因此

$$\lim_{k\to\infty}\int_E |f_k-f|=0.$$

h

定理 4.5.6 (依测度 DCT) 教材第二版 p183 定理 4.15

积分的进一步性质

定理 4.5.7 设 f 在 \mathbb{R}^n 上可积. 那么 $\forall \varepsilon > 0$,

(1) 存在有限测度集 B(可取为球体) 使得

$$\int_{B^c} |f| \leqslant \varepsilon.$$

(2) (绝对连续性) 存在 $\delta > 0$,

$$\int_{E} |f| \leqslant \varepsilon, \ \forall E, \ m(E) < \delta.$$

(1) 不妨设 f ≥ 0, 否则考察 |f|. 令

$$f_{N}(x) = f(x) \chi_{B(0,N)}(x).$$

显然 $f_N(x) \geqslant 0, f_N(x) \leqslant f_{N+1}(x)$ 且

$$f_N(x) \to f(x), \ \forall x.$$

由 MCT,

$$\int f_N \to \int f$$
.

因此 $\forall \varepsilon > 0$, 当 N 充分大时

$$\int_{(B(0,N))^c} f = \int (f - f_N) \leqslant \varepsilon.$$

(2) 同上, 不妨设 $f \ge 0$. 令

$$f_N(x) = f(x) \chi_{E_N}(x) ,$$

其中

$$E_N = \{x : f(x) \leqslant N\}.$$

显然 $f_N(x) \geqslant 0, f_N(x) \leqslant f_{N+1}(x)$ 且

$$f_N(x) \to f(x), \ \forall x.$$

 $\forall \varepsilon > 0$, 由 MCT, 存在 N 充分大满足

$$0 \leqslant \int (f - f_N) \leqslant \frac{\varepsilon}{2}.$$

那么 $\forall E$, 取 $\delta < \varepsilon / (2N)$, 当 $m(E) < \delta$ 就有

$$\int_{E} f = \int_{E} (f - f_{N}) + \int_{E} f_{N}$$

$$\leq \int_{E} (f - f_{N}) + \int_{E} f_{N}$$

$$\leq \frac{\varepsilon}{2} + Nm(E)$$

$$\leq \varepsilon.$$

lh

下面考察变量的平移变换下积分的不变性质. 任意函数 f 的平移定义为

$$\tau_h f(x) = f(x+h), \ \forall x, \ h \in \mathbb{R}^n.$$

定理 4.5.8 (积分变量的平移变换) 设 $f \in L^1(\mathbb{R}^n)$, 那么 $\forall h \in \mathbb{R}^n$, $\tau_h f \in L^1(\mathbb{R}^n)$, 且

$$\int au_h f = \int f$$
.

■ 1. 若 E 为可测集, $f = \chi_{E}$. 显然

$$\tau_h \chi_E(x) = \chi_{E_h}(x), \forall x \in \mathbb{R}^n,$$

其中

$$E_h = \{x + h : x \in E\}.$$

由于

$$m(E_h) = m(E)$$
.

因此

$$\int au_h f = \int f$$
.

- 2. 利用积分的线性性质, 结论对简单函数成立.
- 3. 若 f 为非负可测函数, 那么存在简单函数 $\{\phi_k\}$ 使得 $\forall k$, $\phi_k \leqslant \phi_{k+1}, 0 \leqslant \phi_k \leqslant f$,

$$\phi_k \to f, \ \forall x.$$

容易看出 $\forall k, \tau_h \phi_k \leqslant \tau_h \phi_{k+1}, 0 \leqslant \tau_h \phi_k \leqslant \tau_h f$,

$$\tau_h \phi_k \to \tau_h f, \ \forall x.$$

由上一步

$$\int au_h oldsymbol{\phi}_k = \int oldsymbol{\phi}_k.$$

利用 MCT 得到

$$\int au_h f = \int f$$
.

4. 若 $f \in L^1(\mathbb{R}^n)$, 那么

$$\int au_h f^+ = \int f^+, \ \int au_h f^- = \int f^-.$$

因此 $\tau_h f \in L^1(\mathbb{R}^n)$,

$$\int \tau_h f = \int f$$
.

例 4.5.4 (逐项积分) 教材第二版 p186 推论 4.16

例 4.5.5 (积分下求导) 教材第二版 p187 定理 4.17

4.6 连续函数与可积函数

记号: $C_c(\mathbb{R}^n)$ 表示 \mathbb{R}^n 上的紧支集连续函数全体

定理 4.6.1 设 $f \in L^1(\mathbb{R}^n)$, 那么 $\forall \varepsilon > 0$, 存在 $\phi \in C_c(\mathbb{R}^n)$ 使得

$$\int |f(x) - \phi(x)| \, dx < \varepsilon.$$

令

$$f_N(x) = f(x) \chi_{E_N}(x) ,$$

其中

$$E_N = \{x : |x| \le N, |f(x)| \le N\}.$$

那么

$$|f_N(x)| \leq |f(x)|, f_N(x) \to f(x), \forall x \in \mathbb{R}^n.$$

根据 DCT, 当 N > 0 充分大,

$$\int |f_N(x) - f(x)| \, dx < \frac{\varepsilon}{2}.$$

由 Lusin 定理, 存在闭集 $F_{\varepsilon} \subset E_N$ 使得 f_N 在 F_{ε} 上连续,

$$m(E_N \backslash F_{\varepsilon}) < \frac{\varepsilon}{8N}.$$

取包含 E_N 的开集 G_{ε} 满足

$$m\left(G_{\varepsilon}\backslash E_{N}\right)<rac{\varepsilon}{8N},$$

那么 $f_N(x)$ 是闭集 $F_\varepsilon \cup G_\varepsilon^c$ 上的连续函数. 运用 Tietze 延拓定理, 存在 \mathbb{R}^n 上的连续函数 ϕ 使得

$$f_N(x) = \phi(x), \ \forall x \in F_{\varepsilon} \cup G_{\varepsilon}^c.$$

并且 $|\phi(x)| \leq N, \forall x \in \mathbb{R}^n$. 显然 $\phi \in C_c(\mathbb{R}^n)$. 利用上述估计

$$\int |f(x) - \phi(x)| dx$$

$$\leq \int |f_N(x) - f(x)| dx + \int |f_N(x) - \phi(x)| dx$$

$$= \int |f_N(x) - f(x)| dx + \int_{G_{\varepsilon} \setminus F_{\varepsilon}} |f_N(x) - \phi(x)| dx$$

$$\leq \frac{\varepsilon}{2} + \int_{G_{\varepsilon} \setminus F_{\varepsilon}} |f_N(x) - \phi(x)| dx$$

$$\leqslant \frac{\varepsilon}{2} + 2Nm\left(G_{\varepsilon}\backslash F_{\varepsilon}\right) \leqslant \varepsilon.$$

lh

注 4.6.1 从证明可以看出, 若 $f \in L^1(\mathbb{R}^n)$ 是有界的, 即 $\forall x$, $|f(x)| \leq M$, 那么 $\phi \in C_c(\mathbb{R}^n)$ 也满足 $\forall x$, $|\phi(x)| \leq M$.

推论 4.6.1 设 $f \in L^1(\mathbb{R}^n)$. 那么存在 $\phi_k \in C_c(\mathbb{R}^n)$ 使得 (1)

$$\lim_{k\to\infty}\int\left|f(x)-\phi_{k}\left(x\right)\right|dx=0.$$

(2)

$$\phi_k(x) \to f(x)$$
, a.e. x .

■ (1) $\forall k$, 存在 $\psi_k \in C_c(\mathbb{R}^n)$,

$$\int \left| f(x) - \psi_k(x) \right| dx < \frac{1}{k}.$$

(2) 由 Chebychev 不等式, ψ_k 依测度收敛于 f, 因此存在子列几乎处处收敛于 f. 将这一子列记为 ϕ_k 即可.

推论 4.6.2 设 $f \in L^1(\mathbb{R}^n)$. 若

$$\int f(x) \phi(x) dx, \forall \phi \in C_c(\mathbb{R}^n).$$

那么 f = 0, a.e. x.

■ 利用定理 4.5.4, 只要证明, \forall 可测集 E,

$$\int_{E} f = 0.$$

1. 若 $m(E)<\infty$. 那么 $\chi_E(x)\in L^1(\mathbb{R}^n)$. 因此存在 $\phi_k\in C_C(\mathbb{R}^n)$ 使得

$$\phi_k(x) \to \chi_E(x)$$
, a.e. x.

且(见注 4.6.1)

$$|\phi_k(x)| \leq 1, \ \forall x.$$

根据 DCT,

$$\int_{E} f(x) dx = \int f(x) \chi_{E}(x) dx = \lim_{k \to \infty} \int f(x) \phi_{k}(x) dx = 0.$$

2. 令

$$E_{N}=E\cap B\left(0,N\right) .$$

由前一步可知, $\forall N > 0$

$$\int_{E_N} f(x) \, dx = 0.$$

根据 DCT.

$$\int_{E} f(x) dx = \lim_{N \to \infty} \int_{E_{N}} f(x) dx = 0.$$

定理 4.6.2 设 $f \in L^1(\mathbb{R}^n)$. 那么

$$\lim_{h\to 0}\int |\tau_h f(x)-f(x)|\,dx=0.$$

■ $\forall \varepsilon > 0$, 存在 $\phi \in C_c(\mathbb{R}^n)$ 使得

$$\int |f-\phi|<\frac{\varepsilon}{4}.$$

利用积分变量的平移变换,

$$\int | au_h f - au_h \phi| = \int |f - \phi| \ .$$

根据 DCT,

$$\lim_{h o 0}\int | au_h \phi - oldsymbol{\phi}| = 0.$$

因此当 h > 0 充分小,

$$\int | au_h f - f| \leqslant \int | au_h f - au_h \phi| + \int | au_h \phi - \phi| + \int |\phi - f|$$

$$= 2 \int |\phi - f| + \int | au_h \phi - \phi|$$

$$\leqslant \varepsilon.$$

