Stochastic Finance (FIN 519) Final Exam

Instructor: Jaehyuk Choi

2018-19 Module 3 (2019. 4. 17.)

BM stands for Brownian motion. **RN** and **RV** stand for random number and random variable respectively. Assume that B_t is a standard **BM**. The PDF and CDF for standard normal distribution is denoted by n(z) and N(z).

1. (6 points) Assume that a stochastic process X_t follows

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$

for some functions, μ and σ . Find the stochastic differential equation (SDE) for the process $Y_t = \exp(X_t)$.

Solution: Applying, Itô's lemma,

$$dY_{t} = \exp(X_{t})dX_{t} + \frac{1}{2}\exp(X_{t})(dX_{t})^{2}$$

= $Y_{t}(\mu(t, X_{t})dt + \sigma(t, X_{t})dB_{t}) + \frac{1}{2}Y_{t}\sigma^{2}(t, X_{t})(dB_{t})^{2}.$

Finally, we obtain the SDE as

$$\frac{dY_t}{Y_t} = \left(\mu(t, X_t) + \frac{1}{2}\sigma^2(t, X_t)\right)dt + \sigma(t, X_t)dB_t.$$

2. (6 points) Option vega under the BSM model. By direct computation, show that the vega (i.e., the derivative of the price with respect to the volatility σ) of both call and put option is

$$V = \frac{\partial C}{\partial \sigma} = S_0 n(d_1) \sqrt{T} \quad \text{with} \quad d_1 = \frac{\log(S_0 e^{rT}/K)}{\sigma \sqrt{T}} + \frac{1}{2} \sigma \sqrt{T}.$$

Since the terms, d_1 and d_2 , in the Black-Scholes formula are defined via σ , you should also differentiate d_1 and d_2 rather than treating them as constants.

Solution: Using the properties

$$\frac{\partial d_1}{\partial \sigma} = -\frac{\log(S_0 e^{rT}/K)}{\sigma^2 \sqrt{T}} + \frac{1}{2} \sqrt{T} = -\frac{d_2}{\sigma}$$
$$\frac{\partial d_2}{\partial \sigma} = -\frac{\log(S_0 e^{rT}/K)}{\sigma^2 \sqrt{T}} - \frac{1}{2} \sqrt{T} = -\frac{d_1}{\sigma}$$

$$\frac{d_1^2 - d_2^2}{2} = \frac{(A+B)^2 - (A-B)^2}{2} = 2AB = \log(S_0 e^{rT}/K),$$

where

$$A = \frac{\log(S_0 e^{rT}/K)}{\sigma\sqrt{T}}$$
 and $B = \frac{\sigma\sqrt{T}}{2}$.

We compute the vega as

$$V = \frac{\partial}{\partial \sigma} \left(S_0 N(d_1) - e^{-rT} K N(d_2) \right) = S_0 n(d_1) \frac{\partial d_1}{\partial \sigma} - e^{-rT} K n(d_2) \frac{\partial d_2}{\partial \sigma}$$

$$= -S_0 n(d_1) \frac{d_2}{\sigma} + e^{-rT} K n(d_2) \frac{d_1}{\sigma} = S_0 \frac{n(d_1)}{\sigma} \left(-d_2 + d_1 e^{(d_1^2 - d_2^2)/2} \frac{K}{S_0 e^{rT}} \right)$$

$$= S_0 \frac{n(d_1)}{\sigma} \left(-d_2 + d_1 \right) = S_0 \frac{n(d_1)}{\sigma} \sigma \sqrt{T} = S_0 n(d_1) \sqrt{T}.$$

3. (9 points) Assume that the stock price S_t follows a BM with the stochastic volatility σ_t following a GBM. The price and volatility are driven by the same standard BM B_t .

$$dS_t = \sigma_t dB_t$$
 and $\frac{d\sigma_t}{\sigma_t} = -\nu dB_t$ $(\nu > 0)$.

- (a) (3 points) Express the final price S_T in terms of S_0 , σ_0 , ν , T, and B_T by solving this SDE.
- (b) (3 points) What is the call option price with strike price K and time-to-maturity T?
- (c) (3 points) If $\nu = 0$, then $\sigma_t = \sigma_0$ for all t, that is, the volatility is no longer stochastic. Prove that, in the limit of $\nu \to 0$, the call option price from (b) converges to that of the normal model with normal volatility σ_0 . You may need Taylor's expansion: $\log(1+\varepsilon) \approx \varepsilon \varepsilon^2/2$ when ε is very small.

Solution:

$$\sigma_T = \sigma_0 \exp\left(-\nu B_T - \frac{1}{2}\nu^2 T\right)$$

$$\sigma_T - \sigma_0 = -\nu \int_0^T \sigma_t dB_t$$

$$S_T - S_0 = \int_0^T \sigma_t dB_t = \frac{1}{\nu} \left(\sigma_0 - \sigma_T \right) = \frac{\sigma_0}{\nu} \left(1 - \exp\left(-\nu B_T - \frac{1}{2} \nu^2 T \right) \right)$$

(b) The final stock price S_T is expressed by a standard normal variable z:

$$S_T - S_0 = \frac{\sigma_0}{\nu} \left(1 - \exp\left(-\nu z \sqrt{T} - \frac{1}{2} \nu^2 T\right) \right).$$

If $z = -d_1$ is the root of $S_T = K$, d_1 is obtained as

$$\log\left(1 - \frac{\nu}{\sigma_0}(K - S_0)\right) = \nu d_1 \sqrt{T} - \frac{1}{2}\nu^2 T$$
$$d_1 = \frac{\log\left(1 - \frac{\nu}{\sigma_0}(K - S_0)\right)}{\nu\sqrt{T}} + \frac{1}{2}\nu\sqrt{T}.$$

The call option price can be obtained as

$$C = E\left((S_T - K)^+\right) = \int_{-d_1}^{\infty} \left[\frac{\sigma_0}{\nu} \left(1 - \exp\left(-\nu z \sqrt{T} - \frac{1}{2}\nu^2 T\right)\right) + S_0 - K\right] n(z) dz$$

$$= \left(S_0 - K + \frac{\sigma_0}{\nu}\right) \int_{-d_1}^{\infty} n(z) dz - \frac{\sigma_0}{\nu} \int_{-d_1}^{\infty} n(z + \nu \sqrt{T}) dz$$

$$= \left(S_0 - K + \frac{\sigma_0}{\nu}\right) (1 - N(-d_1)) - \frac{\sigma_0}{\nu} (1 - N(-d_1 + \nu \sqrt{T}))$$

$$= \left(S_0 - K + \frac{\sigma_0}{\nu}\right) N(d_1) - \frac{\sigma_0}{\nu} N(d_2)$$
where $d_{1,2} = \frac{\log\left(1 - \frac{\nu}{\sigma_0}(K - S_0)\right)}{\nu\sqrt{T}} \pm \frac{1}{2}\nu\sqrt{T}$

(c) Let

$$d = \frac{(S_0 - K)}{\sigma_0 \sqrt{T}},$$

then d_1 and d_2 converge to d as $\nu \to 0$:

$$d_{1,2} = \frac{\log\left(1 - \frac{\nu}{\sigma_0}(K - S_0)\right)}{\nu\sqrt{T}} \pm \frac{1}{2}\nu\sqrt{T} = \frac{(S_0 - K)}{\sigma_0\sqrt{T}} + A\nu \pm \frac{1}{2}\nu\sqrt{T} \to d \quad \text{for some } A.$$

Therefore, the call option price converges to

$$C = (S_0 - K)N(d_1) + \frac{\sigma_0}{\nu}(N(d_1) - N(d_2))$$

= $(S_0 - K)N(d) + \sigma_0\sqrt{T} n(d)$,

where we used the L'Hopital's rule,

$$\lim_{\nu \to 0} \frac{N(d_1) - N(d_2)}{\nu} = \lim_{\nu \to 0} \frac{N(d + A\nu + \nu\sqrt{T}/2) - N(d + A\nu - \nu\sqrt{T}/2)}{\nu} = n(d)\sqrt{T}$$

4. (9 points) Black-Scholes and martingale representation theorem. For this question, assume that the current time is t = t (instead of t = 0) and the option expiry is t = T. Therefore, the time-to-maturity is T - t (instead of T). Also assume that r = 0 to make the

problem simple. Then, the underlying stock price follows a geometric BM, $dS_t = \sigma S_t dB_t$, and the call option price at time t is given by the Black-Scholes formula,

$$C_t = S_t N(d_1) - K N(d_2), \text{ where } d_{1,2} = \frac{\log(S_t/K)}{\sigma \sqrt{T - t}} \pm \frac{1}{2} \sigma \sqrt{T - t}.$$

From the derivation of the BS formula in class, we know

$$dC_t = D_t dS_t$$

where D_t is the delta of the option, i.e., the amount of the underlying stock to hold at time t to hedge the option:

$$D_t = \frac{\partial C_t}{\partial S_t} = N(d_1).$$

The martingale representation also tells us that the option premium, C_0 , and the P&L from the hedge position from t = 0 to T will exactly add up to the payoff of the option, $C_T = (S_T - K)^+$:

$$C_T = (S_T - K)^+ = C_0 + \int_0^T N(d_1)dS_t.$$

In this question, we are going to show $dC_t = D_t dS_t$ by direct computation.

(a) (3 points) Find the gamma, the second derivative with respect to the spot price S_t , and theta, the derivative with respect to time t:

$$G_t = \frac{\partial^2 C_t}{\partial S_t^2}$$
 and $\Theta_t = \frac{\partial C_t}{\partial t}$

- (b) (3 points) Apply Itô's lemma to find the stochastic differential equation (SDE) for C_t . Use the result of (a).
- (c) (3 points) Imagine that a situation where the volatility for pricing option is different from that for the underlying stock. You price and risk-manage option using volatility σ_i (*i* for *implied* volatility). That is, C_t and D_t is evaluated with

$$d_{1,2} = \frac{\log(S_t/K)}{\sigma_i \sqrt{T-t}} \pm \frac{1}{2} \sigma_i \sqrt{T-t}.$$

But the underlying stock has volatility σ_r (r for realized volatility),

$$dS_t = \frac{\sigma_r}{S_t} dB_t.$$

Derive the SDE for C_t again under this new situation. In this situation, does the option premium and hedging P&L amount to the option payout? Compare the cases, $\sigma_i > \sigma_r$ and $\sigma_i > \sigma_r$.

Solution:

(a) Gamma and theta are obtained as

$$G_t = \frac{n(d_1)}{S_t \, \sigma \sqrt{T - t}}$$
 and $\Theta_t = -\frac{\sigma \, S_t \, n(d_1)}{2\sqrt{T - t}}$.

(b) The SDE for C_t is computed as

$$dC_t = \frac{\partial C_t}{\partial t} dt + \frac{\partial C_t}{\partial S_t} dS_t + \frac{1}{2} \frac{\partial C_t^2}{\partial^2 S_t} (dS_t)^2$$

$$= \left(\Theta_t + \frac{\sigma^2 S_t^2}{2} G_t\right) dt + D_t dS_t$$

$$= \left(-\frac{\sigma S_t n(d_1)}{2\sqrt{T - t}} + \frac{\sigma^2 S_t^2}{2} \frac{n(d_1)}{S_t \sigma \sqrt{T - t}}\right) dt + N(d_1) dS_t$$

$$= N(d_1) dS_t.$$

(c) Using $(dS_t)^2 = \frac{\sigma_r^2}{\sigma_r} S_t^2 dt$ instead, we obtain

$$dC_{t} = \left(-\frac{\sigma_{i} S_{t} n(d_{1})}{2\sqrt{T - t}} + \frac{\sigma_{r}^{2} S_{t}^{2}}{2} \frac{n(d_{1})}{S_{t} \sigma_{i} \sqrt{T - t}}\right) dt + N(d_{1}) dS_{t}$$

$$= \frac{\sigma_{r}^{2} - \sigma_{i}^{2}}{2} \cdot \frac{S_{t} n(d_{1})}{\sigma_{i} \sqrt{T - t}} dt + N(d_{1}) dS_{t}$$

$$= \frac{S_{t}^{2}}{2} (\sigma_{r}^{2} - \sigma_{i}^{2}) G_{t} dt + N(d_{1}) dS_{t}.$$

The sum of the premium and hedging P&L is

$$C_0 + \int_0^T N(d_1)dS_t = (S_T - K)^+ + \frac{\sigma_i^2 - \sigma_r^2}{2} \int_0^T S_t^2 G_t dt.$$

Notice that $S_t^2G_t$ is always positive. If $\sigma_i > \sigma_r$, the value you hold at t = T is bigger than the option payout $(S_T - K)^+$. If $\sigma_r > \sigma_i$, the value is less than the option payout $(S_T - K)^+$. This is consistent with observation,

$$C_0 > C_0^r$$
 if $\sigma_i > \sigma_r$ and $C_0 < C_0^r$ if $\sigma_i < \sigma_r$,

where C_0^r is the *correct* option price evaluated with the realized volatility σ_r ,

$$d_{1,2}^r = \frac{\log(S_t/K)}{\sigma_r \sqrt{T-t}} \pm \frac{1}{2} \sigma_r \sqrt{T-t}.$$

(Option price is a monotonically increasing function of volatility.)