Page No.: 2

Amendments to the Claims:

This listing of clams will replace all prior versions, and listings, of claims in the application:

Listing of Claims

Claim 1. (Currently Amended) A compound of the formula I:

$$X \xrightarrow{R^1} O \xrightarrow{R^2} H$$

$$N \xrightarrow{H} O$$

$$N \xrightarrow{R^3}$$

I

wherein:

R1 is selected from the group consisting of:

- (1) hydrogen,
- (2) R⁴-S(O)_pN(R⁵)-,

wherein R⁴ is independently selected from the group consisting of:

- (a) -C₁₋₈alkyl, which is unsubstituted or substituted with 1-6 fluoro,
- (b) $-NR^5R^6$,
 - (c) phenyl, and
 - (d) benzyl,

wherein R⁵ and R⁶ are independently selected from the group consisting of:

- (a) hydrogen,
- (b) -C₁₋₆alkyl, which is unsubstituted or substituted with 1-6 fluoro,
- (c) phenyl, and
- (d) benzyl,

and wherein p is independently 0, 1, or 25;

Page No.: 3

(4) -C₁₋₆alkyl-CN,

(5) halogen;

(6) — phenyl, which is unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from:

(b) halo,

(c) -C₁₋₆alkyl,

$$(e)$$
 -CO₂R⁵, and

$$(f)$$
 $C(O)R^5$

wherein n is 1, 2, 3 or 4;

R² is selected from the group consisting of:

- (1) hydrogen,
- (2) -C₁₋₆alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, or -C₃₋₈cycloalkyl which is unsubstituted or substituted with 1-7 substituents where the substituents are independently selected from:
 - (a) halo,
 - (b) hydroxy,
 - (c) -O-C₁₋₆alkyl,
 - (d) -C3-6cycloalkyl,
 - (e) $-S(O)_p-C_{1-6}$ alkyl,
 - (f) -CN,
 - (g) -CO₂H,
 - (h) -CO₂-C₁-6alkyl,
 - (i) $-CO-NR^5R^6$,
 - (j) phenyl, which is unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from:
 - (i) -C₁-6alkyl,

Page No.: 4

(3)

(1)

(2)

 $-S(O)_pN(R^5)$ - phenyl,

(g)

Page No.: 5

- (3) phenyl which is unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from:
 - (a) -C₁-6alkyl,
 - (b) -CN,
 - (c) halo,
 - (d) $-CF_3$,
 - (e) $-O-R^5$, and
 - (f) $-CO_2R^5$;

X is selected from the group consisting of:

- (1) -CH₂-, and
- (2) -O-;

and pharmaceutically acceptable salts thereof.

Claim 2 (Original) The compound of Claim 1 of the formula II:

И.

Claim 3 (Original) The compound of Claim 2 wherein:

R¹ is selected from:

- (1) $CH_3-S(O)_2N(CH_3)-;$
- (2) $CH_3CH_2-S(O)_2N(CH_3)-;$
- (3) $(CH_3)_2CH-S(O)_2N(CH_3)_{-}$;
- (4) phenyl-S(O)₂N(CH₃)-; and

Page No.: 6

(5) (CH₃)₂N-S(O)₂N(CH₃)-;

R² is -C₁₋₆alkyl, unsubstituted or substituted with cyclopropyl or halo;

R³ is -C₁₋₆alkyl or -C₃₋₈cycloalkyl; and

X is -CH2- or -O-;

and pharmaceutically acceptable salts thereof.

Claim 4 (Original) The compound of Claim 1 of the formula III:

Ш.

Claim 5 (Original) The compound of Claim 1 wherein:

R1 is selected from:

- (1) $CH_3-S(O)_2N(CH_3)-;$
- (2) $CH_3CH_2-S(O)_2N(CH_3)-;$
- (3) (CH₃)₂CH-S(O)₂N(CH₃)-;
- (4) phenyl-S(O)₂N(CH₃)-; and
- (5) $(CH_3)_2N-S(O)_2N(CH_3)-;$

R² is -C₁₋₆alkyl, unsubstituted or substituted with cyclopropyl or halo;

 R^3 is -C₁₋₆alkyl or -C₃₋₈cycloalkyl; and

X is -CH2- or -O-;

and pharmaceutically acceptable salts thereof.

Claim 6 (Original) The compound of Claim 1 wherein: R^1 is R^4 -S(O)₂N(R^5)-,

Page No.: 7

wherein R4	is	independen	tly selec	ted from	the group	consisting of	f:

- (a) -C₁₋₆alkyl, which is unsubstituted or substituted with 1-6 fluoro,
- (b) phenyl, and
- (c) benzyl,

and wherein R⁵ is independently selected from the group consisting of:

- (a) hydrogen,
- (b) -C₁₋₆alkyl, which is unsubstituted or substituted with 1-6 fluoro,
- (c) phenyl, and
- (d) benzyl.

Claim 7 (Original) The compound of Claim 6 wherein R¹ is selected from:

- (1) $CH_3-S(O)_2N(CH_3)-;$
- (2) $CH_3CH_2-S(O)_2N(CH_3)-;$
- (3) $(CH_3)_2CH-S(O)_2N(CH_3)_{-}$; and
- (4) $phenyl-S(O)_2N(CH_3)-;$
- (5) $(CH_3)_2N-S(O)_2N(CH_3)-.$

Claim 8 (Original) The compound of Claim 7 wherein R¹ is CH₃-S(O)₂N(CH₃)-.

Claim 9 (Original) The compound of Claim 1 wherein R² is -C₁₋₆alkyl, unsubstituted or substituted with cyclopropyl or halo.

Claim 10 (Original) The compound of Claim 9 wherein R² is selected from:

- (1) CH₃-;
- (2) CH₃CH₂-;
- (3) $(CH_3)_2CH_{-}$;
- (4) CH₃CH₂CH₂-;
- (5) (CH₃)₂CHCH₂-;
- (6) $CH_3CH_2CH_2CH_2$ -;
- (7) CH₃CH₂CH₂CH₂CH₂-;
- (8) cyclopropyl-CH₂-;
- (9) CF₃CH₂-; and
- (10) CH₂FCH₂-.

Page No.: 8

and a substitution of the open and the control of t

Claim 11 (Original) The compound of Claim 1 wherein R³ is -C₁-6alkyl or -C₃-gcycloalkyl.

Claim 12 (Original) The compound of Claim 11 wherein R³ is selected from:

- (1) CH3-;
- CH₃CH₂-; (2)
- (CH₃)₂CH-; (3)
- (4) CH₃CH₂CH₂-;
- (CH₃)₂CHCH₂-; (5)
- CH₃CH₂CH₂CH₂-; (6)
- CH3CH2CH2CH2CH2-; and (7)
- bicyclo[2.2.1]heptyl-. (8)

Claim 13 (Original) The compound of Claim 12 wherein R³ is (CH₃)₂CHCH₂-.

Claim 14 (Currently amended) A compound of Claim 1 which is selected from the group consisting of:

Ex	Structure	Ex	Structure
2	0,0	3	0,0
• • •			N I
	HN N		HN. A. J. H.
	H H O		H O
	<u> </u>		

Ex	Structure	Ex	Structure
4		5	
6	O S N H N H N H N H N H N H N H N H N H N	7	
8		9	
10		. 11	

Ex	Structure	Ex	Structure
12	O S N H O H O O O O O O O O O O O O O O O O	13	
14		15	
16		17	

Ex	Structure	Ex	Structure
18		19	
20		21	
22		23	

Ex	Structure	Ex	Structure
24	O S N HN NH O	25	
26		27	N HN HN O
28		29	

Ex	Structure	Ex	Structure
30	O S N H N O H N O O O O O O O O O O O O O O	31	
32	HZ O Z O HZ O HZ O O HZ O O HZ O O HZ O O D O D O D O D O D O D O D O D O D	33	
34		35	ON SON HE NO

Page No.: 14

36 O O O O O O O O O O O O O O O O O O O	Ex	Structure	Ex	Structure
		ON SON HN N		N S N

and pharmaceutically acceptable salts thereof.

Claim 15 (Original) A pharmaceutical composition comprising an effective amount of a compound of Claim 1 and a pharmaceutically acceptable carrier.

Claim 16 (Original) A method for inhibition of β -secretase activity in a mammal in need thereof which comprises administering to the mammal a therapeutically effective amount of a compound of Claim 1.

Claim 17 (Original) A method for treating Alzheimer's disease in a patient in need thereof comprising administering to the patient an effective amount of a compound of Claim 1.