SDC and Reinforcement Learning

15. Februar 2021

1 Aufgabenstellung

Ziel: Löse das Kollokationsproblems

$$C_f u = u_0, (1)$$

mit Kollokationsoperator

$$C_f(u) := (I_M \otimes I_N - \Delta t(Q \otimes I_N)f)(u), \tag{2}$$

so effizient wie möglich.

Ansatz: Benutze den iterativen Löser SDC (eine vorkonditionierte Fixpunktiteration)

$$P_f(u^{k+1}) = P_f(u^k) + (u_0 - C_f(u^k))$$
 für $j = 0, 1, 2, ...,$ (3)

 $_{
m mit}$

$$P_f(u) := (I_M \otimes I_N - \Delta t(Q_\Delta \otimes I_N)f)(u). \tag{4}$$

Frage: Wie ist die diagonale Matrix Q_{Δ} zu wählen um einen besonders guten Vorkonditioniere P_f zu erzeugen.

Wähle die Einträge $(q_{\Delta})_{ii}$ von Q_{Δ} so, dass die Anzahl der Iterationen von (3) bezüglich einer vorgegebenen Fehler-Schranke minimiert werden.

Im einfachsten Fall ist u skalar und $f(u) = \lambda u$ wir nennen dies unsere Testgleichung und beschränken uns zunächst auf $\lambda \in [-100, 0]$.

2 Was bisher funtioniert: Konstante Matrix Q_{Δ}

- RL (unsere Implementierung): Eine Episode entspricht mehreren SDC-Iterationen (3): Für jede Iteration wird der Reward um eins verringert. Die Episode wird beended falls der Fehler eine vorgegebene Schranke (10⁻¹⁰) unterschritten hat oder dies nach 50 Iterationen nicht der Fall ist.
- MIN (Referenzlöser): Wir sind uns selbst nicht sicher wo diese Zahlen für Q_{Δ} herkommen

 \bullet LU (Referenzlöser): Ist eine verbreitete Wahl von Q_Δ als untere Dreiecksmatrix

Wir benutzen unseren RL Agent (nach verschieden intensivem Training) um Testgeichungen mit verschiedenen $\lambda \in [-100,0]$ zu Lösen und vergleichen das Ergebnis mit den zwei anderen Lösern:

Alg. und	durchschn Anz.	gef. Lösung für	gef. Lösung für	gef. Lösung für
Länge Trainig	Iterationen	$(q_{\Delta})_{11}$	$(q_{\Delta})_{22}$	$(q_{\Delta})_{33}$
		[min, max]	[min, max]	[min, max]
		$Mittel \pm Abw$.	$Mittel \pm Abw$.	$Mittel \pm Abw$.
RL 100k	29.46	[0.329, 0.481]	[0.179, 0.276]	[0.0, 0.425]
		0.423 ± 0.009	0.184 ± 0.013	0.401 ± 0.078
RL 1000k	15.22	[0.255, 0.324]	[0.128, 0.14]	[0.302, 0.375]
		0.318 ± 0.008	0.136 ± 0.004	0.34 ± 0.009
MIN	14.22	0.320	0.14	0.372
LU	11.53			

Die von RL gefundenen Werte für Q_{Δ} konvergieren gegen die MIN-Lösung (glaube ich).

Abbildung 1: RL 100K

Abbildung 2: RL 1000K

3 Bestimme Q_{Δ} in jeder Iteration

Beschränke dazu das Training und die Auswertung auf $\lambda \in [-10, 0]$. (Für $\lambda = -20$ funktioniert das wirklich GAR NICHT aber vielleicht lerne ich auch nicht lange genug!)

Expertenrat: Benutze jetzt LSTM (Netzwerk war vorher vollständig verbunden) und finde eine passende Reward-Funktion:

- bisherige Belohnung: -1 für jede Iteration
- $\bullet\,$ jetzt abhängig vom Residuum r^k und der gewünschten Genauigkeit $r_{tol}=10^{-10}$ und der Anfangsgenauigkeit r^0

$$0.5 * \frac{log(r^k) - log(r^{k+1})}{log(r^0) - log(r_{tol})} - 0.01$$
 (5)

Solution 10 -8 -6 -4 -2 0

Abbildung 3: Reward wie bisher, 100K

Abbildung 5: neuer Reward, 100K

Abbildung 6: neuer Reward, $1000 \mathrm{K}$

Die Matrix Q_{Δ} , die von RL in Abbildung 6 verwendet wird lautet $[0.612\pm0.11,0.307\pm0.075,0.0252\pm0.0282].$