An Algebraic Structure for Linear Realisabitity Journées GT Scalp 2023

Adrien Ragot

Université Sorbonne Paris Nord (LIPN) & Università Degli Studi Roma Tre

Journées 2023 du GT Scalp

Realisability

Realisabitity(1/3)

Realisabitity(2/3)

Realisabitity(3/3)

Adequacy(1/4)

Adequacy(2/4)

Adequacy(3/4)

Adequacy(4/4)

Orthogonality

Orthogonality (1/5)

Orthogonality = (symmetric) binary relation \perp on a set X

$$A^{\perp} = \{x \in X \mid \forall a \in A, x \perp a\}.$$

A is a type \Leftrightarrow $\mathbf{A}^{\perp} = \mathbf{A}$

Orthogonality (2/5)

$$(M, \bullet, \bot)$$
_{A set}

Orthogonality (3/5)

Orthogonality (4/5)

Orthogonality (5/5)

$$a \perp b \Leftrightarrow a \bullet b \in \bot$$

Types in Orthogonality models (1/4)

Realise
$$A = \text{Orthogonal to } \llbracket A \rrbracket^{\perp}$$

$$(\llbracket A \rrbracket = \llbracket A \rrbracket^{\perp})$$

$$P \in \llbracket A \rrbracket^{\perp}$$

$$Q$$
Does Q belong to $\llbracket A \rrbracket$?

Types in Orthogonality models (2/4)

Realise
$$A = \text{Orthogonal to } [A]^{\perp}$$

 $([A]] = [A]^{\perp})$

Q fails interaction $\Rightarrow Q \notin [A]$

Types in Orthogonality models (3/4)

Realise
$$A = \text{Orthogonal to } [A]^{\perp}$$

$$([A]] = [A]^{\perp \perp})$$

$$?$$

$$P \in [A]^{\perp}$$

$$Q$$

Does Q belong to [A]?

Types in Orthogonality models (4/4)

Realise
$$A = \text{Orthogonal to } [A]^{\perp}$$

 $([A]] = [A]^{\perp})$

Realisability in self operand (1/3)

Realisability in self operand (2/3)

 (M, \parallel) acts on the right on M.

Realisability in self operand (3/3)

 (M, \parallel) acts on the right on M. $\forall a, b, c \in M \ a :: (b \parallel c) = (a :: b) :: c$.

Realisability for Multiplicative Linear Logic

Realisability for MLL (1/4)

(Formula) $A, B \triangleq X, X^{\perp} \mid A \otimes B \mid A ? ? B$

Realisability for MLL (2/4)

(Formula) $A, B \triangleq X, X^{\perp} \mid A \otimes B \mid A \Re B$

Realisability for MLL (3/4)

(Formula)
$$A, B \triangleq X, X^{\perp} \mid A \otimes B \mid A \nearrow B$$

(Hypersequent) $\mathcal{H}_1, \mathcal{H}_2 \triangleq A \mid \mathcal{H}_1, \mathcal{H}_2 \mid \mathcal{H}_1 \parallel \mathcal{H}_2$

Realisability for MLL (4/4)

(Formula)
$$A, B \triangleq X, X^{\perp} \mid A \otimes B \mid A \nearrow B$$

(Hypersequent) $\mathcal{H}_1, \mathcal{H}_2 \triangleq A \mid \mathcal{H}_1, \mathcal{H}_2 \mid \mathcal{H}_1 \parallel \mathcal{H}_2$

Construction on types in Polarized Self Operand

Construction on Types (1/2)

A
$$\parallel$$
 B = $\{a \parallel b \mid a \in A, b \in B\}^{\perp \perp}$

Construction on Types (2/2)

A
$$\parallel$$
 B = { $a \parallel b \mid a \in A, b \in B$ }¹¹ **A** \circ **B** = { $x \mid \forall a \in A, x :: a \in B$ }¹²

Duality (1/7)

Duality (2/7)

A
$$\parallel$$
 B = { $a \parallel b \mid a \in A, b \in B$ }^{\(\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilde{\text{\tiliex{\text{\tiliex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiliex{\text{\text{\tiliex{\text{\text{\text{\text{\text{\text{\tiliex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiliex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiliex{\text{\text{\text{\text{\text{\text{\tiliex{\texi{\texi{\text{\text{\texi}\text{\text{\texi{}

Proposition. $A \circ B = A^{\perp} \parallel B^{\perp}$.

Proof Sketch. $x \in \mathbf{A} \circ \mathbf{B} \iff \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}$

Duality (3/7)

Proof Sketch.
$$x \in \mathbf{A} \circ \mathbf{B} \Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B} \Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}^{\perp \perp}$$

Duality (4/7)

A
$$\parallel$$
 B = { $a \parallel b \mid a \in A, b \in B$ } $\stackrel{\perp}{}$ **A** \circ **B** = { $x \mid \forall a \in A, x :: a \in B$ }

Proof Sketch.
$$x \in \mathbf{A} \circ \mathbf{B} \Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}$$

 $\Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}^{\perp \perp}$
 $\Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \perp \mathbf{B}^{\perp}$

Duality (5/7)

A
$$\parallel$$
 B = { $a \parallel b \mid a \in A, b \in B$ } $\stackrel{\perp}{}$ **A** \circ **B** = { $x \mid \forall a \in A, x :: a \in B$ }

Proof Sketch.
$$x \in \mathbf{A} \circ \mathbf{B} \Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}$$

 $\Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}^{\perp}$
 $\Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \perp \mathbf{B}^{\perp}$
 $\Leftrightarrow \forall \overline{a} \in \mathbf{A}^{\perp}, \forall \overline{b} \in \mathbf{B}^{\perp}, (x :: \overline{a}) :: \overline{b} \in \bot$

Duality (6/7)

A
$$\parallel$$
 B = { $a \parallel b \mid a \in A, b \in B$ } $\stackrel{\perp}{}$ **A** \circ **B** = { $x \mid \forall a \in A, x :: a \in B$ }

Proof Sketch.
$$x \in \mathbf{A} \circ \mathbf{B}$$
 \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}^{\perp \perp}$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \perp \mathbf{B}^{\perp}$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, \forall \overline{b} \in \mathbf{B}^{\perp}, (x :: \overline{a}) :: \overline{b} \in \bot$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, \forall \overline{b} \in \mathbf{B}^{\perp}, x :: (\overline{a} \parallel \overline{b}) \in \bot$

Duality (7/7)

A
$$\parallel$$
 B = { $a \parallel b \mid a \in A, b \in B$ }^{\(\text{\formalfont} \) **A** \circ **B** = { $x \mid \forall a \in A, x :: a \in B$ }^{\(\text{\formalfont} \)}}

Proposition. $A \circ B = A^{\perp} \parallel B^{\perp}$.

Proof Sketch.
$$x \in \mathbf{A} \circ \mathbf{B}$$
 \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \in \mathbf{B}^{\perp \perp}$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, x :: \overline{a} \perp \mathbf{B}^{\perp}$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, \forall \overline{b} \in \mathbf{B}^{\perp}, (x :: \overline{a}) :: \overline{b} \in \bot$ \Leftrightarrow $\forall \overline{a} \in \mathbf{A}^{\perp}, \forall \overline{b} \in \mathbf{B}^{\perp}, x :: (\overline{a} \parallel \overline{b}) \in \bot$

 $\Leftrightarrow x \perp \mathbf{A}^{\perp} \parallel \mathbf{B}^{\perp}$

Orthogonality in Self-Operands Intersections and Unions

Intersection and Union

Given $(\mathbf{A}_i)_{i \in I}$ a family of types:

 $\bigcap_{i\in I} A_i$ is a type.

$$(\bigcup_{i\in I}A_i)^{\perp}=\left(\bigcup_{i\in I}A_i^{\perp}\right)^{\perp\perp}.$$

$$(\bigcap_{i\in I}A_i)^{\perp}=(\bigcap_{i\in I}A_i^{\perp})^{\perp\perp}.$$

Orthogonality in Self-Operands Operators

Operators and Constructions (1/3)

Operator of arity n on $X = \text{map } X^n \to X$.

Higher order operator on $X = \text{operator on } \mathcal{P}(X)$

Operator α on $X \Rightarrow$ Higher order operator α_1 on X

$$\alpha_1: X_1, \ldots, X_n \to \{\alpha(x_1, \ldots, x_n) \mid x_i \in X_i\}.$$

Operators and Constructions (2/3)

Construction on types = H.O.O. α such that

$$\mathbf{A}_1, \dots, \mathbf{A}_n$$
 types $\Rightarrow \alpha(\mathbf{A}_1, \dots, \mathbf{A}_n)$ type.

Bi-dual operator $bd: A \subseteq X \mapsto A^{\perp \perp}$

Proposition. For any H.O.O. α , $bd \circ \alpha$ is a construction.

Operators and Constructions (3/3)

Two H.O.O. α and β are orthogonal $\Leftrightarrow \alpha(\mathbf{A}_1, \dots, \mathbf{A}_n)^{\perp} = \beta(\mathbf{A}_1^{\perp}, \dots, \mathbf{A}_n^{\perp})$.

Distributive Properties

Whenever α is an operator on X:

$$\bigcup_{\bar{i}\in\prod I_k}\alpha_{\uparrow}(\mathbf{A}_{i_1},\ldots,\mathbf{A}_{i_n})=\alpha_{\uparrow}(\bigcup_{i_1\in I_1}\mathbf{A}_1,\ldots,\bigcup_{i_n\in I_n}\mathbf{A}_n)$$

$$\bigcap_{\bar{i}\in\prod I_k}\alpha_{\uparrow}(\mathbf{A}_{i_1},\ldots,\mathbf{A}_{i_n})=\alpha_{\uparrow}(\bigcap_{i_1\in I_1}\mathbf{A}_1,\ldots,\bigcap_{i_n\in I_n}\mathbf{A}_n)$$

Orthogonality in Self-Operands Implicative Structures in Self Operands

Implicative Structures (1/6)

$$(\mathcal{S}, \leqslant, \rightarrow)$$

Implicative Structures (2/6)

$$(S, \leq, \rightarrow)$$
Complete meet lattice

Implicative Structures (3/6)

$$(S, \leq, \rightarrow)$$
A map $S^2 \rightarrow S$
Complete meet lattice

Implicative Structures (4/6)

An Implicative Structure:

$$(S, \leqslant, \rightarrow)$$
A map $S^2 \rightarrow S$
Complete meet lattice

1. $\forall a_0, a, b \in \mathcal{S}$ $a_0 \leq a \Rightarrow a \rightarrow b \leq a_0 \rightarrow b$.

Implicative Structures (5/6)

$$(S, \leq, \rightarrow)$$
A map $S^2 \rightarrow S$
Complete meet lattice

- 1. $\forall a_0, a, b \in S$ $a_0 \leq a \Rightarrow a \rightarrow b \leq a_0 \rightarrow b$.
- 2. $\forall a_0, a, b \in S$ $a_0 \le a \Rightarrow a \rightarrow b \le a_0 \rightarrow b$.

Implicative Structures (6/6)

$$(S, \leq, \rightarrow)$$
A map $S^2 \rightarrow S$
Complete meet lattice

- 1. $\forall a_0, a, b \in S$ $a_0 \leq a \Rightarrow a \rightarrow b \leq a_0 \rightarrow b$.
- $2. \ \forall a_0, a,b \in \mathcal{S} \quad a_0 \leqslant a \quad \Rightarrow \quad a \rightarrow b \leqslant a_0 \rightarrow b.$
- 3. $\forall B \subseteq \mathcal{A} \quad \int_{b \in B} (a \to b) = a \to \int_{b \in B} b$.

Application in an Implicative Structures

The **application** in an implicative structure:

$$ab \triangleq \bigwedge \{c \in S \mid a \leq b \rightarrow c\}.$$

Implicative Structures in Self Operands (1/3)

$$(\mathbb{T},\subseteq,\rightarrow)$$

Implicative Structures in Self Operands (2/3)

$$(\mathbb{T},\subseteq,\longrightarrow)$$
set of types
Closed under $(A_i)_{i\in I}\mapsto (\bigcup_{i\in I}A_i)^{\perp\perp}$

Implicative Structures in Self Operands (3/3)

set of types

Closed under
$$(A_i)_{i \in I} \mapsto (\bigcup_{i \in I} A_i)^{\perp \perp}$$
 construction on types
$$\mathbf{A} \to \mathbf{B} \triangleq \mathbf{A}^{\perp} \circ \mathbf{B}$$

Application and Arrow Properties (1/5)

$$A :: B \triangleq \{a :: b \mid a \in A, b \in B\}$$

$$\mathbf{A} \to \mathbf{B} \triangleq \{x \mid \forall a \in \mathbf{A}, x :: a \in \mathbf{B}\}$$

Application and Arrow Properties (2/5)

A :: **B**
$$\triangleq$$
 {*a* :: *b* | *a* \in **A**, *b* \in **B**}

$$\mathbf{A} \rightarrow \mathbf{B} \triangleq \{x \mid \forall a \in \mathbf{A}, x :: a \in \mathbf{B}\}$$

$$\mathbf{A} :: \mathbf{B} = \mathbf{AB} \triangleq \bigcap \{C \mid A \subseteq B \to C\}$$

Application and Arrow Properties (3/5)

$$A :: B \triangleq \{a :: b \mid a \in A, b \in B\}$$

$$\mathbf{A} \rightarrow \mathbf{B} \triangleq \{x \mid \forall a \in \mathbf{A}, x :: a \in \mathbf{B}\}$$

$$\mathbf{A} :: \mathbf{B} = \mathbf{AB} \triangleq \bigcap \{C \mid A \subseteq B \to C\}$$

$$\mathbf{A} \to \mathbf{B} = \bigcup \{C \mid C :: A \subseteq B\}$$

Application and Arrow Properties (4/5)

$$A :: B \triangleq \{a :: b \mid a \in A, b \in B\}$$

$$\mathbf{A} \rightarrow \mathbf{B} \triangleq \{x \mid \forall a \in \mathbf{A}, x :: a \in \mathbf{B}\}$$

$$\mathbf{A} :: \mathbf{B} = \mathbf{AB} \triangleq \bigcap \{C \mid A \subseteq B \to C\}$$

$$\mathbf{A} \to \mathbf{B} = \bigcup \{C \mid C :: A \subseteq B\}$$

$$A^{\perp} = \bigcup \{C \mid A :: C \subseteq \bot\}$$

Application and Arrow Properties (5/5)

A :: **B**
$$\triangleq$$
 {*a* :: *b* | *a* \in **A**, *b* \in **B**}

$$\mathbf{A} \to \mathbf{B} \triangleq \{x \mid \forall a \in \mathbf{A}, x :: a \in \mathbf{B}\}$$

$$\mathbf{A} :: \mathbf{B} = \mathbf{AB} \triangleq \bigcap \{C \mid A \subseteq B \to C\}$$

$$\mathbf{A} \to \mathbf{B} = \bigcup \{C \mid C :: A \subseteq B\}$$

$$A^{\perp} = \bigcup \{C \mid A :: C \subseteq \bot\}$$

$$A^{\perp\perp} = \bigcap \{C^{\perp} \mid A :: C \subseteq \bot\}$$

Computability of Types

A set A is a

type iff

$$\mathbf{A} = \mathbf{A}^{\perp \perp}$$

A set A is a

type iff

$$\mathbf{A} = \mathbf{A}^{\perp \perp}$$

$$\Leftrightarrow \exists B \ \mathbf{A} = B^{\perp}$$

A set **A** is a computable type iff

$$\mathbf{A} = \mathbf{A}^{\perp \perp} \qquad \text{finite}$$

$$\Leftrightarrow \exists B \ \mathbf{A} = B^{\perp}$$

Preserving Computability (1/3)

 \circ , $\|, \bigcap_{X \in \Omega}, \bigcup_{X \in \Omega}$ preserve computability

PreConstructions

Preserving Computability (2/3)

Preserving Computability (3/3)

 $\Im, \otimes, \forall X, \exists X$ preserve computability

Constructions

Correctness in self-operands

Descriptions (1/6)

How to map proofs to elements of $(X, ::, ||, \perp)$?

Descriptions (2/6)

How to map proofs to elements of $(X, ::, ||, \perp)$?

The notion of **Description**:

Descriptions (3/6)

How to map proofs to elements of $(X, ::, ||, \perp)$? The notion of **Description**:

$$(\mathcal{A}, \alpha, \beta, \gamma)$$

Descriptions (4/6)

How to map proofs to elements of $(X, ::, ||, \perp)$? The notion of **Description**:

$$(\mathcal{A}, \alpha, \beta, \gamma)$$
A subset $\mathcal{A} \subseteq X$ of approximations

Descriptions (5/6)

How to map proofs to elements of $(X, ::, ||, \perp)$? The notion of **Description**:

Descriptions (6/6)

How to map proofs to elements of $(X, ::, ||, \perp)$?

The notion of **Description**:

Desequentialization (1/5)

Approximation = a map Φ : $HS(MLL) \rightarrow \mathcal{A}$.

$$\frac{}{\Gamma} \qquad \qquad \mapsto \quad \Phi(\Gamma)$$

Desequentialization (2/5)

```
\label{eq:proximation} \begin{split} & \textbf{Approximation} = \text{a map } \Phi : \textit{HS}(\text{MLL}) \to \mathcal{A}. \\ & \textbf{Desequentialization} = \text{lifting an approximation along description } (\mathcal{A}, \alpha, \beta, \gamma); \\ & \overline{\Gamma} & \mapsto & \Phi(\Gamma) \end{split}
```

Desequentialization (3/5)

Approximation = a map $\Phi: HS(MLL) \to \mathcal{H}$. **Desequentialization** = lifting an approximation along description $(\mathcal{H}, \alpha, \beta, \gamma)$;

```
\begin{array}{ccc}
\hline{\Gamma} & & \mapsto & \Phi(\Gamma) \\
\hline{\scriptstyle \pi_1 \parallel} & & \\
\hline{\Gamma, A, B} & & \mapsto & \beta(\Phi(\pi_1)) \\
\hline{\Gamma, A & \nearrow B} & & & \mapsto & \beta(\Phi(\pi_1))
\end{array}
```

Desequentialization (4/5)

Approximation = a map $\Phi: HS(MLL) \to \mathcal{H}$. **Desequentialization** = lifting an approximation along description $(\mathcal{H}, \alpha, \beta, \gamma)$;

Desequentialization (5/5)

Approximation = a map Φ : $HS(MLL) \to \mathcal{H}$. **Desequentialization** = lifting an approximation along description $(\mathcal{A}, \alpha, \beta, \gamma)$;

```
\mapsto \Phi(\Gamma)
                      \mapsto \beta(\Phi(\pi_1))
 Γ, A, B
Γ. A 38 B
\Gamma, A \quad \Delta, B \quad \mapsto \quad \alpha(\Phi(\pi_1), \Phi(\pi_2))
\Gamma, \Delta, A \otimes B
\frac{\Gamma, B, A, \Delta}{P} \mapsto \gamma(\Phi(\pi_1))
```

Realizers in a self operand

Realizers (1/2)

How are constructed the interpretations?

Realizers (2/2)

How are constructed the **interpretations?** Using **dual binary operators**:

$$(\epsilon, \overline{\epsilon})$$

Interpretation Basis (1/8)

 $\textbf{Interpretation basis } \mathcal{B} = \text{a map } [\![\cdot]\!]_{\mathcal{B}} : \mathcal{F}_{\text{MLL}} \to \text{type}(\mathbf{X}).$

Interpretation Basis (2/8)

Interpretation basis $\mathcal{B} = \text{a map } \llbracket \cdot \rrbracket_{\mathcal{B}} : \mathcal{F}_{\text{MLL}} \to \text{type}(X).$ (Duality condition) $\llbracket X^{\perp} \rrbracket_{\mathcal{B}} \subseteq \llbracket X \rrbracket_{\mathcal{B}}^{\perp}.$

Interpretation Basis (3/8)

```
 \begin{array}{c} \textbf{Interpretation basis } \mathcal{B} = \text{a map } \llbracket \cdot \rrbracket_{\mathcal{B}} : \mathcal{F}_{\text{MLL}} \to \text{type}(X). \\ (\text{Duality condition}) \ \llbracket X^{\perp} \rrbracket_{\mathcal{B}} \subseteq \llbracket X \rrbracket_{\mathcal{B}}^{\perp}. \\ \\ \text{Lifting to Hypersequent} \\ & \blacksquare \\ \end{array}
```

Interpretation Basis (4/8)

Interpretation Basis (5/8)

 $[A \otimes B]_{\mathcal{B}} = [A]_{\mathcal{B}} \cdot \varepsilon \cdot [B]_{\mathcal{B}}.$

Interpretation Basis (6/8)

 $[A \otimes B]_{\mathcal{B}} = [A]_{\mathcal{B}} \cdot \varepsilon \cdot [B]_{\mathcal{B}}.$ $[A ? B]_{\mathcal{B}} = [A]_{\mathcal{B}} \cdot \overline{\varepsilon} \cdot [B]_{\mathcal{B}}.$

Interpretation Basis (7/8)

Interpretation Basis (8/8)

 $[A \mid B]_{\mathcal{B}} = [A]_{\mathcal{B}} \mid [B]_{\mathcal{B}}.$ $[A, B]_{\mathcal{B}} = [A]_{\mathcal{B}}, [B]_{\mathcal{B}}.$

```
Interpretation basis \mathcal{B} = a \text{ map } [\![\cdot]\!]_{\mathcal{B}} : \mathcal{F}_{MLL} \to \text{type}(X).
(Duality condition) [X^{\perp}]_{\mathcal{B}} \subseteq [X]_{\mathcal{B}}^{\perp}.
                                                                            Lifting to Hypersequent
                                                                                                                  Using (\epsilon, \overline{\epsilon})
            [A \otimes B]_{\mathcal{B}} = [A]_{\mathcal{B}} \cdot \varepsilon \cdot [B]_{\mathcal{B}}.
            [A ? B]_{\mathcal{B}} = [A]_{\mathcal{B}} \cdot \overline{\mathcal{E}} \cdot [B]_{\mathcal{B}}.
```

Adequacy Formulating Adequacy

Defining Adequacy

A desequentialization Φ on a description $(\mathcal{A}, \alpha, \beta, \gamma)$ is **adequate with** an interpretation basis \mathcal{B} on a pair $(\varepsilon, \overline{\varepsilon})$ iff:

$$\exists \pi: \Gamma \; x = \Phi(\pi) \Rightarrow x \in [\![\Gamma]\!]_{\mathcal{B}}$$

$$x \vdash_{\Phi} \Gamma \Rightarrow x \vDash_{\mathcal{B}} \Gamma.$$

Adequacy Sufficient conditions

Distributive description

A description $(\mathcal{A}, \alpha, \beta, \gamma)$ is **distributive**:

- \blacktriangleright $\forall x, y \ \beta(x :: y) = \beta(x) :: y.$

Compatible description

A description $(\mathcal{A}, \alpha, \beta, \gamma)$ is **compatible** with a dual pair $(\varepsilon, \overline{\varepsilon})$:

- $ightharpoonup \beta \circ \circ$ is included in $\overline{\varepsilon}$.
- $ightharpoonup \alpha$ is included in ε .

Coherent Approximation

An approximation $\Phi: H_{MLL} \to \mathcal{A}$ is **coherent** with an interpretation basis $[\![\cdot]\!]_{\mathcal{B}}$:

$$\Phi(\Gamma) \in \llbracket \Gamma \rrbracket_{\mathcal{B}}$$

Coherent Desequentialization = Desequentialization from a coherent approximation.

Adequacy

Theorem. Given a distributive description $(\mathcal{A}, \alpha, \beta, \gamma)$ compatible with $(\varepsilon, \overline{\varepsilon})$.

Any coherent desequentialization Φ is adequate with any interpretation basis \mathcal{B} .

Completeness

Completeness Distributive rewriting system

Distributive rewriting systems (1/3)

A distributive rewriting system:

Distributive rewriting systems (2/3)

A distributive rewriting system:

The terms

$$t_1, t_2 = x \in VAR \mid t_1 \cdot \alpha \cdot t_2 \mid t_1 \cdot \beta \cdot t_2 \mid t_1 + t_2$$

Distributive rewriting systems (3/3)

A distributive rewriting system:

The terms

$$t_1, t_2 = x \in VAR \mid t_1 \cdot \alpha \cdot t_2 \mid t_1 \cdot \beta \cdot t_2 \mid t_1 + t_2$$

The reduction rule (with closure):

$$a \cdot \alpha \cdot (b \cdot \beta \cdot c) \rightarrow (a \cdot \alpha \cdot b) \cdot \beta \cdot c + (a \cdot \alpha \cdot c) \cdot \beta \cdot b.$$

Rewriting properties (1/3)

What about its rewriting properties?

Rewriting properties (2/3)

What about its rewriting properties? Adding simple equivalence:

$$t[x \leftarrow t_1 + t_2] \equiv t[x \leftarrow t_1] + t[x \leftarrow t_2]$$

Rewriting properties (3/3)

What about its rewriting properties?

Adding simple equivalence:

$$t[x \leftarrow t_1 + t_2] \equiv t[x \leftarrow t_1] + t[x \leftarrow t_2]$$

Distributive rewriting systems are **confluent** and **strongly normalizing**.

NB. Normal forms are stratified: $\sum_{i \in I} \beta_{j \in J} \alpha_{k \in K} \mathbf{x}(i, j, k)$.

Completeness Completeness a la Danos-Regnier Exponential time complexity

Descriptive set of Types (1/5)

 α switches on β iff

$$\mathbf{A} \cdot \alpha \cdot (\mathbf{B} \cdot \beta \cdot \mathbf{C}) = (\mathbf{A} \cdot \alpha \cdot \mathbf{B}) \cdot \beta \cdot \mathbf{C} \cup (\mathbf{A} \cdot \alpha \cdot \mathbf{C}) \cdot \beta \cdot \mathbf{B}$$

Descriptive set of Types (2/5)

 α switches on β iff

$$\mathbf{A} \cdot \alpha \cdot (\mathbf{B} \cdot \beta \cdot \mathbf{C}) = (\mathbf{A} \cdot \alpha \cdot \mathbf{B}) \cdot \beta \cdot \mathbf{C} \cup (\mathbf{A} \cdot \alpha \cdot \mathbf{C}) \cdot \beta \cdot \mathbf{B}$$

A set of types $\mathfrak C$ is **descriptive** whenever:

Descriptive set of Types (3/5)

 α switches on β iff

$$\mathbf{A} \cdot \alpha \cdot (\mathbf{B} \cdot \beta \cdot \mathbf{C}) = (\mathbf{A} \cdot \alpha \cdot \mathbf{B}) \cdot \beta \cdot \mathbf{C} \cup (\mathbf{A} \cdot \alpha \cdot \mathbf{C}) \cdot \beta \cdot \mathbf{B}$$

A set of types $\mathfrak C$ is **descriptive** whenever:

1. Closed under ∘ and ||.

Descriptive set of Types (4/5)

 α switches on β iff

$$\mathbf{A} \cdot \alpha \cdot (\mathbf{B} \cdot \beta \cdot \mathbf{C}) = (\mathbf{A} \cdot \alpha \cdot \mathbf{B}) \cdot \beta \cdot \mathbf{C} \cup (\mathbf{A} \cdot \alpha \cdot \mathbf{C}) \cdot \beta \cdot \mathbf{B}$$

A set of types $\mathfrak C$ is **descriptive** whenever:

- 1. Closed under \circ and \parallel .
- 2. $\forall \mathbf{A}, \mathbf{B} \in \mathfrak{C}, \mathbf{A} \circ \mathbf{B} = (\mathbf{A} \cdot \alpha_{\uparrow} \cdot \mathbf{B})^{\perp}.$

Descriptive set of Types (5/5)

 α switches on β iff

$$\mathbf{A} \cdot \alpha \cdot (\mathbf{B} \cdot \beta \cdot \mathbf{C}) = (\mathbf{A} \cdot \alpha \cdot \mathbf{B}) \cdot \beta \cdot \mathbf{C} \cup (\mathbf{A} \cdot \alpha \cdot \mathbf{C}) \cdot \beta \cdot \mathbf{B}$$

A set of types $\mathfrak C$ is **descriptive** whenever:

- 1. Closed under ∘ and ||.
- 2. $\forall A, B \in \mathfrak{C}, A \circ B = (A \cdot \alpha_{\uparrow} \cdot B)^{\perp}$.
- 3. α_1 switches on \parallel in \mathfrak{C} .

Semantics of DRS (1/4)

$$(\Sigma, \alpha, \beta, +)$$
 a DRS

$$(\mathfrak{C}, \circ, \parallel, \cup)$$

Semantics of DRS (2/4)

Semantics of DRS (3/4)

Semantics of DRS (4/4)

$$t \to t' \quad \Longrightarrow \quad [\![t]\!]_D = [\![t']\!]_D$$

Interpretation Basis and DRS Semantics (1/3)

$$t \to t' \quad \Longrightarrow \quad [\![t]\!]_D = [\![t']\!]_D$$

Interpretation Basis and DRS Semantics (2/3)

$$t \to t' \quad \Longrightarrow \quad [\![t]\!]_D = [\![t']\!]_D$$

Interpretation Basis and DRS Semantics (3/3)

Danos Regnier Tests (1/4)

Danos Regnier Tests (2/4)

$$A \to \bigcup_{i \in I} \circ_{j \in J} ||_{k \in k} a(i, j, k)$$

$$\Rightarrow [A]_{\mathcal{B}} = [\bigcup_{i \in I} \circ_{j \in J} ||_{k \in k} a(i, j, k)]_{\mathcal{B}}$$

Danos Regnier Tests (3/4)

$$A \to \bigcup_{i \in I} \circ_{j \in J} \parallel_{k \in k} a(i, j, k)$$

$$\Rightarrow \llbracket A \rrbracket_{\mathcal{B}} = \llbracket \bigcup_{i \in I} \circ_{j \in J} \parallel_{k \in k} a(i, j, k) \rrbracket_{\mathcal{B}}$$

$$\Leftrightarrow \llbracket A \rrbracket_{\mathcal{B}} = \left(\bigcup_{i \in I} \circ_{j \in J} \parallel_{k \in k} \llbracket a(i, j, k) \rrbracket_{\mathcal{B}} \right)^{\perp \perp}$$

Danos Regnier Tests (4/4)

$$A \to \bigcup_{i \in I} \circ_{j \in J} \parallel_{k \in k} a(i, j, k)$$

$$\Rightarrow \llbracket A \rrbracket_{\mathcal{B}} = \llbracket \bigcup_{i \in I} \circ_{j \in J} \parallel_{k \in k} a(i, j, k) \rrbracket_{\mathcal{B}}$$

$$\Leftrightarrow \llbracket A \rrbracket_{\mathcal{B}} = \left(\bigcup_{i \in I} \circ_{j \in J} \parallel_{k \in k} \llbracket a(i, j, k) \rrbracket_{\mathcal{B}} \right)^{\perp}$$

$$\Leftrightarrow \llbracket A \rrbracket_{\mathcal{B}}^{\perp} = \left(\bigcap_{i \in I} \parallel_{j \in J} \circ_{k \in k} \llbracket a(i, j, k) \rrbracket_{\mathcal{B}} \right)^{\perp}$$

Completeness Parsing Naively $O(n^2)$ time complexity

Parsing (1/3)

Parsing (2/3)

Parsing (3/3)

Implementing Parsing (1/2)

```
(X, ||, ::, \bot) = Induction \{ BASESET = X_0 StableUnder \{ ||, \alpha, \beta \} \}
```

Implementing Parsing (2/2)

```
(X, ||, ::, \bot) = Induction \{ BASESET = X_{\emptyset} StableUnder \{||, \alpha, \beta\} \} Parsing = \alpha(\mathbf{x}) \to \mathbf{z} \quad \text{and} \quad \beta(\mathbf{x}, \mathbf{y}) \to \mathbf{z}.
```

Completeness Parsing and orthogonality O(n) time complexity

Linear Time test (1/7)

Linear time tests in orthogonality models?

Linear Time test (2/7)

Linear time tests in orthogonality models?

Based on unification, parsing has linear—complexity. (Guerrini 2011).

Linear Time test (3/7)

Linear time tests in orthogonality models?

Based on unification, parsing has **linear**—complexity. (Guerrini 2011).

Linear Time test (4/7)

Linear time tests in orthogonality models?

Based on unification, parsing has linear—complexity. (Guerrini 2011).

Ingredients:

Decomposition $x \in X \mapsto x_1 \parallel \cdots \parallel x_n$

Linear Time test (5/7)

Linear time tests in orthogonality models?

Based on unification, parsing has linear—complexity. (Guerrini 2011).

Decomposition
$$x \in X \mapsto x_1 \parallel \cdots \parallel x_n$$

 $\alpha(x) \to_P z \Leftrightarrow x :: P_{\alpha} \in \bot$

Linear Time test (6/7)

Linear time tests in orthogonality models?

Based on unification, parsing has linear—complexity. (Guerrini 2011).

Decomposition
$$x \in X \mapsto x_1 \parallel \cdots \parallel x_n$$

 $\alpha(x) \to_P z \Leftrightarrow x :: P_\alpha \in \bot$
 $\beta(x \parallel y) \to_P z \Leftrightarrow x \parallel y :: P_\beta \in \bot$

Linear Time test (7/7)

Linear time tests in orthogonality models?

Based on unification, parsing has linear—complexity. (Guerrini 2011).

```
Decomposition \mathbf{x} \in \mathbf{X} \mapsto \mathbf{x}_1 \parallel \cdots \parallel \mathbf{x}_n

\alpha(\mathbf{x}) \to_P \mathbf{z} \quad \Leftrightarrow \quad \mathbf{x} :: \mathbf{P}_{\alpha} \in \bot

\beta(\mathbf{x} \parallel \mathbf{y}) \to_P \mathbf{z} \quad \Leftrightarrow \quad \mathbf{x} \parallel \mathbf{y} :: \mathbf{P}_{\beta} \in \bot

Composition for \mathbf{P}_{\alpha} and \mathbf{P}_{\beta}.
```

Completeness Linear Time Tests with nets

Computation – Homogeneous cut elimination

Computation – Non homogeneous cut–elimination

$$\{q_1,\ldots,q_n\}=\{q_1^1,\ldots,q_{n_1}^1\}\uplus\{q_1^2,\ldots,q_{n_2}^2\}$$

Creating Parsing Tests (1/6)

Creating Parsing Tests (2/6)

Creating Parsing Tests (3/6)

Creating Parsing Tests (4/6)

Creating Parsing Tests (5/6)

Creating Parsing Tests (6/6)

Why is it Linear? (1/5)

Why is it Linear? (2/5)

How it works:

1. Disconnections are irreversible w.r.t. cut-elimination.

Why is it Linear? (3/5)

- 1. Disconnections are irreversible w.r.t. cut-elimination.
- 2. Againts P_{α} , P_{β} cycles are **irreversible** w.r.t. cut-elimination.

Why is it Linear? (4/5)

- 1. Disconnections are irreversible w.r.t. cut-elimination.
- 2. Againts P_{α} , P_{β} cycles are **irreversible** w.r.t. cut-elimination.
- 3. First eliminate all reversible cut.

Why is it Linear? (5/5)

- 1. Disconnections are irreversible w.r.t. cut-elimination.
- 2. Againts P_{α}, P_{β} cycles are **irreversible** w.r.t. cut-elimination.
- 3. First eliminate all reversible cut.
- 4. Only (\Im/\maltese) cut remain, they must not create disconnections and so the choice does not matter.

Thank You