Lecture Note 3

CSCI 6470 Algorithms (Fall 2024)

Liming Cai

School of Computing UGA

September 11, 2024

Chapter 3. Algorithms on graphs

Topics to be discussed:

- Basics and representations of graphs
- Depth-first search and applications
- Shortest path algorithms
- priority queue

Terminologies:

- vertex, edge, graph, degree, neighbor, weight, directed edge,
- di-graph, subgraph, tree, path, cycle,
- connected component, strongly connected component,
- complete graph, planar graph, non-planar graph, bi-partite graph

Computer representations of graphs:

adjacency list, adjacency matrix

Recursive definition for trees

- set pair $(\{x\}, \emptyset)$ is a **tree**;
- if (V, E) is a **tree**, vertex $u \in V$, and vertex $v \notin V$, then $(V \cup \{v\}, E \cup \{(v, u)\})$ is a **tree**.

Trees, created with these rules, are without a root. But the first vertex created can be designated as the root.

But why would non-biological trees need a root?

Recursive definition for graphs

- set pair $(\{x\},\emptyset)$ is a **graph**;
- if (V, E) is a **graph**, subset $U \subseteq V$, and vertex $v \notin V$, then (V', E') is a **graph**, where $V' = V \cup \{v\}, E' = E \cup \{(v, u) : u \in U\}.$

Proper definitions of graphs may incur some structural views on graphs and help solve various computational problems on graphs.

Based on the recursive definition, a given graph (V',E') can be decomposed as

- (1) a subgraph graph (V, E),
- (2) a vertex $v \in V' V$ (also written as $V' \setminus V$);
- (3) a subset $U \subseteq V$;
- (4) $\forall u \in U$, edges $(v, u) \in E' E$ (also written as $E' \setminus E$).

Graph traversal by exploiting the recursive definition of graphs.

- traverse a graph: visit vertex v and then recursively visit u, for all $(v, u) \in E$.
- two different traversal methods: DFS and BFS, depending on which vertex is to visit next

Assume graph G that was created with x being any vertex Explore all vertices reachable from vertex x:

```
function explore(G: graph; x: vertex)
1. visited(x) = true;
2. for each edge (x, y) in G
3.  if not visited(y)
4.  explore(G, y);
```


Adding time stamps:

```
function explore(G: graph; x: vertex)
 1. visited(x) = true:
2. pre(x) = time stamp; // pre-visit work
3. time stamp = time stamp + 1;
4. for each edge (x,y) in G
5. if not visited(y)
6. parent(y)=x; // record tree edge
7. explore(G, y);
8. post(x) = time stamp;
                                // post-visit work
9. time_stamp = time_stamp + 1;
Main body
function main(G: graph);
 1. for every vertex v in G
2. visited(v) = false;
3. for every vertex v in G
4. if not visited(v)
5. explore(G, v);
                                     4□ ト ← □ ト ← 亘 ト → 亘 → り Q ○
```

Examples for DFS

- DFS on a graph yields a **DF-search tree**:
- properties of pre(x) and post(x) values
 brackets patterns (look familiar?)
- type of edges in DFS tree
 - tree edges
 - back edges

DFS on directed graphs

- types of edges in DFS tree
 - tree edges
 - back edges
 - forward edges
 - cross edges
- DFS on directed acyclic graphs (DAGs)

Theorem If there is a path $x \rightsquigarrow y$, then post(x) > post(y)

DFS algorithm time complexity

- for loops in both functions main and explore visit every every vertex (once), thus O(|V|);
- for every vertex, all edges shared with its neighbors are checked at most twice (why?), thus O(|E|);
- the total time is O(|V| + |E|).

Applications of DFS

- determine if the input graph is connected;
- determine if two given vertices are connected on input graph;
- determine if the input graph contains a cycle;
- find a topological order of vertices on the input DAG;
- find the strong connected components of the input graph;
- find single-source shorted paths on the input DAG;

All have time complexity: O(|E| + |V|)

Determine if the input graph contains a cycle;

The graph has a cycle if, when encountered with edge (x,y) in function explore, (x,y) is a back edge, i.e.,

- for non-directed graphs,
 - (1) visited(y) = true, and
 - (2) $y \neq parent(x)$
- for directed graphs,
 - (1) visited(y) = true, and
 - (2) pre(y) < pre(x) and post(x) is not defined yet

Topological Sort problem

Input: directed acyclic graph G(V, E), Output: vertices of V in order: v_1, v_2, \ldots, v_n such that $\forall i < j, (v_j, v_i) \notin E$.

Some topological sorted orders:

 DFS can be used to solve this problem remember the following?

Theorem If there is a path $x \rightsquigarrow y$, then post(x) > post(y)

Conclusion: Reversed order of post values is a topological sort order.

Strongly Connected Components (SCC) problem

Input: directed graph G(V, E),

Output: strongly connected components for G.

Idea:

SCC algorithm:

- DFS on *G*;
- generated G^T , transpose of G (reversed edges directions);
- DFS on G^T from vertex v with the highest post(v) value;

More about graph traversal algorithms

- non-recursive version of DFS; using (?)
- breadth first search (BFS); explores vertices in the order of their distance from the source vertex
- non-recursive BFS? using (?)
- recursive version ?
- time complexity

Review for Midterm

- big-O notation:
 - definition and usage to infer big-O for given time expressions
- recursive algorithms:
 - ability to read/understand, write, and to derive time function recurrence;
 - recursive algorithms for selection sort, insertion sort;
- divide-and-conquer:
 - merge sort, binary search, and variants;
 - quick sort, partition function;
 - derivation of time function recurrence for divide-and-conquer algorithms;
- proof-by-induction:
 - proof of big-O for time function with given recurrences;

Review for Midterm

- randomized quick sort:
 - difference between randomized quick sort and deterministic quick sort;
 - averaged (expected) time for randomized quick sort, recurrence formula ;
- deterministic selection:
 - how the algorithm works, how time recurrence is derived;
- DFS and applications:
 - explore algorithm, DFS tree/forest, time stamps, edge types;
 - connectivity, cycle, topological sort, strongly connected component;

Paths on graphs:

Problems about paths on graphs:

- **Reachability**: given G = (V, E), and vertices $s, t \in V$; asked if there is a path: $s \rightsquigarrow t$, from s to t;
- Cycle: given G = (V, E), asked if there is a cycle in the graph. How exactly is this done?
- s-t shortest path: given G = (V, E), vertices $s, t \in V$; find a shortest path $s \rightsquigarrow t$;
- **Single source shortest path**: given G = (V, E), $\forall v \in V$, find a shortest path $s \rightsquigarrow v$;
- All pair shortest path: given G = (V, E),
 ∀u, v ∈ V, find a shortest path u → v;
 [To be discussed in the subject of dynamic programming]

Shortest Distance problem:

Input: di-graph G = (V, E), lengths $w : E \to R$; source $s \in V$ Output: dist(v), shortest distance s to every vertex $v \in V$.

- Is the following problem easier?
 Given source s and target t, find a shortest path from s to t;
- Subpath on a shortest path is a shortest path
 if p_{s,r,t}: s → r → t is a shortest path from s to t,
 then subpath p_{s,r}: s → r is a shortest path from s to r. [proof?]

Shortest Distance problem:

Input: di-graph G = (V, E), lengths $I : E \to R$; source $s \in V$ Output: dist(v), shortest distance s to every vertex $v \in V$.

- Finding a shortest path from s to t implies finding shortest paths from source s to all other vertices.
 - shortest distance from s to one vertex may impact on another;
- The question becomes "which vertices should be considered before others in computing their shortest distances from s?"
- That is: is there an order of vertices whose shortest distances can be computed correctly and efficiently?

Shortest Distance problem:

updating path distances,

$$\label{eq:dist} \text{dist(v)} = \min \begin{cases} \text{dist(v)} \\ \text{dist(u)} + \text{l(u,v)} \end{cases}$$

called relaxation of edges

Shortest Distance problem on 3 different types of graphs:

- G is a DAG: relying on DFS
 edges are relaxed according to topo sort order;
- G does not contain negative edges: Dijkstra's algorithm
 edges (u, v) are relaxed only after dist(u) is shortest;
- G may contain negative cycles: Bellman-Ford algorithm edges are relaxed in an arbitrary order

Input: DAG G = (V, E), edge lengths $I : E \to R$, and $s \in V$, Output: $\forall u \in V$, the smallest distance dist(u) from s to u.

```
function dag-shortest-path(G, 1, s)
1. for all u in V
2.    dist(u) = infinity;
3.    prev(u) = nil; // predecessor of u in the path
4. dist(s) = 0;
5. topological sort V;
6. for all u in V in the sorted order
7.    for all edge (u, v) in E
8.       if dist(v) > dist(u) + l(u, v);
9.          dist(v) = dist(u) + l(u, v);
10.          prev(v) = u;
```

Shortest Distance problem on DAG

Shortest Distance problem on DAG

Shortest Distance problem on DAG

algorithm steps on the previous example

dist table					prev table							
r	s	t	х	у	z	step	r	s	t	х	у	z
inf	0	inf	inf	inf	inf	initial	nil	nil	nil	nil	nil	nil
inf	0	2	6	inf	inf	u = s	nil	nil	s	s	nil	nil
inf	0	2	6	6	4	u = t	nil	nil	s	s	t	t
inf	0	2	6	5	4	u = x	nil	nil	s	s	x	t
inf	0	2	6	5	3	u = y	nil	nil	s	s	х	у
inf	0	2	6	5	3	u = z	nil	nil	s	s	x	у

Shortest Distance problem: Dijkstra's algorithm on general directed graphs, without negative weights

Input: G = (V, E), edge lengths $I : E \to R_{\geq 0}$, and $s \in V$, Output: $\forall u \in V$, the smallest distance dist(u) from s to u.

```
function Dijkstra(G, 1, s)
1. for all u in V
2. dist(u) = infinity;
3. prev(u) = nil;
4. \operatorname{dist}(s) = 0;
5. H = makequeue(V);
6. While H is not empty // body including lines 7 - 11
7. u = dequeue(H);
8. for all edges (u, v) in E
9. if dist(v) > dist(u) + l(u, v);
10.
         dist(v) = dist(u) + l(u, v);
11. prev(v) = u;
12.return (prev)
```


Note: the gray-colored vertex is to be dequeued while the black-colored vertices are in set *S*.

Shortest Distance problem on graphs without negative edges

Dijkstra's algorithm steps on the previous example

dist table						prev table					
	s	t	x	у	z	step	S	t	x	У	z
	0	inf	inf	inf	inf	initial	¦ nil	nil	nil	nil	nil
	0	10	inf	5	inf	u = s	nil	s	nil	s	nil
	0	8	14	5	7	u = y	nil	у	У	s	у
	0	8	13	5	7	u = z	nil	у	z	s	у
	0	8	9	5	7	u = t	¦ nil	У	t	s	у
	0	8	9	5	7	u = x	nil	У	t	s	У

Dijkstra's algorithm

- more examples (textbook), keep track the priority queue
- what would happen if negative edges are present?
 in classroom discussion

For graphs that may contain negative edges, edge relaxations cannot be done in specific order.

```
But every shortest path consists of at most n-1 edges;
n-1 rounds of edge relaxations suffices
function Bellman-Ford(G=(V,E): graph; s: vertex)
1. for all u in V
2. dist(u) = infinite;
3. prev(u) = nil;
4. \operatorname{dist}(s) = 0;
5. for k=1 to n-1
6. for all edge (u,v) in E
7. if dist(v) > dist(u) + l(u,v) // l(u,v) is the
8. then dist(v) = dist(u) + l(u,v); // weight of edge
9. prev(v) = u;
10.for every an edge (u, v) in E
11. if dist(u) + l(u,v) < dist(v)
 12. then return "G contains a negative cycle"
13.return (dist, prev)
```

4 D > 4 P > 4 E > 4 E > 9 Q P

The order chosen to relaxed at	be	A	В	С	D	E	
round has impact on distances updated		0	00	00	00	00	
·	Round 1	0	A (A) 3 (C)	2 (A)	6 (B) 2 (E)	7 (C)	
Source: A	Round 2	0	3 (C)	2 (A)	1 (E)	6 (B)	
	Round 3	0	3 (C)	2 (A)	1 (E)	6 (B)	
	Round 4	0	3 (C)	2 (A)	1 (E)	6 (B)	

Order of edges selected to relax : (A,B), (A,C), (B,C),(B,D),(B,E)(C,B), (C,D),(C,E),(E,D)

vertex within () is the prev vertex

Shortest-paths tree:

Bellman-Ford algorithm correctly detects negative cycles.

- Assume shortest path $p: s \rightsquigarrow v$.
- If after the n-1 rounds of relaxations are done, $\exists (u,v)$ with dist(u) + l(u,v) < dist(v)
- then path p: s → v consists of more than n − 1 edges; i.e.,
 p contains at least n + 1 vertices, some vertex x occurs twice.

$$p: s \leadsto y \to x \leadsto x \to z \leadsto v$$

the path cannot be shorter than s → y → x → z → v
 unless cycle x → x is negative.

Priority queue implementation using heap what is a heap? physical implementation? how to use a heap to realize a priority queue?

Time complexities of different shortest path algorithms

- ullet dag-shortest-path: O(|V|+|E|)
- ullet Dijkstra's: $O(|V|\log_2|V|+E)$
- Bellman-Ford: O(|V||E|).