

Array of eicosanoids produced depends upon cell type. Cellular response is a function of intracellular and extracellular receptors.

Figure 1

Figure 2

$$[A] \begin{array}{c} H_3C \\ H_3C$$

$$[\mathbf{B}] \qquad \qquad \underset{\mathsf{H}_3\mathsf{C}}{\overset{\mathsf{H}_2\mathsf{H}}{\mathsf{OH}}} \overset{\mathsf{OH}}{\overset{\mathsf{OH}}{\mathsf{OH}}} \overset{\mathsf{OH}}{\overset{\mathsf{OH}}{\mathsf{OH}}}$$

$$[C] \xrightarrow{H_3C} \xrightarrow{H_2} \xrightarrow{H_2} \xrightarrow{H_2} \xrightarrow{H_2} \xrightarrow{H_3} \xrightarrow{OH} \xrightarrow{OH}$$

$$[D] \qquad \qquad \begin{array}{c} H_3C \\ H_3C \\ \end{array} \qquad \begin{array}{c} H_2 \\ H \\ \end{array} \qquad \begin{array}{c} H_2 \\ H \\ \end{array} \qquad \begin{array}{c} OH \\ OH \\ OH \\ \end{array}$$

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Figure 3

Figures 4 A-C

Figures 4 D-F

$$_{3}$$
C $-$ H $_{2}$ C $-$ CH $_{3}$ C $+$ H $_{3}$ C $+$ H $_{3}$ C $+$ H $_{4}$ C $+$ CH $+$ CH $_{2}$ C $+$ CH $+$ CH $_{3}$ C $+$ CH $_{3}$ C $+$ CH $_{3}$ C $+$ CH $_{4}$ C $+$ CH $_{5}$ CH $_{5}$ CH $_{5}$ C $+$ CH $_{5}$ C

Figures 5I-N

$$H$$
 G
 H_3C
 $H_$

Figures 5 E-H

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

В

$$\begin{array}{c|c} CH & C \\ \hline \\ C & C \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \end{array}$$

D
$$H_{3}C$$

$$O$$

$$N$$

$$CH$$

$$N$$

$$N$$

$$CH_{3}$$

Figures 5 A-D

RIAA:Curcumin (100:1)					
		RIAA	Curcumin		
Fa	CI	(µg/mL)	(µg/mL)		
0.02	68.336	0.01	0.000		
0.05	28.842	0.04	0.000		
0.10	14.609	0.10	0.001		
0.15	9.589	0.18	0.002		
0.20	6.984	0.28	0.003		
0.25	5.376	0.40	0.004		
0.30	4.277	0.55	0.006		
0.35	3.475	0.73	0.007		
0.40	2.862	1.0	0.010		
0.45	2.375	1.2	0.012		
0.50	1.979	1.6	0.016		
0.55	1.649	2.0	0.020		
0.60	1.369	2.6	0.026		
0.65	1.127	3.4	0.034		
0.70	0.916	4.6	0.046		
0.75	0.729	· 6.3	0.063 ;		
0.80	. 0.562	9.0	0.090		
. 0.85	0.409	14	0.139		
0.90	0.269	25	0.247		
0.95	0.137	63	0.629		
1.00	0.031	495	4.950		

Shaded area represents region of synergy

Figure 6A

RIAA:Curcuh	nin [10:1]		
		RIAA	Curcumin
Fa	CI	[µg/mL]	[µg/mL]
0.02	33.103	0.006	0.001
0.05	18.074	0.025	0.002
0.10	11.23	0.08	0.008
0.15	8.371	0.15	0.015
0.20	6.713	0.26	0.026
0.25	5.596	0.40	0.040
0.30	4.774	0.59	0.059
0.35	4.134	0.8	0.084
0.40	3.614	1.2	0.116
0.45	3.177	1.6	0.158
0.50	2.801	2.1	0.214
0.55	2.471	2.9	0.290
0.60	2.174	4.0	0.395
0.65	1.902	5.5	0.546
0.70	1.650	7.7	0.772
0.75	1.412	11	1.100
0.80	1.182	17	1.700
0.85	0.954	30	3.000
0.90	0.718 ·	60	6.000
0.95	0.457	186	18.600
1.00	0.172	_2266	226.600

Figure 6B

R	AA:Curcu	min (3:1)		
Т			RIAA	4708
	Fa	CI	(µg/mL)	[µg/mL]
	0.02	0.073	0.000001	0.000
:	0.05	0.150	0.00020	0.000
1	0.10	0.266	0.0017	0.000
•	0.15	0.380	0.0070	0.002
:	0.20	0.497	0.018	0.004
	0.25	0.622	0.041	0.010
	0.30	0.756	0.085	0.021
	0.35	0.904	0.17	0.041
•	0.40	1.069	0.31	0.077
	0.45	1.256	0.56	0.14
	0.50	1.472	1.0	0.25
	0.55	1.726	1.8	0.45
	0.60	2.031	3.2	0.81
	0.65	2.410	6.0	1.5
	0.70	2.894	12	2.9
	0.75	3.546	24	6.0
	0.80	4.479	56	14
	0.85	5.957	153	38
	0.90	8.732	584	· 146
	0.95	16	5095	1274
	1.00			

Shaded area represents region of synergy

Figure 6C

RIAA:Curci	umin [3:2]		
	-	RIAA	Curcumin
Fa	CI	[µg/mL]	[µg/mL] _
0.02	0.025	0.000004	Tid.
0.05	. ' 0.062	0.00008	0.000
0.10	0.129	0.0008	- 0.000
0.15	. 0.202	.0.0032	0.001
0.20	0.285	0.0093	0.004
0.25	. 0.378	. 0.022	0.009
0.30	0.486	0.049	0.020
0.35	* .0.610	0.10	0.039
0.40	0.756	0.19	0.076
0.45	1.0.929	0.36	0.143
0.50	1.138	0.7	0.266
0.55	1.395	1.2	0.494
0.60	1.719	2.3	0.928
0.65	2.140	4.5	1.792
0.70	2.707	9.1	3.624
0.75	3.511	20	7.840
0.80	4.739	48	19.200
0.85	6.83	140	56.000
0.90	11	582	232.800
0.95	25	5830	2332.000
1.00	156		0.000

Figure 6D

RIAA:Curcumin [1:1]					
			RIAA	Curcumin	
	Fa	CI _	(µg/mL)	[µg/mL]	
	_				
•	0.02	0.267	0.00004	0.00004	
*	0.05	0.408	0.00047	0.00047	
;	0.10	0.575	0.0032	0.0032	
•	0.15	0.715	0.010	0.010 !	
	0.20	0.844	0.025	0,025	
,	0.25	0.971	0.052	0.052	
_	0.30	1.098	0.10	0.10	
	0.35	1.230	0.18	0.177	
	0.40	1.369	0.31	0.307	
	0.45	1.518	0.52	0.517	
	0.50	1.683	0.86	0.864	
	0.55	1.866	1.4	1.440	
	0,60	2.077	2.4	2.435	
	0.65	2.324	4.2	4.200	
	0.70	2.625	7.5	7.530	
	0.75	3.006	14.0	14.000	
	0.80	3,518	30.0	30.000	
	0.85	4,268	73	73.000	
	0.90	5.546	237	237.000	
	0.95	8.569	1600	1600.000	
	1.00				

Shaded area represents region of synergy

Figure 6E

RIAA:Curcur	nin (2:3)		
		RIAA	Curcumin
Fa	CI	[µg/mL]	(µg/mL)
	وحجين وووالسرة إريوسة		
0.02		0.000026	0.00004:
0.05	0.377	0.00040	0.00067
0.10	0.682	0.0034	0.0056
0.15	, 0.991	0.013	.0.021
0.20	1.317	0.034	0.057
0.25	1.669	0.079	0.13
0.30	2.056	0.16	0.27
0.35	2,489	0.31	0.52
0.40	2.979	0.57	0.95
0.45	3.544	1.0	1.7
0.50	4.206	1.8	3.0
0.55	4.998	3.2	5.4
0.60	5,965	5.8	9.7
0.65	7,183	11	18
0.70	8.773	21	35
0.75	19.951	43	72
0.80			
0.85			
0.90			
0.95			
1.00			

Figure 6F

RIAA:Curcui	min [1:10]		
		RIAA	Curcumin
<u>Fa</u>	CI	[µg/mL]	[µg/mL]
Fa 0.02 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70	0.539 0.739 0.962 1.140 1.298 1.449 1.596 1.744 1.896 2.056 2.227 2.414 2.622 2.860 3.140 3.482		0.00037 0.00037 0.0032 0.018 0.051 0.11 0.22 0.39 0.65 1.1 1.7 2.7 4.2 6.8 11 19
0.80	3.923	6.3	63
0.80	3.923		
0.85	4.538	14	140
0.90 0.95 1.00	5.514	40	400

Shaded area represents region of synergy

Figure 6G

		RIAA	Curcumin
Fa	CI	[µg/mL]	(µg/mL)
0.02	0.773	0.0000082	0.00082
0:05	0.894	0.000055	0.0055
0.10	1.006	0.00025	0.025
0.15	1.083	0.00062	0.062
0.20	1.145	0.0012	0.12
0.25	1.200	0.0022	0.22
0.30	1.250	0.0037	0.37
0.35	1.297	0.0058	0.58
0.40	1.344	0.0089	0.89
0.45	1.389	0.013	1.3
0.50	1.436	0.020	2.0
0.55	1.484	0.030	3.0
0.60	1.536	0.045	4.5
0.65	1,591	0.069	6.9
0.70	1.652	0.11	11
0.75	1.723	0.18	18
0.80	1.807	0.32	32
0.85	1.916	0.64	64
0.90	2.070	1.6	160
0.95	2.347	7.2	720
1.00	3.1	197	19700

Figure 6H

RIAA:Caffe	ine [100:1]		
		RIAA	Caffeine
_Fa	CI	[µg/mL]	[µg/mL]
0.02	483000	0.010	0.000
0.05	23100	0.039	0.000
0.10	2104	0.11	0.0011
0.15	477	0.21	0.0021
0.20	156	0.34	0.0034
0.25	62	0.51	0.0051
0.30	28	0.72	0.0072
0.35	13	0.98	0.010
0.40	6.715	1.3	0.013
0.45	3,481	1.8	0.018
0.50	1.829	2.3	0.023
0.55	0.961	3.1	0.031
0.60	0.498	4.1	0.041
0.65	0.251	5.5	. 0.055
0.70	0.121	7.5	0.075
0.75	0.054.	11	0.11
0.80	0.021	. 16	0.16
0.85	0.007	26	0.26
. 0.90	0.002	49	0.49
I 0.95	0.000	-138	1.4
1.00	0.000	1360	14
L			

Figure 7A

RIAA:Caffeine [10:1]				
		RIAA	Caffeine	
Fa	CI	[µg/mL]	[µg/mL]	
0.02	25	0.00000054	0.000000	
0.05	14	0.000023	0.000002	
0.10	8.673	0.0005	0.000045	
0.15	6.514	0.0029	0.00029	
0.20	5.252	0.011	0.0011	
0.25	4.396	0.036	0.0036	
0.30	3.764	0.097	0.010	
0.35	3.270	0.24	0.024	
0.40	2.866	0.56	0.056	
0.45	2.527	1,3	0.13	
0.50	2.233	2.8	0.28	
0.55	1.974	6.3	0.63	
0.60	1.742	14.0	1.4	
0.65	1.529	33.0	3.3	
0.70	1.330	82.0	8.2	
0.75	1.142	222	22	
0.80	0.961	697	70	
0.85	0.781	2787	279	
0.90	0.596	17533	1753	
. 0.95	0.393	341940	34194	
1.00	0.195	242070000		

Figure 7B

RIAA:Caffeine [3:1]				
		RIAA	Caffeine	
Fa	CI	(µg/mL)	[µg/mL]	
0.02	60	0.0000013	0.000000	
0.05	22.000	0.000038	0.000010	
0.10	10.324	0.0005	0.000	
0.15	6.380	0.0028	0.001	
0.20	4.442	0.010	0.002	
0.25	3.296	0.027	0.007	
0.30	2.540	0.065	0.016	
0.35	2.006	0.15	0.037	
0.40	1.609	0.31	0.078	
0.45	1.303	0.65	0.16	
0.50	1.060	1.3	0.33	
0.55	0.863	2.7	0.67	
0.60	0.700	· · 5.6	1.4	
0.65	0.564	12	3.0	
. 0.70	0.448	27	6.8	
. 0.75	0.348	66	17	
0.80	0.262	. 182 📜	46	
0.85	0.187	627	157	
0.90	0.121	3245	811	
0.95	0.064	46124	11531	
1.00	0.023	16236000	النينيين	

Figure 7C

RIAA:Caffeine [3:2]				
•		RIAA	Caffeine	
Fa	CI	[µg/mL]	[µg/mL]	
0.02	538000	0.012	0.005	
0.05	21100	0.036	0.014	
0.10	1640	0.086	0.034	
0.15	337	0.15	0.059	
0.20	103	0.22	0.089	
0.25	39	0.31	0.124	
0.30	16	0.42	0.167	
0.35	7.534	0.55	0.218	
0.40	3.645	0.70	0.281	
0.45	1.818	0.89	0.357	
0.50	0.921	1,1	0.452	
- 0.55	0.467	1.4	0.572	
0.60	0.234	1.8	0.728	
0.65	0.114	2.3	0.920	
0.70.	0.053	3.1	.1.240	
0.75	0.0230	4.1.	1.640	
0.80	0.009	5.8	2.304	
0.85	0.0030	8.7	3.472	
0.90	0.0010	15	6.000	
. 0.95	0.000062	36	14,400	
1.00	0.00000058	251	100.400	

Figure 7D

IAA:Caffein	e [1:7]		Caffeine	_
		RIAA		
Fa	CI	[µg/mL]	[µg/mL]	_
0.02	0.176	0.0000000008	0.00000	;
0.05	0.209	0.00000035	0.00000	-
0.10	0.241	0.000013	0.0000	- 1
0.15	0.263	0.00011	0.00011	i
0.20	0.281	0.00060	0.00060	
0.25	0.298	0.0024	0.0024	-
0.30	0.313	0.0079	0.0079	-
0.35	0.328	0.024	0.024	-
0.40	0.343	.0.065	0.065	3
0.45	0.359	0.17	0.17	-
0.50	0,376	0.45	0.45	3
0.55	0.394	1.2 .	1.2	1
0.60	.0.415	3.2	3.2.	
0.65	0.438	· 8.7	8.7	
0.70	0.467	26	26	
0.75	0.504	· 86 ·	. 86	
0.80	0.554	341	341	-
0.85	0.632	1805 .	1805	
0.90	0.779 ~	16460	16460	
0.95	1.206	584650	584650	
1.00	5.041	1556200000	1556200000	

Figure 7E

RIAA:Caffeine [2:3]					
		RIAA	Caffeine		
Fa	CI	[µg/mL]	[µg/mL]		
0.02	≝0.001	1.5*10 ⁻¹¹	2.5*10 ⁻¹¹		
0.05	0.003	5.1°10 ⁻⁹	8.5*10 ⁻⁹		
0.10	0.010	5.2*10 ⁻⁷	8.7*10 ⁻⁷ ·-		
0.15	. 0.021	9.1*10-	· ··15*10 ⁻⁶		
0.20.	-0.037	7.8*10 ⁻⁵	13*10 ⁻⁵		
0.25	0.058	0.00046	0.00077		
0.30	. 0.087	0.00217	0.0036		
0.35	0.125	0.01	:0.01::		
0.40	0.177	0.03	0.06		
0.45	0.247	0.1	A: 0.2		
0.50	0.343	0.4	0.7		
0.55	. 0.478	1.4	2.3		
0.60	0.673	4.9	8.2		
0.65	0.966	18	30		
0.70	1.428	76	127		
0.75	2.215	357	595		
0.80	3.702	2105	3508		
0.85	7.037	18069	30115		
0.90					
0.95					
1.00					

Figure 7F

Fa CI RIAA [μg/mL] Caffeine [μg/mL] 0.02 0.958 2.1*10*8 2.1*10*7 0.05 0.542 8.9*10*7 8.9*10*0 0.10 0.351 1.74*10*3 1.74*10*1 0.15 0.272 0.00011 0.0011 0.20 0.227 0.00044 0.0044 0.25 0.197 0.0014 0.014 0.30 0.175 0.0037 0.037 0.35 0.159 0.01 0.09 0.40 0.147 0.02 0.2 0.45 0.137 0.05 0.5 0.50 0.128 0.11 1.1 0.55 0.122 0.24 2.4 0.60 0.117 0.54 5.4 0.65 0.113 1.3 13 0.70 0.110 3.2 32 0.75 0.109 8.6 86 0.80 0.110 27.0 270 0.85 0.13	RIAA:Caffeir	ne [1:10]		
0.02				
0.05	Fa	CI	[µg/mL]	[µg/mL]
1.00 0.258 9.4*10° 9.4*107	0.02 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80	0.958 0.542 0.351 0.272 0.227 0.197 0.175 0.159 0.147 0.137 0.128 0.122 0.113 0.110 0.109 0.1110 0.113	2.1°10°8 8.9°10′7 1.74°10′3 0.00011 0.00044 0.0014 0.0037 0.01 0.02 0.05 0.11 0.24 0.54 1.3 3.2 8.6 27.0 107 676 13202	2.1°10°7 8.9°10° 1.74°10° 0.0011 0.0044 0.014 0.037 0.09 0.2 0.5 1.1 2.4 5.4 13 32 86 270 1070 6760

Shaded area represents region of synergy

Figure 7G

Figure 7H

MIA 293250-1.068911.0074