

# **Trial Examination 2021**

# **VCE Mathematical Methods Units 3&4**

# Written Examination 1

# **Question and Answer Booklet**

Reading time: 15 minutes Writing time: 1 hour

| Student's Name: |      |
|-----------------|------|
|                 |      |
| Teacher's Name: | <br> |

#### Structure of booklet

| Number of questions | Number of questions<br>to be answered | Number of<br>marks |
|---------------------|---------------------------------------|--------------------|
| 9                   | 9                                     | 40                 |

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.

Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

## **Materials supplied**

Question and answer booklet of 10 pages

Formula sheet

Working space is provided throughout the booklet.

#### **Instructions**

Write your **name** and your **teacher's name** in the space provided above on this page.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

#### At the end of the examination

You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students are advised that this is a trial examination only and cannot in any way quarantee the content or the format of the 2021 VCE Mathematical Methods Units 3&4 Written Examination 1.

### **Instructions**

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

**Question 1** (3 marks)

**a.** Let 
$$y = \frac{3}{2}\cos\left(\frac{3x}{2}\right)$$
.

Find  $\frac{dy}{dx}$ .

1 mark

| b. | Let $f(x) =$ | $\log_e(-x)$ |
|----|--------------|--------------|
| D. | Let $f(x)$ – | $e^x$        |

Evaluate f'(-1).

2 marks

| Question 2 (3 marks)                                 |  |
|------------------------------------------------------|--|
| Let $\int_{1}^{5} \frac{1}{1 - 2x} dx = \log_e(b)$ . |  |
| Find the value of $b$ .                              |  |
|                                                      |  |
|                                                      |  |
|                                                      |  |
|                                                      |  |
|                                                      |  |
|                                                      |  |

**Question 3** (7 marks)

a. Solve 
$$\tan\left(\frac{\pi}{3} - x\right) = 0$$
 for  $x \in \left(-\frac{\pi}{6}, \frac{4\pi}{3}\right]$ .

Let 
$$f: \left(-\frac{\pi}{6}, \frac{4\pi}{3}\right] \to R, f(x) = \tan\left(\frac{\pi}{3} - x\right).$$

**b.** Sketch the graph of y = f(x) on the axes below. Label the axes intercepts with their coordinates and give the equations of asymptotes.

3 marks

2 marks



Find the equation of the tangent to the graph of y = f(x) at the point where the graph crosses the y-axis.

| Question 4 (3 marks)                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solve $\log_2(2x+4) - 2\log_2(x+2) - 1 = 0$ .                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
| Question 5 (3 marks)  The results of four independent trials show that $4 \Pr(X = 1) = \Pr(X = 3)$ , where the random variable $X$ represents the number of successes. $X$ is binomially distributed.  If $p$ is the probability of success on any trial, find the value(s) of $p$ . |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      |

| Question 6 (2 marks)                                                                                          |
|---------------------------------------------------------------------------------------------------------------|
| An animal rescue shelter has a population of rabbits of different breeds. European rabbits form $\frac{3}{5}$ |
| of the population. If a sample of size $n$ is taken from the population, $\hat{P}$ represents the proportion  |
| of European rabbits in the sample.                                                                            |
| Find the value of <i>n</i> such that the standard deviation of $\hat{P}$ is equal to $\frac{1}{10}$ .         |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |

# Question 7 (5 marks)

Part of the graph of  $f(x) = x \cos(x^2)$  is shown below. The point (a, 0) is the first positive x-intercept of the graph of y = f(x).



**a.** Show that  $a = \frac{\sqrt{2\pi}}{2}$ .

1 mark

| b. | Find $\frac{d(\sin(x^2))}{dx}$ | and hence find the shaded area of the graph. |
|----|--------------------------------|----------------------------------------------|
|----|--------------------------------|----------------------------------------------|

4 marks

| <br> |  |
|------|--|
|      |  |
|      |  |

# **Question 8** (6 marks)

Express q in terms of p.

The continuous random variable X has a probability density function that is given by

$$f(x) = \begin{cases} a\sqrt{p-x} & 0 \le x \le p \\ 0 & \text{elsewhere} \end{cases}$$

a. Show that  $a = \frac{3}{2p^{\frac{3}{2}}}$ .

- **b.** Let the *y*-intercept of the function f be given by the coordinate (0, q).
- c. The minimum value of (p+q) is equal to  $\sqrt{m}$ . Find the value of m.

1 mark

# **Question 9** (8 marks)

Part of the graph of a cubic polynomial y = f(x) is shown below. The rule of f(x) can be written as  $f(x) = ax^2(x-2)$ , where a < 0. The graph has a local maximum at (p, q).



A transformation is applied to f(x). The image of f(x) under this transformation is defined as g(x). The rule for g(x) can be written as g(x) = k f(x+1), where  $k < -\frac{3}{2}$ .

**a.** Sketch the graph of y = g(x) on the axes above. Label the axes intercepts and turning points with their coordinates in terms of p and q where required.

3 marks

**b.** Show that  $p = \frac{4}{3}$ .

2 marks

9

| Find $q$ in terms of $k$ . | 3 1 |
|----------------------------|-----|
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |
|                            |     |

END OF QUESTION AND ANSWER BOOKLET