## Exercise 1:

- 1. Let  $(B^1, B^2)$  be two independent Brownian motions.
  - a) (2 points) Find for  $\rho \in [-1, 1]$  constants a and b such that

$$W^1 := B^1 \text{ and } W^2 := aB^1 + bB^2$$

satisfy  $[W^1]_t = [W^2]_t = t$  and  $[W^1, W^2]_t = \rho t$ . Compute  $\operatorname{corr}(W^1_t, W^2_t)$ .

b) (2 points) Consider adapted and left-continuous bounded processes  $x_s$ ,  $y_s$ ,  $z_s$  and  $v_s$ . Define

$$X_t := \int_0^t x_s dW_s^1, \quad Y_t := \int_0^t y_s dW_s^2,$$

$$Z_t := \int_0^t z_s dX_s, \quad V_t := \int_0^t v_s dY_s.$$

Find  $[Z, V]_t, t > 0$ .

**a**)

$$\begin{array}{l} \rho t = \left[W^1,W^2\right]\\ \text{, since the quadratic covariation is bilinear in it's arguments}\\ = a\left[B^1,B^1\right] + b \underbrace{\left[B^1,B^2\right]}_{=0,\mathrm{since}B^1\mathrm{and}B^2\mathrm{independent}}\\ = a\left[B^1\right]\\ = at\\ \Rightarrow a = \rho \end{array}$$

## Exercise 2:

- 2. Kunita Watanabe decomposition, hedging with correlated assets.
  - a) (2 points) Consider two martingales  $N, M \in \mathcal{M}^{2,c}$  and denote by  $N_t = N_0 + \int_0^t H_s dM_s + L_t$ ,  $t \leq T$ , the Kunita Watanabe decomposition of N wrt M. Show that the integrand H satisfies the relation

$$[M, N]_t = \int_0^t H_s d[M]_s, \quad t \le T.$$

Suppose that - as in the case of martingales driven by Brownian motion -  $d[M,N]_t = \alpha_t^{[M,N]}dt$  and  $d[M]_t = \alpha_t^{[M]}dt$  with  $\alpha_t^{[M]} > 0$ . Conclude that  $H_t = \alpha_t^{[M,N]}/\alpha_t^{[M]}$ .

b) (2 points) Consider a model with two correlated assets with dynamics  $dS_t^i = \sigma_i S_t^i dB_t^i$  for two standard Brownian motions  $B^1$ ,  $B^2$  with  $[B^1, B^2]_t = \rho t$  for some  $\rho \in [-1, 1]$ . Compute the Kunita Watanabe decomposition of  $S^2$  wrt  $S^1$ . (This is one possible approach for hedging the non-tradable asset  $S^2$  with the tradable asset  $S^1$ .)

## Exercise 3:

3. Quadratic variation of compensated Poisson process . Consider a Poisson process  $N_t$  with parameter  $\lambda$  and recall that  $M_t = N_t - \lambda_t$  is a square integrable martingale. Use the characterization of quadratic variation to show that  $[M_t] = N_t$ .

## Exercise 4:

**4. Generator of the Heston model** (3 points) Consider a two-dimensional process X, v with

$$dX_t = \mu X_t dt + \sigma_1 \sqrt{v_t} dB_{t,1}$$
  
$$dv_t = \kappa (\theta - v_t) dt + \sigma_2 \sqrt{v_t} dB_{t,2}$$

for constants  $\mu, \sigma_1, \sigma_2, \kappa, \theta > 0$  and two Brownian motions  $B_1, B_2$  with  $[B_1, B_2]_t = \rho t$  for some  $-1 \le \rho \le 1$ . Compute the generator of the process (X, v).