Initialize:
$$\mathbf{q}^a = \mathbf{q}^{\min} = -\mathbf{b}, \mathbf{q}^b = \mathbf{q}^{\max} = \mathbf{b}, \ p^a = p^b = p,$$
 $j = Nl, I(p) = 0, \Pi^a = (Nl), \Pi^b = (Nl)$

Trace back $(\mathbf{q}_j^a, \mathbf{p}_j^a)$ and (\mathbf{q}_j^b, p_j^b) and find the lines k and l from which they are emitted. $\Pi^a = (k, \Pi^a), \Pi^b = (l, \Pi^b)$

Are they emitted from the same line $(k = l)$?

Yes

Apply bisection to $(\mathbf{q}^a, \mathbf{p})$ and $(\mathbf{q}^b, \mathbf{p})$ and $(\mathbf{q}^b, \mathbf{p})$ where $|\mathbf{q}^c - \mathbf{q}^d| < \text{toll}$ and $\Pi^c = \Pi^a$

$$I(p) = I(p) \qquad j = k$$

$$(q^a, p) = (q^a, p)$$