Artificial Intelligence

Classification 3

Extended from Kyuseok Shim's slides

인공지능학과 Department of Artificial Intelligence

정 우 환 (whjung@hanyang.ac.kr) Fall 2021

DECISION TREE CLASSIFIER

Decision Tree Induction: An Example

Outlook	Temp	Humidity	Wind	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Decision Tree Algorithm

- A decision tree is created in two phases:
 - Building Phase
 - Recursively split nodes using best splitting attribute for node until all the examples in each node belong to one class
 - Pruning Phase
 - Prune leaf nodes recursively to prevent over-fitting
 - Smaller imperfect decision tree generally achieves better accuracy

- Top-down: recursive divide-and-conquer
 - Select attribute for root node
 - Create branch for each possible attribute value
 - Split instances into subsets
 - One for each branch extending from the node
 - Repeat recursively for each branch
 - using only instances that reach the branch
 - Stop
 - if all instances have the same class

Which attribute to select?

Ian H. Witten's slide

- Which is the best attribute?
 - Aim: to get the smallest tree
 - Heuristic
 - choose the attribute that produces the "purest" nodes
 - i.e., the greatest information gain
 - Information theory: measure information in bits
 - entropy($p_1, p_2, ..., p_n$) = $-p_1 log p_1 p_2 log p_2 ... P_n log p_n$
- Information gain
 - Amount of information gained by knowing the value of the attribute
 - (Entropy of distribution before the split) (entropy of distribution after it)
 - Claude Shannon, American mathematician and scientist 1916–2001

Which attribute to select?

Ian H. Witten's slide

Continue to split ...

gain(temperature) = 0.571 bits

gain(windy) = 0.020 bits

gain(humidity) = 0.971 bits

Ian H. Witten's slide

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

■ Information needed (after using A to split $D^{i=1}$ into v partitions) to classify D: $\underline{v} \mid D$.

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

Overfitting in Decision Tree Learning

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Postpruning take a fully-grown decision tree and discard unreliable parts
 - Prepruning stop growing a branch when information becomes unreliable
- Postpruning preferred in practice—prepruning can "stop too early"

Pruning Phase

- Smaller imperfect decision tree generally achieves better accuracy
- Prune leaf nodes recursively to prevent over-fitting

[# of tuples : 20000] [# of tuples : 1]

Post-pruning

- Split data into training and validation set
- Build full tree using training dataset
- Do until further pruning is harmful:
 - 1. Evaluate impact on validation set of pruning each possible node (plus those below it)
 - 2. Greedily remove the one whose removal most increases validation set accuracy
 - To possible approaches
 - Subtree replacement
 - Subtree raising
- Produces smallest version of the most accurate subtrees

Subtree Replacement

Subtree Raising

Ian H. Witten's slide

Effect of Reduced-Error Pruning

Decision Tree Visualization

https://explained.ai/decision-tree-viz/

Decision Boundaries

kNN, k=5

Logistic Regression simple

Decision tree

kNN, k=15

Logistic Regression basic polynomials

Random forest

SVM SVM

Python – Decision Tree Classifier

Import Libraries

```
from sklearn import tree
import graphviz
from sklearn.preprocessing import OneHotEncoder
import numpy as np
import pandas as pd
```

Open the Dataset

```
df = pd.read_csv('weather.nominal.csv')
df
```

	outlook	temperature	humidity	windy	play
0	sunny	hot	high	False	no
1	sunny	hot	high	True	no
2	overcast	hot	high	False	yes
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no
6	overcast	cool	normal	True	yes
7	sunny	mild	high	False	no
8	sunny	cool	normal	False	yes
9	rainy	mild	normal	False	yes
10	sunny	mild	normal	True	yes

- Sklearn does not provide the decision tree with categorical data
 - Should convert the categorical data to numerical data
 - We will use one hot encoding in sklearn

	Weather	-		Sunny	Overcast	Rainy	
1	Sunny		1	1	0	0	
2	Overcast		2	0	1	0	
3	Rainy		3	0	0	1	

Features

Class label

Ignore the last element

```
outlook temperature humidity
                                    windy
                                           play
                              high
                                    False
     sunny
                     hot
                                             no
                              high
     sunny
                     hot
                                     True
                                             no
2 overcast
                                    False
                              high
                     hot
                                            yes
```

```
X = df.values[:, :-1]
y = df.values[:, :-1]
```

Only the last element

```
print(X)
```

```
[['sunny' 'hot' 'high' False]
```

['sunny' 'hot' 'high' True]

['overcast' 'hot' 'high' False]

['rainy' 'mild' 'high' False]

['rainy' 'cool' 'normal' False]

['rainy' 'cool' 'normal' True]

['overcast' 'cool' 'normal' True]

['sunny' 'mild' 'high' False]

['sunny' 'cool' 'normal' False]

['rainy' 'mild' 'normal' False]

['sunny' 'mild' 'normal' True]

['overcast' 'mild' 'high' True]

['overcast' 'hot' 'normal' False]

['rainy' 'mild' 'high' True]]

```
print(y)
```

['no' 'no' 'yes' 'yes' 'yes' 'no' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'no']

X is transformed by one hot encoding

```
enc = OneHotEncoder(handle_unknown='ignore')
enc.fit(X)
en_X = enc.transform(X).toarray()
en_X
```

```
print(en_X)
print(X)
[['sunny' 'hot' 'high' False]
 ['sunny' 'hot' 'high' True]
 ['overcast' 'hot' 'high' False]
 ['rainy' 'mild' 'high' False]
 ['rainy' 'cool' 'normal' False]
 ['rainy' 'cool' 'normal' True]
 ['overcast' 'cool' 'normal' True]
 ['sunny' 'mild' 'high' False]
 ['sunny' 'cool' 'normal' False]
 ['rainy' 'mild' 'normal' False]
 ['sunny' 'mild' 'normal' True]
 ['overcast' 'mild' 'high' True]
                                                          [1. 0. 0. 0. 1. 0. 0. 1. 1. 0.]
 ['overcast' 'hot' 'normal' False]
                                                          [0, 1, 0, 0, 0, 1, 1, 0, 0, 1,]]
 ['rainy' 'mild' 'high' True]]
```

Check the encoded result

['rainy', 'mild', 'high', True]

Building a Tree and Testing

```
Train a decision tree

clf = tree.DecisionTreeClassifier(criterion = "entropy")

clf = clf.fit(en_X,y)

print(clf.classes_)
```

['no' 'yes'] Labels of the model

```
test = [['overcast','mild','high', True]]
en_test = enc.transform(test).toarray()
print(en_test)
pred_y = clf.predict(en_test)
print(pred_y)

[[1, 0, 0, 0, 0, 1, 1, 0, 0, 1,]]
['yes']
```

pred_prob = clf.predict_proba(en_test)
print(pred_prob)
[[0, 1,]]

Encode the test data

Note: test data should be a 2-D array

Output represents the predicted label of each data

The probability of each label can also be shown

Cross-validation

0.55

You can reuse the code used for KNN classifier since the cross-validation code is almost the same

Visualize Tree

Tree class includes the function export_graphviz

feature_names : the list of attributes of data

class_names : the list of labels of data

filled: graphviz colors the node if set True

special_characters : shows the special characters (i.e., \leq or \leq =)

Changing Parameters

criterion: measures used for decision tree ("entropy" or "gini")
max_depth: maximum depth of the decision tree
min_samples_split: the minimum number of samples required
to split an internal node
min_samples_leaf: the minimum number of samples in a leaf

Effect of Tree Size

```
clf = tree.DecisionTreeClassifier(criterion='entropy')
cv = KFold(n_splits = 10,
                                Unlimited tree size
         shuffle=True.
          random_state=0)
cv_results = cross_val_score(clf, en_X, y, cv=cv)
print(cv results.mean())
D. 6294334975369458
clf = tree.DecisionTreeClassifier(criterion='entropy',
                                 max depth=3)
cv = KFold(n_splits = 10,
                              Tree depth is limited to 3
           shuffle=True.
           random state=0)
cv_results = cross_val_score(clf, en_X, y, cv=cv)
print(cv_results.mean())
```

D.7201970443349753

MODEL EVALUATION

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/AII

Error rate: 1 – accuracy, or Error rate = (FP + FN)/All

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{TP}{TP + FP}$$

- Recall: completeness what % of positive tuples did the classifier label as positive?
 T.
- Perfect score is 1.0 $recall = \frac{TP + FN}{TP + FN}$
- Inverse relationship between precision & recall
- F1 measure (F₁ or F1-score): harmonic mean of precision and recall,

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

$$Recall = 90/300 = 30.00\%$$

References (1)

- C. Apte and S. Weiss. Data mining with decision trees and decision rules. Future Generation Computer Systems, 13, 1997
- C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
 Wadsworth International Group, 1984
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2): 121-168, 1998
- P. K. Chan and S. J. Stolfo. Learning arbiter and combiner trees from partitioned data for scaling machine learning. KDD'95
- H. Cheng, X. Yan, J. Han, and C.-W. Hsu, <u>Discriminative Frequent Pattern Analysis for</u>
 <u>Effective Classification</u>, ICDE'07
- H. Cheng, X. Yan, J. Han, and P. S. Yu, <u>Direct Discriminative Pattern Mining for</u>
 <u>Effective Classification</u>, ICDE'08
- W. Cohen. Fast effective rule induction. ICML'95
- G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. Mining top-k covering rule groups for gene expression data. SIGMOD'05

References (2)

- A. J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990.
- G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. KDD'99.
- R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001
- U. M. Fayyad. Branching on attribute values in decision tree generation. AAAI'94.
- Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences, 1997.
- J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast decision tree construction of large datasets. VLDB'98.
- J. Gehrke, V. Gant, R. Ramakrishnan, and W.-Y. Loh, **BOAT -- Optimistic Decision Tree Construction**. SIGMOD'99.
- T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
 Mining, Inference, and Prediction. Springer-Verlag, 2001.
- D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995.
- W. Li, J. Han, and J. Pei, CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules, ICDM'01.

References (3)

- T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 2000.
- J. Magidson. The Chaid approach to segmentation modeling: Chi-squared automatic interaction detection. In R. P. Bagozzi, editor, Advanced Methods of Marketing Research, Blackwell Business, 1994.
- M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining.
 EDBT'96.
- T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
- S. K. Murthy, Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey, Data Mining and Knowledge Discovery 2(4): 345-389, 1998
- J. R. Quinlan. **Induction of decision trees**. *Machine Learning*, 1:81-106, 1986.
- J. R. Quinlan and R. M. Cameron-Jones. **FOIL: A midterm report**. ECML'93.
- J. R. Quinlan. **C4.5: Programs for Machine Learning**. Morgan Kaufmann, 1993.
- J. R. Quinlan. **Bagging, boosting, and c4.5**. AAAI'96.

References (4)

- R. Rastogi and K. Shim. Public: A decision tree classifier that integrates building and pruning. VLDB'98.
- J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. VLDB'96.
- J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. Morgan Kaufmann, 1990.
- P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley, 2005.
- S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991.
- S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kaufmann, 1997.
- I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, 2ed. Morgan Kaufmann, 2005.
- X. Yin and J. Han. CPAR: Classification based on predictive association rules. SDM'03
- H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters. KDD'03.