Giancoli Ch19: Heat and the First Law of Thermodynamics

1 Heat as Energy Transfer

- Heat is not a substance (the failed caloric theory)
- 1 calorie(cal)¹= amount of energy required to raise the temperature of 1 kg of water by 1 degree celsius²
- Heat: energy transferred : Δ temperature
- SI unit of heat: Joules
- Mechanical equivalence of heat: work done \rightarrow increase in temperature (1 cal = 4.186 Joules)

2 Internal Energy

- Internal (Thermal) Energy: total energy of all molecules
- Temperature: measure of average thermal E_k of individual molecules ³
- Internal Energy of an Ideal Monoatomic Gas Assumptions:
 - 1. If more than one atom in a molecule than need to consider rotational E_k , vibrational E_k , E_p . But still only α on T
 - 2. Real Gas: largely dependent on T but also has a bit of dependence on P,V
 - 3. Liquid, Solids: Complicated Internal energy: take into consideration electrical bond energy

$$E_{int} = \Sigma E_k \quad translational = N(\frac{1}{2}m\overline{v}^2)$$
 (1)

$$=N(\frac{3}{2}kT)\tag{2}$$

$$=\frac{3}{2}nRT\tag{3}$$

3 Specific Heat

$$Q=mc\Delta T$$

• for solids and liquids, the value of c somewhat dependent on T and a bit on P

 \because c is a function of $T \to c(T)$ we write heat as:

$$dQ = mc(T)dT$$
 \rightarrow $Q = \int_{T_1}^{T_2} mc(T)dT$

¹1kcal= Calorie

²Also British Thermal Unit (BTU)= The amount of energy required to raise the temperature of 1lb of water by 1 degree F

³Remember that heat is ONLY dependent on temperature

- but for $\Delta T \to 0$ we treat c as constant
- Gas more complicated

4 Calorimetry

- Closed system: no mass in or out (but can energy exchange)
- Isolated system if no energy in or out of its boundaries
- Isotropic tendency within system
- Conservation of energy valid for isolated closed sys (often if not \rightarrow approx)
- heat gained = heat lost
- Consider all sources of energy transfer
- Calorimetry: quantitative measurement of heat exchange
- "method of mixtures": calculate specific heat by mixing

5 Latent Heat

- is the energy released or absorbed by a system during a constant temperature process.
- Typical ex. is energy involved in change of phase
- Heat of fusion (L_f) : heat required to change 1 kg of substance (s) \rightarrow (l) ⁴
- Heat of vaporization (L_v) : heat required to change 1 kg of substance (l) \rightarrow (g) ⁵
- $\bullet \ \ heat \ involved \ in \ phase \ change = Q = mL \ where \ L: \ latent \ heat \ of \ the \ particular \ process \ and \ substance$
- The value of L_v increases slightly with a decrease in temperature. (?) When water evaporates, since the energy required comes from the water itself (L_v) so its internal energy T. (ex. sweating)
- Energy is used for bond breakage/ formation in molecules instead of used to increase average kinetic energy. And : (l) \rightarrow (g) is a more violent reorganization than (s) \rightarrow (l) : usually $L_v > L_f$

6 The First Law of Thermodynamics

- heat: transfer of energy due to a difference in temperature
- work: transfer of energy tat is not due to a temperature difference
- First law of thermodynamics

$$\Delta E_{int} = Q - W \tag{4}$$

where Q: net heat **added** to the system W: net work done **by** the system

 $^{^4}L_f, water = 3.33 \times 10^5 J/kg$

⁵for water, 2260 kJ/kg

- restatement of conservation of energy \rightarrow applies only to closed system
- if open system, must taken into account the internal energy due to increae of decrease in the amount of matter.
- Isolated system : W=Q=0 (no heat or work on sys) : $E_{int} = 0$
- \bullet State variable: describe the state of a system 6
- Also useful to write as $dE_{int} = dQ dW^7$
- For a moving system with potential energy,

$$\Delta K + \Delta U + \Delta E_{int} = Q - W \tag{5}$$

7 Work Calculation

Area under PV graph:

7.1 Isothermal processes $\Delta T=0$

- \bullet Isotherm : curves on isothermal PV graph
- \bullet Ideal gas \therefore PV= constant at every point on graph
- Heat reservoir: a body whose mass is so large that $T \approx constant$ when heat is exchanged
- quasistatically : moving so slow (i.e. static) that T doesn't signficifantly change
- $E_{int} = \frac{3}{2}nRT$: mass, T unchanged : E_{int} unchanged E = Q W = 0 $\rightarrow Q = W$ work done by gas in an isothermal process = heat added to gas

7.2 Adiabatic Processes (Q=0)

- situation: short Δt or well insulated
- : 1st law of thermo : $\Delta E_{int} = -W$
- \bullet ex) Adiabatic compression \to T $\uparrow \to$ Diesel fuel mixture ignite spontaneously 8

 $^{^6\}mathrm{Q}$, W are NOT state variables

⁷dQ and dW are not exact differential

⁸1st law of thermo also holds for Isobaric and Isovolumetric (Isochoric) Processes

7.3 Work Done in Volume Changes

Work and heat are not property of a system, they are not only dependent on final and initial but also depend on type of process ("path independent") $dW = \mathbf{F}d\mathbf{l} = PAd\mathbf{l} = PdV$ where $d\mathbf{l}$ point into the gas Isobaric

- Area under PV graph is rectangle $W = P(V_f V_i)$
- as volume change in gas, P= P_b throughout $\rightarrow P = \frac{nRT_b}{V_b}$
- divide both side by $V_b \rightarrow : W = nRT_b(1 \frac{V_a}{V_b})^9$

Isothermal

$$W = \int dW = \int PdV = nRT \ln \frac{V_b}{V_a} \tag{6}$$

Free Expansion

- a method of adiabatic expansion with W=0
- release valve: gas move from one compartment to another ∵ gas does not move any obj ∴ W=0
- : by 1st law $\rightarrow \Delta E_{int} = 0 \rightarrow \Delta T = 0$
- Using this method, we experimentally show that $\Delta T \to 0$ but $\neq 0$: ΔE_{int} does not depend solely on T but also a bit on P and V
- Rapid process 10 : state variables in intermediate stages are not well define \rightarrow can not be plotted on PV diagrams

8 Molar specific heat for gas Equipartiton of E

- molar specific heat (C): heat required to raise 1 mol of gas by 1 deg Celsius @ constant V & P
- depend on process : isobaric (C_p) , isochoric (C_v) $Q = nC_v\Delta T^{-11}$
- $M = molarmass = \frac{m}{n} = \left[\frac{g}{mol}\right]$
- $C_v = Mc_v$
- value of C are \approx same for different gas wih same # of atoms per mcl

⁹Remeber to always define what exactly is our system

¹⁰instead of being quasistatic

¹¹ditto for C_p for these equ in this section

8.1 $C_p - C_v = R$

8.2 Equipartition of Energy

- \bullet more # of atoms in mcl \to more Degrees of freedom \to molar specific heat \uparrow
- Principle of equipartiton of Energy: energy is shared equally among the active Dof and each active Dof of a mcl has $E_{avrg} = \frac{1}{2}kT$
- Diatomic: 3 Dof translational +2 Dof rotational
- @ high T: diatomic gas has 2 new Dof from electrical, spring-like, vibrational $E_k \to C_{\text{v,diatomic}} = \frac{7}{2}$
- @ low T : almost no E_k rotational $\to 3$ Dof
- this phenomenom is explained by Brownian motion , which gives molecules its discrete nature. Discrete Dof at discrete $T \to quantized$ minimum energy
- Can apply princple of equipartition to solids too!
- $C_{\text{any solid @ high T}} \approx \text{Dulong and Petit value} = 3R$ $\therefore 3E_k + 3E_p$ spring-like in crystalline structure

9 Adiabatic Expansion of gas

Deriving relation between P and V of quasi-static adiabatic expansion of an ideal gas

10 Heat Transfer

10.1 Conduction

 \bullet transfer of E_k through molecular collisions

$$\frac{dQ}{dt} = -kA\frac{dT}{dx} \tag{7}$$

- $\bullet\,$ negative sign \because Q flow is opposite to direction of temperature gradient
- conductor: large k ; insulator : small k
- Thermal resistance (R-value): measure of thermal property in building material: $R = \frac{thickness}{k}$

10.2 Convection

- heat flow by mass movement of large number of molecules over large distances
- forced convection (ex: forced-air furnace)
- Natural convection ∵ density difference

10.3 Radiation

- doesn't require matter as medium
- rate at which an object radiates energy α T^4

$$\frac{\Delta Q}{\Delta t} = \epsilon \sigma A T^4 \tag{8}$$

- ϵ = emissivity $(0 \le \epsilon \le 1)$
 - somewhat α on T
 - good emmiter (dark)L absorb almost all radiation ($\epsilon \approx 1$)
 - obj not only emit but also absorb radiated energy ∴good emmitter is also a good absorber
 - Opposite: shiny surfaces
- obj emmit \rightarrow surrounding absorb \rightarrow surrounding emmit \therefore Net rate radiant heat flow from obj= $\frac{\Delta Q}{\Delta t} = \epsilon \sigma A (T_1^4 T_2^4)$ where T_2 temp of surroundings
- we can't use this to calculate Sun's radiant heat, : Sun is point source not a "surrounding"
- \bullet Solar constant= amount of energy from Sun striking Earth's atmosphere =1350 ${\rm W}/m^2$

$$\frac{\Delta Q}{\Delta t} = (1350W/m^2)\epsilon A \cos\theta \tag{9}$$

where θ =angle between Sun's rays and the area's normal

• ex) seasons, thermography

11 Question

1. pg 526 The value of L_v increases slightly with a decrease in temperature. (?) What is the prupose of this anyways? if water only evaporate at 100 degree, why should we care about L_v at other temperature?