Rīgas Tehniskā Universitāte

Datorzinātnes un Informācijas Tehnoloģijas fakultāte

Automātika un datortehnika

Risinājumu algoritmizācija un programmēšana (1. daļa) Laboratorijas darbs#5 Viendimensiju masīva apstrāde

> D I T F RDBF0 1. kurss 9. grupa Viktorija Ovčiņņikova studenta apl. nr. 101RDB131

	Darba izpildes grafiks								
	Protokola sagatave	Darbs ar datoru	Ieskaite						
Pēc plāna (nod.)									
Faktiski (nod.)									

1. Darba uzdevums

Viendimensiju masīvā noteikt pēc moduļa mazākā elementa vērtību un indeksu, no tiem elementiem, kas pēc moduļa lielāki par 4 un kuriem ir nepāra indeksi. Obligāti izmantot programmas sagatavi.

2. Aprēķinu metode

2.1. Aprēķinu metodes apraksts

Aprēķinu veiksim divos soļos:

- 1) Izskatot masīva analizējamā fragmenta elementus, atradīsim jebkuru elementu, kurš pēc moduļa ir lielāks par 4 atbalsta vērtību otrajam aprēķina solim. Ja atbalsta vērtību atrast izdodas izpildīsim otro aprēķina soli. Ja neizdodas atrast atbalsta vērtību, tad izdodam attiecīgu paziņojumu un beidzam darbu.
- 2) Izskatot tikai masīva analizējamā fragmenta elementus, salīdzināsim masīva elementus ar atbalsta vērtību, ja kārtējais elements izrādīsies pēc moduļa mazāks par atbalsta vērtību, tad aizvietosim atbalsta vērtību ar masīva elementa vērtību.

2.2. Aprēķina piemērs

Pieņemsim apstrādājam šādu masīvu

110,00000000000000000000000000000000000																	
Elementa	1.	2.		7.	8.	9.	10	11	12	13	14	15	16	17	18	19	
numurs							•	•	•	•	•	•	٠	•	•	•	
Elementa	-1	4		2	-1	-5	8	0	9	-2	-1	-7	-1	9	-4	2	
vērtība																	

Izpildīsim izstrādāto aprēķinu metodi:

- 1) Algoritma pirmajā solī izskatīsim elementus ar numuriem 1...7,9,11,13,15...19 tikmēr, kamēr neatradīsim elementus, kuri pēc moduļa ir lielāki par 4 atbalsta vērtību. Dotajā gadījumā atradīsim atbalsta vērtību 9-to elementu ar vērtību -5.
- 2) Otrajā solī atkal izskatīsim elementus ar numuriem 1...7,9,11,13,15...19. Elementus 9-to, 15-to un 17-to salīdzināsim ar atbalsta vērtību. Dotajā piemērā 9-tais elements aizstās atbalsta vērtību un rezultātā tiks iegūts rezultāts 9. elements ar vērtību pēc moduļa 5.

3. Algoritma izstrāde

3.1. Algoritma soļu apraksts

- Dotā laboratorijas darba sagatavē nomainīsim aprēķinu daļu ar savu izstrādāto algoritmu.

3.2. Apzīmējumu (programmas identifikatoru) izvēle

Izvēlēsimies izstrādātajā fragmentā izmantojamo mainīgo (identifikatoru) vārdus: MinV — masīva minimāla pēc moduļa elementa vērtība analizējamajā daļā;

Idet – masīva minimāla pēc moduļa elementa indekss analizējamajā daļā;

i – analizējamā elementa numurs;

4. Algoritma blokshēma

1. att. Izstrādātā algoritma shēma

5. Programmas fragmenta pirmteksts

```
for i:=1 to num do
     begin
      write( '
                "',i:2, '"', ms[i]:10:5);
      ms[i]:=abs(ms[i]);
      writeln; writeln(' Lai turpinatu ievadi jebkuru
skaitli ');
     read(j);
 STEP1:
     i := 1;
   while(i<=num) do
   begin
          if (ms[i]>4) then
         begin
          MinV:= ms[i];
           idet:=i;
           goto STEP2
         end
                       else
         i := i + 2;
   end;
   writeln('Apskatamaja kopaa nav neviena elementa, kas
butu lielaks par 4');
   goto MENU;
 STEP2:
     i := 1;
   while(i<=num) do
   begin
          if ((ms[i]>4) and (ms[i]<Minv)) then
         begin
          MinV:= ms[i];
           idet:=i;
         end;
         i := i + 2;
   writeln(' Minimala pec modula masiva elementa vertiba
apgabalaa ir :', MinV:10:5);
   writeln(' Minimala pec modula masiva elementa vertiba
apgabalaa ir :', idet:5);
```

7. Secinājumi

Tika izstrādāta viendimensiju masīva apstrādes programma. Dotā laboratorijas darba sagatavošanai ir patērēta 5 stunda 40 min. Visvairāk laika tika patērēts laboratorijas darba atskaites sagatavošanā. Darba izpildes rezultātā iegūtas iemaņas darbā ar masīvu apstrādi, izmantojot ciklus.