題目: 中文題目

Title: GANxxxxx

| 姓 名        | <b>:</b>           |
|------------|--------------------|
| Name       |                    |
| 學號         | : 18098xxx-xxxx    |
| StudentNo. | TOODOMA AAAA AAAA  |
| 學院         | : xxxx             |
| Faculty    | 10 10              |
| 課程         | : xxx              |
| Program    | 140 EDX / 5/       |
| 專業         | : xxxx             |
| Major      |                    |
| 指導教師       | : xxxx             |
| Supervisor | OF SCIENCE         |
| 日 期        | : 2022 年 4 月 25 日  |
| Date       | . 2022   17,1 25 H |

### **GAN**xxxxx

by

### HE

(StudentNo.: 18098xxx-xxxx-xxxx)

Supervisor: xxxx

#### A thesis

submitted to the xxxx

and the School of Graduate Studies of

Macau University of Science and Technology

in partial fulfillment of the requirements for the degree of

 $\mathbf{x}\mathbf{x}\mathbf{x}$ 

in

 $\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}$ 

**April 25, 2022** 

# 摘要

摘要

### 關鍵詞: XXXX



GANxxxx

# Abstract

Abstract

**Keywords: XXXX** 



GANxxxxx

# Contents

| 摘要        |               |               | I  |
|-----------|---------------|---------------|----|
| Abstrac   | et            |               | II |
| Content   | ts            |               | Ш  |
| List of I | Figures       |               | IV |
| List of T | <b>Fables</b> | a科技、          | V  |
| Chapte    | r 1           | Chapter one   | 1  |
| Chapte    | r <b>2</b>    | Chapter two   | 2  |
| 2.1       | Sectio        | on two        | 2  |
|           | 2.1.1         | Table         | 2  |
|           | 2.1.2         | Algorithms    | 2  |
|           | 2.1.3         | Figure        | 2  |
|           | 2.1.4         | Equation      | 7  |
| Chapte    | r <b>3</b>    | Chapter Three | 10 |
| 3.1       | Sectio        |               | 10 |
| Chapte    | r 4           | Chapter Four  | 11 |
| Bibliogı  | raphy         |               | 12 |
| Append    | ices          |               | 13 |
| A         | Code          | listing       | 13 |
|           | A.1           | Code Cpp      | 13 |
|           | A.2           | Code Latex    | 14 |
| Curricu   | ılum Vi       | itae          | 17 |
| Acknow    | ledgen        | nents         | 18 |

GANxxxxx List of Figures

# **List of Figures**

| Figure 2.1 | MUSTSchoolBadgecolor.pdf     | 5 |
|------------|------------------------------|---|
| Figure 2.2 | MUSTSchoolBadgecolor.pdf - 2 | 6 |
| Figure 2.3 | Tikz Flowchart               | 8 |



GANxxxxx List of Tables

# **List of Tables**

| Table 2.1 | Comparison of the APs and mAPs with our framework and those from DPM |   |  |  |  |  |
|-----------|----------------------------------------------------------------------|---|--|--|--|--|
|           | and R-CNN                                                            | 2 |  |  |  |  |
| Table 2.2 | Notations                                                            | 7 |  |  |  |  |



GANxxxxx Chapter one

## Chapter 1. Chapter one

Chapter one's contents. There is the citation. [1, 2]

- Introduction
- Related work
- Background
- Notation
- Method
- Experiment
- Conclusion
- 1. Introduction
- 2. Related work
- 3. Background
- 4. Notation
- 5. Method
- 6. Experiment
- 7. Conclusion

### Chapter 2. Chapter two

Chapter two'contents.

### 2.1 Section two

#### **2.1.1** Table

Subsection's contents in Table 2.1 and 2.2.

### 2.1.2 Algorithms

Subsection's contents.

The Algorithms 1 and Algorithms 2:

### **2.1.3** Figure

Figure contents

I Subfigure

In Figure 2.1 and Figure 2.2, ....

Table 2.1 Comparison of the APs and mAPs with our framework and those from DPM and R-CNN on PASCAL VOC 2007 testing dataset.

|       | plane | bike | bird | boat | bottle | bus | car | cat |
|-------|-------|------|------|------|--------|-----|-----|-----|
| DPM   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0    | 0.0 | 0.0 | 0.0 |
| R-CNN | 0.0   | 0.0  | 0.0  | 0.0  | 0.0    | 0.0 | 0.0 | 0.0 |
| Ours  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0    | 0.0 | 0.0 | 0.0 |

|       | chair | cow | table | dog  | horse | mbik | pers | plant |
|-------|-------|-----|-------|------|-------|------|------|-------|
| DPM   | 0.0   | 0.0 | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   |
| R-CNN | 0.0   | 0.0 | 0.05  | 56.1 | 60.6  | 66.8 | 54.2 | 0.0   |
| Ours  | 0.0   | 0.0 | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   |

#### Algorithm 1: IntervalRestriction

```
Data: G = (X, U) such that G^{tc} is an order.
     Result: G' = (X, V) with V \subseteq U such that G'^{tc} is an interval order.
   1 begin
         V \longleftarrow U
   2
         S \longleftarrow \emptyset
   3
         for x \in X do
   4
             NbSuccInS(x) \longleftarrow 0
             NbPredInMin(x) \longleftarrow 0
             NbPredNotInMin(x) \leftarrow |ImPred(x)|
   7
         end
   8
         for x \in X do
   9
             if NbPredInMin(x) = 0 and NbPredNotInMin(x) = 0 then
  10
                 AppendToMin(x)
  11
             end
  12
         end
  13
         while S \neq \emptyset do
  15
             remove x from the list of T of maximal index
REM
             while |S \cap ImSucc(x)| \neq |S| do
  18
                 for y \in S - ImSucc(x) do
  19
                     { remove from V all the arcs zy : }
  20
                     for z \in ImPred(y) \cap Min do
  21
                         remove the arc zy from V
  22
                         NbSuccInS(z) \leftarrow NbSuccInS(z) - 1
  23
                         move z in T to the list preceding its present list
  24
                         {i.e. If z \in T[k], move z from T[k] to T[k-1]}
  25
                     end
  26
                     NbPredInMin(y) \longleftarrow 0
  27
                     NbPredNotInMin(y) \longleftarrow 0
  28
                     S \longleftarrow S - \{y\}
  29
                     AppendToMin(y)
  30
                 end
  31
             end
  32
             RemoveFromMin(x)
  33
         end
  34
  35 end
```

#### Algorithm 2: Algorithm as a Recursive Function

```
1 Function FnRecursive(some args) is /* algorithm as a recursive function */
      Data: Some input data
      these inputs can be displayed on several lines and one input can be wider than line's
      width.
      Result: Same for output data
      /* this is a comment to tell you that we will now really start code
2
3
      if this is true then /* a simple if but with a comment on the same line
          we do that, else nothing;
4
          /* we will include other if so you can see this is possible
5
         if we agree that then
6
             we do that;
7
          else
8
             else we will do a more complicated if using else if;
             if this first condition is true then
10
                 we do that;
11
             else if this other condition is true then
12
                 this is done;
                                                                           * else if */
13
             else
14
                 in other case, we do this:
                                                                              /* else */
15
             end
16
          end
17
      end
18
      /* now loops
                                                                                       */
19
      for i=0 to n do
20
          a for loop;
21
      end
22
      while i < n do
23
          a while loop including a repeat-until loop;
24
          repeat
25
             do this things;
26
          until this end condition;
27
28
      They are many other possibilities and customization possible that you have to discover
29
       by reading the documentation.
30 end
```



Figure 2.1 MUSTSchoolBadgecolor.pdf



Figure 2.2 MUSTSchoolBadgecolor.pdf - 2

| Symbol      | Definition                                                          |
|-------------|---------------------------------------------------------------------|
| s           | Angles of 45°in n-polygon                                           |
| r           | Angles of 90° in n-polygon                                          |
| l           | Angles of 135° in n-polygon                                         |
| S           | The aggregate of all space not matched any piece                    |
| P           | The aggregate of the weight point position in two-dimensional array |
| H           | Threshold evaluating the probability to search next state           |
| $\eta(p,d)$ | Thresholding function of Simulated Annealing                        |

Table 2.2 Notations

#### II Tikz Figure

In Figure 2.3 <sup>1</sup> ....

### 2.1.4 Equation

formula example

### I Equtaion

$$\int_{-\epsilon}^{\infty} dl \, e^{-l\zeta} \int_{-\epsilon}^{\infty} dl' e^{-l'\zeta} ll' \frac{l'-l}{l+l'} \{ 3 \, \delta''(l) - \frac{3}{4} t \, \delta(l) \} = 0.$$
 (2.1)

$$ds^{2} = \left(1 - \frac{q\cos\theta}{r}\right)^{\frac{2}{1+\alpha^{2}}} \left\{ dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2} \right\} - \frac{dt^{2}}{\left(1 - \frac{q\cos\theta}{r}\right)^{\frac{2}{1+\alpha^{2}}}}.$$
 (2.2)

#### **II** Multiple-Line Equation

$$\frac{\phi''}{A} + \frac{1}{A} \left( -\frac{1}{2} \frac{A'}{A} + 2 \frac{B'}{B} + \frac{2}{r} \right) \phi' - \frac{2}{r^2} \phi - \lambda \phi (\phi^2 - \eta^2) = 0.$$
 (2.3)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma^{\mu} D_{\mu} - m) \psi , 
S \sim \tilde{\psi} Q_{o} \tilde{\psi} + g_{s}^{1/2} \tilde{\psi}^{3} + \tilde{\phi} Q_{c} \tilde{\phi} + g_{s} \tilde{\phi}^{3} + \tilde{\phi} B(g_{s}^{1/2} \tilde{\psi}) + \cdots .$$
(2.4)

<sup>&</sup>lt;sup>1</sup>referred from https://latexdraw.com/draw-flowcharts-latex-tutorial/



Figure 2.3 Tikz Flowchart

#### III Theorem

**Theorem 1** (Separating Axis Theorem).  $: {}^{2}$  Let A and B be two disjoint nonempty convex subsets of  $\mathbb{R}^{n}$ . Then there exist a nonzero vector v and a real number c such that

$$\langle x,v\rangle \geq c \quad \text{and} \quad \langle y,v\rangle \leq c$$

for all x in A and y in B; i.e., the hyperplane  $\langle \cdot, v \rangle = c$ , v is normal vector, separates A and B.



<sup>&</sup>lt;sup>2</sup>reference from https://en.wikipedia.org/wiki/Hyperplane\_separation\_theorem

GANxxxxx Chapter Three

# Chapter 3. Chapter Three

Chapter Three' contents.

## **3.1** Section **3.1**

Section 3.1's contents.



GANxxxxx Chapter Four

# Chapter 4. Chapter Four

Chapter Four's contents.

**Paragraph** This is a paragraph.

**Paragraph** This is a paragraph.

**Sparagraph** This is a subparagraph.

**Sparagraph** This is a subparagraph.

GANxxxxx Bibliography

### **Bibliography**

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2414–2423.

Reed, S. E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016). Generative adversarial text to image synthesis. *CoRR*, abs/1605.05396.



## **Appendices**

### A Code listing

### A.1 Code Cpp

```
// leetcode 94, 110...
    #include <iostream>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <unordered_map>
    using namespace std;
    class AVL
10
11
   public:
12
13
    class Node // N-ary tree
16
    public:
17
        int val;
18
        vector<Node *> children;
19
20
        Node() {}
21
22
        Node(int _val)
23
24
            val = _val;
25
        }
26
27
        Node(int _val, vector<Node *> _children)
28
        {
29
            val = _val;
30
            children = _children;
31
        }
32
33
   };
34
    struct TreeNode
35
    {
36
        int val;
37
        TreeNode *left;
38
```

#### A.2 Code Latex

### titlepage.sty

```
Title page of Thesis
2
  } {#1}}
   \titleofthesis C
4
5
     \bf\sizefont {18pt}
       \begin {center}
9
       \label{lem} $$ \left\{ p_{2em} < \left\{ \begin{array}{ll} flushleft \\ \end{array} \right\} < \left\{ \begin{array}{ll} flushleft \\ \end{array} \right\} $$
10
          題 \ h fill 目 & \ h space {-4mm}: & \ Ctitle \ \
11
          Title& \hspace \{-4mm\} : & \Etitle
12
       \end{tabular}
13
       \end{center}
14
     }
15
16
     \vspace * {1cm}
17
18
       % \fontsize \{12pt\} \{\baselineskip\}\selectfont
19
```

```
\sizefont {12 pt}
20
21
       \begin { table } [ htbp ]
22
       \centering
23
          \begin \tabular \ \ \p\{5em\} ccc \}
24
            &\mycell {姓 \qquad 名 } {Name } {\Cname}
25
            &\mycell{學\qquad 號}{StudentNo.}{\Stuno}
26
            &\mycell{學\qquad 院}{Faculty}{\Faculty}
27
            &\mycell{課\qquad 程}{Program}{\Program}
28
            &\mycell {專 \qquad 業 } {Major } {\Major}
29
            &\mycell {指導教師} { Supervisor } {\ SupervisorC }
30
            &\mycell {日 \qquad 期 } {Date } {\Stoday}
31
          \end{tabular}
32
       \end{table}
33
34
35
36
   \newcommand {\titleofthesisE} [1] {\renewcommand {\titleofthesisE}}
37
      } {#1}}
   \ titleofthesisE
38
39
     \begin { center }
40
       \bf\sizefont {18 pt }\ Etitle \\
41
       \vspace {0.25 in}
42
       \ large
43
       by \\
       \vspace {0.25 in}
45
       \ large
46
       \Ename \\
47
       \bf\normalsize
48
        (StudentNo .: \Stuno) \\
49
       \begin {center}
50
```

```
51
         \bf\normalsize
52
            Supervisor: \SupervisorE \\
53
         \vspace {0.8 in}
         \bf\normalsize
55
           A thesis \\
56
            submitted to the \Faculty\\ % (Name of faculty)
57
            and the School of Graduate Studies of \\
           Macau University of Science and Technology \\
59
            in partial fulfillment of the requirements for the degree
60
                of \setminus
            \Program \\ %(Name of degree)
61
            in \setminus \setminus
62
            \Major \\ %(Name of major)
63
         \vspace {1 in}
64
         \ today
65
       \end{center}
66
     \end{center}
67
```

GANxxxxx Curriculum Vitae

### **Curriculum Vitae**

#### HE

john@mailme.com +1 2345 6789 www.myweb.com

New York, USA

#### **About Me**



### **Educational Background**

2010 - 2011, Cornell University

MEng in Computer Science

2007 - 2010, Cornell University

BS in Computer Science

#### **Awards**

| Working               | <b>Experience</b> |
|-----------------------|-------------------|
| 1 1 O1 12111 <b>-</b> | LAPOITCHEC        |

**Product** 

**Interests** 

GANxxxxx Acknowledgements

# Acknowledgements

I am glad to.....

HE xxxx April 25, 2022

