# PID control - Simple tuning methods

**Ulf Holmberg** 

#### Introduction

Lab processes Control System

### **Dynamical System**

Step response model Self-oscillation model

#### PID control

PID structure Step response method (Ziegler-Nichols) Self-oscillation method (Ziegler-Nichols)

### Experiment

Level control in a tank
Level control of two connected tanks



#### Introduction

## Lab processes

Step response method (Ziegler-Nichols)

Self-oscillation method (Ziegler-Nichols)

Level control in a tank

# Tank process



Introduction 000

- Tank with level control
- Two connected tanks
- Pump for in-flow of water
- Level measurements
- Valve for out-flow (disturbance)

#### Introduction

•00

Control System

Step response method (Ziegler-Nichols)

Self-oscillation method (Ziegler-Nichols)

Level control in a tank

## Open-loop system



- *u* control signal (pump voltage)
- Actuator (tubes to pump, power amplifier, in-flow)
- Control object (level in Tank with in- and out-flow)
- Sensors (pressure sensors, tubes, elektronics)
- y output (measurement of water level)

Introduction 000

## Closed-loop system



Give reference (set-point of water level in tank) *r* to controller in stead of pump voltage

#### Introduction

Lab processes

## **Dynamical System**

Step response model

Self-oscillation mode

#### PID control

PID structure

Step response method (Ziegler-Nichols)

Self-oscillation method (Ziegler-Nichols)

### Experimen<sup>3</sup>

Level control in a tank

Level control of two connected tanks

# Time constant and stationary gain



## Example—Stove plate

- u(t) power to stove plate
- v(t) temperature on plate

- Time constant T
- Stationary gain  $K_p$

# Time constant and stationary gain



- Step response size proportional to step size
- Start step from equilibrium

## Dead-time (time delay)



Example - roll transport time



Dead-time (time delay, lag) L

# Step response model



## Step response model from unit step:

- T Time constant
- K<sub>p</sub> Stationary gain
- L Dead-time
- A see measure above

## Step response model



## Step response model from experiment:

- T Time constant
- K<sub>p</sub> Stationary gain
- L Dead-time
- A see figure

### **Dynamical System**

Self-oscillation model

Step response method (Ziegler-Nichols)

Self-oscillation method (Ziegler-Nichols)

Level control in a tank

### Self-oscillation model



## Experiment

- P-control (closed-loop system!)
- Crank up gain to self-oscillation
- Reference-step starts oscillation

#### Self-oscillation model

- Ultimate gain K<sub>II</sub>
- Ultimate period  $T_{\mu}$

#### PID control

#### PID structure

Step response method (Ziegler-Nichols) Self-oscillation method (Ziegler-Nichols)

Level control in a tank



- *r* reference, set-point (SP)
- y output, measured signal to be regulated
- e = r y control error

PID-controller:



## P-controller

PID control 0000000



Control signal Proportional to control error



Control signal Proportional to error plus 'offset'

Example: speed control of car

u₀ given gas at control-start

# I-part (integrator)



## I-part

- becomes as big as constant error  $e_0$  in time  $T_i$
- used to eliminate remaining error

# D-part (derivator)



### D-part

- $\propto$  slope on e(t)
- · used to damp oscillations

### PID-controller structure

PID control 000000

Control signal = P + I + D

$$u(t) = K[e(t) + \frac{1}{T_i} \int_{-t}^{t} e(s) ds + T_d \frac{de(t)}{dt}]$$

Three parameters to tune K,  $T_i$  and  $T_d$ 

## PID control

#### PID control

#### Step response method (Ziegler-Nichols)

Self-oscillation method (Ziegler-Nichols)

Level control in a tank

# Ziegler-Nichols step response method

PID control

- Measure A and L from step response
- T<sub>D</sub> expected time constant for closed-loop system

| Controller | K     | $T_i$ | $T_d$ | $T_p$ |
|------------|-------|-------|-------|-------|
| Р          | 1/A   |       |       | 4L    |
| PI         | 0.9/A | 3L    |       | 5.7L  |
| PID        | 1.2/A | 2L    | L/2   | 3.4L  |

#### PID control

Step response method (Ziegler-Nichols) Self-oscillation method (Ziegler-Nichols)

Level control in a tank

# Ziegler-Nichols self-oscillation method

- Measure ultimate gain  $K_u$  and period  $T_u$  from experiment
- $T_p$  expected time constant for closed-loop system

| Controller | K          | $T_i$       | $T_d$        | $\mid T_{p} \mid$         |
|------------|------------|-------------|--------------|---------------------------|
| Р          | $0.5K_{u}$ |             |              | $T_u$                     |
| PI         | $0.4K_u$   | $0.8 T_{u}$ |              | 1.4 <i>T<sub>u</sub></i>  |
| PID        | $0.6K_u$   | $0.5 T_{u}$ | $0.125T_{u}$ | 0.85 <i>T<sub>u</sub></i> |

#### Introduction

Lab processes
Control System

### **Dynamical System**

Step response model Self-oscillation model

#### PID control

PID structure

Step response method (Ziegler-Nichols)

Self-oscillation method (Ziegler-Nichols)

## Experiment

Level control in a tank

Level control of two connected tanks

## Step response

## Step response model for the left tank



### Estimated from figure:

- $A\Delta u = 0.1$ ,  $\Delta u = 0.5$  $\Rightarrow A = 1/5$
- L = 3

## P-control of the left tank



Ziegler-Nichols P-control

- K = 1/A = 5
- Stationary error after valve opening even if offset is used

## PI-control of the left tank



Ziegler-Nichols PI-control

• 
$$K = 0.9/A = 4.5$$

• 
$$T_i = 3L = 9$$

No stationary error after valve disturbance

## PID-control of the left tank



### Ziegler-Nichols PID-control

• 
$$K = 1.2/A = 6$$

• 
$$T_i = 2L = 6$$

• 
$$T_d = L/2 = 1.5$$

- No stationary error after valve disturbance
- Fast and damped
- Noisier control signal

# Self-oscillation experiment

#### Self-oscillation model for the left tank





Ultimate gain and period

- $K_{\mu} = 15$  (from tuning)
- $T_{II} = 10$  (from figure)

Z-N PID-tuning:

$$K = 0.6K_u = 8$$
  
 $T_i = 0.5T_u = 5$   
 $T_d = 0.125T_u = 1.25$ 



Step response method (Ziegler-Nichols)

Self-oscillation method (Ziegler-Nichols)

### Experiment

Level control in a tank

Level control of two connected tanks

# Step response

## Step response model for the right tank



Roughly estimated (bad precision!):

- $A\Delta u \approx 0.2$ ,  $\Delta u = 0.5$  $\Rightarrow A = 2/5$
- *L* ≈ 10

From larger figure:

$$A\Delta u = 0.15, L = 8$$

# PI-control of the right tank



Ziegler-Nichols PI-control

• 
$$K = 0.9/A = 2.25$$

• 
$$T_i = 3L = 30$$

Disturbance eliminated in 60s (Compare  $T_p = 5.7L = 57s$ )

# PID-control of the right tank (step response tuning)



Ziegler-Nichols PID-control

• 
$$K = 1.2/A = 3$$

• 
$$T_i = 2L = 20$$

• 
$$T_d = L/2 = 5$$

Disturbance eliminated i 40s (Compare  $T_p = 3.4L = 34s$ )

# Self-oscillation experiment

## Self-oscillation model for the right tank



Ultimate gain and period

- $K_u = 10$  (from tuning)
- $T_u = 25$  (from figure)

### Z-N PID-tuning:

$$K = 0.6K_u = 6$$
  
 $T_i = 0.5T_u \approx 13$   
 $T_d = 0.125T_u \approx 3$ 

# PID-control of the right tank (self-oscillation tuning)

