Relations

3RD WEEK

Outline

- Ordered Pair
- Cartesian Product
- Relations
- Domain and Range
- Inverse Relations
- Type of Relations

Ordered Pair

Definition: An ordered pair (x, y) is a single element consisting of a pair of elements in which

- ✓ x is the first element (coordinate)
- ✓ y is the second element (coordinate)

Note:

```
If \{a, b\} is a set, then \{a, b\} = \{b, a\}
If (a, b) is an ordered pair, then (a, b) \neq (b, a)
```

Two ordered pair (x, y) and (w, z) will be equal if x = w and y = z

Cartesian Product

Definition: The cartesian product of two sets A and B is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$

$$A \times B = \{(a,b) | a \in A \text{ and } b \in B\}$$

Note (in general):

$$A \times B \neq B \times A$$

 $|A \times B| \neq |B| \times |A|$

Relations

Definition: A relation R from set A to set B is a subset of A x B

- If (a, b) ∈ R, we say that "a is related to b" and write aRb
- If (a, b) ∉ R, we say that "a is not related to b" and write aRb
- If A = B, we often say that R is a relation on A

Domain & Range

Definition: The domain of relation R is the set of all first elements of the ordered pairs which belong to R, denoted by Dom(R).

Definition: The range is the set of second elements of the ordered pairs which belong to R, denoted by Ran(R).

Example:

```
A = \{1, 2, 3\} and B = \{x, y, z\}, and consider the relation R = \{(1, y), (1, z), (3, y)\}
The domain of R is Dom(R) = \{1, 3\}
The range of R is Ran(R) = \{y, z\}
The codomain of R = \{x, y, z\}
```

Inverse Relations

Definition: Let R be any relation from set A to B. The inverse of R, denoted by R⁻¹, is the relation from B to A denoted by

$$R^{-1} = \{(b, a) | (a, b) \in R\}$$

- ✓ If R is any relation, then $(R^{-1})^{-1} = R$.
- ✓ The domain and range of R⁻¹ are equal to the range and domain of R, respectively.
- ✓ If R is a relation on A, then R is also a relation on A.

Composition of Relations

Definition: Suppose A, B and C are sets, and

- ✓ R is a relation from A to B
- ✓ S is a relation from B to C
- ✓ Then the composition of R and S, denoted by $R \circ S$, is a relation from A to C defined by

$$R \circ S = \{(a,c) \mid \exists b \in B, for which (a,b) \in R \ and (b,c) \in S\}$$

Type of Relations

- ✓ Reflexive and Irreflexive Relations
- ✓ Symmetric and Antisymmetric Relations
- ✓ Transitive Relations

Reflexive and Irreflexive Relations

Definition: A relation R on a set A is reflexive if $(a,a) \in R$ for all $a \in A$ Thus R is irreflexive if there exists $a \in A$ such that $(a,a) \notin R$

Example: Consider the following relations on the set $A = \{1, 2, 3\}$ Determine which relation is reflexive:

$$\checkmark$$
 R₁ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

$$\checkmark$$
 R₂ = {(1, 1), (1, 2), (2, 1), (2, 2)}

$$✓ R_3 = {}$$

Reflexive and Irreflexive Relations

Definition: A relation R on a set A is reflexive if $(a,a) \in R$ for all $a \in A$ Thus R is irreflexive if there exists $a \in A$ such that $(a,a) \notin R$

Example: Consider the following relations on the set $A = \{1, 2, 3\}$ Determine which relation is reflexive:

$$\checkmark$$
 R₁ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

$$\checkmark$$
 R₂ = {(1, 1), (1, 2), (2, 1), (2, 2)}

$$✓ R_3 = {}$$

Symmetric Relations

Definition: A relation R on a set A is symmetric if whenever $(a, b) \in R$ then $(b, a) \in R$. Thus R is not symmetric if there exists a, b \in A such that $(a, b) \in R$ but $(b, a) \notin R$.

Example: Consider the following relations on the set $A = \{1, 2, 3\}$ Determine which relation is symmetric:

$$\checkmark$$
 R₁ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

$$\checkmark$$
 R₂ = {(1, 1), (1, 2), (2, 2)}

Antisymmetric Relations

Definition: A relation R on a set A is antisymmetric if whenever $(a, b) \in R$ and $(b, a) \in R$ then a = b

Equivalently:

For all $a, b \in A$, if $(a,b) \in R$ and $a \neq b$, then $(b,a) \in R$ must not hold.

Example: Consider the following relations on the set $A = \{1, 2, 3\}$

Determine which relation is symmetric:

$$\checkmark$$
 R₁ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

$$\checkmark$$
 R₂ = {(1, 1), (1, 2), (2, 2)}

$$\checkmark$$
 R₃ = {(1, 1), (2, 2), (3, 3)}

Note: not symmetric ≠ antisymmetric

Transitive Relations

Definition: A relation R on a set A is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

Thus R is not transitive if there exist a, b, $c \in A$ such that $(a, b) \in R$ and $(b, c) \in R$ but $(a, c) \notin R$

Example: Consider the following relations on the set $A = \{1, 2, 3\}$

Determine which relation is transitive:

$$\checkmark$$
 R₁ = {(1, 1), (1, 2), (2, 3), (1, 3)}

$$\checkmark$$
 R₂ = {(1, 1), (1, 2), (2, 2), (2, 3)}

$$\checkmark$$
 R₃ = {(1, 1), (1, 2), (1, 3), (3, 3)}

Equivalence Relations

Definition: A relation R on a set A is called an equivalence relations if R is reflexive, symmetric, and transitive

It follows 3 properties:

- ✓ For every $a \in A$, $(a, a) \in R$
- ✓ If $(a, b) \in R$ then $(b, a) \in R$
- ✓ If $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

Example: Consider the following relations on the set $A = \{1, 2, 3, 4\}$

Determine whether this relation is equivalence or not:

$$R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)\}$$

Exercise

Consider these relations on the set of integers

$$\checkmark$$
 R₁ = {(a, b)|a ≤ b}
 \checkmark R₂ = {(a, b)|a > b}
 \checkmark R₃ = {(a, b)|a = b or a = -b}
 \checkmark R₄ = {(a, b)|a = b}
 \checkmark R₅ = {(a, b)|a = b + 1}
 \checkmark R₆ = {(a, b)|a + b ≤ 3}

Determine whether each of these relations are equivalence