BITART PASSWORDS CPSC 530

Bret Shilliday Md Mushfiqur Rahman Oscar Campos Zach Brown

Information to look out for:

- Examples of weakness of graphical passwords over alphanumeric passwords
- Tradeoffs to achieve more secure bitart passwords
 - Bit art attack types and protection techniques

INTRODUCTION

Can bitart be used as a viable alternative to text based passphrases?

TRADITIONAL PASSPHRASES

- Capital Letters (A-Z): 26
- Lowercase Letters (a-z): 26
- Numbers (0-9): 10
- Special Characters: 33
 - 0 @#\$%^&*-_!+=[]{}|\:',.?/`~"();<>
- Total 95 Characters

TRADITIONAL PASSPHRASES

- Could be represented using 7 bits
 - \circ 2⁷ = 128 > 95
- However 8 bits is what is used for ASCII encoding

PROPOSED BITART DESIGN

- Grid that represents a graphical "bit art" password
- User can toggle each cell to create an image

VARIATIONS

- 6 Variations
 - Size
 - 6 x 6
 - 8 x 8
 - 10 x 10
 - Colour
 - Black and White
 - Tricolour

- Black and White
 - Each cell represents 1bit:
 - 1/0
- Tricolour
 - Each cell represents 2bits:
 - White 00
 - Red 01
 - Green 10
 - Blue 11

COMBINATIONS

- 6 x 6 B&W 2³⁶
- 8 x 8 B&W 2⁶⁴
- 10 x 10 B&W 2¹⁰⁰
- 6 x 6 Tricolour 4³⁶
- 8 x 8 Tricolour 4⁶⁴
- 10 x 10 Tricolour 4 100

<u>COMPAR</u>ISON TO PASSPHRASE

Determine how many characters a password would need to contain to be equivalent to each bitart password:

Possible Bit Colors Number of Bits = Possible Text Characters x

Example for 6 x 6 B&W:

$$2^{36} \approx 95^{5.5}$$

Thus, a 6 x 6 B&W bitart password is roughly equivalent to a 5.5 character passphrase.

COMPARISON TO PASSPHRASE

LIMITED ENTROPY

6x6 B&W and Colour

- B&W = 36 bits of entropy
 - 6x6 grid contains 2³⁶
 combinations
- Colour = 72 bits of entropy
 - 6x6 grid contains 4³⁶ combinations

8 Character Alphanumeric

- 52.4 bits of entropy
 - o 95⁸ possible combinations

.

DESIGN

Each group member will create one of each type of password. They will then attempt to recreate these passwords after 1 day, 1 week and 1 month.

SECURITY

Security of Grid Size

MEMORABILITY

How easily/accurately the password can be reproduced

6×6

8×8

10×10

RESULTS

MEMORIZATION

- Tricolour did not have much effect on memorization
- 10x10 grids were the hardest to remember
- 8x8 grids were the easiest to remember (may be due to certain biases in password creation)

ANALYS<u>IS</u>

- 10x10 grid is the most secure but was also the hardest to remember
- 6x6 is much easier to remember however the entropy is much lower
- Big trade-off between security and memorization
- To make the passwords easier to remember, we implemented certain biases
- These biases come at a cost of security

BIASES IN OUR PASSWORD CREATION

Drawings

- Many of our passwords consisted of drawings which contain clusters of certain colours in an area
- Very predictable compared to a random assortment of squares

Symmetry

- Many of our passwords consisted of symmetrical objects or patterns
- Knowing half of the password could be enough to crack it

Personal Symbols

- Some of our passwords contained personal symbols such as letters of our first or last name
- Can be easily guessed if attacker knows user

BIASES IN OUR PASSWORD CREATION

- There was one password generated by Oscar using a coin flip for each square
- Less predictable pattern
- Came at the cost of memorization
- Only password not consistently recreated of the 6x6 B&W
 - 40% of the password was remembered after 1 day
 - Memorization improved over time to 95% after one month

Original

1 Week Attempt

CHOSEN PASSWORD DISTRIBUTIONS 6×6

CHOSEN PASSWORD DISTRIBUTIONS 8x8

CHOSEN PASSWORD DISTRIBUTIONS 10×10

LARGER + MULTICOLOUR TRADOFFS

Time Consuming to Enter More
Difficult to
Memorize

Vulnerable to Minor Errors

Accessibility

GRAPHICAL ATTACKS

USABILITY VS COMPLEXITY

How can we encourage complex patterns?

Must Include At Least 1 of Each Colour Must Select At Least 5 Squares

Strength Meter Minimum Requirements

Random Starting Grid

RECOMMENDATION

Advantages

Alternative Memorization Method Resilience Against Keylogging Initial Resistance to Dictionary Attacks

Disadvantages

Longer Authentication Time
Limited Research and Standardization
Ease of Attacks

MFA

Should be used with MFA as over the shoulder and smudge attacks are easier to conduct

Storage

Should still be stored using a hashing method to prevent leaking of plaintext grids and building of dictionaries

RECOMMENDATION

A good option for specific use cases such as alternative authentication method for people with difficulty using passphrases however the advantages are not compelling enough to replace passphrases completely.

Thank You