Matemáticas para Ciencias e Ingeniería I

Universidad Santo Tomás Facultad de Ingeniería

Departamento de Ingeniería

2025

Índice general

P	Presentación				
1	Lóg	ica y Polinomios			
	1.1	Lógica proposicional			
	1.2	Tablas de verdad			
	1.3	Álgebra Booleana			
	1.4	Funciones Proposicionales			

Presentación

Este apunte busca ser una guía esencial y concisa para el curso de primer año $Matemáticas\ para\ Ciencias\ e\ Ingeniería\ I$ que comparten diversas carreras en la Universidad Santo Tomás.

Incluye el contenido en pocas palabras, incluyendo ejemplos y ejercicios propuestos. En versiones posteriores se pretende agregar:

- I) Ejercicios resueltos, con mayor complejidad que los ejemplos básicos del contenido
- II) Agregar un solucionario para los ejercicios
- III) Añadir una sección o subsección en cada capitulo con ideas o problemas interesantes para profundizar
- IV) Añadir una bibliografía

Matemáticas para Ciencias e Ingeniería © 2025 by Dr. José Alejandro Aburto is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0

Unidad 1

Lógica y Polinomios

1.1. Lógica proposicional

Comencemos con una definición fundamental. Queremos formalizar el concepto de *proposición*, las cuales trabajaremos usualmente como incógnitas y operaremos con operaciones binarias (que requieren dos) semejantes a la suma o al producto usuales.

Definición 1.1 Proposición

Una proposición es una expresión que puede poseer solo uno de dos valores: verdadero ó falso.

Podemos comenzar pensando en qué no es una proposición, y hay muchísimos ejemplo: todas las preguntas no son proposiciones. Primero tenemos proposiciones en el lenguaje cotidiano, y también expresiones matemáticas.

Ejemplo 1.1

- 1. Todos los alumnos de la UST deben sacar 5,5 o más para eximirse.
- 2. El número 5 es par.
- 3. La ecuación $x^2 + x + 1$ no tiene solución en los números reales.
- 4. Todos los gatos son grises.

Tendremos tres operaciones:

- La conjunción, «y», que denotaremos por \land
- La disyunción, «ó», que denotaremos por ∨
- La negación, «no», que denotaremos por ¬

Observación

Hay 3 notaciones para la negación, por ejemplo:

$$\neg p = \sim p = \overline{p}$$

1.2. Tablas de verdad

Como las proposiciones solo pueden tener dos valores: **verdadero** ó **falso**, podemos describir los resultados de las operaciones al usarlas en una tabla. Este tipo de tabla les llamaremos **tablas de verdad**. Las siguientes tablas son por definición:

p	q	$p \wedge q$
\overline{V}	V	V
V	F	F
F	V	F
F	F	F

(a) Conjunción

p	q	$p\vee q$
V	V	V
V	F	V
F	V	V
F	F	F

(b) Disyunción

$$egin{array}{ccc} p & \overline{p} \ V & F \ F & V \ \end{array}$$

(c) Negación

Observación

Las disyunción no es exclusiva, es decir, si decimos «p ó q» pueden ocurrir ambas a la vez. Hay que prestar atención a esto al principio ya que en el lenguaje cotidiano suele ser exclusivo, o sea, solemos elegir solo uno de los dos.

Podemos utilizar las tablas de verdad para determinar los valores posibles de una proposición compuesta, es decir, una proposición construida con estos operadores usando otras proposiciones. Por ejemplo:

Ejemplo 1.2

Consideremos la proposición compuesta: $(p \lor q) \land (\overline{p} \lor \overline{q})$. Sería difícil desarrollarlo en solo un paso, por lo que agregaremos columnas a la tabla de manera que nos ayude a calcular el resultado, poniendo partes más simples que forman la proposición compuesta que nos interesa:

p	q	$p \lor q$	$\overline{p} \vee \overline{q}$
V	V	V	F
V	F	V	V
F	V	V	V
F	F	F	V

Ahora que ya hemos calculado estas proposiciones más simples, podemos calcular los valores posibles de la proposición compuesta inicial:

p	q	$p \vee q$	$\overline{p} \vee \overline{q}$	$(p\vee q)\wedge(\overline{p}\vee\overline{q})$
\overline{V}	V	V	F	
V	F	V	V	
F	V	V	V	
F	F	F	V	

Además, tenemos otro operador que aparece usualmente en matemáticas, por ejemplo en cada resultado. Solemos tener una hipótesis que es aquello que suponemos como cierto y una consecuencia de esos resultados. Podemos pensar en el teorema de Pitágoras como ejemplo, partimos de un triángulo rectángulo en el plano, y como consecuencia obtenemos una ecuación que satisfacen sus lados.

Definición 1.2 Implica

Definimos el conectivo (u operador) **implica** (o **entonces**) como se indica en la siguiente tabla:

p	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Notemos que si completamos la siguiente tabla de verdad: Las dos últimas columnas tienen los mismos valores de verdad pero no son la misma proposición. Por ejemplo, «dos es un número par» y «5 es un número primo» tienen el mismo valor de verdad pero no son la misma proposición. Por ello, son equivalentes de cierta forma pero no iguales. Esto motiva usar un símbolo diferente:

p	q	$p \Rightarrow q$	$\overline{p} \lor q$
V	V	V	V
V	F	F	F
F	V	V	V
F	F	V	V

Cuadro 1.2: Primera equivalencia lógica

Definición 1.3

Equivalencia lógica

Cuando dos proposiciones (compuestas) R y T poseen los mismos valores (en el mismo orden) en la tabla de verdad, diremos que son **equivalentes** y lo denotaremos por:

$$R \equiv T$$

Esto es una relación como equivalencia al igual que la igualdad cuando trabajamos los números reales por dar un ejemplo.

1.3. Álgebra Booleana

Ahora que tenemos un sentido de «igualdad», quisieramos poder desarrollar expresiones como en el álgebra habitual. A esta operatoria y sus propieades les llamamos **Álgebra Booleana**.

Tenemos varias propiedades que nos serán de utilidad y enlistamos ahora:

Teorema 1.1	Propiedades del álgebra booleana
I. Conmutatividad	$p \wedge q \equiv q \wedge p \qquad p \vee q \equiv q \vee q$
II.	
III.	
IV.	

Esto nos permite trabajar con proposiciones compuestas de una manera más convienente muchas veces.

Ejemplo 1.3

Se tienen 3 proposiciones: p, q, r. Sabemos que $p \lor q \equiv r \land q$, queremos desarrollar y simplificar la siguiente proposición compuesta: $[(p \land q) \lor r] \lor \overline{r}$. Procedemos a desarrollar utilizando las propiedades anteriores:

$$\begin{split} [(p \lor q) \land r] \lor \overline{r} &\equiv [(r \land q) \land r] \lor \overline{r} \\ &\equiv [(q \land r) \land r] \lor \overline{r} \\ &\equiv [(q \land (r \land r)] \lor \overline{r} \\ &\equiv [q \land r] \lor \overline{r} \\ &\equiv (q \lor \overline{r}) \land (r \lor \overline{r}) \\ &\equiv q \lor \overline{r}. \end{split}$$

Aunque en general podríamos obtener un resultado solo en incógnitas, a veces podremos hallar el valor.

Ejemplo 1.4

Tenemos que

$$(p \wedge q) \vee (p \Rightarrow \overline{q}) \equiv$$

Ya sea con álgebra booleana o con las tablas de verdad, a veces ocurrirá que sin importar los casos una proposición compuesta sea verdadera, falsa o con un valor indeterminado. Esto tiene un nombre definido como sigue:

Definición 1.4

Tautología - Contingencia - Contradicción

Si una proposición compuesta da como resultado

- verdadero, le llamaremos Tautología
- falso, le llamaremos Contradicción
- indeterminado, le llamaremos Contingencia

Observación

El que una contingencia tenga un valor indeterminado significa que depende de los valores de p,q,r,\ldots

1.4. Funciones Proposicionales