

Ant-based Dynamic Hop Optimization Protocol: a Routing Algorithm for Mobile Wireless Sensor Networks

Alexandre Massayuki Okazaki
Prof. Dr. Antônio Augusto Fröhlich
{alexandre, guto}@lisha.ufsc.br

Software/Hardware Integration Lab (LISHA) Federal University of Santa Catarina (UFSC)

Internet of Things: Challenge

Smart Object Communication

- Intermittent
- Scalable

- Self-configuring
- Real-time
- Power-aware
- Mobility

Mobility

- Mobile Ad hoc NETworks (MANETs)
 - Networks envisioned to be composed of mobile nodes
 - But its requirements have evolved to a point where solutions for MANETs no longer apply to Wireless Sensor Networks (WSNs), e.g., energy and bandwidth
- Therefore, geographic routing protocols and self-organizing protocols have been highlighted in Mobile WSNs

eBoat at the Brazilian Solar Challenge

Robotic Animals - Esslingen, Germany

LISHA

Ant Colony Optimization (ACO)

- ACO improves the ability to adapt to dynamic topologies
- Improving the algorithm in terms of
 - route discovery
 - route maintenance
- And reducing the routing complexity in WSNs
 - simple routing operations
 - simple routing tables

Ants

- Ants in routing protocols usually act
 - route discovery
 - route maintenance

pheromone

use simple operations to route data over the network

Sensing Pheromone Trail

Choosing a Route to the Food

Routing Protocols for Mobile WSNs

- Ant-based Dynamic Zone Routing Protocol (AD-ZRP) is a routing algorithm based on the HOPNET algorithm
 - Developed in Software and Hardware Integration Lab (LISHA), AD-ZRP aims at routing in Mobile WSNs
- Noticing the AD-ZRP behavior, and improving some of its characteristics, we present ADHOP
 - It is a self-organizing and reactive algorithm developed to support several routing heuristics and improve the dissemination of pheromone on the network

AD-ZRP \longrightarrow ADHOP

Ant-based Dynamic Zone Routing Protocol Ant-based Dynamic Hop Optimization Protocol

Too much overhead for WSNs

ADHOP Ants

- Two types of Ants
 - Exploratory Transport Ant (ETA)
 - Forward Transport Ant (FTA)

In Traditional ACO ...

In ADHOP ...

LISHA

Coming back ...

LISHA

Coming back ...

Routing Heuristics Deposit and evaporation of pheromone

Implementation in OpenEPOS http://epos.lisha.ufsc.br/

- OpenEPOS software
 - RT scheduling, sensing, energy management and communication

- EPOSMote I
 - AVR + ZigBee
- EPOSMote II
 - AVR + ZigBee / PLC
 - ARM + ZigBee / PLC
- EPOS gateway devices
 - GSM / GPRS / Wi-Fi
 - eSDR

EPOSMote X MicaZ http://epos.lisha.ufsc.br/

	MicaZ	EPOSMote I	EPOSMote II
Core	PCB	ZigBit	MC13224V
Processor	8-bits ATMega128L	8-bits ATMega128v	32-bits ARM7 TDMI
RAM	4 kB	8 kB	96 kB
Flash	128 kB	128 kB	128 kB
Transmission Power	0 dBm	+3 dBm	+4 dBm
Max Tx Current	17.4 mA	18 mA	29 mA
Max Rx Current	19.7 mA	19 mA	22 mA
Sleep Current	15 uA	6 uA	0.85 uA
Size (mm)	58 x 32 x 7	24 x 13,5 x 2	9,5 x 9,5 x 1,2

Simulation 1

- GloMoSim (same as HOPNET)
 - 20 to 200 nodes randomly moving at 10 m/s on a 700 meters x 400 meters area with high data loss (Random Way Mobility Model)
 - 20 CBR UDP/IP data sources on IEEE 802.11
 - 15 dBm transmission power at 2 Mbps
 - 900 seconds with
- Not exactly a WSN scenario, but it enables ADHOP to be compared to HOPNET

Data Packet Delivery Ratio

Broken Routes

Broken Routes (100 Nodes)

Link Failures

Simulation 2

- OMNet++ (WSN scenario-driven)
 - 20 to 100 nodes randomly moving at 5 m/s on a 1000 meters x 1000 meters area with high data loss (Mass Mobility Model)
 - 20 UDP/IP data sources on IEEE 802.15.4
 - 1 mW transmission power
 - Sensitivity -85 dBm
 - Thermal Noise -110 dBm
 - 300 seconds with
- IEEE 802.15.4 MTU (127 bytes)
 - Data/UDP/IP/ADHOP/IEEE 802.15.4 == 102 bytes

Routing Overhead

Link Failures

Broken Routes

Data Packet Delivery Ratio

Final Remarks

- ADHOP proves to be an efficient routing algorithm for mobile networks in terms of rate of data delivery
 - And due to its simplicity proves to be a good routing algorithm for wireless sensor networks
- Being a reactive algorithm, ADHOP lacks precision in the choice of near neighbors
 - However, it has a very low routing overhead
 - And thus lower power consumption
- Better integration with C-MAC will yield an even lower overhead routing protocol