### Paseo de borracho 3D

J. Abellán

20 de septiembre de 2016

#### Paseo del borracho en TRES dimensiones

Una molécula sale de un punto situado justo en el centro de un cubo. Da pasos a la derecha/izquierda, arriba/abajo, delante/detrás con la misma probabilidad. Después de dar n pasos

¿podrá salir del cubo en el que se encuentra?

Para tener una respuesta estadísticamente significativa debemos hacer muchos experimentos, es decir, paseos tomando nota de la posición final.

```
paso <-c(-1, 1)
npasos <- 100 ; sgm <- sqrt( npasos )</pre>
xo \leftarrow 2 * sgm^2
Npaseos <- 10000
X <- Y <- Z <- rep( 0, Npaseos )</pre>
for( i in 1 : Npaseos ) {
  #Sólo interesa la posición final
  X[ i ] <- sum( sample( paso, npasos, replace = T ) )</pre>
  Y[ i ] <- sum( sample( paso, npasos, replace = T ) )
  Z[ i ] <- sum( sample( paso, npasos, replace = T ) )</pre>
}
\# Comprobamos que los desplazamientos X,Y,Z
#son normales de media cero y desviación raiz(npasos)
x1 \leftarrow -4 * sgm ; x2 \leftarrow 4 * sgm
x \leftarrow y \leftarrow z \leftarrow seq(x1, x2, length.out = 1000)
hist( X, 50, prob = T, main = "Desplazamiento horizontal" )
lines( x, dnorm( x, 0, sgm ), col = 2 )
```

# **Desplazamiento horizontal**



```
hist( Y, 50, prob = T, main = "Desplazamiento vertical" )
lines( y, dnorm( y, 0, sgm ), col = 2)
```

# **Desplazamiento vertical**



```
lines(z, dnorm(z, 0, sgm), col = 2)
```

## **Desplazamiento frontal**



```
#Cuadrado de la distancia final normalizada
#La distribución teórica será ji-cuadrado con 3 grados de libertad
R2n <- ( X / sgm )^2 + ( Y / sgm )^2 + ( Z / sgm )^2
gdl <- 3
#Pero interesa el cuadrado de la distancia al centro en unidades originales:
#R2=X^2+Y^2+Z^2
R2 <- sgm^2 * R2n
hist( R2, 50, xlab = "R^2", probability = T, main = paste( "N = ", npasos ) )
#Curva teórica
r2n <- ( x / sgm )^2 + ( y / sgm )^2 + ( z / sgm )^2
r2 <- sgm^2 * r2n
lines( r2, dchisq( r2n, gdl ) / sgm^2, col = 2 )</pre>
```

#### N = 100



```
#Finalmente, distancia al centro en unidades originales
R <- sqrt( R2 )
hist( R, 50, prob = T, main = paste( "N = ", npasos ) )
r <- sqrt( r2 )
lines( r, dchisq( r2n, gdl ) * 2 * r / sgm^2, col = 2 )</pre>
```



