§1 HALFTONE INTRODUCTION 1

(Downloaded from https://cs.stanford.edu/~knuth/programs.html and typeset on September 17, 2017)

1. Introduction. This program prepares data for the examples in my paper "Fonts for digital halftones." The input file (stdin) is assumed to be an EPS file output by Adobe Photoshop<sup>TM</sup> on a Macintosh with the binary EPS option, having a resolution of 72 pixels per inch. This file either has m rows of n columns each, or m+n-1 rows of m+n-1 columns each, or 2m rows of 2n columns each; in the second case the image has been rotated  $45^{\circ}$  clockwise. (These images were obtained by starting with a given  $km \times kn$  image, optionally rotating it  $45^{\circ}$ , and then using Photoshop's Image Size operation to reduce to the desired number of pixel units. In my experiments I took k=8, so that I could also use the dot diffusion method; but k need not be an integer. Larger values of k tend to make the reduced images more accurate than smaller values do.)

The output file (stdout) is a sequence of ASCII characters that can be placed into  $T_{EX}$  files leading to typeset output images of size  $8m \times 8n$ , using fonts like those described in the paper. In the first case, we output m lines of 65-level pixel data. In the second (rotated) case, we output 2m lines of 33-level pixel data. In the third case, we output 2m lines of 17-level pixel data.

```
#define m 64
                      /* base number of rows */
                      /* base number of columns */
#define n 55
#define r 64
                      /* \max(m,n) */
#include <stdio.h>
  float a[m+m+2][n+r];
                                 /* darknesses: 0.0 is white, 1.0 is black */
  \langle \text{Global variables 4} \rangle:
  main(argc, argv)
       int argc;
       char *argv[];
    register int i, j, k, l, p;
    int levels, trash, ii, jj;
    float dampening = 1.0, brightness = 1.0;
    \langle Check for nonstandard dampening and brightness factors 2\rangle;
     \langle Determine the type of input by looking at the bounding box 3\rangle;
    fprintf(stderr, "Making_", d_lines_lof_", d-level_ldata\n", (levels < 65? m + m: m), levels);
    printf("\begin\shalftone\n", levels \equiv 33? "alt": "");
    (Input the graphic data 5);
     \langle \text{Translate input to output } 12 \rangle;
```

**2.** Optional command-line arguments allow the user to multiply the diffusion constants by a *dampening* factor and/or to multiply the brightness by a *brightness* factor.

```
\label{eq:continuous_continuous} $$ \langle \operatorname{Check} \  \, \text{for nonstandard} \  \, dampening \  \, \text{and} \  \, brightness \  \, \text{factors 2} \, \rangle \equiv \\  \, \text{if} \  \, (argc > 1 \land sscanf (argv[1], "\g", \&dampening) \equiv 1) \  \, \{ \\  \, fprintf (stderr, "\scanf (argv[2], "\g", \&brightness) \equiv 1) \\  \, fprintf (stderr, "\scanf (argv[2], "\g", \&brightness) \equiv 1) \\  \, fprintf (stderr, "\scanf (argv[2], \g", \&brightness); \} $$
```

This code is used in section 1.

2 INTRODUCTION HALFTONE ξ3

Macintosh conventions indicate the end of a line by the ASCII (carriage return) character (i.e., control-M, aka \r), but the C library is set up to work best with newlines (i.e., control-J, aka \n). We aren't worried about efficiency, so we simply input one character at a time. This program assumes Macintosh conventions.

The job here is to look for the sequence Box: in the input, followed by 0, 0, the number of columns, and the number of rows.

```
#define panic(s)
             \textit{fprintf}\,(\textit{stderr}\,,s);\ \textit{exit}\,(-1);
\langle Determine the type of input by looking at the bounding box _3\rangle \equiv
  k=0;
scan:
  if (k ++ > 1000) panic ("Couldn't find the bounding box info! \n");
  if (getchar() \neq 'B') goto scan;
  if (getchar() \neq \circ) goto scan;
  if (getchar() \neq 'x') goto scan;
  if (getchar() \neq ':') goto scan;
  if (scanf("%d_{\square}%d_{\square}%d_{\square}%d", \&llx, \&lly, \&urx, \&ury) \neq 4 \lor llx \neq 0 \lor lly \neq 0)
     panic("Bad_l|bounding_l|box_l|data!\n");
  if (urx \equiv n \land ury \equiv m) levels = 65;
  else if (urx \equiv n + n \land ury \equiv m + m) levels = 17;
  else if (urx \equiv m + n - 1 \land ury \equiv urx) levels = 33;
  else panic("Bounding_box_doesn't_match_the_formats_I_know!\n");
This code is used in section 1.
4. \langle Global variables 4\rangle \equiv
  int llx, lly, urx, ury;
                                  /* bounding box parameters */
See also section 8.
This code is used in section 1.
     After we've seen the bounding box, we look for beginimage\r; this will be followed by the pixel data,
one character per byte.
\langle \text{Input the graphic data 5} \rangle \equiv
```

```
k=0;
skan:
  if (k++>10000) panic ("Couldn't | find | the | pixel | data! \n");
  if (getchar() \neq 'b') goto skan;
  if (getchar() \neq 'e') goto skan;
  if (getchar() \neq 'g') goto skan;
  if (getchar() \neq 'i') goto skan;
  if (getchar() \neq 'n') goto skan;
  if (getchar() \neq 'i') goto skan;
  if (getchar() \neq 'm') goto skan;
  if (getchar() \neq 'a') goto skan;
  if (getchar() \neq 'g') goto skan;
  if (getchar() \neq 'e') goto skan;
  if (qetchar() \neq '\r') goto skan;
  if (levels \equiv 33) (Input rotated pixel data 7)
  else (Input rectangular pixel data 6);
  if (getchar() \neq '\r') panic("Wrong_amount_of_pixel_data!\n");
This code is used in section 1.
```

§6 HALFTONE

**6.** Photoshop follows the conventions of photographers who consider 0 to be black and 1 to be white; but we follow the conventions of computer scientists who tend to regard 0 as devoid of ink (white) and 1 as full of ink (black).

We use the fact that global arrays are initially zero to assume that there are all-white rows of 0s above and below the input data in the rectangular case.

```
\langle Input rectangular pixel data 6\rangle \equiv for (i=1;\ i \leq ury;\ i++) for (j=0;\ j < urx;\ j++)\ a[i][j] = 1.0 - brightness* getchar()/255.0; This code is used in section 5.
```

7. In the rotated case, we transpose and partially shift the input so that the eventual *i*th row is in positions  $a[i][j+\lfloor i/2 \rfloor]$  for  $0 \le j < n$ . This arrangement turns out to be most convenient for the output phase. For example, suppose m=5 and n=3; the input is a  $7 \times 7$  array that can be expressed in the form

$$\begin{pmatrix} 0 & 0 & 0 & a & A & l & 0 \\ 0 & 0 & b & B & F & J & k \\ 0 & c & C & G & K & O & S \\ d & D & H & L & P & T & j \\ e & I & M & Q & U & i & 0 \\ e & N & R & V & h & 0 & 0 \\ 0 & f & W & q & 0 & 0 & 0 \end{pmatrix}.$$

In practice the boundary values a, b, c, d, e, f, g, h, h, i, j, k, l are very small, so they are essentially "white" and of little importance ink-wise. In this step we transform the input to the configuration

This code is used in section 5.

4 DIFFUSING THE ERROR HALFTONE §8

8. Diffusing the error. We convert the darkness values to 65, 33, or 17 levels by generalizing the Floyd–Steinberg algorithm for adaptive grayscale [Proceedings of the Society for Information Display 17 (1976), 75–77]. The idea is to find the best available density value, then to diffuse the error into adjacent pixels that haven't yet been processed.

Given a font with k black dots in character k for  $0 \le k \le l$ , we might assume that the apparent density of the kth character would be k/l. But physical properties of output devices make the actual density nonlinear. The following table is based on measurements from observations on font ddith300 with a Canon LBP-CX laserprinter, and it should be accurate enough for practical purposes on similar machines. But in fact the measurements could not be terribly precise, because the readings were not strictly monotone, and because the amount of toner was found to vary between the top and bottom of a page. Users should make their own measurements before adapting this routine to other equipment.

```
 \begin{array}{l} \left\langle \text{Global variables 4} \right\rangle + \equiv \\ \text{float } d[65] = \left\{0.000, 0.060, 0.114, 0.162, 0.205, 0.243, 0.276, 0.306, 0.332, 0.355, \\ 0.375, 0.393, 0.408, 0.422, 0.435, 0.446, 0.456, 0.465, 0.474, 0.482, \\ 0.490, 0.498, 0.505, 0.512, 0.520, 0.527, 0.535, 0.543, 0.551, 0.559, \\ 0.568, 0.577, 0.586, 0.596, 0.605, 0.615, 0.625, 0.635, 0.646, 0.656, \\ 0.667, 0.677, 0.688, 0.699, 0.710, 0.720, 0.731, 0.742, 0.753, 0.764, \\ 0.775, 0.787, 0.798, 0.810, 0.822, 0.835, 0.849, 0.863, 0.878, 0.894, \\ 0.912, 0.931, 0.952, 0.975, 1.000 \right\}; \end{array}
```

**9.** In the main loop, we will want to find the best approximation to a[i][j] from among the available densities d[0], d[p], d[2p], d[3p], ..., where p is 1, 2, or 4. A straightforward modification of binary search works well for this purpose:

```
 \begin{split} &\langle \, \text{Find} \, l \, \, \text{so that} \, \, d[l] \, \, \text{is as close as possible to} \, \, a[i][j] \, \, 9 \, \rangle \equiv \\ & \quad \text{if} \, \, (a[i][j] \leq 0.0) \, \, l = 0; \\ & \quad \text{else if} \, \, (a[i][j] \geq 1.0) \, \, l = 64; \\ & \quad \text{else} \, \, \{ \, \, \text{register int} \, \, lo_{-}l = 0, \, \, hi_{-}l = 64; \\ & \quad \text{while} \, \, (hi_{-}l - lo_{-}l > p) \, \, \{ \, \, \text{register int} \, \, mid_{-}l = (lo_{-}l + hi_{-}l) \gg 1; \\ & \quad /* \, \, hi_{-}l - lo_{-}l \, \, \text{is halved each time, so} \, \, mid_{-}l \, \, \text{is a multiple of} \, p \, \, */ \\ & \quad \text{if} \, \, (a[i][j] \geq d[mid_{-}l]) \, \, \, lo_{-}l = mid_{-}l; \\ & \quad \text{else} \, \, hi_{-}l = mid_{-}l; \\ & \quad \} \\ & \quad \text{if} \, \, (a[i][j] - d[lo_{-}l] \leq d[hi_{-}l] - a[i][j]) \, \, l = lo_{-}l; \\ & \quad \text{else} \, \, l = hi_{-}l; \\ & \quad \} \end{split}
```

This code is used in sections 10 and 11.

 $\S10$  Halftone diffusing the error

10. The rectangular case is simplest, so we consider it first. Our strategy will be to go down each column, starting at the left, and to disperse the error to the four unprocessed neighbors.

```
#define alpha 0.4375
                               /* 7/16, error diffusion to S neighbor */
#define beta 0.1875
                              /* 3/16, error diffusion to NE neighbor */
#define gamma 0.3125
                                 /* 5/16, error diffusion to E neighbor */
#define delta 0.0625
                              /* 1/16, error diffusion to SE neighbor */
\langle \text{Process } a[i][j] \text{ in the rectangular case } 10 \rangle \equiv
  { register float err;
    if (i \equiv 0 \lor i > ury) l = 0;
                                     /* must use white outside the output region */
    else \langle Find l so that d[l] is as close as possible to a[i][j] 9\rangle;
    err = a[i][j] - d[l];
    a[i][j] = (\mathbf{float})(l/p);
                                /* henceforth a[i][j] is a level not a density */
    if (i \leq ury) a[i+1][j] += alpha * dampening * err;
    if (j < urx - 1) {
       if (i > 0) a[i-1][j+1] += beta * dampening * err;
       a[i][j+1] += gamma * dampening * err;
       if (i \leq ury) a[i+1][j+1] += delta * dampening * err;
  }
```

This code is used in section 12.

**11.** The rotated case is essentially the same, but the unprocessed neighbors of a[i][j] are now a[i+1][j], a[i][j+1], a[i+1][j+1], and a[i+2][j+1]. (For example, the eight neighbors of K in the matrices of section 7 are B, F, J, O, T, P, L, G.)

Some of the computation in this step is redundant because the values are known to be zero.

```
 \begin{array}{l} \langle \operatorname{Process}\ a[i][j] \ \text{in the rotated case}\ 11 \rangle \equiv \\ \{ \ \operatorname{register}\ \operatorname{float}\ \operatorname{\it err}; \\ \ \operatorname{\bf if}\ ((i\gg 1)\leq j-n\vee(i\gg 1)>j)\ l=0; \qquad /* \ \operatorname{must}\ \operatorname{use}\ \operatorname{white}\ \operatorname{outside}\ \operatorname{the}\ \operatorname{output}\ \operatorname{region}\ */ \\ \ \operatorname{\bf else}\ \langle \operatorname{Find}\ l\ \operatorname{so}\ \operatorname{that}\ d[l]\ \operatorname{is}\ \operatorname{as}\ \operatorname{close}\ \operatorname{as}\ \operatorname{possible}\ \operatorname{to}\ a[i][j]\ 9 \rangle; \\ \ \operatorname{\it err}\ =\ a[i][j]-d[l]; \\ \ a[i][j]=(\operatorname{\bf float})(l/p); \qquad /*\ \operatorname{henceforth}\ a[i][j]\ \operatorname{is}\ \operatorname{a}\ \operatorname{level}\ \operatorname{not}\ \operatorname{a}\ \operatorname{density}\ */ \\ \ \operatorname{\bf if}\ (i< m+m-1)\ a[i+1][j]+=\ \operatorname{\it alpha}\ *\ \operatorname{\it dampening}\ *\ \operatorname{\it err}; \\ \ \operatorname{\bf if}\ (i< m+m-1)\ a[i+1][j+1]+=\ \operatorname{\it gamma}\ *\ \operatorname{\it dampening}\ *\ \operatorname{\it err}; \\ \ \operatorname{\bf if}\ (i< m+m-2)\ a[i+2][j+1]+=\ \operatorname{\it delta}\ *\ \operatorname{\it dampening}\ *\ \operatorname{\it err}; \\ \ \} \\ \ \} \end{array}
```

This code is used in section 12.

6 diffusing the error halftone  $\S12$ 

12. Finally we are ready to put everything together.

```
\langle \text{Translate input to output } 12 \rangle \equiv
  p = 64/(levels - 1);
  if (p \neq 2) {
     for (j = 0; j < urx; j++)
       for (i = 0; i \le ury + 1; i++) (Process a[i][j] in the rectangular case 10);
     for (i = 1; i \le ury; i++) {
       for (j = 0; j < urx; j ++) printf ("%c", (p \equiv 1 ? '0' : ((i + j) \& 1) ? 'a' : 'A') + (int) a[i][j]);
       printf(".\n");
     }
  }
  else {
     for (j = 0; j < m + n - 1; j ++)
       for (i = 0; i < m + m; i++) (Process a[i][j] in the rotated case 11);
     for (i = 0; i < m + m; i++) {
       for (j = 0; j < n; j ++) printf("%c", '0' + (int) a[i][j + (i \gg 1)]);
       printf(".\n");
  printf("\\endhalftone\n");
This code is used in section 1.
```

§13 HALFTONE INDEX 7

## 13. Index.

```
a: \underline{1}.
alpha: 10, 11.
argc: \underline{1}, \underline{2}.
argv: \ \ \underline{1}, \ \ \underline{2}.
beta: \underline{10}, 11.
brightness: \underline{1}, \underline{2}, \underline{6}, \overline{7}.
d: 8.
dampening: \underline{1}, \underline{2}, \underline{10}, \underline{11}.
delta: \underline{10}, 11.
err: \underline{10}, \underline{11}.
exit: 3.
Floyd, Robert W: 8.
fprintf: 1, 2, 3.
gamma: \underline{10}, 11.
getchar: 3, 5, 6, 7.
hi_l: \underline{9}.
i: \underline{1}.
ii: \underline{1}, 7.
j: \underline{1}.
jj: \underline{1}, 7.
k: \underline{1}.
l: <u>1</u>.
levels: \underline{1}, \underline{3}, \underline{5}, \underline{12}.
llx: 3, \underline{4}.
lly: 3, \underline{4}.
lo_{-}l: \underline{9}.
m: \underline{1}.
main: \underline{1}.
mid_{-}l: \underline{9}.
n: \underline{1}.
p: \underline{1}.
panic: \underline{3}, \underline{5}.
printf: 1, 12.
r: \underline{1}.
scan: \underline{3}.
scan f: 3.
skan: \underline{5}.
\begin{array}{ll} sscanf\colon & 2.\\ stderr\colon & 1,\ 2,\ 3. \end{array}
stdin: 1.
stdout: 1.
Steinberg, Louis Ira: 8.
trash: \underline{1}, 7.
urx: 3, \underline{4}, 6, 7, 10, 12.
ury: 3, \underline{4}, 6, 7, 10, 12.
```

8 NAMES OF THE SECTIONS HALFTONE

```
 \begin{array}{l} \langle \text{Check for nonstandard } \textit{dampening} \text{ and } \textit{brightness} \text{ factors } 2 \rangle \quad \text{Used in section 1.} \\ \langle \text{Determine the type of input by looking at the bounding box } 3 \rangle \quad \text{Used in section 1.} \\ \langle \text{Find } l \text{ so that } d[l] \text{ is as close as possible to } a[i][j] \mid 9 \rangle \quad \text{Used in sections 10 and 11.} \\ \langle \text{Global variables 4, 8} \rangle \quad \text{Used in section 1.} \\ \langle \text{Input rectangular pixel data 6} \rangle \quad \text{Used in section 5.} \\ \langle \text{Input rotated pixel data 7} \rangle \quad \text{Used in section 5.} \\ \langle \text{Input the graphic data 5} \rangle \quad \text{Used in section 1.} \\ \langle \text{Process } a[i][j] \text{ in the rectangular case 10} \rangle \quad \text{Used in section 12.} \\ \langle \text{Process } a[i][j] \text{ in the rotated case 11} \rangle \quad \text{Used in section 12.} \\ \langle \text{Translate input to output 12} \rangle \quad \text{Used in section 1.} \\ \end{array}
```

## HALFTONE

|                     | Section | Page |
|---------------------|---------|------|
| Introduction        | 1       | 1    |
| Diffusing the error | 8       | 4    |
| Index               | 13      | 7    |