TTK4130 - Modeling and Simulation Assignement 9 Ingebrigt Stamnes Reinsborg 1a) I have added my code at the end of my submission.
I believe the implicit equations to be solved as we: $K = f(y_n + h(a_i K), t_n + C, h)$ Yn+1 = Yn + h (bK) (14.120-123 from the book) which is: $X(:,nt) = X(:,nt-1) + delta_t(k\cdot b');$ (and the eq's for vf,)-v and k) in my code.

b) [simulated for both IRK4 and ERK4 in figure (1), but the result was more or less the same for both. Now, I'm inclined to not trust this result as I have a gut feeling that they should be slightly different.

I therefore decided to investigate changing the time frame and. - Step.

44	ts	figure
45	15	(2)
105	1,3955	(3)
1		

Increasing to makes ERK less veliable, but IRK always hits the right values.

L can therestore deduce that this applies when tf = 2 and ts = 0.4. The IRK has worked values for its iterations.

Very cool.

c) The IRK is A-stable, so it won't matter what λ is. Stable either way you tweak it.

2a)
$$\ddot{x} + g(1 - \left(\frac{x_{k}}{x}\right)^{k}) = 0$$
 (z)
 $x, x_{k}, g > 1$ $k \ge 1$
 $E = \frac{mg}{k-1} \times \frac{x_{k}}{x} + mgx + \frac{1}{2}mx^{2}(3)$
 $\dot{E} = \frac{mg}{k-1} \times \frac{x_{k}}{x} (1-k) \cdot \frac{x_{k}}{x} + mgx$
 $+ mx \dot{x}$
 $= -mg(\frac{x_{k}}{x}) \cdot \dot{x} + mg\dot{x} + mg\dot{x}$
 $\cdot (\left(\frac{x_{k}}{x}\right)^{k}) - \frac{x_{k}}{x}$
 $= 0$ \square
b) All code can be found at the end.
See figure(4) and figure(5)
It seems that the only scheme that can show the energy

being conserved is Implicit Midpoint or #"62" as I've called it.

to show the conservation of energy, the scheme has to be stiffly accurate and L-The scheme has to be able to dampen Re(jwh) -> Make on => b = A Teo 1 A non-singular huplicit ridpoint (62) is the only scheme that satisfies both of these requirements.

3a) See code for task3 in bottom of "main". I plotted the simulated States in Figure (6) and figure (7) l couldn't quite understand how the constraint should have been implemented, however, the model simulation made sense to me anyway. It behaves like a normal 3D-pendistrun, it swings back and forth along the "Y-axis" as I've called it

 $Z = 0 \rightarrow 0$ $Z = 0 \rightarrow 0$ Z = -1 Z = 0

By decreasing the timestep, the model becomes marginally more accurate, but the computational time increases drastically. Increasing the timestep gives less computational time, but beyond ts > 0.49 (or something like that) the model sort of "collapses". I think using a higher order RK-method and a timestep in the golditock-zone would probably give better results. b) Matlab gave me a warring about a singular matrix. You can't have singular matrices in Newtons method as you'd end up "dividing