Задание 5

Коновалов Андрей, 074

	0	1	2	3	4	5	σ
Г							

Задача 1

(i). Допустим, что грамматика G_1 не однозначная. Это означает, что существует выводимое в G слово, имеющее хотя бы 2 правых вывода.

Обозначим последовательности применения правил вывода для этих выводов A и B соответственно. Элементами этих последовательностей являются правила вывода.

Заметим, что A и B не могут содержать одна другую как префиксную подпоследовательность, значит существует такое $n \in \mathbb{N}$, что $A_n \neq B_n$.

Посмотрим на первое отличие в их выводах. Поскольку правил вывода всего 2, это означает, что в одном случае было применено правило $P_1 = S \to a$, а в другом правило $P_2 = S \to SSSb$. Поскольку выводы правые, то перед использованием P_1 и P_2 после которых слова становятся различными, слова имели вид: xSy, где $x \in \{a,b,S\}^*$, $y \in \{a,b\}^*$. После использования правила P_1 слово будет иметь суффикс ay, который не изменится после применения дальнейших правил вывода. После использования правила P_2 слово будет иметь суффикс by, который не изменится после применения дальнейших правил вывода. Заметим, что слова, получаемые выводами A и B не могут совпадать, поскольку имеют различные суффиксы.

Получаем противоречие, а значит выводов не может быть 2, а значит G однозначная.

(ii). Поскольку язык порождается некоторой праволинейной грамматикой тогда и только тогда, когда он регулярный, то доказав, что $L(G_1)$ - не регулярный, мы докажем, что \sharp праволинейной грамматики эквивалентной G_1 .

Для начала докажем, что на при любом выводе во любом получаемом промежуточном или конечном слове x выполняется: $|x|_S + |x|_a = 2|x|_b + 1$.

Заметим, что если в выводе сначала применить все правила вывода вида P_2 , а потом - вида P_1 , то выведенное слово не изменится. При применении правила P_1 количество букв S уменьшается на 1, а количество букв a увеличивается на 1, при этом соотношение остается верным. Это означает, что утверждение достаточно доказать для применения только правила P_2 .

Заметим, что слова, получаемые при выводе имеют длину n, представимую ввиде n=3k+1, где k - количество применений правила P_2 . Докажем выполнимость соотношения индукцией по k.

 $\it Basa.$ При $\it k=0$ существует единственное слово $\it S$ для которого соотношение выполняется. База доказана.

Переход. Пусть соотношение выполняется для количества применений P_2 , которое < k. Слово w, получаемое применением k применениями правила P_2 , получено из слова x применением правила P_2 . Для x верно $|x|_S + |x|_a = 2|x|_b + 1$. Заметим, что $|w|_S = |x|_S - 1 + 3 = |x|_S + 2$, $|w|_b = |x|_b + 1$, а значит $|x|_S + |x|_a = 2|x|_b + 1 \Leftrightarrow |x|_S - 2 + |x|_a = 2(|x|_b - 1) + 1 \Leftrightarrow |w|_S + |w|_a = 2|w|_b + 1$. Переход доказан.

Заметим, что в любом слове w выводимом в G не содержится нетерминал S, а значит $|w|_a=2|w|_b+1$.

Докажем, что язык $L(G_1)$ не регулярный пользуясь леммой о разрастании. Для любого C, возьмем слово $w=a^{2C+1}b^C$, $|w|\geq C$. Для любого его разбиения xyz, такого, что $|xy|\leq C$ и |y|>0, для i=2 в слове xy^iz нарушится соотношение между буквами a и b, а значит $xy^iz\notin L(G_1)$.

Получаем, что лемма не выполняется, а значит $L(G_1)$ - не регулярный, а значит невозможно построить эквивалентную праволинейную грамматику.

Задача 2

(і). Приведем два правых вывода одного слова:

$$S \rightarrow ict \ S \rightarrow ict \ ict \ S \ e \ S \rightarrow ict \ ict \ S \ e \ o \rightarrow ict \ ict \ o \ e \ o$$

 $S \rightarrow ict \ S \ e \ S \rightarrow ict \ S \ e \ o \rightarrow ict \ ict \ o \ e \ o$

(iii). G_3 не однозначная, так существует два различных правых вывода слова o.

$$S \to S_1 \to o$$
$$S \to S_{full} \to o$$

Задача 3

Докажем, что следующие правила вывода порождают язык ППСВ L_3 с глубиной вложения скобок ≤ 3 . Аксиома S_3 .

$$S_0 \rightarrow \varepsilon$$

$$S_1 \rightarrow S_1 S_1$$

$$S_1 \rightarrow (S_0)$$

$$S_1 \rightarrow S_0$$

$$S_2 \rightarrow S_2 S_2$$

$$S_2 \rightarrow (S_1)$$

$$S_2 \rightarrow S_1$$

$$S_3 \rightarrow S_3 S_3$$

$$S_3 \rightarrow (S_2)$$

$$S_3 \rightarrow S_2$$

Будем называть правильные скобочные выражения с глубиной вложения скобок i - ΠCB_i .

По индукции покажем, что нетерминал S_i порождает $\Pi CB_{\leq i}$. База индукции для i=0 очевидна. Использование любого из правил ниже сохраняет правильность выражения. При использовании первого глубина вложений остается равной i. При использовании второго она увеличивается на 1 по сравнению с i-1, т.е равна i. При использовании третьего она не изменяется, т.е. остается равной i-1, что нас устраивает.

$$S_i \to S_i S_i$$

$$S_i \to (S_{i-1})$$

$$S_i \to S_{i-1}$$

Получаем, что $L(G)\subseteq L_3$. Докажем, что $L_3\subseteq L(G)$. Докажем это по индукции по глубине вложения k. При k=0 пустое выражение порождается $S_3\to S_2\to \dots\to \varepsilon$. Возьмем $\Pi\mathrm{CB}_k$. Заметим, что оно представимо ввиде конкатенации некоторого количества выражений вида ($\Pi\mathrm{CB}_{k-1}$). Конкатенацию n таких выражений пожно породить с помощью n-1 использования правила $S_k\to S_{k-1}S_{k-1}$. Выражение ($\Pi\mathrm{CB}_{k-1}$) можно получить использованием правила $S_k\to (S_{k-1})$.

Построенная грамматика неоднозначная.

$$S_3 \to S_2 \to S_1 \to S_0 \to \varepsilon$$

$$S_3 \to S_2 \to S_1 \to S_1 S_1 \to S_1 S_0 \to S_1 \varepsilon \to S_0 \varepsilon \to \varepsilon$$

Задача 5

- (i). Пусть дана грамматика G = (N, T, P, S). Пусть дан вывод некоторого слова в G. Деревом вывода называется следующее дерево.
- 1. Вершины помечены парами вида: (v,k), где $v \in N \cup T$, а k слово в счетном алфавите \mathbb{N} (натуральных чисел).
 - 2. Корень дерева помечен (S,1) (аксиома и слово 1).
- 3. Если на каком-то шаге разворачивается нетерминал $A \to X_1 X_2 ... X_n$, то дерево модифицируется путем добавления к листу (A, k), прямых потомков $(X_1, k \circ 1), ..., (X_n, k \circ n)$, где \circ обозначает конкатенацию.
- 4. Текущее выведенное слово получается следующем образом. Метки на всех листьях сортируются по k лексикографически, после чего конкатенируются все v в полученном порядке.
- (ii). Два дерева эквивалентны, если множества меток их вершин совпадают как множества.
 - (iii). Дерево разбора для (()(()))() в G изображено на диаграмме ниже.

(iv-a). Слово ε имеет два различных вывода, показанных в задаче 3. При построенние деревья получатся разными.