CHAPTER 10 DISCUSSIONS

Consider the deletion of record 3 from the following file. Compare the relative merits of the following techniques for implementing the deletion.

- a) Shift all records from 4 ~ 11 one place up.
- b) Move record 11 to the space occupied by record 3.
- c) Mark record 3 as deleted, and move no records.

		_				.000	-				h)		
record 0	10101	Srini	vasan (record 0	101		Sr	inivasan	Comp	o. Sci. 650	b)		c)
record 1	12121	Wu		l .		$\overline{}$			Comp	7. 3CI. 030	00		<u> </u>
record 2	15151	Moza	art	record 1	121		M	neader				,	
record 3	22222	Einst		record 2	151	.51	M	record 0	10101	Srinivasan	Comp. Sci.	65000	
l .				record 11	983	345	K	record 1			1		
record 4	3234 rec	ord 0	10101	record 4	323	343	E	record 2	15151	Mozart	Music	40000	
record 5	3345 rec	ord 1	12121	record 5	334								
record 6	4556 rec	ord 2	15151					record 3	22222	Einstein	Physics	95000	
record 7	5858 rec		32343	record 6	455	65	K	record 4					
l .				record 7	585	83	C	record 5	33456	Gold	Physics	87000	
record 8	7654 rec		33456	record 8	765	43	Si	record 6					
record 9	7676 rec	ord 6	45565	record 9	767			record 7	58583	Califieri	History	62000	
record 10	8382 rec	ord 7											4 1
record 11	9834 rec		76543	record 10	838	321		record 8	76543	Singh	Finance	80000	
record 11		ord 9	76766			Biolo	CXI	record 9	76766	Crick	Biology	72000	
				Crick				record 10	83821	Brandt	Comp. Sci.	92000	
	~ \	ord 10		Brandt		Com		record 11	98345	Kim	Elec. Eng.	80000	
	a) _{rece}	ord 11	98345	Kim		Elec.	En	5. 000	00			30000	

Copyright © by S.-g. Lee

A **sequential file** is designed for efficient processing of records in sorted order based on some search key. Ideally, all records should be stored in sorted order, but this is not always feasible after updates. Discuss how pointers can be used to support efficient sequential access employing the different techniques after deletion of record 3.

- a) Shift all records from 4 ~ 11 one place up.
- b) Move record 11 to the space occupied by record 3.
- c) Mark record 3 as deleted, and move no records.

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

Copyright © by S.-g. Lee

	12			
10101	Srinivasan	Comp. Sci.	65000	1
12121	Wu	Finance	90000	4
15151	Mozart	Music	40000	4
22222	Einstein	Physics	95000	
32343	El Said	History	60000	_4
33456	Gold	Physics	87000	_
45565	Katz	Comp. Sci.	75000	_
58583	Califieri	History	62000	_
76543	Singh	Finance	80000	_
76766	Crick	Biology	72000	_
83821	Brandt	Comp. Sci.	92000	4
98345	Kim	Elec. Eng.	80000	101

Figure 10.10 Sequential file for instructor re

10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	
				— <i>-</i> //
32222	Verdi	Music	48000	

Figure 10.11 Sequential file after an insertion.

Show the status of the block in **slotted page structure** is after performing the following operations in order. Assume the block size is 500B and empty initially.

- 1. insert record A (length 20B)
- 2. insert record B (length 40B)
- 3. insert record C (length 30B)
- delete record B
- insert record D (length 50B)

A record in a disk is usually identified logically by < fileID, block#, rec#> rather than using the physical address <track#, sector#, offset>.

- a. What may be the reason for this?
- Describe the information that should be kept in a file header that keeps track of the blocks in the file.

Suppose transaction T1 requests **write**(X) on a database item X, and the DBMS subsequently responds with a success message. Does this mean that X is updated in the disk? Explain.

Example of Data Access

Given the characteristics of *flash memory* and the mechanics of data access in disk based databases, suggest ways in which flash memory can be used to enhance database performance.