ECE433/COS435 Introduction to RL Assignment 7: Actor-critic Algorithms for continuous action space: SAC Spring 2025

Fill me in

Your name here.

Due April 11, 2025

Collaborators

Fill me in

Please fill in the names and NetIDs of your collaborators in this section.

Instructions

Writeups should be typesetted in Latex and submitted as PDFs. You can work with whatever tool you like for the code, but please submit the asked-for snippet and answer in the solutions box as part of your writeup. We will only be grading your write-up.

In this assignment, we will introduce two modern RL algorithms that aim to tackle MDPs with continuous action space: Deep Deterministic Policy Gradient (DDPG) and Twin Delayed DDPG (TD3).

The workflow for the rest of this assignment is as follows: we will implement the SAC algorithm, and then evaluate their performance on the Gym environment Pendulum-v1. We provide a sample implementation to TD3, which can be helpful as a reference for your implementation of SAC.

Question 1. Soft Actor-Crtic (SAC)

Question 1.a

First, you want to build your Actor_SAC and Critic_SAC networks. Paste your class below:

```
Solution
class Actor_SAC(nn.Module):
      def __init__(self, state_dim, action_dim, max_action):
          super(Actor_SAC, self).__init__()
3
          # [HINT] Construct a neural network as the actor. Return its
     value using forward You need to write down three linear layers.
          # 1. l1: state_dim -> 256
          # 2. 12: 256 -> 256
6
          \# 3. 13: 256 -> mean and log std of the action
          #############################
          # YOUR IMPLEMENTATION HERE #
          #############################
11
          self.max_action = max_action
13
      def forward(self, state):
14
          # [HINT] Use the three linear layers to compute the mean and
15
     log std of the action
          # Apply ReLU activation after layer 11 and 12
16
          ##############################
17
          # YOUR IMPLEMENTATION HERE #
18
          pass
19
20
          ##############################
          log_std = torch.clamp(log_std, min=LOG_STD_MIN, max=
21
     LOG_STD_MAX)
          return mean, log_std
22
23
      def sample(self, state):
24
          # [HINT] Use the forward method to compute the action, its
25
     log probability
          # 1. Compute the mean and log std of the action
26
          # 2. Compute the standard deviation of the action
          # 3. Get the normal distribution of the action
28
          # 4. Sample the action from the normal distribution
29
          # 5. Apply tanh to the action and multiply by max_action to
30
     ensure the action is in the range of the action space
          # 6. Compute the log probability of the action
31
32
          33
          # YOUR IMPLEMENTATION HERE #
34
          pass
35
          ##################################
36
          return action, log_prob
  class Critic_SAC(nn.Module):
      def __init__(self, state_dim, action_dim):
          super(Critic_SAC, self).__init__()
3
          # Q1 architecture
          # [HINT] Construct a neural network as the first critic.
     Return its value using forward You need to write down three linear
          # 1. l1: state_dim+action_dim -> 256
```

```
# 2. 12: 256 -> 256
          # 3. 13: 256 -> 1
           ##############################
          # YOUR IMPLEMENTATION HERE #
10
          pass
          #############################
13
          # Q2 architecture
          # [HINT] Construct a neural network as the second critic.
15
     Return its value using forward. You need to write down three
     linear layers.
          # 1. 14: state_dim+action_dim -> 256
16
          # 2. 15: 256 -> 256
17
          # 3. 16: 256 -> 1
18
          ############################
19
          # YOUR IMPLEMENTATION HERE #
20
21
          pass
           ############################
22
23
24
      def forward(self, state, action):
25
          sa = torch.cat([state, action], 1)
26
          # [HINT] We use layers 11, 12, 13 to obtain q1
          # 1. Apply ReLU activation after layer 11
28
          # 2. Apply ReLU activation after layer 12
29
          # 3. Return output as q1 from layer 13
30
31
          # [HINT] We use layers 14, 15, 16 to obtain q2
32
          # 1. Apply ReLU activation after layer 14
33
          # 2. Apply ReLU activation after layer 15
34
          # 3. Return output as q2 from layer 16
35
36
          ##############################
37
          # YOUR IMPLEMENTATION HERE #
38
39
          pass
          ############################
          return q1, q2
41
42
43
      def Q1(self, state, action):
44
45
           sa = torch.cat([state, action], 1)
           # [HINT] only returns q1 for actor update using layers 11, 12
      , 13
          # 1. Apply ReLU activation after layer 11
47
           # 2. Apply ReLU activation after layer 12
48
49
           # 3. Return output as q1 from layer 13
50
          #############################
          # YOUR IMPLEMENTATION HERE #
51
52
          ################################
53
54
          return q1
```

Question 1.b

Now we are ready to construct a SAC trainer! In the following function you will need to: (1) Calculate the TD value using target_Q network and update the critic; (2) Compute the actor loss using the current state and sampled action and update the actor; (3) Update the target networks.

```
Solution
def train(self, replay_buffer, batch_size=256):
      state, action, next_state, reward, not_done = replay_buffer.
     sample(batch_size)
      # [HINT] compute the target Q value
      # 1. Sample the next action and its log probability from the
     actor with next_state
      # 2. Compute the next Q values (Q1 and Q2) using the
     critic_target with next_state and next_action
      # 3. Min over the Q values: target_Q = min(Q1, Q2) - log_prob(a'|
     s') * alpha
      # 4. Compute the target Q value: target_Q = reward + not_done *
     discount * target_Q
      ############################
      # YOUR IMPLEMENTATION HERE #
12
      pass
      #############################
13
14
      self.critic_optimizer.zero_grad()
15
      critic_loss.backward()
16
17
      self.critic_optimizer.step()
18
      # [HINT] compute the actor loss
19
      # 1. Sample the action and its log probability from the actor
20
     with state
      # 2. Compute the Q values (Q1 and Q2) using the critic with state
21
      and action
      # 3. Min over the Q values: Q = min(Q1, Q2)
      # 4. Compute the actor loss: actor_loss = alpha * log_prob(a|s) -
23
24
      ###############################
      # YOUR IMPLEMENTATION HERE #
26
27
      ############################
28
29
      self.actor_optimizer.zero_grad()
30
      actor_loss.backward()
31
      self.actor_optimizer.step()
32
33
      for param, target_param in zip(self.critic.parameters(), self.
34
     critic_target.parameters()):
```

```
target_param.data.copy_(self.tau * param.data + (1 - self.tau
) * target_param.data)
```

Question 1.c

Time to see how it works. We would expect a reward that converges to negative values close to 0. The estimated wall time for running the whole process is around 10-20 minutes, and you should be able to see a large positive reward at around 50 episodes.

Solution	
Training curve:	