Project Report Temperature Monitoring and Alarm System

Amaim Anwar 23i-2614

Dania Waseem 23i-2622

Munaza Tariq 23i-2545

Project Summary

Objective: This project aims to design and implement a **Temperature Monitoring** and **Alarm System**. The system monitors ambient temperature using an LM35 temperature sensor, displays the current temperature on a seven-segment display, and activates visual and audio indicators based on pre-defined thresholds. This project is significant in environments requiring real-time temperature monitoring to prevent overheating or other temperature-related hazards.

Significance:

The system ensures safety by indicating:

- 1. **Safe Temperature Range**: A green LED lights up.
- 2. **Near-Threshold Alert**: A yellow LED activates when temperatures are near the set limit.
- 3. **High-Temperature Alarm**: A red LED lights up with a buzzer to signal dangerous temperatures.

Significance of the Circuit in Real Life

This circuit has practical applications in various real-life scenarios, ensuring safety and efficiency in environments where temperature monitoring is critical. For instance:

- Industrial Settings: Prevents overheating of machinery or equipment by providing early alerts.
- Healthcare Applications: Ensures safe temperature conditions for sensitive medical equipment or storage of vaccines.

3. **Data Centers:** Prevents server overheating by activating alarms for unsafe conditions.

This system ensures timely responses to temperature deviations, protecting both equipment and human lives.

Functionality:

- 1. The LM35 sensor reads the temperature.
- 2. The data is processed by a comparator-based logic circuit and displayed on a seven-segment display.
- 3. Based on the thresholds:
 - a. Green LED lights up for safe temperature.
 - b. Yellow LED warns of approaching limits.
 - c. Red LED and buzzer activate for dangerous temperatures.

Components List

Software used: Proteus (for circuit simulation)

Component	Quantity	Description
LM35	1	Temperature sensor
TC7107	1	ADC for seven-segment display driver
Seven-Segment Display (common anode)	3	Displays temperature in °C
741 (Op-Amp)	6	Operational amplifiers as comparators
Potentiometers (RV1-RV6)	6	Adjustable temperature thresholds
LEDs (Green, Yellow, Red)	3	Visual indicators
Buzzer	1	Audio indicator for high temperature
Resistors	Multiple	For current limiting and pull-down

Capacitors	Multiple	Stabilization and filtering
AND	3 gates	Ensures only the correct LED or buzzer is activated for each range.
NOT	3 gates	Inverts comparator outputs to manage LED/buzzer activation logic.
Power Supply (Battery)	1	Provides power to the circuit

Implementation Details

Circuit Design and Logic

The circuit consists of the following modules:

1. Temperature Sensor (LM35):

- a. Outputs a voltage proportional to the temperature (10mV/°C).
- b. Connected to the inputs of a voltage comparator for processing.

2. Comparator Circuit:

- a. Adjustable thresholds set using potentiometers (RV1 to RV6).
- b. Comparators (U3, U4, U7, U8, U11, U12) determine whether the current temperature is below, near, or above the threshold values.

3. Display Logic:

a. The output of the LM35 is sent to the TC7107 IC, which converts the analog input into a digital signal and drives a **three-digit seven-segment display**.

4. Indicator LEDs and Buzzer:

a. Logic gates (NOT and AND) process the comparator outputs to control LEDs (green, yellow, red) and the buzzer.

Thresholds

LED	Thresholds (degree Celsius)	
Green	1 to 49	
Yellow	50 to 99	
Red + Buzzer	100 to 149	

Logic Function for Safe Range (Green LED):

- Input Conditions: Temp < Lower Threshold
- Truth Table:

Temp	Output (D1 - Green)	
< T1	1 (ON)	
≥ T1	0 (OFF)	

Logic Function for Near-Threshold (Yellow LED):

• Input Conditions: T1 ≤ Temp < T2

• Truth Table:

Temp Range	Output (D2 - Yellow)	
< T1	0 (OFF)	
T1 to T2	1 (ON)	
> T2	0 (OFF)	

Logic Function for Dangerous Temperature (Red LED + Buzzer):

• Input Conditions: Temp > Upper Threshold

• Truth Table:

Temp	Output (D3 - Red, Buzzer)	
≤ T2	0 (OFF)	
> T2	1 (ON)	

1. Circuit Overview

The circuit is divided into the following functional sections:

- Temperature Sensing
- Comparator Logic
- Indicator System (LEDs and Buzzer)
- Seven-Segment Display

2. Temperature Sensing with LM35

- Component Function:
 - The LM35 sensor outputs a voltage proportional to the ambient temperature, at a rate of 10mV per °C. For example:
 - 25°C → 250mV
 - 50°C → 500mV

■ 100°C → 1000mV (1V)

Circuit Operation:

- The LM35 is powered with a 5V DC supply.
- Its output voltage is fed into a **buffer circuit** (usually an operational amplifier like 741 in a unity gain configuration) to stabilize the signal and prevent loading effects.
- o The buffered output is then sent to:
 - Comparator circuit for range classification.
 - ADC (Analog-to-Digital Converter) in the display driver for temperature display.

3. Comparator Logic (741 IC)

• Purpose:

 The comparator circuit compares the LM35's output voltage against predefined thresholds (set by potentiometers) to classify the temperature into ranges:

Component Details:

- o 741 Operational Amplifier:
 - Each 741 IC is configured as a voltage comparator.
 - The **inverting input (-)** receives the voltage from the LM35.
 - The **non-inverting input (+)** is connected to a reference voltage set by a potentiometer (RV1, RV2, etc.).

Potentiometers (RV1, RV2, RV3):

- These are variable resistors used to adjust the reference voltage for the comparators.
- For example:
 - RV1 sets the threshold for 50°C.
 - RV2 sets the threshold for 100°C.

Comparator Output:

- When the LM35 output voltage exceeds the reference voltage, the comparator's output goes high, triggering the corresponding LED or buzzer.
- Logic gates (NOT, AND) are used to ensure that only one indicator (green, yellow, or red + buzzer) is active at a time.

4. Indicator System (LEDs and Buzzer)

• Green LED:

- Connected to the output of the first comparator.
- Yellow LED:

Connected to the output of the second comparator

Red LED and Buzzer:

- The red LED and buzzer are connected to the output of the third comparator
- o A NOT gate ensures the buzzer is off when the red LED is inactive.

Logic Circuit:

- O NOT Gate:
- Inverts the output of one comparator to drive another device
- O AND Gate:
 - Combines comparator outputs to prevent conflicting signals

5. Temperature Display on Seven-Segment Display

• Component:

- o A TC7107 IC is used as an ADC and display driver.
- It converts the analog voltage from the LM35 into a digital output for the seven-segment display.

• Circuit Operation:

- The LM35's output is scaled to match the ADC's input range (typically 0– 2V).
- The TC7107 processes this signal and drives a three-digit sevensegment display, showing the temperature in °C.
 - Example:
 - 25°C → "025"
 - 75°C → "075"
 - 110°C → "110"

Display Calibration:

- The reference voltage for the TC7107 is set using a precision resistor or potentiometer.
- This ensures accurate conversion of the LM35's output voltage to the displayed value.

Comparator Logic

- Vin (from LM35): T (temperature in °C, scaled as 10 mV/°C).
- Vref (set by potentiometer): Adjustable threshold voltage.

The comparator output depends on the relationship between Vin and Vref:

Vin	Vref	Comparator Output
LOW (0°C-49°C)	LOW (50°C threshold)	0

HIGH (50°C-	LOW (50°C	1
100°C)	threshold)	1
HIGH (>100°C)	HIGH (>100°C)	1
LOW (<100°C)	HIGH (>100°C)	0

K-Map for Comparator Output

We treat Vin and Vref as binary conditions for simplicity (LOW = 0, HIGH = 1).

Vin \Vref	0	1
0 (LOW)	0	0
1 (HIGH)	1	1

O=Vin

This indicates the output is HIGH when *Vin>Vref*

Circuit Design

(due to the circuit being large it is pasted in parts for better understanding)

Displaying LM35 Temperature

Green LED Part

Yellow LED Part

Red LED and Buzzer

