MATH 589: Advanced Probability Theory 2 Final Exam: 14 December 2021 18:30-21:30

Central Limit Theorem, Characteristic Functions, and Convergence 1 of Probability Measures

Review of Sums of Independent Random Variables 1.1

Consider $\{X_n \mid n \in \mathbb{N}\}\$ iid random variables with $\mathbb{E}[X_1] = 0$ (WLOG) and $\mathbb{E}[X_1^2] = 1$. Set $S_n :=$ $\sum_{i=1}^{n} X_{J}$. From the SSLN,

$$\frac{S_n}{n} \to 0$$

almost surely. In other words, $|S_n|$ has sub-linear growth as $n \to \infty$. In fact, given any sequence $\{b_n \mid n \geq 1\} \subseteq]0, \infty[$ such that $b_n \uparrow \infty$, if

$$\sum_{n=1}^{\infty} \frac{1}{b_n^2} < \infty,$$

i.e., b_n grows sufficiently fast, then $\frac{S_n}{b_n} \to 0$ almost surely (by Kronecker's Lemma, c.f. MATH 587). Why?

$$\sum_{n=1}^{\infty} \frac{\mathbb{E}\left[X_n^2\right]}{b_n^2} < \infty \Rightarrow \sum_{n=1}^{\infty} \frac{X_n}{b_n} \text{ converges almost surely } \Rightarrow \frac{S_n}{b_n} \to 0 \text{ almost surely.}$$

Such a sequence $\{b_n\}$ includes:

- $\{n^p\}$ for $p > \frac{1}{2}$. $\{\sqrt{n}(\ln(n))^p\}$ for any $p > \frac{1}{2}$.

This means that I can do better than what I know about the LLN. For example, we know that $|S_n|$ grows slower than $\sqrt{n}(\ln(p))^{1/2}$ for any $p > \frac{1}{2}$. Since the inequality is strict, this means you can always do better. There is not a critical level. Now suppose we are interested in the asymptotic behaviour? Can we find a lower bound for the growth rate of S_n ?

On the other hand, if $\{X_n \mid n \geq 1\}$ is iid N(0,1) standard Gaussian random variables. Then, set:

$$\check{S}_n := \frac{S_n}{\sqrt{n}}.$$
(1)

 \breve{S}_n is again N(0,1) for all $n \geq 1$. At least, in this case, \breve{S}_n doesn't converge to any constant almost surely. In fact, it's easy to see that $\limsup_n \frac{S_n}{\sqrt{n}} = +\infty$ and $\liminf_n \frac{S_n}{\sqrt{n}} = -\infty$ almost surely. Why is this? Let's consider the limsup. For all R > 0,

$$\mathbb{P}\left(\breve{S}_n > R\right) = \frac{1}{\sqrt{2\pi}} \int_R^{+\infty} e^{-\frac{x^2}{2}} dx$$
$$= p_R$$
$$> 0.$$

Since $\limsup_n \check{S}_n \in m\mathcal{T}$ (tail σ -algebra, we have from the Kolmogorov 0-1 Law that $\limsup_n \check{S}_n$ is constant almost surely. What is this constant? Write:

$$\check{S}_n = \frac{S_n}{\sqrt{n}} = \frac{\sum_{j=1}^n X_j + \sum_{j=N+1}^n X_j}{\sqrt{n}}.$$

As $n \to \infty$, $\frac{\sum_{j=1}^{n} X_j}{\sqrt{n}}$ goes to infinity. Hence, $\limsup_{n} \breve{S}_n = \infty$ almost surely. One can do a similar analysis for the liminf.

Remark that $\check{S}_n \sim N(0,1)$ is also seen for a more general sequence of random variables. This phenomenon is called the **Central Limit Phenomenon**.

Q: Can I have a better description of the asymptotics of S_n ?

The answer is the Law of the Iterated Logarithm.

Theorem 1 (Law of Iterated Logarithm). Let $\{X_n\}$ be a sequence of iid RVs with $\mathbb{E}[X_1] = 0$ and $\mathbb{E}\left[X_1^2\right] = 1$. For every $n \geq 1$, set $S_n = \sum_{j=1}^n X_j$, and define Λ_n to be the iterated logarithm:

$$\Lambda_n := \sqrt{2n\ln(\ln(n\vee 3))}.$$

It turns out that Λ_n will give us the accurate oscillation rate of S_n . Recall that the notation $n \vee 3 =$ $\max\{n,3\}$. Then, we can conclude:

- lim sup_n \$\frac{S_n}{\Lambda_n} = 1\$ almost surely.
 lim inf_n \$\frac{S_n}{\Lambda_n} = -1\$ almost surely.

In fact, for every $c \in [-1,1]$, for almost every sample point $\omega \in \Omega$, there exists a subsequence $\{n_k\}_{\omega} \subseteq \mathbb{N}$ such that

$$\lim_{k \to \infty} \frac{S_{n_k}(\omega)}{\Lambda_{n_k}} = c. \tag{2}$$

The picture you want to have in mind is the following:

Figure 1: The oscillations of S_n will always be in the envelope given by $\pm \Lambda_n$.

In particular, note that LIL \Rightarrow SLLN. The LIL is a refinement of the SLLN; Λ_n is sub-linear. Another perspective is by looking at it from the Kolmogorov 0-1 Law perspective: the liminf and limsup are constant almost surely.

Task # 1: Prove the Law of Iterated Logarithm.

Q: What can we say about the distribution?

The Central Limit Theorem will answer this question. For now, we will provide a heuristic overview; in the coming sections, we will rigorously do everything.

Idea: in the study of LLN, we consider $\bar{S}_n := \frac{S_n}{n}$, where $\mathbb{E}\left[\bar{S}_n\right] = \mathbb{E}\left[S_1\right] = 0$ for all $n \in \mathbb{N}$. Here, this means that \bar{S}_n preserves the first moment. In **(CLT)** we will consider $\check{S}_n := \frac{S_n}{\sqrt{n}}$, where $\mathbb{E}\left[\check{S}_n\right] = 0$ (so, $\check{S}_n = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{n}}$, where $\mathbb{E}\left[\check{S}_n\right] = 0$. Moreover,

$$\mathbb{E}\left[(\breve{S}_n)^2 \right] = \frac{n\mathbb{E}\left[X_1^2 \right]}{n} = 1.$$

Note that in the CLT, the first and second moments are preserved.

- 1. The expected value tells us where the mass is centred.
- 2. The variance measures how the mass is spread out: how random the random variable is.

Heuristically, the CLT studies how the randomness will replace itself under the assumption / condition that the amount of randomness is preserved or fixed. For sure, it will not be going to a constant, and it will resemble a N(0,1) as $n \to \infty$.

We work in the following set-up: $\{X_n\}$ iid random variables with $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X_1^2] = 1$, and $S_n = \sum_{j=1}^n X_j$.

Remark: by preserving / stabilizing the second moments, \check{S}_n stabilizes all the moments. We can see this with the following computation / proof.

Suppose $X_1 \in L^p$ for all $p \geq 1$. We will show this stablization by induction. For some $m \in \mathbb{N}$, define:

$$L_j := \lim_{n \to \infty} \mathbb{E}\left[(\breve{S}_n)^j \right] \text{ exists for } 1 \le j \le m.$$
 (3)

Consider the (m+1)st moment of \breve{S}_n :

$$\mathbb{E}\left[S_{n}^{m+1}\right] = \mathbb{E}\left[S_{n}S_{n}^{m}\right]$$

$$= \sum_{j=1}^{n} \mathbb{E}\left[X_{j}(X_{j} + S_{n\backslash j})^{m}\right]$$

$$= \sum_{j=1}^{n} \sum_{k=0}^{m} \binom{m}{k} \mathbb{E}\left[X_{j}^{k+1}\right] \mathbb{E}\left[S_{n\backslash j}^{m-k}\right] \text{ (by the binomial formula)}$$

$$= n \left(\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[S_{n\backslash 1}^{m}\right] + m \underbrace{\mathbb{E}\left[X_{1}^{2}\right]}_{=1} \mathbb{E}\left[S_{n\backslash 1}^{m-1}\right] + \sum_{k=2}^{m} \binom{m}{k} \mathbb{E}\left[X_{1}^{k+1}\right] \mathbb{E}\left[S_{n\backslash 1}^{m-k}\right]\right),$$

where $\mathbb{E}[X_1] = 0$ means the first term vanishes. Since $\mathbb{E}[X_1^2] = 1$, we get, by applying the definition of \check{S}_n :

$$\mathbb{E}\left[(\breve{S}_n)^{m+1} \right] = n^{-\frac{m+1}{2}} \mathbb{E}\left[S_n^{m+1} \right]$$

$$= n^{-\frac{m+1}{2}} \left(m \mathbb{E}\left[S_{n \setminus 1}^{m-1} \right] + \sum_{k=2}^m \binom{m}{k} \mathbb{E}\left[X_1^{k+1} \right] \mathbb{E}\left[S_{n \setminus 1}^{m-k} \right] \right).$$

Substituting in the definition of \check{S}_n , we obtain:

$$= \left(\frac{n-1}{n}\right)^{\frac{m-1}{2}} m \underbrace{\mathbb{E}\left[(\breve{S}_{n\backslash 1})^{m-1}\right]}_{:=L_{m-1}} + \sum_{k=2}^{m} \underbrace{\frac{(n-1)^{\frac{m-k}{2}}}{n^{\frac{m-1}{2}}} \binom{m}{k} \mathbb{E}\left[X_1^{k+1}\right]}_{:=L_{m-k}} \underbrace{\mathbb{E}\left[(\breve{S}_{n-1})^{m-k}\right]}_{:=L_{m-k}}.$$

So as $n \to \infty$, we obtain:

$$1 \cdot m \cdot L_{m-1}. \tag{4}$$

This gives us the following recursive relationship: $L_{m+1} = mL_{m-1}$. Since $L_1 = 0$ and $L_2 = 1$, the second moment stabilizes all the moments:

$$L_{2m+1} = 0 \text{ (all odd indices)} \tag{5}$$

$$L_{2m} = 1 \cdot 3 \cdot 4 \cdot \dots \cdot (2m-1) \text{ (product of all the odd numbers)} = (2m+1)!! \tag{6}$$

These are the moments of the standard Gaussian. So, the moments of \check{S}_n converge to the corresponding moments of a N(0,1) random variable as $n\to\infty$. Therefore, intuitively, the distribution of \check{S}_n "approximates" N(0,1) as $n\to\infty$. As a corollary, if φ is a polynomimal of any degree, then

$$\lim_{n \to \infty} \mathbb{E}\left[\varphi\left(\breve{S}_n\right)\right] = \frac{1}{\sqrt{2\pi}} \int \varphi(x) e^{-\frac{x^2}{2}} dx = \gamma 0, 1(\varphi)$$

where $\gamma_{0,1} = N(0,1)$.

1.2 Central Limit Theorems

Theorem 2 (Lindeberg's Central Limit Theorem (CLT)). Assume that $\{X_n\}$ is a sequence of independent square-integrable random variables on a probability space, $\mathbb{E}[X_n] = 0$. For every $n \in \mathbb{N}$, set:

$$\sigma_n := \sqrt{Var(X_n)}$$

$$\Sigma_n := \sqrt{Var(S_n)} = \sqrt{\sum_{j=1}^n \sigma_j^2},$$

where the final equality is true only if the X_n are independent. Set

$$\breve{S}_n = \frac{S_n}{\Sigma_n}$$

(so $\mathbb{E}\left[\breve{S}_n\right] = 0$ and $\mathbb{E}\left[\breve{S}_n\right] = 1$). For all $\varepsilon > 0$, set:

$$g_n(\varepsilon) := \frac{1}{\Sigma_n^2} \sum_{j=1}^n \mathbb{E}\left[X_j^2; |X_j| > \varepsilon \Sigma_n\right] \text{ or }$$

$$g_n(\varepsilon) := \sum_{j=1}^n \mathbb{E}\left[\left(\frac{X_j}{\Sigma_n}\right)^2; \left|\frac{X_j}{\Sigma_n}\right| > \varepsilon\right].$$

Under this setting, for every $\varphi \in C^3(\mathbb{R})$ with φ'' and φ''' being bounded on \mathbb{R} and for every $\varepsilon > 0$,

$$\left| \mathbb{E} \left[\varphi(\breve{S}_n) \right] - \gamma_{0,1}(\varphi) \right| \le \frac{1}{2} (\varepsilon + \sqrt{g_n(\varepsilon)}) ||\varphi'''||_n + g_n(\varepsilon) ||\varphi''||_n. \tag{7}$$

In particular, if for all $\varepsilon > 0$,

$$\lim_{n \to \infty} g_n(\varepsilon) = 0,\tag{8}$$

(this is called **Lindeberg's Condition**), then

$$\lim_{n\to\infty} \mathbb{E}\left[\varphi(\breve{S}_n)\right] = \gamma_{0,1}(\varphi).$$

Before the proof, we first make a quick remark. In the case when $\{X_n \mid n \geq 1\}$ is iid with $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X_1^2] = 1$ for all $n \geq 1$, $\sigma_n = 1$, $\Sigma_n = \sqrt{n}$. Hence,

$$\breve{S}_n = \frac{S_n}{\sqrt{n}},$$

and so, for all $\varepsilon > 0$,

$$g_n(\varepsilon) = \frac{1}{\Sigma_n^2} \sum_{j=1}^n \mathbb{E}\left[X_j^2; |X_j| > \varepsilon \Sigma_n\right]$$
$$= \frac{1}{n} \sum_{j=1}^n \mathbb{E}\left[X_j^2; |X_j| > \varepsilon \sqrt{n}\right]$$
$$= \mathbb{E}\left[X_1^2; |X_1| > \varepsilon \sqrt{n}\right] \to 0 \text{ as } n \to \infty.$$

So, in this case, Lindeberg's Condition is always satisfied.

Proof. Before the proof, the insight is as follows: as $n \to \infty$, the contribution of the X_j 's are getting closer and closer to a centered Gaussian $N(0, \sigma_j^2)$ random variable.

Introduce $\{Z_n \mid n \geq 1\}$ iid random variables independent of $\{X_n \mid n \geq 1\}$. For all $n \geq 1$, set $Y_n := \sigma_n Z_n$. Then, as we know Y_n is a $N(0, \sigma_n^2)$ random variable. Further define $\check{T_n} := \frac{1}{\Sigma_n} \sum_{j=1}^n Y_j$. Note that $\check{T_n}$ is a N(0, 1) random variable. Hence,

$$\gamma_{0,1}(\varphi) = \mathbb{E}\left[\varphi(\check{T}_n)\right] \Rightarrow \mathbb{E}\left[\varphi(\check{S}_n)\right] - \gamma_{0,1}(\varphi) = \mathbb{E}\left[\varphi(\check{S}_n) - \varphi(\check{T}_n)\right].$$

Hence,

$$\varphi(\breve{S}_n) - \varphi(\breve{T}_n) = \varphi\left(\frac{1}{\Sigma_n}(X_1 + \ldots + X_n)\right) - \varphi\left(\frac{1}{\Sigma_n}(X_1 + \ldots + X_{n-1} + Y_n)\right) + \varphi\left(\frac{1}{\Sigma_n}(X_1 + \ldots + X_{n-1} + Y_n)\right)$$

$$- \varphi\left(\frac{1}{\Sigma_n}(X_1 + \ldots + Y_{n-1} + Y_n)\right) + \varphi\left(\frac{1}{\Sigma_n}(X_1 + \ldots + Y_{n-1} + Y_n)\right) - \ldots$$

$$- \varphi\left(\frac{1}{\Sigma_n}(X_1 + Y_2 + \ldots + Y_n)\right) + \varphi\left(\frac{1}{\Sigma_n}(X_1 + Y_2 + \ldots + Y_n)\right) + \varphi\left(\frac{1}{\Sigma_n}(Y_1 + \ldots + Y_n)\right).$$

In light of this representation, for all $1 \le j \le n$, set:

$$U_j := \frac{1}{\Sigma_n} (X_1 + \dots + X_{j-1} + X_{j+1} + Y_{j+2} + \dots + Y_n). \tag{9}$$

Then, we can express the above more compactly as:

$$\varphi(\breve{S}_n) - \varphi(\breve{T}_n) = \sum_{j=1}^n \left(\varphi\left(U_j + \frac{X_j}{\Sigma_n}\right) - \varphi\left(U_j + \frac{Y_j}{\Sigma_n}\right) \right)$$

The idea is to now use Taylor expansions: recall that the Taylor Expansion of φ is:

$$\varphi(U_j + \xi) = \varphi(U_j) + \xi \varphi'(U_j) + \frac{\xi^2}{2} \varphi''(U_j). + \dots$$

Set $R_j(\xi) = \varphi(U_j + \xi) - \varphi(U_j) - \xi \varphi'(U_j) - \frac{1}{2} \xi^2 \varphi'(U_j)$. Then,

$$\mathbb{E}\left[\varphi\left(U_j + \frac{X_j}{\Sigma_n}\right)\right] = \mathbb{E}\left[R_j\left(\frac{X_j}{\Sigma_n}\right)\right] + \mathbb{E}\left[\varphi(U_j)\right] + \mathbb{E}\left[\frac{X_j}{\Sigma_n}\varphi'(U_j)\right] + \frac{1}{2}\mathbb{E}\left[\frac{X_j^2}{\Sigma_n}\varphi''(U_j)\right].$$

Let's simplify all these terms:

• Since X_j is independent of U_j , we can write:

$$\mathbb{E}\left[\frac{X_j}{\Sigma_n}\varphi'(U_j)\right] = \frac{1}{\Sigma_n}\mathbb{E}\left[X_j\right]\mathbb{E}\left[\varphi'(U_j)\right] = 0.$$

$$\frac{1}{2}\mathbb{E}\left[\frac{X_j^2}{\Sigma_n}\varphi''(U_j)\right] = \frac{1}{2}\mathbb{E}\left[\frac{X_j^2}{\Sigma_n^2}\right] \cdot \mathbb{E}\left[\varphi''(U_j)\right] = \frac{\sigma_j^2}{\Sigma_n^2}\mathbb{E}\left[\varphi''(U_j)\right]$$

Similarly,

$$\mathbb{E}\left[\varphi\left(U_j + \frac{Y_j}{\Sigma_n}\right)\right] = \mathbb{E}\left[R_j\left(\frac{Y_j}{\Sigma_n}\right)\right] + \mathbb{E}\left[\varphi(U_j)\right] + 0 + \frac{1}{2}\frac{\sigma_j^2}{\Sigma_n^2} \cdot \mathbb{E}\left[\varphi''(U_j)\right].$$

Therefore,

$$\left| \mathbb{E} \left[\varphi(\breve{S}_n) - \varphi(\breve{T}_n) \right] \right| \leq \sum_{j=1}^n \left| \mathbb{E} \left[R_j \left(\frac{X_j}{\Sigma_n} \right) \right] - \mathbb{E} \left[R_j \left(\frac{Y_j}{\Sigma_n} \right) \right] \right|$$

$$\leq \sum_{j=1}^n \left| \mathbb{E} \left[R_j \left(\frac{X_j}{\Sigma_n} \right) \right] \right| + \left| \mathbb{E} \left[R_j \left(\frac{Y_j}{\Sigma_n} \right) \right] \right|$$

Moreover, $|R_j(\xi)| \leq (\frac{1}{6}\xi^3||\varphi'''||_n) \wedge (\xi^2||\varphi''||_n)$, where the first case happens if ξ is small and the second case happens if ξ is not small. Hence, for all $\varepsilon > 0$, we have:

$$\sum_{j=1}^{n} \left| \mathbb{E}\left[R_{j}\left(\frac{X_{j}}{\Sigma_{n}}\right) \right] \right| \leq \frac{1}{6} ||\varphi''||_{n} \sum_{j=1}^{n} \mathbb{E}\left[\frac{|X_{j}|^{3}}{\Sigma_{n}^{3}}; |X_{j}| \leq \varepsilon \Sigma_{n} \right] + ||\varphi''||_{n} \sum_{j=1}^{n} \mathbb{E}\left[\frac{|X_{j}|^{2}}{\Sigma_{n}^{2}}; \frac{|X_{j}|}{\Sigma_{n}} > \varepsilon \right],$$

where the first term in the sum comes from the bound for ξ being small and the second term in the sum comes fro the bound for ξ being not so small. Pulling one of the $|X_j|$ out of the fraction in the first term of the sum, and using the bound given, we obtain:

$$\leq \frac{\varepsilon}{6}||\varphi''||_n \sum_{j=1}^n \frac{\mathbb{E}\left[X_j^2\right]}{\Sigma_n^2} + ||\varphi''||_n \cdot g_n(\varepsilon),$$

which is good, since we have $\sum_{j=1}^{n} \frac{\sigma_j^2}{\sum_{n=1}^{2}} = 1$. Hence,

$$\sum_{j=1}^{n} \left| \mathbb{E} \left[R_j \left(\frac{X_j}{\Sigma_n} \right) \right] \right| \leq \frac{\varepsilon}{6} ||\varphi''|||_n + ||\varphi''||_n \cdot g_n(\varepsilon).$$

Similarly,

$$\sum_{j=1}^{n} \mathbb{E}\left[\left|R_{j}\left(\frac{Y_{j}}{\Sigma_{n}}\right)\right|\right] \leq \frac{1}{6}||\varphi'''||_{n} \mathbb{E}\left[|Z_{n}|^{3}\right] \sum_{j=1}^{n} \frac{\sigma_{j}^{3}}{\Sigma_{n}^{3}}$$

$$\leq \frac{1}{3}||\varphi'''||_{n} \max_{1 \leq j \leq n} \frac{\sigma_{j}}{\Sigma_{n}} \cdot \underbrace{\sum_{j=1}^{n} \frac{\sigma_{j}^{2}}{\Sigma_{n}^{2}}}_{=1}.$$

We have that for all $1 \le j \le n$,

$$\sigma_j^2 = \mathbb{E}\left[X_j^2\right] = \mathbb{E}\left[X_j^2; |X_j| \le \varepsilon \Sigma_n\right] + \mathbb{E}\left[X_j^2; |X_j| > \varepsilon \Sigma_n\right]$$
$$= \varepsilon^2 \Sigma_n^2 + \sum_{l=1}^n \mathbb{E}\left[X_l^2; |X_l| > \varepsilon \Sigma_n\right].$$

Hence,

$$\max_{1 \le j \le n} \frac{\sigma_j^2}{\sum_n^2} \le \varepsilon^2 + g_n(\varepsilon) \Rightarrow \max_{1 \le j \le n} \frac{\sigma_j}{\sum_n} \le \sqrt{\varepsilon^2 + g_n(\varepsilon)} \le \varepsilon + \sqrt{g_n(\varepsilon)}.$$

Collecting all the bounds,

$$\left| \mathbb{E} \left[\varphi(\breve{S}_n) \right] - \mathbb{E} \left[\varphi(\breve{T}_n) \right] \right| \leq \frac{\varepsilon}{6} ||\varphi'''||_n + g_n(\varepsilon) ||\varphi''||_n + \frac{1}{3} ||\varphi'''||_n (\varepsilon + \sqrt{g_n(\varepsilon)})$$

$$\leq \frac{1}{2} \left(\varepsilon + \sqrt{g_n(\varepsilon)} \right) ||\varphi'''||_n + g_n(\varepsilon) ||\varphi''||_n$$

which proves the theorem.