暨 南 大 学 考 试 试 卷

教	2017-		·····································	学期	课程类别	
					必修 [√]	选修 []
师	课程名称:_	大学数学(理	工四学分)		考试方式	
填	 授课教师:	张三,李四	1、王五		开卷 []	闭卷 [√]
	_		,		试卷类别	(A, B, C)
写	考试时间:_	2018年06	月 28 日		[B]	共6页
考生		学院		专业		班(级)
填写	姓名	学号			内招 [√]	外招[]

题号	_	=	三	四	五.	六	总分
得分							

得分 评阅人 一、填空题 (共 6 小题,每小题 3 分,共 18 分)

答题须知:本题答案必须写在如下表格中,否则不给分.

		•	
小题	1	2	3
答案			
小题	4	5	6
答案			

- 1. 已知 ξ 和 η 相互独立且 $\xi \sim N(1,4), \eta \sim N(2,5)$, 则 $\xi 2\eta \sim N(-3,24)$.
- 2. 已知随机变量 ξ 的期望和方差各为 $E\xi = 3, D\xi = 2, 则 <math>E\xi^2 = _{----}$.
- 3. 向量组 $\alpha_1 = (1, 1, 0), \alpha_2 = (0, 1, 1), \alpha_3 = (1, 0, 1),$ 则将向量 $\beta = (4, 5, 3)$ 表示为 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合为 $\beta = \underline{\qquad \qquad \qquad 3\alpha_1 + 2\alpha_2 + \alpha_3}$.

- 6. 设常数 k > 0, 函数 $f(x) = \ln x \frac{x}{e} + k$ 在 $(0, +\infty)$ 内零点的个数为 _____2___.

得分	得分 评阅人 二、单选题 (共 6 小题,每小题 3 分,共 18 分)									
答题须知: 本题答案必须写在如下表格中, 否则不给分.										
小题	1	2	3	4	5	6				
答案	答案									
(A) 总(体 X 和样本体是随机变量 \dots, X_n 相 2		(B)	个是 <u>不正确</u> 的 样本是 n 元 $X_1 = X_2 =$	随机变量	·····(D)				
(A) 大数 (B) 大数 (C) 中心	数定律说明了 数定律说明为 心极限定理说	了大量相互独 大量相互独立 拍明了大量相	立且同分布的 且同分布的原 互独立且同约	的随机变量的 随机变量的均 分布的随机变 行的随机变量	均值的稳定的 值近似于正定 量的和的稳定	态分布 定性				
3. 二次 (A) (3. 二次型 $f = 4x_1^2 - 2x_1x_2 + 6x_2^2$ 对应的矩阵等于									
4. 设矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & x & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 其中两个特征值为 $\lambda_1 = 1$ 和 $\lambda_2 = 2$,则 $x = \cdots$ (B) (A) 2 (B) 1 (C) 0 (D) -1										
5. 假设 $F(x)$ 是连续函数 $f(x)$ 的一个原函数,则必有······(A) (A) $F(x)$ 是偶函数 $\Leftrightarrow f(x)$ 是奇函数 (B) $F(x)$ 是奇函数 $\Leftrightarrow f(x)$ 是偶函数 (C) $F(x)$ 是周期函数 $\Leftrightarrow f(x)$ 是周期函数 (D) $F(x)$ 是单调函数 $\Leftrightarrow f(x)$ 是单调函数										
6. 在下列等式中,正确的结果是····································										

	得分	评阅人	三、计算题		
İ			(共 6 小题,	每小题8分,	共 48 分)

1. 从正态总体 $N(\mu, \sigma^2)$ 中抽出样本容量为 16 的样本,算得其平均数为 3160,标准差为 100. 试检验假设 $H_0: \mu = 3140$ 是否成立 ($\alpha = 0.01$).

- 2. 设每发炮弹命中飞机的概率是 0.2 且相互独立, 现在发射 100 发炮弹.
- (1) 用切贝谢夫不等式估计命中数目 ξ 在 10 发到 30 发之间的概率.
- (2) 用中心极限定理估计命中数目 ξ 在 10 发到 30 发之间的概率.

解答
$$E\xi = np = 100 \cdot 0.2 = 20, D\xi = npq = 100 \cdot 0.2 \cdot 0.8 = 16. \dots 2 分$$
(1) $P(10 < \xi < 30) = P(|\xi - E\xi| < 10) \ge 1 - \frac{D\xi}{10^2} = 1 - \frac{16}{100} = 0.84. \dots 4 分$
(2) $P(10 < \xi < 30) \approx \Phi_0\left(\frac{30-20}{\sqrt{16}}\right) - \Phi_0\left(\frac{10-20}{\sqrt{16}}\right) \dots 6 分$
 $= 2\Phi_0(2.5) - 1 = 2 \cdot 0.9938 - 1 = 0.9876 \dots 8 分$

3. 用配方法将二次型 $f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$ 化为标准形 $f = d_1y_1^2 + d_2y_2^2 + d_3y_3^2$.

4. 计算四阶行列式
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix}$$
 的值.

5. 求过点 A(1,2,-1), B(2,3,0), C(3,3,2) 的三角形 $\triangle ABC$ 的面积和它们确定的平面方程.

6. 求不定积分 $\int e^{2x} (\tan x + 1)^2 dx$ 。

得	分	评阅人	四、	证明题			
			(共	2 小题,	每小题8分,	共 16 分	(1

1. 设事件 A 和 B 相互独立, 证明 A 和 \bar{B} 相互独立.

2. 设数列 $\{x_n\}$ 满足 $x_1 = \sqrt{2}$, $x_{n+1} = \sqrt{2 + x_n}$. 证明数列收敛, 并求出极限.

解答 (1) 事实上,由于 $x_1 < 2$,且 $x_k < 2$ 时

$$x_{k+1} = \sqrt{2 + x_k} < \sqrt{2 + 2} = 2,$$

由数学归纳法知对所有 n 都有 $x_n < 2$,即数列有上界.又由于

$$\frac{x_{n+1}}{x_n} = \sqrt{\frac{2}{x_n^2} + \frac{1}{x_n}} > \sqrt{\frac{2}{2^2} + \frac{1}{2}} = 1,$$

所以数列单调增加. 由极限存在准则 II,数列必定收敛. \cdots 4分 (2)设数列的极限为 A,对递推公式两边同时取极限得到

$$A = \sqrt{2 + A}.$$

附录 一些可能用到的数据

$\Phi_0(0.5) = 0.6915$	$\Phi_0(1) = 0.8413$	$\Phi_0(2) = 0.9773$	$\Phi_0(2.5) = 0.9938$
$t_{0.01}(8) = 3.355$	$t_{0.01}(9) = 3.250$	$t_{0.01}(15) = 2.947$	$t_{0.01}(16) = 2.921$
$\chi_{0.005}^2(8) = 22.0$	$\chi^2_{0.005}(9) = 23.6$	$\chi^2_{0.005}(15) = 32.8$	$\chi^2_{0.005}(16) = 34.3$
$\chi^2_{0.995}(8) = 1.34$	$\chi^2_{0.995}(9) = 1.73$	$\chi_{0.995}^2(15) = 4.60$	$\chi^2_{0.995}(16) = 5.14$