Pizzaseminar zu erzeugenden Funktionen

1. Übungsblatt

Aufgabe 0: Spiele mit erzeugenden Funktionen auf dem Rechner! Erstelle dir zum Beispiel auf sage.math.uni-augsburg.de einen Account und probiere dann den folgenden Code aus:

X.<x> = PowerSeriesRing(QQ)
print 1/(1-x-x^2)
print
XY.<y> = PowerSeriesRing(X)
print 1/(1-y-x*y)

Aufgabe 1: Sei f_n die Anzahl der Teilmengen der Menge $\{1, \ldots, n\}$, welche keine zwei benachbarten Zahlen enthalten. Bestimme eine Rekursionsgleichung für die Folge (f_n) und die (gewöhnliche) erzeugende Funktion.

Verfeinere anschließend die Folge zur Doppelfolge durch Einführung eines neuen Parameters k, der die Mächtigkeit zählt: $b_{n,k}$ sei die Anzahl der k-Teilmengen der Menge $\{1,\ldots,n\}$, welche keine zwei benachbarten Zahlen enthalten. Suche auch hier Rekursionsgleichung und (doppelt gewöhnliche) erzeugende Funktion.

Aufgabe 2: Sei $(f_n)_{n\geq 0}$ eine Folge, die durch die Rekursionsgleichung

$$f_n = a_1 f_{n-1} + a_2 f_{n-2} + a_3 f_{n-3} + c,$$
 $n \ge 3$
 $f_n = b_n,$ $n = 0, 1, 2$

mit festen $a_1, a_2, a_3, b_0, b_1, b_2, c$ gegeben ist. Bestimme die gewöhnliche und exponentiell erzeugende Funktion der Folge.

Aufgabe 3: Sei $s_{n,p} := \sum_{k=0}^{n} k^p$ die Verallgemeinerung des kleinen Gauß. Leite eine Rekursionsformel für die Doppelfolge $(s_{n,p})$ her (benutze binomische Formel) und bestimme die erzeugende Funktion

$$S(x,t) = \sum_{n,p>0} s_{n,p} x^n \frac{t^p}{p!}$$