Scalars and Vectors

Concepts

Topics covered are:

- 1. Scalar vs Vector
- 2. Components of a Vector
- 3. Position Vector
- 4. Vector Addition
- 5. Scalar Multiplication
- 6. Properties of Addition and Multiplication
- 7. Scalar or Dot Product
- 8. Vector or Cross Product
- 9. Scalar and Vector Functions

Scalar vs Vector

Scalar	Vector
Represented by magnitude only	Represented by both magnitude as well as direction
Example: 5 units . It could mean 5 units front, back, left, right or any direction.	Example: 5 units front . It means 5 units front only.

Components of a Vector

Vectors which are used in graphs are usually represented by \vec{r} , where r is a vector quantity.

Further, A vector can represent the number of units it has moved in each direction. So

$$ec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

where, the initial point of \vec{r} is $P(x_1,y_1,z_1)$ and final point is $Q(x_2,y_2,z_2)$.

 \hat{i} is a unit vector along x-axis. Meaning, it represents 1 unit along the x direction.

 \hat{j} is a unit vector along y-axis. Meaning, it represents 1 unit along the y direction.

 \hat{k} is a unit vector along z-axis. Meaning, it represents 1 unit along the z direction.

This can also be written as

$$ec{r} = [x_2 - x_1, \, y_2 - y_1, \, z_2 - z_1]$$

The magnitude, or the length of a vector is

$$|ec{r}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Which is also the distance formula for two points in 3D.

Position Vector

A vector with it's initial point as the origin and terminal point P(x,y,z). Hence, a vector quantity r can be written as

$$ec{r} = [x,\,y,\,z] = x\hat{i} + y\hat{j} + z\hat{k}$$

This is obtained from the same representation used for vector, where $x_1=y_1=z_1=0$ and $\ x_2=x$, $y_2=y$ and $z_2=z$.

Hence, magnitude of position vector is

$$|ec{r}|=\sqrt{x^2+y^2+z^2}$$

Vector Addition

Consider two vectors: $ec{r_1} = [a_1,\,b_1,\,c_1]$ and $ec{r_2} = [a_2,b_2,c_2]$

Now, when two vectors are added, the resultant vector has each of components being the sum of the individual components of both the vectors. Hence

$$\vec{r_1} \pm \vec{r_2} = [a_1 \pm a_2, \, b_1 \pm b_2, \, c_1 \pm c_2]$$

Scalar Multiplication

When a vector is multiplied with a scalar quantity (a constant), the entire vector becomes the constant times the original vector. So, if $\vec{r}=[a,\,b,\,c]$

$$k\vec{r}=[ka,\,kb,\,kc]$$

Properties of Addition and Multiplication

Addition	Multiplication
$ec{a}+ec{b}=ec{b}+ec{a}$	$k\cdot(ec{a}+ec{b})=kec{a}+kec{b}$
$ec{a}+(ec{b}+ec{c})=(ec{a}+ec{b})+ec{c}$	$(k+l)\cdot ec{a}=kec{a}+lec{a}$
$\vec{a}+0=0+\vec{a}$	$(kl)\cdot ec{a}=k\cdot (lec{a})$
$ec{a}+(-ec{a})=(-ec{a})+ec{a}=0$	$1\cdot ec{a} = ec{a}\cdot 1$

Scalar or Dot Product

Consider two vectors $ec{r_1}=a_1\hat{i}+b_1\hat{j}+c_1\hat{k}$ and $ec{r_2}=a_2\hat{i}+b_2\hat{j}+c_2\hat{k}.$

Then the dot product of these two will be

$$ec{r_1} \cdot ec{r_2} = |ec{r_1}| |ec{r_2}| cos heta$$

Here heta is the angle between the two vectors. This can also be written as

$$ec{r_1}\cdotec{r_2}=a_1\cdot a_2+b_1\cdot b_2+c_1\cdot c_2$$

The dot product of two vectors will result in a directionless quantity. Hence, it gives **only the magnitude**.

Properties of Dot Product

- $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$
- $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$
- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- $\vec{a} \cdot \vec{a} = 0 \iff a = 0$

3

•
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

•
$$|ec{a}\cdotec{b}|\leq |ec{a}||ec{b}|$$

•
$$|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$$

Vector or Cross Product

Consider two vectors $ec{r_1}=a_1\hat{i}+b_1\hat{j}+c_1\hat{k}$ and $ec{r_2}=a_2\hat{i}+b_2\hat{j}+c_2\hat{k}.$

Then the cross product of these two will be

$$ec{r_1} imesec{r_2}=ertec{r_1}ertertec{r_2}ert sin heta\,\hat{n}$$

Here θ is the angle between the two vectors, and \hat{n} is the direction of the resultant vector. This can also be written as

$$ec{r_1} imesec{r_2}=egin{bmatrix} \hat{i} & \hat{j} & \hat{k}\ a_1 & b_1 & c_1\ a_2 & b_2 & c_2 \end{bmatrix}$$

The cross product of two vectors will result in a directional quantity. Hence, it gives **both the magnitude and direction**.

Properties of Cross Product

•
$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

•
$$\hat{i} \times \hat{j} = \hat{k}$$
; $\hat{j} \times \hat{k} = \hat{i}$; $\hat{k} \times \hat{i} = \hat{j}$

$$oldsymbol{\hat{j}} imes \hat{i} = -\hat{k}; \, \hat{k} imes \hat{j} = -\hat{i}; \, \hat{i} imes \hat{k} = -\hat{j}$$

•
$$ec{a} imesec{b}
eqec{b} imesec{a}$$
 but $ec{a} imesec{b}=-(ec{b} imesec{a})$

•
$$\vec{a} \times \vec{a} = 0$$

•
$$(\vec{a} + \vec{b}) imes \vec{c} = \vec{a} imes \vec{c} + \vec{b} imes \vec{c}$$

•
$$l\vec{a} imes \vec{b} = l(\vec{a} imes \vec{b}) = \vec{a} imes (l\vec{b})$$

Scalar and Vector Functions

Scalar Function	Vector Function
Functions which return a scalar quantity when a point on the domain is substituted	Functions which return a vector quantity when a point on the domain is substituted

Scalar Function	Vector Function
Example: $f(x)=x^2$, $g(x,y)=xy$	Example: $ec{r}(t)=(t)\hat{i}+(t^4)\hat{j}+(3t^2-3)\hat{k}$, $ec{p}(x,y,z)=(xyz)\hat{i}+(x+z^2)\hat{j}+(y^2z^3)\hat{k}$

Uses

Scalar: Used for real-world measurements and calculations widely. It is also used to calculate physical quantities which are independent of direction

Vector: Used widely in fields where direction matters a lot. Hence, it finds uses in navigation, engineering, data science and computer graphics.