Supplemental file of "Selective-Candidate Framework with Similarity Selection Rule for Evolutionary Optimization"

Sheng Xin Zhang a*, Wing Shing Chan a, Zi Kang Peng b, Shao Yong Zheng b*, Kit Sang Tang a

^a Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
^b School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China

Review of Evolutionary Algorithms and Swarm Intelligences

We briefly review and present the flow of three popular EAs and SIs including DE, ES and PSO and then give the general procedures.

1. **DE**

Differential evolution (DE) as proposed by Storn and Price [1] is a simple yet powerful EA. At each generation *g*, three genetic operations, namely mutation, crossover, and selection are included.

Initialization: Given a *D*-dimensional minimization problem, DE starts with a population $P_0 = \{x_{1,0}, x_{2,0}, ..., x_{NP,0}\}$ of *NP* individuals which is uniformly sampled from the entire searching space.

Mutation: Mutation in DE is performed by combining a basic vector with one or more difference vectors to generate a mutant vector $\mathbf{v}_{i,g}$ {i = 1, 2, ..., NP}. The classic "rand/1" mutation strategy is formulated as follows.

$$\mathbf{v}_{i,g} = \mathbf{x}_{r1,g} + F \times (\mathbf{x}_{r2,g} - \mathbf{x}_{r3,g}) \tag{1}$$

where r_1 , r_2 and r_3 are three distinct integers within [1, NP] and are different from the index i, while F is a mutation factor between 0 and 1.

Crossover: After mutation, crossover is performed between the mutant vector $v_{i,g}$ and the current vector $x_{i,g}$ to generate a trial vector $u_{i,g}$ as follows.

$$u_{i,j,g} = \begin{cases} v_{i,j,g} & \text{if } rand_j(0,1) \le CR \text{ or } j = j_{rand} \\ x_{i,j,g} & \text{otherwise} \end{cases}$$
 (2)

where $rand_j(0,1)$ is a uniform random number in (0, 1), j_{rand} is a randomly generated integer from [1, D], and CR is a crossover factor within [0,1].

Selection: Selection compares the fitness of $u_{i,g}$ with that of the corresponding $x_{i,g}$ and selects the better one to enter into the next generation.

$$\mathbf{x}_{i,g+1} = \begin{cases} \mathbf{u}_{i,g} & \text{if } f(\mathbf{u}_{i,g}) \le f(\mathbf{x}_{i,g}) \\ \mathbf{x}_{i,g} & \text{otherwise} \end{cases}$$
(3)

2. *ES*

Evolution strategy (ES) first appeared in 1964 at the Technical University of Berlin (TUB), and was used to solve hydrodynamic problems [2]. Different versions of ES have been proposed since this first version. Generally, ES can be categorized according to the number of parents and offspring involved in each generation. (1+1)-ES includes only one parent, which generates one offspring for each generation by means of Gaussian mutation. (μ + 1)-ES uses μ (μ > 1) parents to generate one offspring per generation. (μ + λ)-ES utilizes μ parents to generate λ (λ > μ) offspring and then chooses μ individuals from the (μ + λ) individuals to enter next generation, while (μ , λ)-ES chooses μ individuals only from the λ offspring.

Initialization: Given a *D*-dimensional minimization problem, ES starts with an initial population $P_0 = \{x_{1,0}, x_{2,0}, ..., x_{\mu,0}\}$ of μ individuals. Each individual $x_{i,0} = [x_{i,1,0}, x_{i,2,0}, ..., x_{i,D,0}, \sigma_{i,1,0}, \sigma_{i,2,0}, ..., \sigma_{i,D,0}], (i = 1, 2, ..., \mu)$ has *D* variables and *D* independent standard deviations. The initial standard deviation $\sigma_{i,0}$ is calculated as

$$\sigma_{i,0} = \frac{\Delta x_i}{\sqrt{D}} \tag{4}$$

where Δx_i is the Euclidian distance between $x_{i,0}$ and the fittest individual in the initial population.

Recombination: At each generation g, recombination is performed on two randomly selected individuals to produce a new individual $xr_{i,g}$ { $i = 1, 2, ..., \lambda$ }. Different recombination strategies are specified as follows:

$$xr_{i,j,g} = \begin{cases} x_{p,j,g}, & \text{without recombination} \\ x_{p,j,g}, & \text{or } x_{q,j,g}, & \text{discrete recombination} \\ x_{p,j,g} + \chi \cdot (x_{q,j,g} - x_{p,j,g}), & \text{intermediate recombination} \end{cases}$$
 (5)

where p and q are the two distinct integers uniformly selected from the set $\{1, 2, ..., \mu\}, j = 1, 2, ..., D$ is the dimension to be recombined and χ is a constant value usually set to 0.5 [3].

Mutation: Following recombination, mutation is performed to generate λ mutant individuals $xm_{i,g}\{i=1,2,...,\lambda\}$ as described by the following:

$$\sigma_{i,j,g} = \sigma_{i,j,g} \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1))$$
(6)

$$xm_{i,j,g} = xr_{i,j,g} + N(0,\sigma_{i,j,g})$$
 (7)

where j = 1, 2, ..., D, N(0,1) and $N_i(0,1)$ are two normal distributions, τ' and τ are constants usually set as unity.

Selection: Select μ fittest individuals from the set of $\mu + \lambda$ individuals ($(\mu + \lambda)$ -ES), or from the set of λ offspring produced by mutation ((μ, λ) -ES).

3. *PSO*

Particle swarm optimization (PSO) as proposed by Kennedy and Eberhart [4] imitates the swarm behavior of animals, such as birds flocking and fish schooling. Given a *D*-dimensional minimization problem, PSO explores the searching space by utilizing a swarm of *NP* particles with each particle associated with a velocity vector $\mathbf{v}_i = [v_{i1}, v_{i2}, ..., v_{iD}]$ and a position vector $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{iD}]$, i = 1, 2, ..., NP. During the searching process, each individual historical best position vector is recorded in **pbest**_i = [p_{i1}, p_{i2}, ..., p_{iD}] and the global best position vector is stored in **gbest** = [gb₁, gb₂, ..., gb_D]. Based on **pbest**_i and **gbest**, particles update their velocity and position at each iteration by using Eq. (8) and (9) respectively:

$$v_{ij} = w \times v_{ij} + c_1 \times r_{1j} \times (pbest_{ij} - x_{ij}) + c_2 \times r_{2j} \times (gbest_j - x_{ij})$$

$$\tag{8}$$

$$X_{ij} = X_{ij} + V_{ij} \tag{9}$$

where w is the inertia weight, c_1 and c_2 are the acceleration constants, which are commonly set to 2.0. r_{1j} and r_{2j} are two uniformly distributed random numbers within (0, 1) for each dimension j. The updated velocity $|v_{ij}|$ on each dimension is bounded by a maximum value V_{MAXj} . If $|v_{ij}|$ exceeds V_{MAXj} , then it is set as $sign(v_{ij})$ V_{MAXj} .

4. General Procedures

From above, the general procedures for EAs and SIs is summarized as **Algorithm 1.**

Algorithm 1. General Procedures of EAs and SIs

- 1: Initialize population $X = \{x_1, x_2, ..., x_{NP}\}$;
- 2: While the stopping criteria are not met **Do**
- 3: Determine the control parameters *CP* for genetic operations or social learning;
- 4: Produce a new population *Y* via genetic operations or social learning on *X*;
- 5: Evaluate the fitness of *Y*;
- 6: Select solutions as new X from $X \cup Y$ to enter next iteration.
- 7: End While

 R. Storn and K. Price, Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces, Berkeley, CA, Tech. Rep., 1995, tech. Rep. TR-95-012.

- [2] T. Bäck and H.-P. Schwefel, An overview of evolutionary algorithms for parameter optimization, Evol. Comput., 1 (1993) 1–23.
- [3] T. Bäck, Evolutionary Algorithms in Theory and Practice. London, U.K.: Oxford Univ. Press, 1996.
- [4] J. Kennedy and R. C. Eberhart, Particle swarm optimization, in Proc. IEEE Int. Conf. Neural Netw., 4 (1995) 1942–1948.

 \leftarrow

 \leftarrow

 \leftarrow

SCSS variants:

The arrows "←" highlight the differences between the SCSS variants and the baseline algorithms. _____

Algorithm S1. SCSS-DE

```
1: Set the population size NP, initialize the population P_0 = \{x_{1,0}, y_{1,0}\}
  x_{2,0}, ..., x_{NP,0}, set F and CR, set the generation counter g = 0;
2: Set GD;
```

- 3: While the stopping criteria are not met **Do**
- 4: Determine the fitness ranking rank(i) of each individual i $\{i = 1, 2, ..., NP\};$
- 5: **For** m = 1: M \Leftarrow
- For i = 1: NP Do

------Mutation ------

Generate a mutant vector \mathbf{v}_{i}^{m} , g using Eq. (1);

```
-----Crossover-----
    Generate a trial vector \mathbf{u}_{i}^{m}, g using Eq. (2);
```

- $dist_i^m$ = Euclidian distance $(\boldsymbol{u}_i^m, g, \boldsymbol{x}_{i,g})$; 9:
- 10: End For
- 11: End For
- 12: **For** i = 1: *NP* **Do**
- 13: If $rank(i) \le ceil(NP \times GD)$ \leftarrow
- 14. $index = arg min (dist_i^m);$ \leftarrow $m \in \{1, 2, ..., M\}$
- 15: $\boldsymbol{u}_{i,g} = \boldsymbol{u}_i^{index}_{,g};$ \leftarrow
- 16: Else \leftarrow
- 17: $index = arg max(dist_i^m);$ \Leftarrow
- $m{\in}\{1,2,...,M\}$ $\boldsymbol{u}_{i,g} = \boldsymbol{u}_i^{index}_{i,g};$ 18: \leftarrow
- 19: End If \leftarrow
- 20: End For
- 21: Evaluate the fitness of $u_{i,g} \{i = 1, 2, ..., NP\};$

-----Selection-----

- 22: **For** i = 1: *NP* **Do**
- If $f(u_{i,g}) \leq f(x_{i,g})$ 23:
- 24. $\mathbf{x}_{i, g+1} = \mathbf{u}_{i, g};$
- 25: Else
- 26: $\boldsymbol{x}_{i,\,g+1} = \boldsymbol{x}_{i,\,g};$
- 27: **End If**
- 28: End For
- 29: g = g + 1;
- 30: End While

Algorithm S2. SCSS-ES

_____ 1: Set the population size μ , initialize the population $P_0 = \{x_{1,0}, y_0\}$ $x_{2,0}, ..., x_{\mu,0}$ }, set the generation counter g = 0;

- 2: Set *GD*;
- 3: While the stopping criteria are not met **Do**
- 4: Determine the fitness ranking RANK(k) of each individual k $\{k=1, 2, ..., \mu\};$
- 5: **For** $i = 1: \lambda$ **Do**

-----Recombination-----

6: Randomly choose p and q, use the pth and qth individuals from P_g to generate a new individual $xr_{i,g}$ with the recombination strategy, i.e. Eq. (5);

- 7: Calculate the fitness rank(i) of individual $i\{i=1,2,...,\lambda\}$ as (RANK(p)+RANK(q))/2;
- 8: End For

9: **For** m = 1: M \leftarrow

10: **For** $i = 1: \lambda$ **Do**

------Mutation-----

- 11: Use Eq. (6) and (7) to mutate the individual $xr_{i,g}$ produced by recombination and generate a mutant individual
- 12: $dist_i^m = \text{Euclidian distance } (xm_i^m, g, xr_{i,g});$
- **13: End For**
- 14: End For \leftarrow
- 15: **For** $i = 1: \lambda$ **Do**
- 16: If $rank(i) \le ceil(\lambda \times GD)$
- 17: $index = arg min (dist_i^m);$ \leftarrow $m \in \{1, 2, ..., M\}$
- $xm_{i,g} = xm_i^{index}_{g};$ 18:
- 19: Else

 \Leftarrow

 \leftarrow

- 20: $index = arg max (dist_i^m);$ $m \in \{1, 2, ..., M\}$
- $xm_{i,g} = xm_i^{index}_{i,g};$ 21: \Leftarrow
- 22: **End If** \leftarrow
- 23: End For
- 24: Evaluate the fitness of all the new individuals $xm_{i,g}$ {i = 1, $2, ..., \lambda$;

-----Selection-----

- 25: Select μ fittest individuals $x_{i,g}$ { $i = 1, 2, ..., \mu$ } from the $\mu + \lambda$ individuals to form a new population P_{g+1}
- 26: g = g + 1;
- 27: End While

Algorithm S3. SCSS-PSO

1: Set the swarm size NP, initialize positions $X = \{x_1, x_2, ..., x_n\}$ x_{NP} , initialize velocities $V = \{v_1, v_2, ..., v_{NP}\}$, record each particle's historical best position in **pbest**_i and the global best position in **gbest**, set w, c_1 and c_2 , set iteration counter IT = 0;

- 2: Set *GD*; \leftarrow
- 3: While the stopping criteria are not met Do
- 4: Determine the fitness ranking rank(i) of each particle i $\{i = 1, 2, ..., NP\};$
- 5: **For** m = 1: M
- 6: **For** i = 1: *NP* **Do**
- 7: For j = 1: D Do
- Update v_{ij}^m using Eq. (8); 8:
- 9: Adjust v_{ij}^{m} if it exceeds V_{MAXj} ;
- Update x_{ij}^m using Eq. (9); 10:
- 11: **End For**
- $dist_i^m$ = Euclidian distance $(x_i^m, pbest_i)$;
- 13: End For
- 14: End For
- 15: **For** i = 1: *NP* **Do If** $rank(i) \le ceil(NP \times GD)$ 16: \leftarrow
- 17: $index = arg min (dist_i^m);$ \leftarrow $m \in \{1, 2, ..., M\}$
- $\mathbf{x}_i = \mathbf{x}_i^{index}$: 18: \Leftarrow

```
19:
         Else
                                                                          \leftarrow
20:
             index = arg max(dist_i^m);
                                                                          \leftarrow
                       m \in \{1, 2, ..., M\}
            \mathbf{x}_i = \mathbf{x}_i^{index}
21:
                                                                          \Leftarrow
22:
        End If
                                                                           \leftarrow
23: End For
24: For i = 1: NP Do
       Evaluate the fitness of the new position x_i;
       If f(x_i) \leq f(pbest_i)
26:
27:
           pbest_i = x_i;
28:
       End If
29:
       If f(x_i) \leq f(gbest)
30:
           gbest = x_i;
31:
       End If
32: End For
33: IT = IT + 1;
34: End While
```

Remark 1: In SCSS framework, the control parameters that are actually used, cp_i of y_i should be determined (lines 15 and 19 in Algorithm 2) for the reason that different reproduction procedure m may use different CP and the CP may have further usages. For example, in the JADE and SHADE algorithms, control parameters F and CR are generated according to Cauchy and normal distributions, respectively and after the selection of DE, successful CP are archived to determine new location parameters of Cauchy and normal distributions. Thus, in SCSS, the generations of F and CR are independent in each reproduction procedure m and the successful CP that are actually used is archived. In Algorithms S1 and S3, this is not shown because the classic DE and PSO use pre-defined fixed CP, i.e. F and CR in DE and W, c_1 and c_2 in PSO.

Remark 2: In PSO, the personal best position of each particle is regarded as a current solution for the similarity calculation (line 12 in Algorithm S3).

Remark 3: Different from the one-to-one reproduction procedures in DE and PSO, λ offspring is generated by using μ parents in ES. Therefore, we treat the λ new individuals XR produced by recombination as the current solutions, and their fitness rankings are calculated to be the average ranking of the pth and qth individuals used to perform recombination (lines 6 and 7 in Algorithm S2).

TABLE CAPTIONS

- TABLE S1 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 30-D CEC2014 BENCHMARK SET
- **TABLE S2** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **ADVANCED ALGORITHMS** WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET
- **TABLE S3** Comparisons results of SCSS variants with different SS rules Against the Baselines on 30-d cec2014 test functions (M = 2 for all the SCSS variants, best entries are Highlighted)
- **TABLE S4** PERFORMANCE COMPARISONS OF SCSS-JADE WITH THREE VARIANTS ON 30-D CEC2014 BENCHMARK SET
- **TABLE S5** PERFORMANCE COMPARISON OF SCSS VARIANTS WITH DIFFERENT *M* SETTINGS WITH THE BASELINES (BEST ENTRIES ARE HIGHLIGHTED)
- TABLE S6 PERFORMANCE COMPARISON BETWEEN SCSS VARIANTS WITH ADJACENT M SETTINGS
- **TABLE S7** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 30-D CEC2014 BENCHMARK SET
- **TABLE S8** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET
- **TABLE S9** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **ADVANCED ALGORITHMS** WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET
- TABLE S10 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 50-D CEC2017 BENCHMARK SET
- **TABLE S11** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET
- **TABLE S12** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 50-D CEC2017 BENCHMARK SET
- **TABLE S13** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 100-D CEC2017 BENCHMARK SET

 $\begin{array}{c} \text{table S1 Performance (Mean(Std)) comparisons of four Scss-based advanced algorithms with the baselines} \\ \text{on 30-D cec 2014 benchmark set} \end{array}$

			~~~~	ON 30 D CLC	2014 BENCHN	THUCK DE I	~~~		~~~~
		JADE	SCSS- JADE	SHADE	SCSS- SHADE	CMA-ES	SCSS- CMA-ES	LIPS	SCSS- LIPS
	E1	2.04E+03 =	1.47E+03	1.61E+03 =	1.50E+03	0.00E+00 =	0.00E+00	2.84E+07 -	5.42E+06
	cec14F1	(2.59E+03)	(2.14E+03)	(2.04E+03)	(2.68E+03)	(0.00E+00)	(0.00E+00)	(2.65E+07)	(6.50E+06)
labo	E2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	2.58E+03 =	5.84E+03
Unimodal Functions	cec14F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(4.30E+03)	(8.14E+03)
고로	E2	2.08E-05 -	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	3.93E+03 -	2.13E+03
	cec14F3	(1.13E-04)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(3.64E+03)	(1.95E+03)
	E4	0.00E+00 =	0.00E+00	0.00E+00=	0.00E+00	0.00E+00 =	0.00E+00	2.74E+02 -	1.40E+02
	cec14F4	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.13E+02)	(6.49E+01)
	D.5	2.03E+01 -	2.03E+01	2.02E+01 -	2.01E+01	2.00E+01+	2.13E+01	2.00E+01+	2.09E+01
	cec14F5		(7.09E-02)	(2.78E-02)	(2.29E-02)	(3.27E-05)	(5.20E-01)	(8.23E-05)	(4.90E-02)
	F16	(3.12E-02) 8.76E+00 =	7.33E+00	6.42E+00 -	4.12E+00	4.12E+01 -	4.19E+00	1.48E+01 -	7.72E+00
	F6	(2.72E+00)	(3.86E+00)	(3.15E+00)	(3.37E+00)	(9.58E+00)	(5.18E+00)	(2.70E+00)	(2.24E+00)
		3.38E-04 =	1.93E-04	0.00E+00=	0.00E+00	1.64E-03 =	1.59E-03	1.59E-03 =	2.37E-03
	cec14F7								
	770	(1.71E-03)	(1.38E-03)	(0.00E+00)	(0.00E+00)	(3.51E-03)	(4.45E-03)	(4.86E-03)	(4.57E-03)
	cec14F8	0.00E+00=	0.00E+00	0.00E+00 =	0.00E+00	4.08E+02 -	2.31E+02	5.35E+01 -	2.64E+01
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(8.57E+01)	(2.00E+02)	(1.26E+01)	(6.79E+00)
dal	cec14F9	2.58E+01 -	2.13E+01	2.10E+01 -	1.92E+01	6.35E+02 -	2.17E+02	6.29E+01 -	3.62E+01
time		(3.62E+00)	(4.82E+00)	(3.81E+00)	(3.44E+00)	(1.23E+02)	(2.74E+02)	(1.82E+01)	(8.74E+00)
Muli	cec14F10	4.49E-03 +	9.39E-03	5.31E-03 =	7.76E-03	4.92E+03 -	3.49E+03	1.97E+03 -	9.61E+02
ple l Fun	00017	(1.05E-02)	(1.52E-02)	(1.01E-02)	(1.17E-02)	(7.43E+02)	(1.10E+03)	(4.14E+02)	(2.63E+02)
Simple Multimodal Functions	F11	1.66E+03 -	1.54E+03	1.48E+03 =	1.50E+03	5.10E+03 -	3.58E+03	2.54E+03 -	2.02E+03
0.1	00014	(2.67E+02)	(2.28E+02)	(2.35E+02)	(2.02E+02)	(8.25E+02)	(1.15E+03)	(4.39E+02)	(4.10E+02)
	cec14F12	2.60E-01 -	2.27E-01	2.10E-01 -	1.68E-01	3.76E-01 -	2.40E-01	1.78E-01 =	7.59E-01
	CCC 14	(4.06E-02)	(4.87E-02)	(2.67E-02)	(2.45E-02)	(4.02E-01)	(1.01E+00)	(4.81E-02)	(1.02E+00)
	F13	2.10E-01 -	1.85E-01	2.23E-01 -	2.04E-01	2.62E-01 +	4.24E-01	3.06E-01 -	2.75E-01
	CeC14	(3.53E-02)	(3.68E-02)	(3.61E-02)	(3.18E-02)	(7.72E-02)	(1.46E-01)	(6.43E-02)	(5.22E-02)
	cec14F14	2.24E-01 =	2.32E-01	2.27E-01 -	2.09E-01	3.71E-01 +	5.66E-01	2.45E-01 +	3.10E-01
	cec14	(3.09E-02)	(3.71E-02)	(3.04E-02)	(3.26E-02)	(9.68E-02)	(2.97E-01)	(3.56E-02)	(7.15E-02)
	F15	3.11E+00 -	2.86E+00	2.97E+00 -	2.59E+00	3.49E+00 =	3.21E+00	1.08E+01 -	3.92E+00
	cec14	(4.17E-01)	(3.22E-01)	(3.67E-01)	(3.03E-01)	(7.56E-01)	(6.63E-01)	(3.87E+00)	(8.93E-01)
	F16	9.49E+00 =	9.34E+00	9.51E+00 =	9.50E+00	1.43E+01 -	1.38E+01	1.15E+01 -	1.06E+01
	cec14	(3.17E-01)	(4.29E-01)	(3.99E-01)	(4.24E-01)	(4.33E-01)	(7.44E-01)	(4.96E-01)	(4.65E-01)
	F17	1.24E+03 -	8.28E+02	9.44E+02 -	5.78E+02	1.56E+03 =	1.71E+03	2.89E+05 -	1.86E+05
	cec14	(3.35E+02)	(3.47E+02)	(3.12E+02)	(2.32E+02)	(4.64E+02)	(3.84E+02)	(3.04E+05)	(2.99E+05)
	cec14F18	2.11E+02 -	4.72E+01	3.44E+01 -	2.05E+01	1.35E+02 +	1.78E+02	4.88E+02 =	4.92E+02
	cec14	(8.15E+02)	(2.34E+01)	(1.74E+01)	(1.20E+01)	(4.50E+01)	(7.13E+01)	(7.08E+02)	(9.08E+02)
S	F19	4.52E+00 -	4.01E+00	3.95E+00 =	3.84E+00	1.01E+01 -	6.74E+00	2.54E+01 -	8.85E+00
Hybrid Functions	cec14	(6.74E-01)	(8.54E-01)	(4.72E-01)	(6.58E-01)	(2.11E+00)	(1.58E+00)	(2.49E+01)	(2.76E+00)
Hyl	cec14F20	2.02E+03 =	1.88E+03	1.09E+01 -	8.41E+00	2.89E+02 -	1.49E+02	1.47E+04 =	1.23E+04
Η.	cec14	(2.81E+03)	(2.44E+03)	(4.61E+00)	(3.45E+00)	(1.01E+02)	(5.45E+01)	(7.71E+03)	(7.41E+03)
	F21	4.07E+03 -	2.41E+02	2.13E+02 =	1.90E+02	1.04E+03 -	8.64E+02	1.11E+05 -	4.26E+04
	cec14F21	(1.89E+04)	(1.15E+02)	(1.01E+02)	(1.12E+02)	(3.50E+02)	(3.05E+02)	(8.42E+04)	(5.58E+04)
	F22	1.30E+02 =	1.10E+02	6.36E+01 =	7.12E+01	3.07E+02 -	1.16E+02	3.27E+02 -	2.28E+02
	cec14	(6.92E+01)	(6.90E+01)	(4.93E+01)	(6.10E+01)	(2.29E+02)	(1.10E+02)	(1.20E+02)	(1.10E+02)
	F23	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 +	3.15E+02	3.24E+02 -	3.16E+02
	cec14	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(3.15E-12)	(2.57E-11)	(5.26E+00)	(5.73E-01)
	F24	2.26E+02 =	2.25E+02	2.24E+02 =	2.24E+02	2.33E+02 -	2.26E+02	2.39E+02 -	2.33E+02
	cec14F24	(3.11E+00)	(3.27E+00)	(1.01E+00)	(1.21E+00)	(6.83E+00)	(6.96E+00)	(4.83E+00)	(5.09E+00)
	F25	2.05E+02 -	2.03E+02	2.04E+02 -	2.03E+02	2.04E+02 -	2.03E+02	2.16E+02 -	2.11E+02
	cec14F25	(2.18E+00)	(6.04E-01)	(1.04E+00)	(4.63E-01)	(2.42E+00)	(5.20E-01)	(3.59E+00)	(1.97E+00)
uc ,	F26	1.00E+02 -	1.00E+02	1.00E+02 -	1.00E+02	1.31E+02 -	1.26E+02	1.32E+02 -	1.09E+02
Composition Functions	cec14F26	(3.77E-02)	(3.56E-02)	(3.26E-02)	(3.42E-02)	(1.37E+02)	(1.58E+02)	(4.40E+01)	(2.68E+01)
mpo	F27	3.60E+02 =	3.44E+02	3.16E+02 =	3.21E+02	4.40E+02 -	3.40E+02	6.03E+02 -	4.79E+02
Co	cec14F27	(5.07E+01)	(5.09E+01)	(3.71E+01)	(4.03E+01)	(2.10E+02)	(3.93E+01)	(1.66E+02)	(9.74E+01)
	F28	7.99E+02 =	8.01E+02	7.95E+02 =	7.93E+02	4.43E+03 -	1.25E+03	1.78E+03 -	1.12E+03
	F28	(2.34E+01)	(1.64E+01)	(1.99E+01)	(2.17E+01)	(3.23E+03)	(1.41E+03)	(3.95E+02)	(1.70E+02)
	F20	7.33E+02 -	7.20E+02	7.25E+02 -	7.12E+02	7.88E+02 =	8.00E+02	1.34E+04 -	1.29E+03
	cec14F29	(1.60E+01)	(7.10E+01)	(1.02E+01)	(5.40E+01)	(9.18E+01)	(1.45E+02)	(5.19E+04)	(2.46E+02)
	E30	1.55E+03 =	1.53E+03	1.45E+03 -	1.19E+03	2.30E+03 -	1.58E+03	3.84E+04 -	1.08E+04
	cec14F30	(6.33E+02)	(6.34E+02)	(6.13E+02)	(3.57E+02)	(5.50E+02)	(5.95E+02)	(2.59E+04)	(6.59E+03)
	/=/+	14/15/1	(0.5 12 / 02)	14/16/0	(5.5711.02)	17/8/5	(0.501.01)	23/5/2	(5.572.00)
	/ / !	17/13/1	l .	17/10/0	l .	1 //0/3		231312	

TABLE S2 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES
ON 50-D CEC2014 BENCHMARK SET

SCSS- SCSS- CMA-FS SCSS- LIPS SC

		JADE	SCSS-	SHADE	SCSS-	CMA-ES	SCSS-	LIPS	SCSS-
		JADE	JADE	SHADE	SHADE	CMA-ES	CMA-ES	LIPS	LIPS
	cec14F1	1.88E+04 =	1.97E+04	2.24E+04 =	2.66E+04	0.00E+00 =	0.00E+00	1.29E+08 -	8.45E+06
- 0	cec14	(1.26E+04)	(1.52E+04)	(1.14E+04)	(1.09E+04)	(0.00E+00)	(0.00E+00)	(7.81E+07)	(1.32E+07)
oda	F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	7.57E+02 +	1.72E+03
Unimodal Functions	cec14F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.40E+03)	(2.71E+03)
U	F3	3.06E+03 -	2.01E+03	3.13E-06 -	1.02E-07	0.00E+00 =	0.00E+00	1.67E+04 -	1.14E+04
	cec14F3	(2.03E+03)	(2.98E+03)	(1.39E-05)	(3.42E-07)	(0.00E+00)	(0.00E+00)	(6.05E+03)	(5.51E+03)
	FΛ	1.37E+01 =	2.32E+01	2.81E+01 -	3.08E+01	3.28E+01 =	1.35E+01	7.09E+02 -	2.08E+02
	cec14F4	(3.36E+01)	(4.20E+01)	(4.30E+01)	(4.60E+01)	(4.68E+01)	(3.42E+01)	(3.77E+02)	(5.28E+01)
	F5	2.04E+01 -	2.02E+01	2.02E+01 -	2.02E+01	2.00E+01 +	2.14E+01	2.00E+01 +	2.11E+01
	cec14F5	(3.27E-02)	(2.06E-01)	(2.34E-02)	(2.30E-02)	(1.77E-06)	(3.67E-01)	(1.49E-05)	(3.62E-02)
	F6	1.59E+01 =	1.67E+01	6.87E+00 =	5.35E+00	7.68E+01 -	1.74E+01	3.71E+01 -	2.33E+01
	cec14F6	(6.47E+00)	(6.84E+00)	(5.99E+00)	(4.96E+00)	(1.08E+01)	(1.85E+01)	(4.26E+00)	(3.96E+00)
	F7	4.15E-03 =	2.42E-03	1.59E-03 =	1.69E-03	5.32E-04 =	6.77E-04	5.88E-03 -	7.25E-04
	cec14F7	(5.75E-03)	(4.81E-03)	(3.91E-03)	(4.22E-03)	(2.22E-03)	(2.42E-03)	(1.93E-02)	(2.57E-03)
	F8	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	7.39E+02 -	6.12E+02	1.44E+02 -	6.73E+01
	cec14F8	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.09E+02)	(2.31E+02)	(1.89E+01)	(1.23E+01)
=	F9 cec14	5.43E+01 -	3.86E+01	4.03E+01 =	3.95E+01	1.13E+03 -	5.88E+02	1.81E+02 -	1.08E+02
pou	cec14	(7.72E+00)	(8.83E+00)	(5.05E+00)	(5.80E+00)	(2.41E+02)	(4.78E+02)	(2.84E+01)	(2.14E+01)
ıltin	F10	1.05E-02 =	1.25E-02	5.14E-03 =	9.06E-03	8.43E+03 -	7.21E+03	4.33E+03 -	2.52E+03
Simple Multimodal Functions	F10	(9.47E-03)	(1.56E-02)	(8.35E-03)	(1.30E-02)	(9.42E+02)	(1.17E+03)	(5.04E+02)	(4.62E+02)
nple F	F11	3.82E+03 -	3.53E+03	3.65E+03 =	3.55E+03	8.23E+03 -	7.25E+03	5.15E+03 -	4.20E+03
Si	cec14	(2.72E+02)	(2.87E+02)	(3.25E+02)	(3.46E+02)	(9.32E+02)	(1.10E+03)	(4.95E+02)	(6.68E+02)
	cec14F12	2.61E-01 -	2.14E-01	2.07E-01 -	1.71E-01	2.71E-01 -	7.63E-02	2.63E-01 -	6.84E-01
	cec14	(3.01E-02)	(7.30E-02)	(2.79E-02)	(2.59E-02)	(2.55E-01)	(4.56E-01)	(7.48E-02)	(1.12E+00)
	F13	3.13E-01 -	2.75E-01	3.20E-01 =	3.12E-01	3.48E-01 +	8.08E-01	4.31E-01 =	4.12E-01
	cec14F13	(4.70E-02)	(3.91E-02)	(3.32E-02)	(4.02E-02)	(7.71E-02)	(1.59E-01)	(5.93E-02)	(5.70E-02)
	F14	3.00E-01 =	3.18E-01	2.86E-01 =	2.69E-01	4.43E-01 +	1.26E+00	2.71E-01 +	3.48E-01
	cec14	(2.93E-02)	(9.22E-02)	(6.25E-02)	(4.02E-02)	(2.50E-01)	(4.03E-01)	(3.14E-02)	(1.19E-01)
	F15	7.27E+00 -	5.94E+00	6.35E+00 -	5.66E+00	6.41E+00 =	6.02E+00	7.62E+01 -	1.20E+01
	F15	(8.65E-01)	(6.97E-01)	(7.66E-01)	(5.90E-01)	(1.25E+00)	(1.20E+00)	(4.32E+01)	(2.95E+00)
	F16	1.77E+01 =	1.80E+01	1.79E+01 =	1.79E+01	2.38E+01 =	2.40E+01	2.05E+01 -	1.94E+01
	cec14F16	(5.34E-01)	(1.05E+00)	(4.14E-01)	(3.62E-01)	(5.19E-01)	(6.18E-01)	(6.41E-01)	(6.37E-01)
	cec14F17	2.29E+03 =	2.53E+03	2.74E+03 =	2.74E+03	2.69E+03 =	2.60E+03	4.00E+06 -	7.38E+05
	cec14	(6.74E+02)	(7.80E+02)	(8.65E+02)	(8.27E+02)	(6.15E+02)	(5.98E+02)	(5.97E+06)	(1.42E+06)
	F18	1.64E+02 =	1.66E+02	1.47E+02 =	1.39E+02	2.30E+02 +	2.67E+02	3.26E+02 -	2.53E+02
	cec14	(4.16E+01)	(4.06E+01)	(4.44E+01)	(4.31E+01)	(4.57E+01)	(7.08E+01)	(1.64E+02)	(7.76E+01)
	F19	1.48E+01 -	1.06E+01	1.63E+01 -	1.28E+01	1.84E+01 -	1.46E+01	5.78E+01 -	4.25E+01
Hybrid Functions	cec14	(5.97E+00)	(5.22E+00)	(7.08E+00)	(4.48E+00)	(2.57E+00)	(2.30E+00)	(2.86E+01)	(2.26E+01)
Hyb	F20	8.19E+03 -	1.99E+03	1.92E+02 -	1.10E+02	4.44E+02 -	2.71E+02	3.02E+04 -	1.91E+04
14	F20	(6.72E+03)	(4.70E+03)	(6.69E+01)	(4.37E+01)	(1.22E+02)	(8.53E+01)	(1.09E+04)	(7.19E+03)
	F21	1.29E+03 -	2.36E+04	1.40E+03 -	1.01E+03	1.70E+03 =	1.62E+03	5.78E+05 -	1.71E+05
	F21	(4.85E+02)	(1.61E+05)	(4.92E+02)	(3.33E+02)	(4.32E+02)	(3.71E+02)	(4.16E+05)	(1.07E+05)
	F22	4.78E+02 -	3.76E+02	3.76E+02 =	3.38E+02	4.19E+02 -	3.20E+02	8.43E+02 -	5.69E+02
	cec14	(1.66E+02)	(1.61E+02)	(1.18E+02)	(1.09E+02)	(2.61E+02)	(2.11E+02)	(2.08E+02)	(1.88E+02)
	F23	3.44E+02 +	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.77E+02 -	3.50E+02
	cec14	(4.55E-13)	(5.16E-13)	(4.31E-13)	(4.50E-13)	(2.32E-05)	(2.38E-05)	(1.34E+01)	(1.83E+00)
	F24	2.74E+02 =	2.75E+02	2.73E+02 =	2.72E+02	3.67E+02 -	2.76E+02	2.95E+02 -	2.80E+02
	cec14	(2.05E+00)	(1.89E+00)	(1.93E+00)	(1.89E+00)	(5.44E+02)	(2.43E+00)	(6.01E+00)	(3.16E+00)
	F25	2.23E+02 -	2.11E+02	2.18E+02 -	2.11E+02	2.05E+02 -	2.05E+02	2.40E+02 -	2.25E+02
	cec14	(3.19E+00)	(6.51E+00)	(5.01E+00)	(6.05E+00)	(9.61E-01)	(2.18E-01)	(8.81E+00)	(4.59E+00)
on	F26	1.04E+02 -	1.00E+02	1.02E+02 -	1.00E+02	1.17E+02 +	1.09E+02	1.66E+02 -	1.36E+02
Composition Functions	cec14	(1.95E+01)	(8.92E-02)	(1.40E+01)	(5.89E-02)	(5.81E+01)	(4.04E+01)	(4.65E+01)	(4.82E+01)
ump	cec14F27	4.65E+02 -	4.35E+02	3.91E+02 =	3.79E+02	5.33E+02 -	4.57E+02	1.39E+03 -	9.91E+02
S	cec14	(5.76E+01)	(5.42E+01)	(4.89E+01)	(4.65E+01)	(1.06E+02)	(7.00E+01)	(1.29E+02)	(8.80E+01)
	F28	1.15E+03 -	1.12E+03	1.13E+03 =	1.11E+03	7.61E+03 -	4.39E+03	4.52E+03 -	2.55E+03
	cec14	(3.72E+01)	(3.47E+01)	(4.00E+01)	(3.05E+01)	(5.87E+03)	(2.98E+03)	(7.42E+02)	(3.27E+02)
	F29	8.81E+02 =	8.94E+02	9.01E+02 =	9.02E+02	8.86E+02 =	8.94E+02	8.33E+06 -	2.09E+03
	cec14F29	(5.80E+01)	(9.69E+01)	(6.55E+01)	(6.54E+01)	(6.70E+01)	(8.74E+01)	(4.37E+07)	(5.43E+02)
	F30	9.78E+03 -	9.26E+03	9.35E+03 -	8.87E+03	9.31E+03 =	9.45E+03	2.84E+05 -	6.41E+04
	cec14	(7.82E+02)	(8.07E+02)	(6.62E+02)	(6.64E+02)	(7.96E+02)	(1.09E+03)	(1.17E+05)	(2.21E+04)
_	/=/+	16/13/1		11/19/0		13/12/5		26/1/3	
								-	

TABLE S3 COMPARISONS RESULTS OF SCSS VARIANTS WITH DIFFERENT SS RULES AGAINST THE BASELINES ON 30-D CEC2014 TEST FUNCTIONS (M = 2 FOR ALL THE SCSS VARIANTS, BEST ENTRIES ARE HIGHLIGHTED)

CECZOT TEST TONCTIONS (M 2 TOK ALE THE SCSS VARIANTS, BEST ENTRIES ARE HIGHEIGHT										
-/=/+ (P-N)			Schei	me 1			Scheme 2			
	GD = 0	GD = 0.2	GD = 0.4	GD = 0.6	GD = 0.8	GD = 1.0				
DE	0/5/25(-25)	1/13/16(-15)	2/21/7(-5)	11/19/0(11)	19/11/0 (19)	21/8/1(20)	5/21/4(1)			
ES	0/3/27 (-27)	0/3/27 (-27) 25/5/0 (25) 26/4/0 (26) 26/4/0 (26) 26/4/0 (26) 26/4/0 (26)								
PSO	0/4/26 (-26)	10/15/5(5)	10/18/2(8)	14/16/0(14)	14/16/0(14)	15/15/0(15)	13/17/0(13)			
JADE	14/9/7 (7)	15/11/4 (11)	19/8/3 (16)	15/14/1 (14)	5/11/14 (-9)	2/6/22 (-20)	14/15/1 (13)			
SHADE	12/12/6 (6)	14/13/3 (11)	15/14/1 (14)	14/16/0 (14)	5/21/4(1)	3/9/18 (-15)	14/16/0 (14)			
CMA-ES	13/15/2 (11)	6/23/1 (5)	0/30/0(0)	1/25/4 (-3)	1/19/10 (-9)	1/21/8 (-7)	2/26/2(0)			
LIPS	16/5/9 (7)	22/4/4 (18)	22/5/3 (19)	22/5/3 (19)	21/5/4 (17)	20/8/2 (18)	23/4/3 (20)			

# table S4 Performance comparisons of SCSS-jade with three variants on 30-D cec2014 benchmark set

	Variant-	Variant-	Variant-	SCSS-		Variant-	Variant-	Variant-	SCSS-
	oppo	Meval	CSM	JADE		oppo	Meval	CSM	JADE
F1	1.81E+05 -	2.41E+03 =	5.50E+00 +	1.47E+03	cec14F16	9.91E+00 -	9.52E+00 -	9.28E+00 =	9.34E+00
cec14F1	(1.28E+06)	(3.07E+03)	(1.56E+01)	(2.14E+03)	cec14	(2.48E-01)	(3.18E-01)	(3.48E-01)	(4.29E-01)
F2	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00	F17	2.85E+05 -	1.17E+03 -	2.50E+04 -	8.28E+02
cec14F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(4.29E+05)	(4.00E+02)	(1.46E+05)	(3.47E+02)
F3	2.90E+00 -	1.49E-02 -	0.00E+00 =	0.00E+00	F18	2.85E+03 -	9.30E+01 -	1.61E+02 -	4.72E+01
cec14F3	(3.03E+00)	(4.36E-02)	(0.00E+00)	(0.00E+00)	CeC14	(3.60E+03)	(2.05E+02)	(2.26E+02)	(2.34E+01)
cec14F4	0.00E+00 =	5.49E-09 =	1.24E+00 -	0.00E+00	F19	4.86E+00 -	4.29E+00 =	4.84E+00 -	4.01E+00
cec14	(0.00E+00)	(3.92E-08)	(8.88E+00)	(0.00E+00)	cec14	(7.86E-01)	(6.58E-01)	(7.48E-01)	(8.54E-01)
F5	2.03E+01 -	2.03E+01 -	2.03E+01 -	2.03E+01	F20	3.53E+03 -	3.21E+03 -	3.18E+03 -	1.88E+03
cec14	(2.70E-02)	(2.83E-02)	(3.27E-02)	(7.09E-02)	cec14	(2.22E+03)	(2.01E+03)	(2.43E+03)	(2.44E+03)
F6	1.24E+01 -	1.02E+01 -	7.04E+00 =	7.33E+00	cec14F21	7.95E+04 -	3.49E+04 -	2.30E+04 -	2.41E+02
cec14F6	(1.20E+00)	(1.96E+00)	(3.90E+00)	(3.86E+00)	cec14	(8.65E+04)	(5.81E+04)	(6.33E+04)	(1.15E+02)
F7	0.00E+00 =	1.45E-04 =	1.45E-04 =	1.93E-04	.F22	1.64E+02 -	1.20E+02 =	1.59E+02 -	1.10E+02
cec14	(0.00E+00)	(1.04E-03)	(1.04E-03)	(1.38E-03)	cec14	(7.95E+01)	(7.57E+01)	(7.21E+01)	(6.90E+01)
cec14F8	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00	cec14F23	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02
cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(2.48E-11)	(4.02E-13)	(4.02E-13)	(4.02E-13)
F9	3.91E+01 -	2.88E+01 -	2.48E+01 =	2.13E+01	. F24	2.26E+02 -	2.25E+02 =	2.27E+02 -	2.25E+02
cec14	(5.50E+00)	(4.10E+00)	(4.32E+00)	(4.82E+00)	cec14	(3.01E+00)	(2.76E+00)	(3.30E+00)	(3.27E+00)
cec14F10	2.45E-03 +	7.35E-03 =	1.55E-02 -	9.39E-03	cec14F25	2.05E+02 -	2.04E+02 -	2.07E+02 -	2.03E+02
cec14	(6.77E-03)	(1.24E-02)	(1.71E-02)	(1.52E-02)	cec14	(2.05E+00)	(1.30E+00)	(2.00E+00)	(6.04E-01)
cec14F11	2.24E+03 -	1.87E+03 -	1.65E+03 -	1.54E+03	. F26	1.00E+02 -	1.00E+02 -	1.02E+02 -	1.00E+02
cec14	(1.84E+02)	(2.53E+02)	(2.38E+02)	(2.28E+02)	cec14	(3.71E-02)	(2.52E-02)	(1.40E+01)	(3.56E-02)
F12	3.76E-01 -	3.12E-01 -	2.55E-01 -	2.27E-01	F27	3.61E+02 -	3.64E+02 -	3.21E+02 =	3.44E+02
cec14	(3.71E-02)	(5.18E-02)	(3.58E-02)	(4.87E-02)	cec14	(5.23E+01)	(5.32E+01)	(2.90E+01)	(5.09E+01)
cec14F13	2.59E-01 -	2.06E-01 -	1.98E-01 -	1.85E-01	. F28	8.15E+02 -	8.02E+02 =	8.02E+02 =	8.01E+02
cec14	(3.58E-02)	(2.93E-02)	(3.61E-02)	(3.68E-02)	cec14	(1.91E+01)	(1.75E+01)	(4.59E+01)	(1.64E+01)
cec14F14	2.46E-01 -	2.29E-01 =	2.85E-01 -	2.32E-01	cec14F29	1.28E+03 -	7.29E+02 =	7.89E+02 =	7.20E+02
cec14	(3.02E-02)	(3.45E-02)	(8.52E-02)	(3.71E-02)	cec14	(4.43E+02)	(1.19E+01)	(2.20E+02)	(7.10E+01)
F15	4.30E+00 -	3.55E+00 -	3.25E+00 -	2.86E+00	F30	1.97E+03 -	1.64E+03 =	2.11E+03 -	1.53E+03
cec14	(4.90E-01)	(3.24E-01)	(3.55E-01)	(3.22E-01)	cec14	(6.55E+02)	(6.52E+02)	(6.37E+02)	(6.34E+02)
-/=/+	24/5/1	16/14/0	18/11/1						

TABLE S5 PERFORMANCE COMPARISON OF SCSS VARIANTS WITH DIFFERENT  $\it M$  SETTINGS WITH THE BASELINES (BEST ENTRIES ARE HIGHLIGHTED)

-/=/+ (P-N)	M=2	M=3	M=4	M=5	M = 10
DE	21/8/1 (20)	25/4/1 (24)	23/6/1 (22)	26/3/1 (25)	27/2/1 (26)
ES	26/4/0 (26)	27/3/0 (27)	27/3/0 (27)	27/2/1 (26)	27/2/1 (26)
PSO	15/15/0 (15)	13/16/1(12)	12/17/1(11)	10/18/2(8)	10/17/3 (7)
JADE	14/15/1 (13)	16/13/1 (15)	14/15/1 (13)	13/14/3 (10)	8/10/12 (-4)
SHADE	14/16/0 (14)	13/15/2 (11)	14/13/3 (11)	12/14/4 (8)	12/8/10(2)
CMA-ES	13/15/2 (11)	15/11/4 (11)	15/11/4 (11)	17/8/5 (12)	17/7/6 (11)
LIPS	23/4/3 (20)	23/4/3 (20)	23/5/2(21)	23/4/3 (20)	20/5/5 (15)

# ${\tt TABLE~S6~PERFORMANCE~COMPARISON~BETWEEN~SCSS~VARIANTS}$

# WITH ADJACENT M SETTINGS

		CATEGORY 1		
-/=/+ (P-N)	M = 2  v.s.  M = 3	M = 3  v.s.  M = 4	M = 4  v.s.  M = 5	M = 5  v.s.  M = 10
DE	17/12/1 (16)	5/24/1 (4)	6/23/1 (5)	12/14/4 (8)
ES	25/5/0 (25)	23/7/0(23)	12/18/0 (12)	28/2/0 (28)
CMA-ES	8/18/4 (4)	7/20/3(4)	1/29/0(1)	5/18/7 (-2)
LIPS	8/21/1 (7)	2/28/0 (2)	0/29/1 (-1)	3/23/4 (-1)
		CATEGORY 2		
-/=/+ (P-N)	M = 2  v.s.  M = 3	M = 3  v.s.  M = 4	M = 4  v.s.  M = 5	M = 5  v.s.  M = 10
PSO	1/22/7 (-6)	1/28/1 (0)	0/29/1 (-1)	0/28/2 (-2)
JADE	3/25/2(1)	5/22/3 (2)	4/18/8 (-4)	5/7/18 (-13)
SHADE	4/24/2 (2)	4/23/3 (1)	7/15/8 (-1)	5/13/12 (-7)

table S7 Performance comparisons of four SCSS-based top algorithms with the baselines on 30-D cec2014 benchmark set

				01120 2 01	ECZU14 BENCH		gagg		
		L-SHADE	SCSS-	UMOEA-II	SCSS-	L-SHADE_	SCSS- L-SHADE_	jSO	SCSS-
			L-SHADE		UMOEA-II	EpSin	EpSin		jSO
	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F1	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Unimodal Functions	F2.	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
nim	cec14F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
DÆ	F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	FΛ	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F4	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F5	2.01E+01 -	2.01E+01	2.00E+01 =	2.00E+01	2.01E+01 -	2.01E+01	2.09E+01 =	2.09E+01
	cec14	(3.46E-02)	(5.37E-02)	(1.03E-03)	(4.78E-05)	(2.98E-02)	(4.75E-02)	(8.04E-02)	(4.80E-02)
	F6	9.01E-03 =	9.01E-03	1.99E-01 =	4.24E-06	0.00E+00 =	0.00E+00	8.61E-06 =	1.02E-02
	cec14F6	(6.43E-02)	(6.43E-02)	(1.35E+00)	(1.86E-05)	(0.00E+00)	(0.00E+00)	(3.52E-05)	(7.27E-02)
	F7	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F7	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F8	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F8	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
-e	F9	7.22E+00 =	7.38E+00	8.97E+00 =	9.03E+00	1.31E+01 -	1.24E+01	8.76E+00 -	7.57E+00
Simple Multimodal Functions	cec14F9	(1.33E+00)	(1.63E+00)	(1.79E+00)	(2.07E+00)	(1.94E+00)	(2.15E+00)	(1.97E+00)	(1.62E+00)
ultir	F10	5.72E-03 =	7.35E-03	1.63E-03 =	4.08E-03	4.49E-03 =	4.90E-03	1.43E+00 =	1.64E+00
e Mi	cec14	(1.11E-02)	(1.37E-02)	(5.65E-03)	(8.35E-03)	(9.60E-03)	(1.07E-02)	(1.02E+00)	(9.94E-01)
mpk	F11	1.23E+03 =	1.24E+03	1.41E+03 =	1.43E+03	1.14E+03 =	1.16E+03	1.20E+03 =	1.26E+03
Si	F11	(1.92E+02)	(1.85E+02)	(3.01E+02)	(3.18E+02)	(2.09E+02)	(2.03E+02)	(2.73E+02)	(2.45E+02)
	cec14F12	1.73E-01 =	1.65E-01	1.01E-01 =	1.08E-01	1.54E-01 =	1.46E-01	4.17E-01 +	9.00E-01
	cec14	(2.13E-02)	(3.01E-02)	(5.51E-02)	(6.90E-02)	(2.30E-02)	(2.77E-02)	(4.93E-01)	(7.61E-01)
	F13	1.05E-01 =	1.08E-01	1.14E-01 =	1.09E-01	1.34E-01 -	1.24E-01	1.37E-01 +	1.52E-01
	cec14F13	(1.35E-02)	(1.56E-02)	(1.81E-02)	(2.15E-02)	(1.64E-02)	(1.61E-02)	(2.24E-02)	(3.04E-02)
	F14	2.38E-01 -	1.90E-01	2.29E-01 -	2.10E-01	1.93E-01 =	1.93E-01	2.26E-01 =	2.30E-01
	cec14	(2.69E-02)	(2.41E-02)	(2.52E-02)	(3.27E-02)	(2.91E-02)	(2.44E-02)	(4.08E-02)	(3.63E-02)
	F15	2.28E+00 -	2.16E+00	2.44E+00 =	2.29E+00	2.37E+00 -	2.24E+00	2.37E+00 -	2.13E+00
	F15	(2.93E-01)	(2.47E-01)	(4.60E-01)	(5.34E-01)	(2.41E-01)	(2.91E-01)	(2.73E-01)	(3.37E-01)
	cec14F16	8.51E+00 +	8.65E+00	9.15E+00 +	9.57E+00	8.30E+00 =	8.26E+00	8.58E+00 =	8.60E+00
	cec14	(3.61E-01)	(4.00E-01)	(5.25E-01)	(6.20E-01)	(4.58E-01)	(3.76E-01)	(7.71E-01)	(7.27E-01)
	F17	2.09E+02 -	8.89E+01	1.29E+02 -	7.77E+01	1.94E+02 -	1.42E+02	6.38E+01 =	6.22E+01
	cec14	(1.13E+02)	(4.59E+01)	(7.85E+01)	(4.25E+01)	(8.71E+01)	(8.41E+01)	(2.31E+01)	(2.13E+01)
	rec14F18	6.89E+00 -	3.01E+00	4.85E+00 -	3.89E+00	6.02E+00 =	5.68E+00	2.14E+00 =	2.19E+00
	cec14	(3.23E+00)	(1.50E+00)	(1.76E+00)	(1.47E+00)	(2.44E+00)	(2.09E+00)	(1.23E+00)	(1.17E+00)
2	F19	3.75E+00 -	3.08E+00	2.69E+00 -	2.23E+00	2.63E+00 =	2.78E+00	2.04E+00 =	1.86E+00
Hybrid Functions	cec14	(5.74E-01)	(6.64E-01)	(6.23E-01)	(6.65E-01)	(8.21E-01)	(6.45E-01)	(7.16E-01)	(6.30E-01)
Hy	F20 cec14	2.84E+00 =	2.59E+00	3.57E+00 =	3.72E+00	2.34E+00 =	2.67E+00	2.04E+00 =	1.97E+00
"	cec14	(1.04E+00)	(1.07E+00)	(1.41E+00)	(1.34E+00)	(1.06E+00)	(1.18E+00)	(8.67E-01)	(8.07E-01)
	F21	9.08E+01 -	3.33E+01	7.84E+01 -	2.43E+01	9.09E+01 =	9.96E+01	2.86E+01 =	1.18E+01
	cec14	(7.29E+01)	(5.40E+01)	(7.25E+01)	(4.11E+01)	(7.94E+01)	(8.91E+01)	(4.42E+01)	(8.29E+00)
	cec14F22	2.45E+01 -	2.31E+01	3.43E+01 -	2.54E+01	5.17E+01 -	3.76E+01	2.91E+01 -	2.31E+01
	cec14	(3.35E+00)	(2.00E+00)	(2.47E+01)	(4.05E+00)	(5.09E+01)	(3.85E+01)	(2.45E+01)	(3.73E+00)
	cec14F23	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02
	cec14	(4.02E-13)	(3.18E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.16E-13)	(4.16E-13)	(4.02E-13)
	F24	2.24E+02 -	2.22E+02	2.24E+02 -	2.22E+02	2.11E+02 =	2.11E+02	2.09E+02 -	2.02E+02
	cec14	(1.46E+00)	(3.44E+00)	(1.95E+00)	(4.63E+00)	(1.10E+01)	(1.10E+01)	(1.08E+01)	(5.83E+00)
	F25	2.03E+02 -	2.03E+02	2.03E+02 -	2.03E+02	2.03E+02 =	2.03E+02	2.03E+02 =	2.03E+02
	cec14	(5.33E-02)	(4.10E-02)	(3.95E-02)	(4.46E-02)	(3.95E-02)	(3.24E-02)	(2.75E-02)	(2.60E-02)
ion	cec14F26	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 -	1.00E+02	1.00E+02 =	1.00E+02
Composition Functions	cec14	(1.47E-02)	(1.38E-02)	(1.92E-02)	(1.98E-02)	(1.25E-02)	(1.64E-02)	(2.13E-02)	(2.44E-02)
omp	cec14F27	3.00E+02 +	3.00E+02	3.02E+02 =	3.02E+02	3.00E+02 -	3.00E+02	3.00E+02 =	3.00E+02
0	cec14	(1.25E-13)	(2.16E-13)	(1.40E+01)	(1.40E+01)	(1.85E-13)	(9.09E-14)	(2.30E-13)	(1.23E-05)
	cec14F28	8.35E+02 =	8.33E+02	8.39E+02 =	8.35E+02	8.37E+02 =	8.37E+02	8.25E+02 -	8.16E+02
	cec14	(1.83E+01)	(1.96E+01)	(1.42E+01)	(1.53E+01)	(1.56E+01)	(1.81E+01)	(2.15E+01)	(1.94E+01)
	F29	7.16E+02 =	7.15E+02	7.17E+02 -	7.16E+02	7.22E+02 =	7.20E+02	7.16E+02 -	7.15E+02
	cec14	(2.52E+00)	(1.55E+00)	(3.10E+00)	(2.28E+00)	(1.17E+01)	(6.36E+00)	(2.07E+00)	(1.17E+00)
	F30	1.40E+03 =	1.37E+03	9.28E+02 =	9.35E+02	1.46E+03 =	1.51E+03	6.20E+02 -	5.70E+02
		(6.66E+02)	(6.31E+02)	(3.55E+02)	(4.83E+02)	(6.33E+02)	(6.72E+02)	(1.67E+02)	(1.73E+02)
	./=/+	10/18/2		9/20/1		8/22/0		7/21/2	

Note: The structural bias that affects the performance of UMOEA-II and L-SHADE_EpSin were removed according to the suggestions in [5]. In detail, in UMOEA-II and SCSS-UMOEA-II, the mutation strategy  $V_{i,g} = F_i \times X_{r1,g} + (X_{r2,g} - X_{r3,g})$  was modified as  $V_{i,g} = X_{r1,g} + (X_{r2,g} - X_{r3,g})$  by setting  $F_i = 1$ . In L-SHADE_EpSin and SCSS-L-SHADE_EpSin, the local search procedures were skipped.

Table S8 Performance comparisons of four SCSS-based top algorithms with the baselines on 50-D cec2014 benchmark set

Part								SCSS-		
The color   The			I CHADE	SCSS-	TIMOE A II	SCSS-	L-SHADE_		iso	SCSS-
Page			L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	EpSin		JSO	jSO
The content of the			. = . = . =	1017 05					1 107 01	_
The content of the		F1						5.13E-05		
The color of the	le si	CeC14								
The color of the	nod tior	F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
The color of the	nin	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Page   Fig.   \$2,38E+01	J	F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
Page   Fig.   \$2,38E+01		cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Fig.   2,03E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+02   6,30E+02   6,34E+02   6,24E+03   3,40E+01   8,33E+02   2,04E+04   2,14E+05   3,80E+03   3,06E+02   6,24E+03   6,00E+00   0,00E+00   0,		E4								
Fig.   2,03E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+01   2,00E+02   6,30E+02   6,34E+02   6,24E+03   3,40E+01   8,33E+02   2,04E+04   2,14E+05   3,80E+03   3,06E+02   6,24E+03   6,00E+00   0,00E+00   0,		cec14								
Page		P.5								
Page		cec14								
Part		00014								
Part		F6								
Page		CeC14		`						
Page		F7	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
Page		cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)		(0.00E+00)	(0.00E+00)	(0.00E+00)
Page		F8	3.64E-08 -	2.37E-08	0.00E+00 =	0.00E+00	3.53E-09 =	0.00E+00	0.00E+00 +	1.82E-09
Page		cec14								
Fig.   Cont.   Cont.	_	EO								
Fig.   Cont.   Cont.	oda	cec14								
Fig.   Color   Color	tim	E10								
Fig.   Color   Color	Mul	cec14								
Fig.   Color   Color	l ole 1									
Fig.   Color   Color	.iii	F11								
Fig.   1.60E-01   1.50E-01   1.60E-01   1.60E-01   2.06E-01   1.90E-01   1.92E-01   2.01E-01   1.74E-02   (2.08E-02)   (2.40E-02)   (2.33E-02)   (2.35E-02)   (2.35E-02)   (2.35E-02)   (2.25E-02)   (4.22E-02)   (	S	CeC14								
Fig.   1.60E-01   1.50E-01   1.60E-01   1.60E-01   2.06E-01   1.90E-01   1.92E-01   2.01E-01   1.74E-02   (2.08E-02)   (2.40E-02)   (2.33E-02)   (2.35E-02)   (2.35E-02)   (2.35E-02)   (2.25E-02)   (4.22E-02)   (		. F12	2.44E-01 -	2.11E-01	1.63E-01 =	1.68E-01	2.16E-01 -	1.99E-01	3.69E-01 =	7.48E-01
Fig.   Fig.   3.23E-01 - 2.49E-01   3.01E-01 - 2.63E-01   1.89E-01   3.18-02   (4.34E-02)   (4.34E-02)   (4.15E-02)   (2.29E-02)   (2.29E-02)   (2.33E-02)   (3.13E-02)   (4.34E-02)   (4.15E-02)   (4		cec14	(3.53E-02)	(3.26E-02)	(1.06E-01)	(1.06E-01)	(2.70E-02)	(2.81E-02)	(4.10E-01)	(7.45E-01)
Fig.   Fig.   3.23E-01 - 2.49E-01   3.01E-01 - 2.63E-01   1.89E-01   3.18-02   (4.34E-02)   (4.34E-02)   (4.15E-02)   (2.29E-02)   (2.29E-02)   (2.33E-02)   (3.13E-02)   (4.34E-02)   (4.15E-02)   (4		F13			1.63E-01 =	1.60E-01		1.90E-01	1.92E-01 =	
Fig.   Fig.   3.23E-01 - 2.49E-01   3.01E-01 - 2.63E-01   1.89E-01   3.18-02   (4.34E-02)   (4.34E-02)   (4.15E-02)   (2.29E-02)   (2.29E-02)   (2.33E-02)   (3.13E-02)   (4.34E-02)   (4.15E-02)   (4		cec14						(2.35E-02)		
F15   5.30E+00   4.99E+00   5.39E+00   5.13E+00   5.08E+00   5.08E+00   6.92E-01   (4.68E+00   (4.68E+00   (4.74E-01)   (5.65E-01)   (4.88E-01)   (4.04E+00)   (1.06E+00)   (4.74E-01)   (5.05E-01)   (4.85E-01)   (4.85E-01)   (4.28E-01)   (4.28E-01)   (4.28E-01)   (4.35E-01)   (4.35E-01)   (4.88E-01)   (6.65E-01)   (3.44E-01)   (4.28E-01)   (9.41E-01)   (7.30E-01)   (7.30E-01)   (6.65E-01)   (3.44E-01)   (4.28E-01)   (4.28E-01)   (7.30E-01)   (7.30E-01)   (6.50E-01)   (1.30E+02)		E14								
F15   5.30E+00   4.99E+00   5.39E+00   5.13E+00   5.08E+00   5.08E+00   6.92E-01   (4.68E+00   (4.68E+00   (4.74E-01)   (5.65E-01)   (4.88E-01)   (4.04E+00)   (1.06E+00)   (4.74E-01)   (5.05E-01)   (4.85E-01)   (4.85E-01)   (4.28E-01)   (4.28E-01)   (4.28E-01)   (4.35E-01)   (4.35E-01)   (4.88E-01)   (6.65E-01)   (3.44E-01)   (4.28E-01)   (9.41E-01)   (7.30E-01)   (7.30E-01)   (6.65E-01)   (3.44E-01)   (4.28E-01)   (4.28E-01)   (7.30E-01)   (7.30E-01)   (6.50E-01)   (1.30E+02)		cec14								
F16		F1.5								
F16		F15				3.13E±00	5.08E±00 -			
Page								(5.05E-01)		
Page		F16								
F18		CCC14								
F18		. F17								
F19		cec14	(3.52E+02)	(2.32E+02)	(3.60E+02)	(1.81E+02)	(1.60E+02)	(1.39E+02)	(1.70E+02)	(1.11E+02)
F19		F18	1.05E+02 -	2.30E+01	5.70E+01 -	1.56E+01	1.89E+01 =	1.83E+01	1.08E+01 -	7.21E+00
F19		cec14	(1.38E+01)	(6.42E+00)	(2.14E+01)	(4.28E+00)	(6.40E+00)	(6.76E+00)	(3.24E+00)	(2.16E+00)
F20		F10								
F20	pi ons	cec14								
F21   5.59E+02   3.42E+02   4.38E+02   3.49E+02   3.25E+02   3.08E+02   3.03E+02   2.36E+02   (1.62E+02)   (1.11E+02)   (1.27E+02)   (1.32E+02)   (9.65E+01)   (1.05E+02)   (9.88E+01)   (8.45E+01)   (8.35E+01)   (1.19E+02)   (6.13E+01)   (5.00E+01)   (1.00E+02)   (8.34E+01)   (8.34E+01)   (8.35E+01)   (1.19E+02)   (6.13E+01)   (1.00E+02)   (8.34E+01)   (8.34E+01)   (8.35E+01)   (1.19E+02)   (6.13E+01)   (1.00E+02)   (8.34E+01)   (8.34E+01)   (8.35E+01)   (4.73E+13)   (2.93E+13)   (3.18E+13)   (3.03E+13)   (3.46E+13)   (3.46E+13)   (4.98E+01)   (1.13E+00)   (8.57E+01)   (7.27E+01)   (1.23E+00)   (1.50E+00)   (1.50E+00)   (1.80E+00)   (2.18E+00)   (2.18E+01)	lybr	E20								
F21	H F	cec14								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F21								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CCC1-7			_			_ `		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F22								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CCC 14								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F23	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cec14	(3.20E-13)	(3.46E-13)	(4.67E-13)	(4.73E-13)	(2.93E-13)	(3.18E-13)	(3.03E-13)	(3.46E-13)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F24		2.74E+02		2.75E+02	2.68E+02 =		2.72E+02 -	2.70E+02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cec14					(1.23E+00)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		E25								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		cec14 F23								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	F2.6								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tior	F26								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	posi									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	om; Fun	F27								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CC 17								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		. F28	1.13E+03 =	1.12E+03			1.14E+03 =	1.14E+03		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cec14								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F29	8.04E + 02 =	8.02E+02	8.05E+02 =		8.05E+02 =	8.13E+02	8.04E + 02 =	8.03E+02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cec14		(3.22E+01)						
		E30								
		cec14								
			18/10/2	(3.1.2.02)	10/17/3	(5.0.2.02)	13/17/0	()	13/15/2	(5.552.02)
7/ / 10/10/2   10/11/3   13/17/0   13/13/2		7 7 1	10/10/2	1	10/1//3		13/1//0		13/13/2	

TABLE S9 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES
ON 30-D CEC2017 BENCHMARK SET

SCSS- SCSS- SCSS- LIPS SCSS- LIPS SCSS-

		JADE	SCSS-	SHADE	SCSS-	CMA-ES	SCSS-	LIPS	SCSS-
	T		JADE	-	SHADE		CMA-ES		LIPS
	cec17F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	8.03E+02 +	2.73E+03
ls al	cec1/	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.45E+03)	(4.18E+03)
nod	cec17F2	1.58E-05 =	1.70E-05	1.77E-05 =	1.39E-05	0.00E+00 =	0.00E+00	2.33E+01 -	1.87E-03
Unimodal Functions	cec1/	(8.56E-06)	(9.99E-06)	(1.03E-05)	(8.49E-06)	(0.00E+00)	(0.00E+00)	(9.02E+01)	(1.95E-04)
2 1	cec17F3	1.18E+04 -	7.74E+02	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	1.60E+04 -	7.74E+03
	cec17	(1.92E+04)	(5.53E+03)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(7.66E+03)	(3.55E+03)
	cec17F4	5.18E+01 =	5.14E+01	5.47E+01 =	5.29E+01	3.99E+01 +	4.30E+01	1.64E+02 -	1.11E+02
	cec17	(2.08E+01)	(2.06E+01)	(1.62E+01)	(1.76E+01)	(2.74E+01)	(2.55E+01)	(9.39E+01)	(4.93E+01)
	F5	2.83E+01 -	2.17E+01	1.99E+01 =	1.97E+01	6.58E+02 -	1.34E+02	6.43E+01 -	3.43E+01
	F5	(4.01E+00)	(4.50E+00)	(3.24E+00)	(3.18E+00)	(2.22E+02)	(2.26E+02)	(1.35E+01)	(9.30E+00)
=	F6	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	9.91E+01 -	3.99E+01	8.27E+00 -	4.58E-01
go	cec17F6	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.56E+01)	(4.70E+01)	(5.05E+00)	(5.87E-01)
Simple Multimodal Functions	F7	5.61E+01 -	5.19E+01	5.09E+01 -	4.92E+01	3.66E+03 -	2.71E+02	9.77E+01 -	7.32E+01
. Mu	cec17F7	(3.87E+00)	(4.41E+00)	(3.87E+00)	(2.84E+00)	(1.11E+03)	(8.12E+02)	(2.10E+01)	(1.09E+01)
nple F	F8	2.84E+01 -	2.39E+01	2.16E+01 =	2.07E+01	5.79E+02 -	1.60E+02	6.23E+01 -	3.58E+01
Sir	cec17F8	(5.00E+00)	(4.09E+00)	(3.42E+00)	(3.64E+00)	(1.43E+02)	(2.05E+02)	(1.31E+01)	(8.35E+00)
	EO	2.13E-02 =	7.02E-03	0.00E+00 =	0.00E+00	1.37E+04 -	5.85E+03	6.01E+02 -	2.07E+01
	cec17 ^{F9}	(9.01E-02)	(2.43E-02)	(0.00E+00)	(0.00E+00)	(3.23E+03)	(7.13E+03)	(4.21E+02)	(2.53E+01)
	E10	1.88E+03 -	1.79E+03	1.73E+03 =	1.72E+03	4.93E+03 -	4.05E+03	2.80E+03 -	2.15E+03
	F10	(2.70E+02)	(2.39E+02)	(2.71E+02)	(2.46E+02)	(5.98E+02)	(1.01E+03)	(4.44E+02)	(3.40E+02)
	T:1.1	3.37E+01 -	2.28E+01	2.10E+01 =	2.13E+01	1.67E+02 -	1.20E+02	1.99E+02 -	8.58E+01
	F11	(2.26E+01)	(2.00E+01)	(2.53E+01)	(2.47E+01)	(5.67E+01)	(3.97E+01)	(1.41E+02)	(4.31E+01)
	E12	1.48E+03 =	1.30E+03	2.03E+03 -	1.20E+03	1.51E+03 =	1.55E+03	1.85E+06 -	1.78E+05
	F12	(8.87E+02)	(7.31E+02)	(2.68E+03)	(5.83E+02)	(3.69E+02)	(3.41E+02)	(6.00E+06)	(2.11E+05)
	F1.2	4.36E+01 =	3.92E+01	3.84E+01 -	2.68E+01	1.57E+03 =	1.35E+03	5.74E+03 -	2.78E+03
	cec17F13	(2.16E+01)	(1.61E+01)	(1.76E+01)	(1.20E+01)	(7.42E+02)	(7.07E+02)	(5.63E+03)	(4.82E+03)
	F14				2.61E+01	1.85E+02 =	1.66E+02		
	F14	9.70E+03 -	2.05E+03	2.73E+01 =			(5.33E+01)	1.40E+04 -	8.81E+03
		(1.12E+04)	(7.03E+03)	(5.83E+00)	(4.08E+00)	(5.74E+01)		(1.13E+04)	(2.02E+04)
p suc	F15	1.94E+03 -	1.14E+02	1.32E+01 =	1.05E+01	3.09E+02 =	2.83E+02	2.35E+03 -	1.40E+03
Hybrid Functions		(3.78E+03)	(6.60E+02)	(9.70E+00)	(5.76E+00)	(1.32E+02)	(1.36E+02)	(3.05E+03)	(2.16E+03)
Fur	F16	3.92E+02 -	3.27E+02	2.91E+02 -	2.43E+02	5.92E+02 -	3.36E+02	7.30E+02 -	4.78E+02
		(1.27E+02)	(1.28E+02)	(1.16E+02)	(1.35E+02)	(2.96E+02)	(2.36E+02)	(2.21E+02)	(1.61E+02)
	F17	8.33E+01 -	7.21E+01	4.83E+01 =	5.10E+01	2.80E+02 -	1.45E+02	2.89E+02 -	1.52E+02
		(2.86E+01)	(2.09E+01)	(1.29E+01)	(9.63E+00)	(2.03E+02)	(9.83E+01)	(1.19E+02)	(6.88E+01)
	F18	5.06E+04 -	7.69E+03	7.32E+01 -	3.43E+01	2.07E+02 =	1.98E+02	1.71E+05 -	1.16E+05
		(7.16E+04)	(3.87E+04)	(4.20E+01)	(1.53E+01)	(8.94E+01)	(7.43E+01)	(1.53E+05)	(6.72E+04)
	F19	1.88E+03 -	1.20E+01	7.83E+00 =	7.40E+00	2.04E+02 -	1.73E+02	1.55E+03 =	1.61E+03
		(4.75E+03)	(6.37E+00)	(3.06E+00)	(2.40E+00)	(8.72E+01)	(6.95E+01)	(1.99E+03)	(3.30E+03)
	F20	9.72E+01 -	7.83E+01	6.23E+01 =	5.43E+01	1.38E+03 -	2.05E+02	3.21E+02 -	1.83E+02
	CECT	(5.22E+01)	(4.58E+01)	(3.64E+01)	(3.33E+01)	(3.73E+02)	(1.65E+02)	(1.02E+02)	(7.84E+01)
	F21	2.28E+02 -	2.22E+02	2.21E+02 =	2.20E+02	4.92E+02 -	3.03E+02	2.65E+02 -	2.39E+02
	cec i /	(4.78E+00)	(4.93E+00)	(3.13E+00)	(3.86E+00)	(2.67E+02)	(1.56E+02)	(1.55E+01)	(9.85E+00)
	F22	1.00E+02 =	1.39E+02	1.00E+02 =	1.00E+02	5.70E+03 -	3.05E+03	1.58E+02 -	1.00E+02
	CCC1/	(2.56E-05)	(2.76E+02)	(1.00E-13)	(1.00E-13)	(1.03E+03)	(2.50E+03)	(4.06E+02)	(2.11E-13)
	F23	3.75E+02 -	3.71E+02	3.68E+02 =	3.66E+02	1.99E+03 -	6.46E+02	4.45E+02 -	3.91E+02
	cec17	(6.33E+00)	(6.99E+00)	(4.87E+00)	(5.71E+00)	(8.26E+02)	(6.87E+02)	(3.32E+01)	(1.08E+01)
	F24	4.40E+02 -	4.36E+02	4.38E+02 -	4.36E+02	4.74E+02 =	4.57E+02	5.00E+02 -	4.49E+02
	cec17	(4.90E+00)	(5.27E+00)	(3.82E+00)	(3.77E+00)	(9.73E+01)	(1.09E+01)	(2.83E+01)	(1.02E+01)
ion	F25	3.87E+02 -	3.87E+02	3.87E+02 -	3.87E+02	3.87E+02 -	3.87E+02	4.29E+02 -	3.99E+02
Composition Functions	cec17	(1.86E-01)	(1.72E-01)	(1.38E-01)	(1.33E-01)	(2.74E+00)	(2.71E-02)	(2.71E+01)	(1.32E+01)
omp omc	F26	1.19E+03 -	1.16E+03	1.12E+03 =	1.09E+03	1.20E+03 -	1.20E+03	1.47E+03 -	1.14E+03
ŭ	cec17	(1.51E+02)	(8.12E+01)	(6.24E+01)	(6.26E+01)	(4.75E+02)	(3.22E+02)	(8.10E+02)	(5.73E+02)
	cec17F27	5.01E+02 =	5.03E+02	5.02E+02 =	5.02E+02	8.04E+02 -	4.86E+02	6.12E+02 -	5.56E+02
	cec17	(7.16E+00)	(7.65E+00)	(5.62E+00)	(4.92E+00)	(1.74E+03)	(1.08E+01)	(2.52E+01)	(1.69E+01)
	F28	3.41E+02 =	3.34E+02	3.34E+02 =	3.30E+02	3.51E+02 =	3.42E+02	5.00E+02 -	3.90E+02
	cec17	(5.64E+01)	(5.44E+01)	(5.47E+01)	(4.90E+01)	(6.13E+01)	(5.34E+01)	(9.70E+01)	(7.31E+01)
	F29	4.85E+02 -	4.74E+02	4.63E+02 =	4.65E+02	7.88E+02 -	6.36E+02	9.73E+02 -	7.05E+02
	F29	(2.28E+01)	(1.52E+01)	(2.62E+01)	(1.66E+01)	(1.84E+02)	(1.25E+02)	(1.78E+02)	(7.69E+01)
	F30	2.79E+03 =	2.13E+03	2.10E+03 =	2.08E+03	2.22E+03 =	2.19E+03	1.19E+05 -	1.20E+04
	cec17	(2.00E+03)	(1.42E+02)	(1.27E+02)	(1.39E+02)	(2.09E+02)	(2.20E+02)	(1.81E+05)	(5.61E+03)
_	/=/+	19/11/0	Í	7/23/0		18/11/1	,	28/1/1	, , , , , , , , , , , , , , , , , , ,

TABLE S10 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 50-D CEC2017 BENCHMARK SET

			SCSS-		SCSS-		SCSS-		SCSS-
		JADE	JADE	SHADE	SHADE	CMA-ES	CMA-ES	LIPS	LIPS
		0.000		0.000		0.005+00		1.170 (02.)	
	cec17F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	1.17E+03 +	2.89E+03
al	ccc17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.02E+03)	(4.25E+03)
nod	cec17F2	4.21E-05 +	4.93E-05	5.08E-05 =	5.41E-05	0.00E+00 =	0.00E+00	7.62E+02 -	3.25E-03
Unimodal Functions	cec1/	(1.21E-05)	(1.63E-05)	(1.48E-05)	(1.87E-05)	(0.00E+00)	(0.00E+00)	(7.84E+02)	(4.46E-04)
) H	F3	1.42E+04 -	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	9.27E+04 -	6.53E+04
	cec17F3	(3.38E+04)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.23E+04)	(1.57E+04)
	E4	5.46E+01 =	5.37E+01	6.40E+01 =	5.50E+01	4.34E+01 =	3.61E+01	6.66E+02 -	2.52E+02
	cec17F4	(5.18E+01)	(5.01E+01)	(5.03E+01)	(4.53E+01)	(4.79E+01)	(4.31E+01)	(3.39E+02)	(7.79E+01)
	D.5			4.35E+01 -					
	F5	5.18E+01 -	3.98E+01		3.89E+01	1.03E+03 -	6.32E+02	1.68E+02 -	1.00E+02
	00017	(9.01E+00)	(9.33E+00)	(5.40E+00)	(6.36E+00)	(1.78E+02)	(4.78E+02)	(2.62E+01)	(2.00E+01)
lal	cec17F6	0.00E+00 +	5.77E-07	1.59E-06 =	1.67E-06	9.54E+01 -	7.49E+01	2.41E+01 -	4.92E+00
Simple Multimodal Functions	cec1/	(0.00E+00)	(2.18E-06)	(2.26E-06)	(1.87E-06)	(1.04E+01)	(3.66E+01)	(5.43E+00)	(2.13E+00)
ulti tion	cec17F7	9.89E+01 -	8.94E+01	8.91E+01 -	8.60E+01	6.42E+03 -	1.65E+03	3.74E+02 -	1.74E+02
M a	cec17	(8.16E+00)	(8.04E+00)	(5.48E+00)	(5.82E+00)	(1.55E+03)	(2.74E+03)	(6.09E+01)	(2.69E+01)
nple F	EQ	5.43E+01 -	4.17E+01	4.21E+01 =	4.10E+01	1.09E+03 -	5.94E+02	1.74E+02 -	1.02E+02
Sin	cec17F8	(8.64E+00)	(8.53E+00)	(6.54E+00)	(7.27E+00)	(2.12E+02)	(4.60E+02)	(3.49E+01)	(1.71E+01)
	770	1.44E+00 =	1.46E+00	3.87E-01 =	3.55E-01	3.08E+04 =	2.64E+04	4.44E+03 -	8.85E+02
	cec17F9								
	/	(1.52E+00)	(1.26E+00)	(3.94E-01)	(4.33E-01)	(5.49E+03)	(1.16E+04)	(1.45E+03)	(5.90E+02)
	F10	3.70E+03 -	3.49E+03	3.48E+03 =	3.43E+03	8.04E+03 -	7.19E+03	5.14E+03 -	4.24E+03
	cec1/	(3.77E+02)	(3.97E+02)	(3.77E+02)	(3.50E+02)	(9.92E+02)	(1.22E+03)	(6.66E+02)	(6.02E+02)
	F11	1.57E+02 -	1.32E+02	8.67E+01 -	6.88E+01	2.88E+02 -	2.08E+02	2.35E+03 -	2.58E+02
	F11	(5.18E+01)	(3.61E+01)	(2.71E+01)	(1.66E+01)	(6.63E+01)	(5.01E+01)	(2.45E+03)	(8.87E+01)
	cec17F12	7.02E+03 =	6.57E+03	5.66E+03 =	6.95E+03	2.66E+03 =	2.64E+03	1.35E+07 -	1.84E+06
	cec17	(6.81E+03)	(3.92E+03)	(3.09E+03)	(4.86E+03)	(6.49E+02)	(6.45E+02)	(4.17E+07)	(1.55E+06)
		2.52E+02 =	2.10E+02	2.94E+02 -		2.55E+03 =	2.28E+03	6.58E+03 -	
	F13				1.33E+02				1.16E+03
	ccci	(1.52E+02)	(1.23E+02)	(1.94E+02)	(5.36E+01)	(7.76E+02)	(7.63E+02)	(3.64E+03)	(7.74E+02)
	F14	6.91E+04 -	5.09E+03	1.82E+02 -	8.43E+01	3.16E+02 =	2.97E+02	1.32E+05 -	2.61E+04
	cec1/	(1.19E+05)	(2.12E+04)	(4.59E+01)	(2.75E+01)	(7.64E+01)	(9.08E+01)	(3.30E+05)	(2.66E+04)
so.	F15	1.13E+03 -	1.92E+02	2.52E+02 -	1.28E+02	4.88E+02 =	4.84E+02	1.97E+03 -	8.09E+02
rid ion	F15	(2.51E+03)	(9.30E+01)	(1.05E+02)	(5.77E+01)	(1.68E+02)	(1.20E+02)	(1.89E+03)	(6.53E+02)
Hybrid Functions	F16	9.06E+02 -	7.24E+02	7.26E+02 =	7.44E+02	9.06E+02 -	5.49E+02	1.44E+03 -	9.12E+02
표표	F16	(1.65E+02)	(1.67E+02)	(1.83E+02)	(1.31E+02)	(3.97E+02)	(3.04E+02)	(3.37E+02)	(2.46E+02)
	E1.7	6.40E+02 -	5.52E+02	4.78E+02 =	4.90E+02	9.86E+02 -	5.71E+02	1.16E+03 -	7.70E+02
	F17								
		(1.59E+02)	(1.55E+02)	(1.37E+02)	(1.25E+02)	(2.57E+02)	(2.25E+02)	(2.11E+02)	(1.70E+02)
	F18	1.82E+05 -	1.59E+02	1.38E+02 -	1.10E+02	3.60E+02 =	3.31E+02	1.21E+06 -	3.56E+05
	ceci /	(4.33E+05)	(1.54E+02)	(8.50E+01)	(7.29E+01)	(1.23E+02)	(1.07E+02)	(2.22E+06)	(2.38E+05)
	F19	9.41E+02 -	1.19E+02	1.14E+02 -	7.53E+01	2.71E+02 =	2.43E+02	3.34E+03 =	3.26E+03
	cec17	(2.46E+03)	(4.55E+01)	(4.32E+01)	(3.39E+01)	(1.30E+02)	(7.61E+01)	(4.99E+03)	(5.11E+03)
	cec17F20	4.74E+02 -	3.97E+02	3.46E+02 =	3.27E+02	2.37E+03 -	8.23E+02	6.79E+02 -	4.60E+02
	cec17	(1.35E+02)	(1.28E+02)	(1.19E+02)	(9.96E+01)	(5.04E+02)	(8.32E+02)	(1.67E+02)	(1.57E+02)
<b>—</b>		2.54E+02 -	2.41E+02	2.44E+02 =	2.42E+02	7.97E+02 -	4.13E+02		
	F21							3.60E+02 -	3.01E+02
		(1.03E+01)	(8.60E+00)	(6.19E+00)	(7.15E+00)	(4.85E+02)	(3.21E+02)	(3.55E+01)	(1.72E+01)
	cec17F22	3.68E+03 -	3.41E+03	3.50E+03 =	3.27E+03	9.11E+03 -	7.94E+03	4.55E+03 -	3.92E+03
	CEC1/	(1.67E+03)	(1.45E+03)	(1.50E+03)	(1.57E+03)	(1.09E+03)	(1.30E+03)	(2.41E+03)	(1.87E+03)
	. F23	4.79E+02 -	4.65E+02	4.66E+02 -	4.60E+02	3.18E+03 -	1.20E+03	7.13E+02 -	5.59E+02
	cec1/	(1.09E+01)	(1.01E+01)	(8.46E+00)	(8.48E+00)	(6.79E+02)	(1.18E+03)	(6.14E+01)	(2.46E+01)
	F2/1	5.40E+02 -	5.29E+02	5.35E+02 -	5.30E+02	7.00E+02 -	5.72E+02	7.71E+02 -	6.05E+02
	F24	(8.46E+00)	(6.59E+00)	(8.93E+00)	(6.90E+00)	(2.49E+02)	(2.19E+01)	(7.71E+01)	(1.99E+01)
a a	F2.5	5.23E+02 =	5.20E+02	5.15E+02 =	5.08E+02	5.02E+02 =	4.94E+02	9.66E+02 -	6.35E+02
Composition Functions	cec17F25								
pos		(3.28E+01)	(3.62E+01)	(3.61E+01)	(3.75E+01)	(3.32E+01)	(2.97E+01)	(2.15E+02)	(4.87E+01)
om	F26	1.63E+03 -	1.50E+03	1.45E+03 -	1.41E+03	1.90E+03 -	1.76E+03	3.87E+03 -	2.19E+03
0	CCC1 /	(1.22E+02)	(1.34E+02)	(9.07E+01)	(9.53E+01)	(5.02E+02)	(5.10E+02)	(6.48E+02)	(6.09E+02)
	cec17F27	5.58E+02 =	5.55E+02	5.37E+02 =	5.31E+02	7.55E+02 -	4.76E+02	1.19E+03 -	8.66E+02
	cec17	(2.58E+01)	(2.94E+01)	(1.88E+01)	(1.33E+01)	(1.17E+03)	(1.37E+01)	(9.61E+01)	(6.62E+01)
	F28	4.91E+02 =	4.94E+02	4.82E+02 =	4.85E+02	4.70E+02 =	4.64E+02	1.49E+03 -	6.25E+02
	cec17	(2.25E+01)	(2.11E+01)	(2.44E+01)	(2.38E+01)	(2.01E+01)	(1.60E+01)	(4.96E+02)	(5.57E+01)
	E20	4.60E+02 =	4.72E+02	4.38E+02 =	4.46E+02	1.04E+03 -	6.93E+02	2.02E+03 -	1.12E+03
	cec17F29				(5.42E+01)	(2.96E+02)			
		(6.92E+01)	(7.48E+01)	(5.83E+01)			(1.73E+02)	(3.35E+02)	(1.80E+02)
	F30	6.64E+05 =	6.56E+05	6.57E+05 =	6.54E+05	7.86E+05 =	7.87E+05	3.31E+07 -	4.90E+06
		(9.01E+04)	(8.03E+04)	(7.82E+04)	(6.50E+04)	(1.45E+05)	(1.72E+05)	(1.45E+07)	(1.58E+06)
	/=/+	18/10/2		11/19/0		16/14/0		28/1/1	<u></u>

TABLE S11 Performance comparisons of four SCSS-based top algorithms with the baselines on 30-D cec2017 benchmark set

							SCSS-		1
		I CHADE	SCSS-	IIMOEA II	SCSS-	L-SHADE		:00:	SCSS-
		L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	EpSin _	L-SHADE_	jSO	jSO
		0.005.00	0.005.00	0.005.00	0.005.00	_	EpSin	0.005.00	-
	cec17F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
al	Cec 1 /	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
noda	F2	4.06E-09 -	0.00E+00	4.14E-08 =	3.23E-08	0.00E+00 =	0.00E+00	6.65E-08 =	9.39E-08
Unimodal Functions	cec17F2	(8.59E-09)	(0.00E+00)	(5.51E-08)	(5.00E-08)	(0.00E+00)	(0.00E+00)	(9.56E-08)	(9.54E-08)
J	F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	E4	5.86E+01 =	5.86E+01	5.86E+01 =	5.87E+01	5.86E+01 =	5.86E+01	5.86E+01 =	5.86E+01
	cec17F4	(3.75E-14)	(3.27E-14)	(4.90E-14)	(7.78E-01)	(2.88E-14)	(2.93E-14)	(2.13E-14)	(2.41E-14)
		7.02E+00 =	7.61E+00	8.29E+00 =	8.54E+00	1.22E+01 -	1.06E+01	8.32E+00 -	7.49E+00
	cec17F5								
		(1.52E+00)	(1.58E+00)	(2.19E+00)	(2.06E+00)	(1.60E+00)	(2.43E+00)	(1.74E+00)	(1.80E+00)
dal	cec17F6	3.38E-09 =	1.14E-08	1.81E-08 =	6.71E-09	8.05E-09 =	0.00E+00	9.39E-09 =	1.74E-08
imo	ccc17	(1.98E-08)	(3.73E-08)	(8.05E-08)	(2.74E-08)	(3.25E-08)	(0.00E+00)	(3.29E-08)	(4.45E-08)
fulti	cec17 ^{F7}	3.79E+01 +	3.91E+01	4.04E+01 =	4.06E+01	4.35E+01 -	4.19E+01	3.84E+01 -	3.75E+01
Simple Multimodal Functions	cec1/	(1.18E+00)	(2.03E+00)	(2.73E+00)	(2.68E+00)	(2.48E+00)	(2.75E+00)	(1.83E+00)	(1.33E+00)
ldm	cec17F8	7.11E+00 =	8.09E+00	8.45E+00 =	8.54E+00	1.35E+01 -	1.26E+01	8.81E+00 -	7.57E+00
Si	cec17	(1.58E+00)	(2.13E+00)	(1.86E+00)	(2.36E+00)	(1.50E+00)	(2.46E+00)	(2.17E+00)	(2.04E+00)
	cec17F9	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	E10	1.41E+03 =	1.44E+03	1.69E+03 =	1.63E+03	1.35E+03 =	1.28E+03	1.49E+03 =	1.54E+03
	cec17F10	(2.31E+02)	(2.33E+02)	(3.17E+02)	(3.04E+02)	(1.90E+02)	(2.38E+02)	(2.66E+02)	(2.18E+02)
	E11	3.73E+01 -	3.36E+01	1.34E+01 =	1.53E+01	1.58E+01 =	1.97E+01	9.87E+00 =	6.46E+00
	F11								
		(2.91E+01)	(2.90E+01)	(2.02E+01)	(2.34E+01)	(2.30E+01)	(2.55E+01)	(1.89E+01)	(1.39E+01)
	cec17F12	1.04E+03 -	6.95E+02	8.28E+02 -	2.84E+02	4.03E+02 =	3.77E+02	1.66E+02 -	8.34E+01
	ccci7	(3.37E+02)	(3.16E+02)	(3.18E+02)	(1.85E+02)	(2.22E+02)	(2.15E+02)	(8.86E+01)	(7.27E+01)
	cec17F13	1.92E+01 -	1.73E+01	1.53E+01 =	1.61E+01	1.42E+01 =	1.54E+01	1.60E+01 =	1.63E+01
	cec1/	(4.61E+00)	(4.88E+00)	(6.24E+00)	(5.99E+00)	(6.02E+00)	(5.86E+00)	(5.76E+00)	(4.50E+00)
	F14	2.19E+01 +	2.22E+01	2.22E+01 =	2.22E+01	2.13E+01 =	2.26E+01	2.20E+01 =	2.14E+01
	F14	(1.22E+00)	(3.11E+00)	(3.42E+00)	(4.58E+00)	(4.65E+00)	(1.20E+00)	(1.08E+00)	(3.19E+00)
	F15	3.54E+00 -	2.80E+00	3.30E+00 -	2.83E+00	2.41E+00 =	2.58E+00	1.26E+00 =	1.03E+00
Hybrid Functions	F15	(1.56E+00)	(1.34E+00)	(1.70E+00)	(2.22E+00)	(1.44E+00)	(1.61E+00)	(8.34E-01)	(8.73E-01)
Hyb	F16	4.00E+01 =	3.43E+01	9.31E+01 =	7.11E+01	5.09E+01 -	3.12E+01	6.50E+01 =	5.02E+01
I 로	cec17	(2.74E+01)	(1.48E+01)	(9.08E+01)	(8.16E+01)	(4.44E+01)	(3.38E+01)	(6.92E+01)	(6.73E+01)
	E17	3.29E+01 =	3.44E+01	4.07E+01 +	4.46E+01	2.83E+01 =	2.91E+01	3.45E+01 -	3.17E+01
	cec17F17	(6.27E+00)	(5.90E+00)	(8.68E+00)	(1.00E+01)	(6.47E+00)	(5.86E+00)	(7.04E+00)	(7.19E+00)
	F10	2.23E+01 -	2.04E+01	2.15E+01 =	2.13E+01	2.13E+01 =	2.13E+01	2.08E+01 =	1.95E+01
	cec17F18								
		(1.28E+00)	(2.79E+00)	(6.94E-01)	(7.26E-01)	(9.45E-01)	(9.30E-01)	(3.79E-01)	(4.82E+00)
	F19	5.96E+00 =	5.90E+00	6.38E+00 =	7.13E+00	5.24E+00 =	5.10E+00	4.53E+00 =	4.06E+00
	ccci7	(1.87E+00)	(2.05E+00)	(1.91E+00)	(2.35E+00)	(1.63E+00)	(1.87E+00)	(1.90E+00)	(1.43E+00)
	cec17F20	3.01E+01 =	2.99E+01	4.27E+01 =	3.97E+01	2.83E+01 =	2.60E+01	3.01E+01 =	2.75E+01
	cecı/	(5.93E+00)	(4.37E+00)	(9.05E+00)	(7.88E+00)	(7.68E+00)	(5.45E+00)	(8.53E+00)	(7.25E+00)
	F21	2.08E+02 =	2.08E+02	2.09E+02 =	2.10E+02	2.12E+02 -	2.10E+02	2.09E+02 -	2.08E+02
	cec17	(1.65E+00)	(1.53E+00)	(2.11E+00)	(2.43E+00)	(2.62E+00)	(2.50E+00)	(1.93E+00)	(2.04E+00)
	cec17F22	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02
	cec17	(9.20E-14)	(1.00E-13)	(1.39E-13)	(1.87E-13)	(1.00E-13)	(1.00E-13)	(9.20E-14)	(1.00E-13)
	cec17F23	3.54E+02 =	3.54E+02	3.54E+02 =	3.54E+02	3.55E+02 =	3.55E+02	3.51E+02 -	3.50E+02
	cec17	(3.16E+00)	(2.98E+00)	(4.25E+00)	(3.85E+00)	(2.86E+00)	(3.71E+00)	(3.46E+00)	(3.15E+00)
	F24	4.28E+02 =	4.28E+02	4.28E+02 +	4.29E+02	4.29E+02 -	4.27E+02	4.26E+02 =	4.26E+02
	cec17	(1.58E+00)	(1.87E+00)	(2.39E+00)	(2.35E+00)	(2.73E+00)	(2.07E+00)	(2.38E+00)	(3.06E+00)
<b>=</b>	E25	3.87E+02 -	3.87E+02	3.87E+02 -	3.87E+02	3.87E+02 =	3.87E+02	3.87E+02 =	3.87E+02
Composition Functions	cec17F25	(1.97E-02)	(1.26E-02)	(2.43E-02)	(1.71E-02)	(5.91E-03)	(5.70E-03)	(5.99E-03)	(6.30E-03)
npos	Eac	9.85E+02 -	9.65E+02	9.51E+02 =	9.52E+02	9.55E+02 -	9.35E+02	9.30E+02 =	9.25E+02
Corr	F26			(3.60E+01)	(4.31E+01)	(3.92E+01)	9.55E+02 (4.45E+01)	9.50E+02 = (3.65E+01)	
		(3.55E+01)	(3.66E+01)						(4.04E+01)
	F27	5.07E+02 =	5.06E+02	5.03E+02 =	5.01E+02	5.05E+02 =	5.05E+02	4.97E+02 =	4.95E+02
	/	(4.03E+00)	(5.63E+00)	(4.75E+00)	(6.09E+00)	(4.52E+00)	(4.34E+00)	(6.63E+00)	(7.76E+00)
	cec17F28	3.39E+02 =	3.27E+02	3.20E+02 =	3.26E+02	3.06E+02 +	3.24E+02	3.13E+02 =	3.02E+02
	CCC1/	(5.61E+01)	(4.88E+01)	(4.37E+01)	(4.74E+01)	(2.63E+01)	(4.66E+01)	(3.54E+01)	(1.60E+01)
	cec17F29	4.36E+02 +	4.42E+02	4.38E+02 +	4.45E+02	4.29E+02 +	4.35E+02	4.32E+02 =	4.27E+02
	cec1/	(7.53E+00)	(1.15E+01)	(1.62E+01)	(1.19E+01)	(6.34E+00)	(8.65E+00)	(1.58E+01)	(2.42E+01)
	F30	1.99E+03 -	1.97E+03	1.97E+03 =	1.98E+03	1.99E+03 =	1.99E+03	1.97E+03 =	1.97E+03
	cec17	(5.56E+01)	(4.32E+01)	(3.05E+01)	(3.66E+01)	(7.24E+01)	(5.68E+01)	(1.68E+01)	(1.11E+01)
	/=/+	9/18/3		3/24/3		7/21/2	,	7/23/0	<u> </u>
		-1200		-,,0	ı .	.,,-	1	.,	

Table S12 Performance comparisons of four SCSS-based top algorithms with the baselines on 50-D cec2017 benchmark set

					LCZ017 BENCI		SCSS-		
		L-SHADE	SCSS-	UMOEA-II	SCSS-	L-SHADE_	L-SHADE_	iSO	SCSS-
		L-SHADE	L-SHADE	UNIOEA-II	UMOEA-II	EpSin	EpSin	JSO	jSO
	Г1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17F1	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Unimodal Functions	F2	5.01E-06 -	1.66E-06	1.37E-05 -	6.55E-06	2.23E-07 -	9.62E-08	1.38E-05 =	1.48E-05
imo	F2		(9.79E-07)						
고표		(3.12E-06) 0.00E+00 =	0.00E+00	(6.95E-06) 3.00E-10 +	(4.16E-06) 1.54E-08	(1.36E-07) 0.00E+00 =	(6.14E-08) 0.00E+00	(8.23E-06) 0.00E+00 =	(8.26E-06) 0.00E+00
	cec17F3								
		(0.00E+00)	(0.00E+00)	(2.14E-09)	(2.31E-08)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	cec17F4	7.23E+01 =	7.34E+01	7.22E+01 =	8.27E+01	5.04E+01 =	4.51E+01	5.85E+01 =	4.87E+01
		(4.94E+01)	(5.05E+01)	(4.97E+01)	(5.36E+01)	(4.38E+01)	(3.97E+01)	(4.56E+01)	(4.11E+01)
	cec17F5	1.19E+01 =	1.20E+01	1.61E+01 -	1.43E+01	2.90E+01 -	1.94E+01	1.56E+01 -	1.26E+01
	CCC17	(2.46E+00)	(1.99E+00)	(4.55E+00)	(3.11E+00)	(6.65E+00)	(6.64E+00)	(2.65E+00)	(2.70E+00)
dal	cec17F6	7.12E-08 -	2.22E-08	1.66E-04 -	1.16E-07	2.57E-07 -	4.20E-08	4.10E-07 =	2.85E-07
imo su	CCC17	(2.58E-07)	(6.76E-08)	(5.76E-04)	(2.28E-07)	(3.41E-07)	(6.98E-08)	(5.52E-07)	(5.12E-07)
fult	cec17F7	6.50E+01 =	6.46E+01	7.04E+01 =	6.85E+01	7.98E+01 -	7.15E+01	6.66E+01 -	6.33E+01
le N Fun	Cec1/	(2.23E+00)	(2.12E+00)	(5.17E+00)	(5.14E+00)	(7.02E+00)	(5.69E+00)	(3.10E+00)	(2.66E+00)
Simple Multimodal Functions	F8 cec17	1.21E+01 =	1.17E+01	1.58E+01 =	1.43E+01	3.07E+01 -	1.96E+01	1.69E+01 -	1.20E+01
	cec1/	(2.39E+00)	(2.56E+00)	(4.09E+00)	(4.17E+00)	(3.99E+00)	(6.59E+00)	(3.43E+00)	(2.67E+00)
	cec17 ^{F9}	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F10	3.32E+03 -	3.12E+03	3.75E+03 =	3.64E+03	3.07E+03 -	2.89E+03	3.21E+03 -	3.05E+03
	cec17	(2.81E+02)	(3.27E+02)	(5.99E+02)	(5.22E+02)	(2.91E+02)	(2.90E+02)	(3.78E+02)	(3.63E+02)
	F11	4.80E+01 -	3.37E+01	4.42E+01 -	3.16E+01	2.75E+01 =	2.71E+01	2.66E+01 -	2.50E+01
	cec17	(6.64E+00)	(4.65E+00)	(9.48E+00)	(4.51E+00)	(2.01E+00)	(2.06E+00)	(3.13E+00)	(4.12E+00)
	F12	2.07E+03 =	2.10E+03	2.17E+03 =	2.01E+03	1.38E+03 =	1.36E+03	1.61E+03 -	1.29E+03
	cec17	(5.21E+02)	(4.81E+02)	(5.36E+02)	(4.99E+02)	(3.79E+02)	(3.67E+02)	(4.42E+02)	(3.66E+02)
	F13	6.52E+01 -	5.09E+01	4.69E+01 -	3.56E+01	3.76E+01 =	4.29E+01	3.17E+01 =	2.60E+01
	F13 cec17 F14	(2.98E+01)	(2.89E+01)	(1.73E+01)	(1.57E+01)	(2.60E+01)	(2.23E+01)	(2.01E+01)	(2.09E+01)
		3.06E+01 -	2.48E+01	2.85E+01 -	2.70E+01	2.71E+01 =	2.67E+01	2.50E+01 =	2.51E+01
	cec17	(3.73E+00)	(2.30E+00)	(3.30E+00)	(2.35E+00)	(2.68E+00)	(2.57E+00)	(2.34E+00)	(2.46E+00)
	E15	4.53E+01 -	2.77E+01	3.45E+01 -	2.69E+01	2.51E+01 =	2.39E+01	2.37E+01 -	2.12E+01
bi ons	F15	(1.40E+01)	(3.82E+00)	(6.42E+00)	(3.14E+00)	(3.17E+00)	(2.44E+00)	(2.77E+00)	(1.81E+00)
Hybrid Functions	E1.6	3.76E+02 =	3.49E+02	4.58E+02 =	4.07E+02	3.31E+02 -	2.68E+02	4.77E+02 =	4.45E+02
고문	F16	(1.36E+02)	(1.17E+02)	(1.68E+02)	(1.69E+02)	(1.25E+02)	(1.16E+02)	(1.36E+02)	(1.55E+02)
	E17	2.32E+02 =	2.04E+02	3.14E+02 =	3.01E+02	2.40E+02 -	2.04E+02	2.93E+02 =	2.61E+02
	F17	(6.72E+01)	(9.33E+01)	(1.18E+02)	(1.07E+02)	(6.48E+01)	(8.12E+01)	(1.10E+02)	(1.04E+02)
	E10	5.06E+01 -	2.80E+01	3.26E+01 -	2.60E+01	2.53E+01 =	2.46E+01	2.46E+01 -	2.24E+01
	F18		(3.87E+00)	(7.70E+00)	(2.90E+01)	(2.70E+00)		(2.42E+00)	(1.14E+00)
		(1.72E+01) 3.50E+01 -			1.70E+01	_	(2.15E+00)		
	F19		1.71E+01	2.08E+01 -		1.62E+01 =	1.56E+01	1.42E+01 -	1.17E+01
		(1.39E+01)	(3.01E+00)	(3.32E+00)	(3.00E+00)	(3.11E+00)	(2.97E+00)	(2.73E+00)	(2.65E+00)
	F20 cec17	1.56E+02 =	1.72E+02	2.60E+02 =	2.80E+02	1.35E+02 -	1.07E+02	1.17E+02 =	1.14E+02
	0001/	(4.95E+01)	(6.37E+01)	(1.20E+02)	(1.16E+02)	(5.03E+01)	(2.47E+01)	(6.45E+01)	(6.57E+01)
	F21	2.16E+02 -	2.14E+02	2.20E+02 -	2.18E+02	2.30E+02 -	2.20E+02	2.17E+02 -	2.14E+02
	CCC1/	(2.26E+00)	(2.74E+00)	(5.20E+00)	(4.64E+00)	(6.27E+00)	(6.07E+00)	(2.73E+00)	(3.27E+00)
	cec17F22	2.84E+03 =	3.33E+03	2.82E+03 =	2.78E+03	1.54E+03 =	2.10E+03	1.07E+03 =	1.63E+03
	CCC1/	(1.53E+03)	(8.42E+02)	(2.11E+03)	(2.16E+03)	(1.62E+03)	(1.46E+03)	(1.61E+03)	(1.79E+03)
	F23	4.33E+02 -	4.30E+02	4.42E+02 -	4.37E+02	4.43E+02 -	4.35E+02	4.30E+02 -	4.26E+02
	CeC1/	(4.04E+00)	(4.60E+00)	(8.43E+00)	(7.54E+00)	(6.60E+00)	(7.00E+00)	(6.16E+00)	(6.54E+00)
	F24	5.12E+02 -	5.11E+02	5.12E+02 =	5.11E+02	5.13E+02 -	5.08E+02	5.08E+02 =	5.07E+02
	cec1/	(3.01E+00)	(2.81E+00)	(4.82E+00)	(3.86E+00)	(5.58E+00)	(4.57E+00)	(4.54E+00)	(3.77E+00)
ion	F25	4.82E+02 -	4.81E+02	4.82E+02 -	4.81E+02	4.80E+02 =	4.81E+02	4.81E+02 -	4.81E+02
Composition Functions	cec17	(4.55E+00)	(3.57E+00)	(6.18E+00)	(2.33E+00)	(1.44E-02)	(3.52E+00)	(2.32E+00)	(3.15E+00)
Junc Junc	F26	1.21E+03 -	1.17E+03	1.21E+03 =	1.19E+03	1.27E+03 -	1.18E+03	1.13E+03 =	1.12E+03
ٽ	cec17	(4.31E+01)	(3.93E+01)	(6.22E+01)	(5.77E+01)	(7.63E+01)	(1.08E+02)	(4.90E+01)	(5.07E+01)
	F27	5.43E+02 =	5.38E+02	5.36E+02 -	5.31E+02	5.33E+02 =	5.28E+02	5.14E+02 =	5.10E+02
	F27	(2.15E+01)	(1.56E+01)	(1.67E+01)	(1.78E+01)	(1.56E+01)	(1.16E+01)	(1.01E+01)	(1.37E+01)
	F28	4.64E+02 -	4.60E+02	4.73E+02 -	4.64E+02	4.60E+02 =	4.60E+02	4.59E+02 =	4.59E+02
	cec17	(1.51E+01)	(5.68E+00)	(2.25E+01)	(1.55E+01)	(6.84E+00)	(6.84E+00)	(3.03E-13)	(3.32E-13)
	F29	3.53E+02 =	3.57E+02	3.62E+02 +	3.84E+02	3.49E+02 =	3.49E+02	3.65E+02 =	3.65E+02
	cec17F29	(1.08E+01)	(1.44E+01)	(1.91E+01)	(1.93E+01)	(9.11E+00)	(1.14E+01)	(1.52E+01)	(1.40E+01)
	E30	6.68E+05 =	6.51E+05	6.68E+05 =	6.38E+05	6.50E+05 =	6.72E+05	6.08E+05 =	6.04E+05
	F30	(8.12E+04)	(8.03E+04)	(1.02E+05)	(5.48E+04)	(6.32E+04)	(8.23E+04)	(3.03E+04)	(2.57E+04)
	-/=/+	15/15/0	(0.001.01)	14/14/2	(222.01)	13/17/0	(0.202.01)	12/18/0	(2.5, 2.01)
	, , ,	13/13/0	I	17/17/2	I	15/1//0	I	12/10/0	

table S13 Performance comparisons of four SCSS-based top algorithms with the baselines on 100-D cec2017 benchmark set

					I		SCSS-		
		L-SHADE	SCSS- L-SHADE	UMOEA-II	SCSS- UMOEA-II	L-SHADE_		.00	SCSS-
						EpSin	L-SHADE_ EpSin	jSO	jSO
									350
Unimodal Functions	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17F1	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F2	3.16E-04 +	3.41E-04	9.66E-05 =	9.31E-05	1.58E-04 -	1.38E-04	3.10E-04 +	3.66E-04
	cec1/	(5.07E-05)	(5.81E-05)	(1.75E-05)	(1.35E-05)	(4.22E-05)	(4.25E-05)	(5.45E-05)	(6.77E-05)
	cec17F3	5.47E-06 +	1.07E-03	2.84E-06 +	6.60E-06	5.35E-09 -	2.20E-10	2.71E-06 +	1.52E-04
	cec17	(6.19E-06)	(1.73E-03)	(3.01E-06)	(4.57E-06)	(1.11E-08)	(1.57E-09)	(2.72E-06)	(1.69E-04)
Simple Multimodal Functions	cec17F4	2.01E+02 -	2.00E+02	1.87E+02 =	1.93E+02	2.04E+02 =	2.05E+02	1.94E+02 =	1.96E+02
		(7.69E+00)	(8.00E+00)	(4.03E+01)	(3.12E+01)	(9.79E+00)	(1.11E+01)	(2.35E+01)	(1.09E+01)
	F5	3.78E+01 -	2.69E+01	3.53E+01 -	2.79E+01	6.06E+01 -	4.15E+01	4.29E+01 -	2.84E+01
	cec17F5	(7.64E+00)	(6.48E+00)	(7.62E+00)	(7.14E+00)	(7.15E+00)	(6.26E+00)	(7.17E+00)	(5.43E+00)
	F6	1.37E-03 -	5.37E-04	8.12E-03 -	2.61E-03	3.51E-05 -	9.41E-06	1.61E-04 -	1.68E-05
	cec17F6	(8.75E-04)	(4.36E-04)	(5.54E-03)	(2.27E-03)	(1.38E-05)	(5.14E-06)	(4.30E-04)	(1.18E-05)
	F7	1.51E+02 -	1.38E+02	1.41E+02 -	1.36E+02	1.67E+02 -	1.45E+02	1.41E+02 -	1.27E+02
	cec17F7								
		(4.80E+00)	(4.48E+00)	(9.72E+00)	(9.40E+00)	(9.13E+00)	(5.70E+00)	(6.94E+00)	(4.53E+00)
	F8 cec17	3.92E+01 -	2.75E+01	3.60E+01 -	2.78E+01	5.73E+01 -	3.87E+01	4.31E+01 -	2.99E+01
		(5.48E+00)	(5.11E+00)	(7.09E+00)	(7.23E+00)	(9.38E+00)	(6.26E+00)	(5.58E+00)	(5.62E+00)
	F9 cec17 F10 cec17	1.56E-01 -	1.42E-02	5.35E-01 -	9.17E-02	0.00E+00 =	0.00E+00	4.60E-02 -	0.00E+00
		(2.22E-01)	(6.64E-02)	(5.13E-01)	(1.35E-01)	(0.00E+00)	(0.00E+00)	(1.11E-01)	(0.00E+00)
		1.14E+04 -	1.05E+04	1.19E+04 =	1.13E+04	1.05E+04 -	9.57E+03	9.71E+03 -	9.23E+03
		(6.11E+02)	(4.67E+02)	(1.25E+03)	(1.59E+03)	(5.15E+02)	(4.63E+02)	(6.59E+02)	(6.08E+02)
	F11	3.86E+02 -	1.54E+02	4.27E+02 -	1.58E+02	4.16E+01 =	4.26E+01	1.06E+02 -	7.21E+01
Hybrid Functions	F12	(9.53E+01)	(5.30E+01)	(1.03E+02)	(4.12E+01)	(2.39E+01)	(2.91E+01)	(3.82E+01)	(3.10E+01)
		2.37E+04 =	2.25E+04	4.52E+03 =	4.86E+03	5.28E+03 -	4.62E+03	2.05E+04 -	1.41E+04
		(1.05E+04)	(8.53E+03)	(8.56E+02)	(1.42E+03)	(1.39E+03)	(7.33E+02)	(1.06E+04)	(8.02E+03)
	F13 cec17 F14 cec17 F15	`							
		1.36E+03 -	2.45E+02	3.60E+02 -	1.64E+02	7.92E+01 =	8.36E+01	1.60E+02 -	1.12E+02
		(8.06E+02)	(7.34E+01)	(1.47E+02)	(4.77E+01)	(2.87E+01)	(3.44E+01)	(4.19E+01)	(2.79E+01)
		2.55E+02 -	1.01E+02	2.35E+02 -	7.25E+01	5.13E+01 =	4.86E+01	6.28E+01 -	3.95E+01
		(3.25E+01)	(2.01E+01)	(3.25E+01)	(1.56E+01)	(8.93E+00)	(6.46E+00)	(1.18E+01)	(4.08E+00)
		2.50E+02 =	2.59E+02	2.67E+02 -	2.21E+02	7.28E+01 =	7.73E+01	1.64E+02 -	9.73E+01
		(4.87E+01)	(4.34E+01)	(5.38E+01)	(4.82E+01)	(3.14E+01)	(2.83E+01)	(4.20E+01)	(3.56E+01)
	F16								
		1.79E+03 -	1.55E+03	1.67E+03 =	1.64E+03	1.55E+03 -	1.31E+03	1.84E+03 =	1.74E+03
	F17	(2.58E+02)	(2.39E+02)	(4.55E+02)	(4.27E+02)	(2.51E+02)	(2.61E+02)	(3.15E+02)	(2.99E+02)
		1.20E+03 -	1.04E+03	1.36E+03 =	1.28E+03	1.16E+03 -	9.23E+02	1.26E+03 -	1.13E+03
		(2.21E+02)	(2.00E+02)	(3.13E+02)	(2.62E+02)	(1.72E+02)	(1.76E+02)	(2.63E+02)	(2.20E+02)
	F18	2.15E+02 =	2.11E+02	2.35E+02 =	2.16E+02	7.92E+01 =	7.59E+01	1.76E+02 -	1.11E+02
		(4.60E+01)	(5.33E+01)	(6.29E+01)	(4.72E+01)	(2.19E+01)	(1.83E+01)	(4.05E+01)	(3.07E+01)
	F19	1.77E+02 -	1.63E+02	1.76E+02 -	1.52E+02	5.22E+01 =	5.09E+01	1.07E+02 -	5.22E+01
		(2.31E+01)	(2.46E+01)	(2.65E+01)	(2.50E+01)	(6.65E+00)	(5.78E+00)	(2.14E+01)	(5.72E+00)
	F20	1.57E+03 -	1.50E+03	1.93E+03 =	1.89E+03	1.44E+03 -	1.23E+03	1.38E+03 =	1.29E+03
		(2.42E+02)	(1.79E+02)	(3.61E+02)	(3.11E+02)	(1.96E+02)	(1.89E+02)	(2.44E+02)	(2.12E+02)
	F0.1	2.69E+02 -	2.59E+02	2.56E+02 =	2.55E+02	2.83E+02 -	2.64E+02	2.64E+02 -	2.49E+02
Composition Functions	F21 cec17 F22								
		(5.81E+00)	(4.38E+00)	(6.84E+00)	(6.49E+00)	(1.41E+01)	(5.61E+00)	(6.56E+00)	(5.18E+00)
		1.19E+04 -	1.12E+04	1.27E+04 =	1.25E+04	1.08E+04 -	9.54E+03	1.07E+04 -	1.01E+04
	cec 1 /	(5.24E+02)	(6.26E+02)	(1.81E+03)	(1.61E+03)	(5.90E+02)	(5.05E+02)	(6.27E+02)	(6.70E+02)
	cec17F23	5.68E+02 =	5.67E+02	5.70E+02 =	5.70E+02	5.98E+02 -	5.92E+02	5.69E+02 =	5.67E+02
	cec17	(7.98E+00)	(7.15E+00)	(9.40E+00)	(1.34E+01)	(7.21E+00)	(6.32E+00)	(1.37E+01)	(1.14E+01)
	F24	9.19E+02 -	9.12E+02	9.22E+02 -	9.16E+02	9.37E+02 -	9.08E+02	9.01E+02 -	8.96E+02
	F24								
	00017	(8.98E+00)	(8.61E+00)	(8.89E+00)	(1.16E+01)	(2.15E+01)	(8.10E+00)	(1.04E+01)	(7.84E+00)
	F25	7.46E+02 =	7.44E+02	7.49E+02 -	7.29E+02	6.93E+02 =	6.89E+02	7.18E+02 =	7.13E+02
	cec17	(3.47E+01)	(3.50E+01)	(2.76E+01)	(3.77E+01)	(4.53E+01)	(4.55E+01)	(3.87E+01)	(4.26E+01)
	F26	3.41E+03 -	3.31E+03	3.42E+03 -	3.32E+03	3.24E+03 -	3.06E+03	3.20E+03 -	3.12E+03
	F26	(1.02E+02)	(9.92E+01)	(9.37E+01)	(9.49E+01)	(2.51E+02)	(9.06E+01)	(8.46E+01)	(9.03E+01)
	E27	6.58E+02 -	6.47E+02	6.41E+02 -	6.32E+02	5.92E+02 =	5.90E+02	5.86E+02 -	5.77E+02
	F27					(1.37E+01)		(2.05E+01)	
	cec17F28	(1.38E+01)	(1.57E+01)	(1.79E+01)	(1.61E+01)	_	(1.81E+01)		(2.28E+01)
		5.28E+02 =	5.34E+02	5.18E+02 +	5.28E+02	5.15E+02 =	5.22E+02	5.29E+02 =	5.25E+02
		(2.19E+01)	(2.30E+01)	(3.80E+01)	(3.07E+01)	(1.95E+01)	(2.30E+01)	(2.78E+01)	(2.86E+01)
	F29	1.53E+03 =	1.48E+03	1.40E+03 =	1.48E+03	1.23E+03 =	1.21E+03	1.33E+03 -	1.25E+03
		(1.92E+02)	(1.83E+02)	(2.46E+02)	(2.33E+02)	(1.62E+02)	(1.42E+02)	(2.02E+02)	(1.82E+02)
		2.43E+03 -	2.34E+03	2.36E+03 =	2.36E+03	2.34E+03 =	2.37E+03	2.31E+03 =	2.27E+03
	cec17F30								
<u></u>		(1.45E+02)	(1.32E+02)	(1.26E+02)	(1.53E+02)	(1.35E+02)	(1.92E+02)	(1.23E+02)	(1.06E+02)
	/=/+	20/8/2		14/14/2		16/14/0		20/8/2	
					_		_		