Classification and Predictions of the Palestine - Israel Conflict: An ML and Econometrics Approach

Arya Amarnath

Motivation and Background

History On this Ongoing Conflict Since 1948

- Rise of Zionism + Jewish Immigration to Palestine after WW2
- Israel Formed as a State in 1948 Sparking First Israeli-Arab War
- Six-Day War, First and Second Intifada
- Hundreds of Failed Peace Negotiations
- Over 6 Million Palestinians Displaced

Since October 7 2023, Israel - Hamas 'War':

- 35,000 Palestinian and 1400 Israeli Dead
- 2 Million Palestinians Trapped

How can Data Science Be Used For Peacemaking and Conflict Resolution?

- Forecasting and Early Warning Systems

Goals

Main Objective: Classify and Predict the 'Sub-Event Type' Variable

Sub Objective: Utilizing
Predictions, Create a
Time-Series Forecast of
Sub-Event Type

Sourced From: Armed Conflict Location & Event Data Project (ACLED)

Utilizing Data Export Tool:

- April 20 2021 -> April 19, 2024
 - Israel Conflict Data
 - Palestine Conflict Data

38,130 Rows + **32** Columns

Event type	Sub-event type	Disorder type		
	Government regains territory			
Battles	Non-state actor overtakes territory	Political violence		
	Armed clash			
Bustanta	Excessive force against protesters	Political violence; Demonstrations		
Protests	Protest with intervention			
	Peaceful protest	Demonstrations		
Riots	Violent demonstration			
NIOCS	Mob violence			
	Chemical weapon			
	Air/drone strike			
Explosions/	Suicide bomb			
Remote violence	Shelling/artillery/missile attack	Balitical violence		
	Remote explosive/landmine/IED	Political violence		
	Grenade			
10-1	Sexual violence			
Violence against civilians	Attack			
	Abduction/forced disappearance			
Strategic developments	Agreement			
	Arrests			
	Change to group/activity			
	Disrupted weapons use	Strategic		
	Headquarters or base established	developments		
	Looting/property destruction			
	Non-violent transfer of territory			
	Other			

Data

Event Date	Year	Disorder Type	Event Type	Sub Event Type	Actor 1	Inter 1	Actor 2
19-Apr-24	2024	Political violence	Explosions/Remote violence	Shelling/artillery/mi ssile attack	Hamas Movement	3	Military Forces of Israel
19-Apr-24	2024	Demonstrations	Protests	Peaceful protest	Protestors (Israel)	6	
19-Apr-24	2024	Demonstrations	Riots	Violent demonstration	Rioters (Israel)	5	Rioters (Israel)

ACLED, 2024

Data

Inter 2	Interactio n	Civilian Targeting	Region	Country	Admin 1	Latitude	Fatalities
0	30	0	Middle East	Israel	HaDarom	31.525	0
0	60	0	Middle East	Israel	Haifa	32.6363	0
5	55	0	Middle East	Israel	HaMerkaz	31.8766	0

ACLED, 2024

Exploratory Data Analysis

Upsurge in Conflict Events since October 7th, 2023 -> Hamas-led Attack on Israel in response to Illegal Israeli Occupation of Palestinian Territories

EDA Continued

Data Wrangling

Log Transformations -> Stabilize Variance and Reduce Extreme Values

Encoding

Label Encoding

Converts each value within a categorical column into a unique integer

Used On -> Actor 1 and Actor 2

Actor Before	Actor After
Military Forces of Israel	1
Civilians (Pal.)	2
Civilians (Isr.)	3

2 One-Hot Encoding

Transforms each categorical variable into a set of binary variables, shown through 1's and 0's

Used On -> All Other Features

Disorder Type Before	
Demonstrations	-
Political Violence	
Strategic Developments	-

Disorder Type Demonstratio ns	Disorder Type Political Violence	Disorder Type Strategic Developments
0	1	0
0	0	1
1	0	0

Feature Selection

Combined Top Features ->

Top 20% of Selected Features From Mutual Information and Random Forest Importance

155 Features down to 19 Features

Figure 6, Amarnath

Figure 7, Amarnath

Principal Component Analysis

Reducing the Dimensional Size While Retaining 95% of Variance Explained

19 Features to 10 Principal Components

Problems Within Data

Heteroskedasticity -> Consistent Variance of Residuals

- Breusch-Pagan Test
- Not Solved

Multicollinearity -> Highly Correlated Features

- Variance Inflation Factor
- Somewhat Addressed Through Removal of Collinear Values > 0.75

Ensuring Data is Stationary -> Constant mean, variance, autocorrelation

- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test
- Solved with Majority P-Values > 0.05

LSTM Parameters

Epochs -> 50

Batch Size -> 64

Validation Split -> 0.1

Early Stopping -> 10 or 5

of Features per time step -> 24

Output Class -> 20

Grid Search

Time steps -> 7, 14, 24, 30

Neurons -> 50, 100, 200

Dropout Rate -> 0.1 - 0.5

Model Results

	Logistic Regression	Decision Tree	Control LSTM	LSTM w/ No Embedded	LSTM w/ Embedded Layer
Test Accuracy	86.0%	77.0%	65.0%	81.9%	85.0%
Test MAE	-	-//	3.58	1.93	1.93
Test MSE	-	-	48.43	26.53	25.42
Test RMSE	-	-	6.96	4.96	4.96

Classification Predictions

Figure 9, Amarnath

Figure 10, Amarnath

2500

- 2000

- 1500

- 1000

500

Time-Series Prediction

Multicollinearity,
Heteroscedastic data and
Class Imbalance ->

Inaccurate Predictions

Unsuccessful in Generating Accurate Predictions

Figure 11, Amarnath

Inconsistency

```
Number of errors With Embed: 764 / 5628
Index: 2, Predicted: 3, Actual: 18
Index: 18, Predicted: 3, Actual: 18
Index: 19, Predicted: 3, Actual: 18
Index: 20, Predicted: 3, Actual: 18
Index: 35, Predicted: 2, Actual: 18
Index: 39, Predicted: 3, Actual: 18
Index: 40, Predicted: 3, Actual: 18
Index: 45, Predicted: 2, Actual: 18
Index: 57, Predicted: 2, Actual: 18
Index: 70, Predicted: 18, Actual: 5
```

Future Work:

Properly Addressing
Time-Series Data Issues

Swapping Datasets or Adding in External Temporal Variables

Figure 12, Amarnath

References:

Al Jazeera. (2023, November 27). Palestine and Israel: A brief history with maps and charts. Retrieved from https://www.aljazeera.com/news/2023/11/27/palestine-and-israel-brief-history-maps-and-charts

Ananth, Anagha D, and Sujatha Arun Kokatnoor. "An enhanced ensemble of long short-term memory and vector autoregression for energy consumption forecasting." *Indian Journal of Science and Technology*, vol. 14, no. 43, 12 Nov. 2021, pp. 3227–3236, https://doi.org/10.17485/ijst/v14i43.655.

Armed Conflict Location & Event Data Project (ACLED). (2023). ACLED Codebook 2023. Retrieved from https://acleddata.com/acleddatanew/wp-content/uploads/dlm_uploads/2023/06/ACLED_Codebook_2023.pdf

Brownlee, Jason. "How to Grid Search Deep Learning Models for Time Series Forecasting." *MachineLearningMastery.Com*, 27 Aug. 2020, machinelearningmastery.com/how-to-grid-search-deep-learning-models-for-time-series-forecasting/.

CPA. "Israeli-Palestinian Conflict | Global Conflict Tracker." Council on Foreign Relations, Center for Preventive Action, www.cfr.org/global-conflict-tracker/conflict/israeli-palestinian-conflict#:~:text=The%20Israeli%2DPalestinian%20conflict%20dates,into%20Arab%20and%2 0Jewish%20states. Accessed 1 May 2024.

Grace-Martin, Karen. "Eight Ways to Detect Multicollinearity." The Analysis Factor, 31 Dec. 2023, www.theanalysisfactor.com/eight-ways-to-detect-multicollinearity/.

SlidesGo. (n.d.). Palestine flag minitheme. Retrieved from https://slidesgo.com/theme/palestine-flag-minitheme