

110

GIFT OF
BERN DIBNER

*R*educe $17\frac{5}{8}$ to a Decimal?

*R*educe $4\frac{15}{16}$ to a Decimal?

$$17\frac{5}{8}$$

$$.85$$

$$.039$$

$$\underline{.889} \text{ Answer}$$

$$4\frac{15}{16}$$

$$4.75$$

$$.017$$

$$\underline{4.767} \text{ Answer}$$

*R*educe $7\frac{13}{16}$ to a Decimal?

$$7.65$$

$$.047$$

$$\underline{7.697} \text{ Answer}$$

3

To find the Value of a Decimal in the known
Parts of Money Weight Time Measure &c.

Rule

M

Multiply the given Decimal by the Num-
ber of Parts of the next inferior Denomination & from the
product prick off towards the right hand so many places
as are in the given Decimal. Then multiply the figures
pricked off by the Number of Parts of the next inferior De-
nomination & prick off so many places as before. And so
continue the work till you have brought it to the low-
est Denomination required.

What's the Value of
.75 of a Pound?

$$\begin{array}{r} \text{£} \\ .75 \\ - \\ 20 \\ \hline \text{£} \ 15.00 \end{array}$$

What's the Value
of .862 of a Pound

$$\begin{array}{r} \text{£} \\ .862 \\ - \\ 20 \\ \hline \text{£} \ 17.240 \\ - \\ 12 \\ \hline \text{d} \ 2.880 \\ - \\ 4 \\ \hline \text{q} \ 3.520 \end{array}$$

What's the Value of
.9647 of a Pound?

$$\begin{array}{r} \text{£} \\ .9647 \\ - \\ 20 \\ \hline \text{£} \ 19.2940 \\ - \\ 12 \\ \hline \text{d} \ 3.5200 \\ - \\ 4 \\ \hline \text{q} \ 2.1120 \end{array}$$

What's the Value
of .4768 of a lb Troy?

$$\begin{array}{r} \text{lb} \\ .4768 \\ - \\ 12 \\ \hline \text{oz} \ 3.7216 \\ - \\ 20 \\ \hline \text{Pen: } \text{Wt} \ 14.4320 \\ - \\ 24 \\ \hline \text{lb} \ 17280 \\ - \\ 8640 \\ \hline \text{Gr. } \underline{10.3680} \end{array}$$

P

P

What's the Value of
of a Ton Averdupoise Weight?

Ton

.7691

20

£ 15.3820

4

2^r 1.5280

28

42.240

10

10.560

£ 14.7040

16

03 12.5440

16

03 8.7040

16

16 { 4 8.7040

16 { 4 2.1760

16 { 4 12.5440

16 { 4 3.1360

28 { 4 14.7040

28 { 7 3.6960

14 1.5280

2/0 15.3820

.7691

£

.5867

4

2^r 2.3468

28

27.744

16

6.936

£ 9.7104

16

03 14.3664

16

03 5.8624

16 { 4 5.8624

16 { 4 1.4658

16 { 4 11.3664

16 { 4 2.8416

28 { 4 9.7104

28 { 7 2.4276

4 2.3468

.5867

E

Compendious Way to find the ^{the} Va-
of the Decimal of a Pound Sterling by Inspection.

D

Double the first Figure or place of primes
& set it for Shillings if the next figure of place of Seconds be
or more than 5 for thos add 1 to the former Shillings Then fore-
very Unite in the 2.^d place suppose 'em as tens set before the 3^rd
place reckon these as far: but if they make above 13 abate 1
or 2 if above 38 & these farthings when reduced to pence
must be added to the Shilling before found.

W

What's the Value of .471 of a £?

Answer $\frac{4}{5}, \frac{9}{5}$

$$\begin{array}{r} .45 \\ .021 \\ \hline .471 \text{ Proof} \end{array}$$

W

What's the Value
of .278 of a Pound?

Answer $\frac{2}{5}, \frac{6}{5}, \frac{3}{4}$

$$\begin{array}{r} .25 \\ .028 \\ \hline .278 \text{ Proof} \end{array}$$

WP What's the Value of
.916 of a pound?

Answer $18\frac{3}{4}$

$$\begin{array}{r} .9 \\ .015 \\ \hline .915 \end{array} \text{ proof}$$

WM What's the Value of
.071 of a pound?

Answer $1\frac{3}{4}$

$$\begin{array}{r} .05 \\ .021 \\ \hline .071 \end{array} \text{ proof}$$

PP What's the Value of .009
of a £?

Answer $2\frac{1}{4}$

$$.009 \text{ proof}$$

WC What's the Value
.000 of a pound?

Answer $2\frac{1}{4}$

$$.000 \text{ proof}$$

The Rule of Three Direct.

O

is stated and worked as in Vulgar Arithmetick only instead of preparing your Numbers by reducing them into their lowest Denominations you must bring their Fractional parts into Decimals.

O

26 $\frac{1}{4}$ Yards of Sattin cost £ 3 $\frac{1}{2}$, $\frac{1}{3}$ What will 32 $\frac{1}{4}$ Yards cost at that Rate?

$$Yds \quad £ \quad s \quad d \\ 26\frac{1}{4} : 3\frac{1}{2}, \frac{1}{3} :: 32\frac{1}{4}.$$

$$\begin{array}{r} 4 \sqrt{1.00} \\ 26.25 \\ \hline 3.00 \\ 2/0 \end{array} \quad \begin{array}{r} 12 \sqrt{3.00} \\ 26.25 \\ \hline 3.25 \\ 19.0625 \\ \hline 76250 \end{array} \quad \begin{array}{r} 4 \sqrt{1.00} \\ 32.25 \\ \hline 3.00 \\ 2/0 \end{array}$$

$$\begin{array}{r} 26.25 \end{array} \quad \begin{array}{r} 12 \sqrt{2.953125} \\ 114375 \\ \hline 10500 \\ 17953 \\ \hline 15750 \\ \hline 22031 \end{array} \quad \begin{array}{r} 4.6839 \\ 20 \\ 136780 \\ 12 \\ \hline 81360 \end{array}$$

$$\begin{array}{r} 29031 \\ 21000 \\ \hline 10312 \\ 7875 \\ 24375 \\ 23625 \\ \hline 750 \end{array}$$

yds	£ s d	yds
32 $\frac{1}{4}$	$4 \cdot 13 \cdot 8 \cdot 136$	$0 \frac{000750}{26.25} : : 26\frac{1}{4}$
<u>41.00</u>	<u>12 8.1360</u>	<u>1.00</u>
<u>32.25</u>	<u>210 13.6700</u>	<u>26.25</u>
	<u>4.6839</u>	
	<u>26.25</u>	
	<u>234195</u>	
	<u>93670</u>	
	<u>281034</u>	
	<u>93678750 £</u>	
$32.25)$	$122.953125 (3.8125$	
	<u>.9675</u>	<u>16.2500</u>
	<u>26203</u>	<u>12</u>
	<u>25800</u>	
	<u>4031</u>	<u>93.0000</u>
	<u>3225</u>	
	<u>8062</u>	
	<u>6450</u>	
	<u>16125</u>	
	<u>16125</u>	

At $17 \frac{1}{4}$ d^d Yard what will $57 \frac{3}{4}$ cost? ^{yds}

Yard s d Yards
 $1 : 17 \frac{1}{4} : : 57 \frac{3}{4}$

$$\begin{array}{r} 1 | 3.00 \\ 12 | 6.75 \\ \hline 2/0 | 17.5625 \end{array} \quad \begin{array}{r} 1 | 3.00 \\ 57.75 \\ \hline \end{array}$$

.070125

57.75

4390625

6146875

6146875

4390625

£ $\frac{4390625}{50.71171875}$

s $\frac{20}{14.23437500}$

d $\frac{12}{2.01250000}$

9 $\frac{4}{3.25000000}$

$\frac{4}{4.00000000}$

Yds £ s d q Yds
57 $\frac{3}{4}$: 50 : 14 : 2 : 3 $\frac{1}{4}$:: 1

Off

67 $\frac{1}{8}$ Ells of anything cost £ 297 $\frac{11}{12}$ s $\frac{d}{4}$
What's that per Ell?

Ells £ s d Ell
67 $\frac{1}{8}$: 297 $\frac{11}{12}$ $\frac{7}{4}$:: 1

$$\begin{array}{r}
 8 | 1.000 \\
 \underline{671.125} \\
 12 | 7.25 \\
 \underline{210} | 11.604166 \\
 671.125) 297.5802083 (4434 \\
 \underline{2684500} \qquad \qquad \qquad 20 \\
 2913020 \qquad \qquad \qquad 8.8680 \\
 \underline{2684500} \qquad \qquad \qquad d \quad 12 \\
 2285208 \qquad \qquad \qquad 10.4160 \\
 \underline{2013375} \qquad \qquad \qquad 4 \\
 2718333 \qquad \qquad \qquad 91.6640 \\
 \underline{2684500} \\
 33833
 \end{array}$$

$$\begin{array}{r} \text{Ell} \quad s \quad d \quad q \\ 1 : 8 = 10 + 1.6610 \cdot \frac{0033833}{671.125} :: 671 \frac{1}{8} \end{array}$$

$$\begin{array}{r}
 \begin{array}{r}
 1.6640 \\
 \hline
 12 \overline{)10.4160} \\
 \hline
 2/0 \boxed{8.8680} \\
 \begin{array}{r}
 .4434 \\
 671.125 \\
 \hline
 22170 \\
 8868 \\
 4434 \\
 4434 \\
 31038 \\
 \hline
 \mathcal{L} \frac{2660433833}{297.5802083} \\
 \begin{array}{r}
 20 \\
 11.6041660 \\
 \hline
 12 \\
 d 7.2499920 \\
 \hline
 4 \\
 9999680
 \end{array}
 \end{array}
 \end{array}
 \end{array}$$

The Indirect Rule of Three.

is performed the same as in vulgar Arithmetic after the Numbers are prepared as taught in Decimals.

When the Bushell of Weight is $\frac{1}{6} \text{ d} \frac{1}{8} \text{ s}$ a Penny Loaf weighs $5\frac{1}{2}$ ounces, What will it weigh when Wheat is $10 \frac{1}{2}$ Bushel?

$$6 \frac{1}{8} : 5\frac{1}{2} :: 10$$

$$\begin{array}{r} 12 \\ 2/0 \end{array} \overline{) 0.00} \quad \begin{array}{r} 2 \\ 2/0 \end{array} \overline{) 1.0} \quad \begin{array}{r} 2/0 \\ - .5 \\ \hline .5 \end{array}$$

$$\begin{array}{r} 55 \\ 166665 \\ 166665 \\ \hline .5 \end{array} \overline{) 1.033315} \quad \begin{array}{r} 233.66636 \\ 233.66636 \\ \hline 0.1066608 \end{array}$$

s *d*
10: 3:10. 66608 :: 6:8

$$\begin{array}{r} 2/0 \longdiv{1.0} \\ \underline{.516} \end{array} \left(\begin{array}{r} 10.66608 \\ \underline{2.66652} \\ 3.66668 \end{array} \right) \quad \begin{array}{r} 12 \longdiv{8.00} \\ \underline{40} \\ 6.6666 \\ \underline{39333} \end{array}$$

s *d*
33333) 1.833315 (5.5
 166665
 166665
 166665

W

Work this Question pertaining to the Compound
or Double Rule of three Direct & Indirect.

G

The carriage of $\frac{6}{7}$ Weight 150 $\frac{1}{2}$ Miles comes
to £ 11.6 What must I give for the carriage of $\frac{6}{7}$ Weight
52 $\frac{1}{2}$ Miles at that Rate?

$\frac{6}{7}$	Miles	£ s d
$3\frac{3}{4}$	150 $\frac{1}{2}$	1 11, 6
$8\frac{1}{2}$	50 $\frac{1}{2}$	*

$$4 \underline{|} \begin{matrix} 3.00 \\ 3.75 \end{matrix}$$

$$2 \underline{|} \begin{matrix} 1.0 \\ 150.5 \end{matrix}$$

$$12 \underline{|} \begin{matrix} 6.0 \\ 11.5 \\ 1.575 \end{matrix}$$

$$2 \underline{|} \begin{matrix} 1.0 \\ 8.5 \end{matrix}$$

$$\begin{matrix} 1.0 \\ 52.5 \end{matrix}$$

$$\begin{matrix} 8.5 \\ 7.875 \\ 12.600 \\ \hline 133.875 \end{matrix}$$

$$\begin{matrix} 150.5 \\ 3.75 \\ \hline 572.5 \end{matrix}$$

$$\begin{matrix} 105.35 \\ 451.5 \\ \hline 564.375 \end{matrix}$$

$$\begin{array}{r}
 564.375) \overline{702.84375} \\
 \underline{564.375} \\
 \hline
 13846.87 \\
 \underline{11287.50} \\
 \hline
 2559375 \\
 \underline{2257500} \\
 \hline
 301875
 \end{array}
 \begin{array}{r}
 (1.24 \\
 \$ 48.00 \\
 d. 12 \\
 9.60 \\
 \hline
 41 \\
 9240
 \end{array}$$

<u>L</u>	Miles	<u>L</u>	<u>s</u>	<u>d</u>	<u>q</u>
$8\frac{1}{2}$	$52\frac{1}{2}$	$14\frac{4}{5}$	$9\frac{1}{4}$	$2.40\frac{301875}{564375}$	
$3\frac{3}{4}$	$150\frac{1}{2}$	*			

$$\begin{array}{r} 2 \longdiv{1.0} \\ \underline{0.5} \end{array}$$

$$\begin{array}{r} 2 \longdiv{1.0} \\ \underline{0.5} \end{array}$$

A	2.40
12	9.60
2/0	4.80
	1.24

413.00

211.0
150.5
25.1

150.5
3.75
752.5
1053.5
451.5
<u>564.375</u>

52.5
8.5
2625
4200
440.25

1.24
2257500

$$446.25) \overline{702.84375} (1.575$$

44625	20
256593	11,500
223125	19
<u>334687</u>	6.000
<u>312375</u>	
223125	
223125	

W

What will £ 2^{rs} 14^{lb} of anything come
to at £ 1¹² 6^d per lb?

£ 2^{rs} 14^{lb} at £ 1¹² 6^d per lb?

4	14.00
7	3.50
4	3.50

7368.875

1.625

36844375

14737750

44213250

7368875

£ 11974.421875

20

8.437500

12

5.250000

4

1.000000

12	6.00
2/0	2.50
	1.625

Interest

The annual Rent of any sum of Money
is found by multiplying the given principal by the
Interest of 1 pound for a Year, which is found by
dividing the Rate of Interest $\$100$.

Qno

What's a Year's Interest of $\$782\frac{1}{4}\frac{6}{12}$ at 4
 $\%$ cent. per annum? $\$782\frac{1}{4}\frac{6}{12}$ $100 \sqrt{1.00}$

$$\begin{array}{r} 12 \sqrt{6.00} \\ \underline{-14.40} \\ 782.725 \\ - .04 \\ \hline \end{array}$$
$$\begin{array}{r} 12 \sqrt{.04} \\ \underline{-4.80} \\ 20 \\ -16 \\ \hline 4 \end{array}$$
$$\begin{array}{r} 12 \sqrt{2.16000} \\ \underline{-2.16000} \\ 0 \end{array}$$
$$\begin{array}{r} 12 \sqrt{.64000} \\ \underline{-64000} \\ 0 \end{array}$$

What's the Interest of £ 867 at 5% per cent per annum, for 2 Years?

$$\begin{array}{r} \text{£} \\ 867 \\ \times .05 \\ \hline \text{£} 43.35 \\ \begin{array}{r} 20 \\ \hline 17.00 \end{array} \end{array}$$
$$100 | \begin{array}{r} 5.00 \\ \hline .05 \end{array}$$

$$\begin{array}{r} \text{£} \\ 43.7 \\ \times 2 \\ \hline \underline{86.14} \end{array}$$

Answer

What's the Interest of
5½ Years at 6% Cent Pannum?

L *s* *d*
520¹11¹9¹2

$$\begin{array}{r}
 \begin{array}{r|l}
 1 & 9.0 \\
 12 & 9.5 \\
 \hline
 2/0 & \boxed{11.7916}
 \end{array} \quad
 \begin{array}{r|l}
 100 & 6.00 \\
 & .06
 \end{array}
 \\[10pt]
 \begin{array}{r}
 520.58958 \\
 \hline
 \begin{array}{r}
 .06 \\
 \hline
 31.2859748 \\
 \hline
 20 \\
 \hline
 14.7074960 \\
 \hline
 12 \\
 \hline
 8.4899520 \\
 \hline
 4 \\
 \hline
 9.19598080
 \end{array}
 \end{array}
 \end{array}$$

$\begin{array}{r} \text{L} \quad \text{S} \quad \text{D} \quad \text{q} \\ 31^{\circ} 4' 8 : 1.959808 \\ \hline 15^{\circ} 3' 6 : 1.799040 \\ 15^{\circ} 12' 4 : 0.079904 \\ \hline 17^{\circ} 15' 10 : 2.778944 \end{array}$

What's the Interest of £1000 for 14 $\frac{3}{4}$ Years
at 6% per cent. per annum?

$$\begin{array}{r} \text{£} \\ 1000 \\ \times .06 \\ \hline 60.00 \end{array}$$

$$\begin{array}{r} \text{£} \\ 100 | 6.00 \\ \hline .06 \end{array}$$

$$\begin{array}{r} 14.75 \\ 60 \\ \hline \text{£ } \underline{885.00} \end{array}$$

~~What Interest will £21 amount to in
120 Days at 6 per cent Pannum?~~

£ 18.24986289120
120
20
12
4

W
hat's the Interest of £^{Days} 60 for 60 at 5% lent.
Pannum?

$$\begin{array}{r} .00013698630 \\ \hline 60 \\ \hline 0.00821917800 \\ 560 \\ \hline 0049315068000 \\ 41095890000 \\ \hline £ 4.60273968000 \\ 20 \\ \hline \$ 19.05479360000 \\ 12 \\ \hline 40.65752320000 \\ 4 \\ \hline q 2.63009280000 \end{array}$$

The Interest of £ for 1 Day is thus found
 the given Rate or Interest of £¹ for a Year being di-
 vided by 100 quotes the Interest of £ for a Year, which
 again divided by 365 gives the required Interest of £ for
 1 Day, which when Multiplied into both the Number of
 Days & the principal sum produces the Interest for time re-
 quired.

$$\begin{array}{r}
 100 \text{ £} \\
 365) 0.01000.000000 (0.0002739726 \\
 \underline{-} 730 \\
 \underline{2700} \\
 \underline{2555} \\
 \underline{1450} \\
 \underline{1095} \\
 \underline{3550} \\
 \underline{3285} \\
 \underline{2650} \\
 \underline{2555} \\
 \underline{950} \\
 \underline{730} \\
 \underline{2200} \\
 \underline{2196}
 \end{array}$$

The Interest £ for 1 Day.

at { 1 } } Plent: is

1	.00002739726
2	.00005479452
3	.00008219178
4	.00010950904
5	.00013698630
6	.00016438356
7	.00019178002
8	.00021917808
9	.00024657534
10	.00027397260

Compound Interest

First

To find the amount of any sum at any rate of compound interest for any number of years.

Old Rule

Multiply the rate that is the amount of £ for 1 year (which at 6 p cent is 1.06 at 5 p cent is 1.0580) so often into itself as are the number of years propos'd, wanting one, and the last product multiplied by the principle will give the amount required.

*W*hat's the amount of £500 for four years
at 4% per cent. compound interest?

$$\begin{array}{r} 1.04 \\ 1.04 \\ \hline 416 \\ 1040 \\ \hline 1.0816 \\ 1.04 \\ \hline 43264 \\ 108160 \\ \hline 1.124864 \\ \hline \end{array}$$

£ 500

584.92928000

20

18.58560

12

6.02720

4

10880

Second

To find the Amount of any Annuity or Yearly Pension, forborn any Number of Years whatsoever at any Rate of Compound Interest.

Rule

Multiply the first Yearly Payment by the Rate & to the Product add the second Yearly Payment the Sum is the amount in 2 Years which multiplied again by the Rate, the product with the addition of the third yearly Payment is the Amount for 3 Years &c.

What will a Pension of £30 per annum amount
to being forborn 4 Years at 5% per cent. per annum Compound
Interest?

$$\begin{array}{r} \text{£} \\ 30 \\ \times 1.05 \\ \hline 150 \\ 300 \\ \hline 31.50 \\ 30.0 \\ \hline 61.50 \\ 1.05 \\ \hline 30750 \\ 61500 \\ \hline 645750 \\ 30. \\ \hline 945750 \\ 1.05 \\ \hline 4728750 \\ 9457500 \\ \hline 99.303750 \\ 30. \\ \hline \text{£} 129.303750 \\ 20 \\ 16.075000 \\ 12 \\ .900000 \\ 4 \\ \hline 93.600000 \end{array}$$

Discount

B

eing fully explained under under
this head in whole Numbers I shall immediately
proceed to Examples.

T

The Rule is the same as in whole Numbers.

W

What Discount must be allow'd on a Bill of £ 500
paid 20 Days before 'tis due Rebate at 5% Cent. per annum?
and what present Money must be paid?

$$\begin{array}{r}
 20 \\
 5 \\
 \hline
 100 \\
 365 \\
 100 \\
 \hline
 36500 \\
 182500 \\
 100 \\
 \hline
 36600 \\
 \end{array}$$

$$\begin{array}{r}
 365 \\
 100 \\
 \hline
 36500 \\
 182500 \\
 100 \\
 \hline
 36600 \\
 \end{array}$$

$$\begin{array}{r}
 182500000.000000 \\
 146400 \\
 \hline
 361000 \\
 329400 \\
 \hline
 316000 \\
 292000 \\
 \hline
 232000 \\
 219600 \\
 \hline
 124000 \\
 109800 \\
 \hline
 142000 \\
 109800 \\
 \hline
 322000 \\
 292800 \\
 \hline
 292000 \\
 256200 \\
 \hline
 358000 \\
 329400 \\
 \hline
 28600
 \end{array}$$

£ 198.633879 Present Worth

$$\begin{array}{r}
 500 \\
 20 \\
 \hline
 10000 \\
 5
 \end{array}$$

£ 1.366120 Discount

$$\begin{array}{r}
 36600 \\
 \hline
 134000 \\
 109800 \\
 \hline
 242000 \\
 219600 \\
 \hline
 224000 \\
 219600 \\
 \hline
 44000 \\
 36600 \\
 \hline
 74000 \\
 73200 \\
 \hline
 8000
 \end{array}$$

*O*r for the present Worth; Multiply the Days in a Year, the Principal given, & £¹⁰⁰ into each other for a Dividend; & add the product of 365 £100 to that of the Days multiplyed into the Rate given for a Divisor, & the Quotient resulting is the Answer.

*O*nd for the Discoupt; Multiply the Rate, Principal & Days given together for a Dividend; & proceeding as above for a Divisor the Quotient will be the Answer.

Rebate at Compound Interest

To find the present Worth of any Sum to be paid at any Number of Years to come. Rebate being made at any Rate of Compound Interest.

Rule

Divide the Principal continually so many times & the Rate as are the Number of Years proposed & the last Quotient is the Answer.

What's the Present worth of £1 to be paid
at the End of 6 Years Rebate being made at 6%
per cent. Annually Compound Interest?

$$1.06 \left(1.000000000 \right) (1.06) \frac{.943396200}{.848} (1.06) \frac{.889996400}{.848} (1.06) \frac{.839619200}{.848}$$

$$\begin{array}{r}
 \underline{954} \\
 460 \\
 424 \\
 360 \\
 318 \\
 \hline
 420 \\
 318 \\
 \hline
 1020 \\
 954 \\
 \hline
 660 \\
 636 \\
 \hline
 240 \\
 212 \\
 \hline
 20
 \end{array}
 \begin{array}{r}
 \underline{848} \\
 953 \\
 848 \\
 1059 \\
 954 \\
 \hline
 1056 \\
 954 \\
 \hline
 1022 \\
 954 \\
 \hline
 680 \\
 636 \\
 \hline
 440 \\
 424 \\
 \hline
 16
 \end{array}
 \begin{array}{r}
 \underline{419} \\
 318 \\
 \hline
 1019 \\
 954 \\
 \hline
 656 \\
 636 \\
 \hline
 204 \\
 106 \\
 \hline
 980 \\
 954 \\
 \hline
 260 \\
 212 \\
 \hline
 48
 \end{array}$$

$$\begin{array}{r}
 1.06 \left(.839619200 \right) (1.06) \frac{.79209358000}{.742} (1.06) \frac{.74725809400}{.742} (\text{Ans.}) \frac{.704960466}{.742}
 \end{array}$$

$$\begin{array}{r}
 \underline{742} \\
 976 \\
 954 \\
 \hline
 221 \\
 218 \\
 \hline
 992 \\
 954 \\
 \hline
 380 \\
 318 \\
 \hline
 620 \\
 530 \\
 \hline
 900 \\
 848 \\
 \hline
 52
 \end{array}
 \begin{array}{r}
 \underline{500} \\
 424 \\
 \hline
 769 \\
 742 \\
 \hline
 273 \\
 212 \\
 \hline
 615 \\
 580 \\
 \hline
 858 \\
 818 \\
 \hline
 1000 \\
 954 \\
 \hline
 460 \\
 424 \\
 \hline
 36
 \end{array}
 \begin{array}{r}
 \underline{525} \\
 424 \\
 \hline
 1018 \\
 954 \\
 \hline
 640 \\
 636 \\
 \hline
 494 \\
 424 \\
 \hline
 700 \\
 636 \\
 \hline
 640 \\
 636 \\
 \hline
 4
 \end{array}$$

What's the Present Worth of £480 to be paid
at the End of 7 Years Rebate at 4.5.6.7.8.9.10% per cent.
Platinum Compound Interest?

$$1.04) 1.0000000000 (1.04) .96153846000 (1.04) .924556211000 ($$

$$\begin{array}{r} 936 \\ \underline{-} 640 \\ 296 \\ \underline{-} 624 \\ 160 \\ \underline{-} 104 \\ 560 \\ \underline{-} 520 \\ 400 \\ \underline{-} 312 \\ 880 \\ \underline{-} 832 \\ 480 \\ \underline{-} 416 \\ 640 \\ \underline{-} 624 \\ 16 \\ 220 \\ \underline{-} 208 \\ 120 \\ \underline{-} 104 \\ 160 \\ \underline{-} 104 \\ 56 \\ 371 \\ \underline{-} 312 \\ 590 \\ \underline{-} 520 \\ 700 \\ \underline{-} 624 \\ 760 \\ \underline{-} 728 \\ 32 \end{array}$$

$$1.04) .88899635670 (854804189$$

$$\begin{array}{r} 832 \\ \underline{-} 569 \\ 520 \\ 199 \\ \underline{-} 416 \\ 836 \\ \underline{-} 832 \\ 435 \\ \underline{-} 416 \\ 196 \\ \underline{-} 104 \\ 927 \\ \underline{-} 832 \\ 950 \\ \underline{-} 936 \end{array}$$

$$\begin{array}{cccc}
 1.04) & 854804189000 & (1.04) & 821927104000 \\
 \underline{832} & & \underline{728} & (1.04) \underline{79031452380} \\
 & 228 & 939 & 728 \\
 & 208 & 936 & 623 \\
 & 200 & 327 & 520 \\
 & 104 & 312 & 1031 \\
 & 964 & 151 & 936 \\
 & 936 & 104 & 954 \\
 & 281 & 470 & 936 \\
 & 208 & 416 & 185 \\
 & 738 & 544 & 104 \\
 & 728 & 520 & 812 \\
 & 109 & 248 & 728 \\
 & 104 & 208 & 843 \\
 & 500 & 400 & 832 \\
 & 416 & 312 & 118 \\
 & 840 & 880 & 104 \\
 & 832 & 832 & 140 \\
 & 8 & 40 & 104 \\
 & & & 36
 \end{array}$$

$$\begin{array}{cccc}
 1.05) & 1.00000000000000 & (1.05) & 95238095238000 \\
 \underline{945} & & \underline{945} & (1.05) \underline{9070294784570} \\
 & 550 & 738 & 840 \\
 & 525 & 735 & 670 \\
 & 250 & 309 & 630 \\
 & 210 & 210 & 402 \\
 & 400 & 995 & 315 \\
 & 315 & 945 & 879 \\
 & 850 & 509 & 840 \\
 & 840 & 420 & 394 \\
 & 1000 & 823 & 315 \\
 & \underline{945} & \underline{735} & 797 \\
 & 550 & 888 & 735 \\
 & 525 & 840 & 628 \\
 & 250 & 480 & 525 \\
 & 210 & 420 & 1034 \\
 & 400 & 600 & 945 \\
 & 315 & 525 & 895 \\
 & 850 & 750 & 840 \\
 & 840 & 735 & 557 \\
 & 10 & 15 & 525 \\
 & & & 320 \\
 & & & 315
 \end{array}$$

$$\begin{array}{r}
 1.05) 8638375985300 (1.05) 8227024747900 (1.05) 783526166460 \\
 \underline{840} \qquad \underline{735} \qquad \underline{735} \\
 238 \\
 210 \\
 \underline{283} \\
 210 \\
 \underline{137} \\
 \underline{135} \\
 259 \\
 210 \\
 \underline{490} \\
 420 \\
 \underline{785} \\
 \underline{735} \\
 503 \\
 420 \\
 \underline{830} \\
 \underline{735} \\
 950 \\
 945 \\
 \hline 5
 \end{array}
 \begin{array}{r}
 877 \\
 840 \\
 \underline{370} \\
 315 \\
 \underline{552} \\
 525 \\
 \underline{274} \\
 210 \\
 \underline{647} \\
 630 \\
 \underline{174} \\
 105 \\
 \underline{697} \\
 630 \\
 \underline{679} \\
 630 \\
 \underline{490} \\
 420 \\
 \underline{700} \\
 630 \\
 \hline 70
 \end{array}
 \begin{array}{r}
 485 \\
 420 \\
 \underline{652} \\
 630 \\
 \underline{226} \\
 210 \\
 \underline{161} \\
 105 \\
 \underline{566} \\
 525 \\
 \underline{416} \\
 315 \\
 \underline{1014} \\
 945 \\
 \underline{696} \\
 630 \\
 \underline{660} \\
 630 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 1.05) 74621539660000 (710681330095 \\
 \underline{735} \\
 112 \\
 105 \\
 \underline{715} \\
 630 \\
 \underline{853} \\
 840 \\
 \underline{139} \\
 105 \\
 \underline{346} \\
 315 \\
 \underline{316} \\
 315 \\
 \hline 1000 \\
 945 \\
 550 \\
 525 \\
 \hline 25
 \end{array}
 \begin{array}{r}
 480 \\
 56854506407400 \\
 \underline{2842725320380} \\
 \hline \underline{\underline{341.127038445400}}
 \end{array}$$

$$\begin{array}{r}
 1.06) 1000000000 (9433962 \\
 \underline{954} \\
 460 \\
 424 \\
 \underline{360} \\
 318 \\
 \underline{420} \\
 318 \\
 \underline{1020} \\
 954 \\
 \underline{660} \\
 636 \\
 \underline{240} \\
 212 \\
 \hline 28
 \end{array}$$

1.06) 943396200 (1.06) 889996400 (1.06) 8396192000 (79209358
~~848~~ ~~848~~ ~~742~~
~~953~~ ~~419~~ ~~976~~
~~818~~ ~~318~~ ~~954~~
~~1059~~ ~~1019~~ ~~221~~
~~954~~ ~~954~~ ~~212~~
~~1056~~ ~~656~~ ~~992~~
~~954~~ ~~636~~ ~~954~~
~~1022~~ ~~204~~ ~~380~~
~~954~~ ~~106~~ ~~318~~
~~680~~ ~~980~~ ~~620~~
~~636~~ ~~954~~ ~~530~~
~~440~~ ~~260~~ ~~900~~
~~424~~ ~~212~~ ~~848~~
~~16~~ ~~48~~ ~~52~~

1.06) 79209358000 (1.06) 74725809400 (1.06) 70496046600 (665057043
~~742~~ ~~742~~ ~~636~~ ~~480~~
~~500~~ ~~525~~ ~~689~~ ~~53204563440~~
~~424~~ ~~424~~ ~~636~~ ~~2660228172~~
~~769~~ ~~1018~~ ~~536~~ ~~319227380640~~
~~742~~ ~~954~~ ~~530~~
~~273~~ ~~640~~ ~~604~~
~~212~~ ~~636~~ ~~530~~
~~615~~ ~~5494~~ ~~746~~
~~530~~ ~~524~~ ~~742~~
~~858~~ ~~700~~ ~~460~~
~~848~~ ~~636~~ ~~424~~
~~1000~~ ~~640~~ ~~360~~
~~954~~ ~~636~~ ~~318~~
~~460~~ ~~4~~ ~~42~~
~~424~~
~~36~~

$1.07 \left(\frac{963}{963} \right) 1.00000000000 (1.0) \cdot \frac{93457943900}{856} (1.0) \cdot \frac{87343872800}{856} (1.0) \cdot \frac{816297876}{856}$
$\frac{370}{321}$
$\frac{490}{428}$
$\frac{620}{535}$
$\frac{850}{749}$
$\frac{1010}{963}$
$\frac{470}{428}$
$\frac{420}{321}$
$\frac{990}{963}$
$\frac{785}{249}$
$\frac{367}{321}$
$\frac{469}{428}$
$\frac{414}{321}$
$\frac{933}{856}$
$\frac{719}{749}$
$\frac{300}{214}$
$\frac{860}{856}$
$\frac{174}{107}$
$\frac{673}{642}$
$\frac{318}{214}$
$\frac{1047}{963}$
$\frac{842}{749}$
$\frac{938}{856}$
$\frac{820}{749}$
$\frac{710}{642}$
$\frac{68}{27}$

$\frac{1.07}{749} \cdot .81629787600(1.07)$	$\frac{762895211000(1.07)}{749}$	$\frac{7129861785000(1.07)}{642}$	$\frac{66634222289(1.07)}{642}$
$\frac{672}{642}$	$\frac{138}{107}$	$\frac{709}{642}$	$\frac{243}{214}$
$\frac{309}{214}$	$\frac{379}{214}$	$\frac{678}{642}$	$\frac{294}{214}$
$\frac{957}{856}$	$\frac{1055}{963}$	$\frac{366}{321}$	$\frac{809}{749}$
$\frac{1018}{963}$	$\frac{922}{856}$	$\frac{451}{428}$	$\frac{532}{428}$
$\frac{557}{535}$	$\frac{661}{642}$	$\frac{237}{214}$	$\frac{1042}{963}$
$\frac{226}{214}$	$\frac{191}{107}$	$\frac{238}{214}$	$\frac{792}{749}$
$\frac{120}{107}$	$\frac{840}{749}$	$\frac{245}{214}$	$\frac{438}{428}$
$\frac{130}{107}$	$\frac{910}{856}$	$\frac{310}{214}$	$\frac{109}{107}$
$\frac{23}{23}$	$\frac{642}{642}$	$\frac{960}{860}$	$\frac{2}{2}$

622740364

118

$$\begin{array}{r} 49819979280 \\ \underline{2490998964} \end{array}$$

- 298.919875680

$$\begin{array}{ccc}
 1.08) 1.00000000000 (1.08) & 9259259200 (1.08) & 8573388100 (1983223 \\
 \underline{972} & \underline{864} & \underline{756} \\
 \underline{280} & \underline{619} & \underline{1013} \\
 \underline{216} & \underline{540} & \underline{972} \\
 \underline{640} & \underline{792} & \underline{413} \\
 \underline{540} & \underline{756} & \underline{324} \\
 \underline{1000} & \underline{365} & \underline{898} \\
 \underline{972} & \underline{324} & \underline{864} \\
 \underline{280} & \underline{419} & \underline{348} \\
 \underline{216} & \underline{324} & \underline{324} \\
 \underline{640} & \underline{952} & \underline{241} \\
 \underline{540} & \underline{864} & \underline{216} \\
 \underline{1000} & \underline{880} & \underline{250} \\
 \underline{972} & \underline{864} & \underline{216} \\
 \underline{280} & \underline{160} & \underline{340} \\
 \underline{216} & \underline{108} & \underline{324} \\
 \underline{64} & \underline{52} & \underline{16}
 \end{array}$$

$$\begin{array}{ccccc}
 1.08) 7938322300 (1.08) & 7350298400 (1.08) & 6805831800 (1.08) & 63016961000 (583490379 \\
 \underline{756} & \underline{648} & \underline{648} & \underline{540} \\
 \underline{378} & \underline{870} & \underline{325} & \underline{901} & \underline{4669230320} \\
 \underline{324} & \underline{864} & \underline{324} & \underline{864} & \underline{233961516} \\
 \underline{543} & \underline{629} & \underline{183} & \underline{976} & \underline{\$280045381920} \\
 \underline{540} & \underline{540} & \underline{108} & \underline{972} & \\
 \underline{322} & \underline{898} & \underline{751} & \underline{410} & \\
 \underline{216} & \underline{864} & \underline{648} & \underline{324} & \\
 \underline{1063} & \underline{344} & \underline{1038} & \underline{860} & \\
 \underline{972} & \underline{324} & \underline{972} & \underline{756} & \\
 \underline{910} & \underline{200} & \underline{660} & \underline{1040} & \\
 \underline{864} & \underline{108} & \underline{648} & \underline{972} & \\
 \underline{460} & \underline{920} & \underline{120} & \underline{68} & \\
 \underline{432} & \underline{864} & \underline{108} & & \\
 \underline{28} & \underline{56} & \underline{12} & &
 \end{array}$$

$\frac{1}{1.09} \times 1,000,000,000 (1.09) \times 9174311900 (1.09) \times 8416799900 (1.09) \times 772183470 (1.09)$
 $\frac{981}{190}$ $\frac{872}{454}$ $\frac{763}{786}$ $\frac{763}{872}$
 $\frac{109}{183}$ $\frac{436}{763}$ $\frac{237}{218}$ $\frac{463}{436}$
 $\frac{810}{763}$ $\frac{109}{741}$ $\frac{199}{109}$ $\frac{274}{218}$
 $\frac{470}{436}$ $\frac{654}{871}$ $\frac{909}{872}$ $\frac{567}{545}$
 $\frac{340}{327}$ $\frac{763}{1089}$ $\frac{379}{327}$ $\frac{120}{118}$
 $\frac{230}{109}$ $\frac{981}{1080}$ $\frac{520}{436}$
 $\frac{210}{109}$ $\frac{981}{990}$ $\frac{840}{163}$
 $\frac{1010}{981}$ $\frac{981}{9}$ $\frac{77}{2}$

$\frac{1}{1.09} \times 7084252000 (1.09) \times 6499313700 (1.09) \times 59626731000 (1.09) \times 547634220 (1.09)$
 $\frac{654}{545}$ $\frac{545}{545}$ $\frac{545}{512}$ $\frac{545}{436}$
 $\frac{544}{436}$ $\frac{1049}{981}$ $\frac{43762738320}{2188136916}$
 $\frac{436}{1082}$ $\frac{683}{654}$ $\frac{766}{763}$ $\frac{262516729920}{461}$
 $\frac{1082}{981}$ $\frac{654}{291}$ $\frac{763}{373}$
 $\frac{981}{1015}$ $\frac{291}{218}$ $\frac{763}{327}$
 $\frac{1015}{981}$ $\frac{218}{342}$ $\frac{461}{436}$
 $\frac{981}{342}$ $\frac{342}{654}$ $\frac{436}{250}$
 $\frac{342}{327}$ $\frac{654}{797}$ $\frac{250}{218}$
 $\frac{327}{150}$ $\frac{797}{763}$ $\frac{218}{320}$
 $\frac{150}{109}$ $\frac{763}{340}$ $\frac{320}{218}$
 $\frac{109}{410}$ $\frac{340}{327}$ $\frac{218}{1020}$
 $\frac{410}{327}$ $\frac{327}{130}$ $\frac{1020}{981}$
 $\frac{327}{830}$ $\frac{130}{109}$ $\frac{981}{39}$
 $\frac{830}{763}$
 $\frac{763}{67}$

1.10	<u>4.00000000000000(1)</u>	.51316807
1.1	<u>1909090909 (1)</u>	480
1.1	<u>.82644620 (0)</u>	<u>4105264560</u>
1.1	<u>.75131480 (6)</u>	<u>205263228</u>
1.1	<u>.683013400 (3)</u>	<u>246.31587360</u>
1.1	<u>.620921270 (2)</u>	
1.1	<u>.564473880 (3)</u>	
1.1	<u>.513158070 (7)</u>	
1.1	<u>.466507330 (3)</u>	
1.1	<u>.424097570 (6)</u>	
	<u>.38554324</u>	
	<u>480</u>	
	<u>3084345920</u>	
	<u>154217296</u>	
	<u>£ 185.06075520</u>	

	£		£
The Preft.	4		364.76054928
Worth of	5		341.1270384454
480£ at	6	D.Cent. at the	319.22738064
	7	End of seven	298.01987568
	8	Years is.	280.07538192
	9		262.57672992
	10		246.31587360

The Principal £

0.96153846	divided	924556211	for	1
0.924556211	by the	8889963567	the	2
0.8889963567	Rate,	854804189	prest.	3
0.8548041890	1.04	8219271048	Value	4
0.8219271048	gives	7903145238	for	5
0.7903145238		759917811		6
				7

The Principal £

0.95238095238	divided	907029478457	for	1
0.907029478457	by the	86383759853	the	2
0.86383759853	Rate,	82270247479	prest.	3
0.82270247479	1.05	78352616646	Value	4
0.78352616646	gives	7462153966	for	5
0.7462153966		710681330095		6
				7

The Principal £

0.9433962	divided	8899964	for	1
0.8899964	by the	8396192	the	2
0.8396192	Rate,	79209358	prest.	3
0.79209358	1.06	747258094	Value	4
0.747258094	gives	704960466	for	5
0.704960466		665057043		6
				7

The Principal £						Yr
0.934579439	divided	.873438728	for	2		
0.873438728	by the	.816297876	the	3		
0.816297876	Rate	.762895211	pref.	4		
0.762895211	1.07	.7129861785	Value	5		
0.7129861785	gives	.66634222289	for	6		
0.66634222289		.622749741		7		

The Principal £						Yr
0.92592592	divided	.85733881	for	2		
0.85733881	by the	.79383223	the	3		
0.79383223	Rate	.73502984	pref.	4		
0.73502984	1.08	.68058318	Value	5		
0.68058318	gives	.63016961	for	6		
0.63016961		.583490379		7		

The Principal £						Yr
0.91743119	divided	.84167999	for	2		
0.84167999	by the	.77218347	the	3		
0.77218347	Rate	.7084252	pref.	4		
0.7084252	1.09	.64993137	Value	5		
0.64993137	gives	.59626731	for	6		
0.59626731		.547634229		7		

The Principal £						Yr
0.909090909	divided	.82644628	for	2		
0.82644628	by the	.7513148	the	3		
0.7513148	Rate	.6830134	pref.	4		
0.6830134	1.10	.62092127	Value	5		
0.62092127	gives	.56447388	for	6		
0.56447388		.51315807		7		

Decimal Tables

shewing

Table 1.st the Amt. of 1 £ for any No.
of Yrs under 33 at the Rates of 5% 6
per cent. Annually Compound Interest.

Table 2.nd The Amount of 1 £ Annuity for
any No. of Yrs under 33 at the Rates of 5% 6
per cent. Annually Compound Interest.

Rates		Years	Rates	
5	6		5	6
1.05000	1.06000	1	1.00000	1.00000
1.10250	1.12360	2	2.05000	2.06000
1.15762	1.19101	3	3.15250	3.18360
1.21550	1.26247	4	4.31012	4.37461
1.27628	1.33822	5	5.52563	5.63709
1.34009	1.41852	6	6.80191	6.97532
1.40710	1.50363	7	8.14200	8.39383
1.47745	1.59384	8	9.54910	9.89746
1.55132	1.68948	9	11.02656	11.49131
1.62889	1.79084	10	12.57789	13.18079
1.71034	1.89829	11	14.20678	14.97164
1.79585	2.01219	12	15.91712	16.86994
1.88565	2.13292	13	17.71298	18.88218
1.97993	2.26090	14	19.59863	21.01506
2.07892	2.39655	15	21.57856	23.27597
2.18287	2.54035	16	23.65749	25.67252
2.29201	2.69277	17	25.84036	28.21288
2.40662	2.85434	18	28.13238	30.90565
2.52695	3.02559	19	30.53900	33.75999
2.65329	3.20713	20	33.06595	36.78559
2.78596	3.39956	21	35.71925	39.99272
2.92526	3.60353	22	38.50521	43.39229
3.07152	3.81975	23	41.43047	46.99582
3.22510	4.04893	24	44.50199	50.81557
3.38635	4.29187	25	47.72709	54.86451
3.55567	4.54938	26	51.11345	59.15638
3.73345	4.82234	27	54.66912	63.70576
3.92013	5.11168	28	58.40258	68.52811
4.11613	5.41838	29	62.32271	73.63979
4.32194	5.74349	30	66.43884	79.05818
4.53804	6.08810	31	70.76079	84.80167
4.76494	6.45338	32	75.29883	90.08977

Decimal Tables

shewing

Table 3.rd the Pres't Worth of 1£ due
at any N.^o. of Years to come under 33
Rebate at 5 $\frac{1}{2}$ 6 $\frac{1}{2}$ Cent. Ann: Comp: Int:

Table 4.th The pres' Worth of 1£ Annuity
to continue any N.^o. of Years under 33
Rebate at 5 $\frac{1}{2}$ 6 $\frac{1}{2}$ Cent. Annum Comp: Int:

Rates		Years	Rates	
5	6		5	6
.952381	.943396	1	0.95238	0.94339
.907030	.889996	2	1.85941	1.83339
.863838	.839619	3	2.72324	2.67301
.822702	.792093	4	3.54595	3.46510
.783526	.747250	5	4.32947	4.21236
.746215	.704960	6	5.07569	4.91732
.710682	.665057	7	5.78637	5.58238
.676839	.627412	8	6.46321	6.20919
.614609	.591098	9	7.10702	6.80169
.613913	.558394	10	7.72173	7.36008
.584679	.526787	11	8.30641	7.08687
.556837	.496969	12	8.86325	8.38384
.530321	.468039	13	9.39357	8.85268
.505068	.442301	14	9.89864	9.29498
.481017	.417265	15	10.37965	9.71225
.458111	.393647	16	10.83777	10.10589
.436296	.371364	17	11.27406	10.47726
.415520	.350343	18	11.68958	10.82760
.395734	.330513	19	12.08532	11.15811
.376889	.311804	20	12.46221	11.46992
.358942	.294155	21	12.82115	11.76407
.341849	.277505	22	13.16300	12.04158
.325571	.261797	23	13.48857	12.30338
.310067	.246978	24	13.79864	12.55035
.295302	.232998	25	14.09394	12.78335
.281240	.219810	26	14.37510	13.00316
.267848	.207368	27	14.64303	13.21053
.255093	.195630	28	14.89812	13.40616
.242946	.184556	29	15.14107	13.59072
.231377	.174110	30	15.37245	13.76483
.220359	.164254	31	15.59281	13.92908
.209865	.154956	32	15.80267	14.08404

Second

To find the present Worth of any Annuity or Yearly Pension to continue any Number of Years: Rebate being made at any Rate of Cent pannum compound Interest.

Or Rule

Bind by the foregoing Rule the present Worth of the proposed Annuity for 1. 2. 3 or so many Years as are demanded, and the Sum of those respective present Worths will be the Value of the Annuity, that is, the first & second of those Values added together, will be the present Worth for 2 Years; & the 1. ^{1st} 2. ^{2nd} 3. added together for 3 Years &c.

What's the present Worth of an Annuity
of 70£ to continue 5 Years Rebate at 5% Rent. Ann.

$$\begin{array}{r} \text{£} .95238095238 \\ \text{£} .907029478457 \\ \hline \text{£} .666666666660 \\ \text{£} .63492063491990 \\ \hline \text{£} .63.49206349199 \\ \text{£} .60.46863189710 \\ \hline \text{£} .57.58917323530 \\ \text{£} .54.84683165220 \\ \hline \text{£} 303.06336694319 \end{array}$$

Answer.

What will £ increase to forborn 22 Years
at 5% Pcent. P annum Compound Interest?

£		
1000	1477.455382	2182874493
1.05	1.05	1.05
1050.00	1387276910	10914372465
1.05	1477455382	2182874493
5250	155132815110	229201821765
1050	1.05	1.05
1102.50	7756640755	71460091085
1.05	1551328151	2292018217
55125	162889455855	240661912785
11025	1.05	1.05
1157625	8744472790	12033095635
1.05	1628894558	2406619127
5788125	171033928590	252695008335
1157625	1.05	1.05
1215.50625	8551696425	12634750415
1.05	1710339285	2526950083
60775312	1795856249	263329758715
12155062	1.05	1.05
1276.281512	1885.64906145	13266487935
1.05	1.05	2653297587
638140755	9428245305	2786.96246635
127628151	1885649061	1.05
1340.0955855	197993151405	13929812330
1.05	1.05	2785962466
6700477925	9899657570	£ 2925.26058930 Answer
1340095585	1979931514	
1407.10036425	2078.99808970	
1.05	1.05	
7035501820	10394640445	
1407100364	2078928089	
1477.45538220	2182.87449345	

W^o What would an Annuity of £ 520 for
born 17 Years at £ per cent. Compound Interest
amount to?

$$\begin{array}{r} 28.21288 \\ \times 520 \\ \hline 56425760 \\ -14106440 \\ \hline 14670.69760 \end{array}$$

£ 14670.69760 answer.

~~W~~hat present money will discharge
a Debt of £ 7500 to be paid at the End of 10 Years,
Rebate being made at 3% Cent. pannum from
pound Interest?

$$\begin{array}{r} .613913 \\ \times 7500 \\ \hline 306956500 \\ 4297391 \\ \hline \underline{\underline{£4604347500}} \text{ answer.} \end{array}$$

W

What is a yearly Rent of £ 65, to continue 30 Years, worth in ready Money Rebate being made at £ 8 per cent. Ann. compound Interest?

$$\begin{array}{r} 13.76483 \\ \times 65 \\ \hline 6882415 \\ 8258898 \\ \hline \underline{\underline{894.71395}} \end{array}$$

Answer

W

What's the present Worth of the Reversion
of a Lease of \$500 Pannum to continue 20 Years, but
not to commence till after the End of five Years, al-
lowing the purchaser 6% Cent. Compound Int.?

Sums of this Nature must be worked as follows.
First find the Present Worth of the propos'd Annu-
ity, for the given time of its continuance as if it were to
commence immediately, then see what ~~forborn~~ at
Principal, forborn at the given Interest, would in
time of the Reversion amount to the aforesaid pre-
sent Worth, & that Principal will be the present
Worth of such annuity in Reversion.

11.16992
500
573496000

4.21236
500
2106.18000

12.78335
500
6391.67500
2106.18000
Ans: 4285.49500

~~L L L
1.33822 : 5734.96~~

1.33822)5734.960000000(^{ans:}
535280
382080
267644
1144360
1070576
737840
669110
687300
669110
181900
133822
480780.
388466
923140
868932
44208

Freehold Estates

To find the present Worth of any annual Rent to continue forever call'd Fee-Simple.

Rule

Divide the propos'd Rent by the Interest of £ for $\frac{1}{Yr}$ (which at 5% Cent. is .05 & 6% Cent. 06 as hinted before) & the Quotient is the present Value of the Estate.

Or it may be done by multiplying the Fee-Simple of £ by the Yearly Rent propos'd.

The Fee-Simple of £ Platinum compound Int.

at	Percent. is	£
1		100.00000
2		50.00000
3		33.33333
4		25.00000
5		20.00000
6		16.66667
7		14.28571
8		12.50000
9		11.11111
10		10.00000

What is an Estate of ~~200~~^L Pannum
to continue forever worth in ready Money al-
lowing the purchaser ~~5~~^L Cent. Pannum from
pound Interest?

Ans:
$$\begin{array}{r} 200.00 \\ \hline 4000L \end{array}$$

Answer
$$\begin{array}{r} 200 \\ 20 \\ \hline 4000L \end{array}$$

C has the possession of an estate
 of £ 130 per annum to continue 20 years; B
 has the reversion of the same from that
 time forever. What must A give B if he
 would purchase his reversion? and what
 must B give A if he would buy his possession
 accounting 6% comp. Int. in each case?

11.46992

130

Ans: £ 1491.08960 As possession

$\begin{array}{r} .06 \\ \hline 130.00000 \\ 2166.6666 \\ \hline 1491.0896 \\ \hline 675.567 \end{array}$

£ 675.567

B's reversion

E agrees with B for an Annuity
of 600 £^s annum to continue 25 Years to
give him the present Worth of it at 6% cent.
£annum; but not having Money enough
by him offers to make over to him a Freehold
Estate of 12 £^s annum at the same Interest,
What Money besides will pay his Purchase?

$$\begin{array}{r} 12.70335 \\ - 600 \\ \hline 7670.01000 \\ - 200.00000 \\ \hline \text{Ans: } 7470.01000 \end{array}$$

$$\begin{array}{r} .06 \sqrt{12.00} \\ \hline 800.0 \end{array}$$

Single Fellowship

See explain'd in Whole Numbers.

D Rule

Divide the whole gain or loss by the whole stock, & multiply the quotient by each man's particular stock the several products are the respective gains of each. Six or seven places of decimals in the quotient are sufficient in most cases.

Suppose A B & C trading together A puts ^{in £} 500
B £ 700 & C £ 1200 their whole gain is £ 36. What share
of it belongs to each?

	\mathcal{L}
A 500	
B 700	
C 1200	
Tot 2400	
	836.0000000 (.3483333)
	<u>7200</u> <u>500</u>
	<u>11600</u> <u>174.1666500</u> A's Share
	<u>9600</u>
	<u>20000</u> .3483333
	<u>19200</u> <u>700</u> B's Share
	<u>8000</u> <u>243.8333100</u>
	<u>7200</u>
	<u>8000</u> <u>3483333</u>
	<u>7200</u> <u>417.9999600</u> C's Share
	<u>8000</u>
	<u>7200</u>
	<u>8000</u>
	<u>7200</u>
	<u>8000</u>

$$\left. \begin{array}{l} \text{A's} \\ \text{B's} \\ \text{C's} \end{array} \right\} \text{share} \left. \begin{array}{l} \mathcal{L} 174.16665 \\ 243.83331 \\ 417.99996 \\ \hline \mathcal{L} 835.99992 \end{array} \right\} \text{Proof}$$

Double Fellowship

Is so called when their Gains are different not only in respect of their Stocks but in respect of the time of Continuance in Company. Therefore to work the sums observe this general

Rule.

{ As the total ^{sum of the} Products of each Mans Money & Time,
Is to the total Gain;
So is the particular product of each Mans money & time,
To each Mans particular Gain.

Op puts into company £525.10 for
 6 months B382.75 for 8 months & £1000 for 4 months
 they gained in all £86.12. How much is that for each?

$\text{A } 525.5$	$\text{B } 382.75$	$\text{C } 1000$
$\frac{6}{3153.0}$	$\frac{8}{3062.00}$	$\frac{4}{4000}$

3062.0	4000.0	10215.0
$\underline{10215.0}$	1286.600000	$.125952$
10215		

26510
20430
$\underline{60800}$
51075
97250
91935
$\underline{53150}$
51075
20750
20430
$\underline{320}$

$.125952$
3153
$\underline{377856}$
629760
125952
377856
$\underline{397.126656}$

$.125952$
3062
$\underline{251904}$
755712
3778560
$\underline{385.665024}$

£ 	$.125952$
	4000
	$\underline{503.808000}$
	6's Gain
	385.665024
	4's Gain
	397.126656
	2's Gain
£ 	$\underline{1286.599680}$

A & B

Company. Viz.
A put in the first of Jan: £ 59 but B could not
put any Money in till the 1st of May following.
What must B then put in to have an equal
Share with A at the Years End?

Months	£	Months
12	:	59 :: 8
12		
8	70 8.0	
£ 88.5 Answer		

A B & C keep

Company; A put in the first of March 60 £ B put in the sixth of May 160 Yards of Broad Cloth, & C put in the first of June 240 Ducats: On the first of January following they accounted their gain; of which A & B took up £ 456. B & C took up £ 431. & C & A took up £ 375. The question is what was gain'd as well in the whole as a part, what B valued a yard of Cloth at, & what C's Ducats value was?

£

456 A & B
431 B & C
375 C & A

2 [1262]

631 Total Gain
431 B & C
200 A's Gain

£	£
631	631
375	456
256 B's Gain	175 C's Gain

£	Months	£	£	Months	£
60	- 10	— 200	60	- 10	— 200
*	- 8	— 25.6	*	- 7	— 17.5

60		175	
10		60	
<u>600</u>	<u>8</u>	<u>10500</u>	<u>7</u>
256		10	
<u>3600</u>		<u>10500</u>	
3000		2	
1200		525	
<u>1600</u>			
{ 2 1536 00			
8 768			
96 £ Ans.			

£ Yrs.
160 : 96 :: 1

160	{ 2 96.00
	8 4.8
	.6

Ducats £ Ducat
240 : 72 :: 1

240	{ 2 75.00
	12 3.75
	.3125

ABC Company

put in together £ 3822 A's money was in 3 Months;
 B's money was in 5 Months; & C's money was in
 7 Months; They gained £ 3 1/4 which was so di-
 vided as the $\frac{1}{2}$ of A's gain was equal $\frac{2}{3}$ of B's gain & $\frac{3}{5}$
 of B's gain equal $\frac{4}{3}$ of C's gain What did each Mer-
 chant gain & put in?

$$\text{Sup: } \begin{array}{r} \text{£} \\ 70 \text{ A's} \\ 105 \text{ B's} \\ 140 \text{ C's} \end{array} \left\{ \begin{array}{l} \text{gain} \end{array} \right.$$

$$\begin{array}{r} \text{£} \quad \text{£} \quad \text{£} \\ 315 : 234 :: 70 \\ \quad \quad \quad 70 \\ 315) 16380 (52 \text{ £} \\ \quad \quad \quad \underline{1575} \\ \quad \quad \quad 630 \\ \quad \quad \quad \underline{630} \end{array}$$

$$\begin{array}{r} \text{£} \\ 52 \\ 78 \\ 104 \end{array} \left\{ \begin{array}{l} \text{A's} \\ \text{B's} \\ \text{C's} \end{array} \right\} \text{true Gain}$$

$$\begin{array}{r} \text{£} \\ 52 \\ 3 \\ \hline 156 \\ 390 \\ 728 \\ \hline 1274 \end{array} \left(\begin{array}{l} 3 \\ 3822 \end{array} \right)$$

$$\begin{array}{r} \text{£} \\ 78 \\ 5 \\ \hline 390 \\ 3 \\ \hline 1170 \end{array}$$

$$\begin{array}{r} \text{£} \\ 104 \\ 2 \\ \hline 728 \\ 3 \\ \hline 2184 \end{array} \left(\begin{array}{l} 468 \text{ £} \\ \text{A put in} \\ 156 \\ 3 \\ \hline 468 \end{array} \right)$$

B put in 1170 £

C put in 2184 £

O H C Company.

A put in the ⠄ of January 100 & the first of May puts in 150 more & on the first of September takes out 30 the Remainder stays in till the Year's End. B put in the first of January 250 & on the first of June 50 more & on the first of November 100 more which continue in till the Year's End. C put in the first of Jan: 300 & on the first of April takes out 200 & on the first of August takes out 50 more the Remainder stays in till the Year's End. What must each have of the gain which was 133?

	£	Months	$\frac{100}{4}$	$\frac{250}{4}$	$\frac{220}{4}$	
A's	100	4	$\frac{400}{4}$	<u>1000</u>	<u>880</u>	As 2280
	250	4	$\frac{1000}{4}$	$\frac{310}{5}$	$\frac{410}{2}$	Bs 3620
	220	4	as <u>2280</u>	<u>1550</u>	<u>820</u>	Cy 1550
B's	250	5	$\frac{250}{5}$	$\frac{1250}{820}$		Tot. <u>7450</u>
	310	5	<u>1250</u>	Bs <u>3620</u>		
	410	2	$\frac{300}{3}$	$\frac{100}{4}$	$\frac{50}{5}$	
C's	300	3	$\frac{900}{3}$	<u>400</u>	<u>250</u>	
	100	4	<u>900</u>		<u>400</u>	
	50	5			<u>900</u>	Cy 1550

7450) 138.00000000 (:017052

$$\begin{array}{r} 7450 \\ - 58500 \\ \hline 52150 \\ - 59600 \\ \hline 30000 \\ - 37250 \\ \hline 12500 \\ - 14900 \\ \hline 2600 \end{array}$$

.017052
1550

892600

89260

17852

27.670600 As

64.624240 B's

40.702560 B's

.017052
3620

357040

107112

53556

64.624240

.017052
2280

1428160

35704

35704

40.702560

£ } Gain

Evolution

or

Extraction of Roots.

The Square Root.

S

The Extraction whereof consists in finding the side of a square Figure, or Numerically speaking it consists in finding what Number multiplied by its self will produce of Num^{br} given.

Thus the Square Root of 25 is 5, for $5 \times 5 = 25$.

What a Square is may be seen by the following Figure which being divided every way into equal parts its whole Content or Square is 49 & its Side or Root is 7.

7

Square Numbers are either Single or compound.

A single Square Number is always less than 100 & its Root is found at once by the following Table.

1	4	9	16	25	36	49	64	81	Squares
1	2	3	4	5	6	7	8	9	Roots

Suppose 96 a Square Number given whose Root is required look in the Table for the next least square Number which is 81 whose Root is 9 & the Remainder is 15.

A Compound square Number is made by the Multiplication of 2 or more figures by themselves & always 100 as 13² which is 11 times 12; or 16² which is 13 times 13.

To find the Root of any compound Square Number as suppose 2704.

First you must distinguish it into single Squares by placing Dots over every other figure beginning at thy right Hand.

Thus 2744

And so many Dots as happen so many Places will the Root consist of

Secondly drawing a crooked Line on the right Hand of your Number as in Division find the Root your first single square & place it in the Quotient.

Viz 2704(5)

Thirdly placing the Square of the Root found under the first single square subtract & set downn the Remainder bringing down to it the next single square & call the line a Resolvend.

Viz. 2704(5)

$\frac{25}{204}$ Resolvend.

Fourthly drawing another crooked Line on the left hand of the said Resolvend, place beyond it the double of the Quotient, in the Manner of a Divisor.

Viz. 2704(5)

$\frac{25}{10} \overline{)204}$ Resolvend

Fifthly dividing the Resolvend all but the Units place, by the said Divisor set downn the Number of times it goes both in the Quotient & on the right hand of the Divisor Viz 2704(52).

$\frac{25}{102} \overline{)204}$ Resolvend

Sixthly multiplying the whole Divisor by the Figure last plac'd in the Quotient set down the product under & substrat it from the Resolwend.

Viz
2704(52

$$\begin{array}{r} 25 \\ \hline 102) 204 \text{ Resolwend} \\ 204 \\ \hline 0 \end{array}$$

The same Question linally explained.

The several parts of a square

$\frac{2500}{100}$	$\frac{100}{100}$	$\frac{4}{4}$
Whole Square	$\overline{2704}$	
Parts of the Root	$\frac{50}{2}$	$\overline{52}$
Whole Root	$\overline{52}$	

What's the Square Root
of 119716?

$$\begin{array}{r} 119716(346 \\ 9 \\ \hline 64) 297 \\ 256 \\ \hline 686) 4116 \\ 4116 \\ \hline \end{array}$$

What's the Square Root
of 21418384?

$$\begin{array}{r} 21418384(4628 \\ 16 \\ \hline 86) 541 \\ 516 \\ \hline 922) 2583 \\ 1844 \\ \hline 9248) 73984 \\ 73984 \\ \hline \end{array}$$

What's the Square Root
of 90032402916?

$$\begin{array}{r} 90032402916(300054 \\ 9 \\ \hline 60)000 \\ 000 \\ \hline 600)32 \\ 00 \\ \hline 6000)3240 \\ 0000 \\ \hline 6000)324029 \\ 300025 \\ \hline 6001)79400416 \\ 2400416 \\ \hline \end{array}$$

What's the Square Root
of 321605273?

$$\begin{array}{r} 321605273.000000(17933.356 \\ 27)221 \\ 189 \\ \hline 349)3260 \\ 3141 \\ \hline 3583)11952 \\ 10749 \\ \hline 35863)120373 \\ 107589 \\ \hline 35866.3)1278400 \\ 1075989 \\ \hline 35866.65)20241100 \\ 17933325 \\ \hline 35866.7062)30777500 \\ 215200236 \\ \hline 15577264 \end{array}$$

N.B. If the Product happens to be more than the Resolvend you may be sure you have taken it a time too much & must therefore set a less Figure in the Root.

Secondly the Operation for finding a new Resolvend & Divisor must be repeated for every Figure placed in the Root except the first.
If you would extract the Square Root of a Vulgar Fraction Extract the Square of the Numerator the Root thereof place for a Numerator then Extract ye Square of the Denominator the

Root of which place for a Denominator. But if the Fraction happens to be surd that is composed of such Numbers whose Roots cannot be exactly found; Reduce it to a Decimal & then observe

*T*he Rule.

To extract the Square Root of a Decimal Fraction.

T

The Decimal must be made to consist of an even Number of places & then point & separate as before.

Note first if you would find the fractional parts of any Rem. annex pairs of Cyphers & proceed as far as you please. Secondly if a mixt Number be given the Decimals must be even.

T

To prove Extractions of the square Root.

*M*ultiply the Root by its self (to the Product add in the remainder if any) which if right will be the same with the given Number.

What's the square Root

of $\frac{16}{49}$?

ans: $\frac{4}{7}$

What's the square Root of $\frac{256}{441}$

$$\begin{array}{r} \sqrt[2]{256}(16) \\ 26 \overline{)156} \\ \underline{156} \end{array}$$

$$\begin{array}{r} \sqrt[2]{441}(21) \\ 41 \overline{)241} \\ \underline{241} \end{array}$$

ans: $\frac{16}{21}$

What's the Square Root of $\frac{17}{19}$?

19) 17.00000000 (.89473684 (9459 Ans:

$$\begin{array}{r} \sqrt[18]{152} \\ 180 \\ \underline{171} \\ 90 \\ 26 \\ \underline{140} \\ 133 \\ 70 \\ 57 \\ 130 \\ 114 \\ 160 \\ 152 \\ 80 \\ 76 \\ 4 \end{array}$$

What's the Square Root
of 31614130?

$$31614130.00000000 \text{ Ans: } 5622.6443$$

$$\begin{array}{r}
 25 \\
 106) 661 \\
 \underline{-636} \\
 1122) 2541 \\
 \underline{-2244} \\
 11242) 29730 \\
 \underline{-22484} \\
 112446) 724600 \\
 \underline{-674676} \\
 1124524) 4992400 \\
 \underline{-449} \\
 11245284) 49430400 \\
 \underline{-44981136} \\
 112452883) 444926400 \\
 \underline{-337350649} \\
 \times 07567751
 \end{array}$$

What's the Square
Root of 3513?

$$\begin{array}{r}
 \text{ans: } 3513.06000000 \\
 25 \\
 109) 1013 \\
 \underline{-981} \\
 1182) 3200 \\
 \underline{-2364} \\
 11847) 83600 \\
 \underline{-82929} \\
 118540) 67100 \\
 \underline{-00000} \\
 1185405) 6710000 \\
 \underline{-5927025} \\
 \underline{\underline{102975}}
 \end{array}$$

What's the Square Root of $6\frac{4}{5}$

$$\begin{array}{r}
 6.00000000 \text{ Ans: } 2.6076 \\
 46) 280 \\
 \underline{-276} \\
 520) 400 \\
 \underline{-000} \\
 5207) 40000 \\
 \underline{-36449} \\
 52146) 355100 \\
 \underline{-312876} \\
 \underline{\underline{42224}}
 \end{array}$$

Cube Root

The Extraction whereof consists in finding the side of a solid Figure whose Length Breadth & Depth are equal, or numerically speaking it consists in finding out what number multiplied twice into its self will produce the number, thus the Cube Root of 343 is 7, for $7 \times 7 = 49$ & $49 \times 7 = 343$, the given Cube Root given

What a cube is may be seen by the following Figure.

Cube Numbers are either single or compound.

A single Cube Number is always less than 1000 therefore its Root may be found at sight by the following Table, for if you involve 6 to the 3^{rd} power its 216 &c.

Roots	1	2	3	4	5	6	7	8	9
Squares	1	4	9	16	25	36	49	64	81
Cubes	1	8	27	64	125	216	343	512	729

A Compound Cube Number is always more than a 1000 & therefore the Root cannot be found at first sight as in single Cube Numbers but must be proceeded with as follows.

Suppose 15625 which is a Compound Number to find the Root thereof.

You must 1.st distinguish it into single cubes which is done by placing Dots over every third figure beginning from the Right Hand thus

and so many Dots as happen so many Places
will the Root consist of.

Secondly drawing a crooked Line on the Right
Hand of your Number as in Division set down as
a Quotient the Root of your first single Cube.

Thirdly placing the Cube of the Root found un-
der the first single Cube, subtract, & to the Remain-
der bring down the next single Cube which call
a Resolvend. Viz. $\frac{1}{8} \overline{) 15625(2}$

$\overline{7625}$ Resolvend

Fourthly draw a line under the Resolvend
& tripling the Square of the Root set the said
triple square under the Resolvend; so that U-
nits in the said triple square may stand un-
der the place of hundredrs in the Resolvend.

Viz. $\frac{1}{8} \overline{) 15625(2}$

$\overline{7625}$ Resolvend
 $\overline{12}$ Triple square of 2

Fifthly subscribe also the triple of the Root
so that Units in this may stand under the
place of tens in the Resolvend. Viz. $\frac{1}{8} \overline{) 15625(2}$

$\overline{7625}$ Resolvend
 $\overline{12}$ Triple squ.of 2
6 Triple of the
Root

Sixthly the triple square of the Root & triple Root being placed as directed draw a line under them & add them together in the Order they are placed; the sum is a Divisor. Viz. $\frac{8}{15625} (2)$

$$\begin{array}{r} \text{Resolwend} \\ \overline{12} \text{ triple square of } 2 \\ \overline{6} \text{ triple of the Root } 2 \\ \hline \text{Divisor.} \end{array}$$

Seventhly Accounting all the Resolwend (except the place of Units) a Dividend seek how oft the Divisor is contain'd in it & place the Number of times in the Quotient. Viz. $\frac{8}{15625} (25)$

$$\begin{array}{r} \text{Resolwend} \\ \overline{12} \text{ triple square of } 2 \\ \overline{6} \text{ triple of the Root } 2 \\ \hline \text{Divisor} \end{array}$$

Eighthly draw a line under the Divisor and multiply the triple square by the figure last produced placed in the Quotient set the Product so under the said triple square that Units be under Units &c. Viz. $\frac{8}{15625} (25)$

$$\begin{array}{r} \text{Resolwend} \\ \overline{12} \text{ triple square of } 2 \\ \overline{6} \text{ triple of the Root } 2 \\ \hline \text{Divisor} \\ \overline{60} \text{ triple square } \times 5 \end{array}$$

Ninthly squaring the figure last placed in the Quotient so that tens in that Multiply its

Square by the triple Root & place the product so that Units in this may stand under Units in the said triple Number. Viz.

15625(25

8
7625 Resolvend
12 triple square of 2
6 triple of the Root 2
126 Divisor
60 triple square x 5
150 triple Root x 5 x 5

Tenthly subscribe the Cube of the figure last placed in the Quotient so that tens in this may stand under Units in the former product.

Viz.

15625(25

8.
7625 Resolvend
12 triple square of 2
6 triple of the Root 2
126 Divisor
60 triple square x 5
150 triple Root x 5 x 5
125 Cube of 5

Eleventhly then drawing a line add the three last Numbers last placed together & substrating the sum (which is called the ablatitium) from the Resolvend set down the Remainders (if any) in order underneath as in common subtraction.

Viz. 15625 (25)

7625 Resolvend

12 triple square of 2
6 triple of the Root 2

126 Divisor

60 triple square x 5
150 triple Root x 5 x 5
125 Cube of 5

7626 ablatitium

N

Note if the given Number has more places the next single cube must be brought down to the last Remainder, for a new Resolvend & the work of the 4.th 5.th 6.th 7.th 8.th 9.th 10.th 11.th Rules must be repeated as often as you so form a new Resolvend; & if the ablatitum is greater than the Resolvend the Work is false which must be rectify'd by placing a lesser figure in the Quotient.

A Lineal Explanation.

15625
8494 Cube AD

7625 Remainder or Resolvent

1200 Bases of the parallelepipedes JHK

60 Height of parallelepipedes FHL

1260 Divisor

6000 Content of parallelepipedes JHK

1500 Content of parallelepipedes FHL

125 Content of parallelepipedes G

7625 Total or Ablatitium

To prove Evolutions or Extractions of the
Cube Root.

Rule.

Multiply the Root found by itself the
product multiply'd again by the Root to which adding
the Remainder if any which is done right will produce the
exact Cube.

To extract the Cube Root of a Vulgar Fraction.

Which if commensurable extract the Cube Root
of the Numerator for the Numerator of the Root & the
Cube Root of the Denominator for the Denomina-
tor of the Root.

But if incommensurable reduce it to a Deci-
mal & extract the Cube Root thereof.

What's the Cube Root? What's the Cube Root of
of 262144? ~~48627125?~~

$$b = a \frac{262144}{216} \quad (64 \text{ Ans.})$$

46144 Resolvend

$$4 = b \frac{1098}{132} \quad \text{Divisor}$$

$$\frac{108}{18} = 3a^2$$

$$\frac{18}{64} = 3a^2b$$

$$\frac{288}{64} = 3ab^2$$

$$\frac{64}{46144} = b^3$$

46144

$$\begin{array}{r} 64 \\ 64 \\ \hline 256 \\ 384 \\ \hline 4096 \\ 64 \\ \hline 16384 \\ 24576 \\ \hline 262144 \end{array}$$

Proof.

$$3 = a \frac{48627125}{27} \quad (36 \text{ Ans.})$$

~~216~~ Resolvend

$$6 = b \frac{279}{162} \quad \text{Divisor}$$

$$\frac{162}{324} = 3a^2b$$

$$\frac{324}{216} = 3ab^2$$

$$\frac{216}{19656} = b^3$$

~~19656~~ Ablatitum

$$\frac{1971125}{3088} \quad \text{Resolvend}$$

$$36 = a \frac{3088}{108} = 3a^2$$

$$4 = b \frac{38988}{15552} \quad \text{Divisor}$$

$$\frac{15552}{1728} = 3a^2b$$

$$\frac{1728}{64} = 3ab^2$$

$$\frac{64}{1572544} = b^3$$

~~1572544~~ Ablatitum

~~398581~~ Resolvend

$$\begin{array}{r} 364 \\ 364 \\ \hline 1456 \\ 2184 \\ 1092 \\ \hline 132496 \\ 364 \\ \hline 529084 \\ 794976 \\ 397488 \\ 398581 \\ \hline 48627125 \end{array}$$

Proof

What's the Cube Root of 13798. to three Decimal Places in the Root?

$$2 = a \quad \frac{13798.00000000}{8} = a^3 \quad (23.984 \text{ Ans.})$$

$$\underline{5798} = 1^{\text{st}} \text{ Resolvend}$$

$$\underline{12} = 3a^2$$

$$3 = b \quad \frac{6}{126} \text{ Divisor } 1^{\text{st}}$$

$$\underline{36} = 3a^2b$$

$$\underline{54} = 3ab^2$$

$$\underline{27} = b^3$$

$$23 = c \quad \frac{4167}{1631000} \text{ Ablatitum } 1^{\text{st}} \quad \text{Resolvend } 2^{\text{nd}}$$

$$\underline{1587} = 3a^2$$

$$9 = b \quad \frac{69}{15939} \text{ Divisor } 2^{\text{nd}}$$

$$\underline{14283} = 3a^2b$$

$$\underline{5589} = 3ab^2$$

$$\underline{729} = b^3$$

$$23.9 = a \quad \frac{1484919}{146081000} \text{ Ablatitum } 2^{\text{nd}} \quad \text{Resolvend } 3^{\text{rd}}$$

$$\underline{171363} = 3a^2$$

$$8 = b \quad \frac{717}{1714347} \text{ Divisor } 3^{\text{rd}}$$

$$\underline{1370904} = 3a^2b$$

$$\underline{45888} = 3ab^2$$

$$\underline{512} = b^3$$

$$23.98 = a \quad \frac{137549792}{8531208000} \text{ Ablatitum } 3^{\text{rd}} \quad \text{Resolvend } 4^{\text{th}}$$

$$\underline{17251212} = 3a^2$$

$$4 = b \quad \frac{7194}{172519314} \text{ Divisor } 4^{\text{th}}$$

$$\underline{69004848} = 3a^2b$$

$$\underline{115104} = 3ab^2$$

$$\underline{64} = b^3$$

$$\frac{6901635904}{1629572096} \text{ Ablatitum } 4^{\text{th}} \quad \text{Resolvend } 5^{\text{th}}$$

$$\begin{array}{r}
 23.984 \\
 23.984 \\
 \hline
 95936 \\
 191072 \\
 215056 \\
 71952 \\
 47968 \\
 \hline
 575.232256 \\
 23.984 \\
 \hline
 2300929024 \\
 4601858040 \\
 5177090304 \\
 1725696768 \\
 1150464512 \\
 1629572096 \\
 \hline
 13798.000000000
 \end{array}$$

Proof.

What's the Cube Root of $5\frac{16}{9}$?

$$19) 16.000000000 (\overbrace{5.042105263}^{l=a^{\frac{1}{3}}} \text{ Ans.}$$

$$\begin{array}{r}
 80 \\
 76 \\
 \hline
 40
 \end{array} \quad \begin{array}{r}
 4042 \\
 \hline
 3
 \end{array} \text{ Resolvend}$$

$$\begin{array}{r}
 38 \\
 20 \\
 \hline
 19
 \end{array} \quad \begin{array}{r}
 3 \\
 24 \\
 \hline
 192
 \end{array} = 3a^2$$

$$\begin{array}{r}
 19 \\
 100 \\
 \hline
 95
 \end{array} \quad \begin{array}{r}
 512 \\
 4032 \\
 \hline
 192
 \end{array} = 3ab^2$$

$$\begin{array}{r}
 50 \\
 38 \\
 \hline
 120
 \end{array} \quad \begin{array}{r}
 10105263 \\
 97200 \\
 \hline
 540
 \end{array} = 3a^2b$$

$$\begin{array}{r}
 114 \\
 60 \\
 57 \\
 \hline
 3
 \end{array} \quad \begin{array}{r}
 972540 \\
 97200 \\
 540 \\
 \hline
 1
 \end{array} = 3a^2b^2$$

$$\begin{array}{r}
 9725401 \\
 379862
 \end{array} \quad \begin{array}{r}
 1.801 \\
 1.801 \\
 1.801 \\
 144080 \\
 1801 \\
 3.243601 \\
 1.801 \\
 3243601 \\
 259408080 \\
 3243601 \\
 379862 \\
 \hline
 5042105263
 \end{array} \quad \text{Proof}$$

What's the Cube Root of $\frac{24}{37}$?

$$\begin{array}{r}
 37) 24.000000000 \\
 \underline{222} \qquad \qquad \qquad \begin{matrix} 8 = a \\ 512a^3 \end{matrix} \qquad \begin{matrix} .640640640 \\ (.865 \text{ Answer}) \end{matrix} \\
 \underline{180} \qquad \qquad \qquad \begin{matrix} 136640 \\ 192 \end{matrix} = \text{Resolvend} \\
 \underline{148} \qquad \qquad \qquad \begin{matrix} 24 \\ 3a^2 \end{matrix} \\
 \underline{320} \qquad \qquad \qquad \begin{matrix} 6-b \\ 1944 \end{matrix} = \text{Divisor} \\
 \underline{296} \qquad \qquad \qquad \begin{matrix} 24 \\ 1152 \end{matrix} = 3a^2b \\
 \underline{240} \qquad \qquad \qquad \begin{matrix} 864 \\ 216 \end{matrix} = 3ab^2 \\
 \underline{222} \qquad \qquad \qquad \begin{matrix} 216 \\ 124056 \end{matrix} = b^3 \\
 \underline{180} \qquad \qquad \qquad \begin{matrix} 124056 \\ 86-a \end{matrix} = \text{Ablatitium} \\
 \underline{148} \qquad \qquad \qquad \begin{matrix} 12592640 \\ 22188 \end{matrix} = \text{Resolvend} \\
 \underline{320} \qquad \qquad \qquad \begin{matrix} 258 \\ 3a^2 \end{matrix} \\
 \underline{296} \qquad \qquad \qquad \begin{matrix} 5=b \\ 222138 \end{matrix} = \text{Divisor} \\
 \underline{24} \qquad \qquad \qquad \begin{matrix} 110940 \\ 6450 \end{matrix} = 3a^2b \\
 \qquad \qquad \qquad \begin{matrix} 125 \\ 11158625 \end{matrix} = b^3 \\
 \qquad \qquad \qquad \begin{matrix} 11158625 \\ 1434023 \end{matrix} = \text{Ablatitium} \\
 \qquad \qquad \qquad \begin{matrix} 1434023 \\ 648648640 \end{matrix} = \text{Resolvend}
 \end{array}$$

$$\begin{array}{r}
 .865 \\
 \underline{.865} \\
 \underline{4325} \\
 \underline{5190} \\
 \underline{6920} \\
 \underline{748225} \\
 \underline{.865} \\
 \underline{3741125} \\
 \underline{4489350} \\
 \underline{5985800} \\
 \underline{1434023} \\
 \underline{648648640} \text{ Proof.}
 \end{array}$$

Duodecimal Arithmetic

This is what is called Cross Multiplication amongst Workmen & Artificers who generally cast up all their measured Work by this Way therefore you are to observe the following Table.

Factors	Feet	Inches	Parts
Feet	are Feet ÷ by 12 are Inches	are Inches ÷ by 12 are Feet	are parts ÷ by 12 are Inches
Inches	are Inches ÷ by 12 are Feet	are parts ÷ by 12 are Inches	are seconds ÷ by 12 are parts
Parts	are Parts ÷ by 12 are Inches	are seconds ÷ by 12 are parts	are thirds ÷ by 12 are seconds

1.st Feet & Inches by Feet & Inches.

Let 7 Feet 9 Inches be multiplied by 5 Feet 6 Inches?

Feet In:

$$\begin{array}{r} 7 \ " \ 9 \\ \times 5 \ " \ 6 \\ \hline 38 \ " \ 9 \text{ Parts} \\ 3 \ " \ 10 \ " \ 6 \\ \hline 42 \ " \ 7 \ " \ 6 \end{array}$$

Let 73 Feet 7 Inches be multiplied by 9 Feet 9 Inches?

Feet In:

$$\begin{array}{r} 73 \ " \ 7 \\ \times 9 \ " \ 9 \\ \hline 657 \ " \ 0 \text{ Parts} \\ 36 \ " \ 9 \ " \ 6 \\ 18 \ " \ 4 \ " \ 9 \\ 4 \ " \ 6 \ " \ 0 \\ 0 \ " \ 9 \ " \ 0 \\ \hline 717 \ " \ 5 \ " \ 3 \end{array}$$

Let 97 Feet 11 Inches be multiplied by 8 Feet 10 Inches.

Feet In:

$$\begin{array}{r} 97 \cdot 11 \\ \times 8 \cdot 10 \\ \hline 776 \cdot 0 \end{array}$$

Parts

$$\begin{array}{r} 48 \cdot 11 \cdot 6 \\ 32 \cdot 7 \cdot 0 \\ 4 \cdot 0 \cdot 0 \\ 2 \cdot 0 \cdot 0 \\ 1 \cdot 4 \cdot 0 \\ \hline 864 \cdot 11 \cdot 2 \end{array}$$

Ans:

Let 69 Feet 9 Inches be multiply'd by 19 Feet 7 Inches.

Feet In:

$$\begin{array}{r} 69 \cdot 9 \\ \times 19 \cdot 7 \\ \hline 1311 \cdot 0 \end{array}$$

Parts

$$\begin{array}{r} 23 \cdot 3 \\ 17 \cdot 5 \cdot 3 \\ 9 \cdot 6 \cdot 0 \\ 4 \cdot 9 \cdot 0 \\ \hline 1365 \cdot 11 \cdot 3 \end{array}$$

ans:

Let 85 Feet 5 Inches be multiply'd by 37 Feet 8 Inches.

Feet In:

$$\begin{array}{r} 85 : 5 \\ \times 37 : 8 \\ \hline 595 : 0 \\ 255 : 0 \quad \text{Parts} \\ 42 : 8 : 6 \\ 14 : 2 : 10 \\ 12 : 4 : 0 \\ 3 : 1 : 0 \\ \hline 3217 : 4 : 4 \text{ ans.} \end{array}$$

Let 238 Feet 3 Inches be multiplyed by 48 Feet 11 Inches.

Feet In:

$$\begin{array}{r} 238 : 3 \\ \times 48 : 11 \\ \hline 1904 : 0 \\ 952 : 0 \quad \text{Parts} \\ 119 : 1 : 6 \\ 59 : 6 : 9 \\ 39 : 8 : 6 \\ 12 : 0 : 0 \\ \hline 11654 : 4 : 9 \text{ Answer} \end{array}$$

Multiply 257 Feet 9 Inches by 54 Feet 11 Inches?

Feet Inches
257 ⁴ 9
54 ⁴ 11
1028 ⁴ 0
1285 ⁴ 0 Parts
128 ⁴ 10 ⁴ 6
64 ⁴ 5 ⁴ 3
42 ⁴ 11 ⁴ 6
27 ⁴ 0 ⁴ 0
13 ⁴ 6 ⁴ 0
<u>14154⁴ 9⁴ 3</u> Ans:

2nd Feet Inches & Parts into Feet Inches & Parts.

Let 9 Feet 7 Inches 9 parts be multiply'd by 4 Feet 5 Inches 3 parts

Feet Inches Parts
9 ⁴ 7 ⁴ 9
4 ⁴ 5 ⁴ 3
38 ⁴ 7 ⁴ 0 Seconds
4 ⁴ 0 ⁴ 2 ⁴ 9 Thirds
2 ⁴ 4 ⁴ 11 ⁴ 3
<u>42⁴ 9⁴ 7⁴ 8⁴ 3</u> Ans:

Let 34 Feet 9 Inches 5 parts be multiplied by 5 feet 8 Inches 7 parts.

Feet Inches Parts

$$\begin{array}{r} 34 \ " \ 9 \ " \ 5 \\ 5 \ " \ 8 \ " \ 7 \\ \hline 170 \ " \ 0 \ " \ 0 \text{ seconds} \\ 17 \ " \ 4 \ " \ 8 \ " \ 6 \\ 5 \ " \ 9 \ " \ 6 \ " \ 10 \text{ Thirds} \\ 1 \ " \ 5 \ " \ 4 \ " \ 8 \ " \ 6 \\ 0 \ " \ 2 \ " \ 10 \ " \ 9 \ " \ 5 \\ 2 \ " \ 6 \ " \ 0 \ " \ 0 \ " \ 0 \\ 1 \ " \ 3 \ " \ 0 \ " \ 0 \ " \ 0 \\ 0 \ " \ 1 \ " \ 8 \ " \ 0 \ " \ 0 \\ 0 \ " \ 0 \ " \ 5 \ " \ 0 \ " \ 0 \\ \hline 198 \ " \ 9 \ " \ 7 \ " \ 9 \ " \ 11 \text{ Ans.} \end{array}$$

Let 219 Feet 8 Inches 10 parts be multiplied by 37 Feet 5 Inches 11 parts.

Feet Inches Parts

$$\begin{array}{r} 219 \ " \ 8 \ " \ 10 \\ 37 \ " \ 5 \ " \ 11 \\ \hline 1533 \ " \ 0 \ " \ 0 \\ 657 \ " \ 0 \ " \ 0 \text{ seconds} \\ 73 \ " \ 2 \ " \ 11 \ " \ 4 \\ 18 \ " \ 3 \ " \ 8 \ " \ 10 \\ 9 \ " \ 1 \ " \ 10 \ " \ 5 \text{ Thirds} \\ 4 \ " \ 6 \ " \ 11 \ " \ 2 \ " \ 6 \\ 3 \ " \ 0 \ " \ 7 \ " \ 5 \ " \ 0 \\ 18 \ " \ 6 \ " \ 0 \ " \ 0 \ " \ 0 \\ 6 \ " \ 2 \ " \ 0 \ " \ 0 \ " \ 0 \\ 2 \ " \ 0 \ " \ 8 \ " \ 0 \ " \ 0 \\ 0 \ " \ 6 \ " \ 2 \ " \ 0 \ " \ 0 \\ \hline 8238 \ " \ 6 \ " \ 11 \ " \ 3 \ " \ 2 \text{ Ans.} \end{array}$$

A Table of the Decimal Parts of a Foot.

Inches	Decimals	Inch	Decimals	Inch	Decimals
$\frac{1}{4}$.0208333	$\frac{1}{4}$.3541666	$\frac{1}{4}$.6875
$\frac{1}{2}$.0416666	$\frac{1}{2}$.375	$\frac{1}{2}$.7083333
$\frac{3}{4}$.0625	$\frac{3}{4}$.3958333	$\frac{3}{4}$.7291666
1	.0833333	5	.4166666	9	.75
$\frac{1}{4}$.104166	$\frac{1}{4}$.4375	$\frac{1}{4}$.7708333
$\frac{1}{2}$.125	$\frac{1}{2}$.458333	$\frac{1}{2}$.7916666
$\frac{3}{4}$.145833	$\frac{3}{4}$.479166	$\frac{3}{4}$.8125
2	.166666	6	.5	10	.8333333
$\frac{1}{4}$.1875	$\frac{1}{4}$.820833	$\frac{1}{4}$.8541666
$\frac{1}{2}$.208333	$\frac{1}{2}$.841666	$\frac{1}{2}$.875
$\frac{3}{4}$.229166	$\frac{3}{4}$.8625	$\frac{3}{4}$.895833
3	.25	7	.5833333	11	.916666
$\frac{1}{4}$.270833	$\frac{1}{4}$.6041666	$\frac{1}{4}$.9375
$\frac{1}{2}$.291666	$\frac{1}{2}$.625	$\frac{1}{2}$.958333
$\frac{3}{4}$.3125	$\frac{3}{4}$.6458333	$\frac{3}{4}$.979166
4	.3333333	8	.6666666	12	—

Suppose a Plane be 9 feet 10 Inches $\frac{3}{4}$ in Length & 8 Feet 8 $\frac{3}{4}$ Inches in Breadth; Quare the Content or Area?

Feet
9.895833
<u>86875</u>
19479165
69270831
7916664
59374998
<u>7916664</u>
Feet 8 5.9 700491875
12
Inches 11.6405902500
12
Parts 7.6870830000
12
Secs. 8.2449960000
12
Thirs. 2.9399720000

Feet	Inches	Parts
9 "	10 "	9
8 "	8 "	3
79 "	2 " 0	Seconds
6 "	7 " 2 " 0	Thirds
0 "	2 " 5 " 8 " 3	
Proof	85 " 11 " 7 " 8 " 3	

Feet Inches parts

21 2 " 0

11 10 " 6
—
23 1 0 " 0

10 7 " 0

7 0 " 8

0 10 " 7

1 10 " 0
—
25 1 4 " 3

7 3 " 0

17 5 7 0 " 0 sec

6 2 10 " 0 " 9

1 " 9 0 " 0

0 " 7 0 " 0

0 1 9 0 " 0

Proof 18 2 2 3 9 9

What Number of solid Feet is in a cellar 21 Feet 2 Inches long, 11 Feet 10 Inches $\frac{1}{2}$ broad, & 7 Feet 3 Inches deep?

Feet
21.166666
11.875
<hr/>
1058333330
148166662
169333328
21166666
2116666
<hr/>
251.354158750
7.25
<hr/>
1256770793750
502708317500
1759479111250
<hr/>
Feet 1822.31765093750
12
Inches 3.81181125000
12
Parts 9 .74173500000
12
Sec. 8 .90082000000

Feet Inches Parts Sec.
Ans: 1822 $\frac{1}{3}$ " 9 " 9

The Use of the Square Root.

Problem 1.st

To find a Mean proportional between any two given Numbers.

Rule.

Multiply the given numbers together & from their product extract the Square Root which will be the Mean proportional sought.

Let the given Numbers be 12 & 48 What's the Mean proportional between them?

$$\begin{array}{r} 48 \\ \times 12 \\ \hline 576 \end{array} \quad (24 \text{ Answer})$$
$$\begin{array}{r} 4 \\ \hline 44) 176 \\ \underline{176} \end{array}$$

Problem. 2.nd

To find the Side of a Square whose Area shall be equal to any given Superficies.

Rule.

Extract the Square Root from the content of any given Superficies which Root will be the Side of the Square sought adequate thereto.

Let the content of a { Triangle
Parallelogram
Rhombus
Rhomboides
Regular polygon } be { 144
468
810
589
964 } What's the side of a square adequate thereto?
8c

$$\begin{array}{r} \sqrt{144(12)} \\ \hline 22) \overline{44} \\ \underline{44} \end{array}$$

$$468.000000 (21.633)$$

$$\begin{array}{r} 4 \\ \overline{4} \\ 4 \\ \overline{41} \\ 426 \overline{2700} \\ 2556 \\ 4323 \overline{14400} \\ 12969 \\ 43263 \overline{143100} \\ 129789 \\ \hline 13311 \end{array}$$

$$810.000000 (28.4604)$$

$$\begin{array}{r} 4 \\ \overline{4} \\ 18) 410 \\ 381 \\ \overline{2600} \\ 2256 \\ 5686) 34400 \\ 34116 \\ \overline{2840000} \\ 2276816 \\ \hline 563184 \end{array}$$

$$589.000000 (24.269)$$

$$\begin{array}{r} 4 \\ \overline{4} \\ 44) 189 \\ 176 \\ \overline{1300} \\ 964 \\ 1846) 33600 \\ 29076 \\ 18529) 452400 \\ 436761 \\ \hline 15639 \end{array}$$

$$964.000000 (31.048)$$

$$\begin{array}{r} 9 \\ \overline{61) 64} \\ 61 \\ \overline{30000} \\ 24816 \\ 62088) 518400 \\ 496704 \\ \hline 21696 \end{array}$$

Problem. 3.rd

Having any two sides of a rectangled Triangle to find the third side.

Rule

If you have the two shortest sides given to find the Hypotenuse or longest side. From the sum of the Squares of the two sides extract the Square Root which is the Length of the Hypotenuse.

Let the Base or Breadth of a Ditch be 40 Yards & the perpendicular or Altitude of the Wall be 30 Yards what length will the Hypotenuse or scaling Ladder be?

$$\begin{array}{r} 30 \quad 40 \\ 30 \quad 40 \\ \hline 900 \quad 1600 \\ \hline 2500 \end{array} \begin{array}{l} \text{yds} \\ | \\ 50 \text{ ans:} \\ \hline 25 \\ 00 \end{array}$$

Problem 4.th

There is a Tower about which is a Moat 48 Feet wide & scaling Ladder 60 Feet long which will reach from the outside of the Moat to the top of a Wall within the said Moat. Demand the altitude of the said Wall above the Water.

Rule.

From the Hypotenuse square deduct the Base square the square Root of which Remainder is the Altitude or perpendicular required.

Given { Base 48 Feet
Hypotenuse 60 Feet } to find the Altitude?

$$\begin{array}{r}
 48 \qquad 60 \\
 48 \qquad 60 \\
 \hline
 384 \qquad 3600 \\
 192 \qquad 2304 \\
 \hline
 2304 \qquad 1296 \text{ (36 Feet)} \\
 \hline
 9 \\
 66) 396 \\
 \hline
 396
 \end{array}$$

Problem 5.th

If the Hypotenuse & perpendicular were given to find the Base.

Rule.

From the Square of the Hypotenuse deduct
the Square of the perpendicular the Square Root
of which Remainder is the Base requir'd.

given { Hypotenuse 60 feet } to find the Base.
perpendicular 36 feet }

$$\begin{array}{r} 60 \\ 60 \\ \hline 3600 \\ 1296 \text{ Feet} \\ \hline 2304 \\ 2304 \\ \hline 0 \\ 16 \\ 88)704 \\ 704 \\ \hline 0 \end{array}$$

A Company of men drinking together the Reckoning came to 6 S o d $\frac{1}{4}$ I Demand how many were in Company & how much each man spent?

$$\begin{array}{r} \$ \\ 6,0\frac{1}{4} \\ \hline 12 \\ 72 \\ \hline 4 \\ 289(17) \end{array} \quad \begin{array}{r} 289 \\ 17 \\ \hline 119 \\ 119 \end{array} \quad \begin{array}{r} 17 \\ 17 \\ \hline 4\frac{1}{4} \end{array}$$

A company of Men Drinking together the Reckoning came to 5 S. Demand how many were in Company and how much each man spent?

$$\begin{array}{r} \$ \\ 5 \\ \hline 12 \\ 6^o \\ 4 \\ 240(15) \end{array} \quad \begin{array}{r} 240 \\ 15 \\ \hline 9^o \\ 9^o \end{array} \quad \begin{array}{r} 16 \\ 16 \\ \hline 4d \end{array}$$

The Use of the Cube Root.

The principal useful Applications whereof are to find out a proportion between like Solids as globes, cylinders & cubes &c.

Problem. 1.st

To find the side of a Cube that shall be equal in Solidity to any given Solid as a globe, Cylinder, prism, Cone or such like.

Rule

Extract the Cube Root of the given solid Content of any solid body & it will give the side of the cube required.

Let the solid content of a {
Globe } 4188.8 Inches To find the
Cylinder } 40.34 feet side of a
Prism } 14.27 feet cube equal
Cone } 21.07 feet thereto.

$$\begin{array}{r}
 4188.800000(16.09) \\
 1 = a \quad \frac{1}{3188} = a^3 \\
 \underline{3188} \\
 3 = 3a^2 \\
 \frac{3}{3} = 3a \\
 6 = b \quad \frac{33}{18} = 3a^2b \\
 108 = 3ab^2 \\
 \frac{216}{3096} = b^3 \\
 \underline{3096} \\
 92800000
 \end{array}
 \qquad
 \begin{array}{r}
 40.340000(3.42) \\
 3 = a \quad \frac{27}{13340} = a^3 \\
 \underline{13340} \\
 27 = 3a^2 \\
 \frac{9}{9} = 3a \\
 4 = b \quad \frac{279}{108} = 3a^2b \\
 144 = 3ab^2 \\
 \frac{64}{12304} = b^3 \\
 \underline{12304} \\
 34 = a \quad \frac{1036000}{3468} = 3a^2
 \end{array}$$

$$160 = a \quad \frac{76800}{76800} = 3a^2 \quad \frac{34}{3468} = 3a^2$$

$$\begin{array}{r}
 480 = 3a \\
 9 = b \quad \frac{768440}{691200} = 3a^2b \\
 38880 = 3ab^2 \\
 \frac{729}{69509529} = b^3 \\
 \underline{69509529} \\
 \underline{23290471}
 \end{array}
 \qquad
 \begin{array}{r}
 102 = 3a \\
 2 = b \quad \frac{34782}{6936} = 3a^2b \\
 408 = 3ab^2 \\
 \frac{8}{697688} = b^3 \\
 \underline{697688} \\
 \underline{338312}
 \end{array}$$

$$\begin{array}{r}
 16.09 \\
 16.09 \\
 \hline
 14481 \\
 96540 \\
 1609 \\
 \hline
 258.8881 \\
 1609 \\
 \hline
 23299929 \\
 155332860 \\
 2588881 \\
 23290471 \\
 \hline
 4188.800000
 \end{array}
 \qquad
 \begin{array}{r}
 3.42 \\
 3.42 \\
 \hline
 684 \\
 1368 \\
 \hline
 1026 \\
 \hline
 11.6964 \\
 3.42 \\
 \hline
 233928 \\
 167856 \\
 350892 \\
 \hline
 338312 \\
 \hline
 40.340000
 \end{array}$$

Proof

$$14.270000(2.42)$$

$$\begin{array}{r} 2=a \\ 8 \\ \hline 6270 \\ 12 \\ \hline =3a^2 \\ 6 \\ \hline =3a \end{array}$$

$$\begin{array}{r} 4=b \\ \hline 126 \\ 48 \\ \hline 96 \\ 64 \\ \hline 5884 \\ \hline 446000 \\ 1728 \\ \hline 72 \\ \hline =3a^2 \\ 27=a \end{array}$$

$$\begin{array}{r} 2=b \\ \hline 17352 \\ 3456 \\ \hline 288 \\ 8 \\ \hline 348488 \\ \hline 97512 \end{array}$$

$$21.070000(2.76)$$

$$\begin{array}{r} 2=a \\ 8 \\ \hline 13070 \\ 12 \\ \hline =3a^2 \end{array}$$

$$\begin{array}{r} 7=b \\ \hline 126 \\ 84 \\ \hline 294 \\ 343 \\ \hline 11683 \\ \hline 1387000 \\ 2187 \\ \hline 81 \\ \hline =3a^2 \end{array}$$

$$\begin{array}{r} 6=b \\ \hline 21951 \\ 13122 \\ \hline 2916 \\ 216 \\ \hline 1341576 \\ \hline 45424 \end{array}$$

$$\begin{array}{r} 2.42 \\ 2.42 \\ \hline 184 \\ 968 \\ 484' \\ 5.8 564 \\ 2.42 \\ \hline 117128 \\ 234256 \\ 117128 \\ 97512 \\ \hline 14.270000 \end{array}$$

Proof

$$\begin{array}{r} 2.76 \\ 2.76 \\ \hline 1656 \\ 1932 \\ 552 \\ \hline 7.6176 \\ 2.76 \\ \hline 457056 \\ 533232 \\ 152352 \\ 45424 \\ \hline 21.070060 \end{array}$$

Proof

Problem 2.nd

Having the Diameter & Weight of a Bullet to find the Weight of another Bullet whose Diameter is given.

Rule.

{ As the Cube of the Given Bullet's Diameter
 Is to its Solidity or Weight
 { So is the Cube of the Diameter of any other Bullet
 To its Weight or Solidity.

If a Bullet of Brads of 8 Inches Diameter weigh $\frac{72}{2}$ What shall a Bullet weigh of Brads weigh whose Diameter is 4 Inches?

$$\begin{array}{r} 8 \\ \times 8 \\ \hline 64 \\ \times 8 \\ \hline 512 \end{array} \qquad \begin{array}{r} 4 \\ \times 4 \\ \hline 16 \\ \times 4 \\ \hline 64 \end{array}$$

$$512 : 72 :: 64 : \frac{72}{128}$$

$$512) \overline{4608} \left(\begin{array}{l} 448 \\ -4608 \\ \hline \end{array} \right) \text{ Ans.}$$

Problem 3.rd

The Side or Root of a Cube being given to
find the side of another Cube that shall be
double, treble, quadruple &c. or quarter, half, &
three quarters, in Quantity to the given Cube.

Rule

Cube your side given which multiplyed by 2, 3
&c. And the Cube Root of the Product is the Side
sought.

Suppose a Cubical Vessel whose Side is 12 Inches &c
it is required to find the side of another Vessel which
shall contain 3 times as much?

$$\begin{array}{r} 12 \\ 12 \\ \hline 144 \\ 12 \\ \hline 1728 \\ 3 \\ \hline \end{array}$$

5184.000000000 (^{Inches} 17.306 Ans.)

~~5184.000000000~~ (17.306 Ans.)

$$1=a \quad \frac{1}{4184} = a^3$$

$$\underline{3} = 3a^2$$

$$\underline{\underline{3}} = 3a$$

$$1=b \quad \frac{3}{21} = 3a^2b$$

$$147 = 3ab^2$$

$$343 = b^3$$

$$\underline{4913}$$

$$17=a \quad \frac{271000}{867} = 3a^2$$

$$51 = 3a$$

$$3=b \quad \frac{8721}{2601} = 3a^2b \quad \text{Proof} \quad \frac{5184.000000000}{1796985816}$$

$$459 = 3ab^2$$

$$27 = b^3$$

$$\underline{264717}$$

$$1730=a \quad \frac{6283000000}{8978700} = 3a^2$$

$$5190 = 3a$$

$$6=b \quad \frac{89792190}{53872200} = 3a^2b$$

$$186840 = 3ab^2$$

$$216 = b^3$$

$$\underline{\underline{5389088616}}$$

$$\underline{\underline{893911384}}$$

It is required to find the side of a cubical vessel that shall contain $\frac{1}{4}$ as much as another cubical vessel whose side is 20 inches?

$$\begin{array}{r}
 & 20 \\
 & 20 \\
 \hline
 4 & 400 \\
 & 20 \\
 \hline
 4 & \boxed{8000}
 \end{array}$$

2000.00000000 (12.599 Answer.)

$$1 = a \quad \frac{1}{1000} = a^3$$

$$2 = b \quad \begin{array}{r} 3 \\ \hline 33 \\ -\cancel{3} \\ \hline 12 \\ -\cancel{1} \\ \hline 8 \end{array} \quad = 3a^2b^2$$

$$\begin{array}{r} \overline{728} \\ \underline{-272000} \\ 432 = 3a^2 \\ 36 = 3a \end{array}$$

$$\begin{array}{r}
 5 = b \\
 \underline{4356} \\
 2160 = 3a^2b \\
 900 = 3ab^2 \\
 \underline{125} = b^3 \\
 \underline{225125} \\
 \underline{46875000}
 \end{array}$$

$$125 = a \quad \frac{46875000}{46875} = 3a^2$$

$$375 = 3a$$

$$9 = b \quad \frac{469125}{421875} = 3a^2b$$

$$30375 = 3ab^2$$

$$729 = b^3$$

$$\frac{42491979}{4383021000}$$

$$1259 = a \quad \frac{4383021000}{4755243} = 3a^2$$

$$3777 = 3a$$

$$9 = b \quad \frac{47556207}{42797187} = 3a^2b$$

$$305937 = 3ab^2$$

$$729 = b^3$$

$$\frac{4282778799}{100242201} \quad \begin{array}{r} 12.599 \\ 12.599 \\ \hline 113391 \\ 113391 \\ 62995 \\ \hline 151188 \\ 158734801 \\ 12.599 \\ \hline 1428613209 \\ 1428613209 \\ 793674005 \\ 1904817612 \\ \hline 100242201 \\ \hline 2000.00000000000 \end{array}$$

Proof

problem 4.th

Between two given Numbers to find two mean proportionals

Rule

Multiply the less Extream by the Cube Root of the Quotient of the greater Extream divided by the less the Product is the lesser of the two Mean Proportionals which multiplied by the said Cube Root gives the greater Mean sought.

Suppose two Proportionals betwixt 6 & 162 were to be sought What are they?

$$\begin{array}{r} 6 \sqrt[3]{162} \\ 27(3) \\ \underline{27} = a^3 \\ 0 \end{array} \quad \begin{array}{r} 6 \\ 3 \\ \hline 18 \end{array} \quad \begin{array}{r} 18 \\ 3 \\ \hline 54 \end{array} \quad 6 \cdot 18 \cdot 54 \cdot 162$$

Problem 5.th

The Concave Diameter of 2 guns being known
together with the Quantity of Gun-powder sufficient
to charge one to find what will be sufficient to charge the other.

{ As the Cube of that Diameter whose Quantity is given
Is to the Quantity of Gunpowder given
So is the cube of the Diameter whose Quantity is required
To its Quantity of Gun-powder required.

If .43 of a lb of Gun-powder be sufficient to charge a
gun whose Concave Diameter is 1.5 Inch how much
Gun-Powder will suffice to charge a gun whose Di-
ameter is 7 Inches?

$$\begin{array}{r} 1.5 \\ 1.5 \\ \hline 2.25 \\ 1.5 \\ \hline 3.375 \end{array} \quad \begin{array}{r} 7 \\ 7 \\ \hline 49 \\ 49 \\ \hline 343 \end{array}$$

$$3.375 : .43 :: 343$$

$$\frac{43}{1029}$$

$$\frac{1029}{1372}$$

$$3.373 \overline{)147.4900} \text{ (43.7 Ans: } \frac{88}{13500}$$

$$\frac{13500}{12490}$$

$$\frac{12490}{10125}$$

$$\frac{10125}{23650}$$

$$\frac{23650}{23625}$$

Problem 6th

The Concave Diameters of two guns being given and the Quantity of a weaker sort of Gun-Powder sufficient to charge one of them to find how much Gun-powder of a stronger sort (the proportion of the Strength & Weakness of the gun-powder being also given) will be sufficient to charge the other gun.

First by Reciprocal Proportion find how much of the stronger sort of Gun-powder will be equivalent in strength with the given Quantity of the weaker sort the work by Direct Proportion as in the preceding Problem.

If. 43 lb of Gun-powder be sufficient to charge a gun whose Concave Diameter is 1.5 Inch how much gun-powder of a stronger sort in the proportion of 5 to 2 will suffice to charge a gun whose Concave Diameter is 7 Inches? 2 : 43 :: 5 3.375 : .172 :: 343

$$\begin{array}{r} 1.5 \\ 1.5 \\ \hline 2.25 \\ 1.5 \\ \hline 3.375 \end{array} \quad \begin{array}{r} 7 \\ 7 \\ \hline 49 \\ 7 \\ \hline 343 \end{array}$$

$$2 : 43 :: 5 \quad 3.375 : .172 :: 343$$

$$\begin{array}{r} 2 \\ 4 \\ 0 \\ 1 \\ 3 \\ \hline 86 \end{array} \quad \begin{array}{r} 6 \\ 8 \\ 6 \\ 1 \\ 72 \\ \hline 172 \end{array}$$

$$3.375 \overline{) 6.8.9.9.6.00} \quad (17.18 \text{ Answer}$$

$$\begin{array}{r} 2 \\ 4 \\ 0 \\ 1 \\ 3 \\ \hline 3 \\ 3 \\ 7 \\ 5 \end{array} \quad \begin{array}{r} 2 \\ 5 \\ 2 \\ 4 \\ 6 \\ 2 \\ 3 \\ 6 \\ 2 \\ 5 \\ \hline 1 \\ 6 \\ 2 \\ 1 \\ 0 \\ 1 \\ 3 \\ 5 \\ 0 \\ 0 \\ \hline 2 \\ 6 \\ 0 \\ 0 \\ 0 \end{array}$$

SMITHSONIAN INSTITUTION LIBRARIES

3 9088 00331938 1

nmahrb MSS838 B
Arithmetic