Machine-Level Programming I: Basics

Professor Hugh C. Lauer CS-2011, Machine Organization and Assembly Language

(Slides include copyright materials from *Computer Systems: A Programmer's Perspective*, by Bryant and O'Hallaron, and from *The C Programming Language*, by Kernighan and Ritchie)

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code

Deferred to end of this topic

- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Definitions

- Architecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand or write assembly/machine code.
 - Examples: instruction set specification, registers.
- Microarchitecture: Implementation of the architecture.
 - Examples: cache sizes and core frequency.

Code Forms:

- Machine Code: The byte-level programs that a processor executes
- Assembly Code: A text representation of machine code

Example ISAs:

- Intel: x86, IA32, Itanium, x86-64
- ARM: Used in almost all mobile phones

Assembly/Machine Code View

Programmer-Visible State

- PC: Program counter
 - Address of next instruction
 - Called "RIP" (x86-64)
- Register file
 - Heavily used program data
- Condition codes
 - Store status information about most recent arithmetic or logical operation
 - Used for conditional branching

Memory

- Byte addressable array
- Code and user data
- Stack to support procedures (aka functions)

CPU:- Archaic term for "Processor"

— "Central Processing Unit"

Execution Model for Modern Processors

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

```
sumstore:
   pushq %rbx //save on stack
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx //restore from
   ret // stack
```

Obtain (on course virtual machine) with command

```
gcc -Og -S sum.c
```

Produces file sum.s

Warning: May get very different results on other systems (CCC Linux, Mac OS-X, ...) due to different versions of gcc and different compiler settings.

Assembly Characteristics: Data Types

- "Integer" data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)
- Floating point data of 4, 8, or 10 bytes
- Code: Byte sequences encoding series of instructions
- No aggregate types such as arrays or structures
 - Just contiguously allocated bytes in memory

Assembly Characteristics: Operations

- Transfer data between memory and register
 - Load data from memory into register
 - Store register data into memory
- Perform arithmetic function on register or memory data
- Transfer control
 - Unconditional jumps to/from <u>procedures</u>
 - Conditional branches

Another archaic term:—
"procedure" in the
textbook (and these slides)
means "function" in
modern terminology!

Object Code

Code for sumstore

0x0400595:

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

- Total of 14 bytes
- Each instruction1, 3, or 5 bytes
- Starts at address 0x0400595

Assembler

- Translates .s into .o
- Binary encoding of each instruction
- Nearly-complete image of executable code
- Missing linkages between code in different files

Linker

- Resolves references between files
- Combines with static run-time libraries
 - E.g., code for malloc, printf
- Some libraries are dynamically linked
 - Linking occurs when program begins execution

Machine Instruction Example

$$*dest = t;$$

■ C Code

Store value t to memory designated by dest

movq %rax, (%rbx)

Assembly

- Move 8-byte value to memory
 - Quad words in x86-64 parlance
- Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

0x40059e: 48 89 03

Object Code

- 3-byte instruction
- Stored at address 0x40059e

Disassembling Object Code

Disassembled

```
0000000000400595 <sumstore>:
 400595:
          53
                            push
                                   %rbx
 400596: 48 89 d3
                                   %rdx,%rbx
                            mov
 400599: e8 f2 ff ff ff
                            callq 400590 <plus>
 40059e: 48 89 03
                                   %rax, (%rbx)
                            mov
 4005a1: 5b
                                   %rbx
                            pop
 4005a2: c3
                            reta
```

Disassembler

objdump -d sum

- Useful tool for examining object code
- Analyzes bit pattern of series of instructions
- Produces approximate rendition of assembly code
- Can dump either a.out file (complete executable) or .o file (single module)

Alternate Disassembly

Object

Disassembled

```
0 \times 0400595:
    0 \times 53
    0x48
    0x89
    0xd3
    0xe8
    0xf2
    0xff
    0xff
    0xff
    0x48
    0x89
    0 \times 03
    0x5b
    0xc3
```

Within gdb Debugger

gdb sum
disassemble sumstore

- Disassemble procedurex/14xb sumstore
- Examine the 14 bytes starting at sumstore

What Can be Disassembled?

```
% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386
No symbols in "WINWORD.EXE".
Disassembly of section .text:
30001000 <.text>:
30001000:
30001001:
               Reverse engineering forbidden by
30001003:
             Microsoft End User License Agreement
30001005:
3000100a:
```

- Anything that can be interpreted as executable code
- Disassembler examines bytes and reconstructs assembly source

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Reading Assignment: §3.4

x86-64 Integer Registers

%rax	%eax	%r8	%r8d
%rbx	%ebx	%r9	%r9d
%rcx	%есх	%r10	%r10d
%rdx	%edx	%r11	%r11d
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	%r14	%r14d
%rbp	%ebp	%r15	%r15d

Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

Some History: IA32 Registers

Origin (mostly obsolete)

accumulate

counter

data

base

source index

destination index

stack pointer base pointer

Machine-L (backwards compatibility)

Moving Data

- Moving Data movq Source, Dest:
- Operand Types
 - Immediate: Constant integer data
 - Example: \$0x400, \$-533
 - Like C constant, but prefixed with '\$'
 - Encoded with 1, 2, or 4 bytes
 - *Register:* One of 16 integer registers
 - Example: %rax, %r13
 - But %rsp reserved for special use
 - Others have special uses for particular instructions

- %rax %rcx
- %rdx
- %rbx
- %rsi
- %rdi
- %rsp
- %rbp
- %rN
- Memory: 8 consecutive bytes of memory at address given by register
 - Simplest example: (%rax)
 - Various other "address modes"

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address
 - Aha! Pointer dereferencing in C

```
movq (%rcx),%rax
```

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

movq 8(%rbp),%rdx

Example of Simple Addressing Modes

```
void swap
    (long *xp, long *yp)
{
    long t0 = *xp;
    long t1 = *yp;
    *xp = t1;
    *yp = t0;
}
```

Understanding Swap()

Memory

```
void swap
    (long *xp, long *yp)
{
    long t0 = *xp;
    long t1 = *yp;
    *xp = t1;
    *yp = t0;
}
```


Register	Value
%rdi	хр
%rsi	ур
%rax	t0
%rdx	t1

```
swap:
```

```
movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret
```

Understanding Swap()

Registers

Memory

swap:

```
movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret
```

Understanding Swap()

swap:

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```

Understanding Swap()


```
swap:
```

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```

Understanding Swap()


```
swap:
```

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```

Understanding Swap()


```
swap:
```

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address
 - Aha! Pointer dereferencing in C

```
movq (%rcx),%rax
```

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

movq 8(%rbp),%rdx

Complete Memory Addressing Modes

Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

■ D: Constant "displacement" 1, 2, or 4 bytes

Rb: Base register: Any of 16 integer registers

■ Ri: Index register: Any, except for %rsp

• S: Scale: 1, 2, 4, or 8 (*why these numbers?*)

■ Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8 (%rdx)	0xf000 + 0x8	
(%rdx,%rcx)	0xf000 + 0x100	
(%rdx,%rcx,4)	0xf000 + 4*0x100	
0x80(,%rdx,2)	2*0xf000 + 0x80	

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8 (%rdx)	0xf000 + 0x8	0xf008
(%rdx,%rcx)	0xf000 + 0x100	
(%rdx,%rcx,4)	0xf000 + 4*0x100	
0x80(,%rdx,2)	2*0xf000 + 0x80	

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8 (%rdx)	0xf000 + 0x8	0xf008
(%rdx,%rcx)	0xf000 + 0x100	0xf100
(%rdx,%rcx,4)	0xf000 + 4*0x100	
0x80(,%rdx,2)	2*0xf000 + 0x80	

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8(%rdx)	0xf000 + 0x8	0xf008
(%rdx,%rcx)	0xf000 + 0x100	0xf100
(%rdx,%rcx,4)	0xf000 + 4*0x100	0xf400
0x80(,%rdx,2)	2*0xf000 + 0x80	

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8(%rdx)	0xf000 + 0x8	0xf008
(%rdx,%rcx)	0xf000 + 0x100	0xf100
(%rdx,%rcx,4)	0xf000 + 4*0x100	0xf400
0x80(,%rdx,2)	2*0xf000 + 0x80	0x1e080

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Address Computation Instruction

Reading Assignment: §3.5

35

■ leaq Src, Dst

- Src is address mode expression
- Set Dst to address denoted by expression

Uses

- Computing addresses without a memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions of the form x + k*y
 - k = 1, 2, 4, or 8

```
long m12(long x)
{
   return x*12;
}
```

Converted to ASM by compiler:

```
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2</pre>
```

Some Arithmetic Operations

■ Two Operand Instructions:

```
Format
             Computation
             Src,Dest Dest = Dest + Src
  addq
  subq
             Src,Dest Dest = Dest – Src
  imulq Src,Dest Dest = Dest * Src
  salq
             Src, Dest Dest = Dest << Src Also called shlq
             Src,Dest Dest = Dest >> Src Arithmetic
  sarq
            Src, Dest Dest = Dest >> Src Logical
  shrq
             Src, Dest Dest - Dest - Src
  xorq
  andq
             Src, Dest Dest = Dest & Src
             Src, Dest Dest | Src
  orq
```

- Watch out for argument order!
- No distinction between signed and unsigned int (why?)

Some Arithmetic Operations

One Operand Instructions

```
incqDestDest = Dest + 1decqDestDest = Dest - 1negqDestDest = -DestnotqDestDest = ^Dest
```

See book for more instructions

38

Arithmetic Expression Example

```
long arith
(long x, long y, long z)
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
```

```
arith:
  leaq (%rdi,%rsi), %rax
  addq %rdx, %rax
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx
  leaq 4(%rdi,%rdx), %rcx
  imulq %rcx, %rax
  ret
```

Interesting Instructions

- leaq: address computation
- salq: shift
- imulq: multiplication
 - But, only used once

39

Understanding Arithmetic Expression Example

```
long arith
(long x, long y, long z)
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + \hat{t}4;
  long rval = t2 * t5;
  return rval;
```

Where is the constant "48" in machine code?

```
arith:
  leaq (%rdi,%rsi), %rax # t1
  addq %rdx, %rax # t2
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx # t4
  leaq 4(%rdi,%rdx), %rcx # t5
  imulq %rcx, %rax # rval
  ret
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z
%rax	t1, t2, rval
%rdx	t4
%rcx	t5

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Intel x86 Processors

Reading Assignment: §3.1

Dominate laptop/desktop/server market

Evolutionary design

- Backwards compatible up until 8086, introduced in 1978
- Added more features as time goes on

Complex instruction set computer (CISC)

- Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
- Hard to match performance of Reduced Instruction Set Computers (RISC)
- But, Intel has done just that!
 - In terms of speed. Less so for low power.

Intel x86 Evolution: Milestones

Name	Date	Transistors	MHz	
8086	1978	29K	5-10	
First 16-bit Intel processor. Basis for IBM PC & DOS				
1MB add	ress space			
386	1985	275K	16-33	
First 32 bit Intel processor, referred to as IA32				
Added "flat addressing", capable of running Unix				
■ Pentium 4	E 2004	125M	2800-3800	
First 64-bit Intel x86 processor, referred to as x86-64				
■ Core 2	2006	291M	1060-3500	
First multi-core Intel processor				
■ Core i7	2008	731M	1700-3900	
Four cores (most modern desktop PCs)				

Intel x86 Processors, cont.

■ Machine Evolution

386	1985	0.3M
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
PentiumPro	1995	6.5M
Pentium III	1999	8.2M
Pentium 4	2001	42M
■ Core 2 Duo	2006	291M
Core i7	2008	731M

Added Features

- Instructions to support multimedia operations
- Instructions to enable more efficient conditional operations
- Transition from 32 bits to 64 bits
- More cores

2015 State of the Art

Core i7 Broadwell 2015

Desktop Model

- 4 cores
- Integrated graphics
- 3.3-3.8 GHz
- **65W**

Server Model

- 8 cores
- Integrated I/O
- **2-2.6** GHz
- **45W**

Intel's 64-Bit History

- 2001: Intel Attempts Radical Shift from IA32 to IA64
 - Totally different architecture (Itanium)
 - Executes IA32 code only as legacy
 - Performance disappointing
- 2003: AMD Steps in with Evolutionary Solution
 - x86-64 (now called "AMD64")
- Intel Felt Obligated to Focus on IA64
 - Hard to admit mistake or that AMD is better

x86 Clones: Advanced Micro Devices (AMD)

Historically

- AMD has followed just behind Intel
- A little bit slower, a lot cheaper

■ Then

- Recruited top circuit designers from Digital Equipment Corp.
 and other downward trending companies
- Built Opteron: tough competitor to Pentium 4
- Developed x86-64, their own extension to 64 bits

Recent Years

- Intel got its act together
 - Leads the world in semiconductor technology
- AMD has fallen behind
 - Relies on external semiconductor manufacturer

Intel's 64-Bit History

- 2001: Intel Attempts Radical Shift from IA32 to IA64
 - Totally different architecture (Itanium)
 - Executes IA32 code only as legacy
 - Performance disappointing
- 2003: AMD Steps in with Evolutionary Solution
 - x86-64 (now called "AMD64")
- Intel Felt Obligated to Focus on IA64
 - Hard to admit mistake or that AMD is better
- 2004: Intel Announces EM64T extension to IA32
 - Extended Memory 64-bit Technology
 - Almost identical to x86-64!
- All but low-end x86 processors support x86-64
 - But, lots of code still runs in 32-bit mode

Our Coverage

■ IA32

- The traditional x86
- For CS-2011: RIP, D-Term 2016

■ x86-64

- The standard
- CS-2011> gcc hello.c
- CS-2011> gcc -m64 hello.c //same code!

Presentation

- Book covers x86-64
- Web aside on IA32
- We will only cover x86-64

Machine Programming I: Summary

History of Intel processors and architectures

Evolutionary design leads to many quirks and artifacts

C, assembly, machine code

- New forms of visible state: program counter, registers, ...
- Compiler must transform statements, expressions, procedures into low-level instruction sequences

Assembly Basics: Registers, operands, move

 The x86-64 move instructions cover wide range of data movement forms

Arithmetic

 C compiler will figure out different instruction combinations to carry out computation

Questions?