Протокол комунікації комп'ютера з інтегральною мікросхемою

Для подальшої роботи з проектом ми продумали правила за якими комп'ютер та мікросхема будуть обмінюватись даними. Обмін даними проводиться з метою зробити календар/годинник на потужностях мікроконтролера. Іншими словами відправляти конкретний час і його ж отримувати.

По-перше, ми визначились з даними які ми будемо передавати: секунда, хвилина, година, день, місяць, рік. Кожна з цих частинок даних буде записуватись у свій власний байт.

По-друге, щоб спілкуватись одних даних недостатньо. Для успішної комунікації їх потрібно загорнути в зрозумілу форму - як для отримувача, так і для відправника. Саме тому комунікацію виду "Request-Response" можна описати декількома UART (universal asynchronous receiver/transmitter) запитами. Спочатку розглянемо запити, що відправляються з комп'ютера, а пізніше буде описані запити мікроконтролера.

Щоб відправити на плату поточний (чи будь-який) час треба сформувати відповідний для цього запит.

• Запит "Set Time" - складається з 9 байтів, 7 з яких відводиться на дані, а 2 - на стартовий байт та перевірку надлишкового коду (CRC).

Відповідно отримаємо подібну табличку:

Байти	0	1	2	3	4	5	6	7	8
Set Time	Стартовий байт*	Секунда	Хвилина	Година	День	Місяць	Pik(low)**	Рік(high)**	CRC

^{*}В цьому випадку стартовий байт буде рівний одиниці

Щоб попросити в плати значення часу (передбачається, що час на плату попередньо був відправлений) треба сформувати вже інший запит.

• Запит "Get Time" - складається з 2 байтів: стартового та байту перевірки надлишкового коду (CRC).

Відповідно отримаємо подібну табличку:

^{**}Літочислення досягло чисел, які неможливо зручно записати в один байт. Тому дані "Рік" ми ділимо на дві частини, щоб коректно їх записати.

Байти	0	1
Get Time	Стартовий байт*	CRC

^{*}В цьому випадку стартовий байт буде рівний двійці

Для того, щоб повідомити користувача/комп'ютер про те, що дані були успішно отримані треба з контролера направити запит.

• Запит "Time is set" - складається з 2 байтів: стартового та байту перевірки надлишкового коду (CRC).

Відповідно отримаємо подібну табличку:

Байти	0	1
Time is set	Стартовий байт*	CRC

^{*}В цьому випадку стартовий байт буде рівний одиниці

Тепер опишемо запит, яким час (оброблений чи відміряний) надсилається на комп'ютер з контролера

• Запит "Give Time" - складається з 9 байтів, 7 з яких відводиться на дані, а 2 - на стартовий байт та перевірку надлишкового коду (CRC).

Відповідно отримаємо подібну табличку:

Байти	0	1	2	3	4	5	6	7	8
Give Time	Стартовий байт*	Секунда	Хвилина	Година	День	Місяць	Рік(low)**	Рік(high)**	CRC

^{*}В цьому випадку стартовий байт буде рівний двійці

**Літочислення досягло чисел, які неможливо зручно записати в один байт. Тому дані "Рік" ми ділимо на дві частини, щоб коректно їх записати.

Залишився чи не один з найважливіших запитів - "Error". Запит, який сповіщає про помилку передачі/отримання даних.

• Запит "Error" - складається з 2 байтів: стартового та байту перевірки надлишкового коду (CRC).

Відповідно отримаємо подібну табличку:

Байти	0	1
Error	Стартовий байт st	CRC

^{*}В цьому випадку стартовий байт буде рівний трійці