Екзаменаційна робота

Киращук Інна та Коломієць Микола

11 червня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	3

Завдання 1

Означення 1

Нехай $S\subseteq C(X)$. Множина S сильно розділяє точки множини X, якщо

$$\forall x_1, x_2 \in X, x_1 \neq x_2, \forall a_1, a_2 \in \mathbb{R}, \exists f \in S : f(x_1) = a_1, f(x_2) = a_2$$

Означення 2

Нехай $S\subseteq C(X)$. Множину S називають решіткою, якщо $\forall f,g\in S$: $\max\{f,g\}\in S, \min\{f,g\}\in S.$

теорема Какутані-Крейна.

Нехай X — компакт, $S\subseteq C(X)$. Припустимо, що:

- 1) S решітка;
- 2) S замкнена підмножина C(X);
- 3) S сильно розділяє точки множини X;
- 4) $1 \in S$

S співпадає з усім простором C(X).

Розв'язання:

Завдання 2

Завдання

Нехай неперервне відображення $f:B^n \to \mathbb{R}^n$ має властивість:

$$(f(x), x) \ge 0 \quad \forall x \in S^{n-1}.$$

Доведіть, що існує точка $x_0 \in B^n : f(x_0) = 0.$

Розв'язання:

Доводити будемо від супротивного.

Нехай
$$\forall x \in B^n, f(x) \neq 0.$$

Визначимо неперервне відображення

$$B^n \xrightarrow{\phi} B^n, \quad \phi x = -\frac{f(x)}{\|f(x)\|}$$

За теоремою Брауера

$$\exists y \in B^n, \quad -\frac{f(y)}{\|f(y)\|} = y \Rightarrow (f(y), y) = -\|f(y)\| < 0$$

З включення $y \in S^{n-1}$ маємо протиріччя з умовою задачі.

Доведено!