Models selecting prototypes with ProtoPNet

ADAM KOZŁOWSKI

24.01.2022

Presentation overview

- Prototypes generation in XAI
- ProtoPNet architecture and training
- Experiment

Figure 2: ProtoPNet architecture.

Prototypes in XAI

Previous XAI methods

Posthoc methods

- Used on already trained models
- The most important techniques are: activation maximalization, deconvolution, saliency visualization
- They don't actually explain models decision

Methods with built-in attention mechanisms

- They mark areas that are important in models decision process
- The most prominent ones are: models with activation maps and part-based models
- They only mark the important area they don't explain why

Źródło: IMIC Keynote 3, C. Rudin MICCAI 2021

Prototypes

- •Main inspiration is the way how human experts try to explain complex ideas with examples
- •The model explains it's decision by providing set of prototypes from training data
- •Current methods are based on the concept of bag-of-visual-words
- So far prototype selection was separate from feature extraction

Bag of Visual Words in a Nutshell | by Bethea Davida | Towards Data Science

ProtoPNet (Prototype Part Network)

- •Architecture proposed in "This looks like that: Deep Learning for Interpretable Image Recognition" (Chen et al. 2019 <u>1806.10574.pdf (arxiv.org)</u>)
- Principles
 - Prototypes are chosen based on the distance to sample in latent space
 - Prototype features are used during training
 - Interpretable architecture
- •Inspired by previous methods. The closest ones are: Bayesian Case Model (main idea) and method from "Deep Learning for Case-Based Reasoning through Prototypes" (Li et al. 2017 https://arxiv.org/pdf/1710.04806) which takes autoencoder for feature selection
- •Architecture successfuly used in IAIA-BL for detecting and evaluating breast lesions (Barnett et al. 2021, 2103.12308.pdf (arxiv.org))

ProtoPNet architecture and training

ARCHITECTURE, LOSS FUNCTION, PROTOTYPES SELECTION

Architecture

Figure 2: ProtoPNet architecture.

Latent feature maps

- For given input x convolutional layers f extract useful features
- Output f(x) is passed through additional convolutional layers with 1x1 filters
- Number of channels of these layers corresponds to the size of prototype vectors length
- The final output is tensor \hat{x} of size

$$\hat{x}:[C,W,H]$$

C – num. of channels, W -width, H - height example: using VGG16 the spatial dimention of convolutional output is [512,5,5], the it is reduced with additional layers to e.g. [C=128,5,5]

Prototype part vectors

Prototype part vector p_i

- Based on image prototypes selected during training
- They reperesnt class specific features
- Each vector represents single part of the prototype image

$$p_j:[C,W_p,H_p] \\ C-\text{num. of latent channels, } W_p-\text{prototype} \\ \text{width, } H_p-\text{ prototype height} \\ \text{e.g. [512,1,1]}$$

 Each of the dimensions is a hyperparameter

Feature maps \bar{x}

Prototype part vector p_i

L2 distance is calculated for each input patch

 $\hat{x} : [C, W, H]$

 $p_j:[C,W_p,H_p]$

$$L2: d_j = \sum_{j=0}^{m} (\hat{x} - p_j)^2$$

Feature maps \bar{x}

Prototype part vector p_i

$$\hat{x}:[C,W,H]$$

$$p_j: [C, W_p, H_p]$$

$$L2: d_j = \sum_{i}^{m} (\hat{x} - p_j)^2$$

Feature maps \bar{x}

Prototype part vector p_i

$$\hat{x} : [C, W, H]$$

$$p_j:[C,W_p,H_p]$$

$$L2: d_j = \sum_{j=0}^{m} (\hat{x} - p_j)^2$$

Distance $\operatorname{map} d_j$ between input features patches and prototype part vector

 $\hat{x}:[C,W,H]$

 $p_j: [C, W_p, H_p]$

 d_i : [W,H]

Similarity score

Distance maps d to each of the prototypes

Similarity score vector s

Similarity score is calculated as:

$$s_j = \log \frac{\min d_j + 1}{\min d_j + \epsilon}$$

between input feature map and *j*-th prototype part vector

Intuitively:

if
$$d_j \to 0$$
 then $s \to \log \frac{1}{\epsilon}$

when
$$d_i \to \infty$$
 then $s \to 0$

Classification

Similarity score s

• To get output predictions \hat{y} the similarity scores are passed through dense layer

Interpretability! – you can measure how similarity score to each prototype influenced prediction

- Dense layer weights initialized as:
 - 1 if output class is the same as prototype class
 - -0.5 otherwise

Training

The loss function for training is as follows:

$$loss = \min_{P,wconv} \frac{1}{n} \sum_{i=1}^{n} CrsEnt(\hat{y}_i, y_i) + \lambda_1 Clst + \lambda_2 Sep$$

- Clst is the shortest distance between sample feature map and prototype part vector of the same class
- Sep is the shortest distance to prototype part vector
- Authors suggest that $\lambda_2 = -0.1\lambda_1$ to enforce higher separation between classes

Convergence if:

- 1. Crossentropy is close enaugh to local minimum
- 2. Clst < Sep which means closer distance between parts of prototypes belonging to the same class

Prototype selection

Prototype part vectors *P*

- Prototypes are selected during training
- Prototype part vectors are randomly initialized
- 3. Every few epochs prototypes are updated
- Each class must have fixed numer of prototypes

Prototype selcetion

For prototype p_j

Calculate L2 distance to all the feature maps parts for the whole training data

Prototype part vectors *P*

Prototype selcetion

Prototype selcetion

Prototypes part vectors P

Experiment

PROTOTYPES AND METRICS RESULTS

Experiment setup

Experiment goal was to recreate ProtoPNet model for different task and to explain it's decisions for given images

- Dataset: Rock, paper, scissors (balanced, 2892images, augmented to 8676, 80-20 train and test split)
- Pretrained VGG16 convolutional layers for feature extraction
- 45 prototype part vectors (15 for each class) with dimensions [128,1,1]
- Metrics: accuracy and elements of the loss function (e.g. Clst, Sep)
- Trained for 100 epochs

class	top 3 prototypes						top incorrect prototype	
	similarity	connection	similarity	connection	similarity	connection	class 1	class 2
rock	0,5744	1,119	0,2074	1,0695	0,1937	1,0741	scissors; 0,1545	rock; 0,03635
paper	3,9593	1,0205	0,3525	1,0196	0,3503	1,0172	rock; 0,03622	scissors; 0,03355
scissors	2,0435	1,0909	0,2241	1,0839	0,2166	1,0869	rock; 0,01371	paper; 0,0137

Results - metrics

Results - metrics

Results - metrics

ProtoPNet - summary

Pros:

- Interpretable model output
- Informative visual explanation
- Universal can be used in various different tasks
 - Unsupervised learning prototypes can be non-class specific
 - Different input data prototypes are selected based on latent features
 - Can be used with every architecture

Cons:

- Requires additional training
- Longer training time (higher computational cost + additional metrics to optimize)
- · Additional hyperparameters (e.g. number of prototypes)

Thank you!