Linear Regression in Python

Online Statistical Computing Reference Machine Learning Module

© Kaixin Wang November 2019

Introduction

Structure of this tutorial

- Data Import
- Data Preprocessing
- Exploratory Data Analysis (EDA)
 - Correlation heatmap, boxplots, scatterplots, histograms and density plots
- Linear Regression Modeling:
 - Variable selection
 - Summary statistics
 - Diagnostics and assumptions
 - Model selection

Data Import

- The dataset that we will be using is the soil.csv dataset
- To load the data into Python:

```
In [5]: soil = pd.read csv("soil.csv") # data import
         soil.head() # check if read in correctly
Out[5]:
                        y cadmium copper lead zinc
                                                               dist om ffreq soil lime landuse dist.m
                                                      elev
                                       85 299 1022 7.909 0.001358 13.6
         0 181072 333611
                               11.7
                                                                                                   50
         1 181025 333558
                               8.6
                                           277 1141 6.983 0.012224 14.0
                                                                                                   30
                                                                                            Αh
         2 181165 333537
                                                 640 7.800 0.103029 13.0
                                                                                                  150
         3 181298 333484
                               2.6
                                                 257 7.655 0.190094
                                                                                            Ga
                                                                                                  270
          4 181307 333330
                                                269 7.480 0.277090
                               2.8
                                                                                                  380
```

To check the dimension of the dataset:

```
In [6]: soil.shape # rows x columns
Out[6]: (155, 14)
```

Data Preprocessing

- We notice that there are a few missing values in the original dataset.
- Since there are only a small number of rows with missing values, we can remove those rows:

```
In [8]: index = pd.isnull(soil).any(axis = 1)
    soil = soil[-index]
    soil = soil.reset_index(drop = True)

In [9]: soil.shape
Out[9]: (152, 14)
```

- correlation heatmap
- boxplots
- scatterplots
- histograms and density plots

correlation heatmap

Variable	

boxplots

boxplot of variables

scatterplots

scatterplot of lead vs. predictors

histograms and density plots histogram and

histogram and density plot of each variable

11

- Variable selection
- Summary statistics
- Diagnostics and assumption checking
- Model selection

Variable selection: based on correlation coefficients

```
Lead ~ cadmium + copper + zinc + elev + dist + lime
```

Split the dataset into training and testing sets:

```
In [20]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.33, random_state = 42)
```

• Fit a linear model on training set: using scikit-learn module

Lead ~ cadmium + copper + zinc + elev + lime (using statsmodel module)

```
In [27]: results = model smf.fit()
        print(results.summary())
                               OLS Regression Results
        ______
       Dep. Variable:
                                         R-squared:
       Model:
                                                                      0.945
                                    OLS
                                         Adj. R-squared:
       Method:
                            Least Squares
                                         F-Statistic.
                                                                      340.0
       Date:
                         Tue, 29 Oct 2019
                                         Prob (F-statistic):
                                                                   2.35e-59
       Time:
                                09:18:05
                                         Log-Likelihood:
                                                                    -467.76
       No. Observations:
                                     101
                                          AIC:
                                                                     947.5
       Df Residuals:
                                         BIC:
                                                                     963.2
       Df Model:
                                      5
       Covariance Type:
                               nonrobust
                                                       P>|t|
                                                           [0.025
                                                                     0.975]
                                                                   _____
       Intercept
                    23.8739
                              27.200
                                        0.878
                                                 0.382
                                                          -30.126
                                                                     77.874
                   -13,2322
                                                          -17.679
                                                                     -8.785
        cadmium
                              2.240
                                       -5.908
                                                 0.000
                    0.0522
                                                 0.852
                                                           -0.500
                                                                     0.605
        copper
                              0.278
                                        0.187
                    0.4188
                                                 0.000
                                                           0.379
                                                                     0.459
       zinc
                              0.020
                                       20.756
        elev
                    -2.4719
                              2.895
                                       -0.854
                                                 0.395
                                                           -8.220
                                                                     3.276
                   -24.7610
                              7.775
                                       -3.185
                                                 0.002
                                                          -40.196
                                                                     -9.326
       Omnibus:
                                         Durbin-Watson:
                                                                     1.947
       Prob(Omnibus):
                                   0.354
                                         Jarque-Bera (JB):
                                                                     1.494
       Skew:
                                         Prob(JB):
                                                                     0.474
                                  -0.246
       Kurtosis:
                                   3.336
                                         Cond. No.
                                                                   6.42e+03
        ______
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.42e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Summary statistics

- Lower RSME on testing set
- Higher R-squared on testing set

Diagnostics and assumption checking

- Assumption of constant variance: satisfied
- Assumption that E[residuals] = 0: satisfied
- Assumption of normality of the response: satisfied

Model selection:

- We used 5 predictors in our previous model, but some of the predictors are not statistically significant compared with others.
- We can consider reducing the number of predictors to improve the model's prediction performance, by selecting only a subset of these 5 predictors
- Since cadmium, zinc and lime are highly statistically significant, we now refit a model using only these 3 predictors:
 - Full model: Lead ~ cadmium + copper + zinc + elev + lime
 - Reduced model: Lead ~ cadmium + zinc + lime

• Summary statistics of the reduced model:

```
In [35]: df train = pd.concat([X train, y train], axis = 1) # build a dataframe for training set
       reducedModel = smf.ols("lead ~ cadmium + zinc + C(lime)", data = df train)
       reducedModel = reducedModel.fit()
       print(reducedModel.summary())
                              OLS Regression Results
       ______
       Dep. Variable:
                                        R-squared:
                                                                   0.948
       Model:
                                   OLS Adj. R-squared:
                                                                   0.946
       Method:
                           Least Squares F-statistic:
                                                                   584.7
                        Fri, 08 Nov 2019 Prob (F-statistic):
       Date:
                                                                 5.98e-62
                               23:31:40 Log-Likelihood:
       Time:
                                                                  -468.19
       No. Observations:
                                   101 AIC:
                                                                   944.4
       Df Residuals:
                                        BIC:
                                                                   954.8
       Df Model:
                                     3
       Covariance Type:
                              nonrobust
                              std err
                                                                    0.975]
                     2.6976
                                        0.585
                                                 0.560
                                                          -6.461
                                                                    11.856
       Intercept
                               4.614
       C(lime)[T.1] -23.4871
                              7.569
                                     -3.103
                                                 0.003
                                                         -38.509
                                                                    -8.465
       cadmium
                    -13.0934
                               1.986
                                      -6.593
                                                         -17.035
                                                                    -9.152
                                                 0.000
       zinc
                     0.4237
                               0.019
                                       22.540
                                                 0.000
                                                           0.386
                                                                     0.461
       ______
       Omnibus:
                                        Durbin-Watson:
                                                                   1.968
       Prob(Omnibus):
                                 0.688 Jarque-Bera (JB):
                                                                   0.395
       Skew:
                                 -0.131
                                        Prob(JB):
                                                                   0.821
                                        Cond. No.
       Kurtosis:
                                  3.160
                                                                 1.79e + 03
                    ______
```

• Diagnostics of the reduced model:

Comparison of the reduced and full model:

• To decide whether to adopt the reduced model, we can conduct oneway ANOVA (Analysis of Variance) on the reduced and full model:

ANOVA of between the reduced and full model

95.0 62309.421080

2.0 526.381432 0.401273 0.670596

Comparison of the reduced and full model:

• To decide whether to adopt the reduced model, we can conduct oneway ANOVA (Analysis of Variance) on the reduced and full model:

ANOVA of between the reduced and full model

Discussion

Reference

• Dataset: meuse package in R

To access the dataset in R:

```
install.package("sp")# first time using the library
library(sp)
data(meuse)
```

Tips

To learn more about linear regression and machine learning in Python go to OSCR's webpage at: https://oscrproject.wixsite.com/website