Н

Н

S F

S +

•

No laptops please.

No laptops please.

Thank you

No laptops please.

Thank you!

No laptops please.

Thank you!!

No laptops please.

Thank you!!!

S F

No laptops please.

Thank you!!!!

No laptops please.

Thank you!!!!!

S F

No laptops please.

Thank you!!!!!!

No laptops please.

Thank you!!!!!!!

No laptops please.

Thank you!!!!!!!!

No laptops please.

Thank you!!!!!!!!

Today:

S F

No laptops please.

Thank you!!!!!!!!

Today:

Review Inverse FFT

the second secon

No laptops please.

Thank you!!!!!!!!

Today:

Review Inverse FFT

FFT network.

No laptops please.

Thank you!!!!!!!!

Today:

Review Inverse FFT

FFT network.

Other parallel systems.

Coefficient representation: $a_0, a_1, ..., a_{n-1}$

Value representation: $A(x_0), A(x_1), \dots, A(x_{n-1}).$

Evaluation: $O(n \log n)$ if choose $1, \omega, \omega^2, \dots, \omega^{n-1}$.

Evaluation: $O(n \log n)$ if choose $1, \omega, \omega^2, \dots, \omega^{n-1}$.

Interpolation: From points $A(x_0),...,A(x_{n-1})$ to "function".

Evaluation: $O(n \log n)$ if choose $1, \omega, \omega^2, \dots, \omega^{n-1}$.

Interpolation: From points $A(x_0), \dots, A(x_{n-1})$ to "function". How?

Compute $A(\cdot)$ from a_i 's:

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ & \vdots & \ddots & \ddots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Compute inverse of matrix above.

Compute $A(\cdot)$ from a_i 's:

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ & \vdots & \ddots & \ddots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Compute inverse of matrix above. Multiply.

Compute $A(\cdot)$ from a_i 's:

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Compute inverse of matrix above. Multiply. $O(n^2)!$

Compute $A(\cdot)$ from a_i 's:

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ & \vdots & \ddots & \ddots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Compute inverse of matrix above.

Multiply. $O(n^2)!$

Doh!!

Compute $A(\cdot)$ from a_i 's:

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ & \vdots & \ddots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Compute inverse of matrix above.

Multiply. $O(n^2)!$

Doh!!

Also, computing inverse not even easy.

FFT Matrix

FFT: ω is complex \emph{n} th root of unity

FFT Matrix

FFT: ω is complex *n*th root of unity and matrix is ...

T:
$$\omega$$
 is complex n th root of unity dimatrix is ...
$$M_n(\omega) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{(n-1)} \end{bmatrix}$$

FFT: ω is complex nth root of unity and matrix is ...

FFT: ω is complex nth root of unity and matrix is ...

$$M_{n}(\omega) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{(n-1)} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\ \vdots & & \vdots & & & \\ 1 & \omega^{j} & \omega^{2j} & \cdots & \omega^{j(n-1)} \end{bmatrix}$$

FFT: ω is complex nth root of unity and matrix is ...

$$M_{n}(\omega) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{(n-1)} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\ \vdots & & \vdots & & & \\ 1 & \omega^{j} & \omega^{2j} & \cdots & \omega^{j(n-1)} \\ \vdots & & \vdots & & & \\ 1 & \omega^{(n-1)} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}$$

FFT: ω is complex nth root of unity and matrix is ...

$$M_{n}(\omega) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{(n-1)} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\ \vdots & & \vdots & & & \\ 1 & \omega^{j} & \omega^{2j} & \cdots & \omega^{j(n-1)} \\ \vdots & & \vdots & & & \\ 1 & \omega^{(n-1)} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}$$

Compute inverse of $M_n(\omega)$?

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
?

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i \longrightarrow \times \longrightarrow (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj}$$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i \longrightarrow \times \longrightarrow (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)}$$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i \longrightarrow \times \longrightarrow (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)
 $c_{ii} = 1 + r + r^2 + \dots + r^{n-1}$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

Recall: $\omega = e^{2\pi/n}$.

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case i = j:

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i \longrightarrow \times \longrightarrow (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case
$$i = j$$
: $r = \omega^0 = 1$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

Recall: $\omega = e^{2\pi/n}$.

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case i = j: $r = \omega^0 = 1$ and $c_{ii} = n$.

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i \longrightarrow \times \longrightarrow (i,j)$

Recall: $\omega = e^{2\pi/n}$.

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case
$$i = j$$
: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case $i \neq j$:

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i \longrightarrow \times \longrightarrow (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case
$$i = j$$
: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case
$$i \neq j$$
: $r^n = (\omega^{(i-j)})^n$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i \longrightarrow \times \longrightarrow (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case
$$i = j$$
: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case
$$i \neq j$$
: $r^n = (\omega^{(i-j)})^n = (\omega^n)^{(i-j)} = 1^n$

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case
$$i = j$$
: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case
$$i \neq j$$
: $r^n = (\omega^{(i-j)})^n = (\omega^n)^{(i-j)} = 1^n \implies c_{ij} = 0$.

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

Recall: $\omega = e^{2\pi/n}$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case i = j: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case
$$i \neq j$$
: $r^n = (\omega^{(i-j)})^n = (\omega^n)^{(i-j)} = 1^n \implies c_{ij} = 0$.

For C – diagonals are n and the off-diagonals are 0.

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

Recall: $\omega = e^{2\pi/n}$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case i = j: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case
$$i \neq j$$
: $r^n = (\omega^{(i-j)})^n = (\omega^n)^{(i-j)} = 1^n \implies c_{ij} = 0$.

For C – diagonals are n and the off-diagonals are 0.

Divide by n get identity!

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $i = (i,j)$

Recall: $\omega = e^{2\pi/n}$.

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)}$$

If
$$i \neq j$$
, let $r = \omega^{(i-j)}$ (note: $r^n = 1$)

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$

Case i = j: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case
$$i \neq j$$
: $r^n = (\omega^{(i-j)})^n = (\omega^n)^{(i-j)} = 1^n \implies c_{ij} = 0$.

For C – diagonals are n and the off-diagonals are 0.

Divide by *n* get identity!

Inversion formula: $M_n(\omega)^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

FFT works with points with basic root of unity: ω or ω^{-1}

FFT works with points with basic root of unity: ω or ω^{-1} 1, ω^{-1} , ω^{-2} ,..., $\omega^{-(n-1)}$.

FFT works with points with basic root of unity: ω or ω^{-1} $1, \omega^{-1}, \omega^{-2}, \dots, \omega^{-(n-1)}$. ω^{-1} is a primitive nth root of unity!

FFT works with points with basic root of unity: ω or ω^{-1} $1, \omega^{-1}, \omega^{-2}, \dots, \omega^{-(n-1)}$. ω^{-1} is a primitive nth root of unity!

Evaluation: $FFT(A, \omega)$.

```
FFT works with points with basic root of unity: \omega or \omega^{-1} 1, \omega^{-1}, \omega^{-2}, \dots, \omega^{-(n-1)}. \omega^{-1} is a primitive nth root of unity!
```

Evaluation: $FFT(A, \omega)$.

Interpolation: $\frac{1}{n}$ FFT(A, ω^{-1}).

```
FFT works with points with basic root of unity: \omega or \omega^{-1} 1, \omega^{-1}, \omega^{-2}, \dots, \omega^{-(n-1)}.
```

 ω^{-1} is a primitive *n*th root of unity!

Evaluation: $FFT(A, \omega)$.

Interpolation: $\frac{1}{n}$ FFT(A, ω^{-1}).

 $\implies O(n \log n)$ time for multiplying degree n polynomials.

```
FFT works with points with basic root of unity: \omega or \omega^{-1}, \omega^{-1}, \omega^{-2}, \dots, \omega^{-(n-1)}.
```

 ω^{-1} is a primitive *n*th root of unity!

Evaluation: $FFT(A, \omega)$.

Interpolation: $\frac{1}{n}$ FFT(A, ω^{-1}).

 \implies $O(n \log n)$ time for multiplying degree n polynomials.

Fast convolution!

```
FFT works with points with basic root of unity: \omega or \omega^{-1}, \omega^{-1}, \omega^{-2}, ..., \omega^{-(n-1)}.
```

 ω^{-1} is a primitive *n*th root of unity!

Evaluation: $FFT(A, \omega)$.

Interpolation: $\frac{1}{n}$ FFT(A, ω^{-1}).

 \implies $O(n \log n)$ time for multiplying degree n polynomials.

Fast convolution! Digital signal processing.

```
FFT works with points with basic root of unity: \omega or \omega^{-1}, \omega^{-1}, \omega^{-2},..., \omega^{-(n-1)}.
```

 ω^{-1} is a primitive *n*th root of unity!

Evaluation: $FFT(A,\omega)$.

Interpolation: $\frac{1}{n}$ FFT(A, ω^{-1}).

 \implies $O(n \log n)$ time for multiplying degree n polynomials.

Fast convolution! Digital signal processing. Many other things.

```
FFT works with points with basic root of unity: \omega or \omega^{-1} 1. \omega^{-1}. \omega^{-2}....\omega^{-(n-1)}.
```

 ω^{-1} is a primitive *n*th root of unity!

Evaluation: $FFT(A,\omega)$.

Interpolation: $\frac{1}{n}$ FFT(A, ω^{-1}).

 \implies $O(n \log n)$ time for multiplying degree n polynomials.

Fast convolution! Digital signal processing. Many other things.

Cool!!

Butterfly switches!

Butterfly switches!

Butterfly switches!

Edges from lower half of FFT have multipliers!

Edges from lower half of FFT have multipliers!

log N - levels.

log N - levels. N - rows.

log N - levels.

N - rows.

In level i:

log N - levels.

N - rows.

In level i:

Row r node is connected to row r node in level i + 1.

log N - levels.

N - rows.

In level i:

Row r node is connected to row r node in level i + 1.

Row *r* node connected to row $r \pm 2^i$ node in level i + 1

Row *r* node connected to row $r \pm 2^i$ node in level i + 1

Row r node connected to row $r \pm 2^i$ node in level i + 1When is it $r + 2^i$?

- (A) When $|r/2^i|$ is odd.
- (B) When $\lfloor r/2^i \rfloor$ is even.

Row r node connected to row $r \pm 2^i$ node in level i + 1When is it $r + 2^i$?

- (A) When $|r/2^i|$ is odd.
- (B) When $|r/2^i|$ is even.
- (B).

Row r node connected to row $r \pm 2^i$ node in level i + 1When is it $r + 2^i$?

- (A) When $|r/2^i|$ is odd.
- (B) When $|r/2^i|$ is even.
- (B). Red edges flip bit!

Route from input i = 101 to output j = 000?

Route from input i = 101 to output j = 000?

Flip first bit.

Route from input i = 101 to output j = 000?

Flip first bit. Red (cross) edge.

Route from input i = 101 to output j = 000?

Flip first bit. Red (cross) edge.

Keep second bit.

Route from input i = 101 to output j = 000?

Flip first bit. Red (cross) edge.

Keep second bit. Blue (straight) edge.

Route from input i = 101 to output j = 000?

Flip first bit. Red (cross) edge.

Keep second bit. Blue (straight) edge.

Flip third bit.

Route from input i = 101 to output j = 000?

Flip first bit. Red (cross) edge.

Keep second bit. Blue (straight) edge.

Flip third bit. Red (cross edge).

Route from input i = 101 to output j = 000?

Flip first bit. Red (cross) edge.

Keep second bit. Blue (straight) edge.

Flip third bit. Red (cross edge).

Basis of communication switches!

Algorithms, circuits, and parallelism.

Add up n numbers; $a_0, \dots a_{n-1}$.

Algorithms, circuits, and parallelism.

Add up n numbers; $a_0, \dots a_{n-1}$.

O(n) time.

Add up n numbers; $a_0, \dots a_{n-1}$.

O(n) time.

Circuit:

Add up n numbers; $a_0, \dots a_{n-1}$.

O(n) time.

Circuit:

Depth logn.

Add up n numbers; $a_0, \dots a_{n-1}$.

O(n) time.

Circuit:

Add up n numbers; $a_0, \dots a_{n-1}$.

O(n) time.

Circuit:

FFT Algorithm:

FFT Algorithm:

Sequential: $O(n \log n)$

FFT Algorithm:

Sequential: $O(n \log n)$

Depth: $O(\log n)$.

FFT Algorithm:

Sequential: $O(n \log n)$

Depth: $O(\log n)$.

Size: $O(n \log n)$.

FFT Algorithm:

Sequential: $O(n \log n)$

Depth: $O(\log n)$.

Size: $O(n \log n)$.

How to build a circuit for Matrix Multiplication?

FFT Algorithm:

Sequential: $O(n \log n)$

Depth: $O(\log n)$. Size: $O(n \log n)$.

How to build a circuit for Matrix Multiplication?

Who makes circuits anyway!!

FFT Algorithm:

Sequential: $O(n \log n)$

Depth: $O(\log n)$.

Size: $O(n \log n)$.

How to build a circuit for Matrix Multiplication?

Who makes circuits anyway!!

Not too many people.

FFT Algorithm:

Sequential: $O(n \log n)$

Depth: $O(\log n)$.

Size: $O(n \log n)$.

How to build a circuit for Matrix Multiplication?

Who makes circuits anyway!!

Not too many people.

Parallel?

FFT Algorithm:

Sequential: $O(n \log n)$

Depth: $O(\log n)$.

Size: $O(n \log n)$.

How to build a circuit for Matrix Multiplication?

Who makes circuits anyway!!

Not too many people.

Parallel?

Everywhere!

Shared memory model (SMM): Processors.

Shared memory model (SMM): Processors. Any processor accesses memory location in 1 time step.

Shared memory model (SMM): Processors. Any processor accesses memory location in 1 time step.

Shared memory model (SMM): Processors. Any processor accesses memory location in 1 time step. Models parallelism.

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Algorithm:

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Algorithm:

Time:

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Algorithm:

Time: How many steps?

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Algorithm:

Time: How many steps?

Work:

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Algorithm:

Time: How many steps?

Work: How much total work over processors.

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Algorithm:

Time: How many steps?

Work: How much total work over processors.

Circuits \Longrightarrow SMM

Time on SMM = Depth of circuit.

Shared memory model (SMM): Processors.

Any processor accesses memory location in 1 time step.

Models parallelism.

"Ignores communication cost"

Algorithm:

Time: How many steps?

Work: How much total work over processors.

Circuits \Longrightarrow SMM

Time on SMM = Depth of circuit.

Work on SMM = Size of circuit

$$[a_0, a_1, a_2, \dots, a_{n-1}]$$

$$[a_0, a_1, a_2, \ldots, a_{n-1}]$$

Pair up and add.

$$[a_0, a_1, a_2, \dots, a_{n-1}]$$

Pair up and add.

$$[(a_0+a_1),(a_2+a_3),\ldots,(a_{n-2}+a_{n-1})].$$

$$[a_0, a_1, a_2, \dots, a_{n-1}]$$

Pair up and add.

$$[(a_0+a_1),(a_2+a_3),\ldots,(a_{n-2}+a_{n-1})].$$

And so on...

$$[a_0, a_1, a_2, \dots, a_{n-1}]$$

Pair up and add.

$$[(a_0+a_1),(a_2+a_3),\ldots,(a_{n-2}+a_{n-1})].$$

And so on...

Time: log n

$$[a_0, a_1, a_2, \dots, a_{n-1}]$$

Pair up and add.

$$[(a_0+a_1),(a_2+a_3),\ldots,(a_{n-2}+a_{n-1})].$$

And so on...

Time: log n

Work: $\frac{n}{2} + \frac{n}{4} + \cdots 1$

$$[a_0, a_1, a_2, \dots, a_{n-1}]$$

Pair up and add.

$$[(a_0+a_1),(a_2+a_3),\ldots,(a_{n-2}+a_{n-1})].$$

And so on...

Time: log n

Work:
$$\frac{n}{2} + \frac{n}{4} + \cdots = O(n)$$
.

Algorithm: Split into two lists.

Algorithm: Split into two lists. Sort sublists

Algorithm: Split into two lists. Sort sublists Merge sublists.

Algorithm: Split into two lists. Sort sublists Merge sublists.

Algorithm: Split into two lists. Sort sublists Merge sublists.

Recursion depth: $O(\log n)$.

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots$

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

```
Algorithm:
```

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Time: $O(\log^2 n)$.

```
Algorithm:
```

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Time: $O(\log^2 n)$. Work: $O(n\log^2 n)$

Algorithm:

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Time: $O(\log^2 n)$.

Work: $O(n\log^2 n)$ Worse than sequential!

```
Algorithm:
```

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Time: $O(\log^2 n)$.

Work: $O(n\log^2 n)$ Worse than sequential!

Cole's Mergesort:

```
Algorithm:
```

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Time: $O(\log^2 n)$.

Work: $O(n\log^2 n)$ Worse than sequential!

Cole's Mergesort: $O(\log n)$ time;

```
Algorithm:
```

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Time: $O(\log^2 n)$.

Work: $O(n\log^2 n)$ Worse than sequential!

Cole's Mergesort: $O(\log n)$ time; $O(n \log n)$ work.

```
Algorithm:
```

Split into two lists.

Sort sublists

Merge sublists.

Recursion depth: $O(\log n)$.

Time: $O(\log n)$??

Merge was sequential!

Time: $O(n) + O(n/2) + O(n/4) \cdots = O(n)$.

Make Merge faster?

In $O(\log n)$ time using Mirrored FFT of comparators!

Bitonic Sort.

Time: $O(\log^2 n)$.

Work: $O(n\log^2 n)$ Worse than sequential!

Cole's Mergesort: $O(\log n)$ time; $O(n \log n)$ work. Optimal!

Algorithm:

Split n bit numbers into n/2 bit numbers.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Algorithm:

Split *n* bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Algorithm:

Split *n* bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log *n*.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log *n*.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves?

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1)$

Algorithm:

Split *n* bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Work: $O(n^{\log_2 3})$.

Algorithm:

Split *n* bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Work: $O(n^{\log_2 3})$.

Depth: $O(\log^2 n)$ easily done.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Work: $O(n^{\log_2 3})$.

Depth: $O(\log^2 n)$ easily done. Better is possible.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Work: $O(n^{\log_2 3})$.

Depth: $O(\log^2 n)$ easily done. Better is possible.

Better Sequential Algorithm as well!

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Work: $O(n^{\log_2 3})$.

Depth: $O(\log^2 n)$ easily done. Better is possible.

Better Sequential Algorithm as well!

Time: $O(n \log n \log \log n)$ Schönhage-Strassen.

Algorithm:

Split n bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Work: $O(n^{\log_2 3})$.

Depth: $O(\log^2 n)$ easily done. Better is possible.

Better Sequential Algorithm as well!

Time: $O(n \log n \log \log n)$ Schönhage-Strassen.

Care to guess how?

Algorithm:

Split *n* bit numbers into n/2 bit numbers.

Do three (or four) multiplications of those n/2 bit numbers.

Shift and Add the numbers.

Recursion depth: log n.

Addition of *n*-bit numbers: O(n) time.

Work mostly at the leaves:

How many leaves? $O(n^{\log_2 3})$.

Depth: $O(n) + O(n/2) + \cdots + O(1) = O(n)$

Work: $O(n^{\log_2 3})$.

Depth: $O(\log^2 n)$ easily done. Better is possible.

Better Sequential Algorithm as well!

Time: $O(n \log n \log \log n)$ Schönhage-Strassen.

Care to guess how?

Using the FFT!

What if I have fewer processors?

What if I have fewer processors? Do complexity analysis again?

What if I have fewer processors? Do complexity analysis again?

Simulation:

What if I have fewer processors? Do complexity analysis again?

Simulation:

If some step uses *P* processors.

What if I have fewer processors? Do complexity analysis again?

Simulation:

If some step uses P processors.

Simulate with p processors for $\lceil \frac{p}{p} \rceil$ steps.

What if I have fewer processors? Do complexity analysis again?

Simulation:

If some step uses P processors.

Simulate with p processors for $\lceil \frac{P}{p} \rceil$ steps.

Theorem:

Any work W, time T parallel algorithm can run on a p-processor shared memory machine in time $\lfloor \frac{W}{p} \rfloor + T$ and work W.

What if I have fewer processors? Do complexity analysis again?

Simulation:

If some step uses P processors.

Simulate with p processors for $\lceil \frac{P}{p} \rceil$ steps.

Theorem:

Any work W, time T parallel algorithm can run on a p-processor shared memory machine in time $\lfloor \frac{W}{p} \rfloor + T$ and work W.

Show Some Code.

Multiplication on my

Show Some Code.

Multiplication on my little laptop.

Show Some Code.

Multiplication on my little laptop.