Math 29: Computability Theory

Spring 2024

Student: Amittai Siavava

PSET 1 — 04/05/2024

Prof. Miller

Problem 1.

The rational numbers, \mathbb{Q} , are $\left\{\frac{p}{q}\mid p,q\in\mathbb{Z},q>0\right\}$. The Gaussian rationals are complex numbers of the form $\{r+si\mid r,s\in\mathbb{Q}\}$. Provide a bijection between the Gaussian rationals and ω .

Prove that it is a bijection.

This... is a bijection.

Problem 2.

Give a register machine which converges if there is a 2 in \mathbb{R}_0 and diverges otherwise.

Problem 3.

Prove that the squaring function is computable by providing a register machine which takes in n in R_0 and outputs n^2 in R_1 . You may use the multiplication function x(n,m) — which starts with n in R_0 and m in R_1 and outputs $n \cdot m$ in R_2 — as a black box function labeled M.

Problem 4.

Prove that the set of ordered pairs of natural numbers (x, y) such that $x \leq y$ is computable by providing a register machine which takes n and m as imputs in R_0 and R_1 respectively and outputs 1 if $n \leq m$ and 0 in R_2 otherwise.

