Stanislas Exercices

Réduction des endomorphismes Chapitre XI

PSI 2019-2020

- - -

I. Spectres

Indications pour l'exercice 1. Pour montrer que les matrices sont semblables, On pourra utiliser un changement de bases sur les endomorphismes canoniquement associés, ou penser en termes d'opérations élémentaires sur les lignes / colonnes.

Pour les valeurs / sous-espaces propres un simple calcul suffira ! \Box

Indications pour l'exercice 2. Commencer par déterminer le degré des valeurs propres.

On pourra ensuite déterminer la matrice de l'endomorphisme dans $\mathbb{R}_2[X]$ puis les valeurs et vecteurs propres.

Indications pour l'exercice 3.

- 1. Considérer un vecteur propre X et considérer l'indice i_0 pour lequel la coordonnée de X est maximale en valeur absolue.
- **2.** Se rappeler que $Sp(A) = Sp({}^tA)$.

Indications pour l'exercice 4.

- 1. Ne pas oublier de vérifier que T est bien définie.
- **2.** Remarquer que $f(x_0 + n) = \lambda^n f(x_0)$ et choisir un x_0 adéquat.
- **3.** Identifier des vecteurs propres en cherchant des solutions constantes, ou à l'aide de fonctions élémentaires.

Indications pour l'exercice 5.

- 1. Identifier un vecteur propre très simple.
- **2.** Choisir $v \in E_1$ et i_0 tel que $v_{i_0} = \max_{1 \le i \le n} |v_i|$. En exploitant la i_0 -ème ligne de la relation Pv = v, montrer qu'il y a égalité dans l'inégalité triangulaire puis conclure.
- 3. Reprendre la stratégie de la question précédente.

- **4. a)** On pourra normer un vecteur propre.
 - b) Remarquer que, à la question précédente, on utilise la norme infinie.
- c) Montrer que $\sum_{j=1}^{n} p_{i_0,j} (x_j e^{-i\theta} 1) = 0$, prendre la partie réelle de cette relation et remarquer que les termes sont positifs.
 - **d**) Déduire de la question précédente que $\operatorname{Im} x_j = 0$ puis que x = 0

$$e^{i\theta} \begin{pmatrix} 1 \\ = \vdots \\ 1 \end{pmatrix}$$
.

II. Diagonalisation

Indications pour l'exercice 6.

- **1.** On obtient par le calcul que $Sp(A) = \{2, 4, 6\}$. Les sous-espaces propres suivent...
- **2.** Écrire la relation sous forme matricielle puis utiliser les formules de changement de base et la question précédente pour calculer A^n .

Indications pour l'exercice 7. L'ensemble des racines du polynôme caractéristique dépend du corps ainsi que de la valeur de θ . Il suffit d'effectuer des disjonctions de cas.

Indications pour l'exercice 8. En calculant le rang de la matrice, on peut en déduire la dimension puis une base du noyau.

De plus, en recherchant un vecteur propre associé à une valeur propre λ non nulle, on montre que $\lambda(\lambda-1)-(n-1)=0$. On en déduit les valeurs propres ainsi que les sous-espaces propres.

Indications pour l'exercice 9.

- 1. Question de cours.
- ${\bf 2.}$ Travailler sur les colonnes pour montrer que le rang de la matrice vaut 2
- **3.** Commencer par exhiber, grâce à la question précédente, une base de $\operatorname{Ker}(A_n)$.

Chapitre 11 PSI

Remarquer ensuite que $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ est un vecteur propre de A_n .

Pour identifier la dernière des valeurs propres, utiliser la trace.

Indications pour l'exercice 10.

- 1. Montrer que $g = f_{|E}$ est diagonalisable puis compléter une base de diagonalisation de g à l'aide de vecteurs propres de f.
- **2.** Montrer que, sur \mathbb{C} , $\bigoplus_{\lambda \in \mathrm{Sp}(f)} E_{\lambda}(f)$ ne possède pas de supplémentaire stable par f non trivial.
- **3.** Penser aux rotations. □

Indications pour l'exercice 11. Distinguer les cas en fonction de $i \in \operatorname{Sp}(B)$ ou $i \notin \operatorname{Sp}(B)$.

Indications pour l'exercice 12.

- 1. a) C'est le noyau d'une application linéaire bien choisie.
 - b) Écrire le calcul.
- **2. a)** Étudier les coefficients $[MD]_{i,j}$ et $[DM]_{i,j}$ pour montrer que M est diagonale.
- **b)** Une inclusion est triviale. Pour l'autre, parler de dimension et faire intervenir Vandermonde.
- **3. a)** Utiliser les propriétés $AE_{i,j} = E_{i,j}A$ pour en déduire que A est scalaire.
 - **b)** Exhiber une famille libre à deux éléments de C(A).
- **c)** Montrer que $F \cap C(A) \neq \{0\}$ et en déduire que $a_{2,1} = 0$. Travailler de même avec G pour en déduire que A est diagonale, puis scalaire.
 - **d)** Reprendre les résultats montrés aux questions précédentes. \Box

Indications pour l'exercice 13.

1. Utiliser l'inversibilité de A.

Stanislas

- 2. Écrire la définition des vecteurs propres.
- **3.** Utiliser l'inversibilité de f et de q.

- **4.** Montrer que $\operatorname{Sp}(f \circ g) = \operatorname{Sp}(g \circ f)$ puis utiliser les dimensions des sous-espaces propres.
- **5.** Exhiber deux matrices X et Y simples de taille 2.

III. Polynômes annulateurs

Indications pour l'exercice 14.

- 1. Utiliser l'inversibilité pour déterminer un polynôme annulateur de A scindé à racines simples.
- **2.** Montrer que $\mathrm{Sp}(A)$ est inclus dans un ensemble à 2 éléments.
- **3.** On note $n_1 = \dim E_1(A)$ et $n_2 = \dim E_2(A)$. En utilisant la trace et la diagonalisabilité, montrer que $n_2 = 2$ et $n_1 = 4$.
- **4.** Montrer que l'ensemble des polynômes annulateurs est $\{(X-1)(X-2)P, P \in \mathbb{R}[X]\}$.

Indications pour l'exercice 15. Commencer par montrer que A est diagonalisable et déterminer un ensemble simple contenant son spectre. \square

Indications pour l'exercice 16.

- **1.** En utilisant la formule de Taylor polynomiale, montrer que $\mathbb{R}[A]$ = Vect $\{(A aI_n)^k, k \in [0, p-1]\}$.
- **2.** L'étude du spectre de A permet de montrer son inversibilité. La formule du binôme de Newton permet de montrer que $A^{-1} \in \mathbb{R}[A]$.
- **3.** Le théorème de Cayley-Hamilton (par exemple) permet de montrer que $P(A)^{-1} \in \mathbb{R}[P(A)]$. Le résultat s'obtient alors aisément.

Indications pour l'exercice 17. Diagonaliser A dans $\mathcal{M}_n(\mathbb{C})$. Utiliser ensuite que A est à coefficients réels pour montrer que son rang est pair. \square

Indications pour l'exercice 18. Noter $\operatorname{Sp}(M) = \{\lambda_1, \dots, \lambda_p\}$ et, si $\lambda_i \neq 0$, noter $\{\delta_i, -\delta_i\} = \{z \in \mathbb{C} : z^2 = \lambda_i\}$.

(⇒) Montrer que, si $\lambda_i \neq 0$, alors $\operatorname{Ker}(M^2 - \lambda_i I_n) = \operatorname{Ker}(M - \delta_i I_n) \oplus \operatorname{Ker}(M + \delta_i I_n)$. On peut ensuite utiliser un argument de dimensions pour montrer que $\operatorname{Ker}(M) = \operatorname{Ker}(M^2)$.

Chapitre 11 PSI

 (\Leftarrow) Si $0 \notin \operatorname{Sp}(M^2)$, montrer que $\prod_{i=1}^p (X - \delta_i)(X + \delta_i)$ est un polynôme annulateur de M.

Si $\lambda_1 = 0 \in \operatorname{Sp}(M)$, montrer que, pour tout X vecteur, $M\left(\prod_{i=1}^{p}(A^2-\lambda_iI_n)X\right)=0$ et en déduire un polynôme annulateur de M scindé à racines simples.

Indications pour l'exercice 19.

- 1. Remarquer que β est également une valeur propre de tB . Effectuer ensuite le produit matriciel entre un vecteur propre de A et la transposée d'un vecteur propre de B.
- **2.** Montrer par récurrence que $A^kM = M(B + \lambda I_n)^k$ puis conclure.
- 3. Choisir $P = \chi_A$ puis montrer que $\chi_A(B + \lambda I_n)$ n'est pas inversible et que $\operatorname{Sp}(B + \lambda I_n) = \{\beta + \lambda, \beta \in \operatorname{Sp}(B)\}.$

Remarque. Sur \mathbb{R} , on remarque que, en choisissant $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

et
$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
, alors $\mathrm{Sp}_{\mathbb{R}}(A) = \{1\}$, $\mathrm{Sp}_{\mathbb{R}}(B) = \{2\}$ et

$$L \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 0_3$$
. Ainsi, $0 \in \operatorname{Sp}(L)$ et on obtient une contradiction. \square

IV. Trigonalisation

Indications pour l'exercice 20. Commencer par calculer $\varphi(I_2)$, $\varphi(0_2)$ puis, lorsque A est inversible, en exprimer $\varphi(A^{-1})$ en fonction de $\varphi(A)$. En déduire que φ est un invariant de similitude.

Traiter ensuite le cas où A est diagonalisable.

Sinon, trigonaliser A et montrer que A est semblable à $\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$.

Traiter ensuite le cas où
$$\alpha = 0$$
.
Lorsque $\alpha \neq 0$, utiliser l'égalité $\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \beta \alpha^{-1} \\ 0 & \alpha \end{pmatrix}$. \square

Indications pour l'exercice 21. Noter $Sp(A) \cup Sp(B) = \{\lambda_1, \dots, \lambda_n\}$. Utiliser l'égalité des traces et les déterminants de Vandermonde pour montrer que les multiplicités des valeurs propres de A et de B sont égales. Conclure.

Indications pour l'exercice 22.

- 1. Pour H, utiliser la linéarité de la trace. Pour N, on pourra montrer qu'il n'est pas stable par addition.
- **2.** Utiliser la trigonalisabilité pour montrer que $N \subset H$.
- 3. Déterminer une base de H. Remarquer ensuite que, en dimension 2,

$$E_{1,1} - E_{2,2} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \in \text{Vect } N.$$

Indications pour l'exercice 23. Trier les valeurs propres par valeur absolue croissante, puis utiliser la trigonalisabilité de A pour calculer la trace des puissances successives.

V. Avec Python

Indications pour l'exercice 24.

- 1. a) On peut utiliser la fonction randint.
 - **b)** Utiliser la fonction plot.
- **2. a)** On peut utiliser la formule des probabilités totales.
- b) Utiliser numpy pour déterminer les valeurs propres de A puis évaluer ses puissances successives.

Après un simple calcul,

$$\chi_A(\lambda) = \lambda^4 - \frac{\lambda^3}{4} - \frac{\lambda^2}{4} - \frac{\lambda}{4} - \frac{1}{4}$$
$$= (\lambda - 1) \underbrace{\left(\lambda^3 + \frac{3}{4}\lambda^2 + \frac{1}{2}\lambda + \frac{1}{4}\right)}_{Q(\lambda)}$$

De plus, $Q'(\lambda) = 3\lambda^2 + \frac{3}{2}\lambda + \frac{1}{2}$. Le discriminant de Q' vaut $\frac{9}{4} - 6 < 0$. Comme Q est de degré impair, il possède une racine réelle. Comme Q' Chapitre 11 PSI

garde un signe constant, Q est monotone et il possède une unique racine réelle et deux racines complexes conjuguées.

Notons λ_0 la racine réelle et λ , $\overline{\lambda}$ les racines complexes conjuguées.

* D'après les relations coefficients/racines,

$$\lambda_0 \left| \lambda \right|^2 = -\frac{1}{4}$$

Ainsi, $\lambda_0 < 0$.

* Comme Q(-1) = 1 - 3/2 < 0, alors $\lambda_0 > -1$.

* Comme $Q(-1/4) = 2/4^3 + 1/8 > 0$, alors $\lambda_0 < -1/4$. Ainsi, $-1 < \lambda_0 < -1/4$ soit $|\lambda|^2 = -\frac{1}{4\lambda_0} < 1$. Finalement, toutes les racines de Q sont dans]-1,1[.

3. a) On pourra utiliser la fonction position.

b) On pourra calculer une moyenne empirique. Pour la justification, on pourra penser au lemme de Cesaro.