Covariance

Let \mathcal{H} be a real Hilbert space and let \mathbb{P} be a probability measure on \mathcal{H} . The covariance of any two bounded linear functionals ϕ, ψ is given by

$$\operatorname{Cov}_{\mathbb{P}}(\phi, \psi) = \mathbb{E}_{\mathbb{P}}\left[\left(\phi - \mathbb{E}_{\mathbb{P}}\left[\phi\right]\right)\left(\psi - \mathbb{E}_{\mathbb{P}}\left[\psi\right]\right)\right] \\ = \int_{h \in \mathcal{H}} \left(\phi(h) - \int_{h' \in \mathcal{H}} \phi\left(h'\right) d\mathbb{P}\left(h'\right)\right) \left(\psi(h) - \int_{h' \in \mathcal{H}} \psi\left(h'\right) d\mathbb{P}\left(h'\right)\right) d\mathbb{P}(h).$$

$$\tag{1}$$

Riesz representation theorem

For every bounded linear functional φ , there exists a unique vector $T\varphi$ such that $\varphi(h) = \langle h, T\varphi \rangle_{\mathcal{H}}$. Hence,

$$\operatorname{Cov}_{\mathbb{P}}(\phi, \psi) = \int_{h \in \mathcal{H}} \left(\langle h, T\phi \rangle_{\mathcal{H}} - \int_{h' \in \mathcal{H}} \langle h', T\phi \rangle_{\mathcal{H}} d\mathbb{P}(h') \right) \left(\langle h, T\psi \rangle_{\mathcal{H}} - \int_{h' \in \mathcal{H}} \langle h', T\psi \rangle_{\mathcal{H}} d\mathbb{P}(h') \right) d\mathbb{P}(h) \\
= \int_{h \in \mathcal{H}} \left\langle h - \int_{h' \in \mathcal{H}} h' d\mathbb{P}(h'), T\phi \right\rangle_{\mathcal{H}} \left\langle h - \int_{h' \in \mathcal{H}} h' d\mathbb{P}(h'), T\psi \right\rangle_{\mathcal{H}} d\mathbb{P}(h) \\
= \int_{h \in \mathcal{H}} \left\langle h - \mu, T\phi \right\rangle_{\mathcal{H}} \left\langle h - \mu, T\psi \right\rangle_{\mathcal{H}} d\mathbb{P}(h) \tag{2}$$

where μ is the expected $h \in \mathcal{H}$ with respect to \mathbb{P} and is given by $\mu = \int_{h \in \mathcal{H}} h d\mathbb{P}(h)$.

Direct sum decomposition

Let h_1, \ldots, h_n be a sample drawn from \mathbb{P} . Since $S = \text{span}\{h_1, \ldots, h_n\}$ is a closed subspace of \mathcal{H} , by the Hilbert projection theorem, $\mathcal{H} = S \oplus S^{\perp}$ where S^{\perp} is the orthogonal complement of S. Thus,

$$T\phi = \sum_{i=1}^{n} \alpha_i h_i + u \quad \text{and} \quad T\psi = \sum_{i=1}^{n} \beta_i h_i + v \tag{3}$$

for some $\alpha_i, \beta_i \in \mathbb{R}$ and $u, v \in S^{\perp}$.

Empirical covariance

Substituting (3) into (2) and letting $\widehat{\mathbb{P}}$ denote the empirical distribution of the sample,

$$\operatorname{Cov}_{\widehat{\mathbb{P}}}(\phi, \psi) = \frac{1}{n} \sum_{i=1}^{n} \left\langle h_{i} - \overline{h}, \sum_{j=1}^{n} \alpha_{j} h_{j} + u \right\rangle_{\mathcal{H}} \left\langle h_{i} - \overline{h}, \sum_{j=1}^{n} \beta_{j} h_{j} + v \right\rangle_{\mathcal{H}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left\langle h_{i} - \overline{h}, h_{j} \right\rangle_{\mathcal{H}} \alpha_{j} \right) \left(\sum_{j=1}^{n} \left\langle h_{i} - \overline{h}, h_{j} \right\rangle_{\mathcal{H}} \beta_{j} \right)$$

$$= \frac{1}{n} \left(CG\alpha \right)^{T} CG\beta$$

$$= \frac{1}{n} \alpha^{T} GCG\beta$$

$$(4)$$

where \overline{h} is the sample mean, $C = I - \frac{1}{n}11^T$ is the symmetric and idempotent (i.e., $C^2 = C$) centering matrix, G is the symmetric matrix with entries $G_{i,j} = \langle h_i, h_j \rangle_{\mathcal{H}}$, and α and β are the n-dimensional vectors with components α_j and β_j , respectively.

Maximum variance functional

Consider the problem of finding a maximum variance functional with unit norm with respect to $\widehat{\mathbb{P}}$. From (3) and (4), such a functional has the form $\phi^{\star}(h) = \langle h, \sum_{i=1}^{n} \alpha_i^{\star} h_i \rangle_{\mathcal{H}}$ where $\alpha^{\star} = (\alpha_1^{\star}, \dots, \alpha_n^{\star})^T$ is a solution to the optimization problem

$$\max_{\alpha \in \mathbb{R}^n} \frac{1}{n} \alpha^T G C G \alpha$$
s.t. $\alpha^T G \alpha = 1$ (5)

The constraint in (5) follows from the fact that $\|\phi\|_{\mathcal{H}^*} = \|T\phi\|_{\mathcal{H}}$ where \mathcal{H}^* denotes the space of bounded linear functionals on \mathcal{H} .

Centering the data

If we first centre the h_i to obtain the sample h'_1, \ldots, h'_n where $h'_i = h_i - \overline{h}$, then the matrix G becomes G' = CGC and (5) becomes

$$\max_{\alpha \in \mathbb{R}^n} \frac{1}{n} \alpha^T (G')^2 \alpha$$
s.t. $\alpha^T G' \alpha = 1$. (6)

Lagrange multipliers

A solution α^* to (6) satisfies the equation $(G')^2 \alpha^* = \gamma G' \alpha^*$ for some constant γ . Hence, if G' is positive definite, then α^* is an eigenvector of G' with corresponding eigenvalue γ . Since G' is symmetric (and assumed positive definite), there exists an orthonormal basis e_1, \ldots, e_n of eigenvectors of G' with corresponding eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n > 0$, respectively. It follows that $\alpha^* = \frac{e_1}{\sqrt{\lambda_1}}$ is an optimal solution and, hence,

$$\phi^{\star}(h) = \left\langle h, \sum_{i=1}^{n} \alpha_i^{\star} h_i' \right\rangle_{\mathcal{H}} = \left\langle h, \sum_{i=1}^{n} \frac{e_1^{(i)}}{\sqrt{\lambda_1}} h_i' \right\rangle_{\mathcal{H}} = \frac{1}{\sqrt{\lambda_1}} \sum_{i=1}^{n} e_1^{(i)} \left\langle h, h_i' \right\rangle_{\mathcal{H}}$$
(7)

where $e_1^{(i)}$ denotes the i^{th} component of e_1 .

Maximum variance uncorrelated functionals

It is straightforward to generalize to a sequence of optimization problems where the $i^{
m th}$ problem is given by

$$\max_{\alpha \in \mathbb{R}^n} \frac{1}{n} \alpha^T (G')^2 \alpha$$
s.t. $\alpha^T G' \alpha = 1$

$$\frac{1}{n} \alpha^T (G')^2 \alpha_j^* = 0, \quad j = 1, \dots, i - 1$$
(8)

and where i=1 corresponds to (6). The corresponding sequence of solutions $\alpha_i^\star = \frac{e_i}{\sqrt{\lambda_i}}$ correspond to unit norm maximum variance uncorrelated functionals.

Algorithm

- 1. Construct the matrix G.
- 2. Centre G to obtain the matrix G' = CGC.
- 3. Compute the spectral decomposition of G' to obtain the matrix of eigenvectors Γ and the matrix of eigenvalues Λ .

- 4. (a) To obtain k-dimensional representations of the h_i , return the first k columns of $G'\Gamma\Lambda^{-\frac{1}{2}}$.
 - (b) To obtain a k-dimensional representation of a new data point h, return the first k components of $\Lambda^{-\frac{1}{2}}\Gamma^T u$ where the i^{th} component of u is $\langle h \overline{h}, h_i' \rangle_{\mathcal{H}}$.

Examples

- 1. PCA: Let $\mathcal{H} = \mathbb{R}^d$ and let \mathbb{P} be a probability measure on \mathcal{H} . It follows that G has entries $G_{i,j} = x_i^T x_j$ where x_1, \ldots, x_n is a sample drawn from \mathbb{P} .
- 2. Kernel PCA: Let \mathcal{H} be a reproducing kernel Hilbert space with reproducing kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and let \mathbb{P} be a probability measure on \mathcal{H} given by

$$\mathbb{P}(E) = \mathbb{Q}(\{x \in \mathbb{R}^d \mid \Phi(x) \in E\}), \quad E \subset \mathcal{H}$$

where $\mathbb Q$ is a probability measure on $\mathbb R^d$ and $\Phi:\mathbb R^d\to\mathcal H$ is the canonical feature map $\Phi(x)=k_x$. It follows that G has entries $G_{i,j}=\langle\Phi(x_i),\Phi(x_j)\rangle_{\mathcal H}=k(x_i,x_j)$ where x_1,\ldots,x_n is a sample drawn from $\mathbb Q$.