ASTR 792 T/R 9:30 - 10:45 AM Due November 28

Week #15

Draine 14.2a

The Einstein A coefficients for all of the allowed transitions of hydrogen from levels $n \leq 3$ are given in the table below:

u	l	A_{ul} (s ⁻¹)	$\lambda_{ul} (\mathrm{\AA})$
$\overline{3d}$	2p	6.465×10^7	$H\alpha$
3p	2s	2.245×10^7	$H\alpha$
3s	2p	6.313×10^6	$H\alpha$
3p	1s	1.672×10^{8}	Ly α
2p	1s	6.265×10^{8}	Ly β

(a) Consider a hydrogen atom in the 3p state as the result of radiative recombination: $p + e \longrightarrow H(3p)$. What is the probability p_{β} that this atom will emit a Lyman β photon?