Lecture V - Production Planning in Breweries

Applied Optimization with Julia

Dr. Tobias Vlćek

University of Hamburg - Fall 2024

Introduction

Case Study

- Large brewery
- Brews and sells beverages
- Production planning by hand
- Planner has a lot of experience
- But will retire soon

Challenges

- Strong competition
- Customer demand is changing
- Craft beer gains popularity
- Variety of drinks is increasing
- Batch sizes are getting smaller

Different costs

- Plant can fill multiple types
- Time depends on type and batch
- Changing type leads to set-up costs for preparation and cleaning
- Unsold beer bottles can be stored in a warehouse
- This leads to inventory costs

Where is the

challenge?

Problem Structure

Objective

Question: What could be the objective?

Trade-Off

Question: What is the trade-off?

Available Sets

Question: What are sets again?

Available Parameters

Question: What are possible parameters?

Decision Variables?

- *i* We have the following sets:
- ullet Beer types indexed by $i \in \{1, 2, \dots, |\mathcal{I}|\}$
- ullet Time periods of the planning horizon indexed by $t \in \{1, 2, \dots, |\mathcal{T}|\}$

Decision Variables

- ullet $W_{i,t}$ Inventory of type $i\in\mathcal{I}$ at the end of $t\in\mathcal{T}$
- ullet $Y_{i,t}$ 1, if type $i\in\mathcal{I}$ is bottled in $t\in\mathcal{T}$, 0 otherwise
- ullet $X_{i,t}$ Batch size of type $i\in\mathcal{I}$ in $t\in\mathcal{T}$

Model Formulation

Objective Function?

① Our objective is to:

Minimize the combined setup and inventory holding cost while satisfying the demand and adhering to the production capacity.

Objective Function

- (i) We need the following parameters:
- ullet f_i Setup cost of beer type $i\in\mathcal{I}$
- ullet c_i Inventory holding cost for one unit of beer type $i\in\mathcal{I}$

Constraints

Question: What constraints?

Demand/Inventory Constraints?

! The goal of these constraints is to:

Consider the current inventory and batch sizes and compute the remaining inventory.

Demand/Inventory Constraints

$$W_{i,t-1} + X_{i,t} - W_{i,t} = d_{i,t} \quad orall i \in \mathcal{I}, t \in \mathcal{T} | t > 1$$

Setup Constraints?

The goal of these constraints is to:

Set up beer types where the batch size is ≥ 0 .

Setup Constraints

$$X_{i,t} \leq Y_{i,t} imes \sum_{ au=1}^{\mathcal{T}} d_{i au} \quad orall i \in \mathcal{I}, orall t \in \mathcal{T}$$

Capacity Constraints?

! The goal of these constraints is to:

Limit the capacity of the bottling plant per period.

Capacity Constraints

Question: What could the third constraint be?

It has more variables and parameters when compared to the other constraints but it is easier to understand.

CLSP: Objective Function

$$egin{aligned} ext{Minimize} & \sum_{i \in \mathcal{I}} \sum_{t \in \mathcal{T}} (c_i imes W_{i,t} + f_i imes Y_{i,t}) \end{aligned}$$

The goal of the objective function is to:

Minimize the combined setup and inventory holding cost while satisfying the demand and adhering to the production capacity.

CLSP: Constraints

$$egin{aligned} W_{i,t-1} + X_{i,t} - W_{i,t} &= d_{i,t} \quad orall i \in \mathcal{I}, t \in \mathcal{T} | t > 1 \ X_{i,t} \leq Y_{i,t} imes \sum_{ au \in \mathcal{T}} d_{i, au} \quad orall i \in \mathcal{I}, orall t \in \mathcal{T} \end{aligned}$$

$$\sum_{i \in \mathcal{T}} (b_i imes X_{i,t} + g_i imes Y_{i,t}) \leq a_t \quad orall t \in \mathcal{T}$$

! Our constraints ensure:

Demand is met, inventory transferred, setup taken care of, and capacity respected.

CLSP: Variable Domains

$$Y_{i,t} \in \{0,1\} \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$

$$W_{i,t}, X_{i,t} \geq 0 \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$

1 The variable domains make sure that:

The binary setup variable is either 0 or 1 and that the inventory and batch size are non-negative.

Model Characteristics

Recap on some Basics

There exist several types of optimization problems:

Recap on Solution Algorithms

Model Characteristics

Questions: On model characteristics

Model Assumptions

Questions: On model assumptions

Impact

Can this be

applied?

Scale of the Case Study

- 220 finished products
- 100 semi-finished products
- 13 production resources
- 8 storage resources
- 3 main production levels
- 52 weeks planning horizon

Any idea what

could be done?

Heuristics and Optimization

- Multi-level Capacitated Lot-Sizing Problem
- Heuristic fix and optimize approach ¹
- Operating cost reduction by 5% and planning effort by 40%

1. Mickein, Koch, and Haase (2022)

Questions?

Literature

Literature I

For more interesting literature to learn more about Julia, take a look at the literature list of this course.

Literature II

Mickein, Markus, Matthes Koch, and Knut Haase. 2022. "A Decision Support System for Brewery Production Planning at Feldschlösschen." *INFORMS Journal on Applied Analytics* 52 (2): 158–72.