Définition

Une onde correspond à la propagation d'une perturbation des propriétés physiques locales du milieu

Ondes progressives

La vitesse de propagation de l'onde est sa célérité (notée c)

Exemples d'ondes

Onde acoustique (son) perturbation de la pression de l'air ◀》

20 Hz - 20 kHz : audition humaine jusqu'à ~200 kHz : chauve-souris ↔ 2 MHz - 3 GHz : échographie i

Onde électromagnétique

perturbation du champ électromagnétique

Onde mécaniques : déformation d'un milieu matériel Exemples: tremblements de terre, déformation d'une corde, ...

Undes

Ondes progressives sinusoïdales

$$f(x,t) = A\sin(\underline{kx - \omega t})$$
Phase

Périodicité spatiale k: nombre d'onde (m $^{-1}$) $\lambda = \frac{2\pi}{k}$: longueur d'onde (m⁻¹)

Périodicité temporelle ω : pulsation (rad.s⁻¹)

$$f=rac{\omega}{2\pi}$$
 : fréquence (Hz ou s^-1)
$$T=rac{1}{f} : ext{période (s)}$$

Célérité

$$c = \frac{\omega}{k} = f\lambda = \frac{\lambda}{T}$$

Diffraction

Angle de diffraction
$$\theta = \frac{\lambda}{d}$$
 Longueur d'onde Dimension de l'ouverture

Interférences

Déphasage

 $\Delta \varphi$: différence de phase entre deux ondes

Interférences destructives

$$\Delta \varphi = (2n+1)\pi \quad n \in \mathbb{Z}$$