biinear regression

we have a dataset z[ω] that has noise $\eta[\omega]$, z[ω] = z0[ω] + $\eta[\omega]$, where $\eta[\omega]$ is has power spectrum $\pi[\omega] = (1/\Omega) \langle \langle \eta[\omega]^* \eta[\omega] \rangle \rangle$, where Ω is the total time which sets the coarse graining of frequency $\Delta\omega$ = $\frac{2\pi}{\omega}$ (similar to crustal unit cell) . We fit this to a function $Z_{\lambda 1, \lambda 2, \ldots, \lambda N}$ [ω] where $\lambda 1$, $\lambda 2$, ... λN are fitting parameters. The best fit values $\Delta 1$, $\Lambda 2$, ... ΛN of the parameters are determined by minimizing the goodness function

(1)
$$G = \int d\omega \ W[\omega] \ (z[\omega] - Z_{\{\lambda_i\}} \ [\omega])^* \ (z[\omega] - Z_{\{\lambda_i\}} \ [\omega]) + c.c. \rightarrow min$$
 where $W[\omega]$ is weight function. The best fit values $\Lambda 1$, $\Lambda 2$, ... ΛN of the parameters depend on the noise $\eta[\omega]$ in the data and therefore the values of $\Lambda 1$, $\Lambda 2$, ... ΛN will be spread over

a finite range when averaged over all configuration of the noise.

Question: given the power spectrum $\pi[\omega]$ of the noise $\eta[\omega]$, what is the variance of each parameter, $\langle \langle \delta \Lambda 1^2 \rangle \rangle$, $\langle \langle \delta \Lambda 2^2 \rangle \rangle$, ... $\langle \langle \delta \Lambda N^2 \rangle \rangle$ averaged over the noise $\eta[\omega]$. What is the distribution function of the $\Lambda 1$, $\Lambda 2$, ... ΛN given the distribution function of the noise ?

Answer:

Noise with power spectrum

(2 a) $\pi[\omega] = (1/\Omega) \langle \langle \eta[\omega]^* \eta[\omega] \rangle \rangle$ has a probability distribution function

(2)
$$\mathbb{P}\left\{\eta\left[\omega\right]\right\} = \operatorname{const} \times e^{-\int d\omega \frac{\eta\left[\omega\right]^{*}\eta\left[\omega\right]}{\pi\left[\omega\right]}}$$

the probability distribution function of the values of the best fit parametrs \mathbf{N} $\{\Lambda_i + \delta\Lambda_i\}$ for small deviations $\delta\Lambda_i$ away from their avarage Λ_1 is given by the same function where $\eta[\omega]$ is replaced by the difference of the fit $Z_{\{\lambda_i\}}$ [ω] and the data $z[\omega]$, $\eta[\omega] \rightarrow z[\omega] - Z_{\{\Lambda_i + \delta \Lambda_i\}}$ [ω]

(3)
$$\delta \Lambda_{i}$$
 = const \times e^{- $\int d\omega \frac{(z[\omega] - Z_{\{\Lambda_{i} * \delta \Lambda_{i}\}}[\omega])^{*}(z[\omega] - Z_{\{\Lambda_{i} * \delta \Lambda_{i}\}}[\omega])}{\pi[\omega]}$}

For small $\delta \Lambda_i$ we can expand the exponent

(4)
$$G_{\eta \{\lambda_i\}} \{z[\omega]\} = \int d\omega \frac{(z[\omega] - Z_{\{\lambda_i\}}[\omega])^* (z[\omega] - Z_{\{\lambda_i\}}[\omega])}{\pi[\omega]}$$

$$(5) \qquad \mathsf{G}_{\eta} \ \{ \Lambda_{\mathsf{i}} + \delta \Lambda_{\mathsf{i}} \} \ = \ \mathsf{A}_{\eta} + \ \left(\mathsf{B}_{\eta} \right)_{\mathsf{i}} \ \delta \Lambda_{\mathsf{j}} \ + \ \delta \Lambda_{\mathsf{i}} \ \left(\mathsf{C}_{\eta} \right)_{\mathsf{i}\mathsf{j}} \ \delta \Lambda_{\mathsf{j}} \,,$$

where $(C_{\eta})_{ii}$ is the matrix of second derivatives

(6)
$$\left(C_{\eta}\right)_{ij} = \left(\frac{d^2 G_{\eta}}{d\lambda_i d\lambda_j}\right)_{\lambda_i = \Lambda_i}$$

the variances $\langle \langle \delta \Lambda_i \delta \Lambda_j \rangle \rangle$ =

 $\left\langle \delta\Lambda_{i}\;\delta\Lambda_{j}\right\rangle$ - $\left\langle \delta\Lambda_{i}\right\rangle \left\langle \delta\Lambda_{j}\right\rangle$ of the best fit parameters are given by

(7)
$$\langle \langle \delta \Lambda_i \delta \Lambda_j \rangle \rangle = (C_{\eta}^{-1})_{ij}$$

In particular,

(8)
$$\langle \langle \delta \Lambda 1^2 \rangle \rangle = (C_{\eta}^{-1})_{11}$$

 $\langle \langle \delta \Lambda 2^2 \rangle \rangle = (C_{\eta}^{-1})_{22}$
 \cdots
 $\langle \langle \delta \Lambda N^2 \rangle \rangle = (C_{\eta}^{-1})_{NN}$

noise in the calorimeter response function $R[\omega]$

the calorimeter response $R[\omega]$ is

$$\begin{split} &(\textbf{2.1)} \ R[\omega] \ = \ \frac{\Delta T_{Therm}[\omega]}{\Delta P_{heater}[\omega]} \\ &= \ \frac{\Delta T_{Therm}[\omega]}{\Delta V_{heater}[\omega \, / \, 2] \ \Delta I_{heater}[\omega \, / \, 2]} \\ &= \ \left(\frac{d log T_{therm}}{d log R_{therm}} \right) \frac{\Delta V_{Therm}[\omega \, + \, \omega \, 1] \, / \, \Delta I_{Therm}[\omega \, 1]}{\Delta V_{heater}[\omega \, / \, 2] \ \Delta I_{heater}[\omega \, / \, 2]} \\ &\text{where } \alpha = \left(\frac{d log T_{therm}}{d log R_{therm}} \right) \text{ is a thermometer calibration factor}$$

each of the four quantities , $\Delta V_{Therm}[\omega + \omega 1]$, $\Delta I_{Therm}[\omega 1]$, $\Delta V_{heater}[\omega / 2]$, $\Delta I_{heater}[\omega/2]$ are independently measured by the lockin -- theroefore, each accumulating its noise -- and the calorimeter responce = Eq. (2.1) is calculated digitally using results of these four measurements.

We now consider noise in $R[\omega]$ as a result of the noise in $\Delta V_{Therm}[\omega + \omega 1]$, $\Delta I_{\text{Therm}}[\omega 1]$, $\Delta V_{\text{heater}}[\omega / 2]$.

The noise in the 4 quantities is not uncorrelated because the of the coupling on the calorimeter and in the wiring between calorimetr andf the lockin. First, assume that only one of the four $\Delta V_{
m Therm}[\omega+\omega 1]$, is noisy. Then the noise $\eta[\omega]$ in $R[\omega]$ is

(2.2)
$$\eta[\omega] = \delta R[\omega] = \delta V_{\text{Therm}}[\omega + \omega 1] \frac{\alpha / \Delta I_{\text{Therm}}[\omega 1]}{\Delta V_{\text{heater}}[\omega / 2] \Delta I_{\text{heater}}[\omega / 2]}$$

the noise $\delta V_{\text{Therm}}[\omega + \omega 1]$ includes

- (1) the thermal noise on the thermometer resistor (probably small at cryo temperatures)
- (2) the vibration in field and antenna noise in the < calorimeter → lockin > wires
- (2) amplifyer noise on the channels processing $\Delta V_{Therm}[\omega + \omega 1]$

we need to estimate the power spectrum $\pi_{Vtherm}[\omega] = \frac{1}{c} \langle \langle \delta V_{Therm}[\omega + \omega \mathbf{1}]^* \delta V_{Therm}[\omega + \omega \mathbf{1}] \rangle \rangle$,

of $\delta V_{\rm Therm} [\omega + \omega 1]$. The assumption of the white noise is not satisfactory as in the calorimneter spectroscoipy the frequency changes by 10⁵ over the measured frequency range.

On top of that, $\eta[\omega]$ has an additional ω - dependent factor, $\eta[\omega] = \phi_{\mathsf{Therm}}[\omega] \, \delta \mathsf{V}_{\mathsf{Therm}}[\omega]$, where

(2.3)
$$\phi_{\text{Therm}}[\omega] = \frac{\alpha / \Delta I_{\text{Therm}}[\omega 1]}{\Delta V_{\text{heater}}[\omega / 2] \Delta I_{\text{heater}}[\omega / 2]}$$

which is not constant in frequency because the amplitudes of the AC components of $\Delta I_{heater}[\omega$ / 2] and $\Delta I_{Therm}[\omega 1]$ are contunuously adjusrtedin the experiment as frequency is swept to maintain comfortable S / N conditions

Ovearall, the power spectrum $\pi[\omega]$ = $(1/\Omega) \langle \langle \eta[\omega]^* \eta[\omega] \rangle \rangle$ in the calorimeter response R[ω] is given by

$$(2.4) \ \pi[\omega] = (1/\Omega) \left\langle \left\langle \eta[\omega]^* \eta[\omega] \right\rangle \right\rangle = \left| \phi_{\mathsf{Therm}}[\omega] \right|^2 \frac{1}{\Omega} \left\langle \left\langle \delta \mathsf{V}_{\mathsf{Therm}}[\omega + \omega \mathbf{1}]^* \delta \mathsf{V}_{\mathsf{Therm}}[\omega + \omega \mathbf{1}] \right\rangle \right\rangle$$

If all four voltages are noisy then (2.4) will have a corresponding contribution form nise in each of them as well as terms coming from the cross - neise between different channels. question — what is the power spectrum of the noise in the thermometer voltage $\frac{1}{\Omega}$ $\langle \langle \delta V_{\text{Therm}}[\omega + \omega 1]^* \delta V_{\text{Therm}}[\omega + \omega 1] \rangle \rangle$ after lockin amplification?

? $\frac{nV}{\sqrt{Hz}}$ or equivalent temperature ? What is its frequency

dependence in the range between 0.01 Hz and 4 kHz?

Derivation of Eq.(3)

For a given data $z[\omega]$, the best fit value $\Lambda_1, \Lambda_1, \ldots \Lambda_N$, of parameters $\lambda 1, \lambda 2, \ldots$, λN can be calculated as an average value over the probability distribution

(10)
$$P[\{\lambda_1, \ldots, \lambda_{1N}\}] = e^{\frac{G\theta_T\{Z\{\omega\}\}}{T}} e^{-\frac{G_{\{\lambda_1\}}\{Z\{\omega\}\}}{T}}$$

$$e^{-\frac{G\theta_{T}\left\{z\left[\omega\right]\right\}}{T}} \ = \ \left\lceil d\lambda_{1} \ \ldotp \ldotp \ d\lambda_{1} \ N \right\rceil \ e^{-\frac{G_{\lambda_{1},\lambda_{2},\,\ldots,\,\lambda_{N}}\left\{z\left[\omega\right]\right\}}{T}}$$

where T is a parameter. The average value of each parameter $\{\lambda_i\}_T$ at the temperature T is determined from

$$(11) \qquad \langle \lambda_i \rangle_T \ = \ e^{\frac{G\theta_T \left(z\left[\omega\right]\right)}{T}} \int \! d\lambda_1 \ldots d\lambda_{1\,N} \ \lambda_i \ e^{-\frac{1}{T}\,G_{\left\{\lambda_i\right\}} \left\{z\left[\omega\right]\right\}} \ , \ \text{etc.}$$

the best fit values $\Lambda_1, \Lambda_1, \ldots \Lambda_N$,

are equal to the average value of parameters $\lambda 1, \lambda 2, \ldots$ in the limit T $\rightarrow 0$.

(12)
$$\Lambda_i = \lim_{T\to 0} \langle \lambda_i \rangle_T$$

The averages $\langle \lambda_i \rangle_T$ -- as well as the best fit Λ_i -- depend on the data and noise $z[\omega]$ + $\eta[\omega]$ and therefore will be distributed over the finite range even in the limit of T \rightarrow 0. For a given noise configuration $\eta[\omega]$,

(13)
$$P[\{\lambda_1, \ldots, \lambda_{1N}\}; T, \eta[\omega]] = e^{\frac{G\Theta_T \{z[\omega] + \eta[\omega]\}}{T}} e^{-\frac{G[\lambda_1] \{z[\omega] + \eta[\omega]\}}{T}}$$

Becasue noise is random,

the values of the Λ_i are themselves distributed over a vinite range when we consider all configurations of noise. The probability distribution of the noise is

(14)
$$\mathbb{P}\left\{\eta\left[\omega\right]\right\} = \text{const } e^{-\int d\omega \frac{\eta\left[\omega\right]^{+} \circ \eta\left[\omega\right]}{\pi\left[\omega\right]}}$$

where $\pi[\omega] = \langle \eta[\omega]^* \times \eta[\omega] \rangle$ is propoertional to the power spectrum. The probability distribution \mathbf{N} { Λ_i } for the best fit values Λ_i is

in the limit of T \rightarrow 0 the function $GO_T \{z[\omega] + \eta[\omega]\}$ depends very weakly on $\eta[\omega]$ (see SI 1) and therefore we can absorb it into the definition of the const. Therefore, at small T the probability distribution Ω $\{\Lambda_i\}$ is

$$\begin{array}{lll} \text{(16)} & \text{\&O} & \{\Lambda_i\} & = & e^{\frac{F_T}{T}} \times \int \! \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \ e^{-\int \! d\omega \, \frac{\eta \left[\omega\right]^* \cdot \eta \left[\omega\right]}{\pi \left[\omega\right]}} \ e^{-\frac{G_{\left[\lambda_i\right]} \left\{z \left[\omega\right] + \eta \left[\omega\right]\right\}}{T}} \\ & e^{-\frac{F_T}{T}} & = \int \! \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \int \! d\lambda_1 \, \ldots \, d\lambda_1 \,_N \ e^{-\int \! d\omega \, \frac{\eta \left[\omega\right]^* \cdot \eta \left[\omega\right]}{\pi \left[\omega\right]}} \ e^{-\frac{G_{\left[\lambda_i\right]} \left\{\eta \left[\omega\right]\right\}}{T}} \\ \end{array}$$

and all averages are done with

(17)
$$\langle \ldots \rangle = \int d\lambda_1 \ldots d\lambda_{1N} \Re \{\Lambda_i\} (\ldots)$$

To evaluate Ω { Λ_i } we need to integrate over all noise configurations

$$\int \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* e^{-\int d\omega} \frac{\eta(\omega)^* \cdot \eta(\omega)}{\pi[\omega]} e^{-\frac{G_{\left\{\lambda_i\right\}} \left\{z\left[\omega\right] + \eta\left\{\omega\right\}\right\}}{T}} =$$

$$\int \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* e^{-\int d\omega} \frac{\eta(\omega)^* \cdot \eta(\omega)}{\pi[\omega]} e^{-\int d\omega} W[\omega] \frac{(\eta(\omega) - (Z[\omega] - Z[\omega]))^* (\eta(\omega) - (Z[\omega] - Z[\omega]))}{T} =$$

The integral is a product of simple gaussian integrals at each ω , which are evaluated using an identity

(19)
$$\int d\eta d\eta^* e^{-\frac{\eta^* \eta}{T2} - \frac{(\eta - a)^* (\eta - a)}{T1}} = \int d\eta d\eta^* e^{-\frac{\tau_1}{T2} \frac{\eta^* \eta - (\eta - a)^* (\eta - a)}{T1}}$$

$$= \int dx dy e^{-\frac{\tau_1}{\tau_2} (\eta 1^2 + \eta 2^2) + (\eta 1 - i \eta 2 - a 1 + i a 2) (\eta 1 + i \eta 2 - a 1 - i a 2)}{T1}$$

$$= \int dx dy e^{-\frac{\tau_1}{\tau_2} (\eta 1^2 + \eta 2^2) + 2 ((a 1 - \eta 1)^2 + (a 2 - \eta 2)^2)}{T1}$$

$$= \int dx dy e^{-\frac{2\tau_1}{\tau_1 + 2\tau_2} a 1^2 + \left(2 + \frac{\tau_1}{\tau_2}\right) \left(\eta 1 - \frac{2a_1}{\left[2 + \frac{\tau_1}{\tau_2}\right]}\right)^2 + (\eta 1 - \eta 2, a 1 - a 2)}{T1}$$

$$= \frac{\pi T1}{\left(2 + \frac{T1}{T_2}\right)} e^{-\frac{2(a1^2+a2^2)}{T1+2T2}}$$

Note that the parameters T1 and T2 enter as a sum only in the exponent

(the prefactor is not important). This reflects the fact that when T1 goes to 0, the value of a is very close to η , however,

distribution of a is still broad because η is distributed broadly. In other words, the temperature T rather then being zero, is set by the power spectrum $\pi[\omega]$.

We have

$$\begin{aligned} &\text{lim}_{\mathsf{T}\to 0} \int \! \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \ e^{-\int \! d\omega} \, \frac{\eta \left[\omega\right]^{*} \cdot \eta \left[\omega\right]}{\pi \left[\omega\right]} \ e^{-\frac{G_{\left\{\lambda_{i}\right\}} \left\{\eta \left\{\omega\right\}\right\}}{\mathsf{T}}} \ = \\ &\text{lim}_{\mathsf{T}\to 0} \int \! \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \ e^{-\int \! d\omega} \, \frac{\frac{\mathsf{T}/\mathsf{M}\left[\omega\right]}{\pi \left[\omega\right]} \, \eta \left[\omega\right]^{*} \cdot \eta \left[\omega\right] + \left(\, \eta \left[\omega\right] - \left(\mathsf{Z}_{\left\{\lambda_{i}\right\}} \left[\omega\right] - \mathsf{Z}\left[\omega\right]\right)\right)^{*} \left(\, \eta \left[\omega\right] - \mathsf{Z}\left[\omega\right]\right)}}{\mathsf{T}/\mathsf{M}\left[\omega\right]} \ = \\ &\text{const} \ e^{-\int \! d\omega} \, \frac{\left(\mathsf{Z}_{\left\{\lambda_{i}\right\}} \left[\omega\right] - \mathsf{Z}\left[\omega\right]\right)^{*} \left(\mathsf{Z}_{\left\{\lambda_{i}\right\}} \left[\omega\right] - \mathsf{Z}\left[\omega\right]\right)}{\pi \left[\omega\right]} \end{aligned}$$

Finally, the probablity distribution $\mathbf{\wp}$ { Λ_i } for the parameters λ_i when $\mathbf{z}[\omega]$ is characterized by the noise power spectrum $\pi[\omega]$ is

(21)
$$\Re \{\Lambda_i\} = e^F e^{-G_{\eta\{\lambda_i\}}\{z[\omega]\}},$$

$$e^{-F} = \int d\lambda_1 \cdot d\lambda_1 \, e^{-G_{\eta\{\lambda_i\}}\{z[\omega]\}},$$

where the "noise-goodness" $G_{n \{\lambda_i\}} \{z[\omega]\}$ is

determined by by the properties of the noise alone,

(22)
$$G_{\eta \{\lambda_i\}} \{z[\omega]\} = \int d\omega \frac{1}{\pi[\omega]} (Z_{\{\lambda_i\}}[\omega] - z[\omega])^* (Z_{\{\lambda_i\}}[\omega] - z[\omega])$$

Note that $G_{\eta_{\{\lambda_i\}}}$ $\{z[\omega]\}$ is equivalent to a specific choice of Weight

function in the goodness function discussed above. The noise spectrum

 $\langle \eta[\omega]^* \times \eta[\omega] \rangle = \pi[\omega]$ simply sets the (frequency -- dependent) value of T in the representation of the best fit value of parameters.

Note that one could obtain Ω $\{\Lambda_i\}$ by simply replacing $\eta[\omega]$ with $Z_{\{\lambda_i\}}[\omega]$ – $z[\omega]$ in the noise distribution functioon $\mathbb{P} \{ \eta[\omega] \}$,

(21 a)
$$\{\Lambda_i\} = \mathbb{P} \{\eta[\omega] \rightarrow Z_{\{\lambda_i\}}[\omega] - Z[\omega]\}$$

The averages $\langle\langle \Lambda_i \rangle\rangle$ and the variances $\langle\langle \delta \Lambda_i^2 \rangle\rangle$ of the fit parameters are determined in a standard way by their probility distribution Ω $\{\Lambda_i\}$

(23)
$$\left\langle \left\langle \delta \Lambda_{i}^{2} \right\rangle \right\rangle = \left\langle \Lambda_{i}^{2} \right\rangle - \left\langle \Lambda_{i} \right\rangle^{2} ,$$

$$\left\langle \Lambda_{i}^{2} \right\rangle = \int d\lambda_{1} ... d\lambda_{1} N (\lambda_{i})^{2} \left\{ \Lambda_{i} \right\} ,$$

$$\langle \Lambda_i \rangle = \int d\lambda_1 ... d\lambda_{1N} (\lambda_i) \Re \{\Lambda_i\}$$

We will now calculate the variance $\left<\left<\delta\Lambda_i^2\right>\right>$. Near the minimum we expand G_η $\{\Lambda_i+\delta\Lambda_i\}$ as

(24)
$$G_{\eta} \{\Lambda_{i} + \delta \Lambda_{i}\} = A_{\eta} + (B_{\eta})_{i} \delta \Lambda_{j} + \delta \Lambda_{i} (C_{\eta})_{ij} \delta \Lambda_{j},$$

where $(C_{\eta})_{ii}$ is the matrix of second derivatives

(25)
$$(C_{\eta})_{ij} = \frac{d^2 G_{\eta}}{d\delta \Lambda_i d\delta \Lambda_i}$$

of G_η near its minimum. We note that if we used a different

goodness function G_W to find the best fit values Λ_i for parameters λ_i ,

$$(26) \Lambda_i \leftarrow \left\{ \frac{dG_W}{d\Lambda_i} = 0 \right\}$$

then these values are not at the minimum of G_{η} { Λ_i } and therefore $\left(B_{\eta}\right)_i$ are nonzero.

To calculate the averages $\langle \langle \delta \Lambda_i^2 \rangle \rangle$ we use a characteristic function X $\{ \mathcal{E}_i \}$ defined via

(27)
$$e^{-X \{\mathcal{E}_i\}} = \int d\delta \Lambda_1 \cdot \cdot \cdot d\delta \Lambda_N e^{-G_{\eta} \{\Lambda_i + \delta \Lambda_i\} + i \cdot \delta \Lambda_i \mathcal{E}_i}$$

$$(28) X \{ \mathcal{E}_i \} - A_{\eta}$$

$$= - log \int d\delta \Lambda_1 \ldots d\delta \Lambda_N \ e^{-(B_\eta)_{,i} \ \delta \Lambda_j \ - \ \delta \Lambda_i \ (C_\eta)_{\,ij} \ \delta \Lambda_j \ + \ \mathbf{i} \ \delta \Lambda_i \ \zeta_i}$$

$$= - \log \left\lceil \mathsf{d} \delta \Lambda_1 \ldots \mathsf{d} \delta \Lambda_N \right. \, \mathrm{e}^{- \, \delta \Lambda_i \, \, (C_\eta)_{\, ij} \, \delta \Lambda_j \, + \, (\dot{\mathtt{i}} \, \xi_{i} - (B_\eta)_{\, i}) \, \, \delta \Lambda_j}$$

$$= - \text{log} \left[\text{d} \delta \Lambda_1 \ldots \text{d} \delta \Lambda_N \right. \left. e^{-\delta \Lambda_i \cdot (C_\eta)_{\,i\,j} \, \delta \Lambda_j \, + \, \left(\dot{\mathbf{i}} \, \mathcal{E}_{i} - (B_\eta)_{\,i} \right) \, \delta \Lambda_j} \right.$$

$$= -\log \left(\sqrt{\frac{\pi}{\det \left(C_{\eta} \right)}} e^{-\frac{1}{4} \left(\dot{\mathbf{x}} \, \mathcal{E}_{i} - \left(B_{\eta} \right)_{i} \right) \left(\left(C_{\eta} \right)^{-1} \right)_{ij} \left(\dot{\mathbf{x}} \, \mathcal{E}_{j} - \left(B_{\eta} \right)_{j} \right)} \right)$$

$$= \frac{1}{4} \left(i \mathcal{E}_{i} - \left(B_{\eta} \right)_{i} \right) \left(\left(C_{\eta} \right)^{-1} \right)_{ij} \left(i \mathcal{E}_{j} - \left(B_{\eta} \right)_{j} \right) + \frac{1}{2} \log \det \left(C_{\eta} \right)$$

The averages are calculated as derivatives of the characteristic function $X \{ \mathcal{E}_i \}$,

(29)
$$\langle \delta \Lambda_{i} \rangle = \frac{1}{i} \left(e^{X \{ \xi_{i} \}} \frac{d}{d \xi_{j}} e^{-X \{ \xi_{i} \}} \right)_{\xi \to 0} = -\frac{1}{i} \left(\frac{dX}{d \xi_{j}} \right)_{\xi \to 0}$$

(30)
$$\langle \delta \Lambda_i \delta \Lambda_i \rangle$$

$$= \left(\frac{1}{\underline{i}}\right)^{2} \left(e^{X \{\xi_{i}\}} \frac{d}{d\xi_{i}} \frac{d}{d\xi_{i}} e^{-X \{\xi_{i}\}}\right)_{\xi \to 0}$$

$$= \left(\frac{1}{\dot{\mathbf{n}}}\right)^{2} \left(e^{x \left\{\mathcal{E}_{i}\right\}} \frac{d}{d\mathcal{E}_{i}} \left(-\frac{dx \left\{\mathcal{E}_{i}\right\}}{d\mathcal{E}_{j}} e^{-x \left\{\mathcal{E}_{i}\right\}}\right)\right)_{\mathcal{E} \to 0}$$

$$= \left(\frac{1}{\dot{\mathbf{n}}}\right)^{2} \left(e^{x \left\{\mathcal{E}_{i}\right\}} \left(-\frac{d^{2} x \left\{\mathcal{E}_{i}\right\}}{d\mathcal{E}_{i} d\mathcal{E}_{j}} + \frac{dx \left\{\mathcal{E}_{i}\right\}}{d\mathcal{E}_{i}} \frac{dx \left\{\mathcal{E}_{i}\right\}}{d\mathcal{E}_{j}}\right) e^{-x \left\{\mathcal{E}_{i}\right\}}\right)_{\mathcal{E} \to 0}$$

$$= \left(\frac{1}{\dot{\mathbf{n}}}\right)^{2} \left(-\frac{d^{2} x}{d\mathcal{E}_{i} d\mathcal{E}_{j}} + \frac{dx}{d\mathcal{E}_{i}} \frac{dx}{d\mathcal{E}_{j}}\right)_{\mathcal{E} \to 0}$$

$$= \left(\frac{1}{\dot{\mathbf{n}}}\right)^{2} \left(-\frac{d^{2} x \left\{\mathcal{E}_{i}\right\}}{d\mathcal{E}_{i} d\mathcal{E}_{j}}\right)_{\mathcal{E} \to 0} + \left(\frac{1}{\dot{\mathbf{n}}}\right)^{2} \left\langle\delta\Lambda_{i}\right\rangle \left\langle\delta\Lambda_{j}\right\rangle$$

$$\begin{array}{ll} (\ 31\) & \left\langle \left\langle \delta \Lambda_{i} \ \delta \Lambda_{j} \right\rangle \right\rangle \\ & = \ \left\langle \left(\delta \Lambda_{i} - \left\langle \delta \Lambda_{i} \right\rangle \right) \left(\delta \Lambda_{j} - \left\langle \delta \Lambda_{j} \right\rangle \right) \right\rangle \\ & = \ \left\langle \delta \Lambda_{i} \ \delta \Lambda_{j} \right\rangle - \left\langle \delta \Lambda_{i} \right\rangle \left\langle \delta \Lambda_{j} \right\rangle \\ & = \ \left(- \frac{d^{2} \ X}{d \mathcal{E}_{i} \ d \mathcal{E}_{j}} + \frac{d x}{d \mathcal{E}_{i}} \frac{d x}{d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} - \left(- \left(\frac{d x}{d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} \right) \left(- \left(\frac{d x}{d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} \right) \\ & = \left(\frac{1}{\dot{\mathbf{n}}} \right)^{2} \left(- \frac{d^{2} \ X}{d \mathcal{E}_{i} \ d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} \\ & = \frac{1}{4} \left(\left(C_{\eta} \right)^{-1} \right)_{ij} \end{aligned}$$

SIO

$$\begin{split} \delta G &= \delta \Lambda \ A \ \delta \Lambda \ + \ B \ \delta \Lambda \\ e^{-\frac{x \ (\mathcal{E}_1)}{T}} &= \int \! d \delta \Lambda_1 \ d \delta \Lambda_2 \ \dots \ d \delta \Lambda_N \ e^{-\frac{\delta \Lambda A \delta \Lambda + B \delta \Lambda}{T} + \dot{\mathbf{1}} \ \delta \Lambda_1 \ \mathcal{E}_1} \\ \delta \Lambda \ A \ \delta \Lambda \ + \ B \ \delta \Lambda \ + \ \dot{\mathbf{1}} \ \delta \Lambda \ \mathcal{E} \ = \\ \left(\delta \Lambda \ + \ \frac{1}{2} \ A^{-1} \ B + \frac{\dot{\mathbf{1}}}{2} \ A^{-1} \ \mathcal{E} \right) A \left(\delta \Lambda \ + \ \frac{1}{2} \ A^{-1} \ B \ + \ \dot{\mathbf{1}} \ A^{-1} \ \mathcal{E} \right) - \frac{1}{4} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \ A^{-1} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \ = \\ X \ = \ \frac{1}{4} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \ A^{-1} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \end{split}$$

dependence of $e^{-\frac{GO_T\{z[\omega]+\eta[\omega]\}}{T}}$ on $\eta[\omega]$?

(S1)
$$e^{-\frac{G\theta_T \{z[\omega] + \eta[\omega]\}}{T}}$$

$$\left(A[\omega] - \eta[\omega] + B_{i}[\omega] \, d\Lambda_{i} + C_{ij}[\omega] \, d\Lambda_{i} \, d\Lambda_{j} \right) \\ = \int \! d\omega \, \, W[\omega] \, \left(\\ \quad (A[\omega] - \eta[\omega])^{*} \times (A[\omega] - \eta[\omega]) \\ \quad + \, (A[\omega] - \eta[\omega])^{*} (B_{i}[\omega] \, d\Lambda_{i}) + c.c. \\ \quad + \, (B_{i}[\omega]^{*} \, B_{j}[\omega] + (A[\omega] - \eta[\omega])^{*} \, C_{ij}[\omega]) \, d\Lambda_{i} \, d\Lambda_{j} + c.c. \right) \\ = \int \! d\omega \, \, W[\omega] \, \left(\\ \quad (A[\omega] - \eta[\omega])^{*} \times (A[\omega] - \eta[\omega]) \\ \quad - \, (\eta[\omega]^{*} \, B_{i}[\omega] + c.c.) \, d\Lambda_{i} \\ \quad + \, (B_{i}[\omega]^{*} \, B_{j}[\omega] + (A[\omega] - \eta[\omega])^{*} \, C_{ij}[\omega] + c.c.) \, d\Lambda_{i} \, d\Lambda_{j} \right) \\ = \int \! d\omega \, \, W[\omega] \, \left(\\ \quad (A[\omega] - \eta[\omega])^{*} \times (A[\omega] - \eta[\omega])^{*} \, C_{ij}[\omega] + c.c. \right) \\ \quad \left(d\Lambda_{i} - \frac{1}{2} \, \left(B_{i}[\omega]^{*} \, B_{j}[\omega] + (A[\omega] - \eta[\omega])^{*} \, C_{ij}[\omega] + c.c. \right)^{-1} \, (\eta[\omega]^{*} \, B_{i}[\omega] + c.c.) \right) \\ \quad \left(d\Lambda_{j} - \frac{1}{2} \, \left(B_{i}[\omega]^{*} \, B_{j}[\omega] + (A[\omega] - \eta[\omega])^{*} \, C_{ij}[\omega] + c.c. \right)^{-1} \, (\eta[\omega]^{*} \, B_{i}[\omega] + c.c. \right) \right) \\ - \frac{1}{4} \, \left(\eta[\omega]^{*} \, B_{j}[\omega] + c.c. \right) \, \left(B_{i}[\omega]^{*} \, B_{j}[\omega] + (A[\omega] - \eta[\omega])^{*} \, C_{ij}[\omega] + c.c. \right)^{-1} \\ \quad \left(\eta[\omega]^{*} \, B_{i}[\omega] + c.c. \right) \right)$$

Therefore,

$$\begin{split} &(\text{S1}) = \\ &\int d\lambda 1 \; d\lambda 2 \; \dots \; d\lambda N \; \; e^{-\frac{1}{\tau} \int \! d\omega \; \, \text{W}[\omega] \times \left(A[\omega] - \eta[\omega] + B_i[\omega] \; d\Lambda_i \; + C_{ij}[\omega] \; d\Lambda_i \; d\Lambda_j\right)^* \times \left(A[\omega] - \eta[\omega] + B_i[\omega] \; d\Lambda_i \; + C_{ij}[\omega] \; d\Lambda_i \; d\Lambda_j\right) \; = \\ &= \sqrt{\frac{1}{\text{Det}_{ij} \left[\frac{1}{\tau} \int \! d\omega \; \, \text{W}[\omega] \; \left(B_i[\omega]^* \; B_j[\omega] + \left(A[\omega] - \eta[\omega]\right)^* \; C_{ij}[\omega] \; + \text{c.c.}\right)\right]} \quad \times \\ &\times e^{-\frac{1}{\tau} \int \! d\omega \; \, \text{W}[\omega] \times \left(A[\omega] - \eta[\omega]\right)^* \times \left(A[\omega] - \eta[\omega]\right)} \\ &\times e^{-\frac{1}{\tau} \frac{1}{4} \int \! d\omega \; \, \text{W}[\omega] \times \left(\eta[\omega]^* \; B_j[\omega] + \text{c.c.}\right) \left(B_i[\omega]^* \; B_j[\omega] + \left(A[\omega] - \eta[\omega]\right)^* \; C_{ij}[\omega] \; + \text{c.c.}\right)^{-1} \left(\eta[\omega]^* \; B_j[\omega] \; + \text{c.c.}\right)} \end{aligned}$$

The last two factors are equivalent to gaussian distribution of $\eta \, [\omega]$

 $const \times e^{-\int d\omega \ \frac{\eta(\omega)^* \, \eta(\omega)}{p[\omega]}}, \ where \ p[\omega] \ \propto \ T \ and, \ therefore, \ it vanishes in the \ T \to 0 \ limit.$

Therefore, we can assume that the normalization

factor $e^{-\frac{G\Theta_{\tau}\left(z\left[\omega\right]+\eta\left[\omega\right]\right)}{\tau}}$ depends weakly on $\eta\left[\omega\right]$ in thie T ightarrow 0 limit.

$$\int d\boldsymbol{\eta} d\boldsymbol{\eta}^* \boldsymbol{e}^{-\frac{\frac{T_1}{T_2}\boldsymbol{\eta}^*\boldsymbol{\eta} - (\boldsymbol{\eta} - a)^*(\boldsymbol{\eta} - a)}{T_1}}$$

the integral is done using identity

$$\int d\eta d\eta^* e^{-\frac{\tau_1}{\tau_2} \eta^* \eta - (\eta - a)^* (\eta - a)}$$

$$= \int dx dy e^{-\frac{\tau_1}{\tau_2} (x^2 + y^2) + (x - iy - a1 + ia2) (x + iy - a1 - ia2) + c.c.}$$

$$= \int dx dy e^{-\frac{\tau_1}{\tau_2} (x^2 + y^2) + 2 ((a1 - x)^2 + (a2 - y)^2)}$$

$$= \int dx dy e^{-\frac{2ai^2 \tau_1}{\tau_{1+2} \tau_2} + \left(2 + \frac{\tau_1}{\tau_2}\right) \left[x - \frac{2ai}{\left[2 + \frac{\tau_1}{\tau_2}\right]}\right]^2 + (x - y, a1 - a2)}$$

$$= \frac{\pi \tau_1}{\left(2 + \frac{\tau_1}{\tau_2}\right)} e^{-\frac{2(a1^2 + a2^2)}{\tau_{1+2} \tau_2}}$$

$$(x - iy - a1 + ia2) (x + iy - a1 - ia2) + (x + iy - a1 - ia2) + (x + iy - a1 - ia2) (x - iy - a1 + ia2)$$

$$2 ((a1 - x)^2 + (a2 - y)^2)$$

$$\frac{T1}{T2} (x^2 + y^2) + 2 ((a1 - x)^2 + (a2 - y)^2)$$

$$(2 + \frac{T}{T2}) \left(\frac{2a1^2 T1 T2}{(T + 2T2)^2} + \left(x - \frac{2a1}{(2 + \frac{T1}{T2})} \right)^2 \right)$$

$$(2 + \frac{T1}{T2}) \left(\frac{2a1^2 T1 T2}{(T1 + 2T2)^2} + \left(x - \frac{2a1}{(2 + \frac{T1}{T2})} \right)^2 \right) = \left(\frac{T1}{T2} x^2 + 2 (a1 - x)^2 \right)$$

$$0$$

$$\left(2 + \frac{T1}{T2}\right) \left(\frac{2 \text{ al}^2 \text{ T1 T2}}{(\text{T1} + 2 \text{ T2})^2}\right) = \frac{2 \text{ al}^2 \text{ T1}}{\text{T1} + 2 \text{ T2}}$$

$$\frac{2 \text{ al}^2 \text{ T1}}{\text{T1} + 2 \text{ T2}} + \left(2 + \frac{\text{T1}}{\text{T2}}\right) \left(x - \frac{2 \text{ al}}{\left(2 + \frac{\text{T1}}{\text{T2}}\right)}\right)^2$$

$$(16) \qquad \int dx dy \ e^{-\frac{T_1}{T_2} \left(x^2 + y^2\right) + 2\left((\text{al} - x)^2 + (\text{al} - y)^2\right)}{\text{T1}} =$$

$$\int dxdy \, e^{-\frac{\frac{2 \, \text{al} \, 2 \, \text{Tl}}{\text{Tl} \cdot 2 \, \text{T2}} + \left(2 + \frac{\text{Tl}}{\text{T2}}\right) \left[x - \frac{2 \, \text{al}}{\left(2 + \frac{\text{Tl}}{\text{T2}}\right)}\right]^{2} + (x \to y, \, \text{al} \to \text{a2})}}{\text{Tl}} = \frac{\pi \, \text{Tl}}{\left(2 + \frac{\text{Tl}}{\text{T2}}\right)} \, e^{-\frac{2 \, \left(\text{al}^{2} + \text{a2}^{2}\right)}{\text{Tl} \cdot 2 \, \text{T2}}}$$

2 x2 matrix diagonalization and ellipse

$$\begin{pmatrix} \cos \left[\phi\right] \\ \sin \left[\phi\right] \end{pmatrix}^{\mathsf{T}} \cdot \begin{pmatrix} \mathsf{a} + \mathsf{b} \cos \left[2\,\theta\right] & \mathsf{b} \sin \left[2\,\theta\right] \\ \mathsf{b} \sin \left[2\,\theta\right] & \mathsf{a} - \mathsf{b} \cos \left[2\,\theta\right] \end{pmatrix} \cdot \begin{pmatrix} \cos \left[\phi\right] \\ \sin \left[\phi\right] \end{pmatrix} / / \, \mathsf{Tr} \; / / \; \mathsf{FullSimplify}$$

```
a + b Cos[2 (\theta - \phi)]
     \begin{pmatrix} \mathsf{a} + \mathsf{b} \, \mathsf{Cos} \, [2 \, \theta] & \mathsf{b} \, \mathsf{Sin} \, [2 \, \theta] \\ \mathsf{b} \, \mathsf{Sin} \, [2 \, \theta] & \mathsf{a} - \mathsf{b} \, \mathsf{Cos} \, [2 \, \theta] \end{pmatrix} // \, \mathsf{Eigensystem} \, // \, \mathsf{FullSimplify} 
   \{\{a-b, a+b\}, \{\{-Tan[\theta], 1\}, \{Cot[\theta], 1\}\}\}
   \{\{a-b, a+b\}, \{\{-Sin[\theta], Cos[\theta]\}, \{Cos[\theta], Sin[\theta]\}\}\}
   \left(\left(\begin{array}{cc} \mathsf{Cos}[\theta] & -\mathsf{Sin}[\theta] \\ \mathsf{Sin}[\theta] & \mathsf{Cos}[\theta] \end{array}\right) \cdot \left(\begin{array}{cc} \sqrt{\mathsf{a}-\mathsf{b}} & \mathsf{0} \\ \mathsf{0} & \sqrt{\mathsf{a}+\mathsf{b}} \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{Cos}[\phi] \\ \mathsf{Sin}[\phi] \end{array}\right) \right)^{\intercal} \cdot \left(\begin{array}{cc} \mathsf{a}+\mathsf{b}\,\mathsf{Cos}[2\,\theta] & \mathsf{b}\,\mathsf{Sin}[2\,\theta] \\ \mathsf{b}\,\mathsf{Sin}[2\,\theta] & \mathsf{a}-\mathsf{b}\,\mathsf{Cos}[2\,\theta] \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{Cos}[\phi] \\ \mathsf{b}\,\mathsf{Sin}[2\,\theta] & \mathsf{a}-\mathsf{b}\,\mathsf{Cos}[2\,\theta] \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{cos}[\phi] \\ \mathsf{cos}[\phi] \\ \mathsf{cos}[\phi] & \mathsf{cos}[\phi] \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{cos}[\phi] \\ \mathsf{cos
                                  \begin{pmatrix} \cos[\theta] & -\sin[\theta] \\ \sin[\theta] & \cos[\theta] \end{pmatrix} \cdot \begin{pmatrix} \sqrt{a-b} & 0 \\ 0 & \sqrt{a+b} \end{pmatrix} \cdot \begin{pmatrix} \cos[\phi] \\ \sin[\phi] \end{pmatrix} // \text{ Tr } // \text{ FullSimplify} 
   (a - b) (a + b)

\left( \begin{pmatrix} \mathsf{Cos}[\theta] & -\mathsf{Sin}[\theta] \\ \mathsf{Sin}[\theta] & \mathsf{Cos}[\theta] \end{pmatrix} \cdot \begin{pmatrix} \frac{\sqrt{\mathsf{a}-\mathsf{b}}}{\sqrt{(\mathsf{a}-\mathsf{b})\ (\mathsf{a}+\mathsf{b})}} & 0 \\ 0 & \frac{\sqrt{\mathsf{a}+\mathsf{b}}}{\sqrt{\langle \mathsf{a}-\mathsf{b}\rangle\ (\mathsf{a}+\mathsf{b})}} \end{pmatrix} \right)^\mathsf{T} \cdot \begin{pmatrix} \mathsf{a} + \mathsf{b}\,\mathsf{Cos}[2\,\theta] & \mathsf{b}\,\mathsf{Sin}[2\,\theta] \\ \mathsf{b}\,\mathsf{Sin}[2\,\theta] & \mathsf{a} - \mathsf{b}\,\mathsf{Cos}[2\,\theta] \end{pmatrix}.

                               \left( \begin{array}{ccc} \mathsf{Cos}\left[\theta\right] & -\mathsf{Sin}\left[\theta\right] \\ \mathsf{Sin}\left[\theta\right] & \mathsf{Cos}\left[\theta\right] \end{array} \right) \cdot \left( \begin{array}{ccc} \frac{\sqrt{\mathsf{a-b}}}{\sqrt{(\mathsf{a-b})\ (\mathsf{a+b})}} & \emptyset \\ \emptyset & \frac{\sqrt{\mathsf{a+b}}}{\sqrt{\sqrt{(\mathsf{a-b})\ (\mathsf{a+b})}}} \end{array} \right) / / \mathsf{FullSimplify} / / \mathsf{MatrixForm} 
 \left(\left(\begin{array}{ccc} \cos\left[\theta\right] & -\sin\left[\theta\right] \\ \sin\left[\theta\right] & \cos\left[\theta\right] \end{array}\right) \cdot \left(\begin{array}{ccc} \frac{1}{\sqrt{a+b}} & \theta \\ 0 & \frac{1}{\sqrt{a+b}} \end{array}\right)^{\intercal} // \text{ Inverse} \right) -
                                 \left( \begin{pmatrix} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{pmatrix} \cdot \begin{pmatrix} \cos[\theta] & \sin[\theta] \\ -\sin[\theta] & \cos[\theta] \end{pmatrix} \right)^{\mathsf{T}} // \text{ FullSimplify } // \text{ MatrixForm}
   \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
 \left(\left(\begin{array}{cc}\sqrt{a+b} & 0\\ o & \sqrt{a-b}\end{array}\right), \left(\begin{array}{cc} \mathsf{Cos}[\theta] & \mathsf{Sin}[\theta]\\ -\mathsf{Sin}[\theta] & \mathsf{Cos}[\theta]\end{array}\right)\right)^{\mathsf{T}}.
                                          \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{pmatrix} \cdot \begin{pmatrix} \cos[\theta] & \sin[\theta] \\ -\sin[\theta] & \cos[\theta] \end{pmatrix} - 
                                  \left( \begin{array}{ccc} a + b \, \mathsf{Cos} \, [2 \, \theta] & b \, \mathsf{Sin} \, [2 \, \theta] \\ b \, \mathsf{Sin} \, [2 \, \theta] & a - b \, \mathsf{Cos} \, [2 \, \theta] \end{array} \right) \, / / \, \mathsf{FullSimplify} \, / / \, \mathsf{MatrixForm} 
        \left( \begin{array}{ccc} a + b \, \text{Cos} \, [2 \, \theta] & b \, \text{Sin} \, [2 \, \theta] \\ b \, \text{Sin} \, [2 \, \theta] & a - b \, \text{Cos} \, [2 \, \theta] \end{array} \right) \, = \, \left( \left( \begin{array}{ccc} \sqrt{a + b} & \theta \\ \theta & \sqrt{a - b} \end{array} \right) \cdot \left( \begin{array}{ccc} \text{Cos} \, [\theta] & \text{Sin} \, [\theta] \\ - \, \text{Sin} \, [\theta] & \text{Cos} \, [\theta] \end{array} \right) \, \right)^\intercal \cdot 
                     \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{pmatrix} \cdot \begin{pmatrix} \cos[\theta] & \sin[\theta] \\ -\sin[\theta] & \cos[\theta] \end{pmatrix} \end{pmatrix}
```

errors

$$\begin{split} \frac{\delta G}{G} &= \left(\frac{1}{a} \frac{\delta \lambda}{\lambda}\right)^2 \\ \left(\frac{\frac{\delta \lambda 1}{\lambda 1}}{\frac{\delta \lambda 2}{\lambda 2}}\right) &= \\ \frac{1}{30} \left(\frac{\text{Cos}[\theta]}{\text{Sin}[\theta]} - \text{Sin}[\theta]}{\text{Cos}[\theta]}\right) \cdot \left(\frac{\frac{1}{\sqrt{a+b}}}{0} \frac{\theta}{\sqrt{\frac{1}{\sqrt{a-b}}}}\right) \cdot \left(\frac{1}{1}\right) = \frac{1}{30} \left(\frac{\text{Cos}[\theta]}{\text{Sin}[\theta]} - \text{Sin}[\theta]}{\text{Sin}[\theta]}\right) \cdot \left(\frac{\frac{1}{\sqrt{a+b}}}{\frac{1}{\sqrt{a-b}}}\right) \end{split}$$

check

$$\int d\eta d\eta^* e^{-\frac{\eta^* \eta}{T2} - \frac{i}{L} \xi \eta}$$

$$= \int d\eta d\eta^* e^{-\frac{(\eta - \frac{T2}{2} \frac{i}{L} \xi)^* (\eta - \frac{T2}{2} \frac{i}{L} \xi)}{T2} + \frac{T2}{4} \xi^* \xi}$$

$$= \pi T2 e^{\frac{T2}{4} \xi^* \xi}$$

digression on $\pi[\omega]$

Noise with power spectrum $\pi[\omega] = \langle \langle \eta[\omega]^* \eta[\omega] \rangle \rangle$ has a probability distribution function (2) $\mathbb{P}\left\{\eta\left[\omega\right]\right\} = \text{const } \times e^{-\int d\omega \frac{\eta\left[\omega\right]^{*} \circ \eta\left[\omega\right]}{\pi\left[\omega\right]}}$

whats missing is the total time . We assume that the total time is Ω -- this is analogous to the crystal size

$$\begin{split} &\eta\left[\omega_{n}\right] \;=\; \int\! dt \, \eta\left[t\right] \, \mathrm{e}^{-\,\mathrm{i}\,\omega_{n}\,t} \\ &\eta\left[t\right] \;=\; \int\! \frac{d\omega}{2\,\pi} \, \eta\left[\omega\right] \, \mathrm{e}^{\mathrm{i}\,\omega\,t} \;=\; \frac{\Delta\omega}{2\,\pi} \, \sum \, \eta\left[\omega_{n}\right] \, \mathrm{e}^{\mathrm{i}\,\omega_{n}\,t} \end{split}$$

the size of the "unit cell" in time is $\Delta \omega = \frac{1}{2\pi\Omega}$ -- this provides regularization

$$\langle\langle\eta\,[\text{t2}]\times\eta\,[\text{t1}]\,\rangle\rangle\,\,\text{is intesive (not proportional to "volume"}\,\,\Omega)$$

 $\langle\langle \eta[\omega_n]^* \eta[\omega_n] \rangle\rangle$ is extensive (yes proportional to "volume" Ω)

< power spectrum > = G[
$$\omega_n$$
] = $\frac{1}{\Omega} \langle \langle \eta[\omega_n]^* \eta[\omega_n] \rangle \rangle$ = $(2 \pi \Delta \omega) \langle \langle \eta[\omega_n]^* \eta[\omega_n] \rangle \rangle$

< power spectrum >

is is intesive (not proportional to "volume" Ω) -- it is "per unit volume"

$$\begin{split} & \langle \langle \eta \left[\text{t2} \right] \times \eta \left[\text{t1} \right] \rangle \rangle \; = \; \left(\frac{\Delta \omega}{2 \, \pi} \right)^2 \, \sum \, \left\langle \langle \eta \left[\omega_n \right]^* \, \eta \left[\omega_m \right] \right\rangle \rangle \; e^{\frac{i}{\hbar} \; (\omega_n + \omega_m) \; \frac{(\text{t1-t2})}{2} + (\omega_n - \omega_m) \; \frac{(\text{t1-t2})}{2}} \\ & = \; \left(\frac{\Delta \omega}{2 \, \pi} \right)^2 \, \sum \, \left\langle \langle \eta \left[\omega_n \right]^* \, \eta \left[\omega_n \right] \right\rangle \rangle \; \delta_{nm} \, e^{\frac{i}{\hbar} \; (\omega_n + \omega_m) \; \frac{(\text{t1-t2})}{2} + (\omega_n - \omega_m) \; \frac{(\text{t1-t2})}{2}} \\ & = \; \left(\frac{\Delta \omega}{2 \, \pi} \right)^2 \, \sum \, \left\langle \langle \eta \left[\omega_n \right]^* \, \eta \left[\omega_n \right] \right\rangle \rangle \; e^{\frac{i}{\hbar} \; \omega_n \; (\text{t1-t2})} \\ & = \; \left(\frac{\Delta \omega}{2 \, \pi} \right) \, \int \frac{d\omega}{2 \, \pi} \; \left\langle \langle \eta \left[\omega \right]^* \, \eta \left[\omega \right] \right\rangle \rangle \; e^{\frac{i}{\hbar} \; \omega_n \; (\text{t1-t2})} \end{split}$$

relation between power spectrum and $\pi[\omega]$

the probability distribution $\mathbb{P}\left\{\eta\left[\omega_{n}\right]\right\} = \text{const}\times e^{-\int d\omega\, \frac{\eta\left[\omega\right]^{2}\cdot\eta\left[\omega\right]}{\pi\left[\omega\right]}}$ in a discreet form $\int d\omega \frac{\eta[\omega]^* \times \eta[\omega]}{\pi[\omega]} = \sum_{\Delta\omega} \frac{\eta[\omega_n]^* \times \eta[\omega_n]}{\pi[\omega_n]}$ $\mathbb{P} \left\{ \eta \left[\omega_{n} \right] \right\} = \text{const} \times e^{-\sum \Delta \omega} \frac{\eta \left[\omega_{n} \right]^{*} \times \eta \left[\omega_{n} \right]}{\pi \left[\omega_{n} \right]}$ $= \prod \left[d\eta \left[\omega_n \right] \times d\eta \left[\omega_n \right]^* e^{-\Delta \omega} \, \frac{\eta \left[\omega_n \right]^* \times \eta \left[\omega_n \right]}{\pi \left[\omega_n \right]} - \Delta \omega \, \left(\mathcal{E} \left[\omega_n \right]^* \times \eta \left[\omega_n \right] + \mathcal{E} \left[\omega_n \right] \, \eta \left[\omega_n \right]^* \right) \right]$

$$\begin{split} &\int \! d\eta \left[\omega_{n} \right] \times d\eta \left[\omega_{n} \right]^{*} \, e^{-\Delta \omega} \, \frac{\sigma(\omega_{n})^{*} \cdot \eta(\omega_{n}) + \xi(\omega_{n}) \cdot \eta(\omega_{n}) + \xi(\omega_{n}) \cdot \eta(\omega_{n}) \cdot \eta($$

$$\left(e^{-a \, x^2 - b \, x \, - c} \, D \left[D \left[e^{a \, x^2 + b \, x \, + c} \, , \, x \right] \, , \, x \right] \, - \, \left(e^{-a \, x^2 - b \, x \, - c} \, D \left[e^{a \, x^2 + b \, x \, + c} \, , \, x \right] \right)^2 \right) \, / \cdot \, x \, \rightarrow \, 0 \, / / \, \, \text{FullSimplify}$$

2 a

IGNORE

We now assume that noise is weak and we can taylor expand the fitting function $Z_{\{\lambda i\}}[\omega]$ in deviadions $\delta \lambda_i$

$$Z_{\{\Lambda_i+\lambda_i\}}[\omega]$$

$$const \int d\lambda 1 d\lambda 2 \dots d\lambda N e^{-\int d\omega} \frac{(Z[\omega]-z\theta[\omega])^{\frac{\alpha}{2}}(Z[\omega]-z\theta[\omega])}{T2} =$$

$$= \int d\omega \, \frac{\left[z_{\left[\Lambda_{i}\right]}\left[\omega\right] - z\left[\omega\right] + \frac{dz_{\left[\Lambda_{i}\right]}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} + \frac{dz_{\left[\Lambda_{i}\right]}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} \, d\Lambda_{j}\right]^{*} \left[z_{\left[\omega\right]} - z\left[\omega\right] + \frac{dz_{\left[\Lambda_{i}\right]}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} + \frac{dz_{\left[\Lambda_{i}\right]}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} \, d\Lambda_{j}\right]}{T} \right] }{T}$$

$$\left(Z_{\{\Lambda_{i}\}}[\omega] - Z[\omega] + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i}} d\Lambda_{i} + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i} d\Lambda_{j}} d\Lambda_{i} d\Lambda_{j}\right)^{*}$$

$$\left(Z[\omega] - Z[\omega] + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i}} d\Lambda_{i} + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i} d\Lambda_{j}} d\Lambda_{i} d\Lambda_{j}\right)$$

$$(Z_{\{\Lambda_i\}}[\omega] - z[\omega])^* (Z_{\{\Lambda_i\}}[\omega] - z[\omega])$$

$$+ \left(\frac{\mathsf{dZ}_{\{\Lambda_i\}} \left[\omega\right]}{\mathsf{d}\Lambda_i} \right)^* \left(\mathsf{Z}_{\{\Lambda_i\}} \left[\omega\right] - \mathsf{z}\left[\omega\right] \right) \, \mathsf{d}\Lambda_i + \dot{\mathtt{m}} \, \left(\Lambda_i + \mathsf{d}\Lambda_i \right) \, \xi_i$$

$$+ \left(\left(\frac{dZ_{\{\Lambda_i\}} \left[\omega\right]}{d\Lambda_i} \right)^* \frac{dZ_{\{\Lambda_i\}} \left[\omega\right]}{d\Lambda_j} + \left(\frac{dZ_{\{\Lambda_i\}} \left[\omega\right]}{d\Lambda_i \; d\Lambda_j} \right)^* \left(Z_{\{\Lambda_i\}} \left[\omega\right] - z\left[\omega\right] \right) \right) d\Lambda_i \; d\Lambda_j$$

$$\begin{array}{l} (B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i})\,\,d\Lambda_{i} \,+\, A_{ij}\,\,d\Lambda_{i}\,\,d\Lambda_{j} \,=\,\,d\Lambda_{i}\,\,A\,\,d\Lambda_{j} \,+\, (B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i})\,\,d\Lambda_{i} \\ = \,\,\left(d\Lambda_{j} + (B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i})\,\,A^{-1}\right)\,A\,\left(d\Lambda_{j} + A^{-1}\,\,\left(B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i}\right)\right) \,-\,\,\left(B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i}\right)\,A^{-1}\,\,\left(B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i}\right) \\ \end{array}$$

$$\int\! d\lambda 1 d\lambda 2 \ldots d\lambda N \,\, e^{-\int\! d\omega} \,\, \frac{\left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\,dA_j\right]^* \left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\,dA_j\right]}{\tau} = -\int\! d\omega \,\, \frac{\left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\,dA_j\right]^* \left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\,dA_j\right]}{\tau} = -\int\! d\omega \,\, \frac{\left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\right]^* \left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\right]}{\tau} = -\int\! d\omega \,\, \frac{\left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\right]^* \left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\right]}{\tau} = -\int\! d\omega \,\, \frac{\left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,dA_i\right]}{\tau} = -\int\limits d\omega \,\, \frac{\left[z_{\{A_i\}}[\omega]-z[\omega]+\frac{dz_{\{A_i\}}[\omega]}{dA_i}\,d$$

$$e^{\frac{1}{T}\int d\omega (B_i + i T \zeta_i) A^{-1} (B_i + i T \zeta_i)} =$$