Kernel Mean Estimation via Spectral Filtering: Supplementary Material

Krikamol Muandet MPI-IS, Tübingen krikamol@tue.mpg.de Bharath Sriperumbudur Dep. of Statistics, PSU bks18@psu.edu Bernhard Schölkopf MPI-IS, Tübingen bs@tue.mpg.de

Abstract

This note contains supplementary materials to Kernel Mean Estimation via Spectral Filtering.

1 Proof of Theorem 1

(i) Since $\check{\mu}_{\lambda} = \hat{\mu}_{\frac{\lambda}{\lambda+1}} = \frac{\hat{\mu}_{\mathbb{P}}}{\lambda+1}$, we have

$$\|\check{\mu}_{\lambda} - \mu_{\mathbb{P}}\| = \left\| \frac{\hat{\mu}_{\mathbb{P}}}{\lambda + 1} - \mu_{\mathbb{P}} \right\| \leq \left\| \frac{\hat{\mu}_{\mathbb{P}}}{\lambda + 1} - \frac{\mu_{\mathbb{P}}}{\lambda + 1} \right\| + \left\| \frac{\mu_{\mathbb{P}}}{\lambda + 1} - \mu_{\mathbb{P}} \right\| \leq \|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\| + \lambda \|\mu_{\mathbb{P}}\|.$$

From [1], we have that $\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\| = O_{\mathbb{P}}(n^{-1/2})$ and therefore the result follows.

(ii) Define $\Delta:=\mathbb{E}_{\mathbb{P}}\|\hat{\mu}_{\mathbb{P}}-\mu_{\mathbb{P}}\|^2=\frac{\int k(x,x)\,\mathrm{d}\mathbb{P}(x)-\|\mu_{\mathbb{P}}\|^2}{n}.$ Consider

$$\mathbb{E}_{\mathbb{P}} \| \check{\mu}_{\lambda} - \mu_{\mathbb{P}} \|^{2} - \Delta = \mathbb{E}_{\mathbb{P}} \left\| \frac{n^{\beta}}{n^{\beta} + c} (\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}) - \mu_{\mathbb{P}} \right\|^{2} - \Delta$$

$$= \left(\frac{n^{\beta}}{n^{\beta} + c} \right)^{2} \Delta + \frac{c^{2}}{(n^{\beta} + c)^{2}} \|\mu_{\mathbb{P}}\|^{2} - \Delta$$

$$= \frac{c^{2} \|\mu_{\mathbb{P}}\|^{2} - (c^{2} + 2cn^{\beta}) \Delta}{(n^{\beta} + c)^{2}}.$$

Substituting for Δ in the r.h.s. of the above equation, we have

$$\mathbb{E}_{\mathbb{P}} \| \check{\mu}_{\lambda} - \mu_{\mathbb{P}} \|^2 - \Delta = \frac{(nc^2 + c^2 + 2cn^{\beta}) \|\mu_{\mathbb{P}}\|^2 - (c^2 + 2cn^{\beta}) \int k(x, x) d\mathbb{P}(x)}{n(n^{\beta} + c)^2}.$$

It is easy to verify that $\mathbb{E}_{\mathbb{P}} \| \check{\mu}_{\lambda} - \mu_{\mathbb{P}} \|^2 - \Delta < 0$ if

$$\frac{\|\mu_{\mathbb{P}}\|^2}{\int k(x,x) \, d\mathbb{P}(x)} < \inf_n \frac{c^2 + 2cn^{\beta}}{nc^2 + c^2 + 2cn^{\beta}} = \frac{2^{1/\beta}\beta}{2^{1/\beta}\beta + c^{1/\beta}(\beta - 1)^{(\beta - 1)/\beta}}.$$

Remark. If $k(x,y) = \langle x,y \rangle$, then it is easy to check that $\mathcal{P}_{c,\beta} = \{\mathbb{P} \in M^1_+(\mathbb{R}^d) : \frac{\|\theta\|_2^2}{\operatorname{trace}(\Sigma)} < \frac{A}{1-A}\}$ where θ and Σ represent the mean vector and covariance matrix. Note that this choice of kernel yields a setting similar to classical James-Stein estimation, wherein for all n and all $\mathbb{P} \in \mathcal{P}_{c,\beta} := \{\mathbb{P} \in \mathcal{N}_{\theta,\sigma} : \|\theta\| < \sigma \sqrt{dA/(1-A)}\}$, $\check{\mu}_{\lambda}$ is admissible for any d, where $\mathcal{N}_{\theta,\sigma} := \{\mathbb{P} \in M^1_+(\mathbb{R}^d) : d\mathbb{P}(x) = (2\pi\sigma^2)^{-d/2}e^{-\frac{\|x-\theta\|^2}{2\sigma^2}} \ dx, \ \theta \in \mathbb{R}^d, \ \sigma > 0\}$. On the other hand, the James-Stein estimator is admissible for only $d \geq 3$ but for any $\mathbb{P} \in \mathcal{N}_{\theta,\sigma}$.

2 Consequence of Theorem 1 if k is translation invariant

Claim: Let $k(x,y) = \psi(x-y), \, x,y \in \mathbb{R}^d$ where ψ is a bounded continuous positive definite function with $\psi \in L^1(\mathbb{R}^d)$. For $\lambda = cn^{-\beta}$ with c>0 and $\beta>1$, define

$$\mathcal{P}_{c,\beta,\psi} := \left\{ \mathbb{P} \in M^1_+(\mathbb{R}^d) : \|\phi_{\mathbb{P}}\|_{L^2} < \sqrt{\frac{A(2\pi)^{d/2}\psi(0)}{\|\psi\|_{L^1}}} \right\}$$

where $\phi_{\mathbb{P}}$ is the characteristic function of \mathbb{P} . Then $\forall n$ and $\forall \mathbb{P} \in \mathcal{P}_{c,\beta,\psi}$, we have $\mathbb{E}_{\mathbb{P}} \|\check{\mu}_{\lambda} - \mu_{\mathbb{P}}\|^2 < \mathbb{E}_{\mathbb{P}} \|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\|^2$.

Proof. If $k(x,y) = \psi(x-y)$, it is easy to verify that

$$\int \int k(x,y) \, d\mathbb{P}(x) \, d\mathbb{P}(y) = \int |\phi_{\mathbb{P}}(\omega)|^2 \widehat{\psi}(\omega) \, d\omega \le \sup_{\omega \in \mathbb{R}^d} \widehat{\psi}(\omega) \|\phi_{\mathbb{P}}\|_{L_2}^2 \le (2\pi)^{-d/2} \|\psi\|_{L_1} \|\phi_{\mathbb{P}}\|_{L_2}^2.$$

where $\widehat{\psi}$ is the Fourier transform of ψ . On the other hand, since $|\phi_{\mathbb{P}}(\omega)| \leq 1$ for any $\omega \in \mathbb{R}^d$, we have

$$\int \int k(x,y) \, d\mathbb{P}(x) \, d\mathbb{P}(y) = \int |\phi_{\mathbb{P}}(\omega)|^2 \widehat{\psi}(\omega) \, d\omega \le \int |\phi_{\mathbb{P}}(\omega)| \widehat{\psi}(\omega) \, d\omega \le \|\phi_{\mathbb{P}}\|_{L^2} \|\widehat{\psi}\|_{L^2} \\
\le \|\phi_{\mathbb{P}}\|_{L^2} \sqrt{\|\widehat{\psi}\|_{\infty} \|\widehat{\psi}\|_{L^1}} = \|\phi_{\mathbb{P}}\|_{L^2} \sqrt{(2\pi)^{-d/2} \|\psi\|_{L^1} \psi(0)},$$

where we used $\psi(0) = \|\widehat{\psi}\|_{L^1}$. As $\int k(x,x) d\mathbb{P}(x) = \psi(0)$, we have that

$$\frac{\|\mu_{\mathbb{P}}\|^2}{\int k(x,x) d\mathbb{P}(x)} \le \min \left\{ \frac{\|\phi_{\mathbb{P}}\|_{L^2}^2 \|\psi\|_{L^1}}{(2\pi)^{d/2} \psi(0)}, \sqrt{\frac{\|\phi_{\mathbb{P}}\|_{L^2}^2 \|\psi\|_{L^1}}{(2\pi)^{d/2} \psi(0)}} \right\}.$$

Since $\mathbb{P} \in \mathcal{P}_{c,\beta,\psi}$, we have $\mathbb{P} \in \mathcal{P}_{c,\beta}$ and therefore the result follows.

3 Proof of Theorem 2

Since $(e_i)_i$ is an orthonormal basis in \mathcal{H} , we have for any \mathbb{P} and $f^* \in \mathcal{H}$

$$\mu_{\mathbb{P}} = \sum_{i=1}^{\infty} \mu_i e_i, \quad \hat{\mu}_{\mathbb{P}} = \sum_{i=1}^{\infty} \hat{\mu}_i e_i, \quad \text{and} \quad f^* = \sum_{i=1}^{\infty} f_i^* e_i,$$

where $\mu_i := \langle \mu_{\mathbb{P}}, e_i \rangle$, $\hat{\mu}_i := \langle \hat{\mu}_{\mathbb{P}}, e_i \rangle$, and $f_i^* := \langle f^*, e_i \rangle$. If follows from the Parseval's identity that

$$\Delta = \mathbb{E}_{\mathbb{P}} \|\hat{\mu} - \mu\|^2 = \mathbb{E}_{\mathbb{P}} \left[\sum_{i=1}^{\infty} (\hat{\mu}_i - \mu_i)^2 \right] =: \sum_{i=1}^{\infty} \Delta_i$$

$$\Delta_{\alpha} = \mathbb{E}_{\mathbb{P}} \|\hat{\mu}_{\alpha} - \mu\|^2 = \mathbb{E}_{\mathbb{P}} \left[\sum_{i=1}^{\infty} (\alpha_i f_i^* + (1 - \alpha_i)\hat{\mu}_i - \mu_i)^2 \right] =: \sum_{i=1}^{\infty} \Delta_{\alpha, i}.$$

Note that the problem has not changed and we are merely looking at it from a different perspective. To estimate $\mu_{\mathbb{P}}$, we may just as well estimate its Fourier coefficient sequence μ_i with $\hat{\mu}_i$. Based on above decomposition, we may write the risk difference $\Delta_{\alpha} - \Delta$ as $\sum_{i=1}^{\infty} (\Delta_{\alpha,i} - \Delta_i)$. We can thus ask under which conditions on $\alpha = (\alpha_i)$ for which $\Delta_{\alpha,i} - \Delta_i < 0$ uniformly over all i.

For each coordinate i, we have

$$\begin{split} \Delta_{\alpha,i} - \Delta_i &= & \mathbb{E}_{\mathbb{P}} \left[(\alpha_i f_i^* + (1 - \alpha_i) \hat{\mu}_i - \mu_i)^2 \right] - \mathbb{E}_{\mathbb{P}} \left[(\hat{\mu}_i - \mu_i)^2 \right] \\ &= & \mathbb{E}_{\mathbb{P}} [\alpha_i^2 f_i^2 + 2\alpha_i f_i^* (1 - \alpha_i) \hat{\mu}_i + (1 - \alpha_i)^2 \hat{\mu}_i^2 \\ &- 2\alpha_i f_i^* \mu_i - 2(1 - \alpha_i) \hat{\mu}_i \mu_i + \mu_i^2 \right] - \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i^2 - 2\hat{\mu}_i \mu_i + \mu_i^2] \\ &= & \alpha_i^2 f_i^2 + 2\alpha_i f_i^* \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i] - 2\alpha_i^2 f_i^* \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i] + (1 - \alpha_i)^2 \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i^2] \\ &- 2\alpha_i f_i^* \mu_i - 2(1 - \alpha_i) \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i] \mu_i + \mu_i^2 - \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i^2] + 2\mu_i \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i] - \mu_i^2 \\ &= & \alpha_i^2 f_i^2 - 2\alpha_i^2 f_i^* \mu_i + (1 - \alpha_i)^2 \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i^2] - 2(1 - \alpha_i) \mu_i^2 + 2\mu_i^2 - \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i^2] \\ &= & \alpha_i^2 f_i^2 - 2\alpha_i^2 f_i^* \mu_i + (\alpha_i^2 - 2\alpha_i) \mathbb{E}_{\mathbb{P}} [\hat{\mu}_i^2] + 2\alpha_i \mu_i^2. \end{split}$$

Next, we substitute $\mathbb{E}_{\mathbb{P}}[\hat{\mu}_i^2] = \mathbb{E}_{\mathbb{P}}[(\hat{\mu}_i - \mu_i + \mu_i)^2] = \Delta_i + \mu_i^2$ into the last equation to obtain

$$\begin{split} \Delta_{\alpha,i} - \Delta_i &= \alpha_i^2 f_i^2 - 2\alpha_i^2 f_i^* \mu_i + \alpha_i^2 (\Delta_i + \mu_i^2) - 2\alpha_i (\Delta_i + \mu_i^2) + 2\alpha_i \mu_i^2 \\ &= \alpha_i^2 f_i^2 - 2\alpha_i^2 f_i^* \mu_i + \alpha_i^2 \Delta_i + \alpha_i^2 \mu_i^2 - 2\alpha_i \Delta_i \\ &= \alpha_i^2 (f_i^2 - 2f_i^* \mu_i + \Delta_i + \mu_i^2) - 2\alpha_i \Delta_i \\ &= \alpha_i^2 (\Delta_i + (f_i^* - \mu_i)^2) - 2\alpha_i \Delta_i \end{split}$$

which is negative if α_i satisfies

$$0 < \alpha_i < \frac{2\Delta_i}{\Delta_i + (f_i^* - \mu_i)^2}.$$

This completes the proof.

4 Proof of Proposition 3

Let $\mathbf{K} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$ be an eigen-decomposition of \mathbf{K} where $\mathbf{U} = [\tilde{\mathbf{u}}_1, \tilde{\mathbf{u}}_2, \dots, \tilde{\mathbf{u}}_n]$ consists of orthogonal eigenvectors of \mathbf{K} such that $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}$ and $\mathbf{D} = \operatorname{diag}(\tilde{\gamma}_1, \tilde{\gamma}_2, \dots, \tilde{\gamma}_n)$ consists of corresponding eigenvalues. As a result, the coefficients $\beta(\lambda)$ can be written as

$$\boldsymbol{\beta}(\lambda) = g_{\lambda}(\mathbf{K})\mathbf{K}\mathbf{1}_{n} = \mathbf{U}g_{\lambda}(\mathbf{D})\mathbf{U}^{\top}\mathbf{K}\mathbf{1}_{n} = \sum_{i=1}^{n} \tilde{\mathbf{u}}_{i}g_{\lambda}(\tilde{\gamma}_{i})\tilde{\mathbf{u}}_{i}^{\top}\mathbf{K}\mathbf{1}_{n}.$$
(1)

Using $\mathbf{K}\mathbf{1}_n = [\langle \hat{\mu}, k(x_1, \cdot) \rangle, \dots, \langle \hat{\mu}, k(x_n, \cdot) \rangle]^{\top}$, we can rewrite (1) as

$$\beta(\lambda) = \sum_{i=1}^{n} \tilde{\mathbf{u}}_{i} g_{\lambda}(\tilde{\gamma}_{i}) \sum_{j=1}^{n} \tilde{u}_{ij} \langle \hat{\mu}, k(x_{j}, \cdot) \rangle$$

$$= \sum_{i=1}^{n} \sqrt{\tilde{\gamma}_{i}} \tilde{\mathbf{u}}_{i} g_{\lambda}(\tilde{\gamma}_{i}) \left\langle \hat{\mu}, \frac{1}{\sqrt{\tilde{\gamma}_{i}}} \sum_{j=1}^{n} \tilde{u}_{ij} k(x_{j}, \cdot) \right\rangle,$$

where \tilde{u}_{ij} is the *j*th component of $\tilde{\mathbf{u}}_i$. Next, we invoke the relation between the eigenvectors of the matrix \mathbf{K} and the eigenfunctions of the empirical covariance operator $\hat{\mathcal{C}}_k$ in \mathcal{H} . That is, it is known that the *i*th eigenfunction of $\hat{\mathcal{C}}_k$ can be expressed as $\tilde{\mathbf{v}}_i = (1/\sqrt{\tilde{\gamma}_i}) \sum_{j=1}^n \tilde{u}_{ij} k(x_j, \cdot)$ [2]. Consequently,

$$\left\langle \hat{\mu}, \frac{1}{\sqrt{\tilde{\gamma}_i}} \sum_{i=1}^n \tilde{u}_{ij} k(x_j, \cdot) \right\rangle = \left\langle \hat{\mu}, \tilde{\mathbf{v}}_i \right\rangle$$

and we can write the Spectral-KMSE as

$$\hat{\mu}_{\lambda} = \sum_{j=1}^{n} \left[\sum_{i=1}^{n} \tilde{u}_{ij} \sqrt{\tilde{\gamma}_{i}} g_{\lambda}(\tilde{\gamma}_{i}) \langle \hat{\mu}, \tilde{\mathbf{v}}_{i} \rangle \right]_{j} k(x_{j}, \cdot)$$

$$= \sum_{i=1}^{n} \sqrt{\tilde{\gamma}_{i}} g_{\lambda}(\tilde{\gamma}_{i}) \langle \hat{\mu}, \tilde{\mathbf{v}}_{i} \rangle \sum_{j=1}^{n} \tilde{u}_{ij} k(x_{j}, \cdot)$$

$$= \sum_{i=1}^{n} g_{\lambda}(\tilde{\gamma}_{i}) \tilde{\gamma}_{i} \langle \hat{\mu}, \tilde{\mathbf{v}}_{i} \rangle \tilde{\mathbf{v}}_{i}.$$

This completes the proof.

5 Population counterpart of Spectral-KMSE

To obtain the population version of the Spectral-KMSE, we resort to the regression perspective of the kernel mean embedding which has been studied earlier in [3, 4]. The proof techniques used here are similar to those in [3]. Consider

$$\arg\min_{\mathbf{F}\in\mathcal{H}\otimes\mathcal{H}} \quad \mathbb{E}_{X} \left[\|k(X,\cdot) - \mathbf{F}k(X,\cdot)\|_{\mathcal{H}}^{2} \right] + \lambda \|\mathbf{F}\|_{HS}^{2}. \tag{2}$$

where $\mathbf{F}:\mathcal{H}\to\mathcal{H}$ is Hilbert-Schmidt. We can expand the regularized loss (2) as

$$\begin{split} &\mathbb{E}_{X}\left[\|k(X,\cdot)-\mathbf{F}k(X,\cdot)\|_{\mathcal{H}}^{2}\right]+\lambda\|\mathbf{F}\|_{HS}^{2}\\ &=\mathbb{E}_{X}\langle k(X,\cdot),k(X,\cdot)\rangle_{\mathcal{H}}-2\mathbb{E}_{X}\langle k(X,\cdot),\mathbf{F}k(X,\cdot)\rangle_{\mathcal{H}}+\mathbb{E}_{X}\langle\mathbf{F}k(X,\cdot),\mathbf{F}k(X,\cdot)\rangle_{\mathcal{H}}+\lambda\langle\mathbf{F},\mathbf{F}\rangle_{HS}\\ &=\mathbb{E}_{X}\langle k(X,\cdot),k(X,\cdot)\rangle_{\mathcal{H}}-2\mathbb{E}_{X}\langle k(X,\cdot)\otimes k(X,\cdot),\mathbf{F}\rangle_{HS}+\mathbb{E}_{X}\langle k(X,\cdot),\mathbf{F}^{*}\mathbf{F}k(X,\cdot)\rangle_{\mathcal{H}}+\lambda\langle\mathbf{F},\mathbf{F}\rangle_{HS}\\ &=\mathbb{E}_{X}\langle k(X,\cdot),k(X,\cdot)\rangle_{\mathcal{H}}-2\langle\mathcal{C}_{k},\mathbf{F}\rangle_{HS}+\langle\mathcal{C}_{k},\mathbf{F}^{*}\mathbf{F}\rangle_{HS}+\lambda\langle\mathbf{F},\mathbf{F}\rangle_{HS}, \end{split}$$

where \mathbf{F}^* denotes the adjoint of \mathbf{F} and $\mathcal{C}_k = \mathbb{E}_X[k(X,\cdot)\otimes k(X,\cdot)]$. Next, we show that the solution to the above expression is $\mathbf{F} := \mathcal{C}_k(\mathcal{C}_k + \lambda \mathbf{I})^{-1}$. Defining $\mathbf{A} := \mathbf{F}(\mathcal{C}_k + \lambda \mathbf{I})^{1/2}$, the above expression can be rewritten as

$$\mathbb{E}_{X}\langle k(X,\cdot), k(X,\cdot)\rangle_{\mathcal{H}} - 2\langle \mathcal{C}_{k}, \mathbf{F}\rangle_{HS} + \langle \mathcal{C}_{k}, \mathbf{F}^{*}\mathbf{F}\rangle_{HS} + \lambda\langle \mathbf{F}, \mathbf{F}\rangle_{HS}
= \mathbb{E}_{X}\langle k(X,\cdot), k(X,\cdot)\rangle_{\mathcal{H}} - 2\langle \mathcal{C}_{k}, \mathbf{F}\rangle_{HS} + \langle \mathcal{C}_{k} + \lambda \mathbf{I}, \mathbf{F}^{*}\mathbf{F}\rangle_{HS}
= \mathbb{E}_{X}\langle k(X,\cdot), k(X,\cdot)\rangle_{\mathcal{H}} - 2\langle \mathcal{C}_{k}, \mathbf{F}\rangle_{HS} + \left\langle \mathbf{F}(\mathcal{C}_{k} + \lambda \mathbf{I})^{1/2}, \mathbf{F}(\mathcal{C}_{k} + \lambda \mathbf{I})^{1/2} \right\rangle_{HS}
= \mathbb{E}_{X}\langle k(X,\cdot), k(X,\cdot)\rangle_{\mathcal{H}} - 2\langle \mathcal{C}_{k}, \mathbf{A}(\mathcal{C}_{k} + \lambda \mathbf{I})^{-1/2}\rangle_{HS} + \langle \mathbf{A}, \mathbf{A}\rangle_{HS}
= \mathbb{E}_{X}\langle k(X,\cdot), k(X,\cdot)\rangle_{\mathcal{H}} - \left\| \mathcal{C}_{k}(\mathcal{C}_{k} + \lambda \mathbf{I})^{-1/2} \right\|_{HS}^{2} + \left\| \mathcal{C}_{k}(\mathcal{C}_{k} + \lambda \mathbf{I})^{-1/2} - A \right\|_{HS}^{2}.$$

As a result, the above expression is minimized when $\mathbf{A} = \mathcal{C}_k(\mathcal{C}_k + \lambda \mathbf{I})^{-1/2}$, implying that $\mathbf{F} = \mathcal{C}_k(\mathcal{C}_k + \lambda \mathbf{I})^{-1}$. As in the sample case, a natural estimate of the Spectral-KMSE is

$$\mu_{\lambda} = \mathbf{F}\mu_{\mathbb{P}} = \mathcal{C}_k(\mathcal{C}_k + \lambda \mathbf{I})^{-1}\mu_{\mathbb{P}}.$$

6 Proof of Proposition 4

The proof employs the relation between the Gram matrix K and the empirical covariance operator $\widehat{\mathcal{C}}_k$ shown in Lemma 3. It is known that the operator $\widehat{\mathcal{C}}_k$ is of finite rank, self-adjoint, and positive. Moreover, its spectrum has only finitely many nonzero elements [5]. If $\widetilde{\gamma}_i$ is a nonzero eigenvalue and $\widetilde{\mathbf{v}}_i$ is the corresponding eigenfunction of $\widehat{\mathcal{C}}_k$, then the following decomposition holds

$$\widehat{\mathcal{C}}_k f = \sum_{i=1}^n \widetilde{\gamma}_i \langle f, \widetilde{\mathbf{v}}_i \rangle_{\mathcal{H}} \widetilde{\mathbf{v}}_i, \quad \forall f \in \mathcal{H}.$$

Note that it may be that k < n where k is the rank of \widehat{C}_k . In that case, the above decomposition still holds. Setting $f = \widehat{\mu}$ and applying the definition of the filter function g_{λ} to the operator \widehat{C}_k yield

$$\hat{\mu}_{\lambda} = \widehat{\mathcal{C}}_{k} g_{\lambda}(\widehat{\mathcal{C}}_{k}) \hat{\mu} = \sum_{i=1}^{n} g_{\lambda}(\widetilde{\gamma}_{i}) \widetilde{\gamma}_{i} \langle \widehat{\mu}, \widetilde{\mathbf{v}}_{i} \rangle_{\mathcal{H}} \widetilde{\mathbf{v}}_{i},$$

which is exactly the decomposition given in Lemma 3. This completes the proof.

7 Proof of Theorem 5

Consider the following decomposition

$$\begin{split} \hat{\mu}_{\lambda} - \mu_{\mathbb{P}} &= \widehat{\mathcal{C}}_{k} g_{\lambda}(\widehat{\mathcal{C}}_{k}) \hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}} \\ &= \widehat{\mathcal{C}}_{k} g_{\lambda}(\widehat{\mathcal{C}}_{k}) (\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}) + \widehat{\mathcal{C}}_{k} g_{\lambda}(\widehat{\mathcal{C}}_{k}) \mu_{\mathbb{P}} - \mu_{\mathbb{P}} \\ &= \widehat{\mathcal{C}}_{k} g_{\lambda}(\widehat{\mathcal{C}}_{k}) (\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}) + (\widehat{\mathcal{C}}_{k} g_{\lambda}(\widehat{\mathcal{C}}_{k}) - I) \widehat{\mathcal{C}}_{k}^{\beta} h + (\widehat{\mathcal{C}}_{k} g_{\lambda}(\widehat{\mathcal{C}}_{k}) - I) (\mathcal{C}_{k}^{\beta} - \widehat{\mathcal{C}}_{k}^{\beta}) h \end{split}$$

where we used the fact that there exists $h \in \mathcal{H}$ such that $\mu_{\mathbb{P}} = \mathcal{C}_k^{\beta} h$ as we assumed that $\mu_{\mathbb{P}} \in \mathcal{R}(\mathcal{C}_k^{\beta})$ for some $\beta > 0$. Therefore

$$\|\hat{\mu}_{\lambda} - \mu_{\mathbb{P}}\| \leq \|\widehat{\mathcal{C}}_{k}g_{\lambda}(\widehat{\mathcal{C}}_{k})\|_{op}\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\| + \|(\widehat{\mathcal{C}}_{k}g_{\lambda}(\widehat{\mathcal{C}}_{k}) - I)\widehat{\mathcal{C}}_{k}^{\beta}\|_{op}\|h\| + \|\widehat{\mathcal{C}}_{k}g_{\lambda}(\widehat{\mathcal{C}}_{k}) - I\|_{op}\|\mathcal{C}_{k}^{\beta} - \widehat{\mathcal{C}}_{k}^{\beta}\|_{op}\|h\|$$
 where we used the fact that $\|Ab\| \leq \|A\|_{op}\|b\|$ with $A: \mathcal{H} \to \mathcal{H}$ being a bounded operator, $b \in \mathcal{H}$ and $\|\cdot\|_{op}$ denoting the operator norm defined as $\|A\|_{op} := \sup\{\|Ab\| : \|b\| = 1\}$.

By (C1), (C2) and (C3), we have $\|\widehat{\mathcal{C}}_k g_{\lambda}(\widehat{\mathcal{C}}_k)\|_{op} \leq B$, $\|\widehat{\mathcal{C}}_k g_{\lambda}(\widehat{\mathcal{C}}_k) - I\|_{op} \leq C$ and $\|(\widehat{\mathcal{C}}_k g_{\lambda}(\widehat{\mathcal{C}}_k) - I)\widehat{\mathcal{C}}_k^{\beta}\|_{op} \leq D\lambda^{\min\{\beta,\eta_0\}}$ respectively. Denoting $\|h\| = \|\mathcal{C}_k^{-\beta}\mu_{\mathbb{P}}\|$, we therefore have

$$\|\hat{\mu}_{\lambda} - \mu_{\mathbb{P}}\| \le B\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\| + D\lambda^{\min\{\beta,\eta_{0}\}} \|\mathcal{C}_{k}^{-\beta}\mu_{\mathbb{P}}\| + C\|\mathcal{C}_{k}^{\beta} - \widehat{\mathcal{C}}_{k}^{\beta}\|_{op} \|\mathcal{C}_{k}^{-\beta}\mu_{\mathbb{P}}\|.$$
(3)

For $0 < \beta < 1$, it follows from Theorem 1 in [6] that there exists a constant τ_1 such that

$$\|\mathcal{C}_k^{\beta} - \widehat{\mathcal{C}}_k^{\beta}\|_{op} \le \tau_1 \|\mathcal{C}_k - \widehat{\mathcal{C}}_k\|_{op}^{\beta} \le \tau_1 \|\mathcal{C}_k - \widehat{\mathcal{C}}_k\|_{HS}^{\beta}.$$

On the other hand, since $\alpha \mapsto \alpha^{\beta}$ is Lipschitz on $[0, \kappa^2]$ for $\beta \geq 1$, the following lemma yields that

$$\|\mathcal{C}_k^{\beta} - \widehat{\mathcal{C}}_k^{\beta}\|_{op} \le \|\mathcal{C}_k^{\beta} - \widehat{\mathcal{C}}_k^{\beta}\|_{HS} \le \tau_2 \|\mathcal{C}_k - \widehat{\mathcal{C}}_k\|_{HS}$$

where τ_2 is the Lipschitz constant of $\alpha \mapsto \alpha^{\beta}$ on $[0, \kappa^2]$. In other words,

$$\|\mathcal{C}_k^{\beta} - \widehat{\mathcal{C}}_k^{\beta}\|_{op} \le \max\{\tau_1, \tau_2\} \|\mathcal{C}_k - \widehat{\mathcal{C}}_k\|_{HS}^{\min\{1,\beta\}}. \tag{4}$$

Lemma 1 (Contributed by Anreas Maurer, see Lemma 5 in [7]). Suppose A and B are self-adjoint Hilbert-Schmidt operators on a separable Hilbert space H with spectrum contained in the interval [a,b], and let $(\sigma_i)_{i\in I}$ and $(\tau_j)_{j\in J}$ be the eigenvalues of A and B, respectively. Given a function $r:[a,b]\to\mathbb{R}$, if there exists a finite constant L such that

$$|r(\sigma_i) - r(\tau_j)| \le L|\sigma_i - \tau_j|, \ \forall i \in I, j \in J,$$

then

$$||r(A) - r(B)||_{HS} \le L||A - B||_{HS}.$$

Using (4) in (3), we have

$$\|\hat{\mu}_{\lambda} - \mu_{\mathbb{P}}\| \le B\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\| + D\lambda^{\min\{\beta,\eta_{0}\}} \|\mathcal{C}_{k}^{-\beta}\mu_{\mathbb{P}}\| + C\tau\|\mathcal{C}_{k} - \widehat{\mathcal{C}}_{k}\|_{HS}^{\min\{1,\beta\}} \|\mathcal{C}_{k}^{-\beta}\mu_{\mathbb{P}}\|,$$
 (5)

where $\tau := \max\{\tau_1, \tau_2\}$. We now obtain bounds on $\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\|$ and $\|\mathcal{C}_k - \widehat{\mathcal{C}}_k\|_{HS}$ using the following results.

Lemma 2 ([8]). Suppose that $\kappa = \sup_{x \in \mathcal{X}} \sqrt{k(x,x)}$. For any $\delta > 0$, the following inequality holds with probability at least $1 - e^{-\delta}$

$$\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\| \le \frac{2\kappa + \kappa\sqrt{2\delta}}{\sqrt{n}}.$$

Lemma 3 (e.g., see Theorem 7 in [5]). Let $\kappa := \sup_{x \in \mathcal{X}} \sqrt{k(x,x)}$. For $n \in \mathbb{N}$ and any $\delta > 0$, the following inequality holds with probability at least $1 - 2e^{-\delta}$:

$$\left\|\widehat{\mathcal{C}}_k - \mathcal{C}_k\right\|_{HS} \le \frac{2\sqrt{2}\kappa^2\sqrt{\delta}}{\sqrt{n}}.$$

Using Lemmas 2 and 3 in (5), for any $\delta > 0$, with probability $1 - 3e^{-\delta}$, we obtain

$$\|\hat{\mu}_{\lambda} - \mu_{\mathbb{P}}\| \leq \frac{2\kappa B + \kappa B\sqrt{2\delta}}{\sqrt{n}} + D\lambda^{\min\{\beta,\eta_{0}\}} \|\mathcal{C}_{k}^{-\beta}\mu_{\mathbb{P}}\| + C\tau \frac{(2\sqrt{2}\kappa^{2}\sqrt{\delta})^{\min\{1,\beta\}}}{n^{\min\{1/2,\beta/2\}}} \|\mathcal{C}_{k}^{-\beta}\mu_{\mathbb{P}}\|.$$

8 Shrinkage parameter $\lambda = cn^{-\beta}$

In this section, we provide supplementary results that demonstrate the effect of the shrinkage parameter λ presented in Theorem 1. That is, if we choose $\lambda = cn^{-\beta}$ for some c>0 and $\beta>1$, the estimator $\check{\mu}_{\lambda}$ is a proper estimator of μ . Unfortunately, the true value of β , which characterizes the smoothness of the true kernel mean $\mu_{\mathbb{P}}$, is not known in practice. Nevertheless, we provide simulated experiments that illustrate the convergence of the estimator $\check{\mu}_{\lambda}$ for different values of c and c.

The data-generating distribution used in this experiment is identical to the one we consider in our previous experiments on synthetic data. That is, the data are generated as follows: $x \sim$

Figure 1: The risk of shrinkage estimator $\check{\mu}_{\lambda}$ when $\lambda = cn^{-\beta}$. The left figure shows the risk of the shrinkage estimator as sample size increases while fixing the value of β , whereas the right figure shows the same plots while fixing the value of c. See text for more explanation.

 $\sum_{i=1}^4 \pi_i \mathcal{N}(\boldsymbol{\theta}_i, \Sigma_i) + \varepsilon, \theta_{ij} \sim \mathcal{U}(-10, 10), \Sigma_i \sim \mathcal{W}(3 \times \mathbf{I}_d, 7), \varepsilon \sim \mathcal{N}(0, 0.2 \times \mathbf{I}_d) \text{ where } \mathcal{U}(a,b) \text{ and } \mathcal{W}(\Sigma_0, df) \text{ are the uniform distribution and Wishart distribution, respectively. We set } \boldsymbol{\pi} = [0.05, 0.3, 0.4, 0.25]. \text{ We use the Gaussian RBF kernel } k(x,x') = \exp(-\|x-x'\|^2/2\sigma^2) \text{ whose bandwidth parameter is calculated using the median heuristic, i.e., } \sigma^2 = \operatorname{median}\{\|x_i - x_j\|^2\}.$ Figure 1 depicts the comparisons between the standard kernel mean estimator and the shrinkage estimators with varying values of c and β .

As we can see in Figure 1, if c is very small or β is very large, the shrinkage estimator $\check{\mu}_{\lambda}$ behaves like the empirical estimator $\hat{\mu}_{\mathbb{P}}$. This coincides with the intuition given in Theorem 1. Note that the value of β specifies the smoothness of the true kernel mean μ and is unknown in practice. Thus, one of the interesting future directions is to develop procedure that can adapt to this unknown parameter automatically.

References

- [1] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. "A kernel method for the two-sample-problem". In: *NIPS*. 2007.
- [2] B. Schölkopf, A. Smola, and K.-R. Müller. "Nonlinear Component Analysis as a Kernel Eigenvalue Problem". In: *Neural Computation* 10.5 (July 1998), pp. 1299–1319.
- [3] S. Grünewälder, G. Lever, A. Gretton, L. Baldassarre, S. Patterson, and M. Pontil. "Conditional Mean Embeddings as Regressors". In: *ICML*. 2012.
- [4] S. Grünewälder, G. Arthur, and J. Shawe-Taylor. "Smooth Operators". In: *ICML*. Vol. 28. 2013, pp. 1184–1192.
- [5] L. Rosasco, M. Belkin, and E. D. Vito. "On Learning with Integral Operators". In: *JMLR* 11 (2010), pp. 905–934.
- [6] F. Bauer, S. Pereverzev, and L. Rosasco. "On Regularization Algorithms in Learning Theory". In: *Journal of Complexity* 23.1 (2007), pp. 52–72.
- [7] E. D. Vito, L. Rosasco, and A. Toigo. "Learning Sets with Separating Kernels". In: http://arxiv.org/abs/1204.3573 (2012).
- [8] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. "A Kernel Two-sample Test". In: *JMLR* 13 (2012), pp. 723–773.