STAT 3690 Lecture 19

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Mar 14, 2022

Multivariate influence measures

- Hat/projection matrix $\mathbf{H} = [h_{ij}]_{n \times n} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$
- $-|h_{ij}| \le 1$ $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$
 - the *i*th row of $\hat{\mathbf{Y}}$: $\hat{\mathbf{Y}}_{i.} = \sum_{j=1} h_{ij} \mathbf{Y}_{j.} = h_{ii} \mathbf{Y}_i + \sum_{j \neq i} h_{ij} \mathbf{Y}_{j.}$
- Leverage: the influence of observation \mathbf{Y}_i . on $\hat{\mathbf{Y}}_i$.
 - Observation \mathbf{Y}_i is said to have a high leverage if h_{ii} is large compared to the other elements on the diagonal of \mathbf{H} .
- (Externally) Studentized residuals

$$T_i^2 = \frac{\hat{\mathbf{E}}_{i\cdot}^{\top} \mathbf{\Sigma}_{\mathrm{LS},(i)}^{-1} \hat{\mathbf{E}}_{i\cdot}}{1 - h_{ii}}$$

- $-\hat{\mathbf{E}}_{i}^{\top}$: the *i*th row of $\hat{\mathbf{E}} = (\mathbf{I} \mathbf{H})\mathbf{Y}$
- $-\hat{\mathbf{E}}_{(i)}^{\top}$: remaining part of $\hat{\mathbf{E}}$ with row i removed
- $-\Sigma_{\mathrm{LS},(i)} = (n-q-2)^{-1}\hat{\mathbf{E}}_{(i)}^{\top}\hat{\mathbf{E}}_{(i)}$: LS estimator of Σ where we have removed row i from the residual matrix
- Observation \mathbf{Y}_i may be considered as a potential outlier if

$$T_i^2 > \frac{p(n-q-2)}{n-p-q-1} F_{1-\alpha,p,n-q-2}$$

- * $F_{1-\alpha,p,n-q-2}$: the $1-\alpha$ quantile of F(p,n-q-2)
- (Multivariate) Cook's distance

$$D_i = \frac{h_{ii}}{(1 - h_{ii})^2 (q + 1)} \hat{\mathbf{E}}_i^{\mathsf{T}} \mathbf{\Sigma}_{\mathrm{LS}}^{-1} \hat{\mathbf{E}}_i.$$

- Cut-off is far from unique even for univariate linear regression (p = 1)
- Pay attention to a small set of observations that has substantially higher values than the remaining observations

Normality of residuals

- Apply techniques in Lecture 7 to checking the normality of residuals
- \bullet Apply Box-Cox transformation to colums of ${f Y}$