MAS242 ANALYSIS I QUIZ 1

Problem 1. (15 points) Prove that

a sequence $\{x_n\}$ converges in \mathbb{R} if and only if each of its proper subsequences is Cauchy in \mathbb{R} .

Proof.

A sequence $\{x_n\}$ converges in \mathbb{R} .

- \iff A sequence $\{x_n\}$ is Cauchy in $\mathbb{R}.(Theorem1.4.4)$
- \iff For each $\epsilon > 0$, $\exists N$ such that $\forall n, m > N$, $|x_n x_m| < \epsilon$
- $\Longrightarrow \text{For any subsequence}\{x_{n_k}\}, \quad \text{For each } \exists K \text{ such that } \forall k,l>K, \quad n_k,n_l>N \text{ and so } |x_{n_k}-x_{n_l}|<\epsilon$
- \iff Each of its subsequences is Cauchy in $\mathbb R$

$$\therefore (\Longrightarrow)$$

A sequence $\{x_n\}$ does not converge in \mathbb{R} .

- \iff A sequence $\{x_n\}$ is not Cauchy in $\mathbb{R}.(Theorem1.4.4)$
- \iff There exists $\epsilon > 0$, such that $\forall N$, $\exists N_1, N_2 > N$ satisfying $|x_{N_1} x_{N_2}| > \epsilon$
- \implies There exists a proper subsequence $\{x_{n_k}\}$, such that $\forall m>0$, $|x_{n_{2m}}-x_{n_{2m-1}}|>\epsilon$
- \iff There exists a proper subsequence which is not Cauchy in $\mathbb R$

Problem 2. (15 points) Fix any c > 0. Let x_1 be any positive number and define $x_{k+1} = \sqrt{(x_k^2 + c/x_k^2)/2}$.

- (1) Prove that $\{x_k\}$ converges.
- (2) Use this sequence to calculate $\sqrt{2}$, accurate to two decimal places.

Proof. (1) First, x_k is positive for all k > 0.

$$x_{k+1}^2 - \sqrt{c} = (x_k^2 - 2\sqrt{c} + c/x_k^2)/2 = (x_k^2 - \sqrt{c})^2/2x_k^2 \ge 0$$

Thus $x_k \ge c$ for all k > 1.

$$\begin{aligned} x_{k+1}^2 - \sqrt{c} &= (x_k^2 - \sqrt{c})^2 / 2x_k^2 < (x_k^2 - \sqrt{c}) / 2, \quad \forall k > 1 \\ \Longrightarrow x_{k+1}^2 - \sqrt{c} &< (x_2^2 - \sqrt{c}) / 2^{k-1} \to 0 \text{ as } k \to \infty \\ \Longrightarrow x_k \to \sqrt[4]{c} \text{ as } k \to \infty \end{aligned}$$

Date: 12 March 2021.

(2) Put c=2 and let $y_k=x_k^2$. Then $y_{k+1}-\sqrt{2}<(y_k-\sqrt{2})/2$ for k>1. Let $y_1=1$

Let
$$y_1 = 1$$

 $\implies y_2 = \frac{3}{2} = 1.5$
 $y_3 = \frac{17}{12} = 1.416..$
 $y_4 = \frac{577}{408} = 1.414..$

Therefore $\sqrt{2} = 1.41..$