Matrix Multiplication Worked Example

Input: $p_0 p_1 \cdots p_{n-1} p_n$ These represent sizes of n matrices $A_1 A_2 \cdots A_n$ Matrix A_i has dimensions $p_{i-1} \times p_i$

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4

 A_1 : 5×4 A_3 : 6×2 A_5 : 7×4

 A_2 : 4×6 A_4 : 2×7

$$A_{i\cdots j}$$
: matrix product of A_i $A_{i+1}\cdots A_j$ $A_{i\cdots j}$ has dimensions $p_{i-1}\times p_j$

 $m[i,j] = minimum number of scalar multiplications required to compute <math>A_{i\cdots i}$

Recurrence

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$

records values of k at which minimum occurs

m[i,j]

i∖j	1	2	3	4	5
1					
2					
3					
4					
5					

s[i,j]

i∖j	1	2	3	4	5
1					
2					
3					
4					
5					

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4

$$m[i, i] = 0$$

 $m[i, j] = \min_{i \le k < j} [i, k] + m[k + 1, j] + p_{i-1} p_k p_j$

$$l = 1$$

i∖j	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

i∖j	1	2	3	4	5
1					
2					
3					
4					
5					

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$

•
$$m[1,1] = 0$$
 A_1

•
$$m[2,2] = 0$$
 A_2

•
$$m[3,3] = 0$$
 A_3

•
$$m[4,4] = 0$$
 A_4

•
$$m[5,5] = 0$$
 A_5

$$l=2$$

i \ j	1	2	3	4	5
1	0	120			
2		0	48		
3			0	84	
4				0	56
5					0

i∖j	1	2	3	4	5
1		1			
2			2		
3				3	
4					4
5					

$$m[i,i] = 0 m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$$

•
$$m[1,2] = m[1,1] + m[2,2] + 5 * 4 * 6 = 120$$
 A_1A_2

•
$$m[2,3] = m[2,2] + m[3,3] + 4 * 6 * 2 = 48$$
 A_2A_3

•
$$m[3,4] = m[3,3] + m[4,4] + 6 * 2 * 7 = 84$$
 A_3A_4

•
$$m[4,5] = m[4,4] + m[5,5] + 2 * 7 * 4 = 56$$
 A_4A_5

$$l=3$$

i \ j	1	2	3	4	5
1	0	120	88		
2		0	48	104	
3			0	84	104
4				0	56
5					0

i∖j	1	2	3	4	5
1		1	1		
2			2	3	
3				3	3
4					4
5					

$$m[i,i] = 0$$

$$m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$$

•
$$m[1,3] = \min \left\{ \frac{m[1,1] + m[2,3] + 5 * 4 * 2}{m[1,2] + m[3,3] + 5 * 6 * 2} \right\} = 88$$
 $A_1A_{2...3}$

•
$$m[2,4] = \min \begin{Bmatrix} m[2,2] + m[3,4] + 4 * 6 * 7, \\ m[2,3] + m[4,4] + 4 * 2 * 7 \end{Bmatrix} = 104$$
 $A_{2...3}A_4$

•
$$m[3,5] = \min \left\{ \frac{m[3,3] + m[4,5] + 6 * 2 * 4}{m[3,4] + m[5,5] + 6 * 7 * 4} \right\} = 104$$
 $A_3 A_{4..5}$

$$l=4$$

i∖j	1	2	3	4	5
1	0	120	88	158	
2		0	48	104	136
3			0	84	104
4				0	56
5					0

i∖j	1	2	3	4	5
1		1	1	3	
2			2	3	3
3				3	3
4					4
5					

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$

$$m[1,4] = \min \begin{cases} m[1,3] + m[4,4] + 5 * 2 * 7, \\ m[1,2] + m[3,4] + 5 * 6 * 7 \\ m[1,1] + m[2,4] + 5 * 4 * 7 \end{cases} = 158$$

$$A_{1..3}A_4$$

$$m[2,5] = \min \begin{cases} m[2,4] + m[5,5] + 4 * 7 * 4, \\ m[2,3] + m[4,5] + 4 * 2 * 4 \\ m[2,2] + m[3,5] + 4 * 6 * 4 \end{cases} = 136$$

$$A_{2...3}A_{4...5}$$

$$l = 5$$

i∖j	1	2	3	4	5
1	0	120	88	158	184
2		0	48	104	136
3			0	84	104
4				0	56
5					0

s[i,j]

i∖j	1	2	3	4	5
1		1	1	3	3
2			2	3	3
3				3	3
4					4
5					

i	0	1	2	3	4	5
p_i	5	4	6	2	7	4

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$

$$m[1,5] = \min \begin{cases} m[1,4] + m[5,5] + 5 * 7 * 4, \\ m[1,3] + m[4,5] + 5 * 2 * 4, \\ m[1,2] + m[3,5] + 5 * 6 * 4, \\ m[1,1] + m[2,5] + 5 * 4 * 4 \end{cases} = 184$$

 $A_{1..3}A_{4..5}$

$$l = 5$$

i∖j	1	2	3	4	5
1	0	120	88	158	184
2		0	48	104	136
3			0	84	104
4				0	56
5					0

s[i,j]

i∖j	1	2	3	4	5
1		1	1	3	3
2			2	3	3
3				3	3
4					4
5					

$$m[i,i] = 0$$

 $m[i,j] = \min_{i \le k < j} [i,k] + m[k+1,j] + p_{i-1}p_k p_j$

Optimal solution is

$$(A_{1..s[1,5]}A_{s[1,5]+1..5}) = (A_{1..3}A_{4..5})$$

$$= (A_{1..s[1,3]}A_{s[1,3]+1..3})A_{4..5} = ((A_{1..1}A_{2..3})A_{4..5})$$

$$= ((A_1(A_{2..s[2,3]}A_{s[2,3]+1..3}))A_{4..5})$$

$$= ((A_1(A_{2..2}A_{3..3}))A_{4..5})$$

$$= ((A_1(A_2A_3))A_{4..5})$$

$$= ((A_1(A_2A_3))(A_{4..s[4,5]}A_{s[4,5]+1,5}))$$

$$= ((A_1(A_2A_3))(A_4A_5))$$