6.1 习题

2024年6月16日

6.1.1

证明框架如下:由于 n, m 都是自然数,且 m > n,所以存在正自然数 k 使得 k = n + k,对 k 进行归纳。

6.1.2

证明:

与定义 6.1.5 说的是一个意思, 证明略

6.1.3

证明:

充分性:

如果 $(a_n)_{n=m}^{\infty}$ 收敛与 c,那么对任意的 $\epsilon>0$,该序列都是最终 $\epsilon-$ 接近 c 的,所以存在 $N\geq m$ 使得 $|a_n-c|\leq \epsilon$ 对所有的 $n\geq N$ 均成立。由题设可知 m'>m,于是存在 $N':=\max(m',N),N'\geq m'$,使得 $|a_n-c|\leq \epsilon$ 对所有的 $n\geq N'$ 均成立,由于 ϵ 是任意的,由习题 6.1.2 可知, $(a_n)_{n=m'}^{\infty}$ 收敛与 c。

必要性:

 $(a_n)_{n=m'}^{\infty}$ 收敛与 c,那么对任意的 $\epsilon > 0$,该序列都是最终 $\epsilon -$ 接近 c 的。所以存在 $N \geq m'$ 使得 $|a_n - c| \leq \epsilon$ 对所有的 $n \geq N$ 均成立。由于 m' > m,所以 $N \geq m$,该性质对序列 $(a_n)_{n=m}^{\infty}$ 也成立,由于 ϵ 是任意的,由习题 6.1.2 可知, $(a_n)_{n=m'}^{\infty}$ 收敛与 c。

6.1.4

证明:

 $(a_n)_{n=m}^{\infty}$ 收敛于 c,于是对任意 $\epsilon > 0$,存在一个 $N \ge m$ 使得 $|a_n - c| \le \epsilon$ 对所有的 $n \ge N$ 均成立,由于 $k \ge 0$ 是一个非负整数,所以 $n + k \ge N$,于是 $|a_{n+k} - c| \le \epsilon$ 对所有的 $n \ge N$ 均成立,由习题 6.1.2 可知, $(a_{n+k})_{n=m}^{\infty}$ 收敛与 c。

6.1.5

证明:

6.1.6

证明:

证明为什么 $a_n > L + \epsilon/2$ 或 $a_n < L - \epsilon/2$,其余的按书中的提示证明就可以了。

序列 $(a_n)_{n=m}^{\infty}$ 不是最终 ϵ — 接近与 L 的,即对任意的 $N \geq m$ 都存在 $|a_n-L|>\epsilon$ 对所有的 $n\geq N$ 均成立。

序列 $(a_n)_{n=m}^{\infty}$ 是柯西序列,所以存在 N_0 使得 $|a_j - a_k| \le \epsilon/2$ 对所有的 $j,k \ge N_0$ 均成立。

固定 $a_n = j_k$,所以,

$$|a_j - a_n| \le \epsilon/2$$

 $\Rightarrow a_n - \epsilon/2 \le a_j \le a_n + \epsilon/2$

又因为, $|a_n - L| > \epsilon$ 所以 $a_n > \epsilon + L$ 或 $a_n < L - \epsilon$ 。

如果 $a_n > \epsilon + L$, 那么,

$$a_n - \epsilon/2 \le a_j$$

$$L + \epsilon - \epsilon/2 < a_j$$

$$L + \epsilon/2 < a_j$$

如果 $a_n < L - \epsilon$,那么,

$$a_j \le a_n + \epsilon/2$$

 $a_j < L - \epsilon + \epsilon/2$
 $a_j < L - \epsilon/2$

6.1.7

证明:

证明方法与命题 6.1.4 的类似。

首先假设 $(a_n)_{n=m}^{\infty}$ 是定义 5.1.12 意义下的有界序列,那么存在有理数 M,该序列以 M 为界,由于有理数 M 也是实数,所以 $(a_n)_{n=m}^{\infty}$ 是定义 6.1.16 意义下的有界序列。

现在假设是定义 6.1.16 下的有界序列,那么存在实数 M,该序列以 M 为界,根据命题 5.4.12 可知,存在一个比 M 大的有理数 M',由于 M' 是有理数,且 M < M',所有该序列也以 M' 为界,所以 $(a_n)_{n=m}^{\infty}$ 是定义 5.1.12 意义下的有界序列。

6.1.8

 (\mathbf{a})

我们必须证明 $(a_n+b_n)_{n=m}^{\infty}$ 收敛于 x+y。换言之,对于任意的 $\epsilon>0$,我们需要证明序列 $(a_n+b_n)_{n=m}^{\infty}$ 是最终 $\epsilon-$ 接近 x+y 的。

因为 $(a_n)_{n=m}^{\infty}$ 收敛于 x 且 $\epsilon/2 > 0$,则序列是最终 $\epsilon/2-$ 接近 x,即存在 $N_a \ge m$ 使得 $|a_n - x| \le \epsilon/2$ 对所有的 $n \ge N_a$ 均成立。

同理对序列 $(b_n)_{n=m}^\infty$ 存在 $N_b \ge m$ 使得 $|b_n-y| \le \epsilon/2$ 对所有的 $n \ge N_b$ 均成立。

取 $N := max(N_a, N_b)$, 于是对所有的 $n \ge N$ 都有,

$$|a_n + b_n - (x + y)|$$

= $|(a_n - x) + (b_n - y)|$
 $\le |a_n - x| + |b_n - y| = /epsilon$

因此 $(a_n+b_n)_{n=m}^\infty$ 是最终 $\epsilon-$ 接近 x+y 的。由于 ϵ 是任意的,所以 $(a_n+b_n)_{n=m}^\infty$ 收敛于 x+y