Continuous Casting

E. RAMAT Université du Littoral Laboratoire d'Informatique, Signal et Image du Littoral (LISIC)

Modèles

- Generator : génération des arrivées de brames à la sortie de la coulée continue
- RunOutTable : stock à la sortie de la découpe (une seule brame)
- Gantry crane : déplacement des brames de table aux piles
- Stack : pile de 5 brames max avec des contraintes (largeur décroissante, ...)
- Cluster : groupe de piles
- Crane : déplacement des brames des piles au zone de stockage
- Stock : zone de stockage liée à une destination

Graphe de modèles DEVS

RunOutTable ↔ **GantryCrane**

RunOutTable

GantryCrane ↔ **Stack**

Stack / GantryCrane ↔ Cluster

Gantry crane

Stack / Cluster ← Crane

Stack

Cluster

Crane ↔ **Stock**

Crane

Implementation

- Noyau P-DEVS avec la plateforme Artis* (C++11 et template)
- Utilisation d'un fichier de log de création des brames
- Mesure de la hauteur moyenne des piles sur 2100 minutes
- Temps de simulation : 70ms (90ms avec le chargement des dates de création des brames)