}(x_i y_j) - v2^{(N2)}(x_{2i} y_{2j})|.$$
 (5)

Величину ε_2 называют *точностью* решения основной задачи.

За счет выбора сетки, параметров МВР и значений критериев остановки основную задачу нужно решить c то есть обеспечить выполнение неравенства

$$\max_{\substack{i=0,\dots n\\j=0,\dots m}} | v^{(N)}(x_i y_j) - v2^{(N2)}(x_{2i} y_{2j}) | \le \varepsilon$$
 (6)

Величину ε называют *заданной точностью* решения основной задачи.

Если не удается решить основную задачу с заданной точностью $\varepsilon = 0.5 \cdot 10^{-6}$, решите ее с *максимально высокой точностью*. В отчете объясните, что нужно сделать, чтобы выполнить требование (6).

Параметры $\omega \in (0, 2)$ и $\omega_2 \in (0, 2)$ и значения $\varepsilon_{\text{мет}}$ и N_{max} , $\varepsilon_{\text{мет}-2}$ и $N_{\text{max}-2}$ подбирают таким образом, чтобы на каждой из сеток (n, m) и (2n, 2m) СЛАУ была решена достаточно быстро и с малой невязкой (малой погрешностью). Так как сетке (2n, 2m) соответствует СЛАУ большей размерности, параметр $\omega_2 \in (0, 2)$ и значения $\varepsilon_{\text{мет}-2}$, $N_{\text{max}-2}$ нужно выбрать соответственно.

Программа должна показывать $v^{(N)}(x,y)$ – решение схемы на сетке размерности (n,m); $v2^{(N2)}(x,y)$ – решение схемы на сетке размерности (2n,2m); а также значение точности $\boldsymbol{\varepsilon}_2$.

V. Представление результатов счета

Для тестовой задачи (2) и основной задачи (1) *программа должна выводить справки, таблицы и графики* (графики – опция).

Справка для тестовой задачи

Общая

погрешность

«Для решения тестовой задачи использованы сетка с числом разбиений по x
$n = \langle \underline{\hspace{0.5cm}} \rangle$ и числом разбиений по $y m = \langle \underline{\hspace{0.5cm}} \rangle$,
метод верхней релаксации с параметром $\omega = \ll$ », применены критерии
остановки по точности $\varepsilon_{Mem} = \langle \langle \rangle \rangle$ и по числу итераций $N_{max} = \langle \rangle \rangle$
На решение схемы (СЛАУ) затрачено итераций $N=\ll$ » и достигнута точность итерационного метода $\varepsilon^{(N)}=\ll$ »
Схема (СЛАУ) решена с невязкой $ R^{(N)} = «»$ (указать норму невязки)
для невязки СЛАУ использована норма «»;
(указать тип: евклидова норма, норма «max»)
Тестовая задача должна быть решена с погрешностью не более $\varepsilon = 0.5 \cdot 10^{-6}$; задача решена с погрешностью $\varepsilon_1 = \ll$ »
Максимальное отклонение точного и численного решений наблюдается в узле $x=\ll$ »; $y=\ll$ »
В качестве начального приближения использовано
<u>«</u>
(указать, что использовано: интерполяция по x , интерполяция по y , иное)».
При оформлении отчета справку нужно дополнить расчетами:
Схема (СЛАУ) решена с погрешностью $\ Z^{(N)}\ _{\infty} \le \ Z^{(N)}\ _{2} \le «»$ (оценить норму погрешности по текущей невязке)
Погрешность схемы оценивается как $ z _{\infty} \le «_{_}$ » (оценить норму по теореме о сходимости схемы); использована норма $ z _{\infty} = «_{_}$ » (указать)

а также выписать определения для всех перечисленных выше норм

решения

использована норма $\|z_{oбщ}\|_{\infty} = «$ _______» (указать)

нент, вычислительную погрешность не учитывать);

тестовой

 $||z_{obu}||_{\infty} \le \ll$ » (оценить норму общей погрешности через нормы ее компо-

задачи

оценивается

как

Значения сеточной функции в узлах сетки (n, m) ($u^*(x, y)$, $v^{(N)}(x, y)$ или разность $u^*(x, y) - v^{(N)}(x, y)$)

	x_i	x_0	x_{I}	 x_n
\mathcal{Y}_{j}	j/i	0	1	 n
У0	0			
	•••			
\mathcal{Y}_m	m			

В таблицах должны быть представлены:

- точное решение $u^*(x, y)$ в узлах сетки;
- численное решение $v^{(N)}(x, y)$ в узлах сетки;
- разность точного и численного решения в узлах сетки;

Графики для тестовой задачи

- точное решение $u^*(x, y)$ (поверхность);
- начальное приближение $v^{(0)}(x_i, y_j)$ (поверхность);
- численное решение $v^{(N)}(x, y)$ (поверхность);
- разность точного и численного решения (поверхность).

Справка для основной задачи

«Для решения основной задачи использована сетка с числом разбиений по x n= «__» и числом разбиений по y m= «__», метод верхней релаксации с параметром $\omega=$ «__», применены критерии остановки по точности $\varepsilon_{\!\scriptscriptstyle Mem}=$ «__» и по числу итераций $N_{\!\scriptscriptstyle max}=$ «__»

На решение схемы (СЛАУ) затрачено итераций $N=\ll$ __» и достигнута точность итерационного метода $\varepsilon^{(N)}=\ll$ __»

Схема (СЛАУ) решена с невязкой $||R^{(N)}|| = «____»$ (указать норму невязки) использована норма «______» (указать тип: евклидова норма, норма «max», иное)

Для контроля точности решения использована сетка с половинным шагом, метод верхней релаксации с параметром $\omega_2 = \langle \rangle$, применены критерии остановки по точности $\varepsilon_{\text{мет-2}} = \langle \rangle$ и по числу итераций $N_{\text{max-2}} = \langle \rangle$

На решение задачи (СЛАУ) затрачено итераций $N2 = \ll$ ___» и достигнута точность итерационного метода $\varepsilon^{(N2)} = \ll$ ___»

Схема (СЛАУ) на сетке	с половинным шагом решена с невязкой
$ R^{(N2)} = «_{__} » (указать норм_2)$	
использована норма «	<u></u> »
(указать тип: евклидова норма	а, норма «max», иное)
Основная задача должна быт задача решена с точностью $oldsymbol{arepsilon}_2$	ть решена с точностью не хуже чем $\varepsilon = 0.5 \cdot 10^{-6}$; $e = \langle \underline{\hspace{1cm}} \rangle$
Максимальное отклонение чи половинным шагом наблюдае	исленных решений на основной сетке и сетке с ется в узле $x=\ll$ »; $y=\ll$ »
В качестве начального пр	иближения на основной сетке использовано
« <u></u> »,	на сетке с половинным шагом использовано
<u>«</u>	
(указать, что использовано: и	нтерполяция по x , интерполяция по y , иное)».

При оформлении отчета справку нужно дополнить расчетами:

Схема (СЛАУ) решена с погрешностью $\parallel Z^{(N)} \mid \mid_{\infty} \leq \parallel Z^{(N)} \mid \mid_{2} \leq \ll$ ____» (оценить норму погрешности)

Схема (СЛАУ) на сетке с половинным шагом решена с погрешностью $\parallel Z^{(N2)} \parallel_{\infty} \leq \parallel Z^{(N2)} \parallel_2 \leq \ll$ » (оценить норму погрешности)

а также выписать определения для всех перечисленных выше норм

Таблицы для основной задачи

Таблица 4

Значения сеточной функции в узлах сетки (n, m) ($v^{(N)}(x, y)$, $v2^{(N2)}(x, y)$ или разность $v^{(N)}(x, y) - v2^{(N2)}(x, y)$ в общих узлах)

	x_i	x_0	x_1	 x_n
\mathcal{Y}_{j}	j/i	0	1	 n
У0	0			
\mathcal{Y}_m	m			

В таблицах должны быть представлены:

- численное решение $v^{(N)}(x, y)$;
 численное решение $v^{2^{(N2)}}(x, y)$, полученное на сетке с половинным шагом;
 разность численных решений $v^{(N)}(x, y)$ и $v^{2^{(N2)}}(x, y)$;

Графики для основной задачи

- начальное приближение $v^{(0)}(x_i, y_j)$ (поверхность);
- начальное приближение $v_{ij}^{(0)}(x_i, y_j)$ (поверхность); численное решение $v_{ij}^{(N)}(x_i, y_j)$ (поверхность);
- численное решение $v2^{(N2)}(x,y)$, полученное на сетке с половинным шагом (поверхность);
- разность численных решений $v^{(N)}(x, y)$ и $v2^{(N2)}(x, y)$ (поверхность).

Замечание. Если при расчетах используется сетка с большим числом узлов, на графики поверхностей и в таблицы можно выводить не каждый узел: например, каждый 2-й, 5-й, 10-й и т.п.

VI. Проверка программы: контроль «порядка сходимости»

С целью проверки программы проведите вычислительный эксперимент и заполните от руки Таблицы 5, 6. Для тестовой задачи проверьте убывание погрешности (ε_1), для основной задачи проверьте убывание ε_2 (т.е. повышение точности). Определите «порядок сходимости».

Таблица 5

n	m	ω	$\mathcal{E}_{\mathit{Mem}}$	Тестовая задача, величина $max \mid u^*(x_i y_j) - v^{(N)}(x_i y_j) \mid$	Отношение погрешностей		
n_1	m_1	ω_l	$\mathcal{E}_{\mathcal{M}-1}$	$oldsymbol{\mathcal{E}_{l}}$ для $oldsymbol{n}_{l_{j}}oldsymbol{m}_{l_{j}}oldsymbol{\mathcal{E}_{\mathit{M-l}}}$			
n_2	m_2	ω_2	\mathcal{E}_{M-2}	\mathcal{E}_{1} для $n_{2,}m_{2,}\mathcal{E}_{\scriptscriptstyle M-2}$			
n_3	m_3	ω_3	\mathcal{E}_{M-3}	\mathcal{E}_{1} для $n_{3,}m_{3,}\mathcal{E}_{\scriptscriptstyle M-3}$			
	•••		•••	•••	•••		
	Порядок						

Таблица 6

n	m	$\mathcal{E}_{\!\scriptscriptstyle Mem}$	$\mathcal{E}_{_{\!M}2}$	Основная задача, величина $\max v^{(N)}(x_iy_j) - v2^{(N2)}(x_{2i}y_{2j}) $	Отношение значений точности		
n_I	m_1	$\mathcal{E}_{\mathcal{M}-I}$	\mathcal{E}_{M2-1}	${m \mathcal{E}_2}$ для $n_{I_1} m_{I_1} {m \mathcal{E}_{M-I_1}} {m \mathcal{E}_{M2-I}}$			
n_2	m_2	\mathcal{E}_{M-2}	\mathcal{E}_{M2-2}	$m{\mathcal{E}_2}$ для $n_{2,}m_{2,}m{\mathcal{E}_{_{\!M^{-2}\!,}}}m{\mathcal{E}_{_{\!M^{2-2}\!,}}}$			
n_3	m_3	\mathcal{E}_{M-3}	\mathcal{E}_{M2-3}	$m{\mathcal{E}_2}$ для $n_{3,}m_{3,}m{\mathcal{E}_{_{\!M}\!-\!3,}}m{\mathcal{E}_{_{\!M}\!2\!-\!3}}$			
•••	•••		•••	•••	•••		
	Порядок						

На сетке (n, m) использованы значения ω= На сетке (2n, 2m) использованы значения ω_2 =

(перечислить) (перечислить)

Для проведения эксперимента используйте 4–5 разных пар значений (n,m). В каждом расчете критерий выхода по числу итераций (N_{max}) должен быть таким, чтобы итерационный метод был остановлен по точности.

Кроме того, в каждом расчете значение параметра $\omega \in (0, 2)$ желательно брать оптимальным или близким к оптимальному значению соответственно числу участков сетки.

Вопрос: Сходимость и порядок сходимости есть свойства схемы. Ни одно из значений — ни \mathcal{E}_1 , ни \mathcal{E}_2 , не является погрешностью схемы. Опираясь на теоретический материал, объясните, почему результаты работы программы должны подтвердить динамику величин \mathcal{E}_1 и \mathcal{E}_2 с каким-либо порядком.

VII. Основные требования к отчету

Отчет нужно оформить *на бланке* и заполнить *все пункты от руки*. В отчет должны быть включены:

- постановки основной и тестовой задач, решение тестовой задачи;
- описание сетки, схемы, метода, выбора параметров метода, описание компонент общей погрешности;
- результаты счета тестовой и основной задач с заданной погрешностью/точностью: справки, графики, таблицы;
 - расчет оценок для погрешностей;
 - проверка порядка сходимости, ответы на вопросы.

Сведения о программе: описание данных, используемых программой; код итерационного метода и код расчета невязки (нормы невязки) должны быть распечатаны и включены в отчет.