

Función Logaritmo

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

17 de Mayo de 2022

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

Función Logaritmo natural

Definición. (Logaritmo natural)

La función exponencial exp : $\mathbb{R} \to \mathbb{R}^+$ es biyectiva. Su función inversa se llama función logaritmo natural ln :]0, ∞ [$\to \mathbb{R}$ definida mediante su relación inversa

$$y = \ln(x) \iff e^y = x$$
:

Observaciones

- Para todo $x \in]0, \infty[$, $\exp(\ln(x)) = x$.
- Para todo $x \in \mathbb{R}$, $\ln(\exp(x)) = x$. En particular, $\ln(e) = 1$ y $\ln(1) = 0$.
- La función In es estrictamente creciente pues es la inversa de una función estrictamente creciente.
- EL único cero de la función In es 1.

Función Logaritmo natural

Proposición.

Para todo $x, y \in]0, \infty[$ y $z \in \mathbb{R}$ se cumple que

Demostración

- Sean $u = \ln(x) \iff e^u = x$ y $w = \ln(y) \iff e^w = y$. Entonces $\ln(xy) = \ln(e^u \cdot e^w) = \ln(e^{u+w}) = u + w = \ln(x) + \ln(y)$.
- ② Ejercicio
- **3** Sea $u = \ln(x) \iff e^u = x$. Entonces

$$\ln(x^z) = \ln((e^u)^z) = \ln(e^{zu}) = zu = z \ln(x)$$
.

Función Logaritmo natural

Proposición. (Desigualdad Fundamental)

La función logaritmo natural satisface las siguientes desigualdades. Para todo $x\in]0,\infty[$ se tiene

- $1-\frac{1}{x}\leqslant \ln(x).$

Demostración

① Sabemos que $e^z \geqslant 1+z$. Como la función logaritmo natural es creciente vemos que

$$z = \ln(e^z) \geqslant \ln(1+z).$$

Haciendo el cambio de variables z = x - 1 obtenemos

$$x-1 \geqslant \ln(1+(x-1)) = \ln(x)$$
.

② Ejercicio.

Función a^x

Definición. (La función a^x)

Para $a \in \mathbb{R}^+ - \{1\}$ se define la función a^x por la fórmula

$$a^{x} = \exp(x \ln(a)).$$

Propiedades

- lacksquare Su dominio es \mathbb{R} .
- ② Para $a \in \mathbb{R}^+ \{1\}$, la función a^x es estrictamente monótona, en particular es inyectiva.
- **③** Para $a \in \mathbb{R}^+ \{1\}$, la función $a^x : \mathbb{R} \to]0, \infty[$ es biyectiva. Su inversa está dada por la siguiente fórmula

$$a^{x} = y \Longleftrightarrow x = \frac{\ln(y)}{\ln(a)}$$
.

Función Logaritmo de base a

Definición (Logaritmos de base a)

Sea $a \in \mathbb{R}^+ - \{1\}$. Se define la función logaritmo en base a por

$$\log_a(x) = \frac{\ln(x)}{\ln(a)} \, .$$

Ecuaciones exponenciales y ecuaciones logarítmicas

EJEMPLO 1 Resolver la ecuación $3^{x+2} = 7$.

EJEMPLO 2 Resolver la ecuación $3xe^x + x^2e^x = 0$.

EJEMPLO 3 Resolver la ecuación log(3x + 2) = log(x - 4) + 1.

EJEMPLO 4 Sea $f(x) = \log_2(3\log(10x) - 2)$. Asumiendo que f es inyectiva, determine su función inversa.