Fundamental Theorem of Galois Theory(1)

October 2, 2020

Definition 1. Let E and F be extension fields of a field K. A nonzero map $\sigma: E \to F$ which is both a field homomorphism and a K-module homomorphism is called a K - homomorphism. Similarly, if an isomorphism $\sigma \in AutF$ is also a K-module homomorphism, then σ is called a K - automorphism of F. The group of all K-automorphism is called the Galois group of F over K, which is denoted by Aut_KF

REMARK. If $\sigma \in Aut_K F$, then for any $k \in K$, $u \in F^*$ we have:

$$\sigma(ku) = \sigma(k)\sigma(u)\sigma(ku) = k\sigma(u)$$

as a result of σ is both K-module automorphism but also a field automorphism. Hence we have $\sigma(k) = k, \forall k \in K$ as $\sigma(u)$ has inverse in F. In contrast, if $\sigma \in AutF$ with $\sigma(k) = k, \forall k \in K$, then we have $\sigma(ku) = \sigma(k)\sigma(u) = k\sigma(u)$, which means σ is a K-module isomorphism, hence a K-automorphism.

Theorem 1. Let F be an extension filed of K, $f(x) \in \mathbf{K}[\mathbf{x}]$. If $u \in F$ is a root of f(x) and $\sigma \in Aut_K F$ then $\sigma(u)$ is also a root of f(x).

Proof. Let
$$f(x) = \sum_{i=0}^{n} f_i x^i$$
, then

$$f(\sigma(u)) = \sum_{i=0}^{n} f_i \sigma(u)^i = \sum_{i=0}^{n} f_i \sigma(u^i) = \sigma(\sum_{i=0}^{n} f_i u^i) = \sigma(0) = 0$$

which shows $\sigma(u)$ is also a root of f(x)

With Theorem1, we have the following results: Let $u \in F$ is algebraic over K with f(x) the minimal polynomial of u, if f(x) has m distinct roots over K, then $|Aut_KK(u)| \le m$. It's easy to see that $\forall \sigma, \delta \in Aut_KK(u)$, if $\sigma \ne \delta$, then $\sigma(u) \ne \delta(u)$, otherwise σ and δ has the same effect on $\{1, u, u^2, ..., u^{n-1}\}$, which is a basis of K(u), hence σ and δ has the same effect on all elements of K(u), which contradicts the fact that $\sigma \ne \delta$. By **Theorem1** we know that $\sigma(u)$ and $\delta(u)$ are distinct roots of f(x), so there are at most m distinct K-automorphism as there are at most m distinct roots.

Definition 2. Let F be an extension field of K, E an intermediate field and H a subgroup of Aut_KF Then:

1.
$$H' = \{v \in F | \sigma(v) = v, \forall \sigma \in H\}$$

2.
$$E' = \{ \sigma \in Aut_K F | \sigma(u) = u, \forall u \in E \}$$

REMARK. In other words, H' is the set of all those elements in F such that these elements contains itself under the isomorphism effect, it's also easy to see that H' is an intermediate field of K, hence H' is called the **fixed field of H**.

E' contains all those K-automorphism such that they remains identity maps on E. By the corollary we mentioned earlier, we know that $E' = Aut_E F$. Specifically, we have:

$$F' = Aut_F F = \{1_F\}, K' = Aut_K F$$

On the other hand, we have $\{1_F\} < Aut_K F$ and $\{1_F\}' = F$. This reminds us to think about the relationships between the sets of all subgroups of $Aut_K F$ and the sets of intermediate fields of F

Definition 3. Let F be an extension field of K, Aut_KF the Galois group of F over K, if the fixed field of Aut_KF is K, then F is said to be a **Galois extension** of K or **be Galois over K**

Theorem 2. Let F be an extension field of K, $K_0 = Aut_K F'$. Then $Aut_{K_0} F = Aut_K F$, therefore F is Galois over K_0

Proof. For any $k \in K$, we know that $\sigma(k) = k, \forall \sigma \in Aut_K F$, hence $k \in K_0$, therefore $K \subset K_0$. Then $\forall \sigma \in Aut_{K_0} F$, σ maps all elements in K_0 to itself, of cause maps every element in K to itself as $K \subset K_0$. Hence $\sigma \in Aut_K F$ and $Aut_{K_0} F < Aut_K F$. For any $\sigma \in Aut_K F$, by the definition of K_0 , $\sigma(k_0) = k_0, \forall k_0 \in K_0$, hence $\sigma \in Aut_{K_0} F$ and $Aut_K F < Aut_{K_0} F$. These two results show that $Aut_K F = Aut_{K_0} F$. And we have $Aut_{K_0} F' = Aut_K F' = K_0$. Therefore F is Galois over K_0

In the rest section, we will prepare and prove the fundamental theorem of Galois theroy, which demonstrates a **one-to-one correspondence** between the sets of all intermediate fields of the extension F over K and the sets of all subgroups of the Galois group $Aut_K F$. But there are some rather lengthy preliminaries to do.

Lemma 3. Let F be an extension field of K with intermediate field L and M. Let H and J be subgroups of $G=Aut_KF$. Then:

1.
$$F' = 1$$
 and $K' = G$

2.
$$1' = F$$

3.
$$L \subset M \Rightarrow M' < L'$$

4.
$$H < J \Rightarrow J' \subset H'$$

5.
$$L \subset L''$$
 and $H < H''$ where $L'' = (L')'$ and $H'' = (H')'$

6.
$$L' = L'''$$
 and $H' = H'''$

Proof. 1,2 are direct results of the difinition. Consider 3: If $L \subset M$, then for any F-automorphism that fix M, it must fix L, therefore M' < L'. the 4th one is the same: every element in J' must be fixed for under every isomorphism of J, therefore fixed by every isomorphism of H, and belongs to H'.

As for (5), consider any $l \in L$, according to the definition of L', L' consists of those isomorphisms that fix every element of L, therefore every isomorphism fix l, which shows that $l \in L''$ by definition. Therefore we have $L \subset L''$. The second part could be proved in the same way.

For (6), we first notice that L' < (L')'' = L''' by the second part of (5). And $L \subset L'' \Rightarrow (L'')' < L'$ by (5) and (3). Therefore we have L' = L'''. The second part follows in the same way.

REMARK. F is galois over K iff $(Aut_K F)' = K$, which means K'' = K. Therefore we have: F is galoic over any intermediate field E iff E = E''.

Let X be an intermediate field or subgroup of the Galois group. X is called **closed** if X'' = X. And we have F is Galois over K iff K is closed.

Theorem 4. If F is an extension field of K, then there is a one-to-one correspondence between the closed intermediate fields of the extension and the closed subgroups of the Galois group, given by $E \mapsto E' = Aut_E F$.

Proof. Let A be the set of all closed intermediate fields of F and B be the set of all closed subgroups of Galois group. Define f as follows:

$$f: A \to B, E \mapsto E'$$

Notice that for any map image E', we have E''' = E', which means E' is closed. Therefore this map is well-defined.

Let g be defined as follows:

$$g: \mathbf{B} \to \mathbf{A}, \mathbf{H} \mapsto \mathbf{H}'$$

Then for any $E \in A$, we have:gf(E) = g(E') = E'' = E as E is closed, thus $gf = 1_A$. Similarly, we have $fg = 1_B$, which means f and g are bijective, it's done.

Lemma 5. Let F be an extension field of K and L, M intermediate fields with $L \subset M$. If [M:L] is finite, then $[L':M'] \leq [M:L]$. In particular, if [F:K] is finite, then $|\operatorname{Aut}_K F| \leq [F:K]$.

Proof. We will prove this assertion by induction on n = [M : L]. When n = 1, it's done with M = L. Suppose for any i < n this theorem is true, then choose one element $u \in M, u \notin L$. Since [M : L] is finite, we have u is algebraic over L. Let $f(x) \in L[x]$ be the minimal polynomial of u, and k the degree of f(x). Therefore we have: [L(u) : L] = k and [M : L(u)] = n/k. If $\mathbf{k} < \mathbf{n}$, we have [M : L(u)] > 1 and $[L' : M'] = [L' : L(u)'] \times [L(u)' : M'] \le k \times (n/k) = n$ by induction.

Otherwise if k = n, which means M = L(u). To prove this, we will construct an injective map from the set of all left cosets of M' in L' to the set T of all distinct roots

of $f(x) \in L[x]$, whence $|S| \le |T|$ and $|T| \le n$. Let $\tau M'$ be a left coset of M' in L'. We define q as follows:

$$g: S \to T, \tau M' \mapsto \tau(u)$$

We will show this map is well-defined. First, $\tau \in L'$, which means τ fix every element in L, therefore $\tau(u)$ is also a root of f by theorem 1. This means the map we defined maps the object to a right place. Second, if $\tau M' = \sigma M'$, then $\sigma^{-1}\tau \in M'$, notice that $u \in M$, we have: $\sigma^{-1}\tau(u) = u \Rightarrow \tau(u) = \sigma(u)$, which means $g(\tau M') = g(\sigma M')$. Therefore the image has no relationship with the representative object of the cosets, this map is also well defined.

In the last, we will show that g is also injective. If $g(\sigma M') = g(\tau M')$, then $\sigma(u) = \tau(u)$, and $\tau^{-1}\sigma(u) = u$, which means $\tau^{-1}\sigma$ fix u. Notice that L(u) is generated by $1, u, ..., u^{n-1}$. We also conclude that $\tau^{-1}\sigma$ fix this basis and further more, it fix $\mathbf{L}(\mathbf{u}) = \mathbf{M}$. Therefore $\tau^{-1}\sigma \in M'$ and $\tau M' = \sigma M'$. This means g is injective, and $|S| \leq |T| \leq n$, which is $|L':M'| \leq [M:L]$.

The following lemma is an analogue of **Lemma 5** for subgroups of the Galois group.

Lemma 6. Let F be an extension field of K and let H, J be subgroups of the Galois group $\operatorname{Aut}_K F$ with H < J. If [J:H] is finite, then $[H':J'] \leq [J:H]$

Proof. Let [J:H]=n and suppose that [H':J']>n. Then exist $u_1,u_2,...,u_{n+1}\in H'$ that are linearly independent over J'. Let $\{\tau_1,\tau_2,...,\tau_n\}$ be a complete set of representatives of the left cosets of H in $J(\text{that is, }J=\tau_1H\cup\tau_2H\cup...\cup\tau_nH \text{ and }\tau_i^{-1}\tau_j\in H \text{ iff }i=j)$ and consider the system of n homogeneous linear equations in n+1 unknowns with coefficients $\tau_i(u_i)$ in the field F:

$$\tau_{1}(u_{1})x_{1} + \tau_{1}(u_{2})x_{2} + \dots + \tau_{1}(u_{n+1})x_{n+1} = 0$$

$$\tau_{2}(u_{1})x_{1} + \tau_{2}(u_{2})x_{2} + \dots + \tau_{2}(u_{n+1})x_{n+1} = 0$$

$$\vdots$$

$$\vdots$$

$$\tau_{n}(u_{1})x_{1} + \tau_{n}(u_{2})x_{2} + \dots + \tau_{n}(u_{n+1})x_{n+1} = 0$$

And we label this system as (1). Such a system always has a nontrivial solution (that is, one different from the zero solution: $x_1 = x_2 = ... = x_{n+1} = 0$). Among all such nontrivial solutions choose one, say $x_1 = a_1, ..., x_{n+1} = a_{n+1}$ with **minimal number of nonzero** $\mathbf{a_i}$. We will assume that $x_1 = a_1, x_2 = a_2, ..., x_r = a_r, x_{r+1} = ... = x_{n+1} = 0$ by reindexing this solution. And we will assume that $x_1 = a_1 = 1_F$ by multiplying a_1^{-1} for each element.

We shall show below that the hypothesis that $u_1, ..., u_{n+1} \in H'$ are linearly independent over J' implies that there exists $\sigma \in J$ such that $x_1 = \sigma a_1, x_2 = \sigma a_2, ..., x_r = \sigma a_r, x_{r+1} = ... = x_{n+1} = 0$ is a solution of the system(1) and $\sigma a_2 \neq a_2$. Since the difference of two solutions is also a solution, let $x_1 = a_1 - \sigma a_1, x_2 = a_2 - \sigma a_2, ..., x_r = a_r - \sigma a_r, x_{r+1} = ... = x_{n+1} = 0$, is also a solution of system(1), but $x_1 = a_1 - \sigma a_1 = 1_F - 1_F = 0$ and $x_2 \neq 0$ as $a_2 \neq \sigma a_2$. This contradicts the minimality of the solution $x_1 = a_1, ..., x_r = a_r, x_{r+1} = ... = x_{n+1} = 0$. Therefore $[H': J'] \leq n$ as desired.

Now we will prove such $\sigma \in J$ exist. Let $\tau_1 \in H$, then $\tau_1(u_i) = u_i, i = 1, ..., n + 1$ as $u_i \in H'$. And we change the first equation into:

$$u_1a_1 + u_2a_2 + \dots + u_ra_r = 0$$

The linear independence of the u_i over J' and the fact that all a_i are nonzero imply that some a_i , say a_2 is not in J'. Therefore there exists $\sigma \in J$ such that $\sigma a_2 \neq a_2$.

Next consider the system of equations:

$$\begin{split} \sigma\tau_1(u_1)x_1 + \sigma\tau_1(u_2) + \ldots + \sigma\tau_1(u_{n+1})x_{n+1} &= 0\\ \sigma\tau_2(u_1)x_1 + \sigma\tau_2(u_2) + \ldots + \sigma\tau_2(u_{n+1})x_{n+1} &= 0\\ & \cdot\\ & \cdot\\ & \cdot\\ & \sigma\tau_n(u_1)x_1 + \sigma\tau_n(u_2) + \ldots + \sigma\tau_n(u_{n+1})x_{n+1} &= 0 \end{split}$$

If we label this system as (2), it's obvious that $x_1 = \sigma(a_1), ... x_{n+1} = \sigma(a_{n+1})$ is a solution of system(2). We claim that system (2), except for the order of equations, is identical with system (1)(so that $x_1 = \sigma a_1, ..., x_r = \sigma a_r, x_{r+1} = ... = x_{n+1} = 0$ is a solution of (1)). To see this we have to first verify the following two facts:

- (1) For any $\sigma \in J$, $\{\sigma\tau_1, \sigma\tau_2, ..., \sigma\tau_n\} \subset J$ is a complete set of coset representatives of H in J.
- (2) If ξ and θ are both elements in the same coset of H in J, then (since $u_i \in H'$) $\xi(u_i) = \theta(u_i)$ for i=1,2,...,n+1.

It follows from (1) that there is some reordering $i_1, ..., i_{n+1}$ of 1, 2, ..., n+1, so that for each k = 1, 2, ..., n+1, $\sigma \tau_k$ and τ_{i_k} are in the same coset of H in J. By (2), the kth equation of system(2) is identical with the i_k th equation of system (1)