1 Mengen und Relationen

1.1 Naive Mengenlehre

- Georg Cantor 1845 -1918

Menge: "Sammlung" von Objekten Diese Objekte heissen Elemente.

Notation: $X / in M \rightarrow X$ ist Element von M

Eine Menge ist durch ihre Elemente eindeutig bestimmt.

Bsp:
$$M = 1,2,3, M = N \rightarrow N = \{3,1,2\}$$

Beschreibung von Mengen

- 1. Durch Aufzählung: $M = \{1,2,3\}$
- 2. Durch Prädikate: M = x | P(x) "Menge aller x, die das Prädikat P erfüllen"
- 3. grafische Darstellung (Venn-Diagramme)

Bsp. $a \in A, d \in B, c \in A, c \in B$

1.1.1 Notation

 $\forall x \in G$: "Für alle x aus der Menge G ..."

 $\exists x \in G$: "Es existiert ein Element x in der Menge G ..."

Beispiele:

1.
$$G := N = \{0,1,2,3...\}$$

$$A := \{1,2\}$$

$$B := \{3,4\}$$

$$AB = \emptyset$$

1.1.2 Satz 1

- 1. G Grundmenge
- 2. A, B, C Teilmengen von G

1.2 weitere Mengen-Konstruktionen

1.2.1 Potenzmenge

Definition: $P(M) := \{x | xM\}$ Potenzmenge von M

Die Menge aller Teilmengen von M

Beispiele

a)
$$M := \{1\} \to P(M) = \{\emptyset, \{1\}\}\$$

b)
$$M:=\{1,2,3\}\to P(M)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$$
 c) $M:=\emptyset\to P(M)=\{\emptyset\}$

1.2.2 das kartesische Produkt

Seien A, B Mengen, $a \in A$, $b \in B$

Definition: Das Symbol (a,b) heisst das geordnete Paar von a und b.

Bemerkung: $(a,b) = (c,d) \rightarrow a=c \text{ und } b=d$

Definition: Seien A,B Mengen

 $AxB := \{(x,y)|x \in A, y \in B\}$ heisst das kartesische Produkt von A und B.

Beispiel:

a)
$$\{1,2,3\}x\{4,5\}$$
 // i.a. $AxB \neq BxA$
= $\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$
b) $\{1,2\}x\{1,2\} = \{(1,1),(1,2),(2,1),(2,2)\}$
c) $A = \{a,b\}$
 $Ax\emptyset = \{(a,\emptyset),(b,\emptyset)\}$

1.2.3 Partitionen

Gegeben eine Menge M

Definition: Eine Partition von M ist eine Menge π

$$\pi := \{A_i | i \in I\}$$

(I = Indexmenge) mit

- 1.) $A_i \neq \emptyset$
- 2.) $A_i \subset M$
- 3.) $A_i \cap A_J = \emptyset$
- 4.) $\cup A_i = M = A_1 \cup A_2 \cup A_3...$

Beispiel:

a)
$$M:= N^* = \{1,2,3,..\}$$

 $A_1 := \{1\}, A_2 := \{2\}, A_3 := \{x \in N * | x \ge 3\}$
 $\pi = \{A_1, A_2, A_3\}$ ist eine Partition von M.
b) $M := RxR$
 $A_a = \{(x,y) - x = a, y \in R\}$
 $\pi = \{A_a - a \in R\}$

2 Relationen

Durch Relationen werden Beziehungen zwischen Objekten ausgedrückt. Eine Relation ist stets eine Teilmenge des kartesischen Produktes. Seien $M_1, ..., M_n$ Mengen

Definition

Eine Teilmenge $R \subset M_1xM_2x...xM_n$ heisst eine n-stellige Relation auf $M_1, M_2, ..., M_n$

Beispiel 1:

M = Einwohner von Brugg $R_1\subset MxMxM//M^3$ (a,b,c) $\in R_1:<==>$ "a ist Vater von c", "b ist Mutter von c"

Beispiel 2:

$$R_2 \subset R^2 = RyR$$

 $R_2 = \{(x,y)|x^2 + y^2 = 1\} \subset RxR$

Beispiel 3:

$$R_3 \subset R^2 = RyR$$

$$R_2 = \{(x, y)|y = e^x\}$$

Beispiel 4:

Sei A eine beliebige Menge. $R_4 := \{(B, C) | B \subset C \subset A\} P(A) x(PaA)$

2.1 Beschränkung auf binäre Relationen: $R \subset M_1xM_2$

Notation: $xRy : <==> (x,y) \in R \subset M_1xM_2$

2.2 Darstellung von binären Relationen auf endlichen Mengen

Sei R $\subset M^2=$ MxM // Relation "auf" der Menge M 1) Matrizen M:= $\{m_1,m_2,m_3\}$ Wir nummerieren die Elemente $A_R:=$ 3x3 Matrix, a_ij

```
= {0, falls (m_{i}, j) \notin R, 1, sonst }
2) (gerichtete Graphen)
M := \{a_{y}, a_{2}, a_{3}, a_{4}\}
R \subset M^{2} : R = \{(a_{1}, a_{4}), (a_{4}, a_{3}), (a_{2}, a_{3})\}
G_{R} Punkte = Elemente der Menge M
```

2.3 Spezielle Eigenschaften von Relationen

Definition

- 1) $R \subset M^2$ reflexiv : $<=> \forall x \in M : (x,x) \in R$
- 2) $R \subset M^2$ irreflexiv : $<==> \forall x \in M : (x,x) \notin R$
- 3) $R \subset M^2$ symmetrisch :<==> $\forall x, y \in M : (y, x) \in R \to (y, x) \in R$
- 4) $R \subset M^2$ antisymmetrisch : $<==> \forall x,y \in M: (y,x) \in R \rightarrow x=y$
- 5) $R \subset M^2$ transitiv :<==> $\forall x, y, z \in M : (x, y), (y, z) \in R \rightarrow (x, z) \in R$

Beispiel M := 1,2,3,4

- 1) $R_1 = \{(1,1), (2,2), (1,2), (3,3), (4,4)\} \subset M^2$
- reflexiv, antisymmetrisch, transitiv
- 2) $R_2 = \{(1,2), (2,1), (2,3), (3,2), (1,1)\} \subset M^2$
- nur symmetrisch
- 3) $R_3 = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (4,4)\} \subset M^2$
- transitiv
- 4) $R_4 = \{(1,2), (2,3), (2,4), (3,3)\} \subset M^2$
- keine speziellen Eigenschaften
- 5) $R_5 = \emptyset$
- alles ausser reflexiv

2.4 Äquivalenzrelationen

Definition

 $R \subset M \times M$ heisst Äquivalenzrelation

- 1) R ist reflexiv
- 2) R ist symmetrisch
- 3) R ist transitiv

Beispiel $M := \{1,2,3,4,5\}$

 $R = \{(1,1)(\underset{\cdot\cdot}{2},2),(3,3),(4,4),(5,5),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(4,5),(5,4)\}$

Sei R eine Aquivalenzrelation auf M und $a \in M$.

Definition

$$[a] := \{x \in M | (x, a) \in R\}$$

[a]ist die Äquivalenzklasse von a bzgl. R (in M.).

Beispiel

$$[1]=\{1,2,3\}\subset M$$

```
[2] = \{2, 1, 3\}[3] = \{3, 2, 1\}[4] = \{4, 5\}
```

 $[5] = \{5, 4\}$

Satz 2

Voraussetzung: R ist Äquivalenzrelation auf M Behauptung: $\Pi := \{[a] | a \in M\}$ ist eine Partition von M. Beweis: 1) $\forall a \in M : a \in [a], weilRreflexiv : \forall x \in M : (x, x) \in R$ d.h. $[a] \neq \emptyset$ und U [a] = M (x), $a \in M$ $M = Ua \subset a \in [a] \rightarrow a \subset [a]$ 2) $[a] \cap [b] \neq \emptyset \rightarrow [a] = [b]$ Sei $[a] \cap [\neq \emptyset \rightarrow \exists c \in M : c \in [a] \cap [b], d.h.c \in [a]undc \in [b] \rightarrow (c, a) \in Rund(c, b) \in R$ R symmetrisch: $(c, a) \in R \rightarrow (a, c) \in R$ R transitiv: $(a, c) \in R$ und $(c, b) \in R \rightarrow (a, b) \in R$

Wir zeigen:
$$[a] \subset [b](und[b] \subset [a]$$
 z.Z. d $\in [a] \rightarrow d \in [b]$

$$\mathbf{d} \in [a], d.h.(d,a) \in R, und(a,b) \in R(Risttransitiv)$$

$$(\mathbf{d},\mathbf{b}) \in R, d.h.d \in [b]$$