

Exercise 11C

Question 6:

Here, a = 15, d = (11 - 15) = -4, and l = -13Let the total number of term be n, then

$$T_n = -13$$

⇒ a + (n - 1) d = -13
⇒ 15 + (n - 1) × (-4) = -13
⇒ -4 (n - 1) = -28
(n - 1) = 7 ⇒ n = 8
-13 is 8th term.

Required sum =
$$\frac{n}{2}(a+1)$$

= $\frac{8}{2}(15-13) = 4(2) = 8$

Hence, the sum of first 8th term of given AP is 8.

Question 7:

All 2 - digit whole numbers, which are divisible by 3 are 12, 15, 18, 21, \dots 99

This is an AP in which a = 12, d = (15 - 12) = 3, and l = 99Let the number of these terms be n, then

$$T_n = 99 \Rightarrow a + (n - 1)d = 99$$

 $\Rightarrow 12 + (n - 1) \times 3 = 99$
 $(n - 1) \times 3 = 87 \Rightarrow n - 1 = 29$
 $\Rightarrow n = 30$

Required sum =
$$\frac{n}{2}$$
(a+I)
= $\frac{30}{2}$ (12+99) = 15×111 = 1665

Question 8:

All the even number between 5 and 100 are 6, 8, 10, 12, ..., 98 This is an AP in which a = 6, d = (8 - 6) = 2, l = 98

$$T_n = 98 \Rightarrow a + (n-1)d$$

 $\Rightarrow 6 + (n-1)2 = 98 \Rightarrow 2(n-1) = 92$
 $\Rightarrow (n-1) = 46 \Rightarrow n = 47$
Required sum = $\frac{n}{2}(a+1)$
= $\frac{47}{2}(6+98) \Rightarrow 47 \times 52 = 2444$

hence, $S_n = 2444$

Question 9:

All natural number divisible by 6 and less than 100 are 6, 12, 18, 24,96

This in AP in which a = 6, d = (12 - 6) = 6 and l = 96

$$T_n = 96$$

 $\Rightarrow a + (n-1) d = 96$
 $\Rightarrow 6 + (n-1) 6 = 96$
 $\Rightarrow (n-1) \times 6 = 90$
 $\Rightarrow n-1 = 15$
 $\Rightarrow n = 16$

Required sum =
$$\frac{n}{2}(a+1)$$

= $\frac{16}{2}(6+96) = 8 \times 102 = 816$

Hence, $S_n = 816$

Question 10:

All natural numbers between 100 and 500 divisible by 7 are 105, 112, $119, 126, \dots 497$

This is an AP in which a = 105, d = (112 - 105) = 7, l = 497

Let the number of term be n, then

$$T_n = a + (n-1)d = 497$$

 $\Rightarrow 105 + (n-1) \times 7 = 497 \Rightarrow 7(n-1) = 392 \Rightarrow n-1 = 56$
 $\Rightarrow n = 57$

Required sum=
$$\frac{n}{2}(a+1) = \frac{57}{2}(105 + 497) = 57 \times 301$$

= $57 \times (300 + 1) = 57 \times 300 + 57 \times 1$
= 17157

Hence, $S_n = 17157$

********* END *******