

Universidade Federal de Mato Grosso Instituto de Física

Programa de Pós-Graduação em Física Ambiental Disciplina Aprendizado de Máquinas para Física Ambiental

Regressão linear e logística: teoria que fundamenta o ML

Discente: Amanda de Oliveira de Jesus

Docentes: Dra. Daniela de Oliveira Maionchi e Dr. Junior Gonçalves da Silva

Regressão linear — situação problema

Sejam duas variáveis x e y, entre as quais existia uma correlação acentuada, embora não perfeita, como por exemplo, as que formam a tabela abaixo:

Xı	5	8	7	10	6	7	9	3	8	2
Yı	6	9	8	10	5	7	8	4	6	2

Construa o diagrama de dispersão:

Formemos, então, a tabela de valores:

AND DESCRIPTION OF THE PARTY OF

Xi	y _i	Xi ²	Yi ²	X _i y _i
5	6	25	36	30
8	9.	69	18	72
7	3	49	69	56
(O	10	100	(40	100
6	S	36	25	30
187	7	99	49	49
7 9	4	81	64	72
3	4	9	16	ιz
8	6	69	36	48
2	2	Ц	4	4
$\Sigma = \mathcal{Q}\mathcal{G}$	Σ = 65	$\Sigma = 481$	I = 475	I = 473

Equação da regressão linear $y = \beta_0 + \beta_{1X} + \epsilon$

Onde:

Y = é a variável dependente (o que estamos tentando prever)

 β_0 = coeficiente linear ou intercepto, é o intercepto, que representa o valor de (y) quando (x=o), e corta o eixo na ordenada (em y).

B1= é o coeficiente angular, (representa a inclinação da reta), que indica como (y) muda quando (x) aumenta (por exemplo)

(x) = é a variável independente, (a característica que estamos usando para fazer a previsão)

ε= é o erro que captura as variações em (y) que não são explicadas pela reação linear com (x).

Coeficiente angular (
$$\beta_1$$
) $n = n^{\circ} de linhard
 $\beta_1 = \frac{n \times \kappa_1 y_1 - \kappa_2 \times \kappa_2 \times y_1}{n \times \kappa_1^2 - (\kappa_1 \times \kappa_2)^2} = \frac{508}{685} = 086$

Coeficiente linear (β_0) ou intercepto

 $\beta_0 = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_1 \times \kappa_2}{(\kappa_1 \times \kappa_2)} = \frac{\kappa_2 \times$$

Calcule o coeficiente angular e linear.

Determine a equação da reta.

Trace no gráfico.

