Skripta za algebro2

Filip Koprivec

7. oktober 2015

— C. S. Lewis

Kazalo

1	Osn	ovne algebrske strukture	3
	1.1	Binarne operacije	3
		Polgrupe in monoidi	5

1 Osnovne algebrske strukture

1.1 Binarne operacije

Definicija 1: Binarna Operacija (tudi dvočlena operacija) \circ na množici \mathcal{S} je preslikava iz $\mathcal{S} \times \mathcal{S}$ v \mathcal{S} .

 $Torej \circ : \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$

Primer:

Osnovna zgleda binranih operacij na \mathbb{Z} sta:

- 1. Seštevanje: $(n, m) \mapsto n + m$
- 2. Množenje: $(n, m) \mapsto n \times m$

Skalarni produkt v \mathbb{R}^2 ni binarna operacija. Vektorski produkt v \mathbb{R}^3 je binarna operacija.

Definicija 2: Operacija o je asociativna, če ustreza enačbi

$$\forall x, y, z \in \mathcal{S}. \ (x \circ y) \circ z = x \circ (y \circ z) \tag{1}$$

Enakost 1 imenujemo **Zakon o asociativnosti**

Operacije, ki jih bomo obravnavali bodo praviloma asociativne.

Definicija 3: Elementa $x, y \in \mathcal{S}$ komutirata, če velja

$$\forall x, y \in \mathcal{S}.x \circ y = y \circ x \tag{2}$$

Enakost 2 imenujemo **Zakon o komutativnosti**

Opomba: Kadar je iz konteksta razvidno, o kateri operaciji govorimo, pogosto namesto " \circ je komutativna rečemo tudi $\mathcal S$ je komutativna"

Primer:

- 1. Operacija + na $\mathbb Z$ je tako asociatitivna in komutativna
- 2. Operacija * na \mathbb{Z} je tako asociatitivna in komutativna
- 3. Operacija na $\mathbb Z$ ni niti asociativna niti komutativna

Opomba: Na opracijo odštevanja gledamo kot na izpeljano operacijo in ne kot na samostojna operacijo, saj jo vpeljemo preko seštevanja in pojma nasprotnega elementa

4. Naj bo $\mathcal X$ poljubna neprazna množica. Z $F(\mathcal X)$ označimo množico vseh preslikav iz $\mathcal X$ v $\mathcal X$. Naj bosta $f,g\in\mathcal X,$ potem je $(f,g)\mapsto f\circ g$ (kompozitum funkcij) binarna operacija na $F(\mathcal X).$

Opomba: Operacija je asociativna, in kadar $|\mathcal{X}| \geq 2$ ni komutativna

Definicija 4: Naj bo o binarna operacija na na S in $e \in S$. e se imenuje nevtralni element, če velja

$$\forall x \in \mathcal{S}.e \circ x = x \circ e = x \tag{3}$$

Primer:

- 1. 0 je nevtralni element za seštevanje na \mathbb{Z} .
- 2. 1 je nevtralni element za množenje na \mathbb{Z} .
- 3. id_x (identična preslikava) je nevtralni element za $F(\mathcal{X})$

Opomba: Nevtralni element nima zagotovljenega obstoja (recimo + na \mathbb{N} ali * na sodih celih številih).

Trditev 1: Če nevtralni element obstaja je en sam

Dokaz. Naj bosta $f, e \in \mathcal{S}$ nevtralna elementa.

 $e=e\circ f$ // Ker je f
 nevtralni element $e\circ f=f$ // Ker je e nevtralni element

e = f

Definicija 5: Element e' je levi nevtralni element, če velja:

$$\forall x \in \mathcal{S}.e' \circ x = x \tag{4}$$

Definicija 6: Element e" je desni nevtralni element, če velja:

$$\forall x \in \mathcal{S}.x \circ e'' = x \tag{5}$$

Opomba: Levih in desnih nevtralnih elementov je lahko več $\mathbf{Primer:}$

1. $\circ: (x,y) \mapsto y$.

Vsak element je levi nevtralni element

2. 0 je desni nevtralni element za odštevanje v $\mathbb Z$

Trditev 2: Naj bo za operacijo $\circ e'$ levi nevtralni element, e'' pa desni nevtralni element. Tedaj velja $e' = e'' = e(\text{Sta si levi in desni nevtralni element enaka in je(sta) nevtralni element)$

Dokaz.

$$e' = e' \circ e'' = e''$$

Definicija 7: Naj bo \circ operacija na \mathcal{S} in naj bo $\mathcal{T} \subseteq \mathcal{S}$. Rečemo, da je \circ notranja operacija na \mathcal{T} ali da je množica \mathcal{T} zaprta za \circ na \mathcal{T} , če velja

$$\forall t, t' \in \mathcal{T}.t \circ t' \in \mathcal{T} \tag{6}$$

Primer:

Množica $\mathbb N$ je zaprta za operaciji + in *, ni pa zaprta za operacijo -.

Definicija 8: Preslikavi iz $K \times S$ v S kjer K! = S rečemo **Zunanja binarna** operacija

Primer:

1. Množenje vektorja s skalarjem

$$(\lambda, \vec{x}) \mapsto \lambda \vec{x}$$
, kjer je $(K = \mathbb{R}, S = \mathbb{R}^n)$
 $\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$

1.2 Polgrupe in monoidi

Definicija 9: Algebrska struktura je množica, opremljena z eno ali več operacijami (notranjimi ali zunanjimi), ki im ajo določene lastnosti

Definicija 10: Polgrupa je par množice S skupaj z asociativno binarno operacijo. Pišemo: (S, \circ)

Opomba: Kadar je jasno o kateri operaciji govorimo, pogosto govorimo kar o polgrupi ${\mathcal S}$

Primer:

1.
$$(\mathbb{N},+), (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{N},*), \dots$$
Niso samo polgrupe ampak kar grupe

Naj bo (S, \circ) polgrupa, po zakonu 1 o asociativnosti velja:

$$\forall x, y, z \in \mathcal{S}. (x \circ y) \circ z = x \circ (y \circ z)$$

zato lahko okepaje spuščamo in vse to pišemo kot $x\circ y\circ z$. Kaj pa če imamo več kot tri elemente. Ali velja tudi:

$$(x_1 \circ x_2) \circ (x_3 \circ x_4) = ((x_1 \circ x_2) \circ x_3) \circ x_4 = x_1 \circ (x_2(\circ x_3 \circ x_4)) = \dots$$