PART 2 (70 marks = 35% of paper)

Ansv	wer ALL questions in Part 2 in the spaces provided below.
1.	Write equations for any reactions that occur in the following procedures. If no reaction occurs write 'no reaction'.
	In each case describe in full what you would observe, including any coloursodours
	 precipitates (give the colour) gases evolved (give the colour or describe as colourless).
	If no change is observed, you should state this.
(a)	Chromium metal is added to dilute sulfuric acid.
Equa	ation
Obs	ervation
	[3 marks]
(b)	Aluminium metal is added to a solution of sodium hydroxide.
Equa	ation
Obs	ervation
	[3 marks]
(c)	Solid sodium sulfite is added to warm hydrochloric acid.
Equa	ation
Obs	ervation

[3 marks]

Species	Structural formula (showing all valance electrons)	Shape (sketch or name
Oxygen difluoride, OF ₂		
Carbon disulfide CS₂		
Azide ion, N ₃ -		

The electron configuration of a lithium atom is $1s^2 \ 2s^1$. Using the same give the electron configuration of	notation,		
a) a fluorine atom F			
b) a calcium ion Ca ²⁺	[2 marks]		
SEE NEXT PAGE			

- 4. On the Axes below sketch a graph to show the following
 - a) How the melting points of the elements of the third period vary from left to right.

b) The first six successive ionisation energies of Germanium. (3 marks)

eduction half-equation	
xidation half-equation	
ull equation	
	່ [6 n
e been 7. Account for the observed pH value she found and suggest ad/base combination which would lead to these observations.	a pos
	[4 n
t	sudent performed a neutralisation reaction outlined as followed: She to ure complete neutralisation had occurred, with neither acid nor base i then used an indicator to measure the pH of the final reaction mixtur did this procedure with hydrochloric acid that was neutralised with so conate solution the final pH was approximately 10. She thought the pH e been 7. Account for the observed pH value she found and suggest

7.	Briefly explain each of the following. Where appropriate, use examples to illustrate your answer.		
	a) Metals are excellent conductors of electricity but ionic solids are non-conductors.		
	b) lodine is a solid at room temperature while chlorine is a gas.		
	[4 marks] c) The ionisation energies of alkali metals decrease with increasing atomic number.		

8.	in Ge Tabu	In 1937, while carrying out research on organo-phosphorus insecticides, a scientist in Germany discovered the nerve gases. The first of these gases was called Tabun. A splash of 0.0002g of Tabun on the skin of a person is fatal in a few minutes through paralysis and respiratory failure.			
	Tabu	Tabun has the structural formula:			
		$H - C - C - O - P - C \equiv N$ $H - C - C - H$ $H - C - H$ $H - C - H$ $H - H$			
	(a)	Write down the empirical formula of Tabun.			
		[1 mark]			
	(b)	Calculate the percentage of phosphorus in Tabun:			
	(i) by mass.				
		[3 marks]			
	(ii)	by number of atoms per molecule.			

[2 marks]

9.	What are the characteristics of a primary standard, and explain why sodium carbonate is a good primary standard whilst sodium hydroxide is not. [4 marks
10.	During a titration, you should rinse the burette, pipette, and conical flask with certain solutions. If you are doing a standard acid base titration, how would you rinse each instrument and why?
	a) Burette
	b) Pipette

	c) Conical flask	
		 [3 marks]
11.	The first eight ionisation energies (in eV) for a certain element are:	
	10.49 19.72 30.18 51.37 65.02 220.43 263.2	21 309.41
	a) Account for:	
	(i) the general increase in these values.	[2 marks]
	(ii) any discontinuities in the general trend.	[2 marks]
	(b) Identify the group to which this element most probably belongs.	[1 mark]

12.	Given the following equation		
	NH_3 + H_2O \rightarrow NH_4^+	+ OH ⁻	
	Which is the		
	Acid	Base	
	Conjugate acid	Conjugate base	

[2 marks]