Vectors and Vector Spaces

Exercise 16. Project the vector \boldsymbol{b} onto the line through \boldsymbol{a} . Check that $\boldsymbol{e} = \boldsymbol{b} - \boldsymbol{p}$ is perpendicular to \boldsymbol{a} .

1.

$$a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$.

Correction:

Recalling that the projection p of the vector b satisfies $p = \hat{x}a$ with

$$\widehat{\boldsymbol{x}} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} = \frac{1+2+2}{1+1+1} = \frac{5}{3}.$$

then, one has

$$p = \frac{5}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $e = b - p = \frac{1}{3} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$.

Moreover we have

$$\langle \boldsymbol{a}, \boldsymbol{e} \rangle = \boldsymbol{a}^T \boldsymbol{e} = \frac{1}{3} (-2 + 1 + 1) = 0,$$

and thus e is orthogonal to a.

2.

$$\boldsymbol{a} = \begin{pmatrix} -1 \\ -3 \\ -1 \end{pmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}.$$

Correction:

Recalling that the projection p of the vector b satisfies $p = \hat{x}a$ with

$$\widehat{x} = \frac{a^T b}{a^T a} = \frac{-1 - 9 - 1}{1 + 9 + 1} = -1.$$

then, one has

$$p = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$
 and $e = b - p = 0$.

Thus e is orthogonal to a.

Exercise 17.

1. What multiple of $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ should be subtracted from $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ to make the result orthogonal to \mathbf{a} ? Sketch a figure to show the three vectors.

Correction:

We have to apply the Gram-Schmidt process to the vector \boldsymbol{b} (but we do not need to normalized the vector $\widetilde{\boldsymbol{b}}$). Then one has

$$\widetilde{\boldsymbol{b}} = \boldsymbol{b} - \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} \boldsymbol{a} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} - \frac{4}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$$

Thus we have to subtract a twice to obtain a vector orthogonal to a.

2. Complete the Gram-Schmidt process.

Correction:

One has

$$q_1 = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$

and

$$q_2 = \frac{\tilde{\boldsymbol{b}}}{\|\tilde{\boldsymbol{b}}\|} = \frac{1}{\sqrt{8}} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Exercise 18. Find orthogonal vectors q_1, q_2, q_3 by Gram-Schmidt from a_1, a_2, a_3 :

1.

$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, a_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \text{ and } a_3 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}.$$

Correction:

We have
$$\boldsymbol{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 thus $\boldsymbol{q}_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

One has
$$a_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 and so

$$\widetilde{oldsymbol{q}}_2 = oldsymbol{a}_2 - (oldsymbol{q}_1^T oldsymbol{a}_2) oldsymbol{q}_1 = oldsymbol{a}_2 - 0 = egin{pmatrix} 1 \ -1 \ 0 \end{pmatrix}.$$

Thus

$$oldsymbol{q}_2 = rac{\widetilde{oldsymbol{q}}_2}{\|\widetilde{oldsymbol{q}}_2\|} = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ -1 \ 0 \end{pmatrix}.$$

To finish
$$a_3 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$$
. Then we have

$$\widetilde{\boldsymbol{q}}_3 = \boldsymbol{a}_3 - (\boldsymbol{q}_1^T \boldsymbol{a}_3) \boldsymbol{q}_1 - (\boldsymbol{q}_2^T \boldsymbol{a}_3) \boldsymbol{q}_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} - \frac{9}{6} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

and

$$q_3 = rac{\widetilde{q}_3}{\|\widetilde{q}_3\|} = rac{1}{\sqrt{3}} egin{pmatrix} -1 \ -1 \ 1 \end{pmatrix}.$$

2.

$$m{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ m{a}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \ ext{and} \ m{a}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$

Correction:

We have
$$\boldsymbol{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
 thus $\boldsymbol{q}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$.

One has
$$\boldsymbol{a}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$
 and so

$$\widetilde{oldsymbol{q}}_2 = oldsymbol{a}_2 - (oldsymbol{q}_1^T oldsymbol{a}_2) oldsymbol{q}_1 = egin{pmatrix} 0 \ 1 \ -1 \ 0 \end{pmatrix} + rac{1}{2} egin{pmatrix} 1 \ -1 \ 0 \ 0 \end{pmatrix} = rac{1}{2} egin{pmatrix} 1 \ 1 \ -1 \ 0 \end{pmatrix}.$$

Thus

$$oldsymbol{q}_2 = rac{\widetilde{oldsymbol{q}}_2}{\|\widetilde{oldsymbol{q}}_2\|} = rac{1}{\sqrt{3}} egin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}.$$

To finish $a_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$. Then we have

$$\widetilde{q}_3 = a_3 - (q_1^T a_3) q_1 - (q_2^T a_3) q_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} - 0 + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 2 \\ -3 \end{pmatrix}$$

and

$$q_3 = rac{\widetilde{q}_3}{\|\widetilde{q}_3\|} = rac{1}{\sqrt{15}} \begin{pmatrix} 1\\1\\2\\-3 \end{pmatrix}.$$