Investigating a simple model of population dynamics

... we used a matrix to summarize the effects that different elements in an ecological system have on each other.

... we used a matrix to summarize the effects that different elements in an ecological system have on each other.

Today we want to investigate the **population dynamics** in an ecosystem.

... we used a matrix to summarize the effects that different elements in an ecological system have on each other.

Today we want to investigate the **population dynamics** in an ecosystem.

It is intuitive that a complex system with many interacting elements has complex behavior.

... we used a matrix to summarize the effects that different elements in an ecological system have on each other.

Today we want to investigate the **population dynamics** in an ecosystem.

It is intuitive that a complex system with many interacting elements has complex behavior.

(see Lorenz's "Butterfly Effect")

Let's say that our ecosystem **only has rabbits** with **constant reproduction rate** γ

$$rac{x_{t+1}}{x_t} = r$$

Let's say that our ecosystem **only has rabbits** with **constant reproduction rate** γ

$$rac{x_{t+1}}{x_t} = r$$

If r>1 then $x_t o \infty$ If r<1 then $x_t o 0$

Let's say that our ecosystem **only has rabbits** with **constant reproduction rate** $\red {r}$

If r>1 then $x_t o \infty$ If r<1 then $x_t o 0$

Let's say that our ecosystem **only has rabbits** with **reproduction rate that decreases when there are more rabbits**

$$rac{x_{t+1}}{x_t} = r(1-x_t)$$

Let's say that our ecosystem **only has rabbits** with **reproduction rate that decreases when there are more rabbits**

$$\frac{x_{t+1}}{x_t} = r(1-x_t)$$

Describes a situation where if there are too many rabbits, they can't reproduce because they run out of food, and are easily preyed upon.

Let's say that our ecosystem only has rabbits with reproduction rate that decreases when there are more rabbits

$$\frac{x_{t+1}}{x_t} = r(1-x_t)$$

Describes a situation where if there are too many rabbits, they can't reproduce because they run out of food, and are easily preyed upon.

This ecosystem model is called the logistic map:

$$x_{t+1} = rx_t(1-x_t)$$

This ecosystem model is called the logistic map:

$$x_{t+1} = rx_t(1-x_t)$$

Our task is to use python to

- a. Simulate an ecological system that follows the logistic map
- b. Create plots that describe the behavior of the system and answer the question

This ecosystem model is called the logistic map:

$$x_{t+1} = rx_t(1-x_t)$$

Our task is to use python to

- a. Simulate an ecological system that follows the logistic map
- b. Create plots that describe the behavior of the system and answer the question