

Deep Learning application for style control of virtual characters motions

Ali GHAMMAZ Master 1/INFO4 Polytech Grenoble Supervisors : Katja ZIBREK , Ludovic HOYET , Yuliya PATOTSKAYA

Referent teacher: Fabien RINGEVAL

INTRODUCTION

Exploring the animation qualities of photorealistic virtual humans.

Identifying which aspects of the character animation affect the user's perception and interaction with the character.

Appealing Character User

What are our objectives?

- 1. Improve out Dataset
- 2. Generation of stylized motions (Motion synthesis)
- 3. Style tuning and Style transfer

Styles

The big five personality traits: OCEAN Model

Our Styles

Motion Synthesis VS Style Transfer

Motion Synthesis

• Style Transfer

Expanding the dataset

1-**Overlapping chunks**(for 2000 frame motion, cutting it in 240-frame sequences)

1 animation with 2000 frames

15 animations with 240 frames

Expanding the dataset

2- Mirroring Dataset (Duplication of informations)

Motion Synthesis and Style Transfer in neural network related work

• On human motion prediction using recurrent neural networks, J.Martinez et al. 2017

RNN architecture for both pose labeling and generating future motion based on the past frames

 A Deep Learning Framework for Character Motion Synthesis and Editing , Holden et al. ,2016

Realistic generation of motion for long periods of time based only on a high level control signal (such as a trajectory drawn on a plane

• A recurrent variational autoencoder for human motion synthesis, Habibe et al., 2017

A similar system for modelling periodic motion that additionally takes into account the stochastic nature of human motion by using the sampling behaviour of variational autoencoders

1st Approach: Human motion prediction using recurrent neural networks, Martinez et al., 2017

Reason:

- Easy approach
- Good results for many actions (walking, eating, smoking..)
- RNN architecture for both pose labeling and generating future motion based on the past frames

Constraints:

- Different Data format
- Not including learning from style
- Require a large dataset

1-Converting our dataset to Exp Map format

Fbx Format

For each frame of an action and for each joint of the skeleton :

Exp Map Format

For each joint:

```
3 local rotations [x,y,z]

Joint 1

[[-0.007904  0.9015241  3.4228048 ... -0.2135291  0.5530091 -0.0235806]
[-0.0081086  0.9015495  3.4229658 ... -0.2123501  0.5523702 -0.0224363]
[-0.0082679  0.9015689  3.423084 ... -0.2114942  0.5518609 -0.021585 ]
...

[ 0.0110366  0.9013949  3.4029183 ... -0.3584471 -0.1209618 -0.0424051]
[ 0.0102839  0.9017921  3.401889 ... -0.358592 -0.1213635 -0.0423724]
[ 0.0096719  0.9021094  3.4010482 ... -0.3587122 -0.1217161 -0.0423553]]
```

1-Converting our dataset to Exp Map format

1-Converting our dataset to Exp Map format

3D visualization from fbx format:

3D visualization from Exp Map format:

2- Adding a VAE to the model

VAE is a powerful tool that can generate a stylized motion

By manipulating the values in the latent space, motion sequences with different styles can be generated

Style labeling(One hot encoding)

```
styles = ['ES', 'Neurotic', 'Normal']
motions = ['waving', 'stopping', 'showingphone', 'showing', 'hiding']

0 1 2 3 4

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [1, 0] [1, 0] [1, 0] [1, 0] [1, 0]
[1, 0] [2, 0] [2, 0] [2, 0] [2, 0] [2, 0] [2, 0] [2, 0] [2, 0] [3, 0] [3, 0]
[4, 0] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [1, 1]
[1, 1] [1, 1] [1, 1] [1, 1] [2, 1] [2, 1] [2, 1] [2, 1] [2, 1] [2, 1] [3, 1]
[4, 1] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [1, 2] [1, 2] [1, 2]
[1, 2] [1, 2] [2, 2] [2, 2] [2, 2] [2, 2] [3, 2] [3, 2] [4, 2]
```

Testing for later ..

Style Tuning & Style transfer

Motion Generation and Style Transfer

- Easy to implement
- Capable of generating stylised human motion from a high level control signal input

 By using the VAE-LSTM architecture recently proposed by Habibie et al. (2017) along with a one hot label representing a style of motion, our system is able to learn to switch between styles in a manner that is both efficient and consistently generates realistic and natural human motion.

• Addition of a style label to VAE-LSTM architecture of Habibee to alter the style.

- Where adding a style label?
- 1. M2 dec Style label only applied to convolutional decoder.
- 2. M2 enc2 Style label only applied to encoder for joint positions.
- 3. M2 enc2 dec Style label applied to encoder for joint positions and convolutional decoder.
- M2 enc1 enc2 Style label applied to encoder for joint positions and encoder for control signal.

Model	Mean Reconstruction Error
M2_enc2	0.0235804
M2_enc1_enc2	0.016751
M2_enc2_dec	0.0143762
M2_enc1_enc2_dec	0.0155206
M2_dec	0.0159735
M1+M2_enc	0.0161324
M1+M2_dec	0.0697627

Performing a simple linear interpolation between output motions to create a form of continuous style transfer

$$\widetilde{\mathbf{x}}_{1:T} * (1-k) + \mathbf{a}_{1:T} * k.$$

- I received code of the Motion Generation part from Habibee , but the style transfer code is still missing .
- It Would be a good idea to implement the style transfer missing part to test this approach on our dataset

Style Transfer: Deep learning framework for character motion synthesis and editing Daniel HOLDEN et al., 2016

Style Transfer: Deep learning framework for character motion synthesis and editing, Daniel HOLDEN (2016)

Style Transfer: Deep learning framework for character motion synthesis and editing, Daniel HOLDEN, 2016

Testing the model with Holden dataset:

Style Transfer: Deep learning framework for character motion synthesis and editing, Daniel HOLDEN (2016)

Converting data from txt to npz

Style Transfer: Deep learning framework for character motion synthesis and editing, Daniel HOLDEN (2016)

Results:

 Most of the recent work used a periodic and locomotion dataset which is not what we are working with.

Conclusion:

- Improving dataset :
 - Overlapping chunks
 - Data mirroring
 - Converting from and to different MOCAP format
 - Retargeting data to an unified BVH structure
- Motion Synthesis:
 - Adding a VAE to make to the model learn from style
 - Style labeling
- Style transfer & Style tuning
 - Investigating and testing two different approachs

Further Work

Back to the 1st approach: Human motion prediction using recurrent neural networks, Martinez et al. [cs.CV] (2017)

Unpaired motion style transfer from video to animation, Aberman et al. ACM Transactions on Graphics (2020)

- Representing motion as a sequence of latent primitives, a flexible approach for human motion modelling, Mathieu Marsot et al. [cs.CV] 1 (2022)
- A Structured Latent Space for Human Body Motion Generation, Mathieu Marsot et al. [cs.CV] (2022)

References:

- Habibie, I., Holden, D., Shwarz, J., Yearsley, J., and Komura, T. (2017). A recurrent variational autoencoder for human motion synthesis. In BMVC.
- Holden, D., Saito, J., and Komura, T. (2016). A deep learning framework for character motion synthesis and editing. ACM Trans. Graph., 35(4)
- Ian Mason, Sebastian Starke, and Taku Komura. 2022. Real-Time Style Modelling of Human Locomotion via Feature-Wise Transformations and Local Motion Phases. arXiv preprint arXiv:2201.04439 (2022).
- On human motion prediction using recurrent neural networks Julieta Martinez*1,
 Michael J. Black2, and Javier Romero3. arXiv:1705.02445v1 [cs.CV] 6 May (2017)
- Unpaired motion style transfer from video to animation, Aberman et al. ACM Transactions on Graphics (2020)