

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Метод построения поисковых индексов в реляционной базе данных на основе глубоких нейронных сетей

Студент: Маслова Марина Дмитриевна ИУ7-83Б

Руководитель: Оленев Антон Александрович

Цель и задачи

Цель: разработка метода построения поисковых индексов в реляционной базе данных на основе глубоких нейронных сетей.

Задачи:

- рассмотреть и сравнить известные методы построения индексов;
- привести описание построения индексов с помощью нейронных сетей;
- разработать метод построения индексов в реляционной базе данных на основе глубоких нейронных сетей;
- разработать программное обеспечение, реализующее данный метод;
- провести исследование (по времени и памяти) операций поиска и вставки с использованием индекса, построенного разработанным методом, при различных объемах данных.

Классические структуры индексов

Индекс — это некоторая структура, обеспечивающая быстрый поиск записей в базе данных за счет определяет соответствие ключа поиска конкретной записи с положением этой записи.

Основные типы структур:

- В-деревья;
- хеш-таблицы;
- битовые карты.

Обученные индексы

Сравнение методов построения индексов

Метод		Классические индексы			Обученные
		В-дерево	Хеш-таблица	Фильтр Блума	индексы
Временная сложность	поиска	O(log N)	O(1) / O(N)	O(k)	O(1) / O(N)
	вставки	O(log N)	O(1) / O(N)	O(k)	(*)
Память		Высокая	Средняя	Низкая	Средняя
Поиск в диапазоне		+	-	-	+
Поиск единичного ключа		+	+	-	+
Проверка существования		+	+	+	+

^(*) — вставка в обученный индекс требует переобучения, сложность которого зависит от архитектуры используемой модели машинного обучения.

5

Постановка задачи

Ограничение: ключи — целые уникальные числа.

Архитектура нейронной сети

1 вход: нормализованный ключ K. 1 выход: значение функции распределения F(K). 2-3 скрытых слоя по 32 нейрона. Функция активации: ReLU.

Определение значения функции распределения по позиции ключа:

$$F(K) = \frac{p}{N},$$

где p — искомая позиция; K — ключ поиска; F(K) — функция распределения; N — количество ключей.

Функциональная схема построения индекса

Функциональная схема поиска

Функциональная схема вставки

Структура программного обеспечения

Исследование времени построения и размера индекса

Исследование времени поиска

Исследование времени поиска

Исследование времени поиска и вставки

Заключение

В ходе данной работы:

- проанализированы известные методы построения индексов;
- приведено описание построения индексов с помощью нейронных сетей;
- разработан метод построения индексов в реляционной базе данных на основе глубоких нейронных сетей;
- разработано программное обеспечение, реализующее данный метод;
- проведено исследование (по времени и памяти) операций поиска и вставки с использованием индекса, построенного разработанным методом, при различных объемах данных.

Поставленная цель достигнута.

Дальнейшее развитие

- 1. Оптимизация алгоритма вставки с учетом распределения ключей.
- 2. Добавление возможности построения индекса по ключам других типов данных.
- 3. Построение многомерных обученных индексов.