RS232 通讯协议

- 1 需要配接 JBF-193K 接口卡,标准 RS232 输出/标准 RS485 输出,JBF-193K 接在 11S、11SF 控制器的外 CAN 上。
- 2 拨码开关功能(上电时生效)

拨码开关位	功能	备注
第1位	机器号选择	
第 2 位	机器号选择	
第 3 位	机器号选择	
第 4 位	机器号选择	
第 5 位	机器号选择	
第6位	机器号选择	
第7位	机器号选择	
第8位	ON:RS485 模式	
	OFF:RS232 模式	

当 1~7 号拨码开关都处于 OFF 状态时,接收全部控制器的外 CAN 信息。否则,拨码开关以二进制计数的方式表示机器号。

例如: 只接收 1 号控制器的 WCAN 命令,需把 1 号拨码开关置于 ON 状态,2~7 号拨码开关置于 OFF 状态; 只接收 99 号控制器的 WCAN 命令,需把 1、2、6、7 号拨码开关置于 ON 状态,3、4、5 号拨码开关置于 OFF 状态。

- 3 串口设置: 波特率= 9600, 起始位=1, 数据位=8, 停止位=1, 校验位=无。
- 4 接线方式

和外部设备连接,用 DB9, 其中 DB9 是针式时 5 脚 GND 地,3 脚 TXD 发送,2 脚 RXD 接收。

5 通讯方式

通信方式有 2 种,一种是主动发送,另一种是查询发送。两种方式自动识别,适配卡一定时间内接收不到查询命令就转换成主动发送模式。

1) 主动模式。有报警信息时主动发送报警信息,无报警信息时发送心跳 (控制器外 CAN 心跳)。(PS: 上电时默认被动模式,接收不到巡检命 令约 3S 后自动转换成主动模式)

D1 D2 (控制器号) D3D4 D5D6 $0x30\ 0x30\ 0x30$ D7 D8D9 D10 D11 D12 2)被动模式。JBF-193K通讯板为被动发送,在接收到外部查询命令后, 报警信号再发送。外部查询间隔为1秒左右。 查询命令(0x表示16进制):

D1 D2D3D4 D5D6 D7D8 D9 D10 D11 D12 正常应答数据: (版本 2.5) 版本高位 版本低位 D1 D4 D5 $0x30\ 0x300x30\ 0x300x30\ 0x300x30\ 0x300x30\ 0x300x30\ 0x300x30$ D6 D7D8 D9 D10 D11

 $\underline{0x30\ 0x30} \quad 0x83$

D12

6 JBF-193K 通讯板回答通讯

起始符	报警命令	控制器号	回 路 号	部 位 号	部件类型	时 间 年	时间月	时 间 日	时 间 时	时间分	时间秒	累 加 和	结 束 符
0x 82	数 据 1	数 据 2	数 据 3	数 据 4	一数 据 5	数 据 6	数 据 7	数 据 8	数 据 9	数 据 10	数 据 11	数 据 12	0x83

数据 1-数据 12 中的字节拆成 2 个半字节加上 0x30 再发送, 先发高字节。

1)报警命令说明

命令	代码	控制器	回路	部位
控制器心跳	0x00(0x69)			
控制器正常	0x09			
控制器复原	0x01			
控制器消音	0x0B			
火警	0x80(0x0A)			
故障	0x81			
故障恢复	0x82			
回路故障	0x87			

回路故障恢复	0x88		
自动启动	0x83		
自动停止	0x84		
手动启动	0x90		
手动停止	0x91		
设备回答	0x85		
回答撤销	0x86		
部件隔离	0x98		
部件隔离撤销	0x97		
多线手动启动	0x51	0xf2	(盘号-1)*8+
2 24 1 1/1/H 1/1	0/10/1		专线号
多线手动停止	0x52	0xf2	(盘号-1)*8+
			专线号
多线回答	0x53	0xf2	(盘号-1)*8+
			专线号
多线停止回答	0x54	0xf2	(盘号-1)*8+
			专线号
多线自动启动	0x55	0xf2	(盘号-1)*8+
			专线号
多线自动停止	0x56	0xf2	(盘号-1)*8+
			专线号
多线自动启动延时	0x57	0xf2	(盘号-1)*8+
			专线号
多线应答缺失	0x58	0xf2	(盘号-1)*8+
			专线号
多线线路故障	0x59	0xf2	(盘号-1)*8+
			专线号
多线线路故障恢复	0x5A	0xf2	(盘号-1)*8+
			专线号
模拟报警	0x8b	为实	
		际减	
		_	
监管报警	0x8c		
监管报警撤销	0x8d		

命令	代码	控制器	回路	部位
气体线路故障	0xfa		0x01	(盘号-1) *4+区号

气体线路故障恢复	0xfa	0x02	(盘号-1) *4+区号
气体喷洒应答	0xfa	0x03	(盘号-1) *4+区号
气体喷洒应答撤销	0xfa	0x04	(盘号-1) *4+区号
声光启动	0xfa	0x05	(盘号-1) *4+区号
声光停止	0xfa	0x06	(盘号-1) *4+区号
相关设备动作	0xfa	0x07	(盘号-1) *4+区号
相关设备动作停止	0xfa	0x08	(盘号-1) *4+区号
防火区启动	0xfa	0x09	(盘号-1) *4+区号
防火区停止	0xfa	0x0a	(盘号-1) *4+区号
喷洒启动	0xfa	0x0b	(盘号-1) *4+区号
延时启动	0xfa	0x0c	(盘号-1) *4+区号
远程停止动作撤销	0xfa	0x0e	(盘号-1) *4+区号
板故障	0x70	0x80	板号
板故障恢复	0x70	0x90	板号
主电故障	0x71	0x80	
主电故障恢复	0x71	0x90	
备电故障	0x72	0x80	
备电故障恢复	0x72	0x90	

命令	代码	部件类型
防火门相关命令	0xfb	防火门报警命令参考
电气火灾相关命令	0xfc	电气火灾报警命令参考
消防电源监控相关命令	0xfd	消防电源报警命令参考

防火门报警命令参考

防火门部件类型低 4 位(D3~D0)	防火门类型
0x1	单常开防火门
0x2	单常闭防火门
0x3	双常开防火门
0x4	双常闭防火门

防火门部件类型高 4 位(D7~D4)	防火门状态
0x1	防火门故障
0x2	防火门故障撤销
0x3	防火门延时关闭
0x4	防火门正在关闭(自动)
0x5	防火门正在关闭消息撤销(自动)

0x6	防火门正在关闭(手动)
0x7	防火门正在关闭消息撤销(手动)
0x8	防火门成功关闭(由于启动)
0x9	防火门成功关闭消息撤销
0xA	防火门屏蔽
0xB	防火门屏蔽撤销

电气火灾报警命令参考

电气火灾部件类型低 4 位(D3~D0)	电气火灾探测器类型
0x1	全部探测器
0x2	剩余电流探测器
0x3	温度探测器
0x4	故障电弧探测器
0x5	过电流探测器
0x6	脱扣继电器
0x7	预留

电气火灾部件类型高 4 位(D7~D4)	电气火灾探测器状态
0x1	电气火灾探测器报警
0x2	电气火灾探测器故障
0x3	电气火灾探测器故障撤销
0x4	电气火灾探测器脱扣动作(自动)
0x5	电气火灾探测器脱扣停止(自动)
0x6	电气火灾探测器脱扣动作(手动)
0x7	电气火灾探测器脱扣停止(手动)
0x8	电气火灾探测器屏蔽
0x9	电气火灾探测器屏蔽撤销

当电气火灾的部件类型(数据 5)为 0xff 时,使用如下协议

起始符	0X82
报警命令	数据 1
控制器号	数据 2
回路号	数据 3
部位号	数据 4
部件类型	数据 5:0xff
时间年	数据 6
时间月	数据 7
时间日	数据 8

时间时	数据 9
时间分	数据 10
时间秒	数据 11
累加和	数据 12
补充部件类型	数据 13
传感器通道	数据 14
报警值低 8 位	数据 15
报警值高8位	数据 16
CRC8 校验	CRC8
结束符	0X83

其中补充部件类型(数据13)与之前的部件类型(数据5)解析方法相同。 当探测器状态是"电气火灾探测器报警"时,报警值(数据15、数据16)的含 义如下:

- a.剩余电流探测器: 带1位十进制小数, mA*10;
- b.温度探测器: 带 1 位十进制小数:, 摄氏度*10, 且最高 bit=1 表示零下温度;
- c.故障电弧: 暂没有该产品;
- d.过电流探测器: 带 2 位十进制小数, A*100;

消防电源报警命令参考

电源监控部件类型低 4 位(D3~D0)	探测器类型
0x1	电压模块
0x2	电压/电流模块
0x3	电流模块

电源监控部件类型高 4 位(D7~D4)	探测器状态
0x2	欠压故障
0x3	过压故障
0x4	缺相故障
0x5	过载故障
0x6	错相故障
0x7	通道供电中断故障
0x8	供电中断故障
0x9	输入动作
0xA	输入撤销
0xB	输出动作
0xC	输出撤销
0xD	屏蔽
0xE	屏蔽撤销

 0xF
 故障撤销

2)累加和:数据 1~数据 11 的累加和。CRC8 校验是对数据 1~数据 16 进行 CRC 的 8 位校验(LSB, CRC8=X⁸+X⁵+X⁴+X⁰)。

7 举例说明(193K 接口卡拨码开关都处于 OFF, 处于主动发送状态)

(1) 1 号控制器 1 回路 2 号感烟探测器 2015-10-9 16:24:00 报火警 193K 串口输出的信息

0x82

0x38 0x30 0x30 0x31 0x30 0x31 0x30 0x32 0x30 0x3B 0x30 0x3F

火警 机器号 回路号 地址号 类型 年

0x30 0x3A 0x30 0x39 0x31 0x30 0x31 0x38 0x30 0x30 0x3D 0x39

月 日 时 分 秋 累加和

0x83

(2) 电器火灾控制器预报警,7号控制器1回路1号过测温式探测器2017-07-0317:34:00 预报警(报警值:28℃)

82

3F 3C 30 3730 3130 313F 3F30 3030 30

电气火灾控制器报警机器号回路号地址号年月

30 3030 3030 3031 3731 3B31

日 时分 秒累加和电气火灾探测器报警

3330 3031 3830 313B 36

温度探测器通道模拟量低 8 位模拟量高 8 位 CRC8

83

上面的数据中,193K 串口输出的报警时间与描述的报警时间不符。这是因为193K 刚上电时的内部时间是一个随机数,需要在显示盘上重新设置时间,使193K 的时间与控制器的之间同步。此后,193K 的报警时间才会和控制器的报警时间基本保持一致。

模拟量的计算方法:

16 进制模拟量高 8 位+16 进制模拟量低 8 位=16 进制 0x0118= 十进制 280, 所以真实的报警温度为 280/10=28.0℃。

升级说明:

20150518 V1.7 增加监管报警及监管报警撤销

20151018 V1.8 在正常回答信息中加入版本号。

20160509 V2.0 删除了 V1.8 版本中 2 号拨码开关的功能,重新定义了 1~7 号拨码开关的功能。当 1~7 号拨码开关都处于 OFF 状态时,接收 WCAN 上全部控制器的 WCAN 信息。当 1~7 号拨码开关拨到某一机器号时,只接收相应的控制器的 WCAN 信息。加入了防火门、电气火灾的协议。

201606012 V2.1 在 V2.0 版本中,接口卡由被动发送模式转换为主动发送模式的时间间隔为 3 分钟,在 V2.1 版本中该时间间隔改为 3 秒钟。

20160615 V2.2 修改了 V2.1 版本中有关电气火灾控制器的协议,对数据 1~数据 16 进行 CRC8 校验,并将 CRC8 补充在数据 16 后面。修复了当接口卡在被动模式下,没有火警信息时,会上传心跳信息的 BUG。

20170713 V2.3 因电气火灾 WCAN 协议改变,所以相应地对程序作了修改。在之前的协议说明中,屏蔽和屏蔽撤销的命令字写反了,在该版本中已修复。

V2.4 在 V2.3 的基础上升级。使用第 7 位拨码开关控制接口卡发送信息的种类。因此单个机器号的选择 1~99 缩减为 1~63。当第 7 位拨码开关处于 OFF 时,串口可发送全部信息;当第 7 位拨码开关处于 ON 时,串口只发送火警信息。(该版本不作为正式版本下发)

20171020 V2.5 是在 V2.3 版本上进行的升级,增加了消防电源监控系统的协议。

20181219 v2.6 修复了文档中一些描述错误

20190129 v2.7 新增代码 0x69 表示心跳信息

20190221 v2.8 删除代码 0xEF