Синолитические сети в классификации мозговой активности

Власенко Даниил

Научные руководители: Гудкин Борис, Заикин Алесей

13 февраля 2023 г.

Содержание

Введение

Илассификация

Оенолитические сети

фМРТ

Определение

Функциональная магнитно-резонансная томография или фМРТ — разновидность магнитно-резонансной томографии (получения изображения), которая проводится с целью измерения нейронной активности головного или спинного мозга.

Рис.: фМРТ сканер.

фМРТ

Рис.: фМРТ скан.

Цель работы

Пусть мозг может находиться в двух режимах когнитивной деятельности.

Цель работы

Реализация и тестирование нового метода классификации режимов когнитивной деятельности на основе фМРТ данных.

Задачи классификации

Вероятностная постановка задачи классификации

Пусть есть с.в. $\xi:\Omega\to X$ и с.в. $\eta:\Omega\to Y$. Рассмотрим с.в. $(\xi,\eta):\Omega\to (X,Y)$ с распределением p(x,y).

Задача классификации сводится оценке p(y|x) по выборке $(\widetilde{X},\widetilde{Y})=\{(x_k,y_k),k=1,\dots N\}$

Алгоритмическая постановка задачи классификации

Пусть X — множество описаний объектов, Y — множество номеров классов. Существует функция $f: X \to Y$, значения которой известны только на объектах выборки $(\widetilde{X},\widetilde{Y}) = \{(x_k,y_k), k=1,\dots N\}.$

Требуется построить алгоритм-оценку $\widehat{f}: X \to Y$.

Основная идея

Рис.: Классификация на основе построения графов отражающих входные данные.

Обозначения

Пусть $X = \{x_k\}_k$ — множество фМРТ, а $Y = \{y_k\}_k$ — режимы когнитивной активности $\{x_k\}_k$ со значениями I или II.

На основе $x_k \in X$ строиться граф $G_k = (V_k, E_k, R_k W_k)$, где

- $V_k = \{v_i^k\}_i$ множество вершин,
- ullet $E_k = \{e_{ij}^k\}_{ij}$ множество неориентированных ребер,
- $R_k = \{r_i^k\}_i$ множество значений вершин,
- $W_k = \{w_{ij}^k\}_{ij}$ множество весов ребер,
- v_i^k вершина отражающая область мозга i,
- ullet e^k_{ij} ребро отражающее связь между областями i и j,
- r_i^k значение вершины v_i^k ,
- w_{ij}^k вес ребра e_{ij}^k .

Подсчет весов ребер w_{ii}^k

 $\{(r_i^n,r_j^n)\}_n$ — множество пар значений вершин $v_i^n,\ v_j^n$ из выборки $(\widetilde{X},\widetilde{Y}).$

Вероятностное определение w_{ii}^k

$$w_{ij}^{k} = P(y_{k} = II | r_{i}^{k}, r_{j}^{k}, \{(r_{i}^{n}, r_{j}^{n})\}_{n}) - P(y_{k} = I | r_{i}^{k}, r_{j}^{k}, \{(r_{i}^{n}, r_{j}^{n})\}_{n})$$

Пусть $CI:\{y_k|(r_i^k,r_j^k),\{(r_i^n,r_j^n)\}_n\}_k \to [0,1]$ — вероятностный классификатор.

Алгоритмическое определение w_{ii}^k

$$w_{ij}^{k} = CI(y_{k} = II | (r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n}) - CI(y_{k} = I | (r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n})$$

Рис.: