

Image Analysis and Object Recognition

Assignment 2

Image Filtering and Interest Points

SS 2017

(Course notes for internal use only!)

Topic: basic information extraction

- Extract "regions of interest" from an image
 - Getting familiar with MATLAB
 - Image enhancement → histogram stretching
 - Global thresholding → derive a binary image
 - Morphological operators → dilation and erosion, opening and closing

Assignment 1 (A-C)

Workflow:

A: Image enhancement

- Computing a grayscale image GI from rgb image:
 - GI = mean(image, 3); % equal weights → preferred
 - GI = rgb2gray(image); % unequal weights
- Get the maximum value of an 2d-array:
 - Maxi = max(max(GI));
 - Maxi = max(GI(:));
- Histogram stretching:
 - SI = (GI Mini) / (Maxi-Mini);
 - → For-loops not necessary

B: Global Thresholding

- Finding a threshold: trial and error or use function graythresh
- Apply threshold: using operators "<, >, <=, ..." or function im2bw

mask = image < threshold;</pre>

→ For-loops not necessary

C: Morphological filtering: Erosion and Dilation

```
% result arrays
                                                           filtering array =
result erode = mask*0; result dilate = mask*0;
% array with structuring element
radius se = 4; se = strel('disk', radius se)
filtering array = getnhood(se);
size image = size(mask);
% erosion and dilation
for i = radius se+1:(size image(1)-radius se)
    for j = radius se+1:(size image(2)-radius se)
        % get the current mask chip which is covered by the se
        mask chip = mask( (i-radius se):(i+radius se), (j-radius se):(j+radius se) );
        % derive product (element-wise) of chip and se
        prod = mask chip .* filtering array;
        % erosion (AND)
        if sum(sum(prod)) == sum(filtering array(:))
            result erode(i,j) = 1;
        end
        % dilation (OR)
        if sum(sum(prod)) >= 1
            result dilate(i,j) = 1;
        end
    end %j
end %i
```

0

- Reference pixel is always the center pixel of the mask!
- Wrong implementation:

```
function dilation = dilation(img)

% initialize empty matrix with the size of the image
    custom_img = false(size(img));
    width = 5;
    field = getnhood(strel('square', width));
    m = floor(size(field,1)/2);
    n = floor(size(field,2)/2);
    array = padarray(img,[m,n]);

for x = 1:size(array,1)-(2*m)
    for y = 1:size(array,2)-(2*n)
        temp_img = array(x:x+(2*m), y:y+(2*n));
        custom_img(x,y) = max(max(temp_img&field));
    end
end
```


Assignment 1: some results

C: Morphological filtering

- Application of opening and closing subsequently
- Watermask was desired

Matlab function imfuse

Summary: Binary image processing

- Pro's:
 - Easy techniques and fast to compute
 - Binary images are easy to store
 - Can be useful in constrained scenarios with well known conditions
- Con's:
 - Hard to extract the "clean" object silhouettes
 - Influence of noise
 - Not suitable for more complex problems

- Task A: Image-filtering (GoG)
- Task B: Interest points (Förstner)
- Aims
 - Learn how to do image filtering
 - Deriving edge information (intensity changes)
 - Reducing noise and deriving edge information simultaneously using GoG-filtering
 - Using edge information to identify "points of interest" in images
- Relevant for
 - Understanding filtering
 - Edge detection and image smoothing
 - Finding corresponding points in images

Corresponding points for stereo visual odometry

Other Applications:

- Image Stitching
- Camera Calibration
- 3D-Reconstruction
- Object Detection
- Object Tracking
- •

Task A: Gradient of Gaussian Image-filtering

- Replace each pixel with a linear combination of its neighbors
 - Filter Mask H: contains weights for the linear combination
 - Example: Moving average (image smoothing)

- Replace each pixel with a linear combination of its neighbors
 - Filter Mask H: contains weights for the linear combination
 - Example: Moving average (image smoothing)

- Replace each pixel with a linear combination of its neighbors
 - Filter Mask H: contains weights for the linear combination
 - Example: Moving average (image smoothing)

- Replace each pixel with a linear combination of its neighbors
 - Filter Mask H: contains weights for the linear combination
 - Example: Moving average (image smoothing)

- Replace each pixel with a linear combination of its neighbors
 - Filter Mask H: contains weights for the linear combination
 - Example: Moving average (image smoothing)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v] F[i+u,j+v] \rightarrow k = 1$$

 $G = H \otimes F \rightarrow \text{Cross-correlation}$

- Replace each pixel with a linear combination of its neighbors
 - Filter Mask H: contains weights for the linear combination
 - Example: Moving average (image smoothing)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v] F[i+u,j+v] \rightarrow k = 1$$

 $G = H \otimes F \rightarrow$ Cross-correlation

- Replace each pixel with a linear combination of its neighbors
- Filter kernel *H*: coefficients or weights

Cross-correlation:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v] F[i+u,j+v]$$

$$G = H \otimes F$$

- Check similarity of two signals
- Convolution:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v] F[i-u,j-v]$$

$$G = H \star F$$

- Apply filter H on image F for: information extract for processing tasks
- Can easily be done in frequency-domain
- Associative (independent of application sequence)
- Symmetric filter kernel → Correlation = Convolution

2D Gaussian Filter

Continuous, rotationally symmetric weighted average

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

Effect of standard deviation σ

Mask radius $k = 2\sqrt{2}\sigma \approx |3\sigma|$

2D Gaussian Filter

Image Sharpening

- Mean and Gaussian filter
 - Remove high-frequency components from images
 - Low-pass filter
- Smoothing → integration
- Sharpening → differentiation
 - Edge detection
 - Image enhancement

Benefits of smoothing in edge detection

Original

Image

Gradients

Thresholded gradients

Benefits of smoothing in edge detection

- Smoothing before computing the differentiation
 - → Two independent filter operations (convolutions)

• Differentiation property of convolution: $\frac{\partial}{\partial x}(h \star f) = \left(\frac{\partial h}{\partial x}\right) \star f$

2D GoG filtering

Gaussian filter

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

Gradient of Gaussian

$$\frac{\partial G(x, y, \sigma)}{\partial x} = -\frac{x}{2\pi\sigma^4} exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$
$$\frac{\partial G(x, y, \sigma)}{\partial y} = -\frac{y}{2\pi\sigma^4} exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

2D GoG filter computation

$$\frac{\partial G(x, y, \sigma)}{\partial x} = -\frac{x}{2\pi\sigma^4} exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

- 1) Define standard deviation, e.g. $\sigma = 0.5$
- 2) "Size" of filter kernel from center pixel: $r = |3 \cdot \sigma| = 2.0$
- 3) Define 2 Arrays c_x and c_y with $(r \cdot 2 + 1)$ columns and rows for local coordinates

$$c_{x} = \begin{bmatrix} -2 & -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 & 2 \end{bmatrix}; c_{y} = c_{x}^{T}$$

4) Compute filter using c_x and c_y for x and y

$$G_{x} = \frac{\partial G(x, y, \sigma)}{\partial x} = \begin{bmatrix} 0.0000 & 0.0001 & 0.0000 & -0.0001 & -0.0000 \\ 0.0002 & 0.0466 & 0.0000 & -0.0466 & -0.0002 \\ 0.0017 & 0.3446 & 0.0000 & -0.3446 & -0.0017 \\ 0.0002 & 0.0466 & 0.0000 & -0.0466 & -0.0002 \\ 0.0000 & 0.0001 & 0.0000 & -0.0001 & -0.0000 \end{bmatrix}; \qquad G_{y} = \frac{\partial G(x, y, \sigma)}{\partial y} = \frac{\partial G(x, y, \sigma)^{T}}{\partial x}$$

$$G_y = \frac{\partial G(x, y, \sigma)}{\partial y} = \frac{\partial G(x, y, \sigma)}{\partial x}$$

Task A: GoG filtering

Input image:

Compute grayscale image and scale it to double [0,...,1] (mean, mat2gray).

- a. Compute GoG-filter masks for filtering in x- and y- direction
- b. Apply the two filters G_x and G_y on the input image using forloops \rightarrow Convolution, result: I_x and I_y

c. Compute the gradient magnitude image using equation

$$G = \sqrt{(I_x)^2 + (I_y)^2}$$

Plot and export the resulting image G (by-product!).

Task B: Förstner Operator

Corners as distinctive interest points

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

Flat region:
no changes in all
directions

Edge:
no change along
edge direction

Corner: significant change in all directions

Auto-correlation Matrix

- Identification of corners
- Input: First derivatives in x- and y-direction I_x and I_y (result of A.b.)

Grayscale image

 I_{γ} (GoG)

 I_{ν} (GoG)

Auto-correlation Matrix M

- 3 Input Arrays: I_x^2 , I_y^2 and $I_x I_y$
- Computation of *M* for each pixel:

$$M = \sum_{x,y \in N} w_N(x,y) \cdot \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = w_N \star \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$\Rightarrow M = \sum_{x,y \in N} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \quad \dots \quad M \text{ contains the sum of all values of } I_x^2,$$

$$I_x^2 I_y \quad I_y^2 \quad I_y^2 \quad I_y^2 \quad I_y^2 \quad \text{and } I_x I_y \text{ in the local neighborhood } N$$

$$M = \sum_{x,y \in N} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Auto-correlation Matrix *M*

Do for each pixel in the image (except edges):

- 1) Extract local image chip (covered by w) from I_x^2 , I_y^2 and $I_x I_y$
- 2) Compute *M* for each pixel:
 - \rightarrow summarize three local values I_x^2 , I_y^2 and $I_x I_y$ in w_N
 - $\rightarrow \bar{I}_x^2 = \sum_N I_x^2$, also for \bar{I}_y^2 and $\bar{I}_x \bar{I}_y$
- 3) Build M

$$M = \begin{bmatrix} \bar{I}_{\chi}^2 & \bar{I}_{\chi}\bar{I}_{y} \\ \bar{I}_{\chi}\bar{I}_{y} & \bar{I}_{y}^2 \end{bmatrix}$$

Equal to: Convolve I_x^2 , I_y^2 and I_xI_y with w_N and then compute M for each pixel

Auto-correlation Matrix *M*

Use Eigenvalues of M to detect corners

Förstner Interest Operator

Corneness:

$$w = \frac{trace(M)}{2} - \sqrt{\left(\frac{trace(M)}{2}\right)^2 - det(M)}, \qquad w > 0$$

Roundness

$$q = \frac{4 \cdot det(M)}{trace(M)^2}, \qquad 0 \le q \le 1$$

Find corner point candidates M_C

$$M_C = w > t_w \& q > t_q$$

 $t_w = [0.001, ..., 0.01], t_q = [0.5, ..., 0.75]$

Overlay of original image and M_c

Thresholded regions of w and q

Thresholded regions of w and q

Thresholded regions of w and q

Extract interest points

- Use product w.* q:
 - Apply MATLAB function imregionalmax to detect local maxima
 - Output: binary mask with peaks
 - Use functions find and plot to derive and plot the points of interest

Task B: Förstner Operator

Idea: Use GoG-images to identify Förstner points

- a. Compute the autocorrelation matrix *M* for each pixel using a 5x5 moving window
- b. Instead of storing M for each pixel, compute the cornerness w and roundness q from M and store these values in matrices W and Q. Plot the arrays
- C. Derive a binary mask M_c of potential interest points by simultaneously applying thresholds, e.g. $t_w = 0.0004$ and $t_q = 0.5$, on W and Q
- d. Multiply W and Q with the resulting mask M_c of step c ($\overline{W} = W \cdot M_c$, $\overline{Q} = Q \cdot M_c$) and apply the function imregionalmax to $\overline{W} \cdot \overline{Q}$ in order to derive the points of interest
- e. Plot an overlay of the initial input image and the detected points

Thank you!

Questions?