### Link-State Routing Protocol 개요



- Link State Routing Protocol
  - 링크 상태에 대한 정보를 해당 라우팅 영역 안에 있는 다른 라우터들에게 전송
  - Dijkstra의 최단거리 알고리즘을 사용
  - OSPF
- Link State
  - 네트워크 정보, Link Type, Cost, Neighbor ID

### <u>Link-State Routing Protocol 개요</u>



Link-State Advertisement (LSA)

- Link-State Routing Protocol의 장점
  - Fast Convergence : Topology의 변화에 빠른 반응을 수행한다
  - Loop 방지 : Topology를 이해하므로 SFP 알고리즘에서 Routing Loop를 방지한다
  - 계층적 Design에 따라 Network 확장성이 보장된다
- Link-State Routing Protocol의 단점
  - Router의 내부 Resource 소모가 많다
    - ·CPU: 잦은 SPF 알고리즘 수행
    - 'Memory: Network Topology 정보 관리
  - 반드시 계층적 Design Rule을 따라야 한다

### Link-State Routing Protocol 개요

#### Link State Routing Protocol 동작 순서

- 동작 순서
  - 1.LSA를 이웃 router들과 공유하여 Link State Database 생성
  - 2.Loop free 최단 거리 경로를 생성하기 위해 Link State Database에 SPF Algorithm 적용
  - 3.Shortest Path First Tree 구성
  - 4.Routing Table에 기록



### Link-State Routing Protocol 개요

#### **Line-State**의 SPF Tree

- SPF Tree
  - 모든 라우터들의 링크 상태 정보를 이용하여 자신을 root로 하는 tree 경로를 생성
- SFP 알고리즘에서는 자기 자신을 root로하는 tree를 구성하고, 수신지에 도달하는데 필요한 누적 Cost를 기반으로 각 Node로 가는 최단 경로를 계산한다
  - $Cost = 10^8/bandwidth (bps)$
  - 1Gbps:  $10^8/1,000,000,000 = 1$
  - 100Mbps :  $10^8/100,000,000 = 1$
  - 10Mbps :  $10^8/10,000,000 = 10$



### Link-State Routing Protocol 개요

### Line-State의 SPF Tree

Link-State Database

**Shortest Path Tree** 



Adjacency Database

Routing table



### <u>Link-State의 계층적 구조</u>

### **Autonomous System**



- 효과적인 Route Summarization을 통해 Routing Table Size 절감
- Area안에서 Topology 변화와 관련된 Traffic을 지역적으로 제한
- Router의 Processor와 Memory 자원 절감
- Routing Update Traffic 줄임

- ABR : Area Border Router
- ASBR : AS Border Router
- Backbone Area : Transit Area

### **OSPF**

#### **Introducing OSPF**

- OSPF는 IETF 표준이다
  - RFC 2328
- Shortest Path First(SPF) 알고리즘을 사용한다
  - 목적지 경로에 대한 최적의 정보를 SPF 알고리즘을 사용하여 계산한다
- Link-state Routing Protocol 이다
- Update 정보를 수신하면 Routing Table을 바로 update하지 않고 neighbor routers에게 먼저전달
- 동일한 area내의 다른 모든 router에게 LSA(Link-State Advertisement)를 전송
- Link-State Database에 상태가 변경되면 즉시 LSA를 전달하여 다른 router에게 알린다



#### <u>OSPF</u>

#### **OSPF Packets**

| Data Link Frame | IP Packet | OSPF Packet | OSPE Packet Type Specific Date |
|-----------------|-----------|-------------|--------------------------------|
| Header          | Header    | Header      | OSPF Packet Type-Specific Data |

#### Data Link Frame (Ethernet Fields Shown Here)

MAC Source Address = Address of Sending Interface
MAC Destination Address = Multicast: 01-00-5E-00-00-05 or 01-00-5E-00-00-06

#### **IP Packet**

IP Source Address = Address of Sending Interface
IP Destination Address = Multicast: 224.0.0.5 or 224.0.0.6
Protocol Field = 89 for OSPF

#### **OSPF Packet Header**

Type Code for OSPF Packet Type Router ID and Area ID

#### **OSPF Packet Types**

0x01 Hello 0x02 Database Description 0x03 Link State Request 0x04 Link State Update 0x05 Link State Acknowledgment



### <u>OSPF</u>

#### **OSPF Packets**



OSPF Packet Type

- Hello : Type1 -DBD : Type2

- LSR : Type3 -LSU : Type4

- LSAck: Type5

• Router ID

- Packet를 생성한 router ID

• Area ID : Packet이 생성된 area ID



### **OSPF**

#### **OSPF Packets**

- Hello
  - 이웃을 발견하고 다른 OSPF router들과의 인접성 확립 및 유지를 위해 사용
  - 두 router가 neighbor가 되기 위해 반드시 상호 동의해야 하는 parameter들의 광고
- DBD (Database Description)
  - 송신 router의 LSDB에 대한 요약정보를 담고 있다
  - Router간의 LSDB 동기화 검사
    - 수신 router가 local LSDB와 비교하여 update내용을 확인 하는데 사용
- LSR (Link State Request)
  - DBD에 포함된 특정 link state정보를 요청
- LSU (Link State Update)
  - LSR에 대한 응답과 새로운 정보를 전달하기 위해 사용
- LSAck (Link State Acknowledgment)
  - LSU 수신 확인을 위해 송신 router에게 전송



### <u>OSPF</u>

#### **OSPF Packets - Hello**



- Network Mask
  - 송신 interface subnet mask
- Hello Interval
  - Hello packet 시간 간격
- Router Priority
  - DR/BDR 선출에 사용
- Designated Router(DR): DR router ID

- Backup Designated Router(BDR)
- BDR router ID
- List of Neighbor(s) : Neighbor router ID 목록

### **OSPF**

#### **OSPF Packets - Hello**

- OSPF가 자신의 link state를 flooding하기 전에 자신의link상의 다른 neighbor의 존재를 확인해야 한다.
- 두 router가 adjacency관계를 맺기 위해서는 hello interval, dead interval, network type이 동일해야 한다.
- Hello Interval
  - Multi access, PtoP Serial link는 10초
  - NBMA link (Frame Relay, X.25, ATM) 30초
  - 224.0.0.5 multicast 전송
- Dead Interval
  - Neighbor relationship이 유효한 시간
  - 기본값으로 hello interval의 4배
  - Multi access, PtoP Serial link는 40초
  - NBMA link (Frame Relay, X.25, ATM) 120초
  - 224.0.0.5 multicast 전송
  - Dead interval 만료 시, local LSDB에서 해당 이웃을 삭제



### <u>OSPF</u>

#### **OSPF Packets – Hello**

- Ethernet과 같은 multi access network에서 DR과 BDR을 선출
  - DR : multi access network에서 변경사항이 발생했을 때, 모든 OSPF router(DROther)에게 update를 전송
  - BDR : DR이 불능일 때, DR을 대체





### <u>OSPF</u>

#### **OSPF Packets – LSU**

- LSR에 의해 요청된 link state update 정보를 전송
- 하나 이상의 LSA를 포함한다
  - LSA는 목적지 네트워크에 대한 경로 정보를 포함한다.
- LSA Type
  - Type 1: Router LSAs
  - Type 2 : Network LSAs
  - Type 3or4 : Summary LSAs
  - Type 5 : Autonomous System External LSAs
  - Type 6 : Multicast OSPF LSAs
  - Type 7 : Defined for Not-So-Stubby Areas
  - Type 8 : External Attributes LSA for BGP
  - Type 9,10,11: Opaque LSAs



### <u>OSPF</u>

#### Line-State의 SPF 알고리즘

- Link state routing 처리과정
  - Connected network 파악
  - Hello Packet 전송
- LSP 생성
- LSP Flooding
- 수신 LSP를 DB에 저장
- SPF Tree 생성
- 최적 경로를 Routing Table에 기록





#### **OSPF**

#### **Configuring Single Area OSPF**

- Router(config)#router ospf process-id
- Router(config-router)#network address wildcard-mask area area-id
- process-id
  - 1에서 65,535사이의 정수 값으로 관리자가 결정
  - neighbor와 adjacency관계를 확립하기 위해서 일치 시킬 필요 없다
- network
  - network 명령어에 의해 설정된 network address와 일치하는 router상의 모든 interface들은 OSPF packet송신과 수신이 가능하다
  - 해당 network는 update에 포함된다.
- wildcard-mask를 사용해서 특정 interface의 범위를 지정한다
- area area-id
  - OSPF network는 다중 영역 설정이 가능하다
  - OSPF area를 지정
  - area는 link state 정보를 공유하는 router들의 집합
  - 동일 영역내의 모든 OSPF router는 자신의 LSDB에 동일한 link state 정보를 가지고 있어야 한다



#### **OSPF**

#### **Configuring Single Area OSPF**

- Router(config)#router ospf process-id
- Router(config-router)#router-id ip-address
- Router(config-router)#
- OSPF routing domain 안에서 각 router를 유일하게 구분하여 준다
- router-id명령을 통해 설정된 IP address를 사용
  - router ID가 설정되어 있지 않은 경우, 해당 router의 loop back interface 중에서 가장 높은 값을 선택
  - Loop back interface가 설정되어 있지 않은 경우, 해당 router의 interface중에서 가장 높은 값을 갖는 활성화된 IP address를 선택
  - 해당 interface에 OSPF가 활성화되어 있을 필요 없다
- Loop Back Interface
  - software로 처리되는 가상 interface
  - 물리적인 interface들과는 달리 불능상태가 되지 않는다
  - 실제 물리연결이 구성되지 않아도 동작한다
- Router ID를 수정한 후에는 OSPF Process를 다시 시작해야 한다
  - Router#clear ip ospf process



### <u>OSPF</u>

#### **OSPF** configuration Example





### **OSPF**

#### **OSPF** configuration Example



- router ospf 100
  - OSPF routing process ID 100으로 활성화 한다
- network 10.12.12.2 0.0.0.0 area 0
- Interface serial 0/0에서 OSPF를 활성화 하고, 해당 interface를 통해서 area 0안에 있는 장비들과 network정보를 교환한다.
- network 10.23.23.2 0.0.0.0 area 0
  - Interface FastEthernet 0/1에서 OSPF를 활성화 하고, 해당 interface를 통해서 area 0안에 있는 장비들과 network정보를 교환한다.



### <u>OSPF</u>

#### **Verifying the OSPF Configuration**

-Router에 알려진 경로와 경로가 학습된 방법을 표시 Router#show ip route

-Interface 별로 OSPF Neighbor 정보를 표시 Router#show ip ospf neighbor

-Area-ID와 Neighbor 인접성을 표시 Router#show ip ospf interface

-전체 Router에 대한 Timer, Filter, Metric, Network등의 매개변수들을 표시 Router#show ip protocols



### <u>OSPF</u>

#### **OSPF Metic**

- 목적지 네트워크까지의 경로에 대해 출력 인터페이스들의 대역폭을 누적시켜 비용으로 사용
- Cost = Reference bandwidth / bandwidth
  - Reference bandwidth = 100,000,000bps
  - Bandwidth = Outgoing Interface bandwidth
  - 결과 값이 정수가 아닌 경우, 소수점 이하 버림 연산
- OSPF Cost
  - Fast Ethernet: 1
  - Ethernet: 10
  - E1:48
  - T1:64
- Serial Interface의 default bandwidth는 1.544Mbps



### <u>OSPF</u>

#### **OSPF Multiaccess Network**

- OSPF의 Network Type
  - Point-To-Point
  - Broadcast Multiaccess (Ethernet)
  - Non Broadcast Multiaccess
  - Point-To-Multipoint (Frame-Relay, ATM, X.25)
  - Virtual Link
- Multiaccess Network는 동일한 공유 매체에 두 개 이상의 장비가 연결된 네트워크
  - 연결된 모든 장비간 adjacency관계 생성
  - Adjacency가 생성된 모든 장비들에게 LSU를 flooding하면서 과도한 traffic이 생성됨
  - Designated router를 선출하여 문제를 해결



### <u>OSPF</u>

#### **OSPF Multiaccess Network**

- Designated Router
  - 연결된 모든 장비와 adjacency관계를 형성
  - Multi access network에서 LSU 전송
  - 224.0.0.5 multicast address 사용
- Backup Designated Router
  - 연결된 모든 장비와 adjacency관계를 형성
  - DR이 활성화 되어 있을 때는 LSU를 전송 하지 않는다.
- DROthers
  - 오직 DR과 BDR하고만 adjacency관계를 형성
  - 224.0.0.6 multicast방식으로 LSU 전송
  - 224.0.0.5 multicast group address의 packet만 수신
  - Neighbor router들과 hello packet는 주고 받는다
  - Neighbor router들과 2way상태에 남아 있게 된다



#### **OSPF**

#### **OSPF Multiaccess Network**

- DR/BDR 선출
  - Multi access network에서만 DR/BDR을 선출한다.
  - DR : OSPF Interface priority가 가장 높은 router가 DR로 선출 된다
  - BDR : OSPF Interface priority가 두 번째 높은 router가 BDR로 선출 된다
  - OSPF interface priority가 동일한 경우에는, 가장 높은 route ID가 사용된다
  - OSPF interface default priority는 1
- DR/BDR 선출 시점
  - OSPF의 network 명령어로 interface가 설정되는 시점
  - 장비들이 초기 부팅할 때는, 장비간 부팅 과정이 달라서 낮은 router ID를 가진 router가 DR로 선출 될 수 있다
  - 한 번 DR로 선출 되면, DR에 문제가 발생했거나, OSPF process를 다시 시작하기 전에는 바뀌지 않는다.
  - OSPF Interface priority가 0이면, 결코 DR 또는 BDR로 선출될 수 없다
  - Router (config-if) #ip ospf priority 0-255



### **OSPF**

#### **OSPF Addtional configuration**

- Default Route 설정
  - 0.0.0.0/0의 정적 기본 경로를 광고하기 위해 default-information originate 명령어를 사용
  - Router (config) #ip route 0.0.0.0 0.0.0.0 interface
  - Router (config) #router ospf 1
  - Router (config-router) #default-information originate
- Reference Bandwidth 설정
  - Router (config-router) #auto-cost reference-bandwidth bandwidth-mbps
  - bandwidth bandwidth-kbps명령어로 해당 interface의 대역폭을 수정할 수 있다.
  - Router (config-if) #bandwidth bandwidth-kbps
  - ip ospf cost interface 명령어로 OSPF cost를 직접 설정할 수 있다.
  - Router (config-if) #ip ospf cost cost-value
- Hello/Dead Interval
  - Router (config-if) #ip ospf hello-interval second
  - Router (config-if) #ip ospf dead-interval second

