有限体上の超楕円曲線の 位数計算を目的とする baby step giant step algorithmの改良 (暗号への応用を考慮した)

松尾 和人 (中央大学研究開発機構)

背景

p: 奇素数

 \mathbb{F}_q : 有限体, $\operatorname{char}(\mathbb{F}_q) = p$, $\#\mathbb{F}_q = q$

g : 正整数

 \mathbb{F}_q 上のgenus <math>gの超楕円曲線C

$$C: Y^2 = F(X),$$

 $F(X) = X^{2g+1} + f_{2g}X^{2g} + \dots + f_0$

 $f_i \in \mathbb{F}_q$, disc $(F) \neq 0$

g=2とする

 \mathcal{J}_C : Cの Jacobi 多様体

 $\mathcal{J}_C(\mathbb{F}_q)$ 上の離散対数問題:

$$\mathcal{D}_1, \mathcal{D}_2 \in \mathcal{J}_C(\mathbb{F}_q) \to m \in \mathbb{Z} \text{ s.t. } \mathcal{D}_1 = m\mathcal{D}_2$$

これを用いて離散対数ベースの暗号を構成したい

$\mathcal{J}_C(\mathbb{F}_q)$ 上の離散対数問題に対する攻撃法

- 1. Square-root attack (+Pohlig-Hellman)
- 2. Frey-Rück attack
- 3. Rück attack
- 4. Adleman-DeMarrais-Huang attack
- 5. Gaudry attack
- 6. Duursma attack
- 7. Weil descent attack

Square-root attack に対して安全であるには

$\mathcal{J}_C(\mathbb{F}_q)=cP,\ P:160\ \mathrm{bit}$ より大きい素数

が必要

実装効率等を考慮するとcは小さい方が良い(c=1)

 \Rightarrow

超楕円曲線暗号を構成するために

$\mathcal{J}_C(\mathbb{F}_q) = P, P: 160 \text{ bit }$ より大きい素数

なるCが必要

素位数曲線の構成

Input: genus等の情報

Output:素位数曲線Cと# $\mathcal{J}_C(\mathbb{F}_q)$

1: C/\mathbb{F}_q を選択

2: # $\mathcal{J}_C(\mathbb{F}_q)$ を計算

3: $\overline{\#\mathcal{J}_C(\mathbb{F}_q)} \neq \mathsf{prime}$ ならばStep1へ

- 1. 特別な性質を持つ曲線を用いる方法
 - CM 体法 (Frey, 高島, 中大)
 - Koblitz (Koblitz, 金山-長尾-内山)
- 2. ランダムな曲線を用いる方法
 - AGM (Harley–Mestre)
 - Kedlaya (Kedlaya, Gaudry)
 - Schoof-like
 (Pila, Kampkötter, Adleman-Huang)

Gaudry−Harley © Schoof−like algorithm

Gaudry, Harley,

Counting points on hyperelliptic curves over finite fields,

ANTS-IV

:Schoof-like algorithmの実装

g=2の超楕円曲線について

- \mathbb{F}_p 上127 bit 位数 (p: 63 bit)
- \mathbb{F}_q 上128 bit 位数 (p: 16 bit, $q = p^4$)

を計算

Gaudry-Harley algorithm

Input: genus 2 HEC C/\mathbb{F}_q

Output: $\#\mathcal{J}_C(\mathbb{F}_q)$

1: $\#\mathcal{J}_C(\mathbb{F}_q) \mod 2^e$ (Halving algorithm)

2: **for** 素数 $l = 3, 5, ..., l_{max}$ **do**

3: $\chi_q(X) \mod l$ (Schoof-like algorithm)

4: $\chi_q(X) \bmod l o \# \mathcal{J}_C(\mathbb{F}_q) \bmod l$

5: end for

6: $\chi_q(X) \mod p$ (Cartier-Manin operator)

7: $\chi_q(X) \bmod p o \# \mathcal{J}_C(\mathbb{F}_q) \bmod p$

8: $\#\mathcal{J}_C(\mathbb{F}_q) \mod m, \ m=2^e\cdot 3\cdots l_{max}\cdot p$ (CRT)

9: $\#\mathcal{J}_C(\mathbb{F}_q) \mod m \to \#\mathcal{J}_C(\mathbb{F}_q)$ (Square-root algorithm)

 $\chi_q(X)$: \mathcal{J}_C のq乗 Frobenius map の特性多項式

Menezesが楕円曲線の位数計算に用いた algorithmを 超楕円曲線の位数計算に適用

127 bit 位数の計算時間

l	$\#\mathcal{J}_C(\mathbb{F}_p)$ mod l	Time	CPU
2 ⁸	176	12h	†‡
3	2	20m	†
5	1	5m	†
7	6	12h	†
11	1	19h	†
13	7	8d 13h	†
sqare-root algorithm		50d	‡

†: Pentium 450 MHz (Magma)

‡: Alpha 500 MHz

暗号への応用を考慮したときの問題点

遅い

素位数曲線を発見するには数十回の位数計算が必要

本研究の内容

square-root algorithmの高速化

$\#\mathcal{J}_C(\mathbb{F}_q) mod m o \#\mathcal{J}_C(\mathbb{F}_q)$

$$\mathcal{D} \in \mathcal{J}_C(\mathbb{F}_q) \setminus \{0\}$$
をランダムに選択し、

$$N\mathcal{D} = 0$$

を満足する $N \in \mathbb{Z}$ をHasse-Weil range

$$L_o = \left\lceil (\sqrt{q} - 1)^4 \right\rceil \le N \le H_o = \left\lfloor (\sqrt{q} + 1)^4 \right\rfloor$$
の中で探す.

$$R = H_0 - L_0 = 8q^{3/2} + O(q)$$

Brute force: $O(q^{3/2})$

Baby step giant step: $O(q^{3/4})$

$\mathcal{J}_C(\mathbb{F}_q)$ mod mを用いると高速化可能

 $N_r \in \mathbb{Z}$: given s.t.

$$\#\mathcal{J}_C(\mathbb{F}_q) = N_r + mN_m, 0 \le N_r < m$$

 $\Rightarrow N_m$ ϵ

$$\lfloor L_o/m \rfloor \leq N_m \leq \lfloor H_o/m \rfloor$$

の中で決定すれば # $\mathcal{J}_C(\mathbb{F}_q)$ が求まる.

$$N_m = i + nj, \ n \in \mathbb{Z}, n \approx \sqrt{R/m}$$

$$0 \le i < n$$
,

$$\left\lfloor \frac{L_o}{mn} \right\rfloor - 1 \le j \le \left\lfloor \frac{H_o}{mn} \right\rfloor$$

 $\Rightarrow i,j$ ともに rangeは $O(\sqrt{R/m})$

$$\#\mathcal{J}_C(\mathbb{F}_q)\mathcal{D} = (N_r + m(i+nj))\mathcal{D} = 0$$

$$(N_r + mi)\mathcal{D} = -mnj\mathcal{D}$$

計算量: $O(q^{3/4}/\sqrt{m})$

Gaudry-Harleyが用いた algorithm も同一計算量

高速化

$$\chi_q(X) = X^4 - s_1 X^3 + s_2 X^2 - s_1 q X + q^2 \in \mathbb{Z}[X],$$
 $|s_1| \le 4\sqrt{q},$
 $|s_2| \le 6q$

Halving algorithm: 素位数曲線に対し有効でない

Schoof-like algorithm : $s_i \mod l$ を計算可能

Cartier-Manin operator : $s_i \mod p$ を計算可能

 $s_i \mod m$ を利用すれば baby step giant step algorithmを 高速化できるのではないか?

$$s_1 \times s_2$$
の面積 $\approx 96q^{3/2}$

Lemma 1. s₁は

$$s_{1l} = -\lfloor 4\sqrt{q} \rfloor \le s_1 \le s_{1u} = \lfloor 4\sqrt{q} \rfloor$$

に値をとる. また, s_2 は

$$s_{2l} = \lceil 2\sqrt{q}|s_1| - 2q \rceil \le s_2 \le s_{2u} = \left\lfloor \frac{1}{4}s_1^2 + 2q \right\rfloor$$
に値をとる.

 s_{2u} : N. D. Elkies,

Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory (D. A. Buell and J. T. Teitlbaum, eds.), AMS, 1995, pp. 21–76.

 s_{2l} : 百瀬, 私信

$$\int \frac{1}{4}s_1^2 + 2q - (2\sqrt{q}|s_1| - 2q)ds_1$$

$$= s_1(\frac{1}{12}s_1^2 - \sqrt{q}|s_1| + 4q)$$

$$s_1 \times s_2$$
の面積 $\approx \frac{32}{3}q^{3/2}$

$s_i \bmod m o \# \mathcal{J}_C(\mathbb{F}_q)$

 $s_i' \in \mathbb{Z}$: given s.t.

$$0 \le s'_{i} < m,$$

$$s_{1} = s'_{1} + mt_{1}, t_{1} \in \mathbb{Z},$$

$$s_{2} = s'_{2} + mt'_{2}, t'_{2} \in \mathbb{Z}$$

$$\left\lfloor \frac{s_{1l}}{m} \right\rfloor \le t_1 \le \left\lfloor \frac{s_{1u}}{m} \right\rfloor$$
$$\left\lfloor \frac{s_{2l}}{m} \right\rfloor \le t_2' \le \left\lfloor \frac{s_{2u}}{m} \right\rfloor$$

 $n \in \mathbb{Z}$:

$$n \approx \frac{4\sqrt{6}q^{3/4}}{3m}$$

$$t_2' = t_2 + nt_3, \ t_2, t_3 \in \mathbb{Z}$$

$$0 \le t_2 < n$$

$$\left\lfloor \frac{s_{2l}}{mn} \right\rfloor - 1 \le t_3 \le \left\lfloor \frac{s_{2u}}{mn} \right\rfloor$$

$$#\mathcal{J}_C(\mathbb{F}_q) = \chi_q(1)$$

$$= q^2 + 1 - s_1(q+1) + s_2$$

$$= q^2 + 1 - s'_1(q+1) + s'_2$$

$$- m(q+1)t_1 + mt_2 + mnt_3$$

$$(q^2+1-s_1'(q+1)+s_2'-m(q+1)t_1+mnt_3)\mathcal{D}$$

= $-mt_2\mathcal{D}$

今後, 右辺の計算を baby step, 左辺の計算を giant step と呼ぶ.

計算量: $O(q^{3/4}/m)$

Gaudry-Harleyが用いた方法より $O(\sqrt{m})$ 倍高速

実装

Input: genus 2 HEC C/\mathbb{F}_q

Output: $\#\mathcal{J}_C(\mathbb{F}_q)$

- $1. s_i \mod 2$
- 2. $s_i \mod p$ (Cartier-Manin operator)
- 3. $s_i \mod m$, m = 2p (CRT)
- 4. $s_i \mod m \to \# \mathcal{J}_C(\mathbb{F}_q)$ (Proposed baby step giant step algorithm)

これを素位数曲線が見付かるまで繰り返した。

実際には,

Lemma 2.

 $2 \nmid \# \mathcal{J}_C(\mathbb{F}_q) \Leftrightarrow F : irreducible/\mathbb{F}_q \Leftrightarrow 2 \nmid s_i$

より、Fが既約なCを入力し

 $s_i \equiv 1 \mod 2$

とした.

また,

Cartier-Manin operator, Baby step giant step algorithm の計算にも高速化手法を用た.

加算は,

M, Chao, Tsujii, *Fast genus two hyperelliptic curve cryptosystems*, Technical Report ISEC2001-31, IEICE Japan, 2001.

に記載の Harley algorithm

有限体の元と多項式の演算にNTLを使用した.

Example 1.

$$p = 1342181,$$

$$\mathbb{F}_q = \mathbb{F}_p(\alpha),$$

$$\alpha^3 + 1073470\alpha^2 + 34509\alpha + 1223366 = 0$$

$$C_1/\mathbb{F}_q : Y^2 = F_1(X),$$

$$F_1 = X^5 + (567033\alpha^2 + 322876\alpha + 957805)X^4 + (1123698\alpha^2 + 933051\alpha + 141410)X^3 + (393269\alpha^2 + 233572\alpha + 708577)X^2 + (692270\alpha^2 + 350968\alpha + 788883)X + 968896\alpha^2 + 895453\alpha + 589750$$

$$\#\mathcal{J}_{C_1}(\mathbb{F}_q) = 5846103764014694479322329315740285931$$

: 123 bit prime number

	Time
Cartier-Manin operator	7m
Baby step (26 bit)	1h 10m
Sort	1m
Giant step	1h 59m
Total	3h 17m

Pentium III/866MHz, 1G RAM

Example 2.

$$p = 5491813,$$

$$\mathbb{F}_q = \mathbb{F}_p(\alpha),$$

$$\alpha^3 + 4519302\alpha^2 + 3749080\alpha + 607603 = 0$$

$$C_2/\mathbb{F}_q : Y^2 = F_2(X),$$

$$F_2 = X^5 + (2817153\alpha^2 + 3200658\alpha + 1440424)X^4 + (3310325\alpha^2 + 481396\alpha + 1822351)X^3 + (108275\alpha^2 + 120315\alpha + 469800)X^2 + (2168383\alpha^2 + 1244383\alpha + 5010679)X + 4682337\alpha^2 + 53865\alpha + 2540378$$

$$\#\mathcal{J}_{C_2}(\mathbb{F}_q) =$$

$$27434335457581234045473311611818187339271$$

: 135 bit prime number

	Time
Cartier-Manin operator	42m
Baby step (28 bit)	5h 30m
Sort	20m
Giant step	9h 17m
Total	15h 49m
	4 6 5 4 4 4

Alpha 21264/667MHz, 4G RAM

まとめ

- 超楕円曲線の位数計算を目的とし baby step giant step algorithm の改良を行った.
- 提案algorithmを用いて135 bitの素位数曲線を 構成できた.
- Memory 使用量削減は今後の課題
- Gaudry-Harleyの方法と併せて用いることで 160 bit 位数の計算は可能と考えられる.
- しかし, 160 bit素位数曲線の構成を行うためには Schoof-like algorithmの改良が必要

Appendix

Magma V.2.8:

Gaudry-Harley's Schoof-like algorithmのGaudry自身が書いたcodeを含む.

Example 3.

$$p = 2^{20} - 5,$$

$$\mathbb{F}_q = \mathbb{F}_p(\alpha),$$

$$\alpha^4 + 278680\alpha^3 + 445675\alpha^2 + 218811\alpha + 653340 = 0$$

$$C_3/\mathbb{F}_q : Y^2 = F_3(X),$$

$$F_3 = X^5 + (508797\alpha^3 + 672555\alpha^2 + 940125\alpha + 153314)X^3 + (330843\alpha^3 + 367275\alpha^2 + 910087\alpha + 1002854)X^2 + (488395\alpha^3 + 873290\alpha^2 + 734350\alpha + 7072)X + 180553\alpha^3 + 25142\alpha^2 + 806296\alpha + 724502$$

$$\#\mathcal{J}_{C_3}(\mathbb{F}_q) = 146144588639761244786639678676939$$

$$3107114349704111$$

$$= 37 \times 79 \times 6055499440163$$

$$\times 82566515265200206423105450287439$$

: 160 bit

	Time
l=3	27s
l = 5	14m 46s
l = 7	3h 10m 37s
l = 11	20d 20h 23m 38s
Cartier-Manin operator	10m 42s
Baby step (30 bit)	1d 23h 22m 22s
Sort	2h 5m 15s
Giant step	2d 23h 3m 34s
Total	26d 19h 31m 21s

Schoof-like algorithm: Pentium III/866MHz, 1G RAM The others: Itanium/800MHz, 12G RAM