M. M. C. O. E.

Page No.: Date:

	ASSIGNMENT NO.7				
*	Ain				
	Implement a client and server on different computers				
	I continue of the encountry of resting				
	Landor botuses these two entitles by using the				
	use Diffie Hellman method for enchange of keys.				
£ *	Theory				
	The Data Encryption Standard is a symmetric key black cipher. It uses 16 xound Feistel structure. The black size				
	cipher. It also to xource raiser south of 56 bits.				
	is 64-bit, but has effective key length of 56 bits.				
	General structure of DES:				
	64-bit plain text				
	DE S				
	Initial permutation				
9	I I I I I I I I I I I I I I I I I I I				
	Raund 1 (K) 1 2 3 (5 5 6 6 1)				
6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	K2 South				
	Round 16 K3 48-bit 3				
	13.000				
	final permetation				
	64-bit ciphexteat				
100					

M. I	M.	C.	O.	E.
-	Section 19 Section 19			

Page No.:

Date:

I age was
All that is required to specify DES is
· Round Function
· Key Schedule · Any additional processing -initial & final permutation
Tritial and Final Permutation
There are straight remutation boxes (P-boxes) that are
inverse of each other. They have no confragoaphy
significance in DES.
Round Eunction
The heart of kinner is the DES function, of. The DES function
Round Function The heart of cipher is the DES function; f. The DES function applies a 48-kit key to the rightmost 32-bits to produce a
· tupus tid-28
Expansion Permutation Box
Since right innut is 32-bit and round key is 48-bit, we
first need to expand right input to 48 hits.
· XOR (Whitener) -
After the expansion permetation, DES does XOR operation
on the expanded right section and the round key.
· Substitution Boxes -
There 5-boxes carry out real mixing. DES uses 8 Sbox
each with 6-bit input and 4-bit output.
· Straight Permutation -
The 32-bit output of 5-boxes is then subjected to a
straight permutation. The round key generator creates
sinteen 48-bit keys out of 56 bit cipher key.
9

M. M. C. O. E.

Page No.:

11

Date:

	DES Analysis It satisfies both desired properties of block ciphex.
W-FE	· Avalanche effect: - A small change in plaintent results
dies.	· Avalanche effect: - A soule average
	in the very great change ien ciphertext
	· Completeness: - Each bit of ciphertext depends on many
	bite of plaintent
	Diffie Hellman key Enchange
	This algorithm is used to exchange the secret key between
	the sender and receiver. This algorithm also satisfies the
	exchange unation transmitting it.
	Algorithm:
	Let,
	Prinate key of sender X5
	Public key of sender Ys
	Private key of xereiver Xx
	Rublic key of receiver 12
	Steps,
_(:1)	One of the parties choose two newbers 'a' and 'n' and
	enchange with other party. After this exchange, both
	the parties know the value of 'a' and 'a'.
	Both parties already know their prevate key. They calculate
	value of public key and exchange.
	Sender calculates public key as 15 = at 5 mod n
	Receiver calculates public key as Yx = a xx mod n
3	Both parties receive public key of each other. They calculate
	value of secret key.
	Sender calculates secret key as = (4x) s mad n
	Receiver calculates secret key as = (4s) xx mad n
	·