# **Long Term Observations of Earth's Upper Atmosphere**

Marty Mlynczak
NASA Langley Research Center

## **Outline**

- The golden age of atmospheric science
- Science in the modern age
- Continued observations of the upper atmosphere
- Science and operational needs
- Priorities for the future that need to be started now!

# The Golden Age of Upper Atmospheric Science 1975 - Present

- Concerns over the ozone layer prompted development of satellite measurement of ozone, thermal structure, related chemistry, and dynamics
- Experimental techniques involve both limb and nadir observations
  - Limb both solar occultation and thermal emission
  - Nadir is backscatter ultraviolet (e.g. SBUV, TOMS)
- Multiple U. S. and International instruments and missions flown over past 40 years to understand stratosphere, mesosphere, and lower thermosphere/ionosphere

# What makes the Upper Atmosphere Interesting and Worthy of Study?

- Blend of classical photochemistry and aeronomy
  - Ozone is still the main radiative drive in the mesosphere and up to 90 km
  - Solar UV variability and particle precipitation influence thermal structure and composition
- Climate change
  - Expect M/LT to cool with increasing carbon dioxide
- Non-Equilibrium Radiative Transfer
  - ALL heating and cooling processes occur far removed from Local Thermodynamic Equilibrium (LTE) above ~ 65 km
- Atomic species become significant
  - Low density means long lifetimes for atomic oxygen and oxygen
  - Remarkable influence on the energy budget of the 80-100 km region and above
- The E-region, 105-140 km, is the "heat sink" for the entire atmosphere up to the exobase – controls climate change in thermosphere/ionosphere
  - Ultimately determines density at satellite orbits

## **Upper Atmosphere Satellite Instruments and Missions**

- 1970's
  - LRIR, LIMS, AE, SAM
- 1980's
  - DE-1, DE-2, SAGE-II, SME
- 1990's
  - UARS, POAM
- 2000's
  - Aura, TIMED, Envisat, ODIN, SciSat, SAGE-III, AIM, SMILES
- 2010's
  - SAGE III on ISS (2016 launch)
- 2020's ????
  - No missions in preparation for middle atmosphere science
     A gap in thermal structure and chemical composition
     measurements after 2020 is almost assured













# Selected Long-Term Observations

- Stratospheric Temperature 1978 2015
- Mesospheric Carbon Dioxide
- Thermospheric energy balance

# Stratospheric Temperature Change 1978/79 to 2014/15



# **Stratospheric Temperature Differences**

LIMS-SABER Cosine-latitude Weighted Mean Temperature Difference, 50S to 50N



# Time Series of Upper Mesosphere and Lower Thermosphere Carbon Dioxide 2002-2015



# Global Radiative Cooling by CO<sub>2</sub> (W) 100 km to 140 km 2002 – 2015 : 5000 days of data



# Global Radiative Cooling by NO (W) 100 km to 140 km 2002 – 2015 : 5000 days of data



Name one good reason why we need to continue to measure the mesosphere and thermosphere

# Global Cooling due to Increasing CO<sub>2</sub>



Increasing CO₂ → More IR emission/cooling by CO₂

Reduced temperatures → Reduced Density → Reduced Orbital Drag

Translates to longer lifetime for satellites – and space debris

# **How about 10<sup>8</sup> good reasons?**



NASA Orbital Debris Program Office

## **How does the Atmosphere Cool Above 140 km?**





Infrared Radiation is Effective Only below 140 km

#### Thermosphere Energy Balance – The E-Region Heat Sink



# **Summary**

- Long, illustrious history of observations of Earth's stratosphere, mesosphere, and thermosphere
- Presently facing a gap in measurements in near future
- Critical to understand thermal structure and energy balance of E-region, the "heat sink" of the upper atmosphere
- Long term evolution due to CO<sub>2</sub> increase controlled by radiative cooling in the E-region
- Technology now exists to measure T, O in E-region, and to study its coupling to above and below
- These measurements are a priority to understanding the future of satellite operations and climate change aloft

# Backups

# Global Cooling due to Increasing CO<sub>2</sub>



Increasing CO₂ → More IR emission/cooling by CO₂
Reduced temperatures → Reduced Density → Reduced Orbital Drag
Translates to longer lifetime for satellites – and space debris

# Regions in Earth's Atmosphere



## **Thermosphere Energy Balance – Thermal Structure**



Banks and Kockarts, 1973

## **Thermosphere Energy Balance – Energy Inputs**



## **Thermosphere Energy Balance – Energy Outputs**



#### **Thermosphere Energy Balance – Energy Redistribution**

